Disciplina: Arquitetura e Organização de Computadores

Trabalho

1.Instruções Gerais

- O trabalho poderá ser feito em dupla.
- O trabalho vale de 0,0 a 10,0 e corresponde a 3ª avaliação periódica.
- O trabalho deverá ser entregue via moodle até o dia 18/07/2018.
- O nome do arquivo enviado deve seguir o padrão: Aluno1_RAXXXXX_Aluno2_RAXXXXXX.zip;
 - o O formato para submissão deve ser .zip, .rar, ou .tar;
- A dupla deverá escolher entre implementar **somente** um dos dois:
 - o O circuito descrito na seção 2;
 - O simulador descrito na seção 3;

2.Instruções para o circuito

- O trabalho proposto deverá ser desenvolvido em algum software de simulação de circuitos.
 - De preferencia no circuit maker;
- O circuito deve atender as especificações descritas a seguir:

Descrição: Deve-se implementar um circuito lógico simples, com quatro registradoes de quatro bits cada um, que possua as seguintes instruções:

- Soma entre dois registradores;
 - \circ ADD R1, R2 // R1 \leftarrow R1 + R2
- Movimentação de dados entre dois registradores;
 - MOV R1, R2 // R1 \leftarrow R2
- Soma entre um registrador e um valor imediato;
 - ADD R1, imediato // R1 \leftarrow R1 + imediato
- Movimentação de dados de um valor imediato para um registrador;
 - MOV R1, imediato $//R1 \leftarrow$ imediato
- Ou seja, o circuito deverá realizar as instruções ADD e MOV com endereçamento direto por registrador e também endereçamento por imediato.
- As quatro instruções devem ter o mesmo formato e o mesmo tamanho (6 bits cada instrução, com campos para opcode, operando 1 e operando 2);
- O diagrama exibido na figura 1 ilustra a ideia por tras do circuito;
- Tanto o clock quanto as entradas (opcode, e operandos) que alimentam o sistema podem ser chaves lógicas.
 - Para maior facilidade de manipulação do circuito, é preferivel que o clock seja uma chave lógica.
- Caso a dupla deseje, ela poderá optar por usar um registrador de instrução para armazenar a instrução que está sendo executada.

Disciplina: Arquitetura e Organização de Computadores

Figura 1 - Diagrama de alto nível do circuito

3.Instruções para o simulador

- O trabalho poderá ser implementado em uma das seguintes linguagens:
 - C/C++;
 - Java:
 - Pascal;
 - Python;

Obs: caso a dupla deseje utilizar outra linguagem deverá comunicar o professor para verificar se a linguagem será aceita.

O simulador deverá atender as especificações descritas a seguir;

Descrição: Deve-se implementar um simulador simples para uma arquiteutra. As descrições para o hardware são as seguintes:

- A arquitetura deve ter memória de dados e instruções separadas;
- Assuma que o programa que está em execução pode ser armazenado inteiro na memória de instruções;
- A arquiteutra deve ter 8 registradores de uso geral;
 - Os registradores devem ser nomeados de r1 até r8;
- Deve existir um registrador que armazena o valor 0;
 - o O nome desse registrador deve ser zero
- A arquitetura deve ser composta pelos seguitnes registradores de controle de estado:
 - Contador de programa (PC);
 - Registrador de instruções (IR);

Disciplina: Arquitetura e Organização de Computadores

- O arquivo de entrada deverá ser um arquivo contendo uma sequência de instruções. Assuma que a instrução que está na primeira linha será a primeira a ser executada, a que está na segunda linha será a segunda, e assim por diante;
- O tamanho da memória de dados fica a critério da equipe;
 - o Porém, cada endereço de memória deverá armazenar um valor inteiro;
- As instruções aritméticas e de desvio só podem ter seus operandos endereçados de duas maneiras:
 - Endereçamento direto por registrador;
 - Endereçamento por imediato;
- As instruções de acesso a memória deverão ter um operando com endereçamento direto por registrador e um operando com endereçamento por deslocamento
- O formato e significado das instruções que deverão ser implementadas são exibidos na tabela abaixo:

na tabela abaixo:			
Tipo de Instrução	Representação da Sinstrução		Significado
Aritméticas	add	rd, rs, rt	Atribui à rd a soma de rs e rt rd←rs+rt
	addi	rd, rs, imm	Atribui à rd a soma entre rs e um valor imediato rd ← rs+imm
	sub	rd, rs, rt	Atribui à rd a subtração de rs e rt rd←rs-rt
	subi	rd, rs, imm	Atribui à rd a subtração entre rs e um valor imediato rd ←rs-imm
Desvios	blt	rs, rt, imm	Salta caso rs seja maior que rt Se rs < rt então pc←imm
	bgt	rs, rt, imm	Salta caso rs seja menor que rt Se rs > rt então pc←imm
	beq	rs, rt, imm	Salta caso rs e rt sejam iguais Se rs = rt então pc←imm
Memória	lw	rd, imm(rs)	Carrega da memória para o registrador rd rd ←M[imm+rs]
	sw	rs, imm(rt)	Armazena o valor de rs na memória M[imm+rt] ←rs
Movimentação	mov	rs, imm	Atribui ao registrador rs um valor imediato rs ← imm

Obs: nas instruções imm é uma constante inteira.

- Todas as instruções deverão operar somento sobre valores inteiros.
- A cada ciclo deverá ser exibido:
 - o Os valores armazenados em cada endereço da memória de dados;
 - Os valores armazenados em cada um dos registradores de uso geral;
 - Os valores armazenados em cada um dos registradores de controle de estado;

Disciplina: Arquitetura e Organização de Computadores

Problemas com Trabalhos COPIADOS:

Quem copiar terá o trabalho anulado (zerado), seja de outra dupla ou da internet. Quem fornecer a cópia também terá o trabalho anulado (zerado).