Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

				•	
1	1	•	(Original)	A method for treating presbyopia in a patient, the method	
2	comprising:				
3	ablating a central zone of a comeal surface of a first eye of the patient to improve				
4	the patient's ability to view near objects through the central zone of the first eye; and				
5	ablating a peripheral zone of a corneal surface of a second eye of the patient to				
6	improve the patient's ability to view near objects through the peripheral zone of the second eye.				
1	. 2		(Original)	A method as in claim 1, wherein the central zone produced	
2	during the first ablating step comprises a substantially spherical surface.				
1	3	٠.	(Original)	A method as in claim 1, wherein the central zone produced	
2	during the first ablating step comprises a multifocal aspheric surface.				
1	4	•	(Original)	A method as in claim 1, wherein ablating the central zone of	
2	the corneal surface of the first eye comprises leaving a small central portion of the corneal				
3	surface untreate	d.			
1	5	i.	(Original)	A method as in claim 1, wherein the ablated central zone has	
2	a diameter scaled to a diameter of a pupil of the first eye.				
1	6	j.,	(Original)	A method as in claim 1, wherein the ablated central zone has	
2	an optical power of between about 0.5 and 4.0 Diopters.				
1	7	'•	(Original)	A method as in claim 6, wherein the ablated central zone has	
2	an optical power	r of be	tween about	1.0 and 3.0 Diopters.	

1	8. (Original) A method as in claim 6, wherein the ablated central zone has				
2	an optical power of about 1.75 Diopters.				
1	9. (Original) A method as in claim 1, further comprising ablating a				
2	peripheral zone of the comeal surface of the first eye to improve the patient's ability to view far				
3	objects through the peripheral zone of the first eye.				
1	10. (Original) A method as in claim 9, wherein the peripheral zone of the				
2	first eye extends radially outward from an outer boundary of the ablated central zone of the first				
3	eye to a diameter approximately matching an outer boundary of a pupil of the first eye.				
1	11. (Original) A method as in claim 9, further comprising ablating a				
2	transition zone of the corneal surface of the first eye, the transition zone extending from an oute				
3	boundary of the ablated peripheral zone of the first eye.				
1	12. (Original) A method as in claim 1, wherein ablating the peripheral zone				
2	of the corneal surface of the second eye comprises leaving a central zone of the corneal surface				
3	of the second eye untreated to provide for vision of distant objects through the central zone.				
1	13. (Original) A method as in claim 12, wherein the central zone of the				
2	second eye has a diameter scaled to a diameter of a pupil of the second eye.				
1	14. (Original) A method as in claim 1, further comprising ablating a central				
2	zone of the corneal surface of the second eye to improve the patient's ability to view distant				
3	objects through the central zone.				
1	15. (Original) A method for performing laser eye surgery on a patient to				
2	treat presbyopia, the method comprising:				
3	determining a first ablative shape for a corneal surface, the first ablative shape				
4	enhancing vision of near objects through a central zone of an eye;				

5	ablating a corneal surface of a first eye of the patient according to the first			
6	ablative shape;			
7	determining a second ablative shape for a corneal surface, the second ablative			
8	shape enhancing vision of near objects through a peripheral zone of an eye; and			
9	ablating a corneal surface of a second eye of the patient according to the second			
10	ablative shape.			
1	16. (Original) A method as in claim 15, wherein the first ablative shape			
2	, , , , , , , , , , , , , , , , , , , ,			
۷.	comprises a central zone having a substantially spherical surface.			
1	17. (Original) A method as in claim 15, wherein the first ablative shape			
2	comprises a central zone having a multifocal aspheric surface.			
_				
1	18. (Original) A method as in claim 15, wherein the first ablative shape			
2	comprises a small central portion of the central zone that remains untreated.			
1	19. (Original) A method as in claim 15, wherein the central zone of the eye			
2	according to the first ablation shape has a diameter scaled to a diameter of a pupil of the first eye			
1	20. (Original) A method as in claim 15, wherein the central zone of the eye			
2	according to the first ablative shape has an optical power of between about 0.5 and 4.0 Diopters			
1	21. (Original) A method as in claim 20, wherein the central zone of the eye			
2	according to the first ablative shape has an optical power of between about 1.0 and 3.0 Diopters.			
2	according to the first ablative shape has all optical power of between about 1.0 and 3.0 Diopters.			
1	22. (Original) A method as in claim 20, wherein the central zone of the eye			
2	according to the first ablative shape has an optical power of about 1.75 Diopters.			
1	23. (Original) A method as in claim 15, wherein the first ablative shape			
2	includes a peripheral zone, wherein the peripheral zone is shaped to provide for vision of distant			
3	objects.			

1	24. (Original) A method as in claim 23, wherein the first ablative shape			
2.	further includes a transition zone, the transition zone extending from an outer boundary of the			
3	peripheral zone.			
1	25. (Original) A method as in claim 15, wherein the second ablative shape			
2	, , , , , , , , , , , , , , , , , , , ,			
2	includes an untreated central zone to provide for vision of distant objects.			
1	26. (Original) A method as in claim 15, wherein the second ablative shape			
2	includes a central zone shaped to improve the patient's ability to view distant objects.			
1	27. (Currently amended) A laser eye surgery system for treating presbyopia			
2	in a patient, the system comprising:			
3	a laser device for emitting a beam of ablative energy; and			
4	delivery system optics coupled to the laser device; and			
5	a processor coupled with the laser device and the delivery system optics to direct			
6	the beam of ablative energy to ablate a first ablative shape on a corneal surface of a first eye of			
7	the patient and a second ablative shape on a corneal surface of a second eye of the patient,			
8	wherein the first ablative shape enhances near vision through a central zone of the first eye, and			
9	the second ablative shape enhances near vision through a peripheral zone of the second eye.			
1	28. (Currently amended) A system as in claim 27, wherein the processor			
2	includes an ablative shape module a tangible medium having a treatment table embodied thereon,			
3				
4	wherein the treatment table includes reference coordinates for directing the laser device to ablate			
7	the first and second ablative shapes.			
1	29. (Currently amended) A system as in claim [[27]]28, wherein the			
2	treatment table is configured so that the central zone of the first ablative shape comprises a			
3	substantially spherical surface.			

1	30. (Currently amended) A system as in claim [[27]]28, wherein the					
2	treatment table is configured so that the central zone of the first ablative shape comprises a					
3	multifocal aspheric surface.					
1						
1	31. (Currently amended) A system as in claim [[27]]28, wherein the					
2	treatment table is configured so that the first ablative shape includes a small untreated central					
3	portion within the central zone.					
1	32. (Currently amended) A system as in claim [[27]]28, wherein the					
2	, , , , , , , , , , , , , , , , , , ,					
	treatment table is configured so that the central zone of the first ablative shape has a diameter					
3	scaled to a diameter of a pupil of the first eye.					
1	33. (Currently amended) A system as in claim [[27]]28, wherein the					
2	treatment table is configured so that the central zone of the first ablative shape has an optical					
3	power of between about 0.5 and 4.0 Diopters.					
1	34. (Original) A system as in claim 33, wherein the central zone has an					
2	optical power of between about 1.0 and 3.0 Diopters.					
_	•					
1	35. (Original) A system as in claim 34, wherein the central zone has an					
2	optical power of about 1.75 Diopters.					
1	36. (Currently amended) A system as in claim [[27]]28, wherein the					
1	(
2	treatment table is configured so that the first ablative shape further comprises a peripheral zone					
3	for viewing distant objects.					
l	37. (Currently amended) A system as in claim 36, wherein the treatment					
2	table is configured so that the first ablative shape further includes a transition zone, the transition					
3	zone extending from an outer boundary of the peripheral zone.					

1	1 38. (Currently amended) A system as in claim [[27]]	<u> 28,</u> wherein <u>the</u>					
2	treatment table is configured so that the second ablative shape includes an untreated central zone						
3	to provide for vision of distant objects.						
1	1 39. (Currently amended) A system as in claim [[27]]	<u> 28,</u> wherein <u>thc</u>					
2	treatment table is configured so that the second ablative shape includes a central zone shaped to						
3	improve the patient's ability to view distant objects.						
1	1 40. (New) A system as in claim 27, wherein the prod	cessor includes a module					
2	having software comprising tangible media embodying machine-readable instructions for						
3	directing the laser device to ablate the first and second ablative shapes.						