ASSIGNMENT 1: GATE PHYSICS

AI25BTECH11006 - Nikhila

Some useful physical constants, symbols and formulae

Speed of light in free space, c	$3.0 \times 10^8 \text{ m s}^{-1}$
Atomic mass unit, amu	$1.66 \times 10^{-27} \text{ kg}$
Avogadro's number, N_A	$6.02 \times 10^{23} \text{ mole}^{-1}$
Bohr magneton, μ_B	$9.27 \times 10^{-24} \text{ A m}^2$
Boltzmann constant, k_B	$1.38 \times 10^{-23} \text{ J K}^{-1}$
Electron charge, e	$1.60 \times 10^{-19} \text{ C}$
Planck's constant, h	$6.63 \times 10^{-34} \text{ J s}$
Rest mass of electron, m_e	$9.11 \times 10^{-31} \text{ kg}$
Reduced Planck's constant, ħ	$1.05 \times 10^{-34} \text{ J s}$
Permeability of free space, μ_0	$1.26 \times 10^{-6} \text{ N A}^{-2}$
Permittivity of free space, ε_0	$8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$

1) The eigenvalues of	a matrix are i , $-2i$ and $3i$.	The matrix is	(GATE IN 20007)
a) unitary.	b) anti-unitary.	c) Hermitian.	d) anti-Hermitian.
2) A space station mov	ving in a circular orbit arou	und the Earth goes int	o a new bound orbit by firing its
engine radially outv	vards. This orbit is		(GATE IN 20007)
	1.	\ 11·	,
a) a larger circle.	b) a smaller circle.	•	d) a parabola.
3) A power amplifier a	gives 150 W output for an	input of 1.5 W. The	gain, in dB, is (GATE IN 20007)
a) 10	b) 20	c) 54	d) 100
	(,-1). At large distances the		Q at $(1,0)$, Q at $(-1,0)$, Q at al due to this charge distribution
wiii be dominated t	y the		(GATE IN 20007)
a) monopole momen	nt. b) dipole moment.	c) quadrupole mo	ment. d) octopole moment.
5) A charged capaciton	r(C) is connected in series	s with an inductor (L)	. When the displacement current
reduces to zero, the	o zero, the energy of the LC circuit is	is	(GATE IN 20007)
		\ 1° \ 21 \ \ 1	,
a) stored entirely inb) stored entirely in	•	c) distributed equa netic fields.	ally among its electric and mag-
b) stored entirely in	its electric field.	d) radiated out of	the circuit.
6) Match the following			
		momentum of atoms	(GATE IN 20007)
(A) P-4, Q-2, R-3,	S-1 (B) P-1, Q-4, R-3, S	S-2 (C) P-3, Q-2, R-	4, S-1 (D) P-4, Q-1, R-3, S-2
7) The wavefunction of given by	of a particle, moving in a	one-dimensional tim	e-independent potential $V(x)$, is
given by	$\psi(x) = e^{-ax^2 + b}, \mathbf{w}$	here a and b are cons	tants.
This means that the	e potential $V(x)$ is of the fo	orm	(GATE IN 20007)
a) $V(x) \propto x$		c) $V(x) = 0$	
b) $V(x) \propto x^2$		d) $V(x) \propto e^{-ax}$	
		, , ,	vill split on the application of a

a) 4 and 6 lines respectively.

c) 6 and 4 lines respectively.

b) 3 lines each.

- d) 6 lines each.
- 9) In a He-Ne laser, the laser transition takes place in

(GATE IN 20007)

a) He only.

c) Ne first, then in He.

b) Ne only.

- d) He first, then in Ne.
- 10) The partition function of a single gas molecule is Z_a . The partition function of N such non-interacting gas molecules is then given by

(GATE IN 20007)

a)
$$\frac{(Z_a)^N}{N!}$$

c) $N(Z_a)$

b)
$$(Z_a)^N$$

d) $\frac{(Z_a)^N}{N}$

11) A solid superconductor is placed in an external magnetic field and then cooled below its critical temperature. The superconductor

(GATE IN 20007)

- a) retains its magnetic flux because the surface c) expels out its magnetic flux because it behaves current supports it.
 - like an anti-ferromagnetic material.
- b) expels out its magnetic flux because it behaves d) expels out its magnetic flux because the surface like a paramagnetic material.
 - current induces a field in the direction opposite to the applied magnetic field.
- 12) A particle with energy E is in a time-independent double well potential as shown in the figure.

Fig. 1

Which of the following statements about the particle is **NOT** correct?

- a) The particle will always be in a bound state.
- b) The probability of finding the particle in one well will be time-dependent.
- c) The particle will be confined to any one of the wells.

- d) The particle can tunnel from one well to the other, and back.
- 13) It is necessary to apply quantum statistics to a system of particles if

(GATE IN 20007)

- a) There is substantial overlap between the wavefunctions of the particles.
- b) The mean free path of the particles is comparable to the inter-particle separation.
- c) The particles have identical mass and charge.
- d) The particles are interacting.
- 14) When liquid oxygen is poured down close to a strong bar magnet, the oxygen stream is

(GATE IN 20007)

- a) Repelled towards the lower field because it is diamagnetic.
- b) Attracted towards the higher field because it is diamagnetic.
- c) Repelled towards the lower field because it is paramagnetic.
- d) Attracted towards the higher field because it is paramagnetic.
- 15) Fission fragments are generally radioactive as

(GATE IN 20007)

- a) They have excess of neutrons.
- b) They have excess of protons.
- c) They are products of radioactive nuclides.
- d) Their total kinetic energy is of the order of 200 MeV.
- 16) In a typical npn transistor the doping concentrations in emitter, base and collector regions are C_E , C_B and C_C respectively. These satisfy the relation,

(GATE IN 20007)

a)
$$C_E > C_C > C_B$$

b)
$$C_E > C_B > C_C$$

c)
$$C_C > C_B > C_E$$

d)
$$C_E = C_C > C_B$$

17) The allowed states for He $(2p^2)$ configuration are

a)
$${}^{1}S_{0}$$
, ${}^{3}S_{1}$, ${}^{1}P_{1}$, ${}^{3}P_{0,1,2}$, ${}^{1}D_{2}$, ${}^{3}D_{1,2,3}$

b)
$${}^{1}S_{0}$$
, ${}^{3}P_{0,1,2}$, ${}^{1}D_{2}$

c)
$${}^{1}P_{1}$$
, ${}^{3}P_{0,1,2}$

d)
$${}^{1}S_{0}$$
, ${}^{1}P_{1}$

18) The energy levels of a particle of mass m in a potential of the form

$$V(x) = \begin{cases} \infty, & x \le 0\\ \frac{1}{2}m\omega^2 x^2, & x > 0 \end{cases}$$

are given, in terms of quantum number n = 0, 1, 2, ..., by

(GATE IN 20007)

- a) $\left(n + \frac{1}{2}\right)\hbar\omega$
- b) $\left(2n+\frac{1}{2}\right)\hbar\omega$
- c) $\left(2n+\frac{3}{2}\right)\hbar\omega$
- d) $\left(n + \frac{3}{2}\right)\hbar\omega$
- 19) The electromagnetic field due to a point charge must be described by lienard-wechert potentials when (GATE IN 20007)
 - a) The point charge is highly accelerated.
 - b) the electric and magnetic fields are not perpendicular.
 - c) the point charge is moving with velocity close to that of light.
 - d) the calculation is done for the radiation zone.
- 20) The strangeness quantum number is conserved in

(GATE IN 20007)

- a) strong, weak and electromagnetic interactions
- b) weak and electromagnetic interactions only.
- c) strong and weak interaction only.
- d) strong and electromagnetic interactions only.
- 21) the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ are

(GATE IN 20007)

a) 6, 1 and
$$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

c) 6, 1 and
$$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

b) 2, 5 and
$$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

d) 2, 5 and
$$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

22) A vector field is defined everywhere as

$$\mathbf{F} = \frac{y^2}{L}\hat{i} + z\hat{k}$$

. The net flux of ${\bf F}$ associated with a cube of side L, with one vertex at the origin and sides along the positive X, Y, Z axes is

a) $2L^{3}$

b) $4L^{3}$

c) $8L^{3}$

d) $10L^{3}$

23) If $\mathbf{r} = x\hat{i} + y\hat{j}$, then

(GATE IN 20007)

- 24) Consider a vector $\mathbf{p} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ in the coordinate system $(\hat{i}, \hat{j}, \hat{k})$. The axes are rotated anti-clockwise about the Y axis by an angle of 60°. The vector \mathbf{p} in the rotated coordinate system $(\hat{i}', \hat{j}', \hat{k}')$ is
 - a) $(1 \sqrt{3})\hat{i}' + 3\hat{j}' + (1 + \sqrt{3})\hat{k}'$
 - b) $(1 + \sqrt{3})\hat{i}' + 3\hat{j}' + (1 \sqrt{3})\hat{k}'$
 - c) $(1 \sqrt{3})\hat{i}' + (3 + \sqrt{3})\hat{i}' + 2\hat{k}'$
 - d) $(1 \sqrt{3})\hat{i}' + (3 \sqrt{3})\hat{j}' + 2\hat{k}'$
- 25) The contour integral $\oint \frac{dz}{z^2+a^2}$ is to be evaluated on a circle of radius 2a centered at the origin. It will have contributions only from the points

(GATE IN 2007)

- a) $\frac{1+i}{\sqrt{2}}a$ and $\frac{1-i}{\sqrt{2}}a$
- b) ia and -ia
- c) $ia, -ia, \frac{-1+i}{\sqrt{2}}a$ and $\frac{-1-i}{\sqrt{2}}a$
- d) $\frac{1+i}{\sqrt{2}}a, \frac{-1+i}{\sqrt{2}}a, \frac{-1-i}{\sqrt{2}}a$ and $\frac{1-i}{\sqrt{2}}a$
- 26) Inverse Laplace transform of $\frac{s+1}{s^2-4}$ is

(GATE IN 2007)

- a) $\cos 2x + \frac{1}{2}\sin 2x$ b) $\cos x + \frac{1}{2}\sin x$ c) $\cosh x + \frac{1}{2}\sinh x$ d) $\cosh 2x + \frac{1}{2}\sinh 2x$
- 27) The points, where the series solution of the Legendre differential equation $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} +$ $\frac{3}{2}\left(\frac{3}{2}+1\right)y=0$ will diverge, are located at

(GATE IN 2007)

- a) 0 and 1
- b) 0 and -1
- c) -1 and 1
- d) $\frac{3}{2}$ and $\frac{5}{2}$
- 28) Solution of the differential equation $x\frac{dy}{dx} + y = x^4$, with the boundary condition that y = 1 at x = 1, is (GATE IN 2007)
 - a) $y = 5x^4 4$
- b) $y = x^4 + \frac{4x}{5}$ c) $y = \frac{4x^4}{5} + \frac{1}{5x}$ d) $y = x^4 + \frac{4}{5x}$

29) Match the following:

TABLE I: Matching list for Question 29

P. rest mass 1. timelike vector Q. charge 2. Lorentz invariant R. four-momentum 3. tensor of rank 2 S. electromagnetic field 4. conserved and Lorentz invariant

(GATE IN 2007)

a) P-2, Q-4, R-3, S-1

c) P-2, Q-4, R-1, S-3

b) P-4, Q-2, R-1, S-3

- d) P-4, Q-2, R-3, S-1
- 30) The moment of inertia of a uniform sphere of radius r about an axis passing through its centre is given by $\frac{2}{5} \left(\frac{4\pi r^3}{3} \rho \right)$.

A rigid sphere of uniform mass density ρ and radius R has two smaller spheres of radius R/2 hollowed out of it, as shown in the figure. The moment of inertia of the resulting body about the Y-axis is

Fig. 2

Which of the following statements about the particle is **NOT** correct?

(GATE IN 2007) (GATE IN 20007)

- a) $\frac{\pi \rho R^5}{4}$
- b) $\frac{5\pi\rho R^5}{12}$ c) $\frac{7\pi\rho R^5}{12}$. d) $\frac{3\pi\rho R^5}{4}$

31) The Lagrangian of a particle of mass m is

$$L = \frac{m}{2} \left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2 \right] - \frac{v}{2} \left(x^2 + y^2 \right) + W' \sin(\omega t),$$

where ν , W' and ω are constants. The conserved quantities are:

- a) energy and z-component of linear momentum only.
- b) energy and z-component of angular momentum only.
- c) 2-components of both linear and angular momenta only.

- d) energy and z-components of both linear and angular momenta.
- 32) Three particles of mass m each situated at $x_1(t)$, $x_2(t)$ and $x_3(t)$ respectively are connected by two springs of spring constant k and un-stretched length l. The system is free to oscillate only in one dimension along the straight line joining all the three particles. The Lagrangian of the system is:

(GATE IN 20007)

a)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 - l)^2 + \frac{k}{2} (x_1 - x_2 - l)^2$$

b)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_9 - l)^2 + \frac{k}{2} (x_1 - x_2 - l)^2$$

c)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_1}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 + l)^2 - \frac{k}{2} (x_1 - x_2 + l)^2$$

d)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_3}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 - l)^2 - \frac{k}{2} (x_1 - x_2 - l)^2$$

33) The Hamiltonian of a particle is $H = \frac{p^2}{2m} + pq$ where q is the generalized coordinate and p is the corresponding canonical momentum. The Lagrangian is:

(GATE IN 20007)

- a) $\frac{m}{2} (\dot{q} + q)^2$
- b) $\frac{m}{2} (\dot{q} q)^2$
- c) $\frac{m}{2} [\dot{q}^2 + q\dot{q} q^2]$
- d) $\frac{m}{2} \left[\dot{q}^2 q \dot{q} + q^2 \right]$
- 34) A toroidal coil has N closely-wound turns. Assume the current through the coil to be I and the toroid is filled with a magnetic material of relative permeability μ_r . The magnitude of magnetic induction **B** inside the toroid, at a radial distance r from the axis, is given by:

(GATE IN 20007)

a)
$$\mu_r \mu_0 \frac{NI}{r}$$

c)
$$\frac{\mu_r \mu_0 NI}{2\pi r}$$

b)
$$\mu \mu_0 \frac{NI}{r}$$

d)
$$2\pi \mu_r \mu_0 \frac{NI}{r}$$

35) Can the following scalar and vector potentials describe an electromagnetic field?

$$\phi(x, y, z) = 3xyz - 4r \tag{1}$$

$$\mathbf{A}(\mathbf{x},t) = (2x - \omega t)\,\hat{i} + (y - 2z)\,\hat{j} + (z - 2xe^{i\omega t})\,\hat{k} \tag{2}$$

- a) Yes, in the Coulomb gauge.
- b) Yes, in the Lorentz gauge.
- c) Yes, provided $\omega = 0$.
- d) No.
- 36) An electromagnetic wave $\tilde{E}(z,t) = E_0 \cos(\alpha vt kz)\hat{z}$ is traveling in free space and crosses a disc of

radius 2 m placed perpendicular to the z-axis. If $E_z = 60 \text{ V m}^{-1}$, the average power, in Watt, crossing the disc along the z-direction is:

(GATE IN 20007)

a) 30

b) 60

c) 120

d) 270

37) For a particle of mass m in a one-dimensional harmonic oscillator potential of the form $V(x) = \frac{1}{2}m\omega^2x^2$. the first excited energy eigenstate is $\psi(x) = x e^{-\alpha\omega x^2}$ The value of α is:

(GATE IN 20007)

a) $\frac{m\omega}{4\hbar}$

b) $\frac{m\omega}{3\hbar}$

c) $\frac{m\omega}{2\hbar}$

d) $\frac{2m\omega}{3\hbar}$

38) If $[x, p] = i\hbar$, the value of $[x^3, p]$ is:

(GATE IN 20007)

a) $2i\hbar x^2$

b) $-\frac{2}{5}x^2$

c) $3i\hbar x^2$

d) $-3i\hbar x^2$

39) There are only three bound states for a particle of mass m in a one-dimensional potential well of the form shown in the figure. The depth V_0 of the potential satisfies

Fig. 3

(GATE IN 20007)

a)
$$\frac{m}{2} \left(\frac{dq}{dt} + q \right)^2$$

c)
$$\frac{m}{2} \left[\left(\frac{dq}{dt} \right)^2 + q \frac{dq}{dt} - q^2 \right]$$

b)
$$\frac{m}{2} \left(\frac{dq}{dt} - q \right)^2$$

d)
$$\frac{m}{2} \left[\left(\frac{dq}{dt} \right)^2 - q \frac{dq}{dt} + q^2 \right]$$

40) A toroidal coil has N closely-wound turns. Assume the current through the coil to be I and the toroid is filled with a magnetic material of relative permeability μ_r . The magnitude of magnetic induction **B** inside the toroid, at a radial distance r from the axis, is given by:

(GATE IN 20007)

a) $\mu_r \mu_0 \frac{NI}{r}$

c) $\frac{\mu_r \mu_0 NI}{2\pi r}$

b) $\mu \mu_0 \frac{NI}{r}$

d) $2\pi \mu_r \mu_0 \frac{NI}{r}$

41) An electromagnetic wave $\tilde{E}(z,t) = E_0 \cos(\alpha v t - kz)\hat{z}$ is traveling in free space and crosses a disc of radius 2 m placed perpendicular to the z-axis. If $E_z = 60 \text{ V m}^{-1}$, the average power, in Watt, crossing the disc along the z-direction is:

(GATE IN 2007)

d) 270

42)	For a particle of mass m	in a one-dimensional har	monic oscillator potential	of the fo	$\text{orm } V(x) = \frac{1}{2}m\omega^2 x^2$
	, the first excited energ	y eigenstate	. The value of α is:		(GATE IN 20007)
	a) $\frac{m\omega}{4\hbar}$	b) $\frac{m\omega}{3\hbar}$	c) $\frac{m\omega}{2\hbar}$	d) $\frac{2m\omega}{3\hbar}$	
43)	If $[x, p] = i\hbar$, the value	of $[x^3, p]$ is:			
					(GATE IN 20007)
	a) $2i\hbar x^2$	b) $-\frac{2}{\hbar}x^2$	c) $3i\hbar x^2$	d) $-3i$	$\hbar x^2$
44)	44) The free energy for a photon gas is given by $F = -\frac{\alpha}{3}\nu T^4$, where α is a constant. The entropy S and the pressure P of the photon gas are				
					(GATE IN 2007)
	a) $S = \frac{4}{3}aVT$, $P = \frac{a}{3}T$	74	c) $S = \frac{4}{3}aVT^3$, $P = \frac{a}{3}$	T^3	
	b) $S = \frac{1}{3}aVT^4$, $P = \frac{4}{3}$	$\frac{2}{3}T^3$	d) $S = \frac{1}{3}aVT^3$, $P = \frac{4a}{3}$	$\frac{a}{5}T^4$	
45) A system has energy levels E_0 , $2E_0$, $3E_0$, where the excited states are triply degenerate. Four non-interacting bosons are placed in this system. If the total energy of these bosons is $5E_0$, the					
	number of microstates	18			(GATE IN 2007)
	a) 2	b) 3	c) 4	d) 5	
46)	In accordance with the	e selection rules for elect	ric dipole transitions, the	e 4^3P_1 s	state of helium can
	decay by photon emiss	ion to the states			(GATE IN 2007)
	a) 2^1S_0 , 2^1P_1 , 3^1D_2		c) 3^3P_2 , 3^3D_3 , 3^3P_0		
	b) 3^1P_1 , 3^1D_2 , 3^1S_0		d) 2^3S_1 , 3^3D_2 , 3^3D_1		
47)	47) If an atom is in the ${}^{3}D_{3}$ state, the angle between its orbital and spin angular momentum vectors				
	(LandS)is				(GATE IN 2007)
	a) $\cos\left(\frac{1}{\sqrt{3}}\right)$	b) $\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$	c) $\cos^{-1}\left(\frac{1}{2}\right)$	d) cos	$\left(\frac{\sqrt{3}}{2}\right)$
48)	The hyperfine structure	of Na $(3^2P_{3/2})$ with nuc	lear spin $I = \frac{3}{2}$ has		(GATE IN 2007)
	a) 1 state	b) 2 states	c) 3 states	d) 4 s	tates
49) The allowed rotational energy levels of a rigid hetero-nuclear diatomic molecule are expressed as $\varepsilon_J = BJ(J+1)$ where B is the rotational constant and J is a rotational quantum number. In a system of such diatomic molecules of reduced mass μ , some of the atoms of one element are					

replaced by a heavier isotope, such that the reduced mass changes to 1.05μ . In the rotational spectrum

of the system, the shift in the spectral line corresponding to a transition $J = 4 \rightarrow J = 5$ is

c) 120

b) 60

a) 30

	a) 0.475 <i>B</i>	b) 0.50 <i>B</i>	c) 0.95 <i>B</i>	d) 1.0 <i>B</i>	
50)	The number of fundam	ental vibrational modes of	of CO ₂ molecule is	(C.A	TE IN 2007)
	a) Four: 2 Raman active	e and 2 infrared active		(GP	ATE IN 2007)
	b) Four: 1 Raman active	e and 3 infrared active			
	c) Three: 1 Raman activ	ve and 2 infrared active			
	d) Three: 2 Raman activ	ve and 1 infrared active			
51)	of mass m_p which interfield is applied to obse	placed in a uniform magneract only with the externator resonance absorption takes placed absorption takes properties and the properties of	al magnetic field. An add α is the g-factor of	itional oscillate the hydrogen	ting magnetic
	a) $\frac{3g_1eH_0}{2\pi m_p}$	b) $\frac{3g_j e H_0}{4\pi m_p}$	c) $\frac{g_z e H_0}{2\pi m_p}$	d) $\frac{S_r e H_q}{4\pi m_p}$	
52)	n 0 -	element follows van der Q are constants. The box	_	ed as	Tential $V(r) = 0$ ATE IN 2007)
	a) $\left(\frac{2P}{Q}\right)^{-6}$	b) $\left(\frac{P}{Q}\right)^{-6}$	c) $\left(\frac{P}{2Q}\right)^{-6}$	d) $\left(\frac{P}{Q}\right)^{-6}$	
53)	P. Simple Cubic Q. Body Centred Cubic R. Face Centred Cubic S. Diamond T. Hexagonal Close Pace			ures:	
				(GA	ATE IN 2007)
	a) P and Q	b) S and T	c) R and S	d) R and T	
54)		pattern recorded from a f cond peak will appear at	ace-centred cubic sample	using x-rays,	the first peak
	11	r · · · · · · · · · · · · · · · · · · ·		(GA	ATE IN 2007)
	a) 32.8°	b) 33.7°	c) 34.8°	d) 35.3°	

55) Variation of electrical resistivity ρ with temperature T of three solids is sketched (*ondifferentscales*) in the figure, as curves P, Q and R.

Which one of the following statements describes the variations most appropriately?

(GATE IN 2007)

Fig. 4

- a) P is a superconductor, and R for a semiconductor.
- b) Q is a superconductor, and P for a conductor.
- c) Q is a superconductor, and R for a conductor.
- d) R is a superconductor, and P for a conductor.
- 56) An extrinsic semiconductor sample of cross-section A and length L is doped in such a way that the doping concentration varies as $N_D(x) = N_0 \exp(-x/L)$. Assume that the mobility of the majority carriers remains constant. The resistance R of the sample is given by:

(GATE IN 2007)

a)
$$R = \frac{L}{A\mu N_0} [\exp(1) - 1]$$

c)
$$R = \frac{L}{A\epsilon N_0} \left[\exp(-1) - 1 \right]$$

b)
$$R = \frac{L}{\mu \pi r N_0} \left[\exp(1) - 1 \right]$$

d)
$$R = \frac{L}{A\mu N_g}$$

57) A ferromagnetic mixture of iron and copper having 75% atoms of Fe exhibits a saturation magnetization of 1.3×10^6 A/m. Assume that the total number of atoms per unit volume is 8×10^{28} m⁻³. The magnetic moment of an iron atom, in terms of the Bohr magneton, is:

(GATE IN 2007)

58) Half-life of a radio-isotope is 4×10^4 years. If there are 10^3 radioactive nuclei in a sample today, the number of such nuclei in the sample 4×10^5 years ago were:

a)
$$1.28 \times 10^5$$

c)
$$5.12 \times 10^5$$

b)
$$2.56 \times 10^5$$

d)
$$1.024 \times 10^6$$

59) In the deuterium + tritium (D + T) fusion, more en (D + D) fusion because:	nergy is released compared to deuterium + deuterium	
	(GATE IN 2007)	
a) Tritium is radioactive c	c) The Coulomb barrier is lower for the D+T system than D+D system	
b) More nucleons participate in fusion	·	
	d) The reaction product He is more tightly bound	
60) According to the shell model, the ground state s	pin of the ¹⁷ O nucleus is: (GATE IN 2007)	
a) 3/2 ⁺	c) 3/2 ⁻	
b) 5/2 ⁺	d) 5/2 ⁻	
61) A relativistic particle travels a length of 3×10^{-3} m in air before decaying. The decay process of the		
particle is dominated by:	(GATE IN 2007)	
a) Strong interactions	c) Weak interactions	
b) Electromagnetic interactions	d) Gravitational interactions	
62) The strange baryon Ξ^- has the quark structure:	(CATE IN 2007)	
	(GATE IN 2007)	
a) uds b) uud	c) uus d) $u\bar{s}$	
63) A neutron scatters elastically from a heavy nucle the	eus. The initial and final states off the neutron have	
	(GATE IN 2007)	
a) same energy.		
b) same energy and linear momentum.		
c) same energy and angular momentum.		
d) same linear and angular momentum.		

Fig. 5

- a) subtractor
- b) buffer amplifier
- c) adder
- d) divider
- 65) Identify the function F generated by the logic network shown

(GATE IN 2007)

Fig. 6

- a) F = (X + Y)Z
- b) F = Z + Y + YX
- c) ZY(Y + X)
- d) XYZ
- 66) In the circuit shown, the ports Q_1 and Q_2 are in the state $Q_1 = 1$, $Q_2 = 0$. The circuit is now subjected to two complete clock pulses. The state of these ports now becomes

Fig. 7

- a) $Q_2 = 1$, $Q_1 = 0$ b) $Q_2 = 0$, $Q_1 = 1$ c) $Q_2 = 1$, $Q_1 = 1$ d) $Q_2 = 0$, $Q_1 = 0$

67) The registers Q_D , Q_C , Q_B and Q_A shown in the figure are initially in the state 1010 respectively. An input sequence SI = 0101 is applied. After two clock pulses, the state of the shift registers is (GATE IN 2007)

Fig. 8

a) 1001

b) 0100

c) 0110

- d) 1010
- 68) For the circuit shown, the potential difference in volts across R_L is

(GATE IN 2007)

Fig. 9

a) 48

b) 52

c) 56

d) 65

69) In the circuit shown, the voltage at test point P is 12 V and the voltage between gate and source is -2V. The value of R in $k\Omega$ is

Fig. 10

- a) 42 b) 48 c) 56 d) 70
- 70) when an input voltage V_i , of the form shown, is applied to the circuit given below, the output voltage is of the form

Fig. 11

Common Data Questions

Common Data for Questions 71,72,73:

A particle of mass m is confined in the ground state of a one-dimensional box, extending from x = -2L to x = 2L. The wavefunction of the particle in this state is $\psi(x) = \psi_A \cos\left(\frac{\pi x}{4L}\right)$, where ψ_A is a constant.

71) The normalization factor of this wavefunction is:

(GATE IN 2007)

a) $\sqrt{2/L}$

c) 24

b) $\sqrt{1/(4L)}$

d) $\sqrt{1/L}$

72) The energy eigenvalue corresponding to this state is:

(GATE IN 2007)

a) $\frac{\hbar^2 \pi^2}{2mL^2}$

c) $\frac{\hbar^2 \pi^2}{16mL^2}$

b) $\frac{\hbar^2 \pi^2}{4mL^2}$

d) $\frac{\hbar^2 \pi^3}{32mL^2}$

73) The expectation value of p^2 (momentum operator) in this state is:

(GATE IN 2007)

a) 0

c) $\frac{h^2\pi^3}{16L^2}$

b)
$$\frac{h^2\pi^2}{32L^2}$$

 $d) \frac{h^2 \pi^3}{8L^2}$

Common Data for Questions 74,75:

The Fresnel relations between the amplitudes of incident and reflected electromagnetic waves at an interface between air and a dielectric of refractive index μ are:

$$E_{\parallel}^{\text{ref}}/E_{\parallel}^{\text{inc}} = \frac{\cos r - \mu \cos i}{\cos r + \mu \cos i}, \quad E_{\perp}^{\text{ref}}/E_{\perp}^{\text{inc}} = \frac{\cos i - \mu \cos r}{\cos i + \mu \cos r}$$

where i and r are the angles of incidence and refraction respectively.

74) The condition for the reflected ray to be completely polarized is:

(GATE IN 2007)

a) $\mu \cos i = \cos r$

c) $\mu \cos i = -\cos r$

b) $\cos i = \mu \cos r$

d) $\cos i = -\mu \cos r$

75) For normal incidence at an air-glass interface with $\mu = 1.5$, the fraction of energy reflected is: (GATE IN 2007)

a) 0.40

c) 0.16

b) 0.20

d) 0.04

Linked Answer Questions: Q.76 to Q.81 carry two marks each.

Statement for Linked Answer Questions 76 & 77:

In the laboratory frame, a particle P of rest mass m_0 is moving in the positive x direction with speed 5c/19. It approaches an identical particle Q, moving in the negative x direction with speed 2c/5.

76) The speed of the particle P in the rest frame of particle Q is:

(GATE IN 2007)

a) $\frac{7c}{95}$

b) $\frac{13c}{85}$

c) $\frac{3c}{5}$

d) $\frac{63c}{95}$

77) The energy of the particle P in the rest frame of particle Q is:

(GATE IN 2007)

- a) $\frac{1}{2}m_0\omega^2$
- b) $\frac{5}{4}m_0c^2$
- c) $\frac{19}{13}m_0c^2$
- d) $\frac{11}{9}m_0c^2$

Statement for Linked Answer Questions 78 & 79:

The atomic density of a solid is 5.85×10^{28} m⁻³. Its electrical resistivity is 1.6×10^{-4} $\Omega \cdot$ m. Assume electrical conduction is described by the Drude model (classical theory), and that each atom contributes one conduction electron.

78) The drift mobility $(m^2 V^{-1} s^{-1})$ of the conduction electrons is:

(GATE IN 2007)

- a) 6.67×10^{-3}
- b) 6.67×10^{-6}
- c) 7.63×10^{-1}
- d) 7.63×10^{-4}

79) The relaxation time (mean free time), in seconds, of the conduction electrons is:

(GATE IN 2007)

- a) 3.98×10^{-15}
- b) 3.79×10^{-14} c) 2.84×10^{-12} d) 2.64×10^{-11}

Statement for Linked Answer Questions 80 & 81:

A sphere of radius R carries a polarization $\overline{P} = k\mathbf{r}$, where k is a constant and \mathbf{r} is measured from the centre of the sphere.

80) The bound surface and volume charge densities are given, respectively, by:

(GATE IN 2007)

- a) $-k|\mathbf{r}|$ and 3k
- b) $k|\mathbf{r}|$ and -3k
- c) k and -4kR
- d) $-k|\mathbf{r}|$ and 4kR

81) The electric field **E** at a point outside the sphere is given by:

a)
$$\hat{E} = 0$$

b)
$$\overline{E} = \frac{kR(R^2 - r^2)}{\epsilon_0 r^3}$$

b)
$$\overline{E} = \frac{kR(R^2 - r^2)}{\epsilon_0 r^3} \hat{r}$$
 c) $\mathbf{E} = \frac{kR(R^3 - r^2)}{\kappa_0 r^3} \hat{r}$ d) $\mathbf{E} = \frac{3k(r - R)}{4\pi\epsilon_0 r^4} \hat{r}$

d)
$$\mathbf{E} = \frac{3k(r-R)}{4\pi\epsilon_0 r^4} \hat{r}$$

Statement for Linked Answer Questions 82 & 83:

An ensemble of quantum harmonic oscillators is kept at a finite temperature $T = 1/(k_B\beta)$.

82) The partition function of a single oscillator with energy levels $(m + 1/2)\hbar\omega$ is:

(GATE IN 2007)

a)
$$Z = e^{-\beta\hbar\omega/2} \frac{1}{1 - e^{-\beta\hbar\omega}}$$

c)
$$Z = e^{-\beta\hbar\omega/2} \frac{1}{1 + e^{-\beta\hbar\omega}}$$

b)
$$Z = \frac{1}{1 - e^{-\beta\hbar\omega}}$$

d)
$$Z = \frac{1}{1 + \mu^{-\beta k_m}}$$

83) The average number of energy quanta of the oscillators is given by:

(GATE IN 2007)

a)
$$\langle n \rangle = \frac{1}{e^{2\lambda + \nu} - 1}$$

c)
$$\langle n \rangle = \frac{1}{e^{x \lambda x} + 1}$$

b)
$$\langle H \rangle = \frac{e^{-j\lambda x}}{e^{j\lambda x} - 1}$$

d)
$$\langle n \rangle = \frac{e^{-\beta\beta_w}}{e^{\beta\beta_w\sigma} + 1}$$

Statement for Linked Answer Questions 84 & 85:

A $16 \mu A$ beam of alpha particles, having cross-sectional area $10^{-4} \,\mathrm{m}^2$, is incident on a rhodium target of thickness $1 \,\mu \mathrm{m}$. This produces neutrons through the reaction:

$$\alpha + {}^{100}\text{Rh} \rightarrow {}^{100}\text{Pd} + 3n$$

84) The number of alpha particles hitting the target per second is:

(GATE IN 2007)

a)
$$0.5 \times 10^{14}$$

c)
$$2 \times 10^{10}$$

b)
$$1 \times 10^{14}$$

d)
$$4 \times 10^{11}$$

85) The neutrons are observed at the rate of $1.306 \times 10^4 \text{ s}^{-1}$. If the density of rhodium is approximated as 10 kg/m^3 , the cross-section (in barns) is:

(GATE IN 2007)

c) 0.4

d) 0.8

END OF THE QUESTION PAPER

Space for Rough Work: