

Næringsøkonomi og konkurransestrategi

Spillteori, dominante strategier og Nash-likevekt, PRN kap. 9.1 - 9.3 Kvantumskonkurranse og Cournot modell, PRN kap. 9.4 -9.5 og Python 9.4 – 9.5

Anita Michalsen

Spillteori

Studiet av rasjonelle aktørers beslutninger i interaksjon med andre aktører

Ikke-cooperative spill med:

- Rasjonelle aktører
- > Strategisk beslutninger
- > Strategi: en fullstendig handlingsplan
- > Payoff: profitten som hver bedrift får ved ulike strategikombinasjoner
- > Likevekt: strategikombinasjon hvor ingen har insentiver til endre sin strategi
 - > I oligopolmodeller: strategisk valg av pris eller kvantum

Dynamisk versus statisk spill

Dynamiske spill med sekvensielle trekk: hver aktør handler i en bestemt rekkefølge og spillet kan gjentas

Statiske spill med simultane trekk: alle aktører handler samtidig og de handler kun èn gang

Likevektskonsepter

1. Likevekt med dominerende strategier

Dominerende strategi dersom egen handling er ens beste valg uansett hva de andre spillerne gjør.

2. Nash-likevekt

Ingen vil angre på sitt valg når motspillernes handling blir kjent; beste svar gitt de andres valg.

3. Delspillperfekt Nash-likevekt

Nash-likevekt for hele spillet, og Nash-likevekt for ethvert delspill.

Eksempel: Strategisk valg av avgangstider Likevekt i dominante strategier

	Morgen	Kveld	
Morgen	(15, 15)	(30, 70)	
Kveld	(70, 30)	(35, 35)	

Dominant strategi

Dominant strategi

Eksempel: Strategisk valg av avgangstider Dominat strategi

	Morgen	Kveld	
Morgen	(18, 12)	(30, 70)	
Kveld	(70, 30)	(42, 28)	

Eksempel: Optimalt valg av flypriser Nash-likevekt

Priser	Lav	Middels	Høy
Lav	(15, 15)	(25, 22)	(40, 20)
Middels	(22, 24)	(35, 35)	(38, 33)
Høy	(20, 40)	(33, 38)	(30, 30)

Oligopolmodeller

- Cournot kvantumskonkurranse
- Bertrand priskonkurranse
- Stackelberg kvantumskonkurranse med sekvensielle valg
- Sekvensiell priskonkurranse

The Cournot modell og etterspørsel

Cournot modell

Cournot-Nash likevekt

Cournot-Nash likevekt

- I likevekt vil begge bedriftene produsere $q_1^c = q_2^c = (A c)/3B$
- Total produksjon er: $Q^* = 2(A c)/3B$
- Markedets etterspørsel er: P = A BQ
- Optimal pris blir da: $P^* = (A + 2c)/3$
- Profitt til bedrift 1: $\pi = (P^* c)q^{C_1} = (A c)^2/9$
- Profitt til bedrift 2: $\pi = (P^* c)q^{C_2} = (A c)^2/9$
- En monopolist vil produsere $Q^M = (A c)/2B$
- Når vi har konkurranse mellom bedriftene vil de produsere mer enn en monopolist, og markedsprisen vil være lavere enn P^M
- ..men produksjon ved duopol vil være lavere enn ved frikonkurranse; (A c)/B

Eksempel

Cournot-Nash likevekt ved N bedrifter

- Anta at det er N identiske bedifter som produserer et identisk produkt
- Total produksjon er: $Q = q_1 + q_2 + ... + q_N$
- Etterspørsel: $P = A BQ = A B(q_1 + q_2 + ... + q_N)$

Cournot-Nash likevekt

Cournot-Nash likevekt ved ulike kostnader

- Hva skjer hvis bedriftene har ulike produksjonskostnader?
- Marginalkostnad for bedrift 1 er c_1 og for bedrift 2 er marginalkostnaden c_2 .
- Etterspørselen er: $P = A BQ = A B(q_1 + q_2)$
- $MR_1 = (A Bq_2) 2Bq_1$
- $MR_1 = MC_1$: $(A Bq_2) 2Bq_1 = c_1$
- $MR_2 = MC_2$: $(A Bq_1) 2Bq_2 = c_2$

Reaksjonsfunksjon bedrift 1: $q_1^* = (A - c_1)/2B - q_2/2$

Reaksjonsfunksjon bedrift 2: $q_2^* = (A - c_2)/2B - q_1/2$

Cournot-Nash likevekt ved ulike kostnader

Cournot-Nash likevekt ved ulike kostnader

- I likevekt vil bedriftene produsere: $q_1^c = (A 2c_1 + c_2)/3B$; $q_2^c = (A 2c_2 + c_1)/3B$
- Total kvantum blir da: $Q^* = (2A c_1 c_2)/3B$
- Optimal pris: $P^* = (A + c_1 + c_2)/3$
- Profitt for bedrift 1: $\pi = (P^* c_1)q^c_1 = (A 2c_1 + c_2)^2/9$
- Profitt for bedrift 2: $\pi = (P^* c_2)q^c_2 = (A 2c_2 + c_1)^2/9$
- Dette gir en ineffektiv produksjon : den bedriften med lavest kostnad burde produsere hele produksjonsmengden

Eksempel