Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 8 de febrero de 2018. Duración: 3:30 horas

N° de examen	Cédula	Apellido y nombre

Para cada pregunta o ejercicio, deben presentar claramente el razonamiento y cálculos realizados para obtener su respuesta final. Si una implicancia es válida debido a algún teorema, proposición o propiedad, deben especificarlo (nombre del teorema, lema, etc.) Presentar una respuesta final a la pregunta sin justificación carece de validez.

Ejercicio 1.

a. Sean $0 \neq a, b \in \mathbb{Z}$, probar que

$$mcd(a, b) = min\{s > 0 : s = ax + by con x, y \in \mathbb{Z}\}.$$

- **b**. Sean $a, b \in \mathbb{Z}$, probar que la ecuación diofántica ax + by = c tiene solución si y solo si mcd(a, b)|c.
- c. Hallar todas las soluciones módulo 62 de la ecuación

$$26x \equiv 262 \pmod{62}$$
.

Ejercicio 2.

a. Resolver los siguientes sistemas de congruencias:

i)
$$\begin{cases} x \equiv 0 \pmod{11} \\ x \equiv 8 \pmod{17} \end{cases}$$
 ii)
$$\begin{cases} x \equiv 33 \pmod{44} \\ x \equiv 25 \pmod{34} \end{cases}$$

- **b.** Sean p y q dos primos distintos. Describir el criptosistema RSA usando p y q (especificar cuáles datos son públicos y cuáles privados y definir las funciones E y D de cifrado y descifrado respectivamente).
- c. Probar que en el criptosistema RSA, la función de descifrado D es la función inversa de la función de cifrado E.
- **d**. Mostrar con un ejemplo por qué, en el sistema RSA, es necesario que los primos p y q sean distintos.
- e. Con los primos 11 y 17 utilizar el criptosistema RSA con e=171 para cifrar el número x=121.

Ejercicio 3.

- a. Definir grupo.
- **b.** Sea (G, \times) un grupo, probar que el neutro es único.
- **c**. Sea (G, \times) un grupo y $g \in G$, probar que el inverso de g es único.
- d. Sean G y K dos grupos y $f:G\to K$ un homomorfismo. Probar que si $g\in G$ es un elemento de orden finito entonces

$$o(f(g)) \mid o(g)$$
.

e. Hallar todos los homomorfismos $f:U(13)\to\mathbb{Z}_9$ (sugerencia: hallar una raíz primitiva módulo 13).