

SUPERINTENDENCIA DE ADMINISTRADORAS DE FONDOS **CIRCULAR N° 1314 9. NOV. 2004 DE PENSIONES**

SUPERINTENDENCIA DE VALORES Y SEGUROS NCG. N° 172 9. NOV. 2004

VISTOS: Lo dispuesto en el artículo 65 del D.L. N° 3.500, de 1980 y en el artículo 20 del DFL N° 251, de 1931, y las facultades que les confiere la ley, estas Superintendencias han estimado necesario

reemplazar las actuales tablas de mortalidad RV-85, hombres y mujeres.

REF.: FIJA TABLA DE MORTALIDAD RV-2004, HOMBRES Y MUJERES, PARA PENSIONADOS POR

VEJEZ DEL D.L. N° 3.500, DE 1980.

- 1. Conforme a lo dispuesto en el artículo 65 del D.L. N°3.500, de 1980 y en el artículo 20 del DFL N°251, las Superintendencias de Administradoras de Fondos de Pensiones y Valores y Seguros, en adelante "las Superintendencias", establecen el uso de la Tabla RV-2004 para hombres y mujeres, en reemplazo de las actuales tablas de mortalidad RV-85, hombres y mujeres. Sin embargo continúan vigentes las tablas de mortalidad B-85 hombres y mujeres y MI-85 hombres y mujeres, respecto de beneficiarios y causantes inválidos, respectivamente.
- 2. La Tabla RV-2004 hombres y mujeres, se define con sus correspondientes tasas de mortalidad " q_x " y factores de mejoramiento "AAx" asociados, en Anexo N°1. Asimismo en Anexo N°2, se entrega nota técnica que detalla los criterios técnicos de su elaboración.
- 3. La Tabla RV-2004 deberá ser utilizada tratándose de pensionados por vejez edad y vejez anticipada, para el cálculo de los retiros programados y las reservas técnicas por parte de aseguradoras del segundo grupo, que mantengan obligaciones por la contratación de seguros de renta vitalicias del D.L. N°3.500, de 1980.
- 4. La presente Norma rige por un período máximo de cinco años, a contar del 1 de febrero de 2005, con respecto a las pensiones bajo la modalidad de retiro programado y del 8 de marzo de 2005, para el cálculo de las reservas técnicas en seguros de renta vitalicia.
- **5.** La metodología especifica de aplicación de las tablas y sus factores de mejoramiento, será materia de instrucciones de cada Superintendencia a sus fiscalizados.

SUPERINTENDENTE DE ADMINISTRADORAS DE FONDOS DE PENSIONES SUPERINTENDENTE DE VALORES Y SEGUROS

ANEXO 1 TABLA DE MORTALIDAD

TABLA DE MORTALIDAD RV-2004 MUJERES

Edad	Probabilidad de muerte	Factor de Mejoramiento	Edad	Probabilidad de muerte	Factor de Mejoramiento
х	q _x	AA _x	х	q _x	AA _x
20	0,000277509	0,0078	67	0,007166203	0,0068
21	0,000290737	0,0078	68	0,007543054	0,0068
22	0,000304597	0,0078	69	0,007952996	0,0068
23	0,000319116	0,0078	70	0,008432029	0,0067
24	0,000334329	0,0078	71	0,00901097	0,0067
25	0,00035069	0,0075	72	0,009733331	0,0067
26	0,000367407	0,0075	73	0,010640105	0,0067
27	0,000384921	0,0075	74	0,011772573	0,0067
28	0,00040327	0,0075	75	0,013192058	0,0063
29	0,000422493	0,0075	76	0,014907733	0,0063
30	0,000443437	0,0071	77	0,016981052	0,0063
31	0,000464575	0,0071	78	0,019456671	0,0063
32	0,000486721	0,0071	79	0,022378077	0,0063
33	0,000509922	0,0071	80	0,025831042	0,0059
34	0,00053423	0,0071	81	0,029816983	0,0055
35	0,000560486	0,0067	82	0,034369371	0,0051
36	0,000587204	0,0067	83	0,039516621	0,0047
37	0,000615196	0,0067	84	0,045282246	0,0044
38	0,000644522	0,0067	85	0,05168612	0,0041
39	0,000675246	0,0067	86	0,058744063	0,0038
40	0,000707149	0,0068	87	0,066468722	0.0035
41	0,000740859	0,0068	88	0,074869867	0,0033
42	0,000776175	0,0068	89	0,083954879	0,0031
43	0,000813175	0,0068	90	0,093729257	0,0029
44	0,000851938	0,0068	91	0,104196618	0,0027
45	0,00089219	0,0069	92	0,115359697	0,0025
46	0,00093472	0,0069	93	0,12722016	0,0023
47	0,00096821	0,0069	94	0,139778908	0,0021
48	0,001002838	0,0069	95	0,153036385	0,0020
49	0,001070731	0,0069	96	0,166992884	0,0019
50	0,001171306	0,0069	97	0,181648158	0,0017
51	0,001304272	0,0069	98	0,197332652	0.0016
52	0,001470504	0,0069	99	0,212662879	0,0010
53	0,001670877	0,0069	100	0,230000718	0,000
54	0,001907629	0,0069	101	0,248254188	0,000
55	0,002183482	0,0069	102	0,267420792	0,000
56	0,002500966	0,0069	103	0,288067164	0,000
57	0,002860859	0,0069	104	0,31030755	0,000
58	0,003261022	0,0069	105	0,334265019	0,000
59	0,003697173	0,0069	106	0,360072137	0,000
60	0,004163074	0,0068	107	0,387871708	0,000
61	0,004640075	0,0068	108	0,41781756	0,000
62	0,005114253	0,0068	109	0,450075399	0,000
63	0,00557247	0,0068	110	1	0,000
64	0,006006646	0,0068			•
65	0,006413279	0,0068			
66	0,006796067	0,0068			

TABLA DE MORTALIDAD RV-2004 HOMBRES

Edad	Probabilidad de muerte	Factor de Mejoramiento	Edad	Probabilidad de muerte	Factor de Mejoramiento
х	qx	AAx	х	qx	AAx
20	0,000532847	0,0166	67	0,017008919	0,0088
21	0,000569311	0,0166	68	0,01873603	0,0088
22	0,000608271	0,0166	69	0,020599505	0,0088
23	0,000649897	0,0166	70	0,022622295	0,0089
24	0,000694371	0,0166	71	0,02479963	0,0089
25	0,000747944	0,015	72	0,027166871	0,0089
26	0,000799128	0,015	73	0,02973214	0,0089
27	0,000853815	0,015	74	0,032576835	0,0089
28	0,000912244	0,015	75	0,03579027	0,0084
29	0,000974671	0,015	76	0,03930939	0,0084
30	0,001048792	0,0136	77	0,043202372	0,0084
31	0,001120564	0,0136	78	0,047559585	0,0084
32	0,001197248	0,0136	79	0,052421612	0,0084
33	0,001279179	0,0136	80	0,057838341	0,0084
34	0,001366717	0,0136	81	0,064306301	0,0067
35	0,001472872	0.0119	82	0,071439348	0,0053
36	0,001573665	0,0119	83	0,079188333	0,0043
37	0,001681356	0,0119	84	0.087572668	0,0034
38	0,001796416	0,0119	85	0,096606854	0,0027
39	0.00191935	0,0119	86	0,106301828	0,0022
40	0.002062137	0,0108	87	0,11666515	0.0017
41	0,002203255	0,0108	88	0,127702233	0,0014
42	0.00235403	0,0108	89	0.139416397	0,0011
43	0,002515123	0,0108	90	0,151809873	0,0009
44	0,002687241	0,0108	91	0,164884119	0,0007
45	0,002885678	0,0098	92	0,17864003	0,0005
46	0,003083154	0,0098	93	0,193078331	0,0004
47	0,003422495	0,0098	94	0,208199585	0,0003
48	0,003509205	0,0098	95	0,224004292	0,0003
49	0.00363738	0,0098	96	0,240492981	0,0002
50	0,003817751	0,0093	97	0,257666219	0,0002
51	0,004033456	0,0093	98	0,278723463	0,0002
52	0,004295721	0,0093	99	0,290358745	0,0001
53	0,004607962	0,0093	100	0,302470436	0,000
54	0,004974707	0,0093	101	0,315205839	0,0000
55	0.005396787	0.0095	102	0,328313256	0,0000
56	0,005890516	0,0095	103	0,341965728	0,0000
57	0,006454291	0,0095	104	0,356185919	0,000
58	0,007088018	0,0095	105	0,370997438	0.0000
59	0,007789945	0,0095	106	0,386424874	0,0000
60	0,008569178	0,0093	107	0,40249384	0,000
61	0,009414724	0,0093	108	0,419231013	0,0000
62	0,01034609	0,0093	109	0,436664178	0,000
63	0,01137972	0,0093	110	1	0,000
64	0,012533073	0,0093	''Ŭ	'	0,000
65	0,013929636	0,0088			
66	0,015416168	0,0088			

ANEXO N°2 NOTA TÉCNICA CONSTRUCCIÓN TABLAS RV-2004.

1. Información.

Las nuevas tablas RV-2004 se elaboraron sobre la base de los datos observados durante el período 1995 al 2003 inclusive, para hombres y mujeres, pensionados por vejez, bajo las modalidades de retiro programado, renta vitalicia y en el Instituto de Normalización Previsional, con pensiones superiores a la pensión mínima.

Para determinar las probabilidades brutas de muerte se consideraron los pensionados vivos al 31 de diciembre de 2003 y la información de los pensionados fallecidos o traspasados a Renta Vitalicia, cuyas fechas de fallecimiento o de traspaso se produjeron entre los años 1995 y 2003. Del universo de pensionados bajo la modalidad de retiro programado se excluyeron los pensionados por vejez con saldo cero en su cuenta individual.

En resumen los datos utilizados fueron:

	RV	INP	RP
Mujeres	46.016	66.241	50.607 (16.853)*
Hombres	76.182	108.171	120.234 (62.224)*

^{*} Este número corresponde a los pensionados traspasados a rentas vitalicias.

2. Metodología.

2.1 Probabilidad "bruta" de muerte, q_x

El cálculo se efectúa de la siguiente manera:

 $q_x = \Theta_x/E_x$.

Donde Θ_x es la cantidad de muertes ocurridas y E_x es la cantidad de expuestos al riesgo en la edad x

Este ratio corresponde a la probabilidad "bruta" que una persona que acaba de cumplir **x** años de edad, no viva un año más.

Cálculo de Expuestos:

Primero es necesario calcular la edad asegurada "IA":

IA = Fecha exacta de bautizo de la póliza (emisión) – fecha exacta de nacimiento.

La fecha exacta se expresa en números decimales, para posteriormente aproximarla al número entero más cercano. (edad actuarial)

Luego se recalcula la fecha de nacimiento (VYB) teniendo en cuenta la nueva edad a la fecha de bautizo del seguro

Donde CYI es el año calendario en que se bautizó la póliza (sin mes ni días).

Una vez obtenidos los valores de IA y VYB se puede calcular el siguiente vector:

$$v_i = [y_i, z_i, \theta_i, \phi_i]$$

Donde:

y_i = edad en que comienza la observación = Año en que comienza la observación – VYB

z_i = edad en que sale del periodo de observación = Año en que termina la observación – VYB

 θ_i = edad exacta de muerte = IA + muerte exacta — Bautizo exacto de la póliza

φ_i = edad de renuncia = Año en que renuncia – VYB

Una vez tenido esos datos se pueden calcular los expuestos y muertos por año.

El cálculo se realiza de la siguiente forma:

Expuestos a la edad x = a la suma de todos los individuos que cumplan con estos requisitos: $(y_i < x)$; $(z_i \ge x)$; $(\theta_i = 0 \text{ ó } x < \theta_i \le x+1)$; $(\phi_i = 0 \text{ ó } x < \phi_i \le x+1)$;

Mientras que los muertos a la edad x, es el subconjunto de expuestos a la edad x donde $x < \theta_i \le x+1$

2.2 Técnica de Ajuste.

Las probabilidades brutas obtenidas se ajustaron con el método de Whittaker Henderson Tipo B, que consiste en una combinación de regresión lineal con el método Bayesiano de ajuste. Su fórmula se puede definir de la siguiente manera:

$$M = F + hS$$

$$F = \sum w_x (q_x - q_x')^2$$
 $S = \sum (\Delta^z q_x)^2$

Donde F (fit) es la medida de ajuste mientras que S (smooth) es una medida de suavidad de la curva. Mientras que el parámetro **h** le da más o menos intensidad a la suavidad de la curva.

Descripción de F:

Corresponde a la minimización de los residuos cuadrados, regresión lineal:

$$F = \sum w_x (q_x - q_x)^2$$

El ponderador $\mathbf{w}_{\mathbf{x}}$ toma en cuenta la varianza de una distribución normal de la variable aleatoria $U_{\mathbf{x}}$.

$$W_x = 1/Var(U_x)$$

donde el tamaño de la muestra está ponderando los residuos $(\mathbf{q_x} - \mathbf{q'_x})$, es decir que mientras F tiende a cero, el ajuste es mejor. En los casos en que los residuos tienen una muestra grande $(\mathbf{w_x})$ deben ser mas pequeños para mantener F lo mas cerca de cero.

Descripción de S:

Se puede representar de la siguiente manera:

$$S = \sum (\Delta^z q_x)^2$$

"S" corresponde a la suma cuadrada de las diferencias finitas. Si, por ejemplo z=4 estamos considerando que la secuencia q_x se asemeja a un polinomio de grado 3. Las diferencias finitas se asemejan a una derivada y por lo tanto, el orden de diferencia condiciona el grado del polinomio.

Para nuestro caso particular, se utilizó un Z=3 para representar una curva de un polinomio de grado dos que se ajusta a la forma de una curva creciente constante sin puntos de inflexión.

Mientras que el parámetro h = 10⁹ para el caso de los hombres y mujeres. Este parámetro fue calculado mediante iteraciones con el objetivo que el ajuste pasara los test estadísticos utilizados para evaluar el ajuste de Whittaker Henderson.

2.3 Factores de Mejoramiento y Márgenes de Seguridad:

Factores de Mejoramiento.

Con el fin de capturar la disminución en la tasa de mortalidad, desde el año central de la tabla hasta el año 2004, se aplico un factor de mejoramiento sobre la base de las proyecciones del CELADE a nivel poblacional. Estas proyecciones fueron implementadas en la tabla de acuerdo a la siguiente formula:

$$qx^{proj} = qx^{nuevo} * (1 - AIF/100)^t$$

donde:

qx ^{proj}: Es el qx proyectado que refleja el mejoramiento poblacional **qx** ^{nuevo} : Son los qx obtenidos del ajuste de Whittaker Henderson.

AIF: Los factores de mejoramiento.

t : Es la diferencia entre el año 2004 y el año central (2000)

Para los factores de mejoramiento de largo plazo "AAx" se utilizaron los mismos factores.

Márgenes de Seguridad.

Se aplicó un margen de seguridad de acuerdo a la siguiente fórmula, acotado al 3% para los hombres mientras que las mujeres no se aplicó debido a que la muestra constituye un grupo selecto.

Margen =
$$\frac{\text{Desviación Standard }(U_x)}{\text{qx}^{\circ}}$$
 * 100

Donde:

qxº: qx Bruto

x: Numero de expuestos a edad x

Desviación Standard (U_x) = raiz cuadrada (qxº (1 - qxº)/ n_x)