

การเขียนโปรแกรม Raspberrypi Pico

อ.เหน่ง + อ.หนึ่ง

What is Raspberry Pi Pico?

Laboratory 1

การใช้งาน Raspberry Pi Pico Simulation ด้วย MicroPython บน Wokwi

ปรากฎหน้าต่าง Wokwi Simulator สำหรับ Pi Pico มา

ทดลองกดปุ่ม Play เพื่อทำการรันโค้ด

ทดลอง Print แนะนำตัวเอง

ทำการเขียนโค้ดลงไปที่ main.py ดังนี้

from machine import Pin
import utime
led = Pin(2,Pin.OUT)
while True:
 led.on()
 utime.sleep(1)

จากนั้นกดปุ่ม Play เพื่อ Start Simulation

utime.sleep(1)

led.off()

หากต้องการให้กะพริบถี่ขึ้น หรือช้าลง จะต้องทำอย่างไร ?

ทำการเขียนโค้ดลงไปที่ main.py ดังนี้

from machine import Pin import utime led = Pin(2,Pin.OUT) while True: led.on() utime.sleep(1) led.off() utime.sleep(1)

จากนั้นกดปุ่ม Play เพื่อ Start Simulation

Laboratory 2

การใช้งาน Sensor

Futurist · I gnite · Greatness · Honor · Team Spirit

Light Sensor (เซ็นเซอร์แสง)

Photoresistor (LDR) Sensor

KY-040 Rotary Encoder

import machine

import utime

Idr = machine.ADC(26)

while True:

ldr_read = ldr.read_u16()

print(ldr_read)

utime.sleep(1)

0.1 lux คือค่า 65007 100000 lux คือค่า 512

ทำอย่างไรจึงจะแสดงผลค่าความสว่างจากการ print ที่ถูกต้อง ?

Temperature Sensor

Analog Temperature Sensor (NTC)

import machine

import utime

temp = machine.ADC(26)

while True:

temp_read = temp.read_u16()

print(temp_read)

utime.sleep(1)

ทำอย่างไรจึงจะแสดงผลค่าอุณหภูมิจากการ print ที่ถูกต้อง ?

HC-SR04 Ultrasonic Distance Sensor


```
import machine
import utime
while True:
 trig=machine.Pin(5, machine.Pin.OUT)
 trig.off()
 utime.sleep_us(2)
 trig.on()
 utime.sleep_us(10)
 trig.off()
 echo=machine.Pin(4, machine.Pin.IN)
 while echo.value() == 0:
   pass
 t1 = utime.ticks_us()
 while echo.value() == 1:
   pass
 t2 = utime.ticks_us()
 cm = (t2 - t1) / 58.0
 print(cm,'cm')
```


อยากให้แสดงผลเป็นหน่วยนิ้ว ต้องทำอย่างไร ?

Laboratory 3

การแสดงผลและควบคุมอุปกรณ์

Pin(2, Pin.OUT), # A
Pin(3, Pin.OUT), # B
Pin(4, Pin.OUT), # C
Pin(5, Pin.OUT), # D
Pin(6, Pin.OUT), # E
Pin(8, Pin.OUT), # F
Pin(7, Pin.OUT), # G

from machine import Pin
from utime import sleep

```
В
#
#
            C
        D
A = Pin(2,Pin.OUT) # A
B = Pin(3,Pin.OUT) # B
C = Pin(4,Pin.OUT) # C
D = Pin(5, Pin.OUT) # D
E = Pin(6, Pin.OUT) # E
F = Pin(8, Pin.OUT) # F
G = Pin(7,Pin.OUT) # G
while True:
      G.on()
```


sleep(1)

```
from machine import Pin
from utime import sleep
pins = [
 Pin(2, Pin.OUT), # A
 Pin(3, Pin.OUT), # B
 Pin(4, Pin.OUT), # C
 Pin(5, Pin.OUT), # D
 Pin(6, Pin.OUT), # E
 Pin(8, Pin.OUT), # F
 Pin(7, Pin.OUT), # G
 Pin(O, Pin.OUT) # DP (not connected)
digits = [
 [0, 0, 0, 0, 0, 0, 1, 1], # 0 [1, 0, 0, 1, 1, 1, 1, 1], # 1
 [0, 0, 1, 0, 0, 1, 0, 1], # 2 [0, 0, 0, 0, 1, 1, 0, 1], # 3
 [1, 0, 0, 1, 1, 0, 0, 1], # 4 [0, 1, 0, 0, 1, 0, 0, 1], # 5 [0, 1, 0, 0, 0, 0, 0, 1], #6
 [0, 0, 0, 1, 1, 1, 1, 1], #7 [0, 0, 0, 0, 0, 0, 1], #8 [0, 0, 0, 1, 1, 0, 0, 1], #9
```

[0, 1, 1, 0, 0, 0, 1, 1], # C [1, 0, 0, 0, 1, 0, 1], # d [0, 1, 1, 0, 0, 0, 0, 1], # E


```
for pin in pins:
   pin.value(1)
reset()
switch = Pin(11, Pin.IN)
while True:
   for i in range(len(digits)):
     if switch.value() == 0:
       break;
     for j in range(len(pins) - 1):
       pins[j].value(digits[i][j])
     sleep(1.5)
```

def reset():

[0, 1, 1, 1, 0, 0, 0, 1], # F

[0, 0, 0, 1, 0, 0, 0, 1], # a [1, 1, 0, 0, 0, 0, 0, 1], # b

OLED Display

https://docs.wokwi.com/guides/circuitpython

Project examples

- Blink with CircuitPython
- CircuitPython SSD1306 Example

PROJECT

