- **8.2** In the circuit of Fig. 8.63, determine:
 - (a) $i_R(0^+)$, $i_L(0^+)$, and $i_C(0^+)$,
 - (b) $di_R(0^+)/dt$, $di_L(0^+)/dt$, and $di_C(0^+)/dt$,
 - (c) $i_R(\infty)$, $i_L(\infty)$, and $i_C(\infty)$.

Figure 8.63 For Prob. 8.2.

- **8.3** Refer to the circuit shown in Fig. 8.64. Calculate:
 - (a) $i_L(0^+)$, $v_C(0^+)$, and $v_R(0^+)$,
 - (b) $di_L(0^+)/dt$, $dv_C(0^+)/dt$, and $dv_R(0^+)/dt$,
 - (c) $i_L(\infty)$, $v_C(\infty)$, and $v_R(\infty)$.

Figure 8.64 For Prob. 8.3.

- **8.4** In the circuit of Fig. 8.65, find:
 - (a) $v(0^+)$ and $i(0^+)$,
 - (b) $dv(0^+)/dt$ and $di(0^+)/dt$,
 - (c) $v(\infty)$ and $i(\infty)$.

Figure 8.65 For Prob. 8.4

- **8.5** Refer to the circuit in Fig. 8.66. Determine:
 - (a) $i(0^+)$ and $v(0^+)$,
 - (b) $di(0^+)/dt$ and $dv(0^+)/dt$,
 - (c) $i(\infty)$ and $v(\infty)$.

Figure 8.66 For Prob. 8.5.

- **8.6** In the circuit of Fig. 8.67, find:
 - (a) $v_R(0^+)$ and $v_L(0^+)$,
 - (b) $dv_R(0^+)/dt$ and $dv_L(0^+)/dt$,
 - (c) $v_R(\infty)$ and $v_L(\infty)$.

Figure **8.67** For Prob. 8.6.

Section 8.3 Source-Free Series *RLC* Circuit

8.7 The voltage in an *RLC* network is described by the differential equation

$$\frac{d^2v}{dt^2} + 4\frac{dv}{dt} + 4v = 0$$

subject to the initial conditions v(0) = 1 and dv(0)/dt = -1. Determine the characteristic equation. Find v(t) for t > 0.

8.8 The branch current in an *RLC* circuit is described by the differential equation

$$\frac{d^2i}{dt^2} + 6\frac{di}{dt} + 9i = 0$$

and the initial conditions are i(0) = 0, di(0)/dt = 4. Obtain the characteristic equation and determine i(t) for t > 0.

8.9 The current in an *RLC* circuit is described by

$$\frac{d^2i}{dt^2} + 10\frac{di}{dt} + 25i = 0$$

If i(0) = 10 and di(0)/dt = 0, find i(t) for t > 0.

8.10 The differential equation that describes the voltage in an *RLC* network is

$$\frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 4v = 0$$

Given that v(0) = 0, dv(0)/dt = 10, obtain v(t).

8.11 The natural response of an *RLC* circuit is described by the differential equation

$$\frac{d^2v}{dt^2} + 2\frac{dv}{dt} + v = 0$$

for which the initial conditions are v(0) = 10 and dv(0)/dt = 0. Solve for v(t).

- **8.12** If $R = 20 \Omega$, L = 0.6 H, what value of C will make an RLC series circuit:
 - (a) overdamped,
- (b) critically damped,
- (c) underdamped?
- **8.13** For the circuit in Fig. 8.68, calculate the value of *R* needed to have a critically damped response.

Figure 8.68 For Prob. 8.13.

8.14 Find v(t) for t > 0 if v(0) = 6 V and i(0) = 2 A in the circuit shown in Fig. 8.69.

Figure 8.69 For Prob. 8.14.

8.15 The responses of a series *RLC* circuit are

$$v_C(t) = 30 - 10e^{-20t} + 30e^{-10t} \text{ V}$$

$$i_L(t) = 40e^{-20t} - 60e^{-10t} \text{ mA}$$

where v_C and i_L are the capacitor voltage and inductor current, respectively. Determine the values of R, L, and C.

8.16 Find i(t) for t > 0 in the circuit of Fig. 8.70.

Figure 8.70 For Prob. 8.16.

8.17 Obtain v(t) for t > 0 in the circuit of Fig. 8.71.

Figure 8.71 For Prob. 8.17.

8.18 • The switch in the circuit of Fig. 8.72 has been closed for a long time but is opened at t = 0. Determine i(t) for t > 0.

Figure 8.72 For Prob. 8.18.

*8.19 Calculate v(t) for t > 0 in the circuit of Fig. 8.73.

Figure 8.73 For Prob. 8.19.

Section 8.4 Source-Free Parallel *RLC* Circuit

8.20 For a parallel *RLC* circuit, the responses are

$$v_L(t) = 4e^{-20t}\cos 50t - 10e^{-20t}\sin 50t \text{ V}$$

 $i_C(t) = -6.5e^{-20t}\cos 50t \text{ mA}$

where i_C and v_L are the capacitor current and inductor voltage, respectively. Determine the values of R, L, and C.

8.21 For the network in Fig. 8.74, what value of C is needed to make the response underdamped with unity damping factor ($\alpha = 1$)?

^{*}An asterisk indicates a challenging problem.

Figure 8.74 For Prob. 8.21.

8.22 Find v(t) for t > 0 in the circuit in Fig. 8.75.

Figure 8.75 For Prob. 8.22.

8.23 In the circuit in Fig. 8.76, calculate $i_o(t)$ and $v_o(t)$ for t > 0.

Figure 8.76 For Prob. 8.23.

Section 8.5 Step Response of a Series *RLC* Circuit

8.24 The step response of an *RLC* circuit is given by

$$\frac{d^2i}{dt^2} + 2\frac{di}{dt} + 5i = 10$$

Given that i(0) = 2 and di(0)/dt = 4, solve for i(t).

8.25 A branch voltage in an *RLC* circuit is described by

$$\frac{d^2v}{dt^2} + 4\frac{dv}{dt} + 8v = 24$$

If the initial conditions are v(0) = 0 = dv(0)/dt, find v(t).

8.26 The current in an *RLC* network is governed by the differential equation

$$\frac{d^2i}{dt^2} + 3\frac{di}{dt} + 2i = 4$$

subject to i(0) = 1, di(0)/dt = -1. Solve for i(t).

8.27 Solve the following differential equations subject to the specified initial conditions

(a)
$$d^2v/dt^2 + 4v = 12$$
, $v(0) = 0$, $dv(0)/dt = 2$

(b)
$$d^2i/dt^2 + 5 di/dt + 4i = 8$$
, $i(0) = -1$, $di(0)/dt = 0$

(c)
$$d^2v/dt^2 + 2 dv/dt + v = 3$$
, $v(0) = 5$, $dv(0)/dt = 1$

(d)
$$d^2i/dt^2 + 2 di/dt + 5i = 10, i(0) = 4,$$

 $di(0)/dt = -2$

8.28 Consider the circuit in Fig. 8.77. Find $v_L(0)$ and $v_C(0)$.

Figure 8.77 For Prob. 8.28.

8.29 For the circuit in Fig. 8.78, find v(t) for t > 0.

Figure 8.78 For Prob. 8.29.

8.30 Find v(t) for t > 0 in the circuit in Fig. 8.79.

Figure 8.79 For Prob. 8.30.

8.31 Calculate i(t) for t > 0 in the circuit in Fig. 8.80.

Figure 8.80 For Prob. 8.31.

8.32 Determine v(t) for t > 0 in the circuit in Fig. 8.81.

Figure 8.81 For Prob. 8.32.

8.33 Obtain v(t) and i(t) for t > 0 in the circuit in Fig. 8.82.

Figure 8.82 For Prob. 8.33.

*8.34 For the network in Fig. 8.83, solve for i(t) for t > 0.

Figure 8.83 For Prob. 8.34.

8.35 Refer to the circuit in Fig. 8.84. Calculate i(t) for t > 0.

Figure 8.84 For Prob. 8.35.

8.36 Determine v(t) for t > 0 in the circuit in Fig. 8.85.

Figure 8.85 For Prob. 8.36.

8.37 The switch in the circuit of Fig. 8.86 is moved from position a to b at t = 0. Determine i(t) for t > 0.

Figure 8.86 For Prob. 8.37.

*8.38 For the network in Fig. 8.87, find i(t) for t > 0.

Figure 8.87 For Prob. 8.38.

*8.39 Given the network in Fig. 8.88, find v(t) for t > 0.

Figure 8.88 For Prob. 8.39.

Section 8.6 Step Response of a Parallel *RLC*Circuit

8.40 In the circuit of Fig. 8.89, find v(t) and i(t) for t > 0. Assume v(0) = 0 V and i(0) = 1 A.

Figure 8.89 For Prob. 8.40.

8.41 Find i(t) for t > 0 in the circuit in Fig. 8.90.

Figure 8.90 For Prob. 8.41.

8.42 Find the output voltage $v_o(t)$ in the circuit of Fig. 8.91.

Figure 8.91 For Prob. 8.42.

8.43 Given the circuit in Fig. 8.92, find i(t) and v(t) for t > 0.

Figure 8.92 For Prob. 8.43.

8.44 Determine i(t) for t > 0 in the circuit of Fig. 8.93.

Figure 8.93 For Prob. 8.44.

8.45 For the circuit in Fig. 8.94, find i(t) for t > 0.

Figure 8.94 For Prob. 8.45.