

Mid-Term Examination

Semester: FALL 2019

Department of Computer Science and Engineering

Course Title: Numerical Methods

Course Code: CSE 234

Lovel & Town I 2T2

Sections: ALL

Level & Term: L2T3

Course Teacher: All

Full Time: 1.5 hours

Full Marks: $5 \times 5 = 25$

Solve any Five of the following problems.

- Find a real root of the equation $\cos x xe^x = 0$ on [0.51, 0.52] correct up to 4 significant figures by using Bisection method. [5]
- In the table below the values of y are consecutive terms of a series of which the number 21.6 is the 6^{th} term.

x	3	4	5	6	7	8	9
y	2.7	6.4	12.5	21.6	34.3	51.2	72.9

Find the 1st and 10th terms of the series.

3. Estimate √27 using Lagrange's interpolation formula:

[4+1]

x	21	22	26	29	30
\sqrt{x}	4.58	4.69	5.10	5.39	5.48

Now compute $\sqrt{27}$ using the calculator upto four decimal places. Hence find the error Percentage.

The table below gives the temperature T (in $^{\circ}$ C) and length l in mm) of a heated rod.

If l = a + h T find the values of a and having linear least squares.

	= a + b I find the	raraco or a ana	o doing inited leas	t squares.	L.
T	40	50	60	70	80
l	60.5	60.6	60.8	60.9	61

Draw the line.

Form the polynomial f(x) form the table by using an appropriate method:

[4+1]

\boldsymbol{x}	5	7	11	13	21
f(x)	150	392	1452	2366	9702

Hence compute f(12).

Explain significant digit with examples. Evaluate the sum $S = \sqrt{2} + \sqrt{5} + \sqrt{7}$ to four significant digits and find its E_A , E_R and E_p .