(439)

da zur Bestimmung der Koordinaten nach 11.3.1.2. der Azimutwinkel ap des Lichtstrahls durch P_s in P benötigt wird , da nur dann die Projektionsebene der Skizze festgelegt ist. Dieser Winkel ist jedoch weder bekannt , noch geome-

trisch bestimmber oder melber. 1.1. Iteratives Näherungsverfahren zur Bestimmung der Koordinaten $p_{\rm PS}$

a) es wurden R_p , Θ , r_p , r_p , r_p und UTl r_p in \mathbb{Z} 3. in erster Näherung bereits berechnet

b) sus $t_{\rm p}$, $\zeta_{\rm p,w}$ und δ kenn mit Hille von (32) der Azimutwinkel der Sonne in P zu diesem Zeitpunkt in I. Näherung berechnet werden :

$$(8SE) \qquad \left(\frac{\text{agn} \cdot \delta \text{aoo}}{\text{w,q}^2 \text{nis}}\right) \text{nisons} - \text{oos} = \text{q} \text{so}$$

c) Zur Berechnung der geographischen Koordinaten von $P_{\rm g}$ in 1. Näherung kann jetzt wie in M.3.1.2. verfahren werden: Aus $\tau_{\rm p}$ und $R_{\rm p}$ kann nach

(40) perechnet werden :

 $m_{\rm p} = R_{\rm p} \cdot \tau_{\rm p}$ (40a)

denn mit m_p und α_p bzw. γ_p nach (41) and (42): e.g. bing single α_p single α_p

 $e_{A,P} = \operatorname{arctan}(\operatorname{sinm}_{P} \cdot \operatorname{sin}_{P})$ (42a)

Schlieblich wird mit e_{A,p}, e_{q,p}, A_p, a_p, nach (43) und (44)

der Längen – und Breitenunterschied zwischen P_F und P_S :

 $d\varphi(P_{\overline{P}} - P_{\underline{S}}) = \frac{e_{A, \overline{P}}}{R_{\overline{P}}}$

$$d\lambda(P_p - P_g) = \frac{q_4 \varphi^p}{q_4 \varphi r_p - q_2} = (44a)$$

also: $\phi_{P_S} = \phi_P + d\phi$ and $\lambda_{P_S} = \lambda_P + d\lambda$, (51), also $\phi_{P_S} = \phi_P + d\phi$ and $\phi_{P_S} = \phi_P + d\phi$.

(45) bis (48) bzw. (33a) und (36) in S. Näherung berechnet (45) bis (48) bzw. (33a) und (36) in S. Näherung berechnet werden (Ann.: Bei der Berechnung von t_p nach (33a) mühke noch eine Verbesserung wegen 5 angebracht werden (s. **2.**3.5.1.). Diese Prozedung wird hier aber wegen ihrer geringen Auswirkungen der Übersichtlichdeine wird hier aber wegen ihrer geringen Auswirkungen der Übersichtlichkeit geopfert).

e) Mit dieser 2. Näherung kann die Prozedur a) – c) wiederholt werden , und man erhält eine dritte Näherung. Nach mehreren Durchläufen (iteratives Vertahren) können dann recht zuverlässige Werte für die Koordinnaten $\phi_{\rm Pg}$ und $\lambda_{\rm Pg}$ gefunden werden.

Das iterative Verlahren a) – e) ist recht aufwendig. Es wird darum einem Kleincomputer übertragen, der diese Näherungen mit einem sehr eintachen Rechenprogramm (s. Basic – Programm Nr. 2 im Anhang) schnell ausführt.

1.2. Änderung der geographischen Breite entlang der "Fußpunkte" der Lichte

In Z.2. wurde bereits beschrieben , daß die Änderung $\,\phi_{\rm Pg}$ – $\phi_{\rm P}\,$ linear auf