Quantum Field Theory (T) - physics755

\overline{Course}	Quantum Field Theory (T)
Course No.	physics755

		Teachi	Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 3+2	7	ST	

Requirements for Participation:

Preparation: Advanced quantum theory (physics606)

Form of Testing and Examination: Requirements for the examination (written): successful work with

the exercises

Length of Course: 1 semester

Aims of the Course: Understanding quantum field theoretical methods, ability to compute processes in quantum electrodynamics (QED) and many particle systems

quantum electrodynamics (QED) and many particle system

Contents of the Course:

Classical field theory

Quantization of free fields

Path integral formalism

Perturbation theory

Methods of regularization: Pauli-Villars, dimensional

Renormalizability

Computation of Feynman diagrams

Transition amplitudes in QED

Applications in many particle systems

Recommended Literature:

- N. N. Bogoliubov, D.V. Shirkov; Introduction to the theory of quantized fields (J. Wiley & Sons 1959)
- M. Kaku, Quantum Field Theory (Oxford University Press 1993)
- M. E. Peskin, D.V. Schroeder; An Introduction to Quantum Field Theory (Harper Collins Publ. 1995)
- L. H. Ryder; Quantum Field Theory (Cambridge University Press 1996)
- S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)

PDF version of this page.