ELEC 221 Lecture 24 The Laplace transform and feedback systems; introducing the *z*-transform

Thursday 1 December 2022

olivia @ece.ubc.ca

- Midterms available for pickup
- Assignment 6 (computational) due tonight at 23:59 submit via e-mail, but still fill out contributions on PL
- Assignment 7 available, due Tuesday at 23:59

Last time

We explored various properties of the Laplace transform.

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

Section	Property	Signal	Laplace Transform	ROC
		$x(t)$ $x_1(t)$	$X(s)$ $X_1(s)$	R R ₁
		$x_1(t)$ $x_2(t)$	$X_2(s)$	R_2
9.5.1	Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
9.5.2	Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
9.5.3	Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)
9.5.5	Conjugation	$x^*(t)$	$X^*(s^*)$	R
9.5.6	Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R

Image credit: Oppenheim 9.5

Last time

We used the ROC to reason about the stability and causality of systems with rational Laplace transforms.

Last time

We saw how to compute H(s) for systems described by linear constant-coefficient ODEs.

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dtk} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dtk}$$

$$H(s) = \frac{Y(s)}{X(s)} = -\sum_{k=0}^{M} \frac{b_k s^k}{a_k s^k}$$

Today

Learning outcomes:

- compute system functions for feedback systems
- use the Laplace transform to design an inverse system
- define the z-transform and compute it and its ROC for basic signals

Feedback systems

An important application of Laplace transforms is the analysis of **feedback systems**.

Some important applications of feedback include:

- reducing sensitivity to disturbance and errors
- stabilizing unstable systems
- designing tracking systems

Feedback systems

An important application of Laplace transforms is the analysis of **feedback systems**.

- H(s) is the system function of the forward path
- = G(s) is the system function of the feedback path
- the combined function Q(s) is the closed-loop system function

Try it: compute Q(s) in terms of H(s) and G(s).

Feedback systems

Solution: from the convolution property, know that

$$Q(s) = \frac{Y(s)}{X(s)}$$

From the diagram, find that

$$Y(s) = E(s) H(s)$$

$$E(s) = \chi(s) - R(s) = \chi(s) - G(s) Y(s)$$

Image credit: Oppenheim 11.1

Application of feedback: constructing inverse systems

Suppose we have some LTI system

$$\times (t) \longrightarrow P(s) \longrightarrow y(t)$$

Let's use it as part of a larger system:

where the transfer function K is simply gain of strength K.

Exercise: What is Q(s), and under what conditions can it act as the inverse of P(s)?

Application of feedback: constructing inverse systems

Solution: we can directly apply the expression for the closed-loop system function here

$$Q(s) = \frac{K}{1 + K P(s)} \approx \frac{K}{K \cdot P(s)} = \frac{1}{P(s)}$$

Application of feedback: stabilizing an unstable system

Consider a system described by the first order DE

$$\frac{dy(t)}{dt} - ay(t) = bx(t)$$

Exercise: compute the system function and draw the ROC. Under what conditions is it stable?

$$H(s) = \frac{b}{s-a}$$
1
H(s) pole at a

Application of feedback: stabilizing an unstable system

Suppose we have this setup (a > 0):

How can we make it stable?

Application of feedback: stabilizing an unstable system [

Show that the following system will move the pole (under certain , system described conditions on K): $Q(s) = \frac{H(s)}{1+KH(s)}$ s-plane = (s-a)(1+K· b-a)

S-a+kb S-(a-kb)

Called a *proportional feedback system* since feeding back in a rescaled version of the output.

CT

Fourier series
coefficients

$$C_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$$

Fourier transform (spectrum)

$$X(j\omega) = \int_{-\infty}^{\infty} X(t) e^{-j\omega t} dt$$

Laplace transform $X(s) = \int_{-\infty}^{\infty} X(t)e^{-st} dt$

DT

Fourier series
coefficients
$$-jk\frac{2\pi n}{N}$$

 $Ck = \frac{1}{N}\sum_{n=\langle n \rangle} x[n]e^{-jk\frac{2\pi n}{N}}$

Fourier transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Z-transform
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

Consider a DT complex exponential signal

$$x[n] = e^{j\omega n} = (e^{j\omega})^n = z^n$$

If we put this in a system with impulse response h[n], obtain

$$y[n] = h[n] * x[n] = H(2) \cdot x[n]$$

where

$$H(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n}$$

- $z = e^{j\omega}$: discrete-time Fourier transform
- $z = re^{j\omega}$: z-transform

For a general signal x[n],

$$\chi(z) = \sum_{n=-\infty}^{\infty} \chi(n) z^{-n}$$

Just like in CT, this can be expressed with a DTFT involving x[n]:

$$X(re^{jw}) = \sum_{n=-\infty}^{\infty} x(n) (re^{jw})^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-jwn}$$

$$= F(x(n) r^{-n})$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Exercise: compute the z-transform of

$$x[n] = a^n u[n]$$

For what values of z does it converge?

$$\frac{1}{1-\frac{a}{2}}$$
 $|z|>|a|$

Exercise: compute the z-transform of

$$x[n] = a^n u[n]$$

For what values of z does it converge?

$$\chi(z) = \sum_{n=-\infty}^{\infty} \chi[n] z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} \alpha^n u[n] z^{-n}$$

$$= \sum_{n=0}^{\infty} \alpha^n z^{-n} = \sum_{n=\infty}^{\infty} (\alpha z^{-i})^n$$

$$= \frac{1}{1-\alpha z^{-i}}$$

Must be the case that $|\alpha z^{\prime}| < 1$, or |z| > 1

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Exercise: compute the z-transform of

$$x[n] = -a^n u[-n-1]$$

For what values of z does it converge?

Exercise: compute the z-transform of

$$x[n] = -a^n u[-n-1]$$

For what values of z does it converge?

$$X(z) = \sum_{n=-\infty}^{\infty} -\alpha^{n} u[-n-1] z^{n}$$

$$= -\sum_{n=-\infty}^{\infty} \alpha^{n} z^{-n}$$

$$= -\sum_{n=0}^{\infty} \alpha^{-n} z^{n} = 1 -\sum_{n=0}^{\infty} (\alpha^{-1} z)^{n}$$

Must have \a \(\(\frac{1}{2} \) < 1, or \(\frac{1}{2} \) \(\frac{1}{4} \) Then can write

$$\chi(z) = 1 - \frac{1}{1 - a^{-1}z} = \frac{1 - a^{-1}z - 1}{1 - a^{-1}z} = \frac{-a^{-1}z}{1 - a^{-1}z} = \frac{z}{a^{-1}(a - z)} = \frac{z}{z - a}$$
 [2(<|a/

To represent the ROC of the z-transform, we will use the z-plane and pole-zero plots: $7 = 10^{10}$

Unit circle $z=e^{j\omega}$ (|z|=1) corresponds to the DTFT case (like the vertical axis $s=j\omega$ for CT).

Exercise: compute the z-transform for

$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$

and sketch the pole-zero plot of its ROC.

Exercise: compute the z-transform for

$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$

$$= -\frac{3}{2}$$
and sketch the pole zero plot of its POC

and sketch the pole-zero plot of its ROC.

$$X(z) = \frac{x}{1 - \frac{1}{3}z^{-1}} - \frac{6}{1 - \frac{1}{2}z^{-1}}$$

$$= \frac{7^{-\frac{7}{2}}z^{-1} - 6 + 2z^{-1}}{(1 - \frac{1}{3}z^{-1})(1 - \frac{1}{2}z^{-1})}$$

$$= \frac{1 - \frac{3}{2}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{2}z^{-1})}$$

z-plane

ROC of the *z*-transform has many properties:

- if ROC doesn't contain unit circle, DTFT doesn't converge
- it is a ring in the z-plane centred around origin (for $z=re^{j\omega}$, does not depend on ω , only r)
- it does not contain any poles

If a signal x[n] is of finite duration, its ROC is the entire z-plane except possibly z=0 and/or $z=\infty$.

Exercise: compute the z-transform and ROC of

- 1. $z[n] = \delta[n]$
- 2. $z[n] = \delta[n-1]$
- 3. $z[n] = \delta[n+1]$

If a signal x[n] is of finite duration, its ROC is the entire z-plane except possibly z=0 and/or $z=\infty$.

Exercise: compute the z-transform and ROC of

1.
$$z[n] = \delta[n]$$

2.
$$z[n] = \delta[n-1]$$

3.
$$z[n] = \delta[n+1]$$

$$S[n] \cdot \chi(z) = \sum_{n=-\infty}^{\infty} S[n] z^{-n} = 1$$

$$S[n-1] : \chi(z) = \sum_{n=-\infty}^{\infty} S[n-1] z^{-n} = z^{-1}$$

$$S[n+1] : \chi(z) = z$$

Right-sided signal: X(z) has the form

$$X(z) = \sum_{n=N_1}^{\infty} x[n]z^{-n}$$

This may or may not include ∞ depending on the structure of the signal (in particular, if $N_1 < 0$, terms will become unbounded).

If $|z| = r_0$ is in the ROC for right-sided signal, then so are all *finite* z where $|z| > r_0$.

Similar argument for left-sided signals and the zero point.

We stopped here to day

Image credit: Oppenheim 10.2

Exercise: how many signals could have produced the z-transform

$$X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})}$$

Draw the pole-zero plot and determine the possible ROCs.

Hint: this function has 2 zeros; express it in a different way to find them.

Exercise: how many signals could have produced the z-transform

$$X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})}$$

Solution:

When the z-transform can be expressed as a rational function, we can compute the inverse using partial fractions. We still need the ROC to help us.

Exercise: compute the inverse z-transform of

$$X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})}$$

if ROC is specified to be |z| > 2.

Exercise: compute the inverse z-transform of

$$X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})}$$

if ROC is specified to be |z| > 2.

Use partial fractions:

$$X(z) = \frac{A}{1 - \frac{1}{3}z^{-1}} + \frac{B}{1 - 2z^{-}}$$
$$= \frac{-1/5}{1 - \frac{1}{3}z^{-1}} + \frac{2/5}{1 - 2z^{-}}$$

From ROC, signal is right-sided:

$$\times[n] = -\frac{1}{5} \left(\frac{1}{3}\right)^n u[n] + \frac{2}{5} 2^n u[n]$$

Take a closer look at the structure of X(z):

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

This is a *power series in z*. If we can do the expansion, we can recover x[n] from the coefficients.

Exercise 1: what is the inverse z-transform of

$$X(z) = 3z^2 - 1 + 2z^{-3}, \quad 0 < |z| < \infty$$

Solution:

$$\times[n] = 3\delta[n+2] - \delta[n] + 2\delta[n-3]$$

Particularly helpful for non-linear cases.

Exercise 2 (Oppenheim 10.63a): what is the inverse z-transform of

$$X(z) = \log(1-2z), \quad |z| < \frac{1}{2}$$

Hint:

$$\log(1-w) = -\sum_{i=1}^{\infty} \frac{w^i}{i}, \ |w| < 1$$

Solution:

$$X(z) = \log(1 - 2z) = -\sum_{i=1}^{\infty} \frac{(2z)^i}{i} = -\sum_{n=-\infty}^{-1} \frac{2^{-n}}{-n} z^{-n}$$

$$x[n] = \begin{cases} \frac{2^{-n}}{n} & n \le -1 \\ 0 & n > -1 \end{cases} = \frac{2^{-n}}{n} u[-n-1]$$

Today

Learning outcomes:

- compute system functions for feedback systems
- use the Laplace transform to design an inverse system
- define the z-transform and compute it and its ROC for basic signals

Oppenheim practice problems: 9.48, 11.1-11.4, 10.1-10.8, 10.21-10.23, 10.26

For next time

Content:

- more properties of *z*-transforms
- systems described by difference equations
- z-transforms and feedback system analysis

Action items:

- 1. Assignment 6 due tonight at 23:59
- 2. Assignment 7 due Tuesday at 23:59

Recommended reading:

- From this class: Oppenheim 9.7, 11.0-11.2, 10.1-10.3
- For next class: 10.5-10.7, 11.2