实验五 时序逻辑电路

JS124620 高越 2025年5月7日

一、 实验内容

分别用 MSI 计数器和移位寄存器设计一个具有自启动功能的 010110 序列信号发生器

- 1. 写出设计过程, 画出电路逻辑图
- 2. 搭接电路,并用单脉冲静态验证实验结果
- 3. 加入 TTL 连续脉冲,用示波器观察观察并记录时钟脉冲 CLK、序列输出端的波形。

二、 实验设计方案

方案一 使用 MSI 计数器的设计方案

设计思路

010110 序列信号发生器一个周期内有 6 个状态,所以应该先用 74HC161 模 16 计数器来实现一个模 6 计数器,再将该计数器的输出端接入一个组合逻辑电路,从而得到需要的序列。为了使电路简化,可以使用一个 3-8 译码器来把计数器输出转化为题目要求的序列,使用同步置数法实现模 6 计数器。为了进一步简化电路,可以在设计模 6 计数器时,将 74HC138 的 $\overline{Y5}$ 输出端接入 74HC161 的 \overline{SPE} 端,实现同步置数,这样可以省去一个非门。

逻辑电路图

利用 MultiSim 软件绘制电路图,电路图如图1所示:

图 1: 方案一逻辑电路图

	现态			次态			控制端	
	Q ₂ ⁿ	Q_1^n	Q ₀ ⁿ	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	D_{SR}	S_1
有效状态	0	0	0	0	0	1	1	0
	0	0	1	0	1	0	0	0
	0	1	0	1	0	1	1	0
	1	0	1	0	1	1	1	0
	0	1	1	1	1	0	0	0
	1	1	0	0	0	0	1	1
无效状态	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	1

表 1: 方案二状态转移真值表

方案二 使用移位寄存器的设计方案

设计思路

不妨以 4 位双向移位寄存器的最低输出位 Q_0 作为输出信号。由于题目要求信号的一个周期内有 6 个状态,所以只需用到移位寄存器输出端的最低三位,使用同步置数法来循环产生 6 个不同状态。因此,只需把 \overline{MR} 接高电平,四个置数输入端均接地,根据现态控制 S_1 即可。考虑自启动,列出状态转移真值表,如表1 所示。

逻辑电路图

 D_{SR} 可用数据选择器产生,而从真值表容易看出 $S_1=Q_1Q_2$,故 S_1 可用与非门实现。利用 MultiSim 软件绘制电路图,电路图如图2所示。

图 2: 方案二逻辑电路图

三、 测试方案

- 1. 搭接电路,以面包板上自带的时钟脉冲作为时钟信号,把输出端接入LED灯,同时将时钟信号也接入LED灯作为对照,灯亮表示1,灯灭表示0,观察并记录输出序列。
- 2. 加入 TTL 连续脉冲,用示波器观察 CLK、 Q_0 、 Q_1 、 Q_2 及输出端 LED 的波形,汇总并记录。