Linear Algebra, Calculus, Optimization Review

Notation

 ${f x}$ is an N-dimensional vector. We denote vectors with bold, lower-case letters.

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ \dots \ x_N \end{bmatrix}$$

 ${f A}$ is an N imes M matrix. We denote matrices with bold, upper-case letters.

$$\mathbf{A} = egin{bmatrix} a_{11}, a_{12}, \dots, a_{1M} \ a_{21}, a_{22}, \dots, a_{2M} \ & \dots \ a_{N1}, a_{N2}, \dots, a_{NM} \end{bmatrix}$$

Let $\mathbf{A}[i,:]$ denote the i^{th} row and $\mathbf{A}[:,j]$ denote the j^{th} column of $\mathbf{A}.$

Linear Algebra

Matrix Multiplication

Matrix Multiplication is defined for two matrices, $\mathbf{A} \in \mathbb{R}^{N \times M}$ and $\mathbf{B} \in \mathbb{R}^{M \times D}$.

$$AB = C$$

where $\mathbf{C} \in \mathbb{R}^{N \times D}$. Note that $\mathbf{B}\mathbf{A}$ is **not** defined, as the inner dimensions of the matrices do not match.

$$C_{ij} = \sum_{m=1}^M a_{im} * b_{mj}$$

This is equivalent to

$$C_{ij} = \mathbf{A}[i,:] \cdot \mathbf{B}[:,j]$$

Properties of Matrix Multiplication [1]

- Matrix Multiplication is associative: $(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$
- Matrix Multiplication is distributive: $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$
- In general, Matrix Multiplication is **not** commutative. It is possible that $\mathbf{AB} \neq \mathbf{BA}$.

The Identity Matrix

The identity matrix is a square matrix, whose diagonal elements are 1, and whose off-diagonal elements are 0.

$$\mathbf{I} = egin{bmatrix} 1,0,\ldots,0 \ 0,1,\ldots,0 \ dots, \ \ddots, dots \ 0,0,\ldots,1 \end{bmatrix}$$

Properties

$$AI = A = IA$$

The Transpose

The transpose of a matrix is obtained by switching the column and row indices of a matrix. ("Flipping the matrix over its diagonal.")[2]. For $\mathbf{A} \in \mathbb{R}^{N \times M}$, $\mathbf{A^T} \in \mathbb{R}^{M \times N}$

$$A_{ij} = A_{ji}^T$$

Properties [1]

- $(\mathbf{A}^T)^T = \mathbf{A}$
- $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$

•
$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

Vector Derivatives

Let $f(\mathbf{w})$ be a function of a vector. The first derivative, or gradient, of $f(\mathbf{w})$ is computed as:

$$abla_{\mathbf{w}} f(\mathbf{w}) = egin{bmatrix} rac{\partial f(\mathbf{w})}{\partial w_1} \ rac{\partial f(\mathbf{w})}{\partial w_2} \ dots \ rac{\partial f(\mathbf{w})}{\partial w_N} \end{bmatrix}$$

Identities of Vector Derivatives [3]

1.
$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

2.
$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$

Optimization

Find an extreme value (minimum or maximum) of a function.

Methods for optimizing a function:

- 1. Take the derivative. Solve for zero. (closed-form solution)
- 2. Iteratively update your solution, move along the gradient. (Gradient Descent)

Lagrange Multipliers: Constrained Optimization

A method for optimizing a function $f(\mathbf{w})$, subject to a constraint $g(\mathbf{w}) = k$. If an optimal point in f is at $\mathbf{w_o}$ then the gradients of f and g at point $\mathbf{w_o}$ must be parallel:

$$\nabla f(\mathbf{w_o}) = \lambda \nabla g(\mathbf{w_o})$$

where λ a constant, called the *Lagrange multiplier*.

Practice Problems

1. For $\mathbf{x} \in \mathbb{R}^{N \times 1}$ and $\mathbf{a} \in \mathbb{R}^{N \times 1}$, show that

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

2. Find

$$\frac{\partial}{\partial \mathbf{c}} (\mathbf{a} + \mathbf{c}^T (\mathbf{B} \mathbf{D}^T \mathbf{E})^T + \mathbf{c}^T \mathbf{B} \mathbf{E} \mathbf{c})$$

3. Find local extrema of

$$\frac{d}{dx}|x^2-3|$$

4. Using a Lagrange multiplier: A rectangular box without a lid is to be made from 12 m^2 of cardboard. Find the maximum volume of such a box.

Resources

- Matrix Cookbook
- Stanford CS229: Linear Algebra Review

References

- [1] Stanford CS229: Linear Algebra Review
- [2] Wikipedia: Matrix Transpose
- [3] Matrix Cookbook
- © Molly O'Brien. All rights reserved. Design: HTML5 UP