这个密码能算出来吗?

头条新闻 V 😘

9月6日 22:17 来自 微博 weibo.com

#我们的开学季#据说这是某高校食堂的WiFi,来看看你能连的上吗? 🚱

▲ 收起 Q 查看大图 D 向左旋转 C 向右旋转

本学期高等数学I, 共64学时

提出几点要求

- 1、不能缺课,有事要请假;
- 2、上课手机不能发出声音;
- 3、作业每周交一次,不能抄;
- 4、中间有两次测验, 计入期末总成绩. 要认真对待.

说明:

- 1、期末考试的总评成绩包括三部分,平时成绩(20%)随堂测验(40%)和期末考试成绩(40%);
- 2、平时成绩指的是课后作业的完成情况和上课的表现情况;

作业完成情况指:写作业的态度、交作业的次数,是 否有抄袭现象;

上课的表现情况指:是否回答问题,是否有旷课、迟到、早退、课堂纪律差等.

3、辅导答疑每周一次,时间、地点待定

第一章 函数

§1.1 函数的概念及简单性质

- 一、区间与邻域
- 1 区间

按区间端点划分:

开区间
$$(a,b)$$
, $(-\infty,+\infty)$,闭区间 $[a,b]$

半开闭区间(a,b), [a,b)

$$(a,b) = \{x \mid a < x < b\}$$
 $[a,b] = \{x \mid a \le x \le b\}$

按区间的长度划分:

有限区间
$$(a,b)$$
, $(a,b]$, $[a,b)$, $[a,b]$

无限区间 $(-\infty,b]$, $[a,+\infty)$

$$(-\infty, b] = \{x \mid -\infty < x \le b\}$$
 $(-\infty, +\infty) = \{x \mid -\infty < x < +\infty\}$

2 邻域

(1)点a的 δ 邻域:以a为中心, δ 为半径的开区间称为点a的 δ 邻域,记为 $U(a,\delta)$,如图 1.1(a)

即
$$U(a,\delta)$$
= $(a-\delta,a+\delta)$ = $\{x \mid a-\delta < x < a+\delta\}$
= $\{x \mid |x-a| < \delta\}$
$$\xrightarrow{a-\delta} \xrightarrow{a} \xrightarrow{a+\delta}$$

图 1.1 (a)

邻域实际上就是一个对称的开区间

例如: $U(2,\delta) = (2-\delta,2+\delta)$

若 δ =0.01, 则U(2, 0.01)=(1.99, 2.01)

(2) a 的 δ 去心邻域:

区间 $(a-\delta,a)\cup(a,a+\delta)$ 即为a的 δ 去心邻域,记为 $U(a,\delta)$,

即 $\overset{\circ}{U}(a,\delta)=(a-\delta,a)\cup(a,a+\delta)$, 如图1.1(b)

$$a-\delta$$
 a $a+\delta$

图 1.1 (b)

a的 δ 去心邻域 $\mathring{\mathrm{U}}(a,\delta) = \{x | 0 < |x-a| < \delta\}$

其中, a 称为邻域中心, δ 称为邻域半径.

去心邻域就是两个并联的长度一样的开区间

例如: $U(2,\delta)=(2-\delta,2)\cup(2,2+\delta)$

二、函数

1. 函数的概念

定义. 设数集 $D \subset R$, 则称映射 $f:D \to R$ 为定义在

D上的函数, 记为

 $y = f(x), x \in D$ 自变量 定义域

f(D) 称为值域

要求:会求函数的定义域

例如 $(1) y = \sqrt{1-x^2}$

解 开偶次方时,被开方数要大于等于零

∴ $1-x^2 \ge 0$, 解得 $-1 \le x \le 1$ 故定义域为 $-1 \le x \le 1$

(2)
$$y = \frac{1}{\ln(1+x)}$$
 (3) $y = \sqrt{9-x^2} + \frac{1}{x^2-5x+6}$

 $\mathbf{M}(2)$ 真数1+x > 0, 有x > -1

分母 $\ln(1+x) \neq 0$, 真数 $1+x \neq 1$, $x \neq 0$

故定义域为: x > -1且 $x \neq 0$

或表示为: $\{x \mid -1 < x < 0 \lor 0 < x < +\infty\}$

 $\mathbf{M}(3)$ 由 $9-x^2 \ge 0$, 得 $-3 \le x \le 3$,

由 $\frac{1}{x^2-5x+6}$, 得 $x \neq 2$, $x \neq 3$

故函数定义域为: $-3 \le x < 2$ 或2 < x < 3,

或表示为: $\{x \mid -3 \le x < 2 \lor 2 < x < 3\}$

注意: 定义域取两个函数定义域的公共部分

2. 函数的表达式 教材P2

- (1) 显函数: y由x的解析式直接表示,如 $y=x^3+3$
- (2) 隐函数: y和x之间的对应关系由方程确定,

$$e^x \cos(x+y) = 1$$

(3) 分段函数: 在定义域的不同范围内具有不同的

表达式,如
绝对值函数
$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

定义域
$$D=R$$

值 域
$$f(D) = [0, +\infty)$$

分段函数举例:

符号函数

$$y = \operatorname{sgn} x =$$

$$\begin{cases}
1, & \exists x > 0 \\
0, & \exists x = 0 \\
-1, & \exists x < 0
\end{cases}$$

取整函数

$$y = [x] = n$$
, $y = [x] = n$, $y =$

三、函数的简单性质 (P3)

1、有界性

例如: $y = \sin x$ $|\sin x| \le 1$, 函数有界

2、单调性

例如: $y = x^3$, 在定义域内单调递增

 $y = x^2$,在 $(-\infty, 0)$ 内单调递减,

 $(0,+\infty)$ 内单调递增

3、奇偶性

设函数 y = f(x)在(-a,a)上有定义,对于任意 $x \in (-a,a)$,

若f(-x) = -f(x),称f(x)为奇函数;

若f(-x) = f(x), 称f(x)为偶函数.

例如: $y = e^x - e^{-x}$ 是奇函数,

$$:: f(-x) = e^{(-x)} - e^{-(-x)} = e^{-x} - e^{x} = -f(x)$$

 $y = x^2 + 1$ 是偶函数

$$f(-x) = (-x)^2 + 1 = x^2 + 1 = f(x)$$

4、周期性

$$\forall x \in D, \exists T > 0$$
, 且 $x \pm T \in D$, 若 $f(x \pm T) = f(x)$

则称f(x)为周期函数,称T为周期(一般指最小正周期).

例如: $y = \sin x$, 满足 $\sin x = \sin(x + 2\pi) = \sin(x + 4\pi)$ ········ 故周期为 2π

> $y = \tan x$, 满足 $\tan x = \tan(x + \pi) = \tan(x + 2\pi) \cdots$ 所以,周期为 π

注:周期函数不一定存在最小正周期.

例如,常量函数 f(x) = C

作业: P5

必做: 3. (1) (4) (5) 5.

在草稿纸上演算: 2#, 8#

选做: 9*