# TEMPORAL EXPONENTIAL-FAMILY RANDOM GRAPH MODELING (TERGMS) WITH STATNET

Prof. Steven Goodreau

Prof. Martina Morris

Prof. Michal Bojanowski

Prof. Mark S. Handcock



## Source for all things STERGM

Pavel N. Krivitsky and Mark S. Handcock (2014). <u>A Separable Model for Dynamic Networks</u>. *Journal of the Royal Statistical Society, Series B*, Volume 76, Issue 1, pages 29–46.

## Terminology

- The phrase "temporal ERGMs," or TERGMs, refers to all ERGMs that are dynamic
- The specific class of TERGMs that have been implemented thus far are called "separable temporal ERGMs," or STERGMs
- In the relevant R package, we left open the possibility that we would develop more in the future
- Thus:

|                             | Cross-sectional | Dynamic |
|-----------------------------|-----------------|---------|
| Name of package             | ergm            | tergm   |
| Name of function in package | ergm            | stergm  |

### **ERGMs: Review**

Probability of observing a graph (set of relationships) y on a fixed set of nodes:

$$P(Y = y \mid ) = \frac{\exp(\boldsymbol{\theta}' \boldsymbol{g}(\boldsymbol{y}))}{k(\boldsymbol{\theta})}$$

Conditional log-odds of a tie

$$logit(P(Y_{ij} = 1 | rest of the graph)) = log(\frac{P(Y_{ij} = 1 | rest of the graph)}{P(Y_{ij} = 0 | rest of the graph)})$$

$$= \theta' \partial(g(y))$$

 $\mathbf{k}(\theta)$  = numerator summed over all possible networks on node set y  $\partial(\mathbf{g}(\mathbf{y}))$  represents the change in  $\mathbf{g}(\mathbf{y})$  when  $Y_{ij}$  is toggled between 0 and 1

- ERGMs are great for modeling cross-sectional network structure
- But they can only predict the presence of a tie; they are unable to separate the processes of tie formation and dissolution
- Why separate formation from dissolution?

- Intuition: The social forces that facilitate formation of ties are often different from those that facilitate their dissolution.
- Interpretation: Because of this, we would want model parameters to be interpreted in terms of ties formed and ties dissolved.
- Simulation: We want to be able to control cross-sectional network structure and relational durations separately in our disease simulations, matching both to data

- E.g. if a particular type of tie is rare in the cross-section, is that because:
  - They form infrequently?
  - They form frequently, but then dissolve frequently as well?
- The classic approximation formula from epidemiology helps us see the basic relationship among our concepts:



#### Core idea:

- The y<sub>ij</sub> values (ties in the network) and Y (the set of all y<sub>ij</sub> values) are now indexed by time
- Represent evolution from Y<sub>t</sub> to Y<sub>t+1</sub> as a product of two phases: one in which ties are formed and another in which they are dissolved, with each phase a draw from an ERGM.
- Thus, two formulas: a formation formula and a dissolution formula
- And, two corresponding sets of statistics

#### ERGM: Conditional log-odds of a tie existing

$$logit(P(Y_{ij} = 1 | rest of the graph)) = \theta' \partial(g(y))$$

STERGM: Conditional log-odds of a tie forming (formation model):

$$logit(P(Y_{ij,t+1} = 1 | Y_{ij,t} = 0, rest of the graph)) = \theta^{+\prime} \partial(g^+(y))$$

STERGM: Conditional log-odds of a tie *persisting* (dissolution model):

$$logit\left(P(Y_{ij,t+1}=1 | Y_{ij,t}=1, \text{ rest of the graph})\right) = \boldsymbol{\theta}^{-\prime} \boldsymbol{\partial} (\boldsymbol{g}^{-}(\boldsymbol{y}))$$

where:  $g^+(y)$  = vector of network statistics in the formation model  $\theta^+$  = vector of parameters in the formation model

 $g^{-}(y)$  = vector of network statistics in the dissolution model

 $\theta^-$  = vector of parameters in the dissolution model

#### Dissolution? Or persistence?

$$logit\left(P(Y_{ij,t+1}=1 | Y_{ij,t}=1, \text{ rest of the graph})\right) = \boldsymbol{\theta}^{-\prime}\boldsymbol{\partial}(\boldsymbol{g}^{-}(\boldsymbol{y}))$$

- The model is expressed as log odds of tie equaling 1 given it equaled 1 at the last time step
- This is done to make it consistent with the formation model, so all the math works out nicely
- But it implies that the model, and thus the coefficients, should be interpreted in terms of effects on relational persistence
- That said, people tend to thing in terms of relational formation and dissolution, since relational dissolution is a more salient event than relational persistence
- Thus, we often use the language of dissolution

During simulation, two processes occur separately within a time step:



- Y<sup>+</sup> = network in the formation process after evolution
- Y = network in the dissolution process after evolution
- This is the origin of the "S" in STERGM

- The statistical theory in Krivitsky and Handcock 2014:
  - demonstrates a given combination of formation and dissolution model will converge to a stable equilibrium, i.e.:

#### Prevalence ≈ Incidence x Duration

■ This and other work in press provide the statistical theory for methods for estimating the two models, given certain kinds of data

#### Term = ~edges

|                                       | $oldsymbol{	heta}  otag $                                                       | $oldsymbol{	heta} \mathrel{\searrow}$                                            |
|---------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Formation model                       | more new ties created each time step                                            | fewer new ties created each time step                                            |
| Dissolution<br>(persistence)<br>model | more existing ties pre-<br>served (fewer dissolved);<br>longer average duration | fewer existing ties pre-<br>served (more dissolved);<br>shorter average duration |

What combo do you think is most common in empirical networks?

#### Term = ~edges

|                                       | $oldsymbol{	heta}  otag $                                                       | $oldsymbol{	heta} \mathrel{\searrow}$                                            |
|---------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Formation model                       | more new ties created each time step                                            | fewer new ties created each time step                                            |
| Dissolution<br>(persistence)<br>model | more existing ties pre-<br>served (fewer dissolved);<br>longer average duration | fewer existing ties pre-<br>served (more dissolved);<br>shorter average duration |

What combo do you think is most common in empirical networks?

Term = ~concurrent (# of nodes with degree 2+)

|                                       | $oldsymbol{	heta}$ /                                     | $oldsymbol{	heta} \mathrel{\searrow}$                |
|---------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| Formation model                       | more ties added to actors with exactly 1 tie             | fewer ties added to actors with 1 tie                |
| Dissolution<br>(persistence)<br>model | actors with 2 ties more likely to have them be preserved | actors with 2 ties more likely to have them dissolve |

What combo do you think is most common in empirical sexual networks?

Term = ~concurrent (# of nodes with degree 2+)

|                                       | $oldsymbol{	heta}$ $	heta$                               | $oldsymbol{	heta} \mathrel{\searrow}$                |
|---------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| Formation model                       | more ties added to actors with exactly 1 tie             | fewer ties added to actors with 1 tie                |
| Dissolution<br>(persistence)<br>model | actors with 2 ties more likely to have them be preserved | actors with 2 ties more likely to have them dissolve |

What combo do you think is most common in empirical sexual networks?

### STERGMs: Data sources

- 1. Multiple cross-sections of complete network data
  - easy to work with
  - but rare-to-non-existent in some fields
- 2. One snapshot of a cross-sectional network (census, egocentric, or otherwise), plus information on relational durations
  - more common
  - but introduces some statistical issues in estimating relation lengths

## STERGMs: nodal dynamics

- All of the statistical theory presented so far regards networks with
  - Dynamic relationships, but still
  - Static actors
- I.e. no births and deaths, no changing of nodal attributes
- The statistical theory of STERGM can handle nodal dynamics during simulation, with a few added tweaks
  - Most important is an offset term to deal with changing population size
  - Without it, density is preserved as population size changes
  - With it, mean degree is preserved as population size changes

## STERGMs: nodal dynamics

For more info, see:

Pavel N. Krivitsky, Mark S. Handcock, and Martina Morris (January 2011). Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models. Statistical Methodology, 8(4): 319–339

- And for more help with using STERGMs to simulate dynamic networks along with changing nodes and attributes:
  - Take our intensive summer workshop on network modeling for epidemic diffusion
  - Explore the online materials for the workshop (on the statnet webpage)
  - Try the EpiModel package

### To the tutorial.....

(reference slides follow)

#### In some domains, often takes the form of

- asking respondents about individual relationships (either with or without identifiers).
- Often this is the n most recent, or all over some time period, or some combination (e.g. up to 3 in the last year)
- asking whether the relationship is currently ongoing
- if it's ongoing: asking how long it has been going on (or when it started)
- if it's over: asking how long it lasted (or when it started and when it ended)

#### From this we want to estimate

- the mean duration of relationships
- perhaps additional information about the variation in those durations (overall, across categories of respondents, etc.)

Issues?



- 1. Ongoing durations are right-censored
  - can use Kaplan-Meyer or other techniques to deal with

Issues?

- 2. Relationships are subject to length bias in their probability of being observed
  - This can also be adjusted for statistically
  - However, complex hybrid inclusion rules (e.g. most recent 3, as long as ongoing at some point in the last year) can make this complicated

- In practice (and for examples in this course), we sometimes rely on an elegant approximation:
  - If relation lengths are approximately exponential/geometric (a big if!),
     then the effects of length bias and right-censoring cancel out
  - The mean amount of time that the **ongoing** relationships have lasted until the day of interview (relationship age) is an unbiased estimator of the mean duration of relationships
  - Why?!?

- Exponential/geometric durations suggests a memoryless processes one in which the future does not depend on the past
- Imagine a fair, 6-sided die:
  - What is the probability I will get a 1 on my next toss?
  - What is the probability I will get a 1 on my next toss given that my previous 1 was five tosses ago?
    - On average, how many tosses will I need before I get my first 1?
    - On average, how many more tosses will I need before I get my next 1, given that my previous 1 was 8 tosses ago?

| Geometric                                    |                                 |  |
|----------------------------------------------|---------------------------------|--|
| Parameters                                   | $0  success probability (real)$ |  |
| Support                                      | $k \in \{1, 2, 3, \ldots\}$     |  |
| Probability mass function (pmf)              | $(1-p)^{k-1}p$                  |  |
| Cumulative<br>distribution<br>function (CDF) | $1 - (1 - p)^k$                 |  |
| Mean                                         | $\frac{1}{p}$ 25                |  |

SUNBELT 2015 - 23 JUNE 2015

- Now, let's imagine this fairly bizarre scenario:
  - You arrive in a room where there are 100 people who have each been flipping one die; they pause when you arrive.
  - You don't know how many sides those dice have, but you know they all have the same number.
  - You are not allowed to ask any information about what they've flipped in the past.
  - The only information people will give you is: how many flips after your arrival does it take until they get their first 1?
  - You are allowed to stay until all of the 100 people get their first 1, and they can inform you of the result.
- Given the information provided you, how will you estimate the number of sizes on the die?

- Simple: when everyone tells you how many flips it takes from your arrival until their first 1, just take the mean of those numbers. Call it *m*.
- Your best guess for the probability of getting a 1 per flip is 1/m.
- And your best guess for the number of sides is the reciprocal of the probability of any one outcome per flip, which is 1/1/m, which just equals m again.
- Voila!

Retrospective relationship surveys are like this, but in reverse:

Dice:

Relationships:

- If you have something approximating a memoryless process for relational duration, then an unbiased estimator for relationship length is to:
  - ask people about how long their ongoing relationships have lasted up until the present
  - take the mean of that number across respondents.

- In practice, we find that the geometric distribution doesn't often capture the distribution of relational durations overall.
- But, if you divide the relationships into 2+ types, it can do a reasonable job within type
- Especially if you remove any 1-time contacts and model them separately (for populations where they are common)
- Remember: DCMs model pretty much everything as a memoryless process, so approximating one aspect of our model that way is well within common practice