Electromagnetic Scattering by Surfaces of Arbitrary Shape

SADASIVA M. RAO, DONALD R. WILTON, SENIOR MEMBER, IEEE, AND ALLEN W. GLISSON, MEMBER, IEEE

$$\mathbf{f}_{n}(\mathbf{r}) = \begin{cases} \frac{l_{n}}{2A_{n}^{+}} \rho_{n}^{+}, & \mathbf{r} \text{ in } T_{n}^{+} \\ \frac{l_{n}}{2A_{n}^{-}} \rho_{n}^{-}, & \mathbf{r} \text{ in } T_{n}^{-} \\ \mathbf{0}, & \text{otherwise,} \end{cases}$$

$$(6)$$

$$\nabla_{s} \cdot \mathbf{f}_{n} = \begin{cases} \frac{l_{n}}{A_{n}^{+}}, & \mathbf{r} \text{ in } T_{n}^{+} \\ -\frac{l_{n}}{A_{n}^{-}}, & \mathbf{r} \text{ in } T_{n}^{-} \end{cases}$$

$$0, & \text{otherwise.}$$

$$(7)$$

下面的公式 RWG basis functions 写成了 g: 截图来源:

ESSENTIALS OF COMPUTATIONAL ELECTROMAGNETICS

Xin-Qing Sheng Beijing Institute of Technology, China

Wai Sana

Beijing Institute of Technology, China

EFIE:

$$\left. \left[{{{f E}^i} + Z\,{f L}({f J})}
ight]
ight|_t = 0$$
 , where Z is wave impedance

The weak form EFIE with discretization by RWG (忽略上标 TE):

 $[P^{TE}]{J} = {b^{TE}}$ (2.17)

where

$$P_{ij}^{TE} = -Z \int_{S} \mathbf{g}_{i} \cdot \mathbf{L}(\mathbf{g}_{j}) dS \qquad (2.18)$$

$$b_i^{TE} = \int_{S} \mathbf{g}_i \cdot \mathbf{E}^i dS \tag{2.19}$$

Where

$$\mathbf{L}(\mathbf{X}) = -jk\!\int\!\!\left[\mathbf{X} + \!\frac{1}{k^2}\nabla(\nabla'\cdot\mathbf{X})\right]\!Gd\tau'$$

计算矩阵的公式(双重积分):

Z 矩阵里第 i 行 j 列元素: (文章里可能需要把 wave impedance Z 用别的符号表示)

R (S 和 S' 的距离)大的时候直接用 Gaussian Legendre quadrature (内外积分点的数量可以自己设置)

在 R 很小的时候(奇异或近奇异),把格林函数写成

$$G = \frac{1}{4\pi R} (e^{-jkR} - 1) + \frac{1}{4\pi R}$$

第一部分用三角形的 Gaussian Legendre quadrature

第二部分的内层积分(dS')用 graglia 的解析解公式, 外层积分还是 Gaussian Legendre quadrature

引用

1448

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 41, NO. 10, OCTOBER 1993

On the Numerical Integration of the Linear Shape Functions Times the 3-D Green's Function or its Gradient on a Plane Triangle

Roberto D. Graglia, Senior Member, IEEE

Calculation of CFIE Impedance Matrix Elements With RWG and $n \times RWG$ Functions

Pasi Ylä-Oijala and Matti Taskinen

主要原理:

Evaluation of the integrals is performed by using appropriate Gauss integral theorems to transform the integration on T into one integration over the boundary ∂T of T. This procedure requires that the integrands are contin-

计算入射场和右端项公式(单层积分):

先写入射场 E^i:

$$\mathbf{E} = -\mathbf{K}(\mathbf{M})$$

Where

$$\mathbf{K}(\mathbf{X}) = -\int \mathbf{X} \times \nabla G d\tau'$$
 (把 M 代入 X)

对于 dipole 积分就可以忽略了

代入 (2.19):

R (源到 S 的距离) 大的时候

$$\nabla G = -\frac{1}{4\pi} \frac{\mathbf{R}}{R^3} (jkR + 1)e^{-jkR}$$

三角形积分用 Gaussian Legendre quadrature

R 小的时候(自定义,可以是小于10个波长): 对于格林函数梯度同样可以写成两部分:

$$\nabla G = \frac{1}{4\pi} \frac{\mathbf{R}}{R^3} \left[-(jkR+1)e^{-jkR} + 1 + \frac{1}{2}k^2R^2 \right] - \frac{1}{4\pi} \frac{\mathbf{R}}{R^3} \left(1 + \frac{1}{2}k^2R^2 \right)$$

第一部分用三角形的 Gaussian Legendre quadrature 第二部分用 graglia 的公式

计算散射场的公式(单层积分):

忽略所有含 M 的项 (M=0), 下面的 J_1 其实就是表面电流,最好用下标 s 即 J_s ,表示和上一节的源 M 的区别。。。

$$\mathbf{E}^s = Z_1 \mathbf{L}_1(\mathbf{J}_1) - \mathbf{K}_1(\mathbf{M}_1)$$

$$\mathbf{H}^s = \frac{1}{Z_1} \mathbf{L}_1(\mathbf{M}_1) + \mathbf{K}_1(\mathbf{J}_1)$$

同样,在 R(S 和观测点距离)大的时候: Gaussian Legendre quadrature R 小的时候把 G 或它的梯度拆成两部分,第一部分没有奇异性用 Gaussian Legendre quadrature, 第二部分有(近)奇异性,用 graglia 的解析解

由于我们这个问题,源,金属物体,观测都很近(小于几个波长),所以奇异性以及近奇异性的处理变得很重要。处理之后 mesh 不需要很密,10 points per wavelength (PPW) 左右就够了(这点文章里可以强调一下)。

计算分析:

这个问题内存的复杂度是 $O(N^2)$, N 表示未知量(rwg 插值)数量。 时间复杂度还受到高斯积分点数量 m 的影响 $O(m^2N^2)$ 。

备注:(近)奇异性的来源应该就是积分项有 1/R 或它的高次项。奇异性指 R=0 时, 这一项变为无穷大,积分时必须提取。近奇异性指 R>0 但是很小,Gaussian quadrature 是数值积分,n 阶的高斯积分只能保证 2n-1 阶的多项式积分准确, 1/R 泰勒展开:

The Taylor series of $f(x)=rac{1}{x}$ centered at 1 is

$$f(x) = \sum_{n=0}^{\infty} (-1)^n (x-1)^n$$
.

如果 x 接近 0, 那么高次项的影响就很大了,无限制提高高斯积分阶数不现实,所以近奇异性也需要提取。