

Statistique des risques extrêmes

Support de cours II

Nicolas Jeannelle

Direction des Risques – Risques Financiers

Confédération Nationale du Crédit Mutuel

Sommaire

Introduction

- I. Value-at-Risk: Fondements et modélisation
- II. Value-at-Risk par modélisation des extrêmes
 - La Théorie des Valeurs Extrêmes
 - Modélisation : Méthode *Bloc Maxima*
 - Modélisation : Méthode *Peak Over Threshold*
- I. Value-at-Risk dynamique

Conclusion

Sommaire

Introduction

- I. Value-at-Risk: Fondements et modélisation
- II. Value-at-Risk par modélisation des extrêmes
 - ☐ La Théorie des Valeurs Extrêmes
 - Modélisation : Méthode *Bloc Maxima*
 - Modélisation : Méthode Peak Over Threshold
- I. Value-at-Risk dynamique

Conclusion

Introduction

- *Rappel* : La Value-at-Risk se définit par 3 paramètres : le niveau de confiance α , l'horizon h et la distribution des pertes F.
 - ☐ Seul *F* est réellement à la main de l'analyste
 - ☐ Différentes distributions peuvent être testées
 - Leur ajustement est évalué par des tests d'adéquation et des considérations graphiques
 - lacktriangle Et la mesure de risque est obtenue comme quantile d'ordre lpha

■ Mais:

- Est-il logique de modéliser l'intégralité du profil de risque pour n'en extraire qu'un quantile extrême?
- Qui plus est par une méthode accordant un poids identique à chaque observation ...

Se focaliser sur les extrêmes via la Théorie des Valeurs Extrêmes.

Page 4 Interne

Préliminaires

- *Motivation historique* : Utilisée pour la première fois pour quantifier des hauteurs de digues pouvant contenir une montée des eaux survenant tous les 10 000 ans.
 - Utilisée aujourd'hui pour la prévision de catastrophes naturelles (inondations, vents violents...) ou autres (chute de valeurs de marché...)
- *Principe* : Quantifier la loi des « extrêmes » afin de pouvoir estimer de manière précise des quantiles d'ordre très élevé, même non observables dans l'échantillon.
- Approche: On s'intéresse à la loi du maximum d'un échantillon de variables iid

$$X_1, \dots, X_n$$
 $X_i \sim F$ inconnue

Soit M_n le maximum de cet échantillon

$$M_n = \max(X_1, \dots, X_n)$$

alors

$$\mathbb{P}[M_n \le x] = \mathbb{P}[\{X_1 \le x\} \cap \dots \cap \{X_n \le x\}] = \prod_i \mathbb{P}[X_i \le x] = F^n(x)$$

Finalement $M_n \sim F^n$

Page 5 Interne

Théorème de Fisher - Tippet

■ Enoncé fondamental sur la limite du maximum :

On suppose qu'il existe

$$a_n > 0$$
, b_n des suites de constantes
 H une distribution non dégénérée

telles que

$$\lim_{n\to\infty}\frac{M_n-b_n}{a_n}=H\quad\text{ou encore}\quad\lim_{n\to\infty}\mathbb{P}\left[\frac{M_n-b_n}{a_n}\leq x\right]=\lim_{n\to\infty}F^n(a_nx+b_n)=H(x)$$

alors *H* ne peut être que de 3 types :

 \triangleright On dit alors que F est dans le domaine d'attraction de Gumbel, Fréchet ou Weibull.

Théorème de Fisher - Tippet

■ Théorème Central Limite :

- ☐ Indépendamment de *F*...
- ... sous certaines hypothèses ...
- ... la loi de la moyenne pour de grands échantillons iid converge vers une distribution limite

$$\frac{\overline{X_n}-\mu}{\sigma/\sqrt{n}}\to\mathcal{N}(0,1)$$

■ Théorème de Fisher-Tippet :

- ☐ Indépendamment de *F*...
- ... sous certaines hypothèses ...
- ... la loi du maximum pour de grands échantillons iid converge vers une distribution limite

$$\frac{M_n-b_n}{a_n}\to H$$

On va voir que :

- On peut déterminer le domaine d'attraction par la connaissance de F
- ► Il existe une distribution capable d'unifier les 3 distributions limites

Page 7 Interne

Caractérisation des domaines d'attraction

■ *Principe* : Une étude du comportement de la fonction de survie \overline{F} en les queues de distribution permet de caractériser entièrement le domaine d'attraction.

■ *Définitions* :

- **Le point terminal de** *F* est défini par $\omega = \inf \{x; F(x) = 1\}$
- $oxed{U}$ est à variations régulières d'indice $oldsymbol{\delta} \in \mathbb{R}$ si $\lim_{x o \infty} rac{U(tx)}{U(x)} = oldsymbol{t}^{\delta}$. On écrit $U \in \mathcal{V}_{\delta}$
- lacksquare Si $\delta=0$, U est à variations lentes. On écrit $U\in\mathcal{V}_0$
- $lacksquare{}$ Si $U \in \mathcal{V}_{\delta}$ alors $U(x) = x^{\delta}L(x)$ avec $L \in \mathcal{V}_{0}$

■ Caractérisation des domaines d'attraction :

- lacksquare F appartient au domaine d'attraction de Fréchet d'indice $\gamma>0$ ssi $\overline{F}\in \mathcal{V}_{-1/\gamma}$
- $f ag{}$ F appartient au domaine d'attraction de Weibull d'indice $\gamma < 0$ ssi ω est fini

$$\overline{F_*} \in \mathcal{V}_{-1/\gamma}$$
 avec $F_* = F\left(\omega - \frac{1}{x}\right)$

 \blacksquare F appartient au domaine d'attraction de Gumbel ssi $\exists z < \omega \leq \infty$ tel que

$$\overline{F}(x) = c(x)exp\left\{-\int_{z}^{x} \frac{1}{a(t)}dt\right\}$$

Page 8 Interne

Caractérisation des domaines d'attraction

Convergence?

- En théorie : la convergence n'est pas assurée, sauf si *F* est continue et si la queue de distribution est « suffisamment régulière ».
- En pratique : il est souvent justifié de supposer que la loi du maximum d'un phénomène observé converge.

Domaines d'attraction de lois usuelles :

Domaine d'attraction	Gumbel $\gamma=0$	Fréchet $\gamma>0$	Weibull $\gamma < 0$
Loi	Normale Exponentielle Lognormale Gamma Weibull	Cauchy Pareto Burr	Uniforme Bêta

- Pour un même domaine d'attraction, les vitesses de convergence de 2 lois peuvent être très différentes.
- Grossièrement:
 - Les lois suffisamment régulières à queue fine appartiennent au domaine d'attraction de Gumbel
 - Les lois suffisamment régulières à queue épaisse appartiennent au domaine d'attraction de Fréchet

• Les lois suffisamment régulières à support fini appartiennent au domaine d'attraction de Weibull

Page 9 Interne

La distribution GEV

- *Principe*: Les 3 profils limites de distribution du théorème de Fisher-Tippet peuvent être définis par une seule distribution paramétrique commune, la distribution GEV.
- **Définition** : La Generalized Extreme Value Distribution est une loi paramétrique définie par sa fonction de répartition

$$G_{\mu,\sigma,\xi}(x) = \exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}, \quad \text{avec } 1+\xi\left(\frac{x-\mu}{\sigma}\right)>0$$

- μ est le paramètre de localisation σ est le paramètre d'échelle ξ est le paramètre de forme
- \Box ξ caractérise entièrement le profil de la distribution limite:
 - $\xi > 0$ donne la distribution de Fréchet, support borné par valeurs inférieures
 - $\xi < 0$ donne la distribution de Weibull, support borné par valeurs supérieures
 - $\xi = 0$ donne la distribution de Gumbel, support non borné
- La GEV est la seule distribution limite non dégénérée pour un échantillon de maxima.
- ☐ La GEV est la seule distribution max-stable...

Sommaire

Introduction

- I. Value-at-Risk: Fondements et modélisation
- II. Value-at-Risk par modélisation des extrêmes
 - La Théorie des Valeurs Extrêmes
 - Modélisation : Méthode Bloc Maxima
 - Modélisation : Méthode Peak Over Threshold
- I. Value-at-Risk dynamique

Conclusion

Méthodologie

Principe: Estimer une distribution GEV afin de modéliser la loi du maximum de l'échantillon.

Mise en œuvre :

- Construire un échantillon de maxima
- Estimer les paramètres de la loi GEV ii.
- iii. Calculer la mesure de risque associée
- Evaluer l'adéquation aux données iv.

Remarques:

- Bien que l'on possède des résultats concernant les domaines d'attraction selon F, on ne s'intéresse pas à la distribution F directement.
- En effet, on ne connait jamais F, on pose une hypothèse qui apparait cohérente.
- Par exemple, si les tests globaux d'adéquation semblent acceptés l'hypothèse selon laquelle F est normal, il se peut que la loi de Fréchet soit plus adaptée à la modélisation des extrêmes.

Page 12 Interne

Echantillon des maxima et loi adaptée

■ Construction de l'échantillon des maxima :

- On dispose d'un échantillon $X_1, ..., X_n$ de variables *iid*
- \square On découpe cet échantillon en k blocs disjoints de même taille s, sur lesquels on calcule le maximum :

$$Y_j = \max(X_{s*(j-1)+1}, ..., X_{s*(j-1)+s}), \quad j \in \llbracket 1, k
rbracket$$
 que l'on suppose aussi iid

- avec s...
 - devant être suffisamment grand pour satisfaire les conditions asymptotiques du théorème
 - mais suffisamment faible pour obtenir un échantillon de maxima de taille convenable

■ Choix de la distribution GEV :

- Intuitivement, une optimisation des 3 paramètres ne donnera pas la valeur $\xi = 0$.
- Utilisation du Gumbel plot :

$$\left\{ \left(-log\left(-log\left(\frac{i-1/2}{k}\right)\right); Y_{(i)}\right), \ i \in \llbracket \mathbf{1}, k \rrbracket \right\}$$

- Si la distribution adaptée est celle de Gumbel alors le Gumbel plot est linéaire
- Si la courbe obtenue présente une courbure, alors la distribution adaptée est plutôt Fréchet ou Weibull

Page 13 Interne

Estimation des paramètres

- Estimation par maximum de vraisemblance :
 - ☐ La densité de la loi GEV s'écrit :

$$g_{\mu,\sigma,\xi}(y) = \frac{1}{\sigma} \left[1 + \xi \left(\frac{y - \mu}{\sigma} \right) \right]^{-(1+\xi)/\xi} \exp \left\{ - \left[1 + \xi \left(\frac{y - \mu}{\sigma} \right) \right]^{-1/\xi} \right\}$$

 \square L'échantillon des maxima par blocs $(y_1, ..., y_k)$ étant supposé *iid*, la log vraisemblance est donnée par

$$\ell_{\mu,\sigma,\xi}(y_1,\ldots,y_k) = \sum_{i=1}^k \log(g_{\mu,\sigma,\xi}(y_i))$$

On obtient le paramétrage optimal $\hat{\theta}$ en maximisant la log vraisemblance par rapport au triplet (μ, σ, ξ)

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\xi}}{\arg \max} \ \ell_{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\xi}}(\boldsymbol{y}_1, \dots, \boldsymbol{y}_k) = \underset{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\xi}}{\arg \min} \ -\ell_{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\xi}}(\boldsymbol{y}_1, \dots, \boldsymbol{y}_k)$$

- Remarques :

 - \square Si $\xi > 0$ alors attention aux valeurs de ξ pouvant conduire à une moyenne ou une variance infinie.
- **Dans la pratique** : la loi GEV est une distribution usuelle généralement **disponible dans les packages** avec différentes fonctions déjà existantes (.fit, .pdf, .cdf, etc.).

Page 14 Interne Interne

Mise en œuvre de l'évaluation de la VaR par BM

4	-	/1				
7	Pr	Oli	ım	ın	aire	0
					.,,,,	

- Si l'on souhaite modéliser des minima (comme c'est le cas pour les rendements), on modélise alors le maximum de l'opposé de la série
- On pourrait également procéder à un changement de variables dans les écritures...

2. Choix de s:

- On rappelle que s doit correspondre à un arbitrage entre le respect des conditions asymptotiques et nombre de points dans l'échantillon
- Il peut correspondre à 1 mois (s = 21 jours), 1 an (s = 251 jours), etc...

3. Estimation des paramètres :

- Par Maximum de vraisemblance
- Par Méthode des Moments...

Validation ex-ante:

- Graphe des densités,
- QQ-plot,
- Tests d'adéquation

Page 15 Interne

Mise en œuvre de l'évaluation de la VaR par BM

5. Redressement du niveau de quantile :

Comme on ne se concentre que sur l'échantillon des maximas, l'estimation de la VaR à partir de la GEV ne doit pas se faire de niveau α mais de niveau α_{BM} défini par

$$\alpha_{BM}=\alpha^{s}$$

- Provient du fait que le quantile redressé est tel que $F^s(\alpha_{BM}) = F(\alpha)$
- □ Formule pouvant être approchée par DL à l'ordre 1 par $1 \alpha_{BM} = s \times (1 \alpha)$

6. Calcul de la VaR:

La VaR de niveau de confiance α à horizon d'investissement h modélisée par la loi GEV est donnée par

$$VaR_h(\alpha) = -G_{\widehat{\mu},\widehat{\sigma},\widehat{\xi}}^{-1}(\alpha_{BM})$$

Remarque: $G_{\widehat{\mu},\widehat{\sigma},\widehat{\xi}}^{-1}(\alpha_{BM})$ si on se place en convention risque

7. Validation ex-post:

Calcul du nombre d'exceptions

Page 16 Interne

Sommaire

Introduction

- I. Value-at-Risk : Fondements et modélisation
- II. Value-at-Risk par modélisation des extrêmes
 - ☐ La Théorie des Valeurs Extrêmes
 - Modélisation : Méthode *Bloc Maxima*
 - Modélisation : Méthode *Peak Over Threshold*
- I. Value-at-Risk dynamique

Conclusion

Introduction

■ *Idée* : Plutôt que d'estimer la loi du maximum de l'échantillon, on va s'intéresser au comportement des pertes au-delà d'un certain seuil.

■ Principe:

- Soit un échantillon de variables *iid* $X_1, ..., X_n$ $X_i \sim F$ inconnue
- \square Etant donné un seuil u élevé, on dénombre N_u pertes extrêmes positives dépassant ce seuil
- On va s'intéresser à la loi des excès de ces pertes

$$egin{aligned} Z_{u,i} &= \widetilde{X}_i - u \;, & i \in \llbracket 1, N_u
rbracket \ & ext{tel que} & \exists j \;\; \widetilde{X}_i = X_i \;\; ext{et} \;\; X_i > u \end{aligned}$$

- lacksquare On suppose également l'échantillon $Z_{u,1},\ldots,Z_{u,N_u}$ iid
- ☐ Cela revient à s'intéresser à la loi des excès des statistiques d'ordre élevées

■ Enjeux :

- Existe-t-il une distribution adaptée à cette problématique ?
- \triangleright Comment choisir u de manière optimale?
- **Formulation**: On s'intéresse à la fonction de répartition des excès F_u

$$F_u(y) = \mathbb{P}[Z \le y | X > u] = \frac{\mathbb{P}[u < X \le y + u]}{\mathbb{P}[X > u]} = \frac{F(y + u) - F(u)}{1 - F(u)}$$

Page 18 Interne

Comportement Asymptotique

■ Théorème de Balkema - de Haan - Pickands :

Soit un échantillon de variables aléatoires iid $(X_1, ..., X_n)$

$$M_n = \max(X_1, \dots, X_n)$$

 ${\it Z}_u$ les excès de l'échantillon au-delà d'un seuil u

Si

$$M_n \sim_{n\to\infty} GEV(\mu,\sigma,\xi)$$

Alors

$$Z_u \sim_{u\to\infty} GPD(\widetilde{\sigma},\xi)$$

☐ La distribution limite est la Generalized Pareto Distribution définie par

$$\lim_{u\to\infty} F_u(y) = H_{\widetilde{\sigma},\xi}(y) = \begin{cases} 1 - \left(1 + \xi \frac{y}{\widetilde{\sigma}}\right)^{-1/\xi}, & \xi \neq 0 \\ 1 - \exp\left(-\frac{y}{\widetilde{\sigma}}\right), & \xi = 0 \end{cases}$$

- \Box $\widetilde{\sigma} = \sigma + \xi(u \mu) > 0$
- Si $\xi \ge 0$ alors le support est \mathbb{R}_+ , et $[0, -1/\xi]$ sinon
- La $GPD_{1,\xi}$ regroupe 3 distributions selon ξ : Pareto ($\xi>0$), Pareto II ($\xi<0$), Exponentielle ($\xi=0$)
- \square Si la distribution des excès est $H_{\widetilde{\sigma},\xi}(y)$ alors celle des extrêmes est $u+H_{\widetilde{\sigma},\xi}(y)$

Mise en œuvre

- Dans la pratique :
 - On suppose que les excès suivent exactement une GPD pour un seuil « suffisamment élevé »
 - lacksquare On définit un seuil u à l'aide d'une méthode adaptée
 - On estime les paramètres de loi sur l'échantillon des excès $(z_1, ..., z_{N_n})$
 - On vérifie *a posteriori* que l'hypothèse de distribution des excès est justifiée
- *Détermination du seuil u* : Elle s'effectue généralement à l'aide d'un outil graphique : le Mean-Excess plot.

Il se définit par

$$\{(u;e_n(u)), u \in [x_{(1)},x_{(n)}]\}$$

- $e_n(u) = \frac{1}{N_u} \sum_{i=1}^n (x_i u)_+$ est l'estimateur empirique de $e(u) = \mathbb{E}[X u | X > u]$, la moyenne des excès (mean excess function)
- Propriété : pour la loi GPD, $e(u) = \frac{\sigma + \xi u}{1 \xi}$
- lacktriangle Si les excès au-delà de u suivent une loi GPD, alors le mean-excess plot a un comportement linéaire

Mean-Excess Plot

Remarques:

- lacktriangle u doit être suffisamment élevé pour respecter les conditions asymptotiques...
- ...mais doit également être calibré de façon à observer assez de données dans l'échantillon.
- Le *mean-excess plot* doit être tracé sur des **abscisses positives** pour être lisible.
- lacksquare Il n'est pas toujours facile de conclure quant à la valeur de u

Page 21 Interne

Estimation des paramètres

Estimation par maximum de vraisemblance : à partir de la densité

$$h_{\sigma,\xi}(y) = \frac{1}{\sigma} \left[1 + \xi \frac{y}{\sigma} \right]^{-(1+\xi)/\xi}$$
 ...

- Estimation par méthode des moments pondérés : On la privilégie à la méthode des moments classiques car certains moments peuvent ne pas être définis.
 - lacksquare On s'intéresse au moment d'ordre $r\in\mathbb{R}_+$ suivant :

$$\omega_r(\sigma,\xi) = \int_0^1 y^r \cdot \overline{H}_{\sigma,\xi}^{-1}(y) \, dy = \int_0^1 y^r \cdot \frac{\sigma}{\xi} (y^{-\xi} - 1) \, dy = \frac{\sigma}{(r+1)(r+1-\xi)}$$

Qui permet d'obtenir à partir des moments théoriques pour r=0 et r=1 l'écriture des paramètres

$$\sigma = \frac{2\omega_0\omega_1}{\omega_0 - 2\omega_1} \quad \text{et} \quad \xi = 2 - \frac{\omega_0}{\omega_0 - 2\omega_1}$$

Qui sont estimés par les moments empiriques calculés sur l'échantillon des excès z_1, \dots, z_{N_u} de fonction de répartition empirique \widehat{F}

$$\widehat{\omega}_r(\sigma,\xi) = \frac{1}{N_u} \sum_{i=1}^{N_u} z_i \widehat{F}^r(z_i), \qquad r = \{0,1\}$$

Dans la pratique : la loi GPD est une distribution usuelle généralement disponible dans les packages avec différentes fonctions déjà existantes (.fit, .pdf, .cdf, etc.).

Page 22 Interne

Mise en œuvre de l'évaluation de la VaR par POT

1.	Pr	<i>éliminaire</i> : idem BM
		Si l'on souhaite modéliser des minima (comme c'est le cas pour les rendements), <u>on modélise alors le maximum de l'opposé de la série</u>
		On pourrait également procéder à un changement de variables dans les écritures
2.	Dé	itermination de u :
		On rappelle que \boldsymbol{u} doit correspondre à un arbitrage entre le respect des conditions asymptotiques et nombre de points dans l'échantillon
		Il se détermine par déduction graphique subjective
3.	Es	timation des paramètres :
		Par Maximum de vraisemblance
		Par Méthode des Moments pondérés
4.	Va	lidation ex-ante :
		Graphe des densités,
		QQ-plot,

Page 23 Interne

Tests d'adéquation

Mise en œuvre de l'évaluation de la VaR par POT

5. Redressement du niveau de quantile :

Comme on ne se concentre que sur l'échantillon des maximas, l'estimation de la VaR à partir de la GEV ne doit pas se faire de niveau α mais de niveau α_{BM} défini par

$$1 - \alpha_{POT} = \frac{n}{N_u} \times (1 - \alpha)$$

Remarque: $\alpha_{POT} < \alpha \ car \ n/N_u > 1$

6. Calcul de la VaR :

La VaR de niveau de confiance α à horizon d'investissement h modélisée par la loi GPD est donnée par

$$VaR_h(\alpha) = -H_{\widehat{\sigma},\widehat{\xi}}^{-1}(\alpha_{POT}) - u$$

Remarque: $H_{\widehat{\sigma},\widehat{\xi}}^{-1}(\alpha_{POT})$ si on se place en convention risque

7. Validation ex-post:

Calcul du nombre d'exceptions

Page 24 Interne

Bilan

Forme des fonctions de répartition
Paramètres à estimer de manière graphique
Compromis dans le choix du sous échantillon
Lien avec le théorème de BdHP
nais très différentes sur le fond Loi du maximum Loi des excès qui permettent de mieux appréhender le comportement des extrêmes.

Concernant la prise en compte des phénomènes de clustering

Alors que la méthode BM n'en extrait qu'un seul par période s

compte toutes les rentabilités extrêmes

Page 25 Interne

La méthode POT est plus appropriée car elle extrait les extrema au-delà d'un seuil, et prend ainsi en