Math of Finance

Recitation - Feb 4
Zixiao Yang <u>zy1032@nyu.edu</u>
Office Hours - W 9-11 pm via zoom, or by appointments

Piazza - TBA

Logistics

Meeting time -

F 11 - 12.15, 194M 203, or https://nyu.zoom.us/j/92338445220

F 12.30 - 1.45, 194M 204, or https://nyu.zoom.us/j/91604832921

Grader

Zhe Zhao zz1752@nyu.edu

Risk-free securities Credits

Stochastic Calculus for Finance, Vols. I and II, by S.E. Shreve; Springer Verlag

Risk-free securities

Growth factors

Risk free - fixed and predicable return, must grow at a sufficient rate to avoid depreciation.

The rate is called growth factor R(t) interest of government-issued bonds.

Mathematically, a risk-free security with initial value V_0 acquire a value of $V(t) = \sqrt{R(t)}$ at time t

Risk-free securities

Estimations of R(t) under easy models

Suppose a yearly interest rate r, then after t years,

Simple Interest
$$P(t) = 1 + rt$$

Compound interest

Simple Interest
$$R(t) = 1 + rt$$
, usually for $t < 1$.

 $R(\frac{1}{2}) = 1 + \frac{0.06}{2} = 1.03$

Compound interest

interest compaded
$$R(2) = (1+r)(1+r) = (1+r)^2$$

once per year.
$$R(t) = (1+r)$$

interest componded
$$R(t) = (1 + \frac{r}{a})^{2t}$$

tenice per year.
interest compared $R(t) = (1 + \frac{r}{a})$

m tis per year

Continuously compound interest

 $R(t) = \lim_{m \to \infty} \left(1 + \frac{r}{m}\right)^{mt} = e^{rt}$

Risk-free securities

Discounted Values

$$V_T = V_0 R(T)$$

$$V_0 = \frac{V_T}{R(T)} \quad \text{fair price of a future value}$$

investor. pay VCO) **Risk-free securities** reviewe F at T face value masterity time Bonds Coupon bonds $V(0) = \frac{F}{R(T)}$ compon bonds. **Annuities / Loans** investor. pay V(0) reveive perodic payments. Deposit plans c, c, c, c --- c, F Coupon value face falue tie (t) (2t) (3t) - - · · (Nt) (Nt)

Fair price for coupon bonds.

$$V_{o} = \frac{C}{R(t)} + \frac{C}{R(2t)} + \cdots + \frac{C}{R(Nt)} + \frac{F}{R(Nt)}$$

$$\frac{1}{R^{2}(t)} \qquad \frac{1}{R^{N}(t)}$$

Amuities: _ bonds, F=0

pay Vb), recieve payments C, C, C --- C

Loan;

Deposit Plans / Retirevent Plans.

V (0)

Arbitrage - imbalance of markets **Example**

1 pourds = 10 USD

borrow £1 in Britai

> £6~7

Def - fair price is a price that does not lead to arbitrages

borrow II in Britis

X -> 1.38

Arbitrage Example

teciene Vo at t=0

(V) at t=T.

Investor borrows V_0 to be returned in one payment at time T

 \rightarrow A bond for such a period pays R(T) — growth factor R(T)

 (V_T) - fair amount investor must return at time T? $V_T = V_0 \cdot R(T)$

VT < Vo · RUT)

investor > borrow noney to purchase bonds.

Vo. R(T) - VT >0 => orbitrage for investor

VT > Vo, RCT)
FI (Finance Institute)
sett short-sell bonds;
- Vo·RCT) + VT >0 => orbitrage to FI

Arbitrage (ossumption) No arbitrage principle

Markets exhibit no arbitrages.

Assumptions

Infinite divisibility of assets - no minimal units, no need to round off

Infinite liquidity - mobilized capitals

Infinite availability _

No interest spread / price spread

RCT) SCT)

Simple MarketsSingle period derivatives

Two time involved - t_0 , t_1

Investor needs some asset at t_1 .

The present value $V(0) = V_0$ is known while the future value $V_1 := V(t_1)$ is unknown.

The investor want to buy the asset at time t_1 with no more than K_2

if
$$k \geq V_0$$
.
Simply purchase at $t=0$, sumboulted

strike value

Simple Markets

Fair prices and hedging strategies

$$S_0 = 2$$

$$\begin{cases} S_1 = 4 \\ S_1 = 1 \end{cases}$$

$$k = 2 \qquad (-2)$$

Current price $S_0 = 2$

Future price: either $S_1 = 1$ or $S_1 = 4$.

An investor wished to purchase the stock at t_1 for no more than K=2.

hedge by purchasing some chanes of stock.

- Contract investor is obliged to spend K=2 to purchase the stock at t_1
- —Call option investor has the right to spend K=2 to purchase the stock at t_1 if it is beneficial. Now higher fair price

Contract. (hedge by purchasing so shones) profit from the contract. Stock senario 400 $S_1 = 1 \quad | V_0 - 2 \triangle_0$

$$S_{1} = 1$$

$$V_{0} - 2\Delta_{0} + 4\Delta_{0} - 2 = 0$$

$$S_{1} = 1$$

$$V_{0} - 2\Delta_{0} + \Delta_{0} + 1 = 0$$

$$S_{1} = 1$$

$$V_{0} = 0$$

$$\Delta_{0} = 1$$

$$\Delta_{0} = 1$$

$$V_{0} = 0$$
of stock,

Contract. (hedge by purchasing so shares) profit from the contract. Stocke (bonds) S=4 (Vo - 200)-R $|S_1 = 1 \quad |(V_0 - 2\Delta_0) \cdot R|$ $S_1 = 4$ $R(V_0 - 2\Delta_0) + 4\Delta_0 - 2 = 0$ $S_1 = 1$ $R(V_0 - 2\Delta_0) + \Delta_0 + 1 = 0$ \rightarrow $V_0 = 1$ 0.18 at to: purchase I shall of stock, Call Option. (hedge by purchasing so shows profit from the contract. Stocke benario 400

$$S_{1} = 4$$
 $V_{0} = 2\Delta_{0}$ Δ_{0} Δ_{0}

Vo - 200 + 00 + = 0 at to purchase 0.66 shores of stock,

Call Option. (hedge by purchasing so shares) profit from to Stock S,=4 (Vo - 200)R $S_1 = 1 \left[(V_0 - 2\Delta_0)R \right]$ $S_1 = 4$ $R(V_0 - 2\Delta_0) + 4\Delta_0 - 2 = 0$ $S_1 = 1$ $R(V_0 - 2\Delta_0) + \Delta_0 = 0$ $V_0 = 0.66$ 1.93 at to: purchase 0.66 shores of stock,

Simple Markets **Contract & Options**

Suppose: Stock S, Strike value K = contract/ option

Unvestors: Vi. profit from contract (option **Securities** , would be veg. 5, -K Contract to buy max(s,-k, 0) **Call option** could be veg. K-SContract to sell $\max(K-S_1, 0)$ Put option