

叶咏辰 资深FPGA工程师, Polycom

Club Vivado, 2014/10

- 项目背景
- 经验分享
 - Vivado中的Tcl基本知识
 - Vivado下利用Tcl编辑综合后的网表文件
 - Vivado下利用Tcl定制丰富的报告
 - Tcl和Vivado图形界面的交互使用

- 项目背景
- 经验分享
 - Vivado中的Tcl基本知识
 - Vivado下利用Tcl编辑综合后的网表文件
 - Vivado下利用Tcl定制丰富的报告
 - Tcl和Vivado图形界面的交互使用

项目背景

- Polycom 下一代MCU产品
- FPGA主要实现视频切换和图像缩放等功能
- 芯片型号: XC7VX485T

- ➤ Vivado提供了很多策略用于实现时序收敛和资源优化
- ▶ 通过Tcl, Vivado具备了强大的设计分析能力
 - 快速定位设计中的问题
 - 减少设计迭代周期

- 项目背景
- 经验分享
 - Vivado中的Tcl基本知识
 - Vivado下利用Tcl编辑综合后的网表文件
 - Vivado下利用Tcl定制丰富的报告
 - Tcl和Vivado图形界面的交互使用

Vivado网表中的基本对象

- > 每个对象都有自己的属性
- > 有些属性是只读的
- > 有些属性是可编辑的
- 通过属性过滤可查找对象

Vivado中的五个常用Tcl命令

Command	-hierarchical	-regexp	-nocase	-filter	-of_objects
get_cells	√	√	√	√	√
get_nets	✓	√	√	√	√
get_pins	✓	√	√	√	√
get_ports	X	√	√	√	√
get_clocks	X	√	~	√	√

- → -hierarchical ← → -hier
- → -of_objects ← → -of
- > -filter: 使用属性过滤

A.

字符記	非比较
equal	==
not equal	!=
match	=~
not match	!~

B. 可以利用多个属性进行过滤 C. 返回值为二进制类型的属性可进行逻辑操作

- ① get_ports -filter {DIRECTION == IN && NAME !~ "*RESET*"}
- ② get_cells -filter {IS_PRIMITIVE && !IS_SEQUENTIAL}
- 3 get_cells -hier {*State* *reg*}
- ④ get_cells ←→ get_cells *

示例:

输入

get_cells -of [get_nets -of [get_pins -of [get_cells wbDataForInput_IBUF_inst] -filter {DIRECTION==OUT}]] 输出

wbDataForInputReg_reg validForEgressFifo_reg[0]_i_1 wbDataForInput_IBUF_inst

- 项目背景
- 经验分享
 - Vivado中的Tcl基本知识
 - Vivado下利用Tcl编辑综合后的网表文件
 - Vivado下利用Tcl定制丰富的报告
 - Tcl和Vivado图形界面的交互使用

利用Tcl编辑综合后的网表的主要应用

- 在网表中插入触发器(FF)
 - 在逻辑级数较大的时序路径上插入FF
 - 在DSP48E1之前或之后插入FF
 - 在RAMB36E1之前或之后插入FF
- ▶ 降低大扇出信号的扇出
 - 对大扇出网线做寄存器复制
 - 在大扇出网线上插入BUFG
- 修改测试信号
 - 将FPGA内部信号连接到管脚上用于测试
- 删除网表中不需要的对象
 - 删除指定模块或网线

- > 节省运行时间
 - 无需重新综合
- > 快速定位问题
 - 避免重新综合结果的不一致使 问题无法复现

案例1: 在逻辑级数较大的时序路径中插入FF

确定FF的类型

- 新插入FF需要注意的三个问题
 - 实例化名
 - 实体名
 - 初始值
- 原始网表中的FF
 - 实例化名: local_if/data_buffer/raddr_reg
 - file dirname [get_property NAME [get_cells local_if/data_buffer/raddr_reg]]
 - 实体名: FDRE
 - get_property REF_NAME [get_cells local_if/data_buffer/raddr_reg]
 - 初始值: 1'b0
 - get_property INIT [get_cells local_if/data_buffer/raddr_reg]]

设置新插入FF的属性

- 新插入FF的三个属性
 - 实例化名和实体名
 - create_cell -ref FDRE \$new_FF_name
 - 初始值
 - set_property INIT \$INIT_value [get_cells \$new_FF_name]
- 三个很有用的和属性相关的脚本
 - report_property, get_properety and set_property

Property	Type	Read-only	Value
CLASS	string	true	cell
FILE_NAME	string	true	F:/Vivado/CPU/cpu_netlist.srcs
INII	binary	false	1' b0
IS_BLACKBOX	bool	true	0
IS_C_INVERIED	binary	false	1' b0
IS_D_INVERIED	binary	false	1' b0
IS_PRIMITIVE	bool	true	1,
IS_R_INVERIED	binary	false	1' b0
IS_SEQUENTIAL	bool	true	1

LINE_NUMBER	int	true	948114
NAME	string	true	usbEngine1/wb_data_o_reg[9]
PARENT	cell	true	usbEnginel
PRIMITIVE_COUNT	int	true	1
PRIMITIVE_GROUP	string	true	FLOP_LATCH
PRIMITIVE_LEVEL	enum	true	LEAF
PRIMITIVE_SUBGROUP	string	true	flop
PRIMITIVE TYPE	enum	true	FLOP LATCH, flop, FDRE
REF_HAME	string	true	FDRE
STATUS	enum	true	UNPLACED

插入FF之后的网表

案例2: 在大扇出网线上插入BUFG

插入BUFG的Tcl脚本

```
01 proc insert_BUFG {net name {buf_name ""}} {
                                                                          27 if {[llength [get_cells -quiet $buf_name]]!=0} {
     set old net [get nets | net name]
                                                                                 puts "Warning - cell name $buf name already exists."
    if {[llength $old net]!=1} {
       puts "Error - invalid net argument - $net name"
                                                                                set ind 0
04
05
      return 1
                                                                                 while {[llength [get cells -quiet $buf name\ $ind]]!=0} {incr ind}
06
                                                                                set buf name $buf name\ $ind
                                                                          31
     set opin [get pins leaf -of $old_net -filter {DIRECTION==OUT}]
     if {[llength $opin]!=1} {
                                                                          32
       puts "Error - could not find valid driver - $net name"
09
                                                                               puts "Creating cell $buf name (BUFG)"
      return 1
10
11
                                                                              create cell -ref BUFG $buf name
     puts "Net name - $net name - valid!"
                                                                              set new net name $buf_name\ inet
    # create valid bufg name
                                                                              puts "Creating new $new net name"
     set net hier [file dirname $old net]
     set net_parent [get_property PARENT_CELL $old_net]
                                                                              create net $new_net_name
    if {$buf name==""} {
16
                                                                              disconnect net -net $old_net -objects $opin
17
     if {[llength $net parent]==0} {
         puts "$net name is in the top level"
18
                                                                              connect net -net $new net name -objects $opin
         set buf name "my BUFG"
                                                                              connect_net -net $new_net_name -objects [get_pins $buf_name/I]
20
      } else {
                                                                              connect_net -net $old_net -objects [get_pins $buf_name/0]
21
         puts "$net name is not in the top level"
22
         set buf name $net hier/my BUFG
                                                                              puts "Insert BUFG \"$buf name\" Successfully!"
23
                                                                          43
24
```


注意事项

- 如何找到大扇出网线
- 如何获取经过大扇出网线的时序报告
- 如何确定BUFG资源是否可用

- 项目背景
- 经验分享
 - Vivado中的Tcl基本知识
 - Vivado下利用Tcl编辑综合后的网表文件
 - Vivado下利用Tcl定制丰富的报告
 - Tcl和Vivado图形界面的交互使用

Vivado中的各种报告

- 采用图形界面方式可生成的各种报告
 - 时序报告: report_timing_summary
 - 时钟关系报告: report_clock_interaction
 - 资源利用率报告: report_utilization
 - 功耗报告: report_power
- 采用Tcl命令可生成的各种报告
 - 时钟属性报告: report_clocks
 - 时钟资源报告: report_clock_utilization
 - 指定路径的时序报告: report_timing
 - 扇出报告: report_high_fanout_nets
 - 控制集报告: report_control_sets
 - IP状况报告: report_ip_status
 - 功耗优化报告: report_power_opt

对设计分析非常有利!

高扇出网线报告和控制集报告

report_high_fanout_nets -min_fanout 500 -timing -load_types

Net Name	Fanout	Driver Type	Worst Slack(ns)	Worst Delay(ns)	Clock Enable	Set/Reset	Data & Other	Clock
rectify_reset	10287	FDRE	8.665	0.466	0	10287	0	0
cpuEngine/or1200_cpu/or1200_ctrl/017	1017	LUT2	3.649	0.407	0 1	0	1017	1 0
usbEngineO/usb_dma_wb_in/buffer_fifo/05	912	LUT2	5. 428	0.742	0	0	912	0
usbEngine1/usb_dma_wb_in/buffer_fifo/05	912	LUT2	5. 428	0.742	0	0	912	0
usbEngine0/u1/u3/03	560	FDRE	8, 589	0.267	0	0	560	0
usbEngine1/u1/u3/03	560	FDRE	8.589	0.267	0	0	560	0
usbEngineO/n_O_bufO_orig_reg[31]_i_2	528	LVI2	5.367	0.742	0	0	528	0
usbEngine1/n_0_buf0_orig_reg[31]_i_2	528	LUT2	5.367	0.742	0	0	528	0
n_0_reset_reg_reg_rep	525	FDRE	7.174	0.527	0	0	525	0
usbEngineO/n_O_csrO_reg[12]_i_211	512	LUT2	5.346	0.527	0	0	512	0

可定制的资源利用率报告

report_utilization -hierarchical -cells [get_cells usbEngine0/u1]

Instance	Module	Total LUIs	Logic LVIs	LUTRAMs	SRLs	FFs	RAMB36	RAMB18	DSP48 Blocks
ul	usbf_p1_29	1771	1763] 0	8	516	0	0	I 0
ul	usbf_p1_29	1771	1763] 0	8	516	0] 0	į c
(u1)	usbf_p1_29	89	89] 0	0	63	0	0	1 (
u 0	usbf_pd_32	768	760	1 0	8	58	0	0	1 (
u2	usbf_idma_33	218	218] 0	0	218	0] 0	1 0
u 3	usbf_pe_34	696	696	1 0	0	177	1 0	0	1

Switch Name	Property Name	Value	
-x	Ignore User Timing Constraints		
-ntd	Timing Mode	Performance Evaluation	Y
-u	Trim Unconnected Signals		
-detail	Generate Detailed MAP Report		
-pr	Pack I/O Registers/Latches into IOBs	For Outputs Only	•
-power	Power Reduction	Off	•
-activityfile	Power Activity File		

report_clock_utilization

- ➢ 在ISE中,只有选定Map属性中的'Generate Detailed Map Report'才可以看到某个模块的资源利用率
- > 在ISE中,没有单独的时钟资源报告,只能在系统资源利用率中看到
- ➤ 在Vivado中,通过Tcl可以产生各种可定制的报告

可定制的时序报告

```
01 # Description: -through: net pin or cell
02 # Use -through to get timing path and report timing
03 proc thr timing rpt {ListOfEmt} {
    puts [format {%-40s %-40s %-20s %-20s %7s} "Start Point" "End point"
"Launch Clock" "Capture Clock" "Slack"]
    puts [string repeat "-" 140]
    set path [list]
    set class type [list net cell pin]
    foreach thr opt $ListOfEmt {
      set class [get property CLASS $thr opt]
09
      if {[lsearch $class type $class]==-1} {
10
         puts "Error: -through opt must be net, cell or pin!"
11
12
        return 1
13
      set path i get_timing_paths -through $thr_opt -nworst 100 -
14
unique pins
15
       lappend path $path i
16
17
    foreach mypath $path {
18
      set startpoint [get_property STARTPOINT_PIN $mypath]
      set startclock [get property STARTPOINT CLOCK $mypath]
19
      set endpoint [get property ENDPOINT PIN $mypath]
20
21
      set endclock [get property ENDPOINT CLOCK $mypath]
22
      set slack [get property SLACK $mypath]
      puts [format {%-40s %-40s %-20s %-20s %7s} $startpoint $endpoint
$startclock $endclock $slack]
24
25 }
```

- report_timing 和 get_timing_path中 的更多选项
 - -from
 - -to
 - -through
 - -delay_type
 - -max_paths
 - -nworst
 - -unique_pins
 - · -sort_by
 - -slack_lesser_than

- 项目背景
- 经验分享
 - Vivado中的Tcl基本知识
 - Vivado下利用Tcl编辑综合后的网表文件
 - Vivado下利用Tcl定制丰富的报告
 - Tcl和Vivado图形界面的交互使用

将I/O寄存器放入IOB中

- 在ISE中, Map属性里有'Pack I/O registers into IOBs',该属性有4个值:
 - For Inputs Only, For Outputs Only, For Inputs and Outputs, Off
- 在Vivado中,采用Tcl实现同样功能将更为灵活
 - 将指定的输入管脚对应的寄存器放入IOB中
 - set_property IOB true [all_fanout -flat -endpoints_only -only_cells [get_ports lb_sel_pin]]
 - set_property IOB true [get_ports lb_sel_pin]
 - 将所有输入管脚对应的寄存器放入IOB中
 - set_property IOB true [all_fanout -flat -endpoints_only -only_cells [all_inputs]]
 - set_property IOB true [all_inputs]
 - 将指定的输出管脚对应的寄存器放入IOB中
 - set_property IOB true [all_fanin -only_cells -startpoints_only -flat [get_ports led_pins[0]]]
 - set_property IOB true [get_ports led_pins[0]]
 - 将所有输出管脚对应的寄存器放入IOB中
 - set_property IOB true [all_fanin -flat -startpoints_only -only_cells [all_outputs]]
 - set_property IOB true [all_outputs]

设置功耗优化

- 在Vivado里,综合后的任一阶段都可进行功耗 评估
- 功耗评估的两种模式: 向量模式和非向量模式
- 功耗优化的目的
 - 最大限度地降低功耗
 - 最小限度地影响时序
- 关键路径上除BRAM之外都进行功耗优化
 - set_power_opt -exclude_cells [get_cells alu/store_ram]
- 只对指定时钟域进行功耗优化
 - set_power_opt -clocks [get_clocks rx_clk]
- 只对指定类型的模块进行功耗优化
 - set power opt -cell types {bram reg}

Elemer	its		TOTAL	GATED	% GATED
Number	of BRAMs		1168	1168	100.000
Number	of SRLs		3	0	0.000
Number	of Slice	Registers	331788	143699	43.310
BRAM w	rite mode	changes	2348	16	0.681

Vivado里的原理图方式

- 获取当前选择对象的Tcl命令
 - get_selected_objects
- 选中指定对象并在图形界面中查看
 - select_objects
- 释放之前选择的对象
 - unselect_objects
- 快捷键
 - F4: 生成原理图; F6: 显示层次关系; F7: 返回代码; F12: 释放所有选择对象

总结

- Tcl 让Vivado更强大
 - 可以完成ISE无法胜任的工作
- Tcl让Vivado更灵活
 - 类似功能,可以比ISE做得更好
- Tcl让Vivado具有更强的交互性
 - 可以在图形界面和Tcl之间流畅切换

