Algorithmic Game Theory: HW 1

1. To show the desired inequality, it suffices to show that $f(y,z) = 5y^2 + z^2 - 3zy - 3y \ge 0$ for every $y, z \in \{0, 1, 2, ...\}$. We shall use $\mathbb{Z}_{>0}$ to denote the set $\{0, 1, 2, ...\}$ subsequently. We can rewrite f(y, z) to get

$$f(y,z) = \left(\frac{3}{2}y - z\right)^2 + \frac{11}{4}y^2 - 3y\tag{1}$$

which we will show that the f(y, z) in this form is nonnegative. All that is left to show is that $\frac{11}{4}y^2 - 3y \ge 0$ for all $y \in \mathbb{Z}_{>0}$ but solving for the inequality, we have

$$\frac{11}{4}y^2 - 3y \ge 0 \Leftrightarrow y \ge \frac{12}{11} \text{ or } y = 0$$

meaning we are left to prove that (1) holds for all $z \in \mathbb{Z}_{>0}$ when y = 1. Solving for the inequality below,

$$f(1,z) = \left(z - \frac{3}{2}\right)^2 - \frac{1}{4} < 0 \Leftrightarrow (z-1)(z-2) < 0$$

\Rightarrow 1 < z < 2

which says that f(1,z) < 0 for $z \in (1,2)$ and hence positive for all $z \in \mathbb{Z}_{>0}$ and we are done.

2. (i) In an nonatomic congestion games with multicommodity networks, let \mathcal{P}_i denote the set of paths from an origin s_i to a sink t_i with $\mathcal{P}_i \neq \emptyset$.

Definition (flow). For a flow f and path $P \in \mathcal{P}_i$, f_P is the amount of traffic of commodity i that chooses the path P to travel from s_i to t_i . A flow is feasible for a vector $r = (r_1, \ldots, r_k)$ if it routes all the traffic: for each $i \in \{1, 2, \ldots, k\}$, $\sum_{P \in \mathcal{P}_i} f_P = r_i$.

Definition (Nonatomic equilibrium flow). Let f be a feasible flow for an nonatomic congestion games with multicommodity networks. The flow f is an equilibrium flow if, for every commodity $i \in \{1, 2, ..., k\}$ and every pair $P, \tilde{P} \in \mathcal{P}_i$ of $s_i - t_i$ paths with $f_P > 0$,

$$c_p(f) \le c_{\tilde{P}}(f)$$

where $c_p(f)$ denotes the cost of travelling on path P for flow f.

(ii) Let $\mathcal{P} = \bigcup_{i=1}^k \mathcal{P}_i$. Then the total cost of a multicommodity network is

$$\sum_{P \in \mathcal{P}} c_p(f_p) \cdot f_p = \sum_{e \in E} c_e(f_e) \cdot f_e$$

where E is the set of directed edges on the graph G.

(iii)

(iv) We start by showing that

$$\inf_{x} \left\{ \left(\frac{ax+b}{ar+b} - 1 \right) \right\} = \inf_{x} \left\{ x \left(\frac{a(x-r)}{ar+b} \right) \right\}$$
$$= \frac{a}{ar+b} \inf_{x} \left\{ x^{2} - rx \right\}$$
$$= -\frac{r^{2}}{4} \cdot \frac{a}{ar+b}$$

with that we can begin out proof.

$$\sup_{c \in \mathcal{C}} \sup_{x,r} \frac{rc(r)}{xc(x) - (r - x)c(r)} = \sup_{c \in \mathcal{C}} \sup_{x,r} \frac{r}{r + x\left(\frac{c(x)}{c(r)} - 1\right)}, \text{ since } c(r) > 0$$

$$= \sup_{a,b \ge 0} \sup_{x,r} \frac{r}{r + x\left(\frac{ax + b}{ar + b} - 1\right)}$$

$$= \sup_{a,b \ge 0} \sup_{r} \frac{r}{r - \frac{r^2}{4} \frac{a}{ar + b}}$$

$$= \sup_{a,b \ge 0} \sup_{r} \frac{1}{1 - \frac{ar}{4(ar + b)}}$$

$$= \frac{1}{1 - 1/4}$$

the last equality follows as the supremum of $\frac{ar}{4(ar+b)}$ occurs when b=0.

3. (i) Let Φ be the potential function of a potential game and c_i denote the cost function of the agents for $i \in \{1, 2, \dots, k\}$. To prove the required, it suffices to show that

$$c_i(s_i, s_{-i}) - \Phi(s_i, s_{-i})$$

is independent of the choice of s_i and solely dependent on s_{-i} . If we consider two alternative distinct strategies for agent $i, s'_i, s''_i \neq s_i$

$$c_i(s_i, s_{-i}) = \Phi(s_i, s_{-i}) + [c_i(s_i', s_{-i}) - \Phi(s_i', s_{-i})]$$

$$c_i(s_i, s_{-i}) = \Phi(s_i, s_{-i}) + [c_i(s_i'', s_{-i}) - \Phi(s_i'', s_{-i})]$$

hence we can choose $D_i(s_{-i}) = c_i(-, s_{-i}) - \Phi(-, s_{-i})$, where – represents any choice of strategy of agent i.

(ii) Let Φ_1 and Φ_2 be two potential functions of a game. From 3 (i) we have

$$c_i(s_i, s_{-i}) = \Phi_1(s_i, s_{-i}) + D_i^1(s_{-i})$$
(2)

$$c_i(s_i, s_{-i}) = \Phi_2(s_i, s_{-i}) + D_i^2(s_{-i})$$
(3)

where $D_i^k(s_{-i})$ denotes the dummy term for k = 1, 2. Taking (2)-(3),

$$\Phi_1(s_i, s_{-i}) - \Phi_2(s_i, s_{-i}) = D_i^1(s_{-i}) - D_i^2(s_{-i})$$

we have shown that two distinct potential functions differ by a constant, more precisely the difference of their dummy term evaluated at s_{-i} and any strategy of agent i, s_i .

(iii) (\Rightarrow) : Let Φ be a potential function for a finite game. We want to show:

$$c_i(s_i^2, s_{-i}^1) - c_i(s^1) + c_i(s^2) - c_i(s_i^2, s_{-i}^1) = c_i(s_i^2, s_{-i}^1) - c_i(s^1) + c_i(s^2) - c_i(s_i^2, s_{-i}^1)$$

consider the left hand side,

$$c_i(s_i^2, s_{-i}^1) - c_i(s^1) + c_j(s^2) - c_j(s_i^2, s_{-i}^1) = \Phi(s_i^2, s_{-i}^1) - c_i(s^1) + c_j(s^2) - c_j(s_i^2, s_{-i}^1)$$

$$(\Leftarrow):$$

4. (a) Let \tilde{f} be an equilibrium flow for an atomic selfish routing network of parallel links. Then for every player $i \in \{1, 2, ..., n\}$, any two parallel links P_i, P_j where $1 \le i < j \le k$,

$$c_{P_i}(\tilde{f}) \le c_{P_i}(f)$$

here, the flow of \tilde{f} on P_i equals the flow of f on P_j , $(\tilde{f}_{P_i} = f_{P_j})$ i.e. any player routing their commodity to any path will have a cost equal to or larger than the equilibrium flow.

$$\sum_{m=1}^{\tilde{f}_{P_i}} c_{P_i}(m) \le \sum_{m=1}^{f_{P_j}} c_{P_j}(m)$$

since the above inequality is true for any two parallel links, we sum it over the n parallel links and we are done.

$$\Phi(\tilde{f}) = \sum_{i=1}^{n} \sum_{m=1}^{\tilde{f}_{P_i}} c_{P_i}(m) \le \sum_{i=1}^{n} \sum_{m=1}^{f_{P_i}} c_{P_j}(m) = \Phi(f)$$

where Φ is the potential function.

(b)

- 5. (a) Let G^1 be a congestion game.
- 6. (a) We consider two networks A, B that resemble n—gons where n is even, i.e. there are n edges and n vertices for each network as shown in Figure 1. The strategy of each player i is

$$S_i = \{\{a_i, b_i\}, \{a_{i+1}, b_{i-1}, b_{i+1}\}\} = \{s_i^1, s_i^2\}$$

where a_i, b_i denotes edges in A and B respectively and the cost function of each edge is simply $c_e(x) = x$. We claim that when all the player were to play s_i^1 it is a Nash equilibrium and we have the optimal value of potential which has value 2n, since every edge is inhabit by a single player. Any player i that deviates from playing s_i^1 will increase the potential by 2+2+2-1 (hence the claim it is a Nash) since it will share an edge with player i+1 in A and players i-1, i+1 in B and hence increase the potential. If all the players were to play s_i^2 , we see that the potential will be n+n+2n where the first n is incurred from A and the next two terms are from B as we sum up the cost from 1 to the load of the edge. It is easy to see that everyone playing s_i^2 is a Nash; for any player that deviates from s_i^2 , will have an increased cost of s_i^2 0 and hence this completes the proof.

(b)

Figure 1: Example with price of potential anarchy equals 2.