

12-B Status from UGC

Database Management System (BCSC–1003)

Topic: Armstrong Axioms (Inference Rules)

Mr.Prateek Kumar Soni

Assistant Professor, Dept. of CEA, GLA University, Mathura.

Armstrong Axioms (Inference Rule) in Functional Dependecy in DBMS

Introduction to Axioms Rules:

- Armstrong's Axioms is a set of rules.
- It provides a simple technique for reasoning about functional dependencies.
- William W. Armstrong developed it in 1974.
- It is used to infer all the functional dependencies on a relational database.

Armstrong Axioms (Inference Rule)

Armstrong Axioms can be classified as:

Armstrong Axioms (Inference Rule)

Consider a relation **STUDENT**

RNo	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CS	C2
4	В	60	EE	C3
5	С	80	IT	C2

Primary Rules

Rule 1. Reflexivity

- $\{A \rightarrow A\}$ and,
- If A is a set of attributes and B is a subset of A, then A holds B. $\{A \rightarrow B\}$. This is trivial property.

Example:

RNo \rightarrow RNo (\checkmark) (RNo, Name) \rightarrow Name (\checkmark)

Primary Rules

Rule 2. Augmentation

- If $A \rightarrow B$ holds and Y is attribute set, then $AY \rightarrow BY$ also holds.
- That means adding attributes in dependencies, does not change the basic dependencies.
- If $A \rightarrow B$, then $AC \rightarrow BC$ for any C.

Example:

```
If RNo \rightarrow Name (\checkmark)
then {RNo, Marks} \rightarrow {Name, Marks} (\checkmark)
```

Primary Rules

Rule 3. Transitivity

- If A holds B and B holds C, then A holds C.
- It means if $\{A \rightarrow B\}$ and $\{B \rightarrow C\}$, then $\{A \rightarrow C\}$.
- A holds B $\{A \rightarrow B\}$ means that A functionally determines B.

Example:

If Name \rightarrow Marks (\checkmark) and Marks \rightarrow Dept (\checkmark) then Name \rightarrow Dept (\checkmark)

Rule 1. Union

• If $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$, then $\{A \rightarrow BC\}$

Example:

If RNo \rightarrow Name (\checkmark) and RNo \rightarrow Marks (\checkmark) then RNo \rightarrow Name, Marks (\checkmark)

Rule 2. Decomposition or Splitting property

- If $\{A \rightarrow BC\}$ then $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$
- But if $AB \rightarrow C$ then we can't split the LHS as $A \rightarrow C$ and $B \rightarrow C$

Example:

If (RNo \rightarrow Name, Marks) (\checkmark)

Then (RNo \rightarrow Name) (\checkmark) and (RNo \rightarrow Marks) (\checkmark)

Rule 3. Pseudo Transitivity

• If $\{A \rightarrow B\}$ and $\{BC \rightarrow D\}$, then $\{AC \rightarrow D\}$

Example:

RNo \rightarrow Name (\checkmark) and (Name, Marks) \rightarrow Dept (\checkmark) then (RNo, Marks) \rightarrow Dept (\checkmark)

Rule 4. Composition

• If $X \to Y$ and $A \to B$ then $XA \to YB$

Example:

RNo \rightarrow Name (\checkmark) and Marks \rightarrow Dept (\checkmark) then (RNo, Marks) \rightarrow (Name, Dept) (\checkmark)

Question: Consider relation E = (P, Q, R, S, T, U) having set of following Functional Dependencies (FD).

$$P \rightarrow Q$$

$$P \rightarrow R$$

$$QR \rightarrow S$$

$$Q \rightarrow T$$

$$QR \rightarrow U$$

$$PR \rightarrow U$$

Calculate some members of Axioms are as follows:

- 1. $P \rightarrow T$
- 2. $PR \rightarrow S$
- 3. $QR \rightarrow SU$
- 4. $PR \rightarrow SU$

Solution:

1. $P \rightarrow T$

In the above FD set, $P \rightarrow Q$ and $Q \rightarrow T$

So, Using Transitive Rule: If $\{A \rightarrow B\}$ and $\{B \rightarrow C\}$, then $\{A \rightarrow C\}$

 \therefore If $P \to Q$ and $Q \to T$, then $P \to T$.

 $P \rightarrow T$

2. PR \rightarrow S

In the above FD set, $P \rightarrow Q$

As, $QR \rightarrow S$

So, Using Pseudo Transitivity Rule: If $\{A \rightarrow B\}$ and $\{BC \rightarrow D\}$, then $\{AC \rightarrow D\}$

 \therefore If P \rightarrow Q and QR \rightarrow S, then PR \rightarrow S.

 $PR \rightarrow S$

3. QR \rightarrow SU

In above FD set, QR \rightarrow S and QR \rightarrow U So, Using Union Rule: If{A \rightarrow B} and {A \rightarrow C}, then {A \rightarrow BC} \therefore If QR \rightarrow S and QR \rightarrow U, then QR \rightarrow SU. QR \rightarrow SU

4. PR \rightarrow SU

So, Using Union Rule: If $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$, then $\{A \rightarrow BC\}$

 \therefore If PR \rightarrow S and PR \rightarrow U, then PR \rightarrow SU.

 $PR \rightarrow SU$

References

- Korth, Silbertz and Sudarshan (1998), "Database Concepts", 4th Edition, TMH.
- Elmasri and Navathe (2010), "Fundamentals of Database Systems", 5th Edition, Addision Wesley.
- Date C J," An Introduction to Database Systems", 8th Edition, Addision Wesley.
- M. Tamer Oezsu, Patrick Valduriez (2011). "Principles of Distributed Database Systems", 2nd Edition, Prentice Hall.

Thank you