Section 3.5: Compact Sets

Three big areas of analysis: compactedness, continuity, and connectedness.

Definition 3.5.1

A set $s \subset \mathbb{R}$ is said to be compact if every **open cover** has a finite **subcover** (i.e. if $S \subset \bigcup_{\alpha \in I} G_{\alpha}$),

where G_{α} is open $\forall \alpha \in I$; then $\exists n \in \mathbb{N}$ and $\exists \{n_1, n_2, ... n_k\} \subset I$ st $S \subset \bigcup_{i=1}^n G_{\alpha_i}$

Example 3.5.2

- a. Show that S = (0, 2) is not compact.
- b. Show that $S = \{x_1, x_2, ... x_n\} \subset \mathbb{R}$ is compact.

(a)

Notice that:

$$(0,2) \subset \bigcup_{n=1}^{\infty} \left(\frac{1}{n},3\right) \tag{1}$$

If (0,2) were compact, then from (1) there would exist a **finite** subcover.

Assume: (0, 2) is compact.

So $\exists k \in \mathbb{N} \text{ and } \{n_1, n_2, \dots n_k\} \subset \mathbb{N}_k \text{ st}$

$$(0,2) \subset \bigcup_{i=1}^{k} \left(\frac{1}{n_i}, 3\right) \tag{2}$$

Choose $m = \max \{n_1, n_2, \dots n_k\}$

Then, notice that $(\frac{1}{n_i}, 3) \subset (\frac{1}{m}, 3) \ \forall \ i = 1, 2, ... \ k$ From (1), $(0, 2) \subset (\frac{1}{m}, 3)$.

Notice that $0 < \frac{1}{m+1} < \frac{1}{m}$

and $\frac{1}{m+1} \in (0, 2)$. However, $\frac{1}{m+1} \notin (\frac{1}{m}, 3)$.

Suppose that $S \subset \bigcup_{\alpha} G_{\alpha} \ (\alpha \in I)$

where I is an index set and G_{α} is open $\forall \alpha \in I$.

 $\forall i = 1, 2, \dots, \exists \alpha_i \in I \text{ st } \mathbf{x}_i \in G_{\alpha_i}$

Then, $S \subset \bigcup_{i=1}^{n} G_{\alpha_{i}}$

We see that a **finite** subset of \mathbb{R} is compact.

Lemma 3.5.4

If $\emptyset \neq S \subset \mathbb{R}$ and S is **closed** and **bounded**, then S has a maximum and a minimum. In fact, in this, max $S = \sup S$, and $\min S = \inf S$.

Proof.

Since S is bounded, inf S, sup $S \in \mathbb{R}$ both exist.

Want to show: $\max S = \sup S$

For $\epsilon > 0$, $\exists s_1(\epsilon) \in S$ st sup $S - \epsilon < S_1 \le \sup S < \sup S + \epsilon$. So, $-\epsilon < s_1 - \sup S \le \epsilon$ Thus, $s_1 \in N(\sup S, \epsilon)$. So,

$$N(\sup S, \epsilon) \cap S \neq \emptyset$$
 (1)

Also, sup $S + \frac{\epsilon}{2} \in N(\sup S, \epsilon)$ and sup $S + \frac{\epsilon}{2} \in \mathbb{R} \setminus S$. (s $\leq \sup S \ \forall \ s \in S$, and sup $S \in S$)

$$N(\sup S, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$$
 (2)

From (1) and (2), sup $S \in bd S \subset S$, since S is closed. Hence, sup S = max S.

Theorem 3.5.5 (Heine-Borel)

A subset $\emptyset \neq S \subset \mathbb{R}$ is compact iff S is closed and bounded.

Proof.

 \longrightarrow

Suppose: S is compact

Want to show: S_{∞} is bounded

Notice that S $\subset \bigcup_{n=1}^{\infty} \, (-n, \, n) = \mathbb{R}$, $\ref{eq:simple_simple_simple_simple}$

where (-n, n) = N(0, n) is open $\forall n \in \mathbb{N}$.

 $G_n \subset G_{n+1} \ \forall n \in \mathbb{N}.$

Since S is compact, $\exists k \in \mathbb{N}$ and $\{n_1, n_2, \dots n_k\} \subset \mathbb{N}$ st

 $S \subset \text{from } i=1 \text{ to } k \bigcup (-n_i, n_i),$

Let: $m = \max \{n_1, n_2, ... n_k\}.$

Then, $(-n_i, n_i) \subset (-m, m) \ \forall i = 1, 2, ...k$.

Thus, $S \subset (-m, m)$.

So, $|S| < m, \forall s \in S$.

Or, equivalently,

 $-m < s < m, \forall s \in S.$

Hence, S is bounded.

Want to show: S is closed Suppose: S is not closed Thus, $\exists p \in cl S \setminus S$, i.e. $p \in S'$.

-Side Note

S is closed iff cl $S = S \cup S' = S$

 $S \subset S \cup S'$

If cl $S \neq S$, then $S \subset S \cup S'$

Notice that:

$$\bigcap_{n=1}^{\infty} \left[\mathbf{p} - \frac{1}{n}, \, \mathbf{p} + \frac{1}{n} \right] = \{ \mathbf{p} \}$$
 So, is equal to $\mathbb{R} \setminus \{ p \}$.

$$\begin{split} \mathbf{S} &\subset \mathbb{R} \setminus \bigcap_{n=1}^{\infty} [p - \frac{1}{n}, p + \frac{1}{n}] \\ \mathbf{S} &\subset \bigcup_{n=1}^{\infty} \mathbb{R} \setminus [p - \frac{1}{n}, p + \frac{1}{n}] \\ \mathbf{S} &\subset \bigcup_{n=1}^{\infty} \left[(-\infty, \, \mathbf{p} - \frac{1}{n}) \, \bigcup \, (\mathbf{p} + \frac{1}{n}, \, \infty) \right] \end{split}$$

Since S is compact, $\exists \ k \in \mathbb{N} \ and \ \{n_1, \, n_2, \, \dots \, n_k\} \subset \mathbb{N} \ st$

$$S \subset \bigcup_{i=1}^k \left[(-\infty, p - \frac{1}{n_i}) \bigcup (p + \frac{1}{n_i}, \infty) \right]$$

Since S are compared, 2 in the contract
$$(n_1, n_2, \dots, n_k)$$
 $S \subset \bigcup_{i=1}^k \left[(-\infty, p - \frac{1}{n_i}) \bigcup (p + \frac{1}{n_i}, \infty) \right]$
Let: $m = \max \{n_1, n_2, \dots n_k\}$
Then $(-\infty, p - \frac{1}{n_i}) \bigcup (p + \frac{1}{n_i}, \infty) \subset (-\infty, p - \frac{1}{m}) \bigcup (p + \frac{1}{m}, \infty)$.
Thus, $S \subset \left[(-\infty, p - \frac{1}{m}) \bigcup (p + \frac{1}{m}, \infty) \right]$

Thus,
$$S \subset [(-\infty, p - \frac{1}{m}) \bigcup (p + \frac{1}{m}, \infty)]$$

Conversely,

Suppose: S is closed and bounded

Want to show: S is compact

Let: $S \subset \bigcup_{\alpha \in I}^{\infty} G_{\alpha}$, where G_{α} is open $\forall \alpha \in I$ (some index)

 $\forall x \in \mathbb{R}$, define:

$$S_x = S \cap (-\infty, x]$$

Also define the set:

 $\beta = \{ \mathbf{x} \in \mathbb{R} : \mathbf{S}_x \text{ is covered by a finite collection of the } \mathbf{G}_{\alpha} \text{'s} \}$

Notice that S is closed and bounded, so sup $S = \max S$, inf $S = \min S$,

and $S_{infS} = S \cap (-\infty, \inf S] = \{\inf S\} = \{\min S\}$ (since by Lemma 3.5.4, $\inf S = \min S$)

Now, since min $S = \inf S \in S$, then $\exists \alpha_0 \in I \text{ st inf } S \in G_{\alpha}(\alpha_0)$.

This proves that

$$S_{infS} = \{\inf S\} \subset G_{\alpha_0}$$

Hence, inf $S \in \beta \neq \emptyset$.