Solution 3: Transmission Gates (TGs)

Most widely used solution $\overline{C} = GND$ $\overline{C} = GND$ $A = V_{DD}$ A = GND $C = V^{DD}$ $C = V^{DD}$

 Full swing bidirectional switch controlled by the gate signal C, A = B if C = 1

TG Multiplexer

VLSI Design, Fall 2021

Amr Wassal

Transmission Gate XOR

TG Full Adder

Dynamic CMOS

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires 2n (n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

Dynamic Gate

Conditions on Output

 Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.

Inputs to the gate can make at most one transition during evaluation.

 Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_L

Properties of Dynamic Gates

- Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static complementary CMOS)
- Full swing outputs (V_{OL} = GND and V_{OH} = V_{DD})
- Non-ratioed sizing of the devices does not affect the logic levels
- Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (Cout)
 - no I_{sc}, so all the current provided by PDN goes into discharging C_L

Properties of Dynamic Gates

- Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between V_{DD} and GND (including P_{sc})
 - no glitching
 - higher transition probabilities
 - extra load on Clk
- PDN starts to work as soon as the input signals exceed V_{Tn} , so V_{M} , V_{IH} and V_{IL} equal to V_{Tn}
 - low noise margin (NM_I)
- Needs a precharge/evaluate clock

Issues in Dynamic Design 1: Charge Leakage

Dominant component is subthreshold current

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic

Issues in Dynamic Design 2: Charge Sharing

Charge stored originally on C_L is redistributed (shared) over C_L and C_A leading to reduced robustness

Charge Sharing Example

Charge Sharing

case 1) if
$$\Delta V_{out} < V_{Tn}$$

$$c_L V_{DD} = c_L V_{out}(t) + c_a (V_{DD} - V_{Tn}(V_X))$$
or

or
$$\Delta V_{out} = V_{out}(t) - V_{DD} = -\frac{C_a}{C_L}(V_{DD} - V_{Tn}(V_X))$$

case 2) if
$$\Delta V_{out} > V_{Tn}$$

$$\Delta V_{out} = -V_{DD} \left(\frac{C_a}{C_a + C_L} \right)$$

Solution to Charge Redistribution

Precharge the internal nodes using a clock-driven transistor (at the cost of increased area and power)

Other Effects

Capacitive coupling

Substrate coupling

Minority charge injection

Supply noise (ground bounce)

Cascading Dynamic Gates

Only $0 \rightarrow 1$ transitions allowed at inputs

Domino Logic

Why Domino?

Like falling dominos!

Properties of Domino Logic

Only non-inverting logic can be implemented

- Very high speed
 - static inverter can be skewed, only L-H transition
 - Input capacitance reduced smaller logical effort

Designing with Domino Logic

Footless Domino

The first gate in the chain needs a foot switch Precharge is rippling – short-circuit current A solution is to delay the clock for each stage