

Física Nivel medio Prueba 1

Martes 30 de octubre de 2018 (tarde)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Se necesita una copia sin anotaciones del cuadernillo de datos de física para esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

¿Cuál es la unidad de potencia expresada en unidades fundamentales del SI?

1.

	A.	$kg m s^{-2}$	
	B.	$kg m^2 s^{-2}$	
	C.	$kg m s^{-3}$	
	D.	$kg m^2 s^{-3}$	
2.	La longitud del lado de un cubo es 2,0 cm \pm 4%. La masa del cubo es 24,0 g \pm 8%. ¿Cuál es la incertidumbre en porcentaje de la densidad del cubo?		
	A.	±2%	
	B.	$\pm 8\%$	
	C.	±12%	
	D.	±20 %	
3.		amión tiene una rapidez inicial de 20 m s ^{–1} . Decelera a razón de 4,0 m s ^{–2} . ¿Cuál es la distancia el camión recorre hasta pararse?	
	A.	2,5 m	
	В.	5,0 m	
	C.	50 m	
	D.	100 m	

4. Se lanza un proyectil formando cierto ángulo con la horizontal. La resistencia del aire es despreciable. Se muestra la trayectoria del proyectil.

¿Cuál opción proporciona la magnitud de la componente horizontal y la magnitud de la componente vertical de la velocidad del proyectil entre O y P?

	Magnitud de la componente horizontal de la velocidad	Magnitud de la componente vertical de la velocidad
A.	permanece constante	aumenta
B.	permanece constante	permanece constante
C.	aumenta	aumenta
D.	aumenta	permanece constante

5. Un corredor parte del reposo y acelera a ritmo constante a lo largo de una carrera. ¿Qué gráfica muestra la variación de la rapidez *v* del corredor con la distancia recorrida *s*?

6. Dos bloques X e Y están situados sobre una superficie horizontal sin rozamiento, como se muestra. Entonces se aplica una fuerza horizontal sobre el bloque más grande y los dos bloques se mueven juntos con la misma rapidez y aceleración.

¿Cuál diagrama de cuerpo libre muestra las fuerzas de rozamiento entre los dos bloques?

7. La masa del extremo de un péndulo es obligada a moverse en una circunferencia horizontal de radio *r* con rapidez constante. La magnitud de la fuerza neta sobre la masa es *F*.

¿Cuál es la dirección de F y el trabajo efectuado por F durante media revolución?

	Dirección de <i>F</i>	Trabajo efectuado por <i>F</i>
A.	hacia el centro de la circunferencia	cero
B.	hacia el centro de la circunferencia	πrF
C.	hacia fuera del centro de la circunferencia	cero
D.	hacia fuera del centro de la circunferencia	πrF

8. Se utiliza un muelle comprimido para lanzar un objeto a lo largo de una superficie horizontal sin rozamiento. Cuando el muelle se comprime a lo largo de una distancia x y se suelta, el objeto abandona el muelle con una rapidez v. ¿Cuál es la distancia a lo largo de la cual debe comprimirse el muelle para que el objeto abandone el muelle con $\frac{v}{2}$?

- A. $\frac{x}{4}$
- B. $\frac{x}{2}$
- C. $\frac{x}{\sqrt{2}}$
- D. $x\sqrt{2}$

9. Una pelota de masa *m* colisiona con un muro y rebota en línea recta. La pelota pierde el 75 % de su energía inicial durante la colisión. La rapidez antes de la colisión es *v*.

¿Cuál es la magnitud del impulso ejercido por el muro sobre la pelota?

A.
$$\left(1-\frac{\sqrt{3}}{2}\right)mv$$

B.
$$\frac{1}{2}mv$$

C.
$$\frac{5}{4}mv$$

D.
$$\frac{3}{2}mv$$

- **10.** Un calentador eléctrico de 700 W se utiliza para calentar 1 kg de agua sin que haya pérdidas de energía. El calor específico del agua es de 4,2 kJ kg⁻¹ K⁻¹. ¿Cuánto tiempo tardará en calentar el agua desde 25 °C hasta 95 °C?
 - A. 7s
 - B. 30 s
 - C. 7 minutos
 - D. 420 minutos

-7 -

 $\hbox{${}_{\dot{c}}$ Cuánto vale el cociente } \frac{\hbox{r apidez media de las moléculas de helio}}{\hbox{r apidez media de las moléculas de oxígeno}}?$

- A. $\frac{1}{8}$
- B. $\frac{1}{\sqrt{8}}$
- C. $\sqrt{8}$
- D. 8
- **12.** Un recipiente X contiene 1,0 mol de un gas ideal. El recipiente Y contiene 2,0 mol del gas ideal. El recipiente Y tiene un volumen cuatro veces mayor que X. La presión en X es el doble que en Y.

 $\label{eq:Cuantovale} \text{`Cuanto vale'} \; \frac{\text{temperatura del gas en X}}{\text{temperatura del gas en Y}} \, ?$

- A. $\frac{1}{4}$
- B. $\frac{1}{2}$
- C. 1
- D. 2
- **13.** Una partícula que se mueve en una circunferencia completa 5 revoluciones en 3 s. ¿Cuál es la frecuencia?
 - A. $\frac{3}{5}$ Hz
 - B. $\frac{5}{3}$ Hz
 - $C. \qquad \frac{3\pi}{5} Hz$
 - D. $\frac{5\pi}{3}$ Hz

14. Una onda longitudinal se mueve en un medio. Con respecto a la dirección de la transferencia de energía a través del medio, ¿cuáles son el desplazamiento del medio y la dirección de propagación de la onda?

-8-

	Desplazamiento del medio	Dirección de propagación de la onda
A.	paralelo	perpendicular
B.	paralelo	paralela
C.	perpendicular	paralela
D.	perpendicular	perpendicular

15. Las gráficas muestran la variación del desplazamiento y de un medio con la distancia x y con el tiempo t para una onda progresiva.

¿Cuál es la rapidez de la onda?

- A. $0.6 \,\mathrm{m \, s^{-1}}$
- B. 0.8 m s^{-1}
- C. 600 m s^{-1}
- D. 800 m s^{-1}

16. En un experimento de doble rendija, una fuente de luz roja monocromática incide sobre las rendijas S_1 y S_2 separadas una distancia d. A una distancia x de las rendijas se encuentra una pantalla. En la pantalla se observa un patrón con franjas espaciadas y.

En este montaje es posible hacer tres cambios:

- I. Aumentar *x*
- II. Aumentar d
- III. Utilizar luz verde monocromática en lugar de luz roja

¿Cuáles de esos cambios provocarán una disminución en el espaciado y de las franjas?

- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

17. Dos cuerdas de longitudes L_1 y L_2 están fijas por ambos extremos. La rapidez de la onda es la misma en ambas cuerdas. Ambas vibran con la misma frecuencia. L_1 vibra en su primer armónico. L_2 vibra en su tercer armónico.

¿Cuánto vale $\frac{L_2}{L_1}$?

- A. $\frac{1}{3}$
- B. 1
- C. 2
- D. 3
- **18.** Dos cables de cobre X e Y se conectan en serie. El diámetro de Y es el doble que el de X. La velocidad de desplazamiento en X es *v*. ¿Cuál es la velocidad de desplazamiento en Y?
 - A. $\frac{v}{4}$
 - B. $\frac{v}{2}$
 - C. 2*v*
 - D. 4*v*
- **19.** Un cable de longitud *L* se utiliza en un calentador eléctrico. Cuando la diferencia de potencial a través del cable es de 200V, la potencia disipada en el cable es de 1000 W. La misma diferencia de potencial se aplica a un segundo cable similar de longitud 2*L*. ¿Cuál es la potencia disipada en el segundo cable?
 - A. 250 W
 - B. 500 W
 - C. 2000 W
 - D. 4000 W

20. Un conjunto de cuatro resistores iguales cada uno de resistencia R se conectan a una fuente de f.e.m. ε de resistencia interna despreciable. ¿Cuál es la corriente en el resistor X?

- A. $\frac{\varepsilon}{5R}$
- B. $\frac{3\varepsilon}{10R}$
- C. $\frac{2\varepsilon}{5R}$
- D. $\frac{3\varepsilon}{5R}$
- **21.** Dos cables paralelos entre sí son perpendiculares a la página. Los cables transportan corrientes iguales en sentidos opuestos. El punto S se encuentra a la misma distancia de ambos cables. ¿Cuál es la dirección y sentido del campo magnético en el punto S?

corriente convencional hacia fuera de la página

 (\bullet)

corriente convencional hacia la página

22. Una partícula de masa *m* y carga de magnitud *q* entra en una región de campo magnético uniforme *B* que está dirigido hacia la página. La partícula sigue una trayectoria circular de radio *R*. ¿Cuáles son el signo de la carga de la partícula y la rapidez de la partícula?

	Carga de la partícula	Rapidez de la partícula
A.	positiva	qBR m
В.	negativa	qBR m
C.	negativa	$\sqrt{\frac{qBR}{m}}$
D.	positiva	$\sqrt{\frac{qBR}{m}}$

23. Dos partículas puntuales aisladas de masas 4M y 9M están separadas una distancia de 1 m. Una partícula puntual de masa M se sitúa a una distancia x de la partícula de masa 9M. La fuerza gravitatoria neta sobre M es cero.

¿Cuánto vale x?

- A. $\frac{4}{13}$ m
- B. $\frac{2}{5}$ m
- C. $\frac{3}{5}$ m
- D. $\frac{9}{13}$ m

24. El gráfico muestra la variación con el tiempo de la actividad de una muestra pura de un núclido radiactivo. ¿Qué porcentaje del núclido queda después de 200 s?

- A. 3,1%
- B. 6,3%
- C. 13%
- D. 25%

25. El gráfico muestra la variación del número de neutrones *N* con el número atómico *Z* para núcleos estables. Se utiliza la misma escala en los ejes *N* y *Z*.

¿Qué información se puede inferir del gráfico?

- I. Para núcleos estables con Z alto, N es mayor que Z.
- II. Para núcleos estables con Z pequeño, N = Z.
- III. Todos los núcleos estables tienen más neutrones que protones.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

26. El cobre $\binom{64}{29}$ Cu) se desintegra en níquel $\binom{64}{28}$ Ni). ¿Cuáles son las partículas emitidas y la partícula que media la interacción?

	Partículas emitidas	Partícula mediadora
A.	$eta^{\scriptscriptstyle -}$ y neutrino	W ⁺
B.	$eta^{\scriptscriptstyle +}$ y neutrino	W ⁻
C.	eta^- y neutrino	W-
D.	$eta^{\scriptscriptstyle +}$ y neutrino	W ⁺

27. Considérese la siguiente interacción entre un protón y un pión.

$$p^{\scriptscriptstyle +} \; + \; \pi^{\scriptscriptstyle -} \; \rightarrow \; K^{\scriptscriptstyle -} \; + \; \pi^{\scriptscriptstyle +}$$

La composición en quarks del π^- es \overline{u} d y la composición en quarks de K^- es \overline{u} s.

Se consideran tres leyes de conservación

- I. Número bariónico
- II. Carga
- III. Extrañeza

¿Qué leyes de conservación se violan en esta interacción?

- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III
- 28. ¿Cuál es la función de las barras de control en una central nuclear?
 - A. Ralentizar los neutrones
 - B. Regular el suministro de combustible
 - C. Intercambiar la energía térmica
 - D. Regular el ritmo de la reacción
- **29.** Un panel fotovoltaico de área *S* tiene un rendimiento del 20 %. Un segundo panel fotovoltaico tiene un rendimiento del 15 %. ¿Cuál será el área del segundo panel si ambos paneles generan la misma potencia bajo las mismas condiciones?
 - A. $\frac{S}{3}$
 - B. $\frac{3S}{4}$
 - C. $\frac{5S}{4}$
 - D. $\frac{4S}{3}$

30. Luz de intensidad I_0 incide sobre una zona de la Tierra cubierta de nieve. En un modelo de esta situación, el albedo de la nube es 0,30 y el albedo de la superficie nevada es 0,80. ¿Cuál es la intensidad de la luz en P debida al rayo incidente I_0 ?

- A. $0,14I_0$
- B. $0,24 I_0$
- C. $0,50 I_0$
- D. $0,55I_0$