

Atomic number, Mass number, Atomic species

- The number of electrons in an atom of an element is equal to its
 - (a) Atomic weight
 - (b) Atomic number
 - (c) Equivalent weight
 - (d) Electron affinity
- The nucleus of the element having atomic number 25 and atomic weight 55 will contain
 - (a) 25 protons and 30 neutrons
 - (b) 25 neutrons and 30 protons
 - (c) 55 protons
 - (d) 55 neutrons
- 3. If W is atomic weight and N is the atomic number of an element, then
 - (a) Number of $e^{-1} = W N$
 - (b) Number of $0n^1 = W N$
 - (c) Number of $1H^1 = W N$
 - (d) Number of $0n^1 = N$
- 4. The total number of neutrons in dipositive zinc ions with mass number 70 is
 - (a) 34
- (b) 40
- (c) 36
- (d) 38

- 5. Which of the following are isoelectronic with one another
 - (a) Na^+ and Ne
 - (b) K^+ and O
 - (c) Ne and O
 - (d) Na^+ and K^+
- 6. The number of electrons in one molecule of CO_2 are
 - (a) 22
- (b) 44
- (c) 66
- (d) 88
- Chlorine atom differs from chloride ion in the number of
 - (a) Proton
 - (b) Neutron
 - (c) Electrons
 - (d) Protons and electrons
- 8. *CO* has same electrons as **or** the ion that is isoelectronic with *CO* is
 - (a) N_2^+
- (b) *CN*⁻
- (c) O_2^+
- (d) O_2^-
- The mass of an atom is constituted mainly by
 - (a) Neutron and neutrino
 - (b) Neutron and electron
 - (c) Neutron and proton
 - (d) Proton and electron

IIT-JEE CHEMISTRY

- 10. The atomic number of an element represents
 - (a) Number of neutrons in the nucleus
 - (b) Number of protons in the nucleus
 - (c) Atomic weight of element
 - (d) Valency of element
- 11. An atom has 26 electrons and its atomic weight is 56. The number of neutrons in the nucleus of the atom will be
 - (a) 26
- (b) 30
- (c) 36
- (d) 56
- 12. The most probable radius (in pm) for finding the electron in He^+ is
 - (a) 0.0
- (b) 52.9
- (c) 26.5
- (d) 105.8

- 15. An atom which has lost one electron would be
 - (a) Negatively charged
 - (b) Positively charged
 - (c) Electrically neutral
 - (d) Carry double positive charge
- 16. Number of electrons in the outermost orbit of the element of atomic number 15 is
 - (a) 1

(b) 3

(c) 5

- (d) 7
- 17. The atomic weight of an element is double its atomic number. If there are four electrons in 2p orbital, the element is
 - (a) C

(b) N

(c) 0

- (d) Ca
- 13. The number of unpaired electrons in 18. An atom the Fe^{2+} ion is
 - (a) 0

(b) 4

(c) 6

- (d) 3
- **14.** A sodium cation has different number of electrons from
 - (a) 0^{2-}
- (b) F⁻
- (c) Li+
- (d) Al^{+3}
- etrons in **18.** An atom has the electronic configuration of $1s^2, 2s^22p^6$, $3s^23p^63d^{10}, 4s^24p^5$. Its atomic weight is 80. Its atomic number and the number of neutrons in its nucleus shall number
 - (a) 35 and 45
- (b) 45 and 35
- (c) 40 and 40
- (d) 30 and 50
- 19. Which of the following particles has more electrons than neutrons

IIT-JEE CHEMISTRY

(a) C

- (b) F^{-}
- (c) 0^{-2}
- (d) Al^{+3}
- 20. Compared with an atom of atomic weight 12 and atomic number 6, the atom of atomic weight 13 and atomic number 6
 - (a) Contains more neutrons
 - (b) Contains more electrons
 - (c) Contains more protons
 - (d) Is a different element
- 21. In the nucleus of $20Ca^{40}$ there are
 - (a) 40 protons and 20 electrons
 - (b) 20 protons and 40 electrons
 - (c) 20 protons and 20 neutrons
 - (d) 20 protons and 40 neutrons
- 22. Na^+ ion is isoelectronic with
 - (a) Li+
- (b) Mg^{+2}
- (c) Ca^{+2}
- (d) Ba^{+2}
- 23. Ca has atomic no. 20 and atomic weight 40. Which of the following statements is not correct about Caatom
 - (a) The number of electrons is same as the number of neutrons
 - (b) The number of nucleons is double of the number of electrons
 - (c) The number of protons is half of the number of neutrons

- (d) The number of nucleons is double of the atomic number
- **24.** Pick out the isoelectronic structures from the following

$$CH_3^+$$
 H_3O^+ NH_3 CH_3^- IV

- (a) I and II
- (b) I and IV
- (c) I and III
- (d) II, III and IV

