Argumentos e Inferências -Aplicando a Lógica

Explore como usar a lógica proposicional e cálculo de predicados para validar argumentos através das regras de inferência.

por Marco Simões

O Que São Argumentos?

Premissas

Proposições que oferecem razões para aceitar a conclusão.

Conclusão

Proposição derivada das premissas através de raciocínio lógico.

Estados do Mundo

Cada sentença trata de algum estado das coisas e pode ser verdadeira ou falsa.

Importância da Inferência Lógica

Novas Verdades

Derivar conhecimento a partir de verdades conhecidas.

Validação

Verificar raciocínios de forma sistemática e rigorosa.

Decisões

Fundamentar escolhas com base em evidências sólidas.

Falácias

Identificar argumentos inválidos e erros de raciocínio.

Tipos de Raciocínio

Dedução

Das premissas para a conclusão com certeza absoluta. Garante a verdade da conclusão.

Indução

De casos específicos para generalizações prováveis. Oferece probabilidade, não certeza.

Abdução

Inferência para a melhor explicação. Busca a hipótese mais plausível.

Lógica Proposicional -Revisão

Proposições

Sentenças declarativas que podem ser verdadeiras ou falsas. Exemplos: "Está chovendo", "2+2=4".

Conectivos Lógicos

- Negação (¬): "não p"
- Conjunção (∧): "p e q"
- Disjunção (v): "p ou q"

Tabelas-Verdade

Método para determinar o valor-verdade de proposições compostas e verificar validade.

Lógica de Predicados -Revisão

1

Predicados

Expressam propriedades ou relações entre objetos.

2

Variáveis

Representam objetos de um domínio específico.

3

Quantificadores

Universal (\forall) e Existencial (\exists) para generalizar.

$$\forall P(x) \quad \exists x(x)$$

$$P(x) \rightarrow Q(x)$$

$$(-R(x) \land S(x)$$

$$\rightarrow \neg T(x)$$

Regras de Inferência

Padrões Válidos Estruturas de raciocínio que preservam a verdade.

Facilitam a validação de argumentos complexos.

Verificação

Eficiência

Substituem tabelas-verdade complexas por regras simples.

Clareza

Tornam a estrutura do raciocínio mais transparente.

Modus Ponens

Forma

 $(P \rightarrow Q, P) \vdash Q$

2 — Interpretação

Se P implica Q, e P é verdadeiro, então Q é verdadeiro.

3 — Exemplo

Se está chovendo, então a rua está molhada. Está chovendo. Logo, a rua está molhada.

LOGICAL DEDUCTION

Modus Tollens

Forma Lógica

$$(P \rightarrow Q, \neg Q) \vdash \neg P$$

Raciocínio

Se P implica Q, e Q é falso, então P é falso.

Aplicação

A rua não está molhada, logo não está chovendo.

Silogismos

Silogismo Hipotético

Forma: $(P \rightarrow Q, Q \rightarrow R) \vdash P \rightarrow R$

Exemplo: Se chove, rua molha. Se rua molha, perigoso dirigir. Logo, se chove, perigoso dirigir.

Silogismo Disjuntivo

Forma: $(P \lor Q, \neg P) \vdash Q$

Exemplo: Cinema ou jantar. Não

cinema. Logo, jantar.

Outras Regras Proposicionais

Vx Jx

Regras na Lógica de Predicados

- Instanciação Universal $\forall x \ P(x) \vdash P(c)$. Se vale para todos, vale para qualquer indivíduo.
- Generalização UniversalP(c) ⊢ ∀x P(x). De um caso arbitrário para todos.
- Instanciação Existencial $\exists x \ P(x) \vdash P(c)$. Se existe um, então vale para algum específico.
- Generalização Existencial
 P(c) ⊢ ∃x P(x). De um caso específico para existência.

Problema: Distribuição de Professores

3

3

Professores

Matérias

Ana, Bruno e Carla

Matemática, Português e História

3

Restrições

Ana não ensina Matemática, Bruno não ensina História, Carla ensina Português

Formalização do Problema

Proposição	Significado
¬ A_M	Ana não ensina Matemática
¬B_H	Bruno não ensina História
C_P	Carla ensina Português
$A_M \lor A_P \lor A_H$	Ana ensina alguma matéria

Logical Formalization

$$(1) \neg (P \rightarrow Q) \leftarrow (P \land \neg Q)$$

(2)
$$R \rightarrow S$$

$$(1): (2): \neg (R \rightarrow S) \lor (P \land \neg Q)$$

Proof.

$$1. \neg (P \rightarrow Q) \tag{1}$$

$$2. R \land \neg S \tag{2}$$

3.
$$\neg (R \rightarrow S)$$
 2. DM

4.
$$(P \land \neg Q) \lor \neg (R \rightarrow S)$$
 1,ADD

$$(P \land \neg Q) \lor \neg (R \rightarrow S)$$
 1,3,DS

Dedução Lógica - Parte 1

1

Passo 1-3

De C_P e restrições, derivamos \neg C_M \land \neg C_H usando Modus Ponens.

Passo 4-5

Por Simplificação: ¬C_M e ¬C_H. Carla não ensina Matemática nem História.

3

Passo 6-9

De C_P derivamos $\neg A_P \land \neg B_P$. Ana e Bruno não ensinam Português.

Dedução Lógica - Parte 2

Bruno

 $\neg B_P \land \neg B_H \rightarrow B_M$. Bruno ensina Matemática.

Carla

C_P confirmado. Carla ensina Português.

Verificação de Algoritmo

1

Pré-condição

temperatura = 25

2

Lógica

Se temperatura > 30, então ligar_ar = true

3

Aplicação

25 não é > 30, logo ¬P

4

Conclusão

ligar_ar_condicionado = false

Exercícios Propostos

Professores e Disciplinas

Cinco professores, cinco disciplinas, salas e métodos de ensino.

Programadores e Linguagens

Cinco programadores, linguagens, aplicações e sistemas operacionais.

Inferências Lógicas

Amigos usando diferentes regras de inferência com níveis de certeza.

Resolução do Exercício 1

Aplicando dedução lógica: Eduardo leciona Lógica e utiliza o método de Projetos.

Conclusão e Próximos Passos

Argumentos são conjuntos de premissas e conclusão. Inferências lógicas permitem derivar novas verdades. Regras de inferência são ferramentas poderosas para validar argumentos. A prática desenvolve habilidades de raciocínio dedutivo essenciais.