Implementation of the curved-sky \tilde{B} -mode template

Anton Baleato Lizancos ab2368@cam.ac.uk

We describe here the construction of a map-level template for lensing B-modes. We work to leading order in lensing and on the curved-sky formalism, a combination that has been shown to be a very good approximation to the true B-modes on large angular scales¹. We arrive at a fast position-space implementation which is made publicly-available on GitHub². These lensed B-modes can be approximated in harmonic space by³

$$\tilde{B}_{lm} = \phi_{(lm)_1} E_{(lm)_2} \frac{1}{2i} \left[{}_{2} I_{ll_1 l_2}^{mm_1 m_2} - {}_{-2} I_{ll_1 l_2}^{mm_1 m_2} \right]
= \frac{-i}{2} \frac{1}{2} (-1)^m \phi_{(lm)_1} E_{(lm)_2} \sqrt{(2l+1)(2l_1+1)(2l_2+1)/4\pi} [l_1(l_1+1) + l_2(l_2+1) - l(l+1)]
\times \begin{pmatrix} l_1 & l_2 & l \\ m_1 & m_2 & -m \end{pmatrix} \left[\begin{pmatrix} l_1 & l_2 & l \\ 0 & -2 & 2 \end{pmatrix} - \begin{pmatrix} l_1 & l_2 & l \\ 0 & 2 & -2 \end{pmatrix} \right]$$
(1)

Inspired by the implementation of the quadratic estimators for lensing reconstruction in the publicly-available code QuickLens⁴, we write

$$\hat{\hat{B}}_{lm} = \frac{(-1)^m}{2} \sum_{(lm)_1} \sum_{(lm)_2} \begin{pmatrix} l_1 & l_2 & l \\ m_1 & m_2 & -m \end{pmatrix} W_{l_1 l_2 l} \hat{\phi}_{(lm)_1} \hat{E}_{(lm)_2}, \tag{2}$$

where the weights

$$W_{l_1 l_2 l} = \frac{-i}{2} \sqrt{(2l+1)(2l_1+1)(2l_2+1)/4\pi} [l_1(l_1+1) + l_2(l_2+1) - l(l+1)] \begin{bmatrix} \begin{pmatrix} l_1 & l_2 & l \\ 0 & -2 & 2 \end{pmatrix} - \begin{pmatrix} l_1 & l_2 & l \\ 0 & 2 & -2 \end{pmatrix} \end{bmatrix}$$
(3)

can be cast in separable form as

$$W_{l_1 l_2 l} = \sum_{i} W_{l_1 l_2 l}^i, \tag{4}$$

with

$$W_{l_1 l_2 l}^i = \sqrt{(2l+1)(2l_1+1)(2l_2+1)/4\pi} \begin{pmatrix} l_1 & l_2 & l \\ -s_1^i & -s_2^i & s \end{pmatrix} w_{l_1}^i w_{l_2}^i w_l^i.$$
 (5)

The value for the separable weights $w_{l_i}^i$ can be found in Table 1.

⁴https://github.com/dhanson/quicklens

i	s_1^i	s_2^i	s^i	$w_{l_1}^1$	$w_{l_2}^1$	w_l^1
1	0	2	2	$l_1(l_1+1)$	-1/2	i
2	0	2	2	-1/2	$l_2(l_2+1)$	i
3	0	2	2	1/2	i	l(l+1)
4	0	-2	-2	$l_1(l_1+1)$	1/2	i
5	0	-2	-2	1/2	$l_2(l_2+1)$	i
6	0	-2	-2	-1/2	i	l(l+1)

Table 1: Weights for a fast separable implementation of the lensed B-mode template.

¹Challinor & Lewis (2005), astro-ph:0502425

²https://github.com/abaleato/curved_sky_B_template

³In this notation summation is implicit over matching pairs of indices.