

Repaso de Álgebra lineal Reconocimiento de patrones

Gamaliel Moreno

gamalielmch@uaz.edu.mx
http://pds.uaz.edu.mx/

Enero-Julio 2021

Contenido

Vectores y matrices

Definciones

Operaciones matriciales

Definciones

Interpretaciones Gradientes

matriciales
Gradiente y traza

Gradiente y traza

Derivación de ecuaciones
normales

- 1 Vectores y matrices
 - Definciones
- 2 Operaciones matriciales
 - Definciones
 - Interpretaciones
- 3 Gradientes matriciales
 - Gradiente y traza
 - Derivación de ecuaciones normales

Escalar

Vectores y matrices

Definciones

Operaciones matriciales

Gradientes

matriciales Derivación de ecuaciones Un escalar es un número real

$$s\in\mathbb{R}$$

Vector

Vectores y matrices

Definciones

Operaciones matriciales

Definciones

Interpretacione

Gradientes matriciales

Gradiente y traza Derivación de ecuaciones normales Vector de m dimensiones $\mathbf{x} \in \mathbb{R}^m$ (m escalares)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Vector fila

Vectores y matrices

Definciones

Operaciones matriciales

Definciones Interpretaciones

Gradientes matriciales

Gradiente y traza Derivación de ecuaciones Vector de n dimensiones $\mathbf{\textit{x}} \in \mathbb{R}^n$ (n escalares)

$$\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$$

Matriz

Vectores v

Definciones

Operaciones matriciales

matriciales

Matriz de $m \times n \mathbf{A} \in \mathbb{R}^{m \times n}$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- m: files
- n: columnas
- En notación a_{ii} primer subíndice i es la fila y el segundo la columna
- Todas las matrices en $\mathbb{R}^{m \times n}$ conforman un espacio lineal. Esto es $B = \{B_i | B_i \in \mathbb{R}^{m \times n}\}$, entonces $M = \sum_i c_i B_i$

Tensor

Vectores y

Definciones

Operaciones matriciales

Gradientes matriciales

Generalización de conceptos anteriores

- **Escalar** $s \in \mathbb{R}$: tensor 0
- Vector $\mathbf{v} \in \mathbb{R}^n$: tensor 1
- Matriz $\mathbf{M} \in \mathbb{R}^{m \times n}$: tensor 2
- En general $\mathcal{T} \in \mathbb{R}^{n_1 \times n_2 \times \cdots n_q}$ es un tensor de orden q

Matriz en vector

Vectores y matrices

Definciones
Operaciones

matriciales

Definciones

Interpretaciones

Gradientes matriciales

Derivación de ecuacione normales

Matriz $\mathbf{A} \in \mathbb{R}^{m \times n}$ se descompone en m vectores fila

 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{:,1} \\ \mathbf{a}_{:,2} \end{bmatrix} \vdots \begin{bmatrix} \mathbf{a}_{:,n} \\ \end{bmatrix}$

Vectores como matrices

Vectores y matrices

Definciones

Operaciones matriciales

Definciones Interpretacione

Gradientes matriciales

Gradiente y traza Derivación de ecuacion

- Observe que todo vector es un tipo particular de matriz
 - Vector fila: matriz de dimensiones $1 \times n$
 - Vector columna: matriz de dimensiones $m \times 1$
- Propiedades de matrices aplicarán a vectores

Matriz transpuesta 1

Vectores v

Operaciones matriciales

Definciones

Gradientes matriciales

Si

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

entonces

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$

- En otras palabras, si $\boldsymbol{B} = \boldsymbol{A}^T$ entonces $b_{ii} = a_{ii}$
- $(\mathbf{A}^T)^T = \mathbf{A}$
- $(AB)^T = B^T A^T$
- $(A+B)^T = A^T + B^T$

Gamaliel Moreno

Blocks

Vectores v

Operaciones matriciales

Definciones

Gradientes matriciales

Definition (Greetings)

Hello World

Theorem (Fermat's Last Theorem)

$$a^n + b^n = c^n, n \le 2$$

Uh-oh.

By the pricking of my thumbs.

Uh-oh.

Something evil this way comes.

Notation

Vectores v

Operaciones matriciales

Interpretaciones matriciales

Definition (Random Variable)

Consider Ω , F, μ , with Ω being the set of events, F the σ -algebra on Ω and some arbitrary measure μ . Further consider an observation space Ω', F', μ' ... A random variable is a deterministic function that 'transports/maps' events from Ω to Ω' and effectively induces a new measure μ' . When $\mu'(\Omega') = 1$, it is a probability measure.

Notation

Vectores y matrices

Definciones

Operaciones matriciales

Gradientes matriciales

Gradiente y traza Derivación de ecuaciones definition

Notation

Vectores y matrices

Definciones

Operaciones matriciales

Gradientes matriciales

Gradiente y traza Derivación de ecuaciones normales

definition

