Abschlussklausur

Betriebssysteme

5. Juli 2012

Name:
Vorname:
Matrikelnummer:
Studiengang:

Hinweise:

- Tragen Sie zuerst auf allen Blättern (einschließlich des Deckblattes) Ihren Namen, Ihren Vornamen und Ihre Matrikelnummer ein. Lösungen ohne diese Angaben können nicht gewertet werden.
- Schreiben Sie die Lösungen jeder *Teil*aufgabe auf das jeweils vorbereitete Blatt. Sie können auch die leeren Blätter am Ende der Heftung nutzen. In diesem Fall ist ein Verweis notwendig. Eigenes Papier darf nicht verwendet werden.
- Legen Sie bitte Ihren *Lichtbildausweis* und Ihren *Studentenausweis* bereit.
- Als Hilfsmittel ist ein nicht programmierbarer Taschenrechner zugelassen.
- Mit Bleistift oder Rotstift geschriebene Ergebnisse werden nicht gewertet.
- Die Bearbeitungszeit dieser Abschlussklausur beträgt 90 Minuten.
- Stellen Sie sicher, dass Ihr Mobiltelefon ausgeschaltet ist. Klingelnde Mobiltelefone werden als Täuschungsversuch angesehen und der/die entsprechende Student/in wird von der weiteren Teilnahme an der Klausur ausgeschlossen!

Bewertung:

1)	2)	3)	4)	5)	6)	7)	8)	9)	Σ	Note

Abschlussklausur

Betriebssysteme

5.7.2012 Dr. Christian Baun

Aufgabe 1 (1+1+2+1+4+1+2+2+2+1+1 Punkte)

- a) Geben Sie einen digitalen Datenspeicher an, der mechanisch arbeitet.
- b) Geben Sie zwei rotierende magnetische digitale Datenspeicher an.
- c) Geben Sie vier nichtrotierende magnetische digitale Datenspeicher an.
- d) Beschreiben Sie, was wahlfreier Zugriff ist.
- e) Nennen Sie vier Vorteile, die **Datenspeicher ohne bewegliche Teile** gegenüber Datenspeichern mit beweglichen Teilen haben.
- f) Geben Sie einen nicht-persistenten Datenspeicher an.
- g) Zwei Faktoren sind für die Zugriffszeit einer Festplatte verantwortlich. Geben Sie deren Namen an.
- h) Beschreiben Sie die beiden Faktoren, die für die Zugriffszeit einer Festplatte verantwortlich sind.
- i) Der Tertiärspeicher wird in zwei Kategorien unterschieden. Geben Sie deren Namen an.
- j) Beschreiben Sie die beiden Kategorien, in die der **Tertiärspeicher** unterschieden wird.
- k) Es gibt zwei Arten von NAND-Speicher. Geben Sie deren Namen an.
- l) Beschreiben Sie die Aufgabe eines Wear Leveling-Algorithmus.

Aufgabe 2 (6+5+3+1+1) Punkte

- a) Tragen Sie die Namen der Zustände in die Abbildung des 6-Zustands-Prozessmodells ein.
- b) Schreiben Sie in die Abbildung zu jedem **Zustandsübergang** in wenigen Worten, was beim Zustandsübergang im Betriebssystem geschieht.
- c) Welche drei Arten von **Prozesskontextinformationen** speichert das Betriebssystem?
- d) Welche Art von Prozesskontextinformationen wird nicht im **Prozesskontrollblock** gespeichert?
- e) Warum werden nicht alle Prozesskontextinformationen im **Prozesskontrollblock** gespeichert?

Aufgabe 3 (1+4+4 Punkte)

- a) Was ist die Kernaussage der Anomalie von Laszlo Belady?
- b) Zeigen Sie **Belady's Anomalie** anhand eines Beispiels, indem Sie die Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität von drei Datenrahmen und einmal mit vier Datenrahmen durchführen. Die Anomalie soll klar ersichtlich sein.
- c) Geben Sie für beide Szenarien in Teilaufgabe b jeweils die **Hitrate** und die **Missrate** an.

Aufgabe 4 (3+3+1+1 Punkte)

- a) Der Hauptprozessor besteht aus mindestens drei Komponenten. Geben Sie deren Namen an.
- b) Rechnersysteme enthalten drei digitale Busse. Geben Sie deren Namen an.
- c) Was ist der Systembus oder Front Side Bus?
- d) Der Chipsatz besteht aus zwei Komponenten. Geben Sie deren Namen an.

Aufgabe 5 (2+2+2 Punkte)

Auf einem Einprozessorrechner sollen sechs Prozesse verarbeitet werden.

Prozess	CPU-Laufzeit [ms]	Ankunftszeit [ms]
A	4	0
В	5	1
С	2	3
D	4	6
E	5	8
F	5	11

- a) Skizzieren Sie die Ausführungsreihenfolge der Prozesse mit einem Gantt-Diagramm (Zeitleiste) für **First** Come First Served (FCFS) und Shortest Remaining Time First (SRTF).
- b) Berechnen Sie die mittleren Laufzeiten der Prozesse.
- c) Berechnen Sie die mittleren Wartezeiten der Prozesse.

Aufgabe 6 (6 Punkte)

Kreuzen Sie bei jeder Aussage zur Speicherverwaltung an, ob die Aussage wahr oder falsch ist.

Aufgabe 7 (8 Punkte)

Kreuzen Sie bei jeder Aussage zu Dateisystemen an, ob die Aussage wahr oder falsch ist.

Aufgabe 8 (1+1+1+1+2+3+4 Punkte)

- a) Was ist das Ziel des **Dialogbetriebs**?
- b) Welcher Fachbegriff bezeichnet die quasi-parallele Programm- bzw. Prozessausführung?
- c) Was versteht man unter halben Multi-User-Betriebssystemen?
- d) Was ist das wesentliche Kriterium von Echtzeitbetriebssystemen?
- e) Es gibt zwei Arten von Echtzeitbetriebssystemen. Geben Sie deren Namen an.
- f) Es gibt drei Arten von **Kernelarchitekturen**. Geben Sie deren Namen an.
- g) Ordnen Sie die Betriebssysteme **Windows XP**, **GNU HURD**, **Linux** und **MacOS X** den Kernelarchitekturen aus Teilaufgabe f zu.

Aufgabe 9 (1+1+1+1 Punkte)

- a) Was ist eine Race Condition?
- b) Warum sind Race Conditions schwierig zu lokalisieren und zu beheben?
- c) Es gibt ein Konzept, durch das Race Conditions vermieden werden können. Geben Sie den Namen an.
- d) Zwei Probleme können durch **Sperren** entstehen. Geben Sie deren Namen an.

Name:	Vorname:	Matr.Nr.:
Aufgabe	1)	Punkte:

Aufgabe 2)

Punkte:

Name: Vorname: Matr.Nr.:	
--------------------------	--

Aufgabe 3)

Punkte:

Cache-Anfrage:

- 1. Datenrahmen:
- 2. Datenrahmen:
- 3. Datenrahmen:

---- Fehler

- 1. Datenrahmen:
- 2. Datenrahmen:
- 3. Datenrahmen:
- 4. Datenrahmen:

Fehler

Name:	Vorname:	Matr.Nr.:
Aufgabe 4)		Punkte:

Aufgabe 5)

Punkte:																					
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Prozess	CPU-Laufzeit [ms]	Ankunftszeit [ms]
A	4	0
В	5	1
С	2	3
D	4	6
E	5	8
F	5	11

SRTF

Name:	Vorname:	Matr.Nr.:	
Aufgabe (6)	Punkte:	

Kreuzen Sie bei jeder Aussage in der Tabelle an, ob sie wahr oder falsch ist.

Aussage	wahr	falsch
Der Real Mode ist gut für Multitasking-Systeme geeignet.		
Beim Protected Mode läuft jeder Prozess in seiner eigenen, von anderen		
Prozessen abgeschotteten Kopie des physischen Adressraums.		
Bei statischer Partitionierung kommt es zu interner Fragmentierung.		
Bei dynamischer Partitionierung ist externe Fragmentierung unmöglich.		
Das Betriebssystem verwaltet bei Segmentierung für jeden Prozess eine		
Segmenttabelle.		
Interne Fragmentierung gibt es bei Segmentierung nicht.		
Externe Fragmentierung gibt es bei Segmentierung nicht.		
Bei Segmentierung haben die Segmente eine unterschiedliche Länge.		
Moderne Betriebssysteme verwenden ausschließlich Segmentierung.		
Ein Vorteil langer Seiten beim Paging ist geringe interne Fragmentierung.		
Ein Nachteil kurzer Seiten beim Paging ist, das die Seitentabelle sehr		
groß werden kann.		
Die MMU übersetzt beim Paging logische Speicheradressen mit der Sei-		
tentabelle in physische Adressen.		

Für jede korrekte Antwort gibt es 0.5 Punkte. Für jede falsche Antwort werden 0.5 Punkte abgezogen. Es können maximal 6 Punkte und nicht weniger als 0 Punkte insgesamt erreicht werden.

name:	vorname:	Matr.Nr.:	
Aufgabe '	7)	Punkte:	

Kreuzen Sie bei jeder Aussage in der Tabelle an, ob sie wahr oder falsch ist.

Aussage	wahr	falsch
Inodes speichern alle Verwaltungsdaten (Metadaten) der Dateien.		
Dateisysteme adressieren Cluster und nicht Blöcke des Datenträgers.		
Je kleiner die Cluster, desto größer ist der Verwaltungsaufwand für große		
Dateien.		
Je größer die Cluster, desto geringer ist der Kapazitätsverlust durch in-		
terne Fragmentierung.		
Unter UNIX haben Dateiendungen schon immer eine große Bedeutung.		
Moderne Dateisysteme arbeiten so effizient, dass Puffer durch das Be-		
triebssystem nicht mehr üblich sind.		
Absolute Pfadnamen beschreiben den kompletten Pfad von der Wurzel		
bis zur Datei.		
Das Trennzeichen in Pfadangaben ist bei allen Betriebssystemen gleich.		
Ein Vorteil der Blockgruppen bei ext2 ist, das die Inodes physisch nahe		
bei den Clustern liegen, die sie adressieren.		
Eine Dateizuordnungstabelle (FAT) erfasst belegten und freien Cluster		
im Dateisystem.		
Bei der Master File Table von NTFS ist Fragmentierung unmöglich.		
Bei Dateisystemen mit Journal wird die Anzahl der Schreibzugriffe durch		
das Journal reduziert.		
Journaling-Dateisysteme grenzen die bei der Konsistenzprüfung zu über-		
prüfenden Daten ein.		
Bei Dateisystemen mit Journal sind Datenverluste garantiert ausge-		
schlossen.		
Vollständiges Journaling führt alle Schreiboperation doppelt aus.		
Extents verursachen weniger Verwaltungsaufwand als Blockadressierung.		

Für jede korrekte Antwort gibt es 0,5 Punkte. Für jede falsche Antwort werden 0,5 Punkte abgezogen. Es können maximal 8 Punkte und nicht weniger als 0 Punkte insgesamt erreicht werden.

Name:	Vorname:	Matr.Nr.:
Aufgabe	8)	Punkte:

Name:	Vorname:	Matr.Nr.:
Aufgabe 9)		Punkte:

Zusatzblatt zu Aufgabe.....

Verwenden Sie dieses Blatt nur für eine Teilaufgabe! Verweisen Sie bei der zugehörigen Aufgabe gut sichtbar auf dieses Blatt!

Zusatzblatt zu Aufgabe.....

Verwenden Sie dieses Blatt nur für eine Teilaufgabe! Verweisen Sie bei der zugehörigen Aufgabe gut sichtbar auf dieses Blatt!