# **Endogenous Production Networks Under Uncertainty**

Alexandr Kopytov University of Hong Kong Bineet Mishra Cornell University

Kristoffer Nimark Cornell University Mathieu Taschereau-Dumouchel Cornell University

• Firms rely on complex supply chains to get intermediate inputs.

- Firms rely on complex supply chains to get intermediate inputs.
- These chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.

- Firms rely on complex supply chains to get intermediate inputs.
- These chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output link.  $\Rightarrow$  agg. fluctuations.

- Firms rely on complex supply chains to get intermediate inputs.
- These chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output link. ⇒ agg. fluctuations.
- But individual firms may mitigate such propagation by reducing their reliance on risky suppliers.

- Firms rely on complex supply chains to get intermediate inputs.
- These chains are often disrupted by natural disasters, trade barriers, changes in regulations, congestion in transportation links, etc.
- These shocks propagate through input-output link. ⇒ agg. fluctuations.
- But individual firms may mitigate such propagation by reducing their reliance on risky suppliers.

How does risk affect an economy's production network and, through that channel, macroeconomic aggregates?

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Sourcing decisions are taken under uncertainty
  - Tradeoff between buying goods whose prices are low vs stable

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Sourcing decisions are taken under uncertainty
  - Tradeoff between buying goods whose prices are low vs stable
- We show that there exists an efficient equilibrium in this economy

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Sourcing decisions are taken under uncertainty
  - Tradeoff between buying goods whose prices are low vs stable
- We show that there exists an efficient equilibrium in this economy

We characterize the impact of the mechanism on the economy

■ More productive/stable firms ⇒ more important role in the equilibrium network.

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Sourcing decisions are taken under uncertainty
  - Tradeoff between buying goods whose prices are low vs stable
- We show that there exists an efficient equilibrium in this economy

We characterize the impact of the mechanism on the economy

- More productive/stable firms ⇒ more important role in the equilibrium network.
- Uncertainty lowers expected GDP
  - Mechanism operates through the endogenous response of the network
  - Firms seek stability at the cost of lower efficiency

We construct a model of endogenous network formation under uncertainty

- Firms create links with suppliers to acquire intermediate inputs
- Sourcing decisions are taken under uncertainty
  - Tradeoff between buying goods whose prices are low vs stable
- We show that there exists an efficient equilibrium in this economy

We characterize the impact of the mechanism on the economy

- More productive/stable firms ⇒ more important role in the equilibrium network.
- Uncertainty lowers expected GDP
  - Mechanism operates through the endogenous response of the network
  - Firms seek stability at the cost of lower efficiency
- Shocks can have counterintuitive effects
  - Higher firm-level expected productivity can lead to lower expected GDP
  - Higher firm-level volatility can lead to more stable GDP

We calibrate the model to the United States economy

- The model is able to replicate the relationship between shocks and the structure of the network well.
- Letting the network adjust to shocks has large impact on welfare
- The impact of uncertainty on the network is small on average but can be substantial during high-volatility events like the Great Recession

# Survey evidence

## Surveys of business executives

 German executives: supply chains issues were responsible for significant disruption to production (Wagner and Bode, 2008)

## Survey evidence

#### Surveys of business executives

- German executives: supply chains issues were responsible for significant disruption to production (Wagner and Bode, 2008)
- Global survey of small and medium firms: 39% report that losing their main supplier would adversely affect their operation, and 14% report that they would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)

### Survey evidence

#### Surveys of business executives

- German executives: supply chains issues were responsible for significant disruption to production (Wagner and Bode, 2008)
- Global survey of small and medium firms: 39% report that losing their main supplier would adversely affect their operation, and 14% report that they would need to significantly downsize their business, require emergency support or shut down (Zurich Insurance Group, 2015)
- COVID-19 pandemic: 70% agreed that the pandemic pushed companies to favor higher supply chain resiliency instead of purchasing from the lowest-cost supplier (Foley & Lardner, 2020)

### Slightly less anecdotal evidence

Use detailed U.S. data on firm-to-firm relationship (Factset 2003–2016)

Regress a dummy for link destruction on supplier uncertainty measures

Instruments from Alfaro, Bloom and Lin (2019)



|                             | Dummy for last year of supply relationship |          |         |
|-----------------------------|--------------------------------------------|----------|---------|
|                             | (1) OLS                                    | (2) IV   | (3) IV  |
| $\Delta Vol_{t-1}$ of supp. | 0.023**                                    | 0.113*** | 0.149** |
|                             | (0.011)                                    | (0.032)  | (0.067) |
| 1st moment of IVs           | No                                         | Yes      | Yes     |
| Type of volatility          | Realized                                   | Realized | Implied |
| Fixed effects               | Yes                                        | Yes      | Yes     |
| Observations                | 28,687                                     | 28,687   | 21,124  |
| <i>F</i> -statistic         | _                                          | 67.0     | 30.6    |

All specifications include year  $\times$  customer  $\times$  supplier industry (3SIC) fixed effects. Standard errors are two-way clustered at the customer and the supplier levels. *F*-statistics are Kleibergen-Paap. \*,\*\*\*,\*\*\*\* indicate significance at the 10%, 5%, and 1% levels, respectively.

• Doubling volatility  $\Rightarrow$  13 p.p. increase in probability link destroyed (IV)

#### Related literature

#### Uncertainty

 Bloom (2009); Fernandez-Villaverde et al (2011); Bloom (2014); Bloom et al (2018); and many others ...

### Exogenous production networks

 Long and Plosser (1983); Dupor (1999); Horvath (2000); Acemoglu et al (2012); Carvalho and Gabaix (2013); and many others ...

#### Endogenous production networks

 Oberfield (2018); Acemoglu and Azar (2020); Boehm and Oberfield (2020); Taschereau-Dumouchel (2021); Acemoglu and Tahbaz-Salehi (2021). Model

#### **Model**

### Static model with two types of agents

- 1. Representative household: supplies labor and consumes
- 2. Firms: produce differentiated goods using labor and intermediate inputs
  - There are n industries/goods, indexed by  $i \in \{1, \dots, n\}$
  - Representative firm that behaves competitively

Each firm i has access to a set of production techniques  $A_i$ .

A technique  $\alpha_i \in \mathcal{A}_i$  specifies

- The set of intermediate inputs to be used in production
- The proportion in which these inputs are combined
- A productivity shifter  $A_i(\alpha_i)$  for the firm

Each firm *i* has access to a set of production techniques  $A_i$ .

A technique  $\alpha_i \in \mathcal{A}_i$  specifies

- The set of intermediate inputs to be used in production
- The proportion in which these inputs are combined
- A productivity shifter  $A_i(\alpha_i)$  for the firm

These techniques are Cobb-Douglas production functions

• We identify  $\alpha_i = (\alpha_{i1}, \dots, \alpha_{in})$  with the input shares

$$F(\alpha_i, L_i, X_i) = e^{\varepsilon_i} \zeta(\alpha_i) A_i(\alpha_i) L_i^{1 - \sum_{j=1}^n \alpha_{ij}} \prod_{j=1}^n X_{ij}^{\alpha_{ij}},$$

a

Each firm *i* has access to a set of production techniques  $A_i$ .

A technique  $\alpha_i \in \mathcal{A}_i$  specifies

- The set of intermediate inputs to be used in production
- The proportion in which these inputs are combined
- A productivity shifter  $A_i(\alpha_i)$  for the firm

These techniques are Cobb-Douglas production functions

• We identify  $\alpha_i = (\alpha_{i1}, \dots, \alpha_{in})$  with the input shares

$$F(\alpha_i, L_i, X_i) = e^{\varepsilon_i} \zeta(\alpha_i) A_i(\alpha_i) L_i^{1 - \sum_{j=1}^n \alpha_{ij}} \prod_{j=1}^n X_{ij}^{\alpha_{ij}},$$

Set  $A_i$  allows adjustment along the intensive and extensive margins

$$\mathcal{A}_{i} = \left\{ \alpha \in [0, 1]^{n} : \sum_{j=1}^{n} \alpha_{j} \leq \overline{\alpha}_{i} < 1 \right\}.$$

a

### Assumption

 $A_i(\alpha_i)$  is smooth and strictly log-concave.

### Implications:

- lacktriangle There are ideal input shares  $lpha_{ij}^\circ$  that maximize  $A_i$
- Deviating from these ideal shares reduces productivity

#### Assumption

 $A_i(\alpha_i)$  is smooth and strictly log-concave.

#### Implications:

- There are ideal input shares  $\alpha_{ii}^{\circ}$  that maximize  $A_i$
- Deviating from these ideal shares reduces productivity

#### Example

$$\log A_i(\alpha_i) = -\sum_{j=1}^n \kappa_{ij} \left(\alpha_{ij} - \alpha_{ij}^{\circ}\right)^2 - \kappa_{i0} \left(\sum_{j=1}^n \alpha_{ij} - \sum_{j=1}^n \alpha_{ij}^{\circ}\right)^2,$$

# Source of uncertainty

### Firms are subject to productivity shocks $\varepsilon$

- Shocks are jointly normal  $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \sim \mathcal{N}(\mu, \Sigma)$ 
  - $\mu$  captures optimism/pessimism about productivity
  - $\bullet$   $\; \Sigma$  captures uncertainty and correlations

# Source of uncertainty

### Firms are subject to productivity shocks $\varepsilon$

- Shocks are jointly normal  $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \sim \mathcal{N}(\mu, \Sigma)$ 
  - μ captures optimism/pessimism about productivity
  - ullet  $\Sigma$  captures uncertainty and correlations
- In equilibrium, these shocks will affect input prices
  - High  $\mu_i \Rightarrow$  low expected price
  - High  $\Sigma_{ii} \Rightarrow$  uncertain price
- These shocks are the only source of randomness in the model

### Source of uncertainty

### Firms are subject to productivity shocks $\varepsilon$

- Shocks are jointly normal  $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \sim \mathcal{N}(\mu, \Sigma)$ 
  - μ captures optimism/pessimism about productivity
  - ullet  $\Sigma$  captures uncertainty and correlations
- In equilibrium, these shocks will affect input prices
  - High  $\mu_i \Rightarrow$  low expected price
  - High  $\Sigma_{ii} \Rightarrow$  uncertain price
- These shocks are the only source of randomness in the model
- Production techniques are chosen before  $\varepsilon$  is realized
  - Beliefs  $(\mu, \Sigma)$  affect technique choice
  - $\, \bullet \,$  All other decisions are taken, and markets clear, after  $\varepsilon$  is drawn

#### Example

- A car manufacturer can use steel or carbon fiber for certain parts
- All else equal the manufacturer prefers carbon fiber
- If carbon fiber is expensive ( $\mu_{\text{carbon fiber}}$  small) or its price is volatile ( $\Sigma_{\text{carbon fiber}}$  large), the manufacturer switches to steel.

#### Example

- A car manufacturer can use steel or carbon fiber for certain parts
- All else equal the manufacturer prefers carbon fiber
- If carbon fiber is expensive ( $\mu_{\text{carbon fiber}}$  small) or its price is volatile ( $\Sigma_{\text{carbon fiber}}$  large), the manufacturer switches to steel.

#### A production network

- Together the techniques  $\alpha \in A$  of the firms form a production network.
- Beliefs  $(\mu, \Sigma)$  affect the structure of the network.
- Model allows for intensive and extensive adjustments in the network.

#### Household

The representative household makes decisions after  $\varepsilon$  is realized

- Owns the firms
- Supplies one unit of labor inelastically
- Chooses *state-contingent* consumption  $(C_1, \ldots, C_n)$  to maximize

$$u\left(\left(\frac{C_1}{\beta_1}\right)^{\beta_1}\times\cdots\times\left(\frac{C_n}{\beta_n}\right)^{\beta_n}\right),$$

subject to the state-by-state budget constraint

$$\sum_{i=1}^n P_i C_i \le 1,$$

where u is CRRA with relative risk aversion (W = 1)  $\rho \ge 1$ .



#### Household

Two key quantities from the household's problem

1. The stochastic discount factor of the household is

$$\Lambda = u'(Y)/\overline{P}$$

where  $Y = \prod_{i=1}^n \left(\beta_i^{-1} C_i\right)^{\beta_i}$  is consumption and GDP and  $\overline{P} = \prod_{i=1}^n P_i^{\beta_i}$ .

#### Household

Two key quantities from the household's problem

1. The stochastic discount factor of the household is

$$\Lambda = u'(Y)/\overline{P}$$

where  $Y = \prod_{i=1}^{n} (\beta_i^{-1} C_i)^{\beta_i}$  is consumption and GDP and  $\overline{P} = \prod_{i=1}^{n} P_i^{\beta_i}$ .

• Firms use SDF to value profits in different states of the world

#### Two key quantities from the household's problem

1. The stochastic discount factor of the household is

$$\Lambda = u'(Y)/\overline{P}$$

where  $Y = \prod_{i=1}^{n} (\beta_i^{-1} C_i)^{\beta_i}$  is consumption and GDP and  $\overline{P} = \prod_{i=1}^{n} P_i^{\beta_i}$ .

- Firms use SDF to value profits in different states of the world
- 2. GDP as a function of prices

$$y = -\beta' p$$
,

where  $y = \log Y$ ,  $p = (\log (P_1), \dots, \log (P_n))$  and  $\beta = (\beta_1, \dots, \beta_n)$ .

Two key quantities from the household's problem

1. The stochastic discount factor of the household is

$$\Lambda = u'(Y)/\overline{P}$$

where  $Y = \prod_{i=1}^{n} (\beta_i^{-1} C_i)^{\beta_i}$  is consumption and GDP and  $\overline{P} = \prod_{i=1}^{n} P_i^{\beta_i}$ .

- Firms use SDF to value profits in different states of the world
- 2. GDP as a function of prices

$$y = -\beta' p$$
,

where  $y = \log Y$ ,  $p = (\log (P_1), \dots, \log (P_n))$  and  $\beta = (\beta_1, \dots, \beta_n)$ .

 $\Rightarrow$  We only need prices to compute GDP

### Problem of the firm: Labor and intermediate inputs

For a given technique  $\alpha_i$ , the cost minimization problem of the firm is

$$\mathcal{K}_i\left(\alpha_i,P\right) = \min_{L_i,X_i} \left(L_i + \sum_{j=1}^n P_j X_{ij}\right), \text{ subject to } F\left(\alpha_i,L_i,X_i\right) \geq 1$$

where  $K_i(\alpha_i, P)$  is the unit cost of production.

### Problem of the firm: Labor and intermediate inputs

For a given technique  $\alpha_i$ , the cost minimization problem of the firm is

$$K_i(\alpha_i, P) = \min_{L_i, X_i} \left( L_i + \sum_{j=1}^n P_j X_{ij} \right), \text{ subject to } F(\alpha_i, L_i, X_i) \ge 1$$

where  $K_i(\alpha_i, P)$  is the unit cost of production.

Note:

- 1. Constant returns to scale  $\Rightarrow K_i$  does not depend on the size of the firm.
- 2. Given that each technique is Cobb-Douglas,

$$K_i(\alpha_i, P) = \frac{1}{e^{\varepsilon_i} A_i(\alpha_i)} \prod_{j=1}^n P_j^{\alpha_{ij}}.$$

3. Since we have perfect competition, it must be that in equilibrium.

$$P_i = K_i(\alpha_i, P)$$
 for all  $i \in \{1, \ldots, n\}$ .

## Problem of the firm: Labor and intermediate inputs

For a given technique  $\alpha_i$ , the cost minimization problem of the firm is

$$K_i(\alpha_i, P) = \min_{L_i, X_i} \left( L_i + \sum_{j=1}^n P_j X_{ij} \right), \text{ subject to } F(\alpha_i, L_i, X_i) \ge 1$$

where  $K_i(\alpha_i, P)$  is the unit cost of production.

Note:

- 1. Constant returns to scale  $\Rightarrow K_i$  does not depend on the size of the firm.
- 2. Given that each technique is Cobb-Douglas,

$$K_i(\alpha_i, P) = \frac{1}{e^{\varepsilon_i} A_i(\alpha_i)} \prod_{j=1}^n P_j^{\alpha_{ij}}.$$

3. Since we have perfect competition, it must be that in equilibrium.

$$P_i = K_i(\alpha_i, P)$$
 for all  $i \in \{1, \ldots, n\}$ .

 $\Rightarrow$  For a given network lpha we can compute equilibrium prices

Firm *i* chooses a technique  $\alpha_i \in \mathcal{A}_i$  to solve

$$\alpha_{i}^{*} \in \arg \max_{\alpha_{i} \in \mathcal{A}_{i}} \mathbb{E} \left[ \Lambda Q_{i} \left( P_{i} - K_{i} \left( \alpha_{i}, P \right) \right) \right]$$

where  $Q_i$  is the equilibrium demand for good i.

Firm *i* chooses a technique  $\alpha_i \in \mathcal{A}_i$  to solve

$$\alpha_{i}^{*} \in \arg\max_{\alpha_{i} \in \mathcal{A}_{i}} \operatorname{E}\left[\Lambda Q_{i}\left(P_{i} - K_{i}\left(\alpha_{i}, P\right)\right)\right]$$

where  $Q_i$  is the equilibrium demand for good i.

#### Lemma

$$\begin{split} \lambda &= \log{(\Lambda)}, \ k_i = \log{(K_i)}, \ q_i = \log{(Q_i)} \ \text{are normally distributed so that} \\ \alpha_i^* &\in \arg\min_{\alpha_i \in \mathcal{A}_i} \mathrm{E}\left[k_i\left(\alpha_i, \alpha^*\right)\right] + \frac{1}{2} \, \mathrm{V}\left[k_i\left(\alpha_i, \alpha^*\right)\right] \\ &+ \mathrm{Cov}\left[k_i\left(\alpha_i, \alpha^*\right), \lambda\left(\alpha^*\right) + q_i\left(\alpha^*\right)\right]. \end{split}$$

$$\alpha_{i}^{*} \in \arg\min_{\alpha_{i} \in \mathcal{A}_{i}} \operatorname{E}\left[k_{i}\right] + \frac{1}{2} \operatorname{V}\left[k_{i}\right] + \operatorname{Cov}\left[k_{i}, \lambda + q_{i}\right].$$

$$\alpha_{i}^{*} \in \arg\min_{\alpha_{i} \in \mathcal{A}_{i}} \operatorname{E}\left[\mathbf{\textit{k}}_{i}\right] + \frac{1}{2} \operatorname{V}\left[\mathbf{\textit{k}}_{i}\right] + \operatorname{Cov}\left[\mathbf{\textit{k}}_{i}, \lambda + \mathbf{\textit{q}}_{i}\right].$$

#### Three channels:

- 1. Minimize expectation  $E[k_i]$  of unit cost
  - Use technique with cheap inputs (low p) and high productivity (high a)

$$\alpha_i^* \in \arg\min_{\alpha_i \in \mathcal{A}_i} \mathbb{E}\left[\mathbf{k}_i\right] + \frac{1}{2} \mathbf{V}\left[\mathbf{k}_i\right] + \operatorname{Cov}\left[\mathbf{k}_i, \lambda + \mathbf{q}_i\right].$$

#### Three channels:

- 1. Minimize expectation  $E[k_i]$  of unit cost
  - Use technique with cheap inputs (low p) and high productivity (high a)
- 2. Minimize variance  $V[k_i]$  of unit cost

$$\mathbf{V}\left[\mathbf{\textit{k}}_{i}\right] = \mathsf{cte} + \underbrace{\sum_{j=1}^{n} \alpha_{ij}^{2} \, \mathsf{V}\left[p_{j}\right]}_{\mathsf{stable prices}} + \underbrace{\sum_{j \neq k} \alpha_{ij} \alpha_{ik} \, \mathsf{Cov}\left[p_{j}, p_{k}\right]}_{\mathsf{uncorrelated prices}} + \underbrace{2 \, \mathsf{Cov}\left[-\varepsilon_{i}, \sum_{j=1}^{n} \alpha_{ij} p_{j}\right]}_{\mathsf{uncorrelated with own TFP}}$$

$$\alpha_i^* \in \arg\min_{\alpha_i \in \mathcal{A}_i} \mathbf{E}\left[\mathbf{k}_i\right] + \frac{1}{2}\mathbf{V}\left[\mathbf{k}_i\right] + \mathbf{Cov}\left[\mathbf{k}_i, \lambda + \mathbf{q}_i\right].$$

#### Three channels:

- 1. Minimize expectation  $E[k_i]$  of unit cost
  - Use technique with cheap inputs (low p) and high productivity (high a)
- 2. Minimize variance  $V[k_i]$  of unit cost

$$\mathbf{V}\left[\mathbf{\textit{k}}_{\textit{i}}\right] = \mathsf{cte} + \underbrace{\sum_{j=1}^{n} \alpha_{\textit{ij}}^{2} \, \mathsf{V}\left[p_{\textit{j}}\right]}_{\mathsf{stable prices}} + \underbrace{\sum_{j \neq k} \alpha_{\textit{ij}} \alpha_{\textit{ik}} \, \mathsf{Cov}\left[p_{\textit{j}}, p_{\textit{k}}\right]}_{\mathsf{uncorrelated prices}} + \underbrace{2 \, \mathsf{Cov}\left[-\varepsilon_{\textit{i}}, \sum_{j=1}^{n} \alpha_{\textit{ij}} p_{\textit{j}}\right]}_{\mathsf{uncorrelated with own TFP}$$

- 3. Importance of aggregate conditions through  $Cov[k_i, \lambda + q_i]$ 
  - Seek low unit costs when high demand  $(q_i)$  and high marginal utility  $(\lambda)$ .
  - Because of the SDF the firm inherits the risk aversion of the household.

## Back to our example

- Firm *i* can use steel (input 1) or carbon fiber (input 2)
- Look at impact of  $\to p_2$  and  $V p_2$  on the shares  $\alpha_{i1}$  and  $\alpha_{i2}$



#### Definition

An equilibrium is a choice of technique for every firm  $\alpha^*$  and a stochastic tuple  $(P^*, C^*, L^*, X^*, Q^*, \Lambda^*)$  such that:

- 1. (Unit cost pricing) For each  $i \in \{1, ..., n\}$ ,  $P_i^* = K_i(\alpha_i^*, P^*)$ .
- 2. (Optimal technique choice) For each  $i \in \{1, \ldots, n\}$ , factor demand  $L_i^*$  and  $X_i^*$ , and the technology choice  $\alpha_i^* \in \mathcal{A}_i$  solves the firm's problem.
- 3. (Consumer maximization) The consumption vector  $C^*$  solves the household's problem.
- 4. (Market clearing) For each  $i \in \{1, ..., n\}$ ,

$$Q_{i}^{*} = C_{i}^{*} + \sum_{j=1}^{n} X_{ji}^{*},$$

$$Q_{i}^{*} = F_{i}(\alpha_{i}^{*}, L_{i}^{*}, X_{i}^{*}),$$

$$\sum_{i=1}^{n} L_{i}^{*} = 1.$$

Fixed-network economy

# GDP in a fixed-network economy

#### Lemma

Under a given network  $\alpha$ , the log of GDP  $y = \log Y$  is given by

$$y = \beta' \mathcal{L}(\alpha) (\varepsilon + a(\alpha)),$$

where  $a(\alpha) = (\log A_i(\alpha_i), \dots, \log A_n(\alpha_n))$  and  $\mathcal{L}(\alpha) = (I - \alpha)^{-1}$  is the Leontief inverse.

# GDP in a fixed-network economy

#### Lemma

Under a given network  $\alpha$ , the log of GDP  $y = \log Y$  is given by

$$y = \beta' \mathcal{L}(\alpha) (\varepsilon + a(\alpha)),$$

where  $a(\alpha) = (\log A_i(\alpha_i), \dots, \log A_n(\alpha_n))$  and  $\mathcal{L}(\alpha) = (I - \alpha)^{-1}$  is the Leontief inverse.

The importance of a firm's shock for GDP is given by its Domar weight

$$\omega_{i} := \beta' \mathcal{L}(\alpha) \, 1_{i} = \underbrace{\frac{P_{i} Q_{i}}{PC}}_{\text{sales share in value added}}$$

Domar weights capture the importance of a firm as a supplier

- 1. Role of  $\beta$ : Goods in high demand have larger impact on GDP
- 2. Role of  $\mathcal{L} = I + \alpha + \alpha^2 + \dots$ : Important suppliers matter more for GDP

## Impact of shocks on GDP

 $\text{Moments of } \textit{y} \text{: } \mathrm{E}\left[\textit{y}\right] = \beta' \mathcal{L}\left(\alpha\right)\left(\mu + \textit{a}\left(\alpha\right)\right) \text{ and } \mathrm{V}\left[\textit{y}\right] = \beta' \mathcal{L}\left(\alpha\right) \Sigma \mathcal{L}\left(\alpha\right)' \beta$ 

## Impact of shocks on GDP

Moments of y:  $E[y] = \beta' \mathcal{L}(\alpha) (\mu + a(\alpha))$  and  $V[y] = \beta' \mathcal{L}(\alpha) \Sigma \mathcal{L}(\alpha)' \beta$ 

## Proposition (Hulten's Theorem in expectation)

#### For a fixed network $\alpha$ ,

1. The impact of  $\mu_i$  on expected GDP  $\mathrm{E}\left[y\right]$  is given by

$$\frac{\partial \mathrm{E}[y]}{\partial \mu_i} = \omega_i.$$

2. The impact of  $\Sigma_{ij}$  on the variance of GDP V[y] is given by

$$\frac{\partial V[y]}{\partial \Sigma_{ij}} = \begin{cases} \omega_i^2 & i = j, \\ 2\omega_i \omega_j & i \neq j. \end{cases}$$

## Impact of shocks on GDP

Moments of y:  $E[y] = \beta' \mathcal{L}(\alpha) (\mu + a(\alpha))$  and  $V[y] = \beta' \mathcal{L}(\alpha) \Sigma \mathcal{L}(\alpha)' \beta$ 

## Proposition (Hulten's Theorem in expectation)

#### For a fixed network $\alpha$ ,

1. The impact of  $\mu_i$  on expected GDP  $\mathrm{E}\left[y\right]$  is given by

$$\frac{\partial \mathrm{E}[y]}{\partial \mu_i} = \omega_i.$$

2. The impact of  $\Sigma_{ij}$  on the variance of GDP V[y] is given by

$$\frac{\partial V[y]}{\partial \Sigma_{ij}} = \begin{cases} \omega_i^2 & i = j, \\ 2\omega_i \omega_j & i \neq j. \end{cases}$$

#### Under a fixed network:

- 1. Sales shares  $\omega$  are enough to understand GDP (Hulten's Theorem).
- 2. Since  $\omega_i > 0$  shocks have intuitive impact.

Flexible-network economy

# **Equilibrium** and efficiency

## Proposition

There exists an efficient equilibrium. Furthermore, the equilibrium production network  $\alpha^*$  solves

$$\mathcal{W} := \max_{\alpha \in \mathcal{A}} \mathrm{E}\left[y(\alpha)\right] - \frac{1}{2}\left(\rho - 1\right) \mathrm{V}\left[y(\alpha)\right]$$

# **Equilibrium** and efficiency

## Proposition

There exists an efficient equilibrium. Furthermore, the equilibrium production network  $\alpha^*$  solves

$$W := \max_{\alpha \in \mathcal{A}} E[y(\alpha)] - \frac{1}{2} (\rho - 1) V[y(\alpha)]$$

## Implications:

- 1. The economy is undistorted by externalities or imperfections.
- 2. Complicated network formation problem  $\Rightarrow$  simple optimization problem.

Economic forces at work

## Impact of beliefs on the network

Domar weights are constant when the network is fixed. When it is flexible...

### Proposition

The Domar weight  $\omega_i$  of firm i is increasing in  $\mu_i$  and decreasing in  $\Sigma_{ii}$ .

## Impact of beliefs on the network

Domar weights are constant when the network is fixed. When it is flexible...

#### Proposition

The Domar weight  $\omega_i$  of firm i is increasing in  $\mu_i$  and decreasing in  $\Sigma_{ii}$ .

#### This result is intuitive

- 1. Equilibrium's perspective: Firms rely more on high- $\mu_i$  and low- $\Sigma_{ii}$  firms as suppliers.
- 2. Planner's perspective: The importance of high- $\mu_i$  and low- $\Sigma_{ii}$  firms for welfare is magnified if they are important suppliers.

▶ Impact on  $\alpha$ 

# Example: Impact of beliefs on the network

## Simple economy

- Five firms with uncorrelated shocks.
- Firms are identical except that i = 4 is less productive ( $\mu_4$  low).



▶ Details

# Example: Impact of beliefs on the network

## Simple economy

- Five firms with uncorrelated shocks.
- Firms are identical except that i = 4 is less productive ( $\mu_4$  low).



Small increase in  $\Sigma_{22}$ 

▶ Details

# Example: Impact of beliefs on the network

## Simple economy

- Five firms with uncorrelated shocks.
- Firms are identical except that i = 4 is less productive ( $\mu_4$  low).



Large increase in  $\Sigma_{22}$ 

▶ Details

# **Example: Cascading effect of uncertainty**



## Effect of uncertainty on GDP

## Proposition

Uncertainty lowers the expected value of GDP in equilibrium, such that  $\mathrm{E}\left[\mathbf{y}\right]$  is largest when  $\Sigma=0_{n\times n}.$ 

## Effect of uncertainty on GDP

### Proposition

Uncertainty lowers the expected value of GDP in equilibrium, such that  $\mathrm{E}\left[y\right]$  is largest when  $\Sigma=0_{n\times n}.$ 

#### This result is intuitive

- Equilibrium's perspective: When there is no uncertainty firms purchase from the lowest expected price (highest expected utility) supplier. This maximizes expected GDP.
- 2. Planner's perspective: When  $\Sigma = 0_{n \times n}$  the variance of GDP is 0. Only objective is to maximize  $\mathbb{E}[y]$ .

#### Effect of shocks on welfare

### Proposition

1. The impact of an increase in  $\mu_i$  on expected welfare is given by

$$\frac{d\mathcal{W}}{d\mu_i} = \frac{\partial \operatorname{E}[y]}{\partial \mu_i} = \omega_i.$$

2. The impact of an increase in  $\Sigma_{ij}$  on expected welfare is given by

$$\frac{d\mathcal{W}}{d\Sigma_{ij}} = \begin{cases} -\frac{1}{2}\left(\rho-1\right)\left(\frac{\partial \, \mathrm{E}\left[\mathbf{y}\right]}{\partial \mu_{i}}\right)^{2} = -\frac{1}{2}\left(\rho-1\right)\omega_{i}^{2} & i=j, \\ -\left(\rho-1\right)\frac{\partial \, \mathrm{E}\left[\mathbf{y}\right]}{\partial \mu_{i}}\frac{\partial \, \mathrm{E}\left[\mathbf{y}\right]}{\partial \mu_{j}} = -\left(\rho-1\right)\omega_{i}\omega_{j} & i\neq j. \end{cases}$$

## Effect of shocks on welfare

#### Proposition

1. The impact of an increase in  $\mu_i$  on expected welfare is given by

$$\frac{d\mathcal{W}}{d\mu_i} = \frac{\partial \operatorname{E}[y]}{\partial \mu_i} = \omega_i.$$

2. The impact of an increase in  $\Sigma_{ij}$  on expected welfare is given by

$$\frac{d\mathcal{W}}{d\Sigma_{ij}} = \begin{cases} -\frac{1}{2} \left(\rho - 1\right) \left(\frac{\partial \operatorname{E}[y]}{\partial \mu_{i}}\right)^{2} = -\frac{1}{2} \left(\rho - 1\right) \omega_{i}^{2} & i = j, \\ -\left(\rho - 1\right) \frac{\partial \operatorname{E}[y]}{\partial \mu_{i}} \frac{\partial \operatorname{E}[y]}{\partial \mu_{j}} = -\left(\rho - 1\right) \omega_{i} \omega_{j} & i \neq j. \end{cases}$$

The impact of shocks on welfare is intuitive

- 1. Higher productivity leads to higher welfare.
- 2. Higher correlation or uncertainty leads to lower welfare.

## Effect of shocks on GDP

# Impact of shocks on

Welfare: intuitive

GDP when the network is fixed: intuitive

GDP when the network is flexible: ???

#### Effect of shocks on GDP

## Impact of shocks on

- Welfare: intuitive
- GDP when the network is fixed: intuitive
- GDP when the network is flexible: ???

Decompose a shock to, say,  $\mu_i$  as

$$\frac{d \operatorname{E}[y]}{d\mu_{i}} = \underbrace{\frac{\partial \operatorname{E}[y]}{\partial \mu_{i}}}_{\text{direct impact with fixed network}} + \underbrace{\frac{\partial \operatorname{E}[y]}{\partial \alpha} \frac{d\alpha}{d\mu_{i}}}_{\text{network adjustment}}$$

#### Two effects:

- 1. Direct impact keeping the network fixed = Domar weight
- 2. Indirect impact that take into account the network adjustment = ???

# **Example: Surprising impact of a shock**

### Simple economy:

- 5 firms with uncorrelated shocks
- Firms are identical except that
  - Firm 4 is risky (high  $\Sigma_{44}$ )
  - $\bullet$  Firm 5 is safe (low  $\Sigma_{55})$  but unproductive (low  $\mu_5)$
  - $\beta_4=\beta_5$  are very small



# **Example: Surprising impact of a shock**

## Simple economy:

- 5 firms with uncorrelated shocks
- Firms are identical except that
  - Firm 4 is risky (high  $\Sigma_{44}$ )
  - Firm 5 is safe (low  $\Sigma_{55}$ ) but unproductive (low  $\mu_5$ )
  - $\beta_4 = \beta_5$  are very small



#### We are going to consider two shocks

- 1. An increase in  $\mu_5$
- 2. An increase in  $\Sigma_{44}$

## **Example: Surprising impact of a shock**



Quantitative exploration

## Data about the United States from vom Lehn and Winberry (2021)

- Input-output tables, sectoral total factor productivity, consumption shares
- 37 sectors, from 1947 to 2018:

| Mining                              | Utilities                           | Construction                      |
|-------------------------------------|-------------------------------------|-----------------------------------|
| Wood products                       | Nonmetallic minerals                | Primary metals                    |
| Fabricated metals                   | Machinery                           | Computer and electronic manuf.    |
| Electrical equipment manufacturing  | Motor vehicles manufacturing        | Other transportation equipment    |
| Furniture and related manufacturing | Misc. manufacturing                 | Food and beverage manufacturing   |
| Textile manufacturing               | Apparel manufacturing               | Paper manufacturing               |
| Printing products manufacturing     | Petroleum and coal manufacturing    | Chemical manufacturing            |
| Plastics manufacturing              | Wholesale trade                     | Retail trade                      |
| Transportation and warehousing      | Information                         | Finance and insurance             |
| Real estate and rental services     | Professional and technical services | Mgmt. of companies and enterprise |
| Admin. and waste mgmt. services     | Educational services                | Health care and social assistance |
| Arts and entertainment services     | Accommodation                       | Food services                     |
| Other services                      |                                     |                                   |

#### Data

### Data about the United States from vom Lehn and Winberry (2021)

- Input-output tables, sectoral total factor productivity, consumption shares
- 37 sectors, from 1947 to 2018:

| Mining                              | Utilities                           | Construction                       |  |
|-------------------------------------|-------------------------------------|------------------------------------|--|
| Wood products                       | Nonmetallic minerals                | Primary metals                     |  |
| Fabricated metals                   | Machinery                           | Computer and electronic manuf.     |  |
| Electrical equipment manufacturing  | Motor vehicles manufacturing        | Other transportation equipment     |  |
| Furniture and related manufacturing | Misc. manufacturing                 | Food and beverage manufacturing    |  |
| Textile manufacturing               | Apparel manufacturing               | Paper manufacturing                |  |
| Printing products manufacturing     | Petroleum and coal manufacturing    | Chemical manufacturing             |  |
| Plastics manufacturing              | Wholesale trade                     | Retail trade                       |  |
| Transportation and warehousing      | Information                         | Finance and insurance              |  |
| Real estate and rental services     | Professional and technical services | Mgmt. of companies and enterprises |  |
| Admin. and waste mgmt. services     | Educational services                | Health care and social assistance  |  |
| Arts and entertainment services     | Accommodation                       | Food services                      |  |
| Other services                      |                                     |                                    |  |

Average share of 1.4% with standard deviation of 0.5% over time

#### Calibration

#### **Preferences**

- ${\color{red} \bullet}$  Consumption shares  $\beta$  are taken directly from the data
- Relative risk aversion  $\rho$  is **estimated**

### Production technique productivity shifters

- Function A<sub>i</sub> as described earlier
- Set ideal shares  $\alpha_{ij}^{\circ}$  to their data average
- Costs  $\kappa_{ij}$  of deviating from  $\alpha_{ij}^{\circ}$  are **estimated**

### Process for exogenous shocks $\varepsilon_t$

- Random walk with drift  $\varepsilon_t = \gamma + \varepsilon_{t-1} + u_t^{\varepsilon}$ , with  $u_t^{\varepsilon} \sim \text{iid } \mathcal{N}(0, \Sigma_t)$ .
- Drift vec.  $\gamma$  and cov. mat.  $\Sigma_t$  are backed out from the data given  $(\rho, \kappa)$ .

Loss function: Target the full set of shares  $\alpha_{ijt}$  and the variance of GDP.

# Calibrated economy

Estimated risk aversion:  $\rho = 5.8$ 

- High by macro standards, but in most models  $\rho$  is pinned down by IES
- $\blacksquare$  Studies that separate IES from RA often find  $\rho$  between 5 and 10

# Calibrated economy

### Estimated risk aversion: $\rho = 5.8$

- High by macro standards, but in most models ho is pinned down by IES
- Studies that separate IES from RA often find  $\rho$  between 5 and 10

### Estimated covariance process $\Sigma_t$





# Calibrated economy: Domar weights

The calibrated Domar weights fit the data well in terms of



Figure 1: Average Domar weights

# Calibrated economy: Domar weights

### The calibrated Domar weights fit the data well in terms of



Figure 1: Average Domar weights



Figure 2: Correlation between Domar weight  $\omega_j$  and  $\mu_j$ 



Figure 3: Correlation between Domar weight  $\omega_j$  and  $\Sigma_{jj}$ 

### Isolating the mechanism

#### Two useful counterfactuals

- 1. Fixed-network economy
  - to capture the full effect of network adjustments
- 2. Risk-neutral economy ( $\rho = 1$ )
  - to capture the impact of uncertainty

# Isolating the mechanism

### Two useful counterfactuals

- 1. Fixed-network economy
  - to capture the full effect of network adjustments
- 2. Risk-neutral economy ( $\rho = 1$ )
  - to capture the impact of uncertainty

|                                                            | Baseline model compared to |              |
|------------------------------------------------------------|----------------------------|--------------|
|                                                            | Fixed network              | Risk neutral |
| Expected GDP $E[y(\alpha)]$                                | +2.55%                     | -0.02%       |
| Std. dev. of GDP $\sqrt{\mathrm{V}\left[y(\alpha)\right]}$ | +0.07%                     | -0.08%       |
| Welfare ${\cal W}$                                         | +2.52%                     | +0.02%       |

# Isolating the mechanism

### Two useful counterfactuals

- 1. Fixed-network economy
  - to capture the full effect of network adjustments
- 2. Risk-neutral economy ( $\rho = 1$ )
  - to capture the impact of uncertainty

|                                                            | Baseline model compared to |              |
|------------------------------------------------------------|----------------------------|--------------|
|                                                            | Fixed network              | Risk neutral |
| Expected GDP $E[y(\alpha)]$                                | +2.55%                     | -0.02%       |
| Std. dev. of GDP $\sqrt{\mathrm{V}\left[y(\alpha)\right]}$ | +0.07%                     | -0.08%       |
| Welfare ${\mathcal W}$                                     | +2.52%                     | +0.02%       |

Recall: only impact of uncertainty on expected GDP is through the network

#### The Great Recession

Great recession in the calibrated model vs risk-neutral alternative



During periods of high volatility, uncertainty matters.

Conclusion

#### Conclusion

#### Main contributions

- We construct a model in which beliefs, and in particular uncertainty, affect the production network.
- During periods of high uncertainty firms purchase from safer but less productive suppliers which leads to a decline in GDP.
- The calibrated model suggests that this mechanism was important during the Great Recession.

### Ongoing work

Include the COVID-19 pandemic in the dataset

#### Future research

- Use firm-level data to estimate the model
- Use the model to evaluate the impact of uncertainty on global supply chains

## **Details of regressions**

### Volatility measures

- Supplier  $\Delta Vol_{t-1}$  is the 1-year lagged change in supplier-level volatility.
- Realized volatility is the 12-month standard deviation of daily stock returns from CRSP.
- Implied volatility is the 12-month average of daily (365-day horizon)
   implied volatility of at-the-money-forward call options from OptionMetrics.

#### Instrument

As in Alfaro et al. 2019 "we address endogeneity concerns on firm-level volatility by instrumenting with industry-level (3SIC) non-directional exposure to 10 aggregate sources of uncertainty shocks. These include the lagged exposure to annual changes in expected volatility of energy, currencies, and 10-year treasuries (as proxied by at-the-money forward-looking implied volatilities of oil, 7 widely traded currencies, and TYVIX) and economic policy uncertainty from Baker et al 2016.. [...] To tease out the impact of 2nd moment uncertainty shocks from 1st moment aggregate shocks we also include as controls the lagged directional industry 3SIC exposure to changes in the price of each of the 10 aggregate instruments (i.e., 1st moment return shocks). These are labeled 1st moment 1st moment of IVs."



### Risk aversion and $\rho$

Given the log-normal nature of uncertainty  $\rho \leqslant 1$  determines whether the agent is risk-averse or not. To see this, note that when  $\log \mathit{C}$  normally distributed, maximizing

$$\mathrm{E}\left[C^{1-
ho}\right]$$

amounts to maximizing

$$E[\log C] - \frac{1}{2}(\rho - 1) V[\log C].$$



## Impact of $\mu$ and $\Sigma$ for $\alpha$

### Assumption (Weak complementarity)

For all  $i \in \mathcal{N}$ , the function  $a_i$  is such that  $\frac{\partial^2 a_i(\alpha_i)}{\partial \alpha_{ij}\partial \alpha_{ik}} \geq 0$  for all  $j \neq k$ .

#### Lemma

Let  $\alpha^* \in \operatorname{int}(\mathcal{A})$  be the equilibrium network and suppose that the assumption holds. There exists a  $\overline{\Sigma} > 0$  such that if  $|\Sigma_{ij}| < \overline{\Sigma}$  for all i,j, there is a neighborhood around  $\alpha^*$  in which

- 1. an increase in  $\mu_j$  leads to an increase in the shares  $\alpha_{kl}^*$  for all k, l;
- 2. an increase in  $\Sigma_{jj}$  leads to a decline in the shares  $\alpha_{kl}^*$  for all k, l;
- 3. an increase in  $\Sigma_{ij}$  leads to a decline in the shares  $\alpha_{kl}^*$  for all k, l.

# Pentagon example: parameter value

#### Details of the simulation:

- 1. a function:  $\kappa$  equal to 1, except  $\kappa_{ii} = \infty$ ,  $\alpha^{\circ}$  are 1/10 except  $\alpha_{ii}^{\circ} = 0$ .
- 2.  $\rho=5$ ,  $\beta=0.2$ .  $\mu=0.1$  except for  $\mu_4=0.0571$ .  $\Sigma=0.3\times \textit{I}_{\textit{n}\times\textit{n}}$  in Panel (a).
- 3. Panel (b): same as Panel (a) except  $Corr(\varepsilon_2, \varepsilon_4) = 1$ .
- 4. Panel (c): same in Panel (a) except  $\Sigma_{22} = 1$ .



### Calibrated $\kappa$

We assume that  $\kappa=\kappa^i\times\kappa^j$  where  $\kappa^i$  is an  $n\times 1$  column vector and  $\kappa^j$  is an  $1\times (n+1)$  row vector.



**Figure 4:** Vector of costs  $\kappa^i$ 



**Figure 5:** Vector of costs  $\kappa^j$