

Universidade Presbiteriana Mackenzie

Banco de Dados - Aula 08

Álgebra Relacional

Profa. Elisângela Botelho Gracias

Faculdade de Computação e Informática

- Uma linguagem de consulta é uma linguagem na qual um usuário requisita informações do banco de dados
- Essas linguagens são tipicamente de mais alto nível do que as linguagens de programação comuns

 A álgebra relacional é uma linguagem de consulta para bancos de dados, onde as variáveis são relações e os operadores são operadores relacionais

- Conceitos na álgebra relacional:
 - Relação: é uma tabela
 - Tuplas: são as linhas da tabela
 - Atributos: são as colunas da tabela

- A álgebra relacional é fechada, ou seja, o <u>resultado de</u> <u>uma ou mais operações relacionais é uma nova relação</u>
- O resultado de uma operação pode ser utilizado como dado de entrada de outra

- As operações da álgebra relacional podem ser divididas em 2 grupos:
 - Um grupo consiste de operações desenvolvidas especificamente para banco de dados relacionais, que inclui SELEÇÃO, PROJEÇÃO e JUNÇÃO, dentre outras
 - O outro grupo são as operações da teoria de conjuntos da matemática: UNIÃO, INTERSEÇÃO, DIFERENÇA e PRODUTO CARTESIANO

 Considere a seguinte relação para os exemplos das operações SELECT e PROJECT, a seguir:

EMPREGADO = {NOME, SOBREN, <u>RG</u>, DATAN, ENDEREÇO, SEX, RG_SUPER, NROD}

- RG é a chave primária desta relação
- RG_SUPER é chave estrangeira que referencia o atributo RG da própria relação Empregado

NOME	SOBREN	RG	DATAN	ENDEREÇO	SEX	SALARIO	RG SUPER	NROD
João	Silva	123456789	09.01.55	Rua 15	M	3000	333445555	5
				Novembro, 731,				
				São Carlos				
Francisco	Souza	333445555	08.12.45	Rua Jorge Assef,	M	4000	888665555	5
				100, S.Paulo				
Alice	Fernandes	999887777	18.03.75	Rua9 de Julho,	F	2500	987654321	4
				535, São Carlos				
Joana	Pereira	987654321	20.06.31	Rua Tiradentes,	F	4300	888665555	4
				291, Rib.Preto				
Rodolfo	Nogueira	666884444	15.09.52	Av.São	M	3800	333445555	5
				Carlos,1005, São				
				Carlos				

Operações de Banco de Dados Relacional

- Operações de Banco de Dados Relacional
 - Operação SELECT
 - Operação PROJECT
 - Sequências de Operações e Renomeação de Atributos

Operações de Banco de Dados Relacional

- Operações de Banco de Dados Relacional
 - Operação SELECT
 - Operação PROJECT
 - Sequências de Operações e Renomeação de Atributos

A operação SELECT é utilizada para selecionar um

subconjunto de tuplas numa relação que satisfaça uma

condição de seleção

 Utilizando a <u>Linguagem SQL</u>, a seguinte consulta selecionar o subconjunto de tuplas de EMPREGADO cujo salário é maior do que R\$ 3000,00 - seria:

SELECT *
FROM EMPREGADO
WHERE (SALARIO > 3000);

 A mesma consulta dada anteriormente, mas agora utilizando a Álgebra Relacional, seria (o resultado é mostrado, a seguir):

σ_(SALARIO>3000) (EMPREGADO)

• Resultado

NOME	SOBREN	RG	DATAN	ENDEREÇO	SEX	SALARIO	RG SUPER	NROD
Francisco	Souza	333445555	08.12.45	Rua Jorge Assef,	M	4000	888665555	5
				100, S.Paulo				
Joana	Pereira	987654321	20.06.31	Rua Tiradentes,	F	4300	888665555	4
				291, Rib.Preto				
Rodolfo	Nogueira	666884444	15.09.52	Av.São	M	3800	333445555	5
				Carlos,1005, São				
				Carlos				

Em geral, a operação SELECT é denotada por:

σ_{<condição da seleção>} (Nome da Relação)

- onde o símbolo σ (sigma) é usado para denotar o operador SELECT e a <condição de seleção> é uma expressão booleana especificada nos atributos da relação

A relação resultante da operação SELECT tem os

mesmos atributos da relação especificada

 Exemplo: selecionar as tuplas para todos os empregados que ou trabalham no departamento 4 e recebem mais de 4000, ou trabalham no departamento 5 e recebem mais de 3000:

σ_{((NROD=4)} AND (SALARIO>4000)) OR ((NROD=5) AND (SALARIO>3000)) (EMPREGADO)

Utilizando a <u>Linguagem SQL</u>, a consulta anterior seria:

```
SELECT *
FROM EMPREGADO
WHERE ((NROD = 4) AND (SALARIO > 4000))
OR ((NROD = 5) AND (SALARIO > 3000));
```


Resultado

NOME	SOBREN	RG	DATAN	ENDEREÇO	SEX	SALARIO	RG	NROD
							SUPER	
Francisco	Souza	333445555	08.12.45	Rua Jorge Assef, 100,	M	4000	888665555	5
				S.Paulo				
Joana	Pereira	987654321	20.06.31	Rua Tiradentes, 291,	F	4300	888665555	4
				Rib.Preto				
Rodolfo	Nogueira	666884444	15.09.52	Av.São Carlos,1005,	M	3800	333445555	5
				São Carlos				

A operação SELECT é comutativa, ou seja:

$$\sigma_{\text{cond1}}(\sigma_{\text{cond2}}(R)) = \sigma_{\text{cond2}}(\sigma_{\text{cond1}}(R))$$

Assim, uma sequência de SELECT's podem ser aplicadas

em qualquer ordem

Operações de Banco de Dados Relacional

- Operações de Banco de Dados Relacional
 - Operação SELECT
 - Operação PROJECT
 - Sequências de Operações e Renomeação de Atributos

- A operação PROJECT seleciona certas colunas da tabela e descarta as outras colunas
- Exemplo: para listar o nome, o sobrenome e o salário de cada empregado, utilizando a Álgebra Relacional, podese usar a operação PROJECT da seguinte forma:

π_{NOME}, SOBREN, SALARIO</sub> (EMPREGADO)

Resultado

NOME	SOBREN	SALARIO
João	Silva	3000
Francisco	Souza	4000
Alice	Fernandes	2500
Joana	Pereira	4300
Rodolfo	Nogueira	3800

 Utilizando a Linguagem SQL, para a consulta anterior, seria:

SELECT NOME, SOBREN, SALARIO FROM EMPREGADO;

A forma geral da operação PROJECT é:

 $\pi_{\text{<lista de atributos>}}$ (Nome da Relação)

Onde:

- π (pi) é o símbolo usado para representar a operação PROJECT
- lista de atributos > é uma lista de atributos da relação especificada

A relação resultante tem somente os atributos

especificados em <lista de atributos> e na mesma

ordem que aparecem na lista

- A operação <u>PROJECT remove implicitamente qualquer</u> <u>tupla duplicada</u>. Assim, o resultado de uma operação PROJECT é um conjunto de tuplas e, portanto, uma relação válida
- O número de tuplas em uma relação resultante de uma operação PROJECT é sempre menor ou igual ao número de tuplas da relação original

- Se a lista de projeção inclui uma chave da relação, a relação resultante tem o mesmo número de tuplas que o original
- A comutatividade não é mantida em PROJECT

Operações de Banco de Dados Relacional

- Operações de Banco de Dados Relacional
 - Operação SELECT
 - Operação PROJECT
 - Sequências de Operações e Renomeação de Atributos

- As operações podem ser aplicadas de forma aninhada, usando uma única expressão da álgebra relacional
- <u>Exemplo</u>: recupere o nome, sobrenome e o salário de todos os empregados que trabalham no departamento cujo código é 5:

 $\pi_{NOME,SOBREN,SALARIO} (\sigma_{(NROD = 5)} (EMPREGADO))$

Resultado

NOME	SOBREN	SALARIO		
João	Silva	3000		
Francisco	Souza	4000		
Rodolfo	Nogueira	3800		

 Pode-se, também, criar relações resultantes intermediárias, dando um nome para cada relação intermediária:

DEP5EMPS
$$\leftarrow \sigma_{(NROD = 5)}$$
 (EMPREGADO)

RESULT
$$\leftarrow \pi_{NOME, SOBREN, SALARIO}$$
 (DEP5EMPS)

- Pode-se, também, utilizar esta técnica para renomear os atributos nas relações intermediárias e resultantes
- Isso pode ser útil na conexão com operações mais complexas tais como UNION e JOIN

```
TEMP \leftarrow \sigma_{(NROD = 5)} (EMPREGADO)
R(FIRSTNAME, LASTNAME, SALARY) \leftarrow \pi_{NOME, SOBREN, SALARIO} (TEMP)
```


1º Resultado (TEMP)

NOME	SOBREN	RG	DATAN	ENDEREÇO	SEX	SALARIO	RG	NROD
							SUPER	
João	Silva	123456789	09.01.55	Rua 15 Novembro,	M	3000	333445555	5
				731, São Carlos				
Francisco	Souza	333445555	08.12.45	Rua Jorge Assef, 100,	M	4000	888665555	5
				S.Paulo				
Rodolfo	Nogueira	666884444	15.09.52	Av.São Carlos,1005,	M	3800	333445555	5
				São Carlos				

2º Resultado (R)

FIRSTNAME	LASTNAME	SALARY
João	Silva	3000
Francisco	Souza	4000
Rodolfo	Nogueira	3800

 Utilizando a Linguagem SQL, para a consulta anterior recupere o nome, sobrenome e o salário de todos os empregados que trabalham no departamento cujo código é 5 - seria:

SELECT NOME, SOBREN, SALARIO FROM EMPREGADO WHERE (NROD = 5);

- Operações da Teoria de Conjuntos
 - Union
 - Intersection
 - Difference
 - Produto Cartesiano
 - Join

- O próximo grupo de operações da álgebra relacional são operações matemáticas padrões em conjuntos
- Elas se aplicam ao modelo relacional, pois uma relação é definida como um conjunto de tuplas e pode ser usada para processar as tuplas em duas relações como conjuntos

- Para a utilização dessas operações em banco de dados relacionais deve-se garantir que o resultado da aplicação dessas operações em duas relações gere uma terceira relação também válida
- Para isso, as <u>duas relações envolvidas devem possuir o</u> <u>mesmo tipo de tuplas</u>; esta condição é chamada <u>compatibilidade de união</u>

Duas relações União-Compatíveis

R

N	S	
Susan	Yao	
Ramesh	Shah	
Johnny	Kohler	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	
Ernest	Gilbert	

S

Nome	Sobrenome
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

- Union
- Intersection
- Difference
- Produto Cartesiano
- Join

- Union
- Intersection
- Difference
- Produto Cartesiano
- Join

Union

- Considerando as 2 relações união-compatíveis R e S,
 vistas anteriormente:
 - UNION, denotada por R ∪ S, tem como resultado uma relação que inclui todas as tuplas que estão em R ou em S ou em ambas R e S. Tuplas duplicadas são eliminadas

Union

• Resultado da interseção de R \cup S

N	S
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

- Union
- Intersection
- Difference
- Produto Cartesiano
- Join

Intersection

- Considerando as 2 relações união-compatíveis R e S, vistas anteriormente:
 - INTERSECTION, denotada por R ∩ S, tem como resultado uma relação que inclui todas as tuplas que estão em ambas
 R e S

Intersection

• Resultado da união de $R \cap S$

N	S	
Susan	Yao	
Ramesh	Shah	

Intersection

- As operações UNION e INTERSECTION são:
 - são comutativas, ou seja, $R \cup S = S \cup R$ e

$$R \cap S = S \cap R$$

- são aplicáveis a qualquer número de relações
- são associativas, ou seja:

$$R \cup (S \cup T) = (R \cup S) \cup T e$$

$$R \cap (S \cap T) = (R \cap S) \cap T$$

- Union
- Intersection
- Difference
- Produto Cartesiano
- Join

- Considerando as 2 relações união-compatíveis R e S, vistas anteriormente:
 - DIFFERENCE, denotada por R S, tem como resultado uma relação que inclui todas as tuplas que estão em R, mas não estão em S

Resultado da diferença de R - S

N	S
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

Resultado da diferença de S - R

Nome	Sobrenome	
John	Smith	
Ricardo	Browne	
Francis	Johnson	

- A operação DIFFERENCE não é comutativa, pois em geral, R-S ≠S-R
- Note que a convenção adotada é que a relação resultante tem os mesmos nomes de atributos da primeira relação R

- Union
- Intersection
- Difference
- Produto Cartesiano
- Join

 Combina tuplas de duas relações R e S, resultando em uma relação que tem <u>uma tupla para cada combinação</u> de tuplas - uma de R e outra de S:

$$Q(A_1, A_2,..., A_n, B_1, B_2,..., B_m) \leftarrow R(A_1, A_2,..., A_n) \times S(B_1, B_2,..., B_m)$$

• Exemplo: considere as seguintes relações R1 e R2

R1

NOME	SOBREN		
João	Silva		
Francisco	Souza		

R2

NROD	NOMED
1	Pesquisa
2	Administração

• Exemplo do produto cartesiano de R1 e R2

R1XR2

NOME	SOBREN	NROD	NOMED
João	Silva	1	Pesquisa
João	Silva	2	Administração
Francisco	Souza	1	Pesquisa
Francisco	Souza	2	Administração

• Utilizando a Linguagem SQL, o produto cartesiano de

R1 e R2, seria:

SELECT *

FROM R1, R2;

- Union
- Intersection
- Difference
- Produto Cartesiano
- Join

- A operação Join, denotada por |X|, é utilizada para combinar tuplas de duas relações, através de um ou mais atributos comuns às duas relações
- A tabela resultante contém as colunas das duas tabelas que participaram da junção:

$$Q(A_1, A_2,..., A_n, B_1, B_2,..., B_m) \leftarrow R(A_1, A_2,..., A_n) | X | S(B_1, B_2,..., B_m)$$

- Esta <u>operação é muito importante</u> para qualquer banco de dados relacional, pois <u>permite processar</u> <u>relacionamentos entre relações</u>
- A forma geral de uma operação JOIN em 2 relações
 R(A₁, A₂,..., A_n) e S(B₁, B₂,..., B_m) é:

Considere as seguintes relações para o exemplo de join:

Empregado = {NOME, SOBREN, <u>RG</u>, NROD}

 NROD é chave estrangeira que referencia o atributo NDEPTO da relação Departamento

Departamento = {NDEPTO, NOMED, RGGERENTE }

 RGGERENTE é chave estrangeira que referencia o atributo RG da relação Empregado

Empregado

NOME	SOBREN	RG	NROD
João	Silva	123456789	5
Francisco	Souza	333445555	5
Alice	Fernandes	999887777	4
Joana	Pereira	987654321	4
Rodolfo	Nogueira	666884444	5

Departamento

NDEPTO	NOMED	RGGERENTE	
1	Pesquisa	333445555	
2	Administração	987654321	
3	Finanças	666884444	

- Suponha que se queira recuperar o nome de cada departamento e o nome e sobrenome do gerente de cada departamento
- Para obter o nome do gerente, é necessário combinar cada tupla de Departamento com a tupla de Empregado cujo valor de RG seja igual ao valor de RGGERENTE na tupla de Departamento

DEPT_GER \leftarrow DEPARTAMENTO $|X|_{RGGERENTE=RG}$ EMPREGADO RESULT $\leftarrow \pi_{NOMED, NOME, SOBREN}$ (DEPT_GER)

Resultado da relação DEPT_GER

NDEPTO	NOMED	RGGERENTE	NOME	SOBREN	RG	NROD
1	Pesquisa	333445555	Francisco	Souza	333445555	5
2	Administração	987654321	Joana	Pereira	987654321	4
3	Finanças	666884444	Rodolfo	Nogueira	666884444	5

Resultado da relação RESULT

NOMED	NOME	SOBREN
Pesquisa	Francisco	Souza
Administração	Joana	Pereira
Finanças	Rodolfo	Nogueira

Considere o seguinte Banco de Dados para esta aula (chave primária está sublinhada)

- Departamento = {Cod Depto, Nome_Depto}
- Funcionario = {Cod Func, Nome_Func, Salario, Cod_Depto}
 - Cod_depto é chave estrangeira que referencia o atributo
 Cod_depto da tabela Departamento
- Projeto = {Cod Proj, Nome_Proj, Duracao}
- Func_Proj = {Cod Func, Cod Proj, Horas_Trab}
 - Cod_Func é chave estrangeira que referencia o atributo Cod_Func da tabela Funcionario
 - Cod_Proj é chave estrangeira que referencia o atributo Cod_Proj da tabela Projeto

Departamento

Cod_Depto	Nome_Depto
1	Marketing
2	Vendas
3	Dados
4	Pesquisa

Funcionário

Cod_Func	Nome_Func	Salario	Cod_Depto
101	Joao da Silva	2000	2
102	Mario Souza	1500	1
103	Sergio Santos	2400	2
104	Maria Castro	1200	1
105	Marcio Santana	1400	4

Projeto

Cod_Proj	Nome_Proj	Duracao
1001	Sistema A	2
1002	Sistema B	6
1003	Sistema X	4

Func_Proj

Cod_Func	Cod_Proj	Horas_Trab
101	1001	24
101	1002	160
102	1001	56
102	1003	45
103	1001	86
103	1003	64
104	1001	46

- 1) Selecione todos os dados dos empregados que ganham mais que 1600.
- 2) Selecione todos os dados dos empregados que ganham menos que 3000 e que pertencem ao departamento de código 2.
- 3) Selecione somente o nome de todos os departamentos.
- 4) Selecione o nome e duração dos projetos.

- 5) Selecione o nome e salário dos empregados que são do departamento de código 2.
- 6) Selecione o nome e duração dos projetos com mais de 3 meses de duração.
- 7) Selecione o código dos projetos e o número de horas trabalhadas nestes projetos, mas apenas para o empregado de código 102.

- 8) Selecione o nome dos empregados que são do departamento de código 2 e ganham um valor maior ou igual a 2000, ou então, são do departamento de código 1 e ganham mais de 1000.
- 9) Obtenha o nome do departamento que o funcionário 'Mário Souza' trabalha.
- **10)** Obtenha o nome dos funcionários que trabalham no projeto de código 1001.

- 11) Selecione o nome dos funcionários e o nome dos projetos que cada um trabalhou.
- **12)** Obtenha o nome dos projetos que a funcionária 'Maria Castro' trabalhou.
- **13)** Obtenha o nome e duração dos projetos onde houve a participação dos funcionários do departamento de 'Marketing'.

Resolução do exercício 12)

1ª forma – sem relações intermediárias

$$\pi_{Nome_Proj}(\sigma_{(Nome_Func = 'Maria Castro')})$$
(Funcionario | X | $_{Cod_Func = Cod_Func}$
(Func_Proj | X | $_{Cod_Proj = Cod_Proj}$ Projeto)))

Resolução do exercício 12) 2ª forma – com relações intermediárias

Temp1
$$\leftarrow$$
 Func_Proj|X|_{Cod_Proj} = Cod_Proj Projeto

Temp3
$$\leftarrow \sigma_{\text{(Nome_Func = 'Maria Castro')}}$$
 (Temp2)

Result
$$\leftarrow \pi_{\text{Nome_Proj}}$$
 (Temp3)

Resolução do exercício 12)

3º forma – com relações intermediárias e mais otimizada do que a 1º e 2º formas

```
Temp1 \leftarrow \sigma_{\text{(Nome\_Func = 'Maria Castro')}} (Funcionario)
```

Temp3
$$\leftarrow$$
 Projeto | X | $_{Cod_Proj} = _{Cod_Proj}$ Temp2

Result
$$\leftarrow \pi_{Nome_Proj}$$
 (Temp3)

