Load Balancing with nftables

by Laura García (Zen Load Balancer Team) Netdev 1.1

Load Balancing with nftables

Prototype of

Goal:

High Performance Load Balancer

Load Balancing Solutions

Load Balancing Solutions

Linux Virtual Server

iptables

nftables

Load Balancing Solutions - LVS

- Feature complete & versatile schedulers
- Several forwarding methods
- Integrated health checks
- Built on top of netfilter
- Mostly kernel code base

Load Balancing Solutions - iptables

- Schedulers based on xtables extensions
- SNAT and DNAT as forwarding methods
- Mark packets and forwarding
- Backend health checks from user space

Load Balancing Solutions - iptables

(1st Approach)

Load Balancing Solutions - nftables

- Using nftables infrastructure
 - nft libraries
 - nftables VM & its instructions
- Dynamic and atomic rules
- No marking packets needed
- Several forwarding methods

Load Balancing Solutions - nftables

Schedulers

round robin, weight, least connections

Persistence

Source IP

Forwarding methods

SNAT, DNAT

Health checks

Backend monitoring in user space at different levels

Good Integration

QoS, filtering

Round Robin Load Balancing with LVS

```
ipvsadm -A -t 192.168.0.40:80 -s rr
ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.10:80 -m
ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.11:80 -m
```


Round Robin Load Balancing with IPT

iptables -t nat -A PREROUTING -m statistic --mode nth --every 2 --packet 0 -d 192.168.0.40 -p tcp --dport 80 -j DNAT --to-destination 192.168.100.10:80

iptables -t nat -A PREROUTING -m statistic --mode nth --every 2 --packet 1 -d 192.168.0.40 -p tcp --dport 80 -j DNAT --to-destination 192.168.100.11:80

Round Robin Load Balancing with NFT

```
table ip lb {
     chain prerouting {
         type nat hook prerouting priority 0; policy accept;
          ip daddr 192.168.0.40 tcp dport http dnat nth 2 map {
               0: 192.168.100.10,
               1: 192.168.100.11
                                                                           192.168.0.40:80
                                                                         LB
                                                    192.168.100.10:80
                                                                                  192.168.100.11:80
```

Weight Load Balancing with LVS

ipvsadm -A -t 192.168.0.40:80 -s wrr ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.10:80 -m -w 100 ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.11:80 -m -w 50

Weight Load Balancing with IPT

```
iptables -t nat -A PREROUTING -m statistic --mode random --probability 1\
-d 192.168.0.40 -p tcp --dport 80 -j DNAT --to-destination 192.168.100.10:80
iptables -t nat -A PREROUTING -m statistic --mode random --probability 0.33\
-d 192.168.0.40 -p tcp --dport 80 -j DNAT --to-destination 192.168.100.11:80
```

Weight Load Balancing with NFT

```
table ip lb {
    chain prerouting {
         type nat hook prerouting priority 0; policy accept;
         ip daddr 192.168.0.40 tcp dport http dnat random upto 100 map {
              0-66: 192.168.100.10.
              67-99: 192.168.100.11
```

Weight Load Balancing Multiport with LVS

iptables -A PREROUTING -t mangle -d 192.168.0.40 -p tcp -m multiport \
--dports 80,443 -j MARK --set-mark 1

ipvsadm -A -f 1 -s wrr ipvsadm -a -f 1 -r 192.168.100.10:0 -m -w 100 ipvsadm -a -f 1 -r 192.168.100.11:0 -m -w 50

Weight Load Balancing Multiport with IPT

```
iptables -t nat -A PREROUTING -m statistic --mode random --probability 1 \
-d 192.168.0.40 -p tcp -m multiport --dports 80,443 -j DNAT \
--to-destination 192.168.100.10
```

```
iptables -t nat -A PREROUTING -m statistic --mode random --probability 0.33 \
-d 192.168.0.40 -p tcp -m multiport --dports 80,443 -j DNAT \
--to-destination 192.168.100.11
```

Weight Load Balancing Multiport with NFT

```
table ip lb {
    chain prerouting {
         type nat hook prerouting priority 0; policy accept;
         ip daddr 192.168.0.40 tcp dport { http,https } dnat random upto 100 map {
              0-66: 192.168.100.10.
              67-99: 192.168.100.11
```

Weight LB IP persistence with LVS

ipvsadm -A -t 192.168.0.40:80 -s wrr -p 300 ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.10:80 -m -w 100 ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.11:80 -m -w 50

Weight LB IP persistence with IPT

```
iptables -t mangle -A PREROUTING -j CONNMARK --restore-mark
iptables -t mangle -A PREROUTING -m statistic --mode random --probability 1\
     -d 192.168.0.40 -p tcp --dport 80 -j MARK --set-xmark 1
iptables -t mangle -A PREROUTING -m statistic --mode random --probability 0.33 \
     -d 192.168.0.40 -p tcp --dport 80 -j MARK --set-xmark 2
iptables -t mangle -A PREROUTING -m recent --name "mark1_list" --rcheck --seconds 120 \
     -d 192.168.0.40 -p tcp --dport 80 -j MARK --set-xmark 1
iptables -t mangle -A PREROUTING -m recent --name "mark2_list" --rcheck --seconds 120 \
     -d 192.168.0.40 -p tcp --dport 80 -j MARK --set-xmark 2
iptables -t mangle -A PREROUTING -m state --state NEW -j CONNMARK --save-mark
iptables -t nat -A PREROUTING -m mark --mark 1 -j DNAT -p tcp \
     --to-destination 192.168.100.10:80 -m recent --name "mark1 list" --set
iptables -t nat -A PREROUTING -m mark --mark 2 -i DNAT -p tcp \
     --to-destination 192.168.100.11:80 -m recent --name "mark2 list" --set
```

Weight LB IP persistence with NFT

```
table ip lb {
    map dnat-cache { type ipv4_addr : ipv4_addr; timeout 120s; }
    chain cache-done { dnat ip saddr map @dnat-cache }
    chain prerouting {
         type nat hook prerouting priority 0; policy accept;
         ip saddr @dnat-cache goto cache-done
         ip daddr 192.168.0.40 tcp dport http dnat random upto 100 map {
             0-66: 192.168.100.10.
             67-99: 192.168.100.11
         map dnat-cache add { ip saddr : ip daddr }
```

Weighted Least Connections with NFT

Weighted Least Response with NFT

Weighted Least CPU Load with NFT

Work to do

Work to do

Implement some native functions in nftables

random, nth, maps enhancements

Work to do

Daemon nft-lbd

health checks support, dynamic weight (least connections, least response, etc.)

Simplify kernel infrastructure

Move complexity to User Space

Consolidate kernel development

Avoid duplicated work, better maintenance, native LB support

Unique API for networking handling

nftables

Questions? Thank you!

Load Balancing with nftables

Laura García (Zen Load Balancer Team) lauragl@sofintel.net