AKO TEORIA - CZERWIEC 2011

Zadanie 1A (2pkt)

Podać zawartość rejestru EIP po wykonaniu poniższej sekwencji rozkazów:

```
mov eax, 789
xchg eax, [esp]
ret
```

Zadanie 1B (1pkt)

Podać sekwencję rozkazów (zawierającą rozkaz RET), której wykonanie spowoduje załadowanie do wskaźnika instrukcji EIP liczby 456.

Zadanie 1C (2pkt)

Podany niżej rozkaz JMP typu pośredniego kopiuje zawartość wierzchołka stosu do rejestru EIP:

jmp dword PTR [esp]

Wyjaśnić czym różni się podany rozkaz od rozkazu RET.

Zadanie 2A (2pkt)

W komórkach pamięci operacyjnej o adresach $0 \times 00430 F74$ i $0 \times 00430 F75$ została zapisana liczba 515 w postaci 16-bitowej liczby binarnej. Podać zawartość tych komórek w postaci binarnej przy założeniu, że w komputerze stosowana jest konwencja mniejsze wyżej (big endian). W komputerze stosowana jest pamięć o organizacji bajtowej.

00430F76H
00430F75H
00430F74H

Zadanie 2B (2pkt)

W komórkach pamięci operacyjnej o adresach $0 \times 00430 F74$ i $0 \times 00430 F75$ została zapisana liczba 510 w postaci 16-bitowej liczby binarnej. Podać zawartość tych komórek w postaci binarnej przy założeniu, że w komputerze stosowana jest konwencja mniejsze wyżej (big endian). W komputerze stosowana jest pamięć o organizacji bajtowej.

00430F76H
00430F75H
00430F74H

Zadanie 2C (2pkt)

W komórkach pamięci operacyjnej o adresach $0 \times 00430 F74$ i $0 \times 00430 F75$ została zapisana liczba 1025 w postaci 16-bitowej liczby binarnej. Podać zawartość tych komórek w postaci binarnej przy założeniu, że w komputerze stosowana jest konwencja mniejsze wyżej (big endian). W komputerze stosowana jest pamięć o organizacji bajtowej.

Zadanie 3A (1pkt)

Wyjaśnić znaczenie terminu ramka stosu

Zadanie 3B (1pkt)

W jaki sposób w kodzie asemblerowym rezerwuje się obszar danych statycznych i dynamicznych.

Zadanie 3C (1pkt)

Wyjaśnić znaczenie interfejsu ABI

Zadanie 4A (1pkt)

W jaki sposób sygnalizowany jest nadmiar w trakcie wykonywania rozkazu DIV lub IDIV?

Zadanie 4B (2pkt)

W jaki sposób procesor wyznacza wartości wpisywane do znaczników CF i OF w trakcie wykonywania dodawania.

Zadanie 4C (2pkt)

Czas wykonywania operacji dzielenia liczb całkowitych przez 2^k można znacznie skrócić, jeśli do tego celu zostanie wykorzystany rozkaz.....

Zadanie 5A (1pkt)

Na czym polega różnica między rozkazami FLD i FILD?

Zadanie 5B (2pkt)

Wyjaśnić czym różni się zaokrąglanie w kierunku zera od zaokrąglania do liczby najbliższej stosowane w koprocesorze arytmetycznym

Zadanie 5C (1pkt)

W jakich okolicznościach koprocesor arytmetyczny generuje wyjątek niedozwolona operacja?

Zadanie 6A (3pkt)

Omówić sposób odwzorowywania zawartości pamięci ekranu w trybie graficznym 13H na postać obrazu wyświetlonego na ekranie.

Zadanie 6B (3pkt)

Omówić sposób odwzorowania zawartości pamięci ekranu (w trybie tekstowym) na postać tekstu wyświetlanego na ekranie.

Zadanie 6C (3pkt)

Podać zasady przesyłania danych z klawiatury do komputera na poziomie przesłań sygnałów elektrycznych.

Zadanie 7A (2pkt)

Spośród niżej wymienionych cech, wybrać dokładnie dwie główne cechy, które są istotne przy wyborze odpowiedniego komputera typu system wbudowany:

- cena- dostępność- przepustowość- skalowalność

stosunek cena/wydajność
 wydajność dla konkretnych aplikacji

- wydajność grafiki - zużycie energii

Zadanie 7B (2pkt)

Spośród niżej wymienionych cech, wybrać dokładnie dwie główne cechy, które są istotne przy wyborze odpowiedniego komputera klasy serwer:

- cena- dostępność- przepustowość- skalowalność

stosunek cena/wydajność
 wydajność dla konkretnych aplikacji

- wydajność grafiki - zużycie energii

Zadanie 7C (2pkt)

Spośród niżej wymienionych cech, wybrać dokładnie dwie główne cechy, które są istotne przy wyborze odpowiedniego komputera osobistego:

- cena- dostępność- przepustowość- skalowalność

stosunek cena/wydajność
 wydajność dla konkretnych aplikacji

- wydajność grafiki - zużycie energii

Zadanie 8A (3pkt)

N-etapowy potok rozkazów może potencjalnie zwiększyć przepustowość n-krotnie. Dlaczego rzadko tak jest w praktyce?

Zadanie 8B (2pkt)

Do jakiej grupy z klasyfikacji Flynna zalicza się komputery wektorowe? Odpowiedź uzasadnij podając odpowiedni przykład

Zadanie 8C (3pkt)

Załóżmy, że dysponujemy dwoma implementacjami tego samego zbioru ISA. Maszyma A ma cykl zegarowy równy 50ns i dla pewnego programu CPI=4.0, zaś maszyna B ma cykl zegarowy równy 70ns i dla tego samego programu CPI=2.5. Która maszyna jest szybsza i dlaczego?

Zadanie 9A (2pkt)

W tradycyjnym modelu hierarchii układów pamięci pamięć podręczna L2 jest pamięcią *off-chip*. Ten stan rzeczy w nowoczesnych architekturach uległ zmianie i obecnie L2 jest pamięcią *on-chip*. Wyjaśnij przyczynę tego zjawiska. Na czym polega zatem różnica między pamięcią L1 i L2?

Zadanie 9B (3pkt)

Podaj dwa sposoby implementacji sieci połączeń w systemach wieloprocesorowych z pamięcią współdzieloną. Przedstaw jedną zaletę i jedną wadę każdej z organizacji.

Zadanie 9C (2pkt)

Podaj definicję czasu dostępu do pamięci.

Zadanie 10A (2pkt)

Porównaj procesory RISC i CISC pod kątem minimalizacji odwołań do pamięci operacyjnej.

Zadanie 10B (2pkt)

Czy czas trwania cyklu zegarowego wpływa na przepustowość pamięci SDRAM? Odpowiedź uzasadnij.

Zadanie 10C (2pkt)

Podaj i objaśnij podstawową różnicę w działaniu pamięci SDRAM a DRAM.

Zadanie 11A (3pkt)

W jakim celu wprowadza się w mikroarchitekturach zmianę nazw rejestru/ów (register renaming)?

Zadanie 11B (2pkt)

Na czym polega różnica w przetwarzaniu gridowym i klastrowym?

Zadanie 11C (2pkt)

Omówić główne zadania jednostki sterującej w procesorze biorąc pod uwagę informacje dostarczane na jej wejście i informacje generowane na wyjściu.

Zadanie 12A (3pkt)

Wymienić hipotetyczny ciąg mikrooperacji dla instrukcji POP.

Zadanie 12B (3pkt)

Wymienić hipotetyczny ciąg mikrooperacji dla instrukcji PUSH.

Zadanie 12B (3pkt)

Wymienić hipotetyczny ciąg mikrooperacji dla instrukcji LOOP.