IR2103

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- 5V Schmitt-triggered input logic
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal set deadtime
- High side output in phase with HIN input
- Low side output out of phase with $\overline{\text{LIN}}$ input

Description

The IR2103 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Product Summary

Voffset	600V max.
I _O +/-	100 mA / 210 mA
V _{OUT}	10 - 20V
t _{on/off} (typ.)	600 & 90 ns
Deadtime (typ.)	500 ns

Packages

Typical Connection

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

	Parameter		Va	lue	
Symbol	Definition		Min.	Max.	Units
V _B	High Side Floating Absolute Voltage		-0.3	625	
Vs	High Side Floating Supply Offset Voltage		V _B - 25	V _B + 0.3	
V _{HO}	High Side Floating Output Voltage		V _S - 0.3	V _B + 0.3	V
Vcc	Low Side and Logic Fixed Supply Voltage		-0.3	25	V
V _{LO}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic Input Voltage (HIN & LIN)		-0.3	V _{CC} + 0.3	
dV _S /dt	Allowable Offset Supply Voltage Transient		_	50	V/ns
PD	Package Power Dissipation @ T _A ≤ +25°C	(8 Lead DIP)	_	1.0	W
		(8 Lead SOIC)	_	0.625	l vv
Rth _{JA}	Thermal Resistance, Junction to Ambient	(8 Lead DIP)	_	125	90.44
		(8 Lead SOIC)	_	200	°C/W
TJ	Junction Temperature		_	150	
T _S	Storage Temperature		-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

	Parameter	Va		
Symbol	Definition	Min.	Max.	Units
V _B	High Side Floating Supply Absolute Voltage	V _S + 10	V _S + 20	
٧s	High Side Floating Supply Offset Voltage	Note 1	600	
V _{HO}	High Side Floating Output Voltage	Vs	V _B	V
Vcc	Low Side and Logic Fixed Supply Voltage	10	20	V
V_{LO}	Low Side Output Voltage	0	Vcc	
V _{IN}	Logic Input Voltage (HIN & LIN)	0	V _{CC}	
T _A	Ambient Temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}.

International

TOR Rectifier

IR2103

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Parameter			Value				
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions	
ton	Turn-On Propagation Delay	_	600	720		V _S = 0V	
t _{off} Turn-Off Propagation Delay		_	90	200		V _S = 600V	
t _r	Turn-On Rise Time	_	100	150			
t _f Turn-Off Fall Time		_	50	80	ns		
DT Deadtime, LS Turn-Off to HS Turn-On &		_	500	750			
	HS Turn-On to LS Turn-Off						
MT	Delay Matching, HS & LS Turn-On/Off	_	30	_			

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Parameter			Value				
Symbol	nbol Definition		Тур.	Max.	Units	Test Conditions	
VIH	Logic "1" Input Voltage for HIN & Logic "0" for $\overline{\overline{\text{LIN}}}$	2.7	_	_	V	V _{CC} = 10V to 20V	
V _{IL}	Logic "0" Input Voltage for HIN & Logic "1" for LIN	_	_	0.8	V	V _{CC} = 10V to 20V	
VoH	High Level Output Voltage, V _{BIAS} - V _O	_	_	100	mV	$I_O = 0A$	
V _{OL}	Low Level Output Voltage, VO	_	_	100	1111	$I_O = 0A$	
I _{LK}	Offset Supply Leakage Current	_	_	50		$V_{B} = V_{S} = 600V$	
I _{QBS}	Quiescent V _{BS} Supply Current	_	20	50		$V_{IN} = 0V \text{ or } 5V$	
lacc	Quiescent V _{CC} Supply Current	_	140	240	μΑ	μA $V_{IN} = 0V \text{ or } 5V$	
I _{IN+}	Logic "1" Input Bias Current	_	20	40	$HIN = 5V, \overline{LIN} = 0V$		
I _{IN-}	Logic "0" Input Bias Current	_	_	1.0	$HIN = 0V, \overline{LIN} = 5$		
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going Threshold	8.3	8.9	9.5	V		
V _{CCUV} - V _{CC} Supply Undervoltage Negative Going Threshold		7.5	8.2	8.6	V		
I _{O+}	Output High Short Circuit Pulsed Current	100	125	_	mA	$V_O = 0V, V_{IN} = V_{IH}$ $PW \le 10 \ \mu s$	
I _O -	Output Low Short Circuit Pulsed Current	210	250	_	IIIA	$V_O = 15V$, $V_{IN} = V_{IL}$ $PW \le 10 \ \mu s$	

IR2103

International TOR Rectifier

Functional Block Diagram

Lead Definitions

Le	Lead			
Symbol	Description			
HIN	Logic input for high side gate driver output (HO), in phase			
LIN	Logic input for low side gate driver output (LO), out of phase			
VB	High side floating supply			
НО	High side gate drive output			
Vs	High side floating supply return			
Vcc	Low side and logic fixed supply			
LO	Low side gate drive output			
COM	Low side return			

Lead Assignments

International

TOR Rectifier

IR2103

Device Information

Process & Design Rule			HVDCMOS 4.0 µm		
Transistor Count			168		
Die Size			67 X 91 X 26 (mil)		
Die Outline					
Thickness o	f Gate Oxide		800Å		
Connections		Material	Poly Silicon		
	First	Width	4 μm		
	Layer	Spacing	6 µm		
	,	Thickness	5000Å		
		Material	AI - Si (Si: 1.0% ±0.1%)		
	Second	Width	6 µm		
	Layer	Spacing	9 µm		
	,	Thickness	20,000Å		
Contact Hol	e Dimension		5 μm X 5 μm		
Insulation La		Material	PSG (SiO ₂)		
	,	Thickness	1.5 µm		
Passivation		Material	PSG (SiO ₂)		
		Thickness	1.5 µm		
Method of S	aw		Full Cut		
Method of D			Ablebond 84 - 1		
Wire Bond		Method	Thermo Sonic		
77.10 20.10		Material	Au (1.0 mil / 1.3 mil)		
Leadframe		Material	Cu		
Leadiraine		Die Area	Ag		
		Lead Plating	Pb : Sn (37 : 63)		
Package	Package		8 Lead PDIP / SO-8		
		Materials	EME6300 / MP150 / MP190		
Remarks:		Matorialo	ZINZOSOS / INI 100 / INI 100		

SOLDERING TO A SUBSTRATE.

01-0021 08

DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Delay Matching Waveform Definitions

Figure 4. Deadtime Waveform Definitions

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453-2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: 171 (K&H Bldg.), 30-4 Nishi-ikebukuro 3-Chome, Toshima-ku, Tokyo Japan Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 6/98