etor-valued functions $x: I \to \mathbb{R}^n$ (n=2) (IC) example, $x(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$. ([2)
rexample, $\chi(t) = \chi(t) \hat{i} + y(t) \hat{j} + \chi(t) \hat{k}$. (
	X, Y, ₹: I → R.)
t's continuous iff x(t), y(t), z(t) are continuous	on I.
,	
A curves is the set $\{r(t): t \in I\} \subset \mathbb{R}^n$ of portions vector-based function.	values attained by a
If the same curve corresponds to several reparameterizations of the curve.	lt), rj iv the diffen
is differentiable on an open interval I iff x $\frac{dr}{dt} = r'(t) = \chi'(t) \hat{i} + \chi'(t) \hat{j} + \xi'(t)$	
ictfsty-icty st 2 (t) as st=0	
(tfat)	
vit) rittot) spec	d = v(t) := v(t) levation = $q(t) = v'(t) = v'(t)$
/_tit)	
l l	he motion of an object in 3D space A curves is the set $\{r(t): t \in I\} \subset \mathbb{R}^{N}$ of portional vector-based function. Set of values If the same curve corresponds to several r parameterizations of the curve. is differentiable on an open interval I iff x $\frac{dr}{dt} = r'(t) = x'(t) i + y'(t) i + z'(t)$ $\frac{dr}{dt} = r'(t) = x'(t) i + y'(t) i + z'(t)$ $\frac{r(t+st) - r(t)}{st} \rightarrow r(t)$ as $st \rightarrow 0$ $r(t+st) = r'(t) + r(t)$ $r(t+st) = r'(t) + r'(t)$ $r''(t+st) = r''(t) + r''(t)$ $r''(t+st) = r''(t)$

<u>xamples</u> t

 $f_o:= (X_o/y_o/Z_o)$ in \mathbb{R}^3 , let χ be a constant vector. Then a straight - through $p_o:=\frac{1}{2}$

$$r(t) = \sqrt{r} + t v = r + t v$$

$$v(t) = r'(t) = v$$

$$\begin{cases} r_2(t) = r_0 + 2t/v \\ r_2(t) = r_0 + t/v \end{cases} 3t^2v \quad \text{velocity}$$

Helix curve:

$$r(t) = cos(t) i + sin(t) j + tk$$

$$v(t) = -sin(t) i + cos(t) j + k$$

$$a(t) = -\cos(t)\hat{i} - \sin(t)\hat{j} + ?$$

Imagine the following two helix curves?

$$r(t) = (os(t)\hat{i} + sin(t)\hat{j} + t\hat{k}$$

U (ب	, ,	~
opo	sition	n ſ.	8

 $y,y:I \rightarrow \mathbb{R}^3$ $h:I \rightarrow \mathbb{R}$

$$(\chi + \chi)' = \chi' + \chi u'$$

 $(\chi + \chi)' = \chi' + \chi u'$

$$(u \cdot \chi)' = u' \cdot v + u \cdot v'$$

$$(u \times \chi)' = u' \times v + u \times v'$$

If S: J > I, retor-valued Chain rule:

$$\frac{d}{dt} \left[u(s(t)) \right] = s'(t) u'(s(t))$$
 to re-parameterizing curve.

1. Parametrize the curve of intersection of the cylinder $x^2 + y^2 = 9$ and the plane

Sur.
$$\chi^2 + \gamma^2 = 9 = 9(050 + six0)$$

$$Z=X+Y$$

——> further = $Z=9\cos^2\theta + 9\sin^2\theta$

$$f(t) = 3 \cos \theta + 2 \sin \theta + 3 \cos \theta + \sin \theta) \hat{k}.$$

2. Parametrize the curve of intersection of the paraboloid $z = x^2 + y^2$ and the plane

FIGURE 6. The curve described in Worked Problem no. 2

$$\hat{x} = \langle 2t, t, 5t^2 \rangle \checkmark$$

3. Find a formula for
$$\frac{d}{dt}|\mathbf{u}(t)|$$
.

$$\frac{d}{dt} | y(t)| = \frac{d}{dt} \int \frac{u \cdot u}{u \cdot u}$$

$$= \frac{d}{dt} \left(\frac{u^2}{u^2} \right)^{\frac{1}{2}} = \frac{1}{2 \left(\frac{u^2}{u^2} \right)^{\frac{1}{2}} dt} \left(\frac{u^2}{u^2} \right)$$

$$= \frac{1}{2 \left(\frac{u^2}{u^2} \right)^{\frac{1}{2}}} = \frac{1}{2 \left(\frac{u^2}{u^2} \right)^{\frac{1}{2}}} - \frac{d}{dt} \left(\frac{u \cdot u}{u} \right)$$

$$= \frac{1}{2 \sqrt{u^2}} \cdot \left(\frac{u \cdot u}{u \cdot u} + \frac{u \cdot u}{u} \right)$$

$$= \frac{1}{2 \sqrt{u^2}} \cdot \left(\frac{u \cdot u}{u \cdot u} + \frac{u \cdot u}{u} \right)$$

$$= \frac{1}{2 \sqrt{u^2}} \cdot \left(\frac{u \cdot u}{u \cdot u} + \frac{u \cdot u}{u} \right)$$

$$= \frac{1}{2 \sqrt{u^2}} \cdot \left(\frac{u \cdot u}{u \cdot u} + \frac{u \cdot u}{u} \right)$$

$$= \frac{1}{2 \sqrt{u^2}} \cdot \left(\frac{u \cdot u}{u \cdot u} + \frac{u \cdot u}{u} \right)$$

meaning relocity vector

4. Suppose $\mathbf{r}: I \to \mathbb{R}^n$ is differentiable, where I is an interval. Prove that $(\mathbf{r}|i)$ constant if and only if $\mathbf{v} = 0$ for all $t \in I$.

if
$$\frac{d}{dt}(k\cdot k) = 0$$

Honever, $\frac{d}{dt}(r\cdot k) = r'\cdot r + r \cdot r' = 2r'\cdot r = 2l'\cdot r$

we also have, r. x >0

1. Let C be the curve in the xy-plane that consists of the half-line y=-x, $x \le 0$, and the half-line y=x, $x \ge 0$. Give an example of a vector-valued function $\mathbf{r}: \mathbb{R} \to \mathbb{R}^2$ which parametrizes C and such that $\mathbf{r}(t)$ is differentiable for all t.

2. Suppose that $\mathbf{r}:[a,b] \to \mathbb{R}^3$ is a parametrized curve such that \mathbf{r} and \mathbf{r}' are continuous on [a,b] and $\underline{\mathbf{r}'(t)} \neq \underline{\mathbf{0}}$. Does there have to exist a $t_0 \in (a,b)$ such that $\mathbf{r}(b) - \mathbf{r}(a) =$ $(b-a)\mathbf{r}'(t_0)$? If yes, prove it. If no, give a counterexample.

$$f: [a,b] \rightarrow \mathbb{R}^3$$

 $f: [a,b] \rightarrow \mathbb{R}^3$ $f: [a,b] \rightarrow \mathbb{R}^3$ f: [

 $r(b) - r(a) = [f(b) - f(a)] \hat{i} + [g(b) - g(a)] \hat{j}$ $r'(t_b) = f'(t_b) \hat{i} + g(t_b) \hat{j}.$

(b-a) r'(to) = (b-a) (f'(to) \hat{i} + g'(to) \hat{j})

Because lagrange also dealt with \hat \hat \hat an 2D then what we's

supposed to do.

1. Let C be the curve in the xy-plane that consists of the half-line $y=-x, x\leq 0$, and the half-line $y=x, x\geq 0$. Give an example of a vector-valued function $\mathbf{r}:\mathbb{R}\to\mathbb{R}^2$ which parametrizes C and such that $\mathbf{r}(t)$ is differentiable for all t.

We claim that r(t) = (t3, |t3|) works Brjection from IR -> C.

The components of $x(t) = t^3$ is differentiable for all t. and $y(t) = |t^3|$ is differentiable for all $t \neq 0$.

Next we check the differentiability at t=0.

 $\lim_{x \to 0^{+}} \frac{|t^{3}|}{t} = \lim_{x \to 0^{+}} \frac{t^{3}}{t} = \lim_{x \to 0^{+}} t^{2} = 0$ $\lim_{x \to 0^{-}} \frac{|t^{3}|}{t} = \lim_{x \to 0^{-}} \frac{-t^{3}}{t} = \lim_{x \to 0^{-}} t^{2} = 0.$ $\lim_{x \to 0^{-}} \frac{|t^{3}|}{t} = \lim_{x \to 0^{-}} \frac{-t^{3}}{t} = \lim_{x \to 0^{-}} t^{2} = 0.$

So derivatives from either sides equal -> y(t)

2. Suppose that $\mathbf{r}:[a,b]\to\mathbb{R}^3$ is a parametrized curve such that \mathbf{r} and \mathbf{r}' are continuous on [a,b] and $\mathbf{r}'(t) \neq 0$. Does there have to exist a $\underline{t}_0 \in (a,b)$ such that $\mathbf{r}(b) - \mathbf{r}(a) =$ $(b-a)\mathbf{r}'(t_0)$? If yes, prove it. If no, give a counterexample.

1: [ab] - R3

L' V' are continuous on [a, k

a to \in (a,b) r(b)-r(a)=(b-a)r'(tb)Answer r(a)=(b-a)r'(tb)

 $r(b) - \dot{r}(a) = \dot{j} + 2\pi \dot{k} - \dot{i} = 2\pi \dot{k}$ $put r(ct) = -\sin t \dot{i} + \cos t \dot{j} + \dot{k}$

never parallel to the x-a