Handling Missing Data – : Complete Case Analysis (CCA)

Missing data is very common in real-world datasets. If not handled properly, it can distort model performance and lead to wrong conclusions.

What Is Complete Case Analysis (CCA)?

Also called listwise deletion, CCA simply:

Removes any row (data point) that contains missing values in any of the selected columns.

Example:

If your data looks like:

Name	Age	Salary
Α	25	50k
В		55k
С	30	

After applying CCA → Only row A remains.

✓ When Should You Use CCA?

Use CCA only when:

- 1. The **missing data is completely random** (no hidden patterns).
- 2. You can **afford to lose data** without hurting the model.
- 3. The dataset is large enough (dropping rows won't cause data scarcity).

Advantages of CCA

Advantage	Why it's good
Easy to implement	No complex logic or math involved
✓ No artificial values added	No risk of wrong imputation
Keeps original data values	Doesn't change existing information

⚠ Disadvantages of CCA

Disadvantage	Risk
Loss of data	Can drastically reduce dataset size
💢 Bias	If data is not missing completely at random
Less statistical power	Small sample → weak conclusions

CCA Works Best When:

- The percentage of missing data is very low (e.g., <5%)
- You're doing **exploratory analysis**
- The missingness is random

Key Assumption:

- Missing Completely at Random (MCAR)
 Means: the chance of a value being missing has nothing to do with the data itself.
- If this assumption fails → CCA can introduce **bias** and **mislead** your model.