DEPLOYMENT ORCHESTRATION G. Molines 2020-2021 Université Nice Sophia Antipolis POLYTECH

DOCKER COMPOSE

Features

Assemble several containers in one go

- → Virtual network
- →Shared resources, Esp. volume

→ Build and Run

Limits

Runs on one host
Scaling
Monitoring
Resiliency

DOCKER SWARM

Swarm

Scale containers

Now native in docker engine

Easy to start with, fast

Not really picking up in the industry

Nice tutorial: https://training.play-with-docker.com/orchestration-hol/

KUBERNETES

Features

Manages regionalized scaling of docker images

More complex

Flashback on docker

VMs vs. Containers

- Docker key advantages:

 Better resources utilization (less overhead): CPU, RAM
- Faster to stop/start applications (seconds)Enable powerful portability

To be known:

- Fast change'Dockerization' effort

Docker Containers

A technical view into the shared and layered file systems technology

Filesystem

Layers allow for reuse

- More containers per host
- Faster start-up/download time base layers are "cached"
 Images
 - Tarball of layers (each layer is a tarball)

Docker basic functions

11

What is Kubernetes?

- Kubernetes is an <u>open-source platform for automating</u> <u>deployment, scaling, and operations of application</u> <u>containers</u> across clusters of hosts, providing container-centric infrastructure
 - Container orchestrator
 - Runs and manages containers
 - Supports multiple cloud and bare-metal environments
 - Inspired and informed by Google's experiences and internal systems
 - 100% Open source, written in Go
 - Manage applications, not machines
 - Rich ecosystem of plug-ins for scheduling, storage, networking

Kubernetes Architecture

Kubernetes Architecture

Kubernetes Architecture

Kubernetes Concepts: Deployment, ReplicaSet, Pod

Node selector

Service labels

16

Deployment and Service Yaml

```
田田
```

```
apiVersion: apps/v1
kind: Deployment
metadata:
   name: mytodos
  replicas: 2 # tells deployment to run 2 pods
   selector:
    matchLabels:
       app: mytodos
   template: # create pods using pod
definition in this template
    metadata:
      labels:
         app: mytodos
        tier: frontend
     spec:
       containers:
       - name: mytodos
         image: <image>:1.0
         imagePullPolicy: Always
         resources:
           requests:
             cpu: 250m # 250 millicores =
1/4 core
            memory: 128Mi # 128 MB
           limits:
             cpu: 500m
             memory: 384Mi
```

```
apiVersion: v1
kind: Service
metadata:
  name: mytodos
  labels:
    app: mytodos
    tier: frontend
spec:
  ports:
  - protocol: TCP
  port: 8080
  selector:
    app: mytodos
    tier: frontend
```

Tutorial

 https://kubernetes.io/docs/tutorials/kuberne tes-basics/

