PROPOSITIELOGICA: AFLEIDINGEN

PROPOSITIELOGICA: AFLEIDINGEN

► Inhoud

Afleiding: lineair, boomvorm

Natuurlijke deductie

Afleidingsregels: eliminatieregels, introductieregels

(Hulp)aanname

Afleidbaar

Syntactisch consistent en inconsistent

Volledigheidsstelling

AFLEIDINGEN

Vorig hoofdstuk: semantiek uitgedrukt in termen van modellen

Nu: Hoe conclusies trekken uit aannames door middel van regels. Dit wordt afleiden genoemd

Voorbeeld regels:

```
als \varphi \wedge \psi dan \varphi als \varphi en \psi dan \varphi \wedge \psi
```

Voorbeeld afleiding:

- 1. Jan vertelt een verhaal en Piet leest de krant
- 2. Als Jan een verhaal vertelt, dan lacht Marie
- 3. Als Piet de krant leest, dan kijkt Wilma televisie

```
Stap 1: Uit 1. leiden we af: 1a. Jan vertelt een verhaal
Stap 2: Uit 2. en 1a. leiden we af: 2a. Marie lacht
Stap 3: Uit 1. leiden we af: 1b. Piet leest de krant
Stap 4: Uit 3. en 1b. leiden we af: 2b. Wilma kijkt televisie
```

Stap 5: Uit 2a. en 2b leiden we af: Marie lacht en Wilma kijkt televisie

AFLEIDINGSREGELS

Afleidingsregels lineair voorgesteld:

▶ voorbeeld: als $\varphi \land \psi$ dan φ

Compactere voorstelling: boomvorm

$$\varphi_1 \dots \varphi_n$$
 aannames $\varphi \wedge \psi$ ψ conclusie φ

AFLEIDINGEN

Boomvorm voor het voorbeeld

- 1. Jan vertelt een verhaal en Piet leest de krant
- 2. Als Jan een verhaal vertelt, dan lacht Marie
- 3. Als Piet de krant leest, dan kijkt Wilma televisie

j: Jan vertelt verhaal

p: Piet leest de krant

m: Marie lacht

w: Wilma kijkt televisie

$$\begin{array}{c|c} j \wedge p & & j \wedge p \\ \hline j & j \rightarrow m & & p & p \rightarrow w \\ \hline m & & & w \end{array}$$

AFLEIDINGEN - VOORBEELDEN REGELS

Voorbeelden van afleidingsregels voor het systeem van natuurlijke deductie:

$$\frac{\varphi \wedge \psi}{\varphi} \wedge \mathsf{E}$$
 $\frac{\varphi \wedge \psi}{\psi} \wedge \mathsf{E}$

$$\frac{\varphi \wedge \psi}{\psi} \wedge \mathsf{E}$$

$$rac{arphi}{arphi \wedge \psi} \wedge \mathrm{I}$$

$$\begin{array}{ccc}
\varphi & \varphi \to \psi \\
& & & & & & & & \\
& & & & & & & \\
\hline
\psi & & & & & & & \\
\end{array}$$

Naam van de toegepaste regel wordt naast de streep genoteerd

AFLEIDINGEN

Als we met de gegeven afleidingsregels een formule ψ kunnen afleiden uit een formule φ (of formuleverzameling Σ),

dan schrijven we:

$$\varphi \vdash \psi$$
 of $\Sigma \vdash \psi$

$$\Sigma \vdash \psi$$

De formule φ (of formuleverzameling Σ) noemt men de aanname(s) in het bewijs

Vaak hebben we tijdens het afleiden hulpaannames nodig

Om te zien op grond van welke aannames een formule geldt schrijven we:

$$\psi$$
 uit Σ ψ uit $\varphi_1, ..., \varphi_n$

Notatie voor een hulpaanname: φ uit φ

of

AFLEIDINGEN - DEFINITIE

Definitie

Een formule φ heet **afleidbaar** uit een verzameling aannames Σ als er een afleiding van φ bestaat op basis van de gegeven afleidingsregels waarin aan het eind alleen nog aannames uit Σ van kracht zijn Notatie: $\Sigma \vdash \varphi$

– Als φ niet afleidbaar is noteren we dit $\Sigma \not\vdash \varphi$

NATUURLIJKE DEDUCTIE – AFLEIDINGSREGELS

Conjunctie

$$\frac{\varphi \wedge \psi}{\varphi}$$
 $\wedge \mathsf{E}$

$$\frac{\varphi \wedge \psi}{\psi} \wedge \mathsf{E}$$

$$\frac{\varphi}{\varphi \wedge \psi} \wedge I$$

$$\frac{\varphi \wedge \psi \text{ uit } \sum}{\varphi \text{ uit } \sum} \wedge E$$

$$\frac{\varphi \wedge \psi \text{ uit } \sum}{\psi \text{ uit } \sum} \wedge E$$

$$\frac{\varphi \text{ uit } \sum \psi \text{ uit } \Phi}{\varphi \wedge \psi \text{ uit } \sum \cup \Phi} \wedge I$$

NATUURLIJKE DEDUCTIE - AFLEIDINGSREGELS

Disjunctie

∨ Introductieregels

$$\frac{\varphi \text{ uit } \Sigma}{\varphi \vee \psi \text{ uit } \Sigma} \vee I \qquad \frac{\psi \text{ uit } \Sigma}{\varphi \vee \psi \text{ uit } \Sigma} \vee I$$

∨ Eliminatieregel

$$\frac{\varphi \vee \psi \text{ uit } \sum \alpha \text{ uit } \Phi, \varphi \quad \alpha \text{ uit } \Psi, \psi}{\alpha \text{ uit } \sum \cup \Phi \cup \Psi} \vee E[-\varphi, -\psi]$$

De aanwezigheid van de disjunctie laat ons toe om de hulpaannames ϕ en ψ te schrappen

Geef aan dat de hulpaannames φ en ψ ingetrokken worden

NATUURLIJKE DEDUCTIE - AFLEIDINGSREGELS

Implicatie

→ Eliminatieregel

$$\frac{\varphi \to \psi \text{ uit } \sum \varphi \text{ uit } \Phi}{\psi \text{ uit } \sum \cup \Phi} \to E$$

→ Introductieregel

De hulpaanname φ kan door deze regel terug worden ingetrokken

Geef aan dat de hulpaanname φ ingetrokken wordt

AFLEIDINGEN - REGELS

Negatie

→ Eliminatieregels

$$\frac{\varphi \text{ uit } \Phi \neg \varphi \text{ uit } \Psi}{\psi \text{ uit } \Phi \cup \Psi} \neg E$$

$$\frac{\varphi \text{ uit } \Phi, \neg \psi \qquad \neg \varphi \text{ uit } \Psi, \neg \psi}{\psi \text{ uit } \Phi \cup \Psi} \neg E^*[-\neg \psi] \text{ Merk op: } \neg \psi \text{ is hulpaanname die ingetrokken wordt}$$

Uit een tegenspraak volgt eender wat

Bewijs uit het ongerijmde: iets bewijzen door het tegendeel te weerleggen

→ Introductieregel

$$\frac{\varphi \text{ uit } \sum, \psi \qquad \neg \varphi \text{ uit } \Phi, \psi}{\neg \psi \text{ uit } \sum \cup \Phi} \neg \text{I } [-\psi]$$

Ook hier: uit een tegenspraak volgt eender wat. Hier wordt ψ als hulpaanname gebruikt. Merk op dat de weerlegde aanname ψ ook terug wordt ingetrokken.

AFLEIDINGSREGELS - NOTATIE

- ► Al de afleidingsregels hebben een equivalente lineaire vorm, b.v.
- ▶ Om de leesbaarheid te verhogen worden de namen van de toegepaste regels vaak weggelaten (tenzij expliciet gevraagd – bijv. in de WPOs en op het examen).

(\wedge I): Als φ uit Φ en ψ uit Ψ , dan $\varphi \wedge \psi$ uit $\Phi \cup \Psi$.

► Afleiding: in boomvorm:

$$\frac{p \wedge (q \wedge r) \vdash (p \wedge q) \wedge r}{\varphi = p \wedge (q \wedge r)}$$

$$\frac{p \wedge (q \wedge r) \operatorname{uit} \varphi}{p \operatorname{uit} \varphi} \wedge E \qquad \frac{p \wedge (q \wedge r) \operatorname{uit} \varphi}{q \operatorname{uit} \varphi} \wedge E \qquad \frac{p \wedge (q \wedge r) \operatorname{uit} \varphi}{q \wedge r \operatorname{uit} \varphi} \wedge E \qquad \frac{p \wedge (q \wedge r) \operatorname{uit} \varphi}{q \wedge r \operatorname{uit} \varphi} \wedge E \qquad \frac{p \wedge (q \wedge r) \operatorname{uit} \varphi}{r \operatorname{uit} \varphi} \wedge E \qquad \frac{p \wedge (q \wedge r) \operatorname{uit} \varphi}{r \operatorname{uit} \varphi} \wedge E$$

$$\frac{p \wedge q \operatorname{uit} \varphi}{(p \wedge q) \wedge r \operatorname{uit} \varphi} \wedge I \qquad \frac{q \wedge r \operatorname{uit} \varphi}{r \operatorname{uit} \varphi} \wedge I$$

► Afleiding: in boomvorm:

$$p \to (q \to r) \vdash (p \to q) \to (p \to r)$$

$$\varphi = p \to (q \to r)$$

$$\frac{p \text{ uit } p \quad p \to q \text{ uit } p \to q}{q \text{ uit } p, p \to q} \to E \qquad \frac{p \text{ uit } p \quad p \to (q \to r) \text{ uit } \varphi}{q \to r \text{ uit } p, \varphi} \to E$$

$$\frac{r \text{ uit } p, p \to q, \varphi}{p \to r \text{ uit } p \to q, \varphi} \to I, [-1]$$

$$\frac{p \to r \text{ uit } p \to q, \varphi}{(p \to q) \to (p \to r) \text{ uit } \varphi} \to I, [-2]$$

Afleiding: in boomvorm:

$$p \to (q \to r) \vdash (p \land q) \to r$$

$$\varphi = p \to (q \to r)$$

$$\frac{p \land q \text{ uit } p \land q}{q \text{ uit } p \land q} \land E$$

$$\frac{p \land q \text{ uit } p \land q}{q \text{ uit } p \land q} \land E$$

$$\frac{p \to q \text{ uit } p \land q}{q \text{ uit } p \land q} \land E$$

$$\frac{p \to q \text{ uit } p \land q}{q \text{ uit } p \land q} \land E$$

$$\frac{p \to (q \to r) \text{ uit } \varphi}{q \text{ uit } p \land q} \land E$$

$$\frac{p \to (q \to r) \text{ uit } \varphi}{q \to r \text{ uit } \varphi, p \land q} \to E$$

$$\frac{r \text{ uit } p \land q, \varphi}{(p \land q) \to r \text{ uit } \varphi} \to I, [-1]$$

► Afleiding: in boomvorm:

$$(p \lor q) \rightarrow r \vdash (p \rightarrow r) \land (q \rightarrow r)$$

$$\varphi = (p \lor q) \rightarrow r$$

$$\frac{p \text{ uit } p}{p \vee q \text{ uit } p} \vee I$$

$$\frac{q \text{ uit } q}{p \vee q \text{ uit } q} \vee I$$

$$p \vee q \text{ uit } q$$

$$(p \vee q) \rightarrow r \text{ uit } \varphi$$

$$(p \vee q) \rightarrow r \text{ uit } \varphi$$

► Afleiding:

$$(p \rightarrow r) \land (q \rightarrow r) \vdash (p \lor q) \rightarrow r$$

$$\varphi = (p \to r) \land (q \to r)$$

► Afleiding:

$$p \rightarrow q \vdash \neg q \rightarrow \neg p$$

$$\varphi = p \rightarrow q$$

STELLING - DEFINITIE

Definitie

Als φ afleidbaar is zonder aannames, dan heet φ een stelling (Σ is leeg).

Notatie: $\vdash \varphi$

– Als φ geen stelling is noteren we $\not\vdash \varphi$

AFLEIDINGEN EN STELLINGEN

Natuurlijke deducties leiden tot stellingen indien men alle aannames kan intrekken met de regel $\,\to\, I$

(zonder bewijs)

► Afleiding:
$$(\neg p \land \neg q) \Leftrightarrow \neg (p \lor q)$$

1e wet van de Morgan:

Eerst:
$$\neg(p \lor q) \to (\neg p \land \neg q) \vdash (\varphi = \neg(p \lor q))$$

dan $(\neg p \land \neg q) \to \neg(p \lor q) \vdash (\varphi = \neg p \land \neg q)$

► Afleiding: lineaire vorm $\neg \neg p \leftrightarrow p$

Eerst:
$$\vdash \neg \neg p \rightarrow p$$

1. $\neg \neg p$

2.
$$\neg p$$
 uit $\neg p$ aanname

uit *¬¬p*

aanname

3.
$$p$$
 uit $\neg p$ $\neg E^*(-2)$

4.
$$\neg \neg p \rightarrow p$$
 uit $\varnothing \longrightarrow I(-1)$

Tweedes: $\vdash p \rightarrow \neg \neg p$

2.
$$\neg p$$
 uit $\neg p$ aanname

3.
$$\neg p$$
 uit p $\neg I(-2)$

4.
$$p \rightarrow \neg \neg p$$
 uit $\varnothing \longrightarrow I(-1)$

Afleiding: lineaire vorm

$$\vdash p \rightarrow (q \rightarrow p)$$

1. <i>p</i>	uit <i>p</i>	aanname
2. <i>q</i>	uit <i>q</i>	aanname
3. $q \rightarrow p$	uit <i>p</i>	→I(-2)
$4. p \rightarrow (q \rightarrow p)$	$uit \varnothing$	$\rightarrow I(-1)$

SYNTACTISCH CONSISTENT - DEF

Definitie

Een verzameling formules Γ heet **syntactisch consistent** wanneer er geen formule φ is waarvoor zowel $\Gamma \vdash \varphi$ als $\Gamma \vdash \neg \varphi$

- Een verzameling formules die niet syntactisch consistent is heet syntactisch inconsistent
- Voorbeelden:
 - $\{\neg p, p \rightarrow q, q\}$ is syntactisch consistent
 - Γ = {p, p → q, ¬q } is syntactisch inconsistent,
 nl. Γ ⊢ ¬q en Γ ⊢ q

SYNTACTISCH CONSISTENT - BEWERING

Bewering:

Een formuleverzameling Γ is syntactisch consistent \Leftrightarrow er bestaat een formule φ zodat $\Gamma \not\vdash \varphi$

Bewijs

 \Rightarrow <u>TB</u>: Γ is consistent dan bestaat er een formule φ zodat $\Gamma \not\vdash \varphi$ Als Γ consistent is, dan is er geen formule φ waarvoor $\Gamma \not\vdash \varphi$ en $\Gamma \not\vdash \neg \varphi$. (Def.) Voor een willekeurige formule ξ geldt dan: ofwel $\Gamma \not\vdash \xi$ ofwel $\Gamma \not\vdash \neg \xi$. Als $\Gamma \not\vdash \xi$ dan is de ξ gezochte formule, zoniet is $\neg \xi$ de gezochte formule. We hebben dus bewezen dat er een formule φ bestaat zodat $\Gamma \not\vdash \varphi$

SYNTACTISCH CONSISTENT - BEWERING

Bewering:

Een formuleverzameling Γ is consistent \Leftrightarrow er bestaat een formule φ zodat $\Gamma \not\vdash \varphi$

Bewijs (deel 2)

 \leftarrow <u>TB</u>: Als er een formule φ zodat $\Gamma \not\vdash \varphi$ dan is Γ consistent

Bewijs via contrapositie, m.a.w. we bewijzen:

Als Γ inconsistent is dan bestaat er geen formule φ zodat $\Gamma \not\vdash \varphi$

Bewijs: stel Γ inconsistent, dan bestaat er een formule ξ zodat $\Gamma \vdash \xi$ en $\Gamma \vdash \neg \xi$.

Maar dan is met de \neg E regel elke formule afleidbaar uit Γ , en dus kan er geen formule φ bestaat zodat $\Gamma \not\vdash \varphi$

SYNTACTISCH CONSISTENT – BEWERING 2

Bewering:

 $\Gamma \not\vdash \varphi \Leftrightarrow \Gamma \cup \{\neg \varphi\}$ is syntactisch consistent

Bewijs (Beide richtingen telkens via contrapositie)

- \Rightarrow TB: $\Gamma \not\vdash \varphi$ dan $\Gamma \cup \{\neg \varphi\}$ consistent, of nog: $\Gamma \cup \{\neg \varphi\}$ inconsistent dan $\Gamma \not\vdash \varphi$ Stel dus $\Gamma \cup \{\neg \varphi\}$ is inconsistent.

 Dan is er een formule ξ waarvoor geldt $\Gamma \cup \{\neg \varphi\} \not\vdash \xi$ en $\Gamma \cup \{\neg \varphi\} \not\vdash \neg \xi$.

 De $\neg E^*$ regel geeft dan: $\Gamma \not\vdash \varphi$ (elke formule is afleidbaar).
- \Leftarrow <u>TB</u>: $\Gamma \cup \{ \neg \varphi \}$ is consistent dan $\Gamma \not\vdash \varphi$, of nog: $\Gamma \vdash \varphi$ dan $\Gamma \cup \{ \neg \varphi \}$ is inconsistent
 - Stel $\Gamma \vdash \varphi$, dan ook $\Gamma \cup \{ \neg \varphi \} \vdash \varphi$. Omdat ook $\Gamma \cup \{ \neg \varphi \} \vdash \neg \varphi$, is $\Gamma \cup \{ \neg \varphi \}$ inconsistent

INTERMEZZO: AXIOMATISCH AFLEIDEN

Axiomatisch afleiden

- ► In natuurlijke deductie spelen de afleidingsregels de belangrijkste rol
- ► In axiomatisch afleiden spelen axioma's de hoofdrol
- ► Een axioma is een formule die op elk moment in een bewijs kan gebruikt worden

Een axiomatisch systeem bestaat dan ook uit een verzameling axioma's en afleidingsregels.

AXIOMATISCH AFLEIDEN - VOORBEELD

Voorbeeld

Axioma's (S)

$$\phi \to (\psi \to \phi)
(\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))
(\neg \phi \to \neg \psi) \to (\psi \to \phi)$$

Afleidingsregel (Modus Ponens): Uit φ en $(\varphi \to \psi)$ mogen we ook ψ afleiden $\Sigma \vdash_S \psi$: ψ afleidbaar uit Σ met behulp van S en de afleidingsregel

als φ een axioma is, dan $\vdash_{S} \varphi$

Dit axiomatisch systeem is equivalent met natuurlijke deductie op voorwaarde dat enkel de connectieven → en ¬ gebruikt worden (functioneel volledig)!

____gen bewijs)

DEELSYSTEMEN

We kunnen regels laten vallen, dan krijgen we andere logica's Bijvoorbeeld als we de

$$\frac{\varphi \text{ uit } \Phi, \neg \psi \qquad \neg \varphi \text{ uit } \Psi, \neg \psi}{\psi \text{ uit } \Phi \cup \Psi} \neg E^*[-\neg \psi]$$

regel weglaten, dan zijn $\neg\neg p \rightarrow p$ (dubbele negatie) en $\neg p \lor p$ (uitgesloten derde) geen stellingen meer.

De resulterende logica wordt de intuïtionistische logica genoemd

VOLLEDIGHEIDSSTELLING

Verband tussen syntactische afleidbaarheid en semantische geldigheid

Volledigheidsstelling

Voor de propositielogica geldt

Als Σ een formuleverzameling *is*, en φ een formule, dan geldt:

 $\Sigma \vdash \varphi \operatorname{desda} \Sigma \models \varphi$

- Nog twee belangrijke begrippen:
 - Correctheid: afleidbare gevolgtrekkingen zijn semantisch geldig
 - Volledigheid: semantisch geldige gevolgtrekkingen zijn afleidbaar.

