$$T(n)$$
 S $T(n)$ + log n will 2 1, $n = 1$
 $n = 2^m$
 $T(2^-) = T(2^{m/2}) + \log n$
 $T(2^m) = S(m)$
 $S(m) = S(m/2) + \log n$
 $\alpha = 1$ $b = 2$ $f(n) = \log n$

$$T(n) = n \log_{10} u(n)$$

$$= n \log_{21} u(n)$$

$$= n^{0} u(n)$$

$$h(n) = f(n)$$

$$= \log_{10} n$$

$$n = 2^{m}$$

$$T(2^{-}) = T(2^{m/2}) + \log n$$

$$T(2^{m}) = S(m)$$

$$S(m) = S(m/2) \cdot \log n$$

$$T(n) = n \log 6^{\circ} U(n)$$

$$= \log_{2} n^{\circ H} \cdot \log n$$

$$= \log_{2} n^{\circ H} \cdot \log n$$

$$= \log_{2} n^{\circ H} \cdot \log n$$

$$T(n) = \log n \cdot \log n$$

Substituting back us to
earlier eq.
 $T(n) = 2^{\log n} \cdot \log n$

$$n = 2^m$$

$$T(n) = O(\log \log n \cdot \log n)$$