Measure Theory

Daniel Mao

Contents

1	Algebras and Sigma-Algebras		1	
	1.1 Definitions and Properties		1	
	1.2 Generated Algebras and Generated sigma-algebras		2	
	1.3 Borel Algebras		4	
2	Additive Set Functions and Measures			
	2.1 Additive Set Functions		9	
	2.2 Measures		11	
3	Limits Theorems		15	
4	Variations and Decompositions		21	
	4.1 Variations		21	
	4.2 Hahn Decomposition		25	
	4.3 Jordan Decomposition		25	
5	Outer Measures		27	
6	Lebesgue Measure		33	
	6.1 Lebesgue Measure on the Line		33	
7	Completeness		37	
8	Measurable Functions		39	

ii CONTENTS

Algebras and Sigma-Algebras

1.1 Definitions and Properties

Definition (Algebra). Let A be a non-empty collection of subsets of X. We say that A is an **algebra** on X if it satisfies all of the following conditions.

- (1) $\emptyset, X \in \mathcal{A}$
- (2) A is closed under complement.
- (3) A is closed under formation of finite union and intersection.

Definition (σ -algebra). Let A be a non-empty collection of subsets of X. We say that A is a σ -algebra on X if it satisfies all of the following conditions.

- (1) $\emptyset, X \in \mathcal{A}$
- (2) A is closed under complement.
- (3) A is closed under formation of countable union and intersection.

Proposition 1.1.1. The set of all subsets of X and the set $\{\emptyset, X\}$ are the largest and smallest algebras on X, respectively; and also the largest and smallest σ -algebras on X.

Proposition 1.1.2 (Set Operation). The intersection of a non-empty collection of algebras is again an algebra.

Proof.

Let $\{A_{\alpha}\}_{{\alpha}\in A}$ be a collection of algebras on X and let A denote $\bigcap_{{\alpha}\in A}A_{\alpha}$.

Part 1: \emptyset and X.

Since each \mathcal{A}_{α} is an algebra, by definition, $\emptyset \in \mathcal{A}_{\alpha}$ and $X \in \mathcal{A}_{\alpha}$ for each $\alpha \in A$.

Since $\emptyset \in \mathcal{A}_{\alpha}$ for each $\alpha \in A$, $\emptyset \in \mathcal{A}$.

Since $X \in \mathcal{A}_{\alpha}$ for each $\alpha \in A$, $X \in \mathcal{A}$.

Part 2: complements.

Let A be an arbitrary element in A. Then A is in each of A_k .

By definition of σ -algebra, A^c is also in each of A_k . Then A^c is also in A.

Thus A is closed under complement. (**)

Let $\{A_k\}_{k=1}^{\infty}$ be an arbitrary sequence of elements in \mathcal{A} . Then $\{A_k\}$ is in each of \mathcal{A}_k .

By definition of σ -algebra, the union and intersection of $\{A_k\}$ are also in each of A_k . Then the union and intersection are also in A.

Thus A is closed under countable union and intersection. (***)

From statements (*) $\tilde{}$ (***), \mathcal{A} is a σ -algebra.

1.2 Generated Algebras and Generated sigmaalgebras

Definition (Generated Algebra). Let S be a collection of subsets of X. We define the algebra generated by S to be the smallest algebra on X that contains S, or equivalently, the intersection of all algebras on X that contains S.

Proposition 1.2.1. Let S be a collection of subsets of X. Then there exists uniquely a smallest algebra on X containing S.

Proof.

Part 1: existence

Let \mathcal{C} be the set of all algebras containing \mathcal{S} .

By definition, the set of all subsets $\mathcal{P}(X)$ of X is an algebra and contains S.

Thus $\mathcal{P}(X)$ belongs to \mathcal{C} and \mathcal{C} is not empty.

Let \mathcal{A} be the intersection of all algebras in \mathcal{C} .

Part 2: the intersection is the smallest one

Let \mathcal{A}' be an arbitrary algebra on X containing \mathcal{S} .

By our choice of \mathcal{A} , \mathcal{A} is contained in \mathcal{A}' .

1.2. GENERATED ALGEBRAS AND GENERATED SIGMA-ALGEBRAS 3

Since \mathcal{A}' is arbitrary, \mathcal{A} is the smallest algebra on X containing \mathcal{S} .

Part 3: uniqueness

Let \mathcal{A}' be also a smallest algebra on X containing \mathcal{S} .

Since \mathcal{A} is the smallest, $\mathcal{A} \subseteq \mathcal{A}'$.

Since \mathcal{A}' is the smallest, $\mathcal{A}' \subseteq \mathcal{A}$.

It follows that $\mathcal{A} = \mathcal{A}'$.

Definition (Generated σ -algebra). Let S be a collection of subsets of X. We define the σ -algebra generated by S to be the smallest σ -algebra on X that contains S, or equivalently, the intersection of all σ -algebras on X that contains S.

Proposition 1.2.2. Let \mathcal{F} be a set of subsets of X. Then there exists uniquely a smallest σ -algebra on X containing \mathcal{F} .

Proof.

Proof of Existence

Let \mathcal{C} be the set of all σ -algebras that contains \mathcal{F} .

By definition of σ -algebra, the set of all subsets of X is a σ -algebra.

Note that this σ -algebra contains \mathcal{F} . Thus \mathcal{C} is non-empty.

By Proposition 2.1, the intersection of all sets in C, denote by A is also a σ -algebra.

Proof of Minimum

Let \mathcal{A}' be an arbitrary σ -algebra on X that contains \mathcal{F} .

By the choice of C, A' is in C.

By the choice of \mathcal{A} , \mathcal{A} is a subset of \mathcal{A}' .

Thus \mathcal{A} is the smallest σ -algebra that contains \mathcal{F} .

Proof of Uniqueness

Assume that $\mathcal{A}^{"}$ is another smallest σ -algebra on X that contains \mathcal{F} .

Since \mathcal{A} is a smallest σ -algebra, we get $\mathcal{A} \subseteq \mathcal{A}''$.

Since \mathcal{A}'' is a smallest σ -algebra, we get $\mathcal{A}'' \subseteq \mathcal{A}$.

Thus $\mathcal{A} = \mathcal{A}''$.

Example 1.2.1. Let X be a non-empty set and A be the set of all subsets A of X that either A or A^c is countable. Then A is the σ -algebra generated by the set of singleton sets $S = \{\{x\} : x \in X\}$.

1.3 Borel Algebras

Definition (Borel σ -algebra). We define the **Borel** σ -algebra on \mathbb{R}^n , denoted by $\mathcal{B}(\mathbb{R}^n)$, to be the σ -algebra on \mathbb{R}^n generated by the collection of all open subsets of \mathbb{R}^n . We say a set is a **Borel subset** of \mathbb{R}^n if it is an element in the Borel σ -algebra.

- (1) The Borel σ -algebra on \mathbb{R}^n can be generated by any of the collections of sets listed below.
 - (a) The collection of all closed subsets of \mathbb{R}^n

$$\{(x_1, x_2, \dots, x_n) : x_{j_0} \le c\}$$

$$\{(x_1, x_2, \dots, x_n) : a < x_{j_0} \le b\}$$

$$\{(x_1, x_2, \dots, x_n) : a_j < x_j \le b_j \ (j = 1, 2, \dots, n)\}$$

Proof.

Proof Part 1

By definition of Borel σ -algebra, $\mathcal{B}(\mathbb{R}^n)$ contains all open subsets of \mathbb{R}^n .

By definition of σ -algebra, $\mathcal{B}(\mathbb{R}^n)$ is closed under complement and hence contains all closed subsets of \mathbb{R}^n .

Thus all sets in collection (1) are contained in $\mathcal{B}(\mathbb{R}^n)$.

It follows that the σ -algebra generated by collection (1), denote by \mathcal{B}_1 is contained in $\mathcal{B}(\mathbb{R}^n)$.

Proof Part 2

Note that closed half-spaces in \mathbb{R}^n are closed subsets of \mathbb{R}^n .

Thus all sets in collection (2) are contained in \mathcal{B}_1 .

It follows that the σ -algebra generated by collection (2), denote by \mathcal{B}_2 , is contained in \mathcal{B}_1 .

Proof Part 3

Define sets

$$A = \{(x_1, x_2, \dots, x_n) : a < x_{j_0} \le b\}$$

$$B = \{(x_1, x_2, \dots, x_n) : x_{j_0} \le a\}$$

$$C = \{(x_1, x_2, \dots, x_n) : x_{i_0} \le b\}$$

Note that B and C are contained in \mathcal{B}_2 and $A = B^c \cap C$.

Thus all sets in collection (3) are contained in \mathcal{B}_2 .

It follows that the σ -algebra generated by collection (3), denote by \mathcal{B}_3 , is contained in \mathcal{B}_2 .

Proof Part 4

Define sets

$$A = \{(x_1, x_2, \dots, x_n) : a_j < x_j \le b_j \ (j = 1, 2, \dots, n)\}$$

$$A_k = \{(x_1, x_2, \dots, x_n) : a_k < x_k \le b_k\}$$

Note that every A_k is contained in \mathcal{B}_3 and $A = \bigcap_{k=1}^n A_k$.

Thus all sets in collection (4) are contained in \mathcal{B}_3 .

It follows that the σ -algebra generated by collection (4), denote by \mathcal{B}_4 , is contained in \mathcal{B}_3 .

Proof Part 5

Note that any open subset of \mathbb{R}^n can be written as a countable union of open rectangles and any open rectangle can be written as a countable union of rectangles in collection (4).

Thus all open subsets in \mathbb{R}^n are contained in \mathcal{B}_4 .

It follows that $\mathcal{B}(\mathbb{R}^n)$ is contained in \mathcal{B}_4 .

Conclusion

We have proved that $\mathcal{B}(\mathbb{R}^n) \subseteq \mathcal{B}_1 \subseteq \mathcal{B}_2 \subseteq \mathcal{B}_3 \subseteq \mathcal{B}_4 \subseteq \mathcal{B}(\mathbb{R}^n)$.

Thus the σ -algebra generated by each collection of sets is the Borel σ -algebra.

Notation $(\mathcal{G}, \mathcal{F})$ Let \mathcal{G} denote the set of all open subsets of \mathbb{R}^n and \mathcal{F} denote the set of all closed subsets of \mathbb{R}^n .

Notation $(\mathcal{F}_{\delta}, \mathcal{F}_{\sigma})$ \mathcal{F}_{δ} is the set of all intersections of collection of sets in \mathcal{F} and \mathcal{F}_{σ} is the set of all unions of collection of sets in \mathcal{F} .

(1) Let \mathcal{S} be a non-empty collection of sets and let \mathcal{A} be an algebra generated by \mathcal{S} . Then for any set A in \mathcal{A} , there exists a sub-collection $\mathcal{S}'(A)$ of \mathcal{S} such that A is also in the algebra generated by \mathcal{S}' .

- (2) Let S be a non-empty collection of sets and let A be an σ -algebra generated by S. Then for any set A in A, there exists a sub-collection S'(A) of S such that A is also in the σ -algebra generated by S'.
- (3) (a) Any closed subset of \mathbb{R}^n is the intersection of some collection of open sets in \mathbb{R}^n .
 - (b) Any open subset of \mathbb{R}^n is the union of some collection of closed sets in \mathbb{R}^n .
- (4) Let \mathcal{A} be an algebra on X. Then \mathcal{A} is also a σ -algebra if it satisfies any of the conditions listed below
 - (a) \mathcal{A} is closed under the formation of the union of any increasing sequence of sets.
 - (b) \mathcal{A} is closed under the formation of the intersection of any decreasing sequence of sets.
 - (c) \mathcal{A} is closed under the formation of the union of any sequence of disjoint sets.

Proof.

Proof of (1)

Let $\{A_k\}$ be an arbitrary sequence of sets in \mathcal{A} .

Construct another sequence of sets $\{B_k\}$ by $B_n = \bigcup_{k=1}^n A_k$.

Then $\{B_k\}$ is increasing and we have $\bigcup_{k=1}^n B_k = \bigcup_{k=1}^n A_k$.

By assumption, $\bigcup_{k\in\mathbb{N}} B_k$ is in \mathcal{A} .

It follows that $\bigcup_{k\in\mathbb{N}} A_k$ is also in A.

Thus \mathcal{A} is closed under countable union.

By definition, \mathcal{A} is a σ -algebra.

Proof of (2)

Let $\{A_k\}$ be an arbitrary sequence of sets in \mathcal{A} .

Construct another sequence of sets $\{B_k\}$ by $B_n = \bigcap_{k=1}^n A_k$.

Then $\{B_k\}$ is decreasing and we have $\bigcap_{k=1}^n B_k = \bigcap_{k=1}^n A_k$.

By assumption, $\bigcap_{k=1}^{n} B_k$ is in \mathcal{A} .

It follows that $\bigcap_{k=1}^n A_k$ is also in \mathcal{A} .

Thus A is closed under countable intersection.

By definition, \mathcal{A} is a σ -algebra.

Proof of (3)

Let $\{A_k\}$ be an arbitrary sequence of sets in \mathcal{A} .

Construct another sequence of sets $\{B_k\}$ by $B_1=A_1$ and $B_k=A_k-A_{k-1}$ $(k\geq 2)$.

Then $\{B_k\}$ is disjoint and we have $\bigcup_{k\in\mathbb{N}} B_k = \bigcup_{k\in\mathbb{N}} A_k$.

By assumption, $\bigcup_{k\in\mathbb{N}} B_k$ is in \mathcal{A} .

It follows that $\bigcup_{k\in\mathbb{N}} A_k$ is also in \mathcal{A} .

Thus \mathcal{A} is closed under countable union.

By definition \mathcal{A} is a σ -algebra.

Additive Set Functions and Measures

2.1 Additive Set Functions

Definition (Additive Set Functions). Let A be an algebra over some set X. Let ν be a set function on A. We say that ν is **additive** if for any disjoint sets A and B in A,

$$\nu(A \cup B) = \nu(A) + \nu(B)$$

Proposition 2.1.1. Let ν is an additive set function, then $\nu(\emptyset) = 0$.

Definition (Countably Additive Set Functions). Let \mathcal{A} be an algebra on X. Let ν be a set function on \mathcal{A} . We say that ν is **countably additive** if it satisfies all of the conditions listed below.

(1)
$$\nu(\emptyset) = 0$$

$$\nu(\bigcup_{k\in\mathbb{N}} S_k) = \sum_{k\in\mathbb{N}} \nu(S_k)$$

Proposition 2.1.2. Additive set functions cannot take on both $+\infty$ and $-\infty$ as values.

Proof.

Let \mathcal{A} be an algebra on X and ν be an additive set function on \mathcal{A} .

Assume for the sake of contradiction that there exist sets A and B in \mathcal{A} such that

$$\nu(A) = +\infty$$

$$\nu(B) = -\infty$$

Define $S_1 = A - B$, $S_2 = A \cap B$, and $S_3 = B - A$. Then S_1 , S_2 , and S_3 are mutually disjoint.

By definition of additive set functions, we have

$$\nu(A) = \nu(S_1) + \nu(S_2) = +\infty \#(1)$$

$$\nu(B) = \nu(S_2) + \nu(S_3) = -\infty \#(2)$$

Case 1: $\nu(S_2)$ is finite. Say $\nu(S_2) = c$.

From equations (1) and (2), we get

$$\nu(S_1) = \nu(A) - \nu(S_2) = (+\infty) - c = +\infty \#(3)$$

$$\nu(S_3) = \nu(B) - \nu(S_2) = (-\infty) - c = -\infty \# (4)$$

Since S_1 and S_3 are disjoint, we should get

$$\nu(S_1 \cup S_3) = \nu(S_1) + \nu(S_3)$$

However, the RHS is $(+\infty) + (-\infty)$ and is not defined.

Thus a contradiction has occurred.

Case 2: $\nu(S_2)$ is infinite. Assume without loss of generality that $\nu(S_2) = +\infty$. It follows from equation (4) that

$$\nu(S_3) = \nu(B) - \nu(S_2) = (-\infty) - (+\infty) = -\infty$$

Since S_2 and S_3 are disjoint, we should get

$$\nu(B) = \nu(S_2) + \nu(S_3)$$

However, the RHS is $(+\infty) + (-\infty)$ and is not defined.

Thus again a contradiction has occurred.

Thus ν cannot take on values $+\infty$ and $-\infty$ simultaneously.

2.2. MEASURES 11

2.2 Measures

Definition. (Signed Measures) Let \mathcal{M} be a σ -algebra on X. We define a signed measure on \mathcal{M} to be a set function μ on \mathcal{M} that satisfies all of the conditions listed below.

(1) $\mu(\emptyset) = 0$.

(2)

$$\mu(\bigcup_{k\in\mathbb{N}} S_k) = \sum_{k\in\mathbb{N}} \mu(S_k)$$

Definition. (Measures) Let \mathcal{M} be a σ -algebra on X. We define a **measure** on \mathcal{M} to be a set function μ on \mathcal{M} that satisfies all of the conditions listed below.

- (1) (Non-negative) For any set S in \mathcal{M} , we have $\mu(S) \geq 0$
- (2) $\mu(\emptyset) = 0$.

Proposition 2.2.1.

$$\mu(\bigcup_{k \in \mathbb{N}} S_k) = \sum_{k \in \mathbb{N}} \mu(S_k)$$
$$\mu(B - A) = \mu(B) - \mu(A)$$

Proof.

Note that $B = A \cup (B - A)$ and that A and (B - A) are disjoint.

By definition of measures, μ is countably additive and hence $\mu(B) = \mu(A) + \mu(B - A)$.

By definition of measures, μ is non-negative and hence $\mu(B-A) \geq 0$.

It follows that $\mu(A) \leq \mu(B)$.

If $\mu(A) \neq +\infty$, then we are allowed to subtract $\mu(A)$ from both sides.

Subtracting gives $\mu(B - A) = \mu(B) - \mu(A)$.

$$\mu(\bigcup_{k\in\mathbb{N}}A_k)\leq \sum_{k\in\mathbb{N}}\mu(A_k)$$

Proof.

Construct another sequence of sets $\{B_k\}$ by $B_1 = A_1$ and $B_n = A_n - \bigcup_{k=1}^{n-1} A_k$ $(n \ge 2)$.

Then $\{B_k\}$ is disjoint and we have

$$\bigcup_{k=1}^{n} B_k = \bigcup_{k=1}^{n} A_k \#(1)$$

$$B_k \subseteq A_k \# (2)$$

From (1), we automatically get

$$\mu(\bigcup_{k\in\mathbb{N}} B_k) = \mu(\bigcup_{k\in\mathbb{N}} A_k) \#(3)$$

From (2), by the monotonicity of measures, we get

$$\mu(B_k) \le \mu(A_k)$$

It follows that

$$\sum_{k \in \mathbb{N}} \mu(B_k) \le \sum_{k \in \mathbb{N}} \mu(A_k) \# (4)$$

By definition of measures, μ is countably additive and hence

$$\mu(\bigcup_{k\in\mathbb{N}} B_k) = \sum_{k\in\mathbb{N}} \mu(B_k) \#(5)$$

From (3) \sim (5), we get

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) \le \sum_{k\in\mathbb{N}} \mu(A_k)$$

(1) Let (X, \mathcal{M}, μ) be a measure space. Then for any sets A and B in \mathcal{A} , we have $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$

Proof.

Note that $A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$.

By the countable additivity of measures, we get

$$\mu(A \cup B) = \mu(A - B) + \mu(A \cap B) + \mu(B - A) \# (1)$$

Note that $A = (A - B) \cup (A \cap B)$ and $B = (B - A) \cup (A \cap B)$.

By the countable additivity of measures, we get

$$\mu(A) = \mu(A - B) + \mu(A \cap B) \# (2)$$

2.2. MEASURES 13

$$\mu(B) = \mu(B - A) + \mu(A \cap B) \#(3)$$

From (1) (3), we get

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

Definition. (Point Mass) Let A be a σ -algebra on X and x be an element in X. We define a **point mass** concentrated at point x, denoted by δ_x , to be a set function on A defined by

$$\delta_x(A) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

(1) Point masses are measures.

Proof.

By definition of point masses, they are non-negative.

For any element x in X, we have $x \notin \emptyset$. Thus $\delta_x(\emptyset) = 0$.

Let $\{A_k\}$ be an arbitrary sequence of disjoint sets in \mathcal{A} .

Let x be an element in $\bigcup_{k\in\mathbb{N}} A_k$. Then x is in exactly one of A_k .

It follows that

$$\delta_x(\bigcup_{k\in\mathbb{N}} A_k) = \sum_{k\in\mathbb{N}} \mu(A_k) = 1$$

Limits Theorems

Definition. (Limits of Monotone Sequences of Sets) Let $\{A_k\}$ be a sequence of subsets of X.

(1) If $\{A_k\}$ is increasing, we define the limit by

$$A_k = \bigcup_{k \in \mathbb{N}} A_k$$

(2) If $\{A_k\}$ is decreasing, we define the limit by

$$A_k = \bigcap_{k=1}^{\infty} A_k$$

Definition. (Limit Superior and Limit Inferior) Let $\{A_k\}$ be a sequence of subsets of X.

$$A_k = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_k$$

$$A_k = \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} A_k$$

Definition. (Convergence of Sequences of Sets) Let $\{A_k\}$ be a sequence of subsets of X. We say that $\{A_k\}$ converges if $A_k = A_k$. In this case, we denote the common set by A and say that $\{A_k\}$ converges to A or symbolically $A_k = A$.

Proposition 3.0.1. Let $\{A_k\}$ be a sequence of subsets of X. Then

(1) $A_k = \{x : x \in A_k \text{ for infinitely many } k\}$

(2) $A_k = \{x : x \in A_k \text{ for all but finitely many } k\}$

Proof.

Proof of (1)

For one direction, let x be an arbitrary element in A_k .

By definition of limit superior, x is in each of the sets $S_m = \bigcup_{k=m}^{\infty} A_k$.

For m = 1, since $x \in S_1 = \bigcup_{k \in \mathbb{N}} A_k$, there exists an index $k_1 \geq 1$ such that $x \in A_k$.

For $m = k_1 + 1$, since $x \in S_{k_1} = \bigcup_{k=k_1}^{\infty} A_k$, there exists an index $k_2 > k_1$ such that $x \in A_{k_2}$.

Repeat and get a subsequence $\{A_{n_k}\}$ of $\{A_k\}$ such that x is in each A_{n_k} .

For the reverse direction, let x be an arbitrary element such that $x \in A_k$ for infinitely many k.

Assume for the sake of contradiction that $x \notin A_k$.

Then there exists an integer m_0 such that $x \notin S_{m_0} = \bigcup_{k=m_0}^{\infty} A_k$.

It follows that x is not in each A_k for $k \geq m_0$.

This contradicts to the fact that $x \in A_k$ for infinitely many k.

Proof of (2)

For one direction, let x be an arbitrary element in A_k .

By definition of limit inferior, there exists an integer m_0 such that $x \in \bigcap_{k=m_0}^{\infty} A_k$. It follows that x is in each A_k for $k \ge m_0$.

For the reverse direction, let x be an arbitrary element such that $x \in A_k$ for all but finitely many k.

Then there exists an integer m_0 such that $x \in A_k$ for each $k \ge m_0$.

It follows that $x \in \bigcap_{k=m_0}^{\infty} A_k$.

It follows that $x \in A_k$.

Proposition 3.0.2. Let $(X, \mathcal{M}_{\mu}, \mu)$ be a measure space and $\{A_k\}$ be a monotone sequence of sets in \mathcal{M}_{μ} . Then

(1)
$$\mu(A_k) = \mu(A_k)$$

(2)
$$\mu(A_k) = \mu(A_k)$$

Proof.

Proof of (1)

Construct another sequence of sets $\{B_k\}$ by $B_1 = A_1$ and $B_n = A_n - \bigcup_{k=1}^{n-1} A_k$. Then $\{B_k\}$ is disjoint and we have

$$\bigcup_{k\in\mathbb{N}} A_k = \bigcup_{k\in\mathbb{N}} B_k \#(1)$$

$$A_n = \bigcup_{k=1}^n B_k \#(2)$$

From (1), by the countable additivity of measures, we get

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) = \sum_{k\in\mathbb{N}} \mu(B_k) \#(3)$$

From (2), by the countable additivity of measures again, we get

$$\mu(A_n) = \sum_{k=1}^n \mu(B_k)$$

It follows that

$$\mu(A_n) = \sum_{k \in \mathbb{N}} \mu(B_k) \# (4)$$

From (3) and (4), we get

$$\mu(\bigcup_{k\in\mathbb{N}}A_k)=\mu(A_n)$$

Proof of (2)

Note that $\{A_k\}$ is decreasing. Thus we can assume without loss of generality that N=1.

Construct another sequence of sets $\{B_k\}$ by $B_k = A_1 - A_k$.

Then $\{B_k\}$ is increasing and we have

$$\bigcap_{k=1}^{\infty} A_k = A_1 - \bigcup_{k \in \mathbb{N}} B_k \# (1)$$

$$A_n = A_1 - B_n \# (2)$$

From (1), by the monotonicity of measures, we get

$$\mu(\bigcap_{k=1}^{\infty} A_k) = \mu(A_1) - \mu(\bigcup_{k \in \mathbb{N}} B_k)$$

Since $\{B_k\}$ is increasing, it follows that

$$\mu(\bigcap_{k=1}^{\infty} A_k) = \mu(A_1) - \mu(B_n) \# (3)$$

From (2), by the monotonicity of measures again, we get

$$\mu(A_n) = \mu(A_1) - \mu(B_n)$$

It follows that

$$\mu(A_n) = \mu(A_1) - \mu(B_n) \# (4)$$

From (3) and (4), we get

$$\mu(\bigcap_{k=1}^{\infty} A_k) = \mu(A_n)$$

Proposition 3.0.3. Let $(X, \mathcal{M}_{\mu}, \mu)$ be a measure space and $\{A_k\}$ be an arbitrary sequence of sets in \mathcal{M}_{μ} . Then

- (1) $\mu(A_k) \leq \mu(A_k)$.
- (2) $\mu(A_k) \ge \mu(A_k)$ provided that $\mu(\bigcup_{k \in \mathbb{N}} A_k) < \infty$.
- (3) $\mu(A_k) = \mu(A_k)$ provided that the sequence converges and $\mu(\bigcup_{k \in \mathbb{N}} A_k) < \infty$.

Proof.

Proof of (1)

Define set S_m by $S_m = \bigcap_{k=m}^{\infty} A_k$. Then the sequence $\{S_m\}$ is non-decreasing and $S_m \subseteq A_m$ for each index m.

$$\mu(\bigcup_{m=1}^{\infty} S_m) = \mu(S_m) = \mu(S_k) \# (1)$$

$$\mu(S_m) \le \mu(A_m)$$

$$\mu(S_k) \leq \mu(A_k) \# (2)$$

$$\mu(\bigcup_{m=1}^{\infty} S_m) \le \mu(A_k)$$

$$\mu(A_k) \le \mu(A_k)$$

Proof of (2)

Define set S_m by $S_m = \bigcup_{k=m}^{\infty} A_k$. Then the sequence $\{S_m\}$ is non-increasing with $\mu(S_1) < \infty$ and $A_m \subseteq S_m$ for each index m.

$$\mu(\bigcap_{m=1}^{\infty} S_m) = \mu(S_m) = \mu(S_k) \# (1)$$

$$\mu(S_m) \ge \mu(A_m)$$

$$\mu(S_k) \ge \mu(A_k) \# (2)$$

$$\mu(\bigcap_{m=1}^{\infty} S_m) \ge \mu(A_k)$$

$$\mu(A_k) \ge \mu(A_k)$$

Proposition 3.0.4. Let (X, A) be a measurable space and μ be a finitely additive measure. Then μ is also a measure if it satisfies any of the conditions listed below.

(1)
$$\mu(\bigcup_{k\in\mathbb{N}} A_k) = \mu(A_n)$$

$$\mu(A_k) = 0$$

Proof.

Proof of (1)

Let $\{B_k\}$ be a sequence of disjoint sets in \mathcal{A} .

Construct another sequence of sets $\{A_k\}$ by $A_n = \bigcup_{k=1}^n B_k$.

Then $\{A_k\}$ is increasing and we have

$$\bigcup_{k\in\mathbb{N}} A_k = \bigcup_{k\in\mathbb{N}} B_k \#(1)$$

$$A_n = \bigcup_{k=1}^n B_k \#(2)$$

From (1), we get

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) = \mu(\bigcup_{k\in\mathbb{N}} B_k) \#(3)$$

From (2), by the finite additivity of μ , we get

$$\mu(A_n) = \sum_{k=1}^n \mu(B_k)$$

It follows that

$$\mu(A_n) = \sum_{k \in \mathbb{N}} \mu(B_k) \#(4)$$

Apply condition (1) to $\{A_n\}$, we get

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) = \mu(A_n)\#(5)$$

From (3) \sim (5), we get

$$\mu(\bigcup_{k\in\mathbb{N}}B_k)=\sum_{k\in\mathbb{N}}\mu(B_k)$$

Thus μ is countably additive.

By definition of measures, μ is a countably additive measure.

Proof of (2)

Variations and Decompositions

4.1 Variations

Definition. (Variations) Let A be an algebra on X and ν be an additive set function on A.

$$\overline{V}(\nu, S) = \sup \{ \nu(S') : S' \in \mathcal{A}, S' \subseteq S \}$$

$$(\nu, S) = \inf \{ \nu(S') : S' \in \mathcal{A}, S' \subseteq S \}$$

$$V(\nu, S) = \overline{V}(\nu, S) - (\nu, S)$$

Proposition 4.1.1.

- (1) Positive variations are non-negative.
- (2) Negative variations are non-positive.

Proof.

Let \mathcal{A} be an algebra on X and ν be an additive set function on \mathcal{A} .

Proof of (1)

Let S be a set in A.

Since
$$\emptyset \subseteq S$$
, $\nu(\emptyset) \in {\{\nu(S') : S' \in \mathcal{A}, S' \subseteq S\}}$.

$$\nu(\emptyset) \le \sup \{\nu(S') : S' \in \mathcal{A}, S' \subseteq S\} \#(*)$$

By definition of additive set functions, $\nu(\emptyset) = 0$.

By definition of positive variations, $\sup\{\nu(S'): S' \in \mathcal{A}, S' \subseteq S\} = \overline{V}(\nu, S)$. Substitution gives $\overline{V}(\nu, S) > 0$.

Proof of (2)

Let S be a set in A.

Since $\emptyset \subseteq S$, $\nu(\emptyset) \in {\{\nu(S') : S' \in \mathcal{A}, S' \subseteq S\}}$.

$$\nu(\emptyset) \ge \inf \{ \nu(S') : S' \in \mathcal{A}, S' \subseteq S \} \#(*)$$

By definition of additive set functions, $\nu(\emptyset) = 0$.

By definition of negative variations, $(\nu, S) = \inf \{ \nu(S') : S' \in \mathcal{A}, S' \subseteq S \}$. Substitution gives $(\nu, S) \leq 0$.

(1) Variations of additive set functions are also additive.

Proof. Let \mathcal{A} be an algebra on X and ν be an additive set function on \mathcal{A} .

Part 1: values at empty set

$$\overline{V}(\nu,\emptyset) = \sup\{\nu(\emptyset)\} = \nu(\emptyset) = 0 \setminus n(\nu,\emptyset) = \inf\{\nu(\emptyset)\} = \nu(\emptyset) = 0$$

Part 2: additivity

$$\overline{V}(\nu,A\cup B) \leq \overline{V}(\nu,A) + \overline{V}(\nu,B)\#(*) \setminus n\overline{V}(\nu,A\cup B) \geq \overline{V}(\nu,A) + \overline{V}(\nu,B)\#(**)$$

Let S be an arbitrary subset of $A \cup B$.

Since $S \subseteq A \cup B$ and A and B are disjoint, S can be written as $S = (S \cap A) \cup (S \cap B)$ and the sets $S \cap A$ and $S \cap B$ are disjoint.

$$\nu(S) = \nu(S \cap A) + \nu(S \cap B)$$

$$\nu(S \cap A) \le \overline{V}(\nu, A) \backslash n\nu(S \cap B) \le \overline{V}(\nu, B)$$

$$\nu(S) < \overline{V}(\nu, A) + \overline{V}(\nu, B)$$

4.1. VARIATIONS 23

$$\overline{V}(\nu, A \cup B) \le \overline{V}(\nu, A) + \overline{V}(\nu, B) \#(*)$$

Let ε be an arbitrary positive number.

$$\nu(A') > \overline{V}(\nu, A) - \varepsilon/2$$

$$\nu(B') > \overline{V}(\nu, B) - \varepsilon/2$$

Define set S_0 by $S_0 = A' \cup B'$.

Since $A^{'} \subseteq A$, $B^{'} \subseteq B$, and A and B are disjoint, $A^{'}$ and $B^{'}$ are disjoint.

$$\nu(S_0) = \nu(A') + \nu(B')$$

Since $A^{'} \subseteq A$, $B^{'} \subseteq B$, and $S = A^{'} \cup B^{'}$, $S \subseteq A \cup B$.

$$\overline{V}(\nu, A \cup B) \ge \nu(S_0)$$

$$\overline{V}(\nu, A \cup B) \ge \overline{V}(\nu, A) + \overline{V}(\nu, B) - \varepsilon$$

$$\overline{V}(\nu, A \cup B) \ge \overline{V}(\nu, A) + \overline{V}(\nu, B) \#(**)$$

(1) Variations of signed measures are still signed measures.

Proof.

Proof part (1): values at empty set

Let \mathcal{A} be a σ -algebra on set X and ν be a signed measure on \mathcal{A} . Consider the empty set. Then the only subset is the empty set itself.

$$\overline{V}(\nu,\emptyset) = \sup\{\nu(\emptyset)\} = 0 \setminus n$$

Proof Part (2): countably additivity

Let $\{S_k\}_{k=1}^{\infty}$ be an arbitrary sequence of disjoint sets in \mathcal{A} and let S denote their union.

$$\overline{V}(\nu, S) \le \sum_{k \in \mathbb{N}} \overline{V}(\nu, S_k) \#(*)$$

$$\overline{V}(v,S) \ge \sum_{k \in \mathbb{N}} \overline{V}(v,S_k) \#(**)$$

Let S' be an arbitrary subset of S that is in \mathcal{A} and S'_k be an arbitrary subset of S_k that is in \mathcal{A} for each k.

$$S' = \bigcup_{k \in \mathbb{N}} (S' \cap S_k)$$

$$\nu(S' \cap S_k) \le \nu(S_k)$$

Note that S_k is a subset of itself and is in A.

$$\nu(S_k) \leq \sup \{ \nu(S_k^{'}) : S_k^{'} \in \mathcal{A}, S_k^{'} \subseteq S_k \}$$

$$\nu(S' \cap S_k) \leq \sup \{\nu(S_k') : S_k' \in \mathcal{A}, S_k' \subseteq S_k\}$$

$$\sum_{k \in \mathbb{N}} \nu(S' \cap S_k) \le \sum_{k \in \mathbb{N}} \sup \{ \nu(S_k') : S_k' \in \mathcal{A}, S_k' \subseteq S_k \}$$

$$\nu(S') = \sum_{k \in \mathbb{N}} \nu(S' \cap S_k)$$

$$\nu(S') \leq \sum_{k \in \mathbb{N}} \sup \{ \nu(S_k^{'}) : S_k^{'} \in \mathcal{A}, S_k^{'} \subseteq S_k \}$$

i.e., the RHS is an upper bound for the set $\{\nu(S'): S' \in \mathcal{A}, S' \subseteq S\}$.

$$\sup\{\nu(S'): S' \in \mathcal{A}, S' \subseteq S\} \leq \sum_{k \in \mathbb{N}} \sup\{\nu(S_k^{'}): S_k^{'} \in \mathcal{A}, S_k^{'} \subseteq S_k\}$$

$$\overline{V}(\nu, S) \le \sum_{k \in \mathbb{N}} \overline{V}(\nu, S_k) \#(*)$$

Let ε be an arbitrary positive number.

$$\nu(S_{k}^{'}) > \sup{\{\nu(S_{k}^{'}) : S_{k}^{'} \in \mathcal{A}, S_{k}^{'} \subseteq S_{k}\}} - \varepsilon/2^{k}$$

$$\sum_{k \in \mathbb{N}} \nu(S_{k}^{'}) > \sum_{k \in \mathbb{N}} \sup \{ \nu(S_{k}^{'}) : S_{k}^{'} \in \mathcal{A}, S_{k}^{'} \subseteq S_{k} \} - \varepsilon$$

Note that $\{S_k^i\}_{k=1}^\infty$ are disjoint. Let S denote their union.

$$\nu(S') = \sum_{k \in \mathbb{N}} \nu(S'_k)$$

$$\nu(S') > \sum_{k \in \mathbb{N}} \sup \{ \nu(S'_k) : S'_k \in \mathcal{A}, S'_k \subseteq S_k \} - \varepsilon$$

$$\sup \{ \nu(S') : S' \in \mathcal{A}, S' \subseteq S \} \ge \nu(S')$$

$$\sup \{ \nu(S') : S' \in \mathcal{A}, S' \subseteq S \} > \sum_{k \in \mathbb{N}} \sup \{ \nu(S'_k) : S'_k \in \mathcal{A}, S'_k \subseteq S_k \} - \varepsilon$$

$$\sup \{ \nu(S') : S' \in \mathcal{A}, S' \subseteq S \} \ge \sum_{k \in \mathbb{N}} \sup \{ \nu(S'_k) : S'_k \in \mathcal{A}, S'_k \subseteq S_k \}$$

$$\overline{V}(v, S) \ge \sum_{k \in \mathbb{N}} \overline{V}(v, S_k) \# (**)$$

4.2 Hahn Decomposition

- (1) (Hahn Decomposition) Let \mathcal{M} be a σ -algebra on X and let ν be a signed measure on \mathcal{M} . Then there exist sets P and N in \mathcal{M} such that
 - (a) $P \cup N = X$ and $P \cap N = \emptyset$.
 - (b) For any set S with $S \in \mathcal{M}$ and $S \subseteq P$, we have $\nu(S) \geq 0$.
 - (c) For any set S with $S \in \mathcal{M}$ and $S \subseteq N$, we have $\nu(S) \leq 0$.

Definition. (Hahn Decomposition) We call the set P a positive set for ν , the set N a negative set for ν , and the set pair (P, N) a Hahn decomposition for ν .

4.3 Jordan Decomposition

$$\nu(S) = \overline{V}(\nu, S) + (\nu, S)$$

Outer Measures

Definition. (Outer Measure) Let $\mathcal{P}(X)$ be the set of all subsets of X. We define an **outer measure** on X, denoted by μ^* , to be the set function on \mathcal{P} that satisfies

- (1) μ^* is non-negative.
- (2) $\mu^*(\emptyset) = 0$.
- (3) μ^* is monotone.
- (4) μ^* is countably sub-additive.

Definition. (Lebesgue Outer Measure) Let A be a subset of \mathbb{R}^n and \mathcal{C}_A be the set of all sequences $\{R_k\}$ of bounded open n-dimensional intervals such that $A \subseteq \bigcup_{k \in \mathbb{N}} R_k$. We define the **Lebesgue outer measure** of A, denoted by $\lambda^*(A)$, by

$$\lambda^*(A) = \inf\{\sum_{k \in \mathbb{N}} \operatorname{vol}(R_k) : \{R_k\} \in \mathcal{C}_A\}$$

Proposition 5.0.1. The Lebesgue outer measure is an outer measure.

Proof.

Proof Part (1)

Since each of vol(R_k) is non-negative, $\lambda^*(A)$ is non-negative.

Proof Part (2)

Let $\varepsilon > 0$ be arbitrary.

Construct a sequence $\{R_k\}$ of bounded open n-dimensional intervals by

$$R_k = \{(x_1, x_2, \dots, x_n) : 0 < x_j < \sqrt[n]{\frac{\varepsilon}{2^k}} \ (j = 1, 2, \dots, n)\}$$

Then $\emptyset \subseteq \bigcup_{k \in \mathbb{N}} R_k$ and we have

$$\sum_{k \in \mathbb{N}} \operatorname{vol}(R_k) = \sum_{k \in \mathbb{N}} \frac{\varepsilon}{2^k} = \varepsilon$$

By definition of infimum, we get $\lambda^*(\emptyset) = 0$.

Proof Part (3): Monotonicity

Let A and B be arbitrary subsets of \mathbb{R}^n with $A \subseteq B$.

Then every sequence of open n-dimensional intervals that covers B also covers A.

It follows that $C_B \subseteq C_A$.

Then

$$\{\sum_{k\in\mathbb{N}}\operatorname{vol}(R_k):\{R_k\}\subseteq\mathcal{C}_B\}\subseteq\{\sum_{k\in\mathbb{N}}\operatorname{vol}(R_k):\{R_k\}\subseteq\mathcal{C}_A\}$$

Then

$$\lambda^*(A) = \inf\{\sum_{k \in \mathbb{N}} \operatorname{vol}(R_k) : \{R_k\} \subseteq \mathcal{C}_A\} \le \lambda^*(B) = \{\sum_{k \in \mathbb{N}} \operatorname{vol}(R_k) : \{R_k\} \subseteq \mathcal{C}_B\}$$

Proof Part (4): Countable Sub-additivity

Let $\{A_k\}$ be an arbitrary sequence of subsets of \mathbb{R}^n and let $\varepsilon > 0$ be arbitrary. For each A_k , construct a sequence of open n-dimensional intervals $\{R_{k,j}\}_{j=1}^{\infty}$ that covers A_k and that

$$\lambda^*(A_k) \le \sum_{j=1}^{\infty} \operatorname{vol}(R_{k,j}) < \lambda^*(A_k) + \frac{\varepsilon}{2^k}$$

Consider the union of the sequences $\{R_{k,j}\}_{k,j}$. Then it covers $\bigcup_{k\in\mathbb{N}} A_k$ and we have

$$\sum_{k,j} \operatorname{vol}(R_{k,j}) < \sum_{k \in \mathbb{N}} \lambda^*(A_k) + \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, we get

$$\sum_{k,j} \operatorname{vol}(R_{k,j}) \le \sum_{k \in \mathbb{N}} \lambda^*(A_k)$$

By the definition of infimum, we get

$$\inf\{\sum_{k\in\mathbb{N}}\operatorname{vol}(R_k):\{R_k\}\in\mathcal{C}(\bigcup_{k\in\mathbb{N}}A_k)\}\leq\sum_{k,j}\operatorname{vol}(R_{k,j})$$

It follows that

$$\lambda^*(\bigcup_{k\in\mathbb{N}} A_k) \le \sum_{k\in\mathbb{N}} \lambda^*(A_k)$$

(1) The Lebesgue outer measure on \mathbb{R}^n assigns to each *n*-dimensional interval its volume.

Definition (Outer Measurable Sets). Let μ^* be an outer measure on X. Let M be a subset of X. We say that M is measurable with respect to μ^* if for any subset A of X, we have

$$\mu^*(A) = \mu^*(A \cap M) + \mu^*(A \cap M^c)$$

Proposition 5.0.2. Let μ^* be an outer measure on X. Let S be a subset of X. Then S is μ^* -measurable if either $\mu^*(S) = 0$ or $\mu^*(S^c) = 0$.

Proof.

Let A be an arbitrary subset of X.

Note that $A = (A \cap S) \cup (A \cap S^c)$.

By the sub-additivity of μ^* , we get

$$\mu^*(A) < \mu^*(A \cap S) + \mu^*(A \cap S^c) \#(*)$$

By the monotonicity of μ^* , we get

$$\mu^*(A \cap S) \le \min\{\mu^*(A), \mu^*(S)\}$$

$$\mu^*(A \cap S^c) \le \min\{\mu^*(A), \mu^*(S^c)\}$$

Adding both sides gives

$$\mu^*(A \cap S) + \mu^*(A \cap S^c) \le \min\{\mu^*(A), \mu^*(S)\} + \min\{\mu^*(A), \mu^*(S^c)\}$$

Rearranging gives

$$\mu^*(A \cap S) + \mu^*(A \cap S^c) \le \mu^*(A) + \min\{\mu^*(S), \mu^*(S^c)\}\$$

By assumption, we get $\min\{\mu^*(S), \mu^*(S^c)\}=0$. Substituting gives

$$\mu^*(A \cap S) + \mu^*(A \cap S^c) \le \mu^*(A)\#(**)$$

From inequations (*) and (**), we get

$$\mu^*(A) = \mu^*(A \cap S) + \mu^*(A \cap S^c)$$

By definition of outer measurable, S is μ^* -measurable.

- (1) The sets \emptyset and X are outer measurable for any outer measure on X.
- (2) Let μ^* be an outer measure on X and S be a subset of X. If S is μ^* -measurable, then S^c is also μ^* -measurable.
- (1) Let μ^* be an outer measure on X and let \mathcal{M}_{μ^*} be the set of all μ^* -measurable subsets of X. Then
 - (a) \mathcal{M}_{μ^*} is a σ -algebra.
 - (b) The restriction of μ^* to \mathcal{M}_{μ^*} is a measure on \mathcal{M}_{μ^*} .

Proof of (1)

By Proposition 4.4, the sets \emptyset and X are in \mathcal{M}_{μ} .

By Proposition 4.5, \mathcal{M}_{μ^*} is closed under complement.

Definition (Lebesgue Measurable Sets). We define the **Lebesgue measurable** sets to be the Lebesgue outer measurable subsets of \mathbb{R}^n .

Definition (Lebesgue Measure on $(\mathbb{R}^n, \mathcal{M}_{\lambda^*})$). We define the **Lebesgue measure** on $(\mathbb{R}^n, \mathcal{M}_{\lambda^*})$, denoted by λ_n , to be the Lebesgue outer measure on \mathbb{R}^n , restricted to the set of Lebesgue measurable subsets of \mathbb{R}^n .

Proposition 5.0.3. A subset S of \mathbb{R} is Lebesgue measurable if and only if for any open subinterval I if \mathbb{R} , we have $\lambda^*(I) = \lambda^*(I \cap S) + \lambda^*(I \cap S^c)$.

Proposition 5.0.4. Borel subsets of \mathbb{R}^n are Lebesgue measurable.

Definition (Lebesgue Measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$). We define the **Lebesgue** measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, denoted also by λ_n , to be the Lebesgue outer measure on \mathbb{R}^n , restricted to Borel subsets of \mathbb{R}^n .

Proposition 5.0.5. Let μ be a finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let F_{μ} be a function $F_{\mu} \colon \mathbb{R} \to \mathbb{R}$ defined by $F_{\mu}(x) = \mu((-\infty, x))$. Then F_{μ} is bounded, non-decreasing, and right-continuous and satisfies $F_{\mu}(x) = 0$.

Proposition 5.0.6. For any bounded, non-decreasing, and right-continuous function $F: \mathbb{R} \to \mathbb{R}$ that satisfies F(x) = 0, there exists a unique finite measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $F(x) = \mu((-\infty, x))$.

Proposition 5.0.7. Let μ be a finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and F_{μ} be a function from \mathbb{R} to \mathbb{R} defined by $F_{\mu}(x) = \mu((-\infty, x))$. Then we have the followings.

(1)
$$\mu((-\infty, c)) = F_{\mu}(c^{-})$$

(2)
$$\mu(\{c\}) = F_{\mu}(c) - F_{\mu}(c^{-})$$

(3)
$$\mu((a,b)) = F_{\mu}(b) - F_{\mu}(a)$$

(4)
$$\mu((a,b)) = F_{\mu}(b^{-}) - F_{\mu}(a^{-})$$

(5)
$$\mu((a,b)) = F_{\mu}(b^{-}) - F_{\mu}(a)$$

(6)
$$\mu((a,b)) = F_{\mu}(b) - F_{\mu}(a^{-})$$

Lebesgue Measure

6.1 Lebesgue Measure on the Line

$$\lambda^*(S) = \inf\{\lambda(S')\}. \backslash n$$

$$\lambda_*(S) = \sup\{\lambda(S')\}. \backslash n$$

Definition. (Lebesgue Measurable, Lebesgue Measure) Let S be a subset of \mathbb{R} . If S is bounded, we say that S is Lebesgue measurable if $\lambda^*(S) = \lambda_*(S)$. If S is unbounded, we say that S is Lebesgue measurable if the set $S \cap I$ is measurable for any interval I. In this case, we define the Lebesgue measure of S, denoted by $\lambda(S)$, to be the common number.

Proposition 6.1.1.

$$\lambda_*(S) + \lambda^*((a,b) - S) = b - a.$$

Proposition 6.1.2 (Monotonicity). Both the Lebesgue outer measure and the Lebesgue inner measure are monotonic.

Proposition 6.1.3 (Translation Invariant). Both the Lebesgue outer measure and the Lebesgue inner measure are translation invariant.

Proposition 6.1.4. (1) Open subsets of \mathbb{R} are Lebesgue measurable.

(2) Closed and bounded subsets of \mathbb{R} are Lebesgue measurable.

Proposition 6.1.5 (Regularity). Let A be a Lebesgue measurable subset of \mathbb{R}^n . Then

- (1) $\lambda(A) = \inf\{\lambda(U)\}\$ where the infimum is taken over all open sets U that contains A.
- (2) $\lambda(A) = \sup\{\lambda(K)\}\$ where the supremum is taken over all compact sets K that is contained in A.

Proof.

Proof of (1)

By the monotonicity of Lebesgue measure, for any open set U that contains A, we have

$$\lambda(U) \ge \lambda(A) \# (1)$$

Let ε be an arbitrary positive number.

By definition of infimum, there exists a sequence $\{R_k\}$ of open *n*-dimensional intervals that covers A and that

$$\sum_{k \in \mathbb{N}} \operatorname{vol}(R_k) < \lambda(A) + \varepsilon \# (2)$$

Define set U_0 to be the union of $\{R_k\}$. Then U_0 is open and U_0 contains A. By the sub-additivity of measures, we have

$$\lambda(U_0) = \lambda(\bigcup_{k \in \mathbb{N}} R_k) \le \sum_{k \in \mathbb{N}} \lambda(R_k) \#(3)$$

By definition of Lebesgue measure, we have

$$\lambda(R_k) = \operatorname{vol}(R_k) \# (4)$$

From (in)equations (2) $\tilde{}$ (4), we get

$$\lambda(U_0) < \lambda(A) + \varepsilon \#(5)$$

From inequations (1) and (5), by definition of infimum, we get

$$\lambda(A) = \inf\{\lambda(U)\}\$$

Proof of (2)

By the monotonicity of Lebesgue measure, we get

$$\lambda(K) \le \lambda(A)$$

- (1) The Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ is the only measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ that assigns to each n-dimensional intervals its volume.
- (2) The Lebesgue outer measure on \mathbb{R}^n is translation invariant.
- (3) Let μ be a measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Suppose that μ is finite on bounded Borel subsets of \mathbb{R}^n and is translation invariant. Then there exists a positive number c such that for any set Borel subset B of \mathbb{R}^n , we have $\mu(B) = c\lambda(B)$.
- (1) There exists a subset of (0,1) that is not Lebesgue measurable.

Completeness

Definition. (Completeness) Let (X, \mathcal{M}, μ) be a measure space. We say that μ is complete and that (X, \mathcal{M}, μ) is a complete measure space if for any zero-measure set S in \mathcal{M} , any subset S' is also in \mathcal{M} .

Definition. (Completion) Let (X, \mathcal{M}, μ) be a measure space. Define sets \mathcal{Z} and $\overline{\mathcal{M}}$ by

$$\mathcal{Z} = \{ Z \in \mathcal{M} : \exists N \in \mathcal{M}, Z \subseteq N, \mu(N) = 0 \}$$
$$\overline{\mathcal{M}} = \{ M \cup Z : M \in \mathcal{M}, Z \in \mathcal{Z} \}$$

Then we define the completion $\overline{\mu}$ of μ to be a set function on $\overline{\mathcal{M}}$ given by

$$\overline{\mu}(M \cup Z) = \mu(M)$$

- (1) (a) $\overline{\mathcal{M}}$ is a σ -algebra.
 - (b) $\overline{\mu}$ is a measure.
 - (c) $\overline{\mu}$ is complete.

Proof.

Proof of (1)

By definition of set \mathcal{Z} , one can easily prove that the sets \emptyset and X are in \mathcal{Z} . By definition of measures, the sets \emptyset and X are also in \mathcal{M} . It follows from the definition of set $\overline{\mathcal{M}}$ that the sets \emptyset and X are in $\overline{\mathcal{M}}$. Let S be an arbitrary set in $\overline{\mathcal{M}}$. Then S can be written as $S = M \cup Z$.

Measurable Functions

Definition. (Measurable Functions) Let X be a non-empty set and f be a function $f: X \to \mathbb{R}^*$. We say that f is measurable if it satisfies any of the 4 equivalent conditions listed below.

- (1) $f^{-1}((-\infty,c))$ is a measurable set for any real number c.
- (2) $f^{-1}((-\infty,c))$ is a measurable set for any real number c.
- (3) $f^{-1}((c, +\infty))$ is a measurable set for any real number c.
- (4) $f^{-1}((c, +\infty))$ is a measurable set for any real number c.

Notations For a real-valued function f, we define

$$f^+(x) = \max\{f(x), 0\}$$

$$f^{-}(x) = -\min\{f(x), 0\}$$

$$|f|(x) = |f(x)|$$

- (1) (a) Constant functions are measurable.
 - (b) If f is measurable, then the inverse image of any interval is measurable.
 - (c) If f is measurable, then the inverse image of any open subset of \mathbb{R}^* is measurable.

- (2) If f is measurable, then the functions f^+ , f^- , and |f| are measurable.
- (3) Let f be a measurable function. Then af is measurable for any real number a.
- (4) Let f and g be measurable functions. Then f+g is measurable provided that the sum f(x)+g(x) is everywhere defined.
- (5) (Measurability of Products) Let f and g be measurable functions. Then fg is measurable.
- (6) Let $\{f_k\}$ be a sequence of measurable functions. Then the functions listed below are all measurable.

(a)