核方法 Kernel Method

吳漢銘 國立政治大學 統計學系

本章大綱

- Kernel Methods, Kernel Trick
- Kernel Data and Its Properties
- PCA/SIR in the Euclidean Space
- Kernel PCA, Kernel SIR in a Non-linear Feature Space
- Relations Towards Other Methods
- KSIR for Nonlinear Dimensional Reduction
- Experiments on Classification

核方法 (Kernel Methods)

- Aronszajn (1950) and Parzen (1962) first to employ *kernel methods* in statistics.
- Aizerman et al. (1964) used *positive definite kernels* which was closer to "*kernel trick*", they argue that a *positive definite kernel* is identical to a *dot product* in the feature space.
- Boser et al (1992), to construct *SVMs*, a generalization of the so-called optimal hyperplane algorithm.

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2} x_1 x_2, x_2^2)$$

- Scholkopf et al (1998) point out that kernels can be used to construct generalization of any algorithm that can be carried out in terms of *dot products*.
- For last 20 years, there have seen a large number of *kernelization* of various algorithms. (PCA, LDA, CCA, PLS,...)

Prepare Kernel Data

Raw Data $\mathbf{X}_{n \times p} = {\{\mathbf{x}_i, i = 1, \dots, n\}, \mathbf{x}_i \in \mathbb{R}^p}$.

Kernel transformation: $\mathbf{x}_i \to \phi(\mathbf{x}_i) := k(\mathbf{x}_i, \cdot).$

Kernel Data: $\{\phi(\mathbf{x}_i), i = 1, \dots, n\}, \phi(\cdot) \in \mathcal{H}_k$.

理論上

Kernel Data $\mathbf{K}_{n\times n} = \{k_{ij} : k(\mathbf{x}_i, \mathbf{x}_j), i, j = 1, \dots, n\}.$

	Data	V1	V2	V3	V4	•••	vP	
	×01	-0.48	-0.42	0.87	0.92		-0.18	
	×02	-0.39	-0.58	1.08	1.21		-0.33	\mathbf{O}
	×03	0.87	0.25	-0.17	0.18		-0.44	/
	×04	1.57	1.03	1.22	0.31		-0.49	•
	×05	-1.15	-0.86	1.21	1.62		0.16	
	×06	0.04	-0.12	0.31	0.16		-0.06	
	×07	2.95	0.45	-0.40	-0.66		-0.38	A ()
W Z	×08	-1.22	-0.74	1.34	1.50		0.29	$\Phi(\mathbf{x}_i)$
X;	×09	-0.73	-1.00	-0.79	-0.02		0.44	$\Psi(\Lambda_i)$
ı	×10	-0.58	-0.40	0.13	0.58		0.02	
	x11	-0.50	-0.42	0.66	1.05		0.06	
	×12	-0.86	-0.29	0.42	0.46		0.10	
-	x13	-0.16	0.29	0.17	-0.28		-0.55	
7	×14	-0.36	-0.03	-0.03	-0.08		-0.25	$\mathbf{\Phi}(\mathbf{v})$
⊾į '	×15	-0.72	-0.85	0.54	1.04		0.24	$\Phi(\mathbf{x}_i)$
J	x16	-0.78	-0.52	0.26	0.20		0.48	$\setminus J'$
	×17	0.60	-0.55	0.41	0.45		-0.66	
	:							
								i

- Linear: $k(x,y) = \langle x,y \rangle$
- Polynomial: $k(x,y) = (\text{scale} \cdot \langle x,y \rangle + \text{offset})^{\text{degree}}$
- Gaussian Radial Basis Function: $k(x,y) = \exp\{-\operatorname{scale} \cdot ||x-y||^2\}$

Data Representation

Data are not represented individually anymore, but only through a set of pairwise comparisons.

A real-valued comparison function $k: \mathcal{X} \times \mathcal{X} \to R$ is used, and data set $\mathbf{X}_{[n \times p]}$ is represented by the $n \times n$ matrix of pairwise comparisons $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$.

- The representation as a square matrix does not depend on the nature of the objects to be analyzed.
- The size of the matrix used to represent a dataset of n objects is always n by n.

Definition: a function $k: \mathcal{X} \times \mathcal{X} \to R$ is called a **positive definite kernel** iff it is symmetric, that is, $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$ for any two objects $\mathbf{x}_i, \mathbf{x}_j$ in \mathcal{X} , and **positive definite**, that is, $\sum_{i=1}^n \sum_{j=1}^n c_i c_j k(\mathbf{x}_i, \mathbf{x}_j) \geq 0$ for any n > 0, any choice of n objects $\mathbf{x}_1, \dots, \mathbf{x}_n$ in \mathcal{X} , and any choice of real numbers c_1, \dots, c_n in R.

Kernel as Inner Product

The inner product between vectors is the first kernel we encounter. (called **linear kernel**).

$$\mathcal{X} = R^p \text{ object } \mathbf{x}_i = (x_{i1}, \cdots, x_{ip})^t.$$

symmetric and positive definite

One is tempted to compare such vectors using their inner product:

for any
$$\mathbf{x}_i, \mathbf{x}_j \in R^p$$
, $k_L(\mathbf{x}_i, \mathbf{x}_j) := \mathbf{x}_i^T \mathbf{x}_j = \sum_{t=1}^p x_{it} x_{jt}$.

Represent objects $\mathbf{x} \in \mathcal{X}$ as a vector $\phi(\mathbf{x}) \in \mathbb{R}^p$,

defining a kernel for any $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$ by $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$.

Theorem: for any kernel k on a space \mathcal{X} , there exists a Hilbert space \mathcal{F} and a mapping $\phi : \mathcal{X} \to \mathcal{F}$ such that $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$, for any $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$, where $\langle u, v \rangle$ represents the dot product in the Hilbert space between any two points $u, v \in \mathcal{F}$. (Aronszajn 1950)

Kernels can all be thought of as dot products in feature space \mathcal{F} .

The point $\mathbf{x} \in \mathcal{X}$ are viewed as point $\phi(\mathbf{x})$ in \mathcal{F} .

A Hilbert space is a vector space endowed with a dot product that is complete for the norm induced.R^p with the classical inner product is an example of a finite-dimensional Hilbert space.

David Hilbert (01/23/1862 – 02/14/1943)

Reproducing Kernel Hilbert Space

Linear kernel and their associated functional space:

Let k be a kernel on a space \mathcal{X} , to show k is associated with a set of real-valued functions on \mathcal{X} , $\mathcal{H}_k \subset \{f : \mathcal{X} \to R\}$, endowed with a structure of Hilbert space.

$$\mathcal{X} = R^p$$
 the functional space is $f \colon R^p \to R$ the associated norm is
$$\mathcal{H}_k = \{ f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}, \mathbf{w} \in R^p \} \qquad \| f \|_{\mathcal{H}_k} = \| \mathbf{w} \| \text{ for } f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}.$$

The set \mathcal{H}_k is defined as the set of function $f: \mathcal{X} \to R$ of the form $f(\mathbf{x}) = \sum_{i=1}^n \alpha_i k(\mathbf{x}_i, \mathbf{x})$, for n > 0, a finite number of points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}$, and \mathbf{w} finite number of weights $\alpha_1, \dots, \alpha_n \in R$, together with their limits under the norm $\|f\|_{\mathcal{H}_k}^2 := \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j)$.

 \mathcal{H}_k is a Hilbert space, with a dot product defined for two elements $f(\mathbf{x}) = \sum_{i=1}^n \alpha_i k(\mathbf{x}_i, \mathbf{x})$ and $g(\mathbf{x}) = \sum_{j=1}^m \alpha'_j k(\mathbf{x}'_j, \mathbf{x})$ by $\langle f, g \rangle = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \alpha'_j k(\mathbf{x}_i, \mathbf{x}'_j)$.

The value $f(\mathbf{x})$ of a function $f \in \mathcal{H}_k$ at a point $\mathbf{x} \in \mathcal{X}$ can be expressed as a dot product in \mathcal{H}_k , $f(\mathbf{x}) = \langle f, k(\mathbf{x}, \cdot) \rangle$.

taking $f(\cdot) = k(\mathbf{x}, \cdot)$: the reproducing property valid for any $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$: $k(\mathbf{x}_i, \mathbf{x}_j) = \langle k(\mathbf{x}_i, \cdot), k(\mathbf{x}_j, \cdot) \rangle.$

The functional space \mathcal{H}_k is usually called the reproducing kernel Hilbert space (RKHS) associated with k.

Kernel Trick

The Hilbert space \mathcal{H}_k is one possible feature space associated with the kernel k, when we consider the mapping $\phi: \mathcal{X} \to \mathcal{H}$ defined by $\phi(\mathbf{x}) := k(\mathbf{x}, \cdot)$.

- The *kernel Trick* was first published in the 1964 paper *Theoretical foundations* of the potential function method in pattern recognition learning.
- Any algorithm for vectorial data that can be expressed only in terms of *dot products* between vectors can be performed implicitly in the feature space associated with any kernel, by replacing each dot product by a kernel evaluation.
- It is a very convenient trick to transform *linear* methods, such as LDA or PCA into *nonlinear* methods, by simply replacing the classic dot product by a more general kernel.
- The kernel trick transforms any algorithm that solely dependents on the dot product between two vectors. Wherever a dot product is used, it is replaced with the kernel function.
- The non-linear algorithm is the linear algorithm operating in the *feature space*.
- **Kernelization**: the operation that transforms a linear algorithm into a more general kernel method. $k(x,x') = \langle \Phi(x), \Phi(x') \rangle$

https://hmwu.idv.tw

Kernel Data: Properties

- Raw data on Euclidean space R^p
 - \bullet Kernel data on a RKHS H_k
- Via a specific statistical notion of classical approach on R^p
 - \diamond Kernel approach on H_k , which is exactly the classical procedure on kernel data.
- **Main goal**: Parallel to the classical multivariate statistical analysis, we aim to develop an analysis tool in the Gaussian reproducing kernel Hilbert space.
- Main advantage: Nonparametric approach with "parametric-plus" computing load.

parametric: classical multivariate analysis procedures. plus: kernel data preparation.

- Kernel map can bring the data distribution to better elliptical symmetry. Kernel data are (with empirical and theoretical justification)
 - Better elliptically symmetrically distributed.
 - Better approximately normal (Gaussian)

Soluti

Example: Better Elliptical

Symmetry

 Kernel map can bring the data distribution to better elliptical symmetry.

A random sample **X** of size 200 consisting of $\{\mathbf{x}_i = (x_{i1}, \dots, x_{i5}), i = 1, \dots, 200\},$ where $x_{i1}, x_{i3}, x_{i4}, x_{i5} \sim \text{uniform}(0, 2\pi),$ and $x_{i2} = \sin(x_{i1}) + \epsilon_i,$ $\epsilon_i \sim N(0, \sigma^2)$ with $\sigma = 0.4$.

- Using Gaussian kernel with scale=0.05.
- The raw data is scaled to have unit variance of each column before transformation

Kernel data Scatterplot

Example: Normal Probability Plot 11/34

Example: Justification of Gaussianity

Empirical Justification of Gaussianity:

Kolmogorov-Smirnov Test: H₀: The data follow a normal distribution

Prepare Your Data to Do the Above Empirical Justification

Theoretical Justification of Gaussianity

Kernel data $\{\sqrt{\sigma_n^p}\Gamma_j\}_{j=1}^n$ projected along the random direction h

$$\sqrt{\sigma_n^p}\langle h, \Gamma_1 \rangle_{\mathcal{H}_n}, \cdots, \sqrt{\sigma_n^p}\langle h, \Gamma_n \rangle_{\mathcal{H}_n}.$$

Let $\theta_n(h)$ be the empirical distribution of this sequence, assigning probability mass n^{-1} to each $\sqrt{\sigma_n^p}\langle h, \Gamma_i \rangle_{\mathcal{H}_n}$.

Theorem Under some conditions, as $n \to \infty$, the empirical distribution $\theta_n(h)$ converges weakly to $N(0,\tau^2)$ in probability.

For details:

Huang, S.Y., Hwang, C. R. and Lin, M.H. Kernel Fisher's Discriminant Analysis in Gaussian Reproducing Kernel Hilbert Space.

PCA in the Euclidean Space

Centered Observations: column vectors $x_i \in \mathbb{R}^N, i = 1, \dots, m$ (Centered meaning: $\sum_{i=1}^{m} x_i = 0$)

PCA finds the principal axes by diagonalizing the covariance matrix

$$C = \frac{1}{m} \sum_{j=1}^{m} x_j x_j^\mathsf{T}$$

Note that C is positive definite, and thus can be diagonalized with nonnegative eigenvalues.

$$\lambda \boldsymbol{v} = C \boldsymbol{v}$$

$$C\mathbf{v} = \frac{1}{m} \sum_{j=1}^{m} x_j x_j^\mathsf{T} \mathbf{v} = \lambda \mathbf{v}$$

$$\mathbf{v} = \frac{1}{m\lambda} \sum_{j=1}^{m} x_j x_j^{\mathsf{T}} \mathbf{v}$$

$$= \frac{1}{m\lambda} \sum_{j=1}^{m} (x_j \cdot \mathbf{v}) x_j \qquad (x_j \cdot \mathbf{v}) \text{ is just a scalar}$$

$$= \frac{1}{m\lambda} \sum_{j=1}^{m} (x_j \cdot \boldsymbol{v}) x_j$$

Show that $(\boldsymbol{x}\boldsymbol{x}^T)\boldsymbol{v} = (\boldsymbol{x}\cdot\boldsymbol{v})\boldsymbol{x}$

$$(x_j \cdot \boldsymbol{v})$$
 is just a scalar

$$\mathbf{v} = \sum_{i=1}^{m} \alpha_i x_i$$

Kernel PCA

$$\Phi: \mathcal{X} \to \mathcal{H}, \mathbf{x} \mapsto \Phi(\mathbf{x})$$

$$\sum_{k=1}^{m} \Phi(x_k) = 0$$

$$\bar{C} = \frac{1}{M} \sum_{j=1}^{M} \Phi(\mathbf{x}_j) \Phi(\mathbf{x}_j)^{\mathsf{T}},$$

$$\lambda V = CV$$

$$\lambda(\Phi(\mathbf{x}_k)\cdot\mathbf{V}) = (\Phi(\mathbf{x}_k)\cdot\bar{C}\mathbf{V})$$

$$\mathbf{V} = \sum_{i=1}^{M} \alpha_i \Phi(\mathbf{x}_i).$$

$$\lambda \sum_{i=1}^{M} \alpha_i (\Phi(\mathbf{x}_k) \cdot \Phi(\mathbf{x}_i)) =$$

$$\bar{C} = \frac{1}{M} \sum_{j=1}^{M} \Phi(\mathbf{x}_j) \Phi(\mathbf{x}_j)^{\mathsf{T}}, \qquad \frac{1}{M} \sum_{i=1}^{M} \alpha_i (\Phi(\mathbf{x}_k) \cdot \sum_{j=1}^{M} \Phi(\mathbf{x}_j)) (\Phi(\mathbf{x}_j) \cdot \Phi(\mathbf{x}_i))$$

$$K_{ij} := (\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)),$$

$$M\lambda K\alpha = K^2\alpha,$$

$$M\lambda\alpha = K\alpha$$

$$(\mathbf{V}^k \cdot \Phi(\mathbf{x})) = \sum_{i=1}^M \alpha_i^k (\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}))$$

15/34

Kernel PCA: kpca {kernlab}

kernlab: Kernel-Based Machine Learning Lab

```
> library(kernlab)
                                                                         rbfdot (Radial Basis kernel function)
> rbf <- rbfdot(sigma = 0.05) #Radial Basis kernel function
                                                                         polydot (Polynomial kernel function
> rbf
                                                                         vanilladot (Linear kernel function)
Gaussian Radial Basis kernel function.
                                                                         tanhdot (Hyperbolic tangent kernel function)
Hyperparameter : sigma = 0.05
> KX <- kernelMatrix(kernel=rbf, x=as.matrix(iris[,1:4])) # calculate kernel matrix
> dim(KX)
[1] 150 150
```

```
test <- sample(1:150, 20)
iris.kpca <- kpca(~., data=iris[-test, -5], kernel="rbfdot", kpar=list(sigma=0.2),</pre>
features=2)
# print the principal component vectors
pcv(iris.kpca)
# plot the data projection on the components
plot(rotated(iris.kpca), col=as.integer(iris[-test, 5]),
     xlab="1st Principal Component",
     ylab="2nd Principal Component",
     main="KPCA for iris data")
# embed remaining points
emb <- predict(iris.kpca, as.matrix(iris[test, -5]))</pre>
points(emb, col=iris[test, 5], pch=17, cex=1.5, asp=1)
```

KPCA for iris data

SIR in the Euclidean Space

Li (1991) introduced the following model

```
y = f(\beta_1' \mathbf{x}, \dots, \beta_K' \mathbf{x}, \epsilon). Li, K. C. (1991). Sliced inverse regression for dimensional reduction (with discussion). JASA 86, 316-342. y is a univariate variable. \mathbf{x} is a random vector with dimension p \times 1, p \geq K. \beta's are vectors with dimension p \times 1. \epsilon is a random variable independent of \mathbf{x}. \epsilon is an arbitrary function.
```

- The β 's are referred to effective dimension reduction (e.d.r.) or projection directions.
- Sliced inverse regression (SIR) is a method for estimating the e.d.r. directions based on y and \mathbf{x} .

SIR: Algorithm

Sample Mean

$$ar{\mathbf{x}} = rac{\sum_{i=1}^{N} \mathbf{x}_i}{N}$$

Sliced Mean

$$\bar{\mathbf{x}}_h = n_h^{-1} \sum_{(i) \in \text{slice}_h} \mathbf{x}_{(i)}$$

$$\hat{\Sigma}_X = \sum_{i=1}^N N^{-1} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Weighted Covariance

Matrix for the Slice Means

$$\hat{\Sigma}_W = \sum_{h=1}^H \frac{n_h}{N} (\bar{\mathbf{x}}_h - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_h - \bar{\mathbf{x}})^T$$

 $SIR_1 SIR_2 \cdots SIR_K$

$$\begin{bmatrix} \begin{smallmatrix} y \\ 10 \\ 13 \\ 9 \\ 17 \\ 11 \end{bmatrix} \begin{vmatrix} \hat{\beta}_1 \mathbf{x}_1 \\ \hat{\beta}_1 \mathbf{x}_2 \\ \hat{\beta}_2 \mathbf{x}_2 \\ \vdots \end{vmatrix} \cdots \begin{vmatrix} \hat{\beta}_K \mathbf{x}_1 \\ \hat{\beta}_K \mathbf{x}_2 \\ \vdots \\ \hat{\beta}_K \mathbf{x}_2 \end{vmatrix} \cdots \begin{vmatrix} \hat{\beta}_K \mathbf{x}_1 \\ \hat{\beta}_K \mathbf{x}_2 \\ \vdots \\ \hat{\beta}_K \mathbf{x}_N \end{vmatrix}$$

SIR: Theorem

Linear Design Condition (L.D.C.)

For any b in \mathbb{R}^p ,

the conditional expectation $E(b'\mathbf{x}|\beta_1'\mathbf{x},\cdots,\beta_K'\mathbf{x})$ is linear in $\beta_1'\mathbf{x},\cdots,\beta_K'\mathbf{x}$;

That is, for some constants c_0, c_1, \dots, c_k , $E(b'\mathbf{x}|\beta_1'\mathbf{x}, \dots, \beta_K'\mathbf{x}) = c_0 + c_1\beta_1'\mathbf{x} + \dots + c_k\beta_K'\mathbf{x}.$

THEOREM:

under regular conditions, the centered inverse regression curve $E[\mathbf{x}|y] - E[\mathbf{x}]$ is contained in the linear subspace spanned by $\beta_k \Sigma_{\mathbf{X}}$ $(k = 1, \dots, K)$.

COROLLARY 3.1 (Li, 1991)

Assume that \mathbf{x} has been standardized to \mathbf{z} . Then under the model and (3.1), the standardized inverse regression curve $E(\mathbf{z}|y)$ is contained in the linear space generated by the standardized e.d.r. directions $\theta_1 \ \theta_2 \ \cdots \ \theta_K$

The SIR directions $\mathbf{v_i}$ falls into the e.d.r space.

Kernel SIR in a Non-linear Feature Space

Kernel SIR: Kernelize the SIR algorithm

 \triangleright first map the data nonlinearity in to a feature space \mathcal{F} by

$$\phi: \mathbb{R}^p \to \mathcal{F}, \mathbf{x} \mapsto \phi(\mathbf{x})$$

- ▶ We will show that even if \mathcal{F} has arbitrarily large dimensionality, for certain choices of ϕ , we can still perform SIR in \mathcal{F} .
- Assume for the moment that our data mapped into feature space, $\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)$, is centered, i.e. $\sum_{i=0}^n \phi(\mathbf{x}_i) = 0$.

KSIR: Algorithm

We have to find eigenvalues $\lambda \geq 0$ and eigenvectors $\boldsymbol{\beta} \in \mathcal{F} \setminus \{0\}$ satisfying $\Sigma_{\mathbf{wz}} \boldsymbol{\beta} = \lambda \Sigma_{\mathbf{zz}} \boldsymbol{\beta}$.

$$\Sigma_{\mathbf{z}\mathbf{z}} = \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^{T}.$$

$$p_h = \frac{\sum_{i=1}^{n} \delta_h(y_i)}{n} = \frac{n_h}{n}, \ \delta_h(y_i) = 1, \ \text{if } y_i \in I_h, \ \delta_h(y_i) = 0, \ \text{o.w.}$$

$$\Sigma_{\mathbf{w}\mathbf{z}} = \sum_{h=1}^{H} p_h \bar{\phi}(\mathbf{m}_h) \bar{\phi}(\mathbf{m}_h)^{T}.$$

$$\bar{\phi}(\mathbf{m}_h) = \frac{1}{np_h} \sum_{i=1}^{n} \phi(\mathbf{x}_i) \delta_h(y_i)$$

All solutions $\boldsymbol{\beta}$ lie in span $\{\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)\}.$

- The equivalent system $\lambda \langle \phi(\mathbf{x}_k), \Sigma_{\mathbf{z}\mathbf{z}} \boldsymbol{\beta} \rangle = \langle \phi(\mathbf{x}_k), \Sigma_{\mathbf{w}\mathbf{z}} \boldsymbol{\beta} \rangle$, for all $k = 1, \dots, n$.
- ▶ there exists $\alpha_1, \dots, \alpha_n$ such that $\beta = \sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i)$.

Define
$$\mathbf{K} := \{\mathbf{k}_{ij} = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle\}_{n \times n}$$
.

KSIR (conti.)

The equivalent system $\lambda \langle \phi(\mathbf{x}_k), \Sigma_{\mathbf{z}\mathbf{z}} \boldsymbol{\beta} \rangle = \langle \phi(\mathbf{x}_k), \Sigma_{\mathbf{w}\mathbf{z}} \boldsymbol{\beta} \rangle$, for all $k = 1, \dots, n$.

$$\lambda \langle \phi(\mathbf{x}_k), \Sigma_{\mathbf{z}\mathbf{z}} \boldsymbol{\beta} \rangle = \lambda \langle \phi(\mathbf{x}_k), \{ \frac{1}{n} \sum_{j=1}^n \phi(\mathbf{x}_j) \phi(\mathbf{x}_j)^T \} \{ \sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i) \} \rangle$$

$$= \lambda \frac{1}{n} \sum_{i=1}^n \alpha_i \langle \phi(\mathbf{x}_k), \sum_{j=1}^n \phi(\mathbf{x}_j) \rangle \langle \phi(\mathbf{x}_j), \phi(\mathbf{x}_i) \rangle$$

$$= \lambda \frac{1}{n} \sum_{i=1}^n \alpha_i \sum_{j=1}^n K_{kj} K_{ji}, \ \forall k = 1, \dots, n$$

$$\Rightarrow \lambda \frac{1}{n} \mathbf{K} \mathbf{K}^T \boldsymbol{\alpha}$$

KSIR (conti.)

$$\langle \phi(\mathbf{x}_k), \Sigma_{\mathbf{wz}} \boldsymbol{\beta} \rangle$$

$$= \langle \phi(\mathbf{x}_k), \{ \sum_{h=1}^H p_h \bar{\phi}(\mathbf{m}_h) \bar{\phi}(\mathbf{m}_h)^T \} \{ \sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i) \} \rangle$$

$$= \sum_{i=1}^{n} \alpha_i \langle \phi(\mathbf{x}_k), \sum_{h=1}^{H} p_h \bar{\phi}(\mathbf{m}_h) \rangle \langle \bar{\phi}(\mathbf{m}_h), \phi(\mathbf{x}_i) \rangle$$

$$= \sum_{i=1}^{n} \alpha_i \sum_{h=1}^{H} \frac{\sum_{j=1}^{n} \mathbf{K}_{kj} \delta_h(y_j)}{n} \frac{\sum_{j=1}^{n} \mathbf{K}_{ji} \delta_h(y_j)}{\sum_{j=1}^{n} \delta_h(y_j)}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \alpha_{i} \sum_{h=1}^{H} \frac{\sum_{j=1}^{n} \mathbf{K}_{kj} \delta_{h}(y_{j})}{\sqrt{\sum_{j=1}^{n} \delta_{h}(y_{j})}} \frac{\sum_{j=1}^{n} \mathbf{K}_{ji} \delta_{h}(y_{j})}{\sqrt{\sum_{j=1}^{n} \delta_{h}(y_{j})}}, \ \forall k = 1, \dots, n$$

$$\Rightarrow \frac{1}{n}\mathbf{K}\mathbf{E}_{H}\mathbf{K}\boldsymbol{\alpha}$$

$$\mathbf{E}_H = \sum_{h=1}^H \frac{\mathbf{1}_h \mathbf{1}_h^t}{n_h}, \quad \mathbf{1}_h = [\delta_h(y_1) \cdots \delta_h(y_n)]^t.$$

$$\Sigma_{\mathbf{wz}}\boldsymbol{\beta} = \lambda \Sigma_{\mathbf{zz}}\boldsymbol{\beta} \qquad \qquad \lambda \mathbf{K} \mathbf{K} \boldsymbol{\alpha} = \mathbf{K} \mathbf{E}_H \mathbf{K} \boldsymbol{\alpha}$$

$$\lambda \mathbf{K} \mathbf{K} \boldsymbol{\alpha} = \mathbf{K} \mathbf{E}_H \mathbf{K} \boldsymbol{\alpha}$$

 $\langle \phi(\mathbf{x}_k), \sum_{h=1}^{H} p_h \bar{\phi}(\mathbf{m}_h) \rangle = \sum_{h=1}^{H} p_h \langle \phi(\mathbf{x}_k), \bar{\phi}(\mathbf{m}_h) \rangle$

 $= \sum_{k=1}^{H} p_h \langle \phi(\mathbf{x}_k), \frac{\sum_{j=1}^{n} \phi(\mathbf{x}_j) \delta_h(y_j)}{\sum_{j=1}^{n} \delta_h(y_j)} \rangle$

 $= \sum_{k=1}^{H} \frac{\sum_{j=1}^{n} \mathbf{K}_{kj} \delta_h(y_j)}{n}$

 $\langle \bar{\phi}(\mathbf{m}_h), \phi(\mathbf{x}_i) \rangle = \langle \frac{\sum_{j=1}^n \phi(\mathbf{x}_j) \delta_h(y_j)}{\sum_{i=1}^n \delta_h(y_i)}, \phi(\mathbf{x}_i) \rangle$

 $= \frac{\sum_{j=1}^{n} \mathbf{K}_{ji} \delta_h(y_j)}{\sum_{j=1}^{n} \delta_h(y_j)}$

 $\lambda \mathbf{K} \boldsymbol{a} = \mathbf{E}_H \mathbf{K} \boldsymbol{a}$

Normalization and Projection

Let $\lambda_1 \geq \cdots \geq \lambda_n$ denote the eigenvalues, and $\alpha_1, \cdots, \alpha_n$ the corresponding complete set of eigenvectors, with λ_t being the first nonzero eigenvalues.

We normalize $\alpha_1, \dots, \alpha_n$ by requiring that the corresponding vectors in \mathcal{F} be normalized: $\langle \boldsymbol{\beta}_k, \boldsymbol{\beta}_k \rangle = 1$ for all $k = 1, \dots, t$.

Normalization Condition:

$$1 = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i^k \alpha_j^k \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle = \langle \boldsymbol{\alpha}^k, \mathbf{K} \boldsymbol{\alpha}^k \rangle = \lambda_k \langle \boldsymbol{\alpha}^k, \boldsymbol{\alpha}^k \rangle$$

Projections on the eigenvectors β_k in \mathcal{F} , $k = 1, \dots, t$:

Let **x** be a test point, with an image $\phi(\mathbf{x})$ in \mathcal{F} , then

$$\langle \boldsymbol{\beta}_k, \phi(\mathbf{x}) \rangle = \sum_{i=1}^n \alpha_i^k \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}) \rangle = \sum_{i=1}^n \alpha_i^k \mathbf{K}(\mathbf{x}_i, \mathbf{x})$$

Centering in Feature Space

The mapped data is centered in \mathcal{F} , $\sum_{i=1}^{n} \phi(\mathbf{x}_i) = 0$.

- The points $\tilde{\phi}(\mathbf{x}_i) := \phi(\mathbf{x}_i) \frac{1}{n} \sum_{i=1}^n \phi(\mathbf{x}_i)$ will be centered.
- Define $\tilde{\mathbf{K}} := \langle \tilde{\phi}(\mathbf{x}_i), \tilde{\phi}(\mathbf{x}_i) \rangle$ in \mathcal{F} .

$$\tilde{\mathbf{K}} = \mathbf{K} - I_n \mathbf{K} - \mathbf{K} I_n + I_n \mathbf{K} I_n, (I_n)_{ij} = 1/n.$$

For Training Data

$$K_{tr} \leftarrow \text{kernelMatrix}(poly, \boldsymbol{X}_{tr})$$

$$K_{tr.c} \leftarrow K_{tr} - \mathbf{1}_{tr}K_{tr} - K_{tr}\mathbf{1}_{tr} + \mathbf{1}_{tr}K_{tr}\mathbf{1}_{tr}$$

For Testing Data

$$K_{te} \leftarrow \text{kernelMatrix}(poly, \boldsymbol{X}_{te}, \boldsymbol{X}_{tr})$$

$$K_{te.c} \leftarrow K_{te} - \mathbf{1}_{te}K_{tr} - K_{te}\mathbf{1}_{tr} + \mathbf{1}_{te}K_{tr}\mathbf{1}_{tr}$$

Reduced Features

- we are not working in the full feature space, but just in a comparably small linear subspace of it, whose dimension equals at most the number of observations.
- Working in a space whose dimension equals the number of observations can pose difficulties.
- To deal with these, one can either use only a subset of the extracted features, or use some other form of capacity control or regularization.

1 <u></u>					
Data Transform Dialog	×				
Data Set	New Data				
SuYun-sinData.txt ▼ [200 x 5]	tSuYun-sinData.txt [200 x 200]				
Transform Methods					
Kernel Tra	ansform 🔻				
Settings					
☑ Standardize Data by Columns					
Kernel Type with Parameters					
Gaussian RBF ▼ degree: 2	scale: 0.05 offset: 0				
✓ Sampling Columns					
○ Random 200 ● Leading SVD9	% 95 % Cleading SVD# 50				
	OK Cancel				

For Theoretical details:

Lee, Y.J. and Huang, S.Y. (2006), Reduced support vector machines: a statistical theory, *IEEE Transactions on Neural Networks*, accepted.

http://dmlab1.csie.ntust.edu.tw/downloads

Relations Towards Other Methods 26/34

SIR vs. KSIR

- KSIR generalizes SIR to a nonlinear one by kernelization of the SIR algorithm.
- It finds nonlinear d.r. subspace, a central d.r. subspace in H_k
- A semiparametric method.
- SIR: spectrum analysis of cov(E[x|y]) wrt cov(x)
- KSIR: spectrum analysis of a generalized association measure.

KSIR vs. KPCA

PCA eigenvalue problem

$$\lambda \boldsymbol{v} = C \boldsymbol{v}$$

covariance matrix

$$C = \frac{1}{m} \sum_{j=1}^{m} x_j x_j^\mathsf{T}$$

kernel PCA

eigenvalue problem

$$K\alpha = \lambda \alpha$$

SIR \Longrightarrow PCA performed on the random vector $E(\mathbf{x}|y)$ instead of \mathbf{x} .

KSIR \Longrightarrow PCA performed on the random vector $E(\phi(\mathbf{x})|y)$ instead of $\phi(\mathbf{x})$.

Relations Towards Other Methods 27/34

KSIR vs. KFDA

$$\max_{\boldsymbol{a}} \frac{\boldsymbol{a}^t \Sigma_B \boldsymbol{a}}{\boldsymbol{a}^t \Sigma_W \boldsymbol{a}} \implies \Sigma_B \boldsymbol{a} = \gamma_i \Sigma_W \boldsymbol{a}, \quad \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_p$$

$$\Longrightarrow \quad \Sigma_{\mathbf{x}\mathbf{x}} = \Sigma_B + \Sigma_W \implies \quad \Sigma_B \boldsymbol{a}_i = \frac{\gamma_i}{1 + \gamma_i} \Sigma_{\mathbf{x}\mathbf{x}} \boldsymbol{a}_i$$

$$\Sigma_{\mathbf{w}\mathbf{x}} \boldsymbol{\beta}_j = \lambda_j \Sigma_{\mathbf{x}\mathbf{x}} \boldsymbol{\beta}_j$$

$$\Longrightarrow \quad \lambda_i = \gamma/(1 + \gamma) \text{ and } \boldsymbol{a}_i \propto \boldsymbol{\beta}_i,$$
Chen, C. H., and Li, K. C. (2001)

KSIR vs. KCCA

Kernel Fisher discriminant Analysis as special case of CCA.

(Kuss, M. and Graepel, T: The Geometry Of Kernel Canonical Correlation Analysis. (108), Max Planck Institute for Biological Cybernetics, Tübingen, Germany (May 2003)

Visualization: Three Clusters Data/34

(220x2)

KPCA

d=2

d = 3

d = 4

KSIR

d=2

d = 3

d = 4

s = 10

s = 0.01

Visualization: Iris Data (150x4)

The sepal length, sepal width, petal length, and petal width are measured in centimeters on 50 iris specimens from each of three species, *Iris setosa*, *I. versicolor*, and *I. virginica*. Fisher (1936)

PCA

SIR

KPCA

Gaussian s=0.05

KSIR

Solice Solice

Visualization: Wine Data (178x18) Visualization: Wine Data

- Wine data (n=178) are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars.
- The analysis determined the quantities of 13 constituents found in each of the three types of wines.
- Past Usage

RDA: 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data, loo)

PCA

SIR

KPCA

Gaussian s=0.05

KSIR

https://hmwu.idv.tw

Visualization: Pendigit Data

32/34

(7494x16)

 Pen-based recognition of handwritten Digits

- 7494 instances, 16 attributes
- 10 classes

Gaussian 0.05

0 :780 1 :779 2 :780 3 :719 4 :780 5 :720 6 :778 8 :719

Classification: UCI Data Sets

Gaussian 0.05 Random sampling 200

Classification: Microarray Data 34/34

	4
	te

Dataset	Publication	n	p
Leukemia	Golub <i>et al.</i> (1999)	72	3571
Colon	Alon $et \ al.(1999)$	62	2000
Prostate	Singh $et al.(2002)$	102	6033
Lymphoma	Alizadeh $et al.(2000)$	62	4026
SRBCT	Khan et al. (2001)	63	2308
Brain	Pomeroy et al. (2002)	42	5597

Dataset	C	Response
Leukemia	2 (47, 25)	Subtypes of leukemia
Colon	2(22, 40)	Tumor/normal tissue
Prostate	2(50, 52)	Tumor/normal tissue
Lymphoma	3 (42, 9, 11)	Subtypes of lymphoma
SRBCT	4(23, 20, 12, 8)	Different tumor types
Brain	5 (10, 10, 10, 4, 8)	Different tumor types

