

第二章 数字电路基础和门电路

- § 2.1 数字电路基础
- § 2.2 逻辑门——外特性
- § 2.3 集成逻辑门的电路特性——内部
- § 2.4 竞争冒险现象

§ 2.3 集成逻辑门的电路特性

- 2.3.1 标准集成逻辑门电路——与非门内部结构
- 2.3.2 集电极开路逻辑门——OC门
- 2.3.3 三态门——特殊用途
- 2.3.4 门电路的特性和参数

各种逻辑门电路如何构成? 外部电气特性和主要参数?

晶体管工作状态

I_C ≈0 发射极和集电极之间如同开关断开,电阻很大。

U_{CE} ≈0 发射极和集 电极之间如 同开关接通, 电阻很小

数字电路

2.3.1 标准集成逻辑门电路

数字电路均工作在开关状态!

输入都为高电平 (3.6V)

输入都为高电平 (3.6V)

有一个输入为低电平 (0.3V)

NAND Gate

推挽式输出

输出为高电平

推挽式输出

输出为低电平

前后级之间电流关系

前级输出为高电平时

电流流出前级(拉电流)

后级输入电流记为 III

前后级之间电流关系

前级输出为低电平时

电流流入前级(灌电流)

后级输入电流记为 IL

输入端通过电阻接地

R较小时,输入看作低电平

R 较大时,输入看作高电平

TTL电路中悬空的输入端相 当于接高电平

TTL电路中悬空的输入端相当于接高电平

读电路图时遇到悬空输入端看作高电平处理!

设计电路时不允许输入端悬空!

Multisim仿真软件可以设置悬空输入端所表示的高电平,缺省情况为低电平

2.3.2 集电极开路逻辑门 (OC门)

oc非门

实际应用中OC门往往需要接负载电阻 R_{L} 和电源 V_{L} 才能工作

当输出为低电平时,对应于 Q_3 饱和导通, R_L 和电源 V_L 接通

当输出为高电平时,对应于 Q_3 截止,电阻 R_L 和电源 V_L 断开连接

OC门在电路中可以看作是一个可控制负载电源通断的逻辑开关

OC门应用举例

相当于逻辑开关,用以控制负载的通断

输出端为逻辑0, 开关接通输出端为逻辑1, 开关断开

负载工作电压可超过门电路电源电压

输入ABCD输入为何值 [填空1] [填空2] [填空3] [填空4] 时灯HL会亮?

OC门的使用: 多个输出可以直接相连(线与)

注意:标准逻辑门电路的输出不允许直接连接!

2.3.3 三态门(Tristate 门, TS门)

高阻状态的等效 电路

三态非门

功能表

Enable= 0	$Y = \overline{A}$
Enable =1	High-Z

低电平有效 Active-LOW

LOW — V HIGH

LOW (enable)

(a) Enabled for normal logic operation

(b) High-Z state

高电平有效

(Active-HIGH)

的三态非门

功能表

三态或非门

低电平有效

功能表

$\overline{EN} = 0$	$Y = \overline{A + B}$
$\overline{EN} = 1$	High-Z

三态门的应用

在任一时刻只有一个 外设的数据线和数据 总线相连

三态门的应用

ROM,RAM以三态方式进行数据的读写

Department of Electrical & Electronic Technology, SAEE, USTB

三态门的应用

数据双向传输线路

数据双向传输线路

2.3 集成门电路特性

按器件类型

TTL系列

74, 74S,74AS,74LS,74ALS

54: 军用

CMOS系列

74HC,74HCT, 4000 系列

具有同样数字编号的芯片具有相同的逻辑功能和同样的管脚安排

如 7400, 74S00, 74LS00, 74ALS00, 74F00, 74HC00, 74AHC00都为四个两输入的与非门,管脚安排也相同

Department of Electrical & Electronic Technology, SAEE, USTB

(a) Single gate

(b) IC dual in-line package

标准TTL电路的供电电源为+5V

CMOS电路有+5V、+3.3V、+2.5V等不同的供电电源种类

$$V_{OH(min)} > V_{IH(min)}$$
 $V_{OL(max)} < V_{IL(max)}$

$$V_{OH(min)} > V_{IH(min)}$$
 $V_{OL(max)} < V_{IL(max)}$

抗噪能力——噪声容限参数

噪声容限

The voltage on this line will never be less than 4.4 V unless noise or improper operation is introduced.

The voltage on this line will never exceed 0.33 V unless noise or improper operation is introduced.

高电平时的噪声容限

$$V_{NH} = V_{OH(min)} - V_{IH(min)}$$

低电平时的噪声容限

$$V_{NL} = V_{IL(max)} - V_{OL(max)} \\$$

分别计算5VCMOS和TTL电路的噪声容限,并根据计算结果指出在高噪声环境下应优先选用哪一种类型的电路?

分别计算5VCMOS和TTL电路的噪声容限,并根据计算结果指出在高噪声环境下应优先选用哪一种类型的电路?

应选5V CMOS系列芯片

扇出系数是指一个逻辑门能驱动同类型(不是逻辑功能,是指结构,TTL)电路输入端的个数(注意:不是门的数量),它表征门电路带负载的能力。

传输延迟

门电路的输出波形相对于输入波形的滞后时间

平均传输延迟时间 tpd

$$m{t}_{ ext{pd}} = rac{m{t}_{ ext{PLH}} + m{t}_{ ext{PHL}}}{2}$$

标准TTL电路的平均传输延时时间t_pd约在10ns 左右

第二章 作业

补充:将下列各数转换成8421BCD码:

 10111_{B} , 521_{D} , $3F4_{H}$

2.12 逻辑关系画波形

2.15 三态门画波形,较难

2.17 门电路参数

2.18 传输延迟