14/02/2022
Shortest path in weighted directed graphs.
directed graphs.
$G_1 = (V, E)$ $W: E \rightarrow IR$ 3. 4 a vertex S . Goal: to find Shortest path to all vertices.
4 - 3 07 = (1 1 1)
$0 \leq V^{2}$ $111 : F \rightarrow IR^{2}$
3/24 a vertex &.
Casal to find Shootest bath to
all vertices.
Later! We will handle negative wits.
Later, we will round
with the assumption that there are no negative cycles in the graph.
us and in the graph.
negative eyews or the graph
Single - Soumo - Charlest bath
Single-Source-Shortest path
ve EV.
S
A maintain the length of the Shortest
-> maintain the length of the shortest
_A maintain the length of the shortest path a vertex.
-s d(re) = length of a Shortest path

-b d(s) = 0.

let T be the set of untices to certich we know the length of a shortest path. Cousider the outgoing edges folom T. and add a minimum Weight eelge incident on $T = \{84.$ for each vertex $v \in V \setminus T$. $d(v) = \min_{u : (u,v) \in E} (d(u) + \omega(u,v))$ UET

Dijkstra's Algo. For each vertex v, $d(v) := \infty$ if $v \neq s$ d(s) = 0. let T be the set of explored mentioner. Initialize T := {s}. While T \$ V Select a vertex $v \in V \setminus T$ s.t.

there exists an incoming edge incident
on v from T and $d(u) = \min_{u \in T} (d(u) + \omega(u,u))$ (4,0) EE (T, VIT) is minimal. (In other words, you only consider, edges in the cut (T, VIT) the nutex Add v to T.; pred(v) = the writer d(v) affaired End while the minimal Value. Example:

Implementation & vuning time.

$$Key(v) = d(v).$$

Extract Min (v) + w((v, 4,)) then $d(u_1) = d(v) + \omega((v, u_1))$

Otherwise.

d(u1) remains the same.

 $d(u_3) = \min \left\{ \frac{d(v_1) + \omega((v_1, u_3))}{d(v_2) + \omega((v_2, u_3))} \right\}$ $d(u_2) = \min \left\{ d(v_0) + \omega(v_0, u_2), d(v_1) + \omega(v_1, u_2) \right\}$ $\Rightarrow if \\ d(u_i) > d(v) + \omega((v, u_i))$ then $d(u_1) = d(v) + \omega((v, u_1))$ then decrease key (u,, d(u,)).

Decrease key is called at most m times.

Total runing time: $O(n) + O(m \log n)$

atte