1. IP 简介

本 IP 实现数字滤波器,适用于 Xilinx 器件,滤波系数可外部配置,滤波器阶数、系数对称性、数据占空比均可参数设置,在不同应用场景下自动调整 DSP 资源,接口简单,通用性强。

2. 性能指标

2.1 IP 特性

- 1. 滤波器系数可更新;
- 2. 滤波器阶数、系数对称性、数据输入占空比均参数化,根据参数配置生成计算结构和资源复用;
- 3. 目前仅支持 Xilinx 器件;
- 4. 通用功能,无插值、抽取功能。

2.2 资源

DSP 使用公式:						
N 阶,系数不对称,	N 个 DSP48					
2×N+1 阶, 系数对称, 数据连续输入:			N 个 DSP48			
N 阶, 系数不对称, 输入数据占空比为 M:			round(N/M)+1 个 DSP48			
2×N+1 阶, 系数对称, 输入数据占空比为 M:			• • •			
场合: Kirtex7-325T, 16 位输入数据位宽, 96 阶, 系数不对称, 输入数据连续						
模块	LUT	Reg	DSP	BRAM		
com_filter	10	3150	96	0		
场合: Kirtex7-325T, 16 位输入数据位宽, 2*96+1 阶, 系数对称, 输入数据连续						
模块	LUT	Reg	DSP	BRAM		
com_filter	510	4200	96	0		
场合: Kirtex7-325T, 16 位输入数据位宽, 96 阶, 系数不对称, 输入数据占空比						
为 2						
模块	LUT	Reg	DSP	BRAM		
com_filter	2000	7300	49	0		
场合: Kirtex7-325T, 16 位输入数据位宽, 96*2+1 阶, 系数对称, 输入数据占空						
比为 2						
模块	LUT	Reg	DSP	BRAM		
com_filter	3150	13000	49	0.5		

3.2 时序

编码已充分利用 DSP 自带寄存器,逻辑资源宽松时可达到 DSP 最大频率,逻辑资源紧张时,需具体分析时序报告,由于 DSP 位置固定,可在 DSP 间适当增加

寄存器,并在约束中固定最佳位置。

3. 功能描述

3.1 设计思路

数字滤波器实现公式为:

$$y(n) = \sum_{1}^{N} x(n) \cdot h(n)$$

其中,y(n)为滤波器输出,x(n)为滤波器输入,h(n)为滤波系数。

滤波器系数通常为奇数,以满足低通特性;对称排布,以保证相位线性。某些应用中也使用偶数阶和非对称系数,本 IP 支持奇数、偶数阶非对称,以及奇数阶对称格式。

对于奇数阶、对称的系数,可将上述公式等效为:

$$y(n) = x(N/2+1) \cdot h(N/2+1) + \sum_{1}^{N/2} (x(n) + x(N+1-n)) \cdot h(n)$$

Xilinx FPGA 的计算单元为 DSP48,包含 A、B、C、D 4 个输入,由预加器、乘法器、累加器 3 层运算单元构成,不同器件的输入数据位宽和配置稍有区别。

实现时,应充分利用乘法器和累加器,对于对称系数,还需使用预加器,保证各系数与输入数据分别相乘,按流水线累加输出。

对于以一定占空比输入的数据,一个输入数据周期包含多个时钟周期,可分时复用 DSP 资源。

3.2 功能结构

如下图 3-1—3-4 所示,同一时间每个 DSP 都在运算,输入数据运算上连续,DSP 输出呈流水结构,前级运算结果累加至后级,通过延迟器对齐时序。对于多周期输入的数据,通过分段式 RAM 来排序输入数据,复用 DSP 资源。

3-1 数据连续输入,非对称系数

3-2 数据连续输入,对称系数

3-3 数据多周期输入,非对称系数

3-4 数据多周期输入,对称系数

4. 参数及接口

表 4-1 全局参数表

- 大寸工工/引夕	_		
名称	说明		
C_XILINX_DEVICE	Xilinx 器件		
	"spartan6": spartan6 器件		
	"virtex6": virtex6、7series 器件		
C_DWIDTH	输入数据位宽		
	注: 位宽不超过 DSP48 的乘法器输入端口宽度		
C_CWIDTH	系数位宽		
	注: 位宽不超过 DSP48 的乘法器输入端口宽度		
C_CNUM	滤波器阶数		
	非对称系数时,滤波器阶数为 C_CNUM		
	对称系数时,滤波器阶数为 C_CNUM×2+1		
	注:对称系数,偶数阶暂不支持		
C_SYMMETRY	滤波器系数格式		
	1: 对称系数		
	0: 非对称系数		
C_CYCLE_NUM	数据输入格式		
	1: 数据连续输入		
	N: 每 N 个时钟周期数据输入一次,占空比为 1/N		
	注: 非 0 正整数		
C_OUT_UPPBIT	输出数据最高有效位		
	DSP48 输出为 48 位,输入数据位宽、滤波器系数位宽、		

滤波器阶数共同决定了数据有效范围,用户根据上述参数 计算好范围后,将最高有效位设置,截取此位后 C_DWIDTH长度作为输出 注:不小于C_DWIDTH

表 4-2 接口表

名称	位宽	方向	说明
I_clk	1	输入	时钟
I_rst	1	输入	同步复位,高有效
I_data	参数设置	输入	输入数据
I_data_v	1	输入	输入数据有效指示,高有效
I_coef	参数设置	输入	滤波器系数
			需要连续输入
I_coef_v	1	输入	滤波器系数有效指示,高有效
O_data	参数设置	输出	输出数据
O_data_v	1	输出	输出数据有效指示,高有效

5. 约束

无

6. 仿真

图 6-1 所示为占空比为 1/4、非对称系数下滤波器仿真波形,图 6-2 所示为数据连续输入、对称系数下滤波器仿真波形。

图 6-1 占空比为 1/4、非对称系数仿真示意图

图 6-2 数据连续输入、对称系数仿真示意图