Entity-Relationship Model

E/R Diagrams

Converting E/R Diagrams to Relational Schema

Jeff Ullman

(edited by Muazzam Siddiqui)

Purpose of E/R Model

- The E/R model allows us to sketch database schema designs.
 - Includes some constraints, but not operations.
- Designs are pictures called entityrelationship diagrams.
- Later: convert E/R designs and instance to graphs

Entities and Entity Sets

- ◆ Entity = "thing" or object.
- Entity set = collection of similar entities.
 - Similar to a class in a class diagram.
- Attribute = property of an entity

E/R Diagrams

- In an entity-relationship diagram:
 - Entity = rectangle.
 - Attribute = oval, with a line to the rectangle representing the entity

Example:

- Entity Student has two attributes, sid and name
- Each Student entity has values for these two attributes, e.g. (s1, Anna)

Relationships

- A relationship connects two or more entities
- It is represented by a diamond, with lines to each of the entities involved

Example: Relationships

Relationship Set

- The current "value" of an entity set is the set of entities that belong to it
 - Example: the set of all students in our database
- ◆The "value" of a relationship is a relationship set, a set of tuples with one component for each related entity set

Example: Relationship Set

◆For the relationship Major, we might have a relationship set like:

Student	Department
s1	CS
s1	Math
s2	Chemistry
s3	Math
s3	Physics

Multiway Relationships

- Sometimes, we need a relationship that connects more than two entities
- Suppose that student takes a course taught by a teacher (s,c,t)
- Three binary relationships do not allow us to precisely capture this relationship between a student, course, and teacher.
 - But a 3-way relationship would.

Example: 3-Way Relationship

A Ternary Relationship Set

Student	Course	Teacher
s1	c1	t1
s1	c2	t2
s2	c2	t1

Example: Representation with 3 many-to-one relationships

Many-Many Relationships

- ◆Focus: binary relationships, such as Enroll between Students and Courses
- ◆In a many-many relationship, an entity of either set can be connected to many entities of the other set
 - E.g., a student may enroll in many courses; a course may enroll many students.

In Pictures:

many-many

Many-One Relationships

- Some binary relationships are many one from one entity set to another
- Each entity of the first set is connected to at most one entity of the second set
- But an entity of the second set can be connected to zero, one, or many entities of the first set
- A many-one relationship is a function

In Pictures:

many-one

Example: Many-One Relationship

- ◆Offered By, from Courses to Departments is many-one
- A course is offered by at most one department
- But a department can offer any number of students, including zero

One-One Relationships

- Some binary relationships are one -one from one entity set to another
- Each entity of the first set is connected to at most one entity of the second set
- Likewise, each entity of the second set is connected to at most one entity of the first set

In Pictures:

Representing Relationships

- Show a many-many relationship by a line
- Show a many-one relationship by an arrow entering the "one" side
- Show a one-one relationship by arrows entering each one sides

Example: Many-One & One-One Relationships

Attributes on Relationships

- Sometimes it is useful to attach an attribute to a relationship
- Think of this attribute as a property of each tuple (relationship) in the relationship set

Example: Attribute on Relationship

Grade is a function of both the student and the course, not of one alone

Roles

- Sometimes an entity set appears more than once in a relationship
- Label the edges between the relationship and the entity set with names called *roles*

Example: Roles

Relationship Set

Example: Roles

Relationship Set

Friend1	Friend2
Bob	Ann
Joe	Sue
Ann	Bob
Joe	Moe
	•••

Keys

- ◆A *key* is a set of attributes for one entity set such that no two entities in this set agree on all the attributes of the key
 - It is allowed for two entities to agree on some, but not all, of the key attributes.
- We must designate a key for every entity set

Keys in E/R Diagrams

- Underline the key attribute(s)
- In an Isa hierarchy, only the root entity set has a key, and it must serve as the key for all entities in the hierarchy

Subclasses

- Subclass = special case = fewer entities= more properties = more relationships
- Example: PhD students are a kind of student.
 - Not every student is a PhD student, but some are.
 - Let us suppose that in addition to all these properties (attributes and relationships), a PhD student also has the attribute topic

Subclasses in E/R Diagrams

- Assume subclasses form a tree.
 - I.e., no multiple inheritance.
- Isa triangles indicate the subclass relationship.
 - Point to the superclass.

Example: Subclasses

E/R Vs. Object-Oriented Subclasses

- In OO, objects are in one class only.
 - Subclasses inherit from superclasses.
- ◆In contrast, E/R entities have representatives in all subclasses to which they belong.
 - Rule: if entity *e* is represented in a subclass, then *e* is represented in the superclass (and recursively up the tree).

Example: Representatives of Entities

Example: name is Key for Student

- Entity set -> relation.
 - Attributes -> attributes.
- Relationships -> relations whose attributes are only:
 - The keys of the connected entity sets.
 - Attributes of the relationship itself.

- Mapping of Entity Sets
 - For each entity set
 - create a relation
- Mapping of Binary 1:1 Relationships
 - For each 1:1 relationship
 - Foreign key approach
 - Add the primary key of one relation as the foreign key of the other
 - Relationship relation approach
 - Create a new relation and add the primary keys of participating relations

- Mapping of Binary 1:N Relationships
 - For each 1:N relationship
 - Foreign key approach
 - Identify relation, say S, that represents participating entity type at N-side of relationship type
 - Include primary key of other entity type as foreign key in S
 - Relationship relation approach
 - Create a new relation and add the primary keys of participating relations

- Mapping of Binary M:N Relationships
 - For each M:N relationship
 - Use the relationship relation approach
 - Create a new relation and add the primary keys of participating relations
- Mapping of N-ary Relationships
 - For each N-ary relationship
 - Use the relationship relation approach
 - Create a new relation and add the primary keys of participating relations

Entity Set -> Relation

Relation: Student(sid, name)

Relationship -> Relation

Example: Subclass -> Relations

E/R Style

name	birthyear
Ann	1999
Ellen	1995

Student

name	topic	
Ellen	PL	
P	PhD	

Good for queries like "find all student (including PhDs) born in 1995."

In SQL (relationships)

- Consider student, course, enroll
- Maintain referential integrity

```
create table student (sid integer PRIMARY KEY,
name text);
create table course (cno integer PRIMARY KEY,
name text);
create table enroll (sid integer REFERENCES student(sid),
cno integer REFERENCES course(cno),
grade VARCHAR(2),
primary key(sid,cno))
```

In SQL (subclasses) E/R style

Consider student, PhD

```
create table Student (sid integer PRIMARY KEY, name text, birthyear integer);
```

create table PhD (sid integer REFERENCES Student(sid), topic text);