

JLX25664G-251-BN 使用说明书

(焊接式 FPC)

目 录

序号	内容标题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3~4
4	基本原理	5~6
5	技术参数	6
6	时序特性	6~11
7	指令功能及硬件接口与编程案例	11~尾页

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX25664-251-BN 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX25664-251-BN 可以显示 256 列*64 行点阵单色图片,或显示 16*16 点阵的汉字 16 个*4 行,或显示 8*16 点阵的英文、数字、符号 32 个*4 行。或显示 5*8 点阵的英文、数字、符号 32 个*8 行。

2. JLX25664-251-BN 图像型点阵液晶模块的特性

- 2.1 结构牢: 背光带有挡墙, 焊接式 FPC。
- 2.2 IC 采用矽创公司 ST75256, 功能强大, 稳定性好
- 2.3 功耗低: 不带背光 1mW(3.3V*0.3mA), 带背光不大于 250mW(3.3V*75mA):
- 2.4 显示内容:
 - (1) 256*64 点阵单色图片,或其它小于 256*64 点阵的单色图片;
 - (2) 可选用 16*16 点阵或其他点阵的图片来自编汉字,按照 16*16 点阵汉字来计算可显示 16 字*4 行;
 - (3) 按照 12*12 点阵汉字来计算可显示 21 字*5 行:
 - (4) 按照 8*16 点阵汉字来计算可显示 32 字*4 行;
 - (5) 按照 5*8 点阵汉字来计算可显示 32 字*8 行:
- 2.5指令功能强:可软件调对比度、正显/反显转换、行列扫描方向可改(可旋转 180 度使用)。 并口时:可以"读-改-写";
 2.6接口简单方便:采用 4线 SPI 串行接口,或选择并口(6800 时序和 8080 时序可选),或 I2C (I²C)接口。
 2.7工作温度宽:-20℃ 70℃;

2.7储存温度宽:-30℃-80℃;

3.1 外形尺寸及接口引脚功能

图 1. 外形尺寸

模块的接口引脚功能

3.2 模块的接口引脚功能

3.2.1 并行时接口引脚功能

引线号	符号	名 称	功 能
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容
2	V0	倍压电路	V0 与 XV0 之间接一个电容
3	XV0	倍压电路	
4	CA1P	倍压电路	V0 与 XV0 之间接一个电容
5	CA1N	倍压电路	
6	VDD	供电电源正极	供电电源正极 3.3V
7	VSS	供电电源负极	供电电源负极
8	COMSCN	镜像选择指令	默认接 VDD, (接 VSS 镜像 180 度)
9	IF2	接口方式选择引脚	L:接低电平
10	IF1	接口方式选择引脚	H:接高电平
11	IF0	接口方式选择引脚	L:接低电平
12	CS	片选	低电平片选
13	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")
14	E (RD)	使能信号	6800 时序: 使能信号
15	RW (WR)	读/写	6800 时序: H:读数据 0:写数据
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作
17~24	D0~D7	I/0	并行接口时,数据总线 DBO~DB7

表 1: 模块并行接口引脚功能

3.2.2 四线串行时接口引脚功能

		メロコルデッカル				
引线号	符号	名 称	功 能			
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容			
2	V0	倍压电路	VO 与 XVO 之间接一个电容			
3	XV0	倍压电路				
4	CA1P	倍压电路	VO 与 XVO 之间接一个电容			
5	CA1N	倍压电路				
6	VDD	供电电源正极	供电电源正极 3.3V			
7	VSS	供电电源负极	供电电源负极			
8	COMSCN	镜像选择指令	默认接 VDD, (接 VSS 镜像 180 度)			
9	IF2	接口方式选择引脚	L:接低电平			
10	IF1	接口方式选择引脚	L:接低电平			
11	IF0	接口方式选择引脚	L:接低电平			
12	CS	片选	低电平片选			
13	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")			
14	E (RD)	使能信号	串行接口,RD 接高电平			
15	RW (WR)	读、写	串行接口,RW 接高电平			
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作			
17	DO (SCK)	I/0	串行时钟			
18~20	D1 ~ D3	I/0	串行数据(短接一起做为 SDA)			
	(SDA)					
21~24	D4~D7	I/0	悬空或接 VDD			
		+ • • • •	and chicken almost Ar			

表 2: 4线 SPI 串行接口引脚功能

3.2.3 I2C 总线时接口引脚功能

引线号	符号	名称	功 能				
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容				
2	V0	倍压电路	V0 与 XV0 之间接一个电容				
3	XV0	倍压电路					
4	CA1P	倍压电路	V0 与 XV0 之间接一个电容				
5	CA1N	倍压电路					
6	VDD	供电电源正极	供电电源正极 3.3V				
7	VSS	供电电源负极	供电电源负极				
8	COMSCN	镜像选择指令	默认接 VDD, (接 VSS 镜像 180 度)				
9	IF2	接口方式选择引脚	L:接低电平				
10	IF1	接口方式选择引脚	L:接低电平				
11	IF0	接口方式选择引脚	H:接高电平				
12	CS	片选	接 VSS				
13	AO(RS)	寄存器选择信号	悬空或接 VDD				
14	E (RD)	使能信号	悬空或接 VDD				
15	RW (WR)	读、写	悬空或接 VDD				
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作				
17	DO (SCK)	I/0	串行时钟				
18~20	D1 \sim D3	I/0	串行数据(<mark>短接一起)</mark>				
	(SDA)						
21	D4	I/0	悬空或接 VDD				
22	D5	I/0	悬空或接 VDD				
23	D6	I/0	接 VSS,I2C 从属地址引脚				
24	D6	I/0	接 VSS,I2C 从属地址引脚				

表 3: I2C 总线接口引脚功能

4. 基本原理

4.1 液晶屏(LCD)

在 **LCD** 上排列着 256×64 点阵, 256 个列信号与驱动 IC 相连, 64 个行信号也与驱动 IC 相连, IC 邦定在 LCD 玻璃上(这种加工工艺叫 COG).

4.2 工作电图:

图 2 是 JLX25664-251 图像点阵型模块的电路框图, 它由驱动 IC ST75256 及几个电阻电容组成。 电路框图

图 2: JLX25664-251-BN 图像点阵型液晶模块的电路框图

4.2 背光参数

该型号液晶模块带 LED 背光源。它的性能参数如下:

工作温度:-20° C∽+70° C;

存储温度:-30∽+80°C; 背光板可选择绿色、白色。

正常工作电流为: 40∽75mA (LED 灯数共 5 颗);

工作电压: 3.0V; (接 3.3V 串 10 欧以上的电阻,接 5.0V 串 50 欧以上的电阻)

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

名称	符号		标准值		单位
		最小	典型	最大	
电路电源	VDD - VSS	-0.3		3. 6	V
LCD 驱动电压	VDD - VO	-0.3		13. 5	V
静电电压				100	V
工作温度		-20		+70	$^{\circ}\mathbb{C}$
储存温度		-30	_	+80	$^{\circ}\mathbb{C}$

表 2: 最大极限参数

5.2 直流 (DC) 参数

<u> </u>						
名 称	符号	测试条件		标 准 值		
			MIN	TYPE	MAX	
工作电压	VDD		2.6	3. 3	3. 6	V
背光工作电压	VLED		2. 9	3. 0	3. 1	V
输入高电平	VIH		0.8VDD		VDD	V
输入低电平	VIO		0		0. 2VDD	V
输出高电平	VOH	IOH = 0.2 mA	0.8VDD		VDD	V
输出低电平	V00	100 = 1.2 mA	0	_	0. 2VDD	V
模块工作电流	IDD	VDD = 3.0V		0.3	1.0	mA

深圳市晶联讯电子 液晶模块 JLX25664G-251-BN 更新日期: 2019-10-29

表 3: 直流 (DC) 参数

6. 读写时序特性(AC参数)

6.1 4线 SPI 串行接口写时序特性(AC 参数)

图 3. 从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

表 7. 写数据到 ST75256 的时序要求

	1 X / · ¬) >	久 か日 上り ひ 1 7 0 2 0 0 日 5 円 5 7 7 7				
项目	符号	测试条件		极限值		单位
			MIN	TYPE	MAX	
4线 SPI串口时钟周期	tSCYC		80			ns
(4-line SPI Clock Period)			00			
保持SCK高电平脉宽	tSHW		30			ns
(SCL "H" pulse width)		引脚: SCL	30			
保持SCLK低电平脉宽	tSLW		30			ns
(SCL "L" pulse width)						
地址建立时间	tSAS		20			ns
(Address setup time)						
地址保持时间	tSAH	· 引脚: AO	20			ns
(Address hold time)						
数据建立时间	tSDS		20			ns
(Data setup time)		日HII CID				
数据保持时间	tSDH	· 引脚: SID	20			ns
(Data hold time)						
片选信号建立时间	tCSS		20			ns
(CS-SCL time)		日田 CCD				
片选信号保持时间	tCSH	· 引脚: CSB	20			ns
(CS-SCL time)						
	•		•	•		

VDD =1.8 $^{\sim}$ 3.3V ±5%, Ta = -30 $^{\sim}$ 85 $^{\circ}$ C

输入信号的上升和下降时间(TR, TF)在15纳秒或更少的规定。

所有的时间,用 20%和 80%作为标准规定的测定。

6.2 6800 时序并行接口的时序特性(AC参数)

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 4. 写数据到 ST75256 的时序要求(6800 系列 MPU)

			表	8. j	买与数	了据的	时序罗	来
邗	1	ケケ	口		,	フチケ		
坝	#	17	7		1	与你		
								1/1

Г	项目	符号	名称		极限值		单位
				MIN	TYPE	MAX	
	地址保持时间	A0	tAH6	20			ns
	地址建立时间		tAW6	0			ns
	系统循环时间	Е	tCYC6	160			ns
	使能"低"脉冲宽度		tEWLW	70			ns
	使能"高"脉冲宽度		tEWHW	70			ns
	写数据建立时间	DB[7: 0]	tDS6	15			ns
	写数据保持时间		tDH6	15			ns

VDD =1.8 $^{\circ}$ 3.3V ±5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc6 - tewlw - tewhw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tewlw 指定为重叠的 CSB "H"和"L"。

R/W信号总是"H"

6.3 8080 时序并行接口的时序特性(AC 参数)

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 4. 写数据到 ST75256 的时序要求(8080 系列 MPU)

	表 8	3.读写数据的时序要	東求			7
项目	符号	名称		极限值		单位
			MIN	TYPE	MAX	
地址保持时间	Α0	tAH8	20			ns
地址建立时间		tAW8	0			ns
系统循环时间	/WR	tCYC8	160			ns
使能"低"脉冲宽度		tCCLW	70			ns
使能"高"脉冲宽度		tCCHW	70		_	ns
写数据建立时间	DB	tDS8	15			ns
写数据保持时间		tDH8	15			ns

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非常快,

(TR + TF) ≤ (tcyc8 - tcclw - tcchw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tcclw被指定为"L"之间的重叠 CSB 和/ WR 处于"L"级

6.3 I²C接口的时序特性(AC参数)

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 4. 写数据到 ST75256 的时序要求(I²C 系列 MPU)

表 8. 读写数据的时序要求

项 目	符号	名称	极限值	单位				
			MIN TYPE	MAX				
SCL时钟频率	CSL	FSCLK		400 kUZ				
SCL时钟的低周期	CSL	TLOW	1.3	us				
SCL时钟周期	CSL	THIGH	0.6	us				
数据保持时间	SDA	TSU;Data	0. 1	ns				
数据建立时间	SDA	THD;Data	0	0.9 us				
SCL, SDA 的上升时间	SCL	TR	20+0. 1Cb	300 ns				
SCL, SDA 下降时间	SCL	TF	20+0. 1Cb	300 ns				
每个总线为代表的电容 性负载		Cb		400 pF				
一个重复起始条件设置 时间	SDA	TSU; SUA	0.6	us				
启动条件的保持时间	SDA	THD;STA	0.6	us				
为停止条件建立时间		TSU;STO	0.6	us				
容许峰值宽度总线		TSW		50 ns				
开始和停止条件之间的 总线空闲时间	SCL	TBUF	0.1	us				

所有的时间,用 20%和 80%作为标准规定的测定。

这是推荐的操作 I C接口与 VDD1 高于 2.6V。

6.4 电源启动后复位的时序要求 (RESET CONDITION AFTER POWER UP):

图 5: 电源启动后复位的时序

表 6: 电源启动后复位的时序要求

项	符	号	测试条件				极限值						
								MIN		TYPE	MAX	ζ	
复位时间			T _{RW}								1		us
复位保持低电	复位保持低电平的时间		T _{RD}		引脚: RESET, WR			1	1		II	1	ms
												1	
												, i	

7. 指令功能:

7.1 指令表

指令名称		指令码									
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
(1)扩展指令1	0	0	0	0	1	1	EXT1	0	0	EXT0	扩展指令1、2、3、4
											0X30:扩展指令1
Ext[1:0]=0, 0 (Extension	Comma	nd1/扩	·展指令	1) 0	X30 ±	广屏指	令 1 -	一定要	调用()X30 才	忙能用扩展指令1
(2)显示开/关	0	0	1	0	1	0	1	1	1	0	显示开/关:
(display on/off)										1	OXAE:关, OXAF: 开
(3)正显/反显	0	0	1	0	1	0	0	1	1	0	显示正显/反显
(Inverse Display)										1	0XA6:正显,正常
											OXA7: 反显
(4)所有点阵开/关	0	0	0	0	1	0	0	0	1	0	OX22: 所有点阵关
(All Pixel ON/OFF)										1	0X23: 所有点阵开
(5) 控制液晶屏显示	0	0	1	1	0	0	1	0	1	0	OXCA:显示控制
(Display Control)	1	0	0	0	0	0	0	CLD	0	0	0X00:设置 CL 驱动频率: CLD=0
(Display Control)	1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DTO	0X7F: 点空比: Duty=128
	1	0	0	0	LF4	F1	LF3	LF2	LF1	LF0	0X20:帧周期
(6)省电模式	0	0	1	0	0	1	0	1	0	SLP	0X94: SLP=0,退出睡眠模式
(Power save)			1	Ü		1		1		OBI	0X95: SLP=1,进入睡眠模式
(7)页地址设置	0	0	0	1	1	1	0	1	0	1	0X75: 页地址设置
(Set Page Address)	1	0	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	0X00: 起始页地址
	1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE2	YEO	0X1F: 结束页地址,每4行为1页
(8)列地址设置	0	0	0	0	0	1	0	1	0	1	0X15: 列地址设置
(Set Column Address)	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	0X00: 起始列地址
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XEO	OXFF: 结束列地址 XE=256
(9) 行列扫描 方向	0	0	1	0	1	1	1	1	0	0	OXBC: 行列扫描方向
(Data Scan Direction)	1	0	0	0	0	0	0	MV	MX	MY	0X00: MX、MY=Normal
(10)写数据到晶液屏	0	0	0	1	0	1	1	1	0	0	0X5C: 写数据
(Write Data)	1	0	D7	D6	D5	D4	D3	D2	D1	DO	8 位显示数据
(11)读液晶屏显示数据	0	0	0	1	0	1	1	1	0	1	OX5D: 读数据
(Read Data)	1	1	D7	D6	D5	D4	D3	D2	D1	D0	8 位显示数据
(12)指定区域显示数据	0	0	1	0	1	0	1	0	0	0	OXA8: 指定显示区域
(Partial In)	1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	起始区域地址: 00h≤PTS≥A1h
	1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	结束区域地址: 00h≤PTE≥A1h
(13) 退出指定区域显示	0	0	1	0	1	0	1	0	0	1	OXA9: 退出指定区域显示
(Partial Out)											
(14)读/改/写	0	0	1	1	1	0	0	0	0	0	OXEO: 进入读/改/写
(15)退出读/改/写	0	0	1	1	1	0	1	1	1	0	OXEE: 退出读/改/写
(16)指定显示滚动区域	0	0	1	0	1	0	1	0	1	0	OXAA: 滚动区域设置
(Scroll Area)	1	0	TL7	TL6	TL5	TL4	TL3	TL2	TL1	TL0	TL[7:0]:起始区域地址
	1	0	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0	BL[7:0]:结束区域地址
	1	0	NSL7	NLS6	NSL5	NSL4	NSL3	NSL2	NSL1	NSL0	NSL[7:0]:指定行数
	1	0	0	0	0	0	0	0	SCM1	SCM0	SCM[1:0]:显示模式

(17)显示初始行设置	0	0	1	0	1	0	1	0	1	1	OXAB: 滚动开始初始行设置
(Set Start Line)	1	0	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	00h≤SL≥A1h
(18)开振荡电路	0	0	1	1	0	1	0	0	0	1	OXD1: 开内部振荡电路
(19)关振荡电路	0	0	1	1	0	1	0	0	1	0	OXD2: 关内部振荡电路
(20)电源控制	0	0	0	0	1	0	0	0	0	0	OX20: 电源控制
(Power Control)	1	0	0	0	0	0	VB	0	VF	VR	OXOB: VB, VF, VR=1
(21)液晶内部电压设置	0	0	1	0	0	0	0	0	0	1	0X81:设置对比度
(Set Vop)	1	0	0	0	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	0X26:微调对比度,范围 0X00-0XF
	1	0	0	0	0	0	0	Vop7	Vop6	Vop5	0X04: 粗调对比度,范围 0X00-0X0 先微调再粗调,顺序不能变
(22)液晶内部电压控制	0	0	1	1	0	1	0	1	1	VOL	0XD6: VOP 每格增加 0.04V
(Vop Control)											0XD7: VOP 每格减少 0.04V
(23)读寄存器模式	0	0	0	1	1	1	1	1	0	REG	0X7C: 读寄存器值 Vop[5:0]
											0X7D: 读寄存器值 Vop[8:6]
(24)空操作	0	0	0	0	1	0	0	1	0	1	0X25: 空操作
(25)读状态 (并行、IIC)	0	1	D7	D6	D5	D4	D3	D2	D1	D0	读状态字节
(26)读状态(串行接口)	0	0	1	1	1	1	1	1	1	0	读状态字节
	0	1	D7	D6	D5	D4	D3	D2	D1	D0	
(27)数据格式选择	0	0	0	0	0	0	1	D0	0	0	0X80: 数据 D7→D0
(Data Format Select)											0XCO: 数据 DO→D7
(28)显示模式	0	0	1	1	1	1	0	0	0	0	0XF0:显示模式设置
(Display Mode)	1	0	0	0	0	1	0	0	0	DM	0X10: 黑白模式
		H									0X11: 4 灰级度模式
(29)ICON设置	0	0	0	1	1	1	0	1	1	ICON	OX77: 使能 ICON RAM
											OX76: 禁用 ICON RAM
(30)设置主/从模式	0	0	0	1	1	0	1	1	1	MS	0X6E: 主模式(使用主模式)
			Щ								0X6F: 从模式
Ext[1:0]=0, 1 (Extens				T	T	1		T			能用扩展指令2
(31)灰度设置	0	0	0	0	1	0	0	0	0	0	0X20:灰度级设置
Set Gray Level	1	0	0	0	0	0	0	0	0	0	GL[4:0]: 浅灰度级设置
	1	0	0	0	0	0	0	0	0	0	GD[4:0]: 深灰度级设置
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	GL4	GL3	GL2	GL1	GL0	
	1	0	0	0	0	GL4	GL3	GL2	GL1	GL0	
	1	0	0	0	0	GL4	GL3	GL2	GL1	GL0	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
		0	0	0	0					GD0	
	1	0	0	_	0	GD4	GD3	GD2 GD2	GD1	GD0	
	1 1	U	U	0	U	GD4	GD3	$\sigma \nu \Delta$	GD1	טעט	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	

	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	BE1	BE0	0X01: 升压电容频率
	1	0	0	0	0	0	0	BS2	BS1	BS0	0X02: 偏压比,BIAS=1/12
(33)升压倍数	0	0	0	1	0	1	0	0	0	1	0X51:内建升压倍数设置
(Booster Level)	1	0	0	1	1	1	1	0	1	BST	0X7B:10 倍
(34)电压驱动选择	0	0	0	1	0	0	0	0	0	DS	0X41: LCD 内部升压
(01) 10/2012/05/2017	0	0	1	1	0	1	0	1	1	1	XARD=0: 使能自动读
(35)自动读取控制	1	0	1	0	0	XARD	1	1	1	1	XARD=0: K 能自动读
	0	0	1	1	1	0	0	0	0	0	0xeO: OTP 读写
(20)按约070法定		0	0	0		0	0	0	0	0	
(36)控制OTP读写	1	0	U	U	ER/	U	U	U	U	U	WR/RD=0; 0x00, 使能 OTP 读
(_	_			RD		_		_		ER/RD=1; 0x20, 使能 OTP 写
(37)控制OTP出	0	0	1	1	1	0	0	0	0	1	控制 OTP 出
(38)写OTP	0	0	1	1	1	0	0	0	1	0	写 OTP
(39)读OTP	0	0	1	1	1	0	0	0	1	1	读 OTP
	0	0	1	1	1	0	0	1	0	0	0xe4: OTP 选择控制
(40)OTP选择控制	1	0	1	Ctrl	0	0	1	0	0	1	Ctrl=1: 0xc9,不使能 OTP
											Ctrl=0: 0x89,使能 OTP
(44)OTD和良汎型	0	0	1	1	1	0	0	1	0	1	OTP 程序设置
(41)OTP程序设置	1	0	0	0	0	0	1	1	1	1	
	0	0	1	1	1	1	0	0	0	0	0xf0: 帧速率设置在不同的温度范
	1	0	0	0	0	FRA4	FRA3	FRA2	FRA1	FRAO	
(42) 帧速率	1	0	0	0	0	FRB4	FRB3	FRB2	FRB1	FRB0	
	1	0	0	0	0	FRC4	FRC3	FRC2	FRC1	FRC0	
	1	0	0	0	0	FRD4	FRD3	FRD2	FRD1	FRD0	
	0	0	1	1	1	1	0	0	1	0	0xf2: 温度范围设置
	1	0	0	TA6	TA5	TA4	TA3	TA2	TA1	TAO	VAI2. 11.1人名巴西汉直.
(43)温度范围	1	0	0	TB6	TB5	TB4	TB3	TB2	TB1	TB0	
	1	0	0	TC6	TC5	TC4	TC3	TC2	TC1	TCO	
	_	_	_								
	0	0	1	1	1	1	0	1	0	0	0xf4: 温度补偿系数设置
	1	0	MT13	MT12	MT11	MT10	MT03	MT02	MT01	MT00	
	1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
	1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	
(44)温度梯度补偿	1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	
	1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	
	1	0	MTB3	MTB2	MTB1	MTB0	MTA3	MTA2	MTA1	MTAO	
	1	0	MTD3	MTD2	MTD1	MTDO	MTC3	MTC2	MTC1	MTCO	
	1	0	MTF3	MTF2	MTF1	MTF0	MTE3	MTE2	MTE1	MTEO	
Ext[1:0]=1,0(Extension	Comm	and 3) 0x38	扩屏	指令3	一定	要调用	0X38	才能	用扩展	指令3
(45) ID 设置	0	0	1	1	0	1	0	1	0	1	0xd5: ID 设置
	1	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	+
(46)读 ID	0	0	0	1	1	1	1	1	1	RID	RID=1: 0x7f,使能
Ext[1:0]=1,1(Extension	Comm	and 4) 0x39	扩屏	□ 指今 4	一定	■ 要调用	0X39	才能	□ 用扩展	
	0	0	1	1	0	1	0	1	1	0	0xd6: 使能 OTP
	1	0	0	0	0	ЕОТР	0	0	0	0	EOTP=1;不使能 EOTP,一般不
(47) 使能 OTP	1	3	Ĭ			2011			. •		使能 EOTP
											EOTP=0;使能 EOTP
											LOIF=U; 文化 EUIF

请详细参考 IC 资料"ST75256.PDF"。

7.2 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 256*64 点阵的屏分为 8 个"页", 从第 0 "页"到第 7 "页"。

DB7—DB0 的排列方向:数据是从下向上排列的。最低位 D0 是在最上面,最高位 D7 是在最下面。每一位(bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:

Figure 21 DDRAM Mapping (4-Level Gray Scale Mode)

下图摘自 ST75256 IC 资料,可通过"ST75256. PDF"之第 37 页获取最佳效果。

7.4 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

点亮液晶模块的步骤

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

图 8. 串行接口

/*延时: 1毫秒的 i 倍*/


```
void delay(int i)
    int j, k;
    for (j=0; j < i; j++)
        for (k=0; k<110; k++);
/*延时: lus 的 i 倍*/
void delay_us(int i)
    int j,k;
    for (j=0; j < i; j++)
        for (k=0; k<1; k++);
}
/*等待一个按键, 我的主板是用 P2.0 与 GND 之间接一个按键*/
void waitkey()
repeat:
    if (key==1) goto repeat;
    else delay (2000);
//写指令到 LCD 模块
void transfer_command_lcd(int datal)
    char i;
   lcd_cs1=0;
    1cd_rs=0;
    for(i=0; i<8; i++)
        1cd_sc1k=0;
         if(data1&0x80) lcd_sid=1;
        else lcd_sid=0;
        1cd_sc1k=1;
        data1<<=1;
    1cd_cs1=1;
//写数据到 LCD 模块
void transfer_data_lcd(int data1)
    char i;
    1cd cs1=0;
    1cd rs=1;
    for (i=0; i<8; i++)
         1cd sc1k=0;
         if(data1&0x80) lcd_sid=1;
         else lcd sid=0;
         lcd sclk=1;
```



```
data1<<=1;
    1cd_cs1=1;
void initial_lcd()
    reset=0:
    delay(100);
    reset=1:
    delay(100);
    transfer_command_1cd(0x30);
                                  //EXT=0
    transfer\_command\_lcd(0x94);
                                  //Sleep out
    transfer\_command\_lcd(0x31);
                                  //EXT=1
    transfer\_command\_lcd(0xD7);
                                  //Autoread disable
    transfer_data_lcd(0X9F);
    transfer_command_lcd(0x32);
                                 //Analog SET
    transfer_data_lcd(0x00);
                                     //OSC Frequency adjustment
    transfer_data_lcd(0x01);
                                    //Frequency on booster capacitors->6KHz
    transfer_data_lcd(0x05);
                                     //Bias=1/9
    transfer_command_lcd(0x20);
                                  // Gray Level
    transfer_data_lcd(0x01);
    transfer_data_1cd(0x03);
    transfer_data_lcd(0x05);
    transfer_data_lcd(0x07);
    transfer_data_lcd(0x09);
    transfer_data_lcd(0x0b);
    transfer_data_lcd(0x0d);
    transfer_data_lcd(0x10);
    transfer_data_lcd(0x11);
    transfer_data_lcd(0x13);
    transfer_data_lcd(0x15);
    transfer_data_lcd(0x17);
    transfer_data_lcd(0x19);
    transfer_data_lcd(0x1b);
    transfer_data_lcd(0x1d);
    transfer_data_lcd(0x1f);
    transfer\_command\_lcd(0x30);
                                   //EXT1=0, EXT0=0,表示选择了"扩展指令表 1"
    transfer\_command\_lcd(0x75);
                                   //页地址设置
    transfer_data_lcd(0X00);
                                   //起始页地址: YS=0X00
                                   //结束页地址: YE=0x1F
                                                            每 4 行为一页, 第 0~3 行为第 0 页, 第 124~127 行为第 31
    transfer data lcd(0X1f);
页 (31=0x1f)
    transfer_command_lcd(0x15);
                                   //列地址设置
```


深圳市晶联讯电子 液晶模块 JLX25664G-251-BN 更新日期: 2019-10-29

```
//起始列地址: XS=0
    transfer_data_lcd(0X00);
    transfer_data_lcd(0Xff);
                                // 结束列地址: XE=256 (0xff)
    transfer_command_lcd(0xBC);
                               //Data scan direction
    transfer_data_lcd(0x00);
                                  //MX.MY=Normal
    transfer_data_lcd(0xA6);
                                      //数据格式,如果设为 0x0C:表示选择 LSB (DB0)在顶,如果设为 0x08:表示选择
    transfer_data_lcd(0x0c);
LSB(DB0)在底
    transfer command lcd(0xCA);
                               //显示控制
                                  //设置 CL 驱动频率: CLD=0
    transfer_data_lcd(0X00);
    transfer_data_lcd(0X3F);
                                  //占空比: Duty=64
                                  //N 行反显: Nline=off
    transfer_data_lcd(0X20);
    transfer command lcd(0xF0);
                               //显示模式
    transfer_data_lcd(0X10);
                                  //如果设为 0x11:表示选择 4 灰度级模式,如果设为 0x10:表示选择黑白模式
                               //设置对比度, "0x81" 不可改动, 紧跟着的 2个数据是可改的, 但"先微调后粗调"这个
    transfer_command_lcd(0x81);
顺序别乱了
                                  //对比度微调,可调范围 0x00~0x3f,共 64 级
    transfer_data_lcd(0x12);
    transfer_data_lcd(0x02);
                                  //对比度粗调,可调范围 0x00~0x07, 共8级
    transfer_command_lcd(0x20);
                                //Power control
    transfer_data_lcd(0x0B);
                                  //D0=regulator; D1=follower; D3=booste, on:1 off:0
    delay(1);
    transfer_command_lcd(0xAF);
                               //打开显示
/*写 LCD 行列地址: X 为起始的列地址, Y 为起始的行地址, x_total, y_total 分别为列地址及行地址的起点到终点的差值 */
void lcd_address(int x, int y, x_total, y_total)
    x=x-1;
    y=y-1;
    transfer command lcd(0x15); //Set Column Address
    transfer_data_lcd(x);
    transfer_data_lcd(x+x_total-1);
    transfer_command_lcd(0x75); //Set Page Address
    transfer_data_lcd(y);
    transfer_data_lcd(y+y_total-1);
    transfer_command_lcd(0x30);
    transfer_command_lcd(0x5c);
```



```
/*清屏*/
void clear_screen()
    int i, j;
    lcd_address(0, 0, 256, 34);
    for (i=0; i<34; i++)
         for (j=0; j<256; j++)
              transfer_data_lcd(0x00);
void test(int x, int y)
    int i, j;
    lcd_address(x, y, 256, 16);
    for(i=0;i<16;i++)
         for (j=0; j<256; j++)
         {
              transfer_data_lcd(0xff);
//写入一组 16x16 点阵的汉字字符串(字符串表格中需含有此字)
//括号里的参数:(页,列,汉字字符串)
void display_string_16x16(uchar column, uchar page, uchar *text)
    uchar i, j, k;
    uint address;
    j=0;
    while (text[j]!= '\0')
         i=0;
         address=1;
         while(Chinese_text_16x16[i]> 0x7e)
              if(Chinese\_text\_16x16[i] == text[j])
                  if(Chinese\_text\_16x16[i+1] == text[j+1])
                       address=i*16;
                       break;
```


}

for(j=0;j<32;j++)

```
}
               i +=2;
          if(column>255)
               column=0;
               page+=2;
          if(address !=1)
               lcd_address(column, page, 16, 2);
               for (k=0; k<2; k++)
                    for (i=0; i<16; i++)
                         transfer\_data\_lcd(Chinese\_code\_16x16[address]);\\
                         address++;
               j +=2;
          else
               lcd_address(column, page, 16, 2);
               for (k=0; k<2; k++)
                    for (i=0; i<16; i++)
                         transfer_data_lcd(0x00);
               j++;
          column+=16;
/*显示 32*32 点阵的汉字或等同于 32*32 点阵的图像*/
void disp_32x32(int x, int y, uchar *dp)
     int i, j;
     lcd_address(x, y, 32, 4);
     for(i=0;i<4;i++)
```



```
transfer_data_lcd(*dp);
             dp++;
/*显示 256*64 点阵的图像*/
void disp_256x64(int x, int y, char *dp)
    int i, j;
    lcd_address(x, y, 256, 8);
    for (i=0; i<8; i++)
         for (j=0; j<256; j++)
             transfer_data_lcd(*dp);
             dp++;
/*显示 256*64 点阵的电测画面*/
void disp_test(int x,int y,uchar data1,uchar data2)
    int i, j;
    lcd_address(x, y, 256, 8);
   for(i=0;i<8;i++)
         for(j=0;j<128;j++)
             transfer_data_lcd(data1);
             transfer_data_lcd(data2);
void main ()
    initial_lcd();
                                                            //对液晶模块进行初始化设置
    while(1)
         clear_screen();
                                                           //清屏
         disp_256x64(1, 1, bmp8);
                                             //显示一幅 240*160 点阵的黑白图。
         waitkey();
```



```
//清屏
clear_screen();
disp_256x64(1, 1, bmp3);
                                   //显示一幅 240*160 点阵的黑白图。
waitkey();
clear_screen();
                                                 //清屏
disp_256x64(1, 1, bmp1);
                                   //显示一幅 240*160 点阵的黑白图。
waitkey();
clear_screen();
                                                 //清屏
disp_256x64(1, 1, bmp2);
                                   //显示一幅 240*160 点阵的黑白图。
waitkey();
clear_screen();
display string 16x16(32,1,"深圳市晶联讯电子有限公司");
disp_32x32(48, 4, jing2);
disp_32x32((32*1+48), 4, 1ian2);
disp_32x32((32*2+48), 4, xun2);
disp_32x32((32*3+48), 4, dian2);
disp 32x32((32*4+48), 4, zi2);
waitkey();
```


图 9. 并行接口

并行程序与串行只是接口定义、写数据和命令不一样,其它都一样

并行程序:

```
#include <reg52.H>
#include <intrins.h>
#include <chinese_code.h>
//====
sbit lcd_rs=P2^1;
                   /*接口定义:lcd_rs 就是 LCD 的 rs*/
                   /*接口定义:1cd_e 就是 LCD 的 rd*/
sbit lcd_rd=P2^4;
sbit lcd_wr=P2^0;
                 /*接口定义:1cd_rw 就是 LCD 的 wr*/
sbit lcd_reset=P3^7; /*接口定义:lcd_reset 就是 LCD 的 reset*/
                   /*接口定义:1cd_cs1 就是 LCD 的 cs1*/
sbit lcd_cs1=P2^7;
sbit key = P2^0;
                   //按键
//写指令到 LCD 模块
void transfer command lcd(int datal)
```



```
1cd_cs1=0;
    1cd_rs=0;
    1cd_rd=0;
    1cd_wr=0;
    P1=data1;
    1cd_rd=1;
    1cd_cs1=1;
    1cd_rd=0;
//写数据到 LCD 模块
void transfer_data_lcd(int data1)
    1cd_cs1=0;
    1cd_rs=1;
    1cd rd=0;
    1cd_wr=0;
    P1=data1;
    1cd rd=1;
    1cd_cs1=1;
    1cd_rd=0;
```

IIC 接口:

7.5.4、以下为IIC 接口方式范例程序

与串行方式相比较,只需改变接口顺序以及传送数据、传送命令这两个函数即可: /* 液晶模块型号: JLX25664G-251-BN-IIC

IIC 接口


```
int i;
for (i=0; i<8; i++)
sc1=0;
if (data1\&0x80) sda=1;
else sda=0;
sc1=1;
sc1=0;
data1=data1<<1;</pre>
sda=0;
sc1=1;
sc1=0;
void start_flag()
scl=1; /*START FLAG*/
sda=1; /*START FLAG*/
sda=0; /*START FLAG*/
void stop_flag()
sc1=1; /*STOP FLAG*/
sda=0; /*STOP FLAG*/
sda=1; /*STOP FLAG*/
//写命令到液晶显示模块
void transfer_command(uchar com)
start flag();
transfer(0x78);
transfer(0x80);
transfer(com);
stop_flag();
}
//写数据到液晶显示模块
void transfer data(uchar dat)
start_flag();
transfer(0x78);
transfer(0xC0);
transfer(dat);
stop_flag();
```