Index

а	average density 215, 248
absolute certainty 493	average gain 277
absolutely continuous	axioms 479
distributions 188–189	first 540-541
accidental irregularities 215	interpretations 544–547
accuracy 502	second 541–542
additive functions 63	third 543-544
additivity	
countable 551–556	b
continuity 559–562	Ballot problems 357–361
infinite partitions 100	barycentre 47-49, 79, 139, 442
adherent probabilities 108-109	Bayesian approach to estimation and
adhockeries 11,570	hypothesis testing 463-464
affine space 41, 42, 79	Bayes-Laplace scheme 276, 277, 379, 411,
agglutinated probabilities 556	412, 441, 442, 444–445
aggregate effect 429	Bayes's theorem 118, 119–120, 135, 425,
alternative hypothesis 464	427–428, 451–452
antihypothesis 117	Bernoulli distribution 242-243, 247,
antithesis 117	268-270
approximate measurements 526	Bernoulli processes 440
arbitrary subsets 484	Bernoulli scheme 125, 127
arc sine distribution 370	Bessel distribution 340, 341-342
arithmetic mean 48	beta distribution 413-414, 442
arithmetic sum 32, 34	bets 153-156
Ascoli's theorem 220	bimodal distributions 213
asserted propositions 33-34	binomial distribution 268–270, 286–288
assertion 33–34	standardized 289–296
associative means 47–49, 216	bit (binary digit) 88
asymmetry 216, 218	Bittering's apparatus 266
asymptotic certainty 364	Boolean algebra 8, 30
asymptotic normality 317–329	Boolean operations 56–57
asymptotic results 106	Boolean ring 32
autocorrelation function 396	Borel measure 8

Borel-Cantelli lemmas 223-224 concentration curve 214 Bose-Einstein statistics 408, 411, 412 concentration ratio 214 bounded random values 109 concepts in probability 3-4 bounded values 25 conditional events 483 bounded variance 306-307 conditional prevision see prevision, boundedness 206-207 conditional Brownian motion process 293, 316, 384 conditional probability see probability, conditional c confidence intervals 464 calculus of probability 475, 476 conglomerative property 121 Cantelli's inequality 147-148 nonconglomerability 232, 463 Cardinal Newman's principle 135 validity 151-152 Cauchy convergence 225-226 conjugate families 458, 462 Cauchy distribution 247, 298, 335, constituents 36-37 339, 419 contemplated propositions 33-34 centiles 217 continuity 111, 112 central limit theorem 286-303 continuous distributions 188 hyperspace interpretation 299-300 continuous spectra 526 proof 303-309 continuous time 311, 312 certainty 21-22, 421 convergence of random quantities 220 - 226absolute certainty 493 Cesàro sum 195 Borel-Cantelli lemmas 223-224 Cauchy convergence 225-226 chance, definition 17 chaos, order from 300-303 Kolmogorov law 226 characteristic functions method 236-241, mutual convergence 225-226 325 - 326quadratic mean 222 central limit theorem proof 303-309 strong convergence 222-223 examples 242-249 corollary 224 geometric representation 239-241 weak convergence 222 zero-one law 226 cheating 5 coefficient of proportionality 156 convergence coherence 62-64, 70, 72, 112, 562 strong convergence 279 weak convergence 279 conditions 72 coherent statements 8, 22 convex hull 44-45 convolutions 233, 235 coin tossing 50-51 comparison between different Copernican system 515 correlation 124-126, 396 approaches 475-481 noncorrelation 137-141 compensation 336-337 complementarity 478 correlation coefficient 138 countable additivity 551-556 verifiability 513, 518–522 complementary quantities 521 continuity 559-562 Cournot's principle 182, 279, 282 complementation 33, 84 complex random quantities 77 covariance 146 compound Poisson processes 314, 316, covariance matrix 405 323-329 Cramèr's theorem 250 compound probabilities, theorem of 115 cubic mean 48-49 proof 115-117 cumulative frequency curve 213-215

d	Cauchy distribution 247, 298, 335,
deciles 217	339, 419
decision theory 470-473	characteristic functions
decisions 64-70	method 236-241
definitions 65-66	examples 242–249
rigidity 66–67	geometric representation 239-241
degree of belief 154	convergence of random
density curve 214	quantities 220–226
density function 294-295	definition 188-193
dependence 432-437	discrete uniform distribution 276–277
Desiré André principle 268, 317, 348-349,	divisibility of distributions 249-250
352, 354–355, 385	equivalent formulation 203-212
Ballot problem 359	prevision viewed asymptotically 210
determinism 21, 183-186, 423	exponential distribution 246-247
deviations 139-140, 216	gamma distribution 246, 340-342
standardised deviation 140	Gaussian (normal) distribution 243, 248
device of imaginary observations 178-179	286–303, 444
diffusion process 265	higher dimensions 403-407
dimensions, higher see higher dimensions	hyperspace interpretation 299–300
Dirac function 528	standardized 289–296
Dirichlet integral 249	geometric distribution 243, 274
discrete distributions 188	hypergeometric distribution
discrete jumps 314	270–273, 370
discrete time 311–312	introduction 187–188
discrete uniform distribution 276-277	leptokurtic 218
disjoint sets 36	limits 219–220
dispersion, measures of 216, 217	logarithmic distribution 243, 342
dispositional property 183	negative binomial distribution 275
distance 219	normal (Gaussian) distribution 243, 248
distorting factors 532–538	286–303, 444
distribution function 56, 188, 202	higher dimensions 403–407
graphical representation 213–215	hyperspace interpretation 299–300
joint distribution function 226–227	standardized 289-296
practical study 212–218	normalized distribution 217–218,
descriptive properties 213	243–244
synthetic characteristics 215–218	Pascal distribution 273–276, 340, 342
distribution of mass 188	platykurtic 218
distributional knowledge 210–211	Poisson distribution 242–243, 247, 322,
distributions 47, 193–196	337–338
arc sine distribution 370	probability theory 196–203
Bernoulli distribution 242–243, 247,	quasi-stable distributions 339
268–270	semi-normal distribution 353
Bessel distribution 340, 341–342	stable 297–298
beta distribution 413–414, 442	random processes 334–342
bimodal 213	standardized distribution 243–244
binomial distribution 286–288	Student's distribution 419, 460
standardized 289–296	triangular distribution 245

distributions (conta)	probability of 83-89
two-dimensional 226-236	unrestricted 484–491
stochastic independence of random	event-sum 32
quantities 230–233	compatible events 85
uniform distribution 243, 244–245	incompatible events 84
unimodal 213	linear dependence 91–92
duality principle 349–350	exchangeability 434–435, 437–446, 449
dynamic framework 261	partial 435–436, 449, 457
dynamic framework 201	exchangeable processes 439
	exhaustivity 36
e	·
economics, applications of probability	linear dependence 92
theory 168	expenditure 478
elapsed fraction 342	experimental facts 282
ellipsoid of concentration 406, 407	expert opinion 163–165
ellipsoid of covariance 406, 407	exponential distribution 246–247, 462
ellipsoid of inertia 146, 406, 407	
ellipsoid of representation 146	f
empirical law of chance 182	fair evaluation 62
empty intersection 36	fair games 345
entropy 87–88	fairness 268
negative 88	false events 481
equally probable events 169–171, 173	FALSE value 25, 55
ergodic death of the universe 380–381	Feller principle 349–350
ergodic principle 380, 394	Fermi–Dirac statistics 408, 411
error, risk of 22	Fibonacci numbers 260
estimation	field of events 31
Bayesian approach 463-464	finite additivity 8, 100
interval estimates 464	finite partitions 551
point estimates 463	finite variances 438
other approaches 465–470	flexibility 493
maximum likelihood 468–470	<i>F</i> -measure 192–193, 197–199
evaluation of probabilities 153	frequency 95–96, 424
approaches 157–158	curves 214
losses 158–162	prevision 171–176
losses, applications of 163-168	'wisdom after the event' 176–179
bets and odds 153–156	functional dependence 82
considerations 179–183	fundamental theorem of probability 94–98
determinism and	canonical expression for random
indeterminism 183-186	quantities 97
frequencies and 'wisdom after the	frequency 95–96
event' 176–179	infinite number of events 98
partitions into equally probable	
events 169–171	g
prevision of a frequency 171–176	gambler's ruin 268, 317, 343, 344, 345–356
subsidiary criteria 168–169	game duration prevision 345–356
evaluation, fair 62	gamma distribution 246, 340–342,
events 5, 16, 481–484	458–459, 460
Cyclics J, 10, TO1-TOT	エ J∪─エJノ, エ∪∪

286–303, 444	hypothesis 117, 118, 425–426
	alternative hypothesis 464
higher dimensions 403–407	• =
hyperspace interpretation 299–300 standardized 289–296	null hypothesis 464 hypothesis testing 433
generating function 237	Bayesian approach 463–464
	• • •
generic coefficient of proportionality 156	other approaches 465–470 maximum likelihood 468–470
geometric distribution 243, 274	maximum likelinood 468–470
geometric mean 49	•
Goldbach conjecture 493	i
gradation curve 213–214	imaginary observations, device of 178–179
Grammar of Assent 135	implication 34–35
	impossibility 22
h	impossible events 488
harmonic mean 49	imprecise probabilities 567–569
Heads and Tails probability 126, 134, 221	imprecision 232
binomial distribution 286–288	incompatibility 35–36
standardized 289–296	incompatible events 84
laws of large numbers 277–286	linear dependence 91
normal (Gaussian) distribution	independence 432–437
standardized 289–296	independent events 37–41
Poisson version 318–319	independent increments 311
preliminary considerations 253–261	indeterminancy 563
prevision 265	indeterminism 424
random process 261–268	verifiability 513–518
standard deviation 265	induction, method of 257
heat equation 294	inductive reasoning 421–427
Heisenberg's Uncertainty Principle 527	basic formulation 427–432
higher dimensions 401-403	exchangeability 437–446
continuous case 411–415	independence and dependence 432-437
discrete case 407–411	inequalities 147–148
normal distribution 403-407	infinite dimensions 511–513
second-order characteristics 403-407	infinitely divisible distributions 312, 315
spherical symmetry 415-419	infinitesmal transformation 322
central projection 417–419	infinity, order of 328
distance from hyperplane to	information matrix 469
origin 416–417	intensity of processes 313, 328
distance from origin 415-416	intermediate truth-value 517
verifiability 509–513	interquartile ranges 218
Hilbert space 514, 522	intersectile ranges 218
histograms 215, 216	intersection 33
homogeneity 284–285	interval estimates 464
homogeneous chains 393	interval subdivisions 411
homogeneous processes 311, 312, 313	inversion formula 402
homogeneous translations 217	inversions of a trend 171
hypergeometric distribution	isotropy 298
270–273, 370	iterated logarithm, law of 281

j	linear independence 41, 43–45
joint distribution function 226–227	linear representations 41–47
<i>J–P</i> -measure 193, 202, 556–557	linear space 41
judgment by results 177	linear transformation 404
, 5	linearly contradictory conditions 491
k	location, measures of 216, 217
Kelvin method of images 356,	logarithmic distribution 243, 342
385, 387	logic 22
kernel of inertia 146	logic of uncertainty 59
Khintchin process 397	logical independence 497
Khintchin theorem 309, 388–389	linear dependence 92–93
kinetic theory of gases 298	stochastic independence 129
Kolmogorov axiom system 547	logical operations 30
Kolmogorov condition 282	logical plausibility 102–103
Kolmogorov law 226, 233	logical product 31, 44
kurtosis 216, 218	logical sum 31, 32, 34, 44
	logically dependent events 37–41
1	logically independent events 37–41
lack of memory property 274	logically possibility 22
language, problems of 17–18	logically semidependent events
uncertainty 21	38, 39
Laplace rule of succession 442	lotteries 51–53
large-number laws 277-286	
complement 308–309	m
large-sample theory 470	marginal balance 157
lattice structure 32	marginal indeterminism 424
law of the interated logarithm 281	Markov chains 393
Lebesgue measure 8, 106, 193, 557	Markov processes 393-396, 437
leptokurtic distribution 218	martingales 345
L'Hopital's rule 280	mathematical formulation of
Liapounov condition 307	probability 8–9
likelihood 119-120, 422, 458	mathematical statistics
maximum likelihood 468-470	Bayesian approach to estimation and
likelihood principle 135, 460-463	hypothesis testing 463–464
limit-frequencies 104	connection with decision
limit-results 106	theory 470–473
Lindeberg–Feller theorem 307	likelihood principle 460-463
Lindeberg-Lévy theorem 307	normal distribution 455-460
linear dependence 43-45, 80-83	other approaches to estimation and
in general 89–94	hypothesis testing 465–470
event-sum 91–92	maximum likelihood 468-470
exhaustivity 92	preliminaries 448–455
incompatibility 91	scope and limits 447–448
logical independence 92-93	sufficient statistics 460-463
nonobvious linear dependence	verifiability 547–562
93–94	mathematics of probability 2–3
partitions 90–91	maximal observations 525

maximum likelihood 468–470	0
Maxwell-Boltzmann statistics 408, 411	objective probabilities 3, 5, 8–9, 23
Maxwell's formula 416	objectivist (O) statements 6–7
Maxwell's kinetic theory of gases 298	objectivistic school of statistics 466,
mean average 456	467–468, 470
mean difference 218	observability 478, 481
mean standard deviation 139-140	odds 153–156
geometric interpretation 144	operational factor 498-502
mean value of a distribution 208	opinions 65
means 47-49	order of infinity 328
mean-square convergence 224	order out of chaos 300–303
measure space 477	orthant 402
measures 192–193	
median value 217	p
method of images 356, 385, 387	pairwise noncorrelation 138
methodological rigour 5–6	pairwise uncorrelated 138
metrics 404	paradoxes, so-called 373-382
modal value 217	partial exchangeability 435–436,
multiple-choice question results 166–167	449, 457
mutual convergence 225–226	partial knowledge 201–202
-	partitions 36–37, 485
n	equally probable events 169–171
negative binomial distribution 275	finite partitions 551
negative correlation 124	linear dependence 90-91
geometric interpretation 142, 144-145	stochastic independence in finite
negative entropy 88	partitions 126–127
Neyman's factorization theorem 462	Pascal distribution 273-276, 340, 342
nonconglomerability 232, 463	Pascal's triangle 266
noncorrelation 137-141	Pauli's exclusion principle 411
geometric interpretation 142, 144	peculiarity 434
order of 138	permanences 171
non-Euclidean geometry 515	persistent events 358
nonhereditary phenomena 395	Planck's constant 527
nonknowledge 10	platykurtic distribution 218
nonlinear dependence 80-83	point estimates 463
nonmodularity 515	Poisson approximation 293
non-negativity 8	Poisson distribution 242–243, 247, 322,
normal (Gaussian) distribution 218, 243,	337–338
248, 286–303, 444	Poisson processes 313–315, 319–323,
higher dimensions 403-407	414–415
hyperspace interpretation 299–300	compound Poisson processes 314, 316
standardized 289–296	323–329
normalized distributions 217-218,	Pólya's criterion 245
243-244	Pólya's urn scheme 410, 442–443
notation 55–57	positional value 217
prevision 77–78	positive correlation 124
null hypothesis 464	geometric interpretation 142, 144

possibility 22, 491–494, 538–540	prevision, conditional 113–114,
possible events 488	117–118
posterior weight 456	conglomerative property, validity
precise probabilities 569	of 151–152
precision 232, 502, 504	correlation 124–126
bounded 505, 508–509	definition 114-115
perfect 504–505, 508	frequencies 171–176
perfectable 506	geometric interpretation 141–148
unbounded 505, 508	given event 118–119
precision factor 502–509	likelihood 119–120
prediction 59–60, 83, 176, 427	noncorrelation 137-141
prevision 17, 59–64, 427, 480	probability conditional on a
art of prevision 62	partition 121–123
asymptotic 210	second order 139
continuity 112	stochastic dependence
criteria 74–75, 78–79	direct sense 129–130
decisions 64-70	indirect sense 130-131
definitions 65-66	information increase 131-132
rigidity 66–67	stochastic dependence and
definitions 59–61, 70–75	independence 123-126
prevision function (P) 70–75	stochastic independence
examples 78–80	conditional 132-137
fundamental theorem of	finite partitions 126–127
probability 94–98	meaning 127-129
game duration 345-356	theorem of combined probabilities
geometric interpretation 76–77	proof 115–117
Heads and Tails 265	zero probabilities, comparability
linear and nonlinear dependence 80-83	of 148–151
linear dependence in general 89-94	probability 22-23, 538-540, 570
event-sum 91–92	agglutinated probabilities 556
exhaustivity 92	as a distribution of mass 139
incompatibility 91	associative means 47–49
logical independence 92-93	calculus of probability 475, 476
nonobvious linear dependence	continuity 112
93–94	evaluation 153
partitions 90–91	approach 157–158
notation 77–78	approach through loses 158–162
probability of events 83–89	approach through loses, application
random quantities with infinite possible	of 163–168
values 108–112	bets and odds 153-156
utilities 64–70	considerations 179–183
alternative approach 68–70	determinism and
definitions 65–66	indeterminism 183-186
rigidity 66–67	frequencies and 'wisdom after the
scale 67–68	event' 176–179
zero probabilities 98–108	partitions into equally probable
logical plausibility 102–103	events 169–171

prevision of a frequency 1/1–1/6	conditional 132–137
subsidiary criteria 168–169	finite partitions 126–127
fundamental theorem 94-98	meaning 127-129
canonical expression for random	theorem of combined probabilities
quantities 97	proof 115–117
frequency 95–96	zero probabilities, comparability
infinite number of events 98	of 148–151
imprecise probabilities	probability distribution
567–569	distributional knowledge 210–21
linear representations 41–47	probability of events 83–89
means 47–49	probability ratio 155
notation 55–57	probability space 477
precise probabilities 569	Procrustean bed 197, 199
random quantities with infinite	projection-operator 514, 519
possible values 108–112	projective invariance 333
range of 23–24	proportionality, coefficient of 156
assertion 33–34	propositions 5
constituents 36-37	
examples 49–55	q
implication 34–35	quadratic mean 48–49
incompatibility 35–36	convergence 222, 224
independence 37-41	quadratic mean difference 218
logical dependence 37-41	qualitative formulations 562–570
partitions 36–37	axiomatic formulations 563-567
random events 24–27	imprecise probabilities 567–569
space of alternatives 27–30	practical approach 569-570
theory of probability 475, 476	quantum theory 522–528
zero probabilities 98–108	quartiles 217
logical plausibility 102–103	quasi-implication 534
probability, conditional 114,	quasi-stable distributions 339
117–118	
conglomerative property, validity	r
of 151–152	radius of gyration 139
correlation 124–126	Raikov's theorem 250
definition 114–115	random, definition 16
geometric interpretation 141–148	random entities 26
given event 118–119	random functions 27
likelihood 119–120	random gain 62–63
noncorrelation 137–141	random processes 27
on a partition 121–123	Heads and Tails 261–268
stochastic dependence	random processes with independent
direct sense 129-130	increments 311–317
indirect sense 130–131	asymptotic behaviour 342–345
information increase 131–132	asymptotic normality 317–329
stochastic dependence and	Ballot problems 357–373
independence 123–126	behaviour 342–345
stochastic independence	general case 317–329

random processes with independent	simultaneous decidability 529
increments (cont'd)	small-sample theory 470
prevision of game duration 345-356	small-scale behaviour 389
return to equilibrium 357–373	smoothing procedures 174, 215
ruin 345–356	space of alternatives 26, 27-30
so-called paradoxes 373-382	spectral function 397
stable distributions 334–342	spherical symmetry 415–419
strings 357–373	central projection 417-419
Wiener-Lévy process 329-334	distance from hyperplane to
properties 382–392	origin 416–417
random quantities 16, 25	distance from origin 415-416
canonical expression 97	sports results forecasting 165–166
convergence 220–226	spread, measures of 216, 217
infinite possible values 108–112	stability of distributions 297–298
stochastic independence 230-233	standard deviation 139–140, 456
convolutions 233, 235	geometric interpretation 144
random subdivisions 411-413, 414-415	Heads and Tails 265
random walk 261, 263, 264	standardised deviation 140
realism 173	standardised separation 140
reasonableness 556-559	standardized binomial
record breaking 171	distribution 289-296
rectangular prism 401	standardized distribution 243-244
recurrent sequences 357	standardized normal (Gaussian)
reflection principle 268	distribution 289-296
regularity 376	stability 297–298
Reichenbach formulation 516, 517,	table of values 295–296
529–530	state of information 378
relative functional 47	static indeterminism 424
return to equilibrium 357–361	stationary processes 394, 396–399
returning to equilibrium 345	statistical distribution 394
reversal principle 349–350	statistical induction 429
Riemann integral 191, 193, 195	statistical inference 424, 429
Riemann–Stieltjes integral 191, 209, 238	Stiefel's identity 266
rigidity 66–67	Stieltjes intergral 193
risk of error 22	Stirling's formula 292
rotational symmetry 297	stochastic dependence 123–126
ruin problems and probability 345–356	direct sense 129–130
	indirect sense 130–131
S	information increase 131–132
scalar products 142, 404	stochastic independence 40, 82,
scheme of decisions 72	123–126, 478
second-order previsions 139	conditional 132–137
semi-normal distribution 353	finite partitions 126–127
separations 139–140, 216	Maxwell's kinetic theory of gases 298
metric 142	meaning 127–129
standardised separation 140	random quantities 230–233
sequences of random quantities 220	convolutions 233, 235

stochastic, definition 16–17	transient events 358
strings 357-361, 373-374, 377-378	transition probabilities 393
strong formulation of probability	translations 217
distributions 197-199	transpose 404–405
strong law of large numbers 279–280	trends, inversions 171
Student's distribution 419, 460	triangular distribution 245
subdivisions 53	true events 481
subjective probabilities 3, 5, 8–9, 23	TRUE value 25, 55
subjectivist (S) statements 6–7	truncations 56
sufficient statistic 47, 460-463	twinned distributions 241
survey 251–253	two-dimensional distributions 226-236
central limit theorem 286–303	stochastic independence of random
hyperspace interpretation 299–300	quantities 230–233
proof 303–309	convolutions 233, 235
Heads and Tails	
preliminary considerations 253–261	u
random process 261–268	ultrafilters 555
laws of large numbers 277–286	unbounded random values 110-111
complement 308–309	uncertain events 481
particular distributions 268–277	uncertainty 21–22
Bernoulli distribution 268–270	prevision 59–64
discrete uniform distribution 276-277	unfair games 346–347
geometric distribution 274	uniform distribution 243, 244-245
hypergeometric distribution 270-273	unimodal distributions 213
negative binomial distribution 275	union 33
Pascal distribution 273-276	utilities 64–70
suspicious cases 433	alternative approach 68-70
symmetry 169	definitions 65-66
synthetic characteristics of	rigidity 66–67
distributions 215–218	scale 67–68
t	V
tailor-made functions 47	variance 139, 456
tautology 21, 40	variance–covariance matrix 469
Tchebychev's inequality 147, 269, 278,	Vendermonde determinant 490
295, 316	Venn diagrams 33, 35, 89
terminology 16–17	verifiability
theorem of compound probabilities 115	complementarity 518–522
proof 115–117	distorting factors 532–538
theory of probability 475, 476	higher dimensions 509–513
thesis/antithesis 117	indeterminism 513–518
three-valued logic 529–532	mathematical aspects 547–562
time	operational factor 498–502
continuous 311, 312	precision factor 502–509
discrete 311–312	time factor 494–498
time factor 497–498	von Neumann formulation 514,
transfinite induction 541	529–530, 532

weak formulation of probability distributions 197-199 weak law of large numbers 279 weight 456 posterior weight 456 well-determined quantities 25 Wiener-Lévy process 293, 314, 315, 316, 317 - 319, 329 - 334, 348properties 382-392 standardized 330 'wisdom after the event' 176-179

YES/NO/MAYBE answers 500-501, 506-507, 535 z zero probabilities 98-108, 477-478 comparability 148-151 logical plausibility 102–103 verifiability 548-551 zero-one law 226

Zweckmässig 47