Convexité, Exp, Ln - Cours

1. Fonctions convexes

1.1. Définition

Définition 1 :

- *Un segment joignant deux points d'une courbe est une* corde de cette courbe.
- f est une fonction définie sur un intervalle. On dit que f est **convexe** lorsque pour toute corde de la courbe de f, cette courbe est en dessous de chaque corde.
- On dit que f est **concave** lorsque pour toute corde de la courbe de f, cette courbe est au dessus de chaque

📏 **Exercice 1 :** Compléter :

- 1. La fonction carré est ...
- 2. La fonction valeur absolue est ...
- 3. La fonction cube ...

1.2. Dérivée seconde et convexité

Propriété 2 :

f est une fonction deux fois dérivable sur un intervalle I (on peut calculer la dérivée f'' de la dérivée f' de la fonction f); alors, les affirmations suivantes sont équivalentes :

- A. f'' est positive sur I.
- B. f' est croissante sur I.
- C. la courbe de f est au dessus de ses tangentes sur I.
- D. f est convexe sur I.

De même, les affirmations suivantes sont équivalentes :

- a. f'' est négative sur I.
- b. f' est décroissante sur I.
- c. la courbe de f est en dessous de ses tangentes sur I
- d. f est concave sur I.

📏 Exercice 2 : Démonstration partielle

f est une fonction deux fois dérivable sur un intervalle I. On prend a < c < b tous dans I et on définit pour tout $x \in I$:

•
$$g(x)=f(x)-\left(rac{f(b)-f(a)}{b-a}(x-a)+f(a)
ight)$$

- h(x) = f(x) (f'(c)(x-c) + f(c))
- 1. Que «mesurent» ces deux fonctions?
- 2. Calculer g(a), g(b) et h(c).
- 3. Calculer g' et h' ; en déduire que f''=g''=h''
- 4. Dans la propriété précédente :
 - o A⇒B est vraie.
 - Démontrer que B⇒C et que B⇒D en utilisant les fonctions h et q.

Nexercice 3 : Obtenir des inégalités

Montrer que la fonction exponentielle est convexe. En déduire que :

1. Pour tout réel x, on a $e^x \ge 1 + x$.

2. Pour tout réel
$$0\leqslant x\leqslant 10$$
, on a $\mathrm{e}^x\leqslant \frac{\mathrm{e}^{10}-1}{10}x+1$

1.3. Point d'inflexion

Définition 2 : Point d'inflexion

Lorsque la tangente en un point A à une courbe traverse cette courbe en A, on dit que la courbe présente un **point d'inflexion** en A.

Exercice 6 : Repérer les autres points d'inflexion sur la figure.

Propriété 3 : Lorsque la dérivée seconde s'annule et change de signe, on est en présence d'un point d'inflexion.

Exercice 7 : Déterminer le(s) point(s) d'inflexion de la courbe de la fonction donnée par $f(x) = x^3 - 3x + 2$.

2. Fonction exponentielle: rappels

2.1. Généralités

Définition 3 : La fonction exponentielle, notée exp, est la seule fonction f, définie et dérivable sur \mathbb{R} , vérifiant f'=f et f(0)=1.

$$\exp(1) = e^1 = e \approx 2{,}718\,281\,828\,46$$
;

- exp est strictement croissante, tend vers 0 en $-\infty$ ((Ox) est donc asymptote en $-\infty$) et tend très rapidement vers $+\infty$ en $+\infty$.
- \exp est dérivable sur $\mathbb R$: sa courbe admet des tangentes en tout point.
- si u est une fonction dérivable : $(e^u)' = u'e^u$

Exercice 8 : Unicité de la fonction exponentielle (rappel)

f est une fonction définie et dérivable sur $\mathbb R$ qui vérifie : f'=f.

- 1. En dérivant $h(x) = g(x)e^{-x}$, établir que h est constante.
- 2. en déduire que pour tout $x \in \mathbb{R}$, on a $f(x) = f(0)e^x$.
- 3. En déduire que la seule fonction dérivable sur \mathbb{R} qui vérifie f' = f et f(0) = 1 est l'exponentielle (et que si la contition f(0) = 1, n'est pas satisfaite, f est un multiple de l'exponentielle).

Exercice 9 : Calculer les dérivées premières et secondes des fonctions suivantes, donner leur tableau de variation et rechercher leurs éventuels points d'inflexion : $f(x) = e^{1-x^2}$ et $g(x) = (1-x)e^{-5x}$

Exercice 10 : On définit pour tout x réel :

 $f(x)=(x+3)\mathrm{e}^{-x}$ et $g(x)=(x+1)\mathrm{e}^{x}$; le but de cet exercice est de rechercher deux fonctions F et G telles que F'=f et G'=g (appelées «primitives»).

Méthode : poser $F(x) = (ax + b)e^{-x}$ et $G(x) = (cx + d)e^{x}$, calculer leurs dérivées et en déduire les valeurs de a, b, c, d correspondantes.

Définition 4 : Une fonction F dérivable telle que F'=f est appelé une **primitive** de f.

Exercice 11 : Les primitives d'une fonction diffèrent uniquement d'une constante. Si F et G sont deux primitives de f, démontrer que F-G est une constante (dériver cette différence !)

2.2. Opérations et exp

Propriété 5 : La fonction exp respecte les règles connues sur les puissances (elle permet d'étendre la notion de puissance à une puissance réelle, non rationelle).

Pour a, b réels et n entier :

•
$$e^a \times e^b = e^{a+b}$$

•
$$\frac{1}{e^a} = e^{-a}$$

$$\bullet \quad \frac{\mathrm{e}^a}{\mathrm{e}^b} = \mathrm{e}^{a-b}$$

•
$$(e^a)^n = e^{an}$$

Exercice 12 : Simplifier :

$$\bullet \quad A = \frac{\mathrm{e}^7}{\mathrm{e}^5}$$

$$\bullet \quad B = e^{x-2}e^{2-x}$$

•
$$C = (e^x)^2 e^{-x}$$

$$\bullet \quad D = \mathrm{e}^{(x^2)} \mathrm{e}^{-x}$$

•
$$E = \frac{e^{5x+4}}{e^{-6x}}$$

2.3. Limites usuelles

Propriété 6 : Croissances comparées :

Pour tout n > 0, on a :

•
$$\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^n} = +\infty$$

•
$$\lim_{x \to -\infty} x^n \mathrm{e}^x = 0^+$$
 si n est pair, 0^- si n est impair.

$$\bullet \quad \lim_{x\to 0}\frac{\mathrm{e}^x-1}{x}=1$$

Name : Exercice 13 : Démonstrations :

On pose $f(x)=rac{\mathrm{e}^x}{x^{n+1}}$ (on a n>0).

1. • Étudier f et démontrer que pour tout $x\geqslant 1$, la fonction f est minorée par un nombre positif ε .

$$\circ$$
 En déduire que pour tout $x>0, \, rac{\mathrm{e}^x}{x^n}\geqslant arepsilon x.$

$$\qquad \text{ en d\'eduire que } \lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^n} = +\infty.$$

2. Utiliser le fait que
$$(-x)^n \mathrm{e}^{-x} = (-1)^n \frac{x^n}{\mathrm{e}^x}$$

3. Identifier un taux de variation.

Exercice 14 : Calculer :

1.
$$\lim_{x \to +\infty} \frac{\mathrm{e}^x + 1}{x^2 + 1}$$

2.
$$\lim_{x o -\infty} (x+1)e^x$$

3.
$$\lim_{x \to 0^+} \sqrt{x} e^x$$

4.
$$\lim_{x \to +\infty} x^2 - e^x$$

3. Fonction logarithme

3.1. Définition comme réciproque de l'exponentielle

Propriété 7 :

- La fonction exponentielle est continue et strictement croissante de \mathbb{R} vers $]0;+\infty[$.
- Chaque réel y > 0 admet, selon le théorème des valeurs intermédiaires, un seul antécédent x par exp.

On note ln(y) cet unique antécédent x.

On définit ainsi, sur $]0; +\infty[$ la fonction \ln .

Par construction, ln est la fonction réciproque de exp, et leurs courbes sont symétriques par rapport à la droite y = x.

De plus, la courbe de l'exponentielle, fonction dérivable, admet des tangentes en tout point et ces tangentes ne sont pas horizontales.

De fait, la courbe de \ln admet aussi, par symétrie, des tangentes en tout point, non verticales, ce qui en fait une fonction dérivable.

I Définition 5 : On appelle \ln (logarithme népérien ou naturel) la fonction définie sur $\mathbb{R}_+^*=[0;+\infty[$, réciproque de la fonction exponentielle.

3.2. Courbe, variation, signe

Propriété 8 : Toutes ces affirmations s'expliquent par la symétrie des courbes de l'exponentiel et du logarithme naturel :

- ln est strictement croissante et croît lentement vers $+\infty$;
- 0 est valeur interdite et (Oy) est asymptote (verticale) à la courbe de \ln : les valeurs de \ln tendent vers $-\infty$ pour x proche de 0;
- Attention : $\ln x < 0$ lorsque 0 < x < 1.

Exercice 15 : Résoudre les (in)équations suivantes :

1.
$$e^{x-1} = 2$$

2.
$$e^{x^2} = e^{-4x}e^3$$

3.
$$ln(2x) = 5$$

4.
$$\ln(2x) > -1$$

3.3. Dérivation et ln

Propriété 9 :

- Pour tout x > 0, $(\ln x)' = \frac{1}{x}$.
- Si u est une fonction dérivable à valeurs **strictement positives**, on a : $(\ln u)' = \frac{u'}{a}$

- 06/12/2023 14:43
 - **Exercice 16 : Démonstration :** dériver les deux membres de l'égalité $\mathrm{e}^{\ln u}=u$ et en déduire les propriétés précédentes.
 - **Exercice 17 :** Calculer les dérivées des fonctions suivantes : $f(x) = \ln(1+x^2)$ et $g(x) = \ln\left(1+\frac{1}{x}\right)$
 - **Solution** Exercice 18 : Primitive du logarithme naturel

Trouver les valeurs adéquates des réel a et b pour que la fonction F définie pour x>0 par $F(x)=ax+bx\ln x$ vérifie $F'(x)=\ln(x)$.

- **\(\)** Exercice 19 : Primitive de $\frac{1}{x}$ sur les réels
 - 1. On fixe deux constantes réelles a et b et on définit $F(x) = \begin{cases} \ln(-x) + a & \text{si } x < 0 \\ \ln(x) + b & \text{si } x > 0 \end{cases}$
 - Démontrer que pour tout réel $x \neq 0$, $(F(x))' = \frac{1}{x}$.
 - 2. En déduire que pour tout réel x ≠ 0, (ln |x|)' = 1/x.
 3. En toute rigueur, peut-on dire que « ln est la primitive de la fonction inverse » ?
- 3.4. Opérations et ln
- Propriété ${f 10}$: La fonction ${f ln}$ transforme les produits en somme et les quotients en différences : si a,b>0 et n est un entier .
 - $\ln(ab) = \ln a + \ln b$
 - $\ln\left(\frac{1}{a}\right) = -\ln a$
 - $\ln\left(\frac{a}{b}\right) = \ln a \ln b$
 - $\ln{(a^n)} = n \ln{a}$, en particulier $\ln{(\mathrm{e}^n)} = n$
 - $\ln\left(\sqrt{a}\right) = \frac{1}{2}\ln a$
- **Service 20 : Démonstration :**

Démontrer la propriété précédente ; pour le premier item, on pourra dériver $\ln(ax)$.

- **Exemple 2 :** D'après la propriété précédente, on a : $\ln(12)=\ln(2^2 imes3)=\ln 2^2+\ln 3=2\ln 2+\ln 3$
- **Exercice 21 :** Exprimer en fonction de $\ln 2$ et $\ln 3$ les nombres suivants :
 - 1. $\ln\left(\frac{32}{9}\right)$
 - 2. $\ln\left(\sqrt{6}\right)$
 - 3. $\ln\left(\frac{1}{6}\right)$

Attention aux erreurs!:

- $\ln(a+b) \neq \ln a + \ln b$
- Toute expression à l'intérieur d'un ln doit être positive.
- **Exercice 22 :** Déterminer l'ensemble de définition de : $f(x) = \ln(1-x)$ et $g(x) = \ln\left(1-x^2\right)$
- 3.5. Limites usuelles
- Propriété 11 :
 - $\bullet \quad \lim_{x \to +\infty} \frac{\ln x}{x} = 0^+$
 - $ullet \lim_{x o 0^+} x \ln x = 0^-$
 - $\bullet \quad \lim_{x\to 0}\frac{\ln(1+x)}{x}=1$

- $\lim_{x \to +\infty} x \ln x = +\infty$
- **Exercice 23 :** Démontrer ces limites ; pour le premier item, on pourra poser $x = e^t$; pour le second, poser $x = \frac{1}{t}$; pour le troisième, penser que \ln est dérivable en 1.

- 1. $\lim_{x\to +\infty} \frac{\ln x}{x^2+1}$
- 2. $\lim_{x \to 0^+} x^3 \ln x$
- 3. $\lim_{x \to 0^+} \sqrt{x} \ln x$
- 4. $\lim_{x \to +\infty} \sqrt{x} \ln x$

4. Le logarithme décimal

- **Définition 6 :** Pour x>0, on note $\log x=rac{\ln x}{\ln 10}$
- **Propriété 12 :** log possède les mêmes propriétés que \ln en terme de variation, signe, limites et calcul, sauf pour la propriété $\ln\left(\mathrm{e}^n\right)=n$ qui se traduit en $\log\left(10^n\right)=n$: on dit que le logarithme décimal a 10 pour base, alors que le logarithme naturel a le réel e pour base.
- **Remarque 1 :** Ainsi, un nombre dont le logarithme décimal vaut environ 2,223 est compris entre 10^2 =100 et 10^3 =1000.
- **Remarque 2 :** En informatique, on utilise le log binaire $\log_2 x = \frac{\ln x}{\ln 2}$; un nombre dont le \log_2 vaut environ 7,5 doit être codé sur 8 bits (8 caractères zéro ou un).

- **Définition 7 :** Plus généralement, on peut construire le \log_a (logarithme de base a) en posant $\log_a x = \frac{\ln x}{\ln a}$
- **Propriété 13 :** Si n est l'entier immédiatement inférieur à $\log_a x$, alors $a^n < x < a^{n+1}$.

Nexample 25 : En chimie : le pH

Le pH d'une solution aqueuse est défini par la relation $pH=-\log{[H_3O^+]}$ où $[{\rm H_3O^+}]$ désigne la concentration en ions ${\rm H_3O^+}$. On a toujours $0\leqslant {\rm pH}\leqslant 14$.

- 1. Calculer le pH d'une solution dont ${
 m H_3O^+}\,4.0 imes 10^{-5}$ mol/L.
- 2. Que devient le pH quand la concentration en ions H_3O^+ est divisée par 10 ? Par 100 ?
- 3. Que devient la concentration quand le pH diminue de 1 ? De 2 ?

Exercice 26 : Expliquer comment utiliser le logarithme décimal pour trouver le nombre de chiffres d'un nombre entier ; avec combien de chiffres s'écrit le nombre 1515¹⁷⁸⁹ ?

5. Notation puissance réelle

5.1. Définition

Définition 8 : On étend la notation puissance (jusqu'alors utilisée pour des exposants entiers relatifs) en posant, pour a>0 et b réel : $a^b={\rm e}^{b\ln a}$.

Propriété 14 : Ainsi, les mêmes règles algébriques que pour les entiers sont valables pour des exposants réels.

\ Exercice 27 : Étudier $f(x) = x^x$ et $g(x) = \left(1 + \frac{1}{x}\right)^x$.

5.2. Fonctions exponentielles de base a

Définition 9 : Soit a>1 fixé et x réel (variable). En posant $a^x=\mathrm{e}^{x\ln a}$ on définit les fonctions exponentielles de base a pour un exposant réel quelconque.

Propriété 15 : Elles sont les réciproques des fonctions logarithmes de base a. En particulier, $x\mapsto 10^x$ est la réciproque de \log .

Exemple 3 :

Nexercice 28 : En accoustique : le décibel

Le niveau sonore N (en décibels : dB) est : N= $20 \log \left(\frac{p}{p_0} \right)$ où p est la pression (en Pa) correspondant au son mesuré et p_0 une valeur de référence (on prend dans la plupart des cas le seuil d'audibilité d'un son par une oreille humaine qui correspond à 20 uPa).

- 1. Dans la rue, je passe à 5m d'un marteau-piqueur (100 dB) et à 2 m d'un joueur de vuvuzela (110 dB). Ai-je mal (seuil de la douleur : 120 dB) ?
- 2. Deux élèves qui chuchotent émettent 32 dB. Calculer combien de dB émettent 34 élèves qui chuchotent ; comparer à la voix du professeur (58 dB).

5.3. Fonctions puissances (réelles)

Définition 10 : Soit p réel fixé et x>0 (variable). En posant $x^p=\mathrm{e}^{p\ln x}$ on définit les fonctions puissance p (p réel quelconque).

Propriété 16 : La fonction réciproque de la fonction $x \mapsto x^p$ est $x \mapsto x^{\frac{1}{p}}$.

Exemple 4 : la fonction racine cubique, réciproque de la fonction cube, est en fait le fonction puissance un tiers.

