11 Спектр линейного оператора. Резольвента

Пусть A – линейный оператор, действующий в комплексном банаховом пространстве X.

Опр. Число $\lambda \in \mathbb{C}$ называется *регулярным значением* оператора A, если:

- 1) $Im(A \lambda I) = X$;
- 2) оператор $A \lambda I$ обратим $\Leftrightarrow Ker(A \lambda I) = 0$;
- 3) оператор $R_{\lambda} = (A \lambda I)^{-1}$, называемый *резольвентой*, ограничен.

Множество всех регулярных значений λ называется резольвентным множеством оператора A и обозначется через $\rho(A)$. Совокупность всех остальных значений называется спектром оператора A и обозначается через Sp(A) или $\sigma(A)$.

Замечание 11.1. Обратим внимание на то, что вопрос о свойствах оператора $A - \lambda I$ и обратного к нему $(A - \lambda I)^{-1}$ тесно связан с вопросом о свойствах задачи

$$(A - \lambda I)x = y, (11.1)$$

которая может быть записана в эквивалетном виде

$$Ax = \lambda x + y. \tag{11.2}$$

Замечание 11.2. Если A – ограниченный оператор, то в силу теоремы Банаха об обратном операторе из 1) и 2) следует 3). Таким образом, для $A \in \mathcal{L}(X)$ число $\lambda \in \mathbb{C}$ является регулярным значением тогда и только тогда, когда:

- 1) $Im(A \lambda I) = X;$
- 2) $Ker(A \lambda I) = 0$.

Опр. Число λ называется собственным значением оператора A, если уравнение

$$Ax = \lambda x$$

имеет нетривиальные решения x, называемые co6cm6ennumu co6cm6ennum co6cm6e

Так как в этом случае $Ker(A - \lambda I) \neq O$, то оператор $A - \lambda I$ не является обратимым. Следовательно множество собственных значений (точечный спектр) входит в спектр оператора A. Остальная часть спектра образует непрерывный спектр.

Теорема 11.1. Пусть $A \in \mathcal{L}(X)$. Если $|\lambda| > \|A\|$, то λ – регулярная точка. Доказательство. Ясно, что

$$A - \lambda I = -\lambda (I - \frac{1}{\lambda}A).$$

то есть

$$(A - \lambda I)x = y \Leftrightarrow x - \frac{1}{\lambda}Ax = -\frac{1}{\lambda}y.$$

Так как $\|\frac{1}{\lambda}A\| < 1$, то уравнение

$$(A - \lambda I)x = y$$

однозначно разрешимо при любой правой части y. Следовательно $\lambda \in \rho(A)$. **Теорема доказана.**

Замечание 11.3. В условиях 11.1 справедливы формула

$$R_{\lambda} = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \left(\frac{A}{\lambda}\right)^k = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{A^k}{\lambda^k}$$

то есть формула

$$R_{\lambda} = -rac{1}{\lambda} \sum_{k=0}^{\infty} rac{A^k}{\lambda^k}$$

и оценка

$$||R_{\lambda}|| \le \frac{1}{|\lambda|} \sum_{k=0}^{\infty} \frac{||A||^k}{|\lambda|^k} = \frac{1}{|\lambda|} \frac{1}{1 - \frac{||A||}{|\lambda|}} = \frac{1}{|\lambda| - ||A||},$$

то есть оценка

$$||R_{\lambda}|| \leqslant \frac{1}{|\lambda| - ||A||},$$

Следствие 11.1. Спектр линейного ограниченного оператора принадлежит кругу

$$\{\lambda \in \mathbb{C} \mid |\lambda| \leqslant ||A||\}.$$

Теорема 11.2. Пусть $A \in \mathcal{L}(X)$. Тогда резольвентное множество $\rho(A)$ открыто.

Доказательство. Пусть $\lambda \in \rho(A)$. Рассмотрим уравнение

$$(A - \mu I)x = y \Leftrightarrow (A - \lambda I)x - (\mu - \lambda)x = y. \tag{11.3}$$

После умножения его на $R_{\lambda}=(A-\lambda I)^{-1}$ получим эквивалентное уравнение

$$(I - (\mu - \lambda)R_{\lambda})x = R_{\lambda}y.$$

Если $|\mu - \lambda| < r = ||R_{\lambda}||^{-1}$, то $||(\mu - \lambda)R_{\mu}|| < 1$ и уравнение (11.3) имеет единственное решение при любом $y \in X$. Следовательно $\mu \in \rho(A)$.

Теорема доказана.

Замечание 11.4. Ясно, что при $\|(\mu - \lambda)R_{\lambda}\| < 1$ справедлива формула

$$R_{\mu} = \sum_{k=0}^{\infty} (\mu - \lambda)^k R_{\lambda}^{k+1}.$$

Следствие 11.2. Спектр любого оператора $A \in \mathcal{L}(X)$ образует на комплексной плоскости замкнутое множество.

Предложение 11.1. Справедливо тождество Гильберта

$$R_{\mu} - R_{\lambda} = (\mu - \lambda)R_{\mu}R_{\lambda} \quad \forall \lambda, \mu \in \rho(A). \tag{11.4}$$

Доказательство. Умножим обе части равенства (11.4) на

$$(A - \lambda I)(A - \mu I) = (A - \mu I)(A - \lambda I)$$

и получим

$$(A - \lambda I)(A - \mu I)R_{\mu} - (A - \mu I)(A - \lambda I)R_{\lambda} = (\mu - \lambda)(A - \lambda I)(A - \mu I)R_{\mu}R_{\lambda},$$

что эквивалентно очевидному равенству

$$(\mu - \lambda)I = (\mu - \lambda)I.$$

Предложение доказано.

Следствие 11.3. Пусть $\lambda \in \rho(A)$, Тогда

$$\lim_{\mu \to \lambda} \|R_{\mu} - R_{\lambda}\| = 0.$$

Доказательство. Из тождества Гильберта следует, что

$$R_{\mu} - R_{\lambda} = (\mu - \lambda)(R_{\mu} - R_{\lambda})R_{\lambda} + (\mu - \lambda)R_{\lambda}^{2},$$

откуда

$$||R_{\mu} - R_{\lambda}|| \le |\mu - \lambda| ||R_{\mu} - R_{\lambda}|| ||R_{\lambda}|| + |\mu - \lambda| ||R_{\lambda}||^2.$$

Значит,

$$||R_{\mu} - R_{\lambda}|| \le \frac{|\mu - \lambda| ||R_{\lambda}||^2}{1 - |\mu - \lambda| ||R_{\lambda}||} \to 0$$
 при $\mu \to \lambda$.

Следствие доказано.

Следствие 11.4. Пусть $\lambda \in \rho(A)$, Тогда существует предел

$$\lim_{\mu \to \lambda} \frac{R_{\mu} - R_{\lambda}}{\mu - \lambda} = R_{\lambda}^{2}.$$

Доказательство. В силу тождества Гильберта

$$\frac{R_{\mu} - R_{\lambda}}{\mu - \lambda} = R_{\mu} R_{\lambda} \to R_{\lambda}^{2} \quad \text{при} \quad \mu \to \lambda.$$

Следствие доказано.

Теорема 11.3. Всякий ограниченный линейный оператор, действующий в нетривиальном комплексном нормированном пространстве, имеет непустой спектр.

Доказательство. Фиксируем $x \in X$, $y \in X^*$ и рассмотрим функцию комплексного переменного

$$f(\lambda) = \langle y, R_{\lambda} x \rangle.$$

Предположим, что $\rho(A) = \mathbb{C}$. Тогда для всех $\lambda \in \mathbb{C}$ существует предел

$$\lim_{\mu \to \lambda} \frac{f(\mu) - f(\lambda)}{\mu - \lambda} = \lim_{\mu \to \lambda} \left\langle y, \frac{R_{\mu} - R_{\lambda}}{\mu - \lambda} x \right\rangle = \langle y, R_{\lambda}^2 x \rangle.$$

Таким образом функция $f(\lambda)$ является аналитической на всей комплексной плоскости. Заметим, что

$$|f(\lambda)| \le ||y||_* ||R_\lambda|| ||x|| \le \frac{1}{|\lambda| - ||A||} ||y||_* ||x|| \to 0 \quad \text{при} \quad |\lambda| \to \infty.$$

Поэтому в силу теоремы Лиувилля

$$f(\lambda) = \langle y, R_{\lambda} x \rangle \equiv 0 \quad \forall x \in X, \ y \in X^*.$$

Следовательно

$$R_{\lambda}x = 0 \quad \forall x \in X \Rightarrow R_{\lambda} = 0,$$

что невозможно поскольку $R_{\lambda} = (A - \lambda I)^{-1}$. Полученное противоречие доказывает теорему.

Теорема доказана.

Теорема 11.4. Все собственные значения самосопряженного линейного оператора лежат на вещественной оси.

Доказательство. Пусть λ — собственное значение, а x — соответствующий собственный вектор. Тогда

$$\lambda(x,x) = (Ax,x) = (x,Ax) = (x,\lambda x) = \overline{\lambda}(x,x).$$

Отсюда $\lambda = \overline{\lambda}$.

Теорема доказана.

Теорема 11.5. Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

Доказательство. Пусть $Ax = \lambda x, Ay = \mu y$ и $\lambda \neq \mu$. Тогда

$$\lambda(x,y) = (Ax,y) = (x,Ay) = \mu(x,y) \Rightarrow (x,y) = 0.$$

Теорема доказана.