Exkurs: Von-Neumann vs Harvard

Prof. Dr.-Ing. Andreas Heil

Licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun Project.

v1.0.0

Lernziele und Kompetenzen

Kurze Wiederholung

- Einteilung des Adressraums
 - Statischer Programm-Code
 - Heap- und Stack
- Konsequenzen
 - Sowohl Speicherzugriffe
 (Variablen lesen/schreiben)
 als auch Instruktionen
 laden, läuft über den
 gleichen Datenbus

Von-Neumann Architektur

Harvard Architektur

Von-Neumann vs Harvard (1)

Von-Neumann

- Von-Neumann-Flaschenhalls
- Heute: Durch Caches kein Engpass mehr, da Befehls- und Speicherzugriffe weitestgehend entkoppelt
- Vorteil: Ein Bus macht das Programmieren einfacher, keine Race-Conditions und Daten-Inkohärenz (deterministisches Programm auch bei Multi-CPU)

Von-Neumann vs Harvard (2)

Harvard

- Parallelisierung von Befehls- und Datenzugriffen
 In Signalverarbeitung oft genutzt (da möglichst reproduzierbares Verhalten erforderlich)
- Nachteil: Mehrere Adressräume müssen verwaltet werden
- Atmel AVR Prozessor (Arduino)

Referenzen

Bildnachweise