COMS 230: Discrete Computational Structures

Homework # 1

Larisa Andrews

September 1, 2017

1. Question 1

- a) It is not sunny and it is not snowing
- b) If it is not sunny and it is snowing, the John will go skiing.
- c) It is sunny and not snowing or it is snowing and John goes skiing.

2. Question 2

- a) p = "Passing the final", q = "attending class regularly", r = "to pass the class" in logical operations: $(p \lor q) \to r$
- b) p = "to pass the class", q = "to attend class regularly"
- in logical operations: $p \to q$
- c) p= "you will pass the class", q= "you attend class regularly", r= "you pass the final"
- in logical operations: $p \leftrightarrow (q \land r)$

3. Question 3

First, a = Alice, b = Bob, c = Cindy, d = Don, and e = Ellen. Also, vg = video games and bb = basketball.

Lets assume b plays vg. If b plays vg then so do a and e according to sentence 5. If a plays vg then so does d according to sentence 4. If e plays vg then so does e according to sentence 3. But according to sentence 2 e and e cannot play the same thing. So therefore e does not play e e.

So b plays bb. So then a plays vg according to sentence 1. According to sentence 4 d will play vg as well. Then according to sentence 2 c plays bb. Then due to the contrapositive of sentence 3 e will play bb.

4. Question 4 Demonstration of truth table

Demonstration of truth table $(\neg p \land (p \rightarrow q)) \rightarrow \neg q)$

p	q	$ (\neg p)$	\land	$(p \to q))$		-
Т	Т	F	F	${ m T}$	${f T}$	F
\mathbf{T}	F	F T	\mathbf{F}	${ m F}$	${f T}$	Τ
\mathbf{F}	Т	Τ	\mathbf{T}	${ m T}$	${f F}$	\mathbf{F}
F	F	Γ	T	${ m T}$	${f T}$	Τ

Because the boldface row is not always true the logical statement $(\neg p \land (p \rightarrow q)) \rightarrow \neg q)$ is not a tautology.

5. Question 5

p	q	r	p	\rightarrow	$(q \to r))$
Τ	Т	Т	Τ	${f T}$	T
\mathbf{T}	Т	F	Т	${f F}$	F
\mathbf{T}	F	Т	Т	${f T}$	${ m T}$
\mathbf{T}	F	F	Т	${f T}$	${ m T}$
\mathbf{F}	Т	Т	F	${f T}$	${ m T}$
F	Т	F	F	${f T}$	F
\mathbf{F}	F	Т	F	${f T}$	${ m T}$
F	F	F	F	${f T}$	${ m T}$

6. Question 6

a) Truth table for

p	q	r	$(p \to r)$	\wedge	$(q \to r)$	$(p \lor q)$	\rightarrow	r
$\overline{\mathrm{T}}$	Т	Т	Т	Т	Τ	Т	Т	Т
Τ	Т	F	F	\mathbf{F}	\mathbf{F}	Τ	\mathbf{F}	\mathbf{F}
${ m T}$	F	$\mid T \mid$	Τ	T	${ m T}$	Т	T	T
${ m T}$	F	F	F	\mathbf{F}	${ m T}$	Т	F	\mathbf{F}
F	Т	Т	Τ	Τ	${ m T}$	Т	T	Τ
\mathbf{F}	Т	F	Τ	\mathbf{F}	F	Т	F	\mathbf{F}
F	F	Т	Τ	Τ	${ m T}$	F	T	Τ
\mathbf{F}	F	F	Т	Τ	${ m T}$	F	\mathbf{T}	F
b)								

Left column Right column (1)
$$(p \to r) \land (q \to r) = (\neg p \lor r) \land (\neg q \lor r)$$
 Table 7.1 (2)
$$= (\neg p \lor \neg q) \lor (r \lor r)$$
 Comm. and Assoc. (3)
$$= (\neg p \lor \neg q) \lor r$$
 idempotent (4)
$$= \neg (p \land q) \lor r$$
 de Morgans (5)
$$= p \land q \to r$$
 Table 7.1 (6)

7. Question 7

p	-		NOR	q	_	(p	\vee	q)
Τ			F	Τ		Τ		
Τ	F	Т	F	F	F	T F	\mathbf{T}	\mathbf{F}
F	$\overline{\mathrm{T}}$	F	F	$\bar{\mathrm{T}}$	F	\mathbf{F}	${\rm T}$	T
F	F	F	${ m T}$	\mathbf{F}	Τ	\mathbf{F}	F	F

To prove NOR is functionally complete we must show how NOR can create a not, or, and and gate.

 $pNORq = \neg(p \lor q)$ as proven by the above truth table

 $\neg p = pNORp = \neg(p \lor p)$ (1) by idempotent

 $p \lor q = \neg(\neg(p \lor q)) = (1)(pNORq)$ (2) by double negation $p \land q = \neg(\neg p \lor \neg q) = (1)((1)p(2)(1)q)$ by de Morgans