LABORATORY REPORT

Application Development Lab (CS33002)

B.Tech Program in ECSc

Submitted By

Name: - Kartik Sharma

Roll No: 2230176

Kalinga Institute of Industrial Technology (Deemed to be University) Bhubaneswar, India

Spring 2024-2025

Table of Content

Exp No.	Title	Date of Experiment	Date of Submission	Remarks
1.	1.Build a Resume using HTML/CSS 2. 3.			
2.	1. Machine Learning for Cat and Dog Classification 2. 3.			
3.	To perform stock price prediction using Linear Regression and LSTM models.			
4.				
5.				
6.				
7.				
8.				
9.	Open Ended 1			
10.	Open Ended 2			

Experiment Number	3
Experiment Title	Regression Analysis for Stock Prediction
Date of Experiment	21/01/2025
Date of Submission	27/01/2025

1. Objective:- To perform stock price prediction using Linear Regression and LSTM models.

2. Procedure:-

- 1. Collect historical stock price data.
- 2. Preprocess the data for analysis (missing data, scaling, splitting into train/test).
- 3. Implement Linear Regression to predict future stock prices.
- 4. Design and train an LSTM model for time-series prediction.
- 5. Compare the accuracy of both models.
- 6. Create a Flask backend for model predictions.
- 7. Build a frontend to visualize predictions using charts and graphs.

Code:-

Frontend code (html):

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Regression Analysis for Stock Prediction</title>
    body {
       background-color: red;
       color: lightyellow;
       font-family: Arial, sans-serif;
       margin: 0;
       padding: 0;
       display: flex;
       flex-direction: column;
       align-items: flex-start;
       justify-content: center;
       min-height: 100vh;
       padding-left: 2rem;
       text-align: left;
     }
    h1 {
       font-size: 2.5rem;
       margin-bottom: 2rem;
       color: lightyellow;
       display: inline-block;
       background-color: lightyellow;
       color: red:
```

```
text-decoration: none;
       padding: 0.75rem 1.5rem;
       font-size: 1rem;
       border-radius: 5px;
       transition: background-color 0.3s, color 0.3s;
    a:hover {
       background-color: darkred;
       color: lightyellow;
    footer {
       margin-top: 2rem;
       font-size: 0.875rem;
       color: lightyellow;
  </style>
</head>
<body>
  <h1>Regression Analysis for Stock Prediction</h1>
  <a href="https://38b641063eaf6a4715.gradio.live" target="_blank">Go to Stock Prediction Tool</a>
</body>
</html>
```

Backend Code (Python):

```
pip install gradio yfinance pandas numpy scikit-learn tensorflow matplotlib

!python stock_prediction_gradio.py

import yfinance as yf
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
```

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
import matplotlib.pyplot as plt
import gradio as gr
def get_stock_data(ticker, start_date, end_date):
   data = yf.download(ticker, start=start_date, end=end_date)
   data.reset_index(inplace=True)
   return data
def preprocess_data(data):
   scaler = MinMaxScaler(feature_range=(0, 1))
   scaled_data = scaler.fit_transform(data[['Close']])
   return scaled_data, scaler
ef create_features(data, lag=5):
   for i in range(lag, len(data)):
       X.append(data[i-lag:i, 0])
       y.append(data[i, 0])
    return np.array(X), np.array(y)
ef train_linear_regression(X_train, y_train):
   model = LinearRegression()
   model.fit(X_train, y_train)
   return model
def train_lstm_model(X_train, y_train):
   model = Sequential()
   model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
   model.add(LSTM(50, return_sequences=False))
   model.add(Dense(25))
   model.add(Dense(1))
   model.compile(optimizer='adam', loss='mean_squared_error')
   model.fit(X_train, y_train, batch_size=32, epochs=5, verbose=0)
def predict_and_visualize(ticker, start_date, end_date):
   data = get_stock_data(ticker, start_date, end_date)
   if data.empty:
        return "No data found for the given ticker and date range.", None
   scaled_data, scaler = preprocess_data(data)
   train_size = int(len(scaled_data) * 0.8)
   train_data = scaled_data[:train_size]
   test_data = scaled_data[train_size:]
   lag = 5
   X_train, y_train = create_features(train_data, lag)
   X_test, y_test = create_features(test_data, lag)
     lr_model = train_linear_regression(X_train, y_train)
   lr_predictions = lr_model.predict(X_test)
   lr predictions rescaled = scaler.inverse transform(lr predictions.reshape(-1, 1))
   X_train_lstm = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
   X_test_lstm = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
   lstm_model = train_lstm_model(X_train_lstm, y_train)
   lstm_predictions = lstm_model.predict(X_test_lstm)
   lstm_predictions_rescaled = scaler.inverse_transform(lstm_predictions)
   y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1))
   plt.figure(figsize=(12, 6))
   plt.plot(data.index[len(data) - len(y_test_rescaled):], y_test_rescaled, label="Actual Prices",
color="blue")
```

```
plt.plot(data.index[len(data) - len(y_test_rescaled):], lr_predictions_rescaled, label="Linear
Regression Predictions", color="green")
    plt.plot(data.index[len(data) - len(y_test_rescaled):], lstm_predictions_rescaled, label="LSTM
Predictions", color="red")
    plt.title(f"Stock Price Prediction for {ticker}")
    plt.xlabel("Date")
    plt.ylabel("Price")
    plt.legend()
    plt.grid()
```

```
plot_file =
  "prediction_plot.png"
plt.savefig(plot_file)
plt.close()
```

```
lr_mse = mean_squared_error(y_test_rescaled, lr_predictions_rescaled)
lstm_mse = mean_squared_error(y_test_rescaled, lstm_predictions_rescaled)
```

return (f"Linear Regression MSE: {lr_mse:.4f}\nLSTM MSE: {lstm_mse:.4f}", plot_file)

```
def gradio_interface():
    with gr.Blocks() as demo:

    ticker_input = gr.Textbox(label="Stock Ticker (e.g., AAPL)", value="AAPL")
    start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2020-01-01")
    end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2023-01-01")

    predict_button = gr.Button("Predict Stock Prices")

        output_text = gr.Textbox(label="Metrics", interactive=False)

    output_image = gr.Image(label="Prediction Chart", interactive=False)

    predict_button.click(
        fn=predict_and_visualize,
        inputs=[ticker_input, start_date_input, end_date_input],
        outputs=[output_text, output_image]
    )

    demo.launch()
```

```
if __name__ == "_main _":
    gradio_interface()
```

3. Results/Output:- Entire Screen Shot including Date & Time

4. Remarks:-	
rtik Sharma	Signature of the Lab Coordinator
ame of the Student)	(Name of the Coordinator)