

Project Initialization and Planning Phase

Date	20/06/2025	
Team ID	SWTID1749826875	
Project Title	Dog Breed Identification using Transfer Learning	
Maximum Marks	3 marks	

Project Proposal (Proposed Solution)

The proposal report aims to build an intelligent breed classification system using transfer learning that consistently outperforms traditional methods by accurately identifying dog breeds, even among visually similar categories

Project Overview		
Objective	To develop a high-accuracy image classification system capable of identifying dog breeds, even with subtle visual differences, using transfer learning.	
Scope	The system will classify dog breeds from images and be deployable for use in applications such as pet registration, veterinary support, animal shelter systems, and lost pet recovery.	
Problem Statement		
Description	Accurate breed identification is challenging due to the high degree of visual similarity among breeds. This project utilizes pre-trained convolutional neural networks (e.g., ResNet, EfficientNet) fine-tuned on a curated dataset of labeled dog breed images. The goal is to enable reliable, real-time classification by learning fine-grained visual features.	
Impact	Pet owners: Simplified registration and breed recognition. Veterinarians: Tailored health guidance based on breed-specific traits. Animal shelters: Faster breed identification for adoption/rescue. Lost pet services: Visual matching of found animals with missing pet databases.	
Proposed Solution		
Approach	Dataset Collection & Curation (from open sources like Kaggle/Stanford Dogs)	

	 Data Augmentation for better generalization Transfer Learning using models like ResNet50 or EfficientNetB0 Fine-tuning with breed-specific layers Evaluation using metrics like accuracy, precision, and recall Deployment via a web/mobile interface
Key Features	 High-accuracy classification of over 100 dog breeds Fine-grained feature recognition (e.g., snout shape, coat texture) Lightweight, fast inference for mobile/web deployment Scalable for future addition of new breeds API support for integration into external applications

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	e.g., T4 GPU or v2-8 TPU		
Memory	RAM specifications	e.g., 8 GB		
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Flask		
Libraries	Additional libraries	e.g., tensorflow		
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git		
Data				
Data	Source, format	e.g., Kaggle dataset, 1168 images		