Pre-built OS Image Installation Guide

Rev 3.5 20170905

Contents

1. Supported Products	1
2. Download Pre-Built OS image	2
3. Make eMMC installer	
4. Set up boot mode to run installer image on target board	5
4.1 Platforms based on i.MX6Solo/DualLite/Dual/Quad/QuadPlus/SoloX	5
4.1.1 EDM1-CF-IMX6 with FAIRY/GOBLIN/ELF	5
4.1.2 TC-07x0/TC-1000	6
4.1.3 PICO-IMX6 DWARF	7
4.1.4 PICO-IMX6 HOBBIT	8
4.1.5 PICO-IMX6 NYMPH	9
4.1.6 PICO-IMX6 PI	10
4.1.7 TEK3-IMX6/TEK3-IMX6UL/TEP-0500/TEP-0700/TEP-1010/TEP1560	11
4.2 Platforms based on i.MX6UL	12
4.2.1 PICO-IMX6UL-EMMC DWARF	12
4.2.2 PICO-IMX6UL-EMMC HOBBIT	13
4.2.3 PICO-IMX6UL-EMMC_NYMPH	14
4.2.4 PICO-IMX6UL-EMMC_PI	15
4.2.5 PICO-IMX6UL-NAND_DWARF	16
4.2.6 PICO-IMX6UL-NAND HOBBIT	17
4.3 Platforms based on i.MX7D	18
4.3.1 PICO-IMX7D_DWARF	18
4.3.2 PICO-IMX7D_HOBBIT	19
4.3.3 PICO-IMX7D_NYMPH	20
4.3.4 PICO-IMX7D PI	21
5. Resistive touch calibration	22
6. Use USB-OTG intaller tool to program eMMC	24
6.1 Run USB-OTG installer on Windows host	24
6.2 Run USB-OTG installer on Linux host	25
7. Debug Console	27
=	

1. Supported Products

These are the systems covered in this guide:

System-on-Modules

- EDM1-CF-IMX6
- EDM1-IMX6P
- EDM1-IMX6PLUS
- EDM1-CF-IMX6SX
- PICO-IMX6
- PICO-IMX6POP
- PICO-IMX6UL-EMMC
- PICO-IMX6UL-NAND
- PICO-IMX7D

Carrier Boards

- EDM1-FAIRY
- EDM1-GOBLIN
- EDM2-ELF
- PICO-DWARF
- PICO-HOBBIT
- PICO-NYMPH
- PICO-PI

Fanless Computing

- TEK3-IMX6
- TEK3-IMX6UL

Panel Computing

- TEP-0500/TEP-0700 -IMX6UL
- TEP-0500/TEP-0700 -IMX7
- TEP-1010/TEP1560 -IMX6
- TC-07x0/TC-1000

2. Download Pre-Built OS image

Please visit TechNexion download page: ftp://ftp.technexion.net/demo software

Choose the product you have. There are prebuilt images for different OS, e.g. Android, Ubuntu, or Yocto with different displays as primary.

3. Make eMMC installer

Unzip the file you download.

edm_yocto_release_note.txt
elease_note.txt
elease_note.txt
via edm1-cf-imx6_edm1-fairy_yocto-1.5-qt5_demo_lvds-1024x600_20140714.img
vin32diskimager.zip

There are three files:

edm_yocto_release_note.txt
edm1-cf-imx6_edm1-fairy_yocto-1.5-qt5_demo_lvds-1024x600_2014xxxx.img
win32diskimager.zip

If your PC runs Windows OS:

Please unzip win32diskimager.zip:

Execute Win32DiskImager.exe.

Prepare a microSD card. Insert this microSD card into the card reader of PC.

Choose microSD under "Device".

Select "edm1-cf-imx6_edm1-fairy_yocto-X.X-qt5_demo_lvds-1024x600_201YMMDD.img" as "Image File".

Then, press "Write". Win32DiskImager will flash yocto installer image into microSD card.

If your PC runs Ubuntu OS:

Prepare a microSD card. Insert this microSD card into the card reader of PC.

Use 'dd' command to flash yocto installer image into microSD card.

\$ sudo dd if=edm1-cf-imx6_edm1-fairy_yocto-1.5-qt5_demo_lvds-1024x600_2014xxxx.img of=/dev/sd<partition> bs=1M && sync

Or

Use "imageWriter" tool.

https://apps.ubuntu.com/cat/applications/precise/usb-imagewriter/

Install "imageWriter":

sudo apt-get install usb-imagewriter

Execute "imageWriter":

sudo imagewriter

Choose microSD you insert as "Device".

Select "edm1-cf-imx6_edm1-fairy_yocto-1.5-qt5_demo_lvds-1024x600_2014xxxx.img" as "Write Image".

Then, press "Write to device". **imagewriter** will flash Yocto installer image into microSD card.

4. Set up boot mode to run installer image on target board

Switch the boot mode to boot from SD card of baseboard to run the installer image. The installer image will install OS image into the eMMC on CPU module.

4.1 Platforms based on i.MX6Solo/DualLite/Dual/Quad/QuadPlus/SoloX

4.1.1 EDM1-CF-IMX6 with FAIRY/GOBLIN/ELF

Plug "EDM-MNF-BOOT PCB" into MNF slot on EDM1-Fairy baseboard. It will cause EDM1-Fairy boot from external microSD card instead of eMMC. Then, insert MicroSD card with yocto installer image inside into EDM1-Fairy baseboard.

EDM-MNF-BOOT PCB

Note: The rightmost jumper of EDM-MNF-BOOT PCB is different on EDM1-CF-IMX6 and EDM1-CF-IMX6SX.

4.1.2 TC-07x0/TC-1000

Insert the SD card into the TC-07x0 system. Hold down "S1" and press "RST" button. (PS. Hold down "S1" button will switch the boot mode to SD card. Then press "RST", the board will reboot from SD card.)

Then, power on your unit.

4.1.3 PICO-IMX6_DWARF

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from eMMC card of CPU module:

Install jumpers as below, and board will boot from SD card of CPU module:

4.1.4 PICO-IMX6_HOBBIT

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from eMMC card of CPU module:

Install jumpers as below, and board will boot from SD card of CPU module:

4.1.5 PICO-IMX6_NYMPH

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from eMMC card of CPU module:

Install jumpers as below, and board will boot from SD card of CPU module:

4.1.6 PICO-IMX6_PI

Install jumpers as below, and board will boot from SD card of CPU module:

Install jumpers as below, and board will boot from eMMC of CPU module:

4.1.7 TEK3-IMX6/TEK3-IMX6UL/TEP-0500/TEP-0700/TEP-1010/TEP1560

Insert the SD card into the device. Hold down "S1" and press "RST" button.

(PS. Hold down "S1" button will switch the boot mode to boot from SD card. Then press "RST", the board will reboot from SD card.)

4.2 Platforms based on i.MX6UL

4.2.1 PICO-IMX6UL-EMMC_DWARF

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from NAND of CPU module:

4.2.2 PICO-IMX6UL-EMMC_HOBBIT

Install jumpers as below, and board will boot from eMMC of CPU module:

4.2.3 PICO-IMX6UL-EMMC_NYMPH

Install jumpers as below, and board will boot from eMMC of CPU module:

4.2.4 PICO-IMX6UL-EMMC_PI

Install jumpers as below, and board will boot from eMMC of CPU module:

4.2.5 PICO-IMX6UL-NAND_DWARF

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from NAND of CPU module:

4.2.6 PICO-IMX6UL-NAND_HOBBIT

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from NAND of CPU module:

4.3 Platforms based on i.MX7D

4.3.1 PICO-IMX7D_DWARF

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from eMMC card of CPU module:

Install jumpers as below, and board will boot from SD card of CPU module:

Install jumpers as below, and board will boot from serial boot loader: (Please remove SD card in the SD card slot of the baseboard before booting.)

4.3.2 PICO-IMX7D_HOBBIT

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from eMMC card of CPU module:

Install jumpers as below, and board will boot from SD card of CPU module:

Install jumpers as below, and board will boot from serial boot loader: (Please remove SD card in the SD card slot of the baseboard before booting.)

4.3.3 PICO-IMX7D_NYMPH

Install jumpers as below, and board will boot from SD card of baseboard:

Install jumpers as below, and board will boot from eMMC card of CPU module:

Install jumpers as below, and board will boot from SD card of CPU module:

Install jumpers as below, and board will boot from serial boot loader: (Please remove SD card in the SD card slot of the baseboard before booting.)

4.3.4 PICO-IMX7D_PI

Install jumpers as below, and board will boot from SD card of CPU module:

Install jumpers as below, and board will boot from eMMC of CPU module:

5. Resistive touch calibration

If the touch panel is resistive touch, installer program will enter into calibration mode first.

(Capacitive touch panels don't need to be calibrated.)

After calibration is done, the installer program will start to flash Yocto image to eMMC.

Wait until the installation completes.

Please remove microSD card and switch boot mode to "boot from eMMC". Then, reboot the board.

Note:

For EDM1-FAIRY/EDM1-GOBLIN/EDM2-ELF, it needs to remove the "EDM-MNF-BOOT PCB" to switch boot mode to "boot from eMMC".

For PICO-DWARF/PICO-HOBBIT/PICO-NYMPH/PICO-PI, it needs to adjust the boot jumpers to switch boot mode to "boot from eMMC".

6. Use USB-OTG intaller tool to program eMMC

The method that we introduce in Section 4. Set up boot mode to run installer image on target board requires the target board with SD card slot. For some boards, there is no SD card slot. Then USB-OTG installer may be the another choice for you to program the target image into eMMC.

Download USB-OTG installer tool from TechNexion FTP:

ftp://ftp.technexion.net/development_resources/development_tools/installer/pico-imx7-imx6ul-imx6ull otg-installer 20170112.zip

The supported platforms are as follows:

- PICO-IMX6UL-EMMC
- PICO-IMX6ULL-EMMC
- PICO-IMX7-EMMC

Installation from both Windows and Linux platforms are supported.

6.1 Run USB-OTG installer on Windows host

First attach a USB Type C peripheral cable to the board, and the other end to the host PC.

Then, Set the boot jumpers to serial download mode (please refer to Section 4. Set up boot mode to run installer image on target board).

Power up the board, and verify that a "SE Blank ULT1" device appears as below:

Extract the zip file of USB-OTG installer tool.

Run "sb loader.exe" via "cmd.exe", and specify the boot image by different platform:

For PICO-IMX6UL-EMMC/PICO-IMX6ULL-EMMC:

```
$ sb loader.exe -f ../../pico-imx6ul bootbomb 20160510.imx
```

For PICO-IMX7-EMMC:

```
$ sb_loader.exe -f ../../pico-imx7d_bootbomb_20170112.imx
```

If the loader pushes the image to the board via USB-OTG cable successfully as below, the eMMC will be mounted as a mass storage device and appear under windows.

```
C:\WINDOWS\system32\cmd.exe 

D:\pico-imx7-imx6ul-imx6ull_otg-installer_20170112\windows\sb_loader>sb_loader.exe -f ../../pico-imx7d_bootbomb_20170112.imx

Executed plugin successfully.
Succeed to download ../../pico-imx7d_bootbomb_20170112.imx to the device.
Run into the image successfully.
```

Then, use the WinDiskImager to flash target image into mass storage device(actually it's eMMC on the CPU module). Please refer to Section 3. Make eMMC installer to understand how to use WinDiskImager, but this time the device is eMMC, instead of SD card.

6.2 Run USB-OTG installer on Linux host

First attach a USB Type C peripheral cable to the board, and the other end to the host PC.

Then, Set the boot jumpers to serial download mode (please refer to **Section** 4. Set up boot mode to run installer image on target board in this document).

Power up the board, and verify that a "Freescale Semiconductor, Inc." device appears as below:

```
pico@ubuntu:~$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 004: ID 15a2:0076 Freescale Semiconductor, Inc.
```

Extract the zip file of USB-OTG installer tool.

Run "imx usb" and specify the boot image by different platform:

For PICO-IMX6UL-EMMC/PICO-IMX6ULL-EMMC:

```
$ sudo ./imx_usb ../pico-imx6ul_bootbomb_20160510.imx
```

For PICO-IMX7-EMMC:

```
$ sudo ./imx_usb ../pico-imx7d_bootbomb_20170112.imx
```

If the loader pushes the image to the board via USB-OTG cable successfully as below, the

eMMC will be mounted as a mass storage device.

```
eMMC will be mounted as a mass storage
pico@ubuntu:/media/sf_Test_image/pico-imx7-imx6ul-imx6ul-
[sudo] password for pico:
config file <//imx_usb.conf>
vid=0x066f pid=0x3780 file_name=mx23_usb_work.conf
vid=0x15a2 pid=0x004f file_name=mx28_usb_work.conf
vid=0x15a2 pid=0x0052 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0054 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0061 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0063 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0063 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0071 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0071 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0080 file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x0080 file_name=mx7_usb_work.conf
vid=0x15a2 pid=0x004f file_name=mx51_usb_work.conf
vid=0x15a2 pid=0x004f file_name=mx51_usb_work.conf
vid=0x15a2 pid=0x071f file_name=mx51_usb_work.conf
vid=0x15a2 pid=0x004f file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x004f file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x004f file_name=mx6_usb_work.conf
vid=0x15a2 pid=0x04
                 dcd 1
clear_dcd 0
clug 1
lump_mode 2
lump_addr 0x00000000
```

The mass storage device appears as /dev/sde under linux:

The capacity of /dev/sde corresponds to the size of eMMC.

```
oico@ubuntu:/media/sf_Test_image/pico-imx7-imx6ul-imx6ull_otg-installer_20170112/linux$ lsblk
pico@ubuntu:/media/sf_Test_image/pico-imar-imaxeur_imaxeur_

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 25G 0 disk

? ? sda1 8:1 0 24.3G 0 part /

? ? sda2 8:2 0 1K 0 part

? ? sda5 8:5 0 765M 0 part [SWAP]

sdb 8:16 0 300G 0 disk

? ? sdb1 8:17 0 300G 0 part /home/pico/workspace
           8:32 0 500G 0 disk
       ? sdc1 8:33
                                   0 500G 0 part /home/pico/workspace2
               8:64 1 3.6G 0 disk
```

Then, it's easy to use "dd" command to flash target image into eMMC.

\$ sudo dd if=image.img of=/dev/sdX bs=1M oflag=dsync

7. Debug Console

Debug Port for TC-07x0/TC-1000:

The debug console of TC-07x0 is output to ttyUSB0 by default. We recommend to use USB-to-Serial cable (with Prolific or FTDI chip) on TC-07x0.