Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Buffer

- Buffers
 - Color buffers (front and back)
 - Depth buffer
 - Others
- A (2D) buffer is a block of memory with:
 - Spatial resolution (n x m)
 - Depth (k the number of bits per pixel) elements
- These are generally on GPU memory

WebGL Framebuffer

- Framebuffer is a collection of buffers
- Even in a simple case, total depth goes over 100 bits/pixel
 - Front and back buffers:
 (RGBA and 8 bits per component) 32 bits
 - Depth buffer (24 or 32 bits)

(Digital) Images

- 2D array of pixels (an array of values)
- GIF, JPEG, PNG keep data differently mainly to reduce size
- WebGL doesn't have functions to directly read these formats or to convert

Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Shannon's Theorem

The sampling rate must be at least twice the frequency of the signal or *aliasing* occurs (twice the frequency of the highest frequency component), Nyquist rate.

Sampling and Aliasing

 Aliasing is an effect that causes different signals to become indistinguishable (or aliases of one another) when sampled

Sampling and Aliasing

Antialiasing

- Two major categories of antialiasing:
 - prefiltering
 - postfiltering

Outline

- Buffers and Digital Images
- Sampling and Aliasing
- Mapping Methods
 - Texture mapping
 - Environment mapping
 - Bump mapping

Mapping Methods

Mapping Methods

Texture Mapping

Uses images to fill inside of polygons

Bump mapping

- Emulates altering normal vectors during the rendering process
- Creates the illusion of small variations (bumps, dents) on surface

Environment (Reflection) Mapping

- Uses a picture of the environment for texture maps
- Allows simulation of highly reflective surfaces

Texture Mapping

Texture Mapping

- 2D texture is an image
- not pixels but texels
- where and what are texture coordinates
- A texture map associates a texel with a point on a geometric object surface

Is it simple?

Coordinate Systems

- Parametric Coordinates
 - May be used to model curves and surfaces
- Texture Coordinates
 - Used to identify points in the image to be mapped
- Object or World Coordinates
 - Where the mapping takes place
- Window Coordinates
 - Where the final image is really produced

Texture Mapping

Mapping Functions

- How to find the maps?
- Mapping from texture coordinates to a point a surface need three functions:

$$x = x(s,t)$$
$$y = y(s,t)$$
$$z = z(s,t)$$

Two-Step Mapping

- * Map the texture to a simple intermediate surface (map to cylinder, sphere, or box)
- * Map this surface to the actual surface

Texture Mapping in WebGL

Environment Mapping

 Creates the appearance of highly reflective surfaces without global calculations

Bump Mapping

