IV B.Tech I Semester Advanced Supplementary Examinations, May – 2022 WATER RESOURCES ENGINEERING - II

(Civil Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part R

			Answer any l	FOUR questions from *****	n Part-B					
			PA	RT-A (14 Marks)						
1.	a)b)c)d)e)f)	Describe the importance of irrigation. Explain the procedure of design of non-erodible canals. Write down the design principles of Head regulators. Explain Khosla's theory. Write a short note on Reservoir sedimentation. Write down the design principles of Ogee spillways.								
2.	a) b)	PART-B ($4x14 = 56 \text{ Marks}$) Explain the irrigation efficiencies with necessary derivations. For a given crop, determine the field irrigation requirement for each mo assuming irrigation efficiency to be 60 per cent. Use the data from the follow								
		table. Month	Crop factor, K	Pan evaporation,	Effective rain-fall,					
		TVIOIEII	Crop factor, ix	Ep (mm)	$D_p - D_{pl}$ (mm)					
		November	0.20	118.0	6.0					
		December	0.36	96.0	16.0					
		January	0.75	90.0	20.0					
		February	0.90	105.0	15.0					
		March	0.80	140.0	2.0					
3.	a)	of the channel	is adopted as 1.5	\times 10 ⁻⁴ . The river because	ge of 50 m ³ /s. The bed sloped material has a median size e size of coarser material to					

- 3.
 - b) With neat sketches, explain the economics of canal lining with suitable [6] examples.
- 4. a) Design a straight glacis fall for a drop of 2.25 m in the water surface level of [9] irrigation channel carrying water at the rate of 60 m³/s. Consider the bed width and depth of flow in the channel are 30 m and 2.20 m, respectively.
 - b) Explain the objectives and approaches of river training works. [5]
- 5. a) Explain the Bligh's creep theory with suitable examples and sketches, wherever [7] required.
 - b) Explain the design procedure of impervious floors for subsurface flow. [7]

Code No: **R1641012**

[7]

6. a) A proposed reservoir has a capacity of 500 ha-m. The catchment area is 125 km^2 , [7] and the annual streamflow averages 12 cm of runoff. If the annual sedimentation is 0.03 ha.m/km^2 , what is the probable life of the reservoir before its capacity is reduced by 10% of its initial capacity by sedimentation? The relationship between trap efficiency η (%) and capacity inflow ratio (C/I) is given in the following table.

C/I	0.01	0.02	0.04	0.06	0.08	0.10	0.20	0.30	0.50	0.70
η (%)	43	60	74	80	84	87	93	95	96	97

- b) Draw a neat sketch of Gravity dam and locate various forces acting on it. Explain [7] any two forces acting on the gravity dam.
- 7. a) Describe the methods to prevent seepage failures in Earth dams.
 - b) Determine the head over crest of a Chute spillway using the following data: [7]
 - i. Spillway crest level = 200.00 m.
 - ii. Level of the bottom of flank at which the low Ogee weir is to be constructed = 192.0 m.
 - iii. Design discharge = $5000 \text{ m}^3/\text{s}$.
 - iv. D/S tail water level corresponding to design discharge = 103.00 m.
 - v. The spillway length consists of 5 spans of 10.0 m clear width each.
 - vi. Consider the thickness of each spillway pier as 3.00 m. Assume any other necessary data.