南方科技大学 2023-2024 年秋季学期 数学分析 III 期中试卷

本试卷共(8) 道大题,满分(100)分

-、(本题满分 10 分) 已知 $G_{x}^{2} \times G_{y}^{2}$ $G_{y}^{2} \cdot j - 4xz \cdot k$

是 R³上的旋度场. 求常数 a,b 的值,并求其向量势.

无源.

二、求下列幂级数的收敛半径(每小题8分,共24分).

 $(1) \sum_{n=1}^{\infty} 3^{n} x^{3n}; (2) \sum_{n=1}^{\infty} (\frac{1}{n} - 1)^{n^{2}} x^{n}; (3) \sum_{n=1}^{\infty} \frac{n^{n}}{n!} x^{n}. \qquad \left(\frac{1}{n} - 1\right)^{n} = 1 - \frac{1}{n}$ $(1 - \frac{1}{n})^{n} \rightarrow \frac{1}{n} (1 - \frac{1}{n})^{n} \rightarrow \frac{1}{n} (1 - \frac{1}{n})^{n}$

三、判断下面数项级数是绝对收敛的,条件收敛的还是发散的,并证明你的结论(每小题 8 分,共 24 分).

(1) $\sum_{n=1}^{\infty} \ln(1+\frac{1}{\sqrt{n}});$ (2) $\sum_{n=1}^{\infty} \frac{\cos n^2}{n^2};$ (3) $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}.$

四、(本题满分 10 分) 设级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 都收敛,且 $\sum_{n=1}^{\infty} b_n$ 是正项级数.

证明: $\sum_{n=1}^{\infty} a_n b_n$ 也收敛.

Diton 25

五、(本题满分 8 分) 设a>0是一个常数,定义 $x_n=n-\frac{1}{n}$ $(n\geq 2)$,讨论级数 $(a+x_0)(a+x_0)$ $(a+x_0)(a+x_0)$ $(a+x_0)(a+x_0)$

的敛散性.

n-1 松

= (2 Cxx2. Cxx3.... Cxxx) 2 (Cxxxx) 2 (Cxxxx) 2

六、(本题满分8分)证明:函数项级数 $\sum_{n=1}^{\infty} \frac{(-x)^n}{n}$ 在[0,1]上一致收敛.

七、(本题满分 8 分) 对 $x \in (0,+\infty)$, 定义 $f(x) = \sum_{n=1}^{\infty} \frac{\sin \frac{x}{n}}{nx}$.

(1) 证明: f(x) 在 $(0,+\infty)$ 上连续;

(2) 证明: $\lim_{x\to 0+} f(x)$ 存在且有限.

女.四次

八、(本题满分 8 分) 设 $f_n(x) \in C([a,b])$, n=1,2,... 已知 $\{f_n(x)\}$ 在 [a,b] 上一致 收敛于 f(x). 证明: 存在(正整数 M) 使得 $|f_n(x)| \le M$ 对任意正整数 n 和任意 $x \in [a,b]$ 成立.

WE, AXE[4.6]: (3)N(E): (4.6]3XA.

1 fn(x) - f(x)] (2.