Math 4B	Summer	2020
Quiz $\#1$		

No calculators

	PERM NUMBER	
PRINT NAME		

TA: Trevor

Time: 4:30

 $\frac{6:30}{7:30}$

1. In your own words, what does it mean for a differential equation to be linear?

A function has y and all of its derivatives raised to the power 1.

Example
$$a_0y^1 + a_1y^{-1} + a_2y^{-1} \dots = C$$

2. Suppose you have a linear ordinary differential equation of order 2 given by

$$a(t)y'' + b(t)y' + d(t)y = 0$$

and you also have two functions y_1 and y_2 that are solutions to the differential equation. Show that $C_1y_1 + C_2y_2$ is also a solution. (C_1 and C_2 are constants.)

$$a(t)y'' + b(t)y' + d(t)y = 0$$
If y, and y₂ are sols:
$$a(t)y''_1 + b(t)y'_1 + d(t)y_1 = 0$$

$$a(t)y''_1 + b(t)y'_1 + d(t)y_2 = 0$$

$$y' = C_1y'_1 + C_2y''_2$$

$$a(t)y''_2 + b(t)y''_2 + d(t)y''_2 = 0$$

$$y'' = C_1y''_1 + C_2y''_2$$

 $a(t)(C_1y_1''+C_2y_2'') + b(t)(C_1y_1'+C_2y_2') + d(t)(C_1y_1+C_2y_2) = 0$ $a(t)(C_1y_1''+b(t)C_1y_1'+d(t)C_1y_1+a(t)C_2y_2''+b(t)C_2y_2'+d(t)C_2y_2 = 0$ $C_1(a(t)y_1''+b(t)y_1'+d(t)y_1) + C_2(a(t)y_2''+b(t)y_2'+d(t)y_2) = 0$

$$C_1(0) + C_2(0) = 0$$

 $0 = 0 \vee \therefore C_1 Y_1 + C_2 Y_2 \text{ is also a solution}$