Algèbre linéaire réduction des endomorphismes de dimension finie

Notations : (sauf exercices 2,3,8) : K désigne un corps, et \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . On note u un endomorphisme d'un K-espace vectoriel E de dimension **finie** $n \geq 1$; de plus μ_u désigne son polynôme minimal et χ_u son polynôme caractéristique. Si $K = \mathbb{K}$, on note e^u l'endomorphisme $\sum_{k=0}^{\infty} u^k/k!$ de E.

I Quelques réductions explicites

- 1.Trace nulle
- a) On suppose que l'endomorphisme u de E n'est pas une homothétie ($u \neq \lambda id_E$ pour tout $\lambda \in K$). Montrer qu'il existe x dans E tel que la famille (x, u(x)) est libre.

On considère M une matrice de trace nulle dans $M_n(K)$.

- b) Montrer par récurrence sur n que M est semblable à une matrice M' dont tous les coefficients diagonaux sont nuls.
- c) On suppose card $K \geq n$, et que les éléments d_1, \ldots, d_n de K sont tous distincts. On note $D = \text{diag}(d_1, \ldots, d_n) \in M_n(K)$. Montrer qu'il existe X dans $M_n(K)$ telle que XD DX = M'. Qu'en déduit-on pour M? pour $u \in \text{End}(E)$ de trace nulle?
- **2.** SUITE RÉCURRENTE LINÉAIRE On considère la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ définie par $F_0=0,\ F_1=1$ et par la relation de récurrence $F_{n+1}=F_n+F_{n-1}\ (n\geq 1)$.
- a) Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que pour tout $n \geq 1$, $\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = A^n \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$.
- b) Montrer que A admet deux valeurs propres réelles distinctes $\lambda_1 < \lambda_2$.
- c) Diagonaliser A et donner les coordonnées du vecteur (F_1, F_0) dans la base de vecteurs propres considérée.
- **d)** Déduire de ce qui précède que $F_n = \frac{\lambda_2^n \lambda_1^n}{\lambda_2 \lambda_1}$ $(n \in \mathbb{N})$.
- e) Donner un équivalent de F_n lorsque n tend vers $+\infty$.
- **3.** Système récurrent linéaire On considère les trois suites réelles (x_n) , (y_n) , (z_n) définies par la donnée de x_0, y_0, z_0 et les relations de récurrence $(n \ge 0)$:

$$\begin{cases} x_{n+1} = x_n + y_n + 3z_n \\ y_{n+1} = x_n + 3y_n + z_n \\ z_{n+1} = 3x_n + y_n + z_n \end{cases}$$

Pour $n \in \mathbb{N}$ on note U_n le vecteur colonne $^t(x_n, y_n, z_n)$.

- a) Déterminer une matrice carrée A telle que $U_{n+1} = AU_n$, pour tout $n \ge 0$.
- **b)** Diagonaliser A.
- c) En déduire U_n en fonction de U_0 (ou plutôt de U'_0 le vecteur colonne des coordonnées de U_0 dans la base de vecteurs propres choisie), et exprimer x_n , y_n et z_n ($n \ge 0$) en fonction de n et x_0 , y_0 et z_0 (idem).
- **4.** ENDOMORPHISMES NILPOTENTS On suppose en a),b),c) qu'il existe un entier $p \ge 2$ tel que $u^{p-1} \ne 0$ et $u^p = 0$.
- a) Pour tout j entre 0 et p-1, montrer que $\operatorname{Ker}(u^j) \subseteq \operatorname{Ker}(u^{j+1})$.
- b) En déduire que $p \leq n$ et qu'il existe une base de E dans laquelle la matrice de u est triangulaire supérieure, avec des zéros sur la diagonale.
- c) Montrer que l'endomorphisme $id_E u$ est inversible et exprimer son inverse comme polynôme en u.
- d) Montrer que chaque condition ci-dessous entraı̂ne que u est nilpotent :
 - (i) pour tout $x \in E$, il existe $p_x \ge 1$ tel que $u^{p_x}(x) = 0$.
 - (ii) $K = \mathbb{C}$ et on a $tr(u^k) = 0$ pour tout k entre 1 et n.
- 5. Endomorphismes de carré $-id_E$ On suppose ici que $K=\mathbb{R}$ et $u^2=-id_E$.
- a) Montrer que u est inversible et que la dimension de E est paire, donc n=2p.
- b) Soit $x \neq 0$ dans E. Montrer que x et u(x) sont linéairement indépendants, et qu'ils engendrent un sous-espace stable de E.
- c) Montrer que E est la somme directe $E = \bigoplus_{i=1}^{p} E_i$ de p plans E_i stables par u.
- d) Pour tout i entre 1 et p, on choisit e_i non nul dans E_i , et on pose $f_i = u(e_i)$. Justifier que $\mathcal{B} = (e_1, \ldots, e_p, f_1, \ldots, f_p)$ est une base de E et écrire la matrice de u dans cette base.
- **6.** Matrices de Permutation Soit $\sigma \in S_n$ une permutation, et $P_{\sigma} \in M_n(\mathbb{C})$ la matrice de permutation associée, c.a.d. la matrice (p_{ij}) qui a dans chaque colonne un unique terme non nul $p_{\sigma(j)j} = 1$.
- a) Que vaut det P_{σ} ? Déterminer le polynôme caractéristique et le polynôme minimal de P_{σ} (on pourra commencer par le cas d'un k-cycle).
- **b)** P_{σ} est-elle diagonalisable? Donner ses valeurs propres et la dimension de chaque sous-espace propre.

II Polynômes d'endomorphismes

- 7. UN POLYNÔME ANNULATEUR On suppose ici que $u^2 3u + 2id_E = 0$.
- a) Montrer que u est un automorphisme, exprimer u^{-1} .
- **b)** Montrer que $E = \text{Ker}(u id) \oplus \text{Ker}(u 2id)$ et déterminer les projecteurs associés à cette décomposition, sous forme de polynômes en u. Que peut-on dire de u?
- c) Expliciter u^k comme combinaison linéaire de u et id_E $(k \ge 2)$.

8. DÉCOMPOSITION DE DUNFORD

Pour $a, b \in \mathbb{R}$ on considère la matrice $A = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 2 \end{pmatrix}$.

- a) On suppose que a=0. Donner la décomposition de Dunford de A (c-à-d écrire A=D+N, avec DN=ND, D diagonalisable et N nilpotente).
- **b)** Donner les valeurs de a et de b pour lesquelles la décomposition de Dunford de A est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix}$.
- c) On suppose dans la suite que b=1 et $a\neq 0$. Déterminer les sous-espaces propres et les sous-espaces caractéristiques de A.
- d) Déterminer la décomposition de Dunford de A et calculer A^k pour tout $k \ge 1$.

9. Matrice et déterminant circulants

Dans $M_n(\mathbb{C})$ on considère les matrices $A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_n & a_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ a_2 & \dots & a_n & a_1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 & & (0) \\ \vdots & \ddots & \ddots & \\ 0 & & \ddots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$.

- a) Exprimer A comme un polynôme en J. En déduire le degré du polynôme minimal μ_J de J.
- b) Donner μ_J . Quelles sont les valeurs propres de J?
- c) Montrer avec ce qui précède que A est diagonalisable et calculer det A.

10. Théorème de Cayley-Hamilton

On souhaite montrer que $\chi_u(u)$ est l'endomorphisme nul. Soit donc $x \neq 0$ dans E. Il s'agit de montrer que $\chi_u(u)(x) = 0$. On définit l'idéal I_x des polynômes P de K[X] tels que P(u)(x) = 0. On note $E_x = \text{Vect}\{u^k(x) \mid k \in \mathbb{N}\}$.

- a) Justifier que I_x n'est pas réduit à $\{0\}$. On note P_x son générateur unitaire, $d_x = \deg P_x$.
- **b)** Montrer que E_x est stable par u, et que $\mathcal{B}_x = (x, u(x), \dots, u^{d_x-1}(x))$ en est une base.

- c) On note v l'endomorphisme de E_x donné par restriction de u. Calculer le polynôme caractéristique χ_v . (supplément : montrer que P_x est le polynôme minimal de v.)
- d) En complétant \mathcal{B}_x en une base de E, montrer que χ_v divise χ_u et conclure.

11. QUELQUES PROPRIÉTÉS GÉNÉRALES

- a) Montrer (sans utiliser χ_u) que les racines de μ_u sont exactement les valeurs propres de u.
- b) Soit $Q \in K[X]$. Montrer que l'endomorphisme Q(u) est inversible si et seulement si Q et μ_u sont premiers entre eux. Montrer qu'alors l'inverse de Q(u) est un polynôme en u. À quelle condition l'algèbre K[u] est-elle un corps?
- c) On suppose que $K = \mathbb{C}$, et que la matrice A de u dans une certaine base \mathcal{B} est réelle. Montrer que μ_u est égal au polynôme minimal de A, aussi bien sur \mathbb{R} que sur \mathbb{C} .
- d) Soit $P \in \mathbb{C}[X]$ tel que P(0) = 0 et $P'(0) \neq 0$. On suppose que P(u) = 0. Montrer que $\operatorname{Ker} u = \operatorname{Ker}(u^2)$. En déduire que $E = \operatorname{Ker} u \oplus \operatorname{Im} u$.
- e) Montrer que l'endomorphisme e^u est un polynôme Q(u) en u. Expliciter un tel polynôme Q quand (i) u est nilpotent; (ii) u annule $X^2 3X + 2$ (cf. exo 7).
- **f)** On prend $K = \mathbb{Z}/p\mathbb{Z}$ (p premier). Montrer que u est diagonalisable si et seulement si $u^p = u$. Généraliser au cas où K est un corps fini quelconque (noter que si $q = \operatorname{card} K$, on a $q = p^r$, où p est la caractéristique de K).
- **12.** Pour $A \in M_n(K)$, on considère la matrice par blocs $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix} \in M_{2n}(K)$.
- a) Calculer les matrices B^k , $k \ge 1$, puis P(B), $P \in K[X]$.
- b) Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

13. COMMUTANT D'UN ENDOMORPHISME, EXEMPLES

On appelle commutant de u, noté C(u), l'ensemble des endomorphismes v de E qui commutent avec u, i.e. tels que $u \circ v = v \circ u$. On rappelle que K[u] désigne la sous-algèbre de End(E) constituée des polynômes en u.

- a) Préciser la structure de C(u) et la dimension de K[u]. Montrer que C(u) contient K[u].
- b) On suppose que la matrice de u dans une certaine base \mathcal{B} est la matrice diagonale $\begin{pmatrix} aI_r & 0 \\ 0 & bI_{n-r} \end{pmatrix}$, où 1 < r < n et $a \neq b$. Déterminer C(u) et le comparer à K[u].
- c) On suppose que $K = \mathbb{R}$, n = 2 et $u^2 = -id_E$ (cf. exo 5.). Déterminer C(u). Montrer $C(u) \simeq \mathbb{C}$.

- d) On suppose ici que χ_u est scindé à racines simples. Montrer que C(u) = K[u] (on pourra raisonner sur la restriction à chaque sous-espace propre de u, puis se placer dans une base associée).
- e) Même question en supposant cette fois que E possède une base \mathcal{B} de la forme $(x, u(x), \ldots, u^{n-1}(x))$ que vaut alors μ_u (cf. 10.c)? -).

III Famille d'endomorphismes

14. DIAGONALISATION, TRIGONALISATION SIMULTANÉES

Soit $(u_i)_{i\in I}$ une famille d'endomorphismes de E qui commutent deux à deux.

- a) Montrer que tout sous-espace propre de l'un des u_i est stable par chaque u_i .
- b) On suppose chaque u_i diagonalisable. Montrer qu'il existe une base de E faite de vecteurs propres communs à tous les u_i (on pourra raisonner par récurrence sur $n = \dim E$).

Dans la suite on suppose chaque u_i trigonalisable.

- c) Montrer, par récurrence sur n, que les $(u_i)_{i\in I}$ ont un vecteur propre commun e_1 . On complète e_1 en une base $\mathcal{B} = (e_1, \ldots, e_n)$ de E et on note $F = \text{Vect}(e_2, \ldots, e_n)$, p la projection sur F parallèlement à $\text{Vect}(e_1)$, et u_i' l'endomorphisme $p \circ u_{i|F}$ de F.
- **d)** Relier la matrice A'_i de u'_i dans la base $\mathcal{B}' = (e_2, \ldots, e_n)$ avec $A_i = \text{mat}_{\mathcal{B}}(u_i)$. Montrer que les endomorphismes $(u'_i)_{i \in I}$ de F commutent deux à deux et sont trigonalisables.
- e) Conclure, par récurrence sur n, que les $(u_i)_{i\in I}$ sont cotrigonalisables.
- f) Donner deux matrices triangulaires qui ne commutent pas.

15. Application de la densité de $\mathrm{GL}_n(\mathbb{K})$ dans $M_n(\mathbb{K})$

Soient A et B deux matrices de $M_n(\mathbb{K})$.

- a) Montrer que si B est inversible, AB et BA ont même polynôme caractéristique.
- b) En déduire la même propriété si B est quelconque.
- c) Les matrices AB et BA sont-elles toujours semblables?
- d) Soient u et v deux endomorphismes de E qui commutent, et tels que v est nilpotent. Avec un argument similaire à b), montrer que $\det(u+v) = \det u$.