Raport

Łukasz Fabia

20.05.2024

Spis treści

1	$\mathbf{W}\mathbf{s}$	tęp	2
2	Dar 2.1 2.2 2.3	ne Model danej	2 2 2 3
3		gląd do danych	3
4	Roz	kłady i statystyki	4
	4.1	Jak się pracuje w IT?	5
	4.2	Kogo szukają pracodawcy?	6
	4.3	Jak rozkładają się zarobki?	7
	4.4	Jakie technologie są najbardziej poszukiwane?	7
	4.5	Gdzie jest największy popyt na programistów?	8
	4.6	Gdzie poszukiwani są juniorzy?	9
5	Pov	viązania między danymi	10
	5.1	Powiązania między technologiami	10
	5.2	Powiązania między innymi zmiennymi	11
	5.3	Zarobek a technologie	12
6	Czy	da się przewidzieć zarobki, w zależności od mojego tech-	
	stac	eku?	12
	6.1	Ogólnie o problemie	12
	6.2	Dobór modeli	12
	6.3	Trochę statystyki - metryki	13
		6.3.1 Pierwiastek z średniego błędu kwadratowego	13
		6.3.2 Współczynnik determinacji	13
		6.3.3 Średni błąd bezwzględny	13
	6.4	Jak to zrobię?	13
		6.4.1 Wyniki dla podziału danych 80:20 dla umowy o pracę	14
		6.4.2 Wyniki dla podziału danych 80:20 dla b2b	16
		6.4.3 Podsumowanie wyników dla 80:20	18
		6.4.4 Wyniki dla podziału danych 60:40 dla uop	19
		6.4.5 Wyniki dla podziału danych 60:40 dla uop	21
		6.4.6 Podsumowanie wyników dla 60:40	23

7 Podsumowanie 23

1 Wstęp

Celem badań jest analiza danych dotyczących ofert pracy w IT. W swojej pracy postaram się odpowiedzieć na pytanie, jakie są najbardziej poszukiwane umiejętności w branży IT oraz ile można zarobić znając dane języki, frameworki czy narzędzia. W tym celu postram się wykorzystać sci-kit learn do stworzenia modelu regresji liniowej, który pozwoli mi przewidzieć zarobki na podstawie umiejętności (technologii).

2 Dane

Dane pozyskam z serwisu justjoin.it, który zbiera oferty pracy z wielu różnych serwisów, zatem ofert pracy będzie całkiem sporo. Na stronie mamy katergorie, które mogą być przydatne do analizy, takie jak: JS, PHP, Ruby, Python, Java, Net, Mobile, C, DevOps, Security, Data, Go, Game, Scala. W mojej analizie skupię się na nich. Dodatkowo analizuję zarobki tylko na b2b oraz na umowie o prace (uop), ponieważ są to najbardziej popularne formy zatrudnienia w IT a inne formy takie jak umowa o zlecenie czy umowa o staż pratykcznie nie występują. Do analizy będę również brał pod uwagę lokalizację.

Technologia - język programowania, framework, narzędzie, które jest wymagane w ofercie pracy.

2.1 Model danej

Dane będą zawierały informacje o ofertach pracy, takie jak:

- tytuł oferty
- widełki dla B2B
- widełki dla UOP
- technologie dotyczące umowy
- lokalizacja
- doświadczenie junior, mid, senior
- typ pracy stacjonarnie, hybrydowo, zdalnie

2.2 Obsługa technologii, lokalizacji

Najpierw zdefiniuje sobie słownik klucz, wartość, gdzie klucz to ustandaryzowana technologia, a wartość do synonimy tej technologii.

```
np. "JavaScript": [ "javascript", "js", "node.js", "nodejs", "express.js", "expressjs", ],
```

Dzięki temu będę mógł przekonwertować technologie z oferty pracy na wektor binarny, gdzie 1 oznacza, że technologia jest wymagana, a 0, że nie jest

wymagana. Kolejnym krokiem będzie obsługa lokalizacji. W tym przypadku jeśli oferta dot. kilku miast to znaczy, że pojawi się w zbiorze klika ofert z tymi samymi danymi, ale dla różnych miast.

2.3 Pozykiwanie danych

Dane będą pozyskiwane z ww. serwisu, za pomocą narzędzi do web scrappingu w moim przypadku będzie to Selenium, ponieważ strona ma dynamicznie ładowany content.

Kroki:

- napisanie skryptu pobierającego linki do ofert pracy z danej kategorii, ponieważ nie chcemy śmiecowych ofert typu Product manager
- napisanie skryptu przetwarzającego linki do ofert pracy, aby pobrać dane z oferty
- przekierowanie wyniku do pliku json.
- normalizacja oraz oczyszczanie danych, kodowanie technologii, do wektora przy pomocy MultiLabelBinarizer z sklearn
- kodowanie duplkacja ofert z różnymi lokalizacjami oraz kodowanie typu pracy i doświadczenia (label encoding)
- usunięcie ofert z wynagrodzniem godzinowym bo zalezą one od ilości przepracowanych godzin

Ofert ze stawką godzinową było kilka więc nie wypływają one na wyniki.

3 Wygląd do danych

uwaga przykładowe dane nie zawierają wszystkich kolumn bo jest ich za dużo, wszystkie dane można znaleźć w ../data/jobs.csv

Przykładowe dane:

title	$\min_{oldsymbol{-}} \mathbf{b2b}$	max_b2b	min_uop	max_uop
Senior Software Engineer	0.0	0.0	18000.0	28000.0
Senior Backend Node.js Engineer	0.0	0.0	18360.0	25125.0
Senior Fullstack Developer	22680.0	27216.0	16600.0	19920.0

$location_code$	$operating_mode_code$	$experience_code$
38	0	2
17	2	2
51	0	2

AWS	JavaScript	React	Java
1	1	1	0
0	1	1	0
1	1	1	0

4 Rozkłady i statystyki

Aktualnie w zbiorze jobs.csv znajduje się **4574** ofert pracy, które będą poddane analizie. Wszystkie dane są znormalizowane i gotowe do analizy. Analizę można zacząć od średniej zarobków dla kontraktu B2B oraz UOP.

Widełki dla Juniora:

PLN	B2B	UOP
średnie widełki	8555.40	13558.71
min widełki	4250.00	6000.00
max widełki	16443.00	28000.00

Tabela 1: Średnie zarobki w PLN dla juniora w Polsce

Widełki dla Mida:

PLN	B2B	UOP
średnie widełki	12378.99	18041.77
min widełki	5000.00	7000.00
max widełki	25000.00	30000.00

Tabela 2: Średnie zarobki w PLN dla ${\tt mida}$ w Polsce

Widełki dla Seniora:

PLN	B2B	UOP
średnie widełki	18930.61	25848.46
min widełki	8000.00	11000.00
max widełki	40000.00	80000.00

Tabela 3: Średnie zarobki w PLN dla seniora w Polsce

4.1 Jak się pracuje w IT?

Rysunek 1: Rozkład typów pracy

Jak widać najwięcej ofert pracy dotyczy pracy zdalnej.

4.2 Kogo szukają pracodawcy?

Rysunek 2: Rozkład typów pracy

Tak jak można było się spodziewać - najwięcej ofert pracy jest dla seniorów, stąd też wynika dlaczego tak dużo kontraktów dotyczy pracy zdalnej. Chociaż warto powiedzieć sytuacja midów jest również dobra. Gorzej jest z ofertami dla młodych programistów. Tutaj liczba ofert wyniosła zaledwie 139, co jest bardzo małą liczbą w porównaniu do innych grup.

Czy to oznacza, że mlodzi programiści mają trudniej, a słynne "eldorado" w IT jest tylko dla doświadczonych programistów?

Tutaj można powiedzieć, że juniorzy mają trudniej $\mathbf{wejść}$ do branży, ale zarobki po wejściu są naprawdę atrakcyjne, no, ale tutaj problem może być z wejściem.

4.3 Jak rozkładają się zarobki?

Rysunek 3: Rozkłady zarobków dla poszczególnych umów dla juniorów

Rysunek 4: Rozkłady zarobków dla poszczególnych umów dla midów

Rysunek 5: Rozkłady zarobków dla poszczególnych umów dla seniorów

4.4 Jakie technologie są najbardziej poszukiwane?

Rysunek 6: Popularne technologie w ofertach pracy w Polsce

Tutaj moim zdaniem troche zaskoczenie ponieważ bez SQL ciężko znaleźć prace w IT, czyli bazy danych to jest podstawa przy rekrutowanu się do pracy.

Oczywiście nie mogło zabraknąć Pythona oraz JavaScriptu jeśli chodzi o języki skryptowe. Co warto zazanczyć narzędzia takie jak Docker czy Kubernetes również są bardzo popularne i warto je znać. Java wygrywa z C# a GNU/Linux deklasuje Windowsa.

4.5 Gdzie jest największy popyt na programistów?

Rysunek 7: Popularne miasta w ofertach pracy w Polsce

Zestawienie miast jest zgodne z oczekiwaniami, najwięcej ofert pracy jest kolejno w **Warszawie**, **Krakowie** oraz **Wrocławiu**, chociaż **Gdańsk** również pojawiał się w dużej ilości ofert pracy.

4.6 Gdzie poszukiwani są juniorzy?

Popularne miasta wśród ofert dla juniorów

Rysunek 8: Popularne miasta w ofertach dla juniorów

Warszawa jest najbardziej przyjazna dla juniorów, ale warto zauważyć, że wykres nie różni się bardzo od poprzedniego z jednym, ale - **Katowice** są na 3 miejscu w zestawieniu dla juniorów, co może być zaskoczeniem.

5 Powiązania między danymi

5.1 Powiązania między technologiami

Rysunek 9: Powiązania między technologiami, zawierająca tylko wartości korelacji większe niż $0.14\,$

Co można zauważyć?

- 1. HTML i CSS idą ze prawie w parze co jest zrozumiałe, bo to podstawy front-endu
- 2. Przy Javie warto znać Springa
- 3. React i JS i TS często pojawiają sie razem w ofertach pracy obok HTML i CSS
- 4. Jak sie uczy Django to warto znać inne frameworki backendowe takie jak Flask czy FastAPI
- 5. Jak sie idzie w Embedded to warto znać C/C++ oraz Linux

To tylko kilka przykładów wymienionych wynikający z obrazka powyżej, ale warto zauważyć, że nie ma tutaj dużo powiązań między technologiami, co może wynikać z tego, że technologie są zbyt różne, aby były powiązane.

5.2 Powiązania między innymi zmiennymi

Rysunek 10: Powiązania między innymi zmiennymi

Co można zauważyć?

- $1.\ \mathrm{W}$ jakiś spobób powiązane są ze sobą zarobki na B2B i UOP ma sens
- 2. Wynagrodzenie na B2B i UOP jest powiązane z doświadczeniem

5.3 Zarobek a technologie

Rysunek 11: Powiązania między zarobkiem a technologiami

Tutaj jest kilka ciekawych powiązań, które warto zauważyć, np. na umowie o prace znaczenie ma znajomość: Go, AWS, Angulara, Java, SQL czy Andorida, chociaż nie są to mocne powiązania. Natomiast na B2B nie ma jakiś znaczących powiązań można wskazać np. Resta, AWS, Docker/Kubernetes czy PHP, ale są to watości rzędu 0.09, co nie jest imponującym wynikiem.

6 Czy da się przewidzieć zarobki, w zależności od mojego tech-stacku?

6.1 Ogólnie o problemie

Oczywiście, że tak, kiedy mamy dane to możemy nauczyć model, który na wejściu dostanie zmienne i przewidzi dla nas zarobki. Dokładniej mówiąc model otrzyma na wejściu dane takie jak:

Input:

• Tech-stack

Output:

• Zarobki w PLN

6.2 Dobór modeli

Modele które będą wykorzystane w analizie to:

- 1. Regresja liniowa
 - LinearRegression
 - Ridge
 - Lasso
 - ElasticNet
- 2. Decision tree
- 3. Random forest

Wszyskie modele pochodzą z modułu sklearn dostępniej pod tym linkiem

6.3 Trochę statystyki - metryki

Do oceny modeli wykorzystam metryki takie jak:

- Root Mean Squared Error pierwiastek z średniego błędu kwadratowego
- R-squared współczynnik determinacji R^2
- Mean Absolute Error średni błąd bezwzględny

6.3.1 Pierwiastek z średniego błędu kwadratowego

Root Mean Squared Error (RMSE) - to pierwiastek z MSE, co daje nam miarę błędu przewidywań w tych samych jednostkach co dane wejściowe. Jest bardziej intuicyjny w interpretacji niż MSE.

6.3.2 Współczynnik determinacji

R-squared (R2) - to miara oceny dopasowania funkcji regresji do danych. Wartość bliska 1 oznacza, że funkcja regresji lepiej dopasowała sie do danych.

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}, R^{2} \in [0, 1]$$
(1)

6.3.3 Średni błąd bezwzględny

Mean Absolute Error (MAE) - to średni bezwzględny błąd między przewidywaniami a rzeczywistymi wartościami. MAE mierzy średnią wielkość błędów w przewidywaniach modelu, nie zwracając uwagi na kierunek błędu. Im niższa wartość MAE, tym lepiej model przewiduje rzeczywiste dane.

$$MAE = \frac{\sum_{i=1}^{n} |y_i - x_i|}{n}.$$
 (2)

6.4 Jak to zrobię?

Moje podejście opiera się na wybraniu modeli regresji liniowej, drzewa decyzyjnego oraz lasu losowego, które będą tuningowane za pomocą GridSearchCV w celu znalezienia najlepszych hiperparametrów. Wyniki są dostępne w folderze ../analysis/models_tuning.csv. Kolejnym krokiem jest przeprowadzenie uczenia modeli i wybranie najlepszego modelu na podstawie metryk. Następnie przewidzę zarobki dla kilku tech-stacków, a na końcu przedstawię wyniki w postaci wizualizacji.

Streszczenie

W następnych rodziałach skupię się na wynikach modeli, a także na wizualizacji wyników, aby nie tworzyć zbyt długiego raportu nie będe analizować słabych modeli tylko skupię się na dwóch najlepszych modelach. Uwaga: Modele, które będą uczone będą umiały przewidywać zarobki na b2b albo na uop, dokładniej są to średnie z widełek.

Reszta danych: Wszyskie wyniki z uczenia zostaną zapisane w folderze ../analysis/plots/wyniki/ ew. można też podejrzeć plik z rozwiązaniem problemu w ../analysis/analysis.ipynb.

Stosowane podziałki to 80:20, czyli 80% danych do uczenia, a 20% do testowania modelu oraz 60:40.

6.4.1 Wyniki dla podziału danych 80:20 dla umowy o pracę

Model	Mean Absolute Error	Root Mean Squared Error	R ² Score
LinearRegression	3725.68	4651.76	0.49
DecisionTreeRegressor	2462.54	3784.11	0.66
RandomForestRegressor	1410.01	2825.33	0.81
Ridge	3706.76	4637.20	0.49
Lasso	3715.86	4643.49	0.49

Łatwo widzieć, że najlepszym modelem jest RandomForestRegressor, który ma najniższe wartości błędów oraz najwyższy współczynnik determinacji, kolejnym będzie DecisionTreeRegressor.

Rysunek 12: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 13: Rozkład dla przewidzianych i prawdziwych wartości

Rysunek 14: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 15: Rozkład dla przewidzianych i prawdziwych wartości

6.4.2 Wyniki dla podziału danych $80{:}20$ dla b2b

Model	Mean Absolute Error	Root Mean Squared Error	R ² Score
LinearRegression	3636.41	4807.77	0.47
DecisionTreeRegressor	2624.86	3897.49	0.65
RandomForestRegressor	1729.25	3104.98	0.78
Ridge	3633.46	4811.16	0.47
Lasso	3634.19	4822.0	0.47

Wtym przyadku jest tak samo najlepszym okazuje się RandomForestRegressor a następnym jest ${\tt DecisionTreeRegressor}.$

Prawdziwe vs Przewidziane zarobki na b2b dla RandomForestRegressor

Rysunek 16: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 17: Rozkład dla przewidzianych i prawdziwych wartości

Rysunek 18: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 19: Rozkład dla przewidzianych i prawdziwych wartości

6.4.3 Podsumowanie wyników dla 80:20

Wyniki pokazały nam, że najlepszym modelem do przewidywania zarobków od innych danych w ofercie jest RandomForestRegressor z parametrami n_estimators=80, chociaż błędy były dość wysokie, ale może to wynikać z dużego zakresu pensji oraz mogą być spowodowane małą ilością ofert pracy dla juniorów. Co warto zauważyć, w najlepszego modelu dane były w miarę skupione w prostej wyznaczającej idealny wynik. Dopasowanie rozkładu było też całkiem dobre, ponieważ wykresy w większej części nachodziły na siebie. Ostat-

nia uwaga, model do przewidywania zarobków na umowie jest dokładniejszy niż model przewidujący zarobki na b2b.

6.4.4 Wyniki dla podziału danych 60:40 dla uop

Model	Mean Absolute Error	Root Mean Squared Error	R ² Score
LinearRegression	3994.07	5361.73	0.44
DecisionTreeRegressor	2484.37	3918.8	0.70
RandomForestRegressor	1762.22	3582.26	0.75
Ridge	3982.56	5360.68	0.44
Lasso	3980.56	5357.41	0.44

Rysunek 20: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 21: Rozkład dla przewidzianych i prawdziwych wartości

Rysunek 22: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 23: Rozkład dla przewidzianych i prawdziwych wartości

6.4.5 Wyniki dla podziału danych 60:40 dla uop

Model	Mean Absolute Error	Root Mean Squared Error	R ² Score
LinearRegression	3520.18	4613.03	0.49
DecisionTreeRegressor	2564.56	3796.84	0.65
RandomForestRegressor	1896.69	3275.59	0.74
Ridge	3516.78	4611.84	0.49
Lasso	3516.41	4616.76	0.49

Rysunek 24: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 25: Rozkład dla przewidzianych i prawdziwych wartości

Rysunek 26: Dopasowanie danych przewidzianych do prawdziwych

Rysunek 27: Rozkład dla przewidzianych i prawdziwych wartości

6.4.6 Podsumowanie wyników dla 60:40

Wyniki dla tej podziałki są na pewno mniej precyzyjne jeśli chodzi o **RMSE**, ale dla takiego podzielenia daynch znów najlepszymi modelami okazały się modele kolejno RandomForestRegressor oraz DecisionTreeRegressor.

7 Podsumowanie

Podsumowując, jeśli chodzi o stworzenie modelu to najlepszym będzie RandomForestRegressor(n_estimators=80), ponieważ dawał najmniejsze błędy chociaż i tak w skali zarobków nie były one małe. Do uczenia okazało się, że lepiej wybrać podziałkę 80:20, 80% dane treningowe a 20% dane testowe. Wydaje mi się również, że aby uzyskać lepsze wyniki, należałoby zaktualizować zbiór danych o nowe oferty (głównie oferty dla juniorów).

Podczas pracy również można było sporządzić wykres, który przedstawiał najważniejsze zmienne w sensie wypływu na wynagrodzenie.

Rysunek 28: Zmienne mające wypłw na wynagrodzenie w ofercie pracy

Jak łatwo zauważyć, doświadczenie było najważniejsze.