Inhalt Stetige Funktionen, Polynome, stetige Funktionen auf Intervallen, Grenzwerte bei Funktionen

1 Stetige Funktionen

Definition Sei $D \subseteq \mathbb{R}$, $D \neq \emptyset$. Eine Abbildung $f: D \to \mathbb{R}$ heißt (reelle) Funktion auf D.

Feststellung Seien $f, g: D \to \mathbb{R}$ reelle Funktionen auf D und $a \in \mathbb{R}$. Dann sind $f + g: D \to \mathbb{R}$, (f+g)(x) := f(x) + g(x), $af: D \to \mathbb{R}$, (af)(x) := af(x), $fg: D \to \mathbb{R}$, (fg)(x) := f(x)g(x), ebenfalls reelle Funktionen auf D. Gilt $g(x) \neq 0$ für alle $x \in D$, so ist $\frac{f}{g}: D \to \mathbb{R}$, $(\frac{f}{g})(x) := \frac{f(x)}{g(x)}$ auch eine reelle Funktion auf D.

Anschauliche Vorstellung Eine Funktion f verhält sich stetig, wenn "kleine" Änderungen des Arguments x nur zu "kleinen" Änderungen des Funktionswertes f(x) führen. Insbesondere soll f keine Sprungstellen haben.

Definition Sei $D \subseteq \mathbb{R}$, $a \in D$ und $f: D \to \mathbb{R}$ eine Funktion. f heißt stetig in a, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ mit $|x - a| < \delta$ gilt: $|f(x) - f(a)| < \varepsilon$. Sei $E \subseteq D$, $E \neq \emptyset$. f heißt stetig auf E, wenn f in allen $a \in E$ stetig ist. f heißt stetig, wenn f auf D stetig ist.

Anschauliche Deutung f ist stetig in a, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass alle $x \in]a - \delta, a + \delta[\cap D \text{ von } f$ in den ε -Streifen um f(a) abgebildet werden.

Beispiele a) Für $c \in \mathbb{R}$ ist die konstante Funktion \widehat{c} mit $\widehat{c}(x) := c$ für alle $x \in \mathbb{R}$ stetig. Beweis: Zu $\varepsilon > 0$ sei $\delta > 0$ beliebig. Es ist $|\widehat{c}(x) - \widehat{c}(a)| = |c - c| = 0 < \varepsilon$.

- b) id : $\mathbb{R} \to \mathbb{R}$, $x \mapsto x$ ist stetig in jedem $a \in \mathbb{R}$. Beweis: Zu $\varepsilon > 0$ sei $\delta := \varepsilon$. Für alle x mit $|x - a| < \delta$ gilt dann $|x - a| < \delta = \varepsilon$.
- c) Jede Funktion $f: \mathbb{Z} \to \mathbb{R}$ ist stetig. Beweis: Sei $a \in \mathbb{Z}$, $\varepsilon > 0$. Wir setzen $\delta := \frac{1}{2}$. Für jedes $x \in \mathbb{Z}$ mit $|x - a| < \frac{1}{2}$ ist x = a. Also gilt $|f(x) - f(a)| = 0 < \varepsilon$.
- d) Die "Sprungfunktion" $f: \mathbb{R} \to \mathbb{R}$, $f(x) := \begin{cases} 0 & \text{für } x < 0 \\ 1 & \text{für } x \ge 0 \end{cases}$ ist in 0 nicht stetig.

Beweis: Zu zeigen: $\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in \mathbb{R} : \ |x| < \delta \ \text{und} \ |f(x) - f(0)| \ge \varepsilon$. Sei $\varepsilon := \frac{1}{2}$. Sei $\delta > 0$ beliebig. Es sei $x := -\frac{\delta}{2}$. Dann gilt $|x| < \delta \ \text{und} \ |f(x) - f(0)| = |0 - 1| = 1 \ge \varepsilon$.

Die Sprungfunktion ist in jedem $a \in \mathbb{R}$, $a \neq 0$ stetig.

Beweis: Sei $a \in \mathbb{R}$, $a \neq 0$. Sei $\varepsilon > 0$ gegeben. Wir setzen $\delta := |a|$. Sei $x \in \mathbb{R}$ mit $|x-a| < \delta$, also -|a| < x-a < |a|. Ist a > 0, so ist x-a > -a, also x > 0 und damit $|f(x) - f(a)| = |1-1| = 0 < \varepsilon$. Ist a < 0, so ist x-a < |a| = -a, also x < 0 und damit $|f(x) - f(a)| = |0-0| = 0 < \varepsilon$.

Satz 1 (Folgenkriterium) Sei $a \in D \subseteq \mathbb{R}$. Sei $f : D \to \mathbb{R}$ gegeben. Dann gilt: $f : D \to \mathbb{R}$ stetig in $a \iff F\ddot{u}r$ jede Folge (x_n) in D mit $\lim_{n \to \infty} x_n = a$ gilt $\lim_{n \to \infty} f(x_n) = f(a)$.

Beweis: "⇒": Sei f stetig in a und (x_n) eine Folge in D mit $\lim_{n\to\infty} x_n = a$. Sei $\varepsilon > 0$. Da f in a stetig ist, gibt es ein $\delta > 0$, so dass für alle $x \in D$ mit $|x-a| < \delta$ gilt: $|f(x)-f(a)| < \varepsilon$. Wegen $\lim_{n\to\infty} x_n = a$ gibt es zu δ ein n_0 , so dass für alle $n \ge n_0$ gilt: $|x_n-a| < \delta$. Für alle $n \ge n_0$ folgt dann $|f(x_n)-f(a)| < \varepsilon$. Also konvergiert $(f(x_n))$ gegen f(a). " ε ": Annahme: f ist nicht stetig in a. Dann gibt es ein $\varepsilon > 0$, so dass es zu jedem $\delta > 0$ ein $x \in D$ gibt mit $|x-a| < \delta$ und $|f(x)-f(a)| \ge \varepsilon$. Insbesondere gibt es zu jedem $n \in \mathbb{N}$ ein $x_n \in D$ mit $|x_n-a| < \frac{1}{n}$ und $|f(x_n)-f(a)| \ge \varepsilon$. Dann konvergiert $(f(x_n))$ nicht gegen f(a). Wegen $|x_n-a| < \frac{1}{n}$ konvergiert (x_n) gegen a, Widerspruch zur Voraussetzung!

Aus den Rechenregeln für konvergente Folgen ergeben sich mit dem Folgenkriterium

Rechenregeln für stetige Funktionen Seien $a \in D \subseteq \mathbb{R}$, $\alpha \in \mathbb{R}$ und $f, g : D \to \mathbb{R}$ stetig in a. Dann sind auch f + g, αf , $f \cdot g$ und $\frac{f}{g}$, falls $g(x) \neq 0$ für $x \in D$, stetig in a. Außerdem gilt die Kettenregel: Ist $h : E \to \mathbb{R}$ mit $f(D) \subseteq E$ stetig in f(a), so ist $h \circ f$ stetig in a.

Beweis der Kettenregel: Sei (x_n) eine beliebige Folge in D mit $\lim_{n\to\infty} x_n = a$. Da f in a stetig ist, konvergiert $(f(x_n))$ gegen f(a) (nach Folgenkriterium). Da h in f(a) stetig ist, konvergiert $(h(f(x_n)))$ gegen h(f(a)). Das Folgenkriterium liefert: $h \circ f$ ist stetig in a.

2 Polynome

Definition Eine Polynomfunktion (kurz: Polynom) ist eine Funktion der Form $P : \mathbb{R} \to \mathbb{R}$, $x \mapsto P(x) := \sum_{k=0}^{n} a_k x^k$ mit $n \in \mathbb{N}^0$ und $a_k \in \mathbb{R}$ für $k \in \{0, 1, \dots, n\}$.

Da das Produkt stetiger Funktionen stetig ist, sind mit id auch die Funktionen $x \mapsto x^2$, $x \mapsto x^3, \dots, x \mapsto x^k$ (für alle $k \in \mathbb{N}$) stetig. Auch konstante Funktionen, reelle Vielfache und Summen stetiger Funktionen sind stetig. Daraus folgt

Satz 2 Polynomfunktionen sind stetig auf \mathbb{R} .

3 Stetige Funktionen auf Intervallen

Satz 3 Sei $a \in D \subseteq \mathbb{R}$, sei $f: D \to \mathbb{R}$ stetig in a. Ist f(a) > 0, so gibt es ein $\delta > 0$, so dass für alle $x \in]a - \delta, a + \delta[\cap D \text{ gilt: } f(x) > 0$. Ist f(a) < 0, so gibt es ein $\delta > 0$, so dass f(x) < 0 für alle $x \in]a - \delta, a + \delta[\cap D \text{ gilt.}$

Beweis: Sei f(a) > 0. Es sei $\varepsilon := \frac{1}{2}f(a)$. Da f in a stetig ist, gibt es ein $\delta > 0$, so dass für alle $x \in]a - \delta, a + \delta[\cap D \text{ gilt: } |f(x) - f(a)| < \varepsilon$. Für solche x ist $-\varepsilon < f(x) - f(a) < \varepsilon$, es folgt $f(x) > f(a) - \varepsilon = 2\varepsilon - \varepsilon = \varepsilon > 0$.

Der Fall f(a) < 0 wird durch Betrachtung von -f auf den Fall f(a) > 0 zurückgeführt.

Satz 4 (Nullstellensatz) Seien $a, b \in \mathbb{R}$, a < b. Es sei $f : [a, b] \to \mathbb{R}$ stetig mit f(a) < 0 und f(b) > 0. Dann gibt es ein $c \in]a, b[$ mit f(c) = 0.

Beweis: Sei $N := \{x \in [a,b] \mid f(x) \leq 0\}$. Es existiert $c := \sup N$. Es ist $c \in [a,b]$. Annahme: f(c) < 0. Wegen f(b) > 0 ist $c \neq b$. Nach Satz 3 existiert ein $\delta > 0$ mit f(x) < 0 für $x \in]c - \delta, c + \delta[\cap [a,b]$. Insbesondere existiert ein x' > c in [a,b] mit f(x') < 0. Dann ist $x' \in N$ und x' > c. Also ist c keine obere Schranke von N, Widerspruch! Annahme: f(c) > 0. Wegen f(a) < 0 ist $c \neq a$. Es gibt wieder ein $\delta > 0$, so dass für $x \in]c - \delta, c + \delta[\cap [a,b]$ gilt: f(x) > 0. Wir wählen ein $x' \in]c - \delta, c[\cap [a,b]$. Für jedes $x \in N$ ist $x \leq c$. In [x',c] ist f > 0, also ist $x \notin [x',c]$ und damit x < x'. Also ist x' eine obere Schranke von N. Wegen x' < c ist das ein Widerspruch zu $c = \sup N$. Also ist f(c) = 0.

Satz 5 (Zwischenwertsatz) Seien $a, b \in \mathbb{R}$, a < b. Es sei $f : [a,b] \to \mathbb{R}$ stetig. Dann gibt es zu jedem $y \in]f(a), f(b)[$ (bzw. $y \in]f(b), f(a)[$) ein $c \in]a, b[$ mit f(c) = y.

Beweis: Es gelte etwa f(a) < f(b). Es sei g(x) := f(x) - y. Dann ist g stetig mit g(a) < 0, g(b) > 0. Nach dem Nullstellensatz (Satz 4) gibt es ein $c \in (a, b)$ mit g(c) = (a, b), also f(c) = (a, b).

Ohne Beweis erwähnen wir den Satz vom Minimum und Maximum:

Satz 6 Seien $a, b \in \mathbb{R}$, $a \leq b$. Sei $f : [a, b] \to \mathbb{R}$ stetig. Dann nimmt f Infimum und Supremum an, d.h. es gibt $c, d \in [a, b]$ mit $f(c) = \inf f([a, b])$ und $f(d) = \sup f([a, b])$.

4 Grenzwerte bei Funktionen

Seien $D \subseteq \mathbb{R}$, $a \in \mathbb{R}$. Es wird nicht mehr $a \in D$ verlangt, aber:

Voraussetzung a ist ein $H\ddot{a}ufungspunkt$ von D, d.h. es gibt eine Folge (x_n) in D mit $x_n \neq a$ für alle n und $\lim_{n \to \infty} x_n = a$.

Sei z. B. D = I ein Intervall mit mehr als einem Punkt, $a \in I$ oder a ein Randpunkt von I.

Definition Sei $f: D \to \mathbb{R}$ eine Funktion. $b \in \mathbb{R}$ heißt *Grenzwert von* f *in* a, wenn es eine in a stetige Funktion $F: D \cup \{a\} \to \mathbb{R}$ gibt mit F(x) = f(x) für alle $x \in D$, $x \neq a$ und F(a) = b.

Satz 7 Ist b Grenzwert von f in a, so ist b eindeutig bestimmt.

Schreibweise $b = \lim_{x \to a} f(x)$ oder $f(x) \to b$ für $x \to a$.

Beweis: Seien b,c Grenzwerte von f in a. Dann gibt es in a stetige Funktionen F,G: $D \cup \{a\} \to \mathbb{R}$ mit F(x) = f(x) = G(x) für alle $x \in D$, $x \neq a$ und F(a) = b, G(a) = c. Annahme: $b \neq c$, etwa b < c. Sei H := G - F. Dann ist H in a stetig mit H(a) = c - b > 0. Nach Satz 3 gibt es ein $\delta > 0$ mit H(x) > 0 für alle $x \in]a - \delta, a + \delta[\cap D$. Da (nach Voraussetzung) eine Folge (x_n) in $D \setminus \{a\}$ mit $\lim_{n \to \infty} x_n = a$ existiert, gibt es ein n mit $x_n \in]a - \delta, a + \delta[$. Dann ist $H(x_n) > 0$, also $G(x_n) > F(x_n)$, Widerspruch zu $x_n \in D \setminus \{a\}$.

Beispiele a) Sei $a \in D$, a Häufungspunkt von D. Dann gilt:

 $f \text{ stetig in } a \iff \lim_{x \to a} f(x) = f(a).$

Beweis: " \Rightarrow ": F := f erfüllt die Bedingung der Definition.

" \Leftarrow ": Es gibt eine in a stetige Funktion $F: D \to \mathbb{R}$ mit F(x) = f(x) für $x \in D \setminus \{a\}$ und F(a) = f(a), also ist F = f.

b) Sei $f: \mathbb{R} \to \mathbb{R}$, f(x) := 0 für $x \neq 0$, f(x) := 1 für x = 0. Dann ist $\lim_{x \to 0} f(x) = 0$.

Beweis: $\widehat{0}: \mathbb{R} \to \mathbb{R}, x \mapsto 0$ ist stetig und $\widehat{0}(x) = f(x)$ für alle $x \neq 0$.

c) Sei f die Sprungfunktion $f: \mathbb{R} \to \mathbb{R}$, f(x) := 0 für x < 0, f(x) := 1 für $x \ge 0$. Dann hat f in 0 keinen Grenzwert.

Beweis: Annahme: Es gibt eine in 0 stetige Funktion $F: \mathbb{R} \to \mathbb{R}$ mit F(x) = f(x) für alle $x \neq 0$. Für die Folgen $(\frac{1}{n}), (-\frac{1}{n})$ gilt dann (nach dem Folgenkriterium)

$$F(0) = \lim_{n \to \infty} F(\frac{1}{n}) = \lim_{n \to \infty} f(\frac{1}{n}) = 1, \quad F(0) = \lim_{n \to \infty} F(-\frac{1}{n}) = \lim_{n \to \infty} f(-\frac{1}{n}) = 0,$$

also 1 = 0, Widerspruch!

Ohne Beweis notieren wir noch:

Satz 8 $\lim_{x\to a} f(x) = b \iff F\ddot{u}r \text{ jede } Folge\ (x_n) \ in\ D\setminus\{a\} \ mit\ \lim_{n\to\infty} x_n = a \ gilt\ \lim_{n\to\infty} f(x_n) = b.$