Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2021/22 (6. přednáška)

Problémy ověřitelné v polynomiálním čase

Hamiltonovská kružnice

Hamiltonovská kružnice (HK)

Instance: Neorientovaný graf G = (V, E).

Otázka: Obsahuje G cyklus, který prochází všemi vrcholy?

- Lze navštívit každé město na mapě právě jednou a vrátit se domů?
- Jednoduše ověřitelné zda posloupnost vrcholů určuje hamiltonovskou kružnici
- Obtížné zjistit, zda daný graf obsahuje hamiltonovskou kružnici

Verifikátor čili ověřovatel

Verifikátorem pro jazyk A je algoritmus V, pro který platí, že

$$A = \{x \mid (\exists y)[V(x, y) \text{ přijme}]\}$$

Časovou složitost verifikátoru měříme pouze vzhledem k |x|

- Polynomiální verifikátor je takový, který pracuje v polynomiálním čase vzhledem k |x|
- Řetězec y zveme také certifikátem x
- Pokud V(x, y) přijme, přečte jen prefix y polynomiální délky
- Stačí uvažovat polynomiální certifikáty y, které mají délku polynomiální v |x|

Verifikátor pro hamiltonovskou kružnici

Hamiltonovská kružnice (HK)

Instance: Neorientovaný graf G = (V, E).

Otázka: Obsahuje G cyklus, který prochází všemi vrcholy?

Verifikátor V pro hamiltonovskou kružnici

```
Input: Graf G = (V, E) a posloupnost vrcholů \mathbf{v} = (v_1, \dots, v_\ell)
```

- 1 if $\ell \neq |V|$ then odmítni
- **2** if $v_i = v_j$ pro nějakou dvojici indexů $i \neq j$ then odmítni
- $\mathbf{3}$ for i=1 to n-1 do
- 4 | **if** $\{v_i, v_{i+1}\} \notin E$ **then** odmítni
- 5 **if** $\{v_n, v_1\}$ ∉ E **then** odmítni
- 6 přijmi

Třída NP

Definice

NP je třídou jazyků, které mají polynomiální verifikátory.

- Odpovídá třídě úloh, u nichž jsme schopni v polynomiálním čase ověřit, zda daný řetězec je řešením
- NP je třída jazyků, přijímaných nedeterministickými Turingovými stroji v polynomiálním čase
- Nedeterminismus zde odpovídá "hádání" správného certifikátu y pro vstup x

P vs. NP

- P jazyky, pro něž je možné rychle rozhodnout, zda do dané slovo patří do jazyka
- NP jazyky, pro něž je možné rychle ověřit že dané slovo patří do jazyka

Triviálně $P \subseteq NP$

Otázka, zda P = NP je otevřená.

Nedeterministický Turingův stroj

Nedeterministický Turingův stroj (NTS) je pětice $M = (Q, \Sigma, \delta, q_0, F)$

- Q, Σ, q_0, F mají týž význam jako u "obyčejného" deterministického Turingova stroje (DTS).
- Rozdíl oproti DTS je v přechodové funkci, nyní

$$\delta: Q \times \Sigma \mapsto \mathcal{P}(Q \times \Sigma \times \{L, N, R\}).$$

- Možné představy
 - NTS M v každém kroku "uhodne" nebo "vybere" správnou instrukci.
 - NTS M vykonává všechny možné instrukce současně a nachází se během výpočtu ve více konfiguracích současně.

Nedeterministický Turingův stroj není reálný výpočetní model ve smyslu silnější Churchovy-Turingovy teze.

Jazyk přijímaný NTS

- Výpočet NTS M nad slovem x je posloupnost konfigurací C₀, C₁, C₂,..., kde
 - C₀ je počáteční konfigurace se vstupem x a
 - z C_i do C_{i+1} lze přejít pomocí přechodové funkce δ
- Výpočet je přijímající, pokud je konečný a v poslední konfiguraci výpočtu se M nachází v přijímajícím stavu
- NTS M přijme slovo x pokud M(x) připouští přijímající výpočet
- Jazyk slov přijímaných NTS M označíme pomocí L(M)

Časová a prostorová složitost NTS

Definice

Nechť M je nedeterministický Turingův stroj a nechť $f: \mathbb{N} \mapsto \mathbb{N}$ je funkce.

- Řekneme, že M pracuje v čase f(n), pokud každý výpočet M nad libovolným vstupem x délky |x| = n skončí po provedení nejvýše f(n) kroků.
- Řekneme, že M pracuje v prostoru f(n), pokud každý výpočet M nad libovolným vstupem x délky |x| = n skončí a využije nejvýše f(n) buněk pracovní pásky.

Základní nedeterministické třídy složitosti

Definice

Nechť $f : \mathbb{N} \to \mathbb{N}$ je funkce, potom definujeme třídy:

- NTIME(f(n)) třída jazyků přijímaných nedeterministickými TS, které pracují v čase O(f(n)).
- NSPACE(f(n)) třída jazyků přijímaných nedeterministickými TS, které pracují v prostoru O(f(n)).

Pro každou funkci $f: \mathbb{N} \mapsto \mathbb{N}$ platí

$$TIME(f(n)) \subseteq NTIME(f(n))$$

 $SPACE(f(n)) \subseteq NSPACE(f(n))$

NP = nedeterministicky polynomiální

Věta (Alternativní definice třídy NP)

Třída NP je třída jazyků přijímaných nedeterministickými Turingovými stroji v polynomiálním čase, tj.

$$NP = \bigcup_{k \in \mathbb{N}} NTIME(n^k).$$

Důkaz.

Ve dvou krocích

- ② $\bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k) \subseteq \text{NP}$

Důkaz NP $\subseteq \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k)$

- Předpokládejme, že $L \in NP$
- Existuje tedy polynomiální verifikátor V(x, y), který splňuje
 - $L = \{x \mid (\exists y)[V(x, y) \text{ přijme}]\}$
 - V(x, y) pracuje v čase p(|x|) pro nějaký polynom p(n)
- Stačí uvažovat řetězce y délky p(|x|)
 - V nemá čas přečíst více znaků
- Platí tedy

$$L = \{x \mid (\exists y)[|y| \le p(|x|) \land V(x, y) \text{ přijme}]\}$$

Důkaz NP $\subseteq \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k)$ (dokončení)

 Polynomiální NTS M, který přijímá L pracuje následujícím způsobem

Výpočet M se vstupem x

- 1 Nedeterministicky vyber řetězec y délky p(|x|)
- 2 Pusť V(x, y)
- з if V(x, y) přijme then přijmi else odmítni

$$x \in L \iff (\exists y)[|y| \le p(|x|) \land V(x,y) \text{ přijme}] \iff \text{nějaký výpočet } M(x) \text{ přijme} \iff x \in L(M)$$

M přijímá L v čase O(p(n)).

Důkaz $\bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k) \subseteq \text{NP}$

- Nechť L je přijímán nějakým NTS $M = (Q, \Sigma, \delta, q_0, F)$
- Předpokládejme, že M pracuje v polynomiálním čase p(n)
- Označme $r = \max_{q \in Q, a \in \Sigma} |\delta(q, a)|$
 - maximální počet větvení přechodu dle δ
 - $r \leq |Q| \cdot |\Sigma| \cdot 3$
 - r je konstanta, která závisí jen na M a nezávisí na vstupu
- Výpočet M se vstupem x lze popsat řetězcem

$$y \in \{1, \dots, r\}^{p(|x|)}$$

• Pro $i = 1, ..., p(|x|), y_i$ označuje větev zvolenou v kroku i

Důkaz $\bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k) \subseteq \text{NP (dokončení)}$

Výpočet polynomiálního verifikátoru V(x, y) pro jazyk L

- 1 Simuluj M(x) s větvením podle y
- 2 if větev výpočtu M(x) popsaná y přijme then
- 3 přijmi
- 4 else
- 5 odmítni

$$x \in L \iff$$
 nějaký výpočet $M(x)$ přijme $\iff (\exists y)[|y| \le p(|x|) \text{ a simulace } M(x)$ s větvením podle y přijme] $\iff (\exists y)[|y| \le p(|x|) \text{ a } V(x,y) \text{ přijme}]$

V je polynomiální verifikátor pro L, tedy $L \in NP$.

Základní vztahy

Nedeterministický čas a deterministický prostor

Věta

Pro každou funkci $f: \mathbb{N} \mapsto \mathbb{N}$ platí, že

$$NTIME(f(n)) \subseteq SPACE(f(n))$$

- Nechť L je přijímán NTM M v čase g(n) = O(f(n))
- Předpokládejme, že $M = (Q, \Sigma, \delta, q_0, F)$
- Označme $r = \max_{q \in Q, a \in \Sigma} |\delta(q, a)|$
 - maximální počet větvení přechodu dle δ
 - $r \le |Q| \cdot |\Sigma| \cdot 3$ je konstanta, která závisí jen na M
- Výpočet M se vstupem x lze popsat řetězcem $y \in \{1, ..., r\}^{g(|x|)}$
- Pro $i = 1, ..., g(|x|), y_i$ označuje větev zvolenou v kroku i
- Popíšeme TM M', který rozhoduje L v prostoru O(f(n))

Důkaz (část 2)

První nápad

Výpočet M' se vstupem x

```
1 forall y \in \{1, ..., r\}^{g(|x|)} do
```

- Simuluj M(x) s větvením podle y
- if větev výpočtu M(x) popsaná y přijme then
- 4 přijmi
- 5 reject

M' by musel znát hodnotu g(|x|).

Co když g(|x|) není vyčíslitelná v prostoru O(g(|x|))?

Důkaz (část 3)

Výpočet M' se vstupem x

```
1 k \leftarrow 1
2 repeat
3 | forall y \in \{1, \dots, r\}^k do
4 | Simuluj M(x) s větvením podle y
5 | if větev výpočtu M(x) popsaná y přijme then přijmi
6 | k \leftarrow k + 1
7 until všechny simulace M(x) větvící podle y odmítly
```

- M pracuje v čase g(n) = O(f(n))
- \implies každý výpočet M(x) skončí do g(n) kroků
- $\implies M'(x)$ skončí výpočet s $k \le g(|x|)$

8 odmítni

Důkaz (část 4)

Prostorové nároky

- Vždy platí $k \le g(|x|)$
- Prostor O(g(n)) = O(f(n)) je potřeba pro uložení y
- Prostor O(g(n)) = O(f(n)) je potřeba k simulaci M(x) podle y
- Dohromady M' pracuje v prostoru O(f(n))

Důkaz (část 5)

$$L=L(M')$$

- Pokud M(x) má přijímající výpočet
 - Simulace M(x) přijme s nějakým y, $|y| \le g(|x|)$
 - M'(x) přijme
- Pokud M(x) nemá přijímající výpočet
 - Pro hodnotu k = g(|x|), simulace M(x) s každým y odmítne
 - M'(x) odmítne

M' rozhoduje L v prostoru O(f(n))

NP and PSPACE

Věta

Pro každou funkci $f: \mathbb{N} \mapsto \mathbb{N}$ platí, že

 $\mathrm{NTIME}(f(n))\subseteq \mathrm{SPACE}(f(n))$

Důsledek

 $\mathrm{NP}\subseteq\mathrm{PSPACE}$

Model TS s menším než lineárním prostorem

Pro prostor menší než lineární uvažujeme vícepáskový TS:

Vstupní páska je jen pro čtení

Pracovní pásky jsou pro čtení i zápis

Výstupní páska je jen pro zápis a hlava se hýbe jen vpravo

- Do prostoru se počítá jen obsah pracovních pásek.
- Součástí konfigurace je
 - stav,
 - poloha hlavy na vstupní pásce,
 - polohy hlav na pracovních páskách a
 - obsah pracovních pásek.
- Konfigurace neobsahuje vstupní slovo.

Další prostorové třídy

Třída problémů řešitelných v logaritmickém prostoru

$$L = SPACE(\log_2 n)$$

Třída jazyků přijímaných NTS v logaritmickém prostoru

$$NL = NSPACE(log_2 n)$$

Třída jazyků přijímaných NTS v polynomiálním prostoru

$$NPSPACE = \bigcup_{k \in \mathbb{N}} NSPACE(n^k)$$

Vztah prostoru a času

Věta (Vztah prostoru a času)

Pro každou funkci $f(n) \ge \log_2 n$ a každý jazyk L platí, že

$$L \in \mathrm{NSPACE}(f(n)) \implies (\exists c_L \in \mathbb{N}) \left[L \in \mathrm{TIME}(2^{c_L f(n)}) \right].$$

Důsledek

Je-li f(n) funkce, pro kterou platí $f(n) \ge \log_2 n$ a je-li g(n) funkce, pro kterou platí f(n) = o(g(n)), pak

$$NSPACE(f(n)) \subseteq TIME(2^{g(n)}).$$

Vztah prostoru a času

Věta (Vztah prostoru a času)

Pro každou funkci $f(n) \ge \log_2 n$ a každý jazyk L platí, že

$$L \in \mathrm{NSPACE}(f(n)) \implies (\exists c_L \in \mathbb{N}) \left[L \in \mathrm{TIME}(2^{c_L f(n)}) \right].$$

ldea důkazu

- L je přijímán nějakým NTS M v prostoru O(f(n))
- Pro vstup x, definujeme graf konfigurací G_{M,x}
 - Vrcholy = možné konfigurace výpočtu M(x)
 - Hrany = možné přechody mezi konfiguracemi
- Popíšeme TS M', který rozhoduje L
 - M' se vstupem x hledá v G_{M,x} cestu z počáteční konfigurace do nějaké přijímající konfigurace

Graf konfigurací

Definice

Nechť $M=(Q,\Sigma,\delta,q_0,F)$ je NTS pracující v prostoru f(n) a x vstupní řetězec. Graf konfigurací výpočtů M nad x je orientovaný graf $G_{M,x}=(V,E)$, kde

- Vrcholy V reprezentují možné konfigurace výpočtů M(x)
- $(C_1, C_2) \in E$ je-li možné z C_1 do C_2 přejít přechodem dle δ
- Označme C_0^x počáteční konfiguraci výpočtu M(x)

M(x) přijme, právě když v $G_{M,x}$ obsahuje cestu z C_0^x do nějaké přijímající konfigurace C_F .

Velikost grafu konfigurací

Lemma

- Uvažme funkci $f(n) \ge \log_2 n$
- Uvažme NTS $M = (Q, \Sigma, \delta, q_0, F)$, který pracuje v prostoru f(n)
- Nechť x je vstup délky n = |x|
- Nechť $G_{M,x} = (V, E)$ je odpovídající graf konfigurací

Pak $|V| \le 2^{c_M f(n)}$ pro nějakou konstantu c_M

Budeme předpokládat, že M má jednu vstupní pásku jen pro čtení a jednu pracovní pásku.

Velikost $G_{M,x}$ (důkaz)

$$|V| \leq |Q| \cdot (n+2) \cdot f(n) \cdot |\Sigma|^{f(n)}$$

Konfigurace se skládá z následujících prvků

- stav
 - |Q| různých stavů
- poloha hlavy na vstupní pásce
 - n + 2 možných poloh
 - včetně prázdných políček kolem vstupu
- poloha hlavy na pracovní pásce
 - f(n) možných poloh
- obsah pracovní pásky
 - slovo $w \in \Sigma^*$ na pásce má délku $|w| \le f(n)$
 - $|\Sigma|^{f(n)}$ různých slov

Počet konfigurací

$$\begin{split} |V| &\leq |Q| \cdot (n+2) \cdot f(n) \cdot |\Sigma|^{f(n)} \\ &= 2^{\log_2 |Q|} \cdot 2^{\log_2 (n+2)} \cdot 2^{\log_2 f(n)} \cdot 2^{f(n) \log_2 |\Sigma|} \\ &= 2^{\log_2 |Q| + \log_2 (n+2) + \log_2 f(n) + f(n) \log_2 |\Sigma|} \\ &\leq 2^{f(n)(\log_2 |Q| + 2 + 1 + \log_2 |\Sigma|)} & (f(n) \geq \log_2 n) \end{split}$$

Položíme-li
$$c_M=\log_2|Q|+2+1+\log_2|\Sigma|$$
, pak
$$|V|\leq 2^{c_Mf(n)}$$

$$|E|\leq |V|^2\leq 2^{2c_Mf(n)}$$

Vztah prostoru a času

Věta (Vztah prostoru a času)

Pro každou funkci $f(n) \ge \log_2 n$ a každý jazyk L platí, že

$$L \in \mathrm{NSPACE}(f(n)) \implies (\exists c_L \in \mathbb{N}) \left[L \in \mathrm{TIME}(2^{c_L f(n)}) \right].$$

Idea důkazu

- Předpokládejme, že L je přijímán nějakým M v prostoru O(f(n))
- Pro vstup x, definujeme graf konfigurací G_{M,x}
 - Vrcholy = možné konfigurace výpočtu M(x)
 - Hrany = možné přechody mezi konfiguracemi
- Popíšeme TS M', který rozhoduje L
 - M' se vstupem x hledá v G_{M,x} cestu z počáteční konfigurace do nějaké přijímající konfigurace

Vztah prostoru a času (důkaz)

Výpočet M' se vstupem x

- 1 Sestav počáteční konfiguraci C_0^x výpočtu M(x)
- 2 Projdi graf $G_{M,x}$ prohledáváním do hloubky (DFS) počínaje ve vrcholu C_0^x
- 3 if DFS narazí přijímající konfiguraci then
- 4 přijmi
- 5 else
- 6 odmítni
 - DFS nepotřebuje mít před spuštěním zkonstruovaný graf $G_{M,x}$
 - zná počáteční vrchol C₀^x
 - seznam sousedů $\Gamma(C)$ aktuálního vrcholu C lze zkonstruovat v každém kroku pomocí přechodové funkce δ stroje M

M' nemusí znát hodnotu f(|x|).

Vztah prostoru a času (důkaz)

- DFS lze provést v polynomiálním čase na RAMu i TS
- Turingův stroj M' pracuje v polynomiálním čase vzhledem k velikosti grafu $G_{M,x}$
- Pracuje v čase

$$O(|V|^k) = O(2^{kc_M f(n)}) = O(2^{c_L f(n)})$$

pro nějaké konstanty $k \ge 1$ a $c_L \ge kc_M$

Vztah prostoru a čase (poznámky)

Věta (Vztah prostoru a času)

Pro každou funkci $f(n) \ge \log_2 n$ a každý jazyk L platí, že

$$L \in \mathrm{NSPACE}(f(n)) \implies (\exists c_L \in \mathbb{N}) \left[L \in \mathrm{TIME}(2^{c_L f(n)}) \right].$$

- c_L závisí na jazyku L
- Různé jazyky mají různé konstanty

Z věty **NEPLYNE**

- $NSPACE(f(n)) \subseteq TIME(2^{f(n)})$
- NSPACE $(f(n)) \subseteq \text{TIME}(2^{cf(n)})$ pro nějakou konstantu c

$NL \subseteq P$

$$NL = NSPACE(\log_2 n)$$

$$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathrm{TIME}(n^k)$$

Důsledek

 $NL \subseteq P$

- Předpokládejme, že $L \in \text{NSPACE}(\log_2 n)$
- Podle věty o vztahu prostoru a času existuje konstanta $c_L \in \mathbb{N}$, prokterou platí

$$L \in \text{TIME}(2^{c_L \log_2 n}) = \text{TIME}(n^{c_L}) \subseteq P$$

NPSPACE ⊆ EXPTIME

$$\text{NPSPACE} = \bigcup_{k \in \mathbb{N}} \text{NSPACE}(n^k)$$

EXPTIME =
$$\bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k})$$

Důsledek

NPSPACE ⊆ EXPTIME

- Předpokládejme, že $L \in NPSPACE$
- $\implies L \in \text{NSPACE}(n^k)$ pro nějaké $k \in \mathbb{N}$
 - Podle věty o vztahu prostoru a času existuje konstanta $c_L \in \mathbb{N}$, prokterou platí

$$L \in \text{TIME}(2^{c_L n^k}) \subseteq \text{TIME}(2^{n^{k+1}}) \subseteq \text{EXPTIME}$$

Věta

Platí následující řetězec inkluzí:

LCNLCPCNPCPSPACECNPSPACECEXPTIME

- $L \subseteq NL$, $P \subseteq NP$, $PSPACE \subseteq NPSPACE$ plyne z
 - Pro každou funkci f(n)
 - TIME(f(n)) \subseteq NTIME(f(n))
 - $SPACE(f(n)) \subseteq NSPACE(f(n))$
- NP ⊆ PSPACE plyne z
 - NTIME(f(n)) ⊆ SPACE(f(n)) pro každou funkci f(n)
- NL ⊆ P, NPSPACE ⊆ EXPTIME plyne ze vztahu prostoru a času

Věta

Platí následující řetězec inkluzí:

LCNLCPCNPCPSPACECNPSPACECEXPTIME

- $L \subseteq NL$, $P \subseteq NP$, $PSPACE \subseteq NPSPACE$ plyne z
 - Pro každou funkci f(n)
 - TIME(f(n)) \subseteq NTIME(f(n))
 - SPACE(f(n)) \subseteq NSPACE(f(n))
- NP ⊆ PSPACE plyne z
 - NTIME(f(n)) ⊆ SPACE(f(n)) pro každou funkci f(n)
- NL ⊆ P, NPSPACE ⊆ EXPTIME plyne ze vztahu prostoru a času

Věta

Platí následující řetězec inkluzí:

LCNLCPCNPCPSPACECNPSPACECEXPTIME

- L \subseteq NL, P \subseteq NP, PSPACE \subseteq NPSPACE plyne z
 - Pro každou funkci f(n)
 - TIME(f(n)) \subseteq NTIME(f(n))
 - SPACE $(f(n)) \subseteq NSPACE(f(n))$
- NP ⊆ PSPACE plyne z
 - NTIME(f(n)) ⊆ SPACE(f(n)) pro každou funkci f(n)
- NL ⊆ P, NPSPACE ⊆ EXPTIME plyne ze vztahu prostoru a času

Věta

Platí následující řetězec inkluzí:

L⊆NL⊆P⊆NP⊆PSPACE⊆NPSPACE⊆EXPTIME

- $L \subseteq NL$, $P \subseteq NP$, $PSPACE \subseteq NPSPACE$ plyne z
 - Pro každou funkci f(n)
 - TIME(f(n)) \subseteq NTIME(f(n))
 - SPACE(f(n)) \subseteq NSPACE(f(n))
- NP ⊆ PSPACE plyne z
 - NTIME(f(n)) ⊆ SPACE(f(n)) pro každou funkci f(n)
- NL ⊆ P, NPSPACE ⊆ EXPTIME plyne ze vztahu prostoru a času