PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA A 10 GIUGNO 2010

1) Nel circuito in figura, il diodo e i transistori bipolari possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento della rete.

 V_{cc} =5.0 V, β_F =100, R_1 = 750 Ω , R_2 = 5 k Ω , R_3 = 1 k Ω .

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{Tn} =- V_{Tp} = V_{T} e dai coefficienti $\beta_n = \beta_p$.

I segnali di ingresso $V_{a\ e}\ V_{b}$ abbiano l'andamento mostrato in figura.

Si determini il corrispondente andamento di V_u e si calcoli il tempo di propagazione $T_{p, HL.}$

$$V_{dd} = 3.3 \text{ V}, V_T = 0.4 \text{ V}, \ \beta_n = \beta_P = 1 \text{ mA/V}^2, C = 50 \text{ fF}.$$

[•] Indicare su ciascun foglio nome, cognome, data e numero di matricola

[•] Non usare penne o matite rosse

[•] L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

10/6/2010 - Soluzione esercizio 1

Osservazione preliminare: Q2 quando on sempre in AD; inoltre Q2 e D sono o entrambi on o entrambi off.

Regione 1: vi< v_{γ}. Q1 OFF e Q2 e D OFF. Allora vu=vcc.

Regione 2: $vi > v_y$. Suppongo Q1 ON in AD, Q2 e D OFF (da verificare validità dell'ipotesi).

ir3=(vcc-vu)/r3	Vediamo per quali valori la serie Q2 e D è off.
$ic1=\beta f/(\beta f+1)*(vi-v_{\gamma})/r1$	La serie Q2 e D è off fintantoché vcc-vu<2 v _γ ,
Ma ir3=ic1	ovvero fintantoché vi<1.886 V.
Risolvendo si trova che:	Quindi si rimane in questa regione fintantochè o
vu= 5.990-1.320 vi	A) Q1 va SAT, oppure
	B) la serie Q2 e D va ON
A) Q1 andrà sat quando	B) Il valore per il quale la serie Q2 e D rimane
$vce(Q1)=vu-(vi-v_{\gamma})=vcesat$, quindi sse	off è già stato calcolato sopra, e vale
$5.990-1.320 \text{ vi -(vi- } v_v) = \text{vcesat}$, da cui si ricava	vi<1.886 V.
vi= 2.819 V	Quindi si accende prima la serie Q2, D.
Si rimane in regione 2 per $v_y < vi < 1.886 \text{ V}$.	

Regione 3: O1 AD, O2 AD e D on.

regione 5. Q1 AD, Q2 AD e D on.	
ir3=(vcc-vu)/r3	Calcoliamo il valore per il quale Q1 va sat:
$ic1=\beta f/(\beta f+1)*(vi-v_{\gamma})/r1$	ir3=(vcc-vu)/r3
$ib2 = (vcc - vu - 2v_{\gamma})/r2$	$vu=vi-v_{\gamma}+vcesat$
$ie2=(\beta f+1)*ib2$	$ic1=\beta f/(\beta f+1)*(vi-v_{\gamma})/r1$
Ma ir3+ie2=ic1	ib2= $(vcc-vu-2 v_{\gamma})/r2$
	$ie2=(\beta f+1)*ib2$
Risolvendo si trova che: vu=3.617 - 0.062 vi	Ma ir3+ie2=ic1
Si rimane in questa regione fintantoché Q1 va SAT.	Da cui si ricava vi= 3.923V.
Si rimane in regione 3 per 1.886 V <vi <3.923="" td="" v<=""></vi>	

Regione 4: Q1 SAT, Q2 AD, D ON. vu=vi-v_y+vcesat=vi-0.55V. Si rimane in regione 4 per 3.923 V <vi< Vcc.

Di seguito si riporta la caratteristica statica di trasferimento.

10/6/2010 - Soluzione esercizio 1

Con riferimento alla figura soprastante:

- 1) t < 1 ns: $V_a = V_b = V_{dd}$, M_1 on, M_2 off, M_3 on, M_4 off $\rightarrow V_x = 0$, $V_u = 0$
- 2) 1 ns < t < 1.5 ns: $V_a = 0$, $V_b = V_{dd}$, M_1 off, M_2 on , M_3 on, M_4 off $\rightarrow V_x = V_{dd}$, $V_u = V_{dd} V_T$ II nodo V_u si carica attraverso un pull-up nMOS (escursione limitata a $V_{dd} V_T$)
- 3) 1.5ns < t < 2ns: $V_a = 0$, $V_b = 0$, M_1 off, M_2 on , M_3 off, M_4 on $\rightarrow V_x = V_{dd}$, $V_u = V_{dd}$ II nodo V_u si carica attraverso un pull-up pMOS (escursione completa a V_{dd})
- 4) 2ns < t < 2.5ns: $V_a = V_{dd}$, $V_b = 0$, M_1 on, M_2 off, M_3 off, M_4 on $\rightarrow V_x = 0$, $V_u = V_{dd}$
- 5) 2.5ns < t < 3 ns: $V_a = V_b = V_{dd}$, M_1 on, M_2 off, M_3 on, M_4 off $\rightarrow V_x = 0$, $V_u = 0$ Come (1)
- 6) 3ns < t < 4 ns: $V_a=0$, $V_b=V_{dd}$, M_1 off, M_2 on , M_3 on, M_4 off $\rightarrow V_x=V_{dd}$, $V_u=V_{dd}-V_T$ Come(2)

L'unico transitorio di discesa dell'uscita si compie a $2.5 \, \mathrm{ns}$, nella transizione fra (4) e (5). Il condensatore C, inizialmente carico con $V_u = V_{dd}$, si scarica attraverso $M_1 e M_2$ in serie, equivalenti a un unico transistore con $\beta_{eq} = \frac{\beta_n}{2}$. Per calcolare il tempo di propagazione $t_{p,HL}$ è quindi possibile utilizzare la relazione generale:

$$t_{p,HL} = \frac{2C}{\beta_{eq}} \left\{ \frac{V_T}{(V_{DD} - V_T)^2} + \frac{1}{2(V_{DD} - V_T)} \ln \left(3 - 4 \frac{V_T}{V_{DD}} \right) \right\}$$

che, con i valori assegnati, porta a:

$$t_{p,HL} = 41.3 \ ps$$