Spinner homework

Homework due Feb 11th

- \triangleright Pick a spinner or other random number generator (X)
 - Show or describe the spinner in the report
- ▶ Plot a running average with at least 10 spins
 - Also, make a table showing the spins and calculations
 - Also, describe what you think the running average would do if you continued with more spins.
- Sample from X + X + X at least 10 times; determine sample mean and sample standard deviation.
 - ▶ Also, make a table showing the measurements and calculations
- ► Sample from 3*X* at least 10 times; determine the sample mean and sample standard deviation.
 - ▶ Also, make a table showing the measurements and calculations
- ▶ In your own words, explain why X + X + X has a smaller standard deviation than 3X.
- ► Combine all work, with descriptions/explanations, into a report. Staple the pages together.

Pick a spinner (or any random number generator)

- ▶ Pick a spinner or some other random number generator
- Some options (pick one):
 - Make your own spinner
 - ▶ Use a die (or dice) (directly or with a transformation table)
 - Use a provided spinner
 - Use a computer's random number generator
 - Spreadsheets have rand() function, which generates standard uniform measurements
 - R has various functions: sample(), rnorm(), runif(), rgeom(), ...

Examples:

Example with equally sized wedges

$$\mu = \frac{\sum X}{N} = 15$$

$$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}} = 3.1623$$

Running average table

i	X	$\sum x$	$\bar{x} = \frac{\sum_{i} x}{i}$
1	18	18	18
2	20	38	19
3	18	56	18.6666667
4	20	76	19
5	15	91	18.2
6	12	103	17.1666667
7	14	117	16.7142857
8	15	132	16.5
9	18	150	16.6666667
10	20	170	17
11	10	180	16.3636364
:	÷	:	:

Running-averages plot

The smooth curves represent $\mu \pm 2\frac{\sigma}{\sqrt{i}}$ and $\mu \pm \frac{\sigma}{\sqrt{i}}$ and μ . You do not need to draw them, but you can.

Overlay of multiple running-averages

This is a **lot** of work by hand. Feel free to overlay multiple running averages if you use a computer. You can just show work for one.

Sample from X + X + X

Each measurement takes three spins.

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	$x_1 + x_2 + x_3$
10	14	14	38
16	15	16	47
16	20	16	52
16	12	14	42
16	14	14	44
16	20	20	56
12	15	14	41
12	16	10	38
15	12	12	39
14	20	12	46
=====	=====	=====	=====
			total — 443

total = 443 mean = 44.3 stdev = 6.0562181

Sample from 3X

Each measurement takes three spins.

3 <i>x</i>
42
54
54
48
30
30
60
54
45
60
=====
total = 477
mean = 47.7
stdev = 10.9954536

Theory (linear combination of random variables)

▶ If *X* and *Y* represent two random variables, and *a* and *b* represent two constants, then:

$$SD(aX + bY) = \sqrt{a^{2}SD(X)^{2} + b^{2}SD(Y)^{2}}$$

$$SD(X + Y) = \sqrt{SD(X)^{2} + SD(Y)^{2}}$$

$$SD(X+X) = \sqrt{SD(X)^{2} + SD(X)^{2}} = \sqrt{2SD(X)^{2}} = \sqrt{2}SD(X)$$

$$SD(X + X + X) = \sqrt{SD(X)^{2} + SD(X)^{2}} + SD(X)^{2}$$

$$SD(aX) = \sqrt{a^{2}SD(X)^{2}} = a \cdot SD(X)$$