Sequencing technologies: Sanger (capillary sequencing)

Shendure & Ji, Nat. Biotech. (2008).

Sequencing technologies: High-Throughput

10⁷-10⁸ reads in parallel, limited to ~100bp

In vitro adaptor ligation

Generation of polony array

On-chip clonal colonies of original fragment

Cyclic array sequencing (>10⁶ reads/array)

Cycle 3

Optical reading

Sequencing technologies: High-Throughput

Current trends:

- increase read length (sequence single molecule)
- use non-optical detection (image analysis is error-prone and laborious)
- decrease cost (smaller volumes, higher throughput)

Sequencing technologies: High-Throughput

Current trends:

- increase read length (sequence single molecule)
- use non-optical detection (image analysis is error-prone and laborious)
- decrease cost (smaller volumes, higher throughput)

History of genome sequencing projects

Human Genome Project: 1990-2000

- Two competing initiatives with different strategies:
 - Public consortium
 - Private company (Celera Genomics, J. Craig Venter)

- Hierarchical sequencing:
 - -Create library of ordered clones
 - -Fragment and sequence them
 - -Assemble fragments
- Whole genome shotgun sequencing:
 - -Directly fragment the whole genome
 - -Use paired-end sequencing to resolve repeats

Fragments assembly

- General Procedure
 - -Overlap → Layout → Consensus
- Difficulties:
 - -Computing overlap with sequencing errors (1-3%) and unknown orientation

Fragments assembly

- General Procedure
 - -Overlap → Layout → Consensus
- Difficulties:
 - -Computing overlap with sequencing errors (1-3%) and unknown orientation

Fragments assembly

- General Procedure
 - -Overlap → Layout → Consensus
- Difficulties:
 - -Computing overlap with sequencing errors (1-3%) and unknown orientation

Contig (contiguous sequence)

Overlap size

- Human genome is 3Gb, $log_4(3\times10^9)=15$
- We are assuming up to 3% errors, so two words with a few differences can be considered the same
- If we use 35mers with up to 6 "mistakes", this is still "unique" in the genome
- PHRED score: $-10 \times \log_{10}$ (Prob of wrong base call)

Iseli et al. PLoS ONE (2007)

	WGD	tDNA	LINEs/ SINEs	LTRs	DNA
Yeast	1	274	1	52 elem.	_
Drosophila	0	292	0.7%	1.5%	0.7%
Mouse	2	335	27%	10%	1%
Human	2	345	34%	8%	3%

• WGD: Whole Genome Duplications

• tDNA: genes encoding for tRNA

• LINE: 6-8 Kb, contains 2 ORFs

• SINE: 100-300 bp (Human Alu, Mouse B1/B2)

• LTR: up to 80% of plant genomes

- RepBase: a database of consensus transposable elements
- RepeatMasker: a tool to identify sequences similar to these elements in other sequences (genomes)
- Common strategy in genome assembly is to mask repeats before computing read overlaps

Outcome: Human genome

	Size (Mb)	GC content	Nb genes	N50
Yeast	12	38%	6,696	
Drosophila	169	42%	13,781	
Mouse	2,717	42%	21,879	39Mb
Human	3,102	40%	20,469	46Mb

- N50: size of smallest contig such that 50% genome is covered
- Mycobacterium Tuberculosis GC: 66%

Outcome: Human genome

Other genomes available: Vertebrates

Other genomes available: Flies

12 Drosophila genomes

Other genomes available: yeasts

CBS7877

Malassezia restricta

Other genomes available: yeasts

40 yeast genomes, 1744 bacterial genomes, 2695 virus genomes.

Nature Reviews | Genetics