Numerical Optimization exercise sheet

review on 12.11.2024 during the exercise class

1. (Step size too small or too big?)

The following example shows that the step size has to be choosen very wisely. Consider the function $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$ and the iteration

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} p^{(k)}, \qquad k \in \mathbb{N}_0,$$

where the initial value is given by $x^{(0)} = 1$.

- a) Choose the search direction $p^{(k)} = -1$ and the step size $\alpha^{(k)} = 2^{-k-2}$ for $k \in \mathbb{N}_0$. Prove that $\lim_{k \to \infty} x^{(k)} = \frac{1}{2}$ and $\lim_{k \to \infty} f(x^{(k)}) = \frac{1}{4}$. Discuss this result.
- b) Choose the search direction $p^{(k)} = (-1)^{k+1}$ and the step size $\alpha^{(k)} = 1 + \frac{3}{2^{k+2}}$ for $k \in \mathbb{N}_0$. Calculate $x^{(k)}$. Discuss your result.

$$(4 + 4 = 8 \text{ Points})$$

2. (Wolfe conditions)

Typical line search algorithms try out a sequence of candidate values for the step size α , stopping to accept one of these values when certain conditions are satisfied. We want to take a closer look at the Wolfe conditions which consist of

1.) a sufficient decrease condition of the objective function f (also known as $Armijo\ condition$)

$$f(x + \alpha p) \le f(x) + c_1 \alpha \nabla f(x)^T p, \qquad c_1 \in (0, 1)$$
(1)

and

2.) the curvature condition

$$\nabla f(x + \alpha p)^T p \ge c_2 \nabla f(x)^T p, \qquad c_2 \in (c_1, 1)$$
(2)

where f is the objective function, p is a descent direction and α is the step size.

- a) Show that if $0 < c_2 < c_1 < 1$, there may be no step lengths that satisfy the Wolfe conditions.
- b) Prove Lemma 2.3.10.

c) Prove that the quadratic function $\Phi_1^{(k)}$ that interpolates

$$\Phi_1^{(k)}(0) = \Phi^{(k)}(0), \quad \left(\Phi_1^{(k)}\right)'(0) = \left(\Phi^{(k)}\right)'(0) \quad \text{and} \quad \Phi_1^{(k)}(\alpha_0^{(k)}) = \Phi^{(k)}(\alpha_0^{(k)})$$

is given by $\Phi_1^{(k)}$ in Algorithm 2.3.3 Line 5. Then, make use of the fact that the Armijo's condition is not satisfied at α_0 to show that the quadratic $\Phi_1^{(k)}$ has positive curvature and the minimizer satisfies

$$\alpha_1 < \frac{\alpha_0}{2(1-c_1)}.$$

Remark: Since $c_1 \approx 10^{-4}$, this inequality gives us an idea of the new step length, in case of acceptance.

$$(4+5+5=14 \text{ Points})$$

- 3. (Newton with Armijo stepsize control, MATLAB)

 Let the Himmelblau function be given. We shall visualize the Armijo step size control Algorithm 2.3.3.
 - a) Implement the Matlab-function

which realizes Algorithm 2.3.3. The input parameters should be clear, except for maxIt and the plot_flag. The maxIt is used to break the for-loop in Line 15. Ignore the plot_flag input parameter for the moment.

- b) In the material you will find the MATLAB-function newton_armijo. Write a script which applies Newton's method with your step size control algorithm to the Himmelblau-function. Use as an initial value x0 = [2.6, -3.9], and x0 = [2, -3.5]. Plot the path of the iterates in the same plot as the contour lines of the Himmelblau function.
- c) Adjust your Matlab-function armijo_step_size.m, such that if the plot_flag is true, then the functions $\Phi(\alpha)$, $\Phi_1(\alpha)$, $\Phi_2(\alpha)^1$ and $\Phi_{lin}(\alpha) := \Phi(0) + c_1 \Phi'(0) \alpha$ as well as the interpolation points and minimizer are plotted. Choose the same initial points as in b) and use maxIt = 1 for Newton's method as well as for the step size control. What do you observe?

$$(4+4+4=12 \text{ Points})$$

¹This is the cubic interpolant. Plot it only within the loop of Line 15.