8. THE SIGNUM OPERATOR

We discuss in some detail how a mapping of the form

which has an obvious meaning, depending on f, in spaces C(K), can be defined in an abstract complex Banach lattice. We prove the following:

Let E be a complex Banach lattice and let $f \in E$. If either E is order-complete or |f| is a quasi-interior point in E_+ , then there exists a unique linear mapping S_f , called the <u>signum operator</u> with respect to f, with the following properties:

- (i) $S_f \bar{f} = |f|$, where $\bar{f} = Re f i \cdot Imf$
- (ii) $|\hat{s}_{fg}| \le |g|$ for every g in E
- (iii) $S_f g = 0$ for every g in E orthogonal to f .

In fact, if E = C(K) and if |f| is a quasi-interior point in E, then |f| is a strictly positive function and multiplication with the function sign $f = f \cdot |f|^{-1}$ has the desired properties. Uniqueness follows from Zaanen (1983) Chap. 20. We reduce the general situation to the case just considered in the following way:

- 1. If |f| is quasi-interior to E_+ , then $E_{|f|}$ is a dense subspace of E isomorphic to a space C(K), and with the above arguments one gets a uniquely determined operator S_0 on $E_{|f|}$ with the desired properties. Since (ii) implies the continuity of S_0 for the norm induced by E, S_0 can be extended to E.
- 2. If f is arbitrary, then as above one gets an operator S_o on $E_{\mid f \mid}$ with (i) (ii). If E is order complete, an extension S_f of S_o to E satisfying (i) (iii) is possible as soon as S_o can be extended to the band $\{x\}^{dd}$ of E: On the complementary band $\{x\}^{dd}$ one has necessarily the values $\equiv 0$ for S_f . The extension to $\{x\}^{dd}$ is obtained as follows:
- If S_0 is positive (which means $f \ge 0$) then

$$S_{f}h = \sup \{ S_{f}g : g \in [0,h] \cap E_{|f|} \}$$
 $(h \ge 0)$

will do. In general, the problem can be reduced to this situation by decomposing S_0 into a sum of the form $S_0 = (S_1 - S_2) + i(S_3 - S_4)$