# WELCOME TO THE PRESENTATION

TOPIC: COIN CHANGING

(DP & GREEDY)

## THINGS TO BE EXPLAINED:

- > DP & Greedy
- Definition Of Coin Changing
- > Example with explanation
- > Time complexity
- Difference between DP & Greedy in Coin Change Problem

## DP: DYNAMIC PROGRAMMING

Dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler sub problems just once and storing their solutions.

- DP is used to solve problems with the following characteristics:
  - > Simple Sub problems
  - > Optimal Structure Of The Problems
  - > Overlapping Sub problems

## **GREEDY ALGORITHM**

■ A greedy algorithm always makes the choice that looks best at the moment. It makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.

An algorithm is greedy if it builds a solution in small steps, choosing a decision at each step locally, not considering what happen ahead to optimize some underlying criterion

# COIN CHANGE PROBLEM



Coin change is the problem of finding the minimum number of ways of making changes for a particular amount of taka, using a given unlimited amounts of coins. It is a general case of Integer Partition.

#### **EXAMPLE:**

Set Of Coins, D = { 1,5,6,9 } Make Change Of Taka, n = 11 MINIMUM NUMBER OF COINS

```
C[P] = 0 1 2 3 4 1 1 2 3 1 2 2
```

$$S[P] =$$



1 2 3 4 5 6 7 8 9 10

#### For P=6;

```
D[1] = C[P - D[1]] + 1; here D[1] = 1;
= C[6 - 1] +1;
= C[5] +1;
= 5 +1;
= 6
```

```
D[2] = C[P - D[1]] + 1; here D[2] = 5;

= C[6 - 5] +1;

= C[1] +1;

= 1+1;

= 2
```

```
D[3] = C[P - D[1]] + 1; here D[3] = 6;

= C[6 - 6] +1;

= C[0] +1;

= 0 +1;

= 1

O, if P = 0

min (C[P-D[i]] + 1), if P > 0
```

 $D[1] \le D[i] \le P$ 

11

#### EXPLANATION OF COIN CHANGE (DP):

- If D is unsorted, then sort D in Ascending Order
- Take two array C[P] and S[P] where,

C[P] = Minimum number of coins used for P Tk
S[P] = Last coin used to make P Tk.

• Find C[P] using the following equation,

$$C[P] = \begin{cases} 0, & \text{if } P = 0 \\ \min \left( C[P-D[i]] + 1 \right), & \text{if } P > 0 \\ D[1] <= D[i] <= P \end{cases}$$

• Fill the C[P] and S[P] tables

#### TIME COMPLEXITY:

Time Complexity = O(m\*n), where m = Total taka & <math>n = Number of coin

#### **EXAMPLE:**

Set Of Coins, D = {9,6,5,1} Make Change Of Taka, n = 11

$$6.2\%5=2$$

TAKEN COIN: 9(1) & 1(2)

#### **EXPLANATION OF COIN CHANGE (GREEDY):**

- If D is unsorted, then sort D in descending order.
- Find the taken coin and their minimum number using the following algorithm

```
for(D[1] to D[n])
{

result = n/D[i];

n = n (mod) D[i];

if(result = 0)

print result and D[i]
}
```

Repeat for each coin

#### TIME COMPLEXITY:

Time complexity = O(n), where n = Number of coin

# DP

- Set Of Coins, D = {1,5,6,9}
- Make Change Of Taka, n = 11
- Result:
   Minimum Number of coin: 2.

   The coins: 5, 6.
- Set Of Coins, D = {1,5,8,10}
- Make Change Of Taka, n = 15
- Result :
   Minimum Number of coin : 2.
   The coins : 10, 5.

# GREEDY

- Set Of Coins, D = {9,6,5,1}
- Make Change Of Taka, n = 11
- Result:
   Minimum Number of coin: 3.

   The coins: 9(1), 1(2).
- Set Of Coins, D = {10,8,5,1}
- Make Change Of Taka, n = 15
- Result:
   Minimum Number of coin: 2.
   The coins: 10(1), 5(1).

# THANK YOU

ANY QUESTIONS ??