

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Geometría Computacional

Clave:	Semestre:	Eje tema	Eje temático:				
0259	6-8	Algoritn	Algoritmos				
Carácter: Optativa			Но	ras	Horas por semana	Total de Horas	
Tipo: Teórico-Práctica			Teoría:	Práctica:			
			3	4	7	112	
Modalidad: Curso			Duración del programa: Semestral				

Asignatura con seriación indicativa antecedente: . Análisis de Algoritmos

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivo general:

Adquirir los conocimientos necesarios en el área de la geometría computacional, para diseñar algoritmos eficientes que resuelvan problemas computacionales que requieran soluciones geométricas.

I I a ! al a al	T	Horas		
Unidad	Temas	Teóricas	Prácticas	
I	Introducción	3	4	
II	Cierre convexo de un conjunto de puntos	3	4	
Ш	Intersecciones entre segmentos de rectas	3	4	
IV	Triangulación de polígonos y visibilidad	6	8	
V	Programación lineal	6	8	
VI	Búsqueda de rangos ortogonales	3	4	
VII	Localización de puntos	6	8	
VIII	Diagramas de Voronoi	3	4	
IX	Arreglos de líneas y dualidad	9	12	
Х	Proximidad	3	4	
ΧI	Algunas estructuras de datos geométricas	3	4	
	Total de horas:	48	64	
	Suma total de horas:	1.	12	

Contenid	o temático			
Unidad	Tema			
I Introduce	zión			
I.1	Definiciones generales.			
1.2	Repaso de estructuras de datos.			
1.3	Preliminares geométricos.			
II Cierre co	onvexo de un conjunto de puntos			
II.1	Cota mínima.			
II.2	Algoritmo de Graham.			
II.3	Algoritmo de Jarvis.			
11.4	Algoritmos usando divide y vencerás.			
II.5	Algoritmos dinámicos.			
II.6	Extensiones y variantes.			
III Intersec	ciones entre segmentos de rectas			
III.1	Detección.			
III.2	Algoritmos.			
III.3	Lista doblemente conexa de aristas.			
III.4	Calculando el traslape de dos subdivisiones.			
III.5	Barrido topológico.			
III.6	Ordenando pendientes en <i>O</i> (<i>n</i> ²).			
IV Triangu	lación de polígonos y visibilidad			
IV.1	Vigilancia y triangulaciones.			
IV.2	Dividiendo un polígono en piezas monótonas.			
IV.3	Triangulando un polígono monótono.			
IV.4	Calcular la gráfica de visibilidad.			
V Program	nación lineal			
V.1	La geometría de amoldado.			
V.2	Intersección de semiplanos.			
V.3	Círculo contenedor de radio mínimo.			
V.4	Programación lineal incremental.			
V.5	Programación lineal aleatoria.			
V.6	Programación lineal en dimensiones superiores.			
VI Búsque	da de rangos ortogonales			
VI.1	Búsqueda en una dimensión			
VI.2	Árboles Kd.			
VI.3	Árboles de rangos.			
	ación de puntos			
VII.1	Localización de un punto en una subdivisión plana.			
VII.2	Método de bandas.			
VII.3	Método de cadena.			
VII.4	Método trapezoidal.			
VII.5	Algoritmo incremental aleatorio.			

VIII Diagrar	mas de Voronoi			
VIII.1	Definición y propiedades básicas.			
VIII.2	Construyendo el diagrama de Voronoi.			
VIII.3	Cota mínima.			
VIII.4	Diagramas de Voronoi de orden superior.			
VIII.5	Aplicaciones.			
IX Arreglos de líneas y dualidad				
IX.1	Arreglos de líneas.			
IX.2	Dualidad.			
IX.3	Triangulación de Delaunay.			
X Proximidad				
X.1	Par de puntos más cercanos y más lejanos.			
X.2	Árboles generadores mínimos euclidianos.			
X.3	El problema del agente viajero euclidiano.			
XI Algunas	estructuras de datos geométricas			
XI.1	Árboles de intervalos.			
XI.2	Árboles de prioridades y búsqueda.			
XI.3	Árboles de segmentos.			

Bibliografía básica:

- 1. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf. *Computational Geometry, Algorithms and Applications*, 3a Ed., Springer Verlag, Berlin, 2008.
- 2. F. P. Preparata and M. I. Shamos. *Computational Geometry: An Introduction*, Springer-Verlag, New York, NY, 1985.

Bibliografía complementaria:

- 1. J. R. Sack, J. Urrutia. *Handbook of Computational Geometry*, Elsevier Science B.V., 2000.
- 2. Joseph O'Rourke. *Computational Geometry in C*, 2a Ed., Cambridge University Press, 1998.
- 3. J. E. Goodman and J. O'Rourke. *Handbook of Discrete and Computational Geometry*, 2a Ed., CRC Press LLC, Boca Raton, FL; 2004.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	()	Examen final escrito	(X)
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()
Seminarios	(X)	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	(X)	Asistencia	()
Prácticas de taller o laboratorio	()	Proyectos de programación	()
Prácticas de campo	()	Proyecto final	()
		Seminario	()
Otras:			
		Otras:	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o matemático con especialidad en computación con amplia experiencia de programación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.