CODE CONVERTERS

10/11/2021 Lecture 5

Code converters

- A code converter circuit will convert coded information in one form to a different coding form.
- Coded representation for 10 decimal symbols is known as binary coded decimal (or BCD) or decimal codes.
- Minimum 4-bits are required to represent decimal symbol.
- Out of 16, 4-bit combinations, only 10 combinations are used to represent 10 decimal symbols and remaining 6 will not be used (don't cares)

Binary and Binary coded Decimal(BCD)

Decimal	Binary	BCD	(0
0	0000	0000	./ \/
	11	11	0000
9	1001	1000	0001
10	1010	00000000	7 8421 BCD code
11	1011	0001 000	8421
12	1100	0001001	o \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
13	1101	1100 1000	
67		0110 0111	
90		1001 0000	
23		0010001)	

Difference between binary and BCD representation

(28)₁₀

Binary representation: (11100) 2

8421 BCD representation: (0010 1000) 2

Introduction to BCD codes (4-61)

Weighted codes = 8421, 84-2-1, 84-2-1 **Gray code** 8421 Excess 3 2421 **Decimal** digit (BCD) Self-Complementary 0000 0 . 0000 0011 0000 0000 codes 0001 -> Excess -3 0001 0100 0111 0001 0011 84-2-1 0010/1000 0101 0110 0010 2421 00010 0011 1001 3 0101 0011 0110 .0100 1010 0111 0100 4 0100 0100 = 0111 1011 \$1011 Olo 1 0101 1000 🗸 5 >100 Dud 0/01 6 0110 1001 1010 0111 1010 (101) 0100 1001 0111 1000 1011 / 1100 8 1000 1100 / 1111 1101 1001 0000 0000,0001 0001,0010, 1000 Don't cares 1010, 1011 1110, 1111 0011 1001 000 00N, 1100, 0001,0101 1011,0100 וסוו,ס סוו 16 10 1101,110 010,1011 100 1001,1001 10/11/2021₁ | [O , | | | | 1110, 1111

Complements

Are used for simplifying the subtraction operation and for logical manipulation.

There are two complements for each base:

- (R-1)'s complement (Diminished radix complement)
- R's complement (Radix complement)

(R-1)'s complement of a number is $(R^n-1)-N$ single degit no R=1 Where $R \rightarrow b$ base R=1 N R=1

R's complement

R's complement of a number is $R^n - N$ Where $R \rightarrow base$

N → number who's complement is to be takenn → number of digits/bits in the number N

Examples: R=2, N=0, a's completely of a no a's completely a's c

Ex: R = 10, n = 1 (R - 1)S = 9S (R' - 1) - N = (9 - N) = 9S completely N N = 8 = 19 - 8 = 1ken 9S completely 8

10/11/2021

Code converter design steps:

- 1. Write the truth table
- 2. Identify the don't care inputs from input code
- 3. Write the minterms/maxterms for every output variable
- 4. Simplify the expressions for output variables
- 5. Draw the circuit using the specified gates.

1.Design a 3 bit binary to gray code converter.

(Q)

3-bit Binary	Gray
B2 B1 B0	G2 G1 G0
000	000
001	001
010	011
011	Q)Q
100	110
101	1 / /
110	191
111	100

$$G_1 = \overline{B_2}B_1 + \overline{B_2}B_1 = \overline{B_2} \oplus \overline{B_1}$$

B2 B, B0

10/11/2021

1. Design a 3 bit binary to gray code converter contd. — Assignment

2. Design a code converter to convert a decimal digit represented in 8421 code to a decimal digit

represented in Excess 3 code. => NAND gates

 \bigcirc

		1
Decimal	8421	Excess 3 code 🛩
digit	ABCD	E3 E2 E1 E0
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100
Don't	1010,1011,	
cares	1100,1101,1110,	
	1111	
10/11/2021		

2. Design a code converter to convert a decimal digit represented in 8421 code to a decimal digit

represented in Excess 3 code contd.

2. Design a code converter to convert a decimal digit represented in 8421 code to a decimal digit represented in Excess 3 code.

3. Design a code converter to convert a decimal digit represented in 8 4 2 1 code to a decimal digit represented in 8 4 -2 -1 code. > NOR gales -> POS -> agrouping os

Decimal	8421	8 4 -2 -1
digit	ABCD	Y3 Y2 Y1 Y0
0	0000	0000
1	0001	0111
2	0010	0110
3	001)	010)
4	0)0	0100
5	0101	1011
6	0110	0101
7	0)1)	1001
8	1000	1000
9	1001	1111
Don't	10, 11, 12,	
cares	13, 14, 15	
10/11/202		

$$Y_3 = \pi M(0,1,2,3,4) \cdot d(10,11,12,1314,15)$$

 $Y_2 = \pi M(0,5,6,7,8) \cdot d(10,11,12,13,14,15)$
 $Y_1 = \pi M(0,3,4,7,8) \cdot d(11,11,12,13,14,15)$

3. Design a code converter to convert a decimal digit represented in 8 4 2 1 code to a decimal digit represented in 8 4 -2 -1 code. 10/11/2021

Design a code converter to convert a decimal digit represented in Excess 3 code to a decimal digit represented in 8 4 -2 -1 code. — NoR gales

Decimal	EXCESS -3 CODE	8 4 -2 -1	1
digit	ABCD	Y3 Y2 Y1 Y0	
0	0011	0000	
1	0100	0111	
2	0101	0110	
3	0110	0101	
4	0111	0100	
5	1000	1011	
6	1001	1010	
7	1010	1001	
8	1011	1000	
9	1100	1111	
Don't	0000,0001,0010,		1
cares	1101,1110,1111		
10/11/202	1		

132 2000

$$Y_3 = A$$

$$y_1 = \overline{c}$$

$$Y_0 = \overline{D}$$

Design a code converter to convert a decimal digit represented in 8 4 -2 -1 code to a decimal digit represented in 2 4 2 1 code. = NoR qates

Decimal digit	84-2-1 A B C D	2 4 2 1 Y3 Y2 Y1 Y0	•
0	0000 (0)	0000	
1	0111 (1)	0001	•
2	0110	0010	
3_	0101	0011	G
4	0100 (4)	0100	
5	1011 (11)	1011	
6	1010 (10)	1100	
7	1001 (9)	1101	
8	1000 (8)	1110	
9	1111 (5)	1111	
Don't	0001,0010,0011,		
cares	1100,1101,1110		

10/11/2021

4. Design a code converter to convert a decimal digit represented in 8 4 -2 -1 code to a decimal digit represented in 2 4 2 1 code contd _____ NoR_

$$y_3 = \sum_{m(8,9,10,11,15)} + d(1,2,3,12,13,14) = A$$

$$Y_1 = (A+B)(B+C+D)(A+C+D)$$

$$(A+C+D)(A+C+D)$$

5. Design a code converter to convert a decimal digit represented in 2 4 2 1 code to a decimal digit represented in gray code.

Decimal	2421	Gray code
digit	ABCD	G3 G2 G1 G0
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	1011	0111
6	1100	0101
7	1101	0100
8	1 1 10	1100
9	1111	1101
	0101, 0110, 0111,	
	1000, 1001, 1010	
10/11/2	2021	

$$G_{3} = \leq m(14,15) + d(5,6,7,8,9,10)$$
 $G_{3} = \leq m(4,11,12,13,14,15) + d(5,6,7,8,9,10)$
 $G_{1} = \leq m(2,3,4,11,14) + d(1)$
 $G_{6} = \leq m(1,2,11,12,15) + d(1)$

5. Design a code converter to convert a decimal digit represented in 2 4 2 1 code to a decimal digit represented in gray code	
10/11/2021	

Any questions?