Personalized Recommendations using Knowledge Graphs: A Probabilistic Logic Programming Approach

——杨子晴

Overall

- recommendation on KGs
- EntitySim: links of graph
- TypeSim: + type of entities
- GraphLF: + strengths of latent factorization with graphs
- HeteRec_p & NB(baseline)
- Dataset: Yelp; MovieLens-100K;
- Why? method cmp.; ProPPR(相关的论文的还没有来得及看...);

Preliminaries

- use binary user feedback
- regard as HIN
- from random walk to a trained walk:
 - learning a weight vector w → edge strength = f (w, φuv)
 - optimization problem: the constraint that the PageRank computed for the positive example nodes is greater than that of the negative examples.
 - positive examples: movies that the user watched
 - negative examples: movies that the user did not watch or give an explicit negative feedback.

ProPPR

- ProPPR是受随机逻辑程序(SLP) 启发的最新概率逻辑语言, 它使用个性化PageRank进行有效推理。我们采用概率推理的这 种观点作为随机遍历从标记逻辑程序构造的图形来研究这两种 语言之间的关系。
- seedset: a set of entities that each user is interested in
- seedset(U,E) \leftarrow reviewed(U,M),link(M,X),related(X,E), isEntity(E). (1) related(X,X) \leftarrow true. (2) related(X,E) \leftarrow link(X,Z),related(Z,E). (3)

Figure 2: Seed Set generation

Figure 1: Example of Movie Recommendation

• infinite -> restrain the time

EntitySim

```
reviewed(U,M) \leftarrow seedset(U,E), likesEntity(U,E), \\ related(E,X), link(X,M), isApplicable(U,M). \tag{4} \\ likesEntity(U,E) \leftarrow \{l(U,E)\}. \tag{5}
```

Figure 4: EntitySim: ProPPR program for finding movies that a user may like using similarity measured using the graph links

 the user U may like a movie M if there is an entity E belonging to U's seed set, and U likes E, and E is related to another entity X, which appears in the movie M

Figure 5: Sample grounding of the EntitySim ProPPR program

TypeSim

```
reviewed(U, R) \leftarrow seedset(U, E), likesEntity(U, E),
                      popularEntity(E), related(E, X),
                      link(X,R), isApplicable(U,R).
                                                                    (7)
likesEntity(U, E) \leftarrow \{l(U, E)\}.
                                                                    (8)
popularEntity(E) \leftarrow entityOfType(E, T),
                          popularType(T){p(E)}.
                                                                    (9)
popularType(T) \leftarrow \{p(T)\}.
                                                                   (10)
\texttt{typeAssoc}(X,Z) \leftarrow \texttt{entityOfType}(X,S), \texttt{entityOfType}(Z,T),
                       typeSim(S,T).
                                                                   (11)
typeSim(S,T) \leftarrow \{t(S,T)\}.
                                                                   (12)
```

Figure 6: TypeSim method for recommendations

GraphLF

 they develop a general representation of users and items based on the ratings data that are more generalizable and often indiscernible in the raw data.

```
• reviewed(U,R) \leftarrow related(U,E), related(E,X), link(X,R), isApplicable(U,R). (13) related(U,E) \leftarrow seedset(U,E), simLF(U,E). (14) related(X,X) \leftarrow. (15) related(X,Y) \leftarrow link(X,Z), simLF(X,Z), related(Z,Y). (16) simLF(X,Y) \leftarrow isDim(D), val(X,D), val(Y,D). (17) val(X,D) \leftarrow {v(X,D)}.
```

Figure 7: GraphLF method for recommendations

- EntitySim $\mathcal{O}(n)$: In this method, we learn one parameter per user-entity pair. However, by virtue of the rules, we constrain the entities to be chosen from the seedset of that user, which is of a constant size c.
- TypeSim $\mathcal{O}(n+e+t^2)$: In addition to those parameters learned for EntitySim, it also learns e+t weights for each of the entities and types. Moreover, it also learns the type association between pairs of types leading to an additional t^2 parameters.
- GraphLF $\mathcal{O}(n+m+e)$: For each of the users, entities and items, we learn a constant d number of weights corresponding to the latent dimensions.

Method	P@1	P@5	P@10	MRR	Settings
${\tt HeteRec_p}$	0.0213	0.0171	0.0150	0.0513	$published\ results$
EntitySim	0.0221	0.0145	0.0216	0.0641	n = 20
TypeSim	0.0444	0.0188 [↑ 10%]	0.0415 [↑ 176%]	0.0973 [↑ 89%]	n = 20
GraphLF	0.0482 [↑ 126%]	0.0186	0.0407	0.0966	n=20, dim=10
NB	0	0.0012	0.0013	0.0087	

Table 2: Performance comparison on Yelp: The best score for each metric is highlighted in blue and the lowest score in red. [$\uparrow x\%$] gives the percent increase compared to the corresponding HeteRec_p score

Method	P@1	P@5	P@10	MRR	Settings
HeteRec_p (on IM100K-UIUC)	0.2121	0.1932	0.1681	0.553	published results
EntitySim TypeSim GraphLF	0.3485 0.353 [↑ 66.4%] 0.3248	$\begin{array}{c} 0.1206 \\ 0.1207 \; [\downarrow -37.5\%] \\ 0.1207 \; [\downarrow -37.5\%] \end{array}$	0.2124 [† 26.3%] 0.2092 0.1999	$0.501 \ [\downarrow -9.4\%] \ 0.5053 \ 0.4852$	n = 10 n = 10 n = 10, dim = 10
NB	0.312	0.1202	0.1342	0.4069	

Table 3: Performance comparison on IM100K (IM100K-UIUC & IM100K*): The best score for each metric is high-lighted in blue and the lowest score in red. [$\uparrow x\%$] gives the percent increase compared to the corresponding HeteRec_p score and [$\downarrow x\%$], the percent decrease.

Density of a dataset as $\frac{\#reviews}{\#users \times \#items}$

Conclusion and Question

- learned meta-path
- good at cold-start —> the redundant of type info.
- methods of combine the information
- 都是metapath的算法...为什么是16年的论文啊?是现在方法更新太快了, 还是这篇论文有什么独特之处么?
- 感觉手动设计的部分也很多...

Thanks