Пример решения задачи.

Исчисление предикатов

Предикаты P и Q определены на множестве $\{a,b,c\}$.

- 1. Найти предикат, равносильный предикату R, но не содержащий кванторов.
- 2. Выяснить, может ли предикат R быть выполнимым, но не тождественно истинным.

$$R = \forall_{x} \exists_{y} P(y, x) \leftrightarrow Q(x, z)$$

Решение.

1. Решим задание для предиката $\forall_x \exists_y P(y,x) \leftrightarrow Q(x,z)$.

Воспользуемся формулой:

$$a \leftrightarrow b = \overline{a} \cdot \overline{b} \lor a \cdot b$$
.

Имеем:

$$\forall_{x} \exists_{y} P(y, x) \leftrightarrow Q(x, z) = \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \forall_{x} \exists_{y} P(y, x) \cdot Q(x, z).$$

Воспользуемся теоремой об отрицании кванторов [1, с.198]. Получим:

$$\overline{\forall_{x} \exists_{y} P(y, x) \cdot Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x) \cdot Q(x, z)} = \exists_{x} \overline{\exists_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x) \cdot Q(x, z)} = \exists_{x} \overline{\forall_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x) \cdot Q(x, z)} = \exists_{x} \overline{\forall_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} = \exists_{x} \overline{\forall_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} = \exists_{x} \overline{\forall_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} = \exists_{x} \overline{\forall_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} = \exists_{x} \overline{\forall_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} \exists_{y} P(y, x)} \cdot \overline{Q(x, z)} = \exists_{x} \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} = \exists_{x} \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} = \exists_{x} \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{Q(x, z)} = \exists_{x} \overline{\forall_{x} P(y, x)} \cdot \overline{Q(x, z)} \vee \overline{Q($$

Если предикат
$$P(y,x_1,x_2,...,x_n)$$
 таков, что $y \in \{b_1,b_2,...,b_k\}$, то $\forall_y P(y,x_1,x_2,...,x_n) = P(b_1,x_1,x_2,...,x_n) \wedge P(b_2,x_1,x_2,...,x_n) \wedge ...$... $\wedge P(b_k,x_1,x_2,...,x_n)$. $\exists_y P(y,x_1,x_2,...,x_n) = P(b_1,x_1,x_2,...,x_n) \vee P(b_2,x_1,x_2,...,x_n) \vee ...$... $\vee P(b_k,x_1,x_2,...,x_n)$.

Имеем:

$$R = \exists_x \forall_y \overline{P(y,x)} \cdot \overline{Q(x,z)} \lor \forall_x \exists_y P(y,x) \cdot Q(x,z) =$$

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

$$\begin{split} &= \exists_x (\overline{P(a,x)} \wedge \overline{P(b,x)} \wedge \overline{P(c,x)}) \cdot \overline{Q(x,z)} \vee \forall_x (P(a,x) \vee P(b,x) \vee P(c,x)) \cdot Q(x,z) = \\ &= \left((\overline{P(a,a)} \wedge \overline{P(b,a)} \wedge \overline{P(c,a)}) \vee (\overline{P(a,b)} \wedge \overline{P(b,b)} \wedge \overline{P(c,b)}) \vee (\overline{P(a,c)} \wedge \overline{P(b,c)} \wedge \overline{P(c,c)}) \right) \cdot \overline{Q(x,z)} \vee \\ &\vee \left((P(a,a) \vee P(b,a) \vee P(c,a)) \wedge (P(a,b) \vee P(b,b) \vee P(c,b)) \wedge (P(a,c) \vee P(b,c) \vee P(c,c)) \right) \cdot Q(x,z). \end{split}$$

Мы нашли предикат, равносильный предикату R, но не содержащий кванторов.

2. Выясним, может ли предикат R быть выполнимым, но не тождественно истинным.

$$= \left((\overline{P(a,a)} \wedge \overline{P(b,a)} \wedge \overline{P(c,a)}) \vee (\overline{P(a,b)} \wedge \overline{P(b,b)} \wedge \overline{P(c,b)}) \vee (\overline{P(a,c)} \wedge \overline{P(b,c)} \wedge \overline{P(c,c)}) \right) \cdot \overline{Q(x,z)} \vee \\ \vee \left((P(a,a) \vee P(b,a) \vee P(c,a)) \wedge (P(a,b) \vee P(b,b) \vee P(c,b)) \wedge (P(a,c) \vee P(b,c) \vee P(c,c)) \right) \cdot Q(x,z).$$

Пусть P(y,x) - тождественно истинный предикат, тогда $\overline{P(y,x)}$ - тождественно ложный предикат. Значит, высказывание

$$\left((\overline{P(a,a)} \wedge \overline{P(b,a)} \wedge \overline{P(c,a)}) \vee (\overline{P(a,b)} \wedge \overline{P(b,b)} \wedge \overline{P(c,b)}) \vee (\overline{P(a,c)} \wedge \overline{P(b,c)} \wedge \overline{P(c,c)}) \right) \cdot \overline{Q(x,z)}$$

ложно, поскольку конъюнкция и дизъюнкция ложных высказываний ложна и выражение

$$= \left((\overline{P(a,a)} \land \overline{P(b,a)} \land \overline{P(c,a)}) \lor (\overline{P(a,b)} \land \overline{P(b,b)} \land \overline{P(c,b)}) \lor (\overline{P(a,c)} \land \overline{P(b,c)} \land \overline{P(c,c)}) \right) \cdot \overline{Q(x,z)} \lor \overline{$$

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

$$\vee \big((P(a,a) \vee P(b,a) \vee P(c,a)) \wedge (P(a,b) \vee P(b,b) \vee P(c,b)) \wedge (P(a,c) \vee P(b,c) \vee P(c,c)) \big) \cdot Q(x,z)$$

равносильно выражению

$$\big((P(a,a) \vee P(b,a) \vee P(c,a)) \wedge (P(a,b) \vee P(b,b) \vee P(c,b)) \wedge (P(a,c) \vee P(b,c) \vee P(c,c)) \big) \cdot Q(x,z)$$
 или $Q(x,z)$.

Пусть Q(a,b) = 0, Q(b,c) = 1, тогда R(a,b) = 0, R(b,c) = 1. Предикат R(x,z) может быть выполним, но не тождественно истинным.

Ответ: 1.

$$\left((\overline{P(a,a)} \wedge \overline{P(b,a)} \wedge \overline{P(c,a)}) \vee (\overline{P(a,b)} \wedge \overline{P(b,b)} \wedge \overline{P(c,b)}) \vee (\overline{P(a,c)} \wedge \overline{P(b,c)} \wedge \overline{P(c,c)}) \right) \cdot \overline{Q(x,z)} \vee \overline{Q($$

 $\vee \big((P(a,a) \vee P(b,a) \vee P(c,a)) \wedge (P(a,b) \vee P(b,b) \vee P(c,b)) \wedge (P(a,c) \vee P(b,c) \vee P(c,c)) \big) \cdot Q(x,z);$

2. Предикат R(x,z) может быть выполним, но не тождественно истинным.