UTC504 - Systèmes d'Information et Bases de Données Introduction

Sébastien Fourestier

2022

Bibliographie

- Pascal André, Alain Vally : Conception des systèmes d'information
- Jacqes Printz : Le genie logiciel
- Florence Petit : Cycle de vie des systèmes informatiques
- František Kardoš : Conception de systèmes d'information
- Pierre Gérard : UML, Diagrammes de classe
- www.editions-eni.fr: Cycle en spirale

Correctifs

- Ce cours est disponible sous licence libre sur ce dépôt github :
 - https://github.com/sfourestier/enseignement
- → Voici pouvez :
 - L'améliorer en proposant des *Pull requests*
 - Partager autour de points pouvant être améliorés en créant des tickets (Issues)

Plan

Définitions

Modélisation

Étapes de développement

Cycles de vie

Qualité

Suite du cours

Introduction

- Petits systèmes autonomes :
 - Développement aisé et court
- Accroissement des problèmes traités et diversité des domaines d'application de l'informatique
- \rightarrow Systèmes complexes :
 - Période de développement et durées de vie allongées
 - Le développement est investissement durable
- → Rentabiliser le développement et les efforts produits

Définition du génie logiciel au Journal officiel du 19 février 1984 :

« l'ensemble des activités de conception et de mise en œuvre des produits et des procédures tendant à rationaliser la production du logiciel et son suivi »

Définition adaptée de Jacques Printz :

« l'ensemble des moyens techniques, industriels, industriels et humains qu'il faut réunir pour spécifier, construire, distribuer et maintenir des logiciels de qualité »

Définitions

Premiers critères de qualité :

- Sûrs :
 - Réagissent de façon déterministe aux sollicitations
- Conviviaux
 - Adaptés aux capacités des usagers
- Évolutifs
 - S'adaptent aux nouveaux besoins
- Économiques :
 - Réalisent l'optimum entre le service rendu et les coûts de développement/maintenance

Définitions

Système d'information (1)

Définition de Wikipédia :

« Un système d'information (SI) est un ensemble organisé de ressources qui permet de collecter, stocker, traiter et distribuer de l'information » Définitions

Définition adaptée de C. Rolland :

- Un Système d'information est un objet artificiel greffé sur un objet naturel (organisation, processus industriel, commande embarquée, etc.)
- Il est concu pour mémoriser un ensemble d'images de l'objet réel à différents moments de sa vie
- Ces images doivent être accessibles par les partenaires de l'organisation pour décider des actions à entreprendre

Classification des SI

1. SI de gestion :

- Beaucoup de données : consultation, mise à jour
- Possibilité d'accès distant (réseau)
- Ex : gestion de clientèle, du stock, etc.

2. Le calcul scientifique :

- Beaucoup de calculs, peu de données
- Critère important : rapidité de traitement
- Ex : simulation, météo, imagerie

3. L'informatique temps réel :

- Critère important : réactivité du SI
- Informatique embarquée, contrôle de processus (fabrication, surveillance), réseaux informatiques
- Ex : pilotage auto d'un avion, centrale nucléaire

Plan

Définitions

Modélisation

Étapes de développement

Cycles de vie

Qualité

Suite du cours

Modélisation et développement

Pour développer des SI, on utilise des modèles :

- Modèle
 - Interprétation par son utilisateur de l'idée qu'il se fait d'une situation
- Développement :
 - Le développement est une suite de modèles de plus en plus précise (avec de moins en moins d'éléments laissés libres)
 - → Lorsque tous les éléments ont été fixés, le SI est implémenté

Méthodes de développement

Plusieurs types de processus de développement :

- Méthodes cartésiennes : « Diviser pour régner »
 - On découpe en sous-éléments, on résout, on rassemble
 - Ex : approche Objet
 - Processus de développement :
 - Basé sur les fonctionnalités.
- Méthodes systémiques : vision globale
 - Compréhension des éléments et leurs relations
 - Ex : Bases de données, Merise
 - Processus de développement :
 - Approche conceptuelle, par niveaux d'abstraction

Exemple approche Objet

Exemple approche Merise

Trois axes de modélisation (1)

Un système d'information comprend 3 aspects :

- 1. Données :
 - Ce que le système manipule
- 2. Comportement dynamique:
 - Comment s'enchaînent les événements
- 3. Comportement fonctionnel:
 - Quelles sont ses fonctionnalités

Trois axes de modélisation (2)

→ Trois courants de méthodes d'analyse/conception

Approche fonctionnelle

Approche flots de données

Approche modèle de données

Suite du cours

Plan

Définitions

Modélisation

Étapes de développement

Cycles de vie

Qualité

Suite du cours

Étapes de développement des logiciels

- 1. Analyse des besoins :
 - Objectif du logiciel
- 2. Analyse:
 - Expression des besoins
- 3 Conception
 - Proposition de solutions
- 4. Réalisation et Test :
 - Production du programme
- 5. Installation:
 - Mise en place dans l'organisation
- 6. Maintenance:
 - Adaptation du logiciel et corrections

Objectif du logiciel :

- Phase initiale du développement
- Description et une évaluation globale des besoins
- Prend en compte :
 - Les aspects économiques
 - Les risques
 - La compétitivité
 - L'organisation globale du projet

Expression des besoins :

- Écriture des fonctions que le logiciel doit effectuer et le contexte (conditions d'exploitation, qualité requise, etc.)
- Fait abstraction de la façon dont les fonctionnalités seront réalisée

Étape 3/6 : Conception

- Définir de façon très précise :
 - Les fonctionnalités
 - L'architecture du logiciel
- À partir :
 - Des besoins exprimés
 - Des contraintes générales définies dans les deux première phases
- La spécification peut être :
 - Informelle, en langage naturel
 - À l'aide de diagrammes
 - Sur les 3 axes évoqués précédemment

Étape 4/6 : Réalisation et Test

- Phase de programmation
- Tests qui prouvent la logique du programme
 - Tests unitaires :
 - Validation des parties du logiciel (fonctions, modules)
 - Tests d'intégration :
 - Validation de plusieurs parties du logiciel utilisées ensemble
- Possibilité tests statistiques :
 - Nombre de pannes observées sur une durée donnée, etc.
- → Les tests sont indispensables pour faciliter la maintenance à long terme

Mise en place dans l'organisation, s'assurer que :

- La procédure d'installation fonctionne conformément aux exigences
- Les formations sont en place
- Le support technique est opérationnel

Étape 6/6 : Exploitation et maintenance

- Exploitation :
 - Mise à disposition du logiciel auprès de tous les utilisateurs
- Cette phase peut être très longue
- Maintenance :
 - Correction des erreurs détectées

Plan

Définitions

Modélisation

Étapes de développement

Cycles de vie

Qualité

Suite du cours

Cycles de vie

Cycle de vie :

• Organisation de ces étapes

On distingue trois catégories :

- 1. Les modèles linéaires :
 - Étapes réalisées tour à tour
 - Ex : en cascade, en V
- 2. Les modèles itératifs :
 - Développement incrémental, évaluation des risques
 - Ex : à spirale, les méthodes agiles
- 3. Les modèles contractuels :
 - Suite de contrats entre client et fournisseurs
 - Ex : méthodes formelles

Cycle en cascade

- Les différentes phases sont réalisées tour à tour
- On commence la suivante une fois la précédente achevée
- En cas d'erreur, on revient à la précédente

On insiste sur

- Une séparation entre :
 - La construction des diverses spécifications
 - leur validation a posteriori (tests unitaires, tests d'intégration, etc.)
- Le niveau d'abstraction :
 - Utilisateur
 - Architecture
 - Implémentation

Cycle de vie en V (2)

- 1988 : Boehm
- Prise en compte des risques
 - Actions pour éviter les risques
- 1 cycle :
 - 1. Analyse
 - 2. Développement du prototype
 - 3. Essai du prototype
- Dernier cycle : produit fini

Modèle en spirale (2)

Suite du cours

Méthodes agiles

- Cycle de développement court
- Grande réactivité :
 - Acceptation du changement
- Équipe communicante plus importante que les moyens et les outils
- Application plus importante que la documentation
- Collaboration :
 - Client impliqué en feed-back continu

Plan

Définitions

Modélisation

Étapes de développement

Cycles de vie

Qualité

Suite du cours

Qualités les plus importantes :

- Validité
 - Réaliser exactement les tâches définies par la spécification
- Robustesse
 - Fonctionne même dans des conditions anormales
- Extensibilité
 - Facilité d'adaptation du logiciel aux changements de spécification
- Réutilisabilité
 - Une partie ou le tout peut être réutilisé pour de nouvelles applications
- Compatibilité
 - Le parties peuvent être combinés

Critères permettant d'atteindre ces qualités :

- Modularité
 - décomposition en composants simples et indépendants
- Complétude
 - Degré d'implémentation des spécifications
- Cohérence
 - Possibilité retour étape de dév. précédente
 - Ex : remonter une erreur détectée en maintenance au niveau de l'implémentation

- Généralité
 - Plage d'application potentielle des composants
- Auto-documentation ou lisibilité
 - Possibilité d'extraction de la documentation depuis les composants logiciels
 - Ex : nom de variables, docstrings, etc.

Liens qualités ↔ critères info.

Cycles de vie

Qualité du proc. de développement (1)

Principales qualités :

- Sûreté
 - Minimise les retours arrière et validations régulières
- Terminaison
 - Obtention du produit en temps fini
- Rigueur
 - Étapes logiques, en accord avec les habitudes des développeurs
- Cohérence
 - Pas de duplication ou d'oublis

Qualité du proc. de développement (2)

- Souplesse
 - Adaptation à l'application à développer
- Accessibilité
 - Comprendre les choix effectués
- Rentabilité
 - Capitaliser l'expérience

Critères (1)

Critères permettant d'atteindre ces qualités :

- Automatisation
 - Moins d'erreur
 - Plus vite
- Réutilisation
 - Réduit le coût
 - Augmente la sureté
- Facilité d'écriture
 - Modèles simples et naturels pour les développeurs
- Guidage
 - Opérations à réaliser pour obtenir un bon résultat
- Traçabilité
 - Vérification de la cohérence entre les modèles

Critères (2)

- Contrôle
 - Contrôle régulier
- Intégration
 - Cohérence entre modèles d'une même étape ou deux successives
- Documentation
 - Raisonnement et choix explicites
- Ciblage
 - Domaine d'application explicite
- Abstraction
 - Le raisonnement et la preuve doivent progressivement prendre en compte les concepts de programmation

Liens qualités ↔ critères

Plan

Définitions

Modélisation

Étapes de développement

Cycles de vie

Qualité

Suite du cours

Plan de la suite du cours

1. Merise

- Méthode systémique : vision globale
- Modélisation selon l'axe des données
- Utilisation pour la modélisation des bases de données

2. Introduction à UML

- Panel de diagrammes
 - Approche fonctionnelle, objet (méthode cartésiennes)
 - Flot de données
 - Possible : modèle de données
- En détail : cas d'utilisation (modélisation fonctionnelle)
- 3. Méthodes agiles

Trois axes de modélisation

→ Trois courants de méthodes d'analyse/conception

Approche fonctionnelle

Approche flots de données

Approche modèle de données

