IMXLUG_6.6.23_2.0.0

i.MX Linux User's Guide

Rev. LF6.6.23_2.0.0 — 26 July 2024

User guide

Document information

Information	Content
Keywords	i.MX, Linux, LF6.6.23_2.0.0
Abstract	This document describes how to build and install the i.MX Linux OS BSP, where BSP stands for Board Support Package, on the i.MX platform. It also covers special i.MX features and how to use them.

1 Overview

This document describes how to build and install the i.MX Linux OS BSP, where BSP stands for Board Support Package, on the i.MX platform. It also covers special i.MX features and how to use them.

The document also provides the steps to run the i.MX platform, including board DIP switch settings, and instructions on configuring and using the U-Boot bootloader.

The later chapters describe how to use some i.MX special features when running the Linux OS kernel.

Features covered in this guide may be specific to particular boards or SoCs. For the capabilities of a particular board or SoC, see the *i.MX Linux Release Notes* (IMXLXRN).

1.1 Audience

This document is intended for software, hardware, and system engineers who are planning to use the product, and for anyone who wants to know more about the product.

1.2 Conventions

This document uses the following conventions:

• Courier New font: This font is used to identify commands, explicit command parameters, code examples, expressions, data types, and directives.

1.3 Supported hardware SoCs and boards

These are the systems covered in this guide:

- · i.MX 6Quad SABRE-SD board and platform
- i.MX 6DualLite SABRE-SD platform
- i.MX 6SoloX SABRE-SD platform
- · i.MX 7Dual SABRE-SD platform
- i.MX 6QuadPlus SABRE-SD platform
- i.MX 6UltraLite EVK platform
- i.MX 6ULL EVK platform
- · i.MX 6ULZ EVK platform
- · i.MX 7ULP EVK platform
- i.MX 8QuadMax MEK board
- i.MX 8QuadXPlus MEK platform
- i.MX 8DualXLite EVK platform
- · i.MX 8M Quad EVK platform
- · i.MX 8M Mini EVK board
- · i.MX 8M Nano EVK board
- · i.MX 8M Plus EVK board
- i.MX 8DualX MEK board
- i.MX 8ULP EVK boardi.MX 91 EVK board
- i.MX 93 EVK board
- i.MX 93 QSB board
- i.MX 95 EVK board

Some abbreviations are used in places in this document.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

2 / 150

- SABRE-SD refers to the i.MX 6Quad SABRE-SD, i.MX 6DualLite SABRE-SD, i.MX 6QuadPlus SABRE-SD, and i.MX 7Dual SABRE-SD boards.
- SoloX or SX refers to the i.MX 6SoloX SABRE-SD boards.
- 6UL refers to the i.MX 6UltraLite board.
- 6ULL refers to the i.MX 6ULL board.
- · 6ULZ refers to the i.MX 6ULZ board.
- 7ULP refers to the i.MX 7Ultra Low Power platform.
- 8QXP refers to the 8QuadXPlus platform.
- 8QM refers to the 8QuadMax platform.
- 8MQ refers to the 8M Quad platform.
- 8MM refers to the 8M Mini platform.
- 8MN refers to the 8M Nano platform.
- 8MP refers to the 8M Plus platform.
- 8DXL refers to the 8DualXLite platform.
- 8DX refers to the 8DualX platform.
- 8ULP refers to the i.MX 8Ultra Low Power platform.
- i.MX 91 refers to the i.MX 91 EVK board.
- . i.MX 93 refers to the i.MX 93 EVK board.

1.4 References

i.MX has multiple families supported in software. The following are the listed families and SoCs per family. The i.MX Linux Release Notes describes which SoC is supported in the current release. Some previously released SoCs might be buildable in the current release but not validated if they are at the previous validated level.

- i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ
- i.MX 7 Family: 7Dual, 7ULP
- i.MX 8 Family: 8QuadMax, 8QuadPlus, 8ULP
- i.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano
- · i.MX 8X Family: 8QuadXPlus, 8DXL
- i.MX 9 Family: i.MX 91, i.MX 93, i.MX 95

This release includes the following references and additional information.

- *i.MX Linux Release Notes* (IMXLXRN_6.6.23_2.0.0) Provides the release information.
- *i.MX Linux User's Guide* (IMXLUG_6.6.23_2.0.0) Provides the information on installing U-Boot and Linux OS and using i.MX-specific features.
- *i.MX Yocto Project User's Guide* (IMXLXYOCTOUG_6.6.23_2.0.0) Describes the board support package for NXP development systems using Yocto Project to set up host, install tool chain, and build source code to create images.
- *i.MX Machine Learning User's Guide* (IMXMLUG_6.6.23_2.0.0) Provides the machine learning information.
- i.MX Linux Reference Manual (IMXLXRM 6.6.23 2.0.0) Provides the information on Linux drivers for i.MX.
- i.MX Graphics User's Guide (IMXGRAPHICUG 9) Describes the graphics features.
- *i.MX Porting Guide* (IMXXBSPPG_6.6.23_2.0.0) Provides the instructions on porting the BSP to a new board.
- i.MX VPU Application Programming Interface Linux Reference Manual (IMXVPUAPI_6.6.23_2.0.0) Provides the reference information on the VPU API on i.MX 6 VPU.
- Harpoon User's Guide (HRPNUG) Presents the Harpoon release for i.MX 8M device family.
- i.MX Digital Cockpit Hardware Partitioning Enablement for i.MX 8QuadMax (IMXDCHPE_6.6.23_2.0.0) Provides the i.MX Digital Cockpit hardware solution for i.MX 8QuadMax.
- i.MX DSP User's Guide (IMXDSPUG_6.6.23_2.0.0) Provides the information on the DSP for i.MX 8.

- i.MX 8M Plus Camera and Display Guide (IMX8MPCDUG_6.6.23_2.0.0) Provides the information on the ISP Independent Sensor Interface API for the i.MX 8M Plus.
- EdgeLock Enclave Hardware Security Module API (RM00284) This document is a software reference description of the API provided by the i.MX 8ULP, i.MX 93, and i.MX 95 Hardware Security Module (HSM) solutions for the EdgeLock Enclave (ELE) Platform.

The quick start guides contain basic information on the board and setting it up. They are on the NXP website.

- SABRE Platform Quick Start Guide (IMX6QSDPQSG)
- SABRE Board Quick Start Guide (IMX6QSDBQSG)
- i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)
- i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
- SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)
- i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
- i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)
- i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)
- i.MX 8M Nano Evaluation Kit Quick Start Guide (8MNANOEVKQSG)
- i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide (IMX8QUADXPLUSQSG)
- i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide (IMX8QUADMAXQSG)
- i.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)
- i.MX 8ULP EVK Quick Start Guide (IMX8ULPQSG)
- i.MX 8ULP EVK9 Quick Start Guide (IMX8ULPEVK9QSG)
- i.MX 93 EVK Quick Start Guide (IMX93EVKQSG)
- i.MX 93 9x9 QSB Quick Start Guide (93QSBQSG)

Documentation is available online at nxp.com.

- i.MX 6 information is at nxp.com/iMX6series
- i.MX SABRE information is at nxp.com/imxSABRE
- i.MX 6UltraLite information is at nxp.com/iMX6UL
- i.MX 6ULL information is at nxp.com/iMX6ULL
- i.MX 7Dual information is at nxp.com/iMX7D
- i.MX 7ULP information is at nxp.com/imx7ulp
- i.MX 8 information is at nxp.com/imx8
- i.MX 6ULZ information is at nxp.com/imx6ulz
- i.MX 91 information is at nxp.com/imx91.
- i.MX 93 information is at nxp.com/imx93
- i.MX 95 information is at nxp.com/imx95

The latest DDR configuration and test tools are available online at nxp.com and at NXP Community:

- i.MX 6/7:
 - i.MX 6/7 Series DDR Tool Release
- i.MX 8:
 - i.MX 8M Family DDR Tool Release
- i.MX 8/8X Family DDR Tools Release
- i.MX 9 series:
 - Config Tools for i.MX Applications Processors

2 Introduction

The i.MX Linux BSP is a collection of binary files, source code, and support files that can be used to create a U-Boot bootloader, a Linux kernel image, and a root file system for i.MX development systems. The Yocto Project is the framework of choice to build the images described in this document, although other methods can be used.

All the information on how to set up the Linux OS host, how to run and configure a Yocto Project, generate an image, and generate a rootfs, are covered in the *i.MX Yocto Project User's Guide* (IMXLXYOCTOUG).

When Linux OS is running, this guide provides information on how to use some special features that i.MX SoCs provide. The release notes provide the features that are supported on a particular board.

3 Basic Terminal Setup

The i.MX boards can communicate with a host server (Windows OS or Linux OS) using a serial cable. Common serial communication programs such as HyperTerminal, Tera Term, or PuTTY can be used. The example below describes the serial terminal setup using HyperTerminal on a host running Windows OS.

The i.MX 6Quad/QuadPlus/DualLite SABRE-Al boards connect to the host server using a serial cable.

The other i.MX boards connect the host driver using the micro-B USB connector.

- 1. Connect the target and the PC running Windows OS using a cable mentioned above.
- 2. Open HyperTerminal on the PC running Windows OS and select the settings as shown in the following figure.

Figure 1. Teraterm settings for terminal setup

The i.MX 8 board connects the host driver using the micro USB connector. The USB to serial driver can be found under www.ftdichip.com/Drivers/VCP.htm. The FT4232 USB to serial converter provides four serial ports. The i.MX 8 board uses the first port for the Arm Cortex-A cores console and the second port for SCU's console. Users need to select the first port (COM) in the terminal setup. The i.MX 8DXL board uses the third and fourth ports respectively for Arm Cortex-A cores console and SCU console.

4 Booting Linux OS

Before booting the Linux OS kernel on an i.MX board, copy the images (U-Boot, Linux kernel, device tree, and rootfs) to a boot device and set the boot switches to boot that device. There are various ways to boot the Linux OS for different boards, boot devices, and results desired. This section describes how to prepare a boot device,

where files need to be in the memory map, how to set switches for booting, and how to boot Linux OS from U-Boot.

4.1 Software overview

This section describes the software needed for the board to be able to boot and run Linux OS.

To boot a Linux image on i.MX 6 and i.MX 7, the following elements are needed:

- Bootloader (U-Boot)
- Linux kernel image (zlmage)
- A device tree file (.dtb) for the board being used
- A root file system (rootfs) for the particular Linux image
- · Arm Cortex-M4 image for i.MX 7ULP

To boot a Linux image on i.MX 8QuadMax, i.MX 8QuadXPlus, and i.MX 8DXL, multiple elements are needed:

- Bootloader (imx-boot built by imx-mkimage, which is a tool that combines firmware and U-Boot to create a bootloader for i.MX 8), which includes U-Boot, Arm Trusted Firmware, DCD file, System controller firmware, and the SECO firmware since i.MX 8QuadMax/i.MX 8QuadXPlus B0 and i.MX 8DXL A1.
- (Optional) Arm Cortex-M4 image
- Linux kernel image (Image built by linux-imx)
- A device tree file (.dtb) for the board being used
- A root file system (rootfs) for the particular Linux image

On i.MX 8M Quad, i.MX 8M Mini, i.MX 8M Nano, and i.MX 8M Plus, multiple elements are needed:

- imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted Firmware, DDR firmware
- HDMI firmware (only supported by i.MX 8M Quad)
- · Linux kernel image
- A device tree file (.dtb) for the board being used.
- A root file system (rootfs) for the particular Linux image

On i.MX 8ULP, four elements are needed:

- imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted Firmware, OP-TEE, uPower Firmware, Sentinel Firmware, and Arm Cortex-M33 image
- Linux kernel image
- A device tree file (.dtb) for the board being used
- A root file system (rootfs) for the particular Linux image

On i.MX 93, multiple elements are needed:

- imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted Firmware, OP-TEE, Sentinel Firmware, DDR PHY Firmware
- · Linux kernel image
- · (Optional) Arm Cortex-M33 image
- A device tree file (.dtb) for the board being used
- A root file system (rootfs) for the particular Linux image

On i.MX 95, multiple elements are needed:

- imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted Firmware, OP-TEE, ELE+V2X Firmware, DDR PHY Firmware, System Manager, DDR OEI, TCM OEI (optional, but mandatory with the Cortex-M7 image), Arm Cortex-M7 image (optional)
- · Linux kernel image

- A device tree file (.dtb) for the board being used
- A root file system (rootfs) for the particular Linux image

The system can be configured for a specific graphical backend. For i.MX 8, the graphical backend is XWayland. For i.MX 7ULP, the default backend is XWayland.

4.1.1 Bootloader

U-Boot is the tool recommended as the bootloader for i.MX 6 and i.MX 7. i.MX 8 and i.MX 9 require a bootloader that includes U-Boot as well as other components described below. U-Boot must be loaded onto a device to be able to boot from it. U-Boot images are board-specific and can be configured to support booting from different sources.

The pre-built or Yocto project default bootloader names start with the name of the bootloader followed by the name of the platform and board and followed by the name of the device that this image is configured to boot from: u-boot-[platform] [board]_[machine_configuration].bin. If no boot device is specified, it boots from SD/MMC.

The manufacturing tool can be used to load U-Boot onto all devices with i.MX 6 and i.MX 7. U-Boot can be loaded directly onto an SD card using the Linux dd command. U-Boot can be used to load a U-Boot image onto some other devices.

On i.MX 8, the U-Boot cannot boot the device by itself. The i.MX 8 pre-built images or Yocto Project default bootloader is imx-boot for the SD card, which is created by the imx-mkimage. The imx-boot binary includes the U-Boot, Arm trusted firmware, DCD file (8QuadMax/8QuadXPlus/8DXL), system controller firmware (8QuadMax/8QuadXPlus/8DXL), SPL (8M SoC), DDR firmware (8M), HDMI firmware (8M Quad), and SECO firmware (8QuadMax/8QuadXPlus/8DXL).

On i.MX 8M SoC, the second program loader (SPL) is enabled in U-Boot. SPL is implemented as the first-level bootloader running on TCML (For i.MX 8M Nano and i.MX 8M Plus, the first-level bootloader runs in OCRAM). It is used to initialize DDR and load U-Boot, U-Boot DTB, Arm trusted firmware, and TEE OS (optional) from the boot device into the memory. After SPL completes loading the images, it jumps to the Arm trusted firmware BL31 directly. The BL31 starts the optional BL32 (TEE OS) and BL33 (U-Boot) for continue booting kernel.

In imx-boot, the SPL is packed with DDR Firmware together, so that ROM can load them into Arm Cortex-M4 TCML or OCRAM (only for i.MX 8M Nano and i.MX 8M Plus). The U-Boot, U-Boot DTB, Arm Trusted firmware, and TEE OS (optional) are packed into a FIT image, which is finally built into imx-boot.

4.1.2 Linux kernel image and device tree

This i.MX BSP contains a pre-built kernel image based on the 6.6.23 version of the Linux kernel and the device tree files associated with each platform.

The same kernel image is used for all the i.MX 6 and i.MX 7 with name zImage. Device trees are tree data structures, which describe the hardware configuration allowing a common kernel to be booted with different pin settings for different boards or configurations. Device tree files use the .dtb extension. The configuration for a device tree can be found in the Linux source code under arch/arm/boot/dts in the *.dts files.

The i.MX Linux delivery package contains pre-built device tree files for the i.MX boards in various configurations. Filenames for the prebuilt images are named <code>Image-[platform]-[board]-[configuration].dtb</code>. For example, the device tree file of the i.MX 8QuadMax MEK board is <code>Image-imx8qm-mek.dtb</code>.

For i.MX 6 and i.MX 7, the *ldo.dtb device trees are used for LDO-enabled feature support. By default, the LDO bypass is enabled. If your board has the CPU set to 1.2 GHz, you should use the *ldo.dtb device tree instead of the default, because LDO bypass mode is not supported on the CPU at 1.2 GHz. The device tree *hdcp.dtb is used to enable the HDCP feature because of a pin conflict, which requires this to be configured at build time.

On i.MX 8, i.MX 8M, i.MX 8ULP, i.MX 93, and i.MX 91, the kernel is 64 bit and device trees are located in the arch/arm64/boot/dts/freescale folder and use the dts extension. The kernel is built using linux-imx software provided in the release package and the filename starting with Image.

4.1.3 Root file system

The root file system package (or rootfs) provides busybox, common libraries, and other fundamental elements.

The i.MX BSP package contains several root file systems. They are named with the following convention: [image name] - [backend] - [platform] [board]. [ext4|wic]. The ext4 extension indicates a standard file system. It can be mounted as NFS, or its contents can be stored on a boot media such as an SD/MMC card.

The graphical backend to be used is also defined by the rootfs.

4.2 Universal update utility

The Universal Update Utility (UUU) runs on a Windows or Linux OS host and is used to download images to different devices on an i.MX board.

4.2.1 Downloading UUU

Download UUU version 1.5.125 or higher from https://github.com/NXPmicro/mfgtools/releases.

4.2.2 Using UUU

To use the UUU for i.MX 6, i.MX 7, i.MX 8, and i.MX 9, follow the instructions below:

- 1. Connect a USB cable from a computer to the USB OTG/TYPE C (or Micro-B, depending on board) port on the board for download link.
- 2. Connect a USB cable from the OTG-to-UART port to the computer for console output.
- 3. Open a Terminal emulator program. See Section "Section 3" in this document.
- 4. Set the boot pin to serial download mode mode. See Section "Section 4.5.11" in this document.

To use the UUU for i.MX 8ULP EVK, follow the instructions below:

• To burn single-boot image and rootfs to eMMC, run the following command:

```
uuu -b emmc_all imx-boot-imx8ulpevk-sd.bin-flash_singleboot_m33
<rootfs.wic.zst>
```

• To burn single-boot image to FlexSPI2 NOR flash, run the following command:

```
uuu -b qspi imx-boot-imx8ulpevk-fspi.bin-flash singleboot m33 flexspi
```

- To burn dual-boot image and rootfs to eMMC and FlexSPI0 NOR flash, perform the following steps:
 - Prepare imx-boot-imx8ulpevk-sd.bin-flash_singleboot_m33, imx-boot-imx8ulpevk-sd.bin-flash_dualboot, imx-boot-imx8ulpevk-sd.bin-flash_dualboot_m33, and <rootfs.wic>.
 - 2. Update the UUU script file uuu 8ulp dual.auto with the file path and name of the images above.
 - 3. Run uuu mfgtools/scripts/samples/uuu 8ulp dual.auto.

For detailed usage of UUU, see github.com/NXPmicro/mfgtools/wiki.

For example, the following command writes rootfs.wic into eMMC.

```
uuu -b emmc_all <bootloader> <rootfs.wic>
```

The following command decompresses zst file and writes into eMMC:

```
uuu -b emmc_all <bootloader> <rootfs.wic.zst/*>
```

The following command executes downloading and bootloader (SPL and U-Boot) by USB:

```
uuu -b spl <bootloader>
```

The following command burns boot image into FlexSPI NAND:

```
uuu -b spi nand <nand uuu fw> <bootloader>
```

The following command burns into eMMC (If only one board is supported in such a release package and the board supports eMMC chip):

```
uuu <release package>.zip
```

Note:

For i.MX 8QuadXPlus B0, UUU flashes the eMMC image to boot partition with 32 KB offset. It may not be compatible with all eMMC devices. It is recommended to enable eMMC fastboot mode and use the UUU kernel version script to flash the eMMC image to boot partition with 0 offset.

4.3 Preparing an SD/MMC card to boot

This section describes the steps to prepare an SD/MMC card to boot up an i.MX board using a Linux host machine. These instructions apply to SD and MMC cards although for brevity, and usually only the SD card is listed.

For a Linux image to be able to run, four separate pieces are needed:

- · Linux OS kernel image (zlmage/lmage)
- Device tree file (*.dtb)
- Bootloader image
- Root file system (for example, EXT4)

The Yocto Project build creates an SD card image that can be flashed directly. This is the simplest way to load everything needed onto the card with one command.

A .wic image contains all four images properly configured for an SD card. The release contains a pre-built .wic image that is built specifically for the one board configuration. It runs the Wayland graphical backend. It does not run on other boards unless U-Boot, the device tree, and rootfs are changed.

When more flexibility is desired, the individual components can be loaded separately, and those instructions are included here as well. An SD card can be loaded with the individual components one-by-one or the .wic image can be loaded and the individual parts can be overwritten with the specific components.

The rootfs on the default .wic image is limited to a bit less than 4 GB, but re-partitioning and re-loading the rootfs can increase that to the size of the card. The rootfs can also be changed to specify the graphical backend that is used.

The device tree file (.dtb) contains board and configuration-specific changes to the kernel. Change the device tree file to change the kernel for a different i.MX board or configuration.

By default, the release uses the following layout for the images on the SD card. The kernel image and DTB move to use the FAT partition without a fixed raw address on the SD card. The users have to change the U-Boot boot environment if the fixed raw address is required.

Table 1. Image layout

Start address (sectors)	Size (sectors)	Format	Description
0x400 bytes (2)	0x9FFC00 bytes (20478)	RAW	i.MX 6 and i.MX 7 U-Boot and reserved area
0x8400 (66)	0x9F7C00 (20414)	RAW	i.MX 8M Quad and i.MX 8M Mini imx-boot reserved area
0x8000 (64)	0x9F8000 (20416)	RAW	i.MX 8QuadMax/8QuadXPlus/8M Nano/ 8M Plus/8DXL/8DualX/8ULP, i.MX 93, and i.MX 95
0xa00000 bytes (20480)	500 MB (1024000)	FAT	Kernel Image and DTBs
0x25800000 bytes (1228800)	Remaining space	Ext3/Ext4	Rootfs

4.3.1 Preparing the card

An SD/MMC card reader, such as a USB card reader, is required. It is used to transfer the bootloader and kernel images to initialize the partition table and copy the root file system. To simplify the instructions, it is assumed that a 4 GB SD/MMC card is used.

Any Linux distribution can be used for the following procedure.

The Linux kernel running on the Linux host assigns a device node to the SD/MMC card reader. The kernel might decide the device node name or udev rules might be used. In the following instructions, it is assumed that udev is not used.

To identify the device node assigned to the SD/MMC card, carry out the following command:

\$ cat	/proc/	/partitions	S	
		#blocks		
- 8	0	78125000	sda	
8	1	75095811	sda1	
8	2	1	sda2	
8	5	3028221	sda5	
8	32	488386584	sdc	
8	33	488386552	sdc1	
8	16	3921920	sdb	
8	18	3905535	sdb1	
O	10	3,00000	Sabi	

In this example, the device node assigned is /dev/sdb (a block is 1024 Bytes).

Note: Make sure that the device node is correct for the SD/MMC card. Otherwise, it may damage your operating system or data on your computer.

4.3.2 Copying the full SD card image

The SD card image (with the extension .wic) contains U-Boot, the Linux image and device trees, and the rootfs for a 4 GB SD card. The image can be installed on the SD card with one command if flexibility is not required.

Carry out the following command to copy the SD card image to the SD/MMC card. Change sdx below to match the one used by the SD card.

```
$ sudo dd if=<image name>.wic of=/dev/sdx bs=1M && sync
```

The entire contents of the SD card are replaced. If the SD card is larger than 4 GB, the additional space is not accessible.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

4.3.3 Partitioning the SD/MMC card

The full SD card image already contains partitions. This section describes how to set up the partitions manually. This needs to be done to individually load the bootloader, kernel, and rootfs.

There are various ways to partition an SD card. Essentially, the bootloader image needs to be at the beginning of the card, followed by the Linux image and the device tree file. These can either be in separate partitions or not. The root file system needs to be in a partition that starts after the Linux section. Make sure that each section has enough space. The example below creates two partitions.

On most Linux host operating systems, the SD card is mounted automatically upon insertion. Therefore, before running fdisk, make sure that the SD card is unmounted if it was previously mounted (through sudo umount / dev/sdx).

Start by running fdisk with root permissions. Use the instructions above to determine the card ID. We are using sdx here as an example.

```
$ sudo fdisk /dev/sdx
```

Type the following parameters (each followed by <ENTER>):

```
[lists the current partitions]
р
d
          [to delete existing partitions. Repeat this until no unnecessary
partitions
            are reported by the 'p' command to start fresh.]
          [create a new partition]
n
          [create a primary partition - use for both partitions]
р
          [the first partition]
          [starting at offset sector]
20480
          [ending position of the first partition to be used for the boot
1024000
images]
          [to check the partitions]
р
n
р
          [starting at offset sector, which leaves enough space for the kernel,
1228800
               the bootloader and its configuration data]
          [using the default value will create a partition that extends to
<enter>
               the last sector of the medial
          [to check the partitions]
р
          [this writes the partition table to the media and fdisk exits]
```

4.3.4 Copying a bootloader image

This section describes how to load only the bootloader image when the full SD card image is not used. Execute the following command to copy the U-Boot image to the SD/MMC card.

```
$ sudo dd if=<U-Boot image> of=/dev/sdx bs=1k seek=<offset> conv=fsync
```

Where offset is:

- 1 for i.MX 6 or i.MX 7
- 33 for i.MX 8QuadMax A0, i.MX 8QuadXPlus A0, and i.MX 8M Quad, and i.MX 8M Mini
- 32 for i.MX 8QuadXPlus B0, i.MX 8QuadMax B0, i.MX 8DualX, i.MX 8DXL, i.MX 8M Nano, i.MX 8M Plus, i.MX 8ULP, and i.MX 9

The sectors of SD/eMMC before the "offset" KB are reserved. It may include the partition table.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

4.3.5 Copying the kernel image and DTB file

This section describes how to load the kernel image and DTB when the full SD card image is not used. The prebuilt SD card image uses the VFAT partition for storing kernel image and DTB, which requires a VFAT partition that is mounted as a Linux drive and the files are copied into it. This is the preferred method.

Another method that can be used is for users to put the kernel image and DTB to the fixed raw address of the SD card by using the dd command. The later method needs to modify the U-Boot default environment variables for loading the kernel image and DTB.

Default: VFAT partition

1. Format partition 1 on the card as VFAT with this command:

```
$ sudo mkfs.vfat /dev/sdx1
```

2. Mount the formatted partition with this command:

```
$ mkdir mountpoint
$ sudo mount /dev/sdx1 mountpoint
```

3. Copy the zImage and *.dtb files to the mountpoint by using cp. The device tree names should match the one used by the variable specified by U-Boot. Unmount the partition with this command:

```
$ sudo umount mountpoint
```

Alternative: Pre-defined raw address

The following command can be used to copy the kernel image to the SD/MMC card:

For i.MX 6 and i.MX7, use this command:

```
$ sudo dd if=zImage_imx_v7_defconfig of=/dev/sdx bs=512 seek=2048 conv=fsync
```

For i.MX 8, use this command:

```
sudo dd if=Image-imx8qmsabreauto.bin of=/dev/sdx bs=512 seek=2048 conv=fsync
```

Each of them copies the kernel to the media at offset 1 MB (bs x seek = $512 \times 2048 = 1 \text{ MB}$). The file zImage_imx_v7_defconfig refers to the zImage file created when using the imx_v7_defconfig configuration file, which supports both i.MX 6 and i.MX 7 SoCs.

The i.MX DTB image can be copied by using the copy command and copying the file to the 2nd partition or the following commands copy an i.MX DTB image to the SD/MMC card by using dd command.

Choose a command for your board:

```
$ sudo dd if=zImage-imx6qp-sabreauto.dtb of=/dev/sdx bs=512 seek=20480
conv=fsync
$ sudo dd if=zImage-imx6qp-sabresd.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6q-sabreauto.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6q-sabresd.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx6sl-evk.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
$ sudo dd if=zImage-imx7d-sdb.dtb of=/dev/sdx bs=512 seek=20480 conv=fsync
```

For i.MX 6 and i.MX 7, the following command can be used to copy the kernel image to the boards, such as the i.MX 6UltraLite EVK board and i.MX 6ULL EVK board:

```
$ sudo dd if=zImage-imx6ul-14x14-evk.dtb of=/dev/sdx bs=512 seek=20480
conv=fsync
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

```
$ sudo dd if=zImage-imx6ull-14x14-evk.dtb of=/dev/sdx bs=512 seek=20480
conv=fsync
```

For i.MX 6 and i.MX 7, this copies the board-specific . dtb file to the media at offset 10 MB (bs x seek = $512 \times 20480 = 10 \text{ MB}$).

4.3.6 Copying the root file system (rootfs)

This section describes how to load the rootfs image when the full SD card image is not used.

Copy the target file system to a partition that only contains the rootfs. This example uses partition 2 for the rootfs. First format the partition. The file system format ext3 or ext4 is a good option for the removable media due to the built-in journaling. Replace sdx with the partition in use in your configuration.

```
$ sudo mkfs.ext3 /dev/sdx2
Or
$ sudo mkfs.ext4 /dev/sdx2
```

Copy the target file system to the partition:

```
$ mkdir /home/user/mountpoint
$ sudo mount /dev/sdx2 /home/user/mountpoint
```

Extract a rootfs package to a directory: for example, extract imx-image-multimedia-imx7ulpevk.tar.zst to /home/user/rootfs:

```
$ cd /home/user/rootfs
$ tar -jxvf imx-image-multimedia-imx7ulpevk.tar.zst
```

The rootfs directory needs to be created manually.

Assume that the root file system files are located in /home/user/rootfs as in the previous step:

```
$ cd /home/user/rootfs
$ sudo cp -a * /home/user/mountpoint
$ sudo umount /home/user/mountpoint
$ sync
```

The file system content is now on the media.

Note: Copying the file system takes several minutes depending on the size of your rootfs.

4.4 Downloading images

Images can be downloaded to a device using a U-Boot image that is already loaded on the boot device or by using the Manufacturing Tool UUU. Use a terminal program to communicate with the i.MX boards.

4.4.1 Downloading images using U-Boot

The following sections describe how to download images using the U-Boot bootloader.

The commands described below are generally useful when using U-Boot. Additional commands and information can be found by typing help at the U-Boot prompt.

The U-Boot print command can be used to check environment variable values.

The seteny command can be used to set environment variable values.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

4.4.1.1 Flashing an Arm Cortex-M4 image on QuadSPI

i.MX 6SoloX SABRE-SD, i.MX 7ULP EVK, and i.MX 7Dual SABRE-SD boards have the Arm Cortex-M4 processor and QuadSPI memory that can be used to flash an image to it.

Note

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the MFGTool script uuu LF6.6.23_2.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

i.MX U-Boot provides a reference script on i.MX 7Dual SABRESD and i.MX 6SoloX SABRE-SD to flash the Arm Cortex-M4 image from the SD card. To execute the script, perform the following steps:

- Copy the Arm Cortex-M4 image to the first VFAT partition of the boot SD card. Name the file to m4 qspi.bin.
- 2. Boot from the SD card.
- 3. Flash the Arm Cortex-M4 image from the SD card to the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD board or QuadSPI1 PortA CS0 offset 1 MB on the i.MX 7Dual SABRE-SD board.

```
U-Boot > run update_m4_from_sd
```

Alternatively, users can flash the Arm Cortex-M4 image from TFTP by performing the following steps:

- 1. Boot from the SD card.
- 2. TFTP the Arm Cortex-M4 image.

```
U-Boot > tftp ${loadaddr} m4_qspi.bin
```

3. Select the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD board.

```
U-Boot > sf probe 1:0
```

Select the NOR flash on QuadSPI1 PortA CS0 on the i.MX 7Dual SABRE-SD board and i.MX 7ULP EVK board.

```
U-Boot > sf probe 0:0
```

4. Flash the Arm Cortex-M4 image to the selected NOR flash. The erase size is \${filesize}, around 64 Kbytes. This example assumes that it is 128 Kbytes.

```
U-Boot > sf erase 0x0 0x20000
U-Boot > sf write ${loadaddr} 0x0 ${filesize}
```

i.MX 7Dual SABRE-SD needs to program the Arm Cortex-M4 images to 1 MB offset, because the first 1 MB is used by the U-Boot image in QuadSPI.

```
U-Boot > sf erase 0x100000 0x20000
U-Boot > sf write ${loadaddr} 0x100000 ${filesize}
```

Note:

On i.MX 7Dual SABRE-SD, the Arm Cortex-M4 image on QuadSPI is supported only when the U-Boot image is built by the target mx7dsabresd_qspi1_defconfig booted by U-Boot from QuadSPI.

The default U-Boot for the i.MX 7Dual SABRESD board uses the Cortex-M4 image from the SD card and runs it on OCRAM.

On i.MX 7ULP EVK, the Arm Cortex-M4 image needs to be programmed. Otherwise, it will not boot.

4.4.1.2 Downloading an image to MMC/SD

This section describes how to download U-Boot to an MMC/SD card that is not the one used to boot from.

Insert an MMC/SD card into the SD card slot. This is slot SD3 on i.MX 6 SABRE, SD2 on i.MX 6UltraLite EVK and i.MX 6ULL EVK, SD1 on i.MX 7Dual SABRE-SD and i.MX 7ULP EVK (MicroSD), and SD1 on i.MX 8QuadMax MEK, 8QuadXPlus MEK, and i.MX 8M Quad EVK.

Note:

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the MfgTool script uuu LF6.6.23_2.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

For i.MX 7ULP, to burn the Arm Cortext-M4 image to QuadSPI, perform the following steps:

- 1. Copy the Arm Cortext-M4 image to the SD card <code>vfat</code> partition, insert the SD card, and then boot to the U-Boot console.
- 2. Probe the Quad SPI in U-Boot, and erase an enough big size QuardSPI flash space for this Arm Cortext-M4 image.

```
U-Boot > sf probe
U-Boot > sf erase 0x0 0x30000;
```

3. Read the Arm Cortext-M4 image (in the first vfat partition on the SD card) to memory address, the Arm Cortext-M4 image name is sdk20-app.img here.

```
U-Boot > fatload mmc 0:1 0x62000000 sdk20-app.img;
```

4. Write the Arm Cortext-M4 image to the QuardSPI.

```
U-Boot > sf write 0x62000000 0x0 0x30000
```

To flash the original U-Boot, see Section Section 4.3.

The U-Boot bootloader is able to download images from a TFTP server into RAM and to write from RAM to an SD card. For this operation, the Ethernet interface is used and U-Boot environment variables are initialized for network communications.

The boot media contains U-Boot, which is executed upon power-on. Press any key before the value of the U-Boot environment variable, bootdelay, decreases and before it times out. The default setting is 3 seconds to display the U-Boot prompt.

1. To clean up the environment variables stored on MMC/SD to their defaults, execute the following command in the U-Boot console:

```
U-Boot > env default -f -a U-Boot > saveenv U-Boot > reset
```

2. Configure the U-Boot environment for network communications. The following is an example. The lines preceded by the "#" character are comments and have no effect.

```
U-Boot > setenv serverip <your TFTPserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on the TFTP server>
U-Boot > setenv fdtfile <your dtb image name on the TFTP server>
```

The user can set a fake MAC address through ethaddr environment if the MAC address is not fused.

```
U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save
```

3. Copy zImage/Image to the TFTP server. Then download it to RAM:

```
U-Boot > dhcp
```

4. Query the information about the MMC/SD card.

```
U-Boot > mmc devU-Boot > mmcinfo
```

5. Check the usage of the mmc command. The blk# is equal to <the offset of read/write>/<block length of the card>. The cnt is equal to <the size of read/write>/<block length of the card>.

```
U-Boot > help mmc
mmc - MMC sub system
Usage:
mmc read addr blk# cnt
mmc write addr blk# cnt
mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device [partition]
mmc list - lists available devices
```

6. Program the kernel zImage/Image located in RAM at \${loadadr} into the SD card. For example, the command to write the image with the size 0x800000 from \${loadaddr} to the offset of 0x100000 of the microSD card. See the following examples for the definition of the MMC parameters.

```
blk# = (microSD Offset)/(SD block length) = 0x100000/0x200 = 0x800

cnt = (image Size)/(SD block length) = 0x800000/0x200 = 0x4000
```

This example assumes that the kernel image is equal to 0x800000. If the kernel image exceeds 0x800000, increase the image length. After issuing the TFTP command, filesize of the U-Boot environment variable is set with the number of bytes transferred. This can be checked to determine the correct size needed for the calculation. Use the U-Boot command printenv to see the value.

```
U-Boot > mmc dev 2 0
U-Boot > tftpboot ${loadaddr} ${bootfile}
### Suppose the kernel zImage is less than 8M.
U-Boot > mmc write ${loadaddr} 0x800 0x4000
```

7. Program the dtb file located in RAM at \${fdt addr} into the microSD.

```
U-Boot > tftpboot ${fdt_addr} ${fdtfile}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800
```

- 8. On i.MX 6 SABRE boards, you can boot the system from rootfs on SD card, using the HannStar LVDS as display. The kernel MMC module now uses a fixed mmcblk index for the uSDHC slot. The SD3 slot uses mmcblk2 on i.MX 6 SABRE boards, the SD1 slot uses mmcblk0 on the i.MX 7Dual SABRE-SD board, and the SD2 slot uses mmcblk1 on the i.MX 6UltraLite board and i.MX 6ULL EVK board. The SD1 slot uses mmcblk1 on i.MX 8 MEK boards and i.MX 8M boards.
- 9. Boot the board.

```
U-Boot > setenv bootcmd_mmc 'run bootargs_base mmcargs;mmc dev;mmc
read ${loadaddr} 0x800 0x4000;mmc read ${fdt_addr} 0x5000 0x800;bootz
  ${loadaddr} - ${fdt_addr}'
U-Boot > setenv bootcmd 'run bootcmd_mmc'
U-Boot > saveenv
```

4.4.1.3 Using eMMC

There is an eMMC chip on i.MX SABRE boards, i.MX 8 MEK and EVK boards, i.MX 8M EVK boards, and i.MX 8ULP EVK boards. It is accessed through SDHC4 on i.MX 6 SABRE boards, SDHC3 on i.MX 7Dual SABRE-SD board, SDHC1 on i.MX 8 MEK/EVK boards and i.MX 8M EVK boards, and SDHC0 on i.MX 8ULP EVK board.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

The i.MX 7ULP EVK board also supports to rework eMMC on the MicroSD port. The following steps describe how to use this memory device.

Note:

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the MfgTool script uuu LF6.6.23_2.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

1. Execute the following command on the U-Boot console to clean up the environments stored on eMMC:

```
U-Boot > env default -f -a
U-Boot > save
U-Boot > reset
```

2. Configure the boot pin. Power on the board and set the U-Boot environment variables as required. For example,

```
U-Boot > setenv serverip <your tftpserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on the tftp server>
U-Boot > setenv fdtfile <your dtb image name on the tftp server>
### The user can set fake MAC address via ethaddr enviroment if the MAC address is not fused
U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save
```

3. Copy zImage to the TFTP server. Then download it to RAM:

```
U-Boot > dhcp
```

4. Query the information about the eMMC chip.

```
U-Boot > mmc dev
U-Boot > mmcinfo
```

5. Check the usage of the mmc command. blk# is equal to <the offset of read/write>/<block length of the card>. cnt is equal to <the size of read/write>/<block length of the card>.

```
mmc read addr blk# cnt
mmc write addr blk# cnt
mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device [partition]
mmc list - lists available devices
```

6. Program the kernel zImage/Image into eMMC. For example, the command below writes the image with the size 0x800000 from \${loadaddr} to the offset 0x100000 of the eMMC chip. Here, the following equations are used: 0x800 =0x100000/0x200, 0x4000=0x800000/0x200. The block size of this card is 0x200. This example assumes that the kernel image is less than 0x800000 bytes. If the kernel image exceeds 0x800000, enlarge the image length.

```
### Select mmc dev 2 (USDHC4) on the i.MX 6 SABRESD board:
U-Boot > mmc dev 2 0
### Select mmc dev 1 (USDHC3) on the i.MX 7Dual SABRESD board:
U-Boot > mmc dev 1 0
### Select mmc dev 1 (USDHC2) on the i.MX 6UltraLite EVK board:
U-Boot > mmc dev 1 0
### Select mmc dev 0 (USDHC1) on the i.MX 7ULP EVK board:
U-Boot > mmc dev 0 0
### Select mmc dev 0 (eMMC0) on the i.MX 8QuadMax MEK, i.MX 8QuadXPlus MEK,
i.MX 8M Quad, 8DualX, and 8DXL boards:
```

```
U-Boot > mmc dev 0 0
### select mmc dev 2 (USDHC3) on the i.MX 8M Mini EVK, i.MX 8M Nano EVK, and
i.MX 8M Plus EVK:
U-Boot > mmc dev 2 0
### select mmc dev 0 (USDHC0) on the i.MX 8ULP EVK
U-boot > mmc dev 0
### Suppose kernel zImage is less than 8 MB:
U-Boot > tftpboot ${loadaddr} ${bootfile}
U-Boot > mmc write ${loadaddr} 0x800 0x4000
```

7. Program the dtb file located in RAM at \${fdt addr} into the eMMC chip.

```
U-Boot > tftpboot ${fdt_addr} ${fdtfile}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800
```

8. Boot up the system through the rootfs in eMMC, using the HannStar LVDS as display. The kernel MMC module now uses the fixed mmcblk indexes for the USDHC slots. The eMMC/SD4 slot on the i.MX 6 SABRE boards is mmcblk3. The eMMC5.0 on the i.MX 8QuadMax MEK board, i.MX 8QuadXPlus MEK board, and i.MX 8M Quad EVK board are mmcblk0. The eMMC5.0/SD3 slot on the i.MX 7Dual SABRE board is mmcblk2. eMMC is not populated on the i.MX 7Dual SABRE board.

```
U-Boot > setenv mmcboot 'run bootargs_base mmcargs; mmc dev 2;
mmc read ${loadaddr} 0x800 0x4000; mmc read ${fdt_addr} 0x5000 0x800; bootz
  ${loadaddr} - ${fdt_addr} '
U-Boot > setenv bootcmd 'run mmcboot'
U-Boot > saveenv
```

- 9. Boot up the system through the rootfs in eMMC, using the CLAA WVGA panel as display:
 - For i.MX 6 boards:

```
U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}
root=/dev/mmcblk3p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-WVGA,if=RGB565
ip=dhcp'
```

• For i.MX 7Dual SABRE boards:

```
U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}
root=/dev/mmcblk2p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-WVGA,if=RGB565
ip=dhcp'
```

- 10. Boot up the system through rootfs in eMMC, using HDMI as display:
 - For i.MX 6 boards:

```
U-Boot > setenv mmcargs 'setenv bootargs ${bootargs} root=/dev/mmcblk3p2
rootwait rw video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'
```

• For i.MX 7Dual SABRE boards:

```
U-Boot > setenv mmcargs 'setenv bootargs ${bootargs} root=/dev/mmcblk2p2
rootwait rw video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'
```

- For i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Plus, the following display kernel parameters are supported:
 - a. Pick a particular video mode for legacy FB emulation since system startup.

```
video=HDMI-A-{n}: {video_mode}
```

n can be 1 to the maximum number of HDMI connectors in the system. video_mode should be the one that the monitor on the connector supports. For example, video=HDMI-A-1:1920x1080@60. By default, if there is no parameter in the command line, the system uses the video mode that the monitor recommends.

b. Enable or disable legacy FB emulation.

```
drm_kms_helper.fbdev_emulation=0 or 1
```

0 to disable, **1** to enable. By default, if there is no parameter in the command line, the emulation is enabled.

c. Set legacy FB emulation framebuffer's bits per pixel (bpp) parameter.

```
imxdrm.legacyfb_depth=16 or 24 or 32
```

By default, if there is no parameter in the command line, bpp is 16.

To program the rootfs to MMC/SD, see Section 4.4.2 or Section 4.3.

4.4.1.4 Flashing U-Boot on SPI-NOR from U-Boot

Flashing directly to SPI-NOR with TFTPBoot is limited to i.MX 6 SABRE-Al boards. To flash U-Boot on SPI-NOR, perform the following steps:

- 1. Boot from an SD card.
- 2. Set Jumper J3 to position: 2-3.
- 3. Fetch the U-Boot image with built-in SPI-NOR support. This example uses u-boot.imx.

```
U-Boot > tftpboot ${loadaddr} u-boot.imx
```

4. Flash the U-Boot image in SPI-NOR.

```
U-Boot > sf probe
U-Boot > sf erase 0 0x80000
U-Boot > sf write ${loadaddr} 0x400 0x7FC00
```

- 5. Set boot switches to boot from SPI-NOR on SABRE-AI.
 - S2-1 1
 - S2-2 1
 - S2-3 0
 - S2-4 0
 - S1-[1:10] X
- 6. Reboot the target board.

4.4.1.4.1 Flashing an Arm Cortex-M4 image on QuadSPI

i.MX 6SoloX SABRE-SD, i.MX 7ULP EVK, and i.MX 7Dual SABRE-SD boards have the Arm Cortex-M4 processor and QuadSPI memory that can be used to flash an image to it.

Note:

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI. It is recommended to use the MFGTool script uuu LF6.6.23_2.0.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and Arm Cortex-M4 images.

i.MX U-Boot provides a reference script on i.MX 7Dual SABRESD and i.MX 6SoloX SABRE-SD to flash the Arm Cortex-M4 image from the SD card. To execute the script, perform the following steps:

- Copy the Arm Cortex-M4 image to the first VFAT partition of the boot SD card. Name the file to m4_qspi.bin.
- 2. Boot from the SD card.

3. Flash the Arm Cortex-M4 image from the SD card to the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD board or QuadSPI1 PortA CS0 offset 1 MB on the i.MX 7Dual SABRE-SD board.

```
U-Boot > run update_m4_from_sd
```

Alternatively, users can flash the Arm Cortex-M4 image from TFTP by performing the following steps:

- 1. Boot from the SD card.
- 2. TFTP the Arm Cortex-M4 image.

```
U-Boot > tftp ${loadaddr} m4 qspi.bin
```

3. Select the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD board.

```
U-Boot > sf probe 1:0
```

Select the NOR flash on QuadSPI1 PortA CS0 on the i.MX 7Dual SABRE-SD board and i.MX 7ULP EVK board.

```
U-Boot > sf probe 0:0
```

4. Flash the Arm Cortex-M4 image to the selected NOR flash. The erase size is \${filesize}, around 64 Kbytes. This example assumes that it is 128 Kbytes.

```
U-Boot > sf erase 0x0 0x20000
U-Boot > sf write ${loadaddr} 0x0 ${filesize}
```

i.MX 7Dual SABRE-SD needs to program the Arm Cortex-M4 images to 1 MB offset, because the first 1 MB is used by the U-Boot image in QuadSPI.

```
U-Boot > sf erase 0x100000 0x20000
U-Boot > sf write ${loadaddr} 0x100000 ${filesize}
```

Note:

On i.MX 7Dual SABRE-SD, the Arm Cortex-M4 image on QuadSPI is supported only when the U-Boot image is built by the target mx7dsabresd_qspi1_defconfig booted by U-Boot from QuadSPI.

The default U-Boot for the i.MX 7Dual SABRESD board uses the Cortex-M4 image from the SD card and runs it on OCRAM.

On i.MX 7ULP EVK, the Arm Cortex-M4 image needs to be programmed. Otherwise, it will not boot.

4.4.1.5 Flashing U-Boot on Parallel NOR from U-Boot

Flashing directly to Parallel NOR with TFTPBoot is limited to i.MX 6 SABRE-Al boards. To flash U-Boot on Parallel NOR, perform the following steps:

- 1. Check the jumper J3, should not between pins 2 and 3.
- 2. Update the SD U-Boot with EIM NOR version. For details on commands, see <u>Section 4.3.4</u>. Then boot from the SD card.
- 3. TFTP the U-Boot image.

```
tftpboot ${loadaddr} u-boot.imx
```

4. Flash the U-Boot image.

```
cp.b ${loadaddr} 0x08001000 ${filesize}
```

5. Change boot switches and reboot.

```
S2 all 0 S1-6 1 others 0
```

6. By default, rootfs is mounted on NFS.

4.4.2 Using an i.MX board as the host server to create a rootfs

Linux OS provides multiple methods to program images to the storage device. This section describes how to use the i.MX platform as a Linux host server to create the rootfs on an MMC/SD card or the SATA device. The following example is for an SD card. The device file node name needs to be changed for a SATA device.

1. Boot from NFS or other storage. Determine your SD card device ID. It could be mmcblk* or sd*. (The index is determined by the USDHC controller index.) Check the partition information with the command:

```
$ cat /proc/partitions
```

2. To create a partition on the MMC/SD card, use the fdisk command (requires root privileges) in the Linux console:

```
root@ ~$ sudo fdisk /dev/$SD
```

Replace \$SD above with the name of your device.

3. If this is a new SD card, you may get the following message:

```
The device contains neither a valid DOS partition table, nor Sun, SGI or OSF disk label
Building a new DOS disklabel. Changes will remain in memory only, until you decide to write them. After that the previous content won't be recoverable.
The number of cylinders for this disk is set to 124368.
There is nothing wrong with that, but this is larger than 1024, and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs (e.g., DOS FDISK, OS/2 FDISK)
```

The usual prompt and commands to partition the card are as follows. Text in boldface indicates what the user types.

```
Command (m for help): p

Disk /dev/sdd: 3965 MB, 3965190144 bytes

4 heads, 32 sectors/track, 60504 cylinders, total 7744512 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00080bff

Device Boot Start End Blocks Id System
```

4. As described in Section 4.6, the rootfs partition should be located after the kernel image. The first 0x800000 bytes can be reserved for MBR, bootloader, and kernel sections. From the log shown above, the Units of the current MMC/SD card is 32768 bytes. The beginning cylinder of the first partition can be set to "0x300000/32768 = 96." The last cylinder can be set according to the rootfs size. Create a new partition by typing the letters in bold:

```
Command (m for help): n
e extended
p primary partition (1-4)
Select (default p): p
Partition number (1-4): 1
First cylinder (1-124368, default 1): 96
Last cylinder or +size or +sizeM or +sizeK (96-124368, default 124368): Using default value 124368
Command (m for help): w
The partition table has been altered!
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

```
Calling ioctl() to re-read $SD partition table
```

5. Check the partitions (see above) to determine the name of the partition. \$PARTITION is used here to indicate the partition to be formatted. Format the MMC/SD partitions as ext3 or ext4 type. For example, to use ext3:

```
root@ ~$ mkfs.ext3 /dev/$PARTITION
mke2fs 1.42 (29-Nov-2011)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
248992 inodes, 994184 blocks
49709 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=1019215872
31 block groups
32768 blocks per group, 32768 fragments per group
8032 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912, 819200, 884736
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 20 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
```

6. Copy the rootfs contents to the MMC/SD card. The name may vary from the one used below. Check the directory for the rootfs desired. (Copy the *.ext2 to NFS rootfs).

```
mkdir /mnt/tmpmnt
mount -t ext3 -o loop /imx-image-multimedia.ext3 /mnt/tmpmnt
cd /mnt
mkdir mmcblk0p1
mount -t ext3 /dev/$PARTITION /mnt/mmcblk0p1
cp -af /mnt/tmpmnt/* /mnt/mmcblk0p1/
umount /mnt/mmcblk0p1
umount /mnt/tmpmnt
```

- 7. Type sync to write the contents to MMC/SD.
- 8. Type poweroff to power down the system. Follow the instructions in <u>Section 4.7</u> to boot the image from the MMC/SD card.

Note: By default, v2013.04 and later versions of U-Boot support loading the kernel image and DTB file from the SD/MMC vfat partition by using the fatload command. To use this feature, perform the following steps:

- 1. Format the first partition (for example 50 MB) of the SD/MMC card with vfat filesystem.
- 2. Copy zImage and the DTB file into the VFAT partition after you mount the VFAT partition into your host computer.
- 3. Make sure that the zImage and DTB filename are synchronized with the filename pointed to by the U-Boot environment variables: fdtfile and image. Use the print command under U-Boot to display these two environment variables. For example:

```
print fdtfile image
```

4. U-Boot loads the kernel image and the DTB file from your VFAT partition automatically when you boot from the SD/MMC card.

The following is an example to format the first partition to a 50 MB vfat filesystem and format the second partition to an ext4 filesystem:

```
~$ fdisk /dev/sdb
Command (m for help): n
Partition type:
  p primary (0 primary, 0 extended, 4 free)
      extended
   е
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-30318591, default 2048): 4096
Last sector, +sectors or +size{K,M,G} (4096-30318591, default 30318591): +50M
Command (m for help): p
Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d
   Device Boot
                    Start
                                   End
                                            Blocks
                                                    Id System
                                                    83 Linux
                               106495
/dev/sdb1
                     4096
                                            51200
Command (m for help): n
Partition type:
  p primary (1 primary, 0 extended, 3 free)
      extended
   е
Select (default p): p
Partition number (1-4, default 2): 2
First sector (2048-30318591, default 2048): 106496
Last sector, +sectors or +size{K,M,G} (106496-30318591, default 30318591):
Using default value 30318591
Command (m for help): p
Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d
   Device Boot
                                            Blocks
                                                     Id System
                    Start
                                   End
                            106495
                                                    83 Linux
/dev/sdb1
                     4096
                                            51200
                                         15106048 83 Linux
/dev/sdb2
                   106496
                            30318591
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
\sim$ mkfs.vfat /dev/mmcblk0p1
~$ mkfs.ext4 /dev/mmcblk0p2
```

4.5 How to boot the i.MX boards

When U-Boot is loaded onto one of the devices that support booting, the DIP switches can be used to boot from that device. The boot modes of the i.MX boards are controlled by the boot configuration DIP switches on the board. For help with locating the boot configuration switches, see the quick start guide for the specific board as listed under References above.

The following sections list basic boot setup configurations. The tables below represent the DIP switch settings for the switch blocks on the specified boards. An X means that particular switch setting does not affect this action.

4.5.1 Booting from an SD card in slot SD1

The following table shows the DIP switch settings for booting from the SD card slot labeled SD1 on the i.MX 7Dual SABRE-SD boards.

Table 2. Booting from SD1 on i.MX 7Dual SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW2	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
SW3	ON	OFF	-	-	-	-	-	-

The following table shows the DIP switch settings for booting from the SD card slot labeled SD1 on the i.MX 7ULP EVK boards.

Table 3. Booting from SD1 on i.MX 7ULP EVK

Switch	D1	D2	D3	D4
SW1	ON	OFF	OFF	ON

The following table shows the bootcfg pin settings for booting from the SD card slot labeled SD1 on the i.MX 8QuadMax MEK boards.

Table 4. Booting from SD1 on i.MX 8QuadMax MEK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW2	OFF	OFF	ON	ON	OFF	OFF	-	-

The following table shows the bootcfg pin settings for booting from the SD card slot labeled SD1 on the i.MX 8QuadXPlus MEK boards.

Note: This is the same setting for the i.MX 8DualX MEK and i.MX 8DXL EVK boards.

Table 5. Booting from SD1 on i.MX 8QuadXPlus MEK

Switch	D1	D2	D3	D4
SW2	ON	ON	OFF	OFF

4.5.2 Booting from an SD card in slot SD2

The SD card slot that is labeled SD2 indicates that this slot is connected to the uSDHC pin SD2 on the processor. Most boards label this slot as SD2. This slot is referred to as SD2 in this document.

The following table shows the DIP switch settings for booting from the SD card slot labeled SD2 and J500 on the i.MX 6 SABRE-SD boards. The SD2 card slot is located beside the LVDS1 connection on the back of the board.

Table 6. Booting from SD2 (J500) on i.MX 6 SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW6	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF

The i.MX 6UltraLite EVK board or i.MX 6ULL EVK board has one TF card slot on the CPU board. This slot uses the USDHC2 controller. The following table shows the DIP switch settings for booting from the TF slot.

Table 7. Booting from TF on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch	D1	D2	D3	D4
SW601	OFF	OFF	ON	OFF
SW602	ON	OFF	-	-

The i.MX 8M Quad EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP switch settings for booting from the TF slot.

Table 8. Booting from TF on i.MX 8M Quad EVK

Switch	D1	D2	D3	D4
SW801	ON	ON	OFF	OFF
SW802	ON	OFF	-	-

The i.MX 8M Mini EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP switch settings for booting from the TF slot.

Table 9. Booting from TF on i.MX 8M Mini EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW1101	OFF	ON	OFF	OFF	OFF	ON	ON	OFF
SW1102	OFF	OFF	ON	ON	OFF	ON	OFF	OFF

The i.MX 8M Nano EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP switch settings for booting from the TF slot.

Table 10. Booting from TF on i.MX 8M Nano EVK

Switch	D1	D2	D3	D4
SW1101	ON	ON	OFF	OFF

The i.MX 8M Plus EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the DIP switch settings for booting from the TF slot.

Table 11. Booting from TF on i.MX 8M Plus EVK

······································								
Switch	D1	D2	D3	D4				
SW4	OFF	OFF	ON	ON				

The following table shows the DIP switch settings for booting from the USDHC2 slot.

Table 12. Booting from USDHC2 on i.MX 93 11x11 EVK and i.MX 91 11x11 EVK

Switch	D1	D2	D3	D4
SW1301	OFF	ON	OFF	OFF

Table 13. Booting from USDHC2 on i.MX 93 9x9 QSB

Switch	D1	D2	D3	D4
SW61301	OFF	OFF	ON	ON

Table 14. Booting from USDHC2 on i.MX 95 19x19 EVK

Switch	D1	D2	D3	D4
SW7	ON	OFF	ON	ON

4.5.3 Booting from an SD card in slot SD3

The SD card slot that is labeled SD3 indicates that this slot is connected to the uSDHC pin SD3 on the processor. Most boards label this slot as SD3. This slot is referred to as SD3 in this document.

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on i.MX 6 SABRE-AI boards.

Table 15. Booting from an SD card in slot SD3 on i.MX 6 SABRE-AI

Switch	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
S1	Х	Х	Х	OFF	ON	Х	Х	Х	X	X
S2	Х	OFF	ON	OFF	-	-	-	-	-	-
S3	OFF	OFF	ON	OFF	-	-	-	-	-	-

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on i.MX 6SoloX SABRE-Al boards.

Table 16. Booting from an MMC card in Slot SD3 on i.MX 6SoloX SABRE-AI

Switch	D1	D2	D3	D4	D5	D6	D7	D8
S4	OFF	ON	OFF	Х	OFF	OFF	ON	OFF
S3	Х	OFF	OFF	OFF	ON	ON	OFF	OFF
S1	OFF	OFF	ON	OFF	-	-	-	-

The following table shows the DIP switch settings for booting from SD3, also labeled as J507. The SD3 slot is located between the HDMI and UART ports.

Table 17. Booting from an SD card in slot SD3 on i.MX 6 SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW6	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF

4.5.4 Booting from an SD card in slot SD4

The following table describes the dip switch settings for booting from an SD card in slot SD4.

The SD4 slot is on the center of the edge of the SoloX board.

Table 18. Booting from an SD card in slot SD4 on i.MX 6SoloX SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW10	OFF							
SW11	OFF	OFF	ON	ON	ON	OFF	OFF	OFF
SW12	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF

Table 19. Booting from an MMC card in slot SD4 on i.MX 6SoloX SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW10	OFF							
SW11	OFF	OFF	ON	ON	ON	OFF	OFF	OFF
SW12	OFF	ON	ON	OFF	OFF	OFF	OFF	OFF

4.5.5 Booting from eMMC

eMMC 4.4 is a chip permanently attached to the board that uses the SD4 pin connections from the i.MX 6 processor. For more information on switch settings, see table "MMC/eMMC Boot Fusemap" in the IC reference manual.

The following table shows the boot switch settings to boot from eMMC4.4 (SDIN5C2-8G) on i.MX 6 SABRE-SD boards.

Table 20. Booting from eMMC on i.MX 6 SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW6	ON	ON	OFF	ON	OFF	ON	ON	OFF

i.MX 7Dual is different from i.MX 6. The eMMC uses the SD3 pin connections from the i.MX 7Dual processor.

Table 21. Booting from eMMC on i.MX 7Dual SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW2	OFF	ON	OFF	ON	OFF	OFF	OFF	OFF
SW3	ON	OFF	-	-	-	-	-	-

The following table shows the boot switch settings to boot from eMMC4.4 on the i.MX 7ULP EVK boards.

Table 22. Booting from eMMC on i.MX 7ULP EVK

Switch	D1	D2	D3	D4
SW1	ON	OFF	OFF	OFF

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8QuadMax MEK boards.

Table 23. Booting from eMMC on i.MX 8QuadMax MEK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW2	OFF	OFF	OFF	ON	OFF	OFF	-	-

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8QuadXPlus MEK boards.

Note: This is the same setting for the i.MX 8DualX MEK and i.MX 8DXL EVK boards, except that 8DXL EVK uses SW1.

Table 24. Booting from eMMC on i.MX 8QuadXPlus MEK

Switch	D1	D2	D3	D4
SW2	OFF	ON	OFF	OFF

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8M Quad EVK boards.

Table 25. Booting from eMMC on i.MX 8M Quad EVK

Switch	D1	D2	D3	D4
SW801	OFF	OFF	ON	OFF

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M Mini EVK boards.

Table 26. Booting from eMMC on i.MX 8M Mini EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW1101	OFF	ON	ON	ON	OFF	OFF	ON	OFF
SW1102	OFF	OFF	OFF	OFF	ON	OFF	ON	OFF

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M Nano EVK boards.

Table 27. Booting from eMMC on i.MX 8M Nano EVK

Switch	D1	D2	D3	D4
SW1101	OFF	ON	OFF	OFF

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M Plus EVK boards.

Table 28. Booting from eMMC on i.MX 8M Plus EVK

Switch	D1	D2	D3	D4
SW4	OFF	OFF	OFF	ON

The following table lists the boot switch settings to boot from eMMC5.1 on the i.MX 8ULP EVK.

Table 29. Singleboot booting from eMMC on i.MX 8ULP EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW5	OFF	ON						

Table 30. Dualboot booting from eMMC for A35 on i.MX 8ULP EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW5	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON

Table 31. Booting from eMMC on i.MX 93 11x11 EVK and i.MX 91 11x11 EVK

Switch	D1	D2	D3	D4
SW1301	OFF	OFF	OFF	OFF

Table 32. Booting from eMMC on i.MX 93 9x9 QSB

Switch	D1	D2	D3	D4
SW601	OFF	OFF	ON	OFF

Table 33. Booting from eMMC on i.MX 95 19x19 EVK

Switch	D1	D2	D3	D4
SW7	ON	OFF	ON	OFF

4.5.6 Booting from SATA

The following switch settings enable booting from SATA.

SATA booting is supported only by the i.MX 6Quad/6QuadPlus SABRE boards.

Table 34. Booting from SATA on i.MX 6 SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW6	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF

4.5.7 Booting from NAND

The following table shows the DIP switch settings needed to boot from NAND on i.MX 6 SABRE-AI boards.

Table 35. Booting from NAND on i.MX 6 SABRE-AI

Switch	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
S1	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
S2	OFF	OFF	OFF	ON	-	-	-	-	-	-
S3	OFF	OFF	ON	OFF	-	-	-	-	-	-

The following table shows the DIP switch settings needed to boot from NAND for i.MX 7Dual SABRE-SD boards.

Table 36. Booting from NAND on i.MX 7Dual SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
S2	OFF	ON	ON	Х	X	Х	X	OFF	-	-
S3	ON	OFF	Х	Х	Х	Х	Х	Х	-	-

The following table shows the DIP switch settings needed to boot from NAND for i.MX 8M Mini DDR4 EVK boards.

Table 37. Booting from NAND on i.MX 8M Mini DDR4 EVK

S	Switch	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
S	SW1101	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON	-	-
S	SW1102	OFF	OFF	OFF	ON	ON	ON	ON	OFF	-	-

Table 38. Booting from FlexSPI NAND

Switch	D1	D2	D3	D4
SW601	OFF	ON	OFF	ON

4.5.8 Booting from SPI-NOR

Enable booting from SPI NOR on i.MX 6 SABRE-AI boards by placing a jumper on J3 between pins 2 and 3.

Table 39. Booting from SPI-NOR on i.MX 6 SABRE-AI

Switch	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
S1	X	Х	Х	Х	Х	Х	Х	Х	X	Х
S2	ON	ON	OFF							
S3	OFF	OFF	ON	OFF	-	-	-	-	-	-

4.5.9 Booting from EIM (Parallel) NOR

The following table shows the DIP switch settings to boot from NOR.

Table 40. Booting from EIM NOR on i.MX 6 SABRE-AI

Switch	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
S1	Х	X	Х	OFF	OFF	ON	Х	Х	Х	Х
S2	Х	OFF	OFF	OFF	-	-	-	-	-	-
S3	OFF	OFF	ON	OFF	-	-	-	-	-	-

Note:

SPI and EIM NOR have pin conflicts on i.MX 6 SABRE-AI boards. Neither can be used for the same configuration. The default U-Boot configuration is set to SPI NOR.

4.5.10 Booting from QuadSPI or FlexSPI

The following tables list the DIP switch settings for booting from QuadSPI.

Table 41. Booting from QuadSPI on i.MX 6SoloX SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW10	OFF							
SW11	OFF							
SW12	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF

Table 42. Booting from QuadSPI on i.MX 6SoloX SABRE-AI

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW4	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
SW3	OFF							
SW1	OFF	OFF	ON	OFF	-	-	-	-

Table 43. Booting from QuadSPI on i.MX 7Dual SABRE-SD

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW2	ON	OFF						
SW3	ON	OFF	-	-	-	-	-	-

Table 44. Booting from QuadSPI on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch	D1	D2	D3	D4
SW601	OFF	OFF	OFF	OFF
SW602	ON	OFF	-	-

Table 45. Booting from FlexSPI on i.MX 8QuadMax MEK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW2	OFF	OFF	OFF	ON	ON	OFF	-	-

Table 46. Booting from FlexSPI on i.MX 8QuadXPlus MEK

Switch	D1	D2	D3	D4
SW2	OFF	ON	ON	OFF

Table 47. Booting from FlexSPI on i.MX 8M Mini LPDDR4 EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW1101	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
SW1102	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON

Table 48. Booting from QuadSPI on i.MX Nano EVK

Switch	D1	D2	D3	D4
SW601	OFF	OFF	OFF	OFF
SW602	ON	OFF	-	-

Table 49. Booting from QuadSPI on i.MX 8M Plus EVK

Switch	D1	D2	D3	D4
SW4	OFF	ON	ON	OFF

Table 50. Singleboot booting from FlexSPI NOR on i.MX 8ULP EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW5	OFF	OFF	OFF	OFF	OFF	ON	OFF	ON

Table 51. Dualboot booting from FlexSPI for A35 on i.MX 8ULP EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW5	OFF	ON	OFF	OFF	OFF	ON	OFF	ON

Table 52. Booting from FlexSPI NOR on i.MX 95 19x19 EVK

Switch	D1	D2	D3	D4
SW7	ON	ON	OFF	OFF

4.5.11 Serial download mode for the Manufacturing Tool

No dedicated boot DIP switches are reserved for serial download mode on i.MX 6 SABRE-SD. There are various ways to enter serial download mode. One way is to set the boot mode to boot from SD slot SD3 (set SW6 DIP switches 2 and 7 to **on**, and the rest are **off**). Do not insert the SD card into slot SD3, and power on the board. After the message "HID Compliant device" is displayed, the board enters serial download mode. Then insert the SD card into SD slot SD3. Another way to do this is to configure an invalid boot switch setting, such as setting all the DIP switches of SW6 to off.

The following table shows the boot switch settings for i.MX 6 SABRE-AI boards, which are used to enter serial download mode for the Manufacturing Tool. If the boot image in the boot media is not validated, the system also enters the serial download mode.

Table 53. Setup for the Manufacturing Tool on i.MX 6 SABRE-AI

Switch	D1	D2	D3	D4
S3	OFF	ON	OFF	OFF

Table 54. Setup for the Manufacturing Tool on i.MX 7Dual SABRE-SD

Switch	D1	D2	D3	D4
S3	OFF	ON	-	-

Table 55. Setup for Manufacturing Tool on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch	D1	D2
SW602	OFF	ON

Table 56. Setup for Manufacturing Tool on i.MX 7ULP EVK

Switch	D1	D2	D3	D4
SW1	OFF	ON	-	-

Table 57. Setup for Manufacturing Tool on i.MX 8M Quad EVK

Switch	D1	D2
SW802	OFF	ON

Table 58. Setup for Manufacturing Tool on i.MX 8M Plus EVK

Switch	D1	D2	D3	D4
SW4	OFF	OFF	ON	OFF

Table 59. Setup for Manufacturing Tool on i.MX 8M Mini EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW1101	ON	OFF	Х	Х	X	X	Х	X
SW1102	Х	Х	X	Х	Х	Х	Х	X

Table 60. Setup for Manufacturing Tool on i.MX 8M Nano EVK

Switch	D1	D2	D3	D4
SW1101	ON	OFF	OFF	OFF

Table 61. Setup for Manufacturing Tool on i.MX 8QuadMax MEK

,	Switch	D1	D2	D3	D4	D5	D6
:	SW2	OFF	OFF	ON	OFF	OFF	OFF

Note:

The following settings are same for the i.MX 8DualX MEK and i.MX 8DXL EVK boards (8DXL EVK uses SW1).

Table 62. Setup for Manufacturing Tool on i.MX 8QuadXPlus MEK

Switch	D1	D2	D3	D4
SW2	ON	OFF	OFF	OFF

Table 63. Setup for Manufacturing Tool on i.MX 8ULP EVK

Switch	D1	D2	D3	D4	D5	D6	D7	D8
SW2	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF

Table 64. Setup for Manufacturing Tool on i.MX 93 11x11 EVK and i.MX 91 11x11 EVK

Switch	D1	D2	D3	D4
SW1301	ON	ON	OFF	OFF

Table 65. Setup for Manufacturing Tool on i.MX 93 9x9 QSB

Switch	D1	D2	D3	D4
SW601	OFF	OFF	OFF	ON

Table 66. Setup for Manufacturing Tool on i.MX 95 19x19 EVK

3 · · · · · · · · · · · · · · · · · · ·								
Switch	D1	D2	D3	D4				
SW7	ON	OFF	OFF	ON				

Note:

If the SD card with bootable image is plugged in SD2 (baseboard), ROM will not fall back into the serial download mode.

4.5.12 How to build U-Boot and Kernel in standalone environment

To build U-Boot and Kernel in a standalone environment, perform the following steps.

First, generate an SDK, which includes the tools, toolchain, and small rootfs to compile against to put on the host machine.

• Generate an SDK from the Yocto Project build environment with the following command. To set up the Yocto Project build environment, follow the steps in the *i.MX Yocto Project User's Guide* (IMXLXYOCTOUG). In the following command, set Target-Machine to the machine you are building for. The populate_sdk generates a script file that sets up a standalone environment without Yocto Project. This SDK should be updated for each release to pick up the latest headers, toolchain, and tools from the current release.

```
DISTRO=fsl-imx-fb MACHINE=Target-Machine bitbake core-image-minimal -c populate_sdk
```

Note:

If the building process is interrupted, modify conf/local.conf to comment out the line:

PACKAGE CLASSES = "package deb", and then execute the populate sdk command again.

• From the build directory, the bitbake was run in, copy the sh file in tmp/deploy/sdk to the host machine to build on and execute the script to install the SDK. The default location is in /opt, but it can be placed anywhere on the host machine.

On the host machine, the following are the steps to build U-Boot and Kernel.

Toolchain Configuration:

• For i.MX 6 and i.MX 7 builds on the host machine, set the environment with the following command before building.

```
source /opt/fsl-imx-fb/6.6-nanbield/environment-setup-cortexa9hf-neon-poky-linux-gnueab
export ARCH=arm
```

• For i.MX 8 and i.MX 9 builds on the host machine, set the environment with the following command before building.

```
source /opt/fsl-imx-xwayland/6.6-nanbield/environment-setup-aarch64-poky-linux export ARCH=arm64
```

U-Boot:

Download source by cloning with:

```
git clone https://github.com/nxp-imx/uboot-imx -b lf_v2023.04 cd uboot-imx
```

• To build an i.MX 6 or i.MX 7 U-Boot in the standalone environment, find the configuration for the target boot. In the following example, i.MX 6ULL is the target.

```
make clean
make mx6ull_14x14_evk_defconfig
make
```

• To build an i.MX 8 U-Boot in the standalone environment, find the configuration for the target boot. In the following example, i.MX 8QuadMax MEK board is the target and it runs on the Arm Cortex-A53 core by

IMXLUG_6.6.23_2.0.0

34 / 150

default. SPL image (u-boot-spl.bin) is also generated with the default defconfig. It is needed when booting with OP-TEE image.

```
make distclean
make imx8qm_mek_defconfig
make
```

For i.MX 8QuadXPlus MEK and i.MX 8DualX board:

```
make distclean
make imx8qxp_mek_defconfig
make
```

For i.MX 8DXL EVK board:

```
make distclean
make imx8dxl_evk_defconfig
make
```

For i.MX 8M Quad EVK:

```
make distclean
make imx8mq_evk_defconfig
make
```

For i.MX 8M LPDDR4 EVK:

```
make distclean
make imx8mm_evk_defconfig
make
```

For i.MX 8M DDR4 EVK:

```
make distclean
make imx8mm_ddr4_evk_defconfig
make
```

· For i.MX 8M Plus LPDDR4 EVK board:

```
make distclean
make imx8mp_evk_defconfig
make
```

• For i.MX 8ULP EVK board:

```
make distclean
make imx8ulp_evk_defconfig
make
```

• For i.MX 93 11x11 EVK board:

```
make distclean
make imx93_11x11_evk_defconfig
make
```

• For i.MX 93 9x9 QSB board:

```
make distclean
make imx93_9x9_qsb_defconfig
make
```

• For i.MX 91 11x11 EVK board:

```
make distclean
make imx91 11x11 evk defconfig
```

make

For i.MX 95 19x19 EVK board:

```
make distclean
make imx95_19x19_evk_defconfig
make
```

Kernel:

Download source by cloning with:

```
git clone https://github.com/nxp-imx/linux-imx -b lf-6.6.y
cd linux-imx
```

To build the kernel in the standalone environment for i.MX 6 and i.MX 7, execute the following commands:

```
make imx_v7_defconfig
make
```

• To build the kernel in the standalone environment for i.MX 8 and i.MX 9, execute the following commands:

```
make imx_v8_defconfig
make
```

Note:

Users need to modify configurations for fused parts. For example, the i.MX 6UltraLite has four parts, G0, G1, G2, and G3.

The fused modules are as follows:

- G0: TSC, ADC2, FLEXCAN1, FLEXCAN2, FREQ_MON, TEMP_MON, VOLT_MONLCDIF, CSI, ENET2, CAAM, USB_OTG2, SAI23, BEE, UART5678, PWM5678, ECSPI34, I2C34, GPT2, and EPIT2.
- G1: TSC, ADC2, FLEXCAN2, FREQ MON, TEMP MON, VOLT MON, LCDIF, CSI, ENET2, and BEE.
- G2: FREQ MON, TEMP MON, VOLT MON, and BEE.
- G3: No fused module.

U-Boot configuration changes:

G0:

```
/* #define CONFIG_VIDEO */
#define CONFIG_FEC_ENET_DEV 0
/* #define CONFIG_CMD_BEE */
#define CONFIG_USB_MAX_CONTROLLER_COUNT 1
```

G1:

```
/* #define CONFIG_VIDEO */
#define CONFIG_FEC_ENET_DEV 0
/* #define CONFIG_CMD_BEE */
```

G2:

```
/* #define CONFIG_CMD_BEE */
```

G3: No change.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

4.5.13 How to build imx-boot image by using imx-mkimage

For i.MX 8QuadMax, to build imx-boot image by using imx-mkimage, perform the following steps:

- 1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QM/.
- 2. Copy scfw tcm.bin from SCFW porting kit to imx-mkimage/iMX8QM/.
- 3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8QM/.
- 4. Copy the SECO firmware container image (mx8qmb0-ahab-container.img) to imx-mkimage/iMX8OM/.
- 5. Run make SOC=iMX8QM flash to generate flash.bin.
- 6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8QM/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/iMX8QM/. Run make SOC=iMX8QM flash spl to generate flash.bin.

For i.MX 8QuadXPlus, to build imx-boot image by using imx-mkimage, perform the following steps:

- 1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QX/.
- 2. Copy scfw tcm.bin from SCFW porting kit to imx-mkimage/iMX8QX/.
- 3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8QX/.
- 4. Copy the SECO firmware container images (mx8qxpb0-ahab-container.img and mx8qxpc0-ahab-container.img) to imx-mkimage/iMX8QM/.
- 5. Run make SOC=iMX8QX flash to generate flash.bin for i.MX 8QuadXPlus B0, and run make SOC=iMX8QX REV=C0 flash to generate flash.bin for i.MX 8QuadXPlus C0.
- 6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8QX/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/iMX8QX/. Run make SOC=iMX8QX flash spl to generate flash.bin.

For i.MX 8DXL, to build imx-boot image by using imx-mkimage, perform the following steps:

- 1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8DXL/.
- 2. Copy scfw tcm.bin from SCFW porting kit to imx-mkimage/iMX8DXL/.
- 3. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8DXL/.
- 4. Copy the image of SECO firmware container (mx8dxla1-ahab-container.img and mx8dxlb0-ahab-container.img) to imx-mkimage/iMX8DXL/.
- 5. Run make SOC=iMX8DXL flash to generate flash.bin for i.MX 8DXL A1, and run make SOC=iMX8DXL REV=B0 flash to generate flash.bin for i.MX 8DXL B0.
- 6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8DXL/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/ iMX8DXL/. Run make SOC=iMX8DXL flash spl to generate flash.bin.
- 7. If skipping loading V2X firmware, add V2X=NO to make command, like make SOC=iMX8DXL V2X=NO flash.

The following is a matrix table for targets of i.MX 8QuadMax and i.MX 8QuadXPlus.

Table 67. Matrix table for targets of i.MX 8QuadMax, i.MX 8QuadXPlus, and i.MX 8DXL

-	OP-TEE	U-Boot	SPL	Cortex-M4
flash_spl	Yes	Yes	Yes	No
flash	No	Yes	No	No
flash_linux_m4	Yes	Yes	Yes	Yes
flash_regression_ linux_m4	No	Yes	No	Yes

For i.MX 8ULP EVK, to build imx-boot image by using imx-mkimage, perform the following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin and u-boot-spl.bin from u-boot/spl/u-boot-spl.bin to imx-mkimage/iMX8ULP/.

- 2. Copy bl31.bin from Arm Trusted firmware (imx-atf) to imx-mkimage/iMX8ULP/.
- 3. Copy the image of Sentinel firmware container mx8ulpa0-ahab-container.img to imx-mkimage/iMX8ULP/.
- 4. Copy the image of uPower firmware image upower.bin to imx-mkimage/iMX8ULP/.
- 5. Copy the Cortex-M33 image m33 image.bin to imx-mkimage/iMX8ULP/.
- 6. If using OP-TEE, copy tee.bin to imx-mkimage/iMX8ULP/. The bl31.bin copied in Step 2 must be built with OP-TEE SPD enabled.
- 7. Run make SOC=iMX8ULP flash singleboot m33 to generate flash.bin.

Note: For the location where the binaries for Sentinel/SECO/uPower/M33/V2X firmwares are available to download, see the Table "BSP and multimedia standard packages" in the i.MX Linux Release Notes (IMXLXRN).

The following table list the imx-mkimage targets used on i.MX 8ULP.

Table 68. imx-mkimage targets used on i.MX 8ULP

Boot type	Cortex-A35	Cortex-M33	SW5[8:1]
Single Boot	(Default) Boot Cortex-A35 + Cortex-M make SOC=iMX8ULP flash_singl	1000_xx00 Single Boot- eMMC	
	Boot Cortex-A35 + Cortex-M33 from F make SOC=iMX8ULP flash_singl		1010_xx00 Single Boot- NOR
Dual Boot	make SOC=iMX8ULP flash_dualboot	For RAM target: make SOC=iMX8ULP	1000_0010 A35-eMMC/ M33-NOR
	make SOC=iMX8ULP flash_dualboot_flexspi	flash_dualboot_m33For Flash target: make SOC=iMX8ULP flash_	1010_0010 A35-Nor/ M33-NOR
Low Power Boot	-	dualboot_m33_xip	1000_00x1 A35-eMMC/ M33-NOR
	-		1010_00x1 A35-Nor/ M33-NOR

For i.MX 8M EVK, to build imx-boot image by using imx-mkimage, perform the following steps:

- 1. Copy and rename mkimage from u-boot/tools/mkimage to imx-mkimage/iMX8M/mkimage uboot.
- 2. Copy u-boot-spl.bin from u-boot/spl/u-boot-spl.bin to imx-mkimage/iMX8M/.
- 3. Copy u-boot-nodtb.bin from u-boot/u-boot-nodtb.bin to imx-mkimage/iMX8M/.
- 4. Copy imx8mq-evk.dtb (for i.MX 8M Quad EVK), imx8mm-evk.dtb (for i.MX 8M Mini LPDDR4 EVK), imx8mm-ddr4-evk.dtb (for i.MX 8M Mini DDR4 EVK), or imx8mp-evk.dtb (for i.MX 8M Plus LPDDR4 EVK) from u-boot/arch/arm/dts/ to imx-mkimage/iMX8M/.
- 5. Copy bl31.bin from Arm Trusted Firmware (imx-atf) to imx-mkimage/iMX8M/.
- Copy firmware/hdmi/cadence/signed_hdmi_imx8m.bin from the firmware-imx package to imxmkimage/iMX8M/.
- 7. For i.MX 8M Quad and i.MX 8M Mini LPDDR4 EVK, copy lpddr4_pmu_train_ld_dmem.bin, lpddr4_pmu_train_ld_imem.bin, lpddr4_pmu_train_2d_dmem.bin, and lpddr4_pmu_train_2d_imem.bin from firmware/ddr/synopsys of the firmware-imx package to imx-mkimage/iMX8M/.

For i.MX 8M Mini DDR4 EVK, copy ddr4_imem_ld.bin, ddr4_dmem_ld.bin, ddr4_imem_2d.bin, and ddr4_dmem_2d.bin from firmware/ddr/synopsys of the firmware-imx package to imx-mkimage/iMX8M.

For i.MX 8M Plus LPDDR4 EVK, copy lpddr4_pmu_train_1d_dmem_201904.bin, lpddr4_pmu_train_1d_imem_201904.bin, lpddr4_pmu_train_2d_dmem_201904.bin, and

lpddr4_pmu_train_2d_imem_201904.bin from firmware/ddr/synopsys of the firmware-imx
package to imx-mkimage/iMX8M/.

8. For i.MX 8M Quad EVK, run make SOC=iMX8M flash_evk to generate flash.bin (imx-boot image) with HDMI FW included.

For i.MX 8M Mini LPDDR4 EVK, run make SOC=iMX8MM flash_evk to generate flash.bin (imx-boot image).

For i.MX 8M Mini DDR4 EVK, run make SOC=iMX8MM flash_ddr4_evk to generate flash.bin (imx-boot image).

For i.MX 8M Plus LPDDR4 EVK, run make SOC=iMX8MP flash_evk to generate flash.bin (imx-bootimage).

To boot with eMMC fasboot on i.MX 8M Quad EVK and i.MX 8M Mini LPDDR4 EVK, use flash evk emmc fastboot target.

For i.MX 93 A1 and i.MX 91, to build imx-boot image by using imx-mkimage, perform the following steps:

- 1. Copy u-boot.bin from u-boot/u-boot.bin and u-boot-spl.bin from uboot/ spl/u-boot-spl.bin to imx-mkimage/iMX93/.
- 2. Copy bl31.bin from Arm Trusted firmware (imx-atf) to imx-mkimage/iMX93/.
- 3. Copy the image of Sentinel firmware container mx93a1-ahab-container.img to imx-mkimage/iMX9/.
- 4. If using OP-TEE, copy tee.bin to imx-mkimage/iMX93/. The bl31.bin copied in Step 2 must be built with OP-TEE SPD enabled.
- 5. Run the following command to generate flash.bin.
 - For i.MX 93 A1:

make SOC=iMX9 REV=A1 flash singleboot

• For i.MX 91:

make SOC=iMX91 flash singleboot

To generate boot image for FlexSPI NAND boot on i.MX 91, run the following command:

make SOC=iMX91 flash singleboot spinand

Note: Two binaries are generated:

- flash.bin is the boot image burned into the SPI NAND.
- flash fw.bin is the NAND UUU FW image used by the UUU tool.

For i.MX 95, to build imx-boot image by using imx-mkimage, perform the following steps:

- Copy u-boot.bin from u-boot/u-boot.bin and u-boot-spl.bin from uboot/spl/u-bootspl.bin to imx-mkimage/iMX95/.
- 2. Copy bl31.bin from Arm Trusted firmware (imx-atf) to imx-mkimage/iMX95/.
- 3. Copy the image of ELE and V2X container mx95al-ahab-container.img to imx-mkimage/iMX95/.
- 4. Copy the System Manager image M33 image.bin to imx-mkimage/iMX95/.
- 5. Copy the SDK image M7 image.bin to imx-mkimage/iMX95/.
- 6. Copy the OEI images oei-m33-ddr.bin and oei-m33-tcm.bin to imx-mkimage/iMX95/.
- 7. Copy the DDR PHY firmware images <code>lpddr5_dmem_v202306.bin</code> and <code>lpddr5_imem_v202306.bin</code> to <code>imx-mkimage/iMX95/</code>.
- 8. Select one of following commands to generate flash.bin:
 - For all images, run:

make SOC=iMX95 OEI=YES flash all

• For Cortex-A55 images, and without Cortex-M7, run:

make SOC=iMX95 OEI=YES flash_a55

For Cortex-A55 images for FlexSPI NOR boot, and without Cortex-M7, run:

```
make SOC=iMX95 OEI=YES flash_a55_flexspi
```

4.6 Flash memory maps

This section describes the software layout in memory on memory devices used on the i.MX boards.

This information is useful for understanding subsequent sections about image downloading and how the images are placed in memory.

The mtdparts directive can be used in the Linux boot command to specify memory mapping. The following example briefly describes how to use memory maps. Memory is allocated in the order of how it is listed. The dash (-) indicates the the rest of the memory.

```
mtdparts=[memory type designator]:[size]([name of partition]),[size]([name of partition]),-([name of final partition])
```

4.6.1 MMC/SD/SATA memory map

The MMC/SD/SATA memory scheme is different from the NAND and NOR flash, which are deployed in the BSP software. The MMC/SD/SATA must keep the first sector (512 bytes) as the Master Boot Record (MBR) to use MMC/SD as the rootfs.

Upon boot-up, the MBR is executed to look up the partition table to determine which partition to use for booting. The bootloader should be after the MBR. The kernel image and rootfs may be stored at any address after the bootloader. By default, the the U-Boot boot arguments use the first FAT partition for kernel and DTB, and the following ext3 partition for the root file system. Alternatively, users can store the kernel and the DTB in any raw memory area after the bootloader. The boot arguments must be updated to match any changed memory addresses.

The MBR can be generated through the fdisk command when creating partitions in MMC/SD cards on a Linux host server.

4.6.2 NAND flash memory map

The NAND flash memory map is configured from the Linux kernel command line.

For example:

```
mtdparts=gpmi-nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)
```

4.6.3 Parallel NOR flash memory map

The default configuration contains only one parallel NOR partition. The parallel NOR device is generally 4 MB. U-Boot is loaded at the beginning of parallel NOR so that the device can boot from it. The default configuration is that on boot up, U-Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can change the default settings according to their needs. More partitions can be added through the kernel command line. The memory type designator for the command below consists of the NOR address and the designator. This information can be found in the i.MX .dtsidevice tree file in arch/arm/boot/dts. The following is an example of what might be added to the Linux boot command line:

```
mtdparts=8000000.nor:1m(uboot),-(rootfs)
```

The address for parallel NOR is 0x8000000 for i.MX 6 SABRE-AI.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

40 / 150

4.6.4 SPI-NOR flash memory map

The SPI-NOR flash memory can be configured using the Linux kernel command line.

U-Boot should be loaded at the 1 KB offset of the SPI-NOR memory, so that the device can boot from it. The default configuration is that on boot up, U-Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can change the default settings according to their needs. More partitions can be added through the kernel command line. The following is an example of what might be added to the Linux boot command line:

mtdparts=spi32766.0:768k(uboot),8k(env),128k(dtb),-(kernel)

4.6.5 QuadSPI flash memory map

The QuadSPI flash memory can be configured using the Linux kernel command line.

U-Boot is loaded at the beginning of the QuadSPI memory so that the device can boot from it. The default configuration is that on boot up, U-Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can change the default settings according to their requirements. More partitions can be added through the kernel command line. The following is an example of what might be added to the Linux boot command line:

mtdparts=21e4000.qspi:1m(uboot),8m(kernel),1m(dtb),-(user)

U-Boot has the mapping below to help in accessing the QuadSPI flash in U-Boot for non-parallel mode.

Table 69. U-Boot mapping for QuadSPI

Device on hardware	Device in U-Boot	Memory address in U-Boot	Remark
QuadSPI1 Port A CS0	sf probe 0:0 on i.MX 6SoloX SABRE-AI board, i.MX 7Dual SABRE-SD board, i. MX 6UltraLite EVK board, i.MX 8QuadMax MEK, i.MX 8QuadXPlus MEK, and i.MX 8DXL EVK	0x60000000 0x08000000	-
QuadSPI1 Port B CS0	sf probe 1:0 on i.MX 6 SoloX SABRE-AI board	0x68000000	-
QuadSPI2 Port A CS0	sf probe 0:0 on i.MX 6SoloX SABRE-SD board	0x70000000	-
QuadSPI2 Port B CS0	sf probe 1:0 on i.MX 6SoloX SABRE-SD board	0x78000000	-

Table 70. U-Boot mapping for FlexSPI for i.MX 8ULP

Device on hardware	Device in U-Boot	Memory address in U-Boot	Remark
Flexspi0 PortA CS0	sf probe 0:0	0x04000000	-
Flexspi2 PortA CS0	sf probe 2:0	0x60000000	-

4.7 Running Linux OS on the target

This section describes how to run a Linux image on the target using U-Boot.

These instructions assume that you have downloaded the kernel image using the instructions in <u>Section 4.4</u> or <u>Section 4.3</u>. If you have not set up your Serial Terminal, see <u>Section 3</u>.

The basic procedure for running Linux OS on an i.MX board is as follows. This document uses a specific set of environment variable names to make it easier to describe the settings. Each type of setting is described in its own section as follows.

- 1. Power on the board.
- 2. When U-Boot comes up, set the environment variables specific to your machine and configuration. Common settings are described below and settings specific to a device are described in separate sections.
- 3. Save the environment setup:

```
U-Boot > saveenv
```

4. Run the boot command:

```
U-Boot > run bootcmd
```

The commands env default -f -a and saveenv can be used to return to the default environment.

Specifying the console

The console for debug and command-line control can be specified on the Linux boot command line. The i.MX 6Quad SABRE-Al board uses ttymxc2, so it is not same for all boards. It is usually specified as follows, but the baud rate and the port can be modified. Therefore, for NFS, it might be ttymxc3.

```
U-Boot > setenv consoleinfo 'console=ttymxc2,115200'
```

For the i.MX 7ULP EVK, i.MX 8QuadMax MEK boards, and i.MX 8QuadXPlus MEK board, change to "console=ttyLP0,115200".

Specifying displays

The display information can be specified on the Linux boot command line. It is not dependent on the source of the Linux image. If nothing is specified for the display, the settings in the device tree are used. Add \${displayinfo}\$ to the environment macro containing bootargs. The specific parameters can be found in the i.MX Linux Release Notes (IMXLXRN). The following are some examples of these parameters.

- U-Boot > setenv displayinfo 'video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24' for an HDMI display
- U-Boot > setenv displayinfo 'video=mxcfb1:dev=ldb video=mxcfb0:dev=hdmi,1920x1080 M@60,if=RGB24' for LVDS and HDMI dual displays
- U-Boot > setenv displayinfo 'video=mxcfb0:dev=lcd,if=RGB565' for an LCD
- U-Boot > setenv displayinfo 'video=mxcepdcfb:E060SCM,bpp=16 max17135:pass=2,vcom=-2030000' for an EPDC connection
- U-Boot > setenv displayinfo 'video=mxcfb0:mxcfb0:dev=lcd,if=RGB565 video=mxcfb1:dev=hdmi,1920x1080M@60,if=RGB24' for LCD and HDMI dual displays

Specifying memory addresses

The addresses in the memory where the kernel and device tree are loaded to do not change based on the device that runs Linux OS. The instructions in this chapter use the environment variables loadadr and ftd addr to indicate these values. The following table shows the addresses used on different i.MX boards.

Table 71. Board-specific default values

Variable	6Quad, 6 QuadPlus, and 6Dual Lite SABRE (Al and SD)	6SoloX SD		6UltraLite, 6ULL and 6ULZ EVK		8Quad Max, 8 QuadXPlus, 8DualX, and 8DXL	8ULP	8M Quad/8M Mini EVK	i.MX 93	i.MX 95	Description
loadaddr	0x12000000	0x80800000	0x80800000	0x80800000	0x60800000	0x80200000	0x80400000	0x40400000	0x80400000	0x90400000	Address in the memory

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

Table 71. Board-specific default values...continued

Variable	6Quad, 6 QuadPlus, and 6Dual Lite SABRE (Al and SD)	6SoloX SD	7Dual SABRE-SD	6UltraLite, 6ULL and 6ULZ EVK	7ULP EVK	8Quad Max, 8 QuadXPlus, 8DualX, and 8DXL	8ULP	8M Quad/8M Mini EVK	i.MX 93	i.MX 95	Description
											the kernel are loaded to
fdt_addr	0x18000000	0x83000000	0x83000000	0x83000000	0x63000000	0x83000000	0x83000000	0x43000000	0x83000000	0x93000000	Address in the memory the device tree code are copied to

In addition, fdtfile is used to specify the filename of the device tree file. The commands used to set the U-Boot environment variables are as follows:

```
U-Boot > setenv loadaddr 0x80080000
U-Boot > setenv fdtaddr 0x80f00000
U-Boot > setenv fdtfile fsl-imx7ulp-evk.dtb
```

Specifying the location of the root file system

The rootfs can be located on a device on the board or on NFS. The settings below show some options for specifying these.

- U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp nfsroot=\${serverip}: \${nfsroot},v3,tcp'
- U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp weim-nor nfsroot=\${serverip}: \${nfsroot},v3,tcp'
- U-Boot > setenv rootfsinfo 'ubi.mtd=4 root=ubi0:rootfs rootfstype=ubifs rootwait rw mtdparts=gpmi-nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)'
- U-Boot > setenv rootfsinfo 'root=/dev/mmcblk0p2 rootwait rw'

Special settings

i.XM 6Solo, and 6UltraLite can specify <code>uart_from_osc</code> on the command line to specify that the OSC clock rather than PLL3 should be used. This allows the system to enter low power mode.

```
U-Boot > setenv special 'uart_from_osc'
```

Creating the boot command line

For clarification, this document groups the bootargs into one macro as follows:

```
U-Boot > setenv bootargsset 'setenv bootargs ${consoleinfo} ${rootfsinfo}
${displayinfo} ${special}'
```

The executed boot command is then as follows. Arguments vary by device.

```
U-Boot > setenv bootcmd 'run bootargsset; {settings-for-device}; bootz
${loadaddr} - ${fdt_addr}'
```

4.7.1 Running the image from NAND

NAND can be found on i.MX 6 SABRE-Al boards.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

Power on the board, and then enter the commands provided. The following settings may be used to boot the Linux system from NAND.

Assume that the kernel image starts from the address 0x1400000 byte (the block starting address is 0x800). The kernel image size is less than 0x400000 byte. The rootfs is located in /dev/mtd2.

```
U-Boot > setenv bootcmd 'run bootargsset; nand read ${loadaddr} 0x1000000
0x800000; nand read ${fdt_addr} 0x2000000 0x100000; bootz ${loadaddr} -
${fdt_addr}'
```

4.7.2 Running Linux OS from Parallel NOR

Parallel NOR is available on i.MX 6 SABRE-Al boards. The following procedure can be used to boot the system from Parallel NOR.

- 1. Assume that the kernel image starts at address 0xc0000 bytes.
- 2. At the U-Boot prompt, set up these variables:

```
U-Boot > setenv bootcmd 'run bootargsset; cp.b 0x80c0000 ${loadaddr}
  0x800000;cp.b 0x80a0000 ${fdt_addr} 0x20000;bootz ${loadaddr} - ${fdt_addr}
  '
```

4.7.3 Running the Linux OS image from QuadSPI

QuadSPI is available on i.MX 6SoloX SABRE-SD boards, i.MX 7Dual SABRE-SD boards, i.MX 6UltraLite EVK boards, i.MX 6ULL EVK boards, and i.MX 8QuadMax MEK, and i.MX 8QuadXPlus MEK. The following procedure may be used to boot the Linux system from QuadSPI NOR.

- 1. Assume that the kernel image starts from the address 0xA00000 byte and the DTB file starts from address 0x800000.
- 2. At the U-Boot prompt, set the following environment variables:

4.7.4 Running the Arm Cortex-M4/7/33 image

On the i.MX 6SoloX boards, there are two ways to boot Arm Cortex-M4 images in U-Boot:

- Arm Cortex-M4 processor Normal Up (supported on i.MX 6SoloX SABRE-Al and SABRE-SD boards).
 Performed by running the U-Boot command. Requires:
 - 1. U-Boot normal SD image if Arm Cortex-A9 processor boots from the SD card. U-Boot normal QSPI image if Arm Cortex-A9 processor boots from the QSPI NOR flash.
 - Kernel DTB: imx6sx-sdb-m4.dtb for i.MX 6SoloX SABRE-SD board. imx6sx-sabreauto-m4.dtb for i.MX 6SoloX SABRE-AI board.
 - 3. Have the Arm Cortex-M4 image burned. (NOR flash of QuadSPI2 PortB CS0 for i.MX 6SoloX SABRE-SD board. NOR flash of QuadSPI1 PortB CS0 for i.MX 6SoloX SABRE-Al board.)
- Arm Cortex-M4 processor Fast Up (only supported on i.MX 6SoloX SABRE-SD boards). Initiated by U-Boot at a very early boot phase to meet the requirement of Arm Cortex-M4 processor booting in 50 ms. No U-Boot command is involved. Requires:
 - 1. U-Boot Arm Cortex-M4 fast up image and Arm Cortex-A9 processor must boot from the QSPI2 NOR flash.
 - 2. Kernel DTB: imx6sx-sdb-m4.dtb.
 - 3. Have the Arm Cortex-M4 image burned (NOR flash of QuadSPI2 PortB CS0).

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

To facilitate the Arm Cortex-M4 processor Normal Up, a script has been added to the default U-Boot. The following steps may help users who need to run the Cortex-M4 processor Normal Up script.

- 1. Power on the board.
- 2. On the i.MX 6SoloX SABRE-SD board, assumed that the Arm Cortex-M4 image is at address 0x78000000 (NOR flash of QuadSPI2 PortB CS0). On the i.MX 6SoloX SABRE-Al board, assumed that the Arm Cortex-M4 image is at address 0x68000000 (NOR flash of QuadSPI1 PortB CS0).

At the U-Boot prompt:

```
U-Boot > run m4boot
```

Or users can perform the commands without depending on the script:

```
U-Boot > sf probe 1:0
```

For the i.MX 6SoloX SABRE-SD board:

```
U-Boot > bootaux 0x78000000
```

For the i.MX 6SoloX SABRE-AI board:

```
U-Boot > bootaux 0x68000000
```

Note:

For how to add the MCC demo to the kernel and limit RAM available to kernel to use it, see Chapter 53 "i.MX 6 SoloX MultiCore Communication (MCC)" of the i.MX Linux Reference Manual (IMXLXRM).

As well as supporting running the Arm Cortex-M4 image from QuadSPI, the default i.MX 7Dual SABRE-SD board supports loading the Arm Cortex-M4 image from the SD card and running it on OCRAM.

Prepare the Arm Cortex-M4 image to the FAT partition of the SD card. Name the file to m4_qspi.bin when using m4boot script.

After the board is powered on, the following information is displayed at the U-Boot prompt:

```
U-Boot > run m4boot
```

Or perform the commands without depending on the script:

```
u-boot=> fatload mmc 0:0 ${loadaddr} m4_qspi.bin
u-boot=> cp.b ${loadaddr} 0x7e0000 ${filesize}
u-boot=> bootaux 0x7e0000
```

Note:

If your image has no resource table, such as NXP hello_world.bin, clear the resource table area. Otherwise, Linux OS may shows the garbage value.

- For i.MX 8M Mini/Nano/Quad LPDDR4 EVK: run #mw 0xb80ff000 0 4 to clear the garbage resource table area.
- For i.MX 8M Plus LPDDR4 EVK: run #mw 0x550ff000 0 4 to clear the garbage resource table area.

On the i.MX 8M boards, perform the commands to boot the Arm Cortex-M Core core:

```
u-boot=> fatload mmc 1:1 ${loadaddr} m4.bin
u-boot=> cp.b ${loadaddr} 0x7e0000 ${filesize}
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

```
u-boot=> run prepare_mcore
u-boot=> bootaux 0x7e0000
```

There are two methods to start the remote core: U-Boot bootaux and Linux remoteproc.

Whether to use bootaux or remoteproc to start the remote core, use remoteproc to stop or start the Cortex-M core for debug purposes only. It is not recommended to stop the Cortex-M core from Linux OS in a production system.

If you choose to use remoteproc to start the remote core directly, execute run prepare_mcore in U-Boot before starting the Linux OS.

On the i.MX 8QuadMax and i.MX 8QuadXPlus boards, there are two ways to boot the Arm Cortex-M4 cores:

Booting from ROM

Users need to use imx-mkimage to pack the Arm Cortex-M4 images into imx-boot image. It is necessary to specify the core ID and its TCML address in the build command. The following is an example:

Note:

When booting with the packed Cortex-M4 image (flash_linux_m4), use kernel DTB with RPMSG enabled, like fsl-imx8qm-mek-rpmsg.dtb for i.MX 8QuadMax MEK or fsl-imx8qxp-mek-rpmsg.dtb for i.MX 8QuadXPlus MEK.

Booting from U-Boot (not support multiple partitions enabled)

U-Boot supports loading the Arm Cortex-M4 image from the FAT partitions of the SD card with default name $m4_0$. bin and $m4_1$. bin. After the board is booted into the U-Boot console, use the following command to boot Arm Cortex-M4 core 0:

```
U-Boot > run m4boot_0
Or the command to boot M4 core 1:
U-Boot > run m4boot_1
Or perform the commands for core 0 without depending on the script:
U-Boot > fatload mmc 1:1 0x80280000 m4_0.bin
U-Boot > dcache flush; bootaux 0x80280000 0
```

On the i.MX 93 11x11 EVK, use bootaux:

```
=> fatload mmc 1:1 ${loadaddr} imx93-11x11-
evk_m33_TCM_rpmsg_lite_str_echo_rtos.bin
15948 bytes read in 4 ms (3.8 MiB/s)
=> cp.b ${loadaddr} 0x201e0000 ${filesize}
=> bootaux 0x1ffe0000 0
## Starting auxiliary core stack = 0x20020000, pc = 0x0FFE05D5...
```

Pass clk_ignore_unused in bootargs when using bootaux to kick Arm Cortex-M33. This would increase overall consumption.

For i.MX 93, users can directly start/stop Cortex-M33 using remoteproc as follows:

```
[ 138.693391] remoteproc remoteproc0: stopped remote processor imx-rproc
root@imx93evk:~# echo ~/imx93 m33 TCM rpmsq lite str echo rtos imxcm33.elf > /
sys/devices/platform/imx93-cm33/remoteproc/remoteproc0/firmware
root@imx93evk:~# echo start > /sys/devices/platform/imx93-cm33/remoteproc/
remoteproc0/state
  162.361023] remoteproc remoteproc0: powering up imx-rproc
  162.368617] remoteproc remoteproc0: Booting fw image
imx93 m33 TCM rpmsg lite str echo rtos imxcm33.elf, size 175644
 162.916805] remoteproc0#vdev0buffer: assigned reserved memory node
vdevbuffer@a4020000
[ 162.926429] virtio rpmsg bus virtio0: rpmsg host is online
  162.935336] remoteproc0#vdev0buffer: registered virtio0 (type 7)
  162.941986] remoteproc0#vdev1buffer: assigned reserved memory node
vdevbuffer@a4020000
  162.951071] virtio rpmsg bus virtio1: rpmsg host is online
  162.956649] virtio rpmsg bus virtio1: creating channel rpmsg-virtual-tty-
channel addr 0x1e
  162.962559] remoteproc0#vdev1buffer: registered virtio1 (type 7)
  162.971179 remoteproc remoteproc0: remote processor imx-rproc is now up
root@imx93evk:~#
root@imx93evk:~# echo stop > /sys/devices/platform/imx93-cm33/remoteproc/
remoteproc0/state
[ 172.114287] remoteproc remoteproc0: stopped remote processor imx-rproc
```

4.7.5 Linux OS login

The default login user name for the i.MX Linux OS is root with no password.

4.7.6 Running Linux OS from MMC/SD

This scenario assumes that the board is configured to boot U-Boot, that the Linux kernel image is named zlmage and is stored on the SD card in an MS-DOS FAT partition, and one or more device tree files are also stored in this partition. The rootfs is also stored on the SD/MMC card in another partition.

When U-Boot boots up, it detects the slot where it is booting from and automatically sets mmcdev and mmcroot to use the rootfs on that SD card. In this scenario, the same SD card can be used to boot from any SD card slot on an i.MX 6/7 board, without changing any U-Boot settings. From the U-Boot command line, type boot to run Linux OS.

The following instructions can be used if the default settings are not desired.

Set mmcautodetect to "no" to turn off the automatic setting of the SD card slot in mmcdev and mmcroot. The U-Boot mmcdev is based on the soldered SD/MMC connections, so it varies depending on the board. The U-Boot mmc dev 0 is the lowest numbered SD slot present, 1 is the next, and so on. The Linux kernel, though, indexes all the uSDHC controllers whether they are present or not. The following table shows this mapping.

Table 72. Linux uSDHC relationships

uSDHC	mmcroot
uSDHC 1	mmcblk0*
uSDHC 2	mmcblk1*
uSDHC 3	mmcblk2*
uSDHC 4	mmcblk3*

In the default configuration of the SD card and the example here, U-Boot is at the 1024 byte offset, 32 KB offset for the i.MX 8QuadXPlus B0 and i.MX 8QuadMax B0, or 33 KB offset for the i.MX 8QuadXPlus A0, i.MX 8QuadMax A0, i.MX 8M EVK boards before the first partition, partition 1 is the partition with the Linux kernel and device trees, and partition 2 is the rootfs.

Setting up the environment variables

For convenience, this document uses a standard set of variables to describe the information in the Linux command line. The values used here may be different for different machines or configurations. By default, U-Boot supports setting mmcdev and mmcroot automatically based on the uSDHC slot that we boot from. This assumes zlmage, the device tree file (DTB), and the rootfs are on the same SD/MMC card. To set these environment variables manually, set mmcautodetect to no to disable the feature.

The following is one way to set up the items needed to boot Linux OS.

```
U-Boot > setenv mmcpart 1
U-Boot > setenv loadfdt 'fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr}
  ${fdtfile}'
U-Boot > setenv loadkernel 'fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} zImage'
U-Boot > setenv bootcmd 'mmc dev ${mmcdev}; run loadkernel; run mmcargs; run loadfdt; bootz ${loadaddr} - ${fdt_addr};'
```

The descriptions of the variables used above are as follows:

- mmcpart This is the partition on the MMC/SD card containing the kernel image.
- mmcroot The location of the root file system on the MMC SD card along with directives for the boot command for the rootfs.

Note: The U-Boot environment on the pre-built SD card does not match this. It is more complex so that it can automatically deal with more variations. The example above is designed to be easier to understand and use manually.

Reading the kernel image from eMMC

eMMC has user area, boot partition 1, and boot partition 2. To switch between the eMMC partitions, the user needs to use the command mmc dev [dev id] [partition id]. For example,

```
mmc dev 2 0 ---> user area
mmc dev 2 1 ---> boot partition 1
mmc dev 2 2 ---> boot partition 2
```

4.7.7 Running the Linux image from NFS

To boot from Network File System (NFS), set the following environment variables at the U-Boot prompt:

Note: If the MAC address has not been burned into the fuses, set the MAC address to use the network in U-Boot.

```
# eth0:
```

```
setenv ethaddr xx:xx:xx:xx:xx
# eth1:
setenv ethladdr xx:xx:xx:xx:xx
```

4.8 Arm SystemReady-IR

4.8.1 Arm SystemReady-IR ACS compliance test

To run the SystemReady-IR ACS on the i.MX 8M Mini EVK board, refer to the Arm SystemReady-IR ACS from: https://github.com/ARM-software/arm-systemready

- 1. Clone the ACS Git.
- 2. Flash the pre-build release image or image built from source code on to the U-Disk, SD, or eMMC. If the target storage is also boot storage, flash the boot image (flash.bin) thereafter the ACS image. For example, on the U-Disk:

```
sudo dd if=ir_acs_live_image.img of=/dev/sde bs=64M;sync
```

- 3. Boot the board. The ACS test will automatically run up.
- 4. There will be manual step for the power-off test from ACS. Just re-power on the board when run into that test case.
 - The test result will be stored on the storage.
- 5. Use the SCT_Parser to analyze the ACS result. The SCT_Parser can be obtained from: https://github.com/vstehle/SCT_Parser
- 6. Copy the acs_results\sct_results\Overall\Summary.ekl file from the RESULT partition in U-disk to the SCT_Parser folder. Run python3 parser.py --config EBBR.yaml Summary.ekl EBBR.seg to get the final report.

4.8.2 Capsule update

Use the following command to do the capsule update:

• For SD:

```
U-Boot > env set dfu_alt_info "mmc 1=1 raw 0x42 0x2000"
```

For eMMC:

```
U-Boot > env set dfu_alt_info "mmc 2=1 raw 0x42 0x2000 mmcpart 1"

U-Boot > efidebug boot add 0 Boot0000 mmc 1:1 capsule1.bin;efidebug boot next 0

U-Boot > setenv serverip 10.192.242.218;dhcp $loadaddr capsule1.bin;fatwrite

mmc 1:1 ${loadaddr} /EFI/UpdateCapsule/capsule1.bin 0x${filesize}

U-Boot > setenv -e -nv -bs -rt -v OsIndications =0x04

U-Boot > efidebug capsule disk-update

reset
```

Do not interrupt U-Boot. Let the board run into grub. Before grub runs, it should update the bootloader automatically and remove <code>capsule1.bin</code>. And reboot the board again. The board will boot up with the updated U-Boot.

4.8.3 Linux distro installation

Fedora34:

- 1. Download the Fedora IoT 34 version.
- 2. Burned into the SD card.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

- 3. Boot from eMMC.
- 4. Install distro from the SD card to eMMC.

OpenSUSE:

- 1. Download the OpenSUSE Tumbleweed version.
- 2. Burn ISO into the USB disk.
- 3. Boot from eMMC.
- 4. Install from ISO to eMMC.

5 Enabling Solo Emulation

Solo emulation can be enabled on the i.MX 6DualLite SABRE-SD and i.MX 6DualLite SABRE-Al boards. This is achieved by using a specific U-Boot configuration in the bootloader build process.

When this Solo emulation is enabled on the i.MX 6DualLite SABRE platforms, the capabilities of the i.MX 6DualLite change to the following:

- For solo emulation, use 6DualLite DTB and add maxcpus=1 to bootcmd of U-Boot.
- · 32-bit data bus on DDR RAM.
- 1 GB of RAM for i.MX 6DualLite SABRE-AI.
- 512 MB of RAM for i.MX 6DualLite SABRE-SD.

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-SD card, use the following command:

MACHINE=imx6solosabresd bitbake u-boot-imx

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-AI card, use the following command:

MACHINE=imx6solosabreauto bitbake u-boot-imx

6 Power Management

The i.MX power management uses the standard Linux interface. Check the standard Linux power documentation for information on the standard commands. The *i.MX Linux Reference Manual* (IMXLXRM) contains information on the power modes that are available and other i.MX-specific information in the power management section.

There are three main power management techniques on i.MX boards: suspend and resume commands, CPU frequency scaling, and bus frequency scaling. They are described in the following sections.

6.1 Suspend and resume

The power state can be changed by setting the standard Linux state, <code>/sys/power/state</code>. The command used to set the power state into suspend mode, available from the command line, is <code>echo mem > /sys/power/state</code>. The value <code>mem</code> can be replaced by any of the valid power states, as described by the <code>i.MX Linux Reference Manual</code> (IMXLXRM).

Use one of the following methods to wake up the system from suspend mode.

• The debug UART can be set as a wake-up source with:

echo enabled > /sys/class/tty/ttymxc0/power/wakeup

Note:

It is ttylp0 for i.MX 8QuadXPlus and i.MX 8QuadMax, and ttyLP0 for i.MX 8DXL.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

To identify the current debug UART and configure it as a wake-up source:

```
echo enabled > /sys/class/tty/$(tty | cut -d'/' -f 3)/power/wakeup
```

• RTC can be used to enter and exit from suspend mode by using the command:

```
/unit test/SRTC/rtcwakeup.out -d rtc0 -m mem -s 10
```

This command indicates to sleep for 10 secs. This command automatically sets the power state to mem mode.

6.2 CPU frequency scaling

Scaling governors are used in the Linux kernel to set the CPU frequency. CPU frequencies can be scaled automatically depending on the system load either in response to ACPI events or manually by userspace programs. For more information about governors, read governors.txt from www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

The following are some of the more frequently used commands:

These commands return information about the system and the current settings.

 The kernel is pre-configured to support only certain frequencies. The list of frequencies currently supported can be obtained from:

```
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
```

· To get the available scaling governors:

```
cat /sys/devices/system/cpu/*/cpufreq/scaling available governors
```

• To check the current CPU frequency:

```
cat /sys/devices/system/cpu/*/cpufreq/cpuinfo cur freq
```

The frequency is displayed depending on the governor set.

• To check the maximum frequency:

```
cat /sys/devices/system/cpu/*/cpufreq/cpuinfo max freq
```

· To check the minimum frequency:

```
cat /sys/devices/system/cpu/*/cpufreq/cpuinfo min freq
```

These commands set a constant CPU frequency:

· Use the maximum frequency:

```
echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor
```

• Use the current frequency to be the constant frequency:

```
echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor
```

• The following two commands set the scaling governor to a specified frequency, if that frequency is supported. If the frequency is not supported, the closest supported frequency is used:

```
echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo <frequency> > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed
```

6.3 Bus frequency scaling

This release does not support the bus frequency scaling feature on i.MX 7ULP EVK.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

This release does not support the bus frequency scaling feature on i.MX 8QuadXPlus and i.MX 8QuadMax.

The system automatically adjusts the bus frequency (DDR, AHB, etc.) for optimal performance based on the devices that are active.

The bus frequency driver is enabled by default. The following DDR frequencies are supported:

- Normal DDR frequency Default frequency in U-Boot
- Audio DDR frequency 50 MHz on i.MX 6Quad, i.MX 6DualLite, and i.MX 6SoloX, and 100 MHz on i.MX 7Dual.
- Low power idle DDR frequency 24 MHz

On the i.MX 8M board:

- For LPDDR4, the Audio DDR frequency is 25 MHz, the low power idle DDR frequency is 25 MHz.
- For DDR4, the audio DDR frequency is 166 MHz, the low power idle DDR frequency is 166 MHz.

To enter a low power idle DDR frequency, ensure that all devices that require high DDR frequency are disabled. Most drivers do active clock management, but certain commands can be used to avoid waiting for timeouts to occur:

echo 1 > /sys/class/graphics/fb0/blank -> to blank the display (may need to blank fb1, fb2, and so on, if more than one display is active).

ifconfig eth0 down -> disables the Ethernet module. On i.MX 6SoloX, i.MX 7Dual, i.MX 6UltraLite, and i.MX 6UltraLite should also disable Ethernet 1 (eth1).

i.MX 8M Plus needs some additional steps to enable USB runtime PM:

```
echo auto > /sys/bus/platform/devices/32f10100.usb/38100000.dwc3/power/control echo auto > /sys/bus/platform/devices/32f10108.usb/38200000.dwc3/power/control echo auto > /sys/bus/platform/devices/32f10108.usb/38200000.dwc3/xhci-hcd.1.auto/power/control
```

Execute the following command for i.MX 8ULP to enable system level voltage and frequency scaling:

```
ifconfig eth0 down
systemctl stop weston
echo 1 > /sys/devices/platform/imx8ulp-lpm/enable
```

On most systems, the chip enters low power IDLE mode after the above two commands are executed.

To manipulate bus frequency, use the following commands to achieve the results desired:

cat /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> displays the status of bus frequency.

echo 0 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> disables bus frequency.

echo 1 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> enables bus frequency.

The *i.MX Linux Reference Manual* (IMXLXRM) has more information on the bus frequency in the chapter about DVFS.

7 Multimedia

i.MX provides audio optimized software codecs, parsers, hardware acceleration units, and associated plugins. The i.MX provides GStreamer plugins to access the i.MX multimedia libraries and hardware acceleration units. This chapter provides various multimedia use cases with GStreamer command line examples.

7.1 i.MX multimedia packages

Due to license limitations, i.MX multimedia packages can be found in two locations:

- · Standard packages: provided on the NXP mirror.
- Limited access packages: provided on nxp.com with controlled access.

For details, see the i.MX Release Notes (IMXLXRN).

7.2 Building limited access packages

Place the limited access package in the downloads directory and read the readme file in each package.

For example, README-microsoft in the package imxcodec-microsoft-\$version.tar.gz.

7.3 Multimedia use cases

GStreamer is the default multimedia framework on Linux OS. The following sections provide examples of GStreamer commands to perform the specific functions indicated. The following table shows how this document refers to common functions and what the actual command is.

Table 73. Command mapping

Variable	\$GSTL	\$PLAYBIN	\$GPLAY	\$GSTINSPECT
GStreamer 1.x	gst-launch-1.0	playbin or playbin3	gplay-1.0	gst-inspect-1.0

One option is to set these as environment variables as shown in the following examples. Use the full path to the command on your system.

```
export GSTL=gst-launch-1.0
export PLAYBIN=playbin or export PLAYBIN=playbin3
export GPLAY=gplay-1.0
export GSTINSPECT=gst-inspect-1.0
```

In this document, variables are often used to describe the command parameters that have multiple options. These variables are of the format \$description where the type of values that can be used are described. The possible options can be found in the Section about Multimedia in the *i.MX Linux Release Notes* (IMXLXRN) for i.MX-specific options, or at "gstreamer.freedesktop.org/ for the community options.

The GStreamer command line pipes the input through various plugins. Each plugin section of the command line is marked by an exclamation mark (!). Each plugin can have arguments of its own that appear on the command line after the plugin name and before the next exclamation mark (!). Use \$GSTINSPECT \$plugin to get information on a plugin and what arguments it can use.

Square brackets ([]) indicate optional parts of the command line.

7.3.1 Playback use cases

Playback use cases include the following:

- Audio-only playback
- · Video-only playback
- · Audio/Video file playback
- · Multichannel audio playback
- · Other methods for playback
- · Video playback to multiple displays

7.3.1.1 Audio-only playback

An audio-only playback command uses this format:

If the file to be played contains an ID3 header, use the ID3 parser. If the file does not have an ID3 header, this has no effect.

This example plays an MP3 file in the audio jack output.

```
$GSTL filesrc location=test.mp3 ! id3demux ! queue ! mpegaudioparse ! beepdec ! pulsesink
```

7.3.1.2 Video-only playback

```
$GSTL filesrc location=test.video typefind=true ! $capsfilter ! $demuxer_plugin ! queue max-size-time=0 ! $video_decoder_plugin ! $video_sink_plugin
```

This is an example of an MP4 container with H.264 encoding format video file playback:

```
$GSTL filesrc location=test.mp4 typefind=true ! video/quicktime ! aiurdemux ! h264parse ! queue max-size-time=0 ! v412h264dec ! autovideosink
```

This is an example of VPU downscaling from 1920x1080 to 720x480 on i.MX 95:

```
$GSTL filesrc location=1080p.mp4 ! video/quicktime ! aiurdemux ! h264parse ! v412h264dec ! "video/x-raw,width=720,height=480" ! autovideosink
```

7.3.1.3 Audio/Video file playback

This is an example of a command to play a video file with audio:

```
$GSTL filesrc location=test_file typefind=true ! $capsfilter
! $demuxer_plugin name=demux demux.
! queue max-size-buffers=0 max-size-time=0 ! $video_decoder_plugin
! $video_sink_plugin demux.
! queue max-size-buffers=0 max-size-time=0 ! $audio_decoder_plugin
! $audio_sink_plugin
```

This is an example of an AVI file:

```
$GSTL filesrc location=test.avi typefind=true ! video/x-msvideo
```

```
! aiurdemux name=demux demux.
! queue max-size-buffers=0 max-size-time=0 ! $video_decoder_plugin
! autovideosink demux.
! queue max-size-buffers=0 max-size-time=0 ! beepdec
! alsasink
```

For the platforms without VPU hardware, \$video_decoder_plugin could be a software decoder plugin like avdec h264.

7.3.1.4 Multichannel audio playback

For the multichannel audio playback settings to be used when PipeWire is enabled, see Section 7.4.

7.3.1.5 Other methods for playback

Use the \$PLAYBIN plugin or the i.MX \$GPLAY command line player for media file playback.

```
$GSTL $PLAYBIN uri=file:///mnt/sdcard/test.avi
$GPLAY /mnt/sdcard/test.avi
```

Supports the PCM, AC3, and DDP format audio pass-through function by the S/PDIF interface.

```
$GPLAY /mnt/sdcard/test.wav --audio-sink="alsasink device=iec958:CARD=imxaudioxcvr,AES3=0x01 pass-through=true"
```

7.3.1.6 Video playback to multiple displays

Video playback to multiple displays can be supported by a video sink plugin. The video sink for multidisplay mode does not work on i.MX 8 family SoCs.

This use case requires that the system boots in multiple-display mode (dual/triple/four, the number of displays supported is determined by the SOC and the BSP). For how to configure the system to boot in this mode, see the *i.MX Porting Guide* (IMXBSPPG).

7.3.1.6.1 Playing different videos on different displays

The command line to play two videos on different displays might look like this:

```
$GSTL $PLAYBIN uri=file:///$file1 $PLAYBIN uri=file:///$file2 video-
sink="overlaysink
display-master=false display-slave=true"
```

7.3.1.6.2 Routing the same video to different displays

A video can be displayed on multiple displays with a command as follows:

```
$GSTL $PLAYBIN uri=file:///$filename video-sink="overlaysink display-slave=true"
```

7.3.1.6.3 Multiple videos overlay

The overlaysink plugin provides support for compositing multiple videos together and rendering them to the same display. The result might look like the following image.

IMXLUG_6.6.23_2.0.0

55 / 150


```
gst-launch-1.0 playbin uri=file://$FILE1
    video-sink="overlaysink overlay-width=512 overlay-height=384"
    playbin uri=file://$FILE2 flags=0x41
    video-sink="overlaysink overlay-left=512 overlay-width=512 overlay-height=384"
    playbin uri=file://$FILE3 flags=0x41
    video-sink="overlaysink overlay-top=384 overlay-width=512 overlay-height=384"
    playbin uri=file://$FILE4 flags=0x41
    video-sink="overlaysink overlay-left=512 overlay-top=384 overlay-width=512 overlay-height=384"
    playbin uri=file://$FILE5 flags=0x41
    video-sink="overlaysink overlay-left=352 overlay-top=264 overlay-width=320 overlay-height=240 zorder=1"
```

7.3.2 Audio encoding

Here are some examples for MP3 encoding.

```
$GSTL filesrc location=test.wav ! wavparse ! lamemp3enc ! filesink location=output.mp3
```

7.3.3 Video encoding

The following commands provide some suggestions on how to use the plugins accelerated by VPU hardware to encode some media files (though they only work on a SoC with a VPU).

VPU video encoding only works on SoC with VPU encoder support.

For i.MX 6, use the following command:

```
$GSTL filesrc location=test.yuv
! videoparse format=2 witdh=$WIDTH height=$HEIGHT framerate=30/1
! vpuenc_xxx ! $MUXER ! filesink location=$output
```

For i.MX 8M Mini/8M Plus and i.MX 95, use the following command:

```
$GSTL filesrc location=test.yuv
! rawvideoparse format=2 witdh=$WIDTH height=$HEIGHT framerate=30/1
colorimetry=bt709
! v412xxxenc $PARSE ! $MUXER ! filesink location=$output
```

- The target encoder codec type can be:
 - MPEG4, H.263, H.264, and MJPEG for i.MX 6
 - H.264, VP8 for i.MX 8M Mini
 - H.264, HEVC for i.MX 8M Plus and i.MX 95
- The vpuenc xxx can be:
 - vpuenc_mpeg4, vpuenc_h263, vpuenc_h264, and vpuenc_jpeg for i.MX 6
- The v412xxxenc can be:
 - v412h264enc and v412vp8enc for i.MX 8M Mini
 - v412h264enc and v412h265enc for i.MX 8M Plus and i.MX 95
- VPU encoder is v412h264enc on i.MX 8QuadMax and 8QuadXPlus.
- The \$PARSE can be set to h264parse or h265parse if the encoding format is H.264 or H.265. For other formats, \$PARSE is not needed.
- The \$MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.
- Different muxers support different encoded codec types. Use \$GSTINSPECT and \$MUXER to see the capabilities of the muxer to be used.

The following table lists the encoding bitrate modes for i.MX 8M Mini/8M Plus.

Table 74. Encoding bitrate modes

V4L2_CID_MPEG_ VIDEO_FRAME_RC_ ENABLE	Video bitrate mode	Encoded file
1	V4L2_MPEG_VIDEO_BITRATE_MODE_CBR	Bitrate takes effect limited by MIN_QP and MAX_QP. V4L2_CID_MPEG_VIDEO_BITRATE V4L2_CID_MPEG_VIDEO_H264_MIN_QP V4L2_CID_MPEG_VIDEO_H264_MAX_QP
1	V4L2_MPEG_VIDEO_BITRATE_MODE_VBR	Same as the above case but with bigger bitrate variance.
0	V4L2_MPEG_VIDEO_BITRATE_MODE_CBR/ V4L2_MPEG_VIDEO_BITRATE_MODE_VBR	Qp takes effect. V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP V4L2_CID_MPEG_VIDEO_H264_B_FRAME_QP

Use extra-controls property after v412xxxenc to specify the value for different codec controls. v412-ct1-device device_path --list-ctrls shows all video device's controls and their values.

For example:

```
gst-launch-1.0 filesrc location=test.yuv ! rawvideoparse format=2
width=$WIDTH height=$HEIGHT colorimetry=bt709 ! v4l2h264enc extra-
controls="encode, frame_level_rate_control_enable=1, h264_mb_level_rate_control=1, video_bitr
filesink location=output.h264
```

7.3.4 Transcoding

Transcoding is converting a file from one video encoding to another.

VPU video encoding only works on SoC with VPU encoder support.

For i.MX 6 family with VPU, use the following command:

```
$GSTL filesrc location=$filename typefind=true ! $capsfilter ! aiurdemux ! vpudec ! imxvideoconvert_ipu ! $CAPS1 ! vpuenc_xxx ! matroskamux ! filesink location=720p.mkv
```

capsfilter is the container's mime type. CAPS1 is the target video resolution, and the vpuenc_xxx can be vpuenc_mpeg4, vpuenc_h263, vpuenc_h264, and vpuenc_jpeg.

For example:

```
gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime !
  aiurdemux !
vpudec ! imxvideoconvert_ipu ! video/x-raw,format=NV12,width=1280,height=720 !
  vpuenc_h264 ! [h264parse] ! matroskamux ! filesink location=$FILE.mkv
```

For i.MX 8QuadMax/8QuadXPlus, use the following command:

```
gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime !
aiurdemux ! v412h264dec ! queue ! imxvideoconvert_g2d ! queue ! videoconvert !
queue ! v412h264enc ! [h264parse] ! matroskamux ! filesink location=$FILE.mkv
```

For i.MX 8M Mini/8M Plus and i.MX 95, use the following command:

```
gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux ! v412h264dec ! queue ! v412h264enc ! [h264parse] ! matroskamux ! filesink location=$FILE.mkv
```

Note:

- For some mux, such as matroskamux, add h264parse/h265parse before mux.
- For i.MX 6, h264parse is not required, because the VPU can output AVC and byte-stream formats. For i.MX 8 and i.MX 95, h264parse/h265parse should be added before some mux, because the VPU supports only the byte-stream output.

7.3.5 Audio recording

Audio recording from EARC or S/PDIF on i.MX 8M Plus.

Since Multimedia version 4.7.0, PCM and compressed format eARC recording pipeline are unified into the following commandline:

```
gst-launch-1.0 -v alsasrc provide-clock=false device=hw:1,0 ! spdifdemux !
decodebin ! playsink audio-sink="alsasink device=sysdefault:CARD=wm8960audio
buffer-time=40000 sync=false"
```

Note: The imxaudioxcvr card number is 1.

For backward compatibility, the following legacy pipelines are still supported:

For PCM format:

```
gst-launch-1.0 -v alsasrc device=sysdefault:CARD=imxaudioxcvr ! audio/
x-raw,format=S16LE,channels=2,rate=48000 ! playsink audio-sink="alsasink
device=sysdefault:CARD=wm8960audio buffer-time=40000"
```

For compressed format:

```
gst-launch-1.0 alsasrc device=sysdefault:CARD=imxaudioxcvr ! audio/x-raw,format=S16LE,channels=2,rate=48000 ! queue max-size-buffers=0 max-size-bytes=0 max-size-time=0 ! spdifdemux ! decodebin ! playsink audio-sink="alsasink device=sysdefault:CARD=wm8960audio buffer-time=40000 sync=false"
```

Note:

Run the following command to work in EARC mode:

```
amixer -c imxaudioxcvr cset numid=1,iface=MIXER,name='XCVR Mode' 'eARC'
```

The following examples show how to make an MP3 or WMA audio recording.

· MP3 recording

```
$GSTL pulsesrc num-buffers=$NUMBER blocksize=$SIZE ! lamemp3enc ! filesink location=output.mp3
```

Note:

The recording duration is calculated as \$NUMBER * \$SIZE * 8 / (samplerate * channel * bit width).

Therefore, to record 10 seconds of a stereo channel sample with a 44.1K sample rate and a 16 bit width, use the following command:

```
$GSTL pulsesrc num-buffers=430 blocksize=4096 ! 'audio/x-raw, rate=44100, channels=2' ! lamemp3enc ! filesink location=output.mp3
```

7.3.6 Video recording

Video recording is done using the camera input, so this activity only applies to platforms with a camera. Different cameras need to be set with different capture modes for special resolutions. See Chapter 14 "supporting cameras with CSI" and Chapter 15 "supporting cameras with MIPI-CSI" in the *i.MX BSP Porting Guide* (IMXBSPPG).

VPU video encoding only works on SoC with VPU encoder support. imxv412src is only supported on i.MX 6 and i.MX 7.

i. MX 8 and i.MX 9 supports opensource plugin v412src as camera source.

Use the \$GSTINSPECT command to obtain more information about the codec property.

An example of recording might look like this:

```
$GSTL $V4L2SRC device=$DEVICE num-buffers=300 ! $INPUT_CAPS ! queue ! $video_encoder_plugin ! [h264parse] ! $MUXER ! filesink location=output. $EXTENSION
```

\$V4L2SRC can be imxv4l2src, or v4l2src according to the SoC.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

- \$DEVICE could be set to /dev/video, /dev/video0, or /dev/video1 according to the system video input device.
- \$INPUT_CAPS should be set to video/x-raw, format=(string) NV12, width=1920, height=1080, framerate=(fraction) 30/1.
- \$MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.
- \$EXTENSION is filename extension according to the muxer type.

Refer to Section Section 7.3.3 to choose the correct \$video encoder plugin.

7.3.7 Audio/Video recording

This is an example of a command used to record audio and video together:

```
$GSTL -e $V4L2SRC device=$DEVICE ! $INPUT_CAPS ! queue ! $video_encoder_plugin ! [h264parse] ! queue ! mux. pulsesrc ! 'audio/x-raw, rate=44100, channels=2' ! lamemp3enc ! queue ! mux. $MUXER name=mux ! filesink location= output. $EXTENSION
```

- \$V4L2SRC can be imxv4l2src or v4l2src according to SoC.
- \$INPUT_CAPS should be set to video/x-raw, format=(string)NV12, width=1920, height=1080, framerate=(fraction)30/1.
- \$MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.

Refer to Section Section 7.3.3 to choose the correct \$video encoder plugin.

Common parameters are as follows:

- -e indicates to send EOS when the user presses Ctrl+C to avoid output corruption.
- \$EXTENSION is the filename extension according to the multiplexer type.

7.3.8 Camera preview

For i.MX 95 smart camera case (AP1302/AR0144), set up the media pipeline before using the GST v4l2src plugin to capture. The following is an example about how to set up the pipeline:

```
media-ctl
             -l "'ap130x.2-003c':2->'csidev-4ad30000.csi':0 [1]"
             -1 "'csidev-4ad30000.csi':1 -> '4ac10000.syscon:formatter@20':0 [1]"
media-ctl
             -V "'ap130x.2-003c':2 [fmt: UYVY8_1X16/1920x1080 field:none]"
media-ctl
media-ctl
             -V "'csidev-4ad30000.csi':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
            -V "'4ac10000.syscon:formatter@20':0 [fmt: UYVY8 1X16/1920x1080
media-ctl
field:none]"
media-ctl -V "'crossbar':2 [fmt: UYVY8_1X16/1920x1080 field:none]"
media-ctl -V "'myc_isi_0':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
             -V "'mxc isi.0':0 [fmt: UYVY8 1X16/1920x1080 field:none]"
media-ctl
             -V "'mxc isi.1':0 [fmt: UYVY8 1X16/1920x1080 field:none]"
media-ctl
             -V "'mxc isi.2':0 [fmt: UYVY8 1X16/1920x1080 field:none]"
media-ctl
             -V "'mxc isi.3':0 [fmt: UYVY8 1X16/1920x1080 field:none]"
media-ctl
             -V "'mxc isi.4':0 [fmt: UYVY8 1X16/1920x1080 field:none]"
media-ctl
media-ctl
             -V "'mxc_isi.5':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
             -V "'mxc_isi.6':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
-V "'mxc_isi.7':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
media-ctl
media-ctl
```

Note: The entity name may vary.

This example displays what the camera sees. It is only available on platforms with a camera.

```
$GSTL v412src ! 'video/x-raw, format=(string)$FORMAT,
width=$WIDTH, height=$HEIGHT, framerate=(fraction)30/1'
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

! v4l2sink

Camera preview example:

```
$GSTL v4l2src device=/dev/video1 ! 'video/x-raw, format=(string)UYVY,width=640,height=480,framerate=(fraction)30/1' ! autovideosink
```

Parameter comments:

- Get the camera support format and resolution using gst-inspect-1.0 v4l2src.
- Set caps filter according to the camera's supported capabilities if the user needs other format or resolution.
- Ensure that the right caps filter has been set, which also needs to be supported by v4l2sink.

7.3.9 Libcamera

7.3.9.1 Overview

Note: This section is specific to i.MX 95.

<u>Libcamera</u> is an open source camera stack and framework developed by the Linux media community in collaboration with the industry. It is a user space library that relies on the existing Linux kernel drivers and API. It aims to abstract the complexity of the camera subsystem and provide the users with a unified and intuitive interface for the camera operation.

It supports single and multi-camera use cases. Supported cameras can be either an internal camera typically connected through a MIPI CSI bus, or USB camera exposing a UVC class.

Native Libcamera applications make direct use of the interfaces exported by the library. A GStreamer adapter is also supported by the framework: It implements a GStreamer plugin available to applications to use as a source element for a GStreamer pipeline.

In the context of i.MX 95, the support of raw cameras requires using the Neo ISP, to decode and post process the raw image output by the sensor. In the Libcamera framework, a specific ISP is supported through a dedicated pipeline handler and its associated Image Processing Algorithm (IPA).

The pipeline handler's role is to implement the platform-specific handling of the media devices from the hardware pipeline: For Neo ISP pipeline case, it corresponds to the camera, CSI, ISI, and ISP devices. It is responsible for the enumeration and configuration of those devices and circulating the image and metadata buffers between the hardware and software parties.

The IPA is the component implementing the camera control algorithms (White Balance, Auto Exposure Control, etc.). Algorithms from the IPA process on a camera frame basis the statistics metadata output by the ISP. They compute and reconfigure the necessary parameters in real time to optimize the ISP and camera operation.

UVC camera support is standard. Its pipeline handler comes with the Libcamera framework.

7.3.9.2 Camera modules

This release supports the following camera modules:

- X-MX95MBDESER01 (MAX96724 deserializer) + 4 modules X-MX95MBCAM10001 (Omnivision OX03C10 camera + MAX9295 serializer)
 - Multi (4 units) 2MP cameras setup
- X-IMX95-OS08A20 (Omnivision OS08A20 camera)
 - Single 8MP camera setup

Operation of these modules requires usage of a dedicated device tree (dtb file). A device tree is provided for each setup to enable the camera module(s), the ISP, and the IMX-MIPI-HDMI (IT6263) on port LVDS0.

Table 75. Camera modules

Camera	Device tree
X-MX95MBDESER01 4 modules X-MX95MBCAM10001	imx95-19x19-evk-ox03c10-isp-it6263-lvds0.dtb
X-IMX95-OS08A20	imx95-19x19-evk-os08a20-isp-it6263-lvds0.dtb

Usage examples are given in the subsequent sections, requiring camera-dependent environment variables. Environment variables are as follows:

- · W: sensor width
- · H: sensor height

- · RAW: sensor mbus code
- CAMERAn: libcamera unique/persistent identifier for camera instance number n.

The following table lists the variables to be set for each setup.

Table 76. Variables for each setup

Camera	Environment variables
X-MX95MBDESER01 4 modules X-MX95MBCAM10001	W=1920 H=1282 RAW=SBGGR16 CAMERAO="/base/soc/bus@42000000/i2c@42530000/max96724@27/i2c-mux/i2c@0/mx95mbcam@40" CAMERA1="/base/soc/bus@42000000/i2c@42530000/max96724@27/i2c-mux/i2c@1/mx95mbcam@40" CAMERA2="/base/soc/bus@42000000/i2c@42530000/max96724@27/i2c-mux/i2c@1/mx95mbcam@40" CAMERA3="/base/soc/bus@42000000/i2c@42530000/max96724@27/i2c-mux/i2c@2/mx95mbcam@40" CAMERA3="/base/soc/bus@42000000/i2c@42530000/max96724@27/i2c-mux/i2c@3/mx95mbcam@40"
X-IMX95-OS08A20	W=3840 H=2160 RAW=SBGGR12 CAMERAO="/base/soc/bus@42000000/i2c@42530000/os08a20_mipi@36"

Note: For MX95MBCAM10001, height accounts for 2 embedded data lines present at the top of the frame.

7.3.9.3 Libcamera configuration

Libcamera library embeds support for multiple pipelines handlers. Explicit pipeline match ordering is possible using an environment variable. For instance, to select the NXP Neo ISP pipeline:

```
export LIBCAMERA_PIPELINES_MATCH_LIST='PipelineHandlerNxpNeo'
```

To add some verbosity in the console log, for instance:

```
export LIBCAMERA_LOG_LEVELS='NxpNeo:DEBUG, IsiDev:DEBUG, NeoDev:DEBUG'
```

The environment variables supported by Libcamera are documented here.

7.3.9.4 GStreamer pipelines

This section lists the sample GStreamer pipelines relying on the libcamerasrc source element.

Command lines assume that the environment variables have been set beforehand for the targeted camera.

7.3.9.4.1 GStreamer pipeline single camera preview

This is a pipeline example to capture the frames from a single camera for display on the video sink:

```
DISPLAY_W=640
DISPLAY_H=480
gst-launch-1.0 \
    libcamerasrc camera-name="${CAMERA0}" ! \
    video/x-raw, format=YUY2 ! \
    queue ! \
    waylandsink window-width=${DISPLAY_W} window-height=${DISPLAY_H}
```

7.3.9.4.2 GStreamer multiple camera composition and preview

This is a pipeline example to capture the frames from 4 cameras, and display the composited output on the video sink:

```
DISPLAY W=640
DISPLAY H=480
gst-launch-1.0 -v \
    imxcompositor g2d name=comp \
            sink \overline{0}::xpos=0 sink_0::ypos=0 
            sink 0::width=${DISPLAY W} sink 0::height=${DISPLAY H} \
            sink 1::xpos=0 sink 1::ypos=${DISPLAY H}
            sink 1::width=${DISPLAY W} sink 1::height=${DISPLAY H} \
            sink_2::xpos=\${DISPLAY \overline{W}} sink_2::ypos=0 \
            sink 2::width=${DISPLAY W} sink 2::height=${DISPLAY H} \
            sink 3::xpos=${DISPLAY W} sink 3::ypos=${DISPLAY H}
            sink 3::width=${DISPLAY W} sink 3::height=${DISPLAY H} ! \
        waylandsink \
    libcamerasrc camera-name="${CAMERA0}" ! \
        video/x-raw, format=YUY2 ! queue ! comp.sink 0 \
    libcamerasrc camera-name="${CAMERA1}" ! \
        video/x-raw,format=YUY2 ! queue ! comp.sink 1 \
    libcamerasrc camera-name="${CAMERA2}" ! \
        video/x-raw, format=YUY2 ! queue ! comp.sink 2 \
    libcamerasrc camera-name="${CAMERA3}" ! \
        video/x-raw,format=YUY2 ! queue ! comp.sink_3
```

7.3.9.5 cam test application

Libcamera comes with the <code>cam</code> test application that uses the native libcamera API. When using the NXP Neo pipeline handler, <code>cam</code> gives the option to capture the camera frame before (raw stream) or after the ISP decoding. The frames captured can be either displayed through the <code>drm/kms</code> device (single camera only) or stored to the file system.

To display the capture frames, the weston service shall be disabled first to release the drm/kms device, using the command:

```
systemctl stop weston
```

In addition, writing frames to the file system generates a huge amount of data that is not absorbable in real time. In that case, because of the delay induced on the application to recycle its buffers, periodic frame loss is expected to occur.

Sample command lines in this section assume that the environment variables have been set beforehand for the targeted camera.

1. List the detected camera.

```
cam -l
```

2. List the stream formats for a camera.

```
cam --camera 1 -I
```

3. Capture 1000 decoded frames and display over HDMI.

```
cam \
   --camera 1 \
   --stream width=${W},height=${H},pixelformat=YUYV \
   --capture=1000 \
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

```
--display=HDMI-A-1
```

4. Capture 20 raw frames and save to the file.

```
cam \
   --camera 1 \
   --stream width=${W},height=${H},pixelformat=${RAW} \
   --capture=20 \
   --file=frame-#.raw
```

5. Capture simultaneously 20 raw and RGB888 decoded frames and save to the file.

```
cam \
   --camera 1 \
   --stream width=${W},height=${H},pixelformat=${RAW},role=raw \
   --stream width=${W},height=${H},pixelformat=BGR888,role=video \
   --capture=20 \
   --file=frame-#.raw
```

Note: Cam pixel formats use the DRM convention: DRM BGR888 corresponds to V4L2 RGB888.

6. Capture 10 decoded frames and save to the file (multicamera case).

```
cam \
    --camera 1 \
    --stream width=${W},height=${H},pixelformat=YUYV \
    --file=frame-#.yuv \
    --capture=10
    --camera 2 \
    --stream width=${W},height=${H},pixelformat=YUYV \
    --file=frame-#.yuv \
    --capture=10 \
    --camera 3 \
    --stream width=${W},height=${H},pixelformat=YUYV \
    --file=frame-#.yuv \
    --capture=10
    --camera 4 \
    --stream width=${W},height=${H},pixelformat=YUYV \
    --file=frame-#.yuv \
    --capture=10
```

7.3.9.6 Limitations

The following limitations apply:

 Support is limited to raw cameras through the NXP Neo Image Signal Processor (ISP) pipeline handler, and USB cameras through UVC pipeline handler. The internal CSI smart camera use-case is currently not supported.

7.3.9.6.1 Neo ISP pipeline handler limitations

The following limitations apply:

- ISP is operated in memory-to-memory mode only. This enables both single and multi-camera operations. However, the streaming mode operation (direct connection from CSI to ISP), which is a system optimization for a single camera, is not implemented.
- The Neo ISP has no scaler. Therefore, the <u>stream configuration</u> size must use one of the native sensor sizes (modes). Stream role is only used to select raw frames capture.
- Pipeline handler restricts usage of the sensor size whose raw output format has the highest number of bits per sample.

- Single-camera topologies are automatically detected. Multi-camera topologies typically involve intricate graphs that currently require a platform configuration file (config.yaml). The mx95mbcam setup with 4 cameras can be used as an example.
- Control algorithms (IPA) have a minimal support limited to Automatic/Manual White Balancing only. There is no Auto Gain or Exposure Correction (AGC/AEC), color correction, or other control algorithm enabled.

7.3.9.6.2 UVC (USB camera) pipeline handler limitations

The following limitations apply:

 Buffers output by the UVC driver cannot be processed by GStreamer <u>waylandsink</u> element. Element <u>glimagesink</u> should be used as a replacement.

7.3.10 Recording the TV-in source

The TV-in source plugin gets video frames from the TV decoder. It is based on the V4I2 capture interface. A command line example is as follows:

```
gst-launch-1.0 v4l2src ! autovideosink
```

Note:

The TV decoder is ADV7180. It supports NTSC and PAL TV mode. The output video frame is interlaced, so the sink plugin needs to enable deinterlace. The default value of v4l2sink deinterface is True.

7.3.11 Web camera

The following command line is an example of how to record and transfer web camera input.

```
$GSTL v4l2src device=/dev/video1 ! $video_encoder_plugin ! rtph264pay ! udpsink host=$HOST_IP
```

HOST_IP is the IP/multicast group to send the packets to.

This command line is an example of how to receive and display web camera input.

```
$GSTL udpsrc ! buffer-size=204800 (example number) application/x-rtp ! rtph264depay ! $video_decoder_plugin ! autovideosink
```

7.3.12 HTTP streaming

The HTTP streaming includes the following:

· Manual pipeline

```
$GSTL souphttpsrc location= http://SERVER/test.avi ! typefind
    ! aiurdemux name=demux demux. ! queue max-size-buffers=0 max-size-time=0
    ! $video_decoder_plugin ! $video_sink_plugin demux. ! queue max-size-buffers=0 max-size-time=0
    ! beepdec ! $audio_sink_plugin
```

PLAYBIN

```
$GSTL $PLAYBIN uri=http://SERVER/test.avi
```

GPLAY

```
$GPLAY http://SERVER/test.avi
```

7.3.13 HTTP live streaming

The HLS streaming includes the following:

PLAYBIN

```
$GSTL $PLAYBIN uri=http://SERVER/test.m3u8
```

GPLAY

```
$GPLAY http://SERVER/test.m3u8
```

7.3.14 MPEG-DASH streaming

The MPEG-DASH streaming includes the following:

PLAYBIN

```
$GSTL $PLAYBIN uri=http://SERVER/test.mpd
```

GPLAY

```
$GPLAY http://SERVER/test.mpd
```

Note: Supports TS, MP4, and WebM container format segment currently.

7.3.15 Real Time Streaming Protocol (RTSP) playback

Use the following command to see the GStreamer RTP depacketize plugins:

```
$GSTINSPECT | grep depay
```

RTSP streams can be played with a manual pipeline or by using playbin. The format of the commands is as follows.

· Manual pipeline

```
$GSTL rtspsrc location=$RTSP_URI name=source
    ! queue ! $video_rtp_depacketize_plugin ! $vpu_dec ! $video_sink_plugin
source.
    ! queue ! $audio_rtp_depacketize_plugin ! $audio_parse_plugin ! beepdec !
$audio_sink_plugin
```

PLAYBIN

```
$GSTL $PLAYBIN uri=$RTSP_URI
```

Two properties of rtspsrc that are useful for RTSP streaming are:

- Latency: This is the extra added latency of the pipeline, with the default value of 200 ms. If you need low-latency RTSP streaming playback, set this property to a smaller value.
- Buffer-mode: This property is used to control the buffering algorithm in use. It includes four modes:
 - None: Outgoing timestamps are calculated directly from the RTP timestamps, not good for real-time applications.

IMXLUG_6.6.23_2.0.0

67 / 150

- Slave: Calculates the skew between the sender and receiver and produces smoothed adjusted outgoing timestamps, good for low latency communications.
- Buffer: Buffer packets between low and high watermarks, good for streaming communication.
- Auto: Chooses the three modes above depending on the stream. This is the default setting.

To pause or resume the RTSP streaming playback, use a buffer-mode of slave or none for rtspsrc, as in buffer-mode=buffer. After resuming, the timestamp is forced to start from 0, and this causes buffers to be dropped after resuming.

Manual pipeline example:

```
$GSTL rtspsrc location=rtsp://10.192.241.11:8554/test name=source ! queue ! rtph264depay ! avdec_h264 ! overlaysink source. ! queue ! rtpmp4gdepay ! aacparse ! beepdec ! pulsesink
```

Playback does not exit automatically in GStreamer 1.x, if buffer-mode is set to buffer in the rtpsrc plugin.

7.3.16 RTP/UDP MPEGTS streaming

There are some points to keep in mind when doing RTP/UDP MPEGTS Streaming:

- The source file that the UDP/RTP server sends must be in TS format.
- Start the server one second earlier than the time client starts.
- \bullet Two properties of ${\tt aiurdemux}$ that are useful for UDP/RTP TS streaming are:

streaming-latency: This is the extra added latency of the pipeline, and the default value is 400 ms. This value is designed for the situation when the client starts first. If the value is too small, the whole pipeline may not run due to lack of audio or video buffers. In that situation, you should cancel the current command and restart the pipeline. If the value is too large, wait for a long time to see the video after starting the server.

low_latency_tolerance: This value is a range that total latency can jitter around streaming-latency. This property is disabled by default. When the user sets this value, the maximum latency is (streaming-latency + low latency tolerance).

The UDP MPEGTS streaming command line format looks like this:

```
$GSTL udpsrc do-timestamp=false uri=$UDP_URI caps="video/mpegts"
! aiurdemux streaming_latency=400 name=d d. ! queue ! $vpu_dec
! queue ! $video_render_sink sync=true d. ! queue ! beepdec !
$audio_sink_plugin sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000 caps="video/mpegts"
! aiurdemux streaming_latency=400 name=d d. ! queue ! vpudec
! queue ! overlaysink sync=true d. ! queue ! beepdec ! pulsesink sync=true
```

The format for an RTP MPEGTS streaming command is covered as follows:

```
$GSTL udpsrc do-timestamp=false uri=$RTP_URI caps="application/x-rtp"
! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d d. ! queue !
$vpu_dec
! queue ! $video_render_sink sync=true d. ! queue ! beepdec !
$audio_sink_plugin sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000
caps="application/x-rtp"
! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d d.
! queue ! vpudec ! queue ! overlaysink sync=true d. ! queue ! beepdec
```

! pulsesink sync=true

7.3.17 RTSP streaming server

The RTSP streaming server use case is based on the open source gst-rtsp-server package. It uses the i.MX aiurdemux plugin to demultiplex the file to audio or video elementary streams and to send them out through RTP. Start the RTSP streaming server on one board, and play it on another board with the RTSP streaming playback commands.

The gst-rtsp-server package is not installed by default in the Yocto Project release. Follow these steps to build and install it.

- 1. Enable the layer meta-openembedded/meta-multimedia:
 Add the line BBLAYERS += "\${BSPDIR}/sources/meta-openembedded/meta-multimedia" to the configuration file \$yocto root/build/conf/bblayers.conf.
- 2. Include gst-rtsp-server into the image build:
 Add the line IMAGE_INSTALL:append = " gstreamer1.0-rtsp-server" to the configuration file
 \$yocto root/build/conf/local.conf.
- 3. Run bitbake for your image to build with gst-rstp-server.
- 4. You can find the test-uri binary in the folder:

\$yocto_root/build/tmp/work/cortexa9hf-vfp-neon-poky-linux-gnueabi/
gstreamer1.0-rtsp-server/\$version/
build/examples/

5. Flash the image.

Copy test-uri into /usr/bin in the rootfs on your board and assign execute permission to it.

Some information on running the tool is as follows:

· Command:

test-uri \$RTSP URI

For example:

test-uri file:///home/root/temp/TestSource/mp4/1.mp4

· Server address:

rtsp://\$SERVER_IP:8554/test

For example:

rtsp://10.192.241.106:8554/test

• Client operations supported are Play, Stop, Pause, Resume, and Seek.

7.3.18 Video conversion

There are four video conversion plugins, <code>imxvideoconvert_ipu</code>, <code>imxvideoconvert_g2d</code>, <code>imxvideoconvert_ocl</code>, and <code>imxvideoconvert_pxp</code>. All of them, except for <code>imxvideoconvert_ocl</code>, can be used to perform video color space conversion, resize, and rotate. <code>imxvideoconvert_ipu</code> can also be used to perform video deinterlacing. <code>imxvideoconvert_ocl</code> can be used to perform video color space conversion, downscale, color range conversion, and deinterlace. They can be used to connect before ximagesink to enable the video rendering on X Windows or used in transcoding to change video size, rotation, or deinterlacing.

imxvideoconvert ocl supports the following conversions:

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

- RGBA32 to NV12, supports output buffer of BT601 and BT709, limited and full range.
- RGBX32 to NV12, supports output buffer of BT601 and BT709, limited and full range.
- NV12 to NV12, supports input and output buffer of BT601 and BT709, limited and full range.
- NV12 to RGB24, supports input buffer of BT601 and BT709, limited and full range.
- YUYV to RGB24, supports input buffer of BT601 and BT709, limited and full range.
- RGBA32 to RGB24.
- NV12TILE to NV12, only for Amphion VPU decoder, including deinterlace, full range to limited range.
- NV15TILE to NV12, only for Amphion VPU decoder, including deinterlace, full range to limited range.
- imxvideoconvert_ocl also supports the downscale function. The input format can be NV12 YUY2 RGBA
 I420 and the output format is fixed to RGB. Currently, the width and height of the video source need 16
 aligned and the width and height of video output need 4 aligned and 2 aligned respectively.

Use gst-inspect-1.0 to get each converter's capability and supported input and output formats. Note that imxvideoconvert g2d can only perform color space converting to RGB space.

Color Space Conversion (CSC)

```
gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12 ! imxvideoconvert_{xxx} !
  video/x-raw,format=RGB16 ! ximagesink display=:0
```

Color Space Conversion (CSC) with OpenCL-based Converter

```
gst-launch-1.0 videotestsrc ! video/x-raw,format=RGBA ! imxvideoconvert_ocl !
  video/x-raw,format=NV12 ! waylandsink
```

Color Range Conversion with OpenCL-based Converter

```
gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12,colorimetry=1:3:0:0 !
imxvideoconvert_ocl ! video/x-raw,format=NV12,colorimetry=2:3:0:0 ! waylandsink
```

Downscale with OpenCL-based Converter

```
gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12,width=640,height=480 !
imxvideoconvert_ocl ! video/x-raw,format=RGB,width=300,height=300 !
videoconvert ! waylandsink
```

Combine usage for G2D and OpenCL-based Converter

```
gst-launch-1.0 videotestsrc ! video/x-raw, format=NV12, width=1920, height=1080 !
imxvideoconvert_g2d ! video/x-raw, width=300, height=300 ! imxvideoconvert_ocl !
video/x-raw, format=RGB ! videoconvert ! waylandsink
```

Resize

```
gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12,width=800,height=600 !
imxvideoconvert_{xxx} ! video/x-raw, width=640, height=480 ! ximagesink
display=:0
```

Rotate

```
gst-launch-1.0 videotestsrc ! imxvideoconvert_{xxx} rotation=2 ! ximagesink
display=:0
```

Image Dewarp with DPU G2D on i.MX 95

IMXLUG_6.6.23_2.0.0

70 / 150

imxvideoconvert_g2d supports the Dewarp function on the i.MX 95 board. It supports both the RGB format and packed YUV422 format, such as YUY2.

• imxvideoconvert_g2d can probe and parse the header data automatically in the map file, which contains the initialization parameters. You can enable video warp and configure the Dewarp map file, which contains the header data as follows. Example:

```
gst-launch-1.0 videotestsrc ! video/x-raw,format=RGBA,width=1920,height=1080 !
imxvideoconvert_g2d video-warp-enable=true video-warp-coord-
file=dewarp_map_file ! video/x-raw,format=RGBA,width=1920,height=1080 !
videoconvert ! waylandsink
```

- If the map file has no header data, which contains the initialization parameters, configure these parameters manually as follows:
- The map-format parameter configures three Dewarp modes, which are 0 (coordinate mode), 1 (Delta mode), and 2 (Delta increment mode).
- The width and height parameters configure the actual input video width and height information.
- The bpp parameter means bit per pixel and configures the memory layout of each x/y value in coordinate buffers.
- The arb_start_x and arb_start_y parameters configure the start value of of each x/y, which are used only in Delta mode or Delta increment mode.
- The arb_delta_xx, arb_delta_xy, arb_delta_yx, and arb_delta_yy parameters configure the initial Delta value, which are used only in Delta increment mode. Example:

```
gst-launch-1.0 videotestsrc ! video/x-
raw,format=RGBA,width=1920,height=1080 ! imxvideoconvert_g2d video-
warp-enable=true video-warp-coord-file=dewarp_map_file video-warp-extra-
controls="c,map-
format=2,width=1920,height=1080,bpp=8,arb_start_x=0x286c,arb_start_y=0x16a6,arb_delta_x
video/x-raw,format=RGBA,width=1920,height=1080 ! videoconvert ! waylandsink
```

Video crop with i.MX with G2D

```
gst-launch-1.0 videotestsrc ! videocrop top=10 bottom=10 right=10 left=10 !
imxvideoconvert_g2d videocrop-meta-enable=true ! queue ! ximagesink display=:0
```

Deinterlacing with i.MX with IPU

```
gst-launch-1.0 playbin uri=file://$FILE video-sink="imxvideoconvert_ipu
deinterlace=3 ! ximagesink display=:0 sync=false"
```

Transcoding with i.MX with VPU

```
gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux ! vpudec ! imxvideoconvert_ipu ! video/x-raw,format=NV12,width=1280,height=720 ! vpuenc_h263 ! avimux ! filesink location=$FILE.avi
```

Combination with i.MX with IPU or VPU

It is possible to combine CSC, resize, rotate, and deinterlace at one time. Both <code>imxvideoconvert_ipu</code> and <code>imxvideoconvert_g2d</code> can be used at the same time in a pipeline. The following is an example:

```
gst-launch-1.0 videotestsrc ! video/x-
raw,format=I420,width=1280,height=800,interlace-mode=interleaved !
imxvideoconvert_ipu rotation=2 deinterlace=3 ! video/
x-raw,format=NV12,width=800,height=600 ! vpuenc_h264 !
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

```
vpudec ! imxvideoconvert_g2d rotation=3 ! video/x-
raw,format=RGB16,width=640,height=480 ! ximagesink sync=false display=:0
```

7.3.19 Video composition

imxcompositor_g2d uses corresponding hardware to accelerate video composition. It can be used to composite multiple videos into one. The video position, size, and rotation can be specified while composition. Video color space conversion is also performed automatically if input and output video are not same. Each video can be set to an alpha and z-order value to get alpha blending and video blending sequence.

Note that imxcompositor_g2d can only output RGB color space format. Use gst-inspect-1.0 to get more detailed information, including the supported input and output video format.

· Composite two videos into one.

```
gst-launch-1.0 imxcompositor_{xxx} name=comp sink_1::xpos=160
sink_1::ypos=120 ! overlaysink videotestsrc ! comp.sink_0 videotestsrc !
comp.sink_1
```

· Composite two videos into one with red background color.

```
gst-launch-1.0 imxcompositor_{xxx} background=0x000000FF name=comp
sink_1::xpos=160 sink_1::ypos=120 ! overlaysink videotestsrc ! comp.sink_0
videotestsrc ! comp.sink_1
```

• Composite two videos into one with CSC, resize, and rotate.

· Composite three videos into one with CSC, resize, rotate, alpha, z-order, and keep aspect ratio.

```
gst-launch-1.0 imxcompositor_{xxx} name=comp sink_0::width=640
    sink_0::height=480
        sink_0::alpha=0.5 sink_0::z-order=3 sink_1::alpha=0.8 sink_1::z-order=2
    sink_1::xpos=160
        sink_1::ypos=120 sink_1::width=640 sink_1::height=480 sink_1::rotate=1
    sink_2::xpos=320
        sink_2::ypos=240 sink_2::width=500 sink_2::height=500 sink_2::alpha=0.6
        sink_2::keep-ratio=true ! video/x-raw,format=RGB16 ! overlaysink
    videotestsrc !
        video/x-raw,format=NV12,width=320,height=240 ! comp.sink_0 videotestsrc !
        video/x-raw,format=I420,width=320,height=240 ! comp.sink_1 videotestsrc !
        video/x-raw,format=RGB16,width=320,height=240 ! comp.sink_2
```

7.4 PipeWire input/output settings

This section provides the instructions and commands for PipeWire.

7.4.1 PipeWire settings

This section provides the steps for PipeWire settings.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

Note: Make sure to start the PipeWire, WirePlumber, and PipeWire-pulse services at first:

```
systemctl --user --now enable pipewire wireplumber pipewire-pulse
```

1. Use the wpctl status command to list all the available audio sinks and sources:

```
$ wpctl status
```

A list of available audio sinks/sources is displayed:

```
Audio
  - Devices:
        36. Built-in Audio
                                                 [alsa]
        37. Built-in Audio
                                                 [alsa]
        38. Built-in Audio
                                                 [alsa]
        39. Built-in Audio
                                                 [alsa]
  - Sinks:
        40. Built-in Audio Mono
                                                 [vol: 0.40]
        42. Built-in Audio Analog Surround 5.1 [vol: 0.40]
        45. Built-in Audio Digital Stereo (IEC958) [vol: 0.40]
  - Sink endpoints:
   - Sources:
                                                 [vol: 1.00]
        41. Built-in Audio Mono
        43. Built-in Audio Analog Surround 5.1 [vol: 1.00]
        44. Built-in Audio Stereo
                                                 [vol: 1.00]
        46. Built-in Audio Digital Stereo (IEC958) [vol: 1.00]
  - Source endpoints:
  - Streams:
```

- 2. Use wpctl inspect <object-id> to display the information about the specified object. For example, wpctl inspect 36 can check this audio card information.
- 3. Use wpctl set-default <object-id> to set the default audio sink and source according to the ID number of sinks or sources in the list shown above.

Multichannel output support settings

For those boards that need to output multiple channels, perform the following steps to enable the multichannel output profile:

1. Use pw-cli info <object-id> to find <param-id> of EnumProfile.

```
params: (4)

* 8 (Spa:Enum:ParamId:EnumProfile) r-

* 9 (Spa:Enum:ParamId:Profile) rw

* 12 (Spa:Enum:ParamId:EnumRoute) r-

* 13 (Spa:Enum:ParamId:Route) rw
```

Here, 8 is the <param-id> of EnumProfile.

2. Use pw-cli enum-params <object-id> <param-id> to check the profile index of the card. Here, <object-id> is the ID number of audio devices shown by wpctl status.

```
Object: size 464, type Spa:Pod:Object:Param:Profile (262151), id Spa:Enum:ParamId:EnumProfile (8)

Prop: key Spa:Pod:Object:Param:Profile:index (1), flags 00000000

Int 3

Prop: key Spa:Pod:Object:Param:Profile:name (2), flags 00000000
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

```
String "output:analog-surround-71+input:analog-surround-51"
Prop: key Spa:Pod:Object:Param:Profile:description (3), flags 00000000
String "Analog Surround 7.1 Output + Analog Surround 5.1 Input"
...
```

Here, 3 is the profile index.

- 3. Use wpctl set-profile <object-id> <profile index> to set the profile for particular features.
- 4. Use pw-play xx.wav to play a multichannel wave file.

7.5 Installing gstreamer1.0-libav into rootfs

The following steps show how to install gstreamer1.0-libav into a rootfs image.

1. Add the following lines into the configuration file conf/local.conf.

```
IMAGE_INSTALL:append = " gstreamer1.0-libav"
LICENSE_FLAGS_ACCEPTED = "commercial"
```

2. Build gstreamer1.0-libav.

\$ bitbake gstreamer1.0-libav

3. Build the rootfs image.

```
$ bitbake <image_name>
```

8 Audio

8.1 DSP support

DSP support is provided on specific i.MX 8QuadXPlus, i.MX 8QuadMax, i.MX 8M Plus, and i.MX 8ULP SoCs.

8.1.1 HiFi 4 DSP framework

Supporting HiFi 4 on a custom board is documented in the i.MX DSP User's Guide (IMXDSPUG).

8.1.2 Sound Open Firmware

Sound Open Firmware is an open source alternative to HiFi 4 DSP framework. For supporting the HiFi 4 on a custom board, see the SOF project documentation https://thesofproject.github.io available in the public domain.

For details about toolchains, supported platforms, binary packaging, and quick setup of audio scenarios, see <u>SOF User Guide on NXP i.MX 8 platforms</u>.

8.2 HDMI eARC support

eARC is supported on the i.MX 8M Plus EVK board.

The procedure enables audio, which is input through the imxaudioxcvr card and played back through the wm8960audio card.

Make sure there is a headset plugged into the i.MX 8M Plus EVK audio jack. The procedure is as follows:

1. On i.MX 8M Plus EVK, set eARC mode. The default mode is SPDIF:

```
amixer -c 0 cset numid=1 2
```

- 2. On i.MX 8M Plus EVK, use alsomixer to set Headphone and Playback controls to the maximum values for the wm8960-audio card.
- 3. On i.MX 8M Plus EVK, start audio recording on the imxaudioxcvr card and playback on the wm8960audio card.

```
arecord -Dsysdefault:CARD=imxaudioxcvr -c2 -r48000 -fS32_LE -twav | aplay - Dsysdefault:CARD=wm8960audio
```

4. Make sure Digital Audio Out from the TV is PCM. Then, set eARC mode to **ON** and check audio on the headset connected to the i.MX 8M Plus EVK jack. The settings on the TV should be as shown in the following figure.

Note: The procedure has been tested on Sony and LG TV.

The firmware on the eARC RX (i.MX 8M Plus EVK) waits until HPD=high is sensed. Therefore, start recording and playback on i.MX 8M Plus before enabling eARC mode on the TV as described in Steps 3 and 4 above. This makes the behavior more predictable on the RX side. In addition, set the subsequent eARC mode to **OFF** then to **ON** on the TV while keeping arecord ... | aplay ... running on i.MX 8M Plus EVK. Check whether you can hear audio in the headset after subsequent eARC mode is set to **ON** on the TV.

Besides, enabling the complete eARC feature, per the HDMI 2.1 specification, is more of a system-level application that integrates different layers and modules of the CEC driver, DRM, HDMI controller driver, EDID, and eARC driver modules.

8.3 Low power voice UI

8.3.1 Introduction

The Cortex-M core on the i.MX 8M Plus, i.MX 8M Mini, i.MX 8ULP, i.MX 93, and i.MX 95 platforms can be used in an AsymmetricMultiprocessing (AMP) architecture for a low power voice User Interface (UI) solution.

The voice activity detection and wake work engine shall use the lowest power core of the i.MX 8M, i.MX 93, and i.MX 95, so that the Cortex-A cluster and related peripherals can remain in sleep mode for most of the "active listening" time.

Upon successful detection of a wake word, the Cortex-M core shall wake up the Cortex-A domain for better acoustic performance and further voice processing.

There are three components needed for this solution:

- Audio Front End (AFE)
- Linux drivers
- · Cortex-M Image

Note: The i.MX 8ULP platform is added in the supported list. However, for i.MX 8ULP, there is no low-power wake word detection on Cortex-M. The Cortex-M is only for providing the path of the PDM microphone. AFE and Linux drivers are supported.

8.3.2 Standard voice solution

In addition to the low power voice UI solution described in the previous section, a standard voice solution is also available. This solution does not leverage a Cortex-M image and therefore takes the microphone and speaker inputs/outputs directly from the Linux kernel (through drivers and the ALSA library). It also leverages VIT wake word detection engine (in place of VoiceSpot in the low power voice UI solution).

8.3.3 Audio Front End (AFE)

To precisely detect human language, the audio signal from the microphone must be clean, without echo, noise, or other disturbances. To achieve this, a microphone array is typically used, with multiple, (usually) interleaved microphone signals input to the embedded device. Such a compound signal is then fed into a signal processor (commonly known as an Audio Front End), which filters out the noise, echo, and other disturbances. The output from the signal processor is then the desired single channel, clean microphone audio, which is used for further processing (wake-word detection and natural language processing).

To interface audio with the Linux OS, the Advanced Linux Sound Architecture (ALSA) library is used. The following figure shows the audio architecture.

The AFE code is on GitHub: https://github.com/nxp-imx/nxp-afe/. Use the Git tag corresponding to the current Linux BSP release.

The AFE deliveries are in Yocto rootfs/unit tests/nxp-afe/ and /usr/lib/nxp-afe/.

- /unit tests/nxp-afe/afe: The main application of the AFE
- /unit tests/nxp-afe/TODO.md: User guide document
- /unit tests/nxp-afe/asound.conf imx8mm: Used for i.MX 8M Mini default and RPMsg dtb
- /unit tests/nxp-afe/asound.conf imx8mp: Used for i.MX 8M Plus default and RPMsg dtb
- /unit_tests/nxp-afe/asound.conf_imx8mp_revb4: Used for i.MX 8M Plus EVKB4 default and RPMsg dtb
- /unit_tests/nxp-afe/asound.conf_imx93: Used for i.MX 93 default and RPMsg dtb for both EVK and QSB boards
- /unit tests/nxp-afe/asound.conf imx95: Used for i.MX 95 EVK default and RPMsg dtb

In addition to the AFE, the Yocto BSP integrates VoiceSeeker (a multi-microphone voice control audio front-end signal processing solution), VoiceSpot (a small memory and MIPS profile wake word engine supporting the "Hey NXP" voice trigger word), and VIT for local voice command recognition. These deliveries are available on GitHub: https://github.com/nxp-imx/imx-voiceui. This contains:

- VoiceSeeker_wrapper folder contains the code used for generating the shared library used by the AFE wrapper. Check the TODO.md in the nxp-afe repository.
- Voice_UI_Test_app folder contains the code used for generating the voice UI application called
 "voice_ui_app". This application contains the VoiceSpot wake-word engine and VIT for local voice
 command recognition. This application uses the output of the AFE for voice detection (wake-word and voice
 commands).

See the README file in this GitHub repository, which explains how to build the VoiceSeeker library and the Voice UI Test application. Once these are built, the user shall copy the following files to Yocto rootfs:

- Copy release/Config.ini to /unit_tests/nxp-afe/.
- Copy release/HeyNXP 1 params.bin to /unit tests/nxp-afe/.
- Copy release/HeyNXP en-US 1.bin to /unit tests/nxp-afe/.
- Copy release/libvoiceseekerlight.so.2.0 to /usr/lib/nxp-afe/libvoiceseekerlight.so. 2.0, symbol link libvoiceseekerlight.so to libvoiceseekerlight.so.2.0.

IMXLUG_6.6.23_2.0.0

78 / 150

• Copy release/voice ui app to /unit tests/nxp-afe/.

```
root@imx8mpevk:/unit_tests/nxp-afe# 1s -1
-rw-r--r-- 1 weston weston 294 Mar 9 2018 Config.ini
-rw-r--r-- 1 weston weston 56 Mar 9 2018 HeyNXP_1_params.bin
-rw-r--r-- 1 weston weston 32812 Mar 9 2018 HeyNXP_en-US_1.bin
-rw-r--r-- 1 weston weston 4130 Mar 9 2018 TODO.md
-rwxr-xr-x 1 weston weston 67752 Mar 9 2018 afe
-rw-r--r-- 1 weston weston 1642 Mar 9 2018 asound.conf_imx8mm
-rw-r--r-- 1 weston weston 1661 Mar 9 2018 asound.conf_imx8mp
-rw-r--r-- 1 weston weston 1660 Mar 9 2018 asound.conf_imx8mp
-rw-r--r-- 1 weston weston 1642 Mar 9 2018 asound.conf_imx8mp
-rw-r--r-- 1 weston weston 1642 Mar 9 2018 asound.conf_imx93
-rwxr-xr-x 1 weston weston 3414200 Mar 9 2018 voice_ui_app
```

After this, follow the steps in /unit_tests/nxp-afe/TODO.md to perform a test. The typical test method is as follows:

- ./voice ui app &
- ./afe libvoiceseekerlight &
- aplay test.wav &
- arecord -d10 -fS32 LE -r16000 -c1 voiceseeker afe on.wav

The voice ui app binary enables the following VIT commands:

- MUTE
- NEXT
- SKIP
- PAIR DEVICE
- PAUSE
- STOP
- POWER OFF
- POWER ON
- PLAY MUSIC
- PLAY GAME
- WATCH CARTOON
- WATCH MOVIE

When users say "Hey NXP, power on", the "Hey NXP" wakes up the system, and the "power on" command is detected.

```
trigger = 2, trigger_sample = 0, start_sample = -12812, stop_sample = -812,
    score = 28
keyword_start_offset_samples = 12812
ITER = 633
- Voice Command detected 8 POWER ON
```

There is a configuration file called Config.ini through which user can choose the wake-word engine, select the VIT language or implement other settings. It is a part of the standard voice solution.

```
$ cat /unit_tests/nxp-afe/Config.ini
[AFEConfig]
WWDectionDisable = 0
WakeWordEngine = VoiceSpot
DebugEnable = 0
# Declare mic coordinates if not using default value for supported i.MX EVKs
#mic0 = 35.0, 15.15, 0.0
#mic1 = 17.5, -15.15, 0.0
#mic2 = -17.5, -15.15, 0.0
#mic3 = -35.0, 15.15, 0.0
VoiceSpotModel = HeyNXP_en-US_1.bin
VoiceSpotParams = HeyNXP_1_params.bin
VITLanguage = English
```

• WWDectionDisable

Disables/Enables the wake-word and command detection.

- 0 By default, enables the wake-word and command detection.
- 1 Disables wake-word and command detection. voice ui app does not work.
- WakeWordEngine

This configuration depends on setting WWDectionDisable to 0. Selects if the voice_ui_app uses VoiceSpot or VIT for wake-word detection.

- VoiceSpot By default, use VoiceSpot to detect the wake-word.
- VIT Use VIT to detect wake-word.
- DebugEnable
 - **0** By default, no debug recordings are made.
 - 1 Enables recording the AFE input/output streams for debugging and tuning the RefSignalDelay.
- RefSignalDelay

Used to calibrate the reference signal delay when using VoiceSeeker's Acoustic Echo Cancellation (AEC). The AEC enabled library is delivered with controlled access through Flexera. Please contact voice@nxp.com for more information.

• Mic coordinates

XYZ coordinates of the microphones in millimeters. The origin of the coordinate axis can be chosen as convenient. Users can set custom values if not using the default value for the supported i.MX EVKs.

• VoiceSpotModel/VoiceSpotParams

The two parameters depend on setting WakeWordEngine to "VoiceSpot". They are used to specify the wakeword model and parameters used by **VoiceSpot**.

• VITLanguage

This configuration depends on setting WakeWordEngine to "VIT". Selects the VIT language used to detect the wake-word and commands.

- English by default, uses English.
- Mandarin uses Mandarin.
- Spanish uses Spanish.
- German uses German.
- Japanese uses Japanese.
- Korean uses Korean.
- Turkish uses Turkish.
- Italian uses Italian.
- French uses French.

Notes on VIT model:

- VIT Wake-word and commands can be updated with generating new VIT Model thanks to the <u>VIT Model</u> generation online tool.
- To have the new VIT Model considered by the application, the VIT model has be updated in ./vit/i.MX8M A53/Lib/ or /vit/i.MX9X A55/Lib/ and Voice ui app recompiled.
- Same VIT model is used by the Voice_ui_app in low power or standard configuration. In the low power
 configuration, since VIT is used in voice commands mode only, VIT wake-word information is not considered
 by the VIT engine.

Note:

- For i.MX 93, the low-power voice UI solution uses digital microphones and codec already mounted on the EVK. The add-on Audio hat is not supported.
- In this release, the VoiceSpot library is released by Flexera. Contact the NXP marketing to get it if you need
 it. In default release, VIT is used for wakeword detection. This change is applied for all platforms that support
 AFE.

8.3.4 Linux drivers

The primary Linux drivers used by the voice solutions are as follows:

- Loopback sound card: sound/drivers/aloop.c
- RPMsg sound card:
 - sound/soc/fsl/fsl rpmsg.c
 - sound/soc/fsl/imx-pcm-rpmsg.c
 - sound/soc/fsl/imx-rpmsg.c

8.3.5 Cortex-M Image

8.3.5.1 Application name

The Cortex-M application low_power_wakeword uses VoiceSeeker and VoiceSpot. When suspended, the Linux OS is resumed only when the "Hey NXP" wake-word is recognized.

This application is provided for i.MX 8M Mini, i.MX 8M Plus, i.MX 93, and i.MX 95:

- imx8mm m4 TCM low power wakeword.bin
- imx8mp m7 TCM low power wakeword.bin
- imx93-11x11-evk m33 TCM low power wakeword.bin
- imx93-9x9-qsb m33 TCM low power wakeword.bin
- imx95-19x19-evk m7 TCM low power wakeword sm cm7.bin

8.3.5.2 Board setup

To set up the board, perform the following steps:

1. Ensure the appropriate Cortex-M application is copied to the "boot" partition of your SD Card. The low power wakeword application should already exist from the public Yocto builds.

Note: For i.MX 95, use a system manager image built with the imx95alt configuration, or any similar configuration that gives the necessary permission to the Cortex-M core to run this application.

- 2. Boot the board, stop in U-Boot prompt, and run the commands below:
 - a. Chose the appropriate device tree:
 - i.MX 8M Mini:

```
setenv fdtfile imx8mm-evk-rpmsg-wm8524-lpv.dtb
```

• i.MX 8M Plus:

```
setenv fdtfile imx8mp-evk-rpmsg-lpv.dtb
```

• i.MX 93 EVK:

```
setenv fdtfile imx93-11x11-evk-rpmsg-lpv.dtb
```

i MX 93 QSB

```
setenv fdtfile imx93-9x9-qsb-rpmsg-lpv.dtb
```

• i.MX 95 EVK:

```
setenv fdtfile imx95-19x19-evk-rpmsg-lpv.dtb
```

- b. Load the Cortex-M image from Flash to TCM and boot the core before booting the Linux OS.
 - i.MX 8M Mini and i.MX 8M Plus:

```
setenv lpv 'fatload mmc 1:1 0x48000000 <application_name>; cp.b
  0x48000000 0x7e0000 0x40000; bootaux 0x7e0000;'
setenv bootcmd 'run prepare_mcore;run lpv;'${bootcmd}
```

i.MX 93 EVK and QSB:

```
setenv lpv 'fatload mmc 1:1 0x80000000 <application_name>; cp.b
  0x80000000
0x201e0000 0x20000; bootaux 0x1ffe0000 0;'
setenv bootcmd 'run lpv;'${bootcmd}
setenv mmcargs 'setenv bootargs ${jh_clk} console=${console} root=
${mmcroot} clk-imx93.mcore_booted snd_pcm.max_alloc_per_card=134217728'
```

• i.MX 95 EVK:

```
setenv lpv 'fatload mmc 1:1 0x90400000 <application_name>; cp.b
0x90400000 0x203c0000 0x40000; bootaux 0x00000000 1;'
setenv bootcmd 'run lpv;'${bootcmd}
setenv mmcargs 'setenv bootargs ${jh_clk} console=${console} root=
${mmcroot} clk-imx95.mcore_booted snd_pcm.max_alloc_per_card=134217728
pd_ignore_unused'
```

c. Save the changes above.

```
saveenv
```

- 3. Reboot the board, and the Cortex-M will be automatically started before the Linux OS. This can be checked on the Cortex-M console.
- 4. Apply the appropriate ALSA configuration. After the Linux OS has booted, from the console:
 - i.MX 8M Mini:

```
cp /unit_tests/nxp-afe/asound.conf_imx8mm /etc/asound.conf
```

• i.MX 8M Plus:

```
cp /unit_tests/nxp-afe/asound.conf_imx8mp /etc/asound.conf
```

. i.MX 93 EVK and QSB:

cp /unit_tests/nxp-afe/asound.conf_imx93 /etc/asound.conf

• i.MX 95:

cp /unit_tests/nxp-afe/asound.conf_imx95 /etc/asound.conf

- Reboot to apply the changes above.
- 5. Before starting any audio application, e.g., arecord, aplay, afe, load the audio loopback driver. From a Linux OS console:

modprobe snd-aloop

8.3.5.3 Execution

Once started, users have no direct actions to control the Cortex-M application. It automatically executes appropriate actions according to the Linux state:

- When Linux OS is active and an application is recording audio: The Cortex-M application is acting as a data pump, getting audio data from the microphones and providing them to ALSA drivers through RPMsg.
- When Linux OS is suspended while an application is recording audio: Audio data are processed locally on Cortex-M (by VoiceSeeker/VoiceSpot). The data is also stored in a ring-buffer. Once voice or the wake-word is detected (depending on the application), the Linux OS is automatically resumed, data from the ring buffer is sent to ALSA (so the Linux OS also gets the wakeword), and then the data-pump is re-started.
- <u>Suspending Linux OS</u>: Cortex-M only has the possibility to resume the Linux OS, not to suspend it. Instead, the Linux OS should be suspended by user-space action (the decision to suspend cannot be based only on voice. It should also consider all the other potential user applications running on the Linux OS). For test purposes, this can be forced by the user by entering the following command to the Linux console.

echo mem > /sys/power/state

8.3.6 Power consumption notes

• For i.MX 8M Plus, i.MX 8M Mini, i.MX 93 QSB, and i.MX 95 EVK:

These applications using the public Yocto release demonstrate the voice UI mechanism described above to suspend the Linux OS and wake up on voice activity or a wakeword, but they still have a much higher power consumption than expected.

Some changes are required in both the Cortex-M application and the Yocto image to achieve as low as possible power consumption during the "Linux suspended" state. They are delivered with controlled access through Flexera. For more information, contact your NXP representative.

For i.MX 93 EVK:

The plublic Yocto release already contains power-optimized applications demonstrating very low power consumption in "Linux suspended" state.

8.3.7 Using Linux remoteproc (i.MX 93 and i.MX 95)

On i.MX 93, the <code>low_power_wakeword</code> application can be started on the Cortex-M core by using the Linux remotreproc driver (see Section 4.7.4). In this use case, the board setup described in Section 8.3.5.2 is the same, except for Step b "Load Cortex-M image" that should be skipped.

Then, when Linux OS is running, users can load and start the <code>low_power_wakeword</code> application on Cortex-M with the following commands:

• i.MX 93 EVK:

```
echo imx93-11x11-evk_m33_TCM_low_power_wakeword.elf > /sys/class/remoteproc/
remoteproc0/firmware
echo start > /sys/class/remoteproc/remoteproc0/state
```

• i.MX 93 QSB:

```
echo imx93-9x9-qsb_m33_TCM_low_power_wakeword.elf > /sys/class/remoteproc/
remoteproc0/firmware
echo start > /sys/class/remoteproc/remoteproc0/state
```

• i.MX 95 EVK:

```
echo imx95-19x19-evk_m7_TCM_low_power_wakeword_sm_cm7.elf > /sys/class/
remoteproc/
remoteproc1/firmware
echo start > /sys/class/remoteproc/remoteproc1/state
```

Once started, the usage is the same as when the application is started by U-Boot.

If needed, users can also stop and restart remoteproc with the following commands:

```
echo stop > /sys/class/remoteproc/remoteproc0/state

echo start > /sys/class/remoteproc/remoteproc0/state
```

Note: Replace remoteproc0 by remoteproc1 in the commands above for i.MX 95.

8.4 Conversa Integration

Conversa is a comprehensive full-duplex, hands-free telephony speech processing suite providing total control of uplink and downlink audio. Conversa-embedded multimicrophone, full-duplex voice processing delivers the ultimate in sound quality for speakerphone and headset applications.

The Conversa processing suite is integrated to the i.MX 8M Plus using the NXP Audio Front End (AFE) wrapper. The i.MX 8M Plus works as an external USB speaker and microphone with voice processing capability.

Note: The Conversa processing suite is a restricted-access solution. Contact your NXP representative for more details.

9 Graphics

There are a number of graphics tools, tests, and example programs that are built and installed in the Linux rootfs. There are some variation on what is included based on the build and packages selected, the board, and the backend specified. This section describes some of them.

The kernel module version of graphics used on the system can be found by running the following command on the board:

dmesg | grep Galcore

The user-side GPU drivers version of graphics can be displayed using the following command on the board:

grep VERSION /usr/lib/libGAL*

When reporting problems with graphics, this version number is needed.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

9.1 imx-gpu-sdk

This graphics package contains source for several graphics examples for OpenGLES 2.0 and OpenGLES 3.0 APIs for X11, Framebuffer, and XWayland graphical backends. These applications show that the graphics acceleration is working for different APIs. The package includes samples, demo code, and documentation for working with the i.MX family of graphic cores. More details about this SDK are in the *i.MX Graphics User's Guide*. This SDK is only supported for hardware that has OpenGLES hardware acceleration.

9.2 G2D-imx-samples

The G2D Application Programming Interface (API) is designed to make it easy to use and understand the 2D BLT functions. It allows the user to implement customized applications with simple interfaces. It is hardware and platform independent when using 2D graphics.

The G2D API supports the following features and more:

- Simple BLT operation from source to destination
- · Alpha blend for source and destination with Porter-Duff rules
- · High-performance memory copy from source to destination
- · Up-scaling and down-scaling from source to destination
- 90/180/270 degree rotation from source to destination
- · Horizontal and vertical flip from source to destination
- · Enhanced visual quality with dither for pixel precision-loss
- · High performance memory clear for destination
- · Pixel-level cropping for source surface
- · Global alpha blend for source only
- · Asynchronous mode and synchronization
- · Contiguous memory allocator
- · VG engine

The G2D API document includes the detailed interface description and sample code for reference. The API is designed with C-Style code and can be used in both C and C++ applications.

The G2D is supported on all i.MX. The hardware that supports G2D is described below. For more details, see the Frame Buffer information in the *i.MX Release Notes* (IMXLXRN) to check which hardware is used for G2D.

- For i.MX 6 with GPU, the G2D uses the 2D GPU.
- For i.MX with PXP, the G2D uses the PXP with limited G2D features.

The following is the directory structure for the G2D test applications located under /opt.

- · g2d_samples
 - g2d test
 - g2d overlay test
 - g2d_multiblit_test

9.3 viv samples

The directory <code>viv_samples</code> is found under <code>/opt</code>. It contains binary samples for OpenGL ES 1.1/2.0 and OpenVG 1.1.

The following are the basic sanity tests, which help to make sure that the system is configured correctly.

- cl11: This contains unit tests and FFT samples for OpenCL 1.1 Embedded Profile. OpenCL is implemented on the i.MX 6Quad, i.MX 6QuadPlus, and i.MX 8 boards.
 - UnitTest
 - clinfo
 - loadstore
 - math
 - threadwalker
 - test vivante
 - functions and kernels
 - illegal vector sizes
 - initializers
 - multi dimensional arrays
 - reserved data types
 - structs and enums
 - unions
 - unsupported extensions
 - fft
- es20: This contains tests for Open GLES 2.0.
 - vv launcher
 - coverflow.sh
 - vv launcher
- tiger: A simple OpenVG application with a rotating tiger head. This is to demonstrate OpenVG.
- vdk: Contains sanity tests for OpenGL ES 1.1 and OpenGL ES 2.0.

The tiger and VDK tests show that hardware acceleration is being used. They will not run without it.

9.4 Qt 6

Qt 6 is built into the Linux image in the Yocto Project environment with the command bitbake imx-image-full. For more details on Qt enablement, check out the README in the meta-imx repo and the *i.MX Yocto Project User's Guide* (IMXLXYOCTOUG).

10 Security

The i.MX platforms define a series of security acceleration subsystems.

10.1 CAAM kernel driver

10.1.1 Introduction

The Linux kernel contains a Scatterlist Crypto API driver for the NXP CAAM security hardware block. It integrates seamlessly with in-kernel crypto users, such as DM-Crypt, Keyctl, in a way that any disk encryption and key management suites will automatically use the hardware to do the crypto acceleration. CAAM hardware is known in Linux kernel as 'caam', after its internal block name: Cryptographic Accelerator and Assurance Module.

There are several HW interfaces ("backends") that can be used to communicate (for example, submit requests) with the engine, their availability depends on the SoC:

• Register Interface (RI) - available on all SoCs (though access from kernel is restricted on DPAA2 SoCs).

Its main purpose is debugging (such as single-stepping through descriptor commands), though it is used also for RNG initialization.

Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there are 4 rings.
 Note:

There are cases when fewer rings are accessible or visible in the kernel, for example, when firmware like Trusted Firmware-A (TF-A) reserves one of the rings.

On top of these backends, there are the "frontends" - drivers that sit between the Linux Crypto API and backend drivers. Their main tasks aim to:

- · Register supported crypto algorithms.
- Process crypto requests coming from users (through the Linux Crypto API) and translate them into the proper format understood by the backend being used.
- Forward the CAAM engine responses from the backend being used to the users.

To use a specific implementation, it is possible to ask for it explicitly by using the specific (unique) "driver name" instead of the generic "algorithm name". See official Linux Kernel Crypto API documentation (section Crypto API Cipher References And Priority). Currently, the default priority is 3000 for JRI frontend.

10.1.2 Source files

The drivers source code is maintained in the Linux kernel source tree, under drivers/crypto/caam. The following is a non-exhaustive list of files, mapping to CAAM (some files have been omitted because their existence is justified only by driver logic or design).

Table 77. Source files

Source File	Description	Module name
ctrl.[c,h]	Init (global settings, RNG, power management, etc.)	caam
desc.h	HW description (CCSR registers, etc.)	N/A

Table 77. Source files...continued

Source File	Description	Module name
desc_constr.h	Inline append - descriptor construction library	N/A
caamalg_desc.[c,h]	(Shared) Descriptors library (symmetric encryption, AEAD)	caamalg_desc
caamhash_desc.[c,h]	(Shared) Descriptors library (HASH)	caamhash_desc
caamrng.c	RNG (runtime)	N/A
<pre>caamkeyblob_desc. [c,h]</pre>	Descriptors library (black keys and blobs)	caamkeyblob_desc
jr.[c,h]	JRI backend	caam_jr
caamalg.c	JRI frontend (symmetric encryption, AEAD)	N/A
caamhash.c	JRI frontend (hashing)	N/A
caampkc.c, pkc_desc.c	JRI frontend (public key cryptography)	N/A
caamkeyblob.[c,h]	JRI frontend (black keys and blobs)	N/A
caamkeygen.c	IOCTL calls for key and blob generation/import	N/A

10.1.3 Module loading

CAAM backend drivers can be compiled either built-in or as modules. Frontend drivers are linked to the backend driver. See Section Section 10.1.2 for the list of module names and Section Section 10.1.4 for how kernel configuration looks like and a mapping between menu entries and modules and/or functionalities enabled.

10.1.4 Kernel configuration

The designated driver should be configured in the kernel by default for the target platform. If unsure, check CONFIG_CRYPTO_DEV_FSL_CAAM, which is located in the Cryptographic API -> Hardware crypto devices sub-menu in the kernel configuration.

Table 78. Kernel configuration tree view

Kernel configuration tree view option	Description
Cryptographic API> [*] Hardware crypto devices> <*>CAAM/SNVS Security Violation Handler (EXPERIMENTAL) <*>Freescale CAAM-Multicore platform driver backend [] Enable debug output in CAAM driver <*> Freescale CAAM Job Ring driver backend > (9) Job Ring size [] Job Ring interrupt coalescing [*] Register algorithm implementations with the Crypto API [*] Register hash algorithm implementations with Crypto API [*] Register public key cryptography implementations with Crypto API [*] Register caam device for hwrng API [*] Register tagged key cryptography implementations with Crypto API	 Enable CAAM device driver: Basic platform driver: Freescale CAAM-Multicore platform driver backend Backends/interfaces: Freescale CAAM Job Ring driver backend - JRI Frontends/crypto algorithms: symmetric encryption, AEAD, "stitched" AEAD; Register algorithm implementations with the Crypto API - via JRI (caamalg driver) Register hash algorithm implementations with Crypto API - hashing (only via JRI - caamhash driver) Register public key cryptography implementations with Crypto API - asymmetric/public key (only via JRI - caampkc driver) Register CAAM device for hwrng API - HW RNG (only via JRI - caamrng driver)

Table 78. Kernel configuration tree view

Kernel configuration tree view option	Description
[] Test caam rng [*] CAAM Secure Memory / Keystore API (EXPERIMENTAL) (7) Size of each keystore slot in Secure Memory <m> CAAM Secure Memory - Keystore Test/ Example (EXPERIMENTAL) <m> Freescale Job Ring UIO support</m></m>	Register algorithms supporting tagged key and generate black keys and encapsulate them into black blobs

Table 79. Device tree binding

Property	Туре	Status	Description
compatible	String	I -	fsl, sec-vX.Y(preferred) or fsl, secX.Y

Sample Device Tree crypto node

10.1.5 How to test the drivers

Crypto drivers could be validated in two modes: at boot time and at request. To enable crypto testing feature, the kernel needs to be updated as follows.

Table 80. Kernel configuration

Kernel configuration	Description
Cryptographic API> [] Disable run-time self tests [] Enable extra run-time crypto self tests <m> Testing module</m>	Deselect the feature that bypass crypto driver validation. By default, Linux kernel is bypassing crypto driver validation. Disable run-time self tests that normally take place at algorithm registration. Enable extra run-time self tests of registered crypto algorithms, including randomized fuzz tests. This is intended for developer use only, as these tests take much longer to run than the normal self tests. Enable testing module.

Section from boot log that specify where crypto test are made (If a boot test is passing with success, no information will be reported. For algorithms with no tests available, a line in dmesg will be printed):

```
4.647985] alq: No test for authenc(hmac(sha224),ecb(cipher null)) (authenc-
hmac-sha224-ecb-cipher null-caam)
     4.661181] alg: No test for authenc(hmac(sha256),ecb(cipher null)) (authenc-
hmac-sha256-ecb-cipher null-caam)
    4.671345] alg: No test for authenc(hmac(sha384),ecb(cipher null)) (authenc-
hmac-sha384-ecb-cipher null-caam)
     4.681486] alg: No test for authenc(hmac(sha512),ecb(cipher null)) (authenc-
hmac-sha512-ecb-cipher null-caam)
     4.691608] alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-
cbc-aes-caam)
    4.699802] alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-
authenc-hmac-md5-cbc-aes-caam)
     4.710445] alg: No test for echainiv(authenc(hmac(sha1),cbc(aes)))
 (echainiv-authenc-hmac-shal-cbc-aes-caam)
     4.720488] alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-
sha224-cbc-aes-caam)
     4.734647] alg: No test for echainiv(authenc(hmac(sha224),cbc(aes)))
 (echainiv-authenc-hmac-sha224-cbc-aes-caam)
    4.750504] alg: No test for echainiv(authenc(hmac(sha256),cbc(aes)))
 (echainiv-authenc-hmac-sha256-cbc-aes-caam)
     4.762468] alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-
sha384-cbc-aes-caam)
    4.771188] alg: No test for echainiv(authenc(hmac(sha384),cbc(aes)))
 (echainiv-authenc-hmac-sha384-cbc-aes-caam)
    4.782380] alg: No test for echainiv(authenc(hmac(sha512),cbc(aes)))
 (echainiv-authenc-hmac-sha512-cbc-aes-caam)
    4.792765] alg: No test for authenc(hmac(md5),cbc(des3 ede)) (authenc-hmac-
md5-cbc-des3 ede-caam)
     4.80183\overline{2}] alg: No test for echainiv(authenc(hmac(md5),cbc(des3 ede)))
 (echainiv-authenc-hmac-md5-cbc-des3 ede-caam)
     4.812814] alg: No test for echainiv(authenc(hmac(sha1),cbc(des3 ede)))
 (echainiv-authenc-hmac-shal-cbc-des3 ede-caam)
    4.823942] alg: No test for echainiv(authenc(hmac(sha224),cbc(des3 ede)))
 (echainiv-authenc-hmac-sha224-cbc-des3 ede-caam)
     4.835465] alq: No test for echainiv(authenc(hmac(sha256),cbc(des3 ede)))
 (echainiv-authenc-hmac-sha256-cbc-des3_ede-caam)
    4.846980] alg: No test for echainiv (authenc (hmac (sha384), cbc (des3 ede)))
 (echainiv-authenc-hmac-sha384-cbc-des3 ede-caam)
     4.858497] alg: No test for echainiv(authenc(hmac(sha512),cbc(des3 ede)))
 (echainiv-authenc-hmac-sha512-cbc-des3 ede-caam)
    4.869764] alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-
cbc-des-caam)
    4.877977] alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-
authenc-hmac-md5-cbc-des-caam)
    4.888078] alg: No test for echainiv(authenc(hmac(shal),cbc(des)))
 (echainiv-authenc-hmac-shal-cbc-des-caam)
    4.898356] alg: No test for echainiv(authenc(hmac(sha224),cbc(des)))
 (echainiv-authenc-hmac-sha224-cbc-des-caam)
     4.908994] alg: No test for echainiv(authenc(hmac(sha256),cbc(des)))
 (echainiv-authenc-hmac-sha256-cbc-des-caam)
     4.919653] alg: No test for echainiv(authenc(hmac(sha384),cbc(des)))
 (echainiv-authenc-hmac-sha384-cbc-des-caam)
     4.930292] alg: No test for echainiv(authenc(hmac(sha512),cbc(des)))
 (echainiv-authenc-hmac-sha512-cbc-des-caam)
    4.940688] alg: No test for authenc(hmac(md5),rfc3686(ctr(aes))) (authenc-
hmac-md5-rfc3686-ctr-aes-caam)
```

```
4.950372] alg: No test for seqiv(authenc(hmac(md5),rfc3686(ctr(aes))))
 (segiv-authenc-hmac-md5-rfc3686-ctr-aes-caam)
    4.961281] alg: No test for seqiv(authenc(hmac(shal),rfc3686(ctr(aes))))
 (seqiv-authenc-hmac-shal-rfc3686-ctr-aes-caam)
    4.972281] alg: No test for authenc(hmac(sha224),rfc3686(ctr(aes)))
 (authenc-hmac-sha224-rfc3686-ctr-aes-caam)
    4.982482] alg: No test for seqiv(authenc(hmac(sha224),rfc3686(ctr(aes))))
 (seqiv-authenc-hmac-sha224-rfc3686-ctr-aes-caam)
    4.993903] alg: No test for seqiv(authenc(hmac(sha256),rfc3686(ctr(aes))))
 (seqiv-authenc-hmac-sha256-rfc3686-ctr-aes-caam)
    5.005331] alg: No test for seqiv(authenc(hmac(sha384),rfc3686(ctr(aes))))
 (seqiv-authenc-hmac-sha384-rfc3686-ctr-aes-caam)
    5.016763] alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes))))
 (seqiv-authenc-hmac-sha512-rfc3686-ctr-aes-caam)
    5.028023] caam algorithms registered in /proc/crypto
    5.157622] caam jr 31430000.jr2: registering rng-caam
    5.206167] caam 31400000.caam: caam pkc algorithms registered in /proc/
crypto
```

10.2 Crypto algorithms support

- Algorithms supported in the Linux kernel scatterlist Crypto API The Linux kernel contains various users of the Scatterlist Crypto API, including its IPsec implementation, sometimes referred to as the NETKEY stack. The driver, after registering supported algorithms with the Crypto API, is therefore used to process per packet symmetric crypto requests and forward them to the CAAM hardware. Since CAAM hardware processes requests asynchronously, the driver registers asynchronous algorithm implementations with the crypto API: ahash, skcipher, and a head with CRYPTO_ALG_ASYNC set in .cra flags. Different combinations of hardware and driver software version support different sets of
- algorithm implementations with the crypto API: ahash, skcipher, and a head with CRYPTO_ALG_ASYNC set in .cra_flags. Different combinations of hardware and driver software version support different sets of algorithms, so searching for the driver name in /proc/crypto on the desired target system will ensure the correct report of what algorithms are supported.

 Authenticated Encryption with Associated Data (AEAD) algorithms
- These algorithms are used in applications where the data to be encrypted overlaps, or partially overlaps, the data to be authenticated, as is the case with IPsec and TLS protocols. These algorithms are implemented in the driver such that the hardware makes a single pass over the input data, and both encryption and authentication data are written out simultaneously. The AEAD algorithms are mainly for use with IPsec ESP (however there is also support for TLS (1.x) record layer encryption (KTLS Support)). CAAM drivers currently supports offloading the following AEAD algorithms:
 - "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-EDE, RFC3686-CTR-AES } x HMAC-{MD-5, SHA-1,-224,-256,-384,-512}
 - "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and RFC4106-GCM-AES
- Encryption algorithms
 - The CAAM driver currently supports offloading the following encryption algorithms.
- Authentication algorithms
 - The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing algorithms.
- Asymmetric (public key) algorithms
 Currently, CAAM driver supports RSA-Encrypt and RSA-Decrypt together with pkcs1pad (rsa-caam, sha256) driver.
- · Algorithms supported by CAAM drivers

```
root@imx8mqevk:~# cat /proc/crypto | grep caam driver : pkcs1pad(rsa-
caam,sha256) driver : rsa-caam driver : cmac-aes-caam driver : xcbc-aes-caam
driver : md5-caam driver : hmac-md5-caam driver : sha256-caam driver : hmac-
sha256-caam driver : sha224-caam driver : hmac-sha224-caam driver : sha1-
caam driver : hmac-sha1-caam driver : seqiv-authenc-hmac-sha256-rfc3686-ctr-
aes-caam driver : authenc-hmac-sha256-rfc3686-ctr-aes-caam driver : seqiv-
```

authenc-hmac-sha224-rfc3686-ctr-aes-caam driver: authenc-hmac-sha224-rfc3686ctr-aes-caam driver : seqiv-authenc-hmac-shal-rfc3686-ctr-aes-caam driver : authenc-hmac-shal-rfc3686-ctr-aes-caam driver : seqiv-authenc-hmac-md5rfc3686-ctr-aes-caam driver : authenc-hmac-md5-rfc3686-ctr-aes-caam driver : echainiv-authenc-hmac-sha256-cbc-des-caam driver : authenc-hmac-sha256-cbcdes-caam driver : echainiv-authenc-hmac-sha224-cbc-des-caam driver : authenchmac-sha224-cbc-des-caam driver : echainiv-authenc-hmac-sha1-cbc-des-caam driver : authenc-hmac-shal-cbc-des-caam driver : echainiv-authenc-hmac-md5cbc-des-caam driver : authenc-hmac-md5-cbc-des-caam driver : echainiv-authenchmac-sha256-cbc-des3 ede-caam driver : authenc-hmac-sha256-cbc-des3 ede-caam driver: echainiv-authenc-hmac-sha224-cbc-des3 ede-caam driver: authenc-hmacsha224-cbc-des3 ede-caam driver : echainiv-authenc-hmac-sha1-cbc-des3 ede-caam driver : authenc-hmac-shal-cbc-des3 ede-caam driver : echainiv-authenc-hmacmd5-cbc-des3 ede-caam driver : authenc-hmac-md5-cbc-des3 ede-caam driver : echainiv-authenc-hmac-sha256-cbc-aes-caam driver : authenc-hmac-sha256-cbcaes-caam driver : echainiv-authenc-hmac-sha224-cbc-aes-caam driver : authenchmac-sha224-cbc-aes-caam driver : echainiv-authenc-hmac-sha1-cbc-aes-caam driver : authenc-hmac-shal-cbc-aes-caam driver : echainiv-authenc-hmac-md5cbc-aes-caam driver : authenc-hmac-md5-cbc-aes-caam driver : authenc-hmacsha256-ecb-cipher null-caam driver : authenc-hmac-sha224-ecb-cipher null-caam driver : authenc-hmac-shal-ecb-cipher null-caam driver : authenc-hmac-md5-ecbcipher null-caam driver : gcm-aes-caam driver : rfc4543-gcm-aes-caam driver : rfc4106-gcm-aes-caam driver : ecb-arc4-caam driver : ecb-des3-caam driver : tk-ecb-aes-caam driver : ecb-aes-caam driver : ecb-des-caam driver : rfc3686ctr-aes-caam driver : ctr-aes-caam driver : cbc-des-caam driver : cbc-3des-caam driver : tk-cbc-aes-caam driver : cbc-aes-caam root@imx8mqevk:~#

10.3 CAAM Job Ring backend driver specifications

CAAM Job Ring backend driver (caam_jr) implements and uses the job ring interface (JRI) for submitting crypto API service requests from the frontend drivers (caamalg, caamhash, caampkc, caamrng, caamkeyblob) to CAAM engine.

CAAM drivers have a few options, most notably hardware job ring size and interrupt coalescing. They can be used to fine-tune performance for a particular use case.

The option Freescale CAAM Job Ring driver backend enables the Job Ring backend (caam_jr). The suboption Job Ring Size allows the user to select the size of the hardware job rings. If requests arrive at the driver enqueue entry point in a bursty nature, the bursts' maximum length can be approximated. The user can set the greatest burst length to save performance and memory consumption.

The sub-option Job Ring interrupt coalescing allows the user to select the use of the hardware's interrupt coalescing feature. Note that the driver already performs IRQ coalescing in software, and zero-loss benchmarks have in fact produced better results with this option turned off. If selected, two additional options become effective:

- Job Ring interrupt coalescing count threshold (CRYPTO_DEV_FSL_CAAM_INTC_THLD) Device Drivers. Selects the value of the descriptor completion threshold, in the range 1-256. A selection of 1 effectively defeats the coalescing feature, and any selection equal or greater than the selected ring size will force timeouts for each interrupt.
- Job Ring interrupt coalescing timer threshold (CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD) Selects the value of the completion timeout threshold in multiples of 64 CAAM interface clocks, to which, if no new descriptor completions occur within this window (and at least one completed job is pending), then an interrupt will occur. This is selectable in the range 1-65535.

The options to register to Crypto API, hwrng API respectively, allow the frontend drivers to register their algorithm capabilities with the corresponding APIs. They should be deselected only when the purpose is to perform Crypto API requests in software (on the GPPs) instead of offloading them on CAAM engine.

caamhash frontend (hash algorithms) may be individually turned off, since the nature of the application may be such that it prefers software (core) crypto latency due to many small-sized requests.

caampkc frontend (public key / asymmetric algorithms) can be turned off too, if needed.

caamrng frontend (Random Number Generation) may be turned off in case there is an alternate source of entropy available to the kernel.

caamkeyblob frontend (algorithms supporting tagged key) can be turned off if tagged keys or blobs are not used.

10.3.1 Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is doing the crypto by looking for driver messages in dmesg. The driver emits console messages at initialization time:

```
[ 1.830397] caam 30900000.crypto: device ID = 0x0a160401000000000 (Era 9)
[ 1.837113] caam 30900000.crypto: job rings = 2, qi = 0
[ 1.849949] caam algorithms registered in /proc/crypto
[ 1.855972] caam 30900000.crypto: caam pkc algorithms registered in /proc/crypto
[ 1.865564] caam_jr 30901000.jr: registering rng-caam
[ 1.870766] Device caam-keygen registered
```

If the messages are not present in the logs, either the driver is not configured in the kernel, or no CAAM compatible device tree node is present in the device tree.

10.3.2 Incrementing IRQs in /proc/interrupts

Given a time period when crypto requests are being made, the CAAM hardware will fire completion notification interrupts on the corresponding Job Ring:

If the number of interrupts fired increment, then the hardware is being used to do the crypto. If the numbers do not increment, then check the algorithm being exercised is supported by the driver. If the algorithm is supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and the hardware statistics in debugfs (inbound/outbound bytes encrypted/protected - see below) should be monitored.

10.3.3 Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the kernel crypto API:

```
name : cbc(des)
driver : cbc-des-caam
module : kernel
priority : 3000
refcnt : 1
selftest : passed
internal : no
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers

© 2024 NXP B.V. All rights reserved.

```
type : givcipher
async : yes
blocksize : 8
min keysize : 8
max keysize : 8
ivsize : 8
geniv : <built-in>
```

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will emit messages saying which algorithms weren't tested, and mark them as 'passed' anyway:

```
[ 4.647985] alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-ecb-cipher_null-caam)
[ 4.661181] alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-ecb-cipher_null-caam)
[ 4.671345] alg: No test for authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-ecb-cipher_null-caam)
[ 4.681486] alg: No test for authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-ecb-cipher_null-caam)
```

10.4 OpenSSL offload

The Secure Socket Layer (SSL) protocol is the most widely deployed application protocol to protect data during transmission by encrypting the data using commonly used cipher algorithms such as AES, DES and 3DES. Apart from encryption, it also provides message authentication services using hash/digest algorithms such as SHA1 and MD5. SSL is widely used in application web servers (HTTP) and other applications such as SMTP POP3, IMAP, and Proxy servers, where protection of data in transit is essential for data integrity. There are various versions of SSL protocol such as TLSv1.0, TLSv1.1, TLSv1.2, TLSv1.3, and DTLS (Datagram TLS). This document describes NXP SSL acceleration solution on i.MX platforms using OpenSSL:

- · OpenSSL software architecture
- Building OpenSSL with hardware offload support
- Examples of OpenSSL Offloading

10.4.1 OpenSSL software architecture

The SSL protocol is implemented as a library in OpenSSL - the most popular library distribution in Linux and BSD systems. The OpenSSL library has several sub-components such as:

- SSL protocol library
- SSL protocol library Crypto library (Symmetric and Asymmetric cipher support, digest support, etc.)
- · Certificate Management

The following figure presents the general interconnect architecture for OpenSSL. Each relevant layer is represented with a clear separation between Linux User Space and Linux Kernel Space.

10.4.2 OpenSSL's ENGINE interface

OpenSSL Crypto library provides Symmetric and Asymmetric (PKI) cipher support that is used in a wide variety of applications such as OpenSSH, OpenVPN, PGP, IKE, and XML-SEC. The OpenSSL Crypto library provides software support for:

- · Cipher algorithms
- · Digest algorithms
- · Random number generation
- · Public Key Infrastructure

Apart from the software support, the OpenSSL can offload these functions to hardware accelerators through the ENGINE interface. The ENGINE interface provides callback hooks that integrate hardware accelerators with the crypto library. The callback hooks provide the glue logic to interface with the hardware accelerators. Generic offloading of cipher and digests algorithms through Linux kernel is possible with cryptodev engine.

10.4.3 NXP solution for OpenSSL hardware offloading

The following layers can be observed in NXP's solution for OpenSSL hardware offloading:

- OpenSSL (user space): implements the SSL protocol
- cryptodev-engine (user space): implements the OpenSSL ENGINE interface; talks to cryptodev-linux (/dev/crypto) through ioctls, offloading cryptographic operations in the kernel

- cryptodev-linux (kernel space): Linux module that translates ioctl requests from cryptodev-engine into calls to Linux Crypto API
- AF_ALG is a netlink-based in the kernel asynchronous interface that adds an AF_ALG address family introduced in 2.6.38.
- · Linux Crypto API (kernel space): Linux kernel crypto abstraction layer
- · CAAM driver (kernel space): Linux device driver for the CAAM crypto engine

The following are offloaded in hardware in current BSP:

- Symmetric Ciphering operations AES (CBC, ECB), 3DES (CBC, ECB)
- Digest Operations SHA (1, 256, 384, 512), MD5
- Public Key Operations RSA Sign (1k, 2k, 4k) / RSA Verify (1k, 2k, 4k)

10.4.4 Deploying OpenSSL into rootfs

Typically, the imx-image-full includes the OpenSSL and cryptodev modules, but for other Yocto targets, users need to update the conf file from the build directory. Update conf/local.conf by adding the following line:

```
CORE_IMAGE_EXTRA_INSTALL+="cryptodev-module openssl-bin"
```

Restart the build procedure:

```
bitbake imx-image-full
```

10.4.5 Running OpenSSL benchmarking tests with cryptodev engine

Probe the cryptodev-module:

```
root@imx8qxpmek:~# modprobe cryptodev
[17044.896494] cryptodev: driver 1.10 loaded.
root@imx8qxpmek:~# openssl engine
(devcrypto) /dev/crypto engine
(dynamic) Dynamic engine loading support
root@imx8qxpmek:~#
```

Note:

Starting from OpenSSL 1.1.1, the cryptodev engine is invoked by OpenSSL by default if the corresponding module has been inserted in the kernel. Thus to perform only SW benchmark test using OpenSSL, remove the cryptodev module by running rmmod cryptodev.

10.4.5.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

In the speed test file, a series of performance tests are made to check the performance of the symmetric and digest operations. The following is described in the OpenSSL test execution:

```
root@imx8qxpmek:~# openssl speed -engine devcrypto -multi 8 -elapsed -evp aes-128-cbc
Forked child 1
engine "devcrypto" set.
Forked child 2
engine "devcrypto" set.
...
Got: +F:22:aes-128-cbc:378616.72:1611328.00:5084501.33:13994666.67:10731793.98:16219060.40 from 6
Got: +H:16:64:256:1024:8192:16384 from 7
Got: +F:22:aes-128-cbc:120773.33:9344.00:3088298.67:13588480.00:31642965.33:16471967.79 from 7
OpenSSL 1.1.1b 26 Feb 2019
built on: Thu Nov 14 13:22:07 2019 UTC
options:bn(64,64) rc4(char) des(int) aes(partial) idea(int) blowfish(ptr)
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Additional ciphers that could be benchmarked: aes-192-cbc, aes-256-cbc, aes-128-ecb, aes-192-ecb, aes-256-ecb, aes-128-ctr, aes-192-ctr, aes-256-ctr, des-cbc, des-cbc, des-ede3-cbc.

Additional digests that could be benchmarked: sha1, sha224, sha256, sha384, sha512, md5.

10.4.6 Running OpenSSL benchmarking tests with AF_ALG engine

Execute the following commands:

```
Probe the af_alg:
root@imx8mmevk:~# rmmod cryptodev
root@imx8mmevk:~# modprobe af_alg
root@imx8mmevk:~# modprobe algif_hash
root@imx8mmevk:~# modprobe algif_skcipher
root@imx8mmevk:~# modprobe algif_rng
root@imx8mmevk:~# modprobe algif_aead
```

10.4.6.1 Running OpenSSL benchmarking tests for symmetric ciphering and digest

Execute the following command:

```
root@imx8mmevk:~# openssl speed -engine afalg -multi 8 -elapsed -evp aes-128-cbc
Forked child 0
Forked child 1
engine "afalg" set.
+DT:aes-128-cbc:3:16
engine "afalg" set.
engine "afalg" set.
engine "afalg" set.
Got: +H:16:64:256:1024:8192:16384 from 0
Got: +F:22:aes-128-cbc:333888.00:1359317.33:4248405.33:5720064.00:6160384.00:6176768.00 from 0
Got: +H:16:64:256:1024:8192:16384 from 1
Got: +F:22:aes-128-cbc:378336.00:1382826.67:5117269.33:5739178.67:6190421.33:6176768.00 from 1
OpenSSL 1.1.1k 25 Mar 2021
built on: Thu Mar 25 13:28:38 2021 UTC
options:bn(64,64) rc4(char) des(int) aes(partial) blowfish(ptr)
compiler: aarch64-poky-linux-gcc -mcpu=cortex-a53 -march=armv8-a+crc+crypto -fstack-protector-strong -O2 -D FORTIFY SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=recipe-
sysroot -02 -pipe -g -feliminate-unused-debug-types -fmacro-prefix-map=
fdebug-prefix-map=
                                                  -fdebug-prefix-map=
                                                                                                     -fdebug-prefix-
map= -DOPENSSL_USE_NODELETE -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DKECCAK1600_ASM -DVPAES_ASM -DECP_NISTZ256_ASM -DPOLY1305_ASM -DNDEBUG
                      26\overline{8}2.45k
                                     10842.7\overline{3}k
                                                     35957.50k
                                                                     45915.48k
                                                                                      49722.71k
                                                                                                      50135.04k
```

10.4.7 Running OpenSSL asymmetric tests with PKCS#11 based engine

Prerequisites:

1. For running the PKCS#11 OpenSSL Engine with our PKCS#11 Library, add the following into your global OpenSSL configuration file (often in /etc/ssl/openssl.cnf).

This line must be placed at the top, before any sections are defined:

```
openssl_conf = openssl_init
```

Make sure there are no other openssl conf = ... lines in the file.

This should be added to the bottom of the file:

```
[openssl_init]
engines=engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
engine_id = pkcs11
dynamic_path = /usr/lib/engines-3/pkcs11.so
MODULE_PATH = /usr/lib/libckteec.so.0
init = 0
```

The dynamic_path value is the PKCS#11 engine plug-in, and the MODULE_PATH value is the NXP PKCS#11 library. The engine_id value is an arbitrary identifier for OpenSSL applications to select the engine by the identifier.

2. Make sure tee-supplicant is running.

```
root@imx8mpevk:~# ps -aux | grep tee
root 661 0.0 0.0 76424 1432 ? Ssl May27 0:00 /usr/bin/
tee-supplicant
```

If it is not running, run the following command:

```
root@imx8mpevk:~# tee-supplicant &
```

10.4.7.1 Running p11tool to generate key (RSA or EC)

```
root@imx8mpevk:~# mkdir /etc/gnutls
root@imx8mpevk:~# echo load=`find /usr/lib -name libckteec.so.0` > /etc/gnutls/
pkcs11.conf
root@imx8mpevk:~# plltool --list-tokens --provider=/usr/lib/libckteec.so.0
root@imx8mpevk:~# plltool --initialize "<token url>" --label="<token label>" --
provider=/usr/lib/libckteec.so.0
Enter Security Officer's PIN:
root@imx8mpevk:~# plltool --list-tokens --provider=/usr/lib/libckteec.so.0
root@imx8mpevk:~# plltool --initialize-pin "<token url>" --provider=/usr/lib/
libckteec.so.0
Setting user's PIN...
Enter User's new PIN:
Token <toke label> with URL <token url> requires security officer PIN
Enter PIN:<Security Officer's PIN>
```

To generate an RSA key:

```
root@imx8mpevk:~# p11tool --login --generate-rsa --bits=2048 --label="RSA-
key-2048" --outfile="RSA-key-2048.pub" "<token url>" --set-pin="<user pin>" --
provider=/usr/lib/libckteec.so.0
root@imx8mpevk:~# p11tool --login --list-privkeys "<token url>" --set-pin="<user pin>" --provider=/usr/lib/libckteec.so.0
Object 0:
    URL: token url private
    Type: Private key (RSA-2048)
    Label: RSA-key-2048
    Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
```

```
ID: bc:8e:f3:ca:95:d6:e7:ae:57:89:43:1f:67:a3:e5:d1:05:d8:5d:66
```

Or to generate an EC key:

10.4.7.2 Using OpenSSL from command line

To generate a certificate with its key in the PKCS #11 module, use the following commands. The first command creates a self-signed Certificate for "NXP Semiconductor". The signing is done using the key specified by the URL.

```
root@imx8mpevk:~# openssl req -engine pkcs11 -new -key "<token url private>" - keyform engine -out req.pem -text -x509 -subj "/CN=NXP Semiconductor" Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>
```

The second command creates a self-signed certificate for the request. The private key used to sign the certificate is the same private key used to create the request.

```
root@imx8mpevk:~# openssl x509 -engine pkcs11 -signkey "<token url private>" -
keyform engine -in req.pem -out cert.pem
Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>
root@imx8mpevk:~# ls
cert.pem req.pem
```

10.4.7.3 Running OpenSSL test for RSA

```
root@imx8mpevk:~# echo "This is plain message 2021-01-18" > plain.text
root@imx8mpevk:~# openssl pkeyutl -engine pkcs11 -encrypt -in plain.text -out
encrypted.enc -inkey cert.pem -certin
root@imx8mpevk:~# openssl pkeyutl -engine pkcs11 -decrypt -in encrypted.enc -out
plain.dec -inkey "<token url private>" -keyform engine
Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>
root@imx8mpevk:~# cat plain.text
This is plain message 2021-01-18
root@imx8mpevk:~# cat plain.dec
This is plain message 2021-01-18
```

10.4.7.4 Running OpenSSL test for EC

root@imx8mpevk:~# echo "This is plain message 2021-01-18" > plain.text

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

```
root@imx8mpevk:~# openssl pkeyutl -engine pkcs11 -sign -in plain.text -out
  cert_ecc.sign -inkey "<token url private>" -keyform engine
Engine "pkcs11" set.
Enter PKCS#11 token PIN for token label:<user pin>
root@imx8mpevk:~# openssl pkeyutl -verify -in plain.text -sigfile cert_ecc.sign
  -inkey ecc_cert.pem -certin
Signature Verified Successfully
```

10.4.7.5 Running the OPENSSL Kernel TLS test

Sever-side command:

```
openssl s_server -engine pkcsl1 -key "<private token url>?pin-value=<user pin>" -keyform engine -cert cert.pem -accept 443 -ssl_config ktls
```

For example:

```
openssl s_server -engine pkcs11 -key "pkcs11:model=OP-TEE %20TA;manufacturer=Linaro;serial=00000000000000000;token=kshitiz_test;id=%18%59%E1%2B%00%9B%13%4B%05%9E%2D%73%41%04%D1%8B%F8%24%03%ED;object=ecc-key-256_using_pl1;type=private?pin-value=1234" -keyform engine -cert cert.pem -accept 443 -ssl_config ktls
```

Client-side command:

```
openssl s_client -quiet -connect <server_ip:port no> -tls1_2 -ssl_config ktls -
cipher <cipher suite>
```

For example:

```
openssl s_client -quiet -connect 10.232.132.7:443 -tls1_2 -ssl_config ktls -cipher 'ECDHE-ECDSA-AES128-GCM-SHA256'
```

10.5 Disk encryption acceleration

Disk encryption is a technology that protects information by converting it into unreadable code that cannot be deciphered easily by unauthorized people. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk or disk volume. It is used to prevent unauthorized access to data storage. On i.MX Applications Processors, the disk encryption scenarios could be implemented in various ways with different methods of key protection.

This section provides steps to run a transparent storage encryption at block level using DM-Crypt. The figure below presents the software stack that implements disk encryption for the platform that contains CAAM hardware IP.

10.5.1 Enabling disk encryption support in kernel for the platform containing CAAM hardware

By default, the kernel configuration file enables the Device Mapper configuration and Crypt Target support as modules. Therefore, to enable disk encryption scenario, after the board is booted up, insert the following modules:

```
root@imx8mqevk:/# modprobe dm-mod
[ 266.982638] device-mapper: ioctl: 4.41.0-ioctl (2019-09-16) initialised: dm-devel@redhat.com
root@imx8mqevk:/# modprobe dm-crypt
root@imx8mqevk:/# dmsetup targets
crypt v1.19.0
striped v1.6.0
linear v1.4.0
error v1.5.0
```

If the disk encryption scenario is not enabled, some features in the kernel need to be enabled:

Kernel Configure Tree View Options	Description
<pre>< Device Drivers> [*] Multiple devices driver support (RAID and LVM)</pre>	DM Crypt support enablement in Linux kernel
> <pre>> </pre> <pre>> </pre>	CONFIG_BLK_DEV_DM=y
<pre>[] Device mapper debugging support < > Unstriped target (NEW) <*> Crypt target support</pre>	
<pre><*> Multipath target</pre>	

Kernel Configure Tree View Options	Description
[*] DM uevents	
<pre>< Cryptographic API> <*> User-space interface for hash algorithms <*> User-space interface for symmetric key cipher algorithms <*> User-space interface for AEAD cipher algorithms</pre>	Enable user space crypto API's to allow simple cryptsetup benchmarks
Cryptographic API> [*] Hardware crypto devices> <*> CAAM/SNVS Security Violation Handler (EXPERIMENTAL) <*> Freescale CAAM-Multicore platform driver backend [] Enable debug output in CAAM driver <*> Freescale CAAM Job Ring driver backend> [*] Register tagged key cryptography implementations with Crypto API	Selecting this will register algorithms supporting tagged key, generate black keys and encapsulate them into black blobs.

10.5.2 User space tools for disk encryption

All the required user space tools needed for DM-Crypt are already installed on the board when using Linux i.MX BSP.

If the required user space tools are not installed in the build, add them by editing the conf/local.conf file and appending:

CORE_IMAGE_EXTRA_INSTALL+="coreutils keyutils lvm2 e2fsprogs-mke2fs util-linux"

- keyutils: provides keyctl, which is required to manage Linux Key retention service.
- lvm2: provides dmsetup utility and libraries to manage device-mapper.
- e2fsprogs-mke2fs: contains necessary tools to create filesystems.
- util-linux: provides blockdev utility needed to read number of sectors from a volume.

10.5.3 DM-Crypt using CAAM backed keys

In Linux Unified Key Setup (LUKS) mode, to generate the disk encryption key (master key), the user supplies a passphrase, which is combined with a salt, and then a hash function is applied for a supplied number of rounds. When the user wants to mount an encrypted volume, the passphrase should be supplied. An alternative could be providing a key file stored in an external drive containing necessary decryption information. Those approaches are not convenient with embedded devices usage.

The aim of using DM-Crypt with CAAM's secure key is to suppress the mechanism of encrypting the master volume key with a key derived from a user-supplied passphrase.

DM-Crypt can be leveraged with:

- · Trusted keys backed by CAAM
- · CAAM's tagged key

Linux OS provides an in-kernel key management and retention facility called Keyrings. Keyring also enables interfaces to allow accessing keys and performing operations such as add, update, and delete from user-space.

The kernel provides several basic types of keys including encrypted, trusted, user, and logon.

The CAAM driver has associated a user-space application used to generate:

- A plain key and encapsulate it into a Red blob
- A tagged key and encapsulate it into a black blob

10.5.3.1 DM-Crypt with Trusted keys backed by CAAM

DM-Crypt fetches the trusted key which was generated through CAAM, from the kernel keyring, to take advantage of CAAM state.

The key de-capsulated from Red-Blob is different for different CAAM states:

- If System is booted in secure boot with Chain-of-trust established, CAAM state is secure state.
- If system is booted in non-secure (or compromised) state, CAAM state is non-secure state.

Note.

Data that was written in secure state using the trusted key, is not read back from non-trusted or compromised system.

10.5.3.1.1 Usage

The following steps shows how to perform a full disk encryption on i.MX devices using the DM-Crypt with Trusted keys backed by CAAM method.

1. Insert the kernel module.

```
$>: modprobe trusted
```

Generate the trusted key:

```
$>: KEYNAME=dm_trust
$>: KEY="$(keyctl add trusted $KEYNAME 'new 32' @s)"
$>: keyctl pipe $KEY >~/$KEYNAME.blob
$>: keyctl list @s
```

Output:

3. Create a secure volume. It could be a physical partition. In this example, make use of an image file and mount it later.

```
$>: DEV=/dev/loop0
$>: BLOCKS=20
$>: fallocate -1 $((BLOCKS*512)) ~/loop0.img
$>: losetup -P $DEV ~/loop0.img
```

- 4. Create the mapping table "TABLE". Where:
 - Algo is set in Kernel Crypto API format to use the plain key. Algo/cipher is set to cbc (aes) -plain.
 - Key is set as the trusted key of length 32 and the name is exported as \$KEYNAME.

```
$>: DEV=/dev/loop0
$>: ALGO=capi:cbc(aes)-plain
$>: KEYNAME=dm_trust
$>: BLOCKS=20
$>: TARGET=crypt
```

```
$>: TABLE="0 $BLOCKS $TARGET $ALGO :32:trusted:$KEYNAME 0 $DEV 0 1
allow_discards"
```

5. Use dmsetup to create a new device-mapper device named encrypted for example, and specify the mapping table "TABLE" created above, as argument.

```
$>: echo $TABLE | dmsetup create encrypted
```

6. Load the device-mapper device named encrypted created in the previous step.

```
$>: echo $TABLE | dmsetup load encrypted
```

7. Create a secure volume.

```
$>: dd if=/dev/zero of=/dev/mapper/encrypted || true
```

8. Write to the volume.

```
$>: echo "It works. Congratulations" 1<> /dev/mapper/encrypted
```

9. Unmount the device.

```
$>: umount /mnt/encrypted/
```

10. Deactivate the device mapper device.

```
$>: dmsetup remove encrypted
```

Restart the board:

```
$>: reboot
```

11. In the next boot, insert the kernel module.

```
$>: modprobe trusted
Step 11: Load the trusted key:
$>: KEYNAME=dm_trust
$>: keyctl add trusted $KEYNAME "load $(cat ~/$KEYNAME.blob)" @s
$>: keyctl list @s
```

Output:

- 12. Create the mapping table "TABLE". Where:
 - Algo is set in Kernel Crypto API format to use the plain key. Algo/cipher is set to cbc (aes) -plain.
 - Key is set as the trusted key of length 32 and name is exported as \$KEYNAME.

```
$>: DEV=/dev/loop0
$>: ALGO=capi:cbc(aes)-plain
$>: KEYNAME=dm_trust
$>: BLOCKS=20
$>: TARGET=crypt
$>: TABLE="0 $BLOCKS $TARGET $ALGO :32:trusted:$KEYNAME 0 $DEV 0 1
allow_discards"
```

13. Mount the encrypted device.

```
$>: losetup -P $DEV ~/loop0.img
```

14. Specify the mapping table "TABLE" to encrypt the volume using dmsetup.

```
$>: echo $TABLE | dmsetup create encrypted
```

```
$>: echo $TABLE | dmsetup load encrypted
```

15. Read from the device to verify if the content is same as it was written in the previous boot.

```
$>: hexdump -C /dev/mapper/encrypted
```

10.5.3.2 DM-Crypt with CAAM's tagged key

DM-Crypt can also take advantages of tagged key to protect storage volumes from offline decryption. In addition, the volume could only be opened by the devices that have the same OTPMK burned in the fuses. For more details, see the Security Reference Manual for specific SoC.

The tagged key feature is based on CAAM's black key mechanism. Black key protects user keys against bus snooping while the keys are being written to or read from memory external to the SoC. CAAM supports two different black key encapsulation schemes, which are AES-ECB and AES-CCM.

Regarding AES-ECB encryption, the data is a multiple of 16 bytes long and is intended for quick decryption.

The AES-CCM mode is not as fast as AES-ECB mode, but includes a "MAC tag" (integrity check value) that ensures the integrity of the encapsulated key. A CCM-encrypted black key is always at least 12 bytes longer than the encapsulated key (nonce value + MAC tag).

Black keys are session keys; therefore, they are not power-cycles safe. CAAM's blob mechanism provides a method for protecting user-defined data across system power cycles. It provides both confidentiality and integrity protection. The data to be protected is encrypted so that it can be safely placed into non-volatile storage before the SoC is powered down.

The following diagram illustrates the changes that have been added to support full disk encryption using tagged key. The CAAM driver registers new Cryptographic transformations in the kernel to use ECB and CBC blacken keys, tk(ecb(aes)) and tk(cbc(aes)). The tk prefix refers to Tagged Key.

A Tagged Key is a black key that contains metadata indicating what it is and how to handle it.

```
caam-keygen application. Usability should be updated as below:-
$ caam-keygen
CAAM keygen usage: caam-keygen [options]
create <key name> <key enc> <key mode> <key val>
<key name> the name of the file that will contain the black key.
A file with the same name, but with .bb extension, will contain the black blob.
<key enc> can be ecb or ccm
 <key mode> can be -s or -t.
    -s generate a black key from random with the size given in the next argument
    -t generate a black key from a plaintext given in the next argument
 <key val> the size or the plaintext based on the previous argument (<key mode>)
 <text type> can be -h or -p (default argument is -p)
    -h generate a black key from the hex text that is provided in previous
 argument
    -p generate a black key from the plain text that is provided in previous
argument
import <blob name> <key name>
 <bloom_name> the absolute path of the file that contains the blob
 <key name> the name of the file that will contain the black key.
derive [-pass <pass phrase>] [-md <digest>] [-S <salt>] <derived key name>
 <pass phrase> password value
 <digest> Supported digest:-
   sha1
   sha224
   sha256
  sha384
```

By default, the keys and blobs are created in KEYBLOB_LOCATION, which is /data/caam/.

Later, CAAM Tagged Key is added into Linux Key Retention service and managed by user-space application such as keyctl. Black blobs can be stored on any non-volatile storage.

Dmsetup (part of the libdevmapper package) is a powerful tool for performing very low-level configuration and is used to manage encrypted volumes.

10.5.3.3 Usage

The following are the steps to perform a full disk encryption on i.MX devices using the DM-Crypt with CAAM's tagged key method.

1. After booting the device, make sure that cryptographic transformations using Tagged Key are registered.

```
root@imx8mqevk:~# grep -B1 -A2 tk- /proc/crypto|grep -v kernel
name     : tk(ecb(aes))
driver     : tk-ecb-aes-caam
priority     : 3000
--
```

```
name : tk(cbc(aes))
driver : tk-cbc-aes-caam
priority : 3000
root@imx8mqevk:~#
```

And caam-keygen application is available:

```
root@imx8mmevk:~# cd /; find -name "caam-keygen"
./usr/bin/caam-keygen
./dev/caam-keygen
./sys/class/misc/caam-keygen
./sys/devices/virtual/misc/caam-keygen
```

For now, we only support AES algorithms. Therefore, the size of the key accepted for encryption/decryption is 16, 24, and 32 bytes.

2. Make sure DM-Crypt is enabled.

```
root@imx8mqevk:~# dmsetup targets
crypt v1.19.0
striped v1.6.0
linear v1.4.0
error v1.5.0
```

If any of the above is missing, check Kernel configurations or see section Enable disk encryption support in kernel.

3. Then, provide the device with its key, the black key, which could be created either from a defined plain key or randomly.

Here is an example for black key encrypted with ECB, from a given plaintext of size 16 bytes:

```
root@imx8mqevk:~# ./caam-keygen create fromTextkey ecb -t 0123456789abcdef
```

The result is a Tagged Key and a Blob files written to filesystem (the default location is /data/caam). The used key encryption scheme is ECB.

```
root@imx8mqevk:~# ls -la /data/caam/
total 16
drwxr-xr-x 2 root root 4096 Aug 25 15:38 .
drwxr-xr-x 3 root root 4096 Aug 25 15:38 ..
-rw-r--r-- 1 root root 36 Aug 25 15:38 fromTextkey
-rw-r--r-- 1 root root 96 Aug 25 15:38 fromTextkey.bb
```

Next, add the key in key retention service, using keyctl:

```
root@imx8mqevk:~# cat /data/caam/fromTextkey | keyctl padd logon logkey: @s
876928653
```

4. Create a secure volume. It could be a physical partition. In this example, make use of an image file and mount it later.

```
root@imx8mqevk:~# dd if=/dev/zero of=encrypted.img bs=1M count=32
32+0 records in
32+0 records out
33554432 bytes (34 MB, 32 MiB) copied, 3.20227 s, 10.5 MB/s
root@imx8mqevk:~#
root@imx8mqevk:~#
root@imx8mqevk:~# losetup /dev/loop0 encrypted.img
root@imx8mqevk:~#
```

5. Use dmsetup to create a new device-mapper device named encrypted for example, and specify the mapping table. The table can be provided on stdin or as argument.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

```
Read Ahead: 256
Tables present: LIVE
Open count: 0
Event number: 0
Major, minor: 253, 0
Number of targets: 1
```

The following is a breakdown of the mapping table:

- start means encrypting begins with sector 0.
- size is the size of the volume in sectors.
- blockdev gets the number of sectors of the device.
- target is crypt.
- cipher is set in Kernel Crypto API format to use Tagged Key. cipher set to capi:tk(cbc(aes)) plain and key set to:36:logon:logkey: leads to use of the logon key with CAAM Tagged Key transformation.
- IV is the Initialization Vector defined to plain, initial vector, which is the 32-bit little-endian version of the sector number, padded with zeros if necessary.
- key type is the Keyring key service type, set to Logon Key. 36 is the key size in bytes.
- key name is the key description to identify the key to load.
- IV offset is the value to add to sector number to compute the IV value.
- device is the path to device to be used as backend; it contains the encrypted data.
- offset represents encrypted data begins at sector 0 of the device.
- optional parameters represent the number of optional parameters.
- sector_size specifies the encryption sector size.

For more detailed options and descriptions, refer to https://gitlab.com/cryptsetup/-/wikis/DMCrypt.
The created device appears in /dev/mapper:

```
root@imx8mqevk:~# dmsetup table --showkey encrypted 0 65536 crypt capi:tk(cbc(aes))-plain :36:logon:logkey: 0 7:0 0
```

6. Create a file system on the device.

```
root@imx8mqevk:~# mkfs.ext4 /dev/mapper/encrypted
mke2fs 1.45.3 (14-Jul-2019)
Creating filesystem with 32768 1k blocks and 8192 inodes
Filesystem UUID: 3ba01ad8-ba03-4389-a955-5136b3173c35
Superblock backups stored on blocks:
    8193, 24577
Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done
```

7. Set up a mount point.

```
root@imx8mqevk:~# mkdir /mnt/encrypted
```

8. Mount the mapped device.

```
root@imx8mqevk:~# mount -t ext4 /dev/mapper/encrypted /mnt/encrypted/
[ 9409.936183] EXT4-fs (dm-0): mounted filesystem with ordered data mode.
Opts: (null)
[ 9409.943892] ext4 filesystem being mounted at /mnt/encrypted supports
timestamps until 2038 (0x7fffffff)
```

9. Write to device.

 ${\tt root@imx8mqevk:} {\tt ~\# echo "This is an encrypt with black key (ECB from text 16 bytes key size) test of full disk encryption on i.MX" > /mnt/encrypted/readme.txt$

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

10. Unmount the device.

```
root@imx8mqevk:~# umount /mnt/encrypted/
```

11. Deactivate the device mapper device.

```
root@imx8mqevk:~# dmsetup remove encrypted
```

12. Restart the board.

```
root@imx8mqevk:~# reboot
...
root@imx8mqevk:~#
```

13. Import the key from blob and add it to key retention service.

```
root@imx8mqevk:~# ./caam-keygen import /data/caam/fromTextkey.bb importKey
root@imx8mqevk:~# cat /data/caam/importKey | keyctl padd logon logkey2: @s
605536287
root@imx8mqevk:~# ls -la /data/caam/
total 20
drwxr-xr-x 2 root root 4096 Aug 25 15:47 .
drwxr-xr-x 3 root root 4096 Aug 25 15:38 ..
-rw-r--r- 1 root root 36 Aug 25 15:38 fromTextkey
-rw-r--r- 1 root root 96 Aug 25 15:38 fromTextkey.bb
-rw-r--r- 1 root root 36 Aug 25 15:47 importKey
root@imx8mqevk:~#
```

14. Mount the encrypted device.

```
root@imx8mqevk:~# losetup /dev/loop0 encrypted.img
root@imx8mqevk:~#
```

15. Specify the mapping table to encrypt the volume using dmsetup.

16. Mount.

```
root@imx8mqevk:~# mount /dev/mapper/encrypted /mnt/encrypted/
[ 191.961828] EXT4-fs (dm-0): mounted filesystem with ordered data mode.
Opts: (null)
[ 191.969533] ext4 filesystem being mounted at /mnt/encrypted supports
  timestamps until 2038 (0x7ffffff)
root@imx8mqevk:~
```

17. Read from the device.

```
root@imx8mqevk:~# cat /mnt/encrypted/readme.txt
This is an encrypt with black key (ECB from text 16 bytes key size) test of
full disk encryption on i.MX.
root@imx8mqevk:~#
```

18. Unmount the device and deactivate the device mapper device.

```
root@imx8mqevk:~# umount /mnt/encrypted/; dmsetup remove encrypted
```

10.5.4 DM-Crypt using DCP's Crypto Key

Perform the following steps to run DM-Crypt on the i.MX 6ULL platform:

1. Insert the trusted module for using the trusted keyring.

```
$ modprobe trusted;
```

2. Add the otp crypto key handle in the trusted keyring.

```
$ dd if=/dev/zero of=encrypted.img bs=4k count=4k
$ losetup /dev/loop0 encrypted.img;
```

3. Create a secure volume. It could be a physical partition. In this example, make use of an image file and mount it later.

```
$ dd if=/dev/zero of=encrypted.img bs=4k count=4k
$ losetup /dev/loop0 encrypted.img;
```

4. Use dmsetup, and create a new device-mapper device named mydev, for example, and then specify a mapping table. The table can be provided on stdin or as argument.

5. The created device appears in /dev/mapper.

```
$ echo $TABLE | dmsetup load mydev $ dmsetup table --showkey mydev
Example Output of above command:- 0 32768 crypt capi:cbc-aes-dcp-
plain :16:trusted:<key name> 0 7:0 0 1 allow_discards
```

6. Create a file system on the device.

```
$ mkfs.ext4 /dev/mapper/mydev
```

7. Set up a mount point.

```
$ mkdir /mnt/mydev
```

8. Mount the mapped device.

```
$ mount -t ext4 /dev/mapper/mydev /mnt/mydev/
```

Note: At this level, every data you write to /mnt/mydev is encrypted on the real block device /dev/loop0.

9. Write to the device.

```
$ echo "This is a test of full disk encryption on i.MX" > /mnt/mydev/
readme.txt
```

10. Unmount the device.

```
$ umount /mnt/mydev/
```

11. Deactivate the device mapper device.

```
$ dmsetup remove mydev
```

- 12. Restart the device.
- 13. Insert the trusted keyring and load the otp_crypto_key handle in the key retention service.

```
modprobe trusted;export KEYNAME=<key name>; keyctl add trusted <key name>
  "load $(hexdump -v -e '"" 1/1 "%02X"' /proc/device-tree/soc/bus@2200000/
crypto@2280000/otp_crypto_key) hw" @s;
```

14. Mount the encrypted device.

losetup /dev/loop0 encrypted.img

15. Specify the mapping table to encrypt the volume using dmsetup.

export TABLE="0 \$(blockdev --getsz /dev/loop0) crypt capi:cbc-aes-dcpplain :16:trusted:<key name> 0 /dev/loop0 0 1 allow_discards"; echo \$TABLE |
 dmsetup create mydev

16. Mount.

mount /dev/mapper/mydev /mnt/mydev/

17. Read from the device.

cat /mnt/mydev/readme.txt

The system returns the following result:

This is a test of full disk encryption on i.MX

10.5.5 DM-Crypt usage on i.MX Platforms without CAAM hardware IP

The following figure shows the software stack that implements disk encryption on the i.MX platforms without CAAM hardware IP.

This approach is implemented for protecting the DM-Crypt secrets and crypto operations, on the i.MX platforms that do not have CAAM IP, such as i.MX 93.

To protect the DM-Crypt operations like CAAM does, the following three key requirements are expected to be fulfilled:

- Key does not leave the SoC:
 In absence of the CAAM black key, the key(s) is/are always kept in Secure OCRAM giving security from physical attacks.
- Crypto operations are done isolated boundary of CAAM:
 In absence of CAAM, it is done in OP-TEE with Trusted Arm CE PTA, which is an isolated trusted execution environment
- Crypto Ops performance requirements like CAAM hardware accelerator:
 In absence of CAAM, it can be satisfied by using the Arm Crypto Extension in Trusted Arm CE PTA.

Prerequisites:

- Ensure that a region of OCRAM is reserved. OP-TEE is using the OCRAM region:
 - 0x20518000 0x2051C000 for saving keys.
- Compile the Kernel Image with the following KCONFIG:
 - CONFIG_DM_CRYPT=y
 - CONFIG TRUSTED KEYS=m
 - CONFIG TRUSTED KEYS TEE=y
- OP-TEE OS to be compiled to include Arm CE PTA:
 - Currently, Runtime Random Number Generation from ELE is disabled because of some issues.
 - To run this feature, disable CFG WITH SOFTWARE PRNG.
 - In all, flags that need to be enabled in OP-TEE:
 - CFG WITH SOFTWARE PRNG: To enable Runtime ELE RNG.
 - Flags that need to be disabled in Linux OS:
 - CONFIG IMX SEC ENCLAVE: To disable the Linux Secure Enclave drive.
 - CONFIG IMX ELE TRNG: To disable Linux ELE TRNG support.

Usage:

· Insert the kernel module:

```
modprobe tee_crypto
modprobe trusted
modprobe dm_crypt
```

· Generate the key:

```
$:> export KEYNAME=dm_trust_plainkey
$:> KEY="$(keyctl add trusted $KEYNAME 'new 32' @s)"
$:> keyctl pipe $KEY >~/$KEYNAME.blob
$:> keyctl list @s
```

• Set the variables:

```
$:> export DEV=/dev/loop0
$:> export ALGO="capi:cbc-aes-tee-plain"
$:> export BLOCKS=$(blockdev --getsz /dev/loop0)
```

· Change the directory:

```
$:> cd /dev/shm/
```

• Run the following dd command:

```
$:> dd if=/dev/zero of=encrypted.img bs=1M count=512 && losetup /dev/loop0
encrypted.img
```

· Set the DM-Setup TABLE variables:

```
$:> TABLE="0 $BLOCKS crypt $ALGO :32:trusted:$KEYNAME 0 $DEV 0 1
sector_size:512"
```

• Run the DM-Setup command:

```
$:> dmsetup -v create encrypted --table "$TABLE"
$:> mkfs.ext4 /dev/mapper/encrypted
$:> mount -t ext4 /dev/mapper/encrypted /mnt
```

· Change the directory:

```
$:> cd /mnt/
```

· Run the DD test:

```
$:> while [ 1 ] ; do dd if=/dev/random of=temp bs=4096 count=65536 conv=fsync;
done;
```

10.6 crypto_af_alg application support

10.6.1 Prerequisites

The caam-keygen application is needed to import the black key from the black blob. Make sure that the caam-keygen application is already present at /usr/bin.

10.6.2 Building the kernel

10.6.2.1 Kernel configuration

- CONFIG_CRYPTO_USER_API
- CONFIG CRYPTO USER API HASH
- CONFIG CRYPTO USER API SKCIPHER
- CONFIG CRYPTO USER API RNG
- CONFIG_CRYPTO_USER_API_AEAD

Get a bootable image that includes the black key support and AF_ALG socket interface for the Linux kernel. Or build the kernel from here: https://github.com/nxp-imx/linux-imx/.

10.6.2.2 Building a toolchain

Build a toolchain to cross compile the sources of the caam-crypt application. For details, see the *i.MX Yocto Project User's Guide* (IMXLXYOCTOUG).

```
$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/8.2-2019.01/gcc-
arm-8.2-2019.01-x86_64-aarch64-elf.tar.xz
$ tar xf gcc-arm-8.2-2019.01-x86_64-aarch64-elf.tar.xz
```

10.6.2.3 Cross compiling the user space sources

Set up the environment for cross compilation using the toolchain previously prepared.

1. In the toolchain folder, set up the environment.

```
$ export CROSS_COMPILE=<path to toolchain>/bin/aarch64-linux-gnu-
$ export CC=${CROSS_COMPILE}gcc
$ export LD=${CROSS_COMPILE}ld
```

2. Build the caam-crypt user space application. Go to the source folder and run:

```
$ make clean
$ make
```

10.6.3 Usage

After the device successfully boots with the previously generated image, caam-crypt can be used to decrypt an encrypted data stored in a file.

10.6.4 Use case example

· For encryption:

```
$ caam-crypt enc AES-256-CBC -k myblob -in <plain_text_file> -out
<encrypted_file> -iv <16-byte IV value>
```

· For decryption:

```
$ caam-crypt dec AES-256-CBC -k myblob -in <encrypted_file> -out
<decrypted_file> -iv <16-byte IV value>
```

where:

- myblob: Generated black key blob. The caam-keygen application imports a black key from black blob. This black key is used by CAAM for encryption/decryption.
- <u>AES-256-CBC</u>: Currently, the only supported symmetric algorithm used for encryption/decryption operation. **Note:** Make sure that the algorithm used for encryption/decryption should be same.
- encrypted_file: Encrypted data stored in a file.
- plain text file: Plain text stored in a file (Padding is added for making data as multiples of block size).
- decrypted file: Decrypted data stored in a file.
- iv: 16 bytes IV value.

Note: Customer should increase net.core.optmem max using the command below:

```
# sysctl -w net.core.optmem_max=1048576
```

The default value is set to **20480**. Increasing to **1048576** (1 MB) seems to fix the issue of decryption of file size greater than 1 MB.

10.7 Kernel TLS offload

Linux kernel provides TLS connection offload infrastructure. Once a TCP connection is in ESTABLISHED state, user space can enable the TLS Upper Layer Protocol (ULP) and install the cryptographic connection state. For details regarding the user-facing interface, refer to the TLS documentation in Kernel TLS.

10.7.1 Prerequisites

Check OpenSSL version using the following command. It must be 3.0.0 or higher.

```
openssl version
```

10.7.2 Running Kernel TLS test

On server generate RSA 2048 key, certificate and run openssl s server:

```
root@imx8mmevk:~# openssl req -new -newkey rsa:2048 -nodes -keyout rsa.key -out
rsa.csr
root@imx8mmevk:~# openssl x509 -req -sha256 -days 365 -in rsa.csr -signkey
rsa.key -out server.pem
root@imx8mmevk:~# openssl s_server -key rsa.key -cert server.pem -accept 443 -
ssl_config ktls
Using default temp DH parameters
ACCEPT
```

Run openssl s client from another terminal:

```
root@imx8mmevk:~# openssl s_client -quiet -connect <server ip>:443 -tls1_2 -
ssl_config ktls -cipher 'ECDHE-RSA-AES256-GCM-SHA384'
Connecting to <server ip>
Can't use SSL_get_servername
...
Using Kernel TLS for sending
Using Kernel TLS for receiving
<write some message and enter>
```

Remove -quiet to see full client logs. With TLSv1.2, the Kernel TLS supports these ciphers:

- AES128-GCM-SHA256
- AES256-GCM-SHA384
- ECDHE-RSA-AES128-GCM-SHA256
- ECDHE-RSA-AES256-GCM-SHA384

10.8 IMA/EVM on i.MX SoCs

Integrity Measurement Architecture (IMA): is the Linux integrity subsystem used to detect if files have been accidentally or maliciously altered. It appraises a file's measurement against a "good" value stored

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

as an extended attribute (security.ima) and enforces local file integrity checks. The extended attribute (security.ima) of a file is the hash value (SHA-1, SHA-256, or SHA-512) of its content. IMA maintains a list of hash values over all executables and other sensitive system files loaded at runtime into the system.

Extended Verification Module (EVM): protects a file's extended attributes against integrity attacks. The extended security attribute (security.evm) stores the HMAC value over other extended attributes associated with the file such as security.selinux, security.SMACK64, and security.ima.

EVM depends on the kernel key retention system and requires an encrypted key named evm-key for the HMAC operation. The key is loaded onto the root user keyring using keyctl utility. EVM is enabled by setting an enable flag in securityfs/evm file.

In normal secure boot process, contents of root file system mounted over persistent storage device are not validated by any mechanism and hence cannot be trusted. Any malicious changes in non-trusted rootfs contents are undetected. IMA EVM is the Linux standard mechanism to verify the integrity of the rootfs. Integrity checks over file attributes and its contents are performed by Linux IMA EVM module before its execution. IMA EVM depends on encrypted key loaded on user's keyring. Loading keys to root user keyring and enabling EVM is typically done using initramfs image. The initramfs image is validated using secure boot process and becomes the part of chain of trust. Initramfs switches control to main rootfs mounted over storage device, after EVM is successfully enabled on the system.

10.8.1 EVM Key on user keyrings

The EVM security attribute depends on an encrypted key (named evm-key) loaded on the user keyring. The encrypted key is derived by the kernel using the master key. The master key can be of the following types:

- User-Key
- Secure-Key
- Trusted-Key

Secure and trusted keys are derived using a hardware security engine for greater security while the security of user-key depends on the user-defined mechanisms irrespective of the hardware. The secure-key is derived using the Layerscape's SEC (aka CAAM). The trusted-key can be used on the platforms supporting TPM.

The encrypted key acts as an HMAC key, which is subsequently used to calculate the HMAC value (security.evm) over other security attributes. This key is stored internally by the kernel and user can only see its blob.

10.8.2 Modes of operation in IMA EVM

IMA/EVM is enabled in two modes:

- · Fix mode
- · Enforce mode

To enable a system with IMA EVM, both modes must be implemented in a sequence as described below:

- 1. The system needs to be booted in fix mode with <code>ima_appraise=fix</code> and <code>evm=fix</code> bootargs. After loading the keys on the root keyring, the entire file system is labelled with security attributes. In fix mode, any file with <code>INTEGRITY_UNKNOWN</code> is labelled with proper attribute values. This mode must be executed only once while preparing system for field deployment.
- 2. After the fix mode execution is completed successfully, system needs to be booted IMA EVM in enforce mode. Enforce mode is enabled by setting <code>ima_appraise=enforce</code> bootargs. In enforce mode, the files are measured against their "good" values. In case there is a mismatch between calculated security attribute value and stored value, access to that file is denied. While in field the system boot is done in enforce mode only.

10.8.3 Build Steps

 $Follow\ instructions\ mentioned\ in\ \underline{https://github.com/nxp-imx/meta-imx-integrity}\ for\ building\ \verb"initramfs".$

- After building integrity-image-minimal-<board-name>-<build_no>.rootfs.tar.zst, extract tar.zst.
- 2. Convert the extracted directory into CPIO file using the following command:

```
find . | cpio -H newc -o > ../<rootfs_name>.cpio
```

3. Gzip the built rootfs above using the following command:

```
gzip ../<rootfs_name>.cpio
```

4. Convert gzipped rootfs into Ramdisk file using the following command:

```
mkimage -A arm -O linux -T ramdisk -d <gzipped_rootfs> <Ramdisk_name>
```

- 5. Flash the kernel image, dtb file, and Ramdisk file on the i.MX board.
- 6. For fix mode, add the following bootargs to the current bootargs:

```
rootwait rw lsm=integrity rootflags=i_version ima_appraise=fix
ima_policy=appraise_tcb evm=fix initrd=<Ramdisk path>
```

7. For enforce mode, add the following bootargs to the current bootargs:

```
rootwait rw lsm=integrity rootflags=i_version ima_appraise_tcb
ima_appraise=enforce initrd=<Ramdisk path>"
```

10.8.4 Steps to verify IMA EVM feature

Perform the following checks to ensure that IMA EVM is successfully enabled in enforce mode.

1. Trusted keys and encrypted keys are enabled in kernel image. The Following kernel logs ensures that secure key and encrypted key is successful registered.

```
[ 6.893635] Key type trusted registered
[ 6.905123] Key type encrypted registered
```

2. IMA EVM is enabled in the kernel image. The following kernel logs ensures IMA EVM is enabled.

```
[ 6.909218] ima: No TPM chip found, activating TPM-bypass!
[ 6.914738] ima: Allocated hash algorithm: sha1
[ 6.962804] evm: HMAC attrs: 0x1
```

3. System is up in enforce mode. The following logs from initramfs and kernel ensures enforce mode is enabled.

```
[ 8.248060] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data
mode. Opts: (null). Quota mode: none.
Loading blobs
[ 8.294368] evm: key initialized
```

4. EVM attributes over a file can be checked using getfattr utility.

```
root@imx8ulpevk:~# getfattr -d -m . /path/to/file
```

5. Security attribute are appraised successfully upon changing any file contents. The following commands verify the appraise functionality.

```
root@imx8ulpevk:~# getfattr -d -m . /path/to/test_file
```

10.8.4.1 Testing hashing

Perform the following checks to ensure that IMA EVM is successfully enabled in enforce mode.

1. Trusted keys and encrypted keys are enabled in kernel image. The Following kernel logs ensures that secure key and encrypted key is successful registered.

```
[ 6.893635] Key type trusted registered
[ 6.905123] Key type encrypted registered
```

2. IMA EVM is enabled in the kernel image. The following kernel logs ensures IMA EVM is enabled.

```
[ 6.909218] ima: No TPM chip found, activating TPM-bypass!
[ 6.914738] ima: Allocated hash algorithm: sha1
[ 6.962804] evm: HMAC attrs: 0x1
```

3. System is up in enforce mode. The following logs from initramfs and kernel ensures enforce mode is enabled.

```
[ 8.248060] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data mode. Opts: (null). Quota mode: none.
Loading blobs
[ 8.294368] evm: key initialized
```

4. EVM attributes over a file can be checked using getfattr utility.

```
root@imx8ulpevk:~# getfattr -d -m . /path/to/file
```

5. Security attribute are appraised successfully upon changing any file contents. The following commands verify the appraise functionality.

10.8.4.2 Testing signing

Perform the following steps to test signing.

1. In enforce mode, link the user keyring with session keyring using the following command:

```
keyctl link @us @s
```

2. keyctl show is as follows:

```
root@imx8ulpevk:~# keyctl show @u
Kevring
 903561555 --alswrv 0 65534 keyring: uid.0
744420798 --alswrv
                                   \_ trusted: kmk-trusted
                        0 0
 779914984 --alswrv
                                   \_ keyring: _ima
| \ user: B0E0FBB7D52954F3
                               0
                        0
 960482942 --alswrv
                         0
                               0
 346128152 --alswrv
                                     encrypted: evm-key
                         0
                               0
```

3. Currently, all the . ko files are signed. Therefore, echoing to . ko files may cause permission denied error as follows:

```
root@imx93evk:~# sudo echo "echo \"Hello from the root user\"" >> /lib/
modules/6.6.23-lts-next-06180-g4958e7a7a6dd/kernel/crypto/sm3.ko
```

-sh: /lib/modules/6.6.23-lts-next-06180-g4958e7a7a6dd/kernel/crypto/sm3.ko: Permission denied

10.9 Security reference design

Note: All reference implementations are for development purposes only. Users should ensure that proper security policy/guidelines are considered while handling security critical material.

The NXP Security Reference Design initiative aims to help customers enable/configure security features through the Yocto build process. This framework is intended to ease the utilization and modification of security features in the NXP processors.

The following sections describe the various enablement as part of the Security Reference Design framework.

10.9.1 Automated image signing for secure boot

Note: See <u>meta layer documentation</u> for the information on the supported devices and supported distro for this release.

Secure boot is an industry standard to ensure that the device boots a trusted OEM software. NXP i.MX devices support Root of Trust (RoT) through the secure boot method using the OEM trusted root keys. In general, the secure boot mechanism involves signing and authentication of Bootloader and OS kernel image.

The signing method involves determining the part of the boot image that needs to be signed by analyzing the build log and then using NXP Code Signing Tool. This method is usually found to be manual and error prone causing signing/authentication failure, which may eventually lead to boot failures. To eliminate such errors, an automated method is devised, which analyzes the input boot image and signs it using CST.

The NXP BSP release contains a meta-nxp-security-reference-design/meta-secure-boot Yocto meta layer, which supports i.MX boot image signing automation. The usage of this meta layer is described in the following sections.

10.9.1.1 NXP CST Signer

Note: See NXP CST Signer Tool for more documentation.

The NXP CST Signer Tool created by NXP, analyzes the input NXP BSP image to extract the offset and size of the image(s) that need to be signed and prepares the corresponding Command Sequence File for CST to sign. This tool is used in the meta layer to support image signing. However, it can also be used as a standalone tool.

The NXP CST Signer tool has the following properties:

- Supports signing both HAB (i.MX 6/7/8M Family) and AHAB (i.MX 8/8x/8ULP/9 Family) devices' images.
- · Analyzes input image to sign IVT/FIT/Container format images.
- Extracts offsets and sizes from the input image and constructs CSFs.
- Default configuration files are present in the CST Signer repository, filled with the basic information related to keys, certificate and flags to be used, both for HAB and AHAB devices.

10.9.1.2 Prerequisites for preparing a signed image

The prerequisites for preparing a signed image are as follows:

- 1. Download the NXP Code Signing Tool delivered by NXP, which is required for this automation to work.
- 2. Prepare the keys using CST.

 By default, the NXP CST Signer Tool uses standard keys of type ECC P256-SHA256 for i.MX 8/8x/8ULP/9

 Family and RSA 2048-SHA256 for i.MX 6/7/8M Family, to be available in the download location of CST.

Follow the CST User Guide available in the CST package to generate the keys, certificates, SRK table/ fuses and for more information.

Note: (Optional) Create and populate <code>csf_hab4.cfg</code> and/or <code>csf_ahab.cfg</code> with the preferred key type at the CST location to use your preferred PKI tree. The default configuration files are located at the CST Signer work directory in Yocto build.

10.9.1.3 Yocto setup for secure boot build

Note: See the i.MX Yocto Project User's Guide (IMXLXYOCTOUG_6.6.23_2.0.0) for how to set up and build Yocto project.

To set up the Yocto project for secure boot build, perform the following steps:

1. Set up Yocto Build Environment and Configuration.

```
repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap -
m imx-6.6.23-2.0.0_security-reference-design.xml
repo sync
DISTRO=<DISTRO> MACHINE=<MACHINE> source imx-setup-release.sh -b <build
directory>
```

2. Add the meta-secure-boot layer to the Yocto project.

bitbake-layers add-layer ../sources/meta-nxp-security-reference-design/meta-secure-boot

3. Add CST in CST PATH in local.conf.

Note: The absolute location of CST is required.

```
echo "CST_PATH = to cst package>\"" >> conf/local.conf
```

10.9.1.4 Generating a signed bootloader/kernel/WIC image in Yocto project

To generate a signed bootloader/kernel/WIC image in Yocto project, perform the following steps:

1. Build a signed WIC image.

```
bitbake core-image-minimal-secure-boot
```

2. Build a signed imx-boot bootloader (for i.MX 8M/8/8x/8ULP/9x).

```
bitbake imx-boot-signature
```

3. Build a signed U-Boot bootloader (for i.MX 6/7).

```
bitbake u-boot-signature
```

4. Build a signed Linux kernel image.

```
bitbake linux-imx-signature
```

10.9.1.5 Booting a signed image

The output of the Yocto build contains three signed artifacts:

- · Signed Bootloader
- Signed Kernel image
- SDcard (WIC) image (Contains signed bootloader and signed kernel images only)

Either of the signed bootloader or kernel image can be downloaded to the target based on the development scenario. The signed WIC image is provided to deploy the signed bootloader and kernel artifacts to the device.

- Secure boot in OPEN/OEM OPEN lifecycle
 It is recommended to download the signed image in the OPEN lifecycle state and verify secure boot before
 closing the part. For more information on how to program the SRK Fuses, verifying signature and closing
 the part to enable secure boot, see the secure boot user guide, based on the SoC, at HAB4 UBoot Guide or
 AHAB UBoot Guides.
- Secure boot in CLOSED/OEM CLOSED lifecycle
 When the SoC is in CLOSED lifecycle state, the same pre-provisioned signed image must boot the device in a closed security state ensuring a trusted image is running on the device.

11 Connectivity

This section describes the connectivity for Bluetooth wireless technology and Wi-Fi, as well as for USB type-C.

11.1 Connectivity for Bluetooth wireless technology and Wi-Fi

Bluetooth and Wi-Fi are supported on i.MX through on-board chip solutions and external hardware. The following table lists the various on-board chips and external solutions.

Table 81. On-board chips and external solutions for Bluetooth and Wi-Fi support

SoC	On-board chip	PCIe M.2 card	uSD card or SDIO M.2 card
8QuadXPlus/8DXL	-	NXP PCIe 88W9098 (tested with Murata LBEE5ZZ1XL)	-
8QuadMax	-	NXP PCIe 88W9098 (tested with Murata LBEE5ZZ1XL)	-
8M Quad	-	NXP 88W8997 (tested with Murata LBEE5XV1YM) On i.MX 8M Quad WEVK board (use M.2 on the bottom side): NXP PCIe 88W9098 (tested with Murata LBEE5ZZ1XL).	-
8M Nano	NXP 88W8987 (tested with AzureWave AW-CM358SM)	-	NXP SDIO IW612 (tested with Murata LBES5PL2EL)
8M Mini	NXP 88W8987 (tested with AzureWave AW-CM358SM)	-	-
7ULP	-	-	NXP 88W8987 (tested with Murata LBEE5QD1ZM)
7Dual	-	-	NXP 88W8987 (tested with Murata LBEE5QD1ZM)
6QuadPlus/Quad/Dual/Solo	-	-	NXP 88W8987 (tested with Murata LBEE5QD1ZM)
6SLL/6UltraLite/6ULL/6ULZ	-	-	NXP 88W8987 (tested with Murata LBEE5QD1ZM) NXP SDIO IW416 (tested with Murata LBEE5CJ1XK) NXP SDIO 88W8801 (tested with Murata LBWA0ZZ2DS) NXP SDIO IW612 (tested with Murata LBES5PL2EL)

Table 81. On-board chips and external solutions for Bluetooth and Wi-Fi support...continued

SoC	On-board chip	PCIe M.2 card	uSD card or SDIO M.2 card
8M Plus	-	NXP 88W8997 (tested with AW-CM276MAPUR) NXP PCIe 88W9098 (tested with Murata LBEE5ZZ1XL).	NXP SDIO 88W8997 (tested with Murata LBEE5XV1YM) NXP SDIO 88W9098 (tested with Murata LBEE5ZZ1XL)
8ULP	-	-	NXP SDIO IW416 (tested with Murata LBEE5CJ1XK)
i.MX 91	-	-	NXP SDIO IW612 (tested with Murata LBES5PL2EL)
i.MX 93	-	-	NXP SDIO IW612 (tested with Murata LBES5PL2EL)
i.MX 95	-	On i.MX 95 19x19 EVK board: NXP PCIe 88W9098 (tested with U-Blox JODY-W3).	On i.MX 95 15x15 EVK board: NXP SDIO IW612 (tested with Murata LBES5PL2EL)

Note: All Murata LBEE5QD1ZM are tested on i.MX 6/i.MX 7 platforms along with the Murata M.2-to-usd adapter.

The wireless driver supports wpa_supplicant, which is a WEP/WPA/WPA2/WPA3 encryption authenticated tool.

- Wi-Fi driver: supports NXP 88W8987-based modules with SDIO interface, NXP 88W9098-based modules
 with PCIe and SDIO interfaces, NXP 88W8997-based modules with PCIe and SDIO interfaces, NXP IW416based modules with SDIO interface, NXP 88W8801-based modules with SDIO interface, and NXP IW612based modules with SDIO interface.
- Firmware

The NXP release package already includes all NXP, Wi-Fi/Bluetooth firmware. It requires to accept NXP license.

To run Wi-Fi, execute the following commands first and follow common commands below:

• For the following steps, execute these commands using connman

```
# For all the Wi-Fi modules:
modprobe moal mod_para=nxp/wifi_mod_para.conf
$connmanctl
connmanctl> enable wifi
connmanctl> scan wifi
connmanctl> services /* This should list of the network. For example
wifi_c0e4347f5053_4a62726f_managed_psk*/
connmanctl> agent on
connmanctl> connect wifi_c0e4347f5053_4a62726f_managed_psk /* Enter Passphrase
*/
Agent RequestInput wifi_c0e4347f5053_4a62726f_managed_psk
Passphrase = [ Type=psk, Requirement=mandatory ]
Passphrase?
connmanctl> quit
```

To run NXP Bluetooth with BlueZ stack, execute the following commands (it requires load Wi-Fi first to load Bluetooth firmware):

```
modprobe btnxpuart hciconfig hci0 up
```

Run the following commands to connect the Bluetooth device for all chips:

```
$ bluetoothctl
[bluetooth]# default-agent
[bluetooth]# agent on
[bluetooth]# scan on
[bluetooth]# pair xx:xx:xx:xx:xx
[BT dev]# connect xx:xx:xx:xx:xx
[BT dev]# quit
```

Note:

MuRata has two kinds of 88W9098 1XL modules with no visual difference between them. The old version 1XL sets the initial baud rate of Bluetooth firmware to 3 Mbps, and the new version 1XL sets it to 115200 bps.

BSP release supports the new 1XL module (115200 bps) by default. To use the old 1XL module (3 Mbps), add the fw-init-baudrate = <3000000> property in Bluetooth device node of the dts file to make it work.

The i.MX 6 boards require board rework to support the Bluetooth/Wi-Fi enablement as well as running with the Bluetooth/Wi-Fi device tree. The following is a list of the hardware modifications required and possibly conflicts caused by these modifications.

- i.MX 6QuadPlus/Quad/Dual/DualLite/Solo: See https://community.nxp.com/docs/DOC-94235. This change HAS a pin conflict with: EPDC/SPI-NOR/GPIO-LED.
- i.MX 6SoloX: Install R328, and disconnect R327. Connect with SD2 slot and BLUETOOTH CABLE CONNECTOR J19. It has no Pin conflict with other modules.
- i.MX 6SLL: Install R127, and double check to ensure R126 and R128 are installed. Connect with SD3 slot and BLUETOOTH CABLE CONNECTOR J4. It has no Pin conflict with other modules.
- i.MX 6UL/ULL/ULZ: Install R1701. It has no Pin conflict with other modules.

Rework is also required to support NXP PCIe 88W9098 on i.MX 8M Plus.

• To run NXP PCIe 88W9098 on i.MX 8M Plus, perform the hardware rework as follows: Change R452 to 0 ohm.

11.2 Connectivity for USB type-C

The following describes the connectivity for USB type-C and power delivery connection on the i.MX 8QuadXPlus MEK board.

• The Linux release includes USB type-C and PD stack, which is enabled by default. The specific power parameters are passed in by DTS. The following fsl-imx8qxp-mek is an example:

```
typec ptn5110: typec@50 {
        compatible = "usb, tcpci";
        pinctrl-names = "default";
        pinctrl-0 = <&pinctrl typec>;
        reg = <0x50>;
        interrupt-parent = <&gpio1>;
        interrupts = <3 IRQ TYPE LEVEL LOW>;
        ss-sel-gpios = <&gpio5 9 GPIO ACTIVE LOW>;
        reset-gpios = <&pca9557_a 7 GPIO ACTIVE HIGH>;
        src-pdos = <0x380190c8>;
        snk-pdos = <0x380190c8 0x3802d0c8>;
        max-snk-mv = <9000>;
        max-snk-ma = <1000>;
        op-snk-mw = <9000>;
        port-type = "drp";
        sink-disable;
```

```
default-role = "source";
    status = "okay";
};
```

For power capability related configuration, users need to check the PD specification to see how to composite the PDO value. To make it support power source role for more voltages, specify the source PDO. The i.MX 8QuadXPlus board can support 5 V and 12 V power supply.

• Users can use /sys/kernel/debug/tcpm/2-0050 to check the power delivery state, which is for debugging purpose information.

The following describes the connectivity for USB type-C and power delivery connection on the i.MX 95 EVK board.

• The Linux release includes USB type-C and PD stack, which are enabled by default. The specific power parameters are passed in by DTS. The following takes i.MX 95 EVK as an example:

```
ptn5110: tcpc@50 {
    compatible = "nxp,ptn5110";
    reg = <0x50>;
    interrupt-parent = <&gpio5>;
    interrupts = <14 IRQ TYPE LEVEL LOW>;
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl ptn5110>;
    typec con: connector {
        compatible = "usb-c-connector";
        label = "USB-C";
        power-role = "dual";
        data-role = "dual";
        try-power-role = "sink";
        source-pdos = <PDO FIXED(5000, 3000, PDO FIXED USB COMM)>;
        sink-pdos = <PDO_FIXED(5000, 3000, PDO_FIXED_USB_COMM)</pre>
                 PDO VAR(5000, 20000, 3000)>;
        op-sink-microwatt = <15000000>;
        self-powered;
    };
};
```

For power capability related configuration, users need to check the PD specification to see how to composite the PDO value. To make it support power source role for more voltages, specify the source PDO. The i.MX 95 EVK board only supports 5V supply.

- Users can use /sys/kernel/debug/usb/tcpm-6-0050/log to check the power delivery state, which is for debugging purpose information.
- Booting only by type-C port power supply is not supported.

11.3 NXP Bluetooth/Wi-Fi information

The NXP Bluetooth/Wi-Fi information is as follows:

- SoC version: SDIO 88W8987, PCIe 88W8997, SDIO 88w8997, PCIe 88w9098, SDIO 88W9098, SDIO IW416, SDIO 88W8801, SDIO IW612
- SDIO W8801 Firmware version: 14.92.36.p192
- SDIO-UART IW416 Firmware version: 16.92.21.p119.11
- PCIE-UART W9098 Firmware version: 17.92.1.p149.43
- SDIO-UART W8997 Firmware version: 16.92.21.p119.3
- PCIE-UART W8997 Firmware version: 16.92.21.p119.3
- SDIO-UART W8987 Firmware version: 16.92.21.p119.3

- SDIO-UART W9098 Firmware version: 17.92.1.p149.43
- SDIO-UART IW612 Firmware version: 18.99.3.p10.1
- Wi-Fi/Bluetooth firmware version: for example, 16.92.10.p210
 - 16: Major revision
 - 92: Feature pack
 - 10: Release version
 - p210: Patch number
- For all Wi-Fi modules, Driver version: MXM6x17437.p21-MGPL
 - 6X: Linux 6.x
 - 17437: Release versionp21: Patch numberMGPL: General

Tested using iPerf3 version 3.16.

11.4 Hardware limitations

i.MX 8M Mini and Nano baseboards do not route SDIO, UART, and I2S to the M.2 Key-E connector, so it is not possible to use SDIO/UART/I2S wireless cards on these boards.

Workarounds

Use an M.2 adapter to do a physical connection to bring SDIO, UART, and I2S signals to the J1003 connector. With this, it is required to modify the device tree to enable these new modules.

11.5 Certification

11.5.1 WFA certification

The following table lists the WFA certification.

Table 82. WFA certification

STA	Certification
STA	802.11n
STA	802.11ac
STA	WPS2.0
STA	PMF
STA	WMM-PS
STA	WPA3

For details, see Wi-Fi Alliance Derivative Certification (AN12976).

11.5.2 Bluetooth controller certification

Listing details: https://launchstudio.bluetooth.com/ListingDetails/115533

12 DDR Performance Monitor

12.1 Introduction

There are counters in some i.MX 8 DDR controllers, which are used to monitor DDR signals. Some signals can help users monitor DDR transactions and calculate DDR bandwidth.

12.2 Frequently used events

The following events are frequently used to monitor DDR transactions for different platforms.

- i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Mini/8M Nano: cycles, read-cycles, write-cycles
- · i.MX 8M Plus: axid-read, axid-write
- i.MX 8DXL: cycles, read-cycles, write-cycles, axid-read, axid-write

Note:

- i.MX 8M Plus and 8DXL support AXI ID filtering.
- For i.MX 8M Plus, cycles, read-cycles, write-cycles cannot be used since there is a hardware bug that leads to counter overflow.

12.3 Showing supported events

Run the following commands to show the supported events:

```
# perf list pmu | grep imx8 ddr
imx8 ddr0/activate/ [Kernel PMU event]
imx8 ddr0/axid-read/ [Kernel PMU event]
imx8_ddr0/axid-write/ [Kernel PMU event]
imx8 ddr0/cycles/ [Kernel PMU event]
imx8_ddr0/hp-read-credit-cnt/ [Kernel PMU event]
imx8 ddr0/hp-read/ [Kernel PMU event]
imx8 ddr0/hp-req-nocredit/ [Kernel PMU event]
imx8_ddr0/hp-xact-credit/ [Kernel PMU event]
imx8 ddr0/load-mode/ [Kernel PMU event]
imx8 ddr0/lp-read-credit-cnt/ [Kernel PMU event]
imx8 ddr0/lp-req-nocredit/ [Kernel PMU event]
imx8 ddr0/lp-xact-credit/ [Kernel PMU event]
imx8_ddr0/perf-mwr/ [Kernel PMU event]
imx8_ddr0/precharge/ [Kernel PMU event]
imx8_ddr0/raw-hazard/ [Kernel PMU event]
imx8_ddr0/read-accesses/ [Kernel PMU event]
imx8_ddr0/read-activate/ [Kernel PMU event]
imx8 ddr0/read-command/ [Kernel PMU event]
imx8 ddr0/read-cycles/ [Kernel PMU event]
imx8 ddr0/read-modify-write-command/ [Kernel PMU event]
imx8 ddr0/read-queue-depth/ [Kernel PMU event]
imx8 ddr0/read-write-transition/ [Kernel PMU event]
imx8_ddr0/read/ [Kernel PMU event]
imx8_ddr0/refresh/ [Kernel PMU event]
imx8_ddr0/selfresh/ [Kernel PMU event]
imx8 ddr0/wr-xact-credit/ [Kernel PMU event]
imx8 ddr0/write-accesses/ [Kernel PMU event]
imx8 ddr0/write-command/ [Kernel PMU event]
imx8 ddr0/write-credit-cnt/ [Kernel PMU event]
imx8 ddr0/write-cycles/ [Kernel PMU event]
imx8_ddr0/write-queue-depth/ [Kernel PMU event]
imx8_ddr0/write/ [Kernel PMU event]
```

12.4 Examples for monitoring transactions

This section shows some examples to monitor DDR transactions.

• For i.MX 8QuadMax/8QuadXPlus/8M Quad/8M Mini/8M Nano:

```
# perf stat -a -I 1000 -e imx8_ddr0/cycles/,imx8_ddr0/read-cycles/,imx8_ddr0/
write-cycles/
```

- For i.MX 8M Plus:
 - All masters:

```
# perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_mask=0xfffff/,imx8_ddr0/
axid-write,axi_mask=0xffff/
```

- GPU 3D:

```
# perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_id=0x70/,imx8_ddr0/axid-
write,axi_id=0x70/
```

- LCDIF1:

```
# perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_id=0x68/,imx8_ddr0/axid-
write,axi_id=0x68/
```

For i.MX 8DXL:

- All masters:

```
# perf stat -a -I 1000 -e imx8_ddr0/cycles/,imx8_ddr0/read-cycles/,imx8_ddr0/
write-cycles/
# perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_mask=0xffff/,imx8_ddr0/
axid-write,axi_mask=0xffff/
```

- USB 2.0:

```
# perf stat -a -I 1000 -e imx8_ddr0/axid-
read,axi_mask=0xb0,axi_id=0x40b/,imx8_ddr0/axid-
write,axi_mask=0xb0,axi_id=0x40b/
```

- USDHC0:

```
# perf stat -a -I 1000 -e imx8_ddr0/axid-read,axi_id=0x1b/,imx8_ddr0/axid-
write,axi_id=0x1b/
```

12.5 Performance metric

Try to use metric instead of event if event command line is too cumbersome to you. The following is the example on i.MX 8QuadXPlus.

12.5.1 Showing supported metric

Run the following commands to show the supported metric:

```
# perf list metric
List of pre-defined events (to be used in -e):
Metrics:
imx8qxp_bandwidth_usage.lpddr4
    [bandwidth usage for lpddr4 mek board. Unit: imx8_ddr ]
imx8qxp_ddr_read.all
    [bytes all masters read from ddr based on read-cycles event. Unit:
imx8_ddr ]
imx8qxp_ddr_write.all
    [bytes all masters wirte to ddr based on write-cycles event. Unit:
imx8_ddr ]
```

12.5.2 Monitoring transactions

Run the following commands to monitor transactions:

```
# perf stat -a -I 1000 -M imx8qxp_ddr_read.all,imx8qxp_ddr_write.all
# time counts unit events
1.001115250 28264 imx8_ddr0/read-cycles/ # 441.6 KB imx8qxp_ddr_read.all
1.001115250 11622 imx8_ddr0/write-cycles/ # 181.6 KB imx8qxp_ddr_write.all
2.002718000 14496 imx8_ddr0/read-cycles/ # 226.5 KB imx8qxp_ddr_read.all
2.002718000 4585 imx8_ddr0/write-cycles/ # 71.6 KB imx8qxp_ddr_write.all
```

12.6 DDR Performance usage summary

It is recommended to use metric to monitor DDR transactions, as it is more convenient. You can get DDR bandwidth of all masters or specific master directly without doing extra calculations. Especially on platforms that support AXI ID filtering, get rid of searching masters' ID.

13 One-Time Programmable Controller Driver Using NVMEM Subsystem

13.1 Introduction

The One-Time Programmable Controller driver is realized with the NVMEM Subsystem, which introduces DT representation for consumer devices to get the data they require (MAC addresses, SoC/Revision ID, part numbers, and so on) from the NVMEMs.

13.2 NVMEM provider OCOTP

Use struct nvmem_config to set the configuration of the NVMEM device OCOTP. This structure can define callback to read/write the eFUSE data.

In the read/write function prototype:

- The 1st parameter is the private data of the OCOTP device, and it contains a pointer to the remapped memory.
- The 2nd parameter is from the first data in property reg of a NVMEM consumer, and this offset represents the OCOTP shadow register, to which a eFuse address is mapped.
- The 3rd parameter returns the read data when reading or passes the data to write when writing.
- The 4th parameter, which indicates how many bytes to read/write, is from the second data in property reg of a NVMEM consumer.

```
typedef int (*nvmem_reg_read_t)(void *priv, unsigned int offset, void *val,
    size_t bytes);
typedef int (*nvmem_reg_write_t)(void *priv, unsigned int offset, void *val,
    size_t bytes);
```

13.3 NVMEM consumer

NVMEM consumers are the entities that make use of the NVMEM provider to read from and to NVMEM. In the DTS file, the NVMEM consumer node needs to be written in the NVMEM provider node. The indispensable property is reg. The first data represents the offset of the OCOTP shadow register, to which a eFuse address is mapped. The second data indicates the number of bytes to read or write.

Take the MAC address on i.MX 8M Nano as an example:

The first data in reg is 0x90, 0x400 + 0x90 * 0x4 = 0x640, 0x640 is the first Fuse address of MAC_ADDR. 0x4 represents 4 bytes.

13.4 Examples to read/write the raw NVMEM file in user space

i.MX 6/i.MX 7/i.MX 8M Mini/8M Nano/8M Plus/8M Quad

```
# hexdump /sys/bus/nvmem/devices/imx-ocotp0/nvmem
```

• i.MX 8ULP

hexdump /sys/bus/nvmem/devices/fsb s400 fuse1/nvmem

• i.MX 8M Plus

```
f = open('/sys/devices/platform/30350000.ocotp-ctrl/imx-ocotp0/nvmem', 'br+')
f.seek(0x90)  # MAC1_ADDR
f.write(pack('<L', 0x30445011))
f.close()</pre>
```

14 NXP elQ Machine Learning

The NXP eIQ machine learning software development environment enables the use of machine learning algorithms on i.MX family SoCs. The eIQ software for i.MX includes inference engines, optimized libraries for hardware acceleration, and an ML security package.

The main eIQ toolkit is integrated in the Yocto BSP, contained in meta-imx/meta-ml layer. The following inference engines are currently supported: TensorFlow Lite, ONNX Runtime, OpenCV, DeepViewRT, and PyTorch. See the *i.MX Machine Learning User's Guide* (IMXMLUG) for details about the eIQ software development environment.

In addition to the toolkit integrated in the Yocto BPS, there is an ML security package delivered separately. See also <u>Security for Machine Learning Package (AN12867)</u>.

15 Murata Wi-Fi/Bluetooth Solutions

Table 83. Murata Wi-Fi/Bluetooth solutions with NXP chipsets

NXP chipset	Murata module (Part number)	Embedded Artists M.2 EVB
88W8801	Type 2DS (LBWA0ZZ2DS)	20S M. 2 Module rev PAI
IW416	Type 1XK (LBEE5CJ1XK)	EAR00385
88W8987	Type 1ZM (LBEE5QD1ZM)	Embedded Company of the company of

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Table 83. Murata Wi-Fi/Bluetooth solutions with NXP chipsets...continued

NXP chipset	Murata module (Part number)	Embedded Artists M.2 EVB
		EAR00364
88W8997	Type 1YM (<u>LBEE5XV1YM</u>)	LBEESXYIYM SSON 8002 000004859 144 145 145 145 145 145 145 145 145 145
88W9098	Type 1XL (<u>LBEE5ZZ1XL</u>)	EARO0387

Table 84. Murata Wi-Fi/Bluetooth solutions for NXP and Embedded Artists EVKs

EVK	Murata module	Interconnect	Embedded Artists M.2 Module Part #	
NXP i.MX 8QuadMax	Type 1YM (PCIe)	M.2	EAR00370	
	Type 1XL (PCIe)	M.2	EAR00387	
NXP i.MX 8QuadXPlus	Type 1YM (PCIe)	M.2	EAR00370	
	Type 1XL (PCIe)	M.2	EAR00387	
NXP i.MX 8M	Type 1XK	uSD-M.2	EAR00385	
	Type 1ZM	uSD-M.2	EAR00364	
	Type 1YM (SDIO ^[1])	uSD-M.2	EAR00370	
	Type 1XL (SDIO ^[1])	uSD-M.2	EAR00387	
	Type 1YM (PCIe)	M.2	EAR00370	
	Type 1XL (PCIe)	M.2	EAR00387	
NXP i.MX 8DXL	Type 1YM (PCIe)	M.2	EAR00370	
	Type 1XL (PCIe)	M.2	EAR00387	
NXP i.MX 8M Plus	Type 1XK	M.2	EAR00385	
	Type 1ZM	M.2	EAR00364	
	Type 1YM (SDIO ^[1])	M.2	EAR00370	
	Type 1XL (SDIO ^[1])	M.2	EAR00387	
	Type 1YM (PCIe)	M.2	EAR00370	
	Type 1XL (PCIe)	M.2	EAR00387	

Table 84. Murata Wi-Fi/Bluetooth solutions for NXP and Embedded Artists EVKs...continued

EVK	Murata module	Interconnect	Embedded Artists M.2 Module Part #
NXP i.MX 8M Mini LPDDR4	Type 1XK	uSD-M.2	EAR00385
	Type 1ZM	uSD-M.2	EAR00364
	Type 1YM (SDIO ^[1])	uSD-M.2	EAR00370
	Type 1XL (SDIO ^[1])	uSD-M.2	EAR00387
	Type 1YM (PCIe)	M.2	EAR00370
	Type 1XL (PCIe)	M.2	EAR00387
NXP i.MX 8M Nano LPDDR4	Type 1XK	uSD-M.2	EAR00385
	Type 1ZM	uSD-M.2	EAR00364
	Type 1YM (SDIO ^[1])	uSD-M.2	EAR00370
	Type 1XL (SDIO ^[1])	uSD-M.2	EAR00387
NXP i.MX 7Dual	Type 1XK	uSD-M.2	EAR00385
	Type 1ZM	uSD-M.2	EAR00364
	Type 1YM (SDIO ^[1])	uSD-M.2	EAR00370
NXP i.MX 7ULP	Type 1XK	uSD-M.2	EAR00385
	Type 1ZM	uSD-M.2	EAR00364
NXP i.MX 6QuadPlus	Type 1XK	uSD-M.2	EAR00385
NXP i.MX 6Quad NXP i.MX 6DL	Type 1YM (SDIO ^[1])	uSD-M.2	EAR00370
NXP i.MX 6SLL	Type 1XK	uSD-M.2	EAR00385
NXP i.MX 6UL	Type 1ZM	uSD-M.2	EAR00364
NXP i.MX 6ULL/ULZ	Type 1YM (SDIO ^[1])	uSD-M.2	EAR00370

^[1] Default strapping option on Embedded Artists 1YM/1XL M.2 module is WLAN-PCIe. Refer to Embedded Artists datasheet on how to modify strapping on M.2 module for WLAN-SDIO configuration.

16 NXP i.MX SystemReady IR

16.1 Preparing binaries

There are two methods to generate binaries, with Yocto build environment, or manual build.

16.1.1 Yocto

Arm SystemReady Certification bootloader can be generated in the latest NXP i.MX Yocto Linux BSP. The build steps are as follows.

If you are building for your own board, update imx-mkimag/iMX8M/soc.mak CAPSULE_GUID to match your board guid.

Do not use the default one in imx-mkimage/iMX8M/soc.mak; otherwise, the SR-IR-2.0 certification will fail.

16.1.1.1 Setting up the Yocto build environment

The Yocto Build Host must meet the following requirements:

- Run a supported Linux distribution. Ubuntu 20.04 or later is recommended.
- · Some key tools:
 - Git 1.8.3.1 or higher
 - tar 1.28 or higher
 - Python 3.6.0 or higher
 - GCC 5.0 or higher

16.1.1.2 Building Host packages for Yocto build

You must install the essential host packages on your build host. The following command installs the host packages based on an Ubuntu distribution:

```
$ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential chrpath socat cpio python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.2-dev pylint3 xterm python3-subunit mesa-common-dev zstd liblz4-tool
```

See Yocto Project Quick Build

Note: For Arm SystemReady boot loader build, the special host package should be installed:

```
$ sudo apt install efitools
```

16.1.1.3 Setting up the NXP i.MX Yocto Linux BSP

Perform the following steps to set up the NXP i.MX Yocto Linux BSP.

1. Install the repo utility.

To use this manifest repo, install the repo tool first.

```
$ mkdir ~/bin
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/
bin/repo
$ chmod a+x ~/bin/repo
$ PATH=${PATH}:~/bin
```

2. Download the Yocto Project BSP.

```
$ mkdir <release>
$ cd <release>
$ repo init -u https://source.codeaurora.org/external/imx/imx-manifest -b
imx-linux-kirkstone -m imx-5.15.52-2.1.0.xml
$ repo sync
```

3. Set up the BSP build folder.

```
\ \ MACHINE=<imx8m\_board> DISTRO=fsl-imx-xwayland source ./imx-setup-release.sh -b build
```

16.1.1.4 Building the STMM bootloader

The default BSP does not enable the STMM feature for SystemReady Certification.

To enable the feature, add stmm to MACHINE FEATURES before building imx-boot.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

1. Add the following command line to conf/local.conf.

```
MACHINE_FEATURES:append = " stmm"
```

2. Build flash.bin, capsule1.bin, and CRT.*.

```
$ bitbake imx-boot
```

- 3. Find them under the build folder.
 - imx-boot-<imx8m_board>-sd.bin-flash_evk_stmm_capsule (flash.bin) under tmp/deploy/images/<imx8m_board>.
 - capsule1.bin and CRT.* under tmp/deploy/images/<imx8m board>/imx-boot-tools.

Note: Save the CRT. * files for future usage.

16.1.2 Manual build

Except EDK2, use NXP repos.

16.1.2.1 Building EDK2

```
$ git clone https://github.com/tianocore/edk2.git
$ git clone https://github.com/tianocore/edk2-platforms.git
Modify Platform/StandaloneMm/PlatformStandaloneMmPkg/
PlatformStandaloneMmRpmb.dsc
- gEfiMdeModulePkgTokenSpaceGuid.PcdMaxAuthVariableSize|0x2800
+ gEfiMdeModulePkgTokenSpaceGuid.PcdMaxAuthVariableSize|0x3800^M
$ cd edk2
$ git submodule init && git submodule update --init --recursive
$ cd ..
$ export WORKSPACE=$(pwd)
$ export PACKAGES PATH=$WORKSPACE/edk2:$WORKSPACE/edk2-platforms
$ export ACTIVE PLATFORM="Platform/StandaloneMm/PlatformStandaloneMmPkg/
PlatformStandaloneMmRpmb.dsc"
$ export GCC5_AARCH64_PREFIX= aarch64-poky-linux-
$ source edk2/edksetup.sh
$ make -C edk2/BaseTools
$ build -p $ACTIVE PLATFORM -b RELEASE -a AARCH64 -t GCC5 -n `nproc`
```

Copy Build/MmStandaloneRpmb/RELEASE_GCC5/FV/BL32_AP_MM.fd to the OP-TEE OS source directory.

16.1.2.2 Building OP-TEE OS

Apply this change to scripts/nxp_build.sh.

```
@@ -95,6 +95,18 @@ function build()

CROSS_COMPILE64="$CROSS_COMPILE64" \
CFG_TEE_CORE_LOG_LEVEL="$CFG_TEE_CORE_LOG_LEVEL" \
CFG_TEE_TA_LOG_LEVEL="$CFG_TEE_TA_LOG_LEVEL" \
CFG_STMM_PATH=BL32_AP_MM.fd \
+ CFG_RPMB_FS=y \
+ CFG_IMX_SNVS=n \
CFG_NXP_CAAM=n \
CFG_RPMB_WRITE_KEY=y \
CFG_RPMB_FS_DEV_ID=2 \
```

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

```
+ CFG_CORE_DYN_SHM=y CFG_RPMB_TESTKEY=y \
+ CFG_REE_FS=n \
+ CFG_SCTLR_ALIGNMENT_CHECK=n \
+ CFG_CORE_HEAP_SIZE=2097152 \
+ CFG_TEE_RAM_VA_SIZE=4194304 \
+ CFG_PREALLOC_RPC_CACHE=n \
CFG_WERROR=y \
PLATFORM="$plat" \
O="$0"/build."$plat" \
```

To i.MX 8M Quad EVK, the CFG_RPMB_FS_DEV_ID should be 0. For i.MX 8M Nano/Mini/Plus EVK, it is 2 as follows:

```
@@ -95,6 +95,18 @@ function build()
                        CROSS COMPILE64="$CROSS COMPILE64" \
                        CFG TEE CORE LOG LEVEL="$CFG TEE CORE LOG LEVEL" \
                        CFG TEE TA LOG LEVEL="$CFG TEE TA LOG LEVEL" \
                        CFG STMM PATH=BL32 AP MM.fd \
                        CFG RPMB FS=y \
+
                        CFG IMX SNVS=n \
                        CFG_NXP_CAAM=n \
                        CFG RPMB WRITE KEY=y \
                        CFG RPMB FS DEV ID=2 \
                        CFG CORE DYN SHM=y CFG RPMB TESTKEY=y \
                        CFG REE FS=n \
                        CFG SCTLR ALIGNMENT CHECK=n \
                        CFG CORE HEAP SIZE=2097152 \
                        CFG TEE RAM VA SIZE=4194304 \
                        CFG_PREALLOC_RPC_CACHE=n \
                        CFG_WERROR=y \
                        PLATFORM="$plat" \
                        O="$0"/build."$plat" \
```

Build cmd.

Do not source the Yocto toolchain setup file; otherwise, the build fails. Take the following script as a reference.

```
#!/bin/sh
export GCC PATH=/home/Freenix/tools/fsl-imx-internal-xwayland/5.15-kirkstone/
export SDKTARGETSYSROOT=$GCC PATH/sysroots/cortexa72-cortexa53-crypto-poky-linux
export PATH=$PATH:$GCC PATH/sysroots/x86 64-pokysdk-linux/usr/bin/aarch64-poky-
linux/
export CC="aarch64-poky-linux-qcc -mcpu=cortex-a72.cortex-a53 -march=armv8-a
+crc+crypto -fstack-protector-strong -O2 -D FORTIFY SOURCE=2 -Wformat -Wformat-
security -Werror=format-security --sysroot=$SDKTARGETSYSROOT"
export CXX="aarch64-poky-linux-g++ -mcpu=cortex-a72.cortex-a53 -march=armv8-a
+crc+crypto -fstack-protector-strong -O2 -D FORTIFY SOURCE=2 -Wformat -Wformat-
security -Werror=format-security --sysroot=$\overline{SDKTARGETSYSROOT"}
export CPP="aarch64-poky-linux-gcc -E -mcpu=cortex-a72.cortex-a53 -march=armv8-
a+crc+crypto -fstack-protector-strong -O2 -D FORTIFY SOURCE=2 -Wformat -
Wformat-security -Werror=format-security --sysroot=$SDKTARGETSYSROOT"
export AS="aarch64-poky-linux-as"
export LD="aarch64-poky-linux-ld
                                 --sysroot=$SDKTARGETSYSROOT"
./scripts/nxp build.sh imx-mx8mnevk [For i.MX8MN-EVK]
./scripts/nxp build.sh imx-mx8mmevk [For i.MX8MM-EVK]
./scripts/nxp build.sh imx-mx8mpevk [For i.MX8MP-EVK]
```

```
./scripts/nxp_build.sh imx-mx8mqevk [For i.MX8MQ-EVK Remember to update CFG_RPMB_FS_DEV_ID before run this]
```

Copy tee-raw.bin to imx-mkimage/iMX8M/ for the boards to be built with flash.bin/capsule1.bin and rename it to tee.bin-stmm.

16.1.2.3 Building U-Boot

```
#!/bin/sh
. /home/Freenix/tools/fsl-imx-internal-xwayland/5.15-kirkstone/environment-
setup-cortexa72-cortexa53-crypto-poky-linux
make imx8mm_evk_defconfig O=imx8mmevk
make O=imx8mmevk -j4
make imx8mp_evk_defconfig O=imx8mpevk
make O=imx8mpevk -j4
make imx8mn_evk_defconfig O=imx8mnevk
make O=imx8mnevk -j4
make imx8mq_evk_defconfig O=imx8mqevk
make O=imx8mqevk -j4
```

16.1.2.4 Building ATF

```
make PLAT=imx8mp SPD=opteed bl31
make PLAT=imx8mn SPD=opteed bl31
make PLAT=imx8mm SPD=opteed bl31
make PLAT=imx8mq SPD=opteed bl31
```

16.1.2.5 Generating flash.bin and capsule1.bin

Generate the key:

```
make SOC=iMX8MP TEE=tee.bin-stmm capsule_key
```

There is no need to generate the capsule key every time. Save the CRT.* files to a backup folder. The files are required when generating <code>capsule1.bin</code>. If these files are lost, regenerate <code>flash.bin</code> and <code>capsule1.bin</code>. If your <code>flash.bin</code> and <code>capsule1.bin</code> use different CRT files, capsule update will fail.

```
→ imx-mkimage git:(n-m) X make SOC=iMX8MP clean; make SOC=iMX8MP TEE=tee.bin-stmm capsule_key imx8qm clean done imx8qx clean done imx8dxl clean done imx8ulp clean done imx8ulp clean done compiling mkimage_imx8 openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=CRT/ -keyout CRT.key -out CRT.crt -nodes -days 365 Generating a RSA private key .....+++++
writing new private key to 'CRT.key' cert-to-efi-sig-list CRT.crt CRT.esl
```

Take i.MX 8M Plus as an example:

```
cp $U_BOOT/imx8mpevk/u-boot-nodtb.bin imx-mkimage/iMX8M
cp $U_BOOT/imx8mpevk/spl/u-boot-spl.bin imx-mkimage/iMX8M
cp $U_BOOT/imx8mpevk/arch/arm/dts/imx8mp-evk.dtb imx-mkimage/iMX8M
```

cp \$ATF/build/imx8mp/release/bl31.bin imx-mkimage/iMX8M
cp \$OPTEE/build.imx-mx8mpevk/core/tee-raw.bin imx-mkimage/iMX8M/tee.bin-stmm
Copy the ddr firmware to imx-mkimage/iMX8M/
make SOC=iMX8MP clean; make SOC=iMX8MP TEE=tee.bin-stmm flash_evk_stmm_capsule
[Save flash.bin, if you wanna generate capsule1.bin with other binaries, such as updated u-boot/atf/tee, copy new binaries and rerun this command, and save capsule1.bin]

```
# interestinging click (cm.) / make SOC-IMCONO clean; make SOC-IMCONO TRE-tee,bin-stem flash, evk_stem_capsule imsogn clean done compared to the com
```

```
Image 2 (atf-1)
Description: ARM Trusted Firmware
Created: Fri Jul 22 16:08:09 2022
Type: Firmware
Compression: uncompressed
Data Size: 41184 Bytes = 40.22 KiB = 0.04 MiB
Architecture: AArch64
OS: Unknown OS
OS: Unknown OS
Load Address: 0x00970000
Image 3 (tee-1)
Description: TEE firmware
Created: Fri Jul 22 16:08:09 2022
Type: Firmware
Compression: uncompressed
Data Size: 727184 Bytes = 710.14 KiB = 0.69 MiB
Architecture: AArch64
 OS: Unknown OS
Load Address: 0x56000000
 Default Configuration: 'config-1'
Configuration 0 (config-1)
Description: evk
 Firmware:
                              uboot-1
fdt-1
atf-1
 FDT:
Loadables:
tee-1 tee-1 mkimage_imx8 -version v2 -fit -loader u-boot-spl-ddr.bin 0x920000 -second_loader u-boot.itb 0x40200000 0x60000 -out flash.bin latform: i.MX8M (mScale)
OM VERSION: v2
latform: v2

M VERSION: v2

sing FIT image

OADER IMAGE: u-boot-spl-ddr.bin start addr: 0x00920000

ECOND LOADER IMAGE: u-boot.itb start addr: 0x40200000 offset: 0x00060000

utput: flash.bin

HOME FW] ========
eader.tag.
eader.length:
eader.version:
                                                 0x0
                                                0x0
0x0
  d_ptr:
       data ptr:
                                                 0x0
 eserved2:
oot_data.start:
                                                 0x0
0x0
                                                 0x0
                  IVT HEADER [PLUGIN] ======
 ader.tag:
eader.version:
                                                 0x0
eserved1:
                                                 0x0
                                                 0x0
0x0
       _data_ptr:
                                                 0x0
```

16.2 Running capsule update

Perform the following steps to run the capsule update.

1. Set the board to serial download mode. Burn flash.bin to eMMC with uuu -b emmc flash.bin. The flash.bin should be the STMM enabled ones.

- 2. Download https://github.com/ARM-software/arm-systemready/blob/main/IR/prebuilt_images/v24.03_2.1.1/ir-acs-live-image-generic-arm64.wic.xz.
- 3. Burn acs.img to the SD card and plug in the SD card to the board.

```
$ dd if=ir-acs-live-image-generic-arm64.wic of=/dev/sdb bs=128M conv=sync status
671088640 bytes (671 MB, 640 MiB) copied, 13 s, 51.3 MB/s
4+1 records in
5+0 records out
671088640 bytes (671 MB, 640 MiB) copied, 13.0853 s, 51.3 MB/s
```

- 4. Set the board to boot from eMMC, and check the board silkscreen to set the boot switch correctly.
- 5. (Optional) Clear the eMMC key if necessary.

Note:

- Once you burn the key in Step 7, you do not need to clear the key again every time.
- The key is the OP-TEE test key for test purposes. For production, use your own key.

```
=>mw 0x60000000 0xc33eebd3;mw 0x60000004 0x9f4c336e;mw 0x60000008
0xc0e28c98;mw 0x6000000c 0x615459b8;mw 0x60000010 0x86cf2b0d;mw 0x60000014
0xf24d8464;mw 0x60000018 0xc6e656ab;mw 0x6000001c 0xe401b71b
=>mw.b 0x50000000 0 0x400000
=>mmc rpmb write 0x50000000 0 0x2000 0x60000000
```

For i.MX 93 11x11 EVK:

```
=>mw 0x80000000 0xc33eebd3;mw 0x80000004 0x9f4c336e;mw 0x80000008
0xc0e28c98;mw 0x8000000c 0x615459b8;mw 0x80000010 0x86cf2b0d;mw 0x80000014
0xf24d8464;mw 0x80000018 0xc6e656ab;mw 0x8000001c 0xe401b71b
=>mw.b 0x90000000 0 0x400000
=>mmc rpmb write 0x90000000 0 0x2000 0x80000000
```

```
u-boot=> mw 0x60000000 0xc33eebd3;mw 0x60000004 0x9f4c336e;mw 0x60000008 0xc0e28c98;mw 0
u-boot=> mw.b 0x50000000 0 0x400000
u-boot=> mmc rpmb write 0x50000000 0 0x2000 0x60000000
MMC RPMB write: dev # 2, block # 0, count 8192 ... 8192 RPMB blocks written: OK
```

6. Set dfu alt info for i.MX 8M Plus EVK.

```
=>env set dfu_alt_info "mmc 2=1 raw 0x0 0x2000 mmcpart 1" =>saveenv
```

For i.MX 8M Quad EVK:

```
=>env set dfu alt info "mmc 0=1 raw 0x42 0x2000 mmcpart 1"
```

For i.MX 8M Mini EVK:

```
=>env set dfu alt info "mmc 2=1 raw 0x42 0x2000 mmcpart 1"
```

For i.MX 8M Nano/Plus EVK:

```
=>env set dfu alt info "mmc 2=1 raw 0x0 0x2000 mmcpart 1"
```

For i.MX 93 11x11 EVK:

```
=>env set dfu_alt_info "mmc 0=1 raw 0x0 0x2000 mmcpart 1"
=> saveenv
=> reset
```

7. Burn the key after the U-Boot is up.

```
=>fatload mmc 1:1 0x40480000 /security-interface-extension-keys/TestPK1.auth
```

```
=>setenv -e -nv -bs -rt -at -i 0x40480000:$filesize PK
=>fatload mmc 1:1 0x40480000 /security-interface-extension-keys/TestKEK1.auth
=>setenv -e -nv -bs -rt -at -i 0x40480000:$filesize KEK
=>fatload mmc 1:1 0x40480000 /security-interface-extension-keys/TestDB1.auth
=>setenv -e -nv -bs -rt -at -i 0x40480000:$filesize db
=>fatload mmc 1:1 0x40480000 /security-interface-extension-keys/TestDBX1.auth
=>setenv -e -nv -bs -rt -at -i 0x40480000:$filesize dbx
```

For i.MX 93 11x11 EVK:

```
=>fatload mmc 1:1 0x80480000 /security-interface-extension-keys/TestPK1.auth =>setenv -e -nv -bs -rt -at -i 0x80480000:$filesize PK =>fatload mmc 1:1 0x80480000 /security-interface-extension-keys/TestKEK1.auth =>setenv -e -nv -bs -rt -at -i 0x80480000:$filesize KEK =>fatload mmc 1:1 0x80480000 /security-interface-extension-keys/TestDB1.auth =>setenv -e -nv -bs -rt -at -i 0x80480000:$filesize db =>fatload mmc 1:1 0x80480000 /security-interface-extension-keys/TestDBX1.auth =>setenv -e -nv -bs -rt -at -i 0x80480000:$filesize dbx
```

```
u-boot=> fatload mmc 1:1 0x40480000 /efi/boot/bbr/security-interface-extension-keys/Test
2024 bytes read in 4 ms (494.1 KiB/s)
u-boot=> setenv -e -nv -bs -rt -at -i 0x40480000:$filesize PK
Scanning disk mmc@30b50000.blk...
Scanning disk mmc@30b60000.blk...
Found 6 disks
adv7535 mipi2hdmi adv7535@3d: Can't find cec device id=0x3c
fail to probe panel device adv7535@3d
fail to get display timings
u-boot=> fatload mmc 1:1 0x40480000 /efi/boot/bbr/security-interface-extension-keys/Test
2026 bytes read in 4 ms (494.1 KiB/s)
u-boot=> setenv -e -nv -bs -rt -at -i 0x40480000:$filesize KEK
u-boot=> fatload mmc 1:1 0x40480000 /efi/boot/bbr/security-interface-extension-keys/Test
2027 bytes read in 5 ms (395.5 KiB/s)
u-boot=> setenv -e -nv -bs -rt -at -i 0x40480000:$filesize db
u-boot=> fatload mmc 1:1 0x40480000 /efi/boot/bbr/security-interface-extension-keys/Test
2027 bytes read in 4 ms (494.1 KiB/s)
u-boot=> setenv -e -nv -bs -rt -at -i 0x40480000:$filesize dbx
```

8. Store capsule1.bin to the eMMC or SD EFI system partition.

Note: It must be the EFI system partition; otherwise, <code>capsule-update</code> exits silently. The user can reuse the SD card in Step 8. Format the first partition as the EFI system partition and create a directory: <code>EFI/UpdateCapsule/</code>.

```
=>setenv serverip 10.193.108.171;dhcp $loadaddr capsule1.bin-imx8mpevk; [8MP] =>setenv serverip 10.193.108.171;dhcp $loadaddr capsule1.bin-imx8mnevk; [8MN] =>setenv serverip 10.193.108.171;dhcp $loadaddr capsule1.bin-imx8mmevk; [8MM] =>setenv serverip 10.193.108.171;dhcp $loadaddr capsule1.bin-imx8mqevk; [8MQ]
```

If capsule1.bin is put in sd/emmc:

```
=>fatwrite mmc [X]:1 ${loadaddr} /EFI/UpdateCapsule/capsule1.bin 0x ${filesize}
```

- [X] should be 2 for eMMC, and 1 for SD. Except i.MX 8M Quad and i.MX 93, 0 for eMMC, 1 for SD.
- 9. If [X] is set to 1 in Step 8:

```
=> efidebug boot add -b 0 Boot0000 mmc 1:1 capsule1.bin;efidebug boot next 0
```

If [X] is set to 2 in Step 8:

=> efidebug boot add -b 0 Boot0000 mmc 2:1 capsule1.bin;efidebug boot next 0

If [X] is set to **0** in Step 8, only for i.MX 8M Quad or i.MX 93 eMMC:

```
=> efidebug boot add -b 0 Boot0000 mmc 0:1 capsule1.bin;efidebug boot next 0
```

It depends on where capsule1.bin is stored.

- For i.MX 8M Mini/Nano/Plus EVK: eMMC is index 2, and SD is index 1.
- For i.MX 8M Quad or i.MX 93 EVK: eMMC is index 0, and SD is index 1.
- 10. The following command can also be used to update and reset the board:

When this command is executed:

```
u-boot=> efidebug capsule disk-update
```

Applying the capsule capsule1.bin succeeded.

Reboot after firmware update resetting.

```
u-boot=> setenv serverip 10.193.108.171; dhcp $loadaddr capsule1.bin ethernet@30bf0000 Waiting for PHY auto negotiation to complete.... done
BOOTP broadcast 1
DHCP client bound to address 10.193.102.97 (144 ms)
Using ethernet@30bf0000 device
TFTP from server 10.193.108.171; our IP address is 10.193.102.97; sending through gateway 10.193.102.254 Filename 'capsule1.bin'.
Load address: 0x40400000
**********
         2.3 MiB/s
done
Bytes transferred = 2279381 (22c7d5 hex)
u-boot=> fatwrite mmc 1:1 ${loadaddr} /EFI/UpdateCapsule/capsule1.bin 0x${filesize}
2279381 bytes written in 103 ms (21.1 MiB/s)
u-boot=> version
J-Boot 2022.04-00126-g227c6f11aeb (Jul 22 2022 - 15:42:30 +0800)
aarch64-poky-linux-gcc (GCC) 11.2.0
GNU ld (GNU Binutils) 2.37.20210721
u-boot=> efidebug boot add -b 0 Boot0000 mmc 1:1 capsule1.bin;efidebug boot next 0
GUID: 8be4df61-93ca-11d2-aa0d-00e098032b8c (EFI_GLOBAL_VARIABLE_GUID)
Attributes: 0x7
Value:
u-boot=> efidebug capsule disk-update
applying capsule capsule1.bin succeeded.
Reboot after firmware updateresetting ...
U-Boot SPL 2022.04-01007-36498883c688 (Jul 22 2022 - 16:19:52 +0800)
DDRINFO: start DRAM init
DDRINFO: DRAM rate 4000MTS
DDRINFO:ddrphy calibration done
DDRINFO: ddrmix config done
SECO: RNG instantiated
Normal Boot
Trying to boot from BOOTROM
image offset 0x0, pagesize 0x200, ivt offset 0x0
NOTICE: BL31: v2.6(release):android-12.0.0_2.0.0-16-g99c408024
NOTICE: BL31: Built : 08:01:50, Jul 22 2022
U-Boot 2022.04-01007-q6498883c688 (Jul 22 2022 - 16:19:52 +0800)
```

16.3 Running the ACS Test

Note: flash.bin should be STMM enabled.

- 1. Download https://github.com/ARM-software/arm-systemready/blob/main/IR/prebuilt_images/v24.03_2.1.1/ir-acs-live-image-generic-arm64.wic.xz.
- 2. Clear the key burned in Section 16.2.

```
U-Boot=>mw 0x60000000 0xc33eebd3;mw 0x60000004 0x9f4c336e;mw 0x60000008 0xc0e28c98;mw 0x6000000c 0x615459b8;mw 0x60000010 0x86cf2b0d;mw 0x60000014 0xf24d8464;mw 0x60000018 0xc6e656ab;mw 0x6000001c 0xe401b71b =>mw.b 0x50000000 0 0x400000 =>mmc rpmb write 0x50000000 0 0x2000 0x60000000
```

3. Burn the ACS image to the SD card.

```
$sudo dd if=ir-acs-live-image-generic-arm64.wic of=/dev/sdb bs=128M conv=sync
status=progress
```

- 4. Boot the board from eMMC. It takes several hours to finish the test. Store the console log named as acs-console.log.
- 5. After the test is complete, copy acs results to the Host PC.
- 6. Check the SCT result.
 - a. Clone https://gitlab.arm.com/systemready/edk2-test-parser, branch: main.
 - b. Run the test as follows:

```
./parser.py --config EBBR.yaml ../acs_results/sct_results/Overall/
Summary.ekl ../acs_results/sct_results/Sequence/EBBR.seq
INFO ident_seq: Identified `../acs_results/sct_results/Sequence/EBBR.seq'
as "EBBR.seq from ACS-IR v22.10_2.0.0_BETA-1 .. v23.09_2.1.0".
INFO apply_rules: Updated 69 tests out of 10793 after applying 157 rules
INFO print_summary: 0 dropped, 0 failure, 55 ignored, 1 known acs
limitation, 13 known u-boot limitations, 10724 pass, 0 warning
```

- 7. Run the dt-schema check.
 - a. Install the dt-schema tools from https://github.com/devicetree-org/dt-schema.
 - b. Download the linux-next tree.
 - c. Get the latest SystemReady scripts from https://gitlab.arm.com/systemready/systemready-scripts.
 - d. Copy BsaDevTree.dtb out from Step 6 acs results/uefi/BsaDevTree.dtb.
 - e. Run the following scripts:

```
dt-validate -s Documentation/devicetree/bindings -m BsaDevTree.dtb |& tee
log
./systemready-scripts/compatibles Documentation/devicetree/bindings >
compatibles.txt
systemready-scripts/dt-parser.py --compatibles compatibles.txt --print log
```

f. The result is as follows, without error:

```
Results as below, no error:
INFO parse: 31 entries
INFO dedupe_entries: De-duplicated 0 entries
INFO apply_rules: Updated 10 entries with rules

Summary
-----
21 dt-validate warning
3 dt-validate warning missing property
7 dt-validate warning naming
```

Non-ignored entries

16.4 Distribution installation

Install from the SDCard (ISO) to eMMC. After the installation is complete, eject your SD card, and then switch off/on the power on the board.

For i.MX 8M Quad EVK or i.MX 93 11x11 EVK:

setenv video off yes; saveenv; reset;

16.4.1 Fedora

Perform the following steps:

- 1. Download the Fedora 36 Workstation or newer version.
 - https://getfedora.org/en/iot/download/
 - https://download.fedoraproject.org/pub/alt/iot/36/IoT/aarch64/iso/Fedora-IoT-ostreeaarch64-36-20220618.0.iso
- 2. Burn the ISO to an SD card, and then boot the board from eMMC.
 - When the Fedora installer starts up, select what needs to be configured. After all configurations are complete, enter **b** to start the installation.
 - When Fedora reports "Failed to set new efi boot target. This is most likely a kernel or firmware bug", respond with "yes" and continue. Ignore it, and it will not block the installation and boot.
- 3. After the installation is complete, press **Enter** to auto reboot.

16.4.2 OpenSuse

Perform the following steps:

- 1. Download openSUSE Leap 15.4 or newer version: https://get.opensuse.org/leap/15.4/#download/openSUSE-Leap-15.4-DVD-aarch64-Build243.2-Media.iso
- For i.MX 8M Quad EVK, use https://download.opensuse.org/ports/aarch64/tumbleweed/iso/openSUSE-Tumbleweed/iso/openSUSE-Leap 15.4 is not able to recognize eMMC on i.MX 8M Quad EVK, so use Tumbleweed.
- 3. Burn it to the SD card, and boot it from eMMC.
- 4. After the install is complete, remove the installation media.
- 5. Switch off/on the power on the board

16.5 Result check

Perform the following steps to check the result:

- Use the following template to store the result: <u>https://gitlab.arm.com/systemready/systemready-ir-template</u>
- 2. Run the SystemReady scripts:
 - a. Clone git@git.gitlab.arm.com:systemready/systemready-scripts.git
 - b. Run check-sr-results.py.

For more information, see README.md.

17 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

18 Revision History

This table provides the revision history.

Revision history

Document ID	Release date	Description
IMXLUG_6.6.23_2.0.0	26 July 2024	Updated a command line in Section 10.9.1.3.
IMXLUG_6.6.23_2.0.0	28 June 2024	Upgraded to the 6.6.23 kernel, U-Boot v2024.04, TF-A v2.10, OP-TEE 4.2.0, Yocto 5.0 Scarthgap, and added the i.MX 91 as Alpha quality, i.MX 95 as Beta quality.
IMXLUG v.LF6.6.3_1.0.0	29 March 2024	Upgraded to the 6.6.3 kernel, removed the i.MX 91P, and added the i.MX 95 as Alpha Quality.
IMXLUG v.LF6.1.55_2.2.0	12/2023	Updated a link in Section 10.9.1.
IMXLUG v.LF6.1.55_2.2.0	12/2023	Upgraded to the 6.1.55 kernel.
IMXLUG v.LF6.1.36_2.1.0	09/2023	Upgraded to the 6.1.36 kernel.
IMXLUG v.LF6.1.22_2.0.0	08/2023	Changed "0x9F800" to "0x9F8000" in Section Section 4.3.
IMXLUG v.LF6.1.22_2.0.0	07/2023	Updated a description in Section Section 4.3.4.
IMXLUG v.LF6.1.22_2.0.0	06/2023	Upgraded to the 6.1.22 kernel.
IMXLUG v.LF6.1.1_1.0.00	03/2023	Upgraded to the 6.1.1 kernel.
IMXLUG v.LF5.15.71_2.2.0	12/2022	Upgraded to the 5.15.71 kernel.
IMXLUG v.LF5.15.52_2.1.0	09/2022	Upgraded to the 5.15.52 kernel, and added the i.MX 93.
IMXLUG v.LF5.15.32_2.0.0	06/2022	Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and Kirkstone Yocto.

Revision history...continued

TC VISIOII IIIStOI ycontinueu		
Document ID	Release date	Description
IMXLUG v.LF5.15.5_1.0.0	03/2022	Upgraded to the 5.15.5 kernel, Honister Yocto, and Qt6.
IMXLUG v.LF5.10.72_2.2.0	12/2021	Upgraded the kernel to 5.10.72 and updated the BSP.
IMXLUG v.LF5.10.52_2.1.0	10/2021	Added an appendix for Murata Wi-Fi/Bluetooth solutions.
IMXLUG v.LF5.10.52_2.1.0	09/2021	Updated for i.MX 8ULP Alpha and the kernel upgraded to 5.10.52.
IMXLUG v.LF5.10.35_2.0.0	06/2021	Upgraded Yocto Project to Hardknott and the kernel upgraded to 5.10.35.
IMXLUG v.LF5.10.9_1.0.0	03/2021	Upgraded Yocto Project to Gatesgarth and the kernel upgraded to 5.10.9.
IMXLUG v.L5.4.70_2.3.0	01/2021	Updated the command lines in Section "Running the Arm Cortex-M4 image".
IMXLUG v.L5.4.70_2.3.0	12/2020	i.MX 5.4 consolidated GA for release i.MX boards including i. MX 8M Plus and i.MX 8DXL.
IMXLUG v.L5.4.47_2.2.0	09/2020	i.MX 5.4 Beta2 release for i.MX 8M Plus, Beta for 8DXL, and consolidated GA for released i.MX boards.
IMXLUG v.L5.4.24_2.1.0	06/2020	i.MX 5.4 Beta release for i.MX 8M Plus, Alpha2 for 8DXL, and consolidated GA for released i.MX boards.
IMXLUG v.L5.4.3_2.0.0	04/2020	i.MX 5.4 Alpha release for i.MX 8M Plus and 8DXL EVK boards.
IMXLUG v.LF5.4.3_1.0.0	03/2020	i.MX 5.4 Kernel and Yocto Project Upgrades.
IMXLUG v.L4.19.35_1.1.0	10/2019	i.MX 4.19 Kernel and Yocto Project Upgrades.
IMXLUG v.L4.19.35_1.0.0	07/2019	i.MX 4.19 Beta Kernel and Yocto Project Upgrades.
IMXLUG v.L4.14.98_2.0.0_ga	04/2019	i.MX 4.14 Kernel upgrade and board updates.
IMXLUG v.L4.14.78_1.0.0_ga	01/2019	i.MX 6, i.MX 7, i.MX 8 family GA release.
IMXLUG v.L4.14.62_1.0.0_beta	11/2018	i.MX 4.14 Kernel Upgrade, Yocto Project Sumo upgrade.
IMXLUG v.L4.9.123_2.3.0_8mm	09/2018	i.MX 8M Mini GA release.
IMXLUG v.L4.9.88_2.2.0_8qxp-beta2	07/2018	i.MX 8QuadXPlus Beta2 release.
IMXLUG v.L4.9.88_2.1.0_8mm-alpha	06/2018	i.MX 8M Mini Alpha release.
IMXLUG v.L4.9.88_2.0.0-ga	05/2018	i.MX 7ULP and i.MX 8M Quad GA release.
IMXLUG v.L4.9.51_imx8mq-ga	03/2018	Added i.MX 8M Quad GA.
IMXLUG v.L4.9.51_8qm-beta2/8qxp- beta	02/2018	Added i.MX 8QuadMax Beta2 and i.MX 8QuadXPlus Beta.
IMXLUG v.L4.9.51_imx8mq-beta	12/2017	Added i.MX 8M Quad.
IMXLUG v.L4.9.51_imx8qm-beta1	12/2017	Added i.MX 8QuadMax.
IMXLUG v.L4.9.51_imx8qxp-alpha	11/2017	Initial release.

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

IMXLUG_6.6.23_2.0.0

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Contents

1	Overview	2	4.7	Running Linux OS on the target	41
1.1	Audience	2	4.7.1	Running the image from NAND	43
1.2	Conventions	2	4.7.2	Running Linux OS from Parallel NOR	
1.3	Supported hardware SoCs and boards	2	4.7.3	Running the Linux OS image from QuadSPI.	
1.4	References		4.7.4	Running the Arm Cortex-M4/7/33 image	
2	Introduction		4.7.5	Linux OS login	
3	Basic Terminal Setup		4.7.6	Running Linux OS from MMC/SD	
4	Booting Linux OS		4.7.7	Running the Linux image from NFS	
4.1	Software overview		4.8	Arm SystemReady-IR	
4.1.1	Bootloader		4.8.1	Arm SystemReady-IR ACS compliance test .	
4.1.2	Linux kernel image and device tree		4.8.2	Capsule update	
4.1.3	Root file system		4.8.3	Linux distro installation	
4.2	Universal update utility		5	Enabling Solo Emulation	
4.2.1	Downloading UUU		6	Power Management	
4.2.2	Using UUU		6.1	Suspend and resume	
4.3	Preparing an SD/MMC card to boot		6.2	CPU frequency scaling	
4.3.1	Preparing the card		6.3	Bus frequency scaling	
4.3.2	Copying the full SD card image		7	Multimedia	
4.3.3	Partitioning the SD/MMC card		7.1	i.MX multimedia packages	
4.3.4	Copying a bootloader image		7.1	Building limited access packages	
4.3.5	Copying the kernel image and DTB file		7.3	Multimedia use cases	
4.3.6	Copying the certific image and DTB life Copying the root file system (rootfs)		7.3 7.3.1	Playback use cases	
4.4	Downloading images		7.3.1 7.3.1.1	Audio-only playback	
4.4.1	Downloading images using U-Boot		7.3.1.1	Video-only playback	
4.4.1.1		13	7.3.1.2	Audio/Video file playback	
4.4.1.1	Flashing an Arm Cortex-M4 image on QuadSPI	11	7.3.1.3 7.3.1.4	Multichannel audio playback	
1112					
4.4.1.2 4.4.1.3	Downloading an image to MMC/SD		7.3.1.5 7.3.1.6	Other methods for playback	
	Using eMMC			Video playback to multiple displays	
4.4.1.4	Flashing U-Boot on SPI-NOR from U-Boot	19	7.3.2	Audio encoding	
4.4.1.5	Flashing U-Boot on Parallel NOR from U-	20	7.3.3	Video encoding	
4.4.0	Boot	20	7.3.4	Transcoding	
4.4.2	Using an i.MX board as the host server to	04	7.3.5	Audio recording	
4.5	create a rootfs		7.3.6	Video recording	
4.5	How to boot the i.MX boards		7.3.7	Audio/Video recording	
4.5.1	Booting from an SD card in slot SD1		7.3.8	Camera preview	
4.5.2	Booting from an SD card in slot SD2		7.3.9	Libcamera	
4.5.3	Booting from an SD card in slot SD3		7.3.9.1	Overview	
4.5.4	Booting from an SD card in slot SD4		7.3.9.2	Camera modules	
4.5.5	Booting from eMMC		7.3.9.3	Libcamera configuration	
4.5.6	Booting from SATA		7.3.9.4	GStreamer pipelines	
4.5.7	Booting from NAND		7.3.9.5	cam test application	
4.5.8	Booting from SPI-NOR		7.3.9.6	Limitations	
4.5.9	Booting from EIM (Parallel) NOR		7.3.10	Recording the TV-in source	
4.5.10	Booting from QuadSPI or FlexSPI	30	7.3.11	Web camera	
4.5.11	Serial download mode for the	00	7.3.12	HTTP streaming	
4 5 40	Manufacturing Tool	32	7.3.13	HTTP live streaming	
4.5.12	How to build U-Boot and Kernel in	0.4	7.3.14	MPEG-DASH streaming	67
	standalone environment	34	7.3.15	Real Time Streaming Protocol (RTSP)	
4.5.13	How to build imx-boot image by using imx-			playback	67
4.0	mkimage		7.3.16	RTP/UDP MPEGTS streaming	
4.6	Flash memory maps		7.3.17	RTSP streaming server	
4.6.1	MMC/SD/SATA memory map		7.3.18	Video conversion	
4.6.2	NAND flash memory map		7.3.19	Video composition	
4.6.3	Parallel NOR flash memory map		7.4	PipeWire input/output settings	
4.6.4	SPI-NOR flash memory map		7.4.1	PipeWire settings	
4.6.5	QuadSPI flash memory map	41	7.5	Installing gstreamer1.0-libav into rootfs	74

IMXLUG_6.6.23_2.0.0

i.MX Linux User's Guide

8	Audio	74	10.5	Disk encryption acceleration	.101
8.1	DSP support	74	10.5.1	Enabling disk encryption support in kernel	
8.1.1	HiFi 4 DSP framework			for the platform containing CAAM hardware	
8.1.2	Sound Open Firmware			IP	102
8.2	HDMI eARC support		10.5.2	User space tools for disk encryption	
8.3	Low power voice UI		10.5.3	DM-Crypt using CAAM backed keys	
8.3.1	Introduction		10.5.3.1	DM-Crypt with Trusted keys backed by	
8.3.2	Standard voice solution		10.0.0.1	CAAM	104
8.3.3	Audio Front End (AFE)		10.5.3.2	DM-Crypt with CAAM's tagged key	
8.3.4	Linux drivers		10.5.3.3	Usage	
8.3.5	Cortex-M Image		10.5.4	DM-Crypt using DCP's Crypto Key	
8.3.5.1	Application name		10.5.5	DM-Crypt usage on i.MX Platforms without	
8.3.5.2	Board setup		10.5.5	CAAM hardware IP	112
8.3.5.2	Execution		10.6	crypto_af_alg application support	
8.3.6	Power consumption notes		10.6.1	Prerequisites	
		03			
8.3.7	Using Linux remoteproc (i.MX 93 and i.MX	00	10.6.2	Building the kernel	
0.4	95)		10.6.2.1	Kernel configuration	
8.4	Conversa Integration		10.6.2.2	Building a toolchain	
9	Graphics		10.6.2.3	Cross compiling the user space sources	
9.1	imx-gpu-sdk		10.6.3	Usage	
9.2	G2D-imx-samples		10.6.4	Use case example	
9.3	viv_samples		10.7	Kernel TLS offload	
9.4	Qt 6		10.7.1	Prerequisites	
10	Security		10.7.2	Running Kernel TLS test	
10.1	CAAM kernel driver		10.8	IMA/EVM on i.MX SoCs	
10.1.1	Introduction		10.8.1	EVM Key on user keyrings	
10.1.2	Source files		10.8.2	Modes of operation in IMA EVM	
10.1.3	Module loading		10.8.3	Build Steps	
10.1.4	Kernel configuration	89	10.8.4	Steps to verify IMA EVM feature	. 118
10.1.5	How to test the drivers	90	10.8.4.1	Testing hashing	119
10.2	Crypto algorithms support	92	10.8.4.2	Testing signing	.119
10.3	CAAM Job Ring backend driver		10.9	Security reference design	.120
	specifications	93	10.9.1	Automated image signing for secure boot	120
10.3.1	Verifying driver operation and correctness	94	10.9.1.1	NXP CST Signer	. 120
10.3.2	Incrementing IRQs in /proc/interrupts	94	10.9.1.2	Prerequisites for preparing a signed image	120
10.3.3	Verifying the 'self test' fields say 'passed'		10.9.1.3	Yocto setup for secure boot build	. 121
	in /proc/crypto	94	10.9.1.4	Generating a signed bootloader/kernel/WIC	
10.4	OpenSSL offload	95		image in Yocto project	. 121
10.4.1	OpenSSL software architecture	95	10.9.1.5	Booting a signed image	.121
10.4.2	OpenSSL's ENGINE interface		11	Connectivity	
10.4.3	NXP solution for OpenSSL hardware		11.1	Connectivity for Bluetooth wireless	
	offloading	96		technology and Wi-Fi	.122
10.4.4	Deploying OpenSSL into rootfs		11.2	Connectivity for USB type-C	
10.4.5	Running OpenSSL benchmarking tests with		11.3	NXP Bluetooth/Wi-Fi information	
	cryptodev engine	97	11.4	Hardware limitations	
10.4.5.1	Running OpenSSL benchmarking tests for		11.5	Certification	
	symmetric ciphering and digest	97	11.5.1	WFA certification	
10.4.6	Running OpenSSL benchmarking tests with		11.5.2	Bluetooth controller certification	
	AF ALG engine	98	12	DDR Performance Monitor	
10.4.6.1	Running OpenSSL benchmarking tests for	00	12.1	Introduction	
10.4.0.1	symmetric ciphering and digest	98	12.2	Frequently used events	
10.4.7	Running OpenSSL asymmetric tests with	50	12.3	Showing supported events	
10.4.7	PKCS#11 based engine	08	12.4	Examples for monitoring transactions	
10 / 7 1	Running p11tool to generate key (RSA or	90	12. 4 12.5	Performance metric	
10.4.7.1	- · · · · · · · · · · · · · · · · · · ·	00			
10 4 7 0	Lising OpenSSI, from command line		12.5.1	Showing supported metric	
10.4.7.2	Using OpenSSL toot for RSA		12.5.2	Monitoring transactions	
10.4.7.3	Running OpenSSL test for RSA		12.6	DDR Performance usage summary	. 130
10.4.7.4	Running OpenSSL test for EC		13	One-Time Programmable Controller	400
10.4.7.5	Running the OPENSSL Kernel TLS test	101		Driver Using NVMEM Subsystem	. 130

NXP Semiconductors

IMXLUG_6.6.23_2.0.0

i.MX Linux User's Guide

13.1	Introduction	. 130
13.2	NVMEM provider OCOTP	130
13.3	NVMEM consumer	130
13.4	Examples to read/write the raw NVMEM file	
	in user space	
14	NXP elQ Machine Learning	131
15	Murata Wi-Fi/Bluetooth Solutions	. 131
16	NXP i.MX SystemReady IR	133
16.1	Preparing binaries	133
16.1.1	Yocto	
16.1.1.1	Setting up the Yocto build environment	134
16.1.1.2	Building Host packages for Yocto build	134
16.1.1.3	Setting up the NXP i.MX Yocto Linux BSP	134
16.1.1.4	Building the STMM bootloader	
16.1.2	Manual build	. 135
16.1.2.1	Building EDK2	. 135
16.1.2.2	Building OP-TEE OS	. 135
16.1.2.3	Building U-Boot	
16.1.2.4	Building ATF	
16.1.2.5	Generating flash.bin and capsule1.bin	
16.2	Running capsule update	
16.3	Running the ACS Test	. 143
16.4	Distribution installation	
16.4.1	Fedora	
16.4.2	OpenSuse	. 144
16.5	Result check	. 144
17	Note About the Source Code in the	
	Document	
18	Revision History	. 145
	Legal information	147

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.