Numerische Mathematik - Projektteil 2

Richard Weiss Florian Schager Christian Sallinger Fabian Zehetgruber Paul Winkler Christian Göth

Random code snippet, damit alle checken, wie man code displayt:

print("Hello World!")

1 Titel

2 Eigenschwingungen

2.1 Aufgabestellung

Das Projekt beschäftigt sich mit den Eigenschwingeungen einer fest eingespannten Saite. Sei dazu u(t,x) die vertikale Auslenkung der Saite an der Position $x \in [0,1]$ zur Zeit t. u wird näherungsweise durch die sogenannte Wellengleichung

$$\frac{\partial^2 u}{\partial x^2}(t,x) = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(t,x) \tag{1}$$

für alle $x \in (0,1)$ und $t \in \mathbb{R}$ beschrieben, wobei c die Ausbreitungsgeschwindigkeit der Welle ist. Wenn die Saite an beiden Enden fest eingespannt ist, so gelten die Randbedingungen

$$u(t,0) = u(t,1) = 0 (2)$$

für alle $t \in \mathbb{R}$.

Zur Berechnung der Eigenschwingungen suchen wir nach Lösungen u, die in der Zeit harmonisch schwingen. Solche erfüllen folgenden Ansatz

$$u(x,t) = \Re(v(x)e^{-i\omega t})$$

mit einer festen, aber unbekannten Kreisfrequenz $\omega > 0$ und einer Funktion v, welche nur noch vom Ort x abhängt. Durch Einsetzen erhalten wir für v die sogenannte Helmholz-Gleichung

$$-v''(x) = \kappa^2 v(x), \qquad x \in (0,1), \tag{3}$$

mit der unbekannten Wellenzahl $\kappa := \frac{\omega}{c}$ und den Randbedingungen

$$v(0) = v(1) = 0. (4)$$

2.2 Analytische Lösung

$$v_{\kappa}(x) = C_1 \cos(\kappa x) + C_2 \sin(\kappa x), \qquad x \in [0, 1],$$

mit beliebigen Konstanten C_1, C_2 löst die Helmholz-Gleichung (3). Das erkennt man durch stumpfes Einsetzen.

$$-v_{\kappa}''(x) = -\frac{\partial^2}{\partial x^2} (C_1 \cos(\kappa x) + C_2 \sin(\kappa x)) = -\frac{\partial}{\partial x} (-C_1 \kappa \sin(\kappa x) + C_2 \kappa \cos(\kappa x))$$
$$= -(-C_1 \kappa^2 \cos(\kappa x) - C_2 \kappa^2 \sin(\kappa x)) = \kappa (C_1 \cos(\kappa x) + C_2 \sin(\kappa x)) = \kappa^2 v_{\kappa}(x)$$

Wir fragen uns, für welche $\kappa > 0$, Konstanten C_1 und C_2 existieren, sodass v_{κ} auch die Randbedingungen (4) erfüllt.

$$0 \stackrel{!}{=} \begin{cases} v_{\kappa}(0) = C_1 \cos 0 + C_2 \sin 0 = C_1 \\ v_{\kappa}(1) = C_1 \cos \kappa + C_2 \sin \kappa = C_2 \sin \kappa \end{cases}$$

Nachdem $\cos 0 = 1$ und $\sin 0 = 0$, erhält man, aus der oberen Gleichung, $C_1 = 0$. Mit der unteren Gleichung folgt aber auch $C_2 \sin \kappa = 0$. Wenn nun auch $C_2 = 0$, dann erhielte man die triviale Lösung $v_{\kappa} = 0$. Für eine realistischere Modellierung, d.h. $v_{\kappa} \neq 0$, müsste $\sin \kappa = 0$, also $\kappa \in \pi \mathbb{Z}$.

Das sind die gesuchten $\kappa > 0$. Sei nun eines dieser κ fest. Offensichtlich ist $C_1 = 0$ eindeutig, $C_2 \in \mathbb{R}$ jedoch beliebig.

2.3 Numerische Approximation

Häufig lassen sich solche Probleme nicht analytisch lösen, sodass auf numerische Verfahren zur+ckgegriffen wird, welche möglichst gute Näherungen an die exakten Lösungen berechnen sollen. Als einfachstes Mittel dienen sogenannte Differenzenverfahren. Sei dazu $x_j := jh, \ j = 0, \dots, n$ eine Zerlegung des Intervalls [0,1] mit äquidistanter Schrittweite h = 1/n. Die zweite Ableitung in (3) wird approximiert durch den Differenzenquotienten

$$v''(x_j) \approx D_h v(x_j) := \frac{1}{h^2} (v(x_{j-1}) - 2v(x_j) + v(x_{j+1})), \qquad j = 1, \dots, n-1.$$
 (5)

Für hinreichend glatte Funktionen v mit einer geeigneten Konstanten C>0 wird der Approximationsfehler quadratisch in h klein, d.h. dass

$$|v''(x_j) - D_h v(x_j)| \le Ch^2. \tag{6}$$

Es sei zunächst bemerkt, dass (??) tatsächlich einen Differenzenquotienten beschreibt. Um das einzusehen, verwenden wir den links- und rechts-seitigen Differenzenquotient erster Ordnung, sowie $x_{j-1} = x_j - h$, $x_{j+1} = x_j + h$. Wir erhalten $\forall j = 1, \ldots, n-1$:

$$v''(x_j) = \lim_{h \to 0} \frac{1}{h} (v'(x_j + h) - v'(x_j))$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{h} (v(x_j + h) - v(x_j)) - \frac{1}{h} (v(x_j) - v(x_j - h)) \right)$$

$$= \lim_{h \to 0} \frac{1}{h^2} (v(x_j + h) - 2v(x_j) + v(x_j - h))$$

$$= \lim_{h \to 0} D_h v(x_j)$$

Nachdem v hinreichend glatt ist, gilt nach dem Satz von Taylor, dass $\forall j = 1, \dots, n-1$:

$$v(x_j + h) = \sum_{\ell=0}^{n+2} \frac{h^{\ell}}{\ell!} v^{(\ell)}(x_j) + \mathcal{O}(h^{n+3}),$$

$$v(x_j - h) = \sum_{\ell=0}^{n+2} \frac{(-h)^{\ell}}{\ell!} v^{(\ell)}(x_j) + \mathcal{O}(h^{n+3}).$$

Man beachte, dass sich die Summanden der oberen Taylor-Polynome für ungerade $\ell \in 2\mathbb{N} - 1$ aufheben. Damit erhalten wir für den Differenzenquotient $D_h v(x_j), j = 1, \dots, n-1$ eine asymptotische Entwicklung.

$$D_h v(x_j) = \frac{1}{h^2} (v(x_j - h) + v(x_j + h) - 2v(x_j))$$

$$= \frac{1}{h^2} \left(2v(x_j) + h^2 v''(x_j) + \sum_{ell=4}^{n+2} \frac{h^\ell}{\ell!} v^{(\ell)}(x_j) (1 + (-1)^\ell) \right) + \mathcal{O}(h^{n+3}) - 2v(x_j)$$

$$= v''(x_j) + 2 \sum_{\ell=1}^{\left \lfloor \frac{n}{2} \right \rfloor} \frac{h^{2\ell}}{(2\ell + 2)!} v^{(2\ell)}(x_j) + \mathcal{O}(h^{n+1})$$

Daraus folgt unmittelbar die quadratische Konvergenz (6), $\forall j=1,\ldots,n-1$:

$$D_h v(x_j) - v''(x_j) = \mathcal{O}(h^2), \qquad h \to 0.$$

Wir wollen nun den Differenzenquotienten $D_h v(x_j)$ verwenden, um ein Eigenwertproblem der Form $A\vec{v} = \lambda \vec{v}$ mit einer Matrix $A \in \mathbb{R}^{(n-1)\times (n-1)}$ zu dem Eigenvektor $\vec{v} := (v(x_1, \dots, v(x_{n-1}))^T)$ und dem Eigenwert $\lambda := -\kappa^2$ herzuleiten.

Es wird eine Matrix A_n gesucht, die den Differenzenquotienten $D_h v(x_j)$ auf den Vektor \vec{v} komponentenweise anwendet. Wir rufen in Erinnerung, dass h = 1/n und definieren die naheliegende Matrix

$$A_n := \frac{1}{h^2} \begin{pmatrix} -2 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & -2 \end{pmatrix} \in \mathbb{R}^{(n-1)\times(n-1)}.$$

Weil nun die Randbedingungen (4) gelten, d.h. $v(x_0), v(x_n) = 0$, leistet diese Matrix A_n tatsächlich das Gewünschte.

$$A_{n}\vec{v} = \frac{1}{h^{2}} \begin{pmatrix} v(x_{0}) - 2v(x_{1}) + v(x_{2}) \\ v(x_{1}) - 2v(x_{2}) + v(x_{3}) \\ \vdots \\ v(x_{n-3}) - 2v(x_{n-2}) + v(x_{n-1}) \\ v(x_{n-2}) - 2v(x_{n-1}) + v(x_{n-0}) \end{pmatrix} = \begin{pmatrix} D_{h}v(x_{1}) \\ \vdots \\ D_{h}v(x_{n-1}) \end{pmatrix}$$

Das Eigenwertproblem wurde mit np.linalg.eig, für beliebige $n \ge 2$, gelöst. Wir vergleichen die Eigenwerte und Eigenvektoren mit den analytischen Ergebnissen.

Betrachtet man die, unten aufgelisteten, Eigenwerte, der ersten paar Matrizen A_2, \ldots, A_{10} , so legen diese ein gewisses (quadratisches) Konvergenzverhalten nahe. Die Matrix A_n besitzt also scheinbar n-1 paarweise verschiedene Eigenwerte $\lambda_{1,n} < \cdots < \lambda_{n-1,n}$, welche jeweils gegen $\lambda_j := -(\pi j)^2$, $j \in \mathbb{N}$ konvergieren.

n = 7	n = 10
	-9.788696740969272
	-38.19660112501045
-76.19294847228122	-82.44294954150533
-119.80705152771888	-138.1966011250105
-159.10200058215582	-200.0000000000006
-186.29494905443664	-261.80339887498934
	-317.5570504584944
n = 8	-361.8033988749895
	-390.2113032590302
-9.743419838555344	
-37.49033200812192	
-79.01652065726852	
-127.99999999999	
-176.98347934273144	
-218.50966799187793	n -> inf
-246.25658016144442	
	$-(1 * pi)^2 = -9.869604401089358$
n = 9	$-(2 * pi)^2 = -39.47841760435743$
	$-(3 * pi)^2 = -88.82643960980423$
-9.769795432682793	$-(4 * pi)^2 = -157.91367041742973$
-37.90080021472559	$-(5 * pi)^2 = -246.74011002723395$
-80.999999999997	$-(6 * pi)^2 = -355.3057584392169$
-133.8689952179573	$-(7 * pi)^2 = -483.61061565337855$
-190.13100478204277	$-(8 * pi)^2 = -631.6546816697189$
-243.0000000000014	$-(9 * pi)^2 = -799.437956488238$
-286.09919978527444	
-314.2302045673173	•••
	9.705050945562961 -36.89799941784412 -76.19294847228122 -119.80705152771888 -159.10200058215582 -186.29494905443664 n = 89.743419838555344 -37.49033200812192 -79.01652065726852 -127.999999999999 -176.98347934273144 -218.50966799187793 -246.25658016144442 n = 99.769795432682793 -37.90080021472559 -80.999999999997 -133.8689952179573 -190.13100478204277 -243.00000000000014 -286.09919978527444

Wir bezeichnen mit $\epsilon_j(n) := |\lambda_j - \lambda_{j,n}|, j = 1, \dots, n-1$ den absoluten Konvergenz-Fehler des j-ten Eigenwertes. In der folgenden Abbildung wurde dieser für j = 1, 2, 3 gegen id², doppelt logarithmisch, geplottet. Allem Anschein nach, verschwindet ϵ_j quadratisch. Das korreliert mit dem Ergebnis (6).

Abbildung 1: Konvergenz-Fehler der Eigenwerte von \mathcal{A}_n

3 Titel