Weakest Preconditions

- w is the weakest precondition of S and q (we write w = wp (S,q) or $w \Leftrightarrow wp$ (S,q)) if w is a precondition for S and q that $\{w\}$ S $\{q\}$ is totally valid and w can't be weakened. In other word, $\vDash_{tot} \{w\}$ S $\{q\}$ and there is no r weaker than w such that $\vDash_{tot} \{r\}$ S $\{q\}$.
 - o In terms of collection of states: $wp(S,q) = \{ \sigma \in \Sigma \mid M(S,\sigma) \models q \}.$
- 1. Let's consider $w = wp(x \coloneqq x + 1, x \ge 2)$. If we use terms of states, we can see w is the collection of all σ that makes $M(x \coloneqq x + 1, \sigma) \vDash (x \ge 2)$. This collection containing states such as $\{x = 5\}, \{x = 1, y = 3\}, \{x = 100, z = 1, y = 4\}$... In general, we can say that is the collection of states that satisfy $x \ge 1$.
- 2. Let w = wp(S, q). Decide true or false.
 - a. If $\vDash_{tot} \{r\} S \{q\}$, then $r \Rightarrow w$.

True.

b. If $r \Rightarrow w$, then $\vDash_{tot} \{r\} S \{q\}$.

True.

- We can say that if w = wp(S, q), then $\vDash_{tot} \{r\} S\{q\}$ if and only if $r \Rightarrow w$.
- c. If $\sigma \not\models w$, then we know nothing interesting about $M(S,\sigma)$.

 False. Since any w is the most general precondition for S and q, if a state σ doesn't satisfy w then $M(S,\sigma) \not\models q$.
- d. Assuming that q won't be evaluated to \bot in any state. If S is deterministic, then $\vDash \{\neg w\} S \{\neg q\}$. True. For any state σ , if $\sigma \vDash \neg w$ and $M(S, \sigma) = \{\tau\}$, we must have $\tau \not\vDash q$; in other words, $\tau = \bot$ or $\tau \vDash \neg q$.
- e. If $u \Leftrightarrow w$, then u is also the weakest precondition of S and q.

 True. For example, if wp(S,q) is $x \ge 1$, then x > 0 or $1 \le x$ can also be used as the weakest precondition.
- The weakest liberal precondition for S and q, written wlp(S,q), is like wp(S,q) but for partial correctness. In other words, wlp(S,q) is a valid precondition for q under partial correctness where no weaker valid precondition exists.
 - o In terms of collection of states: $wlp(S,q) = \{ \sigma \in \Sigma \mid M(S,\sigma) \bot \models q \}.$
 - We can say that, if w = wlp(S, q), then $\models \{r\} S \{q\}$ if and only if $r \Rightarrow w$.
- We care about wp and wlp since they are the most general conditions a program requires to run "successfully" in when we want to get a certain postcondition.
 - From one of the above examples, we learned that if a state σ does not satisfy wp, then it is guaranteed that $M(S,\sigma) \not\models q$. Similarly, for wlp, if $\sigma \not\models wlp$, then $M(S,\sigma) \bot \not\models q$.
 - O Also remind that, we sometimes say a state $\sigma \vDash wlp(S,q)$ and we sometimes say a statement $\sigma \in wlp(S,q)$; they have the same meaning.

(wp and wlp for deterministic program)

• The following figure illustrates the relationships between wp and wlp for deterministic programs (here, we assume that $\tau(q) \neq \bot$ if $\tau \neq \bot$.). Here it uses the definitions of wp and wlp as they are set of states.

- o For a state σ and a deterministic program S, we can have three possible outcomes for $M(S,\sigma)$:
- 1) $M(S, \sigma) = \{\tau\} \text{ and } \{\tau\} \vDash q$.
- 2) $M(S, \sigma) = \{\bot\}.$
- 3) $M(S, \sigma) = \{\tau\} \text{ and } \{\tau\} \vDash \neg q$.
- o wp(S,q) is set of all σ in situation 1.
- o $wp(S, \neg q)$ is set of all σ in situation 3).
- o wlp(S,q) is set of all σ in situation 1) and 2).
- o $wlp(S, \neg q)$ is set of all σ in situation 2) and 3).
- 3. True or False.
 - a. Let S be deterministic. $wlp(S,T) \Leftrightarrow T$. True. Because, for any state σ , either $M(S,\sigma) = \bot$ or $M(S,\sigma) \neq \bot$. If $M(S,\sigma) = \bot$, then $\sigma \in wlp(S,T)$; if $M(S,\sigma) \neq \bot$, then $M(S,\sigma) \models T$. Thus, all states are in wlp(S,T); in other words, $wlp(S,T) \Leftrightarrow T$.
 - b. Let S be deterministic. $wp(S,F) \Leftrightarrow F$. True. For any state σ , either $M(S,\sigma) = \bot$ or $M(S,\sigma) \neq \bot$. If $M(S,\sigma) = \bot$, then $\sigma \notin wp(S,F)$; if $M(S,\sigma) \neq \bot$, then $M(S,\sigma) \not\models F$. Thus, wp(S,F) is an empty set; in other words, $wp(S,F) \Leftrightarrow F$.
 - c. $wp(y \coloneqq x * x, \ y \ge 4) \Leftrightarrow wlp(y \coloneqq x * x, \ y \ge 4)$ True, because the statement $y \coloneqq x * x$ is loop-free and cannot create a runtime error, the postcondition $y \ge 4$ cannot be evaluated to \bot . As an aside, using backward assignment rule, we can get $wp(y \coloneqq x * x, \ y \ge 4) \Leftrightarrow x * x \ge 4$.

(wp and wlp in general programs)

- We need to be careful when nondeterminism is considered, $M(S, \sigma)$ might contain more than one states.
 - $\circ \quad \sigma \in wp(S,q) \text{ iff } M(S,\sigma) \models q.$
 - $\circ \quad \sigma \in wlp(S,q) \text{ iff } M(S,\sigma) \bot \vDash q.$
 - $\sigma \notin wp(S,q)$ iff there exist some $\tau \in M(S,\sigma)$ such that $\tau = \bot$ or $\tau \not\models q$.
 - σ ∉ wlp(S,q) iff there exist some τ ∈ $M(S,\sigma)$ such that $\tau \neq \bot$ and $\tau \not\models q$.
- 4. Show the following property: $wp(S, q_1) \land wp(S, q_2) \Leftrightarrow wp(S, q_1 \land q_2)$.
 - o If a state $\sigma \in wp(S, q_1) \land wp(S, q_2)$, then $\sigma \in wp(S, q_1)$ and $\sigma \in wp(S, q_2)$; then $M(S, \sigma) \models q_1$ and $M(S, \sigma) \models q_2$; thus $M(S, \sigma) \models q_1 \land q_2$, which implies $\sigma \in wp(S, q_1 \land q_2)$.

- o If a state $\sigma \in wp(S, q_1 \land q_2)$, then $M(S, \sigma) \models q_1 \land q_2$; thus $M(S, \sigma) \models q_1$ and $M(S, \sigma) \models q_2$, which implies $\sigma \in wp(S, q_1) \land wp(S, q_2)$.
- Using a similar proof, we can also show the following property: $wlp(S, q_1) \land wlp(S, q_2) \Leftrightarrow wlp(S, q_1 \land q_2)$.
- 5. Is it true that $wp(S, q_1) \lor wp(S, q_2) \Leftrightarrow wp(S, q_1 \lor q_2)$? First, let's show that: $wp(S, q_1) \lor wp(S, q_2) \Rightarrow wp(S, q_1 \lor q_2)$.
 - o If a state $\sigma \in wp(S, q_1) \vee wp(S, q_2)$, then $\sigma \in wp(S, q_1)$ or $\sigma \in wp(S, q_2)$; then $M(S, \sigma) \models q_1$ or $M(S, \sigma) \models q_2$; thus $M(S, \sigma) \models q_1 \vee q_2$, which implies $\sigma \in wp(S, q_1 \vee q_2)$.

How about the inverse of this property? Is it true that " $wp(S, q_1) \lor wp(S, q_2) \leftarrow wp(S, q_1 \lor q_2)$ "?

- When $M(S, \sigma) = \{\tau\}$ ($M(S, \sigma)$ contains only one state): If $\sigma \in wp(S, q_1 \lor q_2)$, then $\tau \vDash q_1 \lor q_2$, and $\tau \vDash q_1$ or $\tau \vDash q_2$; then $\sigma \in wp(S, q_1)$ or $\sigma \in wp(S, q_2)$ which implies $\sigma \in wp(S, q_1) \lor wp(S, q_2)$.
- o When $M(S,\sigma)$ contains more than one states, then the statement is not necessarily true: Let $M(S,\sigma) \supseteq \{\tau_1,\tau_2\}$. When $M(S,\sigma) \vDash q_1 \lor q_2$, it is possible that $\tau_1 \vDash q_1$ and $\tau_2 \vDash q_2$. So, even if we can have $M(S,\sigma) \vDash q_1 \lor q_2$, but don't necessarily have $M(S,\sigma) \vDash q_1$ or $M(S,\sigma) \vDash q_2$.

To sum up, $wp(S, q_1) \lor wp(S, q_2) \Leftarrow wp(S, q_1 \lor q_2)$ is not necessarily true when $M(S, \sigma)$ contains more than one state. In other words, $wp(S, q_1) \lor wp(S, q_2) \Leftarrow wp(S, q_1 \lor q_2)$ is definitely true when S is deterministic.

Using a similar proof, we can also show the following property: $wlp(S,q_1) \vee wlp(S,q_2) \Rightarrow wlp(S,q_1 \vee q_2)$. But $wlp(S,q_1) \vee wlp(S,q_2) \leftarrow wlp(S,q_1 \vee q_2)$ only holds when S is deterministic (or $M(S,\sigma)$ contains only one state).

- 6. Let $flip \equiv \mathbf{if} \ T \to x \coloneqq 0 \ \Box \ T \to x \coloneqq 1 \ \mathbf{fi}$, $head \equiv x = 0$, and $tail \equiv x = 1$.
 - a. What is $M(flip, \emptyset)$? (here, \emptyset is an empty state). $M(flip, \emptyset) = \big\{ \{head\}, \ \{tail\} \big\}.$
 - b. What is $wp(flip, head \lor tail)$?
 For any state σ (let's assume that x is not defined in σ to simplify the notation), we have $M(flip, \sigma) = \{\sigma \cup \{head\}, \ \sigma \cup \{tail\}\}, \ and \ it satisfies head \lor tail, \ thus \ wp(flip, head \lor tail) \Leftrightarrow T.$
 - c. What is wp(flip, head)? And what is wp(flip, tail)? For any state σ , we have $M(flip, \sigma) = \{\sigma \cup \{head\}, \ \sigma \cup \{tail\}\}, \ \text{it doesn't satisfy } head \ \text{and it doesn't satisfy } tail; \ \text{thus } wp(flip, head) \Leftrightarrow wp(flip, tail) \Leftrightarrow F.$