Educação Profissional Paulista

Técnico em Ciência de Dados

Lógica de programação e algoritmos

Estruturas de controle: repetição

Aula 1

Código da aula: [DADOS]ANO1C3B2S12A1

Objetivo da Aula

Explorar e apresentar, com apoio de pseudocódigos, os conceitos importantes de estruturas de controle de repetição.

Competências da Unidade (Técnicas e Socioemocionais)

- Usar técnicas para explorar e analisar dados, aplicar modelos estatísticos, identificar padrões, realizar inferências e tomar decisões baseadas em evidências;
- Compreender e dominar técnicas de manipulação de dados; extrair, transformar e carregar conjuntos de dados de diferentes fontes, garantindo a qualidade e a integridade dos dados; criar e compreender visualizações gráficas.

Recursos Didáticos

• Recurso audiovisual para exibição de vídeos e imagens.

Duração da Aula

50 minutos

Recapitulação de algoritmos e lógica de programação

```
if tar_word in list_word and seed_word_p in list_wo
    count_word = len(list_word)

if count_word <= NEAR: # if number of word in e
    count_p += 1

else:
    positive_tar = []
    positive_sw = []
    for l_index, l_word in enumerate(list_word)
        if tar_word == l_word:
            positive_tar.append(l_index)
        elif seed_word_p == l_word:
            positive_sw.append(l_index)

breaker = False
    for index tap in position</pre>
```

© Getty Images

- ✓ Definição: algoritmos são conjuntos de passos organizados, semelhantes a receitas, que guiam a resolução de problemas de forma eficiente;
- ✓ Uso: fundamentais na computação, algoritmos são "mapas" lógicos que possibilitam desde cálculos simples até inovações tecnológicas avançadas, como reconhecimento de voz;
- ✓ Importância: são a base de todos os softwares, permitindo a automação de tarefas e o desenvolvimento de soluções complexas.

Recapitulação de algoritmos e lógica de programação

© Getty Images

A importância de fluxogramas e de pseudocódigos

Eles otimizam o desenvolvimento, proporcionando uma compreensão visual e lógica do processo, que facilita a identificação de melhorias e acelera a transição para a implementação prática, independentemente da linguagem de programação ou do software usado para implementação.

Recapitulação de estrutura sequencial

O que é uma estrutura sequencial?

- √ É a forma mais simples de controle de fluxo em programação;
- ✓ Consiste em uma sequência linear de instruções, em que uma ação ocorre após a outra, de maneira ordenada;
- ✓ É fundamental para executar tarefas passo a passo, uma após a outra, sem desvios controlados.

Estrutura

sequencial dos

pseudocódigos

Recapitulação de pseudocódigos

Exemplo visto anteriormente (troca de lâmpada)

- pegar uma escada posicionar a escada embaixo da lâmpada
 - buscar uma lâmpada reserva
 - subir na escada
 - retirar a lâmpada queimada
 - inserir a lâmpada reserva

Elaborado especialmente para o curso.

Tome nota

Os pseudocódigos permitem que a visualização das estruturas sequenciais sejam compreendidas exatamente como será no programa real. Elas seguem linha a linha, assim como nós fazemos leitura, da esquerda para a direita, de cima para baixo.

Estruturas de repetição

O que são?

- √ São conhecidas também como laços ou loops,
- ✓ São recursos fundamentais em programação, que permitem a execução repetida de um bloco de código enquanto uma condição específica for atendida.

Existem duas principais estruturas de repetição:

Laço "Enquanto"
(While): repete um
bloco de código
enquanto uma
condição é
verdadeira.

Laço "Para" (For):
executa um bloco
de código em um
número
específico de
vezes.

Estruturas de repetição

Importância das estruturas de repetição:

Eficiência

Permitem a automação de tarefas repetitivas, economizando tempo e esforço no desenvolvimento de software;

Flexibilidade

Adaptam-se a situações em que a quantidade de iterações não é conhecida antecipadamente, garantindo que o código execute o número adequado de vezes;

Manutenção

Simplificam a manutenção do código, pois reduzem a duplicação de instruções e tornam as atualizações mais consistentes;

Solução para problemas específicos

São essenciais para resolver problemas que exigem processamento repetitivo, como processamento de listas, cálculos iterativos e interação com conjuntos de dados;

Redução de erros

Ao evitar a repetição manual de código, as estruturas de repetição diminuem a probabilidade de erros.

Estruturas de repetição – ENQUANTO/FAÇA

O que é?

A estrutura de repetição "Enquanto" (While) é uma construção fundamental em programação que permite a execução de um bloco de código enquanto uma condição específica permanece verdadeira.

Na prática

- O bloco de código dentro do "Enquanto" é executado repetidamente enquanto a condição especificada permanecer verdadeira;
- A condição é avaliada antes da execução do bloco e, se for falsa inicialmente, o bloco não será executado.

Estruturas de repetição – ENQUANTO/FAÇA

Como utilizar?

ENQUANTO (condição) FAÇA
// Bloco de código a ser repetido
FIM ENQUANTO

Atenção!

Evite: é importante que essa condição seja sempre trabalhada dentro da estrutura de repetição, caso contrário ela estará sempre em execução e isso é um problema grave. Portanto, atente aos laços que possam ser infinitos.

Enunciado 1:

- 1. Escreva um programa em pseudocódigo que utilize a estrutura de repetição "Enquanto" para realizar a contagem de 1 a 5.
- 2. Crie um pseudocódigo para essa situação.

Requisitos:

- necessário iniciar a variável usada no "Enquanto" com valor antes da estrutura;
- alterar a variável da condição de repetição para evitar laços infinitos.

Solução em pseudocódigo:

- 1. contador <- 1
- 2. ENQUANTO contador <= 5 FAÇA
- 3. Escrever "Contagem: ", contador
- 4. contador <- contador + 1
- 5. FIM ENQUANTO

Enunciado 2:

- Escreva um programa em pseudocódigo que utilize a estrutura de repetição "Enquanto" para realizar uma contagem regressiva de 5 a 1.
- 2. Crie um pseudocódigo para essa situação.

Requisitos:

- necessário iniciar a variável usada no "Enquanto" com valor antes da estrutura;
- alterar a variável da condição de repetição para evitar laços infinitos.

Solução em pseudocódigo:

- 1. contador <- 5
- 2. ENQUANTO contador >= 1 FAÇA
- 3. Escrever "Contagem: ", contador
- 4. contador <- contador 1
- 5. FIM ENQUANTO

Enunciado 3:

- Crie um programa em pseudocódigo que utilize a estrutura de repetição "Enquanto" para solicitar ao usuário a entrada de uma senha.
- 2. Enquanto a senha digitada não for igual a "1234", o programa deve continuar pedindo a senha. Quando a senha correta for inserida, exiba a mensagem "Acesso concedido".

Requisitos:

 necessário iniciar a variável senhaDigitada e a constante senhaCorreta.

Solução em pseudocódigo:

- 1. senhaCorreta <- "1234"
- 2. senhaDigitada <- ""
- 3. ENQUANTO senhaDigitada <> senhaCorreta FAÇA
- 4. Escrever "Digite a senha:"
- 5. Ler senhaDigitada
- 6. FIM ENQUANTO
- 7. Escrever "Acesso concedido"

Qual é o principal objetivo das estruturas de repetição em programação?

Realizar operações aritméticas

Controlar o fluxo de execução de um programa

Declarar variáveis e constantes

Realizar operações lógicas

Qual é o principal objetivo das estruturas de repetição em programação?

Realizar operações aritméticas

Controlar o fluxo de execução de um programa

Declarar variáveis e constantes

Realizar operações lógicas

RESPOSTA CORRETA!

Destaca o principal propósito das estruturas de repetição, que é controlar a repetição de um bloco de código com base em uma condição.

Ao utilizar a estrutura de repetição "Enquanto" (While) em um algoritmo, qual é uma prática que deve ser evitada para garantir a correta execução do loop?

Iniciar a variável de controle fora da condicional do "Enquanto"

Utilizar critérios de saída complexos dentro da condicional do "Enquanto"

Modificar a variável de controle dentro da condição do "Enquanto"

Declarar novas variáveis dentro da condicional do "Enquanto"

Ao utilizar a estrutura de repetição "Enquanto" (While) em um algoritmo, qual é uma prática que deve ser evitada para garantir a correta execução do loop?

Iniciar a variável de controle fora da condicional do "Enquanto" Modificar a variável de controle dentro da condição do "Enquanto"

Utilizar critérios de saída complexos dentro da condicional do "Enquanto"

Declarar novas variáveis dentro da condicional do "Enquanto"

RESPOSTA CORRETA!

Essa alternativa é a correta porque modificar a variável de controle dentro da condição do "Enquanto" pode levar a resultados inesperados e, potencialmente, causar loops infinitos.

Considere o seguinte algoritmo em pseudocódigo:

```
INÍCIO
soma <- 0
contador <- 1
ENQUANTO contador <= 5 FAÇA
soma <- soma + contador
contador <- contador + 1
FIM ENQUANTO
Escrever "Soma: ", soma
FIM
```

Soma: 15

Soma: 5

Soma: 10

Soma: 20

Considere o seguinte algoritmo em pseudocódigo:

INÍCIO
soma <- 0
contador <- 1
ENQUANTO contador <= 5 FAÇA
soma <- soma + contador
contador <- contador + 1
FIM ENQUANTO
Escrever "Soma: ", soma
FIM

Soma: 15

Soma: 10

Soma: 5

Soma: 20

RESPOSTA CORRETA!

O algoritmo realiza a soma dos números de 1 a 5, resultando em 15. Enquanto as opções B, C e D representam valores incorretos da soma, considerando o algoritmo apresentado.

Hoje desenvolvemos:

- Conhecimento que a estrutura de repetição "Enquanto" (While) é uma construção fundamental em programação que permite a execução de um bloco de código enquanto uma condição específica permanece verdadeira;
- Compreensão de que é importante que essa condição seja sempre trabalhada dentro da estrutura de repetição, caso contrário ela estará sempre em execução e isso é um problema grave. Portanto, atente aos laços que possam ser infinitos;
- Prática com QUIZ e com exercícios sem avaliação; solução de algoritmos com Estruturas de Controle de Repetição "Enquanto", que são largamente utilizadas na indústria para a construção de algoritmos profissionais.

Saiba mais

Entendendo o básico de Python para treinar estruturas de Controle – Parte 1

ALURA. *Python para Data Science*: primeiros passos. 01. Começando com Python. Disponível em: https://cursos.alura.com.br/course/python-data-science-primeiros-passos/task/122382. Acesso em: 15 mar. 2024.

Entendendo o básico de Python para treinar estruturas de Controle – Parte 2

ALURA. *Python para Data Science*: primeiros passos. 02. Manipulando dados no Python. Disponível em: https://cursos.alura.com.br/course/python-data-science-primeiros-passos/task/123730. Acesso em: 15 mar. 2024.

Referências da aula

ALURA. *Python para Data Science*: primeiros passos. 01. Começando com Python. Disponível em: https://cursos.alura.com.br/course/python-data-science-primeiros-passos/task/122382. Acesso em: 15 mar. 2024.

ALURA. *Python para Data Science*: primeiros passos. 02. Manipulando dados no Python. Disponível em: https://cursos.alura.com.br/course/python-data-science-primeiros-passos/task/123730. Acesso em: 15 mar. 2024.

FORBELLONE, A. L. V.; EBERSPÄCHER, H. F. *Lógica de programação*: a construção de algoritmos e estruturas de dados com aplicações em Python. Porto Alegre: Bookman, 2022.

Identidade visual: Imagens © Getty Images

Educação Profissional Paulista

Técnico em Ciência de Dados

