Pages: 1

Roll	no.							٠													
1011	***	 ٠	٠	•	•	•	•	•	•	•	•	•	-	-	-	-					

Degree: BTech.. Semester:1st MID-SEMESTER EXAMINATION, September 2024

Course Title: Computer Programming Course Code: FCCS002.

Duration: 1:30 Hours

Max. Marks: 20

Note: - Attempt all questions in the given order only. Missing data/information (if any), maybe suitably assumed & mentioned in the answer.

Q.No.		Marks	CO
J/1a	What are the key features of Python that make it a popular programming language? Provide examples to support your answer.	2	CO1
√1b	Write a Python program that takes two numbers as input from the user and prints their sum, difference, product, and quotient.	2	CO2
² a	Write a Python program to print all the numbers between 1 and 100 that are divisible by 3 but not by 5 using a for loop.	2	CO1
	Write a Python program to find the first n even numbers using a while loop. The value of n should be provided by the user.	2	CO2
Ĵ³a	Define a Python function that accepts any number of keyword arguments and prints them in a formatted way.	2	CO3
3b	Write a Python function that calculates the nth Fibonacci number using recursion.	2	CO2
/4a	Write a Python program to find the second largest number in a list.	2	CO5
	Write a Python program to create a dictionary from two lists: one for keys and one for values. Demonstrate with an example.	2	CO4+CO1
/	Write the advantages of inheritance. Explain multiple inheritance with the help of an example.	2	CO3
	Implement a Python class Circle that inherits from a base class Shape. The Circle class should include a method to calculate the area, using the formula πr^2 .	2	CO2

Roll	no.	:																									
COLL	11().		•		•	•	٠	•	٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	

Degree: B.Tech. Semester:I Course work MID-SEMESTER EXAMINATION, September 2024

Course code: FCMT0101

Course title: Mathematics I

Time: 1 hour 30 min.

Maximum Marks. 20

Note: Attempt all questions in the given order only. Missing data/information (if any), may be suitably assumed and mentioned in the answer.

Q. No.	Question	Marks	CO
1a	If $\tan(\theta + i\phi) = \cos \alpha + i \sin \alpha$, then show that	2	CO1
on the	$\phi = \frac{1}{2} \log \tan(\frac{\pi}{4} + \frac{\alpha}{2}).$		
1b	If $\sin(\theta + i\phi) = \tan \alpha + i \sec \alpha$, then show that $\cos 2\theta \cosh 2\phi = 3$.	2	CO1
2a.	If $y = \frac{1}{1-5x+6x^2}$, then find the n^{th} derivative of y .	2	CO1
۵h	If $y = e^{\tan^{-1} x}$, then prove that $(1 + x^2)y_{n+2} + (2(n+1)x - 1)y_{n+1} + n(n+1)y_n = 0$.	2	CO1
1	Obtain by Maclaurin's theorem the first three terms in the expansion of the function $e^{\sin x}$.	2	CO1
Jr.	If $u = \tan^{-1}\left(\frac{y}{x}\right)$, then find the value of $u_{xx} + u_{yy}$.	2	CO2
Ja	If $z = \log\left(\frac{x^3 + y^3}{x + y}\right)$, then show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2$.	2	CO2
4b	If $x + y + z = u$, $y + z = uv$, $z = uvw$, then show that	2	CO2
	$rac{\partial(x,y,z)}{\partial(u,v,w)}=u^2v.$		
Jo	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, then prove that	2	CO2
	$\frac{1}{2}u_x + \frac{1}{3}u_y + \frac{1}{4}u_z = 0.$		
f	Find the series expansion of the function $e^x \log(1+y)$ about the point $(0,0)$ upto second degree terms.	`2	CO2

Total No. of Pages: 2

Roll No.

Degree: B.Tech, Semester: I MID-SEMESTER EXAMINATION, SEPTEMBER 2024

Course Code- FCEC0106

Course Title-Basics of Electronics & Communication Engineering

Time: 01:30 Hrs Max Marks: 20

Note: Attempt all five questions. Missing data/information (if any) may be suitably assumed and mentioned in the answer.

	Q-3			
		Find the Fourier transform of signal shown in Figure	T	
	3/a	x(t) 2 1 1 2 1 2 1 2 1 2 1	2	CO-1
1	3 b	Write the difference between FM and PM. What are the advantages of FM over AM?	2	CO-2
	Q-4/	, and the state of		102
	4/a	Why modulation is necessary? Explain the advantage of modulation in detail.	2	CO-2
	4 b	A modulating signal m(t)= $10\cos(2\pi\times10^3 \text{ t})$ is amplitude modulated with a carrier signal c(t)= $50\cos(2\pi\times10^5 \text{ t})$. Find the modulation index, the carrier power, and the power required for transmitting the AM wave.	2	CO-2
	Q-5	T wave.		
	5 a	Explain the square law modulation method for AM generation with proper block diagram and expressions.	2	CO-2
(5 b	A SSB transmission contains 10kW. This transmission is to be replaced by a standard amplitude modulated signal with the same power content. Determine the power content of the carrier and each of the sidebands when the percent modulation is 80%.	2	CO-2

Roll	no.														

Degree: B.Tech, Semester: Ist MID-SEMESTER EXAMINATION, September 2024

Course Title: **Quantum Physics**Course Code: **FCPH0114**

Duration: 1:30 Hours

Max. Marks: 20

Note: - Attempt all questions in the given order only. Missing data/information (if any), maybe suitably assumed & mentioned in the answer.

Q. No.	Question	Marks	CO
J /a	What are the salient features of black body radiation? Explain the	2	1
1	energy distribution in the spectrum of a black body.		
b	Work function of sodium is 2.3 eV. Obtain the maximum	2	1
$\sqrt{}$	wavelength which will cause emission of photoelectrons from the		
,	material.		
2/á	What is Compton effect? Explain, how wave theory of light failed	2	1
$\sqrt{}$	to explain Compton effect?		
26	In a photoelectric effect, explain how a change in intensity and	2	1
•	frequency affects the number of photoelectrons and the kinetic		
,	energies of these electrons, on the basis of Einstein's theory.		
3/a	How is the wave nature of electron demonstrated experimentally?	2	2
	Explain with the help of an experiment.		
3b	An electron beam is accelerated from rest through a potential	2	2
Α,	difference of 100 V. Calculate the associated wavelength.		
/a	Explain Heisenberg uncertainty principle. Based on this, show the	2	3
\checkmark ,	non-existence of electrons inside the nucleus.		
46	An electron in confined to a potential well of width 20 nm.	2	3
\checkmark	Calculate the minimum uncertainty in its velocity.		
5a	Derive a relationship between group and phase velocity of matter	2	2
	waves.		
\$b	Discuss the Planck's law of radiation in terms of wavelength.	2	2

Total	no.	of	Pages:	

Roll no.

Degree: B.TECH.

Semester: FIRST

END-SEMESTER EXAMINATION, APRIL-MAY, 2024

Course Title: FCEE0106: Fundamentals of Electrical Engineering Course Code: FCEE0106

Duration: 1.5 Hours

Max. Marks: 20 M

Note: - Attempt all questions in the given order only. Missing data/information (if any). maybe suitably assumed & mentioned in the answer.

-	Question	Marks	CO
Q. No.	Define accuracy, precision, relative accuracy of a measurement.	2M	CO1
y	Suppose you are measuring the area of a rectangle, where: The length (L) is measured as 10.0±0.2 cm The width (W) is measured as 5.0±0.1 cm i. Calculate the Nominal Value of the Area ii. Determine the Absolute Error in the Area iii. Determine the Relative Error in the Area.	2M	COI
a	Describe the following in case of measuring instruments. Deflecting torque Controlling torque	2M	CO1
)	Damping torque The change of inductance for a moving iron ammeter is $2\mu H/\text{degree}$. The control spring constant is $5*10^{-7}$ N-m/degree. The maximum deflection of the pointer is 100° , what is the current corresponding to maximum deflection?	2M	C01
	State maximum power transfer theorem and also prove the condition when the maximum power is transferred in a circuit.	2M	CO2
)	Condition when the maximum power is transferred in Using Thevenin's theorem, find the voltage across 3Ω resistor as shown in fig below.	2M	CO2

