```
In [1]:
         Problem definition:
         Classifiy people with diabetes using Kaggle 'diabetes2.csv' dataset
         Use Support Vector Classifier (SVC) with Cross Validation and Hyper Parameter
         Tuning
         .....
Out[1]: " \nProblem definition:\nClassifiy people with diabetes using Kaggle 'diabete
        s2.csv' dataset\nUse Support Vector Classifier (SVC) with Cross Validation an
        d Hyper Parameter Tuning\n\n"
In [2]: # import libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
         sns.set(style="whitegrid", font_scale=1.5)
In [3]: | # read data
         data = pd.read_csv('diabetes2.csv')
         data.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
        Pregnancies
                                     768 non-null int64
        Glucose
                                     768 non-null int64
        BloodPressure
                                     768 non-null int64
        SkinThickness
                                     768 non-null int64
        Insulin
                                     768 non-null int64
        BMI
                                     768 non-null float64
        DiabetesPedigreeFunction
                                     768 non-null float64
        Age
                                     768 non-null int64
        Outcome
                                     768 non-null int64
        dtypes: float64(2), int64(7)
        memory usage: 54.1 KB
In [4]: # info does not show missing data
```

In [5]: data.head(10)

Out[5]:

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    |
| 5 | 5           | 116     | 74            | 0             | 0       | 25.6 | 0.201                    |
| 6 | 3           | 78      | 50            | 32            | 88      | 31.0 | 0.248                    |
| 7 | 10          | 115     | 0             | 0             | 0       | 35.3 | 0.134                    |
| 8 | 2           | 197     | 70            | 45            | 543     | 30.5 | 0.158                    |
| 9 | 8           | 125     | 96            | 0             | 0       | 0.0  | 0.232                    |
| 4 |             |         |               |               |         |      | <b>•</b>                 |

## Out[6]:

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|
| 0   | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.6                      |
| 443 | 8           | 108     | 70            | 0             | 0       | 30.5 | 0.9                      |
| 440 | 0           | 189     | 104           | 25            | 0       | 34.3 | 0.4                      |
| 439 | 6           | 107     | 88            | 0             | 0       | 36.8 | 0.7                      |
| 438 | 1           | 97      | 70            | 15            | 0       | 18.2 | 0.1                      |
| 437 | 5           | 147     | 75            | 0             | 0       | 29.9 | 0.4                      |
| 436 | 12          | 140     | 85            | 33            | 0       | 37.4 | 0.2                      |
| 435 | 0           | 141     | 0             | 0             | 0       | 42.4 | 0.2                      |
| 434 | 1           | 90      | 68            | 8             | 0       | 24.5 | 1.1                      |
| 433 | 2           | 139     | 75            | 0             | 0       | 25.6 | 0.1                      |
| 430 | 2           | 99      | 0             | 0             | 0       | 22.2 | 0.1                      |
| 426 | 0           | 94      | 0             | 0             | 0       | 0.0  | 0.2                      |
| 423 | 2           | 115     | 64            | 22            | 0       | 30.8 | 0.4                      |
| 418 | 1           | 83      | 68            | 0             | 0       | 18.2 | 0.6                      |
| 417 | 4           | 144     | 82            | 32            | 0       | 38.5 | 0.5                      |
| 416 | 1           | 97      | 68            | 21            | 0       | 27.2 | 1.0                      |
| 410 | 6           | 102     | 90            | 39            | 0       | 35.7 | 0.6                      |
| 408 | 8           | 197     | 74            | 0             | 0       | 25.9 | 1.1                      |
| 407 | 0           | 101     | 62            | 0             | 0       | 21.9 | 0.3                      |
| 406 | 4           | 115     | 72            | 0             | 0       | 28.9 | 0.3                      |
| 4   |             |         |               |               |         |      | <b>•</b>                 |

```
In [7]: # now we can clearly see that the Insulin column has many 0 values

# let's visualize by plotting the Insulin Level values

plt.figure(figsize = (15, 8))
plt.scatter(np.arange(1, len(data) + 1), data['Insulin'], s = 50, c = 'b')
plt.xlabel('Data Point #', fontsize = 20, labelpad = 15)
plt.ylabel('Insulin Level', fontsize = 20, labelpad = 15)
plt.show()
```



In [8]: # close to 380 data points have missing insulin levels data

```
In [9]: # let's zoom in

plt.figure(figsize = (15, 8))
   plt.scatter(np.arange(371, 381), data['Insulin'].iloc[370:380], s = 80, c =
   'b')
   plt.xlabel('Data Point #', fontsize = 20, labelpad = 15)
   plt.ylabel('Insulin Level', fontsize = 20, labelpad = 15)
   plt.show()
```



data.head(20)

In [10]: # yes, the first 374 points out of 768 entries in Insulin column are missing v
alues
# this is a large amount of missing data which we clearly cannot impute
# Insulin level is critical feature in detecting diabetes, thus, we will need
to use only data with non-zero values

data = data.iloc[374:, :] # select all data points beyond point with index 373
(indices start with 0)

## Out[10]:

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | ВМІ  | DiabetesPedigreeFunction |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|
| 445 | 0           | 180     | 78            | 63            | 14      | 59.4 | 2.4:                     |
| 617 | 2           | 68      | 62            | 13            | 15      | 20.1 | 0.2                      |
| 760 | 2           | 88      | 58            | 26            | 16      | 28.4 | 0.7                      |
| 108 | 3           | 83      | 58            | 31            | 18      | 34.3 | 0.3                      |
| 566 | 1           | 99      | 72            | 30            | 18      | 38.6 | 0.4                      |
| 711 | 5           | 126     | 78            | 27            | 22      | 29.6 | 0.4                      |
| 182 | 1           | 0       | 74            | 20            | 23      | 27.7 | 0.29                     |
| 52  | 5           | 88      | 66            | 21            | 23      | 24.4 | 0.3                      |
| 597 | 1           | 89      | 24            | 19            | 25      | 27.8 | 0.5                      |
| 323 | 13          | 152     | 90            | 33            | 29      | 26.8 | 0.7                      |
| 225 | 1           | 87      | 78            | 27            | 32      | 34.6 | 0.1                      |
| 51  | 1           | 101     | 50            | 15            | 36      | 24.2 | 0.5                      |
| 109 | 0           | 95      | 85            | 25            | 36      | 37.4 | 0.2                      |
| 466 | 0           | 74      | 52            | 10            | 36      | 27.8 | 0.2                      |
| 112 | 1           | 89      | 76            | 34            | 37      | 31.2 | 0.1!                     |
| 232 | 1           | 79      | 80            | 25            | 37      | 25.4 | 0.5                      |
| 68  | 1           | 95      | 66            | 13            | 38      | 19.6 | 0.3                      |
| 103 | 1           | 81      | 72            | 18            | 40      | 26.6 | 0.2                      |
| 290 | 0           | 78      | 88            | 29            | 40      | 36.9 | 0.4                      |
| 607 | 1           | 92      | 62            | 25            | 41      | 19.5 | 0.4                      |
| 4   |             |         |               |               |         |      | <b>•</b>                 |

In [11]: # seems data is clean now, however, check the suspect features again by plotting

```
In [12]: # plot of Insulin levels after 0s removal

plt.figure(figsize = (15, 8))
  plt.scatter(np.arange(1, len(data) + 1), data['Insulin'], s = 50, c = 'b')
  plt.xlabel('Data Point #', fontsize = 20, labelpad = 15)
  plt.ylabel('Insulin Level', fontsize = 20, labelpad = 15)
  plt.show()
```





```
In [14]: # plot of Blood Pressure values

plt.figure(figsize = (15, 8))
plt.scatter(np.arange(1, len(data) + 1), data['BloodPressure'], s = 50, c =
    'b')
plt.xlabel('Data Point #', fontsize = 20, labelpad = 15)
plt.ylabel('Blood Pressure', fontsize = 20, labelpad = 15)
plt.show()
```



```
In [15]: # we have got ridden of 0 values in these columns
    # however, although we are not medical experts, values for the blood pressure
    low level below 40 are highly unlikely
    # if we set a threshold of 35 we will have only three points out of range
    # since this is a small percantege of the total points (< 1%) we can eliminate
    the entire rows with such blood pressure values</pre>
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 391 entries, 445 to 13
Data columns (total 9 columns):
Pregnancies
                             391 non-null int64
Glucose
                             391 non-null int64
BloodPressure
                             391 non-null int64
                             391 non-null int64
SkinThickness
                             391 non-null int64
Insulin
BMI
                             391 non-null float64
DiabetesPedigreeFunction
                             391 non-null float64
                             391 non-null int64
Age
Outcome
                             391 non-null int64
dtypes: float64(2), int64(7)
memory usage: 30.5 KB
```



In [18]: # data is good
# Let's take a Look at data again
data.head(10)

## Out[18]:

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|
| 445 | 0           | 180     | 78            | 63            | 14      | 59.4 | 2.4                      |
| 617 | 2           | 68      | 62            | 13            | 15      | 20.1 | 0.2                      |
| 760 | 2           | 88      | 58            | 26            | 16      | 28.4 | 0.7                      |
| 108 | 3           | 83      | 58            | 31            | 18      | 34.3 | 0.3                      |
| 566 | 1           | 99      | 72            | 30            | 18      | 38.6 | 0.4                      |
| 711 | 5           | 126     | 78            | 27            | 22      | 29.6 | 0.4                      |
| 182 | 1           | 0       | 74            | 20            | 23      | 27.7 | 0.2                      |
| 52  | 5           | 88      | 66            | 21            | 23      | 24.4 | 0.3                      |
| 323 | 13          | 152     | 90            | 33            | 29      | 26.8 | 0.73                     |
| 225 | 1           | 87      | 78            | 27            | 32      | 34.6 | 0.1                      |
| 4   |             |         |               |               |         |      | <b>+</b>                 |

```
In [19]: # finish our data exploration with pair plots
# 1st half of features

sns.pairplot(data.iloc[:, 0:4], height = 5, aspect = 1)
plt.tight_layout
plt.show()
```



In [20]: # the distributions of the features do not appear unsual and there does not appear strong correlation between the features
# however, we see that we have missed a point with Glucose level = 0 --> will need to eliminate that entry

```
In [21]: # 2nd half of features
              sns.pairplot(data.iloc[:, 4:-1], height = 5, aspect = 1)
              plt.tight layout
              plt.show()
                800
              ilnsuli
400
                200
                 70
                 60
               ₩ 30
                 10
                  0
               DiabetesPedigreeFunction 0.5 0.5
                 0.0
                 80
                 70
                 60
               96 50
                              400
                                   600
                                                                                                                 40
                                                                                                          20
                                                                                DiabetesPedigreeFunction
```

In [22]: # there is nothing that strikes us as unusual (for non-experts in diabetes) # however, here too, we have a point with BMI = 0 --> eliminate that entry, as well

```
In [23]:
         data = data[data['Glucose'] > 1] # setting threshold slightly above 0
         data = data[data['BMI'] > 1]
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 389 entries, 445 to 13
         Data columns (total 9 columns):
         Pregnancies
                                      389 non-null int64
         Glucose
                                      389 non-null int64
         BloodPressure
                                      389 non-null int64
         SkinThickness
                                      389 non-null int64
                                      389 non-null int64
         Insulin
         BMI
                                      389 non-null float64
                                      389 non-null float64
         DiabetesPedigreeFunction
                                      389 non-null int64
         Age
         Outcome
                                      389 non-null int64
         dtypes: float64(2), int64(7)
         memory usage: 30.4 KB
In [24]: # finally, we have clean data with 389 total data points
         # from data select features, X, and target, y
         X = data.iloc[:, :-1].values # all columns but Outcome which is our target/lab
         els column
         y = data.iloc[:, -1].values # Last column, Outcome
In [25]: # use SVC
In [26]: # scale X since SVC uses distance as a measure of separation between points
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         X = scaler.fit_transform(X)
In [27]: # split in train and test subsets
         from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(X, y, test size = 0.2, ran
         dom state = 0)
In [28]: from sklearn.svm import SVC
         svc = SVC(gamma='scale', random state = 0)
In [29]: | svc = svc.fit(X train, y train)
         y_pred_0 = svc.predict(X_test) # good practice is to index the predictions in
          case you want to compare with later results
```

In [30]: # compare predictions, y pred 0, with test data, y test

```
from sklearn.metrics import confusion matrix, classification report
         print('Confusion Matrix:')
         print(confusion_matrix(y_test, y_pred_0))
         print('\n')
         print('Classification Report:')
         print(classification_report(y_test, y_pred_0))
         Confusion Matrix:
         [[51 4]
          [ 8 15]]
         Classification Report:
                       precision
                                  recall f1-score
                                                        support
                    0
                            0.86
                                      0.93
                                                 0.89
                                                             55
                    1
                            0.79
                                      0.65
                                                 0.71
                                                             23
             accuracy
                                                 0.85
                                                             78
                            0.83
                                                 0.80
                                                             78
            macro avg
                                      0.79
         weighted avg
                            0.84
                                      0.85
                                                 0.84
                                                             78
In [31]: # run cross validation to get avg score and std
         from sklearn.model selection import cross val score
         all accuracies = cross val score(estimator = svc, X = X, y = y, scoring = 'f1
         macro', cv = 10)
         print('All Accuracies:')
         print(all accuracies)
         print('\n')
         print('mean accuracy: ', round(np.mean(all_accuracies), 3))
         print('std: ', round(np.std(all accuracies), 3))
         All Accuracies:
         [0.66152363 0.66152363 0.64160401 0.79827586 0.68688671 0.72252964
          0.61735849 0.8583878 0.71111111 0.5210084 ]
         mean accuracy: 0.688
         std: 0.089
In [32]: # the CV avg accuracy is significantly lower than that of our initial model
```

```
In [33]: # optimize by using GridSearchCV
         from sklearn.model selection import GridSearchCV
         # set grid parameters as dictionary to define the GridSearch using the two mos
         t important parameters C and gamma
         grid params = {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.01, 0.1, 1], 'kerne
         1': ['rbf']}
         svc_grid = GridSearchCV(SVC(), grid_params, refit = True, verbose = 3, cv = 5,
         n jobs = -1)
         svc_grid.fit(X_train, y_train)
         Fitting 5 folds for each of 16 candidates, totalling 80 fits
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done
                                      8 tasks
                                                     elapsed:
                                                                   1.7s
         [Parallel(n_jobs=-1)]: Done 57 out of 80 | elapsed:
                                                                   1.8s remaining:
         0.7s
         [Parallel(n_jobs=-1)]: Done 80 out of 80 | elapsed:
                                                                  1.9s finished
         C:\Users\marin\Anaconda3\lib\site-packages\sklearn\model selection\ search.p
         y:814: DeprecationWarning: The default of the `iid` parameter will change fro
         m True to False in version 0.22 and will be removed in 0.24. This will change
         numeric results when test-set sizes are unequal.
           DeprecationWarning)
Out[33]: GridSearchCV(cv=5, error score='raise-deprecating',
                      estimator=SVC(C=1.0, cache size=200, class weight=None, coef0=0.
         0,
                                    decision function shape='ovr', degree=3,
                                    gamma='auto_deprecated', kernel='rbf', max_iter=-
         1,
                                    probability=False, random state=None, shrinking=Tr
         ue,
                                    tol=0.001, verbose=False),
                      iid='warn', n_jobs=-1,
                      param_grid={'C': [1, 10, 100, 1000],
                                   gamma': [0.001, 0.01, 0.1, 1], 'kernel': ['rbf']},
                      pre dispatch='2*n jobs', refit=True, return train score=False,
                      scoring=None, verbose=3)
In [34]: svc grid.best params
Out[34]: {'C': 1, 'gamma': 0.01, 'kernel': 'rbf'}
```

```
In [35]: # run CV with best estimator
         svc_opt = svc_grid.best_estimator_
         all_accuracies = cross_val_score(estimator = svc_opt, X = X, y = y, scoring =
          'f1 macro', cv = 10)
         print('All Accuracies:')
         print(all accuracies)
         print('\n')
         print('mean accuracy: ', round(np.mean(all_accuracies), 3))
         print('std: ', round(np.std(all accuracies), 3))
         All Accuracies:
         [0.60685484 0.66152363 0.54772525 0.83709273 0.73103448 0.72252964
          0.67622642 0.87962963 0.78333333 0.54982578]
         mean accuracy: 0.7
         std: 0.108
In [36]: # only marginal improvement
In [37]: # define finer grid for further optimization
         grid params = \{'C': [1, 2, 3, 4, 5], 'gamma': [0.005, 0.01, 0.015, 0.02, 0.025]
          , 0.03], 'kernel': ['rbf']}
         svc grid = GridSearchCV(SVC(), grid params, refit = True, verbose = 3, cv = 5,
         n jobs = -1
         svc grid.fit(X train, y train)
         Fitting 5 folds for each of 30 candidates, totalling 150 fits
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done 150 out of 150 | elapsed:
                                                                   0.1s finished
Out[37]: GridSearchCV(cv=5, error_score='raise-deprecating',
                      estimator=SVC(C=1.0, cache size=200, class weight=None, coef0=0.
         0,
                                     decision_function_shape='ovr', degree=3,
                                     gamma='auto deprecated', kernel='rbf', max iter=-
         1,
                                     probability=False, random state=None, shrinking=Tr
         ue,
                                     tol=0.001, verbose=False),
                      iid='warn', n_jobs=-1,
                      param grid={'C': [1, 2, 3, 4, 5],
                                   'gamma': [0.005, 0.01, 0.015, 0.02, 0.025, 0.03],
                                   'kernel': ['rbf']},
                      pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                      scoring=None, verbose=3)
```

```
In [38]: svc grid.best params
Out[38]: {'C': 1, 'gamma': 0.005, 'kernel': 'rbf'}
In [39]: # one last iteration of the search grid
         grid params = {'C': [1], 'gamma': [0.003, 0.004, 0.005, 0.006, 0.007], 'kerne
         1': ['rbf']}
         svc grid = GridSearchCV(SVC(), grid params, refit = True, verbose = 3, cv = 5,
         n jobs = -1)
         svc_grid.fit(X_train, y_train)
         Fitting 5 folds for each of 5 candidates, totalling 25 fits
         [Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done 11 out of 25 | elapsed:
                                                                  0.0s remaining:
         [Parallel(n jobs=-1)]: Done 20 out of 25 | elapsed:
                                                                  0.0s remaining:
         0.0s
         [Parallel(n jobs=-1)]: Done 25 out of 25 | elapsed:
                                                                  0.0s finished
Out[39]: GridSearchCV(cv=5, error_score='raise-deprecating',
                      estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.
         0,
                                    decision function shape='ovr', degree=3,
                                    gamma='auto deprecated', kernel='rbf', max iter=-
         1,
                                    probability=False, random state=None, shrinking=Tr
         ue,
                                    tol=0.001, verbose=False),
                      iid='warn', n jobs=-1,
                      param grid={'C': [1], 'gamma': [0.003, 0.004, 0.005, 0.006, 0.00
         7],
                                   'kernel': ['rbf']},
                      pre dispatch='2*n jobs', refit=True, return train score=False,
                      scoring=None, verbose=3)
In [40]: svc grid.best params
Out[40]: {'C': 1, 'gamma': 0.006, 'kernel': 'rbf'}
In [41]: | # we will stop here with optimization
```

```
In [42]: # run CV with best estimator
         svc_opt = svc_grid.best_estimator_
         all_accuracies = cross_val_score(estimator = svc_opt, X = X, y = y, scoring =
          'f1_macro', cv = 10)
         print('All Accuracies:')
         print(all accuracies)
         print('\n')
         print('mean accuracy: ', round(np.mean(all_accuracies), 3))
         print('std: ', round(np.std(all_accuracies), 3))
         All Accuracies:
         [0.60685484 0.66152363 0.56666667 0.79827586 0.638888889 0.74675325
          0.69907407 0.87962963 0.80788177 0.54982578]
         mean accuracy: 0.696
         std: 0.105
```

In [43]: | # despite the model tuning we could not improve further; we also note that the variance of the predictions is rather large # conclusion: SVC model predicts the outcome for diabetes from this data with an average accuracy of 70%