Programmering og Problemløsning Datalogisk Institut, Københavns Universitet

Jon Sporring

October 18, 2018

1 Lærervejledningn

Emne Højere-ordens funktioner, currying

Sværhedsgrad Middel

2 Introduktion

Denne opgave omhandler polynomier. Et polynomium af grad n skrives som

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{i=0}^n a_i x^i.$$

3 Opgave(r)

- 1. Skriv en funktion poly: a:float list -> x:float -> float, som tager en liste af coefficienter med a. [i] = a_i og en x-værdi og returnerer polynomiets værdi. Afprøv funktionen ved at lave tabeller for et lille antal polynomier af forskellig grad, med forskellige koefficienter og forskellige værdier for x og validér den beregnede værdi.
- 2. Affed en ny funktion line fra poly således at line : a0:float -> a1:float -> x:float -> float beregner værdien for et 1. grads polynomium hvor a0 = a_0 og a1 = a_1 . Afprøv funktionen ved at tabellere værdier for line med det samme sæt af coefficienter $a_0 \neq 0$ og $a_1 \neq 0$ og et passende antal værdier for x.
- 3. Benyt Currying af line til at lave en funktion theLine : x:float -> float, hvor parametrene a0 og a1 er sat til det samme som brugt i Item 2. Afprøv theLine som Item 2.
- 4. Lav en funktion lineA0: a0:float -> float ved brug af line, men hvor a1 og x holdes fast. Diskutér om dette kan laves ved Currying uden brug af hjælpefunktioner? Hvis ikke, foreslå en hjælpefunktion, som vil gøre en definition vha. Currying muligt.