Álgebra Linear

Unidade 2: Conjuntos Fechados

Grupo Colaborativo de Ensino em Álgebra Linear

Vetores em \mathbb{R}^2

lacksquare Representação algébrica de um vetor em \mathbb{R}^2 :

Um vetor $\overrightarrow{v} \in \mathbb{R}^2$ fica unicamente determinado por um ponto P(a,b).

Podemos representar \overrightarrow{v} por meio de diferentes formas:

$$\overrightarrow{v} = \overrightarrow{OP}$$
 $\overrightarrow{v} = \overrightarrow{OP}$ é dito vetor posição do ponto P .

$$= P - O$$

$$= (a, b) - (0, 0)$$

$$= (a, b)$$

$$= a(1, 0) + b(0, 1)$$

$$= a\overrightarrow{i} + b\overrightarrow{j}$$

onde $\{\vec{i}, \vec{j}\}$ é a "base canônica"

de \mathbb{R}^2 .

Qualquer vetor "equipolente" (com mesmo módulo, direção e sentido) a \overrightarrow{v} , pode ser visto como o próprio vetor $\overrightarrow{v} = \overrightarrow{OP}$.

Vetores em \mathbb{R}^3

 \blacksquare • Representação algébrica de um vetor em \mathbb{R}^3 :

 \longrightarrow De forma análoga, um vetor $\overrightarrow{v}\in\mathbb{R}^3$ fica unicamente determinado por um ponto P(a,b,c):

Podemos representar \overrightarrow{v} por meio

de diferentes formas:

$$\overrightarrow{v} = \overrightarrow{OP}$$
 $\overrightarrow{v} = \overrightarrow{OP}$ é di posição do posição

 $\overrightarrow{v} = \overrightarrow{OP}$ é dito vetor posição do ponto P.

onde $\{\overrightarrow{i}$, \overrightarrow{j} , \overrightarrow{k} $\}$ é a base canônica de \mathbb{R}^3

Qualquer vetor "equipolente" (com mesmo módulo, direção e sentido) a \overrightarrow{v} , pode ser visto como o próprio vetor $\overrightarrow{v} = OP$.

Vetores em \mathbb{R}^n

• Representação algébrica de um vetor em \mathbb{R}^n :

Podemos generalizar a representação algébrica para vetores em \mathbb{R}^n , a partir de um ponto $P(x_1, x_2, x_3, ..., x_n)$:

$$\overrightarrow{v} = \overrightarrow{OP} = (x_1, x_2, x_3, \dots, x_n)$$
$$= x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + x_3 \overrightarrow{e_3} + \dots + x_n \overrightarrow{e_n},$$

onde $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, ..., \overrightarrow{e_n}\}$ é a "base canônica" de \mathbb{R}^n .

 \longrightarrow Com isso, para cada $n \in \mathbb{N}$, definimos o conjunto de vetores

$$\mathbb{R}^n = \{(x_1, x_2, x_3, ..., x_n); x_i \in \mathbb{R}\}.$$

lacktriangle Observação: Para $n\geq 4$, deixamos de ter a interpretação geométrica para \mathbb{R}^n .

No entanto, veremos que as características algébricas dos elementos de \mathbb{R}^n permanecem idênticas às que estamos habituados em \mathbb{R}^2 ou \mathbb{R}^3 .

Exemplos:

- $\overrightarrow{v} = (3, -1, -4, 5) \in \mathbb{R}^4$.
- $\overrightarrow{u} = (-2, 13, -15, \ln(2), 1, -9, 6) \in \mathbb{R}^7$.

Operações com Vetores de \mathbb{R}^n

• Adição e Multiplicação por escalar em \mathbb{R}^n :

As operações usuais de adição e de multiplicação por escalar de vetores de \mathbb{R}^n são definidas por:

- $(x_1, x_2, x_3, ..., x_n) + (y_1, y_2, y_3, ..., y_n) = (x_1 + y_1, x_2 + y_2, x_3 + y_3, ..., x_n + y_n),$
- $k.(x_1, x_2, x_3, ..., x_n) = (kx_1, kx_2, kx_3, ..., kx_n)$ para qualquer $k \in \mathbb{R}$.

Exemplo: Em
$$\mathbb{R}^4$$
, para $\overrightarrow{v} = (2, -3, 4, -5)$ e $\overrightarrow{u} = (-8, 7, -3, -2)$ temos que $\overrightarrow{v} + \overrightarrow{u} = (2, -3, 4, -5) + (-8, 7, -3, -2) = 3. \overrightarrow{v} = 3(2, -3, 4, -5) =$

Observações:

- O vetor $\vec{0}=(0,0,0,...,0)$ é o vetor nulo de \mathbb{R}^n .
- Como $\overrightarrow{v} + \overrightarrow{0} = \overrightarrow{v} = \overrightarrow{0} + \overrightarrow{v}$ é válido para todo $\overrightarrow{v} \in \mathbb{R}^n$, $\overrightarrow{0}$ é dito elemento neutro aditivo.
- Se \overrightarrow{v} e $\overrightarrow{w} \in \mathbb{R}^n$ são tais que $\overrightarrow{v} + \overrightarrow{w} = \overrightarrow{0} = \overrightarrow{w} + \overrightarrow{v}$ então \overrightarrow{w} é dito elemento oposto aditivo de \overrightarrow{v} e denotado por $\overrightarrow{w} = -\overrightarrow{v}$.

Conjuntos de Vetores

Seja H um subconjunto de \mathbb{R}^n , denotado por $H \subseteq \mathbb{R}^n$.

Dizemos que um vetor $\overrightarrow{v} \in H$ se e somente se

$$\overrightarrow{v} = \overrightarrow{OP}$$
 para algum $P \in H$.

No esquema ao lado, temos que:

$$\overrightarrow{v} = \overrightarrow{OP} \in H$$
pois $P \in H$,
 $\overrightarrow{u} = \overrightarrow{OQ} \notin H$

$$u = UQ \notin H$$
pois $Q \notin H$,

$$\overrightarrow{w} = \overrightarrow{OR} \in H$$

pois $R \in H$.

Conjuntos Fechados

Seja $H \subseteq \mathbb{R}^n$ um subconjunto de vetores.

Dados \overrightarrow{v} e $\overrightarrow{w} \in H$, será que $\overrightarrow{v} + \overrightarrow{w} \in H$?

No esquema ao lado, temos que

$$\overrightarrow{v} + \overrightarrow{w} = \overrightarrow{OS}$$
,

 $com S \notin H$.

Portanto

$$\overrightarrow{v} + \overrightarrow{w} \notin H$$
,

Conjunto Fechado

Definição: Seja $H \subseteq \mathbb{R}^n$ um subconjunto de vetores.

H é dito fechado para a operação de adição se, e somente se, dados quaisquer dois elementos \overrightarrow{u} e \overrightarrow{v} que pertencem a H, a soma $\overrightarrow{u}+\overrightarrow{v}$ também é um elemento que pertence a H.

Simbolicamente: $\forall \overrightarrow{u}, \overrightarrow{v} \in H, \overrightarrow{u} + \overrightarrow{v} \in H$.

Analogamente, H é dito fechado para a operação de multiplicação por escalar se, e somente se, dado qualquer elemento \overrightarrow{v} que pertence a H e qualquer escalar $k \in \mathbb{R}$ a multiplicação por escalar $k\overrightarrow{v}$ também é um elemento que pertence a H.

Simbolicamente: $\forall \ \overrightarrow{v} \in H, \forall k \in \mathbb{R}, \ k\overrightarrow{v} \in H$.

Quando H é simultaneamente fechado para as operações de adição e de multiplicação por escalar, H é simplesmente dito um conjunto fechado.

OBSERVAÇÃO: A definição de conjunto fechado permanece válida ainda que H seja um subconjunto de outros conjuntos, desde que estes estejam munidos de operações de adição e de multiplicação por escalar.

Exemplo 1: As figuras a seguir representam subconjuntos $H \subseteq \mathbb{R}^2$. Determine uma representação algébrica para cada conjunto e, a seguir, determine se cada conjunto é fechado para a adição e/ou para a multiplicação por escalar:

Figura 1. Região y $\leq (1/2)x$

H é fechado para a adição?

No primeiro quadrante (sem os eixos) x e y são ambos estritamente positivos.

d) Figura 3: Reta y = 3x - 2.

Figura 3: Reta y = 3x - 2.

e) Figura 5: Reta y = 3x.

Figura 5: Reta y = 3x.

Exemplo 2: Considere o subconjunto $H \subseteq \mathbb{R}^3$ dado por

$$H = \{(x, y, z) \in \mathbb{R}^3; 3x - 7y + 4z = 0\}.$$

Determine se H é fechado para as operações de adição e/ou multiplicação por escalar.

Solução:

Exemplo 3: Considere o conjunto das matrizes antissimétricas de ordem $n \times n$, denotado por

$$H = \{A_{n \times n}; A^T = -A\}.$$

ightharpoonup onde A^T representa a matriz transposta de A.

Determine se H é fechado para as operações de adição e/ou multiplicação por escalar.

Solução:

Nesse exemplo, os elementos de *H* não são vetores (são matrizes!)
Ainda assim, o conjunto mantém as mesmas propriedades algébricas de conjuntos de vetores. Por isso, mais adiante, diremos que uma matriz, do ponto de vista algébrico, pode ser vista como um vetor!

Exercícios Proposto

Exercício 1: Considere o subconjunto $H \subseteq \mathbb{R}^2$ dado por

$$H = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 < 9\}.$$

- a) Represente H geometricamente.
 - b) Determine se H é fechado para as operações de adição e/ou multiplicação por escalar.

Exercício 2: Considere como H o conjunto solução do sistema homogêneo

$$\begin{cases} x + 2y + 3z = 0 \\ -2x - 5y + 8z = 0 \\ 5x + 11y + z = 0 \\ 4x + 8y + 12z = 0 \end{cases}$$

- a) Descreva *H* algebricamente.
- \rightarrow b) Determine se H é fechado para as operações de adição e/ou multiplicação por escalar.