VE281

Data Structures and Algorithms

Asymptotic Algorithm Analysis and Arrays

Review

- Best, Worst, Average Cases
- Asymptotic Analysis: Big-Oh
 - Deal with the performance of algorithms for large input sizes
 - Upper bound

Outline

- Asymptotic Algorithm Analysis
- Recap of Arrays and Pointers

Big-Oh Notation

- Strictly speaking, we say that T(n) is in O(f(n)), i.e., $T(n) \in O(f(n))$
- However, for convenience, people also write T(n) = O(f(n))

A Sufficient Condition of Big-Oh

If
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c<\infty$$
, then $f(n)$ is $O(g(n))$.

• With this theorem, we can easily prove that

$$T(n) = c_1 n^2 + c_2 n$$
 is $O(n^2)$

• Proof: $\lim_{n\to\infty} \frac{c_1 n^2 + c_2 n}{n^2} = c_1 < \infty$

Rules of Big-Oh

- Rule 1: If f(n) = O(g(n)), then cf(n) = O(g(n)).
 - Example: $3n^2 = O(n^2)$
- Rule 2: If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(\max\{g_1(n), g_2(n)\})$
 - Example: $n^3 + 2n^2 = O(\max\{n^3, n^2\}) = O(n^3)$

Rules of Big-Oh

- Rule 3: If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$
- Rule 4: If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

Common Mistakes of Big-Oh

- Mistake 1: $f(n) = O(g(n)) \Rightarrow f(n) = g(n)$.
 - Wrong!
- Mistake 2: If $f(n) \le cg(n)$, where c = h(n), then f(n) = O(g(n)).
 - Wrong!

Common Functions and Their Growth Rates

constant: 1

logarithmic: $\log n$

refers to log₂ n

square root: \sqrt{n}

linear: *n*

loglinear: $n \log n$

quadratic: n^2

cubic: n^3

general polynomial: n^k

$$k \ge 1$$

exponential: a^n , a > 1

factorial: n!

Common Functions and Their Growth Rates

constant: 1

logarithmic: $\log n$

refers to log₂ n

square root: \sqrt{n}

linear: *n*

loglinear: $n \log n$

quadratic: n^2

cubic: n^3

general polynomial: n^k

$$k \ge 1$$

exponential: a^n , a > 1

factorial: n!

A Few Results about Common Functions

- For a polynomial in n of the form $f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$ where $a_m > 0$, we have $f(n) = O(n^m)$.
- For every integer $k \ge 1$, $log^k n = O(n)$.
- For every integer $k \ge 1$, $n^k = O(2^n)$.

How Fast is Your Code?

Let f(n) be the complexity of your code, how fast would you advertise it as?

f(n) = O(g(n)); You want to pick a g(n) that is as close to f(n) as possible.

Relative of Big-Oh: Big-Omega

- Definition: For T(n) a non-negatively valued function, T(n) is in the set $\Omega(g(n))$ if there exist two positive constants c and n_0 such that $T(n) \ge cg(n)$ for all $n > n_0$.
- Meaning: For all data sets big enough (i.e., $n > n_0$), the algorithm always requires more than cg(n) steps.
- Big-omega gives a lower bound.
- We usually want the greatest lower bound.

Big-Omega Example

- Consider $T(n) = c_1 n^2 + c_2 n$, where c_1 and c_2 are positive.
- What is the big-omega notation for T(n)?
- Solution:
 - $c_1 n^2 + c_2 n \ge c_1 n^2$ for all n > 1.
 - $T(n) \ge cn^2$ for $c = c_1$ and $n_0 = 1$.
 - Therefore, T(n) is in $\Omega(n^2)$ by the definition.

Theta Notation

- When big-oh and big-omega coincide, we indicate this by using big-theta (Θ) notation.
- Definition: T(n) is said to be in the set $\Theta(g(n))$ if it is in O(g(n)) and it is in $\Omega(g(n))$.
 - In other words, there exist three positive constants c_1 , c_2 , and n_0 such that $c_1g(n) \leq T(n) \leq c_2g(n)$ for all $n > n_0$.

Theta Notation

• Question: Does $f(n) = \Theta(g(n))$ indicate $g(n) = \Theta(f(n))$?

Analyzing Time Complexity of Programs

- For atomic statement, such as assignment, its complexity is $\Theta(1)$.
- For branch statement, such as if-else statement and switch statement, its complexity is that of the most expensive branch.

```
if (Boolean_Expression_1) {Statement_1}
else if (Boolean_Expression_2) {Statement_2}
...
else if (Boolean_Expression_n) {Statement _n}
else {Statement For All Other Possibilities}
```

Analyzing Time Complexity of Programs

- For subroutine call, its complexity is that of the subroutine.
- For loops, such as while and for loop, its complexity is related the number of operations required in the loop.

Time Complexity Example One

• What is the time complexity of the following code?

```
sum = 0; \Theta(1)
for(i = 1; i <= n; i++)
\Theta(n) sum /+= i;
\Theta(n) \Theta(n)
```

• The entire time complexity is $\Theta(n)$.

```
Rule of Theta: If f_1(n) = \Theta(g_1(n)) and f_2(n) = \Theta(g_2(n)), then f_1(n) + f_2(n) = \Theta(\max\{g_1(n), g_2(n)\})
```

Time Complexity Example Two

8 What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i++)
  for(j = 1; j <= i; j++)
    sum++;</pre>
```

• Note that the statements

• The time complexity is $\Theta(n^2)$.

Time Complexity Example Three

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i *= 2)
for(j = 1; j <= n; j++)
sum++;</pre>
```

- The outer loop occurs $\log n$ times.
- The statements sum++ / j <= n / j++ occur $n \log n$ times.
- The time complexity is $\Theta(n \log n)$.

Time Complexity Example Four

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i *= 2)
for(j = 1; j <= i; j++)
sum++;</pre>
```

- The number of times that the statements sum++ / j<=i / j++ occur is $1+2+4+8+\cdots 2^{\log n} \approx 2n-1$
- The time complexity is $\Theta(n)$.

Multiple Parameters

• Example: Compute the rank ordering for all C (i.e., 256) pixel values in a picture of P (i.e., 64 × 64) pixels.

```
for(i=0; i<C; i++) // Initialize count

O(C) count[i] = 0;

for(i=0; i<P; i++) // Look at all pixels
    count[value[i]]++; // Increment count

sort(count); // Sort pixel counts

O(C log C)</pre>
```

• The time complexity is $\Theta(P + C \log C)$.

Space/Time Trade-off Principle

- One can often reduce time if one is willing to sacrifice space, or vice versa.
- Example: factorial
 - Iterative method: Get "n!" using a for-loop.
 - This requires $\Theta(1)$ memory space and $\Theta(n)$ runtime.
 - Table lookup method: Pre-compute the factorials for $1,2,\cdots,N$ and store all the results in an array.
 - This requires $\Theta(n)$ memory space and $\Theta(1)$ runtime (fetching from an array).

Outline

- Asymptotic Algorithm Analysis
- Recap of Arrays and Pointers

Foundational Data Structures

- Many abstract data types (ADTs), such as stacks, queues, trees, priority queues, and graphs, can be implemented either using an array or some kind of linked data structure.
- We call array and linked list as the foundational data structures.

A Recap of Arrays

- An array is a **fixed-sized**, **indexed** collection of items, all of the same type.
- To declare and define an array of four integers, we would say the following: int array[4];
- You can also initialize the contents of an array when declaring it: int array[4] = { 1, 2, 3, 4 };

A Recap of Arrays

• You can access the contents of an array using an "index", such as

• The index of the first array element is zero, the next is one, and so on. The last index of an array of size L is L-1.

A Recap of Pointers

- Declaration: int *bar;
- Assigning address: bar = &foo;
 - The environment we get when we do this is:

```
0x804240c0 foo: 1
0x804240c4 bar: 0x804240c0
```

- Dereference: *bar = 2;
- Pointers as function arguments
 void add_one(int *x) {
 *x = *x + 1;
 }

Pointers and Arrays

- If you were to look at the **value** of the variable array (not array[0]) you'd find that it was exactly the same as the **address** of array[0].
- In other words,

 $(array==&array[0]) \rightarrow True$

Pointer Arithmetic

Enabling Array Traversal

```
int strlen(char *s)
  // REQUIRES: s is a NULL-terminated C-string
  // EFFECTS: returns the length of s, not
  // counting the NULL.
```

• We can implement **strlen** using only pointers and pointer arithmetic.

```
int strlen(char *s) {
    char *p = s;
    while (*p) {
        p++;
    }
    return (p - s);
}
```

Pointer Arithmetic

Enabling Array Traversal

```
int strlen(char *s) {
    char *p = s;
    while (*p) {
        p++;
    }
    return (p - s);
}
```

- Detailed explanation:
 - *p evaluates to "false" if p points to a NULL, true otherwise.
 - p++ advances by "one character".
 - p-s computes the "number of characters" between p and s, which happens to be the

Common Bugs of Arrays

- Out-of-bound access, including
 - index variable not initialized
 - off-by-one error

```
What's the bug?
```

```
int y[4]={0,1,2,3};
int i;
cout << y[i] << endl;</pre>
```

Index variable not initia

```
const int size = 5;
int x[size];
for(int i=0; i<=size; i++)
   x[i] = i*2;</pre>
```

Off-by-one error