Estudo de Funções

Priscila Bemm

UEM

Objetivo

Estudar e classificar funções em geral. As classificações que serão vistas são:

- Funções Injetoras,
- Funções Sobrejetoras,
- Funções Bijetoras,
- Funções Par,
- Funções Ímpares,
- Funções Crescente e Decrescente,
- Funções Periódicas,
- Funções Definidas por Partes.

Definição de Funções

Definição

Uma função f de um conjunto A em um conjunto B é uma regra, ou correspondência, que associa cada elemento x do conjunto A a exatamente um elemento y do conjunto B.

Figura: Exemplos de funções

Figura: f é função e g não é função

Uma função é denotada por $f:A\longrightarrow B$ e o efeito que a função faz sobre o elemento $x\in A$ é representado por $x\longmapsto f(x)$

Exemplo

$$\begin{array}{cccc}
f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & 7x - 8
\end{array}$$

Exemplo

$$\begin{array}{ccccc} f: & \{1,2,3,4\} & \longrightarrow & \mathbb{N} \\ & 1 & \longmapsto & 5 \\ & 2 & \longmapsto & 15 \\ & 3 & \longmapsto & 0 \\ & 4 & \longmapsto & 9 \end{array}$$

Definição

Dada a função $f: A \longrightarrow B$, então:

- O conjunto A é chamado **domínio da função** e é denotado por Dom(f).
- O conjunto B é chamado **contradomínio da função** e é denotado por Cdom(f).
- O elemento y = f(x) de B é chamado de imagem de x por f, ou valor de f em x.
- O conjunto de todas as imagens dos elementos do domínio é conhecido por imagem da função e é denotado por Im(f), isto é,
 Im(f) = (f(m)|m ∈ Dom(f))

$$Im(f) = \{f(x)|x \in Dom(f)\} .$$

Quando o domínio de uma função não é explícito, então o domínio será o "maior"subconjunto de $\mathbb R$ para o qual faz sentido a regra da função em questão.

Exemplo

Determine o domínio das funções:

a)
$$f(x) = \frac{x}{x+1}$$

b)
$$g(x) = \sqrt{x - 8}$$

c)
$$h(x) = \frac{\sqrt{x^2 - 9}}{x - 1}$$

Quando o domínio de uma função não é explícito, então o domínio será o "maior"subconjunto de $\mathbb R$ para o qual faz sentido a regra da função em questão.

Exemplo

Determine o domínio das funções:

a)
$$f(x) = \frac{x}{x+1}$$

b)
$$g(x) = \sqrt{x - 8}$$

c)
$$h(x) = \frac{\sqrt{x^2 - 9}}{x - 1}$$

Respostas:
$$Dom(f) = \mathbb{R} - \{-1\}$$
,

$$Dom(g) = [8, +\infty) e$$

$$Dom(h) = [-3, 1) \cup (1, 3]$$

Quando o contradomínio de uma função não é explícito, então ficará implícito que o contradominio é \mathbb{R} .

Uma função pode ser representada por:

- Diagrama de setas
- Tabela
- Gráfico
- Expressão algébrica

Obs: impraticável no caso de se tratar de um grande volume de dados.

Exemplo

 $Dom(f) = \{João, Diogo, Rui Eduardo, Luis, Pedro\}$

Obs: impraticável no caso de se tratar de um grande volume de dados.

Exemplo

 $Dom(f) = \{João, Diogo, Rui$ $Eduardo, Luis, Pedro\}$ $Im(f) = \{10, 11, 12\}$

Obs: impraticável no caso de se tratar de um grande volume de dados.

Exemplo

 $Dom(f) = \{João, Diogo, Rui$ $Eduardo, Luis, Pedro\}$ $Im(f) = \{10, 11, 12\}$ $CDom(f) = \{10, 11, 12, 13, 14\}$

Tabela: Podem ser desenhadas tanto na vertical como na horizontal. Se estiver na horizontal a primeira linha corresponde aos elementos do domínio e a segunda linha as imagens. Se estiver na vertical, a primeira coluna corresponde aos elementos do domínio e a segunda as imagens.

Obs: impraticável no caso de se tratar de um grande volume de dados.

Exemplo

\boldsymbol{x}	y
6	1.938
7	1.937
8	1.921
9	1.920

Exemplo

x	6	7	8	9
y	1.938	1.937	1.921	1.920

Expressão algébrica: a expressão algébrica representa a lei matemática que relaciona os elementos do domínio para obter os elementos da sua imagem.

Obs: A expressão algébrica só pode ser utilizada para representar funções numéricas de variável numérica. Não posso utilizar uma expressão algébrica, para fazer corresponder o nome de um menino à sua idade. Apesar desta restrição, é o método que permite englobar o maior número de objetos, mesmo que estes sejam infinitos.

Exemplo

$$f(x) = 5x - 8$$

$$g(x) = \cos(x) - \frac{1}{x}$$

$$h(x) = \frac{5x}{x^2 - 1} - \sqrt{6 - x}$$

Gráfico: O gráfico da função $f:A\longrightarrow B$, é representado pelo conjunto dos pares ordenados Graf $f=\{(x,y)\in A\times B|y=f(x)\}.$

Os pares ordenados podem ser representados no plano cartesiano, e essa representação facilita a classificação das funções.

Obs: o gráfico pode nos dar a imagem e domínio de uma função, mas ele é mais usado para verificar o comportamento da função.

Teste da linha vertical Como para cada valor de x no domínio de f há exatamente uma valor de y tal que y=f(x), uma reta vertical x=c pode cruzar o gráfico de uma função no máximo uma vez. Se existe uma linha vertical que cruza o gráfico mais que uma vez, este não é o gráfico de uma função.

Exemplo 1

Seja f a função dada por $f(x) = \sqrt{x}$. Determine:

- a) Dom(f)
- b) A imagem do número 4
- c) $f(t^2)$
- d) f(x-6)

Exemplo 2

Seja f a função dada por $f(x) = \frac{1}{x}$. Determine:

- a) Dom(f)
- b) A imagem do número 3
- c) f(x+h)
- d) $f(x^2 6x)$

Respostas do exemplos anteriores

Exemplo 1

- a) $Dom(f) = \{x \in \mathbb{R} | x \ge 0\}$
- b) A imagem do número 4 é $\sqrt{4}=2$
- c) $f(t^2) = \sqrt{t^2} = |t|$
- d) $f(x-6) = \sqrt{x-6}$

Exemplo 2

- a) $Dom(f) = \mathbb{R}^*$
- b) A imagem do número 3 é $\frac{1}{3}$
- c) $f(x+h) = \frac{1}{x+h}$
- d) $f(x^2 6x) = \frac{1}{x^2 6x}$

Classificação de funções: Injetora, Sobrejetora e Bijetora

Definição

Uma função $f:A\longrightarrow B$ é **injetora** se cada elemento da imagem de f está relacionado a exatamente um elemento do domínio de f.

Definição

Dizemos que uma função f é injetora se sempre que f(u)=f(v) em Im(f), então u=v.

Classificação de funções: Injetora, Sobrejetora e Bijetora

Definição

Uma função $f:A\longrightarrow B$ é **injetora** se cada elemento da imagem de f está relacionado a exatamente um elemento do domínio de f.

Definição

Dizemos que uma função f é injetora se sempre que f(u)=f(v) em Im(f), então u=v. Ou, equivalentemente, se $u\neq v$ então $f(u)\neq f(v)$

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^2$ é uma função injetora?

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^2$ é uma função injetora? Não,

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^2$ é uma função injetora? Não, pois f(2) = 4 = f(-2), mas $2 \neq -2$.

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por f(x) = 3x é uma função injetora?

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^2$ é uma função injetora? Não, pois f(2) = 4 = f(-2), mas $2 \neq -2$.

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por f(x) = 3x é uma função injetora? Seja x_1 e $x_2 \in Dom(f)$, temos Se $f(x_1) = f(x_2)$, então:

$$3x_1 = 3x_2$$

$$\Leftrightarrow 3x_1 - 3x_2 = 0$$

$$\Leftrightarrow 3(x_1 - x_2) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0$$

$$\Leftrightarrow x_1 = x_2.$$

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^2$ é uma função injetora? Não, pois f(2) = 4 = f(-2), mas $2 \neq -2$.

Exemplo

Considere $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por f(x) = 3x é uma função injetora? Seja x_1 e $x_2 \in Dom(f)$, temos Se $f(x_1) = f(x_2)$, então:

Priscila Bemm

$$3x_1 = 3x_2$$

$$\Leftrightarrow 3x_1 - 3x_2 = 0$$

$$\Leftrightarrow 3(x_1 - x_2) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0$$

$$\Leftrightarrow x_1 = x_2.$$

Estudo de Funções

Exemplo

Mostre que a função $f(x) = ax + b, a \neq 0$ é injetora.

Exemplo

Mostre que a função $f(x)=ax+b, a\neq 0$ é injetora. Para todo $x_1,x_2\in \mathrm{Dom}(f)$ tais que $f(x_1)=f(x_2)$, temos:

$$ax_1 + b = ax_2 + b$$

$$\Leftrightarrow ax_1 = ax_2$$

$$\Leftrightarrow a(x_1 - x_2) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0$$

$$\Leftrightarrow x_1 = x_2.$$

Exemplo

Mostre que a função $f(x) = ax + b, a \neq 0$ é injetora.

Para todo $x_1, x_2 \in \mathrm{Dom}(f)$ tais que $f(x_1) = f(x_2)$, temos:

$$ax_1 + b = ax_2 + b$$

$$\Leftrightarrow ax_1 = ax_2$$

$$\Leftrightarrow a(x_1 - x_2) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0$$

$$\Leftrightarrow x_1 = x_2.$$

Exemplo

Mostre que a função $f(x) = ax + b, a \neq 0$ é injetora.

Para todo $x_1, x_2 \in \text{Dom}(f)$ tais que $f(x_1) = f(x_2)$, temos:

$$ax_1 + b = ax_2 + b$$

$$\Leftrightarrow ax_1 = ax_2$$

$$\Leftrightarrow a(x_1 - x_2) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0$$

$$\Leftrightarrow x_1 = x_2.$$

Exemplo

Mostre que a função $f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{2\}$ definida por $f(x) = \frac{2x+1}{x-1}, x \neq 0$ é injetora.

Exemplo

Mostre que a função $f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{2\}$ definida por $f(x) = \frac{2x+1}{x-1}, x \neq 0$ é injetora.

Para todo $x_1, x_2 \in Dom(f)$ tais que $f(x_1) = f(x_2)$, temos:

$$\frac{2x_1+1}{x_1-1} = \frac{2x_2+1}{x_2-1}$$

$$\Leftrightarrow 2x_1x_2 - 2x_1 + x_2 - 1 = 2x_1x_2 - 2x_2 + x_1 - 1$$

$$\Leftrightarrow 3x_2 = 3x_1$$

$$\Leftrightarrow x_1 = x_2.$$

Exemplo

Mostre que a função $f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{2\}$ definida por $f(x) = \frac{2x+1}{x-1}, x \neq 0$ é injetora.

Para todo $x_1, x_2 \in \text{Dom}(f)$ tais que $f(x_1) = f(x_2)$, temos:

$$\frac{2x_1+1}{x_1-1} = \frac{2x_2+1}{x_2-1}$$

$$\Leftrightarrow 3x_2 = 3x_1$$

$$\Leftrightarrow x_1 = x_2.$$

Exemplo

Mostre que a função $f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{2\}$ definida por $f(x) = \frac{2x+1}{x-1}, x \neq 0$ é injetora.

Para todo $x_1, x_2 \in \text{Dom}(f)$ tais que $f(x_1) = f(x_2)$, temos:

$$\frac{2x_1+1}{x_1-1} = \frac{2x_2+1}{x_2-1}$$

$$\Leftrightarrow x_1 = x_2.$$

Exemplo

Mostre que a função $f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{2\}$ definida por $f(x) = \frac{2x+1}{x-1}, x \neq 0$ é injetora.

Para todo $x_1, x_2 \in Dom(f)$ tais que $f(x_1) = f(x_2)$, temos:

$$\frac{2x_1+1}{x_1-1} = \frac{2x_2+1}{x_2-1}$$

$$\Leftrightarrow 2x_1x_2 - 2x_1 + x_2 - 1 = 2x_1x_2 - 2x_2 + x_1 - 1$$

$$\Leftrightarrow 3x_2 = 3x_1$$

$$\Leftrightarrow x_1 = x_2.$$

Logo, f é injetora.

A função $g: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^4 - 1$, é uma função injetora?

A função $g:\mathbb{R}\longrightarrow\mathbb{R}$, definida por $f(x)=x^4-1$, é uma função injetora? Não,

A função $g: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^4 - 1$, é uma função injetora? Não, pois f(1) = 0 = f(-1), mas $1 \neq -1$.

Observação

Para mostrarmos que uma função não é injetiva, basta encontrarmos dois valores distintos para x, de forma que a imagem seja igual, isto é, $f(x_1) = f(x_2)$, mas $x_1 \neq x_2$

Teste da reta horizontal Se uma reta horizontal cruzar o gráfico mais que uma vez, então o gráfico não é de uma função injetora.

Figura:
$$f(x) = 3x$$

Figura:
$$f(x) = x^2$$

Observação

Observe que $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^2$ não é injetora, mas se restringirmos o domínio para $[0, \infty]$ então a função definida da mesma forma passa a ser injetora.

Uma função é sobrejetora quando seu contradomínio e imagem são o mesmo conjunto

As funções f e g são sobrejetoras porque, em ambos os casos, o conjunto imagem é igual ao contradomínio. O mesmo não ocorre com a função h e portanto ela não é sobrejetora.

A função afim $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = ax + b, a \neq 0$, é sobrejetora.

Dado $y \in \mathbb{R}$, exibiremos $x \in \mathbb{R}$ tal que f(x) = y.

Se $y \in \mathbb{R}$ então $x = \frac{y-b}{a}$ é um número real tal que

$$f(x) = f(\frac{y-b}{a}) = a.(\frac{y-b}{a}) + b = y$$

A função $f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{2x+1}{x-1}$ não é sobrejetora.

De fato, se $y \in Im(f)$ então existe um $x \in Dom(f)$ tal que $y = \frac{2x+1}{x-1}$. Desenvolvendo a expressão obtemos

$$(y-2)x = 1 + y$$

. Se y=2 teremos, pela última igualdade que 0=3, um absurdo.

Logo,
$$2 \notin Im(f)$$

 $f:\mathbb{R}\longrightarrow\mathbb{R}$, definida por $f(x)=x^2$ não é sobrejetora, pois $Im(f)=[0,\infty]\neq\mathbb{R}$

Exemplo

$$f:\mathbb{R}\longrightarrow [0,\infty]$$
, definida por $f(x)=x^2$ é sobrejetora, pois $Im(f)=[0,\infty]$

Uma função é bijetora se é injetora e sobrejetora

Exemplo

 $f:\mathbb{R}\longrightarrow\mathbb{R}$, definida por $f(x)=x^2$ não é bijetora, pois não é sobrejetora e nem injetora.

Exemplo

 $f:[0,\infty]\longrightarrow\mathbb{R}$, definida por $f(x)=x^2$ não é bijetora, pois apesar de ser injetora, não é sobrejetora.

Exemplo

 $f:[0,\infty]\longrightarrow [0,\infty]$, definida por $f(x)=x^2$ é injetora e sobrejetora e, portanto, bijetora.

Classificação de Funções com relação ao crescimento

Definição

Uma função f é crescente em um intervalo I se

$$f(x_1) < f(x_2)$$
 sempre que $x_1 < x_2$ em I

Ela é chamada decrescente em I se

$$f(x_1) > f(x_2)$$
 sempre que $x_1 < x_2$ em I

A função cujo gráfico se encontra a direita é:

- decrescente no intervalo [2, 4]
- crescente no intervalo [-1,2]

A função definida por $f(x) = x^2$ é:

- decrescente no intervalo $(-\infty, 0]$
- crescente no intervalo $[0, \infty)$

Classificação de funções com relação a paridade

Definição

Uma função f é **par** se para todo $\in Dom(f)$ temos

$$f(-x) = f(x).$$

Exemplo

A função f definida por $f(x)=x^2+2$ é uma função par, pois

$$f(-x) = (-x)^2 + 2$$

Classificação de funções com relação a paridade

Definição

Uma função f é **par** se para todo $\in Dom(f)$ temos

$$f(-x) = f(x).$$

Exemplo

A função f definida por $f(x)=x^2+2$ é uma função par, pois

$$f(-x) = (-x)^2 + 2 = x^2 + 2$$

Classificação de funções com relação a paridade

Definição

Uma função f é **par** se para todo $\in Dom(f)$ temos

$$f(-x) = f(x).$$

Exemplo

A função f definida por $f(x)=x^2+2$ é uma função par, pois

$$f(-x) = (-x)^2 + 2 = x^2 + 2 = f(x)$$

O gráfico de uma função par

Uma função é par se e somente se for simétrico com relação a reta vertical x=0.

Exemplos de funções pares

Exemplos de funções pares

Exemplos de funções pares

Uma função f é **ímpar** se para todo $\in Dom(f)$ temos

$$f(-x) = -f(x).$$

Exemplo

A função f definida por f(x) = 4x é uma função ímpar, pois

$$f(-x) = 4(-x)$$

Uma função f é **ímpar** se para todo $\in Dom(f)$ temos

$$f(-x) = -f(x).$$

Exemplo

A função f definida por f(x)=4x é uma função ímpar, pois

$$f(-x) = 4(-x) = -4x$$

Uma função f é **ímpar** se para todo $\in Dom(f)$ temos

$$f(-x) = -f(x).$$

Exemplo

A função f definida por f(x)=4x é uma função ímpar, pois

$$f(-x) = 4(-x) = -4x = -f(x)$$

O gráfico de uma função ímpar

Uma função é ímpar se e somente se for simétrico com relação a origem.

Algumas funções não são pares e nem ímpares.

Exemplo

A função definida por

$$f(x) = 3x - x^2$$

$$f(-x) = 3(-x) - (-x)^2$$

Algumas funções não são pares e nem ímpares.

Exemplo

A função definida por

$$f(x) = 3x - x^2$$

$$f(-x) = 3(-x) - (-x)^2 = -3x - x^2$$

Algumas funções não são pares e nem ímpares.

Exemplo

A função definida por

$$f(x) = 3x - x^2$$

$$f(-x) = 3(-x) - (-x)^2 = -3x - x^2 \neq f(x)$$

Algumas funções não são pares e nem ímpares.

Exemplo

A função definida por

$$f(x) = 3x - x^2$$

$$f(-x) = 3(-x) - (-x)^2 = -3x - x^2 \neq f(x)$$

 $e(f(-x)) \neq -f(x)$ $f(x) = 3x - x^2$

Classificação de funções com relação a periodicidade

Considere a função $f:\mathbb{N}\longrightarrow\mathbb{Z}$ definida por $f(x)=(-1)^x$ Observe que,

Note que quando \boldsymbol{x} varia duas unidades, o valor da função se repete.

$$f(1) = f(3) = f(5) = \cdots$$
 e $f(2) = f(4) = f(6) = \cdots$.

Classificação de funções com relação a periodicidade

Considere a função $f:\mathbb{N}\longrightarrow\mathbb{Z}$ definida por $f(x)=(-1)^x$ Observe que,

x	1	2	3	4
y	-1	1	-1	1

Note que quando \boldsymbol{x} varia duas unidades, o valor da função se repete.

$$f(1) = f(3) = f(5) = \cdots$$
 e $f(2) = f(4) = f(6) = \cdots$.

De modo geral, f(x) = f(x+2), para todo $x \in Dom(f)$.

Classificação de funções com relação a periodicidade

Considere a função $f:\mathbb{N}\longrightarrow\mathbb{Z}$ definida por $f(x)=(-1)^x$ Observe que,

Note que quando \boldsymbol{x} varia duas unidades, o valor da função se repete.

$$f(1) = f(3) = f(5) = \cdots$$
 e $f(2) = f(4) = f(6) = \cdots$.
De modo geral, $f(x) = f(x+2)$, para todo $x \in Dom(f)$.

Definição

Uma função é denominada **periódica** caso exista um número real p > 0, tal que f(x) = f(x+p). Com isso, o menor valor de p, que satisfaça essa igualdade, é chamado de **período da função** f.

Exemplos de funções periódicas

:

- $f_1(x) = sen(x)$
- $f_2(x) = cos(x)$
- $f_3(x) = tg(x)$

Funções definidas por partes

Definição

Uma função f é definida por partes se,o domínio da função f é a união de subconjuntos de $\mathbb R$ tais que para cada subconjunto, f é definida de uma maneira.

Exemplo

$$f(x) = \begin{cases} x^2, & x < 0 \\ x, & 0 \le x \le 15 \\ 5x - 4, & x > 15 \end{cases}$$

$$f(x) = |x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

DÚVIDAS?