Modeling Problem I

Karol Orozco & Charles Hanks

Predicting Province

```
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)

library(tidyverse)
library(formatR)
library(moderndive)
library(skimr)
library(caret)

wine_pinot <- readRDS(gzcon(url(
    "https://github.com/karolo89/machine_learning_assignment/raw/main/pinot.rds")))

#adding log price column
pinot <- wine_pinot %>%
    mutate(lprice = log(price))

pinot <- pinot %>%
    mutate(id = as.factor(id))%>%
    mutate(year = as.factor(year))

summary(pinot)
```

```
id
                                                  points
               province
                                  price
1
         1
             Length:8380
                              Min. : 7.00
                                              Min.
                                                    :80.00
2
         1 Class: character 1st Qu.: 31.00 1st Qu.:88.00
3
         1 Mode :character
                              Median : 45.00
                                              Median :90.00
4
                              Mean : 52.52
                                              Mean :89.98
5
                                       60.00
                                              3rd Qu.:92.00
                              3rd Qu.:
                              Max. :2500.00
                                              Max. :98.00
```

```
(Other):8374
    year
            description
                                   lprice
2014
      :2046 Length:8380
                               Min.
                                     :1.946
2013
      :1819 Class:character 1st Qu.:3.434
           Mode :character
                               Median :3.807
2012 :1505
2015 : 815
                               Mean
                                     :3.779
2011 : 582
                               3rd Qu.:4.094
2010 : 502
                               Max.
                                      :7.824
(Other):1111
```

Preliminary EDA, Feature Engineering Brainstorm, Initial Thoughts

```
pinot %>%
    group_by(province) %>%
    summarize(prov_freq = n(),
              percent_of_ds = round(prov_freq/8380,2))
# A tibble: 6 x 3
 province
                    prov_freq percent_of_ds
  <chr>
                                       <dbl>
                        <int>
1 Burgundy
                         1193
                                       0.14
2 California
                         3959
                                       0.47
3 Casablanca_Valley
                                       0.02
                          131
                          229
                                       0.03
4 Marlborough
5 New_York
                          131
                                       0.02
                         2737
                                       0.33
6 Oregon
  #nearly half of wines are californian, good to know...
  pinot %>%
    filter(str_detect(description, "[00]ak")) %>%
    nrow()
[1] 1301
  #1301/8380 have the word oak in description
  pinot %>% filter(str_detect(description, "[00]ak")) %>%
    group_by(province) %>% summarize(prov_freq = n(),
```

```
oak_perc = round(prov_freq/1301,2))
```

```
# A tibble: 6 x 3
 province prov_freq oak_perc
 <chr>
                     <int>
                              <dbl>
                               0.01
1 Burgundy
                        8
                              0.57
2 California
                      739
3 Casablanca_Valley
                       64
                               0.05
                        32
                              0.02
4 Marlborough
5 New_York
                        9
                               0.01
6 Oregon
                       449
                               0.35
```

A tibble: 6 x 3

```
province
                 avgPrice avgPoints
 <chr>
                   <dbl>
                            <dbl>
1 Burgundy
                    98.0
                             90.4
                    47.5
2 California
                             90.5
3 Casablanca_Valley
                   21.1
                            86.3
                    27.7
                           87.6
4 Marlborough
                             87.7
5 New_York
                    25.7
                    44.9
                             89.5
6 Oregon
```

```
# Burgundy wines are on average significantly more expensive...
```

#which wines do people recommend waiting before drinking? i.e "drink from XXXX"

[#] and casablanca valley wines on average have the lowest price and score.


```
#Some findings from viz:
#california pinot noir production did not begin until ~2008, then exploded!
#before year 2000, likely to be oregon
#burgundy pinots score high around 2005,
#after almost no burgundy pinots between 2000 and 2005
#California pinot game WAY STRONG between 2010 and 2015
#New York pinot score high between 2008 and 2015
#What happened around 2014?? Counts drop across provinces....
```

Preprocessing (3pts)

- 1. Preprocess the dataframe that you created in the previous question using centering and scaling of the numeric features
- 2. Create dummy variables for the year factor column

Running KNN (5pts)

- 1. Split your data into an 80/20 training and test set
- 2. Use Caret to run a KNN model that uses your engineered features to predict province
- use 5-fold cross validated subsampling
- allow Caret to try 15 different values for K
- 3. Display the confusion matrix on the test data

Kappa (2pts)

Is this a good value of Kappa? Why or why not?

Answer: (write your answer here)

Improvement (2pts)

Looking at the confusion matrix, where do you see room for improvement in your predictions?

Answer: (write your answer here)

KNN Model, 5 fold CV resampling:

```
w = wine_pinot %>% mutate(lprice = log(price),
                     fyear = as.factor(year),
                     oak = as.integer(str_detect(description, "[0o]ak")),
                     earth = as.integer(str_detect(description, "[Ee]arth")),
                     cherry = as.integer(str_detect(description, "[Cc]herry")),
                     choc = as.integer(str_detect(description, "[Cc]hocolate")),
                     acidity = as.integer(str detect(description, "[Aa]cidity")),
                    nose = as.integer(str_detect(description, "[Nn]ose")),
                    palate = as.integer(str detect(description, "[Pp]alate")),
                     chocolate = as.integer(str_detect(description, "[Cc]hocolate")),
                     tart = as.integer(str detect(description,"[Tt]art")),
                    brisk = as.integer(str_detect(description, "[Bb]risk")),
                    bramble = as.integer(str detect(description, "[Bb]ramble")),
                     aging = as.integer(str_detect(description, "[Aa]ging")),
                     savory =as.integer(str_detect(description, "[Ss]avory")),
                     clover = as.integer(str_detect(description, "[Cc]love")),
                     aromas = as.integer(str_detect(description, "[Aa]romas")),
                     fruits = as.integer(str_detect(description, "[Ff]ruits")),
                    nose = as.integer(str_detect(description, "[Nn]ose")),
                    points_greater_95 = points >=95,
                    points_less_90 = points <= 90,</pre>
                    price greater 4 = lprice >= 4,
                    price_between_4_3 = lprice < 4 & lprice >= 3,
                    price_less_3 = lprice < 3,</pre>
                     before_2010 = year < 2010,
                     beween 2010 2015 = (year \geq 2010 & year \leq 2015),
                     between_2015_2020 = (year > 2015 & year <= 2020)) %>%
                     select(-id,-price,-description)
set.seed(504)
wine_index <- createDataPartition(w$province, p = 0.8, list = FALSE)
train <- w[ wine_index, ]</pre>
test <- w[-wine_index, ]</pre>
control <- trainControl(method = "cv", number = 5)</pre>
fit <- train(province ~ .,</pre>
    data = train,
```

```
method = "knn",
      tuneLength = 15,
      trControl = control)
  fit
k-Nearest Neighbors
6707 samples
  28 predictor
   6 classes: 'Burgundy', 'California', 'Casablanca_Valley', 'Marlborough', 'New_York', 'Ore
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 5365, 5365, 5367, 5366, 5365
Resampling results across tuning parameters:
     Accuracy
                Kappa
  k
  5 0.6739160 0.4911401
  7 0.6788369 0.4975536
  9 0.6804783 0.4986291
  11 0.6803334 0.4979349
  13 0.6836109 0.5017083
  15 0.6779470 0.4913296
  17 0.6777958 0.4899909
  19 0.6831631 0.4972199
  21 0.6797354 0.4908316
  23 0.6803300 0.4909230
  25 0.6828647 0.4940488
  27 0.6810756 0.4901445
  29 0.6815246 0.4901390
  31 0.6788401 0.4851455
  33 0.6779474 0.4833832
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 13.
  confusionMatrix(predict(fit,test), factor(test$province))
```

Reference

Prediction	Burgundy	${\tt California}$	Casablanca_Valley	Marlborough	New_York
Burgundy	166	19	0	4	2
California	15	616	13	9	11
Casablanca_Valley	1	1	1	0	1
Marlborough	0	0	2	1	0
New_York	0	0	0	0	0
Oregon	56	155	10	31	12

Reference

Prediction	Oregon
Burgundy	36
California	129
Casablanca_Valley	0
Marlborough	3
New_York	0
Oregon	379

Overall Statistics

Accuracy : 0.6952

95% CI : (0.6725, 0.7172)

No Information Rate : 0.4728 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.5167

Mcnemar's Test P-Value : NA

Statistics by Class:

	a.	D 1 (77 0	3 . 6 .	G 3	a 17	** 77
	Class:	Burgundy (Class: Ca	lliornia	Class:	Casabiai	ica_vailey
Sensitivity		0.69748		0.7788			0.0384615
Specificity		0.95749		0.7993			0.9981785
Pos Pred Value		0.73128		0.7768			0.2500000
Neg Pred Value		0.95021		0.8011			0.9850210
Prevalence		0.14226		0.4728			0.0155409
Detection Rate		0.09922		0.3682			0.0005977
Detection Prevalence		0.13568		0.4740			0.0023909
Balanced Accuracy		0.82749		0.7890			0.5183200
	Class:	Marlboroug	gh Class:	New_York	Class:	Oregon	

Sensitivity 0.0222222 0.00000 0.6929 Specificity 0.9969287 1.00000 0.7655

Pos Pred Value	0.1666667	NaN	0.5894
Neg Pred Value	0.9736053	0.98446	0.8369
Prevalence	0.0268978	0.01554	0.3270
Detection Rate	0.0005977	0.00000	0.2265
Detection Prevalence	0.0035864	0.00000	0.3843
Balanced Accuracy	0.5095755	0.50000	0.7292

Group Activity: Naive Bayes Model

Use the top words by province to...

- 1. Engineer more features that capture the essence of Casablanca, Marlborough and New York
 - 2. Look for difference between California and Oregon
- 3. Use what you find to run naive Bayes models that achieve a Kappa that approaches 0.5

```
library(tidytext)
library(caret)
wine = wine_pinot
names(wine) [names(wine) == 'id'] = 'ID'
```

Document term matrix:

```
df <- wine %>%
  unnest_tokens(word, description) %>%
  anti_join(stop_words) %>% # get rid of stop words
  filter(word != "wine") %>%
  filter(word != "pinot") %>%
  count(ID, word) %>%
  group_by(ID) %>%
  mutate(freq = n/sum(n)) %>%
  mutate(exists = (n>0)) %>%
  ungroup %>%
  group_by(word) %>%
  mutate(total = sum(n))
```

Pivot wide and rejoin with wine:

```
wino <- df %>%
  filter(total > 900) %>%
  pivot_wider(id_cols = ID, names_from = word, values_from = exists, values_fill = list(exist)
```

```
merge(select(wine,ID, province), all.y=TRUE) #%>%
  #drop_na()

#wino <- merge(select(wine,ID, province), wino, by="ID", all.x=TRUE) %>%
  # arrange(ID)

#View(wino)
wino <- replace(wino, is.na(wino), FALSE)</pre>
```

Visualizing distribution to select distinct features for provinces:

```
df %>%
  left_join(select(wine, ID, province), by = "ID") %>%
  count(province, word) %>%
  group_by(province) %>%
  top_n(10,n) %>%
  arrange(province, desc(n)) %>%
  ggplot(aes(x = word, y = n, fill = province)) + geom_col() + coord_flip()
```


wino = wino %>% select(ID, province, tart, plum, oak, bodied,black,nose,palate,ripe,cherry

train & test model:

Confusion Matrix and Statistics

Reference

Prediction	Burgundy	California	Casablanca_Valley	Marlborough	New_York
Burgundy	223	142	3	15	5
California	6	481	12	6	15
Casablanca_Valley	0	16	6	2	0
Marlborough	5	17	0	14	1
New_York	1	14	1	0	3
Oregon	3	121	4	8	2

Reference

Prediction	Oregon
Burgundy	271
California	65
Casablanca_Valley	9
Marlborough	11
New_York	3
Oregon	188

Overall Statistics

Accuracy : 0.5469

95% CI : (0.5227, 0.571)

No Information Rate : 0.4728 P-Value [Acc > NIR] : 7.579e-10

Kappa : 0.3651

```
Mcnemar's Test P-Value : < 2.2e-16
```

Statistics by Class:

	Class:	Burgundy Cla	ass: California	Class: Casablan	ca_Valley
Sensitivity		0.9370	0.6081		0.230769
Specificity		0.6962	0.8821		0.983607
Pos Pred Value		0.3384	0.8222		0.181818
Neg Pred Value		0.9852	0.7151		0.987805
Prevalence		0.1423	0.4728		0.015541
Detection Rate		0.1333	0.2875		0.003586
Detection Prevalence		0.3939	0.3497		0.019725
Balanced Accuracy		0.8166	0.7451		0.607188
	Class:	Marlborough	Class: New_York	Class: Oregon	
Sensitivity		0.311111	0.115385	0.3437	
Specificity		0.979115	0.988464	0.8774	
Pos Pred Value		0.291667	0.136364	0.5767	
Neg Pred Value		0.980923	0.986069	0.7335	
Prevalence		0.026898	0.015541	0.3270	
Detection Rate		0.008368	0.001793	0.1124	
Detection Prevalence		0.028691	0.013150	0.1949	
Balanced Accuracy		0.645113	0.551924	0.6106	

Creating more features

Test 2

```
method = "naive_bayes",
   tuneGrid = expand.grid(usekernel = c(T,F), laplace = T, adjust = T),
   metric = "Kappa",
   trControl = trainControl(method = "cv"))
fit
```

Naive Bayes

6707 samples

15 predictor

6 classes: 'Burgundy', 'California', 'Casablanca_Valley', 'Marlborough', 'New_York', 'Ore

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 6035, 6037, 6036, 6037, 6037, 6038, ...

Resampling results across tuning parameters:

usekernel Accuracy Kappa FALSE 0.3049002 0.2057034 TRUE 0.5937064 0.3956332

Tuning parameter 'laplace' was held constant at a value of TRUE

Tuning parameter 'adjust' was held constant at a value of TRUE
Kappa was used to select the optimal model using the largest value.
The final values used for the model were laplace = TRUE, usekernel = TRUE
and adjust = TRUE.

```
confusionMatrix(predict(fit, test),factor(test$province))
```

Confusion Matrix and Statistics

Reference

Prediction	Burgundy	${\tt California}$	${\tt Casablanca_Valley}$	${\tt Marlborough}$	New_York
Burgundy	233	151	6	27	7
California	3	601	18	16	19
Casablanca_Valley	0	0	0	0	0
Marlborough	0	0	0	0	0
New_York	0	0	0	0	0
Oregon	2	39	2	2	0

Reference Prediction Oregon Burgundy 231 California 182 Casablanca_Valley 0 Marlborough 0 New_York 0

Overall Statistics

Oregon

Accuracy : 0.5786

134

95% CI : (0.5545, 0.6024)

No Information Rate : 0.4728 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.3731

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class:	Burgundy C	lass: California	Class: Casablar	ca_Valley
Sensitivity		0.9790	0.7598		0.00000
Specificity		0.7059	0.7302		1.00000
Pos Pred Value		0.3557	0.7163		NaN
Neg Pred Value		0.9951	0.7722		0.98446
Prevalence		0.1423	0.4728		0.01554
Detection Rate		0.1393	0.3592		0.00000
Detection Prevalence		0.3915	0.5015		0.00000
Balanced Accuracy		0.8425	0.7450		0.50000
	Class:	Marlborough	h Class: New_York	Class: Oregon	
Sensitivity		0.0000	0.00000	0.2450	
Specificity		1.0000	1.00000	0.9600	
Pos Pred Value		Nal	N NaN	0.7486	
Neg Pred Value		0.973	1 0.98446	0.7236	
Prevalence		0.0269	9 0.01554	0.3270	
Detection Rate		0.000	0.00000	0.0801	
Detection Prevalence		0.000	0.00000	0.1070	
Balanced Accuracy		0.5000	0.50000	0.6025	

#Higher kappa value, but now model is not predicting any of the sparse provinces