MA 3140: Statistical Inference

Dr. Sameen Naqvi
Department of Mathematics, IIT Hyderabad
Email id: sameen@math.iith.ac.in

Let X_1,\ldots,X_n be a random sample from an exponential distribution with density $\frac{1}{\sigma}e^{-x/\sigma}$, x>0, $\sigma>0$. Find the MP test for testing

$$H_0: \sigma = \sigma_0$$
 vs. $H_1: \sigma = \sigma_1$

Case 1: $\sigma_1 > \sigma_0$

Solution: The joint density of X_1, \ldots, X_n under H_0 and H_1 are:

$$f_0(\mathbf{x}) = \frac{1}{(\sigma_0)^n} e^{-\sum x_i/\sigma_0}$$

$$f_1(\mathbf{x}) = \frac{1}{(\sigma_1)^n} e^{-\sum x_i/\sigma_1}$$

Example 3 contd.

NP Lemma gives the form of the MP test

Reject
$$H_0$$
 if $\frac{f_1(x)}{f_0(x)} \ge k$

where k is determined by the size condition.

This is equivalent to

$$\frac{f_1(\mathbf{x})}{f_0(\mathbf{x})} = \left(\frac{\sigma_0}{\sigma_1}\right)^n e^{-\frac{\sum x_i}{\sigma_1} + \frac{\sum x_i}{\sigma_0}} \ge k$$

$$\Leftrightarrow \sum x_i \left(\frac{1}{\sigma_0} - \frac{1}{\sigma_1}\right) \ge k_1$$

$$\Leftrightarrow \sum x_i \ge k_2$$

Example 3 contd.

In order to determine k_2 , we employ the size condition, i.e.,

$$lpha = P(ext{Type I error}) = P(ext{Rejecting } H_0 ext{ when it is true})$$
 $= P_{\sigma_0} \Big(\sum X_i \geq k_2 \Big)$

Note that $\frac{X_i}{\sigma_0} \sim e^{-x}$,

$$Y = \frac{\sum X_i}{\sigma_0} \sim Gamma(n, 1)$$
 and $W = 2Y = \frac{2\sum X_i}{\sigma_0} \sim \chi^2_{2n}$.

Thus the MP test is

Reject
$$H_0$$
 if $\frac{2\sum X_i}{\sigma_0} \ge \chi^2_{2n,\alpha}$

Example 3 contd.

Case 2: $\sigma_1 < \sigma_0$

Solution: The test procedure will get modified as follows:

Reject
$$H_0$$
 if $\sum X_i \leq k_2^*$.

In order to determine k_2^* , we employ the size condition, i.e.,

$$\alpha = P(\text{Reject } H_0 \text{ when it is true}) = P_{\sigma_0} \left(\frac{2 \sum X_i}{\sigma_0} \le k_3^* \right)$$

$$\implies k_3^* = \chi^2_{2n,1-\alpha}$$

Thus the MP test is

Reject
$$H_0$$
 if $\frac{\sum X_i^2}{\sigma_0^2} \le \chi_{2n,1-\alpha}^2$.

Let X be an observation from a density f(x). Find the MP test for testing

$$H_0: f(x) = f_0(x)$$
 vs. $H_1: f(x) = f_1(x)$

where

$$f_0(x) = \begin{cases} x, & 0 < x \le 1 \\ 2 - x, & 1 < x \le 2; \\ 0, & \text{otherwise} \end{cases} \qquad f_1(x) = \begin{cases} \frac{1}{2}, & 0 < x \le 2 \\ 0, & \text{otherwise} \end{cases}$$

Solution: NP Lemma gives the form of the MP test

$$\frac{f_1(x)}{f_0(x)} = \begin{cases} \frac{1}{2x}, & 0 < x \le 1\\ \frac{1}{2(2-x)}, & 1 < x < 2 \end{cases}$$

Example 4 contd.

Reject H_0

• if $\frac{1}{2x} > k \Longrightarrow x < \frac{1}{2k}$ where k is determined by

$$P_0\left(0 < X < \frac{1}{2k}\right) = \int_0^{1/2k} x \ dx = \frac{1}{8k^2} \quad (\because 0 < x \le 1)$$

• if $\frac{1}{2(2-x)} > k \Longrightarrow 2-x < \frac{1}{2k}$ or $x > 2 - \frac{1}{2k}$ where k is determined by

$$P_0\left(X > 2 - \frac{1}{2k}\right) = \int_{2 - \frac{1}{2k}}^{2} (2 - x) dx = \frac{1}{8k^2} \quad (\because 1 < x < 2)$$

Example 4 contd.

The size condition gives

$$P_0\left(0 < X < \frac{1}{2k}, 0 < X \le 1\right) + P_0\left(X > 2 - \frac{1}{2k}, 1 < X < 2\right) = \alpha$$

$$\Longrightarrow \frac{1}{8k^2} + \frac{1}{8k^2} = \alpha \Longrightarrow \frac{1}{4k^2} = \alpha \Longrightarrow \frac{1}{2k} = \sqrt{\alpha}$$

Thus, the MP test of size α for testing H_0 against H_1 is

Reject
$$H_0$$
 if $X < \sqrt{\alpha}$ or $X > 2 - \sqrt{\alpha}$

Example: Suppose $\alpha = 0.01$, $\sqrt{\alpha} = 0.1$.

The test will be Reject H_0 if X < 0.1 or X > 1.9 else it will accept H_0 .

Let $X_1, \ldots, X_n \sim Bin(1, p)$. Find the MP test for testing

$$H_0: p = p_0$$
 vs. $H_1: p = p_1, p_1 > p_0.$

Solution: The MP size α test of H_0 against H_1 is of the form

$$\phi(\mathbf{x}) = \begin{cases} 1, & \lambda(\mathbf{x}) = \frac{\rho_1^{\sum x_i} (1 - \rho_1)^{n - \sum x_i}}{\rho_0^{\sum x_i} (1 - \rho_0)^{n - \sum x_i}} > k, \\ \gamma, & \lambda(\mathbf{x}) = k, \\ 0, & \lambda(\mathbf{x}) < k, \end{cases}$$

where k and γ are determined from

$$E_{p_0}\phi(\mathbf{X})=\alpha.$$

Example 5 contd.

Note that for $p_1 > p_0$.

$$\lambda(\mathbf{x}) = \frac{p_1^{\sum x_i} (1 - p_1)^{n - \sum x_i}}{p_0^{\sum x_i} (1 - p_0)^{n - \sum x_i}}$$

is an increasing function of $\sum x_i$.

It follows that $\lambda(\mathbf{x}) > k$ iff $\sum x_i > k_1$, where k_1 is a constant.

Thus the MP size α test is

$$\phi(\mathbf{x}) = \begin{cases} 1, & \sum x_i > k_1, \\ \gamma, & \sum x_i = k_1, \\ 0, & \sum x_i < k_1, \end{cases}$$

Example 5 contd.

where k_1 and γ are determined from

$$\alpha = E_{p_0}\phi(\mathbf{X}) = P_{p_0}\left\{\sum X_i > k_1\right\} + \gamma P_{p_0}\left\{\sum X_i = k_1\right\}$$
$$= \sum_{r=k_1+1}^n \binom{n}{r} p_0^r (1-p_0)^{n-r} + \gamma \binom{n}{k_1} p_0^{k_1} (1-p_0)^{n-k_1}.$$

▶ Suppose n = 5, $p_0 = 1/2$, $p_1 = 3/4$ and $\alpha = 0.5$, then k and γ are determined from

$$0.05 = \alpha = \sum_{k=1}^{5} {5 \choose r} \left(\frac{1}{2}\right)^{5} + \gamma {5 \choose k} \left(\frac{1}{2}\right)^{5}.$$

It follows that k = 4 and $\gamma = 0.122$.

Example 5 contd.

Thus, the MP test is

$$\phi(\mathbf{x}) = \begin{cases} 1, & \sum x_i > 4, \\ 0.122, & \sum x_i = 4, \\ 0, & \sum x_i < 4. \end{cases}$$

i.e., reject p = 1/2 in favor of p = 3/4 if $\sum X_i = 5$ and reject p = 1/2 with probability 0.122 if $\sum X_i = 4$.

▶ In case of testing $H_0: p = p_0$ vs. $H_1: p = p_1, p_1 < p_0,$ the test form is

$$\phi(\mathbf{x}) = \begin{cases} 1, & \sum x_i < k, \\ \gamma, & \sum x_i = k, \\ 0, & \sum x_i > k. \end{cases}$$

Neyman Pearson Lemma & Sufficiency

Theorem: Consider the hypothesis problem posed in previous theorem. Suppose T(X) is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T corresponding to θ_i , i=1,2.

Then any test based on T with rejection region S is a MP level α test if it satisfies

$$\begin{cases} t \in S, & \text{when } g(t|\theta_1) > kg(t|\theta_0) \\ t \in S^c, & \text{when } g(t|\theta_1) < kg(t|\theta_0) \end{cases}$$
 (1)

for some $k \geq 0$, where

$$P_{\theta_0}(T \in S) = \alpha. \tag{2}$$

Proof

In terms of the original sample X, the test based on T has the rejection region $R = \{x : T(x) \in S\}$. By Factorization Theorem, $f(\mathbf{x}|\theta_i) = g(T(\mathbf{x}|\theta_i))h(\mathbf{x})$, i = 1, 2, for some non-negative function h(x).

Multiplying the inequalities in (1) by h(x), we see that R satisfies

$$\mathbf{x} \in R$$
, if $f(\mathbf{x}|\theta_1) = g(T(\mathbf{x}|\theta_1))h(\mathbf{x}) > kg(T(\mathbf{x}|\theta_0))h(\mathbf{x}) = kf(\mathbf{x}|\theta_0)$ and

$$\mathbf{x} \in R^c$$
, if $f(\mathbf{x}|\theta_1) = g(T(\mathbf{x}|\theta_1))h(\mathbf{x}) < kg(T(\mathbf{x}|\theta_0))h(\mathbf{x}) = kf(\mathbf{x}|\theta_0)$

Also by (2),

$$P_{\theta_0}(\mathbf{X} \in R) = P_{\theta_0}(T(\mathbf{X}) \in S) = \alpha.$$

Thus, the test based on T is the MP test.

UMP tests

Situations where NP Lemma fails

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, both parameters are unknown.

$$H_0: \mu = 0$$
 vs. $H_1: \mu \neq 0$

Note that both hypotheses are composite. Hence NP Lemma does not give us a MP Test.

In general, we may have a family of distributions $f(x, \theta)$, where we are interested to test

$$H_0: \theta \leq \theta_0$$
 vs. $H_1: \theta > \theta_0$

or

$$H_0: \theta \geq \theta_0$$
 vs. $H_1: \theta < \theta_0$

Families with Monotone Likelihood Ratio

Let $f(x, \theta)$ be a pmf (pdf) of a random variable X.

Define

$$r(x) = \frac{f(x, \theta_1)}{f(x, \theta_2)}, \quad \theta_1 > \theta_2.$$

If r(x) is an increasing function of T(x), we say that the family of densities $\{f(x,\theta):\theta\in\Omega\}$ has monotone likelihood ratio (MLR) in $(\theta,T(x))$.

Let $X \sim N(\theta, 1)$ with pdf

$$f(x,\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-\theta)^2}.$$

Check whether the family has MLR in (θ, x) .

Solution: Consider

$$r(x) = \frac{f(x, \theta_1)}{f(x, \theta_2)} = \exp\left[-\frac{1}{2}(x - \theta_1)^2 + \frac{1}{2}(x - \theta_2)^2\right]$$
$$= \exp\left[\frac{1}{2}(\theta_2^2 - \theta_1^2) + (\theta_1 - \theta_2)x\right]$$

Since r(x) is an increasing function of x (if $\theta_1 > \theta_2$), we say that $\{N(\theta, 1) : \theta \in \mathbb{R}\}$ has monotone likelihood ratio (MLR) in (θ, x) .

Let $X_1, \ldots, X_n \sim N(0, \sigma^2)$ with joint density

$$f(\mathbf{x},\sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} e^{-\frac{\sum x_i^2}{2\sigma^2}}, x_i \in \mathbb{R}, \sigma^2 > 0.$$

Check whether the family has MLR.

Solution: Consider

$$r(\mathbf{x}) = \frac{f(\mathbf{x}, \sigma_1^2)}{f(\mathbf{x}, \sigma_2^2)} = \left(\frac{\sigma_2}{\sigma_1}\right)^n \exp\left[\frac{\sum x_i^2}{2} \left(\frac{1}{\sigma_2^2} - \frac{1}{\sigma_1^2}\right)\right]$$

This is an increasing function in $T(\mathbf{x}) = \sum x_i^2$.

Hence, the family has monotone likelihood ratio (MLR) in $(\sigma^2, \sum x_i^2)$.

Example 3: One-parameter Exponential Family

Consider one parameter exponential family

$$f(x,\theta) = c(\theta)e^{Q(\theta)T(x)}h(x)$$

where $Q(\theta)$ is strictly monotonic. Check whether the family has MLR.

Solution: For $\theta_1 > \theta_2$, consider

$$r(x) = \frac{f(x, \theta_1)}{f(x, \theta_2)} = \frac{c(\theta_1)}{c(\theta_2)} e^{(Q(\theta_1) - Q(\theta_2))T(x)}$$

▶ If $Q(\theta)$ is monotonically increasing then r(x) is increasing in T(x).

So, $\{f(x,\theta):\theta\in\Omega\}$ has MLR in $(\theta,T(x))$.

▶ If $Q(\theta)$ is monotonically decreasing then r(x) is decreasing in T(x).

So,
$$\{f(x,\theta):\theta\in\Omega\}$$
 has MLR in $(\theta,-T(x))$.

Example 4: Uniform Distribution

Let $X_1, \ldots, X_n \sim U[0, \theta]$, $\theta > 0$, with joint density

$$f(\mathbf{x}, \theta) = \frac{1}{\theta^n}, \ 0 \le x_{(n)} \le \theta.$$

Check whether the family has MLR.

Solution: For $\theta_2 > \theta_1$, consider

$$r(\mathbf{x}) = \frac{f(\mathbf{x}, \theta_2)}{f(\mathbf{x}, \theta_1)} = \frac{\theta_1^n}{\theta_2^n} \frac{I_{[x_{(n)} \le \theta_2]}}{I_{[x_{(n)} \le \theta_1]}} = \begin{cases} 1, & x_{(n)} \in [0, \theta_1], \\ \infty, & x_{(n)} \in [\theta_1, \theta_2]. \end{cases}$$

This is a nondecreasing function of $X_{(n)}$.

Hence, the family has monotone likelihood ratio (MLR) in $(\theta, X_{(n)})$. Recall that it does not belong to exponential family of distributions.

Theorem 1 on UMP Tests (One-Tailed Hypothesis)

Let the random variable X has pmf (pdf) $f(x, \theta)$ with MLR in $(\theta, T(x)), \theta \in \Theta \subseteq \mathbb{R}$.

(i) For testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$, there exists a Uniformly Most Powerful (UMP) test, given by

$$\phi(x) = \begin{cases} 1, & \text{if } T(x) > c \\ \gamma, & \text{if } T(x) = c \\ 0, & \text{if } T(x) < c \end{cases}$$
 (3)

where c and γ are determined by

$$E_{\theta_0}\phi(X) = \alpha \tag{4}$$

Theorem 1 on UMP Tests (One-Tailed Hypothesis)

(ii) The power function $\beta^*(\theta) = E_{\theta}\phi(X)$ is strictly increasing for all points θ ; for which $0 < \beta^*(\theta) < 1$.

Remark: If we consider the dual problem $H_0: \theta \ge \theta_0$ against $H_1: \theta < \theta_0$, the inequalities in (3) gets reversed.

UMP test for exponential family

Let X have a prob. density in 1-parameter exponential family

$$f(x,\theta) = c(\theta)e^{Q(\theta)T(x)}h(x),$$

where Q is a monotonic function, then there exists a UMP test for

$$H_0: \theta \leq \theta_0$$
 vs. $H_1: \theta > \theta_0$.

If Q is increasing, the test is of the form

$$\phi(x) = \begin{cases} 1, & \text{if } T(x) > c \\ \gamma, & \text{if } T(x) = c \\ 0, & \text{if } T(x) < c \end{cases}$$
 (5)

If Q is decreasing, the inequalities will get reversed.

Here,
$$c$$
 and γ are determined by $E_{\theta_0}\phi(x)=\alpha$.

Let X_1, \ldots, X_n be a random sample from double exponential distribution

$$f(x,\theta) = \frac{1}{2\theta} \exp\left[-\frac{|x|}{\theta}\right], \ x \in \mathbb{R}, \ \theta > 0.$$

Find the UMP test for testing

$$H_0: \theta \leq \theta_0$$
 vs. $H_1: \theta > \theta_0$.

Solution: It belongs to one-parameter exponential family with $Q(\theta) = -\frac{1}{\theta}$ is increasing in θ .

The joint pdf of X_1, \ldots, X_n

$$f(\mathbf{x}, \theta) = \frac{1}{(2\theta)^n} \exp\left[-\frac{\sum |x_i|}{\theta}\right]$$

So, MLR in
$$(\theta, \sum |X_i|)$$
.

Example 1 contd.

UMP test is given by

Reject
$$H_0$$
 if $\sum |X_i| \ge c$

where c is to be determined from the size condition

$$E_{\theta_0}\phi(\mathbf{X})=\alpha$$

Note that
$$Y_i = |X_i| \sim \frac{1}{\theta} exp[-\frac{y_i}{\theta}], \ y_i > 0, \ \theta > 0.$$

Further, $\frac{\sum Y_i}{\theta} = \frac{\sum |X_i|}{\theta} \sim Gamma(n, 1)$ and $\frac{2\sum |X_i|}{\theta_0} \sim \chi_{2n}^2$ under $\theta = \theta_0$.

Example 1 contd.

$$P_{\theta=\theta_0}\Big(\frac{2\sum|X_i|}{\theta_0}\geq \frac{2c}{\theta_0}\Big)=\alpha\Longrightarrow \frac{2c}{\theta_0}=\chi^2_{2n,\alpha}.$$

So the UMP test is

Reject
$$H_0$$
 if $\frac{2\sum |X_i|}{\theta_0} \ge \chi^2_{2n,\alpha}$

Accept
$$H_0$$
 if $\frac{2\sum |X_i|}{\theta_0} < \chi^2_{2n,\alpha}$

Thanks for your patience!