1 Example from last time

Let $f, g, \mathbb{N} \to \mathbb{R}^{\geq 0}$ Prove that if $f \in \mathcal{O}g$ then, $g \in \mathcal{O}(f)$

Proof:

Assume $f \in \mathcal{O}g$ $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow f(n) \le cg(n)$

Let $n'_0 = n_0 \in \mathbb{R}^+$ Let $c' = \frac{1}{c} \in \mathbb{R}^+$ since $c \in \mathbb{R}^+$ Let $n \in \mathbb{N}$ Assume $n \ge n'_0 = n_0$

Then

$$f(n) \le cg(n)$$

$$\frac{1}{c}f(n) \le g(n)$$

$$g(n) \ge c'f(n)$$

Therefore,

$$\exists c', n + 0' \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n'_0 \Rightarrow g(n) \ge c' f(n)$$

2 Algorithm Analysis

We have the math tools of: $\mathcal{O}, \Omega, \Theta$

We use these tools to achieve the goal of a "simple" f so that $\Theta(f)$ "represents the particular resource complexity.

We will focus on runtime complexity:

For Algorithm A and input x, let $RT_A(x)$ b the time to run algorithm A on input x

Say we have sorting algorithm: def sort(1): $RT_{sort}: Lists \to \mathbb{R}^{\geq 0}$

- Given the definition of $\mathcal{O}, \Omega, \Theta$, they cannot take lists as input
- ullet We therefore take the measure the input. ie, length of the list len(1) $\in \mathbb{N}$
- We also must output the list in some way.
 - Worst case WC sort(n) = max
 - Best case BC sort(n) = min

Lecture 13 (*March* 7, 2022)

- Average Case - AC sort(n) = average

Define Today: $x \in \mathbb{N}$

```
def A(n: int) -> int: #Assume n >= 0
    r = 0
    for i in range(10):
        for j in range(n * n):
            r = r + j
    for i in range (n//2):
        for j in range(i * i):
            r = r - j
    return r
```

Determine $RT_A(n)$

note a step is a piece of code the takes fixed/consistent amount of time to interpred tate the input. Then m steps take between min(c)m and max(c)m time, ie $\theta(m)$

We analyze the above program:

- Loop lines 3-4
 - Body: 1 step
 - Iterations: n^2
 - Total: $n^2 \cdot 1 = n^2$ steps
- Loop lines 2-4
 - Body: n^2 step
 - Iterations: 10
 - Total: $10n^2$ steps
- Loop lines 6-7
 - Body: i^2 steps
- Loop lines 5-7
 - Body: i^2 step
 - Iterations: $0, 1, 2, \dots, \left\lfloor \frac{n}{2} \right\rfloor 1$
 - Total: $0^2 + 1^2 + 2^2 + \dots + (\lfloor \frac{n}{2} \rfloor 1)^2$ steps $* = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor - 1} i^2 \in \theta(n^3)$

Therefore the algorithm $\in \theta(1+10n^2+n^3+4) \in \theta(n^3)$