- 05) Оценка на собственные числа ограничения. Оценка на след.
- 1. С.ч. операторов A и B. По К Φ , мин/макс для μ_i берется по подпр. внутри соотв. подпр. для λ . 2. Это след: взять матрицу A в ортонорм. базисе u_i . $v_i = (0, \dots, 1, \dots, 0)^T$ $A_{i,i} = v_i^T A v_i = q(u_i)$. Оценка: почленные нер-ва из 1.
- 07) Сингулярные значения и SVD-разложение. $X^* = X^\top, \langle X^*e_i, e_j \rangle = \langle e_i, Xe_j \rangle, \sigma_i = \sqrt{d_i} > 0$ с.ч. A^*A . SVD $A \colon U \to V \; \exists \; \text{о/н} \; u_i, v_j \colon \; \text{матр} \; A = \Sigma(\sigma_{1..r} \; \text{на диаг})$ $(X = L\Sigma R). \; e_i \text{o/н} \; \text{с.в.} \; \langle Ae_i, Ae_j \rangle = \langle A^*Ae_i, e_j \rangle = \langle d_ie_i, e_j \rangle, f_i = \frac{Ae_i}{\sqrt{d_i}} \; \text{доп до базиса.} \; R = C^{-1} = C^\top, C \; \text{столбцы} \; e_i.$
- 08) Приближение матрицей указанного ранга и SVD-разложение. Возможность применения к сжатию изображения.

рг из Б6 \Leftrightarrow ближ по $||X||_F = \sqrt{\text{Tr}\,X^\top X}$. $X = L\Sigma R$. рг на $\left\langle v_1^\top..v_k^\top \right\rangle$. v_i базис $X^\top X$ и строки R. рг a на $V^{(k)} = \sum a v_i v_i^\top$. $X^{(k)} = L\Sigma(\sum R v_i v_i^\top) = L\Sigma R^{(k)} = L\Sigma^{(k)} R$. Сж $L^{(k)}\Sigma^{(k)}R^{(k)}$. $2kn + k \to 2kn$ при $k < \frac{n}{2}$. Минор $k^2 + 2k(n-k) + 2k$.

- 09) Положительные матрицы. Теорема Перрона. Док-во Перрона: положительность $(A|x| \ge |x| \Rightarrow A|x| < \frac{A^n}{(1+\varepsilon)^n}A|x| \to 0$ противореч.), единственность (сонапр. коорд. $v \Leftarrow \sum_j A_{kj}|v_j| = |\sum_j A_{kj}v_j|$) и некратность (Жорд. клетки; либо $\exists c,i: |x_1-cx_2|_i = 0$, либо $Ax_2 = x_2 + x_1$)
- 10) Единственность положительного собственного вектора. Применение к случайному блужданию. Знаем предел $\lim_{k\to\infty}A^kv$, если у A макс по модулю с. ч. $\lambda=1$ кратности 1. A=P(G) нам не походит, замена P(G): $P_{\alpha}(G)=(1-\alpha)P(G)+\alpha\frac{1}{n}J,\ \alpha\in(0,1),\ \forall i,j\ J_{ij}=1$ а это норм, Перрон гарантирует.
- 13) Две оценки на размер максимального независимого множества. Натянуть подпространство на множество, следствие из Куранта-Фишера, нулевая квадратичная форма Характеристический вектор множества, разложить по ортонорм. базису регулярного(!) графа с $u_1=(1,\cdots,1)\frac{1}{\sqrt{n}}$
- 17) Тензорное произведение линейных отображений. Кронекерово произведение. Тензорное произведение операторов и его собственные числа. Категорное произведение графов. Единств: определено на тензорятах; \exists : отобразить $U_1 \times \cdots \times U_k$ в $V_1 \otimes \cdots \otimes V_K$ полилин. (композ полилин.) \Rightarrow (опр. тенз.) \exists !. Наше правило подходит. Матрица: расписать $(\sum\limits_k A_{k,i} f_k) \otimes (\sum\limits_l B_{l,j} f'_l)$. С.ч. $A \otimes B$: жорданов базис.
- 27) Лемма Гаусса. Содержание многочлена. Делимость в Q(R)[x] и в R[x]. Лемма: Пусть нет, возьмём $\min a_i, b_j \not / p$, тогда $c_{i+j} \not / p$. Следствие: поделим на $\cot g, h$, убедимся что $\cot f = 1$. Лемма про Q(R)[x]: d_1, d_2 НОК знаменателей, $c = \frac{d_1}{d_2}$.
- 28) Факториальность кольца многочленов над факториальным кольцом. R[x] факториально и простые в нём: $f=p\in R, \ f: \mathrm{cont}(f)=1$ непр. в Q(R)[x]. Док-во: 1) они и правда простые 2) в них раскладывается (посмотрим в Q(R)) 3) единственность \Rightarrow других нет
- 29) Редукционный признак неприводимости. Примеры. Признак Эйзенштейна. $a_n \not/ p$, f неприводим в $R/p[x] \Rightarrow$ неприводим над Q(R). cont = 1 и неприводимость над $Q(R) \Rightarrow$ неприводимость над R. $a_n \not/ p$, все $a_i : p \ i < n$, но $a_0 \not/ p^2$, то многочлен f(x) неприводим. Пусть $b_0 \not/ p$.
- 30) Алгоритм Кронекера. Сведение для многочленов от нескольких переменных. 1) Перебираем наборы делителей $f(i), 0 \le i \le \frac{degf}{2}$, интерполируем, проверяем. 2) Различным разложениям $f(x_1, \dots, x_n)$ соответствуют различные разложения $f(x, \dots, x^{d^{n-1}})$ для d больших $\max_{i=1}^n \{\deg_{x_i} f\}$. Рассмотреть образ x^{α} .
- 31) Лемма Гензеля. Разложение на множители при помощи леммы Гензеля. Доказательство леммы: Индукция по к. Строим для k+1. Помним, что $\forall f:\ p^k f \equiv p^k \overline{f} \pmod{p^{k+1}}$. $\overline{h} \equiv \hat{h} + p^k a(x) \Rightarrow \overline{h} \overline{g} \equiv \hat{g} \hat{h} + p^k (a(x)g + b(x)h)$. С другой стороны $f \hat{g} \hat{h} = p^k c(x) \Rightarrow a,\ b$ берем из ли НОДа g и h
- 32) Степенные суммы. Тождество Ньютона. $0=(-1)^n n\sigma_n+\sum_{k=0}^{n-1}(-1)^k\sigma_k s_{n-k}$, в многочлен подставим корни, просуммируем по всем корням, отдельно случаи k< n добавим нулевые переменные, k> n занулим не входящие в моном переменные
- 33) Целые алгебраические элементы. Замкнутость относительно операций. а алгебраический $==\exists f\in\mathbb{Z}[x]:f(a)=0.$ Замкнуто: $\prod(x-(a_i+b_j))$ симметрично по i, тогда коэффициенты выражаются через симметрические, симметрический по b_i все коэффициенты целые.

39) Конечные поля. Число элементов. Основное уравнение. Эндоморфизм Фробениуса. Корни
 $x^{p^n}-x$ образуют подполе.

Хорошо смотреть на мультипл. группу. Теорема Ферма для групп. Биномиальный коэф. делится на p почти всегда.

- 49) Циклические коды. Эквивалентное описание. Коды БЧХ. Пример.
- $q=p^s,\,m,n$ такие, что q^m-1 : $n,\,2\leq d\leq n,\,l_0\leq n.$ lpha образующая $\mathbb{F}_{q^m}{}^*,\,eta=lpha^{(q^m-1)/n}$
 - 50) Основная теорема про коды БЧХ.

Делится \Leftrightarrow обнуляется на корнях. Пусть плохо \mathbb{F}_q , тогда плохо в \mathbb{F}_{q^m} , определитель.