Performance Evaluation of Computer Systems and Networks

Deficit Scheduler

Project 13

Gabriele Lagani Luca Maddau Indrit Kertusha

Model

FIFO Queue with some periods of inactivity called vacations.

Stability Condition

$$t_i > t_s$$

$$\frac{t_q}{t_s} > \frac{t_v}{t_i} + \frac{t_q}{t_i}$$

Deterministic Regime Tests

Output of the system tested against handmade computations

Deterministic Stability Test

- Parameters set to the limit of the stability condition
- Slight change
- The system becomes unstable

Stochastic Regime Tests

- Continuity test
- Stability test

Warm-Up and Simulation Duration Determination

- Simulation duration was set in order to gather 10⁵ observations
- Warm-up time was set in order to remove the first 20000 observations
- Times computed as nt,

Results

Response Times, Stochastic Regime

Response Time in Function of t_q

Normal Ouantiles

Fitting (1)

- It is interesting to find a distribution that fits the data
- Response time of job j made up by two components:
 - Sum of service times of jobs before j and j itself, like in M/M/1 -> exponential
 - Delay due to vacations -> exponential

$$E[R] = \frac{1}{\lambda} \frac{\rho}{1-\rho} + V$$

Sum of two independent exponentials with different rate -> hypoexponential distribution

PDF:
$$f(x)=rac{\lambda_1\lambda_2}{\lambda_1-\lambda_2}(e^{-x\lambda_2}-e^{-x\lambda_1})$$
 MLE:
$$\lambda_1=rac{2}{ar{x}}\Big[1+\sqrt{1+2(c^2-1)}\Big]^{-1}$$

$$\lambda_2=rac{2}{ar{x}}\Big[1-\sqrt{1+2(c^2-1)}\Big]^{-1}$$

Fitting (2)

14 12

10

ts = 10ms, ti = 30ms, tv = 50ms, tq = 30ms hypo: lambda1 = 6.39, lambda2 = 105.99 Density --- HypoExp

Response Time [s]

Histogram

ts = 10ms, ti = 30ms, tv = 50ms, tq = 100ms hypo: lambda1 = 16.65, lambda2 = 72.52

Response Time [s]

Histogram

ts = 10ms, ti = 30ms, tv = 50ms, tq = 60ms hypo: lambda1 = 11.72, lambda2 = 95.59

QQPlot

ts = 10ms, ti = 30ms, tv = 50ms, tq = 100ms hypo: lambda1 = 16.65, lambda2 = 72.52

