

Quenching of spectroscopic factors in ^{10,12}Be(d, ³He) reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez, F. Delaunay, J. Lois-Fuentes

USC-IGFAE, LPC-Caen and FRIB

Zakopane 2024 Conference

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left.\frac{d\sigma}{d\Omega}\right|_{exp} = C^2S \cdot \left.\frac{d\sigma}{d\Omega}\right|_{s.p}, \quad C^2S = \begin{cases} (2j+1) \text{ removing} \\ 1 & \text{adding} \end{cases} \quad \text{in IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- Short-range: tensor forces,...
- Long-range correlations: vibrations, giant resonances,...

A long-standing puzzle

A trend with asymmetry energy $\Delta S \equiv S_n - S_p$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: $|\Delta S| \uparrow$

Status with light isotopes

Several experiments allowed for the extraction of C^2S with Li-induced (d, 3 He) reactions:

Several challenges in this region:

Dealing with **unbound** nuclei (¹⁰He)

2 Impact of core exitations (completar algo +)

Importance of GMF

Towards exotic nuclei (loosely bound or halo), a **geometrical mismatch factor** emerges from the very different w.f. in the overlap:

N. K. Timofeyuk, private communication (in E748 proposal)

 \Rightarrow Need to establish more systematics for this parameter

Physics case of E748

E748 @ GANIL back in 2017. Using ^{10,12}Be(d, ³He) reactions to:

Experimental setup

Tradional solid target experiment @ LISE

A glance at the analysis

3 E_x from missing mass technique $E_{\mathrm{beam}} + (E,\theta)_{\mathrm{Lab}} \to E_x$

Results: 10Be(d, 3He)9Li

Results: 10Be(d, 3He)9Li

Recent experiment @ Acculina. Different beam energy of 40 AMeV

Their analysis:

 $C^2S = 1.74$

Our C^2S :

Pang: 2.679(48)

■ HT1p: 1.848(33)

Results: ¹²Be(d, ³He) ¹¹Li

Conclusions

Ola

A ver

Que

Poñemos

Aqui

Acknowledgments

The E748 collaboration:

- Santiago:B Fernández
- LPC-Caen: A. Matta

F. Delaunay N. L. Achouri

F. Flavigny

J. Gibelin

M. Marques N Orr

IJCLab:

D. Beaumel M. Assié

Y. Blumenfeld

S. Franchoo

A. Georgiadou

V. Girard-Alcindor F. Hammache

N de Séreville

A. Meyer

I Stefan

GANIL:

B. Jacquot

O. Kamalou

A. Lemasson

M. Rejmund

T. Roger

O. Sorlin

J.C. Thomas

M. Vandebrouck

D Dootin

B. Bastin

F. de Oliveira

C. Stodel

RIKEN: S. Koyama D. Suzuki

Surrey:N. Timofeyuk

