ÁLGEBRA III - 2021 Práctico 5

Descomposición en sumas directas invariantes. Descomposición primaria.

- 1. Encontrar una proyección E que proyecte \mathbb{R}^2 sobre el subespacio generado por (1,-1) según el subespacio generado por (1,2), es decir según $\mathcal{N}u(E) = \langle (1,2) \rangle$.
- 2. Si N y R son subespacios de $V=R\oplus N$ y E es la proyección sobre R según N, entonces I-E es la proyección sobre N según R.
- 3. Sea V un espacio vectorial sobre un cuerpo \mathbb{F} . Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si E_1 y E_2 son proyecciones sobre subespacios independientes, entonces $E_1 + E_2$ es una proyección.
 - (b) Si $T \in L(V)$ es diagonalizable y sus únicos autovalores son 0 y 1, entonces T es una proyección.
- 4. Sea \mathbb{F} un cuerpo, con car $\mathbb{F} = 0$. Probar que si E_1, \ldots, E_k son proyecciones de un \mathbb{F} -espacio vectorial tales que $E_1 + \cdots + E_k = I$, entonces $E_i E_j = 0$ para todo $i \neq j$.
- (5.) Sea V un \mathbb{R} -espacio vectorial y $E \in L(V)$ idempotente. Probar que I + E es inversible y hallar
 - 6. Sea T el operador lineal en \mathbb{R}^2 cuya matriz en la base canónica es $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Sea W_1 el subespacio generado por $e_1 = (1, 0)$. Probar que:
 - (a) W_1 es T-invariante.
 - (b) No existe ningún subespacio W_2 complementario a W_1 que sea T-invariante.
- (7) Sea T un operador lineal en un espacio vectorial de dimensión finita V. Sea R la imagen de T y N el núcleo de T. Probar que R y N son independientes si y sólo si $V = R \oplus N$.
- 8. Sea T un operador lineal en V. Supongamos $V = W_1 \oplus \cdots \oplus W_k$, donde cada W_j es T-invariante. Para cada $j, 1 \leq j \leq k$, sea T_j el operador restricción a W_j .
 - (a) Probar que $\det(T) = \det(T_1) \cdots \det(T_k)$.
 - (b) Probar que el polinomio característico de T es el producto de los polinomios característicos de T_1, \ldots, T_k , es decir $p_T = p_{T_1} \cdots p_{T_k}$.
 - (c) Probar que el polinomio minimal de T es el mínimo común múltiplo de los polinomios minimales de T_1, \ldots, T_k , es decir $m_T = m.c.m.\{m_{T_1}, \ldots, m_{T_k}\}$.
- 9. Sea T el operador lineal sobre \mathbb{R}^3 representado en la base canónica por

$$\begin{pmatrix}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{pmatrix}$$

y sean W_1, W_2 los autoespacios de T. Hallar las proyecciones E_1 y E_2 asociadas a la descomposición $\mathbb{R}^3 = W_1 \oplus W_2$ y escribir $T = c_1 E_1 + c_2 E_2$.

10. Sea

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

Hallar las matrices E_1, E_2, E_3 tales $A = c_1E_1 + c_2E_2 + c_3E_3$, $E_1 + E_2 + E_3 = I$ y $E_iE_j = 0$, si $i \neq j$.

11. Sea T el operador lineal sobre \mathbb{R}^3 representado en la base canónica por

$$\begin{pmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{pmatrix}.$$

- (a) Expresar el polinomio minimal m_T de T en la forma p_1p_2 , donde p_1 y p_2 son polinomios mónicos irreducibles sobre los números reales.
- (b) Sea $W_i = \mathcal{N}u(p_i(T))$ y T_i el operador restricción de T a W_i . Encontrar una base \mathcal{B}_i del espacio W_i y la matriz de T_i en esa base.
- (c) Hallar la matriz de T en la base $\mathcal{B}_1 \cup \mathcal{B}_2$.
- 12. Sea V el espacio de los polinomios de grado menor o igual que n sobre un cuerpo \mathbb{F} . Probar que el operador derivación es nilpotente.
- 13. Sea T un operador nilpotente en un espacio de dimensión finita n. Probar que el polinomio característico de T es x^n .
- 14. Sea T el operador sobre \mathbb{R}^3 representado en la base canónica por la matriz

$$\begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}.$$

- (a) Demostrar que existen un operador diagonalizable D y uno nilpotente N sobre \mathbb{R}^3 tales que T=D+N y DN=ND. [Ayuda:
 - i. Descomponer el polinomio minimal m_T de T en factores coprimos p_1 , p_2 y hallar polinomios h_1 , h_2 tales que $1 = p_1h_1 + p_2h_2$.
 - ii. Sean $E_1 = p_2 h_2(T)$, $E_2 = p_1 h_1(T)$. Mostrar que $D = c_1 E_1 + c_2 E_2$ y N = T D satisfacen lo requerido.
 - iii. Mostrar que E_i es la proyección al subespacio $W_i = \mathcal{N}u(p_i(T))$.
- (b) Hallar las matrices de D y N en la base canónica.
- 15. Sea T un operador sobre V con polinomio característico $p_T = (x c_1)^{d_1} \cdots (x c_k)^{d_k}$ y polinomio minimal $m_T = (x c_1)^{r_1} \cdots (x c_k)^{r_k}$. Sea $W_i := \mathcal{N}u((T c_i I)^{r_i})$.
 - (a) Probar que W_i es el conjunto de todos los vectores $v \in V$ tales que $(T c_i I)^{\ell} v = 0$ para algún natural ℓ (que dependerá de cada $v \in W_i$).
 - (b) Mostrar que $(T c_i I)$ es nilpotente en W_i . Si $n_i := \dim W_i$, entonces ¿cuál es el polinomio característico de $(T c_i I)_{|W_i}$ (usar el Ejercicio 13) y cuál el de $T_{|W_i}$?
 - (c) Usar el Ejercicio 8 (b) para mostrar que dim $W_i = d_i$.

- 16. Sea V un espacio vectorial de dimensión finita sobre \mathbb{C} . Sea T un operador lineal en V y sea D la parte diagonalizable de T. Probar que si g es un polinomio sobre \mathbb{C} , entonces la parte diagonalizable de g(T) es g(D).
- 17. Sea T un operador lineal sobre V que conmuta con todo operador lineal diagonalizable. Probar que T es un múltiplo escalar del operador identidad.
- 18. Dar un ejemplo de dos matrices nilpotentes 4×4 que tengan el mismo polinomio minimal (por lo tanto, el mismo polinomio característico) pero que no sean semejantes.
- 19. Sea T un operador lineal en un espacio vectorial V de dimension finita. Sea $m_T = p_1^{e_1} \dots p_k^{e_k}$ el polinomio minimal de T y $V = W_1 \oplus \dots \oplus W_k$ la descomposición primaria de T, i. e. $W_i = \mathcal{N}u(p_i^{e_i}(T))$. Probar que si W es un subespacio T-invariante de V, entonces

$$W = (W \cap W_1) \oplus (W \cap W_2) \cdots \oplus (W \cap W_k).$$