Etap 1: analiza problemu i dziedziny

Symulacja złożonego skrzyżowania w SUMO

Autorki: Klaudia Stodółkiewicz & Kam<u>ila Ćwikła</u>

Agenda

- 1. Czym jest symulacja ruchu miejskiego
- 2. Jak wygląda proces symulacji i analizy ruchu miejskiego
 - a. Skąd zebrać dane
 - b. Jaki model symulacyjny wybrać
 - c. Jakie oprogramowanie wybrać
 - d. Na czym polega konfiguracja scenariuszy
 - i. Jak wprowadzić do systemu infrastrukturę drogową
 - ii. Jak ustalić parametry symulacji
 - iii. Jak określić kryteria analizy
 - e. Przeprowadzenie symulacji
 - f. Jak przeanalizować wyniki
 - i. Jak różne zmienne mogą wpływać na przepustowość
 - ii. Jak zmiana ustawień świateł może wpłynąć na płynność ruchu
 - iii. Gdzie znajdują się tzw. "wąskie gardła"
- 3. Literatura

1. Czym jest symulacja ruchu miejskiego?

Symulacja ruchu miejskiego

Metoda komputerowa umożliwiająca **modelowanie**, **analizę** i **prognozowanie zachowań systemu transportowego** w rzeczywistych warunkach drogowych.

W praktyce polega ona na odwzorowaniu przepływu pojazdów przy użyciu modeli matematycznych.

Motywacja - czyli po co się robi symulacje skrzyżowań?

- optymalizacja ruchu drogowego (zmniejszenie spowolnienia ruchu w godzinach szczytu, konfiguracja sygnalizacji świetlnej)
- poprawa bezpieczeństwa (analiza ryzyka kolizji)
- badanie wpływu nowych planów urbanistycznych na natężenie ruchu (przebudowa estakady, ronda)
- badanie emisji spalin w zależności od konfiguracji skrzyżowania

2. Jak wygląda proces symulacji i analizy ruchu miejskiego?

1. Zebranie danych

- 1. **Systemy monitorowania**: kamery CCTV, sensory ruchu, radary
- 2. Systemy GPS: aplikacje mobilne, Google Maps, Waze, dane z firm transportowych
- 3. **Systemy zarządzania ruchem i sygnalizacji świetlnej: ITS** (intelligent Transportation Systems) można uzyskać informacje o cyklach świateł, czasu oczekiwania na sygnalizację, przepustowości
- 4. Badania ruchu drogowego: punkty pomiarowe, ankiety
- 5. **Platformy do zbierania danych:** OpenStreetMap, komercyjne dane satelitarne (TomTom, Here)

2. Wybór odpowiedniego modelu symulacyjnego

	Rodzaj Modelu	Opis	Zastosowanie	Zalety	Wady
	Modele makroskopowe	Opisują ruch drogowy na poziomie ogólnym, koncentrując się na przeptywie ruchu, gęstości i prędkości średnich pojazdów.	Analiza przepustowości dróg, zatorów, ogólnych trendów w ruchu drogowym.	Szybkie obliczenia, ogólne wyniki, łatwość implementacji.	Mniej szczegółowe, brak analizy indywidualnych pojazdów.
	Modele mezoskopowe	Koncentrują się na węzłach drogowych, skrzyżowaniach, analizie ruchu w obszarach miejskich.	Analiza węzłów drogowych, skrzyżowań, organizacji ruchu w miastach.	Większa szczegółowość w analizie poszczególnych obszarów.	Wymaga więcej danych niż modele makroskalowe.
	Modele mikroskopowe	Śledzą indywidualne pojazdy, uwzględniają reakcje kierowców na zmiany prędkości, odległości, sygnalizację świetlną.	Analiza interakcji między pojazdami, manewry zmiany pasa, reakcje na wypadki, zachowanie kierowców, analiza skrzyżowań	Bardzo szczegółowe wyniki, dokładna analiza indywidualnych zachowań.	Czasochłonne obliczenia, duże zapotrzebowanie na dane.

Najpopularniejsze matematyczne modele mikroskopowe zachowań kierowcy

Nagel-Schreckenberga

 zał.: kierowcy poruszają się pojedynczo na drodze 1D, podejmują decyzje wg ograniczeń prędkości, odległości od poprzedzającego pojazdu i zmian w ruchu

Intelligent Driver Model

 zał. kierowcy dostosowują prędkość do prędkości pojazdów przed nimi, aby zachować bezpieczną odległość

Optimal Velocity

 zał. kierowcy starają się utrzymać prędkość optymalną, minimalizującą ich czas podróży

Kraussa

 zał. kierowcy podejmują decyzję o zmianie pasa tylko wtedy, gdy spełnione są określone kryteria (odpowiednia odległość od innych pojazdów, różnica prędkości między pasami, dostępność przestrzeni na docelowym pasie oraz ocena ryzyka związana z manewrem zmiany pasa)

Klasyfikacja na podstawie sposobu reprezentacji

Modele dyskretne

- Czas, przestrzeń i zdarzenia są rozpatrywane w określonych, skończonych krokach.
- Symulacja działa krokowo w każdym kroku aktualizowane są pozycje pojazdów, ich prędkości i inne parametry.

Modele ciągłe

- Czas i zmienne ruchu (np. prędkość, przyspieszenie) są traktowane jako funkcje ciągłe.
- Opierają się na równaniach różniczkowych, które opisują dynamikę ruchu pojazdów.

Klasyfikacja na podstawie zachowań kierowców

- Modele jazdy za liderem (car-following models):
 - a. **Modele GHR (Gazisa-Hermana-Rothery'ego)** przyspieszenie pojazdu podążającego jest proporcjonalne do jego prędkości i różnicy prędkości z liderem, a jednocześnie odwrotnie proporcjonalne do odległości między pojazdami
 - b. **Modele bezpiecznej odległości** zakładają, że kierowca utrzymuje odstęp od pojazdu poprzedzającego, który zależy od prędkości obu pojazdów
 - c. **Psychofizyczne modele podążania (Action Point models)** opierają się na percepcyjnych progach, które kierowca wykorzystuje do oceny zbliżania się pojazdu poprzedzającego (np. poprzez zmiany kąta widzenia)
- Modele zmiany pasa ruchu symulacje decyzji kierowcy dotyczące zmiany pasa, w tym poszukiwania luk oraz reagowania na sygnalizację świetlną
- Modele hamowania awaryjnego symulują reakcje kierowców w sytuacjach nagłego hamowania oraz niebezpiecznych zdarzeń na drodze
- Modele wyprzedzania uwzględniają strategie i zachowania związane z wyprzedzaniem innych pojazdów
- Modele skręcania skupiają się na symulacji zachowań podczas skręcania oraz zmiany kierunku jazdy, szczególnie na skrzyżowaniach

3. Wybór oprogramowania (wybrane)

Oprogramowanie	Typ Symulacji	Zastosowanie	Zalety	Wady
VISSIM	Mikroskopowe, mezoskopowe	Symulacja indywidualnych pojazdów, analiza interakcji, węzły drogowe, ruch w miastach i na autostradach.	Wysoka dokładność, realistyczne modele, duża elastyczność w dostosowaniu scenariuszy.	Wymaga dużych zasobów obliczeniowych, długi czas obliczeń, kosztowne licencje.
SUMO	Mikroskopowe	Symulacja ruchu miejskiego, analiza zatorów, ruch pieszych i pojazdów autonomicznych.	Darmowy, otwarty kod, możliwość pracy z dużymi danymi, obsługuje ruch pieszy i transport publiczny.	Mniejsza dokładność w porównaniu do VISSIM, może wymagać bardziej zaawansowanego przetwarzania danych.
TRANSIMS	Makroskopowe, mezoskopowe	Duże analizy przepustowości, planowanie tras, prognozy natężenia ruchu na dużych obszarach.	Bardzo dobre do analizy dużych systemów, obliczenia na dużą skalę.	Mniej dokładne w mikroskopowych analizach, skomplikowana konfiguracja.
MATLAB/Sim ulink	Mikroskopowe,	Analiza zachowań autonomicznych pojazdów, interakcje w ruchu drogowym.	Elastyczność, możliwość integracji z innymi systemami, doskonały do symulacji z autonomicznymi pojazdami.	Wymaga zaawansowanej wiedzy, kosztowne licencje.

- stworzenie szczegółowego modelu sytuacji drogowej, która będzie badana
- należy ustawić wszystkie zmienne mające wpływ na ruch drogowy:
 - warunki pogodowe
 - natężenie drogowe
 - godziny pomiarów, czas
 - opis sygnalizacji świetlnej cykle, długość trwania
 - zachowania kierowców
 - typy pojazdów ciężarowe, osobowe, piesi, rowery

Aby wprowadzić do systemu infrastrukturę drogową, należy zazwyczaj (w zależności od używanego oprogramowania):

- zaprojektować sieć drogową (ew. importować gotowe pliki)
- zdefiniować typy dróg (nawierzchnię, liczbę pasów, limit prędkości)
- dodać elementy infrastrukturalne (sygnalizacja świetlna, znaki drogowe, przejazdy kolejowe, skrzyżowania)

Programy do symulacji często umożliwiają importowanie danych o infrastrukturze drogowej z systemów GIS - Geographic Information System, co poprawia odwzorowanie rzeczywistych warunków.

Kolejnym ważnym elementem podczas konfigurowania scenariuszy są parametry. Parametry symulacji określają, w jaki sposób będą modelowane zachowania uczestników ruchu i jak będą interpretowane dane wejściowe. Obejmują one:

- **Prędkości i przyspieszenia pojazdów** mogą być ustalane na podstawie średnich prędkości ruchu w danym regionie, zależności od typu drogi, warunków pogodowych, średniej prędkości pojazdów na danej drodze
- Zachowania kierowców czy kierowcy będą przestrzegać przepisów ruchu drogowego, jak będą reagować na zmiany warunków, jak agresywnie będą jeździć. Modele IDM, Krauss o Nagel pozwalają na kontrolowanie takich parametrów
- Typy i liczba pojazdów jaką liczbę pojazdów (np. osobowe, ciężarowe) ma zawierać symulacja oraz w jakim proporcjonalnym rozkładzie będą one występować
- Czas trwania symulacji czy symulacja ma przebiegać w czasie rzeczywistym, czy na przestrzeni dni, tygodni
- Warunki pogodowe uwzględnienie różnych warunków pogodowych oraz ich wpływu na prędkości i reakcje kierowców
- Zdarzenia specjalne wypadki, zmiany w sygnalizacji świetlnej, zamknięcie drogi

Kryteria analizy definiują, na jakich aspektach symulacji będziemy się koncentrować i co chcemy z niej wyciągnąć.

Przykłady kryteriów to:

- Wydajność ruchu
- Bezpieczeństwo ruchu
- Czas podróży
- Emisje z pojazdów
- Wydajność skrzyżowań i sygnalizacji świetlnej
- Reakcje kierowców

Ten punkt będzie rozwinięty w dalszych etapach projektu

- 1. Zebranie danych wyjściowych
- Wizualizacja wyników mapa z natężeniem ruchu, wykresy przepustowości, analiza miejsc o najgorszych czasach oczekiwania
- Wskaźniki wydajności analiza przepustowości, czasu przejazdu, wskaźników płynności ruchu (zakorkowanie, opóźnienia w ruchu, wypadki)
- 4. Porównanie scenariuszy o różnych parametrach

Jak różne zmienne mogą wpływać na przepustowość?

Przepustowość drogi to liczba pojazdów, które mogą przejechać przez dany odcinek drogi w jednostce czasu. Na przepustowość wpływają różne zmienne, w tym:

- Liczba pasów ruchu im więcej pasów, tym większa przepustowość, ponieważ pozwala to na większą liczbę pojazdów poruszających się równocześnie
- Wielkość pojazdów ciężarówki i autobusy zajmują więcej miejsca na drodze niż pojazdy osobowe, co zmniejsza przepustowość
- Prędkość ruchu wyższa średnia prędkość pojazdów pozwala na szybkie przejazdy, ale zbyt duża prędkość może zwiększyć ryzyko wypadków, co w konsekwencji zmniejsza przepustowość
- Interwały sygnalizacji świetlnej zbyt długie czerwone światła mogą znacząco zmniejszyć przepustowość w obszarach o dużym natężeniu ruchu
- Pogoda niekorzystne warunki pogodowe, takie jak deszcz czy śnieg, mogą zmniejszyć prędkość i zwiększyć ryzyko wypadków, co wpływa na obniżenie przepustowości
- Wydolność infrastruktury jakość nawierzchni, obecność skrzyżowań i rond, liczba sygnalizacji świetlnych, a także sposób organizacji ruchu wpływają na zdolność drogi do obsługi pojazdów

Jak zmiana ustawień świateł może wpłynąć na płynność ruchu?

Zmiana ustawień świateł (np. czas trwania sygnalizacji świetlnej) może znacząco wpłynąć na płynność ruchu, zarówno w obszarze zwiększenia efektywności, jak i na poprawę sytuacji w godzinach szczytu.

- Optymalizacja czasów cykli świetlnych dostosowanie cykli świateł do natężenia ruchu może zmniejszyć czas oczekiwania na skrzyżowaniach, co poprawi płynność ruchu
- Zmniejszenie czasu oczekiwania zbyt długie czerwone światło może powodować opóźnienia i korki, zwłaszcza jeśli droga jest obciążona dużym natężeniem ruchu. Skrócenie czasu czerwonego światła poprawia przepustowość.
- Zwiększenie liczby cykli w ciągu dnia zwiększenie liczby cykli świetlnych (np. dostosowanie do zmieniającego się natężenia ruchu w ciągu dnia) zapewnia płynniejszy ruch.

Gdzie znajdują się tzw. "wąskie gardła"?

"Wąskie gardła" w kontekście ruchu drogowego to miejsca, które powodują znaczne spowolnienie ruchu lub tworzenie się zatorów. Zidentyfikowanie wąskich gardeł jest kluczowe w optymalizacji przepustowości i poprawie płynności ruchu. Najczęściej wąskie gardła znajdują się:

- **Skrzyżowania** zbyt mała liczba pasów, nieoptymalna sygnalizacja świetlna lub zbyt długie czasy przejazdu przez skrzyżowanie mogą powodować zatory.
- **Węzły drogowe** węzły, które łączą drogi o różnych kategoriach (np. autostrady z drogami lokalnymi), mogą być miejscami, gdzie pojazdy gromadzą się w wyniku różnicy w prędkościach czy liczbie pasów.
- Przejazdy kolejowe tam, gdzie drogi krzyżują się z torami kolejowymi, mogą występować zatory, zwłaszcza gdy przejazdy są często blokowane przez pociągi.
- **Mosty i tunele** te elementy infrastruktury drogowej mają często ograniczoną liczbę pasów ruchu, co może prowadzić do spowolnienia ruchu, zwłaszcza w godzinach szczytu.
- **Drogi jednokierunkowe i zwężenia** miejsca, w których droga zwęża się z dwóch lub więcej pasów do jednego pasa, mogą tworzyć zatory, szczególnie podczas dużego natężenia ruchu.

3. Literatura

Bibliografia

- 1. Maciejewski, M. (2020). A COMPARISON OF MICROSCOPIC TRAFFIC FLOW SIMULATION SYSTEMS FOR AN URBAN AREA. Link do artykułu
 - Porównanie wyników zastosowania systemów TRANSIMS, SUMO i VISSIM do mikroskopowej symulacji przepływu ruchu dla fragmentu sieci dróg miejskich.
 - Opis mikroskopowych symulatorów, takich jak SUMO, oraz omówienie problemów z przepustowością w systemie.
- 2. Sroczyński, A. (2019). Adaptacyjny system sterowania ruchem drogowym. Link do pracy
 - Obszerny przegląd matematycznych modeli ruchu drogowego oraz modeli mikroskopowych, takich jak model Kraussa,
 opisujący reakcje kierowców na odległość, prędkość i przyspieszenie pojazdów.
- 3. Żywica, P. (2014). Modelowanie i symulacja zużycia paliwa i emisji spalin w ruchu miejskim. Link do pracy
 - Opis przygotowania symulacji w systemie SUMO, w tym modelu Kraussa oraz procesu walidacji wyników.
- 4. Barcelo, J. (2014). Fundamentals of Traffic Simulation. Link do materiałów
 - Podstawy symulacji ruchu drogowego, w tym szczegółowe omówienie modelów mikroskopowych i ich zastosowania w SUMO.
- 5. Lisiecki, P. (2020). Edytor sieci drogowej na potrzeby symulacji ruchu autonomicznego. Link do artykułu
 - Omówienie problemów związanych z tworzeniem sieci drogowych na potrzeby symulacji, w tym ograniczenia SUMO w zakresie odwzorowania geometrii sieci i symulacji ruchu autonomicznego.

Nasza motywacja

Chcemy sprawdzić, w jaki sposób można zwiększyć przepustowość wybranych przez nas dwóch skrzyżowań.