

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

Держапольский Юрий Витальевич

МОДЕЛИРОВАНИЕ ТРОФИЧЕСКИХ СЕТЕЙ (Особенности динамики видов в трофических цепях)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по образовательной программе подготовки бакалавров по направлению 01.03.02 «Прикладная математика и информатика»

г. Владивосток

	Автор работы		
	«»		
	Консультант (если имеется)		
	(Ф.И.О.) (подпись) 2025 г.		
	Руководитель ВКР проф. д.фм.н.	ie)	
Защищена с оценкой:	<u> Абакумов А. И.</u> (подпись)		
Секретарь	«»2025 г.		
(Ф.И.О.) (подпись) « 2025 г.	$\frac{4}{(\Phi.H.O.)} {(no\partial nucb)}$		

Оглавление

1			4	
2			5	
3	Ана	лиз мо,	делей	8
	3.1	Незам	кнутая трофическая цепь	8
		3.1.1	Равновесные состояния	8
		3.1.2	Условия существования цепи фиксированной длины	11
3.2 Замкнутая трофическая цепь			утая трофическая цепь	14
		3.2.1	Равновесные состояния	14
		3.2.2	Условия существования цепи фиксированной длины	17
4 Заключение		20		
5	Спи	ісок ли	тературы	21

1. Введение

Есть такие структуры сообществ с переносом энергии, которые называются трофическими цепями. Незамкнутые и замкнутые. Энергия лимитируется каким-то фактором.

Исследуется поведение трофической цепи при изменении лимитирующего фактора. Обычная устойчивость и знак-устойчивость.

2. Математические модели

«Ресурс» в реальных экосистемах можно разделить на два вида:

- Энергия, например, солнечный свет. Тогда экосистема с данным ресурсом является незамкнутой, и энергия «протекает» через систему, в ходе этого рассеиваясь в виде тепла.
- Биологические вещества, например, углерод, азот, фосфор. В этом случае экосистема является замкнутой по отношению к ресурсам. Достигается это деятельностью так называемых «разлагателей», которые разлагают мёртвую органику до необходимых минеральных компонентов, необходимых первичным уровням трофической цепи.

Соответственно будем рассматривать два типа трофической цепей: незамкнутые («проточные») и замкнутые («циклы»).

Рост и развитие экосистем во многих системах лимитируется каким-либо фактором (*принцип Либаха*). Опять же, например, солнечный свет — это невозобновимый ресурс и цепь является незамкнутой, а химические вещества за счёт разлагателей снова вовлекаются в деятельность замкнутой экосистемы.

Рис. 1: Описание

а) Незамкнутая цепь:

$$\frac{dR}{dt} = Q - V_0(R)N_1,
\frac{dN_1}{dt} = -m_1N_1 + k_1V_0(R)N_1 - V_1(N_1)N_2,
\dots
\frac{dN_i}{dt} = -m_iN_i + k_iV_{i-1}(N_{i-1})N_i - V_i(N_i)N_{i+1}, \quad i = \overline{2, n-1},
\dots
\frac{dN_n}{dt} = -m_nN_n + k_nV_{n-1}(N_{n-1})N_n.$$
(1)

б) Замкнутая цепь:

$$\frac{dR}{dt} = Q - V_0(R)N_1 + \sum_{i=1}^n a_i m_i N_i,
\frac{dN_1}{dt} = -m_1 N_1 + k_1 V_0(R) N_1 - V_1(N_1) N_2,
\dots
\frac{dN_i}{dt} = -m_i N_i + k_i V_{i-1}(N_{i-1}) N_i - V_i(N_i) N_{i+1}, \quad i = \overline{2, n-1},
\dots
\frac{dN_n}{dt} = -m_n N_n + k_n V_{n-1}(N_{n-1}) N_n.$$
(2)

По биологическому смыслу параметры k_i и a_i удовлетворяют ограничениям $0 \le k_i, a_i \le 1.$

Если считать, что ни один вид не имеет в избытке трофического ресурса, т.е. трофические связи «напряжены», то в этом случае

$$V_0(R) = \alpha_0 R, \quad V_i(N_i) = \alpha_i N_i \quad (i = \overline{1, n})$$
(3)

и уравнения (1) и (2) переходят в уравнения вольтерровского типа, за исключением первых уравнений, содержащих слагаемое Q. Тогда, формально полагая $R \equiv N_0$ и $N_{n+1} \equiv 0$, получим две системы, которые описывают динамику двух трофических цепей.

а) Незамкнутая цепь:

$$\frac{dN_0}{dt} = Q - \alpha_0 N_0 N_1,
\frac{dN_i}{dt} = N_i (-m_i + k_i \alpha_{i-1} N_{i-1} - \alpha_i N_{i+1}), \quad i = \overline{1, n}.$$
(4)

б) Замкнутая цепь:

$$\frac{dN_0}{dt} = Q - \alpha_0 N_0 N_1 + \sum_{i=1}^n a_i m_i N_i,
\frac{dN_i}{dt} = N_i (-m_i + k_i \alpha_{i-1} N_{i-1} - \alpha_i N_{i+1}), \quad i = \overline{1, n}.$$
(5)

Исследуем равновесия и их устойчивость при изменении параметра Q.

3. Анализ моделей

3.1. Незамкнутая трофическая цепь

3.1.1. Равновесные состояния

Поскольку единственное положительное слагаемое, которое описывает вносимое количество биомассы, в каждой строке зависит от количества биомассы предыдущего вида, то можно сделать вывод, что если в каком-то состоянии равновесия будет вид с нулевой биомассой, то и все последующие виды так же окажутся вымершими.

Поэтому в системе (4) при Q>0 могут существовать n равновесных состояний типа $\left[N_0,N_1,\dots,N_q,0,\dots,0\right]$, которые можно определить из уравнений

$$\frac{dN}{dt} = 0 \Rightarrow \begin{cases}
N_1 = \frac{Q}{\alpha_0 N_0}, \\
\alpha_i N_{i+1} = k_i \alpha_{i-1} N_{i-1} - m_i, \quad i = \overline{1, q}
\end{cases}$$
(6)

Из условия $N_{q+1}=0$ вытекает, что

$$N_{q-1} = \frac{m_q}{\alpha_{q-1}k_q}. (7)$$

Отметим, что в уравнениях (6) есть связь только между (i+1) и (i-1) уравнениями (кроме 0 и 1), поэтому формулы вычисления будут зависеть от чётности q.

Введём обозначения:

$$g_{i} = \frac{k_{i}\alpha_{i-1}}{\alpha_{i}}, \quad \mu_{i} = \frac{m_{i}}{\alpha_{i}}, \quad H_{2s-1} = g_{1}g_{3}\cdots g_{2s-1}, \quad H_{2s} = g_{2}g_{4}\cdots g_{2s},$$

$$f_{2s-1} = \frac{\mu_{1}}{H_{1}} + \frac{\mu_{3}}{H_{3}} + \cdots + \frac{\mu_{2s-1}}{H_{2s-1}}, \quad f_{2s} = \frac{\mu_{2}}{H_{2}} + \frac{\mu_{4}}{H_{4}} + \cdots + \frac{\mu_{2s}}{H_{2s}}.$$

$$(8)$$

Последовательно выражая значения N_i имеем

$$N_{i} = \frac{k_{i-1}\alpha_{i-2}}{\alpha_{i-1}}N_{i-2} - \frac{m_{i-1}}{\alpha_{i-1}} = g_{i-1}N_{i-2} - \mu_{i-1} =$$

$$= g_{i-1}(g_{i-3}N_{i-4} - \mu_{i-3}) - \mu_{i-1} = g_{i-1}g_{i-3}N_{i-4} - g_{i-1}\mu_{i-3} - \mu_{i-1} = \dots;$$

Пусть i=2s, тогда

$$N_{2s} = (g_{2s-1}g_{2s-3}\cdots g_1)N_0 - (g_{2s-1}\cdots g_3)\mu_1 - (g_{2s-1}\cdots g_5)\mu_3 - \cdots - g_{2s-1}\mu_{2s-3} - \mu_{2s-1} = g_{2s-1}\cdots g_1\left(N_0 - \frac{\mu_1}{g_1} - \cdots - \frac{\mu_{2s-1}}{g_1\cdots g_{2s-1}}\right) = (9)$$

$$= H_{2s-1}\left(N_0 - \frac{\mu_1}{H_1} - \cdots - \frac{\mu_{2s-1}}{H_{2s-1}}\right) = H_{2s-1}\left(N_0 - f_{2s-1}\right).$$

Аналогично получаются значения при i = 2s + 1:

$$N_{2s+1} = H_{2s}(N_1 - f_{2s}). (10)$$

3десь $s = 1, 2, \dots$

Для вычисления всех значений не хватает формулы для N_0 или N_1 . Отдельно рассмотрим два случая чётности.

1. Пусть q = 2s -чётное. Тогда

$$N_{q-1} = N_{2s-1} = \frac{m_{2s}}{\alpha_{2s-1}k_{2s}} \frac{\alpha_{2s}}{\alpha_{2s}} = \frac{\mu_{2s}}{g_{2s}}, \quad N_{2s-1} = H_{2s-2}(N_1 - f_{2s-2}).$$

Откуда получаем

$$N_1 = \frac{\mu_{2s}}{g_{2s}H_{2s-2}} + f_{2s-2} = \frac{\mu_{2s}}{H_{2s}} + f_{2s-2} = f_{2s}.$$

Используя первое уравнение в (6), будем иметь

$$N_0 = \frac{Q}{\alpha_0 N_1} = \frac{Q}{\alpha_0 f_{2s}}.$$

2. Пусть q=2s+1 – нечётное. Аналогично предыдущему получаем

$$N_{q-1} = N_{2s} = \frac{m_{2s+1}}{\alpha_{2s}k_{2s+1}} \frac{\alpha_{2s+1}}{\alpha_{2s+1}} = \frac{\mu_{2s+1}}{g_{2s+1}}, \quad N_{2s} = H_{2s-1}(N_0 - f_{2s-1}).$$

откуда

$$N_0 = \frac{\mu_{2s+1}}{g_{2s+1}H_{2s-1}} + f_{2s-1} = f_{2s+1}, \quad N_1 = \frac{Q}{\alpha_0 f_{2s+1}}.$$

Теперь легко можно получить явные выражения N_i , подставив N_0 и N_1 в (9) и (10).

Очевидно, что стационарные значения численностей N_i имеют смысл, только когда они положительные.

Утверждение 1. Если в **незамкнутой** трофической цепи длины q численность $N_q>0$, то $N_i>0$ $(i=\overline{1,q-1})$.

Доказательство. Для начала заметим, что f_{2s} и f_{2s+1} положительны и монотонно возрастают с увеличением s. Величины N_0 и N_1 также положительны и зависят от параметра q — длины трофической цепи. Поскольку все параметры положительные, то численность $N_{q-1}>0$.

Из условия $N_q>0$ и (9, 10) получим неравенство

$$Q > \alpha_0 f_{q-1} f_q \tag{11}$$

Предположим противное: $\exists p < q : N_p \leq 0$. Возможны 4 варианта: p и q одинаковой чётности и разной чётности.

1. Пусть
$$q=2s$$
 и $N_0=rac{Q}{lpha_0f_{2s}}, N_1=f_{2s}.$

(a) $p=2u\,(u< s)$, тогда из (9) следует, что $N_p=N_{2u}\leq 0$, если $N_0\leq f_{2u-1}$. Значит $Q\leq \alpha_0 f_{2u-1} f_{2s}$. Сравнивая с (11) получаем

$$\alpha_0 f_{2s-1} f_{2s} < Q \le \alpha_0 f_{2u-1} f_{2s} \Rightarrow f_{2s-1} < f_{2u-1}.$$

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

- (b) p=2u+1 (2u<2s-1), тогда из (10) следует, что $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $f_{2s}\leq f_{2u}$. Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.
- 2. Пусть q=2s+1 и $N_0=f_{2s+1}, N_1=rac{Q}{lpha_0 f_{2s+1}}.$
 - (a) $p=2u\,(2u-1<2s)$, тогда $N_p=N_{2u}\leq 0$ при $N_0\leq f_{2u-1}$. Значит $f_{2s+1}< f_{2u-1}$.

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

(b) p=2u+1 (u< s), тогда $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $Q\leq \alpha f_{2u}f_{2s+1}$. Сравнивая с (11) получаем

$$\alpha_0 f_{2s} f_{2s+1} < Q \le \alpha f_{2u} f_{2s+1} \Rightarrow f_{2s} < f_{2u}.$$

Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.

Следствие 1.1. Из (11) следует, что если длина трофической цепи равна q, то скорость поступления ресурса Q должна превосходить критическое значение

$$Q^*(q) = \alpha_0 f_{q-1} f_q.$$

3.1.2. Условия существования цепи фиксированной длины

Для определения устойчивости равновесного состояния трофической цепи длины $q: N^* = [N_0, N_1, \dots, N_q, 0, \dots, 0]$ будем исследовать собственные значения матрицы системы (4), линеаризованной в окрестности этого состояния.

Найдём матрицу якоби этой системы и подставим равновесную точку: $\frac{\partial f}{\partial N}\bigg|_{N^*}$ (f – правая часть системы). Получим матрицу

$$J = \begin{vmatrix} A_q & 0 \\ 0 & D_{n-q} \end{vmatrix}, \tag{12}$$

где $D_{n-q}={
m diag}\left\{-m_{q+1}+k_{q+1}\alpha_qN_q,-m_{q+2},\dots,-m_n
ight\}$ и A_q матрица вида:

$$A_{q} = \begin{vmatrix} -b_{0} & -d_{0} & 0 \\ b_{1} & -h_{1} & -d_{1} \\ & \ddots & \ddots & \ddots \\ & b_{q-1} & -h_{q-1} & -d_{q-1} \\ 0 & b_{q} & -h_{q} \end{vmatrix}$$

$$(13)$$

В нашем случае

$$b_{0} = \alpha_{0} N_{1}, \quad d_{0} = \alpha_{0},$$

$$b_{i} = k_{i} \alpha_{i-1} N_{i}, \quad d_{i} = \alpha_{i} N_{i}, \quad h_{i} = 0, \quad i = \overline{1, q}.$$
(14)

Значение h_i следует из уравнений (6).

Собственные значения J равны

$$\lambda_{i} = \begin{cases} \lambda_{i}(A_{q}), & i = \overline{1, q}, \\ k_{q+1}\alpha_{q}N_{q} - m_{q+1}, & i = q+1, \\ -m_{i}, & i = \overline{q+2, n}. \end{cases}$$

$$(15)$$

Очевидно, что при $i=\overline{q+2,n}$ выполняется условие $\lambda=-m_i<0$. Для λ_{q+1} все переменные положительные и достаточно выполнения неравенства

$$N_q < \frac{m_{q+1}}{\alpha_q k_{q+1}}. (16)$$

Это условие становится излишним, при q=n, поскольку тогда устойчивость определяется собственными значениями матрицы A_q .

Для определения устойчивости матрицы A_q воспользуемся достаточными условиями знак-устойчивости.

(Ссылка/Подробнее?) Нужно доказательство самой знак-устойчивости ...

Таким образом матрица A_q удовлетворяет достаточным условием знакустойчивости и поэтому устойчива при любых значениях заданных параметров. А это значит, что равновесие N^* асимптотически устойчиво.

Находя явное значение N_q для чётного и нечётного q и используя (16) получим:

1. При q = 2s:

$$N_{2s} = H_{2s-1} \left(\frac{Q}{\alpha_0 f_{2s}} - f_{2s-1} \right) < \frac{m_{2s+1}}{\alpha_{2s} k_{2s+1}} \Rightarrow$$

$$\Rightarrow \frac{Q}{\alpha_0 f_{2s}} - f_{2s-1} < \frac{m_{2s+1}}{\alpha_{2s} k_{2s+1}} \frac{\alpha_{2s+1}}{\alpha_{2s+1}} \frac{1}{H_{2s-1}} = \frac{\mu_{2s+1}}{g_{2s+1} H_{2s-1}} = \frac{\mu_{2s+1}}{H_{2s+1}} \Rightarrow (17)$$

$$Q < \alpha_0 f_{2s} \left(f_{2s-1} + \frac{\mu_{2s+1}}{H_{2s+1}} \right) = \alpha_0 f_{2s} f_{2s+1},$$

2. При q = 2s + 1:

$$N_{2s+1} = H_{2s} \left(\frac{Q}{\alpha_0 f_{2s+1}} - f_{2s+1} \right) < \frac{m_{2s+2}}{\alpha_{2s+1} k_{2s+2}} \Rightarrow$$

$$\Rightarrow \frac{Q}{\alpha_0 f_{2s+1}} - f_{2s} < \frac{m_{2s+2}}{\alpha_{2s+1} k_{2s+2}} \frac{\alpha_{2s+2}}{\alpha_{2s+2}} \frac{1}{H_{2s}} = \frac{\mu_{2s+2}}{g_{2s+2} H_{2s}} = \frac{\mu_{2s+2}}{H_{2s+2}} \Rightarrow (18)$$

$$Q < \alpha_0 f_{2s+1} \left(f_{2s} + \frac{\mu_{2s+2}}{H_{2s+2}} \right) = \alpha_0 f_{2s+1} f_{2s+2},$$

объединяя получим

$$Q < \alpha_0 f_q f_{q+1} = Q^*(q+1). \tag{19}$$

Следствие 1.2. Необходимым и достаточным условием существования устойчивой незамкнутой трофической цепи длины q является ограничение (сверху и снизу) скорости поступления внешнего ресурса в экосистему:

$$Q^*(q) < Q < Q^*(q+1). (20)$$

.

3.2. Замкнутая трофическая цепь

3.2.1. Равновесные состояния

Аналогично незамкнутой системе, в системе с частичным восстановлением ресурса (5) при Q>0 могут существовать n равновесных состояний типа $\left[N_0,N_1,\ldots,N_q,0,\ldots,0\right]$, которые могут быть найдены из уравнений

$$\frac{dN}{dt} = 0 \Rightarrow \begin{cases}
Q + \sum_{i=1}^{q} a_i m_i N_i = \alpha_0 N_0 N_1, \\
\alpha_i N_{i+1} = k_i \alpha_{i-1} N_{i-1} - m_i, \quad i = \overline{1, q}
\end{cases}$$
(21)

Поскольку связь N_{i-1} и N_{i+1} точно такая же, что и у незамкнутой модели, то значения N_i также могут быть определены по формулам (9, 10). Остаётся найти явные выражения для N_0 и N_1 .

Используем обозначения (8) и введём новые:

$$\varphi_{s} = \sum_{j=1}^{s} a_{2j} m_{2j} H_{2s-1}, \quad \psi_{s} = \sum_{j=1}^{s} a_{2j-1} m_{2j-1} H_{2s-2},$$

$$\sigma_{i} = \sum_{j=1}^{s} a_{j} m_{j} f_{j-1} H_{j-1} \quad (H_{0} = 1, f_{0} = 0).$$
(22)

1. Пусть q=2s – че́тное. Тогда аналогично шагам для незамкнутой цепи получаем $N_1=f_{2s}$. Используя первое уравнение в (21), будем иметь

$$\begin{split} Q + \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2}(N_1 - f_{2i-2}) + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(N_0 - f_{2i-1}) &= \alpha_0 N_0 N_1, \\ Q + \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2}(f_{2s} - f_{2i-2}) &= \alpha_0 N_0 N_1 - \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(N_0 - f_{2i-1}), \\ Q + f_{2s} \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2} - \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2} f_{2i-2} &= \\ &= N_0 \left(\alpha_0 f_{2s} - \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} \right) + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} f_{2i-1}, \\ Q + f_{2s} \psi_s - \sigma_{2s} &= N_0 \left(\alpha_0 f_{2s} - \varphi_s \right), \\ N_0 &= \frac{Q + f_{2s} \psi_s - \sigma_{2s}}{\alpha_0 f_{2s} - \varphi_s}. \end{split}$$

2. Пусть q=2s+1 – нечётное. Тогда $N_1=f_{2s+1}$ и

$$\begin{split} Q + \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2}(N_1 - f_{2i-2}) + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(N_0 - f_{2i-1}) &= \alpha_0 N_0 N_1, \\ Q + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(f_{2s+1} - f_{2i-1}) &= \alpha_0 N_0 N_1 - \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2}(N_1 - f_{2i-2}), \\ Q + f_{2s+1} \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} - \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} f_{2i-1} &= \\ &= N_1 \left(\alpha_0 f_{2s+1} - \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2} \right) + \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2} f_{2i-2}, \\ Q + f_{2s+1} \varphi_s - \sigma_{2s+1} &= N_1 \left(\alpha_0 f_{2s+1} - \psi_{s+1} \right), \\ N_0 &= \frac{Q + f_{2s+1} \varphi_s - \sigma_{2s+1}}{\alpha_0 f_{2s+1} - \psi_{s+1}}. \end{split}$$

В итоге имеем:

1. q = 2s:

$$N_1 = f_{2s}, \quad N_0 = \frac{Q + f_{2s}\psi_s - \sigma_{2s}}{\alpha_0 f_{2s} - \varphi_s}$$
 (23)

2. q = 2s + 1:

$$N_0 = f_{2s+1}, \quad N_1 = \frac{Q + f_{2s+1}\varphi_s - \sigma_{2s+1}}{\alpha_0 f_{2s+1} - \psi_{s+1}}$$
 (24)

Утверждение 2. Если в **замкнутой** трофической цепи длины q численность $N_q>0$, то $N_i>0$ $(i=\overline{1,q-1}).$

Доказательство. Из условия $N_q>0$ и (23, 24) получим неравенства, ограничивающие скорость поступления внешнего ресурса в систему.

1.
$$q = 2s$$

$$N_{q} = N_{2s} = H_{2s-1}(N_{0} - f_{2s-1}) > 0, \quad \frac{Q + f_{2s}\psi_{s} - \sigma_{2s}}{\alpha_{0}f_{2s} - \varphi_{s}} > f_{2s-1},$$

$$Q > \alpha_{0}f_{2s-1}f_{2s} - (\varphi_{s}f_{2s-1} + f_{2s}\psi_{s} - \sigma_{2s}) = \widetilde{Q}^{*}(q).$$
(25)

2. q = 2s + 1

$$N_{q} = N_{2s+1} = H_{2s}(N_{1} - f_{2s}) > 0, \quad \frac{Q + f_{2s+1}\varphi_{s} - \sigma_{2s+1}}{\alpha_{0}f_{2s+1} - \psi_{s+1}} > f_{2s},$$

$$Q > \alpha_{0}f_{2s+1}f_{2s} - (\psi_{s+1}f_{2s} + f_{2s+1}\varphi_{s} - \sigma_{2s+1}) = \widetilde{Q}^{*}(q).$$
(26)

Предположим противное: $\exists p < q : N_p \leq 0$. Возможны 4 варианта: p и q одинаковой чётности и разной чётности.

1. Пусть
$$q=2s$$
 и $N_0=rac{Q+f_{2s}\psi_s-\sigma_{2s}}{lpha_0f_{2s}-arphi_s}, N_1=f_{2s}.$

(a) $p = 2u\,(u < s)$, тогда из (9) следует, что $N_p = N_{2u} \le 0$, если $N_0 \le f_{2u-1}$. Значит

$$Q \le f_{2u-1}(\alpha_0 f_{2s} - \varphi_s) - (f_{2s} \psi_s - \sigma_{2s}).$$

Сравнивая с (25) получаем

$$f_{2s-1}(\alpha_0 f_{2s} - \varphi_s) - f_{2s}\psi_s + \sigma_{2s} < Q \le f_{2u-1}(\alpha_0 f_{2s} - \varphi_s) - f_{2s}\psi_s + \sigma_{2s},$$

$$f_{2s-1} < f_{2u-1}$$

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

- (b) p=2u+1 (2u<2s-1), тогда из (10) следует, что $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $f_{2s}\leq f_{2u}$. Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.
- 2. Пусть q=2s+1 и $N_0=f_{2s+1}, N_1=rac{Q+f_{2s+1}arphi_s-\sigma_{2s+1}}{lpha_0f_{2s+1}-\psi_{s+1}}.$
 - (a) $p=2u\,(2u-1<2s)$, тогда $N_p=N_{2u}\leq 0$ при $N_0\leq f_{2u-1}$. Значит $f_{2s+1}< f_{2u-1}$.

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

(b)
$$p = 2u + 1$$
 ($u < s$), тогда $N_p = N_{2u+1} \le 0$ при $N_1 \le f_{2u}$, т.е.

$$Q \le f_{2u}(\alpha_0 f_{2s+1} - \psi_{s+1}) - f_{2s+1} \varphi_s + \sigma_{2s+1}$$

Сравнивая с (26) получаем

$$\begin{cases} f_{2s}(\alpha_0 f_{2s+1} - \psi_{s+1}) - f_{2s+1} \varphi_s + \sigma_{2s+1} < Q, \\ Q \le f_{2u}(\alpha_0 f_{2s+1} - \psi_{s+1}) - f_{2s+1} \varphi_s + \sigma_{2s+1}, \\ f_{2s} < f_{2u}. \end{cases}$$

Что также невозможно.

3.2.2. Условия существования цепи фиксированной длины

Линеаризуем систему (5) для определения устойчивости в окрестности состояния $N^* = [N_0, N_1, \dots, N_q, 0, \dots, 0]$.

Получим матрицу, похожую на (12), вида

$$J = \begin{vmatrix} A_q^1 & C \\ 0 & D_{n-q} \end{vmatrix}, \tag{27}$$

где

$$A_{q}^{1} = \begin{vmatrix} -b_{0} & c_{1} - d_{0} & c_{2} & \dots & c_{q} \\ b_{1} & 0 & -d_{1} & & 0 \\ & \ddots & \ddots & \ddots & \\ & & b_{q-1} & 0 & -d_{q-1} \\ & 0 & & b_{q} & 0 \end{vmatrix}, C = \begin{vmatrix} c_{q+1} & c_{q+2} & \dots & c_{n} \\ & 0 & & \end{vmatrix}, \quad (28)$$

 $c_i = a_i m_i, i = \overline{1,n}$, а остальные обозначения соответствуют (14).

Аналогично из (15) имеем асимптотическую устойчивость системы при

$$N_q < \frac{m_{q+1}}{\alpha_q k_{q+1}}. (29)$$

и устойчивости матрицы A_1^q .

Матрица A_q^1 не является якобиевой (трёхдиагональной), поэтому определять её устойчивость нужно определять методами обычной устойчивости, например с помощью характеристического многочлена.

$$P_{q}(\lambda) = \det(A_{q}^{1} - \lambda I) = \begin{vmatrix} -b_{0} - \lambda & c_{1} - d_{0} & c_{2} & \dots & c_{q} \\ b_{1} & -\lambda & -d_{1} & 0 \\ & \ddots & \ddots & \ddots \\ & & b_{q-1} & -\lambda & -d_{q-1} \\ 0 & & b_{q} & -\lambda \end{vmatrix}$$

Раскладывая определитель сначала по нижней строке, а потом по последнему столбцу получим:

$$P_{q}(\lambda) = -\lambda P_{q-1}(\lambda) - b_{q} \begin{vmatrix} -b_{0} - \lambda & c_{1} - d_{0} & c_{2} & \dots & c_{q-2} & c_{q} \\ b_{1} & -\lambda & -d_{1} & & 0 \\ & \ddots & \ddots & \ddots & \\ & & b_{q-3} & -\lambda & -d_{q-3} \\ & & & b_{q-2} & -\lambda & \\ & & & & b_{q-1} & -d_{q-1} \end{vmatrix} = \\ = -\lambda P_{q-1}(\lambda) - b_{q}(-d_{q-1}) P_{q-2}(\lambda) - b_{q}(-1)^{q} c_{q} \begin{vmatrix} b_{1} & -\lambda & -d_{1} & & 0 \\ & \ddots & \ddots & \ddots \\ & & b_{q-3} & -\lambda & -d_{q-3} \\ & & & b_{q-1} & -\lambda \\ & & & & b_{q-1} \end{vmatrix} = \\ = -\lambda P_{q-1}(\lambda) + b_{q} d_{q-1} P_{q-2}(\lambda) - (-1)^{q} c_{q} \prod_{i=1}^{q} b_{i}.$$

Учитывая начальные значения характеристического многочлена получаем рекуррентную формулу:

$$P_{q}(\lambda) = -\lambda P_{q-1}(\lambda) + b_{q} d_{q-1} P_{q-2}(\lambda) - (-1)^{q} c_{q} b_{1} \cdots b_{q},$$

$$P_{0}(\lambda) = -b_{0} - \lambda,$$

$$P_{1}(\lambda) = \lambda^{2} + b_{0} \lambda + b_{1} (d_{0} - c_{1}).$$
(30)

Если характеристическое уравнение $P_q(\lambda)=0$ записано в виде

$$\lambda^{q+1} + e_q(\lambda)\lambda^q + e_{q-1}(\lambda)\lambda^{q-1} + \dots + e_1(\lambda)\lambda + e_0(q) = 0,$$

тогда, используя (30), можно выписать рекуррентные соотношения для коэффициентов $e_i(q)$:

ментов
$$e_i(q)$$
:
$$e_i(q) = \begin{cases} b_q d_{q-1} e_0(q-2) - (-1)^q c_q b_1 \cdots b_q, & i = 0, \\ e_{i-1}(q-1) + b_q d_{q-1} e_i(q-1), & i = \overline{1,q}, \\ 1, & i = q+1, \\ 0, & i = q+2, \dots, \end{cases}$$

$$e_1(1) = b_0,$$

$$e_0(0) = b_0,$$

$$e_0(1) = b_1(d_0 - c_1).$$

$$(31)$$

Всё с примерами и только 1-замкнутой?

...

Следствие 2.1. Необходимым условием существования замкнутой трофической цепи длины q является ограничение (сверху и снизу) скорости поступления внешнего ресурса в экосистему:

$$\widetilde{Q}^*(q) < Q < \widetilde{Q}^*(q+1). \tag{32}$$

_

4. Заключение

Вот так влияет изменение Q на модель.

5. Список литературы

[1] Свирежев, Ю. М. Устойчивость биологических сообществ // Ю. М. Свирежев, Д. О. Логофет – М.: Наука, 1978.