

Extreme Gradient Boosting (XGBoost)

What is XGBoost?

- XGBoost is not an algorithm, it's a library built on top of the Gradient Boosting framework.
- It combines:
 - Machine Learning: Gradient Boosting
 - Engineering: Performance Optimization, Parallelism, Hardware Utilization

****ORTHONOOR OF CONTROL OF CONTRO**

1. Flexibility

- Can use any differentiable loss function.
- Works for:
 - Regression
 - Classification (binary/multiclass)
 - Time series
 - Ranking
 - Anomaly detection

2. Performance

• Fast due to engineering innovations.

3. Robustness

• Can handle missing values internally.

Features of XGBoost

1. Flexibility

- Cross-Platform: Windows, Linux, macOS
- Languages: Python, R, Julia, Java, Scala, etc.
- Integrations: scikit-learn, Dask, Spark, MLFlow, Kubernetes, SHAP, LIME, Airflow

2. Speed Optimizations

(a) Parallel Processing (During Tree Building)

• Trees are built sequentially.

• But **feature splitting is done in parallel** across multiple cores.

(b) Optimized Data Structure

- Uses Column Block format (stores data column-wise).
- Improves cache efficiency.

(c) Cache Awareness

- **Histogram-based training** stores frequently accessed bin values in cache.
- Improves speed by reducing memory access time.

(d) Out-of-Core Computing

- Useful for very large datasets.
- Loads and trains on data in chunks.
- Memory-efficient, but works **on a single machine** sequentially.

(e) Distributed Computing

- Data and tasks are split across multiple machines.
- All machines compute their part → a master node aggregates results.
- Faster training and handling of massive datasets.

(f) GPU Support

- Tree method: gpu_hist
- Leverages many weak but parallel GPU cores for faster computation.

3. Performance Features

- Regularized Learning Objective: Prevents overfitting (L1 & L2 regularization)
- Handles Missing Values: Automatically splits on available data
- Sparsity-aware Splits: Deals with sparse input data
- Approximate Split Finding (Sketching): For large datasets
- Tree Pruning: Removes branches that do not improve performance

Feature	Description
Base	Gradient Boosting Decision Tree (GBDT)
Loss Functions	Any differentiable loss (custom or standard)
Speed	Fast due to parallel feature splitting, histogram binning, GPU support
Scalability	Out-of-core (1 machine) & Distributed (multi-machine) supported
Integration	With many platforms, cloud tools, and languages

Ecotura

reature	Description
Handling Missing Data	Automatically handled without preprocessing
Interpretability	Tools like SHAP, LIME supported

Description

Common Tree Methods in XGBoost

Tree Method	Description
exact	Exact greedy algorithm
approx	Approximate algorithm (sketching)
hist	Fast histogram optimized algorithm
gpu_hist	GPU accelerated histogram algorithm

XGBoost for Regression

Overview

XGBoost for regression follows the same boosting principle as Gradient Boosting:

- 1. Start with a **base model** (mean of the target).
- 2. Train a sequence of **Decision Trees** to learn the **residuals** (errors).
- 3. Update the model by adding the new tree's predictions.

However, the **tree-building logic in XGBoost** differs significantly:

- It does **not use Gini or Entropy** (like classification trees).
- It uses a custom objective function involving residuals and similarity scores.

Tree Formation in XGBoost

Step 1: Leaf Node Formation

Before building the tree, for each **leaf node**, we calculate a **Similarity Score (SS)**:

$$SS = rac{(\sum ext{residuals})^2}{n + \lambda}$$

Where:

- (n): number of residuals in the leaf
- (\lambda): regularization parameter (prevents overfitting)

Step 2: Gain Calculation

When trying to split a node, we calculate the gain (improvement in similarity):

$$Gain = SS_{Left} + SS_{Right} - SS_{Parent} - \gamma$$

Where:

• (\gamma): regularization term to penalize excessive tree depth (also helps pruning)

A split is accepted **only if the gain is positive**.

Step 3: Tree Building Logic

- XGBoost splits based on **maximizing Gain**, not reducing entropy or Gini.
- Trees are grown greedily using:
 - Exact Greedy Algorithm → for small datasets
 - Approximate Algorithm → for large datasets

Output at Each Leaf Node

Once the best splits are found and leaf nodes are created, the output value for each leaf is computed as:

$$\text{Output}_{\text{leaf}} = \frac{\sum \text{residuals}}{n + \lambda}$$

This output becomes the **prediction from that leaf node**.

Updating the Model (Stage 2)

After the first tree (model), we update the prediction:

$$F_1(x) = \operatorname{mean} + \eta \cdot f_1(x)$$

- (\eta): learning rate (default in XGBoost is 0.3)
- (f_1(x)): prediction from first decision tree

Then, compute new residuals:

Residual₂ =
$$y - F_1(x)$$

Train the next decision tree on these residuals.

Summary of Tree Formation Steps

1. Start with mean prediction.

- 2. Compute residuals.
- 3. Use residuals to compute **similarity score** for potential splits.
- 4. Use gain to decide best split.
- 5. Continue growing tree using greedy or approximate algorithms.
- 6. Update model using:

$$F_m(x) = F_{m-1}(x) + \eta \cdot f_m(x)$$

Tree Building Algorithms

Method	Description	Use Case
Exact Greedy	Tries all splits	Small datasets
Approximate	Uses histogram/binning technique	Large datasets

XGBoost for Classification

Core Idea

In classification using XGBoost, we start with a base model that estimates the log-odds, and then build decision trees sequentially to minimize the error.

Base Model (Model 1):

$$\operatorname{Log}(\operatorname{odds}) = \operatorname{log}_e\!\left(rac{P}{1-P}
ight)$$

- (P): Probability of the positive class.
- This log-odds is the starting prediction (similar to how mean is used in regression).

After calculating log-odds, we convert them into **probabilities**:

$$P = rac{e^{ ext{log(odds)}}}{1 + e^{ ext{log(odds)}}}$$

Decision Tree Formation (Model 2 onward)

All subsequent models are decision trees trained on residuals, similar to gradient boosting.

Similarity Score for Classification

XGBoost uses a different formula for classification vs regression. For a given leaf node, the similarity score (SS) is:

$$SS = rac{\left(\sum ext{residuals}
ight)^2}{\sum \left(p_i(1-p_i)
ight) + \lambda}$$

Where:

- (p_i): predicted probability for the (i)-th data point
- (\lambda): regularization parameter
- Residual = actual predicted (for classification)

© Goal of Tree Building

- Try different splits in input columns.
- For each potential split, compute gain based on change in similarity score:

$$Gain = SS_{Left} + SS_{Right} - SS_{Parent} - \gamma$$

- · Choose the split that maximizes this gain.
- Repeat to grow tree until stopping criteria is met.

Leaf Output Calculation

Once a node is created, calculate its output (log-odds shift):

$$ext{Output}_{ ext{leaf}} = rac{\sum ext{residuals}}{\sum p_i (1-p_i) + \lambda}$$

Update Step

- 1. Add leaf output to the log-odds.
- 2. Convert updated log-odds to **probability**:

$$P = \frac{e^{\text{new log(odds)}}}{1 + e^{\text{new log(odds)}}}$$

- 3. Compute new residuals.
- 4. Train next tree on updated residuals.

Assumptions

1. Weak Learners Can Be Combined:

Multiple weak models (e.g., shallow trees) can be improved sequentially.

2. Additive Modeling Framework:

Improvements from each tree combine additively to improve the model.

3. Target Variable is Predictable:

Assumes that meaningful patterns exist in input features.

4. Proper Feature Engineering:

Features must be informative and clean (low noise).

5. Low Multicollinearity:

High correlation among features may degrade performance.

Limitations

1. High Computational Demand

• Training is slow and memory-intensive for large/high-dimensional data.

2. Risk of Overfitting

• Too many deep trees can overfit without proper tuning or regularization.

3. Hyperparameter Complexity

Numerous parameters (learning rate, depth, gamma, etc.) require expert tuning.

4. Less Interpretability

 Complex ensemble of trees is harder to explain than single decision trees or logistic regression.

5. Sensitive to Noise

• Noisy datasets can mislead the model unless early stopping or regularization is applied.

6. Handling Imbalanced Datasets

• Requires special strategies like custom loss functions or class weighting.

7. Scaling Challenges with Sparse Data

Performs better than traditional models on sparse data, but preprocessing is still

8. Training Complexity

 Boosting is sequential in nature, which limits full parallelization (though XGBoost uses optimized techniques like histogram-based training).

XGBoost Hyperparameter Guide

XGBoost is a powerful and flexible boosting algorithm that provides a wide range of parameters to tune performance for both classification and regression tasks. Here's a breakdown of the most important hyperparameters:

General Parameters

Parameter	Description
booster	Type of model to run: 'gbtree': tree-based models (default) 'gblinear': linear models 'dart': Dropout-based boosting
nthread or n_jobs	Number of CPU threads to use for training. Useful for parallel processing.

2 Booster Parameters (for 'gbtree' and 'dart')

These parameters control the trees and boosting behavior.

Tree Structure

Parameter	Description
max_depth	Maximum depth of a tree. Higher = more complex trees. Prevents underfitting.
min_child_weight	Minimum sum of instance weights needed in a child. Higher values prevent overfitting.
gamma	Minimum loss reduction required to make a split. Larger gamma = more conservative trees.
subsample	% of training samples used for growing each tree. Typical values: 0.5 to 1.0
colsample_bytree	% of features (columns) used per tree. Can reduce overfitting.
colsample_bylevel	% of features used per tree level.
colsample_bynode	% of features used per split (node).
lambda (reg_lambda)	L2 regularization on weights. Helps with overfitting.
alpha (reg_alpha)	L1 regularization on weights. Adds sparsity.

Learning Parameters

Parameter	Description
<pre>learning_rate (or eta)</pre>	Step size shrinkage used in updates. Lower values make learning slower but more robust. Typical range: 0.01–0.3
n_estimators	Number of trees (boosting rounds).

Parameter	Description
scale_pos_weight	Used for imbalanced classification. Ratio of negative to positive classes.

Objective Parameters

Parameter	Description
objective	Learning task type: 'binary:logistic': binary classification 'multi:softmax': multiclass classification (with num_class) 'multi:softprob': same as softmax, but returns probabilities 'reg:squarederror': regression (default) 'reg:logistic': logistic regression
eval_metric	Evaluation metric:Classification: 'logloss', 'error', 'auc'Regression: 'rmse', 'mae', 'rmsle'

Dart-Specific Parameters (Optional)

Parameter	Description	
sample_type	Sampling method: 'uniform' or 'weighted'	
normalize_type	How to normalize dropped trees: 'tree' or 'forest'	
rate_drop	Dropout rate for trees	
skip_drop	Probability of skipping the dropout during iteration	

Typical Settings

Binary Classification

```
params = {
    'objective': 'binary:logistic',
    'eval_metric': 'logloss',
    'max_depth': 4,
    'learning_rate': 0.1,
    'subsample': 0.8,
    'colsample_bytree': 0.8,
    'scale_pos_weight': 1,
    'n_estimators': 100
}

params = {
    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
```

```
'max_depth': 4,
    'learning_rate': 0.1,
    'subsample': 0.9,
    'colsample_bytree': 0.9,
    'n_estimators': 100
}
In []:
```