Question 1

Find the number of all Sylow 7-subgroups of S_7 .

Solution: Notice that there are 6! elements of order 7 given by counting an element in the form of (1abcdef). As an element in this form has order 7, and no other element have order 7 if it is not written in this form. This is because when considering a disjoint cycle notation, the order of the element is determined by the lcm of the size of each disjoint cycles.

Next, a sylow 7-subgroups of S_7 has order 7 because $|S_7| = 7!$. And every two distinct sylow subgroup are cyclic, thus they must intersects trivially. Since there is exactly 6! elements, and 6 non-trivial elements in each cyclic group, then there should be exactly 6!/6 = 5! = 120 sylow 7-subgroups.

Question 2

Given $\sigma \in S_n$, we define a permutation $\tau : \tau = \sigma(n+1 \ n+2)$ if σ is odd and $\tau = \sigma$ if σ is even. Show that the morphism $S_n \to S_{n+2}$ by $\sigma \mapsto \tau$ is injective and the image is contained in A_{n+2} . Conclude that any finite group is isomorphic to a subgroup of an alternating group.

Solution: Firsly, define a morphism $\phi: S_n \to S_{n+2}$ by $\phi: \sigma \mapsto \tau$ as defined in the statement. ϕ is a homomorphism as if σ and σ' are both even, then $\phi(\sigma\sigma') = \phi(\sigma)\phi(\sigma')$ trivially, if exactly one of them is even, without loss of generality, let σ be odd and σ' is even then $\phi(\sigma\sigma') = \sigma(n+1 \ n+2)\sigma' = \phi(\sigma)\phi(\sigma')$. And if both of them are odd, then $\phi(\sigma\sigma') = \sigma\sigma' = \sigma(n+1 \ n+2)^2\sigma' = \sigma(n+1 \ n+2)\sigma'(n+1 \ n+2) = \phi(\sigma)\phi(\sigma')$. This verifies that ϕ is a homomorphism.

Consider that if σ moves x (to y), then $\phi(\sigma)$ must also moves x (to y). So, if $\phi(\sigma)$ does not move any element (ie. identity), then the only possible σ is the identity. Now, $\phi(id) = id$ since id is an even permutation. Therefore, $\ker \phi = \{id\}$. Which proves that ϕ is injective.

Next, the image im ϕ is the set $\left\{ \tau = \begin{cases} \sigma & \text{if } \sigma \text{ is even} \\ \sigma(n+1 \ n+2) & \text{if } \sigma \text{ is odd} \end{cases} \right\}$ Which is always even. Thus, im ϕ must be a subset, and therefore a subgroup of A_{n+2} as it is the image of ϕ .

Lastly, as from the Cayley's theorem, there is an isomorphism from any finite group G to a subgroup of $S_{|G|}$. Let that isomorphism be ψ . Then, $\psi:G\to S_{|G|}$ is an injective homomorphism. Consider a composition $\phi\circ\psi$. Then this homomorphism is an injective homomorphism of $G\to S_{|G|+2}$. Furthermore, the image of $\phi\circ\psi$ is a subgroup of $A_{|G|+2}$. Thus, $\psi\circ\phi$ is an injective homomorphism from G to $A_{|G|+2}$.

Therefore, since there is an injective homomorphism from G to A_n , it follows that G is isomorphic to a subgroup $\operatorname{im}(\phi \circ \psi)$ of an alternating group.

Question 3

Let $\sigma \in S_3 \backslash A_3$. Show that the automorphism of A_3 given by conjugation by σ is not an inner automorphism of A_3 .

Solution: Firstly, consider that $A_3 = \{id, (123), (132)\}$ and $S_3 \setminus A_3 = \{(12), (23), (13)\}$. Let $\psi_{\sigma} : \tau \mapsto \sigma \tau \sigma^{-1}$ for $\sigma \in S_3 \setminus A_3$

With the following information.

$$(12)(123)(12) = (132)$$
 and $(12)(132)(12) = (123)$
 $(13)(123)(13) = (132)$ and $(13)(132)(13) = (123)$
 $(23)(123)(23) = (132)$ and $(23)(132)(23) = (123)$

Therefore, $\psi_{(12)}$, $\psi_{(23)}$, $\psi_{(13)}$ are an element of Aut (S_3) .

Next, an inner automorphism of A_3 is $Inn(A_3) = \{ \phi_{\sigma} \mid \sigma \in A_3 \text{ and } \phi_{\sigma} : \tau \mapsto \sigma \tau \sigma^{-1} \}$ As $|A_3| = 3!/2 = 3$, then $A_3 \simeq \mathbb{Z}/3\mathbb{Z}$. So A_3 is abelian, thus

$$\phi_{\sigma}: \tau \mapsto \sigma \tau \sigma^{-1} = \tau \sigma \sigma^{-1} = \tau$$

So, $\text{Inn}(A_3)$ is trivial Hence, $\sigma_{(12)}$, $\sigma_{(13)}$, $\sigma_{(23)}$ are not an element of the inner automorphism as they are not the identity automorphism.

Question 4

Let p and q be a prime numbers. Show that any group of order pq is solvable.

Solution: Let a group G be a group of order pq where p and q are prime numbers. If p = q, then $|G| = p^2$. As G is a p group, then it is nilpotent, and the factor between the subgroups must be abelian (order p or p^2). So G must be solvable.

Assume without loss of generality that p > q. Let H be a sylow subgroup of order p. Then there is $n_p \equiv 1 \pmod{p}$ subgroups where $n_p|q$. The only possible conclusion is that $n_p = 1$, since otherwise $n_p \not|q$, or q = p + 1.

Therefore, H is a normal subgroup of G. So, G/H is a group of order q. Since a group of order p is cylic, and a group of order q is also cyclic, then they must be abelian, then they must be solvable. Since a subgroup H of G, and the quotient G/H are both solvable, it must be the case that the group G must also be solvable.

Question 5

Find the subgroup of all torsion elements in \mathbb{R}/\mathbb{Z} .

Solution: Consider that an element of $G = \mathbb{R}/\mathbb{Z}$ is $r + \mathbb{Z}$ for some $r \in \mathbb{R}$. If r is irregular, then for any integer n, $n(r + \mathbb{Z}) = nr + \mathbb{Z}$. Assuming that nr is an integer yields that nr = m for some integer m. Which means that $r = \frac{m}{n}$ is not an irregular number. Thus, is a contradiction. Therefore, nr is not an integer, which means that $n(r + \mathbb{Z}) \neq \mathbb{Z}$ for any finite integer n. This means that $(r + \mathbb{Z}) \notin Tors(\mathbb{R}/\mathbb{Z})$

Next, if r is regular, then let $r = \frac{m}{n}$ without loss of generality. Consider that $n(r + \mathbb{Z}) = nr + \mathbb{Z} = m + \mathbb{Z} = \mathbb{Z}$, so the order of $(r + \mathbb{Z})$ is less than or equal to n. As the order is finite, then $r + \mathbb{Z} \in Tors(\mathbb{R}/\mathbb{Z})$

As a real number is either regular or irregular, it follows that $T = \{r + \mathbb{Z} \mid r \in \mathbb{Q}\}$ is the subset of all torsion elements in \mathbb{R}/\mathbb{Z} .

Lastly, it can be shown that the subset is a subgroup since if $\frac{n}{m} + \mathbb{Z} \in T$, and $\frac{u}{v} + \mathbb{Z} \in T$ then

$$\left(\frac{n}{m} + \mathbb{Z}\right) - \left(\frac{u}{v} + \mathbb{Z}\right) = \frac{n}{m} - \frac{u}{v} + \mathbb{Z} = \frac{nv - uv}{mv} + \mathbb{Z} \in T$$

In conclusion, T is the subgroup of all torsion elements in \mathbb{R}/\mathbb{Z} .

Question 6

Prove that if $\phi: K \to \operatorname{Aut}(H)$ is a nontrivial group homomorphism, then $H \rtimes_{\phi} K$ is nonabelian.

Solution: If ϕ is nontrivial, then there exists an element $k \in K$ such that $\phi(k)$ is not trivial. Thus, there exists an element $h \in H$ such that $\phi(k)(h) \neq h$.

For that element k and h, consider $(h, e) \cdot (h, k) = (h\phi(e)(h), k) = (hh, k)$ since $\phi(e)$ must be the identity element in $\operatorname{Aut}(H)$. So, $\phi(e)(h) = h$.

However, $(h,k) \cdot (h,e) = (h\phi(k)(h),ke) = (h\phi(k)(h),k) \neq (hh,k)$ as $\phi(k)(h) \neq h$ by construction.

As $(h, e) \cdot (h, k) \neq (h, k) \cdot (h, e)$ and (h, e) and (h, k) are both an element of $H \rtimes_{\phi} K$. Therefore, the group $H \rtimes_{\phi} K$ is nonabelian.

Question 7

Show that $GL_n(\mathbb{R}) \simeq SL_n(\mathbb{R}) \rtimes \mathbb{R}^{\times}$.

Solution: Firstly, $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$. Furthermore, consider that for an element $g \in GL_n(\mathbb{R})$ and $s \in SL_n(\mathbb{R})$, $\det(gsg^{-1}) = \det(g) \det(g) \det(g^{-1}) = \det(g)$. Thus, $gsg^{-1} \in SL_n(\mathbb{R})$ be definition. So, $SL_n(\mathbb{R})$ is a normal subgroup of $GL_n(\mathbb{R})$.

Now, consider an isomorphism $\phi: \mathbb{R}^{\times} \to \operatorname{im} \phi \subset GL_n(\mathbb{R})$ given by $\phi: r \mapsto \begin{bmatrix} r & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \cdots & 1 \end{bmatrix}$, of $GL_n(\mathbb{R})$. Then, ϕ is

well-defined obviously, since $\phi(r) = \phi(r')$ implies that r = r', as $r = (\phi(r))_{11} = (\phi(r'))_{11} = r'$ was required. Then, ϕ is a

homomorphism as

$$\phi(rs) = \begin{bmatrix} rs & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} r & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix} = \phi(r)\phi(s)$$

Next, if $\phi(r) = \phi(r')$, then $r = (\phi(r))_{11} = (\phi(r'))_{11} = r'$, thus ϕ is injective. Therefore, ϕ is an isomorphism.

Now, consider an element $g \in GL_n(\mathbb{R})$, let $|\det(g)| = r$ for some real number r, then there is a matrix g' such that $g' \cdot \phi(r) = g$ given by diving each element in the first column of g by r, Since $\det(g') \det(\phi(r)) = \det(g)$, then $\det(g') = 1$, so $g' \in SL_n(\mathbb{R})$, and $\phi(r) \in \operatorname{im} \phi$. Thus, $GL_n(\mathbb{R}) \subset SL_n(\mathbb{R})$ im ϕ . But as $SL_n(\mathbb{R}) < GL_n(\mathbb{R})$ and $\operatorname{im} \phi < GL_n(\mathbb{R})$, it must be the case that $GL_n(\mathbb{R}) = SL_n(\mathbb{R})$ im ϕ

Next, consider $g \in SL_n(\mathbb{R})$ and $g \in \operatorname{im} \phi$. Then $\det(g) = 1$, and $g = \phi(r)$, therefore, $\det(\phi(r)) = r = 1$. Hence, it follows that r = 1. Thus, $SL_n(\mathbb{R}) \cap \operatorname{im} \phi = \{ \phi(1) = I \}$.

Now, as $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$, im $\phi < GL_n(\mathbb{R})$, where the intersection is trivial and $GL_n(\mathbb{R}) = SL_n(\mathbb{R})$ im ϕ . It follows that $GL_n(\mathbb{R}) \simeq SL_n(\mathbb{R}) \rtimes \text{im } \phi$. Next, as im $\phi \simeq \mathbb{R}^{\times}$, then $GL_n(\mathbb{R}) \simeq SL_n(\mathbb{R}) \rtimes \mathbb{R}^{\times}$.

Question 8

Explain why two groups D_{24} and S_4 are not isomorphic.

Solution: An element in D_{24} is of the form $r^i f^j$, for j = 0 or 1 and $i \in \{0, ..., 11\}$ If j = 1, then $r^i f \cdot r^i f = r^i f^2 r^{-i} = e$, so $r^i f$ has order 2. If j = 0, then the order of r^i is $12/\gcd(i, 12)$. So, $\gcd(i, 12) = 3$ only when i = 3, 9.

Consider that there is only two elements $g \in D_{24}$, that has order 4, which are r^3 , r^9 . But there is more than two elements of order 4 in S_4 , for examples, (1234), (1324) and (1432).

Question 9

Explain why two groups $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ are not isomorphic.

Solution: Consider if $(A \times C) \simeq (B \times C)$, then since $C \simeq C$, it follows that $A \simeq B$. This is due to the fact that \times and \oplus behave similarly for finite groups, (and it is proven that $(G \oplus H) \simeq (G' \oplus H')$ with $G \simeq G'$ implies $H \simeq H'$).

Now, as $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is isomorphic to $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ by a homomorphism $\phi: (a, b, c) \mapsto (a, c, b)$.

Assuming that $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is isomorphic to $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ yields that $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ is isomorphic to $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$. However, the second one possess no element of order 12. As for $(a,b) \in \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, it follows that 6(a,b) = (6a,6b) = (0,0). But the former possess at least one element of order 12, which is (1,0) as $6(1,0) = (6,0) \neq (0,0)$, and 12(1,0) = (0,0)

By contraposition, the two groups $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ must be non-isomorphic.

Question 10

Show that nonabelian groups A_4 , D_{12} , and $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$ are not isomorphic.

Solution: Firstly, consider between the group A_4 and $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$. It is evidence that $\mathbb{Z}/3\mathbb{Z}$ is a normal subgroup of $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$, and $\mathbb{Z}/3\mathbb{Z}$ is non-trivial. Therefore, the later group is not simple, but the first group is simple. Thus, they cannot be isomorphic.

Secondly, consider between the group A_4 and D_{12} . Notice that $\{1, r, \dots, r^5\} \triangleleft D_{12}$ as for $fr^i \in D_{12} - \{1, r, \dots, r^5\}$, it follows that

$$fr^{i} \{ 1, r, \dots, r^{5} \} (fr^{i})^{-1} = fr^{i} \{ 1, r, \dots, r^{5} \} r^{-i} f$$

$$= \{ fr^{i}r^{-i}f, fr^{i}rr^{-i}f, \dots, fr^{i}r^{5}r^{-i}f \}$$

$$= \{ 1, frf, fr^{2}f, \dots, fr^{5}f \}$$

$$= \{ 1, r^{-1}, r^{-2}, \dots, r^{-5} \}$$

$$= \{ 1, r, \dots, r^{5} \}$$

So, D_{12} has a non-trivial normal subgroup, thus is non-simple, but A_4 is simple, so there is no isomorphism between the two.

Lastly, between the group D_{12} and $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. Consider that for $fr^i \in D_{12}$, the order are all 2. However, when considering element $(e,e) = (h,k)^2 = (h\phi(k)(h),k^2)$ of the later group, it must follow that k is of order 2, which is only 2. Thus, there are AT MOST 3 elements (which are (0,2),(1,2),(2,2)) of order 2 in $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. Therefore D_{12} and $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ cannot be isomorphic.