Euclid Preparation 1

Logarithms, Exponents, Functions, and Equations

Vincent Macri

William Lyon Mackenzie C.I. Math Club

© Caroline Liu, Vincent Macri, and Samantha Unger, 2018

Workshop Overview

Part I:

- 1 Exponents
 - Overview
 - Exponent problems
- 2 Logarithms
 - Overview
 - Logarithm problems

Part II:

- 3 Parabolas
 - Overview
 - Parabola problems
- 4 Polynomials
 - Overview
 - Polynomial problems

Part I

Logarithms and Exponents

Table of Contents

- 1 Exponents
 - Overview
 - Exponent problems
- 2 Logarithms
 - Overview
 - Logarithm problems

Formulas Exponents

When $a, b, x, y \in \mathbb{R}$ and $n \in \mathbb{R} \mid n \neq 0$:

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{0} = 1 \text{ if } a \neq 0$$

$$a^{-x} = \frac{1}{a^{x}} \text{ if } a \neq 0$$

$$\frac{a^{x}}{a^{y}} = a^{x-y} \text{ if } a \neq 0$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{x} \cdot b^{x} = (ab)^{x}$$

$$a^{x}a^{y} = a^{x+y}$$

 0^0 is not defined.

Exponents problem 1 Exponents

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Exponents problem 1 Exponents

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^2)7^k = 5^m(5^3+1)$$

Exponents problem 1 Exponents

Problem

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^2)7^k = 5^m(5^3+1)$$
$$(450)7^k = 5^m(126)$$

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$
$$(450)7^{k} = 5^{m}(126)$$
$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$

$$(450)7^{k} = 5^{m}(126)$$

$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

$$5^{2} \cdot 7^{k} = 5^{m} \cdot 7$$

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Solution

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$

$$(450)7^{k} = 5^{m}(126)$$

$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

$$5^{2} \cdot 7^{k} = 5^{m} \cdot 7$$

Since the integer factorization of numbers is always unique and both m and k are integers:

If m and k are integers, find all solutions to the equation:

$$9(7^k + k^{k+2}) = 5^{m+3} + 5^m$$

Solution

$$9(1+7^{2})7^{k} = 5^{m}(5^{3}+1)$$

$$(450)7^{k} = 5^{m}(126)$$

$$(2 \cdot 3^{2} \cdot 5^{2})7^{k} = 5^{m}(2 \cdot 3^{2} \cdot 7)$$

$$5^{2} \cdot 7^{k} = 5^{m} \cdot 7$$

Since the integer factorization of numbers is always unique and both m and k are integers: m=2 and k=1.

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$
$$n = (\pm \sqrt{5})^5$$

Exponents problem 2 Exponents

Problem

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$
$$n = (\pm \sqrt{5})^5$$

$$mn =$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = = = =$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = = = =$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = (\sqrt{5} \cdot \sqrt{5})^3 = -1$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

$$n = (\pm \sqrt{5})^5$$

$$mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = (\sqrt{5} \cdot \sqrt{5})^3 = 5^3 = 5^3$$

The graph of $y=m^x$ passed through the points (2,5) and (5,n). What is the value of mn?

Solution

$$m = \pm \sqrt{5}$$

 $n = (\pm \sqrt{5})^5$
 $mn = (\pm \sqrt{5})^6 = (\sqrt{5})^6 = (\sqrt{5} \cdot \sqrt{5})^3 = 5^3 = 125$

Table of Contents

- 1 Exponents
 - Overview
 - Exponent problems
- 2 Logarithms
 - Overview
 - Logarithm problems

Formulas Logarithms

When $a, x, y \in \mathbb{R} \mid a, x, y \neq 0$:

$$\log_a(xy) = \log_a x + \log_a y$$
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$
$$\log_a(x^y) = y \log_a x$$
$$\log_a(a^x) = a^{\log_a x} = x$$

$$\log_a 1 = 0$$
$$\log_a x = \frac{1}{\log_a a}$$
$$\frac{\log_a x}{\log_a y} = \log_y x$$

Formulas Logarithms

When $a, x, y \in \mathbb{R} \mid a, x, y \neq 0$:

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a x = \frac{1}{\log_a x}$$

$$\log_a(x^y) = y \log_a x$$

$$\log_a(a^x) = a^{\log_a x} = x$$

$$\frac{\log_a x}{\log_a y} = \log_y x$$

Also, $\log_b c$ has the restrictions:

$$b \in \mathbb{R} \mid b > 0 \text{ and } b \neq 1$$

$$c \in \mathbb{R} \mid c > 0$$

Formulas Logarithms

When $a, x, y \in \mathbb{R} \mid a, x, y \neq 0$:

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a 1 = 0$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a x = \frac{1}{\log_a x}$$

$$\log_a(x^y) = y \log_a x$$

$$\log_a(a^x) = a^{\log_a x} = x$$

$$\frac{\log_a x}{\log_a y} = \log_y x$$

Also, $\log_b c$ has the restrictions:

$$b \in \mathbb{R} \mid b > 0$$
 and $b \neq 1$
$$c \in \mathbb{R} \mid c > 0$$

Finally, if $f(x) = a^x$ then $f^{-1} = \log_a(x)$. That is, the exponential and logarithmic functions are each other's inverses. More formally:

$$y = a^x \iff x = \log_a y$$

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our restrictions:

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

$$2\log_5(x - 3y) = \log_5(2x) + \log_5(2y)$$
$$\log_5(x - 3y)^2 = \log_5(4xy)$$

Problem

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

$$2\log_5(x - 3y) = \log_5(2x) + \log_5(2y)$$
$$\log_5(x - 3y)^2 = \log_5(4xy)$$

We know that the logarithmic function is an injective function.

Calculate the ratio $\frac{x}{y}$ if $2\log_5(x-3y) = \log_5(2x) + \log_5(2y)$.

Solution

First, we state our **restrictions**: x > 0, y > 0, and x > 3y.

$$2\log_5(x - 3y) = \log_5(2x) + \log_5(2y)$$
$$\log_5(x - 3y)^2 = \log_5(4xy)$$

We know that the logarithmic function is an **injective function**.

An **injective function** is one where f(a) = b is only true for one value of a. More formally:

$$f \colon A \to B$$
 is injective if $\forall a, b \in A, f(a) = f(b) \implies a = b$

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy)$$
$$(x - 3y)^2 = 4xy$$
$$x^2 - 6xy + 9y^2 = 4xy$$

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

From here we have two cases:

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

From here we have two cases:

$$x - y = 0$$
$$x = y$$

But this violates our restriction x > 3y, so the answer must be found via the next case.

Solution

Since $\log_a x$ is injective: $\log_a b = \log_a c \iff b = c$.

$$\log_5(x - 3y)^2 = \log_5(4xy) \qquad x^2 - 10xy + 9y^2 = 0$$
$$(x - 3y)^2 = 4xy \qquad x^2 - xy - 9xy + 9y^2 = 0$$
$$x^2 - 6xy + 9y^2 = 4xy \qquad (x - y)(x - 9y) = 0$$

From here we have two cases:

$$x - y = 0$$
 $x - 9y = 0$ $x = 9y$ our restriction $x > 3y$, so the $x = 9y$ $x = 3y$

But this violates our restriction x>3y, so the answer must be found via the next case.

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our restrictions:

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Next, we simply equate the two curves:

$$\log_{10}(x-2) = 1 - \log_{10}(x+1)$$

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Next, we simply equate the two curves:

$$\log_{10}(x-2) = 1 - \log_{10}(x+1)$$
$$\log_{10}(x-2) + \log_{10}(x+1) = 1$$

Problem

Determine the points of intersection of the curves $y = \log_{10}(x-2)$ and $y = 1 - \log_{10}(x+1)$.

Solution

First, we state our **restrictions**: x > 2.

Next, we simply equate the two curves:

$$\log_{10}(x-2) = 1 - \log_{10}(x+1)$$
$$\log_{10}(x-2) + \log_{10}(x+1) = 1$$
$$\log_{10}((x-2)(x+1)) = 1$$

$$\log_{10}\left((x-2)(x+1)\right) = 1$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^{2} - x - 2 = 10$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$
$$(x-4)(x+3) = 0$$

Solution

$$\log_{10} ((x-2)(x+1)) = 1$$

$$(x-2)(x+1) = 10$$

$$x^{2} - x - 2 = 10$$

$$x^{2} - x - 12 = 0$$

$$(x-4)(x+3) = 0$$

So we get x = 4, -3.

Solution

$$\log_{10} ((x-2)(x+1)) = 1$$

$$(x-2)(x+1) = 10$$

$$x^{2} - x - 2 = 10$$

$$x^{2} - x - 12 = 0$$

$$(x-4)(x+3) = 0$$

So we get x=4,-3. We have the restriction x>2, so we are left with x=4.

Solution

$$\log_{10} ((x-2)(x+1)) = 1$$
$$(x-2)(x+1) = 10$$
$$x^2 - x - 2 = 10$$
$$x^2 - x - 12 = 0$$
$$(x-4)(x+3) = 0$$

So we get x=4,-3. We have the restriction x>2, so we are left with x=4. This leaves us with the point of intersection $(4,\log_{10}2)$.

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our restrictions:

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$
$$9 - 2^x = 2^{3-x}$$

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$
$$9 - 2^x = 2^{3-x}$$
$$9 - 2^x = \frac{2^3}{2^x}$$

Problem

Solve for x if $\log_2(9 - 2^x) = 3 - x$.

Solution

First, we state our **restrictions**: $9 > 2^x$.

$$\log_2(9 - 2^x) = 3 - x$$
$$9 - 2^x = 2^{3-x}$$
$$9 - 2^x = \frac{2^3}{2^x}$$
$$9 - 2^x = \frac{8}{2^x}$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

$$9 - y = \frac{8}{y}$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

$$9 - y = \frac{8}{y}$$
$$-y^2 + 9y - 8 = 0$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

$$9 - y = \frac{8}{y}$$
$$-y^2 + 9y - 8 = 0$$
$$y = 1, 8$$

Solution

$$9 - 2^x = \frac{8}{2^x}$$

Let $y = 2^x$.

$$9 - y = \frac{8}{y}$$
$$-y^2 + 9y - 8 = 0$$
$$y = 1, 8$$

We substitute these solutions back into $y=2^x$ to find that x=0 or x=3, both of which satisfy our restrictions.

Part II

Functions and Equations

Table of Contents

- 3 Parabolas
 - Overview
 - Parabola problems
- 4 Polynomials
 - Overview
 - Polynomial problems

Quadratic formula Parabolas

For the quadratic function $f(x)=ax^2+bx+c$ with $a,b,c\in\mathbb{R}\mid a\neq 0$, there are two zeroes (roots) given by the quadratic formula:

$$r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Where the **discriminant** (Δ) is the value inside the square root:

$$\Delta = b^2 - 4ac$$

These roots are:

Real and distinct if $\Delta > 0$

Real and equal if $\Delta = 0$

Non-real and distinct if $\Delta < 0$

More stuff with parabola roots Parabolas

The sum of the roots of a parabola is $r_1+r_2=-\frac{b}{a}$. The product of the roots of a parabola is $r_1r_2=\frac{c}{a}$. We can rearrange $y=ax^2+bx+c$ as:

$$y = ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

Since the vertex is halfway between the roots, the vertex is at:

$$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$$

Parabola problem 1 Parabolas

Problem

If $x^2 - x - 2 = 0$, determine all possible vales of $1 - \frac{1}{x} - \frac{6}{x^2}$.

Parabola problem 1 Parabolas

Problem

If $x^2 - x - 2 = 0$, determine all possible vales of $1 - \frac{1}{x} - \frac{6}{x^2}$.

Solution

We can apply the quadratic formula to find the values of x.

Parabola problem 1 Parabolas

Problem

If $x^2 - x - 2 = 0$, determine all possible vales of $1 - \frac{1}{x} - \frac{6}{x^2}$.

Solution

We can apply the quadratic formula to find the values of \boldsymbol{x} .

We use a=1, b=-1, and c=-2:

Problem

If $x^2 - x - 2 = 0$, determine all possible vales of $1 - \frac{1}{x} - \frac{6}{x^2}$.

Solution

We can apply the quadratic formula to find the values of x.

We use a=1, b=-1, and c=-2:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_1, x_2 = \frac{1 \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$$

$$x_1, x_2 = 2, -1$$

Parabola problem 1 solution continued Parabolas

Solution

We were asked to find the possible values of $1 - \frac{1}{x} - \frac{6}{x^2}$. We simply plug in our two values of x.

We were asked to find the possible values of $1 - \frac{1}{x} - \frac{6}{x^2}$. We simply plug in our two values of x.

$$x = 2$$
:

$$1 - \frac{1}{2} - \frac{6}{2^2} = -1$$

We were asked to find the possible values of $1 - \frac{1}{x} - \frac{6}{x^2}$. We simply plug in our two values of x.

$$x = 2$$
:

$$1 - \frac{1}{2} - \frac{6}{2^2} = -1$$

$$x = -1$$
:

$$1 - \frac{1}{-1} - \frac{6}{(-1)^2} = -4$$

We were asked to find the possible values of $1 - \frac{1}{x} - \frac{6}{x^2}$. We simply plug in our two values of x.

$$x = 2$$
:

$$1 - \frac{1}{2} - \frac{6}{2^2} = -1$$

$$x = -1$$
:

$$1 - \frac{1}{-1} - \frac{6}{(-1)^2} = -4$$

Therefore the possible values are -1 and -4.

Parabola problem 2 Parabolas

Problem

If the graph of the parabola $y=x^2$ is translated to a position such that its x intercepts are -d and e and its y intercept is -f, (where d,e,f>0), show that de=f.

If the graph of the parabola $y=x^2$ is translated to a position such that its x intercepts are -d and e and its y intercept is -f, (where d,e,f>0), show that de=f.

Solution

We know the formula for a parabola given the roots:

$$y = a(x - r_1)(x - r_2).$$

If the graph of the parabola $y=x^2$ is translated to a position such that its x intercepts are -d and e and its y intercept is -f, (where d,e,f>0), show that de=f.

Solution

We know the formula for a parabola given the roots:

$$y = a(x - r_1)(x - r_2)$$
. We can plug in $r_1 = -d$ and $r_2 = e$:

$$y = a(x+d)(x-e)$$

If the graph of the parabola $y=x^2$ is translated to a position such that its x intercepts are -d and e and its y intercept is -f, (where d,e,f>0), show that de=f.

Solution

We know the formula for a parabola given the roots: y = a(x, y, y)(x, y, y) We can plug in y = -d and y = -d

$$y = a(x - r_1)(x - r_2)$$
. We can plug in $r_1 = -d$ and $r_2 = e$:

$$y = a(x+d)(x-e)$$

Since we only performed a translation, and no stretch or compression, we know that $a=1. \label{eq:angle}$

If the graph of the parabola $y=x^2$ is translated to a position such that its x intercepts are -d and e and its y intercept is -f, (where d,e,f>0), show that de=f.

Solution

We know the formula for a parabola given the roots:

$$y = a(x - r_1)(x - r_2)$$
. We can plug in $r_1 = -d$ and $r_2 = e$:

$$y = a(x+d)(x-e)$$

Since we only performed a translation, and no stretch or compression, we know that a=1.

So:
$$y = (x + d)(x - e)$$
.

Solution

$$y = (x+d)(x-e)$$

Solution

$$y = (x+d)(x-e)$$

$$y = (x+d)(x-e)$$

Solution

$$y = (x+d)(x-e)$$

$$y = (x+d)(x-e) - f = (0+d)(0-e)$$

Solution

$$y = (x+d)(x-e)$$

$$y = (x+d)(x-e) - f = (0+d)(0-e) - f = (d)(-e)$$

Solution

$$y = (x+d)(x-e)$$

$$y = (x+d)(x-e)$$

$$-f = (0+d)(0-e)$$

$$-f = (d)(-e)$$

$$-f = -de$$

Solution

$$y = (x+d)(x-e)$$

And since the y-intercept occurs at x=0, we plug in x=0 and y=-f:

$$y = (x+d)(x-e)$$

$$-f = (0+d)(0-e)$$

$$-f = (d)(-e)$$

$$-f = -de$$

$$f = de$$

Q.E.D.

Parabola problem 3 Parabolas

Problem

Find all values of x such that $x + \frac{36}{x} \ge 13$.

Parabola problem 3

Problem

Find all values of x such that $x + \frac{36}{x} \ge 13$.

Solution

First, we state our restriction:

Parabola problem 3

Problem

Find all values of x such that $x + \frac{36}{x} \ge 13$.

Solution

First, we state our restriction: $x \neq 0$.

Parabola problem 3 Parabolas

Problem

Find all values of x such that $x + \frac{36}{x} \ge 13$.

Solution

First, we state our restriction: $x \neq 0$.

We can also see that this inequality will certainly be false for any negative values of x. This means that x>0.

Parabola problem 3 Parabolas

Problem

Find all values of x such that $x + \frac{36}{x} \ge 13$.

Solution

First, we state our restriction: $x \neq 0$.

We can also see that this inequality will certainly be false for any negative values of x. This means that x>0.

Since we know the sign of x, we can algebraically rearrange the inequality.

Solution

Next, we rearrange the inequality:

$$x + \frac{36}{x} \ge 13$$
$$x^2 + 36 \ge 13x$$
$$x^2 - 13x + 36 \ge 0$$

Solution

Next, we rearrange the inequality:

$$x + \frac{36}{x} \ge 13$$
$$x^2 + 36 \ge 13x$$
$$x^2 - 13x + 36 \ge 0$$

We can factor it as $(x-4)(x-9) \ge 0$.

Next, we rearrange the inequality:

$$x + \frac{36}{x} \ge 13$$
$$x^2 + 36 \ge 13x$$
$$x^2 - 13x + 36 \ge 0$$

We can factor it as $(x-4)(x-9) \ge 0$. After taking into account our restrictions, we arrive at:

$$0 < x \le 4 \cup x \ge 9$$

Next, we rearrange the inequality:

$$x + \frac{36}{x} \ge 13$$
$$x^2 + 36 \ge 13x$$
$$x^2 - 13x + 36 \ge 0$$

We can factor it as $(x-4)(x-9) \ge 0$. After taking into account our restrictions, we arrive at:

$$0 < x \leq 4 \cup x \geq 9$$

More formally, we can state that: $x \in (0,4] \cup [9,\infty)$.

Table of Contents

- 3 Parabolas
 - Overview
 - Parabola problems
- 4 Polynomials
 - Overview
 - Polynomial problems

Theorem (Remainder Theorem and Factor Theorem)

The remainder theorem states that when a polynomial $p(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$, of degree n, is divided by (x-k) the remainder is p(k).

The factor theorem then follows: p(k) = 0 if and only if (x - k) is a factor of p(x).

A polynomial equation of degree n has at most n real roots. It will always have n complex roots.

Theorem (Rational Root Theorem)

The rational root theorem states that all rational roots $\frac{a}{b}$ have the property that a and b are factors of the last and first coefficient, a_n and a_0 respectively.

Polynomial problem 1 Polynomials

Problem

If a polynomial leaves a remainder of 5 when divided by x-3 and a remainder of -7 when divided by x+a, what is the remainder when the polynomial is divided by $x^2-2x-3?$

If a polynomial leaves a remainder of 5 when divided by x-3 and a remainder of -7 when divided by x+a, what is the remainder when the polynomial is divided by x^2-2x-3 ?

Solution

Let's examine how we we divide polynomials:

$$\frac{p(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$$

Where p(x) is the dividend, d(x) is the divisor, q(x) is the quotient, and r(x) is the remainder.

If a polynomial leaves a remainder of 5 when divided by x-3 and a remainder of -7 when divided by x+a, what is the remainder when the polynomial is divided by x^2-2x-3 ?

Solution

Let's examine how we we divide polynomials:

$$\frac{p(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$$

Where p(x) is the dividend, d(x) is the divisor, q(x) is the quotient, and r(x) is the remainder.

This can be rearranged as: p(x) = d(x)q(x) + r(x).

Solution

We know that (generally) when dividing a polynomial by another polynomial of degree n, the remainder will have a degree of n-1 (fun exercise: why did I say generally?).

Solution

We know that (generally) when dividing a polynomial by another polynomial of degree n, the remainder will have a degree of n-1 (fun exercise: why did I say generally?). So, dividing our polynomial by x^2-2x-3 should leave a linear remainder.

Solution

We know that (generally) when dividing a polynomial by another polynomial of degree n, the remainder will have a degree of n-1 (fun exercise: why did I say generally?). So, dividing our polynomial by x^2-2x-3 should leave a linear remainder.

We will call the polynomial we are dividing by p(x). Then:

$$p(x) = (x^2 - 2x - 3)q(x) + ax + b$$

where q(x) is the quotient, and ax + b is the remainder.

Solution

$$p(x) = (x^2 - 2x - 3)q(x) + ax + b$$

We can factor $x^2 - 2x - 3$ as (x - 3)(x + 1).

$$p(x) = (x - 3)(x + 1)q(x) + ax + b$$

$$p(x) = (x^2 - 2x - 3)q(x) + ax + b$$

We can factor $x^2 - 2x - 3$ as (x - 3)(x + 1).

$$p(x) = (x - 3)(x + 1)q(x) + ax + b$$

The remainder for when we divide by these was given in the problem statement. From the remainder theorem, we know that:

$$p(3) = 5 = ax + b = 3a + b$$

$$p(-1) = -7 = ax + b = -a + b$$

Solution

$$5 = 3a + b$$

$$-7 = -a + b$$

$$12 = 4a$$

$$a = 3$$

$$\begin{array}{rrr}
5 &= 3a+b \\
- & -7 &= -a+b \\
\hline
12 &= 4a \\
a &= 3
\end{array}$$

$$-7 = -a + b$$
$$-7 = -3 + b$$
$$b = -4$$

$$5 = 3a + b$$

$$-7 = -a + b$$

$$12 = 4a$$

$$a = 3$$

$$-7 = -a + b$$
$$-7 = -3 + b$$
$$b = -4$$

Therefore, the remainder is 3x - 4.