PBD_DOCKER	Romaniak Hubert	Informatyka	Semestr zimowy
		niestacjonarna III rok	2024/25

Opis zadania

Zadnie polega na uruchomieniu w Dockerze dwóch kontenerów z bazami MySQL, mających identyczny schemat. Następnie, należy uzupełnić jedną z baz losowymi danymi.

Główną częścią zadania jest uruchomienie trzeciego kontenera z aplikacją, która przekopiuje rekordy z jednej bazy do drugiej. Algorytm przepisujący powinien być nieoptymalny. Należy zmierzyć czas przepisywania dla kilku różnych rozmiarów tabeli.

Realizacia

Algorytm, który został użyty do przepisania danych wygląda następująco:

- 1. Jeżeli ilość rekordów w bazach jest taka sama, zakończ algorytm
- 2. Wylosuj jeden z rekordów z 1. bazy
- 3. Sprawdź czy rekord znajduje się w 2. bazie
- 4. Jeżeli rekord nie znajduje się w 2. bazie, idź do kroku 1
- 5. Zapisz rekord w 2. bazie
- 6. Idź do kroku 1

Algorytm ten przypomina "problem kolekcjonera kuponów", który polega na przewidzeniu, jak długo należy zbierać kupony (za każdym razem losując ze zwracaniem), aby zebrać każdy z nich z określonej puli przynajmniej raz. Złożoność algorytmiczna tego problemu to $O(n \log n)$.

Otrzymane wyniki (każdy pomiar to średnia z 5 uruchomień algorytmu):

ilość wpisów	czas wykonania [s]	
100	0,293217134	
200	0,980364513	
300	1,896155119	
400	3,440258312	
500	4,587092113	
600	7,61340332	
700	9,473242426	
800	13,47536521	
900	15,92954822	
1000	19,56992645	
1100	25,1285409	
1200	30,26942282	
1300	37,17220469	
1400	41,45215893	
1500	46,1513907	
1600	53,48855033	
1700	63,18006034	
1800	72,70423965	
1900	70,6115078	
2000	87,23112741	

Po wprowadzeniu danych do skryptu w Pythonie, używając biblioteki `scipy.optimize`, ostateczna funkcja opisująca linię trendu ma postać $f(x) = 0.000000853 \cdot x \cdot \log_{x/x-1}(36521146 \cdot x)$.

Dane te przedstawiają się w następujący sposób na wykresie.

