HYPOTHESIS TESTING • MTH107

Class R FAQ

by Derek H. Ogle, revised Nov-17

1-Sample Z-Test

H₀: $\mu = \mu_0$ (where μ_0 = specific value)

Statistic: \overline{x} Test Statistic: $Z=rac{\overline{x}-\mu_0}{rac{\sigma}{n}}$ Conf. Region: $\overline{x}+Z^*rac{\sigma}{n}$

Assumptions: 1) σ is known

2) n≥30, n≥15 and popn not strongly skewed, OR popn is normal

R: z.test()

1-Sample t-Test

H₀: $\mu = \mu_0$ (where μ_0 = specific value)

 $\textbf{Statistic:} \ \overline{X} \quad \textbf{Test Statistic.:} \ t = \frac{\overline{x} - \mu_0}{\frac{s}{n}} \quad \textbf{Conf. Region:} \ \overline{x} + t^* \frac{s}{n} \quad \textbf{df:} \ n\text{-}1$

Assumptions: 1) σ is UNknown,

2) n>40, n>15 & histogram not strongly skewed, OR histogram is normal

R: t.test(), hist()

2-Sample t-Test

 H_0 : $\mu_1 = \mu_2$ Statistic: $\overline{x}_1 - \overline{x}_2$

 $\text{Test Statistic: } t = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{s_p^2 \Big(\frac{1}{n_1} + \frac{1}{n_2}\Big)}} \ \ \, \text{where } s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

Assumptions:

- 1) Individuals in populations are independent
- 2) Variances are equal (use Levene's Test)
- 3) n₁+n₂≥40, n₁+n₂≥15 and both histograms are not strongly skewed, OR both histograms are normal

R: t.test(), levenesTest(), hist()

Choosing a Hypothesis Test

1. If response variable is QUANTITATIVE, then GOTO 2; otherwise GOTO 5.

Quantitative Response

- 2. If 1 POPULATION was sampled, then GOTO 3; otherwise GOTO 4.
- **3.** If σ is KNOWN, then **1-Sample Z**; otherwise **1-Sample t**.
- If individuals in populations are INDEPENDENT, then 2-Sample t; otherwise, Paired t.

Categorical Response

5. If 1 POPULATION was sampled, then Goodness-of-Fit; otherwise, Chi-Square.

Making a Decision about H₀

If the p-value $< \alpha$, then **REJECT H₀**, otherwise **DNR H₀**.

Chi-Square Test

H₀: "Distribution of individuals into response levels is the same for all populations" **H_A:** "Distribution of individs into response levels is NOT the same for all populations"

Statistic: Observed frequency table

Test Statistic: $\chi^2 = \sum \frac{(\text{Observed-Expected})^2}{\text{Expected}}$ df: (rows-1)(columns-1)

Assumptions: >5 in each cell of the expected table

R: xtabs(), matrix(), chisq.test(), percTable()

Goodness-of-Fit Test

H₀: "Distribution of individs into response levels follows the theoretical distribution"

H_A: "Distribution of indivuals into response levels does NOT follow the theoretical distribution"

Statistic: Observed frequency table

Test Statistic: $\chi^2 = \sum \frac{(Observed-Expected)^2}{Expected}$ df: cells-1

Assumptions: >5 in each cell of the expected table

R: xtabs(), c(), chisq.test(), percTable(), chiGOF()

11 STEPS FOR ANY HYPOTHESIS TEST

- 1) State the rejection criterion (α)
- 2) State the null & alternative hypotheses and define the parameter(s)
- Determine which test to perform Explain!
- 4) Collect the data (address type of study and randomization)
- Check all necessary assumption(s)
- 6) Calculate the appropriate statistic(s)
- 7) Calculate the appropriate test statistic
- 8) Calculate the p-value
- 9) State your rejection decision
- 10) Summarize your findings in terms of the problem
- 11) If rejected H_0 , compute a 100(1- α)% confidence region for parameter