Symmetric Encryption

Computational Security

Vanesa Daza

Where do we stand?

- Perfect secrecy: absolutely no information about an encrypted message is leaked.
 - Worthwhile goal, but unnecessarily strong.
 - OTP achieves it.

Where do we stand?

- Perfect secrecy: absolutely no information about an encrypted message is leaked.
 - Worthwhile goal, but unnecessarily strong.
 - OTP achieves it.

Practical purposes: an encryption scheme would be considered **secure** if it leaks information with some tiny probability to eavesdroppers with bounded computational power. **Computational Security.**

Two Relaxations

Relative to Perfect Secrecy

- 1.Security is only guaranteed against efficient attacker that run for some feasible amount of time.
 - Schemes is unbreakable if the resources required to break the scheme larger than those available to any realistic attacker.
- 2.Attacker can **potentially succeed** with some tiny probability.

Tiny probabilities

•Say security fails with probability 2^{-60} .

Should we be concerned about this?

Tiny probabilities

- •Say security fails with probability 2^{-60} .
- Should we be concerned about this?

	probability	equivalent	
(E):=	2^{-10}	full house in 5-card poker	
	2^{-20}	royal flush in 5-card poker	
	2^{-28}	you win this week's Powerball jackpot	
	2^{-40}	royal flush in 2 consecutive poker games	
	2^{-60}	the next meteorite that hits Earth lands in this square ->	

Resources Monetary Value

clock cycles	approx cost	reference
2 ⁵⁰	\$3.50	cup of coffee
255	\$100	decent tickets to a Portland Trailblazers game
265	\$130,000	median home price in Oshkosh, WI
2 ⁷⁵	\$130 million	budget of one of the Harry Potter movies
285	\$140 billion	GDP of Hungary
292	\$20 trillion	GDP of the United States
299	\$2 quadrillion	all of human economic activity since 300,000 BC
2 ¹²⁸	really a lot	a billion human civilizations' worth of effort

M. Rosulek, The Joy of Cryptography

Concrete Approach

- Bounds the maximum success probability of a (randomized) adversary running
 - specified amount of time
 - investing some specified amount of computational effort.

Concrete Approach

- Bounds the maximum success probability of a (randomized) adversary running
 - specified amount of time
 - investing some specified amount of computational effort.
- Need to define break the scheme in question.
- Example: no adversary running for at most 200 years can succeed in breaking the scheme with probability better than 2^{-60} .

Concrete Approach

- Bounds the maximum success probability of a (randomized) adversary running
 - specified amount of time
 - investing some specified amount of computational effort.
- Need to define break the scheme in question.
- Example: no adversary running for at most 200 years can succeed in breaking the scheme with probability better than 2^{-60} .

Note: Large times, small probabilities

The Asymptotic Approach

- Security Parameter: value that parameterizes both cryptographic schemes as well as all involved parties (honest parties and attacker).
- When using a scheme, a security parameter is chosen.
- Functions of the security parameter
 - Running time of the adversary,
 - Success probability

Two important concepts

Polynomial time and negligible probability

- "Efficient adversaries" = randomized algorithms running in **polynomial time** in the security parameter.
 - PPT: there is some polynomial p such that the attacker runs for time at most p(n) when the security parameter is n.
 - "Small probabilities of success" = negligible probability.
 - A function is negligible if for every polynomial p there is an N such that for all n>N it holds that $f(n)<\frac{1}{p(n)}$.
 - Or if for all p, $\lim_{\lambda \to \infty} p(\lambda) f(\lambda) = 0$.

Asymptotic Security

Definition Security

Practical purposes: an encryption scheme would be considered secure if it leaks information with some tiny probability to eavesdroppers with bounded computational power. Computational Security.

Asymptotic Security

Definition Security

Practical purposes: an encryption scheme would be considered secure if it leaks information with some tiny probability to eavesdroppers with bounded computational power. Computational Security.

A scheme is **secure** if any PPT adversary succeeds in breaking the scheme with at most negligible probability.

Security Level

Definition 1.3 A cryptographic scheme has n-bit security if the best known attack requires 2^n steps. When the best known attack is a brute-force attack, then $n=\lambda$, but we will see many examples of the opposite, which makes n significantly smaller. In a few lessons, we will see the example of hash functions, for which, in the best case,

$$n=rac{\lambda}{2}.$$

Security Level

Definition 1.3 A cryptographic scheme has n-bit security if the best known attack requires 2^n steps. When the best known attack is a brute-force attack, then $n=\lambda$, but we will see many examples of the opposite, which makes n significantly smaller. In a few lessons, we will see the example of hash functions, for which, in the best case,

$$n=rac{\lambda}{2}.$$

If we require a security level of 80 bits, this forces us to choose $\lambda=160$, at the least. Another example is RSA, which is a famous encryption scheme that we will study later in the course. In that case, λ needs to be 1024 to achieve a security level of roughly 80 bits.

Symmetric Encryption

Computational Security

