Wireless LAN (WLAN): infrastructure mode

WLAN: Infrastructure Network

- \longrightarrow shared uplink & downlink channel F1
- basic service set (BSS)
- SSID (service set identifier): name/label of BSS
- base station: access point (AP)
- mobile stations must communicate through AP

WLAN: ad hoc mode

WLAN: Ad Hoc Network

- → homogeneous: no base station
- \longrightarrow everyone is the same
- → share forwarding responsibility
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
 - \rightarrow also called peer-to-peer mode

WLAN: internetworking

WLAN: Extended Service Set

- → internetworking between BSS's through APs
- \longrightarrow mobility and handoff
- extended service set (ESS): shared SSID
- APs are connected by distribution system (DS)
 - \rightarrow typically: Ethernet switch

• How do APs and Ethernet switches know where to forward frames?

- \rightarrow spanning tree
- \rightarrow IEEE 802.1 (Perlman's algorithm)
- \rightarrow learning bridge: source address discovery
- \rightarrow per interface: log source MAC address of incoming frames
- \rightarrow initially or if unclear: broadcast
- \rightarrow a very simple form of routing
- \rightarrow adequate for small systems

Additional headache: mobility

- \longrightarrow also called roaming
- \longrightarrow how to perform handoff
- \longrightarrow mobility management at MAC vs. IP

Mobility between BSS's in an ESS

- association
 - \rightarrow registration process
 - \rightarrow AP sends out periodic beacon frame
 - \rightarrow mobile station (MS) associates with one AP
- disassociation
 - \rightarrow upon permanent departure: notification

Handoff from old to new AP:

- reassociation
 - \rightarrow movement of MS from one AP to another
 - \rightarrow client initiated
 - \rightarrow e.g., AP's signal strength is low
 - → passive (beacon) or active (probe) scanning to find alternate AP
 - \rightarrow go through association process
 - \rightarrow inform new AP of old AP
 - \rightarrow forwarding of buffered frames from old to new AP in ESS

Note: when and parts of how to perform handoff are not part of IEEE standard

 \rightarrow vendor dependent

IEEE 802.11b/g WLAN spectrum 2.4–2.4835 GHz:

- \longrightarrow 11 channels (U.S.)
- \longrightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz
- → unlicensed ISM (Industrial, Scientific, Medical) band
- \longrightarrow global: 2.4–2.4835 GHz
- \longrightarrow up to 14 channels (e.g., Japan)

IEEE 802.11a: 5.15–5.35 GHz and 5.725–5.825 GHz

- → UNNI (unlicensed National Information Infrastructure)
- \longrightarrow non-global

IEEE 802.11n: both 2.4 and 5 GHz

- \longrightarrow 2.4 GHz: backward compatible
- \longrightarrow also uses multiple antennae
- → called MIMO (multiple input multiple output)
- \longrightarrow e.g., Apple's 802.11n has 3 antennae

Non-interference specification for 802.11b:

- each channel has 22 MHz bandwidth
- require 25 MHz channel separation
 - \longrightarrow thus, only 3 concurrent channels possible
 - \longrightarrow e.g., channels 1, 6 and 11
 - \longrightarrow 3-coloring...

IEEE 802.11 WLAN MAC: uses CSMA

 \rightarrow multi-user bandwidth sharing

However:

- 802.11b: uses DSSS CDMA
 - → 11-bit chip sequence (Barker sequence)
 - \rightarrow single-user DSSS
 - \rightarrow why?

- \bullet 802.11a/g/n: uses OFDM
 - \rightarrow single-user OFDM (i.e., not OFDMA)
 - \rightarrow also called single-carrier (vs. multi-carrier)
 - \rightarrow 802.11g: 48 carrier frequencies
 - \rightarrow subcarrier separation: 312.5 KHz
 - \rightarrow bits of single frame are distributed across 48 subcarriers
 - \rightarrow first bit on subcarrier 1, second bit on subcarrier 2, etc.
 - → but: transmission is sequential—not parallel!
 - \rightarrow similar to FHSS
 - \rightarrow why use OFDM without parallel speed-up?

Why not use OFDMA?

IEEE 802.11 MAC

- → CSMA/CA with exponential backoff
- \longrightarrow almost like CSMA/CD
- \longrightarrow drop CD
- → explicit positive ACK frame
- → added optional feature: CA (collision avoidance)

Two modes for MAC operation:

- Distributed coordination function (DCF)
 - \rightarrow multiple access (default mode)
- Point coordination function (PCF)
 - \rightarrow polling-based priority
- ... neither PCF nor CA used in practice

Timeline without collision:

- SIFS (short interframe space): 10 μ s
- Slot Time: 20 μ s
- DIFS (distributed interframe space): 50 μ s
 - \rightarrow DIFS = SIFS + 2 × slot time
- BO: variable back-off (within one CW)
 - ightarrow CWmin: 31; CWmax: 1023

Time snapshot with Mira-come-lately:

→ Sue sends to Arnold

Time snapshot with collision (Sue & Mira):

MAC throughput and collision (simulation):

MAC throughput (experiment):

→ HP iPAQ pocket PC running Linux

Throughput share of 16 HP/Compaq pocket PCs:

 \rightarrow uplink CSMA competition

- \rightarrow significant unfairness: why?
- \rightarrow persistent unfairness
- \rightarrow location (not distance from AP) is determining factor

CS 422 Park

Indoor office 802.11 WLAN hot spot (HAAS G50):

Consider empty room with no obstructions:

- \rightarrow large lecture room
- \rightarrow e.g., 802.11 WLAN hot spot
- \rightarrow AP sends out signal at 2.4 (802.11b/g) or 5 GHz (802.11a/n) frequency
- \rightarrow how does indoor signal reception look like?

Signal strength reception at table height 0.7 m:

- \rightarrow carrier frequency: 5.32 GHz
- \rightarrow channel 8 in U.S. (12 channels in 5 GHz 802.11a/n)

 \rightarrow called spatial diversity