Минимальное число порождающих сопряженных инволюций, произведение которых равно 1, групп $PSp_4(q)$

Гвоздев Родион Игоревич Сибирский федеральный университет

Соавторы: Нужин Я.Н., Петруть Т.С., Соколовская А.М.

Секция: Алгебра

В работе G. Malle, J. Saxl, T. Weigel. Generation of classical groups, Geom. Dedicata, 1994 записана следующая проблема. Для каждой конечной простой неабелевой группы G найти $n_{\rm c}(G)$ — минимальное число порождающих сопряженных инволюций, произведение которых равно 1 (см. также вопрос 14.69в) в коуровской тетради). К настоящему времени вопрос решен для спорадических, знакопеременных групп и групп $PSL_n(q)$, q нечетно, исключая случай n=6 и $q\equiv 3 \pmod{4}$.

Если G — конечная простая неабелева группа, то $n_c(G) \geq 5$, а если она еще и порождается тремя инволюциями α , β , γ , первые две из которых перестановочны и все четыре инволюции α , β , γ и $\alpha\beta$ сопряжены, то $n_c(G) = 5$. Доказана

Теорема. Группа $PSp_4(q)$ тогда и только тогда порождается тремя инволюциями α , β , γ , первые две из которых перестановочны и все четыре инволюции α , β , γ и $\alpha\beta$ сопряжены, когда $q \neq 2,3$.

Следствие. 1) $n_c(PSp_4(q)) = 5$, $npu \ q \neq 2,3$; 2) $n_c(PSp_4(3)) = 6$; 3) $n_c(PSp_4(2)) = 10$.