Medranian percil

Dull Pencil

Also sharpie

Red per Black per Green per

	Orthogonal Transformations
	· spatial relationships in 3D
	Def - An nxn matrix. A is an orthogonal
	transformation I.F.F (if and only if)
	- It has n mutually perpendicular
	rows or columns with unit length
	· 1 rows must be in dependent
	(can't be multiples of each other)
	ex [1 2] → linearly dependent
	[2 6] = independent but
	· to be perpendicular,
	the dot product must be 0
	dot product: X·y = \$\frac{\cappa_{\chi}}{i=1} \times i=1
	×· y=0 (perp.)
	· rows/columns must have unit length
	$ \times = \sqrt{\frac{\Sigma}{\lambda}} \times = \sqrt{\times^{\circ} \times}$
	- The rows or columns of A form an
	orthonormal basis of R"
	· basic for space - set of vectors that
	can combine to create any vector in
	a space
	· basically first point with more words
* Mo	
abou	A-1 AT switches the rows
trans	post and columns
png	ex: [1 23] = 25
	456 36

Medranian percil

Dull Pencil

Also sharpie

Red per Black per Green per

	Orthogonal Transformations
	· spatial relationships in 3D
	Def - An nxn matrix. A is an orthogonal
	transformation I.F.F (if and only if)
	- It has n mutually perpendicular
	rows or columns with unit length
	· 1 rows must be in dependent
	(can't be multiples of each other)
	ex [1 2] → linearly dependent
	[26] = independent but
	* to be perpendicular,
	the dot product must be 0
	dot product: X·y = 5. xiy;
	×· y=0 (perp.)
	· rows/columns must have unit length
	$\Rightarrow \ x \ = \sqrt{\frac{x}{i}} = \sqrt{x \cdot x}$
	- The rows or columns of A form an
	orthonormal basis of Rn
	· basic for space - set of vectors that
	can combine to create any vector in
	a space
	· basically first point with more words
* Mo	
abou	+ switches the rows
trans	pose and columns
png	ex: [1 2 3 = 25]
	456 36

more about AAT = ATA=I & A-1 = AT mtx mult: basically the same info AB = C So what about (AB) = CT ******() AB FATBT (%) MXN NXK NXM EXN SO (AB)T = CT = BT AT

EXM EXH NXM identity Matrix I = [. .] SO TA=A $T \times = X$ example of an orthogonal transformation: ex · 2 x 2 Rotation matrix: $A = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix}$ Want to show perpendicular columns: $\vec{u} = \begin{bmatrix} \cos \Theta \\ \sin \Theta \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} -\sin \Theta \\ \cos \Theta \end{bmatrix}$ Need to show 3 things 1) are they perpendicular? take u. v = - cos O sin O + sin O cos O = 0 so we know ILIV