Southern Methodist University Bobby B. Lyle School of Engineering Department of Computer Science CS 7343/5343 Operating Systems and System Software

Homework 6

- All students who are signed for this course at the CS 7343 must answer both questions.
- All students who are signed for this course at the CS 5343 must answer exactly one question.
- 1. Consider the following snapshot of a system (P=Process, R=Resource):

Available							
RA	RB	RC	RD				
8	5	9	7				

Maximum Demand										
	RA RB RC RD									
P0	3	2	1	4						
P1	0	2	5	2						
P2	5	1	0	5						
P3	1	5	3	0						
P4	3	0	3	3						

Current Allocation								
	RA RB RC							
P0	1	0	1	1				
P1	0	1	2	1				
P2	4	0	0	3				
P3	1	2	1	0				
P4	1	0	3	0				

Answer the following questions using banker's algorithm:

a) Calculate the *Needs* matrix:

Needs								
	RA RB RC RE							
P0								
P1								
P2								

P3		
P4		

- b) Is the system in a safe state? If so, show a safe order in which the processes can run.
- c) Can a request of one instance of RA by Process P0 be granted safely according to Banker's algorithm? Why/Why not?
 - 2. At an instant, the resource allocation state in a system is as follows:

4 processes P1–P4

4 resource types: R1–R4

R1 (5 instances), R2 (3 instances), R3 (3 instances), R4 (3 instance)

Snapshot at time T0:

	Allocation			Request			Available					
	R 1	R2	R3	R4	R 1	R2	R3	R4	R 1	R2	R3	R4
P 1	0	0	1	0	2	0	0	2	2	1	1	2
P2	2	0	0	1	1	3	0	1				
P3	0	1	1	0	2	1	1	0				
P4	1	1	0	0	4	0	3	1				

Run the deadlock detection algorithm and test whether the system is deadlocked or not. If it is, identify the processes that are deadlocked