| $	au_{1}^{\#2}$                     | 0                                                                           | 0                                                                                       | 0                                                                                                                                   | $\frac{2ik}{t_1 + 2k^2t_1}$      | $-\frac{i\sqrt{2}k(2k^2r_5t_1)}{(t_1+2k^2t_1)^2}$ | 0                           | $\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$            |
|-------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|-----------------------------|-----------------------------------------------------------|
| $\tau_{1^-}^{\#1}\alpha$            | 0                                                                           | 0                                                                                       | 0                                                                                                                                   | 0                                | 0                                                 | 0                           | 0                                                         |
| $\sigma_{1}^{\#2}{}_{lpha}$         | 0                                                                           | 0                                                                                       | 0                                                                                                                                   | $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$ | $\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$    | 0                           | $\frac{i \sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$ |
| $\sigma_{1^{\text{-}}\alpha}^{\#1}$ | 0                                                                           | 0                                                                                       | 0                                                                                                                                   | 0                                | $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$                  | 0                           | $-\frac{2ik}{t_1+2k^2t_1}$                                |
| ${\iota_1^{\#1}}_{+\alpha\beta}$    | $\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$            | $\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$ | $\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$ | 0                                | 0                                                 | 0                           | 0                                                         |
| $\sigma_{1}^{\#2}{}_{\alpha\beta}$  | $\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$ | $\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$       | $-\frac{ik(6k^2r_5+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$                                                                 | 0                                | 0                                                 | 0                           | 0                                                         |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$  | 341 t                                                                       | $\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$             | $-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}.$                                                                  | 0                                | 0                                                 | 0                           | 0                                                         |
|                                     | $\sigma_{1}^{\#1} + ^{\alpha eta}$                                          | $\sigma_{1}^{\#2} + \alpha \beta$                                                       | $\tau_{1+}^{\#1} + \alpha \beta$                                                                                                    | $\sigma_{1}^{\#_1} +^{\alpha}$   | $\sigma_{1}^{\#2} +^{\alpha}$                     | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_{1}^{#2} + \alpha$                                  |

|                                          | $\omega_{1^{+}lphaeta}^{\sharp1}$                       | $\omega_{1^{+}lphaeta}^{\#2}$ | $f_{1^{+}\alpha\beta}^{\#1}$      | $\omega_{1-lpha}^{\#1}$   | $\omega_{1-\alpha}^{\#2}$ | $f_{1-\alpha}^{\#1}$ | $f_{1}^{#2}\alpha$ |
|------------------------------------------|---------------------------------------------------------|-------------------------------|-----------------------------------|---------------------------|---------------------------|----------------------|--------------------|
| $\omega_{1}^{\#1} \dagger^{\alpha\beta}$ | $\frac{1}{6} \left( 6  k^2  r_5 + t_1 + 4  t_2 \right)$ | $-\frac{t_1-2t_2}{3\sqrt{2}}$ | $-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$ | 0                         | 0                         | 0                    | 0                  |
| $\omega_{1}^{\#2} \dagger^{\alpha\beta}$ | $-\frac{t_1-2t_2}{3\sqrt{2}}$                           | $\frac{t_1+t_2}{3}$           | $\frac{1}{3}\bar{l}k(t_1+t_2)$    | 0                         | 0                         | 0                    | 0                  |
| $f_{1}^{\#1} \dagger^{\alpha\beta}$      | $\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$                  | $-\frac{1}{3}ik(t_1+t_2)$     | $\frac{1}{3}k^2(t_1+t_2)$         | 0                         | 0                         | 0                    | 0                  |
| $\omega_1^{\sharp 1}$ † $^{lpha}$        | 0                                                       | 0                             | 0                                 | $k^2 r_5 - \frac{t_1}{2}$ | $\frac{t_1}{\sqrt{2}}$    | 0                    | īkt <sub>1</sub>   |
| $\omega_1^{\#2} \dagger^{lpha}$          | 0                                                       | 0                             | 0                                 | $\frac{t_1}{\sqrt{2}}$    | 0                         | 0                    | 0                  |
| $f_{1}^{#1} \dagger^{\alpha}$            | 0                                                       | 0                             | 0                                 | 0                         | 0                         | 0                    | 0                  |
| $f_{1}^{#2} \dagger^{\alpha}$            | 0                                                       | 0                             | 0                                 | - <i>ī k t</i> 1          | 0                         | 0                    | 0                  |



| $\omega_{0}^{\#1} + \frac{-t_1}{-i} \sqrt{2} k t_1 = 0 \qquad 0$ $f_{0}^{\#1} + \frac{-i}{-i} \sqrt{2} k t_1 - 2 k^2 t_1 = 0 \qquad 0$ $f_{0}^{\#2} + \frac{0}{0} = 0 \qquad 0$ |                          | $\omega_{0^+}^{\sharp 1}$ | $f_{0^{+}}^{#1}$ | $f_{0^{+}}^{#2}$ | $\omega_0^{\#1}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|------------------|------------------|------------------|
| $f_{0+}^{\#2} \dagger                                   $                                                                                                                       | $\omega_{0^{+}}^{\#1}$ † | -t <sub>1</sub>           | $i\sqrt{2} kt_1$ | 0                | 0                |
|                                                                                                                                                                                 | $f_{0}^{#1}$ †           | $-i \sqrt{2} kt_1$        | $-2 k^2 t_1$     | 0                | 0                |
| .#1+ 0 0 12                                                                                                                                                                     | $f_{0}^{#2}$ †           | 0                         | 0                | 0                | 0                |
| $\omega_0^{-1} + 0 = 0 = 0 = k^2 r_2 + t_2$                                                                                                                                     | $\omega_0^{\#1}$ †       | 0                         | 0                | 0                | $k^2 r_2 + t_2$  |

| 9                  | #            | П                      | П                                             | == 0 3                                                    | κ                           | == 0 3                          | == 0 2                                                    |          |
|--------------------|--------------|------------------------|-----------------------------------------------|-----------------------------------------------------------|-----------------------------|---------------------------------|-----------------------------------------------------------|----------|
| Source constraints | SO(3) irreps | $\tau_{0+}^{\#2} == 0$ | $\tau_0^{\#1} - 2  i  k  \sigma_0^{\#1} == 0$ | $\tau_1^{\#2}{}^\alpha + 2ik \ \sigma_1^{\#2}{}^\alpha =$ | $t_1^{\#1}{}^{\alpha} == 0$ | $+ik \sigma_1^{\#2\alpha\beta}$ | $\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta$ | T. L. L. |

|                      | $\sigma_{0}^{\#1}$                     | $	au_0^{\#1}$                        | $	au_0^{\#2}$ | $\sigma_0^{\#1}$          |
|----------------------|----------------------------------------|--------------------------------------|---------------|---------------------------|
| $\sigma_{0}^{\#1}$ † | $-\frac{1}{(1+2k^2)^2t_1}$             | $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$ | 0             | 0                         |
| $\tau_{0}^{\#1}$ †   | $-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$ | $-\frac{2k^2}{(1+2k^2)^2t_1}$        | 0             | 0                         |
| $	au_{0}^{\#2}$ †    | 0                                      | 0                                    | 0             | 0                         |
| $\sigma_{0}^{\#1}$ † | 0                                      | 0                                    | 0             | $\frac{1}{k^2 r_2 + t_2}$ |

| $\omega_2^{*+}\alpha_\beta f_2^{*+}\alpha_\beta \omega_2^{*-}\alpha_{\beta\chi}$ | 0                                | 0                            | $\frac{t_1}{2}$                    |  |
|----------------------------------------------------------------------------------|----------------------------------|------------------------------|------------------------------------|--|
| $f_{2}^{#1}\alpha\beta$                                                          | $-\frac{ikt_1}{\sqrt{2}}$        | $k^2 t_1$                    | 0                                  |  |
| $\omega_2^{*+}\alpha_\beta$                                                      | $\frac{t_1}{2}$                  | $\frac{i  k  t_1}{\sqrt{2}}$ | 0                                  |  |
| •                                                                                | $\omega_2^{\#1} +^{\alpha\beta}$ | $f_2^{#1} + ^{\alpha \beta}$ | $\omega_{2}^{\#1} +^{lphaeta\chi}$ |  |

| $\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$ | 0                                    | 0                                   | $\frac{2}{t_1}$                        |
|----------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|
| $\tau_{2}^{\#1}_{\alpha\beta}$         | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | $\frac{4k^2}{(1+2k^2)^2t_1}$        | 0                                      |
| $\sigma_{2}^{\#1}{}_{\alpha\beta}$     |                                      | $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                      |
|                                        | $\sigma_{2}^{\#1} + \alpha^{\beta}$  | $\tau_{2}^{\#1} + ^{\alpha\beta}$   | $\sigma_{2}^{\#1} +^{\alpha\beta\chi}$ |

|                       | Massive partic              | le                                                                                                     |
|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------|
| ? /                   | Pole residue:               | $\left  \frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0 \right $ |
| $J^P = 1$             | <sup>9</sup> Polarisations: | 3                                                                                                      |
| ? $\frac{1}{k^{\mu}}$ | Square mass:                | $-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$                                                                 |
| ?                     | Spin:                       | 1                                                                                                      |
|                       | Parity:                     | Even                                                                                                   |



| Massive particle |                        |  |  |  |  |
|------------------|------------------------|--|--|--|--|
| Pole residue:    | $-\frac{1}{r_2} > 0$   |  |  |  |  |
| Polarisations:   | 1                      |  |  |  |  |
| Square mass:     | $-\frac{t_2}{r_2} > 0$ |  |  |  |  |
| Spin:            | 0                      |  |  |  |  |
| Parity:          | Odd                    |  |  |  |  |