Departamento de Matemática, Universidade de Aveiro	s = ₃	Matemática Discreta
EXAME DE RECURSO, 28 de Junho de 2023, Duração: 2h30m	\mathbf{B}	Classificação:
Nome:		Nº Mec.:
Declaro que desisto:		Folhas supl.:

4. (2 val) Um código consiste ou em três letras consecutivas (distintas ou não, entre 23 letras) seguidas de três algarismos (repetidos ou não, de 0 a 9) ou em duas letras consecutivas seguidas de quatro algarismos. Quantas possibilidades para estes códigos existem? Justifique.

Por exemplo, «ADF029», «AE1123», «BBB111»; mas «AB358D» não é um tal código.

- 5. (2 val) Determine a sucessão $(a_n)_{n\geq 0}$ que tem como série geradora a série $\frac{x}{(1-x)^3}$.
- 6. (3 val) Resolva a relação de recorrência

$$na_n - (5n - 5)a_{n-1} = 5^n + 4,$$

onde $a_0 = 10$.

[Sugestão: Efetuar a substituição $b_n = na_n$.]

4) 10 caso: L L L A A A L-letra
A - alganismo
20 carso: L L A A A A Podemos repetig
Para cada ponição da codigo preenchida com uma letra existem 23 possibilidades
com uma letra existem 23 possibilidades
(23 letras) e para cada porição preenchida
(23 letras) e para cada porição preenchida com um alganismo existem 10 possibilidados
Portanto, o número de etidigos gerados
no locaro e dado per
$A^{x}(23,3) \times A^{x}(10,3) = 23^{3} \times 10^{5}$
$e no 2^{\circ} caso e^{\circ}$ $A^{2}(23,2) \times A^{2}(10,4) = 23^{2} \times 10^{4}$
Pelo minutorio da adição, o número de cádigos gerados de acordo com estes formatos e 233 x 103 + 232 x 104.

(i)
$$\frac{x}{(1-x)^3} = \frac{x}{(1-x)^3} = \frac{x}{(1-$$

(iii)
$$b_{n} - 5b_{n-1} = 5^{n}$$

$$d_{n} = 5^{n} \qquad d_{n} = 6 p^{n}, c_{1}p_{c}m_{b}n_{b}n_{1}, p_{1}n_{b}n_{1} = 6 m_{b}n_{b}n_{b}n_{1} = 6 m_{b}n_{b}n_{b}n_{1} = 6 m_{b}n_{b}n_{b}n_{1} = 6 m_{b}n_{b}n_{1} = 6 m_{b}n_{1} = 6$$

(cont. ex. 6)

Solução agral de $b_n-5b_{n-1}=5^n+4$: $b_n=c5^n+n5^n-1$, c-comolank.

Solução que verifica bo=0: bo=0 <=> c-1=0 <=> c=1.

 $b_n = 5^n + n 5^n - 1, n > 0$

Recorde-or que efetuamos a substitução $b_n = na_n$. $entado para <math>n \ge 1$, $a_n = \frac{b_n}{n}$, ou seja, $a_n = \frac{5-1}{n} + 5^n$ e $b_0 = 0$.