전자회로

- 문 1. 하한 차단주파수가 150 [kHz]이고 상한 차단주파수가 600 [kHz]인 대역통과필터(bandpass filter)의 Q(quality factor)값은?
- 문 2. 다음 회로에서 변압기 권선비는 10:1이고 왼편 1차 측 전압은 $V_m = 110\sin{(120\pi t)}$ [V]이다. 다이오드에 걸리는 최대 역방향 전압[V]은? (단, 다이오드 양단의 순방향 전압은 0.7[V]이다)

- ① 9.6
- ② 10.3
- ③ 11
- (4) 108.6
- 문 3. 다음 회로에서 출력 Y의 논리식은?

- \bigcirc A+B
- 2 $A \cdot B$
- $\overline{A} \cdot \overline{B}$
- $4 \overline{A} + \overline{B}$

- 문 4. 다이오드회로에 대한 설명으로 옳은 것만을 모두 고른 것은?
 - ㄱ. 발광 다이오드(light emitting diode)는 순방향 바이어스를 인가하여 사용하며 발광하는 빛의 출력량은 순방향 전류에 비례한다.
 - ㄴ. 터널 다이오드(tunnel diode)는 부성저항(negative resistance) 영역의 특성이 있어 발진회로에 사용될 수
 - 다. 버랙터 다이오드(varactor diode)는 역방향 바이어스가 증가할수록 다이오드의 커패시턴스는 증가한다.
 - 리. 실리콘 PN 접합 다이오드에 순방향 바이어스를 인가하면 공핍 영역은 넓어지고 다이오드 양단에는 장벽전위 0.7 [V]가 걸린다.
 - ① 7, ∟

② 7. 己

③ ∟, ⊏

- ④ □, ⊒
- 문 5. 다음 디지털 논리회로에서 입력이 A. B이고 출력이 Y일 경우. 입출력 사이의 논리식이 다른 것은?

문 6. 다음 왼쪽 그림 (a)에 표시한 주파수 특성을 갖는 연산 증폭기를 이용하여 오른쪽 그림 (b)의 부궤환(negative feedback)회로를 구현하였다. $R_2 = 1{,}000R_1$ 일 때, A[dB]와 B[MHz]의 값으로 가장 가까운 것은?

- ① 0
- 2 0 100
- 3 20 100

1

4 20

문 7. 다음 회로에서 정현파인 입력파형(V_{in})이 가해진 경우, 정상상태에서 출력파형(V_{out})은? (단, 다이오드 양단의 순방향전압은 0.7[V]이다)

문 8. 다음 저역통과필터의 전압이득 $\left(\frac{V_{out}}{V_{in}}\right)$ 이 10일 때, 차단주파수가 $50 \, [\mathrm{kHz}]$ 가 되기 위한 $R_1 [\mathrm{k}\Omega]$ 과 $R_2 [\mathrm{k}\Omega]$ 는? (단, 연산증폭기는 이상적이라고 가정한다)

	R_1	R
1	20	11
2	20	9
3	200	11
4	200	9

문 9. 다음 위상천이 발진기에서 발진각주파수가 1,000 [rad/s]인 경우, 발진기로 동작하기 위한 저항 $R[\mathbf{k}\Omega]$ 과 $R_f[\mathbf{k}\Omega]$ 의 값은? (단, $C=0.1[\mu\mathrm{F}],\ \sqrt{6}=2.5,\ 연산증폭기는 이상적이라고 가정한다)$

 $\begin{array}{cccc}
\underline{R} & & \underline{R_f} \\
\hline{1} & 4 & & 116 \\
\hline{2} & 3 & & 87 \\
\hline{3} & 2 & & 58 \\
\hline{4} & 1 & & 29 \\
\end{array}$

문 10. 다음 그림과 같이 R/2R 사다리형 DAC(digital-analog converter) 회로를 구성한 후 +5[V]의 기준전압을 인가할 때, 출력전압 $V_{out}[V]$ 은? (단, 연산증폭기는 이상적이라고 가정한다)

- ① 0.625
- 2 1.25
- 3 2.5
- 4 5

문 11. 다음 증폭회로에서 전압이득 $\left| \frac{V_{out}}{V_{in}} \right|$ 의 값은? (단, M_1 의 전달 컨덕턴스 $g_m=10\,[\mathrm{m}\odot]$ 이고 $R_S=900\,[\Omega]$ 이다)

- ① 0.8
- 2 0.9
- ③ 1.0
- 4 1.1

문 12. 다음 회로에서 $R_1 = 3R_2$ 이고 $3R_3 = R_4$ 일 때, 출력전압 V_{out} 은? (단, 연산증폭기는 이상적이라고 가정한다)

- \bigcirc 2 V_{in}
- $2 4V_{in}$
- \bigcirc $-4V_{in}$
- $(4) -2 V_{in}$

(가)책형

3 쪽

문 13. 다음 회로의 설명으로 옳지 않은 것은?

- ① AM 신호 복조에 사용할 수 있다.
- ② 저주파 신호는 통과하기 어렵다.
- ③ RC 시정수가 클수록 리플전압이 줄어든다.
- ④ 피크검파기로 사용할 수 있다.

문 14. 다음 CMOS 논리회로에서 출력 Z의 논리식은?

- \bigcirc $\overline{A} \cdot \overline{B} + A \cdot B$
- ② $\overline{A} \cdot B + A \cdot \overline{B}$
- \bigcirc A+B
- \bigcirc \overline{A}

문 15. 다음 MOSFET 증폭기회로의 전압이득 $\left(\frac{V_{out}}{V_{in}}\right)$ 은? (단, g_{m1} 과 r_{o1} 은 트랜지스터 M_1 , g_{m2} 와 r_{o2} 는 트랜지스터 M_2 에 해당하는 파라미터이다. body effect는 무시하며 커패시터 C는 충분히 커서 교류신호에 대해서 임피던스는 0[Ω]으로 가정한다)

- ① $-(g_{m1}+g_{m2})(r_{o1} \parallel r_{o2} \parallel R_L)$
- $(2) (g_{m1} g_{m2})(r_{o1} \parallel r_{o2} \parallel R_L)$
- $(4) (g_{m2} g_{m1})(r_{o1} \parallel r_{o2} \parallel R_L)$

문 16. 다음은 n-채널 MOSFET으로 구성된 바이어스회로이다. 이 회로 에서 n-채널 MOSFET은 포화영역(saturation region)에서 동작 하고 있고 V_{OQ} 는 2.5[V]일 때 n-채널 MOSFET의 채널폭과 채널길이 비인 $\frac{W}{L}$ 의 값은? (단, 공정전달 컨덕턴스 파라미터 $k_n=\mu_n C_{ox}=10^{-4}\,[\mathrm{A/V^2}]$, 문턱전압 $V_{tn}=0.5\,[\mathrm{V}]$, channel length modulation 및 body effect는 무시한다)

- 1 2
- ② 5
- 3 10
- 4 20
- 문 17. 다음 회로는 CMOS 인버터 5단을 이용하여 만든 링 발진기(ring oscillator)이다. 이에 대한 설명으로 옳지 않은 것은?

- ① 인버터의 단 수를 3단으로 줄이면 발진주파수가 올라간다.
- ② 인버터의 단 수를 6단으로 늘리면 발진하지 않는다.
- ③ 지연시간이 더 작은 인버터를 이용하면 발진주파수가 올라간다.
- ④ 인버터의 공급전압을 올려도 발진주파수에는 변함이 없다.
- 문 18. 다음은 입력신호 V_{in} 을 변조해서 출력신호 V_{out} 을 발생시키는 회로이다. 이 전체회로의 변조방식은?

- ① 펄스폭 변조(PWM)
- ② 펄스부호 변조(PCM)
- ③ 펄스위치 변조(PPM)
- ④ 펄스진폭 변조(PAM)

문 19. 다음 진리표로부터 논리식을 나타낸 것으로 옳은 것은? (단, x는 don't care상태이다)

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	X
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	X
1	1	1	0	0
1	1	1	1	0

- ① $Y = B \cdot \overline{C} + \overline{A} \cdot \overline{C}$
- ② $Y = B \cdot \overline{C} \cdot \overline{D} + \overline{C} \cdot \overline{D}$
- $(4) \quad Y = B \cdot \overline{C} + \overline{C} \cdot D$
- 문 20. 다음 MOSFET 증폭기회로의 전압이득 $\left(\frac{V_{out}}{V_{in}}\right)$ 은? (단, g_{m1} 은

트랜지스터 M_1 , g_{m2} 는 트랜지스터 M_2 에 해당하는 파라미터이다. body effect와 channel length modulation은 무시하며 커페시터 C_B 는 충분히 커서 교류신호에 대해서 임피던스는 $0[\Omega]$ 으로 가정한다)

$$\bigcirc \left(- \frac{(R_1 + R_2) \parallel R_3}{R_S + (R_1 + R_2) \parallel R_3} \left(\frac{\frac{1}{g_{m2}}}{\frac{1}{g_{m1}} + R_4} \right) \right.$$

$$\textcircled{4} \ \left(- \ \frac{R_1 \parallel R_3}{R_S \! + \! R_1 \parallel R_3} \! \right) \! \left(\frac{\frac{1}{g_{m2}}}{\frac{1}{g_{m1}} \! + \! R_4} \right)$$