

Universidad Nacional de Colombia Facultad de Ciencias Topología General

Mateo	ndrés Manosalva Amaris		
Sergio	ejandro Bello Torres	 	

1. Sean τ y τ' dos topologías sobre X. Si $\tau' \supset \tau$, ¿qué implica la conexidad de X en una topología sobre la otra?

Solución: Note que si X es conexo en la topología τ' , entonces en la topología τ también lo es. Supongamos que no, entonces existen dos abiertos disjuntos A y B tales que $X = A \cup B$, como $\tau \subset \tau'$ entonces $A, B \in \tau'$, luego X no sería conexo.

La contrarrecíproca nos dice que si X es disconexo en τ entonces es disconexo en τ' , sin embargo que X sea conexo en τ no implica conexidad en la topología τ' . Por ejemplo, considere los espacios topológicos (\mathbb{R},τ) , (\mathbb{R},τ_ℓ) , con τ la topología usual y τ_ℓ la topología del límite inferior, es claro que $\tau \subset \tau_\ell$. Sabemos que \mathbb{R} es conexo en la topología usual, pero \mathbb{R}_ℓ no lo es. La prueba de esto se encuentra en el ejercicio 7.

2. Sea $\{A_n\}$ una sucesión de subespacios conexos de X, tal que $A_n \cap A_{n+1} \neq \emptyset$ para todo n. Demuestra que $\bigcup A_n$ es conexo.

Demostración. Supongamos que no, esto es

$$\bigcup_{n} A_n = B \cup C$$

con $B \cap C = \emptyset$ y $B, C \neq \emptyset$. Tomemos $A_1 \subset B$, en efecto

$$I := \{ i \in \mathbb{N} : A_i \subset C \} \neq \emptyset,$$

de lo contrario $C=\emptyset$ y esto no es posible. El principio del buen orden garantiza que I tiene un elemento mínimo, digamos k, esto nos da que $A_{k-1}\subset B$, así $A_k\cap A_{k-1}=\emptyset$, una contradicción.

3. Sea $\{A_{\alpha}\}$ una colección de subespacios conexos de X; sea A un subespacio conexo de X. Muestra que si $A \cap A_{\alpha} \neq \emptyset$ para todo α , entonces $A \cup (\bigcup A_{\alpha})$ es conexo.

Demostración. Note que

$$A \cup \bigcup_{\alpha} A_{\alpha} = \bigcup_{\alpha} (A \cup A_{\alpha})$$

y como $A\subset\bigcap_{\alpha}(A\cup A_{\alpha})$, y $A\neq\emptyset$, El conjunto $\{A\cup A_{\alpha}\}_{\alpha}$ es una colección de subespacios conexos de X con un punto en común, de donde se conluye lo deseado.

4. Demuestra que si X es un conjunto infinito, entonces es conexo en la topología del complemento finito.

Demostración. Suponga que no, entonces $X = A \cup B$ con A, B abiertos disjuntos, como A y B son disjuntos tenemos que $B = A^c$, entonces B es finito ya que $A \in \tau$, como $B \in \tau$ y $A = B^c$, se sigue que A es finito, lo que contradice que X es infinito.

5. Un espacio es *totalmente disconexo* si sus únicos subespacios conexos son conjuntos de un solo punto. Muestra que si *X* tiene la topología discreta, entonces *X* es totalmente disconexo. ¿Es cierto el recíproco?

Demostración. En efecto $A=\{x\}$ donde $x\in X$ es conexo ya que no pueden haber dos abiertos disjuntos no vacíos cuya unión sea $\{x\}$. Si $|A|\geq 2$, note que

$$A = \bigcup_{x \in A} \{x\}$$

y por tanto A no es conexo, ya que los singletones son abiertos disjuntos en la topología discreta.

El recíproco no es cierto. $\mathbb Q$ no es conexo con la topología usual y los únicos subespacios conexos de $\mathbb Q$ son los conjuntos de un solo punto.

Si Y es un subespacio de $\mathbb Q$ que contiene dos puntos p y q, se puede elegir un número irracional a entre p y q, tal que

$$Y = (Y \cap (-\infty, a)) \cup (Y \cap (a, +\infty))$$

y la topología usual no es la misma topología discreta (los puntos en la topolgía usual de $\mathbb Q$ no son abiertos).

6. Sea $A \subset X$. Muestra que si C es un subespacio conexo de X que intersecta tanto A como X - A, entonces C intersecta ∂A .

$$C = (C \cap A) \cup (C \cap (X - A)) \subset (X - A) \cup \mathring{A},$$

como C es conexo, entonces C cae enteramente en $(X \overset{\circ}{-} A)$ o en \mathring{A} , esto contradice que C intersecta tanto a X-A como a A.

7. ¿Es el espacio \mathbb{R}_{ℓ} conexo? Justifica tu respuesta.

Falso, en efecto

$$\mathbb{R}_{\ell} = (-\infty, 0) \cup [0, \infty)$$

y esta es una disconexión.

8. Determina si \mathbb{R}^{ω} es conexo en la topología uniforme.

Sean $A, B \subset \mathbb{R}^{\omega}$ los conjuntos de todas las sucesiones acotadas y no acotadas respectivamente. En efecto $A \cup B = \mathbb{R}^{\omega}$ y $A \cap B = \emptyset$, nos falta ver que A y B son abiertos y obtenemos una disconexión.

Si $a \in A$, es decir, existe M > 0 tal que $|a_n| < M$ para todo $n \in \mathbb{N}$; y dado $\varepsilon < 1$, en efecto

$$B(a,\varepsilon) := \{ b \in \mathbb{R}^{\omega} : \sup\{ |a_n - b_n| : n \in \mathbb{N} \} < \varepsilon \},$$

ya que eliminamos el mínimo entre $|a_n - b_n|$ y 1 presente en la métrica uniforme. Queremos ver que a es punto interior, esto es que dado $b \in B(a, \varepsilon)$, $b \in A$, en efecto

$$|b_n| \le |a_n - b_n| + |a_n| < \varepsilon + M.$$

Si $a \in B$ el razonamiento es análogo, a es no acotada si

$$\limsup_{n \to \infty} |a_n| = \infty$$

y además tenemos que

$$|a_n| \le |a_n - b_n| + |b_n|,$$

de lo que se sigue que

$$\infty = \limsup_{n \to \infty} |a_n| \le \varepsilon + \limsup_{n \to \infty} |b_n|.$$

Concluímos en cada caso que $b \in B(a, \varepsilon)$, luego A y B forman una disconexión.

9. Sea *A* un subconjunto propio de *X*, y sea *B* un subconjunto propio de *Y*. Si *X* e *Y* son conexos, muestra que

$$(X \times Y) - (A \times B)$$

es conexo.

Demostración. Sea $\tilde{a} \in X - A$, entonces $\{\tilde{a}\} \times Y$ es conexo y además disyunto con $A \times B$, sea $\tilde{b} \in X - B$, luego $X \times \{\tilde{b}\}$ es conexo y disyunto de $A \times B$, en efecto

$$(\{\tilde{a}\} \times Y) \cup (X \times \{\tilde{b}\})$$

es conexo ya que tienen el punto (\tilde{a}, \tilde{b}) en común. Más aún

$$(X\times Y)-(A\times B)=\left(\bigcup_{b\in Y-B}\left((\{\tilde{a}\}\times Y)\cup (X\times \{b\})\right)\right)\cup \left(\bigcup_{a\in X-A}\left((\{a\}\times Y)\cup (X\times \{\tilde{b}\})\right)\right)$$

es conexo.

10. Sea $\{X_{\alpha}\}_{{\alpha}\in J}$ una familia indexada de espacios conexos; sea X el espacio producto

$$X = \prod_{\alpha \in J} X_{\alpha}.$$

Sea $\mathbf{a} = (a_{\alpha})$ un punto fijo de X.

a) Dado cualquier subconjunto finito K de J, sea X_K el subespacio de X que consiste en todos los puntos $\mathbf{x} = (x_\alpha)$ tales que $x_\alpha = a_\alpha$ para $\alpha \notin K$. Muestra que X_K es conexo.

Demostración. Sea $K = \{\alpha_1, \ldots, \alpha_n\} \subset J$,

$$f: X_K \longrightarrow X_{\alpha_1} \times \ldots \times X_{\alpha_n}$$

 $x \longmapsto f(x) = (x_{\alpha_1}, \ldots, x_{\alpha_n})$

es un homeomorfismo ya que cada componente es continua y la función es abierta porque el producto cartesiano de abiertos es abierto, la biyectividad es inmediata. Esto nos da que X_K es conexo dado que $X_{\alpha_1} \times \ldots \times X_{\alpha_n}$ es producto finito de conexos.

b) Demuestra que la unión Y de los espacios X_K es conexa.

Demostración. En efecto $a \in X_K$, $K \subset J$, $|K| \leq \infty$, entonces

$$\bigcup_K X_K$$

es conexo porque es unión de conexos que comparten un punto.

c) Demuestra que *X* es igual a la clausura de *Y*; concluye que *X* es conexo.

Demostración. Sea $\mathbf{x} \in X$ y $U = \prod_{\alpha \in J} U_{\alpha}$ una vecindad de \mathbf{x} , tenemos entonces que $U_{\alpha} = X_{\alpha}$ para todos salvo finitos índices α ; de esta manera, existe un elemento $\mathbf{y} \in U$ tal que $y_{\alpha} = a_{\alpha}$ para todos salvo finitos índices α . Por lo tanto $U \cap Y \neq \emptyset$. De esta manera $X = \overline{Y}$; y ya que la clausura de un subespacio conexo de X es conexa, tenemos que X es conexo.

11. Sea $p: X \to Y$ un mapeo cociente. Demuestra que si cada conjunto $p^{-1}(\{y\})$ es conexo, y si Y es conexo, entonces X es conexo.

 $\begin{array}{l} \textit{Demostración.} \ \ \text{Supongamos que } U \ \text{y} \ V \ \text{son una disconexión de } X, \text{si } y \in p(U), \text{ entonces } y = p(x) \\ \text{para algún } x \in U, \ \text{por tanto } x \in p^{-1}(\{y\}). \ p^{-1}(\{y\}) \ \text{es conexo y } x \in U \cap p^{-1}(\{y\}), \text{ tenemos que } p^{-1}(\{y\}) \subset U, \text{ por tanto, } p^{-1}(\{y\}) \subset U \text{ para todo } y \in p(U), \text{ así pues } p^{-1}(p(U)) \subset U. \ \text{Como } U \subset p^{-1}(p(U)) \ \text{ tenemos que } U = p^{-1}(p(U)), \text{ análogamente } V = p^{-1}(p(V)). \end{array}$

Como p es un mapa cociente, p(U) y p(V) son conjuntos abiertos disjuntos y no vacíos de Y, además $p(U) \cup p(V) = Y$ ya que p es sobreyectiva, por lo que p(U) y p(V) son una disconexión de Y

$$p^{-1}(p(U) \cap P(V)) = p^{-1}(p(U)) \cap p^{-1}(p(V)) = U \cap V = \emptyset,$$

lo que contradice el hecho de que *Y* es conexo.

12. Sea $Y \subset X$; sean X y Y conexos. Demuestra que si A y B forman una separación de X - Y, entonces $Y \cup A$ y $Y \cup B$ son conexos.

Demostración. Suponga que $Y \cup A$ no es conexo, esto es $Y \cup A = U \cup V$, $U \cap V = \emptyset$, como Y es conexo, entonces $Y \subset Y \cup A \subset U \cup V$, de esto se sigue $Y \subset U$ o $Y \subset V$.

Suponga que $Y \subset U$, entonces $V \subset A$, como $A \cup B = X - Y$ con $A \cap B = \emptyset$, tenemos que

$$Y \cup (X - Y) = (Y \cup A) \cup B = X = U \cup V \cup B,$$

Ya que U y V forman una separación de $Y \cup A$, ningún punto de acumulación de U está en V, además, como $A \cup B$ es una separación de X - Y y $U \subset A$, entonces B no contiene ningún punto de acumulación de U. Por lo tanto U es un subconjunto propio de X que es abierto y cerrado, de donde se sigue que X no es conexo, llegando a una contradicción. El caso $Y \cup B$ es análogo. \Box