Enfriamiento
Optomecánico
con Parámetros
Dependientes del
Tiempo

Pablo Enrique Yanes Thoma

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enrique Yanes Thomas

IIMAS

27 de enero de 2016

Resumen

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enriqu

- Se modeló el enfriamiento de un tambor mecánico con frecuencia natural dependiente del timpo acoplado al campo electromagnético de una cavidad óptica.
- Se encontró un mejor modelo de disipación.
- Se dedujo una mejor ecuación maestra para modelar el sistema bajo la aproximación adiabática.
- Se encontró una expresión analítica para el número promedio de excitaciones del tambor.

Sistemas Optomecánicos

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enriqu Yanes Thoma

Interacción entre un sistema mecánico cuántico y el campo electromagnético, hay varios tipos posibles:

- Espejos suspendidos
- Microresonadores
- Objetos Suspendidos

Se trató con un sistema del primer tipo.

El Sistema

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enriqu Yanes Thoma

Estudios Anteriores

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enriqu

- Se resolvió el sistema sin realmente tomar en cuenta la dependencia temporal del oscilador.
- Existe un procedimiento que lleva a una mejor ecuación maestra para el sistema que sí toma en cuenta esta dependencia.
- Se requiere la base propia del Hamiltoniano libre.

Disipación para Oscilador Armónico Dependiente del Tiempo

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enriqu

Modelo usual para la disipación en un oscilador armónico dependiente del tiempo

$$egin{aligned} \mathbf{L}_{a}
ho = &rac{\gamma}{2}(N+1)[2a
ho a^{\dagger} - a^{\dagger}a
ho -
ho a^{\dagger}a] \ &+ rac{\gamma}{2}(N)[2a^{\dagger}
ho a - aa^{\dagger}
ho -
ho aa^{\dagger}]. \end{aligned}$$

Operadores de Floquet

- Misma regla de conmutación que operadores usuales del oscilador
- Dependen de la solución clásica

$$\Gamma(t) = \frac{1}{2i} (\dot{f}(t) \sqrt{\frac{2}{\hbar m}} \hat{x} - f(t) \sqrt{\frac{\hbar}{2m}} \hat{p}),$$

y su complejo conjugado

Se tiene un mejor modelo de disipación al sustituir operadores de Floquet en el modelo usual para la disipación

$$\begin{split} L_{\Gamma}\dot{\rho} = & \frac{\gamma}{2}(N+1)(2\Gamma\rho\Gamma^{\dagger} - \Gamma^{\dagger}\Gamma\rho - \rho\Gamma^{\dagger}\Gamma) \\ & + \frac{\gamma}{2}N(2\Gamma^{\dagger}\rho\Gamma - \Gamma\Gamma^{\dagger}\rho - \rho\Gamma\Gamma^{\dagger}) \end{split}$$

Hamiltoniano de Enfriamiento Laser

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enriqu

Se utilizó el Hamitloniano empleado en el estudio anterior del problema

$$H(t)=-\hbar\delta a^{\dagger}a+rac{p^{2}}{2m}+rac{1}{2}m
u(t)x^{2}-\hbar ga^{\dagger}ax+\hbarrac{\Omega}{2}(a^{\dagger}+a)$$

Y se pasó a operadores de Floquet

$$H(t) = -\hbar \delta a^{\dagger} a + rac{W}{|f(t)|^2} (\Gamma^{\dagger} \Gamma + rac{1}{2}) \ + g' a^{\dagger} a [\gamma_{+}(t) \Gamma(t) + \gamma_{-}(t) \Gamma^{\dagger}(t)] + \hbar rac{\Omega}{2} (a^{\dagger} + a)$$

y se obtuvo así una nueva ecuación maestra de enfriamiento laser. Se asumió acoplamiento débil entre la cavidad y el tambor y se realizó aproximación de Markov.

$$\dot{\rho} = \frac{1}{i\hbar}[H,\rho] + L_{a}\rho + L_{\Gamma}\rho$$

Transformación al Marco Desplazado

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enrique

Se utilizó una transformación unitaria a un marco de referencia desplazado para eliminar los términos de tercer orden en operadores ya que estos son no lineales

$$U_{a,\Gamma} = e^{(\alpha(t)a^{\dagger} - \alpha(t)^*a)}e^{(\beta(t)\Gamma^{\dagger} - \beta(t)^*\Gamma)},$$

para aplicar la transformación se utiliza

$$e^{A}Be^{-A} = B + [A, B] + \frac{1}{2}[A, [A, B]] + \dots$$

Con esto se obtuvieron las formas transformadas de los operadores

$$\begin{split} &U^{\dagger}aU=a+\alpha,\\ &U^{\dagger}a^{\dagger}U=a^{\dagger}+\alpha^{*},\\ &U^{\dagger}\Gamma U=\Gamma+\beta,\\ &U^{\dagger}\Gamma^{\dagger}U=\Gamma^{\dagger}+\beta^{*}, \end{split}$$

sin embargo la ecuación trasnformada es

$$\dot{\rho} = U_{\mathsf{a},\Gamma}^\dagger L[U_{\mathsf{a},\Gamma} \rho' U_{\mathsf{a},\Gamma}^\dagger] U_{\mathsf{a},\Gamma} - U_{\mathsf{a},\Gamma}^\dagger \dot{U}_{\mathsf{a},\Gamma} \rho' - \rho' \dot{U}_{\mathsf{a},\Gamma}^\dagger U_{\mathsf{a},\Gamma}$$

La dependencia temporal de los operadores generó términos involucrando los conmutadores entre los operadores de Floquet y sus derivadas temporales

$$\begin{split} U^{\dagger}\dot{U}\rho + \rho\dot{U}^{\dagger}U &= -\left(\dot{\alpha}a\rho + \rho\dot{\alpha}a^{\dagger}\right) + \dot{\alpha}a^{\dagger}\rho + \rho\dot{\alpha}^{*}a, \\ &+ \dot{\beta}\Gamma^{\dagger}\rho + \rho\dot{\beta}^{*}\Gamma - \left(\dot{\beta}^{*}\Gamma + \beta^{*}\dot{\Gamma}\right)\rho - \rho\left(\dot{\beta}\Gamma^{\dagger} + \beta\dot{\Gamma}^{\dagger}\right) + \beta\dot{\Gamma}^{\dagger} \\ &+ 3(\beta^{*})^{2}C_{--}(t)\rho + |\beta|^{2}(C_{+-}(t) - C_{-+}(t))\rho \\ &- \beta^{2}C_{++}(t)\rho, \end{split}$$

Se agruparon los términos con un solo operador y se factorizaron para obtener ecuaciones diferenciales para $\alpha(t)$ y $\beta(t)$

$$\dot{\alpha} = \alpha \left(-\frac{A}{2} + i(\delta + g'(\gamma_{-}(t)\beta^{*} + \gamma_{+}(t)\beta)\right) - i\frac{\Omega}{2},$$

$$\dot{\beta} = \beta \left(-\frac{\gamma}{2} - i\frac{W}{|f(t)|^{2}}\right) + ig'|\alpha|^{2}\gamma_{+}(t),$$

Se pidió que se cumplieran estas ecuaciones y se obtuvo un nuevo Hamiltoniano en el Marco Desplazado

$$H' = -\hbar \delta' a^{\dagger} a + \frac{W}{|f(t)|^2} \Gamma \Gamma^{\dagger} + i\hbar (\beta^* \dot{\Gamma} - \beta \dot{\Gamma}^{\dagger})$$
$$-\hbar g' [(a^{\dagger} a + \alpha a^{\dagger} + \alpha^* a)(\gamma_{-}(t) \Gamma^{\dagger} + \gamma_{+}(t) \Gamma)]$$

Se resuelve clásicamente mediante teoría de Floquet. En este trabajo se trató el caso donde la frecuencia natural es de la forma:

$$k(t) = \nu_0 + \epsilon \cos(2\omega t).$$

La solución a primer orden en ϵ es

$$f(t) = e^{i\omega t} + \frac{\epsilon}{16}e^{3i\omega t}$$

Para los conmutadores

$$\begin{split} C_{++}(t) &= -\epsilon \frac{i}{8} e^{-4i\omega t}, \\ C_{--}(t) &= -\epsilon \frac{i}{8} e^{4i\omega t}, \\ C_{+-}(t) &= i [1 - \frac{\epsilon}{16} e^{2i\omega t} - \frac{6\epsilon}{16} e^{-2i\omega t}], \\ C_{-+}(t) &= i [1 - \frac{\epsilon}{16} e^{-2i\omega t} - \frac{6\epsilon}{16} e^{2i\omega t}]. \end{split}$$

$$\gamma_{\pm} = rac{1}{\omega} e^{\mp i \omega t},$$

Los operadores $\dot{\Gamma}$

Tiempo

$$\dot{\Gamma}(t) = i\omega\Gamma(t),$$

$$\dot{\Gamma}^{\dagger}(t) = -i\omega\Gamma^{\dagger}(t),$$

Y el factor del Hamiltoniano de Oscilador Armónico Dependiente del Tiempo

$$\frac{W}{|f|^2} = \omega$$

Y finalmente soluciones para $\alpha(t)$ y $\beta(t)$

$$\alpha_0 = \frac{\Omega}{2\delta - iA},$$
$$\beta_0 = 0.$$

Lo cual lleva al Hamiltoniano final para el caso de pequeñas oscilaciones en torno a una frecuencia central, a primer orden de perturbación. Se asumió Ω grande para despreciar el término sin α

$$H = -\hbar \delta a^{\dagger} a + \hbar \omega \Gamma^{\dagger} \Gamma + \frac{\hbar g'}{\omega} (\alpha_0 a^{\dagger} + \alpha_0^* a) (e^{i\omega t} \Gamma^{\dagger} + e^{-i\omega t} \Gamma)$$

Debido a los parámetros involucrados, la ecuación se parte en dos escalas temporales.

$$L_0 = L_c + L_m,$$

$$L_c = \frac{1}{i\hbar}[H_c, \cdot] + L_A,$$

$$L_m = \frac{1}{i\hbar}[H_m, \cdot] + L_\gamma,$$

$$L_1 = \frac{1}{i\hbar}[H_{int}, \cdot].$$

El movimiento optomecánico es mucho más rápido que la interacción, por lo que se utilizó la aproximación adiabática.

Se tomó como parámetro perturbativo $\eta=\frac{g'}{\omega}$. Se proyectó la ecuación al subespacio correspondiente al estado estacionario

$$P = P_c^{\lambda_c=0} P_m^{\lambda_m=0},$$

$$Q = 1 - P.$$

Se obtuvieron dos ecuaciones acopladas

$$P\dot{\rho} = PL_1Q\rho,$$

$$Q\dot{\rho} = QLQ\rho + QLP\rho.$$

Se resolvió para Q

$$\begin{split} Q\rho = &Q\rho(t_0) + \int_{t_0}^t dt' Q L(t') P \rho(t') + \int_{t_0}^t dt' Q L(t') Q \rho(t'), \\ \simeq &Q\rho(t_0) + \int_{t_0}^t dt' Q L_1(t') P \rho(t_0) + \int_{t_0}^t dt' Q L_1(t') Q \rho(t_0) + O(\eta^2), \end{split}$$

y se sustituyó en la ecuación para P

$$egin{aligned} P\dot{
ho}(t) = &PL_1Q
ho(t-\Delta t) + PL_1\int_{t_0}^t dt'QL_1(t')P
ho(t-\Delta t) \ &+ PL_1\int_{t_0}^t dt'QL_1(t')Q
ho(t-\Delta t), \end{aligned}$$

Para poder aplicar los proyectores estos se desarrollaron en la base que el oscilador armónico con intercambios de energía, la base de decaimiento

$$\begin{split} & a^{\dagger l} \frac{(-1)^n}{(\nu+1)^{l+1}} : L_n^l [\frac{a^{\dagger} a}{\nu+1}] e^{-[\frac{a^{\dagger} a}{\nu+1}]} : \quad l \geq 0, \\ & \frac{(-1)^n}{(\nu+1)^{|l|+1}} : L_n^{|l|} [\frac{a^{\dagger} a}{\nu+1}] e^{-[\frac{a^{\dagger} a}{\nu+1}]} : a^{|l|} \quad l \leq 0, \end{split}$$

Y se llegó, despues de trazar sobre los estaos de la cavidad a

$$\dot{\mu} = PL_1 \frac{Q}{\lambda_m - L_0} L_1 \rho_{st} \mu,\tag{1}$$

 μ representa la solución en el espacio P después de trazar sobre los estados de la cavidad.

Al desarrollar los conmutadores involucrados en L_1 se obtuvo una ecuación con la misma estructura algebráica que en trabajos anteriores, por lo que se conserva la estructura de la solución

$$\dot{\mu} = \frac{1}{i\hbar}[\hat{H}, \mu] + \frac{A_{-}}{2}D[\Gamma]\mu + \frac{A_{+}}{2}D[\Gamma^{\dagger}]\mu.$$

En este caso, \hat{H} es una pequeña corrección al Hamiltoniana proporcional a $\Gamma^{\dagger}\Gamma$ y A_{\pm} dependen únicamente del valor de las trazas.

En los estudios anteriores, el número de excitaciones promedio del tambor mecánico es

$$\langle m \rangle = Tr[\Gamma^{\dagger}\Gamma\mu_{st}] = \frac{A_{+}}{A_{+} - A_{-}},$$

y regresando a los operadores usuales de oscilador da una nueva expresión

$$< m> = Tr[(rac{(\omega+
u)^2}{4
u})b^{\dagger}b + rac{\omega^2-
u^2}{4
u}(b^{\dagger}b^{\dagger}+bb) + rac{(\omega-
u)^2}{4
u})bb^{\dagger})\mu_s t].$$

Conclusiones

Enfriamiento Optomecánico con Parámetros Dependientes del Tiempo

Pablo Enriqu Yanes Thoma

- Se obtuvo un mejor modelo para la disipación para un oscilador armónico con frecuencia natural dependiente del tiempo.
- A futuro se estudiará la solución con un modelo numérico, así como estudiar los cambios en la disipación de la cavidad
- La solución obtenida depende fuertemente de la solución clásica del oscilador armónico con frecuencia natural dependiente del tiempo.