Wireless & Mobile Networks concepts and security

Prof. Amine Berqia

Email: berqia@gmail.com

Welcome to WMN

Course logistics

Office hours: by appointment

I'm very responsive with email

Grading:

Examination: 50%

Project & Practical exercises: 50%

Bonus: Class participation: 10% E.g. question

you ask and how much you interact.

Topics

- ✓ WLAN: IEEE802.11 ...
- ✓ WPAN: IEEE 802.15 ...
- ✓ Mobile IP
- ✓ WMAN: IEEE 802.16 ...
- ✓ WWAN: GSM, GPRS, EDGE, 3G...

Mobile Networks & Wireless Networks

MN

An user is defined as mobile user if he is capable to communicate outside of its net of signature conserving same address.

WN

A system is called wireless if the system proposes a service of communication completely independent of sockets..

Examples of Mobile and/or Wireless Networks

	WN	MN	
GSM	✓	✓	
UMTS	✓	✓	
TCP/IP	X	X	
IP Mobile	X	✓	
ATM	X	X	
DECT	✓	X	

Cellular Concept

$$D_3 = 3R;$$

 $D_4 = 2R(3)^{1/2};$

$$D_{N}=Rx(3N)^{1/2}$$

WLAN

- ❖ 1990 : WLAN project
- ❖ IEEE (Institute of Electrical and Electronics Engineers):
 - **❖ IEEE 802.11**
 - **❖** IEEE 802.15
- Hiperlan (High Performance Local Area Network)
 - HiperLAN

WLAN?

Mobile Phone

IEEE 802.11

MAC Layer	LLC 802.2			
	802.11f			
	802.11 - 802.11e - 802.11i			
Physical Layer	802.11 DSSS FHSS IR	802.11b	802.11g	802.11a

IEEE 802.11

- Frequency: band 2,4 GHz;
- Infrastructue or Ad-hoc
- ❖ IEEE 802.11 is Cellular

IEEE 802.11 Architecture

AP: Access point, BSS: Basic Set service, ESS: Extented Set Service, IBSS Independent BSS.

infrastructure

ad-hoc

Method Access

MAC layer:

- * DCF (Distributed Coordination Function):
 - ♦ based on CSMA/CA
- * PCF (Point Coordination Function):
 - * Baseado on *polling*

PCF

Hidden Node Problem

Hidden Node Problem

RTS/CTS

Bluetooth™

Bluetooth

King Viking, Harald Blåtand (english Blåtand = Bluetooth).

History

- ✓ 1994 –Ericsson
- √ 1998 –Bluetooth SIG (Special Interest Group):
 - ✓ Ericsson
 - **✓** IBM
 - ✓ Intel
 - ✓ Nokia
 - ✓ Toshiba

History

- √ 1999 –B-SIG : Microsoft, Lucent Motorola e&3Com
- √ 1999 Version1.0
- ✓ 2001 First devices
- ✓ More than 2500 companies in B-SIG

Characteristics

- ✓ WPAN Technology
- ✓ ad-hoc
- ✓ 10m till 100m
- ✓ Low cost
- ✓ 2,4 GHz
- ✓ Max 1 Mbps
- ✓ Modulation GFSK (Gaussian Frequency Shift Keying)

Bluetooth (1)

Bluetooth (2)

Cost USA

Inquiry

Paging

States

Scatternet

Mobile IP

GSM++ Technologies

- *GSM
- *****HSCSD
- *****GPRS
- ***EDGE**

Web site Ericsson

GSM - HSCSD - GPRS - EDGE

❖ GSM - Global System for Mobile communications

* HSCSD - High Speed Circuit Switched Data

* GPRS - General Packet Radio Service

❖ EDGE = Enhanced **D**ata rates for **GSM** Evolution

GSM

- ❖ 1979: reservation of the band of the 900 MHz for mobile communications in Europe (IUT);
- * 1980: creation of GSM (Groupe Spécial Mobile) working group
- 1992: real commercialization of first systems GSM

Since, the GSM communications left its French acronym for the one of Global System for Mobile communications and supplanted the analogical systems.

frequency:

- band 890-915 Mhz for the uplink (TM for BTS)
- band 935-960 Mhz for the downlink (BTS for TM)

General Architecture

BSS: Base Station Subsystem

- * MS (Mobile Station): visible part of the system mobile radio.
- *BTS (Base Transceiver Station): points of access net GSM. The BTSs are materialized under the form of antennas on the the buildings in the city or on the edge of the road.
- * BSC (Base Station Controller): a BSC generates the canals radios and the BTS applies the decisions taken by the BSC (as the control of admission of the calls and the management of handovers).

NSS: Network SubSystem

- ❖ MSC (Mobile-services Switching Center): The MSC is a numerical switch that manages all the communications under its covering area;
- * HLR (Home Location Register): database of nominal localization in which the relative information to the subscribers of a mobile net are stored;
- * VLR (Visitor Location Register): database of Local localization in which the relative information to the users of a specific region are stored.

GSM Services

- Voice
- Data
- Short Message Services (SMS)
- Sec.
- QoS!!!

HSCSD & GPRS vs GSM

GSM + GPRS

1. BSS : software upgrade hardware upgrade

New components
 (SGSN – GGSN)

Gateway GPRS Support Node GGSN

- Interface for external Nets
- Like traditional Gateway
- Routing

Serving GPRS Support Node - SGSN

- ➤ In same level like MSC
- > Packets transfer between MS & GGSN.
- >...

Coding Scheme

Coding Scheme	Coded bits	Punctured bits	Data Rate (kbps)	Multiple Slot Max. Data Rate
				(kbps)
CS-1	456	0	9,05	72,4
CS-2	588	132	13,4	107,2
CS-3	676	220	15,6	124,8
CS-4	456	0	21,4	171,2

Timeslot sharing

Timeslot sharing

MS States

Attach

Detach

EDGE

❖ EDGE = Enhanced **D**ata rates for **GSM** Evolution

EDGE Classes

BTS

Downlink

MS

Classe	Downlink	Uplink
Α	8PSK	GMSK
В	8PSK	8PSK

EDGE Coding Schemes

Figure 4. Coding schemes for GPRS and EGPRS (user data rate). (Key: 8PSK, 8-phase shift keying; CS, Coding scheme; EGPRS, Enhanced GPRS; GMSK, Gaussian minimum shift keying; MCS, Modulation coding scheme)

EDGE Impact

- Hardware upgrade in BSS
- Software upgrade for BS and BSC
- New Terminals
 - Terminal : 8PSK uplink e downlink
 - Terminal : GMSK uplink e 8PSK downlink

GSM + GPRS + EDGE

Wireless Networks Security

Prof. Amine Berqia berqia@gmail.com

IEEE 802.11 Basic Security Mechanisms

- Service Set Identifier (SSID)
- MAC Address filtering

Wired Equivalent Privacy (WEP) protocol

802.11 products are shipped by the vendors with all security mechanisms disabled !!

Service Set Identifier (SSID) and their limits!

- Limits access by identifying the service area covered by the access points.
- AP periodically broadcasts SSID in a beacon.
- End station listens to these broadcasts and chooses an AP to associate with based upon its SSID.
- Use of SSID weak form of security as beacon management frames on 802.11 WLAN are always sent in the clear.
- A hacker can use analysis tools (eg. AirMagnet, Netstumbler, AiroPeek) to identify SSID.
- Some vendors use default SSIDs which are pretty well known (eg. CISCO uses tsunami)

MAC Address Filtering

The system administrator can specify a list of MAC addresses that can communicate through an access point.

Advantage:

Provides a little stronger security than SSID

Disadvantages:

- Increases Administrative overhead
- Reduces Scalability
- Determined hackers can still break it

Wired Equivalent Privacy (WEP)

- Designed to provide confidentiality to a wireless network similar to that of standard LANs.
- WEP is essentially the RC4 symmetric key cryptographic algorithm (same key for encrypting and decrypting).
- Transmitting station concatenates 40 bit key with a 24 bit Initialization Vector (IV) to produce pseudorandom key stream.
- Plaintext is XORed with the pseudorandom key stream to produce ciphertext.
- Ciphertext is concatenated with IV and transmitted over the Wireless Medium.
- Receiving station reads the IV, concatenates it with the secret key to produce local copy of the pseudorandom key stream.
- Received ciphertext is XORed with the key stream generated to get back the plaintext.

WEP – vulnerability to attack

- WEP has been broken! Walker (Oct 2000), Borisov et. al. (Jan 2001), Fluhrer-Mantin -Shamir (Aug 2001).
- Unsafe at any key size: Testing reveals WEP encapsulation remains insecure whether its key length is 1 bit or 1000 or any other size.
- More about this at: http://grouper.ieee.org/groups/802/11/Documents/D

- WEP relies on a shared to Rweer with Givit the Arties
- **1.** Checksum: For a message M, we calculate c(M). The plaintext is $P=\{M,c(M)\}$
- **2. Encryption:** The plaintext is encrypted using RC4. RC4 requires an initialization vector (IV) v, and the key K. Output is a stream of bits called the keystream. Encryption is XOR with P.
- **3. Transmission:** The IV and the ciphertext C are transmitted.

$$C = P \oplus RC4(v, K)$$

WEP Security Goals

- WEP had three main security goals:
 - Confidentiality: Prevent eavesdropping
 - Access Control: Prevent inappropriate use of 802.11 network, such as facilitate dropping of not-authorized packets
 - Data Integrity: Ensure that messages are not altered or tampered with in transit
- The basic WEP standard uses a 40-bit key (with 24bit IV)
- Additionally, many implementations allow for 104-bit key (with 24bit IV)
- None of the three goals are provided in WEP due to serious security design flaws and the fact that it is easy to eavesdrop on WLAN

128 bit WEP

- Vendors have extended WEP to 128 bit keys.
 - 104 bit secret key.
 - 24 bit IV.
- Brute force takes 10^19 years for 104-bit key.
- Effectively safeguards against brute force attacks.

Key Scheduling Weakness

- Paper from Fluhrer, Mantin, Shamir, 2001.
- Two weaknesses:
 - Certain keys leak into key stream.
 - Invariance weakness.
 - If portion of PRNG input is exposed,
 - Analysis of initial key stream allows key to be determined.
 - IV weakness.

IV weakness

- WEP exposes part of PRNG input.
 - IV is transmitted with message.
 - Every wireless frame has reliable first byte
 - Sub-network Access Protocol header (SNAP) used in logical link control layer, upper sub-layer of data link layer.
 - First byte is 0xAA
 - Attack is:
 - Capture packets with weak IV
 - First byte ciphertext XOR 0xAA = First byte key stream
 - Can determine key from initial key stream
- Practical for 40 bit and 104 bit keys
- Passive attack.
 - Non-intrusive.
 - No warning.

Wepcrack

- First tool to demonstrate attack using IV weakness.
 - Open source, Anton Rager.
- Three components
 - Weaker IV generator.
 - Search sniffer output for weaker IVs & record 1st byte.
 - Cracker to combine weaker IVs and selected 1st bytes.
- Cumbersome.

Airsnort

- Automated tool
 - Cypher42, Minnesota, USA.
 - Does it all!
 - Sniffs
 - Searches for weaker IVs
 - Records encrypted data
 - Until key is derived.
- 100 Mb to 1 Gb of transmitted data.
- 3 to 4 hours on a very busy WLAN.

Avoid the weak IVs

- FMS described a simple method to find weak IVs
 - Many manufacturers avoid those IVs after 2002
 - Therefore Airsnort and others may not work on recent hardware
- However David Hulton aka h1kari
 - Properly implemented FMS attack which shows many more weak IVs
 - Identified IVs that leak into second byte of key stream.
 - Second byte of SNAP header is also 0xAA
 - So attack still works on recent hardware
 - And is faster on older hardware
 - Dwepcrack, weplab, aircrack

Generating WEP traffic

- Not capturing enough traffic?
 - Capture encrypted ARP request packets
 - Anecdotally lengths of 68, 118 and 368 bytes appear appropriate
 - Replay encrypted ARP packets to generate encrypted ARP replies
 - Aireplay implements this.

802.11 safeguards

- Security Policy & Architecture Design
- Treat as untrusted LAN
- Discover unauthorised use
- Access point audits
- Station protection
- Access point location
- Antenna design

Security Policy & Architecture

- Define use of wireless network
 - What is allowed
 - What is not allowed
- Holistic architecture and implementation
 - Consider all threats.
 - Design entire architecture
 - To minimise risk.

Wireless as untrusted LAN

- Treat wireless as untrusted.
 - Similar to Internet.
- Firewall between WLAN and Backbone.
- Extra authentication required.
- Intrusion Detection
 - at WLAN / Backbone junction.
- Vulnerability assessments

Discover unauthorised use

- Search for unauthorised access points, ad-hoc networks or clients.
- Port scanning
 - For unknown SNMP agents.
 - For unknown web or telnet interfaces.
- Warwalking!
 - Sniff 802.11 packets
 - Identify IP addresses
 - Detect signal strength
 - But may sniff your neighbours...
- Wireless Intrusion Detection
 - AirMagnet, AirDefense, Trapeze, Aruba,...

Access point audits

- Review security of access points.
- Are passwords and community strings secure?
- Use Firewalls & router ACLs
 - Limit use of access point administration interfaces.
- Standard access point config:
 - SSID
 - WEP keys
 - Community string & password policy

Station protection

- Personal firewalls
 - Protect the station from attackers.
- VPN from station into Intranet
 - End-to-end encryption into the trusted network.
 - But consider roaming issues.
- Host intrusion detection
 - Provide early warning of intrusions onto a station.
- Configuration scanning
 - Check that stations are securely configured.

Location of Access Points

- Ideally locate access points
 - In centre of buildings.
- Try to avoid access points
 - By windows
 - On external walls
 - Line of sight to outside
- Use directional antenna to "point" radio signal.

WPA

- Wi-Fi Protected Access
 - Works with 802.11b, a and g
- "Fixes" WEP's problems
- Existing hardware can be used
- 802.1x user-level authentication
- TKIP
 - RC4 session-based dynamic encryption keys
 - Per-packet key derivation
 - Unicast and broadcast key management
 - New 48 bit IV with new sequencing method
 - Michael 8 byte message integrity code (MIC)
- Optional AES support to replace RC4

WPA and 802.1x

- 802.1x is a general purpose network access control mechanism
- WPA has two modes
 - Pre-shared mode, uses pre-shared keys
 - Enterprise mode, uses Extensible Authentication Protocol (EAP) with a RADIUS server making the authentication decision
 - EAP is a transport for authentication, not authentication itself
 - EAP allows arbitrary authentication methods
 - For example, Windows supports
 - EAP-TLS requiring client and server certificates
 - PEAP-MS-CHAPv2

Practical WPA attacks

- Dictionary attack on pre-shared key mode
 - CoWPAtty, Joshua Wright
- Denial of service attack
 - If WPA equipment sees two packets with invalid
 MICs in 1 second
 - All clients are disassociated
 - All activity stopped for one minute
 - Two malicious packets a minute enough to stop a wireless network

802.11i

- Robust Security Network extends WPA
 - Counter Mode with Cipher Block Chaining
 Message Authentication Code Protocol (CCMP)
 - Based on a mode of AES, with 128 bits keys and 48 bit IV.
 - Also adds dynamic negotiation of authentication and encryption algorithms
 - Allows for future change
- Does require new hardware
- www.drizzle.com/~aboba/IEEE/

Relevant RFCs

Radius Extensions: RFC 2869

EAP: RFC 2284

• EAP-TLS: RFC 2716