Álgebra/Álgebra II Clase 13 - Determinante 2

FAMAF / UNC

13 de octubre de 2020

Resumen

En esta clase veremos

- o Determinantes de matrices elementales.
- Si A es invertible, determinaremos el determinante de la inversa.
- Determinante del producto de matrices.

El tema de esta clase está contenido de la sección la sección 2.8 del apunte de clase "Álgebra II / Álgebra - Notas del teórico".

Recordemos

Teorema

Sea $A \in \mathbb{K}^{n \times n}$.

E1. Si $c \in \mathbb{K}$ no nulo,

$$A \xrightarrow{cF_i} B \qquad \Rightarrow \qquad \det(B) = c \det(A).$$

E2. Si $1 \le s, t \le n$ con $s \ne t$ y $t \in \mathbb{K}$:

$$A \xrightarrow{F_r + tF_s} B \qquad \Rightarrow \qquad \det(B) = \det(A).$$

E3.

$$A \xrightarrow{F_r \leftrightarrow F_s} B \qquad \Rightarrow \qquad \det(B) = -\det(A).$$

Corolario

$$A \in \mathbb{K}^{n \times n}$$
.

- 1. Si A tiene dos filas iguales, entonces $\det A = 0$.
- 2. Si A tiene una fila nula, entonces $\det A = 0$.

Demostración

1.Si $F_r = F_s \text{ con } r \neq s$. Entonces,

$$A \xrightarrow{F_r \leftrightarrow F_s} A \xrightarrow{\mathsf{T.E3}} \det(A) = -\det(A).$$

Luego det(A) = 0.

2. Si
$$F_r = 0$$
,

$$A \xrightarrow{2F_r} A \xrightarrow{\mathsf{T.E1}} \det(A) = 2\det(A).$$

Luego det(A) = 0.

Corolario

Sea $E = e(Id_n)$, matriz elemental en $\mathbb{K}^{n \times n}$.

E1. Si $c \in \mathbb{K}$ no nulo,

$$\operatorname{Id}_n \xrightarrow{cF_i} E \qquad \Rightarrow \qquad \det(E) = c.$$

E2. Si $1 \le s, t \le n$ con $s \ne t$ y $t \in \mathbb{K}$:

$$\operatorname{Id}_n \xrightarrow{F_r + tF_s} E \qquad \Rightarrow \qquad \det(E) = 1.$$

E3.

$$\operatorname{Id}_n \xrightarrow{F_r \leftrightarrow F_s} E \qquad \Rightarrow \qquad \det(E) = -1.$$

Demostración

Se demuestra trivialmente considerando que en todos los casos $E = e(Id_n)$ donde e es una operación elemental por fila, considerando que $det(Id_n) = 1$ y aplicando los teoremas E1, E2 y E3.

Teorema

Sea $A \in \mathbb{K}^{n \times n}$ y E una matriz elemental $n \times n$. Entonces

$$\det(EA) = \det E \det A. \tag{1}$$

Demostración

En todos los casos $\mathit{EA} = e(A)$ donde e es una operación elemental por fila.

(E1) Si
$$c \neq 0$$
 y $\operatorname{Id}_n \xrightarrow{cF_r} E$, tenemos $\det(E) = c$ y

$$\det(EA) = \det(e(A)) = c \cdot \det(A) = \det(E) \det(A).$$

(E2) Si
$$\operatorname{Id}_n \xrightarrow{F_r + cF_s} E$$
, $\operatorname{luego} \det(E) = 1 \text{ y}$

$$det(EA) = det(e(A)) = det(A) = det(E) det(A)$$
.

(E3) Ejercicio.

Corolario

Sea $A = E_1 E_2 \cdots E_k B$ donde E_1, E_2, \dots, E_k son matrices elementales. Entonces.

$$\det(A) = \det(E_1) \det(E_2) \cdots \det(E_k) \det(B).$$

Demostración

$$\det(A) = \det(E_1(E_2 \cdots E_k B)) = \det(E_1) \det(E_2 \cdots E_k B),$$

y así sucesivamente (inducción).

Corolario

Sea $A=E_1E_2\cdots E_k$ producto de matrices elementales en $\mathbb{K}^{n\times n}$. Entonces,

$$\det(A) = \det(E_1) \det(E_2) \cdots \det(E_k).$$

Teorema

 $A \in \mathbb{K}^{n \times n}$ es invertible si y solo si $\det(A) \neq 0$.

Demostración

$$(\Rightarrow)$$

A invertible $\Rightarrow A = E_1 E_2 \cdots E_k \Rightarrow \det(A) = \det(E_1) \det(E_2) \dots \det(E_k)$. Como el determinante de matrices elementales en no nulo, $\det(A) \neq 0$.

Sean E_1, E_2, \dots, E_k matrices elementales tales que $R = E_1 E_2 \cdots E_k A$ y R es MERF. Luego,

$$\det(R) = \det(E_1) \det(E_2) \cdots \det(E_k) \det(A)$$
.

Como los determinantes de matrices elementales son no nulos

$$\frac{\det(R)}{\det(E_1)\det(E_2)\cdots\det(E_k)} = \det(A). \tag{*}$$

Supongamos que R no es la identidad.

Entonces det(R) = 0 (ver clase pasada) $\stackrel{(*)}{\Rightarrow} det(A) = 0$, absurdo.

Luego, $R = Id_n \Rightarrow A$ es equivalente por filas a $Id_n \Rightarrow A$ invertible.

Teorema

Sean $A, B \in \mathbb{K}^{n \times n}$, entonces

$$det(AB) = det(A) det(B)$$
.

Demostración

- Si A invertible $\Rightarrow A = E_1 \cdots E_k$ y $AB = E_1 \cdots E_k B$, luego por los corolarios de p. 7 $\det(AB) = \det(E_1) \cdots \det(E_k) \det(B) = \det(A) \det(B)$.
- Si A no invertible $\Rightarrow A = E_1 \cdots E_k R$ y R MERF con la última fila nula. Luego,
 - ∘ RB tiene la última fila nula \Rightarrow det(RB) = 0 (corolario p. 4).
 - $\circ \det(AB) = \det(E_1 \cdots E_k RB) = \det(E_1 \cdots E_k) \det(RB) = 0.$
 - Como A no invertible $\Rightarrow \det(A) = 0 \Rightarrow \det(A) \det(B) = 0$.

Corolario

San A, B matrices $n \times n$, entonces

- \circ det (A^m) = det $(A)^m$, para $m \in \mathbb{N}$.
- $\circ \ \det(AB) = \det(BA).$

Demostración

o $\det(A^m) = \det(A \cdot A^{m-1}) = \det(A) \cdot \det(A^{m-1})$ y se demuestra por inducción.

$$\circ \det(AB) = \det(A) \det(B) = \det(B) \det(A) = \det(BA).$$

Definición

Sea $A \in \mathbb{R}^{m \times n}$. La *transpuesta de A* es la matriz $A^{\mathsf{t}} \in \mathbb{R}^{n \times m}$ cuyas entradas son definidas por

$$[A^{\mathsf{t}}]_{ij} = [A]_{ji}$$

Ejemplo

Sea

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \Rightarrow \qquad A^{t} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

$$([A^{t}]_{12} = [A]_{21} = 4, [A^{t}]_{13} = [A]_{31} = 3, \text{ etc.})$$

Para matrices cuadradas, en general:

$$A = \left[\begin{array}{cccc} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{array} \right]$$

Entonces,

$$A^{\mathsf{t}} = \left[egin{array}{ccccc} a_{11} & \cdots & a_{i1} & \cdots & a_{n1} \\ dots & & dots & & dots \\ a_{1i} & \cdots & a_{ii} & \cdots & a_{ni} \\ dots & & dots & & dots \\ a_{1n} & \cdots & a_{in} & \cdots & a_{nn} \end{array}
ight]$$

Teorema

El determinante de una matriz cuadrada es igual al determinante de su transpuesta.

Es decir, si A matriz $n \times n$,

$$\det(A) = \det(A^{\mathsf{t}}).$$

Pueden ver la demostración en las notas de curso.

ldea de la demostración

No es difícil ver que

- \circ para E matriz elemental $det(E^t) = det(E)$,
- $\circ (A_1 \cdot A_2 \cdots A_k)^{\mathsf{t}} = A_k^{\mathsf{t}} \cdots A_2^{\mathsf{t}} \cdot A_1^{\mathsf{t}}.$

Se sigue entonces de $A = E_1 \cdots E_s R$, con E_i elementales y R MERF.

Sea

$$A = \begin{bmatrix} a_{11} & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

triangular inferior. Entonces,

$$A^{\mathsf{t}} = \left[egin{array}{ccccc} a_{11} & \cdots & a_{i1} & \cdots & a_{n1} \\ dots & & dots & & dots \\ 0 & \cdots & a_{ii} & \cdots & a_{ni} \\ dots & & dots & & dots \\ 0 & \cdots & 0 & \cdots & a_{nn} \end{array}
ight]$$

es triangular superior.

Proposición

El determinante de una matriz triangular inferior es igual al producto de los elementos de la diagonal.

Demostración

La transpuesta de una una matriz triangular inferior es una matriz triangular superior.

Entonces la proposición es una consecuencia del teorema anterior y la proposición referida al determinante de una triangular superior.

Observación

La transpuesta transforma filas en columnas y columnas en filas

Gracias a esta observación podemos deducir como cambia el determinante de una matriz al aplicarle "operaciones elementales por columna"

Ejemplo

Si una matriz tiene una columna con muchos ceros, podemos intercambiarla con la primera fila.

$$A = \begin{bmatrix} 1 & 5 & 6 & 1 \\ 2 & 0 & 7 & 1 \\ 3 & 0 & 8 & 1 \\ 4 & 0 & 1 & 1 \end{bmatrix} \rightarrow B = \begin{bmatrix} 5 & 1 & 6 & 1 \\ 0 & 2 & 7 & 1 \\ 0 & 3 & 8 & 1 \\ 0 & 4 & 1 & 1 \end{bmatrix}$$

Entonces

$$\det(A) = -\det(B) = -5 \det B(1|1)$$

Ejemplo

Si una matriz tiene una fila con muchos ceros, entonces intercambio esta con la primer fila, luego transpongo y calculo el determinante.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 0 & 0 & 0 \\ 6 & 7 & 8 & 9 \\ 1 & 1 & 1 & 1 \end{bmatrix} \rightarrow B = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 \\ 6 & 7 & 8 & 9 \\ 1 & 1 & 1 & 1 \end{bmatrix} \rightarrow B^{t} = \begin{bmatrix} 5 & 1 & 6 & 1 \\ 0 & 2 & 7 & 1 \\ 0 & 3 & 8 & 1 \\ 0 & 4 & 1 & 1 \end{bmatrix}$$

Entonces

$$\det(A) = -\det(B) = -\det(B^{\mathsf{t}}) = -5\det B^{\mathsf{t}}(1|1)$$

El determinante se puede calcular desarrollando por cualquier columna o fila.

Teorema

Sa A matriz $n \times n$, entonces el determinante

o se puede calcular el determinante por la columna j así:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A(i|j),$$

o se puede calcular el determinante por la fila i así:

$$\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det A(i|j)$$

(la diferencia entre ambas fórmulas es la variable de la sumatoria)

La demostración de este teorema (que no la haremos), se basa en dos resultados que ya mencionamos.

(A) Teorema E3:

$$A \xrightarrow{F_r \leftrightarrow F_s} B \qquad \Rightarrow \qquad \det(B) = -\det(A).$$

(B) $det(A^t) = det(A)$,

y un resultado que no es difícil demostrar:

(C)
$$A \xrightarrow{C_r \leftrightarrow C_s} B \Leftrightarrow A^t \xrightarrow{F_r \leftrightarrow F_s} B^t$$
.

Luego,

(D)
$$\det(B) \stackrel{(B)}{=} \det(B^{t}) \stackrel{(A)}{=} -\det(A^{t}) \stackrel{(B)}{=} -\det(A)$$
.

Usando estos resultados, y un poco de manipulación de índices, se obtiene una demostración del teorema.