J. CHEM. SOC., CHEM. COMMUN., 1993

A Tetraphos Ligand with C₃ Symmetry

Michael J. Baker and Paul G. Pringle*

School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK

An optically active tetraphos ligand of C_3 symmetry and its platinum(0) coordination chemistry are described.

Metal-phosphites have a distinctly different chemistry from metal-phosphines and are known to have superior catalytic activity for hydroformylation and hydrocyanation of alkenes.¹ Despite this, until recently² little phosphite ligand development had taken place. We reported³ that access to optically

active monophosphites is easily achieved via the readily available chlorophosphite 1 (S-configuration). We now report a simple, one-step procedure from 1 for the synthesis of an optically active, tetradentate ligand having C_3 symmetry. Ligands having C_3 symmetry have attracted much interest

Scheme 1

Fig. 1 ³¹P{¹H} NMR spectrum (36.4 MHz, CDCl₃) of complex 7

recently because of their great potential in asymmetric catalysis.⁴

The phosphinophenol 2^5 reacts with chlorophosphite 1 in the presence of Et₃N to give the optically active bidentate ligand 3^{\dagger} (Scheme 1) which, upon addition of [Pt(norbornene)₃], forms the bis chelate platinum(0) complex 4 (Scheme 2). This prompted us to treat the phosphinotriphenol 5^6 with 3

equiv. of 1 in the hope of obtaining the tetradentate ligand 6. Indeed, 6 was readily formed in this way, isolated in good yield (70%) and fully characterised.

Ligand 6 reacts smoothly with [Pt(norbornene)₃] to give the mononuclear species 7, as is unambiguously established from the doublet and quartet in the ³¹P NMR spectrum (see Fig. 1) and the quartet of doublets in the ¹⁹⁵Pt NMR spectrum. No previous examples of a tetradentate ligand encapsulating a tetrahedral platinum(0) centre have been reported.‡ The

[†] All new compounds have been isolated and satisfactory elemental analyses obtained. Selected data: for 3: $\{\alpha\}_D^{20}+155(8)$ (c = 1, THF) (THF = tetrahydrofuran); ${}^{31}P\{^{1}H\}$ (CDCl₃): $\delta(P_A)$ 143.3 (d), $\delta(P_B)$ –15.7 (d), ${}^{4}J(PP)$ 15 Hz. For 4: ${}^{31}P\{^{1}H\}$ (CDCl₃): $\delta(P_A)$ 135.8 (t), ${}^{1}J(PtP)$ 6335 Hz, $\delta(P_b)$ –8.0 (t), ${}^{1}J(PtP)$ 3120 Hz, J(PP) 56 Hz. For 6: $\{\alpha\}_D^{20}+335(17)$ (c = 1, THF); ${}^{31}P\{^{1}H\}$ (CDCl₃): $\delta(P_A)$ 143.8 (d), $\delta(P_B)$ –37.1 (q), ${}^{4}J(PP)$ 5 Hz. For 7: ${}^{31}P\{^{1}H\}$ (CDCl₃): $\delta(P_A)$ 131.4 (d), ${}^{1}J(PtP)$ 6396 Hz, $\delta(P_B)$ –81.1 (q), ${}^{1}J(PtP)$ 2219 Hz, ${}^{2}J(PP)$ 12 Hz. ${}^{195}Pt\{^{1}H\}$ (CDCl₃): $\delta(P_1)$ –1025.2 (q × d) to high frequency of $\Xi(Pt)$ 21.4 MHz. For 8: ${}^{31}P\{^{1}H\}$ (CD₂Cl₂): $\delta(P_A)$ 120.1 (d), ${}^{1}J(PtP)$ 4669 Hz, $\delta(P_B)$ –68.8 (q), ${}^{1}J(PtP)$ 1410 Hz, ${}^{2}J(PP)$ 49 Hz. ${}^{1}H$ (CD₂Cl₂): $\delta(P_1)$ –11.39 (d × q) ${}^{2}J(PH)$ 153.8, 2.5 Hz, ${}^{1}J(PtH)$ 641 Hz. For 9: ${}^{31}P\{^{1}H\}$ (CD₂Cl₂): $\delta(P_A)$ 112.5 (d), ${}^{1}J(PtP)$ 4804 Hz, $\delta(P_B)$ –52.1 (q), ${}^{1}J(PtP)$ 1200 Hz, ${}^{2}J(PP)$ 46 Hz. ${}^{1}H$ (CD₂Cl₂): $\delta(PtCH_3)$ –0.67 (q × d) ${}^{3}J(PH)$ 11.1, 4.9 Hz, ${}^{2}J(PtH)$ 52.0 Hz.

[‡] The tetraphosphine ligand $P(CH_2CH_2PPh_2)_3$ gives binuclear platinum(0) complexes in which the ligand bridges the metal centres; see ref. 7(a).

¹J(PtP) value of 2219 Hz for the central phosphino phosphorus in 7 is very small compared with the corresponding ¹J(PtP) value of 3120 Hz in 4 reflecting the strain present in the fused tricyclic structure of 7.

Complex 7 is protonated by water or HBF₄ to give the cationic hydrido complex 8 and addition of Et₃N to 8 regenerates the neutral 7 (Scheme 2). Hence, 8 is an unusual example of an optically active Brønsted acid. Complex 7 also reacts with an excess of MeI to give the methyl complex 9. In complexes 8 and 9, the ligand 6 is behaving like other tripodal tetradentate ligands in stabilising trigonal bipyramidal geometry at platinum $(\pi)^7$ but their unique feature is that they are optically active and have C_3 symmetry.

We should like to thank the SERC and ICI Fibres Division for financial support and Johnson-Matthey for a loan of platinum salts.

Received, 30th October 1992; Com. 2/05822G

References

- 1 Du Pont, US Pat. 3766237, 1973; Union Carbide, US Pat. 4769498, 1988.
- 2 M. J. Baker, K. N. Harrison, A. G. Orpen, P. G. Pringle and G. Shaw, J. Chem. Soc., Dalton Trans., 1992, 2607 and references cited therein; V. Sum, M. T. Patel, T. Kee and M. Thornton-Pett, Polyhedron, 1992, 11, 1743.
- 3 M. J. Baker and P. G. Pringle, J. Chem. Soc., Chem. Commun., 1991, 1292.
- 4 M. J. Burk and R. L. Harlow, Angew. Chem., Int. Ed. Engl., 1990, 29, 1462 and references cited therein; C. J. Tokar, P. B. Kettler and W. B. Tolman, Organometallics, 1992, 8, 2737; H. Adolsson, K. Wärnmark and C. Moberg, J. Chem. Soc., Chem. Commun., 1992,
- 5 T. B. Rauchfuss, *Inorg. Chem.*, 1977, 16, 2966.6 A. Tzschach and E. Nietzschmann, *Z. Chem.*, 1980, 20, 341.
- (a) M. Peter, M. Probst, P. Peringer and E. P. Müller, J. Organomet. Chem., 1991, 410, C29; (b) B. Brüggeller, Inorg. Chim. Acta, 1987, 129, L27; (c) C. A. Ghilardi, S. Midollini, S. Moneti, A. Orlandini and J. A. Ramirez, J. Chem. Soc., Chem. Commun., 1989, 304.