Разбор задач

третий этап республиканской олимпиады по информатике, январь 2021

Члены жюри Минской области, студенты БГУИР:

Камеко Валерий, Северин Клим, Яценко Станислав

День 1

- Есть матрица, в некоторых клетках которой установлен забор.
- Даны координаты клеток с забором.
- Требуется определить образуют ли все эти клетки с забором квадратную оболочку, если да, то вывести координаты левой верхней клетки и сторону квадрата, иначе вывести -1.

- Рассмотрим ситуацию, когда у нас задан квадрат, для которого ответ не -1.
- Заметим, что существуют заборы у которых координаты x совпадают. Также эти заборы задают левую или правую сторону квадрата.
- Аналогично и с координатой y.

- Пусть cnt_up количество клеток, которые имеют координату $y=y_1$;
- cnt_down количество клеток, которые имеют координату $y=y_2$;
- cnt_left количество клеток, которые имеют координату ${\bf x}={\bf x_1};$
- cnt_right количество клеток, которые имеют координату ${\bf x}={\bf x}_2$;
- Тогда для квадратной области состоящей из всех клеток должны выполняться следующие условия:
 - $cnt_up = cnt_down = cnt_left = cnt_right;$
 - $n+4=cnt_up+cnt_down+cnt_left+cnt_right$ // за исключением когда n=1

- Проверяем условия и если все хорошо, то в ответ можно вывести $x_1 \ y_1 \ cnt_up$, иначе -1.
- Сложность $\boldsymbol{o}(\boldsymbol{n})$.

Задача 2. Игра с числами

Задача 2. Игра с числами

- ullet Дан массив $oldsymbol{a}$ состоящий из $oldsymbol{n}$ элементов.
- Массив $m{b}$ состоящий из $m{k}$ элементов, $m{1} \leq m{b}_i \leq m{2}$ определяет кто будет ходить Петя или Petya++.
- На своем ходу игрок может выбрать любой элемент из массива \pmb{a} и изменить его знак на противоположный.
- Задача Пети максимизировать сумму, Задача Petya++ минимизировать сумму.
- В ответ вывести сумму элементов массива \pmb{a} .

Задача 2. Игра с числами

- Воспользуемся «жадным» подходом.
- Заметим, что если наша задача увеличить сумму, то имеет смысл изменять знак только у отрицательных чисел. Если же мы хотим уменьшить сумму, то следует менять знак у положительного числа.
- При этом нам выгоднее брать числа, модуль которых больше, так как они сильнее повлияют на сумму.

Тогда:

- Если нам нужно максимизировать сумму, то нам будет выгодно за свой ход взять самое минимальное отрицательное число и изменить его знак.
- Если нам нужно минимизировать сумму, то нам будет выгодно взять самое большое положительное число и изменить его знак.

Задача 2. Игра с числами (44 балла)

- Проходимся по массиву \boldsymbol{b} и если текущий ход Пети, то ищем за $O(\boldsymbol{n})$ минимальный элемент. Если он отрицательный, то меняем его знак. Если же текущий ход Petya++, то ищем максимальный элемент и, если он положительный, то меняем его знак.
- В конце считаем сумму массива \pmb{a} .
- Сложность $O(n^2)$.

Задача 2. Игра с числами (100 баллов)

- Ход решения точно такой же.
- Для нахождения минимума и максимума будем использовать какую-нибудь структуру данных, которая будет позволять делать это за $O(\log n)$. Например АВЛ-дерево.
- Сложность $O(n * \log n)$.

Задача 3. Вражеские шпионы

Задача 3. Вражеские шпионы

- На вход подается прямоугольная матрица n*m с закрашенными «#» и не закрашенными «#» и не закрашенными «#» клетками.
- Требуется посчитать количество подозрительных подматриц.
- Подозрительными являются подматрицы вида:

1,1	1,2
2,1	2,2

1,1	1,2	1,3
2,1	2,1	2,3
3,1	3,1	3,3

1,1	1,2	1,3	1,5
2,1	2,2	2,3	2,5
3,1	3,2	3,3	3,5
4,1	4,2	4,3	4,5

1,1	1,2	1,3	1,4	1,5
2,1	2,2	2,3	2,4	2,5
3,1	3,2	3,3	3,4	3,5
4,1	4,2	4,3	4,4	4,5
5,1	5,2	5,3	5,4	5,5

- Решение задачи для ограничений $n, m \leq 2$.
- Необходимо проверить является ли матрица размера (2х2) подозрительной.
- Проверка четырех значений массива.

матрица

- Решение задачи для ограничений $n, m \le 3$.
- Необходимо проверить является ли матрица размера 3х3 подозрительной или одна из четырех матриц 2х2.
- Необходимо написать 5 условий.

Одна подозрительная подматрица

Одна подозрительная подматрица

Две подозрительные подматрица

1,1	1,2	1,3
2,1	2,1	2,3
3,1	3,1	3,3

Не подозрительная матрица

- Частично решить задачу можно организовав полный перебор и проверку всех подматриц матрицы.
- За $O(n^2)$ переберем все клетки матрицы левый верхний угол "креста".
- За O(n) перебираем все размеры "крестов".
- За $O(n^2)$ проверяем чтобы диагонали "крестов" были закрашены, а остальные клетки подматрицы чистыми.
- Для "крестов" четного и нечетного размера будет отличатся формула для проверки диагоналей.
- Итоговая асимптотика $O(n^5)$.

- Полное решение является оптимизацией частичного решения 3.
- Для решения задачи необходимо научится быстро (за O(1)) проверять подматрицу на подозрительность, для этого необходимо проверить главную и побочную диагонали, и отсутствие закрашенных клеток вне диагоналей.

- Последним условием подозрительной подматрицы, необходимо проверить отсутствие закрашенных клеток кроме диагоналей.
- Для этого необходимо посчитать количество закрашенных клеток в подматрице и сравнить с длинами двух диагоналей.
- Сделать это можно с помощью префиксной суммы на матрице.

Префиксные суммы

• Пример:

• Идея префиксных сумм проста донельзя. Запишем сумму на отрезке [L; R] в таком виде:

$$\sum_{i=L}^{R} a_i = \sum_{i=0}^{R} a_i - \sum_{i=0}^{L-1} a_i$$
3 4 5 6 7 8 9 10

28

36

45

55

21

- Сумму элементов 5-7 можно посчитать как сумму элементов 1-7 минус элементы 1-4. (28-10=5+6+7)
- Подробнее про одномерные и двумерные префиксные суммы https://brestprog.by/topics/prefixsums/

10

- Для проверки диагоналей посчитаем префиксную сумму, это позволит находить число закрашенных клеток на диагонали за O(1).
- Для префиксной суммы основных диагоналей формула:

$$d_1[i][j] = d_1[i-1][j-1] + matrix[i][j]$$

- Где d_1 матрица префиксных сумм основных диагоналей, matrix матрица закрашенных клеток.
- Для проверки закрашенных клеток на диагонали подматрицы:

$$Size = d_1[y_1][x_1] - d_1[y_0 - 1][x_0 - 1]$$

- x_1, y_1 координаты правого нижнего угла проверяемой подматрицы;
- x_0, y_0 координаты левого верхнего угла проверяемой подматрицы;
- *Size* размер проверяемой подматрицы(который равен длине диагонали).

1,1	1,2	1,3	1,4
2,1	2,2	2,3	2,4
3,1	3,2	3,3	3,4
4,1	4,2	4,3	4,4

• Для префиксной суммы побочных диагоналей формула:

$$d_2[i][j] = d_2[i-1][j+1] + matrix[i][j]$$

- d_2 матрица префиксных сумм побочных диагоналей;
- *matrix* матрица закрашенных клеток.
- Обход по матрице для подсчета префиксной суммы побочных диагоналей необходимо делать в направлении сверху вниз, справа налево.
- Для проверки закрашенных клеток на побочной диагонали подматрицы:

$$Size = d_2[y_1][x_0] - d_1[y_0 - 1][x_1 + 1]$$

- x_1, y_1 координаты правого нижнего угла проверяемой подматрицы;
- x_0, y_0 координаты левого верхнего угла проверяемой подматрицы;
- *Size* размер проверяемой подматрицы (который равен длине диагонали).

1,1	1,2	1,3	1,4
2,1	2,2	2,3	2,4
3,1	3,2	3,3	3,4
4,1	4,2	4,3	4,4

- Исходя из вышеперечисленного мы научились быстро отвечать на запрос является ли подматрица с координатами i, j, размера size подозрительной.
- Перебирая координаты центра (или верхнего левого угла) исследуемой подматрицы и ее размер мы можем ответить подозрительная ли она.
- Подозрительная матрица размера *size* (5x5) будет включать [*size* / 2] (2) подозрительных подматриц (5x5 и 3x3).
- Таким образом нам необходимо найти максимальный размер подматрицы и она будет включать подматрицы меньших размеров.

1,1	1,2	1,3	1,4	1,5
2,1	2,2	2,3	2,4	2,5
3,1	3,2	3,3	3,4	3,5
4,1	4,2	4,3	4,4	4,5
5,1	5,2	5,3	5,4	5,5

- При подборе "крестов" четных и нечетны размеров, формула для проверки диагоналей будет отличаться.
- Итоговая асимптотика алгоритма составит $O(n^3)$, однако алгоритм будет работать за время $O(n^2)$ так как подбор размера "креста" будет сразу прекращаться если мы не находимся в центре "креста".

1,1	1,2	1,3	1,5
2,1	2,2	2,3	2,5
3,1	3,2	3,3	3,5
4,1	4,2	4,3	4,5

1,1	1,2	1,3	1,4	1,5
2,1	2,2	2,3	2,4	2,5
3,1	3,2	3,3	3,4	3,5
4,1	4,2	4,3	4,4	4,5
5,1	5,2	5,3	5,4	5,5

Задача 4. Мощный процессор

Задача 4. Мощный процессор

- Дан массив $oldsymbol{a}$ состоящий из $oldsymbol{n}$ элементов, при этом $0 \leq a_i \leq 7$.
- Требуется выполнить q запросов двух типов:
 - $xor\ l_j\ r_j\ v_j$ заменить элементы a_i на $a_i\otimes v_j$ для на отрезке от l_j до r_j .
 - $seq\ l_j\ r_j$ вывести длину наибольшей возрастающей (НВП) последовательности на отрезке от l_i до r_i .

Задача 4. Мощный процессор (22 балла)

- Ограничения на группу n, $q \leq 1000$.
- Для каждого запроса типа xor изменяем проходим по заданному отрезку $l_j \, r_j$ и изменяем значения элементов a_i на $a_i \otimes v_j$.
- При поступлении запроса на подсчет НВП проходим по отрезку поддерживая массив cnt_k текущие длины НВП которые заканчиваются на число k, при этом обновляя по формуле $cnt_k = max(cnt_k, cnt_h + 1)$, для h < k. Ответ на запрос $max(cnt_k)$.
- Сложность O(nq).

Задача 4. Мощный процессор (34 балла)

- Ограничения на группу $a_i \leq 1$.
- Заметим, что НВП может быть либо длины 1, либо длины 2 и при этом равна последовательности ${f 0},{f 1}.$
- Построим дерево отрезков (ДО) над заданным массивом в котором будем хранить минимальный индекс 0 и максимальный индекс 1 на отрезке.
- Для ответа на запрос *seq* выполним запрос в ДО, и если индекс 0 на отрезке меньше индекса 1, то можно собрать НВП длины 2 иначе 1.
- Для выполнения запроса xor выполним групповую модификацию на заданном отрезке.
- Сложность O(nq * log(n)).

Задача 4. Мощный процессор (100 балла)

- Построим ДО на заданном массиве, в котором будем хранить минимальный индекс каждого числа на отрезке.
- Для ответа на запрос seq вычислим значения $dp_{i,k}$ минимальная длина префикса отрезка, на котором можно построить НВП длины i и которая заканчивается на число k.
- Для просчета динамического программирования будем использовать формулу: $dp_{i+1,h} = \max(dp_{i+1,h},idx_{h,dp_{i,k}+1})$, где $idx_{h,t}$ индекс первого вхождения h в отрезок от t до r.

Задача 4. Мощный процессор (100 балла)

- Массив $idx_{h,t}$ можно получить с помощью запроса в ДО на отрезке от t до r.
- Запрос xor обрабатывается с помощью групповой модификации ДО на отрезке l_i до r_i .
- Сложность O(cq * log(n)), где c = 64.

День 2

- Дан набор команд участвующих в соревновании.
- Последовательность матчей названий двух команд участвующих в соревновании и количества голов забитых командами соответственно.
- Если чемпионат еще не закончился требуется вывести количество игр до завершения.
- Если чемпионат закончился, то вывести победителя.

- Первым делом проверим завершились ли все матчи: количество матчей среди n команд можно найти по формуле n*(n-1).
- Если это значение не совпадает с m выводим "NO" и количество оставшихся матчей по формуле n*(n-1)-m.
- В случае когда все матчи закончились: читаем названия команд и выполняем их сортировку в лексикографическом порядке.
- Далее читаем m строк информацию о матчах.
- Если победила первая команда, то выполняем поиск имени первой команды в массиве имен, и прибавляем 3 в массив результата по индексу позиции имени в массиве имен.

results[find(name) in names] += 3

• Аналогично для случая победы второй команды.

- После обработки всех матчей выполняем поиск максимума в массиве результатов.
- И выводим имя победившей команды.
- Данную задачу можно решить с использованием ассоциативного контейнера типа тар храня пару (название команды, результат).

- Дан массив $oldsymbol{a}$ состоящий из $oldsymbol{n}$ элементов.
- Есть некоторая функция:

$$S(a) = \max(a_1 + a_2, a_2 + a_3, ..., a_{n-1} + a_n)$$

- Требуется минимизировать значение этой функции для массива $oldsymbol{a}$ путем перестановки элементов.
- В ответ вывести минимальное значение функции и последовательность, дающая это значение.

- Заметим, что на значение функции влияют соседние два числа из массива $oldsymbol{a}$.
- Значит, нам нужно постараться переставить элементы в массиве, так чтобы минимизировать $a_i + a_{i+1}$.
- Для этого удобно располагать последовательно максимальное и минимальное число из оставшегося набора чисел. Поэтому отсортируем массив по возрастанию.
- Тогда итоговая последовательность будет выглядеть так:

$$a_n a_1 a_{n-1} a_2 a_{n-2} a_3 a_{n-3} a_4 \dots$$

- Если использовать обычную сортировку, то можно получить 52 балла.
- Сложность $O(n^2)$.

- Используя любую из быстрых сортировок над массивом a мы получим решение на 100 баллов.
- Сложность $O(n * \log n)$.

Задача 3. Быстрые вычисления

Задача 3. Быстрые вычисления

- Дан отрезок $[{m l},{m r}]$ и число ${f s}$.
- Требуется найти количество таких подотрезков $[i,j] \in [l,r]$, для которых соблюдается условие:

$$F(i,j) = i \otimes (i+1) \otimes \cdots \otimes j = \bigotimes_{k=i}^{j} k = s$$

• где 🛇 – означает операцию исключающего или (xor).

Задача 3. Быстрые вычисления (21 балл)

- Переберем концы подотрезка $[\pmb{i}, \pmb{j}]$
- В процессе перебора будем поддерживать xor чисел отрезка. Каждый раз, когда xor равен s будем обновлять ответ.
- ullet Сложность $\mathrm{O}(n^2)$, где n=r-l.

Задача 3. Быстрые вычисления (34 балла)

• Заметим, что xor отрезка [i,j] равен:

$$i \otimes (i+1) \otimes \cdots \otimes j = \bigotimes_{k=i}^{j} k =$$

$$= \left(\bigotimes_{k=0}^{j} k\right) \otimes \left(\bigotimes_{k=0}^{i-1} k\right) = F(0,j) \otimes F(0,i-1)$$

• Тогда используя это свойство можно предпросчитать префикссуммы $f_i = F(\mathbf{0}, i)$.

Задача 3. Быстрые вычисления (34 балла)

- Переберем правую границу подотрезка ј.
- Чтобы найти количество левых границ i, таких что отрезок [i,j] удовлетворяет требуемому условию. Нужно для $\mathbf{f_j}$ посчитать количество таких $\mathbf{f_i} = f_i \otimes s$.
- Для этого будем поддерживать статистику количества вхождений f_i с помощью любого ассоциативного контейнера.
- После чего на каждой итерации будем прибавлять к ответу количество $\mathbf{f}_i = f_i \otimes s$.
- Сложность O(n*log(n)), где n=r-l.

Задача 3. Быстрые вычисления (50 балла)

- Ограничения s = 0.
- Заметим, что если t=4k , то $t\otimes (t+1)\otimes (t+2)\otimes (t+3)=0$. Значит f_i равно:
 - i для i=4k
 - 1 для i = 4k + 1
 - i+1 для i=4k+2
 - 0 для i = 4k + 3
- Так как $F(i,j) = \mathbf{0}$ только, при $f_j = f_{i-1}$, а учитывая предыдущее свойство это может быть только если $f_i = f_{i-1}$ равно $\mathbf{0}$ или $\mathbf{1}$.
- Поэтому можно посчитать количества 0 и 1 на отрезке cnt_0 и cnt_1 . Послу чего ответ будет равен $\frac{cnt_0(cnt_0+1)}{2} + \frac{cnt_1(cnt_1+1)}{2}$.

Задача 3. Быстрые вычисления (100 баллов)

- Посчитаем ДП dp, со следующими измерениями:
 - bit_index индекс префикса который уже собран;
 - i_suffix суффикс (последние 2 бита) левой границы i-1;
 - j_suffix суффикс (последние 2 бита) левой границы j;
 - i_eq_j равен ли собранный префикс i-1 префиксу j;
 - i_eq_l равен ли собранный префикс i-1 префиксу l;
 - **j**_ eq_r равен ли собранный префикс j префиксу r;
- Для упрощения просчета состояний можно использовать DFS с мемоизацией, запоминая уже просчитанные состояния в массиве.

Задача 3. Быстрые вычисления (100 баллов)

- Для просчета текущего состояния ДП нужно перебрать бит i и бит i чтобы увечить проверяемый префикс.
- После чего нужно проверить возможен переход, а именно:
 - Идут ли $\boldsymbol{l}, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{r}$ в возрастающем порядке
 - Равен ли bit_index —й бит $\mathbf{F}(i,j)$ bit_index —ому биту s.
- Значением текущего состояния ДП является сумма значений по переходам ДП.
- После можно вычислить ответ как сумма ДП по всем возможным суффиксам i_suffix и j_suffix .
- Сложность O(C*log(n)), где $n=r-l,\ C$ константа, не зависящая от n.