(11) EP 0 827 738 A1

(12)

DEMANDE DE BRÉVET EUROPEEN

(43) Date de publication: 11.03.1998 Bulletin 1998/11

(51) Int Cl.6: A61K 7/06, A61K 7/13

(21) Numéro de dépôt: 97401997.8

(22) Date de dépôt: 27.08.1997

(84) Etats contractants désignés:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priorité: 06.09.1996 FR 9610921

(71) Demandeur: L'OREAL 75008 Paris (FR)

(72) Inventeurs:

 De La Mettrie, Roland 78110 Le Vesinet (FR) Boudy, Françoise 75012 Paris (FR)

(74) Mandataire: Miszputen, Laurent L'OREAL Département Propriété Industrielle Centre Charles Zviak 90, rue du Général Roguet 92583 Clichy Cédex (FR)

(54) Composition de teinture d'oxydation pour fibres kératiniques comprenant un polymère amphiphile anionique

(57) L'invention concerne une composition de teinture d'oxydation pour fibres kératiniques, en particulier pour fibres kératiniques humaines telles que les cheveux, comprenant, dans un milieu approprié pour la teinture, au moins un précurseur de colorant d'oxydation et éventuellement un ou plusieurs coupleurs, et qui est caractérisée par le fait qu'elle comprend en outre un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé.

L'invention concerne également les procédés et dispositifs de teinture mettant en oeuvre ladite composition d'oxydation.

EP 0 827 738 A:

Description

La présente invention concerne une composition de teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, comprenant au moins un précurseur de colorant d'oxydation et éventuellement un ou plusieurs coupleurs et au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé.

Il est connu de teindre les fibres kératiniques et en particulier les cheveux humains, avec des compositions de teinture contenant des précurseurs de colorants d'oxydation, généralement appelés "bases d'oxydation", en particulier des ortho- ou para- phénylènediamines, des ortho- ou para- aminophénols, et des bases hétérocycliques.

Les précurseurs de colorants d'oxydation sont des composés initialement peu ou pas colorés qui développent leur pouvoir tinctorial au sein du cheveu en présence d'agents oxydants en conduisant à la formation de composés colorés. La formation de ces composés colorés résulte, soit d'une condensation oxydative des «bases d'oxydation» sur ellesmêmes, soit d'une condensation oxydative des «bases d'oxydation» sur des composés modificateurs de coloration, ou «coupleurs», qui sont généralement présents dans les compositions tinctoriales utilisées en teinture d'oxydation et sont représentés plus particulièrement par des métaphénylènediamines, des méta-aminophénols et des métadiphénols, et certains composés hétérocycliques.

La variété des molécules mises en jeu, qui sont constituées d'une part les «bases d'oxydation» et d'autre part par les «coupleurs», permet l'obtention d'une palette très riche en coloris.

Pour localiser le produit de coloration d'oxydation à l'application sur les cheveux afin qu'il ne coule pas sur le visage ou en dehors des zones que l'on se propose de teindre, on a jusqu'ici eu recours à l'emploi d'épaississants traditionnels tels que l'acide polyacrylique réticulé, les hydroxyéthylcelluloses, les cires ou encore à des mélanges d'agents tensio-actifs non-ioniques de HLB (Hydrophilic Lipophilic Balance), qui, convenablement choisis, engendrent l'effet gélifiant quand on les dilue au moyen d'eau et/ou d'agents tensio-actifs.

Cependant, la demanderesse a constaté que les ingrédients du type épaississants traditionnels, tensio-actifs et solvants, freinent généralement la montée du colorant sur les fibres, ce qui se traduit par une nuance terne et aussi par une utilisation plus importante de colorant, de solvant et/ou d'agents tensio-actifs pour solubiliser le colorant, si l'on veut néanmoins obtenir une nuance puissante.

Par ailleurs, elle a également constaté qu'après mélange avec l'oxydant, les compositions tinctoriales contenant le ou les précurseurs de colorants d'oxydation et éventuellement le ou les coupleurs, et en outre lesdits ingrédients, perdaient une partie de leur caractère gélifié et engendraient par voie de conséquence des coulées indésirables.

Or, après d'importantes recherches menées sur la question, la Demanderesse vient maintenant de découvrir qu'il est possible d'obtenir des compositions de teinture d'oxydation (après mélange avec l'oxydant) qui ne coulent pas et restent donc mieux localisées au point d'application, et qui permettent aussi d'obtenir des nuances plus chromatiques (plus lumineuses) et plus puissantes, si on introduit (i) soit dans la composition contenant le ou les précurseurs de colorants d'oxydation et éventuellement le ou les coupleurs [ou composition (A)], soit (ii) dans la composition oxydante [ou composition (B)], ou (iii) dans les deux compositions à la fois, une quantité efficace d'un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé.

Au sens de la présente invention, la chromaticité (luminosité) est définie par la valeur c* dans le système de notation colorimétrique L*, a*, b*, de la Commission Internationale de l'Eclairage (C.I.E.). Cette valeur est égale à la racine carrée de la somme a² + b² (+a est rouge, -a est vert, +b est jaune, -b est bleu). La nuance est d'autant plus lumineuse que la valeur de c* est grande. Dans ce système de notation, L* définit la puissance de la nuance. La nuance est d'autant plus puissante que la valeur de L* est faible (0=noir, 100=blanc).

Ces découvertes sont à la base de la présente invention.

La présente invention a ainsi pour objet une composition de teinture d'oxydation pour fibres kératiniques, en particulier pour fibres kératiniques humaines, telles que les cheveux, du type comprenant, dans un milieu approprié pour la teinture, au moins un précurseur de colorant d'oxydation (base d'oxydation) et, le cas échéant, un ou plusieurs coupleurs, qui est caractérisée par le fait qu'elle contient en outre au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé.

Gràce à la présente invention, il est en outre possible, et ceci de manière avantageuse, de réduire la consommation en agents <u>te</u>nsio-actifs, voire de les supprimer.

L'invention permet également de diminuer la quantité de matières actives colorantes utilisées dans les compositions de teinture, par rapport aux techniques classiques et connues de l'art antérieur.

Un autre objet de la présente invention porte sur une composition prête à l'emploi pour la teinture des fibres kératiniques, qui contient au moins un précurseur de colorant d'oxydation et éventuellement au moins un coupleur, et au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique

25

20

5

10

35

45

40

insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, et un agent oxydant.

L'invention vise également un procédé de teinture des fibres kératiniques, et en particulier des fibres kératiniques humaines telles que les cheveux, consistant à appliquer sur ces fibres au moins une composition (A1) contenant, dans un milieu approprié pour la teinture, au moins un précurseur de colorant d'oxydation et éventuellement au moins un coupleur, en association avec au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, la couleur étant révélée à pH alcalin, neutre ou acide à l'aide d'un agent oxydant qui est mélangé juste au moment de l'emploi à la composition (A1) ou qui est présent dans une composition (B1) appliquée séquentiellement sans rincage intermédiaire.

L'invention vise aussi une variante de ce procédé, qui consiste à appliquer sur les fibres au moins une composition (A2) contenant dans un milieu approprié pour la teinture, au moins un précurseur de colorant d'oxydation et éventuellement au moins un coupleur, et ceci en la présence ou l'absence de polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, la couleur étant révélée à pH alcalin, neutre ou acide à l'aide d'une composition oxydante (B2) qui contient un agent oxydant et une quantité efficace d'au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, et qui est mélangée juste au moment de l'emploi à la composition (A2) ou qui est appliquée séquentiellement sans rinçage intermédiaire.

L'invention a également pour objet des dispositifs de teinture ou « kits » à plusieurs compartiments, dont le premier compartiment contient au moins un précurseur de colorant d'oxydation, éventuellement au moins un coupleur, et au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, et le deuxième compartiment un agent oxydant.

Selon une autre variante, l'invention a également pour objet des dispositifs de teinture ou « kits » à plusieurs compartiments, dont le premier compartiment contient au moins un précurseur de colorant d'oxydation, éventuellement au moins un coupleur, et ceci en la présence ou en l'absence de polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, et le deuxième compartiment un agent oxydant et une quantité efficace d'au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé.

L'invention concerne aussi l'utilisation de la composition de teinture d'oxydation ci-dessus définie ou d'un dispositif de teinture ou « kit » à plusieurs compartiments tel que défini ci-avant pour la teinture des fibres kératiniques humaines telles que les cheveux.

Mais d'autres caractéristiques, aspects, objets et avantages de l'invention apparaîtront encore plus clairement à la lecture de la description et des exemples qui suivent.

Les polymères amphiphiles anioniques comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C_{10} - C_{30}) d'acide carboxylique insaturé, utilisés selon l'invention, sont choisis de préférence parmi ceux dont le motif hydrophile de type acide carboxylique insaturé oléfinique correspond au monomère de formule (I) suivante :

formule dans laquelle, R₁ désigne H ou CH₃ ou C₂H₅, c'est-à-dire des motifs acide acrylique, acide méthacrylique ou acide éthacrylique,

et dont le motif hydrophobe de type ester d'alkyl (C_{10} - C_{30}) d'acide carboxylique insaturé correspond au monomère de formule (II) suivante :

5

10

15

20

35

formule dans laquelle, R_1 désigne H ou CH_3 ou C_2H_5 (c'est-à-dire des motifs acrylates, méthacrylates ou éthacrylates) et de préférence H (motifs acrylates) ou CH_3 (motifs méthacrylates), R_2 désignant un radical alkyle en C_{10} - C_{30} , et de préférence en C_{12} - C_{22} .

Des esters d'alkyls (C₁₀-C₃₀) d'acides carboxyliques insaturés conformes à l'invention comprennent par exemple, l'acrylate de lauryle, l'acrylate de stéaryle, l'acrylate de décyle, l'acrylate d'isodécyle, l'acrylate de dodécyle, et les méthacrylates correspondants, le méthacrylate de lauryle, le méthacrylate de stéaryle, le méthacrylate de dodécyle, le méthacrylate d'isodécyle, et le méthacrylate de dodécyle.

Des polymères amphiphiles anioniques de ce type sont par exemple décrits et préparés, selon les brevets US-3 915 921 et 4 509 949.

Les polymères amphiphiles anioniques utilisables dans le cadre de la présente invention peuvent désigner plus particulièrement des polymères formés à partir d'un mélange de monomères comprenant :

(i) essentiellement de l'acide acrylique, un ester de formule (II) suivante :

$$\begin{array}{c|c}
CH_2 & C & C & OR_2 \\
 & & & \\
R_1 & & O
\end{array}$$
(II)

dans laquelle $\rm R_1$ désigne H ou $\rm CH_3$, $\rm R_2$ désignant un radical alkyle ayant de 12 à 22 atomes de carbone, et un agent réticulant, tels que par exemple ceux constitués de 95 à 60% en poids d'acide acrylique (motif hydrophile), 4 à 40% en poids d'acrylate d'alkyles en $\rm C_{10}$ - $\rm C_{30}$ (motif hydrophobe), et 0 à 6% en poids de monomère polymerisable réticulant, ou 98 à 96% en poids d'acide acrylique (motif hydrophile), 1 à 4% en poids d'acrylate d'alkyles en $\rm C_{10}$ - $\rm C_{30}$ (motif hydrophobe), et 0,1 à 0,6% en poids de monomère polymérisable réticulant,

(ii) essentiellement de l'acide acrylique et du méthacrylate de lauryle tel que celui formé à partir de 66% en poids d'acide acrylique et 34% en poids de méthacrylate de lauryle.

Ledit réticulant est un monomère contenant un groupe CH₂ = C\(\) avec au moins un autre groupement polymérisable dont les liaisons insaturées sont non conjuguées l'une par rapport à l'autre. On peut notamment citer les polyallylethers tels que notamment le polyallylsucrose et le polyallylpentaérythritol.

Parmi lesdits polymères ci-dessus, on préfère tout particulièrement selon la présente invention, les produits vendus par la société GOODRICH sous les dénominations commerciales PEMULEN TR1, PEMULEN TR2, CARBOPOL 1382, et encore plus préférentiellement le PEMULEN TR1, et le produit vendu par la société S.E.P.C. sous la dénomination COATEX SX.

Les polymères amphiphiles anioniques comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, sont utilisés selon l'invention de préférence en une quantité pouvant varier d'environ 0,05 à 10% en poids du poids total de la composition de teinture appliquée sur les fibres. Plus préférentiellement, cette quantité varie d'environ 0,2 à 5% en poids.

Les précurseurs de colorants d'oxydation utilisables dans le cadre de la présente invention sont choisis parmi ceux classiquement connus en teinture d'oxydation, et parmi lesquels on peut notamment citer :

les paraphénylènediamines de formule (III) suivante et leurs sels d'addition avec un acide :

NR₁R₂

$$R_4 \longrightarrow R_3$$
NH₂

$$NH_2$$

dans laquelle:

10

15

20

25

30

35

 R_1 représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_4 ou 4'-aminophényle,

 R_2 représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 ou polyhydroxyalkyle en C_2 - C_4 ,

 R_3 représente un atome d'hydrogène, un atome d'halogène tel qu'un atome de chlore, un radical alkyle en C_1 - C_4 , sulfo, carboxy, monohydroxyalkyle en C_1 - C_4 ou hydroxyalcoxy en C_1 - C_4 ,

R₄ représente un atome d'hydrogène ou un radical alkyle en C₁-C₄,

Parmi les paraphénylènediamines de formule (III) ci-dessus, on peut plus particulièrement citer la paraphénylènediamine, la 2-chloro-paraphénylènediamine, la 2,3-diméthyl-paraphénylènediamine, la 2,6-diméthyl-paraphénylènediamine, la 2,6-diméthyl-paraphénylènediamine, la 2,5-diméthyl-paraphénylènediamine, la N,N-diméthyl-paraphénylènediamine, la N,N-diméthyl-paraphénylènediamine, la N,N-diméthyl-paraphénylènediamine, la N,N-diethyl-paraphénylènediamine, la N,N-diethyl-aniline, la N,N-bis-(β-hydroxyéthyl)-paraphénylènediamine, la 4-amino-N,N-bis-(β-hydroxyéthyl)-aniline, la 2-β-hydroxyéthyl-paraphénylènediamine, la 2-fluoro-paraphénylènediamine, la 2-isopropyl-paraphénylènediamine, la N-(β-hydroxypropyl)-paraphénylènediamine, la 2-hydroxyméthyl-paraphénylènediamine, la N,N-diméthyl-3-méthyl-paraphénylènediamine, la N,N-dihyl-paraphénylènediamine, la N-(β-hydroxypropyl)-paraphénylènediamine, la N-(β-hydroxypr

Parmi les paraphénylènediamines de formule (III) ci-dessus, on préfère tout particulièrement la paraphénylènediamine, la 2-p-hydroxyéthyl-paraphénylènediamine, la 2-β-hydroxyéthyl-paraphénylènediamine, la 2-β-hydroxyéthyloxy-paraphénylènediamine, la 2,6-diméthyl-paraphénylènediamine, la 2,6-diéthyl-paraphénylènediamine, la 2,6-diméthyl-paraphénylènediamine, la 2,6-diméthyl-paraphénylènediamine, la 2-chloro-paraphénylènediamine, et leurs sels d'addition avec un acide.

les bis-phénylalkylènediamines répondant à la formule (IV) suivante, et leurs sels d'addition avec un acide :

$$R_{6} \longrightarrow R_{7} \qquad (IV)$$

$$R_{5} \longrightarrow N - CH_{2} \longrightarrow W - CH_{2} \longrightarrow N - R_{5}$$

dans laquelle:

5

10

15

20

25

30

35

40

45

 $\mathbf{Q_1}$ et $\mathbf{Q_2}$, identiques ou différents, représentent un radical hydroxyle ou NHR₈ dans lequel R₈ représente un atome d'hydrogène ou un radical alkyle en C₁-C₄,

 R_5 représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_4 ou aminoalkyle en C_1 - C_4 dont le reste amino peut être substitué,

 R_6 et R_7 , identiques ou différents, représentent un atome d'hydrogène ou d'halogène ou un radical alkyle en C_1 - C_4 ,

W représente un radical pris dans le groupe constitué par les radicaux suivants :

$$-(CH_{2})_{m}^{-} - (CH_{2})_{m}^{-} + (CH_{2})_{m}^{-} - (CH_{2})_$$

dans lesquels n est un nombre entier compris entre 0 et 8 inclusivement et m est un nombre entier compris entre 0 et 4 inclusivement.

Parmi les bis-phénylalkylènediamines de formules (IV) ci-dessus, on peut plus particulièrement citer le N,N'-bis-(β-hydroxyéthyl)-N,N'-bis-(4'-amino-2-propanol, la N,N'-bis-(β-hydroxyéthyl)-N,N'-bis-(4'-amino-2-propanol, la N,N'-bis-(β-hydroxyéthyl)-N,N'-bis-(4'-amino-2-propanol, la N,N'-bis-(β-hydroxyéthyl)-N,N'-bis-(4-aminophényl)-tétraméthylènediamine, la N,N'-bis-(4-aminophényl)-tétraméthylènediamine, la N,N'-bis-(4-aminophényl)-tétraméthylènediamine, la N,N'-bis-(4thyl)-N,N'-bis-(4'-amino, 3'-méthylphényl)-éthylènediamine, et leurs sels d'addition avec un acide.

Parmi ces bis-phénylalkylènediamines de formule (IV), le N,N'-bis-(β-hydroxyéthyl)-N,N'-bis-(4'-aminophényl)-1,3-diamino-2-propanol ou l'un de ses sels d'addition avec un acide sont particulièrement préférés.

- les para-aminophénols répondant à la formule (V) suivante, et leurs sels d'addition avec un acide :

$$\begin{array}{c}
\text{OH} \\
\text{R}_{9} \\
\text{NH}_{2}
\end{array}$$

dans laquelle:

10

15

20

25

30

35

40

45

50

 R_9 représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , alcoxy(C_1 - C_4)alkyle(C_1 - C_4) ou aminoalkyle en C_1 - C_4 , ou hydroxyalkyl(C_1 - C_4)aminoalkyle en C_1 - C_4 .

 R_{10} représente un atome d'hydrogène ou de fluor, un radical alkyle en C_1 - C_4 , monohydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_4 , aminoalkyle en C_1 - C_4 , cyanoalkyle en C_1 - C_4 ou alcoxy(C_1 - C_4)alkyle(C_1 - C_4),

étant entendu qu'au moins un des radicaux R₉ ou R₁₀ représente un atome d'hydrogène.

Parmi les para-aminophénols de formule (V) ci-dessus, on peut plus particulièrement citer le para-aminophénol, le 4-amino-3-méthyl-phénol, le 4-amino-3-fluoro-phénol, le 4-amino-3-hydroxyméthyl-phénol, le 4-amino-2-méthyl-phénol, le 4-amino-2-méthyl-phénol, le 4-amino-2-méthyl-phénol, le 4-amino-2-aminométhyl-phénol, le 4-amino-2-méthyl-phénol, le 4-amino-2-méthyl-phénol, et leurs sels d'addition avec un acide.

- les ortho-aminophénols utilisables à titre de bases d'oxydation dans le cadre de la présente l'invention, sont notamment choisis parmi le 2-amino-phénol, le 2-amino-1-hydroxy-5-méthyl-benzène, le 2-amino-1-hydroxy-6-méthyl-benzène, le 5-acétamido-2-amino-phénol, et leurs sels d'addition avec un acide.
- les bases hétérocycliques utilisables à titre de bases d'oxydation dans le cadre de la présente invention, sont notamment choisies parmi les dérivés pyridiniques, les dérivés pyrimidiniques, les dérivés pyrazoliques, et leurs sels d'addition avec un acide.

Parmi les dérivés pyridiniques, on peut plus particulièrement citer les composés décrits par exemple dans les brevets GB-1 026 978 et GB-1 153 196, comme la 2,5-diaminopyridine, et leurs sels d'addition avec un acide.

Parmi les dérivés pyrimidiniques, on peut plus particulièrement citer les composés décrits par exemple dans les brevets allemand DE-2 359 399 ou japonais JP-88-169 571 et JP-91-333 495, comme la 2,4,5,6-tétra-aminopyrimidine, la 4-hydroxy-2,5,6-triaminopyrimidine, et leurs sels d'addition avec un acide.

Parmi les dérivés pyrazoliques, on peut plus particulièrement citer les composés décrits dans les brevets DE-3 843 892, DE-4 133 957 et demandes de brevet WO-94/08969 et WO-94/08970 comme le 4,5-diamino-1-méthyl-pyrazole, le 3,4-diamino-pyrazole, le 4,5-diamino-1-(4'-chlorobenzyl)-pyrazole, et leurs sels d'addition avec un acide.

Selon l'invention, la ou les bases d'oxydation représentent de préférence, de 0,0005 à 12% en poids environ du poids total de la composition (A) et encore plus préférentiellement de 0,005 à 6% en poids environ.

Les coupleurs utilisables dans le procédé de teinture selon l'invention sont ceux classiquement utilisés dans les compositions de teinture d'oxydation, c'est-à-dire des métaphénylènediamines, des métaaminophénols et des métadiphénols, les dérivés mono- ou poly-hydroxylés du naphtalène, le sésamol et ses dérivés et des composés hétérocycliques tels que par exemple les coupleurs indoliques, les coupleurs indoliniques, les coupleurs pyridiniques et leurs sels d'addition avec un acide.

Ces coupleurs peuvent notamment être choisis parmi le 2-méthyl-5-amino-phénol, le 5-N-(β-hydroxyéthyl)-amino-

2-méthyl-phénol, le 3-amino-phénol, le 1,3-dihydroxy-benzène, le 1,3-dihydroxy-2-méthyl-benzène, le 4-chloro-1,3-dihydroxy-benzène, le 2,4-diamino-1-(β-hydroxyéthyloxy)-benzène, le 2-amino-4-(β-hydroxyéthylamino)-1-méthoxy-benzène, le 1,3-diamino-benzène, le 1,3-bis-(2,4-diaminophénoxy)-propane, le sésamol, l'α-naphtol, le 6-hydroxy-indole, le 4-hydroxy-indole, le 4-hydroxy-N-méthyl-indole, la 6-hydroxy-indoline, la 2,6-dihydroxy-4-méthyl-pyridine, le 1-H-3-méthyl-pyrazole-5-one, le 1-phényl-3-méthyl-pyrazole-5-one, et leurs sels d'addition avec un acide.

Lorsqu'ils sont présents, ces coupleurs représentent de préférence de 0,0001 à 10% en poids environ du poids total de la composition (A), et encore plus préférentiellement de 0,005 à 5% en poids environ.

D'une manière générale, les sels d'addition avec un acide des bases d'oxydation et coupleurs sont notamment choisis parmi les chlorhydrates, les bromhydrates, les sulfates et les tartrates, les lactates et les acétates.

La composition (A) peut encore contenir, en plus des précurseurs de colorants d'oxydation définis ci-dessus et des éventuels coupleurs associés, des colorants directs pour enrichir les nuances en reflets. Ces colorants directs peuvent notamment alors être choisis parmi les colorants nitrés, azoïques ou anthraquinoniques.

La composition (A) et/ou la composition (B) peuvent en outre plus particulièrement contenir, au moins un polymère substantif cationique ou amphotère tel que défini aux pages 3 et 4 de la demande de brevet EP-0 673 641 A1, et dont on préfère avantageusement mettre en œuvre :

 les polymères de polyammonium quaternaire préparés et décrits dans le brevet français 2 270 846, constitués de motifs récurrents répondant à la formule (VI) suivante :

- et dont le poids moléculaire, déterminé par chromatographie par perméation de gel, est compris entre 9500 et 9900;
- les polymères de polyammonium quatemaire préparés et décrits dans le brevet français 2 270 846, constitués de motifs récurrents répondant à la formule (VII) suivante :

et dont le poids moléculaire, déterminé par chromatographie par perméation de gel, est d'environ 1200.

Le milieu de la composition (A) approprié pour la teinture, est de préférence un milieu aqueux constitué par de l'eau et peut éventuellement contenir des solvants organiques acceptables sur le plan cosmétique, dont plus particulièrement, des alcools tels que l'alcool éthylique, l'alcool isopropylique, l'alcool benzylique, et l'alcool phényléthylique, ou des glycols ou éthers de glycol tels que, par exemple, les éthers monométhylique, monoéthylique et monobutylique d'éthylèneglycol, le propylèneglycol ou ses éthers tels que, par exemple, le monométhyléther de propylèneglycol, le butylèneglycol, le dipropylèneglycol ainsi que les alkyléthers de diéthylèneglycol comme par exemple, le monoéthyléther ou le monobutyléther du diéthylèneglycol, dans des concentrations comprises entre environ 0,5 et 20% et, de préférence, entre environ 2 et 10% en poids par rapport au poids total de la composition.

La composition (A) peut encore contenir une quantité efficace d'autres agents, par ailleurs antérieurement connus en coloration d'oxydation, tels que divers adjuvants usuels comme des séquestrants, des agents de conditionnement du cheveu et en particulier des silicones, des conservateurs, des opacifiants, etc..., et éventuellement des agents tensio-actifs anioniques, non-ioniques, amphotères ou leurs mélanges.

5

10

15

20

25

30

35

40

45

50

Ladite composition peut également contenir des agents antioxydants. Ceux-ci peuvent être choisis en particulier parmi le sulfite de sodium, l'acide thioglycolique, l'acide thiolactique, le bisulfite de sodium, l'acide déhydroascorbique, l'hydroquinone, la 2-méthyl-hydroquinone, la ter butyl-hydroquinone et l'acide homogentisique, et ils sont alors généralement présents dans des quantités allant d'environ 0,05 à 1,5% en poids par rapport au poids total de la composition.

Bien entendu, l'homme de l'art veillera à choisir le ou les éventuels composés complémentaires mentionnés ciavant, de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition tinctoriale selon l'invention ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions envisagées.

Dans la composition (B), l'agent oxydant est choisi de préférence parmi le peroxyde d'urée, les bromates ou ferricyanures de métaux alcalins, les persels tels que les perborates, les percarbonates et les persulfates. L'utilisation du peroxyde d'hydrogène est particulièrement préférée.

La composition (B) est avantageusement constituée par une solution d'eau oxygénée dont le titre peut varier, plus particulièrement, d'environ 2,5 à 40 volumes, et encore plus préférentiellement d'environ 5 à 20.

Le pH de la composition prête à l'emploi et appliquée sur les fibres kératiniques [composition résultant du mélange de la composition tinctoriale (A) et de la composition oxydante (B)], est généralement compris entre les valeurs 4 et 11. Il est de préférence compris entre 6 et 10, et peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants bien connus de l'état de la technique en teinture des fibres kératiniques.

Parmi les agents alcalinisants on peut citer, à titre d'exemple, l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxydes de sodium ou de potassium et les composés de formule (VIII) suivante:

$$R_{11} \sim N - R - N < R_{13} \sim (VIII)$$

dans laquelle R est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C_1 - C_4 ; R_{11} , R_{12} , R_{13} et R_{14} , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_4 ou hydroxyalkyle en C_1 - C_4 .

Les agents acidifiants sont classiquement, à titre d'exemple, des acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, des acides carboxyliques comme l'acide tartrique, l'acide citrique, l'acide lactique, ou des acides sulfoniques.

Le procédé de teinture selon l'invention consiste, de préférence, à appliquer un mélange, réalisé extemporanément au moment de l'emploi à partir des compositions (A) et (B) décrites ci-avant, sur les fibres kératiniques sèches ou humides, et à le laisser agir pendant un temps de pause variant, de préférence, de 1 à 60 minutes environ, et plus préférentiellement de 10 à 45 minutes environ, à rincer les fibres, puis éventuellement à les laver au shampooing, puis à les rincer à nouveau, et à les sécher.

Des exemples concrets illustrant l'invention vont maintenant être donnés, sans pour autant présenter un caractère limitatif.

EXEMPLE 1:

MA* = Matière Active

5

10

15

20

25

30

40

5

55

On a préparé la composition de teinture, conforme à l'invention, suivante :

45	Polymère amphiphile anionique réticulé acide acrylique/acrylate d'alkyles en C ₁₀ -C ₃₀ (PEMULEN TR1 de Goodrich)	1,0 g
	Acide oléïque	3,0 g
50	Solution aqueuse de bisulfite de sodium à 35% de MA*	0,45 g MA*
	Paraphénylènediamine	0,162g
	Résorcine	0,165g
	Ammoniaque (20% de NH ₃)	11,5 g
	Agent séguestrant q.s.	
	Eau q.s.p.	100 g

Au moment de l'emploi, on a mélangé cette composition poids pour poids avec une solution d'eau oxygénée à 20 volumes, puis on a appliqué le mélange obtenu, sur des mèches de cheveux naturels à 90% de blancs. Après 10

minutes de pause, on a rincé les mèches, puis on les a lavées avec un shampooing, rincées à nouveau, puis on les a séchées.

A l'aide d'un spectrocolorimètre I.C.S., on a mesuré la chromaticité c*de la nuance à partir des valeurs de a* et de b* dans le système international de notation de la couleur L*, a*, b*, de la C.I.E.

Le résultat a été le suivant :

$$c^* = 14.36$$
.

On a également mesuré la valeur L*, de la nuance.

10 Le résultat a été le suivant :

$$L^* = 48,09.$$

EXEMPLE 2 COMPARATIF:

On a reproduit l'exemple 1, en remplaçant 1 gramme de polymère amphiphile anionique réticulé acide acrylique/ acrylate d'alkyles en C₁₀-C₃₀ (PEMULEN TR1 de Goodrich) par le mélange des deux tensio-actifs non-ioniques suivants (permettant d'obtenir la même viscosité):

18 grammes d'alcool décylique (C₁₀-C₁₂-C₁₄ / 85-8,5-6,5) oxyéthyléné à 3,5 moles d'oxyde d'éthylène vendu sous la dénomination Mergital BL 309 par la société Henkel, et

12 grammes d'alcool décylique (C₁₀-C₁₂-C₁₄ / 85-8,5-6,5) oxyéthyléné à 5,5 moles d'oxyde d'éthylène vendu sous la dénomination Mergital BL 589 par la société Henkel.

On a ensuite suivi le même protocole qu'à l'exemple 1.

25 Les résultats ont été les suivants :

$$c^* = 12,86$$

$$L^* = 49.72$$

CONCLUSION:

La nuance obtenue selon l'invention est plus lumineuse (c* plus grand) que celle obtenue selon l'art antérieur; elle est aussi plus puissante (L* plus petit).

Revendications

35

40

20

5

- 1. Composition de teinture d'oxydation pour fibres kératiniques, en particulier pour fibres kératiniques humaines telles que les cheveux, du type comprenant dans un milieu approprié pour la teinture, au moins un précurseur de colorant d'oxydation et, le cas échéant, un ou plusieurs coupleurs, caractérisée par le fait qu'elle contient en outre au moins un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé.
- Composition selon la revendication 1, caractérisée par le fait que le motif hydrophile correspond au monomère de formule (I) suivante :

45

$$\begin{array}{c|c}
CH_2 & C & C & -C \\
 & & | & | \\
R_1 & & O
\end{array}$$

50

dans laquelle R₁ désigne H ou CH₃ ou C₂H₅.

Composition selon la revendication 2, caractérisée par le fait qu'il s'agit d'acide acrylique, d'acide méthacrylique ou de leurs mélanges.

55

4. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le motif hydrophobe est un ester correspondant au monomère de formule (II) suivante :

$$\begin{array}{c|c}
CH_2 & C & -C & -OR_2 \\
 & & & \\
R_1 & & O
\end{array}$$
(II)

5

dans laquelle R₁ désigne H ou CH₃ ou C₂H₅, R₂ désignant un radical alkyle en C10-C30-

- 5. Composition selon la revendication 4, caractérisée par le fait que dans la formule (II) R1 désigne H ou CH2.
- 10 Composition selon les revendications 4 ou 5, caractérisée par le fait que dans la formule (II) R2 désigne un radical alkyle en C₁₂-C₂₂.
 - 7. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le polymère amphiphile anionique est réticulé.

15

Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le polymère amphiphile anionique est un polymère formé à partir d'un mélange de monomères comprenant essentiellement de l'acide acrylique, un ester de formule (II) suivante :

20

$$\begin{array}{c|c}
CH_2 & C & C & OR_2 \\
 & \parallel & 0 \\
R_1 & 0 \\
\end{array}$$
(II)

25

dans laquelle R₁ désigne H ou CH₃, R₂ désignant un radical alkyle ayant de 12 à 22 atomes de carbone, et, un agent réticulant.

Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le polymère amphiphile anionique est un polymère d'acide acrylique et de méthacrylate de lauryle.

30

10. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les précurseurs de colorants d'oxydation sont choisis parmi les ortho- ou para- phénylènediamines, les bis-phénylalkylènediamines, les ortho- ou para- aminophénols, et les bases hétérocycliques, ainsi que les sels d'addition de ces composés avec un acide.

35

11. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les précurseurs de colorants d'oxydation sont présents dans des concentrations allant de 0,0005 à 12% en poids par rapport au poids total de la composition.

40

12. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les coupleurs sont choisis parmi les métaphénylènediamines,les métaaminophénols, les métadiphénols, les coupleurs hétérocycliques, et les sels d'addition de ces composés avec un acide.

45

13. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les coupleurs sont présents dans des concentrations allant de 0,0001 à 10% en poids par rapport au poids total de la composition.

14. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les sels d'addition avec un acide des précurseurs de colorants d'oxydation et des coupleurs sont choisis parmi les chlorhydrates, les bromhydrates, les sulfates, les tartrates, les lactates et les acétates.

50

15. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle contient en outre des colorants directs.

- 16. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle contient en outre au moins un polymère substantif cationique ou amphotère.

10

5

18. Composition selon la revendication 16, caractérisée par le fait que le polymère est un polymère de polyammonium quaternaire constitué de motifs récurrents répondant à la formule (VII) suivante :

15

20

25

30

- 19. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle contient en outre au moins un agent réducteur, présent dans des quantités allant de 0,05 à 3% en poids par rapport au poids total de la composition.
- 20. Composition selon l'une quelconque des revendications précédentes, prête à l'emploi, caractérisée par le fait qu'elle contient en outre un agent oxydant.
 - 21. Composition selon la revendication 20, caractérisée par le fait qu'elle possède un pH allant de 4 à 11.
- 22. Composition selon la revendication 20, caractérisée par le fait que l'agent oxydant est choisi parmi le peroxyde d'hydrogène, le peroxyde d'urée, les bromates et les ferricyanures de métaux alcalins, et les persels.
 - 23. Composition selon les revendications 20 ou 22, caractérisée par le fait que l'agent oxydant est une solution d'eau oxygénée dont le titre varie de 2,5 à 40 volumes.
- 24. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les polymères amphiphiles anioniques comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, sont utilisés en une quantité allant de 0,05 à 10% en poids du poids total de la composition appliquée sur les fibres et encore plus préférentiellement de 0,2 à 5%.

45

25. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisé par le fait qu'il consiste à appliquer sur les fibres une composition de teinture (A1) telle que définie à l'une quelconque des revendications 1 à 19, et à révéler la couleur en milieu alcalin, neutre ou acide à l'aide d'un agent oxydant qui est ajouté juste au moment de l'emploi à cette composition (A1) ou qui est présent dans une composition (B1) appliquée séquentiellement sans rinçage intermédiaire.

50

26. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisé par le fait qu'il consiste à appliquer sur les fibres une composition de teinture (A2) contenant dans un milieu approprié pour la teinture au moins un précurseur de colorant d'oxydation, éventuellement un ou plusieurs coupleurs, en la présence ou en l'absence d'un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturé oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, et à révéler la couleur en milieu alcalin, neutre ou acide à l'aide d'une composition oxydante (B2) contenant un agent oxydant et une quantité efficace d'au moins

un polymère amphiphile anionique comportant au moins un motif hydrophile de type acide carboxylique insaturú oléfinique, et au moins un motif hydrophobe exclusivement de type ester d'alkyl (C₁₀-C₃₀) d'acide carboxylique insaturé, et qui est mélangée juste au moment de l'emploi à la composition (A2) ou qui est appliquée séquentiellement sans rinçage intermédiaire.

27. Dispositif à plusieurs compartiments ou « Kit » pour la teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisé par le fait qu'il comporte au moins deux compartiments, dont l'un d'entre eux renferme une composition (A1) telle que définie à l'une quelconque des revendications 1 à 19, et un autre une composition (B1) comprenant un agent oxydant dans un milieu approprié pour la teinture.

28. Dispositif à plusieurs compartiments ou « Kit » pour la teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisé par le fait qu'il comporte au moins deux compartiments, dont l'un d'entre eux renferme une composition (A2) et un autre une composition (B2) telles que définies dans la revendication 26.

29. Utilisation d'une composition de teinture d'oxydation telle que définie à l'une quelconque des revendications 1 à 24 ou d'un dispositif de teinture ou « Kit » à plusieurs compartiments tel que défini à la revendication 27 ou 28, pour la teinture d'oxydation des fibres kératiniques humaines telles que les cheveux.

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 97 40 1997

égorie:		avec indication, en cas de besorn. pertinentes	Revendication concernee	CLASSEMENT DE LA DEMANDE (Int.Cl.6)
;	FR 2 679 444 A (* page 16 - page	L'OR AL) 18; revendications *	1-29	A61K7/06 A61K7/13
	COMPANY)	HE PROCTER & GAMBLE 42; revendications *	1-29	
•	COMPANY)	HE PROCTER & GAMBLE 18; revendications *	1-29	
:	FR 2 327 761 A (* page 2 * * page 31 - page	L'OR AL) 34; revendications *	1-29	
				DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)
1		·		
	·			
		ur toutes les revendications		
	EU de a recherche LA HAYE	Date d'achevement de la racherone 1 décembre 19		Examinateur ten, H
. parti . parti autre	NTEGORIE DES DOCUMENTS culièrement pertinent à lui seul culièrement pertinent en combin document de la même catégoi re-plan technologique	E : document date de de raison avec un D : cité dans l	principe à la base de l'in de brevet anterieur, mai pot ou après cette cate	nverdion