Lesson: recap

	Objective	Solution: closed-form	Solution: via algorithm	Effect
l S	$\min_{\beta} y - X\beta _2^2$	$\hat{\beta} = (X^T X)^{-1} X^T y$	gradient descent	vanilla
Ridge	$\min_{\beta} y - X\beta _2^2 + \lambda \beta _2^2$	$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y$	gradient descent	shrinkage
LASSO	$\min_{\beta} y - X\beta _2^2 + \lambda \beta _1^1$	unavailable	proximal gradient (ISTA): $\beta_{t+1} = ST_{\lambda\eta} \circ \left(\beta_t + \eta \cdot X^T(y - X\beta)\right)$	sparsity
Robust	$\min_{\beta} \rho(y - X\beta) \text{e.g. } \rho = . _1^1$	unavailable	IRLS: C cf. cours $D_t = Diag(\omega(y - X\beta_t))$ $\beta_{t+1} = (X^T D_t X)^{-1} X^T D_t y$	robustness