Ejercicios propuestos en clase:

Ej1) Si la potencia generada internamente por un LED es 28,4 mW con una corriente de 60 mA. Se pide:

- a) Determinar la longitud de onda de la luz emitida cuando los ritmos de recombinación radiativa y no radiativa de portadores en la zona activa son iguales.
- b) ¿Cuál es, aproximadamente, la energía de gap del material semiconductor utilizado en el LED y la anchura espectral de la luz emitida sabiendo que el margen de energías de fotones radiados es 1,4007·10⁻²⁰ J?.

Sol:

a)
$$\lambda$$
=1,31 μ m b) E_g =0,946 eV ; $\Delta\lambda$ ≈121 nm

Ej2) Un LED es modulado en intensidad con una densidad de corriente dada por:

$$J(t) = J_0 + m_I J_0 \cos \omega t$$

siendo J_0 la densidad de corriente de polarización, m_J el índice de modulación de la corriente y ω la frecuencia angular de la moduladora. A partir de la ecuación de ritmo para el LED demostrar que para frecuencias de modulación muy elevadas la potencia óptica emitida se puede expresar como:

$$P(t) \approx P_0 + \frac{m_J P_0}{\tau_{sp}} \left(\frac{sen\omega t}{\omega} \right)$$

siendo P_0 la potencia óptica emitida en régimen estacionario con la corriente de polarización J_0 y τ_{sp} el tiempo de vida del portador.

 $\it Ej3$) El esquema de un transmisor con LED se muestra en la figura. La corriente de polarización del LED es la suma de la corriente I_{dc} e $i_{ac}(t)$. Si el ancho de banda de la fuente es 100 MHz, se pide:

- a) la expresión de la potencia óptica modulada en el caso de que $i_{ac}(t)=I_s \cdot \cos \omega t$.
- b) Si para I_{dc} =75 mA e i_{ac} =0 mA la potencia emitida por el LED es 2,5 mW ¿cuál es la componente alterna de la potencia cuando $i_{ac}(t)$ =10·cos ωt ?.

c) Si el índice de modulación de la potencia es 0,89 veces el índice de modulación eléctrico ¿a qué frecuencia se ha modulado?

Sol: a) De teoría
$$P(t) = P_{dc} \left(1 + \frac{\frac{I_s}{I_{dc}}}{\sqrt{1 + (\omega \tau_{sp})^2}} \cos(\omega t - arctg(\omega \tau_{sp})) \right)$$

$$\cot P_{dc} = \eta \frac{I_{dc}}{q} hf$$

b)
$$P_{ac}(t) = \frac{2.5 \cdot \frac{10}{75}}{\sqrt{1 + (1.59 \cdot 10^{-9} \omega)^2}} \cos(\omega t - arctg(1.59 \cdot 10^{-9} \omega) [mW]$$

c) f≈51,3 MHz

Ej4) Cuando la tensión aplicada a un LED es 2V la corriente de polarización es 100 mA y la potencia óptica emitida es 2 mW. ¿Cuál es la eficiencia de conversión de potencia eléctrica a óptica?.

Sol: 1%

Ej5) Un LED de 2^a ventana es modulado en Intensidad por una corriente sinusoidal dada por $i_s(t)=I_s\cdot\cos\omega_s t$, con $f_s=10$ MHz y amplitud máxima 1 mA. La potencia modulada emitida por la fuente es $0.08\cdot\cos(\omega_s t-3.6^\circ)$ mW, determinar la eficiencia cuántica interna del LED si la externa es del 10%.

Sol: 83,78%

 $\it Ej6$) Un LED cuya zona activa tiene las siguientes dimensiones: w=10 μm, d=0,5 μm y L=300 μm, índice de refracción n_S =3,7 y el tiempo de vida del portador es 0,5 ns; está polarizado con una corriente constante I_0 . Cuando la corriente cae instantáneamente a cero la densidad de portadores y la potencia óptica no decaen de manera instantánea. Con ayuda de la ecuación de ritmo para el LED, estimar el tiempo necesario para que la luz emitida caiga a un valor inferior al 1% del máximo.

Sol: *
$$t_{1\%}$$
=2.3 ns

- *Ej7*) Una fibra óptica de salto de índice que tiene un ancho de banda eléctrico por unidad de longitud de 5 MHz·Km se le inyecta luz de un LED con longitud de onda 1550 nm y anchura espectral 80 nm. Calcular
- a) la máxima distancia a la que puede transmitirse una señal digital NRZ a 10 Mbit/s.
- b) cuál debería ser como máximo el tiempo de vida del portador del LED para permitir la transmisión del apartado anterior.

Sol: a) $L \approx 1000 \text{ m}$; b) 31,8 ns

Ej8) Un diodo LED de 1ª Ventana con eficiencia cuántica del 6% se conecta a un tramo de fibra óptica de salto de índice con apertura numérica de 0,24. Si la potencia inyectada a la fibra es 0,1157 mW, ¿con qué corriente está polarizado la fuente?. Suponed adaptación de índices de refracción entre la fuente y la fibra.

Sol: 22,8 mA

- *Ej9*) Un LED que emite en 1ª Ventana (0,9 μm) y con una anchura espectral de 50 nm proporciona 2 mW y 3 mW de potencia óptica cuando se polariza con 100 mA y 120 mA de corriente respectivamente. Se pide:
- a) Calcular la energía de gap aproximada en eV y su eficiencia cuántica en %.
- b) Deducir el ancho de banda de modulación del LED y justificar si es posible aumentar este ancho de banda.
- c) Calcular la anchura mínima de los pulsos de corriente que modulan en Intensidad al LED para que la amplitud de los pulsos emitidos alcancen el 95% de su valor asintótico.

Sol: a)
$$E_g(eV) \approx 1.38$$
 y $\eta \approx 3.6\%$

b) De teoría de clase:
$$Bw = f_{\text{max}} = f_{-3dB} = \frac{1}{2\pi\tau_{sp}}$$
;

*para aumentar el ancho de banda debería disminuir el tiempo de vida del portador y ello no es posible a menos que se cambie de dispositivo.

c)
$$T_{minima} \approx 3 \tau_{sp}$$

Ej10) Un LED de 2^a Ventana emite $25~\mu W$ de potencia óptica polarizado con una corriente constante. Si su eficiencia cuántica es 0.5~y sus dimensiones son $0.1 \mu m$ x $1 \mu m$ x $10 \mu m$ ¿cuál es el número total de recombinaciones por unidad de tiempo y de volumen que se producen?

Sol:
$$3,273 \cdot 10^{32} \left[\text{Recomb/(seg} \cdot \text{m}^3) \right]$$

- $\it Ej11$) Un diodo láser semiconductor tiene una ganancia máxima de 2000 m⁻¹ y unas pérdidas lineales de 600 m⁻¹,
- a) si las reflectividades de las caras de la cavidad son iguales a 0,35 ¿cuál es el valor mínimo de su longitud?
- b) si la longitud de la cavidad es de 475 µm y las reflectividades iguales ¿cuál es el valor mínimo de estas reflectividades?

Sol: a)
$$L_{minima} = 750 \ \mu m$$
 b) $R_{minima} = 0.515$

Ej12) Un diodo láser cuyo tiempo de vida medio del portador es de 1 ns, emite 2 mW cuando la corriente de polarización es de 60 mA y 1 mW con una corriente de polarización de 40 mA. Se pide:

a) Si se transmite una modulación digital con los siguientes niveles de corriente: I_1 =0 mA e I_2 = 50 mA, deducir el retardo que se produce en la modulación y calcular su valor.

b) Encontrar la máxima velocidad de transmisión que impone el láser cuando I_1 = 0 mA e I_2 = 10 mA.

Sol: a) Como
$$I_{th} = 20$$
 mA, se cumple $I_1 < I_{th} < I_2$ de teoria: $t_d = \tau_s \ln \frac{I_2 - I_1}{I_2 - I_{th}} = 0.51 ns$
b) $I_2 < I_{th}$, el DL no oscila opera como un LED: $R_{MAX} = 333,33$ Mb/s

Ej13) Un láser semiconductor de longitud 250 μm e índice de refracción de 3,75 tiene la siguiente ganancia del material: $g_m(\lambda) = 2500 - \gamma(\lambda - \lambda_p)^2$ [m⁻¹], siendo $\lambda_p = 1,5$ μm y $\gamma = 6 \cdot 10^{18}$ m⁻³. Determinar las longitudes de onda máxima y mínima de los modos de oscilación si las pérdidas totales son 1255 m⁻¹. Suponed un confinamiento perfecto.

Sol:
$$\lambda_{\text{máxima}}$$
=1514,4 nm $\lambda_{\text{mínima}}$ =1485,65 nm

Ej14) Un diodo láser monomodo simétrico en el que se cumple que: el nivel de transparencia es nulo, la emisión espontánea es despreciable, el factor de confinamiento es perfecto y las pérdidas de scattering son α_s cm⁻¹. Se pide,

- a) Deducir la expresión de la corriente umbral en función de la longitud del láser.
- b) Si las reflectividades disminuyen, de la forma: $R \to \frac{R}{e}$, y $\alpha_s = 100 \text{ cm}^{-1}$, ¿cómo debe variar la longitud del láser para que la corriente umbral no varíe?

Sol: a)
$$I_{TH} = \frac{q \cdot w \cdot d}{a \tau_s} \left(\alpha_s L + \ln \frac{1}{R} \right)$$
 b) La longitud debe disminuir 100 \(\mu m \).

Ej15) Un diodo láser presenta los siguientes parámetros:

$$L = 150 \mu m$$

$$\tau_{s} = 0.5 ns$$

$$\tau_{p} = \frac{4}{3} ps$$

$$R_{1} = R_{2} = R = \frac{1}{3}$$

$$\lambda_{p} = 1.55 \mu m$$

$$\alpha_{s} = 26.76 cm^{-1}$$

a) calcular el valor del factor de confinamiento y el índice de refracción de la zona activa si la ganancia del material para el modo fundamental es 400 cm⁻¹.

b) obtener la corriente umbral de este láser, si para I=30 mA la potencia emitida es 3,08 mW y para I=35 mA es 4,62 mW.

Sol: a)
$$\Gamma = 0.25$$
; $n = 4$ b) $I_{TH} = 20 \text{ mA}$

Ej16) Las pérdidas totales en una cavidad láser valen 1,5; las reflectividades de sus caras 0,32. Sabiendo que el láser está polarizado 20 mA por encima del umbral y que $\frac{q}{hf}$ = 1,235 ¿Qué potencia emite aproximadamente?

Sol: 6,49 mW

Ej17) ¿Qué separación entre longitudes de onda de resonancia es necesaria para que un láser FP con ganancia del material $g_m(\lambda) = 1500 - 6 \cdot 10^{18} (\lambda - \lambda_p)^2$ m⁻¹, pérdidas totales por unidad de longitud de 900 m⁻¹ y factor de confinamiento perfecto sea monomodo?

Sol: > 10 nm

Ej18) Sabiendo que la frecuencia y la constante de decaimiento de las oscilaciones de

relajación de un láser semiconductor son $\left\{ \begin{aligned} \alpha &= \frac{1}{2\tau_s} + \frac{v\Gamma a}{2} S_0 \\ \omega_0 &= \sqrt{\frac{v\Gamma a}{\tau_p} S_0} \end{aligned} \right\}, \text{ expresarlas en función de}$

la corriente umbral, la corriente de polarización, el tiempo de vida del portador y del tiempo de vida del fotón, suponiendo que el nivel de transparencia es nulo.

Sol:
$$\begin{cases} \alpha = \frac{1}{2\tau_s} \left(\frac{I}{I_{TH}} \right) \\ \omega_0 = \sqrt{\frac{1}{\tau_s \tau_p} \left(\frac{I}{I_{TH}} - 1 \right)} \end{cases}$$

Ej19) Un diodo láser simétrico tiene una zona activa de longitud 500 μm e índice de refracción n=3,53. Admitiendo que su comportamiento es multimodo, se pide:

a) calcular la λ correspondiente al modo número 2307 de los emitidos por el DL.

Considérese este modo el fundamental, que la ganancia neta máxima por unidad de longitud es de 113 cm⁻¹ y que las pérdidas de scattering son de 15 cm⁻¹

b) ¿cuál es el valor de las reflectividades de las caras del diodo?

c) calcular el tiempo de vida del fotón

Sol: a) 1,53 µm

b) 0,35%

c) 0,919 os

Ej20) Un diodo láser semiconductor tiene las siguientes características:

$$\begin{cases} L = 300 \mu m, \cdots w = 10 \mu m \cdots d = 2 \mu m \\ \tau_s = 5ns \\ n = 3,3 \\ R_1 = R_2 = R = 0,9 \\ \lambda_p = 1,3 \mu m \\ \alpha_s = 300 m^{-1} \\ g(\lambda) = 1500 \cdot e^{-\frac{(\lambda - \lambda_p)^2}{2\sigma^2}} m^{-1} \cdots \sigma = 3,5 nm \\ I_{TH} = 50 mA \\ \Gamma = 1 \end{cases}$$

Se pide:

- a) Las longitudes de onda más próximas a la longitud de onda de pico que cumplen la condición de oscilación (respuesta en nm)
- b) Número de modos emitidos por el láser.

Sol: a)
$$\begin{cases} \lambda_{\min} = 1299,2nm \\ \lambda_{\max} = 1300,9nm \end{cases}$$
 b) 11

Ej21) Determinar las pérdidas que se producen al unir dos fibras de salto de índice iguales salvo en las dimensiones de su núcleo, concretamente, una tiene un diámetro de $100 \, \mu m$ y la otra de $20 \, \mu m$. Suponer que las fibras están pegadas.

Sol: 14 dB cuando la luz se transmite desde la fibra con mayor diámetro.

Ej22) Deducir las pérdidas que se producen al unir dos fibras de salto de índice idénticas excepto en la apertura numérica, una tiene una apertura numérica de 0,1 y la otra de 0,08. Suponer que las fibras están pegadas.

Sol: 1,94 dB cuando la luz se transmite desde la fibra con mayor apertura numérica.