MODELO 3 - Avaliação dos Modelos de marchine learning.

```
In [1]: %matplotlib inline
In [2]: # Importa as bibliotecas
        import pandas
        import matplotlib.pyplot as plt
        import numpy
        #from pandas.tools.plotting import scatter_matrix
        from pandas.plotting import scatter_matrix
        import seaborn as sb
        from sklearn.model selection import train test split,cross val score
        from sklearn.preprocessing import Normalizer
        #Logistic Regression
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import roc_auc_score , roc_curve, auc ,accuracy_score,recall_score, preci
        sion_score,f1_score
        import statsmodels.api as sm
        from sklearn.metrics import confusion_matrix
        # Load Libraries
        import pandas as pd
        from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
        from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
```

1) Carregando os dados de treino e teste para avalição do modelo

```
In [7]: dfContador =pandas.DataFrame(list(y_train), columns = ['genero'])
    contagem = dfContador.groupby('genero').size()
    print(contagem)

genero
    0    1108
    1    1108
    dtype: int64

In [8]: dfContador =pandas.DataFrame(list(y_test), columns = ['genero'])
    contagem = dfContador.groupby('genero').size()
    print(contagem)

genero
    0    476
    1    476
    dtype: int64
```

2) carregando o modelo Random Forest

```
In [9]: from sklearn.ensemble import RandomForestClassifier
    rf_model = RandomForestClassifier(random_state=1,n_estimators=100,min_impurity_decrease=0.05)
```

Treinamento e teste do modelo: Random Forest.

Modelo de avaliação de métricas.

Precisão Geral (Accuracy)

```
In [12]: #get accuracy
rf_accuracy_testdata = metrics.accuracy_score(y_test, rf_pred)
```

```
In [13]: #print accuracy
print ("Accuracy: {0:.4f}".format(rf_accuracy_testdata))
RF_Accuracy = metrics.accuracy_score(y_test, rf_pred)
print(RF_Accuracy)
```

Accuracy: 0.8918 0.8918067226890757

Matriz de confusão: Random Forest

```
In [14]: import plot as plot
    cm=confusion_matrix(y_test,rf_pred)
    #Plot the confusion matrix
    plt.rcParams['figure.figsize'] = (10,5)
    sb.set(font_scale=1.5)
    sb.heatmap(cm, annot=True, fmt='g')
    plt.show()
```


Metricas Report: Random Forest

0 0.86 0.94 0.90 476 0.94 1 0.84 0.89 476 0.89 952 accuracy 0.90 0.89 0.89 952 macro avg weighted avg 0.90 0.89 0.89 952

```
In [16]: cm=confusion_matrix(y_test,rf_pred)
    confusion_matrix_lda = pandas.DataFrame(cm, index = ['Negativos','Positivos'], columns = ['Pre
    visão dos negativos','Previsão dos positivos'] )
    confusion_matrix_lda['Total'] = 1
    confusion_matrix_lda['Total'][0] = cm[0][0] + cm[0][1]
    confusion_matrix_lda['Total'][1] = cm[1][0] + cm[1][1]
```

```
In [17]: confusion_matrix_lda
```

Out[17]:

	Previsão dos negativos	Previsão dos positivos	Total
Negativos	449	27	476
Positivos	76	400	476

```
print(confusion matrix lda)
In [18]:
                    Previsão dos negativos Previsão dos positivos
                                                                     Total
         Negativos
                                        449
                                                                 27
                                                                       476
         Positivos
                                         76
                                                                400
                                                                       476
         TP = confusion matrix lda['Previsão dos positivos'][1]
         dfTP = pandas.DataFrame(TP, index = ['Positivos verdadeiros'], columns = ['Quantidade acertos'
         ] )
In [20]: TN = confusion matrix lda['Previsão dos negativos'][0]
         dfTN = pandas.DataFrame(TN, index = ['Verdadeiro Negativo'], columns = ['Quantidade acertos']
         )
In [21]:
         FP = confusion_matrix_lda['Previsão dos positivos'][0]
         dfFP = pandas.DataFrame(FP, index = ['Falso Positivo'], columns = ['Quantidade acertos'] )
In [22]:
         FN = confusion_matrix_lda['Previsão dos negativos'][1]
         dfFN = pandas.DataFrame(FN, index = ['Negativos Falsos'], columns = ['Quantidade acertos'] )
In [23]:
         rfSpecificity = TN / float(TN + FP)
         dfSpecificity = pandas.DataFrame(rfSpecificity, index = ['Specificity'], columns = ['resultad
         o'])
In [24]: dfSpecificity
Out[24]:
                   resultado
          Specificity
                   0.943277
In [25]: rfRecall= recall score(y test, rf_pred)
         print(rfRecall)
         0.8403361344537815
In [26]: print(TP / float(TP + FP))
         print(precision_score(y_test, rf_pred))
         rfPrecision = precision_score(y_test, rf_pred)
         0.936768149882904
         0.936768149882904
In [27]: | rfF1Score = 2 * rfPrecision * rfRecall / float(rfPrecision + rfRecall)
         print(rfF1Score)
         0.8859357696566998
In [ ]:
In [ ]:
```

Curva ROC: Random Forest

Uma curva ROC é uma forma comumente usada para visualizar o desempenho de um classificador binário, significando um classificador com duas classes de saída possíveis. A curva plota a Taxa Positiva Real (Recall) contra a Taxa Falsa Positiva (também interpretada como Especificidade 1).

```
In [28]: rf_pred_prob = rf_model.predict_proba(X_test)[:, 1]
In [29]: rf_fpr, rf_tpr, thresholds = roc_curve(y_test, rf_pred_prob)
```

```
In [30]: def plot_roc_curve(fpr, tpr,nome='ROC'):
    plt.plot(fpr, tpr, color='red', label=nome)
    plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--')
    plt.xlabel('Taxa de falsos positivos')
    plt.ylabel('Taxa de verdadeiros positivos')
    plt.title('Curva ROC:Receiver Operating Characteristic (ROC) Curve')
    plt.legend()
    plt.show()
```

```
In [31]: plot_roc_curve(rf_fpr, rf_tpr,'Random Forest')
```


AUC (área sob a curva) da Curva ROC : Random Forest

AUC ou Area Under the Curve é a porcentagem do gráfico do ROC que está abaixo da curva. AUC é útil como um único número de resumo do desempenho do classificador.

Carregando o modelo Máquina de vetores de suporte SVM

```
In [35]: from sklearn.svm import SVC
svm_model = SVC(kernel='linear', C=45, random_state=2 ,probability=True,coef0=0.3)
#kernel='linear'
```

Treinamento e teste do modelo: SVM.

Modelo de avaliação de métricas.

Precisão Geral (Accuracy): SVM

```
In [38]: print(f"accuracy score: {accuracy_score(y_train, svm_pred):.4f}\n")
svm_accuracy_testdata = accuracy_score(y_train, svm_pred)
accuracy score: 0.9887
```

Matriz de confusão: SVM

```
In [39]:
         cm=confusion_matrix(y_train, svm_model.predict(X_train))
         confusion_matrix_lda = pandas.DataFrame(cm, index = ['Negativos', 'Positivos'], columns = ['Pre
In [40]:
          visão dos negativos','Previsão dos positivos'] )
          confusion_matrix_lda['Total'] = 1
          confusion\_matrix\_lda['Total'][0] = cm[0][0] + cm[0][1]
          confusion_matrix_lda['Total'][1] = cm[1][0] + cm[1][1]
In [41]:
         confusion_matrix_lda
Out[41]:
                   Previsão dos negativos Previsão dos positivos Total
                                                          1108
                                  1105
          Negativos
           Positivos
                                    22
                                                     1086 1108
In [42]:
         TP = confusion_matrix_lda['Previsão dos positivos'][1]
          dfTP = pandas.DataFrame(TP, index = ['Positivos verdadeiros'], columns = ['Quantidade acertos'
          ])
          TP
Out[42]: 1086
```

```
In [43]:
         TN = confusion matrix lda['Previsão dos negativos'][0]
         dfTN = pandas.DataFrame(TN, index = ['Verdadeiro Negativo'], columns = ['Quantidade acertos']
         TN
Out[43]: 1105
In [44]: | FP = confusion_matrix_lda['Previsão dos positivos'][0]
         dfFP = pandas.DataFrame(FP, index = ['Falso Positivo'], columns = ['Quantidade acertos'] )
Out[44]: 3
In [45]: FN = confusion_matrix_lda['Previsão dos negativos'][1]
         dfFN = pandas.DataFrame(FN, index = ['Negativos Falsos'], columns = ['Quantidade acertos'] )
Out[45]: 22
In [46]: print(f"accuracy score: {accuracy_score(y_train, svm_pred):.4f}\n")
         svmAccuracy = accuracy_score(y_train, svm_pred)
         accuracy score: 0.9887
In [47]: import plot as plot
         cm=confusion_matrix(y_train, svm_model.predict(X_train))
         #Plot the confusion matrix
         plt.rcParams['figure.figsize'] = (10,5)
         sb.set(font_scale=1.5)
         sb.heatmap(cm, annot=True, fmt='g')
         plt.show()
                                                                              - 1000
                                                         3
                          1105
          0
                                                                              - 800
                                                                              -600
                                                                              -400
                           22
                                                       1086
                                                                               200
                            0
                                                         1
```

Metricas Report: svm

Curva ROC: SVM

```
In [53]: svm_pred_prob = svm_model.predict_proba(X_test)[:, 1]
In [54]: svm_fpr, svm_tpr, thresholds = roc_curve(y_test, svm_pred_prob)
In [55]: plot_roc_curve(svm_fpr, svm_tpr,'SVM')
```


AUC (área sob a curva) da Curva ROC : SVM

AUC ou Area Under the Curve é a porcentagem do gráfico do ROC que está abaixo da curva. AUC é útil como um único número de resumo do desempenho do classificador.

```
In [56]: print(roc_auc_score(y_test, svm_pred_prob))
SVM_Auc=roc_auc_score(y_test, svm_pred_prob)

0.9981772120612952
```

Carregando o modelo Máquina de Naive Bayes

```
In [57]: from sklearn.naive_bayes import GaussianNB
nb_model = GaussianNB()
```

Treinamento e teste do modelo: NB.

```
In [58]: nb_model.fit(X_train, y_train)
Out[58]: GaussianNB(priors=None, var_smoothing=1e-09)
In [59]: nb_pred = nb_model.predict(X_train)
```

Modelo de avaliação de métricas. NB.

Precisão Geral (Accuracy): NB.

```
In [60]: #get accuracy
print(f"accuracy score: {accuracy_score(y_train, nb_pred):.4f}\n")
nb_accuracy_testdata = accuracy_score(y_train, nb_pred)
accuracy_score: 0.9057
```

Matriz de confusão: NB.

```
In [61]: cm=confusion_matrix(y_train, nb_model.predict(X_train))
    confusion_matrix_lda = pandas.DataFrame(cm, index = ['Negativos', 'Positivos'], columns = ['Pre
    visão dos negativos', 'Previsão dos positivos'] )
    confusion_matrix_lda['Total'] = 1
    confusion_matrix_lda['Total'][0] = cm[0][0] + cm[0][1]
    confusion_matrix_lda['Total'][1] = cm[1][0] + cm[1][1]
    confusion_matrix_lda
```

Out[61]:

	Previsão dos negativos	Previsão dos positivos	Total
Negativos	1011	97	1108
Positivos	112	996	1108

```
In [62]: import plot as plot
    cm=confusion_matrix(y_train, nb_model.predict(X_train))
#Plot the confusion matrix
    plt.rcParams['figure.figsize'] = (10,5)
    sb.set(font_scale=1.5)
    sb.heatmap(cm, annot=True, fmt='g')
    plt.show()
```


Metricas Report: NB.

```
In [63]: print(f"Classification Report: \n \tPrecision: {precision score(y train, nb pred)}\n\tRecall S
         core: {recall_score(y_train,nb_pred)}\n\tF1 score: {f1_score(y_train, nb_pred)}\n")
         Classification Report:
                 Precision: 0.9112534309240622
                 Recall Score: 0.8989169675090253
                 F1 score: 0.9050431621990005
In [64]:
         TP = confusion matrix lda['Previsão dos positivos'][1]
         dfTP = pandas.DataFrame(TP, index = ['Positivos verdadeiros'], columns = ['Quantidade acertos'
         ] )
         TP
Out[64]: 996
In [65]:
         TN = confusion matrix lda['Previsão dos negativos'][0]
         dfTN = pandas.DataFrame(TN, index = ['Verdadeiro Negativo'], columns = ['Quantidade acertos']
         TN
Out[65]: 1011
In [66]: FP = confusion_matrix_lda['Previsão dos positivos'][0]
         dfFP = pandas.DataFrame(FP, index = ['Falso Positivo'], columns = ['Quantidade acertos'] )
Out[66]: 97
In [67]: FN = confusion matrix lda['Previsão dos negativos'][1]
         dfFN = pandas.DataFrame(FN, index = ['Negativos Falsos'], columns = ['Quantidade acertos'] )
         FΝ
Out[67]: 112
```

Curva ROC: NB.

```
In [73]: nb_pred_prob = nb_model.predict_proba(X_test)[:, 1]
In [74]: nb_fpr, nb_tpr, thresholds = roc_curve(y_test, nb_pred_prob)
In [75]: plot_roc_curve(nb_fpr, nb_tpr,'Naive Bayes')
```


AUC (área sob a curva) da Curva ROC : NB.

```
In [76]: print(roc_auc_score(y_test, nb_pred_prob))
NB_Auc=roc_auc_score(y_test, nb_pred_prob)
```

0.9599516277099075

Comparativo entre os modelos

Carregar o modelo de Árvore Decisão

```
In [78]: filename = '.\\baseDados\\cart.jss'
    infile = open(filename,'rb')
    cart_dict = pickle.load(infile)
    infile.close()
    CART_auc= cart_dict['Auc']
    CART_pred_prob= cart_dict['y_pred_prob']

In [79]: #print(cart_dict)

In [80]: #print(cart_dict)
    cart_fpr, cart_tpr, thresholds = roc_curve(y_test, CART_pred_prob)
```

Carregar o modelo de Regressão logística

```
In [81]: filenamerl = '.\\baseDados\\regressaologitica.jss'
    infile = open(filenamerl, 'rb')
    rlog_dict = pickle.load(infile)
    infile.close()
    #print(rlog_dict)
    rlog_auc= rlog_dict['Auc']
    rlog_pred_prob= rlog_dict['y_pred_prob']
In [82]: rlog_fpr, rlog_tpr, thresholds = roc_curve(y_test, rlog_pred_prob)
```

Mostra o gráfico comparativo

```
In [83]:
         lw = 2
         plt.figure()
         plt.rcParams['figure.figsize'] = (12,6)
         plt.plot(nb_fpr, nb_tpr, color='darkorange', lw=lw, label='Naive Bayes (AUC = %0.14f)' % NB_A
         plt.plot(rf_fpr, rf_tpr , color='red', lw=lw, label='Random Forest (AUC = %0.14f)' % RF_Auc)
         plt.plot(svm_fpr, svm_tpr , color='blue', lw=lw, label='SVM (AUC = %0.14f)' % SVM_Auc)
         plt.plot(cart_fpr, cart_tpr , color='green', lw=lw, label='Árvore de decisão (AUC = %0.14f)'
         % CART_auc)
         plt.plot(rlog_fpr, rlog_tpr , color='magenta', lw=lw, label='Regressão logística (AUC = %0.14
         f)' % rlog auc)
              ----- linha central-----
         plt.plot([0, 1], [0, 1], color='darkblue', lw=lw, linestyle='--')
         plt.xlabel('Taxa de falsos positivos')
         plt.ylabel('Taxa de verdadeiros positivos')
         plt.title('Curva ROC:Receiver Operating Characteristic')
         sb.set(font_scale=1.5)
         plt.legend()
         plt.xlim([-0.04, 1.0])
         plt.ylim([0.0, 1.05])
         plt.show()
         plt.savefig('roc_auc.png')
         plt.close()
```



```
In [84]: plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
```

<Figure size 864x432 with 0 Axes>

Comparando as métricas dos modelos Acurácia, Precisão e AUC.

```
In [85]: #print(cart_dict)
```

```
In [86]: | dfresultado=pd.DataFrame.from_dict(dict([('Regressão Logística',[rlog_dict['Accuracy'],
                                                                rlog dict['Precision'],
                                                                rlog_dict['Specificity'],
                                                                rlog_dict['F1Score'],
                                                               rlog_dict['Recall'],
                                                               rlog_dict['Auc']]),
                                      ('Arvore de decisão',[cart_dict['Accuracy'],
                                                                cart_dict['Precision'],
                                                               cart_dict['Specificity'],
                                                               cart_dict['F1Score'],
                                                               cart_dict['Recall'],
                                                                cart_dict['Auc']]),
                                      ('Random Forest', [RF_Accuracy, rfPrecision, rfSpecificity,rfF1Sco
         re,rfRecall,RF_Auc]),
                                      ('SVM', [svmAccuracy, svmPrecision, svmSpecificity,svmF1_score,svm
         Recall,SVM_Auc]),
                                      ('Naive Bayes', [nb_accuracy_testdata, nbPrecision, nbSpecificity,
         nbF1_score,nbRecall,NB_Auc])]),
                                      orient='index', columns=['Accuracy', 'Precision', 'Specificity',
          'F1Score', 'Recall', 'AUC'])
```

In [87]: dfresultado

Out[87]:

	Accuracy	Precision	Specificity	F1Score	Recall	AUC
Regressão Logística	0.830882	0.846154	0.852941	0.827068	0.808824	0.873182
Arvore de decisão	0.987395	0.995726	0.995798	0.987288	0.978992	0.987395
Random Forest	0.891807	0.936768	0.943277	0.885936	0.840336	0.978577
SVM	0.988718	0.997245	0.997292	0.988621	0.980144	0.998177
Naive Bayes	0.905686	0.911253	0.912455	0.905043	0.898917	0.959952

In [88]: dfresultado.describe()

Out[88]:

	Accuracy	Precision	Specificity	F1Score	Recall	AUC
count	5.000000	5.000000	5.000000	5.000000	5.000000	5.000000
mean	0.920898	0.937429	0.940353	0.918791	0.901443	0.959456
std	0.067457	0.063232	0.060712	0.069372	0.078305	0.050222
min	0.830882	0.846154	0.852941	0.827068	0.808824	0.873182
25%	0.891807	0.911253	0.912455	0.885936	0.840336	0.959952
50%	0.905686	0.936768	0.943277	0.905043	0.898917	0.978577
75%	0.987395	0.995726	0.995798	0.987288	0.978992	0.987395
max	0.988718	0.997245	0.997292	0.988621	0.980144	0.998177

```
In [89]: boxplot = dfresultado.boxplot()
```



```
In [90]: Amplitudedic = {}
    Varianciadic = {}
    CoeficienteVardic = {}
    juntar = {}
    IntervaloInterquartildic = {}
    colunas=['Accuracy', 'Precision', 'Specificity', 'F1Score', 'Recall','AUC']
    for x in colunas:
        juntar[x] = dfresultado[x].std()/1
        Amplitudedic[x]=dfresultado[x].max() - dfresultado[x].min()
        Varianciadic[x] = dfresultado[x].var()
        CoeficienteVardic[x] = (dfresultado[x].std()/dfresultado[x].mean()) * 100
        IntervaloInterquartildic[x] = dfresultado[x].quantile(q=0.75) - dfresultado[x].quantile(q=0.25)
```

Out[91]:

	quantitativas	Amplitude
0	Accuracy	0.157836
1	Precision	0.151091
2	Specificity	0.144351
3	F1Score	0.161553
4	Recall	0.171321

```
In [92]: dfstd = pandas.DataFrame.from_dict(juntar, orient="index").reset_index()
    dfstd.columns = ["quantitativas","std"]
    dfstd.head()
```

Out[92]:

	quantitativas	std
0	Accuracy	0.067457
1	Precision	0.063232
2	Specificity	0.060712
3	F1Score	0.069372
4	Recall	0.078305

Out[93]:

	quantitativas	Variancia
0	Accuracy	0.004550
1	Precision	0.003998
2	Specificity	0.003686
3	F1Score	0.004812
4	Recall	0.006132

Out[94]:

	quantitativas	Coef_Var_%
0	Accuracy	7.325174
1	Precision	6.745293
2	Specificity	6.456339
3	F1Score	7.550318
4	Recall	8.686597

Out[95]:

	quantitativas	Intervalo_Interquartil
0	Accuracy	0.095588
1	Precision	0.084473
2	Specificity	0.083343
3	F1Score	0.101352
4	Recall	0.138655

In [96]: dfresultado_frame=pandas.merge(dfAmplitude,dfVariancia,how='right',on='quantitativas')
 dfresultado_frame=pandas.merge(dfresultado_frame,dfCoeficiente,how='right',on='quantitativas')
 dfresultado_frame=pandas.merge(dfresultado_frame,IntervaloInterquartil,how='right',on='quantit
 ativas')
 dfresultado_frame=pandas.merge(dfresultado_frame,dfstd,how='right',on='quantitativas')
 dfresultado_frame

Out[96]:

	quantitativas	Amplitude	Variancia	Coef_Var_%	Intervalo_Interquartil	std
0	Accuracy	0.157836	0.004550	7.325174	0.095588	0.067457
1	Precision	0.151091	0.003998	6.745293	0.084473	0.063232
2	Specificity	0.144351	0.003686	6.456339	0.083343	0.060712
3	F1Score	0.161553	0.004812	7.550318	0.101352	0.069372
4	Recall	0.171321	0.006132	8.686597	0.138655	0.078305
5	AUC	0.124996	0.002522	5.234431	0.027443	0.050222

Fim da avaliação do modelo.		
Fim da avaliação do modelo.		