1 Limits

1.1 *e*

The function e is defined as a continuous, differentiable function f(x) that satisfies f'(x) = f(x) for all x and f(0) = 1.

$$e = \lim_{n \to 0} (1+n)^{\frac{1}{n}}$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

2 Integrals

2.1 Improper Integral Summary

Integral $p \le 1$ Value

$$\int_0^1 \frac{1}{x^p} \quad \text{divergent convergent} \quad \frac{1}{1-p}$$

$$\int_{1}^{\infty} \frac{1}{x^{p}} \quad \text{divergent} \quad \text{convergent} \quad \frac{1}{p-1}$$

2.2 Comparison Theorem

If f and g are continuous and $f(x) \ge g(x) \ge 0$ for $x \ge a$ (there is some a where f is now always larger than g) then,

If $\int_a^\infty f(x)dx$ is convergent then the "smaller" integral $\int_a^\infty g(x)dx$ must be convergent too.

If $\int_a^\infty g(x)dx$ is divergent then the "larger" integral $\int_a^\infty f(x)dx$ must be divergent too.