Course Name: Computer Organization and Architecture Subject Code: TMC 102

Program Name: Master of Computer Applications (MCA)

1 Contact Hours: 45 L 3 T 0 P 0

2 Examination Duration (Hrs): Theory 0 3 Practical 0 0

3 Relative Weightage: CWE: 25 MTE: 25 ETE: 50

4 Credits: 0 3

6 Pre-Requisite: Basic understanding of computers.

7 Subject Area: Computer Science

8 Objective: To familiarize students with the organization and architecture of a basic

computer.

9 Course Outcome: After completion of course a student must be able to

- **CO 1** Understand the fundamental concepts of digital electronics, analyze and design the basic combinational and sequential circuits in lab using bread board.
- **CO 2** Exhibit a good understanding of the organization and architecture of a computer system. Cognize the working of central processing unit.
- **CO 3** Evaluate and describe the input output organization, various addressing modes and the concept of DMA.
- **CO 4** Appraise the various types of memories used in a computer system. Analyze the importance and functionality of cache and virtual memory organization.
- **CO 5** Describe and discuss the parallel processing concepts, benefits and structure of a multiprocessor system.
- **CO 6** Review the various aspects of computer organization and summarize the working principles of computer system

10 Details of the Course:

Unit	CONTENT	CONTACT
No.		HOURS
1	Introduction: Representation of Information and Basic Building Blocks:	7
	Introduction to Computer, Computer hardware generation, Number	
	Systems, Character Codes (BCD, ASCII, EBCDIC), Logic gates,	
	Boolean Algebra, K-map simplification, Combination circuits, Adders,	
	Decoder, Encoders, Multiplexer, De-multiplexer, Sequential circuits,	

	Flip-Flops, Registers, Counters (synchronous & asynchronous), IEEE	
	standard for Floating point numbers. Division algorithm and Booth's	
	multiplication algorithm.	
2	Basic Organization: Processor and its Components, ALU,CU and	10
-	Special Purpose Registers, Von Neumann Machine (IAS Computer),	10
	Register Transfer Language, Bus and Memory Transfers, Common Bus	
	System, Instruction Cycle Operational flow chart (Fetch, Decode),	
	Organization of Central Processing Unit, Hardwired & micro	
	programmed control unit, Single Organization, General Register	
	Organization, Stack Organization, Addressing modes, Instruction	
	formats, I/O Organization, Bus Architecture, Programming Registers	
3	I/O Organization: Peripheral devices, I/O interface, Modes of Transfer,	10
	Priority Interrupt, Direct Memory Access (DMA), Input-Output	
	Processor, Serial Communication. I/O Controllers, Asynchronous data	
	transfer, Strobe Control, Handshaking.	
4	Memory Organization: Memory Hierarchy, Main Memory	8
	(RAM/ROM chips), Auxiliary Memory, Magnetic Disk and its	
	Performance, Magnetic Tape etc, Associative Memory, Cache Memory,	
	Hit/Miss Ratio, Virtual Memory, Memory Management Hardware.	
5	Parallel Processing Concepts: Introduction and Advantages, Pipeline	10
	& Vector Processing, Arithmetic Pipeline, Instruction Pipeline, RISC	
	pipeline, Vector Processors. Multiprocessors: Characteristics,	
	Interconnection Structures, Interprocessor Arbitration, Interprocessor	
	communication and Synchronization, Cache Coherence.	
	TOTAL	45

11 Suggested Books:

	2455444 2 00124	
Sl.	NAME OF AUTHERS/BOOKS/PUBLISHERS	YEAR OF
NO.		PUBLICATION
1	Mano, M.M, "Computer System Architecture", 3rd Ed., Pearson Education.	2017
2	Jain R. P. "Digital Electronics" 4th Ed. Tata McGraw-Hill.	2009
3	Stallings W."Computer organization", 10 th Ed. Prentice-Hall.	2016
4	John P.Hayes. "Computer organization", 3rd Tata McGraw-Hill.	2017
5	Vravice, Zaky & Hamacher, Computer Organization", 5th Ed. McGraw-	2011
	Hill.	