Homework 8

1. Consider $\mathbb{R}_2[x]$ with inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$

- . Apply Gram-Schmidt to $1, x, x^2$ to get an orthonormal basis for $\mathbb{R}_2[x]$.
- 2. Consider $C[-\pi,\pi]$, vector space of continuous functions defined on interval $[-\pi,\pi]$. Define inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$$

(a) Show that the set

$$F_n = \{\frac{1}{\sqrt{2}}, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots, \sin(nx), \cos(nx)\}$$

where $n \in \mathbb{N}$ is an orthonormal set.

(b) Determine the orthogonal projection of function f(x) = x onto the space spanned by F_n . This is usually called the *n*-th order Fourier approximation of function f(x). If we represent this projection as

$$a_0 \frac{1}{\sqrt{2}} + b_1 \sin(x) + c_1 \cos(x) + \dots + b_n \sin(nx) + c_n \cos(nx)$$

then $a_0, b_1, c_1, \ldots, b_n, c_n$ are called the Fourier coefficients of function f(x).

- 3. Consider $v \in \mathbb{R}^n$ and subspace $U \subseteq \mathbb{R}^n$. We know that we can write v as a sum of $v_1 \in U$ and $v_2 \in U^{\perp}$. Show that this decomposition is unique.
- 4. Four data points in \mathbb{R}^3 with coordinates are given as follows.

$$(-1,2,9), (0,1,1), (2,0,0), (1,2,-1)\\$$

Determine coefficients c_1, c_2 such that the plane $z = c_1x + c_2y$ best fits the data.

- 5. Let $P \in \mathcal{L}(V)$ be an orthogonal projection map in inner product space V that projects vectors into subspace U. Show from first principle that $\langle x, Py \rangle = \langle Px, y \rangle = \langle Px, Py \rangle$ for all $x, y, z \in V$.
- 6. True or False.
 - (a) If A, B are symmetric matrices, then so are their product AB.
 - (b) If A admits a QR factorization, i.e., A = QR, then $R = Q^TA$.
 - (c) If $A \in M_{m \times n}(\mathbb{R})$, then $\operatorname{rank}(A) = \operatorname{rank}(A^T A)$.
 - (d) Least square solution x^* to system Ax = b is chosen so that Ax^* is as close as possible to b

- (e) If the cols of A are linearly independent, then the least square solution to system Ax = b is unique.
- (f) If $b \in \operatorname{Col}(A)$, then the least square solution x^* to system Ax = b satisfies $Ax^* = b$.
- (g) If $AA^T = A^TA$ for a square matrix, then A must be orthogonal.
- (h) Let $A \in M_3(\mathbb{R})$ that represents an orthogonal projection with respect to standard basis in \mathbb{R}^3 . There exists an orthogonal matrix $Q \in M_3(\mathbb{R})$ such that $Q^T A Q$ is diagonal.
- 7. Consider $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = (v_1 | v_2 | v_3)$ with v_1, v_2, v_3 are the columns of A.
 - (a) Use Gram-Schmidt process to construct an orthonormal set $\{q_1, q_2, q_3\}$ such that for j = 1, 2, 3,

$$\operatorname{span} \{q_1, \dots, q_j\} = \operatorname{span} \{v_1, \dots, v_j\}.$$

(b) Use the answer from (i), find r_{ij} , for $1 \le i \le j \le 3$ such that

$$v_1 = r_{11}q_1$$
, $v_2 = r_{12}q_1 + r_{22}q_2$, $v_3 = r_{13}q_1 + r_{23}q_2 + r_{33}q_3$.

- (c) Denote $Q = (q_1 | q_2 | q_3)$ and $R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix}$. Show that indeed A = QR and Col(A) = Col(Q).
- (d) Show that $Q^TQ = I_3$ and $QQ^T = q_1q_1^T + q_2q_2^T + q_3q_3^T$. Therefore QQ^T is the orthogonal projection onto Col(Q) = Col(A).