2022 KIER 학습조직: 에너지 + AI

Tree Models + AutoML

실습 코드: https://bit.ly/3PkGBHc

2022.07.14.

한국에너지기술연구원 계산과학연구실

이제현

2022 에너지+AI 학습 조직 : 총 9회 + α

1 JANUARY					2 FEBRUARY						3 M	3 MARCH						4 APRIL									
일	월	화	수	옥	급	토	일	일	화	수	목	금	토	일	웚	화	수	목	공	토	일	읠	화	수	목	금	토
						1	30	31	1	2	3	4	5	27	28	1	2	3	4	5						1	2
2	3	4	5	6	7	8	6	7	8	9	10	11	12	6	7	8	9	10	11	12	3	4	5	6	7	8	9
9	10	11	12	13	14	15	13	14	15	16	17	18	19	13	14	15	16	17	18	19	10	11	12	13	14	15	16
16	17	18	19	20	21	22	20	21	22	23	24	25	26	20	21	22	23	24	25	26	17	18	19	20	21	22	23
23	24	25	26	27	28	29	27	28						27	28	29	30	31			24	25	26	27	28	29	30
30	31																										
5 MAY					6 JI	JNE						7 JI	JLY						8 A	UGUST	·····						
일	웚	화	수	목	급	토	일	월	화	수	목	급	토	일	월	화	수	목	공	토	일	월	화	수	목	금	토
1	2	3	4	5	6	7				1	2	3	4						1	2		1	2	4	5	6	7
8	9	10	11	12	13	14	5	9	7	8	9	10	11	3	4	5	6	7	8	9	7	8	9	10	11	12	13
15	16	17	18	19	20	21	12	13	14	15	16	17	18	10	11	12	13	14	15	16	14	15	16	17	18	19	20
22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	22	23	24	25	26	27
29	30	31					26	27	28	29	30			24	25	26	27	28	29	30	28	29	30	31)
														31													,
9 S	9 SEPUTEMBER						10	10 OCTOBER						11 NOVEMBER						12 DECEMBER							
일	웚	화	수	목	급	氢	일	월	화	수	목	금	토	일	월	화	수	목	급	토	일	읠	화	수	목	금	토
				1	2	3							1			1	2	3	4	5					1	2	3
4	5	6	7	8	9	10	2	3	4	5	6	7	2	6	7	8	7	10	11	12	4	5	6	7	8	9	10
11	12	13	14	15	16	17	9	11	11	12	13	14	15	13	14	15	16	17	18	19	11	12	13	14	15	16	17
18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26	18	19	20	21	22	23	24
25	26	27	28	29	30)	23	24	25	26	27	28	29	27	28	29	30				25	26	27	28	29	30	
							30	31																			

머신 러닝 강좌

- base: Scikit-learn MOOC @inria
 - 머신 러닝 위주. 딥 러닝은 skip (기회가 되면 한번쯤은 다룰 수도..?)
 - 소스 코드 포함 강의 자료 : 원내 게시판 공개
 - ・ 강의 영상 : KIER-Tube & Youtube 공개

2차 모임 (5월)

Modeling pipeline

3차 모임 (6월)

Best Model?

4차 모임 (7월)

Hyperparameter

→ Tree Models

1차 모임 (4월)

머신러닝 기본 개념

5차 모임 (8월)

Linear Models

→ Hyperparameter

6차 모임 (8월)

Tree Models

→ Nonlinear Models

7차 모임 (9월)

Ensemble Models

8차 모임 (10월)

CV & metrics

→ Neural Network (?)

9차 모임 (11월)

마무리

머신 러닝 Machine Learning

선형 모델 Linear Model

트리 모델 Tree Model

신경망 모델 Neural Network

비선형성

설명력

속도

비용

X

 \cap

0

X

0

0

 \triangle

X

.

 \triangle

X

1. Decision Tree

• CART (Classification and Regression Tree)

Book

Classification And Regression Trees

By Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
Charles J. Stone

Edition 1st Edition

First Published 1984

eBook Published 25 October 2017

Pub. Location New York

Imprint Routledge

DOI <u>https://doi.org/10.1201/9781315139470</u>

Pages 368

eBook ISBN 9781315139470

Subjects Mathematics & Statistics

Entropy by Clausius

- 자연계의 변화에 존재하는 방향성을 설명하기 위해 도입 (1865)
 - "쓸데 없는 에너지" ~ "주어진 열이 일로 전환되기 어려운 정도"

카르노 기관 1 cycle
$$\frac{Q_H}{Q_L} = \frac{T_H}{T_L}$$
 \Rightarrow Clausius 부등식 $\oint \frac{\delta Q}{T} \le 0$ Rev. : = Irrev. : <

$$ightarrow$$
 경로 무관 상태 함수 $dS = \left(rac{\delta Q}{T}
ight)_{rev}$ = 엔트로피

Entropy by Boltzmann & Gibbs

• "어떤 계가 취할 수 있는 미시적인 상태의 수" = "무질서도" (1877)

열역학적 엔트로피

$$dS = \frac{dQ}{T}$$

에너지 보존법칙

$$dU = dQ + dW$$

: 이 둘을 합치면

$$dU = dQ + dW \qquad dU = TdS - pdV$$

$$dU = \left(\frac{\partial U}{\partial S}\right)_{V} dS - \left(\frac{\partial U}{\partial V}\right)_{S} dV$$

통계열역학적

$$S = k_B \ln \Omega$$

온도의 엔트로피 통계열역학적 정의

$$\frac{1}{T} = k_B \frac{d \ln \Omega}{dE}$$

$$\left(\frac{\partial S}{\partial U}\right)_V = \frac{1}{T}$$

$$S = -k_B \sum_{i} p_i \ln(p_i) \quad \begin{array}{l} i : \text{microstate} \\ p_i : \text{probability of } i \end{array}$$

$$i$$
: microstate p_i : probability of i

Information Entropy by Claude Shannon

- "각 메시지에 포함된 정보의 기댓값(평균)" (1948, "A mathematical theory of communication")
 - 경우의 수가 많다 = 확정적이지 않다 = 엔트로피가 높다
 - 추가 정보가 주어진다 = 불확실한 상태에서 벗어난다 = 엔트로피가 낮아진다.

동전을 2개 던진다 → 경우의 수는 4가지 → 엔트로피 S = 2

"확률이 낮을수록 정보의 가치는 높다" ex. 주사위 vs 동전: 1/6 vs 1/2

$$H = -\sum_{i} p_i \log_2(p_i) \qquad S = -k_B \sum_{i} p_i \ln(p_i)$$

스무고개: 반복적 정보 획득을 통해 엔트로피를 낮춰 가는 게임
→ 좋은 질문: 한 번에 엔트로피를 많이 낮출 수 있는 질문

Decision Tree

• 스무고개 놀이의 질문 찾기

• 펭귄 체중 예측 문제

pipeline with DecisionTreeRegressor

```
1 from sklearn.preprocessing import OneHotEncoder
2 from sklearn.preprocessing import StandardScaler
3 from sklearn.compose import ColumnTransformer
4 from sklearn.pipeline import Pipeline
5 from sklearn.tree import DecisionTreeRegressor
7 def get_model(cat_features=["species", "island", "sex"],
                num_features=["bill_length_mm", "bill_depth_mm", "flipper_length_mm"],
                **kwargs):
      # 1-1.categarical /feature에 one-hot encoding 적용
      cat_transformer = OneHotEncoder()
12
      # 1-2.numerical feature는 standard scaler 적용
      num_transformer = StandardScaler()
15
      # 2. 인자 종류별 전처리 적용
      preprocessor = ColumnTransformer([("cat", cat_transformer, cat_features),
18
                                      ("num", num_transformer, num_features)])
19
      # 3. 전체리 후 Decision Tree Regressor 적용
20
21
      pipeline = Pipeline(steps=[("preprocessor", preprocessor)
22
                                ("ml", DecisionTreeRegressor(**kwargs))
      return pipeline
```


• 배운 데이터는 완벽. 안 배운 데이터는 ..?

• 배운 데이터는 완벽. 안 배운 데이터는 ..?

scikit-learn Deci

• 이런 Tree가 만들어 졌습니다.

• 최대 18단계

scikit-learn

• 최대 깊이를 줄입니다:

• Trainset 성능은 저하, validation set 성능은 향상 > 둘이 가까워짐

• Trainset 성능은 조금 더 저하, validation set 성능은 조금 더 향상 → 둘이 조금 더 가까워짐

Overfitting 방지: Ensemble Tree

- Ensemble : 여러 model을 결합하여 과적합 방지 & 예측 성능 향상
 - Bagging : 학습 데이터를 중복을 허락해 랜덤하게 선택, 각각 모델을 취합 (voting, averaging)
 - Random Forest
 - Boosting : 하나의 model에서 시작, model을 추가하며 오차 감소
 - Gradient Boosting LightGBM, XGBoost

DT vs RF vs XGBoost

• 가변 모델 Pipeline 구축


```
Pipeline

preprocessor: ColumnTransformer

cat num

OneHotEncoder

XGBRegressor
```

```
1 from sklearn.ensemble import RandomForestRegressor
 2 from lightabm import LGBMRegressor
 3 from xgboost import XGBRegressor
 5 def get_model[method="dt",
                cat features=["species", "island", "sex"],
                num_features=["bill_length_mm", "bill_depth_mm", "flipper_length_mm"],
                **kwargs):
      # 1-1.categorical feature에 one-hot encoding 적용
      cat_transformer = OneHotEncoder()
11
      # 1-2.numerical feature는 standard scaler 적용
      num_transformer = StandardScaler()
14
      # 2. 인자 종류별 전처리 적용
15
16
      preprocessor = ColumnTransformer([("cat", cat_transformer, cat_features),
17
                                      ("num", num_transformer, num_features)])
18
      # 3. 전처리 후 입력된 방법론 적용
19
      if method == "dt":
20
          ml = ("ml", DecisionTreeRegressor(**kwargs))
21
      elif method == "rf":
23
          ml = ("ml", RandomForestRegressor(**kwargs))
24
      elif method == "lgbm":
25
          ml = ("ml", LGBMRegressor(**kwargs))
26
      elif method == "xgb":
          ml = ("ml", XGBRegressor(**kwargs))
27
28
      pipeline = Pipeline(steps=[("preprocessor", preprocessor),
29
30
                                 m \mid ]
31
32
      return pipeline
```

DT vs RF vs XGBoost

- 단일 모델 사용시보다 성능 향상, 과적합 방지
 - Hyperparameter tuning 성능 추가 향상 필요

Tree model 유의점: Extrapolation

Tree model 유의점: Scaling 불필요

Standard Scaler 적용 전

Standard Scaler 적용 후

AutoML: PyCaret

AutoML: PyCaret

• Step 1. setup

• Step 2. compare_models

) 1 bes	= compare_models()							
	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	II (Sec)
lass	Lasso Regression	247.5016	96188.5188	306.4862	0.8448	0.0757	0.0610	0.014
lr	Linear Regression	247.2969	96329.0867	306.7353	0.8445	0.0758	0.0610	0.757
lar	Least Angle Regression	247.2862	96326.7976	306.7316	0.8445	0.0758	0.0610	0.014
ridg	Ridge Regression	249.0347	97004.0398	307.6309	0.8438	0.0760	0.0614	0.012
br	Bayesian Ridge	248.8887	96936.6859	307.5623	0.8438	0.0760	0.0614	0.013
llar	Lasso Least Angle Regression	253.2021	98480.0116	310.0893	0.8422	0.0766	0.0625	0.014
hub	r Huber Regressor	247.8342	98608.8259	310.1308	0.8418	0.0767	0.0610	0.037
ada	AdaBoost Regressor	247.0875	101124.4603	313.4655	0.8382	0.0771	0.0609	0.067
lightg	m Light Gradient Boosting Machine	259.4533	105001.3610	321.7189	0.8330	0.0798	0.0639	0.054
rf	Random Forest Regressor	259.2117	107942.8235	326.1563	0.8276	0.0813	0.0641	0.409
gbı	Gradient Boosting Regressor	262.3502	110425.7252	329.1704	0.8227	0.0815	0.0644	0.050
et	Extra Trees Regressor	262.3006	113926.3309	334.8787	0.8187	0.0842	0.0653	0.390
en	Elastic Net	291.7242	139113.2867	366.8851	0.7760	0.0901	0.0715	0.014
knr	K Neighbors Regressor	296.6944	141985.5773	373.1102	0.7682	0.0908	0.0726	0.062
dt	Decision Tree Regressor	326.4620	165929.0936	404.3962	0.7365	0.1010	0.0802	0.015
om	Orthogonal Matching Pursuit	326.4182	171511.1888	408.0774	0.7244	0.1008	0.0803	0.012
pai	Passive Aggressive Regressor	654.4641	629168.3378	765.3411	-0.0147	0.1825	0.1688	0.013
dumi	Dummy Regressor	695.2393	681039.0562	821.8434	-0.0803	0.1925	0.1681	0.011

https://pycaret.gitbook.io/docs/

AutoML: PyCaret

• Step 3. Evaluate

