Traitement automatique des langues par Loïc Herman, page 1 de 2

Chapitre 1 — Prétraitements

1 Segmentation en mots et phrases

1.1 Étapes préalables du TAL

- Segmentation en phrases (sentence splitting): analyse du rôle des ponctuations
- lyse des ponctuations également nécessaire
- Normalisation des mots (plus ou moins avancée)

1.2 Difficultés de segmentation

- Phrases: format initial des textes, ponctuations, majuscules
- Points d'interrogation et d'exclamation fiables comme fins de phrase, contrairement aux points
- Solution : analyse des ponctuations préalable à la segmentation en phrases

1.3 Tokens versus types

- Token = occurrence d'un mot | Type = forme d'un mot (dictionnaire)
- Lemme = forme de base (ex : pars, partir, partîmes PARTIR)
- Le nombre de formes (types) augmente avec le nombre de tokens (approximation : $|V| > N^{1/2}$)

1.4 Tokenization et normalisation

- Difficultés: ponctuations, abréviations, contractions, élisions, mots composés
- Convention Penn Treebank : séparer apostrophes (doesn't does n't) et ponctuations
- Normalisation: capitalisation (lowercase, préservation, truecasing)
- Byte-Pair Encoding (BPE): solution hybride pour traiter les mots rares

Niveaux d'analyse en TAL

2.1 Analyse lexicale

Segmentation en mots, analyse morphosyntaxique 3 (POS tagging), identification des entités nommées

2.2 Analyse syntaxique

Regroupement des syntagmes (chunking), identification des fonctions grammaticales, création d'arbres syntaxiques

2.3 Analyse sémantique

 Désambiguïsation sémantique, probabilités de cooccurrence, rôles sémantiques, forme logique

2.4 Analyse pragmatique

Thèmes, sentiments, pronoms, actes de langage, structures argumentatives

Alphabets et encodage informatique

3.1 Systèmes d'écriture

- Alphabétiques : dizaines de signes, phonétiques (latin, grec, arabe, hébreu)
- Syllabiques: centaine de signes (japonais hiragana/katakana, inuit)
- Idéographiques : dizaines de milliers de signes (chinois/japonais)

3.2 Encodages

- Jeu de caractères : correspondance entre caractères et nombres (points de code)
- Encodage : représentation machine des points de code (suite de bits)
- ASCII: 128 points de code (alphabet anglais stan $dard) \rightarrow 7 bits$
- ISO Latin/8859: 256 points de code, plusieurs variantes (ISO 8859-1, 8859-2, etc.) \rightarrow 8 bits

3.2.1 Unicode

Standard international pour tout alphabet, idéogramme, symbole

- Conçu pour ne plus limiter le nombre de caractères
- Version 15.1: 149'813 caractères dans 161 scripts — UTF-8: variable (1-4 octets), char ASCII = 1 octet

(plus d'un million de points de code)

3.3 Problèmes pratiques

- Segmentation en mots/tokens (tokenization): ana- Compatibilité imparfaite entre ISO 8859 et UTF-8 3.1.1 Gestion des mots inconnus — Déclaration d'encodage explicite en XML et HTML
 - Byte Order Mark (BOM) : caractère FEFF au début des fichiers texte
 - Attention en TAL à l'encodage correct des données (utiliser UTF-8)

Chapitre 2 — Part-of-Speech tagging

1 Définition et jeux d'étiquettes

- Détermine pour chaque mot sa catégorie grammaticale (nom, adjectif, verbe, etc.)
- Utilise un jeu d'étiquettes (tagset) fixé à l'avance, plus ou moins détaillé selon les projets
- Exemples de tagsets importants:
 - Penn Treebank: 36 étiquettes + ponctuation, standard en anglais
 - Universal Dependencies: 17 catégories universelles avec attributs additionnels
 - French Treebank : 13 catégories avec souscatégorisation et traits morphologiques
- Difficultés liées aux ambiguïtés : beaucoup de mots peuvent appartenir à plusieurs catégories selon le

Applications du POS tagging

- Étape préliminaire pour l'analyse syntaxique
- Détection des groupes nominaux (utiles comme motsclés)
- Extraction d'information et systèmes de questionréponse
- Traits (attributs) utilisés pour l'apprentissage auto- 4 matique

Approche probabiliste Markovienne

- Détermine la séquence de tags qui maximise $P(t_{1...n}|m_{1...n})$ où t = tags et m = mots
 - Application du théorème de Bayes : $P(t_{1...n}|m_{1...n}) = \frac{P(m_{1...n}|t_{1...n})}{P(t_{1...n})} \cdot P(t_{1...n})$ $P(m_{1...n})$
- Hypothèses simplificatrices:
- Indépendance des mots entre eux
- Probabilité d'un mot indép, des tags voisins
- Probabilité d'un tag **dépend seulement du** tag précédent (chaîne de Markov)
- Modèle : $\prod_{k=1}^{n} P(m_k|t_k) P(t_k|t_{k-1})$
- annotés:
 - fois où m^x possède le tag t^y $P(m^x|t^y) =$ apparitions du tag t^y
 - fois où t^y suit le tag t^x apparitions du tag t^x

Calcul de la probabilité conjointe de deux mots et tags

Pour exprimer la probabilité qu'une séquence de deux mots m_1 et m_2 soit étiquetée respectivement avec t_1 et t_2 , notée $P(t_1, t_2 | m_1, m_2)$, on procède ainsi :

$$P(t_1, t_2 | m_1, m_2) \propto P(m_1, m_2 | t_1, t_2) \times P(t_1, t_2)$$

- $= P(m_1|t_1) \times P(m_2|t_2) \times P(t_1,t_2)$ (ind. mots)
- $= P(m_1|t_1) \times P(m_2|t_2) \times P(t_2|t_1) \times P(t_1)$
- $= P(m_1|t_1) \times P(m_2|t_2) \times P(t_2|t_1) \times P(t_1|\hat{})$

- Où $P(t_1|^{\hat{}})$ représente la probabilité que le tag t_1 appa- Hiérarchie de Chomsky (1956) : types 0, 1, 2, 3 (du plus raisse en début de phrase. Cette formulation permet de général au plus restrictif) calculer la probabilité conjointe en combinant :
- Les probabilités d'émission $P(m_i|t_i)$ pour chaque Type 1 : grammaires dépendantes du contexte
- La probabilité de transition entre tags $P(t_2|t_1)$
- La probabilité initiale du premier tag $P(t_1|\hat{})$

3.1 Raffinements de l'approche Bayes-Markov

- Créer un nouveau type m_{inc} et affecter à chaque tag 3 Grammaires formelles pour langues naturelles t_k une probabilité $\vec{P}(m_{inc}|t_k)$
- Utiliser des caractéristiques morphologiques (suffixes préfixes, majuscules)
- Adapter les probabilités selon les catégories (plus élevées pour noms, nulles pour pronoms)

3.1.2 Utilisation de n-grammes de tags

- Étendre aux trigrammes : $P(t_k|t_{k-1},t_{k-2})$ au lieu des bigrammes $P(t_k|t_{k-1})$
- Interpolation pour gérer les n-grammes jamais vus dans l'entraînement

3.1.3 Maximum Entropy Markov Model

- Estimer directement $P(t_k|m_k,t_{k-1})$ sans passer par 4 le théorème de Bayes
- Permet d'intégrer facilement des traits supplémentaires:
- Dépendances à différentes distances (1, 2, ..., n tokens)
- Propriétés lexicales : préfixes, suffixes, présence de tirets, majuscules, chiffres
- Contexte des mots environnants

3.1.4 Lissage des probabilités

- Interpolation linéaire :
 - $P_{lisse}(t_i|t_{i-1}) = \lambda_1 P(t_i|t_{i-1}) + \lambda_2 P(t_i)$

Lissage de Good-Turing ou technique de Kneser-Ney pour éviter les probabilités nulles

Lemmatisation et racinisation

- Lemmatisation: déterminer la forme canonique (lemme) d'un mot
- Ex : "Les ventilateurs sont mieux disposés" [ventilateur] [être] [bien] [disposer]"
- Utilise souvent un dictionnaire comme LEFFF pour le français
- Stemming: extraire la racine approximative d'un 1
- Plus rapide et plus simple que la lemmatisation — Empirique, à base de règles de désuffixation
- But : réduire la diversité des mots pour permettre des généralisations

Chapitre 3 — Parsing

— Apprentissage des probabilités à partir de corpus 1 Analyse syntaxique des langages de programmation

- Les erreurs de syntaxe (syntax error) surviennent quand le code ne respecte pas la structure définie
- Les instructions acceptables sont définies par : motsclés, forme des noms de variables, combinaison d'opé- 1.2 Reconnaissance d'entités nommées (NER)
- spécifier formellement la syntaxe
- Yacc/Lex ou GNU Bison/Flex: générateurs d'analyseurs syntaxiques (compilateurs de compilateurs) 1.3 Représentation : système d'étiquettes

2 Grammaires formelles et hiérarchie

Une grammaire formelle contient:

- V_t : symboles terminaux (vocabulaire)
- N : symboles non-terminaux (catégories grammati-
- S : symbole de départ (proposition) — R : règles transformant non-terminaux

- Type 0 : grammaires générales, sans restriction
- Type 2 : grammaires indépendantes du contexte
- (CFG, ex : BNF)
- Type 3 : grammaires régulières

Les langues naturelles sont généralement décrites par des grammaires de type 2

- Grammaires hors-contexte (CFG): règles de forme
- $N \to \alpha$ où N est non-terminal Types de symboles : terminaux (mots), préterminaux
- (POS tags), catégories (constituants) L'arbre syntaxique représente les règles de dérivation
- et l'analyse en constituants Différence entre phrase bien formée (syntaxiquement
- correcte) et phrase ayant du sens Difficultés: accord, compléments obligatoires vs. op-
- tionnels Alternative : grammaires de dépendances (relations binaires entre mots)

Analyse syntaxique avec grammaires formelles

- Parsing : trouver la série de règles dérivant une phrase depuis S
- Types d'analyseurs:
- Par direction: top-down vs. bottom-up
- Par technique : profondeur vs. largeur Analyse descendante récursive : décomposer les ob-
- jectifs en sous-objectifs Autres algorithmes: shift-reduce, chart parsing (CKY, Earley)

5 Machine learning et grammaires probabilistes

- Problèmes des parsers formels : explosion combinatoire, priorités des règles
- Solution: grammaires probabilistes (PCFG) — Annoter manuellement corpus (Penn Treebank)
 - Extraire règles syntaxiques et affecter probabilités selon fréquence
- Guider l'analyse en fonction des probabilités
- Calcul de probabilité d'un arbre : produit des probabilités de toutes les règles utilisées

Chapitre 4 — Named entities

Définition et représentation

1.1 Entités nommées

Les entités nommées (EN) sont principalement des noms — Algorithme de Porter très répandu pour l'anglais propres désignant des entités uniques, classées en types :

- PERSONNE : Marcel Proust
- LIEU : Yverdon-les-Bains — ORGANISATION : HEIG-VD
- S'y ajoutent d'autres termes relativement fixes :
- TEMPS : dates, heures, noms de fêtes NOMBRE: montants, pourcentages

PRODUIT/MARQUE: substances chimiques, etc.

La NER comporte deux composantes :

- Le formalisme BNF (Backus-Naur Form) permet de 1. Délimiter les groupes de mots constituant des EN
 - 2. Étiqueter chaque groupe avec son type

- IOB (Inside-Outside-Beginning): indique frontières et types
 - B : début d'une EN
 - I : continuation d'une EN
 - O : pas une EN
- IO: simplifié, remplace B par I (moins d'étiquettes mais perd la distinction entre entités consécutives du même type)

Traitement automatique des langues par Loïc Herman, page 2 de 2

2 Principales méthodes

2.1 Attributs utilisés pour la NER

Mots à étiqueter et mots voisins

— Présence dans des listes prédéfinies (gazetteers)

— Plongements (embeddings) du mot et voisins

— POS tags et étiquettes syntaxiques

- Forme (shape) : majuscules, préfixes, suffixes, tirets 1.2 Principe de sémantique distributionnelle

Étiquettes IOB précédentes

2.2 Méthodes de reconnaissance

Expressions régulières (solution élémentaire)

Classifieurs : considèrent les tokens indépendamment

2.2.1 Modèles de séquence

- Hidden Markov Model (HMM) : modèle génératif Conditional Random Fields (CRF) : modèle discri
2.1 Vecteurs et mesures de similarité minatif permettant plus d'attributs

Transition-Based Parser : modèle à états finis

— Réseaux de neurones :

 Utilisation pour attributs (Word2vec, GloVe, LSTM, Transformer)

Encodeur BERT + couche de classification

2.3 Approche bayésienne-markovienne pour la NER

Application du modèle HMM (Hidden Markov Model) à la NER similaire au POS tagging :

Variables observables : les mots du texte — États cachés : tags IOB avec types d'entités

— Transitions : probabilités entre états (tags)

— Inférence sur nouvelles données :

Objectif : trouver la série de tags $t_1,...,t_n$ qui 3.1 Matrice termes-documents

maximise $\prod_{k=1}^{n} P(m_k | t_k) P(t_k | t_{k-1})$ — Algorithme de Viterbi pour déterminer la séquence optimale de tags

3 Evaluation

3.1 Métriques

tokens correctement identifiés (TP) Précision (p) tokens proposés (TP + FP)

tokens correctement identifiés (TP) tokens de référence (TP + FN)

— F1-score : moyenne harmonique de p et r :

 Micro-average : pondérée fréquence des tags Macro-average : même poids à chaque type

4 Prolongements

4.1 Named Entity Linking

Association des EN reconnues à des identifiants uniques (pages Wikipédia) pour résoudre l'ambiguïté :

— George Bush plusieurs personnes possibles

— Champagne région viticole ou communes

4.2 Extraction de mots-clés (KPE)

Mots ou expressions caractéristiques d'un texte, basés 5.1 Principe sur:

— Fréquence des mots (TF-IDF) ou n-grammes — Statistiques de co-occurrence (PPMI)

— Syntaxe/sémantique (groupes nominaux, patrons)

— Terminologie du domaine

Algorithme RAKE:

1. Identifier termes candidats délimités par stopwords

2. Construire le graphe de co-occurrence des mots

3. Calculer le score de chaque mot (degré/fréquence) 4. Score des candidats = somme des scores de leurs

mots

Chapitre 5 — Représentation vectorielle

1 Modélisation du sens en TAL

Applications: recherche d'information, désambiguïsation, classification de textes, calcul de similarité

1.1 Approches sémantiques

— Sens statistique (approche distributionnelle) : modé- 6 Évaluation des représentations vectorielles lisation par vecteurs et contextes

— Sens logique (approche formelle) : dictionnaires, re- — Extrinsèque : performance sur des tâches (classificalations (WordNet), désambiguïsation

— Harris (1954): « Si A et B ont des environnements presque identiques, ils sont synonymes »

— Firth (1957): « You shall know a word by the com— Trouver d tel que w_d est le plus proche de $w_b - w_a +$ pany it keeps »

des contextes semblables

Représentation vectorielle

— Similarité du cosinus :

$$\operatorname{sim}_{\operatorname{cos}}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}} - \frac{\operatorname{Matrices de cooccurrences avec tf-idf}}{\operatorname{Représentations denses (embeddings)}} : - \operatorname{LSA/SVD tronquée} - \operatorname{Glove} - \operatorname{Glove}$$

— Valeurs: +1 (colinéaires), 0 (orthogonaux), -1 (opposés)

2.2 Représentation one-hot

vecteur de dimension |V| avec un seul 1, reste = 0 — Limite: tous les mots sont différents (similarité cosinus = 0), pas de sémantique

3 Vecteurs de cooccurrences

— Chaque mot = vecteur ligne (occurrences dans chaque document)

Chaque document = vecteur colonne (occurrences de chaque mot)

Similarité entre mots/documents = similarité cosinus entre leurs vecteurs

3.2 Coefficient tf-idf

 $tf\text{-}idf_{t,d} = tf_{t,d} \times idf_t$

— $tf_{t,d}$ = fréquence du terme t dans le document d

— $idf_t = \log(|D|/df_t)$ avec $df_t = nombre de documents$ contenant t

— Diminue l'importance des mots très fréquents dans tous les documents

Réduction de dimensionnalité avec SVD

4.1 Latent Semantic Analysis (LSA)

décomposition en valeurs singulières (SVD)

— Décomposition de la matrice $M_{|V|\times |D|}$ en M=

— SVD tronquée : conserver les k plus grandes valeurs singulières $(50 \le k \le 1000)$

— Plongement (embedding) = lignes de U_t (matrice Utronauée)

 Avantages : dimension réduite, vecteurs denses. meilleure généralisation

5 Le modèle GloVe

— Exploiter les rapports de fréquences de cooccurrences

— Objectif: produit scalaire $w_i \cdot w_j$ proportionnel à $\log(X_{ij})$

$X_{ij} = \text{nombre de cooccurrences des mots } i \text{ et } j$

5.2 Méthode

— Construction de la matrice de cooccurrences

— Initialisation aléatoire des vecteurs de dimension

- Optimisation par régression (AdaGrad) d'une fonc-

tion de coût J $J = \sum_{i,j=1}^{V} f(X_{ij})(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij})^2$

5.3 Implémentation

Dimensions : 50-300

— Corpus: Wikipedia, Gigaword, Common Crawl

— Fenêtre de contexte : 10 mots, pondérée par 1/dis-

6.1 Méthodes d'évaluation

tion, réponses aux questions)

— Intrinsèque : corrélation avec jugements humains de similarité, tests d'analogie

6.2 Tests d'analogie

Deux mots sont semblables s'ils apparaissent dans — Exemple : « Si le code postal d'Anaheim est 92804. quel est celui d'Honolulu? »

Synthèse des types de vecteurs de mots

Représentations creuses (sparse):

— Vecteurs one-hot

— word2vec (Skip-gram, CBOW)

— Modèles contextuels (BERT)