微积分AIII

第一次作业

一、单项选择题 1. 设 L 是國周 $x^2 + y^2 = a^2$ 、则 $\oint_L (x+y)^2 \mathrm{d}s = ($). (A) $2\pi a^2$; (B) $2\pi a^3$; (C) πa^4 ; (D) $2\pi a^4$. 2. 设 Γ 为螺旋线 $x = \cos t, y = \sin t, z = t$ 在 $0 \le t \le \pi$ 上的一段.则 $ \int_{\Gamma} (x^2 + y^2 + z) \mathrm{d}s = ($). (A) $\sqrt{2}(\pi + \pi^2)$; (B) $\pi + \pi^2$; (C) $\pi + \frac{\pi^2}{2}$; (D) $\sqrt{2}(\pi + \frac{\pi^2}{2})$. 3. 设 $\Sigma : x^2 + y^2 + z^2 = a^2(z \ge 0)$, Σ_1 为 Σ 在第一卦限中的部分,则有(). (A) $\iint_{\Sigma} x \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S$; (B) $\iint_{\Sigma} y \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S$; (C) $\iint_{\Sigma} z \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S$; (D) $\iint_{\Sigma} xyz\mathrm{d}S = 4 \iint_{\Sigma_1} xyz\mathrm{d}S$. 4. 设 Γ 为球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy\mathrm{d}s = ($). (A) $-\pi R^3$; (B) $-2\pi R^3$; (C) πR^3 ; (D) $2\pi R^3$. 5. 密度为 1 的均匀 圆柱面 $x^2 + y^2 = 1, 0 \le z \le 3$ 对于直线 $x = y = z$ 的转动惯量(). (A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . Ξ 、填空题 1. 设 L 为以 $(0,0)$, $(1,0)$, $(0,1)$ 为顶点的三角形的周界,则 $\oint_L (x+y)\mathrm{d}s = \underline{\hspace{1cm}}$ 2. 设 Σ 为 Oyz 平面上的圆域 $y^2 + z^2 \le 1$, 则 $\iint_{\Sigma} [x + (y^2 + z^2)]\mathrm{d}S = \underline{\hspace{1cm}}$		学院	_ 班级	姓名	学号			
(A) $2\pi a^2$; (B) $2\pi a^3$; (C) πa^4 ; (D) $2\pi a^4$. 2. 设 Γ 为螺旋线 $x = \cos t, y = \sin t, z = t$ 在 $0 \le t \le \pi$ 上的一段.则 $\int_{\Gamma} (x^2 + y^2 + z) \mathrm{d}s = ().$ (A) $\sqrt{2}(\pi + \pi^2)$; (B) $\pi + \pi^2$; (C) $\pi + \frac{\pi^2}{2}$; (D) $\sqrt{2}\left(\pi + \frac{\pi^2}{2}\right)$. 3. 设 $\Sigma : x^2 + y^2 + z^2 = a^2(z \ge 0)$, Σ_1 为 Σ 在第一卦限中的部分,则有(). (A) $\iint_{\Sigma} x \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S$; (B) $\iint_{\Sigma} y \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S$; (C) $\iint_{\Sigma} z \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S$; (D) $\iint_{\Sigma} xyz\mathrm{d}S = 4 \iint_{\Sigma_1} xyz\mathrm{d}S$. 4. 设 Γ 为球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy\mathrm{d}s = ()$. (A) $-\pi R^3$; (B) $-2\pi R^3$; (C) πR^3 ; (D) $2\pi R^3$. 5. 密度为 1 的均匀圆柱面 $x^2 + y^2 = 1, 0 \le z \le 3$ 对于直线 $x = y = z$ 的转动惯量(). (A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . 二、填空题 1. 设 L 为以 $(0,0)$, $(1,0)$, $(0,1)$ 为项点的三角形的周界,则 $\oint_L (x+y)\mathrm{d}s = \underline{\qquad}$		一、单项选择题						
2. 设 Γ 为螺旋线 $x = \cos t, y = \sin t, z = t$ 在 $0 \le t \le \pi$ 上的一段.则 $ \int_{\Gamma} (x^2 + y^2 + z) \mathrm{d}s = (). $ (A) $\sqrt{2}(\pi + \pi^2);$ (B) $\pi + \pi^2;$ (C) $\pi + \frac{\pi^2}{2};$ (D) $\sqrt{2}\left(\pi + \frac{\pi^2}{2}\right). $ 3. 设 $\Sigma : x^2 + y^2 + z^2 = a^2(z \ge 0), \Sigma_1$ 为 Σ 在第一卦限中的部分,则有(). (A) $\iint_{\Sigma} x \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S;$ (B) $\iint_{\Sigma} y \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S;$ (C) $\iint_{\Sigma} z \mathrm{d}S = 4 \iint_{\Sigma_1} x \mathrm{d}S;$ (D) $\iint_{\Sigma} xyz\mathrm{d}S = 4 \iint_{\Sigma_1} xyz\mathrm{d}S. $ 4. 设 Γ 为球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy\mathrm{d}s = ($). (A) $-\pi R^3;$ (B) $-2\pi R^3;$ (C) $\pi R^3;$ (D) $2\pi R^3.$ 5. 密度为 1 的均匀圆柱面 $x^2 + y^2 = 1, 0 \le z \le 3$ 对于直线 $x = y = z$ 的转动惯量(). (A) $7\pi;$ (B) $24\pi;$ (C) $18\pi;$ (D) $6\pi.$ 二、填空题 1. 设 L 为以 $(0,0), (1,0), (0,1)$ 为顶点的三角形的周界,则 $\oint_{L} (x+y)\mathrm{d}s = \underline{\qquad}$		1. 设 L 是圆周 $x^2 + y^2 = a^2$, 则 $\oint_L (x+y)^2 ds = ($).						
$\int_{\Gamma} (x^2 + y^2 + z) \mathrm{d}s = ().$ $(A) \sqrt{2}(\pi + \pi^2); (B) \pi + \pi^2; (C) \pi + \frac{\pi^2}{2}; (D) \sqrt{2} \left(\pi + \frac{\pi^2}{2}\right).$ $3. \ \ \mathcal{L} : x^2 + y^2 + z^2 = a^2(z \ge 0), \ \mathcal{L}_1 \ \ \mathcal{L} \ $		(A) $2\pi a^2$;	(B) $2\pi a^3$;	(C) πa^4 ;	(D) $2\pi a^4$.			
(A) $\sqrt{2}(\pi + \pi^2)$; (B) $\pi + \pi^2$; (C) $\pi + \frac{\pi^2}{2}$; (D) $\sqrt{2}(\pi + \frac{\pi^2}{2})$. 3. 设 $\Sigma : x^2 + y^2 + z^2 = a^2(z \ge 0)$, Σ_1 为 Σ 在第一卦限中的部分,则有(). (A) $\iint_{\Sigma} x dS = 4 \iint_{\Sigma_1} x dS$; (B) $\iint_{\Sigma} y dS = 4 \iint_{\Sigma_1} x dS$; (C) $\iint_{\Sigma} z dS = 4 \iint_{\Sigma_1} x dS$; (D) $\iint_{\Sigma} xyz dS = 4 \iint_{\Sigma_1} xyz dS$. 4. 设 Γ 为球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy ds = ($). (A) $-\pi R^3$; (B) $-2\pi R^3$; (C) πR^3 ; (D) $2\pi R^3$. 5. 密度为 1 的均匀圆柱面 $x^2 + y^2 = 1$, $0 \le z \le 3$ 对于直线 $x = y = z$ 的转动惯量 (). (A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . 二、填空题 1. 设 L 为以 $(0,0)$, $(1,0)$, $(0,1)$ 为顶点的三角形的周界,则 $\oint_{L} (x+y) ds = $		2. 设 Γ 为螺旋线:	$x = \cos t, y = \sin t,$	$z = t \not\equiv 0 \leqslant t \leqslant$	π上的一段.则			
3. 设 $\Sigma: x^2 + y^2 + z^2 = a^2(z \ge 0)$, Σ_1 为 Σ 在第一卦限中的部分,则有(). (A) $\iint_{\Sigma} x dS = 4 \iint_{\Sigma_1} x dS$; (B) $\iint_{\Sigma} y dS = 4 \iint_{\Sigma_1} x dS$; (C) $\iint_{\Sigma} z dS = 4 \iint_{\Sigma_1} x dS$; (D) $\iint_{\Sigma} xyz dS = 4 \iint_{\Sigma_1} xyz dS$. 4. 设 Γ 为球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy ds = ($). (A) $-\pi R^3$; (B) $-2\pi R^3$; (C) πR^3 ; (D) $2\pi R^3$. 5. 密度为 1 的均匀圆柱面 $x^2 + y^2 = 1, 0 \le z \le 3$ 对于直线 $x = y = z$ 的转动惯量(). (A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . 二、填空题 1. 设 L 为以 $(0,0), (1,0), (0,1)$ 为顶点的三角形的周界,则 $\oint_{L} (x+y) ds = $	\int_{Γ}	$(x^2 + y^2 + z)\mathrm{d}s = ($).					
(A) $\iint_{\Sigma} x dS = 4 \iint_{\Sigma_{1}} x dS;$ (B) $\iint_{\Sigma} y dS = 4 \iint_{\Sigma_{1}} x dS;$ (C) $\iint_{\Sigma} z dS = 4 \iint_{\Sigma_{1}} x dS;$ (D) $\iint_{\Sigma} xyz dS = 4 \iint_{\Sigma_{1}} xyz dS.$ 4. 设 Γ 为球面 $x^{2} + y^{2} + z^{2} = R^{2}(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy ds = ($). (A) $-\pi R^{3};$ (B) $-2\pi R^{3};$ (C) $\pi R^{3};$ (D) $2\pi R^{3}.$ 5. 密度为 1 的均匀圆柱面 $x^{2} + y^{2} = 1, 0 \leqslant z \leqslant 3$ 对于直线 $x = y = z$ 的转动惯量 (). (A) $7\pi;$ (B) $24\pi;$ (C) $18\pi;$ (D) $6\pi.$ 二、填空题 1. 设 L 为以 $(0,0), (1,0), (0,1)$ 为顶点的三角形的周界,则 $\oint_{L} (x+y) ds = \underline{\hspace{1cm}}$		(A) $\sqrt{2}(\pi+\pi^2)$;	(B) $\pi + \pi^2$;	(C) $\pi + \frac{\pi^2}{2}$;	(D) $\sqrt{2}\left(\pi + \frac{\pi^2}{2}\right)$.			
(C) $\iint_{\Sigma} z dS = 4 \iint_{\Sigma_1} x dS;$ (D) $\iint_{\Sigma} xyz dS = 4 \iint_{\Sigma_1} xyz dS.$ 4. 设 Γ 为球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy ds = ($). (A) $-\pi R^3;$ (B) $-2\pi R^3;$ (C) $\pi R^3;$ (D) $2\pi R^3.$ 5. 密度为 1 的均匀圆柱面 $x^2 + y^2 = 1, 0 \leqslant z \leqslant 3$ 对于直线 $x = y = z$ 的转动惯量 (). (A) $7\pi;$ (B) $24\pi;$ (C) $18\pi;$ (D) $6\pi.$ 二、填空题 1. 设 L 为以 $(0,0), (1,0), (0,1)$ 为顶点的三角形的周界,则 $\oint_{L} (x+y) ds = $		3. 设 $\Sigma : x^2 + y^2 +$	$-z^2 = a^2(z \geqslant 0), \ \Sigma$	$_1$ 为 $_\Sigma$ 在第一卦	小限中的部分 ,则有().		
4. 设 Γ 为球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 与平面 $x + y + z = 0$ 的交线 $\oint_{\Gamma} 3xy ds = ($). (A) $-\pi R^3$; (B) $-2\pi R^3$; (C) πR^3 ; (D) $2\pi R^3$. 5. 密度为 1 的均匀圆柱面 $x^2 + y^2 = 1, 0 \le z \le 3$ 对于直线 $x = y = z$ 的转动惯量 (). (A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . 二、填空题 1. 设 L 为以 $(0,0), (1,0), (0,1)$ 为项点的三角形的周界,则 $\oint_{L} (x+y) ds = $		$(A) \iint_{\Sigma} x dS = 4$	$4\iint_{\Sigma_1} x \mathrm{d}S;$	(B) $\iint_{\Sigma} y dS = 4$	$4\iint_{\Sigma_1} x dS;$			
$\oint_{\Gamma} 3xy ds = ().$ $(A) -\pi R^{3}; (B) -2\pi R^{3}; (C) \pi R^{3}; (D) 2\pi R^{3}.$ $5. 密度为 1 的均匀圆柱面 x^{2} + y^{2} = 1, 0 \leqslant z \leqslant 3 \text{ 对于直线 } x = y = z \text{ 的转动惯量} (). (A) 7\pi; (B) 24\pi; (C) 18\pi; (D) 6\pi. $		(C) $\iint_{\Sigma} z dS = 4$	$4\iint_{\Sigma_1} x \mathrm{d}S;$	(D) $\iint_{\Sigma} xyz dS =$	$=4\iint_{\Sigma_1} xyz\mathrm{d}S.$			
(A) $-\pi R^3$; (B) $-2\pi R^3$; (C) πR^3 ; (D) $2\pi R^3$. 5. 密度为 1 的均匀圆柱面 $x^2+y^2=1, 0\leqslant z\leqslant 3$ 对于直线 $x=y=z$ 的转动惯量 (). (A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . 二、填空题 1. 设 L 为以 $(0,0), (1,0), (0,1)$ 为顶点的三角形的周界,则 $\oint_L (x+y) \mathrm{d} s =$	c		$z^2 + y^2 + z^2 = R^2$	(R > 0) 与平	面 $x + y + z = 0$ 的这	ど线,则		
5. 密度为 1 的均匀圆柱面 $x^2+y^2=1, 0\leqslant z\leqslant 3$ 对于直线 $x=y=z$ 的转动惯量). (A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . 二、填空题 1. 设 L 为以 $(0,0),(1,0),(0,1)$ 为顶点的三角形的周界,则 $\oint_L (x+y)\mathrm{d}s=$	\oint_{Γ} :	3xy ds = ().						
(). $ (A) 7\pi; (B) 24\pi; (C) 18\pi; (D) 6\pi. $ 二、填空题 $ 1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		$(A) -\pi R^3; \qquad ($	B) $-2\pi R^3$; (C)	πR^3 ; (D) 2π	τR^3 .			
(A) 7π ; (B) 24π ; (C) 18π ; (D) 6π . 二、填空题 1. 设 L 为以 $(0,0),(1,0),(0,1)$ 为顶点的三角形的周界,则 $\oint_L (x+y) \mathrm{d}s =$		5. 密度为 1 的均匀圆柱面 $x^2 + y^2 = 1, 0 \le z \le 3$ 对于直线 $x = y = z$ 的转动惯量为						
二、填空题 $1. ~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0$	().						
1. 设 L 为以 $(0,0),(1,0),(0,1)$ 为项点的三角形的周界, 则 $\oint_L (x+y) \mathrm{d}s =$			$24\pi;$ (C) $18\pi;$	(D) 6π .				
V E			(1 0) (0 1) 为而占	的二角形的国界	$\iiint \int (x+u)ds =$			
2. 设 Σ 为 Oyz 平面上的圆域 $y^2 + z^2 \le 1$, 则 $\iint_{\Sigma} [x + (y^2 + z^2)] dS = $		~ <i>L</i>						
		2. 设 Σ 为 Oyz 平ī	面上的圆域 y^2+z^2 :	$\leq 1, \text{M} \iint_{\Sigma} [x + (x)] dx$	$y^2 + z^2)] \mathrm{d}S = \underline{\qquad}$	·		

- 3. 设 Σ 为平面 $\frac{x}{2}+y+z=1$ 在第一卦限的部分,则 $\iint_{\Sigma}(x+2y+2z+4)\mathrm{d}S=$
- 4. 圆柱面 $x^2+y^2=R^2$ 介于 Oxy 平面及柱面 $z=R+\frac{x^2}{R}$ 之间的面积为_____.
- 5. 设 Σ 是柱面 $x^2+y^2=a^2(a>0)$ 在 $0\leqslant z\leqslant h$ 之间的部分,则 $\iint\limits_{\Sigma}x^2\mathrm{d}S=$

三、计算题

1. 计算 $\oint_{\Gamma}(\sqrt{2y^2+z^2}+y^2)\mathrm{d}s,$ 其中闭曲线 Γ 为球面 $x^2+y^2+z^2=9$ 与平面 y=x 的交线.

2. 设 Σ 是锥面 $z=\sqrt{x^2+y^2}$ 介于 z=0 与 z=2 之间的部分,计算 $\iint\limits_{\Sigma}(x^2+y^2)\mathrm{d}S$.

3. 计算 $y = \sqrt{x}, x = 1$ 及 x 轴所围成的图形绕 x 轴旋转一周所成旋转体的体积和表面积.

4. 求密度分布均匀的抛物面 $z = \frac{1}{2}(x^2 + y^2)(z \le 2)$ 的质心.

第二次作业

学院	班级	姓名	学号	
一、单项选择题	<u> </u>			

1. 设 L 是椭圆 $4x^2 + y^2 = 8x$ 的正向边界, 则曲线积分 $\oint_L e^{y^2} dx + x dy = ($).

(A) 2π ; (B) π ; (C) 1; (D) 0.

2. 设曲线 Γ 为从原点 (0,0,0) 到点 (1,1,1) 的线段,则将第二型曲线积分 $\int_{\Gamma} P(x,y,z) \mathrm{d}x + Q(x,y,z) \mathrm{d}y + R(x,y,z) \mathrm{d}z$ 化为第一型曲线积分为().

(A) $\int_{\Gamma} (P+Q+R) ds;$ (B) $\frac{1}{3} \int_{\Gamma} (P+Q+R) ds;$

(C) $\sqrt{3} \int_{\Gamma} (P+Q+R) ds$; (D) $\frac{1}{\sqrt{3}} \int_{\Gamma} (P+Q+R) ds$.

3. 当 x > 0, y > 0 时, $\frac{(x + ay)dy - ydx}{(x + y)^2}$ 为某函数的全微分, 则 a = ().

(A) -1; (B) 0; (C) 2; (D) 1.

4. 设曲线积分 $\int_L xy^2 dx + y\varphi(x) dy$ 与路径无关, 其中 $\varphi(x)$ 具有连续的导数, 且 $\varphi(0) = \varphi(x)$

(A) 1; (B) $\frac{3}{4}$; (C) $\frac{1}{2}$; (D) $\frac{3}{8}$.

5. 设曲线 L:f(x,y)=1(f(x,y) 具有一阶连续偏导数), 过第II象限内的点 M 和第 IV 象限内的点 $N,\ \Gamma$ 为 L 上从点 M 到点 N 的一段弧,则下列积分小于零的是().

(A) $\int_{\Gamma} f(x,y) dx$; (B) $\int_{\Gamma} f(x,y) dy$; (C) $\int_{\Gamma} f(x,y) ds$; (D) $\int_{\Gamma} f'_x(x,y) dx + f'_y(x,y) dy$.

二、填空题

1. 设 L 是抛物线 $y=x^2$ 上从点 A(1,1) 到点 B(-1,1) ,再沿直线到点 C(0,2) 的曲线,则 $\int_L y^2 \mathrm{d}x - x \mathrm{d}y =$ ______.

2. 设 L 为 $x^2 + (y-1)^2 = 4$ 正向一周,则 $\oint_L \frac{x \mathrm{d}y - y \mathrm{d}x}{x^2 + (y-1)^2} = \underline{\hspace{1cm}}$.

3. 设 L 为封闭折线 |x| + |x + y| = 1 正向一周, 则 $\oint_L x^2 y^2 dx - \cos(x + y) dy = 0$

4. 设 L 为以 A(1,0), B(0,1) 及 C(-1,0) 为顶点的三角形的正向边界曲线, 则 $\oint_{I} |y| \mathrm{d}x + |x| \mathrm{d}y = \underline{\qquad}.$

5. 一质点在变力 $\mathbf{F} = \left(\frac{y}{3}, -x, x+y+z\right)$ 的作用下, 从 A(1,0,0) 沿直线运动到 B(3,3,4). 则力 F 对质点所作的功为_____.

三、计算题

1. 计算 $\int_{\Gamma} (x^2-yz)\mathrm{d}x + (y^2-xz)\mathrm{d}y + (z^2-xy)\mathrm{d}z$, 其中 Γ 为从点 A(1,0,0)沿圆柱 螺旋线 $x=\cos\theta, y=\sin\theta, z=\theta$ 到点 $B(1,0,2\pi)$ 的弧段.

2. 计算 $\int_L \left(y + \frac{e^y}{x}\right) dx + e^y \ln x dy$. 其中 L 是半圆周 $x = 1 + \sqrt{2y - y^2}$ 上从点 (1,0) 到点 (2,1) 的一段弧.

3. 证明 $(2xy^3 - y^2\cos x)dx + (1 - 2y\sin x + 3x^2y^2)dy$ 是某二元函数 u(x,y) 的全微分, 求一个 u(x,y), 并计算 $\int_{(0,0)}^{(\frac{\pi}{2},1)} (2xy^3 - y^2\cos x)dx + (1 - 2y\sin x + 3x^2y^2)dy$.

4. 计算 $I=\int_L [\varphi(y)\cos x-\pi y]\mathrm{d}x+[\varphi'(y)\sin x-\pi]\mathrm{d}y$, 其中 L 为连接点 $A(\pi,2)$ 与 $B(3\pi,4)$ 的线段之下方的任意路线从 A 到 B 方向.且该路线与 AB 所围成的面积为 2, $\varphi(y)$ 具有连续的导数.

5. 计算 $\oint_L \frac{x dy - y dx}{x^2 + 2y^2}$, 其中 L 为 $(x - 1)^2 + y^2 = 4$ 的正向边界.

第三次作业

一、单项选择题

1. 设 Σ 是 Oxy 面上的圆域 $x^2+y^2\leqslant 1$, 取上侧, 则 $\iint_{\Sigma}(x^2+y^2+z^2)\mathrm{d}z\mathrm{d}x=($)

(A)
$$\frac{2\pi}{3}$$
; (B) $\frac{\pi}{2}$; (C) 0; (D) $-\frac{\pi}{2}$.

2. 设曲面 Σ 为 x+y+z=1 在第一卦限部分的下侧, 则 $\iint_{\Sigma} z dx dy = ($).

(A)
$$-\frac{1}{6}$$
; (B) $\frac{1}{6}$; (C) $-\frac{1}{3}$; (D) $\frac{1}{3}$.

3. 设 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧, 则曲面积分 $\iint_{\Sigma} \frac{x dy dz + y dz dx + z dx dy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} =$

(A) 0; (B) 1; (C)
$$2\pi$$
; (D) 4π .

4. 设 Σ 为球面 $x^2 + y^2 + z^2 = R^2$ 上半部分的上侧,则下列结论不正确的是().

(A)
$$\iint_{\Sigma} x^2 dy dz = 0;$$
 (B)
$$\iint_{\Sigma} x dy dz = 0;$$

(C)
$$\iint_{\Sigma} y^2 dy dz = 0;$$
 (D)
$$\iint_{\Sigma} y dy dz = 0.$$

二、填空题

(

1. 设 Σ 是平面 $3x + 2y + 2\sqrt{3}z = 6$ 在第一卦限部分的上侧,则

$$I = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

化为第一型曲面积分为_______

2. 设 Σ 是锥面 $z = \sqrt{x^2 + y^2} (0 \leqslant z \leqslant 1)$ 的下侧,则 $\iint_{\Sigma} x dy dz + y dz dx + (z - 1) dx dy = ______.$

3. 已知三元函数 $u = u(x, y, z) = x^2 + y^2 + z^2$, 则 $div(\mathbf{grad}u) = \underline{\hspace{1cm}}$.

4. 已知向量场 $\boldsymbol{A}(M)=(xz,y^4,z^2),$,则 $\mathbf{rot}\boldsymbol{A}(M)=$ ______.

三、计算题

1. 计算 $I=\iint_{\Sigma}y\mathrm{d}z\mathrm{d}x+(z^2+1)\mathrm{d}x\mathrm{d}y$, 其中 Σ 是圆柱面 $x^2+y^2=4$ 被平面 x+z=2 和 z=0 所截出部分的外侧.

2. 已知 Σ 为空间曲面 $x^2+y^2+z^4=1(z\geqslant 0)$ 的上侧, f(x) 连续.计算曲面积分 $I=\iint_{\Sigma}[x^2+yzf(x^2-y^2)]\mathrm{d}y\mathrm{d}z+[y^2+xzf(x^2-y^2)]\mathrm{d}z\mathrm{d}x+[z^2+xyf(x^2-y^2)]\mathrm{d}x\mathrm{d}y.$

3. 计算
$$I=\iint\limits_{\Sigma} \frac{2\mathrm{d}y\mathrm{d}z}{x\cos^2 x} + \frac{\mathrm{d}z\mathrm{d}x}{\cos^2 y} - \frac{\mathrm{d}x\mathrm{d}y}{z\cos^2 z}$$
, 其中 Σ 是球面 $x^2+y^2+z^2=1$ 的外侧.

5. 利用Stokes公式计算曲线积分

$$\oint_{\Gamma} (y^2 - z^2) dx + (2z^2 - x^2) dy + (3x^2 - y^2) dz,$$

其中 Γ 是平面 x+y+z=2 与柱面 |x|+|y|=1 的交线, 从 z 轴正向看 Γ 为逆时针方向.

第四次作业

一、单项选择题

1. 下列命题正确的是().

(A) 若正项级数
$$\sum_{n=1}^{\infty} u_n$$
 满足 $\frac{u_{n+1}}{u_n} < 1$, 则级数 $\sum_{n=1}^{\infty} u_n$ 收敛;

(B) 若正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛; 则 $\lim_{n\to\infty} \sqrt[n]{u_n} \leqslant 1$;

(C) 若
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 1$$
, 则级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 具有相同的收敛性;

(D) 若数列 $\{a_n\}$ 收敛, 则级数 $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$ 收敛.

2. 设级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则必收敛的级数为().

(A)
$$\sum_{n=1}^{\infty} (u_n + u_{n+1})$$
 (B) $\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$

(C)
$$\sum_{n=1}^{\infty} u_n^2$$
 (D) $\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$

3. 设
$$\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$$
 收敛,则().

(A)
$$\sum_{n=1}^{\infty} a_n$$
 收敛; (B) $\sum_{n=1}^{\infty} a_n$ 发散;

(C)
$$\lim_{n \to \infty} a_n = 0$$
; (D) 当 $a_n > 0$ 时, $\sum_{n=1}^{\infty} a_n$ 必收敛.

4. 设
$$u_n = (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}} \right)$$
, 则级数().

(A)
$$\sum_{n=1}^{\infty} u_n$$
 和 $\sum_{n=1}^{\infty} u_n^2$ 都收敛; (B) $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} u_n^2$ 都发散;

(C)
$$\sum_{n=1}^{\infty} u_n$$
 收敛, 而 $\sum_{n=1}^{\infty} u_n^2$ 发散; (D) $\sum_{n=1}^{\infty} u_n$ 发散, 而 $\sum_{n=1}^{\infty} u_n^2$ 收敛.

5. 下列级数中绝对收敛的是(

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
;

(C)
$$\sum_{n=1}^{\infty} \frac{n \cos n\pi}{n+1};$$

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n}$$
; (B) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$; (C) $\sum_{n=1}^{\infty} \frac{n \cos n\pi}{n+1}$; (D) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$.

二、填空题

1. 级数
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}$$
 的和 $s =$ ______.

2. 设
$$a_1 = 1$$
, $\lim_{n \to \infty} a_n = 2021$, 则级数 $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$ 的和 $s = \underline{\qquad}$.

$$3. \lim_{n \to \infty} \frac{n^n}{(n!)^2} = \underline{\qquad}.$$

4. 当
$$a \in \underline{\qquad}$$
 时,级数 $\sum_{n=1}^{\infty} a^n$ 收敛.

三、解答题

1. 判断级数
$$\sum_{n=1}^{\infty} \left(n^{\frac{1}{n^2+1}} - 1 \right)$$
 的敛散性.

$$2. \ \ \mathcal{U} \ a_n = \int_0^{\frac{\pi}{4}} \tan^n x \mathrm{d}x,$$

(1) 求
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值;

(2) 证明对任意的常数 $\lambda > 0, \sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

3. 判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}}$ 的收敛性.

4. 设常数 $\lambda > 0$, 且级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛,判别级数 $\sum_{n=1}^{\infty} (-1)^n \frac{|a_n|}{\sqrt{n^2 + \lambda}}$ 敛散性.

5. 设正项数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散. 则级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 收敛.

第五次作业

一、单项选择题

1. 函数项级数
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 + a^2}$$
 的收敛域为().

(A)
$$[-1,1];$$
 (B) $(-1,1];$ (C) $[-1,1);$ (D) $(-1,1).$

2. 设
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 2$$
, 则幂级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛半径().

(A)
$$R = 2;$$
 (B) $R = \frac{1}{2};$ (C) $R = \sqrt{2};$ (D) $R = \frac{1}{\sqrt{2}}$

 $3. 2^x$ 展开为 x 的幂级数是().

(A)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} \quad x \in (-\infty, +\infty);$$
 (B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!} \quad x \in (-\infty, +\infty);$$

(C)
$$\sum_{n=0}^{\infty} \frac{(x \ln 2)^n}{n!}$$
 $x \in (-\infty, +\infty);$ (D) $\sum_{n=1}^{\infty} \frac{(-1)^n (x \ln 2)^n}{n!}$ $x \in (-\infty, +\infty).$

4. 已知幂级数
$$\sum_{n=0}^{\infty} a_n (x-1)^n$$
 在 $x=-1$ 处条件收敛,则在 $x=-2$ 处,该级数().

中
$$a_n = 2 \int_0^1 f(x) \cos n\pi x dx$$
 $(n = 0, 1, 2, \dots)$, 则 $s\left(-\frac{5}{2}\right) = ($).

(A)
$$\frac{1}{2}$$
; (B) $-\frac{1}{2}$; (C) $\frac{3}{4}$; (D) $-\frac{3}{4}$.

二、填空题

1. 级数
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} x^n$$
 的收敛区间为______.

2. 设
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0, \\ 1, & x = 0, \end{cases}$$
 则 $f^{(50)}(0) = \underline{\qquad}$.

3. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R=3, 则幂级数 $\sum_{n=1}^{\infty} n a_n (x-1)^{n+1}$ 的收敛区间为______.

4. 设
$$f(x) = x^2, -\pi \leqslant x \leqslant \pi, s(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x,$$
 其中 $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx, (n = 1, 2, \dots,)$ 则 $a_3 = \underline{\qquad}$

三、计算题

1. 求幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n4^n} (x+1)^{2n-1}$$
 的收敛区间和收敛域.

2. 求幂级数
$$\sum_{n=1}^{\infty} (n+2)x^n$$
 的收敛域及和函数.

3. 将 $f(x) = \frac{1}{x}$ 展开为 (x - 3) 的幂级数.

4. 设 a_n 为曲线 $y=x^n$ 与 $y=x^{n+1}(n=1,2,\cdots)$ 所围成区域的面积, 记 $S_1=\sum_{n=1}^{\infty}a_n, S_2=\sum_{n=1}^{\infty}a_{2n-1},$ 求 S_1 与 S_2 的值.

5. 将 $f(x) = \frac{1}{2}(\pi - x)(0 \leqslant x \leqslant \pi)$ 展开为正弦级数, 并求 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 的和.

第六次作业

一、单项选择题					
1. 微分方程 $(x^2 + y^2)dx + (y^3 + 2xy)dy = 0$ 是().					
(A) 可分离变量的微分方程; (B) 齐次方程;					
(C) 一阶线性方程; (D) 全微分方程.					
2. 若 y_1, y_2 是方程 $y' = p(x)y + q(x)(q(x) \neq 0)$ 的两个解,要使 $\alpha y_1 + \beta y_2$ 也是该方程的解,则 α, β 应满足关系式().					
(A) $\alpha + \beta = 1;$ (B) $\alpha + \beta = 0;$ (C) $\alpha \beta = 1;$ (D) $\alpha \beta = 0.$					
3.微分方程 $y' + \frac{e^{y^2 + 3x}}{y} = 0$ 的通解是().					
(A) $2e^{3x} + 3e^{y^2} = C;$ (B) $2e^{3x} + 3e^{-y^2} = C;$					
(C) $2e^{3x} - 3e^{-y^2} = C$; (D) $e^{3x} - e^{-y^2} = C$;					
4. 设曲线积分 $\int_{I} [f(x) - e^x] \sin y dx - f(x) \cos y dy$ 与路径无关, 其中 $f(x)$ 具有一阶					
连续导数. $f(0) = 0$, 则 $f(x) = ($).					
(A) $\frac{e^{-x} - e^x}{2}$; (B) $\frac{e^x - e^{-x}}{2}$; (C) $\frac{e^{-x} - e^x}{2} - 1$; (D) $1 - \frac{e^x - e^{-x}}{2}$.					
5. 微分方程 $(x + 2y)dx - xdy = 0$ 满足条件 $y(1) = 0$ 的特解为().					
(A) $x + y = x^2$; (B) $x - y = x^2$ (C) $x + 2y = x^2$; (D) $x - 2y = x^2$.					
二、填空题					
1. 微分方程 $e^{-y}dx - (2y + xe^{-y})dy = 0$ 的通解为					
2. 已知曲线 $y=y(x)$ 经过点 $(1,e^{-1})$, 且点 (x,y) 处的切线在 y 轴上的截距为 xy , 则 $y(x)=0$					
3. 设 $f(x)$ 具有连续导数, 且满足方程 $f(x) = \int_0^x e^{-f(t)} dt$, 则 $f(x) = \underline{\qquad}$.					
4. 方程 $xy' = \sqrt{x^2 - y^2} + y$ 的通解为					

5. 微分方程 $y' = \frac{y}{x + y^3}$ 的通解为______.

三、解答题

1. 求微分方程 $y' + y = e^{-x} \cos x$ 的通解.

2. 求微分方程 $x^2y' + xy = y^2$ 满足初始条件 y(1) = 1 的特解.

3. 设函数 f(t) 在 $[0,+\infty)$ 上连续,且满足方程 $f(t)=t^2+\iint\limits_{x^2+y^2\leqslant t^2}f(\sqrt{x^2+y^2})\mathrm{d}x\mathrm{d}y.$ 求 f(t) 的表达式.

- (1) 求 F(x) 所满足的一阶微分方程;
- (2) 求出 F(x) 的表达式.

第七次作业

一、单项选择题

1. 设线性无关的函数 $y_1(x), y_2(x), y_3(x)$ 都是二阶非齐次线性微分方程 $y'' + p(x)y' + q(x)y = f(x)$ 的解, C_1, C_2 是任意常数,则该非齐次方程的通解是().						
(A) $C_1y_1 + C_2y_2 + y_3$;	(B) $C_1y_1 + C_2y_2 - (C_1 + C_2)y_3$;					
(C) $C_1y_1 + C_2y_2 - (1 - C_1 - C_2)y_3$;	(D) $C_1y_1 + C_2y_2 + (1 - C_1 - C_2)y_3$.					
2. 常微分方程 $y'' + y = 3x^2 + 2\sin x$ 的特	解形式可设为().					
(A) $y^* = x(ax^2 + bx + c) + (Ax + B)\sin^2 \theta$	$ax + (Cx + D)\cos x;$					
(B) $y^* = A\sin x + B\cos x + x(ax^2 + bx)$	(B) $y^* = A \sin x + B \cos x + x(ax^2 + bx + c);$ (C) $y^* = ax^3 + bx^2 + cx + d + (Ax + B) \sin x + (Cx + D) \cos x;$ (D) $y^* = ax^2 + bx + c + Ax \sin x.$					
(C) $y^* = ax^3 + bx^2 + cx + d + (Ax + B)$						
(D) $y^* = ax^2 + bx + c + Ax \sin x$.						
3. 已知 $y_1 = \cos 2x - \frac{1}{4}x \cos 2x, y_2 = \sin 2x - \frac{1}{4}x \cos 2x$ 是某二阶常系数非齐次微分方程的两个解, $y_3 = \cos 2x$ 是它所对应的齐次方程的一个解, 则该微分方程是().						
(A) $y'' + 4y = \sin 2x$; (B) $y'' + 4y = \sin 2x$	$4y = \cos 2x;$					
(C) $y'' + y = \sin 2x;$ (D) $y'' + y$	$y = \cos 2x.$					
4. 方程 $x^2y'' + 2xy' - 2y = 0$ 的通解为($).(C_1,C_2$ 为任意常数.)					
(A) $y = C_1 e^x + C_2 e^{2x}$; (B) $(C_1 + C_2)$	$(x)e^x;$					
(C) $y = C_1 x + C_2 x^2$; (D) $y = \frac{C_1}{x^2} + \frac{C_2}{x^2} + \frac{C_3}{x^2} + \frac{C_3}{$	$+C_2x$.					
二、填空题						
1. 微分方程 $x^2y'' = 2x^2 - 1$ 的通解为						
2. 微分方程 $xy'' + y' = 4x$ 的通解为	·					
3. 微分方程 $yy'' + (y')^2 = 0$ 满足初值条件 y	$y(0) = 1, y'(0) = \frac{1}{2}$ 的特解为					

- 4. 微分方程 $y^{(4)} + 2y'' + y = 0$ 的通解为______.
- 5. 以 $y = 2e^x \cos 3x$ 为一个特解的二阶常系数齐次线性微分方程为______.

三、计算题

1. 求微分方程 $x^2y'' = (y')^2 + 2xy'$ 的通解.

2. 求微分方程 $y''' - 8y = 24xe^{2x}$ 的通解.

3. 微分方程 $y'' - 3y' + 2y = 2e^x$ 的某一积分曲线 y = y(x) 在点 (0,1) 处的切线与曲线 $y = x^2 - x + 1$ 在该点的切线重合. 求 y(x) 的表达式.

4. 设 y=y(x) 在 $(-\infty,+\infty)$ 内具有二阶导数, 且 $y'\neq 0, x=x(y)$ 是 y=y(x) 的反函数.

- (1) 试将 x=x(y) 所满足的微分方程 $\frac{\mathrm{d}^2x}{\mathrm{d}y^2}+(y+\sin x)\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^3=0$ 变换为 y=y(x) 满足的微分方程;
 - (2) 求变换后的微分方程满足条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解.

5. 设函数 f(x), g(x) 具有二阶连续导数,曲线积分

$$\oint_{L} [y^{2}f(x) + 2ye^{x} + 2yg(x)]dx + 2[yg(x) + f(x)]dy = 0,$$

其中 L 为平面上任一简单封闭曲线.

- (1) $\Re f(x), g(x), \ \notin f(0) = g(0) = 0;$
- (2) 计算沿任一条曲线从点 (0,0) 到点 (1,1) 点的积分.