Computational Logic Circuits (Lab 5)

zyBooks & odd/even parity checker

Leonardo Fusser, 1946995

Experiment Performed on 28 February 2020 Report Submitted on 6 March 2020

TABLE OF CONTENTS

Objectives	3
,	
Design	3
Schematics	3
Ouestions	3

OBJECTIVES

- To understand the topics covered in zyBooks for this week's lab.
- To design and implement a 9-bit odd/even parity checker using XOR gates.
- Understand 74180 and 74280 chips.

DESIGN

Experiment

There were two parts in this lab. First, we asked to read from chapter 5.1 to 5.3 in our zyBooks. Then, we had to observe the output of a 9-bit parity checker using only XOR gates. We had our instructor verify our circuit. Before this was done, general research was done to determine what a parity bit, parity checker and chip was. Below outlines the work done in the lab.

SCHEMATICS

Schematics from the Experiment

The schematic for the 9-bit parity checker is on the attached paper of this report.

QUESTIONS

Questions from the Experiment

What is a parity bit?

A parity bit indicates if the number of 1s in a code is even or odd for the purpose of error detection.

What is a parity checker?

A parity checker is the process that ensures accurate data transmission between nodes during communication.

What are the functions of the 74280 chips?

This particular device can be used to check for odd or even parity on a 9-bit code (eight data bits and one parity bit), or it can be used to generate a parity bit for a binary code with up to nine bits. The inputs are A through I; when there is an even number of 1s on the inputs, the Σ Even output is HIGH and the Σ Odd output is LOW.

Number of Inputs	Outputs	
A–I that Are High	Σ Even	ΣOdd
0, 2, 4, 6, 8	Н	L
1, 3, 5, 7, 9	L	Н

(b) Function table

Source: Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, 2015.