Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 EE5EL02 Computer Application in Power Systems

Programme: M.Tech. Branch/Specialisation: EE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1 (MCQs) should be written in full instead of only a, b, c or d. Practical loading of underground transmission cables is-Q.1 i. (a) Less than Surge Impedance Loading (SIL) (b) More than SIL (c) Equal to SIL (d) None of these Deregulated power industry is governed by-(a) Generating companies (b) Transmission companies (c) Local load dispatch centre (d) Independent system operator (ISO) Bus participation factor can be obtained by-(a) Eigen Analysis (b) Model analysis (c) Both (a) and (b) (d) None of these iv. Sherman Morison method is used for-(a) Inverse of a matrix (b) Square of a matrix (c) Left Eigen vector of a matrix (d) Right eigen vector of a matrix A 101-bus power system network contains 5 generator buses and one 1 load bus connected with variable reactive control unit. What will be the size of jacobian matrix for N-R load flow analysis in this system? (a) 194 * 194 (b) 193 * 193 (c) 196 * 196 (d) 195 * 195 vi. At maximum loading point the minimum eigen value of load flow 1 Jacobian is-(a) Close to 0 (b) Close to 1 (c) 0 (d) 1

P.T.O.

[2]

	vii.	Contingency analysis comes under-		1
		(a) Stabilities studies	(b) Reliabilities studies	
		(c) Economic power studies	(d) Securities studies	
	viii.	Ability of power system to withstand	d under contingent conditions is-	1
		(a) Power system Stability	(b) Power system Reliability	
		(c) Power system Security	(d) Power system Resilience	
	ix.	In which of the following forecast	ing technique, data obtained from	1
		past experience is analysed?		
		(a) Time-Series forecast	(b) Judgemental forecast	
		(c) Associative model	(d) All of these	
	х.	SAIFI stands for-		1
		(a) System Associative index for Free	equency Interruption	
		(b) System Analytical Integral Frequency	iency Index	
		(c) System Average Incoming Frequ	ency Index	
		(d) System Average Interruption Fre	equency Index	
Q.2	i.	Why deregulated system is required	?	2
	ii.	Describe the various factors affectin		3
	iii.	Explain the planning process of a		5
		with the help of block diagram.		
OR	iv.	What do you mean by power transfe	er capability of the system? Define	5
		the following terms:		
		(a) Total Transmission Capability	(b) Available Transfer Capacity	
Q.3	i.	Define in brief 'Sherman Morison M	lethod' for matrix inversion.	2
	ii.	Explain solution of linear algebraic	equation using LU factorization.	8
OR	iii.	Define participation factor. Derive	expression for participation factor	8
		based on model analysis using reduc	ed load flow Jacobian.	
Q.4	i.	What is meant by optimal power flo	ow studies in power system? What	3
		are the objectives of optimal power i	flow?	
	ii.	Derive the load flow equations in po	olar form. Explain the N-R method	7
		of load flow with the help of flow ch	nart.	
OR	iii.	Explain in detail the FDLF method of	of load flow solution.	7
Q.5	i.	Explain briefly contingency ranking	& analysis of power system.	4

$\Gamma \cap$	п	
Ι - Κ	-	
ı	-	

	ii.	Discuss various security levels and pre contingency and post contingency corrective rescheduling.	6
OR	iii.	What is Line outage distribution factor (LODF)? Derive the expression	6
		for LODF.	
Q.6		Attempt any two:	
	i.	Write a note on effect of preventive maintenance on LOLP calculation.	5
	ii.	With respect to power system reliability define the following terms:	5
		(a) SAIFI (b) SAIDI	
	iii.	Discuss various load models and evaluation of LOLP.	5

Scheme of Marking

Faculty of Engineering End Sem (Even) Examination May-2022

Computer Application in Power Systems EE5EL02

Programme: M.Tech. Branch/Specialisation:

Note: The Paper Setter should provide the answer wise splitting of the marks in the scheme below.

Q.1	i)		1
	ii)		1
	iii)		1
	iv)		1
	v)		1
	vi)		1
	vii)		1
,	viii)		1
	ix)		1
	x)		1
Q.2	i.	Regulation	2
	ii.	3 fartors	/X3
	iii.	Alexek diagram, process	73
OR	iv.	PTC, TTC, ATC	1.65
			7-7
Q.3	i.	Tratis inversion les som	. 2
	ii.	prous (complete)	8
OR	iii.	P. fordor, Dichatron	3,5
Q.4	i.	optimal PF, objectivo	7 3
	ii.	nik fem chart mother!	20
OR	iii.	FDLA	7
Q.5	i.	Rombing Andy In	9 4

	ii.	Sewindy level, Rescholution ?	3
OR	iii.	LODE Dervoorey	5 04
			11
Q.6			
	i.	LOLP calculations.	5
	ii.	CAIFI. CMDI	7.5
	iii.	LEad need, evaluating will	5

Answers of MCQs

1-a

2- d

3-b

4- a

5- d

6-c

7- d

8- c

9-a

10-d