HIDK 4()5():

In the news

Statistics and data science degrees:

Overhyped or the real deal?

Scientists use AI to develop better predictions of why children struggle at school

Libraries Look to Big Data to Measure Their Worth— And Better Help Students

WHERE LEARNING ANALYTICS GO WRONG

Roboticist trains AI to write fortunes -- and things get weird

Events

Event	Date	URL
NYAS: Healthcare in the Era of Big Data	October 24-25	https://www.nyas.org/events/2018/healthcare-in-the-era-of-big-data-opportunities-and-challenges/?utm source=The+New+York+Academy+of+Sciences&utm campaign=f0807f
Cross-device User Clustering at Adobe	5:30 November 29	https://events.columbia.edu/cal/event/eventView.do? b=de&calPath=%2Fpublic%2Fcals%2FMainCal&guid= CAL-00bb9e28-655b8cee-0165-5dd5c72b-00001287e vents@columbia.edu&recurrenceld=
DSI: Towards Better Reinforcement Learning for High Stakes Domains	5:30pm November 1	https://www.eventbrite.com/e/new-york-data-science-seminar-series-emma-brunskill-stanford-tickets-51551174952
Data Law in a Global Digital Economy	November 9	https://www.guariniglobal.org/data-law)
NYAS: Deep Learning to Accelerate Drug Development	November 13	https://www.nyas.org/events/2018/deep-learning-to-accelerate-drug-development-annyc-syymppossiumm/2 utm_source=The+New+York+Academy+of+Sciences&utm_campaign=f0807f47cbeNews_October_2018-10-18&utm_medium=email&utm_term=0_cba25b11d2-f0807f47cb-184577937&mc_cid=f0807f47cb&mc_eid=cfeeec7fb2
People centric approach to optimize Data Science, Commercial impact and Leadership	10:30am November 14	https://events.columbia.edu/cal/event/eventView.do? b=de&calPath=%2Fpublic%2Fcals%2FMainCal&guid=CAL- 00bb9e24-655b8449-0165-5e0ea7e9-00001957events@colu mbia.edu&recurrenceId=
Machine Learning Innovation Summit	December 12-13	https://www.theinnovationenterprise.com/summits/machine-learning-innovation-summit-new-york-2018

Essential Problem

- Dimensionality Reduction
 - Feature selection: select a subset of dimensions
 - <u>Feature extraction</u>: transform lots of dimensions into fewer dimensions
- Why?
 - As a form of insight
 - Avoid "Curse of Dimensionality"

Curse of Dimensionality

Sparsity: The more dimensions that we add, the more comparisons we are missing

	Stats	Cog Psy
Amy	3	2
Chen	2	2
Asif	1	3

Possible Combinations

Curse of Dimensionality

Sparsity: The more dimensions that we add, the more comparisons we are missing

	Stats	Cog Psy	Socio- logy	Crit Theory	Wood- work	Data Sci	Music	Design
Amy	3	2	1	1	3	2	2	2
Chen	2	2	2	3	1	3	2	3
Asif	1	3	3	7	3	2	1	1

How to reduce dimensions?

Mean, median, mode

Principle Component Analysis

Cluster Analysis

Decision Tree

Dimensionality Reduction

Cluster Analysis

Grouping stuff

By Variables

ID	Var1	Var2	Var3
Α			
В			
С			
D			

Selection

Extraction

By People

ID	Var1	Var2	Var3
Α			
С			

ID	Var1	Var2	Var3
В			
D			

Cluster Analysis: K-means

- 1. Select some random points
- 2. Associate those points with closest other points
- 3. Move the selected point to the mean point in the cluster

Boredom

Cluster Analysis: K-means

- 1. Very sensitive to starting values
- Not good at dealing with complex shapes

Bowers (2010)

Grouping stuff

By Variables

ID	Var1	Var2	Var3
Α			
В			
С			
D			

Selection

Extraction

By People

ID	Var1	Var2	Var3
Α			
С			

ID	Var1	Var2	Var3
В			
D			

Feature Extraction

- Principal Component Analysis
 - Variance
 - Covariance
 - Matrix algebra

Cluster Survey

bit.ly/HUDK4050-cluster

Cluster Activity

core-methods-in-edm/ class-activity-6