Лабораторная работа № 6

Tema: «Основы создания мер в PowerBi с использованием DAX»

Цель работы: изучить основы работы с DAX в PowerBi.

Теоретическая справка

Data Analysis Expressions, сокращенно **DAX** — это язык запросов для Power Pivot, Power BI Desktop и SQL Server Analysis Services (SSAS). DAX представляет из себя коллекцию из более чем 200 функций, операторов и констант, которые можно использовать в формуле или выражении для вычисления и возврата одного или нескольких значений. DAX помогает создавать новые сведения из данных, уже имеющихся в модели.

Мера является базовым понятием в DAX и представляет собой выражение, которое позволяет рассчитать необходимый показатель на основании данных из модели. Пример использования мер, это расчет среднего, суммы, количества уникальных записей и пр. Меры вычисляются, когда вы взаимодействуете с отчетами, и не сохраняются в базу данных.

Пример меры, которая возвращает только уникальные записи из таблицы 'Сеансы', а именно из столбца [Идентификатор пользователя].

Пользователи := DISTINCTCOUNT ('Сеансы'[Идентификатор пользователя])

Вычисляемый столбец также позволяет рассчитать показатели, но подсчет производится для каждой строки таблицы отдельно и результат сохраняется в отдельное поле (новый столбец таблицы). После создания подобного вычисляемого столбца его можно использовать наравне с остальными столбцами модели. Пример использования вычисляемого столбца — создание некоего столбца с ключами (уникальными идентификаторами записей, для связей с другими таблицами).

Формула DAX всегда начинается с знака равенства (=). После знака равенства можно указать любое выражение, которое вычисляется скалярным или выражение, которое можно преобразовать в скаляр. следующие основные параметры:

- Скалярная константа или выражение, использующее скалярный оператор (+,-,*,/,>=,...,>,...)
- Ссылки на столбцы или таблицы. Язык DAX всегда использует таблицы и столбцы в качестве входных данных для функций, никогда не массив или произвольный набор значений.
- Операторы, константы и значения, предоставляемые в рамках выражения.
- Результат функции и его обязательных аргументов. Некоторые функции DAX возвращают таблицу вместо скалярного и должны быть заключены в функцию, которая вычисляет таблицу и возвращает скаляр; Если таблица не является одним столбцом, одной строкой, то она рассматривается как скалярное значение.
- Большинство функций DAX требуют одного или нескольких аргументов, которые могут включать таблицы, столбцы, выражения и значения. Однако некоторые функции, такие как PI, не требуют каких-либо аргументов, но всегда требуют круглые скобки для указания аргумента NULL. Например, необходимо всегда вводить pi(), а не PI. Вы также можете вложить функции в другие функции.
- Выражения. Выражение может содержать любой или все из следующих: операторы, константы или ссылки на столбцы.

Каждый столбец и мера, добавляемая в существующую модель данных, должны принадлежать определенной таблицеПри использовании таблицы или столбца в качестве входных данных для функции обычно необходимо *указать* имя столбца. Полное имя столбца — это имя таблицы, за которым следует имя столбца в квадратных скобках: например, "Продажи США"[Продукты].

Типы объектов	Примеры	Комментарий
Имя таблицы	Продажи	Если имя таблицы не содержит пробелы или
		другие специальные символы, имя не должно
		быть заключено в кавычки.
Имя таблицы	"Продажи	Если имя содержит пробелы, вкладки или
	Канады"	другие специальные символы, заключите имя
		в одинарные кавычки.
Полное имя столбца	Продажи[сумма]	Имя таблицы предшествует имени столбца, а
		имя столбца заключено в квадратные скобки.

Типы объектов	Примеры	Комментарий
Полное имя меры	Продажи[прибыль]	Имя таблицы предшествует имени меры, а
		имя меры заключено в квадратные скобки. В
		определенных контекстах всегда требуется
		полное имя.
Неквалифицированное	[Сумма]	Неквалифицированное имя — это только имя
имя столбца		столбца в квадратных скобках. Контексты, в
		которых можно использовать
		некавалифицированное имя, включают
		формулы в вычисляемый столбец в той же
		таблице или в функцию агрегирования,
		которая сканирует ту же таблицу.
Полный столбец в	"Канада	Имя таблицы содержит пробелы, поэтому он
таблице с пробелами	Продажи''[Qty]	должен быть окружен одними кавычками.

Синтаксис, необходимый для каждой функции, и тип операции, который он может выполнять, сильно зависит от функции. Формулы и выражения DAX не могут изменять или вставлять отдельные значения в таблицы.

Тип оператора	Символ и использование
Оператор круглых скобок	() порядок приоритета и группирование аргументов
Арифметические операторы	+ (добавление)
	- (вычитание/знак)
	* (умножение)
	/ (деление)
	^ (экспонентация)
Операторы сравнения	= (равно)
	> (больше чем);
	< (меньше чем);
	>= (больше или равно);
	<= (меньше или равно).
	<> (не равно)
Оператор объединения	& (объединение)
текста	
Операторы логики	&& (и)
	(или)

Контекст - описывает среду, в которой вычисляется формула DAX. Существует два типа контекста: контекст строки и контекст фильтра. Контекст строки представляет "текущую строку" и используется для вычисления формул и выражений вычисляемых столбцов, используемых итераторами таблиц. Контекст фильтра используется для оценки мер, и он представляет фильтры, применяемые непосредственно к столбцам модели и фильтрам, распространяемым связями модели.

Рассмотрим сложную меру, рассчитывающую кол-во новых пользователей, которая, содержит несколько вложенных функций:

```
COUNTROWS (
FILTER (
CALCULATETABLE (
ADDCOLUMNS (
VALUES ( 'Ceancы' [Идентификатор пользователя] );
"Дата первого сеанса"; CALCULATE (
MIN ( 'Ceancы' [Дата] )
)
);
ALL ( 'Параметры дат' )
);
CONTAINS (
VALUES ( 'Параметры дат' [Дата] );
'Параметры дат' [Дата]; [Дата первого сеанса]
)
)
)
```

Быстрая мера выполняет набор команд анализа данных (DAX) «под капотом», а затем представляет результаты, используемые в отчете. Для их создания не нужно писать DAX, это делается на основе входных данных, предоставляемых в диалоговом окне. Большое преимущество быстрых мер заключается в том, что они показывают формулу DAX, реализующую меру. При выборе быстрой меры на панели "Поля " появится строка формулы DAX, созданная Power BI для реализации меры.

Быстрые меры доступны только в том случае, если можно изменить модель. Одним из исключений является работа с некоторыми динамическими подключениями. Поддерживаются табличные динамические подключения SSAS. При работе в режиме DirectQuery нельзя создавать быстрые меры аналитики времени. Функции DAX, используемые в этих быстрых мерах, влияют на производительность при переводе в инструкции T-SQL, которые отправляются в источник данных.

Таблицы для хранения мер

Если в вашем отчете несколько страниц с несвязанными вычислениями, имеет смысл создать отдельную таблицу для них.

Когда один показатель может выражаться и в процентах, и числом, используйте префиксы "\$, #, %, \(\Delta \)" в названиях мер. Тогда вы точно будете знать в каком формате выдается вычисление. При работе с большим количеством расчетов отклонений по месяцам/неделям/дням, рационально не только создавать папки для измерений, но и применять в их названии буквенные коды:

Префик с	Назначение	Пример
DoD	Отклонение по дням	DoD_Выручка = DIVIDE(
WoW	Отклонение по неделям	WoW_Выручка = DIVIDE(
MoM	Отклонение по месяцам	MoM_Выручка = DIVIDE(CALCULATE(_Finance[!Выручка], 'Calendar'[Текущий месяц]=1),

Префик с	Назначение	Пример
		CALCULATE(_Finance[!Выручка], 'Calendar'[Прошлый месяц]=1)
YoY	Отклонение по годам	YoY_Выручка = DIVIDE(
T	Измерение за сегодня	Т_Выручка = CALCULATE(_Finance[!Выручка], 'Calendar'[Сегодня]=1)
W	Измерение за текущую неделю	W_Выручка = CALCULATE(_Finance[!Выручка],'Calendar'[Текуща я неделя]=1)
M	Измерение за текущий месяц	M_Выручка = CALCULATE(_Finance[!Выручка], 'Calendar'[Текущий месяц]=1)
Y	Измерение за текущий год	Y_Выручка = CALCULATE(_Finance[!Выручка], 'Calendar'[Текущий год]=1)
AT	Измерение за вчера	АТ_Выручка = CALCULATE(_Finance[!Выручка], 'Calendar'[Вчера]=1)
AW	Измерение за прошлую неделю	AW_Выручка = CALCULATE(_Finance[!Выручка], 'Calendar'[Прошлая неделя]=1)
AM	Измерение за прошлый месяц	АМ_Выручка = CALCULATE(_Finance[!Выручка], 'Calendar'[Прошлая выручка]=1)
AY	Измерение за прошлый год	АҮ_Выручка = CALCULATE(_Finance[!Выручка], 'Calendar'[Прошлый год]=1)
@	Текстовое значение	@_Количество_заказов = "Кол-во заказов за пр. месяц: "& FORMAT(

Префик с	Назначение	Пример
#	Наиболее используемые	# _Выручка = SUM('uni vf Продажи'[DishSumInt])
	меры	

Самостоятельное задание

- 1. В Power BI Desktop выберите "Открыть файл>" и загрузите рbіх файл с данным к лабораторной работе.
- 2. Создайте меру среднего значения поля SalesAmount .в таблице Sales и визуализируйте ее с помощью столбиковой диаграммы.
 - 2.1. Добавьте разрез RegionCountryName из таблицы Geography
- 3. Создайте меру Net Sales, очищающую сумму выручки от суммы скидок клиентам Sales[DiscountAmount] и суммы возвратов клиентов sales[ReturnAmount].
- 4. Визуализируйте с помощью столбиковой диаграммы общие и чистые продажи на одном графике в разрезе RegionCountryName
- 5. Добавьте срез для дальнейшего фильтрации чистых объемов продаж и продаж по календарю, используя поле "Год" из таблицы "Календарь".
 - 5.1. На основе этой меры сделайте новую, показывающую отклонение чистой выручки, по месяпам
 - 5.2. На основе этой меры сделайте новую, показывающую отклонение чистой выручки по годам
- 6. Создайте меру, вычисляющую какие продукты имеют самую высокую чистую сумму продаж за единицу продаж. Используйте sales[SalesQuantity].
- 7. Визуализируйте полученную меру с помощью Тreemap диаграммы, используя поле "Категория продукта".
- 8. Создайте меру ежегодного процентного прироста чистой выручки внутри категории продукта и региона.
 - 8.1. На основе этой меры сделайте новую, показывающую отклонение прироста чистой выручки от прошлого месяца
 - 8.2. На основе этой меры сделайте новую, показывающую отклонение прироста чистой выручки от прошлого года
- 9. Создайте меру, показывающую категории продукта, приносящие 80%, 15% и 5% общей выручки, в рамках ABC –анализа.
- 10. Создайте таблицу и папки для своих мер, и переименуйте меры в соответствии с рекомендуемыми префиксами.