15.06.2025, 15:01 cerinta7

7 Proces de Streaming și Inferență ML în timp real cu PySpark

Ce am vrut să demonstrăm

În această ultimă secțiune, am implementat un **proces simplu de streaming** în PySpark, cu scopul de a simula un flux de date care vine în timp real și de a aplica pe fiecare batch un **model ML deja antrenat**. Concret, ne-am pus în pielea unei aplicații care monitorizează scorul de libertate al țărilor și îl actualizează automat pe măsură ce vin date noi.

Structura procesului

Sursă date Fişiere CSV scrise treptat într-un folder (stream_input) din Google Driv Model ML PipelineModel salvat anterior (Logistic Regression) Proces Un while loop care verifică la fiecare 5 secunde dacă a apărut un fișier nou Inferență Modelul este aplicat imediat pe datele noi și returnează predicția Low / Medium / High	Componentă	Descriere
Proces Streaming Un while loop care verifică la fiecare 5 secunde dacă a apărut un fișier nou Modelul este aplicat imediat pe datele noi și returnează predicția Low /	Sursă date	Fișiere CSV scrise treptat într-un folder (stream_input) din Google Drive
Streaming nou Modelul este aplicat imediat pe datele noi și returnează predicția Low /	Model ML	PipelineModel salvat anterior (Logistic Regression)
Interenta		. ,
<u> </u>	Inferență	

De ce e valoros

- Simulare realistă fără StreamingContext, dar potrivită pentru Colab/local;
- Aplicare practică putem înlocui oricând fișierele cu un stream Kafka real;
- **Util pentru scenarii reale** predicții automate pentru organizații care vor să monitorizeze evoluția libertății în țări instabile.

15.06.2025, 15:01 cerinta7

```
# ----- 2. START SPARK -----
In [ ]:
        spark = SparkSession.builder.appName("StreamingFreedomColab").getOrCreate()
In [ ]: # ------ 3. CĂI ABSOLUTE DIN GOOGLE DRIVE -----
        model_path = "/content/drive/MyDrive/Master NLP/Anul 1 Semestrul 2/Big Data/Proi
        input_dir = "/content/drive/MyDrive/Master NLP/Anul 1 Semestrul 2/Big Data/Proie
In [ ]: # ------ 4. ÎNCĂRCĂM MODELUL -----
        print("Încărcăm modelul ML salvat...")
        loaded_model = PipelineModel.load(model_path)
       Încărcăm modelul ML salvat...
In [ ]: # ------ 5. LOOP DE STREAMING SIMULAT -----
        print("Streaming pornit. Citim fisiere din:", input_dir)
        processed_files = set()
        start_time = time.time()
        timeout = 60 # Rulăm streamingul timp de 60 secunde
        while time.time() - start_time < timeout:</pre>
            files = [f for f in os.listdir(input_dir) if f.endswith(".csv") and f not in
            for file in files:
                file path = os.path.join(input dir, file)
                print(f"\nFisier detectat: {file}")
                try:
                    # 1. Citește fișierul și transformă-l în Spark DataFrame
                   df = pd.read_csv(file_path).dropna()
                    sdf = spark.createDataFrame(df)
                    sdf = sdf.withColumn("year", col("year").cast("int")) # conversie d
                    # 2. Aplică modelul ML salvat
                    predictions = loaded_model.transform(sdf)
                    # 3. Decodează predicția în categorii text (Low, Medium, High)
                    decoder = IndexToString(
                       inputCol="prediction",
                       outputCol="predicted_category",
                       labels=["Low", "Medium", "High"]
                   final df = decoder.transform(predictions)
                    # 4. Afișează rezultatele
                    results = final_df.select("countries", "region", "predicted_category
                    for r in results:
                       print(f"{r['countries']} ({r['region']}): {r['predicted_category
                    processed files.add(file)
                except Exception as e:
                    print(f"Eroare la {file}: {e}")
            time.sleep(5)
        print("\nStreaming finalizat.")
```

15.06.2025, 15:01 cerinta7

Streaming pornit. Citim fișiere din: /content/drive/MyDrive/Master NLP/Anul 1 Sem estrul 2/Big Data/Proiect Final/stream_input

Fişier detectat: input_auto_1.csv Korea, Rep. (East Asia): Low Moldova (Eastern Europe): Low Morocco (Middle East & North Africa): Medium Georgia (Caucasus & Central Asia): Low Georgia (Caucasus & Central Asia): Low Fişier detectat: input_auto_2.csv Georgia (Caucasus & Central Asia): Low Colombia (Latin America & the Caribbean): Low Slovenia (Eastern Europe): Low Slovenia (Eastern Europe): Low Slovenia (Eastern Europe): Low Fişier detectat: input_auto_3.csv Ethiopia (Sub-Saharan Africa): Medium Kazakhstan (Caucasus & Central Asia): Medium Moldova (Eastern Europe): Low Slovak Republic (Eastern Europe): Low Jamaica (Latin America & the Caribbean): Low Fişier detectat: input_auto_2 (1).csv Georgia (Caucasus & Central Asia): Low Colombia (Latin America & the Caribbean): Low Slovenia (Eastern Europe): Low Slovenia (Eastern Europe): Low Slovenia (Eastern Europe): Low Fişier detectat: input_auto_2 (2).csv Georgia (Caucasus & Central Asia): Low Colombia (Latin America & the Caribbean): Low Slovenia (Eastern Europe): Low Slovenia (Eastern Europe): Low Slovenia (Eastern Europe): Low

Streaming finalizat.