Advanced Probability

-Martingales

(15th October 2018, Monday)

Chapter 2. Martingales in Discrete Time

2.1. Definitions.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

• A Filtration for $(\Omega, \mathcal{F}, \mathbb{P})$ is a sequence $(\mathcal{F}_n)_{n\geq 0}$ of σ -algebras s.t. for all $n\geq 0$, we have

$$\mathfrak{F}_n \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}$$

Set $F_{\infty} = \sigma(\mathcal{F}_n : n \geq 0)$ then $\mathcal{F}_{\infty} \subset \mathcal{F}$. We allow $\mathcal{F}_{\infty} \neq \mathcal{F}$. We interpret n as times and \mathcal{F}_n as the extent of knowledge at time n.

• A Random process(in discrete time) is a sequence of random variables $(X_n)_{n\geq 0}$. It has a natural filtration $(F_n^X)_{n\geq 0}$ given by

$$\mathcal{F}_n^X = \sigma(X_0, \cdots, X_n)$$

That is, the knowledge obtained from X_n by time n. We say $(X_n)_{n\geq 0}$ is **adapted to** $(\mathcal{F}_n)_{n\geq 0}$ if X_n is \mathcal{F}_n -measurable for all $n\geq 0$. This is equivalent to having $\mathcal{F}_n^X\subset \mathcal{F}_n$, for all $n\geq 0$. (Here, X_n are real-valued)

- We would say $(X_n)_{n\geq 0}$ is **integrable** if X_n is integrable for all $n\geq 0$.
- A martingale is an adapted, integrable random process $(X_n)_{n\geq 0}$ s.t. for all $n\geq 0$,

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n \quad \text{a.s.}$$

In the case $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$ a.s., $(X_n)_n$ is called a **super-martingale** and in the case $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$ a.s., $(X_n)_n$ is called a **sub-martingale**.

Optional Stopping

- A random variable $T: \Omega \to \{0, 1, 2, \dots\} \cup \{\infty\}$ is a **stopping time** if $\{T \le n\} \in \mathcal{F}_n$ for all $n \ge 0$.
- For a stopping time T, we set $\mathcal{F}_T = \{A \in \mathcal{F}_\infty : A \cap \{T \leq n\} \in \mathcal{F}_n \text{ for all } n \geq 0\}$. It is easy to check \mathcal{F}_T is indeed a σ -algebra and that if $T(\omega) = n$ for all $\omega \in \Omega$, then T is a stopping time and $\mathcal{F}_T = \mathcal{F}_n$.
- Given X, define $X_T(\omega) = X_{T(\omega)}(\omega)$ whenever $T(\omega) < \infty$ and define the **stopped process** X^T by

$$X_n^T(\omega) = X_{T(\omega) \wedge n}(\omega) \quad \text{for } n \ge 0$$

Proposition 2.2.1.) Let X be an adapted process. Let S, T be stopping times for X. Then

- (a) $S \wedge T$ is a stopping time for X.
- (b) \mathcal{F}_T is a σ -algebra.

- (c) If $S \leq T$ then $\mathcal{F}_S \subset \mathcal{F}_T$.
- (d) $X_T 1_{T<\infty}$ is an \mathcal{F}_T -measurable random variable.
- (e) X^T is adapted.
- (f) If X is integrable, then X^T is also integrable.

proof)

- (a) $\{S \land T \leq n\} = \{S \leq n\} \cup \{T \leq n\} \in \mathcal{F}_n \text{ for all } n \geq 0, \text{ so } S \land T \text{ is a stopping times}$
- (b) Directly from the definition, we see that $\phi \mathcal{F}_T$. Also, given $A \in \mathcal{F}_T$ and a sequence $(A_m)_m \subset \mathcal{F}_T$, we have

$$A^{c} \cap \{T \leq n\} = \{T \leq n\} - A \cap \{T \leq n\} \in \mathcal{F}_{n} \quad \Rightarrow A^{c} \in \mathcal{F}_{T}$$
$$(\cup_{m} A_{m}) \cap \{T \leq n\} = \cup_{m} (A_{m} \cap \{T \leq n\}) \in \mathcal{F}_{n} \quad \Rightarrow \cup_{m} A_{m} \in \mathcal{F}_{T}$$

hence \mathcal{F}_T is a σ -algebra.

- (c) Let $A \in \mathcal{F}_S$. Then $A \cap \{T \leq n\} = A \cap \{S \leq n\} \cap \{T \leq n\} \in \mathcal{F}_n$, hence $A \in \mathcal{F}_T$.
- (d) For each $t \in \mathbb{R}$, we have $\{X_T 1_T > t\} = \bigcup_m \{X_m > t, T = n\}$ so for any $n \ge 0$,

$${X_T 1_T > t} \cap {T \le n} = \bigcup_{m=1}^n {X_m > t, T = n} \in \mathcal{F}_n$$

and so $X_T 1_T$ is \mathcal{F}_T -measurable.

(e) By definition of being a stopping time, for any $t \in \mathbb{R}$,

$$\{(X^T)_n > t\} = \{T > n, X_n > t\} \cup \left(\cup_{m=0}^n \{T = m, X_m > t\} \right) \in \mathcal{F}_n$$

so X^T is adapted.

(f) First consider the case where X is non-negative integrable. Then

$$\mathbb{E}(X_n^T) = \mathbb{E}(\mathbb{E}(X_n^T|T)) = \sum_{m \geq n} \mathbb{P}(T=m)\mathbb{E}(X_m) + \mathbb{P}(T>n)\mathbb{E}(X_n) < \infty$$

for any n, so we have the result for non-negative X.

For the general case, divide X into a non-negative and a negative part.

(End of proof) \square

Theorem 2.2.2) (Optional stopping theorem) Let X be a super-martingale and let S, T be bounded stopping times with $S \leq T$ a.s. Then

$$\mathbb{E}[X_T] \le \mathbb{E}[X_S]$$

proof) Fix $n \geq 0$ such that $T \leq n$ a.s. Then

$$X_T = X_S + \sum_{S \le k < T} X_{k+1} - X_k$$
$$= X_S + \sum_{k=0}^{n} (X_{k+1} - X_k) 1_{S \le k < T}$$

Now $\{S \leq k\}$ is in \mathcal{F}_k and $\{T > k\}$ is in \mathcal{F}_k , so

$$\mathbb{E}[(X_{k+1} - X_k) 1_{S \le k < T}] = \mathbb{E}[\mathbb{E}[(X_{k+1} - X_k) 1_{S \le k < T} | \mathcal{F}_k]]$$

$$= \mathbb{E}[\mathbb{E}[X_{k+1} - X_k | \mathcal{F}_k] 1_{S < k < T}]$$

but since (X_n) was a super-martingale, $\mathbb{E}[X_{k+1}-X_k|\mathcal{F}_k] \leq 0$ a.s. and therefore $\mathbb{E}[(X_{k+1}-X_k)1_{S\leq k < T}] \leq 0$ a.s. Hence $\mathbb{E}(X_T) \leq \mathbb{E}(X_S)$.

(End of proof) \square

•Note that X is a sub-martingale if and only if (-X) is a super-martingale, and that X is a martingale if and only if X and (-X) are super-martingales. Hence, we obtain sub-martingale and martingale versions of the theorem :

If
$$(X_n)$$
 is a sub-martingale, $\mathbb{E}[X_T] \geq \mathbb{E}[X_S]$
If (X_n) is a martingale, $\mathbb{E}[X_T] = \mathbb{E}[X_S]$

Theorem 2.2.3.) Let X be an adapted integrable process. Then the followings are equivalent.

- (a) X is a super-martingale.
- (b) for all bounded stopping times T and stopping time S,

$$\mathbb{E}(X_T|\mathcal{F}_S) \leq X_{S \wedge T}$$
 a.s.,

- (c) for all stopping times T, X_T is a super-martingale,
- (d) for all bounded stopping times T and all stopping times S with $S \leq T$ a.s,

$$\mathbb{E}(X_T) \leq \mathbb{E}(X_S)$$

 \star The theorem gives an inverse statement of the optional stopping theorem.

proof)

(a) \Rightarrow (b) Suppose X is a super-martingale and S, T are stopping times. Let $T \leq n$, for some $n < \infty$. Then

$$X_T = X_{S \wedge T} + \sum_{k=0}^{T} (X_{k+1} - X_k) 1_{S \le k < T} \cdot \dots \cdot (*)$$

Let $A \in \mathcal{F}_S$. Then $A \cap \{S \leq k\} \in \mathcal{F}_k$ and $\{T > k\} \in \mathcal{F}_k$ so

$$\mathbb{E}[(X_{k+1} - X_k) 1_{S < k < T} 1_A] = \mathbb{E}[\mathbb{E}[(X_{k+1} - X_k) 1_{S < k < T} 1_A | \mathcal{F}_k]] \le 0$$

and

$$\mathbb{E}[(X_T - X_{S \wedge T})1_A] = \mathbb{E}[\sum_{n=0}^T (X_{k+1} - X_k)1_{S \leq k < T}1_A] \leq 0$$

$$\Rightarrow \mathbb{E}[X_T 1_A] \leq \mathbb{E}[X_{S \wedge T}1_A]$$

But since this inequality is true for any $A \in \mathcal{F}_S$ and noting that $X_{S \wedge T} \in \mathcal{F}_S$), we see

$$\mathbb{E}[X_T|\mathcal{F}_S] \leq X_{S \wedge T}$$
 a.s.

The inclusions (b) \Rightarrow (c) and (c) \Rightarrow (d) are obvious.

(d) \Rightarrow (a) Let $m \leq n$ and $A \in \mathcal{F}_n$. Set $T = m1_A + n1_{A^c}$. Then T is a stopping with $T \leq n$. Then

$$\mathbb{E}(X_n 1_A - X_m 1_A) = \mathbb{E}(X_n) - \mathbb{E}(X_T) \le 0$$

(note, if $\omega \in A$ then $(X_n 1_A - X_m 1_A)(\omega) = X_n(\omega) - X_m(\omega)$ and 0 otherwise) so

$$\mathbb{E}[X_n|\mathfrak{F}_m] \leq X_m$$

(End of proof) \square

2.3. Doob's upcrossing inequality

- Let X be a random process and let $a, b \in \mathbb{R}$ s.t. a < b. Fix $\omega \in \Omega$. By an **upcrossing** of [a, b] by $X(\omega)$, we mean an interval of times $\{j, j+1, \cdots, k\}$ s.t. $X_j(\omega) < a, X_k(\omega) > b$.
- Write $U_n[a,b](\omega)$ for the number of disjoint upcrossings contained in $\{0,1,\cdots,n\}$, and $U_n[a,b]\nearrow U[a,b]$ as $n\to\infty$.

Theorem 2.3.1.) (Doob's upcrossing inequality) Let X be a *super-martingale*. Then

$$(b-a)\mathbb{E}[U[a,b]] \le \sup_{n>0} \mathbb{E}[(X_n-a)^-]$$

(Recall, $x^- = (-x) \vee 0$)

Set $T_0 = 0$ and define recursively for $k \ge 0$,

$$S_{k+1} = \inf\{m \ge T_k : X_m < a\}, \quad T_{k+1} = \sup\{m \ge S_{k+1} : X_m > b\}$$

Note that if $T_k < \infty$, then $\{S_k, S_k + 1, T_k\}$ is an upcrossing of [a, b] by X, and T_k is the time of completion of the k - th upcrossing. Also note that $U_n[a, b] \le n$. For $m \le n$, we have

$$\{U_n[a,b] = m\} = \{T_m \le n < T_{m+1}\}$$

On this event,

$$X_{T_k \wedge n} - X_{S_k \wedge n} = \begin{cases} X_{T_k} - X_{S_k} \ge b - a & \text{if } k \le m \\ X_n - X_{S_k} \ge X_n - a & \text{if } k = m1, S_{m+1} \le n \\ 0 & \text{otherwise} \end{cases}$$

Hence

$$\sum_{k=1}^{n} (X_{T_k \wedge n} - X_{S_k \wedge n}) \ge (b-a)U_n[a,b] + X_n - a$$

$$\ge (b-a)U_n[a,b] - (X_n - a)^{-1}$$

Since X is a super-martingale and $T_k \wedge n$ and $S_k \wedge n$ are bounded stopping times with $S_k \leq T_k$, by optional stopping theorem, we have

$$\mathbb{E}(X_{T_k \wedge n}) \leq \mathbb{E}(X_{S_k \wedge n})$$

By $\mathbb{E}(\sum_{k=1}^{n}(X_{T_k\wedge n}-X_{S_k\wedge n}))$ we get

$$(b-a)\mathbb{E}(U_n[a,b]) \le \sum_{n>0} \mathbb{E}[(X_n-a)^-]$$

Apply monotone convergence, with $n \to \infty$, then we are done.

(End of proof) \square

This theorem does not seem to have any significance at the moment, but it will turn out to be important later on.

2.4. Doob's maximal inequalities.

Define
$$X_n^= \sum_{k \geq n} |X_k|$$

In the next two theorems, we see that the martingale (or sub-martingale) property allows us to obtain estimates on this X_n^* in terms of expectations for X_n .

Theorem 2.4.1) (Doob's maximal inequality) Let X be a martingale or a non-negative sub-martingale. Then for all $\lambda \geq 0$,

$$\lambda \mathbb{P}(X_n^* \ge \lambda) \le \mathbb{E}(|X_n| 1_{\{X^* > \lambda\}}) \le \mathbb{E}(|X_n|)$$

proof) If X is a martingale, then |X| is a non-negative sub-martingale. It suffices to consider the case where X is a non-negative sub-martingale.

Set $T = \inf\{k \geq 0 : X_k \geq \lambda\} \wedge n$. Then T is a stopping time and $T \leq n$, so by optional stopping, has

$$\mathbb{E}(X_n) \ge \mathbb{E}(X_T) = \mathbb{E}(X_T 1_{X_n^* \ge \lambda}) + \mathbb{E}(X_T 1_{X_n^* < \lambda})$$
$$= \mathbb{E}(\lambda 1_{X_n^* > \lambda}) + \mathbb{E}(X_n 1_{X_n^* < \lambda})$$

and

$$\mathbb{E}(X_n 1_{X^* \ge \lambda}) \ge \lambda \mathbb{P}(X_n^* \ge \lambda)$$

(End of proof) \square

Theorem 2.4.2) (Doob's L^p -inequality) Let X be a martingale or a non-negative sub-martingale. Then, for all p > 1 and q = p/(p-1), we have

$$\parallel X_n^* \parallel_p \leq q \parallel X_n \parallel_q$$

proof) Again, it suffices to consider when X is a non-negative sub-martingale. Fix $k < \infty$. Then

$$\mathbb{E}[(X_n^* \wedge k)^p] = \mathbb{E} \int_0^k p \lambda^{p-1} 1_{\{x_n^* \lambda\}} d\lambda \quad \text{(integration by parts)}$$

$$= \int_0^k p \lambda^{p-1} \mathbb{P}(X_n^* \ge \lambda) d\lambda \quad \text{(Fubini)}$$

$$\leq \int +0^k p \lambda^{p-2} \mathbb{E}(X_n 1_{X_n^* \ge \lambda}) d\lambda \quad \text{(Doob's maximal inequality)}$$

$$= \frac{p}{p-1} \mathbb{E}(X_n (X_n^* \wedge k)^{p-1})$$

$$\leq q \parallel X_n \parallel_p \parallel X_n^* \wedge k \parallel_p^{p-1} \quad \text{(H\"older's inequality)}$$

Hence, $\|X_n^* \wedge k\|_p \le q \|X_n\|_p$. Apply monotone convergence theorem with $k \to \infty$, then we have the desired result.

(End of proof) \square

Doob's maximal and L^p inequalities have different versions which apply under the same hypothesis to

$$X^* = \sum_{n \ge 0} |X_n|$$

since $X_n^* \nearrow X^*$. Letting $n \to \infty$ in Doob's maximal inequality gives

$$\lambda \mathbb{P}(X^* \geq \lambda) \lim_{n \to \infty} \lambda \mathbb{P}(X_n^* \geq \lambda) \leq \sup_{n \geq 0} \mathbb{E}(|X_n|)$$

We can then replace $\lambda \mathbb{P}(X^* > \lambda)$ by $\lambda \mathbb{P}(X^* \ge \lambda)$ by taking limits from the right in λ . Similarly, for $p \in (1, \infty)$ by monotone convergence,

$$\parallel X^* \parallel_p \le q \sup_{n>0} \parallel X_n \parallel_p$$