Battery Simulation Study Group 2018

Model #1

Takuma Kawahara Sep. 16th 2018

Model#1

Precondition

- Diffusion resistance of Li ion in electrolyte is 0.
- Diffusion resistance of Li ion in electrode is 0.
- Direction of current is along with x-axis.
- Temperature is 298 K

$$LiCoO_2 \Longrightarrow xLi^+ + Li_{1-x}CoO_2$$

$$LiC_6 \rightleftharpoons xLi^+ + Li_{1-x}C_6$$

Metal electrical resistivity(Linear approximation)

$$\rho(T) = \rho_0[1 + \alpha(T - T_0)]$$

Butler-Volmer equation

$$j = j_0 \cdot \left\{ \exp \left[rac{lpha_a z F \eta}{R T}
ight] - \exp \left[-rac{lpha_c z F \eta}{R T}
ight]
ight\}$$

Model#1: Butler-Volmer equation

Butler-Volmer equation

$$j = j_0 \cdot \left\{ \exp \left[rac{lpha_a z F \eta}{R T}
ight] - \exp \left[-rac{lpha_c z F \eta}{R T}
ight]
ight\}$$

where:

- j: electrode current density, A/m² (defined as i = l/A)
- j_o: exchange current density, A/m²
- E: electrode potential, V
- E_{eq} : equilibrium potential, V
- T: absolute temperature, K
- z: number of electrons involved in the electrode reaction
- F: Faraday constant
- R: universal gas constant
- $lpha_c$: so-called cathodic charge transfer coefficient, dimensionless
- $lpha_a$: so-called anodic charge transfer coefficient, dimensionless
- η : activation overpotential (defined as $\eta=E-E_{eq}$).

https://en.wikipedia.org/wiki/Butler-Volmer_equation

	Li _{1-x} CoO ₂	Li _x C ₆
j_0 (A/cm ²)	2.6 x 10 ⁻³	3.6 x 10 ⁻³
$\alpha_c, \alpha_a(-)$	0.5, 0.5	0.5, 0.5

K. Smith et al., Journal of Power Sources 161 (2006) 628-639

Model#1: Butler-Volmer equation

Butler-Volmer equation

$$\begin{split} j &= j_0 \cdot \left\{ \exp\left[\frac{\alpha_a z F \eta}{RT}\right] - \exp\left[-\frac{\alpha_c z F \eta}{RT}\right] \right\} \\ &\text{If } \alpha_a = \alpha_c \\ j &= j_0 \{ \exp(\frac{\alpha z F \eta}{RT}) - \exp(-\frac{\alpha z F \eta}{RT}) \} \\ j &= 2j_0 \sinh\frac{\alpha z F \eta}{RT} \\ \eta &= \frac{RT}{\alpha z F} \sinh^{-1}\left(\frac{j}{2j_0}\right) \\ \eta &= \frac{RT}{\alpha z F} \ln\left(\frac{j}{2j_0} + \sqrt{\left(\frac{j}{2j_0}\right)^2 + 1}\right) \end{split}$$

https://ocw.mit.edu/courses/chemical-engineering/10-626-electrochemical-energy-systems-spring-2014/lecture-notes/MIT10_626S14_S11lec13.pdf

Model#1: Metal electrical resistivity

Metal electrical resistivity(Linear approximation)

$$\rho(T) = \rho_0[1 + \alpha(T - T_0)]$$

where α is called the *temperature coefficient of resistivity*, T_0 is a fixed reference temperature (usually room temperature), and ρ_0 is the resistivity at temperature T_0 . The parameter α is an empirical parameter fitted from

$$\rho = R \frac{A}{\ell},$$

where

R is the electrical resistance of a uniform specimen of the material ℓ is the length of the specimen

A is the cross-sectional area of the specimen

https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity

	Al	Cu
ρ_0 (ohm • m) at 293.15K	2.82 x 10 ⁻⁸	1.68 x 10 ⁻⁸
α (/K)	0.0039	0.003862

https://ja.wikipedia.org/wiki/電気抵抗率の比較