COMS30035, Machine learning: Introduction

Rui Ponte Costa

Department of Computer Science, SCEEM University of Bristol

September 27, 2021

Disclaimer

These are unusual years. COVID-19 means that we had to change our teaching processes. So please bear with us – we are trying our best.

Agenda

- What is machine learning?
- Examples
- ▶ How does it relate to other units?
- What will we cover?
- Unit outline
- Assessments/coursework
- Labs

What is machine learning?

- Machine Learning (ML) is the study of computer algorithms that learn a model of data. These models are then used to make predictions and better understand the problem at hand.
- It is typically grounded on statistical science¹ and seen as a subfield of Artificial Intelligence.

¹Remember to review some key statistical concepts. See lain Murray's crib-sheet with a revision of math commonly used in ML here.

Machine learning interest [Google trends]

Machine learning interest [Google trends]

In contrast to Computer Science, Machine Learning is increasing in popularity.

Examples: Linear regression

When we regress one variable against another using a linear model.

Pros: Simple model Cons: Simple model

Example: Can we predict property prices in Boston?

Examples: Classification

When we want to automatically separate data into classes.

Pros: A wide range of methods that work well (e.g. ANNs or SVMs).

Cons: Needs labelled data (i.e. sample X is an example of a dog).

Example: Is it a dog or a bagel?

Examples: Graphical models

When we use a graphical model to represent an explicit probabilistic model.

Pros: Easy to interpret and explicit notion of uncertainty. **Cons**: Can be hard to estimate.

Example: What are the changes of survival for a smoker?

Examples: Dimensionality reduction

Used to compress data to a much smaller number of dimentions.

Pros: Easy to compute (e.g. using PCA). **Cons**: Loss of features semantics.

Example: How many features/components are enough to explain 80% of the variance in a given dataset? More here.

Examples: Generating text in natural language

Pros: Can give impressive results (e.g. using deep learning).

Cons: Models can be hard to interpret.

Example using a Transformer (a type of neural network):

Input: "Machine Learning is the study of computer algorithms that learn a model of data."

Output/completion: "Traditional AI, such as natural language processing, machine translation, image recognition, and <u>machine translation</u> relies heavily on well-defined data, and can perform well without much further manipulation of the data. Typically, a machine learning system recognizes patterns of data and then uses those patterns to predict outcomes of a given scenario. (see prediction)"

Try it out app.inferkit.com/demo!

How does it relate to other units

- This unit builds directly on previous units
 - Data Science for CS (previously known as SPS) [introduction to data science in Python]
 - Algorithms I and II [design/analyse algorithms, and data structures]
 - Math for CS I and II [algebra and statistics]
- And is a building block for more advanced units (4th year):
 - Advanced ML
 - Applied Deep Learning (neural networks)
 - Information Processing & the Brain (ML and neuroscience)
 - Cloud Computing and Big Data (ML on the cloud)
 - Advanced Computer Vision (ML for vision)
 - Applied Data Science (ML and data management)

What we will cover

We will focus on the following textbook

Bishop, C. M., Pattern recognition and machine learning (2006). Available for free here.

With some sections from:

Murphy, K., Machine learning a probabilistic perspective (2012). The book is also freely available <u>here</u>.

What we will cover

- Part 1: Overview, ML concepts, revisiting regression and neural networks [» Rui Ponte Costa, unit director]
- 2. Part 2: SVMs, Graphical models, mixture models, EM, Continuous latent models (PCA, ICA) [» James Cussens]
- 3. Part 3: Sequential data (RNNs, HMMs), model ensembles [» Edwin Simpson]

Unit Outline

On the unit BB page; and uob-coms30035.github.io

Weeks	First lecture	Second lecture	Labs	Q&A class
1	Introduction	Machine learning concepts	L1: Revision of Jupiter Notebook and ML libraries	General questions about the unit
2	Linear models and neural networks	Kernel machines	L2: Linear models, nnets and SVMs	ML concepts, linear models and nnets
3	Introduction to graphical models	Bayesian ML using graphical models	L3: Probabilistic graphical models	Probabilistic graphical models
4	k-means and mixtures of Gaussians	The EM algorithm	L4: k-means and EM	The k-means and EM
5	PCA	kernel PCA and ICA	L5: PCA and ICA	PCA and ICA
6	Seqential data and hidden Markov models	Sequential data and linear dynamical systems	L6: Hidden Markov Models	Modelling sequential data
7	Ensemble methods	Probabilistic model combination	L7: Ensemble methods	Combining models using ensembles and probabilistic methods
Coursework weeks				
11	Review/QA part I (Rui)	Review/QA part II (James)	-	Review/QA Part III (Edwin)
12	Review week			

Online/in person teaching

Every week you will get two teaching components:

- 1. Asynchronous/during your own time:
 - 2 recorded lectures (available on BB>Recordings)
 - Pointers to textbook (Bishop book)
- 2. Synchronous/during the time set in your timetable:
 - ▶ 1 live lecture (QA/problem class) [1 hour; Tue 9-10am]
 - 1 lab based on the lectures taught on that week [three hours; in person (or online if you cannot be in person)]

Microsoft Teams

All our synchronous activities will be run on Microsoft Teams:

COMS30035: Machine Learning (Teaching Unit)

How to join?

- 1. Install Microsoft Teams.
- 2. You should be already added to our Team.
- 3. Enter Team and the appropriate channel.

[Run BB/Teams demo]

Assessments

- Option 1, 100% Coursework²: A small project involving a ML problem [fulltime in weeks 8-10]
 - Coursework released at beginning of week 8.
 - Discussion with others is encouraged, but submissions need to be unique [plagiarism is taken seriously!]
- ▶ Option 2, 100% Exam [multiple choice]
- Labs are only formative, but we highly encourage you to finish all of them, as it will massively help you preparing for either option.

 $^{^2}$ It is possible to change options until end of Week 2, but remember that you can only do 2 units via Option 1.

Labs

- Thursday 9am 12pm [as in timetable]: In person (or online in bubbles)
- Lab Environment [Jupyter + Python] 3

- Lab Work:
 - Work proactively offline and/or online.

³For those doing the CS undergrad, we will follow a similar setup to Data Science for CS.

Labs: Important!!

- Main source of 1:1 support will be from the TAs in the labs!
- Labs are in person unless:
 - for a COVID related have to do them online, in that case let the lecturer know
- Labs are <u>essential</u> for a good understanding of ML!

Your TAs

That you will interact with through Teams:

- Stefan Radic Webster
- Will Greedy
- Dabal Pedamonti
- Alexander Quessy
- Amirhossein Dadashzadeh
- Tamsin Huggins

Tasks

- Live lecture (Tue 9-10): Bring questions about the structure of the unit
 - You can use the Teams QA>Ask Question system to ask question before hand.
- Next Lab (Week 1): Jupyter Notebook and intro to Python-Sklearn
 - 1. Go to MVB computer labs (2.11) / Or join your online Teams bubble
 - 2. See link to lab 1 on BB
 - Ask TAs for help!