

Save the Striders!

Danielle Tadych, Jacob Ridlinghafer,
Benjamin Mitchell

Problems with Current Setup

Too close to the stream and riparian area

- Pollution of the stream
- Too much drawdown from the ag well
 - Gotta protect the water strider!
 - Don't want to impair the riparian ecosystem
- What matters
 - Head at wells and leakage
 - Head at MW1 is most important
 - Other wells matter because stage in river is not actually infinite
 - Particle pathing because we don't want to pollute river

Ensemble Scenarios

Metrics considered

- Head at MW next to the river
- Head from ensembles for each scenario
- Particle tracking
- Leakage calculation

1333113			
Variable	Inputs	#Knob	Level
Kxyz	5	0	Low
Kz:low	0.000001	2	High
Sy	0.3	2	High
rech_mount	0.00005	2	High
ET_val	0.000001	0	Low
ET:rip	1	0	Low
K:streambed	1000	2	High
3133113			
Variable	Inputs	#Knob	Level
Kxyz	100	2	High
Kz:low	0.000001	0	
Sv	0.3	2	High
rech mount	0.00005		-
ET_val	0.000001		
ET:rip	1	0	Low
K:streambed	1000	2	High
3111331			
Variable	Inputs	#Knob	Level
Kxyz	100	2	High
Kz:low	0.0003	0	Low
Sv	0.05	0	Low
rech_mount	0.00001	0	Low
ET_val	0.0001	2	High
ET:rip	3	2	High
K:streambed	10	0	Low
1111331			
Variable	Inputs	#Knob	Level
Kxyz	5	0	Low
Kz:low	0.0003	0	Low
Sv	0.05	0	Low
rech mount	0.00001	0	Low
ET val	0.0001	2	
ET:rip	3		High
K:streambed			Low

2121331			
Variable		#Knob	Level
Kxyz	25	1	Mid
Kz:low	0.0003	0	Low
Sy	0.1	1	Mid
rech_mount	0.00001	0	Low
ET_val	0.0001	2	High
ET:rip	3	2	High
K:streambed	10	0	Low
2121311			
Variable	Inputs	#Knob	Level
Kxyz	25	1	Mid
Kz:low	0.0001	0	Low
Sy	0.1	1	Mid
rech_mount	0.00001	0	Low
ET_val	0.0001	2	High
ET:rip	1	0	Low
K:streambed	10	0	Low
2122111	and the same of		
Variable	Inputs	#Knob	Level
Kxyz	25		Mid
Kz:low	0.000001	0	Low
Sy	0.1	1	Mid
	0.00003		Mid
ET_val	0.000001	0	Low
ET:rip		0	Low
K:streambed	10	0	Low
2213223			
Variable	Inputs	#Knob	Level
Kxyz	25	1	Mid
Kz:low	0.00002	1	Mid
Sy	0.05	0	Low
rech_mount	0.00005	2	High
ET_val	0.00001	1	10000000
ET:rip	2	1	Mid
K-streamhed	1000	2	High

	2211221			
vel	Variable	Inputs	#Knob	Level
1	Kxyz	25	1	Mid
AT .	Kz:low	0.00002	1	Mid
1	Sy	0.05	0	Low
ΑΓ	rech_mount	0.00001	0	Low
h	ET_val	0.00001	1	Mid
h	ET:rip	2	1	Mid
N	K:streambed	10	0	Low
	1111111			
vel	Variable	Inputs	#Knob	Level
d	Kxyz	5	0	Low
w	Kz:low	1.00E-06	0	Low
d	Sy	0.05	0	Low
w	rech_mount	1.00E-05	0	Low
gh	ET_val	1.00E-06	0	Low
w	ET:rip	1	0	Low
w	K:streambed	10		Low

0.1	9	IVIII
0.00003	1	Mid
0.000001	C	Low
		Low
10	•	Low
Inputs	#Knob	Level
25	1	Mid
0.00002	1	Mid
0.05	0	Low
0.00005	2	High
0.00001	1	Mid
2	1	Mid
1000	2	High
	0.00003 0.000001 1 10 Inputs 25 0.00002 0.05 0.00005 0.00001	0.00003 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1

Proposed Scenarios - Scenario 1

- 1. Moving the Farm farther south
 - a. Closer to the ag well, so even though relocation might be difficult, it would save in water transportation costs

Proposed Scenarios - Scenario 2

- 1. Moving the Farm farther south
 - Closer to the ag well, so even though relocation might be difficult, it would save in water transportation costs
- 2. Moving the farm and ag well north of the stream
 - a. Less risk of polluting the town well in the future
 - b. Ag well is farther from the stream but also closer to the farm

Proposed Scenarios

- 1. Moving the Farm farther south
 - Closer to the ag well, so even though relocation might be difficult, it would save in water transportation costs
- Moving the farm and ag well north of the stream
 - a. Less risk of polluting the town well in the future
 - b. Ag well is farther from the stream but also closer to the farm
- 3. Scenario 1 locations but change crop to wheat (less water demand)
 - a. ET 3000 -> 4500

Scenarios we trashed and other problems

Had to move the ag well location for Scenario 2 to one cell to the left

Ensembles with high top and bottom aquifer K would not converge

3133113 and 3111331

Results

Ensemble comparison

	Scenario 1					
	Esemble	town well	mw1	mw2	ag well	Leakage
1	1333113	74.34	78.98	89.333	86.81471	150750
2	3133113					
3	3111331	75.43	78.65	85.06	84.74	2504950
4	1111331	71.88	76.28	81.30	78.30	296350
5	2121331	74.57	77.99	84.75	84.03	1119850
6	2121311	75.06	78.35	85.02	84.30	1072550
7	2122111	76.08	78.50	82.78	79.81	225650
8	2213223	75.98	78.55	87.33	86.70	1131750
9	2211221	75.77	78.56	85.11	84.38	1054350
10	1111111	75.77	78.56	85.11	84.38	225650
	Average	74.99	78.27	85.09	83.72	864650

Ensemble comparison

	Scenario 2					
	Ensemble	town well	mw1	mw2	ag well	Leakage
1	1333113	74.34	79.01	93.13	82.33	148550
2	3133113					
3	3111331					
4	1111331	71.93	76.36	87.21	75.89	293350
5	2121331	74.63	78.02	86.04	82.08	1116450
6	2121311	75.11	78.38	86.30	82.32	1069050
7	2122111	76.11	78.71	87.58	83.37	981350
8	2213223	76.04	78.59	88.60	84.16	1127950
9	2211221	75.84	78.59	86.41	82.39	1050750
10	1111111	75.84	78.59	86.41	82.39	222150
_	Average	74.98	78.28	87.71	81.87	751200

Ensemble comparison

	Scenario 3					
	Esemble	town well	mw1	mw2	ag well	Leakage
1	1333113	74.34	78.99	90.61	88.98	149750
2	3133113					
3	3111331					
4	1111331	71.89	76.31	83.33	81.38	293250
5	2121331	74.59	78.00	85.19	84.66	1115750
6	2121311	75.08	78.37	85.46	84.92	1068350
7	2122111	76.12	78.55	84.80	82.86	222050
8	2213223	76.00	78.57	87.76	87.31	1127150
9	2211221	75.79	78.57	85.55	85.01	1049950
10	1111111	75.79	78.57	85.55	85.01	222050
	Average	74.95	78.24	86.03	85.01	656037.5

Head and Leakage Averages across Ensembles

Scenario #	town well	mw1 (River)	mw2	ag well	Leakage
1	74.987	78.269	85.090	83.717	864650
2	74.978	78.282	87.707	81.868	751200
3	74.952	78.241	86.033	85.0177	656037.5

Path comparison - longest paths

Original run would have ended in the stream eventually

No particles resulted in the stream or wells for all scenarios

Scenario 3

Head comparison (graphs) MW2

Head comparison (graphs) Town

Legend

Scenario 1 Scenario 2 Scenario 3

Legend

Scenario 1 Scenario 2 Scenario 3

Selected Hydrologic Design Conclusions

- The differences in head at the river well were small
- Differences at MW1 cannot be used in design 2 because ag well was moved
- Head of the irrigation well showed larger differences design 3 had the least draw down
- The total leakage of each location showed the largest differences in design where design 3 had the least leakage
- So design 3 is our proposed project

Any Questions?

WWJBD

