

# 5. DC Characteristics and Timing Specifications

CII51005-4.0

# Operating Conditions

Cyclone® II devices are offered in commercial, industrial, automotive, and extended temperature grades. Commercial devices are offered in –6 (fastest), –7, and –8 speed grades.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the parameter values in this chapter apply to all Cyclone II devices. AC and DC characteristics are specified using the same numbers for commercial, industrial, and automotive grades. All parameters representing voltages are measured with respect to ground.

Tables 5–1 through 5–4 provide information on absolute maximum ratings.

| Table 5–1. Cyclone II Device Absolute Maximum Ratings   Notes (1), (2) |                            |                         |         |         |      |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|----------------------------|-------------------------|---------|---------|------|--|--|--|--|--|--|--|
| Symbol                                                                 | Parameter                  | Conditions              | Minimum | Maximum | Unit |  |  |  |  |  |  |  |
| V <sub>CCINT</sub>                                                     | Supply voltage             | With respect to ground  | -0.5    | 1.8     | V    |  |  |  |  |  |  |  |
| V <sub>CCIO</sub>                                                      | Output supply voltage      |                         | -0.5    | 4.6     | V    |  |  |  |  |  |  |  |
| V <sub>CCA—PLL</sub> [14]                                              | PLL supply voltage         |                         | -0.5    | 1.8     | V    |  |  |  |  |  |  |  |
| V <sub>IN</sub>                                                        | DC input voltage (3)       | _                       | -0.5    | 4.6     | V    |  |  |  |  |  |  |  |
| I <sub>OUT</sub>                                                       | DC output current, per pin | _                       | -25     | 40      | mA   |  |  |  |  |  |  |  |
| T <sub>STG</sub>                                                       | Storage temperature        | No bias                 | -65     | 150     | °C   |  |  |  |  |  |  |  |
| $T_{J}$                                                                | Junction temperature       | BGA packages under bias | _       | 125     | °C   |  |  |  |  |  |  |  |

#### Notes to Table 5-1:

- (1) Conditions beyond those listed in this table cause permanent damage to a device. These are stress ratings only. Functional operation at these levels or any other conditions beyond those specified in this chapter is not implied. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effect on the device reliability.
- (2) Refer to the Operating Requirements for Altera Devices Data Sheet for more information.
- (3) During transitions, the inputs may overshoot to the voltage shown in Table 5–4 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transition, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Table 5–2 specifies the recommended operating conditions for Cyclone II devices. It shows the allowed voltage ranges for  $V_{CCINT}$ ,  $V_{CCIO}$ , and the operating junction temperature ( $T_J$ ). The LVTTL and LVCMOS inputs are powered by  $V_{CCIO}$  only. The LVDS and LVPECL input buffers on dedicated clock pins are powered by  $V_{CCINT}$ . The SSTL, HSTL, LVDS input buffers are powered by both  $V_{CCINT}$  and  $V_{CCIO}$ .

| Table 5–2. Re         | ecommended Operating Conditi                        | ons                          |              |                     |      |
|-----------------------|-----------------------------------------------------|------------------------------|--------------|---------------------|------|
| Symbol                | Parameter                                           | Conditions                   | Minimum      | Maximum             | Unit |
| V <sub>CCINT</sub>    | Supply voltage for internal logic and input buffers | (1)                          | 1.15         | 1.25                | V    |
| V <sub>CCIO</sub> (2) | Supply voltage for output buffers, 3.3-V operation  | (1)                          | 3.135 (3.00) | 3.465 (3.60)<br>(3) | V    |
|                       | Supply voltage for output buffers, 2.5-V operation  | (1)                          | 2.375        | 2.625               | V    |
|                       | Supply voltage for output buffers, 1.8-V operation  | (1)                          | 1.71         | 1.89                | V    |
|                       | Supply voltage for output buffers, 1.5-V operation  | (1)                          | 1.425        | 1.575               | V    |
| T <sub>J</sub>        | Operating junction                                  | For commercial use           | 0            | 85                  | °C   |
|                       | temperature                                         | For industrial use           | -40          | 100                 | °C   |
|                       |                                                     | For extended temperature use | -40          | 125                 | °C   |
|                       |                                                     | For automotive use           | -40          | 125                 | °C   |

#### *Notes to Table 5–2:*

- (1) The  $V_{CC}$  must rise monotonically. The maximum  $V_{CC}$  (both  $V_{CCIO}$  and  $V_{CCINT}$ ) rise time is 100 ms for non-A devices and 2 ms for A devices.
- (2) The V<sub>CCIO</sub> range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V<sub>CCIO</sub> range specific to each of the single-ended I/O standards is given in Table 5–6, and those specific to the differential standards is given in Table 5–8.
- (3) The minimum and maximum values of 3.0 V and 3.6 V, respectively, for V<sub>CCIO</sub> only applies to the PCI and PCI-X I/O standards. Refer to Table 5–6 for the voltage range of other I/O standards.

| Table 5–3.          | DC Characteristics for t           | User I/O, Dual-P                   | urpose, and Ded | icated Pins | (Part 1 o | f 2)              |      |
|---------------------|------------------------------------|------------------------------------|-----------------|-------------|-----------|-------------------|------|
| Symbol              | Parameter                          | Cond                               | itions          | Minimum     | Typical   | Maximum           | Unit |
| V <sub>IN</sub>     | Input voltage                      | (1)                                | , (2)           | -0.5        | _         | 4.0               | V    |
| l <sub>i</sub>      | Input pin leakage current          | $V_{IN} = V_{CCIOmax} t$           | o 0 V (3)       | -10         | _         | 10                | μΑ   |
| V <sub>OUT</sub>    | Output voltage                     | -                                  | _               | 0           | _         | V <sub>CCIO</sub> | V    |
| l <sub>OZ</sub>     | Tri-stated I/O pin leakage current | $V_{OUT} = V_{CCIOmax}$            | to 0 V (3)      | -10         | _         | 10                | μΑ   |
| I <sub>CCINTO</sub> | V <sub>CCINT</sub> supply          | V <sub>IN</sub> = ground,          | EP2C5/A         | _           | 0.010     | (4)               | Α    |
| current (standby)   | current (standby)                  | no load, no toggling inputs        | EP2C8/A         | _           | 0.017     | (4)               | Α    |
|                     |                                    | $T_{\rm J} = 25^{\circ} \text{ C}$ | EP2C15A         | _           | 0.037     | (4)               | Α    |
|                     |                                    | Nominal                            | EP2C20/A        | _           | 0.037     | (4)               | Α    |
|                     |                                    | V <sub>CCINT</sub>                 | EP2C35          | _           | 0.066     | (4)               | Α    |
|                     |                                    |                                    | EP2C50          | _           | 0.101     | (4)               | Α    |
|                     |                                    |                                    | EP2C70          | _           | 0.141     | (4)               | Α    |
| I <sub>CCIO0</sub>  | V <sub>CCIO</sub> supply current   | $V_{IN}$ = ground,                 | EP2C5/A         | _           | 0.7       | (4)               | mA   |
|                     | (standby)                          | no load, no toggling inputs        | EP2C8/A         | _           | 0.8       | (4)               | mA   |
|                     |                                    | $T_{.1} = 25^{\circ} \text{ C}$    | EP2C15A         | _           | 0.9       | (4)               | mA   |
|                     |                                    | $V_{CCIO} = 2.5 \text{ V}$         | EP2C20/A        | _           | 0.9       | (4)               | mA   |
|                     |                                    |                                    | EP2C35          |             | 1.3       | (4)               | mA   |
|                     |                                    |                                    | EP2C50          |             | 1.3       | (4)               | mA   |
|                     |                                    |                                    | EP2C70          | _           | 1.7       | (4)               | mA   |

| Table 5–3. DC Characteristics for User I/O, Dual-Purpose, and Dedicated Pins (Part 2 of 2) |                                                                                                      |                                                  |         |         |         |      |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------|---------|---------|------|--|--|--|--|--|--|
| Symbol                                                                                     | Parameter                                                                                            | Conditions                                       | Minimum | Typical | Maximum | Unit |  |  |  |  |  |  |
| R <sub>CONF</sub> (5) (6)                                                                  | Value of I/O pin                                                                                     | $V_{IN} = 0 \text{ V}; V_{CCIO} = 3.3 \text{ V}$ | 10      | 25      | 50      | kΩ   |  |  |  |  |  |  |
|                                                                                            | pull-up resistor<br>before and during<br>configuration                                               | V <sub>IN</sub> = 0 V; V <sub>CCIO</sub> = 2.5 V | 15      | 35      | 70      | kΩ   |  |  |  |  |  |  |
|                                                                                            |                                                                                                      | V <sub>IN</sub> = 0 V; V <sub>CCIO</sub> = 1.8 V | 30      | 50      | 100     | kΩ   |  |  |  |  |  |  |
|                                                                                            |                                                                                                      | V <sub>IN</sub> = 0 V; V <sub>CCIO</sub> = 1.5 V | 40      | 75      | 150     | kΩ   |  |  |  |  |  |  |
|                                                                                            |                                                                                                      | V <sub>IN</sub> = 0 V; V <sub>CCIO</sub> = 1.2 V | 50      | 90      | 170     | kΩ   |  |  |  |  |  |  |
|                                                                                            | Recommended<br>value of I/O pin<br>external pull-down<br>resistor before and<br>during configuration | (7)                                              | _       | 1       | 2       | kΩ   |  |  |  |  |  |  |

#### Notes to Table 5-3:

- All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V<sub>CCINT</sub> and V<sub>CCIO</sub> are powered.
- (2) The minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltages shown in Table 5-4, based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.
- (3) This value is specified for normal device operation. The value may vary during power-up. This applies for all V<sub>CCIO</sub> settings (3.3, 2.5, 1.8, and 1.5 V).
- (4) Maximum values depend on the actual T<sub>J</sub> and design utilization. See the Excel-based PowerPlay Early Power Estimator (www.altera.com) or the Quartus II PowerPlay Power Analyzer feature for maximum values. Refer to "Power Consumption" on page 5–13 for more information.
- (5)  $R_{CONF}$  values are based on characterization.  $R_{CONF} = V_{CCIO}/I_{RCONF}$  values may be different if  $V_{IN}$  value is not 0 V. Pin pull-up resistance values will be lower if an external source drives the pin higher than  $V_{CCIO}$ .
- (6) Minimum condition at -40°C and high V<sub>CC</sub>, typical condition at 25°C and nominal V<sub>CC</sub> and maximum condition at 125°C and low V<sub>CC</sub> for R<sub>CONF</sub> values.
- (7) These values apply to all V<sub>CCIO</sub> settings.

Table 5–4 shows the maximum  $V_{\rm IN}$  overshoot voltage and the dependency on the duty cycle of the input signal. Refer to Table 5–3 for more information.

| Table 5–4. V <sub>IN</sub> Overshoot Voltage for All Input Buffers |                         |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|--|
| Maximum V <sub>IN</sub> (V)                                        | Input Signal Duty Cycle |  |  |  |  |  |  |  |  |
| 4.0                                                                | 100% (DC)               |  |  |  |  |  |  |  |  |
| 4.1                                                                | 90%                     |  |  |  |  |  |  |  |  |
| 4.2                                                                | 50%                     |  |  |  |  |  |  |  |  |
| 4.3                                                                | 30%                     |  |  |  |  |  |  |  |  |
| 4.4                                                                | 17%                     |  |  |  |  |  |  |  |  |
| 4.5                                                                | 10%                     |  |  |  |  |  |  |  |  |

## Single-Ended I/O Standards

Tables 5–6 and 5–7 provide operating condition information when using single-ended I/O standards with Cyclone II devices. Table 5–5 provides descriptions for the voltage and current symbols used in Tables 5–6 and 5–7.

| Table 5–5. Volta  | ge and Current Symbol Definitions                                                 |
|-------------------|-----------------------------------------------------------------------------------|
| Symbol            | Definition                                                                        |
| V <sub>CCIO</sub> | Supply voltage for single-ended inputs and for output drivers                     |
| V <sub>REF</sub>  | Reference voltage for setting the input switching threshold                       |
| V <sub>IL</sub>   | Input voltage that indicates a low logic level                                    |
| V <sub>IH</sub>   | Input voltage that indicates a high logic level                                   |
| V <sub>OL</sub>   | Output voltage that indicates a low logic level                                   |
| V <sub>OH</sub>   | Output voltage that indicates a high logic level                                  |
| I <sub>OL</sub>   | Output current condition under which V <sub>OL</sub> is tested                    |
| I <sub>ОН</sub>   | Output current condition under which V <sub>OH</sub> is tested                    |
| V <sub>TT</sub>   | Voltage applied to a resistor termination as specified by HSTL and SSTL standards |

Table 5–6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards Note (1) (Part 1 of 2) V<sub>CCIO</sub> (V) V<sub>REF</sub> (V)  $V_{IL}(V)$  $V_{IH}(V)$ I/O Standard Min Typ Min Max Typ Max Max Min 3.3-V LVTTL and 3.135 3.3 1.7 3.465 8.0 LVCMOS 2.5-V LVTTL and 2.375 2.5 2.625 0.7 1.7 LVCMOS  $0.65 \times V_{CCIO}$ 1.8-V LVTTL and 1.710 1.8 1.890  $0.35 \times V_{CCIO}$ LVCMOS  $0.35 \times V_{\text{CCIO}}$ 1.5-V LVCMOS 1.425 1.5 1.575  $0.65 \times V_{CCIO}$ PCI and PCI-X 3.000 3.3 3.600  $0.3 \times V_{\text{CCIO}}$  $0.5 \times V_{\text{CCIO}}$ SSTL-2 class I 2.375 2.5 2.625 1.19 1.31  $V_{REF} - 0.18 (DC)$  $V_{REF} + 0.18 (DC)$ 1.25  $V_{REF} - 0.35 (AC)$  $V_{RFF} + 0.35 (AC)$ V<sub>REF</sub> - 0.18 (DC) SSTL-2 class II 2.375 2.5 2.625 1.19 1.25 1.31  $V_{REF} + 0.18 (DC)$  $V_{REF} - 0.35 (AC)$  $V_{REF} + 0.35 (AC)$ 0.833 SSTL-18 class I 1.7 1.8 1.9 0.9 0.969  $V_{REF} - 0.125 (DC)$  $V_{REF} + 0.125 (DC)$  $V_{REF} - 0.25$  (AC)  $V_{REF} + 0.25 (AC)$ 

**Table 5–6. Recommended Operating Conditions for User I/O Pins Using Single-Ended I/O Standards**Note (1) (Part 2 of 2)

| I/O Standard           |       | V <sub>CCIO</sub> (V) |       |       | V <sub>REF</sub> (V) |       | V <sub>IL</sub> (V)                                           | V <sub>IH</sub> (V)                                        |
|------------------------|-------|-----------------------|-------|-------|----------------------|-------|---------------------------------------------------------------|------------------------------------------------------------|
| I/O Standard           | Min   | Тур                   | Max   | Min   | Тур                  | Max   | Max                                                           | Min                                                        |
| SSTL-18 class II       | 1.7   | 1.8                   | 1.9   | 0.833 | 0.9                  | 0.969 | V <sub>REF</sub> - 0.125 (DC)<br>V <sub>REF</sub> - 0.25 (AC) | $V_{REF} + 0.125 (DC)$<br>$V_{REF} + 0.25 (AC)$            |
| 1.8-V HSTL<br>class I  | 1.71  | 1.8                   | 1.89  | 0.85  | 0.9                  | 0.95  | V <sub>REF</sub> - 0.1 (DC)<br>V <sub>REF</sub> - 0.2 (AC)    | V <sub>REF</sub> + 0.1 (DC)<br>V <sub>REF</sub> + 0.2 (AC) |
| 1.8-V HSTL<br>class II | 1.71  | 1.8                   | 1.89  | 0.85  | 0.9                  | 0.95  | V <sub>REF</sub> - 0.1 (DC)<br>V <sub>REF</sub> - 0.2 (AC)    | V <sub>REF</sub> + 0.1 (DC)<br>V <sub>REF</sub> + 0.2 (AC) |
| 1.5-V HSTL<br>class I  | 1.425 | 1.5                   | 1.575 | 0.71  | 0.75                 | 0.79  | V <sub>REF</sub> - 0.1 (DC)<br>V <sub>REF</sub> - 0.2 (AC)    | V <sub>REF</sub> + 0.1 (DC)<br>V <sub>REF</sub> + 0.2 (AC) |
| 1.5-V HSTL<br>class II | 1.425 | 1.5                   | 1.575 | 0.71  | 0.75                 | 0.79  | V <sub>REF</sub> - 0.1 (DC)<br>V <sub>REF</sub> - 0.2 (AC)    | V <sub>REF</sub> + 0.1 (DC)<br>V <sub>REF</sub> + 0.2 (AC) |

*Note to Table 5–6:* 

<sup>(1)</sup> Nominal values (Nom) are for  $T_A$  = 25° C,  $V_{CCINT}$  = 1.2 V, and  $V_{CCIO}$  = 1.5, 1.8, 2.5, and 3.3 V.

| Table 5–7. DC Char     | Table 5–7. DC Characteristics of User I/O Pins Using Single-Ended Standards         Notes (1), (2) (Part 1 of 2) |                      |                             |                             |  |  |  |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| 1/0 0444               | Test Co                                                                                                          | nditions             | Voltage Thresholds          |                             |  |  |  |  |  |  |  |  |
| I/O Standard           | I <sub>OL</sub> (mA)                                                                                             | I <sub>OH</sub> (mA) | Maximum V <sub>OL</sub> (V) | Minimum V <sub>OH</sub> (V) |  |  |  |  |  |  |  |  |
| 3.3-V LVTTL            | 4                                                                                                                | -4                   | 0.45                        | 2.4                         |  |  |  |  |  |  |  |  |
| 3.3-V LVCMOS           | 0.1                                                                                                              | -0.1                 | 0.2                         | V <sub>CCIO</sub> - 0.2     |  |  |  |  |  |  |  |  |
| 2.5-V LVTTL and LVCMOS | 1                                                                                                                | -1                   | 0.4                         | 2.0                         |  |  |  |  |  |  |  |  |
| 1.8-V LVTTL and LVCMOS | 2                                                                                                                | -2                   | 0.45                        | V <sub>CCIO</sub> - 0.45    |  |  |  |  |  |  |  |  |
| 1.5-V LVTTL and LVCMOS | 2                                                                                                                | -2                   | 0.25 × V <sub>CCIO</sub>    | 0.75 × V <sub>CCIO</sub>    |  |  |  |  |  |  |  |  |
| PCI and PCI-X          | 1.5                                                                                                              | -0.5                 | 0.1 × V <sub>CCIO</sub>     | 0.9 × V <sub>CCIO</sub>     |  |  |  |  |  |  |  |  |
| SSTL-2 class I         | 8.1                                                                                                              | -8.1                 | V <sub>TT</sub> – 0.57      | V <sub>TT</sub> + 0.57      |  |  |  |  |  |  |  |  |
| SSTL-2 class II        | 16.4                                                                                                             | -16.4                | V <sub>TT</sub> – 0.76      | V <sub>TT</sub> + 0.76      |  |  |  |  |  |  |  |  |
| SSTL-18 class I        | 6.7                                                                                                              | -6.7                 | V <sub>TT</sub> – 0.475     | V <sub>TT</sub> + 0.475     |  |  |  |  |  |  |  |  |
| SSTL-18 class II       | 13.4                                                                                                             | -13.4                | 0.28                        | V <sub>CCIO</sub> - 0.28    |  |  |  |  |  |  |  |  |
| 1.8-V HSTL class I     | 8                                                                                                                | -8                   | 0.4                         | V <sub>CCIO</sub> - 0.4     |  |  |  |  |  |  |  |  |
| 1.8-V HSTL class II    | 16                                                                                                               | -16                  | 0.4                         | V <sub>CCIO</sub> - 0.4     |  |  |  |  |  |  |  |  |

| Table 5–7. DC Characteristics of User I/O Pins Using Single-Ended Standards Notes (1), (2) (Part 2 of 2) |                      |                      |                             |                             |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------|----------------------|-----------------------------|-----------------------------|--|--|--|--|--|--|
| I/O Standard                                                                                             | Test Co              | nditions             | Voltage Thresholds          |                             |  |  |  |  |  |  |
|                                                                                                          | I <sub>OL</sub> (mA) | I <sub>OH</sub> (mA) | Maximum V <sub>OL</sub> (V) | Minimum V <sub>OH</sub> (V) |  |  |  |  |  |  |
| 1.5-V HSTL class I                                                                                       | 8                    | -8                   | 0.4                         | V <sub>CCIO</sub> - 0.4     |  |  |  |  |  |  |
| 1.5V HSTL class II                                                                                       | 16                   | -16                  | 0.4                         | V <sub>CCIO</sub> - 0.4     |  |  |  |  |  |  |

#### Notes to Table 5-7:

- (1) The values in this table are based on the conditions listed in Tables 5–2 and 5–6.
- (2) This specification is supported across all the programmable drive settings available as shown in the Cyclone II Architecture chapter of the Cyclone II Device Handbook.

## Differential I/O Standards

The RSDS and mini-LVDS I/O standards are only supported on output pins. The LVDS I/O standard is supported on both receiver input pins and transmitter output pins.



For more information on how these differential I/O standards are implemented, refer to the *High-Speed Differential Interfaces in Cyclone II Devices* chapter of the *Cyclone II Device Handbook*.

Figure 5–1 shows the receiver input waveforms for all differential I/O standards (LVDS, LVPECL, differential 1.5-V HSTL class I and II, differential 1.8-V HSTL class I and II, differential SSTL-2 class I and II, and differential SSTL-18 class I and II).

Figure 5–1. Receiver Input Waveforms for Differential I/O Standards

### Single-Ended Waveform



#### Differential Waveform (Mathematical Function of Positive and Negative Channel)



### *Notes to Figure 5–1:*

- (1)  $V_{ID}$  is the differential input voltage.  $V_{ID} = |p n|$ .
- (2)  $V_{ICM}$  is the input common mode voltage.  $V_{ICM} = (p + n)/2$ .
- (3) The p-n waveform is a function of the positive channel (p) and the negative channel (n).

Table 5–8 shows the recommended operating conditions for user I/O pins with differential I/O standards.

| Table 5–8.                                          | Recomi                | nende | d Opera | ting Co | onditio                                 | ns for U                | ser I/O F                           | Pins Usin                  | g Differ                            | ential . | Signal I/                  | O Stand                    | ards                |  |
|-----------------------------------------------------|-----------------------|-------|---------|---------|-----------------------------------------|-------------------------|-------------------------------------|----------------------------|-------------------------------------|----------|----------------------------|----------------------------|---------------------|--|
| I/O                                                 | V <sub>CCIO</sub> (V) |       |         | V       | <b>V</b> <sub>ID</sub> ( <b>V</b> ) (1) |                         |                                     | V <sub>ICM</sub> (V)       |                                     |          | V <sub>IL</sub> (V)        |                            | V <sub>IH</sub> (V) |  |
| Standard                                            | Min                   | Тур   | Max     | Min     | Тур                                     | Max                     | Min                                 | Тур                        | Max                                 | Min      | Max                        | Min                        | Max                 |  |
| LVDS                                                | 2.375                 | 2.5   | 2.625   | 0.1     | _                                       | 0.65                    | 0.1                                 | _                          | 2.0                                 | _        | _                          | _                          | _                   |  |
| Mini-LVDS                                           | 2.375                 | 2.5   | 2.625   |         | _                                       | _                       | _                                   | _                          | _                                   | _        | _                          | _                          | _                   |  |
| RSDS (2)                                            | 2.375                 | 2.5   | 2.625   | _       | _                                       | _                       | _                                   | _                          | _                                   | _        | _                          | _                          | _                   |  |
| LVPECL (3) (6)                                      | 3.135                 | 3.3   | 3.465   | 0.1     | 0.6                                     | 0.95                    | _                                   | _                          | _                                   | 0        | 2.2                        | 2.1                        | 2.88                |  |
| Differential<br>1.5-V HSTL<br>class I<br>and II (4) | 1.425                 | 1.5   | 1.575   | 0.2     | _                                       | V <sub>CCIO</sub> + 0.6 | 0.68                                | _                          | 0.9                                 | _        | V <sub>REF</sub> – 0.20    | V <sub>REF</sub><br>+ 0.20 | _                   |  |
| Differential<br>1.8-V HSTL<br>class I<br>and II (4) | 1.71                  | 1.8   | 1.89    |         | _                                       | _                       | _                                   | _                          | _                                   | _        | V <sub>REF</sub> – 0.20    | V <sub>REF</sub><br>+ 0.20 | _                   |  |
| Differential<br>SSTL-2<br>class I<br>and II (5)     | 2.375                 | 2.5   | 2.625   | 0.36    | _                                       | V <sub>CCIO</sub> + 0.6 | 0.5 ×<br>V <sub>CCIO</sub><br>- 0.2 | 0.5 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub><br>+ 0.2 | _        | V <sub>REF</sub> – 0.35    | V <sub>REF</sub> + 0.35    | _                   |  |
| Differential<br>SSTL-18<br>class I<br>and II (5)    | 1.7                   | 1.8   | 1.9     | 0.25    | _                                       | V <sub>CCIO</sub> + 0.6 | 0.5 ×<br>V <sub>CCIO</sub><br>- 0.2 | 0.5 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub><br>+ 0.2 | _        | V <sub>REF</sub><br>- 0.25 | V <sub>REF</sub><br>+ 0.25 | _                   |  |

#### Notes to Table 5-8:

- Refer to the High-Speed Differential Interfaces in Cyclone II Devices chapter of the Cyclone II Device Handbook for measurement conditions on V<sub>ID</sub>.
- (2) The RSDS and mini-LVDS I/O standards are only supported on output pins.
- (3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
- (4) The differential 1.8-V and 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock pins.
- (5) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock pins.
- (6) The LVPECL clock inputs are powered by V<sub>CCINT</sub> and support all V<sub>CCIO</sub> settings. However, it is recommended to connect V<sub>CCIO</sub> to typical value of 3.3V.

Figure 5–2 shows the transmitter output waveforms for all supported differential output standards (LVDS, mini-LVDS, RSDS, differential 1.5-V HSTL class I and II, differential 1.8-V HSTL class I and II, differential SSTL-2 class I and II, and differential SSTL-18 class I and II).

Figure 5-2. Transmitter Output Waveforms for Differential I/O Standards



#### Differential Waveform (Mathematical Function of Positive and Negative Channel)



#### Notes to Figure 5-2:

- (1)  $V_{OD}$  is the output differential voltage.  $V_{OD} = |p n|$ .
- (2)  $V_{OCM}$  is the output common mode voltage.  $V_{OCM} = (p + n)/2$ .
- (3) The p n waveform is a function of the positive channel (p) and the negative channel (n).

Table 5–9 shows the DC characteristics for user I/O pins with differential I/O standards.

| Table 5–9. DC Cl                                 | Table 5–9. DC Characteristics for User I/O Pins Using Differential I/O Standards Note (1) (Part 1 of 2) |     |     |                       |     |                      |      |       |                            |     |                     |     |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----|-----|-----------------------|-----|----------------------|------|-------|----------------------------|-----|---------------------|-----|--|--|
| I/O Standard                                     | V <sub>OD</sub> (mV)                                                                                    |     |     | ∆V <sub>OD</sub> (mV) |     | V <sub>OCM</sub> (V) |      |       | V <sub>OH</sub> (V)        |     | V <sub>OL</sub> (V) |     |  |  |
| I/O Stalluaru                                    | Min                                                                                                     | Тур | Max | Min                   | Max | Min                  | Тур  | Max   | Min                        | Max | Min                 | Max |  |  |
| LVDS                                             | 250                                                                                                     | _   | 600 | _                     | 50  | 1.125                | 1.25 | 1.375 | _                          | _   | _                   | _   |  |  |
| mini-LVDS (2)                                    | 300                                                                                                     | _   | 600 | _                     | 50  | 1.125                | 1.25 | 1.375 | _                          | _   | _                   | -   |  |  |
| RSDS (2)                                         | 100                                                                                                     | _   | 600 | _                     | _   | 1.125                | 1.25 | 1.375 | _                          | _   | _                   | _   |  |  |
| Differential 1.5-V<br>HSTL class I<br>and II (3) | _                                                                                                       | —   |     | _                     | _   | _                    | _    | _     | V <sub>CCIO</sub><br>- 0.4 | _   | _                   | 0.4 |  |  |

| Table 5–9. DC Cl                                 | Table 5–9. DC Characteristics for User I/O Pins Using Differential I/O Standards Note (1) (Part 2 of 2) |     |     |                  |                      |                                          |                            |                                          |                            |     |                     |                            |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----|-----|------------------|----------------------|------------------------------------------|----------------------------|------------------------------------------|----------------------------|-----|---------------------|----------------------------|--|--|
| I/O Standard                                     | V <sub>OD</sub> (mV)                                                                                    |     |     | ∆V <sub>od</sub> | $\Delta V_{0D}$ (mV) |                                          | V <sub>OCM</sub> (V)       |                                          |                            | (V) | V <sub>OL</sub> (V) |                            |  |  |
| i/O Stanuaru                                     | Min                                                                                                     | Тур | Max | Min              | Max                  | Min                                      | Тур                        | Max                                      | Min                        | Max | Min                 | Max                        |  |  |
| Differential 1.8-V<br>HSTL class I<br>and II (3) | _                                                                                                       | _   | _   | _                | _                    | _                                        | _                          | _                                        | V <sub>CCIO</sub><br>- 0.4 |     | _                   | 0.4                        |  |  |
| Differential<br>SSTL-2 class I<br>(4)            | _                                                                                                       |     | _   | _                | _                    |                                          | _                          | _                                        | V <sub>TT</sub> + 0.57     |     | _                   | V <sub>TT</sub> – 0.57     |  |  |
| Differential<br>SSTL-2 class II                  | _                                                                                                       | _   | _   | _                | _                    | _                                        | _                          | _                                        | V <sub>TT</sub> + 0.76     |     | _                   | V <sub>TT</sub> – 0.76     |  |  |
| Differential<br>SSTL-18 class I<br>(4)           | _                                                                                                       |     | _   | _                | _                    | 0.5 x<br>V <sub>CCIO</sub><br>-<br>0.125 | 0.5 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub><br>+<br>0.125 | V <sub>TT</sub> + 0.475    |     | _                   | V <sub>TT</sub> –<br>0.475 |  |  |
| Differential<br>SSTL-18 class II                 | _                                                                                                       | _   | _   | _                |                      | 0.5 ×<br>V <sub>CCIO</sub><br>-<br>0.125 | 0.5 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub><br>+<br>0.125 | V <sub>CCIO</sub> – 0.28   |     | _                   | 0.28                       |  |  |

#### Notes to Table 5-9:

- (1) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
- (2) The RSDS and mini-LVDS I/O standards are only supported on output pins.
- (3) The differential 1.8-V HSTL and differential 1.5-V HSTL I/O standards are only supported on clock input pins and PLL output clock pins.
- (4) The differential SSTL-18 and SSTL-2 I/O standards are only supported on clock input pins and PLL output clock pins.

# DC Characteristics for Different Pin Types

Table 5–10 shows the types of pins that support bus hold circuitry.

| Table 5–10. Bus Hold Support              |          |  |  |  |  |  |  |
|-------------------------------------------|----------|--|--|--|--|--|--|
| Pin Type                                  | Bus Hold |  |  |  |  |  |  |
| I/O pins using single-ended I/O standards | Yes      |  |  |  |  |  |  |
| I/O pins using differential I/O standards | No       |  |  |  |  |  |  |
| Dedicated clock pins                      | No       |  |  |  |  |  |  |
| JTAG                                      | No       |  |  |  |  |  |  |
| Configuration pins                        | No       |  |  |  |  |  |  |

Table 5–11 specifies the bus hold parameters for general I/O pins.

| Table 5–11. Bus Hold Parameters Note (1) |                                                               |                         |      |            |      |       |      |      |  |
|------------------------------------------|---------------------------------------------------------------|-------------------------|------|------------|------|-------|------|------|--|
|                                          |                                                               | V <sub>CCIO</sub> Level |      |            |      |       |      |      |  |
| Parameter                                | Conditions                                                    | 1.8 V                   |      | 2.5 V      |      | 3.3 V |      | Unit |  |
|                                          |                                                               | Min                     | Max  | Min        | Max  | Min   | Max  |      |  |
| Bus-hold low, sustaining current         | V <sub>IN</sub> > V <sub>IL</sub> (maximum)                   | 30                      | _    | 50         | _    | 70    | _    | μΑ   |  |
| Bus-hold high, sustaining current        | V <sub>IN</sub> <<br>V <sub>IL</sub> (minimum)                | -30                     | _    | <b>-50</b> | _    | -70   | _    | μА   |  |
| Bus-hold low, overdrive current          | $0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{CCIO}}$ | _                       | 200  | _          | 300  | _     | 500  | μА   |  |
| Bus-hold high, overdrive current         | $0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{CCIO}}$ | _                       | -200 | _          | -300 | _     | -500 | μΑ   |  |
| Bus-hold trip point (2)                  | _                                                             | 0.68                    | 1.07 | 0.7        | 1.7  | 0.8   | 2.0  | V    |  |

#### *Notes to Table 5–11:*

- (1) There is no specification for bus-hold at  $V_{CCIO}$  = 1.5 V for the HSTL I/O standard.
- (2) The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

# **On-Chip Termination Specifications**

Table 5–12 defines the specifications for internal termination resistance tolerance when using series or differential on-chip termination.

| Table 5–12. Series On-Chip Termination Specifications |                                                                        |                          |                      |                   |                                     |      |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------|--------------------------|----------------------|-------------------|-------------------------------------|------|--|--|--|--|
|                                                       |                                                                        |                          | Resistance Tolerance |                   |                                     |      |  |  |  |  |
| Symbol                                                | Description                                                            | Conditions               | Commercial<br>Max    | Industrial<br>Max | Extended/<br>Automotive<br>Temp Max | Unit |  |  |  |  |
| 25-Ω $R_S$                                            | Internal series termination without calibration (25- $\Omega$ setting) | $V_{CCIO} = 3.3V$        | ±30                  | ±30               | ±40                                 | %    |  |  |  |  |
| 50-ΩR <sub>S</sub>                                    | Internal series termination without calibration (50-Ω setting)         | V <sub>CCIO</sub> = 2.5V | ±30                  | ±30               | ±40                                 | %    |  |  |  |  |
| 50-ΩR <sub>S</sub>                                    | Internal series termination without calibration (50-Ω setting)         | V <sub>CCIO</sub> = 1.8V | ±30 (1)              | ±40               | ±50                                 | %    |  |  |  |  |

#### *Note to Table 5–12:*

(1) For commercial -8 devices, the tolerance is  $\pm 40\%$ .

| Table 5–13 shows the Cyclone II device pin capacitance for different I/C | ) |
|--------------------------------------------------------------------------|---|
| pin types.                                                               |   |

| Table 5–13.       | Table 5–13. Device Capacitance Note (1)                                        |      |    |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------|------|----|--|--|--|--|--|--|
| Symbol            | Typical                                                                        | Unit |    |  |  |  |  |  |  |
| C <sub>IO</sub>   | Input capacitance for user I/O pin.                                            | 6    | pF |  |  |  |  |  |  |
| C <sub>LVDS</sub> | Input capacitance for dual-purpose LVDS/user I/O pin.                          | 6    | pF |  |  |  |  |  |  |
| C <sub>VREF</sub> | Input capacitance for dual-purpose VREF pin when used as VREF or user I/O pin. | 21   | pF |  |  |  |  |  |  |
| C <sub>CLK</sub>  | Input capacitance for clock pin.                                               | 5    | pF |  |  |  |  |  |  |

*Note to Table 5–13:* 

 Capacitance is sample-tested only. Capacitance is measured using time-domain reflectometry (TDR). Measurement accuracy is within ±0.5 pF.

# Power Consumption

You can calculate the power usage for your design using the PowerPlay Early Power Estimator and the PowerPlay Power Analyzer feature in the Quartus<sup>®</sup> II software.

The interactive PowerPlay Early Power Estimator is typically used during the early stages of FPGA design, prior to finalizing the project, to get a magnitude estimate of the device power. The Quartus II software PowerPlay Power Analyzer feature is typically used during the later stages of FPGA design. The PowerPlay Power Analyzer also allows you to apply test vectors against your design for more accurate power consumption modeling.

In both cases, only use these calculations as an estimation of power, not as a specification. For more information on PowerPlay tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *Power Estimation and Analysis* section in volume 3 of the *Quartus II Handbook*.



You can obtain the Excel-based PowerPlay Early Power Estimator at www.altera.com. Refer to Table 5–3 on page 5–3 for typical  $I_{\rm CC}$  standby specifications.

The power-up current required by Cyclone II devices does not exceed the maximum static current. The rate at which the current increases is a function of the system power supply. The exact amount of current consumed varies according to the process, temperature, and power ramp rate. The duration of the  $I_{CCINT}$  power-up requirement depends on the  $V_{CCINT}$  voltage supply rise time.

You should select power supplies and regulators that can supply the amount of current required when designing with Cyclone II devices.

Altera recommends using the Cyclone II PowerPlay Early Power Estimator to estimate the user-mode  $I_{CCINT}$  consumption and then select power supplies or regulators based on the values obtained.

# Timing Specifications

The DirectDrive<sup>TM</sup> technology and MultiTrack<sup>TM</sup> interconnect ensure predictable performance, accurate simulation, and accurate timing analysis across all Cyclone II device densities and speed grades. This section describes and specifies the performance, internal, external, high-speed I/O, JTAG, and PLL timing specifications.

This section shows the timing models for Cyclone II devices. Commercial devices meet this timing over the commercial temperature range. Industrial devices meet this timing over the industrial temperature range. Automotive devices meet this timing over the automotive temperature range. Extended devices meet this timing over the extended temperature range. All specifications are representative of worst-case supply voltage and junction temperature conditions.

## **Preliminary and Final Timing Specifications**

Timing models can have either preliminary or final status. The Quartus II software issues an informational message during the design compilation if the timing models are preliminary. Table 5–14 shows the status of the Cyclone II device timing models.

Preliminary status means the timing model is subject to change. Initially, timing numbers are created using simulation results, process data, and other known parameters. These tests are used to make the preliminary numbers as close to the actual timing parameters as possible.

Final timing numbers are based on actual device operation and testing. These numbers reflect the actual performance of the device under worst-case voltage and junction temperature conditions.

| Table 5–14. Cyclone II D | evice Timing Model Status |             |          |
|--------------------------|---------------------------|-------------|----------|
| Device                   | Speed Grade               | Preliminary | Final    |
| EP2C5/A                  | Commercial/Industrial     | _           | <b>✓</b> |
|                          | Automotive                | <b>✓</b>    | _        |
| EP2C8/A                  | Commercial/Industrial     | _           | ✓        |
|                          | Automotive                | ✓           | _        |
| EP2C15A                  | Commercial/Industrial     | _           | ✓        |
|                          | Automotive                | ✓           | _        |
| EP2C20/A                 | Commercial/Industrial     | _           | ✓        |
|                          | Automotive                | ✓           | _        |
| EP2C35                   | Commercial/Industrial     | _           | ✓        |
| EP2C50                   | Commercial/Industrial     | _           | ✓        |
| EP2C70                   | Commercial/Industrial     | _           | ✓        |

## **Performance**

Table 5–15 shows Cyclone II performance for some common designs. All performance values were obtained with Quartus II software compilation of LPM, or MegaCore functions for the FIR and FFT designs.

| Table 5–15. Cyclone II Performance (Part 1 of 4) |                         |     |                         |               |                      |                      |                      |                      |  |
|--------------------------------------------------|-------------------------|-----|-------------------------|---------------|----------------------|----------------------|----------------------|----------------------|--|
|                                                  |                         | R   | esources L              | Ised          | Performance (MHz)    |                      |                      |                      |  |
| Applications                                     |                         | LEs | M4K<br>Memory<br>Blocks | DSP<br>Blocks | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade |  |
| LE                                               | 16-to-1 multiplexer (1) | 21  | 0                       | 0             | 385.35               | 313.97               | 270.85               | 286.04               |  |
|                                                  | 32-to-1 multiplexer (1) | 38  | 0                       | 0             | 294.2                | 260.75               | 228.78               | 191.02               |  |
|                                                  | 16-bit counter          | 16  | 0                       | 0             | 401.6                | 349.4                | 310.65               | 310.65               |  |
|                                                  | 64-bit counter          | 64  | 0                       | 0             | 157.15               | 137.98               | 126.08               | 126.27               |  |

| Table 5-      | -15. Cyclone II Performance (Part 2                                                               | of 4) |                         |               |                      |                      |                      |                      |
|---------------|---------------------------------------------------------------------------------------------------|-------|-------------------------|---------------|----------------------|----------------------|----------------------|----------------------|
|               |                                                                                                   | R     | esources L              | Ised          | Performance (MHz)    |                      |                      |                      |
|               | Applications                                                                                      | LEs   | M4K<br>Memory<br>Blocks | DSP<br>Blocks | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade |
| Memory<br>M4K | Simple dual-port RAM 128 $\times$ 36 bit (3), (5)                                                 | 0     | 1                       | 0             | 235.29               | 194.93               | 163.13               | 163.13               |
| block         | True dual-port RAM 128 $\times$ 18 bit (3), (5)                                                   | 0     | 1                       | 0             | 235.29               | 194.93               | 163.13               | 163.13               |
|               | FIFO 128 × 16 bit (5)                                                                             | 32    | 1                       | 0             | 235.29               | 194.93               | 163.13               | 163.13               |
|               | Simple dual-port RAM 128 $\times$ 36 bit $(4),(5)$                                                | 0     | 1                       | 0             | 210.08               | 195.0                | 163.02               | 163.02               |
|               | True dual-port RAM 128x18 bit (4),(5)                                                             | 0     | 1                       | 0             | 163.02               | 163.02               | 163.02               | 163.02               |
| DSP           | 9 × 9-bit multiplier (2)                                                                          | 0     | 0                       | 1             | 260.01               | 216.73               | 180.57               | 180.57               |
| block         | 18 × 18-bit multiplier (2)                                                                        | 0     | 0                       | 1             | 260.01               | 216.73               | 180.57               | 180.57               |
|               | 18-bit, 4 tap FIR filter                                                                          | 113   | 0                       | 8             | 182.74               | 147.47               | 127.74               | 122.98               |
| Larger        | 8-bit, 16 tap parallel FIR filter                                                                 | 52    | 0                       | 4             | 153.56               | 131.25               | 110.44               | 110.57               |
| Designs       | 8-bit, 1024 pt, Streaming,<br>3 Mults/5 Adders FFT function                                       | 3191  | 22                      | 9             | 235.07               | 195.0                | 147.51               | 163.02               |
|               | 8-bit, 1024 pt, Streaming,<br>4 Mults/2 Adders FFT function                                       | 3041  | 22                      | 12            | 235.07               | 195.0                | 146.3                | 163.02               |
|               | 8-bit, 1024 pt, Single Output,<br>1 Parallel FFT Engine, Burst,<br>3 Mults/5 Adders FFT function  | 1056  | 5                       | 3             | 235.07               | 195.0                | 147.84               | 163.02               |
|               | 8-bit, 1024 pt, Single Output,<br>1 Parallel FFT Engine, Burst,<br>4 Mults/2 Adders FFT function  | 1006  | 5                       | 4             | 235.07               | 195.0                | 149.99               | 163.02               |
|               | 8-bit, 1024 pt, Single Output,<br>2 Parallel FFT Engines, Burst,<br>3 Mults/5 Adders FFT function | 1857  | 10                      | 6             | 200.0                | 195.0                | 149.61               | 163.02               |
|               | 8-bit, 1024 pt, Single Output,<br>2 Parallel FFT Engines, Burst,<br>4 Mults/2 Adders FFT function | 1757  | 10                      | 8             | 200.0                | 195.0                | 149.34               | 163.02               |
|               | 8-bit, 1024 pt, Quad Output,<br>1 Parallel FFT Engine, Burst,<br>3 Mults/5 Adders FFT function    | 2550  | 10                      | 9             | 235.07               | 195.0                | 148.21               | 163.02               |

| Table 5-          | -15. Cyclone II Performance (Part 3                                                                         | 3 of 4) |                         |               |                      |                      |                      |                      |
|-------------------|-------------------------------------------------------------------------------------------------------------|---------|-------------------------|---------------|----------------------|----------------------|----------------------|----------------------|
|                   |                                                                                                             | Re      | esources U              | lsed          | Performance (MHz)    |                      |                      |                      |
|                   | Applications                                                                                                | LEs     | M4K<br>Memory<br>Blocks | DSP<br>Blocks | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade |
| Larger<br>Designs | 8-bit, 1024 pt, Quad Output,<br>1 Parallel FFT Engine, Burst,<br>4 Mults/2 Adders FFT function              | 2400    | 10                      | 12            | 235.07               | 195.0                | 140.11               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>2 Parallel FFT Engines, Burst,<br>3 Mults/5 Adders FFT function             | 4343    | 14                      | 18            | 200.0                | 195.0                | 152.67               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>2 Parallel FFT Engines, Burst,<br>4 Mults/2 Adders FFT function             | 4043    | 14                      | 24            | 200.0                | 195.0                | 149.72               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>4 Parallel FFT Engines, Burst,<br>3 Mults/5 Adders FFT function             | 7496    | 28                      | 36            | 200.0                | 195.0                | 150.01               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>4 Parallel FFT Engines, Burst,<br>4 Mults/2 Adders FFT function             | 6896    | 28                      | 48            | 200.0                | 195.0                | 151.33               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>1 Parallel FFT Engine, Buffered<br>Burst,<br>3 Mults/5 Adders FFT function  | 2934    | 18                      | 9             | 235.07               | 195.0                | 148.89               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>1 Parallel FFT Engine, Buffered<br>Burst,<br>4 Mults/2 Adders FFT function  | 2784    | 18                      | 12            | 235.07               | 195.0                | 151.51               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>2 Parallel FFT Engines, Buffered<br>Burst,<br>3 Mults/5 Adders FFT function | 4720    | 30                      | 18            | 200.0                | 195.0                | 149.76               | 163.02               |
|                   | 8-bit, 1024 pt, Quad Output,<br>2 Parallel FFT Engines, Buffered<br>Burst,<br>4 Mults/2 Adders FFT function | 4420    | 30                      | 24            | 200.0                | 195.0                | 151.08               | 163.02               |

| Table 5-          | Table 5–15. Cyclone II Performance (Part 4 of 4)                                                            |      |                         |               |                      |                      |                      |                      |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------|------|-------------------------|---------------|----------------------|----------------------|----------------------|----------------------|--|--|
|                   |                                                                                                             |      | esources U              | lsed          | Performance (MHz)    |                      |                      |                      |  |  |
| Applications      |                                                                                                             | LEs  | M4K<br>Memory<br>Blocks | DSP<br>Blocks | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade |  |  |
| Larger<br>Designs | 8-bit, 1024 pt, Quad Output,<br>4 Parallel FFT Engines, Buffered<br>Burst, 3 Mults/5 Adders FFT<br>function | 8053 | 60                      | 36            | 200.0                | 195.0                | 149.23               | 163.02               |  |  |
|                   | 8-bit, 1024 pt, Quad Output,<br>4 Parallel FFT Engines, Buffered<br>Burst, 4 Mults/2 Adders FFT<br>function | 7453 | 60                      | 48            | 200.0                | 195.0                | 151.28               | 163.02               |  |  |

#### Notes to Table 5-15:

- (1) This application uses registered inputs and outputs.
- (2) This application uses registered multiplier input and output stages within the DSP block.
- (3) This application uses the same clock source for both A and B ports.
- (4) This application uses independent clock sources for A and B ports.
- (5) This application uses PLL clock outputs that are globally routed to connect and drive M4K clock ports. Use of non-PLL clock sources or local routing to drive M4K clock ports may result in lower performance numbers than shown here. Refer to the Quartus II timing report for actual performance numbers.
- (6) These numbers are for commercial devices.
- (7) These numbers are for automotive devices.

# **Internal Timing**

Refer to Tables 5–16 through 5–19 for the internal timing parameters.

| Table 5–16. LE_FI | Table 5–16. LE_FF Internal Timing Microparameters (Part 1 of 2) |           |          |           |          |      |      |  |  |  |  |
|-------------------|-----------------------------------------------------------------|-----------|----------|-----------|----------|------|------|--|--|--|--|
| Doromotor         | -6 Speed                                                        | Grade (1) | -7 Speed | Grade (2) | -8 Speed | Unit |      |  |  |  |  |
| Parameter         | Min                                                             | Max       | Min      | Max       | Min      | Max  | Unit |  |  |  |  |
| TSU               | -36                                                             | _         | -40      | _         | -40      | _    | ps   |  |  |  |  |
|                   | _                                                               | _         | -38      | _         | -40      | _    | ps   |  |  |  |  |
| TH                | 266                                                             | _         | 306      | _         | 306      | _    | ps   |  |  |  |  |
|                   | _                                                               | _         | 286      | _         | 306      | _    | ps   |  |  |  |  |
| TCO               | 141                                                             | 250       | 135      | 277       | 135      | 304  | ps   |  |  |  |  |
|                   | _                                                               | _         | 141      | _         | 141      | _    | ps   |  |  |  |  |
| TCLR              | 191                                                             | _         | 244      | _         | 244      | _    | ps   |  |  |  |  |
|                   | _                                                               | _         | 217      |           | 244      |      | ps   |  |  |  |  |

| Table 5–16. LE_FF Internal Timing Microparameters (Part 2 of 2) |          |           |          |           |          |      |      |  |  |  |
|-----------------------------------------------------------------|----------|-----------|----------|-----------|----------|------|------|--|--|--|
| Doromotor                                                       | -6 Speed | Grade (1) | -7 Speed | Grade (2) | –8 Speed | Heit |      |  |  |  |
| Parameter                                                       | Min      | Max       | Min      | Max       | Min      | Max  | Unit |  |  |  |
| TPRE                                                            | 191      | _         | 244      | _         | 244      | _    | ps   |  |  |  |
|                                                                 | _        | _         | 217      | _         | 244      | _    | ps   |  |  |  |
| TCLKL                                                           | 1000     | _         | 1242     | _         | 1242     | _    | ps   |  |  |  |
|                                                                 | _        | _         | 1111     | _         | 1242     | _    | ps   |  |  |  |
| TCLKH                                                           | 1000     | _         | 1242     | _         | 1242     | _    | ps   |  |  |  |
|                                                                 | _        | _         | 1111     | _         | 1242     | _    | ps   |  |  |  |
| tLUT 180 438                                                    |          | 172       | 545      | 172       | 651      | ps   |      |  |  |  |
|                                                                 | _        | _         | 180      | _         | 180      | _    | ps   |  |  |  |

#### Notes to Table 5-16:

- (1) For the -6 speed grades, the minimum timing is for the commercial temperature grade. The -7 speed grade devices offer the automotive temperature grade. The -8 speed grade devices offer the industrial temperature grade.
- For each parameter of the -7 speed grade columns, the value in the first row represents the minimum timing parameter for automotive devices. The second row represents the minimum timing parameter for commercial
- (3) For each parameter of the -8 speed grade columns, the value in the first row represents the minimum timing parameter for industrial devices. The second row represents the minimum timing parameter for commercial

| Table 5–17. IOE Internal | Table 5–17. IOE Internal Timing Microparameters (Part 1 of 2) |           |          |           |          |        |       |  |  |  |  |  |
|--------------------------|---------------------------------------------------------------|-----------|----------|-----------|----------|--------|-------|--|--|--|--|--|
| Doromotor                | -6 Speed                                                      | Grade (1) | -7 Speed | Grade (2) | -8 Speed | - Unit |       |  |  |  |  |  |
| Parameter                | Min                                                           | Max       | Min      | Max       | Min      | Max    | UIIII |  |  |  |  |  |
| TSU                      | 76                                                            | _         | 101      | _         | 101      | _      | ps    |  |  |  |  |  |
|                          | _                                                             | _         | 89       | _         | 101      | _      | ps    |  |  |  |  |  |
| TH                       | 88                                                            | _         | 106      | _         | 106      | _      | ps    |  |  |  |  |  |
|                          | _                                                             | _         | 97       | _         | 106      | _      | ps    |  |  |  |  |  |
| TCO                      | 99                                                            | 155       | 95       | 171       | 95       | 187    | ps    |  |  |  |  |  |
|                          | _                                                             | _         | 99       | _         | 99       | _      | ps    |  |  |  |  |  |
| TPIN2COMBOUT_R           | 384                                                           | 762       | 366      | 784       | 366      | 855    | ps    |  |  |  |  |  |
|                          | _                                                             | _         | 384      | _         | 384      | _      | ps    |  |  |  |  |  |
| TPIN2COMBOUT_C           | 385                                                           | 760       | 367      | 783       | 367      | 854    | ps    |  |  |  |  |  |
|                          | _                                                             | _         | 385      | _         | 385      | _      | ps    |  |  |  |  |  |
| TCOMBIN2PIN_R            | 1344                                                          | 2490      | 1280     | 2689      | 1280     | 2887   | ps    |  |  |  |  |  |
|                          | _                                                             | _         | 1344     | _         | 1344     | _      | ps    |  |  |  |  |  |

| Table 5–17. IOE Interna | Table 5–17. IOE Internal Timing Microparameters (Part 2 of 2) |           |          |           |          |      |      |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------|-----------|----------|-----------|----------|------|------|--|--|--|--|--|
| Doromotor               | -6 Speed                                                      | Grade (1) | -7 Speed | Grade (2) | -8 Speed | IIi4 |      |  |  |  |  |  |
| Parameter               | Min                                                           | Max       | Min      | Max       | Min      | Max  | Unit |  |  |  |  |  |
| TCOMBIN2PIN_C           | 1418                                                          | 2622      | 1352     | 2831      | 1352     | 3041 | ps   |  |  |  |  |  |
|                         | _                                                             | _         | 1418     | _         | 1418     | _    | ps   |  |  |  |  |  |
| TCLR                    | 137                                                           | _         | 165      | _         | 165      | _    | ps   |  |  |  |  |  |
|                         | _                                                             | _         | 151      | _         | 165      | _    | ps   |  |  |  |  |  |
| TPRE                    | 192                                                           | _         | 233      | _         | 233      | _    | ps   |  |  |  |  |  |
|                         | _                                                             | _         | 212      | _         | 233      | _    | ps   |  |  |  |  |  |
| TCLKL                   | 1000                                                          | _         | 1242     | _         | 1242     | _    | ps   |  |  |  |  |  |
|                         | _                                                             | _         | 1111     | _         | 1242     | _    | ps   |  |  |  |  |  |
| TCLKH                   | 1000                                                          | _         | 1242     | _         | 1242     | _    | ps   |  |  |  |  |  |
|                         | _                                                             | _         | 1111     | _         | 1242     | _    | ps   |  |  |  |  |  |

#### Notes to Table 5-17:

- (1) For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.
- (2) For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing parameter for automotive devices. The second row represents the minimum timing parameter for commercial devices.
- (3) For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing parameter for industrial devices. The second row represents the minimum timing parameter for commercial devices.

| Table 5–18. DSP Block Internal Timing Microparameters (Part 1 of 2) |                    |      |          |           |          |      |       |  |  |  |  |
|---------------------------------------------------------------------|--------------------|------|----------|-----------|----------|------|-------|--|--|--|--|
| Parameter                                                           | -6 Speed Grade (1) |      | -7 Speed | Grade (2) | -8 Speed | Unit |       |  |  |  |  |
| Parameter                                                           | Min                | Max  | Min      | Max       | Min      | Max  | UIIIL |  |  |  |  |
| TSU                                                                 | 47                 | _    | 62       | _         | 62       | _    | ps    |  |  |  |  |
|                                                                     | _                  | _    | 54       | _         | 62       | _    | ps    |  |  |  |  |
| TH                                                                  | 110                | _    | 113      | _         | 113      | _    | ps    |  |  |  |  |
|                                                                     | _                  | _    | 111      | _         | 113      | _    | ps    |  |  |  |  |
| TCO                                                                 | 0                  | 0    | 0        | 0         | 0        | 0    | ps    |  |  |  |  |
|                                                                     | _                  | _    | 0        | _         | 0        | _    | ps    |  |  |  |  |
| TINREG2PIPE9                                                        | 652                | 1379 | 621      | 1872      | 621      | 2441 | ps    |  |  |  |  |
|                                                                     | _                  | _    | 652      | _         | 652      | _    | ps    |  |  |  |  |
| TINREG2PIPE18                                                       | 652                | 1379 | 621      | 1872      | 621      | 2441 | ps    |  |  |  |  |
|                                                                     | _                  | _    | 652      | _         | 652      | _    | ps    |  |  |  |  |

| Table 5–18. DSP Bloc | k Internal Tim | ing Micropar | ameters (P | art 2 of 2)      |          |      |      |
|----------------------|----------------|--------------|------------|------------------|----------|------|------|
| Davamatav            | -6 Speed       | Grade (1)    | -7 Speed   | <b>Grade</b> (2) | -8 Speed | Unit |      |
| Parameter            | Min            | Max          | Min        | Max              | Min      | Max  | Unit |
| TPIPE2OUTREG         | 47             | 104          | 45         | 142              | 45       | 185  | ps   |
|                      | _              | _            | 47         | _                | 47       | _    | ps   |
| TPD9                 | 529            | 2470         | 505        | 3353             | 505      | 4370 | ps   |
|                      | _              | _            | 529        | _                | 529      | _    | ps   |
| TPD18                | 425            | 2903         | 406        | 3941             | 406      | 5136 | ps   |
|                      | _              | _            | 425        | _                | 425      | _    | ps   |
| TCLR                 | 2686           | _            | 3572       | _                | 3572     | _    | ps   |
|                      | _              | _            | 3129       | _                | 3572     | _    | ps   |
| TCLKL                | 1923           | _            | 2769       | _                | 2769     | _    | ps   |
|                      | _              | _            | 2307       | _                | 2769     | _    | ps   |
| TCLKH                | 1923           | _            | 2769       | _                | 2769     | _    | ps   |
|                      | _              | _            | 2307       | _                | 2769     | _    | ps   |

#### Notes to Table 5-18:

- (1) For the –6 speed grades, the minimum timing is for the commercial temperature grade. The –7 speed grade devices offer the automotive temperature grade. The –8 speed grade devices offer the industrial temperature grade.
- (2) For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing parameter for automotive devices. The second row represents the minimum timing parameter for commercial devices.
- (3) For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing parameter for industrial devices. The second row represents the minimum timing parameter for commercial devices.

| Table 5–19. M4K Block Internal Timing Microparameters (Part 1 of 3) |          |                    |      |           |                    |      |      |  |  |  |  |  |
|---------------------------------------------------------------------|----------|--------------------|------|-----------|--------------------|------|------|--|--|--|--|--|
| Parameter                                                           | -6 Speed | -6 Speed Grade (1) |      | Grade (2) | -8 Speed Grade (3) |      | Hnit |  |  |  |  |  |
| Parameter                                                           | Min      | Max                | Min  | Max       | Min                | Max  | Unit |  |  |  |  |  |
| TM4KRC                                                              | 2387     | 3764               | 2275 | 4248      | 2275               | 4736 | ps   |  |  |  |  |  |
|                                                                     | _        | _                  | 2387 | _         | 2387               | _    | ps   |  |  |  |  |  |
| TM4KWERESU                                                          | 35       | _                  | 46   | _         | 46                 | _    | ps   |  |  |  |  |  |
|                                                                     | _        | _                  | 40   | _         | 46                 | _    | ps   |  |  |  |  |  |
| TM4KWEREH                                                           | 234      | _                  | 267  | _         | 267                | _    | ps   |  |  |  |  |  |
|                                                                     | _        | _                  | 250  | _         | 267                | _    | ps   |  |  |  |  |  |
| TM4KBESU                                                            | 35       | _                  | 46   | _         | 46                 | _    | ps   |  |  |  |  |  |
|                                                                     | _        | _                  | 40   | _         | 46                 | _    | ps   |  |  |  |  |  |

Table 5–19. M4K Block Internal Timing Microparameters (Part 2 of 3) -6 Speed Grade (1) -7 Speed Grade (2) -8 Speed Grade (3) Parameter Unit Min Max Min Max Min Max TM4KBEH 234 267 267 ps 250 267 ps TM4KDATAASU 35 46 46 ps 40 46 ps TM4KDATAAH 234 267 267 ps 250 267 ps TM4KADDRASU 35 46 46 ps 40 46 ps TM4KADDRAH 234 267 267 ps 250 267 ps TM4KDATABSU 35 46 46 ps 40 46 ps TM4KDATABH 234 267 267 ps 250 267 ps TM4KRADDRBSU 46 35 46 ps 40 46 ps TM4KRADDRBH 234 267 267 ps 250 267 ps TM4KDATACO1 724 445 826 445 930 466 ps 466 466 ps 2345 TM4KDATACO2 3680 2234 4157 2234 4636 ps 2345 2345 ps TM4KCLKH 1923 2769 2769 ps 2307 2769 ps ps TM4KCLKL 1923 2769 2769 2307 2769 ps

| Table 5–19. M4K Block Internal Timing Microparameters (Part 3 of 3) |                    |     |          |           |                    |     |       |  |  |  |
|---------------------------------------------------------------------|--------------------|-----|----------|-----------|--------------------|-----|-------|--|--|--|
| Parameter                                                           | -6 Speed Grade (1) |     | -7 Speed | Grade (2) | -8 Speed Grade (3) |     | Unit  |  |  |  |
| Parameter                                                           | Min                | Max | Min      | Max       | Min                | Max | UIIIL |  |  |  |
| TM4KCLR                                                             | 191                | _   | 244      | _         | 244                | _   | ps    |  |  |  |
|                                                                     | _                  | _   | 217      | _         | 244                | _   | ps    |  |  |  |

#### Notes to Table 5-19:

- (1) For the -6 speed grades, the minimum timing is for the commercial temperature grade. The -7 speed grade devices offer the automotive temperature grade. The -8 speed grade devices offer the industrial temperature grade.
- (2) For each parameter of the –7 speed grade columns, the value in the first row represents the minimum timing parameter for automotive devices. The second row represents the minimum timing parameter for commercial devices.
- (3) For each parameter of the –8 speed grade columns, the value in the first row represents the minimum timing parameter for industrial devices. The second row represents the minimum timing parameter for commercial devices

## **Cyclone II Clock Timing Parameters**

Refer to Tables 5–20 through 5–34 for Cyclone II clock timing parameters.

| Table 5–20. Cyclone II Clock Timing Parameters |                                                 |  |  |  |  |  |
|------------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Symbol                                         | Parameter                                       |  |  |  |  |  |
| t <sub>CIN</sub>                               | Delay from clock pad to I/O input register      |  |  |  |  |  |
| t <sub>COUT</sub>                              | Delay from clock pad to I/O output register     |  |  |  |  |  |
| t <sub>PLLCIN</sub>                            | Delay from PLL inclk pad to I/O input register  |  |  |  |  |  |
| t <sub>PLLCOUT</sub>                           | Delay from PLL inclk pad to I/O output register |  |  |  |  |  |

## EP2C5/A Clock Timing Parameters

Tables 5–21 and 5–22 show the clock timing parameters for EP2C5/A devices.

| Table 5–21. EP2C5/A Column Pins Global Clock Timing Parameters (Part 1 of 2) |                           |            |                   |                  |                  |          |      |  |  |  |
|------------------------------------------------------------------------------|---------------------------|------------|-------------------|------------------|------------------|----------|------|--|--|--|
| Parameter                                                                    | Fast Corner               |            | G Cnood           | -7 Speed         | -7 Speed         | -8 Speed |      |  |  |  |
|                                                                              | Industrial/<br>Automotive | Commercial | –6 Speed<br>Grade | <b>Grade</b> (1) | <b>Grade</b> (2) | Grade    | Unit |  |  |  |
| t <sub>CIN</sub>                                                             | 1.283                     | 1.343      | 2.329             | 2.484            | 2.688            | 2.688    | ns   |  |  |  |
| t <sub>COUT</sub>                                                            | 1.297                     | 1.358      | 2.363             | 2.516            | 2.717            | 2.717    | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                                          | -0.188                    | -0.201     | 0.076             | 0.038            | 0.042            | 0.052    | ns   |  |  |  |

| Table 5–21. EP2C5/A Column Pins Global Clock Timing Parameters (Part 2 of 2) |                           |            |                   |              |                  |                   |      |  |  |  |
|------------------------------------------------------------------------------|---------------------------|------------|-------------------|--------------|------------------|-------------------|------|--|--|--|
| Parameter                                                                    | Fast Corner               |            | 6 Spood           | -7 Speed     | -7 Speed         | 0 Cnood           |      |  |  |  |
|                                                                              | Industrial/<br>Automotive | Commercial | –6 Speed<br>Grade | Grade<br>(1) | <b>Grade</b> (2) | –8 Speed<br>Grade | Unit |  |  |  |
| t <sub>PLLCOUT</sub>                                                         | -0.174                    | -0.186     | 0.11              | 0.07         | 0.071            | 0.081             | ns   |  |  |  |

Notes to Table 5-21:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

| Table 5–22. EP2C5/A Row Pins Global Clock Timing Parameters |                           |            |                   |                  |                  |          |      |  |  |  |
|-------------------------------------------------------------|---------------------------|------------|-------------------|------------------|------------------|----------|------|--|--|--|
| Parameter                                                   | Fast Corner               |            | C 01              | -7 Speed         | -7 Speed         | –8 Speed |      |  |  |  |
|                                                             | Industrial/<br>Automotive | Commercial | -6 Speed<br>Grade | <b>Grade</b> (1) | <b>Grade</b> (2) | Grade    | Unit |  |  |  |
| t <sub>CIN</sub>                                            | 1.212                     | 1.267      | 2.210             | 2.351            | 2.54             | 2.540    | ns   |  |  |  |
| t <sub>COUT</sub>                                           | 1.214                     | 1.269      | 2.226             | 2.364            | 2.548            | 2.548    | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                         | -0.259                    | -0.277     | -0.043            | -0.095           | -0.106           | -0.096   | ns   |  |  |  |
| t <sub>PLLCOUT</sub>                                        | -0.257                    | -0.275     | -0.027            | -0.082           | -0.098           | -0.088   | ns   |  |  |  |

## Notes to Table 5–22:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

# EP2C8/A Clock Timing Parameters

Tables 5–23 and 5–24 show the clock timing parameters for EP2C8/A devices.

| Table 5–23. EP2C8/A Column Pins Global Clock Timing Parameters (Part 1 of 2) |                           |            |          |                  |                  |          |      |  |  |  |
|------------------------------------------------------------------------------|---------------------------|------------|----------|------------------|------------------|----------|------|--|--|--|
| Parameter                                                                    | Fast Corner               |            | –6 Speed | -7 Speed         | -7 Speed         | -8 Speed |      |  |  |  |
|                                                                              | Industrial/<br>Automotive | Commercial | Grade    | <b>Grade</b> (1) | <b>Grade</b> (2) | Grade    | Unit |  |  |  |
| t <sub>CIN</sub>                                                             | 1.339                     | 1.404      | 2.405    | 2.565            | 2.764            | 2.774    | ns   |  |  |  |
| t <sub>COUT</sub>                                                            | 1.353                     | 1.419      | 2.439    | 2.597            | 2.793            | 2.803    | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                                          | -0.193                    | -0.204     | 0.055    | 0.015            | 0.016            | 0.026    | ns   |  |  |  |

| Table 5–23. EP2C8/A Column Pins Global Clock Timing Parameters (Part 2 of 2) |                           |            |                   |                     |                  |                   |      |  |  |  |
|------------------------------------------------------------------------------|---------------------------|------------|-------------------|---------------------|------------------|-------------------|------|--|--|--|
| Parameter                                                                    | Fast Corner               |            | 6 Spood           | -7 Speed            | -7 Speed         | 0 Cnood           |      |  |  |  |
|                                                                              | Industrial/<br>Automotive | Commercial | –6 Speed<br>Grade | <b>Grade</b><br>(1) | <b>Grade</b> (2) | –8 Speed<br>Grade | Unit |  |  |  |
| t <sub>PLLCOUT</sub>                                                         | -0.179                    | -0.189     | 0.089             | 0.047               | 0.045            | 0.055             | ns   |  |  |  |

Notes to Table 5-23:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

| Table 5–24. EP2C8/A Row Pins Global Clock Timing Parameters |                           |            |                   |                  |                  |          |      |  |  |  |
|-------------------------------------------------------------|---------------------------|------------|-------------------|------------------|------------------|----------|------|--|--|--|
|                                                             | Fast Corner               |            | e Casad           | -7 Speed         | -7 Speed         | -8 Speed |      |  |  |  |
| Parameter                                                   | Industrial/<br>Automotive | Commercial | –6 Speed<br>Grade | <b>Grade</b> (1) | <b>Grade</b> (2) | Grade    | Unit |  |  |  |
| t <sub>CIN</sub>                                            | 1.256                     | 1.314      | 2.270             | 2.416            | 2.596            | 2.606    | ns   |  |  |  |
| t <sub>COUT</sub>                                           | 1.258                     | 1.316      | 2.286             | 2.429            | 2.604            | 2.614    | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                         | -0.276                    | -0.294     | -0.08             | -0.134           | -0.152           | -0.142   | ns   |  |  |  |
| t <sub>PLLCOUT</sub>                                        | -0.274                    | -0.292     | -0.064            | -0.121           | -0.144           | -0.134   | ns   |  |  |  |

#### Notes to Table 5-24:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

# EP2C15A Clock Timing Parameters

Tables 5–25 and 5–26 show the clock timing parameters for EP2C15A devices.

| Table 5–25. EP2C15A Column Pins Global Clock Timing Parameters |                           |            |          |                  |                  |          |      |  |  |  |
|----------------------------------------------------------------|---------------------------|------------|----------|------------------|------------------|----------|------|--|--|--|
| Parameter                                                      | Fast Corner               |            | -6 Speed | -7 Speed         | -7 Speed         | -8 Speed |      |  |  |  |
|                                                                | Industrial/<br>Automotive | Commercial | Grade    | <b>Grade</b> (1) | <b>Grade</b> (2) | Grade    | Unit |  |  |  |
| t <sub>CIN</sub>                                               | 1.621                     | 1.698      | 2.590    | 2.766            | 3.009            | 2.989    | ns   |  |  |  |
| t <sub>COUT</sub>                                              | 1.635                     | 1.713      | 2.624    | 2.798            | 3.038            | 3.018    | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                            | -0.351                    | -0.372     | 0.045    | 0.008            | 0.046            | 0.016    | ns   |  |  |  |

| Table 5–25. EP2C15A Column Pins Global Clock Timing Parameters |                           |            |                   |                  |                  |                   |      |  |  |
|----------------------------------------------------------------|---------------------------|------------|-------------------|------------------|------------------|-------------------|------|--|--|
|                                                                | Fast Corner               |            | 6 Cnood           | -7 Speed         | -7 Speed         | 0 Cnood           |      |  |  |
| Parameter                                                      | Industrial/<br>Automotive | Commercial | –6 Speed<br>Grade | <b>Grade</b> (1) | <b>Grade</b> (2) | –8 Speed<br>Grade | Unit |  |  |
| t <sub>PLLCOUT</sub>                                           | -0.337                    | -0.357     | 0.079             | 0.04             | 0.075            | 0.045             | ns   |  |  |

Notes to Table 5-25:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

| Table 5–26. EP2C15A Row Pins Global Clock Timing Parameters |                           |                   |         |                  |                  |                   |      |  |  |  |
|-------------------------------------------------------------|---------------------------|-------------------|---------|------------------|------------------|-------------------|------|--|--|--|
|                                                             | Fast Corner               |                   | E Chood | -7 Speed         | -7 Speed         | _Q Qnaad          | Unit |  |  |  |
| Parameter                                                   | Industrial/<br>Automotive | I.nmmpreial a.a.a |         | <b>Grade</b> (1) | <b>Grade</b> (2) | –8 Speed<br>Grade |      |  |  |  |
| t <sub>CIN</sub>                                            | 1.542                     | 1.615             | 2.490   | 2.651            | 2.886            | 2.866             | ns   |  |  |  |
| t <sub>COUT</sub>                                           | 1.544                     | 1.617             | 2.506   | 2.664            | 2.894            | 2.874             | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                         | -0.424                    | -0.448            | -0.057  | -0.107           | -0.077           | -0.107            | ns   |  |  |  |
| t <sub>PLLCOUT</sub>                                        | -0.422                    | -0.446            | -0.041  | -0.094           | -0.069           | -0.099            | ns   |  |  |  |

## Notes to Table 5–26:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

# EP2C20/A Clock Timing Parameters

Tables 5–27 and 5–28 show the clock timing parameters for EP2C20/A devices.

| Table 5–27. EP2C20/A Column Pins Global Clock Timing Parameters (Part 1 of 2) |                           |            |          |                  |                  |          |      |  |  |
|-------------------------------------------------------------------------------|---------------------------|------------|----------|------------------|------------------|----------|------|--|--|
|                                                                               | Fast Corner               |            | –6 Speed | -7 Speed         | -7 Speed         | -8 Speed |      |  |  |
| Parameter                                                                     | Industrial/<br>Automotive | Commercial | Grade    | <b>Grade</b> (1) | <b>Grade</b> (2) | Grade    | Unit |  |  |
| t <sub>CIN</sub>                                                              | 1.621                     | 1.698      | 2.590    | 2.766            | 3.009            | 2.989    | ns   |  |  |
| t <sub>COUT</sub>                                                             | 1.635                     | 1.713      | 2.624    | 2.798            | 3.038            | 3.018    | ns   |  |  |
| t <sub>PLLCIN</sub>                                                           | -0.351                    | -0.372     | 0.045    | 0.008            | 0.046            | 0.016    | ns   |  |  |

| Table 5–27. EP2C20/A Column Pins Global Clock Timing Parameters (Part 2 of 2) |            |        |                  |                         |                   |        |    |  |  |
|-------------------------------------------------------------------------------|------------|--------|------------------|-------------------------|-------------------|--------|----|--|--|
|                                                                               | Fast (     | Corner | -6 Speed         | -7 Speed                | -7 Speed          | bood 0 |    |  |  |
| Parameter Industrial/ Commercia                                               | Commercial | Grade  | <b>Grade</b> (1) | <b>Grade</b> <i>(2)</i> | –8 Speed<br>Grade | Unit   |    |  |  |
| t <sub>PLLCOUT</sub>                                                          | -0.337     | -0.357 | 0.079            | 0.04                    | 0.075             | 0.045  | ns |  |  |

Notes to Table 5-27:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

| Table 5–28. EP2C20/A Row Pins Global Clock Timing Parameters |             |        |          |              |                  |          |      |  |  |  |
|--------------------------------------------------------------|-------------|--------|----------|--------------|------------------|----------|------|--|--|--|
|                                                              | Fast Corner |        | -6 Speed | -7 Speed     | -7 Speed         | -8 Speed |      |  |  |  |
| Parameter                                                    | er          |        | Grade    | Grade<br>(1) | <b>Grade</b> (2) | Grade    | Unit |  |  |  |
| t <sub>CIN</sub>                                             | 1.542       | 1.615  | 2.490    | 2.651        | 2.886            | 2.866    | ns   |  |  |  |
| t <sub>COUT</sub>                                            | 1.544       | 1.617  | 2.506    | 2.664        | 2.894            | 2.874    | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                          | -0.424      | -0.448 | -0.057   | -0.107       | -0.077           | -0.107   | ns   |  |  |  |
| t <sub>PLLCOUT</sub>                                         | -0.422      | -0.446 | -0.041   | -0.094       | -0.069           | -0.099   | ns   |  |  |  |

## Notes to Table 5–28:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

# EP2C35 Clock Timing Parameters

Tables 5–29 and 5–30 show the clock timing parameters for EP2C35 devices.

| Table 5–29. EP2C35 Column Pins Global Clock Timing Parameters |            |            |          |          |          |      |  |  |  |  |
|---------------------------------------------------------------|------------|------------|----------|----------|----------|------|--|--|--|--|
| Downston                                                      | Fast (     | Corner     | -6 Speed | -7 Speed | -8 Speed | Unit |  |  |  |  |
| Parameter                                                     | Industrial | Commercial | Grade    | Grade    | Grade    | Unit |  |  |  |  |
| t <sub>CIN</sub>                                              | 1.499      | 1.569      | 2.652    | 2.878    | 3.155    | ns   |  |  |  |  |
| t <sub>COUT</sub>                                             | 1.513      | 1.584      | 2.686    | 2.910    | 3.184    | ns   |  |  |  |  |
| t <sub>PLLCIN</sub>                                           | -0.026     | -0.032     | 0.272    | 0.316    | 0.41     | ns   |  |  |  |  |
| t <sub>PLLCOUT</sub>                                          | -0.012     | -0.017     | 0.306    | 0.348    | 0.439    | ns   |  |  |  |  |

| Table 5–30. EP2C35 Row Pins Global Clock Timing Parameters |            |            |          |          |          |      |  |  |  |  |
|------------------------------------------------------------|------------|------------|----------|----------|----------|------|--|--|--|--|
| Parameter                                                  | Fast (     | Corner     | -6 Speed | -7 Speed | -8 Speed | Heit |  |  |  |  |
|                                                            | Industrial | Commercial | Grade    | Grade    | Grade    | Unit |  |  |  |  |
| t <sub>CIN</sub>                                           | 1.410      | 1.476      | 2.514    | 2.724    | 2.986    | ns   |  |  |  |  |
| t <sub>COUT</sub>                                          | 1.412      | 1.478      | 2.530    | 2.737    | 2.994    | ns   |  |  |  |  |
| t <sub>PLLCIN</sub>                                        | -0.117     | -0.127     | 0.134    | 0.162    | 0.241    | ns   |  |  |  |  |
| t <sub>PLLCOUT</sub>                                       | -0.115     | -0.125     | 0.15     | 0.175    | 0.249    | ns   |  |  |  |  |

# EP2C50 Clock Timing Parameters

Tables 5–31 and 5–32 show the clock timing parameters for EP2C50 devices.

| Table 5–31. EP2C50 Column Pins Global Clock Timing Parameters |            |            |          |          |          |       |  |  |  |  |
|---------------------------------------------------------------|------------|------------|----------|----------|----------|-------|--|--|--|--|
| Parameter I                                                   | Fast (     | Corner     | -6 Speed | -7 Speed | -8 Speed | Unit  |  |  |  |  |
|                                                               | Industrial | Commercial | Grade    | Grade    | Grade    | UIIIL |  |  |  |  |
| t <sub>CIN</sub>                                              | 1.575      | 1.651      | 2.759    | 2.940    | 3.174    | ns    |  |  |  |  |
| t <sub>COUT</sub>                                             | 1.589      | 1.666      | 2.793    | 2.972    | 3.203    | ns    |  |  |  |  |
| t <sub>PLLCIN</sub>                                           | -0.149     | -0.158     | 0.113    | 0.075    | 0.089    | ns    |  |  |  |  |
| t <sub>PLLCOUT</sub>                                          | -0.135     | -0.143     | 0.147    | 0.107    | 0.118    | ns    |  |  |  |  |

| Table 5–32. EP2C50 Row Pins Global Clock Timing Parameters |            |            |          |          |          |      |  |  |  |
|------------------------------------------------------------|------------|------------|----------|----------|----------|------|--|--|--|
| Parameter                                                  | Fast (     | Corner     | –6 Speed | -7 Speed | –8 Speed | Unit |  |  |  |
|                                                            | Industrial | Commercial | Grade    | Grade    | Grade    |      |  |  |  |
| t <sub>CIN</sub>                                           | 1.463      | 1.533      | 2.624    | 2.791    | 3.010    | ns   |  |  |  |
| t <sub>cout</sub>                                          | 1.465      | 1.535      | 2.640    | 2.804    | 3.018    | ns   |  |  |  |
| t <sub>PLLCIN</sub>                                        | -0.261     | -0.276     | -0.022   | -0.074   | -0.075   | ns   |  |  |  |
| t <sub>PLLCOUT</sub>                                       | -0.259     | -0.274     | -0.006   | -0.061   | -0.067   | ns   |  |  |  |

# EP2C70 Clock Timing Parameters

Tables 5–33 and 5–34 show the clock timing parameters for EP2C70 devices.

| Table 5–33. EP2C70 Column Pins Global Clock Timing Parameters |            |            |          |                   |                   |       |  |  |  |  |
|---------------------------------------------------------------|------------|------------|----------|-------------------|-------------------|-------|--|--|--|--|
| Parameter                                                     | Fast (     | Corner     | -6 Speed | –7 Speed<br>Grade | –8 Speed<br>Grade | Unit  |  |  |  |  |
|                                                               | Industrial | Commercial | Grade    |                   |                   | UIIII |  |  |  |  |
| $t_{CIN}$                                                     | 1.575      | 1.651      | 2.914    | 3.105             | 3.174             | ns    |  |  |  |  |
| t <sub>COUT</sub>                                             | 1.589      | 1.666      | 2.948    | 3.137             | 3.203             | ns    |  |  |  |  |
| t <sub>PLLCIN</sub>                                           | -0.149     | -0.158     | 0.27     | 0.268             | 0.089             | ns    |  |  |  |  |
| t <sub>PLLCOUT</sub>                                          | -0.135     | -0.143     | 0.304    | 0.3               | 0.118             | ns    |  |  |  |  |

| Table 5–34. EP2C70 Row Pins Global Clock Timing Parameters |            |            |          |          |          |       |  |  |  |  |  |
|------------------------------------------------------------|------------|------------|----------|----------|----------|-------|--|--|--|--|--|
| Parameter                                                  | Fast       | Corner     | -6 Speed | -7 Speed | -8 Speed | Unit  |  |  |  |  |  |
| Parameter                                                  | Industrial | Commercial | Grade    | Grade    | Grade    | Ullit |  |  |  |  |  |
| t <sub>CIN</sub>                                           | 1.463      | 1.533      | 2.753    | 2.927    | 3.010    | ns    |  |  |  |  |  |
| t <sub>COUT</sub>                                          | 1.465      | 1.535      | 2.769    | 2.940    | 3.018    | ns    |  |  |  |  |  |
| t <sub>PLLCIN</sub>                                        | -0.261     | -0.276     | 0.109    | 0.09     | -0.075   | ns    |  |  |  |  |  |
| t <sub>PLLCOUT</sub>                                       | -0.259     | -0.274     | 0.125    | 0.103    | -0.067   | ns    |  |  |  |  |  |

## **Clock Network Skew Adders**

Table 5–35 shows the clock network specifications.

| Table 5–35. Clock Network Specifications            |                                                |      |      |  |  |  |  |  |
|-----------------------------------------------------|------------------------------------------------|------|------|--|--|--|--|--|
| Name                                                | Description                                    | Max  | Unit |  |  |  |  |  |
| Clock skew adder                                    | Inter-clock network, same bank                 | ±88  | ps   |  |  |  |  |  |
| EP2C5/A, EP2C8/A (1)                                | Inter-clock network, same side and entire chip | ±88  | ps   |  |  |  |  |  |
| Clock skew adder                                    | Inter-clock network, same bank                 | ±118 | ps   |  |  |  |  |  |
| EP2C15A, EP2C20/A,<br>EP2C35, EP2C50,<br>EP2C70 (1) | Inter-clock network, same side and entire chip | ±138 | ps   |  |  |  |  |  |

Note to Table 5-35:

This is in addition to intra-clock network skew, which is modeled in the Quartus II software.

# **IOE Programmable Delay**

Refer to Table 5–36 and 5–37 for IOE programmable delay.

| Table 5-36                       | . Cyclone II IOE I | Programma                | able De       | lay on C      | olumn l           | <b>Pins</b> No | otes (1),                | (2)           |                   |               |      |
|----------------------------------|--------------------|--------------------------|---------------|---------------|-------------------|----------------|--------------------------|---------------|-------------------|---------------|------|
| Parameter Paths                  | Paths Affected     | Number<br>of<br>Settings | Fast Corner   |               | –6 Speed<br>Grade |                | -7 Speed<br>Grade<br>(4) |               | –8 Speed<br>Grade |               | Unit |
|                                  |                    |                          | Min<br>Offset | Max<br>Offset | Min<br>Offset     | Max<br>Offset  | Min<br>Offset            | Max<br>Offset | Min<br>Offset     | Max<br>Offset |      |
| Input Delay                      | Pad -> I/O         | 7                        | 0             | 2233          | 0                 | 3827           | 0                        | 4232          | 0                 | 4349          | ps   |
| from Pin to<br>Internal<br>Cells | dataout to core    |                          | 0             | 2344          | _                 | _              | 0                        | 4088          | _                 | _             | ps   |
| Input Delay                      | Pad -> I/O         | 8                        | 0             | 2656          | 0                 | 4555           | 0                        | 4914          | 0                 | 4940          | ps   |
| from Pin to<br>Input<br>Register | input register     |                          | 0             | 2788          | _                 | _              | 0                        | 4748          | _                 | _             | ps   |
| Delay from I/O output            |                    | 2                        | 0             | 303           | 0                 | 563            | 0                        | 638           | 0                 | 670           | ps   |
| Output Register to Output Pin    | register -> Pad    |                          | 0             | 318           | _                 | _              | 0                        | 617           | _                 |               | ps   |

#### *Notes to Table 5–36:*

- (1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting "0" as available in the Quartus II software.
- (3) The value in the first row for each parameter represents the fast corner timing parameter for industrial and automotive devices. The second row represents the fast corner timing parameter for commercial devices.
- (4) The value in the first row is for automotive devices. The second row is for commercial devices.

| Table 5–37. Cyclone II IOE Programmable Delay on Row Pins Notes (1), (2) (Part 1 of 2) |                           |                          |                 |               |                   |               |                              |               |                |               |       |
|----------------------------------------------------------------------------------------|---------------------------|--------------------------|-----------------|---------------|-------------------|---------------|------------------------------|---------------|----------------|---------------|-------|
| Parameter                                                                              | Paths<br>Affected         | Number<br>of<br>Settings | Fast Corner (3) |               | -6 Speed<br>Grade |               | -7 Speed<br>Grade <i>(4)</i> |               | -8 Speed Grade |               | Unit  |
|                                                                                        |                           |                          | Min<br>Offset   | Max<br>Offset | Min<br>Offset     | Max<br>Offset | Min<br>Offset                | Max<br>Offset | Min<br>Offset  | Max<br>Offset | Uiill |
| Input Delay                                                                            | Pad ->                    | 7                        | 0               | 2240          | 0                 | 3776          | 0                            | 4174          | 0              | 4290          | ps    |
| from Pin to<br>Internal<br>Cells                                                       | I/O<br>dataout<br>to core |                          | 0               | 2352          |                   |               | 0                            | 4033          | _              | _             | ps    |

| Table 5-37                       | Table 5–37. Cyclone II IOE Programmable Delay on Row Pins Notes (1), (2) (Part 2 of 2) |                          |                 |               |                   |               |                              |               |                |               |       |  |
|----------------------------------|----------------------------------------------------------------------------------------|--------------------------|-----------------|---------------|-------------------|---------------|------------------------------|---------------|----------------|---------------|-------|--|
| Parameter                        | Paths                                                                                  | Number<br>of<br>Settings | Fast Corner (3) |               | –6 Speed<br>Grade |               | –7 Speed<br>Grade <i>(4)</i> |               | -8 Speed Grade |               | Unit  |  |
|                                  | Affected                                                                               |                          | Min<br>Offset   | Max<br>Offset | Min<br>Offset     | Max<br>Offset | Min<br>Offset                | Max<br>Offset | Min<br>Offset  | Max<br>Offset | Uiill |  |
| Input Delay                      | Pad ->                                                                                 | 8                        | 0               | 2669          | 0                 | 4482          | 0                            | 4834          | 0              | 4859          | ps    |  |
| from Pin to<br>Input<br>Register | '                                                                                      |                          | 0               | 2802          | _                 |               | 0                            | 4671          | _              | _             | ps    |  |
| Delay from                       | I/O                                                                                    | 2                        | 0               | 308           | 0                 | 572           | 0                            | 648           | 0              | 682           | ps    |  |
| Output Register to Output Pin    | output<br>register -<br>> Pad                                                          |                          | 0               | 324           | _                 | _             | 0                            | 626           | _              | _             | ps    |  |

#### Notes to Table 5–37:

- The incremental values for the settings are generally linear. For exact values of each setting, use the latest version
  of the Quartus II software.
- (2) The minimum and maximum offset timing numbers are in reference to setting "0" as available in the Quartus II software.
- (3) The value in the first row represents the fast corner timing parameter for industrial and automotive devices. The second row represents the fast corner timing parameter for commercial devices.
- (4) The value in the first row is for automotive devices. The second row is for commercial devices.

# Default Capacitive Loading of Different I/O Standards

Refer to Table 5–38 for default capacitive loading of different I/O standards.

| Table 5–38. Default Loading of Different I/O Standards for Cyclone II Device<br>(Part 1 of 2) |                 |      |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-----------------|------|--|--|--|--|--|
| I/O Standard                                                                                  | Capacitive Load | Unit |  |  |  |  |  |
| LVTTL                                                                                         | 0               | pF   |  |  |  |  |  |
| LVCMOS                                                                                        | 0               | pF   |  |  |  |  |  |
| 2.5V                                                                                          | 0               | pF   |  |  |  |  |  |
| 1.8V                                                                                          | 0               | pF   |  |  |  |  |  |
| 1.5V                                                                                          | 0               | pF   |  |  |  |  |  |
| PCI                                                                                           | 10              | pF   |  |  |  |  |  |
| PCI-X                                                                                         | 10              | pF   |  |  |  |  |  |
| SSTL_2_CLASS_I                                                                                | 0               | pF   |  |  |  |  |  |
| SSTL_2_CLASS_II                                                                               | 0               | pF   |  |  |  |  |  |
| SSTL_18_CLASS_I                                                                               | 0               | pF   |  |  |  |  |  |

Table 5–38. Default Loading of Different I/O Standards for Cyclone II Device (Part 2 of 2)

| I/O Standard                    | Capacitive Load | Unit |
|---------------------------------|-----------------|------|
| SSTL_18_CLASS_II                | 0               | pF   |
| 1.5V_HSTL_CLASS_I               | 0               | pF   |
| 1.5V_HSTL_CLASS_II              | 0               | pF   |
| 1.8V_HSTL_CLASS_I               | 0               | pF   |
| 1.8V_HSTL_CLASS_II              | 0               | pF   |
| DIFFERENTIAL_SSTL_2_CLASS_I     | 0               | pF   |
| DIFFERENTIAL_SSTL_2_CLASS_II    | 0               | pF   |
| DIFFERENTIAL_SSTL_18_CLASS_I    | 0               | pF   |
| DIFFERENTIAL_SSTL_18_CLASS_II   | 0               | pF   |
| 1.5V_DIFFERENTIAL_HSTL_CLASS_I  | 0               | pF   |
| 1.5V_DIFFERENTIAL_HSTL_CLASS_II | 0               | pF   |
| 1.8V_DIFFERENTIAL_HSTL_CLASS_I  | 0               | pF   |
| 1.8V_DIFFERENTIAL_HSTL_CLASS_II | 0               | pF   |
| LVDS                            | 0               | pF   |
| 1.2V_HSTL                       | 0               | pF   |
| 1.2V_DIFFERENTIAL_HSTL          | 0               | pF   |

# I/O Delays

Refer to Tables 5–39 through 5–43 for I/O delays.

| Table 5-39.        | Table 5–39. I/O Delay Parameters             |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------|--|--|--|--|--|--|--|
| Symbol             | Parameter                                    |  |  |  |  |  |  |  |
| t <sub>DIP</sub>   | Delay from I/O datain to output pad          |  |  |  |  |  |  |  |
| t <sub>OP</sub>    | Delay from I/O output register to output pad |  |  |  |  |  |  |  |
| t <sub>PCOUT</sub> | Delay from input pad to I/O dataout to core  |  |  |  |  |  |  |  |
| t <sub>P1</sub>    | Delay from input pad to I/O input register   |  |  |  |  |  |  |  |

| Table 5–40. Cyclone II I/O | Input Delay for Co | olumn Pins (              | Part 1 of 3     | )              |                |                       |                |      |
|----------------------------|--------------------|---------------------------|-----------------|----------------|----------------|-----------------------|----------------|------|
|                            |                    | Fast Co                   | Fast Corner     |                |                | -7                    | -8             |      |
| I/O Standard               | Parameter          | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade | Unit |
| LVTTL                      | t <sub>P1</sub>    | 581                       | 609             | 1222           | 1228           | 1282                  | 1282           | ps   |
|                            | t <sub>PCOUT</sub> | 367                       | 385             | 760            | 783            | 854                   | 854            | ps   |
| 2.5V                       | t <sub>P1</sub>    | 624                       | 654             | 1192           | 1238           | 1283                  | 1283           | ps   |
|                            | t <sub>PCOUT</sub> | 410                       | 430             | 730            | 793            | 855                   | 855            | ps   |
| 1.8V                       | t <sub>P1</sub>    | 725                       | 760             | 1372           | 1428           | 1484                  | 1484           | ps   |
|                            | t <sub>PCOUT</sub> | 511                       | 536             | 910            | 983            | 1056                  | 1056           | ps   |
| 1.5V                       | t <sub>P1</sub>    | 790                       | 828             | 1439           | 1497           | 1556                  | 1556           | ps   |
|                            | t <sub>PCOUT</sub> | 576                       | 604             | 977            | 1052           | 1128                  | 1128           | ps   |
| LVCMOS                     | t <sub>P1</sub>    | 581                       | 609             | 1222           | 1228           | 1282                  | 1282           | ps   |
|                            | t <sub>PCOUT</sub> | 367                       | 385             | 760            | 783            | 854                   | 854            | ps   |
| SSTL_2_CLASS_I             | t <sub>P1</sub>    | 533                       | 558             | 990            | 1015           | 1040                  | 1040           | ps   |
|                            | t <sub>PCOUT</sub> | 319                       | 334             | 528            | 570            | 612                   | 612            | ps   |
| SSTL_2_CLASS_II            | t <sub>P1</sub>    | 533                       | 558             | 990            | 1015           | 1040                  | 1040           | ps   |
|                            | t <sub>PCOUT</sub> | 319                       | 334             | 528            | 570            | 612                   | 612            | ps   |
| SSTL_18_CLASS_I            | t <sub>P1</sub>    | 577                       | 605             | 1027           | 1035           | 1045                  | 1045           | ps   |
|                            | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590            | 617                   | 617            | ps   |
| SSTL_18_CLASS_II           | t <sub>P1</sub>    | 577                       | 605             | 1027           | 1035           | 1045                  | 1045           | ps   |
|                            | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590            | 617                   | 617            | ps   |

| Table 5–40. Cyclone II I/O Inpu | t Delay for Co     | olumn Pins (              | Part 2 of 3     | )              |                       |                       |                |      |
|---------------------------------|--------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|
|                                 |                    | Fast Co                   | rner            | -6             | -7                    | -7                    | -8             |      |
| I/O Standard                    | Parameter          | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(1) | Speed<br>Grade<br>(2) | Speed<br>Grade | Unit |
| 1.5V_HSTL_CLASS_I               | t <sub>P1</sub>    | 589                       | 617             | 1145           | 1176                  | 1208                  | 1208           | ps   |
|                                 | t <sub>PCOUT</sub> | 375                       | 393             | 683            | 731                   | 780                   | 780            | ps   |
| 1.5V_HSTL_CLASS_II              | t <sub>P1</sub>    | 589                       | 617             | 1145           | 1176                  | 1208                  | 1208           | ps   |
|                                 | t <sub>PCOUT</sub> | 375                       | 393             | 683            | 731                   | 780                   | 780            | ps   |
| 1.8V_HSTL_CLASS_I               | t <sub>P1</sub>    | 577                       | 605             | 1027           | 1035                  | 1045                  | 1045           | ps   |
|                                 | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590                   | 617                   | 617            | ps   |
| 1.8V_HSTL_CLASS_II              | t <sub>P1</sub>    | 577                       | 605             | 1027           | 1035                  | 1045                  | 1045           | ps   |
|                                 | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590                   | 617                   | 617            | ps   |
| DIFFERENTIAL_SSTL_2_            | t <sub>P1</sub>    | 533                       | 558             | 990            | 1015                  | 1040                  | 1040           | ps   |
| CLASS_I                         | t <sub>PCOUT</sub> | 319                       | 334             | 528            | 570                   | 612                   | 612            | ps   |
| DIFFERENTIAL_SSTL_2_            | t <sub>P1</sub>    | 533                       | 558             | 990            | 1015                  | 1040                  | 1040           | ps   |
| CLASS_II                        | t <sub>PCOUT</sub> | 319                       | 334             | 528            | 570                   | 612                   | 612            | ps   |
| DIFFERENTIAL_SSTL_18_           | t <sub>P1</sub>    | 577                       | 605             | 1027           | 1035                  | 1045                  | 1045           | ps   |
| CLASS_I                         | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590                   | 617                   | 617            | ps   |
| DIFFERENTIAL_SSTL_18_           | t <sub>P1</sub>    | 577                       | 605             | 1027           | 1035                  | 1045                  | 1045           | ps   |
| CLASS_II                        | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590                   | 617                   | 617            | ps   |
| 1.8V_DIFFERENTIAL_HSTL_         | t <sub>P1</sub>    | 577                       | 605             | 1027           | 1035                  | 1045                  | 1045           | ps   |
| CLASS_I                         | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590                   | 617                   | 617            | ps   |
| 1.8V_DIFFERENTIAL_HSTL_         | t <sub>Pl</sub>    | 577                       | 605             | 1027           | 1035                  | 1045                  | 1045           | ps   |
| CLASS_II                        | t <sub>PCOUT</sub> | 363                       | 381             | 565            | 590                   | 617                   | 617            | ps   |
| 1.5V_DIFFERENTIAL_HSTL_         | t <sub>P1</sub>    | 589                       | 617             | 1145           | 1176                  | 1208                  | 1208           | ps   |
| CLASS_I                         | t <sub>PCOUT</sub> | 375                       | 393             | 683            | 731                   | 780                   | 780            | ps   |
| 1.5V_DIFFERENTIAL_HSTL_         | t <sub>P1</sub>    | 589                       | 617             | 1145           | 1176                  | 1208                  | 1208           | ps   |
| CLASS_II                        | t <sub>PCOUT</sub> | 375                       | 393             | 683            | 731                   | 780                   | 780            | ps   |
| LVDS                            | t <sub>P1</sub>    | 623                       | 653             | 1072           | 1075                  | 1078                  | 1078           | ps   |
|                                 | t <sub>PCOUT</sub> | 409                       | 429             | 610            | 630                   | 650                   | 650            | ps   |
| 1.2V_HSTL                       | t <sub>P1</sub>    | 570                       | 597             | 1263           | 1324                  | 1385                  | 1385           | ps   |
|                                 | t <sub>PCOUT</sub> | 356                       | 373             | 801            | 879                   | 957                   | 957            | ps   |

| Table 5–40. Cyclone II I/O Input Delay for Column Pins (Part 3 of 3) |                    |                           |                 |                |                       |                       |                |      |  |
|----------------------------------------------------------------------|--------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|--|
|                                                                      |                    | Fast Co                   | -6              | <b>-7</b>      | -7                    | -8                    |                |      |  |
| I/O Standard                                                         | Parameter          | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(1) | Speed<br>Grade<br>(2) | Speed<br>Grade | Unit |  |
| 1.2V_DIFFERENTIAL_HSTL                                               | t <sub>Pl</sub>    | 570                       | 597             | 1263           | 1324                  | 1385                  | 1385           | ps   |  |
|                                                                      | t <sub>PCOUT</sub> | 356                       | 373             | 801            | 879                   | 957                   | 957            | ps   |  |

Notes to Table 5-40:

- (1) These numbers are for commercial devices.
- (2) These numbers are for automotive devices.

| Table 5–41. Cyclone II I/O Inp | ut Delay for Re    | ow Pins (Par              | t 1 of 2)       |                |                       |                       |                |      |
|--------------------------------|--------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|
|                                |                    | Fast Co                   | -6              | -7             | -7                    | -8                    |                |      |
| I/O Standard                   | Parameter          | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(1) | Speed<br>Grade<br>(2) | Speed<br>Grade | Unit |
| LVTTL                          | t <sub>P1</sub>    | 583                       | 611             | 1129           | 1160                  | 1240                  | 1240           | ps   |
|                                | t <sub>PCOUT</sub> | 366                       | 384             | 762            | 784                   | 855                   | 855            | ps   |
| 2.5V                           | t <sub>P1</sub>    | 629                       | 659             | 1099           | 1171                  | 1244                  | 1244           | ps   |
|                                | t <sub>PCOUT</sub> | 412                       | 432             | 732            | 795                   | 859                   | 859            | ps   |
| 1.8V                           | t <sub>Pl</sub>    | 729                       | 764             | 1278           | 1360                  | 1443                  | 1443           | ps   |
|                                | t <sub>PCOUT</sub> | 512                       | 537             | 911            | 984                   | 1058                  | 1058           | ps   |
| 1.5V                           | t <sub>P1</sub>    | 794                       | 832             | 1345           | 1429                  | 1513                  | 1513           | ps   |
|                                | t <sub>PCOUT</sub> | 577                       | 605             | 978            | 1053                  | 1128                  | 1128           | ps   |
| LVCMOS                         | t <sub>Pl</sub>    | 583                       | 611             | 1129           | 1160                  | 1240                  | 1240           | ps   |
|                                | t <sub>PCOUT</sub> | 366                       | 384             | 762            | 784                   | 855                   | 855            | ps   |
| SSTL_2_CLASS_I                 | t <sub>P1</sub>    | 536                       | 561             | 896            | 947                   | 998                   | 998            | ps   |
|                                | t <sub>PCOUT</sub> | 319                       | 334             | 529            | 571                   | 613                   | 613            | ps   |
| SSTL_2_CLASS_II                | t <sub>P1</sub>    | 536                       | 561             | 896            | 947                   | 998                   | 998            | ps   |
|                                | t <sub>PCOUT</sub> | 319                       | 334             | 529            | 571                   | 613                   | 613            | ps   |
| SSTL_18_CLASS_I                | t <sub>P1</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                | t <sub>PCOUT</sub> | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| SSTL_18_CLASS_II               | t <sub>Pl</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                | t <sub>PCOUT</sub> | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| 1.5V_HSTL_CLASS_I              | t <sub>P1</sub>    | 593                       | 621             | 1051           | 1109                  | 1167                  | 1167           | ps   |
|                                | t <sub>PCOUT</sub> | 376                       | 394             | 684            | 733                   | 782                   | 782            | ps   |

| Table 5–41. Cyclone II I/O Input Delay for Row Pins (Part 2 of 2) |                    |                           |                 |                |                       |                       |                |      |
|-------------------------------------------------------------------|--------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|
| I/O Standard                                                      | Parameter          | Fast Corner               |                 | -6             | -7                    | -7                    | -8             |      |
|                                                                   |                    | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(1) | Speed<br>Grade<br>(2) | Speed<br>Grade | Unit |
| 1.5V_HSTL_CLASS_II                                                | t <sub>P1</sub>    | 593                       | 621             | 1051           | 1109                  | 1167                  | 1167           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 376                       | 394             | 684            | 733                   | 782                   | 782            | ps   |
| 1.8V_HSTL_CLASS_I                                                 | t <sub>P1</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                                                   | $t_{PCOUT}$        | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| 1.8V_HSTL_CLASS_II                                                | t <sub>P1</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| DIFFERENTIAL_SSTL_2_<br>CLASS_I                                   | t <sub>P1</sub>    | 536                       | 561             | 896            | 947                   | 998                   | 998            | ps   |
|                                                                   | t <sub>PCOUT</sub> | 319                       | 334             | 529            | 571                   | 613                   | 613            | ps   |
| DIFFERENTIAL_SSTL_2_<br>CLASS_II                                  | t <sub>P1</sub>    | 536                       | 561             | 896            | 947                   | 998                   | 998            | ps   |
|                                                                   | t <sub>PCOUT</sub> | 319                       | 334             | 529            | 571                   | 613                   | 613            | ps   |
| DIFFERENTIAL_SSTL_18_<br>CLASS_I                                  | t <sub>P1</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| DIFFERENTIAL_SSTL_18_<br>CLASS_II                                 | t <sub>P1</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| 1.8V_DIFFERENTIAL_HSTL_<br>CLASS_I                                | t <sub>P1</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| 1.8V_DIFFERENTIAL_HSTL_<br>CLASS_II                               | t <sub>P1</sub>    | 581                       | 609             | 933            | 967                   | 1004                  | 1004           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 364                       | 382             | 566            | 591                   | 619                   | 619            | ps   |
| 1.5V_DIFFERENTIAL_HSTL_<br>CLASS_I                                | t <sub>P1</sub>    | 593                       | 621             | 1051           | 1109                  | 1167                  | 1167           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 376                       | 394             | 684            | 733                   | 782                   | 782            | ps   |
| 1.5V_DIFFERENTIAL_HSTL_<br>CLASS_II                               | t <sub>P1</sub>    | 593                       | 621             | 1051           | 1109                  | 1167                  | 1167           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 376                       | 394             | 684            | 733                   | 782                   | 782            | ps   |
| LVDS                                                              | t <sub>P1</sub>    | 651                       | 682             | 1036           | 1075                  | 1113                  | 1113           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 434                       | 455             | 669            | 699                   | 728                   | 728            | ps   |
| PCI                                                               | t <sub>P1</sub>    | 595                       | 623             | 1113           | 1156                  | 1232                  | 1232           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 378                       | 396             | 746            | 780                   | 847                   | 847            | ps   |
| PCI-X                                                             | t <sub>P1</sub>    | 595                       | 623             | 1113           | 1156                  | 1232                  | 1232           | ps   |
|                                                                   | t <sub>PCOUT</sub> | 378                       | 396             | 746            | 780                   | 847                   | 847            | ps   |

### Notes to Table 5–41:

<sup>(1)</sup> These numbers are for commercial devices.

<sup>(2)</sup> These numbers are for automotive devices.

| Table 5–42. Cyclon | Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 1 of 6) |                  |                           |                 |                |                       |                       |                |      |  |  |
|--------------------|-----------------------------------------------------------------------|------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|--|--|
|                    |                                                                       |                  | Fast Co                   | rner            | -6             | -7                    | -7                    | -8             |      |  |  |
| I/O Standard       | Drive<br>Strength                                                     | Parameter        | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | Speed<br>Grade | Unit |  |  |
| LVTTL              | 4 mA                                                                  | t <sub>OP</sub>  | 1524                      | 1599            | 2903           | 3125                  | 3341                  | 3348           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1656                      | 1738            | 3073           | 3319                  | 3567                  | 3567           | ps   |  |  |
|                    | 8 mA                                                                  | t <sub>OP</sub>  | 1343                      | 1409            | 2670           | 2866                  | 3054                  | 3061           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1475                      | 1548            | 2840           | 3060                  | 3280                  | 3280           | ps   |  |  |
|                    | 12 mA                                                                 | t <sub>OP</sub>  | 1287                      | 1350            | 2547           | 2735                  | 2917                  | 2924           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1419                      | 1489            | 2717           | 2929                  | 3143                  | 3143           | ps   |  |  |
|                    | 16 mA                                                                 | t <sub>OP</sub>  | 1239                      | 1299            | 2478           | 2665                  | 2844                  | 2851           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1371                      | 1438            | 2648           | 2859                  | 3070                  | 3070           | ps   |  |  |
|                    | 20 mA                                                                 | t <sub>OP</sub>  | 1228                      | 1288            | 2456           | 2641                  | 2820                  | 2827           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1360                      | 1427            | 2626           | 2835                  | 3046                  | 3046           | ps   |  |  |
|                    | 24 mA                                                                 | t <sub>OP</sub>  | 1220                      | 1279            | 2452           | 2637                  | 2815                  | 2822           | ps   |  |  |
|                    | (1)                                                                   | t <sub>DIP</sub> | 1352                      | 1418            | 2622           | 2831                  | 3041                  | 3041           | ps   |  |  |
| LVCMOS             | 4 mA                                                                  | t <sub>OP</sub>  | 1346                      | 1412            | 2509           | 2695                  | 2873                  | 2880           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1478                      | 1551            | 2679           | 2889                  | 3099                  | 3099           | ps   |  |  |
|                    | 8 mA                                                                  | t <sub>OP</sub>  | 1240                      | 1300            | 2473           | 2660                  | 2840                  | 2847           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1372                      | 1439            | 2643           | 2854                  | 3066                  | 3066           | ps   |  |  |
|                    | 12 mA                                                                 | t <sub>OP</sub>  | 1221                      | 1280            | 2428           | 2613                  | 2790                  | 2797           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1353                      | 1419            | 2598           | 2807                  | 3016                  | 3016           | ps   |  |  |
|                    | 16 mA                                                                 | t <sub>OP</sub>  | 1203                      | 1262            | 2403           | 2587                  | 2765                  | 2772           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1335                      | 1401            | 2573           | 2781                  | 2991                  | 2991           | ps   |  |  |
|                    | 20 mA                                                                 | t <sub>OP</sub>  | 1194                      | 1252            | 2378           | 2562                  | 2738                  | 2745           | ps   |  |  |
|                    |                                                                       | t <sub>DIP</sub> | 1326                      | 1391            | 2548           | 2756                  | 2964                  | 2964           | ps   |  |  |
|                    | 24 mA                                                                 | t <sub>OP</sub>  | 1192                      | 1250            | 2382           | 2566                  | 2742                  | 2749           | ps   |  |  |
|                    | (1)                                                                   | t <sub>DIP</sub> | 1324                      | 1389            | 2552           | 2760                  | 2968                  | 2968           | ps   |  |  |

| Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 2 of 6) |                   |                  |                           |                 |                |                       |                       |                |      |  |  |
|-----------------------------------------------------------------------|-------------------|------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|--|--|
|                                                                       |                   |                  | Fast Co                   | rner            | -6             | -7                    | -7                    | -8             |      |  |  |
| I/O Standard                                                          | Drive<br>Strength | Parameter        | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | Speed<br>Grade | Unit |  |  |
| 2.5V                                                                  | 4 mA              | t <sub>OP</sub>  | 1208                      | 1267            | 2478           | 2614                  | 2743                  | 2750           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1340                      | 1406            | 2648           | 2808                  | 2969                  | 2969           | ps   |  |  |
|                                                                       | 8 mA              | t <sub>OP</sub>  | 1190                      | 1248            | 2307           | 2434                  | 2554                  | 2561           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1322                      | 1387            | 2477           | 2628                  | 2780                  | 2780           | ps   |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1154                      | 1210            | 2192           | 2314                  | 2430                  | 2437           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1286                      | 1349            | 2362           | 2508                  | 2656                  | 2656           | ps   |  |  |
|                                                                       | 16 mA             | t <sub>OP</sub>  | 1140                      | 1195            | 2152           | 2263                  | 2375                  | 2382           | ps   |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1272                      | 1334            | 2322           | 2457                  | 2601                  | 2601           | ps   |  |  |
| 1.8V                                                                  | 2 mA              | t <sub>OP</sub>  | 1682                      | 1765            | 3988           | 4279                  | 4563                  | 4570           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1814                      | 1904            | 4158           | 4473                  | 4789                  | 4789           | ps   |  |  |
|                                                                       | 4 mA              | t <sub>OP</sub>  | 1567                      | 1644            | 3301           | 3538                  | 3768                  | 3775           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1699                      | 1783            | 3471           | 3732                  | 3994                  | 3994           | ps   |  |  |
|                                                                       | 6 mA              | t <sub>OP</sub>  | 1475                      | 1547            | 2993           | 3195                  | 3391                  | 3398           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1607                      | 1686            | 3163           | 3389                  | 3617                  | 3617           | ps   |  |  |
|                                                                       | 8 mA              | t <sub>OP</sub>  | 1451                      | 1522            | 2882           | 3074                  | 3259                  | 3266           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1583                      | 1661            | 3052           | 3268                  | 3485                  | 3485           | ps   |  |  |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1438                      | 1508            | 2853           | 3041                  | 3223                  | 3230           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1570                      | 1647            | 3023           | 3235                  | 3449                  | 3449           | ps   |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1438                      | 1508            | 2853           | 3041                  | 3223                  | 3230           | ps   |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1570                      | 1647            | 3023           | 3235                  | 3449                  | 3449           | ps   |  |  |
| 1.5V                                                                  | 2 mA              | t <sub>OP</sub>  | 2083                      | 2186            | 4477           | 4870                  | 5256                  | 5263           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 2215                      | 2325            | 4647           | 5064                  | 5482                  | 5482           | ps   |  |  |
|                                                                       | 4 mA              | t <sub>OP</sub>  | 1793                      | 1881            | 3649           | 3965                  | 4274                  | 4281           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1925                      | 2020            | 3819           | 4159                  | 4500                  | 4500           | ps   |  |  |
|                                                                       | 6 mA              | t <sub>OP</sub>  | 1770                      | 1857            | 3527           | 3823                  | 4112                  | 4119           | ps   |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1902                      | 1996            | 3697           | 4017                  | 4338                  | 4338           | ps   |  |  |
|                                                                       | 8 mA              | t <sub>OP</sub>  | 1703                      | 1787            | 3537           | 3827                  | 4111                  | 4118           | ps   |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1835                      | 1926            | 3707           | 4021                  | 4337                  | 4337           | ps   |  |  |

| Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 3 of 6) |                   |                  |                           |                 |                |                       |                       |                |      |  |  |  |
|-----------------------------------------------------------------------|-------------------|------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|--|--|--|
|                                                                       |                   |                  | Fast Co                   | rner            | -6             | -7                    | -7                    | -8             |      |  |  |  |
| I/O Standard                                                          | Drive<br>Strength | Parameter        | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | Speed<br>Grade | Unit |  |  |  |
| SSTL_2_                                                               | 8 mA              | t <sub>OP</sub>  | 1196                      | 1254            | 2388           | 2516                  | 2638                  | 2645           | ps   |  |  |  |
| CLASS_I                                                               |                   | t <sub>DIP</sub> | 1328                      | 1393            | 2558           | 2710                  | 2864                  | 2864           | ps   |  |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1174                      | 1231            | 2277           | 2401                  | 2518                  | 2525           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1306                      | 1370            | 2447           | 2595                  | 2744                  | 2744           | ps   |  |  |  |
| SSTL_2_                                                               | 16 mA             | t <sub>OP</sub>  | 1158                      | 1214            | 2245           | 2365                  | 2479                  | 2486           | ps   |  |  |  |
| CLASS_II                                                              |                   | t <sub>DIP</sub> | 1290                      | 1353            | 2415           | 2559                  | 2705                  | 2705           | ps   |  |  |  |
|                                                                       | 20 mA             | t <sub>OP</sub>  | 1152                      | 1208            | 2231           | 2351                  | 2464                  | 2471           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1284                      | 1347            | 2401           | 2545                  | 2690                  | 2690           | ps   |  |  |  |
|                                                                       | 24 mA             | t <sub>OP</sub>  | 1152                      | 1208            | 2225           | 2345                  | 2458                  | 2465           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1284                      | 1347            | 2395           | 2539                  | 2684                  | 2684           | ps   |  |  |  |
| SSTL_18_                                                              | 6 mA              | t <sub>OP</sub>  | 1472                      | 1544            | 3140           | 3345                  | 3542                  | 3549           | ps   |  |  |  |
| CLASS_I                                                               |                   | t <sub>DIP</sub> | 1604                      | 1683            | 3310           | 3539                  | 3768                  | 3768           | ps   |  |  |  |
|                                                                       | 8 mA              | t <sub>OP</sub>  | 1469                      | 1541            | 3086           | 3287                  | 3482                  | 3489           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1601                      | 1680            | 3256           | 3481                  | 3708                  | 3708           | ps   |  |  |  |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1466                      | 1538            | 2980           | 3171                  | 3354                  | 3361           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1598                      | 1677            | 3150           | 3365                  | 3580                  | 3580           | ps   |  |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1466                      | 1538            | 2980           | 3171                  | 3354                  | 3361           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1598                      | 1677            | 3150           | 3365                  | 3580                  | 3580           | ps   |  |  |  |
| SSTL_18_                                                              | 16 mA             | t <sub>OP</sub>  | 1454                      | 1525            | 2905           | 3088                  | 3263                  | 3270           | ps   |  |  |  |
| CLASS_II                                                              |                   | t <sub>DIP</sub> | 1586                      | 1664            | 3075           | 3282                  | 3489                  | 3489           | ps   |  |  |  |
|                                                                       | 18 mA             | t <sub>OP</sub>  | 1453                      | 1524            | 2900           | 3082                  | 3257                  | 3264           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1585                      | 1663            | 3070           | 3276                  | 3483                  | 3483           | ps   |  |  |  |
| 1.8V_HSTL_                                                            | 8 mA              | t <sub>OP</sub>  | 1460                      | 1531            | 3222           | 3424                  | 3618                  | 3625           | ps   |  |  |  |
| CLASS_I                                                               |                   | t <sub>DIP</sub> | 1592                      | 1670            | 3392           | 3618                  | 3844                  | 3844           | ps   |  |  |  |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1462                      | 1534            | 3090           | 3279                  | 3462                  | 3469           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1594                      | 1673            | 3260           | 3473                  | 3688                  | 3688           | ps   |  |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1462                      | 1534            | 3090           | 3279                  | 3462                  | 3469           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1594                      | 1673            | 3260           | 3473                  | 3688                  | 3688           | ps   |  |  |  |

| Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 4 of 6) |                   |                  |                           |                 |                |                       |                       |                |      |  |
|-----------------------------------------------------------------------|-------------------|------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|--|
|                                                                       |                   |                  | Fast Co                   | rner            | -6             | -7                    | -7                    | -8             |      |  |
| I/O Standard                                                          | Drive<br>Strength | Parameter        | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | Speed<br>Grade | Unit |  |
| 1.8V_HSTL_                                                            | 16 mA             | t <sub>OP</sub>  | 1449                      | 1520            | 2936           | 3107                  | 3271                  | 3278           | ps   |  |
| CLASS_II                                                              |                   | t <sub>DIP</sub> | 1581                      | 1659            | 3106           | 3301                  | 3497                  | 3497           | ps   |  |
|                                                                       | 18 mA             | t <sub>OP</sub>  | 1450                      | 1521            | 2924           | 3101                  | 3272                  | 3279           | ps   |  |
|                                                                       |                   | t <sub>DIP</sub> | 1582                      | 1660            | 3094           | 3295                  | 3498                  | 3498           | ps   |  |
|                                                                       | 20 mA             | t <sub>OP</sub>  | 1452                      | 1523            | 2926           | 3096                  | 3259                  | 3266           | ps   |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1584                      | 1662            | 3096           | 3290                  | 3485                  | 3485           | ps   |  |
| 1.5V_HSTL_                                                            | 8 mA              | t <sub>OP</sub>  | 1779                      | 1866            | 4292           | 4637                  | 4974                  | 4981           | ps   |  |
| CLASS_I                                                               |                   | t <sub>DIP</sub> | 1911                      | 2005            | 4462           | 4831                  | 5200                  | 5200           | ps   |  |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1784                      | 1872            | 4031           | 4355                  | 4673                  | 4680           | ps   |  |
|                                                                       |                   | t <sub>DIP</sub> | 1916                      | 2011            | 4201           | 4549                  | 4899                  | 4899           | ps   |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1784                      | 1872            | 4031           | 4355                  | 4673                  | 4680           | ps   |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1916                      | 2011            | 4201           | 4549                  | 4899                  | 4899           | ps   |  |
| 1.5V_HSTL_                                                            | 16 mA             | t <sub>OP</sub>  | 1750                      | 1836            | 3844           | 4125                  | 4399                  | 4406           | ps   |  |
| CLASS_II                                                              | (1)               | t <sub>DIP</sub> | 1882                      | 1975            | 4014           | 4319                  | 4625                  | 4625           | ps   |  |
| DIFFERENTIAL_                                                         | 8 mA              | t <sub>OP</sub>  | 1196                      | 1254            | 2388           | 2516                  | 2638                  | 2645           | ps   |  |
| SSTL_2_CLASS_I                                                        |                   | t <sub>DIP</sub> | 1328                      | 1393            | 2558           | 2710                  | 2864                  | 2864           | ps   |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1174                      | 1231            | 2277           | 2401                  | 2518                  | 2525           | ps   |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1306                      | 1370            | 2447           | 2595                  | 2744                  | 2744           | ps   |  |
| DIFFERENTIAL_                                                         | 16 mA             | t <sub>OP</sub>  | 1158                      | 1214            | 2245           | 2365                  | 2479                  | 2486           | ps   |  |
| SSTL_2_CLASS_II                                                       |                   | t <sub>DIP</sub> | 1290                      | 1353            | 2415           | 2559                  | 2705                  | 2705           | ps   |  |
|                                                                       | 20 mA             | t <sub>OP</sub>  | 1152                      | 1208            | 2231           | 2351                  | 2464                  | 2471           | ps   |  |
|                                                                       |                   | t <sub>DIP</sub> | 1284                      | 1347            | 2401           | 2545                  | 2690                  | 2690           | ps   |  |
|                                                                       | 24 mA             | t <sub>OP</sub>  | 1152                      | 1208            | 2225           | 2345                  | 2458                  | 2465           | ps   |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1284                      | 1347            | 2395           | 2539                  | 2684                  | 2684           | ps   |  |

| Table 5–42. Cyclone II I/O Output Delay for Column Pins (Part 5 of 6) |                   |                  |                           |                 |                |                       |                       |                |      |  |  |  |
|-----------------------------------------------------------------------|-------------------|------------------|---------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|--|--|--|
|                                                                       |                   |                  | Fast Co                   | rner            | -6             | -7                    | -7                    | -8             |      |  |  |  |
| I/O Standard                                                          | Drive<br>Strength | Parameter        | Industrial/<br>Automotive | Commer<br>-cial | Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | Speed<br>Grade | Unit |  |  |  |
| DIFFERENTIAL_                                                         | 6 mA              | t <sub>OP</sub>  | 1472                      | 1544            | 3140           | 3345                  | 3542                  | 3549           | ps   |  |  |  |
| SSTL_18_CLASS_I                                                       |                   | t <sub>DIP</sub> | 1604                      | 1683            | 3310           | 3539                  | 3768                  | 3768           | ps   |  |  |  |
|                                                                       | 8 mA              | t <sub>OP</sub>  | 1469                      | 1541            | 3086           | 3287                  | 3482                  | 3489           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1601                      | 1680            | 3256           | 3481                  | 3708                  | 3708           | ps   |  |  |  |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1466                      | 1538            | 2980           | 3171                  | 3354                  | 3361           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1598                      | 1677            | 3150           | 3365                  | 3580                  | 3580           | ps   |  |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1466                      | 1538            | 2980           | 3171                  | 3354                  | 3361           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1598                      | 1677            | 3150           | 3365                  | 3580                  | 3580           | ps   |  |  |  |
| DIFFERENTIAL_                                                         | 16 mA             | t <sub>OP</sub>  | 1454                      | 1525            | 2905           | 3088                  | 3263                  | 3270           | ps   |  |  |  |
| SSTL_18_CLASS_II                                                      |                   | t <sub>DIP</sub> | 1586                      | 1664            | 3075           | 3282                  | 3489                  | 3489           | ps   |  |  |  |
|                                                                       | 18 mA             | t <sub>OP</sub>  | 1453                      | 1524            | 2900           | 3082                  | 3257                  | 3264           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1585                      | 1663            | 3070           | 3276                  | 3483                  | 3483           | ps   |  |  |  |
| 1.8V_DIFFERENTIAL                                                     | 8 mA              | t <sub>OP</sub>  | 1460                      | 1531            | 3222           | 3424                  | 3618                  | 3625           | ps   |  |  |  |
| _HSTL_CLASS_I                                                         | 10 m A            | t <sub>DIP</sub> | 1592                      | 1670            | 3392           | 3618                  | 3844                  | 3844           | ps   |  |  |  |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1462                      | 1534            | 3090           | 3279                  | 3462                  | 3469           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1594                      | 1673            | 3260           | 3473                  | 3688                  | 3688           | ps   |  |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1462                      | 1534            | 3090           | 3279                  | 3462                  | 3469           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1594                      | 1673            | 3260           | 3473                  | 3688                  | 3688           | ps   |  |  |  |
| 1.8V_DIFFERENTIAL                                                     | 16 mA             | t <sub>OP</sub>  | 1449                      | 1520            | 2936           | 3107                  | 3271                  | 3278           | ps   |  |  |  |
| _HSTL_CLASS_II                                                        |                   | t <sub>DIP</sub> | 1581                      | 1659            | 3106           | 3301                  | 3497                  | 3497           | ps   |  |  |  |
|                                                                       | 18 mA             | t <sub>OP</sub>  | 1450                      | 1521            | 2924           | 3101                  | 3272                  | 3279           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1582                      | 1660            | 3094           | 3295                  | 3498                  | 3498           | ps   |  |  |  |
|                                                                       | 20 mA             | t <sub>OP</sub>  | 1452                      | 1523            | 2926           | 3096                  | 3259                  | 3266           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1584                      | 1662            | 3096           | 3290                  | 3485                  | 3485           | ps   |  |  |  |
| 1.5V_DIFFERENTIAL                                                     | 8 mA              | t <sub>OP</sub>  | 1779                      | 1866            | 4292           | 4637                  | 4974                  | 4981           | ps   |  |  |  |
| _HSTL_CLASS_I                                                         |                   | t <sub>DIP</sub> | 1911                      | 2005            | 4462           | 4831                  | 5200                  | 5200           | ps   |  |  |  |
|                                                                       | 10 mA             | t <sub>OP</sub>  | 1784                      | 1872            | 4031           | 4355                  | 4673                  | 4680           | ps   |  |  |  |
|                                                                       |                   | t <sub>DIP</sub> | 1916                      | 2011            | 4201           | 4549                  | 4899                  | 4899           | ps   |  |  |  |
|                                                                       | 12 mA             | t <sub>OP</sub>  | 1784                      | 1872            | 4031           | 4355                  | 4673                  | 4680           | ps   |  |  |  |
|                                                                       | (1)               | t <sub>DIP</sub> | 1916                      | 2011            | 4201           | 4549                  | 4899                  | 4899           | ps   |  |  |  |

Table 5-42. Cyclone II I/O Output Delay for Column Pins (Part 6 of 6) **Fast Corner** -7 -7 -6 -8 Drive Speed Speed Speed I/O Standard **Parameter** Speed Unit Industrial/ Commer Strength Grade Grade Grade Grade **Automotive** -cial (2) (3) 1.5V\_DIFFERENTIAL 16 mA 1750 1836 3844 4125 4399 4406 t<sub>OP</sub> ps \_HSTL\_CLASS\_II (1) 1882 1975 4014 4319 4625 4625 ps  $t_{DIP}$ **LVDS**  $t_{OP}$ 1258 1319 2243 2344 2438 2445 ps 2538 1390 1458 2413 2664 2664 ps  $t_{DIP}$ **RSDS** 1319 2344  $t_{OP}$ 1258 2243 2438 2445 ps 2413 2538 1390 1458 2664 2664  $t_{DIP}$ ps MINI\_LVDS 1258 2344 1319 2243 2438 2445  $t_{OP}$ ps 1390 1458 2413 2538 2664 2664  $t_{DIP}$ ps SIMPLE\_RSDS 1221 1280 2258 2435 2605 2612  $t_{OP}$ ps 1353 1419 2428 2629 2831 2831 ps  $t_{DIP}$ 1.2V\_HSTL 2403 2522 4635 5344 6046 6053  $t_{OP}$ ps 2535 2661 4805 5538 6272 6272  $t_{DIP}$ ps 1.2V DIFFERENTIAL 2522 4635 5344  $t_{OP}$ 2403 6046 6053 ps \_HSTL 2535 2661 4805 5538 6272 6272  $t_{DIP}$ ps

### Notes to Table 5–42:

- (1) This is the default setting in the Quartus II software.
- (2) These numbers are for commercial devices.
- (3) These numbers are for automotive devices.

| Table 5–43. Cyc | lone II I/O (     | Output Delay     | for Row Pins                   | s (Part 1 of    | 4)                   |                       |                       |                      |      |
|-----------------|-------------------|------------------|--------------------------------|-----------------|----------------------|-----------------------|-----------------------|----------------------|------|
|                 |                   |                  | Fast (                         | Corner          | c                    | -7                    | -7                    | 0                    |      |
| I/O Standard    | Drive<br>Strength | Parameter        | Industrial<br>/Auto-<br>motive | Commer-<br>cial | -6<br>Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | –8<br>Speed<br>Grade | Unit |
| LVTTL           | 4 mA              | t <sub>OP</sub>  | 1343                           | 1408            | 2539                 | 2694                  | 2885                  | 2891                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1467                           | 1540            | 2747                 | 2931                  | 3158                  | 3158                 | ps   |
|                 | 8 mA              | t <sub>OP</sub>  | 1198                           | 1256            | 2411                 | 2587                  | 2756                  | 2762                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1322                           | 1388            | 2619                 | 2824                  | 3029                  | 3029                 | ps   |
|                 | 12 mA             | t <sub>OP</sub>  | 1156                           | 1212            | 2282                 | 2452                  | 2614                  | 2620                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1280                           | 1344            | 2490                 | 2689                  | 2887                  | 2887                 | ps   |
|                 | 16 mA             | t <sub>OP</sub>  | 1124                           | 1178            | 2286                 | 2455                  | 2618                  | 2624                 | ps   |
|                 | t <sub>DIP</sub>  | 1248             | 1310                           | 2494            | 2692                 | 2891                  | 2891                  | ps                   |      |
|                 | 20 mA             | t <sub>OP</sub>  | 1112                           | 1165            | 2245                 | 2413                  | 2574                  | 2580                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1236                           | 1297            | 2453                 | 2650                  | 2847                  | 2847                 | ps   |
|                 | 24 mA             | t <sub>OP</sub>  | 1105                           | 1158            | 2253                 | 2422                  | 2583                  | 2589                 | ps   |
|                 | (1)               | t <sub>DIP</sub> | 1229                           | 1290            | 2461                 | 2659                  | 2856                  | 2856                 | ps   |
| LVCMOS          | 4 mA              | t <sub>OP</sub>  | 1200                           | 1258            | 2231                 | 2396                  | 2555                  | 2561                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1324                           | 1390            | 2439                 | 2633                  | 2828                  | 2828                 | ps   |
|                 | 8 mA              | t <sub>OP</sub>  | 1125                           | 1179            | 2260                 | 2429                  | 2591                  | 2597                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1249                           | 1311            | 2468                 | 2666                  | 2864                  | 2864                 | ps   |
|                 | 12 mA             | t <sub>OP</sub>  | 1106                           | 1159            | 2217                 | 2383                  | 2543                  | 2549                 | ps   |
|                 | (1)               | t <sub>DIP</sub> | 1230                           | 1291            | 2425                 | 2620                  | 2816                  | 2816                 | ps   |
| 2.5V            | 4 mA              | t <sub>OP</sub>  | 1126                           | 1180            | 2350                 | 2477                  | 2598                  | 2604                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1250                           | 1312            | 2558                 | 2714                  | 2871                  | 2871                 | ps   |
|                 | 8 mA              | t <sub>OP</sub>  | 1105                           | 1158            | 2177                 | 2296                  | 2409                  | 2415                 | ps   |
|                 | (1)               | t <sub>DIP</sub> | 1229                           | 1290            | 2385                 | 2533                  | 2682                  | 2682                 | ps   |

| Table 5-43. Cyc | lone II I/O (     | Output Delay     | for Row Pin                    | s (Part 2 of    | 4)                  |                       |                       |                      |      |
|-----------------|-------------------|------------------|--------------------------------|-----------------|---------------------|-----------------------|-----------------------|----------------------|------|
|                 |                   |                  | Fast                           | Corner          |                     | -7                    | -7                    | _                    |      |
| I/O Standard    | Drive<br>Strength | Parameter        | Industrial<br>/Auto-<br>motive | Commer-<br>cial | 6<br>Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | –8<br>Speed<br>Grade | Unit |
| 1.8V            | 2 mA              | t <sub>OP</sub>  | 1503                           | 1576            | 3657                | 3927                  | 4190                  | 4196                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1627                           | 1708            | 3865                | 4164                  | 4463                  | 4463                 | ps   |
|                 | 4 mA              | t <sub>OP</sub>  | 1400                           | 1468            | 3010                | 3226                  | 3434                  | 3440                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1524                           | 1600            | 3218                | 3463                  | 3707                  | 3707                 | ps   |
|                 | 6 mA              | t <sub>OP</sub>  | 1388                           | 1455            | 2857                | 3050                  | 3236                  | 3242                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1512                           | 1587            | 3065                | 3287                  | 3509                  | 3509                 | ps   |
|                 | 8 mA              | t <sub>OP</sub>  | 1347                           | 1412            | 2714                | 2897                  | 3072                  | 3078                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1471                           | 1544            | 2922                | 3134                  | 3345                  | 3345                 | ps   |
|                 | 10 mA             | t <sub>OP</sub>  | 1347                           | 1412            | 2714                | 2897                  | 3072                  | 3078                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1471                           | 1544            | 2922                | 3134                  | 3345                  | 3345                 | ps   |
|                 | 12 mA             | t <sub>OP</sub>  | 1332                           | 1396            | 2678                | 2856                  | 3028                  | 3034                 | ps   |
| (1)             | (1)               | t <sub>DIP</sub> | 1456                           | 1528            | 2886                | 3093                  | 3301                  | 3301                 | ps   |
| 1.5V            | 2 mA              | t <sub>OP</sub>  | 1853                           | 1943            | 4127                | 4492                  | 4849                  | 4855                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1977                           | 2075            | 4335                | 4729                  | 5122                  | 5122                 | ps   |
|                 | 4 mA              | t <sub>OP</sub>  | 1694                           | 1776            | 3452                | 3747                  | 4036                  | 4042                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1818                           | 1908            | 3660                | 3984                  | 4309                  | 4309                 | ps   |
|                 | 6 mA (1)          | t <sub>OP</sub>  | 1694                           | 1776            | 3452                | 3747                  | 4036                  | 4042                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1818                           | 1908            | 3660                | 3984                  | 4309                  | 4309                 | ps   |
| SSTL_2_         | 8 mA              | t <sub>OP</sub>  | 1090                           | 1142            | 2152                | 2268                  | 2376                  | 2382                 | ps   |
| CLASS_I         |                   | t <sub>DIP</sub> | 1214                           | 1274            | 2360                | 2505                  | 2649                  | 2649                 | ps   |
|                 | 12 mA             | t <sub>OP</sub>  | 1097                           | 1150            | 2131                | 2246                  | 2354                  | 2360                 | ps   |
|                 | (1)               | t <sub>DIP</sub> | 1221                           | 1282            | 2339                | 2483                  | 2627                  | 2627                 | ps   |
| SSTL_2_         | 16 mA             | t <sub>OP</sub>  | 1068                           | 1119            | 2067                | 2177                  | 2281                  | 2287                 | ps   |
| CLASS_II        | (1)               | t <sub>DIP</sub> | 1192                           | 1251            | 2275                | 2414                  | 2554                  | 2554                 | ps   |
| SSTL_18_        | 6 mA              | t <sub>OP</sub>  | 1371                           | 1437            | 2828                | 3018                  | 3200                  | 3206                 | ps   |
| CLASS_I         |                   | t <sub>DIP</sub> | 1495                           | 1569            | 3036                | 3255                  | 3473                  | 3473                 | ps   |
|                 | 8 mA              | t <sub>OP</sub>  | 1365                           | 1431            | 2832                | 3024                  | 3209                  | 3215                 | ps   |
|                 |                   | t <sub>DIP</sub> | 1489                           | 1563            | 3040                | 3261                  | 3482                  | 3482                 | ps   |
|                 | 10 mA             | t <sub>OP</sub>  | 1374                           | 1440            | 2806                | 2990                  | 3167                  | 3173                 | ps   |
|                 | (1)               | t <sub>DIP</sub> | 1498                           | 1572            | 3014                | 3227                  | 3440                  | 3440                 | ps   |

| Table 5–43. Cycl                  | one II I/O C      | Output Delay     | for Row Pins                   | s (Part 3 of    | 4)                   |                       |                       |                      |      |
|-----------------------------------|-------------------|------------------|--------------------------------|-----------------|----------------------|-----------------------|-----------------------|----------------------|------|
|                                   |                   |                  | Fast (                         | Corner          | _                    | -7                    | -7                    | _                    |      |
| I/O Standard                      | Drive<br>Strength | Parameter        | Industrial<br>/Auto-<br>motive | Commer-<br>cial | -6<br>Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | –8<br>Speed<br>Grade | Unit |
| 1.8V_HSTL_                        | 8 mA              | t <sub>OP</sub>  | 1364                           | 1430            | 2853                 | 3017                  | 3178                  | 3184                 | ps   |
| CLASS_I                           |                   | t <sub>DIP</sub> | 1488                           | 1562            | 3061                 | 3254                  | 3451                  | 3451                 | ps   |
|                                   | 10 mA             | t <sub>OP</sub>  | 1332                           | 1396            | 2842                 | 3011                  | 3173                  | 3179                 | ps   |
|                                   |                   | t <sub>DIP</sub> | 1456                           | 1528            | 3050                 | 3248                  | 3446                  | 3446                 | ps   |
|                                   | 12 mA             | t <sub>OP</sub>  | 1332                           | 1396            | 2842                 | 3011                  | 3173                  | 3179                 | ps   |
|                                   | (1)               | t <sub>DIP</sub> | 1456                           | 1528            | 3050                 | 3248                  | 3446                  | 3446                 | ps   |
| 1.5V_HSTL_                        | 8 mA              | t <sub>OP</sub>  | 1657                           | 1738            | 3642                 | 3917                  | 4185                  | 4191                 | ps   |
| CLASS_I                           | (1)               | t <sub>DIP</sub> | 1781                           | 1870            | 3850                 | 4154                  | 4458                  | 4458                 | ps   |
| DIFFERENTIAL_                     | 8 mA              | t <sub>OP</sub>  | 1090                           | 1142            | 2152                 | 2268                  | 2376                  | 2382                 | ps   |
| SSTL_2_<br>CLASS_I                |                   | t <sub>DIP</sub> | 1214                           | 1274            | 2360                 | 2505                  | 2649                  | 2649                 | ps   |
| _                                 | 12 mA             | t <sub>OP</sub>  | 1097                           | 1150            | 2131                 | 2246                  | 2354                  | 2360                 | ps   |
|                                   | (1)               | t <sub>DIP</sub> | 1221                           | 1282            | 2339                 | 2483                  | 2627                  | 2627                 | ps   |
| DIFFERENTIAL_                     | 16 mA             | t <sub>OP</sub>  | 1068                           | 1119            | 2067                 | 2177                  | 2281                  | 2287                 | ps   |
| SSTL_2_<br>CLASS_II               | (1)               | t <sub>DIP</sub> | 1192                           | 1251            | 2275                 | 2414                  | 2554                  | 2554                 | ps   |
| DIFFERENTIAL_                     | 6 mA              | t <sub>OP</sub>  | 1371                           | 1437            | 2828                 | 3018                  | 3200                  | 3206                 | ps   |
| SSTL_18_<br>CLASS I               |                   | t <sub>DIP</sub> | 1495                           | 1569            | 3036                 | 3255                  | 3473                  | 3473                 | ps   |
| 02.00                             | 8 mA              | t <sub>OP</sub>  | 1365                           | 1431            | 2832                 | 3024                  | 3209                  | 3215                 | ps   |
|                                   |                   | t <sub>DIP</sub> | 1489                           | 1563            | 3040                 | 3261                  | 3482                  | 3482                 | ps   |
|                                   | 10 mA             | t <sub>OP</sub>  | 1374                           | 1440            | 2806                 | 2990                  | 3167                  | 3173                 | ps   |
|                                   | (1)               | t <sub>DIP</sub> | 1498                           | 1572            | 3014                 | 3227                  | 3440                  | 3440                 | ps   |
| 1.8V_                             | 8 mA              | t <sub>OP</sub>  | 1364                           | 1430            | 2853                 | 3017                  | 3178                  | 3184                 | ps   |
| DIFFERENTIAL_<br>HSTL             |                   | t <sub>DIP</sub> | 1488                           | 1562            | 3061                 | 3254                  | 3451                  | 3451                 | ps   |
| CLASS_I                           | 10 mA             | t <sub>OP</sub>  | 1332                           | 1396            | 2842                 | 3011                  | 3173                  | 3179                 | ps   |
|                                   |                   | t <sub>DIP</sub> | 1456                           | 1528            | 3050                 | 3248                  | 3446                  | 3446                 | ps   |
|                                   | 12 mA             | t <sub>OP</sub>  | 1332                           | 1396            | 2842                 | 3011                  | 3173                  | 3179                 | ps   |
|                                   | (1)               | t <sub>DIP</sub> | 1456                           | 1528            | 3050                 | 3248                  | 3446                  | 3446                 | ps   |
| 1.5V_                             | 8 mA              | t <sub>OP</sub>  | 1657                           | 1738            | 3642                 | 3917                  | 4185                  | 4191                 | ps   |
| DIFFERENTIAL_<br>HSTL_<br>CLASS_I | (1)               | t <sub>DIP</sub> | 1781                           | 1870            | 3850                 | 4154                  | 4458                  | 4458                 | ps   |

| Table 5–43. Cyc | Table 5–43. Cyclone II I/O Output Delay for Row Pins (Part 4 of 4) |                  |                                |                 |                |                       |                       |                |      |  |  |  |
|-----------------|--------------------------------------------------------------------|------------------|--------------------------------|-----------------|----------------|-----------------------|-----------------------|----------------|------|--|--|--|
|                 |                                                                    |                  | Fast                           | Corner          | 6              | -7                    | -7                    | -8             |      |  |  |  |
| I/O Standard    | Drive<br>Strength                                                  | Parameter        | Industrial<br>/Auto-<br>motive | Commer-<br>cial | Speed<br>Grade | Speed<br>Grade<br>(2) | Speed<br>Grade<br>(3) | Speed<br>Grade | Unit |  |  |  |
| LVDS            | _                                                                  | t <sub>OP</sub>  | 1216                           | 1275            | 2089           | 2184                  | 2272                  | 2278           | ps   |  |  |  |
|                 |                                                                    | t <sub>DIP</sub> | 1340                           | 1407            | 2297           | 2421                  | 2545                  | 2545           | ps   |  |  |  |
| RSDS            | _                                                                  | t <sub>OP</sub>  | 1216                           | 1275            | 2089           | 2184                  | 2272                  | 2278           | ps   |  |  |  |
|                 |                                                                    | t <sub>DIP</sub> | 1340                           | 1407            | 2297           | 2421                  | 2545                  | 2545           | ps   |  |  |  |
| MINI_LVDS       | _                                                                  | t <sub>OP</sub>  | 1216                           | 1275            | 2089           | 2184                  | 2272                  | 2278           | ps   |  |  |  |
|                 |                                                                    | t <sub>DIP</sub> | 1340                           | 1407            | 2297           | 2421                  | 2545                  | 2545           | ps   |  |  |  |
| PCI             | _                                                                  | t <sub>OP</sub>  | 989                            | 1036            | 2070           | 2214                  | 2352                  | 2358           | ps   |  |  |  |
|                 |                                                                    | t <sub>DIP</sub> | 1113                           | 1168            | 2278           | 2451                  | 2625                  | 2625           | ps   |  |  |  |
| PCI-X           | _                                                                  | t <sub>OP</sub>  | 989                            | 1036            | 2070           | 2214                  | 2352                  | 2358           | ps   |  |  |  |
|                 |                                                                    | t <sub>DIP</sub> | 1113                           | 1168            | 2278           | 2451                  | 2625                  | 2625           | ps   |  |  |  |

Notes to Table 5-43:

- (1) This is the default setting in the Quartus II software.
- (2) These numbers are for commercial devices.
- (3) These numbers are for automotive devices.

## **Maximum Input and Output Clock Rate**

Maximum clock toggle rate is defined as the maximum frequency achievable for a clock type signal at an I/O pin. The I/O pin can be a regular I/O pin or a dedicated clock I/O pin.

The maximum clock toggle rate is different from the maximum data bit rate. If the maximum clock toggle rate on a regular I/O pin is 300 MHz, the maximum data bit rate for dual data rate (DDR) could be potentially as high as 600 Mbps on the same I/O pin.

Table 5–44 specifies the maximum input clock toggle rates. Table 5–45 specifies the maximum output clock toggle rates at default load. Table 5–46 specifies the derating factors for the output clock toggle rate for non-default load.

To calculate the output toggle rate for a non-default load, use this formula:

The toggle rate for a non-default load

= 1000 / (1000/toggle rate at default load + derating factor \* load value in pF/1000)

For example, the output toggle rate at 0 pF (default) load for SSTL-18 Class II 18mA I/O standard is 270 MHz on a -6 device column I/O pin. The derating factor is 29 ps/pF. For a 10pF load, the toggle rate is calculated as:

 $1000 / (1000/270 + 29 \times 10/1000) = 250 (MHz)$ 

Tables 5–44 through 5–46 show the I/O toggle rates for Cyclone II devices.

| Table 5–44. Maximum Input Clock Toggle Rate on Cyclone II Devices (Part 1 of 2) |                      |                      |                      |                      |                      |                      |                           |                      |                      |  |  |  |
|---------------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------|----------------------|----------------------|--|--|--|
|                                                                                 | Max                  | ximum l              | nput Clo             | ck Toggl             | le Rate (            | on Cyclo             | ne II De                  | vices (N             | IHz)                 |  |  |  |
| I/O Standard                                                                    | Colu                 | ımn I/O              | Pins                 | Ro                   | w I/O Pi             | ns                   | Dedicated Clock<br>Inputs |                      |                      |  |  |  |
| ·                                                                               | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade      | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade |  |  |  |
| LVTTL                                                                           | 450                  | 405                  | 360                  | 450                  | 405                  | 360                  | 420                       | 380                  | 340                  |  |  |  |
| 2.5V                                                                            | 450                  | 405                  | 360                  | 450                  | 405                  | 360                  | 450                       | 405                  | 360                  |  |  |  |
| 1.8V                                                                            | 450                  | 405                  | 360                  | 450                  | 405                  | 360                  | 450                       | 405                  | 360                  |  |  |  |
| 1.5V                                                                            | 300                  | 270                  | 240                  | 300                  | 270                  | 240                  | 300                       | 270                  | 240                  |  |  |  |
| LVCMOS                                                                          | 450                  | 405                  | 360                  | 450                  | 405                  | 360                  | 420                       | 380                  | 340                  |  |  |  |
| SSTL_2_CLASS_I                                                                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| SSTL_2_CLASS_II                                                                 | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| SSTL_18_CLASS_I                                                                 | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| SSTL_18_CLASS_II                                                                | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| 1.5V_HSTL_CLASS_I                                                               | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| 1.5V_HSTL_CLASS_II                                                              | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| 1.8V_HSTL_CLASS_I                                                               | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| 1.8V_HSTL_CLASS_II                                                              | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| PCI                                                                             | _                    | _                    | _                    | 350                  | 315                  | 280                  | 350                       | 315                  | 280                  |  |  |  |
| PCI-X                                                                           | _                    | _                    | _                    | 350                  | 315                  | 280                  | 350                       | 315                  | 280                  |  |  |  |
| DIFFERENTIAL_SSTL_2_<br>CLASS_I                                                 | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |
| DIFFERENTIAL_SSTL_2_<br>CLASS_II                                                | 500                  | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |  |

| Table 5–44. Maximum Input Clock Toggle Rate on Cyclone II Devices (Part 2 of 2) |                                                             |                      |                      |                      |                      |                      |                           |                      |                      |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------|----------------------|----------------------|--|--|
|                                                                                 | Maximum Input Clock Toggle Rate on Cyclone II Devices (MHz) |                      |                      |                      |                      |                      |                           |                      |                      |  |  |
| I/O Standard                                                                    | Column I/O Pins                                             |                      |                      | Row I/O Pins         |                      |                      | Dedicated Clock<br>Inputs |                      |                      |  |  |
| , o otamana                                                                     | -6<br>Speed<br>Grade                                        | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade      | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade |  |  |
| DIFFERENTIAL_SSTL_18_<br>CLASS_I                                                | 500                                                         | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |
| DIFFERENTIAL_SSTL_18_<br>CLASS_II                                               | 500                                                         | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |
| 1.8V_DIFFERENTIAL_HSTL_<br>CLASS_I                                              | 500                                                         | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |
| 1.8V_DIFFERENTIAL_HSTL_<br>CLASS_II                                             | 500                                                         | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |
| 1.5V_DIFFERENTIAL_HSTL_<br>CLASS_I                                              | 500                                                         | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |
| 1.5V_DIFFERENTIAL_HSTL_<br>CLASS_II                                             | 500                                                         | 500                  | 500                  | 500                  | 500                  | 500                  | 500                       | 500                  | 500                  |  |  |
| LVPECL                                                                          | _                                                           | _                    | _                    | _                    | _                    | _                    | 402                       | 402                  | 402                  |  |  |
| LVDS                                                                            | 402                                                         | 402                  | 402                  | 402                  | 402                  | 402                  | 402                       | 402                  | 402                  |  |  |
| 1.2V_HSTL                                                                       | 110                                                         | 90                   | 80                   | _                    | _                    | _                    | 110                       | 90                   | 80                   |  |  |
| 1.2V_DIFFERENTIAL_HSTL                                                          | 110                                                         | 90                   | 80                   | _                    | _                    | _                    | 110                       | 90                   | 80                   |  |  |

| Table 5–45. Maximum Output Clock Toggle Rate on Cyclone II Devices (Part 1 of 4) |          |                                                              |                      |                      |                      |                      |                      |                            |                      |                      |  |  |  |
|----------------------------------------------------------------------------------|----------|--------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------|----------------------|--|--|--|
|                                                                                  |          | Maximum Output Clock Toggle Rate on Cyclone II Devices (MHz) |                      |                      |                      |                      |                      |                            |                      |                      |  |  |  |
| I/O Standard                                                                     | Drive    | Colum                                                        | ın I/O Pi            | ns (1)               | Row                  | / I/O Pins           | s (1)                | Dedicated Clock<br>Outputs |                      |                      |  |  |  |
| ·                                                                                | Strength | -6<br>Speed<br>Grade                                         | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade       | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade |  |  |  |
| LVTTL                                                                            | 4 mA     | 120                                                          | 100                  | 80                   | 120                  | 100                  | 80                   | 120                        | 100                  | 80                   |  |  |  |
|                                                                                  | 8 mA     | 200                                                          | 170                  | 140                  | 200                  | 170                  | 140                  | 200                        | 170                  | 140                  |  |  |  |
|                                                                                  | 12 mA    | 280                                                          | 230                  | 190                  | 280                  | 230                  | 190                  | 280                        | 230                  | 190                  |  |  |  |
|                                                                                  | 16 mA    | 290                                                          | 240                  | 200                  | 290                  | 240                  | 200                  | 290                        | 240                  | 200                  |  |  |  |
|                                                                                  | 20 mA    | 330 280 230 330 280 230 330 280 2                            |                      |                      |                      |                      |                      |                            |                      | 230                  |  |  |  |
|                                                                                  | 24 mA    | 360                                                          | 300                  | 250                  | 360                  | 300                  | 250                  | 360                        | 300                  | 250                  |  |  |  |

|                 |          | Max                  | imum 0               | utput Cl             | ock Togg             | jle Rate             | on Cycle             | one II De            | evices (l            | MHz)                 |
|-----------------|----------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| I/O Standard    | Drive    | Colun                | nn I/O Pi            | ns (1)               | Row                  | / I/O Pin            | s (1)                | Ded                  | icated C<br>Outputs  |                      |
|                 | Strength | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | –6<br>Speed<br>Grade | –7<br>Speed<br>Grade | –8<br>Speed<br>Grade | –6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade |
| LVCMOS          | 4 mA     | 250                  | 210                  | 170                  | 250                  | 210                  | 170                  | 250                  | 210                  | 170                  |
|                 | 8 mA     | 280                  | 230                  | 190                  | 280                  | 230                  | 190                  | 280                  | 230                  | 190                  |
|                 | 12 mA    | 310                  | 260                  | 210                  | 310                  | 260                  | 210                  | 310                  | 260                  | 210                  |
|                 | 16 mA    | 320                  | 270                  | 220                  | _                    | _                    | _                    | _                    | _                    | _                    |
|                 | 20 mA    | 350                  | 290                  | 240                  | _                    | _                    | _                    | _                    | _                    | _                    |
|                 | 24 mA    | 370                  | 310                  | 250                  | _                    | _                    | _                    | _                    | _                    | _                    |
| 2.5V            | 4 mA     | 180                  | 150                  | 120                  | 180                  | 150                  | 120                  | 180                  | 150                  | 120                  |
|                 | 8 mA     | 280                  | 230                  | 190                  | 280                  | 230                  | 190                  | 280                  | 230                  | 190                  |
|                 | 12 mA    | 440                  | 370                  | 300                  | _                    | _                    | _                    | _                    | _                    | _                    |
|                 | 16 mA    | 450                  | 405                  | 350                  | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.8V            | 2 mA     | 120                  | 100                  | 80                   | 120                  | 100                  | 80                   | 120                  | 100                  | 80                   |
|                 | 4 mA     | 180                  | 150                  | 120                  | 180                  | 150                  | 120                  | 180                  | 150                  | 120                  |
|                 | 6 mA     | 220                  | 180                  | 150                  | 220                  | 180                  | 150                  | 220                  | 180                  | 150                  |
|                 | 8 mA     | 240                  | 200                  | 160                  | 240                  | 200                  | 160                  | 240                  | 200                  | 160                  |
|                 | 10 mA    | 300                  | 250                  | 210                  | 300                  | 250                  | 210                  | 300                  | 250                  | 210                  |
|                 | 12 mA    | 350                  | 290                  | 240                  | 350                  | 290                  | 240                  | 350                  | 290                  | 240                  |
| 1.5V            | 2 mA     | 80                   | 60                   | 50                   | 80                   | 60                   | 50                   | 80                   | 60                   | 50                   |
|                 | 4 mA     | 130                  | 110                  | 90                   | 130                  | 110                  | 90                   | 130                  | 110                  | 90                   |
|                 | 6 mA     | 180                  | 150                  | 120                  | 180                  | 150                  | 120                  | 180                  | 150                  | 120                  |
|                 | 8 mA     | 230                  | 190                  | 160                  | _                    | _                    | _                    | _                    | _                    | _                    |
| SSTL_2_CLASS_I  | 8 mA     | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  |
|                 | 12 mA    | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  |
| SSTL_2_CLASS_II | 16 mA    | 350                  | 290                  | 240                  | 350                  | 290                  | 240                  | 350                  | 290                  | 240                  |
|                 | 20 mA    | 400                  | 340                  | 280                  | _                    | _                    | _                    | _                    | _                    | _                    |
|                 | 24 mA    | 400                  | 340                  | 280                  | _                    | _                    | _                    | _                    | _                    | _                    |
| SSTL_18_        | 6 mA     | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  |
| CLASS_I         | 8 mA     | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  |
|                 | 10 mA    | 270                  | 220                  | 180                  | 270                  | 220                  | 180                  | 270                  | 220                  | 180                  |
|                 | 12 mA    | 280                  | 230                  | 190                  | _                    | _                    | _                    | _                    | _                    | _                    |

| Table 5–45. Maximum | Output Gloci |                      |                      | -                    |                      | •                    |                      |                      | nuince (                         | M11=/                |
|---------------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------|----------------------|
| I/O Standard        | Drive        |                      | nn I/O Pi            | <u> </u>             |                      | I/O Pin:             |                      | l                    | evices (I<br>icated C<br>Outputs | lock                 |
| ,                   | Strength     | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade             | –8<br>Speed<br>Grade |
| SSTL_18_ CLASS_II   | 16 mA        | 260                  | 220                  | 180                  | _                    | _                    | _                    | _                    | _                                | _                    |
|                     | 18 mA        | 270                  | 220                  | 180                  | _                    | _                    | _                    | _                    | _                                | _                    |
| 1.8V_HSTL_ CLASS_I  | 8 mA         | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  | 260                  | 220                              | 180                  |
|                     | 10 mA        | 300                  | 250                  | 210                  | 300                  | 250                  | 210                  | 300                  | 250                              | 210                  |
|                     | 12 mA        | 320                  | 270                  | 220                  | 320                  | 270                  | 220                  | 320                  | 270                              | 220                  |
| 1.8V_HSTL_ CLASS_II | 16 mA        | 230                  | 190                  | 160                  | _                    | _                    | _                    | _                    | _                                | _                    |
|                     | 18 mA        | 240                  | 200                  | 160                  | _                    | _                    | _                    | _                    | _                                | _                    |
|                     | 20 mA        | 250                  | 210                  | 170                  | _                    | _                    | _                    | _                    | _                                | _                    |
| 1.5V_HSTL_ CLASS_I  | 8 mA         | 210                  | 170                  | 140                  | 210                  | 170                  | 140                  | 210                  | 170                              | 140                  |
|                     | 10 mA        | 220                  | 180                  | 150                  | _                    | _                    | _                    | _                    | _                                | _                    |
|                     | 12 mA        | 230                  | 190                  | 160                  | _                    | _                    | _                    | _                    | _                                | _                    |
| 1.5V_HSTL_ CLASS_II | 16 mA        | 210                  | 170                  | 140                  | _                    | _                    | _                    | _                    | _                                | _                    |
| DIFFERENTIAL_       | 8 mA         | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  | 400                  | 340                              | 280                  |
| SSTL_2_CLASS_I      | 12 mA        | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  | 400                  | 340                              | 280                  |
| DIFFERENTIAL_       | 16 mA        | 350                  | 290                  | 240                  | 350                  | 290                  | 240                  | 350                  | 290                              | 240                  |
| SSTL_2_CLASS_II     | 20 mA        | 400                  | 340                  | 280                  | _                    | _                    | _                    | _                    | _                                | _                    |
|                     | 24 mA        | 400                  | 340                  | 280                  | _                    | _                    | _                    | _                    | _                                | _                    |
| DIFFERENTIAL_       | 6 mA         | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  | 260                  | 220                              | 180                  |
| SSTL_18_CLASS_I     | 8 mA         | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  | 260                  | 220                              | 180                  |
|                     | 10 mA        | 270                  | 220                  | 180                  | 270                  | 220                  | 180                  | 270                  | 220                              | 180                  |
|                     | 12 mA        | 280                  | 230                  | 190                  | _                    | _                    | _                    | _                    | _                                | _                    |
| DIFFERENTIAL_SSTL   | 16 mA        | 260                  | 220                  | 180                  | _                    | _                    | _                    | _                    | _                                | _                    |
| _18_CLASS_II        | 18 mA        | 270                  | 220                  | 180                  | _                    | _                    | _                    | _                    | _                                | _                    |
| 1.8V_               | 8 mA         | 260                  | 220                  | 180                  | 260                  | 220                  | 180                  | 260                  | 220                              | 180                  |
| DIFFERENTIAL_HSTL   | 10 mA        | 300                  | 250                  | 210                  | 300                  | 250                  | 210                  | 300                  | 250                              | 210                  |
| _CLASS_I            | 12 mA        | 320                  | 270                  | 220                  | 320                  | 270                  | 220                  | 320                  | 270                              | 220                  |
| 1.8V_               | 16 mA        | 230                  | 190                  | 160                  | _                    | _                    | _                    | _                    | _                                | _                    |
| DIFFERENTIAL_HSTL   | 18 mA        | 240                  | 200                  | 160                  | _                    | _                    | _                    | _                    | _                                | _                    |
| _CLASS_II           | 20 mA        | 250                  | 210                  | 170                  | _                    | _                    | _                    | _                    | _                                | _                    |

|                                         |                 | Max                  | imum 0               | utput Cl             | ock Togg             | le Rate              | on Cycle             | one II De            | evices (I            | MHz)                 |
|-----------------------------------------|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| I/O Standard                            | Drive           | Colun                | nn I/O Pi            | ns (1)               | Row                  | I/O Pin              | s (1)                |                      | icated C<br>Outputs  |                      |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Strength        | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade |
| 1.5V_                                   | 8 mA            | 210                  | 170                  | 140                  | 210                  | 170                  | 140                  | 210                  | 170                  | 140                  |
| DIFFERENTIAL_HSTL<br>_CLASS_I           | 10 mA           | 220                  | 180                  | 150                  | _                    | _                    | _                    | _                    | _                    | _                    |
| _0LA00_1                                | 12 mA           | 230                  | 190                  | 160                  | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.5V_<br>DIFFERENTIAL_HSTL<br>_CLASS_II | 16 mA           | 210                  | 170                  | 140                  | _                    |                      |                      |                      | _                    | _                    |
| LVDS                                    | _               | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  |
| RSDS                                    | _               | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  |
| MINI_LVDS                               | _               | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  | 400                  | 340                  | 280                  |
| SIMPLE_RSDS                             | _               | 380                  | 320                  | 260                  | 380                  | 320                  | 260                  | 380                  | 320                  | 260                  |
| 1.2V_HSTL                               | _               | 80                   | 80                   | 80                   | _                    |                      |                      | -                    | _                    | _                    |
| 1.2V_<br>DIFFERENTIAL_HSTL              | _               | 80                   | 80                   | 80                   | _                    | _                    | _                    | _                    | _                    | _                    |
| PCI                                     | _               | _                    |                      | _                    | 350                  | 315                  | 280                  | 350                  | 315                  | 280                  |
| PCI-X                                   | _               | _                    |                      | _                    | 350                  | 315                  | 280                  | 350                  | 315                  | 280                  |
| LVTTL                                   | OCT_25_<br>OHMS | 360                  | 300                  | 250                  | 360                  | 300                  | 250                  | 360                  | 300                  | 250                  |
| LVCMOS                                  | OCT_25_<br>OHMS | 360                  | 300                  | 250                  | 360                  | 300                  | 250                  | 360                  | 300                  | 250                  |
| 2.5V                                    | OCT_50_<br>OHMS | 240                  | 200                  | 160                  | 240                  | 200                  | 160                  | 240                  | 200                  | 160                  |
| 1.8V                                    | OCT_50_<br>OHMS | 290                  | 240                  | 200                  | 290                  | 240                  | 200                  | 290                  | 240                  | 200                  |
| SSTL_2_CLASS_I                          | OCT_50_<br>OHMS | 240                  | 200                  | 160                  | 240                  | 200                  | 160                  | _                    | _                    | _                    |
| SSTL_18_CLASS_I                         | OCT_50_<br>OHMS | 290                  | 240                  | 200                  | 290                  | 240                  | 200                  | _                    | _                    | _                    |

Note to Table 5–45:

<sup>(1)</sup> This is based on single data rate I/Os.

| Table 5–46. Maximum | Output Clock | Toggle               | Rate De              | rating F             | actors (             | Part 1 o             | f 4)                 |                      |                      |                      |
|---------------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                     |              | Ma                   | aximum               | Output (             | Clock To             | ggle Rai             | te Derat             | ing Fact             | ors (ps/p            | F)                   |
| I/O Standard        | Drive        | Colu                 | ımn I/O              | Pins                 | Ro                   | ow I/O Pi            | ins                  | Ded                  | icated C<br>Outputs  |                      |
|                     | Strength     | –6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | –6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade |
| LVTTL               | 4 mA         | 438                  | 439                  | 439                  | 338                  | 362                  | 387                  | 338                  | 362                  | 387                  |
|                     | 8 mA         | 306                  | 321                  | 336                  | 267                  | 283                  | 299                  | 267                  | 283                  | 299                  |
|                     | 12 mA        | 139                  | 179                  | 220                  | 193                  | 198                  | 202                  | 193                  | 198                  | 202                  |
|                     | 16 mA        | 145                  | 158                  | 172                  | 139                  | 147                  | 156                  | 139                  | 147                  | 156                  |
|                     | 20 mA        | 65                   | 77                   | 90                   | 74                   | 79                   | 84                   | 74                   | 79                   | 84                   |
|                     | 24 mA        | 19                   | 20                   | 21                   | 14                   | 18                   | 22                   | 14                   | 18                   | 22                   |
| LVCMOS              | 4 mA         | 298                  | 305                  | 313                  | 197                  | 205                  | 214                  | 197                  | 205                  | 214                  |
|                     | 8 mA         | 190                  | 205                  | 219                  | 112                  | 118                  | 125                  | 112                  | 118                  | 125                  |
|                     | 12 mA        | 43                   | 72                   | 101                  | 27                   | 31                   | 35                   | 27                   | 31                   | 35                   |
|                     | 16 mA        | 87                   | 99                   | 110                  | _                    | _                    | _                    | _                    | _                    | _                    |
|                     | 20 mA        | 36                   | 46                   | 56                   | _                    | _                    | _                    | _                    | _                    | _                    |
|                     | 24 mA        | 24                   | 25                   | 27                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 2.5V                | 4 mA         | 228                  | 233                  | 237                  | 270                  | 306                  | 343                  | 270                  | 306                  | 343                  |
|                     | 8 mA         | 173                  | 177                  | 180                  | 191                  | 199                  | 208                  | 191                  | 199                  | 208                  |
|                     | 12 mA        | 119                  | 121                  | 123                  | _                    | _                    | _                    | _                    | _                    | _                    |
|                     | 16 mA        | 64                   | 65                   | 66                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.8V                | 2 mA         | 452                  | 457                  | 461                  | 332                  | 367                  | 403                  | 332                  | 367                  | 403                  |
|                     | 4 mA         | 321                  | 347                  | 373                  | 244                  | 291                  | 337                  | 244                  | 291                  | 337                  |
|                     | 6 mA         | 227                  | 255                  | 283                  | 178                  | 222                  | 266                  | 178                  | 222                  | 266                  |
|                     | 8 mA         | 37                   | 118                  | 199                  | 58                   | 133                  | 207                  | 58                   | 133                  | 207                  |
|                     | 10 mA        | 41                   | 72                   | 103                  | 46                   | 85                   | 123                  | 46                   | 85                   | 123                  |
|                     | 12 mA        | 7                    | 8                    | 10                   | 13                   | 28                   | 44                   | 13                   | 28                   | 44                   |
| 1.5V                | 2 mA         | 738                  | 764                  | 789                  | 540                  | 604                  | 669                  | 540                  | 604                  | 669                  |
|                     | 4 mA         | 499                  | 518                  | 536                  | 300                  | 354                  | 408                  | 300                  | 354                  | 408                  |
|                     | 6 mA         | 261                  | 271                  | 282                  | 60                   | 103                  | 146                  | 60                   | 103                  | 146                  |
|                     | 8 mA         | 22                   | 25                   | 29                   | _                    | _                    | _                    | _                    | _                    | _                    |
| SSTL_2_CLASS_I      | 8 mA         | 46                   | 47                   | 49                   | 25                   | 40                   | 56                   | 25                   | 40                   | 56                   |
|                     | 12 mA        | 67                   | 69                   | 70                   | 23                   | 42                   | 60                   | 23                   | 42                   | 60                   |

| Table 5–46. Maximum O | utput Clock | Toggle               | Rate De              | rating F             | actors (             | Part 2 o             | f 4)                 |                      |                      |                      |
|-----------------------|-------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                       |             | Ma                   | aximum               | Output (             | Clock To             | ggle Rat             | e Derat              | ing Fact             | ors (ps/p            | ıF)                  |
| I/O Standard          | Drive       | Colu                 | ımn I/O              | Pins                 | Ro                   | ow I/O Pi            | ns                   | Ded                  | icated C<br>Outputs  |                      |
|                       | Strength    | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade |
| SSTL_2_CLASS_II       | 16 mA       | 42                   | 43                   | 45                   | 15                   | 29                   | 42                   | 15                   | 29                   | 42                   |
|                       | 20 mA       | 41                   | 42                   | 44                   | _                    | _                    | _                    | _                    | _                    | _                    |
|                       | 24 mA       | 40                   | 42                   | 43                   | _                    | _                    | _                    | _                    | _                    | _                    |
| SSTL_18_              | 6 mA        | 20                   | 22                   | 24                   | 46                   | 47                   | 49                   | 46                   | 47                   | 49                   |
| CLASS_I               | 8 mA        | 20                   | 22                   | 24                   | 47                   | 49                   | 51                   | 47                   | 49                   | 51                   |
|                       | 10 mA       | 20                   | 22                   | 25                   | 23                   | 25                   | 27                   | 23                   | 25                   | 27                   |
|                       | 12 mA       | 19                   | 23                   | 26                   | _                    | _                    | _                    | _                    | _                    |                      |
| SSTL_18_ CLASS_II     | 16 mA       | 30                   | 33                   | 36                   | _                    | _                    | _                    | _                    | _                    | _                    |
|                       | 18 mA       | 29                   | 29                   | 29                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.8V_HSTL_ CLASS_I    | 8 mA        | 26                   | 28                   | 29                   | 59                   | 61                   | 63                   | 59                   | 61                   | 63                   |
|                       | 10 mA       | 46                   | 47                   | 48                   | 65                   | 66                   | 68                   | 65                   | 66                   | 68                   |
|                       | 12 mA       | 67                   | 67                   | 67                   | 71                   | 71                   | 72                   | 71                   | 71                   | 72                   |
| 1.8V_HSTL_ CLASS_II   | 16 mA       | 62                   | 65                   | 68                   | _                    | _                    | _                    | _                    | _                    | _                    |
|                       | 18 mA       | 59                   | 62                   | 65                   | _                    | _                    | _                    | _                    | _                    | _                    |
|                       | 20 mA       | 57                   | 59                   | 62                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.5V_HSTL_ CLASS_I    | 8 mA        | 40                   | 40                   | 41                   | 28                   | 32                   | 36                   | 28                   | 32                   | 36                   |
|                       | 10 mA       | 41                   | 42                   | 42                   | _                    | _                    | _                    | _                    | _                    | _                    |
|                       | 12 mA       | 43                   | 43                   | 43                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.5V_HSTL_ CLASS_II   | 16 mA       | 18                   | 20                   | 21                   | _                    | _                    | _                    | _                    | _                    | _                    |
| DIFFERENTIAL_SSTL_2   | 8 mA        | 46                   | 47                   | 49                   | 25                   | 40                   | 56                   | 25                   | 40                   | 56                   |
| _CLASS_I              | 12 mA       | 67                   | 69                   | 70                   | 23                   | 42                   | 60                   | 23                   | 42                   | 60                   |
| DIFFERENTIAL_SSTL_2   | 16 mA       | 42                   | 43                   | 45                   | 15                   | 29                   | 42                   | 15                   | 29                   | 42                   |
| _CLASS_II             | 20 mA       | 41                   | 42                   | 44                   |                      |                      | _                    |                      |                      |                      |
|                       | 24 mA       | 40                   | 42                   | 43                   | _                    |                      | _                    |                      |                      | _                    |
| DIFFERENTIAL_SSTL_    | 6 mA        | 20                   | 22                   | 24                   | 46                   | 47                   | 49                   | 46                   | 47                   | 49                   |
| 18_CLASS_I            | 8 mA        | 20                   | 22                   | 24                   | 47                   | 49                   | 51                   | 47                   | 49                   | 51                   |
|                       | 10 mA       | 20                   | 22                   | 25                   | 23                   | 25                   | 27                   | 23                   | 25                   | 27                   |
|                       | 12 mA       | 19                   | 23                   | 26                   | _                    | _                    | _                    | _                    | _                    | _                    |

| Table 5–46. Maximum 0                   | utput Clock     | Toggle               | Rate De              | rating F             | actors (             | Part 3 o             | f 4)                 |                      |                      |                      |
|-----------------------------------------|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                         |                 | Ma                   | aximum               | Output (             | Clock To             | ggle Rai             | te Derat             | ing Fact             | ors (ps/p            | oF)                  |
| I/O Standard                            | Drive           | Colu                 | umn I/O              | Pins                 | Ro                   | ow I/O Pi            | ins                  | Ded                  | icated C<br>Outputs  |                      |
|                                         | Strength        | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | -8<br>Speed<br>Grade |
| DIFFERENTIAL_SSTL_                      | 16 mA           | 30                   | 33                   | 36                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 18_CLASS_II                             | 18 mA           | 29                   | 29                   | 29                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.8V_                                   | 8 mA            | 26                   | 28                   | 29                   | 59                   | 61                   | 63                   | 59                   | 61                   | 63                   |
| DIFFERENTIAL_HSTL_                      | 10 mA           | 46                   | 47                   | 48                   | 65                   | 66                   | 68                   | 65                   | 66                   | 68                   |
| CLASS_I                                 | 12 mA           | 67                   | 67                   | 67                   | 71                   | 71                   | 72                   | 71                   | 71                   | 72                   |
| 1.8V_                                   | 16 mA           | 62                   | 65                   | 68                   |                      | _                    | _                    | _                    |                      | _                    |
| DIFFERENTIAL_HSTL_<br>CLASS_II          | 18 mA           | 59                   | 62                   | 65                   | _                    | _                    | _                    | _                    | _                    | _                    |
| CLASS_II                                | 20 mA           | 57                   | 59                   | 62                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.5V_                                   | 8 mA            | 40                   | 40                   | 41                   | 28                   | 32                   | 36                   | 28                   | 32                   | 36                   |
| DIFFERENTIAL_HSTL_<br>CLASS_I           | 10 mA           | 41                   | 42                   | 42                   | _                    | _                    | _                    | _                    | _                    | _                    |
| CLASS_I                                 | 12 mA           | 43                   | 43                   | 43                   | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.5V_<br>DIFFERENTIAL_HSTL_<br>CLASS_II | 16 mA           | 18                   | 20                   | 21                   | _                    | _                    | _                    | _                    | _                    | _                    |
| LVDS                                    | _               | 11                   | 13                   | 16                   | 11                   | 13                   | 15                   | 11                   | 13                   | 15                   |
| RSDS                                    | _               | 11                   | 13                   | 16                   | 11                   | 13                   | 15                   | 11                   | 13                   | 15                   |
| MINI_LVDS                               | _               | 11                   | 13                   | 16                   | 11                   | 13                   | 15                   | 11                   | 13                   | 15                   |
| SIMPLE_RSDS                             | _               | 15                   | 19                   | 23                   | 15                   | 19                   | 23                   | 15                   | 19                   | 23                   |
| 1.2V_HSTL                               | _               | 130                  | 132                  | 133                  | _                    | _                    | _                    | _                    | _                    | _                    |
| 1.2V_<br>DIFFERENTIAL_HSTL              | _               | 130                  | 132                  | 133                  | _                    | _                    | _                    | _                    | _                    | _                    |
| PCI                                     | _               | _                    | _                    | _                    | 99                   | 120                  | 142                  | 99                   | 120                  | 142                  |
| PCI-X                                   |                 | _                    | _                    | _                    | 99                   | 121                  | 143                  | 99                   | 121                  | 143                  |
| LVTTL                                   | OCT_25<br>_OHMS | 13                   | 14                   | 14                   | 21                   | 27                   | 33                   | 21                   | 27                   | 33                   |
| LVCMOS                                  | OCT_25<br>_OHMS | 13                   | 14                   | 14                   | 21                   | 27                   | 33                   | 21                   | 27                   | 33                   |
| 2.5V                                    | OCT_50<br>_OHMS | 346                  | 369                  | 392                  | 324                  | 326                  | 327                  | 324                  | 326                  | 327                  |
| 1.8V                                    | OCT_50<br>_OHMS | 198                  | 203                  | 209                  | 202                  | 203                  | 204                  | 202                  | 203                  | 204                  |

|                 |                 | Ma                           | aximum               | Output (             | Clock To             | ggle Rat             | e Derati             | ing Facto                  | ors (ps/p            | ıF)                  |  |
|-----------------|-----------------|------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------|----------------------|--|
| I/O Standard    | Drive           | Column I/O Pins Row I/O Pins |                      |                      |                      |                      | ns                   | Dedicated Clock<br>Outputs |                      |                      |  |
| <b>3.</b> C     | Strength        | -6<br>Speed<br>Grade         | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade | -6<br>Speed<br>Grade       | -7<br>Speed<br>Grade | –8<br>Speed<br>Grade |  |
| SSTL_2_CLASS_I  | OCT_50<br>_OHMS | 67                           | 69                   | 70                   | 25                   | 42                   | 60                   | 25                         | 42                   | 60                   |  |
| SSTL_18_CLASS_I | OCT_50<br>OHMS  | 30                           | 33                   | 36                   | 47                   | 49                   | 51                   | 47                         | 49                   | 51                   |  |

## **High Speed I/O Timing Specifications**

The timing analysis for LVDS, mini-LVDS, and RSDS is different compared to other I/O standards because the data communication is source-synchronous.

You should also consider board skew, cable skew, and clock jitter in your calculation. This section provides details on the timing parameters for high-speed I/O standards in Cyclone II devices.

Table 5–47 defines the parameters of the timing diagram shown in Figure 5–3.

| Table 5–47. High-Speed   | I/O Timing          | Definitions (Part 1 of 2)                                                                                                                                                                              |
|--------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                | Symbol              | Description                                                                                                                                                                                            |
| High-speed clock         | f <sub>HSCKLK</sub> | High-speed receiver and transmitter input and output clock frequency.                                                                                                                                  |
| Duty cycle               | t <sub>DUTY</sub>   | Duty cycle on high-speed transmitter output clock.                                                                                                                                                     |
| High-speed I/O data rate | HSIODR              | High-speed receiver and transmitter input and output data rate.                                                                                                                                        |
| Time unit interval       | TUI                 | TUI = 1/HSIODR.                                                                                                                                                                                        |
| Channel-to-channel skew  | TCCS                | The timing difference between the fastest and slowest output edges, including $t_{CO}$ variation and clock skew. The clock is included in the TCCS measurement.<br>TCCS = TUI – SW – $(2 \times RSKM)$ |

| Table 5–47. High-Speed       | /O Timing         | Definitions (Part 2 of 2)                                                                                                                                                                                                                                                                   |
|------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                    | Symbol            | Description                                                                                                                                                                                                                                                                                 |
| Sampling window              | SW                | The period of time during which the data must be valid in order for you to capture it correctly. Sampling window is the sum of the setup time, hold time, and jitter. The window of $t_{SU} + t_{H}$ is expected to be centered in the sampling window. $SW = TUI - TCCS - (2 \times RSKM)$ |
| Receiver input skew margin   | RSKM              | RSKM is defined by the total margin left after accounting for the sampling window and TCCS.  RSKM = (TUI – SW – TCCS) / 2                                                                                                                                                                   |
| Input jitter (peak to peak)  | _                 | Peak-to-peak input jitter on high-speed PLLs.                                                                                                                                                                                                                                               |
| Output jitter (peak to peak) | _                 | Peak-to-peak output jitter on high-speed PLLs.                                                                                                                                                                                                                                              |
| Signal rise time             | t <sub>RISE</sub> | Low-to-high transmission time.                                                                                                                                                                                                                                                              |
| Signal fall time             | t <sub>FALL</sub> | High-to-low transmission time.                                                                                                                                                                                                                                                              |
| Lock time                    | t <sub>LOCK</sub> | Lock time for high-speed transmitter and receiver PLLs.                                                                                                                                                                                                                                     |

Figure 5-3. High-Speed I/O Timing Diagram



Figure 5–4 shows the high-speed I/O timing budget.



Note to Figure 5-4:

(1) The equation for the high-speed I/O timing budget is: period = TCCS + RSKM + SW + RSKM.

Table 5–48 shows the RSDS timing budget for Cyclone II devices at 311 Mbps. RSDS is supported for transmitting from Cyclone II devices. Cyclone II devices cannot receive RSDS data because the devices are intended for applications where they will be driving display drivers. Cyclone II devices support a maximum RSDS data rate of 311 Mbps using DDIO registers. Cyclone II devices support RSDS only in the commercial temperature range.

| Table 5-48         | . RSDS Transm | itter Tim | ning Sp | ecificatio | n (Part | 1 of 2) |        |      |        |        |       |
|--------------------|---------------|-----------|---------|------------|---------|---------|--------|------|--------|--------|-------|
| Cumbal             | Conditions    | -6 8      | Speed   | Grade      | -7 S    | peed (  | Grade  | -8 S | peed ( | Grade  | Unit  |
| Symbol             | Collultions   | Min       | Тур     | Max(1)     | Min     | Тур     | Max(1) | Min  | Тур    | Max(1) | UIIII |
| f <sub>HSCLK</sub> | ×10           | 10        | _       | 155.5      | 10      | _       | 155.5  | 10   | _      | 155.5  | MHz   |
| (input<br>clock    | ×8            | 10        | _       | 155.5      | 10      | _       | 155.5  | 10   | _      | 155.5  | MHz   |
| frequency)         | ×7            | 10        | _       | 155.5      | 10      | _       | 155.5  | 10   | _      | 155.5  | MHz   |
|                    | ×4            | 10        | _       | 155.5      | 10      | _       | 155.5  | 10   | _      | 155.5  | MHz   |
|                    | ×2            | 10        | _       | 155.5      | 10      | _       | 155.5  | 10   | _      | 155.5  | MHz   |
|                    | ×1            | 10        | _       | 311        | 10      | _       | 311    | 10   | _      | 311    | MHz   |
| Device             | ×10           | 100       | _       | 311        | 100     | _       | 311    | 100  | _      | 311    | Mbps  |
| operation in Mbps  | ×8            | 80        | _       | 311        | 80      | _       | 311    | 80   | _      | 311    | Mbps  |
| iii wibps          | ×7            | 70        | _       | 311        | 70      | _       | 311    | 70   | _      | 311    | Mbps  |
|                    | ×4            | 40        | _       | 311        | 40      | _       | 311    | 40   | _      | 311    | Mbps  |
|                    | x2            | 20        | _       | 311        | 20      | _       | 311    | 20   | _      | 311    | Mbps  |
|                    | x1            | 10        |         | 311        | 10      |         | 311    | 10   | _      | 311    | Mbps  |
| t <sub>DUTY</sub>  | _             | 45        | _       | 55         | 45      | _       | 55     | 45   |        | 55     | %     |

| Table 5–48. RSDS Transmitter Timing Specification (Part 2 of 2) |                                     |       |       |        |      |        |        |      |         |        |           |  |  |
|-----------------------------------------------------------------|-------------------------------------|-------|-------|--------|------|--------|--------|------|---------|--------|-----------|--|--|
| Cumbal                                                          | Conditions                          | -6 \$ | Speed | Grade  | -7 S | peed ( | Grade  | -8 S | Speed ( | Grade  | I I m i A |  |  |
| Symbol                                                          | Conditions                          | Min   | Тур   | Max(1) | Min  | Тур    | Max(1) | Min  | Тур     | Max(1) | Unit      |  |  |
| TCCS                                                            | _                                   | _     | _     | 200    | _    | _      | 200    | _    | _       | 200    | ps        |  |  |
| Output<br>jitter (peak<br>to peak)                              | _                                   | _     | _     | 500    | _    | _      | 500    | _    | _       | 500    | ps        |  |  |
| t <sub>RISE</sub>                                               | 20–80%,<br>C <sub>LOAD</sub> = 5 pF | _     | 500   | _      | _    | 500    | _      |      | 500     | _      | ps        |  |  |
| t <sub>FALL</sub>                                               | 80–20%,<br>C <sub>LOAD</sub> = 5 pF | _     | 500   | _      | _    | 500    | _      | _    | 500     | _      | ps        |  |  |
| t <sub>LOCK</sub>                                               | _                                   | _     |       | 100    | _    |        | 100    | _    | _       | 100    | μs        |  |  |

#### Note to Table 5-48:

(1) These specifications are for a three-resistor RSDS implementation. For single-resistor RSDS in ×10 through ×2 modes, the maximum data rate is 170 Mbps and the corresponding maximum input clock frequency is 85 MHz. For single-resistor RSDS in ×1 mode, the maximum data rate is 170 Mbps, and the maximum input clock frequency is 170 MHz. For more information about the different RSDS implementations, refer to the *High-Speed Differential Interfaces in Cyclone II Devices* chapter of the Cyclone II Device Handbook.

In order to determine the transmitter timing requirements, RSDS receiver timing requirements on the other end of the link must be taken into consideration. RSDS receiver timing parameters are typically defined as  $t_{SU}$  and  $t_{H}$  requirements. Therefore, the transmitter timing parameter specifications are  $t_{CO}$  (minimum) and  $t_{CO}$  (maximum). Refer to Figure 5–4 for the timing budget.

The AC timing requirements for RSDS are shown in Figure 5–5.



Figure 5-5. RSDS Transmitter Clock to Data Relationship

Table 5–49 shows the mini-LVDS transmitter timing budget for Cyclone II devices at 311 Mbps. Cyclone II devices cannot receive mini-LVDS data because the devices are intended for applications where they will be driving display drivers. A maximum mini-LVDS data rate of 311 Mbps is supported for Cyclone II devices using DDIO registers. Cyclone II devices support mini-LVDS only in the commercial temperature range.

| Table 5-49         | Table 5–49. Mini-LVDS Transmitter Timing Specification (Part 1 of 2) |      |         |       |      |         |       |      |         |       |      |  |  |  |  |
|--------------------|----------------------------------------------------------------------|------|---------|-------|------|---------|-------|------|---------|-------|------|--|--|--|--|
| Ourshall           | Conditions                                                           | -6 9 | Speed G | rade  | -7 8 | Speed G | rade  | -8 8 | Speed G | rade  | 11:4 |  |  |  |  |
| Symbol             | Conditions                                                           | Min  | Тур     | Max   | Min  | Тур     | Max   | Min  | Тур     | Max   | Unit |  |  |  |  |
| f <sub>HSCLK</sub> | ×10                                                                  | 10   | _       | 155.5 | 10   | _       | 155.5 | 10   | _       | 155.5 | MHz  |  |  |  |  |
| (input<br>clock    | ×8                                                                   | 10   | _       | 155.5 | 10   | _       | 155.5 | 10   | _       | 155.5 | MHz  |  |  |  |  |
| frequency)         | ×7                                                                   | 10   | _       | 155.5 | 10   | _       | 155.5 | 10   | _       | 155.5 | MHz  |  |  |  |  |
|                    | ×4                                                                   | 10   | _       | 155.5 | 10   | _       | 155.5 | 10   | _       | 155.5 | MHz  |  |  |  |  |
|                    | ×2                                                                   | 10   | _       | 155.5 | 10   | _       | 155.5 | 10   | _       | 155.5 | MHz  |  |  |  |  |
|                    | ×1                                                                   | 10   | _       | 311   | 10   | _       | 311   | 10   | _       | 311   | MHz  |  |  |  |  |

| Table 5-4                          | 9. Mini-LVDS Tr | ansmitte       | er Timin | ng Specia | fication       | (Part 2 d | of 2) |                |     |     |       |
|------------------------------------|-----------------|----------------|----------|-----------|----------------|-----------|-------|----------------|-----|-----|-------|
| Cumbal                             | Conditions      | -6 Speed Grade |          |           | -7 Speed Grade |           |       | -8 Speed Grade |     |     | Unit  |
| Symbol                             |                 | Min            | Тур      | Max       | Min            | Тур       | Max   | Min            | Тур | Max | Uiiit |
| Device                             | ×10             | 100            | _        | 311       | 100            | _         | 311   | 100            | _   | 311 | Mbps  |
| operation in Mbps                  | ×8              | 80             | _        | 311       | 80             | _         | 311   | 80             | _   | 311 | Mbps  |
| iii wops                           | ×7              | 70             | _        | 311       | 70             | _         | 311   | 70             | _   | 311 | Mbps  |
|                                    | ×4              | 40             | _        | 311       | 40             | _         | 311   | 40             | _   | 311 | Mbps  |
|                                    | ×2              | 20             | _        | 311       | 20             | _         | 311   | 20             | _   | 311 | Mbps  |
|                                    | ×1              | 10             | _        | 311       | 10             | _         | 311   | 10             | _   | 311 | Mbps  |
| t <sub>DUTY</sub>                  | _               | 45             | _        | 55        | 45             | _         | 55    | 45             | _   | 55  | %     |
| TCCS                               | _               | _              | _        | 200       | _              | _         | 200   | _              | _   | 200 | ps    |
| Output<br>jitter (peak<br>to peak) | _               | _              | _        | 500       | _              | _         | 500   | _              | _   | 500 | ps    |
| t <sub>RISE</sub>                  | 20–80%          | _              | _        | 500       | _              | _         | 500   | _              | _   | 500 | ps    |
| t <sub>FALL</sub>                  | 80–20%          | _              |          | 500       | _              | _         | 500   | _              | _   | 500 | ps    |
| t <sub>LOCK</sub>                  |                 | _              | _        | 100       | _              | _         | 100   | _              | _   | 100 | μs    |

In order to determine the transmitter timing requirements, mini-LVDS receiver timing requirements on the other end of the link must be taken into consideration. The mini-LVDS receiver timing parameters are typically defined as  $t_{SU}$  and  $t_{H}$  requirements. Therefore, the transmitter timing parameter specifications are  $t_{CO}$  (minimum) and  $t_{CO}$  (maximum). Refer to Figure 5–4 for the timing budget.

The AC timing requirements for mini-LVDS are shown in Figure 5–6.

Figure 5-6. mini-LVDS Transmitter AC Timing Specification



*Notes to Figure 5–6:* 

- (1) The data setup time,  $t_{SU}$ , is  $0.225 \times TUI$ .
- (2) The data hold time,  $t_H$ , is  $0.225 \times TUI$ .

Tables 5–50 and 5–51 show the LVDS timing budget for Cyclone II devices. Cyclone II devices support LVDS receivers at data rates up to 805 Mbps, and LVDS transmitters at data rates up to 640 Mbps.

| Table 5-                              | 50. LVDS Ti | ansmi          | tter Tir | ning S <sub>l</sub> | pecifica | ation ( | Part 1 | of 2)   |         |     |         |                     |              |      |
|---------------------------------------|-------------|----------------|----------|---------------------|----------|---------|--------|---------|---------|-----|---------|---------------------|--------------|------|
|                                       |             | -6 Speed Grade |          |                     |          |         | -7 Spe | ed Grad | е       |     | –8 Spee | ed Grade            | 9            |      |
| Symbol                                | Conditions  | Min            | Тур      | Max (1)             | Max (2)  | Min     | Тур    | Max (1) | Max (2) | Min | Тур     | Max (1)             | Max (2)      | Unit |
| f <sub>HSCLK</sub><br>(input          | ×10         | 10             | _        | 320                 | 320      | 10      | _      | 275     | 320     | 10  | _       | 155.5<br><i>(4)</i> | 320<br>(6)   | MHz  |
| clock<br>fre-                         | ×8          | 10             | _        | 320                 | 320      | 10      | _      | 275     | 320     | 10  | _       | 155.5<br><i>(4)</i> | 320<br>(6)   | MHz  |
| quency)                               | ×7          | 10             | _        | 320                 | 320      | 10      | _      | 275     | 320     | 10  | _       | 155.5<br><i>(4)</i> | 320<br>(6)   | MHz  |
|                                       | ×4          | 10             | _        | 320                 | 320      | 10      | _      | 275     | 320     | 10  | _       | 155.5<br><i>(4)</i> | 320<br>(6)   | MHz  |
|                                       | ×2          | 10             | _        | 320                 | 320      | 10      | _      | 275     | 320     | 10  | _       | 155.5<br><i>(4)</i> | 320<br>(6)   | MHz  |
|                                       | ×1          | 10             | _        | 402.5               | 402.5    | 10      | _      | 402.5   | 402.5   | 10  | _       | 402.5<br>(8)        | 402.5<br>(8) | MHz  |
| HSIODR                                | ×10         | 100            | _        | 640                 | 640      | 100     | _      | 550     | 640     | 100 | _       | 311<br>(5)          | 550<br>(7)   | Mbps |
|                                       | ×8          | 80             | _        | 640                 | 640      | 80      | _      | 550     | 640     | 80  | _       | 311<br>(5)          | 550<br>(7)   | Mbps |
|                                       | ×7          | 70             | _        | 640                 | 640      | 70      | _      | 550     | 640     | 70  | _       | 311<br>(5)          | 550<br>(7)   | Mbps |
|                                       | ×4          | 40             | _        | 640                 | 640      | 40      | _      | 550     | 640     | 40  | _       | 311<br>(5)          | 550<br>(7)   | Mbps |
|                                       | ×2          | 20             | _        | 640                 | 640      | 20      | _      | 550     | 640     | 20  | _       | 311<br>(5)          | 550<br>(7)   | Mbps |
|                                       | ×1          | 10             | _        | 402.5               | 402.5    | 10      | _      | 402.5   | 402.5   | 10  | _       | 402.5<br>(9)        | 402.5<br>(9) | Mbps |
| t <sub>DUTY</sub>                     | _           | 45             | _        | 55                  | _        | 45      | _      | 55      | _       | 45  | _       | 55                  | _            | %    |
|                                       | _           | _              | _        | _                   | 160      | _       | _      | _       | 312.5   | _   | _       | _                   | 363.6        | ps   |
| TCCS                                  |             | _              | _        | 20                  | 00       | _       | _      | 2       | 00      | _   | _       | 2                   | 00           | ps   |
| Output<br>jitter<br>(peak to<br>peak) | _           | _              | _        | 50                  | 00       | _       | _      | 5       | 00      | _   | _       | 550                 | (10)         | ps   |
| t <sub>RISE</sub>                     | 20–80%      | 150            | 200      | 2                   | 50       | 150     | 200    | 2       | 50      | 150 | 200     | 250                 | (11)         | ps   |

| Table 5–50. LVDS Transmitter Timing Specification (Part 2 of 2) |            |     |                                              |         |         |     |     |         |         |     |     |         |            |      |
|-----------------------------------------------------------------|------------|-----|----------------------------------------------|---------|---------|-----|-----|---------|---------|-----|-----|---------|------------|------|
|                                                                 |            |     | −6 Speed Grade −7 Speed Grade −8 Speed Grade |         |         |     |     |         |         |     |     |         |            |      |
| Symbol                                                          | Conditions | Min | Тур                                          | Max (1) | Max (2) | Min | Тур | Max (1) | Max (2) | Min | Тур | Max (1) | Max<br>(2) | Unit |
| $t_{FALL}$                                                      | 80–20%     | 150 | 200                                          | 25      | 50      | 150 | 200 | 2       | 50      | 150 | 200 | 250     | (11)       | ps   |
| t <sub>LOCK</sub>                                               | _          | _   | _                                            | 10      | 00      | _   | _   | 10      | 00      | _   | _   | 100     | (12)       | μs   |

#### Notes to Table 5-50:

- (1) The maximum data rate that complies with duty cycle distortion of 45–55%.
- (2) The maximum data rate when taking duty cycle in absolute ps into consideration that may not comply with 45–55% duty cycle distortion. If the downstream receiver can handle duty cycle distortion beyond the 45–55% range, you may use the higher data rate values from this column. You can calculate the duty cycle distortion as a percentage using the absolute ps value. For example, for a data rate of 640 Mbps (UI = 1562.5 ps) and a  $t_{\rm DUTY}$  of 250 ps, the duty cycle distortion is  $\pm$   $t_{\rm DUTY}$  /(UI\*2) \*100% =  $\pm$  250 ps/(1562.5 \*2) \* 100% =  $\pm$  8%, which gives you a duty cycle distortion of 42–58%.
- (3) The TCCS specification applies to the entire bank of LVDS, as long as the SERDES logic is placed within the LAB adjacent to the output pins.
- (4) For extended temperature devices, the maximum input clock frequency for ×10 through ×2 modes is 137.5 MHz.
- (5) For extended temperature devices, the maximum data rate for  $\times 10$  through  $\times 2$  modes is 275 Mbps.
- (6) For extended temperature devices, the maximum input clock frequency for ×10 through ×2 modes is 200 MHz.
- (7) For extended temperature devices, the maximum data rate for ×10 through ×2 modes is 400 Mbps.
- (8) For extended temperature devices, the maximum input clock frequency for ×1 mode is 340 MHz.
- (9) For extended temperature devices, the maximum data rate for ×1 mode is 340 Mbps.
- (10) For extended temperature devices, the maximum output jitter (peak to peak) is 600 ps.
- (11) For extended temperature devices, the maximum  $t_{\rm RISE}$  and  $t_{\rm FALL}$  are 300 ps.
- (12) For extended temperature devices, the maximum lock time is 500 us.

| Table 5-51.                | LVDS Recei | ver Tim        | ing Sp | ecification |                |     |       |       |       |           |      |
|----------------------------|------------|----------------|--------|-------------|----------------|-----|-------|-------|-------|-----------|------|
| O                          | Conditions | -6 Speed Grade |        | -7          | -7 Speed Grade |     |       | Speed | Grade | 11:4      |      |
| Symbol                     | Conditions | Min            | Тур    | Max         | Min            | Тур | Max   | Min   | Тур   | Max       | Unit |
| f <sub>HSCLK</sub>         | ×10        | 10             | _      | 402.5       | 10             | _   | 320   | 10    | _     | 320 (1)   | MHz  |
| (input clock<br>frequency) | ×8         | 10             | _      | 402.5       | 10             | _   | 320   | 10    | _     | 320 (1)   | MHz  |
|                            | ×7         | 10             | _      | 402.5       | 10             | _   | 320   | 10    | _     | 320 (1)   | MHz  |
|                            | ×4         | 10             | _      | 402.5       | 10             | _   | 320   | 10    | _     | 320 (1)   | MHz  |
|                            | ×2         | 10             | _      | 402.5       | 10             | _   | 320   | 10    | _     | 320 (1)   | MHz  |
|                            | ×1         | 10             | _      | 402.5       | 10             | _   | 402.5 | 10    | _     | 402.5 (3) | MHz  |
| HSIODR                     | ×10        | 100            | _      | 805         | 100            | _   | 640   | 100   | _     | 640 (2)   | Mbps |
|                            | ×8         | 80             | _      | 805         | 80             | _   | 640   | 80    | _     | 640 (2)   | Mbps |
|                            | ×7         | 70             | _      | 805         | 70             | _   | 640   | 70    | _     | 640 (2)   | Mbps |
|                            | ×4         | 40             | _      | 805         | 40             | _   | 640   | 40    | _     | 640 (2)   | Mbps |
|                            | ×2         | 20             | _      | 805         | 20             | _   | 640   | 20    | _     | 640 (2)   | Mbps |
|                            | ×1         | 10             | _      | 402.5       | 10             | _   | 402.5 | 10    | _     | 402.5 (4) | Mbps |
| SW                         | _          | _              | _      | 300         | _              | _   | 400   | _     | _     | 400       | ps   |
| Input jitter tolerance     | _          | _              | _      | 500         | _              | _   | 500   | _     | _     | 550       | ps   |
| t <sub>LOCK</sub>          | _          | _              | _      | 100         | _              | _   | 100   | _     | _     | 100 (5)   | ps   |

#### Notes to Table 5-51:

- (1) For extended temperature devices, the maximum input clock frequency for x10 through x2 modes is 275 MHz.
- (2) For extended temperature devices, the maximum data rate for x10 through x2 modes is 550 Mbps.
- (3) For extended temperature devices, the maximum input clock frequency for x1 mode is 340 MHz.
- (4) For extended temperature devices, the maximum data rate for x1 mode is 340 Mbps.
- (5) For extended temperature devices, the maximum lock time is 500 us.

## **External Memory Interface Specifications**

Table 5–52 shows the DQS bus clock skew adder specifications.

| Table 5–52. DQS Bus Clock Skew Adder Specifications |     |    |  |  |  |  |  |
|-----------------------------------------------------|-----|----|--|--|--|--|--|
| Mode DQS Clock Skew Adder Unit                      |     |    |  |  |  |  |  |
| ×9                                                  | 155 | ps |  |  |  |  |  |
| ×18                                                 | 190 | ps |  |  |  |  |  |

Note to Table 5-52:

 This skew specification is the absolute maximum and minimum skew. For example, skew on a ×9 DQ group is 155 ps or ±77.5 ps.

## **JTAG Timing Specifications**

Figure 5–7 shows the timing requirements for the JTAG signals.



Table 5–53 shows the JTAG timing parameters and values for Cyclone II devices.

| Table 5-53        | 3. Cyclone II JTAG Timing Parameters and Values |     |     |      |
|-------------------|-------------------------------------------------|-----|-----|------|
| Symbol            | Parameter                                       | Min | Max | Unit |
| $t_{JCP}$         | TCK clock period                                | 40  | _   | ns   |
| t <sub>JCH</sub>  | TCK clock high time                             | 20  | _   | ns   |
| t <sub>JCL</sub>  | TCK clock low time                              | 20  | _   | ns   |
| t <sub>JPSU</sub> | JTAG port setup time (2)                        | 5   | _   | ns   |
| t <sub>JPH</sub>  | JTAG port hold time                             | 10  | _   | ns   |
| t <sub>JPCO</sub> | JTAG port clock to output (2)                   | _   | 13  | ns   |
| t <sub>JPZX</sub> | JTAG port high impedance to valid output (2)    | _   | 13  | ns   |
| t <sub>JPXZ</sub> | JTAG port valid output to high impedance (2)    | _   | 13  | ns   |
| t <sub>JSSU</sub> | Capture register setup time (2)                 | 5   | _   | ns   |
| t <sub>JSH</sub>  | Capture register hold time                      | 10  | _   | ns   |
| t <sub>JSCO</sub> | Update register clock to output                 | _   | 25  | ns   |
| t <sub>JSZX</sub> | Update register high impedance to valid output  | _   | 25  | ns   |
| t <sub>JSXZ</sub> | Update register valid output to high impedance  | _   | 25  | ns   |

#### Notes to Table 5-53:

- (1) This information is preliminary.
- (2) This specification is shown for 3.3-V LVTTL/LVCMOS and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For 1.8-V LVTTL/LVCMOS and 1.5-V LVCMOS, the JTAG port and capture register clock setup time is 3 ns and port clock to output time is 15 ns.



Cyclone II devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Cyclone II devices are in the 18th position or after they will fail configuration. This does not affect the SignalTap® II logic analyzer.



For more information on JTAG, refer to the *IEEE 1149.1 (JTAG)* Boundary-Scan Testing for Cyclone II Devices chapter in the Cyclone II Handbook.

## **PLL Timing Specifications**

Table 5–54 describes the Cyclone II PLL specifications when operating in the commercial junction temperature range (0° to 85° C), the industrial junction temperature range (–40° to 100° C), the automotive junction temperature range (–40° to 125° C), and the extended temperature range (–40° to 125° C). Follow the PLL specifications for –8 speed grade devices when operating in the industrial, automotive, or extended temperature range.

| Symbol                             | Parameter                                                              | Min | Тур | Max     | Unit |
|------------------------------------|------------------------------------------------------------------------|-----|-----|---------|------|
| f <sub>IN</sub>                    | Input clock frequency (–6 speed grade)                                 | 10  | _   | (4)     | MHz  |
|                                    | Input clock frequency (–7 speed grade)                                 | 10  | _   | (4)     | MHz  |
|                                    | Input clock frequency (–8 speed grade)                                 | 10  | _   | (4)     | MHz  |
| f <sub>INPFD</sub>                 | PFD input frequency (-6 speed grade)                                   | 10  | _   | 402.5   | MHz  |
|                                    | PFD input frequency (-7 speed grade)                                   | 10  | _   | 402.5   | MHz  |
|                                    | PFD input frequency (–8 speed grade)                                   | 10  | _   | 402.5   | MHz  |
| f <sub>INDUTY</sub>                | Input clock duty cycle                                                 | 40  | _   | 60      | %    |
| t <sub>INJITTER</sub> (5)          | Input clock period jitter                                              | _   | 200 | _       | ps   |
| f <sub>OUT_EXT</sub> (external     | PLL output frequency (–6 speed grade)                                  | 10  | _   | (4)     | MHz  |
| clock output)                      | PLL output frequency (–7 speed grade)                                  | 10  | _   | (4)     | MHz  |
|                                    | PLL output frequency (–8 speed grade)                                  | 10  | _   | (4)     | MHz  |
| f <sub>OUT</sub> (to global clock) | PLL output frequency (–6 speed grade)                                  | 10  | _   | 500     | MHz  |
|                                    | PLL output frequency (–7 speed grade)                                  | 10  | _   | 450     | MHz  |
|                                    | PLL output frequency (–8 speed grade)                                  | 10  | _   | 402.5   | MHz  |
| toutduty                           | Duty cycle for external clock output (when set to 50%)                 | 45  | _   | 55      | %    |
| t <sub>JITTER</sub> (p-p) (2)      | Period jitter for external clock output f <sub>OUT_EXT</sub> > 100 MHz | _   | _   | 300     | ps   |
|                                    | f <sub>OUT_EXT</sub> ≤100 MHz                                          | _   | _   | 30      | mUI  |
| t <sub>LOCK</sub>                  | Time required to lock from end of device configuration                 | _   | _   | 100 (6) | μs   |
| t <sub>PLL PSERR</sub>             | Accuracy of PLL phase shift                                            | _   | _   | ±60     | ps   |

| Table 5–54. PLL Specifications Note (1) (Part 2 of 2) |                                       |     |   |       |     |  |  |  |
|-------------------------------------------------------|---------------------------------------|-----|---|-------|-----|--|--|--|
| Symbol Parameter Min Typ Max Un                       |                                       |     |   |       |     |  |  |  |
| f <sub>VCO</sub> (3)                                  | PLL internal VCO operating range      | 300 | _ | 1,000 | MHz |  |  |  |
| t <sub>ARESET</sub>                                   | Minimum pulse width on areset signal. | 10  | 1 | _     | ns  |  |  |  |

#### Notes to Table 5-54:

- (1) These numbers are preliminary and pending silicon characterization.
- (2) The t<sub>||TTER</sub> specification for the PLL[4..1]\_OUT pins are dependent on the I/O pins in its VCCIO bank, how many of them are switching outputs, how much they toggle, and whether or not they use programmable current strength.
- (3) If the VCO post-scale counter = 2, a 300- to 500-MHz internal VCO frequency is available.
- (4) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (5) Cyclone II PLLs can track a spread-spectrum input clock that has an input jitter within ±200 ps.
- (6) For extended temperature devices, the maximum lock time is 500 us.

## Duty Cycle Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 5–8. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (Figure 5–8). The maximum DCD for a clock is the larger value of D1 and D2.

Figure 5-8. Duty Cycle Distortion



DCD expressed in absolution derivation, for example, D1 or D2 in Figure 5–8, is clock-period independent. DCD can also be expressed as a percentage, and the percentage number is clock-period dependent. DCD as a percentage is defined as:

(T/2 - D1) / T (the low percentage boundary)

(T/2 + D2) / T (the high percentage boundary)

## **DCD Measurement Techniques**

DCD is measured at an FPGA output pin driven by registers inside the corresponding I/O element (IOE) block. When the output is a single data rate signal (non-DDIO), only one edge of the register input clock (positive or negative) triggers output transitions (Figure 5–9). Therefore, any DCD present on the input clock signal, or caused by the clock input buffer, or different input I/O standard, does not transfer to the output signal.

Figure 5–9. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs



However, when the output is a double data rate input/output (DDIO) signal, both edges of the input clock signal (positive and negative) trigger output transitions (Figure 5–10). Therefore, any distortion on the input clock and the input clock buffer affect the output DCD.



Figure 5–10. DCD Measurement Technique for DDIO (Double-Data Rate) Outputs

When an FPGA PLL generates the internal clock, the PLL output clocks the IOE block. As the PLL only monitors the positive edge of the reference clock input and internally re-creates the output clock signal, any DCD present on the reference clock is filtered out. Therefore, the DCD for a DDIO output with PLL in the clock path is better than the DCD for a DDIO output without PLL in the clock path.

Tables 5–55 through 5–58 give the maximum DCD in absolution derivation for different I/O standards on Cyclone II devices. Examples are also provided that show how to calculate DCD as a percentage.

| Table 5–55. Maximum DCD for Single Data Outputs (SDR) on Row I/O Pins Notes (1), (2) (Part 1 of 2) |     |           |     |      |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-----|-----------|-----|------|--|--|--|--|--|
| Row I/O Output Standard                                                                            | C6  | <b>C7</b> | C8  | Unit |  |  |  |  |  |
| LVCMOS                                                                                             | 165 | 230       | 230 | ps   |  |  |  |  |  |
| LVTTL                                                                                              | 195 | 255       | 255 | ps   |  |  |  |  |  |
| 2.5-V                                                                                              | 120 | 120       | 135 | ps   |  |  |  |  |  |
| 1.8-V                                                                                              | 115 | 115       | 175 | ps   |  |  |  |  |  |
| 1.5-V                                                                                              | 130 | 130       | 135 | ps   |  |  |  |  |  |
| SSTL-2 Class I                                                                                     | 60  | 90        | 90  | ps   |  |  |  |  |  |
| SSTL-2 Class II                                                                                    | 65  | 75        | 75  | ps   |  |  |  |  |  |
| SSTL-18 Class I                                                                                    | 90  | 165       | 165 | ps   |  |  |  |  |  |
| HSTL-15 Class I                                                                                    | 145 | 145       | 205 | ps   |  |  |  |  |  |
| HSTL-18 Class I                                                                                    | 85  | 155       | 155 | ps   |  |  |  |  |  |

| Table 5–55. Maximum DCD for Single Data Outputs (SDR) on Row I/O Pins Notes (1), (2) (Part 2 of 2) |     |           |     |      |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-----|-----------|-----|------|--|--|--|--|--|
| Row I/O Output Standard                                                                            | C6  | <b>C7</b> | C8  | Unit |  |  |  |  |  |
| Differential SSTL-2 Class I                                                                        | 60  | 90        | 90  | ps   |  |  |  |  |  |
| Differential SSTL-2 Class II                                                                       | 65  | 75        | 75  | ps   |  |  |  |  |  |
| Differential SSTL-18 Class I                                                                       | 90  | 165       | 165 | ps   |  |  |  |  |  |
| Differential HSTL-18 Class I                                                                       | 85  | 155       | 155 | ps   |  |  |  |  |  |
| Differential HSTL-15 Class I                                                                       | 145 | 145       | 205 | ps   |  |  |  |  |  |
| LVDS                                                                                               | 60  | 60        | 60  | ps   |  |  |  |  |  |
| Simple RSDS                                                                                        | 60  | 60        | 60  | ps   |  |  |  |  |  |
| Mini LVDS                                                                                          | 60  | 60        | 60  | ps   |  |  |  |  |  |
| PCI                                                                                                | 195 | 255       | 255 | ps   |  |  |  |  |  |
| PCI-X                                                                                              | 195 | 255       | 255 | ps   |  |  |  |  |  |

*Notes to Table 5–55:* 

- (1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.
- (2) Numbers are applicable for commercial, industrial, and automotive devices.

Here is an example for calculating the DCD as a percentage for an SDR output on a row I/O on a –6 device:

If the SDR output I/O standard is SSTL-2 Class II, the maximum DCD is 65 ps (refer to Table 5–55). If the clock frequency is 167 MHz, the clock period T is:

$$T = 1/f = 1 / 167 \text{ MHz} = 6 \text{ ns} = 6000 \text{ ps}$$

To calculate the DCD as a percentage:

$$(T/2 - DCD) / T = (6000 \text{ ps}/2 - 65 \text{ ps}) / 6000 \text{ ps} = 48.91\% \text{ (for low boundary)}$$

$$(T/2 + DCD) / T = (6000 \text{ ps}/2 + 65 \text{ ps}) / 6000 \text{ps} = 51.08\%$$
 (for high boundary

| Table 5–56. Maximum DCD for SDR Output on Column I/O Notes (1), (2) (Part 1 of 2) |     |            |     |      |  |  |  |  |
|-----------------------------------------------------------------------------------|-----|------------|-----|------|--|--|--|--|
| Column I/O Output Standard                                                        | C6  | <b>C</b> 7 | C8  | Unit |  |  |  |  |
| LVCMOS                                                                            | 195 | 285        | 285 | ps   |  |  |  |  |
| LVTTL                                                                             | 210 | 305        | 305 | ps   |  |  |  |  |

| Table 5–56. Maximum DCD for SDR Output on Column I/O Notes (1), (2) (Part 2 of 2) |     |     |     |      |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-----|-----|-----|------|--|--|--|--|--|
| Column I/O Output Standard                                                        | C6  | C7  | C8  | Unit |  |  |  |  |  |
| 2.5-V                                                                             | 140 | 140 | 155 | ps   |  |  |  |  |  |
| 1.8-V                                                                             | 115 | 115 | 165 | ps   |  |  |  |  |  |
| 1.5-V                                                                             | 745 | 745 | 770 | ps   |  |  |  |  |  |
| SSTL-2 Class I                                                                    | 60  | 60  | 75  | ps   |  |  |  |  |  |
| SSTL-2 Class II                                                                   | 60  | 60  | 80  | ps   |  |  |  |  |  |
| SSTL-18 Class I                                                                   | 60  | 130 | 130 | ps   |  |  |  |  |  |
| SSTL-18 Class II                                                                  | 60  | 135 | 135 | ps   |  |  |  |  |  |
| HSTL-18 Class I                                                                   | 60  | 115 | 115 | ps   |  |  |  |  |  |
| HSTL-18 Class II                                                                  | 75  | 75  | 100 | ps   |  |  |  |  |  |
| HSTL-15 Class I                                                                   | 150 | 150 | 150 | ps   |  |  |  |  |  |
| HSTL-15 Class II                                                                  | 135 | 135 | 155 | ps   |  |  |  |  |  |
| Differential SSTL-2 Class I                                                       | 60  | 60  | 75  | ps   |  |  |  |  |  |
| Differential SSTL-2 Class II                                                      | 60  | 60  | 80  | ps   |  |  |  |  |  |
| Differential SSTL-18 Class I                                                      | 60  | 130 | 130 | ps   |  |  |  |  |  |
| Differential SSTL-18 Class II                                                     | 60  | 135 | 135 | ps   |  |  |  |  |  |
| Differential HSTL-18 Class I                                                      | 60  | 115 | 115 | ps   |  |  |  |  |  |
| Differential HSTL-18 Class II                                                     | 75  | 75  | 100 | ps   |  |  |  |  |  |
| Differential HSTL-15 Class I                                                      | 150 | 150 | 150 | ps   |  |  |  |  |  |
| Differential HSTL-15 Class II                                                     | 135 | 135 | 155 | ps   |  |  |  |  |  |
| LVDS                                                                              | 60  | 60  | 60  | ps   |  |  |  |  |  |
| Simple RSDS                                                                       | 60  | 70  | 70  | ps   |  |  |  |  |  |
| Mini-LVDS                                                                         | 60  | 60  | 60  | ps   |  |  |  |  |  |

### Notes to Table 5-56:

- (1) The DCD specification is characterized using the maximum drive strength available for each I/O standard.
- (2) Numbers are applicable for commercial, industrial, and automotive devices.

| Table 5–57. Maximum for DDIO Output on Row Pins with PLL in the Clock Path Notes (1), (2) (Part 1 of 2) |     |     |     |      |
|---------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Row Pins with PLL in the Clock Path                                                                     | C6  | C7  | C8  | Unit |
| LVCMOS                                                                                                  | 270 | 310 | 310 | ps   |
| LVTTL                                                                                                   | 285 | 305 | 335 | ps   |
| 2.5-V                                                                                                   | 180 | 180 | 220 | ps   |
| 1.8-V                                                                                                   | 165 | 175 | 205 | ps   |

Table 5-57. Maximum for DDIO Output on Row Pins with PLL in the Clock **Path** Notes (1), (2) (Part 2 of 2) Row Pins with PLL in the Clock Path C<sub>6</sub> C7 **C8** Unit 1.5-V 280 280 280 ps SSTL-2 Class I 150 190 230 ps SSTL-2 Class II 155 200 230 ps SSTL-18 Class I 180 240 260 ps HSTL-18 Class I 180 235 235 ps HSTL-15 Class I 205 220 220 ps Differential SSTL-2 Class I 150 230 190 ps Differential SSTL-2 Class II 155 200 230 ps Differential SSTL-18 Class I 180 240 260 ps Differential HSTL-18 Class I 180 235 235 ps Differential HSTL-15 Class I 205 220 220 ps **LVDS** 95 110 120 ps Simple RSDS 100 155 155 ps Mini LVDS 120 95 110 ps PCI 285 305 335 ps PCI-X 285 305 335 ps

*Notes to Table 5–57:* 

- The DCD specification is characterized using the maximum drive strength available for each I/O standard.
- (2) Numbers are applicable for commercial, industrial, and automotive devices.

For DDIO outputs, you can calculate actual half period from the following equation:

Actual half period = ideal half period - maximum DCD

For example, if the DDR output I/O standard is SSTL-2 Class II, the maximum DCD for a -5 device is 155 ps (refer to Table 5–57). If the clock frequency is 167 MHz, the half-clock period T/2 is:

$$T/2 = 1/(2* f) = 1/(2*167 MHz) = 3 ns = 3000 ps$$

The actual half period is then = 3000 ps - 155 ps = 2845 ps

| Table 5–58. Maximum DCD for DDIO Output on Column I/O Pins with PLL in the Clock Path Notes (1), (2) |     |            |     |      |  |
|------------------------------------------------------------------------------------------------------|-----|------------|-----|------|--|
| Column I/O Pins in the Clock Path                                                                    | C6  | <b>C</b> 7 | C8  | Unit |  |
| LVCMOS                                                                                               | 285 | 400        | 445 | ps   |  |
| LVTTL                                                                                                | 305 | 405        | 460 | ps   |  |
| 2.5-V                                                                                                | 175 | 195        | 285 | ps   |  |
| 1.8-V                                                                                                | 190 | 205        | 260 | ps   |  |
| 1.5-V                                                                                                | 605 | 645        | 645 | ps   |  |
| SSTL-2 Class I                                                                                       | 125 | 210        | 245 | ps   |  |
| SSTL-2 Class II                                                                                      | 195 | 195        | 195 | ps   |  |
| SSTL-18 Class I                                                                                      | 130 | 240        | 245 | ps   |  |
| SSTL-18 Class II                                                                                     | 135 | 270        | 330 | ps   |  |
| HSTL-18 Class I                                                                                      | 135 | 240        | 240 | ps   |  |
| HSTL-18 Class II                                                                                     | 165 | 240        | 285 | ps   |  |
| HSTL-15 Class I                                                                                      | 220 | 335        | 335 | ps   |  |
| HSTL-15 Class II                                                                                     | 190 | 210        | 375 | ps   |  |
| Differential SSTL-2 Class I                                                                          | 125 | 210        | 245 | ps   |  |
| Differential SSTL-2 Class II                                                                         | 195 | 195        | 195 | ps   |  |
| Differential SSTL-18 Class I                                                                         | 130 | 240        | 245 | ps   |  |
| Differential SSTL-18 Class II                                                                        | 132 | 270        | 330 | ps   |  |
| Differential HSTL-18 Class I                                                                         | 135 | 240        | 240 | ps   |  |
| Differential HSTL-18 Class II                                                                        | 165 | 240        | 285 | ps   |  |
| Differential HSTL-15 Class I                                                                         | 220 | 335        | 335 | ps   |  |
| Differential HSTL-15 Class II                                                                        | 190 | 210        | 375 | ps   |  |
| LVDS                                                                                                 | 110 | 120        | 125 | ps   |  |
| Simple RSDS                                                                                          | 125 | 125        | 275 | ps   |  |
| Mini-LVDS                                                                                            | 110 | 120        | 125 | ps   |  |

#### *Notes to Table 5–58:*

<sup>(1)</sup> The DCD specification is characterized using the maximum drive strength available for each I/O standard.

<sup>(2)</sup> Numbers are applicable for commercial, industrial, and automotive devices.

# Referenced Documents

This chapter references the following documents:

- Cyclone II Architecture chapter in Cyclone II Device Handbook
- High-Speed Differential Interfaces in Cyclone II Devices chapter of the Cyclone II Device Handbook
- IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone II Devices chapter in the Cyclone II Handbook
- Operating Requirements for Altera Devices Data Sheet
- PowerPlay Early Power Estimator User Guide
- PowerPlay Power Analysis chapters in volume 3 of the Quartus II Handbook

## Document Revision History

Table 5–59 shows the revision history for this document.

| Table 5–59. Document Revision History |                                                                                                                                                                                                                                                                                                               |                                                                    |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Date and<br>Document<br>Version       | Changes Made                                                                                                                                                                                                                                                                                                  | Summary of Changes                                                 |  |  |
| February 2008<br>v4.0                 | <ul> <li>Updated the following tables with I/O timing numbers for automotive-grade devices: Tables 5–2, 5–12, 5–13, 5–15, 5–16, 5–17, 5–18, 5–19, 5–21, 5–22, 5–23, 5–25, 5–26, 5–27, 5–28, 5–36, 5–37, 5–40, 5–41, 5–42, 5–43, 5–55, 5–56, 5–57, and 5–58.</li> <li>Added "Referenced Documents".</li> </ul> | Added I/O timing numbers for automotive-grade devices.             |  |  |
| April 2007<br>v3.2                    | Updated Table 5–3.                                                                                                                                                                                                                                                                                            | Updated R <sub>CONF</sub> typical and maximum values in Table 5–3. |  |  |

|                       | <del>,</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| February 2007<br>v3.1 | <ul> <li>Added document revision history.</li> <li>Added V<sub>CCA</sub> minimum and maximum limitations in Table 5–1.</li> <li>Updated <i>Note</i> (1) in Table 5–2.</li> <li>Updated the maximum V<sub>CC</sub> rise time for Cyclone II "A" devices in Table 5–2.</li> <li>Updated R<sub>CONF</sub> information in Table 5–3.</li> <li>Changed V<sub>I</sub> to I<sub>i</sub> in Table 5–3.</li> <li>Updated LVPECL clock inputs in <i>Note</i> (6) to Table 5–8.</li> <li>Updated <i>Note</i> (1) to Table 5–12.</li> <li>Updated V<sub>REF</sub> capacitance description in Table 5–13.</li> <li>Updated "Timing Specifications" section.</li> <li>Updated "Timing Specifications" section.</li> <li>Updated Table 5–45.</li> <li>Added Table 5–46 with information on toggle rate derating factors.</li> <li>Corrected calculation of the period based on a 640 Mbps data rate as 1562.5 ps in <i>Note</i> (2) to Table 5–50.</li> <li>Updated "PLL Timing Specifications" section.</li> <li>Updated V<sub>CO</sub> range of 300–500 MHz in <i>Note</i> (3) to Table 5–54.</li> <li>Updated chapter with extended temperature information.</li> </ul> |   |
| December 2005         | Updated PLL Timing Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ |
| v2.2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| November 2005<br>v2.1 | Updated technical content throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ |
| July 2005<br>v2.0     | Updated technical content throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ |
| November 2004<br>v1.1 | Updated the "Differential I/O Standards" section.<br>Updated Table 5–54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ |
| June 2004<br>v1.0     | Added document to the Cyclone II Device Handbook.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ |