Solution to Assignment 1

Shoeb Mohammed and Zhuo Chen

January 25, 2016

Locally weighted linear regression

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} w^{(i)} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$
(1)

1.1

Matrix X and vectors θ , y are

$$X = \begin{bmatrix} x^{(i)^T} \\ \vdots \\ x^{(m)^T} \end{bmatrix}, \theta = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}, y = \begin{bmatrix} y^{(i)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$
 (2)

Let W be the $m \times m$ diagnoal matrix

$$W = \frac{1}{2} diag(w^{(1)}, \dots, w^{(m)})$$
(3)

Using (2) and (3), equation (1) can be written as

$$J(\theta) = (X\theta - y)^T W (X\theta - y) \tag{4}$$

1.2

The normal equations for un-weighted linear regression are $X^TX\theta\!=\!X^Ty$

$$X^T X \theta = X^T y \tag{5}$$

Equation 4 can be re-written as below. Note that weights are greater than zero (negative weights don't make sense).

$$J(\theta) \!=\! (X\theta \!-\! y)^T \sqrt{W} \sqrt{W} (X\theta \!-\! y)$$

$$= (\sqrt{W}X\theta - \sqrt{W}y)^T(\sqrt{W}X\theta - \sqrt{W}y) \tag{6}$$

$$=(X'\theta-y')^T(X'\theta-y')$$
 where $X'=\sqrt{W}X$ and $y'=\sqrt{W}y$

 $= (X'\theta - y')^T (X'\theta - y') \text{ where } X' = \sqrt{W}X \text{ and } y' = \sqrt{W}y$ Now, equation 6 is similar to unweighted $J(\theta)$. Thus, using equation 5, θ in closed form is

$$\theta = \left[(\sqrt{W}X)^T (\sqrt{W}X) \right]^{-1} \left(\sqrt{W}X \right)^T \sqrt{W}y \tag{7}$$

1.3

Locally weighted linear regression is a non-parametric model. To estimate y, given x

- first calculate the weights $w^{(i)}$. This gives the matrix W as defined in equation 3
- Start with random guess for θ
- In the ith iteration of the algorithm, the θ is updated using the relation

$$\theta(i) \leftarrow \theta(i-1) - \alpha \left(\sqrt{W}X\right)^T \left(\sqrt{W}X\theta(i-1) - \sqrt{W}y\right) \tag{8}$$

• The above step is repeated until θ converges

$\mathbf{2}$ Properties of the linear regression estimator

2.1

Vectors y, θ, ϵ and matrix X are related as

$$y = X\theta + \epsilon$$
 (9)

 ϵ is i.i.d $N(0,\sigma^2)$.

Thus, for the optimal value θ^* and fixed X

$$E[y] = E[X\theta^*] + E[\epsilon]$$

$$= E[X\theta^*] + 0$$

$$= X\theta^*$$
(10)

Given the normal equations

$$\theta = (X^T X)^{-1} X^T y$$

$$\Longrightarrow E[\theta] = (X^T X)^{-1} X^T E[y]$$

$$= (X^T X)^{-1} X^T X \theta^*$$

$$= \theta^*$$
(11)

$$Var(\theta) = E[(\theta - E(\theta))(\theta - E(\theta))^{T}]$$

$$= E[(\theta - \theta^{*})(\theta - \theta^{*})^{T}]$$

$$= E[\theta \theta^{T}] - \theta^{*}\theta^{*T}$$
(12)

Use the normal equations (linear regression estimator) to get

$$E[\theta\theta^{T}] = E\left[(X^{T}X)^{-1}X^{T}yy^{T} ((X^{T}X)^{-1})^{T} \right]$$

$$= (X^{T}X)^{-1}X^{T}E[yy^{T}]((X^{T}X)^{-1})^{T}$$
(13)

Use equation 9 to get

$$E[yy^{T}] = E[(X\theta + \epsilon)(X\theta + \epsilon)$$

$$= E[X\theta^{*}\theta^{*T}X^{T} + X\theta^{*}\epsilon^{T} + \epsilon\theta^{*T}X^{T} + \epsilon\epsilon^{T}]$$

$$= X\theta^{*}\theta^{*T}X^{T} + E[\epsilon\epsilon^{T}]$$

$$= X\theta^{*}\theta^{*T}X^{T} + diag(\sigma^{2})$$

$$= X\theta^{*}\theta^{*T}X^{T} + \sigma^{2}I$$
(14)

Equations 13 and 14 imply

$$E[\theta\theta^{T}] = (X^{T}X)^{-1}X^{T} \Big[X\theta^{*}\theta^{*T}X^{T} + \sigma^{2}I \Big] X \Big((X^{T}X)^{-1} \Big)^{T}$$

$$= \Big[\theta^{*}\theta^{*T}X^{T} + (X^{T}X)^{-1}X^{T}\sigma^{2}I \Big] X \Big((X^{T}X)^{-1} \Big)^{T}$$

$$= \theta^{*}\theta^{*T} + (X^{T}X)^{-1}X^{T}\sigma^{2}IX \Big((X^{T}X)^{-1} \Big)^{T}$$

$$= \theta^{*}\theta^{*T} + \sigma^{2}(X^{T}X)^{-1}X^{T}X \Big((X^{T}X)^{-1} \Big)^{T}$$

$$= \theta^{*}\theta^{*T} + \sigma^{2}(X^{T}X)^{-1}$$

$$= \theta^{*}\theta^{*T} + \sigma^{2}(X^{T}X)^{-1}$$
(15)

Equations 12 and 15 imply

$$Var(\theta) = \sigma^2 (X^T X)^{-1} \tag{16}$$

3 Problem 3: Part 1: Implementing linear regression

Table 1: Files modified and plots generated for Problem3: Part1

Problem	function implemented	Files edited	Output and Plots
3.1.A1	LinearReg_SquaredLoss.loss	linear_regressor.py	Fig 1
3.1.A2	LinearRegressor.train	linear_regressor.py and ex1.py	Fig 2,Fig 3 and Fig 4
3.1.A3	LinearRegressor.predict	linear_regressor.py and ex1.py	
3.1.B1	feature_normalize	utils.py	
3.1.B2	LinearRegressor.train	linear_regressor_multi.py	Fig 5
	LinearReg_SquaredLoss.loss		
3.1.B3		ex1_multi.py	
3.1.B4	LinearRegressor_Multi.normal_equation	<pre>linear_regressor_multi.py and ex1_multi.py</pre>	
3.1.B5		ex1_multi.py	Fig 6

3.1 Problem 3.1.A

- Implemented the LinearReg_SquaredLoss.loss and LinearRegressor.train methods in file linear_regressor.py.
- Add code in ex1.py to predict median home values at LSTAT = 5% and 50%.
- θ predicted: [34.55363411,-0.95003694]
- Median home values predicted:

LSTAT = 5%: 298034.494122

LSTAT = 50%: -129482.128898

3.2 Problem 3.1.B

- Implemented the feature_normalize method in file utils.py to normalize the data.
- Implemented the LinearRegressor.train and LinearReg_SquaredLoss.loss methods in file linear_regressor_multi.py.
- Add code in ex1_multi.py to predict median home values at average home.
- Add code in ex1_multi.py to explore convergence of gradient descent.
- For average home in Boston suburbs, we predict a median home value of 225328.063241 using gradient descent.
- For average home in Boston suburbs, we predict a median home value of 225328.06324113 using normal equation.

• When learning rate $\xi=1$, the loss function could not convergent. So alpha=0.3 is a good learning rate and 10 iteration is enough for that.

Figure 1: The training data for linear regression.

4 Problem 3: Part 2: Implementing regularized linear regression

Table 2: Files modified and plots generated for Problem3: Part2

Problem	function implemented	Files edited	Output and Plots
3.2.A1	RegularizedLinearReg_SquaredLoss.loss	reg_linear_regressor_multi.py	Fig 7 and Fig 8
3.2.A2	RegularizedLinearReg_SquaredLoss.grad_loss	reg_linear_regressor_multi.py	Fig 7 and Fig 8
3.2.A3	learning_curve and feature_normalize	utils.py	Fig 9, Fig 10 and Fig 1
3.2.A4	-	ex2.py added code for $\lambda = 1,10,100$	Fig 12
3.2.A5	validation_curve	utils.py	Fig 13
3.2.A6	-	ex2.py added code for $\lambda = 1$ from prob3.2.A5	Error=3.0987791808
3.2.A7	averaged_learning_curve	utils.py	Fig 14

4.1 Problem 3.2.A1 and Problem 3.2.A2:

• Implemented the RegularizedLinearReg_SquaredLoss.loss and RegularizedLinearReg_SquaredLoss.grad_loss methods in file reg_linear_regressor_multi.py per requirements of the problem.

The updated methods use regularized regression to calculate the loss and gradient. The output from ex2.py is shown in Fig 7 and Fig 8.

4.2 Problem 3.2.A3

- Implemented the learning_curve function in file utils.py per the requirements of the problem. The output from ex2.py is shown in Fig 9
- Implemented the feature_normalize function in file utils.py. The output from ex2.py is shown in Fig 10 and Fig 11

Figure 2: Fitting a linear model to the data in Fig 1

Figure 3: Surface and contour plot of cost function

4.3 Problem 3.2.A4

- The results for $\lambda = 1.0$ are shown in Fig 12a and Fig 12b.
- The results for $\lambda = 10.0$ are shown in Fig 12c and Fig 12d.
- The results for $\lambda = 100.0$ are shown in Fig 12e and Fig 12f. We observe that low value of the regularization parameter λ is strongly biased while a large value for λ has high variance.

Figure 4: Convergence of gradient descent for linear regression with single variables

Figure 5: Convergence of gradient descent for linear regression with multi variables

 $\label{prop:convergence} \mbox{Figure 6: Convergence of gradient descent for linear regression with multi variables at different learning rate: $alpha=0.01, 0.03, 0.1, 0.3, 1, 3$. $$$

Figure 7: The training data for regularized linear regression.

Figure 8: The best fit line for the training data.

Figure 9: Learning curves.

Figure 10: Polynomial fit for lambda = 0 with a p=8 order model.

Figure 11: Learning curve for lambda = 0.

(a) Polynomial fit for lambda = 1 with a p=8 order model.

(c) Polynomial fit for lambda = 10 with a p=8 order model.

(e) Polynomial fit for lambda = 100 with a p=8 order model.

(b) Learning curve for lambda = 1.

(d) Learning curve for lambda = 10.

(f) Learning curve for lambda = 100.

Figure 12: Polynomial fits and learning curves for different lambda

4.4 Problem 3.2.A5

• Completed the validation_curve function in the file utils.py. The results from ex2.py are shown in Fig 13. Due to randomness in the training and validation splits of the dataset, the cross validation error can sometimes be lower than the training error. We observe that value of $\lambda=1$ is a good choice for the regularization parameter.

Figure 13: Variation in training/validation error with lambda.

4.5 Problem 3.2.A6

• Per the requirements, added code to ex2.py. This uses the best model parameters from section 4.4 and evaluates the error on test data. We picked a value of about $\lambda = 1.0$ for the best model. The output is

Theta at lambda = 1.0 (problem3.2.A6) is [11.21759608 8.38067931 5.21899733 3.62613424 2.11030661 1.95470373 0.78523708]

Error at lambda = 1.0 (problem3.2.A6) is 3.0987791808

4.6 Problem 3.2.A7

• Completed the averaged_learning_curve function in the file utils.py per the requirements of the problem. The output from ex2.py is plotted in Fig 14

Figure 14: Averaged learning curves for lambda=1.