

ANÁLISIS MATEMÁTICO II

Definición de Funciones Escalares

Antes de comenzar con el estudio de las funciones vectoriales, repasaremos algunos conceptos importantes sobre funciones vistos en Análisis Matemático I.

Recordemos que una función $f: A \to B$ del conjunto A al conjunto B, ambos no vacíos, es una regla que asocia a cada elemento $x \in A$ un elemento (y sólo uno) bien determinado $y \in B$, llamado "imagen bajo f de x", el cual escribimos y = f(x). El conjunto A es el **dominio** de f, el conjunto B es su **codominio** o **contradominio**, y el conjunto formado por todas las imágenes de f es su **rango** o **recorrido**.

Rango de $f = \{ y \in B / y = f(x), x \in A \}$

Gráficamente

Representación Gráfica: considerando que tanto el dominio como la imagen tienen dimensión uno, la gráfica se realiza en el plano xy. \Re^{1+1} es decir en \Re^2

ANÁLISIS MATEMÁTICO II

Ejemplo 1: Sea $f: \Re \to \Re$, $y = x^2$.

Para esta función tenemos: Dominio: $A = \Re$;

Contradominio: $B = \Re$

Rango = Recorrido = $I(f) = \Re_0^+ = [0, +\infty)$.

Su Gráfica es:

Este ejemplo nos permite ver claramente la diferencia entre **contradominio** y **rango** o **recorrido**, ya que la notación: $f: \Re \to \Re$ enfatiza que el **dominio** de la función es el conjunto de los números reales, pero el **rango** o **recorrido**, es el conjunto de las imágenes de los elementos de A que se obtienen a través de f(x). Recordemos también que definimos la gráfica de f como el subconjunto de \Re^2 que consta de los puntos (x, f(x)) en el plano, para $x \in A$. Este subconjunto se puede pensar como una curva en \Re^2 y escribir simbólicamente como:

gráfica de
$$f = \{(x, f(x)) \in \Re^2 / x \in A\}$$

Para el caso de nuestro ejemplo:

gráfica de
$$f = \{(x, x^2) \in \Re^2 / x \in \Re\}$$

Para introducirnos en el estudio de las funciones vectoriales de varias variables, será conveniente generalizar las ideas hasta aquí planteadas.

ANÁLISIS MATEMÁTICO II

FUNCIONES VECTORIALES $\mathfrak{R}^n \to \mathfrak{R}^m$

Definición:

Una función $f:U\subseteq \mathbb{R}^n\to \mathbb{R}^m$ es una regla que asocia a cada vector X de U, un vector bien determinado f(X) de \Re^m .

 $X = (x_1, x_2, ..., x_n) = n - ada$ ordenada de números reales

$$f(X) = (f_1(X), f_2(X), ..., f_m(X))$$

Donde $f_1(x_1, x_2, ..., x_n)$, $f_2(x_1, x_2, ..., x_n)$... $f_m(x_1, x_2, ..., x_n)$ son las coordenadas del vector f(X), estas coordenadas reciben el nombre de <u>funciones coordenadas</u>. El vector f(X) es la imagen bajo f del vector $X = (x_1, x_2, ..., x_n) \in \Re^n$. El conjunto formado por todas las imágenes de f, $\mathbf{w} = f(X)$, es su rango o recorrido.

rango de
$$f = \{ \mathbf{w} \in \mathfrak{R}^m / \mathbf{w} = f(X), X \in U \subseteq \mathfrak{R}^n \}$$

Observemos que, cada una de estas funciones está constituida por:

- a. Su dominio $U \subseteq \Re^n$
- b. Su codominio \mathfrak{R}^m
- c. La regla que asocia a cada elemento $X \in U$ un vector $\mathbf{w} = f(X) \in \mathbb{R}^m$ imagen bajo f(X)

Esquemáticamente tenemos:

Tanto n como m pertenecen a \Re .

ANÁLISIS MATEMÁTICO II

Ejemplo:

$$f(x,y,z) = {x^2 + y^2 + z^2 \choose x + y + z} = (x^2 + y^2 + z^2, x + y + z) \qquad \Re^3 \to \Re^2$$

Las componentes de una función vectorial son funciones Reales.

Representación Gráfica

Considerando que el dominio y la imagen tienen dimensiones $n \wedge m \quad \text{respectivamente, el gráfico de estas funciones se encuentra en el espacio} \ n+m \ .$

Consideramos los siguientes casos particulares:

- 1. **Funciones escalares** $\Re \rightarrow \Re$ y = f(x) definidas anteriormente
- 2. Funciones vectoriales reales $\Re^n \to \Re$

También llamadas funciones de varias variables o múltiple variables

- <u>Dominio</u>: son vectores que pertenecen a \Re^n
- Imagen: es un número real.
- Representación Gráfica: \Re^{n+1}
- En el caso particular que sea n = 2, z = f(x, y) la representación gráfica será una Superficie en el Espacio.
- El dominio: de la función será el conjunto de pares ordenados para los cuales la misma está definida.
- La imagen: es un número real.

Ejemplo1:
$$f(x,y) = x^2 + y^2$$
 $\Re^2 \to \Re$ Ejemplo2: $f(x,y,z) = x + y + z$ $\Re^3 \to \Re$

ANÁLISIS MATEMÁTICO II

3) Funciones vectoriales de variable real $\mathfrak{R} o \mathfrak{R}^m$

- El dominio: de la función es un número real.
- La imagen: está constituida por m coordenadas, cada una de ellas son funciones escalares. $g(t) = (g_1(t), g_2(t),g_m(t))$
- Representación Gráfica: \Re^{1+m}
- Las representaciones gráficas de estas funciones serán **Curvas en el Plano o Curvas en el Espacio**

Ejemplos: 1) $g(t) = (t, t^2)$

2) $h(t) = (t, \cos t, sen t)$

En general estas funciones reciben el nombre de Funciones Paramétricas

ANÁLISIS MATEMÁTICO II

4) Funciones de campo o campos vectoriales

$$\mathfrak{R}^n \to \mathfrak{R}^m \wedge n = m \wedge \neq 1$$

• Representación gráfica:

Es un conjunto de **vectores**, (flechas), cada uno de ellos, corresponde el vector imagen con origen en el punto del dominio.

En general estas funciones dan origen a los Campos vectoriales

Ejemplos1:
$$f(x, y) = (-x, y)$$
 Ejemplo2: $f(x, y) = (1, x)$

ANÁLISIS MATEMÁTICO II

FUNCIONES VECTORIALES REALES $\mathfrak{R}^n \to \mathfrak{R}$

Funciones de varias variables

En el curso de análisis I se trabajó con funciones en las cuales A y B eran el conjunto de números reales \Re , que se escribía como una $f:\Re\to\Re$. Ahora vamos a considerar funciones cuyas imágenes son también números reales, pero cuyo dominio será un subconjunto del espacio \Re^n , es decir funciones del tipo $\Re^n\to\Re$ llamada **funciones reales**, o bien funciones vectoriales de variable real considerando a los elementos de \Re^n como vectores.

Tenemos entonces una función de $\Re^n \to \Re$ que es una regla que asocia a cada vector $X = (x_1, x_2,x_n)$ con un número real bien determinado.

De la misma manera definiremos a funciones de tres, cuatro o *n* variables.

Dominios de funciones de varias variables

Definición:

Es el conjunto de vectores del primer espacio, para la cual existe la imagen real en el segundo espacio.

Para el caso de $f: \Re^2 \to \Re$ $D \subset \Re^2$, una función f de dos variables es una regla que asigna a cada par (x,y) en D un único número real. Para el caso particular de

ANÁLISIS MATEMÁTICO II

f: $\Re^2 \to \Re$, la función z = f(x, y), llamaremos variables independientes a x e y, y variable dependiente a z.

Eiemplo1:

$$f(x, y) = Ln(x + y)$$
 $D = \{(x, y) / x + y > 0\}$: $D = \{(x, y) / y > -x\}$

El **dominio** son todos los pares ordenados que estén por encima de la recta, que pasa por el origen.

El **rango** de esta función es el conjunto $\{z \in \Re / z > 0\}$

Ejemplo2:

$$f(x,y) = \sqrt{-x^2 - y^2 + 9}$$
 $D = \{(x,y) / -x^2 - y^2 + 9 \ge 0\}$: $D = \{(x,y) / x^2 + y^2 \le 9\}$

El **dominio** corresponde a los pares ordenados que están en el interior de un circulo de radio = 3 y sobre la frontera.

El **rango** de esta función es el conjunto $\{z \in \Re / 0 \le z \le 3\}$

Ejemplo 2:

$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 9}}{x} \qquad D = \{(x,y) / x^2 + y^2 - 9 \ge 0 \land x \ne 0\} : D = \{(x,y) / x^2 + y^2 \ge 9 \land x \ne 0\}$$

El **dominio** es el conjunto de pares ordenados que están sobre la frontera del círculo $x^2 + y^2 \ge 9$ y fuera de él. Excepto los que se encuentran sobre el eje *y*, porque x = 0

El **rango** de esta función es el conjunto $\{ \forall todo \ z \in \Re \}$

Ejemplo 3

$$g(x, y, z) = \frac{x}{\sqrt{9 - x^2 - y^2 - z^2}}$$

El **dominio** es el conjunto de puntos interiores a una esfera de ecuación $x^2 + y^2 + z^2 \langle 9 \rangle$, de radio r = 3.

ANÁLISIS MATEMÁTICO II

Representación gráfica

Caso particular: z = f(x, y) $\Re^2 \to \Re$

Se trabaja con las trazas sobre los planos coordenados.

Ejemplo:

$$f(x, y) = x^2 + y^2$$
 $\Re^2 \to \Re$

Si hacemos: $z = x^2 + y^2$, tenemos:

- a) x = 0 : $z = y^2$ la traza es una <u>parábola</u> sobre el plano yz
- b) y = 0 : $z = x^2$ la traza es una <u>parábola</u> sobre el plano xz
- c) z = k : $x^2 + y^2 = k$ ecuación del círculo de radio \sqrt{k}

La superficie que se obtiene es un Paraboloide de Revolución.

Para tener en cuenta

Recordemos que la ecuación $x^2 + y^2 = r^2$ no representa una función, porque "y" nos queda

ANÁLISIS MATEMÁTICO II

 $y = \pm \sqrt[2]{r^2 - x^2}$ el cual no cumple la definición de función, porque para cada valor de x del intervalo [-r, r], sabemos que si cada una de las expresiones $f_1(x) = +\sqrt[2]{r^2 - x^2}$ y $f_2(x) = -\sqrt[2]{r^2 - x^2}$, cuya representación son semicírculos superior

e inferior con centro en el origen y radio ${f r}$.

Del mismo modo la expresión $x^2+y^2+z^2=r^2$ no representa función alguna. Si se trata de una función que va de $f:\Re^2\to\Re$ y la expresamos como z=f(x,y), nos quedaría $z=\pm\sqrt[2]{r^2-x^2-y^2}$, y cada una de ellas sería

$$f_1(x) = +\sqrt[2]{r^2 - x^2 - y^2}$$
 y $f_2(x) = -\sqrt[2]{r^2 - x^2 - y^2}$

Cuyas gráficas son semiesferas superior e inferior. Respectivamente.

CURVAS DE NIVEL

Para funciones de $\Re^2 \to \Re$ z = f(x,y)

Definición: Las curvas de nivel son curvas proyectadas sobre el plano x-y, que se obtienen de cortar a la superficie con planos paralelos al plano xy a distintas alturas k en z. Analíticamente se calcula igualando la función a un valor constante. f(x,y) = k

S es un **conjunto de nivel** de $f(X) \Leftrightarrow \exists k \in I f(X) / S = \{X/f(X) = k\}$

Las representaciones gráficas de las superficies suelen resultar complicadas, entonces otra forma de visualizar una función de dos variables consiste en utilizar un **campo escalar**, es decir marcar en el **dominio** las curvas en que la

ANÁLISIS MATEMÁTICO II

función tiene un valor constante f(x,y) = k. Un campo escalar queda caracterizado por sus **curvas de nivel** (líneas de contorno).

Ejemplo1: $f(x, y) = x^2 + y^2$

gráfico de la función en R³

 $\Rightarrow x^2 + y^2 = k$: k = 0, 1, 2, 3,n donde se obtienen círculos de radio \sqrt{k} en el plano xy

Ejemplo2: f(x, y) = 6 - 3x - 2y sus curvas de nivel

 $3x + 2y + (k - 6) = 0 \lor y = -\frac{3}{2}x - \frac{1}{2}(k - 6)$ rectas de pendiente (-), y ordenada al origen que dependen del valor de k.

ANÁLISIS MATEMÁTICO II

Se utilizan en:

- 1) Mapas topográficos para mostrar los cambios en la elevación del terreno a intervalos regulares. Cada curva de nivel son líneas de altura constante sobre el nivel del mar.
- 2) *Curvas isobaras*, en un mapa de tiempo muestra el nivel de presión constante.
- 3) *Curvas isotérmicas*, en un mapa de tiempo muestra el nivel de temperaturas constantes.

<u>Superficies de nivel</u>: para valores constantes de $f(x,y,z) = k_0$, k_1 , k_2 k_n se obtienen superficies en el espacio \mathfrak{R}^3 .

Ejemplo: $f(x, y, z) = x^2 + y^2 + z^2$ gráfico de la función en \Re^4

 \Rightarrow $x^2 + y^2 + z^2 = k$: k = 0, 1, 2, 3,n donde se obtienen como superficies de nivel a esferas de radio \sqrt{k}

ANÁLISIS MATEMÁTICO II

Si la función del ejemplo representara la temperatura en el punto (x, y, z), las superficies de nivel se llamarían *superficies isotérmicas*.

ANÁLISIS MATEMÁTICO II

