EE 368 机器人运动与控制方法(Robotic Motion and Control) Reference Solutions to Assignment #5

Q-1. Given the nonlinear control equation for an α , β partitioned controller for the system:

$$\tau = 5\theta\dot{\theta} + 2\ddot{\theta} - 13\dot{\theta}^3 + 5.$$

Choose gains so that this system is always critically damped with the closed-loop stiffness $K_P = 10$.

Solution: Let
$$\tau = \alpha \tau' + \beta$$
, $\alpha = 2\beta$, $\beta = 5\theta \dot{\theta} - 12\dot{\theta}^3 + 5$ and $\tau' = \ddot{\theta}_D + K_V \dot{e} + K_P e$ where $e = \theta_D - \theta$, and $K_P = 10$ and $K_V = 2\sqrt{10}$

Q-2. Draw a block diagram showing a Cartesian-space controller for the two-link robot arm with the Cartesian-space dynamic equation as follows:

$$\tau = J^T(\Theta) M_{_X}(\Theta) \ddot{X} + B_{_X}(\Theta) [\dot{\Theta} \dot{\Theta}] + C_{_X}(\Theta) [\dot{\Theta}^2] + G(\Theta)$$

such that the robot arm is critically damped over its entire workspace. Assume that the forward kinematics of this robot arm is represented by $KIN(\Theta)$.

Solution:

Where $M_x(\theta)$, $V_x(\theta, \dot{\theta})$, $G_x(\theta)$ are as found in example 6.6. KIN (θ) is the kinematics (forward) for this simple two-link.

Also:

$$K_P = \begin{bmatrix} K_{P1} & 0 \\ 0 & K_{P2} \end{bmatrix} \quad K_V = \begin{bmatrix} K_{V1} & 0 \\ 0 & K_{V2} \end{bmatrix}$$

with $K_{Vi} = 2\sqrt{K_{Pi}}$

Q-3. Consider a position-regulation system with the open-loop dynamics as

$$\tau = M(\Theta)\ddot{\Theta} + V_M(\Theta, \dot{\Theta})\dot{\Theta} + G(\Theta)$$

that attempts to maintain $\Theta_d = 0$. Prove using Lyapunov stability that the control law

$$\tau = -K_P \Theta - \widehat{M}(\Theta) K_V \dot{\Theta} + G(\Theta)$$

with the Lyapunov function candidate

$$\mathcal{V} = \frac{1}{2}\dot{\Theta}^T M(\Theta)\dot{\Theta} + \frac{1}{2}\Theta^T K_P \Theta$$

yields an asymptotically stable nonlinear system. You may take K_V to be of the form $K_V = k_v I_n$, where k_v is a scalar and I_n is the $n \times n$ identity matrix. The matrix $\widehat{M}(\Theta)$ is a positive definite estimate of the manipulator mass matrix.

Solution:

Closed loop system, given by:

$$\begin{split} &M(\theta)\ddot{\theta} + V_{M}(\theta,\dot{\theta})\dot{\theta} + G(\theta) = -K_{p}\theta - M(\theta)K_{v}\dot{\theta} + G(\theta) \\ &V = \frac{1}{2}\dot{\theta}^{T}M(\theta)\dot{\theta} + \frac{1}{2}\theta^{T}K_{p}\theta \quad \text{(Lyapunov candidate)} \\ &\dot{V} = \frac{1}{2}\dot{\theta}^{T}\dot{M}(\theta)\dot{\theta} + \dot{\theta}^{T}M(\theta)\ddot{\theta} + \dot{\theta}^{T}K_{p}\theta \\ &\dot{V} = \frac{1}{2}\dot{\theta}^{T}\dot{M}(\theta)\dot{\theta} + \dot{\theta}^{T}[-V_{M}(\theta,\dot{\theta})\dot{\theta} - G(\theta) - K_{p}\theta - M(\theta)K_{v}\dot{\theta} + G(\theta)] \\ &+ \dot{\theta}^{T}K_{p}\theta \\ &\dot{V} = -\dot{\theta}^{T}M(\theta)K_{v}\dot{\theta} \end{split}$$

This is non-positive if $M(\theta)K_{\nu}$ is positive definite. This matrix product is positive def. if $K_{\nu} = k_{\nu}I_{N}$, where K_{ν} is positive scalar. Q.E.D.