UFCG/CCT/Unidade Acadêmica de Matemática e Estatística	NOTA:
DISCIPLINA: Álgebra Linear I	PERÍODO: 2022.1
PROFESSOR:	TURNO: Tarde
ALUNO(A):	DATA: 22/11/2022
Curso de Graduação: N^{ϱ} da matrícula:	

2º ESTÁGIO

Atenção! 1)Não retire o grampo da prova. 2)Use apenas o papel da prova. 3)Não apague as contas. 4)Desligue o(s) seu(s) celular(es).

- **1.** (1,0 ponto) Considere o espaço vetorial $V = \mathbb{R}^3$ e $W = \{(x,y,z) \in \mathbb{R}^3 / 2x y z = 0\}$. Mostre que W é um subespaço vetorial de V.
- **2.** Considere o espaço vetorial $V = P_2(\mathbb{R})$.
 - (a) (1,0 ponto) Mostre que $\beta = \{1+t, 1-t, t^2\}$ é uma base V.
 - (b) (1,0 ponto) Seja $p(t) = 3 + 4t + 10t^2$. Verifique se $p(t) \in [1 t, 4 + t^2]$.
- **3.** Sejam $V = \mathbb{R}^4$, $W_1 = [(1, -1, 0, 0), (0, 0, 1, 1)]$ e $W_2 = \{(x, y, z, t) \in \mathbb{R}^4 / x y z + t = 0\}$ subespaços de V. Determine:
 - (a) (1,0 ponto) Uma base de $W_1 + W_2$.
 - (b) (1,0 ponto) Uma base de V contendo os vetores u=(1,1,1,1) e v=(1,0,1,2). Justifique!
 - (c) (1,0 ponto) Uma base de $W_1 \cap W_2$.
 - (d) $(0,5 \text{ pontos}) \dim (W_1 \cap W_2)$.
- **4.** (1,0 ponto) Considere α e β bases ordenadas de \mathbb{R}^3 , tais que $[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

Se
$$v \in \mathbb{R}^3$$
 e $\begin{bmatrix} v \end{bmatrix}_{\beta} = \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$, determine $\begin{bmatrix} v \end{bmatrix}_{\alpha}$.

- **5.** (1,0 ponto) A matriz de mudança de uma base α de \mathbb{R}^2 para a base $\beta = \{(1,1), (0,2)\}$ é $[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$. Determine a base α .
- **6.** (1,5 pontos)Sejam $\beta = \{(1,2,3), (0,2,3), (0,0,3)\}$ e $\alpha = \{(0,0,1), (1,2,3), (0,1,0)\}$ bases ordenadas de $V = \mathbb{R}^3$. Determine: $[I]_{\alpha}^{\beta}$.

Boa Prova!