复杂度

由PAC学习理论可以看出,PAC可学习性与假设空间 \mathcal{H} 的复杂程度密切相关。假设空间 \mathcal{H} 越复杂,从中寻找到目标概念的难度越大。

对于有限的假设空间,可以用其中包含假设的数目 | 升 | 来刻画假设空间的复杂度。在可分情形下,可以通过层层筛选的方式从有限的假设空间中寻找到目标概念。

然而,对于大多数学习问题来说,算法 $\mathfrak L$ 考虑的假设空间并非是有限的,直接使用 $|\mathcal H|$ 来刻画假设空间的复杂度不再有意义。

为此,本章将介绍刻画无限假设空间复杂度的方法,包括与数据分布 \mathcal{D} 无关的 VC 维及其扩展 Natarajan 维,以及与数据分布相关的 Rademacher 复杂度。

前者计算简单,适用于许多学习问题,但其未考虑具体学习问题的数据特点,对假设空间复杂度的刻画较为粗糙;后者考虑了具体学习问题的数据特点,对假设空间复杂度的刻画较为准确,但计算复杂度较高,有时甚至是 NP-难问题。

数据分布无关

现实学习任务面对的通常是无限假设空间,例如实数域中的区间, \mathbb{R}^d 空间中的所有线性超平面。

为了对这些无限假设空间进行研究,通常考虑其 VC 维 (Vapnik-Chervonenkis Dimension) [Vapnik and Chervonenkis, 1971]。

在介绍 VC 维之前, 先引入几个概念。

限制 (restriction)

令 \mathcal{H} 表示假设空间,其中的假设是 \mathcal{X} 到 $\mathcal{Y} = \{-1, +1\}$ 的映射,对于数据集 $D = \{x_1, \ldots, x_m\} \subset \mathcal{X}$, \mathcal{H} 在数据集 D 上的 限制 是从 D 到 $\{-1, +1\}^m$ 的一族映射:

$$\mathcal{H}_{|D} = \{ (h(\boldsymbol{x}_1), \dots, h(\boldsymbol{x}_m)) : h \in \mathcal{H} \}. \tag{3.1}$$

其中, h 在 D 上的限制是一个m维向量。

- 假设空间 \mathcal{H} 中不同的假设对于 D 中示例赋予标记的结果可能相同,也可能不同。
- 尽管 \mathcal{H} 可能包含无穷多个假设,但 $\mathcal{H}_{|D}$ 却是有限的,即 \mathcal{H} 对 D 中示例赋予 标记的可能结果数是有限的。
- 例如,对二分类问题,对于m个示例最多有 2^m 个可能的结果。

增长函数 (growth function)

增长函数 (growth function)

对于 $m \in \mathbb{N}$,假设空间 \mathcal{H} 的增长函数 $\Pi_{\mathcal{H}}(m)$ 表示为

$$\Pi_{\mathcal{H}}(m) = \max_{\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_m\} \subset \mathcal{X}} |\{h(\boldsymbol{x}_1), \dots, h(\boldsymbol{x}_m) | h \in \mathcal{H}\}|.$$
 (3.2)

特别地,对二分类问题,有

$$\Pi_{\mathcal{H}}(m) = \max_{|D|=m} |\mathcal{H}_{|D}|. \tag{3.3}$$

增长函数表示假设空间对个示例所能赋予标记的最大可能的结果数。

增长函数在一定程度上描述了假设空间的表达能力,反映了假设空间的复杂程度!

对分 (dichotomy) 、打散 (shattering)

对分 (dichotomy)

- 对于二分类问题,假设空间 \mathcal{H} 中的假设对 D 中的示例赋予标记的每种可能结果称为对 D 的一种对分。
- 该假设把 *D* 中的示例分成了正、负两类。

打散 (shattering)

• 如果假设空间 \mathcal{H} 能实现示例集 D 上的所有对分,即 $|\mathcal{H}_{|D}|=2^m$,则称示例集 D 能被假设空间 \mathcal{H} 打散,此时 $\Pi_{\mathcal{H}}(m)=2^m$ 。

对分 (dichotomy) 、打散 (shattering)

例如:

令 \mathcal{H} 表示 \mathbb{R} 上的阈值函数构成的集合,其中阈值函数表示为 $h_a(x)=\mathrm{sign}(\mathbb{I}_{\{x< a\}}-\frac{1}{2})$,则 $\mathcal{H}=\{h_a:a\in\mathbb{R}\}$ 。

令 $D = \{x_1\}$,如果取 $a = x_1 + 1$,则 $h_a(x_1) = +1$;

如果取 $a = x_1 - 1$,则 $h_a(x_1) = -1$ 。

因此 \mathcal{H} 能打散 $D = \{x_1\}$ 。

令 $D' = \{x_1, x_2\}$, 不妨假设 $x_1 < x_2$, 则易知同时将 x_1 分类为 -1 但把 x_2 分类为 +1 的结果不能被 \mathcal{H} 中的任何阈值函数实现。

这是因为如果 $h_a(x_1) = -1$, 则必有 $h_a(x_2) = -1$ 。 所以 \mathcal{H} 不能打散 D'。

VC维 [Vapnik and Chervonenkis, 1971]

定义 **3.1** [Vapnik and Chervonenkis, 1971] VC **维**: 假设空间 \mathcal{H} 的 VC 维 是能被 \mathcal{H} 打散的最大示例集的大小, 即

$$VC(\mathcal{H}) = \max\{m : \Pi_{\mathcal{H}}(m) = 2^m\}. \tag{3.4}$$

 $VC(\mathcal{H}) = d$ 表明存在大小为 d 的示例集能被假设空间 \mathcal{H} 打散。

注意:

- 这并不意味着所有大小为 d 的示例集都能被假设空间 \mathcal{H} 打散。
- VC 维的定义与数据分布 \mathcal{D} 无关! 因此,在数据分布未知时仍能计算出假设空间 \mathcal{H} 的 VC 维。

VC维 [Vapnik and Chervonenkis, 1971]

定义 **3.1** [Vapnik and Chervonenkis, 1971] VC **维**: 假设空间 \mathcal{H} 的 VC 维 是能被 \mathcal{H} 打散的最大示例集的大小, 即

$$VC(\mathcal{H}) = \max\{m : \Pi_{\mathcal{H}}(m) = 2^m\}. \tag{3.4}$$

要证明一个具体的假设空间 \mathcal{H} 的 VC 维为 d , 需要证明两点:

- 存在大小为 d 的示例集 D 能被 升 打散;
- 任意大小为 d+1 的示例集 D' 都不能被 \mathcal{H} 打散。

用VC维来衡量有限假设空间的复杂度更为准确,且更具优势。

• 令假设空间 \mathcal{H} 为有限集合。对于任意数据集 D ,有 $|\mathcal{H}_{|D}| \leq |\mathcal{H}|$ 。还可知当 $|\mathcal{H}| < 2^{|D|}$ 时, \mathcal{H} 无法打散 D 。因此,可得 $VC(\mathcal{H}) \leq \log_2 |\mathcal{H}|$ 。事实上,有限假设空间 \mathcal{H} 的 $VC(\mathcal{H})$ 通常可以远小于 $\log_2 |\mathcal{H}|$ 。

两种假设空间的VC维

两种假设空间的 VC 维:

• 阈值函数的VC维:

令 \mathcal{H} 表示所有定义在 \mathbb{R} 上的阈值函数组成的集合,由上述讨论可知存在大小为 1 的示例集 D 能被 \mathcal{H} 打散,但任意大小为 2 的示例集 |D'| 都不能被 \mathcal{H} 打散,于是根据定义可知 $VC(\mathcal{H})=1$ 。

• 区间函数的VC维:

令 \mathcal{H} 表示所有定义在 \mathbb{R} 上的区间组成的集合 $\mathcal{H} = \{h_{a,b}: a,b \in \mathbb{R}, a < b\}$, 其中 $h_{a,b}(x) = (\mathbb{I}_{\{x \in (a,b)\}} - 1/2)$ 。令 $D = \{1,2\}$,易知 \mathcal{H} 能打散 D ,因此 $VC(\mathcal{H}) \geq 2$ 。对于任意大小为 3 的示例集 $D' = \{x_1, x_2, x_3\}$,不妨设 $x_1 < x_2 < x_3$,则分类结果 (+1,-1,+1) 不能被 \mathcal{H} 中的任何区间函数实现,因为当 $h_{a,b}(x_1) = +1$ 且 $h_{a,b}(x_3) = +1$ 时,必有 $h_{a,b}(x_2) = +1$ 。所以 \mathcal{H} 无法打散任何大小为 3 的示例集,即得出结论 $VC(\mathcal{H}) = 2$ 。

由增长函数的定义可知, VC维与增长函数关系密切, 引理 3.1 [Sauer, 1972] 给出了二者之间的定量关系:

引理 3.1 若假设空间 \mathcal{H} 的 VC 维为 d, 则对任意 $m \in \mathbb{N}$ 有

$$\Pi_{\mathcal{H}}(m) \leqslant \sum_{i=0}^{d} {m \choose i}. \tag{3.5}$$

注: Sauer 引理由 [Sauer, 1972] 而命名,但 Vapnik and Chervonenkis [1971] 和 Shelah [1972] 也分别独立地给出了该结果。

证明: 利用数学归纳法证明。

当 m=1, d=0 或 d=1 时, 引理成立。

假设引理对(m-1,d-1)和(m-1,d)成立。

令
$$D=\{oldsymbol{x}_1,\ldots,oldsymbol{x}_m\}$$
, $D'=\{oldsymbol{x}_1,\ldots,oldsymbol{x}_{m-1}\}$,

$$\mathcal{H}_{|D} = \left\{ \left(h(\boldsymbol{x}_1), \dots, h(\boldsymbol{x}_m) \right) \middle| h \in \mathcal{H} \right\}, \tag{3.6}$$

$$\mathcal{H}_{|D'} = \left\{ \left(h(\boldsymbol{x}_1), \dots, h(\boldsymbol{x}_{m-1}) \right) \middle| h \in \mathcal{H} \right\}, \tag{3.7}$$

分别为假设空间在 D 和 D' 上的限制。任何假设 $h \in \mathcal{H}$ 对 \boldsymbol{x}_m 的分类结果为 +1 或 -1,因此任何出现在 $\mathcal{H}_{|D'}$ 的串都会在 $\mathcal{H}_{|D}$ 出现一次或者两次。令 $\mathcal{H}_{D'|D}$ 表示 $\mathcal{H}_{|D}$ 中出现两次的 $\mathcal{H}_{|D'}$ 中串组成的集合,即

$$\mathcal{H}_{D'|D} = \left\{ (y_1, \dots, y_{m-1}) \in \mathcal{H}_{|D'} \middle| \exists h, h' \in \mathcal{H}, \right.$$

$$\left. (h(\boldsymbol{x}_i) = h'(\boldsymbol{x}_i) = y_i) \land (h(\boldsymbol{x}_m) \neq h'(\boldsymbol{x}_m)), 1 \leqslant i \leqslant m-1 \right\}. \quad (3.8)$$

考虑到 $\mathcal{H}_{D'|D}$ 中的串在 $\mathcal{H}_{|D}$ 中出现了两次,但在 $\mathcal{H}_{|D'}$ 中仅出现了一次,有

$$\left|\mathcal{H}_{|D}\right| = \left|\mathcal{H}_{|D'}\right| + \left|\mathcal{H}_{D'|D}\right|. \tag{3.9}$$

D' 的大小为 m-1 ,根据归纳的前提假设可得

$$\left|\mathcal{H}_{|D'}\right| \leqslant \Pi_{\mathcal{H}}(m-1) \leqslant \sum_{i=0}^{d} {m-1 \choose i}. \tag{3.10}$$

令 Q 表示能被 $\mathcal{H}_{D'|D}$ 打散的集合,由 Q 的定义可知 $Q \cup \{x_m\}$ 必能被 $\mathcal{H}_{|D}$ 打散。由于 \mathcal{H} 的 VC 维为 d ,因此 $\mathcal{H}_{D'|D}$ 的 VC 维最大为 d-1,于是有

$$\left| \mathcal{H}_{D'|D} \right| \le \Pi_{\mathcal{H}}(m-1) \le \sum_{i=0}^{d-1} {m-1 \choose i}.$$
 (3.11)

(3.12)

综合式 (3.9) - (3.11) 可得

$$\begin{aligned} |\mathcal{H}_{|D}| &\leq \sum_{i=0}^{d} {m-1 \choose i} + \sum_{i=0}^{d-1} {m-1 \choose i} \\ &= \sum_{i=0}^{d} {m-1 \choose i} + {m-1 \choose i-1} \\ &= \sum_{i=0}^{d} {m \choose i}. \end{aligned}$$

由 D 的任意性,式 (3.5) 成立。引理得证。

由引理 3.1 可以计算出增长函数的上界 [Sauer, 1972]:

定理 3.1 若假设空间 \mathcal{H} 的 VC 维为 d, 则对任意整数 $m \ge d$ 有

$$\Pi_{\mathcal{H}}(m) \leqslant \left(\frac{e \cdot m}{d}\right)^d$$
(3.13)

- 当假设空间 \mathcal{H} 的 VC 维为无穷大时,任意大小的示例集 D 都能被 \mathcal{H} 打散,此时有 $\Pi_{\mathcal{H}(m)}=2^m$,增长函数随着数据集的大小指数级增长;
- 当 VC 维有限为 d 且 $m \ge d$ 时,由定理 3.1 可知增长函数随数据集的大小多项式级增长。

证明:

$$\Pi_{\mathcal{H}}(m) \leqslant \sum_{i=0}^{d} \binom{m}{i} \\
\leqslant \sum_{i=0}^{d} \binom{m}{i} \left(\frac{m}{d}\right)^{d-i} \\
= \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{d} \binom{m}{i} \left(\frac{d}{m}\right)^{i} \\
\leqslant \left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m} \binom{m}{i} \left(\frac{d}{m}\right)^{i} \\
= \left(\frac{m}{d}\right)^{d} \left(1 + \frac{d}{m}\right)^{m} \\
\leqslant \left(\frac{e \cdot m}{d}\right)^{d} .$$

多分类问题与Natarajan维

- VC维是针对二分类问题定义的。
- 对于多分类问题,需定义Natarajan维。

多分类问题:

假设空间 \mathcal{H} 包含的假设是 \mathcal{X} 到 $\mathcal{Y} = \{0, \dots, K-1\}$ 的映射,其中K 为类别数。

打散(多分类问题):

对于给定的一个集合 $D \subset \mathcal{X}$, 若假设空间 \mathcal{H} 中存在两个映射 $f_0, f_1 : D \to \mathcal{Y}$ 满足以下两个条件:

- 对于任意的 $x \in D, f_0(x) \neq f_1(x);$
- 对于任意的集合 $B \subset D$ 存在一个映射 $h \in \mathcal{H}$ 使得

$$\forall \boldsymbol{x} \in B, h(\boldsymbol{x}) = f_0(\boldsymbol{x}) \perp \forall \boldsymbol{x} \in D \backslash B, h(\boldsymbol{x}) = f_1(\boldsymbol{x}) , \qquad (3.14)$$

则称集合 D 能被假设空间 \mathcal{H} **打散**(多分类问题)。

Natarajan维 [Natarajan, 1989]

定义 3.2 Natarajan 维: 对于多分类问题的假设空间 \mathcal{H} , Natarajan 维是能被 \mathcal{H} 打散的最大示例集的大小, 记作 $Natarajan(\mathcal{H})$.

显然,Natarajan维是VC维从二分类问题到多分类问题的扩展。

下面的定理表明,二分类问题的VC维与Natarajan维相同。

定理 3.2 类别数 K = 2 时, $VC(\mathcal{H}) = Natarajan(\mathcal{H})$.

Natarajan维 [Natarajan, 1989]

证明: 首先证明 $VC(\mathcal{H}) \leq Natarajan(\mathcal{H})$.

令 D 表示大小为 $VC(\mathcal{H})$ 且能被 \mathcal{H} 打散的集合。取多分类问题打散定义中的 f_0, f_1 为常值函数,即 $f_0 = 0, f_1 = 1$ 。由于 D 能被 \mathcal{H} 打散,则对于任意集合 $B \subset D$,存在 h_B 使得 $\mathbf{x} \in B$ 时 $h_B(\mathbf{x}) = 0, \mathbf{x} \in D \setminus B$ 时 $h_B(\mathbf{x}) = 1$,即H 能打散大小为 $VC(\mathcal{H})$ 的 D,于是有 $VC(\mathcal{H}) \leq Natarajan(\mathcal{H})$ 。

再证明 $VC(\mathcal{H}) \geq Natarajan(\mathcal{H})$.

令 D 表示大小为 $Natarajan(\mathcal{H})$ 且在多分类问题中能被 \mathcal{H} 打散的集合。当 K=2 时, $f_0,f_1:D\to\mathcal{Y}=\{0,1\}$ 。取 $D_i^v=\{x\in D|f_i(x)=v\}$ 。对于 D 上的任意一种划分 $c:D\to\mathcal{Y}$,记 $D^+=\{x\in D|c(x)=1\}$, $D^-=\{x\in D|c(x)=0\}$ 。令 多分类问题打散定义中 $B=(D^+\cap D_0^1)\cup (D^-\cap D_0^0)$,可知存在 $h\in\mathcal{H}$ 使得 $\forall x\in D$ 有 h(x)=c(x),即 \mathcal{H} 能打散大小为 $Natarajan(\mathcal{H})$ 的 D,于是有 $VC(\mathcal{H})\geq Na-tarajan(\mathcal{H})$ 。

定理得证。

Natarajan维与增长函数 [Natarajan, 1989]

对于多分类问题,通过Natarajan维控制增长函数的增长速度,可得到下面的定理 [Natarajan, 1989]:

定理 3.3 若多分类问题假设空间 \mathcal{H} 的 Natarajan 维为 d, 类别数为 K, 则对任意 $m \in \mathbb{N}$ 有

$$\Pi_{\mathcal{H}}(m) \leqslant m^d K^{2d}. \tag{3.15}$$

Natarajan维与增长函数 [Natarajan, 1989]

证明: 利用数学归纳法证明。

当 m = 1, d = 0 或 d = 1 时, 定理成立。

假设定理对(m-1,d-1)和(m-1,d)成立。

令 $D = \{x_1, \dots, x_m\}$, 对于 $\mathcal{Y} = \{0, \dots, K-1\}$, $\mathcal{H}_{|D}$ 可以推广到多分类问题。

令

$$\mathcal{H}_k = \{ h \in \mathcal{H}_{|D} | h(\mathbf{x}_1) = k \}, k = 0, \dots, K - 1,$$
 (3.16)

基于 \mathcal{H}_k 可以定义如下集合:

$$\forall i \neq j, \mathcal{H}_{ij} = \left\{ h \in \mathcal{H}_i \middle| \exists h' \in \mathcal{H}_j, h(\boldsymbol{x}_l) = h'(\boldsymbol{x}_l), l = 2, \dots, m \right\}, \tag{3.17}$$

$$\bar{\mathcal{H}} = \mathcal{H}_{|D} - \cup_{i \neq j} \mathcal{H}_{ij}. \tag{3.18}$$

根据联合界 (Union Bound) 不等式 (1.14) 可知

$$\left|\mathcal{H}_{|D}\right| \leqslant \left|\bar{\mathcal{H}}\right| + \left|\cup_{i \neq j} \mathcal{H}_{ij}\right| \leqslant \left|\bar{\mathcal{H}}\right| + \sum_{i \neq j} \left|\mathcal{H}_{ij}\right|. \tag{3.19}$$

Natarajan维与增长函数 [Natarajan, 1989]

根据定义, $\bar{\mathcal{H}}$ 在 $D-\{x_1\}$ 上无相同假设, 且 $Natarajan(\bar{\mathcal{H}}) \leq d$ 。根据归纳的前提假设,可知

$$|\bar{\mathcal{H}}| \le \Pi_{\bar{\mathcal{H}}}(m-1) \le (m-1)^d K^{2d}.$$
 (3.20)

同时,对于任意 \mathcal{H}_{ij} ,其 Natarajan 维最多为 d-1,否则 \mathcal{H} 的 Natarajan 维 将超过 d。同样根据归纳的前提假设,有

$$\forall i \neq j, |\mathcal{H}_{ij}| \leqslant \Pi_{\mathcal{H}_{ij}}(m) \leqslant m^{d-1} K^{2(d-1)}. \tag{3.21}$$

综上可得

$$|\mathcal{H}_{|D}| \leq |\bar{\mathcal{H}}| + \sum_{i \neq j} |\mathcal{H}_{ij}| \leq \Pi_{\bar{\mathcal{H}}}(m-1) + \sum_{i \neq j} \Pi_{\mathcal{H}_{ij}}(m)$$

$$\leq (m-1)^d K^{2d} + K^2 m^{d-1} K^{2(d-1)}$$

$$\leq m^d K^{2d}. \tag{3.22}$$

由 D 的任意性, (3.15) 成立。定理得证。

数据分布相关

VC维

VC维的定义与数据分布无关。因此基于VC维的分析结果是分布无关、数据独立的,也就是说对任意数据分布都成立。

- 一方面,基于VC维的分析结果具有一定的"普适性";
- 另一方面,由于没有考虑数据自身,基于VC维的分析结果通常比较"松", 对那些与学习问题的典型情况相差甚远的较"坏"分布来说尤其如此。

Rademacher 复杂度

- 是另一种刻画假设空间复杂度的工具;
- 与VC维不同的是,它在一定程度上考虑了数据分布。

最小经验误差

给定数据集 $D = \{(x_1, y_1), \dots, (x_m, y_m)\}$, 假设 h 的经验误差为

$$\hat{E}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}(h(\boldsymbol{x}_i) \neq y_i)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{1 - y_i h(\boldsymbol{x}_i)}{2}$$

$$= \frac{1}{2} - \frac{1}{2m} \sum_{i=1}^{m} y_i h(\boldsymbol{x}_i). \tag{3.23}$$

其中 $\frac{1}{m}\sum_{i=1}^m y_i h(\boldsymbol{x}_i)$ 体现了预测值 $h(\boldsymbol{x}_i)$ 与样例真实标记 y_i 之间的一致性,若 $h(\boldsymbol{x}_i)=y_i,\,1\leq i\leq m$,则 $\frac{1}{m}\sum_{i=1}^m y_i h(\boldsymbol{x}_i)$ 取得最大值1,也就是说具有最小经验 误差的假设是

$$\underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \frac{1}{m} \sum_{i=1}^{m} y_i h(\boldsymbol{x}_i). \tag{3.24}$$

Rademacher随机变量

现实任务中样例的标记有时会受到噪声的影响,即对某些样例 (\mathbf{x}_i, y_i) 来说,其 y_i 或许已经受到随机因素的影响,不再是 \mathbf{x}_i 的真实标记。在此情形下,选择假设空间 \mathcal{H} 中在训练集上表现最好的假设,有时还不如选择 \mathcal{H} 中事先已考虑了随机噪声的假设。

Rademacher随机变量

考虑随机变量 σ_i ,它以 0.5 的概率取值 -1 ,以 0.5 的概率取值 +1 ,称其为 Rademacher 随机变量。基于 σ_i 可将 (3.24) 改写为

$$\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(\boldsymbol{x}_i). \tag{3.25}$$

对所有的 σ_i 求期望可得

$$\mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(\boldsymbol{x}_i) \right] . \tag{3.26}$$

Rademacher随机变量

$$\mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(\boldsymbol{x}_i) \right] . \tag{3.26}$$

式 (3.26) 和增长函数有着相似的作用,体现了假设空间在数据集 D上的表示能力,取值范围为 [0,1]。当式 (3.26) 取值为 1 时,意味着对任意 $\sigma = \{\sigma_1,\ldots,\sigma_m\}$ $\sigma_i \in \{-1,+1\}$,有

$$\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(\boldsymbol{x}_i) = 1.$$
 (3.27)

在有限假设空间的情况下,即 $\exists h \in \mathcal{H}$, s.t. $h(\boldsymbol{x}_i) = \sigma_i, 1 \leq i \leq m$,类似于 $|\mathcal{H}_{|D}| = 2^m$,也就有 $\Pi_{\mathcal{H}}(m) = 2^m$,即 \mathcal{H} 能打散 D 。

总的来说,式(3.26)的值越接近1,假设空间的表示能力越强。

经验Rademacher复杂度 [Koltchinskii, 2001]

考虑实值函数空间 $\mathcal{F}: \mathcal{Z} \to \mathbb{R}$, 令 $Z = \{z_1, \dots, z_m\}$, 其中 $z_i \in \mathcal{Z}$, 将式(3.27) 中的 \mathcal{X} 和 \mathcal{H} 替换为 \mathcal{Z} 和 \mathcal{F} 可得 [Koltchinskii, 2001]

定义 3.3 函数空间 \mathcal{F} 关于 Z 的经验 Rademacher 复杂度为

$$\hat{R}_{Z}(\mathcal{F}) = \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f(\boldsymbol{z}_{i}) \right].$$
 (3.28)

这里的 Z 是一个给定的集合。经验Rademacher复杂度衡量了函数空间 F 与随机噪声在数据集 Z 中的相关性。

Rademacher复杂度

对从分布 \mathcal{D} 独立同分布采样得到的大小为 m 的集合 Z 求期望可得

定义 3.4 函数空间 \mathcal{F} 关于 \mathcal{Z} 在分布 \mathcal{D} 上的 Rademacher **复杂度**为

$$R_m(\mathcal{F}) = \mathbb{E}_{Z \subset \mathcal{Z}:|Z|=m} \left[\hat{R}_Z(\mathcal{F}) \right]. \tag{3.29}$$

- Rademacher复杂度依赖于具体学习问题及数据分布,是为具体学习问题量身定制的。
- 基于Rademacher复杂度可以比基于VC维推导出更紧的泛化误差界。
- 需要注意到,在Rademacher复杂度的定义中 σ 是 $\{-1,+1\}$ 上服从均匀分布的随机变量。如果将均匀分布改为其他分布,会得到其他一些复杂度的定义。

Rademacher复杂度

经验Gauss复杂度 [Bartlett and Mendelson, 2003]

定义 3.5 函数空间 F 关于 Z 的经验 Gauss 复杂度为

$$\hat{G}_Z(\mathcal{F}) = \mathbb{E}_{\boldsymbol{g}} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m g_i f(\boldsymbol{z}_i) \right], \tag{3.30}$$

其中 $g = \{g_1, \dots, g_m\}$ 服从高斯分布,即标准正态分布。

Gauss复杂度:对经验Gauss复杂度求期望可得

定义 3.6 函数空间 \mathcal{F} 关于 \mathcal{Z} 在分布 \mathcal{D} 上的 Gauss **复杂度**为

$$G_m(\mathcal{F}) = \mathbb{E}_{Z \subset \mathcal{Z}:|Z|=m} \left[\hat{G}_Z(\mathcal{F}) \right].$$
 (3.31)

Rademacher复杂度与前面介绍VC维用到的增长函数之间也具有一定的关系,首先引入定理 [Massart, 2000]:

定理 3.4 $\Diamond A \subset \mathbb{R}^m$ 为有限集合且 $r = \max_{x \in A} ||x||_2$, 有

$$\mathbb{E}_{\boldsymbol{\sigma}} \left[\frac{1}{m} \sup_{\boldsymbol{x} \in A} \sum_{i=1}^{m} \sigma_i x_i \right] \leqslant \frac{r\sqrt{2\ln|A|}}{m}, \tag{3.32}$$

其中 σ_i 为独立且符合 $\{-1,+1\}$ 上均匀分布的随机变量, x_i 为向量 x 的分量。

证明:对任意 t>0 使用 Jensen不等式 (1.8) 可得

$$\exp\left(t\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup_{\boldsymbol{x}\in A}\sum_{i=1}^{m}\sigma_{i}x_{i}\right]\right) \leqslant \mathbb{E}_{\boldsymbol{\sigma}}\left[\exp\left(t\sup_{\boldsymbol{x}\in A}\sum_{i=1}^{m}\sigma_{i}x_{i}\right)\right]$$

$$=\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup_{\boldsymbol{x}\in A}\exp\left(t\sum_{i=1}^{m}\sigma_{i}x_{i}\right)\right]$$

$$\leqslant \sum_{\boldsymbol{x}\in A}\mathbb{E}_{\boldsymbol{\sigma}}\left[\exp\left(t\sum_{i=1}^{m}\sigma_{i}x_{i}\right)\right]. \tag{3.33}$$

接着使用 σ 的独立性及Hoeffding不等式 (1.26) 可得

$$\exp\left(t\mathbb{E}_{\sigma}\left[\sup_{\boldsymbol{x}\in A}\sum_{i=1}^{m}\sigma_{i}x_{i}\right]\right) \leqslant \sum_{\boldsymbol{x}\in A}\prod_{i=1}^{m}\mathbb{E}_{\sigma_{i}}\left[\exp(t\sigma_{i}x_{i})\right]$$

$$\leqslant \sum_{\boldsymbol{x}\in A}\prod_{i=1}^{m}\exp\left(\frac{t^{2}(2x_{i})^{2}}{8}\right)$$

$$= \sum_{\boldsymbol{x}\in A}\exp\left(\frac{t^{2}}{2}\sum_{i=1}^{m}x_{i}^{2}\right)$$

$$\leqslant \sum_{\boldsymbol{x}\in A}\exp\left(\frac{t^{2}r^{2}}{2}\right)$$

$$= |A|\exp\left(\frac{t^{2}r^{2}}{2}\right). \tag{3.34}$$

对不等式两边取对数,可得

$$\mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{\boldsymbol{x} \in A} \sum_{i=1}^{m} \sigma_i x_i \right] \leqslant \frac{\ln |A|}{t} + \frac{tr^2}{2}. \tag{3.35}$$

当 $t = \frac{\sqrt{2 \ln |A|}}{r}$ 时右侧取最小值,即

$$\mathbb{E}_{\boldsymbol{\sigma}} \left| \sup_{\boldsymbol{x} \in A} \sum_{i=1}^{m} \sigma_{i} x_{i} \right| \leqslant r \sqrt{2 \ln |A|}. \tag{3.36}$$

两边除以 m 定理得证。

由定理 3.4 可得关于Rademacher复杂度与增长函数之间关系的推论:

推论 3.1 假设空间 \mathcal{H} 的 Rademacher 复杂度 $R_m(\mathcal{H})$ 与增长函数 $\Pi_{\mathcal{H}}(m)$

满足

$$R_m(\mathcal{H}) \leqslant \sqrt{\frac{2 \ln \Pi_{\mathcal{H}}(m)}{m}}.$$
 (3.37)

证明: 对于 $D = \{x_1, \dots, x_m\}$, $\mathcal{H}_{|D}$ 为假设空间 \mathcal{H} 在 D 上的限制。由于 $h \in \mathcal{H}$ 的值域为 $\{-1, +1\}$, 可知 $\mathcal{H}_{|D}$ 中的元素为模长 \sqrt{m} 的向量。因此,由定理 3.4 可得

$$R_{m}(\mathcal{H}) = \mathbb{E}_{D} \left[\mathbb{E}_{\sigma} \left[\sup_{u \in \mathcal{H}_{|D}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} u_{i} \right] \right]$$

$$\leqslant \mathbb{E}_{D} \left[\frac{\sqrt{m} \sqrt{2 \ln |\mathcal{H}_{|D}|}}{m} \right]. \tag{3.38}$$

又因为 $|\mathcal{H}_{|D}| \leq \Pi_{\mathcal{H}}(m)$,有

$$R_m(\mathcal{H}) \leqslant \mathbb{E}_D \left[\frac{\sqrt{m}\sqrt{2\ln\Pi_{\mathcal{H}}(m)}}{m} \right] = \sqrt{\frac{2\ln\Pi_{\mathcal{H}}(m)}{m}},$$
 (3.39)

定理得证。

分析实例之一(以线性超平面为例)

线性超平面

对于二分类问题,线性超平面假设空间 \mathcal{H} 可以表示为

$$\left\{ h_{\boldsymbol{w},b} : h_{\boldsymbol{w},b}(\boldsymbol{x}) = \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b\right) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_{i}x_{i}\right) + b\right) \right\}, \quad (3.40)$$

b=0 时为齐次线性超平面。

典型的线性超平面是将 \boldsymbol{w} , b 放缩后,满足 $\min_{(\boldsymbol{x},y)\in D}|\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}+b|=1$ 的 (\boldsymbol{w},b) 所构成的超平面。

对线性超平面进行VC维和Rademacher复杂度分析,有

定理 3.5 \mathbb{R}^d 空间中, 由齐次线性超平面构成的假设空间的 VC 维为 d.

线性超平面的VC维

证明: 令 e_1, \ldots, e_d 表示 \mathbb{R}^d 中的 d 个单位向量, $D = \{e_1, \ldots, e_d\}$ 。对于任意d 个标记 y_1, \ldots, y_d ,取 $\mathbf{w} = (y_1, \ldots, y_d)$,则有 $\mathbf{w}^{\mathrm{T}} \mathbf{e}_i = y_i$,所以 D 能被齐次线性超平面打散。

令 $D' = \{x_1, \dots, x_{d+1}\}$ 为 \mathbb{R}^d 中任意 d+1 个向量,则必存在不全为 0 的实数 a_1, \dots, a_{d+1} 使得 $\sum_{i=1}^{d+1} a_i x_i = 0$ 。令 $I = \{i : a_i > 0\}, J = \{j : a_j < 0\}$,则 I, J 至 少一个不为空集。首先假设两者都不为空集,则有

$$\sum_{i \in I} a_i \boldsymbol{x}_i = \sum_{j \in J} |a_j| \boldsymbol{x}_j. \tag{3.41}$$

下面采用反证法。假设 D' 能被 \mathcal{H} 打散,则存在向量 \boldsymbol{w} 使得 $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{i}>0,\,i\in I$, 且 $\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{j}<0,j\in J$ 。由此可得

$$0 < \sum_{i \in I} a_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}) = \left(\sum_{i \in I} a_i \boldsymbol{x}_i\right)^{\mathrm{T}} \boldsymbol{w} = \left(\sum_{j \in J} |a_j| \boldsymbol{x}_j\right)^{\mathrm{T}} \boldsymbol{w} = \sum_{j \in J} |a_j| (\boldsymbol{x}_j^{\mathrm{T}} \boldsymbol{w}) < 0. \quad (3.42)$$

此式矛盾,即 D'能被 H 打散不成立。当 I,J 只有一个不为空集时同理可证。

综上可知, $VC(\mathcal{H}) = d$, 定理得证。

线性超平面的VC维

定理 3.6 \mathbb{R}^d 空间中,由非齐次线性超平面构成的假设空间的 VC 维为 d+1.

证明: 由定理 3.5 的证明可知 $D = \{0, e_1, \dots, e_d\}$ 能被非齐次线性超平面 \mathcal{H} 打散。 下面将非齐次线性超平面转化为齐次线性超平面:

$$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b = \boldsymbol{w}'^{\mathrm{T}}\boldsymbol{x}, \quad \boldsymbol{w} \in \mathbb{R}^d, \boldsymbol{x} \in \mathbb{R}^d, \boldsymbol{w}' \in \mathbb{R}^{d+1}, \boldsymbol{x}' \in \mathbb{R}^{d+1},$$
 (3.43)

其中 $\mathbf{w}' = (\mathbf{w}; b)$, $\mathbf{x}' = (\mathbf{x}; 1)$ 。如果 $D' = \{\mathbf{x}_1, \dots, \mathbf{x}_{d+2}\}$ 能被 \mathbb{R}^d 中非齐次线性超平面打散,则 $D'' = \{\mathbf{x}'_1, \dots, \mathbf{x}'_{d+2}\}$ 能被 \mathbb{R}^{d+1} 中齐次线性超平面打散,这与定理 3.5矛盾。

因此, 非齐次线性超平面的VC维为 d+1。

线性超平面的Rademacher复杂度

线性超平面的假设空间复杂度不仅可基于VC维进行刻画,还可基于Rademacher复杂度刻画。但Rademacher复杂度与数据相关,因此在计算Rademacher复杂度时需要将分布 \mathcal{D} 限制在某一范围内。

定理 3.7 令 $D \subset \{x : ||x|| \leq r\}$ 是大小为 m 的数据集, 则典型超平面族 $\mathcal{H} = \{x \mapsto w^{\mathrm{T}}x : ||w|| \leq \Lambda\}$ 的经验 Rademacher 复杂度满足

$$\widehat{R}_D(\mathcal{H}) \leqslant \sqrt{\frac{r^2 \Lambda^2}{m}}.$$
 (3.44)

不难发现,定理 3.7 只给出了Rademacher复杂度的上界。这是由于Rademacher复杂度依赖于数据分布,使得计算Rademacher复杂度的具体数值相当困难。

线性超平面的Rademacher复杂度

证明:

$$\widehat{R}_{D}(\mathcal{H}) = \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup \sum_{i=1}^{m} \sigma_{i} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{i} \right]$$

$$= \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup \boldsymbol{w}^{\mathrm{T}} \sum_{i=1}^{m} \sigma_{i} \boldsymbol{x}_{i} \right]$$

$$\leqslant \frac{\Lambda}{m} \mathbb{E}_{\sigma} \left[\left\| \sum_{i=1}^{m} \sigma_{i} \boldsymbol{x}_{i} \right\|^{2} \right]$$

$$= \frac{\Lambda}{m} \left[\mathbb{E}_{\sigma} \left[\left\| \sum_{i=1}^{m} \sigma_{i} \sigma_{i} (\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{j}) \right|^{1/2} \right]$$

$$= \frac{\Lambda}{m} \left[\mathbb{E}_{\sigma} \left[\sum_{i,j=1}^{m} \sigma_{i} \sigma_{j} (\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{j}) \right] \right]^{1/2}$$

$$\leqslant \frac{\Lambda}{m} \left[\sum_{i=1}^{m} \|\boldsymbol{x}_{i}\|^{2} \right]^{1/2}$$

$$\leqslant \sqrt{\frac{r^{2} \Lambda^{2}}{m}},$$

(3.45)

分析实例之二(以SVM为例)

SVM

由于原样本空间往往是线性不可分的,SVM通常需要将原样本空间映射到可分的高维空间,并在高维空间中训练线性超平面进行分类。由定理 3.6 可知,若高维空间的维度为 d ,则在高维空间中SVM的VC维为 d+1 。

在实际运用中,映射后的高维空间维数通常很大甚至接近无穷,使得依赖空间维度的VC维失去了实际意义。这时就需要一种与空间维数无关的VC维进行刻画。虽然这种刻画方法与空间维数无关,但仍需要对超平面加以限制。

对于限制后的超平面可以得到下面的定理 [Vapnik, 1998]:

定理 3.8 令 $D \subset \{x : \|x\| \leq r\}$,超平面族 $\{x \mapsto \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) : \min_{\boldsymbol{x} \in D} |\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}| = 1 \land \|\boldsymbol{w}\| \leq \Lambda\}$ 的 VC 维 d 满足下面的不等式

$$d \leqslant r^2 \Lambda^2. \tag{3.46}$$

SVM的VC维

证明: 令 $\{x_1,\ldots,x_d\}$ 为能被超平面族打散的集合,则对于任意 $y=(y_1,\cdots,y_d)$ $\in \{-1,+1\}^d$ 存在 w 使得

$$y_i(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_i) \geqslant 1, 1 \leqslant i \leqslant d. \tag{3.47}$$

对这些不等式求和可得

$$d \leqslant \mathbf{w}^{\mathrm{T}} \sum_{i=1}^{d} y_{i} \mathbf{x}_{i} \leqslant \|\mathbf{w}\| \left\| \sum_{i=1}^{d} y_{i} \mathbf{x}_{i} \right\| \leqslant \Lambda \left\| \sum_{i=1}^{d} y_{i} \mathbf{x}_{i} \right\|.$$
(3.48)

由于式 (3.48) 对任意 $y \in \{-1, +1\}^d$ 都成立,对其两边按 y_1, \dots, y_d 服从 $\{-1, +1\}$ 独立且均匀的分布取期望可得

SVM的VC维

$$d \leq \Lambda \mathbb{E}_{y} \left[\left\| \sum_{i=1}^{d} y_{i} \boldsymbol{x}_{i} \right\| \right]$$

$$\leq \Lambda \left[\mathbb{E}_{y} \left[\left\| \sum_{i=1}^{d} y_{i} \boldsymbol{x}_{i} \right\|^{2} \right] \right]^{1/2}$$

$$= \Lambda \left[\sum_{i,j=1}^{d} \mathbb{E}_{y} [y_{i} y_{j}] (\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}) \right]^{1/2}$$

$$= \Lambda \left[\sum_{i=1}^{d} (\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{i}) \right]^{1/2}$$

$$\leq \Lambda \left[dr^{2} \right]^{1/2}$$

$$= \Lambda r \sqrt{d},$$

从而可知, $\sqrt{d} \leq \Lambda r$, 定理得证。

(3.49)

多层神经网络

在多分类情况下,当标记集合为 $\mathcal Y$ 时,函数族 $\mathcal F \subset \mathcal Y^{\mathcal X}$ 的增长函数有如下性质:

$$\Pi_{\mathcal{F}}(m) = \max_{D \subset \mathcal{X}} |\mathcal{F}_{|D}|, \tag{3.50}$$

其中 D 是大小为 m且独立同分布从 \mathcal{X} 中采样得到的训练集,易知 $\Pi_{\mathcal{F}}(m) \leq |\mathcal{Y}|^m$ 。

引理 **3.2** 令 $\mathcal{F}^{(1)} \subset \mathcal{Y}_1^{\mathcal{X}}$, $\mathcal{F}^{(2)} \subset \mathcal{Y}_2^{\mathcal{X}}$ 为两个函数族, $\mathcal{F} = \mathcal{F}^{(1)} \times \mathcal{F}^{(2)}$ 为它们的笛卡尔积, 有

$$\Pi_{\mathcal{F}}(m) \leqslant \Pi_{\mathcal{F}^{(1)}}(m) \cdot \Pi_{\mathcal{F}^{(2)}}(m) \tag{3.51}$$

引理 **3.2** 令 $\mathcal{F}^{(1)} \subset \mathcal{Y}_1^{\mathcal{X}}$, $\mathcal{F}^{(2)} \subset \mathcal{Y}_2^{\mathcal{X}}$ 为两个函数族, $\mathcal{F} = \mathcal{F}^{(1)} \times \mathcal{F}^{(2)}$ 为它们的笛卡尔积, 有

$$\Pi_{\mathcal{F}}(m) \leqslant \Pi_{\mathcal{F}^{(1)}}(m) \cdot \Pi_{\mathcal{F}^{(2)}}(m) \tag{3.51}$$

证明:对于大小为 m 且独立同分布从 \mathcal{X} 中采样得到的训练集 $D \subset \mathcal{X}$,根据笛卡尔积的定义可知

$$\left| \mathcal{F}_{|D} \right| = \left| \mathcal{F}_{|D}^{(1)} \right| \left| \mathcal{F}_{|D}^{(2)} \right|$$

$$\leq \Pi_{\mathcal{F}^{(1)}}(m) \cdot \Pi_{\mathcal{F}^{(2)}}(m). \tag{3.52}$$

由 D 的任意性,引理得证。

引理 **3.3** 令 $\mathcal{F}^{(1)} \subset \mathcal{Y}_1^{\mathcal{X}}$, $\mathcal{F}^{(2)} \subset \mathcal{Y}_2^{\mathcal{X}}$ 为两个函数族, $\mathcal{F} = \mathcal{F}^{(2)} \circ \mathcal{F}^{(1)}$ 为它们的复合函数族, 有

$$\Pi_{\mathcal{F}}(m) \leqslant \Pi_{\mathcal{F}^{(2)}}(m) \cdot \Pi_{\mathcal{F}^{(1)}}(m). \tag{3.53}$$

证明:对于大小为 m 且独立同分布从 \mathcal{X} 中采样得到的训练集 $D \subset \mathcal{X}$,根据笛卡尔积的定义可知

$$\mathcal{F}_{|D} = \left\{ \left(f_2(f_1(\boldsymbol{x}_1)), \dots, f_2(f_1(\boldsymbol{x}_m)) \right) \middle| f_1 \in \mathcal{F}^{(1)}, f_2 \in \mathcal{F}^{(2)} \right\}$$

$$= \bigcup_{\boldsymbol{u}_i \in \mathcal{F}_{|D}^{(1)}} \left\{ \left(f_2(\boldsymbol{u}_1), \dots, f_2(\boldsymbol{u}_m) \right) \middle| f_2 \in \mathcal{F}^{(2)} \right\}. \tag{3.54}$$

因此有

$$|\mathcal{F}_{|D}| \leqslant \sum_{\boldsymbol{u}_{i} \in \mathcal{F}_{|D}^{(1)}} \left| \left\{ \left(f_{2}(\boldsymbol{u}_{1}), \dots, f_{2}(\boldsymbol{u}_{m}) \right) \middle| f_{2} \in \mathcal{F}^{(2)} \right\} \right|$$

$$\leqslant \sum_{\boldsymbol{u}_{i} \in \mathcal{F}_{|D}^{(1)}} \Pi_{\mathcal{F}^{(2)}}(m)$$

$$= \left| \mathcal{F}_{|D}^{(1)} \middle| \cdot \Pi_{\mathcal{F}^{(2)}}(m) \right|$$

$$\leqslant \Pi_{\mathcal{F}^{(2)}}(m) \cdot \Pi_{\mathcal{F}^{(1)}}(m). \tag{3.55}$$

由 D 的任意性,引理得证。

一般来说,神经网络中的每个结点 v 计算一个函数

$$\varphi\Big((\boldsymbol{w}^{(v)})^{\mathrm{T}}\boldsymbol{x} - \theta^{(v)}\Big), \tag{3.56}$$

其中 φ 被称为激活函数, $\boldsymbol{w}^{(v)}$ 是与结点 v 相关的权值参数, $\theta^{(v)}$ 是与结点 v 相关的阈值参数, φ 以 \boldsymbol{x} 为输入,输出激活信号。本节主要考虑使用符号激活函数 $\varphi(t) = \operatorname{sign}(t)$ 的多层神经网络。假设输入空间 $\mathcal{X} = \mathbb{R}^{d_0}$,一个l 层的多层网络可以简化为一系列映射的复合:

$$f_l \circ \cdots \circ f_2 \circ f_1(\boldsymbol{x}),$$
 (3.57)

其中

$$f_i : \mathbb{R}^{d_{i-1}} \mapsto \{\pm 1\}^{d_i}, 1 \leqslant i \leqslant l-1$$

 $f_l : \mathbb{R}^{d_{l-1}} \mapsto \{\pm 1\}.$ (3.58)

 f_i 是一个多维到多维的映射,可以将其分解为若干个二值多元函数,对于 f_i 的每个分量 $f_{i,j}: \mathbb{R}^{d_{i-1}} \mapsto \{\pm 1\}$ 表示为:

$$f_{i,j}(\boldsymbol{u}) = \operatorname{sign}\left((\boldsymbol{w}^{i,j})^{\mathrm{T}} \cdot \boldsymbol{u} - \theta^{i,j}\right),$$
 (3.59)

其中 $\mathbf{w}^{i,j} \in \mathbb{R}^{d_i-1}$, $\theta^{i,j} \in \mathbb{R}$ 分别为关于第i层第j个结点的权值参数与阈值参数,将多元函数 $f_{i,j}(\mathbf{u})$ 的函数族记为 $\mathcal{F}^{(i,j)}$,关于第i层的函数族可以表示为

$$\mathcal{F}^{(i)} = \mathcal{F}^{(i,1)} \times \dots \times \mathcal{F}^{(i,d_i)}, \tag{3.60}$$

从而整个多层神经网络的函数族可以表示为

$$\mathcal{F} = \mathcal{F}^{(l)} \circ \dots \circ \mathcal{F}^{(2)} \circ \mathcal{F}^{(1)}. \tag{3.61}$$

根据引理 3.1, 引理 3.2 和定理 3.1 可得

$$\Pi_{\mathcal{F}}(m) \leqslant \prod_{i=1}^{l} \Pi_{\mathcal{F}^{(i)}}(m) \leqslant \prod_{i=1}^{l} \prod_{j=1}^{d_{i}} \Pi_{\mathcal{F}^{(i,j)}}(m)$$

$$\leqslant \prod_{i=1}^{l} \prod_{j=1}^{d_{i}} \left(\frac{e \cdot m}{d_{i-1} + 1}\right)^{d_{i-1} + 1}.$$
(3.62)

今

$$N = \sum_{i=1}^{l} \sum_{j=1}^{d_i} (d_{i-1} + 1)$$
(3.63)

表示整个多层神经网络的参数数目,可以将式 (3.62) 化简为

$$\Pi_{\mathcal{F}}(m) \leqslant (e \cdot m)^N, \tag{3.64}$$

多层神经网络的VC维

进一步可以计算出 \mathcal{F} 的 VC 维的界:

定理 3.9 令 \mathcal{F} 表示对应多层神经网络的函数族, 其 VC 维 $VC(\mathcal{F}) = O(N \log_2(N))$.

证明: 假设能被 \mathcal{F} 打散的最大样本集大小为 d , 则 $\Pi_{\mathcal{F}}(d)=2^d$, 由式 (3.64) 可得

$$2^d \leqslant (de)^N, \tag{3.65}$$

化简得知 $d = O(N \log_2(N))$, 定理得证。