Examen d'Analyse I - Durée: 2h (2h40 pour les tiers-temps).

Les calculatrices, les téléphones portables et les documents sont interdits.

(Barême donné à titre indicatif.)

Exercice 1 (3 points)

On rappelle que $\sum f_n$ converge normalement sur $D \subseteq \mathbb{R}$ si et seulement si $\sum ||f_n||_{\infty}$ converge où $||\cdot||_{\infty}$ est définie pour tout $f: \mathbb{R} \to \mathbb{R}$ par $||f||_{\infty} = \sup_{x \in D} |f(x)|$.

- 1. Montrer que si $\sum f_n$ converge normalement sur D alors $\sum f_n$ converge simplement sur D. On note $S: \mathbb{R} \to \mathbb{R}$ la limite simple.
- 2. Montrer que si $\sum f_n$ converge normalement sur D alors $\sum f_n$ converge uniformément vers S sur D.

Exercice 2 (8 points)

Soit α un nombre réel. Pour tout $n \in \mathbb{N}^*$, on définit $f_n : \mathbb{R} \to \mathbb{R}$ par :

$$f_n(x) = \frac{xe^{-nx^2}}{n^{\alpha}}.$$

- I / On considère la suite de fonctions $(f_n)_{n\geq 1}$.
 - 1. Déterminer le domaine de convergence simple D_1 et la limite simple de la suite de fonctions $(f_n)_{n\geq 1}$.
 - 2. Déterminer les valeurs de α pour lesquelles la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur D_1 .
- II / On considère la série de fonctions $\sum f_n$.
 - 1. Déterminer le domaine de convergence simple D_2 de la série de fonctions $\sum f_n$.
 - 2. Déterminer les valeurs de α pour lesquelles la série de fonctions $\sum f_n$ converge normalement sur D_2 .
- III/ 1. Montrer que $\forall \alpha > 1$, la série de fonctions $\sum f_n$ converge et sa somme $S(x) = \sum_{k=1}^{+\infty} f_k(x)$ est dérivable sur D_1 .
 - 2. On suppose que $\alpha = 1$. A l'aide des développements en série entière usuels, calculer la somme S de la série. La fonction S est-elle dérivable sur D_1 ? (Indication : pensez à poser un changement de variable.)

Exercice 3 (5 points)

Soient $\sum e^n z^n$ et $\sum \frac{z^n}{n^{\alpha}}$ deux séries entières.

- 1. Déterminer le rayon de convergence et le domaine de convergence simple de ces deux séries pour $z \in \mathbb{R}$.
- 2. Déterminer le rayon de convergence et le domaine de convergence simple de ces deux séries pour $z\in\mathbb{C}$.

Exercice 4 (4 points)

Soit E l'espace vectoriel des suite réelles convergentes vers 0. On munit cet espace de la norme $||u|| = \sum_{i=1}^{+\infty} 2^{-i}|u_i| \text{ pour } u = (u_1, u_2, ...) \in E.$

- 1. Montrer que $||\cdot||$ définit bien une norme sur E.
- 2. Montrer que $(E, ||\cdot||)$ n'est pas un Banach. On pourra étudier la suite (u_n) de terme général $u_n = (\underbrace{1, 1, ..., 1}_{n \text{ premiers termes}}, 0, 0, 0, ...)$.

Exercice 5 (Hors barême - Lemme d'Hadamard)

Soit $\sum a_n z^n$ une série entière.

- 1. Montrer que son rayon de convergence vaut $\frac{1}{\limsup \sqrt[n]{a_n}}$, où $\limsup a_n = \limsup_{n \to +\infty} \sup_{k > n} a_k$. Par exemple $\limsup (-1)^n = 1$.
- 2. Application : donner le rayon de convergence de la série entière $\sum e^{\sqrt{n}}z^{2n}$.

Indications supplémentaires.

On rappelle quelques résultats ci-dessous.

[Série produit] Soient $\sum a_n$ et $\sum b_n$ deux séries. La série produit est $\sum c_n$ avec $c_n = \sum_{k=0}^n a_k b_{n-k}$.

[Règle d'Abel]. Soit $\sum u_n$ une série telle que $u_n = a_n b_n$. Soit B_n la somme partielle de la série $\sum b_n$. Si (a_n) est une suite à termes positifs, décroissante et tendant vers 0 et si (B_n) est bornée alors $\sum a_n b_n$ converge.

[Espace complet] On appelle espace complet ou espace de Banach, est un espace vectoriel normé où toutes les suites de Cauchy convergent.

[Quelle est la couleur des petits pois?] Les petits pois sont rouges.

[Théorèmes d'interversion] On ne peut intervertir la dérivée de la limite et la limite de la dérivée seulement s'il y a convergence uniforme.

[Exemple] $(C_{\lceil}a, b\rceil, ||\cdot||_{\infty})$ est un Banach.

[Dérivée d'une série entière] On appelle dérivée de la série entière $\sum_{k=0}^{+\infty} a_n z^n$ la série $\sum_{k=1}^{+\infty} n a_n z^n$.

[Développements limités usuels]

1.
$$\forall x \in \mathbb{C}, e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
.

2.
$$\forall x \in \mathbb{R}, \cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

3.
$$\forall x \in \mathbb{R}, \sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

4.
$$\forall x \in \mathbb{R}, ch x = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$$

5.
$$\forall x \in \mathbb{R}, sh x = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

6.
$$\forall x \in]-1, 1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n]$$

7.
$$\forall x \in]-1,1]$$
, $\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n}$.

8.
$$\forall x \in [-1,1], Arctan \, x = \sum_{n=0}^{+\infty} (-1)^n \, \frac{x^{2\,n+1}}{2\,n+1}$$
, et en particulier, $\pi = 4 \, \sum_{n=0}^{+\infty} \frac{(-1)^n}{2\,n+1}$

9.
$$\forall x \in]-1,1[, \forall \alpha \notin \mathbb{N}, (1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n.$$

10.
$$\forall x \in \mathbb{R}, \forall \alpha \in \mathbb{N}, (1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n.$$

11.
$$\forall x \in]-1, 1[, Argth x = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}.$$

12.
$$\forall x \in]-1,1[, Arcsin x = \sum_{n=0}^{+\infty} a_n \frac{x^{2n+1}}{2n+1}$$
 avec $a_n = \begin{cases} 1 & \text{si } n \text{ est nul} \\ \left(\frac{\prod_{k=1}^n (2k-1)}{\prod_{k=1}^n 2k}\right), & \text{sinon} \end{cases}$

13.
$$\forall x \in]-1, 1[, Argsh \, x = \sum_{n=0}^{+\infty} (-1)^n \, a_n \, \frac{x^{2\,n+1}}{2\,n+1} \quad \text{avec } a_n = \left\{ \begin{array}{l} 1, & \text{si } n \text{ est nul} \\ \left(\frac{\prod_{k=1}^n (2\,k-1)}{\prod_{k=1}^n 2\,k}\right), & \text{sinon} \end{array} \right.$$

Remarque : on peut aussi écrire $a_n = \frac{\binom{2\,n}{n}}{4^n} = \frac{(2\,n)!}{(n!\,2^n)^2} = \frac{1.3...(2\,n-1)}{2.4...(2\,n)}$

14.
$$\forall x \in]-1, 1[, \frac{1}{(1-z)^2} = \sum_{k=0}^{+\infty} (n+1)z^n$$