

	Biogas	
Aufgabennummer: B-C7_10		
Technologieeinsatz:	möglich ⊠	erforderlich
Biogas ist ein alternativer Energ gewonnen werden. Der Hauptk	, ,	derem aus Mais- oder Zuckerrüben Methan.
x Ackerfläche in Hektar (ha), y Ackerfläche in Hektar (ha),	· ·	

a) Eine Landwirtin hat insgesamt höchstens 40 Hektar (ha) Anbaufläche zur Verfügung. Sie will auf einer Ackerfläche von mindestens 5 ha Mais und auf einer Ackerfläche von mindestens 10 ha Zuckerrüben anbauen.

Außerdem möchte sie einen Ertrag von mindestens 480 000 m³ Biogas erzielen. Sie möchte die Kosten für die Erzeugung von Methan möglichst gering halten. In der folgenden Tabelle sind die Kosten und Erträge aufgelistet:

	Produktionskosten für Methan in €/m³	Methanertrag in m³/ha	Biogasertrag in m³/ha
Energiemais	0,2	6 400	11 000
Zuckerrüben	0,25	7 000	12 600

 Stellen Sie die notwendigen Ungleichungen und die Zielfunktion für eine lineare Optimierung auf. Biogas 2

b) Ein Landwirt ermittelt für seine Biogasproduktion folgende Zielfunktion der entstehenden Kosten:

$$Z = 1050 \cdot x + 1500 \cdot y$$

Z ... Kosten in Euro (€)

- Zeichnen Sie die Gerade, für die der optimale Wert der Zielfunktion angenommen wird, in die nachstehende Grafik mit dem grau unterlegten Lösungsbereich ein.
- Lesen Sie aus der Grafik diejenigen Ackerflächen für Mais und Zuckerrüben ab, für die die Kosten minimal werden.
- Berechnen Sie die entstehenden minimalen Kosten.

- c) Mögliche Werte für x und y werden durch folgende 6 Ungleichungen beschrieben:
 - (1) $x \ge 10$
 - (2) $x \le 62$
 - (3) $y \ge 8$
 - (4) $y \le 60$
 - (5) $y \ge -0.75 \cdot x + 70$
 - (6) $y \ge -0.52 \cdot x + 62$
 - Zeichnen Sie diejenige Fläche, die durch diese Ungleichungen bestimmt ist.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Biogas 3

Möglicher Lösungsweg

a) Zielfunktion: $Z = 0.2 \cdot 6400 \cdot x + 0.25 \cdot 7000 \cdot y \Rightarrow Z = 1280 \cdot x + 1750 \cdot y$

Ungleichungen:

 $x \ge 5$
 $y \ge 10$
 $x + y \le 40$

 $11\,000 \cdot x + 12\,600 \cdot y \ge 480\,000$

Der Lösungspunkt hat die Koordinaten (10|29).

Es werden auf einer Ackerfläche von 10 ha Mais und auf einer Ackerfläche von 29 ha Zuckerrüben angepflanzt. $\Rightarrow Z = 1~050 \cdot 10 + 1~500 \cdot 29 = 54~000$

Die minimalen Kosten betragen daher € 54.000.

Biogas

Klassifikation

□ Teil A ⊠ Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 2 Algebra und Geometrie
- b) 2 Algebra und Geometrie
- c) 2 Algebra und Geometrie

Nebeninhaltsdimension:

- a) —
- b) 3 Funktionale Zusammenhänge
- c) 3 Funktionale Zusammenhänge

Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) B Operieren und Technologieeinsatz
- c) C Interpretieren und Dokumentieren

Nebenhandlungsdimension:

- a) —
- b) C Interpretieren und Dokumentieren
- c) B Operieren und Technologieeinsatz

Schwierigkeitsgrad:

a) 4

a) mittelb) mittel

b) 3

Punkteanzahl:

c) mittel

c) 3

Thema: Wirtschaft

Quellen: -