Trabajo Práctico: Diseño de un filtro

POULSEN KATRINE

Especificaciones

bt224 2013b La señal a la izquierda, de valor medio nulo, ingresa al filtro a diseñar produciendo como salida la señal de la derecha, que posee una amplitud Vpap de 1.54 Volt; compuesta por 2 armónicos y un contenido residual de armónicos no deseados menor de 7mVolt RMS

Defino las constantes y las variables:

$$(\mathbf{S} \ \mathbf{i} \ \mathbf{p} \ \mathbf{wo} \ \mathbf{T} \ \mathbf{k}) := \left(1024 \ 0... \mathbf{S} - 1 \ 0... 2000 \ \frac{2\pi}{\mathbf{S}} \ \frac{1}{100} \ 0... \frac{\mathbf{S}}{2}\right)$$

Busqueda de valor medio

$$g_i := sin(wo \cdot i) \cdot (0 \le i < S)$$

$$h_{i} := \frac{1}{3} \sin(3 \cdot wo \cdot i)(0 \le i < S)$$

Calculo la integral para que me de valor medio nulo en la señal de entrada

$$Vm := \left[\left(\int_0^5 \sin\left(\frac{\pi \cdot 2 \cdot \mathbf{x}}{5 \cdot 2}\right) d\mathbf{x} \right) + \left(\int_5^{10} \frac{1}{3} \cdot \sin\left(\frac{2\pi \cdot \mathbf{x}}{\frac{10}{3}}\right) d\mathbf{x} \right) \right] \cdot \frac{1}{10}$$

Defino señal de entrada

$$a_i := \left[sin(wo \cdot i) \cdot \left(0 \le i < \frac{s}{2} \right) + \frac{1}{3} \cdot sin(3 \cdot wo \cdot i) \cdot \left(\frac{s}{2} \le i < s \right) \right] - Vm$$

Defino señal de salida

$$\boldsymbol{b_i} := \frac{1}{2} \boldsymbol{sin}(\boldsymbol{wo} \cdot \boldsymbol{i}) \cdot (0 \leq \boldsymbol{i} < \boldsymbol{S}) + \frac{1}{2} \cdot \boldsymbol{sin}(3 \cdot \boldsymbol{wo} \cdot \boldsymbol{i})$$

Determinación de armónicos mediante FFT

$$f := FFT(a)$$

$$fb := FFT(b)$$

$$|\mathbf{f_0}| = 5.013 \times 10^{-12}$$
 $|\mathbf{fb_0}| = 0$ $|\mathbf{f_1}| = 0.25$ $|\mathbf{f_2}| = 0.17$ $|\mathbf{fb_2}| = 0$ $|\mathbf{fb_3}| = 0.25$

Determinación por prueba y error de H(s)

 $(A \ w1 \ Q1 \ w2 \ Q2 \ w3 \ fase) := [(6.37)^4 \ 2 \cdot \pi \cdot 100 \ 3.95 \ 2\pi \cdot 300 \ 9 \ 2 \cdot \pi \cdot$

$$H(s) := A \left(\frac{\frac{s w1}{Q1}}{s^2 + \frac{s \cdot w1}{Q1} + w1^2} \right)^2 \cdot \left(\frac{\frac{s w2}{Q2}}{s^2 + \frac{s \cdot w2}{Q2} + w2^2} \right)^2 \cdot \left[\frac{s^2 + w'}{[s + (2 - \sqrt{3}) \cdot w3] \cdot [s + (2 - \sqrt{3}) \cdot w]} \right] \cdot [s + (2 - \sqrt{3}) \cdot w] \cdot$$

$$fas_k := H(2i \cdot \pi \cdot 100 \cdot k) \cdot f_k$$
 $fnas_k := fas_k \cdot (k \neq 1) \cdot (k \neq 3)$

as := IFFT(fas) nas := IFFT(fnas)

Ruido stdev(nas) =
$$3.15 \times 10^{-3}$$

es menor que 0.007

$$\frac{max(b)}{max(as)} = 0.996$$

es menor que 1

$$||fas_1|| = 0.25$$
 $||fas_3|| = 0.25$

Pasabanda de 100Hz, Q=3,95 y ganancia 6,37

C1a :=
$$18 \cdot 10^{-9}$$

C2a := $15 \cdot 10^{-9}$

$$sol := \begin{bmatrix} w1^2 = \frac{1}{C1a \cdot C2a \cdot R2a} \cdot \left(\frac{1}{R3a} + \frac{1}{R1a}\right) \\ \frac{w1}{Q1} = \left(\frac{1}{C1a} + \frac{1}{C2a}\right) \cdot \frac{1}{R2a} \\ \frac{4\sqrt{A}}{C1a \cdot R1a} \cdot \frac{Q1}{w1} \end{bmatrix}$$

$$solve, \begin{pmatrix} R1a \\ R2a \\ R3a \end{pmatrix} \rightarrow \begin{pmatrix} 5.48 \cdot 10^4 & 7.6 \\ float, 3 \end{pmatrix}$$

$$\begin{pmatrix} R1a \\ R2a \\ R3a \end{pmatrix} := \begin{pmatrix} 549 \cdot 10^2 \\ 768 \cdot 10^3 \\ 158 \cdot 10^2 \end{pmatrix}$$

$$\textit{Ha}(s) := \frac{\frac{-s}{\textit{C1aR1a}}}{s^2 + \left(\frac{1}{\textit{C2a}} + \frac{1}{\textit{C1a}}\right) \cdot \frac{1}{\textit{R2a}} \cdot s + \frac{1}{\textit{C1a} \cdot \textit{C2a} \cdot \textit{R2a}} \cdot \left(\frac{1}{\textit{R1a}} + \frac{1}{\textit{R3a}}\right)}$$

Pasabanda de 300Hz, Q=9 y ganancia 6,37

C1b :=
$$56 \cdot 10^{-9}$$

C2b :=
$$10 \cdot 10^{-9}$$

$$sol := \begin{bmatrix} w2^2 = \frac{1}{C1b \cdot C2b \cdot R2b} \cdot \left(\frac{1}{R3b} + \frac{1}{R1b}\right) \\ \frac{w2}{Q2} = \left(\frac{1}{C1b} + \frac{1}{C2b}\right) \cdot \frac{1}{R2b} \\ \frac{4}{\sqrt{A}} = \frac{1}{C1b \cdot R1b} \cdot \frac{Q2}{w2} \end{bmatrix}$$
 | solve, $\begin{pmatrix} R1b \\ R2b \\ R3b \end{pmatrix} \rightarrow \begin{pmatrix} 1.34 \cdot 10^4 \\ 1.34 \cdot 10^4 \end{pmatrix}$

$$\begin{pmatrix} R1b \\ R2b \\ R3b \end{pmatrix} := \begin{pmatrix} 133 \cdot 10^2 \\ 562 \cdot 10^3 \\ 953 \end{pmatrix}$$

$$Hb(s) := \frac{\frac{-s}{C1bR1b}}{s^2 + \left(\frac{1}{C2b} + \frac{1}{C1b}\right) \cdot \frac{1}{R2b} \cdot s + \frac{1}{C1b \cdot C2b \cdot R2b} \cdot \left(\frac{1}{R1b} + \frac{1}{R3b}\right)}$$

Twint – t

$$Ct := 18 \cdot 10^{-9}$$

sol :=
$$\left(w3 = \frac{1}{Ct \cdot Rt} \right)$$
 | solve, Rt | float, 3 $\rightarrow 4.42 \cdot 10^4$

$$Rt := 442 \cdot 10^2$$

$$Ht(s) := \frac{\left[s^2 + \left(\frac{1}{Ct \cdot Rt}\right)^2\right]}{\left[s + (2 - \sqrt{3}) \cdot \left(\frac{1}{Ct \cdot Rt}\right)\right] \cdot \left[s + (2 + \sqrt{3}) \cdot \left(\frac{1}{Ct \cdot Rt}\right)\right]}$$

Desfasaror Inversor

$$Cf := 22 \cdot 10^{-9}$$

sol :=
$$\left(\text{fase} = \frac{1}{\text{Cf} \cdot \text{Rf}} \right) \mid \begin{array}{c} \text{solve, Rf} \\ \text{float, 3} \end{array} \rightarrow 3.82 \cdot 10^4$$

$$Rf := 324 \cdot 10^2$$

$$Hp(s) := \frac{s - \frac{1}{Cf \cdot Rf}}{s + \frac{1}{Cf \cdot Rf}}$$
 Comentario: El cambio de resistencia se explica en las conclusiones al final.

Transferencia normalizada: $Hn(s) := Ha(s)^2 \cdot Hb(s)^2 \cdot Ht(s) \cdot Hp(s)$

Comparación transferencia ideal versus normalizada:

$$H(s) \ float$$
, 3 \rightarrow 1.83 · 10¹² · $\frac{s^4}{\left(s^2 + 159. \cdot s + 3.94 \cdot 10^5\right)^2 \cdot \left(s^2 + 209. \cdot s + 3.55 \cdot 10^6\right)^2}$

Hn(s) float,
$$3 \rightarrow 1.85 \cdot 10^{12} \cdot \frac{s^4}{\left(s^2 + 159. \cdot s + 3.93 \cdot 10^5\right)^2 \cdot \left(s^2 + 210. \cdot s + 3.57 \cdot 10^6\right)^2}$$

Confirmación

Recalculando amplitud y ruido con filtro normalizado

$$fas_k := Hn(2i \cdot \pi \cdot 100 \cdot k) \cdot f_k$$
 $fnas_k := fas_k \cdot (k \neq 1) \cdot (k \neq 3)$
 $as := IFFT(fas)$ $nas := IFFT(fnas)$

$$ruido$$
 $stdev(nas) = 3.224 \times 10^{-3}$

 $| fas_1 | = 0.25$ $| fas_3 | = 0.251$

Error porcentual en amplitudes

$$\left| \frac{\left| \mathbf{fb_1} \right| - \left| \mathbf{fas_1} \right|}{\mathbf{fb_1}} \right| \cdot 100 = 0.147$$

$$\left| \frac{\left| \mathbf{fb}_{3} \right| - \left| \mathbf{fas}_{3} \right|}{\mathbf{fb}_{3}} \right| \cdot 100 = 0.321$$

error menor al 1.5% y ruido menor a 7mV

Circuito

Ver: Circuito.jpg

Superposición de la señal de salida teórica con valores normalizados con la simulada en LTspice

ps :=		
, ,		0
	0	0
	1	1.0895·10 ⁻⁵
	2	2.179·10 ⁻⁵
	3	3.2685·10 ⁻⁵
	4	4.358·10 ⁻⁵

psSalidaFourier :=

	0	1
0	100	0.4991
1	200	3.242·10 ⁻⁵
2	300	0.5004
3	400	0.0045
4	500	4.138·10 ⁻⁶
5	600	5.326·10 ⁻⁵
6	700	5.565·10 ⁻⁶
7	800	3.8·10 ⁻⁶
8	900	4.825·10 ⁻⁶
9	1000	7.574·10 ⁻⁷

 $|psSalidaFourier_{0,1}| = 0.499$ $|psSalidaFourier_{2,1}| = 0.5$

Error porcentual en amplitudes con valores de la simulación de la señal de sali

$$\frac{\left| \textbf{fb}_1 \right| - \frac{\left| \textbf{psSalidaFourier}_{0,1} \right|}{2}}{\textbf{fb}_1} \cdot 100 = 0.18$$

$$\frac{\left| \textbf{fb}_3 \right| - \frac{\left| \textbf{psSalidaFourier}_{2,1} \right|}{2}}{\textbf{fb}_3} \cdot 100 = 0.08 \quad \text{error menor al 1.5\%}$$

ruido :=
$$\sqrt{\frac{1}{2} \cdot \left[\sum_{j=0}^{19} \left(psSalidaFourier_{j,1} \right)^2 \cdot (j \neq 0) \cdot (j \neq 2) \right]}$$

 $ruido = 3.206 \times 10^{-3}$ es menor que 7mv

Aclaración: Simulé con LTSpice el desarrollo en serie de Fourier, con frecuencia fundamental 100Hz, para la señal de salida. Y en este caso el desarrollo de Fourier incrementa en un factor o los resultados, por eso en los calculos de erres porcentuales y ruido aparecen los factores de 1.

Diagrama de polos y ceros

Diagrama de polos y ceros
$$\mathbf{z} := \mathbf{H}\mathbf{n}(\mathbf{u}) \quad \begin{vmatrix}
\mathbf{solve}, \mathbf{u} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{1256.9 \cdot i} \\
-1256.9 \cdot i \\
1402.9
\end{vmatrix}
\mathbf{po} := \frac{1}{\mathbf{H}\mathbf{n}(\mathbf{u})} \quad \begin{vmatrix}
\mathbf{solve}, \mathbf{u} \\
\mathbf{float}, 5
\end{vmatrix}$$

$$\begin{vmatrix}
\mathbf{o} \\
-79.572 + 621.88 \cdot \\
-79.572 - 621.88 \cdot \\
-104.86 + 1887.3 \cdot \\
-104.86 - 1887.3 \cdot \\
-104.86 - 1887.3 \cdot \\
-336.7 - \\
-4690.9 - \\
-1402.9
\end{vmatrix}$$

Re(z), Re(po)

Puntos de 3dB [máximos]

Ver: 3db1 y 3db2

Diagrama de bode [amplitud]

$$db(x) := 20 \cdot log(|x|)$$

Hn(s) float, 4
$$\rightarrow$$
 1.846 · 10¹² · $\frac{s^4}{\left(s^2 + 159.1 \cdot s + 3.931 \cdot 10^5\right)^2 \cdot \left(s^2 + 209.7 \cdot s + 3.573 \cdot 10^5\right)^2}$

	0	1
0	0	0
1	10	-96.7039
2	10.1396	-96.2217
3	10.2811	-95.7394
4	10.4247	-95.2571
5	10.5702	-94.7748
6	10.7177	-94.2925
7	10.8673	-93.8101
	1 2 3 4 5	0 0 1 10 2 10.1396 3 10.2811 4 10.4247 5 10.5702 6 10.7177

Diagrama de bode [fase]

$$b(x, xo) := if\left(x < \frac{xo}{10}, 0, if\left(x > 10 \cdot xo, -90, -45 - 45 \cdot log\left(\frac{x}{xo}\right)\right)\right)$$

$$Hc(s) := \left[\frac{s^2 + 1.580 \cdot 10^6}{(s + 337.) \cdot (s + 4691.)} \right] \qquad Hd(s) := \frac{s - 1187.}{s + 1187.}$$

$$Ha(s) := \frac{s}{\left(s^2 + 159.1 \cdot s + 3.931 \cdot 10^5\right)}$$
 $Hb(s) := \frac{s}{\left(s^2 + 209.7 \cdot s + 3.573 \cdot 10^6\right)}$

$$\mathbf{w_k} := 2 \cdot \pi \cdot 1 \cdot (30000) \frac{\mathbf{k} \cdot 2}{\mathbf{S}}$$

ps :=			
,		0	1
	0	1	177.9138
	1	1.0233	177.8653
	2	1.0471	177.8155
	3	1.0715	177.7647
	4	1.0965	177.7126
	5	1.122	177.6593
	6	1.1482	177.6048
	7	1.1749	177.549
	8	1.2023	177.4919
	9	1.2303	177.4335

$$pscorr^{\langle 0 \rangle} := ps^{\langle 0 \rangle}$$

$$fase_corr_m := (ps^{\langle 1 \rangle})_m - 360 \cdot (m > 202) - 360 \cdot (m > 254)$$

$$pscorr^{\langle 1 \rangle} := fase_corr$$

Respuesta al impulso

$$\textit{rimp}(\textit{t}) := \textit{Hn}(\textit{s}) \; \textit{invlaplace}, \; \textit{s} \; \rightarrow \frac{1113679736650168304332296683520000000000}{6901096326284755276687692824569664987} \; \cdot \;$$

$$rimp(t) \quad \begin{vmatrix} float, 2 \\ collect, cos, sin, exp \end{vmatrix} \left(-86. + 7.2 \cdot 10^4 \cdot t \right) \cdot exp\left(-1.0 \cdot 10^2 \cdot t \right) \cdot cos\left(1.9 \cdot t \right) \cdot c$$

Respuesta al escalón

$$resc(t) := \frac{Hn(s)}{s} \ invlaplace, s \rightarrow \frac{-793830916284239967328061076013056000}{6901096326284755276687692824569664987} \cdot exp$$

$$resc(t) \ \left| \begin{array}{c} float, 3 \\ collect, sin, cos, exp \end{array} \right| \left(-1.36 \cdot 10^{-2} - 7.26 \cdot t \right) \cdot exp(-79.6 \cdot t) \cdot sin(623.4856664987) \cdot exp(-79.6 \cdot t) \cdot sin(623.486664987) \cdot exp(-79.6 \cdot t) \cdot exp(-79.6 \cdot t) \cdot sin(623.486664987) \cdot exp(-79.6 \cdot t) \cdot exp(-79.$$

ps :=			
		0	1
	0	0	-1.0071·10 ⁻⁵
	1	10·10 ⁻¹¹	-1.0071·10 -5
	2	1.5112·10 ⁻¹⁰	-1.0071·10 ⁻⁵
	3	4.5782·10 ⁻¹⁰	-1.0071·10 ⁻⁵
	4	8.6161·10 ⁻¹⁰	-1.0071·10 ⁻⁵
	5	1.6692·10 ⁻⁹	-1.0071·10 ⁻⁵
	6	3.2844·10 ⁻⁹	-1.0071·10 ⁻⁵
	7	5.6785·10 ⁻⁹	-1.0071·10 ⁻⁵
	8	9.2401·10 ⁻⁹	-1.0071·10 ⁻⁵
	9	1.4017·10 ⁻⁸	-1.0071·10 ⁻⁵

Respuesta a la onda cuadrada

$$\mathbf{x} := 0, \left(\frac{1}{4000}\right) ... \frac{100}{1000}$$

$$rcuad(t) := \left[\sum_{j=0}^{20} \frac{(-1)^j}{\mathbf{s} \cdot [1 + (j=0) + (j=20)]} \cdot exp(-\mathbf{s} \cdot j \cdot \frac{\mathbf{T}}{2})\right] \cdot Hn(\mathbf{s}) invlaple$$

ps :=			
		0	1
	0	0	-1.0071·10 ⁻⁵
	1	10·10 ⁻¹¹	-1.0071·10 ⁻⁵
	2	1.5112·10 ⁻¹⁰	-1.0071·10 ⁻⁵
	3	4.5782·10 ⁻¹⁰	-1.0071·10 ⁻⁵
	4	8.6161·10 ⁻¹⁰	-1.0071·10 ⁻⁵
	5	1.6692·10 ⁻⁹	-1.0071·10 ⁻⁵
	6	3.2844·10 ⁻⁹	-1.0071·10 ⁻⁵
	7	5.6785·10 ⁻⁹	-1.0071·10 ⁻⁵
	8	9.2401·10 ⁻⁹	-1.0071·10 ⁻⁵
	9	1.4017·10 ⁻⁸	-1.0071·10 ⁻⁵

Respuesta a la senoide

$$rsin(t) := \frac{\frac{2 \pi}{T}}{s^2 + \left(2 \cdot \frac{\pi}{T}\right)^2} \cdot Hn(s) \text{ invlaplace, } s \rightarrow$$

ps1 :=			
		0	1
	0	0	-1.0071·10 ⁻⁵
	1	1.2046·10 ⁻⁷	-1.0071·10 ⁻⁵
	2	2.4092·10 ⁻⁷	-1.0071·10 ⁻⁵
	3	3.6137·10 -7	-1.0071·10 ⁻⁵
	4	4.8183·10 ⁻⁷	-1.0071·10 ⁻⁵
	5	6.0229-10 -7	-1.0071·10 ⁻⁵
	6	7.2275·10 ⁻⁷	-1.0071·10 ⁻⁵
	7	8.432·10 ⁻⁷	-1.0071·10 ⁻⁵
	8	4.3959·10 ⁻⁶	-1.0071·10 ⁻⁵
	9	8.4394·10 ⁻⁶	-1.0071·10 ⁻⁵

Conclusiones: En primera instancia se determina que la señal de salida está compuesta por dos armónicos de la señal de entrada, que se encuentran a 100Hz y 300Hz. Se continua con la construcción de la transferencia, utilizando 2 pasa-banda para los armónicos de 100Hz y 300Hz. Esto filtros se colocan 2 veces en cascada. Se utiliza un Twint-t para eleminar el armónico de 400Hz que e el que genera más ruido en la señal de salida y por último un desfasador para ajustar la forma de la señal.

A continuación se procede a normalizar la transferencia, se observa que la transferencia H(s) y la transferencia normalizada Hn(s) son diferentes, pero es muy poca la variación, por lo tanto se puede analizar que la elección de componentes fue apropiada.

Otro comentario importante es que al realizar la simulación en LTSpice, para observar el resultado del análisis de Fourier, el programa incrementa el resultado en un factor de 2, por lo tanto si comparamos los armónicos obtenidos teóricamente son 0.25 los dos, y los obtenidos en la simulación son 0.49 y 0.50, es decir 0.25*2 aproximadamente en ambos casos. Esto prueba que los resultados concuerdan, además que de 400Hz en adelante las frecuencias son muy bajas, es decir prácticamente nulas, com se esperaba.

El valor de la resistencia en el circuito desfasador, tuvo que ser modificado del que daba teóricamente porque al graficar la seña de salida, se veía una diferencia en los picos entre las señales de salida normalizada y la planetada en el comienzo del trabajo, por eso se tomó una R=32.4k que como se ve da una salida con mejores resultados.

Y para finalizar como tanto en la simulación como en la normalización de la transferencia se consiguieron errores de amplitud menores al 1,5% y ruido menor a 7mv, los resultados son satisfactorios.

$$\frac{\mathbf{3}^2}{\mathbf{s} + (2 + \sqrt{3}) \cdot \mathbf{w3}} \cdot \left(\frac{\mathbf{s} - \mathbf{fase}}{\mathbf{s} + \mathbf{fase}} \right)$$

 $1.57 \cdot 10^{5}$ $1.57 \cdot 10^{4}$

5.63 · 10⁵ 957.

$$\frac{\mathbf{s}^2 + 1.58 \cdot 10^6}{(\mathbf{s} + 339.) \cdot (\mathbf{s} + 4.68 \cdot 10^3)} \cdot \frac{\mathbf{s} - 1.19 \cdot 10^3}{\mathbf{s} + 1.19 \cdot 10^3}$$

$$\cdot \frac{\mathbf{s}^2 + 1.58 \cdot 10^6}{\left(\mathbf{s} + 3.3 \cdot 10^2\right) \cdot \left(\mathbf{s} + 4.69 \cdot 10^3\right)} \cdot \frac{\mathbf{s} - 1.40 \cdot 10^3}{\mathbf{s} + 1.40 \cdot 10^3}$$

$$\frac{\mathbf{s}^2 + 1.580 \cdot 10^6}{(\mathbf{s} + 337.) \cdot (\mathbf{s} + 4691.)} \cdot \frac{\mathbf{s} - 1403.}{\mathbf{s} + 1403.}$$

$$\frac{\mathbf{x}}{\mathbf{3a}}$$
 \cdot $(\mathbf{x} > \mathbf{w3a}) - \mathbf{db} \left(\frac{\mathbf{x}}{\mathbf{w3b}}\right) \cdot (\mathbf{x} > \mathbf{w3b}) + 2 \cdot \mathbf{db} \left(\frac{\mathbf{x}}{\mathbf{w3c}}\right) \cdot (\mathbf{x} > \mathbf{w3c})$

+
$$b(x, 337.) + b(x, 4691.) + 2 \cdot b(x, 1187)$$

 $rg(Hd(i \cdot x)) \cdot \frac{180}{\pi}$

 $3 \cdot 10^{3} \cdot t + (-2.6 \cdot 10^{3} \cdot t - 38.) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) + (15. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot cos(6.2 \cdot 10^{2} \cdot t) \cdot cos(6.2 \cdot 10$

 $\mathbf{y} \left(\frac{-1250000}{891} \cdot \mathbf{t} \right) + \frac{7328533628459749105054552025840392417018780484787836774350396317}{62546350753430917804837468365739854334047089031909314295345585736}$

t) + $(37.8 \cdot t - 3.96 \cdot 10^{-2}) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (7.73 \cdot 10^{-2} - 23.5 \cdot t) \cdot exp(-105. \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) + (1.88 \cdot 10^{3} \cdot t) \cdot sin(1.88 \cdot 10^{3} \cdot t) \cdot sin($

s s

у 0

٠,

١,

$$\frac{\mathbf{s} - \frac{1250000}{891}}{\mathbf{s} + \frac{1250000}{891}}$$

 $-1.0 \cdot 10^{2} \cdot t$ · $sin(1.9 \cdot 10^{3} \cdot t) + (-53. + 1.5 \cdot 10^{4} \cdot t) \cdot exp(-80. \cdot t) \cdot sin(6.2 \cdot 10^{2} \cdot t) + 1.6 \cdot 10$

79.6 · t) · $cos(623. · t) + (-9.95 · t + 1.43 · 10^{-2}) · <math>exp(-105. · t) · cos(1.88 · 10^{3} · t) - .115 · e)$

$$^{2} \cdot exp(-1.4 \cdot 10^{3} \cdot t) - 6. \cdot exp(-3. \cdot 10^{2} \cdot t) - 32. \cdot exp(-4.7 \cdot 10^{3} \cdot t)$$

$$\mathbf{rp}\left(-1.40 \cdot 10^{3} \cdot \mathbf{t}\right) + 1.67 \cdot 10^{-2} \cdot \mathbf{exp}\left(-3.3 \cdot 10^{2} \cdot \mathbf{t}\right) + 6.73 \cdot 10^{-3} \cdot \mathbf{exp}\left(-4.69 \cdot 10^{3} \cdot \mathbf{t}\right)$$

 $06567382812500000 \cdot 3^{\frac{1}{2}}) \cdot \textbf{\textit{t}} + \frac{469940263502406882628581249200100553210043300240771197}{625463507534309178048374683657398543340470890319093142}$

 $\underbrace{\frac{1}{2}}_{5899709701538085937500000000} \cdot \underbrace{\frac{1}{2}}_{} \cdot \underbrace{\boldsymbol{t}}_{} + \underbrace{\frac{1794844446017299973430779803602196207839837}{62546350753430917804837468365739854334047088}}_{}$

 $\frac{^{799403613056340852951413125287116800000000}}{^{3031909314295345585736581472519605702308507}} \cdot \textit{exp} \boxed{ \frac{}{949132474125473751173566624293949}}$

	-114525788733088838753
122379642185547274304309303767730086945403883385009765625	(

 $\underbrace{\frac{1}{2}}_{284318606567382812500000} \cdot \underbrace{\frac{1}{2}}_{3} \cdot \underbrace{t}_{3} \cdot \underbrace{\frac{1}{2}}_{4} - \underbrace{\frac{11654768626027649936924038010148562356106142}{6254635075343091780483746836573985433404708}$

 $17647868756723777879758997097015380859375000000000 \cdot 3^{\frac{1}{2}}\right) \cdot \textbf{\textit{t}} \right] \cdot 3^{\frac{1}{2}} + \frac{73285336284597491}{625463507534309178}$

 $\frac{05054552025840392417018780484787836774350396317170768412672000000000}{04837468365739854334047089031909314295345585736581472519605702308507} \cdot \boldsymbol{exp} \boxed{\frac{94913248787836774350396317170768412672000000000}{94913248787836774350396317170768412672000000000}}$

-1 7412547375117356662429394966331802108829092121989015480064438	
11 1120 11 01 01 11 000002 12000 100000 1002 100002 12 10000 10 10000 11 100	20 10 101 00 1 100 200 000 00

 $\frac{1}{3227413382284318606567382812500000 \cdot 3} \cdot \mathbf{t} - \frac{4699402635024068826285812492001005532}{6254635075343091780483746836573985433}$

 $\begin{array}{c} \frac{1}{2} \\ \cdot \\ 19879087617935007694807711764786875672377787975899709701538085937500000000 \cdot 3 \\ \end{array} \right) \cdot \textbf{\textit{t}}$

 $\frac{10043300240771197528071554664185856000000000000000}{4047089031909314295345585736581472519605702308507} \cdot \textbf{exp} \boxed{\frac{1555835875802274005633119}{4555835875802274005633119}}$

		2951413125287116 8573658147251060	
		2951413125287116 8573658147251960	

 $977003227413382284318606567382812500000 \cdot 3^{\frac{1}{2}}\right) \cdot \textbf{\textit{t}} \cdot 3^{\frac{1}{2}} - \frac{4531047334734988712331001324}{1188016211824532321860202286}$

6864516489418930451546058514043951704850723978369026944545366659279590812665183738
3665008260192714591937526366720195583797431611677303379213007224620495897979449025

 $3375000000000 \cdot 3^{\frac{1}{2}}) \cdot t + \frac{1}{3^{\frac{1}{2}}} + \frac{4592811574988797797703078681782660566016209944665946549}{59400810591226616093010114333250413009635729596876318339} + \frac{1}{3} +$

$$\frac{326560000}{26397629} \cdot \boldsymbol{exp} \left(\frac{-34375}{432} \cdot \boldsymbol{t} \right) \cdot \boldsymbol{cos} \left(\frac{3125}{2081808} \cdot 171630135519^{\frac{1}{2}} \cdot \boldsymbol{t} \right) - \frac{4012674126013695534}{306410882477802837087} \right)$$

 $\frac{11010566886035258385110418019487322111350004895229218094923776}{60097791898715805838651689606503612310247948989724512631988145} \cdot \boldsymbol{exp} \bigg(\frac{-34375}{432} \cdot \boldsymbol{t} \bigg) \cdot \boldsymbol{c}$

1693129984916884430443845	892681770472819	910053121949650	0887471531905670)195918180767{
721873035543836328056561	137995007375881	29929883590594	4216939425630630	7396084776397

$$\mathbf{os} \left(\frac{3125}{2081808} \cdot 171630135519^{\frac{1}{2}} \cdot \mathbf{t} \right) - \frac{2742799200539974010168172253237008193001994340}{83718820349126458220689036348509244898376109600548} \cdot \mathbf{t} \right) - \frac{2742799200539974010168172253237008193001994340}{83718820349126458220689036348509244898376109600548} \cdot \mathbf{t} \right) - \frac{2742799200539974010168172253237008193001994340}{83718820349126458220689036348509244898376109600548} \cdot \mathbf{t} \cdot \mathbf{t}$$

 $\frac{54031654238925904775086080000}{7805860016512417086434455518923} \cdot \boldsymbol{exp} \left(\frac{-34375}{432} \cdot \boldsymbol{t} \right) \cdot 171630135519^{\frac{1}{2}} \cdot \boldsymbol{sin} \left(\frac{3125}{2081808} \cdot 171680135519^{\frac{1}{2}} \right)$

)9618408964436850)379944729019338911	970254981771482073	827696654746859689440	21504
			827696654746859689440 470105464932033253727	

 $30135519^{\frac{1}{2}} \cdot \textbf{\textit{t}} + \frac{71059060632361625560797498991067897647349330115757469193480223129}{193419415308803679104660241277120981601962927263512593851728105677}$

$$- \boldsymbol{exp} \left(\frac{-34375}{432} \cdot \boldsymbol{t} \right) \cdot 171630135519^{\frac{1}{2}} \cdot \boldsymbol{sin} \left(\frac{3125}{2081808} \cdot 171630135519^{\frac{1}{2}} \cdot \boldsymbol{t} \right) - \frac{338498414192}{193419415308803}$$

$$\frac{6000000000000}{87669810106801} \cdot \exp\left(\frac{-34375}{432} \cdot t\right) \cdot t \cdot 171630135519^{\frac{1}{2}} \cdot \sin\left(\frac{3125}{2081808} \cdot 171630135519^{\frac{1}{2}} \cdot t\right) - \frac{1}{2} \cdot t \cdot 171630135519^{\frac{1}{2}} \cdot t \cdot t \cdot 17163013519^{\frac{1}{2}} \cdot t \cdot$$

 $\frac{740372381413704230806167118222974487086339571746946744320000000}{367910466024127712098160196292726351259385172810567787669810106801} \cdot \boldsymbol{exp} \left(\frac{-34375}{432} \cdot \boldsymbol{t} \right)$

1	376155957176242	032211460040427	7060601200084/	567050207/506	340876355556147	20000000
	52223242133376					

$$) \cdot \textit{\textbf{t}} \cdot 171630135519^{\frac{1}{2}} \cdot \textit{\textbf{sin}} \left(\frac{3125}{2081808} \cdot 171630135519^{\frac{1}{2}} \cdot \textit{\textbf{t}} \right) - \frac{74661764661024687992450220368}{31708100870295685099124629717}$$

$$\frac{00000}{627} \cdot \boldsymbol{exp} \left(\frac{-34375}{432} \cdot \boldsymbol{t} \right) \cdot \boldsymbol{t} \cdot \boldsymbol{cos} \left(\frac{3125}{2081808} \cdot 171630135519^{\frac{1}{2}} \cdot \boldsymbol{t} \right) - \frac{2038205619032914253737}{237083386102331058763} \right)$$

 $\frac{38358115682225637380548878544449679173550080000000}{75608166560594962727069825986439517504715898526341} \cdot exp\left(\frac{-34375}{432} \cdot t\right) \cdot t \cdot cos\left(\frac{3125}{208180}\right)$

3930257734921643216892534187569287943898808525699183260634888412173884735584273561
3853180033036334246562975936713350298715113758988672499942385345681206814245947566

 $\frac{1}{08} \cdot 171630135519^{\frac{1}{2}} \cdot t + \frac{1692389911016539978160931854404665900772420151810795562203}{11854169305116552938169265900165181671232814879683566751493}$

 $\frac{401388965515587801175636705280000}{86931204832125890507860722623073} \cdot \boldsymbol{exp} \left(\frac{-206250}{1967} \cdot \boldsymbol{t} \right) \cdot \boldsymbol{cos} \left(\frac{6250}{10008227789} \cdot 91338379180 \right)$

 $\frac{30476569356972155154219213835184306581173355909253165327718913186481366745088}{357556879494336249971192672840603407122973783434656024160629452539303613115365} \cdot \textbf{ex}$

 $)51481079^{\frac{1}{2}} \cdot \textbf{\textit{t}}) + \frac{70559324950338790336256202277388432720397879412599780998916617}{142987664109713860035824353829027852412663728525947197350606788366}$

$$p\left(\frac{-206250}{1967} \cdot t\right) \cdot cos\left(\frac{6250}{10008227789} \cdot 9133837918051481079^{\frac{1}{2}} \cdot t\right) - \frac{7023400384533117}{5375476094350145114128}\right)$$

15323722244235922014410034064148149908932308584674393356046486020641810144861224	196
6397531475446955982855083879776784202213427937567072327244084960042121261766006	 587

		5658178970064711883364 4661009589619540480609	

$$\frac{0000}{^{\prime}01461429} \cdot \textit{exp} \bigg(\frac{-206250}{1967} \cdot \textit{t} \bigg) \cdot 9133837918051481079^{\frac{1}{2}} \cdot \textit{sin} \bigg(\frac{6250}{10008227789} \cdot 9133837918051481079^{\frac{1}{2}} \bigg)$$

 $\frac{941503605134345823213118414683175202190999552}{576796757770948598661973533992937074308295439904565} \cdot \boldsymbol{exp} \left(\frac{-206250}{1967} \cdot \boldsymbol{t} \right) \cdot 913383791808 + \frac{1}{1967} \cdot \boldsymbol{t} \cdot \boldsymbol{t}$

 $81079^{\frac{1}{2}} \cdot \textbf{\textit{t}} + \frac{861397691126149912171274796583388793008917546210262026969634050234}{175678221976666892049041525896780614155290078888625287765047016645331}$

$$\frac{1}{51481079} \cdot sin \left(\frac{6250}{10008227789} \cdot 9133837918051481079^{\frac{1}{2}} \cdot t \right) + \frac{21925130128876533676613}{175678221976666892049041525}$$

 $\frac{697545440308777786932985933358004072383178410462740480000000}{8967806141552900788886252877650470166453315957461476863965686719} \cdot \textit{exp} \bigg(\frac{-206250}{1967} \cdot \textit{t} \bigg)$