1. Proof:
$$\hat{\beta}_{i} = \frac{SS_{xy}}{SS_{xx}}$$

$$= \frac{\sum_{i=1}^{n} \frac{(x_{i} - \overline{x})}{SS_{xx}}}{SS_{xx}}, SS_{xx} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{SS_{xx}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})}{SS_{xx}}, y_{i}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})}{SS_{xx}} = S_{xx}$$

• $SS_{xy} = S_{xy}$, $SS_{xx} = S_{xx}$

• $SS_{xy} = S_{xy}$

• $SS_{xy} = S_{xy}$

• $SS_{xx} = S_{xx}$

• $SS_{xx} =$

 $=\sum_{i=1}^{n}(y_i-\overline{y})-\widehat{\beta}\sum_{i=1}^{n}(\overline{x}-x_i)$

 $\sum_{i=1}^{n} y_i = n \cdot y = n \left(\frac{\sum_{i=1}^{n} y_i}{n} \right)$

カダニンダ

. ∑ x; e; =0

Proof: Til Gili = In (Bi+ Pixi)ei

= 0

Proof: fitted regression line.

plug-in & to the RHS.

=) (x, y) is one the line

y = \hat{\beta} + \hat{\beta} x

the centroid (x, y)

Proof: $\Sigma e = \Sigma (y_i - \hat{y_i}) = 0$

so \(\frac{n}{2} \dot{y}_1 - \frac{n}{2} \hat{y}_1 = 0

三 五年二十五年

 $= \sum_{i=1}^{n} y_i - n \cdot y_i - \beta_i \left(n \cdot x_i - \sum_{i=1}^{n} \chi_i \right) = 0$

= = X: (4: -(y-8x)-8x)

= = X ((4 - y) + (x - x)

= Sxy + P. (- Sxx)

= Sxy + Sxy (-Sxx)

= Sxy - Sxy

= Bo I'll + B Zxili

. The Least-square regression line always passes through

高·育文= y- 序文+ 育文= y

林