Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 4 ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ВАРИАНТ 12

Студент: Пышкин Никита Сергеевич, Р3213

Преподаватель:

Содержание

Цель лабораторной работы	3
Порядок выполнения лабораторной работы	
Рабочие формулы	
Вычислительная часть задания	
Программная часть задания	
Заключение	10

Цель лабораторной работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Порядок выполнения лабораторной работы

Вычислительная реализация задачи:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Привести в отчете подробные вычисления.

Программная реализация задачи:

- 1. Предусмотреть ввод исходных данных из файла/консоли (таблица y = f(x) должна содержать от 8 до 12 точек).
- 2. Реализовать метод наименьших квадратов, исследуя все указанные функции.
- 3. Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений $x_i, y_i, \varphi(x_i), \varepsilon_i$.
- 4. Для линейной зависимости вычислить коэффициент корреляции Пирсона.
- 5. Вычислить коэффициент детерминации, программа должна выводить соответствующее сообщение в зависимости от полученного значения R^2 .
- 6. Программа должна отображать наилучшую аппроксимирующую функцию.
- 7. Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом).
- 8. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.

Рабочие формулы

Линейная аппроксимация:

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases}$$

Квадратичная аппроксимация:

$$\begin{cases} na_0 + \left(\sum_{i=1}^n x_i\right) a_1 + \left(\sum_{i=1}^n x_i^2\right) a_2 = \sum_{i=1}^n y_i \\ \left(\sum_{i=1}^n x_i\right) a_0 + \left(\sum_{i=1}^n x_i^2\right) a_1 + \left(\sum_{i=1}^n x_i^3\right) a_2 = \sum_{i=1}^n x_i y_i \\ \left(\sum_{i=1}^n x_i^2\right) a_0 + \left(\sum_{i=1}^n x_i^3\right) a_1 + \left(\sum_{i=1}^n x_i^4\right) a_2 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

Вычислительная часть задания

Исследуемая функция: $y = \frac{4x}{x^4 + 12}$

Исследуемый интервал: $x \in [-2; 0], h = 0.2$

График функции:

Таблица:

	1	2	3	4	5	6	7	8	9	10	11
X	-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
у	-0.2857	-0.32	-0.3449	-0.3535	-0.3411	-0.3077	-0.2579	-0.1979	-0.133	-0.0667	0

Линейная аппроксимация:

$$P_1(x) = ax + b$$

Суммы: SX = -11; SXX = 15.4; SY = -2.608; SXY = 3.303

$$\begin{cases} 15.4a - 11b = 3.303 \\ -11a + 11b = -2.608 \end{cases}$$
 $a = 0.13158; b = -0.1161$
$$P_1(x) = 0.13158x - 0.1161$$
 Рассчитаем $\delta = \sqrt{\frac{\sum_{i=1}^n (P_1(x_i) - y_i)^2}{n}} = \sqrt{\frac{0.04293}{10}} = 0.066$

Квадратичная аппроксимация:

$$\begin{split} P_2(x) &= a_0 + a_1 x + a_2 x^2 \\ \text{Суммы: } \sum_{i=1}^n x_i = -11; \; \sum_{i=1}^n x_i^2 = 15.4; \; \sum_{i=1}^n x_i^3 = -24.2; \; \sum_{i=1}^n x_i^4 = 40.532; \; \sum_{i=1}^n y_i = -2.608; \; \sum_{i=1}^n x_i y_i = 3.303; \; \sum_{i=1}^n x_i^2 y_i = -4.815 \\ \begin{cases} 11a_0 - 11a_1 + 15.4a_2 = -2.608 \\ -11a_0 + 15.4a_1 - 24.2a_2 = 3.303 \\ 15.4a_0 - 24.2a_1 + 40.532a_2 = -4.815 \end{cases} \\ a_0 = 0.0472; \; a_1 = 0.5397; \; a_2 = 0.1855 \\ P_2(x) = 0.0472 + 0.5397x + 0.1855x^2 \end{split}$$
 Рассчитаем $\delta = \sqrt{\frac{\sum_{i=1}^n (P_2(x_i) - y_i)^2}{n}} = \sqrt{\frac{0.002827}{10}} = 0.019$

Итоги:

Наилучшее приближение – квадратичное (т.к. 0.019 < 0.066)

Графики:

Красная линия – исходная функция

Синяя линия – линейная аппроксимация

Красная линия – квадратичная аппроксимация

Программная часть задания

linear.py:

```
from typing import Callable, Any, List
import sympy as sp
class LinearApproximation:
   def init (self, table: bool = False):
       self.table = table
   def solve(self, *args, **kwargs) -> Any:
       if self.table:
            return self._table_solve(*args, **kwargs)
       return self. func solve(*args, **kwargs)
   def func solve(self, f: Callable, left: float, right: float, n:
int, lambdify: bool = True) -> Any:
       sx = sxx = sy = sxy = 0
       h = (right - left) / n
       for i in range (n + 1):
           x = left + h * i
            y = f(x)
           sx += x
            sxx += x**2
            sy += y
            sxy += x*y
       a, b = sp.symbols("a b")
```

```
root = sp.solve([a * sxx + b * sx - sxy, a * sx + b * n - sy],
[a, b], dict=True)[0]
        x = sp.Symbol("x")
        function = root[a] * x + root[b]
        if lambdify:
            return sp.lambdify(x, function)
        return x, function
    def _table_solve(self, table: List[List[float]], lambdify: bool =
True) -> Any:
        sx = sxx = sy = sxy = 0
        n = len(table[0])
        for x, y in zip(table[0], table[1]):
            sx += x
            sxx += x**2
            sy += y
            sxy += x*y
        a, b = sp.symbols("a b")
        root = sp.solve([a * sxx + b * sx - sxy, a * sx + b * n - sy],
[a, b], dict=True)[0]
        x = sp.Symbol("x")
        function = root[a] * x + root[b]
        if lambdify:
            return sp.lambdify(x, function)
        return x, function
```

quadratic.py:

from typing import Callable, Any, List

```
class QuadraticApproximation:
   def init (self, table: bool = False):
        self.table = table
   def solve(self, *args, **kwargs) -> Any:
        if self.table:
            return self. table solve(*args, **kwargs)
        return self._func_solve(*args, **kwargs)
   def _func_solve(self, f: Callable, left: float, right: float, n:
int, lambdify: bool = True) -> Any:
        sx = sx2 = sx3 = sx4 = sy = sxy = sx2y = 0
        h = (right - left) / n
        for i in range (n + 1):
           x = left + h * i
            y = f(x)
           sx += x
           sx2 += x**2
           sx3 += x**3
           sx4 += x**4
           sy += y
            sxy += x*y
            sx2y += x**2*y
        a0, a1, a2 = sp.symbols("a0 a1 a2")
        root = sp.solve(
            [
                n * a0 + sx * a1 + sx2 * a2 - sy,
                sx * a0 + sx2 * a1 + sx3 * a2 - sxy,
                sx2 * a0 + sx3 * a1 + sx4 * a2 - sx2y
```

import sympy as sp

```
[a0, a1, a2],
            dict=True
        [0](
        x = sp.Symbol("x")
        function = root[a0] + root[a1] * x + root[a2] * x ** 2
        if lambdify:
            return sp.lambdify(x, function)
        return x, function
    def table solve(self, table: List[List[float]], lambdify: bool =
True) -> Any:
        sx = sx2 = sx3 = sx4 = sy = sxy = sx2y = 0
        n = len(table[0])
        for x, y in zip(table[0], table[1]):
            sx += x
            sx2 += x**2
            sx3 += x**3
            sx4 += x**4
            sy += y
            sxy += x*y
            sx2y += x**2*y
        a0, a1, a2 = sp.symbols("a0 a1 a2")
        root = sp.solve(
            [
                n * a0 + sx * a1 + sx2 * a2 - sy,
                sx * a0 + sx2 * a1 + sx3 * a2 - sxy,
                sx2 * a0 + sx3 * a1 + sx4 * a2 - sx2y
            ],
```

],

```
[a0, a1, a2],
    dict=True
)[0]

x = sp.Symbol("x")
function = root[a0] + root[a1] * x + root[a2] * x ** 2

if lambdify:
    return sp.lambdify(x, function)
```

Заключение

В ходе лабораторной работы я изучил разные численные интегрирования и реализовал их на языке Python.