質問者のプライバシーを保護 する特許デーだベース検索 (研究紹介)

中川研 M2 胡 瀚林 指導教員:中川 裕志 教授

2016年7月1日

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- 5 参考文献

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- ❺ 参考文献

特許検索

特許検索

特許検索質問

メタノールを燃料とする車載用燃料電池システムおよび車

メタノール 水蒸気 反応 水素 透過 膜 自立 燃料 電池 システム 供給 ガスアノード カソード 空気 排出

- 検索質問は単語 (名詞) の集合である
- 質問に含む単語数が多い
 - ウェブ検索:2.35 特許検索:20.1
- 専門用語が多い

テキスト検索

- 検索質問 Q:単語の集合
- 質問Qの検索結果R(Q):文章の集合

Obfuscation Search

- 真の質問とK-1個真の質問と区別できないダミー質問と同時に検索する
- サーバーが真の質問を見つける確率が1/k

Obfuscation Search:例

- 実践的には長い質問に対応できない
- 質問 q' を使うことより検索の精度と再現率が下がる

目標

- 長い質問に対応できる
- 専門用語が多いダミーを生成できる
- 検索の精度と再現率を維持できる

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- ❸ 参考文献

Embellishing Text Search Queries to Protect User Privacy (PDX10)

真の質問である可能性がある質問数:K

ETS

ETS

真の質問である可能性がある質問数: $K \rightarrow K^n$

テキスト検索

単語 W_i に対して文章 d_j のスコア: s_{ij} 質問 Q に対して文章 d_j のスコア: $s_j = \sum_{i \in Q} s_{ij}$ スコアが上位 m 個にある文章を質問 Q の検索結果として返す

準同型暗号

定義 (凖同型暗号)

二つの暗号文 $Enc(m_1)$, $Enc(m_2)$ が与えられた時に、 平文や秘密鍵なしで $Enc(m_1 \circ m_2)$ を計算できる暗号

例 (加算ができる凖同型暗号)

E(·): 暗号化 D(·): 復号

- ランダム性:E(m) ≠ E(m)
- $E(m_1) \cdot E(m_2) = E(m_1 + m_2)$
- $E(m)^q = E(m \cdot q), q \in \mathbb{Z}^+$

質問検索-ETS

$$\mathbf{Q} = \begin{bmatrix} W_{1}^{(1)}, E(u_{1}^{(1)}) \\ W_{1}^{(2)}, E(u_{1}^{(2)}) \\ \vdots \\ W_{1}^{(k)}, \dot{E}(u_{1}^{(k)}) \end{bmatrix}$$

$$\begin{array}{c} W_{2}^{(1)}, E(u_{2}^{(1)}) \\ W_{2}^{(2)}, E(u_{2}^{(2)}) \\ \vdots \\ W_{2}^{(k)}, \dot{E}(u_{2}^{(k)}) \end{array}$$

$$\begin{array}{c} W_{n}^{(1)}, E(u_{n}^{(1)}) \\ W_{n}^{(2)}, E(u_{n}^{(2)}) \\ \vdots \\ W_{n}^{(k)}, \dot{E}(u_{n}^{(k)}) \end{array}$$

$$u_i^{(k)} = \begin{cases} 0 \ i, k \notin Q^* \\ 1 \ i, k \in Q^* \end{cases}$$

単語 $W_i^{(k)}$ に対して文章 d_j のスコア: $s'_{ikj} = E(u_i^{(k)})^{(s_{ikj})} = E(u_i \cdot (s_{ikj}))$ 質問 Q に対して文章 d_j のスコア: $s_j = \prod_{i,k \in Q} s'_{ikj} = E(\sum_{i,k \in Q^*} s_{ikj})$ スコアが 0 ではない文章を全部返す

スクリーンショット

- 1 synset番号(synset offset)
- 2 同義語(synonym)
- 3 定義文·例文(gloss)
- 4関連synsetとのリンク
- 5他の言語資源とのリンク
- 1007言語更添
 6面像

単語を類義関係のセット (synset) でグループ化し、一つの synset が一つの概念に対応する 各 synset は上位下位関係などの関係で結ばれている

バケツ作り

- 全ての synset を関係数が多いから小さい順で処理 する
- 同じ単語を持つ synset を隣で並ぶ
- 反意関係,上位下位関係,構成被構成関係を synsetを隣で並ぶ

単語列

単語列

スクリーンショット

- 1 synset番号(synset offset) 2 同義語(synonym) 3 定義文·例文(gloss)
- 4関連synsetとのリンク
- 5 他の言語資源とのリンク
- 6 兩億

実体/entity 以外全部の名詞の上位語が唯一に存在する 上下位関係を枝とすると、Wordnet 中の名詞が木の形になる

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- ❸ 参考文献

クエリ分析

メタノール	水蒸気	反応	水素	透過	膜	 燃料
衡平	グンバイムシ	水力	上唇	ドアロック	沈殿	 ベーキングバウダー
ルシタニア	ファースト	テアトル	水素	認知心理学	膜	 運転者
メタノール	水蒸気	反応	長引かせること	透過	組織図	 燃料
分限者	カランツ	意味合	発明品	イーサネットケーブル	原稿	黒泥土

真の質問の単語は全部燃料電池と関係あるが、ダミー 単語の意味がバラバラである もし単語が意味によって分類できるなら、燃料電池と

もし単語が意味によって分類できるなら、燃料電池と 関係がある単語が他のクラスに属する単語の数より多 いことが考えられる

Latent Semantic Indexing

潜在的意味インデキシング

単語・文書行列 A の (i,j) 番目の要素は i 番目の単語が j 番目の文章に出現した回数である

A を特異値分解 $A = USV^T$ し、U、S、V の各列ベクトルを特異値が大きい順に K 個用いて A の低ランク近似 $A_K = U_K S_K V_K^T$ を得るこのように低ランク分解によって、単語とトピックの関係を分析することができる

 A_K の(i,j)番目の要素はi番目の単語とj番目のトピックの関係を表す

国際特許分類

A61C 5/08A

セクション:A サブセクション : 61 クラス: C メイングループ:5 サブグループ:08 健康および娯楽 医学または獣医学:衛生学 歯科:口腔または歯科衛生 歯の充填または被覆 歯冠:その製造; 口中での歯冠固定

今回は同じ分類に属する全部の文章を1文章として LSIを行った

メイントピック攻撃

メタノール	水蒸気	反応	水素	透過	膜	燃料
衡平	グンバイムシ	水力	上唇	ドアロック	沈殿	 ベーキングパウダー
ルシタニア	ファースト	テアトル	水素	認知心理学	膜	 運転者
メタノール	水蒸気	反応	長引かせること	透過	組織図	 燃料
分限者	カランツ	意味合	発明品	イーサネットケーブル	原稿	 黒泥土

メイントピック攻撃

- ダミーを含んでいる質問のメイントピックを確定 する
- 各単語バケツの中,メイントピックと一番関係強 い単語を真の質問単語にする

主意味攻擊:例

	t1(食べ物)	t ₂ (音楽)	t ₃ (交通手段)
w₁(モーツァルト)	0	1	0
w ₂ (交響曲)	0	1.5	0
w ₃ (パン)	1.5	0	0
w ₄ (飛行機)	0	0	1

ユーザー質問:モーツァルト 交響曲

$$\ell_Q = \ell_{w_1} + \ell_{w_2} + \ell_{w_3} + \ell_{w_4} = (1.5, 2.5, 1)$$

 $Maintopic = argmax_t \ell_Q[t] = t_2$

主意味攻擊:例

モーツァルト
飛行機

	t ₁ (食べ物)	t ₂ (音楽)	t ₃ (交通手段)
W ₁ (モーツァルト)	0	1	0
W ₂ (交響曲)	0	1.5	0
w ₃ (パン)	1.5	0	0
w ₄ (飛行機)	0	0	1

ユーザー質問:モーツァルト交響曲

$$\ell_{w_1}[t_2]=1>\ell_{w_4}[t_2]=0$$
 $\ell_{w_3}[t_2]=0<\ell_{w_2}[t_2]=1.5$ $Q^*=\{\,$ モーツァルト,交響曲 $\,\}$

プライバシー分析

重複を除いた単語数	2,973,096
文章数	3, 496, 253
質問数	2,908
質問平均単語数	21.0
主意味攻擊成功率	90.1%

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- ❸ 参考文献

まとめ

- 質問を単語ごとに分割し,暗号と組み合わせする 手法
- 質問のメイントピックを保護するのは難しい
- Wordnetではなく他のダミー単語を生成するツー ルが欲しい

- 背景紹介
- 2 既存研究
- 3 プライバシー分析
- 4まとめ
- 5 参考文献

Bibliography I

Rafail Ostrovsky and William E. Skeith Iii.

A Survey of Single-Database Private Information Retrieval: Techniques and Applications. In Tatsuaki Okamoto and Xiaoyun Wang, editors, *Public Key Cryptography PKC 2007*, number 4450 in Lecture Notes in Computer Science, pages 393–411. Springer Berlin Heidelberg, April 2007.

DOI: 10.1007/978-3-540-71677-8_26.

HweeHwa Pang, Xuhua Ding, and Xiaokui Xiao.

Embellishing Text Search Queries to Protect User Privacy.

Proc. VLDB Endow., 3(1-2):598–607, September 2010.