NZ
approach
to dairy
genetics
and
methane

Lorna McNaughton, Olivia Spaans

**Funded by:** 





#### **NZ Dairy Industry**

4.7 million cows
Pasture-based (about 83% of the diet)
Seasonal calving – late winter/early spring

Export focussed industry – 90% exported

Breeding for milk components – it costs to remove water





# What have we been up to?











# Seasonal sire lifecycle

Winter/Spring
Summer
Summer/Autumn
Winter/Spring
Spring
Spring
Spring +1 yr

Bulls born
Bulls arrive at LIC/CRV
Methane testing –LIC
Methane testing – CRV
Progeny test herds
Genomic teams

Phenotyping elite bulls



#### **Methane Trial Design**



Bulls 6-15 months of age 3 x weekly liveweight measurements

Holstein-Friesian, Jersey and their crosses Lucerne hay cubes



#### **Pen Layout**







#### **Data**

- 834 animals CH4, DMI (21,22,23)
- Daily methane (CH4; g/day)
  - Measured via Greenfeed visits
  - Visits vary in number and duration
  - Mean time was 987s
     (~17min/day)

- Daily DMI
- Genotypes
  - A mix of panels of varying densities
  - Approximately 6,300 SNPs in common



#### Phenotypic variation in methane yield



We want: Animals that produce less methane for each unit of feed eaten



#### Model

- JWAS in Julia
- MCMC chains of 200,000 plus 25,000 chain burn-in keeping every 10<sup>th</sup> sample
- Y = CG + Year + pJ + het + BullPermEnv + BullBV + e
  - CG day-group-pen assignment
  - Year location-year combination
  - pJ proportion of Jersey breed
  - Het- heterosis coefficient between HF and Jer
  - BullPermEnv random permanent environmental effect of bull
  - BullBV random genetic effect of bull (pedigree or genomic)



## **Genetic Analysis**

|                  | CH4 (g/day)  | DMI (kg/day) |
|------------------|--------------|--------------|
| Heritability     | 0.10         | 0.11         |
|                  | (0.06, 0.14) | (0.07, 0.17) |
| Repeatability    | 0.31         | 0.37         |
|                  | (0.28, 0.34) | (0.33, 0.40) |
| Genetic Variance | 163          | 0.38         |
|                  | (104, 247)   | (0.23, 0.59) |

#### Methane and Dry Matter Intake

|            | Correlations |  |
|------------|--------------|--|
| Genetic    | 0.51         |  |
| Genetic    | (0.23, 0.71) |  |
| Phenotypic | 0.3          |  |
| Пеносуріс  | (0.27, 0.33) |  |

95% lower and upper credibility intervals in parentheses

- Genetic correlations higher than phenotypic correlations
- 95% CI wider for genetic correlations than phenotypic correlations
- All have significant density above zero
- Selection for lower methane would be associated with lower intakes



#### Breeding values

Residual methane that is independent of *genetic* DMI

Selection for residual methane while holding DMI EBV constant

ch4geEBV = ch4EBV + -10.781 \* dmiEBV



### Daughter Validation

Daughters now pregnant rising 2-year-olds

25 sires +ve methane 200 daughters 25 sires
-ve methane
200 daughters







#### Sire phenotypic results



Low methane BV sires had lower daily methane emissions and slightly greater daily feed intake



Mean daily methane yield (g CH4/kg DM) was lower in the sires selected for low methane BV



BUT – how much methane is produced by the daughters of low methane BV sires?



# What do we measure?

Methane, feed intake, liveweight Rumen fluid sample 35-40 day measurement period





#### **Emissions and intake**



#### Methane yield and breeding values



#### 2025 Science Plan

Methane, feed intake, liveweight Rumen fluid sample 65 day measurement period

Milk recording
Detailed fatty acid profile
BCS, Reproduction





#### Quality vs. Quantity of Data

2021 onwards
Bulls- methane and feed intake



Near future
Measure lactating cows
Genetic correlations

AgPac, Sniffers at milking, Anything else







#### BV implementation

1. Bull bvs – sire selection by farmers

More data

Robust genomic breeding values

- 1. Cow bvs allows 'herd level' methane bvs
  - Emission estimation
- 2. Incorporation into national evaluation
  - Economic value carbon price?

We are still in the research phase.



# Fonterra announces new incentives for farmers to reduce emissions

FEBRUARY 18, 2025 6 MINUTE READ #FARM #FINANCE #SUSTAINABILITY

Industry driven; intensity based

Agriculture has been removed from current emissions trading scheme

