Mining Social Network Graphs

Debapriyo Majumdar Indian Statistical Institute Kolkata

Social networks

- What is a social network?
 - A collection of entities (nodes of the graph)
 - Typically people, but can be other entities
 - At least one relationship between the entities of the network
 - Typically represented by edges between the nodes
 - For example: friends
 - Sometimes Boolean: two people may be friends, or not
 - May have a degree
 - Discrete degree: friends, family, acquaintances, or none
 - A real number: the fraction of the average day two people spend talking to each other

Disclaimer: The brand logos are used for academic purpose only

Locality (non-randomness) property

- The relationships tend to cluster
- If A is related to both B and C, then the probability that B and C are related is higher than random
 - Having mutual friends increase the chance of two people knowing each other
- Let B and C be two random entities
- $lacksquare{1}{2} P[B \text{ and } C \text{ are connected}] \text{ would be very small}$
- However, if it is known that there is a mutual connection A, then the probability would be significantly higher

Case 1

Locality property: example

Example courtesy: Leskovec, Rajaraman and Ullman

- Check for the non-randomness criterion
- In a random graph (V,E) of 7 nodes and 9 edges, if XY is an edge, YZ is an edge, what is the probability that XZ is an edge?
 - For a large random graph, it would be close to $|E|/{\binom{|V|}{2}}=9/21\sim0.43$
 - Small graph: XY and YZ are already edges, so compute within the rest
 - So the probability is (9-2)/(21-2) = 7/19 = 0.37
 - Now let's compute what is the probability for this graph in particular

Locality property: example

- For each X, check possible YZ and check if YZ is an edge or not
- Example: if X = A, $YZ = \{BC\}$, it is an edge

X =	YZ =	Yes/Total
A	BC	1/1
B	AC, AD, CD	1/3
C	AB	1/1
D	BE,BG,BF,EF,EG,FG	2/6

X =	YZ =	Yes/Total
E	DF	1/1
F	DE, DG, EG	2/3
G	DF	1/1
Total		9/16 ~ 0.56

Types of Social (or Professional) Networks in 2020

- Of course, the popular ones: Facebook, Twitter, instagram, LinkedIn, etc.
- But also several other types
- Telephone network: nodes are phone numbers
 - -AB is an edge if A and B talked over phone within the last one week, or month, or ever
 - Edges could be weighted by the number of times phone calls were made, or total time of conversation
 - Similarly, any messenger network (Whatsapp)
- Email network: nodes are email addresses
 - -AB is an edge if A and B sent mails to each other within the last one week, or month, or ever
 - One directional edges would allow spammers to have edges
- Edges could be weighted
- Other networks: collaboration network authors of papers, jointly written papers or not
- Also, in general, any network exhibiting the locality property

Networks with several node types

- Author paper graphs
 - Both authors and papers can be nodes
 - Two authors are connected if they have written a paper together
 - Can put weights to such edges based on the count or relative count
 - Two papers are connected if there are common authors
 - We can consider only one aspect of such graphs, or both
- Similarly, search query web page graph
 - If users clicked a page P after searching with query q, then put an edge q o P
 - Can infer query query relationships (if set of pages clicked after query q_1 and q_2 have significant overlap)
 - Or, similar webpages (via queries)

Networks with several edge types

- Consider a popular social network such as Facebook
 - If users A and B are friends, then AB is an *undirected* (or *bidirectional*) edge
 - If A follows B, then $A \rightarrow B$ is a directed edge
- Edges can be defined based on many other criteria
 - Does A like / comment in B's posts? (unidirectional)
 - Do A and B appear together in any photo? (bidirectional)
 - etc.

Clustering of Social Network Graphs

- Locality property ⇒ there are clusters
- Clusters are communities
 - People of the same institute, or company
 - People in a photography club
 - Set of people with "Something in common" between them
- Need to define a distance between points (nodes)
- In graphs with weighted edges, different distances exist
- For graphs with "friends" or "not friends" relationship
 - Distance is 0 (friends) or 1 (not friends)
 - Or 1 (friends) and infinity (not friends)
 - Both of these violate the triangle inequality
 - Fix triangle inequality: distance = 1 (friends) and 1.5 or 2 (not friends) or length of shortest path

Traditional Clustering

- Intuitively, two communities
- Traditional clustering depends on the distance
 - Likely to put two nodes with small distance in the same cluster
 - Social network graphs would have cross-community edges
 - Severe merging of communities likely
- ullet May join B and D (and hence the two communities) with not so low probability

Betweenness of an Edge

- Betweenness of an edge AB: #of pairs of nodes (X,Y) such that AB lies on the shortest path between X and Y
 - There can be more than one shortest paths between X and Y
 - Credit AB the fraction of those paths which include the edge AB
- High score of betweenness means?
 - The edge runs "between" two communities
- Betweenness gives a better measure
 - In this example, edges such as BD get a higher score than edges such as AB
- Not a distance measure, may not satisfy triangle inequality. But that won't matter!

The Girvan – Newman Algorithm

- Step 1 BFS: Start at a node X, perform a BFS with X as root
- Observe: level of node Y = length of shortest path from X to Y
- Edges between levels are called "DAG" edges
 - Each DAG edge is part of at least one shortest path from X
- Step 2 Labelling: Label each node Y by the number of shortest paths from X to Y

Calculate betweenness of edges

The Girvan – Newman Algorithm

Calculate betweenness of edges

Step 3 – credit sharing:

- Each leaf node gets credit 1
- Each non-leaf node gets 1 + sum(credits of the DAG edges to the level below)
- Credit of DAG edges: Let $Y_i (i=1,\ldots,k)$ be parents of Z_i , and $p_i = \mathrm{label}(Y_i)$
- Then: credit(Y_i, Z) = $\frac{\operatorname{credit}(Z) \times p_i}{(p_1 + \dots + p_k)}$
- Intuition: a DAG edge Y_iZ gets the share of credit of Z proportional to the #of shortest paths from X to Z going through Y_iZ

Finally: Repeat Steps 1, 2 and 3 with each node as root. For each edge,

betweenness = sum(credits obtained in all iterations) / 2

Computation in practice

- Complexity: n nodes, e edges
 - BFS starting at each node: O(e)
 - Do it for n nodes
 - Total: O(ne) time
 - Very expensive
- Method in practice
 - Choose a random subset W of the nodes
 - Compute credit of each edge starting at each node in W
 - Sum and compute betweenness
 - A reasonable approximation

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

Method 2: (top - down)

- Start from all existing edges. The graph may look like one big component.
- Keep removing edges starting from highest betweenness
- Gradually split large components to arrive at communities

Method 2: (top - down)

- Start from all existing edges. The graph may look like one big component.
- Keep removing edges starting from highest betweenness
- Gradually split large components to arrive at communities

Method 2: (top - down)

- Start from all existing edges. The graph may look like one big component.
- Keep removing edges starting from highest betweenness

Gradually split large components to arrive at communities

Bottom - up vs top - down

- Consider our desired clustering, where we only have edges within clusters and not across
- Let E_c be set of edges within clusters, E_o be the set of edges across clusters and E be the set of actually existing edges
- Then, we have $|E| = |E_c| + |E_o|$
- Question: is $|E_c| > |E_o|$, or otherwise?
- In other words, to get to our desired clustering, are we likely to add more edges starting from none, or delete more edges starting from all?
- If the number of clusters is not too high (that's the usual approach for clustering), E_c is likely to be much bigger
- Then top-down approach will be more efficient

Triangles in Social Network Graph

- Number of triangles in a social network graph is expected to be much larger than a random graph with the same size
 - The locality property
- Counting the number of triangles
 - How much the graph looks like a social network
 - Age of community
 - A new community forms
 - Members bring in their like minded friends
 - Such new members are expected to eventually connect to other members directly

Triangle Counting Algorithm

Graph (V, E); |V| = n, |E| = m.

- Step 1: Compute degree of each node
 - Examine each edge
 - Add degree 1 to each of the two nodes
 - Takes O(m) time
- Step 2: A hash table $(v_i, v_j) \mapsto 1$ for every edge $v_i v_j$
 - So that, given two nodes, we can determine if they have an edge between them
 - Construction takes O(m) time
 - Each query \sim expected O(1) time, with a proper hash function
- Step 3: An index $v \rightarrow$ list of nodes adjacent to v for every node v
 - Construction takes O(m) time, querying takes O(1) time

Counting Heavy Hitter Triangles

- Heavy hitter node: a node with degree $\geq \sqrt{m}$
- Note: there are at most $2\sqrt{m}$ heavy hitter nodes
 - If there are more than $2\sqrt{m}$ heavy hitter nodes, then total degree >2m (but |E|=m)
- Heavy hitter triangle: triangle with all 3 heavy hitter nodes
- Number of possible heavy hitter triangles: at most $\binom{2\sqrt{m}}{3} = O(m^{3/2})$
- For each possible triangle, use hash table (step 2) to check if all three edges exist
- Takes $O(m^{3/2})$ time

Counting other Triangles

- Consider an ordering of nodes $v_i \prec v_j$ if
 - Either degree (v_i) < degree (v_i) , or
 - If $degree(v_i) = degree(v_i)$ then i < j
- For each edge (v_i, v_i)
 - If both nodes are heavy hitters, skip (already done)
 - Suppose v_i is not a heavy hitter
 - Find nodes $w_1, w_2, ..., w_k$ adjacent to v_i (using node \rightarrow adjacent nodes index, step 3)
 - Takes O(k) time
 - For each w_l ($l=1,\ldots,k$), check if edge $v_j w_l$ exists, in O(1) time each, total O(k) time
 - Count the triangle $\triangle v_i v_j w_l$ if and only if
 - Edge $v_i w_l$ exists, and also $v_i \prec w_l$ in our ordering of the nodes
 - Total time for each edge (v_i, v_j) is $O(\sqrt{m})$
 - There are m edges, total time is $O(m^{3/2})$ time

Optimality of the algorithm: $O(m^{3/2})$

- If G is a complete graph
 - Number of triangles = $\binom{m}{3} \sim O(m^{3/2})$
 - Cannot even enumerate all triangles in less than $O(m^{3/2})$
 - Hence it is the lower bound for computing all triangles
- If G is sparse, we show that the worst case is still $O(m^{3/2})$
 - Consider a complete graph G' with n nodes, m edges
 - Note that $m = \binom{n}{2} = O(n^2)$
 - Construct G from G' by adding a chain of length n^2
 - The number of triangles remain the same, $O(m^{3/2})$
 - The number of edges remain of the same order O(m)
 - lacksquare is quite sparse, lowering edge to node ratio
 - Still cannot compute the triangles in less than $O(m^{3/2})$ time

chain of length n^2

Directed Graphs in (Social) Networks

- Set of nodes V and directed edges (arcs) $u \rightarrow v$
- The web: pages link to other pages
- Persons made calls to other persons
- Twitter, Instagram: people follow other people
- All undirected graphs can be considered as directed
 - Think of each edge as bidirectional

Paths and Neighborhoods

- Path of length k: a sequence of nodes v_0, v_1, \ldots, v_k from v_0 to v_k so that $v_i \rightarrow v_{i+1}$ is an arc for $i=0,1,\ldots,k-1$
- Neighborhood N(v,d) of radius d for a node v: set of all nodes w such that there is a path from v to w of length $\leq d$
- For a set of nodes V, $N(V, d) := \{w \mid \text{there is a path of length } \leq d \text{ from some } v \text{ in } V \text{ to } w\}$
- Neighborhood profile of a node v: sequence of sizes of its neighborhoods of radius d = 1, 2, ...
 - In other words, |N(v,1)|, |N(v,2)|, |N(v,3)|, ...

Neighborhood Profile

Neighborhood profile of ${\it B}$

$$N(B,1) = 4$$

$$N(B,2) = 7$$

Neighborhood profile of A

$$N(A,1) = 3$$

$$N(A,2) = 4$$

$$N(A,3) = 7$$

Diameter of a Graph

- Diameter of a graph G(V, E): the smallest integer d such that for any two nodes $v, w \in V$, there is a path of length at most d from v to w
 - Only makes sense for strongly connected graphs
 - Can reach any node from any node
- The web graph: not strongly connected
 - But there is a large strongly connected component
- The six degrees of separation conjecture
 - The diameter of the graph of the people in the world is six
- Neighborhood profile of a node v |N(v,1)|, |N(v,2)|, ..., |N(v,k)| = |V|, for some k
- Denote this k as d(v)
- If G is a complete graph, d(v) = 1 for all $v \in V$
- Diameter of G is $\max_{v \in V} d(v)$

References and Acknowledgements

- General reference: "Mining of Massive Datasets" by Leskovec, Rajaraman and Ullman
- Girvan M. and Newman M. E. J., <u>Community structure in social and biological networks</u>, Proc. Natl. Acad. Sci. USA **99**, 7821–7826 (2002)