

Jigsaw Puzzle Sorter

Computer Vision Project

Tanisha Basrai, Richard Jeong, Krishaan Patel

Background

- Jigsaw puzzles are common worldwide activity
 - \$6.69 billion in 2022
- Jigsaws are about finding patterns
 - Visual cues: color, shape
 - Sometimes only shapes
- How do you start a jigsaw puzzle?
 - Common approach: sorting edge/corner pieces from non-edge pieces
 - Grueling process for large puzzles

source: https://yetch.store/products/incomplete-white-puzzle

Real life puzzler (clearly upset)

Problem

- Time consuming
 - 1000+ pieces can take hours to sort
- Visual and physical clutter
 - Pieces easily lost
 - Physically (dropped, eaten, etc)
 - Visually
- Loss of joy!
 - Human error is frustrating
 - Jigsaws should be fun

Quick! Can you find the any of the missing edges?

Current Solutions

- Private, personal projects
 - Not publically nor widely accessible
- Jigsaw puzzle solvers
 - What's the point?
- In short: there are none

Our Solution

- Automate sorting corner, edge, and non-edge pieces
 - Give user classifications that are
 - Quick
 - Correct
- Most of puzzling process remains intact
 - Lower margin for human error
- Use computer vision
- OpenCV
 - Computer vision framework
 - Popular for image processing
 - Used for edge detection, Hough line transform

Tanisha is travelling... here is a pre-recorded presentation

https://youtu.be/TpNnJKYKb0A

Piece Classification Overview

Defining an edge

Which is an edge?

Edge detection

This is an edge

Corner detection

Processing an image

Results

Tests

Edge Rotations

Non-Edge Rotations Check

Funky Corner Rotations Check

Evaluations

Correctness: Good

False positives: Acceptable

False negatives: Undesired

Robustness: Poor

Bad lighting

- Non-puzzle pieces
- Some piece shapes unclassifiable
 - Very small edges
 - Oddly shaped
 - Not solid color
 - Not contrasting color to background

Image with poor lighting (shadows and artifacts)

Colored piece (not highly contrasting, has image)

Irregular piece (very small edge)

Comparisons

- State of the art implementations:
 - Greedy Square Jigsaw Puzzle Solver (Ben-Gurion University)
 - Greedy solver (novel part compatibility & solution estimation measures)
 - Puzzle Machine (Stuff Made Here)
 - Embedded system to scan individual pieces
 - Probabilistic Jigsaw Puzzle Solver (MIT)
 - Probabilistic approach using graphical models

Moving Forward

- Website for ease of use
 - Using Flask
 - Microframework to integrate python code into html/css/js
- Implement machine learning
 - Only process puzzle pieces and ignore other objects
 - Better video processing
 - More robustness
- Testing Scalability
 - Have only tested on sets of max 30-40 pieces

Conclusion

- Overall Success
 - Achieved high accuracy in classification
- Implications
 - Aid those with visual impairments
 - Decrease barrier of entry

Evaluations

- What types of pieces do we test?
 - Test on standard and irregular shaped pieces
- How do we test?
 - o Requires a stable video feed
 - o Randomly sample 20-30 pieces
 - Swap pieces
 - Orientations/angles
- Main Takeaways
 - Shapes & Sizes
 - Sensitivity to lighting conditions
 - Ability to identify multiple pieces at once
 - Processes constant visual input (live-feeds, recordings)

Evaluations (cont.)

- Analyzing Our Results
 - Main Focus: Accuracy of identifying the correct piece type
 - Achieved an accuracy of **96%** on test dataset
- Reduced processing time
- Automated tagging & labeling process

Comparisons (cont.)

- Comparison to state of the art:
 - Greatly reduced processing time
 - Results are quick & clear
 - Outperforms some existing methods
 - Existing methods require additional hardware or extensive setup
- Limitations
 - Machine Learning
 - Scalability
- Strengths
 - Ease of access
 - Real-time processing
 - Flexibility

Conclusion

- Future plans for the project
 - Website to improve ease of access
 - Currently in development!
 - Flask: running python code using html/css/java
 - Incorporate machine learning

References

- Worlds hardest jigsaw vs. puzzle machine (all white)
- A fully automated greedy square jigsaw puzzle solver
- A probabilistic image jigsaw puzzle solver
- https://medium.com/@tomasz.kacmajor/hough-lines-transform-explained-645f
 eda072ab