(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 November 2003 (20.11.2003)

PCT

(10) International Publication Number WO 03/095667 A2

(51) International Patent Classification7:

C12Q 1/00

(21) International Application Number: PCT/IB03/02419

(22) International Filing Date: 13 May 2003 (13.05.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/380,904 60/429,609 27

13 May 2002 (13.05.2002) US 27 November 2002 (27.11.2002) US

(71) Applicant (for all designated States except US): AREXIS AB [SE/SE]; Arvid Wallgrens Backe, S-413 46 Göteborg (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOLMDAHL, Rikard [SE/SE]; Siriusgatan 2, S-224 57 Lund (SE). OLOFSSON, Peter [SE/SE]; Kulgränden 11D, S-226 49 Lund (SE).

(74) Agent: PLOUGMANN & VINGTOFT A/S; Sundkrogsgade 9, P.O. Box 831, DK-2100 Copenhagen Ø (DK).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AUTOIMMUNE CONDITIONS AND NADPH OXIDASE DEFECTS

(57) Abstract: The invention relates to methods and materials involved in diagnosing and treating autoimmune conditions. In particular, the invention relates to methods and materials involved in diagnosing arthritis conditions that are accompanied by an NADPH oxidase deficiency, methods and materials involved in treating, preventing, or delaying the onset of arthritis conditions that are accompanied by an NADPH oxidase deficiency, and methods and materials involved in identifying agonists and antagonists of NADPH oxidase activity.

AUTOIMMUNE CONDITIONS AND NADPH OXIDASE DEFECTS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Serial No. 60/380,904, filed May 13, 2002 and U.S. Provisional Application Serial No. 60/429,609, filed November 27, 2002.

BACKGROUND

10 1. Technical Field

5

15

20

25

30

The invention relates to methods and materials involved in diagnosing and treating autoimmune conditions. In particular, the invention relates to methods and materials involved in diagnosing arthritis conditions that are accompanied by an NADPH oxidase deficiency, methods and materials involved in treating, preventing, or delaying the onset of arthritis conditions that are accompanied by an NADPH oxidase deficiency, and methods and materials involved in identifying agonists and antagonists of NADPH oxidase activity.

2. Background Information

Autoimmune conditions are conditions where a mammal's immune system starts reacting against its own tissues. Such conditions include, without limitation, arthritis (e.g., rheumatoid arthritis (RA)), multiple sclerosis, lupus, autoimmune uveitis, type I diabetes, bronchial asthma, septic arthritis induced with staphylococci or streptococci, and cardiovascular disease involving vasculitis.

RA is a chronic inflammatory disease that can be found in about 1-2 % of the population. RA primarily affects peripheral joints where inflammatory synovitis leads to cartilage destruction, bone erosion, and ultimately to joint deformity and loss of joint function. RA is a complex disease in that both environmental factors as well as multiple chromosomal regions are involved in susceptibility to RA. Inducers of arthritis in animal models include adjuvants, collagen (e.g., collagen type II) (collagen induced arthritis (CIA)), hexadecane (hexadecane induced arthritis (HIA)), oil (e.g., Freund's incomplete

adjuvant), squalene (squalene induced arthritis (SIA), and pristane (pristane induced arthritis (PIA)). Chromosomal regions known to be associated with development of RA include the major histocompatibility complex region. In addition, different genomic regions are known to control different phases of the disease such as onset, severity during the acute onset phase, and the severity of the destruction in the chronic relapsing phase.

SUMMARY

5

10

15

20

25

30

The invention provides methods and materials related to diagnosing and treating autoimmune conditions such as arthritis (e.g., RA), multiple sclerosis, lupus, autoimmune uveitis, type I diabetes, bronchial asthma, septic arthritis induced with staphylococci or streptococci, and cardiovascular disease involving vasculitis. For example, the invention provides methods and materials involved in diagnosing autoimmune conditions that are accompanied by an NADPH oxidase deficiency, methods and materials involved in treating, preventing, and/or delaying the onset of autoimmune conditions that are accompanied by an NADPH oxidase deficiency, and methods and materials involved in identifying agonists and antagonists of NADPH oxidase activity. Autoimmune conditions that are accompanied by an NADPH oxidase deficiency include, without limitation, arthritis (e.g., RA), multiple sclerosis, lupus, autoimmune uveitis, type I diabetes, bronchial asthma, septic arthritis induced with staphylococci or streptococci, and cardiovascular disease involving vasculitis conditions that coexist with or are caused by a deficiency in NADPH oxidase activity. For the purpose of this invention, the term "arthritis accompanied by NADPH oxidase deficiency" (abbreviated "AANOD") refers to any arthritis condition that coexists with or is caused by a deficiency in NADPH oxidase activity. Such a deficiency can be the complete lack of NADPH oxidase activity or a partial reduction in NADPH oxidase activity. For example, a mammal can have AANOD when that mammal has arthritis as well as cells that exhibit NADPH oxidase activity to an extent less than that normally exhibited by healthy mammals of the same species. Likewise, a mammal can have multiple sclerosis accompanied by an NADPH oxidase deficiency when that mammal has multiple sclerosis as well as cells that exhibit NADPH oxidase activity to an extent less than that normally exhibited by healthy mammals of the same species.

It is noted that the methods and materials for diagnosing and treating AANOD described herein can be used to diagnose and treat other autoimmune conditions that are accompanied by NADPH oxidase deficiency. For example, the methods and materials described herein can be used to diagnose and treat multiple sclerosis conditions that are accompanied by NADPH oxidase deficiency. In this regard, experimental allergic (autoimmune) encephalomyelitis (EAE) is a useful model for multiple sclerosis.

5

10

15

20

25

30

Diagnosing patients having an autoimmune condition accompanied by an NADPH oxidase deficiency (e.g., AANOD) can help clinicians determine appropriate treatments for those patients. For example, a clinician who diagnoses a patient as having AANOD can treat that patient with medication that improves both the patient's arthritis and NADPH oxidase deficiency. In some cases, a single medication can be used to improve a patient's level of NADPH oxidase activity such that the patient's arthritis symptoms are reduced or relieved. Thus, treating a patient having AANOD by modulating NADPH oxidase activities can improve that patient's health and quality of life by, for example, reducing the symptoms or severity of symptoms associated with arthritis, or delaying the onset of arthritis.

In addition, identifying agonists and antagonists of NADPH oxidase activity can help both clinicians and patients. For example, the methods and materials described herein can be used to identify agents that increase NADPH oxidase activity such that patients with an autoimmune condition accompanied by an NADPH oxidase deficiency (e.g., AANOD) can be treated successfully.

The invention is based on the discovery that arthritis can be associated with or caused by a reduced level of NADPH oxidase activity. For example, development of severe arthritis symptoms in an arthritis animal model can be, at least partially, dependent upon the presence of low NADPH oxidase activity. The invention also is based on the discovery that the reduced level of NADPH oxidase activity responsible for arthritis susceptibility can be caused by sequence variations (e.g., mutated phosphorylation sites) in a polypeptide component (e.g., P47PHOX polypeptide) of a mammal's NADPH oxidase enzyme. In addition, the invention is based on the discovery that mammals prone to develop arthritis can be protected by providing those mammals with normal levels of NADPH oxidase activity. For example, an animal model prone to develop severe arthritis

symptoms can be rescued by providing that animal with a fully functional NADPH oxidase pathway.

5

10

15

20

25

30

In general, the invention features a method for assessing a mammal's susceptibility to develop an autoimmune condition (e.g., arthritis or multiple sclerosis), the method includes: (a) providing, from a mammal, a blood or synovial fluid sample containing a cell; (b) determining the level of NADPH oxidase activity of the cell after contacting the cell with an NADPH oxidase activator; (c) determining whether or not the level is less than a control level of NADPH oxidase activity, wherein the control level is the average amount of NADPH oxidase activity of control cells from a population of mammals without the autoimmune condition (e.g., non-arthritic mammals), and wherein the mammals without the autoimmune condition are from the same species as the mammal; and (d) identifying the mammal as being susceptible to develop the autoimmune condition when the level is less than the control level. The NADPH oxidase activator can be norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, hexadecene, heptadecane, octadecane, galectin 1, or galectin 3. The level of NADPH oxidase activity can be determined by measuring superoxide or reactive oxygen species. The population can contain at least 10 mammals. Step (c) can include determining whether or not the level is between 5 and 75 percent less than the control level, wherein step (d) includes identifying the mammal as being susceptible to develop the autoimmune condition when the level is between 5 and 75 percent less than the control level. Step (c) can include determining whether or not the level is between 25 and 55 percent less than the control level, wherein step (d) includes identifying the mammal as being susceptible to develop the autoimmune condition when the level is between 25 and 55 percent less than the control level.

In another embodiment, the invention features a method for assessing a mammal's susceptibility to develop an autoimmune condition (e.g., arthritis or multiple sclerosis), the method containing: (a) providing, from a mammal, a blood or synovial fluid sample; (b) determining the level of a blood or synovial fluid component that reflects NADPH oxidase activity; (c) determining whether or not the level is less than a control level, wherein the control level is the average amount of the component in control samples from

a population of mammals without the autoimmune condition (e.g., non-arthritic mammals), and wherein the mammals without the autoimmune condition are from the same species as the mammal; and (d) identifying the mammal as being susceptible to develop the autoimmune condition when the level is less than the control level. The component that reflects NADPH oxidase activity can be malonic dialdehyde.

Another embodiment of the invention features a method for assessing a mammal's susceptibility to develop an autoimmune condition (e.g., arthritis or multiple sclerosis), the method containing determining whether or not a mammal contains a genetic variant of the gene encoding a polypeptide that functions in the NADPH oxidase pathway, where the presence of the genetic variant indicates that the mammal is susceptible to develop the autoimmune condition. The genetic variant can encode a mutant polypeptide. The mutant polypeptide can be a GP91PHOX polypeptide, P22PHOX polypeptide, P40PHOX polypeptide, P47PHOX polypeptide, or P67PHOX polypeptide. For example, the mutant polypeptide can be a P47PHOX polypeptide. The mammal can be a human, and the mutant P47PHOX polypeptide can contain the sequence set forth in SEQ ID NO:6 with at least two amino acid substitutions. The mutant P47PHOX polypeptide can contain an amino acid sequence having an amino acid residue other than valine at the position that aligns with position 106 of SEQ ID NO:4 or an amino acid residue other than threonine at the position that aligns with position 153 of SEQ ID NO:4. The genetic variant can contain a mutation in a regulatory sequence of the gene.

Another embodiment of the invention features a method for diagnosing an autoimmune condition accompanied by NADPH oxidase deficiency (e.g., AANOD or multiple sclerosis accompanied by NADPH oxidase deficiency) in a mammal having an autoimmune condition, the method containing: (a) providing, from the mammal, a sample containing a cell; (b) determining the level of NADPH oxidase activity of the cell after contacting the cell with an NADPH oxidase activator; (c) determining whether or not the level is less than a control level of NADPH oxidase activity, wherein the control level is the average amount of NADPH oxidase activity of control cells from a population of mammals without the autoimmune condition (e.g., non-arthritic mammals), and wherein the mammals without the autoimmune condition are from the same species as the mammal; and (d) identifying the mammal as having the autoimmune condition associated

by NADPH oxidase deficiency when the level is less than the control level. The NADPH oxidase activator can be norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, hexadecene, heptadecane, octadecane, galectin 1, or galectin 3. The level of NADPH oxidase activity can be determined by measuring superoxide or reactive oxygen species. The population can contain at least ten mammals without the autoimmune condition. Step (c) can include determining whether or not the level is between 5 and 75 percent less than the control level, wherein step (d) includes identifying the mammal as being susceptible to develop the autoimmune condition associated by NADPH oxidase deficiency when the level is between 5 and 75 percent less than the control level. Step (c) can include determining whether or not the level is between 25 and 55 percent less than the control level, wherein step (d) includes identifying the mammal as being susceptible to develop the autoimmune condition associated by NADPH oxidase deficiency when the level is between 25 and 55 percent less than the control level.

Another embodiment of the invention features a method for diagnosing an autoimmune condition associated by NADPH oxidase deficiency (e.g., AANOD or multiple sclerosis accompanied by NADPH oxidase deficiency) in a mammal having an autoimmune condition, the method containing: (a) providing, from the mammal, a blood or synovial fluid sample; (b) determining the level of a blood or synovial fluid component that reflects NADPH oxidase activity; (c) determining whether or not the level is less than a control level, wherein the control level is the average amount of the component in control samples from a population of mammals without the autoimmune condition (e.g., non-arthritic mammals), and wherein the mammals without the autoimmune condition are from the same species as the mammal; and (d) identifying the mammal as having the autoimmune condition associated by NADPH oxidase deficiency when the level is less than the control level.

Another embodiment of the invention features a method for diagnosing an autoimmune condition accompanied by NADPH oxidase deficiency (e.g., AANOD or multiple sclerosis accompanied by NADPH oxidase deficiency) in a mammal having an autoimmune condition, the method includes: (a) providing a blood or synovial fluid

sample from the mammal; (b) determining the level of a blood or synovial fluid component that reflects NADPH oxidase activity; (c) determining whether or not the level is less than a control level of NADPH oxidase activity, wherein the control level is the average amount of NADPH oxidase activity of control cells from a population of mammals without the autoimmune condition, and wherein the mammals without the autoimmune condition are from the same species as the mammal; and (d) identifying the mammal as having the autoimmune condition accompanied by NADPH oxidase deficiency when the level is less than the control level. The component that reflects NADPH oxidase activity can be malonic dialdehyde.

10

15

20

25

30

Another embodiment of the invention features a method for diagnosing an autoimmune condition accompanied by NADPH oxidase deficiency (e.g., AANOD or multiple sclerosis accompanied by NADPH oxidase deficiency) in a mammal having an autoimmune condition, the method including determining whether or not the mammal contains a genetic variant of the gene encoding a polypeptide that functions in the NADPH oxidase pathway, wherein the presence of the genetic variant indicates that the mammal has the autoimmune condition accompanied by NADPH oxidase deficiency. The genetic variant can encode a mutant polypeptide. The mutant polypeptide can be a GP91PHOX polypeptide, P22PHOX polypeptide, P40PHOX polypeptide, P47PHOX polypeptide, or P67PHOX polypeptide. For example, the mutant polypeptide can be a P47PHOX polypeptide. The mammal can be a human, and the mutant P47PHOX polypeptide can contain the sequence set forth in SEO ID NO:6 with at least two amino acid substitutions. The mutant P47PHOX polypeptide can contain an amino acid sequence having an amino acid residue other than valine at the position that aligns with position 106 of SEQ ID NO:4 or an amino acid residue other than threonine at the position that aligns with position 153 of SEQ ID NO:4. The genetic variant can contain a mutation in a regulatory sequence of the gene.

In another aspect, the invention features a method for treating a mammal having an autoimmune condition accompanied by NADPH oxidase deficiency (e.g., AANOD or multiple sclerosis accompanied by NADPH oxidase deficiency), the method including administering, to the animal, an agent that enhances NADPH oxidase activity. The agent can be norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate

acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane, galectin 1, or galectin 3. Alternatively, the agent can be a more polar derivative of the afore-mentioned compounds. For example, the agent can be an alkene derivative of the afore-mentioned compounds (e.g., undecene, hexadecene), or an acid derivative of the afore-mentioned compounds. In one embodiment, hexadecene is used. In another embodiment, undecane is used. The agent may be administered intra-dermally, intra-peritoneally, or intranasally.

In another embodiment, the invention features the use of an agent in the manufacture of a medicament to treat an autoimmune condition accompanied by NADPH oxidase deficiency (e.g., AANOD or multiple sclerosis accompanied by NADPH oxidase deficiency), wherein the agent enhances NADPH oxidase activity in a mammal. The agent can be norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane, galectin 1, or galectin 3. Alternatively, the agent can be a more polar derivative of the afore-mentioned compounds. For example, the agent can be an alkene derivative of the afore-mentioned compounds (e.g., undecene, hexadecene), or an acid derivative of the afore-mentioned compounds. In one embodiment, hexadecene is used. In another embodiment, undecane is used.

Another embodiment of the invention features a method of formulating a medicament for the treatment of an autoimmune condition, the method including: (a) contacting a sample comprising cells or a cellular fraction having NADPH activity with a test agent, (b) determining the level of NADPH oxidase activity in the sample, (c) determining whether or not the level is greater than a control level of NADPH oxidase activity, wherein the control level is the amount of NADPH oxidase activity in a control sample lacking the test agent, (d) identifying the test agent as an agent useful for treatment of the autoimmune condition when the level of NADPH oxidase activity is greater than the control level, and (e) formulating a medicament from the agent for the treatment of the autoimmune condition. The autoimmune condition can be arthritis or multiple sclerosis.

Another aspect of the invention features a method for identifying an agent that activates NADPH oxidase activity in a cell, wherein the cell is from a non-human animal susceptible to arthritis induction, the method containing determining whether or not the level of NADPH oxidase activity increases in the cell after the cell is treated with a test agent, wherein an increase in the level indicates that the test agent activates NADPH oxidase activity. The cell can be a cell from a DA rat. The cell can be a lymphocyte. The non-human animal can be susceptible to pristane induced arthritis, or collagen induced arthritis, or adjuvant induced arthritis, or oil induced arthritis, or hexadecane induced arthritis, or squalene induced arthritis, or avridine induced arthritis. The level of NADPH oxidase activity can be determined by measuring superoxide or reactive oxygen species, e.g., as with a cytochrome C assay or WST-1 assay or a flow cytometer (e.g., FASC) based assay using, e.g., dihydrorodamine 123 (DHR-123).

In another embodiment, the invention features a method for identifying an agent useful in the treatment of an autoimmune condition, the method including: (a) contacting a sample comprising cells or a cellular fraction having NADPH activity with a test agent, (b) determining the level of NADPH oxidase activity in the sample, (c) determining whether or not the level is greater than a control level of NADPH oxidase activity, wherein the control level is the amount of NADPH oxidase activity in a control sample lacking the test agent, and (d) identifying the test agent as an agent useful for treatment of the autoimmune condition when the level of NADPH oxidase activity is greater than the control level. The autoimmune condition can be arthritis or multiple sclerosis.

In another embodiment, the invention features a method for identifying an agent useful in the treatment of an autoimmune condition, the method including: (a) contacting a sample comprising cells or a cellular fraction having NADPH activity with a test agent, (b) contacting the sample with an NADPH oxidase activator, (c) determining the level of NADPH oxidase activity in the sample, (d) determining whether or not said level is greater than a control level of NADPH oxidase activity, wherein the control level is the amount of NADPH oxidase activity in a control sample treated with the activator in the absence of the test agent, and (e) identifying the test agent as an agent useful for treatment of the autoimmune condition when the level of NADPH oxidase activity is greater than the control level. The autoimmune condition can be arthritis or multiple sclerosis.

In another embodiment, the invention features a method for identifying an agent that enhances NADPH oxidase activity in a cell, wherein the cell is from a non-human animal susceptible to arthritis induction, the method including: (a) contacting the cell with an NADPH oxidase activator and a test agent to form a test cell; (b) determining the level of NADPH oxidase activity in the test cell; (c) determining whether or not the level is greater than a control level of NADPH oxidase activity, wherein the control level is the amount of NADPH oxidase activity in a control cell treated with the activator in the absence of the test agent; and (d) identifying the agent as enhancing NADPH oxidase activity when the level is greater than the control level. The cell can be a cell from a DA rat. The cell can be a lymphocyte. The non-human animal can be susceptible to pristane induced arthritis or collagen induced arthritis, or adjuvant induced arthritis, or oil induced arthritis, or hexadecane induced arthritis, or squalene induced arthritis, or avridine induced arthritis. The NADPH oxidase activator can be norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, hexadecene, heptadecane, octadecane, galectin 1, or galectin 3. The level of NADPH oxidase activity can be determined by measuring superoxide or reactive oxygen species, e.g., by a cytochrome C or WST-1 assay or a flow cytometer (e.g., FASC) based assay using, e.g., dihydrorodamine 123 (DHR-123).

5

10

15

20

25

30

In another embodiment, the invention features a method for identifying an agent that inhibits NADPH oxidase activity in a cell, wherein the cell is from a non-human animal susceptible to arthritis induction, the method containing: (a) contacting the cell with an NADPH oxidase activator and a test agent to form a test cell; (b) determining the level of NADPH oxidase activity in the test cell; (c) determining whether or not the level is less than a control level of NADPH oxidase activity, wherein the control level is the amount of NADPH oxidase activity in a control cell treated with the activator in the absence of the test agent; and (d) identifying the agent as inhibiting NADPH oxidase activity when the level is less than the control level. The cell can be a cell from a DA rat. The cell can be a lymphocyte. The non-human animal can be susceptible to pristane induced arthritis, or collagen induced arthritis, or oil induced arthritis, or hexadecane induced arthritis, squalene induced arthritis, or avridine induced arthritis. The NADPH

oxidase activator can be norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, hexadecene, heptadecane, octadecane, galectin 1, or galectin 3. The level of NADPH oxidase activity can be determined by measuring superoxide or reactive oxygen species.

5

10

15

20

25

30

In another embodiment, the invention features a method for identifying an agent that modulates T-cell activation (e.g., reduces or enhances T-cell activation), the method including: (a) determining whether or not a test agent increases NADPH oxidase activity; and (b) classifying the test agent as an agent that reduces T-cell activation when the test agent increases NADPH oxidase activity.

Another aspect of the invention features a rat congenic to a second rat, wherein at least one locus differs genetically between the rat and the second rat, wherein the second rat is susceptible to arthritis induction, wherein the rat contains T-cells from the second rat, and wherein the rat has arthritis. The rat can be a DA.E3c12-/- rat. The second rat can be a DA rat. The at least one locus can contain nucleic acid that encodes a P47PHOX polypeptide. In some embodiments, no more than one locus can differ genetically between the rat and the second rat. In those cases, the locus can contain nucleic acid that encodes a P47PHOX polypeptide.

Another aspect of the invention features a nonhuman mammal having a deficient NADPH oxidase pathway, where the nonhuman mammal exhibits symptoms of an autoimmune disease. The autoimmune disease may be arthritis, multiple sclerosis, lupus, autoimmune uveitis, type I diabetes, bronchial asthma, septic arthritis induced with staphylococci or streptococci, or cardiovascular disease involving vasculitis. For example, the nonhuman animal may exhibit symptoms of arthritis. The arthritis may be adjuvant induced arthritis, collagen induced arthritis, pristane induced arthritis, hexadecane induced arthritis, avridine induced arthritis, or squalene induced arthritis, or oil induced arthritis. The deficient NADPH oxidase pathway may be indicated by a reduced NADPH oxidase activity. The reduced NADPH oxidase activity may be a result of a mutant polypeptide where the mutant polypeptide functions in the NADPH oxidase pathway. For example, the mutant polypeptide may be a GP91PHOX polypeptide, P22PHOX polypeptide, P40PHOX polypeptide, or P67PHOX

polypeptide. For example, the mutant polypeptide can be a P47PHOX polypeptide. The mutant P47PHOX polypeptide can contain the sequence set forth in SEQ ID NO:6 with at least two amino acid substitutions. The mutant P47PHOX polypeptide can contain an amino acid sequence having an amino acid residue other than valine at the position that aligns with position 106 of SEQ ID NO:4 or an amino acid residue other than threonine at the position that aligns with position 153 of SEQ ID NO:4. In other embodiments, the reduced NADPH oxidase activity may be a result of a deletion of the gene or locus encoding Ncf1 (p47phox). The deletion may be heterozygous or homozygous in the nonhuman mammal. The nonhuman mammal may be a mouse.

10

15

20

25

30

In another embodiment, the invention features a method of screening an agent to determine if the agent delays the onset of arthritis. The method includes: (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway; (b) administering to the nonhuman mammal the agent; (c) inducing arthritis in the nonhuman mammal; and (d) determining if the agent delays the onset of arthritis in the nonhuman mammal. The deficient NADPH oxidase pathway may be as described previously. Determining if the agent delays the onset of arthritis may include steps such as: (a) determining a day of onset of arthritis value for the nonhuman mammal; and (b) comparing the day of onset of arthritis value for the nonhuman mammal with a control day of onset of arthritis value. The control day of onset of arthritis value may be determined by determining a day of onset of arthritis value for a control nonhuman mammal to which the agent has not been administered. The day of onset of arthritis in the nonhuman mammal may be considered delayed if it is later than the control day of onset value. The induced arthritis may be adjuvant induced arthritis, collagen induced arthritis, pristane induced arthritis, hexadecane induced arthritis, avridine induced arthritis, squalene induced arthritis, and/or oil induced arthritis.

Another method of the invention includes screening an agent to determine if the agent treats arthritis. The method includes (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway, where the nonhuman mammal exhibits symptoms of an arthritis (e.g., adjuvant induced arthritis, collagen induced arthritis, pristane induced arthritis, hexadecane induced arthritis, avridine induced arthritis, squalene induced arthritis, or oil induced arthritis); (b) administering to the nonhuman mammal the agent;

and (c) determining if the agent treats arthritis in the nonhuman mammal. Such a determining step may involve (a) calculating an arthritis score in the nonhuman mammal; and (b) comparing the arthritis score with a control arthritis score. The control arthritis score may be determined by calculating an arthritis score for a control nonhuman mammal to which the agent has not been administered. The agent may be determined to treat arthritis if the arthritis score in the nonhuman animal is less than the control arthritis score.

In another embodiment, a method of screening an agent to determine if the agent prevents arthritis is provided. The method includes: (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway; (b) administering to the nonhuman mammal the agent; (c) administering a compound known to induce arthritis to the nonhuman mammal; and (d) determining if the agent prevents arthritis induced by the compound in the nonhuman mammal. Determining if the agent prevents arthritis may include evaluating said nonhuman mammal for symptoms of arthritis. Such an evaluation may occur for a period of time, e.g., for up to 20 days, up to 30 days, up to 50 days, or up to 70 days. Determining if the agent prevents arthritis may include comparing any symptoms of arthritis and their day of onset with the symptoms and day of onset of a control nonhuman mammal to which said agent has not been administered. The compound known to induce arthritis may be an adjuvant, collagen, pristane, hexadecane, avridine, squalene, and/or oil. Collagen may be type II collagen; the oil may be incomplete Freund's adjuvant; and the adjuvant may be mycobaterial-derived.

In another embodiment, a method for identifying an agent that inhibits NADPH oxidase activity in a lymphocyte, wherein the lymphocyte is from a DA rat. The method includes: (a) contacting the lymphocyte with PMA and a test agent to form a test cell; (b) determining the level of NADPH oxidase activity in the test cell by measuring superoxide; (c) determining whether or not the level is less than a control level of NADPH oxidase activity, wherein the control level is the amount of NADPH oxidase activity in a control cell treated with the PMA in the absence of the test agent; and (d) identifying the agent as inhibiting NADPH oxidase activity when the level is less than the control level.

In another embodiment, a non-DA rat comprising heterologous T-cells from a non-human animal susceptible to arthritis induction, wherein the non-DA rat has arthritis. The rat can be an E3 rat. The non-human animal can be a DA rat.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

5

10

15

20

25

30

DESCRIPTION OF DRAWINGS

Figure 1 is a graph comparing the mean clinical arthritis scores determined at day 10, 14, 19, 24, and 28 after pristane injection of DA rats, DA.E3chr12+/- rats, and DA.E3chr12-/- rats.

Figure 2 is a physical map of the *Pia4* region constructed using PAC clones and EST clones.

Figure 3 is an alignment of the E3 and DA p47phox cDNA sequences amplified from the RNA of E3 and DA rats.

Figure 4 is a set of bar graphs demonstrating that plasma levels of cartilage oligomeric matrix protein (COMP; Figure 4A) and α1-acid glycoprotein (AGP; Figure 4B) were significantly lower in DA.E3chr12 congenic rats than in DA littermate control rats (p<0.005).

Figure 5 is a set of absorbance curves illustrating production of reactive oxygen species in a DA rat (Figure 5A), an E3 rat (Figure 5B), a DA.E3c12+/- rat (Figure 5C), and a DA.E3c12-/- rat (Figure 5D).

Figure 6 is a graph illustrating increased severity of arthritis in rats treated with an NADPH inhibitor, diphenyleneiodonium chloride (DPI).

Figure 7 is a bar graph illustrating that rats treated with DPI had greater accumulated arthritis scores than control rats.

5

10

15

20

25

30

Figure 8 is a bar graph illustrating that transfer of Conconavalin A (ConA) activated T-cells from a DA rat gave rise to severe arthritis in DA littermate control rats (DA), in DA.E3chr12 +/- rats (HET), and in DA.E3chr12 -/- rats (E3).

Figure 9 is a set of graphs showing the activation of the oxidative burst from rat E3 peritoneal cells (Figure 9A) and HL60 cells (Figure 9B) after treatment with alkanes in vitro. The oxidative burst is measured with the WST-1 assay.

Figure 10 is a set of graphs demonstrating the arthritis inducing effects of alkanes 12-31 days after administration. Figure 10A demonstrates the Mean score; Figure 10B demonstrates the Additive score; and Figure 10C demonstrates the Maximum score according to the extended scoring system described herein after injection of the alkanes intradermally at the base of the tail.

Figure 11 is a set of graphs demonstrating the severity of PIA in DA rats treated with undecane or undecanol at varying time points. Figure 11A demonstrates the Mean score; Figure 11B demonstrates the Additive score; and Figure 11C demonstrates the Maximum score.

Figure 12 is a set of graphs demonstrating the severity of hexadecane induced arthritis after treatment with hexadecene on day -5 or day +5. Figure 12A demonstrates the Mean score; Figure 12B demonstrates the Additive score; and Figure 12C demonstrates the Maximum score.

Figure 13 is a bar graph demonstrating the severity of arthritis in rats treated with radioactively- labeled oils.

Figure 14 is a bar graph illustrating the tissue distribution of 14C-labeled oils at 10, 20, and 30 days post-injection. The activity was measured in a β -counter for one minute. Note that LN = lymph nodes.

Figure 15 is a bar graph illustrating the distribution of [1-14C]-hexadecane to the lymph nodes as measured in a β -counter (Beckman) for one minute.

Figure 16 is a set of bar graphs demonstrating the effect of phytol on the development of EAE in DA rats treated with phytol on day -10, -5 or day +5. Figure 16A

demonstrates the Additive score; Figure 16B demonstrates the Maximum score. Olive oil was used as a control.

Figure 17 is a set of graphs demonstrating the effect of phytol treatment on development of PIA with different routes of phytol administration. Figure 17A demonstrates the Mean score; Figure 17B demonstrates the additive score; and Figure 17C demonstrates the Maximum score.

5

10

15

20

30

Figure 18 is a set of graphs illustrating the onset of CIA in Ncf1 (p47phox) deficient mice, both homozygous and heterozygous, as compared to B10.Q mice. Figure 18A demonstrates the Mean score; Figure 18B demonstrates the Maximum score; and Figure 18C demonstrates the Additive score.

Figure 19 is a bar graph showing the mean day of onset of CIA in Ncf1 deficient mice, both homozygous and heterozygous, as compared to B10.Q mice.

Figure 20 is a bar graph showing the serum COMP levels in Ncf1 deficient mice, both homozygous and heterozygous, as compared to B10.Q mice following induction of CIA by injection of rat CII.

Figure 21 is a bar graph showing the levels of anti collagen antibodies in Ncfl deficient mice, both homozygous and heterozygous, as compared to B10.Q mice following induction of CIA by injection of rat CII.

Figure 22 is a graph demonstrating the effect of phytol treatment of CIA using different routes of administration.

Figure 23 is a set of graphs demonstrating the effect of treatment of active PIA using different active agents and routes of administration. 200 μ L of either phytol (Figure 23A) or undecane (Figure 23B) were administered at day 21 and day 26.

25 **DETAILED DESCRIPTION**

The invention provides methods and materials related to diagnosing and treating autoimmune conditions (e.g., arthritis). Specifically, the invention provides methods and materials involved in diagnosing mammals susceptible to arthritis and mammals having AANOD. In addition, the invention provides methods and materials involved in treating mammals susceptible to arthritis and mammals having AANOD. Further, the invention

provides methods and materials involved in identifying agonists and antagonists of NADPH oxidase activity.

1. Diagnosing Mammals Susceptible to Arthritis

5

10

15

20

25

30

The invention provides methods for assessing a mammal's susceptibility to developing arthritis. The mammal can be a human, monkey, goat, horse, cow, pig, dog, cat, mouse, or rat. Briefly, a mammal's susceptibility to developing arthritis can be determined by examining the level of NADPH oxidase activity present within the mammal's cells. This level of NADPH oxidase activity then can be compared with a control level, and the mammal can be classified as being susceptible to developing arthritis if the level of NADPH oxidase in the mammal's cells is lower than the control level as further described below.

The level of NADPH oxidase activity in a mammal's cells can be determined using any known method. For example, NADPH oxidase activity can be assessed by measuring the amount of reactive oxygen species generated. As used herein, the term "reactive oxygen species" includes, without limitation, partially reduced species of oxygen such as superoxide ion (O₂^{-*}), hydrogen peroxide (H₂O₂), hydroxyl radical (OH*) and hydroxide ion. The amount of reactive oxygen species generated can be measured using standard methods such as those that involve measuring cytochrome C reduction, lucigenin luminescence, luminol-luminescence, and DCFDA fluorescence. Alternatively, the level of NADPH oxidase activity in a mammal's cells can be determined by measuring the level of components known to reflect NADPH oxidase activity. Such components include, without limitation, circulating malonic dialdehyde.

After determining the level of NADPH oxidase activity present within the mammal's cells, this level of NADPH oxidase activity can be compared with a control level of NADPH oxidase activity for that particular species. The control level of NADPH oxidase activity measured in cells from a population of healthy members from that particular species. In the case of humans, the control level of NADPH oxidase activity can be the average level of NADPH oxidase activity in cells from 5, 10, 20, 30, 40, 50, or more healthy humans. If the level of NADPH oxidase activity in a mammal's cells is lower than the control

level, then the mammal can be classified as being susceptible to arthritis. For example, a mammal having an NADPH oxidase activity that is no more than about 85 (e.g., no more than 75, 65, 55, 45, 35, 25, 15, 5, or less) percent of the control level can be classified as being susceptible to arthritis.

5

10

15

20

25

30

Alternatively, a mammal (e.g., human) having impaired NADPH oxidase activity can be classified as being susceptible to arthritis. For example, a human having impaired NADPH oxidase activity such that a sample of about 1 x 10⁶ granulocytes from that human exhibits less than 0.3 to 0.4 absorbance units (550 nm) of cytochrome C reduction after about 7 minutes of treatment with 0.01 μ M fMLP can be classified as being susceptible to arthritis. In one embodiment, a human having cells with no more than about 85 (e.g., no more than 75, 65, 55, 45, 35, 25, 15, 5, or less) percent of this level of activity is classified as being susceptible to arthritis. The cells can be treated with activators other than fMLP such as agents that affect cellular signaling by modulating phosphorylation (e.g., PMA), agents that destabilize cell membranes (e.g., pristane, squalene, phytol, and hexadecane), and agents that bind cell surface receptors (e.g., galectin1 and galectin 3).

Any type of sample can be used to determine the level of NADPH oxidase activity in a mammal's cells. For example, the sample can be blood, synovial fluid, or lymph fluid containing cells (e.g., PBMCs) having NADPH oxidase activity. Cells having NADPH oxidase activity include, without limitation, macrophages, neutrophils, granulocytes, polymorphonuclear leukocytes, and mononuclear cells. Standard methods can be used to obtain such samples from the mammal. For example, a blood sample can be obtained by venous puncture. The sample can be subjected to any necessary standard preparatory procedures before assessing NADPH oxidase activity. For example, a blood sample containing cells can be subjected to centrifugation and/or washing steps to isolate cells from which the level of NADPH oxidase activity can be measured.

In another embodiment, a mammal's susceptibility to developing arthritis can be determined by examining at least a portion of the amino acid sequence of a polypeptide within the mammal's NADPH oxidase pathway. Such polypeptides include, without limitation, GP91PHOX polypeptides, P22PHOX polypeptides, P40PHOX polypeptides, P47PHOX polypeptides, and P67PHOX polypeptides. For example, the amino acid

sequence of the mammal's P47PHOX polypeptide can be determined. Any method can be used to determine the amino acid sequence of a polypeptide. For example, standard amino acid sequencing techniques can be used to determine the amino acid sequence of a purified P47PHOX polypeptide preparation. Alternatively, the nucleic acid encoding the polypeptide can be sequenced using standard nucleic acid sequencing techniques. Once the nucleic acid sequence is determined, the amino acid sequence of the encoded polypeptide can be deduced.

After determining at least a portion (e.g., about 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 percent) of the amino acid sequence of a polypeptide within the mammal's NADPH oxidase pathway, that amino acid sequence can be compared to the amino acid sequence of a comparable reference polypeptide that functions in the NADPH oxidase pathway such that at least about 70 percent (e.g., at least about 75, 80, 85, 90, 95, or 99 percent) of maximal NADPH oxidase activity is observed. For example, the amino acid sequence of a mammal's P47PHOX polypeptide can be compared to the amino acid sequence of a P47PHOX polypeptide that allows a cell to exhibit at least about 70 percent of maximal NADPH oxidase activity. Likewise, the amino acid sequence of a GP91PHOX polypeptide can be compared to the amino acid sequence of a GP91PHOX polypeptide that allows a cell to exhibit at least about 70 percent of maximal NADPH oxidase activity.

The term "maximal NADPH oxidase activity" as used herein refers to the average maximum level of NADPH oxidase activity measured in cells from healthy members of a particular species. For example, in rats, the maximal NADPH oxidase activity when measuring superoxide release from about 5 x 10⁶ peritoneal neutrophils using cytochrome C reduction can be 0.15-0.25 absorbance (550 nm) units at about 1000 seconds following stimulation with PMA. The cells can be treated with activators other than PMA such as fMLP, agents that destabilize cell membranes (e.g., pristane, squalene, phytol, and hexadecane), and agents that bind cell surface receptors (e.g., galectin1 and galectin 3). Since cells from E3 rats exhibit at least about 70 percent of this activity, the amino acid sequences of polypeptides that function in the NADPH oxidase pathway of the E3 rat can be used as reference polypeptides. For example, a rat's amino acid sequence of a P47PHOX polypeptide can be compared to the amino acid sequence of the P47PHOX

polypeptide of E3 rats, which is set forth in SEQ ID NO:4. In humans, the maximal NADPH oxidase activity when measuring superoxide release from about 1×10^6 granulocytes using cytochrome C reduction can be 0.3 to 0.4 absorbance (550 nm) units about 7 minutes following stimulation with 0.01 μ M of fMLP. Thus, polypeptides that function in the NADPH oxidase pathway of human cells that exhibit at least 70 percent of that activity can be used as reference polypeptides. When assessing a human's P47PHOX polypeptide, the human P47PHOX polypeptide having the amino acid sequence set forth in SEQ ID NO:6 can be used as a reference polypeptide.

5

10

15

20

25

30

If the mammal being tested contains a mutant polypeptide when compared to a comparable reference polypeptide, then that mammal can be classified as being susceptible to developing arthritis. The mutant polypeptide can be a polypeptide that contains amino acid additions, subtractions, substitutions, or combinations thereof when compared to the sequence of a comparable reference polypeptide. For example, a mutant polypeptide can be a polypeptide having any number of amino acid differences (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or more amino acid additions, subtractions, or substitutions) when compared to a comparable reference polypeptide. Thus, in one embodiment, a human can be classified as being susceptible to developing arthritis if that human contains a P47PHOX polypeptide having an amino acid sequence with one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more) amino acid substitutions when compared to the amino acid sequence set forth in SEQ ID NO:6. Alternatively, a human can be classified as being susceptible to developing arthritis if that human contains a P47PHOX polypeptide having an amino acid sequence with an amino acid residue other than valine at the position that aligns with position 106 of SEQ ID NO:4.

In addition, a mutant polypeptide can be a polypeptide lacking one or more phosphorylation sites. Typically, phosphorylation sites are serine, threonine, or tyrosine residues. Thus, a polypeptide lacking one or more serine, threonine, or tyrosine residues when compared to a comparable reference polypeptide can be a mutant polypeptide. In one embodiment, a human can be classified as being susceptibility to develop arthritis if that human contains a P47PHOX polypeptide having an amino acid sequence lacking one or more (e.g., more than 2, 3, 4, 5, 6, 7, 8, 9, or 10) of the serine, threonine, or tyrosine

residues when compared to the amino acid sequence set forth in SEQ ID NO:6. Alternatively, a human can be classified as being susceptible to developing arthritis if that human contains a P47PHOX polypeptide having an amino acid sequence with an amino acid residue other than threonine at the position that aligns with position 153 of SEQ ID NO:4.

In addition to using the presence of a mutant polypeptide to determine whether or not a particular mammal is susceptible to arthritis, the regulatory sequences (e.g., promoters, enhancers, and silencers) that control the expression of a polypeptide that functions in the NADPH oxidase pathway can be examined. For example, the promoter sequences that control P47PHOX polypeptide expression can be compared to those promoter sequences that drive normal P47PHOX polypeptide expression in healthy humans. In this case, a human having a mutated regulatory promoter sequence can be classified as being susceptible to developing arthritis.

15 2. Diagnosing Mammals Having AANOD

5

10

20

25

30

The invention provides methods for determining whether a mammal has a particular type of arthritis. Specifically, a mammal can be diagnosed as having AANOD if that mammal has (1) clinical symptoms of arthritis and (2) cells having a level of NADPH oxidase activity that is either lower than a control value or impaired. In addition, a mammal can be diagnosed as having AANOD if that mammal has (1) clinical symptoms of arthritis and (2) a polypeptide that functions in the NADPH oxidase pathway and that contains a mutation when compared to a comparable reference polypeptide as described herein.

Clinical symptoms of arthritis include, without limitation, inflammation of tendons, ligaments, joints, or bones. Symptoms of arthritis also include pain, swelling, and stiffness in the limbs that can lead to weakness, loss of mobility, and deformity in the mammal. Examples of arthritis include, without limitation, bacterial arthritis, osteoarthritis, rheumatoid arthritis (RA), collagen-induced arthritis (CIA), hexadecane-induced arthritis (HIA), pristane-induced arthritis (PIA), avridine-induced arthritis, adjuvant induced arthritis, squalene-induced arthritis (SIA), and oil-induced arthritis (OIA).

The level of NADPH oxidase activity within a mammal's cells can be assessed as described herein. Likewise, the methods and materials described herein can be used to determine whether or not a mammal contains a mutant polypeptide that functions in the NADPH oxidase pathway.

5

10

15

20

25

30

3. Treating arthritis

The invention provides methods and materials for treating arthritis (e.g., AANOD) in a mammal. Methods for treating arthritis such as AANOD include administering an agent that increases the level of NADPH oxidase activity in the mammal. For example, an agent that increases a cell's production of reactive oxygen species can be administered to a mammal with arthritis. Such agents include, without limitation, norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane; agents that destabilize cell membranes (e.g., pristane, squalene, phytol, and hexadecane), and agents that bind cell surface receptors (e.g., galectin1 and galectin 3). Alternatively, the agent can be a more polar derivative of the afore-mentioned compounds. For example, the agent can be an alkene derivative of the afore-mentioned compounds (e.g., undecene, hexadecene), or an acid derivative of the afore-mentioned compounds. In one embodiment, hexadecene is used. In another embodiment, undecane is used.

Agents that increase NADPH oxidase activity can be administered in any standard form using any standard method. For example, agents that increase NADPH oxidase activity can be in the form of tablets or capsules (e.g., time-release capsules) that are taken orally. Alternatively, the agents can be in a liquid form and can be taken orally or by injection. The agents also can be in the form of suppositories. Further, agents that increase NADPH oxidase activity can be in the form of creams, gels, and foams that can be applied to the skin. In addition, the agents can in the form of an inhalant that is applied nasally. The agent may be administered intra-dermally, intra-peritoneally, or intra-nasally.

Agents that increase NADPH oxidase activity can be administered at any dose that is sufficient to increase NADPH oxidase activity in cells that have low activity. Such

doses can be taken over a period of years to prevent and/or delay the progression arthritis or to reverse the progression of arthritis. Doses can be selected based on the effectiveness and toxicity of the particular agent using standard pharmacology techniques.

5 4. Identifying Agent That Modify NADPH Oxidase Activity

10

15

20

25

30

The invention provides methods and materials for identifying agents that modulate NADPH oxidase activity. Agents that modulate NADPH oxidase activity can increase or decrease NADPH oxidase activity. Examples of agents that increase NADPH oxidase activity include, without limitation, norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane; agents that destabilize cell membranes (e.g., pristane, squalene, phytol, and hexadecane), and agents that bind cell surface receptors (e.g., galectin1 and galectin 3). Examples of agents that decrease NADPH oxidase activity include, without limitation, diphenylene iodonium, phenols, apocynin, quinone, haem ligands, piroxicam, B220 (2,3-dimethyl-6(2-dimethylaminoethyl)-6H-indolo-(2,3-b)quinoxaline), lidocaine, gliotoxin, hydrocortisone, OPC-6535 (6-[2-(3,4-diethoxyphenyl)thiazol-4-yl]-pyridine-2-carboxylic acid), and cromolyn.

To identify agents that increase or decrease NADPH oxidase activity, a test agent can be mixed with a sample containing cells or cellular fractions having NADPH oxidase activity. Such cells can be from humans (e.g., healthy humans or arthritis patients) or non-human animals (e.g., healthy non-human animals or non-human animals susceptible to arthritis such as those susceptible to arthritis induction.) An animal is susceptible to arthritis induction if that animal develops an arthritis condition in response to treatment with an inducing agent (e.g., collagen or pristane). Such animals include those susceptible to CIA, PIA, HIA, SIA, and OIA. The non-human animal can be any type of animal including, without limitation, monkeys (e.g., chimpanzees), horses, goats, cows, pigs, and rodents (e.g., mice and rats).

An example of a non-human animal that is susceptible to arthritis is a rat that is susceptible to PIA such as the DA rat. A rat can be identified as a member of the DA strain (or any strain of interest) using standard methods. For example, standard nucleic

acid sequencing techniques can be used to compare genomic or mitochondrial nucleic acid sequences including, without limitation, (1) microsatellite sequences, (2) nucleic acid sequences encoding major histocompatibility complexes, or (3) nucleic acid sequences encoding 18S ribosomal RNA. Comparing nucleic acid sequence from two animals can be accomplished using genetic analysis tools such as restriction fragment length polymorphism-(RFLP) based methods and random amplified polymorphic DNA-(RAPD) based methods. Two animals can be concluded to be of the same strain if the nucleic acid sequences of both animals have similar characteristics when analyzed by RFLP or RAPD.

5

10

15

20

25

30

After being treated with the test agent, the level of NADPH oxidase activity can be determined. The sample can be any type of sample containing a cell or a cellular fraction having NADPH oxidase activity. The sample can be blood, lymph, or synovial fluid. The cell can be a lymphocyte, granulocyte (e.g., neutrophil) or macrophage.

The NADPH oxidase activity determined in the presence of a test agent can be compared with the NADPH oxidase activity determined in the absence of the test agent. Agents that increase NADPH oxidase activity are those that lead to an increase in NADPH oxidase activity by any amount (e.g., a 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 200, or more percent increase) when compared with the level of NADPH oxidase activity observed in the absence of the test agent. Agents that decrease NADPH oxidase activity are those that lead to a decrease in NADPH oxidase activity by any amount (e.g., a 5, 10, 20, 30, 40, 50, 75, or more percent decrease) when compared with the level of NADPH oxidase activity observed in the absence of the test agent.

In another embodiment, agents that increase or decrease NADPH oxidase activity can be identified in an assay mixture that includes NADPH oxidase, an activator, and a test agent. In these embodiments, NADPH oxidase activity, determined in the presence of an activator and a test agent, can be compared with the NADPH oxidase activity determined in the presence of the activator without the test agent. As described herein, agents that increase NADPH oxidase activity are those that, when present in the NADPH oxidase assay mixture, lead to an increase in NADPH oxidase activity by any amount (e.g., a 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 200, or more percent increase) when compared with the level of NADPH oxidase activity observed in the absence of the test

agent, while agents that decrease NADPH oxidase activity are those that, when present in the NADPH oxidase assay mixture, lead to a decrease in NADPH oxidase activity by any amount (e.g., a 5, 10, 20, 30, 40, 50, 75, or more percent decrease) when compared with the level of NADPH oxidase activity observed in the absence of the test agent.

5

10

15

30

5. Non-DA Rats Containing Heterologous T-cells

The invention provides methods and materials for generating an animal (e.g., a rodent such as a rat or mouse) that has heterologous T-cells in combination with a new form of inducible arthritis (i.e., T-cell induced arthritis; TIA). TIA can be generated in an animal by introducing into the recipient animal, T-cells from a donor animal that has arthritis. The donor and recipient animals can be from different strains or can be members of the same inbred group of animals that differ only with respect to (1) the QTL that contributes to arthritic susceptibility such as the *Pia4* QTL or (2) the sequence of the *p47phox* gene. T-cells can be isolated from an animal using any standard procedures including spleen homogenization. T-cell transfer can be performed using any conventional procedure. An animal with TIA can be used as described herein to identify agents that modify NADPH oxidase activity.

6. Nonhuman mammals having deficient NADPH oxidase pathways

Another aspect of the invention features methods and materials for providing a nonhuman mammal having a deficient NADPH oxidase pathway, where the nonhuman mammal exhibits symptoms of an autoimmune disease. The mammal may be a monkey, goat, horse, cow, pig, dog, cat, mouse, or rat. The autoimmune disease may be arthritis, multiple sclerosis, lupus, autoimmune uveitis, type I diabetes, bronchial asthma, septic arthritis induced with staphylococci or streptococci, or cardiovascular disease involving vasculitis. For example, the nonhuman mammal may exhibit symptoms of arthritis. The arthritis may be induced by standard techniques known in the art and may be, e.g.,

adjuvant induced arthritis, CIA, PIA, HIA, avridine induced arthritis, SIA, or OIA.

The deficient NADPH oxidase pathway in the nonhuman mammal may be indicated by a reduced NADPH oxidase activity. The reduced NADPH oxidase activity may be a result of a mutant polypeptide where the mutant polypeptide functions in the NADPH oxidase pathway. For example, the mutant polypeptide may be a GP91PHOX

polypeptide, P22PHOX polypeptide, P40PHOX polypeptide, P47PHOX polypeptide, or P67PHOX polypeptide. For example, the mutant polypeptide can be a P47PHOX polypeptide. The mutant P47PHOX polypeptide can contain the sequence set forth in SEQ ID NO:6 with at least two amino acid substitutions. The mutant P47PHOX polypeptide can contain an amino acid sequence having an amino acid residue other than valine at the position that aligns with position 106 of SEQ ID NO:4 or an amino acid residue other than threonine at the position that aligns with position 153 of SEQ ID NO:4. In other embodiments, the reduced NADPH oxidase activity may be a result of a deletion of the gene or locus encoding Ncfl (p47phox). The deletion may be heterozygous or homozygous in the nonhuman mammal. In one embodiment, the nonhuman mammal may be a mouse. For example, the mouse may have the gene for Ncfl (p47phox) knocked out using standard techniques in the art, or the mouse may express one of the mutant P47PHOX polypeptides as described previously (e.g., as a transgenic mouse).

7. Screening of agents that delay, treat, or prevent arthritis

10

15

20

25

30

In another embodiment, the invention provides a method of screening an agent to determine if the agent delays the onset of arthritis. The method includes: (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway; (b) administering to the nonhuman mammal the agent; (c) inducing arthritis in the nonhuman mammal; and (d) determining if the agent delays the onset of arthritis in the nonhuman mammal.

The mammal having a deficient NADPH oxidase pathway may be obtained as described previously. Determining if the agent delays the onset of arthritis may include steps such as: (a) determining a day of onset of arthritis value for the nonhuman mammal; and (b) comparing the day of onset of arthritis value for said nonhuman mammal with a control day of onset of arthritis value. Onset of arthritis can be monitored using a macroscopic scoring system, wherein 1 point is given for each swollen or red toe, 1 point for each swollen midfood, digit, or knuckle, and 5 points for a swollen ankle, yielding a maximum score of 15 per limb and 60 total. The score can be a mean score, additive score, or maximum score. The mammal may be monitored 1 to 4 times a week for 1 to 2 months after induction of arthritis. The control day of onset of arthritis value may be determined by determining a day of onset of arthritis value for a control

nonhuman mammal to which the agent has not been administered. The day of onset of arthritis in the nonhuman mammal may be considered delayed if it is later than the control day of onset value. The arthritis may be induced my conventional means and can be adjuvant induced arthritis, CIA, PIA, HIA, SIA, avridine induced arthritis, or OIA.

The invention also provides methods to screen an agent to determine if the agent treats arthritis. The method includes (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway, where the nonhuman mammal exhibits symptoms of an arthritis (e.g., adjuvant induced arthritis, CIA, PIA, HIA, SIA, avridine induced arthritis, or OIA); (b) administering to the nonhuman mammal the agent; and (c) determining if the agent treats arthritis in the nonhuman mammal. Such a determining step may involve (a) calculating an arthritis score in the nonhuman mammal; and (b) comparing the arthritis score with a control arthritis score. The mammal having a deficient NADPH oxidase pathway exhibiting symptoms of arthritis may be obtained as described previously. The control arthritis score may be determined by calculating an arthritis score for a control nonhuman mammal to which the agent has not been administered. The arthritis score may be determined using the macroscopic scoring system described previously, and may be a mean score, additive score, or maximum score. The agent may be determined to treat arthritis if the arthritis score in the nonhuman animal is less than the control arthritis score.

In another embodiment, a method of screening an agent to determine if the agent prevents arthritis is provided. The method includes: (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway; (b) administering to the nonhuman mammal the agent; (c) administering a compound known to induce arthritis to the nonhuman mammal; and (d) determining if the agent prevents arthritis induced by the compound in the nonhuman mammal. Determining if the agent prevents arthritis may include evaluating said nonhuman mammal for symptoms of arthritis. Such an evaluation may occur for a period of time, e.g., for up to 20 days, up to 30 days, up to 50 days, or up to 70 days. Determining if the agent prevents arthritis may include comparing any symptoms of arthritis and their day of onset with the symptoms and day of onset of a control nonhuman mammal to which said agent has not been administered. The macroscopic scoring system as described above may be used in the evaluation and

comparison. The compound known to induce arthritis may be an adjuvant, collagen, pristane, hexadecane, squalene, avridine, or oil. Collagen may be type II collagen; the oil may be incomplete Freund's adjuvant; and the adjuvant may be mycobaterial-derived.

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

5

10

15

EXAMPLES

Example 1 - Animals

Rat (*Rattus norvegicus*) strains used in the following experiments included the DA strain, which is highly susceptible to PIA, and the E3 strain, which is PIA-resistant. DA and E3 rats were obtained from Zentralinstitut für Versuchstierzucht, Hannover, Germany, and were kept in animal facilities that have climate-controlled environments with 12-hour light/dark cycles. Rats were housed in polystyrene cages containing wood shavings and were fed standard rodent chow and water *ad libitum*. Rats were free from common pathogens, including the Sendai virus, Hantaan virus, coronavirus, reovirus, cytomegalovirus, and *Mycoplasma pulmonis*. Animal breeding and experimentation were performed in the same animal facility.

Example 2 - Induction and Evaluation of Arthritis

Arthritis was induced in rats at the age of 8 to 12 weeks by intradermal injections of 150 μL of pristane (2,6,10,14-tetramethylpentadecane; Aldrich, Milwaukee, WI) at the bases of the tails. Arthritic development was monitored in all limbs using a macroscopic scoring system. Briefly, 1 point was given for each swollen or red toe, 1 point for each swollen midfoot, digit, or knuckle, and 5 points for a swollen ankle. The maximum score for a limb was 15 points, and the maximum score for a rat was 60 points. Rats were examined from one to four times a week for one month after pristane injection.

For histopathologic analyses, at 31 days after pristane injections, rats were sacrificed, and the hind paws and ankle joints were prepared and analysed as follows. The paws were fixed in 4 % paraformaldehyde, decalcified in EDTA, embedded in

paraffin, and then sectioned and stained with hematoxylin and erythrosine as described in Jonsson et al. (1986) J Immunol Methods 88:109-14.

Example 3 - Confirmation of Linkage to Arthritis Severity in Congenic Strains

5

10

15

20

25

30

A quantitative trait locus (QTL), denoted *Pia4*, was found to be associated with PIA and CIA. To identify and isolate genes in the *Pia4* QTL that are associated with arthritis, a 10 cM fragment of chromosome 12 from a PIA resistant E3 rat was introgressed into a PIA susceptible DA rat resulting in a DA.E3chr12 congenic rat. Other E3 genes on the 10 cM fragment that were not associated with RA were removed in greater than 10 successive backcrosses with a DA rat. DA littermate rats obtained from F2 intercrosses between DA.E3chr12 +/- rats were used as controls. The *Pia4* QTL was inherited in a DA additive fashion with DA rats having the arthritis severity promoting allele in the original F2 intercross between E3 and DA rats. Significant phenotypic differences observed when a progeny rat is compared to the control rat could be concluded to have arisen from genetic differences at the *Pia4* region.

Arthritis was induced in 20 DA rats, 40 DA.E3chr12+/- rats, and 14 DA.E3chr12-/- rats by injection with pristane, and the development of clinical arthritis was assessed as described earlier. Figure 1 is a comparison of the clinical arthritis scores determined at day 10, 14, 19, 24, and 28 after pristane injections of DA rats, DA.E3chr12+/- rats, and DA.E3chr12-/- rats. Dramatic differences in arthritis severity were seen between DA littermate controls and DA.E3chr12 congenic rats (p < 0.0001). The DA.E3chr12 -/- congenic rats were still susceptible to arthritis, but the inflammation was very mild. The incidences of arthritis observed at 31 days after pristane injections were 100 % among DA rats, 58 % among DA.E3+/- rats, and 36 % among DA.E3-/- rats. When sections of rat hind paw ankle joints obtained 31 days after pristane injections were stained with hematoxylin and erythrosine and then examined microscopically at 100 X magnification, cell infiltrations into the joints were observed. Although the PIA resistant E3 phenotype afforded by the *Pia4* QTL was found to be almost dominant protective, DA progeny rats carrying two E3 alleles of chromosome 12 exhibited even less severe arthritis (p < 0.05) than DA progeny rats carrying one E3 allele of chromosome12.

The E3 derived fragment containing the *Pia4* QTL also was found to suppress CIA, HIA, and OIA (see Table 1). Other genes appear involved since E3 rats congenic for DA derived *Pia4*, (e.g. E3.DA chr12-/- rats) were still resistant to arthritis.

Table 1. Susceptibility of the *Pia4* congenic rat strain to CIA, OIA, and HIA. The P-value indicates the significance of the difference observed between *Pia4* congenic rats and DA rats. No significant difference between DA.E3chr12 +/- and DA.E3chr12 -/- was detected.

	Number of rats studied	Arthritis types	Maxscore	p-value
DA	10	OIA	15.1 ± 4.7	
DA.E3chr12 +/-	15	OIA	4.5 ± 1.6	<0.05
DA.E3chr12 -/-	15	OIA	1.2 ± 0.7	<0.05
DA	13	CIA	50.3 ± 3.4	
DA.E3chr12 +/-	16	CIA	29.8 ± 4.8	<0.01
DA.E3chr12 -/-	7	CIA	29.4 ± 6.0	<0.01
DA	9	HIA	14.6 ± 2.5	
DA.E3chr12 +/-	8	HIA	3.9 ± 2.4	<0.05

Example 4 - Sequencing and Physical Mapping

10

15

The P1-derived artificial chromosome (PAC) library of the BN rat (RPCI-31) described in Woon et al. (1998) Genomics 50:306-16 was obtained from the Resource Center of the German Human Genome Project (RZPD) (see world wide web at rzpd.de) as DNA pools and arrayed filters (library 712). Positive PAC clones also were obtained from RZPD as well as clones that have DNA inserts corresponding to DNA in the vicinity of Pia4 linked microsatellites (see Gosele et al. (2000) Genomics 69:287-94, world wide web at mdc-berlin.de/ratgenom, and world wide web at world wide web at

molgen.mpg.de/~ratgenome). PAC clones were purified using the Qiagen Large Construction Kit (Qiagen, Hilden, Germany) and used for end sequencing with T7 and SP6 primers as described in Woon et al. (1998) Genomics 50:306-16.

5

10

15

20

25

30

The rat p47phox, GTF2i, and GTF2ird cDNA sequences were determined as follows. Publicly available sequences corresponding to rat p47phox (GenBank Accession number AY029167), mouse GTF2i (GenBank Accession number AF017085) and mouse GTF2ird (GenBank Accession number NM_020331) sequences were used for primer design. E3, DA, and DA.E3chr12 RNAs were isolated using RNeasy Mini Kit (Qiagen, Hilden, Germany). First strand cDNAs were synthesized from total RNA using the First-strand cDNA Synthesis Kit (Amersham Pharmacia Biotech, Uppsala, Sweden). Double stranded cDNA fragments were generated by conventional PCR and then ligated into the pCR4-TOPO TA cloning vector. The resulting plasmid constructs were transformed into competent E. coli (Invitrogen, Paisley, UK), and then purified from E. coli transformants according to conventional alkaline lysis purification. Sequencing was performed using the MegaBACE 1000 (Amersham Pharmacia Biotech, Uppsala, Sweden) sequencer and the data obtained were analysed using Sequence Analysis 2.1 and SeqMan 4.05.

Example 5 - Genotyping and Statistic Analysis

DNA was prepared from toe biopsies and assayed with microsatellite markers by polymerase chain reaction (PCR) analysed on MegaBACE 1000 (Amersham Pharmacia Biotech, Uppsala, Sweden). Quantitative data were expressed as mean ± SEM, and significance analysis was performed using nonparametric Mann-Whitney test. Significance of frequency data was determined by Chi-square analyses.

Example 6 - Results of Physical Mapping and Positional Cloning

To identify genes within the *Pia4* QTL that contribute to the PIA resistant phenotype in E3 rats, DA.E3chr12 congenic rats were backcrossed with DA rats, and a large number of congenic progeny rats carrying overlapping *Pia4* fragments of different sizes was used in the following experiment. Physical mapping was initiated with a congenic fragment of 1 cM. Figure 2 is a physical map of the *Pia4* region constructed using PAC clones and EST clones. Known microsatellites (d12rat72, d12got45,

d12got46 and d12rat26) in the *Pia4* region were used to identify PAC carrying inserts corresponding to this region. Results of the Rat EST project at the University of Iowa (see world wide web at ratEST.uiowa.edu) were used to identify EST clones known to contain sequences in the *Pia4* region. The end sequences of the PAC clones and primer sequences from EST clones were used in generating the physical map of the *Pia4* region. In addition, sequence information from the *Pia4* region in rat (PAC clones RP31-78c13, RP31-485f9, RP31-198l13, RP31-75g22, RP31-11m22, RP31-39ld23 RP31-57j23), from the partially sequenced BAC clones having inserts corresponding to the *Pia4* region (see world wide web at hgsc.bcm.tmc.edu/projects/rat/), and sequences from homologous regions in mouse (Genbank Accession numbers NT_029829, AF289665, AF139987 and AF267747; see Kwitek *et al.* (2001) *Genome Res* 11:1935-43; Hoogenraad *et al.* (1998) *Genomics* 53:348-58; Valero *et al.* (2000) *Genomics* 69:1-13) and human (Genbank accession number NT_007867; see Peoples *et al.* (2000) *Am J Hum Genet* 66:47-68; Osborne *et al.* (2001) *Nat Genet* 29:321-5) were assembled to form the *Pia4* physical map.

The physical map of the *Pia4* region in combination with the arthritis susceptibility of isolated congenic strains identified a minimal region of 300 kilobases required for the PIA resistant phenotype. The 300 kilobase region contained two genes: *p47phox* and *GTF2i*. The *p47phox* gene encodes Neutrophil Cytosolic Factor 1 (NCF1), a subunit of the NADPH complex that produces oxygen radicals as a result of infection (see Volpp *et al.* (1989) *Proc Natl Acad Sci U S A* 86:7195-9). The *GTF2i* gene encodes Bruton Tyrosine Kinase (BTK)-Associated Protein (BAP-135), a substrate of BTK involved in the B-cell receptor-signalling pathway, see Yang & Desiderio (1997) *Proc Natl Acad Sci U S A* 94:604-9.

Example 7 – The p47phox E3 Allele has a Dominant Protective Role in Arthritis Single nucleotide polymorphisms (SNPs) that distinguish the DA and E3 alleles in the Pia4 region were identified by sequencing cDNA using the Pyrosequencing (Pyrosequencing, Uppsala, Sweden) according to protocols supplied by the manufacturer. SNPs were found in the p47phox, GTF2i, GTF2ird1 and Cyln2 (AJ000485) genes.

A comparison of the DA p47phox cDNA and the E3 p47phox cDNA revealed three SNPs (see Figure 3). All three polymorphisms were base substitutions of which two were non-synonymous and resulted in substitutions at amino acid positions 106 and 153. These sequence polymorphisms included (1) substitution of an adenine with a guanine nucleotide at position 330 in an E3 rat when compared a DA rat (DA/E3; A330G) resulting in replacement of a methionine residue with a valine residue at position 106 (Met106Val); (2) substitution of a thymine with a cytosine nucleotide at position 472 in an E3 rat (DA/E3; T472C) resulting in replacement of a methionine residue with a threonine residue at position 153 (Met153Thr); and (3) substitution of an adenine with a cytosine at nucleotide 1161, a synonymous substitution that did not lead to an amino acid alteration. The sequence of the p47phox cDNA from the DA rat was identical to the published sequence of p47phox (AY029167) from Sprague-Dawley rat.

5

10

15

20

25

A comparison of the DA *GTF2i* cDNA sequence with the E3 *GTF2i* sequence revealed that the E3 sequence had a nucleotide substitution at position 2992. The thymine nucleotide at position 2992 in the DA sequence was substituted with a cytosine nucleotide in the E3 sequence (DA/E3; T2992C). This substitution occurred in the untranslated region and so did not affect the GTF2i protein sequence.

Similar comparisons of the *Cyln2* and *GTF2ird1* genes of DA and E3 rats revealed SNPs at nucleotide 4206 (DA/E3: G4206A) in the *Cyln2* gene and at nucleotide 2823 (DA/E3: G2823C) in the *GTF2ird1* gene.

Example 8 - Prevalence of the p47phox Polymorphisms in Inbred and Wild Rats

The sequences of p47phox genes in other inbred rat strains and in wild rats were analysed for the presence of the three polymorphisms in the p47phox E3 allele (Table 2). High degrees of polymorphisms in inbred rats as well as in wild rats were detected. This suggests that these polymorphisms did not result from domestification or from mutations generated in inbred laboratory rats. In fact, the DA and E3 alleles occurred in equal frequency indicating that these alleles were maintained by natural selection.

Table 2. Polymorphisms in the p47phox gene identified in DA/E3 inbred rat and wild rat nopulations

populations Rat strain		SNP 472bp	SNP 1161bp	Rat stra
DA	DA	DA	DA	SPRD-C
E3	E3	E3	E3	WAG-rn
ACI	E3	E3	E3	wc
BDE	E3	E3	DA	WF
BDII	E3	E3	DA	WKY
BDIX	E3	E3	DA	KL-1
BDV	DA	DA	DA	KL-2
ВН	DA	E3	DA	KL-3
BN	DA	E3	DA	KL-4
BS	DA	E3	DA	KL-5
COP	E3	E3	E3	KL-6
DA-rnu	DA	DA	DA	KL-7
DXEA	E3	E3	E3	KL-8
DXEB	DA	DA	DA	KL-9
DXEC	DA	DA	DA	KL-10
DXER	DA	E3	DA	KL-11
F344	DA	DA	DA	KL-12
GK	DA	DA DA	DA	KL-13
LE	DA	DA	DA	KL-14
LEW (BM)	DA E3	E3	DA	KL-15
Lew (BM)		DA	E3	KL-16
Lewis.1F LOU7C	DA E3	E3	DA E3	KL-17 KL-18
LXB10	DA	DA	DA	JH-1
LXB17L	DA	DA	DA	JH-2
LXB17N	DA	DA	DA	JH-3
LXB19	DA	E3	DA	JH-4
LXB21	DA	DA	DA	Ax-1
LXB22	DA	DA	DA	
LXB24	DA	E3	DA	
LXB26	DA	E3	DA	
LXB27	DA	E3		
			DA	
LXB3	DA	E3	DA	
LXB30	DA	E3	DA	
LXB8	DA	DA	DA	
MNS	DA	E3	DA	
MWF	E3	E3	DA	
NAR	E3	E3	DA	
NEDH	DA	DA	DA	
NZNU	E3	E3	E3	
		DA		
OM	DA		DA	
PVG	E3	E3	E3	
RNU-rnu	E3	E3	E3	
SHR	E3		E3	
SPRD	DA	DA/E3	DA	

Rat strain	SNP 330bp		SNP 1161b
SPRD-Cu3	DA	E3	DA
WAG-rnu	E3	E3	DA
WC	E3	E3	DA
WF	DA	DA	DA
WKY	DA	DA	DA
KL-1	E3	E3	DA/E3
KL-2	E3	DA/E3	DA/E3
KL-3	DA	DA	DA
KL-4	DA	DA	DA
KL-5	-	E3	-
KL-6	DA/E3	DA/E3	DA
KL-7	DA/E3	DA	DA
KL-8	DA/E3	DA	DA
KL-9	E3	DA	DA
KL-10	DA	DA	DA
KL-11	E3	DA	E3
KL-12	DA	E3	-
KL-13	DA/E3	DA/E3	DA
KL-14	E3	DA	DA
KL-15	E3	DA	DA
KL-16	E3	DA	DA/E3
KL-17	E3	DA	DA/E3
KL-18	E3	DA	DA
JH-1	DA/E3	DA	DA/E3
JH-2	DA	DA/E3	DA
JH-3	DA	E3	DA
JH-4	DA	E3	DA
Ax-1	E3	DA	E3

A common haplotype present in BN rats included the DA polymorphism at nucleotide 330 and the E3 polymorphism at nucleotide position 472. Previously published crosses between DA and BN rats exhibiting disease conditions similar to multiple sclerosis (see Dahlman et al. (1999) J Immunol 162:2581-8) or arthritis (see Griffiths et al. (2000) Arthritis Rheum 43:1278-89) revealed a locus with identical location as Pia4 suggesting that disease protection is associated with threonine at amino acid 153. Since threonine is a potential phosphorylation site, and since the function of the human NADPH complex is highly regulated through phosphorylation of p47phox, it is likely that activity of P47PHOX and therefore activity of NADPH oxidase is affected by the phosphorylation state of this residue. (See Faust et al. (1995) J Clin Invest 96:1499-505; El Benna et al. (1996) J Biol Chem 271:6374-8; Lal et al. (1999) Biochem J 338:359-66).

5

10

15

30

Example 9 - DA and DA.E3chr12 -/- Congenic Rats Exhibited Similar p47phox Expression Levels

Expression of the p47phox gene in the spleens and lymph node tissues of DA and DA.E3chr12 rats was analysed by Northern blot hybridisation. Three DA and three DA.E3chr12-/- rats were subjected to pristane injection. Eight days after pristane injections, 10 µg of total RNA from the spleen and inguinal lymph node were isolated. 20 RNA was separated on an agarose/formaldehyde gel, transferred onto nylon membrane. and fixed by ultraviolet irradiation. The resulting Northern blot was subjected to hybridization with two probes: (1) α^{32} P-dCTP labeled DNA encoding rat P47PHOX and (2) α^{32} P-dCTP labeled DNA encoding 36B4-ribosomal protein. Hybridization was performed overnight at 42°C in Ambion ULTRA hybridization buffer (Ambion, Austin 25 Texas). After hybridization, the Northern blot was washed according to the manufacturer's instructions, and then subjected to phosphor imaging using the Kodak screen and Imager FX system (Bio-Rad, Hercules CA, USA). A probe directed against acidic ribosomal protein (Z29530) was used as the control for the total amount of RNA analysed.

No difference in the expression level of p47phox mRNA was detected when DA and DA.E3chr12 -/- congenic rats were compared. Therefore, polymorphisms in the

p47phox gene rather than differences in the expression level of p47phox accounted for the difference in arthritis severity.

Polypeptide expression of p47phox was analyzed by western blot. Spleen cells were lysed for 2 hours at 4°C in lysis buffer (3x10⁷ cells/100 μL), 150 mM NaCl, 1 mM CaCl₂, 1 mM MgCl₂, 20 mM Tris pH 7.4, 0.5% triton X-100 (Sigma), 0.25 M sucrose, protease inhibitor tablet (Roche Diagnostics), and 10 μg/mL deoxyribonuclease I (Sigma), and centrifuged at 14000 rpm. Equivalent amounts of total protein in the supernatant, determined by a protein assay kit (BioRad), were subjected to SDS-PAGE using a 10% separation gel. The polypeptides were electrophoretically transferred to a nitrocellulose membrane (Biorad). The membranes were incubated with polyclonal rabbit antibodies to the Ncf1 peptide RRS TIR NAQ SIH QRC, biotinylated donkey antirabbit IgG (Jacksson Immunoresearch Laboratories), and ExtrAvidin peroxidase conjugate (Sigma). Immunoreactive polypeptide bands were visualized using enhanced chemoluminescence, ECL, reagents, and Hyperfilm (Amersham Pharmacia Biotech).

No difference in polypeptide expression between DA and DA.E3chr12 -/- rats was observed.

Example 10 - Plasma Levels of COMP and α₁-AGP Were Lower in DA.E3chr12 Congenic Rats than in Control Rats

Cartilage oligomeric matrix protein (COMP) and α_1 -acid glycoprotein (AGP) are two plasma markers that are closely associated with RA as well as PIA. AGP, produced by hepatocytes, is a marker of general inflammatory response, while circulating COMP is the product of cartilage destruction and/or cartilage turnover. At 31 days after pristane injections, levels of AGP and COMP in the serum of DA, DA.E3chr12+/-, and DA.E3chr12-/- rats were determined as follows.

The serum level of AGP was measured in a competitive radioimmunoassay (RIA; see Akerstrom (1985) *J Biol Chem* 260:4839-44) using a rat α_1 -acid glycoprotein (Zivic-Miller Laboratories, Zelienople, PA) and a polyclonal anti-rabbit antibody specific for rat α_1 -acid glycoprotein (Agrisera, Vännäs, Sweden).

30

10

15

20

Plasma concentration of COMP was determined by enzyme linked inhibition immunosorbent assay (ELISA) as described in Saxne & Heinegard (1992) Br J Rheumatol 31:583-91. Rat COMP was used for coating microtiter plates and for preparing standard curves. Plasma COMP was detected using a polyclonal antiserum generated against rat COMP as the capturing antibody. The polyclonal antiserum was obtained from professor Dick Heinegård.

Figures 4A and 4B are bar graphs demonstrating that plasma levels of COMP and AGP in DA.E3chr12 congenic rats were significantly lower than plasma levels of COMP and AGP in DA controls (p<0.005).

10

15

20

25

30

5

Example 11 - Oxidative Burst Assay Demonstrating That the Arthritis Severity-Promoting Variant of the p47phox Gene in DA Rats is Linked to Decreased Oxidative Burst

The function of P47PHOX was examined by assessing production of reactive oxygen species (ROS) by peritoneal neutrophils. Rats were injected intraperitoneally with 5 mL of 2.4 % thioglycollate to elicit recruitment of neutrophils. Sixteen hours after thioglycollate injections, rats were sacrificed, and neutrophils were isolated from the peritoneal cavities as follows. The peritoneal cavities were rinsed with Hank's balanced salt solution (HBS), and the cells obtained were washed twice with HBS and then resuspended at a concentration of 10⁷ cells/mL.

The activity of the NADPH complex as indicated by production of ROS was determined by spectrophotometric detection of cytochrome C reduction (see Lomax et al. (1989) Science 245:409-12; Huang et al. (2000) J Leukoc Biol 67:210-5; and Zu et al. (1996) Blood 87:5287-96). Briefly, 5 x 10^6 cells were dispensed into each well of a 96 well microtitre plate containing 100 μ g of cytochrome C (Sigma C3131) yielding a total volume 100μ L. Activation of NADPH complexes and secretion of superoxide radicals were initiated upon addition of PMA (Sigma P8139) to a concentration of 0.1 μ g/mL. Reactions occurred at 37°C, and the absorbance at 550 nm was measured at 1-minute intervals.

Figure 5A-D is a set of absorbance curves illustrating production of ROS by DA rats, E3 rats, and *Pia4* congenic rats (DA.E3c12+/- and DA.E3c12-/- rats). Production of

oxygen radicals was determined from determining the area under the curve. These results demonstrate that the production of ROS is higher in E3 and *Pia4* congenic rats than in DA littermates. About three to six rats were examined in each genotypic group.

Unlike human patients with autosomal chronic granulomatous disease (CGD) (see Casimir et al. (1991) Proc Natl Acad Sci U S A 88:2753-7) or mice deficient in functional p47phox (see Jackson et al. (1995) J Exp Med 182:751-8; and Huang et al. (2000) J Leukoc Biol 67:210-5), DA rats were not completely lacking in functional NADPH complexes or ROS production. While E3 rats and DA.E3chr12 congenic rats exhibited maximum cytochrome C reduction (OD₅₅₀ = 0.2) 1000 seconds after PMA stimulation, levels of ROS production in DA rats were slower and did not attain maximum cytochrome C reduction even after 3000 seconds. Therefore, the arthritis severity-promoting variant of the p47phox gene in DA rats is linked to decreased oxidative burst.

5

10

15

20

25

30

Example 12 – NAPDH Inhibition in DA.E3chr12 Rats

The following experiment was performed to determine if the protective effect of the *Pia4* QTL is accounted for by the presence of polymorphisms in the *p47phox* gene leading to decreased free radical production from NADPH complexes.

DA and DA.E3chr12 rats were given diphenyleneiodonium chloride (DPI, $C_{12}H_8ICl$, MW = 314.6), a potent inhibitor of nitric oxide synthase (NOS) and flavoenzymes such as NADPH oxidase. DPI had been used *in vivo* in mice to inhibit potassium peroxochromate-induced arthritis (see, Miesel *et al.*, (1996) *Free Radic Biol Med* 20:75-81). Daily intraperitoneally administration of 2.8 μ mol/kg weight of a mouse (i.e., 880 μ g/kg) was found to reduced arthritis by 50 percent.

In this experiment, DPI was administered at a dosage of 1.25 µmol DPI/kg weight of a rat (i.e., 0.4 mg/kg weight of a rat). Assuming that each rat had a mean weight of 225 g, about 0.08 mg of DPI in 0.5 mL of DMSO/PBS was given to each rat. For administration, 50 mg of DPI was dissolved in 250 mL DMSO/PBS. About 0.5 mL was injected intraperitoneally into rats on day 0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 17, 19, and 21.

Arthritis was induced in all rats at the age of 8 to 12 weeks by intradermal injections of 150 μ L of pristane at the bases of the tails. Arthritis development was monitored in all limbs. Results presented in Figure 6 and 7 reveal that inhibition of

NADPH oxidase with DPI lead to increased severity of arthritis. Therefore, NADPH oxidase activity has a protective role in development of PIA.

Example 13 - Transfer of ConA Activated T-cells from a DA Rat Induced Arthritis in E3 Rats and DA.E3chr12 Congenic Rats

To determine if the *Pia4* QTL controls the priming of arthritogenic T-cells or is involved in events that occur subsequent to the onset of arthritis, reciprocal spleen T-cell transfer experiments were performed using DA littermate controls, DA.E3chr12 +/- rats, and DA.E3chr12 -/- rats as donors or recipients of spleen cells activated with the T-cell mitogen ConA. Three rats from each group were used as donors, and three rats from each group were used as recipients.

Donor rats were injected with 500 μ L of pristane. Twelve days after injections, rats were sacrificed, and their spleens were removed and homogenized for spleen T-cell isolation. Spleen cells were activated with ConA prior to transfer to recipient rats. Briefly, spleen T-cells were activated by culturing them at a cell density of 4 x 10^6 cells/mL for 48 hours at 37°C in DMEM medium (Paisley Scotland), supplemented with streptomycin, D-penicillin, HEPES, β -mercaptoethanol, 5 % fetal calf serum, and 3 μ g/mL Con A. Spleen cells were then harvested, resuspended in PBS, and injected intraperitoneally into recipient rats at a concentration of 35 x 10^6 cells/animal.

Arthritis onset was detected at day 5 after T-cell transfer, and the highest arthritis scoring was obtained at day 15. Figure 8 is a bar graph illustrating that transfer of ConA activated T-cells from a DA rat gave rise to severe arthritis in E3 rats, in DA.E3chr12 +/-rats, and in DA.E3chr12 -/- rats. In addition, only ConA activated T-cells from a DA rat were arthritogenic. Therefore, the *p47phox* polymorphisms are involved in the generation of arthritogenic T-cells, but do not appear to operate significantly in the joints since the DA.E3chr12 congenic rats were susceptible to arthritis when subjected to DA T-cell transfers. Since P47PHOX functions in the spleen before T cell transfer, it is likely that, through its role in generating ROS, P47PHOX affects T-cell/antigen presenting cell interaction in the lymphoid organs.

5

10

15

20

Example 14 - Evaluation of Alkanes as NADPH Oxidase Activators in the Oxidative Burst Assay

Saturated alkanes molecules C8-C19 (n-octane, nonane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, and nonadecane) were tested for their ability to activate the NADPH complex as described below. The unsaturated fatty acids C14:1-C24:1 (myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid, 11c-eicosenoic acid, arachidonic acid, erucic acid, and neuronic acid) and squalenee (Sigma) were also tested. The oils were solubilized by dilution in cyclodextrin (100 mM in PBS).

10

15

20

5

Isolation of peritoneal neutrophils and macrophages:

5 mL thioglycolate (2.4%) was injected intraperitoneally in E3 rats to elicit recruitment of neutrophils 16 hours before sacrifice. 40 mL PBS+hepes (1%) was injected into the peritoneum and the cell suspension extracted. Red blood cells were lysed with 0.84% NH₄Cl, and WBC were washed in PBS and resuspended in PBS at a concentration of about 10⁷ cells/mL.

Culture of peritoneal neutrophils and macrophages:

Human myeloma cell line HL60 was cultured in Dulbeccos complete medium with Hepes, 10% Fetal calf serum, and Penicillin–Streptomycin. HL60 cells differentiated to neutrophil-macrophages six days after addition of 1.25% DMSO. The cells were spun down at 1200 rpm for 5 minutes and then washed with PBS twice. The cells were then resuspended in PBS to a concentration of about 10⁷ cells/mL.

25 Oxygen burst analysis through WST-1 assay:

 $10 \mu L$ of each of the oils to be tested was added with 9 μL of WST1 to the wells of a 96 well microtitre plate. 10^6 cells/mL ($100 \mu L$ of 10^7 cells/mL) were added to each well and the color change measured in a spectrophotometer at 450 nm at 37° for 60 minutes (one measurement/min).

Cytochrome C assay:

 $10 \,\mu\text{L}$ each of the oils to be tested were added to the wells of a 96 well microtitre plate. $50 \,\mu\text{L}$ of cytochrome C (4 mg/mL) and $5 \,\text{x} \, 10^6$ cells/well (50 $\,\mu\text{L}$ of 10^7 cells/mL) were added to each well and the absorbance measured in a spectrophotometer at 550 nm at 37°C for 60 minutes (one measurement/minute).

FACS based burst assay:

Cells (2-5 x 10^5 well) are preincubated for 10 minutes at 37°C with 1 μ M dihydrorhodamine (DHR) 123 in a 96 well plate in total volume of 200 μ L. 10 μ L each of the compounds (e.g., oils) to be tested are added to the wells and incubated a further 20 minutes at 37°C. Production of reactive oxidants is assayed as formation of the fluorescent dye rhodamine 123 (RH) from dihydrorhodamine 123 (DHR) using flow cytometry.

15 Results

₁ 5

10

20

25

Saturated alkane molecules were tested with the oxidative burst assay to determine activators of the NADPH complex. The assays were tested in both peritoneal cells from E3 rat after thioglycolate recruitment of neutrophils (Figure 9A) and HL60 cells (Figure 9B). The WST-1 test indicates changes in the extracellular concentration of reactive oxygen species (ROS). Both cell types demonstrates the same general trends. For example, in all assays, undecane was a potent activator.

The arthritis-inducing effects of the oils was examined by injecting the oils intradermally into DA rats. The scoring shows that oils more than about 14 carbons long induce arthritis, while shorter carbon chains do not induce arthritis (Figures 10A, 10B, and 10C). Note that p<0.05 for alkanes shorter than C15 compared to C19. All statistics evaluated with student's t-test. N=4 for all groups.

ح.

Example 15 - Prevention and Ameliorative Treatment of Arthritis with NADPH-Activating Oils

- 1. Treatment and/or prevention of pristane-induced arthritis with undecane in vivo.
- Groups of DA rats were injected intradermally at the base of the tail with 200 μ L of the oils as indicated below:

Undecane day -10, Pristane day 0;

Olive oil day -10, Pristane day 0;

Undecane day -5, Pristane day 0;

10 Undecanol day -5, Pristane day 0;

Olive oil day -5, Pristane day 0;

Undecane day 5, Pristane day 0; and

Olive oil day 5, Pristane day 0.

The rats were scored every other day starting at day 11 according to the extended scoring system where every red or swollen toe or mid foot scored one point, and a red and swollen ankle scored five points, yielding a total of 15 points/limb and 60 points/rat.

Olive oil and undecanol were used as controls.

- 2. In vivo treatment of Hexadecane-induced arthritis with hexadecene
- 20 Groups of DA rats were injected i.d. at the base of the tail as follows:

Hexadecane 200 µL day 0;

Hexadecene 200 µL day 0;

25

Hexadecene 200 μL day -5, Hexadecane 200 μL day 0;

Olive oil 200 μ L day –5, Hexadecane 200 μ L day 0;

Hexadecene 200 µL day +5, Hexadecane 200 µL day 0; and

Olive oil day 200 μ L +5, Hexadecane 200 μ L day 0.

The rats were scored as indicated above. Olive oil was used as a control.

Results

5

10

15

20

25

30

Undecane was examined for its potential preventive effect on the development or severity of PIA. Rats were treated with undecane on day -10, day -5, or day +5, and undecanol on day -5 (as a control). All rats were injected with pristane on day 0 (Figure 11A). There was a significant difference between both the additive score (Figure 11B) and the maximum score (Figure 11C) for rats treated with undecane on day -5 and the rats that were treated with olive oil on day -5. There was also a significant difference for both the additive score (Figure 11B) and the maximum score (Figure 11C) between the treatment with undecane on day -5 and the treatment with undecanol on day -5. Note also that the rats that were treated with undecane on day +5 had a slightly higher score than the rats that were treated with undecane on day -10 or day -5 before injection with pristane.

All statistics were evaluated with student's t-test. p<0.05 for the difference in both additive score and maximum score for undecane at day -5 and olive oil at day -5. p=0.05 for the difference in additive score and p<0.05 for the difference in maximum score between undecane at day -5 and undecanol at day -5. N=6 for all groups except group 4 where N=12.

A similar experiment was also performed to evaluate the protective effect of hexadecene on arthritis-induction by hexadecane. Rats were treated with hexadecene either on day -5, day +5, or were not treated with hexadecene. All rats were injected with hexadecane on day 0, except group 3. Olive oil was used as control. The arthritis scores demonstrate a significant difference between the arthritis-inducing capacities of the two substances (Figures 12A, 12B and 12C). Hexadecane induces arthritis while hexadecene does not. The difference in scores between the rats that were treated with hexadecene on day -5 and day +5 and the control rats is also significant. None of the rats treated with hexadecene developed arthritis.

Groups 3 and 4 were injected only with either hexadecane or hexadecene. All statistics were evaluated with student's t-test. p<0.05 for the difference in both additive score and maximum score for treatment day -5 and day +5 against no treatment (group 4). p<0.05 for the difference in both additive score and maximum score between hexadecane and hexadecene. There is also a significant difference between the groups

that were injected with hexadecene and olive oil day +5 (p<0.01 in the additive score and p<0.05 in maximum score). N= 6 for all groups except group 3 and 4 where N=4.

Discussion

5

10

15

20

25

30

When oils were injected into the base of the tails of DA rats to determine their arthritis - inducing capacities, alkanes longer than about 14 carbons induced arthritis, while shorter ones did not. It is interesting to note that a comparison of the activity of the oils in the oxygen burst studies and the arthritis induction studies indicates three possible mechanisms for participation of the oils in the induction and/or treatment of arthritis. For example, in the oxygen burst studies, undecane activated the NADPH complex, but did not induce arthritis in the tail-injection arthritis studies, while hexadecane not only activated the complex but also induced arthritis. A comparison of the two experiments demonstrates that the hexa-, hepta-, and octa-decanes activate the NADPH complex according to the WST-1 assay and also induce arthritis. Pentadecane (15C), on the other hand, did not activate the NADPH complex, but did induce arthritis, suggesting a third mechanism for participation in the induction of the disease.

A similar relationship has been seen with hexadecane and hexadecene, and pristane and phytol, where hexadecane and pristane induce arthritis, while hexadecene and phytol do not (Lorenzen (1999) Scand. J. Immunol. 49:45-50). All four substances activate the NADPH complex. The difference between hexadecane and hexadecene is a single carbon-carbon double-bond in hexadecene, while pristane and phytol differ by an acidic group. While not being bound by any theory, it is possible that an increased polarity facilitates the metabolism of the hexadecene and phytol, and therefore prevents them from inducing arthritis. Molecules with lower polarity cannot be metabolised as easily, and may remain longer in tissues, inducing an immune response.

We investigated the preventive capacities of both hexadecene and undecane. None of the rats treated with hexadecene showed any symptoms of arthritis whether they were injected with hexadecene at day -5 or day +5. Further, these experiments verify that hexadecane induces arthritis, while hexadecene does not. Pre-treatment with undecane may be more protective if done at a longer time point before induction of arthritis with pristane. For example, treatment with undecane at day +5 did not show as significant a preventive effect as at day -10 or at day -5.

Example 16 - In vivo Distribution of Alkane Oils

[1-14C] - Hexadecane and [1-14C] - Oleic acid were purchased from Amersham. The oils were injected intradermally at the base of the tail in 18 DA rats (200 μ L). At day 10, the organs (lymph nodes, spleen, liver and kidney) of three rats from each group were collected. The organs were weighed and homogenized in a total volume of 2 mL PBS and frozen. The same procedure was followed at day 20 and at day 30. 1 mL of the homogenised samples was then added to 10 mL Ready Safe (Beckman) and counted in a beta counter. The distribution of radioactive labelled hexadecane to the lymph nodes was also inspected at earlier time points (day 3, day 6, day 10, and day 13).

10

15

20

25

30

Results:

The distribution of hexadecane *in vivo* was examined by injecting radioactively-labeled hexadecane i.d. at the base of the tail in DA rats. Radioactively-labeled oleic acid was administered in the same manner. Scoring of the rats showed that only the rats injected with hexadecane had arthritis (Figure 13). The arthritis was acute and had a symmetric involvement of both hind and front paws. Analyses of the different organs collected (LN, spleen, kidney and liver) in the β -counter showed that the oils were exclusively accumulated in the lymph nodes at all time points measured (Figure 14). Hexadecane seems to be distributed to the lymph nodes to a higher extent than oleic acid. The distribution of the oils to the lymph nodes appeared to decrease with time with no increase in the other organs analyzed.

The distribution of hexadecane to the lymph nodes at earlier time points was also measured as described. An increase in the accumulation of hexadecane in the lymph nodes until day 10 was observed.

The distribution of radioactively-labeled hexadecane had previously been investigated, showing that 14C- labeled hexadecane is disseminated predominantly to the lymph nodes (Kleinau et al., (1995). *Int. J. Immunopharmac.*, 17(5):393-401.).

The experiments indicate that the hexadecane oil exerts a pro-arthritogenic effect within the lymph nodes. The injection of both radioactively- labeled hexadecane and radio-labeled oleic acid suggests that oleic acid does not induce arthritis because it is not distributed to the lymph nodes to as high an extent as the hexadecane. Furthermore,

hexadecane slowly accumulated in the lymph nodes with a maximum at day 10, correlating with the normal onset of the disease. After day 10, the concentration of the hexadecane oil slowly decreased (Figure 15).

Example 17 - Treatment of Experimental Allergic Encephalomyelitis (EAE) in vivo

Groups of DA rats were injected at the base of the tail with 200 μ L phytol at day – 10, day –5, and day +5. Olive oil was used as a control. At day 0, all rats were treated (immunized) with 200 μ L SCH (DA spinal cord homogenate, to induce EAE) i.d. at the base of the tail. The rats were then scored according to the following scale for 40 days:

10 0=Normal

5

15

20

25

1=Tail weakness

2=Tail paralysis

3=Tail paralysis and mild waddle

4=Tail paralysis and severe waddle

5=Tail paralysis and paralysis of one limb

6=Tail paralysis and paralysis of a pair of limbs

7=Tetra-paresis

8=Pre-morbid or dead.

EAE began to appear around day 9. The results show a significant difference in both additive score (Figure 16A) and maximum score (Figure 16B) between the rats treated with phytol and the control rats at day -10 and at day +5 (p<0.05).

All statistics were evaluated with students' T test. p<0.05 for the difference in maximum score between treatment with phytol and treatment with olive oil at day -10 and day +5. Note that N=6 for all groups.

In both EAE and PIA, the SCH to induce EAE and the pristane to induce PIA were injected intradermally at the base of the tail. The disease onset generally occurred in a few weeks. Potential activators of the NADPH complex may alter the proliferation of auto reactive T-cells and reduce the incidence, rate of onset, and severity of the diseases.

Example 18 - Effect of Route of Administration of Phytol on Treatment of PIA

Groups of DA rats were treated with phytol according to one of the following treatment regimens at day -5 and at day +5. All rats were injected with pristane (200 μ L) at day 0 intradermally at the base of the tail. Phytol was administered to groups of rats as follows:

5

15

20

25

 μ L phytol intranasally (i.n.); μ L phytol intraperitoneally (i.p.); μ L phytol intradermally at the base of the tail (i.d.); and 1 mL phytol per os (p.o.).

The rats were scored from day 9 using the extended scoring system (as discussed previously).

The experiment demonstrated an ameliorating and preventive effect of i.d. administration. Intraperitoneal (i.p.) and intranasal (i.n.) routes of administration also demonstrated ameliorative and preventive effects. (See Figures 17A, 17B and 17C). Note that the intranasal group was skewed by one rat that exhibited severe arthritis, while the three other rats in the group were protected.

Example 19 - Collagen Induced Arthritis in Ncfl -deficient Mice Animals

Mice (B6.Cg-m +/+ Lepr (db), formerly known as C57BL/6J-m +/+ Lepr^{db}) deficient for Ncfl because of a point mutation in the splice site for exon 8 (Huang et al., (2000) *J. Leukoc. Biol. 67:210-215.*) were purchased from the Jackson Laboratory (Maine, USA). The mice were backcrossed to B10.Q (originally from Professor Jan Klein, Tübingen, Germany) for two generations to yield the Q haplotype in MHC and to lose the leptin receptor (lepr) defect. B10.Q Ncfl +/- were intercrossed for the Collagen Induced Arthritis (CIA) experiments in order to obtain littermate control animals. All arthritis experiments were approved by local (Malmö/Lund, Sweden) ethical committee license M7-01.

Induction and evaluation of arthritis

Arthritis was induced in all mice at the age of 9-15 weeks by an intradermal injection at the base of the tail of 150 µg rat CII (collagen II) emulsified in complete Freunds adjuvant (CFA; Difco, Detroit, MI) at day 0. At day 35, the mice were given a booster injection at the same location of 50 µg rat CII in Freunds incomplete adjuvant (IFA). Arthritis development was monitored in all four limbs using a macroscopic scoring system. Briefly, 1 point was given for each swollen or red toe, 1 point for each swollen midfoot, digit, or knuckle, and 5 points for a swollen ankle, yielding a maximum score per limb of 15 and 60 total. The mice were examined 1 to 4 times a week for 2 months after immunization. At day 40, serum was obtained through tail bleeding and kept at -20° C until assayed.

Determination of serum levels of COMP

Serum concentration of cartilage oligomeric matrix protein (COMP) was determined using an enzyme linked inhibition immunosorbent assay (ELISA). Rat COMP was used to coat the microtitre plates and to prepare the standard curve for each plate. Plasma COMP was detected by using a polyclonal antiserum raised against rat COMP (generously provided by Professor Dick Heinegård) as capturing antibody.

20 Antibody response

5

10

15

25

30

Antibodies against rat cartilage in plasma were analysed with ELISA in 96 well plates (Costar, Cambridge, MA), coated overnight at 4°C with 50 μ L/well of PBS containing 10μ g/mL of rat collagen II. All washings were performed using Tris-buffered saline (NaCl 1.3M, Tris 0.1M, pH 7,4) containing 0.1% Tween20 (Tris/Tween). The plasma was diluted in PBS/0.1%Tween and analyzed in duplicate. The amounts of bound IgG antibodies were estimated after incubation with a donkey anti-mouse IgG coupled to peroxidase (Jackson Immunoresearch, Westgrove, PA) and ABTS as substrate, followed by detection in a SpectraMax (Molecular Devices). The relative amount of antibodies in plasma was determined by comparison with a positive control of an anti collagen II standard.

Results

5

10

15

20

25

30

In order to determine the role of defects or deficiencies of functional Ncfl and/or the NADPH oxidase complex on arthritis, the development of CIA (collagen induced arthritis) in Ncfl deficient B10.Q mice was investigated. Wild type B10.Q mice normally develop a mild/medium-severe arthritis, with onset after booster immunization (Svensson et al. (1998) Clin. Exp. Immunol. 111:521-526). The results indicate both an earlier onset (Figure 19) and increased severity of arthritis (P< 0.001) (Figures 18A, 18B, 18C) in Ncfl deficient mice as compared to B10.Q mice. Mice heterozygous for the defect Ncfl showed a milder arthritis with later onset than the homozygous deficient mice (P< 0.005).

The quantification of serum levels of COMP (Cartilage Oligomeric Matrix Protein) is regarded as a measurement of the cartilage erosion of peripheral joints. Serum COMP was highly elevated (P<0.0001) in the Ncf1 -/- mice as compared to Ncf1 +/- and wild type controls (Figure 20). Furthermore, in the Ncf1 deficient mice there was a strong antibody response against collagen II at day 40 after the first immunization (Figure 21).

Example 20 - Distribution in the Lymph Nodes of 14C-hexadecane After Injection of Hexadecene at day -5

An experiment was performed to determine if oils compete for available space in the lymph nodes and if such a competition was the reason for the preventive effects of pre-treatment with hexadecene and undecane. At day -5, DA rats were injected with one of the following amounts of hexadecene: $0 \mu L$, $50 \mu L$, $100 \mu L$, or $200 \mu L$. At day 0, all rats were injected intradermally with 14C-hexadecane at the base of the tail. At day 10, the rats were sacrificed and the lymph nodes were collected and placed in PBS, homogenized, and frozen. 1 mL of the homogenate was then transferred to Ready Safe (Beckman) and analysed in a β -counter (Beckman).

The amount of arthritis inducing hexadecane in draining lymph nodes was not affected by larger amounts of protective hexadecene. These results indicate that there is no competition for space in the draining lymph nodes that is of importance for the protective effect of the oil.

Example 21 - CIA in rats treated with phytol

DA rats were treated according to one of the following alternatives:

200 μ L phytol intra-dermal at the base of the tail at day -10

200 μ L phytol intra-dermal at the base of the tail at day -5

200 μ L phytol intra-peritoneal at day -5 and day +5

control untreated

CIA was induced in all animals at day 0 by injecting 150 μ L of collagen II dissolved in 75 μ L 0.1 M Acetic acid and emulsified in 75 μ L IFA. The rats were scored from day 10 using the extended scoring system (see above).

Both intra-peritoneal and intra-dermal treatment with phytol prevented development of arthritis in the CIA rat model (Figure 22).

Example 22 - Treatment of active PIA with phytol or undecane

Groups of DA rats were injected with pristane at day 0. The pristane (150 μ L) was injected intra-dermal at the base of the tail. The rats were scored from day 9 using the extended scoring system (see above). Then, the rats were treated at day 21 and at day 26 with one of the following alternatives:

 μ L phytol intra-peritoneal μ L phytol intra-dermal at the base of the tail μ L undecane intra-peritoneal μ L undecane intra-dermal at the base of the tail control untreated

All the phytol and undecane treatments were effective against active arthritis in the PIA rat model (Figures 23A, 23B).

25

30

5

10

15

20

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

WHAT IS CLAIMED IS:

1. A method for assessing a mammal's susceptibility to develop an autoimmune condition, said method comprising:

- (a) providing a blood or synovial fluid sample containing a cell from a mammal;
- (b) determining the level of NADPH oxidase activity of said cell after contacting said cell with an NADPH oxidase activator;
- (c) determining whether or not said level is less than a control level of NADPH oxidase activity, wherein said control level is the average amount of NADPH oxidase activity of control cells from a population of mammals without said autoimmune condition, and wherein said mammals without said autoimmune condition are from the same species as said mammal; and
- (d) identifying said mammal as being susceptible to develop said autoimmune condition when said level is less than said control level.

15

10

5

- 2. The method of claim 1, wherein said autoimmune condition is arthritis or multiple sclerosis.
- The method of claim 1, wherein said NADPH oxidase activator is norfloxacin,
 phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate,
 lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane,
 tridecane, tetradecane, hexadecane, hexadecene, heptadecane, octadecane, galectin 1, or
 galectin 3.
- The method of claim 1, wherein said level of NADPH oxidase activity is determined by measuring superoxide.
 - 5. The method of claim 1, wherein said level of NADPH oxidase activity is determined by measuring reactive oxygen species.

30

6. The method of claim 1, wherein said population comprises at least ten mammals.

7. The method of claim 1, wherein step (c) comprises determining whether or not said level is between 5 and 75 percent less than said control level, and wherein step (d) comprises identifying said mammal as being susceptible to develop said autoimmune condition when said level is between 5 and 75 percent less than said control level.

5

10

15

- 8. The method of claim 1, wherein step (c) comprises determining whether or not said level is between 25 and 55 percent less than said control level, and wherein step (d) comprises identifying said mammal as being susceptible to develop said autoimmune condition when said level is between 25 and 55 percent less than said control level.
- 9. A method for assessing a mammal's susceptibility to develop an autoimmune condition, said method comprising:
 - (a) providing a blood or synovial fluid sample from a mammal;
- (b) determining the level of a blood or synovial fluid component that reflects NADPH oxidase activity;
 - (c) determining whether or not said level is less than a control level, wherein said control level is the average amount of said component in control samples from a population of mammals without said autoimmune condition, and wherein said mammals without said autoimmune condition are from the same species as said mammal; and
 - (d) identifying said mammal as being susceptible to develop said autoimmune condition when said level is less than said control level.
- 10. The method of claim 9, wherein said autoimmune condition is arthritis or multiplesclerosis.
 - 11. The method of claim 9, wherein said component that reflects NADPH oxidase activity is malonic dialdehyde.
- 30 12. A method for assessing a mammal's susceptibility to develop an autoimmune condition, said method comprising determining whether or not a mammal comprises a

genetic variant of the gene encoding a polypeptide that functions in the NADPH oxidase pathway, wherein the presence of said genetic variant indicates that said mammal is susceptible to develop said autoimmune condition.

- 5 13. The method of claim 12, wherein said autoimmune condition is arthritis or multiple sclerosis.
 - 14. The method of claim 12, wherein said genetic variant encodes a mutant polypeptide.

10

20

- 15. The method of claim 14, wherein said mutant polypeptide is a GP91PHOX polypeptide, P22PHOX polypeptide, P40PHOX polypeptide, P47PHOX polypeptide, or P67PHOX polypeptide.
- 15 16. The method of claim 14, wherein said mutant polypeptide is a P47PHOX polypeptide.
 - 17. The method of claim 16, wherein said mammal is a human, and wherein said mutant P47PHOX polypeptide comprises the sequence set forth in SEQ ID NO:6 with at least two amino acid substitutions.
 - 18. The method of claim 16, wherein said mutant P47PHOX polypeptide comprises an amino acid sequence having an amino acid residue other than valine at the position that aligns with position 106 of SEQ ID NO:4 or an amino acid residue other than threonine at the position that aligns with position 153 of SEQ ID NO:4.
 - 19. The method of claim 12, wherein said genetic variant comprises a mutation in a regulatory sequence of said gene.

20. A method for diagnosing an autoimmune condition accompanied by NADPH oxidase deficiency in a mammal having an autoimmune condition, said method comprising:

- (a) providing a sample comprising a cell from said mammal;
- (b) determining the level of NADPH oxidase activity of said cell after contacting said cell with an NADPH oxidase activator;
- (c) determining whether or not said level is less than a control level of NADPH oxidase activity, wherein said control level is the average amount of NADPH oxidase activity of control cells from a population of mammals without said autoimmune condition, and wherein said mammals without said autoimmune condition are from the same species as said mammal; and
- (d) identifying said mammal as having said autoimmune condition accompanied by NADPH oxidase deficiency when said level is less than said control level.
- 15 21. The method of claim 20, wherein said autoimmune condition is arthritis or multiple sclerosis.
 - 22. The method of claim 20, wherein said autoimmune condition accompanied by NADPH oxidase deficiency is AANOD.

20

25

5

- 23. The method of claim 20, wherein said NADPH oxidase activator is norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, hexadecene, heptadecane, octadecane, galectin 1, or galectin 3.
- 24. The method of claim 20, wherein said level of NADPH oxidase activity is determined by measuring superoxide.
- 30 25. The method of claim 20, wherein said level of NADPH oxidase activity is determined by measuring reactive oxygen species.

26. The method of claim 20, wherein said population comprises at least ten mammals without said autoimmune condition.

5 27. The method of claim 20, wherein step (c) comprises determining whether or not said level is between 5 and 75 percent less than said control level, and wherein step (d) comprises identifying said mammal as having said autoimmune condition accompanied by NADPH oxidase deficiency when said level is between 5 and 75 percent less than said control level.

10

15

- 28. The method of claim 20, wherein step (c) comprises determining whether or not said level is between 25 and 55 percent less than said control level, and wherein step (d) comprises identifying said mammal as having said autoimmune condition accompanied by NADPH oxidase deficiency when said level is between 25 and 55 percent less than said control level.
- 29. A method for diagnosing an autoimmune condition accompanied by NADPH oxidase deficiency in a mammal having an autoimmune condition, said method comprising:

20

- (a) providing a blood or synovial fluid sample from said mammal;
- (b) determining the level of a blood or synovial fluid component that reflects NADPH oxidase activity;
- (c) determining whether or not said level is less than a control level of NADPH oxidase activity, wherein said control level is the average amount of NADPH oxidase activity of control cells from a population of mammals without said autoimmune condition, and wherein said mammals without said autoimmune condition are from the same species as said mammal; and
- (d) identifying said mammal as having said autoimmune condition accompanied by NADPH oxidase deficiency when said level is less than said control level.

30

30. The method of claim 29, wherein said autoimmune condition is arthritis or

PCT/IB03/02419

- 31. The method of claim 29, wherein said autoimmune condition accompanied by NADPH oxidase deficiency is AANOD.
 - 32. The method of claim 29, wherein said component that reflects NADPH oxidase activity is malonic dialdehyde.
- 10 33. A method for diagnosing an autoimmune condition accompanied by NADPH oxidase deficiency in a mammal having an autoimmune condition, said method comprising determining whether or not said mammal comprises a genetic variant of the gene encoding a polypeptide that functions in the NADPH oxidase pathway, wherein the presence of said genetic variant indicates that said mammal has said autoimmune condition accompanied by NADPH oxidase deficiency.
 - 34. The method of claim 33, wherein said autoimmune condition is arthritis or multiple sclerosis.
- 20 35. The method of claim 33, wherein said autoimmune condition accompanied by NADPH oxidase deficiency is AANOD.
 - 36. The method of claim 33, wherein said genetic variant encodes a mutant polypeptide.

25

WO 03/095667

multiple sclerosis.

- 37. The method of claim 36, wherein said mutant polypeptide is a GP91PHOX polypeptide, P22PHOX polypeptide, P40PHOX polypeptide, P47PHOX polypeptide, or P67PHOX polypeptide.
- 30 38. The method of claim 36, wherein said mutant polypeptide is a P47PHOX polypeptide.

39. The method of claim 38, wherein said mammal is a human, and wherein said mutant P47PHOX polypeptide comprises the sequence set forth in SEQ ID NO:6 with at least two amino acid substitutions.

5

40. The method of claim 38, wherein said mutant P47PHOX polypeptide comprises an amino acid sequence having an amino acid residue other than valine at the position that aligns with position 106 of SEQ ID NO:4 or an amino acid residue other than threonine at the position that aligns with position 153 of SEQ ID NO:4.

10

- 41. The method of claim 33, wherein said genetic variant comprises a mutation in a regulatory sequence of said gene.
- 42. A method for treating a mammal having an autoimmune condition accompanied
 by NADPH oxidase deficiency, said method comprising administering, to said animal, an agent that enhances NADPH oxidase activity.
 - 43. The method of claim 42, wherein said autoimmune condition is arthritis or multiple sclerosis.

- 44. The method of claim 42, wherein said autoimmune condition accompanied by NADPH oxidase deficiency is AANOD.
- 45. The method of claim 42, wherein said agent is norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane, galectin 1, or galectin 3.
- 46. The method of claim 42, wherein said agent is polar derivative of norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate,

lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane, galectin 1, or galectin 3.

- 47. The method of claim 42, wherein said agent is an alkene or acid derivative of norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane, galectin 1, or galectin 3.
- 10 48. The method of claim 42, wherein said agent is administered intra-dermally, intraperitoneally, or intra-nasally.
 - 49. The use of an agent in the manufacture of a medicament to treat an autoimmune condition accompanied by NADPH oxidase deficiency, wherein said agent enhances NADPH oxidase activity in a mammal.
 - 50. The use of claim 49, wherein said autoimmune condition accompanied by NADPH oxidase deficiency is AANOD.

- 20 51. The use of claim 49, wherein said autoimmune condition accompanied by NADPH oxidase deficiency is multiple sclerosis accompanied by NADPH oxidase deficiency.
- 52. The use of claim 49, wherein said agent is norfloxacin, phosphatidic acid,
 diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine,
 fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane,
 hexadecane, hexadecene, heptadecane, octadecane, galectin 1, or galectin 3.
- 53. A method of formulating a medicament for the treatment of an autoimmune condition, said method comprising:

(a) contacting a sample comprising cells or a cellular fraction having NADPH activity with a test agent,

- (b) determining the level of NADPH oxidase activity in said sample,
- (c) determining whether or not said level is greater than a control level of NADPH oxidase activity, wherein said control level is the amount of NADPH oxidase activity in a control sample lacking said test agent,
 - (d) identifying said test agent as an agent useful for treatment of said autoimmune condition when said level of NADPH oxidase activity is greater than said control level, and
- (e) formulating a medicament from said agent for the treatment of said autoimmune condition.

5

15

20

- 54. The method of claim 53, wherein said autoimmune condition is arthritis or multiple sclerosis.
- 55. A method for identifying an agent that activates NADPH oxidase activity in a cell, wherein said cell is from a non-human animal susceptible to arthritis induction, said method comprising determining whether or not the level of NADPH oxidase activity increases in said cell after said cell is treated with a test agent, wherein an increase in said level indicates that said test agent activates NADPH oxidase activity.
 - 56. The method of claim 55, wherein said cell is a cell from a DA rat.
 - 57. The method of claim 55, wherein said cell is a lymphocyte.
- 58. The method of claim 55, wherein said non-human animal is susceptible to pristane induced arthritis, collagen induced arthritis, adjuvant induced arthritis, oil induced arthritis, hexadecane induced arthritis, or avridine induced arthritis.
- 30 59. The method of claim 55, wherein said level of NADPH oxidase activity is determined by measuring superoxide.

60. The method of claim 55, wherein said level of NADPH oxidase activity is determined by measuring reactive oxygen species.

- 5 61. The method of claim 55, wherein said level of NADPH oxidase activity is determined with a cytochrome C assay or WST-1 assay.
 - 62. A method for identifying an agent useful in the treatment of an autoimmune condition, said method comprising:
- (a) contacting a sample comprising cells or a cellular fraction having NADPH activity with a test agent,
 - (b) determining the level of NADPH oxidase activity in said sample,
 - (c) determining whether or not said level is greater than a control level of NADPH oxidase activity, wherein said control level is the amount of NADPH oxidase activity in a control sample lacking said test agent, and
 - (d) identifying said test agent as an agent useful for treatment of said autoimmune condition when said level of NADPH oxidase activity is greater than said control level.
- 63. The method of claim 62, wherein said autoimmune condition is arthritis or multiple sclerosis.

15

25

- 64. A method for identifying an agent useful in the treatment of an autoimmune condition, said method comprising:
- (a) contacting a sample comprising cells or a cellular fraction having NADPH activity with a test agent,
 - (b) contacting said sample with an NADPH oxidase activator,
 - (c) determining the level of NADPH oxidase activity in said sample,
 - (d) determining whether or not said level is greater than a control level of NADPH oxidase activity, wherein said control level is the amount of NADPH oxidase activity in a control sample treated with said activator in the absence of said test agent, and

(e) identifying said test agent as an agent useful for treatment of said autoimmune condition when said level of NADPH oxidase activity is greater than said control level.

- 65. The method of claim 64, wherein said autoimmune condition is arthritis or multiple sclerosis.
 - 66. A method for identifying an agent that enhances NADPH oxidase activity in a cell, wherein said cell is from a non-human animal susceptible to arthritis induction, said method comprising:
- 10 (a) contacting said cell with an NADPH oxidase activator and a test agent to form a test cell,
 - (b) determining the level of NADPH oxidase activity in said test cell,
 - (c) determining whether or not said level is greater than a control level of NADPH oxidase activity, wherein said control level is the amount of NADPH oxidase activity in a control cell treated with said activator in the absence of said test agent, and
 - (d) identifying said agent as enhancing NADPH oxidase activity when said level is greater than said control level.
 - 67. The method of claim 66, wherein said cell is a cell from a DA rat.

20

25

30

- 68. The method of claim 66, wherein said cell is a lymphocyte.
- 69. The method of claim 66, wherein said non-human animal is susceptible to pristane induced arthritis, collagen induced arthritis, adjuvant induced arthritis, oil induced arthritis, hexadecane induced arthritis, or avridine induced arthritis.
- 70. The method of claim 66, wherein said NADPH oxidase activator is norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate, lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane, galectin 1, or galectin 3.

71. The method of claim 66, wherein said level of NADPH oxidase activity is determined by measuring superoxide.

- 72. The method of claim 66, wherein said level of NADPH oxidase activity is determined by measuring reactive oxygen species.
 - 73. The method of claim 66, wherein said level of NADPH oxidase activity is determined with a cytochrome C assay or WST-1 assay.
- 74. A method for identifying an agent that inhibits NADPH oxidase activity in a cell, wherein said cell is from a non-human animal susceptible to arthritis induction, said method comprising:
 - (a) contacting said cell with an NADPH oxidase activator and a test agent to form a test cell,
 - (b) determining the level of NADPH oxidase activity in said test cell,
 - (c) determining whether or not said level is less than a control level of NADPH oxidase activity, wherein said control level is the amount of NADPH oxidase activity in a control cell treated with said activator in the absence of said test agent, and
- (d) identifying said agent as inhibiting NADPH oxidase activity when said level is less than said control level.
 - 75. The method of claim 74, wherein said cell is a cell from a DA rat.
 - 76. The method of claim 74, wherein said cell is a lymphocyte.

arthritis, hexadecane induced arthritis, or avridine induced arthritis.

15

25

77. The method of claim 74, wherein said non-human animal is susceptible to pristane induced arthritis, collagen induced arthritis, adjuvant induced arthritis, oil induced

30 78. The method of claim 74, wherein said NADPH oxidase activator is norfloxacin, phosphatidic acid, diacylglycerol, arachidonic acid, phorbol myristate acetate,

lysophosphatidylcholine, fMLP, pristane, phytol, octane, decane, undecane, dodecane, tridecane, tetradecane, hexadecane, heptadecane, octadecane, galectin 1, or galectin 3.

- 79. The method of claim 74, wherein said level of NADPH oxidase activity is5 determined by measuring superoxide.
 - 80. The method of claim 74, wherein said level of NADPH oxidase activity is determined by measuring reactive oxygen species.
- 10 81. A method for identifying an agent that modulates T-cell activation, said method comprising:
 - (a) determining whether or not a test agent increases NADPH oxidase activity; and
- (b) classifying said test agent as an agent that modulates T-cell activation when said test agent increases NADPH oxidase activity.
 - 82. The method of claim 81, wherein said modulation of T-cell activation is a reduction in T-cell activation.
- 20 83. A rat congenic to a second rat, wherein at least one locus differs genetically between said rat and said second rat, wherein said second rat is susceptible to arthritis induction, wherein said rat contains T-cells from said second rat, and wherein said rat has arthritis.
- 25 84. The rat of claim 83, wherein said rat is a DA.E3c12-/- rat.
 - 85. The rat of claim 83, wherein said second rat ia a DA rat.
- 86. The rat of claim 83, wherein said at least one locus comprises nucleic acid that encodes a P47PHOX polypeptide.

87. The rat of claim 83, wherein no more than one locus differs genetically between said rat and said second rat.

- 88. The rat of claim 87, wherein said one locus comprises nucleic acid that encodes a P47PHOX polypeptide.
 - 89. A nonhuman mammal comprising a deficient NADPH oxidase pathway, wherein said nonhuman mammal exhibits symptoms of an autoimmune disease.
- 10 90. A method of screening an agent to determine if said agent delays the onset of arthritis, said method comprising:
 - (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway;
 - (b) administering said agent to said nonhuman mammal;
 - (c) inducing arthritis in said nonhuman mammal; and
- 15 (d) determining if said agent delays the onset of arthritis in said nonhuman mammal.
 - 91. A method for screening an agent to determine if said agent treats arthritis, said method comprising:
- 20 (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway, wherein said nonhuman mammal exhibits symptoms of an arthritis;
 - (b) administering to said nonhuman mammal said agent; and
 - (c) determining if said agent treats arthritis in said nonhuman mammal.
- 25 92. A method of screening an agent to determine if said agent prevents arthritis, wherein said method comprises:
 - (a) providing a nonhuman mammal having a deficient NADPH oxidase pathway;
 - (b) administering to said nonhuman mammal said agent;
 - (c) administering a compound that induces arthritis to said nonhuman mammal;
- 30 and

(d) determining if said agent prevents arthritis induced by said compound in said nonhuman mammal.

- 93. A method for identifying an agent that inhibits NADPH oxidase activity in a lymphocyte, wherein said lymphocyte is from a DA rat, said method comprising:
 - (a) contacting said lymphocyte with PMA and a test agent to form a test cell;
- (b) determining the level of NADPH oxidase activity in said test cell by measuring superoxide;
- (c) determining whether or not said level is less than a control level of NADPH oxidase activity, wherein said control level is the amount of NADPH oxidase activity in a control cell treated with said PMA in the absence of said test agent; and
 - (d) identifying said agent as inhibiting NADPH oxidase activity when said level is less than said control level.
- 15 94. A non-DA rat comprising heterologous T-cells from a non-human animal susceptible to arthritis induction, wherein said non-DA rat has arthritis.
 - 95. The rat of claim 94, wherein said rat is an E3 rat.

5

20 96. The rat of claim 94, wherein said non-human animal is a DA rat.

Incidence d31: DA (100%), DA.E3+/- (58%) and DA.E3-/- (36%)

Figure 2

Physical map of the Pia4 region

Figure 3

cDNA sequence p47phox

4/25

Figure 4A

COMP in DA.E3c12 rats

Figure 4B

AGP in DA.E3c12 rats

Figure 6

Pristane injected rats with NADPH inhibitor DPI injected i.p.

Figure 7

Accumulated arthritis score

Figure 8

Transfer of pristane/ConA activated T-cells

Figure 9A

Activation of the oxidative burst by alkanes in vitro (E3 rat cells)

Figure 9B

Activation of the oxidative burst by alkanes in vitro (HL60 cells)

Figure 10A

Figure 10C

Arthritis inducing effects of alkanes C19-Nonadecane C18-Octadecane C17-Heptadecane C16-Hexadecane C15-Pentadecane C14-Tetradecane C13-Tridecane C12-Dodecane C11-Undecane p<0.05 C10-Decane C09-Nonane C08-Octane 120 20 9 8 8 8 Additative score

Figure 11A

Figure 12A

........

PCT/IB03/02419

16/25

Figure 14

17/25

Figure 15

6. Olive oil day +5

5. Phytol day +5

4. Olive oil day -5

3. Phytol day -5

Figure 16B

Figure 17C

Figure 17B

Figure 18B

Figure 18C

PCT/IB03/02419

23/25

Figure 19

Onset of disease

Figure 20

Serum COMP

Figure 21

anti collagen antibodies

Figure 22

CIA in rats treated with phytol

Figure 23A

Treatment of active PIA with phytol

Figure 23B

Treatment of active PIA with undecane

SEQUENCE LISTING

```
<110> Arexis AB
<120> Autoimmune Conditions and NADPH Oxidase
 Defects
<130> 11145-024WO1
<150> US 60/380,904
<151> 2002-05-13
<150> US 60/429,609
<151> 2002-11-27
<160> 8
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 1349
<212> DNA
<213> Rattus norvegicus
gccactgccc agccatgggg gacacettca ttegccacat egcceteetg ggcttegaga
                                                                        60
aacgettegt ceccageeaa cactatgtgt acatgtteet ggttaagtgg caggacetgt
                                                                       120
cggagaaggt ggtctacaga aaattcaccg agatctacga gttccataaa atgttaaagg
                                                                       180
agatgttccc cattgaggcc ggtgagatcc acacagaaaa cagagtcatc cctcacctcc
                                                                       240
cagctcccag gtggtatgat gggcagcgtg cagcggagag ccgccaggga acgctcaccg
                                                                       300
agtacticaa cagccicatg ggactgccca tgaagatctc ccgctgccca cacctcttga
                                                                       360
acttetteaa agtgeggeec gatgacetga agetgeecaa tgacageeag gtgaagaage
                                                                       420
cagagacata cctgacggcc aaagatggca agaataatgt agctgacatc atgggtccca
                                                                       480
teateettea gaeetategg geeategetg aetaegagaa gggtteeaaa aeagagatga
                                                                       540
ccgtggcgac gggagatgtg gtggatgtcg tagagaaaaag cgagagtggc tggtggtttt
                                                                       600
gccagatgaa gacaaaacga ggttgggtcc ctgcatccta tttggagccc cttgacagcc
                                                                       660
ctgatgaggc agaggacccc gatcccaact acgcaggtga accgtatgta accatcaaag
                                                                       720
cgtacgctgc tgttgaagag gatgaggtgt ccctgtctga gggtgaagcc atcgaggtca
                                                                       780
ttcataagct cctagatggc tggtgggtgg tcaggaaagg ggacatcacc ggctacttcc
                                                                       840
catccatgta totgcagaag gotggggagg agataaccca ggcccagcga cagattagaa
                                                                       900
gccgcggggc accaectege aggtegacea teegcaatge acagageate caccagegtt
                                                                       960
cteggaageg ceteagecag gacacetate geegeaacag egteegatte etgeageage
                                                                      1020
gcagacgccc ggcgcgacct gggccgcaga gccctgactc aaaggacaat ccatcgactc
                                                                      1080
cgcgcgccaa accacagcct gcggtgcctc cgagacccag ctcggacctc atcctgcacc
                                                                      1140
gctgcacaga gagcaccaag aggaaactga cgtccgccgt gtgaggggcg gctgcactga
                                                                      1200
aaggeggtee tateeetace ettgtatata tttgtatata geeteaggte agaggeteet
                                                                      1260
accotgottt aatgtttgga atggactcag actotgcago aaaggacagg actgggttto
                                                                      1320
tctccacggg tattgctagg atgagagga
                                                                     1349
<210> 2
<211> 389
<212> PRT
<213> Rattus norvegicus
```

<400> 2

Met Gly Asp Thr Phe Ile Arg His Ile Ala Leu Leu Gly Phe Glu Lys 10 Arg Phe Val Pro Ser Gln His Tyr Val Tyr Met Phe Leu Val Lys Trp 25 Gln Asp Leu Ser Glu Lys Val Val Tyr Arg Lys Phe Thr Glu Ile Tyr Glu Phe His Lys Met Leu Lys Glu Met Phe Pro Ile Glu Ala Gly Glu 55 Ile His Thr Glu Asn Arg Val Ile Pro His Leu Pro Ala Pro Arg Trp 70 75 Tyr Asp Gly Gln Arg Ala Ala Glu Ser Arg Gln Gly Thr Leu Thr Glu 90 Tyr Phe Asn Ser Leu Met Gly Leu Pro Met Lys Ile Ser Arg Cys Pro 105 His Leu Leu Asn Phe Phe Lys Val Arg Pro Asp Asp Leu Lys Leu Pro 120 Asn Asp Ser Gln Val Lys Lys Pro Glu Thr Tyr Leu Thr Ala Lys Asp 135 140 Gly Lys Asn Asn Val Ala Asp Ile Met Gly Pro Ile Ile Leu Gln Thr 150 155 Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Gly Ser Lys Thr Glu Met Thr 165 170 Val Ala Thr Gly Asp Val Val Asp Val Val Glu Lys Ser Glu Ser Gly 185 Trp Trp Phe Cys Gln Met Lys Thr Lys Arg Gly Trp Val Pro Ala Ser 200 Tyr Leu Glu Pro Leu Asp Ser Pro Asp Glu Ala Glu Asp Pro Asp Pro 215 220 Asn Tyr Ala Gly Glu Pro Tyr Val Thr Ile Lys Ala Tyr Ala Ala Val 230 235 Glu Glu Asp Glu Val Ser Leu Ser Glu Gly Glu Ala Ile Glu Val Ile 245 250 His Lys Leu Leu Asp Gly Trp Trp Val Val Arg Lys Gly Asp Ile Thr 265 Gly Tyr Phe Pro Ser Met Tyr Leu Gln Lys Ala Gly Glu Glu Ile Thr 275 280 Gln Ala Gln Arg Gln Ile Arg Ser Arg Gly Ala Pro Pro Arg Arg Ser 295 300 Thr Ile Arg Asn Ala Gln Ser Ile His Gln Arg Ser Arg Lys Arg Leu 310 315 Ser Gln Asp Thr Tyr Arg Arg Asn Ser Val Arg Phe Leu Gln Gln Arg 325 330 Arg Arg Pro Ala Arg Pro Gly Pro Gln Ser Pro Asp Ser Lys Asp Asn 345 Pro Ser Thr Pro Arg Ala Lys Pro Gln Pro Ala Val Pro Pro Arg Pro 360 Ser Ser Asp Leu Ile Leu His Arg Cys Thr Glu Ser Thr Lys Arg Lys 375 380 Leu Thr Ser Ala Val

<210> 3

<211> 1331

<212> DNA

<213> Rattus norvegicus

```
<400> 3
cagocatggg ggacacette attegecaca tegeceteet gggettegag aaaegetteg
                                                                        60
tececageea acaetatgtg tacatgttee tggttaagtg geaggaeetg teggagaagg
                                                                       120
tggtctacag aaaattcacc gagatctacg agttccataa aatgttaaag gagatgttcc
                                                                       180
ccattgaggc cggtgagatc cacacagaaa acagagtcat ccctcacctc ccagctccca
                                                                       240
ggtggtatga tgggcagcgt gcagcggaga gccgccaggg aacgctcacc gagtacttca
                                                                       300
acageeteat gggaetgeee gtgaagatet eeegetgeee acaeetettg aacttettea
                                                                       360
aagtgcggcc cgatgacctg aagctgccca atgacagcca ggtgaagaag ccagagacat
                                                                       420
acctgacggc caaagatggc aagaataatg tagctgacat cacgggtccc atcatccttc
                                                                       480
agacctateg ggecateget gactaegaga agggttecaa aacagagatg accgtggega
                                                                       540
cgggagatgt ggtggatgtc gtagagaaaa gcgagagtgg ctggtggttt tgccagatga
                                                                       600
agacaaaacg aggttgggtc cctgcatcct atttggagcc ccttgacagc cctgatgagg
                                                                       660
cagaggaccc cgatcccaac tacgcaggtg aaccgtatgt aaccatcaaa gcgtacqctq
                                                                       720
ctgttgaaga ggatgaggtg tccctgtctg agggtgaagc catcgaggtc attcataagc
                                                                       780
tectagatgg ctggtgggtg gteaggaaag gggacateae eggetaette ceatecatgt
                                                                       840
atotgoagaa ggotggggag gagataaccc aggoccagog acagattaga agcogogggg
                                                                       900
caccacctcg caggtcgacc atccgcaatg cacagagcat ccaccagcgt tctcggaagc
                                                                       960
gcctcagcca ggacacctat cgccgcaaca gcgtccgatt cctgcagcag cgcagacgcc
                                                                      1020
cggcgcgacc tgggccgcag agccctgact caaaggacaa tccatcgact ccgcgcgcca
                                                                      1080
aaccacagee tgeggtgeet eegagaeeea geteggaeet cateetgeae egetgeaeag
                                                                      1140
agagcaccaa gcggaaactg acgtccgccg tgtgaggggc ggctgcactg aaaggcggtc
                                                                      1200
ctatecetae cettgtatat atttgtatat agecteaggt eagaggetee taccetgett
                                                                      1260
taatgtttgg aatggactca gactctgcag caaaggacag gactgggttt ctctccacqq
                                                                      1320
gtattgctag g
                                                                      1331
<210> 4
<211> 389
<212> PRT
<213> Rattus norvegicus
<400> 4
                                25
```

Met Gly Asp Thr Phe Ile Arg His Ile Ala Leu Leu Gly Phe Glu Lys Arg Phe Val Pro Ser Gln His Tyr Val Tyr Met Phe Leu Val Lys Trp Gln Asp Leu Ser Glu Lys Val Val Tyr Arg Lys Phe Thr Glu Ile Tyr 40 Glu Phe His Lys Met Leu Lys Glu Met Phe Pro Ile Glu Ala Gly Glu 60 Ile His Thr Glu Asn Arg Val Ile Pro His Leu Pro Ala Pro Arg Trp 75 Tyr Asp Gly Gln Arg Ala Ala Glu Ser Arg Gln Gly Thr Leu Thr Glu Tyr Phe Asn Ser Leu Met Gly Leu Pro Val Lys Ile Ser Arg Cys Pro 100 105 His Leu Leu Asn Phe Phe Lys Val Arg Pro Asp Asp Leu Lys Leu Pro 115 120 125 Asn Asp Ser Gln Val Lys Lys Pro Glu Thr Tyr Leu Thr Ala Lys Asp 135 140 Gly Lys Asn Asn Val Ala Asp Ile Thr Gly Pro Ile Ile Leu Gln Thr 150 155 Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Gly Ser Lys Thr Glu Met Thr 165 170 Val Ala Thr Gly Asp Val Val Asp Val Val Glu Lys Ser Glu Ser Gly 185 Trp Trp Phe Cys Gln Met Lys Thr Lys Arg Gly Trp Val Pro Ala Ser

```
195
                            200
Tyr Leu Glu Pro Leu Asp Ser Pro Asp Glu Ala Glu Asp Pro Asp Pro
                                             220
                        215
Asn Tyr Ala Gly Glu Pro Tyr Val Thr Ile Lys Ala Tyr Ala Ala Val
                    230
                                         235
Glu Glu Asp Glu Val Ser Leu Ser Glu Gly Glu Ala Ile Glu Val Ile
                                    250
His Lys Leu Leu Asp Gly Trp Trp Val Val Arg Lys Gly Asp Ile Thr
                                265
Gly Tyr Phe Pro Ser Met Tyr Leu Gln Lys Ala Gly Glu Glu Ile Thr
                            280
                                                 285
Gln Ala Gln Arg Gln Ile Arg Ser Arg Gly Ala Pro Pro Arg Arg Ser
                        295
Thr Ile Arg Asn Ala Gln Ser Ile His Gln Arg Ser Arg Lys Arg Leu
                    310
                                        315
Ser Gln Asp Thr Tyr Arg Arg Asn Ser Val Arg Phe Leu Gln Gln Arg
                                    330
Arg Arg Pro Ala Arg Pro Gly Pro Gln Ser Pro Asp Ser Lys Asp Asn
                                345
Pro Ser Thr Pro Arg Ala Lys Pro Gln Pro Ala Val Pro Pro Arg Pro
                            360
Ser Ser Asp Leu Ile Leu His Arg Cys Thr Glu Ser Thr Lys Arg Lys
                        375
Leu Thr Ser Ala Val
385
<210> 5
<211> 1349
<212> DNA
<213> Homo sapiens
<400> 5
gagcactgga ggccacccag tcatggggga caccttcatc cgtcacatcg ccctgctggg
                                                                        60
ctttgagaag cgcttcgtac ccagccagca ctatgtgtac atgttcctgg tgaaatggca
                                                                       120
ggacctgtcg gagaaggtgg tctaccggcg cttcaccgag atctacgagt tccataaaac
                                                                       180
cttaaaagaa atgttcccta ttgaggcagg ggcgatcaat ccagagaaca ggatcatccc
                                                                       240
ccacctccca gctcccaagt ggtttgacgg gcagcgggcc gccgagaacc gccaqqqcac
                                                                       300
acttaccgag tactgcagca cgctcatgag cctgcccacc aagatctccc gctgtcccca
                                                                       360
cctcctcgac ttcttcaagg tgcgccctga tgacctcaag ctccccacgg acaaccagac
                                                                       420
aaaaaagcca gagacatact tgatgcccaa agatggcaag agtaccgcga cagacatcac
                                                                       480
eggececate atcetgeaga egtacegege cattgeegae taegagaaga cetegggete
                                                                       540
cgagatggct ctgtccacgg gggacgtggt ggaggtcgtg gagaagagcg agagcggttg
                                                                       600
gtggttctgt cagatgaaag caaagcgagg ctggatccca gcatccttcc tcgagcccct
                                                                       660
ggacagteet gaegagaegg aagaeeetga geecaaetat geaggtgage cataegtege
                                                                       720
catcaaggcc tacactgctg tggaggggga cgaggtgtcc ctgctcgagg gtgaagctgt
                                                                       780
tgaggtcatt cacaagctcc tggacggctg gtgggtcatc aggaaagacg acgtcacagg
                                                                       840
ctactttccg tccatgtacc tgcaaaagtc ggggcaagac gtgtcccagg cccaacgcca
                                                                       900
gatcaagegg ggggegeege eeegeaggte gtecateege aaegegeaea geatecatea
                                                                       960
geggtegegg aagegeetea gecaggaege etategeege aacagegtee gttttetgea
                                                                      1020
gcagegaege egceaggege ggeegggaee geagageeee gggageeege tegaggagga
                                                                      1080
geggeagaeg cagegeteta aacegeagee ggeggtgeee eegeggeega gegeegaeet
                                                                      1140
catcctgaac cgctgcagcg agagcaccaa gcggaagctg gcgtctgccg tctgaggctg
                                                                      1200
gagegeagte eccagetage gteteggeee ttgeegeeee gtgeetgtae ataegtgtte
                                                                      1260
tatagageet ggegtetgga egeegaggge ageecegace cetgtecage geggeteeeq
                                                                      1320
```

1349

ccaccctcaa taaatgttgc ttggagtgg

<210> 6 <211> 390 <212> PRT <213> Homo sapiens <400> 6 Met Gly Asp Thr Phe Ile Arg His Ile Ala Leu Leu Gly Phe Glu Lys 10 Arg Phe Val Pro Ser Gln His Tyr Val Tyr Met Phe Leu Val Lys Trp 25 Gln Asp Leu Ser Glu Lys Val Val Tyr Arg Arg Phe Thr Glu Ile Tyr 4.0 Glu Phe His Lys Thr Leu Lys Glu Met Phe Pro Ile Glu Ala Gly Ala 55 Ile Asn Pro Glu Asn Arg Ile Ile Pro His Leu Pro Ala Pro Lys Trp Phe Asp Gly Gln Arg Ala Ala Glu Asn Arg Gln Gly Thr Leu Thr Glu 90 Tyr Cys Ser Thr Leu Met Ser Leu Pro Thr Lys Ile Ser Arg Cys Pro 105 His Leu Leu Asp Phe Phe Lys Val Arg Pro Asp Asp Leu Lys Leu Pro 120 125 Thr Asp Asn Gln Thr Lys Lys Pro Glu Thr Tyr Leu Met Pro Lys Asp 135 Gly Lys Ser Thr Ala Thr Asp Ile Thr Gly Pro Ile Ile Leu Gln Thr 155 Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Thr Ser Gly Ser Glu Met Ala 165 170 Leu Ser Thr Gly Asp Val Val Glu Val Glu Lys Ser Glu Ser Gly 180 185 Trp Trp Phe Cys Gln Met Lys Ala Lys Arg Gly Trp Ile Pro Ala Ser 200 Phe Leu Glu Pro Leu Asp Ser Pro Asp Glu Thr Glu Asp Pro Glu Pro 215 220 Asn Tyr Ala Gly Glu Pro Tyr Val Ala Ile Lys Ala Tyr Thr Ala Val 230 Glu Gly Asp Glu Val Ser Leu Leu Glu Gly Glu Ala Val Glu Val Ile 245 250 His Lys Leu Leu Asp Gly Trp Trp Val Ile Arg Lys Asp Asp Val Thr 265 Gly Tyr Phe Pro Ser Met Tyr Leu Gln Lys Ser Gly Gln Asp Val Ser 280 Gln Ala Gln Arg Gln Ile Lys Arg Gly Ala Pro Pro Arg Arg Ser Ser 295 Ile Arg Asn Ala His Ser Ile His Gln Arg Ser Arg Lys Arg Leu Ser 310 315 Gln Asp Ala Tyr Arg Arg Asn Ser Val Arg Phe Leu Gln Gln Arg Arg 325 330 Arg Gln Ala Arg Pro Gly Pro Gln Ser Pro Gly Ser Pro Leu Glu Glu 345 Glu Arg Gln Thr Gln Arg Ser Lys Pro Gln Pro Ala Val Pro Pro Arg 360 Pro Ser Ala Asp Leu Ile Leu Asn Arg Cys Ser Glu Ser Thr Lys Arg Lys Leu Ala Ser Ala Val 385 390

<210> 7 <211> 390 <212> PRT <213> Homo sapiens

<400> 7 Met Gly Asp Thr Phe Ile Arg His Ile Ala Leu Leu Gly Phe Glu Lys 10 Arg Phe Val Pro Ser Gln His Tyr Val Tyr Met Phe Leu Val Lys Trp 25 Gln Asp Leu Ser Glu Lys Val Val Tyr Arg Arg Phe Thr Glu Ile Tyr 40 Glu Phe His Lys Thr Leu Lys Glu Met Phe Pro Ile Glu Ala Gly Ala Ile Asn Pro Glu Asn Arg Ile Ile Pro His Leu Pro Ala Pro Lys Trp Phe Asp Gly Gln Arg Ala Ala Glu Asn Arg Gln Gly Thr Leu Thr Glu Tyr Cys Ser Thr Leu Met Ser Leu Pro Thr Lys Ile Ser Arg Cys Pro 100 105 His Leu Leu Asp Phe Phe Lys Val Arg Pro Asp Asp Leu Lys Leu Pro 120 Thr Asp Asn Gln Thr Lys Lys Pro Glu Thr Tyr Leu Met Pro Lys Asp 135 Gly Lys Ser Thr Ala Thr Asp Ile Thr Gly Pro Ile Ile Leu Gln Ser Tyr Arg Ala Ile Ala Asn Tyr Glu Lys Thr Ser Gly Ser Glu Met Ala 165 170 Leu Ser Thr Gly Asp Val Val Glu Val Val Glu Lys Ser Glu Ser Gly 185 Trp Trp Phe Cys Gln Met Lys Ala Lys Arg Gly Trp Ile Pro Ala Ser 200 Phe Leu Glu Pro Leu Asp Ser Pro Asp Glu Thr Glu Asp Pro Glu Pro 215 220 Asn Tyr Ala Gly Glu Pro Tyr Val Ala Ile Lys Ala Tyr Thr Ala Val 230 235 Glu Gly Asp Glu Val Ser Leu Leu Glu Gly Glu Ala Val Glu Val Ile 245 250 His Lys Leu Leu Asp Gly Trp Trp Val Ile Arg Lys Asp Asp Val Thr 265 Gly Tyr Phe Pro Ser Met Tyr Leu Gln Lys Ser Gly Gln Asp Val Ser 280 Gln Ala Gln Arg Gln Ile Lys Arg Gly Ala Pro Pro Arg Arg Ser Ser 295 Ile Arg Asn Val His Ser Ile His Gln Arg Ser Arg Lys Arg Leu Ser 310 315 Gln Asp Ala Tyr Arg Arg Asn Ser Val Arg Phe Leu Gln Gln Arg Arg 325 330 Arg Gln Ala Arg Pro Gly Pro Gln Ser Pro Gly Ser Pro Leu Glu Glu 340 345 Glu Arg Gln Thr Gln Arg Ser Lys Pro Gln Pro Ala Val Pro Pro Arg 360 Pro Ser Ala Asp Leu Ile Leu Asn Arg Cys Ser Glu Ser Thr Lys Arg Lys Leu Ala Ser Ala Val

385 390 <210> 8 <211> 17302 <212> DNA <213> Homo sapiens <400> B gagaatcgct tgaacctgga aggcagaggt tgcagtgagc cgagattgtg ccactgcact 60 ccagcttggg caacaagagc gaaacttcgc ttcaaacaaa taaattaacg cccagcatgt 120 cttggctttc atctgccaga cctcaaccct cacccccagg agatcaggtc cggaccatga 180 getgaceetg gaeteaggea agggtgagtt ggtgeageee tggeetgetg ggaggeaeag 240 getgeageag getgeetggg getgaggeee gecaeteatg aacteatgae ettgaatgag 300 ctccaaaagc tetgggcete ccaggeteta gggggagtgg gagagagagg cetcageetg 360 tecetgggca tgetgeecce tecteacete tttgteecaa ateceettee tggeaaaget 420 gacagtetta atateactet ggagaaaact gagteageee taaggaacaa tteaatgaac 480 catttgctta cttgaggatt ggaactcaag tctcactcaa agtctgtgcc attttcgtcc 540 cagctgtcac tggccctcat ccacacaca ccaaggatga gcatctaacg cttgcatgca 600 cactcccatg cccgcgttca ttcactcatt cattcattca ttcactcatt cattgactca 660 ttcattcatt cactcactca ttcattcact cagtgaatgt tgcagtcacg atccaaatat 720 ttatggcctc tgtgtgccag gcactagatg gaggggctgg ggctagagcc cctgataacc 780 cggtcatgcc ctagctttcc tgggacacac attgtggtaa ggggagacta aaaaaattaa 840 gtcaggccag gcacggtggc tcatgcctga atcccagcac tttgggaggc cqaqqcqaqt 900 gaattacctg aggtcaggag ttcaagacca gcctggccaa catggagaaa cccagtctct 960 aattaaaaaa aaaaaaatta cccaggtgtg gtggcacatg cctgtaatcc caggtactca 1020 ggagactaac gcaagagaat tgcttgaacc caggaggcag aggttgcggt gagccgagat 1080 cgcgccattg cactccagcc tgggaaacaa gagcgagact ccatctcaaa aaaaaaaaag 1140 tgggaggcag aggcaggagg atcactagag gccagtagtt tgagaccatc ctgggcaaca 1200 tagcaggacc ctgtctgtac aaaaaaaatta aaaaaaattt aaccgggcat ggtggcacac 1260 accogtagte ccagetacte cagaggetga ggeaggagga tegetggage ccaggagttg 1320 gaggetgeag tgaactgtga teccaceact gegettaage etggataaca aggeaagace 1380 ctgtctcaaa taacaatagc aataataata aagaaaaatt aaatgcaatt tqcqatqcat 1440 cagtgataag tgctctgcag aaaaaggagg caggaagagg ctgagaaagg tatgaggttt 1500 gctatgcaat gtgaagttat caaggaaggc ttctcggaag aggtgacatt tgagcagaga 1560 aatggaggag agttatggag ggaagatggt gaatgggggg aacatggtca agaccaggaa 1620 tatggtcaag gggggaaaga tggtcaaggg gacgcagcaa atgcaaaggc cctgaggcag 1680 gagcagettg atteacece aaaacecgtg gggeeegtge aggegaeggg aaggacaagt 1740 gtaaaccett tteettgtee etgeaggtgt gtgtgaacat gagtetgeee atgtttacae 1800 cctgcaagcc tgaagagtcc ccagaaactg aaagaagaag caaagccctt tctgtaccct 1860 ccctgcccc tgtcccgacc gcgacaaaag cgacttcctc tttccagtgc atttaaggcg 1920 cagcctggaa gtgccaggga gcactggagg ccacccagtc atgggggaca ccttcatccg 1980 tcacatcgcc ctgctgggct ttgagaagcg cttcgtaccc agccagcact atgtgagtag 2040 ctggtggagg gcatccccgt ggggggaata cgggagggac agcacggcca cccttgcagt 2100 cccagggcca accagctcca gtgaggacta acggggcagg gtcttgggca cctggtccct 2160 ggtctttgag cctggatcta cccctctgat ccctgggaag acagttccct tggacccgcc 2220 ctgggcccca ggcctttact gtccccgcct gtgtccccag ccaggccctc agccttagcc 2280 aggagteete tttetgetee eetgeeatgg eeaggeagee eagegetete teaggteega 2340 ggcccactcc tccaggaagc cttccctgac tagcccagct atcagagagt ggccctccca 2400 agagggaggc ctggaaacta aagctctctc tctccccagc tgcctgtagt gtcagttaga 2460 gtcttatcct ctccagtagg gtgacaccat gacaggggcc aatagagtcc tcccatctgt 2520 ccccaaggag gctggacaaa tgcctgctca gacacacaag tccactgggt cccctaatcc 2580 cataggaagg ccagggagga actacattta ggaaattgaa gcttgtatgg aacatttagt 2640 cctatgtgcc aagacctttc tcttttttgt tatttttttg tgttttgaga cagagtcttg 2700 atctgttgcc caggccagag tgcagtggca cgatctcagc tcactgaaac ctccgccttc 2760

caggttcaac tggttctcct gcctcagcct ccagagtagt tgggattaca ggtgcccacc

accacgeetg getaattttt gtatttttag tagagacagg gtttcaccat gttggecaga

2820

2880

ctggtctcaa	actcctgacc	tcaagtgatc	cacccacctg	ggcctcccaa	agtgctggga	2940
ttacaggcat	gagccaccgt	gcctggcctg	tttttttgaa	atgaggtctg	gagtgcagtg	3000
gtgcgatcat	agttcactgc	agcctcaagc	teccaggeee	aagtgatccg	cctgcctcaa	3060
				ctggctagtt		3120
ttgtggagat	gaggtttcac	tatgttgtcc	aggctaatct	tgaactcctc	ggcttaagca	3180
				cgtgagctac		3240
cacttttctc	cttttctttg	taactttcag	ttttgaaatt	tcaaatttac	agaaaggcta	3300
ctgggtgtca	aaacggtacc	agtcactcca	atagtctttc	actcaccttc	atccacacct	3360
ctctttctgg	ggatattttc	tgaattattt	gagagtgagt	tgaagacgtg	tttctttacc	3420
				ttctcttaca		3480
acacgtgtca	aaatcaggaa	attaacatgg	acaaaacacc	attatccacc	cacagacttt	3540
actgaggttt	ccccgattat	cctgcttgtc	ctctgcagtg	aaaacttttt	tcaggtctag	3600
gatccagtca	aggatcaatg	tcatagcctt	taaccttctt	taatctggat	cagtctttt	3660
tctttttctt	tttcttttt	tggacacgga	atctcactct	gtcgccagac	tggagtgcag	3720
tggtgcaatc	tcggctcatt	gcaacctctg	cctcctgggt	tcaagagatt	ctcctgcctc	3780
agcctcctga	gttagctggg	aatacaggtg	cgcgccacca	tgcccagctc	gcattttttg	3840
gtagagacag	ggttttgcca	tattgattct	ggatcagtct	tttttttt	ttatgaaatg	3900
gattcttact	ctgtcaccca	ggctggattg	caatggcaca	atctccactc	actgcatcct	3960
ccgcctccca	ggttcaagca	attctcgtgc	ctcagcctcc	cgagtagctg	ggattacagg	4020
catgcgccac	catgcccggc	tactttttgt	atttttagta	gagacagggt	ttcaccatgt	4080
				cccgcctcga		4140
tgctgggatt	acaggcgtga	gccaccgtgc	cagcggattc	tggatcggtc	ttaatcagtc	4200
tttgtctttt	gcaactttga	tgttttgcag	agagcagacc	agttaccttg	tagaatgtcc	4260
cttagtttgg	gtttatcttc	attagattca	gtttgtgtat	ccagggcagt	ggatcttaga	4320
tgcaattctg	tcttctttt	aattttttg	agagggagtc	tegetetgte	acccaggctg	4380
gagtgcagtg	gcacaacctc	agctcactgc	agcctccgcc	tcccgggttc	aagcaattct	4440
cctgtcccag	cctcccaagt	agctgggatc	acaggtgccc	atcaccacta	ccgggtaatt	4500
tttgtgtttt	tagtagagac	agggtttcac	catattggtc	aggctggtct	tgaacgcctg	4560
acctcaggtg	atccacctgc	cttggcctcc	caaagtgctg	ggattacaga	cgggagccaa	4620
catgcccagc	cttcctgccc	ctcccgtccc	ctcccctctc	ctcctgtccc	ctcccttccc	4680
ctcccctctc	ctcctgtccc	ctcccttccc	ctccctccc	cacccaagct	ggagtgcagt	4740
				caagcaattc		4800
cctggggcca	caggtgtgcg	gcaccacacc	cggacaattt	ttgtgttttt	agtagatatg	4860
ggggtctcgc	tatgttgccc	aggctggtct	caaactcttg	gactcaagcg	atcttcccac	4920
ctcggtacta	aaaagtgctg	ggattccagg	tgtgagccac	cgtgcccagc	ctaggtccta	4980
				ctgaccctct		5040
ctcaaggctg	gggcgtggca	gcacttgggt	ccacgtttgt	gccctttctg	caatccagga	5100
caaccgcaaa	gatggtcctc	accccaatcc	tctgggcttc	ctccagtggg	tagtgggatc	5160
				gtcccccgac		5220
ccccaggtgt	acatgttcct	ggtgaaatgg	caggacctgt	cggagaaggt	ggtctaccgg	5280
				cggaggaggg		5340
				gtgatgggga		5400
				ttatttatat		5460
gacagggtct	tgctctgtca	ccactctgaa	cacctcatgt	tctctgatta	caggcatgag	5520
ccccacgct	cggcctttta	ggtggttttg	agaggtattt	aggtttgcag	tgcaggggcg	5580
				cgatcctcct		5640
cctgagtagc	tgggactata	ggtgcgcatc	accatgtgtg	gctaattttt	gtattttta	5700
taaagatggg	gatctcacta	tgttgcccag	gctggtcttg	aactccagac	ctcaagtgat	5760
cctcctgcct	tggcctccca	aagctagggg	ggcattaaaa	gaaaaaacat	ttttccccct	5820
gaaacattta	agtagtctta	ctgaaaacaa	taaaacacag	aaacaccaga	ttctcatttt	5880
aaagtaaaac	agacaggatc	tcccagaacc	ttcctagaat	ggaaccattc	ttgtcgcttt	5940
tgaaaaacaa	agccaagttc	tagatcccaa	ataaatgcac	ctgctggtga	acattctcct	6000
tgtggttctc	gtccctatgt	tagttatttt	cctaaatttt	acatttgtac	ctttttaaga	6060
atgagttatc	agttttttta	tatttgcttt	tcttttgaga	tggggtcttg	ctctgtcacc	6120
caggctgggg	tgcagtggtg	caatcacggc	tcactgcagc	ctcaacctcc	agggctgaag	6180
cgattctccc	atctcagcct	cccatgttga	gatcacaggt	gtgcaccacc	acacctggct	6240

PCT/IB03/02419 WO 03/095667 9/12

ccttttcctg	atttgttttt	tgtagagatg	ggatttcgct	atgttgccca	ggctggtctc	6300
taactcctgg	actcaagtga	tcctcccgcc	tcagcttccc	aaattgctag	gattacaggt	6360
ttgagcccct	gcacctggtc	aacctgagtt	ttaagaggat	ccctttggcg	actggattga	6420
	gagtggacgg					6480
	caggagggtg					6540
	aaaggatttg					6600
	ggaatccaga					6660
	tcacccagga					6720
	ttaagcgatt					6780
	tcccggctaa					6840
	cttgaactcc					6900
	ggcgtgagcc					6960
	atctcgtgct					7020
	taatgtttag					7020
						7140
	gaacaggatc					7200
	attggcgggg					7260
	gccagctccc					
	cgagtactgc					7320
	cgacttcttc					7380
	cttttcaccc					7440
	gaggaaacca					7500
	gaggcaaatt					7560
	cctagggcac					7620
	acattatggc					7680
	ttctccattt					7740
ttgcggagcc	ccccagaagg	atgtggggtt	gatgcctctg	ctaagtgctg	agcatgtctg	7800
gggtctcctg	tacccaggac	cctgtgtgga	aggcacctga	gaggctgagg	gagctccagg	7860
caggctgggg	aagtcccctt	ctccactcct	ctctggtcac	tgaagctcga	agtggggagc	7920
atgaggacag	gacgttaccc	cttgtcaagg	cacccaggct	gccaagacag	agacaagcag	7980
cattgctccg	gccagcactt	attgacgctt	gaaggtgtcc	cctggcccaa	ggaagggcag	8040
ttatcatcag	cccgggaggc	gggggaagga	tggactctgc	agtggggtcc	gctcctcatt	8100
gcctgctctc	tcagggctcc	agaaggagga	agaggccggg	cacagtggct	cacacctata	8160
atcccagcac	tttggaaggt	cgaggtgggc	agatcacctg	aagttgggag	tttgagacca	8220
gcctggccaa	catggtgaaa	ccccatctct	accaaaaata	taaaaattta	gtcaggcatg	8280
gtggtgtgcg	cttgtaatcc	cagctacttg	ggaggccgag	gcaggagaat	cgcttgaacc	8340
cgggaggcag	aggtttcagt	gagctgagac	tgcgccactg	cactccagcc	tgggtgacag	8400
	tgtctaagga					8460
	ttccaggctt					8520
	ctcccttggg					8580
	gccagtccag					8640
	tcttgggagt					8700
	gggtctcacc					8760
	caaagatggc					8820
	accctgagga					8880
	gctcacagct					8940
	taatcccagc					9000
	cagcctggcc					9060
	tgacaggtgc					9120
	ggaagacgga					9180
	gccagactcc					9240
	cctggagact					9300
	tactggcagc					9360
						9420
	ggccttcaga					
	aataacaata					9480
	attttgtttt					9540
Layayiyaag	tggtgtgatc	acageteaet	acayeeeega	cereeradac	Lyaagcgatc	9600

				gtgccaccat		9660
				ccaagctggt		9720
				tgagattata		9780
				cctgttgggt		9840
tctactgacc	tcattttaat	ttaattacct	cttgaaacgt	acttaagagt	acctttctct	9900
				caacatatga		9960
ggcggatgtc	agccattact	aaacagcatc	agcacctcca	cggttggatg	aagggctggt	10020
cagaaatgca	cactcaggtc	ccacagtgga	cctactgaac	aggataggca	ttttagcaaa	10080
atcccaggta	ttggggtgca	ccttaaagtt	aggaaaaggt	caggcactgt	ggctcatgcc	10140
tgtaatccca	gcactttggg	aggccgaggc	ggttgaatca	cctgaggtca	ggagttcgag	10200
accagcctga	ccaatatcgt	gaaactccat	ctctactaaa	aatacaaaaa	ttagccaggt	10260
gtggtggcgg	gtgcttgtag	tcccagctac	ttgggaggct	gaggcaggtg	aattacttga	10320
acctgggagg	tggaggttgc	aatgagccaa	gattgcacca	ctgcactcca	gtgacagagc	10380
gagactccat	ctcaaaaaaa	aaaaaaaaa	agttgggaaa	aggccaggtg	cagtggctcc	10440
				aatcctttga		10500
				ccagaaatta		10560
				gcagggagat		10620
				tactctagcc		10680
				aggctcacta		10740
				ggagaacgct		10800
				tctggaggcc		10860
				catcaccggc		10920
				gggctccgag		10980
				cggtcagacc		11040
				aagccccctg		11100
				cctaaatgtc		11160
				tgtgggcatc		11220
				gtatgggacc		11280
				gcatgcatgc		11340
				attggacatc		11400
				cgctgggccc		11460
				agatgaaagc		11520
				acgagacgga		11580
				ggtgtgggag		11640
				gctggttgct		11700
				ccctggcagg		11760
				gggagagtgg		11820
				ggatgagcag		11880
				accagaaagg		11940
				aactataata		12000
				gagatagagt		12060
				aacctctgcc		12120
				tacaagcatg		12180
cctggataat	ttttqtattt	ttagttgaga	cagaatttca	ccaggttggc	cagactggtc	12240
tcgaacttct	gacctcaggt	gatctgcctg	cctcqqcctc	ccaaagtgct	ggaattacag	12300
				aatggagtga		12360
				aagtctggtt		12420
				tagectectg		12480
				catgcaccac		12540
				ttggccaggc		12600
				gtgctaggat		12660
				gaaggcctgc		12720
				agacggatgc		12780
				agaccttcat		12840
tetetggtee	ccagagtaga	tggcaatqaa	tgggagtgga	caageteace	tagatataga	12900
				tgccagcagg		12960
			2 2 223	J J:JJ	JJJ-	

gggatctggg	atggagcagg	agggtggagg	gaggagaccc	agaagagggg	gaactgtggg	13020
ccctgggtgg	gtctggagtg	cctggaggaa	gcccaggcgc	agagaggaga	agatgggatg	13080
ggtggcgagc	cccaggctgg	gccgacctca	cactgtgctc	tgtgcccctg	ccgtggacca	13140
ggtgagccat	acgtcgccat	caaggcctac	actgctgtgg	agggggacga	ggtgtccctg	13200
ctcgagggtg	aagctgttga	ggtcattcac	aagctcctgg	acggctggtg	ggtcatcagg	13260
taggagggcc	cctctccatc	cagagcaccc	atctgagtca	gccccagcca	ggacggcgtg	13320
tttagggatc	tggggtgact	tgtccctggg	actctgggta	agccactgcc	cctctctggg	13380
cttagtttcc	atctcagtag	cagggaggaa	tgagcccacc	cttgcctgtc	ttgtggggat	13440
				tttagggtct		13500
				gtataaataa		13560
agctaggcgc	aatggctcag	gcctgtaatc	ccagcacttt	gggagcccag	ggcaggacga	13620
tcacgtgagg	tcaggagttc	gagaccaccc	tggccaacat	ggcaaaaccc	tatctctact	13680
aaaaacacaa	acatgagccg	ggtgttgtgg	tgggagcctg	taatcccagc	tactcgggag	13740
tctcgagaca	agagaatcac	ttcaacccgg	gaggcggagg	ttgcagtgag	ccaagatcgc	13800
gccattgcac	tccagcctgg	gcaacgagag	cgaaactccg	tctcaaaaaa	aaaaaaaaa	13860
aaaaagatta	ctttctttt	atcattcctt	tatcttttaa	agctttcttg	cagtcaggtg	13920
cagtgtctca	tgcctgtaat	cccaacactt	tgggaagctg	aggtgggagg	atcactcaag	13980
gctacaagtt	caagaccaac	ctggccaatg	tagggagacc	tctgtctcta	caaaaaaaat	14040
taaaaaatag	ctggatgtgg	tagcacacac	ctgtagcccc	agctactcag	gaggctgagg	14100
tgaaaggatc	acttgacccc	aggagttgga	ggctgcagtg	agctatgact	gcaccactgc	14160
acccgagcct	gggtgatgga	gcaagaccct	gtctcaaaaa	aaaaaaaaa	aaaaaagctt	14220
ccattgcaat	tcccatctgt	ttatcctcca	aatgaatgca	gaaatactaa	ttatcttttt	14280
tetggttetg	gggaacacag	aattctagcg	gcttgtggag	ccatttccct	ggagccatgg	14340
ggcctcccag	gtcctttcct	gtgtcttcat	tttttacgaa	ttttttcatt	ttttgagaca	14400
ggatcttgct	ctgactccca	agctggagca	caatcatcgc	tcactcaagc	gatcctccca	14460
cctcaggctc	ccacgtagct	gggactacag	gtgagcacca	ccacatctgg	ctaatgtttt	14520
ttaattttt	tgtagggatg	gggtctcact	atggtgccaa	gactagtctt	aaactcctgg	14580
cctcaagagt	tcctcctgcc	ttggcctccc	aaagcactgg	gattacagga	atgagcctcc	14640
				agggccagcc		14700
ccgcaagctt	atcttaaagc	tgggaccaca	acatgcatac	ctgcagccgg	gcccggggcc	14760
agagggcttt	gaggcagcat	ttctcagcct	tttagacaca	cactctgtta	acccccatcc	14820
tgtgtctctg	ataatcttct	tgtgatcctc	ccaccagcca	agaattgggt	tttatgtgaa	14880
ccttgtatta	tgcaaagttt	tcttttgttt	ttttttcac	tcccaaatat	aatattgaga	14940
				tggatttcca		15000
aaaaaaaaa	gagcaaaaaa	caaacctaga	ccccttcctc	acactgtaca	catatgttta	15060
cttcagatgg	atcacaggtt	tatcccagag	taaaacctga	aactaaaaac	catttggggc	15120
tggacaggga	gctcacgcct	gtaatctcag	cactttggga	ggctgaggca	ggtggatcac	15180
ttgatgtcag	gagtttgaga	ccagccatga	ccaacatggt	gaaatcctgt	ctctactaaa	15240
aaaatacaaa	attaaccaag	tgtggtggtg	catgcctgta	atcccagcta	cttgggaagc	15300
tgagacagga	gaattgcttg	aacttgggaa	gcagaggttg	caatgagtcg	acatcatgcc	15360
attgcactcc	agcctaggca	acaagagcaa	aactctgtct	tggggttggg	cgggggaaaa	15420
				ggcaaaggtt		15480
agaaggcagt	taacataaaa	gaaaaattgg	caaatataat	cctgccagtg	tcttctttt	15540
				tgttacccag		15600
				aagtactggg		15660
tgagcgaccg	tgccctgccc	attcttacca	atgtcatata	gctgataact	gtcccctgcg	15720
				ggaaggattg		15780
				ggtgtccggg		15840
				tgaaaccctc		15900
				tgcaggaaag		15960
				gacgtgtccc		16020
ccagatcaag	cggggggcgc	cgccccgcag	gtaagcgggg	gtccccgggg	ctgggcgggg	16080
				tagcttggca		16140
				gggaaagggg		16200
ctggccgcgg	tgtggggctg	gcacgggggc	ggaaggaaag	cggcgatgcc	cgggggcttt	16260
ggggatgggc	agtccagggg	ggctccccgg	agaggggac	gacagaccga	aggctggtga	16320

ggggcgtgga aaaco	cgccca ggctctgct	g cagggcaagg	gtccttgtcg	tgacgggggc	16380
agccgcctct tgtcc	ccgccg gggtcgtgc	a gactaccggc	cccctactgc	ccccacttc	16440
ctcggaccag gggtg	gcccat ctgagtccc	t gggggcaggg	gcgccctcgg	gctttgacga	16500
cgccccctcc cgctg	gggcca ggtcgtcca	t ccgcaacgtg	cacagcatcc	accagcggtc	16560
gcggaagcgc ctcag	gccagg acgcctate	g ccgcaacagc	gtccgttttc	tgcagcagcg	16620
acgccgccag gcgcg	ggccgg gaccgcaga	g ccccgggagc	ccgctcggtg	agtgcagcgg	16680
agagggcagg aaggg	gcaagc cgtagaggc	g gagtcagcgg	gagaggcggg	gccagaggta	16740
gggccagagt agcgg	gggcgg gaccagagg	g cggaatcaga	gggagaggcg	gggactggag	16800
gcggggtcag aggag	ggagcc agcgcttag	g gggcggagcg	atccctaaga	ggcggagtca	16860
gagggagagg cacaa	agcggg aggcgaggc	c agagcgcgga	gcaggagttg	gagaccgcgg	16920
cggggcgagg ccaga	agagcg ctgtgg <mark>g</mark> cg	g ggccagtgtg	cggggcgggg	cgtctgactc	16980
ggccccgctc tctgc	cccg <mark>ca gaggagga</mark> g	c ggcagacgca	gcgctctaaa	ccgcagccgg	17040
cggtgccccc gcggc	ccgagc gccgacctc	a tcctgaaccg	ctgcagcgag	agcaccaagc	17100
ggaagctggc gtctg	gccgtc tgaggctgg	a gcgcagtccc	cagctagcgt	ctcggccctt	17160
gccgcccttg ccgcc	cccgtg cctgtacat	a cgtgttctat	agagcctggc	gtctggacgc	17220
cgagggcagc cccga	accect gtecagege	g gctcccgcca	ccctcaataa	atgttgcttg	17280
gagtggaaaa aaaaa	aaaaaa aa			•	17302