Probability Theory

LECTURE 1

Mattias Villani

Introduction and a recap of some background

Course outline

Functions of random variables

Dept. of Computer and Information Science Division of Statistics Linköping University

MATTIAS VILLANI (STATISTICS, LIU)

PROBABILITY THEORY - L1

MATTIAS VILLANI (STATISTICS, LIU)

1 / 27

2 / 27

COURSE OUTLINE

PROBABILITY THEORY - L1

RANDOM VARIABLES

- lacktriangle The sample space $\Omega = \{\omega_1, \omega_2, ...\}$ of an experiment is the most basic representation of a problem's randomness (uncertainty).
- ► More convenient to work with real-valued measurements.
- ► A random variable X is a real-valued function from a sample space: $X=f(\omega)$, where $f:\Omega o {\mathbb R}.$
- ▶ A multivariate random vector: $X = f(\omega)$ such that $f : \Omega \to \mathbb{R}^n$.
- Examples:

► Exercises/Seminars: problem solving sessions + open discussions.

Responsible: Per Sidén and You.

► Lectures: theory interleaved with illustrative solved examples.

Responsible: Mattias.

Exam: written exam with formula sheet, but no book or notes.

Responsible: You!

• Roll a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$.

$$X(\omega) = \begin{cases} 0 & \text{if } \omega = 1, 2 \text{ or } 3 \\ 1 & \text{if } \omega = 4, 5 \text{ or } 6 \end{cases}$$

- ▶ Roll two fair dice. $X(\omega)$ =sum of the two dice.
- Ω the set of all possible states of the economy (whatever that means!). $X(\omega)$ next quarter's unemployment in a given region.

3 / 27

MATTIAS VILLANI (STATISTICS, LIU)

4 / 27

SAMPLE SPACE OF TWO DICE EXAMPLE

MATTIAS VILLANI (STATISTICS, LIU)

PROBABILITY THEORY - L1

RANDOM VARIABLE - SUM OF TWO DICE

THE DISTRIBUTION OF A RANDOM VARIABLE

- lacktriangle The probabilities of events on the sample space Ω imply a **probability distribution** for a random variable $X(\omega)$ on Ω .
- $\,\,{}^{\blacktriangleright}$ The probability distribution of X is given by

$$\Pr(X \in C) = \Pr(\{\omega : X(\omega) \in C\}),$$

where $\{\omega : X(\omega) \in C\}$ is the event (in Ω) consisting of all outcomes ω that gives a value of X in C.

- A random variable is discrete if it can take only a finite or a countable number of different values $x_1, x_2, ...$
- Continuous random variables can take every value in an interval.
- The probability mass function, pmf, is the function $f(x) = \Pr(X = x).$

MATTIAS VILLANI (STATISTICS, LIU)

5 / 27

PROBABILITY THEORY - L1

6 / 27

UNIFORM, BERNOULLI OCH POISSON

▶ Uniform discrete distribution. $X \in \{a, a+1, ..., b\}$.

$$f(x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x=a,a+1...,b\\ 0 & \text{otherwise} \end{cases}$$

- ▶ Bernoulli distribution. $X \in \{0,1\}$. $\Pr(X = 0) = 1 p$ and $\Pr(X=1)=p.$
- ▶ Poisson distribution: $X \in \{0, 1, 2, ...\}$

$$f(x) = \frac{\exp(-\lambda) \cdot \lambda^x}{x!}$$
 for $x = 0, 1, 2, ...$

PROBABILITY THEORY - L1

7 / 27

▶ Binomial distribution. Sum of n independent Bernoulli variables $X_1, X_2, ..., X_n$ with the same success probability p.

$$X = X_1 + X_2 + ... + X_n$$

$$X \sim Bin(n, p)$$

▶ Probability function for a Bin(n, p) variable:

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$
, for $x = 0, 1, ..., n$.

lacktriangle The binomial coefficient $\binom{n}{x}$ is the number of binary sequences of length n that sum exactly to x.

MATTIAS VILLANI (STATISTICS, LIU)

9 / 27

10 / 27

Densities - Some examples

► The uniform distribution

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise.} \end{cases}$$

► The triangle or linear pdf

$$f(x) = \begin{cases} \frac{2}{a^2}x & \text{for } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$$

► The normal, or Gaussian, distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right)$$

PROBABILITY DENSITY FUNCTIONS

- Continuous random variables can assume every value in an interval.
- Probability density function (pdf) f(x)

- $f(x) \ge 0$ for all x
- $\int_{-\infty}^{\infty} f(x) dx = 1$
- ► A pdf is like a histogram with tiny bin widths. Integral replaces sums.
- ► Continuous distibutions assign probability zero to individual values, but $\Pr\left(a - \frac{\epsilon}{2} \le X \le a + \frac{\epsilon}{2}\right) \approx \epsilon \cdot f(a).$

MATTIAS VILLANI (STATISTICS, LIU)

PROBABILITY THEORY - L1

IMPORTANT FACTS ABOUT DENSITIES

- ► A density is not a probability and can be greater than one, or even unbounded.
- A density is not unique. Since Pr(X = x) = 0 for every x, a density can be changed at a finite number of poins without affecting the probabilities from it.
- recovered using $\int_{-\infty}^{\infty} f(x) = 1$. Example: Triangle density: it is ► The normalization constant of a density can always be enough to know that $f(x) = c \cdot x$, for some constant c > 0.

PROBABILITY THEORY - L1

11 / 27

$$F(x) = \Pr(X \le x)$$
 for $-\infty \le x \le \infty$

- Same definition for discrete and continuous variables.
- ► The cdf is non-decreasing

If
$$x_1 \le x_2$$
 then $F(x_1) \le F(x_2)$

- ▶ Limits at $\pm \infty$: $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.
- For continuous variables: relation between pdf and cdf

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

and conversely

$$\frac{dF(x)}{dx} = f(x)$$

MATTIAS VILLANI (STATISTICS, LIU)

PROBABILITY THEORY - L1

FUNCTIONS OF RANDOM VARIABLES

- Quite common situation: You know the distribution of X, but need the distribution of Y = g(X), where $g(\cdot)$ is some function.
- Example 1: $Y = a + b \cdot X$, where a and b are constants.
- Example 2: Y = 1/X
- Example 3: Y = ln(X).
- Example 4: $Y = \log \frac{X}{1-X}$
- Y = g(X), where X is discrete.
- $f_X(x)$ is p.f. for X. $f_Y(y)$ is p.f. for Y:

$$f_Y(y) = \Pr(Y = y) = \Pr[g(X) = y] = \sum_{x:g(x)=y} f_X(x)$$

R COMMANDS FOR DISTRIBUTIONS ETC

- Example 1: Normal distribution with mean zero and unit variance:
- **dnorm(0)** gives the pdf in the point x = 0 (answer: 0.3989) **pnorm(0)** gives the cdf in the point x = 0 (answer: 0.5)
 - - ▶ qnorm(0.5) gives the 50-quantile (answer: 0).
 - rnorm(10) gives 10 random draws
- ► Example 2: Exponential distribution with mean one
- **dexp(0.5)** gives the pdf in the point x = 0.5 (answer: 0.6065)
- **pexp(0.5)** gives the cdf in the point x = 0.5 (answer: 0.3934) **qexp(0.9)** gives the 90-quantile (answer: 2.3026).
 - - rexp(10) gives 10 random draws
- Example 3. Plotting the standard normal pdf in R:
- $^{
 m v}$ x <- seq(-4,4,length=10000) # setting up a vector x with a grid of 10000 values between -4 and 4
 - plot(x,dnorm(x),type="I") # plotting the standard normal pdf as a
- See also http://cran.r-project.org/web/views/Distributions.html

MATTIAS VILLANI (STATISTICS, LIU)

13 / 27

PROBABILITY THEORY - L1

FUNCTION OF A CONTINUOUS RANDOM VARIABLE

▶ Suppose that X is continuous with support (a, b). Then

$$F_Y(y) = \Pr(Y \le y) = \Pr[g(X) \le y] = \int_{x: g(x) \le y} f_X(x) dx$$

▶ Let g(X) be monotonically *increasing* with inverse X = h(Y). Then

$$F_Y(y) = Pr(Y \le y) = Pr(g(X) \le y) = Pr(X \le h(y)) = F_X(h(y))$$

$$f_Y(y) = f_X(h(y)) \cdot \frac{\partial h(y)}{\partial y}$$

 $\,\blacktriangleright\,$ For general monotonic transformation $\,Y=g(X)$ we have

$$f_Y(y) = f_X[h(y)] \left| \frac{\partial h(y)}{y} \right| \text{ for } \alpha < y < \beta$$

where (α, β) is the mapped interval from (a, b).

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

Example 2: log-normal. $X \sim N(\mu, \sigma^2)$. $Y = g(X) = \exp(X)$. $X = h(Y) = \ln Y$.

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y - \mu\right)^2\right) \cdot \frac{1}{y} \text{ for } y > 0.$$

Example 3. $X \sim LogN(\mu,\sigma^2)$. $Y=a\cdot X$, where a>0. X=h(Y)=Y/a.

$$f_{Y}(y) = \frac{1}{y/a} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} \left(\ln\frac{y}{a} - \mu\right)^2\right) \frac{1}{a}.$$

$$= \frac{1}{y} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y - \mu - \ln a\right)^2\right)$$

which means that $Y \sim LogN(\mu + \ln a, \sigma^2)$.

MATTIAS VILLANI (STATISTICS, LIU)

PROBABILITY THEORY - L1

17 / 27

PROBABILITY THEORY - L1

18 / 27

MATTIAS VILLANI (STATISTICS, LIU)

► Continuous joint distribution (joint p.d.f.)

CONTINUOUS JOINT DISTRIBUTIONS

$$\Pr[(X,Y)\in C]=\iint_C f_{X,Y}(x,y)dxdy,$$

where $f_{X,Y}(x,y) \ge 0$ is the joint density.

- ► Univariate distributions: probability is area under density.
- Bivariate distributions: probability is volume under density.

▶ Be careful about the regions of integration. Example: $C = \{(x,y) : x^2 \le y \le 1\}$

EXAMPLES: FUNCTIONS OF A RANDOM VARIABLE

Example 4. $X \sim LogN(\mu, \sigma^2)$. $Y = X^a$, where $a \neq 0$. $X = h(Y) = Y^{1/a}$.

$$\begin{split} f_{Y}(y) &= \frac{1}{y^{1/a}} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(\ln y^{1/a} - \mu\right)^2\right) \frac{1}{a} y^{1/a-1}. \\ &= \frac{1}{y} \frac{1}{\sqrt{2\pi}a\sigma} \exp\left(-\frac{1}{2a^2\sigma^2} \left(\ln y - a\mu\right)^2\right) \end{split}$$

which means that $Y \sim Log N(a\mu, a^2\sigma^2)$.

BIVARIATE DISTRIBUTIONS

The joint (or bivariate) distribution of the two random variables X and Y is the collection of all probabilities of the form

$$\Pr\left[(X,\,Y) \in \mathit{C} \right]$$

- ► Example 1:
- \bullet X = # of visits to doctor.
- Y =#visits to emergency.
 C may be {(x, y) : x = 0 and y ≥ 1}.
 - ► Example 2:
- ightharpoonup X =monthly percentual return to SP500 index
 - Y =monthly return to Stockholm index.
- C may be $\{(x, y) : x < -10 \text{ and } y < -10\}$
- ▶ Discrete random variables: joint probability function (joint p.f.) such that $\Pr\left[(X,Y) \in C\right] = \sum_{(x,y) \in C} f_{X,Y}(x,y)$ and $f_{X,Y}(x,y) = \Pr(X = x, Y = y)$

► Example

$$f_{X,Y}(x,y) = \frac{3}{2}y^2$$
 for $0 \le x \le 2$ and $0 \le y \le 1$.

MATTIAS VILLANI (STATISTICS, LIU)

PROBABILITY THEORY - L1

BIVARIATE C.D.F.

▶ Joint cumulative distribution function (joint c.d.f.):

$$F_{X,Y}(x,y) = \Pr(X \le x, Y \le y)$$

▶ Calculating probabilities of rectangles $\Pr(a < X \le b \text{ and } c < Y \le d)$:

$$F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

- ► Properties of the joint c.d.f.
- ► Marginal of X: $F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$ ► $F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(r,s) dr ds$ ► $f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$

BIVARIATE NORMAL DISTRIBUTION

The most famous of them all: the bivariate normal distribution, with pdf

$$f_{X,Y}(x,y) = rac{1}{2\pi(1-
ho^2)^{1/2}\sigma_x\sigma_y} imes$$

$$\exp\left(-\frac{1}{2\left(1-\rho^2\right)}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2-2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right)+\left(\frac{y-\mu_y}{\sigma_y}\right)^2\right]\right)$$

• Five parameters: μ_x , μ_y , σ_x , σ_y and ρ .

MATTIAS VILLANI (STATISTICS, LIU)

21 / 27

PROBABILITY THEORY - L1

22 / 27

MARGINAL DISTRIBUTIONS

► Marginal p.f. of a bivariate distribution is

$$f_X(x) = \sum_{AII, y} f_{X,Y}(x, y)$$
 [Discrete case] $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$ [Continuous case]

lacktriangle A marginal distribution for X tells you about the probability of different values of X, averaged over all possible values of Y.

$$\Pr(X \in A \text{ and } Y \in B) = \Pr(X \in A) \cdot \Pr(Y \in B)$$

for all sets of real numbers A and B (such that $\{X \in A\}$ and $\{Y \in B\}$ are events) ► Two variables are independent if and only if the joint density can be factorized as

$$f_{X,Y}(x,y) = h_1(x) \cdot h_2(y)$$

- ▶ Note: this factorization must hold for all values of x and y. Watch out for non-rectangular support!
- ► X and Y are independent if learning something about X (e.g. X > 2) has no effect on the probabilties for different values of Y.

MATTIAS VILLANI (STATISTICS, LIU)

PROBABILITY THEORY - L1

MATTIAS VILLANI (STATISTICS, LIU)

25 / 27

PROBABILITY THEORY - L1

26 / 27

FUNCTIONS OF RANDOM VECTORS

- ► Let X be an n-dimensional continuous random variable
- ▶ Let X have density $f_X(x)$ on support $S \subset \mathbb{R}^n$.
- ▶ Let Y = g(X), where $g : S \to T \subset \mathbb{R}^n$ is a bijection (1:1 and onto).
 - $lack Assume\ g\ and\ g^{-1}$ are continuously differentiable with Jacobian

THEOREM

The density of Y is

$$f_{Y}(\mathbf{y}) = f_{X}[h_{1}(\mathbf{y}), h_{2}(\mathbf{y}), ..., h_{n}(\mathbf{y})] \cdot |\mathbf{J}|$$

where $h = (h_1, h_2, ..., h_n)$ is the unique inverse of $g = (g_1, g_2, ..., g_n)$.

MULTIVARIATE DISTRIBUTIONS

- ▶ Obvious extension to more than two random variables, $X_1, X_2, ..., X_n$.
- Joint p.d.f.

$$f(x_1, x_2, ..., x_n)$$

► Marginal distribution of x₁

$$f_1(x_1) = \int_{x_2} \cdots \int_{x_n} f(x_1, x_2, ..., x_n) dx_2 \cdots dx_n$$

 \blacktriangleright Marginal distribution of x_1 and x_2

$$f_{12}(x_1, x_2) = \int_{x_3} \cdots \int_{x_n} f(x_1, x_2, ..., x_n) dx_3 \cdots dx_n$$

and so on.