MEK4320, Problems for 6/5 2020

Geir Pedersen

Department of Mathematics, UiO

May 6, 2020

Extra problems for Mek 4320; 12

Compendium, section 2.10: LSW equation for $h = \alpha x$ and constant frequency solved by means of Bessel functions.

a: Use of ray theory.

Reproduce the result $(\kappa = \omega^2/\alpha g)$

$$\eta = a_1(\kappa x)^{-\frac{1}{4}}\cos(2\sqrt{\kappa x} - \omega t + \delta_1) + a_2(\kappa x)^{-\frac{1}{4}}\cos(2\sqrt{\kappa x} + \omega t + \delta_2),$$

from section 2.10 by means of ray theory and the transport equation.

Solution to a

Must reproduce $\eta = A(x)\cos(\chi)$ with $A = a_1(\kappa x)^{-\frac{1}{4}}$ and $\chi = 2\sqrt{\kappa x} - \omega t + \delta_1$ (other sign is similar)

Dispersion relation $\omega = W(k, x) = \sqrt{g\alpha x}k$ Characteristic equation for ω

$$\frac{\partial \omega}{\partial t} + c_g \frac{\partial \omega}{\partial x} = \frac{\partial W}{\partial t} = 0,$$

 ω may be constant and $k = \omega/\sqrt{g\alpha x}$.

From $\chi_{x} = k$

$$\chi = \int k dx + F(t) = \frac{\omega}{\sqrt{g\alpha}} \int x^{-\frac{1}{2}} dx + F(t) = \frac{2\omega\sqrt{x}}{\sqrt{g\alpha}} + F(t)$$

Then $\chi_t = \pm \omega \Rightarrow F' = -\omega \Rightarrow \chi = 2\sqrt{\kappa x} \pm \omega t + \text{const.}$.

Transport equation

$$\frac{\partial \overline{E}}{\partial t} + \frac{\partial \overline{F}}{\partial x} = 0.$$

No local time variation of averaged quantities \Rightarrow

$$\overline{F} = c_g \overline{E} = \text{const} \Rightarrow \sqrt{gh} A^2 = \text{const} \Rightarrow A = \text{const} \, x^{-\frac{1}{4}}.$$

Both A and χ are reproduced with ray theory.

b: Requirement for asymptotics.

For the use of ray theory we must require $|\lambda k_x/k| \ll 1$. Explain this. On the other hand, the use of asymptotic approximations for the Bessel functions in section 2.10 requires $\sqrt{\kappa x} \gg 1$. Show that these two requirements are the same.

Solution

$$k = \omega / \sqrt{g\alpha x}, \ k_x = -\frac{1}{2}\omega / (x\sqrt{g\alpha x}), \ \lambda = 2\pi/k \Rightarrow$$

$$1 \gg \left| \frac{\lambda k_x}{k} \right| = \pi \sqrt{\frac{g\alpha}{\omega^2 x}} = \frac{\pi}{\sqrt{\kappa x}}.$$

Problem 4, chapter 3.5

Same set-up as preceding problem except for $h(x) = h_0(\frac{x}{7})^2$. Same scheme for application of ray theory.

a: Use ray theory to determine the phase function χ .

Solution

Again $k=\pm\omega/\sqrt{gh}$ and integration of $\chi_{\rm x}=k$ and $\chi_t=\omega$

$$\chi = \pm \beta \log(x/x_0) + \omega t + \text{const.}$$

where

$$\beta = \frac{I\omega}{\sqrt{gh_0}},$$

and x_0 is some reference value.

Constant energy flux now implies

$$\sqrt{gh}A^2 = \text{const.} \quad \Rightarrow \quad A = \text{const } x^{-\frac{1}{2}}$$

Combining the two solutions

$$\eta = A_{+} x^{-\frac{1}{2}} e^{i(\beta \log(x/x_0) + \omega t)} + A_{-} x^{-\frac{1}{2}} e^{i(-\beta \log(x/x_0) + \omega t)}.$$

b

Give an interpretation of the expression $\frac{1}{c}\frac{\partial c}{\partial x}\lambda$. Which requirement must we impose on $\beta=\frac{\omega I}{\sqrt{gh_0}}$ for ray theory to be valid?

Solution

Expression has interpretation as change of medium over an wavelength.

Calculation with $c=\sqrt{gh}$ and $\lambda=2\pi/k$

$$\frac{1}{c}\frac{\partial c}{\partial x}\lambda = \frac{2\pi}{\beta}.$$

Ray theory requires slowly varying medium $\Rightarrow \beta \gg 1$.

C

Find a solution of the shallow water equation of the form $\eta=e^{i\omega t}x^q$. Compare this with the results we found with the help of ray theory.

Solution

Prefer to do it step by step.

$$\frac{\partial^2 \eta}{\partial t^2} - \frac{\partial}{\partial x} \left(gh(x) \frac{\partial \eta}{\partial x} \right) = 0,$$

Inserted $\eta = e^{i\omega t}\hat{\eta}(x)$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(h(x)\frac{\mathrm{d}\hat{\eta}}{\mathrm{d}x}\right) + \frac{\omega^2}{g}\hat{\eta} = 0.$$

Next, insert expression for h(x)

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2\frac{\mathrm{d}\hat{\eta}}{\mathrm{d}x}\right) + \beta^2\hat{\eta} = 0.$$

 β does appear again! Equation may be rewritten

$$x^2\hat{\eta}'' + 2x\hat{\eta}' + \beta^2\hat{\eta} = 0.$$

If we insert a power for $\hat{\eta}$ all terms will have the same power \Rightarrow solution on form $\hat{\eta}=x^q$ possible for some q. Insertion of $\hat{\eta}=x^q$

$$\left(q^2 + q + \beta^2\right) x^q = 0.$$

Solution when

$$q_{\pm} = \frac{1}{2} \left(-1 \pm \sqrt{1 - 4\beta^2} \right).$$

For $\beta > \frac{1}{2}$

$$q_{\pm} = -\frac{1}{2} \pm iq_i, \quad q_i = \beta \sqrt{1 - \frac{1}{4}\beta^{-2}} = \beta - \frac{1}{8}\beta^{-1} + O(\beta^{-3}).$$

Full solution $\eta = A_+ x^{q_+} e^{i\omega t} + A_- x^{q_-} e^{i\omega t}$.

Recasting first part to same form as ray solution

$$\eta = A_{+}x^{q_{+}}e^{i\omega t} + ... = \overline{A}_{+}x^{-\frac{1}{2}}e^{i(q_{i}\log(x/x_{0})+\omega t)} + ...$$

where $\overline{A}_+=A_+x_0^{iq_i}$. $q_i=\beta+O(1/\beta)$: close to ray solution when β large.

Problem 1; section 3.1

In one end of a wave tank, a wave is generated with length $\lambda=1\,\mathrm{m}$. The wave generator has been on for $t=100\,\mathrm{s}$. Estimate the number of wave crests in the channel in the three cases where the water depth is $h=4\,\mathrm{m}$, $h=0.5\,\mathrm{m}$ and $h=0.1\,\mathrm{m}$. Assume that the wave channel is long enough that reflection from the opposite end does not happen.

Extra question: An observer stands still while the generated wave train passes. How many crest will she count ?

Solution

First: $h=4\,\mathrm{m}$ deep water , $h=0.5\,\mathrm{m}$ and $h=0.1\,\mathrm{m}$ (nearly) shallow water (problem 9 from assignment).

Dispersion relation: λ and h give ω , period T etc.

Number of crests produced at paddle

$$N_p = \frac{t}{T} = \frac{ct}{\lambda}.$$

Length of wave train after t: energy moves with $c_g \Rightarrow$ front has reached a distance $L = c_g t$ from paddle.

Number of crests in wave train

$$N_t = \frac{L}{\lambda} = \frac{c_g t}{\lambda}.$$

Shallow water: $N_t = N_p$, deep water $N_t = \frac{1}{2}N_p$.

Solution

Extra question

Observer at distance L from paddle. End of wave train moves with

 c_g .

It passes in

$$t_p = \frac{L}{c_g} = t.$$

Crests observed

$$\frac{t}{T} = N_p,$$

for both deep and shallow water.