Data Mining & Analytics

Prof. Zach Pardos

INFO254/154: Spring '19

Instance, row, data point, object, cluster, group, partition

Instance, row, data point, object, cluster, group, partition o, p C_i

Instance, row, data point, object, cluster, group, partition o, p

Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition o, p

Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition

Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition

Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition

Why "data point"? Think Euclidean space

Clustering: Terminology Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition **Features** X Instances data point --- 2-----

Why "data point"? Think Euclidean space

Clustering: Terminology Instance, row, data point, object, cluster, group, partition Features X Y Z

Why "data point"? Think Euclidean space

data point --- 2----- 2-----

Instances

Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition

Clustering: Theory Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition **Features** X Instances data point --- 2-----

What is the hypothesis behind clustering?

What is the hypothesis behind clustering?

That there is a set (K) of generating distributions from which the data were created

Clustering: MATLAB Demo

link to example code (MATLAB)

Clustering (in-class exercise)

Height

Wearing glasses?

Predominant color of clothing

How did you balance the 3 values?
How did you choose K?

Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition

- Classification:
 - grouping data points with respect to a target
- Clustering:
 - grouping data points with respect to a similarity metric

Instance, row, <u>data point</u>, object, <u>cluster</u>, group, partition

Instance, rows, feature, attribute, column, target, label

The cluster labels may be:

1) An existing feature included in the clustering

Instance, rows, feature, attribute, column, target, label

The cluster labels may be:

- 1) An existing feature included in the clustering
- 2) An existing feature not included in the clustering (i.e.target)

Instance, rows, feature, attribute, column, target, label

The cluster labels may be:

- 1) An existing feature included in the clustering
- 2) An existing feature not included in the clustering (i.e.target)
- 3) A latent attribute you don't have direct access to

Remaining lecture outline:

- Types of clustering methods
- Intrinsic measures of the goodness of a clustering
- The k-means algorithm
- Heuristics for choosing K

Types

Partitioning

- Find mutually exclusive clusters of (hyper) spherical shape
- Distance-based
- May use mean or medoid to represent cluster center

Partitioning

Density-based

Types

Partitioning

Density-based

Hierarchical

Partitioning

k-means (covered today)

Density-based

spectral (covered later in semester)

Hierarchical

Clustering (partitioning) formal definition:

D is a dataset containing n data points which can be represented in euclidean space

Partitioning distributes data points in D into k clusters, $C_1, ..., C_k$ such that $C_i \subset D$ and $C_i \cap C_j = \emptyset$ for 1 <= i, j <= k

Clustering: Measuring the goodness of a Clustering

Within-cluster Variance

- The sum of squared error between data points and their respective cluster center
- The lower the sum the higher quality the clustering
- Brute-force in this scenario is prohibitively expensive
 - How expensive?
 - What happens as k reaches |D|?

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} dist(\mathbf{p}, \mathbf{c_i})^2,$$

<u>algorithm</u>

Take as input: **k** the number of clusters and **D** a set of data points

- 1. Start by randomly choosing k data points to serve as initial centroids
- 2. Until there is no change in cluster assignments (or set a max iteration):
 - i. (re)assign each data point to the cluster centroid to which the data point is closest to in euclidean space
 - ii. update the cluster centroid values to represent the means of the data points of each cluster
- 3. Return the cluster membership for all data points

Clustering: Choosing K (heuristics)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} dist(\mathbf{p}, \mathbf{c_i})^2,$$

Sum of Squared Errors

The Elbow method

- Choose a range of K
- Run K-means for every K in your range
- After each run, calculate sum of squared errors
- Also calculate the change in slope between each consecutive sum
- The "elbow" aka "turning point" is the run where the largest difference in slope is calculated
- Why not use K = #data points?

Clustering: Choosing K (heuristics)

For each data point

The silhouette score

 Calculate the average distance between the data point and all of the members of its cluster a(o)

$$a(o) = \frac{\sum_{o' \in C_i, o \neq o'} dist(o, o')}{|C_i| - 1}$$

 Calculate the minimum average distance between the data point and members of the other clusters

$$b(\mathbf{o}) = \min_{C_j: 1 \le j \le k, j \ne i} \left\{ \frac{\sum_{\mathbf{o}' \in C_j} dist(\mathbf{o}, \mathbf{o}')}{|C_j|} \right\}$$

Calculate silhouette coefficient

$$s(\mathbf{o}) = \frac{b(\mathbf{o}) - a(\mathbf{o})}{\max\{a(\mathbf{o}), b(\mathbf{o})\}}.$$

 Average the coefficients of every data point to calculate the silhouette score

Clustering: Choosing K (heuristics)

For each data point

The silhouette score

 Calculate the average distance between the data point and all of the members of its cluster a(o)

$$a(o) = \frac{\sum_{o' \in C_i, o \neq o'} dist(o, o')}{|C_i| - 1}$$

 Calculate the minimum average distance between the data point and members of the other clusters

$$b(\mathbf{o}) = \min_{C_j: 1 \le j \le k, j \ne i} \left\{ \frac{\sum_{\mathbf{o'} \in C_j} dist(\mathbf{o}, \mathbf{o'})}{|C_j|} \right\}$$

- Calculate silhouette coefficient
- Average the coefficients of every data point

$$s(\mathbf{o}) = \frac{b(\mathbf{o}) - a(\mathbf{o})}{\max\{a(\mathbf{o}), b(\mathbf{o})\}}.$$

What is the range of the coefficient/score?

Clustering: Tips

- Silhouette coefficient
 - Does not try to achieve equal cluster sizes
 - Vulnerable to placing outlier data points in their own cluster to maximize coefficient

Elbow method

Error goes to zero as K approaches the number of data points

Clustering (in general)

- Sensitive to the scale of the feature. If one feature has a range of 0-100 (eg. age) and the others are between 0 and 1, the euclidean distance metric will be dominated by the distance between age.
- Solution to this issue is to normalize all features to the same scale

- Ideally, captures generating distributions
- Practically, is an exploration of the structure of your dataset

Office Hours

Starts now in this classroom

Prof. Zach Pardos

INFO254/154: Spring '19