Chapter 45

Linear Programs

In this chapter we introduce linear programs and the basic notions relating to this concept. We define the \mathcal{H} -polyhedron $\mathcal{P}(A,b)$ of feasible solutions. Then we define bounded and unbounded linear programs and the notion of optimal solution. We define slack variables and the important notion of linear program in standard form.

We show that if a linear program in standard form has a feasible solution and is bounded above, then it has an optimal solution. This is not an obvious result and the proof relies on the fact that a polyhedral cone is closed (this result was shown in the previous chapter).

Next we show that in order to find optimal solutions it suffices to consider solutions of a special form called *basic feasible solutions*. We prove that if a linear program in standard form has a feasible solution and is bounded above, then some basic feasible solution is an optimal solution (Theorem 45.4).

Geometrically, a basic feasible solution corresponds to a *vertex*. In Theorem 45.6 we prove that a basic feasible solution of a linear program in standard form is a vertex of the polyhedron $\mathcal{P}(A,b)$. Finally, we prove that if a linear program in standard form has some feasible solution, then it has a basic feasible solution (see Theorem 45.7). This fact allows the simplex algorithm described in the next chapter to get started.

45.1 Linear Programs, Feasible Solutions, Optimal Solutions

The purpose of linear programming is to solve the following type of optimization problem.