

Levels of the biological hierarchy

Ecosystem Lake Monona, Mojave desert, ... Population Madison Humans, Monona Muskie Organism Pine tree, Lizard, Human... Heart, Lungs, Brain... Organ Tissue Adipose tissue, Blood, Nerve tissue... Cell Fat cell, Blood cell, Muscle cell... Organelle Nucleus, Mitochondrion... Molecule DNA, RNA, Protein, Lipids...

All Life depends on 3 critical molecules

- DNAs
 - Hold information on how cell works
- RNAs
 - Act to transfer short pieces of information to different parts of cell
 - Provide templates to synthesize into protein
- Proteins
 - Form enzymes that send signals to other cells and regulate gene activity
 - Form body's major components (e.g. hair, skin, etc.)

2 nanometers

DNA

Adenine

Thymine

The Double Helix

 DNA molecules usually consist of two strands arranged in the famous double helix

DNA strand: polymer of nucleotides

In double-stranded DNA:
A always bonds to T
C always bonds to G

The Double Helix

- each strand of DNA has a "direction"
 - at one end, the terminal carbon atom in the backbone is the 5' carbon atom of the terminal sugar
 - at the other end, the terminal carbon atom is the 3' carbon atom of the terminal sugar
- therefore we can talk about the 5' and the 3' ends of a DNA strand

In a double helix, the strands are antiparallel (arrows drawn from the 5' end to the 3' end go in opposite directions)

image from the DOE Human Genome Program http://www.ornl.gov/hgmis

image from the DOE Human Genome Program http://www.ornl.gov/hgmis

Chromosomes

- DNA is packaged into individual chromosomes (along with proteins)
- prokaryotes (single-celled organisms lacking nuclei) typically have a single circular chromosome
- eukaryotes (organisms with nuclei) have a species-specific number of linear chromosomes

DNA is tightly packed!

Human Chromosomes

Genomes

 the term genome refers to the complete complement of DNA for a given species

• the human genome consists of 46 chromosomes (23 pairs)

 every cell (except sex cells and mature red blood cells) contains the complete genome of an organism

Transcription

 RNA polymerase is the enzyme that builds an RNA strand from a gene within DNA

RNA that is transcribed from a gene is called messenger RNA mRNA)

Transcription: DNA→RNA

T is replaced by U U: Uridine

RNA vs DNA structure

DNA RNA

linear polymer linear polymer

double-stranded single-stranded

deoxyribonucleotide monomer

ribonucleotide monomer

A,C,G,T bases

A,C,G,U bases

Translation

- proteins are molecules composed of one or more polypeptides
- a polypeptide is a polymer composed of amino acids
- cells build their proteins from
 20 different amino acids
- of as a string composed from a 20-character alphabet

The Genetic Code

Second letter

	Second letter											
		U		С		А		G				
	U	UUU	Phenyl- alanine	UCU	Serine	UAU UAC	Tyrosine	UGU UGC	Cysteine	U C		
	U	UUA UUG	Leucine	UCA	seinie	UAA UAG	Stop codon Stop codon	UGA	Stop codon Tryptophan	A G		
letter	c	CUU	UA Leucine	CCU CCC CCA CCG	Proline	CAU CAC	Histidine	CGU CGC	Arginine	U C		
		CUA				CAA CAG	Glutamine	CGA Algili	Algiiiiie	A G		
First	А	AUU AUC	Methionine;	ACU ACC	Threonine	AAU AAC	Asparagine	AGU AGC	Serine	U C		
		AUA		ACA ACG	imeomile	AAA AAG	Lysine	AGA AGG	Arginine	A G		
	G	GUU GUC	GUC Valine	GCU GCC	Alanine	GAU GAC	Aspartic acid	GGU GGC	Glycine	U C		
		GUA GUG	GCA O	AIGINIT	GAA GAG	Glutamic acid	GGA GGG	Grycine	A G			

Codons and Reading Frames

Open reading frames

ribosome

Translation

transfer RNA (tRNA)

Amino Acids

Alanine	Ala	A
Arginine	Arg	R
Aspartic Acid	Asp	D
Asparagine	Asn	N
Cysteine	Cys	С
Glutamic Acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	lle	1
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

Amino Acids

Nucleotides vs Amino Acids

Nucleotide

Amino Acid

Both made up of "backbone" and "residue" parts

Examples of proteins

	Protein	Role		
	alpha-keratin	component of hair		
	beta-keratin	component of scales		
	insulin	regulates blood glucose level		
	actin & myosin	muscle contraction		
	DNA polymerase	synthesis of DNA		
	ATP synthase	makes ATP		
	hemoglobin	transport of oxygen		
×	endonuclease	cuts DNA (restriction enzyme)		

Amino Acid Sequence of Hexokinase

1 A A S X D X S L V E V H X X V F I V P P X I L O A V V S I A 31 T T R X D D X D S A A A S I P M V P G W V L K Q V X G S Q A 61 G S F L A I V M G G G D L E V I L I X L A G Y O E S S I X A 91 S R S L A A S M X T T A I P S D L W G N X A X S N A A F S S 121 X E F S S X A G S V P L G F T F X E A G A K E X V I K G Q I 151 T X O A X A F S L A X L X K L I S A M X N A X F P A G D X X 181 X X V A D I X D S H G I L X X V N Y T D A X I K M G I I F G 211 S G V N A A Y W C D S T X I A D A A D A G X X G G A G X M X 241 V C C X Q D S F R K A F P S L P Q I X Y X X T L N X X S P X 271 A X K T F E K N S X A K N X G Q S L R D V L M X Y K X X G Q 301 X H X X X A X D F X A A N V E N S S Y P A K I O K L P H F D 331 L R X X X D L F X G D Q G I A X K T X M K X V V R R X L F L 361 I A A Y A F R L V V C X I X A I C Q K K G Y S S G H I A A X 391 G S X R D Y S G F S X N S A T X N X N I Y G W P Q S A X X S 421 K P I X I T P A I D G E G A A X X V I X S I A S S O X X X A 451 X X S A X X A

Space-Filling Model of Hexokinase

EcoRI – restriction enzyme

Hemoglobin

protein built from 4 polypeptides

Hemoglobin: carrier of oxygen

Mutant β -globin \rightarrow Sickle blood cells

Fiber of sickle hemoglobin

Sickle and normal blood cells

Normal blood flow

Sickle cell complications

Genes

- genes are the basic units of heredity
- they are generally the intervals of the genome that are transcribed into RNA

- a protein-gene is a gene whose RNA carries the information required for constructing a particular protein (polypeptide really)
- the human genome comprises ~30,000 protein-coding genes

Central Dogma Revisited

Splicing

Splicing

- eukaryotes are organisms that have enclosed nuclei in their cells
- in many eukaryotes, genes/mRNAs consist of alternating exon/intron segments
- exons are the coding parts
- Introns are spliced out before translation

The Dynamics of Cells

- all cells in an organism have the same genomic data, but the genes expressed in each vary according to cell type, time, and environmental factors
- there are networks of interactions among various biochemical entities in a cell (DNA, RNA, protein, small molecules) that carry out processes such as
 - metabolism
 - intra-cellular and inter-cellular signaling
 - regulation of gene expression

Selected milestones

Year	Common Name	Species	# of Chromosome s	Size (base pairs))
1995	Bacterium	Haemophilus influenzae	1	1.8 x 10 ⁶	D
1996	Yeast	Saccharomyces cerevisiae	16	1.2 x 10 ⁷	
1998	Worm	Caenorhabditis elegans	6	1.0 x 10 ⁸	Bigger genome than
1999	Fruit Fly	Drosophila melanogaster	4	1.3 x 10 ⁸	Humans
2000	Human	Homo sapiens	23	3.1 x 10 ⁹	SIZE DOES NOT MATTER
2002	Mouse	Mus musculus	20	2.6 x 10 ⁹	\odot
2004	Rat	Rattus norvegicus	21	2.8 x 10 ⁹	
2005	Chimpanzee	Pan troglodytes	24	3.1 x 10 ⁹	
Sequence is freely available NCBI - http://www.ncbi.nlm.nih.gov					
UCSC - http://genome.ucsc.edu					

But Wait, There's More…

- > 1000 other publicly available databases pertaining to molecular biology
- GenBank
 - > 231 million sequence entries
 - > 940 billion bases
- UniProtKB / Swiss-Prot
 - > 565k protein sequence entries
 - > 200 million amino acids
- Protein Data Bank
 - 182,000 protein (and related) structures

Bioinformatics Revisited

Representation/storage/retrieval/ analysis of biological data concerning

- sequences (DNA, protein, RNA)
- structures (protein, RNA)
- functions (protein, sequence signals)
- activity levels (mRNA, protein, metabolites)

networks of interactions (metabolic pathways, regulatory pathways, signaling pathways)

of/among biomolecules

Data and Timeline

- 12,000 enzymes
 - Purified and characterized
 - Function and effect of mutations has been understood

~100 years

• 95,000 protein structures

~50 years

Data and Timeline

- 1,500,000 genes and their protein products
 - the complete genetic information of several viral, bacterial genomes, and more to come.

- Have access only to a limited amount of information
- Focus on parameters (e.g. genes) with dominant effects
- Design experimental strategies that help to sort out the dominant parameters before information is extracted - (information is gained only about "important" parameter)
- Find somehow an/the important parameter (eg. Gene)

Limitations

- Many phenotype (eg. cancer) are due to multiple factors
- Each factor alone may not have any effects e.g. non-dorminant oncogenes
- Only specific combination of such cooperating factors lead to phenotype

- Suppose 3 cooperative genes are responsible for cancer.
- Assume that there are 15,000 human genes.
- Need:
 - 15,000*14,999*14998=3.3 x 10¹³ experiments (or 10^{4N} for N cooperating genes).
- The exponential increase in the number of samples to be tested impose a practical and conceptual limitation.

Molecular Biology:

- Often deep understanding of the function of one or several gene/protein,
- But: low ratio of

Information extracted Potentially relevant information

Genomics, Gene expression, Bioinformatics:

Often shallower understanding of the functions

But: much higher ratio of

Information extracted Potentially relevant information

References

- Lecture notes of Colin Dewey @ University of Wisconsin-Madison
- Lecture notes of Arne Elofsson @ Stockholm University
- Lecture notes of Yuzhen Ye @ Indiana University
- http://www.ornl.gov/hgmis

