Números Complejos en forma binómica a Coordenadas Polares

Objetivo:

Convertir números complejos de forma binómica a Coordenadas polares Representar gráficamente el numero polar

Conocimientos Previos:

Razones Trigonométricas

REVISIÓN DEL CONCEPTO Coordenadas Polares

Consideremos el plano RxR su Origen 0 lo llamaremos origen Polar y el rayo que pasa por el origen Polar lo llamaremos Eje Polar. Cada punto del Plano tiene una correspondencia biunívoca entre su ángulo \emptyset y su radio o distancia. Por lo tanto (a,b)= (r, \emptyset)

Z= (a, b) =
$$a + bi = r (cos\emptyset + isen\emptyset) = rcis\emptyset = (r, \emptyset)$$

Ejemplo: $(\sqrt{2}, \sqrt{2})$

Paso 1: Hallar
$$r = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = \sqrt{4} = 2$$

Paso 2: Hallar Ø=
$$arctg \frac{\sqrt{2}}{\sqrt{2}}$$
= $arctg$ 1= 45°

Su coordenada polar es (2, 45°)

Hoja de Trabajo para consolidar conocimientos

Hallar sus coordenadas polares respectivas y haga el grafico correspondiente.	
$Z_1 = 1 + \sqrt{3}i$	
$Z_2 = -1 - \sqrt{3}i$	
$Z_3 = -\sqrt{2} - \sqrt{2}i$	
$Z_4 = \sqrt{3}$ —i	