Fast Control of Multimode Cavities with Conditional Displacements

Eesh Gupta, S. Chakram, ...

Outline

Challenges in Cavity Control

Multimode Conditional Displacements

3D Cavity QED

- High Coherence times compared to superconducting circuits [1,2]
 - $T_1 \sim 2$ ms for Al. Cavities [ref?]
 - $T_1 \sim 35 \text{ ms } 2 \text{ s for Nb. Cavities}$
- Infinitely large Hilbert Space and simple decoherence processes → hardware efficient error correction [2]
- Universal control via coupling to anharmonic systems [2]

[1] Romanenko, A., et al. Physical Review Applied 13.3 (2020): 034032.

Goal: Enact high-speed operations on cavity modes while minimizing ancilla errors

Challenges in Cavity Control I

Coupling to lossy ancilla > source of error for high-Q cavities!

Transmon Relaxation

 Gate Errors dominated by ancilla coherence

•
$$\epsilon \sim \frac{\gamma_q}{\chi} = \frac{1}{(\chi T_q)}$$

• Mitigate by strong $\chi \gg \gamma_q {\sim} 10~{\rm kHz}$

Challenges in Cavity Control II

Coupling to lossy ancilla > source of error for high-Q cavities!

Inverse Purcell Effect

 Coupling to lossy ancilla reduces mode coherence

•
$$T_1^{cav} \le \frac{\Delta^2}{g^2} T_1^q \sim \frac{2\alpha}{\chi} T_1^q$$

• Mitigate by weak $\chi \sim 10 \text{ kHz}$

Challenges in Cavity Control III

Coupling to lossy ancilla > source of error for high-Q cavities!

Transmon Relaxation

Strong
$$\frac{\chi}{2\pi}\gg\gamma_q{\sim}10~\mathrm{kHz}$$

Inverse Purcell Effect

Weak
$$\frac{\chi}{2\pi} \sim 10 \text{ kHz}$$

Conditional Displacement Gates

- large displacements of cavity mode to enhance gate speed
- Weak $\chi/2\pi \sim 30$ kHz but strong $\chi\alpha_0/2\pi \sim 1$ MHz
- Symmetric pulse sequences to isolate conditional displacement term in Hamiltonian.
- Universal control of single mode + qubit with $\{ECD(\beta), R_{\phi}(\theta)\}$

 $\chi a^{\dagger} a \sigma_{z}$ $\chi (\alpha_{0} a^{\dagger} + \alpha_{0}^{\star} a) \sigma_{z}$ $D(\alpha_{0})$ $\alpha_{0} \sim 30$

- Hacohen-Gourgy, S., Martin, L., Flurin, E. et al. Nature 538, 491–494 (2016).
- Eickbusch, A., Sivak, V., Ding, A.Z. et al. *Nat. Phys.* 18, 1464–1469 (2022)

Outline

Challenges in Cavity Control

Multimode Conditional Displacements

Coherent Errors

- Dispersive shift causes frequency shifts in transmon from photons in spectator modes
- Weaker χ and faster gate speeds mitigates this cross-talk error

-
$$\epsilon_{coh}$$
 = (Spurious Shifts)*(gate speed)
= $\frac{N\chi}{\chi\alpha} = \frac{N}{\alpha} \sim 10\%$
 $N\sim 3$
 $\alpha\sim 30$

Multimode ECD

Sequentially acting ECD Gates on each mode

- Driving modes one at a time to avoid heating effects and amplifying cross kerr interaction [1, 2]
- Instead of enhanced cross kerr interaction, rely on JC-like interaction between 'tunable qubit' and modes

^[1] Eickbusch, Alec, et al. W34. 00005. APS March Meeting (2022).

^[2] Diringer, Asaf A., et al. arXiv preprint arXiv:2301.09831 (2023).

Multimode ECD

Sequentially acting ECD Gates on each mode

 Driving modes one at a time to avoid heating effects and amplifying cross kerr interaction. [1][2]

 Instead of enhanced cross kerr interaction, rely on JC-like interaction between 'tunable qubit' and modes

$$H_{\mathrm{had}} = \sum_{i=1,2} \chi_i \alpha_i (a_i^\dagger + a_i) \sigma_{\chi} + \Omega(t) \sigma_{\chi}$$

$$\begin{array}{c} \chi_i \alpha_i (a_i^\dagger + a_i) \sigma_{\chi} + \Omega(t) \sigma_{\chi} \\ \text{Jaynes} \\ \text{Cummings} \end{array} \quad \begin{array}{c} \text{Tunable} \\ \text{Qubit} \end{array}$$

^[1] Eickbusch, Alec, et al. W34. 00005. APS March Meeting (2022).

^[2] Diringer, Asaf A., et al. arXiv preprint arXiv:2301.09831 (2023).

Multimode ECD: State Transfer I

- Task: $g \otimes |n0\rangle \rightarrow g \otimes |0n\rangle$

 Optimized Pulse Sequences with fidelity < 1e-3

Multimode ECD: State Transfer II

$$g \otimes |10\rangle \rightarrow g \otimes |01\rangle$$

$g \otimes |20\rangle \rightarrow g \otimes |02\rangle$

Multimode ECD: Error Budget

Displaced Frame

•
$$T_{1,q} = 85 \,\mu\text{s}$$

•
$$T_{2,q} = 98 \, \mu s$$

•
$$T_{1,c} = 2 \, ms$$

•
$$T_{\phi,c} = 150 \, ms \, *$$

$$2\kappa_{\phi} |\alpha|^{2} (D[a]\tilde{\rho} + D[a^{\dagger}]\tilde{\rho}) + \dots$$

$$\sim (83 \,\mu s)^{-1}$$

^{*}Eickbusch, A., Sivak, V., Ding, A.Z. et al. Nat. Phys. 18, 1464–1469 (2022)

Outline

Challenges in Cavity Control

Multimode Conditional Displacements

Circle GRAPE

|g \ |e \

- Combines displacement enhanced $\chi\alpha$ technique with GRAPE [1,2]
- Detuning causes squeezed state to rotate in phase space
- Currently, only the qubit drive is optimized

[1] N. Khaneja et al. Journal of Magnetic Resonance 172, 29 (2005)

[2] Eickbusch, A., Elder, S., et al. In *APS March Meeting Abstracts* (Vol. 2021, pp. V31-005).

Conditional Displacement

$$H = \sum_{i=1,2} \Delta_i a_i^{\dagger} a_i + \chi_i (a_i^{\dagger} + \alpha_i^*) (a_i + \alpha_i) \sigma_z$$
$$+ \Omega_x(t) \sigma_x + \Omega_y(t) \sigma_y$$

Qubit Drive

Example: $|g10\rangle \rightarrow |g01\rangle$

Simulation Parameters

- $\Delta_c = 2\pi \times 10 \text{ Mhz}$
- $|\Omega| = 2\pi \times 10 \text{ Mhz}$
- $\chi_1, \chi_2 = 2\pi \times 33 \text{ kHz}$
- $\alpha_1, \alpha_2 = 30$

Conclusion

Challenges in Cavity Control

Multimode Conditional Displacements

$$H = \chi (\alpha a^{\dagger} + \alpha^* a) \sigma_z$$

• Combines displacement enhanced $\chi\alpha$ technique with GRAPE algorithm

Circle GRAPE

Cavity drives detuned

Rotate in circle because of detuning; is this a spiral?