Notes for PHYS 232: Stellar Structure

Bill Wolf

January 23, 2012

Contents

1	\mathbf{Intr}	$\operatorname{roduction}$	3	
	1.1	The HR Diagram	3	
	1.2	Conditions for a Star on the HR Diagram	3	
		1.2.1 Population I Stars	3	
		1.2.2 Population II Stars	5	
2	The Isothermal, Plane Parallel Atmosphere			
	2.1	Scale Height and Column Depth	5	
	2.2	Mean Molecular Weights		
	2.3	Electric Fields in Stars		
3	Self-Gravitating Objects 8			
	3.1	Momentum Conservation and the Free-Fall Timescale	8	
	3.2	The Virial Theorem		
	3.3	Applications of the Virial Theorm		
	3.4	Gas Pressure and Radiation Pressure	11	
	3.5	Summary	13	
4	Hea	at Transfer in Stars	13	
	4.1	Heat Flux Derivation	14	
	4.2	Heat Transport by Electrons		
	4.3	- · ·		
		4.3.2 Polytropic Relations		
		4.3.3 Heat Transfer in the Outer Atmosphere		
		4.3.4 The Effective Temperature		

1 Introduction

Monday, January 9, 2012

1.1 The HR Diagram

Most stars shine predominantly in the optical range of the electromagnetic spectrum. As a result, we get most of our information about stars by observing their optical output. It makes sense, then, that we might organize stars by there color, which is indicative of their surface temperature. When plotting a population of stars' luminosities against their surface temperature, we note a strong correlation between the two. As it turns out, the controlling parameter for these quantities is the mass of the star, at least while the star is on the **Main Sequence** (stars burning hydrogen to helium). The correlation between the mass of a main-sequence star and its luminosity is incredibly strong (see HR diagram examples).

1.2 Conditions for a Star on the HR Diagram

We are interested in knowing what defines the regime where a star can reside in a particular L, $T_{\text{eff}} = [L/(4\pi\sigma_{\text{SB}}R^2)]^{1/4}$. Why, for example, is there a dynamical range in the luminosity spanning over six orders of magnitude, while only a range of a factor of about 5 in the effective temperature? To gain some perspective, we might observe the number of stars as a function of brightness. We organize these stars by their **spectral type** (a rough measure of how big the star is) and find their approximate **mass density** (the amount of mass contained in these stars per unit volume):

Spectral Type	$ ho~(M_{\odot}/{ m pc}^3)$
O-B	0.4
A-F	4
G-M	40
WD's	20

Here we've used the standard labels for different spectral types, O, B, A, F, G, K, M, L, T, which are roughly in decreasing order of size and temperature (the reasoning for this scale is historical rather than logical, and the ordering is often remembered by the mnemonic, "Oh Be A Fine Gal/Guy, Kiss Me! Less Talk!"). We see that the big, bright stars form an exceedingly small portion of the amount of stellar mass in our galaxy. We will find that this is because large stars exhaust their fuel much more quickly than smaller stars, and thus live and die much faster. We'll now observe another type of classification of stars used in our neighborhood, the Milky Way Galaxy.

1.2.1 Population I Stars

From Earth, the center of the galaxy is approximately 8.5 kpc away. Meanwhile, the disk is only about 100 pc wide. We've observed that stars in the thin disk (commonly known as **Population I Stars**) are orbiting at the orbital velocity with only a small amount of axial and radial motion. They are essentially dynamically cold and in nearly circular orbits. This is indeed where most of the **interstellar medium** (ISM) resides, causing much of the star formation in the galaxy. This region is also very metal rich. That is, compared to other parts of the universe, there is a much

Figure 1: An HR diagram for stars in the local neighborhood (shamelessly stolen from Google Images)

higher concentration of elements heavier than helium present. We will denote the mass fraction of these "metals" with the letter Z, and in this region, we have $Z \sim 1-2\%$. These metals come from a previous generation of stars, who died in the past, giving off the metals we now have.

1.2.2 Population II Stars

Population II Stars reside mostly in the spheroid in the center of the galaxy. These are older stars in regions where star formation is largely shut down. Typically they are metal poor, with metallicities as low as $Z = 10^{-4} Z_{\odot}$. Kinematically, they are often on radial orbits (rather than their more azimuthal population II counterparts in the disk). We typically say that the globular clusters are part of this population. Sometimes these stars are seen passing through the disk at velocities comparable to the orbital velocities, and are easily identified due to their high velocities and unique spectra (due to the low metallicities).

2 The Isothermal, Plane Parallel Atmosphere

2.1 Scale Height and Column Depth

Before tackling the physics of stars, we first consider a simple toy model—the isothermal, plane parallel atmosphere. This model is somewhat applicable to the thin stellar atmosphere near the surface of a star, where curvature can be neglected and the acceleration due to gravity is nearly uniform.

Consider an atmosphere where the local acceleration due to gravity, \mathbf{g} is constant in value and direction. The atmosphere is composed of an isothermal ideal gas with temperature T. We wish to find the distribution of particles in this atmosphere.

In a strictly statistical sense, we would expect the energy distribution to be comparable to $e^{-E/kT}$ (recall that the atmosphere is isothermal, so the average kinetic energy is uniform throughout). In our case, the energy of particles is linear in height, so we expect this probability to be proportional to $e^{-mgh/kT}$.

We will let $m_B \approx m_p$ be the baryon mass, μ be the mean molecular mass (measured in AMU), and ρ is the density in g cm⁻³. We suppose that the gas is in hydrostatic balance, so we have

$$\frac{dP}{dz} = -\rho g \tag{1}$$

Combining this with the ideal gas law,

$$P = nkT (2)$$

We find that

$$kT\frac{dn}{dz} = -m_p \mu ng \tag{3}$$

which in turn gives us

$$\frac{d\ln n}{dz} = -\frac{m_p \mu g}{kT} \tag{4}$$

Solving this differential equation gives the expected result

$$n(z) = n(0) \exp\left(-\frac{m_p \mu g z}{kT}\right) = n(0) \exp\left(-\frac{z}{h}\right)$$
 (5)

where we have defined the **scale height** $h \equiv kT/(\mu m_p g)$, which is the e-folding distance in number density. As it turns out, the scale height for earth's atmosphere is approximately 10 km. This model is really only valid in cases where $h \ll R$, (where R is the size of the object), so we now investigate the ratio of these two quantities:

$$\frac{h}{R} = \frac{kT}{\mu m_p \frac{GM}{R^2} R} = \frac{1}{\mu} \frac{kT/m_p}{GM/R} \sim \frac{v_{\text{th}}^2}{v_{\text{esc}}^2} \ll 1$$
(6)

So if this approximation is valid, the thermal velocities of particles are typically much smaller than the escape velocity of the central body, so a star could retain its own atmosphere (thankfully, Earth does the same to its atmosphere!) For stars, we will find that $kT_c/m_p \sim GM/R$. Then, (6) tells us that

$$\frac{h}{R} \sim \frac{T_{\text{eff}}}{T_c}.\tag{7}$$

This tells us that stars are quite sharp-edged (their scale heights are very small compared to their radii). We can also deduce a physical meaning for the scale height as being how far a particle needs to fall to gain an energy comparable to kT.

From the ideal gas law, we can easily see that the pressure will also fall off exponentially in this isothermal atmosphere. However, let's explore the pressure a bit more. First, we return to the ideal gas law,

$$P = \frac{\rho}{\mu m_p} kT = nkT \tag{8}$$

and the condition for hydrostatic equilibrium.

$$dP = -\rho g \, dz. \tag{9}$$

We now integrate (9) from z = z to $z \to \infty$:

$$P(\infty) - P(z) = -\int_{z}^{\infty} \rho(z')g \, dz' \tag{10}$$

$$P(z) = g \int_{z}^{\infty} \rho(z') dz$$
 (11)

Note that it is okay to take the integral to infinity so long as we are dealing with a constant **g**. This result suggests the definition of the **column density**:

$$y(z) \equiv \int_{z}^{\infty} \rho(z) \, dz \tag{12}$$

On the surface of the earth, the column density is approximately $y = 1000 \,\mathrm{g\,cm^{-3}}$. Think of it as the amount of mass sitting above you per unit area at a given altitude. The column density is an important number (for us) to determine the details of heat transport. For now though, we can write the pressure in this isothermal atmosphere in a compact form: P(z) = gy(z).

2.2 Mean Molecular Weights

We'll now make a useful definition for calculating pressures and other useful quantities. For an ideal gas, the total pressure of a mixed gas is simply

$$P = \sum_{i=1}^{N} n_i kT \tag{13}$$

where n_i are just the number densities for each ion. The number density is computed via

$$n_i = \frac{X_i \rho}{A_i m_p}. (14)$$

where X_i is the mass fraction of the i^{th} ion with mass number A_i and ρ is the overall mass density. Then the ion pressure is given by (assuming total ionization)

$$P_{\text{ion}} = kT \sum \frac{X_i \rho}{A_i m_p} = \frac{kT \rho}{m_p} \sum \frac{X_i}{A_i} = \frac{kT \rho}{\mu_{\text{ion}} m_p}.$$
 (15)

Where we have defined the mean molecular weight of the ions to be

$$\mu_{\rm ion} = \left[\sum \frac{X_i}{A_i}\right]^{-1} \tag{16}$$

For the electrons, we have (assuming total ionization)

$$P_e = n_e kT = kT \left(\sum Z_i n_i \right) = \frac{kT\rho}{m_p} \sum \frac{Z_i X_i}{A_i}.$$
 (17)

(here Z_i is the atomic number, not the metallicity). Then the total pressure is just the sum of these two,

$$P = P_{\rm ion} + P_e = \frac{\rho kT}{m_p} \left(\frac{1}{\mu_e} + \frac{1}{\mu_i} \right) \tag{18}$$

So we define the overall mean molecular weight via

$$\frac{1}{\mu} \equiv \frac{1}{\mu_e} + \frac{1}{\mu_i} \tag{19}$$

One might think of this as the average weight of a particle that supplies pressure within a gas. Later, we'll see that this quantity, and its evolution, plays a large and critical role in the the nature of stellar evolution. Since fusion tends to decrease the pressure support, the star must continuously readjust its structure so as to hold itself up.

Wednesday, January 11, 2012

2.3 Electric Fields in Stars

Imagine a pure, ionized hydrogen atmosphere which is, on the large scale, electrically neutral. We wish to find the scale height in a plasma of ionized hydrogen. In this plasma, we have $n_p = n_e$ due to electric neutrality. Then the overall pressure in this hydrogen plasma is

$$P = 2n_{p}kT \tag{20}$$

Using hydrostatic equilibrium, we get

$$2kT\frac{dn_p}{dz} = -m_p n_p g \tag{21}$$

which in turn gives us the differential equation

$$\frac{d\ln n_p}{dz} = -\frac{m_p g}{2kT} \tag{22}$$

Which gives us a scale height of

$$h = \frac{2kT}{m_p g} \tag{23}$$

We need to look at both plasmas separately while incorporating the electric field created between the protons and electrons. For electrons, we have

$$\frac{1}{n_e} \frac{dP_e}{dz} = -m_e g - eE. \tag{24}$$

Likewise for the protons,

$$\frac{1}{n_p}\frac{dP_p}{dz} = -m_p g + eE \tag{25}$$

where we've assumed that the electric field points up (the protons are heavier and would thus sink below the electrons). Now adding (24) and (25), we recover hydrostatic balance. However, subtracting the two equations will get us the electric field:

$$0 = -m_e g + m_p g - 2eE, (26)$$

giving the result,

$$eE = \frac{1}{2} (m_p - m_e) g \quad \text{or} \quad e\mathbf{E} \approx -\frac{m_p \mathbf{g}}{2}.$$
 (27)

So this field does not directly affect hydrostatic balance, but it does dramatically impact the relative difficulty of (?UNREADABLE TEXT IN LECTURE NOTES?) in a white dwarf.

3 Self-Gravitating Objects

So far we have only considered systems where the acceleration due to gravity is constant. In any self-gravitating object, this is obviously not true. We will, however, continue to assume that such objects do not rotate. Additionally, we will be ignoring mass loss. Essentially all we must write down are equations of mass conservation, momentum conservation, and energy conservation. We'll start with momentum conservation.

3.1 Momentum Conservation and the Free-Fall Timescale

The momentum equation for a fluid is just

$$\rho \frac{d\mathbf{v}}{dt} = \rho \mathbf{g} - \nabla P \tag{28}$$

This equation essentially states that a self-gravitating object is neither collapsing nor expanding. If we were to "shut off" gravity or the pressure gradient, the star would either explode or collapse, respectively. Such a collapse would occur on the **free-fall timescale**, which we will now derive. Taking the pressure gradient out of (28), we retrieve

$$\mathbf{g} = -\frac{Gm(r)}{r^2}\hat{r} \tag{29}$$

For this derivation, we will be using a **Lagrangian coordinate systems**. This is a system where the coordinates follow a particular fluid element. In essence, we are making the substitution

$$\frac{d}{dt} \to \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \tag{30}$$

Returning back to the derivation, (29) gives us

$$\frac{dv_r}{dt} = -\frac{Gm(r)}{r^2} \tag{31}$$

Initially, we have t = 0, $v_r = 0$, and $r = r_0$ with the radial velocity given by $v_r = dr/dt$. Then our differential equation is

$$\frac{d^2r}{dt^2} = -\frac{Gm(r)}{r^2} \tag{32}$$

As an order of magnitude estimate, this gives us

$$\frac{r}{t_{\rm ff}^2} \sim \frac{Gm}{r^2} \quad \Rightarrow \quad t_{\rm ff}^2 \sim \frac{1}{Gm/r^3}$$
 (33)

So we define the free-fall timescale to be

$$t_{\rm ff} = \frac{1}{\sqrt{G \langle \rho \rangle}} \tag{34}$$

This is also the same as the Keplerian orbital period, modulo some uninteresting constants. The punchline of this whole argument is that a star that is *not* in hydrostatic balance will respond on a timescale of the free-fall timescale. From this alone, we may conclude that the sun (and all other stars not currently exploding) is in hydrostatic balance. We will then assume that all stars are always in hydrostatic balance.

3.2 The Virial Theorem

Stars are held up by gas pressure, radiation pressure, or both. The pressure gradients are what will be the "restoring forces" against gravity for our cases. In spherical symmetry, hydrostatic balance tells us

$$\frac{dP}{dr} = -\rho \frac{Gm(r)}{r^2} \tag{35}$$

We will use this to derive the **Virial Theorem**, which relates the potential energy to the kinetic energy of a system. The equation of mass conservation states that

$$dm = 4\pi r^2 \rho(r) dr \tag{36}$$

Now we multiply both sides of (35) by $4\pi r^3 dr$:

$$\int 4\pi r^3 dP = -\int \rho \frac{G}{r^2} 4\pi r^3 dr m(r)$$
 (37)

$$= -\int \frac{Gm(r)dm}{r} = E_{GR} \tag{38}$$

where E_{GR} is the gravitational binding energy. Performing a similar analysis to the left side of (37) gives

$$\int 4\pi r^3 dr \frac{dP}{dr} = 4\pi r^2 P \Big|_0^R - 3 \left[4\pi \int P r^2 dr \right]$$
 (39)

$$= -3 \int P4\pi r^2 dr \tag{40}$$

$$= -3 \langle P \rangle V \tag{41}$$

where we've defined the average pressure to be the pressure averaged over volume. Then the virial theorem tells us that

$$\left| \langle P \rangle = -\frac{1}{3} \frac{E_{\rm GR}}{V} \right| \tag{42}$$

Now we examine the total energy:

$$E_{\text{tot}} = E_{\text{GR}} + E_{\text{KE}} = -3 \langle P \rangle V + E_{\text{KE}}$$
(43)

We need only relate the kinetic energy to the pressure to finish this equation off. For an ideal gas, we know that P = NkT/V, so the kinetic energy is $E_{KE} = \frac{3}{2}NkT = \frac{3}{2}PV$. This gives a total energy of

$$E_{\text{tot}} = -3 \langle P \rangle V + \frac{3}{2} \langle P \rangle V = -E_{\text{KE}}$$
(44)

Interestingly, this requires a negative heat capacity. That is, an increase in the temperature of the system causes a net *decrease* in total energy. However for radiation, pressure is given by $P = \frac{1}{3}aT^4$ and $E/V = aT^4$. Taking this to its conclusion gives us

$$E_{\rm tot} \to 0$$
 as the particles become relativistic (45)

The origin of this result is in the momentum-energy relation of relativistic particles and non-relativistic particles. That is, E = pc for ultra-relativistic particles and $E = p^2/2m$ for non-relativistic particles.

The limiting energy of ultra-relativistic stars puts an upper level on the mass of large stars, since a total energy of a star being zero means unbinding the star. In the "normal case" of an ideal gas star, the more traditional form of the virial theorem applies:

$$\frac{E_{\rm KE}}{\rm mass} \sim \frac{GM}{R} \tag{46}$$

This is why stars typically behave with a negative heat capacity. That is, as a star radiates, $E_{\rm tot}$ is more negative, meaning that R must decrease and the temperature T (essentially the kinetic energy per particle) rises. This behavior would have to continue until a new energy source became available.

3.3 Applications of the Virial Theorm

The gravitational energy of an object is typically given by

$$E_{\rm GR} \approx -\frac{GM^2}{R} \tag{47}$$

Using the virial theorem, we have

$$E_{\rm GR} = 3 \langle P \rangle V = 3Nk \langle T \rangle \tag{48}$$

Or,

$$\frac{GM}{R}\left(Nm_p\right) \sim 3NkT\tag{49}$$

So we have

$$kT \sim \frac{GMm_p}{R} \tag{50}$$

This temperature is the temperature of most of the material and is $T \sim T_c \sim$ core. For the sun, we then have $T \sim 10^7$ K. Interestingly, assuming hydrostatic equilibrium was all we needed to get a rough estimate of the sun's core temperature! One might note, though, that the surface temperature is significantly lower than the core temperature, so we must assume that there is heat loss taking place in the sun. Today the luminosity of the sun is

$$L_{\odot} = 4 \times 10^{33} \text{ erg/s}$$
 (51)

If we assume there is no energy source for the sun other than gravitational energy, we can come up with a timescale (called the **Kelvin-Helmholtz timescale**)

$$t_{\rm KH} = \frac{E_{\rm GR}}{L} \approx 3 \times 10^7 \text{ years}$$
 (52)

for the sun. This has been known for awhile and since the Earth is known to have existed much longer than $t_{\rm KH}$, scientists deduced that another energy source within the sun was needed to explain its longevity. We now know that this energy source is, of course, fusion. Note that at the center of the sun, the temperature of 10^7 K corresponds to an energy per particle of about 1 keV. The binding energy of helium is approximately 7MeV, approximately 7000 times bigger than the thermal content. Thus, the sun could last approximately 7000 times longer, bringing the projected lifetime of the sun up to a more reasonable (but still wrong) number of about 200 billion years. We conclude that nuclear energy is a more promising form of energy for the sun than chemical energy.

Wednesday, January 18, 2012

3.4 Gas Pressure and Radiation Pressure

Recall from the case of the constant density star that the gravitational energy is given by

$$E_{\rm GR} = -\frac{3}{5} \frac{GM^2}{R} \tag{53}$$

And the average pressure is given by the virial theorem to be

$$\langle P \rangle = -\frac{1}{3} \frac{E_{GR}}{V} = (n_e + n_p)kT = 2n_p kT = \frac{2\rho kT}{m_p}$$
 (54)

Here we've sort of assumed that the star is isothermal. This tells us that the average thermal energy is given by

$$kT = \frac{1}{10} \frac{GMm_p}{R} \tag{55}$$

Where the mass is given by

$$M = \rho \frac{4\pi}{3} R^3 \tag{56}$$

and the central temperature is given approximately by (scaled by solar units)

$$T_c \approx 2 \times 10^6 \,\mathrm{K} \left(\frac{\rho_c}{1 \,\mathrm{g \, cm^{-3}}}\right)^{1/3} \left(\frac{M}{M_\odot}\right)^{2/3}$$
 (57)

These scalings are actually recovered in simulations (see MESA plot from class). Here we've only considered the case of the pressure due to an ideal gas, thus far ignoring the contributions to radiation pressure. We then want to know when radiation pressure becomes comparable to gas pressure. That is,

$$P_{\rm rad} = \frac{1}{3}aT^4 \ge P_{\rm gas} \tag{58}$$

The temperature in the star is approximately

$$kT \sim \frac{GMm_p}{R} \tag{59}$$

and the pressure gradient is, (again, very approximately)

$$\frac{dP}{dr} = -\rho g \approx \frac{P_c}{R} \sim \frac{M}{R^3} \frac{GM}{R^2} \tag{60}$$

Then the condition we are seeking is

$$\frac{1}{3}a\left(\frac{GMm_p}{Rk}\right)^4 \gtrsim \frac{GM^2}{R^4} \tag{61}$$

Interestingly, R cancels in (61), so this condition is dependent only on the mass of the star. Thus, we can get a hard limit that is independent of any other properties of the star. Dropping tons more constants, this gives

$$M^2 > \frac{k_b^4}{aG^3m_p^4} \tag{62}$$

Recall that the radiation constant is given by $a = \frac{\pi^2}{15} \frac{k^4}{(\hbar c)^3}$. Putting this in (62), we have

$$\frac{M^2}{m_p^2} > \frac{k^4 (\hbar c)^3}{G^3 m_p^6 k^4} \sim \left(\frac{\hbar c}{G m_p^2}\right)^3 \tag{63}$$

Then the limit on the mass is then

$$M > m_p \left(\frac{\hbar c}{Gm_p^2}\right)^{3/2}$$
(64)

stars above this mass (approximately) have significant radiation pressure. Recall the fine structure constant

$$\alpha = \frac{1}{137} = \frac{e^2}{\hbar c} \tag{65}$$

Noting that the Coulomb energy is

$$E_{\text{Coulomb}} = \frac{e^2}{r} \tag{66}$$

Analagous to (66), we define a unit less measure of the strength of gravity, which appears in (64):

$$\alpha_{\rm G} = \frac{Gm_p^2}{\hbar c} \approx 6 \times 10^{-39} \tag{67}$$

Then the fundamental stellar mass given in (64) is

$$M > m_p \frac{1}{\alpha_{\rm G}^{3/2}} \approx 2M_{\odot} \tag{68}$$

After all that work...it turns out that the mass where radiation pressure actually starts to matter is closer to $60 - 90 \ M_{\odot}$.

Of interest in this case is that as $P_{\rm rad} \gg P_{\rm gas}$, then $E_{\rm tot} \to 0$ from the virial theorem. In this state, the star has enough energy to unbind itself, so radiation pressure sets an upper limit on the mass of a star.

3.5 Summary

Note that here we have used hydrostatic balance to find the central temperature as a function of mass and radius. Additionally we have realized that energy losses from the surface require the radius of a star to decrease and the core temperature to increase (at least until another energy source is present). We will later show that the main sequence is just that place where the power generated by nuclear reactions is equal to that released by the star so that the star need not contract. What we have *not* done yet is to derive the rate of heat loss from the star.

4 Heat Transfer in Stars

In studying the ways in which heat moves outward through a star, we will first be ignoring convection, though it is a powerful mechanism when it is available to the star. To move heat through a star, there are electrons, ions, and photons available. Recall (or perhaps you don't) **Fick's Law**, which tells us that the heat flux can be determined via

$$F = \operatorname{ergs} \, \operatorname{cm}^{-2} \, \operatorname{s}^{-1} = -\frac{1}{3} v \ell \frac{d}{dx}(E) \tag{69}$$

where here E is the energy density. We'll start first with the energy density of an ideal gas of electrons, but before we do that, let's derive (69).

4.1 Heat Flux Derivation

Imagine a medium with a gradient in temperature across a surface membrane. Let's say "above" the membrane, the temperature is T_1 and "below" the membrane, the temperature is T_2 , with $T_2 > T_1$. Particles from region 2 then transport heat when they travel from region 2 to region 1. Let's call E the internal energy per unit volume as defined before, and then let's see what happens at the surface. Particles, on average, will be coming from a distance $x + \ell$ above the membrane, where $\ell = (\sigma n)^{-1}$ is the mean free path of the particles. Then the downward flow of energy is

$$F_{\text{down}} \approx \frac{1}{6} v E(x+\ell)$$
 (70)

whereas particles from beneath move upward and carry heat from below at

$$F_{\rm up} \approx \frac{1}{6}vE(x-\ell) \tag{71}$$

So the net flux in the positive \hat{x} direction is

$$F_x = -\frac{1}{6}vE(x+\ell) + \frac{1}{6}vE(x-\ell)$$
 (72)

Writing the energy densities as linear functions,

$$E(x+\ell) = E(x) + \ell \frac{dE}{dx} \tag{73}$$

$$E(x - \ell) = E(x) - \ell \frac{dE}{dx}$$
(74)

SO

$$F_x = -\frac{1}{3}v\ell\frac{dE}{dx} \tag{75}$$

4.2 Heat Transport by Electrons

For electrons, the energy density is

$$E = \frac{3}{2}kTn_e \tag{76}$$

Then the energy density gradient is

$$\frac{dE}{dx} = \frac{dE}{dT}\frac{dT}{dx}\frac{dE}{dT} = \frac{3}{2}nk\frac{dT}{dx}$$
(77)

Then from Fick's Law, we have

$$F = -\frac{1}{3}v\ell\frac{3}{2}nk\frac{dT}{dx} = -\frac{1}{2}v\ell nk\frac{dT}{dx}$$
 (78)

Where the mean free path is

$$\ell = \frac{1}{n\sigma} \tag{79}$$

for the scattering cross section σ . Then (78) becomes

$$F = -\left[\frac{1}{2}v\frac{k}{\sigma}\right]\boldsymbol{\nabla}T\tag{80}$$

From the theory of Coulomb scattering, the cross section would be

$$\sigma_{\text{Coulomb}} \sim b^2 \sim \frac{e^4}{(kT)^2}$$
 (81)

Which gives a flux of

$$L = 4\pi R^2 F = 4\pi R \frac{(kT)^{7/2}}{m_e^{1/2} e^4}$$
(82)

For the sun, this would give

$$L \approx 5 \times 10^{31} \,\mathrm{erg \, s^{-1}}$$
 (83)

which is two orders of magnitude too small, so we conclude that the sun does not transmit its heat via conduction through electrons. Now we'll move on to photons

4.3 Heat Transport by Photons

For photons, the main scatterer will be electrons, so the cross section in question of the mean free path is the Thomson cross section. Additionally, the energy density is now $E = aT^4$. Additionally the speed of photons is obviously the speed of light. Then the ratio of the fluxes due to photons and electrons is

$$\frac{F_{\gamma}}{F_e} = \frac{c}{(kT/m_e)^{1/2}} \frac{e^4/(kT)^2}{\sigma_{\rm Th}} \frac{E_{\rm rad}}{E_{\rm gas}}$$
 (84)

Remember that the Thomson cross section is given by

$$\sigma_{\rm Th} = \frac{8\pi}{3} \frac{e^4}{(m_e c^2)^2} \tag{85}$$

Then (84) becomes

$$\frac{F_{\gamma}}{F_e} = \left(\frac{m_e c^2}{kT}\right)^{1/2} \left(\frac{m_e c^2}{kT}\right)^2 \frac{P_{\text{rad}}}{P_{\text{gas}}}$$
(86)

Comparing the pressures gives

$$\frac{P_{\rm rad}}{P_{\rm gas}} \approx 10^{-4} \left(\frac{M}{M_{\odot}}\right)^2 \tag{87}$$

Then plugging (87) into (86), we see that heat transport by photons dominates heat transport by electrons whenever

$$M > 0.03 M_{\odot} \left(\frac{T}{10^7 \text{ K}}\right)^{5/4}$$
 (88)

So if conduction ever dominates, it is in very low mass stars (also white dwarfs in their late lives). For our cases, photons are always going to be the dominant transport mechanism. We still haven't found out what the actual luminosity will be in the case of radiative diffusion. We do so now.

$$L = 4\pi R^2 F = 4\pi R^2 \frac{1}{3} c\ell \frac{d}{dr} \left(aT^4 \right) \approx R^2 c \frac{1}{n_e \sigma_{\rm Th}} \frac{1}{R} aT^4 \approx R^2 \frac{cm_p}{\rho \sigma_{\rm Th}} \frac{1}{R} a \left(\frac{GMm_p}{Rk} \right)^4 \tag{89}$$

where we have noted that $kT = \frac{GMm_p}{R}$. Continuing on,

$$L \approx \frac{cm_p a (GMm_p)^4}{M\sigma_{\rm Th} k^4} \propto M^3 \tag{90}$$

This relation is surprisingly accurate for stars with masses greater than a solar mass. Note that we have derived the stellar luminosity with *no knowledge* of the source of energy. The luminosity is set by the modes of heat transport available to the star.

Monday, January 23, 2012

4.3.1 The Eddington Limit and the Eddington Standard Model

Continuing with heat transfer via radiation with electron scattering being the primary source of opacity, the flux is given via Fick's law as

$$F = \frac{1}{3}v\ell\frac{d}{dz}(aT^4) \tag{91}$$

where now v = c and $\ell = (n_e \sigma_{\rm Th})^{-1}$. Plugging these in to (91), the flux becomes

$$F = \frac{1}{3}c\frac{1}{n_e\sigma_{\text{Th}}}\frac{d}{dz}(aT^4) = \frac{4}{3}\frac{acT^3}{\rho\kappa}\frac{dT}{dz}$$
(92)

where we've defined the opacity via

$$\kappa_{\rm es} \equiv \frac{\sigma_{\rm Th}}{m_p} \tag{93}$$

The opacity is measured in units of area per unit mass, indicating it is the cross-sectional area per unit mass. For electron scattering, it is simply a constant, but when other processes are relevant, it may depend on temperature and density. With the flux available, we can write the luminosity as

$$L(r) = F(r)4\pi r^{2} = -4\pi r^{2} \frac{4}{3} \frac{acT^{3}}{\rho \kappa} \frac{dT}{dr} = -4\pi r^{2} \frac{c}{\kappa \rho} \frac{d}{dr} P_{\text{rad}}$$
(94)

Noting the product ρdr showing up in the denominator of (94), we are reminded of hydrostatic equilibrium:

$$\frac{dP}{dr} = -\rho(r)g(r) \quad \Rightarrow \quad dP = -\rho(r)g(r) dr \tag{95}$$

Putting in g(r) explicitly,

$$\frac{dP}{\rho(r)dr} = -\frac{Gm(r)}{r^2} \tag{96}$$

Bringing the column depth back in $(y = \int \rho(r) dr)$, this becomes

$$\frac{dP}{dy} = \frac{Gm(r)}{r^2} \tag{97}$$

where we've used the fact that y = 0 at the surface and increases *inwards* (hence the sign change). Assuming g is a constant, this would give our old result

$$P = gy \tag{98}$$

Now returning to (94):

$$\frac{dP_{\rm rad}}{dy} = \frac{L(r)}{4\pi r^2} \frac{\kappa}{c} \tag{99}$$

and the result we just derived

$$\frac{Gm(r)}{r^2} \tag{100}$$

Taking the ratio of (99) and (100) gives us

$$\frac{dP}{dP_{\rm rad}} = \frac{4\pi G m(r)c}{\kappa L(r)} \tag{101}$$

Suppose M = m(R) = total mass of star and L = L(R) = luminosity of star

$$\frac{dP}{dP_{\rm rad}} = \left[\frac{4\pi GcM}{\kappa L}\right] \frac{m(r)}{M} \frac{L}{L(r)} \tag{102}$$

We have now introduced the **Eddington Luminosity**,

$$L_{\rm Edd} = \frac{4\pi GcM}{\kappa} \tag{103}$$

In general, the Eddington Luminosity is much larger than the luminosity, since it is the luminosity where the only pressure gradient that matters is the radiation pressure (where the star becomes unstable). Evaluating the Eddington Luminosity in solar units and with electron scattering,

$$L_{\rm Edd} = 3.1 \times 10^4 \ L_{\odot} \left(\frac{M}{M_{\odot}}\right) \tag{104}$$

Also recall how luminosity scales with mass:

$$L = L_{\odot} \left(\frac{M}{M_{\odot}} \right) \tag{105}$$

So we see that for low-mass stars, their luminosities are indeed much smaller than the Eddington Luminosity. Now let's investigate the ratio of the luminosity to the Eddington Luminosity:

$$\frac{L}{L_{\rm Edd}} \approx 3 \times 10^{-5} \left(\frac{M}{M_{\odot}}\right)^2 \tag{106}$$

So until $M \ge 100 M_{\odot}$, it will be the case that $L \ll L_{\rm Edd}$ and thus $P_{\rm rad} \ll P$. Now returning to (102), we define a dimensionless quantity, $\eta(r)$ by

$$\eta(r) \equiv \frac{L(r)}{L} M m(r) \tag{107}$$

And (102) looks like

$$\frac{dP_{\rm rad}}{dP} = \frac{L}{L_{\rm Edd}} \eta(r) \tag{108}$$

Aside: this model of stars is the called the "Eddington Standard Model" and was used to describe stars before their source of energy was known.

4.3.2 Polytropic Relations

Now integrating (108), we have

$$\int_{R}^{r} dP_{\rm rad} = \frac{L}{L_{\rm Edd}} \int_{R}^{r} \eta(r) dP \tag{109}$$

We can integrate the left side, leaving us with

$$P_{\rm rad}(r) = \frac{L}{L_{\rm Edd}} \int_{R}^{r} \eta(r) dP \tag{110}$$

Mathematically speaking, we are now stuck because we do not have any knowledge of $\eta(r)$. The formal approach of solving this problem is to define spatial averages of $\eta(r)$ for different choices of mass and luminosity profiles. We will, however, just let $\eta(r) \approx 1$, which gives us

$$P_{\rm rad} = \frac{L}{L_{\rm Edd}} P_{\rm gas}(r) \tag{111}$$

And now substituting in our equations of state for the radiation pressure and assuming that the radiation pressure is negligible compared to the gas pressure:

$$\frac{1}{3}aT^4 = \frac{L}{L_{\rm Edd}} \frac{\rho kT}{\mu m_p} \tag{112}$$

Solving this for T^3 , we have

$$T(r)^3 = \frac{L}{L_{\rm Edd}} \frac{d\kappa_R}{a\mu m_p} \rho(r)$$
(113)

So we have gone from a situation where we had only typical or central values to an actual equation that let's us find T(r), $\rho(r)$, and P(r). It appears then, that in our low radiation pressure limit, $\rho \propto T^3$. Additionally, for the ideal gas law, we see that $P \propto \rho^{4/3}$. For some given $L/L_{\rm Edd}$, we have a relation between pressure and density via

$$\frac{dP}{dr} = -\rho(r)\frac{Gm(r)}{r^2} \tag{114}$$

$$dm(r) = \rho 4\pi r^2 dr \tag{115}$$

Let us briefly consider an adiabatic change in an ideal gas. We recall from Freshman physics that $PV^{\gamma} = \text{const.}$ For a monatomic, ideal gas, $\gamma = 5/3$, so we have $P \propto \rho^{5/3}$ and $\rho T \propto P$, so $T \propto \rho^{2/3}$. Then we'll call the "entropy" $T/\rho^{2/3}$. For our star, we have $T^3 \propto \rho \Rightarrow T \propto \rho^{1/3}$. In our case, the "entropy" is then $a/\rho^{1/3}$. Thus the entropy is highest in the outer layers and smallest in the center.

4.3.3 Heat Transfer in the Outer Atmosphere

Near the surface of the star, photons naturally leave (which is why we see them!) We want to know what the place or condition is like. Near the surface, the density must decrease exponentially since $T \ll T_c$ and thus g is a constant. Our previous arguments for the scale height and the plane-parallel isothermal atmosphere is largely applicable here, so the length scale of relevance is the scale height:

$$h = \frac{kT}{\mu m_p g} \tag{116}$$

It then makes sense that the condition for photons to escape would be for the mean free path to be comparable to the scale height:

$$\ell \sim h \quad \Rightarrow \quad \frac{m_p}{\rho \sigma_{\rm Th}} \approx \frac{kT}{mq}$$
 (117)

or

$$g \frac{m_p}{\sigma_{\rm Th}} \sim \frac{\rho kT}{m_p} \sim P_{\rm gas}$$
 (118)

Again, this can be rewritten as

$$g\kappa^{-1} \sim P_{\rm gas}$$
 where $\kappa = \frac{\sigma_{\rm Th}}{m_p}$ (119)

Then we can say the condition where photons can escape is

$$P_{\rm gas} \le \frac{g}{\kappa} \tag{120}$$

This argument assumed a constant opacity. In general, we must do a line integral through the depth of the outer atmosphere. Imagine we ask the probably for a photon to reach some depth in the star. We define the **optical depth** to be

$$d\tau = \frac{dr}{\rho} = dr \ \kappa(r)\rho(r) \tag{121}$$

Then the probability would be

$$P(\tau) \propto e^{-\tau} \tag{122}$$

Then the optical depth at a certain radius would be given by

$$\tau = \int_{R}^{r} \kappa(r)\rho(r) dr \tag{123}$$

or, invoking hydrostatic equilibrium,

$$\tau = \int \kappa(r) \frac{dP(r)}{g} = \frac{1}{g} \int \kappa(r) dP(r)$$
 (124)

Then the condition for photons for leave becomes when the optical depth is unity, or

$$\tau \sim 1 = \frac{1}{g} \kappa P(r) \quad \Rightarrow \quad P(\tau = 1) = \frac{g}{\kappa}$$
 (125)

Additionally, we can redefine the flux equation in terms of optical depth into a cute form:

$$F = \frac{c}{3} \frac{d}{d\tau} \left(aT^4 \right) \tag{126}$$

4.3.4 The Effective Temperature

At the surface, the flux is given by

$$F = \frac{L}{4\pi R^2} \equiv \sigma_{\rm SB} T_{\rm eff}^4 \tag{127}$$

Assuming that the flux is constant at or near the surface, we may use the fact that $a = 4\sigma_{SB}/c$ and (126) to get

$$\frac{d}{d\tau}T^4 = \frac{3}{4}T_{\text{eff}}^4 \tag{128}$$

Recall that τ is dimensionless, so there is no problem here. For $\tau \gg 1$, we have

$$T^4 = \frac{3}{4} T_{\text{eff}}^4 \tau \tag{129}$$

This implies that as τ increases (going deeper and deeper into the star), the radiation field becomes more and more isotropic. Naively, we might assume that the flux would be given by the energy density multiplied by the speed of light, but our result in (129) essentially tells us that $F = acT^4/\tau$.

Wednesday, January 25, 2012