Probabilidad y Estadística -Introducción a la Probabilidad y Estadística

1		2	3	4	Total
121	13	15/10	25	157	97

so (dies)

Apellido y Nombre: ACHAUAE BERZERO TOMÁS

Carrera: LC

Justifique claramente todas sus respuestas.

Ejercicio 1. Sean X e Y variables aleatorias con función de densidad de probabilidad conjunta dada por:

$$f(x,y) = \begin{cases} \frac{x}{5} + c.y, & \text{si } 0 < x < 1, \ 1 < y < 5 \\ 0, \ c.c. \end{cases}$$

- a) Encontrar el valor de c.
- b) Encontrar las funciones de densidad marginal f_X y f_Y .
- c) ¿Son X e Y independientes?.
- d) Encontrar la P(X+Y>3).

Ejercicio 2. Se seleccionaron aleatoriamente 10 paquetes de galletas rotuladas bajas en sodio de una marca particular. El promedio muestral y desviación estándar muestral (s_{n-1}) para la cantidad de sodio, obtenidas por cada 100 gr, fueron de 122,1 y 2,5 mg respectivamente. Suponga que la muestra proviene de una distribución normal.

- a) Dar la estimación por máxima verosimilitud para:
 - i) El contenido de sodio medio (μ) y el desvío estándar poblacional (σ) , para esta marca de galleta.
 - √ ii) El percentil 80 para la variable contenido de sodio para esta marca de galletas.
- b) Hallar un intervalo de confianza del 99% para el contenido medio de sodio (μ) para esta marca de galletas.

Ejercicio 3. El artículo "Limited Yield Estimation for Visual Defect Sources" (IEEE Trans. on Semiconductor Manuf., 1997: 17-23) reportó que, en un estudio de un proceso de inspección de obleas particular, 356 troqueles fueron examinados por una sonda de inspección y 201 de éstos pasaron la prueba. Suponiendo un proceso estable:

- a) Dar un intervalo de confianza aproximado del 95% para la proporción de todos los troqueles que pasan la prueba (p).
- b) Determinar el menor tamaño de muestra necesario que deben seleccionarse para conseguir un intervalo de confianza de longitud a lo sumo 0.05 y de nivel de confianza 0.95, independientemente del valor de \hat{p} .

Ejercicio 4. Sean $X_1,...,X_n$ m.a. con distribución $\mathcal{P}(\lambda)$. Considere los siguientes estimadores para λ :

$$\hat{\lambda}_1 = \frac{X_1 + \dots + X_{n-1}}{n-1}$$
 y $\hat{\lambda}_2 = \frac{X_1 + \dots + X_n}{n}$

- a) $\xi \hat{\lambda}_1$ es insesgado para estimar λ ?. $\xi Y \hat{\lambda}_2$?.
- b) i) Encuentre el error estándar de los estimadores λ̂₁ y λ̂₂.
 ii) ¿Cuál de los dos estimadores es mejor para estimar λ?.

Ayuda: Recordar que $E(X_i) = \lambda y V(X_i) = \lambda$