Linear Algebra Notes

Nong Minh Hieu¹

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Vector Spaces			
	1.1	Definition of Vector Space	2	
	1.2	Linear Independence	2	
	1.3	Basis and Dimension	2	
A	List	of Definitions	3	
В	3 Important Theorems			
C	C Important Corollaries			
D	Imp	ortant Propositions	3	
E	Refe	erences	4	

1 Vector Spaces

1.1 Definition of Vector Space

Definition 1.1 (Vector Space).

A vector space (over a field \mathbb{F}) consists of a set V with two operations "+" and "·" subject to the conditions that for all $\vec{v}, \vec{w}, \vec{u} \in V$ and scalars $r, s \in \mathbb{F}$:

- 1. Closure under:
 - Vector addition: $\vec{v} + \vec{w} \in V$.
 - Scalar multiplication: $r \cdot \vec{v} \in V$.
- 2. Properties of vector addition:
 - Commutativity: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.
 - Associativity: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$.
- 3. Properties of scalar multiplication:
 - Distributivity over scalar addition: $(r+s) \cdot \vec{v} = r \cdot \vec{v} + s \cdot \vec{v}$.
 - Distributivity over vector addition: $r \cdot (\vec{v} + \vec{w}) = r \cdot \vec{v} + r \cdot \vec{w}$.
- 4. Inverse elements:
 - Additive inverse: $\forall \vec{v} \in V, \exists -\vec{v} \in V : \vec{v} + (-\vec{v}) = \vec{0}$.
- 5. Identity elements:
 - Additive identity: $\exists \vec{0} \in V : \vec{0} + \vec{v} = \vec{v}, \forall \vec{v} \in V.$
 - Multiplicative identity: $\exists 1 \in \mathbb{F} : 1 \cdot \vec{v} = \vec{v}, \quad \forall \vec{v} \in V.$

For brevity, we will denote vectors as bold face letters instead of overhead arrows after this definition. For example, \mathbf{u}, \mathbf{v} and \mathbf{w}

Remark 1.1 (Trivial Space). A vector space with one element is called a trivial space.

Example 1.1. The following is a vector space over \mathbb{R}^2 :

$$\mathbf{L} = \Big\{ \begin{pmatrix} x & y \end{pmatrix}^\top : y = 3x \Big\}.$$

This is easy to verify. Let us go through each condition one by one. Suppose that we have two vectors $\mathbf{u}_1, \mathbf{u}_2 \in L$ defined as follows:

1.2 Linear Independence

1.3 Basis and Dimension

\mathbf{A}	List of Definitions	
1	1 Definition (Vector Space)	2
В	Important Theorems	
\mathbf{C}	Important Corollaries	
D	Important Propositions	

E References

References

- [1] Rick Durrett. *Probability: Theory and Examples.* 4th. USA: Cambridge University Press, 2010. ISBN: 0521765390.
- [2] Erhan undefinedinlar. *Probability and Stochastics*. Springer New York, 2011. ISBN: 9780387878591. DOI: 10.1007/978-0-387-87859-1. URL: http://dx.doi.org/10.1007/978-0-387-87859-1.
- [3] Wikipedia. Vitali set Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Vitali%20set&oldid=1187241923. [Online; accessed 24-December-2023]. 2023.