

SN74LV4051A SCLS428K - MAY 1999 - REVISED SEPTEMBER 2024

SN74LV4051A 8-Channel Analog Multiplexers and Demultiplexers

1 Features

- 1.65V to 5.5V V_{CC} operation
- Support mixed-mode voltage operation on all ports
- High on-off output-voltage ratio
- Low crosstalk between switches
- Individual switch controls
- Extremely low input current
- Latch-up performance exceeds 100mA per JESD 78, class II
- ESD protection exceeds JESD 22
 - 2000V human-body model (A114-A)
 - 200V machine model (A115-A)
 - 1000V charged-device model (C101)

2 Applications

- **Telecommunications**
- eCall
- Infotainment

3 Description

SN74LV4051A 8-channel **CMOS** multiplexers and demultiplexers are designed for 1.65V to 5.5V V_{CC} operation.

The SN74LV4051A devices handle both analog and digital signals. Each channel permits signals with amplitudes up to 5.5V (peak) to be transmitted in either direction.

Applications include: signal gating, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
	PW (TSSOP, 16)	5mm × 6.4mm
	D (SOIC, 16)	9.9mm × 6mm
SN74LV4051A	RGY (VQFN, 16)	4mm × 3.5mm
	DYY (SOT-23-THIN, 16)	

- For more information, see Section 10.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Logic Diagram (Positive Logic)

Table of Contents

1 Features1	7 Detailed Description15
2 Applications	7.1 Overview
3 Description1	7.2 Functional Block Diagram15
4 Pin Configuration and Functions3	7.3 Feature Description15
5 Specifications4	7.4 Device Functional Modes15
5.1 Absolute Maximum Ratings4	8 Device and Documentation Support16
5.2 ESD Ratings 4	8.1 Documentation Support16
5.3 Thermal Information: SN74LV4051A5	8.2 Receiving Notification of Documentation Updates16
5.4 Recommended Operating Conditions6	8.3 Support Resources16
5.5 Electrical Characteristics6	8.4 Trademarks16
5.6 Timing Characteristics V _{CC} = 2.5 V ± 0.2 V8	8.5 Electrostatic Discharge Caution16
5.7 Timing Characteristics V _{CC} = 3.3 V ± 0.3 V8	8.6 Glossary16
5.8 Timing Characteristics V _{CC} = 5 V ± 0.5 V9	9 Revision History16
5.9 AC Characteristics9	10 Mechanical, Packaging, and Orderable
5.10 Typical Characteristics11	Information17
6 Parameter Measurement Information12	

4 Pin Configuration and Functions

Figure 4-1. D, PW, or DYY Packages, 16-Pin SOIC, TSSOP, or SOT-23-THIN (Top View)

Figure 4-2. RGY Package 16-Pin VQFN With Exposed Thermal Pad (Top View)

Table 4-1. Pin Functions

P	PIN	TYPE(2)	DESCRIPTION		
NAME	NO.	I TPE(=)	DESCRIPTION		
A	11	I	Selector line A for outputs (see Section 7.4 for specific information)		
В	10	I	Selector line B for outputs (see Section 7.4 for specific information)		
С	9	I	Selector line C for outputs (see Section 7.4 for specific information)		
COM	3	O/I ⁽¹⁾	Output/Input of mux		
GND	7, 8	_	Ground		
INH	6	J(1)	Enables the outputs of the device. Logic low level with turn the outputs on, high level will turn them off.		
Y0	13	I/O ⁽¹⁾	Input/Output to mux		
Y1	14	I/O ⁽¹⁾	Input/Output to mux		
Y2	15	I/O ⁽¹⁾	Input/Output to mux		
Y3	12	I/O ⁽¹⁾	Input/Output to mux		
Y4	1	I/O ⁽¹⁾	Input/Output of mux		
Y5	5	I/O ⁽¹⁾	Input/Output to mux		
Y6	2	I/O ⁽¹⁾	Input/Output to mux		
Y7	4	I/O ⁽¹⁾	Input/Output to mux		
V _{CC}	16	_	Device power		

⁽¹⁾ These I/O descriptions represent the device when used as a multiplexer, when this device is operated as a demultiplexer pins Y0-Y7 may be considered outputs (O) and the COM pin may be considered inputs (I).

⁽²⁾ I = inputs, O = outputs

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (3)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7.0	V
VI	Logic input voltage range	Logic input voltage range			V
V _{IO}	Switch I/O voltage range ^{(2) (3)}	Switch I/O voltage range ^{(2) (3)}			V
I _{IK}	Input clamp current	V _I < 0	-20		mA
I _{IOK}	Switch IO diode clamp current	V _{IO} < 0 or V _{IO} > V _{CC}	-50	50	mA
I _T	Switch continuous current	V _{IO} = 0 to V _{CC}		±25	mA
	Continuous current through V _{CC}	or GND		±50	mA
TJ	Junction temperature	Junction temperature		150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

- (2) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.
- (3) This value is limited to 5.5 V maximum

5.2 ESD Ratings

				VALUE	UNIT
	V _(ESD) Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	All pins	±2000	
V _(ESD)		Charged device model (CDM), per AEC Q100-011	All pins	±1000	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

5.3 Thermal Information: SN74LV4051A

		SN74LV4051A	SN74LV4051A	SN74LV4051A	SN74LV4051A	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	PW (TSSOP)	RGY (VQFN)	DYY (SOT)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115.2	140.2	89.4	199.7	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	75.0	72.6	89.7	121.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	76.6	98.7	65.4	129	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	31.3	13.4	25.0	24.6	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	75.7	97.3	65.2	126.7	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	48.9	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	NOM MAX	UNIT
V _{CC}	Supply voltage		1 ⁽²⁾	5.5	V
		V _{CC} = 1.65	1.2	5.5	
		V _{CC} = 2 V	1.5	5.5	
V _{IH}	High-level input voltage, logic control inputs	V _{CC} = 2.3 V to 2.7 V	V _{CC} x 0.7	5.5	V
	logic control inputs	V _{CC} = 3 V to 3.6 V	V _{CC} x 0.7	5.5	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	V _{CC} x 0.7	5.5	
		V _{CC} = 1.65	0	0.4	
		V _{CC} = 2 V	0	0.5	
V _{IL}	Low-level input voltage, logic control inputs	V _{CC} = 2.3 V to 2.7 V	0	V _{CC} x 0.3	V
		V _{CC} = 3 V to 3.6 V	0	V _{CC} x 0.3	
		V _{CC} = 4.5 V to 5.5 V	0	V _{CC} x 0.3	
VI	Logic control input voltage		0	5.5	V
V _{IO}	Switch input or output voltage	·	0	V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V		200	
Δt/ΔV	Logic input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V
		V _{CC} = 4.5 V to 5.5 V		20	
T _A	Ambient temperature		-40	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to TI application report *Implications of Slow or Floating CMOS Inputs*, SCBA004.

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Condition	T _A	V _{cc}	MIN	TYP	MAX	UNIT
r _{ON}	ON-state switch resistance	$I_T = 2 \text{ mA},$ $V_I = V_{CC} \text{ or GND},$ $V_{INH} = V_{IL}$	25°C	1.65 V		60	150	Ω
r _{ON}	ON-state switch resistance	$I_T = 2 \text{ mA},$ $V_I = V_{CC} \text{ or GND},$ $V_{INH} = V_{IL}$	-40°C to 85°C	1.65 V			225	Ω
r _{ON}	ON-state switch resistance	$I_T = 2 \text{ mA},$ $V_I = V_{CC} \text{ or GND},$ $V_{INH} = V_{IL}$	-40°C to 125°C	1.65 V			225	Ω
			25°C			38	180	Ω
			–40°C to 85°C	2.3 V			225	
			-40°C to 125°C				225	
		I _T = 2 mA,	25°C			30	150	
r _{ON}	ON-state switch resistance	$V_I = V_{CC}$ or GND,	-40°C to 85°C	3 V			190	Ω
	resistance	$V_{INH} = V_{IL}$	-40°C to 125°C				190	
			25°C		,	22	75	
			-40°C to 85°C	4.5 V	,		100	Ω
			-40°C to 125°C		,		100	
r _{ON(p)}	Peak ON-state resistance	$\begin{split} I_T &= 2 \text{ mA}, \\ V_I &= \text{GND to V}_{CC}, \\ V_{INH} &= V_{IL} \end{split}$	25°C	1.65 V		220	600	Ω

Product Folder Links: SN74LV4051A

⁽²⁾ When using a V_{CC} of ≤1.2 V, it is recommended to use these devices only for transmitting digital signals. When supply voltage is near 1.2 V the analog switch ON resistance becomes very non-linear

5.5 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Condition	T _A	V _{CC}	MIN	TYP	MAX	UNIT		
r _{ON(p)}	Peak ON-state resistance	$I_T = 2 \text{ mA},$ $V_I = \text{GND to V}_{CC},$ $V_{INH} = V_{IL}$	-40°C to 85°C	1.65 V			700	Ω		
r _{ON(p)}	Peak ON-state resistance	$\begin{split} I_T &= 2 \text{ mA}, \\ V_I &= \text{GND to V}_{CC}, \\ V_{INH} &= V_{IL} \end{split}$	-40°C to 125°C	1.65 V			700	Ω		
			25°C			113	500			
			-40°C to 85°C	2.3 V	,	,	600	Ω		
			-40°C to 125°C				600			
		$I_T = 2 \text{ mA},$	25°C			54	180			
r _{ON(p)}	Peak ON-state resistance	$V_I = GND$ to V_{CC} ,	-40°C to 85°C	3 V			225	Ω		
	resistance	$V_{INH} = V_{IL}$	-40°C to 125°C				225			
			25°C		,	31	100			
			-40°C to 85°C	4.5 V			125	Ω		
			-40°C to 125°C				125			
Δr _{ON}	Difference in ON- state resistance between switches	$I_T = 2 \text{ mA},$ $V_I = \text{GND to V}_{CC},$ $V_{INH} = V_{IL}$	25°C	1.65 V		3	40	Ω		
Δr _{ON}	Difference in ON- state resistance between switches	$I_T = 2 \text{ mA},$ $V_I = \text{GND to V}_{CC},$ $V_{INH} = V_{IL}$	–40°C to 85°C	1.65 V			50	Ω		
Δr _{ON}	Difference in ON- state resistance between switches	$I_T = 2 \text{ mA},$ $V_I = \text{GND to V}_{CC},$ $V_{INH} = V_{IL}$	–40°C to 85°C	1.65 V			50	Ω		
			25°C			2.1	30			
			–40°C to 85°C	2.3 V			40	Ω		
			-40°C to 125°C			-	40			
	Difference in ON-	I _T = 2 mA,	25°C			1.4	20			
∆r _{ON}	state resistance	$V_I = GND$ to V_{CC} ,	–40°C to 85°C	3 V			30	Ω		
	between switches	$V_{INH} = V_{IL}$	-40°C to 125°C				30			
			25°C			1.3	15			
			–40°C to 85°C	4.5 V			20	Ω		
			-40°C to 125°C				20			
			25°C				0.1			
l _{IH} I _{IL}	Control input current	V _I = 5.5 V or GND	-40°C to 85°C	0 to 5.5 V			1	μΑ		
'IL			-40°C to 125°C				2			
		V _I = V _{CC} and V _O =	25°C			-	0.1			
	OFF-state switch	GND,	-40°C to 85°C				1			
I _{S(off)}	leakage current		-40°C to 125°C	5.5 V			2	μА		
		$V_I = V_{CC}$ or GND,	25°C				0.1			
I _{S(on)}	ON-state switch leakage current	$V_{INH} = V_{IL}$	–40°C to 85°C	5.5 V		1		1 μA		
	.sanago sarront	(see Figure4)	-40°C to 125°C				2	<u>.</u>	2	
			25°C		,	0.01				
СС	Supply current	$V_1 = V_{CC}$ or GND $V_{CC} = 0$ V	-40°C to 85°C	5.5 V			20	μΑ		
		V _{INH} – U V	-40°C to 125°C				40	⊣ .		
C _{IC}	Control input capacitance	f = 10 MHz	25°C	3.3 V		2		pF		

5.5 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Condition	T _A	V _{cc}	MIN	TYP	MAX	UNIT
C _{OS}	Switch terminal capacitance	f = 10 MHz	25°C	3.3 V		5		pF
C _{IS}	Common ternminal capacitance	f = 10 MHz	25°C	3.3 V		23		pF
C _{OS(on)}	Common ternminal ON-capacitance	f = 10 MHz	25°C	3.3 V		23		pF
C _F	Feedthrough capacitance	f = 10 MHz	25°C	3.3 V		0.5		pF
C _{PD}	Power dissipation capacitance	C _L = 50 pF, f = 10 MHz	25°C	3.3 V		6		pF

5.6 Timing Characteristics V_{CC} = 2.5 V ± 0.2 V

F	PARAMETER	FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
					25°C		1.9	10	
t _{PLH}	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF	–40°C to 85°C			16	ns
PHL	dolay umo				–40°C to 125°C			18	
	t _{PZH} Enable delay time				25°C		6.6	18	
t _{PZH}		INH	COM or Yn	C _L = 15 pF	–40°C to 85°C			23	ns
PZL					–40°C to 125°C			25	
					25°C		7.4	18	
t _{PHZ}		INH	COM or Yn	C _L = 15 pF	–40°C to 85°C			23	ns
t _{PLZ}	lino				–40°C to 125°C			25	
				C _L = 50 pF	25°C		3.8	12	- 1
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM		–40°C to 85°C			18	
PHL	dolay time				–40°C to 125°C			20	
					25°C		7.8	28	
t _{PZH}	Enable delay time	INH	COM or Yn	C _L = 50 pF	–40°C to 85°C			35	ns
ΨZL	unic				–40°C to 125°C			35	1
		' INH ICOMOTYD		25°C		11.5	28		
t _{PHZ}			COM or Yn	C _L = 50 pF	–40°C to 85°C			35	ns
PLZ					–40°C to 125°C			35	

5.7 Timing Characteristics V_{CC} = 3.3 V \pm 0.3 V

P/	ARAMETER	FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
					25°C		1.2	6	
t _{PLH}	t _{PLH} Propagation t _{PHL} delay time	COM or Yn Yn	Yn or COM	C _L = 15 pF	–40°C to 85°C			10	ns
telay time				-40°C to 125°C			12		
					25°C		4.7	12	
t _{PZH}	Enable delay time	INH C	COM or Yn	C _L = 15 pF	-40°C to 85°C			15	ns
PZL					-40°C to 125°C			18	
					25°C		5.7	12	
t _{PHZ}	Disable delay time	INH	COM or Yn	C _L = 15 pF	–40°C to 85°C			15	ns
PLZ	tPLZ time				-40°C to 125°C			18	

Product Folder Links: SN74LV4051A

5.7 Timing Characteristics V_{CC} = 3.3 V ± 0.3 V (continued)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT
					25°C		2.5	9	
t _{PLH} t _{PHL}	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF	–40°C to 85°C			12	ns
THE					–40°C to 125°C			14	
	Enable delay time	INH	COM or Yn	C _L = 50 pF	25°C		5.5	20	
t _{PZH} t _{PZL}					–40°C to 85°C			25	ns
-PZL					-40°C to 125°C			25	
		Disable delay INH	COM or Yn	C _L = 50 pF	25°C		8.8	20	
t _{PHZ}	Disable delay time				–40°C to 85°C			25	ns
7-12					-40°C to 125°C			25	

5.8 Timing Characteristics V_{CC} = 5 V ± 0.5 V

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	CONDITIONS	T _A	MIN	TYP	MAX	UNIT	
					25°C		0.6	4		
t _{PLH}	Propagation delay time	COM or Yn	Yn or COM	C _L = 15 pF	–40°C to 85°C			7	ns	
PHL	dolay iiiiio				–40°C to 125°C			10		
t _{PZH}				C _L = 15 pF	25°C		3.5	8		
	Enable delay time	INH	COM or Yn		–40°C to 85°C			10	ns	
	unic				–40°C to 125°C			12		
					25°C		4.4	10		
t _{PHZ}	Disable delay time	INH	COM or Yn	C _L = 15 pF	–40°C to 85°C			11	ns	
t _{PLZ}					–40°C to 125°C			12		
	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF	25°C		1.5	6	ns	
t _{PLH}					–40°C to 85°C			8		
t _{PHL}					–40°C to 125°C			10		
					25°C		4	14		
t _{PZH}	Enable delay	INH	COM or Yn	C _L = 50 pF	–40°C to 85°C			18	ns	
t _{PZL}	time				-40°C to 125°C			18		
			COM or Yn	C _L = 50 pF	25°C		6.2	14	ns	
t _{PHZ}	Disable delay time	, IIVH			–40°C to 85°C			18		
t _{PLZ}	uille				-40°C to 125°C			18		

5.9 AC Characteristics

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Device	CONDITIONS		MIN	TYP	MAX	UNIT
				$C_L = 50 \text{ pF, } R_L =$			20		
Frequency response (switch	COM or Yn	Yn or COM	SN74LV4051	600Ω , $F_{in} = 1 MHz$ (sine	V _{CC} = 3 V		25		MHz
on)	COM OF TH	7.11 G. GG.11			1/ - 451/		35		
				C _L = 50 pF, R _L =			20		
Charge Injection	INH	COM or Yn		600Ω , $F_{in} = 1 MHz$ (sine	V _{CC} = 3 V		35		mV
(control input to signal output)		20 2. 111			V _{CC} = 4.5 V		60		•

5.9 AC Characteristics (continued)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Device	CONDITIONS		MIN	TYP	MAX	UNIT
Feedthrough attenuation (switch off)				C_L = 50 pF, R_L = 600 Ω , F_{in} = 1 MHz (sine wave) (see Figure 10) (2)			-45		dB
					V _{CC} = 3 V		-45		
	COM or Yn	Yn or COM					– 45		
_				C_L = 50 pF, R_L = 600 Ω , F_{in} = 1 MHz (sine wave) (see Figure 8)(2)			-45		dB
Crosstalk (between any	COM or Yn	Yn or COM			V _{CC} = 3 V		-45		
switches)					V _{CC} = 4.5 V		-45		
	COM or Yn	n Yn or COM		C_L = 50 pF, R_L = 10 k Ω , F_{in} = 1 kHz (sine wave)	$V_{I} = 2 V_{p-p}$ $V_{CC} = 2.3 V$		0.1		%
Sine-wave distortion					V _I = 2.5 V _{p-p} V _{CC} = 3 V		0.1		
					$V_{I} = 4 V_{p-p}$ $V_{CC} = 4.5 V$		0.1		

5.10 Typical Characteristics

Figure 5-1. Plot at 25°C for V_{CC} vs Max R_{ON}

6 Parameter Measurement Information

Figure 6-1. On-State Resistance Test Circuit

Condition 1: $V_I = 0$, $V_O = V_{CC}$ Condition 2: $V_I = V_{CC}$, $V_O = 0$

Figure 6-2. Off-State Switch Leakage-Current Test Circuit

Figure 6-3. On-State Switch Leakage-Current Test Circuit

Figure 6-4. Propagation Delay Time, Signal Input to Signal Output

Submit Document Feedback

Figure 6-5. Switching Time (t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}), Control to Signal Output

A. f_{in} is a sine wave.

Figure 6-6. Frequency Response (Switch On)

Figure 6-7. Crosstalk (Control Input, Switch Output)

Figure 6-8. Feedthrough Attenuation (Switch Off)

Figure 6-9. Sine-Wave Distortion

7 Detailed Description

7.1 Overview

The SN74LV4051A device is an 8-channel analog multiplexer. A multiplexer is used when several signals must share the same device or resource. This device allows for the selection of one of these signals at a time for analysis or propagation.

7.2 Functional Block Diagram

7.3 Feature Description

The SN74LV4051A device contains one 8-channel multiplexer for use in a variety of applications and can also be configured as demultiplexer by using the COM pin as an input and the Yn pins as outputs. This device is qualified to operate in the temperature range –40°C to +85°C (maximum depends on package type).

7.4 Device Functional Modes

Table 7-1. Function Table

	INP	ON		
INH	С	В	Α	CHANNEL
L	L	L	L	Y0
L	L	L	Н	Y1
L	L	Н	L	Y2
L	L	Н	Н	Y3
L	Н	L	L	Y4
L	Н	L	Н	Y5
L	Н	Н	L	Y6
L	Н	Н	Н	Y7
Н	Х	X	Х	None

8 Device and Documentation Support

8.1 Documentation Support

8.1.1 Related Documentation

For related documentation, see the following:

· Texas Instruments, Implications of Slow or Floating CMOS Inputs

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

	anges from Revision J (June 2024) to Revision K (September 2024)	Page
•	Added DYY package and size	1
•	Added DYY package	3
	Added DYY package	
Cha	anges from Revision I (September 2015) to Revision J (June 2024)	Dana
0110	anges from Revision (September 2013) to Revision 3 (June 2024)	Page
	Updated the numbering format for tables, figures, and cross-references throughout the document	
•	· · · · · · · · · · · · · · · · · · ·	1
•	Updated the numbering format for tables, figures, and cross-references throughout the document	
•	Updated the numbering format for tables, figures, and cross-references throughout the document Added new VIH and VIL Specifications at 1.65V Vcc	
•	Updated the numbering format for tables, figures, and cross-references throughout the document Added new VIH and VIL Specifications at 1.65V Vcc	6 6

Product Folder Links: SN74LV4051A

Changes from Revision H (April 2005) to Revision I (September 2015)

Page

		_
•	Added Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Detailed	d
	Description section, Applications and Implementation section, Power Supply Recommendations section,	
	Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable	
	Information section	. 1
•	Deleted SN54LV4051A part number from the data sheet	. 1
•	Removed Ordering Information table	. 1

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

www.ti.com

7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74LV4051AD	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	LV4051A
SN74LV4051ADBR	NRND	Production	SSOP (DB) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW051A
SN74LV4051ADBR.A	NRND	Production	SSOP (DB) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LW051A
SN74LV4051ADGVR	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW051A
SN74LV4051ADGVR.A	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LW051A
SN74LV4051ADGVRG4	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW051A
SN74LV4051ADR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV4051A
SN74LV4051ADR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV4051A
SN74LV4051ADYYR	Active	Production	SOT-23-THIN (DYY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV4051
SN74LV4051ADYYR.A	Active	Production	SOT-23-THIN (DYY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV4051
SN74LV4051AN	NRND	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74LV4051AN
SN74LV4051AN.A	NRND	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74LV4051AN
SN74LV4051ANS	NRND	Production	SOP (NS) 16	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV4051A
SN74LV4051ANS.A	NRND	Production	SOP (NS) 16	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	74LV4051A
SN74LV4051ANSR	NRND	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV4051A
SN74LV4051ANSR.A	NRND	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	74LV4051A
SN74LV4051APW	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	LW051A
SN74LV4051APWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW051A
SN74LV4051APWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LW051A
SN74LV4051APWRG4	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	LW051A
SN74LV4051ARGYR	Active	Production	VQFN (RGY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LW051A
SN74LV4051ARGYR.A	Active	Production	VQFN (RGY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LW051A

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

PACKAGE OPTION ADDENDUM

www.ti.com 7-Oct-2025

(3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV4051A:

Automotive : SN74LV4051A-Q1

■ Enhanced Product : SN74LV4051A-EP

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- 5. Reference JEDEC Registration MO-345, Variation AA

PLASTIC SMALL OUTLINE

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated