Zusammenfassung Geometrie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Geometrie von Kurven

Notation. Sei im Folgenden I ein Intervall, d. h. eine zusammenhängende Teilmenge von \mathbb{R} .

Def. Eine Abbildung $c: I \to \mathbb{R}^n$ heißt **reguläre Kurve**, wenn c beliebig oft differenzierbar ist und $c'(t) \neq 0$ für alle $t \in I$ gilt. Der affine Unterraum $\tau_{c,t} \coloneqq c(t) + \mathbb{R}(c'(t))$ heißt **Tangente** an c im Punkt c(t) bzw. Tangente an c zum Zeitpunkt t.

Def. Für eine reguläre Kurve $c:[a,b]\to\mathbb{R}^n$ heißt

$$L(c) \coloneqq \int_{a}^{b} \|c'(t)\| dt$$
 Bogenlänge (BL).

Satz. Die Bogenlänge ist invariant unter Umparametrisierung, d. h. sei $c: [a_2,b_2] \to \mathbb{R}^n$ eine reguläre Kurve und $\phi: [a_1,b_1] \to [a_2,b_2]$ ein Diffeomorphismus, dann gilt $L(c) = L(c \circ \phi)$.

Def. Eine reguläre Kurve $c: I \to \mathbb{R}^n$ heißt nach Bogenlänge parametrisiert, wenn ||c'(t)|| = 1 für alle $t \in I$.

Satz. Jede reguläre Kurve $c:I\to\mathbb{R}$ lässt sich nach BL parametrisieren, d. h. es existiert ein Intervall J und ein Diffeomorphismus $\phi:J\to I$, welcher sogar orientierungserhaltend ist, sodass $\tilde{c}:=c\circ\phi$ nach BL parametrisiert ist.

Def. Zwei Vektoren $a,b\in\mathbb{R}^n$ heißen **gleichgerichtet**, falls $a=\lambda b$ für ein $\lambda\geq 0$.

Satz. Sei $v:[a,b] \to \mathbb{R}^n$ stetig, dann gilt $\|\int_a^b v(t) dt\| \le \int_a^b \|v(t)\| dt$, wobei Gleichheit genau dann gilt, falls alle v(t) gleichgerichtet sind.

Satz. Sei $c:[a,b] \to \mathbb{R}^n$ eine reguläre Kurve und $x \coloneqq c(a), y \coloneqq c(b)$ Dann gilt $L(c) \ge d(x,y)$. Wenn L(c) = d(x,y), dann gibt es einen Diffeomorphismus $\phi:[a,b] \to [0,1]$, sodass $c = c_{xy} \circ \phi$, wobei

$$c_{xy}: [0,1] \to \mathbb{R}^n, \quad t \mapsto x + t(y-x).$$

Def. Sei $c: [a,b] \to \mathbb{R}^n$ eine stetige Kurve und $a=t_0 < t_1 < \ldots < t_k = b$ eine Zerteilung von [a,b]. Dann ist die Länge des **Polygonzugs** durch die Punkte $c(t_i)$ gegeben durch

$$\hat{L}_c(t_0,...,t_k) = \sum_{j=1}^k ||c(t_j) - c(t_{j-1})||.$$

Def. Eine stetige Kurve c heißt **rektifizierbar** von Länge \hat{L}_c , wenn gilt: Für alle $\epsilon > 0$ gibt es ein $\delta > 0$, sodass für alle Unterteilungen $a = t_0 < t1 < ... < t_k = b$ der Feinheit mindestens δ gilt:

$$\|\hat{L}_c - \hat{L}_c(t_0, t_1, ..., t_k)\| < \epsilon.$$

Def. Sei $c: I \to \mathbb{R}^n$ regulär und nach BL parametrisiert. Dann heißt der Vektor c''(t) **Krümmungsvektor** von c in $t \in I$ und die Abbildung $\kappa: I \to \mathbb{R}, \ t \mapsto \|c''(t)\|$ heißt **Krümmung** von c.

Def. Eine Kurve $c: I \to \mathbb{R}^2$ wird **ebene Kurve** genannt.

Def. Sei c eine reguläre, nach BL parametrisierte, ebene Kurve. Dann ist das **Normalenfeld** von c die Abbildung

$$n = n_c : I \to \mathbb{R}^2, \quad t \mapsto J \cdot c'(t) \quad \text{mit } J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Bemerkung. Für alle $t \in I$ bildet $(c'(t), n_c(t))$ eine positiv orientierte Orthonormalbasis des \mathbb{R}^2 . Es gilt außerdem $c''(t) \perp c'(t)$, also $c''(t) = \kappa(t) \cdot n_c(t)$, d. h. die Krümmung hat im \mathbb{R}^2 ein Vorzeichen.

Satz (Frenet-Gleichungen ebener Kurven). Sei $c: I \to \mathbb{R}^2$ regulär, nach BL parametrisiert und v = c', dann gilt

$$c'' = \kappa \cdot n$$
 und $n' = -\kappa \cdot v$.

Beispiel. Für die nach BL parametrisierte gegen den UZS durchlaufene Kreislinie mit Mittelpunkt $m \in \mathbb{R}^2$ und Radius r > 0

$$c:\mathbb{R}\to\mathbb{R}^2,\ t\mapsto m+r\begin{pmatrix}\cos(t/r)\\\sin(t/r)\end{pmatrix}\quad\text{gilt}\quad\forall\,t\in\mathbb{R}\,:\,\kappa(t)=\tfrac{1}{r}.$$

Satz. Sei $c: I \to \mathbb{R}^2$ glatte, nach BL parametrisiert mit konstanter Krümmung $\kappa(t) = R \neq 0$. Dann ist c Teil eines Kreisbogens mit Radius $\frac{1}{|R|}$.

Def. Für $c:I\to\mathbb{R}^2$ regulär, nicht notwendigerweiße nach BL parametrisiert, ist die Krümmung zur Zeit t definiert als

$$\kappa(t) := \frac{\det(c'(t), c''(t))}{\|c'(t)\|^3}.$$

Bemerkung. Obige Definition ist invariant unter orientierungserhaltenden Umparametrisierungen, und stimmt für nach BL parametrisierte Kurven mit der vorhergehenden Definition überein.

Satz (Hauptsatz der lokalen ebenen Kurventheorie). Sei $\kappa: I \to \mathbb{R}$ eine stetige Funktion und $t_0 \in I$ und $x_0, v_0 \in \mathbb{R}^2$ mit $||v_0|| = 1$. Dann gibt es ganu eine nach BL parametrisierte \mathcal{C}^2 -Kurve $c: I \to \mathbb{R}^2$ mit Krümmung κ , $c(t_0) = x_0$ und $c'(t_0) = v(t_0) = v_0$.

Def. Eine reguläre Kurve $c:[a,b] \to \mathbb{R}^n$ heißt **geschlossen**, falls c(a) = c(b) und c'(a) = c'(b). Eine reguläre geschlossene Kurve c heißt **einfach geschlossen**, wenn $c|_{[a,b[}$ injektiv ist.

Def. Für eine geschl. reguläre ebene Kurve $c:[a,b] \to \mathbb{R}^2$ heißt

$$\overline{\kappa}(c) := \int_a^b \kappa(t) \cdot \|c'(t)\| dt$$
 Totalkrümmung von c .

Bemerkung. Ist c nach BL parametrisiert, so ist $\overline{\kappa}(c) = \int_a^b \kappa(t) dt$.

Satz. Die Totalkrümmung ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $c: [a_2,b_2] \to \mathbb{R}^2$ eine reguläre Kurve und $\phi: [a_1,b_1] \to [a_2,b_2]$ eine Diffeomorphismus mit $\phi'>0$, dann gilt $\overline{\kappa}(c)=\overline{\kappa}(c\circ\phi)$.

Satz (Polarwinkelfunktion). Sei $\gamma: [a,b] \to S^1$ stetig (glatt) und $\omega_a \in \mathbb{R}$, sodass $\gamma(a) = e^{i\omega_a}$. Dann gibt es eine eindeutige stetige (glatte) Abb. $\omega: [a,b] \to \mathbb{R}$, genannt Polarwinkelfunktion von γ mit $\omega(a) = \omega_a$ und $\gamma(t) = e^{i\omega(t)} = {\cos(\omega(t)) \choose \sin(\omega(t))}$ für alle $t \in [a,b]$.

Satz. Seien ω und $\tilde{\omega}$ zwei stetige Polarwinkelfunktionen zu einer stetigen Abbildung $\gamma: [a,b] \to S^1$. Dann gibt es ein $k \in \mathbb{Z}$, sodass $\omega(t) - \tilde{\omega}(t) = 2\pi k$ für alle $t \in [a,b]$.

Satz. Für eine ebene reguläre geschl. Kurve $c:[a,b]\to\mathbb{R}^2$ heißt

$$U_c := \frac{1}{2\pi} \overline{\kappa}(c) = \frac{1}{2\pi} \int_a^b \kappa(t) \|c'(t)\| \, \mathrm{d}t \in \mathbb{Z} \quad \mathbf{Umlaufzahl} \text{ von } c.$$

 ${\bf Satz}$ (Umlaufsatz von Hopf). Die Umlaufsahl einer einfach geschlossenen regulären Kurve ist $\pm 1.$

Def. Für eine reg. geschlossene ebene Kurve $c:[a,b]\to\mathbb{R}^2$ heißt

$$\kappa_{\rm abs}(c) \coloneqq \int\limits_a^b |\kappa_c(t)| \cdot \|c'(t)\| \, \mathrm{d}t$$
 Absolutkrümmung.

Satz. Für die Absolutkrümmung einer einfach geschlossenen regulären Kurve $c:[a,b]\to\mathbb{R}^2$ gilt $\kappa_{\rm abs}\geq 2\pi$, wobei Gleichheit genau dann gilt, wenn κ_c das Vorzeichen nicht wechselt.

Satz (Whitney-Graustein). Für zwei glatte reguläre geschlossene ebene Kurven $c, d: [0, 1] \to \mathbb{R}^2$ sind folgende Aussagen äquivalent: (i) c ist zu d regulär homotop (ii) $U_c = U_d$

Def. Eine glatte reguläre Kurve $c:I\to\mathbb{R}^n\ (n\geq 3)$ heißt **Frenet-Kurve**, wenn für alle $t\in I$ die Ableitungen $c'(t),c''(t),...,c^{(n-1)}(t)$ linear unabhängig sind.

Def. Sei $c: I \to \mathbb{R}^n$ eine Frenet-Kurve und $t \in I$. Wende das Gram-Schmidtsche Orthogonalisierungsverfahren auf $\{c'(t), c''(t), ..., c^{(n-1)}(t)\}$ an und ergänze das resultierende Orthonormalsystem $(b_1(t), ..., b_{n-1}(t))$ mit einem passenden Vektor $b_n(t)$ zu einer Orthonormalbasis, die positiv orientiert ist. Die so definierten Funktionen $b_1, ..., b_n: I \to \mathbb{R}^n$ sind stetig und werden zusammen das **Frenet-**n-**Bein** von c genannt.

Def. Sei $(b_1, ..., b_n)$ das Frenet-n-Bein einer Frenet-Kurve c. Dann:

$$A := (\langle b'_j, b_k \rangle)_{jk} = \begin{pmatrix} 0 & \kappa_1 & & & 0 \\ -\kappa_1 & 0 & \kappa_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & -\kappa_{n-2} & 0 & \kappa_{n-1} \\ 0 & & & -\kappa_{n-1} & 0 \end{pmatrix}$$

Die Funktion $\kappa_j:I\to\mathbb{R},t\mapsto \langle b_j'(t),b_{j+1}(t)\rangle,j=1,...,n-1$ heißt j-te Frenet-Krümmung von c.

Satz (Hauptsatz der lokalen Raumkurventheorie). Seien $\kappa_1,...,\kappa_{n-1}:I\to\mathbb{R}$ glatte Funktionen mit $\kappa_1,...,\kappa_{n-2}>0$ und $t_0\in I$ und $\{v_1,...,v_n\}$ eine positiv orientierte Orthonormalbasis, sowie $x_0\in\mathbb{R}^n$. Dann gibt es genau eine nach BL parametrisierte Frenet-Kurve $c:I\to\mathbb{R}^n$, sodass gilt

- $c(t_0) = x_0$, das Frenet-n-Bein von c in t_0 ist $\{v_1, ..., v_n\}$ und
- die j-te Frenet-Krümmung von c ist κ_i .

Def (Frenet-Kurven im \mathbb{R}^3). Sei $c: I \to \mathbb{R}^3$ eine nach Bogenlänge parametrisierte Frenet-Kurve und $t \in I$. Dann heißt

- $b_1(t) = v(t) = c'(t)$ der Tangentenvektor an c in t,
- $b_2(t) = \frac{c''(t)}{\|c''(t)\|}$ Normalenvektor an c in t,
- $\operatorname{span}(b_1(t), b_2(t))$ Schmiegebene an c in t,
- $b_3(t) = b_1(t) \times b_2(t)$ Binormalenvektor an c in t,
- $\tau_c(t) = \tau(t) := \kappa_2(t) = \langle b_2'(t), b_3(t) \rangle$ Torsion o. Windung von c.

Bemerkung. Die Frenet-Gleichungen für nach BL parametrisierte Frenet-Kurven im \mathbb{R}^3 lauten

$$b'_1 = \kappa_c b_2, \quad b'_2 = -\kappa_c b_1 + \tau_c b_3, \quad b'_3 = -\tau_c b_2$$

Bemerkung. Für eine nicht nach BL parametrisierte Frenet-Kurve $c:I\to\mathbb{R}^3$ gilt für Krümmung und Torsion

$$\kappa_c \coloneqq \frac{\|c' \times c''\|}{\|c'\|^3}$$
 und $\tau_c \coloneqq \frac{\det(c', c'', c''')}{\|c' \times c''\|^2}$.

Def. Für eine glatte geschl. reguläre Kurve $c:[a,b]\to\mathbb{R}^n$ heißt

$$\overline{\kappa}(c) \coloneqq \int_a^b \kappa_c(t) \cdot \|c'(t)\| dt$$
 Totalkrümmung von c .

Hierbei ist die Krümmung einer regulären Raumkurve $c: I \to \mathbb{R}^n$ wie folgt definiert: Sei $\phi: I \to J$ orientierungserhaltend (d. h. $\phi' > 0$) und so gewählt, dass $\tilde{c} := c \circ \phi^{-1}: J \to \mathbb{R}^n$ nach BL parametrisiert ist, dann definieren wir $\kappa_c(t) := \kappa_{\tilde{c}}(\phi(t))$.

Satz (Fenchel). Für eine geschlossene reguläre glatte (oder C^2) Kurve $c: [a,b] \to \mathbb{R}^3$ gilt $\overline{\kappa}(c) \geq 2\pi$. Gleichheit tritt genau dann ein, wenn c eine einfach geschlossene konvexe reguläre glatte (oder C^2) Kurve ist, die in einer affinen Ebene des \mathbb{R}^3 liegt.

Satz. Sei $v:[0,b]\to S^2\subset\mathbb{R}^3$ eine stetige rektifizierbare Kurve der Länge $L<2\pi$ mit c(0)=c(b), so liegt das Bild von v ganz in einer offenen Hemisphäre.

Lokale Flächentheorie

Notation. Sei im Folgenden $m \in \mathbb{N}$ und $U \subset \mathbb{R}^m$ offen.

Def. Sei $f: U \to \mathbb{R}^n$ eine Abbildung und $v \in \mathbb{R}^m \setminus \{0\}$. Dann heißt

$$\partial_v f(u) := \lim_{h \to 0} \frac{f(u+hv)-f(u)}{h}$$

Richtungsableitung von f im Punkt u (falls der Limes existiert).

Def. Für $v = e_j$ heißt $\partial_j f(u) := \partial_{e_j} f(u)$ partielle Ableitung nach der j-ten Variable. Falls die partielle Ableitung für alle $u \in U$ existiert, erhalten wir eine Funktion $\partial_j : U \to \mathbb{R}^n, u \mapsto \partial_j f(u)$.

Notation.
$$\partial_{j_1,j_2,...,j_k} f := \partial_{j_1} (\partial_{j_2} (...(\partial_{j_k} f)))$$

Def. Eine Abbildung $f: U \to \mathbb{R}^n$ heißt \mathbb{C}^k -Abbildung, wenn alle k-ten partiellen Ableitungen von f existieren und stetig sind. Wenn $f \in \mathbb{C}^k$ für beliebiges $k \in \mathbb{N}$, so heißt f glatt.

Satz (Schwarz). Ist f eine \mathbb{C}^k -Abbildung, so kommt es bei allen l-ten partiellen Ableitungen mit $l \leq k$ nicht auf die Reihenfolge der partiellen Ableitungen an.

Def. Eine Abbildung $f:U\to\mathbb{R}^n$ heißt in $u\in U$ total differenzierbar, wenn gilt: Es gibt eine lineare Abbildung $D_uf=\partial f_u:\mathbb{R}^m\to\mathbb{R}^n$, genannt das totale Differential von f in u, sodass für genügend kleine $h\in\mathbb{R}^n$ gilt:

$$f(u+h) = f(u) + \partial f_u(h) + o(h)$$

für eine in einer Umgebung von 0 definierte Funktion $o: \mathbb{R}^n \to \mathbb{R}^m$ mit $\lim_{h\to 0} \frac{o(h)}{\|h\|} = 0$.

Def. Für eine total differenzierbare Funktion f heißt die Matrix $J_u f = (D_u f(e_1), ..., D_u f(e_n))$ **Jacobi-Matrix** von f in u.

Bemerkung. Es gelten folgende Implikationen:

f ist stetig partiell differenzierbar

 $\implies f$ ist total differenzierbar ($\implies f$ ist stetig)

 $\implies f$ ist partiell differenzierbar

Def. Eine total differenzierbare Abbildung $f:U\to\mathbb{R}^n$ heißt **regulär** oder **Immersion**, wenn für alle $u\in U$ gilt: $\mathrm{Rang}(J_uf)=m,$ d. h. alle partiellen Ableitungen sind in jedem Punkt linear unabhängig und J_uf ist injektiv. Insbesondere muss $m\leq n$ gelten.

Def. Sei $X:U\to\mathbb{R}^n$ eine (glatte) Immersion. Dann heißt das Bild f(U) immergierte Fläche, immersierte Fläche oder parametrisiertes Flächenstück. Sei \tilde{U} offen in \mathbb{R}^n und $\phi:\tilde{U}\to U$ ein Diffeomorphismus, dann heißt $\tilde{X}:=X\circ\phi:\tilde{U}\to\mathbb{R}^n$ **Umparametrisierung** von X.

Notation. Sei im folgenden $X: U \to \mathbb{R}^n$ eine Immersion.

 $\mathbf{Def.}\;$ Für $u\in U$ heißt der Untervektorraum

$$T_u X := \operatorname{span}(\partial_1 X(u), ..., \partial_m X(u)) = \operatorname{Bild}(D_u X) \subset \mathbb{R}^n$$

Tangentialraum von X in u und sein orthogonales Komplement $N_u X := (T_u X)^{\perp} \subset \mathbb{R}^n$ **Normalraum** an X in u.

Bemerkung. Für $u \in U$ definiert

$$\langle v, w \rangle_u := \langle D_u X(v), D_u X(w) \rangle_{\text{eukl}}$$

ein Skalarprodukt auf dem \mathbb{R}^m . Die Positiv-Definitheit folgt dabei aus der Injektivität von D_u .

Notation. Bezeichne mit SymBil(\mathbb{R}^m) die Menge der symmetrischen Bilinearformen auf \mathbb{R}^m .

Def. Die erste Fundamentalform (1.FF) einer Immersion X ist

$$I: U \to SymBil(\mathbb{R}^m), \quad u \mapsto I_u := \langle \cdot, \cdot \rangle_u.$$

Äquivalent dazu wird auch die Abbildung

$$g: U \to \mathbb{R}^{m \times m}, \quad u \mapsto g_u := (J_u X)^T (J_u X)$$

manchmal als erste Fundamentalform bezeichnet.

Def. Sei $c:[a,b] \to \mathbb{R}^n$ eine glatte Kurve. Wir nennen c eine **Kurve** auf X, wenn es eine glatte Kurve $\alpha:[a,b] \to U$ mit $c=X \circ \alpha$ gibt.

Bemerkung. Dann gilt
$$L(c) := \int_a^b \lVert c'(t) \rVert \, \mathrm{d}t = \int_a^b \lVert D_{\alpha(t)} X(\alpha'(t)) \rVert \, \mathrm{d}t.$$

Bemerkung. Seien $c_1 = X \circ \alpha_1$ und $c_2 = X \circ \alpha_2$ zwei reguläre Kurven auf X, die sich in einem Punkt schneiden, d. h. $\alpha_1(t_1) = \alpha_2(t_2) =: u$. Dann ist der Schnittwinkel $\measuredangle(c_1'(t), c_2'(t))$ von c_1 und c_2 in X(u) gegeben durch:

$$\begin{aligned} \cos(\measuredangle(c_1'(t), c_2'(t))) &= \frac{\langle c_1'(t_1), c_2'(t_2) \rangle}{\|c_1'(t_1)\| \cdot \|c_2'(t_2)\|} \\ &= \frac{I_u(\alpha_1'(t_1), \alpha_2'(t_2))}{\sqrt{I_u(\alpha_1'(t_1), \alpha_1'(t_1)) \cdot I_u(\alpha_2'(t_2), \alpha_2'(t_2))}} \end{aligned}$$

 $\mathbf{Def.}\,$ Sei $C\subset U$ eine kompakte messbare Teilmenge, dann heißt

$$A(X(C)) := \int\limits_{C} \sqrt{\det(g_u)} \, \mathrm{d}u$$
 Flächeninhalt von $X(C)$.

Satz (Transformation der ersten FF). Sei $\tilde{X} = X \circ \phi$ eine Umparametrisierung von X mit einem Diffeo $\phi : \tilde{U} \to U$, dann gilt

$$\forall \, \tilde{u} \in \tilde{U} \, : \, \tilde{g}_{\tilde{u}} = (J_{\tilde{u}}\tilde{X})^T (J_{\tilde{u}}\tilde{X}) = (J_{\tilde{u}}(\phi))^T \cdot g_{\phi(\tilde{u})} \cdot (J_{\tilde{u}}(\phi)).$$

Beispiel (Drehfläche). Sei $c:I\to\mathbb{R}_{>0}\times\mathbb{R},t\mapsto(r(t),z(t))$ eine reguläre glatte Kurve. Dann heißt

$$X: I \times \mathbb{R} \to \mathbb{R}^3$$
, $(t,s) \mapsto (r(t)\cos(s), r(t)\sin(s), z(t))$

Drehfläche mit Profilkurve c. Es gilt:

$$g_{(t,s)} = \begin{pmatrix} \|c'(t)\|^2 & 0\\ 0 & r(t)^2 \end{pmatrix}$$

Beispiel (Kugelfläche). Die Einheitssphäre im \mathbb{R}^3 ist

$$X: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(s,t) \mapsto (-\sin(t)\cos(t), \cos^2(t), \sin(t))$.

Def. Zwei Immersionen $X:U\to\mathbb{R}^n$ und $\tilde{X}:\tilde{U}\to\mathbb{R}^k$ heißen **lokal isometrisch**, wenn es eine Umparametrisierung $\phi:U\to\tilde{U}$ gibt, sodass die ersten Fundamentalformen von X und $\tilde{X}\circ\phi$ übereinstimmen. Ist eine Immersion X isometrisch zu einer Immersion, deren Bild eine offene Teilmenge einer affinen Ebene ist, so heißt X abwickelbar.

Def. Sei $X: U \to \mathbb{R}^n$ eine Immersion mit $U \subset \mathbb{R}^{n-1}$ offen. Dann heißt X **Hyperfläche** (HF) im \mathbb{R}^n .

Bemerkung. Es gilt in diesem Fall offenbar dim $T_u = n-1$ und dim $N_u = 1$ für $u \in U$ und für einen Vektor $\nu_u \in N_u X \setminus \{0\}$ gilt $N_u X = \mathbb{R} \cdot v_u$.

Def.
$$v_u := \sum_{j=1}^n \det(\partial_1 X(u), ..., \partial_{n-1} X(u), e_j) e_j$$

 $Bemerkung. \ \, \text{Es gilt:}$

- $v_u \in N_u X \setminus \{0\}$ $\det(\partial_1 X(u), ..., \partial_{n-1} X(u), v_u) > 0$
- Für n=3 und m=2 ist $v_u=\partial_1 X(u)\times \partial_2 X(u)$.

Notation. $S^n := \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ heißt Einheitssphäre.

Def. Für eine Hyperfläche $X: U \to \mathbb{R}^n$ heißt

$$\nu: U \to S^{n-1}, \quad u \mapsto \nu_u \coloneqq \frac{v_u}{\|v_u\|}$$
 Gaußabbildung.

Satz. Die Gaußabbildung einer Hyperfläche ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $\phi: \tilde{U} \to U$ ein Diffeo mit $\det(J_{\tilde{u}}\phi) > 0$ für alle $\tilde{u} \in \tilde{U}$, dann ist $\tilde{\nu} = \nu \circ \phi$.

Notation. Bil($\mathbb{R}^m, \mathbb{R}^n$) := { $B : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^n \mid B \text{ bilinear } }$

Def. Die vektorwertige zweite Fundamentalform ist die Abbildung einer Immersion X ist die Abbildung

$$II: U \to Bil(\mathbb{R}^m, \mathbb{R}^n), \quad u \mapsto II(u) = II_u, \text{ mit}$$

$$\mathbb{I}_u : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^n, \quad (v, w) \mapsto \mathbb{I}_u(v, w) := (\partial_v \partial_w X(u))^{N_u},$$

wobei $(\cdot)^{N_u}$ die orth. Projektion auf den Normalenraum bezeichnet.

Bemerkung. Nach dem Satz von Amandus Schwarz ist \mathbb{I}_u eine symmetrische Bilinearform.

Bemerkung. Für eine Hyperfläche $X: U \to \mathbb{R}^n$, $(U \otimes \mathbb{R}^{n-1})$ gilt

$$\mathbb{I}_u(v, w) = h_u(v, w)\nu_u \quad \text{mit} \quad h_u(v, w) = \langle \mathbb{I}_u(v, w), \nu_u \rangle.$$

Def. Die Abbildung $h: U \to \operatorname{SymBil}(\mathbb{R}^{n-1}), u \mapsto h_u = h(u)$ mit $h_u(v, w) = \langle \mathbb{I}_u(v, w), \nu_u \rangle = \langle \partial_v \partial_w X(u), \nu_u \rangle$ heißt **zweite Fundamentalform** (2. FF) der Hyperfläche X.

Bemerkung. Man kann die 2. FF als matrixwertige Abb. auffassen:

$$h: U \to \mathbb{R}^{(n-1)\times(n-1)}, \quad u \mapsto (h_{ik}(u)) = \langle \partial_i \partial_k X(u), \nu_u \rangle$$

 $\mathbf{Satz.}\,$ Für die Gaußabbildung ν einer Hyperfläche $X:U\to\mathbb{R}^n$ gilt

$$\langle \partial_j \nu, \partial_k X \rangle = -h_{jk}$$
 und $\langle \partial_j \nu, \nu \rangle = 0$ für alle $j, k \in \{1, ..., m\}$.

Def. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche und $u \in U$, dann ist die Weingartenabbildung von X im Punkt u definiert durch

$$W_u := -D_u \nu \circ (D_u X)^{-1} : T_u X \to T_u X$$
 (linear).

Bemerkung. Es gilt $W_u(\partial_i X(u)) = -\partial_i \nu(u)$.

Satz. • W_u ist selbstadjungiert bzgl. der Einschränkung $\langle \cdot, \cdot \rangle_{T_u}$.

- $h_{ik}(u) = \langle W_u(\partial_i X(u)), \partial_k X(u) \rangle$
- Die Weingartenabbildung ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $\phi: \tilde{U} \to U$ ein Diffeo mit $\det(J\phi) > 0$, dann gilt für $\tilde{X} := X \circ \phi$ und alle $\tilde{u} \in \tilde{U} : W_{\phi(\tilde{u})} = \tilde{W}_{\tilde{u}}$.

Satz. Sei $g_u = (g_{jk}(u))$ die Matrix der ersten und $h_u = (h_{jk}(u))$ die Matrix der zweiten FF einer Hyperfläche X, dann gilt für die Matrix $w_u = (w_{jk}(u))$ von W_u bzgl. der Basis $\{\partial_1 X(u), ..., \partial_{n-1} X(u)\}$ von $T_u X$:

$$w_u = g_u^{-1} \cdot h_u$$

Bemerkung. Die Weingartenabbildung ist als selbstadjungierter Endomorphismus reell diagonalisierbar (Spektralsatz).

Def. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche.

- Die Eigenwerte $\kappa_1(u), ..., \kappa_{n-1}(u)$ mit Vielfachheiten von W_u heißen **Hauptkrümmungen** von X in u und die dazugehörigen Eigenvektoren **Hauptkrümmungsrichtungen** von X in u.
- Die mittlere Krümmung von X ist definiert als

$$H: U \to \mathbb{R}, \quad u \mapsto \frac{1}{n-1} \operatorname{spur}(W_u) = \frac{1}{n-1} \sum_{i=1}^{n-1} \kappa_j(u).$$

• Die Gauß-(Kronecker-)Krümmung von X ist die Abbildung

$$K: U \to \mathbb{R}, \quad u \mapsto \det(W_u) = \frac{\det(h_u)}{\det(g_u)} = \prod_{j=1}^{n-1} \kappa_j(u).$$

Satz. Die Hauptkrümmungen, die mittlere Krümmung und die Gauß-Kronecker-Krümmung sind invariant unter orientierungserhaltenden Umparametrisierungen.

Beispiel. Für die Drehfläche (s. o.) von $c = (r, z) : I \to \mathbb{R}_{>0} \times \mathbb{R}$ gilt:

$$w = \begin{pmatrix} \kappa & 0 \\ 0 & \frac{z'}{|c'|r} \end{pmatrix}, \quad \kappa_1 = \frac{\det(c', c'')}{|c'|^3} = \frac{z''r' - r''z'}{|c'|^3}, \quad \kappa_2 = \frac{z'}{|c'|r}.$$

Satz. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche und $u_0 \in U$ ein Punkt. Dann gibt es eine offene Umgebung $U_0 \subseteq U$ von u_0 und eine Umparametrisierung $\phi: U_0 \to \tilde{U}$, sodass für $\tilde{X} := X \circ \phi^{-1}$ gilt: Es gibt eine glatte (bzw. \mathcal{C}^2) Funktion $f: \tilde{U} \to \mathbb{R}$ mit $D_{\phi(u_0)}f = 0$, sodass $\tilde{X} = \text{Graph}(f)$, d. h. es gilt für alle $\tilde{u} \in \tilde{U}$:

$$\tilde{X}(\tilde{u}) = (\tilde{u}, f(\tilde{u})).$$

Notation. $\nabla f = (\partial_1 f, ..., \partial_k f)$ heißt Gradient von $f : \mathbb{R}^k \to \mathbb{R}^m$.

Satz. Sei $U \subseteq \mathbb{R}^{n-1}$ und $f: U \to \mathbb{R}$ glatt. Dann ist die zweite FF der Graphen-Hyperfläche $X: U \to \mathbb{R}^n, u \mapsto (u, f(n))$

$$h_{jk}(u) = \frac{\partial_{jk} f(u)}{\sqrt{1 + |\nabla f(u)|^2}}.$$

Satz. Sei $X: U \to \mathbb{R}^n$ eine HF, $u_0 \in U$, sowie $E_{u_0} := X(u_0) + T_{u_0}X$ die affine Tangentialebene an X in u_0 . Dann gilt:

- Ist K(u₀) > 0, so liegt für eine kleine offene Umgebung U₀ ⊂ U von u₀ das Bild X(U₀) ganz auf einer Seite von E_{u₀}.
- Ist $K(u_0) < 0$, so trifft für jede Umgebung $U_0 \subset U$ von u_0 das Bild $X(U_0)$ beide Seiten von E_{u_0} .

Def. Sei $u_0 \in U$, $v \in T_{u_0}X$, $P_v := X(u_0) + \operatorname{span}(v, \nu(u_0))$. Sei $U_0 \subset U$ eine offene Umgebung von u_0 , dann heißt

$$P_v \cap X(U_0)$$
 Normalenschnitt in u_0 in Richtung v .

Satz. Wenn U_0 hinreichend klein, dann ist $P_v \cap X(U_0)$ Bild einer regulären glatten Kurve.

Def. Für $u \in U$ und $v \in \mathbb{R}^n$ mit ||v|| = 1 heißt

$$\kappa_v(u) := \langle W_u v, v \rangle$$
 Normalenkrümmung in u in Richtung v .

Bemerkung. Sei ||v|| = 1. Sei $c: I \to P_v \tilde{=} \mathbb{R}^2$ nach BL parametrisiert, sodass $\operatorname{Bild}(c) = P_v \cap X(U_0)$, und $c(0) = X(u_0)$ und c'(0) = v. Dann: $\kappa_v(u) = \kappa_c(0)$

Satz. Die Hauptkrümmungen $\kappa_1(u_0), \kappa_2(u_0)$ einer HF $X: U \to \mathbb{R}^3$ in $u_0 \in U$ sind die Extrema der Abbildung

$$T_{u_0}X \supset S^1 \to \mathbb{R}, \quad v \mapsto \kappa_v(u_0) = \langle W_{u_0}v, v \rangle.$$

Die Levi-Civita-Ableitung

Def. Ein Vektorfeld (VF) auf einer offenen Menge $U \otimes \mathbb{R}^m$ ist eine Abbildung $v: U \to \mathbb{R}^m$.

Notation. $\chi(U) = \{v : U \to \mathbb{R}^n \mid v \text{ glatt}\}\$

Def. Sei $X: U \to \mathbb{R}^n$ eine immergierte Fläche, $U \subset \mathbb{R}^m$. Ein tangentiales Vektorfeld längs X ist eine glatte Abbildung

$$V: U \to \mathbb{R}^n \quad \text{mit} \quad \forall u \in U: V(u) \in T_u X.$$

Bemerkung. Mit typtheoretischer Syntax ist ein tangentiales Vektorfeld längs X eine glatte Abbildung $V:\prod_{u:U}T_uX$.

Notation. $\chi(TX) = \{V : U \to \mathbb{R}^n \mid V \text{ ist tang. VF längs } X\}$

Bemerkung. Folgende Abbildung ist eine Bijektion:

$$H: \chi(U) \to \chi(TX), \quad v \mapsto v^{\wedge} := \partial_v X$$
, wobei $\partial_v X: \prod_{u:U} T_u X, \quad u \mapsto \partial_{v(u)} X(u)$

Notation. Für ein glattes Vektorfeld $Y:U\to\mathbb{R}^n$ bezeichnet Y^T das tangentiale Vektorfeld längs X definiert durch

$$Y^T: \prod_{u \in U} T_u X, \quad u \mapsto (Y(u))^{T_u X}.$$

Def. $\nabla : \chi(U) \times \chi(TX) \to \chi(TX)$, $(w, V) \mapsto \nabla_w V := (\partial_w V)^T$ heißt Levi-Civita-Ableitung von V in Richtung w.

Achtung. Gradient \neq Levi-Civita-Ableitung (trotz Symbol ∇)!

Satz (Eigenschaften der Levi-Civita-Ableitung). Sei $f: U \to \mathbb{R}$ glatt, $w_1, w_2, w \in \chi(U), V, V_1, V_2 \in \chi(TX)$. Dann gilt:

- $\nabla_{f(w_1)+w_2}V = f \cdot \nabla_{w_1}V + \nabla_{w_2}V$ (Linearität 1)
- $\nabla_w(V_1 + V_2) = \nabla_w V_1 + \nabla_w V_2$ (Linearität 2)
- $\nabla_w(f \cdot V) = f \cdot (\nabla_w V) + \partial_w f \cdot V$ (Produktregel) • $\partial_w \langle V_1, V_2 \rangle = \langle \nabla_w V_1, V_2 \rangle + \langle V_1, \nabla_w V_2 \rangle$ (Metrizität)

Notation. Sei $j \in \{1, ..., m\}$, dann betrachten wir die konstante

Def. Sei $X: U \to \mathbb{R}^n$ eine Immersion, so schreiben wir:

Abbildung $e_i: U \to \mathbb{R}^n, u \mapsto e_i$. Wir setzen $\nabla_i V := \nabla_{e_i} V$.

$$\nabla_j(\partial_k X) = \sum_{l=1}^m \Gamma_{jk}^l \partial_l(X) \qquad \text{für } j, k \in \{1, ..., m\}.$$

Dabei heißen die Funktionen $\Gamma_{ik}^l:U\to\mathbb{R}$ Christoffel-Symbole.

Notation.
$$\Gamma_{jkl} \coloneqq \sum_{r=1}^m g_{rl} \Gamma_{jk}^r : U \to \mathbb{R}$$

Satz.
$$\Gamma_{jkl} = \sum_{r=1}^{m} \Gamma_{jk}^{r} \langle \partial_r X, \partial_l X \rangle = \langle \nabla_j (\partial_k X), \partial_l X \rangle = \langle \partial_j (\partial_k X), \partial_l X \rangle$$

Satz. Es gilt
$$\Gamma_{ik}^l = \Gamma_{ki}^l$$
 und $\Gamma_{jkl} = \frac{1}{2}(\partial_j \cdot g_{kl} + \partial_k \cdot g_{jl} + \partial_l \cdot g_{jk})$.

Bemerkung. Die Christoffelsymbole kann man aus der 1. FF berechnen (hier sind q^{lh} die Komponenten von q^{-1}):

$$\Gamma_{jk}^{l} = \sum_{h=1}^{m} g^{lh} \cdot \Gamma_{jkh} = \frac{1}{2} \sum_{h=1}^{m} g^{lh} \cdot (\partial_j \cdot g_{kh} + \partial_k \cdot g_{jh} + \partial_h \cdot g_{jk}),$$

Bemerkung. Schreiben wir $V=\sum\limits_{k=1}^{m}v^{k}\partial_{k}X$ für $V\in\chi(TX),$ dann ist

$$\nabla_j V = \sum_{l=1}^m \left(\partial_j v^l + \sum_{k=1}^m \Gamma_{jk}^l v^k \right) \partial_l X.$$

Def (Levi-Civita-Ableitung für Vektorfelder auf U). Sei $X: U \to \mathbb{R}^n$ eine immergierte Fläche, so heißt

$$\begin{array}{c} \nabla_{:}\chi(U) \times \chi(U) \to \chi(U) \\ (w,v) \mapsto \nabla_{w}v = H^{-1}(\nabla_{w} \overset{= v^{\wedge}}{H(v)}) \end{array}$$

Levi-Civita-Ableitung von v in Richtung w.

Bemerkung. Schreiben wir $V = \sum v^k \partial_k X$ für $V \in \chi(TX)$, dann ist

$$\nabla_{j}V = \sum_{l=1}^{m} \left(\partial_{j}v^{l} + \sum_{k=1}^{m} \Gamma_{jk}^{l}v^{k} \right) e_{l} = \partial_{j}V + \Gamma_{j}V \text{ mit}$$

$$\Gamma_{j}: U \to \mathbb{R}^{m \times m}, \ u \mapsto (\Gamma_{jk}^{l}(u))_{lk}.$$

Satz. Seien $v, v_1, v_2, w, w_1, w_2 \in \chi(U), f: U \to \mathbb{R}$ glatt. Dann:

- $\nabla_{f \cdot w_1 + w_2} v = f \cdot \nabla_{w_1} v + \nabla_{w_2} v$ (Linearität 1)
- $\nabla_w(v_1 + v_2) = \nabla_w v_1 + \nabla_w v_2$ (Linearität 2)
- $\nabla_w(f \cdot v) = f \cdot (\nabla_w v) + (\nabla_w f) \cdot v$ (Produktregel)
- $\partial_w I(v_1, v_2) = I(\nabla_w v_1, v_2) + I(v_1, \nabla_w v_2)$ (verträglich mit 1. FF)

Def. Sei $\alpha:[a,b] \to U$ eine glatte, reguläre Kurve, $c := X \circ \alpha$. Eine glatte Abbildung $V:[a,b] \to \mathbb{R}^n$ mit $V(t) \in T_{\alpha(t)}X \forall t \in [a,b]$ tangentiales Vektorfeld längs c.

Bemerkung. Eine glatte Abbildung $v:U\to\mathbb{R}^m$ bestimmt eindeutig ein tang. VF vermöge

$$V(t) := v^{\wedge}(t) = \partial_{v(t)} X(\alpha(t)) = J_{\alpha(t)} X \cdot v(t).$$

Schreiben wir $v=\sum v^j e_j$ und $\alpha=\sum \alpha^j e_j$, so gilt für $V=v^{\wedge}$:

$$V' = \frac{\mathrm{d}}{\mathrm{d}t}V = \sum_{j=1}^{m} (v^j)'(\partial_j X \circ \alpha) + \sum_{j,k=1}^{m} v^j(\alpha^k)'(\partial_k \partial_j X \circ \alpha).$$

Def. Sei $X: U \to \mathbb{R}^n$ eine Immersion und $c = X \circ \alpha$ eine reguläre glatte Kurve auf X. Sei V ein tang. VF längs c, dann heißt

$$\frac{\nabla V}{\mathrm{d}t} \coloneqq (V')^T$$

die Levi-Civita-Ableitung von V längs c. Das tang. VF V heißt (Levi-Civita-)parallel, wenn gilt

$$\frac{\nabla V}{dt} = 0.$$

Bemerkung. Für α, v, V aus der letzten Bemerkung folgt

$$\frac{\nabla V}{\mathrm{d}t} = \sum_{l=1}^{m} \left((v^l)' + \sum_{j=1}^{m} v^j (\alpha^k)' (\Gamma^l_{jk} \circ \alpha) \right) (\partial_l X \circ \alpha).$$

Notation.
$$\hat{\Gamma}_{\alpha}:[a,b]\to\mathbb{R}^{m\times m}, \ (\hat{\Gamma}_{\alpha}(t))_{jl}=\sum\limits_{k=1}^{m}\Gamma_{jk}^{l}(\alpha(t))((\alpha^{k})'(t))$$

Def. Wir fassen eine glatte Abbildung $v:[a,b]\to\mathbb{R}^m$ als VF längs $\alpha:[a,b]\to U$ auf. Dann nennen wir

$$\frac{\nabla v}{\mathrm{d}t} := \sum_{l=1}^{m} \left((v^l)' + \sum_{j,k=1}^{m} v^j (\alpha^k)' (\Gamma^l_{jk} \circ \alpha) \right) e_l = v' + \hat{\Gamma}_{\alpha} v$$

Levi-Cevita-Ableitung von v längs α .

Satz. Es gilt dann $\frac{\nabla(v^{\wedge})}{dt} = (\frac{\nabla v}{dt})^{\wedge}$. Ein VF $V = v^{\wedge}$ ist also genau dann parallel, wenn $v' + \hat{\Gamma}_{\alpha}v = 0$ bzw.

$$(v^l)' + \sum_{j,k=1}^m v^j (\alpha^k)' (\Gamma^l_{jk} \circ \alpha) = 0$$
 für alle $l = 1, ..., m$.

Bemerkung. Es handelt sich bei $v'+\hat{\Gamma}_{\alpha}v=0$ um ein System linearer Differentialgleichungen (mit nicht konstanten stetigen Koeffizienten). Damit existiert bei gegebenem Anfangswert v(a) eine auf ganz [a,b] definierte eindeutige Lösung der Differentialgleichung.

Def. Sei $X: U \to \mathbb{R}^n$ eine Immersion und $c = X \circ \alpha : [a, b] \to \mathbb{R}$ eine reguläre glatte Kurve auf X. Für $t \in [a, b]$ heißt die Abbildung

$$P_t^c: T_{\alpha(a)}X \to T_{\alpha(t)}X, \quad x \mapsto V_x(t),$$

wobei $V_x: [a,b] \to \mathbb{R}^n$ das parallele tangentiale VF längs c mit Anfangsbedingung $V_x(a) = x \in T_{\alpha(a)}X$ ist, **Parallelverschiebung** längs c von c(a) nach c(t).

Satz. Sei $X:U\to\mathbb{R}^n$ eine Immersion und $c=X\circ\alpha:[a,b]\to\mathbb{R}^n$ eine reguläre glatte Kurve auf X. Für alle $t\in[a,b]$ ist die Abbildung $P^c_t:T_{\alpha(a)}X\to T_{\alpha(t)}X$ eine lineare Isometrie, d. h. P^c_t ist linear und es gilt $\langle x,y\rangle=\langle P^c_tx,P^c_ty\rangle$ für alle $x,y\in T_{\alpha(a)}X$.

Geodäten

Def. Eine reguläre glatte Kurve $c = X \circ \alpha$ auf X heißt **Geodäte** auf X, wenn gilt

$$(c'')^T = \frac{\nabla c'}{\mathrm{d}t} = 0$$
 bzw. $\frac{\nabla \alpha'}{\mathrm{d}t} = 0$.

Satz. Eine Geodäte ist immer proportional zur BL parametrisiert, d. h. $\|c'\|$ ist konstant.

Bemerkung. Sei $c=X\circ\alpha$ mit $\alpha=\sum\alpha^je_j$ mit glatten Abb. α^j . Dann gilt

$$\frac{\nabla c'}{\mathrm{d}t} = \sum_{l=1}^{m} \left((\alpha^l)'' + \sum_{j,k=1}^{m} (\alpha^j)'(\alpha^k)' (\Gamma^l_{jk} \circ \alpha) \right) (\partial_l X \circ \alpha).$$

Somit ist c genau dann eine Geodäte, wenn gilt

$$(\alpha^l)'' + \sum_{j,k=1}^m (\alpha^j)'(\alpha^k)'(\Gamma_{jk}^l \circ \alpha) = 0$$
 für alle $l = 1, ..., m$

oder $\alpha'' + \Gamma_{\alpha}(\alpha', \alpha') = 0$ (i. F. **Geodätengleichung**), wobei

$$\Gamma_{\alpha}: [a,b] \to \operatorname{Bil}(\mathbb{R}^m, \mathbb{R}^m), \ t \mapsto \Gamma_{\alpha(t)} \ \operatorname{mit}$$

$$\Gamma_{\alpha(t)}(v,w) = \sum_{j,k,l=1}^{m} v^{j} w^{k} \Gamma_{jk}^{l}(\alpha(t)) e_{l}.$$

Bemerkung. Es handelt sich hierbei um ein System nichtlinearer gew. DG zweiter Ordnung, welches nach dem Satz von Picard-Lindelöf bei gegebenen Anfangswerten immer eine eindeutige lokale Lösung besitzt. Es folgt:

Satz (Lokale Existenz von Geodäten). Sei $X:U\to\mathbb{R}^n$ eine Immersion, sei $u\in U$ und $w\in\mathbb{R}^m$. Dann gibt es eine offene Umgebung $U_w \subset \mathbb{R}^m$ von w und eine $\epsilon>0$, sodass gilt: Für jedes $v\in U_w$ gibt es eine eindeutige Lösung $\alpha_v:]-\epsilon, \epsilon[\to U$ der Geodätengleichung mit $\alpha_v(0)=u$ und $\alpha_v'(0)=v$. Anders ausgedrückt: Zu jedem $u\in U$ und zu jedem $W\in T_uX$ gibt es eine offene Umgebung $U_W\subset T_uX$ von W sowie ein $\epsilon>0$, sodass es für jedes $V\in U_W$ eine eindeutige Geodäte $c_v:]-\epsilon, \epsilon[\to \mathbb{R}^n$ auf X gibt mit $c_v(0)=X(u)$ und $c_v'(0)=V$.

Satz (Spray-Eigenschaft). Sei $\alpha_v:]-\epsilon, \epsilon[\to U$ die eindeutige Lsg. der Geodätengleichung mit $\alpha_v(0)=u$ und $\alpha_v'(0)=v$ und r>0. Dann ist die eindeutige Lösung der Geodätengleichung α_{rv} mit $\alpha_{rv}(0)=rv$ und $\alpha_{rv}'(0)=rv$ auf dem Intervall $]-\frac{\epsilon}{r},\frac{\epsilon}{r}[$ definiert und es gilt $\alpha_{rv}(t)=\alpha_v(rt)$ für alle $t\in]-\frac{\epsilon}{r},\frac{\epsilon}{r}[$.

Satz. Sei $u \in U$. Dann gibt es ein $\epsilon_u > 0$, sodass für alle $v \in B_u^{\epsilon_u}$ gilt: Die Geodätengleichung besitzt eine auf [-1,1] definierte Lösung α_v mit $\alpha_v(0) = u$ und $\alpha_v'(0) = v$.

Def. Sei $u \in U$, dann heißt die Abbildung

$$\operatorname{Exp}_u: B_u^{\epsilon_u} \to U, \quad v \mapsto \alpha_v(1)$$

(geodätische) Exponentialabbildung von X in u.

Def. Sei $u\in U$, dann gibt es ein $0<\epsilon\leq \epsilon_u$, sodass $\mathrm{Exp}_u|B_u^\epsilon$ ein Diffeo auf sein Bild ist.

Def. Sei $\alpha:[a,b]\to U$ eine glatte Kurve, sodass $X\circ\alpha$ nach BL parametrisiert ist. Eine zweimal stetig differenzierbare Abbildung

$$]-\epsilon, \epsilon[\times [a,b] \to U, \quad (s,t) \mapsto \alpha_s(t)$$

mit $\alpha_0 = \alpha$ heißt eine Variation von α . Ist nun $X: U \to \mathbb{R}^n$ eine Immersion, so erhalten wir auch eine Variation der Kurve $c := X \circ \alpha$ auf X durch andere Kurven, nämlich $c_s := X \circ \alpha_s$ auf X.

Notation. $\delta := \frac{\partial}{\partial s}|_{s=0}$.

Satz (Variationsformel der Länge). Unter obigen Annahmen gilt

$$\delta L(c_s) = \langle c'(b), \delta c_s(b) \rangle - \langle c'(a), \delta c_s(a) \rangle - \int_a^b \langle (c''(t))^T, \delta c_s(t) \rangle dt.$$

Satz (Gaußlemma). Die Parametrisierung

 $\widetilde{X} \coloneqq X \circ \operatorname{Exp}_u : B_u^{\epsilon} \to \mathbb{R}^n$ durch Exponential koordinaten ist eine radiale Isometrie: Seien $v \in B_u^{\epsilon_u} \setminus \{0\}$ und $w \in \mathbb{R}^m$ und zerlegen wir w in $w = w_{\parallel} + w_{\perp}$ mit $w_{\parallel} \in \mathbb{R}^v$ und $\langle w_{\perp}, v \rangle = 0$, dann gilt

$$\begin{split} \|D_v\widetilde{X}(w_{\parallel})\| &= \|w_{\parallel}\| \\ D_v\widetilde{X}(w) \perp D_v\widetilde{X}(v), \quad \text{wenn } w \perp v \text{ und somit} \\ \|D_v\widetilde{X}(w)\|^2 &= \|w_{\parallel}\|^2 + \|D_v\widetilde{X}(w_{\perp})\|^2. \end{split}$$

Satz. Sei $\gamma:[a,b] \to B^\epsilon_u$ reguläre glatte Kurve mit $\gamma(a)=0, \gamma(b)=v.$ Dann gilt: $L(X\circ \operatorname{Exp}_u\circ\gamma)\geq \|v\|$ mit $L(X\circ \operatorname{Exp}_u\circ\gamma)=\|v\|\iff \gamma(t)=\rho(t)v$ mit $\rho:[a,b]\to[0,1]$ streng monoton wachsend.

Satz. Sei $X:U\to\mathbb{R}^n$ eine Fläche, $u_0\in U$, $\epsilon>0$, sodass $\operatorname{Exp}_{u_0}:B^{\epsilon}_{u_0}\to U$ Diffeomorphismus. Sei $u\in\operatorname{Exp}_{u_0}(B^{\epsilon}_{u_0})$. Dann gibt es (bis auf Umparametrisierung) genau eine bzgl. der Länge

$$L_{\mathrm{I}}(\alpha) \coloneqq \int_{a}^{b} \mathrm{I}_{\alpha(t)}(\alpha'(t), \alpha'(t)) dt$$

kürzeste reguläre glatte Kurve $\alpha:[a,b]\to U$ mit $\alpha(a)=u_0$ und $\alpha(b)=u$, nämlich $\alpha:[0,1]\to U,\ t\mapsto \operatorname{Exp}_{u_0}(t\cdot\operatorname{Exp}_{u_0}^{-1}(u)).$

Def. Sei $X: U \to \mathbb{R}^n$ eine Fläche, dann heißt

$$[\cdot,\cdot]:\chi(U)\times\chi(U)\to\chi(U),\quad (v,w)\mapsto [v,w]=\partial_v w-\partial_w v$$

Lie-Klammer der Vektorfelder v und w.

Satz. Für alle $v, w \in \chi(U)$ ist $[v, w] = \nabla_v w - \nabla_w v$.

Def. Die Abbildung

$$\begin{split} R: \chi(U) \times \chi(U) \times \chi(U) \to \chi(U), \quad (v, w, z) \mapsto R(v, w)z \\ \text{mit } R(v, w)z &= \nabla_v(\nabla_w z) - \nabla_w(\nabla_v z) - \nabla_{[v, w]} z \end{split}$$

heißt Krümmungstensor.

Bemerkung (Krümmungstensor in Koordinaten). Wir rechnen:

$$\begin{split} \nabla_j(\nabla_k z) &= \partial_j \partial_k z + (\partial_j \Gamma_k) z + \Gamma_k (\partial_j z) + \Gamma_j (\partial_k z) + \Gamma_j \Gamma_k z, \\ R_{jk} z &:= R(e_j, e_k) z = \Gamma_j \Gamma_k z - \Gamma_k \Gamma_j z + (\partial_j \Gamma_k - \partial_k \Gamma_j) z, \\ R_{jk} &:= R(e_j, e_k) = (\Gamma_j \cdot \Gamma_k - \Gamma_k \cdot \Gamma_j) + (\partial_j \Gamma_k - \partial_k \Gamma_j). \end{split}$$

Für $v = \sum v^j e_j, w = w^k e_k : U \to \mathbb{R}^m$ mit $v^j, w^k : U \to \mathbb{R}$ glatt ist

$$R(v,w)z = \sum_{k,j=1}^{m} v^k w^j (R_{kj}z)$$

und mit $z = \sum z^l e_l : U \to \mathbb{R}^m, z^l : U \to \mathbb{R}$ glatt folgt

$$R(v,w)z = \sum_{i,j,k,l}^{m} v^{i}w^{j}z^{k}R^{l}_{ijk}e_{l},$$

wobei $R_{ijk}^l: U \to \mathbb{R}$ so gewählt, dass $R_{ij}(e_k) = \sum R_{ijk}^l e_l$. Es gilt:

$$R_{ijk}^l = \partial_i \Gamma_{jk}^l - \partial_j \Gamma_{ik}^l + \sum_{s=1}^m (\Gamma_{is}^l \Gamma_{jk}^s - \Gamma_{js}^l \Gamma_{ik}^s).$$

Satz. Die Abbildung

$$\mathrm{I}_{R_{ij}}: \chi(U) \times \chi(U) \to \mathcal{C}^\infty(U,\mathbb{R}), \quad (v,w) \mapsto \underbrace{\mathrm{I}(R_{ij},v,w)}_{u \mapsto \mathrm{I}_u((R_{ij}v)(u),w(u)}$$
 ist eine antisymmetrische Bilinearform.

Notation. $R_{ijkl} := I_u(R_{ij}(u)e_k, e_l)$

Lemma. Es gilt $-R_{jikl} = R_{ijkl} = -R_{ijlk}$.

Satz (Gaußgleichung). Mit $\mathbb{I}_{jk}(u) = (\partial_j \partial_k X(u))^{N_u}$ gilt

$$R_{ijkl}(u) = \langle \mathbb{I}_{jk}(u)\mathbb{I}_{il}(u)\rangle - \langle \mathbb{I}_{ik}(u), \mathbb{I}_{jl}(u)\rangle.$$

Bemerkung. Im Spezialfall, dass X eine HF ist, gilt $\mathbb{I}_{jk} = h_{jk}\nu$. Da $\langle \nu, \nu \rangle = 1$, folgt $R_{ijkl} = h_{jk}h_{ie} - h_{ik}h_{il}$.

Satz (Theorema egregium (Gauß)). Für eine HF $X: U \to \mathbb{R}^3$ gilt

$$K(u) = \frac{\det(h(u))}{\det(g(u))} = \frac{R_{1221}(u)}{\det(g(u))}$$

Letzter Ausdruck ist nur abh. von der 1. FF und ihren Ableitungen.

Satz (Codazzi-Mainardi-Gleichungen). Sei $X: U \to \mathbb{R}^n$ HF, dann

$$\partial_i h_{jk}(u) - \sum_{l=1}^{n-1} \Gamma_{ik}^l(u) h_{e_j}(u) = \partial_j h_{ik}(u) - \sum_{l=1}^{n-1} \Gamma_{jk}^l(u) h_{e_i}(u).$$

Satz (Hauptsatz der lokalen Flächentheorie (Bonnet)). Sei $U \otimes \mathbb{R}^m$ einfach zusammenhängend und

$$g, h: U \to \{A \in \mathbb{R}^{m \times m} \mid A^T = A, A \text{ positiv definit } \}$$

glatt. Dann sind äquivalent:

- $\exists X: U \to \mathbb{R}^{m+1}$ Hyperfläche mit g und h als 1. FF bzw. 2. FF.
- $\bullet \ g,h$ erfüllen die Gauß- und die Codazzi-Mainardi-Gleichung.

Def. Sei $X: U \to \mathbb{R}^n$ eine Hyperfläche. Ein Punkt $u \in U$ heißt **Nabelpunkt**, wenn in u alle Hauptkrümmungen gleich sind, also $W_u = \mu I$ für ein $\mu \in \mathbb{R}$. Wenn alle $u \in U$ Nabelpunkte sind, so heißt X **Nabelpunkthyperfläche**.

Satz. Sei $n \geq 3$ und $X: U \to \mathbb{R}^n$ eine Nabelpunkt-HF in \mathcal{C}^3 , dann ist X(U) Teilmenge einer Hyperebene oder einer Hypersphäre im \mathbb{R}^n .

Def. Sei $O \subseteq \mathbb{R}^n$. Eine \mathbb{C}^2 -Abbildung $\Phi : O \to \mathbb{R}^n$ heißt **orthogonales Hyperflächensystem** (OHFS), wenn für alle $x \in O$ und alle $j, k \in \{1, ..., n\}, j \neq k$ gilt:

$$\langle \partial_i \Phi(x), \partial_k \Phi(x) \rangle = 0$$
 und $\langle \partial_i \Phi(x), \partial_i \Phi(x) \rangle \neq 0$

Notation. Für $t \in \mathbb{R}$ ist $U^{j,t} := \{(x_1, ..., x_n) \in O \mid x_j = t\}.$

Bemerkung. Falls $U^{j,t}$ offen ist in $\{(x_1,...,x_n) \in \mathbb{R}^n \mid x_j = t\}$, ist

$$X^{j,t} := \Phi|_{U^{j,t}} : U^{j,t} \to \mathbb{R}^n$$

eine Hyperfläche und für alle $x \in U^{j,t}$ gilt

$$\partial_j \Phi(x) \perp T_x X^{j,t} = \operatorname{Spann} \{ \partial_k \Phi(x) \mid k \in \{1, ..., n\} \setminus \{j\} \}.$$

Def. Sei $X:U\to\mathbb{R}^n$ eine HF und $c\coloneqq X\circ\alpha:I\to\mathbb{R}^n,I$ Intervall und $\alpha:I\to U$ glatt. Dann heißt c **Krümmungslinie**, wenn für alle c'(t) für alle $t\in I$ eine Hauptkrümmungsrichtung von X ist, d. h. ein Eigenvektor von $W_{\alpha(t)}$.

Satz. Ist $\Phi: O \to \mathbb{R}^n$ OHFS, dann sind die Koordinatenlinien

$$h \mapsto \Phi(t_1, ..., t_{j-1}, t_j + h, t_{j+1}, ..., t_n)$$
 mit $(t_1, ..., t_n) \in O$ fest

Krümmungslinien von X^{k,t_k} mit $k \neq j$.

Def. Eine lineare Abb. $F: \mathbb{R}^n \to \mathbb{R}^n$ heißt konform, wenn

$$\angle(v, w) = \angle(F(v), F(w))$$
 für alle $v, w \in \mathbb{R}^n$.

Bemerkung. Jede lineare Abbildung lässt sich darstellen als

$$F(x) = A_F \cdot x \text{ mit } A_F \in \mathbb{R}^{n \times n}$$

und es gilt F konform $\iff \frac{1}{\mu}A_F \in O(n)$ für ein $\mu \in \mathbb{R}_{>0}$. Dieses μ wird **konformer Faktor** oder Streckungsfaktor genannt.

Def. Seien $O, \widetilde{O} \subseteq \mathbb{R}^n$. Ein \mathcal{C}^1 -Diffeomorphismus $f: O \to \widetilde{O}$ heißt **konform**, wenn für alle $x \in O$ die Abbildung $D_x f$ konform ist.

Satz. Jede konforme Abbildung auf einer zusammenhängenden offenen Teilmenge des \mathbb{R}^2 ist bis auf Verknüpfung mit der komplexen Konjugation eine holomorphe reguläre Abbildung und umgekehrt.

Def. Eine Abbildung $f: O \to \widetilde{O}$ heißt **kugeltreu**, wenn sie offene Teilmengen von Sphären auf offene Teilmengen von Sphären abbildet. Dabei gelten Hyperebenen als Sphären mit Radius ∞ .

Satz (Liouville). Wenn $n \geq 3$, dann ist jede konforme \mathcal{C}^3 -Abb. $f: O \to \widetilde{O}$ kugeltreu, d. h. falls $X: U \to O$ eine Nabelpunkt-HF ist, dann ist $f \circ X: U \to \widetilde{O}$ auch eine Nabelpunkt-HF.

Beispiel. Konforme Abbildungen im \mathbb{R}^n sind:

- Isometrien: $f(x) = Ax + b, A \in O(n), b \in \mathbb{R}^n$
- Zentrische Streckungen: f(x) = rx, r > 0
- Inversionen an Sphären: $\iota: \mathbb{R}^2 \to \mathbb{R}^2 \cup \{\infty\}, x \mapsto \frac{x}{\|x\|^2}, x \neq 0$

Lemma. Inversionen an Sphären sind kugeltreu und konform.

Def. Eine Möbius-Transformation ist eine Verkettung von Isometrien, zentrischen Streckungen und Inversionen an Sphären.

Bemerkung. Für n=2, $\mathbb{R}^2 \cong \mathbb{C}$ ist eine Möbius-Transformation eine Abbildung $z \mapsto \frac{az+b}{cz+d}$ mit $a,b,c,d \in \mathbb{C}$, sodass dieser Ausdruck definiert ist mit det $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$.

Satz. Seien $O, \widetilde{O} \subseteq \mathbb{R}^n$, $n \geq 2$ und $f: O \to \widetilde{O}$ winkel- und kugeltreu. Dann ist f Einschränkung einer Möbius-Transformation.

Korollar. Für $n \geq 3$ gilt: Jeder konforme \mathcal{C}^3 -Diffeomorphismus f ist Einschränkung einer Möbius-Transformation.

Minimalflächen

Lemma. Sei $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times (n-m)}$, $C = (A, B) \in \mathbb{R}^{n \times n}$. Wenn jeder Spaltenvektor von B senkrecht auf allen anderen Spaltenvektoren von C steht und normiert ist, dann gilt

$$\det(C) = \sqrt{\det(A^T A)}.$$

Def. Sei $f: U \to \mathbb{R}$ stetig, dann heißt

$$\smallint_C f \,\mathrm{d}\mathcal{A} \coloneqq \smallint_C f(u) \cdot \sqrt{\det(g_u)} \,\mathrm{d}\mu(u) \quad \textbf{Flächeninhalt}.$$

Proposition. Der Flächeninhalt ist invariant unter Umparametrisierungen: Sei $X = \widetilde{X} \circ \phi$, $\phi : U \to \widetilde{U}$ ein Diffeomorphismus, $C \subset U$ kompakt, dann gilt

$$\int_{C} \sqrt{\det(g_u)} \, \mathrm{d}\mu(u) = \int_{\phi(C)} \sqrt{\det(\widetilde{g}_u)} \, \mathrm{d}\mu(\widetilde{u}).$$

Def. Sei $X:U\to\mathbb{R}^n$ immergierte \mathcal{C}^2 -Fläche, $C\subset U\subset\mathbb{R}^m$ ein Kompaktum mit nichtleerem Inneren, dessen Rand eine Nullmenge ist. Dann ist eine Variation von X auf C eine Abbildung

$$]-\epsilon, \epsilon[\times U \xrightarrow{\mathcal{C}^2} \mathbb{R}^n, (x, u) \mapsto X^s(u) \text{ mit}$$

• $X^s: U \to \mathbb{R}^n$ \mathcal{C}^2 -Immersion, • $X^0 = X$, • $X^s|_{U \setminus C} = X|_{U \setminus C}$.

Notation. •
$$\mathcal{A}(s) := \mathcal{A}(X^s(C))$$
 • $\delta := \frac{\delta}{\delta s}|_{s=0}$

Lemma. Für $\epsilon > 0$ klein genug kann die Variation so umparametrisiert werden, dass das Variationsvektorfeld normal an X ist, d. h.

$$\xi(u) := \delta X^s(u) \in N_u X$$
 für alle $u \in U$.

Def. Eine kompakte C^2 -Variation X^s einer Immersion X heißt **normal**, wenn δX^s ein Normalenvektorfeld längs X ist.

Def. In dieser Situation schreiben wir mit der 2. FF \mathbb{I} von X

$$h^{\xi}: U \to \mathbb{R}^{m \times m}, \quad u \mapsto (\langle \mathbb{I}(e_j, e_k), \xi \rangle)_{jk}.$$

Lemma. Sei $A: \mathbb{R} \to \mathrm{GL}_m(\mathbb{R}) \subset \mathbb{R}^{m \times m}$ diff'bar, dann

$$(\det(A))' = \det(A(t)) \cdot \operatorname{spur}(A^{-1}(t) \cdot A'(t)).$$

Satz (1. Variation). Es gilt $\delta \mathcal{A}(s) = -\int_C \operatorname{spur}(g^{-1}h^{\xi}) d\mathcal{A}$.

Def. Eine Fläche $X:U\to\mathbb{R}^n$ heißt **Minimalfläche**, wenn für jedes Kompaktum $C\subset U$ mit nichtleerem Inneren und Rand von Maß Null und für jede normale Variation X^s von X auf C gilt:

$$\delta \mathcal{A}(X^s|_C) = 0.$$

 \mathbf{Satz} . Eine Fläche X ist genau dann eine Minimalfläche, wenn

$$\operatorname{spur}(a^{-1}h^{\mu}) = 0$$

für jedes Normalenvektorfeld μ an X.

Bemerkung. Sei μ ein Normalenvektorfeld an eine Hyperfläche X. Dann gibt es eine Funktion $f:U\to\mathbb{R}$ mit $\mu=f\cdot\nu$, wobei ν die Gaußabbildung von X ist. Dann ist $h^{\mu}=f\cdot h$ und $g^{-1}h^{\mu}=f\cdot g^{-1}\cdot h=f\cdot w$, wobei w die Weingartenabbildung ist.

Satz (1. Variation für HF). Ist $X:U\to\mathbb{R}^n$ eine HF und $X^s:U\to\mathbb{R}^n$ eine normale Variation von X auf einem Kompaktum $C\subset U$ mit nichtleerem Inneren und Rand vom Maß Null und $\xi=\delta X^x=f\nu$ mit $f:U\to\mathbb{R}$, dann gilt

$$\delta \mathcal{A}(X^s|_C) = -\int_C f(n-1)H \,\mathrm{d}\mathcal{A}.$$

Satz. Eine Hyperfläche $X: U \to \mathbb{R}^n$ ist genau dann minimal, wenn

$$H \equiv \frac{\kappa_1 + \dots + \kappa_{n-1}}{n-1} \equiv \frac{\operatorname{spur}(w)}{n-1} \equiv 0.$$

Satz. Für eine minimale immergierte HF $X: U \to \mathbb{R}^n$ gilt: Um jeden Punkt $u_0 \in U$ gibt es ein Kompaktum $C \subset U$ mit nicht leerem Inneren, dessen Rand eine Nullmenge ist und welches $u_0 \in C^{\circ}$ erfüllt, sodass für jede immergiere HF $\tilde{X}: U \to \mathbb{R}^n$ mit $X|_{U \setminus C} = \tilde{X}|_{U \setminus C}$ erfüllt gilt: $\mathcal{A}(X(C)) \leq \mathcal{A}(\tilde{X}(C))$. Gleichheit tritt genau dann ein, wenn \tilde{X} eine Umparametrisierung von X ist.

Flächen konstanter mittlerer Krümmung

Situation. Sei $X: U \to \mathbb{R}^2$ immergierte \mathcal{C}^3 -Hyperfläche und $U_0 \subset U$ offen, sodass $X|_{U_0}$ ein Homöomorphismus auf sein Bild ist. Sei $C \subset U_0$ ein Kompaktum mit glattem Rand, das Abschluss einer offenen Menge C° ist. Sei außerdem $D \subset \mathbb{R}^n$ kompakt, sodass $X(C) \subset \partial D$. Wir nennen D Dose mit Deckel X(C) und Boden $\partial D \setminus X(C)$. Wir betrachten eine \mathcal{C}^2 -Variation $]-\epsilon, \epsilon[\times U \to \mathbb{R}^n, (s, u) \mapsto X^s(u)$ auf C mit $X^0 = X$, sodass gilt:

• $X^s|_{U\setminus C}=X|_{U\setminus C}$ • $\forall s\in]-\epsilon,\epsilon[:X^s|_{U_0}$ ist eine Einbettung

Dann ist $X^s(C)$ Flächenstück einer Dose D^s , wobei der Boden von D^s mit dem von D übereinstimmt, d. h. $\partial D^s \setminus X^s(C) = \partial D \setminus X(C)$.

Def. X^s heißt Variation mit konstantem Volumen, wenn

$$Vol(D^s) = Vol(D)$$
 für alle $s \in]-\epsilon, \epsilon[$.

Def. Die Hyperfläche X heißt minimal bei konstantem Volumen, wenn für alle Variationen von X auf derartigen Kompakta $C \subset U$ mit konstantem Volumen gilt: $\delta \mathcal{A}(X^s|_C) = 0$.

Proposition. Sei $X^s = X + \tau_s \nu$ eine normale Variation von X auf C. Sei $V^s := \text{Vol}(D^s)$, dann gilt

$$\delta V^s = \int_C \delta \tau_s \, d\mathcal{A} = \int_C \langle \delta X^s(u), \nu(u) \rangle \sqrt{\det(g_u)} \, du.$$

Notation. $C_C^0(U, \mathbb{R}) = \{ f : U \to \mathbb{R} \mid \text{stetig mit supp } f \text{ kompakt} \}$

Def. Sei $X:U\to\mathbb{R}^n$ eine HF. Dann ist folgende Abbildung ein Skalarprodukt, genannt L^2 -Skalarprodukt bzgl. $\mathrm{d}\mathcal{A}$:

$$C_C^0(U,\mathbb{R}) \times C_C^0(U,\mathbb{R}) \to \mathbb{R}, \quad (f_1, f_2) \mapsto \int_C f_1 \cdot f_2 \, \mathrm{d}\mathcal{A} =: \langle f_1, f_2 \rangle_{L^2}$$

Notation. • $\delta V^s := \int\limits_C \langle X^s, \nu \rangle \sqrt{\det(g_u)} \, \mathrm{d} u = \langle f, 1 \rangle_{L^1}, f := \langle X^s, \nu \rangle$

•
$$\delta \mathcal{A}^s := \delta(\mathcal{A}(X^s(C))) = -\int_C f \cdot (n-1) \cdot H \, d\mathcal{A} = -\langle f, (n-1)H \rangle_{L^1}$$

Lemma. Sei $f: U \to \mathbb{R}$ eine \mathcal{C}^2 -Abbildung mit supp $(f) \subset C$. Wenn $\int f \, d\mathcal{A} = 0$, dann gibt es eine normale Variation $X^s = X + \tau_s \nu$ mit constantem Volumen, sodass $f = \delta \tau_s = \langle \delta X^s, \nu \rangle$.

Proposition. Es sind äquivalent:

- Es gilt $\delta \mathcal{A}^s=0$ für jede normale Variation X^s von X auf C mit konstantem Volumen.
- Es gibt $\lambda \in \mathbb{R}$, genannt Lagrange-Multiplikator, sodass $\delta(\mathcal{A}^s + \lambda \nu^s) = 0$ für alle normalen Variationen.

Def. Eine Fläche heißt CMC-Fläche (constant mean curvature), wenn die mittlere Krümmung H konstant ist.

Satz. Sei $X:U\to\mathbb{R}^n$ eine \mathcal{C}^3 -Hyperfläche mit $U \subseteq \mathbb{R}^{n-1}$ zusammenhängend, dann sind äquivalent:

• X ist minimal bei konst. Volumen. • X ist eine CMC-Fläche.

Minimalflächen im \mathbb{R}^3

Situation. Sei $U \subseteq \mathbb{C}$, $F: U \to \mathbb{C}$ eine \mathcal{C}^1 -Funktion. Identifiziere $\mathbb{C} \cong \mathbb{R}^2$ mittels $\binom{a}{b} \mapsto a + ib$.

Def. F heißt in z_0 holomorph (komplex diff'bar), wenn

$$F'(z_0) := \lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0}$$
 existiert.

Notation (Wirtinger). • $\partial_z F = \frac{1}{2}(\partial_1 F - i\partial_2 F)$ • $\partial_{\overline{z}} F = \frac{1}{2}(\partial_1 F + i\partial_2 F)$

Lemma. Die Funktion F ist genau dann holomorph, wenn $\partial_{\overline{z}}F=0$. In diesem Fall gilt: $F'=\partial_{z}F$.

Notation. $\triangle F := \partial_1 \partial_1 F + \partial_2 \partial_2 F$

Lemma. Sei $F: U \to \mathbb{C}$ eine \mathcal{C}^2 -Funktion, dann gilt $\partial_z \partial_{\overline{z}} F = \frac{1}{4} \triangle F = \frac{1}{4} (\partial_1 \partial_1 F + \partial_2 \partial_2 F).$

 $\mathbf{Def.}\,$ Folgene Abbildung ist symmetrisch und über $\mathbb C$ bilinear:

$$\langle -, - \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}, \quad (z, w) \mapsto \langle z, w \rangle := \sum_{j=1}^n z_j w_j$$

Bemerkung. Die Abbildung ist nicht positiv definit, nicht hermetisch und damit auch kein Skalarprodukt.

Def. Ein Vektor $z \in \mathbb{C}^n$ heißt **isotrop**, wenn $\langle z, z \rangle = 0$.

Lemma. Sei $z = x + iy \in \mathbb{C}^n$ mit $x, y \in \mathbb{R}^n$. Dann gilt: z isotrop \iff ||x|| = ||y|| und $x \perp y$

Def. Eine C^2 -HF $X: U \to \mathbb{R}^3$ heißt konform parametrisiert, wenn es eine C^1 -Funktion $\lambda: U \to \mathbb{R}_{>0}$, genannt konformer **Faktor**, gibt, sodass $g = \lambda^2 I_2$, wobei g die 1. FF von X ist.

Bemerkung. Durch Umparametrisierung kann jede hinreichend reguläre Hyperfläche konform parametrisiert werden.

Lemma. Sei $X: U \to \mathbb{R}^3 \subset \mathbb{C}^3$ eine \mathcal{C}^2 -Hyperfläche. Dann gilt X ist konform parametrisiert $\iff \langle \partial_z X, \partial_z X \rangle \equiv 0$.

Dann gilt $\lambda = \sqrt{2\langle \partial_z X, \overline{\partial_z X} \rangle}$.

Lemma. Sei $X: U \to \mathbb{R}^3 \subset \mathbb{C}^3$ eine konform param. \mathcal{C}^2 -HF. Dann: $\wedge X = 2\lambda^2 H\nu$.

Lemma. Sei $X:U\to\mathbb{R}^3$ eine Hyperfläche. Dann sind äquivalent:

- X ist eine konform parametrisierte Minimalfläche.
- $\partial_z X: U \to \mathbb{C}^3 \setminus \{0\}$ ist holomorph und isotrop, also $\partial_{\overline{z}}(\partial_z X) = 0$ und $\langle \partial_z X, \partial_z X \rangle = 0$.

Def. Sei $U \otimes \mathbb{C}$ und $f: U \to \mathbb{C}$ holomorph. Eine holomorphe Fkt.

 $F: U \to \mathbb{C}$ heißt **Stammfunktion** (STF) von f, wenn F' = f. Bemerkung. Sei U zusammenhängend und $F_1, F_2: U \to \mathbb{C}$ zwei STFn von f, dann ist $F_1 - F_2 = \text{const.}$ **Def.** Sei $f = (f_1, ..., f_n) : U \to \mathbb{C}^n$. Eine holomorphe Funktion $F = (F_1, ..., F_n) : U \to \mathbb{C}^n$ heißt **Stammfunktion** von f, wenn $F'_i = f_j$ für j = 1, ..., n.

Notation. Wir schreiben $\int f$ für eine STF von f.

Lemma. Sei $X: U \to \mathbb{R}^3$ eine konform parametrisierte HF, dann:

$$X - 2\Re \left(\int \partial_z X \right) = \text{const.}$$

Bemerkung. Sei $X: U \to \mathbb{R}^3$ konform parametrisierte Minimalfläche, dann gilt $X = 2\Re(\int \partial_z X)$ bis auf Translation.

Satz. Es gibt (bis auf Translation) eine eindeutige Beziehung zwischen der Menge der konform parametrisierten Hyperflächen $X: U \to \mathbb{R}^3 \subset \mathbb{C}^3$ und der Menge der holomorph isotropen Abbildungen $Y \to \mathbb{C}^3 \setminus \{0\}$ gegeben durch (bis auf Translation)

$$Y = 2\partial_z X, \qquad X = \Re \int Y$$

Def. Sei $X: U \to \mathbb{R}^3 \subset \mathbb{C}^3$ eine konform parametrisierte minimale \mathcal{C}^2 -HF und $Y := 2\partial_z X: U \to \mathbb{C}^3 \setminus \{0\}$ (isotrop, holomorph). Sei $\Theta \in \mathbb{R}$, dann ist auch

$$Y_{\Theta}: U \to \mathbb{C}^3 \setminus \{0\}, \quad u \mapsto \exp(i\Theta)Y(u)$$

holomorph und isotrop. Wir erhalten dann eine $2\pi\text{-periodische}$ Schar von Minimalflächen durch

$$X_{\Theta} = \Re(fY_{\Theta}) = \Re(\exp(i\Theta)fY) : U \to \mathbb{R}^3, \Theta \in \mathbb{R}.$$

Lemma. Jede Hyperfläche X_{Θ} für $\Theta \in \mathbb{R}$ in der assoziierten Familie von X ist isometrisch zu X, d. h. $q_{\Theta} = q$.

Beobachtung. $X_{\Theta+\pi}=-X_{\Theta}$

Def. Sei $X:U\to\mathbb{R}^3$ eine konform param. Minimalfläche, dann ist

$$X^* := X_{\frac{\pi}{2}} = \Re(i \int Y) = -\Im(\int Y)$$

die zu X konjugierte Minimalfläche.

Beobachtung. Es gilt $X_{\Theta} = \cos(\Theta)X + \sin(\Theta)X^*$.

Satz (Weierstraß-Darstellung). Eine konform param. minimale \mathcal{C}^2 -HF $X:U\to\mathbb{R}^3$ hat (bis auf Translation) die Gestalt

$$X = \Re\left(\int Y\right) \quad \text{mit} \quad Y = h \cdot (\tfrac{1}{2}(\tfrac{1}{g} - g), \tfrac{i}{2}(\tfrac{1}{g} + g), 1),$$

wobei $h:U\to\mathbb{C}$ holomorph und $g:U\to\overline{\mathbb{C}}$ meromorph sind, sodass die Komponenten von Y keine gemeinsamen Nullstellen haben und keine Singularitäten haben.

Beobachtung. Ist X durch g und h gegeben, dann ist die assoziierte Familie X_{Θ} durch $h_{\Theta} = \exp(i\Theta)h$ und $g_{\Theta} = g$ definiert.

Satz. Sei $U \otimes \mathbb{C}$ zusammenhängend, $X: U \to \mathbb{R}^3$ eine konform param. \mathcal{C}^2 -HF, die durch h und g gegeben ist. Dann gilt $\nu = \Phi \circ g$ für die Gaußabb. ν von X mit der stereographischen Projektion

$$\Phi: \mathbb{C} \to S^2 \subset \mathbb{R}^3 \cong \mathbb{C} \times \mathbb{R}, \quad z \mapsto \frac{1}{|z|^2 + 1} (2z, |z|^2 + 1).$$

Korollar. Sei X eine zusammenhängende konform param. minimale \mathcal{C}^2 -HF im \mathbb{R}^3 mit Gaußabb. ν , dann gilt für die Gaußabbildung ν_{Θ} der assoziierten Familie X_{Θ}

$$\nu_{\Theta} = \nu$$
.