Generalized Linear Models

Sean Hellingman ©

Regression for Applied Data Science (ADSC2020) shellingman@tru.ca

Winter 2025

Topics

- Introduction
- Why GLMs
- Generalization
- Exponential Family
- Variance

- Link Function
- 8 R Basics
- Additional Information
- Exercises and References

Introduction

- Linear models are extremely useful but require very strong assumptions to be valid.
- Linear models can be generalized to work for a wider variety of tasks.
- Each model still has required assumptions but they are generally easier to satisfy.
 - More flexibility in the models.

Linear Regression Model Assumptions I

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_j X_j + \epsilon$$

- Linearity
 - The relationship between the dependent and independent variable(s) needs to be linear
- 2 Normality (multivariate normal for multiple independent variables)
 - In linear regression, all variables must be normally distributed.
- 6 Homoscedasticity (constant variance)
 - The variation about the regression line is constant for all values of the independent variable(s).
- Independence
 - There is little or no multicollinearity in the data (independent variables are too highly correlated with each other).

Linear Regression Model Assumptions II

• Based on the assumptions the error term (ϵ):

$$\epsilon \sim N(0, \sigma^2)$$

- We can use the residuals e_i from our estimated linear regression models to check these assumptions (related to the error term).
- Do we need anything else?

Why Generalized Linear Models

- In many cases the variance depends on the explanatory variables
 - Variance can naturally depend on the mean.
 - Sometimes the relationship can be very complicated.
- The additive relationship assumed by linear models can be unrealistic.
- The response variable no longer follows a normal distribution.

Example 1

- Load the dental.csv data into R.
- Take some time to get to know that data.
- Estimate the following linear regression model:

$$\mathsf{DMFT} = 1 + \mathsf{Sugar} + \mathsf{Indus}$$

• Will this model pass the diagnostics?

Generalization I

- Linear Regression (matrix notation):
 - $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I})$
 - $E(Y|X) = \mu = X\beta$
- Generalized Linear Regression (matrix notation):
 - ullet Y \sim Exponential Family
 - $E(Y|X) = \mu = g^{-1}(X\beta)$

Generalization II

- Y ∼ Exponential Family
- The Exponential Family is a family of distributions that contains many widely used distributions:
 - Normal
 - Binomial
 - Poisson
 - Gamma
 - ...
- $E(Y|X) = \mu = g^{-1}(X\beta)$ Link Function
- $g[E(Y|X)] = g[\mu] = X\beta$

Exponential Family I

- It is now assumed that the response follows a distribution from the natural exponential family.
 - Not the same as the exponential distribution.
- Density:

$$f_{\theta}(y) = \exp[\{y\theta - b(\theta)\}/a(\phi) + c(y,\phi)] \tag{1}$$

- ϕ : dispersion parameter
- θ : canonical parameter (function of β)
- a,b,c: functions

Normal Distribution

$$f_{\mu}(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$

$$= \exp\left[\frac{-y^2 + 2y\mu - \mu^2}{2\sigma^2} - \log(\sigma\sqrt{2\pi})\right]$$

$$= \exp\left[\frac{y\mu - \mu^2/2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \log(\sigma\sqrt{2\pi})\right]$$

$$\theta = \mu, \ b(\theta) = \theta^2/2 \equiv \mu^2/2, \ a(\phi) = \phi = \sigma^2$$

$$c(\phi, y) = -y^2/(2\phi) - \log(\sqrt{\phi 2\pi}) \equiv -y^2/(2\sigma^2) - \log(\sigma\sqrt{2\pi})$$

Poisson Distribution

$$f(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$
$$= \exp\left\{\frac{y\log\lambda - \lambda}{1} - \log y!\right\}$$

$$\theta = \log \lambda, \ b(\theta) = e^{\theta} \ a(\phi) = 1$$

Exponential Family II

Distribution	θ	a(heta)	ϕ
Binomial (n, π)	$\ln(\frac{\pi}{1-\pi})$	n ln $(1+e^{ heta})$	1
$Poisson(\mu)$	$In(\mu)$	$e^{ heta}$	1
Normal (μ, σ^2)	μ	$\frac{1}{2}\theta^2$	σ^2
$Gamma(\mu,\nu)$	$-\frac{1}{\mu}$	$-\ln(-\theta)$	$\frac{1}{\nu}$
Inverse Gaussian (μ, σ^2)	$-\frac{1}{2\mu^2}$	$-\sqrt{-2\theta}$	σ^2
Negative Binomial (μ, κ)	$\ln(\frac{\kappa\mu}{1+\kappa\mu})$	$rac{1}{\kappa} ln (1 - \kappa e^{ heta})$	1

Variance of the Exponential Family

• The variance of Y is a function of the mean (see next slide):

$$Var(Y) = a(\phi)V(\mu)$$

- And the mean is a function of the explanatory variables.
- Therefore, the variance is also a function of the explanatory variables
 - \rightarrow heteroskedasticity.

Exponential Family Variance Functions

Distribution	E(<i>y</i>)	$V(\mu) = \frac{Var(y)}{\phi}$
Binomial (n, π)	$n\pi$	$n\pi(1-\pi)$
$Poisson(\mu)$	μ	μ
Normal (μ, σ^2)	μ	1
$Gamma(\mu,\nu)$	μ	μ^2
Inverse Gaussian (μ, σ^2)	μ	μ^3
Negative Binomial (μ, κ)	μ	$\mu(1+\kappa\mu)$

Example 2

- Simulate observations various distributions from the previous slides and create histograms of your observations.
- Can you think of any examples where any of these distributions could be better applied than the normal distribution?
- How does changing the parameters change the shapes of the distributions?

Link Function

- The *additive effect* of the explanatory variables on the response is assumed on some transformation of the mean.
- The link function is used to perform this transformation.
 - Can be selected for the specific task (logistic regression).
 - There are recommended combinations of link functions and distributions.

$$E(Y|X) = \mu = g^{-1}(X\beta) = g^{-1}(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + ...)$$

$$g[E(Y|X)] = g[\mu] = X\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ...$$

Common Link Functions

Link Function	$g(\mu)$	Common link for
Identity	μ	Normal
Log	$In(\mu)$	Poisson
Power	μ^{p}	Gamma $(p=-1)$
		Inverse Gaussian $(p=-2)$
Square Root	$\sqrt{\mu}$	
Logit	$\ln(rac{\mu}{1-\mu})$	Binomial

Maximum Likelihood Estimation

- Maximum Likelihood Estimation (MLE) is a method of estimating parameters from an assumed probability distribution.
 - This is the primary estimation method used to estimate GLMs.
- What parameter(s) values are most likely to have generated the observations.
- Estimates are obtained by maximising a likelihood function based on an assumed distribution.
- It is assumed that the distribution that the data are drawn from is known.

glm()

To estimate a GLM in R:

```
GLModel <- glm(response ~ Var.1 + Var.2 + ... + Var.j,
family = distribution.name(link = "default.link"), data
= data)
```

- You can use the summary() and predict() functions as you would for linear models.
- We will speak about interpreting the individual results for task specific models as go through them.

Example 3

- Use the *dental.csv* data and the glm() function to estimate the linear model from Example 1.
- Are there other distributions you think will improve the model?

Other Useful Distributions I

- Lognormal Distribution:
 - Stock prices & real estate prices
- Gamma Distribution:
 - Insurance risk
- Weibull Distribution:
 - Time to failure
- Beta Distribution:
 - Fire risk

Other Useful Distributions II

- Geometric Distribution:
 - Number of trials until the first success
- Negative Binomial Distribution:
 - Count response variable (over-dispersed)
- Logistic Distribution:
 - Binary response variable
- Poisson Distribution:
 - Count response variable

Exercise 1

- Take some time to read about the possible distribution choices of GLMs.
- Try to apply some of these models to examples where we have struggled to satisfy the assumptions of linear regression.

References & Resources

- ① De Jong, P., & Heller, G. Z. (2008). *Generalized linear models for insurance data*. Cambridge University Press.
- glm()
- family()