Nome:	Valor: 3.0
Disciplina:	Nota:
Instruções:	A. Permitido consulta somente no material Resumo.pdf.
	B. Permitido o uso de calculadora (inclusive científica).
	C. Proibido ir ao banheiro durante a prova.

- 1. (0.5) Um vendedor de frutas pode transportar 800 caixas de frutas para sua região de vendas. Ele necessita transportar 200 caixas de laranjas a R\$20,00 de lucro por caixa, pelo menos 100 caixas de pêssegos a R\$10,00 de lucro por caixa, e no máximo 200 caixas de tangerinas a R\$30,00 de lucro por caixa. O vendedor deseja determinar como carregar o caminhão para obter o lucro máximo. Faça o que se pede:
 - (a) (0.1) Encontre o modelo de PL para o problema.

RESPOSTA: Sejam as variáveis:

 $\begin{cases} x_1: \text{Quantidade de caixas de pêssegos.} \\ x_2: \text{Quantidade de caixas de tangerinas.} \\ x_3: \text{Quantidade de caixas de laranjas} \end{cases}$

Temos o modelo:

$$\max Z(x_1, x_2, x_3) = 10x_1 + 30x_2 + 20x_3$$
 Sujeito à $x_1 + x_2 + x_3 \le 800$
$$x_1 \ge 100$$

$$x_2 \le 200$$

$$x_3 = 200$$

$$x_1, x_2, x_3 \in R^+$$

(b) (0.2) Escreva o modelo na forma padrão.

RESPOSTA:

Para a forma padrão, devemos:

- Deixar a função objetivo na forma de minimização (multiplicar os coef. por -1).
- Deixar as restrições na forma de igualdade: adicionar uma variável na primeira (x_4) e terceira restrições (x_6) , e remover uma da segunda (x_5) . O modelo na forma padrão fica então:

Temos o modelo:

$$\min Z(x_1, x_2, x_3) = -10x_1 - 30x_2 - 20x_3$$
 Sujeito à $x_1 + x_2 + x_3 + x_4 = 800$
$$x_1 - x_5 = 100$$

$$x_2 + x_6 = 200$$

$$x_3 = 200$$

$$x_1, x_2, x_3 \in R^+$$

(c) (0.2) Existe uma solução básica factível no quadro inicial? Se sim, qual? Se não, por quê?

RESPOSTA:

Não existe uma SBF inicial, pois a segunda restrição é do tipo "≥", o que exigiu a remoção de uma variável de excesso, e a última é do tipo "=", o que não exige a inserção de uma nova variável, dessa forma não existe uma submatriz identidade no quadro inicial.

- 2. (1.0) Um sapateiro faz 6 sapatos por hora, se fizer somente sapatos, e 5 cintos por hora se fizer somente cintos. Ele gasta 2 unidades de couro para fabricar 1 unidade de sapato e 1 unidade de couro para fabricar uma unidade de cinto. Sabendo que o total disponível de couro é de 6 unidades e que o lucro unitário por sapato é de 5 unidades e o do cinto é de 2 unidades, faça o que se pede:
 - (a) (0.2) Encontre o modelo de PL para o problema do sapateiro.

RESPOSTA:

Sejam as variáveis:

 $\begin{cases} x_1 : \text{Quantidade sapatos produzidos/hora} \\ x_2 : \text{Quantidade cintos produzidos/hora}. \end{cases}$

Temos o modelo:

max
$$Z(x_1,x_2)=5x_1+2x_2$$
 Sujeito à
$$10x_1+12x_2\leq 60$$

$$2x_1+1x_2\leq 6$$

$$x_1,x_2\in R^+$$

(b) (0.6) Encontre a solução ótima do problema pelo método Simplex, mostrando a cada iteração quais são as variáveis básicas e não básicas (escreva quais são e quais os seus valores fora do quadro Simplex).

RESPOSTA:

Forma padrão:

$$\min z = -5x_1 - 2x_2$$

$$10x_1 + 12x_2 + x_3 = 60$$

$$2x_1 + x_2 + x_4 = 6$$

$$x_1, x_2 \ge 0$$

	x_1	x_2	x_3	x_4	-z
$\overline{\mathrm{VB}}$	-5	-2	0	0	0
x_3	10	12	1	0	60
x_4	2	1	0	1	6

Tabela 1: Quadro inicial

	x_1	x_2	x_3	x_4	-z
$\overline{\mathrm{VB}}$	0	1/2	0	5/2	15
x_3	0	7	1	-5	30
x_1	1	1/2	0	1/2	3

Tabela 2: Quadro final

Na iteração 1 temos as variáveis básicas $x_B = (x_3, x_4) = (60, 6)$ e não básicas $x_N = (x_1, x_2) = (0, 0)$. Na segunda iteração (solução ótima) temos $x_B = (x_3, x_1) = (30, 3)$ e $x_N = (x_2, x_4) = (0, 0)$ e função objetivo com custo -15 (voltando ao problema de maximização o custo é de 15). O caminho simplex percorrido foi: $(x_1, x_2) = (0, 0)$, $(x_1, x_2) = (3, 0)$.

(c) (0.2) Represente o problema graficamente e mostre o caminho Simplex até chegar à solução ótima.

RESPOSTA:

O caminho é mostrado na Figura 1, saindo do ponto A e chegando ao ponto B.

Figura 1: Caminho simplex sapateiro

3. (1.0) Considere o seguinte modelo de programação linear:

$$\max z = 2x_1 + 3x_2$$

$$x_1 + x_2 = 3$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

(a) (0.75) Encontre uma solução básica factível para o problema usando o método das variáveis artificiais (não é necessário otimizar o problema completo, só encontrar uma SBF inicial). **RESPOSTA:**

Colocando o modelo na forma padrão:

min
$$z = -2x_1 - 3x_2$$

s.a: $x_1 + x_2 = 3$
 $x_1 + 2x_2 + x_3 = 4$
 $x_1, x_2 \ge 0$

Adicionando as variáveis artificiais $\bar{x_4}$ e $\bar{x_5}$, e substituindo a função objetivo original pela

função artificial min w = $\bar{x_4} + \bar{x_5}$:

$$\min w = \bar{x_4} + \bar{x_4}$$

$$x_1 + x_2 + \bar{x_4} = 3$$

$$x_1 + 2x_2 + x_3 + \bar{x_5} = 4$$

$$x_1, x_2 \ge 0$$

Colocando no formato tabular, temos: (a Tabela 3 não está no formato canônico em relação às variáveis $\bar{x_4}, \bar{x_5}$, de forma que executamos as operações $L_1 \leftarrow L_1 - L_2$ e $L_1 \leftarrow L_1 - L_3$, gerando a Tabela 4:

	x_1	x_2	x_3	$\bar{x_4}$	$\bar{x_5}$	-w
	0	0	0	1	1	0
??	1	1	0	1	0	3
??	1	2	1	0	1	4

	x_1	x_2	x_3	$\bar{x_4}$	$\bar{x_5}$	-w
	-2	-3	-1	0	0	-7
$\bar{x_4}$	1	1	0	1	0	3
$\bar{x_5}$	1	2	1	0	1	4

Tabela 3: Ex. 3 Tabela inicial (não canônica)

Tabela 4: Ex. 3 Tabela canônica

	x_1	x_2	x_3	$\bar{x_4}$	$\bar{x_5}$	-w
	-1/2	0	1/2	0	3/2	-1
$\bar{x_4}$	1/2	0	-1/2	1	-1/2	1
x_2	1/2	1	1/2	0	1/2	2

	0	0	0	1	1	0
x_1	1	0	-1	2	-1	2
x_2	0	1	1	-1	1	1

Tabela 5: Ex. 3 iteração 1

Tabela 6: Ex. 3 iteração 2 (ótimo artificial)

A solução inicial é dada por $x_B^T = (x_1, x_2) = (2, 1)$.

(b) (0.25) Represente a solução inicial encontrada graficamente na região factível. **RESPOSTA:**

A região factível é o segmento de reta mostrado na Figura 2, e a solução factível inicial $(x_1, x_2) = (2, 1)$ é dada pelo ponto D no Figura 2.

4. (0.5) Considerando os quadros Simplex mostrados nas Tabelas 7 e 8, com problemas diferentes em iterações diferentes, responda o que se pede:

	x_1	x_2	x_3	x_4	x_5	-Z
$\overline{\mathrm{VB}}$	-7/2	0	3/2	0	0	6
???	-1/2	1	1/2	0	0	2
???	2	0	-1	1	0	2
???	5/2	0	-3/2	0	1	3

	x_1	x_2	x_3	x_4	x_5	x_6	-Z
$\overline{\mathrm{VB}}$	-2	-3	-4	0	0	0	0
x_4	1	1	1	1	0	0	100
x_5	2	1	0	0	1	0	210
x_6	1	0	0	0	0	1	80

Tabela 7: Tabela simplex

Tabela 8: Tabela simplex

(a) (0.25) Considerando o quadro Simplex mostrado na Tabela 7, quais são as variáveis básicas e qual é o valor da função objetivo na iteração mostrada?

RESPOSTA:

As variáveis básicas podem ser encontradas pela submatriz identidade na matriz dos

Figura 2: Caminho Simplex

coeficientes. Para cada linha dessa identidade, a variável que possui valor 1 é a variável básica da linha. No caso da tabela, temos as variáveis básica, e seus valores, na seguinte ordem:

- $-x_2=2$
- $-x_4=2$
- $-x_5 = 3$

O valor na última coluna da tabela fornece o valor de -z, de forma que a função objetivo nessa iteração é -6.

(b) (0.25) Considerando que o quadro Simplex mostrado na Tabela 8 é o quadro inicial referente a um modelo de PL, e que as variáveis x_4, x_5, x_6 são variáveis de folga, escreva o modelo de PL que originou a tabela (lembre-se que podem haver desigualdades). **RESPOSTA:**

Pela tabela conseguimos recuperar o modelo na forma padrão:

$$\begin{aligned} \min z &= -2x_1 - 3x_2 - 4x_3 \\ x_1 + x_2 + x_3 + x_4 &= 100 \\ 2x_1 + x_2 + x_5 &= 210 \\ x_1 + x_6 &= 80 \\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{aligned}$$

Sabendo que as variáveis x_4, x_5, x_6 são de folga, podemos removê-las transformando a

igualdade das restrições em desigualdades da forma \leq , de forma que o modelo original fica:

$$\max z = 2x_1 + 3x_2 + 4x_3$$

$$x_1 + x_2 + x_3 \le 100$$

$$2x_1 + x_2 \le 210$$

$$x_1 \le 80$$

$$x_1, x_2, x_3 \ge 0$$

OBS: Também poderíamos ter um modelo com a função objetivo de minimização, somente com a tabela não há como saber qual a fo original.

5. (**0.1 - EXTRA**) Uma fábrica de móveis produz e vende mesas e cadeiras, produtos chamados genericamente de x_i . Toda mesa e cadeira deve passar por 3 processos produtivos, A, B e C. As mesas e cadeiras demandam tempos de máquina em cada um dos processos (d_{ia}, d_{ib} e d_{ic}), e existe um limite de horas máquina disponível em cada processo ($M_A, M_B \in M_C$). Cada mesa/cadeira é vendida e gera um lucro de l_i . O modelo genérico para maximizar o lucro da empresa é dado por:

max
$$Z(x_i) = \sum_{i=1}^n l_i x_i$$
 Sujeito à
$$\sum_{i=1}^n d_{ia} x_i \le M_A$$

$$\sum_{i=1}^n d_{ib} x_i \le M_B$$

$$\sum_{i=1}^n d_{ic} x_i \le M_C$$

A empresa possui 100 modelos de mesas/cadeiras que podem ser produzidos (n=100). O departamento de PCP possui atualmente um plano de produção com um mix de 12 produtos (mesas e cadeiras). O que você pode dizer sobre esse plano, do ponto de vista da otimização matemática e programação linear? (justifique sua resposta).

RESPOSTA:

Sabemos que a solução ótima de um PL é uma solução básica factível (SBF). Por definição, o número de variáveis básicas em um SBF se iguala ao número de restrições do problema. Como o modelo possui somente 3 restrições (uma para cada maquinário nos processos A, B e C), temos que as SBF do modelo possuem somente 3 variáveis. Com isso, temos argumentos para refutar o mix atual de produtos, que possui 12 mesas/cadeiras, sendo que uma combinação ótima poderia ser feita produzindo somente 3.

Postura e caráter de uma pessoa vulgar: jamais espera um beneficio ou um dano de si mesmo, mas sim de fonte externa. Postura e caráter do filósofo: espera todo beneficio e todo dano de si mesmo.

Epicteto - Manual