Operating Systems

Isfahan University of Technology Electrical and Computer Engineering Department

Zeinab Zali

Virtual Memory

Background

- Code needs to be in memory to execute, but entire program rarely used
 - Error code, unusual routines, large data structures
- Entire program code not needed at same time
- Consider ability to execute partially-loaded program
 - Program no longer constrained by limits of physical memory
 - Each program takes less memory while running -> more programs run at the same time
 - Increased CPU utilization and throughput with no increase in response time or turnaround time
 - Less I/O needed to load or swap programs into memory
 -> each user program runs faster

Background (Cont.)

- Virtual memory separation of user logical memory from physical memory
 - Only part of the program needs to be in memory for execution
 - Logical address space can therefore be much larger than physical address space
 - Allows address spaces to be shared by several processes
 - Allows for more efficient process creation
 - More programs running concurrently
 - Less I/O needed to load or swap processes

Background (Cont.)

- Virtual address space logical view of how process is stored in memory
 - Usually start at address 0, contiguous addresses until end of space
 - Meanwhile, physical memory organized in page frames
 - MMU must map logical to physical
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Virtual Memory That is Larger Than Physical Memory

Virtual-address Space

- Usually design logical address space for stack to start at Max logical address and grow "down" while heap grows "up"
 - Maximizes address space use
 - Unused address space between the two is hole
 - No physical memory needed until heap or stack grows to a given new page
- Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc
- System libraries shared via mapping into virtual address space
- Shared memory by mapping pages readwrite into virtual address space
- Pages can be shared during fork(), speeding process creation

Shared Library Using Virtual Memory

Demand Paging

- Could bring entire process into memory at load time
- Or bring a page into memory only when it is needed
 - Less I/O needed, no unnecessary I/O
 - Less memory needed
 - Faster response
 - More users
- Similar to paging system with swapping
- Page is needed ⇒ reference to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory
- Lazy swapper never swaps a page into memory unless page will be needed
 - Swapper that deals with pages is a pager

Basic Concepts

- With swapping, pager guesses which pages will be used before swapping out again
- pager brings in only those pages into memory
- How to determine that set of pages?
 - Need new MMU functionality to implement demand paging
- If pages needed are already memory resident
 - No difference from non demand-paging
- If page needed and not memory resident
 - Need to detect and load the page into memory from storage
 - Without changing program behavior
 - Without programmer needing to change code

Valid-Invalid Bit

- With each page table entry a valid–invalid bit is associated (v ⇒ in-memory – memory resident, i ⇒ not-in-memory)
- Initially valid—invalid bit is set to i on all entries
- Example of a page table snapshot:

Frame #	valid-	<u>i</u> nvalid bit
	V	
-	V	
	V	
	i	

	i	1
	i]
page tab	le	-

During MMU address translation, if valid–invalid bit in page table entry is i ⇒ page fault

Page Table When Some Pages Are Not in Main Memory

Page Fault

If there is a reference to a page, first reference to that page will trap to operating system:

page fault

- 1. Operating system looks at another table to decide:
 - Invalid reference ⇒ abort
 - Just not in memory
- 2. Find free frame
- 3. Swap page into frame via scheduled disk operation
- 4. Reset tables to indicate page now in memory Set validation bit = v
- 5. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

Aspects of Demand Paging

- Extreme case start process with no pages in memory
 - OS sets instruction pointer to first instruction of process, nonmemory-resident -> page fault
 - And for every other process pages on first access
 - Pure demand paging
- Actually, a given instruction could access multiple pages -> multiple page faults
 - Consider fetch and decode of instruction which adds 2 numbers from memory and stores result back to memory
 - Pain decreased because of locality of reference
- Hardware support needed for demand paging
 - Page table with valid / invalid bit
 - Secondary memory (swap device with swap space)
 - Instruction restart

Copy-on-Write

- Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory
 - If either process modifies a shared page, only then is the page copied
- COW allows more efficient process creation as only modified pages are copied
- vfork() variation on fork() system call has parent suspend and child using address space of parent
 - Designed to have child call exec()
 - Very efficient
 - Ex. for programming a shell

Before Process 1 Modifies Page C

After Process 1 Modifies Page C

What Happens if There is no Free Frame?

- Used up by process pages
- Also in demand from the kernel, I/O buffers, etc.
- How much to allocate to each?
- Page replacement find some page in memory, but not really in use, page it out
 - Algorithm terminate? swap out? replace the page?
 - Performance want an algorithm which will result in minimum number of page faults
- Same page may be brought into memory several times

Page Replacement

- Prevent over-allocation of memory by modifying page-fault service routine to include page replacement
- Use modify (dirty) bit to reduce overhead of page transfers only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory

Need For Page Replacement

Basic Page Replacement

- 1. Find the location of the desired page on disk
- 2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a victim frame
 - Write victim frame to disk if dirty
- 3. Bring the desired page into the (newly) free frame; update the page and frame tables
- 4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault

Page Replacement

physical memory

Page and Frame Replacement Algorithms

- Frame-allocation algorithm determines
 - How many frames to give each process
 - Which frames to replace
- Page-replacement algorithm
 - Want lowest page-fault rate on both first access and re-access
- Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string
 - String is just page numbers, not full addresses
 - Repeated access to the same page does not cause a page fault
 - Results depend on number of frames available
- In all our examples, the reference string of referenced page numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm

- Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
- 3 frames (3 pages can be in memory at a time per process)

15 page faults

- Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 - Adding more frames can cause more page faults!
 - Belady's Anomaly
- How to track ages of pages?
 - Just use a FIFO queue

FIFO Illustrating Belady's Anomaly

Optimal Algorithm

- Replace page that will not be used for longest period of time
 - 9 is optimal for the example
- How do you know this?
 - Can't read the future
- Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

- Use past knowledge rather than future
- Replace page that has not been used in the most amount of time
- Associate time of last use with each page

- 12 faults better than FIFO but worse than OPT
- Generally good algorithm and frequently used
- But how to implement?

LRU Algorithm (Cont.)

- Counter implementation
 - Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter
 - When a page needs to be changed, look at the counters to find smallest value
 - Search through table needed
- Stack implementation
 - Keep a stack of page numbers in a double link form:
 - Page referenced:
 - move it to the top
 - requires 6 pointers to be changed (for 6 virtual page)
 - But each update more expensive
 - No search for replacement
- LRU and OPT are cases of stack algorithms that don't have Belady's Anomaly

Use Of A Stack to Record Most Recent Page References

reference string

2	
1	
0	
7	
4	

stack before a

stack after b

LRU Approximation Algorithms

- LRU needs special hardware and still slow
- Reference bit
 - With each page associate a bit, initially = 0
 - When page is referenced bit set to 1
 - Replace any with reference bit = 0 (if one exists)
 - We do not know the order, however
- Second-chance algorithm
 - Generally FIFO, plus hardware-provided reference bit
 - Clock replacement
 - If page to be replaced has
 - ► Reference bit = 0 -> replace it
 - reference bit = 1 then:
 - set reference bit 0, leave page in memory
 - replace next page, subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

Allocation of Frames

- Each process needs *minimum* number of frames
 - The minimum number of frames is defined by the computer architecture
 - we must have enough frames to hold all the different pages that any single instruction can reference.
- Maximum of course is total frames in the system
- Two major allocation schemes
 - fixed allocation
 - priority allocation
- Many variations

Fixed Allocation

- Equal allocation For example, if there are 100 frames (after allocating frames for the OS) and 5 processes, give each process 20 frames
 - Keep some as free frame buffer pool
- Proportional allocation Allocate according to the size of process
 - Dynamic as degree of multiprogramming, process sizes change

$$-s_i$$
 = size of process p_i

$$-S = \sum S_i$$

-m = total number of frames

$$-a_i$$
= allocation for $p_i = \frac{s_i}{S} \times m$

$$m=64$$

 $s 1=10$
 $s_2=127$
 $a_1 = \frac{10}{137} \times 62 \approx 4$
 $a_2 = \frac{127}{137} \times 62 \approx 57$

Priority Allocation

- Use a proportional allocation scheme using priorities rather than size
- If process P_i generates a page fault,
 - select for replacement one of its frames (local replacement)
 - select for replacement a frame from a process with lower priority number (global replacement)

Global vs. Local Allocation

- Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another
 - But then process execution time can vary greatly
 - But greater throughput so more common
- Local replacement each process selects from only its own set of allocated frames
 - More consistent per-process performance
 - But possibly underutilized memory

Reclaiming Pages

- A strategy to implement global page-replacement policy
- All memory requests are satisfied from the free-frame list, rather than waiting for the list to drop to zero before we begin selecting pages for replacement,
- Page replacement is triggered when the list falls below a certain threshold.
- This strategy attempts to ensure there is always sufficient free memory to satisfy new requests.

Reclaiming Pages Example

Thrashing

- If a process does not have "enough" pages, the page-fault rate is very high
 - Page fault to get page
 - Replace existing frame
 - But quickly need replaced frame back
 - This leads to:
 - Low CPU utilization
 - Operating system thinking that it needs to increase the degree of multiprogramming
 - Another process added to the system
- **Thrashing** \equiv a process is busy swapping pages in and out

Thrashing (Cont.)

Demand Paging and Thrashing

- Why does demand paging work?
 Locality model
 - Process migrates from one locality to another
 - Localities may overlap
- Why does thrashing occur?
 Σ size of locality > total memory size
 - Limit effects by using local or priority page replacement

Locality In A Memory-Reference Pattern

Allocating Kernel Memory

- Treated differently from user memory
- Often allocated from a free-memory pool
 - Kernel requests memory for structures of varying sizes
 - As a result, the kernel must use memory conservatively and attempt to minimize waste due to fragmentation
 - Some kernel memory needs to be contiguous
 - ▶ i.e., for device I/O

End of Chapter 10

