Chapter 4

21. Redo Example 4.25 $u/f(x) = x^4 + x^3 + 1$

0, 9°, 9', 92, 93 are trivial, and 94 = -92-1 = 92+1. Thus:

D - D = 0000 (2)

g° -> g° = 0001(2)

9° = 0010(2)

92 - 92 - 0100 (L)

3 - 9 = 1000(2)

gt - g2+1 = 1001(1)

gs -> y(gr) =9(g3+1)= y3+9+1 = 1011(2)

96 - g(gs) = g(g3+g+1) = y3+g1+g1+1= 1111a

97 - g(g6) = g(g3+g+g1+1) = y2+g+1=0111a1

98 -> g(g7) = g(g2+g+1) = g3+ g-+g = 1110(2)

91 = g(98) = y(92+92+9) = y2+1 = 1010101

go - g(g1) = g(g2+q) = g3+g = 1010 m

9" = 9(9") = 9(9"+) = 93+92+ 1= 1101(0)

912 7 9(g14) = 9(92+941) = 9+1 = 0011(1)

g'3 - y(g12) = g(g+1) = g2+9 = 0100 w

g" = g(g") = g(g+19) = y3+g2 - 1100(1)

22. Redo example 4.26 of f(x) = x4+x2+1.

The following shows the results of addition and subtraction:

Q. 97+910 = (3+1)+(3+9) = 92+91+9+1 = 1111(1) = 0101(1) + 1010(1)

b. $g^4 - g^3 = (g^3 + 1) - (g^3) = 1 = 0001 cm = 1001 cm - 1000 cm.$

28. Prove that x and x+1 are irreducible polynomical of degree 1.

A polynomial $f(\pi)$ is reducible if polynomials with honzero degree g, he exist that satisfies $f(\pi) = g(\pi) \cdot h(\pi)$. Here, degree (f) = degree (g) + degree (h). However, there crists no such polynomial that satisfies this equation. (at least one polynomial needs to be degree Q, which is not allowed by definition.)

29. Arme that (x +x+1) is an irreducible polynomial of degre ?.

Using the same definition as above, the given polynomial most be decomposed into two degree 1 polynomials. We can try to divide:

x 12+x+1

x+1 | x + x + 1 x + x There is always a remainder.

- Gunnot be factored.

-> Polynomial is irreducible.

30. From that $x^3 + x^2 + 1$ is an irreducible polynomial of degree 3. Using the same definition, deg(3) = deg(2) + deg(1). If it could be decomposed, we should be able to factor a degree 1 polynomial out.

31. Multiply wing polynomials.

a.
$$11 \times 10 = (x + 1)(x) = x^2 + x = 110$$

b. $1010 \times 1000 = (x^3 + x^4)(x^3) = x^6 + x^4 = 1010000$

- C. $11100 \times 10000 = (\pi^4 + \pi^3 + \pi^4)(\pi^4) = \pi^8 + \pi^7 + \pi^6 = 1110000000$
- 32. Find the multiplicative invorce in GF(22).

a.
$$\frac{8}{x^{2}+7x^{2}} \frac{r}{1} \frac{r}{1$$

3). Find the inverse of 24+22+1 in GF(25) with modulus GS+2+1).

9	<u> </u>	M2	r	4	tu	Ł
x+1	x5+72+1	X4+x3+1	なりかれ	0	1	x+1
X	24+00+7	2212112	2+1	1	211	227211
241	x3+x2+x	22+1	1	% †1	X21X	17 20 12
241	22+7	1	0	X2+ x	11 2	12 1
19 W W	1	0		(x3 +2	-)	1
Invene is	23 tz.				N)	