Basic Stats

Lilly Winfree, Danielle Robinson & Wes Horton September 6, 2016

Let's learn how to read in data and then do some basic statistical analysis.

Read in data:

```
data1<-read.table("example_lengths_for_R.csv", header=TRUE, sep=',')</pre>
```

Reminder! Name your variables carefully!

Note: When we read in the data, we need to specify if there is a **header** (or column titles) and how the data is separated, or **sep**. This data is a csv so it is separated by ',' - sometimes data can be separated by '|' for example.

We can look at the data quickly using **summary()**, **nrow()** to see the row numbers, **colnames()** for column names:

```
summary(data1)
```

```
values
##
    coverlip.code
                         treatment
           :119
                               :393
                                      Min.
                                              : 3.083
##
    K
                   Control
                                      1st Qu.: 19.660
##
    Q
            :110
                   Treatment A:413
   F
                   Treatment B:414
##
            :109
                                      Median: 39.663
##
    C
            :106
                                      Mean
                                              : 49.700
##
    Ε
            :105
                                      3rd Qu.: 71.938
##
            :102
    Α
                                              :228.891
                                      Max.
    (Other):569
nrow(data1)
```

[1] 1220

```
colnames(data1)
```

```
## [1] "coverlip.code" "treatment" "values"
```

We can subset to different columns with \$ and only see select rows with [:]

```
data1$coverlip.code[1:10]
```

```
## [1] G G G G G G G G G G F H# Levels: A B C D E F G I K O P Q
```

```
data1$treatment[1:10]
```

```
## [1] Treatment A Treatment A Treatment A Treatment A
## [6] Treatment A Treatment A Treatment A Treatment A
## Levels: Control Treatment A Treatment B
```

summary(data1\$values)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.083 19.660 39.660 49.700 71.940 228.900
```

```
summary(data1$values[data1$treatment=='Control'])
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.876 24.850 50.390 57.880 83.900 204.800
```

Let's plot our data!

```
plot(data1$treatment, data1$values, xlab='treatment', ylab='length values')
```


Note that xlab and ylab mean x and y labels.

We can also use **hist()** to make a histogram:

```
hist(data1$values[data1$treatment=='Control'], xlab='Length Values',
    main='Histogram of Length for Control Group')
```

Histogram of Length for Control Group

Note that main means title here.

[1] 3.876

Now let's look at how to do some basic stats:

```
mean(data1$values[data1$treatment=='Treatment A'])
## [1] 50.00254

mean(data1$values[data1$treatment=='Control'])
## [1] 57.88106

mean(data1$values[data1$treatment=='Treatment B'])
## [1] 41.63183

median(data1$values[data1$treatment=='Control'])
## [1] 50.39

var(data1$values[data1$treatment=='Control'])
## [1] 1572.929

min(data1$values[data1$treatment=='Control'])
```

```
max(data1$values[data1$treatment=='Control'])
## [1] 204.844
Notice how summary() gave us the same info as the above functions
OK let's do a t-test now! We can use t.test to compare the means between 2 of the groups
t.test(data1$values[data1$treatment=='Control'], data1$values[data1$treatment=='Treatment B'])
##
##
   Welch Two Sample t-test
##
## data: data1$values[data1$treatment == "Control"] and data1$values[data1$treatment == "Treatment B"]
## t = 6.2243, df = 773.83, p-value = 7.922e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 11.12453 21.37393
## sample estimates:
## mean of x mean of y
## 57.88106 41.63183
What does this tell us? How do we change the code to look at the other groups?
We can also do an ANOVA with this data using aov and plot the ANOVA information:
results<-aov(values ~ treatment, data=data1)</pre>
summary(results)
##
                     Sum Sq Mean Sq F value
                                                Pr(>F)
## treatment
                  2
                       53291
                               26645
                                        19.71 3.77e-09 ***
               1217 1645402
## Residuals
                                1352
```

See ANOVA doc for more info on how an ANOVA works.

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
