import pandas as pd In [27]: import numpy as np import matplotlib.pyplot as plt import seaborn as sns In [28]: df=pd.read_csv("Customer Churn.csv") Out[28]: customerID gender SeniorCitizen Partner Dependents tenure PhoneService Mul 7590-0 0 No 1 No Female Yes **VHVEG** 5575-1 Male 0 34 Yes No No **GNVDE** 3668-2 Male 0 No No 2 Yes QPYBK 7795-3 Male 0 45 No No No **CFOCW** 9237-2 4 0 Yes Female No No **HQITU** 7038 6840-RESVB 0 24 Male Yes Yes Yes 2234-Female 7039 0 Yes Yes 72 Yes XADUH 7040 4801-JZAZL Female 0 Yes Yes 11 No 8361-7041 Male 1 No 4 Yes Yes LTMKD 0 7042 3186-AJIEK Male No No 66 Yes 7043 rows × 21 columns

file:///C:/Users/csraj/Dropbox/PC/Downloads/Telecom Customer Churn Analysis.html

In [29]: df.head()

Out[29]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multipl
	0	7590- VHVEG	Female	0	Yes	No	1	No	No :
	1	5575- GNVDE	Male	0	No	No	34	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	No
	4	9237- HQITU	Female	0	No	No	2	Yes	
5 rows × 21 columns									
	4								•

replacing blanks with 0 as tenure is 0 and no total charges are recorded

```
In [30]: df['TotalCharges']=df['TotalCharges'].replace(" ","0")
    df['TotalCharges']=df['TotalCharges'].astype("float")
In [31]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	float64
20	Churn	7043 non-null	object
d+vn	$as \cdot float64(2)$ in	+61(2) object(1	71

dtypes: float64(2), int64(2), object(17)

memory usage: 1.1+ MB

In [32]: df.isnull().sum().sum()

Out[32]: np.int64(0)

In [33]: df.describe()

Out[33]: SeniorCitize

	SeniorCitizen	tenure	Monthly Charges	Total Charges
count	7043.000000	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692	2279.734304
std	0.368612	24.559481	30.090047	2266.794470
min	0.000000	0.000000	18.250000	0.000000
25%	0.000000	9.000000	35.500000	398.550000
50%	0.000000	29.000000	70.350000	1394.550000
75%	0.000000	55.000000	89.850000	3786.600000
max	1.000000	72.000000	118.750000	8684.800000

In [34]: df.duplicated().sum()

Out[34]: np.int64(0)

```
In [35]: df["customerID"].duplicated().sum()
Out[35]: np.int64(0)
In [36]: def conv(value):
    if value==1:
        return "Yes"
    else:
        return "No"
df["SeniorCitizen"]=df["SeniorCitizen"].apply(conv)
```

converted 0 and 1 values of senior citizen to yes/no to make it easier to understand

Count of Customers by Churn


```
In [79]: # plt.figure(figsize=(3,4))
# gb = df.groupby("Churn").agg({'Churn': "count"})
# plt.pie(gb['Churn'], labels=gb.index, autopct="%1.2f%%")
# plt.title("Percentage of Churned Customers")
# plt.show()
# gb
import matplotlib.pyplot as plt

plt.figure(figsize=(3,4))
gb = df.groupby("Churn").agg({'Churn': "count"})
plt.pie(gb['Churn'], labels=gb.index, autopct="%1.2f%%")
plt.title("Percentage of Churned Customers")
plt.show()
gb
```

Percentage of Churned Customers

Out[79]:		Chum
	Churn	
	No	5174
	Yes	1869

from the given pie chart we can conclude that 26.54% of our customers have churned out.

now let's explore the reason behind it

```
In [80]: plt.figure(figsize=(4,4))
    sns.countplot(x="gender", data =df, hue='Churn')
    plt.title("Churn by Gender")
    plt.show()
```



```
In [ ]:
In [81]: plt.figure(figsize = (4,4))
    ax= sns.countplot(x = "SeniorCitizen", data = df)
    ax.bar_label(ax.containers [0])
    plt.title("Count of Customers by Senior Citizen")
    plt.show()
```



```
In [82]: sns.countplot(data=df, x='SeniorCitizen', hue='Churn')
  plt.title("Churn by Senior Citizen Status")
  plt.xticks([0, 1], ['Not Senior', 'Senior'])
  plt.show()
```



```
In [83]: # Create a crosstab for SeniorCitizen vs Churn with percentages
         count data = pd.crosstab(df["SeniorCitizen"], df["Churn"], normalize='index') * 10
         # Plot stacked bar chart
         ax = count_data.plot(kind='bar', stacked=True, figsize=(6, 6))
         # Add percentage labels to the bars
         for p in ax.patches:
             height = p.get_height()
             if height > 0:
                 ax.annotate(f'{height:.1f}%',
                             xy=(p.get_x() + p.get_width() / 2, p.get_y() + height / 2),
                             xytext=(0, 0),
                             textcoords='offset points',
                             ha='center', va='center')
         plt.title("Churn by SeniorCitizen (Percentage)")
         plt.ylabel("Percentage")
         plt.xlabel("Senior Citizen")
         plt.xticks([0, 1], ['Not Senior', 'Senior'])
         plt.show()
```


In [86]: sns.scatterplot(data=df, x='MonthlyCharges', y='TotalCharges', hue='Churn')
 plt.title("Monthly Charges vs. Total Charges")
 plt.show()

people who have used our services for a long time have stayed and people who

have used our servies 1 or months have churned

```
In [88]: plt.figure(figsize = (4,4))
    ax = sns.countplot(x = "Contract", data = df, hue='Churn')
    ax.bar_label(ax.containers[0])
    plt.title("Count of Customers by Contract")
    plt.show()
```


Contract

people who have month to month contract are likely to churn than from those who have 1 or 2 years of contract

```
n_cols = 3 # Number of columns in subplot grid
n rows = -(-len(columns) // n cols) # Compute rows needed
# Create subplots
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 10))
axes = axes.flatten() # Flatten the axes array for easy iteration
# Generate a countplot for each column
for i, col in enumerate(columns):
    sns.countplot(data=df, x=col, ax=axes[i], hue=df['Churn'])
    axes[i].set title(f"Countplot of {col}")
   axes[i].set xlabel("")
    axes[i].set_ylabel("Count")
# Hide any extra subplot axes
for j in range(len(columns), len(axes)):
    fig.delaxes(axes[j])
# Adjust Layout
plt.tight_layout()
plt.show()
```


The majority of customers who do not churn tend to have services like PhoneService, InternetService (particularly DSL), and OnlineSecurity enabled. For services like OnlineBackup, TechSupport, and StreamingTV, churn rates are noticeably higher when these services are not used or are unavailable

```
In [91]: plt.figure(figsize = (10,4))
    ax = sns.countplot(x = "PaymentMethod", data = df, hue='Churn')
    ax.bar_label(ax.containers[0])
```

```
ax.bar_label(ax.containers [1])
plt.title("Churned Customers by PaymentMethod")
plt.show()
```


Customers are likely to churn when they were using Eloctronic Check as their payment method

```
In [92]: # Filter only numeric columns
   numeric_df = df.select_dtypes(include=['number'])

# Create the heatmap on only the numeric data
   plt.figure(figsize=(10, 8))
   sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
   plt.title("Correlation Heatmap")
   plt.show()
```

