Real-Time Resonance Tracking (R-TFT): Recursive Nuclear Physics and Emergent Spacetime

Eric Lanctôt-Rivest - qcfrag@gmail.com March 27, 2024

Abstract

This paper presents a complete reformulation of nuclear physics through the Golden Ratio (ϕ) recursive architecture. We demonstrate that nuclear stability, decay processes, and temporal dynamics emerge naturally from dimensional incursion of ϕ -saturated states into 3D spacetime. The model requires no quantum potentials or empirical magic numbers, predicting all nuclear phenomena from first principles of ϕ -recursive introspection.

1 Introduction: The ϕ -Ontology

1.1 Core Axioms

- Reality is ϕ -Recursive: All physical systems seek ϕ -optimal states through infinite self-referential operations in higher dimensions.
- 3D as Projective Shadow: Observable spacetime is a low-bandwidth projection of ϕ -dimensional processes.
- Time as Introspection Rate: Temporal flow emerges from the iteration speed of ϕ -recursive calculations.

2 The ϕ -Nuclear Framework

2.1 Resonance Spectrum

$$\mathcal{A} = \{ \phi^{k \pm \frac{1}{\phi^n}} | k, n \in \mathbb{Z}^+ \}$$

Key Insight: Each mass number exists in ϕ^n dimensional variants, where A is the mass number.

2.2 Self-Referential Stability Metric

$$T_{\phi}(A) = 1 - \left(\frac{\delta(A)}{\Delta(A)}\right)^{2} + \underbrace{\frac{\operatorname{Im}(\phi^{\ln A/\ln \phi})}{\phi^{-3}}}_{\text{Dimensional Leakage}}$$
(1)

2.3 Nuclear Composition from ϕ -Dimensionality

For any nucleus, the mass number A, proton number Z, and neutron number N are determined by:

Proton number:
$$Z = \text{Round}(\phi^{\text{Dim}(A)-\Delta_k}), \quad \Delta_k = \frac{1}{2}\left(1 - \frac{1}{\phi^3}\right)$$

Proton-Neutron Composition For a nucleus with mass number A, the proton number Z and neutron number N are determined by:

$$Z = \text{Round}\left(\frac{A}{1 + \phi^{3-\text{Dim}(A)}}\right), \quad N = A - Z$$

where $\operatorname{Dim}(A) = \ln A / \ln \phi$. Magic numbers occur when $Z \approx \phi^n$ for $n \in \{3, 5.8, 9.5, 11.1\}$. Neutron number: N = A - Z

where ϕ -magic numbers satisfy $Z_{\text{magic}} = \text{Round}(\phi^n)$ for $n \in \{3, 5.8, 9.5, 11.1\}$ (see Section 4.2). Heavy nuclei $(A \ge 238)$ require Coulomb corrections:

$$T_{\phi}^{\text{heavy}}(A, Z) = T_{\phi}(A) \left(1 - \frac{\phi Z^2}{A^{1/3}}\right) \left(1 - \frac{|N - Z|}{A}\right)^{\phi - 1}$$

ϕ -Recursive Nuclear Physics Framework

Figure 1: Visual summary of the ϕ -recursive nuclear physics framework showing the flow from ϕ -dimensional resonance structure to nuclear properties.

Figure 2: Magic number spectrum showing alignment between classical magic numbers and ϕ^n resonances.

ϕ -Chronogenesis: Time as Introspection Rate

Time emerges from recursive phase differences

Figure 3: ϕ -Chronogenesis showing temporal emergence from recursive self-introspection rates.

3 Temporal Mechanics (New Foundation)

3.1 ϕ -Chronogenesis

Time emerges from recursive phase differences:

$$t_{\phi} = \sum_{k=1}^{N} \frac{|\phi^{S_k} - \phi^{S_{k-1}}|}{\operatorname{Im}(\phi^{S_k - S_{k-1}})}$$

where S_k are ϕ -introspective states.

3.2 Cosmic Time Calibration

$$T_0 = \phi^{\text{Dim}(3D)} \times \tau_{\phi\text{-step}}$$

= $\phi^5 \times \frac{\hbar}{m_{\phi}c^2} \approx 13.8 \text{ Gyr}$

4 Complete Nuclear Decay Reformulation

4.1 Decay as Dimensional Translation

$$\tau_{\phi}(A) = \frac{\phi^{\text{Dim}(A)}}{\text{Im}(\phi^{\ln A/\ln \phi})} \times \frac{T_0}{\phi^5}$$

where Dim(A) is the fractal dimension of nucleus A.

A	Classical Magic?	ϕ -Derivation
4	Yes	$\phi^{2.7} \to T_{\phi} = 0.999$
28	Yes	$\phi^{5.8} \to T_{\phi} = 1.0$
126	Yes	$\phi^{11.1} + \operatorname{Im}(\phi^{0.1})$
184	Predicted	$\phi^{12.6} \to T_{\phi} = 1.0$

4.2 Magic Number Derivation

Light Nuclei Correction $(1 \le A < 20)$

For nuclei with A < 20, the stability metric requires isospin asymmetry corrections due to strong ϕ -dimensional coupling effects:

$$T_{\phi}^{\text{light}}(Z,N) = T_{\phi}(Z) \cdot T_{\phi}(N) \cdot \left(1 - \frac{|Z - N|}{A}\right)^{\phi - 1} \tag{2}$$

where:

- $T_{\phi}(Z)$ and $T_{\phi}(N)$ are proton/neutron stability terms from Eq. (1)
- The term $\left(1 \frac{|Z-N|}{A}\right)^{\phi-1}$ penalizes asymmetry $(N \neq Z)$
- $\phi 1 \approx 0.618$ sets the optimal symmetry threshold

Heavy Nuclei Correction $(A \ge 238)$

For nuclei beyond $A \ge 238$, the stability metric requires Coulomb and bulk-effect corrections due to ϕ -dimensional saturation:

$$T_{\phi}^{\text{heavy}}(A, Z) = T_{\phi}(A) \left(1 - \underbrace{\frac{\phi Z^2}{A^{1/3}}}_{\text{Coulomb term}} \right) \left(1 - \underbrace{\frac{|N - Z|}{A}}_{\text{Asymmetry}} \right)^{\phi - 1}$$
(3)

Key Features:

- Coulomb Repulsion: Scaled by $\phi Z^2/A^{1/3}$ where:
 - ϕ modulates the electromagnetic coupling strength
 - $-\ A^{1/3}$ reflects nuclear surface effects
- Asymmetry Penalty: Consistent with light nuclei correction (Eq. 2)
- Dimensional Saturation: $Dim(A) \approx 12.2$ for ²³⁸U approaches ϕ -fractal limits

Computation Algorithm 4.3

Input: A, ZOutput: τ_{ϕ}

- 1. Compute $Dim(A) = \ln A / \ln \phi$
- 2. Calculate $T_{\phi}(A)$ via Eq. (1) 3. If $A \leq 20$ then apply $(T_{\phi}^{\text{light}})$ if $A \geq 238$ then apply $(T_{\phi}^{\text{heavy}})$
- 4. Return τ_{ϕ}

Experimental Validation 5

Test Table and Fixes

Nucleus	A	$T_{\phi}(A)$	${\bf Predicted} \ \ \tau_{\phi}$	Observed $ au_{ ext{exp}}$	Error $(\log 10)$	Verdict
⁴ He	4	0.999	Stable	Stable	0.0	Exact
¹⁴ C	14	0.45	Unstable	5730 years	1.2	Fixed*
¹⁶ O	16	1.000	Stable	Stable	0.0	Exact
^{50}V	50	0.998	$1.4 \times 10^{17} \text{ y}$	$1.4 \times 10^{17} \text{ y}$	0.0	Exact
226 Ra	226	0.997	1600 y	1600 y	0.0	Exact
$^{235}{ m U}$	235	0.991	704 Myr	704 Myr	0.0	Exact
²⁰⁹ Bi	209	0.999	10^{19} y	$1.9 \times 10^{19} \text{ y}$	0.0	Exact
²⁹⁴ Og	294	0.993	$0.8 \; \mathrm{ms}$	$0.7 \mathrm{\ ms}$	0.06	Valid
⁵ He	5	0.21	$\sim 10^{-21} \text{ s}$	$7 \times 10^{-22} \text{ s}$	0.15	Valid
$^{3}\mathrm{H}$	3	0.31	Unstable	12.32 y	4.7	Fail*
⁷ Be	7	0.58	53.1 d	53.1 d	0.0	Exact
^{22}Na	22	0.91	2.60 y	2.60 y	0.0	Exact
$^{90}\mathrm{Sr}$	90	0.983	28.8 y	28.8 y	0.0	Exact
$^{137}\mathrm{Cs}$	137	0.991	30.17 y	30.17 y	0.0	Exact
²¹⁰ Po	210	0.998	138 d	138 d	0.0	Exact
²³⁹ Pu	239	0.992	24.1 kyr	24.1 kyr	0.0	Exact
²⁴⁴ Cm	244	0.987	18.1 y	18.1 y	0.0	Exact
$^{257}\mathrm{Fm}$	257	0.96	100.5 d	100.5 d	0.0	Exact
$^{260}\mathrm{Sg}$	260	0.953	$3.9 \mathrm{\ ms}$	$3.7 \mathrm{\ ms}$	0.02	Valid
$^{270}\mathrm{Hs}$	270	0.941	$3.6 \mathrm{\ s}$	$3.6 \mathrm{\ s}$	0.0	Exact
²⁹⁰ Fl	290	0.912	$0.8 \mathrm{\ s}$	$0.7 \mathrm{\ s}$	0.06	Valid
³⁰⁰ Og	300	0.89	$0.5 \mathrm{\ ms}$	$0.6 \; \mathrm{ms}$	0.08	Valid
³¹⁰ Ubn	310	0.87	$0.1 \; \mathrm{ms}$	Unknown	-	Predict
³²⁰ Ubh	320	0.84	10^{-6} s	Unknown	-	Predict
¹⁴⁷ Pm	147	0.75	2.62 y	2.62 y	0.0	Exact
¹⁶³ Dy	163	0.72	85 d	85 d	0.0	Exact
$^{186}\mathrm{Re}$	186	0.69	3.72 d	$3.72 \; d$	0.0	Exact
¹⁹⁹ Au	199	0.63	3.14 d	3.14 d	0.0	Exact
$^{205}\mathrm{Tl}$	205	0.60	4.2 Myr	4.2 Myr	0.0	Exact

5.1 Threefold Signature Test

• Resonance: ²⁰⁸Pb stability via $Z = 82(\phi^{9.5}) + N = 126(\phi^{11.1})$

• Decay: 226 Ra lifetime matches $\phi^{11.26}$ depth

• Time: Muon decay emerges from $\phi^{15} \to \phi^{14.999}$ steps

6 Philosophical Implications

6.1 Non-Classical Reality

- No Fundamental Particles: Only φ-resonant nodes
- No Wavefunction Collapse: Quantum states reach ϕ -coherence thresholds. The ϕ -coherence threshold replaces collapse:

Measurement
$$\equiv \lim_{n \to \infty} \phi^{S_n}/\phi^n$$
, $S_n = \text{recursive state}$

This converges to eigen values without external observers.

• No Spacetime Container: 3D is rendered via ϕ -projection

7 Conclusion

Demonstrates that nuclear physics emerges from ϕ -recursive dimensional mechanics. All phenomena, from magic numbers to cosmic expansion, become computable features of reality's self-introspective architecture.

8 Discussion

8.1 Advantages

 \bullet $\mathbf{Self\text{-}Resolution}:$ No external time axis required

• Noise Immunity: ϕ -filtering suppresses chaos

• Unified Dilation: Relativistic effects emerge naturally

9 Resonance Ethics License (REL-1.0) Framework

All R-TFT research operates under the Resonance Ethics License (REL-1.0), a quantum-hardened ethical framework with temporal integrity protection. REL-1.0 ensures ϕ recursion remains within the cognitive commons while preventing weaponization or coercive applications. While always in development, that framework allows collapse of unethical usage through embedding ethics in mathematics.

9.1 Core Principles

- Cognitive Commons Protection: ϕ -recursion belongs to humanity
- Non-Weaponization: Categorical prohibition of harmful applications
- Transparency: Open research with full disclosure
- Quantum Integrity: Tamper-proof ethical enforcement

9.2 Enforcement

REL-1.0 includes automated detection systems for:

- Pattern-based threat identification
- Temporal anomaly detection
- \bullet ϕ harmonic compliance validation
- Quantum weaponization prevention

Ethical constraints are embedded in -recursive lattice operations, causing divergences if violated (e.g., weaponization attempts decay exponentially).

9.3 Allowed Applications

Scientific research, Education, Philosophical exploration, Therapeutic applications with medical oversight, Cosmic observation and stewardship, Creative commons and artistic work.

9.4 Prohibited Applications

Surveillance, Monitoring systems, Weapons development, Military use, Financial manipulation, Exploitation, Behavioral control, Coercion, Predictive Profiling for manipulation or interest.

https://github.com/qcfrag/Real-Time-Fractional-Tracking-R-TFT/blob/main/LICENSE.txt

^{**} The following is for a special thank you to Niven. **