Quantum Approximate Optimization Algorithms

Smit Chaudhary, Ignacio Fernández Graña and Luigi Pio Mastrodomenico

Delft University of Technology, The Netherlands

January 14, 2021

Outline

1 The Max-Cut problem and QAOA

2 Implementation

Chasing the amplitudes
Simulating a Quantum Computer
FakeVigo
Hardware Backend
Layer by layer optimization

3 Conclusions and future outlook

Outline

- 1 The Max-Cut problem and QAOA
- 2 Implementation
 - Chasing the amplitudes
 Simulating a Quantum Computer
 FakeVigo
 Hardware Backend
 Laver by laver optimization
- 3 Conclusions and future outlook

Combinatorial optimization problems

• Goal Minimize/maximize a given objective function C(x)

maximize
$$C(x)$$

subject to $x \in S$

Problem: Very fast growing discrete solution space → NP Hard problems

Max-Cut problem

Given a graph G(V, E), partition the set of vertices V into two sets A and B such that the number of edges being cut is maximised.

The Max-Cut problem

- Graph partition represent by a bitstring of length n
 (e.g. x = ABAB = 0101)
- Goal: maximize objective function

$$C_{jk} = \frac{1}{2}(1-(-1)^{x_j+x_k})$$

$$C(x) = \sum_{edges(jk)}^{m} C_{jk},$$

Max-Cut partition for a 4-n graph¹

¹ https://pennylane.ai/qml/demos/tutorial_qaoa_maxcut.html

QAOA for the Max-Cut

Quantum Approximate Optimization Algorithm (QAOA): A hybrid quantum-classical approximate algorithm

- Map graph partitions to states in the Hilbert space: $x = |0101\rangle$
- Encode the cost function into a Hamiltonian

$$H_C = \sum_{\langle jk \rangle} \frac{1}{2} (1 - Z_j Z_k) = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x|$$

H_B: Mixing Hamiltonian.

$$H_B = \sum_j^n \sigma_j^x = \sigma_1^x \otimes \mathbb{I}^{\otimes (n-1)} + \mathbb{I}_1 \otimes \sigma_2^x \otimes \mathbb{I}^{\otimes (n-2)} + \dots + \mathbb{I}^{n-1} \otimes \sigma_n^x$$

• Apply a set of operators to the maximal superposition state $|+\rangle^{\otimes n}$

$$\begin{aligned} U_C(\gamma_i) &= \mathrm{e}^{-i\gamma_i H_C} & U_B(\beta_i) &= \mathrm{e}^{-i\beta_i H_B} \\ |\gamma, \beta\rangle &= U_B(\beta_p) U_C(\gamma_p) \dots U_B(\beta_1) U_C(\gamma_1) |+\rangle^{\otimes n} \end{aligned}$$

$$\gamma$$
 = 0, β = 0

$$U_B U_C |\psi\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{bmatrix} \implies C = 0.5$$

$$\gamma = \pi, \beta = 0.1124$$

$$U_B U_C |\psi\rangle = U_B \begin{bmatrix} 0.5 \\ -0.5 \\ -0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.487 + 0.112i \\ -0.487 - 0.112i \\ -0.487 - 0.112i \\ 0.487 + 0.112i \end{bmatrix}$$

$$P = \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{bmatrix} \implies C = 0.5$$

$$\gamma = 1.0046, \beta = 1.1278$$

$$U_B U_C |\psi\rangle = \begin{bmatrix} 0.011 - 0.208i \\ -0.17 - 0.654i \\ -0.17 - 0.654i \\ 0.011 - 0.208i \end{bmatrix}$$

$$P = \begin{bmatrix} 0.043 \\ 0.457 \\ 0.457 \\ 0.043 \end{bmatrix} \implies C = 0.913$$

$$\gamma$$
 = -1.5708, β = 0.3927

$$U_B U_C |\psi\rangle = \begin{bmatrix} 0\\ -0.707i\\ -0.707j\\ 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 \\ 0.5 \\ 0.5 \\ 0 \end{bmatrix} \implies C = 1$$

$$\gamma$$
 = -0.6663, β = 0.5

$$U_B U_C |\psi\rangle = \begin{bmatrix} 0.010 - 0.331i \\ 0.212 - 0.588i \\ 0.212 - 0.588i \\ 0.010 - 0.331i \end{bmatrix}$$

$$P = \begin{bmatrix} 0.109 \\ 0.391 \\ 0.391 \\ 0.109 \end{bmatrix} \implies C = 0.781$$

QAOA

• $\gamma, \beta = \gamma_p, \beta_p \dots \gamma_1, \beta_1$ optimized via **classical optimization** of the average value of the cost function $F(\gamma, \beta)$

$$F(\gamma, \beta) = \langle \gamma, \beta | H | \gamma, \beta \rangle$$

• Final state $|\gamma,\beta\rangle$ is such that the solution state has a large probability of being measured

Outline

The Max-Cut problem and QAOA

2 Implementation

Chasing the amplitudes
Simulating a Quantum Computer
FakeVigo
Hardware Backend
Layer by layer optimization

3 Conclusions and future outlook

Implementation

Building U_C and U_B

- $U_C(\gamma) = \prod_{i,j}^{edges} CR_{Zi,j}(-2\gamma)R_{Zi}(\gamma)R_{Zj}(\gamma)$
 - $CR_Z(-2\gamma)$: controlled rotation around z with angle -2γ

$$CR_Z(-2\gamma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{-i2\gamma} \end{pmatrix}$$

- $Rz_i(\gamma)$: Z-rotation with angle γ :
- $U_B(\beta) = \prod_{i=1}^n R_{Xi}(2\beta)$
 - Rx: X-rotation of all the qubits with angle 2β

Implementation: Quantum Circuit scheme

Figure: Circuit for p=1 on the 3-n regular graph with the final measurement in the computational basis

Implementation

- Qiskit
- Global optimizer: Differential Evolution²

$$b' = b_0 + mutation * (population[rand0] - population[rand1])$$

• Metric of performance: approximation ratio r

$$r = \frac{C_{average}}{C_{max}}$$

²Storn, R and Price, K, Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 1997, 11, 341 - 359.

State vector simulator

Figure: 4-n regular graph

Figure: Erdos-Renyi 5 nodes

Figure: Erdos-Renyi 9 nodes

- Statevector simulator: most ideal case. Nothing quantum, just algebra!
- Not possible to implement noise
- From now on: 4-n regular graph

QASM Simulator

 With QASM we can model noise (e.g. depolarizing channel)

$$\rho \to (1 - \lambda)\rho + \lambda \frac{I}{d}$$

• Errors add up for p > 1

Towards real backend: FakeVigo

Fake Vigo simulator from Qiskit Aer

- Single and 2-qubits gate depolarizing error
- T1, T2 relaxation times of each qubit.
- Readout error

Figure: Fake Vigo error map³

³ ibmq_v igo v1.0.2, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020).

QAOA performance in FakeVigo

- Simplified noise model
- Optimal p is 1

Hardware backend

IBM Quantum Experience: Vigo

Figure: IBM Vigo qubits⁴

Figure: 4-n regular graph

- Access via cloud
- Every **evaluation** of the objective function is expensive

⁴ibmq_vigo v1.0.2, IBM Quantum team. Retrieved from https://quantum-computing.ibm.com (2020).

Layer by layer optimization

Figure: Number of calls to the objective function in standard and layer by layer optimization

- Standard optimization: for p layers all $\gamma_i\beta_i$, i=1...p were optimized \rightarrow at the same time (2pparameters)
- Layer by layer approach: only 2 parameters (γ_i, β_i) are optimized at a time
- Dimensionality of the solution space is reduced → faster convergence

Optimizing one layer at a time

Figure: Layer by layer optmization performance

- Layer by layer does not yield the optimal result
- Number of calls to the function drastically reduced

Furthermore:

 Nelder-Mead optimizer⁵: less calls than Differential Evolution

⁵Gao, F. and Han, L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. 2012. Computational Optimization and Applications. 51:1, pp. 259-277

Running on the quantum computer

- Performance in Vigo is lower than in FakeVigo
- Optimal p is 1 as expected

Fig

Figure: Starmon 5 chip⁶

Figure: Performance on Vigo and Starmon 5

 $^{^6}$ QuTech. (2018). Quantum Inspire Home. Retrieved from Quantum Inspire: https://www.quantum-inspire.com/

Outline

- The Max-Cut problem and QAOA
- 2 Implementation
 - Chasing the amplitudes
 Simulating a Quantum Computer
 FakeVigo
 Hardware Backend
 Laver by laver optimization
- 3 Conclusions and future outlook

Conclusions and future outlook

- QAOA performance limited by the current state of the Quantum Computers
- Combinatorial optimization problems very suited for Quantum Computing
- Promising for the NISQ with reduced noise levels are more qubits

Real optimization problem example (2020)

Tail assignment problem^a: Assigning individual aircraft to a given set of flights such that the overall cost is minimized and subject to many constraints.

Succes probability of 96.6% for p=2 in a 2 qubit quantum computer.

^aImproved success probability with greater circuit depth for the quantum approximate optimization algorithm. arXiv:1912.10495

Thank You!

Questions?

Code available at https://github.com/smitchaudhary/QAOA-MaxCut

