電腦視覺與應用 Computer Vision and Applications

Lecture-04 Estimation for 2D projective transformations

Tzung-Han Lin

National Taiwan University of Science and Technology Graduate Institute of Color and Illumination Technology e-mail: thl@mail.ntust.edu.tw

- Lecture Reference at:
 - Multiple View Geometry in Computer Vision, Chapter 4.
 (major)
 - Computer Vision A Modern Approach, (NA).

Parameter estimation

- 2D homography Given a set of $(\mathbf{x}_i, \mathbf{x}_i')$, compute $\mathbf{H}(\mathbf{x}_i'=\mathbf{H}\mathbf{x}_i)$
- 3D to 2D camera projection Given a set of $(\mathbf{X}_i, \mathbf{x}_i)$, compute $\mathbf{P}(\mathbf{x}_i = \mathbf{P}\mathbf{X}_i)$
- Fundamental matrix Given a set of $(\mathbf{x}_i, \mathbf{x}_i')$, compute $\mathbf{F}(\mathbf{x}_i'^T\mathbf{F}\mathbf{x}_i=0)$
- Trifocal tensor
 Given a set of $(\mathbf{x}_i, \mathbf{x}_i', \mathbf{x}_i'')$, compute **T**

Number of measurements required

- At least as many independent equations as degrees of freedom required
- Example:

$$\mathbf{x'} = \mathbf{H}\mathbf{x}$$

$$\lambda \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2 independent equations / point

8 degrees of freedom

 $4x2 \ge 8$

Approximate solutions

- Minimal solution
 - 4 points yield an exact solution for H
- More points
 - No exact solution, because measurements are inexact ("noise")
 - Search for "best" according to some cost function
 - Algebraic or geometric/statistical cost

Gold Standard algorithm

TUST. CI'I

- Cost function that is optimal for some assumptions
- Computational algorithm that minimizes it is called "Gold Standard" algorithm
- Other algorithms can then be compared to it

$$\mathbf{x}'_{i} = \mathbf{H}\mathbf{x}_{i}$$

$$\mathbf{x}'_{i} \times \mathbf{H}\mathbf{x}_{i} = 0 \quad \Rightarrow \text{ indeed, } [0\ 0\ 0]^{T}$$

$$\mathbf{x}'_{i} = (x'_{i}, y'_{i}, w'_{i})^{T}$$

$$\mathbf{H}\mathbf{x}_{i} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_{i} \\ y_{i} \\ w_{i} \end{pmatrix} = \begin{pmatrix} h_{11}x_{i} + h_{12}y_{i} + h_{13}w_{i} \\ h_{21}x_{i} + h_{22}y_{i} + h_{23}w_{i} \\ h_{31}x_{i} + h_{32}y_{i} + h_{33}w_{i} \end{pmatrix} = \begin{pmatrix} \mathbf{h}^{1\mathsf{T}}\mathbf{x}_{i} \\ \mathbf{h}^{2\mathsf{T}}\mathbf{x}_{i} \\ \mathbf{h}^{3\mathsf{T}}\mathbf{x}_{i} \end{pmatrix}$$

$$\mathbf{H}\mathbf{x}_{i} = \begin{pmatrix} \mathbf{h}^{1\mathsf{T}}\mathbf{x}_{i} \\ \mathbf{h}^{2\mathsf{T}}\mathbf{x}_{i} \\ \mathbf{h}^{3\mathsf{T}}\mathbf{x}_{i} \end{pmatrix} \qquad \text{here} \qquad \mathbf{h}^{1\mathsf{T}} = [h_{11} \quad h_{12} \quad h_{13}] \\ \mathbf{h}^{2\mathsf{T}} = [h_{21} \quad h_{22} \quad h_{23}] \\ \mathbf{h}^{3\mathsf{T}} = [h_{31} \quad h_{32} \quad h_{33}]$$

$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = 0 \rightarrow \begin{pmatrix} x_{i}' \\ y_{i}' \\ w_{i}' \end{pmatrix} \times \begin{pmatrix} \mathbf{h}^{1\mathsf{T}} \mathbf{x}_{i} \\ \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} \\ \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} \end{pmatrix} = \begin{pmatrix} y_{i}' \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} - w_{i}' \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} \\ w_{i}' \mathbf{h}^{1\mathsf{T}} \mathbf{x}_{i} - x_{i}' \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} \end{pmatrix} = 0$$

$$\rightarrow \begin{pmatrix} y_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{3} - w_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{2} \\ w_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{1} - x_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{3} \\ w_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{1} - x_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{3} \\ x_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{2} - y_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{1} \end{pmatrix} = \begin{pmatrix} 0^{\mathsf{T}} \mathbf{h}^{1} - w_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{2} + y_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{3} \\ w_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{1} + 0^{\mathsf{T}} \mathbf{h}^{2} - x_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{3} \\ - y_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{1} + x_{i}' \mathbf{x}_{i}^{\mathsf{T}} \mathbf{h}^{2} + 0^{\mathsf{T}} \mathbf{h}^{3} \end{pmatrix} = 0$$

$$\begin{bmatrix} \mathbf{0}^{\mathsf{T}} & -w_i' \mathbf{x}_i^{\mathsf{T}} & y_i' \mathbf{x}_i^{\mathsf{T}} \\ w_i' \mathbf{x}_i^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -x_i' \mathbf{x}_i^{\mathsf{T}} \\ -y_i' \mathbf{x}_i^{\mathsf{T}} & x_i' \mathbf{x}_i^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = 0$$

Indeed, the above equation is an abbreviation of the following

format:
$$\begin{bmatrix}
[0 & 0 & 0] & -w'_{i}[x_{i} & y_{i} & w_{i}] & y'_{i}[x_{i} & y_{i} & w_{i}] \\
w'_{i}[x_{i} & y_{i} & w_{i}] & [0 & 0 & 0] & -x'_{i}[x_{i} & y_{i} & w_{i}] \\
-y'_{i}[x_{i} & y_{i} & w_{i}] & x'_{i}[x_{i} & y_{i} & w_{i}] & [0 & 0 & 0]
\end{bmatrix}
\begin{bmatrix}
h_{11} \\
h_{12} \\
h_{13} \\
h_{21} \\
h_{22} \\
h_{23} \\
h_{33}
\end{bmatrix} = 0$$

$$\mathbf{A}_{i}\mathbf{h} = \mathbf{0}$$

Equations are linear in **h**

$$\mathbf{A}_i \mathbf{h} = 0$$

Only 2 out of 3 are linearly independent (WHY?) (indeed, 2 eq/pt)

$$\begin{bmatrix} 0^{\mathsf{T}} & -w_i' \mathbf{x}_i^{\mathsf{T}} & y_i' \mathbf{x}_i^{\mathsf{T}} \\ w_i' \mathbf{x}_i^{\mathsf{T}} & 0^{\mathsf{T}} & -x_i' \mathbf{x}_i^{\mathsf{T}} \\ -y_i' \mathbf{x}_i^{\mathsf{T}} & x_i' \mathbf{x}_i^{\mathsf{T}} & 0^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = 0$$

■ Since equation 3 (3th row) could be a linear combination of equation 1 and equation 2. Example:

Equations are linear in h

$$\mathbf{A}_i \mathbf{h} = 0$$

$$\mathbf{A}_{i}\mathbf{h} = 0$$

$$\begin{bmatrix} 0^{\mathsf{T}} & -w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & 0^{\mathsf{T}} & -x_{i}'\mathbf{x}_{i}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3} \end{pmatrix} = 0$$

Holds for any homogeneous representation, e.g. (X_i) ,

■ Solving for **H**

$$\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_3 \\ \mathbf{A}_4 \end{bmatrix} \mathbf{h} = 0 \qquad \mathbf{A}\mathbf{h} = 0$$

size **A** is 8x9 or 12x9, but rank 8 Trivial solution is $\mathbf{h}=0_9^T$ is not interesting

1-D null-space yields solution of interest pick for example the one with

$$\|\mathbf{h}\| = 1$$

Over-determined solution

$$\begin{vmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_n \end{vmatrix} \mathbf{h} = 0 \qquad \mathbf{A}\mathbf{h} = 0$$

No exact solution because of inexact measurement i.e. "noise"

Find approximate solution

- Additional constraint needed to avoid 0, e.g.
- \blacksquare Ah = 0 not possible, so minimize \blacksquare Al

DLT algorithm

■ Summary:

Objective

Given n \geq 4 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix \mathbf{H} such that $\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$

Algorithm

- 1) For each correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i$ compute \mathbf{A}_i . Usually only two first rows needed.
- 2) Assemble n (2 x 9) matrices \mathbf{A}_i into a single (2n x 9) matrix \mathbf{A}
- 3) Obtain SVD of A. Solution for h is last column of V
- 4) Determine **H** from **h**

DLT algorithm—in practice:

For **ONE** correspondence, you will have **TWO** equations:

$$\begin{bmatrix} 0^{\mathsf{T}} & -w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & 0^{\mathsf{T}} & -x_{i}'\mathbf{x}_{i}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3} \end{pmatrix} = 0$$

$$\begin{bmatrix} 0 & 0 & 0 & -w_{i}'x_{i} & -w_{i}'y_{i} & -w_{i}'w_{i} & y'x_{i} & y'y_{i} & y'w_{i} \\ w_{i}'x_{i} & w_{i}'y_{i} & w_{i}'w_{i} & 0 & 0 & 0 & -x_{i}'x_{i} & -x_{i}'y_{i} & -x_{i}'w_{i} \end{bmatrix} \begin{pmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \\ h_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

DLT algorithm—in practice:

For *n* correspondence you have two equations:

$$\mathbf{Ah} = 0$$

$$\mathbf{A} = \mathbf{O}$$

$$\begin{bmatrix}
0 & 0 & 0 & -x_1w_1' & -y_1w_1' & -w_1w_1' & x_1y_1' & y_1y_1' & w_1y_1' \\
x_1w_1' & y_1w_1' & w_1w_1' & 0 & 0 & 0 & -x_1x_1' & -y_1x_1' & -w_1x_1' & \text{From 1st correspondence} \\
0 & 0 & 0 & -x_2w_2' & -y_2w_2' & -w_2w_2' & x_2y_2' & y_2y_2' & w_2y_2' & \text{From 2nd correspondence} \\
x_2w_2' & y_2w_2' & w_2w_2' & 0 & 0 & 0 & -x_2x_2' & -y_2x_2' & -w_2x_2' & -w_2x_2'$$

Using singular value decomposition (SVD):

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}} \qquad \left(\begin{array}{c} \mathbf{A} \end{array} \right) = \left(\begin{array}{c} \mathbf{U} \end{array} \right) \cdot \begin{pmatrix} w_0 \\ w_1 \\ \cdots \\ w_{N-1} \end{pmatrix} \cdot \left(\begin{array}{c} \mathbf{V}^T \\ \end{array} \right)$$
(2.6.2)

Reference book: Numerical recipes

DLT algorithm—example:

For example: a planar card on 3D environment. Six set correspondences are detected in image-AB, image-BC and

Tzung-Han Lin Ph.D.

Graduate Institute of Color and Illumination Technology

image-CA

Find all correspondences:


```
pA1=[651,386,1]^{T}
pA2=[576,696,1]^T
pA3=[730,651,1]^T
pA4 = [859,686,1]^T
pA5=[784,509,1]^{T}
pA6=[916,460,1]^T
```

```
pB1=[459,392,1]^T
pB2=[282,667,1]^T
pB3=[592,629,1]^T
pB4=[913,677,1]^T
pB5=[711,484,1]^{T}
pB6=[1009,424,1]^T
```

 $pC1=[522,406,1]^T$ $pC2=[446,688,1]^T$ $pC3=[605,657,1]^T$ $pC4=[801,708,1]^T$ $pC5=[682,499,1]^T$ $pC6=[918,402,1]^T$

Equation:

 $\mathbf{Ah} = 0$


```
Aab=[0 0 0 -pB1(3)*pA1' pB1(2)*pA1'; pB1(3)*pA1' 0 0 0 -pB1(1)*pA1';
  0 0 0 -pB2(3)*pA2' pB2(2)*pA2'; pB2(3)*pA2' 0 0 0 -pB2(1)*pA2';
  0 0 0 -pB3(3)*pA3' pB3(2)*pA3'; pB3(3)*pA3' 0 0 0 -pB3(1)*pA3';
  0 0 0 -pB4(3)*pA4' pB4(2)*pA4'; pB4(3)*pA4' 0 0 0 -pB4(1)*pA4';
  0 0 0 -pB5(3)*pA5' pB5(2)*pA5'; pB5(3)*pA5' 0 0 0 -pB5(1)*pA5';
  0 0 0 -pB6(3)*pA6' pB6(2)*pA6'; pB6(3)*pA6' 0 0 0 -pB6(1)*pA6';]
Abc=[0 0 0 -pC1(3)*pB1' pC1(2)*pB1'; pC1(3)*pB1' 0 0 0 -pC1(1)*pB1';
  0 0 0 -pC2(3)*pB2' pC2(2)*pB2'; pC2(3)*pB2' 0 0 0 -pC2(1)*pB2';
  0 0 0 -pC3(3)*pB3' pC3(2)*pB3'; pC3(3)*pB3' 0 0 0 -pC3(1)*pB3';
  0 0 0 -pC4(3)*pB4' pC4(2)*pB4'; pC4(3)*pB4' 0 0 0 -pC4(1)*pB4';
  0 0 0 -pC5(3)*pB5' pC5(2)*pB5'; pC5(3)*pB5' 0 0 0 -pC5(1)*pB5';
  0 0 0 -pC6(3)*pB6' pC6(2)*pB6'; pC6(3)*pB6' 0 0 0 -pC6(1)*pB6';]
Aca=[0 0 0 -pA1(3)*pC1' pA1(2)*pC1'; pA1(3)*pC1' 0 0 0 -pA1(1)*pC1';
  0 0 0 -pA2(3)*pC2' pA2(2)*pC2'; pA2(3)*pC2' 0 0 0 -pA2(1)*pC2';
  0 0 0 -pA3(3)*pC3' pA3(2)*pC3'; pA3(3)*pC3' 0 0 0 -pA3(1)*pC3';
  0 0 0 -pA4(3)*pC4' pA4(2)*pC4'; pA4(3)*pC4' 0 0 0 -pA4(1)*pC4';
  0 0 0 -pA5(3)*pC5' pA5(2)*pC5'; pA5(3)*pC5' 0 0 0 -pA5(1)*pC5';
  0 0 0 -pA6(3)*pC6' pA6(2)*pC6'; pA6(3)*pC6' 0 0 0 -pA6(1)*pC6';]
```

Aab =									
0	0	0	-651	-386	-1	255192	151312	392	
651	386	1		0	0	-298809	-177174	-459	
0	0	0	-576	-696	-1	384192	464232	667	
576	696	1	. 0	0	0	-162432	-196272	-282	
0	0	0	-730	-651	-1	459170	409479	629	
730	651	1		0	0	-432160	-385392	-592	
0	0	0	-859	-686	-1	581543	464422	677	
859	686	1		0	0	-784267	-626318	-913	
0	0	0	-784	-509	-1	379456	246356	484	
784	509	1		0	0	-557424	-361899	-711	
0	0	0	-916	-460	-1	388384	195040	424	
916	460	1	. 0	0	0	-924244	-464140	-1009	
Abc =									
0	0	0	-459	-392	-1	185436	158368	404	
459	392	1		0	0	-221238	-188944	-482	
0	0	0	-282	-667	-1	194016	458896	688	
282	667	1		0	0	-125772	-297482	-446	
0	0	0	-592	-629	-1	388944	413253	657	4.
592	629	1		0	0	-358160	-380545	-605	
0	0	0	-913	-677	-1	646404	479316	708	
913	677	1		0	0	-731313	-542277	-801	
0	0	0	-711	-484	-1	354789	241516	499) `
711	484	1		0	0	-484902	-330088	-682	
0	0	0	-1009	-424	-1	405618	170448	402	
1009	424		1 0	0	0	-926262	-389232	-918	
Aca =									
0	0	0	-482	-404	-1	186052	155944	386	
482	404	1		0	0	-313782		-651	
0	0	0	-446	-688	-1	310416	478848	696	
446	688	1		0	0	-256896	-396288	-576	
0	0	0	-605	-657	-1	393855	427707	651	
605	657	1		0	0	-441650	-479610	-730	
0	0	0	-801	-708	-1	549486	485688	686	
801	708	1		0	0	-688059	-608172	-859	
0	0	0	-682	-499	-1	347138	253991	509	
682	499	1		0	0	-534688	-391216	-784	
0	0	0	-918	-402	-1	422280	184920	460	
918	402	1	. 0	0	0	-840888	-368232	-916	

Solve by SVD $\mathbf{Ah} = 0$

Solve by SVD method.

Example in Matlab: [U,S,V]=svd(Aab)Hab=[V(1:3,9)';V(4:6,9)';V(7:9,9)'] →last column

Hab = -0.0027 0.0007 0.6249 0.0007 -0.0010 -0.7807 0.0000 0.0000 -0.0031 Hbc =0.0023 0.0020 0.9096 0.0077 -0.4155 -0.0000 0.0000 0.0047 Hca = -0.0032 -0.0001 0.5620 -0.0014 -0.0020 0.8271 -0.0000 -0.0000 -0.0006

 $\mathbf{H}_{\mathrm{C}\Delta} \approx (\mathbf{H}_{\mathrm{RC}}\mathbf{H}_{\Delta\mathrm{R}})^{-1}$ Up to scale

estimated points

measured points

$$\frac{\overline{p}_{B}}{\overline{p}_{C}} = \mathbf{H}_{AB}(p_{A})$$

$$\frac{\overline{p}_{C}}{\overline{p}_{A}} = \mathbf{H}_{BC}(p_{B})$$

$$\overline{p}_{A} = \mathbf{H}_{CA}(p_{C})$$

$$= p_C = \mathbf{H}_{BC} \mathbf{H}_{AB} (p_A)$$

Verify points

Measurement

 $pB1=[459,392,1]^T$

 $pB2=[282,667,1]^T$

pB3=[592,629,1]^T

 $pB4=[913,677,1]^T$

 $pB5=[711,484,1]^T$

 $pB6=[1009,424,1]^T$

Estimation from image A to B

 $\mathbf{H}_{\Delta \mathbf{R}} * \mathbf{p} \mathbf{A} \mathbf{1} = 459.3547 | 391.963$ \mathbf{H}_{AB} *pA2= 281.7844 | 667.7953 \mathbf{H}_{AB} *pA3= 593.3631 | 628.0585 $\mathbf{H}_{\Delta \mathbf{R}} * pA4 = 912.6841 | 677.0122$ \mathbf{H}_{AB} *pA5= 708.9633 | 483.3161 \mathbf{H}_{AB} *pA6= 1009.858 | 424.8571

Note: 3rd element is 1

Estimation from image C to B

 $\mathbf{H}_{BC}^{*-1*}pC1 = 458.6791$ 392.246 \mathbf{H}_{BC}^{-1*} pC2 = 282.0898 667.0208 \mathbf{H}_{BC}^{-1*} pC3 = 592.38 629.2953 \mathbf{H}_{BC}^{-1*} pC4 = 912.6669 677.023 \mathbf{H}_{BC}^{-1*} pC5 = 710.8009 483.0512 \mathbf{H}_{BC}^{-1*} pC6 = 1009.367 | 424.3639

Note: 3rd element is 1

Estimation from images C to A to B

 $\mathbf{H}_{AB}^{*}\mathbf{H}_{CA}^{*}\mathbf{pC1} = 458.7103 | 392.0953$ $\mathbf{H}_{AB}^*\mathbf{H}_{CA}^*\mathbf{pC2} = 281.851 | 666.9389$ $\mathbf{H}_{AB}^*\mathbf{H}_{CA}^*\mathbf{pC3} = 592.6809$ 629.201 $\mathbf{H_{AB}}^*\mathbf{H_{CA}}^*\mathbf{pC4} = 912.5832 676.8083$ $\mathbf{H_{AB}}^*\mathbf{H_{CA}}^*\mathbf{pC5} = 711.0876 | 483.1301$ $\mathbf{H_{AB}}^*\mathbf{H_{CA}}^*\mathbf{pC6} = 1009.163 | 424.7749$

Note: 3rd element is 1

Reprojection error:

With comparison to openCV result.

Matlab (using SVD)

Hab =

0.8816 -0.2139 -204.4555 -0.2171 0.3386 255.4139 -0.0004 -0.0003 1.0000

Hbc =

0.4706 0.4011 199.6538 -0.2304 1.5985 -75.7620 -0.0004 0.0007 1.0000

Hca =

1.0e+003 *

0.0025 0.0000 0.0000 0.0010

OpenCV (stored as float)

Homography Matrix (A to B): 0.879630 -0.214684 -203.041306 -0.217263 0.337555 255.723053 -0.000377 -0.000339 1.000000

Homography Matrix (B to C): 0.471623 0.402092 199.173584 -0.230184 1.600397 -76.327538 -0.000360 0.000672 1.000000

Homography Matrix (C to A): 5.713303 0.233439 -1023.777222 2.430560 3.548679 -1491.053589 0.003936 0.000247 1.000000

OpenCV (stored as double)

Homography Matrix (A to B): 0.879630 -0.214684 -203.041299 -0.217263 0.337555 255.723051 -0.000377 -0.000339 1.000000

Homography Matrix (B to C): 0.471623 0.402092 199.173589 -0.230184 1.600397 -76.327540 -0.000360 0.000672 1.000000

Homography Matrix (C to A): 5.713303 0.233439 -1023.777224 2.430560 3.548679 -1491.053634 0.003936 0.000247 1.000000

Inhomogeneous solution

Since **h** can only be computed up to scale, pick h_{33} =1, and solve for 8-vector

$$\begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i x_i' & y_i x_i' \end{bmatrix} \widetilde{\mathbf{h}} = \begin{pmatrix} -w_i y_i' \\ w_i x_i' \end{pmatrix}$$

- Solve using Gaussian elimination (4 points) or using linear least-squares (more than 4 points)
- However, if h_{33} =0 this approach fails also poor results if h_9 close to zero. Therefore, not recommended.
- Note $h_{33}=0$ if origin is mapped to infinity $\mathbf{l}_{\infty}^{\mathsf{T}}\mathbf{H}\mathbf{x}_{0} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}\mathbf{H} \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} = 0$

Inhomogeneous solution—cont.

Least square method: (n>4)

$$\begin{bmatrix} 0 & 0 & 0 & -x_1w_1' & -y_1w_1' & -w_1w_1' & x_1y_1' & y_1y_1' \\ x_1w_1' & y_1w_1' & w_1w_1' & 0 & 0 & 0 & x_1x_1' & y_1x_1' \end{bmatrix} \begin{pmatrix} -w_1y_1' \\ -w_1x_1' \\ -w_1x_1' \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & -x_2w_2' & -y_2w_2' & -w_2w_2' & x_2y_2' & y_2y_2' \\ x_2w_2' & y_2w_2' & w_2w_2' & 0 & 0 & 0 & x_2x_2' & y_2x_2' \end{bmatrix} \tilde{\mathbf{h}} = \begin{bmatrix} -w_2y_2' \\ -w_2x_2' \\ -w_2x_2' \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & -x_nw_n' & -y_nw_n' & -w_nw_n' & x_ny_n' & y_ny_n' \\ x_nw_n' & y_nw_n' & w_nw_n' & 0 & 0 & 0 & x_nx_n' & y_nx_n' \end{bmatrix} \begin{bmatrix} -w_ny_n' \\ -w_nx_n' \\ -w_nx_n' \end{bmatrix}$$

From 1st correspondence

From 2nd correspondence

From *n*-th correspondence

Rewrite as a matrix form:

Inhomogeneous solution—cont.

Solution for the matrix

Apply a transpose of N to the equation:

$$[\mathbf{N}^{\mathrm{T}}]_{8\times 2n}[\mathbf{N}]_{2n\times 8}\widetilde{\mathbf{h}}_{8\times 1} = [\mathbf{N}^{\mathrm{T}}]_{8\times 2n}\mathbf{d}_{2n\times 1}$$

Let:
$$\mathbf{M}_{8\times8} = [\mathbf{N}^{\mathrm{T}}]_{8\times2n} [\mathbf{N}]_{2n\times8}$$

 $\widetilde{\mathbf{d}}_{8\times1} = [\mathbf{N}^{\mathrm{T}}]_{8\times2n} \mathbf{d}_{2n\times1}$

Then,
$$\mathbf{M}_{8\times8}\widetilde{\mathbf{h}}_{8\times1} = \widetilde{\mathbf{d}}_{8\times1}$$

$$\widetilde{\mathbf{h}}_{8\times1} = [\mathbf{M}^{-1}]_{8\times8}\widetilde{\mathbf{d}}_{8\times1} = ([\mathbf{N}^{T}]_{8\times2n}[\mathbf{N}]_{2n\times8})^{-1}[\mathbf{N}^{T}]_{8\times2n}\mathbf{d}_{2n\times1}$$

Inhomogeneous solution—example

For example (the same with previous example):

$$\mathbf{N}_{2n\times 8} \mathbf{\tilde{h}}_{8\times 1} = \mathbf{d}_{2n\times 1}$$

$$\mathbf{dab} =$$

$$\mathbf{dab}$$

$$\widetilde{\mathbf{h}}_{8\times 1} = \left(\left[\mathbf{N}^{\mathrm{T}} \right]_{8\times 2n} \left[\mathbf{N} \right]_{2n\times 8} \right)^{-1} \left[\mathbf{N}^{\mathrm{T}} \right]_{8\times 2n} \mathbf{d}_{2n\times 1}$$

Implement in Matlab:

hab=inv(Nab'*Nab)*Nab'*dab

hab =	>	Hab =		
0.8803				
-0.2141				
-203.6746		0.0002	0.2141	-203.6746
-0.2172		0.8803	-0.2141	-203.0740
0.3381		0.2172	0.2291	255.5480
255.5480		-0.21/2	0.5561	200.0 4 00
-0.0004		0.0004	0.0003	1.0000
-0.0003		-0.0004	-0.0003	1.0000

Inhomogeneous solution—example

Compare result with SVD method:

```
Matlab (using inhomogenous sol.)
Hab =
  0.8803 -0.2141 -203.6746
 -0.2172 0.3381 255.5480
 -0.0004 -0.0003 1.0000
Hbc =
  0.4710 0.4017 199.4039
  -0.2304
         1.5995 -76.0091
  -0.0004 0.0007 1.0000
Hca =
 1.0e+003 *
  0.0056
          0.0002 -1.0019
          0.0035 -1.4654
  0.0024
  0.0000
          0.0000
                 0.0010
```

```
Matlab (using SVD
Hab =
  0.8816 -0.2139 -204.4555
          0.3386 255.4139
 -0.2171
 -0.0004 -0.0003 1.0000
Hbc =
  0.4706
          0.4011 199.6538
  -0.2304
          1.5985 -75.7620
  -0.0004
          0.0007 1.0000
Hca =
 1.0e+003 *
  0.0058
          0.0002 -1.0419
          0.0036 -1.5110
  0.0025
  0.0000
          0.0000 0.0010
```

OpenCV (stored as float)

Homography Matrix (A to B): 0.879630 -0.214684 -203.041306 -0.217263 0.337555 255.723053 -0.000377 -0.000339 1.000000

Homography Matrix (B to C): 0.471623 0.402092 199.173584 -0.230184 1.600397 -76.327538 -0.000360 0.000672 1.000000

Homography Matrix (C to A): 5.713303 0.233439 -1023.777222 2.430560 3.548679 -1491.053589 0.003936 0.000247 1.000000

Degenerate configurations

■ Sometimes, degeneration happens...

- Algebraic distance
- Geometric distance
- Re-projection error

ATTUST. CIT.

Algebraic distance

DLT minimizes ||Ah||

 $\mathbf{\varepsilon} = \mathbf{A}\mathbf{h}$ residual vector

algebraic error vector

 \mathbf{E}_i partial vector for each $(\mathbf{x}_i \leftrightarrow \mathbf{x}_i')$

algebraic distance

$$\sum_{i} d_{\text{alg}}(\mathbf{x}'_{i}, \mathbf{H}\mathbf{x}_{i})^{2} = \sum_{i} \|\mathbf{\varepsilon}_{i}\|^{2} = \|\mathbf{A}\mathbf{h}\|^{2} = \|\mathbf{\varepsilon}\|^{2}$$

Not geometrically/statistically meaningful, but given good normalization it works fine and is very fast (use for initialization)

Algebraic distance—cont.

- Algebraic distance—cont.
 - A very simple example by the line equation

- Geometric distance
 - Error in one image

$$\sum_{i} d(\mathbf{x}_{i}', \mathbf{H}\widetilde{\mathbf{x}}_{i})^{2}$$

- **x** measured coordinates
- $\hat{\mathbf{x}}$ estimated coordinates
- $\tilde{\mathbf{x}}$ true coordinates

d(.,.) Euclidean distance (in image)

Symmetric transfer error

$$\sum_{i} \left[d(\mathbf{x}_{i}, \mathbf{H}^{-1}\mathbf{x}_{i}')^{2} + d(\mathbf{x}_{i}', \mathbf{H}\mathbf{x}_{i})^{2} \right]$$

Reprojection error

$$\sum_{i} \left[d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}'_{i}, \hat{\mathbf{x}}'_{i})^{2} \right]$$

e.g. calibration pattern

- Geometric distance
 - Reprojection error

$$d(\mathbf{x},\hat{\mathbf{x}})^2 + d(\mathbf{x}',\hat{\mathbf{x}}')^2$$

Normalizing transformations

To have a better solution for DLT algorithm (much

Normalizing transformations—cont.

- What the **T** means?:
 - A composition of "Translation" and "Scale".
 - Indeed,

$$\begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}_{Normalized} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\overline{x} \\ 0 & 1 & -\overline{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}_{Original}$$

$$\mathbf{T} = \begin{bmatrix} s_x & 0 & -s_x \overline{x} \\ 0 & s_y & -s_y \overline{y} \\ 0 & 0 & 1 \end{bmatrix}$$

 $(\bar{x}, \bar{y}) \longrightarrow$ centroid of all points

 (s_x, s_y) \longrightarrow scale (could be $s_x = s_y$), and be suggested to be $\sqrt{2}/l$ l is the average distance to centroid.

Objective

Given n \geq 4 2D to 2D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the 2D homography matrix \mathbf{H} such that $\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$

Algorithm

- (i) Normalize points, here we have and
- (ii) Apply DLT algorithm to determine
- (iii) Denormalize solution, then get

Algorithm 4.2 [Hartley04]

RANSAC (RANdom SAmple Consensus)

A robust estimation

Objective

Robust fit of model to data set S which contains outliers

Algorithm

- 1) Randomly select a sample of *s* data points from S and instantiate the model from this subset.
- Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- 3) If the subset of S_i (the number of inliers) is greater than some threshold T, re-estimate the model using all the points in S_i and terminate
- 4) If the size of S_i is less than T, select a new subset and repeat the above.
- 5) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i

Algorithm 4.4 [Hartley04]

RANSAC—cont. (RANdom SAmple Consensus)

For example, randomly select 7 correspondences, then calculate homography (H).

TUST. CT

(RANdom SAmple Consensus)

- Summary:
 - 1. Two thresholds are assigned
 - Distance of error (誤差距離)
 - Number of inliers (正確的對應點數量)
 - 2. Randomly select correspondences
 - 3. Unique solution?

Automatic estimation of a homography (RANSAC)

Objective

Compute the 2D homography between two images.

Algorithm

- (i) Interest points: Compute interest points in each image.
- (ii) Putative correspondences: Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
- (iii) RANSAC robust estimation: Repeat for N samples, where N is determined adaptively as in algorithm 4.5:
 - (a) Select a random sample of 4 correspondences and compute the homography H.
 - (b) Calculate the distance d_{\perp} for each putative correspondence.
 - (c) Compute the number of inliers consistent with H by the number of correspondences for which $d_{\perp} < t = \sqrt{5.99} \, \sigma$ pixels.

Choose the H with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.

- (iv) Optimal estimation: re-estimate H from all correspondences classified as inliers, by minimizing the ML cost function (4.8–p95) using the Levenberg–Marquardt algorithm of section A6.2(p600).
- (v) Guided matching: Further interest point correspondences are now determined using the estimated H to define a search region about the transferred point position.

The last two steps can be iterated until the number of correspondences is stable.

