Assignment 2 MAT 347

Q4: Consider $G = \mathcal{Q}_8$. As per A1Q4, we have classified all the subgroups of \mathcal{Q}_8 . We know from properties of multiplication in \mathcal{Q}_8 that for any $g \in \mathcal{Q}_8$, $H \leq G$ that gH = Hg. For example, we can compute that

$$\begin{aligned} k\langle j\rangle &= \{k,-i,-k,i\} \\ \langle j\rangle k &= \{k,i,-k,-i\} \end{aligned}$$

We see that the left and right cosets are equal, although we know that this group is not commutative. We claim that a subgroup is normal if and only if the left and right cosets coinside. We proceed with the forward implication. Suppose $H \subseteq G$. We see that for all $g \in G$,

$$gHg^{-1} = H \implies gHg^{-1}g = Hg \implies gH = Hg$$

As desired. Now suppose that $H \leq G$, and gH = Hg. Applying g^{-1} to the right side we get that $gHg^{-1} = H$. Hence H is normal.