Databases

Lecture 7
Relational Algebra (II)

• the *renaming* operator

$$\rho(R'(A_1 \to A_1', A_2 \to A_2', A_3 \to A_3'), E)$$

- E relational algebra expression
- the result, relation R', has the same tuples as the result of E
- attributes A_1 , A_2 , and A_3 are renamed to A_1' , A_2' , and A_3' , respectively

An Independent Subset of Operators

- independent set of operators M:
 - eliminating any operator op from M: there will be a relation that can be obtained using M's operators, but cannot be obtained with the operators in M-{op}
- for the previously described query language, with operators:

$$\{\sigma, \pi, \times, \cup, -, \cap, \otimes, *, \ltimes, \rtimes, \bowtie, \triangleright, \triangleleft, \div\}$$

an independent set of operators is $\{\sigma, \pi, \times, \cup, -\}$

- the other operators are obtained as follows (some expressions have already been introduced):
 - $R_1 \cap R_2 = R_1 (R_1 R_2)$
 - $\bullet R_1 \otimes_{\mathbb{C}} R_2 = \sigma_{\mathbb{C}}(R_1 \times R_2)$

- the other operators are obtained as follows (some expressions have already been introduced):
 - $R_1[\alpha]$, $R_2[\beta]$, $\alpha \cap \beta = \{A_1, A_2, \dots, A_m\}$, then: $R_1 * R_2 = \pi_{\alpha \cup \beta}(R_1 \bigotimes_{R_1, A_1 = R_2, A_1 \text{ AND } \dots \text{ AND } R_1, A_m = R_2, A_m} R_2)$
 - $R_1[\alpha], R_2[\beta], R_3[\beta] = \{(null, ..., null)\}, R_4[\alpha] = \{(null, ..., null)\}$ $R_1 \bowtie_{\mathbb{C}} R_2 = (R_1 \bigotimes_{\mathbb{C}} R_2) \cup (R_1 - \pi_{\alpha}(R_1 \bigotimes_{\mathbb{C}} R_2)) \times R_3$ $R_1 \bowtie_{\mathbb{C}} R_2 = (R_1 \bigotimes_{\mathbb{C}} R_2) \cup R_4 \times (R_2 - \pi_{\beta}(R_1 \bigotimes_{\mathbb{C}} R_2))$ $R_1 \bowtie_{\mathbb{C}} R_2 = (R_1 \bowtie_{\mathbb{C}} R_2) \cup (R_1 \bowtie_{\mathbb{C}} R_2)$
 - $R_1[\alpha]$, $R_2[\beta]$ $R_1 \triangleright R_2 = \pi_{\alpha}(R_1 * R_2)$ $R_1 \triangleleft R_2 = \pi_{\beta}(R_1 * R_2)$

- the other operators are obtained as follows (some expressions have already been introduced):
 - if $R_1[\alpha]$, $R_2[\beta]$, $\beta \subset \alpha$, then $r \in R_1 \div R_2$ if $\forall r_2 \in R_2$, $\exists r_1 \in R_1$ such that: $\pi_{\alpha-\beta}(r_1) = r$ and $\pi_{\beta}(r_1) = r_2$

=> r is in $\pi_{\alpha-\beta}(R_1)$, but not all the elements in $\pi_{\alpha-\beta}(R_1)$ are in the result

- $(\pi_{\alpha-\beta}(R_1)) \times R_2$ contains all the elements with one part in $\pi_{\alpha-\beta}(R_1)$ and the second part in R_2
- to obtain values that are disqualified, R_1 is subtracted from the obtained relation, and the result is projected on $\alpha-\beta$
- the final expression:

$$R_1 \div R_2 = \pi_{\alpha-\beta}(R_1) - \pi_{\alpha-\beta}((\pi_{\alpha-\beta}(R_1)) \times R_2 - R_1)$$

 $(\pi_{\alpha-\beta}(R_1)) \times R_2$ elems with one part in $\mathbb{Z}_{\alpha-\beta}(R_1)$ and \mathbb{Z}_{α} in \mathbb{R}_{α}

Fairy		Castle
	Tinker Bell	Hogwarts School of Witchcraft and Wizardry
	Tinker Bell	Far Far Away Palace
	Craiasa Zanelor	Hogwarts School of Witchcraft and Wizardry
	Tinker Bell	Rivendell
	Craiasa Zanelor	Far Far Away Palace
	Galadriel	Hogwarts School of Witchcraft and Wizardry
	Galadriel	Rivendell
	Galadriel	Far Far Away Palace

$\overline{}$			-	
		re-		e
•	-	P-)	Lq.	

Hogwarts School of Witchcraft and Wizardry Far Far Away Palace

Rivendell

* all fairies teaching at

Fairy	Castle		
Tinker Bell	Hogwarts School of Witchcraft and Wizardry		
Tinker Bell	Far Far Away Palace		
Tinker Bell	Rivendell		
Craiasa Zanelor	Zanelor Hogwarts School of Witchcraft and Wizardry		
Craiasa Zanelor	Far Far Away Palace		
Craiasa Zanelor	Rivendell		
Galadriel	Hogwarts School of Witchcraft and Wizardry		
Galadriel	Far Far Away Palace		
Galadriel	Rivendell		

- * the next examples use the statements below:
- assignment
 - R[list] := expression
 - the expression's result (a relation) is assigned to a variable (R[list]), specifying the name of the relation [and the names of its columns]
- eliminating duplicates from a relation

$$\delta(R)$$

sorting records in a relation

$$S_{\{list\}}(R)$$

grouping

$$\gamma_{\{list1\} \text{ group by } \{list2\}}(R)$$

- R's records are grouped by the columns in *list2*
- *list1* (that can contain aggregate functions) is evaluated for each group of records

```
students [id, name, sgroup, gpa, dob]
groups [id, year, program]
schedule [day, starthour, endhour, activtype, room, sgroup, facultym_id]
faculty_members [id, name]
```

1. The names of students in a given group:

$$R := \pi_{\{name\}} \Big(\sigma_{sgroup='222'}(students) \Big)$$

SELECT name

FROM students

WHERE sgroup='222'

2. The students in a given program (alphabetical list, by groups):

$$G \coloneqq \pi_{\{id\}} \left(\sigma_{program = 'IG'}(groups) \right)$$

$$R \coloneqq S_{\{sgroup, name\}} \left(\sigma_{sgroup \ is \ in \ G}(students) \right)$$

```
SELECT * students [id, name, sgroup, gpa, dob]

FROM students groups [id, year, program]

WHERE sgroup IN schedule [day, starthour, endhour, activtype, room,

(SELECT id sgroup, facultym_id]

FROM groups

WHERE program='IG')

ORDER BY sgroup, name
```

3. The number of students in every group of a given program:

```
sgroup is in \left(\frac{\pi_{\{id\}}(\sigma_{program='IG'}(groups))}{\min\{\sigma_{program='IG'}(groups)\}}\right) (students)  where \gamma_{sgroup} is of groups doing is \gamma_{sgroup} (ST)
            ST \coloneqq \sigma
SELECT sgroup, COUNT(*)
FROM (SELECT *
                                          students [id, name, sgroup, gpa, dob]
        FROM students
                                         groups [id, year, program]
        WHERE sgroup IN
                                          schedule [day, starthour, endhour, activtype, room,
              (SELECT id
                                            sgroup, facultym id]
               FROM groups
                                         faculty members [id, name]
               WHERE program='IG')
GROUP BY sgroup
```

4. A student's schedule (the student is given by name):

$$T \coloneqq \sigma_{sgroup \ is \ in\left(\pi_{\{sgroup\}}\left(\sigma_{name='Ionescu\ M.\ Razvan'}(students)\right)\right)}(schedule)$$

5. The number of hours per week for every group:

```
F(\widetilde{no}, \widetilde{sgroup}) \coloneqq \pi_{\{\underline{endhour-starthour}, sgroup\}}(schedule)
NoHours(sgroup, nohours) \coloneqq \gamma_{\{\underline{sgroup}, sum(no)\}}(sgroup) = \gamma_{\{\underline{sgroup}, sum(no)\}
```

```
students [id, name, sgroup, gpa, dob]
groups [id, year, program]
schedule [day, starthour, endhour, activtype, room, sgroup, facultym_id]
faculty_members [id, name]
```

6. The faculty members (their names) who teach a given student:

```
A\coloneqq (\sigma_{name='Ionescu\ M.\ Razvan'}(students))\otimes_{students.sgroup=schedule.sgroup}schedule B\coloneqq \pi_{\{facultym\_id\}}(A)\leftarrow_{gets} \text{ all } \text{ if } \text{
```

```
students [id, name, sgroup, gpa, dob]
groups [id, year, program]
schedule [day, starthour, endhour, activtype, room, sgroup, facultym_id]
faculty members [id, name]
```

7. The faculty members with no teaching assignments (i.e., not on the schedule):

```
C \coloneqq \pi_{\{name\}}(faculty\_members) - \\ \pi_{\{name\}}(schedule \otimes_{schedule.facultym\_id=faculty\_members.id} faculty\_members)
```

* Is there a problem if two different faculty members have the same name?

```
students [id, name, sgroup, gpa, dob]
groups [id, year, program]
schedule [day, starthour, endhour, activtype, room, sgroup, facultym_id]
faculty_members [id, name]
```

8. Students with school activities on every day of the week (all days with school activities considered):

$$A \coloneqq \delta \left(\pi_{\{day\}}(schedule) \right)$$

 $B := students \otimes_{students.sgroup = schedule.sgroup} schedule$

$$C \coloneqq \delta \big(\pi_{\{name, day\}}(B) \big)$$

$$D \coloneqq C \div A$$

* Is there a problem if two different students have the <u>same name?</u>

```
students [id, name, sgroup, gpa, dob]
groups [id, year, program]
schedule [day, starthour, endhour, activtype, room, sgroup, facultym_id]
faculty members [id, name]
```

Milestone - review

- Databases Fundamentals
- The Relational Model
- SQL
- Functional Dependencies. Normal Forms
- Relational Algebra

See lecture problem (solved at the board)

• Create a database for a system that manages several funding portals, which bring together investors and entrepreneurs seeking funding for their startups. The entities of interest to the problem domain are: Funding Portals, Investors, Entrepreneurs, Startups, and Investments. A funding portal has a name and a website URL. An investor can offer funding through several portals, has a first name, last name, and date of birth. An entrepreneur has a first name, last name, and a startup success probability score; (s)he can own several startups. A startup has a name and description; it belongs to an entrepreneur. An investment is made by an investor for a startup through one of the funding portals the investor is registered on; it has a value (the invested amount of money) and a date. An investor can finance the same startup multiple times (through the same portal or through different portals).

References

- [Ta13] ȚÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014
- [Ra00] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (2nd Edition), McGraw-Hill, 2000
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga08] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Prentice Hall Press, 2008
- [Ra07] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill, 2007, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html