

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

2.4GHz FHSS RFID ELECTRONIC SHELF LABEL (TEMPERATURE TAG)

MODEL NUMBER: ATEMP250

FCC ID: W22-ATEMP250 IC: 9005A-ATEMP250

REPORT NUMBER: 10U13342-1

ISSUE DATE: AUGUST 10, 2010

Prepared for

ALTIERRE CORPORATION 1980 CONDOURSE DRIVE SAN JOSE, CA 95131, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/03/10	Initial Issue	T. Chan

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	4
2.	TES	T METHODOLOGY	5
3.	FAC	ILITIES AND ACCREDITATION	5
	CAL 4.1.	IBRATION AND UNCERTAINTY MEASURING INSTRUMENT CALIBRATION	
	4.2. 4.3.	SAMPLE CALCULATION MEASUREMENT UNCERTAINTY	
5.	EQU	IIPMENT UNDER TEST	6
5	5.1. 5.2.	DESCRIPTION OF EUT MAXIMUM OUTPUT POWER	6
5	5.3. 5.4.	DESCRIPTION OF AVAILABLE ANTENNASSOFTWARE AND FIRMWARE	6
5	5.5. 5.6.	WORST-CASE CONFIGURATION AND MODE DESCRIPTION OF TEST SETUP	7
6.	TES	T AND MEASUREMENT EQUIPMENT	11
7.	ANT	ENNA PORT TEST RESULTS	12
7	7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1. 7.1.	HOPPING FREQUENCY SEPARATION NUMBER OF HOPPING CHANNELS DUTY CYCLE AVERAGE TIME OF OCCUPANCY OUTPUT POWER AVERAGE POWER	
8.	RAD	NATED TEST RESULTS	34
8	3.1.	LIMITS AND PROCEDURE	
8	8.2. 8.2. 8.2.2	TRANSMITTER ABOVE 1 GHz	35
8	3.3.	WORST-CASE BELOW 1 GHz	41
9.	MAX	(IMUM PERMISSIBLE EXPOSURE	44
40	c	ETUD DUOTOS	47

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ALTIERRE CORPORATION

1980 CONDOURSE DRIVE SAN JOSE, CA95131, USA

EUT DESCRIPTION: 2.4GHz FHSS RFID ELECTRONIC SHELF LABEL (Temperature

Tag)

MODEL: ATEMP250

SERIAL NUMBER: 400683, 400764 for RF Radiated Test

400802, 400661 for RF Conducted Test

DATE TESTED: AUGUST 02 – 03, 2010

APPLICABLE STANDARDS

STANDARD

CFR 47 Part 15 Subpart C

INDUSTRY CANADA RSS-210 Issue 7 Annex 8

INDUSTRY CANADA RSS-GEN Issue 2

Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By: Tested By:

THU CHAN
ENGINEERING MANAGER
COMPLIANCE CERTIFICATION SERVICES

TOM CHEN EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Temperature Tag 2.4GHz FHSS RFID Electronic Shelf Label, which is operated by 3.0 Volts battery.

The radio module is manufactured by Altierre Corp.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power	
(MHz)		(dBm)	(mW)	
2401.5 - 2479.5	Binary FSK	3.89	2.45	

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB antenna, with a maximum gain of 0 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was the Large Tag provisioning revision1.17.

The test utility software used during testing was ATDTestApp release 2.4.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

5.6. DESCRIPTION OF TEST SETUP

FOR RF RADIATED TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description	Description Manufacturer Model Serial Number FCC ID							
Laptop	IBM	Thinkpad	99	Doc				
AC Adapter	IBM	AA21131	11S02K6963Z2UF2763P3M4	Doc				
ATD (dock)	Altierre	N/S	N/A	Doc				

I/O CABLES

	I/O CABLE LIST							
Cable No.			Cable Length	Remarks				
1	AC	2	US115V	Unshielded	1.5m			
2	DC	1	DC	Unshielded	1m	A ferrite at laptop end		
3	USB	1	USB	shielded	1m			

TEST SETUP

The EUT is a stand alone device during the tests; all support equipments will be removed after all parameters were configured via ATD (dock) and laptop computer.

SETUP DIAGRAM

DATE: AUGUST 10, 2010

IC: 9005A-ATEMP250

FOR RF CONDUCTED TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Description Manufacturer Model Serial Number						
Laptop	IBM	Thinkpad	99	Doc			
AC Adapter	IBM	AA21131	11S02K6963Z2UF2763P3M4	Doc			
Access Point	N/A	N/A	N/A	Doc			
PoE	Korenix	JN2008060081	N/A	Doc			
3.0 Volts Battery	N/A	N/A	N/A	Doc			

I/O CABLES

	I/O CABLE LIST							
Cable	Cable Port # of Connector Cable Cable Remarks							
No.		Identica	Type	Type	Length			
		Ports						
1	AC	2	US115V	Unshielded	1.5m			
2	DC	1	DC	Unshielded	1.0m	A ferrite at laptop end		
3	Ethernet	2	RJ45	shielded	.80m			

TEST SETUP

The EUT is a stand alone device during the tests; all support equipments will be removed after all parameters were configured via access point and laptop computer.

SETUP DIAGRAM

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Asset	Cal Due					
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	05/08/11			
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/31/10			
Antenna, Horn, 18 GHz	EMCO	3115	C00783	07/29/11			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	08/04/11			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/14/11			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	07/06/11			
Peak Power Meter	Agilent / HP	E4416A	C00963	12/04/11			
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/04/11			

7. ANTENNA PORT TEST RESULTS

7.1. BINARY FSK MODULATION

7.1.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth	
	(MHz)	(kHz)	(kHz)	
Low	2401.5	515.993	628.514	
Middle	2440.5	613.303	560.973	
High	2479.5	615.549	619.580	

20 dB BANDWIDTH

99% BANDWIDTH

7.1.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

7.1.3. NUMBER OF HOPPING CHANNELS

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.1.4. DUTY CYCLE

LIMITS

None; for reporting purposes only.

RESULTS

Mode	Tx on	Tx on + Tx off	Duty Cycle	Correction Factor
	(msec)	(msec)	(%)	(dB)
Binary FSK	0.5867	1048	0.06	32.52

7.1.5. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

RESULTS

Pulse	Number of	Average	Limit	Margin
Width	Pulses in	Time of		
(msec)	3.16	(sec)	(sec)	(sec)
	seconds			
0.575	1	0.006	0.4	0.394

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

7.1.6. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2401.5	3.89	30	-26.11
Middle	2440.5	3.29	30	-26.71
High	2479.5	2.26	30	-27.74

OUTPUT POWER

7.1.7. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.3dB (including 10 dB pad and 0.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2401.5	3.61
Middle	2440.5	2.86
High	2479.5	1.55

7.1.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m		
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TRANSMITTER ABOVE 1 GHz IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 08/03/10
Project #: 10U13342
Company: Altierra

EUT Description: 2.4GHz Altrierre Electronic Temperature Tag

EUT M/N: EUT only
Test Target: FCC Class B

Mode Oper: Test Mode, Continuously TX

Duty Cycle Correction Factor = 20log ((0.5867ms x 3) / 100) = -32.52dB (Max = 20dB allowable)

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Distance to Antenna D Corr Distance Correct to 3 meters Dist Peak Field Strength Limit Read Analyzer Reading Average Field Strength @ 3 m Avg Margin vs. Average Limit ΑF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CLCable Loss HPF High Pass Filter

Dist Read \mathbf{AF} CLAmp D Corr Fltr Corr. Limit Margin Ant. Pol. Det. Notes CHz (m) dBuV dB/mđВ dΒ ďΒ dB dBuV/m dBuV/m dΒ V/H P/A/OP 2401.5MHz Low CH 4.803 5.8 -34.8 0.00.060.2 74.0 H Hori 4.803 3.0 36.6 32.7 5.8 -34.8 0.0 0.0 40.2 54.0 -13.8н Hori 7.205 3.0 34.6 35.4 7.2 -34.20.0 0.0 43.0 74.0 -31.0 н P Hori 7.205 3.0 14.6 35.4 7.2 -34.2 0.0 0.023.0 54.0 -31.0 н A Hori 4.803 0.0 54.6 v Р 3.0 51.0 32.7 5.8 -34.80.0 74.0 -19.4 Vert 4.803 3.0 31.0 32.7 54.0 -19.4 V 5.8 -34.80.0 0.0 34.6 A Vert 7.2053.0 35.4 7.2 -34.20.043.8 74.0 V P 35.4 0.0 -30.2Vert 7.205 3.0 15.4 35.4 -34.2 0.00.023.8 54.0 -3**0.2** V A Vert 7.2 2440.5MHz Mid CH V P -34.8 74.0 Vert 4.881 3.0 50.732.7 5.8 0.0 0.0 54.5 -19.5 4.881 30.7 32.7 -34.8 -19.5v Vert 7.322 3.0 34.6 35.5 7.3 -34.10.0 43.2 74.0 -30.8 V 0.0 Vert 7.322 3.0 14.6 35.5 7.3 -34.1 0.0 0.0 23.2 54.0 -30.8 v A Vert 9.762 3.0 35.8 37.5 8.6 -33.3 0.00.048.6 74.0 25.4 V Vert -25.4 9.762 37.5 v 3.0 15.8 8.6 -33.3 0.0 0.0 28.6 54.0 A Vert 4.881 55.1 Н P 3.0 51.4 32.7 -34.8 74.0 -18.9 Hori 4.881 3.0 31.4 -34.8 0.0 35.1 54.0 -18.9 Н A 32.7 5.8 0.0 Hori 7.322 3.0 34.8 35.5 7.3 -34.1 0.0 0.0 43.5 74.0 -30.5 Н P Hori 7.322 3.0 14.8 35.5 -34.1 0.0 23.5 54.0 -30.**5** Н A 7.3 0.0 Hori 2478.5MHz High CH 4.957 32.8 5.9 0.0 74.0 Н P 4.957 3.0 28.3 32.8 5.9 -34.80.0 0.0 32.1 54.0 -21.9 Н A Hori 7.436 3.0 35.3 35.6 7.3 -34.1 0.0 0.0 44.1 74.0 -29.9 Н P Hori 7.436 3.0 15.3 35.6 -34.1 0.00.0 24.1 54.0 -29.9 Н A 7.3 Hori -22.8 4.957 3.0 47.3 32.8 5.9 -34.8 0.0 0.051.2 74.0 v Р Vert 4.957 5.9 31.2 54.0 V 3.0 27.3 32.8 -34.8 0.0 0.0 Vert P 7.436 3.0 35.0 35.6 7.3 -34.1 0.0 0.0 43.9 74.0 -30.1Vert 7.436 35.6 7.3 -34.1 0.0 0.023.9 54.0 -30.1

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

8.2.2. RECEIVER ABOVE 1 GHz IN THE 2.4 GHz BAND

DATE: AUGUST 10, 2010

IC: 9005A-ATEMP250

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL & VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Tom Chen Test Engr: 08/03/10 Date: Project #: 10U13342 Company: Altierre

EUT Description: 2.4GHz Altrierre Electronic Temperature Tag

EUT M/N: EUT only Test Target: FCC Class B Mode Oper: TX Mode, Worst Case

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr		•	Limit	_	Ant Pol		Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dB	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
Horizontal													
32.760	3.0	33.3	18.7	0.5	28.4	0.0	0.0	24.0	40.0	-16.0	H	P	
47.761	3.0	35.2	10.4	0.6	28.3	0.0	0.0	17.9	40.0	-22.1	H	P	
88.562	3.0	34.9	7.4	0.8	28.3	0.0	0.0	14.8	43.5	-28.7	H	P	
100.323	3.0	39.6	9.4	0.8	28.2	0.0	0.0	21.6	43.5	-21.9	Н	P	
157.565	3.0	32.8	13.1	1.1	27.7	0.0	0.0	19.2	43.5	-24.3	H	P	
836.073	3.0	32.4	21.3	2.6	28.1	0.0	0.0	28.3	46.0	-17.7	н	P	
Vertical													
30.960	3.0	23.1	19.5	0.5	28.4	0.0	0.0	14.7	40.0	-25.3	V	P	
35.040	3.0	24.4	17.5	0.5	28.4	0.0	0.0	14.0	40.0	-26.0	V	P	
47.761	3.0	28.0	10.4	0.6	28.3	0.0	0.0	10.7	40.0	- 29. 3	V	P	
98.523	3.0	34.8	9.0	0.8	28.2	0.0	0.0	16.5	43.5	-27.1	v	P	
607.224	3.0	28.6	18.5	2.2	28.6	0.0	0.0	20.7	46.0	-25.3	v	P	
836.433	3.0	31.3	21.3	2.6	28.1	0.0	0.0	27.2	46.0	-18.8	V	P	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

9. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field Magnetic field strength strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34 1.34–30	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300	27.5	0.073	0.2	30	
300-1500			f/1500	30	
1500-100,000			1.0	30	

f = frequency in MHz

^{* =} Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Binary FSK	0.20	3.89	0.00	0.0049	0.0005