

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт	
информационных	технологий

Кафедра информационных технологий и вычислительных систем

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «СЕТИ И ТЕЛЕКОММУНИКАЦИИ»

	«C	ЕТИ И ТЕЛЕКОММУНИКА	ЩИИ»	
СТУДЕНТА 4	КУРСА	-	ГРУППЫ	ИДБ-18-02
		(уровень профессионального образования)		
	CA	РЖАН МИХАИЛА АНДРЕЕ	ВИЧА	
		(ФИО)		
		НА ТЕМУ		
	Лок	альные сети на основе коммут	аторов	
Отчет сдан «	»	r.		
Оценка				
Оценка				
Преподаватель	Сосену	шкин Сергей Евгеньевич, до	цент, к.т.н.	
		(Ф.И.О., должность, степень, звание.)		(подпись)

Схемы сети Сценарий 1

Сценарий 2

Сценарий 3

Сценарий 2.1 содержит созданную заранее логическую топологию, из четырех компьютеров, подключенных к общему коммутатору.

Цель сценария 2.1 — изучение принципов формирования и использования таблицы mac-адресов коммутатора.

Задачи:

- Просмотреть таблицу тас-адресов на коммутаторе;
- Перейти в режим simulation
- Создать трафик в локальной сети с помощью echo запроса от компьютера PC D к компьютеру PC A;
 - Снова просмотреть на таблицу тас-адресов на коммутаторе;
 - Сопоставить тас-адреса из таблицы с компьютерами;
 - Сделать выводы.

Сценарий 1 – Сведения о конфигурации устройств

Устройство	Интерфейс	IP-адрес	МАС-адрес
PC A	NIC	192.168.1.2	0005.5e6a.eb56
PC B	NIC	192.168.1.3	0001.645a.3522
PC C	NIC	192.168.1.4	0001.4388.4b2e
PC D	NIC	192.168.1.1	00e0.f7b2.e38e

Сценарий 1 – Таблица МАС-адресов

	Изначальная			После отправки пакета PCD-PCA			CA	
N	Aac Addre	Address Table			Mac Address Table			
Vlan	Mac	Туре	Ports		Vlan	Mac Address	Туре	Ports
Vian	Address	Турс	TOILS		1	0005.5e6a.eb56	DYNAMIC	Fa0/1
_	-	-	-		1	00e0.f7b2.e38e	DYNAMIC	Fa0/6

Сценарий 2.2 содержит созданную заранее логическую топологию, из трех компьютеров и четырех коммутаторов. Линки между коммутаторами образуют два замкнутых контура.

Цель сценария 2.2 – изучение алгоритма работы протокола STP.

Задачи:

- Проверить роли коммутаторов. Найти root.
- Проверить роли портов.
- Перейти в режим simulation.
- Ввести в терминальной строке на компьютере PCA команду pingc IP адресом компьютера PCB.
 - Проследить за прохождением пакета по сети.
 - Сделать выводы.

Сценарий 2 – STP – Роли коммутаторов и состояния портов

Устройство	Роль	Интерфейс	Состояние порта
SW3		Fa0/3	Desg FWD
	ьте зой	Fa0/1	Desg FWD
	Отметьте корневой	Fa0/2	Root FWD
SW0	ОТЛ	Fa0/1	Altn BLK
		Fa0/3	Desg FWD

Устройство	Роль	Интерфейс	Состояние порта
		Fa0/4	Root FWD
		Fa0/6	Altn BLK
SW2		Fa0/8	Root FWD
		Fa0/22	Desg FWD
SW1		Fa0/3	Desg FWD
Root		Fa0/4	Desg FWD
		Fa0/1	Desg FWD
		Fa0/2	Desg FWD

Сценарий 2.3 содержит созданную заранее сложную логическую топологию, включающую несколько компьютеров, несколько коммутаторов и маршрутизатор. Устройства не настроены.

Цель сценария 2.3 — изучение принципов и технологий работы виртуальных локальных сетей, протокола vtp, маршрутизации между виртуальными сетями по архитектуре router-on-a-stick.

Выполнить расчет основных сетевых параметров для сетей VLAN A, VLAN B, VLAN C исходя из известного количества узлов в каждой из них (согласно Вашему варианту), а также известного диапазона адресов для каждой из сетей: (где X – номер Вашего арианта):

- для сети VLAN A − 10.X.0.0/8;
- для сети VLAN B 172.16.X.0/12;
- для сети VLAN C 192.168.X.0/16.

Рассчитанные адреса занести в отчет. Выполнить настройку компьютеров PC_A – PC_F (настроить IP-адрес, маску подсети и шлюз по умолчанию). Задать компьютерам IP-адреса из соответствующих диапазонов:

- -PCA, PCD-VLANA;
- -PCB, PCE-VLANB;
- PC C, PC F VLAN C.

Как и ранее, использовать для компьютеров максимальные IP-адреса из доступных.

Выполнить первоначальную настройку коммутаторов (присвоить символьные имена, задать пароли для доступа к консоли и привилегированному режиму, включить шифрование всех паролей и добавить баннер). Подробнее о первоначальной настройке устройств см. методические

рекомендации к лабораторной работе №1. Настроить магистральные соединения между всеми коммутаторами и маршрутизатором, переведя соответствующие интерфейсы в режим trunk.

Настройка VLAN и протокола vtp

На коммутаторе ServerSW создать 3 виртуальные сети с номерами: VLAN A = номер студента по списку + 10, VLAN B = номер студента по списку + 11, VLAN C = номер студента по списку + 12. Название VLAN задать в формате #Фамилия. Пример: Студент с номером 34 Василий Пупкин создает виртуальные сети 44,45,46 с именами 44риркіп, 45риркіп, 46риркіп.

Выполнить настройку протокола vtp на всех коммутаторах. Пошаговая инструкция по настройке протокола vtp в режиме глобальной конфигурации: — задать режим работы vtp (клиент, сервер, прозрачный); роль сервера назначить коммутатору ServerSw; — задать имя домена (использовать ФИО и номер варианта);

- задать пароль (использовать ФИО и номер варианта);
- вернуться в привилегированный режим и убедиться, что протокол настроен корректно (просмотреть сведения о состоянии работы протокола vtp).

Пример. Студент Василий Пупкин имеет вариант 34. Тогда домен и пароль

vtp должны иметь вид vpupkin34.

На коммутаторах уровня доступа настроить интерфейсы для компьютеров в режиме access, назначив соответствующие номера VLAN. Необходимые сведения о принадлежности компьютеров к той или иной виртуальной сети указаны в п. 2.3.1.

Убедиться, что интерфейсы настроены верно (просмотреть сведения о конфигурации интерфейсов) и занести конфигурацию в отчет.

Настройка маршрутизатора

Выполнить первоначальную настройку маршрутизатора. Подробнее о первоначальной настройке устройств см. методические рекомендации к лабораторной работе №1. Создать и настроить на интерфейсе Fa0/0 по одному суб-интерфейсу для каждой виртуальной сети. Пошаговая инструкция по настройке субинтерфейса:

- создать суб-интерфейс;
- назначить ему IP-адрес и маску подсети (для своего VLAN);

- включить инкапсуляцию по стандарту 802.1q и задать соответствующий номер VLAN;
- убедиться, что суб-интерфейс настроен верно (просмотреть сведения о конфигурации интерфейсов) и занести конфигурацию в отчет.

Анализ пакета в режиме симуляции

Сети настроены. Посмотрим, как передаются пакеты между узлами одной виртуальной сети, а также из одной виртуальной сети в другую.

Перейти в режим simulation.

Послать есhо запрос с компьютера PCA на PCD. Для этого ввести в терминальной строке (приложение command prompt) на компьютере – источнике запроса команду ping с IP-адресом компьютера – получателя запроса и проследить за прохождением пакета по сети, изменением адресов в заголовках сетевого и канального уровней.

Повторить анализ для пакета, отправленного с РСА на РСЕ.

Полученные данные и выводы занесите в отчет.

Сценарий 3 – Расчет адресов сетей

Параметр	VLAN A	VLAN B	VLAN C
Количество узлов	1987+2	56+2	13+2
Ближайшая сверху	11	6	4
степень двойки			
Маска (префиксная)	/21	/26	/28
Маска (десятичная)	255.255.248.0	255.255.255.192	255.255.255.240
SUBNET	10.3.0.0	172.16.3.0	192.168.3.0
HOSTMIN (router)	10.3.0.1	172.16.3.1	192.168.3.1
HOSTMAX (host)	10.3.7.254	172.16.3.62	192.168.3.14
BROADCAST	10.3.7.255	172.16.3.63	192.168.3.15

Сценарий 3 – Сведения о конфигурации L3 устройств

Устройство	Инторфойо	IP-адрес	Маска	Основной
устроиство	интерфеис	11 -адрес	подсети	шлюз
PC A	NIC	10.3.7.254	255.255.248.0	10.3.0.1
PC B	NIC	172.16.3.62	255.255.255.192	172.16.3.1
PC C	NIC	192.168.3.14	255.255.255.240	192.168.3.1
PC D	NIC	10.3.7.253	255.255.248.0	10.3.0.1
PC E	NIC	172.16.3.61	255.255.255.192	172.16.3.1

Устройство	Интерфейс	IP-адрес	Маска	Основной
эстроиство	интерфене	п-адрес	подсети	шлюз
PC F	NIC	192.168.3.13	255.255.255.240	192.168.3.1
	Fa0/0.28	10.3.0.1	255.255.248.0	-
Router	Fa0/0.29	172.16.3.1	255.255.255.192	-
Koutei	Fa0/0.30	192.168.3.1	255.255.255.240	-
	Fa0/0	-	-	-

Сценарий 3 – Сведения о конфигурации L2 устройств

	VTP Домен		Y/Y A NI
Устройство	VTP Пароль	Интерфейс	VLAN или trunk
	VTP-Роль		или стапк
	msarzhan18	Fa0/1	trunk
SW1	msarzhan18	Fa0/2	trunk
	client	Fa0/3	trunk
	msarzhan18	Fa0/1	trunk
SW2	msarzhan18	Fa0/2	trunk
	client	Fa0/3	trunk
	msarzhan18	Fa0/1	trunk
SW3	msarzhan18	Fa0/3	VLAN 28
3 W 3	client	Fa0/5	VLAN 29
		Fa0/4	VLAN 30
	msarzhan18	Fa0/1	trunk
SW4	msarzhan18	Fa0/4	VLAN 28
SW4	client	Fa0/5	VLAN 29
		Fa0/3	VLAN 30
	msarzhan18	Fa0/1	trunk
ServerSW	msarzhan18	Fa0/2	trunk
	server	Fa0/4	trunk

Сценарий **3** – Анализ маршрута и заголовков пакета **PC A** – **PC D**

На	ІР-адрес		MAC	-адрес
устройстве	Source	Destination	Source	Destination
PC A	10.3.7.254	10.3.7.253	000B.BE56.1175	0002.17BC.2ABC
SW3	-	-	000B.BE56.1175	0002.17BC.2ABC
SW1	-	-	000B.BE56.1175	0002.17BC.2ABC

SW2	-	-	000B.BE56.1175	0002.17BC.2ABC
SW4	-	-	000B.BE56.1175	0002.17BC.2ABC
PC D	10.3.7.254	10.3.7.253	000B.BE56.1175	0002.17BC.2ABC

Сценарий 3 – Анализ маршрута и заголовков пакета РС А – РС Е

На	ІР-адрес		МАС-адрес	
устройстве	Source	Destination	Source	Destination
PC A	10.3.7.254	172.16.3.61	000B.BE56.1175	0050.0F7C.3A01
SW3	-	-	000B.BE56.1175	0050.0F7C.3A01
SW1	-	-	000B.BE56.1175	0050.0F7C.3A01
SW2	-	-	000B.BE56.1175	0050.0F7C.3A01
ServerSW	-	-	000B.BE56.1175	0050.0F7C.3A01
R1 (in)	10.3.7.254	172.16.3.61	000B.BE56.1175	0050.0F7C.3A01
R1 (out)	10.3.7.254	172.16.3.61	0050.0F7C.3A01	0090.0C74.EA0E
ServerSW	-	-	0050.0F7C.3A01	0090.0C74.EA0E
SW2	-	-	0050.0F7C.3A01	0090.0C74.EA0E
SW4	-	-	0050.0F7C.3A01	0090.0C74.EA0E
PC E	10.3.7.254	172.16.3.61	0050.0F7C.3A01	0090.0C74.EA0E