Маршрутизация. Фрагментация

Как определить, что устройство принадлежит подсети?

Берём адрес устройства, адрес подсети и накладываем на них маску. Если сетевые части совпадают, то устройство принадлежит этой подсети.

Как определить, что два узла принадлежат одной подсети? Берём их адреса, накладываем на них маску подсети и если сетевая часть совпадает, то

Как формируются адреса у роутеров?

они принадлежат одной подсети.

Для соседних роутеров R_x и R_y формируют адреса по следующему правилу: 192.168.XY.X|Y, где X < Y.

Пусть A хочет переслать данные C. A берёт свой <u>IP-адрес</u>, свою маску и <u>IP-адрес</u> C. Накладывая свою маску на свой адрес и адрес C понимает, что C в другой подсети. Тогда он отправляет данные роутеру R1 согласно своей таблице маршрутизации (там есть два

поля -- запись о подсети, куда мы подключены, и маршрут по умолчанию). R1 отправляет данные R2. R2, видя, что C в подсети, подключённой к одному из его интерфейсов, пересылает данные C.

Таблица маршрутизации роутера R1

С	192.168.1.0/24	fa0/0	Это те сети, в которые подключены интерфейсы		
C	192.168.12.0/24	fa0/1	на R1: в сторону пользователей, в сторону R2 и в		
С	192.168.13.0/24	fa0/2	сторону R3. Эти сети по- падают в таблицу марш- рутизации автоматиче- ски после того, как мы их включили, настроили IP- адреса и указали маски. Эти записи администра- тор добавляет вручную: он записывает маршруты до сетей, расположенных		
S	192.168.2.0/24	192.168.12.2			
S	192.168.3.0/24	192.168.13.3	за роутерами R2 и R3. Здесь нельзя указать интерфейс в третьей колонке: необходимо указать IP-адрес устройства, которому нужно передать данные, чтобы достичь нужной подсети ⁴¹ .		

В первой колонке -- откуда появилась информация в таблице:

- *C (connected)* -- сети, в которые подключены интерфейсы роутера
- S (static) -- статические маршруты, записи добавлены вручную

Когда R1 получает <u>пакет</u> от A, он не знает масок A и C. Поэтому:

- 1. Выделяем сетевую часть у каждой записи в таблице
- 2. На <u>IP-адрес</u> получателя накладываем маску сети из каждой записи и сравниваем

1	С	192.168.1.0/24	11000000	10101000	00000001	00000000
2	С	192.168.12.0/24	11000000	10101000	00001100	00000000
3	С	192.168.13.0/24	11000000	10101000	00001101	00000000
4	S	192.168.2.0/24	11000000	10101000	00000010	00000000
5	S	192.168.3.0/24	11000000	10101000	00000011	00000000

Понимаем, что нужно отправить данные роутеру R2 -- ему соответствует вторая строка таблицы маршрутизации, значит, R1 отправит данные через fa0/1.

При в таблице маршрутизации подходит несколько записей, выбираем запись с наиболее длинной маской

Разные источники могут попытаться впихнуть в таблицу одинаковые данные. На этот случай вводят следующее понятие:

AD -- число, определяющее степень доверия источнику.

- С -- AD = 0 (самые доверенные)
- S -- AD = 1
- OSPF -- AD = 110
- RIP -- AD = 120

Допустим, администратор ошибся: на R1 написал маршрут на сеть 192.168.2.0/24, на R2 - маршрут на эту же подсеть в сторону R3, на R3 -- маршрут на эту же подсеть в сторону R1.

Благодаря <u>AD</u> проблемы не возникает.

Но если у R2 упадёт левый интерфейс -- всё сломается. <u>Пакет</u> из A в C начнёт бегать по кругу R1 >>> R2 >>> R3 >>> R1. Для защиты от этого используют поле <u>TTL</u>.

Фрагментация

MTU -- максимальный объем данных, который может быть отправлен по сети без дальнейшего фрагментирования (одним пакетом).

фрагментация -- деление исходного IP-пакета на два или более фрагмента, так, чтобы в итоге эти фрагменты были меньше, чем <u>MTU</u> на канале.

Каждый фрагмент -- полноценный ІР-пакет.

ID у каждого родительского пакета свой. У дочерних пакетов -- тот же ID. Благодаря Fragment Offset можем найти местоположение фрагмента в исходном пакете. Если один фрагмент пропал -- всё отбрасывается, пакет не собирается.

Сборка -- только на получателе.

Фрагментация не предполагает одинакового разделения.

2400 байт					
400 байт	1000 байт	1000 байт			