Вероятностные модели посещаемости курса

Рассмотрим модель посещаемости студентами ВУЗа одной лекции по курсу. Пусть аудитория данного курса состоит из студентов профильного факультета, а также студентов других факультетов. Обозначим через a количество студентов, поступивших на профильный факультет, а через b – количество студентов других факультетов. Пусть студенты профильного факультета посещают лекцию с некоторой вероятностью p_1 , а студенты остальных факультетов – с вероятностью p_2 . Обозначим через c количество студентов, посетивших данную лекцию. Тогда случайная величина c|a,b есть сумма двух случайных величин, распределённых по биномиальному закону $\text{Вin}(a,p_1)$ и $\text{Bin}(b,p_2)$ соответственно. Пусть далее на лекции по курсу ведётся запись студентов. При этом каждый студент записывается сам, а также, быть может, записывает своего товарища, которого на лекции на самом деле нет. Пусть студент записывает своего товарища с некоторой вероятностью p_3 . Обозначим через d общее количество записавшихся на данной лекции. Тогда случайная величина d|c представляет собой сумму c и случайной величины, распределённой по биномиальному закону $\text{Bin}(c,p_3)$. Для завершения задания вероятностной модели осталось определить априорные вероятности для a и для b. Пусть обе эти величины распределены равномерно в своих интервалах $[a_{min}, a_{max}]$ и $[b_{min}, b_{max}]$ (дискретное равномерное распределение). Таким образом, мы определили следующую вероятностную модель:

$$p(a,b,c,d) = p(d|c)p(c|a,b)p(a)p(b),$$

$$d|c \sim c + \operatorname{Bin}(c,p_3),$$

$$c|a,b \sim \operatorname{Bin}(a,p_1) + \operatorname{Bin}(b,p_2),$$

$$a \sim \operatorname{Unif}[a_{min},a_{max}],$$

$$b \sim \operatorname{Unif}[b_{min},b_{max}].$$
 (1)

Рассмотрим несколько упрощённую версию модели 1. Известно, что биномиальное распределение $\mathrm{Bin}(n,p)$ при большом количестве испытаний и маленькой вероятности успеха может быть с высокой точностью приближено пуассоновским распределением $\mathrm{Poiss}(\lambda)$ с $\lambda=np$. Известно также, что сумма двух пуассоновских распределений с параметрами λ_1 и λ_2 есть пуассоновское распределение с параметром $\lambda_1+\lambda_2$ (для биномиальных распределений это неверно). Таким образом, мы можем сформулировать вероятностную модель, которая является приближённой версией модели 1:

$$p(a, b, c, d) = p(d|c)p(c|a, b)p(a)p(b),$$

$$d|c \sim c + \text{Bin}(c, p_3),$$

$$c|a, b \sim \text{Poiss}(ap_1 + bp_2),$$

$$a \sim \text{Unif}[a_{min}, a_{max}],$$

$$b \sim \text{Unif}[b_{min}, b_{max}].$$

$$(2)$$

Рассмотрим теперь модель посещений нескольких лекций курса. Будем считать, что посещения отдельных лекций являются независимыми. Тогда:

$$p(a, b, c_1, \dots, c_N, d_1, \dots, d_N) = p(a)p(b) \prod_{n=1}^{N} p(d_n|c_n)p(c_n|a, b),$$

$$d_n|c_n \sim c_n + \text{Bin}(c_n, p_3),$$

$$c_n|a, b \sim \text{Bin}(a, p_1) + \text{Bin}(b, p_2),$$

$$a \sim \text{Unif}[a_{min}, a_{max}],$$

$$b \sim \text{Unif}[b_{min}, b_{max}].$$
(3)

По аналогии с моделью 2 можно сформулировать упрощённую модель для модели 3:

$$p(a, b, c_1, \dots, c_N, d_1, \dots, d_N) = p(a)p(b) \prod_{n=1}^N p(d_n|c_n)p(c_n|a, b),$$

$$d_n|c_n \sim c_n + \operatorname{Bin}(c_n, p_3),$$

$$c_n|a, b \sim \operatorname{Poiss}(ap_1 + bp_2),$$

$$a \sim \operatorname{Unif}[a_{min}, a_{max}],$$

$$b \sim \operatorname{Unif}[b_{min}, b_{max}].$$

$$(4)$$

Задание состоит из трёх вариантов. Схема присвоения варианта приложена к заданию.

Вариант 1

Рассматриваются модели 1 и 2 с параметрами $a_{min} = 75$, $a_{max} = 90$, $b_{min} = 500$, $b_{max} = 600$, $p_1 = 0.1$, $p_2 = 0.01$, $p_3 = 0.3$. Провести следующие исследования для обеих моделей:

- 1. Вывести формулы для всех необходимых далее распределений аналитически.
- 2. Найти математические ожидания и дисперсии априорных распределений p(a), p(b), p(c), p(d).
- 3. Пронаблюдать, как происходит уточнение прогноза для величины c по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений p(c), p(c|a), p(c|b), p(c|a), p(c|a,b), p(c|a,b,d) при параметрах a, b, d, равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого.
- 4. Определить, какая из величин a, b, d вносит наибольший вклад в уточнение прогноза для величины c (в смысле дисперсии распределения). Для этого проверить верно ли, что $\mathbb{D}[c|d] < \mathbb{D}[c|b]$ и $\mathbb{D}[c|d] < \mathbb{D}[c|a]$ для любых допустимых значений a, b, d. Найти множество точек (a, b) таких, что $\mathbb{D}[c|b] < \mathbb{D}[c|a]$. Являются ли множества $\{(a, b) \mid \mathbb{D}[c|b] < \mathbb{D}[c|a]\}$ и $\{(a, b) \mid \mathbb{D}[c|b] \geq \mathbb{D}[c|a]\}$ линейно разделимыми? Ответ должен быть обоснован!
- 5. Провести временные замеры по оценке всех необходимых распределений p(c), p(c|a), p(c|d), p(c|a,b), p(c|a,b,d), p(d).
- 6. Используя результаты всех предыдущих пунктов, сравнить две модели. Показать где максимально проявляется разница между ними (привести конкретный пример, не обязательно из экспериментов выше). Объяснить причины подобного результата.

Взять в качестве диапазона допустимых значений для величины c интервал $[0, a_{max} + b_{max}]$, а для величины d – интервал $[0, 2(a_{max} + b_{max})]$. При работе с распределениями Пуассона не нужно дополнительно перенормировать распределения с учетом конечной области определения c, d.

Исследование должно быть выполнено на компьютере, однако за дополнительные аналитические выкладки в пунктах 2-4 будут ставиться дополнительные баллы. При оценке выполнения задания будет учитываться эффективность программного кода - любая из функций должна работать быстрее секунды на скалярных входах (для этого код должен реализовываться векторно). По всем пунктам задания должен быть проведен анализ результатов и сделаны выводы.

Вариант 2

Рассматриваются модели 1 и 2 с параметрами $a_{min} = 75$, $a_{max} = 90$, $b_{min} = 500$, $b_{max} = 600$, $p_1 = 0.1$, $p_2 = 0.01$, $p_3 = 0.3$. Провести следующие исследования для обеих моделей:

- 1. Вывести формулы для всех необходимых далее распределений аналитически.
- 2. Найти математические ожидания и дисперсии априорных распределений p(a), p(b), p(c), p(d).
- 3. Пронаблюдать, как происходит уточнение прогноза для величины b по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений p(b), p(b|a), p(b|d), p(b|a), p(b|

- 4. Определить, при каких соотношениях параметров p_1 , p_2 изменяется относительная важность параметров a,b для оценки величины c. Для этого найти множество точек $\{(p_1,p_2)\mid \mathbb{D}[c|b]<\mathbb{D}[c|a]\}$ при a,b, равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого. Являются ли множества $\{(p_1,p_2)\mid \mathbb{D}[c|b]<\mathbb{D}[c|a]\}$ и $\{(p_1,p_2)\mid \mathbb{D}[c|b]\geq \mathbb{D}[c|a]\}$ линейно разделимыми? Ответ должен быть обоснован!
- 5. Провести временные замеры по оценке всех необходимых распределений p(c), p(c|a), p(b|a), p(b|d), p(b|a,d), p(d).
- 6. Используя результаты всех предыдущих пунктов, сравнить две модели. Показать где максимально проявляется разница между ними (привести конкретный пример, не обязательно из экспериментов выше). Объяснить причины подобного результата.

Взять в качестве диапазона допустимых значений для величины c интервал $[0, a_{max} + b_{max}]$, а для величины d – интервал $[0, 2(a_{max} + b_{max})]$. При работе с распределениями Пуассона не нужно дополнительно перенормировать распределения c учетом конечной области определения c, d.

Исследование должно быть выполнено на компьютере, однако за дополнительные аналитические выкладки в пунктах 2-4 будут ставиться дополнительные баллы. При оценке выполнения задания будет учитываться эффективность программного кода - любая из функций должна работать быстрее секунды на скалярных входах (для этого код должен реализовываться векторно). По всем пунктам задания должен быть проведен анализ результатов и сделаны выводы.

Вариант 3

Рассматриваются модели 3 и 4 с параметрами $a_{min} = 75$, $a_{max} = 90$, $b_{min} = 500$, $b_{max} = 600$, $p_1 = 0.1$, $p_2 = 0.01$, $p_3 = 0.3$, N = 50. Провести следующие исследования для обеих моделей:

- 1. Вывести формулы для всех необходимых далее распределений аналитически.
- 2. Найти математические ожидания и дисперсии априорных распределений $p(a), p(b), p(c_n), p(d_n)$.
- 3. Реализовать генератор выборки d_1, \dots, d_N из модели при заданных значениях параметров a, b.
- 4. Пронаблюдать, как происходит уточнение прогноза для величины b по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений p(b), $p(b|d_1),\ldots,p(b|d_1,\ldots,d_N)$, где выборка d_1,\ldots,d_N 1) сгенерирована из модели при параметрах a,b, равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого и 2) $d_1=\cdots=d_N$, где d_n равно мат.ожиданию своего априорного распределения, округленного до ближайшего целого. Провести аналогичный эксперимент, если дополнительно известно значение a. Сравнить результаты двух экспериментов.
- 5. Провести временные замеры по оценке всех необходимых распределений $p(c_n)$, $p(d_n)$, $p(b|d_1,\ldots,d_N)$, $p(b|a,d_1,\ldots,d_N)$.
- 6. Используя результаты всех предыдущих пунктов, сравнить две модели. Показать где максимально проявляется разница между ними (привести конкретный пример, не обязательно из экспериментов выше). Объяснить причины подобного результата.

Взять в качестве диапазона допустимых значений для величин c интервал $[0, a_{max} + b_{max}]$, а для величин d – интервал $[0, 2(a_{max} + b_{max})]$. При работе с распределениями Пуассона не нужно дополнительно перенормировать распределения с учетом конечной области определения c, d.

Исследование должно быть выполнено на компьютере, однако за дополнительные аналитические выкладки в пункте 2 будут ставиться дополнительные баллы. При оценке выполнения задания будет учитываться эффективность программного кода - любая из функций должна работать быстрее секунды на скалярных входах a,b и входных векторах c,d длины около 50 (для этого код должен реализовываться векторно). По всем пунктам задания должен быть проведен анализ результатов и сделаны выводы. За качественный анализ в пункте 4 также могут быть выставлены дополнительные баллы.

Оформление задания

На проверку в еjudgе нужно отправить Python модуль со всеми требуемыми функциями в соответствии с прототипами, приведенными в отдельном файле. Модуль должен называться {name}_{surname}_v{variant}. ру, например, petr_ivanov_v1.ру. Модуль не должен содержать никакого main! То есть при импорте модуля никакие вычисления производиться не должны.

Перед отправкой кода в ejudge его нужно проверить с помощью выдаваемых открытых тестов. Если какой-то из них выдает предупреждение (кроме тестов по времени), то ваш код не соответствует прототипам и не может быть проверен. Предупреждения по времени говорят о том, что ваш код не достаточно эффективен, что может привести к понижению оценки.

На проверку в апуtаѕк нужно отправить:

- Тот же Python модуль, который был отправлен в ejudge.
- Отчет в формате PDF с указанием ФИО и номера варианта, содержащий описание всех проведённых исследований (вывод необходимых формул, графики, анализ и выводы). Отчет не должен содержать листинга кода и подобных вещей! Желательно для составления отчета использовать latex. Файл должен называться {name}_{surname}_v{variant}.pdf.

Будьте внимательны к формату названий файлов!