International Rectifier

IRG4PH50U

Ultra Fast Speed IGBT

INSULATED GATE BIPOLAR TRANSISTOR

Features

- UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching,
 >200 kHz in resonant mode
- New IGBT design provides tighter parameter distribution and higher efficiency than previous generations
- Optimized for power conversion; SMPS, UPS and welding
- Industry standard TO-247AC package

G E n-channel

Benefits

- Higher switching frequency capability than competitive IGBTs
- Highest efficiency available
- Much lower conduction losses than MOSFETs
- More efficient than short circuit rated IGBTs

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	45	
I _C @ T _C = 100°C	Continuous Collector Current	24] A
I _{CM}	Pulsed Collector Current ①	180	
I _{LM}	Clamped Inductive Load Current ②	180	
V_{GE}	Gate-to-Emitter Voltage	± 20	V
E _{ARV}	Reverse Voltage Avalanche Energy ③	170	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W
P _D @ T _C = 100°C	Maximum Power Dissipation	78]
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.64	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount		40	
Wt	Weight	6 (0.21)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	•	•				• ,	
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200	—	_	V	$V_{GE} = 0V$, $I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage 4	18	_	_	V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	1.20	_	V/°C	$V_{GE} = 0V$, $I_{C} = 1.0mA$	
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	2.56	3.5	V	$I_{C} = 20A$	
		_	2.78	3.7		I _C = 24A	$V_{GE} = 15V$
		_	3.20	_		I _C = 45A	See Fig.2, 5
		_	2.54	_		I _C = 24A , T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	6.0		$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage	_	-13	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
9 fe	Forward Transconductance ©	23	35	_	S	$V_{CE} = 100V, I_{C} = 24A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 1200V$	
		_	—	2.0		V _{GE} = 0V, V _{CE} = 24V, T	= 25°C
		_	_	5000		$V_{GE} = 0V, V_{CE} = 1200V,$	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	—	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	-	160	250		I _C = 24A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	27	40	nC	$V_{CC} = 400V$ See Fig. 8
Q _{gc}	Gate - Collector Charge (turn-on)	-	53	83		$V_{GE} = 15V$
t _{d(on)}	Turn-On Delay Time	_	35			
t _r	Rise Time	-	15	_	ns	$T_J = 25^{\circ}C$
t _{d(off)}	Turn-Off Delay Time	—	200	350	113	$I_C = 24A, \ V_{CC} = 960V$
t _f	Fall Time	—	290	500		$V_{GE} = 15V$, $R_G = 5.0\Omega$
Eon	Turn-On Switching Loss	_	0.53	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	-	1.41	_	mJ	See Fig. 9, 10, 14
E _{ts}	Total Switching Loss	_	1.94	2.6		
t _{d(on)}	Turn-On Delay Time	_	31			$T_J = 150$ °C
t _r	Rise Time	_	18	_		$I_C = 24A, \ V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time	-	320	_	ns	$V_{GE} = 15V$, $R_G = 5.0\Omega$
t _f	Fall Time	_	280			Energy losses include "tail"
E _{ts}	Total Switching Loss	-	5.40	_	mJ	See Fig. 11, 14
Eon	Turn-On Switching Loss	_	0.35			$T_J = 25^{\circ}C, V_{GE} = 15V, R_G = 5.0\Omega$
E _{off}	Turn-Off Switching Loss	_	1.43	_	mJ	$I_C = 20A, \ V_{CC} = 960V$
	Total Switching Loss	_	1.78	2.9	1113	Energy losses include "tail"
E _{ts}	Total Switching Loss	_	4.56	_		See Fig. 9, 10, 11, 14, T _J = 150°C
LE	Internal Emitter Inductance	_	13		nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	_	3600			V _{GE} = 0V
Coes	Output Capacitance	_	160		pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance	-	31	_		f = 1.0MHz

Notes:

- \odot Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- V_{CC} = 80%(V_{CES}), V_{GE} = 20V, L = 10μH, R_G = 5.0 Ω , (See fig. 13a)
- 3 Repetitive rating; pulse width limited by maximum junction temperature.
- ⑤ Pulse width 5.0µs, single shot.

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

IRG4PH50U

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4PH50U

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

IRG4PH50U

International

TOR Rectifier

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

International TOR Rectifier

IRG4PH50U

 $R_{L} = \frac{960V}{4 \times I_{C}@25^{\circ}C}$

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 960V

Fig. 14b - Switching Loss Waveforms

IRG4PH50U

Case Outline and Dimensions — TO-247AC

NOTES:

- 1 DIMENSIONS & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: INCH.
 3 DIMENSIONS ARE SHOWN
- MILLIMETERS (INCHES).
- 4 CONFORMS TO JEDEC OUTLINE TO-247AC.

LEAD ASSIGNMENTS

- 1 GATE
- 2 COLLECTOR
- 3 EMITTER
- 4 COLLECTOR
- * LONGER LEADED (20mm)
 VERSION AVAILABLE (TO-247AD)
 TO ORDER ADD "-E" SUFFIX
 TO PART NUMBER

CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)

Dimensions in Millimeters and (Inches)

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630

IR TAIWAN:16 FI. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/ Data and specifications subject to change without notice. 01/02