# DEVELOPING A DEEP SURVIVAL MODEL FOR PREDICTING TIME TO DEATH FOR IN-HOSPITAL PATIENTS DIAGNOSED WITH ISCHEMIC HEART DISEASE



Code Link: <a href="https://github.gatech.edu/ressomba3/bigdata\_healthcare">https://github.gatech.edu/ressomba3/bigdata\_healthcare</a>

Hanjun, Li (hli735@gatech.edu); Lingxiao, He (lhe90@gatech.edu); Rene F, Essomba (ressomba3@gatech.edu); Wei Xuan, Ng (wng33@gatech.edu)

## PURPOSE OF PROJECT



## ? Problem to be Solved?

- IHD is the No.1 cause of death in the world
- 40% fatal IHD events led to in-hospital death



 Using machine learning/deep learning methods to predict patients' risk of death





 This is the first study utilizing sequence-based survival models for the prediction of in-hospital mortality risk in IHD patients



# **DATA PREPARATION**



MIMIC III v1.4 database contains deidentified data of 58,976 patients admitted in ICU between June 2001 and October 2012



Feature selection is based on the literature review: 35 features that are relevant to IHD were selected



6244 IHD patients are eligible for analysis



# **DATA DISCRIPTION**













# APPROACH (1/2) – COMPARISON OF TRADITIONAL APPROACH AND OUR APPROACH



- Mortality probability can only be inferred at the end of the observation window
- The length of observation window impacts the accuracy of the classification model
- Complete/aggregated information must be collected to fit the entire timeframe
- Temporal characteristics of features cannot be accommodated







# APPROACH (2/2) - SURVIVAL ANALYSIS +SEQUENCE BASED NEURAL NETWORK WITH WEIBULL DISTRIBUTION



- The loss function\* is the following:

$$-\frac{1}{N}\sum_{t=1}^{N} u * log(exp(\frac{y_i^{\beta}}{\alpha} - \frac{y_{i+1}^{\beta}}{\alpha}) - 1 - \frac{y_{i+1}^{\beta}}{\alpha})$$

- We used Adam optimizer
- NVIDIA Tesla K80 GPU
- Metric: Concordance Index
- Alpha initialized by the mean of the target



#### **EXPERIMENTS - HYPERPARAMETER TUNING STRATEGY**

**Evaluation sets**: 70% training 20% validation 10% test set

Challenge: Large hyperparameter search space

**Approach**: Tune each hyperparameters incrementally. Repeat for RNN, LSTM, GRU, and transformer architecture. Evaluation on validation set.

#### **Interpretation**:

- Batch normalization only creates better performance for GRU
- Increasing the number of linear layers helps improve the models in general
- There is no significant improvement in tuning batch sizes
- Dropout tends to improve the RNN and GRU model



# TRAINING AND VALIDATION CURVES - FINAL MODELS SELECTED











# **EXPERIMENT RESULTS**

| Best Model for each architecture                                                                                         | Batch size | Batch Norm applied? | Test set Concordance Index |
|--------------------------------------------------------------------------------------------------------------------------|------------|---------------------|----------------------------|
| RNN: 32 hidden units, bidirectional, dropout 0.3, 1 layer Linear Layer: hidden layer of 16 and 2 output units            | 64         | No                  | 0.709                      |
| GRU: 32 hidden units bidirectional,, 1 layer of GRU Linear Layer: Output layer 2 output units                            | 64         | No                  | 0.712                      |
| LSTM: 16 hidden units, bidirectional, 3 layers of LSTM Linear Layer: Output layer of 2 output units                      | 64         | Yes                 | 0.712                      |
| Transformers: 3 hidden layers with ReLU activation function, 8 heads Linear layer: Hidden layer of 32 and 2 output units | 32         | No                  | 0.691                      |



### COX PROPORTIONAL HAZARDS MODEL AND EVALUATION



#### Results:

- Training set:
  - concordance index of 0.77
  - 17 features are significantly related to survival time (p < 0.05)

- Test set:
  - concordance index of 0.718



## CONCLUSION

- The present study applied a novel deep learning survival model for survival length prediction leveraging data in the MIMIC III v1.4 database
- With no budget and limited computational power, the performance of deep learning survival model is comparable to the traditional Cox survival model (Concordance Index is around 0.71)
- We are confident that our new approach could be superior to traditional model if we could further tune hyperparameters and test more complex models

