Noções básicas sobre sequenciamento, montagem e análise de genomas

Dra Desirrê Petters-Vandresen

Interações patógeno-planta em um contexto genômico

 Grande volume de dados biológicos sendo disponibilizados em bancos de dados, em constante crescimento: inúmeras possibilidades de aplicações em genética funcional

Desafios

- Como lidar com o crescente volume de dados que surge a partir das mais variadas técnicas e estudos?
- Como acessar, organizar, gerenciar e processar estes grandes conjuntos de dados?
- Como explorar totalmente o potencial dos conjuntos de dados, especialmente em situações de grande demanda computacional?
- Como comparar novos dados com estudos prévios e permitir que esses dados sejam comparados com estudos futuros?

Desafios

- Como determinar se os dados que estão presentes em bancos de dados atendem às minhas necessidades para análises de genética funcional?
- Como saber uma montagem de genoma ou transcriptoma é confiável?
- Como saber se a metodologia de sequenciamento utilizada é adequada para responder à minha pergunta de estudo?
- Como saber se posso usar dados existentes na literatura ou se precisarei sequenciar um novo genoma?

Aspectos importantes

- Noções gerais sobre:
 - Principais metodologias de sequenciamento de genomas e transcriptomas
 - Principais métricas de avaliação de qualidade
 - Formatos de arquivo e bancos de dados biológicos úteis para estudos funcionais

Sequenciamento de genoma ou transcriptoma

- Identificação da sequência de nucleotídeos de uma molécula de DNA ou RNA na sua ordem correta, para conhecer a informação genética presente nesta estrutura
- Além da identidade de cada base, o sequenciamento também fornece informações sobre a confiabilidade de cada uma das bases identificadas
- Avanços na escala de sequenciamento nos últimos 50 anos: do sequenciamento manual ao sequenciamento maciço e paralelo de genomas inteiros em um curto período de tempo

Sequenciamento de Sanger

- Reação de PCR com deoxinucleotídeos modificados (dideoxinucleotídeos), marcados com fósforo (P³²) ou enxofre (S³⁵) radioativos
- Incorporação de dideoxinucleotídeos interrompe a síntese da nova molécula de DNA
- Produtos das reações de PCR com dideoxinucleotídeos são submetidos à eletroforese para separação por tamanho, e perfil de bandas é lido de baixo para cima para determinar a sequência

Automatização do sequenciamento de Sanger

- Substituição dos dideoxinucleotídeos marcados com radiação por dideoxinucleotídeos marcados com fluoróforos:
 - Menor risco à saúde
 - Uso de fluoróforos diferentes para cada uma das bases: emissão de fluorescência em comprimentos de onda distintos e possibilidade de realizar a reação num tubo único
- Geis de eletroforese substituídos por capilares preenchidos com gel
 - Maior quantidade de amostras analisadas no mesmo período de tempo
 - Maior automação e diminuição do trabalho manual do analista

Automatização do sequenciamento de Sanger

- Reação de PCR com deoxinucleotídeos marcados com fluoróforos
- Produtos de PCR migram ao longo dos capilares e passam por um feixe de raios laser que excita os fluoróforos, fazendo com que emitam fluorescência
- A intensidade e comprimento de onda da fluorescência é registrada pelo detector e interpretada pelo computador para gerar o cromatograma
- O cromatograma é decodificado na sequência de nucleotídeos do fragmento

Estratégias de sequenciamento de genoma usando sequenciamento de pequena escala

- Sequenciamento automatizado de pequena escala: fragmentos de ~700 nucleotídeos
- Genomas completos: milhões ou até bilhões de pares de bases
- Necessidade de fragmentação e posterior montagem para obtenção do genoma completo

Limitações do sequenciamento de pequena escala nos projetos de genomas e transcriptomas

• Erros ou não detecção das bases iniciais

• Preparação das amostras demorada e laboriosa

Fragmentos pequenos

 Necessidade de estratégias mais rápidas, baratas, precisas e com maior capacidade de leitura

Sequenciamento de nova geração (larga escala, 2ª geração)

• Reações não são baseadas em eletroforese

 Alta capacidade de geração de uma grande quantidade dados: genomas sequenciados em uma única corrida

• Preparação de bibliotecas independentes de clonagem

Illumina

- Preparação: fragmentação do DNA por nebulização, seleção por tamanho e ligação dos adaptadores às extremidades dos fragmentos
- Ligação dos fragmentos à plataforma, que contém uma densa camada de primers.
 Ocorre a incorporação de nucleotídeos não marcados com fluorescência até que ocorra a amplificação de todo o fragmento
- Há formação da estrutura em ponte (amplificação em ponte), com dois adaptadores presos à placa e dois livres

Illumina

 Novos ciclos de amplificação em ponte ocorrem, até a formação de clusters com mais de um milhão de cópias do mesmo fragmento

Illumina

- Após a formação dos clusters, dideoxinucleotídeos são adicionados antes da próxima amplificação
- Após a incorporação dos dideoxinucleotídeos durante a amplificação, um feixe de raios laser excita os fluoróforos e a luz emitida é registrada pelo detector, fazendo a leitura de bases naquela posição
- Ocorre uma lavagem para remoção dos grupos bloqueadores presentes nas extremidades 3' dos dideoxinucleotídeos para que a reação possa continuar
- Esse processo é repetido sucessivamente até que toda a extensão do fragmento de DNA seja polimerizada e o fragmento seja sequenciado
- Por fim, as leituras são decodificadas para determinar a sequência de bases dos fragmentos

Sequenciamento de nova geração (larga escala, 3ª geração)

 Capacidade de sequenciamento de uma única molécula de DNA

• Sem necessidade de amplificação

 Altíssima capacidade de geração de um grande volume de dados em curto período de tempo: um genoma humano pode ser sequenciado em uma única corrida Pacific Biosciences SMRT Sequencing (Single Molecule Real Time Sequencing)

 Janela de observação em nanoescala (ZMW, zero-mode waveguide), com um volume extremamente reduzido, suficiente para visualizar a incorporação de um único nucleotídeo pela DNA polimerase

 Uma única DNA polimerase contendo uma única molécula de DNA molde é fixada no fundo da ZMW

Pacific Biosciences SMRT Sequencing (Single Molecule Real Time Sequencing)

 Nucleotídeos com fluoróforos são utilizados, e quando um nucleotídeo é incorporado a marcação fluorescente é clivada, emitindo luz, que é detectada e transformada em dado de sequência

Oxford Nanopore Technologies

- DNA é marcado com adaptadores com proteínas motoras em uma ou ambas as extremidades e é combinado à proteínas carregadoras, que o direcionarão aos nanoporos
- A plataforma de sequenciamento contém milhares de nanoporos de proteicos associados à uma membrana sintética

Oxford Nanopore Technologies

 O adaptador se insere na abertura do nanoporo, e a proteína motora começa a separar as fitas do DNA

 Uma corrente elétrica é aplicada e, em conjunto com a proteína motora, conduz o DNA carregado negativamente através do poro numa velocidade de ~450 bases por segundo

Oxford Nanopore Technologies

 À medida que o DNA se move pelo poro, causa perturbações à corrente elétrica, as quais são específicas para cada um dos nucleotídeos

 O perfil de mudanças na corrente elétrica pode ser utilizado para identificar a sequência de bases da molécula

Comparativo entre metodologias

Método	Sanger	454	Illumina	PacBio	Nanopore	
Comprimento dos reads	400 - 900 pb	700 bp	100 – 300 pb	10 – 100 kb	Variável (até 1000 kb)	
Taxa de erro	0.01 %	0.1 %	0.1%	5 – 15%*	5 - 20%*	
Eficiência (bases por corrida)	1.9 - 84 Kb	1 Mb	200 – 600 Gb	10 – 20 Gb	5 – 10 Gb	
Tempo de corrida	20 min – 3 horas	24 horas	1 – 3 dias	~ 30 horas	1 minuto até 72 horas	
Prós	Alta confiabilidade	Velocidade	Alta confiabilidade e custo baixo	Reads longos, velocidade e alta eficiência	Reads longos, velocidade e alta eficiência	
Contras Adaptado de:			Reads curtos, velocidade	Taxa de erro elevada e alto custo	Taxa de erro elevada e alto custo	

Basal & Boucher et al. 2019 **iScience**. DOI: <u>10.1016/j.isci.2019.06.035</u> Liu et al. 2012 **BioMed Research International**. DOI: <u>10.1155/2012/251364</u> https://www.pacb.com/products-and-services/sequel-system/ Sequenciei um genoma ou obtive dados já sequenciados: e agora?

Avaliar os dados brutos com muita atenção

Utilizar reads brutos que saem do equipamento ou genoma/transcriptoma obtidos sem qualquer tipo de controle de qualidade não é uma boa ideia!

• Sequências erradas podem ter um grande impacto negativo nos resultados e conclusões de um estudo

O que devemos avaliar nos dados brutos antes de utilizar?

Qualidade das bases

• Presença de adaptadores e contaminantes

Comprimento dos reads

Quantidade de reads

Indicador de qualidade Q (Phred quality score)

- Baseado na probabilidade de erro (E) na identificação de uma base em determinada posição do read
- Define a acurácia de uma base
 - 90%: um erro em cada 10 leituras (0.1), Q = 10
 - 99%: um erro em cada 100 leituras (0.01), Q = 20
 - 99,9%: um erro em cada 1.000 leituras (0.01), Q = 30
 - 99,99%: um erro em cada 10.000 (0.0001), Q = 40
- Q < 20, a perda de confiabilidade é muito alta e rápida
- Q > 20, o aumento na confiabilidade não é tão significativo
- 20 ou 25 como valores de corte em muitos casos

$$Q = -10\log E$$

Referência da Imagem

Formato FASTQ

• Formato de armazenamento de sequências biológicas e scores de qualidade correspondentes às bases

- 1 @A00178:149:H7K7YDSXY:4:1101:1506:1000 1:N:0:GCACTCAT+ATGAGTGC
 2 ONGCTCTGGTCATCCGTCTCGGCTCGCGAGATTCAAGCGTTGCCGTCAACCTTGGCAATGTAGACAAGGA
 GGTCGAGGACACGGCGGGAGTAGCCCCACTCGTTGTCGTACCAGGAGACGAGCTTGACGAAGTTCTCGTT
 GAGCGAGATAC
 3 +

contém o identificador da sequência (similar à primeira linha do formato FASTA)

Linha 02: sequência em nucleotídeos

Linha 03: começa com um + e pode conter o identificar da sequência novamente

Linha 04: contém os valores de qualidade para a sequência na linha 02. Mesmo número de

caracteres que a linha 02 (cada símbolo é correspondente à

uma letra)

Linha 01: começa com um @ e

ASC	ASCII BASE=33 Illumina, Ion Torrent, PacBio and Sanger												
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII		
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B		
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C		
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D		
3	0.50119	36 Ş	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E		
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;	37	0.00020	70 F		
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G		
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H		
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I		
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J		
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K		
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A					
2657659351	https://drive5.com/usearch/manual/quality_score.html												

- Download dos dados
- Verificação do formato do arquivo
 - Separação de reads forward e reverso

Pré-preparação

Avaliação da qualidade (1ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

- Remoção de adaptadores e contaminantes
- Remoção de reads muitos curtos e/ou de baixa qualidade

Limpeza dos reads

Avaliação da qualidade (2ª rodada)

- Qualidade dos reads
- Comprimento e quantidade de reads
- Presença de adaptadores e contaminantes

E se for utilizar um genoma/transcriptoma já pronto?

 Observar seção de materiais e métodos na publicação associada ao genoma ou transcriptoma e confirmar se o controle de qualidade foi realizado antes da montagem

For *P. capitalensis* LGMF01 and *P. citricarpa* LGMF06, libraries of the paired-end reads were processed with NxTrim (O'Connell et al., 2015) to remove Nextera adapters and generate mate-pair, paired-end, single-end and unknown libraries. The script "deinterleave_fastq.sh" (https://gist.github.com/nathanhaigh/3521724) was used to separate the reads from the mate-pair and paired-end libraries in "forward" and "reverse" files. For quality filtering, Trimmomatic v 0.38 (Bolger et al., 2014) was used to (1) trim bases at the start and end of the reads below a quality threshold of 25, (2) trim low quality segments using a 4 bp sliding window and a quality threshold of 15, and (3) discard reads shorter than 50 bp. For *P. citribraziliensis* LGMF08, the reads were filtered in Trimmomatic to remove Illumina adapters and trim for quality using the same parameters described before but discarding reads shorter than 90 bp.

FastQC v 0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was employed to check the quality of reads after processing in Trimmomatic. *De novo* genome assemblies were generated with SPAdes v 3.13 (Bankevich et al., 2012), using default parameters. Contigs smaller than 500 bp were filtered and removed from the final assemblies, which were then evaluated with QUAST v 4.6.3 (Gurevich et al., 2013). Library and assembly statistics for the new assemblies are summarized in Table S1 and assemblies are available at Zenodo (https://doi.org/10.5281/zenodo.3750350).

Reads confiáveis vs. montagem de genoma confiável

 Boa qualidade e confiabilidade de reads não está diretamente relacionada à boa qualidade do genoma final

 Necessidade de garantir que o processo de montagem foi adequado

 Diferentes abordagens de montagem para atender à diferentes necessidades

Por que é necessário "montar" um genoma?

 Cenário ideal: sequenciar o genoma inteiro ou o maior tamanho de fragmento possível

 Condições reais: mesmo técnicas mais recentes como PacBio e ONT que sequenciam reads longos não são capazes de sequenciar cromossomos grandes inteiros

 Necessidade de utilizar os fragmentos obtidos para obter o genoma completo

Abordagens para montagem de genomas

De novo

 Reconstruir a sequência completa "do zero", sem utilizar outro genoma como referência

Baseado em referência

- Alinhamento dos reads à um genoma de referência já montado, e partir dos alinhamentos construir os contigs
- Processo mais simples que uma montagem de novo
- Possibilidade de detecção de alguns tipos de variantes, porém pode mascarar grandes rearranjos estruturais

Montagem <u>de novo</u>

 Utilização dos reads (fragmentos) e informações sobre regiões de sobreposição para produzir sequências únicas e contínuas (contigs)

Montagem guiada por genoma de referência

Adaptado de: KYRIAKIDOU et al. 2018. **Frontiers in Plant Science**. DOI: 10.3389/fpls.2018.01660

- Alinhamento dos reads à um genoma de referência já montado, e partir dos alinhamentos construir os contigs
- Detecção de variações pontuais, como substituições ou rearranjos mais simples

Montagem de novo guiada por genoma de referência

Adaptado de: KYRIAKIDOU et al. 2018. **Frontiers in Plant Science**. DOI: 10.3389/fpls.2018.01660

Montagem inicial dos reads gerando contigs iniciais

• Alinhamento dos contigs à um genoma de referência já montado, e partir dos alinhamentos extender os contigs iniciais em contigs maiores

Detecção de variações pontuais, como substituições ou rearranjos mais simples

Problemas de montagem de regiões repetitivas

 Regiões repetitivas mais longas que o tamanho dos reads: ausência de informação sobre as regiões adjacentes para posicionamento correto durante a montagem

SIPOS et al. 2012. PLoS ONE. DOI: 10.1371/journal.pone.0043359

Montagem híbrida (reads longos e reads curtos)

- Reads longos para organizar o genoma em maior escala
- Reads curtos para corrigir erros pontuais e aumentar a confiabilidade de cada base

Genomas (Formato FASTA)

- Linha 1: identificador da sequência após o sinal de maior (>)
- Linha 2: sequência

Em geral são arquivos longos e pesados, exigindo o uso de softwares para processar o arquivo completo e obter a informação de interesse

- 1 >scaffold 1
- 2 CCATGGCTGTCTTGCGATTGTCCAGGGCAGTCTTGACAGCAGGGGCAAGTTGCGCCGCCGCCGCCCTT
- 3 CTCAGTGTCTTCGAAGTTGAGGGAGACGATGACCCTGGTGTTGATGGGACTGTTGGTGTTCGCCGTGGAA
- 4 GCTTCGTCCTTCTTGCGCTTGGAGCCGGCCGACGCCGCCTTCTTGCGCTTGGCAATCTCCTCGGGATGCG
- 5 TGAGAATCTCTTCAATTTTTGCCATGAAGGCGTTCTCTTTCTCGATTTACGAGCGAACTTCCTCGTAGAA
- 6 TGCCGTGGCTACGCTTGACTCGGTCTTGAAGATGTTGTGGAGAGCCTTGCGGGTGGTCGTTCACGACGAA
- 7 GATGCAGAGAGGGCGCGGTCGTGGTTCTGCGCGATGGCGTTGCGGGTTGTCTTCGTCTTGTTGAACCAGT
- 8 TGCCGAACTGAATTACGTCGTCTTTCTTTGCCATCTTTTCCTCGGAGCTCATCGCTTCGATGGTGGCGGC
- 9 GTCATCCTTGCGCTTTTCGGCGGTCTCGTTTTTCTTCGTCTGGGTGACTTGCAGAAGTGCCTTTGCCCTC
- 10 AAAGCACTCATTCGGCGACTCTCCTGTTCCGCATCGACGACCTGGCGCCATTCCTGTGACGCATCGCTCA

Como avaliar uma montagem?

Contiguidade

- N50
- L50
- Quantidade de contigs/scaffolds
- Tamanho do maior contig/scaffold

Análise de bases

- Cobertura
- Conteúdo GC

Análise de conteúdo

- Presença de telômeros
- Presença de genes conservados
- Comparação com genoma de referência
- Detecção de contaminantes pela distribuição do conteúdo GC
- Detecção de contaminantes por similaridade de sequência

Contiguidade – N50

 N50: metade da montagem (50%) é representada por contigs/scaffolds com um comprimento igual ou maior que 60Kb

Contiguidade – N90

 N90: 90% da montagem é representada por contigs/scaffolds com um comprimento igual ou maior que 40Kb

Contiguidade – L50

 L50: metade da montagem está presente em 3 contigs/scaffolds

Análise de bases - cobertura

 A cobertura se refere à quantidade de vezes que o genoma foi sequenciado

 Alta cobertura: maior precisão e redução de erros nas montagens

•
$$Cobertura = \frac{Tamanho dos reads \times quantidade de reads}{Tamanho total do genoma}$$

Análise de bases - cobertura

 Também é possível calcular a cobertura de alinhamento, re-alinhando os reads originais à montagem

Há muitos reads que não foram alinhados?

Há regiões da montagem com poucos reads alinhados

em relação às outras?

Análise de bases - Conteúdo GC

 O conteúdo GC da montagem é similar ao conteúdo GC observado para outras linhagens da mesma espécie ou espécies próximas?

Análise de conteúdo - Telômeros

- Sequências repetitivas encontradas nas pontas dos cromossomos
- Função protetiva:
 - Impedem que os cromossomos se fusionem nas extremidades
 - Evitam que as sequências de DNA dos cromossomos sejam perdidas (os cromossomos perdem cerca de 25-200 bases por replicação)
- Presença de telômeros no início e fim de um contig/scaffold sugere que se trata de um cromossomo completo

Análise de conteúdo - Genes conservados

- Avaliação do conteúdo gênico que seria o mínimo esperado em uma montagem ao considerar as relações evolutivas entre os organismos
- BUSCO (Benchmarking Universal Single-Copy Orthologs), http://busco.ezlab.org/
 - Alta universalidade:

 Presente em 90% das espécies do grupo analisado
 - Baixa duplicabilidade: presente em cópia única em 90% das espécies do grupo analisado

Análise de conteúdo – Comparação com genoma de referência

 Genes essenciais e conservados presentes na linhagem de referência estão presentes na nova montagem?

 A organização da nova montagem é similar à montagem de referência?

Análise de conteúdo - Contaminantes (Distribuição do conteúdo GC)

- Quantos picos são observados na distribuição de conteúdo GC?
- Mitocôndria, sequências repetitivas ou contaminação?

Análise de conteúdo - Contaminantes

Adaptado de: FIERST et al. 2017. **BMC Bioinformatics**. DOI: <u>10.1186/s12859-017-1941-0</u>

- Há sequências de outros organismos na montagem?
- Uso do BLAST (sequência completa) ou Kraken (k-mers)

- •Montagem com reads curtos
- Montagem com reads longos

Montagem

Avaliação da qualidade (Contiguidade)

- •L50
- •N50
- •Quantidade e tamanho dos contigs

- •Alinhamento dos reads com a montagem
- •Alinhamento da montagem com genoma de referência

Avaliação da qualidade (análise de bases)

Avaliação da qualidade (conteúdo gênico)

- •Presença de telômeros (montagem com reads longos)
 - Genes conservados
 - Contaminantes (GC %)
- •Contaminantes (Similaridade com sequências)

Anotação e detecção de sequências de interesse

 Sequência em si sem anotações e informações associadas: baixa aplicabilidade em abordagens práticas e funcionais

• Busca por padrões e características que identifiquem genes e regiões de interesse em uma sequência

Como avaliar a qualidade de uma anotação?

Avaliação de conteúdo (BUSCO)

- Comparação com anotações prévias confiáveis
 - A quantidade de genes é similar?
 - Anotações funcionais resultam em informações similares?
- Avaliação manual

Formato GFF3 (General Feature Format)

- Uma feature por linha, 9 colunas delimitadas por tabulações
- 1 (seqid): nome do cromossomo, contig ou scaffold em que a feature está localizada
- **2 (source):** nome do programa que gerou a anotação, ou da base de dados em que a anotação foi obtida
- **3 (type):** categoria da feature (ex: gene, CDS, mRNA, exon)
- 4 (start): posição do início da feature no cromossomo, contig ou scaffold
- 5 (end): posição do final da feature no cromossomo, contig ou scaffold
- **6 (score):** score de confiabilidade, mas muitos softwares não atribuem nenhum valor (.)
- **7 (strand):** indica se a feature está na fita direta/forward (+) ou reversa/reverse (-)
- 8 (phase): fase de leitura
- **9 (attributes):** informações adicionais sobre a feature, como nome, ou vínculo com outra feature anterior

```
2697
scaffold 10 EVM gene
                              4438
                                                 ID=scaffold 10.1; Name=scaffold 10.1
                                      . + . ID=scaffold_10.1;Parent=scaffold_10.1;Name=scaffold_10.1
scaffold 10 EVM mRNA
                      2697
                              4438
                                                  ID=scaffold 10.1.exon1;Parent=scaffold 10.1
scaffold 10 EVM exon
                      2697
                              3078
                                              ID=cds.scaffold 10.1; Parent=scaffold 10.1
scaffold 10 EVM CDS 2697 3078
                              4023
scaffold 10 EVM exon
                      3145
                                                  ID=scaffold 10.1.exon2; Parent=scaffold 10.1
                                              ID=cds.scaffold 10.1; Parent=scaffold 10.1
scaffold 10 EVM CDS 3145
                          4023
                              4438 . + .
scaffold 10 EVM exon
                      4068
                                                  ID=scaffold 10.1.exon3; Parent=scaffold 10.1
scaffold 10 EVM CDS 4068
                                              ID=cds.scaffold 10.1; Parent=scaffold 10.1
                        4438
```

Regiões codificantes (CDS) em formato FASTA

TTCTCACCTCGTCTTTACTTAG

- Linha 1: identificado r da sequência após o sinal de maior (>)
- Linha 2: sequência
- Cada sequência correspond e a um gene
- >scaffold 10.1 ATGGACGGACCGCTCTCGACGCTCCTCTTACTCCAACGCCATTTTGCTGGTGCTGGGCCTCGCCGGGC TGGCATACATCAGCTTCCGCGCCGCGTACGGCACCGACGTGGGGCGCATCACGGGCATTCCTGAGCCGGG GCACGCGGTGGCGTTCTACGGACACCTCAACTCCAAGGCGCTCGGCAGCGACCACCCCACTGCGCTGCAG GAGTATTCGGTGAAGAATGGGTGGCCGTTGGTGCAGGTGCGGTTTGGGCAGCGGCGGGTCGTGGTGCTGA GACATTTCATAAGTTTGTGAGCAATACGCAGGGCGCAACCATTGGCACGTCGCCGTGGGACGCATCGTGC ACATCGAGGCGCTGGGGCTGGTCGAAGGCATCTTTAACGCCTCGCTGGACGACAACAACAACCCCAGTGT CGAAGTGGACCCCCGCCTCTTTTTCCAGCGGGCTTCGCTCAACTTTGTGCTCATGCTCTGCTACGCGTCGCGGTTCCCGGACATTGACGACCCGCTGCTGCACGAGATTCTGGCCACGGGCAAGACGGTCAGCACGTTTC GCAGCACCAACAACAACATGGCCGACTACGTGCCGCTGCTGCGGTACCTGCCCAACGCGCGGACGGCGAT GGCCAAGCAGGTGACCAAGAAGCGCGACGTGTGGCTCGAGGCGCTGCTGGAGCGCGTGCGCAAAGCCGTG GCGGCCGGCAAGCCCGTGTCGTGCATTGCATCGTCGCTCAAGGAAAAGGGGTCCGAGAAGCTGACAG AGGCCGAGATTCGCTCCATCAACGTCGGGCTCGTCTCGGGCGGCAGCGACACGATTGCGACGACGGGGCT CGGCGGGCTTGGGTTCCTCGCGTCCAAGGAGGCCAGGCGATTCAGCAAAAGGCGTACGACGAGATTATG AAGGTCTACGCGACGGCCGAGGAGGCGTGGGGAGAATTGCGTGCTCGAGGAGAATGTCGAGTACGTCGTCG CGCTCGTGCGCGAGATGCTGCGGTACTACTGCGCGATACAGCTGCTGCCACCGCGCAAGACGTGCAAGCC GACAAAACCGCATACGGACCAGACGCGCACATTTTCCGACCAGAGCGTTGGCTCGATCCCAGCAGTCCGT ACCAGGTCGGGCTTCCCTACCACTACTCGTATGGCGCGGGCTCGCGAGCATGCACGGCCGTGGCGCTGTC GAACCGGATTCTCTACTGCTACTTTGTGAGGCTGATTGTTTCGTTCCGCTTCACGGCCAGCGCAGACGCG ${\tt CCGCCGACGCTGGATTACATTGGATTCAACGAGAACCCGCAGGCGGCGACGGTCGTCCCAAAGACGTTTC}$ GGGTTAACATTGAGGAGAGGCGGCCGAGGGAGGAGCTGGCCAAGAATTTCGAGGCGAGTCGAAAGGCCAC

Sequências de aminoácidos em formato FASTA

- Linha 1:
 identificador
 da sequência
 após o sinal
 de maior (>)
- Linha 2: sequência
- Cada sequência corresponde a um gene

- 1 >scaffold 10.1
- 2 MDGPLSTLLSYSNAILLVLGLAGLAYISFRAAYGTDVGRITGIPEPGHAVAFYGHLNSKALGSDHPTALQ
- 3 EYSVKNGWPLVQVRFGQRRVVVLNTFAAAQHFIIRNGGATIDRPLFWTFHKFVSNTQGATIGTSPWDASC
- 4 KRKRTAIGAYMTRPAIQRNAPLIDIEALGLVEGIFNASLDDNNNPSVEVDPRLFFQRASLNFVLMLCYAS
- 5 RFPDIDDPLLHEILATGKTVSTFRSTNNNMADYVPLLRYLPNARTAMAKQVTKKRDVWLEALLERVRKAV
- 6 AAGKPVSCIASSLLKEKGSEKLTEAEIRSINVGLVSGGSDTIATTGLGGLGFLASKEGQAIQQKAYDEIM
- 7 KVYATAEEAWENCVLEENVEYVVALVREMLRYYCAIQLLPPRKTCKPFEWHGAQIPAGVTVYMNAQAINH
- 8 DKTAYGPDAHIFRPERWLDPSSPYQVGLPYHYSYGAGSRACTAVALSNRILYCYFVRLIVSFRFTASADA
- 9 PPTLDYIGFNENPOAATVVPKTFRVNIEERRPREELAKNFEASRKATSHLVFT
- 10 >scaffold 10.2
- 11 MALQTCRRCRKRRIKCDLQLPACTSCQLVDLECLYFDDSLGHDVPRSYLHALSKKVENLESTINAIKSPA
- 12 AAAPSPTPFSQSDCPTPLQASLDPRGSSASSLGLGTSAGLLENLLKTLVQRSSTQDQSALSRFASRTRDV
- 13 EDDSALAFPPLKVNFSKLDTQSLQQPHLQRALIEYYAKTVQSSFPLLSKAQIDSLLRYEHPLRQCTAAER
- 14 LPIYGIFALASNLVSRDLDKDQSITASMWTERFHSYIAGFDSSNAHGAVRMKQNILALCFLALLDLVSPL
- 15 SPKGGVWEVVGAASRSYVKVLDDLSVSSPEIDDEFERLGHCIYLLESTLSIHFRIPSLYCNSAPTVIPSG
- 16 LSEPLVYHTLYTLTQLLNFPKDVSVDMESSIPACLRINLESGPSDVSLGQAQVYLTLHPLFTSPGAGIHC
- 17 CSPDLLSKIALAAAAFITHTHKLNKERRVVSIWVTAENVLQAGAAWAAYLMLHSQRDSPLHDYHVPKPID
- 18 KLPPMEPIVRCSSLLASFAERWKGGRRFCQAWEAFTELLLADDSLSKMATAPQA

Anotação gênica

Anotação de elementos transponíveis

Anotação funcional:

- Efetores
- CAZymes
- Clusters de metabólitos secundários

- Possibilidade de anotações adicionais:
 - Responder à pergunta inicial
 - Testar as hipóteses
 - Sugerir novas perspectivas
 - Fornecer bases para estudos futuros

Anotação funcional:

- Função molecular
- Localização celular
- Processo biológico

Análises comparativas

Que tipo de genoma eu preciso encontrar?

- As perguntas de um projeto podem ser respondidas com diferentes tipos de "montagem":
 - Genoma completo
 - Genoma rascunho
 - Somente genes

 Montagens mais completas permitem com que mais perguntas sejam respondidas, mas aumentam os custos envolvidos e o tempo de execução do projeto

Genoma completo

- Um genoma é considerado completo quando a qualidade da sequência atende aos "Bermuda standards":
 - Taxa de erro de nucleotídeo: 1 a cada 10.000 bases ou menos para a maior parte da sequência (99,99% de acurácia)
 - Ausência de gaps na montagem
- Muitos genomas eucarióticos apresentam regiões complexas (e. g. regiões repetitivas) que são difíceis de sequenciar e montar: difícilmente um genoma completo (de acordo com a definição) é obtido
- Termos como "working draft" e "essencialmente completo" são usados para descrever genomas de qualidade superior à genomas rascunho, mas que ainda não são genomas completos

Genoma rascunho

 Não há um padrão absoluto para reconhecer genomas rascunho (como no caso de genoma completo)

 Em geral, um bom genoma rascunho apresenta sequências com boa qualidade, cobertura e completude, e baixo nível de fragmentação

 Não é incomum encontrar genomas rascunho altamente fragmentados, com má qualidade e incompletos

Somente genes

- Sequenciamento de RNA mensageiro (regiões transcritas) e produção de transcriptoma
- Custo mais baixo se comparado à genoma completo
- Melhor aproveitado se já existe um genoma de referência para a espécie
- Limitações:
 - Somente genes transcritos na condição avaliada serão sequenciados
 - Ausência de informação sobre regiões e sequências repetitivas, arquitetura genômica, organização cromossômica ou coordenadas dos genes

Quais perguntas serão respondidas com estes dados?

Qual a cobertura de sequenciamento necessária?

 A cobertura se refere à quantidade de vezes que o genoma foi sequenciado

 Alta cobertura: maior precisão e redução de erros nas montagens

• $Cobertura = \frac{Tamanho dos reads \times quantidade de reads}{Tamanho total do genoma}$

Qual a contiguidade que montagem deve apresentar?

 A contiguidade está relacionada ao grau de fragmentação do genoma. Quanto maior a fragmentação, menor a contiguidade

 Para maior contiguidade, é necessária uma boa cobertura e uma técnica de sequenciamento com reads longos e capaz de resolver regiões repetitivas

A melhor estratégia de sequenciamento depende do contexto

Somente genes e/ou genoma rascunho: Illumina

• Genoma essencialmente completo: PacBio ou Nanopore, ou combinações entre dois ou três métodos

Método	Illumina	PacBio	Nanopore
Comprimento dos reads	100 – 300 pb	10 – 100 kb	Variável (até 1000 kb)
Taxa de erro	0.1%	5 – 15%*	5 - 20%*
Eficiência (bases por corrida)	200 – 600 Gb	10 – 20 Gb	5 – 10 Gb
Prós	Alta confiabilidad e	Reads longos, velocidade e alta eficiência	Reads longos, velocidade e alta eficiência
Contras	Reads curtos, velocidade	Taxa de erro elevada	Taxa de erro elevada

^{*} Em baixa cobertura

Onde encontrar reads, montagens e anotações?

GenBank

