CS 6212 DESIGN AND ANALYSIS OF ALGORITHMS

LECTURE: DYNAMIC PROGRAMMING
- PART I

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE (PART B)

By the end of Part B of this lecture, you will be able to:

- Describe how Dynamic Programming (DP) works, including its major design steps
- State and explain the principle of optimality
- Prove the principle of optimality holds in some problems, but not in others
- Begin to apply DP to derive powerful optimization algorithms
- Compare and contrast DP with Divide & Conquer and with the Greedy Method

OUTLINE (OF PART B)

- Perspective
 - DP as optimization
 - DP vs. Greedy
 - DP vs. Divide & Conquer
- Principle of Optimality
- Steps of Dynamic Programming
- First application: The Matrix Chain Problem

PERSPECTIVE

-- OPTIMIZATION --

- Dynamic programming is an optimization technique
- Recall what that is
 - What is an optimization problem?
 - What is an optimization algorithm?

PERSPECTIVE

-- DYNAMIC PROGRAMMING VS. GREEDY METHOD --

- Both techniques are optimization techniques
- Both build solutions from a collection of choices of individual elements.
- The greedy method
 - Computes its solution
 - by making its choices in a serial forward fashion,
 - never looking back, and never revising previous choices
 - There is **no litmus test** to quickly pre-check if the greedy solution will be optimal
- Dynamic programming
 - computes its solution bottom up by
 - synthesizing them from smaller subsolutions, and
 - by trying many possibilities and choices before it arrives at the optimal set of choices
 - There is <u>a litmus test</u> for DP, called the *Principle of Optimality*, which can be applied relatively easily and quickly to tell if DP gives an optimal solution

PERSPECTIVE

-- DYNAMIC PROGRAMMING VS. DIVIDE & CONQUER --

- Both techniques split their input into parts, find subsolutions to the parts, and synthesize larger solutions from smaller ones
- Divide and Conquer splits its input at <u>a few pre-specified</u> <u>deterministic points</u> (e.g., always in the middle)
- Dynamic Programming
 - Splits its input at <u>every</u> possible split points rather than at a few pre-specified points
 - After trying all split points, it determines which split point is optimal
- DP is mainly for optimization, while D&C is mainly for nonoptimization problems (there are exceptions)

PRINCIPLE OF OPTIMALITY (POO)

Definition: A problem is said to satisfy the <u>Principle of</u>
 <u>Optimality</u> if <u>the subsolutions of any optimal solution of</u>
 <u>the problem are optimal</u> solutions of their subproblems

PRINCIPLE OF OPTIMALITY (POO)

-- AN EXAMPLE WHERE POO HOLDS --

- The shortest path problem satisfies the POO
- Statement of the POO: if $a, x_1, x_2, ..., x_n, b$ is a shortest path from node a to node b in a graph, then the portion of x_i to x_j on that path is a shortest path from x_i to x_j , for any two intermediary nodes x_i and x_j
- **POO holds**: Proof by contradiction. If a portion is not shortest, then there is a shorter alternative ("a short cut") between x_i and x_j . Replace that portion by the short cut, we get a shorter path from a to b, contradicting that the original path was a shortest path.

- Red path: shortest from 1 to 9
 1, 2, 7, 5, 3, 9
- The portion from 2 to 3 (2, 7, 5, 3) is a shortest path from 2 to 3

PRINCIPLE OF OPTIMALITY (POO)

AN EXAMPLE WHERE POO DOESN'T HOLD --

- The longest path problem **doesn't** satisfy the POO
- **Statement of the POO:** Every sub-path of longest simple path is a longest simple path between its end-points.
- **POO does not hold**: Proof by a counterexample. See the counter-example on the right.

• Red path:Longest from 2 to 3

- The portion from 7 to 8 (of length 11) is not the longest simple path from 7 to 8 because:
- 7, 1, 2, 3, 4, 6, 9, 8 is longer (57>11)

LESSONS LEARNED SO FAR

- DP is an optimization design technique
- It has a litmus test, called the principle of optimality, which holds in some problems but not in all problems
- More lessons later

STEPS OF DYNAMIC PROGRAMMING

Dynamic programming design involves 4 major steps:

- 1. Notation: Develop a mathematical notation that can express every solution and subsolution for the problem at hand
- 2. POO: Prove that the Principle of Optimality holds
- 3. Recurrence Relation (RR): Develop a recurrence relation that relates a solution to its subsolutions, using the math notation of step 1. Indicate what the initial values are for that recurrence relation, and which term signifies the final solution.
- 4. Algorithm for the RR: Write an algorithm to compute the recurrence relation bottom up

COMMENTS ABOUT THE STEPS OF DP

- The steps in the previous slide are not called a template.
- That is because the steps are guidelines rather than algorithmic instructions
- Steps 1 and 2 need not be in that order
 - Do what makes sense in each problem
 - If you don't need notation to state (and prove) the principle of optimality, then do step 2 first
 - Otherwise, do step 1 first
- Step 3 is the heart of the design process
 - In high level algorithmic design situations, one can stop at step 3.
 - In this course, however, we will carry out step 4 as well.

MORE COMMENTS ABOUT THE STEPS OF DP

- Without the Principle of Optimality, it won't be possible to derive a sensible recurrence relation in step 3
 - This will be seen when we start using POO a little later

- When the Principle of Optimality holds, the 4 steps of DP are guaranteed to yield an <u>optimal solution</u>
 - No separate proof of optimality is needed
 - The proof that POO holds is sufficient!

FIRST APPLICATION OF DP

-- THE MATRIX CHAIN PROBLEM --

The matrix Chain Problem:

• Input: n matrices A_1 , A_2 , ..., A_i , ..., A_n of dimensions

$$p_1 \times p_2, p_2 \times p_3, \dots, p_i \times p_{i+1}, \dots, p_n \times p_{n+1}$$

- Output: A sequence of pairings of the matrices in order to multiply them in the least amount of time
- Task: Design a DP algorithm for solving this problem

-- PRELIMINARIES--

- A matrix is a table of numbers, i.e., a 2-dimensional array
 - A matrix A = A[1:p, 1:q] is referred to as a $p \times q$ matrix
 - Its lines are called *rows* (so this A has p rows) labeled 1, 2, ...
 - The columns are labeled $1, 2, \dots$ (A has q columns)
 - The element A[i,j] in row i and column j is denoted A_{ij}
- Matrix multiplication
 - Let A be a $p \times q$ matrix, and B be a $q \times r$ matrix
 - The product AB is a $p \times r$ matrix C where

- $AB \neq BA$
- (AB)C = A(BC)
- $C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{iq}B_{qj}$ (inner product of row i of A and column j of B)
- Time of C_{ij} is q multiplications and q-1 additions: simplify that to q
- Times of computing all of $C: p \times r \times q = pqr$

-- EXAMPLE--

• Suppose we have 3 matrices A_1 , A_2 , A_3 of dimensions 6×3 , 3×4 , 4×5

• Two ways to multiply $A_1A_2A_3$ (both give the same answer):

-- (1) NOTATION AND STATEMENT OF THE POO --

- Input: $A_1, A_2, ..., A_n$ where A_i is of dimension $p_i \times p_{i+1}$
- Every way of multiplying a sequence of matrices can be represented by a binary (infix) tree, where the leaves are the matrices, and the internal nodes are intermediary products (as was illustrated on the previous slide)
- Let T_{ij} be the <u>optimal</u> tree of multiplying $A_i \times \cdots \times A_j$
 - Let L be its left subtree, R be its right subtree
- POO: Every subtree of an optimal tree is optimal??
- POO: L and R are optimal
- Proof of POO: prove L and R are optimal

-- (2) PROOF OF THE POO --

- Let *cost*(T) the time to multiply the matrices according to tree T
- Thus: $cost(T_{ij}) = cost(L) + cost(R) + p_i p_{k+1} p_{j+1}$
- Need to prove L (and R) is optimal
- By contradiction. If L is not optimal, there is a faster tree L' of multiplying its matrices $A_i \dots A_k$, i.e., cost(L') < cost(L)
- Take the tree T' made of L', R, and the same root.
- $cost(T') = cost(L') + cost(R) + p_i p_{k+1} p_{j+1} <$ $cost(L) + cost(R) + p_i p_{k+1} p_{j+1} = cost(T_{ij})$
- $cost(T') < cost(T_{ij})$
- This implies that T' is better than optimal. Contradiction. Q.E.D.

18

THE MATRIX CHAIN PROBLEM -- MORE ON NOTATION AND VISUALS--

• Now that L and R are optimal, they should be denoted T_{ik} and $T_{k+1,j}$, respectively.

• Visually, the optimal tree T_{ij} is:

- Let $M_{ij} = cost(T_{ij})$
- When i = j, T_{ii} is a single node (single matrix A_i) with no multiplication, so $M_{ii} = 0$ for all i
- The optimal cost of multiplying $A_1A_2 \dots A_n$ is M_{1n} , to be determined

-- (3) RECURRENCE RELATION--

- We saw before that $cost(T_{ij}) = cost(L) + cost(R) + p_i p_{k+1} p_{j+1}$
- Therefore, $cost(T_{ij}) = cost(T_{ik}) + cost(T_{k+1,j}) + p_i p_{k+1} p_{j+1}$
- Using the M notation: $M_{ij} = M_{ik} + M_{k+1,j} + p_i p_{k+1} p_{j+1}$
- But what is *k*?
 - It is a split point
 - We don't know it, but we know that $i \le k \le j-1$ and that it is the <u>best</u> split point in that it should be the split point that gives us the minimum cost
- So to find the best k, try all its possible values and take the best
- Therefore, the RR is:

$$M_{ij} = \min_{i \le k \le j-1} (M_{ik} + M_{k+1,j} + p_i p_{k+1} p_{j+1})$$

-- (4) RECURRENCE RELATION IMPLEMENTATION --

- Now one needs to write an algorithm for computing all the M_{ij} for all $1 \le i \le j \le n$
- To be able to construct the actual optimal solution, we need to record for each M_{ij} the k that produces its minimum
- Since the matrix chain problem is a "toy" problem, we will not produce the actual algorithm
- But we will carry out an example

DP FOR THE MATRIX CHAIN PROBLEM

- -- RUNNING AN EXAMPLE: COMPUTING THE RR AS A TABLE --
- Take n = 4, A_1 is 3×5 , A_2 is 5×7 , A_3 is 7×3 , and A_4 is 3×4 , that is, $p_1 = 3$, $p_2 = 5$, $p_3 = 7$, $p_4 = 3$, $p_5 = 4$
- We will build a table to compute the M_{ij} 's bottom up. For each M_{ij} , we record the k that gives M_{ij} its min value

M ₁₁ =0	M ₂₂ =0	M ₃₃ =0	M ₄₄ =0
$M_{12} = 105$	$M_{23} = 105$	M ₃₄ =84	
$M_{13}=150$ $k=1$	$M_{24} = 165$		
M ₁₄ =186 k=3			

- For the 2nd row, every $M_{i,i+1} = p_i p_{i+1} p_{i+2}$ (why?), so compute it quickly
- For the 3^{rd} row, let's illustrate the computing of M_{13} :

$$M_{13} = \min_{1 \le k \le 3-1} (M_{1k} + M_{k+1,3} + p_1 p_{k+1} p_4)$$

$$M_{13} = \min(M_{11} + M_{23} + p_1 p_2 p_4, M_{12} + M_{33} + p_1 p_3 p_4)$$

$$M_{13} = \min(0 + 105 + 3 \times 5 \times 3, 105 + 0 + 3 \times 7 \times 3)$$

$$M_{13} = \min(150, 168) = 150, \text{ from the } 1^{\text{st}} \text{ k, i.e., k=1}$$

44

RUNNING AN EXAMPLE

-- CONSTRUCTING THE ACTUAL OPTIMAL SOLUTION --

• A_1 is 3×5 , A_2 is 5×7 , A_3 is 7×3 , and A_4 is 3×4 ,

$$p_1 = 3, p_2 = 5, p_3 = 7, p_4 = 3, p_5 = 4$$

Use the table to construct the optimal solution

M ₁₁ =0	M ₂₂ =0	M ₃₃ =0	M ₄₄ =0
$M_{12} = 105$	$M_{23} = 105$	$M_{34} = 84$	
10	M ₂₄ =165 k=3		
M ₁₄ =186 k=3			

Construction of the actual optimal solution:

- Since for M_{14} the optimal k=3, the best splitting for $A_1A_2A_3A_4$ is $(A_1A_2A_3)A_4$
- Now, to find the best split of $A_1A_2A_3$, look for the best k that minimizes M_{13} : it is k=1
- Therefore, the best splitting of $A_1A_2A_3$ is $A_1(A_2A_3)$
- Hence, the optimal solution is: $(A_1(A_2A_3))A_4$

LESSONS LEARNED SO FAR

- DP is an optimization design technique
- It has a litmus test (the principle of optimality):DP applies if OOP holds
- Proof of the POO is almost always by contradiction:
 - 1. assume a subsolution is not optimal, so there is a better subsolution
 - 2. replace it by a better one
 - 3. This results in a new solution better than optimal, a contradiction
- Solving the recurrence relation is non-recursive, bottom up, from smallest subsolutions to the final solution, where the subsolutions are usually recorded by filling a table
- The actual optimal solution is constructed by using the optimal split points recorded in the table
- More lessons later

MORE TO COME

- Next lecture we complete our coverage of Dynamic programming
- Specifically, we use DP to solve two very serious problems:
 - The all-pairs shortest path problem
 - The optimal binary search tree problem