数字逻辑设计

王鸿鹏

计算机科学与技术学院 wanghp@hit.edu.cn

利用触发器设计时序逻辑的方法

- (1)根据需求——>获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)——>获得状态转移表
- (5) 卡诺图化简——> { 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关状态

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- ■时序锁
- 二进制串行加法器
- ■奇偶校验器
- 更复杂的同步时序逻辑设计

利用T触发器设计一个同步模8可逆计数器

确定T₃:看Q₃^{n→}Q₃ⁿ⁺¹ 确定T₂:看Q₂^{n→}Q₂ⁿ⁺¹ 确定T₁:看Q₁^{n→}Q₁ⁿ⁺¹

X=0: 加法; X=1: 减法

Z:进位及借位

1. 原始状态图及状态表

需要3个T触发器

T触发器驱动表

输入 端T	次态 Q _{n+1}
0	\mathbf{Q}_{n}
1	$\overline{\mathbf{Q}}_{n}$

2. 状态转换真值表

_									7		
	输	λ	顼	心态		次态			输入		输出
	X	Q_3^n	Q_2^n	$\mathbf{Q_1}^{n}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	T ₃	T ₂	T ₁	Z
	0	0	0	0	0	0	1	0	0	1	0
	0	0	0	1	0	1	0	0	1	1	0
	0	0	1	0	0	1	1	0	0	1	0
	0	0	1	1	1	0	0	1	1	1	0
	0	1	0	0	1	0	1	0	0	1	0
	0	1	0	1	1	1	0	0	1	1	0
	0	1	1	0	1	1	1	0	0	1	0
	0	1	1	1	0	0	0	1	1	1	1
	1	0	0	0	1	1	1	1	1	1	1
	1	0	0	1	0	0	0	0	0	1	0
	1	0	1	0	0	0	1	0	1	1	0
	1	0	1	1	0	1	0	0	0	1	0
	1	1	0	0	0	1	1	1	1	1	0
	1	1	0	1	1	0	0	0	0	1	0
	1	1	1	0	1	0	1	0	1	1	1
	1	1	1	1	1	1	0	0	0	1	0

3. 卡诺图化简

4. 电路实现

$$T_3 = \overline{X} Q_2^n Q_1^n + X \overline{Q_2^n} \overline{Q_1^n}$$

$$T_2 = \overline{X} Q_1^n + X Q_1^n$$

$$T_1 = 1$$

$$Z = X \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} + \overline{X} \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n}$$

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- ■时序锁
- 二进制串行加法器
- ■奇偶校验器
- 更复杂的同步时序逻辑设计

例:利用JK触发器设计一个时序锁

- □ 输入: X₁X₂, 输出: Z
- □该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11, 时序锁从状态 R→B→C, 并开锁(Z=1)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00、都将返回状态 R

1. 原始状态图及状态表

① 状态设定

R—初始状态,输入00

B—输入00后,再输入01

C—输入00、01后,再输入11,且Z=1

E—错误状态

厚	奎 力	で型

现态	次态 <i>S</i> _{n+1}									
S _n	$X_1X_2 = 00$ $X_1X_2 = 01$ $X_1X_2 = 11$ $X_1X_2 = 10$									
R	R	В	E	E	0					
В	R	E	С	E	0					
С	R	E	E	E	1					
E	R	E	E	E	0					

现态	次态S _{n+1}								
S _n	$X_1X_2 = 00$	$X_1X_2 = 00$ $X_1X_2 = 01$ $X_1X_2 = 11$ $X_1X_2 = 10$							
R	R	В	E	E	0				
В	R	E	С	E	0				
С	R	E	E	E	1				
E	R	E	E	E	0				

2. 状态化简

3. 状态分配

需要2个JK触发器

R: 00, B: 01

E: 10, C: 11

 $J_2 K_2$: 看 $Q_2^n \rightarrow Q_2^{n+1}$

4. 状态转换真值表

输	<u>入</u>	玖	态	<u> </u>	态		输	<u>入</u>		输出
X_1	X_2	$\mathbf{Q_2}^{n}$	$\boldsymbol{Q_1}^n$	$\mathbf{Q}_{2}^{\text{n+1}}$	$\mathbf{Q_1}^{\text{n+1}}$	J ₂	K ₂	J₁	K ₁	Z
0	0	0	0	0	0	0	X	0	Х	0
0	0	0	1	0	0	0	X	X	1	0
0	0	1	0	0	0	X	1	0	X	0
0	0	1	1	0	0	X	1	X	1	1
0	1	0	0	0	1	0	X	1	X	0
0	1	0	1	1	0	1	X	X	1	0
0	1	1	0	1	0	X	0	0	X	0
0	1	1	1	1	0	X	0	X	1	1
1	0	0	0	1	0	1	X	0	X	0
1	0	0	1	1	0	1	X	X	1	0
1	0	1	0	1	0	X	0	0	X	0
1	0	1	1	1	0	X	0	X	1	1
1	1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	1	1	X	X	0	0
1	1	1	0	1	0	X	0	0	X	0
1	1	1	1	1	0	X	0	X	1	1

5. 卡诺图化简

$$J_2 = X_2 Q_1^n + X_1$$

$$K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1$$

$$K_2 = \overline{X}_2 \overline{X}_1$$

X_1Q_2	ⁿ Q ₁ ⁿ 00	01	11	10
$\Lambda_1 \mathbf{Q}_2 \setminus$	00	<u> </u>		10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$Z = Q_2^n Q_1^n$$

6. 电路实现

$$\begin{cases}
J_2 = X_2 Q_1^n + X_1 \\
K_2 = \overline{X}_2 \overline{X}_1 \\
J_1 = \overline{X}_1 X_2 \overline{Q}_2^n \\
K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1 \\
Z = Q_2^n Q_1^n
\end{cases}$$

密码锁

- ■一维开锁:密码正确
- ■二维开锁:有限时间+密码正确
- ■三维开锁:

有限时间+有限按键次数+密码正确

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- ■时序锁
- 二进制串行加法器
- ■奇偶校验器
- 更复杂的同步时序逻辑设计

例:利用JK触发器设计一个同步二进制串行加法器

- 1. 原始状态图及状态表
 - ① 设加法器内部状态

a—— 无进位

b---- 有进位

② Mealy 状态图

③ Mealy 状态表

现态		Qn+1/ Z							
Qn	$X_1X_2=00$	$X_1X_2 = 01$	$X_1X_2=10$	$X_1X_2=11$					
а	a/0	a/1	a / 1	b / 0					
b	a / 1	b / 0	b / 0	b / 1					

- 2. 状态化简 3. 状态分配 a=0, b=1
- 4. 状态转换真值表

辅	入	现态	输入 输出			
X ₁	X ₂	Qn	Qn+1	J	K	Z
0	0	0	0	0	Х	0
0	0	1	0	X	1	1
0	1	0	0	0	X	1
0	1	1	1	X	0	0
1	0	0	0	0	X	1
1	0	1	1	X	0	0
1	1	0	1	1	X	0
1	1	1	1	X	0	1

5. 卡诺图化简

6. 电路实现

方案2: 如何用一位全加器实现?

利用触发器设计时序逻辑——实例

- 模8可逆计数器
- ■时序锁
- 二进制串行加法器
- ■奇偶校验器
- 更复杂的同步时序逻辑设计

例:利用T触发器设计一个串行输入的奇校验检测器

② Moor 状态图

③状态表

现态	次态	Qn+1	输出				
Qn	X=0	X=0 X=1					
So	S ₀	S ₁	0				
S ₁	S ₁	So	1				

1. 原始状态图及状态表

① 状态设定

S₀——表示收到偶数个"1",初始为0个"1"

S₁──表示收到奇数个"1"

2. 状态化简

- 3. 状态分配 S₀: 0, S₁: 1
- 4. 状态转换真值表

输入	现态	次态	输入	输出
X	Qn	Qn+1	T	Z
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1

5. 卡诺图化简

 $T=X; Z=Q^n$

6. 电路实现

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- ■时序锁
- 二进制串行加法器
- ■奇偶校验器
- 更复杂的同步时序逻辑设计

更复杂的同步时序设计——例5

例:利用D触发器设计一个同步时序的码制转换器,将串行输入的8421BCD码转换为余3码。

转换器的输入和输出都是最低位优先

	X Input (BCD)					Z Outp	out	
t_3	t_2	t ₁	t_0		t_3	t_2	t ₁	t_0
			0					1
			1					0
			0					1
			1					0
			0					1
			1					0
			0					1
			1					0
			0					1
			1					0

更复杂的同步时序设计——例5

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	<i>t₁ t₀</i> 时刻 输出
00	1 1
01	00
10	0 1
11	1 0

t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
000	011
001	100
010	101
011	110
100	111
101	000
110	001
111	010

t ₃ t ₂ t ₁ t ₀ 时刻 输入	<i>t₃t₂t₁t₀时刻</i> 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100

X Input (BCD)				Z Out exce	put ss-3)		
t_3	t_2	t_1	t_0	t_3	t_2	t_1	t_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

1. 原始状态图及状态表

- □ *t*₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	t ₁ t ₀ 时刻 输出
00	1 1
01	00
10	01
11	1 0

t ₂ t ₁ t ₀ 时刻 输入	<i>t₂ t₁ t₀</i> 时刻 输出
000	011
001	100
010	101
011	110
100	111
101	000
110	001
111	010

	$t_0 = 0$	12	
$t_1 \begin{array}{c} 0 \\ 1 \end{array}$	1/0	%	1/1
$t_2 = 0$	0/1 1/0	9/1 1/ ₀	
$t_3 0 1 0 0$	J N N 19/1		

t ₃ t ₂ t ₁ t ₀ 时刻 输入	<i>t</i> ₃ <i>t</i> ₂ <i>t</i> ₁ <i>t</i> ₀时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1 011
1001	<mark>1</mark> 100

2. 状态化简

Time	Input Sequence Received (Least Significant Bit First)	Present State	Next Sta	ate 1	Presei Output X = 0	
t _o	reset	A	В	С	1	0
t ₁	0 1	B C	D E	F G	1 0	0
t ₂	00 01 10 11	D E F G	H I J K	L M N P	0 1 1 1	1 0 0 0
t ₃	000 001 010 011 100 101 110	H I J K L M N	A A A A A A	A A - - -	0 0 0 0 0 1 1 1	1 1 - - - -

	ľ	Nex	t	Present		
	Present	Stat	State		(Z)	
Time	State	X = 0	1	X = 0	1	
t_0	Α	В	C	1	0	
$\overline{t_1}$	В	D	Ε	1	0	
	C	Ε	Ε	0	1	
t_2	D	Н	Н	0	1	
	E	Н	M	1	0	
t ₃	Н	Α	Α	0	1	
837041 ** <u>e</u>	М	Α	-	1	-	

3. 状态分配

		Next		Prese	nt	
	Present	Stat	e	Output	(Z)	
Time	State	X = 0	1	X = 0	1	
t_0	Α	В	C	1	0	
$\overline{t_1}$	В	D	Ε	1	0	
	С	Ε	Ε	0	1	
t ₂	D	Н	Н	0	1	
	E	Н	M	1	0	
t ₃	Н	A	A	0	1	
1000	М	Α	_	1	1000	

4. 状态转换真值表

학교	ĺ	Q†Q	$Q_2^+Q_3^+$	Z	
	$Q_1Q_2Q_3$	<i>X</i> = 0	X = 1	<i>X</i> = 0	X = 1
A	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	0 1 1	000	000	0	1
Μ	010	000	XXX	1	X
_	001	XXX	XXX	х	Х

4. 状态转换真值表

På.		Q ₁ +Q	$Q_2^+ Q_3^+$	Z	
	$Q_1Q_2Q_3$	X = 0	X = 1	<i>X</i> = 0	<i>X</i> = 1
A	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	011	000	000	0	1
Μ	010	000	XXX	1	Х
-	0 0 1	$x \times x$	XXX	х	х

5. 卡诺图化简

 $D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2'$

 $Z = X'Q'_3 + XQ_3$

6. 电路实现

7. 无关项检查

将无关状态 $Q_1Q_2Q_3=001$ 代入次态方程和输出方程计算

$$\begin{cases} D_1 = Q_1^+ = Q_2' \\ D_2 = Q_2^+ = Q_1 \\ D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2' \\ Z = X' Q_3' + X Q_3 \end{cases}$$

电路可以自启动

H

M

B

C

D

E

更复杂的同步时序设计——例6

例: 迭代电路设计——利用D触发器设计一个比较器,能对两个n位

1. 原始状态图及状态表

对于第 i 个单元,设状态——

S₀: X = Y 时

S₁: X > Y 时

S₂: X < Y 时

 Z_2 、 Z_3 、 Z_1 分别取值为1

- □由n个比较子单元(cell)构成
- □ 从高位到低位,逐位对应比较,并将前一位比较 的结果传送给下一位
- □ 第*i*个单元的比较结果: *X* = *Y*, *X* > *Y*, or *X* < *Y*.

1. 原始状态图及状态表

			S_{i+}	1		
	S_{i}	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
X = Y	S_0	<i>S</i> ₀	S ₂	S ₀	S ₁	0 1 0
X > Y	S_1	S ₁	S_1	S_1	S_1	0 0 1
X < Y	S_2	S_2	S_2	S ₂	S_2	1 0 0

在第*i* 个(前一个)单元 有比较结果的前提下,根 据输入取值,可以确定第 *i* +1个单元的比较结果

对于第 i 个单元, 设状态-

S₀: X = Y时 S₁: X > Y时 S₂: X < Y时

Z₁ 、Z₂ 、 Z₃ 分别取值为1

2. 状态化简

3. 状态分配

 $S_0: 00$

S₁: 01

需要两个触发器, 用 a,b来表示

 $S_2: 10$

4. 状态转换真值表

	a				
a _i b _i	$x_i y_i = 00$		11	10	$Z_1 Z_2 Z_3$
0 0	00	10	00	01	0 1 0
0 1	01	01	01	01	0 0 1
10	10	10	10	10	1 0 0

5. 卡诺图化简

第 i 个子单元的电路实现

6. 电路实现

7. 无关项检查 (略)

例9:利用D触发器设计一个同步时序电路,当输入序列以010或1001 结尾时(允许重叠检测),输出Z为1,否则Z=0.

1. Mealy型原始状态图构建

(1) 子序列010检测的状态设定

S₀——初始复位状态,表示没有任何输入

S₁──表示序列以"0"结束

S。——表示序列以"10"结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

(1) 010检测的局部状态图

(2)子序列1001检测的状态设定

S₀——初始复位状态,表示没有任何输入

-表示序列以"0"结束

表示序列以"10"结束

-表示序列以"010"结束,此时输出标志 Z=1。

-表示接收到1001序列的第一个"1"

表示序列以"100"结束。

重叠检测: 010中的10可

以被1001检测重用

(2)1001检测的局部状态图

重叠检测: 010中的10可 以被1001检测重用

(2)子序列1001检测的状态设定

一初始复位状态,表示没有任何输入

表示序列以"0"结束

表示序列以"10"结束

·表示序列以"010"结束,此时输出标志 Z=1。

·表示接收到1001序列的第一个"**1**"

·表示序列以"100"结束。

- 2. 状态化简(略)
- 3.状态分配(略)
- 4.状态转换真值表(略)
- 5.卡诺图化简(略)
- 6. 电路实现(略)

可以被010检测重用

重叠检测: 010中的10

可以被1001检测重用

(3)010及1001检测的完整状态图

例:某同步时序电路如下所示,按图接线后,试验得到如下的循环状态。经检查:触发器工作正常,试分析故障所在。

1. 获得正确状态图

① 输入方程

$$J_0 = \overline{Q_2}^n$$
, $K_0 = 1$
 $J_1 = K_1 = Q_0^n$
 $J_2 = Q_0^n Q_1^n$, $K_2 = 1$

② 次态方程

$$\mathbf{Q}_0^{n+1} = \overline{\mathbf{Q}}_0^n \overline{\mathbf{Q}}_2^n$$

$$\mathbf{Q}_1^{n+1} = \mathbf{Q}_1^{n} \oplus \mathbf{Q}_0^n$$

$$\mathbf{Q}_2^{n+1} = \mathbf{Q}_0^n \mathbf{Q}_1^n \overline{\mathbf{Q}}_2^n$$

③ 正确的状态转换图

④ 电路功能:模5加法计数器,可自启动

2. 故障分析

① 触发器工作正常: 说明——电源和地线接触良好、时钟信号CP正常送入 故障只可能在进位链或驱动回路中

② 分析各触发器状态:

次态方程

2. 故障分析

② 分析各触发器状态:

结论:

2. 故障分析

③ 针对触发器0分析:

?

K₀接触不良?

J₀接触不良?

TTL电路管脚悬空 等效为高电平1

 $\overline{\mathbf{Q}}_2$ 没有接入, \mathbf{J}_0 悬 空等效为高电平1

输光架亦武

Ko没问题

触发器变成T', 符合故障现象

Q₂没有

讨论:某同步时序电路如下所示,在电路状态转换图保持不变的前提下,把电路中的JK触发器换成D触发器,应该怎样设计?如果将电路改成模8计数器,最简单的实现方法是什么?

