1 Orders

In this section the logic is always MSO, and the structures are orders. When we mention a linear order \mathcal{L} , we assume implicitly that it is countable. When we mention an ordinal α , we assume implicitly that it is a limit ordinal. We shall write this as CLO (countable linear order).

Definition 1. Let \mathcal{L} be a CLO. We define two relation $\operatorname{rank}^{-}\mathcal{L} \leq \alpha$ and $\operatorname{rank}\mathcal{L} \leq \alpha$ by transfinite induction on α as follows:

 $\mathbf{rank}^{-}\mathcal{L} \leq 0 \text{ iff } \mathcal{L} \text{ is } 1.$

 $\operatorname{rank} \mathcal{L} \leq \alpha \text{ iff } \mathcal{L} \text{ is a finite sum of CLOs } \mathcal{L}_i \text{ such that } \operatorname{rank}^- \mathcal{L}_i < \alpha \text{ for all } i.$

For $\alpha > 0$, $\operatorname{rank}^- \mathcal{L} \leq \alpha$ iff $\mathcal{L} = \sum_{i \in I} \mathcal{L}_i$ where I is either finite or $\pm \omega$ or η . and $\operatorname{rank} \mathcal{L}_i < \alpha$ for all $i \in I$.

Now, we define $\operatorname{rank}^-\mathcal{L}$, if it exists, as the minimal α such that $\operatorname{rank}^-\mathcal{L} \leq \alpha$, and similarly we (partially) define $\operatorname{rank}\mathcal{L}$.

Lemma 1. For every α ,

- 1. Let \mathcal{L}_1 and \mathcal{L}_2 be CLOs such that $\operatorname{rank} \mathcal{L}_i = \alpha_i$. Then $\operatorname{rank} (\mathcal{L}_1 + \mathcal{L}_2) = \max \{\alpha_1, \alpha_2\}$.
- 2. Let \mathcal{L}_1 and \mathcal{L}_2 be CLOs such that $\mathbf{rank}^-\mathcal{L}_1 = \mathbf{rank}^-\mathcal{L}_2 = \alpha$. Then $\mathbf{rank}^-(\mathcal{L}_1 + \mathcal{L}_2) = \alpha + 1$.

Proof. This is obvious from the definition.

Definition 2 (Good 2-coloring). Let \mathcal{L} be a CLO. A good 2-coloring of \mathcal{L} is a coloring of \mathcal{L} with two colors, such that: * If there is only a single endpoint, it is red. * If there are two endpoints, the leftmost one is red.

Lemma 2 (Existence and uniqueness). Every CLO has a good 2-coloring. All such 2-colorings are isomorphic.

Proof. Every rank-1 equivalence class is obviously 2-colorable this way, since it either has an endpoint or is isomorphic to $\eta := -\omega + \omega = \mathbf{otp}(\mathbb{Z})$

The coloring is obviously unique, except for the case of η , where the two possible good colorings are isomorphic.

Since the rank-1 equivalence classes have no edges between them, the proof is done.

Lemma 3. The fact that R is a good 2-coloring is expressible in MSO over CLOs.

Proof. Obvious.

Definition 3. Let \mathcal{L} be a CLO and let α be an ordinal. We define the relation \sim_{α} on \mathcal{L} as follows: $x \sim_{\alpha} y$ iff $\mathbf{rank}(x,y) < \alpha$

Lemma 4. Let α be a limit ordinal. Then, the following are equivalent:
1. $x \sim_{\alpha} y$
2. the interval (x,y) is of rank $< \alpha$
3. the interval $[x,y)$ is of rank $< \alpha$
4. the interval $(x, y]$ is of rank $< \alpha$
5. the interval $[x, y]$ is of rank $< \alpha$
<i>Proof.</i> Follows easily from the definition of rank .
Lemma 5. The relation \sim_{α} is an equivalence relation.
<i>Proof.</i> Reflexivity and symmetry are obvious. Trnasitivity follows easily from the fact that α is a limit ordinal and the previous lemma.
Definition 4. Let \mathcal{L} be a CLO together with a good coloring C of $\mathcal{L}/\sim_{\alpha}$, from which there is an induced coloring of \mathcal{L} (which is valid with regard to α -classes). We denote by $R_C(x)$ the formula expressing the fact that the α -class of x is red in C .
Lemma 6. An interval X is of rank $< \alpha$ iff it is contained in an equivalence class of \sim_{α} .
<i>Proof.</i> Both directions are obvious. $\hfill\Box$
Lemma 7. X is an equivalence class of \sim_{α} iff X is a maximal subset such that it is connected and every subinterval of X is of $\operatorname{\mathbf{rank}} < \alpha$.
<i>Proof.</i> It is enough to show that every set with this property is contained in an equivalence class of \sim_{α} , and that the equivalence classes possess this property. Clearly, every nonempty set X with this property is contained in a single equivalence class: Let $x \in X$ be a specific choice, and let $y \in X$ be another point. Then $[x,y]$ is contained in X since X is connected, and therefore is of $\operatorname{rank} < \alpha$. Therefore, $x \sim_{\alpha} y$. That is, $X = [x]_{\sim_{\alpha}}$.
Now, let $X = [x]_{\sim_{\alpha}}$. Since α is a limit ordinal, every subinterval of X is of $\operatorname{rank} < \alpha$. And also clearly it is connected.
Corollary 1. Let \mathcal{L} be a CLO and let C be a good coloring of $\mathcal{L}/\sim_{\alpha}$. The fact that X is an interval of rank $< \alpha$ is expressible in MSO over CLOs using R_C .
<i>Proof.</i> Since an α -class of $\mathcal L$ is just a maximal homochromatic connected subset this is clear from the previous lemma.

Theorem 1. MSO extended by R_C is decidable over all CLOs with a good coloring.

Proof. Let \mathcal{L} be a CLO of rank ν and let α be a limit ordinal.

Let $\gamma := \mathcal{L}/\sim_{\alpha}$. Then γ is of rank $\nu - \alpha$.

Let C be a good coloring of γ .

Then we can write $\mathcal{L} = \sum_{i \in \gamma} L_i$ where each L_i is an α -class. Moreover, over each L_i , the coloring is monochromatic.

Let φ be a formula of qd rank r over R_C .

Then, by the composition theorem, there exists a formula ψ such that

$$\mathcal{L} \vDash \varphi \iff \gamma, \{Q_{\tau}\}_{\tau} \vDash \psi$$

where $Q_{\tau} := \{L_i : L_i \vDash \tau\}$, where τ is an r-rank.

To decide φ over all \mathcal{L} , we need to decide ψ over all the possible combinations of γ and $\{Q_{\tau}\}_{\tau}$ that arise from \mathcal{L} .

Now clearly, the possible values of γ are all the CLOs.

Now, we need to calculate all the values of τ for which there exists some equivalence class of some \mathcal{L} that satisfies τ .