STAT570 - Final Project

Data Scientist Job Posting Data

Miray Çınar & Ecenaz Tunç

Table of contents

$\operatorname{troduction}$	1
ata Description	1
port the Data	2
vestigating the Columns	5
sualizations	46
eferences	58

Introduction

Glassdoor is an online platform where former or new employees can comment on companies and is also used for job search.

In their website, they define themselves as: "Glassdoor is one of the world's largest job and recruiting sites. We pride ourselves on helping people find a job and company they love; in fact, it's our mission. Our company was built on the foundation of increasing workplace transparency. With that in mind, we have developed numerous tools to help job seekers make more informed career decisions."

Data Description

Data is obtained from Kaggle, in which, the user claims that the data is obtained from Glass-door.com by using web scrapping.

The variables in this data set are defined as follows:

Job Title: Title of the job posting

Salary Estimation: Salary range for that particular job

Job Description: This contains the full description of that job

Rating: Rating of that post
Company: Name of company

Location: Location of the company

Headquarter: Location of the headquater

Size: Total employee in that company

Type of ownership: Describes the company type i.e non-profit/public/private farm etc

Industry, Sector: Field applicant will work in

Revenue: Total revenue of the company

Import the Data

Let's start by importing the data. Fist, import the required libraries. If you don't already have them, you can use install.packages() function.

```
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
           1.1.4
                    v readr
                                  2.1.4
v forcats
            1.0.0
                      v stringr
                                  1.5.1
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.0
v lubridate 1.9.3
                      v tidyr
v purrr
            1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                  masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

```
library(readr)
library(ggplot2)

Uncleaned_DS_jobs <- read_csv("Uncleaned_DS_jobs.csv")</pre>
```

Rows: 672 Columns: 15
-- Column specification -----Delimiter: ","
chr (12): Job Title, Salary Estimate, Job Description, Company Name, Locatio...
dbl (3): index, Rating, Founded

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Let's start by investigating our dataset a little bit, by getting a glimpse and see the structure of the data:

```
library(dplyr)
glimpse(Uncleaned_DS_jobs)
```

Rows: 672 Columns: 15 \$ index <dbl> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ~ \$ 'Job Title' <chr> "Sr Data Scientist", "Data Scientist", "Data Scien~ \$ `Salary Estimate` <chr> "\$137K-\$171K (Glassdoor est.)", "\$137K-\$171K (Glas~ \$ `Job Description` <chr> "Description\n\nThe Senior Data Scientist is respo~ <dbl> 3.1, 4.2, 3.8, 3.5, 2.9, 4.2, 3.9, 3.5, 4.4, 3.6, ~ \$ Rating \$ `Company Name` <chr> "Healthfirst\n3.1", "ManTech\n4.2", "Analysis Grou~ \$ Location <chr> "New York, NY", "Chantilly, VA", "Boston, MA", "Ne~ <chr> "New York, NY", "Herndon, VA", "Boston, MA", "Bad ~ \$ Headquarters <chr> "1001 to 5000 employees", "5001 to 10000 employees~ \$ Size \$ Founded <dbl> 1993, 1968, 1981, 2000, 1998, 2010, 1996, 1990, 19~ \$ `Type of ownership` <chr> "Nonprofit Organization", "Company - Public", "Pri~ <chr> "Insurance Carriers", "Research & Development", "C~ \$ Industry <chr> "Insurance", "Business Services", "Business Servic~ \$ Sector <chr> "Unknown / Non-Applicable", "\$1 to \$2 billion (USD~ \$ Revenue <chr> "EmblemHealth, UnitedHealth Group, Aetna", "-1", "~ \$ Competitors

And also take a quick summary:

```
summary(Uncleaned_DS_jobs)
```

index Job Title Salary Estimate Job Description
Min.: 0.0 Length:672 Length:672 Length:672
1st Qu::167.8 Class:character Class:character Class:character

```
Median :335.5
                Mode :character
                                   Mode :character
                                                      Mode :character
       :335.5
Mean
3rd Qu.:503.2
Max.
       :671.0
   Rating
                 Company Name
                                      Location
                                                       Headquarters
Min.
      :-1.000
                 Length:672
                                                       Length:672
                                    Length:672
1st Qu.: 3.300
                 Class : character
                                    Class :character
                                                       Class : character
Median : 3.800
                 Mode :character
                                    Mode :character
                                                       Mode : character
Mean : 3.519
3rd Qu.: 4.300
      : 5.000
Max.
    Size
                      Founded
                                  Type of ownership
                                                       Industry
Length:672
                   Min.
                        : -1
                                  Length:672
                                                     Length:672
Class : character
                   1st Qu.:1918
                                  Class : character
                                                     Class : character
Mode :character
                   Median:1995
                                  Mode :character
                                                     Mode :character
                   Mean
                          :1636
                   3rd Qu.:2009
                   Max.
                          :2019
                                      Competitors
   Sector
                     Revenue
Length:672
                   Length:672
                                      Length:672
Class :character
                   Class :character
                                      Class : character
Mode :character
                   Mode : character
                                      Mode :character
```

From both glimpse() and summary() outputs, we can see that, categorical variables are in character form. We will investigate them one by one later on.

But first, let's change the column names that have blank spaces so that it will be much easy to make the analyses later.

Take a summary again to see the data:

summary(Uncleaned_DS_jobs)

index	Job_Title	Salary_Estimate	Job_Description
Min. : 0.0	Length:672	Length:672	Length:672
1st Qu.:167.8	Class :character	Class :character	Class :character
Median :335.5	Mode :character	Mode :character	Mode :character
Mean :335.5			
3rd Qu.:503.2			
Max. :671.0			
Rating	${\tt Company_Name}$	Location	Headquarters
Min. :-1.000	Length:672	Length:672	Length:672
1st Qu.: 3.300	Class :character	Class :character	Class :character
Median : 3.800	Mode :character	Mode :character	Mode :character
Mean : 3.519			
3rd Qu.: 4.300			
Max. : 5.000			
Size	Founded	Type_of_Ownership	Industry
Length:672	Min. : -1	Length:672	Length:672
Class : character	1st Qu.:1918	Class :character	Class :character
Mode :character	Median :1995	Mode :character	Mode :character
	Mean :1636		
	3rd Qu.:2009		
	Max. :2019		
Sector	Revenue	Competitors	
Length:672	Length:672	Length:672	
Class : character	Class :characte	er Class:characte	er
Mode :character	Mode :characte	er Mode :characte	er

From our summary, we can also see some strange values are present in the data. For instance there are some rows marked as "-1" in the Headquarters, Founded.

Investigating the Columns

Let's investigate the columns one by one:

• Index

Index column is not necessary for us, so we will remove it from our data set.

```
Uncleaned_DS_jobs$index <- NULL</pre>
```

• Rating

We realized that from the summary, Rating has a minimum value as -1, but the rating should be between 0 to 5.

We need to fix that problem.

To fix this, first we need to look how many data are there with Rating = -1:

```
sum(Uncleaned_DS_jobs\$Rating == -1)
```

[1] 50

We have 50 values with Rating = -1. Rating variable should not be -1. So firstly for the rating variable we give change -1 to 0.

```
Uncleaned_DS_jobs$Rating[Uncleaned_DS_jobs$Rating == -1] <- 0</pre>
```

Now lets check if it worked,

```
summary(Uncleaned_DS_jobs$Rating)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 3.300 3.800 3.593 4.300 5.000
```

As can be seen from the summary of the rating we fix the -1 problem.

Histogram of the rating variable:

```
intervals <- seq(0, 5, by = 1)

rating_histogram <- ggplot(Uncleaned_DS_jobs, aes(x = Rating)) +
    geom_histogram(binwidth = 1, boundary = 0.5, col = "darkblue", fill = "lightblue") +
    labs(
        title = "Distribution of Rating",
        x = "Rating",
        y = "Frequency",
        subtitle = ""
    ) +</pre>
```

```
scale_x_continuous(breaks = intervals) +
  theme_classic()
rating_histogram
```

Distribution of Rating

• Founded

After looking in a more detailed way, we realize that the foundation year of the companies have a value -1 also we need check for them:

```
sum(Uncleaned_DS_jobs\$Founded == -1)
```

[1] 118

From the summary we also fix the problem for Founded.

• Industry

```
sum(Uncleaned_DS_jobs$Industry == -1)
```

[1] 71

We see that industry has 71 -1 values so, again we assign those values to no information.

```
Uncleaned_DS_jobs$Industry[Uncleaned_DS_jobs$Industry == -1] <- "No information"</pre>
```

Histogram of the Industry Variable:

```
industry_plot<- ggplot(Uncleaned_DS_jobs, aes(x=Industry)) +
  labs(title = "Distribution of Industry", x = "Industry", subtitle = "") +
  geom_bar(colour="darkblue", fill="lightblue") +
  geom_text(stat='count', aes(label=..count..), vjust=-0.5,size=2.68) +
  theme_classic()+
  theme(axis.text.x = element_text(size = 6, angle = 45, hjust = 1))
industry_plot</pre>
```

Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0. i Please use `after_stat(count)` instead.

Distribution of Industry

As can be seen from the graph it is hard to read the x axis names so to solve this problem, we picked the 10 industries that have the most frequencies in the data and draw a plot regarding these industries.

```
top10_industries <- Uncleaned_DS_jobs %>%
  group_by(Industry) %>%
  summarise(count = n()) %>%
  arrange(desc(count)) %>%
  top_n(10)
```

Selecting by count

```
# Reorder the levels of Industry based on frequency
plot_data <- Uncleaned_DS_jobs
plot_data$Industry <- factor(plot_data$Industry, levels = top10_industries$Industry)

# Filter data to include only the top 10 industries
filtered_data <- plot_data %>%
    filter(Industry %in% top10_industries$Industry)

industry_plot_top10 <- ggplot(filtered_data, aes(x = Industry)) +</pre>
```

```
labs(title = "Distribution of Top 10 Industries", x = "Industry", subtitle = "") +
geom_bar(colour = "darkblue", fill = "lightblue") +
geom_text(stat = 'count', aes(label = ..count..), vjust = -0.5, size = 2.68) +
theme_classic() +
theme(axis.text.x = element_text(size = 10, angle = 45, hjust = 1))
industry_plot_top10
```

Distribution of Top 10 Industries

• Sector

Realizing that sector variable also has -1 values.

```
sum(Uncleaned_DS_jobs\$Sector == -1)
```

[1] 71

We change -1 values to no information for the sector variable.

```
Uncleaned_DS_jobs$Sector[Uncleaned_DS_jobs$Sector == -1] <- "No information"</pre>
```

Histogram of the Sector Variable:

```
top10_sector <- Uncleaned_DS_jobs %>% group_by(Sector) %>% summarise(count = n()) %>%
```

Selecting by count

```
# Reorder the levels of Sector based on frequency
plot_data <- Uncleaned_DS_jobs
plot_data$Sector <- factor(plot_data$Sector, levels = top10_sector$Sector)
# Filter data to include only the top 10 sector
filtered_data <- plot_data %>%
    filter(Sector %in% top10_sector$Sector)

Sector_plot_top10 <- ggplot(filtered_data, aes(x = Sector)) +
    labs(title = "Distribution of Top 10 Sector", x = "Sector", subtitle = "") +
    geom_bar(colour = "darkblue", fill = "lightblue") +
    geom_text(stat = 'count', aes(label = ..count..), vjust = -0.5, size = 2.68) +
    theme_classic() +
    theme(axis.text.x = element_text(size = 10, angle = 45, hjust = 1))
Sector_plot_top10</pre>
```

Distribution of Top 10 Sector

Revenue

```
In revenue column there are some -1 values
```

```
sum(Uncleaned_DS_jobs$Revenue == -1)
```

[1] 27

And this column has a value called Unknown / Non-Applicable

```
head(Uncleaned_DS_jobs$Revenue)
```

```
[1] "Unknown / Non-Applicable" "$1 to $2 billion (USD)"
```

- [3] "\$100 to \$500 million (USD)" "\$100 to \$500 million (USD)"
- [5] "Unknown / Non-Applicable" "Unknown / Non-Applicable"

We convert -1 to that value.

```
Uncleaned_DS_jobs$Revenue[Uncleaned_DS_jobs$Revenue == -1] <- "Unknown / Non-Applicable"
```

Histogram of the Revenue variable:

```
revenue_plot<- ggplot(Uncleaned_DS_jobs, aes(x=Revenue)) +
  labs(title = "Distribution of Revenue", x = "Revenue", subtitle = "") +
  geom_bar(colour="darkblue", fill="lightblue") +
  geom_text(stat='count', aes(label=..count..), vjust=-0.5,size=2.2) +
  theme_classic()+
  theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))
revenue_plot</pre>
```

Distribution of Revenue

• Company Name

When we check the Company Name variable, we see that it also has the Rating next to it:

```
head(Uncleaned_DS_jobs[, c("Company_Name", "Rating")])
```

#	A tibble: 6 x 2	
	Company_Name	Rating
	<chr></chr>	<dbl></dbl>
1	"Healthfirst\n3.1"	3.1
2	"ManTech\n4.2"	4.2
3	"Analysis Group\n3.8"	3.8
4	"INFICON\n3.5"	3.5
5	"Affinity Solutions\n2.9"	2.9
6	"HG Insights\n4.2"	4.2

We can separate them and get rid of the Rating variable inside of Company Name to clean this variable. We can do this by str_replace() function.

```
Uncleaned_DS_jobs$Company_Name <- str_replace(Uncleaned_DS_jobs$Company_Name, "\n[0-9.]+$"
```

Now we have cleaned the Company Name variable:

```
head(Uncleaned_DS_jobs[, c("Company_Name", "Rating")])
```

```
# A tibble: 6 x 2
 Company_Name
                    Rating
 <chr>
                      <dbl>
1 Healthfirst
                        3.1
                        4.2
2 ManTech
3 Analysis Group
                        3.8
4 INFICON
                        3.5
5 Affinity Solutions
                        2.9
                        4.2
6 HG Insights
```

And we can see that how many of the Company Names:

```
Uncleaned_DS_jobs |>
  count(Company_Name, sort = TRUE)
```

# A tibble: 432 x 2	
Company_Name	n
<chr></chr>	<int></int>
1 Hatch Data Inc	12
2 Maxar Technologies	12
3 Tempus Labs	11
4 AstraZeneca	10
5 Klaviyo	8
6 Autodesk	7
7 Phoenix Operations Group	7
8 Novetta	6
9 Southwest Research Institute	6
10 MassMutual	5
# i 422 more rows	

We can see that the company with the most positions opened is "Hatch Data Inc" and "Maxar Technologies" with 12 positions opened.

Histogram of the Company name:

Same problem occurred here like industries so, to see the plot again the 10 company names with the highest frequencies.

Histogram of the company name:

```
top10_companies <- Uncleaned_DS_jobs %>%
  group_by(Company_Name) %>%
  summarise(count = n()) %>%
  arrange(desc(count)) %>%
  top_n(10)
```

Selecting by count

```
# Reorder the levels of Company names based on frequency
plot_data <- Uncleaned_DS_jobs
plot_data$Company_Name <- factor(plot_data$Company_Name, levels = top10_companies$Company_
# Filter data to include only the top 10 industries
filtered_data <- plot_data %>%
    filter(Company_Name %in% top10_companies$Company_Name)

company_plot_top10 <- ggplot(filtered_data, aes(x = Company_Name)) +
    labs(title = "Distribution of Top 10 Companies", x = "Company Name", subtitle = "") +
    geom_bar(colour = "darkblue", fill = "lightblue") +
    geom_text(stat = 'count', aes(label = ..count..), vjust = -0.5, size = 2.68) +
    theme_classic() +
    theme(axis.text.x = element_text(size = 10, angle = 45, hjust = 1))

company_plot_top10</pre>
```

Distribution of Top 10 Companies

• Size

As can be seen from the summary that we have -1 for the Size. But we have unknown category for this variable.

```
summary(as.factor(Uncleaned_DS_jobs$Size))
```

	-1	1 to	50	employees		10000+	employees
	27			86			80
1001 to 5000 emplo	yees 201	to	500	employees	5001	to 10000	employees
	104			85			61
501 to 1000 emplo	yees 51	to	200	employees			Unknown
	77			135			17

So we can assign "-1" to "Unknown" category for this variable:

```
Uncleaned_DS_jobs$Size[Uncleaned_DS_jobs$Size == -1] <- "Unknown"
summary(as.factor(Uncleaned_DS_jobs$Size))

1 to 50 employees 10000+ employees 1001 to 5000 employees</pre>
```

```
86 80 104
201 to 500 employees 5001 to 10000 employees 501 to 1000 employees
85 61 77
51 to 200 employees Unknown
135 44
```

Histogram of the Size variable:

```
library(dplyr)

# Create a frequency table for Size
size_counts <- count(Uncleaned_DS_jobs, Size)

# Sort the data by count in ascending order
size_counts <- arrange(size_counts, desc(n))

# Create the plot
size_plot <- ggplot(size_counts, aes(x = reorder(Size, n), y = n)) +
    labs(title = "Distribution of Size of the Companies", x = "Size", y = "Frequency") +
    geom_col(colour = "darkblue", fill = "lightblue") +
    geom_text(aes(label = n), vjust = -0.5, size = 3) +
    theme_classic() +
    theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))

size_plot</pre>
```


• Competitors

There are -1 values in Competitors. We don't know their competitors' name so we can attribute them to no information

```
Uncleaned_DS_jobs$Competitors[Uncleaned_DS_jobs$Competitors == "-1"] <- "No information"

summary(as.factor(Uncleaned_DS_jobs$Competitors), maxsum = 6)

No information
501
Roche, GlaxoSmithKline, Novartis
10
Leidos, CACI International, Booz Allen Hamilton
6
Los Alamos National Laboratory, Battelle, SRI International
6
Battelle, General Atomics, SAIC
3
(Other)
146
```

• Location

Let's see the location variable first.

```
summary(as.factor(Uncleaned_DS_jobs$Location), maxsum = 6)
```

```
San Francisco, CA New York, NY Washington, DC Boston, MA
69 50 26 24
Chicago, IL (Other)
22 481
```

In the Location variable, we can see that they are written with the state which they are in. So we want to separate them. But, before that, in our data there are some problematic rows:

Some rows are too short. Let's see that columns:

```
Uncleaned_DS_jobs %>%
    filter(
        str_count(Location, ",\\s+") != 1
        ) %>%
        select(Location) %>% distinct_all()

# A tibble: 7 x 1
    Location
        <chr>
1 Remote
2 United States
3 Utah
4 New Jersey
5 Texas
6 Patuxent, Anne Arundel, MD
7 California
```

From this output, we can see that we have "Remote", "United States", locations that have the same names as their states; "Utah", "New Jersey", "Texas" and "California", and "Patuxent, Anne Arundel, MD" which is a region for the Anne Arundel county. So, we will add information for this columns firstly, then we will separate the Location and States. For this, we will use str_replace() function.

```
# Define replacements using case_when
Uncleaned_DS_jobs <- Uncleaned_DS_jobs %>%
    mutate(
        Location = case_when(
```

```
Location == "Remote" ~ str_replace(Location, "Remote", "Remote, R"),
        Location == "United States" ~ str_replace(Location, "United States", "United States,
        Location == "Utah" ~ str_replace(Location, "Utah", "Utah, UT"),
         Location == "New Jersey" ~ str_replace(Location, "New Jersey", "New Jersey, NJ"),
        Location == "Texas" ~ str_replace(Location, "Texas", "Texas, TX"),
        Location == "California" ~ str_replace(Location, "California", "California, CA"),
        Location == "Patuxent, Anne Arundel, MD" ~ str_replace(Location, "Patuxent, Anne Aru
        TRUE ~ Location
      )
    )
Now we can separate them:
  Uncleaned_DS_jobs <- Uncleaned_DS_jobs %>%
    separate(
      Location,
      into = c("Location", "Location_State"),
      sep = ", \setminus s+")
Let's visualize Location_State variable:
  locationstates_counts <- count(Uncleaned_DS_jobs, Location_State)</pre>
  # Sort the data by count in ascending order
  locationstates_counts <- arrange(locationstates_counts, desc(n))</pre>
  # Create the plot
  locationstate_plot <- ggplot(locationstates_counts, aes(x = reorder(Location_State, n), y</pre>
    labs(title = "Distribution of States of the Locations of the Companies", x = "States", y
    geom_col(colour = "darkblue", fill = "lightblue") +
    geom_text(aes(label = n), vjust = -0.5, size = 3) +
    theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))
```

locationstate_plot

• Headquarters

For the headquarters we have -1 values also,

```
sum(Uncleaned_DS_jobs$Headquarters == -1)
```

[1] 31

```
Uncleaned_DS_jobs$Headquarters[Uncleaned_DS_jobs$Headquarters == "-1"] <- "No information"
summary(as.factor(Uncleaned_DS_jobs$Headquarters), maxsum = 6)</pre>
```

```
New York, NY No information San Francisco, CA Chicago, IL 33 31 23
Boston, MA (Other) 19 535
```

Similar to Location, we want to separate the states and the city. We will apply the similar approach to fix this column.

```
Uncleaned_DS_jobs %>%
    filter(
      str_count(Headquarters, ",\\s+") != 1
      ) %>%
    select(Location) %>% distinct_all()
# A tibble: 14 x 1
  Location
   <chr>
1 Hauppauge
2 Reston
3 New York
4 Palo Alto
5 San Francisco
6 Brooklyn
7 Sterling
8 Chantilly
9 Cambridge
10 Omaha
11 Fort Belvoir
12 Naperville
13 Redmond
14 Irwindale
```

We will assign the states for this rows too. and also to not get a warning regarding the NA values later, "No Information" is also going to be fixed:

```
Uncleaned_DS_jobs <- Uncleaned_DS_jobs %>%
mutate(
    Headquarters = case_when(
        Headquarters == "Hauppauge" ~ str_replace(Headquarters, "Hauppauge", "Hauppauge, NY"
        Headquarters == "Reston" ~ str_replace(Headquarters, "Reston", "Reston, VA"),
        Headquarters == "New York" ~ str_replace(Headquarters, "New York", "New York, NY"),
        Headquarters == "Palo Alto" ~ str_replace(Headquarters, "Palo Alto", "Palo Alto, CA"
        Headquarters == "San Francisco" ~ str_replace(Headquarters, "San Francisco", "San Francisco"
```

```
Headquarters == "Redmond" ~ str_replace(Headquarters, "Redmond", "Redmond, WA"),
    Headquarters == "Irwindale" ~ str_replace(Headquarters, "Irwindale", "Irwindale, CA"
    Headquarters == "No information" ~ str_replace(Headquarters, "No information", "No i
    TRUE ~ Headquarters
)
)
```

And finally, we will separate the Headquarters and their states:

```
Uncleaned_DS_jobs <- Uncleaned_DS_jobs %>%
    separate(
    Headquarters,
    into = c("Headquarters", "Headquarters_State"),
    sep = ",\\s+")
```

Let's visualize Headquarters States:

```
hqstates_counts <- count(Uncleaned_DS_jobs, Headquarters_State)

# Sort the data by count in ascending order
hqstates_counts <- arrange(hqstates_counts, desc(n))

# Create the plot
hqstate_plot <- ggplot(hqstates_counts, aes(x = reorder(Headquarters_State, n), y = n)) +
    labs(title = "Distribution of States of the Locations of the Headquarters", x = "States"
    geom_col(colour = "darkblue", fill = "lightblue") +
    geom_text(aes(label = n), vjust = -0.5, size = 3) +
    theme_classic() +
    theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))
hqstate_plot</pre>
```


• Type Of Ownership

There are -1 values in the Type of Ownership also.

We check how many -1 values are in the variable.

```
sum(Uncleaned_DS_jobs$Type_of_Ownership == -1)
```

[1] 27

Uncleaned_DS_jobs\$Type_of_Ownership[Uncleaned_DS_jobs\$Type_of_Ownership == "-1"] <- "Unknown"</pre>

Let's see the summary:

```
summary(as.factor(Uncleaned_DS_jobs$Type_of_Ownership))
```

```
College / University Company - Private
3 397
Company - Public Contract
153 2
Government Hospital
10 1
```

```
Nonprofit Organization Other Organization

36

Private Practice / Firm Self-employed

4

2
Subsidiary or Business Segment Unknown

28
```

Let's visualize type of ownerships of the companies:

```
Type_of_Ownership_counts <- count(Uncleaned_DS_jobs, Type_of_Ownership)

# Sort the data by count in ascending order
Type_of_Ownership_counts <- arrange(Type_of_Ownership_counts, desc(n))

# Create the plot
tow_plot <- ggplot(Type_of_Ownership_counts, aes(x = reorder(Type_of_Ownership, n), y = n)
labs(title = "Distribution of Type of Ownerships of the Companies", x = "Type of Ownerships geom_col(colour = "darkblue", fill = "lightblue") +
geom_text(aes(label = n), vjust = -0.5, size = 3) +
theme_classic() +
theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))
tow_plot</pre>
```


Type of Ownership

• Salary Estimation

For Salary Estimate column, let's see the unique values we have:

```
levels(as.factor(Uncleaned_DS_jobs$Salary_Estimate))
 [1] "$101K-$165K (Glassdoor est.)" "$105K-$167K (Glassdoor est.)"
 [3] "$110K-$163K (Glassdoor est.)" "$112K-$116K (Glassdoor est.)"
[5] "$122K-$146K (Glassdoor est.)" "$124K-$198K (Glassdoor est.)"
 [7] "$128K-$201K (Glassdoor est.)" "$137K-$171K (Glassdoor est.)"
 [9] "$138K-$158K (Glassdoor est.)" "$141K-$225K (Glassdoor est.)"
                                    "$212K-$331K (Glassdoor est.)"
[11] "$145K-$225K(Employer est.)"
[13] "$31K-$56K (Glassdoor est.)"
                                    "$56K-$97K (Glassdoor est.)"
[15] "$66K-$112K (Glassdoor est.)"
                                    "$69K-$116K (Glassdoor est.)"
[17] "$71K-$123K (Glassdoor est.)" "$75K-$131K (Glassdoor est.)"
[19] "$79K-$106K (Glassdoor est.)"
                                    "$79K-$131K (Glassdoor est.)"
[21] "$79K-$133K (Glassdoor est.)"
                                    "$79K-$147K (Glassdoor est.)"
[23] "$80K-$132K (Glassdoor est.)"
                                    "$87K-$141K (Glassdoor est.)"
[25] "$90K-$109K (Glassdoor est.)"
                                    "$90K-$124K (Glassdoor est.)"
[27] "$91K-$150K (Glassdoor est.)"
                                    "$92K-$155K (Glassdoor est.)"
[29] "$95K-$119K (Glassdoor est.)"
                                    "$99K-$132K (Glassdoor est.)"
  sum(is.na(as.factor(Uncleaned DS jobs$Salary Estimate)))
```

Γ1 0

From this output, we can see that we have common shape for the salary estimates with 0 NA values. We can separate this column into two separate columns for obtaining lower and upper limits for the salary estimates.

```
# Remove spaces in the column
Uncleaned_DS_jobs$Salary_Estimate_wo_spaces <- Uncleaned_DS_jobs$Salary_Estimate

Uncleaned_DS_jobs$Salary_Estimate_wo_spaces <- gsub(" ", "",Uncleaned_DS_jobs$Salary_Estim
# Display the updated data frame
head(Uncleaned_DS_jobs$Salary_Estimate_wo_spaces)

[1] "$137K-$171K(Glassdoorest.)" "$137K-$171K(Glassdoorest.)"
[3] "$137K-$171K(Glassdoorest.)" "$137K-$171K(Glassdoorest.)"</pre>
```

[5] "\$137K-\$171K(Glassdoorest.)" "\$137K-\$171K(Glassdoorest.)"

Now we have no blank space between the words.

Let's get rid of the parts at the end; Glassdoor est. and Employer est.

```
Uncleaned_DS_jobs$Salary_Estimate_wo_spaces <-</pre>
    gsub("K\\(Glassdoorest.\\)",
         Uncleaned_DS_jobs$Salary_Estimate_wo_spaces)
  Uncleaned_DS_jobs$Salary_Estimate_wo_spaces <-</pre>
    gsub("K\\(Employerest.\\)",
         Uncleaned_DS_jobs$Salary_Estimate_wo_spaces)
  head(Uncleaned_DS_jobs$Salary_Estimate_wo_spaces)
[1] "$137K-$171" "$137K-$171" "$137K-$171" "$137K-$171" "$137K-$171"
[6] "$137K-$171"
```

Let's see how we can select the numbers that are remaining in the rows: we can use [0-9]+ for this part:

```
str_view(
  Uncleaned_DS_jobs$Salary_Estimate_wo_spaces,
  "[0-9]+")
```

- [1] | \$<137>K-\$<171>
- [2] | \$<137>K-\$<171>
- [3] | \$<137>K-\$<171>
- [4] | \$<137>K-\$<171>
- [5] | \$<137>K-\$<171>
- [6] | \$<137>K-\$<171>
- [7] | \$<137>K-\$<171>
- [8] | \$<137>K-\$<171>
- [9] | \$<137>K-\$<171>
- [10] | \$<137>K-\$<171>
- [11] | \$<137>K-\$<171>
- [12] | \$<137>K-\$<171>
- [13] | \$<137>K-\$<171> [14] | \$<137>K-\$<171>
- [15] | \$<137>K-\$<171>

```
[16] | $<137>K-$<171>
[17] | $<137>K-$<171>
[18] | $<137>K-$<171>
[19] | $<137>K-$<171>
[20] | $<137>K-$<171>
... and 652 more
  Uncleaned_DS_jobs <- Uncleaned_DS_jobs |>
    separate_wider_regex(
      Salary_Estimate_wo_spaces,
      patterns = c(
        "\\$",
        Low_Limit_For_Salary = "[0-9]+",
        "K-\\$",
        High_Limit_For_Salary = "[0-9]+"
        )
      )
```

By using separate_wider_regex() function, we defined the pattern in the data, and we got the new columns as Low_Limit_For_Salary and High_Limit_For_Salary as we wished.

```
head(Uncleaned_DS_jobs[c("Salary_Estimate",
                            "Low_Limit_For_Salary",
                            "High_Limit_For_Salary")])
# A tibble: 6 x 3
  Salary_Estimate
                               Low_Limit_For_Salary High_Limit_For_Salary
                                                     <chr>
  <chr>
1 $137K-$171K (Glassdoor est.) 137
                                                     171
2 $137K-$171K (Glassdoor est.) 137
                                                     171
3 $137K-$171K (Glassdoor est.) 137
                                                     171
4 $137K-$171K (Glassdoor est.) 137
                                                     171
5 $137K-$171K (Glassdoor est.) 137
                                                     171
6 $137K-$171K (Glassdoor est.) 137
                                                     171
```

For not confusing the numbers later, lets multiply the low limit and high limit numbers with 1000 and make Salary Estimate factor.

```
Uncleaned_DS_jobs <- Uncleaned_DS_jobs %>%
  mutate(
    Low_Limit_For_Salary = as.numeric(Low_Limit_For_Salary)*1000,
```

```
High_Limit_For_Salary = as.numeric(High_Limit_For_Salary)*1000)
  Uncleaned DS_jobs$Salary_Estimate <- as.factor(Uncleaned DS_jobs$Salary_Estimate)</pre>
  head(Uncleaned_DS_jobs[c("Salary_Estimate",
                            "Low_Limit_For_Salary",
                            "High_Limit_For_Salary")])
# A tibble: 6 x 3
  Salary_Estimate
                           Low_Limit_For_Salary High_Limit_For_Salary
  <fct>
                                               <dbl>
                                                                      <dbl>
1 $137K-$171K (Glassdoor est.)
                                              137000
                                                                     171000
2 $137K-$171K (Glassdoor est.)
                                              137000
                                                                     171000
3 $137K-$171K (Glassdoor est.)
                                              137000
                                                                     171000
4 $137K-$171K (Glassdoor est.)
                                              137000
                                                                    171000
                                              137000
5 $137K-$171K (Glassdoor est.)
                                                                    171000
6 $137K-$171K (Glassdoor est.)
                                              137000
                                                                     171000
```

• Job Title

For Job Title column, first let's examine it:

```
glimpse(
   as.factor(
     Uncleaned_DS_jobs$Job_Title))
```

Factor w/ 172 levels "(Sr.) Data Scientist -",..: 156 50 50 50 50 65 50 165 50 ...

As we can see, we have 172 different levels for Job Titles. We can try to group them by searching common words.

```
head(
    levels(
        as.factor(
           Uncleaned_DS_jobs$Job_Title)))

[1] "(Sr.) Data Scientist -"
[2] "AI Data Scientist"
[3] "AI Ops Data Scientist"
```

```
[4] "AI/ML - Machine Learning Scientist, Siri Understanding"
```

- [5] "Analytics Business Assurance Data Analyst"
- [6] "Analytics Manager"

But before that, we can see that some columns have "Senior", "Experience" words. By using this information, we can create a new column for seniority of the job.

By using str_view() function, first, let's see that columns;

```
str view(
    Uncleaned_DS_jobs$Job_Title,
    regex("^Senior|^Sr|^Experience",
          multiline = TRUE))
  [1] | <Sr> Data Scientist
 [16] | <Experience>d Data Scientist
 [34] | <Senior> Research Statistician- Data Scientist
 [40] | <Senior> Analyst/Data Scientist
 [47] | <Senior> Data Scientist
 [57] | <Senior> Data Scientist
 [93] | <Senior> Data Scientist
 [99] | <Senior> Data Scientist
[104] | <Senior> Data Scientist
[107] | <Sr> Data Engineer (Sr BI Developer)
[122] | <Senior> Data Engineer
[123] | <Senior> Data Scientist
[126] | <Sr>. ML/Data Scientist - AI/NLP/Chatbot
[130] | <Sr>. ML/Data Scientist - AI/NLP/Chatbot
[132] | <Senior> Data Engineer
[137] | <Senior> Data Engineer
[143] | <Senior> Data Scientist
[154] | <Sr> Scientist - Extractables & Leachables
[156] | <Sr> Data Scientist
[158] | <Experience>d Data Scientist
... and 51 more
```

By using str_detect() function, we can detect the rows including "Senior", "Sr", "Experienced" words. This function returns TRUE if they exist, and returns FALSE if they don't exist.

By using as.integer(), we assign 1 to exists and 0 to nonexistent.

Now that we defined the senior roles, we can assign the same titles to same jobs.

Let's start by Data Scientist. Let's find the columns including Data Scientist word.

```
str_view(Uncleaned_DS_jobs$Job_Title,
           regex(".*Data\\s+Scientist.*",
           multiline = TRUE))
 [1] | <Sr Data Scientist>
 [2] | <Data Scientist>
 [3] | <Data Scientist>
 [4] | <Data Scientist>
 [5] | <Data Scientist>
 [6] | <Data Scientist>
 [7] | <Data Scientist / Machine Learning Expert>
 [8] | <Data Scientist>
 [9] | <Staff Data Scientist - Analytics>
[10] | <Data Scientist>
[11] | <Data Scientist>
[12] | <Data Scientist>
[13] | <Data Scientist - Statistics, Early Career>
[15] | <Data Scientist>
[16] | <Experienced Data Scientist>
[17] | <Data Scientist - Contract>
[18] | <Data Scientist>
[21] | <Data Scientist>
[22] | <Data Scientist/Machine Learning>
[25] | <Data Scientist>
... and 435 more
```

Bu using str_replace_all() we can replace all the rows including Data Scientist word in some way, directly with "Data Scientist".

```
Uncleaned_DS_jobs$Job_Title <-
    str_replace_all(
    Uncleaned_DS_jobs$Job_Title,
    ".*Data\\s+Scientist.*",</pre>
```

"Data Scientist") Now let's get Data Analyst titles: str_view(Uncleaned_DS_jobs\$Job_Title, regex(".*Data\\s+Analyst.*", multiline = TRUE, ignore_case = TRUE)) [19] | <Data Analyst II> [41] | <Data Analyst> [43] | <Data Analyst I> [51] | <Data Analyst> [55] | <E-Commerce Data Analyst> [61] | <Data Analyst> [65] | <Global Data Analyst> [74] | <Business Data Analyst> [76] | <Data Analyst> [87] | <Data Analyst> [111] | <RFP Data Analyst> [112] | <Data Analyst> [118] | <Data Analyst/Engineer> [139] | <Data Analyst> [162] | <Say Business Data Analyst> [164] | <Data Analyst> [167] | <Senior Data Analyst> [168] | <Senior Data Analyst> [170] | <Sr Data Analyst> [175] | <Data Analyst> ... and 27 more

```
Uncleaned_DS_jobs$Job_Title <-
    str_replace_all(
    Uncleaned_DS_jobs$Job_Title,
    ".*Data\\s+Analyst.*",
    "Data Analyst")</pre>
```

Now let's get Data Engineer titles:

```
str_view(
    Uncleaned_DS_jobs$Job_Title,
    regex(".*Data\\s+Engineer.*",
          multiline = TRUE,
          ignore_case = TRUE))
 [35] | <Data Engineer>
 [54] | <Jr. Data Engineer>
 [66] | <Data Engineer>
 [71] | <Data Engineer (Remote)>
 [77] | <Data Engineer, Enterprise Analytics>
 [83] | <Data Engineer>
[107] | <Sr Data Engineer (Sr BI Developer)>
[108] | <Data Engineer>
[114] | <Data Engineer>
[120] | <Data Engineer>
[122] | <Senior Data Engineer>
[124] | <Data Engineer>
[129] | <Data Engineer>
[132] | <Senior Data Engineer>
[133] | <Data Engineer>
[137] | <Senior Data Engineer>
[140] | <Data Engineer>
[142] | <Tableau Data Engineer 20-0117>
[153] | <Data Engineer>
[169] | <Data Engineer>
... and 27 more
  Uncleaned_DS_jobs$Job_Title <-</pre>
    str_replace_all(
      Uncleaned_DS_jobs$Job_Title,
      ".*Data\\s+Engineer.*",
      "Data Engineer")
And Machine Learning Engineers:
  str_view(
    Uncleaned_DS_jobs$Job_Title,
    regex(".*Machine\\s+Learning.*",
          multiline = TRUE,
          ignore_case = TRUE))
```

```
[42] | <Machine Learning Engineer>
 [46] | <Computational Scientist, Machine Learning>
 [62] | <Machine Learning Engineer>
 [69] | <Data & Machine Learning Scientist>
 [89] | <Machine Learning Engineer>
 [92] | <Machine Learning Engineer>
[102] | <Machine Learning Engineer>
[135] | <Machine Learning Engineer>
[136] | <Machine Learning Engineer>
[145] | <Machine Learning Engineer>
[159] | <Machine Learning Engineer>
[172] | <Machine Learning Scientist - Bay Area, CA>
[176] | <Senior Data & Machine Learning Scientist>
[180] | <Machine Learning Engineer>
[191] | <Principal Machine Learning Scientist>
[203] | <Machine Learning Engineer>
[220] | <Senior Machine Learning Scientist - Bay Area, CA>
[229] | <Machine Learning Engineer>
[261] | <Principal Machine Learning Scientist>
[331] | <Machine Learning Engineer>
... and 16 more
  Uncleaned_DS_jobs$Job_Title <- str_replace_all(</pre>
    Uncleaned_DS_jobs$Job_Title,
    ".*Machine\\s+Learning.*",
    "Machine Learning Engineer")
Let's examine Managers this time:
  str view(
    Uncleaned_DS_jobs$Job_Title,
    regex(".*Analytics\\s+Manager.*|.*Data\\s+Science\\sManager.*|.*Director.*|.*Vice\\sPres
          multiline = TRUE,
          ignore_case = TRUE))
 [86] | <Data Science Manager, Payment Acceptance - USA>
[150] | <Analytics Manager>
[198] | < Principal Scientist/Associate Director, Quality Control and Analytical Technologies:
[218] | <Analytics Manager - Data Mart>
[266] | <Director of Data Science>
[272] | <Manager / Lead, Data Science & Analytics>
```

```
[313] | <Principal Scientist/Associate Director, Quality Control and Analytical Technologies
```

- [332] | <Principal Data & Analytics Platform Engineer>
- [343] | <VP, Data Science>
- [381] | <Analytics Manager Data Mart>
- [470] | <VP, Data Science>
- [523] | <Manager, Field Application Scientist, Southeast>
- [564] | <Data Science Manager>
- [581] | <Vice President, Biometrics and Clinical Data Management>

Let's replace them with "Data Science and Analytics Manager"

```
Uncleaned_DS_jobs$Job_Title <-
    str_replace_all(
    Uncleaned_DS_jobs$Job_Title,
    ".*Analytics\\s+Manager.*|.*Data\\s+Science\\sManager.*|.*Director.*|.*Vice\\sPresident
"Data Science and Analytics Manager")</pre>
```

Now, bu using str_view() function, we want to see all the jobs that have "Data" in it, but not "Data Analyst", "Data Scientist,"Data Engineer" or "Data Science and Analytics Manager" because we already took care of that titles.

```
str_view(
   Uncleaned_DS_jobs$Job_Title,
   regex("^(?!.*Data\\s+Analyst.*|.*Data\\s+Scientist.*|.*Data\\s+Science\\s+and\\s+Analyti
        ignore_case = TRUE))
```

- [14] | <Data Modeler>
- [24] | <Business Intelligence Analyst I- Data Insights>
- [56] | <Data Analytics Engineer>
- [97] | <Data Analytics Engineer>
- [117] | <Software Engineer Data Science>
- [141] | <Data Integration and Modeling Engineer>
- [187] | <Production Engineer Statistics/Data Analysis>
- [207] | <Data Science Instructor>
- [214] | <Data Science Software Engineer>
- [219] | <Data Modeler (Analytical Systems)>
- [230] | <Equity Data Insights Analyst Quantitative Analyst>
- [257] | <Environmental Data Science>
- [370] | <Data Science Software Engineer>
- [382] | <Data Modeler (Analytical Systems)>
- [388] | <IT Partner Digital Health Technology and Data Science>
- [396] | <Data Solutions Engineer Data Modeler>

```
[519] | <Data Science Software Engineer>
[540] | <Data Science Analyst>
[545] | <Data Modeler (Analytical Systems)>
[555] | <IT Partner Digital Health Technology and Data Science>
... and 3 more
```

We will save these as "Other Data Positions"

```
Uncleaned_DS_jobs$Job_Title <-
    str_replace_all(
    Uncleaned_DS_jobs$Job_Title,
        regex("(?!Data\\s+(Analyst|Scientist|Engineer|Science\\s+and\\s+Analytics\\s+Manager)
        "Other Data Positions" )</pre>
```

Finally, we will save all the jobs that are not include "Data" word in it and not "Machine Learning Engineer" into "Others" category because there are a lot of jobs with the titles like Scientist, Researcher etc.

```
Uncleaned_DS_jobs$Job_Title <-
    str_replace_all(
    Uncleaned_DS_jobs$Job_Title,
    regex("^(?!.*(Data|Machine\\s+Learning\\s+Engineer)).*$"),
    "Others")</pre>
```

Finally, let's see our clean job titles:

```
Uncleaned_DS_jobs$Job_Title <- as.factor(Uncleaned_DS_jobs$Job_Title)
summary(Uncleaned_DS_jobs$Job_Title)</pre>
```

Data Engineer	Data Analyst
47	47
Data Scientist	Data Science and Analytics Manager
455	14
Other Data Positions	Machine Learning Engineer
23	36
	Others
	50

Let's visualize Job Titles:

```
jt_counts <- count(Uncleaned_DS_jobs, Job_Title)

# Sort the data by count in ascending order
jt_counts <- arrange(jt_counts, desc(n))

jt_plot <- ggplot(jt_counts, aes(x = reorder(Job_Title, n), y = n)) +
    labs(title = "Distribution of Job Titles", x = "Job Titles", y = "Frequency") +
    geom_col(colour = "darkblue", fill = "lightblue") +
    geom_text(aes(label = n), vjust = -0.5, size = 3) +
    theme_classic() +
    theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))
jt_plot</pre>
```

Distribution of Job Titles August 100 - 14 23 36 47 47 50 0 14 23 36 47 47 50 0 14 100 0 14

Job Titles

• Job Description

When we look at the job description column,

We have so many different values but we can differentiate them into other columns like we can say that a job wants the skill SQL.

First, we need to look the job description column in a detailed way.

```
head(Uncleaned_DS_jobs$Job_Description,1)
```

[1] "Description\n\nThe Senior Data Scientist is responsible for defining, building, and important the control of the control

We see some common requirements and common job descriptions for jobs.

For this we can separate the columns like SQL and we can say that this jobs wants an SQL bu using factor 1 or 0.

Let's start with SQL:

In this we should check if SQL is mentioned in the variable Job_Description

```
sql_mentioned <- function(description) {
    # We use tolower to match the SQL in the job description
    description <- tolower(description)

# Check if SQL is mentioned
    if (grepl("\\bsql\\b", description)) {
        return(1)
    } else {
        return(0)
    }
}</pre>
```

Now we need to create a column called SQL, in this column we will see if SQL is a requirement in the job description or not.

```
Uncleaned_DS_jobs$sql_needed <- sapply(Uncleaned_DS_jobs$Job_Description, sql_mentioned)
Uncleaned_DS_jobs$sql_needed <- as.factor(Uncleaned_DS_jobs$sql_needed)</pre>
```

Now for Python we repeat the same process.

```
python_mentioned <- function(description) {
    # We use tolower to match the python in the job description
    description <- tolower(description)

# Check if python is mentioned
    if (grepl("\\bpython\\b", description)) {
        return(1)
    } else {
        return(0)
    }
}</pre>
```

```
Uncleaned_DS_jobs$python_needed <- sapply(Uncleaned_DS_jobs$Job_Description, python_mentic
  Uncleaned_DS_jobs$python_needed <- as.factor(Uncleaned_DS_jobs$python_needed)</pre>
Now for Excel:
  excel_mentioned <- function(description) {</pre>
    # We use tolower to match the excel in the job description
    description <- tolower(description)</pre>
    # Check if excel is mentioned
    if (grepl("\\bexcel\\b", description)) {
      return(1)
    } else {
      return(0)
    }
  }
  Uncleaned_DS_jobs\( excel_needed <- sapply (Uncleaned_DS_jobs\( excel_neetion, excel_mentione) \)
  summary(Uncleaned_DS_jobs$excel_needed)
   Min. 1st Qu. Median
                            Mean 3rd Qu.
                                             Max.
0.0000 0.0000 0.0000 0.1161 0.0000 1.0000
  Uncleaned_DS_jobs$excel_needed <- as.factor(Uncleaned_DS_jobs$excel_needed)</pre>
For Hadoop:
  hadoop_mentioned <- function(description) {</pre>
    # We use tolower to match the hadoop in the job description
    description <- tolower(description)</pre>
    # Check if hadoop is mentioned
    if (grepl("\\bhadoop\\b", description)) {
      return(1)
    } else {
      return(0)
    }
```

```
}
  Uncleaned_DS_jobs$hadoop_needed <- sapply(Uncleaned_DS_jobs$Job_Description, hadoop_mention)
  summary(Uncleaned_DS_jobs$hadoop_needed)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
0.0000 0.0000 0.0000 0.2128 0.0000 1.0000
  Uncleaned_DS_jobs$hadoop_needed<- as.factor(Uncleaned_DS_jobs$hadoop_needed)</pre>
For Spark:
  spark_mentioned <- function(description) {</pre>
    # We use tolower to match the spark in the job description
    description <- tolower(description)</pre>
    # Check if spark is mentioned
    if (grepl("\\bspark\\b", description)) {
      return(1)
    } else {
      return(0)
    }
  }
  Uncleaned_DS_jobs$spark_needed <- sapply(Uncleaned_DS_jobs$Job_Description, spark_mentione
  summary(Uncleaned_DS_jobs$spark_needed)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
0.0000 0.0000 0.0000 0.2664 1.0000 1.0000
  Uncleaned_DS_jobs$spark_needed <- as.factor(Uncleaned_DS_jobs$spark_needed)</pre>
For AWS:
```

```
aws_mentioned <- function(description) {</pre>
    # We use tolower to match the AWS in the job description
    description <- tolower(description)</pre>
    # Check if AWS is mentioned
    if (grepl("\\baws\\b", description)) {
      return(1)
    } else {
      return(0)
  }
  Uncleaned_DS_jobs$aws_needed <- sapply(Uncleaned_DS_jobs$Job_Description, aws_mentioned)</pre>
  summary(Uncleaned_DS_jobs$aws_needed)
  Min. 1st Qu. Median
                            Mean 3rd Qu.
                                             Max.
0.0000 0.0000 0.0000 0.2009 0.0000 1.0000
  Uncleaned_DS_jobs$aws_needed <- as.factor(Uncleaned_DS_jobs$aws_needed)</pre>
For Tableau:
  tableau_mentioned <- function(description) {</pre>
    # We use tolower to match the Tableau in the job description
    description <- tolower(description)</pre>
    # Check if Tableau is mentioned
    if (grepl("\\btableau\\b", description)) {
      return(1)
    } else {
      return(0)
    }
  }
  Uncleaned_DS_jobs$tableau_needed <- sapply(Uncleaned_DS_jobs$Job_Description, tableau_ment
  summary(Uncleaned_DS_jobs$tableau_needed)
```

```
Min. 1st Qu. Median
                          Mean 3rd Qu.
                                            Max.
  0.000
          0.000 0.000
                          0.183 0.000
                                           1.000
  Uncleaned_DS_jobs$tableau_needed <- as.factor(Uncleaned_DS_jobs$tableau_needed)</pre>
For Big Data:
  bigdata_mentioned <- function(description) {</pre>
    # We use tolower to match the Big data in the job description
    description <- tolower(description)</pre>
    # Check if Big data is mentioned
    if (grepl("\\bbig-data\\b", description)) {
      return(1)
    } else {
      return(0)
  }
  Uncleaned_DS_jobs$bigdata_needed <- sapply(Uncleaned_DS_jobs$Job_Description, bigdata_ment
  summary(Uncleaned_DS_jobs$bigdata_needed)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
0.00000 0.00000 0.00000 0.01042 0.00000 1.00000
  Uncleaned_DS_jobs$bigdata_needed<- as.factor(Uncleaned_DS_jobs$bigdata_needed)</pre>
For Numpy:
  numpy_mentioned <- function(description) {</pre>
    # We use tolower to match the Numpy in the job description
    description <- tolower(description)</pre>
    # Check if Numpy is mentioned
    if (grepl("\\bnumpy\\b", description)) {
      return(1)
    } else {
      return(0)
```

```
}
  Uncleaned_DS_jobs$numpy_needed <- sapply(Uncleaned_DS_jobs$Job_Description, numpy_mentione
  summary(Uncleaned_DS_jobs$numpy_needed)
  Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
0.00000 0.00000 0.00000 0.08482 0.00000 1.00000
  Uncleaned_DS_jobs$numpy_needed <- as.factor(Uncleaned_DS_jobs$numpy_needed)</pre>
For Machine Learning:
  ML_mentioned <- function(description) {</pre>
    # We use tolower to match the ML in the job description
    description <- tolower(description)</pre>
    # Check if ML is mentioned
    if (grepl("\\bmachine learning\\b", description)) {
      return(1)
    } else {
      return(0)
    }
  }
  Uncleaned_DS_jobs$ML_needed <- sapply(Uncleaned_DS_jobs$Job_Description, ML_mentioned)</pre>
  summary(Uncleaned_DS_jobs$ML_needed)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                            Max.
         0.000 1.000 0.619
  0.000
                                   1.000
                                           1.000
  Uncleaned_DS_jobs$ML_needed<- as.factor(Uncleaned_DS_jobs$ML_needed)</pre>
```

For Deep Learning:

```
DL_mentioned <- function(description) {</pre>
    # We use tolower to match the DL in the job description
    description <- tolower(description)</pre>
    # Check if DL is mentioned
    if (grepl("\\bdeep learning\\b", description)) {
      return(1)
    } else {
      return(0)
  }
  Uncleaned_DS_jobs$DL_needed <- sapply(Uncleaned_DS_jobs$Job_Description, DL_mentioned)</pre>
  summary(Uncleaned_DS_jobs$DL_needed)
  Min. 1st Qu. Median
                            Mean 3rd Qu.
                                             Max.
0.0000 0.0000 0.0000 0.1429 0.0000 1.0000
  Uncleaned_DS_jobs$DL_needed <- as.factor(Uncleaned_DS_jobs$DL_needed)</pre>
For Statistics:
  stat_mentioned <- function(description) {</pre>
    # We use tolower to match the statistics in the job description
    description <- tolower(description)</pre>
    # Check if statistics is mentioned
    if (grepl("\\bstatistics\\b", description)) {
      return(1)
    } else {
      return(0)
    }
  }
  Uncleaned_DS_jobs$stat_needed <- sapply(Uncleaned_DS_jobs$Job_Description, stat_mentioned)</pre>
  summary(Uncleaned_DS_jobs$stat_needed)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.4926 1.0000 1.0000
```

```
Uncleaned_DS_jobs$stat_needed <- as.factor(Uncleaned_DS_jobs$stat_needed)</pre>
```

Now Let's check the new columns in our dataset:

```
summary(Uncleaned_DS_jobs)
```

	Ioh 7	Γitle	Salary_Estimate
D-+- A1+	300_1		• –
Data Analyst		: 47	\$75K-\$131K (Glassdoor est.) : 32
Data Engineer		: 47	\$79K-\$131K (Glassdoor est.) : 32
Data Science and A	nalytics Manager	r: 14	\$99K-\$132K (Glassdoor est.) : 32
Data Scientist		:455	\$137K-\$171K (Glassdoor est.): 30
Machine Learning E	ingineer	: 36	\$90K-\$109K (Glassdoor est.) : 30
Other Data Positio	ns	: 23	\$56K-\$97K (Glassdoor est.) : 22
Others		: 50	(Other) :494
Job_Description	Rating	Compa	ny_Name Location
Length:672	Min. :0.000	Lengt	h:672 Length:672
Class :character	1st Qu.:3.300	Class	:character Class:character
Mode :character	Median :3.800	Mode	:character Mode :character
	Mean :3.593		
	3rd Qu.:4.300		
	Max. :5.000		
${ t Location_State}$	Headquarters	Не	adquarters_State Size
Length:672	Length:672	Le	ength:672 Length:672
Class :character	Class :characte	er Cl	ass :character Class :character
Mode :character	Mode :characte	er Mo	de :character Mode :character

Founded	Type_of_Uwnership	Industry	Sector		
Length:672	Length:672	Length:672	Length:672		
Class :character	Class :character	Class :character	Class :character		
Mode :character	Mode :character	Mode :character	Mode :character		

Revenue Competitors Low_Limit_For_Salary

Length:672 Length:672 Min. : 31000 Class :character Class :character 1st Qu.: 79000 Mode :character Mode :character Median : 91000

Mean : 99196 3rd Qu.:122000 Max. :212000

High_Limit_For_Salary Senior_Position sql_needed python_needed excel_needed

Min. : 56000 Min. :0.0000 0:347 0:183 0:594 1st Qu.:119000 1st Qu.:0.0000 1:325 1:489 1: 78

Median :133000Median :0.0000Mean :148131Mean :0.10573rd Qu.:1650003rd Qu.:0.0000Max. :331000Max. :1.0000

hadoop_needed spark_needed aws_needed tableau_needed bigdata_needed

0:529 0:493 0:537 0:549 0:665 1:143 1:179 1:135 1:123 1: 7

numpy_needed ML_needed DL_needed stat_needed

0:615 0:256 0:576 0:341 1:57 1:416 1:96 1:331

Visualizations

First, see our variables:

 ${\tt glimpse}({\tt Uncleaned_DS_jobs})$

Rows: 672 Columns: 31

```
$ Job_Title
                      <fct> Data Scientist, Data Scientist, Data Scientist, ~
                      <fct> $137K-$171K (Glassdoor est.), $137K-$171K (Glass~
$ Salary_Estimate
$ Job_Description
                      <chr> "Description\n\nThe Senior Data Scientist is res~
$ Rating
                      <dbl> 3.1, 4.2, 3.8, 3.5, 2.9, 4.2, 3.9, 3.5, 4.4, 3.6~
                      <chr> "Healthfirst", "ManTech", "Analysis Group", "INF~
$ Company Name
                      <chr> "New York", "Chantilly", "Boston", "Newton", "Ne~
$ Location
                      <chr> "NY", "VA", "MA", "MA", "NY", "CA", "MA", "MA", ~
$ Location State
                      <chr> "New York", "Herndon", "Boston", "Bad Ragaz", "N~
$ Headquarters
$ Headquarters_State
                      <chr> "NY", "VA", "MA", "Switzerland", "NY", "CA", "Sw~
$ Size
                      <chr> "1001 to 5000 employees", "5001 to 10000 employe~
                      <chr> "1993", "1968", "1981", "2000", "1998", "2010", ~
$ Founded
                      <chr> "Nonprofit Organization", "Company - Public", "P~
$ Type_of_Ownership
                      <chr> "Insurance Carriers", "Research & Development", ~
$ Industry
                      <chr> "Insurance", "Business Services", "Business Serv~
$ Sector
                      <chr> "Unknown / Non-Applicable", "\$1 to \$2 billion (U~
$ Revenue
$ Competitors
                      <chr> "EmblemHealth, UnitedHealth Group, Aetna", "No i~
$ Low_Limit_For_Salary
                      <dbl> 137000, 137000, 137000, 137000, 137000, ~
$ High_Limit_For_Salary <dbl> 171000, 171000, 171000, 171000, 171000, 171000, ~
$ Senior_Position
                      $ sql_needed
                      <fct> 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ~
$ python_needed
                      <fct> 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, ~
                      $ excel needed
$ hadoop_needed
                      <fct> 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ~
                      <fct> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, ~
$ spark_needed
$ aws_needed
                      <fct> 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, ~
$ tableau_needed
                      <fct> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
$ bigdata_needed
$ numpy_needed
                      <fct> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, ~
                      <fct> 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, ~
$ ML_needed
$ DL_needed
                      <fct> 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, ~
$ stat_needed
                      <fct> 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, ~
```

- Salary Distribution by Job Titles: Let's display the distribution of salaries for different job titles; both for low limit estimate for salary and high limit estimate for salary:
- Low Limit Estimate for Salary

```
salary_distribution <- ggplot(Uncleaned_DS_jobs, aes(x = Job_Title, y = Low_Limit_For_Sala
geom_boxplot() +
labs(title = "Low Limit Salary Distribution by Job Title",
        x = "Job Title",
        y = "Low Limit for Salary") +</pre>
```

```
theme_classic() +
  theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))
salary_distribution
```


• High Limit Estimate for Salary


```
# Calculate median low salary limits for each job title
salary_median <- Uncleaned_DS_jobs %>%
  group_by(Job_Title) %>%
 summarise(median_salary = median(High_Limit_For_Salary))
# Sort the data by median low salary in descending order
salary_median <- salary_median %>%
 arrange(desc(median_salary))
salary_distribution <- ggplot(salary_median,</pre>
                              aes(x = reorder(Job_Title,
                                              median_salary),
                                  y = median_salary)) +
 geom_bar(stat = "identity", fill = "lightblue", col = "darkblue") +
 geom_text(aes(label = scales::comma(median_salary)), vjust = -0.5, size = 3) +
 labs(title = "Median High Limit for Salary by Job Title",
      x = "Job Title",
      y = "Median High Limit for Salary") +
 theme_classic() +
 theme(axis.text.x = element_text(size = 9.2, angle = 45, hjust = 1))
```


As can be seen from the graph that there is not a significant difference between the medians of the different job titles.

• Company Size vs. Salaries: To explore how salary ranges vary across different company sizes:

```
# Create a new variable with sorted factor levels
data_sorted <- transform(Uncleaned_DS_jobs, Size_Sorted = factor(Size, levels = sort())
# Create boxplot for Low_Limit_For_Salary with adjusted y-axis limits
plot_low <- ggplot(data_sorted, aes(x = Size_Sorted, y = Low_Limit_For_Salary, fill =
    geom_boxplot(alpha = 0.8) +
    labs(title = "Low Limit Salary Ranges across Company Sizes",
        x = "Company Size",
        y = "Low Limit Salary") +
    scale_fill_discrete(name = "Company Size") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    coord_cartesian(ylim = c(0, 340000)) # Set y-axis limits</pre>
```

Low Limit Salary Ranges across Company Sizes

plot_high

High Limit Salary Ranges across Company Sizes

• Job Titles vs. Senior Positions: Visualize the proportion of senior positions against different job titles using a bar chart:

Firstly, we can see the distribution of Senior Position among the job titles:

```
Uncleaned_DS_jobs %>%
  select(Senior_Position, Job_Title) %>%
  group_by(Job_Title, Senior_Position) %>%
  count()
```

```
# A tibble: 12 x 3
```

#	Groups: Job_litle, Senior_Position	n [12]	
	Job_Title	Senior_Position	n
	<fct></fct>	<int></int>	<int></int>
1	Data Analyst	0	37
2	2 Data Analyst	1	10
3	B Data Engineer	0	41
4	Data Engineer	1	6
Ę	Data Science and Analytics Manager	0	14
6	S Data Scientist	0	413
7	Data Scientist	1	42
8	B Machine Learning Engineer	0	30

```
      9 Machine Learning Engineer
      1
      6

      10 Other Data Positions
      0
      23

      11 Others
      0
      43

      12 Others
      1
      7
```

Then we will calculate the percentage of the senior positions for every title:

```
senior_proportion <- Uncleaned_DS_jobs %>%
    group_by(Job_Title) %>%
    summarise(Percentage_Senior = mean(Senior_Position) * 100) %>%
    arrange(desc(Percentage_Senior))
  senior_proportion
# A tibble: 7 x 2
  Job_Title
                                      Percentage_Senior
  <fct>
                                                  <dbl>
1 Data Analyst
                                                  21.3
                                                  16.7
2 Machine Learning Engineer
3 Others
                                                  14
4 Data Engineer
                                                  12.8
5 Data Scientist
                                                   9.23
6 Data Science and Analytics Manager
                                                   0
7 Other Data Positions
                                                   0
```

Let's create bar graph:

```
senior_plot <- ggplot(senior_proportion, aes(x = reorder(Job_Title, Percentage_Senior), y
  geom_bar(stat = "identity", fill = "skyblue", alpha = 0.8) +
  geom_text(aes(label = paste0(round(Percentage_Senior), "%")), vjust = -0.5, size = 3.5,
  labs(title = "Proportion of Senior Positions by Job Title",
        x = "Job Title",
        y = "Percentage of Senior Positions") +
   theme_minimal() +
   theme(axis.text.x = element_text(angle = 45, hjust = 1))</pre>
```


Job Title

We can see that the title that is searched for seniority is Data Analyst, however, only 21% of the Data Analyst positions are senior.

• **Industry Analysis:** Use a treemap to display the distribution of job positions across different industries.

Distribution of Job Positions across Industries

No information	Computer Hardware & Software	Consulting	n I	Staffing & Outsourcing			Insurance Carriers		
Biotech & Pharmaceuticals	Aerospace & Defense	intornot	Researd Develope Banks & Credit Unions	ment	Fede Agend	ies	Investment Banking & Asset Management Real Utilities		
IT Services	Enterprise Software & Network Solutions	Marketing Health Care Services &	Lending Energy		Video Games		Rail		

We can see that the industries that are hiring the most are: Biotech & Pharmaceuticals, IT Services, Computer Hardware & Software, Aerospace & Defense and so on.

• Revenue vs. Ratings: Create a grouped boxplot to show the distribution of ratings for different revenue categories

• Overview of Skills Needed in the Job Postings:

As can be seen from the graph that python and ML are most mentioned skills that are required in the job postings.

References

About us | glassdoor. (n.d.). https://www.glassdoor.com/about/

Barr, D., & DeBruine, L. (n.d.). Data Cleaning. $\frac{https://rgup.gitlab.io/research_cycle/03_tidyr.html}{}$

Cotton, R. (2023, February 16). Quarto cheat sheet (previously known as RMarkdown). DataCamp. https://www.datacamp.com/cheat-sheet/quarto-cheat-sheet-previously-known-as-r-markdown

GREP: Pattern matching and replacement. RDocumentation. (n.d.). https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/grep

Rahman, R. (n.d.). [Dataset] Data Science Job Posting on Glassdoor. Retrieved December 20, 2023,. https://www.kaggle.com/datasets/rashikrahmanpritom/data-science-job-posting-on-glassdoor/data

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for Data Science: Import, Tidy, transform, visualize, and model data. O'Reilly Media, Inc.