A Eulerian Model for the Dynamics of Polydisperse Evaporating sprays: Combining the Multi-Fluid Model with the Quadrature Method of Moments

D. Kah¹ F. Laurent¹ M. Massot¹ R.Fox², S. Jay³

¹Laboratoire EM2C, CNRS, Ecole Centrale Paris

²Iowa State University

³Institut Français du Pétrole

12th SIAM International Conference on Numerical Combustion

Outline

- Context and Motivation
- Overcoming of Multi-Fluid Limitations
 - Higher order method for polydispersion
 - Results
 - Droplet crossings method
- Coupled model describing polydispersion and droplet crossing
 - Principles
 - Results

Outline

- Context and Motivation
- Overcoming of Multi-Fluid Limitations
 - Higher order method for polydispersion
 - Results
 - Droplet crossings method
- 3 Coupled model describing polydispersion and droplet crossing
 - Principles
 - Results

Context

- Presence of fuel droplets in many industrial problems
 - aeronautics or automotive combustion chambers
 - industrial furnaces.

Modelling of droplets: key issue Highly instationnary problems

Figure: Source Prof. Edwards (Stanford)

Figure: Source C. Dumouchel (CORIA Rouen)

Context

Influence of the liquid phase on the physical phenomenon

- flame structure and dynamics
- combustion efficiency
- pollutants produced

modelling problems

- droplets-gas interactions
 - · drag force, evaporation, heat transfer
- droplets-droplets interactions
 - coalescence, breakup

key issue: polydispersion

Statistical Description

• \rightarrow statistical description (spherical droplets) Introduction of the number density function $f(t, \mathbf{x}, T, \mathbf{u}, \phi)$ $\rightarrow \phi$ droplets radius, surface or volume

$$f^R dR = f^S dS = f^V dV$$

following a Williams-Boltzmann equation : Kinetic Model Williams,1958

$$\underbrace{\partial_t f + \partial_x \cdot (fu)}_{\text{free transport}} + \underbrace{\partial_S(R_S f)}_{\text{vaporisation}} + \underbrace{\partial_u(F f)}_{\text{drag}} + \underbrace{\partial_T(E f)}_{\text{heat exchange}} = \underbrace{\Gamma}_{\text{collision operator}}$$

Lagrangian Model

Eulerian Multi-Fluid Model

Eulerian Multi-Fluid Model

- Equilibrium hypothesis on velocity at fixed (t, x, S)
- Discretization in S by finite volume
 - → equations on moments

Advantages:

- accurate description of polydispersion at moderate cost
- easy coupling between gas phase and liquid phase

Realisations:

Free jet DNS calulation

Limitations:

- 1st/2nd order accurate method
 - \rightarrow Need to have a lot of sections in ϕ to correctly model polydispersion
- Existence of a single velocity (conditioned by size)
 - → Finite Stokes number droplet of same size have the same velocity (singularities)

De Chaisemartin et al, Submitted to Journal of Computational Physics

Objectives:

- Increase the accuracy of the multi-fluid method
 - Massot et al Submitted to Journal of Aerosol Science
- Allow droplet crossings in collaboration with R . Fox
 - Desjardin et al, Journal of Computational Physics

Context of the study

Simplified Williams equation: f(t, x, S, u)

$$\partial_t f + \underbrace{\partial_x uf}_{\text{transport}} + \underbrace{\partial_u Ff}_{\text{drag}} + \underbrace{\partial_S R_S f}_{\text{evaporation}} = 0$$

- Mass Moments: $m_k = \int_{S} S^k f(t, x, S, u) dS du$
- Velocity Moments: $\mathcal{M}_k = \int_{\mathcal{U}} u^k f(t, x, S, u) dSdu$
- $m_0 = \mathcal{M}_0$
- Coupling Mass and Velocity Moments:

$$f(t, x, u, S) \rightarrow \int_{S, u} S^k u^k f dS du$$

Outline

- Context and Motivation
- Overcoming of Multi-Fluid Limitations
 - Higher order method for polydispersion
 - Results
 - Droplet crossings method
- 3 Coupled model describing polydispersion and droplet crossing
 - Principles
 - Results

Multi-Fluid Method

- Several sections \rightarrow mass $(m_{3/2})$ and momentum $(m_{3/2} \frac{\mathcal{M}_1}{\mathcal{M}_0})$
- Section = independant fluid, interacting through fluxes
- Flux → piecewise constant reconstruction

Multi-Fluid Method

- Several sections \rightarrow mass $(m_{3/2})$ and momentum $(m_{3/2} \frac{\mathcal{M}_1}{\mathcal{M}_0})$
- Section = independant fluid, interacting through fluxes
- Flux → piecewise constant reconstruction

Principles

Objective:

Increase the amount of information in a section

- Multi-Fluid method: 1 moment
- Multi-Fluid Moment method: 4 moments

- M-F: 1 section
- M-F Moment: 1 section

Principles

Objective:

Increase the amount of information in a section

- Multi-Fluid method: 1 moment
- Multi-Fluid Moment method: 4 moments

- M-F: 10 sections
- M-F Moment: 1 section

M-F Moment equation system

$$\begin{array}{c|c} \hline \partial_t f + \partial_x u f + \partial_S R_S = 0 \\ \hline & Equilibrium \ hypothesis \ \downarrow \int_{\mathcal{U}} \\ \hline \partial_t n + \partial_S R_S n + \partial_x n \overline{u} = 0 \\ \hline & Discretization \ in \ S, \ finite \ Volume \ \downarrow \int_S S^k \\ \hline \\ \partial_t (m_0) + \partial_x \cdot (m_0 \frac{\mathcal{M}_1}{\mathcal{M}_0}) = R_S n(t, S = 0) \\ \partial_t (m_1) + \partial_x \cdot (m_1 \frac{\mathcal{M}_1}{\mathcal{M}_0}) = m_0 \\ \partial_t (m_2) + \partial_x \cdot (m_2 \frac{\mathcal{M}_1}{\mathcal{M}_0}) = 2m_1 \\ \partial_t (m_3) + \partial_x \cdot (m_3 \frac{\mathcal{M}_1}{\mathcal{M}_0}) = 3m_2 \\ \partial_t (\mathcal{M}_1) + \partial_x (\frac{\mathcal{M}_1^2}{\mathcal{M}_0^2}) = R_S n(t, S = 0) \frac{\mathcal{M}_1}{\mathcal{M}_0} \\ \hline \\ \partial_t (\mathcal{M}_1) + \partial_x (\frac{\mathcal{M}_1^2}{\mathcal{M}_0^2}) = R_S n(t, S = 0) \frac{\mathcal{M}_1}{\mathcal{M}_0} \\ \hline \end{array} \right.$$

Difficulties

• From $(m_0, m_1, m_2, m_3)^t$ in a section, how to calculate the evaporating flux $(R_S n(t, S = 0))$?

• $(m_0, m_1, m_2, m_3)^t$ must stay in the Surface **Moment Space** A number density, f must exist, such as: $\int_{\mathcal{S}} S^k f \ dS = m_k$ Dette,Studden,1997

Evaporative flux

Entropy Maximisation.

For a given moment vector $(m_0, m_1, m_2, m_3)^t$, f is reconstructed under the profil $f = \exp(\sum_{i=0}^3 \lambda_i S^i)$, with $\lambda_i = \lambda_i (m_0, m_1, m_2, m_3)$ Mead, 1984

Evaporative flux

Entropy Maximisation.

For a given moment vector $(m_0, m_1, m_2, m_3)^t$, f is reconstructed under the profil $f = \exp(\sum_{i=0}^3 \lambda_i S^i)$, with $\lambda_i = \lambda_i (m_0, m_1, m_2, m_3)$ Mead, 1984

Preservation of the moment space

- Scheme caracteristics:
 - Finite volume
 - Kinetic scheme
 - Flux determined by computer algebra (Maple)

- Proprieties of the scheme:
 - positivity on density
 - maximum principle on velocity
 - preservation of moment space

Comparison of moments

Solved kinetic equation: $\partial_t n + \partial_S R_S n = 0$, with $R_S = -1$

Analytical solution:

number density

mass density

- Evolution in terms of moments:
 - Multi-Fluid: 12 sections, 1 moment
 - Multi-Fluid Moment: 1 section, 4 moments

Comparison of mass density

Error in size moments (Mutli-Fluid Moment method)

Precision less than 1 percent for the density.

Precison less than 0.4 percent for higher order moments

Comparison of mass density

Comparison of error on mass.

MF Moment method much more precise than the simple MF method.

Multi-Fluid Moment: evaporation and transport

Evaporation and transport of a droplet flow

Dilute spray without collisions

→ The two clouds should cross each other

- Free flow:Evaporation and Transport well simulated
- Impinging droplets: δ -shock creation (non physical)

Multi-Fluid Moment: evaporation and transport

Evaporation and transport of a droplet flow

Dilute spray without collisions

→ The two clouds should cross each other

- Free flow:Evaporation and Transport well simulated
- Impinging droplets: δ -shock creation (non physical)

Different quadrature methods of moments

Equilibrium hypothesis:
$$\rightarrow \left(\begin{array}{c} \mathcal{M}_0 \\ \mathcal{M}_1 \end{array} \right)$$
: $f(u) = \mathcal{M}_0 \delta(u - \frac{\mathcal{M}_1}{\mathcal{M}_0}(S))$

Monodisperse flow: equations on $(\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)^t$

$$\begin{aligned} \partial_t(\mathcal{M}_0) + \partial_x(\mathcal{M}_1) &= 0 \\ \partial_t(\mathcal{M}_1) + \partial_x(\mathcal{M}_2) &= 0 \\ \partial_t(\mathcal{M}_2) + \partial_x(\mathcal{M}_3) &= 0 \\ \partial_t(\mathcal{M}_3) + \partial_x(\mathcal{M}_4) &= 0 \end{aligned}$$

Closure:

$$\Rightarrow$$
 $f(u) = w_1 \delta(u - \bar{u_1}) + w_2 \delta(u - \bar{u_2}) \rightarrow$ droplet crossings R. Fox. 2008

Outline

- Context and Motivation
- Overcoming of Multi-Fluid Limitations
 - Higher order method for polydispersion
 - Results
 - Droplet crossings method
- 3 Coupled model describing polydispersion and droplet crossing
 - Principles
 - Results

Multi-Fluid Moment method with droplet crossings

- M-F Moment: polydispersion but one velocity
- Multi-Velocity(R . Fox): droplet crossings but monodisperse

Coupling of the two models: one section for the example

$$f(t, x, S, u) = \underbrace{n(t, x, S)}_{\text{size distribution velocity distribution}} \underbrace{\phi(t, x, u)}_{\text{distribution}}$$

$$\begin{array}{l} \partial_{t}m_{0} + \partial_{x}\mathcal{M}_{1} = R_{S}n(t,S=0) \\ \partial_{t}m_{1} + \partial_{x}m_{1}\mathcal{M}_{1}/\mathcal{M}_{0} = m_{0} \\ \partial_{t}m_{2} + \partial_{x}m_{2}\mathcal{M}_{1}/\mathcal{M}_{0} = 2m_{1} \\ \partial_{t}m_{3} + \partial_{x}m_{3}\mathcal{M}_{1}/\mathcal{M}_{0} = 3m_{2} \\ \partial_{t}\mathcal{M}_{1} + \partial_{x}\mathcal{M}_{2} = R_{S}n(t,S=0)\mathcal{M}_{1}/\mathcal{M}_{0} \\ \partial_{t}\mathcal{M}_{2} + \partial_{x}\mathcal{M}_{3} = R_{S}n(t,S=0)\mathcal{M}_{2}/\mathcal{M}_{0} \\ \partial_{t}\mathcal{M}_{3} + \partial_{x}\mathcal{M}_{4} = R_{S}n(t,S=0)\mathcal{M}_{3}/\mathcal{M}_{0} \end{array}$$

Preservation of the moment space conserved

- Scheme caracteristics:
 - finite volume
 - kinetic scheme
 - flux determined by computer algebra (Maple)

- Proprieties of the scheme:
 - positivity on density
 - maximum principle on velocity
 - preservation of moment space

Multi-Fluid Moment method with droplet crossings: evaporation and transport

Evaporation and transport of a droplet flow

MF Moment

Multi-Fluid Moment method with droplet crossings: evaporation and transport

Evaporation and transport of a droplet flow

MF Moment

Droplet crossing well resolved

Conclusions and Perspectives

Conclusions:

Solutions to Multi-Fluid Model limitations

Perspectives:

- Simulation of 2D/3D configuration with the Multi-Fluid Multi-Moment Multi-Velocity model
- Extending this model to the collision operator
- Including these models in a global code (Summer Program 2008, CTR, Stanford)

References

S. Jin F. Bouchut, X. Li.

Numerical approximations of pressureless and isothermal gas dynamics. Siam J. Numer. Anal., 2003.

O. Desiardin, R. O. Fox, P. Villedieu

A Quadrature-Based Moment Method for Dilute Fluid-Particle Flows.

H. Dette, W. J.Studden

The theory of canonical moments with applications in statistics, probability, and analysis Wiley Series in Probability and Statistics: Applied Probability and Statistics, 1997

S. de Chaisemartin, F. Laurent, M. Massot, J. Reveillon

Evaluation of Eulerian Multi-Fluid versus Lagrangian methods for the ejection of polydisperse evaporating sprays by vortices

Submitted, J. of Comp. Phy., 2007

M. Massot, F. Laurent, S. de Chaisemartin, D. Kah.

Moment methods for population balance equations describing polydisperse evaporating sprays : the key issue of evaluating the flux of disappearing droplets

L. R. Mead. N. Papanicolaou.

Maximum entropy in the problem of moments

J. Math. Phys., 1984

Preprint submitted

Funds

- Ph.D. grant from Institut Français du Pétrole
- ANR (Young Investigators Award, Ministry of Research)
 2006 2009: "Jeune Equipe Dynamique des Sprays en évaporation"; coordinator: M. Massot
- PEPS,Mutli-disciplinary project from CNRS, Dpt MPPU and ST2I (2007 – 2008); coordinators: A. Bourdon, F. Laurent

THAHK YOU FOR YOUR ATTENTION