

IMPACT OF DATA SMELLS ON FAIRNESS IN ML SOLUTIONS

Annamaria Basile – 0522501844 Mario Cicalese – 0522501799 Paolo Carmine Valletta – 0522501828

ANNAMARIA Basile

Software Engineering &
IT Management

OUR TEAM

MARIO CICALESE

Data Science & Machine Learning

PAOLO CARMINE VALLETTA

Software Engineering &
IT Management

TABLE OF CONTENTS

O1 PROJECT CONTEXT

DATA SMELLS

Data smells are indicators suggesting the presence of issues within a dataset. Data smells are not explicit errors or bugs but rather characteristics of the data that may indicate potential problems.

EXAMPLES

MISSING VALUES

- OUTLIER VALUES
- DUPLICATED VALUES SUSPECT VALUES

FAIRNESS

In the context of decision-making, **Fairness** is the presence of impartiality and equal treatment toward individuals or groups, without any prejudice or favoritism based on their inherent or acquired characteristics.

FAIRNESS METRICS

We analyzed three fairness metrics:

- SPD (Statistical Parity Difference): calculates the disparity in favorable rates between the privileged and unprivileged groups.
 - AOD (Average Odds Difference): captures the average discrepancy in false-positive rates and true-positive rates between the privileged and unprivileged groups.
- **EOD** (Equal Opportunity Difference): assesses the disparity in true-positive rates between the privileged and unprivileged groups

Bias mitigation algorithms are employed in literature **to address** ethical bias issues (Fairness) within machine-learning solutions.

They are divided into three types:

- Pre-processing: work on the training data
- In-processing: work on the model
- Post-processing: works on the model's output

O2 PROJECT GOALS

MAIN OBJECTIVE

Analyze:	The relationship between data smell with fairness and bias mitigation algorithms
For the purpose of:	understanding whether data smells influence the level of fairness of bias mitigation algorithms
From the point of view:	of data engineering aiming to address fairness issues while ensuring quality
In the context of:	ML-enabled System

RESEARCH QUESTIONS

RQ₁: "Does the presence of data smells impact the fairness of machine learning models?"

RQ₂: "Does the presence of data smells impact on the performances of bias mitigation algorithms?"

03 METHODOLOGICAL STEPS

STEPS TO ADDRESS RQ1

1. DATASETS SELECTION

2. TRAINING SHALLOW-ML MODELS

3. COMPUTE FAIRNESS METRICS

4. DETECTION OF DATA SMELLS

5. REFACTORING OF DATA SMELLS

6. ITERATE THE PROCESS

7. RESULT ANALYSIS

STEPS TO ADDRESS RQ2

3. COMPUTE FAIRNESS METRICS

4. DETECTION AND REFACTORING OF DATA SMELLS

6. ITERATE THE PROCESS

7. RESULT ANALYSIS

04 METHODS AND RESULTS FOR RQ1

RQ₁: "Does the presence of data smells impact the fairness of machine learning models?"

DATASETS SELECTION

SEX

RACE

SEX

AGE

RACE

DATASETS SELECTION

ADULT

classification models to analyze and compare their performance.

UNPRIVILEGED GROUP

SEX: FEMALE

RACE: NOT WHITE

SEX: MALE

RACE: NOT CAUCASIAN

AGE: AGE >= 25

AGE < 60

DETECTION OF DATA SMELLS

DSD* TOOL FOUND 7 TYPES OF DATA SMELL:

- DUPLICATED VALUE DATA SMELLS
- CASING SMELL
- MISSING VALUE SMELL
- EXTREME VALUE SMELL

- INTEGER AS FLOATING POINT NUMBER SMELL
- SUSPECT SIGNAL SMELL
- INTEGER AS STRING SMELL

REFACTORING OF DATA SMELLS

EXTREME VALUE — MIN MAX NORMALIZATION

RESULT ANALYSIS

ADDRESS OF RQ1

Answer RQ₁: "To summarize the results, after we addressed the data smells from the datasets, all the Fairness metrics outputs changed. Thus, The presence of data smells has influenced each Fairness metric calculated, either positively or negatively."

05 METHODS AND RESULTS FOR RQ2

RQ₂: "Does the presence of data smells impact on the performances of bias mitigation algorithms?"

BIAS MITIGATION ALGORITHMS

We have used **three** Bias Mitigation Algorithms available on AI FAIRNESS 360 (AIF-360):

- Reweighing (Pre-processing):
 Adjusts weights of instances in the dataset, creating a balanced dataset that promotes fairness in model training.
 - Exponentiated Gradient Reduction (In-processing):
 Optimizes a model to reduce bias during training by
 adjusting weights through an exponentiated gradient
 approach, balancing fairness and accuracy.
- Equalized Odds (post-processing):
 Adjusts the output predictions to ensure equal true positive and false positive rates across different demographic groups, promoting fairness in the final model outcomes.

Raw Model	SPD	AOD	EOD
Decision Tree	-0.088	-0.09	-0.042
SVM	-0.127	-0.127	-0.075
Random Forest	-0.164	-0.169	-0.093

Tidy Model	SPD	AOD	EOD
Decision Tree	-0.062	-0.06	-0.041
SVM	-0.004	-0.004	-0.001
Random Forest	-0.072	-0.079	-0.043

Tidy Model	SPD	AOD	EOD
Decision Tree	0.031	0.06	0.012
SVM	-0.044	-0.024	-0.034
Random Forest	-0.038	-0.015	-0.036

RESULT ANALYSIS

Raw Model	SPD	AOD	EOD
Decision Tree	-0.088	-0.09	-0.042
SVM	-0.127	-0.127	-0.075
Random Forest	-0.164	-0.169	-0.093

Tidy Mode Decision T SVM Random F

Dataset: Compas

Bias mitigation algorithm: Exponentiated GR

Protected attribute: Race

D **EOD**

0.012

)24 -0.034

-0.036

ADDRESS OF RQ2

Answer RQ₂: there is **no evidence** that the performance of these algorithms changed based on the presence of data smells. This is because the fairness metrics calculated after applying the algorithms **always** changed in the same proportion, regardless of whether the algorithms were applied to the raw or tidy datasets.

Removal of Relevant Data

The cleaning process may have removed useful information that bias mitigation algorithms rely on. Data smells can sometimes contain signals that help identify and correct biases.

Altered Data Distribution:

Pre-processing may have unpredictably altered data distribution, making bias mitigation algorithms less effective. These algorithms often rely on certain data distribution assumptions, and significant changes can reduce their effectiveness.

Models Adapted to Smells:

Bias mitigation algorithms may use patterns in data smells to identify disparities. Removing these patterns can reduce the effectiveness of bias mitigation.

CONCLUSIONS

CONCLUSIONS

The aim of our study was to explore:

Whether datasmells had an impact on the fairness of Al decision making

The presence of data smells impacts the fairness of ML models

How these data smells impact the performance of bias mitigation algorithms.

The performance of bias mitigation algorithms are not influenced by data smells

THANKS!

Do you have any questions?

a.basile40@studenti.unisa.it m.cicalese21@studenti.unisa.it p.valletta2@studenti.unisa.it

