Recurrent Neural Networks (RNNs)

ML2: Al Concepts and Algorithms (SS2025)

Faculty of Computer Science and Applied Mathematics

University of Applied Sciences Technikum Wien

Lecturer: Rosana de Oliveira Gomes

Author: B. Knapp, S. Rezagholi, R.O. Gomes

KNN classification Classification trees Regression **Ensembles & Boosting** KNN regression Random Forest Regression trees Logistic regression Linear regression Naive Bayes Multiple regression Support vector machines Ridge and Lasso regression Neural networks Neural networks Supervised learning Machine learning process Clustering Data handling EDA, data cleaning k-means Hierachical clustering Non-supervised Training and testing Feature selection DB-scan learning Class balancing etc Generative Al Dimensionality **GANs** reduction University of Applied Sciences PCA / SVD **TECHNIKUM** Reinforcement learning tSNE

In the 2nd semester.

Multi dimensional scaling

Linear discriminant analysis

Classification

Sequential Problems

Typical ANN: input layer → hidden layer → output layer

ML Problems: Regression, Classification

One to one relationship between input and output

Sequential Problems

What if the input-output relationship is different?

Sequential data: relationship in the sequential order of data points (e.g. tabular, text, audio, video)

one to many

Image captioning

Review Ratings

Sequential Problems

Sequence to Sequence (seq2seq):

takes multiple input and gives multiple outputs

Named Entity Recognition (NER)

Input and output are sequences of words with same lengths.

Input: ["Einstein", "was", "born", "in", "Germany"]
Output: ["PERSON", "O", "O", "O", "LOCATION"]

Machine Translation

Input and output are sequences of words with different lengths.

Input (German, 9 words):

→ "Obwohl es schon spät war, ging er nach Hause."

Output (English, 11 words):

"Although it was already late, he went home."

Recurrent Neural Networks (RNNs)

- Multilayer perceptons have poor performance for sequential data (and time series).
- In sequential data 1-step predictions are often not sufficient. A larger segment of the past is necessary for a robust forecasting.
- Nontrivial time series exhibit high degrees of dependence between the values of variables at different time points (at least for moderate time differences).
- RNNs are neural networks optimized for sequential data, able to store information about past steps.
- Example applications:

Stock price data (time series),
Natural language (sequential data),
Audio/Image/Video Captioning (Computer Vision)

Quiz Time

A medical Al system is designed to analyze a sequence of heartbeat signals from an electrocardiogram (ECG) and:

Detect whether the patient has an abnormal heart condition (binary classification). If an abnormality is detected, generate a sequence of possible risk factors based on past medical history.

Which type of sequential processing best describes this problem?

- A) Many-to-One followed by One-to-Many
- B) One-to-Many followed by Many-to-One
- **C)** Sequence-to-Sequence (varying input/output length)
- **D)** Many-to-Many (fixed input/output length)

RNNs: Sequential Processes

How to store information of previous steps into a neural network?

Recap: ANNs

Architecture: input, hidden, output layers

Forward propagation: prediction, Loss

Back Propagation:

update weights to minimize loss

Iterative gradient descent training algorithm.

Initialize w, η

Compute out, E_{tot}

 $\forall w:$

$$\Delta w = -\frac{\delta E_{tot}}{\delta w}(1)$$

$$w_{new} \leftarrow w_{old} + \eta \Delta w + ...(2)$$

Compute out, E_{tot}

Repeat until $E_{tot} < \epsilon$

RNNs: Formulation

We can process a sequence of vectors **x** by applying a **recurrence** formula at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$
 new state \int old state input vector at some time step some function with parameters W

The W matrix has always the same parameters in every time step. Same weights to process every point in time.

RNNs: Architecture

 $(h0, x1) \rightarrow (h1, y1)$

... (ht-1, xt) → (ht, yt)

"Vanilla Recurrent Neural Networks

The state consists of a single "hidden" vector h:

$$h_t = f_W(h_{t-1}, x_t)$$
 \downarrow (also bias term) $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

Weight matrices

Finding Structure in Time. Elman (1990)

RNNs: Unrolling

Training an RNN requires unrolling it for "backpropagation in time".

- Initial hidden state **h0** (often set to zeros)
- Same weight matrix in all steps

The unrolled network is not a multilayer perceptron: The recurrent structure shows up via the multiple appearance of certain weights and biases (W matrices).

RNNs: Unrolling

Same neural network structure is used for different sequential problems

RNN Computational Graph (Many to One)

RNN Computational Graph (One to Many)

RNN Computational Graph (Many to Many)

Always the same W matrices ©

Backpropagation through time

Forward run outputs results:

$$h_t = \sigma_h(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

$$\hat{y}_t = \sigma_o(W_{oh}h_t + b_o)$$

Total Loss function:
$$L = \sum_{t=1}^{T} L_t(\hat{y}_t, y_t)$$

Backpropagation Process:

Update weights to minimize the loss

$$W_{xh} \leftarrow W_{xh} - \eta \cdot rac{\partial L}{\partial W_{xh}}$$

$$W_{hh} \leftarrow W_{hh} - \eta \cdot rac{\partial L}{\partial W_{hh}}$$

$$W_{oh} \leftarrow W_{oh} - \eta \cdot rac{\partial L}{\partial W_{oh}}$$

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

14

Backpropagation through time (BPTT):

Unfold all the way to the initial step (see last slide for an example)

$$h_t = f_W(h_{t-1}, x_t)$$

RNNs: Pseudo-Code

Repeat till the stopping criterion is met:

- 1. Set all h to zero.
- 2. Repeat for t = 0 to n-k
 - 1. Forward propagate the network over the unfolded network for k time steps to compute all h and \boldsymbol{y}
 - 2. Compute the error as: $e = y_{t+k} p_{t+k}$
 - 3. Backpropagate the error across the unfolded network and update the weights

RNNs: Vanishing/exploding gradient problem

Vanishing gradient: if we keep multiplying with a weight smaller than 1.0 we will obtain a number very close to 0, taking only very small steps in our solution space. *Can lead to slow convergence or nonconvergence.*

Exploding gradient: if we keep multiplying with a weight larger than 1.0 we will obtain a number that is large. Can lead to unstable convergence or divergence.

Method	Problem Addressed	Description
Gated Architectures (LSTMs & GRUs)	Vanishing gradients	Utilize gates to regulate information flow, facilitating gradient propagation over long sequences.
Gradient Clipping	Exploding gradients	Caps gradients when they exceed a certain threshold to prevent excessively large updates.
Proper Activation Functions	Vanishing gradients	Replacing sigmoid or tanh activations with ReLU or Leaky ReLU helps maintain gradient flow.
Batch Normalization / Layer Normalization	Both	Normalizes activations to stabilize training and improve gradient flow.
Weight Initialization	Both	Proper initialization prevents gradients from becoming too large or too small.
Truncated Backpropagation Through Time (TBPTT)	Vanishing gradients	Limits the number of steps in backpropagation, reducing long-term dependencies.

RNNs: Advantages and Disadvantages

Advantages:

- Ability to handle sequential data and time series.
- Ability to handle inputs of varying lengths.
- Ability to store or 'memorize' temporal information.

Disadvantages:

- Slow training: requires high processing.
- Erratic gradients: vanishing or exploding gradient problem. This can make training difficult and time-consuming.

Other RNN Architectures

- RNNs by themselves are not well performant due to the vanishing/exploding gradient problem
- RNNs have been refined to other architectures in order to overcome these limitations
 - (see Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications)
- In certain applications (e.g. natural language processing) Transformers have virtually replaced RNNs/LSTMs

Other RNN Architectures

Long Short Term Memory (LSTM): networks designed to address the vanishing gradient problem in RNNs. LSTMs use three gates (called input, output, and forget gate) to pass information between long term and short term memory cells.

See this video for a detailed explanation.

Gated Recurrent Units (GRU): also designed to handle the vanishing gradient problem through gates. They use **reset and update gates** to determine which information is to be retained for future predictions, similarly to LSTMs.

 c_{t-1} - cell state at previous timestep t-1 (long-term memory)

x, - input vector at current timestep t

 h_t - hidden state at current timestep t

c, - cell state at current timestep t

vector pointwise multiplication vector pointwise addition

tanh activation function

states

sigmoid activation function

gates

concatenation of vectors

updates

Other RNN Architectures

Bidirectional Recurrent Neural Networks (BRNN):

inputs from future time steps are used to improve the accuracy of the network. It is like knowing the first and last words of a sentence to predict the middle words.

Transformers: use self attention mechanisms to provide context. Determining the significance of each part of the input sequence relative to others allows transformer to capture long term dependencies. See paper walkthrough in <u>this video</u>.

RNN Applications

Signal Data

scientific reports OPEN | Deep residual-dense network

based on bidirectional recurrent neural network for atrial fibrillation detection

Asif Ali Laghari¹, Yanqiu Sun²⁰¹, Musaed Alhussein⁴, Khursheed Aurangzeb⁴,

www.nature.com/scientificreports

Muhammad Shahid Anwar⁵ & Mamoon Rashid³

Comparative Analysis of Recurrent Neural Networks in Stock Price

Prediction for Different Frequency Domains by Polash Dey 1,† ≥ 0, Emam Hossain 1,† ≥ 0, Md. Ishtiaque Hossain 2,† ≥ 0,

Mohammed Armanuzzaman Chowdhury 2 № 0, Md. Shariful Alam 3 № 0. Mohammad Shahadat Hossain 2 ☑ 0 and Karl Andersson 4.* ☑ 0

International Journal of Engineering and Innovative Research

http://dergipark.gov.tr/ijeir

RNN-Based Time Series Analysis for Wind Turbine Energy Forecasting

by Muhammad Atif Bilal 1,* \boxtimes . Yongzhi Wang 2,3,* \boxtimes \bigcirc . Yaniu Ji 1 \boxtimes . Muhammad Peryez Akhter 4 \boxtimes \bigcirc and

0.30

0.35

0.40 Time (s)

Accelerating Recurrent Neural Networks for Gravitational **Wave Experiments**

Conferences > 2021 IEEE 32nd International ... @

Zhiqiang Que: Erwei Wang: Umar Marikar: Eric Moreno: Jennifer Ngadiuba: Hamza Javed All Authors

RNN Applications

Generative Models

Welcome to Eleven Degrees, your gateway to the cutting edge of innovation and the world of technology. I'm your host, Sam, and each week, we explore the latest trends, breakthroughs, and the people shaping the future of technology.

IIElevenLabs

An armchair in the shape

A video generated using OpenAl's Sora text-to-video model, using the prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

Assignment: RNNs

- a) Explain recurrent neural networks using 3 slide.
 Use self-made images or even hand drawings (of which you take a photo).
 Use self-written explanations.
 Do not copy from the lecture slides or the internet (neither text nor images)
- b) Choose an advanced method from RNNs to explain in terms of a pseudo code: LSTMs, GRU, Bi-directional RNNs, Transformers.
 Provide a short 1 slide explanation of the method.

Weekend plans based on the weather:

Museum

Movies

Party

-\(\frac{1}{\sqrt{2}}\)- Sunny

Follows same sequence: park-movies-party. If it is sunny, does the same as previous week.

Check an equivalent example at

A friendly introduction to Recurrent Neural Networks

Weekend plans based on the weather forecast:

2nd Weekend 3rd Weekend 1st Weekend 4th Weekend 5th Weekend If the forecast is rain and Predicts going to the museum Output fed went last week to a party as input in t+1

Museum

Movies

Vector Representation

0

Activity Matrix: concatenates the same vector to the next one

Same

Next activity

Sunny

Rainy

Vector Representation:

1 0

0 1

Weather Matrix: concatenates the same vector to the next week

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ \frac{1}{0} & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{-1} - = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\text{Next week}}$$

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ \hline 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad = \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \\ \hline 1 \\ 1 \\ 1 \end{bmatrix}$$

Same

Next week

Initial Case

$$h_t = \sigma_h(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

$$\hat{y}_t = \sigma_o(W_{oh}h_t + b_o)$$

Activity

1 0 0

Weather

Same

Next week

Activation function

$$\begin{bmatrix} 0+0\\0+1\\0+0 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

BPTT: Example for 3 steps

A. Forward Pass for steps 1, 2, and 3

$$h_1 = \sigma_h(W_{xh}x_1 + W_{hh}h_0 + b_h)
onumber$$
 $\hat{y}_1 = \sigma_o(W_{oh}h_1 + b_o)$

$$h_2 = \sigma_h(W_{xh}x_2 + W_{hh}h_1 + b_h)$$
 $\hat{y}_2 = \sigma_o(W_{oh}h_2 + b_o)$

$$h_3 = \sigma_h(W_{xh}x_3 + W_{hh}h_2 + b_h)$$
 $\hat{y}_3 = \sigma_o(W_{oh}h_3 + b_o)$

$$L = \sum_{t=1}^3 L_t(\hat{y}_t, y_t)$$

B. Backward Pass for steps 3, 2 and 1

Output layer

$$\delta_3 = rac{\partial L_3}{\partial \hat{y}_3} \cdot \sigma_o'(z_3)$$

$$\left. rac{\partial L}{\partial W_{oh}} \right|_{t=3} = \delta_3 \cdot h_3^T$$

$$\delta_2 = rac{\partial L_2}{\partial \hat{y}_2} \cdot \sigma_o'(z_2)$$

$$\left. rac{\partial L}{\partial W_{oh}} \right|_{t=2} = \delta_2 \cdot h_2^T$$

$$\delta_1 = rac{\partial L_1}{\partial \hat{y}_1} \cdot \sigma_o'(z_1)$$

$$\left. rac{\partial L}{\partial W_{oh}}
ight|_{t=1} = \delta_1 \cdot h_1^T$$

Hidden Layer

$$rac{\partial L}{\partial h_3} = \delta_3 \cdot W_{oh}^T$$

$$rac{\partial L}{\partial h_2} = \delta_2 \cdot W_{oh}^T + \left(rac{\partial L}{\partial h_3} \cdot \sigma_h'(a_3) \cdot W_{hh}^T
ight)$$

$$rac{\partial L}{\partial h_1} = \delta_1 \cdot W_{oh}^T + \left(rac{\partial L}{\partial h_2} \cdot \sigma_h'(a_2) \cdot W_{hh}^T
ight)$$

BPTT: Example for 3 steps

C. Accumulated Gradients

Output layer

$$rac{\partial L}{\partial W_{oh}} = \sum_{t=1}^{3} \delta_t \cdot h_t^T$$

Hidden Layer

$$rac{\partial L}{\partial W_{hh}} = \sum_{t=1}^{3} \left(rac{\partial L}{\partial h_t} \cdot \sigma_h'(a_t) \cdot h_{t-1}^T
ight)$$

Input Layer

$$rac{\partial L}{\partial W_{xh}} = \sum_{t=1}^{3} \left(rac{\partial L}{\partial h_t} \cdot \sigma_h'(a_t) \cdot x_t^T
ight)$$

D. Updated Weights

Input Layer

$$W_{xh} \leftarrow W_{xh} - \eta \cdot rac{\partial L}{\partial W_{xh}}$$

Hidden Layer

$$W_{hh} \leftarrow W_{hh} - \eta \cdot rac{\partial L}{\partial W_{hh}}$$

Output layer

$$W_{oh} \leftarrow W_{oh} - \eta \cdot rac{\partial L}{\partial W_{oh}}$$

