

ADMINISTRAÇÃO DE BANCO DE DADOS PGN0031 - BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS LATO SENSU

ADMINISTRAÇÃO DE BANCO DE DADOS PGN0031 - BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS

VICTOR AUGUSTO FRAGOSO FLORENTIN

Mestrando em Informática – UFAL Especialista em Gestão de Projetos em TI – CESMAC Tecnólogo em Análise e Desenvolvimento de Sistemas – UNOPAR

ADMINISTRAÇÃO DE BANCO DE DADOS PGN0031 - BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS

VICTOR AUGUSTO FRAGOSO FLORENTIN

victor.fragoso@live.com

https://sites.google.com/a/ic.ufal.br/vaff/estacio/pos/bdg

ADMINISTRAÇÃO DE BANCO DE DADOS PGN0031 - BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS

Apresentação do Discente:

Fale um pouco de você.

Fale um pouco de sua experiência e sua expectativa do curso.

OBJETIVOS:

- Aprender os conceitos básicos de sistemas de informações geográficas (SIGs);
- Aprender processos e arquitetura SIGs;
- Aprender os conceitos básicos de banco de dados com informações geográficas (BDG);
- Capacitar a elaboração e modelagem de um projeto utilizando BDG.

EMENTA:

- 1. Definição de Sistemas de Informações Geográficas (SIG);
- 2. Uso de camadas em SIG;
- 3. O planejamento com SIG: Exemplos de aplicações;
- 4. Digitalização de imagens e mapas;
- 5. Projeto de banco de dados de informações geográficas.

METODOLOGIA:

A disciplina será conduzida de forma participativa e dialética, através da qual o aluno será estimulado a construir o seu próprio conhecimento. Como estratégias, propõe-se:

- Aulas expositivas com slides;
- Aulas práticas em laboratório desenvolvidas com base em situação real;
- Avaliação de conhecimento através de projeto em equipe.

BIBLIOGRAFIA:

Resolução nº 25, 27 de abril de 2007. Dispõe sobre a adoção do Modelo de Requisitos para Sistemas Informatizados de Gestão Arquivística de Documentos — e-ARQ Brasil pelos órgãos e entidades integrantes do Sistema de Arquivos-SINAR. Disponível em: http://www.conarq.arquivonacional.gov.br/Media/publicacoes/earqbrasilv1.pdf. Acesso: 16 set. 2015.

BURROUGH, P.A. **Principles of Geographical Information Systems for Land Resources Assessment**. Oxford: Clarendon Press, 1986.

CÂMARA, G.; DAVIS, C. Introdução à Ciência da Geoinformação. Disponível em: http://www.dpi.inpe.br/gilberto/livro/introd/. Acesso em: 16 set. 2015.

CÂMARA, G.; QUEIROZ, G. R. **Arquitetura de Sistemas de Informação Geográfica**. 2001. Disponível em: www.dpi.inpe.br/gilberto/livro/introd/cap3-arquitetura.pdf. Acesso em: 16 set. 2015.

FERRARI, Roberto. Viagem ao SIG. Curitiba: Sagres Editora, 1997. 80 p.

L. FILHO, Jugurta; IOCHPE, C. Introdução a Sistemas de Informações Geográficas com Ênfase em Banco de Dados. 1996. Disponível em: www.dpi.ufv.br/~jugurta/papers/sig-bd-jai.pdf. Acesso em: 16 set. 2015.

BIBLIOGRAFIA:

L. FILHO, Jugurta; IOCHPE, C. Introdução a SIG – Sistemas de Informações Geográficas. 1995. Disponível em: www.dpi.ufv.br/~jugurta/papers/ti.pdf. Acesso em: 16 set. 2015.

KORTH, H.; SILBERSCHATZ, A. Sistemas de bancos de dados. São Paulo: McGraw-Hill, 1989. 582 p.

MATOS, J. L. Fundamentos de informação geográfica. Lisboa: Lidel, 2001.

RAMIREZ, M. R. **Sistemas Gerenciadores de Banco de Dados para Geoprocessamento**. Rio de Janeiro: COPPE/UFRJ. 1994. Dissertação de Mestrado.

FERRAMENTAS DE APOIO:

MODELAGEM

ArgoCASEGEO:

- Ferramenta CASE de código aberto que permite a modelagem de banco de dados geográficos com base no modelo conceitual UML-GeoFrame, que é específico para aplicações de Sistemas de Informação Geográfica (SIG).
- http://www.dpi.ufv.br/projetos/argocasegeo

StarUML:

http://www.dpi.inpe.br/cursos/ser300/softwares.html.

FERRAMENTAS DE APOIO:

BDG

- PostgreSQL:
 - SGBD.
- PostGIS:
 - Extensão espacial do PostgreSQL.
- Download:
 - http://www.postgresql.org/download/windows/.

INFORMAÇÕES GEOGRÁFICAS (IG)

Fonte: The Economist, Jul. 24th 2003.

INFORMAÇÕES GEOGRÁFICAS (IG)

INFORMAÇÕES GEOGRÁFICAS (IG) Projeções:

- As projeções cartográficas são formas ou técnicas de representar a superfície terrestre em mapas.
- Classificadas quanto ao tipo de superfície adotada:
 - Cilíndricas, planas ou azimutais e cônicas.

Fonte: http://n.i.uol.com.br/licaodecasa/ensmedio/geografia/

INFORMAÇÕES GEOGRÁFICAS (IG) Sistemas de coordenadas:

 Um sistema de coordenadas é uma estrutura para definir as localizações relativas de elementos em uma determinada área. Exemplo: uma área da superfície terrestre ou a superfície terrestre como um todo.

Fonte: http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.spatial.topics.doc/doc/db2sb03.html

INFORMAÇÕES GEOGRÁFICAS (IG) Escalas:

• Escala é a relação entre a medida de um objeto ou lugar representado no papel (d) e sua medida real (D) (ESCALA= d/D); é definidora do nível de generalização/simplificação aceitável.

INFORMAÇÕES GEOGRÁFICAS (IG) Características:

- Informação sobre locais na superfície da Terra;
- Conhecimento sobre onde algum objeto se encontra;
- Conhecimento sobre o que está em uma dada localização (coordenadas geográficas);
- A informação geográfica pode ser específica:
 - Informação sobre as localizações de cada edificação de uma cidade;
 - Informação sobre cada árvore em uma floresta.
- A informação geográfica pode ser superficial:
 - O clima de uma região de um país;
 - A densidade populacional de um país.

INFORMAÇÕES GEOGRÁFICAS (IG) Características:

- A informação geográfica pode ser relativamente estática:
 - Ao imprimir a informação geográfica em papel, a mesma torna-se estática;
 - Informação sobre cada árvore em uma floresta.
- A informação geográfica pode ser muito volumosa (tamanho digital):
 - Alguns Terabytes (10^{12} bytes) de dados podem ser produzidos por um único satélite em apenas um único dia;
 - Alguns Gigabytes (10^9 bytes) de dados são necessários para descrever a rede viária de um país, como por exemplo do Brasil.

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG) Tipos:

- Mapas e cartas;
- Descrições textuais;
- Desenhos artísticos;
- Fotografias comuns;
- Fotografias aéreas (aerofotogrametria);
- Imagens de sensoriamento remoto;
- Tabelas (banco de dados com extensão espacial).

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG)

Mapas:

Fonte: http://professoralexeinowatzki.webnode.com.br/sobre-mim/cartografia/cartas-topograficas/

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG) Cartas Topográficas:

Fonte: http://professoralexeinowatzki.webnode.com.br/sobre-mim/cartografia/cartas-topograficas/

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG) Descrição Textual:

 Descreve em forma de texto uma determinada área na superfície da Terra, referenciando as informações geológicas e geográficas, como por exemplo altitude.

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG)

Desenhos artísticos:

Fonte: http://www.elitelancamentos.com.br/upload/galerias/1372425715b6fb3139696ad7b11f420968cda942ec.jpg

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG)

Fotos comuns:

Fonte: http://geourbe.com.br/wp-content/uploads/2015/03/Topografia_3.jpg

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG)

Aerofotogrametria:

Fonte: http://s2.glbimg.com/UkE3gHyW97GD6S4lVwPJmjqtrfg=/620x465/s.glbimg.com/jo/g1/f/original/2014/05/06/estadio-do-maracana-depois.jpg

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG) Imagens de sensoriamento remoto:

Fonte: http://www.dsr.inpe.br/geu/geu linha4.jpg

REPRESENTAÇÃO DE INFORMAÇÕES GEOGRÁFICAS (IG) Tabelas (banco de dados com extensão espacial):

Banco de Dados Geográficos

Fonte: http://andersonmedeiros.com/wp-content/uploads/2010/03/PostgreSQL-X-PostGIS.png

INFORMAÇÕES GEOGRÁFICAS (IG) Coleta e manipulação digital:

- Sistema de satélite de navegação global (GNSS):
 - Sistema de satélites orbitando a Terra e transmitindo sinais precisos para o posicionamento geográfico. Este sistema de satélites é composto por um conjunto de satélites Norte-Americanos (GPS), Russos (GLONASS) e da Comunidade Europeia (Galileo);
 - Os sinais transmitidos pelos satélites são recebidos, na superfície terrestre, por dispositivos eletrônicos especiais (receptores GNSS).
 - Os receptores oferecem a medida direta de posição na superfície da Terra;
 - A localização é expressa em latitude e longitude ou ainda em outro sistema de coordenadas geográficas.

INFORMAÇÕES GEOGRÁFICAS (IG) Coleta e manipulação digital:

- Sensoriamento Remoto:
 - Utiliza sensores a bordo de satélites e aeronaves para capturar informações sobre a superfície e atmosfera terrestre;
 - Os sensores variam de acordo com a capacidade de detalhamento da observação espacial, espectral, temporal e radiométrica;
 - Os sinais capturados pelos sensores são transmitidos para a Terra, recebidos em estações onde os mesmos são transformados em imagens digitais.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG)

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Características:

- Sistemas que realizam o tratamento computacional de dados geográficos;
- A principal diferença de um SIG para um sistema de informação convencional é sua capacidade de armazenar tanto os atributos descritivos como as geometrias dos diferentes tipos de dados geográficos.
- Propicia:
 - Coletar, editar, pesquisar, analisar e apresentar as informações em um mapa (impresso) ou em um computador.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Definições:

- Um poderoso conjunto de ferramentas para coletar, armazenar, recuperar, transformar e exibir dados espaciais do mundo real (Burrough, 1986);
- Um sistema para capturar, armazenar, controlar, manipular, analisar e visualizar dados que são espacialmente referenciados à Terra (Departamento de Meio Ambiente, 1987);
- Um sistema de base de dados no qual a maioria dos dados são indexados espacialmente, e sobre a qual um conjunto de processos acionados de forma a responder perguntas sobre entidades espaciais na base de dados (Smith et al., 1987);
- Sistema de apoio à decisão que envolve a integração de dados espacialmente referenciados na resolução de um problema real (Cowen, 1988).

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Definições:

- Tipo particular de um Sistema de Informação aplicado a dados geográficos. Projetado para coletar, armazenar e analisar objetos e fenômenos em que a localização geográfica é uma característica importante ou fundamental para que ocorra a análise (SILVA, 2007);
- Sistemas de Informações Geográficas ou Geographic Information System (GIS) é um sistema composto por software, usuário, hardware, dados e metodologia (ou técnicas) de análise, que permite o uso integrado de dados com referências geográficas com uma finalidade específica.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG)

Componentes:

Fonte: http://images.slideplayer.com.br/2/345780/slides/slide 5.jpg

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Componentes:

Hardwares:

São os mesmos utilizados em qualquer outra aplicação (teclado, monitor, cabos, dispositivos para Internet, processadores CISC e/ou RISC). No entanto a esses equipamentos comuns, podem ser adicionados periféricos extras, tais como receptores de sinais GNSS, grandes impressoras e/ou plotters, restituidores fotogramétricos digitais, scanners, entre outros. O conjunto de hardwares de um SIG depende da aplicação e do gerenciamento estratégico da instituição onde o SIG está sendo implantado.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Componentes:

Softwares:

 Possuem ferramentas para manipular os dados geográficos a fim de produzir informações geográficas. Esses programas possuem ferramentas para exibirem dados e informações geográficas, ferramentas para realizar edição, alteração e transformação de dados geográficos, ferramentas para medir distâncias e áreas, ferramentas para combinar mapas, entre outras.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Componentes:

- Pessoas:
 - Todos os usuários que manipulam as informações e ferramentas tecnológicas de um sistema de informações geográficas (SIG).

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Componentes:

Banco de dados:

- Base de dados geográficos, que é um tipo especial de dado, pois agrega além dos dados espaciais (pontos, linhas, polígonos e células ou pixels), os dados tabulares que tem como função descrever cada uma das entidades espaciais. Tendo como objetivo representar graficamente, fisicamente, quantitativamente e qualitativamente os elementos existentes na superfície terrestre.
- Os dados espaciais são utilizados para representar graficamente elementos geográficos (drenagem, sistema viário, relevo, vegetação, limite político, entre outros), enquanto que os dados tabulares são relacionados aos dados gráficos e tem como função descrever mais detalhadamente os elementos geográficos.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Componentes:

- Metodologia:
 - Métodos e processos utilizados para o desenvolvimento e/ou utilização de um SIG:
 - Coleta de dados: Fotogrametria, sensoriamento remoto e levantamento de campo;
 - Fontes de dados: Produtos resultantes desses processos de coleta de dados é que são as verdadeiras fontes de dados dos SIG;
 - Métodos de aquisição de dados: Digitalização manual, digitalização automática, dados em meio magnético, sistema de satélite de navegação global (GNSS) e digitação por meio do teclado.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Objetivos:

- Inserir e integrar, numa única base de dados, informações espaciais provenientes de meio físico-biótico, de dados censitários, de cadastros urbano e rural, e outras fontes de dados como imagens de satélite;
- Oferecer mecanismos para combinar as várias informações, através de algoritmos de manipulação e análise, bem como para consultar, recuperar e visualizar o conteúdo da base de dados geográficos.

- Anos 50 Primeiras tentativas de automatizar parte do processamento de dados espaciais (Inglaterra e EUA):
 - Objetivo de reduzir os custos de produção e manutenção de mapas;
 - Devido a precariedade da informática da época e a especificidade das aplicações, ainda não podiam ser chamados de sistemas de informações.

- Anos 60 Surgem os primeiros SIG (Canadá):
 - Utilizado para criar um inventário de recursos naturais;
 - Dificuldade de utilização devido a restrições computacionais. As soluções tecnológicas deviam ser feitas sob demanda e possuíam baixa capacidade de processamento e armazenamento.

- Anos 70 A evolução da informática (hardware) tornou viável o desenvolvimento de sistemas comerciais:
 - Foi quando a expressão SIG foi criada. E surgiu comercialmente o CAD (Computer-Aided Design).
 - Desenvolvimento de alguns fundamentos matemáticos voltados para a cartografia, incluindo a geometria computacional.
 - Ainda estava restrito a grandes organizações devido ao custo de equipamentos.

- Anos 80 Marco inicial da popularização do SIG, devido aos avanços da microinformática:
 - O Geoprocessamento passa a ser uma disciplina científica independente, com a criação nos EUA de centros de pesquisa e o surgimento dos sistemas gerenciadores de banco de dados relacionais.

- A partir dos anos 90:
 - Grande penetração do SIG nas organizações com o custo de software e hardware decrescendo e surgimento de alternativas menos custosas para construção de base de dados geográficas.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Possibilidades:

- Estudo de Impacto Ambiental;
- Gestão de Recursos;
- Planejamento do uso do solo;
- Saneamento Básico e rede de distribuição de águas;
- Rotas de Transporte;
- Entre outras.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Funcionalidade:

- Os dados no SIG possuem referência espacial (geográfica), descrevendo uma área sobre a superfície terrestre usando por exemplo:
 - Coordenadas;
 - Sistema de referencias;
 - Endereço;
 - Município;
 - Logradouro;
 - Bacia hidrográfica;
 - Entre outras.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Integração de dados:

- Estradas;
- População;
- Serviços;
- Escolas;
- Hospitais;
- Campo de Refugiados;
- Nascentes;
- Saneamento;
- Entre outras.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Modelos de Representação SIG:

- Matricial (Raster):
 - Formado por grades e células;
 - Usado para dados contínuos como elevações (MDE), declividades e superfícies.
- Vetorial:
 - Usa coordenadas (x, y) para definir as áreas;
 - Para dados discretos representados por pontos, linhas e polígonos.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Modelos de Representação SIG:

Matricial (Raster):

Vetorial:

Mundo real:

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Modelos de Representação SIG – Matricial (Raster) :

- Grade regular de células:
 - Cada célula representa uma área no terreno;
 - Depende da resolução espacial.
- O valor atribuído para cada célula representa seu atributo:
 - Declividade;
 - Cobertura vegetal;
 - Elevação.
- Imagem de Satélites
- Utilizado para representar atributos que apresentam mudanças contínuas.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Modelos de Representação SIG – Matricial (Raster) :

- Vantagens:
 - Formato de dado mais comum;
 - Operações matemáticas e de overlay mais fáceis;
 - Informações de imagens de satélites facilmente incorporadas;
 - Melhor para representar dados "contínuos".

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Modelos de Representação SIG – Vetoriais:

- Abstração espacial das áreas:
 - Pontos;
 - Linhas;
 - Áreas (polígonos).
- Grava as coordenadas dos vértices;
- Bom para representar objetos com limites bem definidos;
- As relações espaciais podem ser definidas.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Modelos de Representação SIG – Vetoriais:

- Vantagens:
 - Informação com maior precisão em sua posição. Melhor forma de armazenar feições temáticas discretas (ex. Estradas, rios, limites);
 - Dados mais compactos para armazenamento;
 - Podemos associar números ilimitados de atributos com características específicas.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG)
Modelos de Representação SIG – Comparação entre Vetoriais e Matricial:

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Modelos de Representação SIG – Atributos:

- Para o modelo de dados Raster, o valor da célula (número digital) é o atributo. Exemplos: elevação, declividade, cobertura vegetal, solo, entre outros;
- Para dados vetoriais os atributos são gravados e relacionados as áreas (feições) pontos, linhas ou polígonos. Cada dado pode possuir múltiplos atributos para a feição (solo: cor, textura, estrutura, entre outros). Torna-se possível realizar análises a partir de cada atributo individualmente.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Relações espaciais:

- Pontos a serem analisados na construção de um mapa e na análise espacial:
 - Escala/Resolução;
 - Projeção;
 - Princípios cartográficos, design, generalização.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Relações espaciais:

- Características geométricas individuais de cada feição:
 - Comprimento, área, perímetro, forma.
- Relação espacial entre 2 ou mais objetos:
 - Distância, direção, topologia.
- Distribuição espacial dos objetos:
 - Como os objetos estão distribuídos no espaço.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Topologias:

- No contexto do SIG, uma topologia é um conjunto de regras e comportamentos que estipulam como pontos, linhas e polígonos partilham geometrias coincidentes.
 Topologia é definido como a relação espacial entre feições vizinhas ou adjacentes.
- Por exemplo:
 - Objetos adjacentes, tais como países ou parcelas de terreno, têm uma fronteira comum, isto é, partilham uma aresta;
 - O conjunto de países ou parcelas de terreno adjacentes cobrem completamente (sem sobreposições) uma região do espaço.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG) Topologias:

- No SIG a topologia é usada para garantir a integridade dos dados;
- Assegura a qualidade dos dados e permite a execução de algumas funções de análise espacial;
- Um modelo de dados topológico representa os objetos espaciais (ponto, linha e polígono) tendo subjacente um grafo composto por nós e arcos:
 - Um arco é definido por 2 nós;
 - O ponto de intersecção de 2 arcos é sempre um nó.

SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS (SIG)

Topologias:

USO DE CAMADAS EM SIG

CAMADAS EM SIG

- Mapas topográficos têm sido tradicionalmente elaborados com o objetivo de atender a uma infinidade de propósitos, enquanto que os mapas "temáticos" são elaborados com objetivos mais específicos, como por exemplo para representar a hidrografia de uma região, estradas de rodagem, tipos de solos, entre outros (BURROUGH, 1986);
- Em um SIG, a ideia de mapas "temáticos" é implementada empregando-se o conceito de camadas, onde para uma mesma região podem ser criadas diversas camadas de dados, uma para cada tema.

USO DE CAMADAS EM SIG

CAMADAS EM SIG

Realidade Geo-Espacial

Fonte: http://t0.gstatic.com/images?q=tbn:ANd9GcQDppaWSWwKQfehUoOmRzdAuX4HHMnllGmny5GkJ_QjDQdo4Vs4

USO DE CAMADAS EM SIG

CAMADAS EM SIG

 Por exemplo, os SIG fornecem ferramentas de análise que são capazes de obter resultados para consultas do tipo: "Identifique todas as áreas com um determinado tipo de solo e que estejam acima de uma determinada altitude", o que seria feito a partir da combinação de dois mapas temáticos, um sobre tipos de solos e outro sobre altimetria.

PROCESSOS SIG

ARQUITETURA SIG

Fonte: Figura Adaptada de http://www.dpi.inpe.br/spring/portugues/tutorial/arquivos/img00001.gif

ARQUITETURA SIG

- Interface: define como o sistema é operado e utilizado;
- Entrada e integração de dados: compreende as operações a serem aplicadas antes da utilização dos dados. Exemplo: Os mecanismos de conversão de dados.
- Consulta e análise espaciais: seleção e pesquisa sobre informações geográficas, transformações de escala ou projeção, sobreposição de camadas de dados e execução de operações espaciais.
- Visualização e plotagem: apresentação gráfica dos resultados de consultas e análises espaciais de maneira que o usuário possa interpretar facilmente tais resultados;
- Gerência de dados espaciais: oferece armazenamento e recuperação dos dados espaciais.

Fonte: http://www.dpi.inpe.br/spring/portugues/tutorial/introducao_geo.html

APLICAÇÕES SIG

- Interface: define como o sistema é operado e utilizado;
- Entrada e integração de dados: compreende as operações a serem aplicadas antes da utilização dos dados. Exemplo: Os mecanismos de conversão de dados.
- Consulta e análise espaciais: seleção e pesquisa sobre informações geográficas, transformações de escala ou projeção, sobreposição de camadas de dados e execução de operações espaciais.
- Visualização e plotagem: apresentação gráfica dos resultados de consultas e análises espaciais de maneira que o usuário possa interpretar facilmente tais resultados;
- Gerência de dados espaciais: oferece armazenamento e recuperação dos dados espaciais.

Fonte: http://www.dpi.inpe.br/spring/portugues/tutorial/introducao_geo.html

APLICAÇÕES SIG

- O universo de problemas onde os SIGs podem atuar com contribuições substanciais é vasto. Atualmente, estes sistemas têm sido utilizados:
 - Órgãos públicos nas esferas federal, estadual e municipal;
 - Institutos de pesquisas;
 - Empresas de prestação de serviço de utilidade pública. Exemplo: Companhias de água, luz e telefonia;
 - Segurança militar. Exemplo: Projeto SIVAM;
 - Empresas privadas, entre outras.

Fonte: http://www.dpi.inpe.br/spring/portugues/tutorial/introducao_geo.html

APLICAÇÕES SIG Áreas de aplicações SIG (Ramirez, 1994):

Fonte: http://www.dpi.inpe.br/spring/portugues/tutorial/introducao_geo.html

- Ocupação Humana:
 - Planejamento e gerenciamento urbano: redes de infraestrutura como água, luz, telecomunicações, gás e esgoto. Planejamento e supervisão de limpeza urbana, cadastramento territorial urbano e mapeamento eleitoral.
 - Saúde e educação: rede hospitalar, rede de ensino, saneamento básico e controle epidemiológico.
 - Transporte e segurança: supervisão de malhas viárias, roteamento de veículos, controle de tráfego e sistemas de informações turísticas.
 - Segurança: supervisão do espaço aéreo, marítimo e terrestre, controle de tráfego aéreo, sistemas de cartografia náutica e serviços de atendimentos emergenciais.

- Uso da Terra:
 - Planejamento agropecuário;
 - Estocagem e escoamento da produção agrícola;
 - Classificação do solo e vegetação;
 - Gerenciamento de bacias hidrográficas;
 - Planejamento de barragens;
 - Cadastramento de propriedades rurais;
 - Levantamento topográfico e planimétricos;
 - Mapeamento do uso da Terra.

- Uso de recursos naturais:
 - Controle do extrativismo vegetal e mineral;
 - Classificação de poços petrolíferos;
 - Planejamento de gasodutos e oleodutos;
 - Distribuição de energia elétrica;
 - Identificação de mananciais;
 - Gerenciamento costeiro e marítimo.

- Atividades econômicas:
 - Planejamento de marketing;
 - Pesquisas socioeconômicas;
 - Distribuição de produtos e serviços;
 - Logística de produtos e serviços;
 - Logística de matéria-prima e insumos.

APLICAÇÕES SIG Softwares SIG:

Software	Licença	Plataforma	Link
GRASS	GNU	Multiplataforma	http://grass.osgeo.org/
gvSIG	GNU GPL	Multiplataforma	http://www.gvsig.org/web/
QGIS	GPL	Multiplataforma	http://qgis.org/
SPRING	Freeware	Multiplataforma	http://www.dpi.inpe.br/spring/index.html
SAGA GIS	GPL	Multiplataforma	http://www.saga-gis.org/
TerraView	GNU GPL	Multiplataforma	http://www.dpi.inpe.br/terraview/index.php

DIGITALIZAÇÃO DE IMAGENS E MAPAS Definição:

- Entendemos a digitalização como um processo de conversão dos documentos arquivísticos em formato digital, que consiste na conversão em dados binários com os quais os computadores criam, recebem, processam, transmitem e armazenam dados;
- De acordo com a natureza do documento arquivístico original, diversos dispositivos tecnológicos (hardware) e programas de computadores (software) serão utilizados para converter em dados binários o documento original para diferentes formatos digitais. No entanto, o produto dessa conversão não será igual ao original e não substitui o original que deve ser preservado;
- A digitalização, portanto é dirigida ao acesso, difusão e preservação do acervo documental.

Fonte: Resolução nº 25, 27 de abril de 2007.

DIGITALIZAÇÃO DE IMAGENS E MAPAS Importância:

- Contribuir para o amplo acesso e disseminação dos documentos arquivísticos por meio da Tecnologia da Informação e Comunicação;
- Permitir o intercâmbio de acervos documentais e de seus instrumentos de pesquisa por meio de redes informatizadas;
- Promover a difusão e reprodução dos acervos arquivísticos não digitais, em formatos e apresentações diferenciados do formato original;
- Incrementar a preservação e segurança dos documentos arquivísticos originais que estão em outros suportes não digitais, por restringir seu manuseio.

Fonte: Resolução nº 25, 27 de abril de 2007.

DIGITALIZAÇÃO DE IMAGENS E MAPAS Tipos de equipamentos de digitalização:

- Mesas digitalizadoras (Planetários);
- Scanners (Plotter);
- Câmeras digitais.

Fonte: Resolução nº 25, 27 de abril de 2007.

DIGITALIZAÇÃO DE IMAGENS E MAPAS Tipos de equipamentos de digitalização:

Câmera Digital:

Fonte: Operador técnico operando o Sistema Robokabis III que utiliza duas câmeras de alta resolução que capturam duas páginas simultaneamente. Foto: Marcos Santos/USP Imagens. http://www.imagens.usp.br/?p=20668

Mesas digitalizadoras (Planetários):

Fonte: Operador técnico utilizando o Sistema Skyview (planetária) que é voltado para a digitalização de grandes formatos como mapas, cartazes e jornais mantendo altas resolução e qualidade. Foto: Marcos Santos/USP Imagens. http://www.imagens.usp.br/?p=20668

Scanners (Plotter):

Fonte: Plotter de grande formato (HP 1100) http://www.colacor.com.br/tecnologia.htm

BANCO DE DADOS (BD)

BANCO DE DADOS (BD)

- Coleção de dados relacionados logicamente.
 - Exemplos: agenda de telefones, cadastro de clientes, entre outros.
- Propriedades Básicas:
 - Representação de algum aspecto do mundo real;
 - Coleção logicamente coerente de dados com algum significado;
 - É projetado, construído e populado com dados para uma finalidade específica.
- Atores Básicos:
 - Administrador (DBA), Projetista (Arquiteto de Banco de Dados), Analista e Desenvolvedor, Operadores (Usuários comuns).

SISTEMA DE GERENCIAMENTO DE BANCO DE DADOS (SGBD) Definição:

- Coleção de softwares que permitem a criação e gerência de Bases de Dados ou Sistemas de Banco de Dados.
 - Exemplos:

SISTEMA DE GERENCIAMENTO DE BANCO DE DADOS (SGBD)

SISTEMA DE GERENCIAMENTO DE BANCO DE DADOS (SGBD) Características:

- Controle de redundância;
- Compartilhamento dos dados;
- Independência de dados;
- Segurança;
- Backup e recuperação;
- Restrições de Integridade;
- Produtividade e disponibilidade;
- Flexibilidade e Padronização.

SISTEMA DE GERENCIAMENTO DE BANCO DE DADOS (SGBD) Propriedades ACID:

- Atomicidade: todas as ações de uma transação só podem ser efetivadas se a transação toda for concluída com êxito;
- Consistência: as regras de restrição do banco devem ser sempre obedecidas.
- Isolamento: uma transação não pode influenciar em outra;
- Durabilidade: o resultado de uma transação bem sucedida deve ser permanente e só pode ser alterada por outra transação.

SISTEMA DE GERENCIAMENTO DE BANCO DE DADOS (SGBD) Extensões:

- Geographic Databases (Bancos de Dados Geográficos);
- Web Databases (Bancos de Dados para Web);
- XML Databases (Bancos de Dados XML);
- Multimedia Databases (Bancos de Dados Multimídia);
- Mobile Databases (Bancos de Dados Móveis em Dispositivos Móveis);
- Data Warehouse (Depósito de Dados);
- Deductive Databases (Bancos de Dados Dedutivos);
- Biometric Databases (Bancos de Dados Biométricos);
- Entre outros.

BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS (BDG) Definição:

Fonte: http://andersonmedeiros.com/wp-content/uploads/2010/03/PostgreSQL-X-PostGIS.png

BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Definição:

- Conhecido também como Sistema de Gerenciamento de Banco de Dados Geográficos (SGBD-G) é implementado pela junção de um SGDB (Exemplo: PostgreSQL) e sua extensão espacial (PostGIS), possibilitando suporte a dados geográficos;
- Essa extensão espacial implementa estrutura de dados de armazenamento, indexação espacial, consultas espaciais, operações espaciais, entre outros.
- Exemplos de soluções:
 - PostgreSQL e sua extensão espacial PostGIS;
 - Oracle e sua extensão espacial Oracle Spatial.

BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Definição:

- As operações espaciais podem realizar:
 - Queries (consultas);
 - Views (visões);
 - Triggers (gatilhos);
 - Functions (funções);
 - Procedures (procedimentos);
 - Entre outros.

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases:

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível real:

- Contém os elementos da realidade geográfica a serem modelados, por exemplo, rios, relevo, rede de abastecimento de água, edificações, lotes;
- Análise de dados geográficos.

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível conceitual:

- Ferramentas para modelar formalmente campos e objetos geográficos em um alto nível de abstração;
- Determinação das classes que deverão ser criadas e definição de operações disponíveis para o usuário;
- Elaboração do esquema conceitual de BD;
- Utilização de linguagens (modelos) simples para facilitar o diálogo entre usuários e projetistas;
- Objetivo de identificar e definir as entidades do BD, as estruturas (atributos) e os relacionamentos.

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível conceitual:

Modelo entidade-relacionamento:

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível conceitual:

Modelo entidade-relacionamento:

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível de representação:

- Associa as classes de campos e objetos geográficos criadas no nível anterior com as classes de representação de cada campo ou objeto;
- Podem variar em função da escala, projeção cartográfica, época de aquisição dos dados geográficos e visão do usuário ou aplicação;
- Esquema lógico do BD;
- Baseado no modelo de SGBD que será utilizado;
- Gerados a partir de regras de transformação dos construtores de abstração utilizados no esquema conceitual em elementos de representação de dados de um dos modelos de BD (relacional, hierárquico, OO).

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível de representação:

Diagrama de classe georreferenciada.

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível de representação:

Diagrama de classe georreferenciada.

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS

Fases – Nível de representação:

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível de implementação:

- Define padrões, formas de armazenamento e estruturas de dados para implementar as diferentes representações;
- Define os aspectos de implementação física do BD:
 - Estruturas de armazenamento;
 - Caminhos de acesso;
 - Particionamento;
 - Agrupamento.
- Diretamente ligado ao SGBD específico;
- Permite o planejamento de aspectos ligados a eficiência do sistema.

PROJETO DE BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS Fases – Nível de implementação:

POSTGIS Classe de dados:

Geometry:

 Formato padrão para dados geográficos e possui uma vasta lista funções para manipulação e conversão de dados. Com ele é possível realizar muito mais operações, contudo, para tirar maior proveito das capacidade do PostGIS é necessário um maior conhecimento de sistemas de referência espacial;

Geography:

• É um plano e por definição a menor distância entre dois pontos é sempre uma reta, mas como a Terra é um esferoide e nem tudo é tão plano como parece ser, isso pode trazer grandes problemas na precisão quando os valores ou o resultado de operações extrapolam a grandes distâncias territoriais.

POSTGIS Estrutura de dados:

- Point;
- Linestring;
- Polygon;
- Multipoint;
- Multilinestring;
- Multipolygon;
- GeometryCollection.

Fonte: Adaptado do Manual PostGIS 2.0

POSTGIS

Estrutura de dados:

- Point(0 0);
- Linestring(0 0, 1 1,1 2);
- Polygon ((0 0,4 0,4 4,0 4,0 0), (1 1,2 1,2 2,1 2,1 1));
- Multipoint(0 0,1 2,1 3,1 4,2 2,3 3);
- Multilinestring((0 0,1 1,1 2), (2 3,3 2,5 4));
- Multipolygon(((0 0,4 0,4 4,0 4,0 0), (1 1,2 1,2 2,1 2,1)), ((5 0,5 4,6 4,5 0)));
- GeometryCollection(POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)),
- MULTIPOINT(0 0,1 2,1 3,1 4,2 2,3 3)).

Fonte: Adaptado do Manual PostGIS 2.0

POSTGIS

Funções Principais – Geométrico:

- ST_Distance(geometry, geometry): Retorna a distância entre objetos geométricos.
- ST_Area(geometry): Retorna a área de um polígono;
- ST_Perimeter(geometry): Retorna o perímetro de um polígono;
- Consultar tópico 6 (PostGIS Reference) do manual PostGIS.

POSTGRESQL CRIAR TABELA – BDG:

```
CREATE TABLE distritos
(

cod_distritos serial,

sigla varchar(10) not null,

descricao_distritos varchar(200) not null,

primary key (cod_distritos)
);

--Adicionando coluna geométrica na tabela Distritos:

SELECT AddGeometryColumn('public', 'distritos', 'spatial_data', 4326, 'POINT',2);
```

POSTGRESQL POPULAR TABELA – BDG:

```
INSERT INTO distritos (sigla,descricao_distritos,spatial_data)

VALUES ('MCZ','MACEIÓ',ST_GeomFromText('POINT(-35.7351 -9.66625)',4326));

INSERT INTO distritos (sigla,descricao_distritos,spatial_data)

VALUES ('REC','RECIFE',ST_GeomFromText('POINT(-34.8813 -8.05428)',4326));

INSERT INTO distritos (sigla,descricao_distritos,spatial_data)

VALUES ('JPS','JOÃO PESSOA',ST_GeomFromText('POINT(-34.861 -7.11532)',4326));
```

POSTGRESQL CONSULTAR DISTÂNCIA ENTRE DOIS DISTRITOS – BDG:

```
SELECT ST_Distance
(

Geography(a.spatial_data),
Geography(b.spatial_data)
)/1000 AS distanciakm

FROM distritos a,
distritos b

WHERE a.sigla='MCZ'
AND b.sigla='JPS'
```

PROJETO EM EQUIPE

ADMINISTRAÇÃO DE BANCO DE DADOS PGN0031 - BANCO DE DADOS DE INFORMAÇÕES GEOGRÁFICAS LATO SENSU

OBRIGADO.