INSTITUTO POLITÉCTINO NACIONAL -Unidad Profesional interdisciplinaria de Ingeniería y Tecnologías Avanzadas

PROYECTO TERMINAL:

SIMULADOR DE MODELOS DE TRÁFICO PARA NODOS IOT EN UNA RED CELULAR DE 5G

Autores: Asesores:

Luis Fernando Salazar Ordoñez Dr. Domingo Lara Rodriguez Rolando Sotelo Alarcon Dr. Noe Torres Cruz

> Una tesis presentada en cumplimiento de los requisitos para el grado de Ingeniería en Telemática

> > CDMX, Julio 2020

Resumen

Resumen: En este documento se presenta el desarrollo de un simulador a nivel de sistema, programado bajo el paradigma de eventos discretos, que permite modelar el servicio que la red de comunicación celular de quinta generación (5G), ofrece a nodos de Internet de las cosas (IoT). El simulador se enfocó en el caso de uso mIoT, el cual comprende principalmente de nodos IoT estáticos de baja complejidad que además se encuentran en gran cantidad dentro de los escenarios de esta red. La arquitectura del simulador contempló cuatro módulos clave para su ejecución: un modelo de despliegue de UEs, un modelo de canal, un esquema de acceso múltiple al medio no ortogonal y modelos de tráfico adecuados para modelar distintos servicios. Asimismo, se consideró el fundamentar la fiabilidad de los resultados obtenidos por el simulador mediante la previa prueba e implementación de modelos de tráfico ya estudiados en la literatura concerniente al desempeño de sistemas celulares. Con los resultados del simulador se determinaron qué configuraciones y parámetros iniciales de la arquitectura de red propuesta satisfacen una óptima calidad de servicio (QoS) para el caso de uso mIoT.

Palabras clave: mMTC, NB-IoT, PD-NOMA, 5G, simulador de eventos discretos, QoS. *Abstract*:

... Keywords: mMTC, NB-IoT, PD-NOMA, 5G, simulador de eventos discretos, QoS.

TODO: Realizar la actualización del abstract y agregar su traducción al ingles

A grade cimientos

TODO: FALTAN AGRADECIMIENTOS

Agradecimientos				
Luis Fernando Salazar Ordoñez:				
•••				
Rolando Sotelo Alarcon:				

Índice general

Re	esum	nen en	III
Ag	grade	ecimientos	V
1.	Intr	roducción	1
	1.1.	ANTECEDENTES	1
	1.2.	PLANTEAMIENTO DEL PROBLEMA	2
	1.3.	OBJETIVOS	3
		1.3.1. OBJETIVO GENERAL	3
		1.3.2. OBJETIVOS ESPECÍFICOS	4
	1.4.	JUSTIFICACIÓN	4
	1.5.	PROPUESTA DE SOLUCIÓN	5
	1.6.	ALCANCES	7
2.	Mar	rco Teórico	9
	2.1.	MODELADO DEL DESPLIEGUE CELULAR	9
		2.1.1. Procesos puntuales (PP)	10
		2.1.2. Procesos de Poisson	11
		2.1.3. Procesos Puntuales de Poisson (PPP)	12
		2.1.4. Geometría Clásica Celular	12
		2.1.5. Planeación Celular	13
		2.1.6. Planeación de frecuencia	15
		2.1.7. Interferencia en los sistemas de comunicaciones	17
		2.1.8. Capacidad en los sistemas de comunicaciones	19
	2.2.	MODELADO DEL CANAL CELULAR	20
		2.2.1. Relaciones Generales de Propagación	21
		2.2.2. Pérdida por trayectoria en el Espacio Libre (FSPL, Free Space Path Loss)	21
		2.2.3. Caracterización del canal de radio	22
	2.3.		26
		2.3.1. OMA	26
		2.3.2. NOMA	26
		2.3.3. Interfaz de Radio	29
	2.4.		
		VIL	30
	2.5.	SISTEMAS DE COMUNICACIONES MÓVILES DE QUINTA GENERACIÓN	
		(5C)	21

	2.6.	INTER	NET DE LAS COSAS (IoT)
	2.7.		LADO DEL TRÁFICO EN TELECOMUNICACIONES 34
		2.7.1.	Caracterización del Tráfico
		2.7.2.	Modelado de tiempos entre llegadas
		2.7.3.	Notación Kendall
	2.8.	SIMUI	ACIÓNES A NIVEL DE SISTEMA
	2.9.	SIMUI	ACIONES ORIENTADAS A EVENTOS DISCRETOS
		2.9.1.	Lenguajes de Programación para simulaciones orientadas a eventos dis-
			cretos(DES)
		2.9.2.	Python
			Multiprocesamiento
	2.10.	. ORGA	NISMOS INTERNACIONALES DE ESTANDARIZACIÓN 41
3.	Esta	ado del	Arte 43
4.	Aná		47
	4.1.	REDE	m S~5G/IoT
	4.2.	CLASI	FICACIÓN Y ANÁLISIS DE LOS ÁMBITOS DE IoT 48
			Ciudades inteligentes (Smart City):
		4.2.2.	Ambiente inteligente (Smart Environment)
			Energía inteligente (Smart Energy):
			Transporte y movilidad inteligentes (Smart Transport and Mobility): 51
	4.3.		CTERÍSTICAS DEL ESCENARIO A IMPLEMENTAR 51
			Análisis de las aplicaciones de IoT y selección de casos considerados 52
			Análisis de las tecnologías para IoT y selección de casos considerados 53
	4.4.		ISIS DEL ESTÁNDAR NB-IoT
			Modos de operación
			Bandas de frecuencia
			Clases de Potencia
			Modos de transmisión en enlace ascendente (UL)
			Indicadores clave de rendimiento (KPIs)
		4.4.0.	Características del tráfico de paquetes
			Informes de excepción
	4 5	A NI Á T	Informes periódicos
	4.5.		
			MODELO DE DESPLIEGUE DE BSs Y UEs
		4.0.5.	ESQUEMA DE ACCESO MÚLTIPLE AL MEDIO
		4.5.4.	MODELOS DE TRÁFICO
		4.0.4.	Modelos de tráfico agregado
			Modelos de tráfico fuente
			Moderos de Manco Idente

5 .	Dise	Diseño				
	5.1.	MODELO DE SISTEMA PROPUESTO	79			
		5.1.1. Uso de una geometría estocástica, es decir, despliegue de UEs siguiendo				
		un PPP	80			
		5.1.2. Pérdidas de canal usando un modelo CI para ambientes exteriores	81			
		5.1.3. Incorporación de un esquema de acceso al medio no ortogonal (NOMA)				
		usando una técnica de agrupamiento de usuarios	82			
		5.1.4. Diferentes modelos de tráfico que simulen distintos servicios para NB-IoT	82			
		5.1.5. Parámetros generales del simulador	86			
	5.2.		86			
6.	Imp	lementación	89			
	6.1.	Generación de una geometría estocastica	89			
		6.1.1. Escenario de Prueba de PPP	90			
	6.2.	Generación de ganancias de canal implementando pérdidas por distancia (PLE)				
		y desvanecimiento Rayleigh	91			
		6.2.1. Escenario de Prueba de la pérdida por trayectoria	91			
		6.2.2. Escenario de Prueba del Modelo de canal CI	91			
	6.3.	Esquema de acceso múltiple al medio no ortogonal, basado en potencia (PD-NOMA)	93			
		6.3.1. Algoritmo de Agrupación de dispositivos uRLLC y mMTC	93			
		6.3.2. Algoritmo de Asignacion de Subportadoras	96			
		6.3.3. Escenario de Prueba de NOMA	96			
	6.4.		101			
			101			
			101			
	6.5.		102			
	6.6.		103			
			103			
			103			
		6.6.3. Descripción de los <i>logs</i> de salida				
	6.7.	Optimización de tiempos de simulación	104			
7.	Res	ultados	L 0 5			
	7.1.		107			
			107			
			107			
	7.2.		107			
			107			
			107			
	7.3.		107			
			107			
			107			
	7.4.		107			
		7.4.1. Parámetros de entrada	107			

		7.4.2. Resultados	107
	7.5.	Escenario V	107
		7.5.1. Parámetros de entrada	107
		7.5.2. Resultados	107
	7.6.	Escenario VI	107
		7.6.1. Parámetros de entrada	107
		7.6.2. Resultados	107
	7.7.	Escenario VII	107
		7.7.1. Parámetros de entrada	107
		7.7.2. Resultados	107
	7.8.	Escenario VIII	107
		7.8.1. Parámetros de entrada	107
		7.8.2. Resultados	107
	7.9.		107
		7.9.1. Parámetros de entrada	107
		7.9.2. Resultados	107
8.	Con	aclusiones	109
•			109
		Específicas	
Α.			111
	A.1.		111
			112
	A.2.	IMPLEMENTACIÓN DE DISTRIBUCIONES UTILIZADAS EN EL SIMULA-	
			113
			113
			114
		A.2.3. Generación de variable aleatoria tipo <i>Pareto</i>	116
В.	Sim	ulación - Geometría celular hexagonal	119
		Generación de despliegue Uniforme de usuarios	119
		Análisis de Geometría Celular un una celda	
Bi	hliog	grafía	121
וע	niing	orania	141

Índice de figuras

2.1.	Diferentes estrategias de despliegue para BSs	10
2.2.	Clusterización de celdas con un factor de reúso de 3 celdas	14
2.3.	Localización de celdas co-canal con distintos factores de reúso	15
2.4.	Sistema celular con celdas de tamaño no uniforme	16
2.5.	Procedimiento de generación de coeficientes de canal	20
2.6.	Propagación de señales celulares en ambientes urbanos	23
2.7.	Ejemplo de niveles de señal con pérdidas por trayectoria, desvanecimiento lento	
	y desvanecimiento rápido	23
2.8.	Cancelación Sucesiva de Interferencia (SIC)	27
2.9.	Ejemplo del esquema NOMA en un enlace de bajada con dos usuarios y una	
		28
		28
2.11.	Diferentes tipos de acceso múltiple al medio ocupados en generaciones anteriores	
		30
2.12.	Comparación de diversos escenarios de uso de la tecnología 5G por la UIT-R, el	
0.40	· · · · · · · · · · · · · · · · · · ·	32
		38
		40
2.15.	Socios Internacionales con los que colabora la 3GPP	41
3.1.	Modelo de sistema para el sistema de enlace descendente NOMA	45
3.2.	*	45
3.3.	Grupos NOMA que incluyen dispositivos mMTC y URLLC, donde los dispositi-	
		46
4.1.		56
4.2.		58
4.3.	· · · · · · · · · · · · · · · · · · ·	59
4.4.	V I	60
4.5.	*	61
4.6.		73 75
4.7.		75 76
4.8.	Modelo CMMPP eli dispositivos MTC	10
5.1.	Diagrama general de bloques del simulador, constando principalmente de 4 módulos.	80
5.2.		83
5.3.	Generación de tráfico con modelo CMMPP	86

5.4.	Ejemplo ilustrativo de un escenario mlo'l' unicelular aproximado, usando agrupaciones de 4 dispositivos	88
6.1.	Distribución espacial de puntos PPP en un círculo 2D	90
6.2.	Distribución espacial de puntos PPP en un círculo 2D	90
6.3.	Pérdidas por trayectoria según el Modelo CI	92
6.4.	Ganancias de Canal Modelo CI	93
6.5.	Ejemplo ilustrativo del ordenamiento de usuarios en los grupos NOMA	94
6.6.	Ejemplo ilustrativo de la distribución de potencia para PD-NOMA en <i>Multitone</i>	98
A.1.	Relaciones entre algunas de las distribuciones de probabilidad univariadas	113
A.2.	Gráfica comparación PMF e histograma de distribución Poisson en Python	114
A.3.	Gráfica comparación PDF e histograma de distribución Exponencial en Python .	115
A.4.	Gráfica comparación PDF e histograma de distribución Rayleigh en Python	116
A.5.	Gráfica comparación PDF e histograma de distribución Pareto en Python	117

Índice de tablas

4.1.	Características de las aplicaciones de Ciudades Inteligentes	49
4.2.	Características de las aplicaciones de Ambiente Inteligente	50
4.3.	Características de las aplicaciones de Energía Inteligente	51
4.4.	Características de las aplicaciones de Transporte y Movilidad inteligentes	52
4.5.	Aplicaciones seleccionadas para la simulación	54
4.6.	Características de las tecnologías de red para IoT en la red celular	57
4.7.	Caracterización del tráfico de paquetes en aplicaciones seleccionadas para la si-	
	mulación.	64
4.8.	Modelos de tráfico agregado propuestos por la 3GPP para comunicaciones M2M	73
4.9.	Comparativa entre los modelos de tráfico MTC abordados	76
5.1.	Parámetros Modelo CI [Fuente: [47]]	81
	Caracterización de las aplicaciones seleccionadas	
	Parámetros de la simulación a nivel de sistema	

Lista de Acrónimos

3GPP 3rd Generation Partnership Project

4G Cuarta generación de Comunicaciones Móviles

5G NR 5G New Radio

ARIB Association of Radio Industries and Businesses

ARPU Average Revenue Per User

ATIS Alliance for Telecommunications Industry Solutions

AWGN Additive White Gussian Noise apd Average Power Decay (a.k.a. PLE)

BS Base Station
BSs Base Stations
BW Bandwidth

CCSA China Communications Standars Associations

CD-NOMA Code Division NOMA

CIoT Cellular IoT

CMMPP Coupled Markov Modulated Poisson Process

CT Central Terminal

DES Discrete Event Simulation

DL DownLinkED Event-Driven

EIRP Efective Isotropic Radiated Power eMBB Enhanced Mobile Broadband

eMTC Enhanced Machine Type Communications

ETSI European Telecommunications Standars institute

EUTRA Evolved UMTS Terrestrial Radio Access

fcFrecuencia PortadoraGILGlobal Interpreter Lock

HPPP Homogeneous Poisson Point Process

HTC Human Type Communication

IEEE Institute of Electrical and Electronics Engineers

IFT Instituto Federal de Telecomunicaciones

InH Indoor Hotspot IoT Internet of Things

ITU International Telecommunication Union

ITU-RKPIKey Performance IndicatorKPIsKey Performance Indicators

LoS Line of Sight

LPWAN Low Power Wide Area Networks

LSP Large-Scale Parameters
LTE Long Term Evolution

LTE-MTC

M2MMachine to MachineMAMultiple AccessMACMedia Access Control

MIMO Multiple Inputs Multiple Outputs

mIoT Massive IoT

MMPP Markov Modulated Poisson ProcessmMTC Massive Machine Type Communications

MS Mobile Station
MT Mobile Terminal

MTC Machine Type Communication

MTs Mobile Terminals
M2M Machine to machine

NB-IoT Narrow-Band Internet of Things NGMN Next Generation Mobile Networks

NLoS Non-Line of Sight

NOMA Non-Orthogonal Multiple Access

OFDMA Orthogonal Frequency Division Multiple Access

OMA Orthogonal Multiple Access
PD-NOMA Power Division NOMA
PE Payload Exchange

PL Path Loss

PLE Path Loss Exponent
PPP Poisson Point Process
PRB Physical Resource Block
PSM Power Saving Mode
PU Periodic Update
QoS Quality of Service
RAN Radio Access Networks

RF Radio Frequency

RFID Radio Frequency Identification

Rx Receiver
SA Stand-alone
SA 2 System Aspects

SC-FDMA Single Carrier Frequency Division Multiple Access

SF Shadow Fading

SIC Successive Interference Cancelation SINR Signal to Interference plus Noise Ratio

SISO Single Input Single Output

SM Suburban Macro

SMM Semi-Markov Model
 TDD Time Division Duplexing
 TDMA Time Division Multiple Access
 TTI Transmission Time Interval

TR Technical Report

TSDO Telecommunications Standards Development Organization
TSDOs Telecommunications Standards Development Organizations
TSDSI Telecommunications Standards Development Society, India

TSG Technical Specifications Group

TTA Telecommunications Technology Association of Korea

TTC Telecommunication Technology Committee

Tx Transmitter
UE User Equipment

UL UpLink
UMa Urban Macro
UMi Urban Micro

UMTS Universal Mobile Telecommunications System
URLLC Ultra-Reliable and Low-Latency Communications

Capítulo 1

Introducción

TODO: FALTA ACTUALIZAR TODO EL CAPITULO 1

1.1. ANTECEDENTES

Imaginar nuestra vida sin los beneficios brindados por los sistemas de comunicación de hoy en día, o tan sólo sin la tecnología presente en este ámbito desde los últimos 20 años es ya muy difícil, y esto se debe a que en el presente una gran parte de las tareas y actividades, muchas de ellas cruciales para el funcionamiento de nuestras sociedades, operan eficientemente sí y sólo sí se está propiamente conectado y en facultades de compartir información [1].

Los sistemas de comunicación celular han tenido saltos generacionales desde la conocida como primera generación, la cual saldría al mercado a finales de la década de los 70's e inicio de los 80's, hasta el presente con el desarrollo de la próxima generación (5G), la cual comenzará su implementación en el año 2020. En [1] encontramos que:

"La primera y segunda generación de comunicaciones móviles estuvieron dominadas por señales analógicas de audio y posteriormente señales digitales de audio y texto. La tercera generación se trató más de escalar el número de usuarios en la red [...] pero fue abrumada por un tsunami de contenido de imágenes y videos."

Cada uno de estos saltos de generación ha estado motivado por distintos requerimientos de servicio, necesidades de los usuarios y la aparición de nuevas tecnologías que han buscado ser una vía para facilitar la comunicación entre individuos de todo el mundo y ahora, más recientemente, la comunicación entre máquinas.

El aumento de la tasa de transmisión de datos ha sido siempre un factor a tener en cuenta para el desarrollo de los estándares de las nuevas generaciones de redes móviles, por ejemplo, para la nueva generación se espera "un pico de transmisión de al menos 1 Gb/s al tiempo de su introducción en 2020, esperando que crezca hasta los 10Gb/s para 2025", [2]. Pero el sistema de comunicaciones móviles de quinta generación ha estado, además de eso, motivado por un mayor volumen de transmisión de datos, un incremento radical en la cantidad de dispositivos conectados a la red, una menor latencia y una mayor duración de batería para los dispositivos

de bajo consumo.

Las limitaciones presentes hasta ahora para las comunicaciones IoT celulares, se deben principalmente a que la red de comunicación móvil fue creada para voz y aplicaciones de texto, evolucionando eventualmente a una transmisión de archivos como imágenes y videos predominante en el enlace de bajada. Por otro lado la comunicación de dispositivos IoT tiene un conjunto de requerimientos muy distintos. Pero es ahora con la quinta generación que se promete brindar las herramientas que esta tecnología necesita para alcanzar su máximo potencial. 5G se trata entonces de la propuesta de crear una red de comunicaciones que logre implementar tanto los servicios inherentes a las necesidades de comunicación entre los humanos y aquellas necesidades de comunicación entre las máquinas. El cumplir con estas últimas necesidades, aseguraría brindar una calidad de servicio óptima para la nueva ola de dispositivos de IoT que se espera estén ya conectados a la red para 2020.

Este proyecto presenta el diseño de un simulador de eventos discretos, el cual modeló el servicio prestado por la arquitectura de red celular que aquí se propone a nodos IoT. Su arquitectura contempló la próxima generación móvil a implementarse (5G) y los servicios seleccionados para atender a aplicaciones del caso de uso mIoT. Este simulador se enfocó en el tráfico generado por dispositivos NB-IoT y con los resultados obtenidos se esclareció sobre qué configuraciones de red son ideales para conseguir una óptima calidad de servicio.

1.2. PLANTEAMIENTO DEL PROBLEMA

En los recientes años se ha estado presenciando la definición de la tecnología de comunicación móvil 5G en estándares, para su posterior introducción a partir de 2020, y como se resalta en [2] la nueva generación no sólo seguirá la línea de incrementar la velocidad de transmisión como se ha venido haciendo en cada salto generacional, sino que también traerá consigo la posibilidad de una conectividad adicional sin precedentes, todo esto motivado por la cantidad masiva de dispositivos de IoT que se esperan. Según Ericsson Mobility Report [3], 22.3 mil millones de dispositivos en el 2024, pertenecerán a una aplicación de IoT. De manera que 5G dará servicio a una enorme cantidad de dispositivos IoT, cada dispositivo enviará pequeños paquetes de datos a lo largo de mucho tiempo, además de que existirá una cierta sincronía en el tráfico generado. Lo anterior ha provocado el desarrollo de nuevas tecnologías que proponen distintas formas de agrupamiento de estos nodos, distintas formas de acceder a los recursos, distintas propuestas de comunicación entre ellos y nuevas formas de que ahorren energía. Siempre teniendo en cuenta los KPIs de la red, como dar servicio a una cantidad masiva de nodos, la duración de la batería de estos y la menor latencia en comunicaciones críticas ¹, como se menciona en [4].

Esto ha resultado en nuevos retos para la implementación de la red, para la cual se desarrolla tecnología o se mejora la ya existente. En [5], se presenta la tecnología NB-IoT (Narrow-Band

¹ Comunicaciones que requieren de una urgente respuesta debido a su naturaleza, por ejemplo los coches auto-dirigidos.

1.3. OBJETIVOS 3

IoT), originalmente creada como una solución que brindara servicio a nodos IoT en LTE. Esta tecnología formará parte de los estándares de 5G, como 3GPP² lo ha indicado a la ITU (International Telecommunication Union). Se pretende que con esta tecnología y algunas mejoras, la red 5G sea capaz de brindar servicio a aplicaciones del caso de uso mMTC³, para el cual se esperan tener decenas de miles de dispositivos conectados por celda.

En el futuro, los escenarios de IoT, tendrán una enorme cantidad de dispositivos conectados en comparación con los actuales escenarios de la red 4G [6]. Por lo tanto, las tecnologías de 5G deberán brindar servicio a muchos dispositivos usando recursos limitados. Pero dada la elevada complejidad con la que el modelo de un sistema de comunicación como la red 5G puede contar, si de éste se quieren obtener resultados útiles, resulta casi imposible el analizar su comportamiento sino a través de una simulación.

Los patrones de tráfico de nodos de IoT varían según su caso de uso, los cuales se dividen normalmente en tres: eMBB, uRLLC y mMTC. Para mMTC también llamado mIoT, en el cual se enfocará el proyecto, se tienen nodos en su amplia mayoría estáticos y como se ve en [7], para estos nodos podemos considerar por los menos dos patrones de tráfico: el periódico, y el aleatorio, de manera que el modelo de tráfico deberá tener en consideración esto. Como se puede apreciar en [7], un problema crítico del Internet de las cosas masivo (mIoT) en las redes móviles es que los dispositivos de IoT causarán una gran congestión en esta si es que no se incorporan mejoras en las arquitecturas de estas redes. Este problema se ve acrecentado debido a que el tráfico de los nodos mIoT presenta cierta sincronía espacial y temporal dependiendo de la aplicación a la que pertenezcan.

Por lo anterior, para la red 5G se necesitan realizar simulaciones en sus distintos casos de uso, que generen resultados sobre qué arquitectura de red y tecnologías brindan un resultado óptimo. Con la realización de este proyecto se pretende aportar al campo de las comunicaciones móviles de quinta generación, que está específicamente interesado en el servicio prestado a los nodos de IoT, de una herramienta de simulación que genere resultados que permitan realizar comparaciones entre distintas configuraciones de red. Todo esto con el fin de que la red 5G próxima a ser desplegada, cumpla con una óptima calidad de servicio para el caso de uso mIoT.

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Diseñar e implementar un simulador de teletráfico para el ambiente de Internet de las cosas masivo (mIoT) en una red celular de quinta generación (5G), por medio de la programación de eventos discretos, con la finalidad de evaluar el desempeño de esta red en términos de la

² The 3rd Generation Partnership Project (3GPP), desarrolladores del estándar NB-IoT y el 5G NR

³Cabe mencionar que los casos de uso o tecnologías mIoT y mMTC son análogas.

cantidad de recursos requeridos para satisfacer niveles esperados de calidad de servicio (QoS).

1.3.2. OBJETIVOS ESPECÍFICOS

- Determinar el escenario a implementar, mediante el análisis de requerimientos, para definir después los parámetros de entrada en el modelado del simulador.
- Seleccionar los modelos (despliegue, propagación, técnica de acceso múltiple) aplicables a una simulación a nivel de sistema para la comunicación entre nodos IoT y la red 5G.
- Seleccionar y determinar los modelos de tráfico a analizar para nodos IoT que hayan sido propuestos en la red 5G, mediante la lectura de distintas publicaciones en revistas científicas, para simular el modelo más adecuado según los alcances propuestos.
- Determinar los parámetros de desempeño de la red (KPIs), mediante el análisis de distintas publicaciones científicas, con la finalidad de establecer métricas de QoS.
- Definir el procedimiento de la simulación mediante la especificación de su arquitectura y elaboración de diagramas de su funcionamiento y procesos, con el fin de integrar una metodología para su implementación.
- Implementar los modelos y protocolos que definen a la comunicación entre los nodos IoT y la red 5G, mediante algoritmos computacionales (incluyendo la técnica de eventos discretos) y de acuerdo a la arquitectura previamente definida.
- Implementar una técnica de paralelismo, mediante el uso de multiprocesamiento, con la finalidad de reducir los tiempos de ejecución de las simulaciones.
- Evaluar y analizar cada modelo analítico con el uso de escenarios de pruebas y calibración para poder realizar comparaciones con los resultados teóricos esperados y verificar la fiabilidad del simulador
- Simular el modelo de sistema propuesto, mediante la variación de los parámetros de entrada, para caracterizar el desempeño del sistema en términos del tráfico que se puede ofrecer y la cantidad de recursos requeridos para satisfacer objetivos de QoS.

1.4. JUSTIFICACIÓN

En la gran mayoría de los trabajos de investigación revisados, se han realizado estudios de rendimiento de los sistemas de comunicación móvil de quinta generación. Estos se concentran en evaluar distintos modelos, frecuentemente se considera, un modelo de distribución de BSs y UEs, uno de canal, y un esquema de acceso multiple, sin embargo no hay mucha investigación acerca de incorporar todos estos componentes en conjunto con modelos de tráfico para el caso

específico de mIoT. La aportación que se pretende hacer con este proyecto se encuentra precisamente en ese ámbito.

Los enlaces de comunicación inalámbrica experimentan fenómenos físicos perjudiciales al canal como lo son las multi-trayectorias y los desvanecimientos debido a grandes objetos que se interceptan en la trayectoria de la propagación, además el rendimiento de los sistemas celulares inalámbricos tiende a limitarse debido a la interferencia de otros usuarios. Estas condiciones complejas del canal son difíciles de describir con un simple modelo analítico, es por esto que las aproximaciones de las simulaciones son necesarias. Estas pueden analizar el rendimiento de los enlaces de comunicaciones celulares [8], modelando un gran número de eventos aleatorios a través del tiempo, mediante el uso de simulaciones orientadas a eventos discretos.

Una simulación permite observar muchas de las interacciones de un sistema, que de otra forma tomaría mucho trabajo predecirlas o calcular, además de que proporciona un método importante de análisis, que resulta sencillo de comunicar y comprender. En todas las industrias y disciplinas, la creación de simulaciones brinda soluciones valiosas al proporcionar información clara sobre sistemas complejos [8]. Los resultados de una simulación que haga las suposiciones adecuadas y modele correctamente el sistema propuesto, brindarán confianza y claridad, ahorrarán tiempo y muy posiblemente también dinero.

Este proyecto servirá como referencia a los investigadores y estudiantes que busquen comparar los modelos y técnicas propuestos en este trabajo con otras selecciones posibles para la futura red 5G y el servicio brindado a los nodos IoT.

Por otra parte, se debe enfatizar que el desarrollo de este proyecto requiere de la aplicación de conocimientos relacionados a la informática (entre los que se incluyen desarrollo de software y algoritmos computacionales), así como del dominio de conceptos propios de las telecomunicaciones (por ejemplo, análisis de tráfico y caracterización de enlaces inalámbricos). De acuerdo a lo anterior, se considera que este proyecto pertenece al campo de aplicación de la ingeniería telemática. Además, se debe notar que, si bien los fenómenos simulados corresponden al proceso de transmisión de información, dichos fenómenos están siendo analizados en el contexto de un sistema con características telemáticas (nodos mIoT conectados a la red 5G).

1.5. PROPUESTA DE SOLUCIÓN

Considerando lo expuesto anteriormente, se propone desarrollar un simulador a nivel sistema que será programado bajo el paradigma de eventos discreto. La elección de una simulación a nivel de sistema se deriva del enfoque que tendrá nuestro proyecto hacia los distintos tipos de tráfico de nodos NB-IoT y la simulación de cada uno de ellos como fuente de tráfico. Las simulaciones a nivel de sistema permiten modelar el comportamiento de múltiples radio bases, múltiples nodos como fuentes de tráfico, la propagación de las señales y la interferencia que estas causan, a la vez que se realizan abstracciones más simples de lo que sucede más allá de estas

interacciones. Esto facilita la implementación de una gran cantidad de actores. La generación de variables aleatorias vendrá de la mano de las distintas aplicaciones mIoT y sus patrones de transmisión estocásticos, además de la localización de nodos en un plano la cual no será uniforme.

El simulador será capaz de evaluar la calidad del servicio que la red celular propuesta ha de brindar a nodos de mIoT. Dicha arquitectura de red, propuesta en este mismo trabajo está basada a su vez en los avances hechos, por grupos como 3GPP, hacia el despliegue de la red 5G. La base de la que se partió es la tecnología NB-IoT, la cual abordó el caso de uso mMTC en la red 4G donde ha estado prestando servicio a nodos mIoT a una escala menor que la esperada en 5G.

Se modelará el servicio brindado a nodos estáticos de IoT cuyas aplicaciones pertenecen al caso de uso mIoT. Con la ayuda del estándar NB-IoT, para el que se proponen mejoras en el acceso múltiple, esto en búsqueda de cumplir con los KPI's de la red 5G, ya que si bien NB-IoT pertenecerá al paradigma de 5G, no es viable tál y como existe ahora para cumplir con los requerimientos. La importancia de esto recae, como se menciona en [9], en que la tecnología de IoT ha creado una revolución en la última década con la creación de aplicaciones pensadas alrededor de todo tipo de sensores, lo que resulta en una proyección estimada de miles de millones de dispositivos IoT para el 2020 [3]. Esta misma referencia asegura que IoT está tomando un papel principal en el desarrollo de la quinta generación, debido a que se espera que los dispositivos de IoT formen la gran mayoría de dispositivos en esta nueva generación que se avecina.

Se propone un análisis fundamental principalmente del modelado de cuatro componentes que son esenciales para la caracterización de un sistema de comunicación móvil. Estos componentes corresponden al: modelado de despliegue de usuaios, canal, tráfico y un esquema de acceso múltiple al medio. Esto se encontrará en el capítulo 4, que comprende un análisis de forma detallada de estos, pero a continuación se abordan de tal forma que se esclarezca la arquitectura del modelo de sistema, presentada también más adelante.

Se considerará un modelo de despliegue de nodos IoT que seguirá un proceso puntual de Poisson con el fin de crear una geometría estocástica, se representarán las pérdidas por medio de un modelo de canal estadístico para ambientes celulares de quinta generación, se considerará en la simulación un modelo de tráfico fuente en el que cado nodo mIoT generará tráfico ya sea periódico o aleatorio, cada caso con distintas tasas y por último, referente al método de acceso múltiple, se aplicará una mejora a la tecnología NB-IoT, se trata de la implementación del esquema NOMA en el dominio de la potencia, de forma que agrupamientos (de longitud fija) de nodos estarán compartiendo un mismo recurso (una sub-banda).

Este análisis conllevará en conjuntos de la red 5G y los dispositivos NB-IoT en un ambiente masivo, conseguirá resultados que podrán brindar una base fundamental para evaluar el desempeño de estas redes y por supuesto, su dimensionamiento en términos de objetivos de QoS.

1.6. ALCANCES 7

1.6. ALCANCES

Se obtendrán resultados que permitan analizar las configuraciones de la arquitectura de red propuesta que conllevan a una óptima calidad de servicio. Teniendo como métricas principales la densidad de usuarios soportada y la tasa de transmisión máxima alcanzada. Estos resultados reflejarán a su vez las ventajas que puede traer la selección de cierta arquitectura de red y su despliegue. Es aquí donde se encuentra una de las ventajas de realizar un simulador, ya que con la ayuda de múltiples computadoras, se podrán simular miles de nodos mIoT en esta red. Las configuraciones y parámetros de la red podrán modificarse al inicio de cada simulación, y podrán ser inspeccionados mientras esta corre. La variación de estos parámetros a lo largo de múltiples simulaciones permitirá generar tablas y gráficas de los resultados obtenidos.

Este proyecto no cubrirá los aspectos de movilidad entre celdas para los nodos de IoT, ya que el caso de uso mMTC representa a los nodos estáticos en su mayoría o con velocidades menores a 3Km/h. No se desarrollarán nuevos modelos probabilísticos o matemáticos de ninguna clase, sino que se implementarán los existentes para el escenario propuesto.

Capítulo 2

Marco Teórico

El objetivo de este capítulo fue revisar los fundamentos de la teoría de los sistemas de comunicaciones móviles, comenzando con los diferentes modelos de despliegue para BS y UE, se estudió las características de una geometría estocástica y se repasó la teoría del concepto celular, es decir, la geometría celular clásica que sirve para la eficiencia en la planificación de los recursos y por lo tanto el problema más importante en estos sistemas: los efectos de la interferencia.

Después se ahondó en las pérdidas en un sistema celular por medio de los modelos de canal más comunes y con su caracterización en parámetros a larga y pequeña escala, p.ej., la pérdida por trayectoria y el desvanecimiento de las señales de radio. Además, se revisaron los diferentes esquemas de acceso al medio en comunicaciones móviles.

Finalmente, se revisaron los aspectos de la teoría del tráfico en telecomunicaciones, los organismos más importantes de estandarización de redes móviles y algunos conceptos de las simulaciones a nivel de sistema orientados a eventos discretos en conjunto con los lenguajes de programación más utilizados.

2.1. MODELADO DEL DESPLIEGUE CELULAR

La teoría del diseño celular da una forma simplificada de un diseño idealizado para redes móviles, esta se desarrolló en la literatura desde el comienzo del concepto celular [1975 aprox.], sin embargo este despliegue uniforme que propone la teoría celular, es poco realista ya que nunca se tiene una instalación regular, esto debido a que la densidad del tráfico varia espacial y temporalmente. En el despliegue de BS, frecuentemente en ubicaciones donde se concentraba mayor cantidad de tráfico lo que se realiza es instalar otra BS y por lo tanto esto rompe con esta uniformidad.

En el modelado de posicionamiento de las estaciones base y los usuarios existen diferentes estrategias de despliegue (como se puede ver en la $Figura \ 2.1$):

Figura 2.1: Diferentes estrategias de despliegue para BSs

2.1.1. Procesos puntuales (PP)

Point Process [10]

En primer lugar, para un despliegue aleatorio, la base son los procesos puntuales ya que son los objetos elementales estudiados en la teoría de geometría estocástica.

Visualmente, un proceso puntual se puede representar como una colección aleatoria de puntos en el espacio. Más formalmente, un proceso puntual (PP) es un mapeo medible Φ desde algún espacio de probabilidad al espacio de medidas puntuales (una medida puntual es una medida que es localmente finita y que solo toma valores enteros) en algún espacio E.

Algunas dicotomías sobre procesos puntuales en el espacio Euclidiano \mathbb{R}^d son las siguientes:

- Un PP puede ser simple o no. Es simple si la multiplicidad de un punto es como máximo uno (no hay dos puntos en la misma ubicación).
- Un PP puede ser estacionario o no. La estacionariedad se cumple si la ley del proceso puntual es invariante por traslación.
- Un PP puede ser Poisson o no. En la siguiente subsección se proporciona una definición formal de los procesos puntuales de Poisson (PPP).

Antes de entrar a la teoría de los PPP, es necesario definir un Proceso de Poisson.

2.1.2. Procesos de Poisson

Los procesos de Poisson son altamente utilizados para representar o modelar fenómenos en las telecomunicaciones, p. ej. la generación de llamadas telefónicas.

Algunas propiedades de los procesos de Poisson son las siguientes [11]:

- Se compone de una secuencia de variables aleatorias X1, X2, X3, ...Xk, de modo que cada variable representa el número de ocurrencias de algún evento, durante un intervalo de tiempo.
- Es un proceso estocástico. Cada vez que ejecuta el proceso de Poisson, producirá una secuencia de resultados aleatorios diferentes según alguna distribución de probabilidad.
- Es un proceso discreto. Los resultados del proceso de Poisson son el número de ocurrencias de algún evento en el período de tiempo especificado, que sin duda es un número entero, es decir, un número discreto.
- Tiene incrementos independientes. Lo que esto significa es que el número de eventos que el proceso predice que ocurrirá en cualquier intervalo dado, es independiente del número en cualquier otro intervalo disjunto.
- Las variables constitutivas del proceso de Poisson X1, X2, X3, ...Xk tienen una distribución idéntica.
- Las variables constitutivas del proceso de Poisson X1, X2, X3, ...Xk tienen una distribución de Poisson , que viene dada por la Función Masa de Probabilidad (PMF):

$$P_X(k) = \frac{e^{-\lambda} * \lambda^k}{k!} \tag{2.1}$$

La fórmula anterior nos da la probabilidad de ocurrencia de k eventos en unidad de tiempo, dado que la tasa de ocurrencia promedio es λ eventos por unidad de tiempo.

Los procesos de Poisson tienen una subestructura notable. Aunque el número de eventos ocurridos se modela usando una distribución de Poisson discreta, el intervalo de tiempo entre eventos consecutivos se puede modelar usando una distribución exponencial, que en contra, es una distribución continua [11].

2.1.3. Procesos Puntuales de Poisson (PPP)

Poisson Point Process [10]

Ahora bien, sea γ una medida localmente finita en algún espacio métrico E. Un proceso puntual Φ es Poisson en E si:

- Para todos los subconjuntos disjuntos A1, ..., An de E, las variables aleatorias $\Phi(Ai)$ son independientes.
- Para todos los conjuntos A de E, las variables aleatorias $\Phi(A)$ son Poisson.

Una propiedad clave establece que condicionalmente $\Phi(A) = n$, estos n puntos están ubicados independientemente (y de manera uniforme para un PPP homogéneo) en A.

- Un PPP puede ser homogéneo o no. En el caso homogéneo, la densidad de los puntos es constante en el espacio (también conocidos como HPPP).
- El PPP homogéneo es estacionario y simple. Esto puede considerarse como el proceso puntual más simple (y más natural).

Un PPP ofrece un práctico marco computacional para diferentes cantidades de red de interés. El marco para las PPP no homogéneas también está bien desarrollado, aunque es más técnico que el del caso homogéneo. Se pueden usar para modelar distribuciones de usuarios que no son uniformes en el espacio.

2.1.4. Geometría Clásica Celular

Ahora bien, para un despliegue determinístico, se suele optar por un esquema hexágonal el cual recurre a la teoria clasica celular donde se busca que los sistemas celulares brinden una determinada cobertura para un servicio, dividiendo el área geográfica en segmentos llamados celdas donde el espectro de frecuencia también es dividido en canales y estos son agrupados para repartirse entre las celdas. Estos sistemas logran una alta capacidad gracias al reúso del canal de comunicación permitiendo a las estaciones base compartir los canales, sin embargo, este reúso da como resultado una interferencia co-canal generada solamente entre usuarios que comparten el mismo canal, lo cual limita el rendimiento y capacidad de un sistema celular dado que los efectos de esta interferencia son altamente dependientes con los aspectos del sistema [12] como lo son el tipo de acceso múltiple del sistema, el número de usuarios compartiendo el canal, el canal de propagación, la perdida por trayectoria, el desvanecimiento, entre otros.

Los sistemas celulares son caracterizados por [13]:

- Ser limitados por la interferencia (capacidad).
- Servir a una alta densidad de usuarios.

- Considerar la disponibilidad del espectro solo como un factor limitante.
- Reúso de frecuencias.
- Uso de Estaciones Base de baja potencia.
- Tener celdas de distintas coberturas.
- Permitir handover.

2.1.5. Planeación Celular

Una buena planeación celular es de crucial importancia para lograr un buen rendimiento del sistema y la provisión de una buena Calidad de servicio (QoS).

La planeación celular consiste en:

- Colocación de BSs y establecimiento de coberturas
- Optima administración de recursos de radio.
- Minimización de interferencia.

La planeación celular se desempeña de acuerdo a:

- Morfología del área de servicio y modelos de propagación.
- Perfiles de usuario y modelos de tráfico.

Considerando:

 $R \rightarrow Radio\ de\ cobertura\ de\ la\ celda$

 $D_r \rightarrow Distancia de reuso de celda co_canal$

 $d_u \rightarrow Distancia unitaria entre los centros de dos celdas adjacentes$

$$d_u = \sqrt{3}R$$

Llegando a una distancia de reuso normalizada D_n

$$D_n = i^2 + ij + j^2, donde : i! = 0, j! = 0$$
(2.2)

$$=> D_r = D_n d_u \tag{2.3}$$

área de una celda S_{cel}

$$S_{cel} = (3\sqrt{3}/2)R^2 \tag{2.4}$$

área de un cluster S_{clu}

$$S_{clu} = (3\sqrt{3}/2)D_n^2 d_u^2 \tag{2.5}$$

Número de celdas por cluster, N_{cc} ó también conocido como "factor de reuso"

$$N_{cc} = \frac{S_{clu}}{S_{cel}} \tag{2.6}$$

Siendo valores posibles para N_{cc} , 1, 3, 4, 7, 9, 12, 13, . . . [Véase Figura 2.2 y Figura 2.3].

Para implementar el reúso, se deben asignar un conjunto de canales disponibles para un grupo de celdas, el clúster y repetir ese conjunto a través de toda el área de servicio.

FIGURA 2.2: Clusterización de celdas con un factor de reúso de 3 celdas, [Fuente: Tranter 2003]

$$N_{ch/c} = \frac{N_{ch/s}}{N_{cc}} \tag{2.7}$$

 $N_{ch/c} \rightarrow Numero de canales por celda$

 $N_{ch/s} \rightarrow Numero de canales en el sistema$

 $N_{cc} \rightarrow Numero\ de\ celdas\ por\ cluster$

La relación de reutilización co-canal, r_{cc} es usada para caracterizar clústeres

$$r_{cc} = \frac{D_r}{R} = \sqrt{3N_{cc}} \tag{2.8}$$

Un valor grande de r_{cc} corresponde a:

- 1. Una baja interferencia co-canal
- 2. Baja capacidad del sistema

El clúster es escogido lo más pequeño posible tomando los umbrales de interferencia en consideración [13].

$$GSM$$
, $N_{cc} = 4$
 $UMTS$, $N_{cc} = 1$
 LTE , $N_{cc} = 3$

Diferentes tamaños de celda son usadas para distribuciones no uniformes de tráfico [14].

FIGURA 2.3: Localización de celdas co-canal con distintos factores de reúso, [Fuente: Tranter 2003]

El uso de diferentes tamaños de celdas:

- Conduce a un incremento de interferencia, debido a la poca uniformidad en la estructura celular.
- Requiere cuidado adicional en el despliegue de BSs

2.1.6. Planeación de frecuencia

La decisión de bandas de frecuencia para ser usadas en los diversos sistemas de comunicaciones es decidida por la ITU. La asignación de canales en una banda dada para un operador es decidido a nivel nacional por un cuerpo regulatorio, IFT en México. El hecho de que el espectro es

FIGURA 2.4: Sistema celular con celdas de tamaño no uniforme, [Fuente: Yacoub 1993]

muy escaso incita a un eficiente uso de frecuencias.

El número de frecuencias (portadoras, canales de radio) por celda N_{fc} depende del clúster, N_{cc} , y del número de frecuencias en el sistema N_{fs}

$$N_{fc} = N_{fs}/N_{cc} \tag{2.9}$$

Debido a la limitación en el número de frecuencias, debe haber una compensación entre la interferencia N_{cc} y la capacidad $N_{ch/c}$ en el sistema.

La asignación de frecuencias de las celdas debería reducir la interferencia de celda-adyacente maximizando la separación de las frecuencias en una celda.

En un simple sistema celular, las frecuencias deberían ser asignadas a las celdas de acuerdo a:

$$f_{ij} = i + N_{cc} (j-1) (2.10)$$

$$i=1, \ldots, N_{cc}$$

$$j=1, \ldots, N_{fc}$$

Cuando N_{sc} sectores por celdas son implementados, cada sector deberá contener su propio grupo de frecuencias:

$$f_{ijk} = i + N_{cc} (k-1) + N_{cc} N_{sc} (j-1)$$
 (2.11)

$$i = 1, ..., N_{cc}$$

 $j = 1, ..., N_{fc}$
 $k = 1, ..., N_{sc}$

2.1.7. Interferencia en los sistemas de comunicaciones

En general el receptor recibe:

$$SNIR = \frac{S}{I+N} \tag{2.12}$$

Donde:

 $S \to Potencia de portadora de la señal deseada$

 $I \rightarrow Potencia de las portadoras de las señalees interferentes$

$$N \to Potencia\ del\ ruido$$

Los sistemas de comunicaciones móviles se caracterizan por ser sistemas limitados por interferencia, donde I domina sobre N, por lo tanto la participación del ruido N puede ser ignorada [13].

Quedando entonces como la relación portadora a interferencia:

$$\frac{S}{I+N} \cong \frac{S}{I} \to SIR \tag{2.13}$$

La interferencia co-canal I_{cc} es un problema aceptado en los sistemas de comunicaciones móviles.

La estimación de la relación portadora a interferencia co-canal S/I_{cc} es calculada de acuerdo a las siguientes asunciones:

- 1. Todas las celdas son del mismo tamaño
- 2. La potencia radiada por todas las BSs son iguales
- 3. Todas las BSs tienen antenas omnidireccionales
- 4. El decaimiento de la potencia promedio (a_{pd}) con la distancia es de la forma:

$$P_r = P_0 (d/d_0)^{-a_{pd}} (2.14)$$

En un sistema celular en general, la interferencia co-canal es calculada tomando la interferencia de todas las celdas N_{Icc} .

$$\frac{S}{I_{cc}} = \frac{S}{\sum_{k=1}^{N_{Icc}} I_k} \tag{2.15}$$

Usualmente la interferencia puede ser estimada por tomar únicamente el primer anillo de interferencia [13].

$$\frac{S}{I_{cc}} = \frac{S}{\sum_{k=1}^{6} I_k} \tag{2.16}$$

Para el caso de transmisión de bajada downlink para un usuario en los límites de la celda, el cálculo de la interferencia co-canal se puede aproximar a:

$$\frac{S}{I_{cc}} = \frac{R^{-a_{pd}}}{2(D_r - R)^{-a_{pd}} + 2(D_r)^{-a_{pd}} + 2(D_r + R)^{-a_{pd}}}$$
(2.17)

Donde:

R: radio de cobertura de la celda

 D_r : distancia de reuso de celda co - canal

En términos generales, la interferencia puede disminuir [13]:

- implementando celdas sectorizadas.
- downtilting el lóbulo principal de la antena de la BS.
- bajando la altura de la BS
- optimizando la localización de la BS
- implementando control de potencia
- implementando frequency hopping

En resumen, la planeación de una red celular de radio es ejecutada de la siguiente manera [13]:

- 1. El mínimo valor para la relación portadora a interferencia impone el tamaño del clúster.
- 2. Se estima el tráfico en una celda determinada.
- 3. Se calcula el número de canales para una calidad de servicio determinada.
- 4. En caso de que el número de canales disponibles no sea suficiente, el tráfico se reducirá, es decir, la cobertura se reducirá.
- 5. Se establece el plan de frecuencias y la estructura del despliegue de celdas.
- 6. Cuando se propone una estructura de celdas no uniforme, los canales deberán ser distribuidos de acuerdo a las necesidades de capacidad, y a los valores topes permitidos de interferencias co- canal y canal-adyacente.

2.1.8. Capacidad en los sistemas de comunicaciones

La teoría de la información de Shannon nos dice la cantidad de información que un canal puede transportar. En otras palabras, especifica la capacidad del canal. La capacidad de un sistema de comunicación es la velocidad de datos máxima en bits por segundo que se puede transferir de manera confiable del transmisor al receptor. En el sentido estricto de la teoría de la información, este es un límite superior insuperable que, en la práctica, solo se puede abordar. En un único enlace Tx-Rx de ancho de banda de unidad sujeto a AWGN, la capacidad en bits por uso de canal (es decir, bps / Hz) viene dada por la fórmula de Shannon-Hartley:

$$C = B\log_2\left(1 + \frac{S}{N}\right) \ [bps] \tag{2.18}$$

Donde:

B: es el ancho de banda del canal en Hertzios.

C: es la capacidad del canal (tasa de bits de información bit/s)

S: es la potencia de la señal útil (W, mW, etc.)

 $N:\ es\ la\ potencia\ del\ ruido\ presente\ en\ el\ canal, (W,\ mW,\ etc.)\ ,\ \ que\ trata\ de\ enmascarar\ a\ la\ se\~nal\ \'utilia de\ enmascarar\ a' la\ se~nal\ \'utilia d$

También descrita como:

$$C = Blog_2(1 + \frac{P_{tx}H}{N_0B}) \tag{2.19}$$

Donde:

 P_{tx} : es la potencia de transmisión promedio

H: es la ganancia de potencia del canal

 N_0 : es la densidad de potencia del ruido(-173dBm/Hz)

2.2. MODELADO DEL CANAL CELULAR

Los modelos de propagación por radio se clasifican en modelos a gran escala y a pequeña escala. Los efectos a gran escala generalmente ocurren en el orden de cientos a miles de metros de distancia. Los efectos a pequeña escala se localizan y ocurren temporalmente (en el orden de unos pocos segundos) o espacialmente (en el orden de unos pocos metros). Los parámetros del canal generalmente se dividen en Pérdida por trayectoria (PL), parámetros de gran escala (LSP, como sombreado, dispersión de retardo, dispersión angular, etc.) y parámetros de pequeña escala (como demora, ángulo de llegada y salida, etc.), que reflejan conjuntamente las características de desvanecimiento del canal. El procedimiento de generación de los coeficientes del canal se puede apreciar en la Figura 2.5. La pérdida por trayectoria generalmente se expresa en una o dos fórmulas y un conjunto de valores numéricos de parámetros, que reflejan las relaciones con el entorno de transmisión, la distancia y la frecuencia, etc.

FIGURA 2.5: Procedimiento de generación de coeficientes de canal, [Fuente: 3GPP TR-36.873]

El rendimiento a nivel de enlace es un fenómeno de pequeña escala el cual lidia con cambios

instantáneos en el canal a través de áreas e instantes de tiempo pequeños donde se considera la potencia recibida como constante, por otra parte, en las simulaciones a nivel de sistema para determinar el rendimiento en general del sistema para un gran número de usuarios esparcidos en una área geográfica es necesario incorporar parámetros de larga escala como el comportamiento estadístico de la interferencia, así como los niveles de señal experimentados por cada usuario a través de largas distancias, ignorando las características transitorias del canal (las de pequeña escala) [12].

En una simulación a nivel de sistema, principalmente se busca la probabilidad de que un usuario en particular alcance un servicio aceptable en el sistema, para esto es necesario contemplar los efectos de los múltiples usuarios para cada enlace individual entre un móvil y la estación base. Por lo tanto en las simulaciones a nivel de sistema se suelen omitir los parámetros a pequeña escala.

2.2.1. Relaciones Generales de Propagación

La pérdida por trayectoria L_p se define como [13]:

$$L_{p[dB]} = P_{tx[dBm]} + G_{tx[dBi]} - P_{rx[dBm]} + G_{rx[dBi]}$$
 (2.20)

Donde:

 $P_{tx} \rightarrow Potencia\ transmitida$

 $G_{tx} \rightarrow Ganancia de la antena transmisora$

 $P_{rx} \rightarrow Potencia\ recibida$

 $G_{rx} \rightarrow Ganancia de la antena receptora$

En muchas aplicaciones la ganancia de la antena es referida al dipolo de media longitud de onda:

$$G_{[dBi]} = G_{[dBd]} + 2.15 (2.21)$$

La Potencia Isotrópica Radiada Efectiva (EIRP) se define como:

$$P_{EIRP[dBm]} = P_{tx[dBm]} + G_{tx[dBi]}$$

$$(2.22)$$

2.2.2. Pérdida por trayectoria en el Espacio Libre (FSPL, Free Space Path Loss)

El receptor puede recibir una señal atenuada directa (también llamada señal de línea de vista (LoS)) del transmisor. El FSPL se utiliza para predecir la pérdida de trayectoria cuando hay un LoS claro y sin obstrucciones entre el transmisor y el receptor. Se basa en la ley de distancia al cuadrado inverso que establece que la potencia recibida (P_{rx}) decae por un factor de cuadrado de la distancia (d) desde el transmisor.

Se considera a la propagación en el espacio libre como la mínima atenuación que una señal puede sufrir en el medio.

La potencia de la señal receptora P_{rx} con una propagación en el espacio libre se define como (esta fórmula es conocida como fórmula de Friis):

$$P_{rx[W]} = \left(\frac{\lambda_{[m]}}{4\pi d_{[m]}}\right)^2 P_{tx[W]} G_{tx} G_{rx}$$
(2.23)

ó

$$P_{rx[dBW]} = -32.44 + P_{tx[dBW]} + G_{tx[dBi]} + G_{rx[dBi]} - 20\log\left(d_{[km]}\right) - 20\log\left(f_{[MHz]}\right) \quad (2.24)$$

Donde:

 $d \to Distancia\ entre\ Rx\ y\ Tx$

 $f \to Frecuencia de operación$

$$\lambda \to Longitud\ de\ onda, \qquad \lambda = \frac{c}{f}$$

 $c \rightarrow Velocidad\ de\ la\ luz\ (299\ 792\ 458\ m/s)$

Por lo tanto, la pérdida por trayectoria en el espacio libre L_0 se define como:

$$L_{0[dB]} = 32,44 + 20\log(d_{[km]}) + 20\log(f_{[MHz]})$$
 (2.25)

Tomando el modelo del decaimiento de potencia promedio con la distancia a_{pd} :

$$L_{p[dB]} = L_{ref} + 10a_{pd}\log(d_{[km]})$$
 (2.26)

 $a_{pd}=2$, para una propagacion en el espacio libre

El apd (también conocido como PLE) es un valor que va de 2 a 4 frecuentemente. El valor mínimo (i.e. 2) proviene de la perdida FSPL y el máximo (i.e. 4) por la pérdida del modelo Flat Earth (modelo de tierra plana). En algunos modelos se llega a incluir valores de PLE más altos que los aquí definidos.

2.2.3. Caracterización del canal de radio

Usualmente en ambientes urbanos no hay línea de vista (LoS) entre la estación base (BS) y la terminal móvil (MT¹) [véase Figura 2.6] por lo que la transmisión es realizada por reflexión, difracción y dispersión de las señales.

¹MT y UE son términos análogos.

FIGURA 2.6: Propagación de señales celulares en ambientes urbanos, [Fuente: L. Correia 2018]

Sin embargo estas señales sufren de desvanecimiento con caídas de potencia. Este desvanecimiento depende de la posición y el ambiente del cual se propague la señal.

Características de desvanecimiento:

- Desvanecimiento lento: Depende esencialmente de la distancia, sigue una distribución Lognormal
- Desvanecimiento rápido: Es asociado al movimiento del usuario, sigue una distribución Rice

FIGURA 2.7: Ejemplo de niveles de señal con pérdidas por trayectoria, desvanecimiento lento y desvanecimiento rápido, [Fuente: V. Mathuranathan, 2016]

En la Figura 2.7 se observa que al principio, la señal parece muy aleatoria. Mirando más de cerca podemos observar tres componentes principales que forman a la señal, como se muestra en la mitad derecha [15].

- 1. Pérdida por trayectoria (Path loss)
- 2. Shadowing (Sombreado) o desvanecimiento lento
- 3. Multipath multitrayectoria o desvanecimiento rápido.

El desvanecimiento lento puede ser causado por eventos como el *shadowing*, donde una gran obstrucción, como una colina o un gran edificio, oscurece la trayectoria de la señal principal entre el transmisor y el receptor. Se considera un parámetro a gran escala.

El desvanecimiento rápido ocurre cuando la amplitud y el cambio de fase impuestos por el canal varían considerablemente durante el período de uso. Una señal que viaja en un entorno puede verse reflejada por varios objetos en el camino. Esto da lugar a varias señales reflejadas. Las señales reflejadas llegan al receptor en diferentes instantes de tiempo y con diferentes intensidades que conducen a la propagación multitrayectoria. Se considera un parámetro a pequeña escala.

Cuando se habla del desvanecimiento de Rayleigh en enlaces inalambricos, en la literatura [16] se encuentra que las componentes en cuadratura y en fase de la señal recibida son variables aleatorias Gaussianas con media cero que se distribuyen de forma independiente e idéntica (iid), siendo así, que la magnitud de la señal banda base compleja sigue una distribución de Rayleigh [Ecuación 2.27]. Por otra parte, la distribución de la potencia normalizada de una señal de banda base compleja recibida bajo el desvanecimiento unitario de Rayleigh es modelado por medio de una distribución exponencial unitaria [Ecuación 2.28].

$$P_X(x) = \frac{x}{\sigma_i^2} \exp\left(-\frac{x^2}{2\sigma_i^2}\right), \ x \ge 0$$
 (2.27)

Donde:

 $\sigma \to Desviaci\'on\ est\'andar$

$$f(x) = \lambda e^{-\lambda x} \tag{2.28}$$

Donde:

$$\lambda \to 1$$

Los márgenes de desvanecimiento deben tomarse en cuenta para caracterizar la variación de las señales alrededor de un valor promedio, esto depende de:

- Características del ambiente (LoS o NLoS)
- Calidad de servicio (QoS)

Para un *narrowband* (banda estrecha, donde prevalece el desvanecimiento plano en lugar de un desvanecimiento selectivo de frecuencia) el desvanecimiento se caracteriza de la siguiente manera:

Desvanecimiento rápido:

- LoS: Distribución Rice (no intenso)
- NLoS: Distribución Rayleigh (intenso)
- Desvanecimiento lento:
 - Distribución Log-Normal
- Ambos desvanecimiento rápido y lento:
 - Distribución Susuki

Los modelos de estimación de señal pueden ser divididos en dos categorías:

- 1. Teóricos: Son una aproximación a la realidad, no toman en cuenta todos los factores de la propagación pero permiten cambios fáciles de los parámetros.
 - Ray Tracing
 - Modelo Ikegami [1984]
 - Modelo Walfish-Bertoni [1988]
- 2. Empíricos: Están basados en la observación de mediciones, conduciendo al mejor ajuste de ecuaciones. Tienen la ventaja de tomar en cuenta todos los factores que influyen en la propagación.

Para ambientes exteriores hay dos modelos fundamentales:

- COST 231 Okumura-Hata
 - Largas distancias (>5km)
 - Ambientes rurales, urbanos y suburbanos
 - Alta desviacion estandar
 - Rango de frecuencias aplicables [1.5,2.0] GHz
- COST 231 Walfish-Ikegami [1999]
 - Cortas distancias (<5km)
 - Ambientes urbanos y suburbanos
 - Rango de frecuencias aplicables [.8,2.0] GHz
- COST 207 [1989]

2.3. ESQUEMAS DE ACCESO MÚLTIPLE AL MEDIO

Las técnicas de acceso múltiple (MA) generalmente se pueden dividir en enfoques ortogonales y no ortogonales [17]. En MA ortogonal (OMA), los recursos de radio se dividen ortogonalmente entre dispositivos, donde las señales de diferentes dispositivos no se superponen entre sí. Las instancias de OMA son acceso múltiple por división de tiempo (TDMA), acceso múltiple por división de frecuencia ortogonal (OFDMA), y FDMA de portadora única (SC-FDMA).

2.3.1. OMA

Los enfoques OMA no tienen la capacidad de combatir la interferencia entre células [18]; por lo tanto, se requieren técnicas cuidadosas de planificación celular y gestión de interferencia para resolver este problema.

Existen 4 técnicas básicas de acceso múltiple (OMA):

- 1. Frecuencia: asignación de una portadora FDMA (Acceso múltiple por división de frecuencia)
- 2. Tiempo: asignación de un intervalo de tiempo TDMA (Acceso múltiple por división de tiempo)
- 3. Código: asignación de un código CDMA (Acceso múltiple por división de código)
- 4. Frecuencia Ortogonal: asignación de un conjunto de sub-portadoras OFDMA (Acceso múltiple por división de frecuencia ortogonal).

En muchos sistemas prácticos, se utiliza una mezcla o combinación de estas técnicas básicas [13]. Y también, de acuerdo a cada generación de comunicaciones móviles, el esquema de acceso al medio suele cambiar [véase Figura 2.11].

2.3.2. **NOMA**

Igualmente, el acceso múltiple no ortogonal (NOMA) se ha convertido en un principio importante para el diseño de técnicas de acceso por radio para las redes inalámbricas de quinta generación (5G) [19]. NOMA se puede clasificar en dos categorías, el dominio de código NOMA (CD-NOMA) y el dominio de potencia NOMA (PD-NOMA). CD-NOMA utiliza diferentes códigos en el mismo recurso para lograr una ganancia de multiplexación, mientras que PD-NOMA asigna a los usuarios niveles de potencia distintos para maximizar el rendimiento. En comparación con el acceso múltiple ortogonal (OMA) que se ha aplicado ampliamente en los sistemas de comunicación inalámbrica existentes, NOMA posee el potencial de mejorar aún más la eficiencia

espectral del sistema y la capacidad de conectividad.

Como se mencionaba, PD-NOMA utiliza el dominio de la potencia para el acceso múltiple donde diferentes usuarios son servidos con diferentes niveles de potencia, como las señales de los diferentes usuarios se sobreponen, los receptores aprovechan la cancelación sucesiva de interferencia (SIC) para distinguir a cada una. Como varios usuarios son admitidos en la misma ranura de tiempo, frecuencia o código, la interferencia co-canal será fuerte en los sistemas NOMA [20], por lo que no es realista el asegurar a todos los usuarios del sistema que utilicen NOMA conjuntamente, por esta razón, una alternativa es utilizar un esquema hibrido donde NOMA sea combinado con el esquema convencional ortogonal OMA. El rendimiento de este esquema hibrido es muy dependiente de como los usuarios son agrupados [20]. El agrupamiento de usuarios seleccionara a los usuarios con los que se les asignará el mismo bloque de recursos ortogonales.

FIGURA 2.8: Cancelación Sucesiva de Interferencia (SIC), [Fuente: R. Kizilirmak 2017]

En la Figura 2.8, las dos señales de información indicadas con diferentes colores se superponen en el transmisor. La señal recibida en el receptor SIC incluye todas estas tres señales. La primera señal que SIC decodifica es la más fuerte, mientras que la otra es tratada como ruido. La primera señal decodificada se resta de la señal recibida y si la decodificación es perfecta, la forma de onda con la otra señal se obtiene con precisión. SIC itera el proceso hasta que encuentra la señal deseada [21].

Como se muestra en la *Figura 2.9*, la idea clave del NOMA en el dominio de potencia es asignar más potencia al usuario con condiciones de canal más pobres. El usuario 1 decodifica su propio mensaje directamente tratando el mensaje del usuario 2 como ruido y por otro lado, el usuario 2 realiza SIC, es decir, primero decodifica el mensaje del usuario 1 y luego elimina este mensaje de su observación antes de decodificar su propio mensaje.

Suponga que el usuario 1 es un dispositivo IoT que requiere solo una baja velocidad de datos, y el usuario 2 es un usuario que exige una alta velocidad de datos. Cuando se utiliza OFDMA, que es un ejemplo típico de OMA, cada usuario se asigna a la sub-portadora. En este ejemplo, la eficiencia espectral de OMA es pobre ya que el dispositivo IoT tiene más ancho de banda de lo

FIGURA 2.9: Ejemplo del esquema NOMA en un enlace de bajada con dos usuarios y una sub-portadora, [Fuente: Ding 2017]

que realmente necesita, mientras que al usuario de banda ancha no se le asigna suficiente ancho de banda. Por otro lado, el uso de NOMA fomenta el intercambio de espectro, es decir, el usuario de banda ancha también puede tener acceso a la sub-portadora ocupada por el dispositivo IoT, en la Figura 24 se puede observar gráficamente la asignación del espectro en los dos esquemas.

FIGURA 2.10: Ejemplo del espectro compartido para OFDMA y NOMA con dos usuarios, [Fuente: R. Kizilirmak 2017]

Dada la madurez técnica de OFDMA, es muy probable que este tipo de OMA se incorpore a las redes 5G [19] y la forma en que múltiples sub-portadoras OFDMA se pueden combinar de manera eficiente con NOMA ha recibido mucha atención.

Acerca del uso de arreglos múltiples de antenas (MIMO) para NOMA, han sido tema de mucho interés que han estado estudiandose para poder alcanzar un rendimiento óptimo del sistema, el ordenamiento de usuarios en escenarios de MIMO-NOMA es una tarea difícil [19]. En el caso de SISO, los canales de los usuarios son escalados, por lo que es sencillo ordenar a los usuarios de acuerdo con las condiciones de su canal. Sin embargo, cuando los nodos están equipados con antenas múltiples, los canales de los usuarios están en forma de vectores o matrices, lo que significa que ordenar a los usuarios de acuerdo con las condiciones de sus canales como en el caso SISO se vuelve difícil.

2.3.3. Interfaz de Radio

Los canales de transmisión dirigidos desde la BS a MT son referidos como canal downlink y los dirigidos desde el MT a la BS como canales uplink, estos canales juntos se identifican como canales "dúplex". La transmisión bidireccional de la información en sistemas dúplex puede dividirse en [13]:

- 1. Frecuencia: Donde los canales UL y DL ocupan diferentes bandas de frecuencia FDD (Frequency Division Multiplexing).
- 2. Tiempo: Donde los canales UL y DL ocupan diferentes ventanas de tiempo- TDD (*Time Division Multiplexing*).

FDD se caracteriza por:

- Cuando es utilizada una división "dúplex" de frecuencia FDD estos canales son transmitidos en diferentes frecuencias
- Permitir transmisión simultánea en ambos caminos
- Requieren filtros con un buen rechazo en la banda adyacente
- Requieren en general el uso de filtros dúplex

TDD se caracteriza por:

- Cuando se usa una división "dúplex" de tiempo TDD los canales son transmitidos en la misma frecuencia pero utilizando diferentes ranuras de tiempo.
- Permitir transmisión secuencial en ambos caminos
- Requiere sincronización
- No requieren uso de filtros dúplex

El uso de una técnica de división dúplex puede depender de la técnica de acceso múltiple utilizada para el sistema.

2.4. GENERACIONES PASADAS DE LOS SISTEMAS DE COMUNICACIÓN MÓVIL

La generación 1G fue la primera generación de tecnología celular inalámbrica. 1G se introdujo en la década de 1980. Las señales de radio utilizadas por la red 1G fueron analógicas y proporcionaba comunicación solo por voz, alcanzaba una velocidad de 2.4 Kbps. La técnica de acceso múltiple utilizada en 1G es el acceso múltiple por división de frecuencia (FDMA) [véase Figura 2.11][22]. Esta generación utiliza el método de conmutación de circuitos para la transmisión de datos.

Las redes celulares 2G de segunda generación fueron lanzadas comercialmente en el estándar GSM en Finlandia 1991 [22]. 2G utilizó el método de conmutación de paquetes para la transmisión de datos y habilitó el cifrado digital de la conversación por teléfono, además proporcionaron servicios multimedia como SMS (Servicios de mensajes cortos) MMS (Servicios de mensajes multimedia) y las velocidades de descarga y carga fueron de hasta 236 Kbps. Se utilizó el acceso múltiple por división de tiempo (TDMA), como el número de usuarios aumentó con el tiempo, TDMA se volvió obsoleto por causar una velocidad más baja para cada usuario.

3G (conocida también como UMTS) fue la tercera generación de tecnología inalámbrica de telecomunicaciones móviles y utilizó el acceso múltiple por división de código de secuencia directa (DS-CDMA) [22]. Las redes 3G ofrecieron velocidades de 3.1 megabits por segundo (Mbps) o más y se instalaron por primera vez en 1998. La aplicación del concepto 3G se encuentra en telefonía inalámbrica, acceso a Internet móvil, acceso a Internet inalámbrico, llamadas de conferencia y TV portátil.

medio **FIGURA** 2.11: Differentes múltiple al tipos de acceso [Fuente: ocupados generaciones anteriores (1G,3G), https://www.itu.int/osg/spuold/ni/3g/technology/index.html]

4G (conocida también como LTE) es el término utilizado para describir la cuarta generación de servicio celular inalámbrico y es el estándar actual del servicio celular. Es hasta 10 veces más rápido que los servicios 3G. Sprint fue el primer operador en ofrecer velocidades 4G en los EE.

UU a partir de 2009. Las redes 4G pueden ofrecer velocidades de descarga entre 5 y 12 Mbps y velocidades de carga entre 2 y 5 Mbps, lo que finalmente da una velocidad máxima de 50Mbps. El sistema de comunicación celular 4G utiliza una versión avanzada del esquema FDMA, es decir, OFDMA (acceso múltiple por división de frecuencia ortogonal) [22].

2.5. SISTEMAS DE COMUNICACIONES MÓVILES DE QUINTA GENERACIÓN (5G)

La NGMN define su visión de una red 5G de la siguiente manera: "5G es un ecosistema de extremo a extremo para permitir una sociedad totalmente móvil y conectada."

La anteriores generaciones de comunicaciones móviles (1G,...,4G) han sido transformadoras en el sentido que fueron motivadas para mejorar los tradicionales KPIs de la red, sin embargo la nueva generación de comunicaciones móviles (5G) aparte de ser transformadora viene a ser disruptiva ante las generaciones anteriores ya que propone nuevas técnicas, modelos y KPIs que habilitarán una gama amplia de servicios con alta fiabilidad, ayudando a conformar toda una red heterogénea global móvil interconectada con altos índices de rendimiento.

La investigación sobre los casos de uso de una red 5G y sus requisitos técnicos han sido realizadas por la ITU-R, el 3GPP y la NGMN:

5G admitirá una gran variedad de casos de uso que están surgiendo ahora o surgirán en el futuro. Los diversos casos de uso tienen características y requisitos variables. Es útil agrupar innumerables casos de uso emergentes en varias familias de casos de uso.

La Figura 2.12 muestra las ocho familias de casos de uso por la NGMN con un ejemplo de caso de uso para cada familia, y sus correspondientes ejemplos de casos de uso con la 3GPP y la ITU-R.

En términos generales, ITU-R ha concluido tres casos de uso para abordar la gran variedad de requisitos y características [23]:

- 1. Banda ancha móvil mejorada (eMBB): la banda ancha móvil aborda casos de uso centrados en el hombre para acceder a contenido multimedia, servicios y datos. La demanda de banda ancha móvil seguirá aumentando, lo que dará lugar a una banda ancha móvil mejorada. El escenario mejorado de uso de banda ancha móvil vendrá con nuevas áreas de aplicación y requisitos, además de las aplicaciones de banda ancha móvil existentes para un mejor rendimiento y una experiencia de usuario cada vez más perfecta.
- 2. Comunicaciones ultra fiables y de baja latencia (URLLC): este caso de uso tiene requisitos estrictos para capacidades tales como rendimiento, latencia y disponibilidad. Algunos ejemplos incluyen el control inalámbrico de la fabricación industrial o los procesos de producción, cirugía médica remota, automatización de la distribución en una red inteligente, seguridad en el transporte, manejo autónomo de automóviles, etc.

FIGURA 2.12: Comparación de diversos escenarios de uso de la tecnología 5G por la UIT-R, el 3GPP y la NGMN

3. Comunicaciones masivas de tipo máquina (mMTC): este caso de uso se caracteriza por un gran número de dispositivos conectados que transmiten un volumen relativamente bajo de datos no sensibles al retardo. Los dispositivos deben ser de bajo costo y tener una batería de larga duración.

2.6. INTERNET DE LAS COSAS (IoT)

El internet de las cosas (IoT) es una emergente y prometedora tecnología que habilitará la interconexión del mundo global a través de la conexión de objetos físicos (comúnmente dispositivos de bajo consumo) mediante el uso del internet [24]. Una de las características más importantes de esta tecnología es que ocupa la comunicación máquina a máquina (M2M) con el fin de que los dispositivos se conecten y comuniquen entre sí sin alguna intervención humana.

Para habilitar esta tecnología se requiere el soporte para conexiones masivas, es decir, admitir la gran cantidad de sensores en una sola celda. Debido a que la mayoría de estos sensores deben operar durante varios años, la eficiencia energética en las transmisiones inalámbricas es

un requisito importante. Además, se debe reducir el costo de implementación de tales sensores [25].

2.7. MODELADO DEL TRÁFICO EN TELECOMUNI-CACIONES

Conceptos básicos:

- 1. <u>Tráfico</u>: Es el acumulado de peticiones de servicio de todos los usuarios atendidos por la red o por una parte de ella.
- 2. Recurso o servidor: medio físico, usualmente sólo es capaz de atender un solo servicio.
- 3. Sistema de colas: conjunto de servidores de uso compartido.

2.7.1. Caracterización del Tráfico

Para caracterizar el tráfico se deben definir previamente los siguientes conceptos:

- 1. <u>Volumen de Tráfico Cursado</u>. Suma de la duración de todos los servicios atendidos por el sistema.
- 2. <u>Intensidad de Tráfico Cursado u Ocupación promedio de recursos (a')</u>. Número promedio de servicios atendidos simultáneamente. Se puede obtener mediante dividir el volumen de tráfico cursado entre el tiempo que tomó cursar dicho volumen. También se puede interpretar como el número promedio de servidores ocupados.
- 3. <u>Intensidad de Tráfico Ofrecido (a)</u>. Número promedio de servicios atendidos simultáneamente, si todas las peticiones fueran atendidas.

Suponiendo un sistema que es capaz de atender todas las peticiones de servicio y al que arriban λ peticiones/segundo. Esto implica que en un intervalo T segundos se recibirían λ ·T peticiones de servicio. Si la duración promedio de estos servicios es μ segundos, entonces el volumen de tráfico ofrecido (y en este caso también cursado) es $\lambda \cdot \mu$ ·T y la intensidad de tráfico ofrecido se reduce a:

$$a = \lambda \cdot \mu \tag{2.29}$$

Para un sistema que atiende todas las peticiones el tráfico cursado y el ofrecido son iguales, sin embargo, cuando se analizan sistemas que no cumplan esta característica, a se vuelve un valor hipotético (la intensidad de tráfico cursado, si todas las peticiones se atendieran), sin embargo, seguirá describiendo la intensidad del tráfico que se ofrece. Es importante mencionar que el desempeño de un sistema (en términos de algún parámetro de calidad de servicio) no va a depender del valor de λ o de μ por sí solos, sino del producto de ellos. Por ejemplo, un sistema se puede saturar tanto por una alta tasa de arribos como por una gran duración del tiempo de servicio.

2.7.2. Modelado de tiempos entre llegadas

Sean X1, X2, X3, ...Xi variables aleatorias tales que:

- X1 = el intervalo de tiempo entre el inicio del proceso y el primer evento, es decir, la primera llegada,
- X2 = el tiempo entre llegadas entre la primera y la segunda llegada,
- X3 = el tiempo entre llegadas entre la segunda y la tercera llegada, y así sucesivamente.

La distribución de la variable aleatoria Xk que representa el tiempo entre llegadas entre la llegada (k-1)th y (k)th es [11]:

$$X_k = Exponential(\lambda)$$
 (2.30)

La Función Densidad de Probabilidad (PDF) de la variable aleatoria X_k es la siguiente:

$$P_X(t) = \lambda e^{-\lambda t} \tag{2.31}$$

Y describe la PDF de tiempos entre llegadas en un proceso de Poisson.

Hasta este punto el tráfico sólo se ha caracterizado en término de dos valores promedio: la tasa de arribos (λ) y la duración promedio de los servicios (μ) . Estos parámetros representan información parcial de dos variables aleatorias, el tiempo entre arribos (TEA) y el tiempo duración de servicio (TDS). Estos tiempos por su carácter aleatorio en muchos análisis se modelan como variables aleatorias. El tipo de comportamiento aleatorio en las tasas se establece al de una distribución exponencial negativa [26]. La tasa de arribos corresponde una distribución como sigue:

$$f(y) = \lambda e^{-\lambda y} \cdot u(y) \tag{2.32}$$

La duración promedio de servicios corresponde a:

$$f(y) = \frac{1}{\mu} e^{-\frac{1}{\mu}y} \cdot u(y) \tag{2.33}$$

Es necesario establecer fórmulas que relacionen a la cantidad de recursos y el tráfico ofrecido con los parámetros de calidad de servicio, se requiere como paso intermedio determinar la probabilidad de que el sistema se encuentre en determinado estado.

Se considera que el sistema está en estado j, si la suma de los servicios que están siendo atendidos más los servicios en espera es j.

Una técnica que simplifica significativamente el cálculo de las probabilidades de estado es el uso de cadenas de Markov, sin embargo, la solución mediante este método implica el análisis del sistema exclusivamente en el dominio de las probabilidades, por lo que las probabilidades de estado no tienen dependencia del tiempo. Esta independencia del tiempo se consigue sólo si:

- 1. El sistema se analiza en estado estable, es decir, si el sistema ha estado operando por un intervalo de tiempo lo suficientemente grande, de modo que ya no depende de las condiciones iniciales.
- 2. Si la probabilidad de que el sistema cambie de estado no depende de cuánto tiempo haya permanecido en el estado actual.

La segunda condición sólo se puede cumplir si las distribuciones del TEA y del TDS son exponenciales negativas [26].

Si el número de servidores que posee un sistema es menor a la cantidad de fuentes que generan el tráfico, y se entiende como fuentes de tráfico a los posibles usuarios, resulta imposible atender a todas las peticiones de servicio de forma instantánea. Básicamente se puede proceder de 2 formas con aquellas llamadas que hallen al sistema saturado:

- 1. Negarles el servicio. Se tiene un sistema con bloqueo o con pérdidas.
- 2. Mantenerlas en espera y asignarles servidores cuando sean liberados. Se tiene un sistema con retardo.

En el modelado de los sistemas con bloqueo también se debe tomar en cuenta que sucede con las llamadas que no son atendidas y dependiendo de la naturaleza del servicio analizado se puede considerar que las llamadas bloqueadas regresan al sistema en forma de reintentos o bien son eliminadas en forma definitiva.

Otra consideración de suma importancia en el sistema de colas es tomar en cuenta que tan grande es la cantidad de posibles fuentes de tráfico en comparación con la cantidad de recursos; cuando la cantidad de fuentes es muy grande se puede aproximar con infinito y los análisis se simplifican considerablemente.

También es importante mencionar que hay sistemas en los que las peticiones pueden experimentar bloqueo o retardo. Además de las consideraciones previas: la distribución del TEA y del TDS, la cantidad de recursos y el tamaño de la cola de espera son parámetros que influyen en el desempeño de un sistema.

2.7.3. Notación Kendall

Para describir a un sistema mediante estos parámetros se puede usar la notación de Kendall, la cual se expresa de la forma: c1/c2/s/KDonde:

- 1. **c1** representa la distribución del TEA y pueden asignársele las letras M (arribos Markovianos, es decir distribución exponencial negativa) o G (General, es decir cualquier otra distribución).
- 2. **c2** es la distribución del TDS y puede ser M (exponencial negativa), D (Determinístico, es decir el TDS es constante) o G (general).

- 3. s es el número de servidores.
- 4. \mathbf{K} es la longitud de la cola de espera.

Se refiere como λ a la tasa de arribos generada por todas las fuentes de tráfico y se denotó anteriormente μ a la duración promedio de un servicio. El inverso de dicho tiempo se considera la tasa a la que finaliza un servicio en curso. En caso de que existan j servicios en curso la tasa a la que finalizan las llamadas es j/ μ . Esta fórmula concuerda con el hecho de que a medida que hay más servicios en curso, menos tiempo se tiene que esperar a que alguno de ellas finalice, es decir, la tasa de finalización se incrementa.

La probabilidad de bloqueo está dada por:

$$P_j = \frac{\frac{(\lambda \mu)^j}{j!}}{\sum_{k=0}^s \frac{(\lambda \mu)^k}{k!}}$$
 (2.34)

De todas las probabilidades de estado, Ps tiene particular importancia, ya que representa la probabilidad de que el sistema esté saturado, en otras palabras, la probabilidad de bloqueo:

$$P_s = \frac{\frac{a^s}{s!}}{\sum_{k=0}^s \frac{a^{(k)}}{k!}}$$
 (2.35)

La Ecuación 2.35 fue desarrollada originalmente por el danés A. K. Erlang, por lo que es comúnmente conocida como fórmula de **Erlang-B**.

Notese que en la Ecuación 2.34 el producto $\lambda\mu$ se puede sustituir por a, el tráfico ofrecido, y con esto se corrobora que la calidad del servicio (en este caso la probabilidad de bloqueo) no depende de λ o de μ por si solos, sino de su producto.

2.8. SIMULACIÓNES A NIVEL DE SISTEMA

Debido a las complicadas estructuras de los sistemas de comunicación celular móvil, no podemos describirlos completamente a través de un modelo matemático simple y abstracto. Por lo tanto, siempre recurrimos a la simulación para evaluar su rendimiento. La simulación a nivel de sistema se ha utilizado ampliamente para evaluar el rendimiento integral de diferentes sistemas celulares móviles [27]. Los programas de computadora se utilizan para simular los mecanismos operativos de los sistemas móviles de comunicación celular, los tráficos cargados, etc. El rendimiento de estos sistemas se puede reflejar en última instancia por los resultados obtenidos de los programas de simulación.

El escenario para la simulación a nivel de sistema generalmente consiste en una red con múltiples BS y MS [véase Figura 2.13]. A diferencia de la simulación a nivel de enlace, la simulación a nivel de sistema se centra en las métricas de rendimiento de la capa de aplicación expresadas

FIGURA 2.13: El diseño usual de una red celular en simulaciones a nivel de sistema

por el rendimiento del sistema, la imparcialidad del usuario, la calidad de servicio percibida por el usuario (QoS), el retraso de la transferencia o la tasa de éxito, etc.

2.9. SIMULACIONES ORIENTADAS A EVENTOS DIS-CRETOS

Una simulación es casi siempre la imitación de algún proceso o sistema que toma o podría tomar lugar en el mundo real, implementada utilizando un paradigma de programación y ejecutada por computadoras. Para realizarse esta, debe tenerse en cuenta un previo estudio del sistema real o de algún modelo o modelos existentes, junto con un análisis detallado de las variables presentes, además es necesario hacer distintas suposiciones al estar el estándar aún en desarrollo. Todo esto para permitir una simulación que simplifique el sistema, pero aun siendo capaz de generar resultados que puedan ayudar a su caracterización y a ser dimensionado.

En [28] se describe a un sistema discreto como: "[...] aquel en el cual las variables de estado cambian únicamente en un número discreto de instantes en el tiempo". Por lo que la simulación de eventos discretos es la implementación en hardware de un sistema en el que sus variables de estado cambian de tal forma con el arribo de eventos, los cuales se tratan de ocurrencias que se presentan de forma instantánea y cuentan con un nacimiento y una muerte.

En cuanto a un evento o proceso estocástico, tenemos la siguiente definición [13]:

Definición: Un proceso estocástico es una colección de variables aleatorias $X_t : t \in T$ parametrizada por un conjunto T, llamado espacio parametral, en donde las variables toman valores en un conjunto S llamado espacio de estados.

En los casos más sencillos se toma como espacio perimetral al conjunto discreto

T = [0, 1, 2, ...] y estos números se interpretan como tiempos. En este caso se dice que el proceso es a tiempo discreto, y en general este tipo de procesos se denotara por [Xn: n = 0, 1, ...]

2.9.1. Lenguajes de Programación para simulaciones orientadas a eventos discretos(DES)

Considerando solamente los lenguajes que sean de código abierto, tenemos a JAVA (DESMO-J y Ptolomeo I), Python (Simpy) y C++ (SystemC y PowerDEVS) como los lenguajes más conocidos y de entre estos sobresalen Simpy (Python) y SystemC (C++) como los que han tenido más soporte y actualización (2018), lo cual será un factor importante al elegir el lenguaje.

Simpy es una librería basada en procesos, se pueden definir diferentes entornos, todos los procesos interactúan mediante eventos con el mismo entorno y entre ellos. Durante su estancia, los procesos crean eventos y producen nuevos eventos para esperar a que se activen. Cuando un proceso produce un evento, el proceso se suspende, SimPy reanuda el proceso, cuando ocurre el evento. Varios procesos pueden esperar el mismo evento, SimPy los reanuda en el mismo orden en que dieron lugar a ese evento [29]. Además proporciona varios tipos de recursos compartidos para modelar puntos de congestión de capacidad limitada (p. ej. servidores).

La documentación de SimPy contiene tutoriales, guías detalladas y una gran cantidad de ejemplos [29]. SimPy se lanza como software de código abierto bajo la licencia del MIT. La primera versión fue lanzada en diciembre de 2002 y hoy en día su última versión estable es la 3.0.11 / 16 de noviembre de 2018.

Python es un lenguaje de programación dinámico de alto nivel, interpretado y de propósito general que se enfoca en la legibilidad del código. La sintaxis en Python ayuda a los programadores a codificar en menos pasos en comparación con Java o C ++ [30]. Python es ampliamente utilizado en organizaciones más grandes debido a sus múltiples paradigmas de programación. Usualmente involucran programación funcional imperativa y orientada a objetos.

2.9.2. Python

Ventajas o beneficios de Python [30]:

- 1. Característica de integración
- 2. Productividad mejorada del programador
- 3. Amplias librerías de soporte:

Scipy es una librería de Python utilizada para la informática científica y la informática técnica.

NumPy es una librería de Python utilizada para la informática científica que, aparte de sus usos científicos, puede utilizarse como un contenedor multidimensional para datos genéricos.

Matplotlib es una librería para la generación de gráficos a partir de datos contenidos en listas o arrays en el lenguaje de programación Python y su extensión matemática NumPy. Proporciona

una API, pylab, diseñada para recordar a la de MATLAB.

Desventajas o Limitaciones de Python:

1. Lenguaje interpretado: se ralentiza en velocidad: Python se ejecuta con la ayuda de un intérprete en lugar del compilador, lo que hace que se ralentice porque la compilación y la ejecución ayudan a que funcione normalmente.

El mecanismo que degrada el desempeño de CPython es la ejecución de bytecode por varios hilos a la vez, conocido como *Global Interpreter Lock* o GIL, es un mecanismo utilizado en intérpretes de lenguaje de computadora para sincronizar la ejecución de subprocesos para que solo un subproceso nativo pueda ejecutarse a la vez. Un intérprete que usa GIL siempre permite que se ejecute exactamente un subproceso a la vez, incluso si se ejecuta en un procesador multinúcleo.

2.9.3. Multiprocesamiento

Afortunadamente, existen métodos para evitar este comportamiento del interpretador, haciendo que se usen todos los nucleos del PC con ayuda de la librería multiprocessing [31].

Figura 2.14: Concurrencia Vs Paralelismo

El módulo de multiprocessing permite al programador aprovechar al máximo múltiples procesadores en paralelo. Se ejecuta tanto en Unix como en Windows, no confundir con concurrencia (esta hace uso de múltiples hilos) [véase Figura 2.14].

2.10. ORGANISMOS INTERNACIONALES DE ESTAN-DARIZACIÓN

Para la creación de estándares de las redes de nueva generación, existen más que en otras ocasiones, organizaciones desarrolladoras de estándares de telecomunicaciones (TSDOs) [32], lo que significa que hay muchas partes que debieran moverse en armonía. Estas organizaciones comparten entre sí: sus recomendaciones, artículos, especificaciones, estándares, presentaciones, visiones y demás.

Unos de los TSDO más importantes que han contribuido a definir el funcionamiento de redes móviles como por ejemplo UMTS, LTE, NB-IoT entre otros, es el Proyecto de Asociación de 3ra Generación (3GPP), el cual unifica a siete organizaciones internacionales de desarrollo de estándares de telecomunicaciones (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC), conocidas en conjunto como "Socios Organizacionales". 3GPP proporciona a sus miembros un entorno estable para producir los Informes y Especificaciones que definen las tecnologías 3GPP [32]. El proyecto cubre tecnologías de telecomunicaciones celulares, incluyendo acceso de radio, red central y capacidades de servicio, que proporcionan una descripción completa del sistema para comunicaciones móviles.

FIGURA 2.15: Socios Internacionales con los que colabora la 3GPP, [Fuente: https://www.3gpp.org/about-3gpp/partners]

Además, los socios organizacionales de 3GPP pueden invitar a un socio de representación del mercado a participar en 3GPP, con el fin de ofrecer asesoramiento de mercado a 3GPP y traer a 3GPP una visión consensuada de los requisitos del mercado [véase Figura 2.15].

Los tres grupos de especificaciones técnicas (TSG, *Technical Specifications Group*) de 3GPP, quienes cada determinado tiempo liberan *releases* (lanzamientos) en los cuales especifican estándares [32], son:

- 1. Redes de acceso por radio (RAN).
- 2. Servicios y aspectos de sistemas (SA).
- 3. Red central y terminales (CT).

Capítulo 3

Estado del Arte

En este Capítulo se encuentra el estudio de los trabajos anteriormente realizados que están relacionados con nuestro proyecto terminal, esto con la finalidad de presentar antecedentes, y dejar ver discrepancias y similitudes con el nuestro.

El trabajo de dimensionar los sistemas de comunicación móviles es una necesitad recurrente en cada generación, En [33], se encuentra un proyecto terminal realizado por alumnos de la UPII-TA, en el cual se realizó una simulación, bajo el paradigma de eventos discretos, de un sistema celular 4G, con un enfoque en distintos esquemas de reúso de frecuencias y calendarizadores para obtener resultados sobre qué combinación de estos y bajo qué condiciones permitían al sistema tener un mayor desempeño. En este proyecto la simulación se llevó a cabo utilizando Matlab, el paradigma de programación fue el de eventos discretos por lo que presenta un buen precedente a nuestro proyecto.

Por otra parte, el reciente crecimiento de los casos de uso de IoT en una amplia gama de aplicaciones industriales, de servicios públicos y ambientales ha exigido la necesidad de la caracterización del tráfico tipo máquina (MTC). Reconociendo la importancia de este tráfico, la 3GPP ha propuesto dos modelos de tráfico, que modelan el tráfico agregado generado por una gran cantidad de dispositivos. El primero modela el tráfico generado aleatorio, mientras que el segundo modela el tráfico síncrono con el tiempo. Dado que los modelos solo se centran en el tráfico agregado, no son apropiados para el análisis práctico porque no son lo suficientemente precisos como para representar un tráfico M2M real y los modelos no permiten la manipulación máquina por máquina lo que hace difícil para integrar el tráfico en redes celulares.

En [34], los autores consideraron modelar el tráfico de dispositivos IoT conectados a través de tecnologías LPWAN. Debido a las diversas aplicaciones de IoT, no es trivial tener un solo modelo de tráfico para representarlos a todos, el tráfico puede clasificarse ampliamente como periódico, desencadenado por eventos o una combinación de ambos. Evaluaron el rendimiento de LoRaWAN, en presencia de un híbrido de ambos tipos de tráfico, donde el evento se propaga espacialmente a lo largo del tiempo. Utilizaron el modelo CMMPP para representar dicho tráfico característico de dispositivos IoT independientes activados por un evento. Ya que en una implementación práctica de dispositivos IoT basados en sensores, estos generalmente se implementan densamente para garantizar una medición suficiente y confiable. De este modo, cuando ocurre un evento, exhiben correlación espacial y temporal en su velocidad de tráfico debido a

los fenómenos naturales de la métrica que miden.

De igual manera pero ahora con un enfoque en sistemas celulares LTE, en [35] los autores analizaron el tráfico M2M con velocidad de datos variable bajo el supuesto de que la red LTE tiene recursos limitados. Los resultados muestran las características del tráfico M2M de una manera más realista, identificando las diferencias del tráfico estándar en la red celular. Revelan que el tráfico cuenta con la propiedad de auto similitud solo para una gran cantidad de MTC. Además, los resultados dan una idea de los parámetros de diseño que deben considerarse para LTE a fin de admitir el tráfico M2M.

Estos trabajos son una gran aportación ya que demostraron que se puede usar un modelo de tráfico CMMPP para evaluar el impacto en la tecnología de radio IoT, configurando adecuadamente el modelo para representar casos de uso del mundo real. La integración del tráfico M2M en las redes celulares existentes será parte inevitable de la evolución de las redes. En nuestro proyecto se planea evaluar este modelo CMMPP, pero enfocado en sistemas celulares 5G donde se esté dando servicio a usuarios NB-IoT de distintas aplicaciones, además, consideramos un esquema de acceso al medio para la compartición eficiente de los recursos.

Ahora bien, del lado de los esquemas de acceso no ortogonales (NOMA) en redes de quinta generación, y más en concreto de NOMA bajo estándares de 5G/IoT, se ha trabajado arduamente ya que el tema de maximizar la conectividad de los sistemas en escenarios masivos de usuarios esperados en sistemas 5G/IoT son una gran discusión de interés en la actualidad. Dentro de la literatura científica se encuentra toda una gama de propuestas de diferentes modelos de sistema relacionados a NOMA.

En [36], los autores proponen un sistema usando geometría estocástica (PPP) para modelar un ambiente inalámbrico denso que admita NOMA tanto en el enlace de subida como en el enlace de bajada; el modelado es analítico y validado por simulación.

En la implementación de NOMA proponen dos esquemas de emparejamiento de usuario: uno aleatorio y otro selectivo:

- 1. Cuando el agrupamiento es aleatorio, los UE son seleccionados aleatoriamente.
- 2. Cuando el agrupamiento es selectivo, el primer UE deberá tener una relación señal-interferencia más ruido (SINR) por encima del umbral T1 y el segundo UE tiene un SINR por debajo del umbral T2, T2 \leq T1.

Consideraron un error de propagación SIC durante el proceso de decodificación por parte del UE. Además, optaron por una estrategia de asignación de potencia fija, donde la potencia de enlace de bajada asignada a un UE está predefinida y permanece sin cambios.

Las ganancias implementan el desvanecimiento de Rayleigh entre la BS_0 y UE_i . La ganancia en potencia de desvanecimiento Rayleigh entre BS y UE sigue una distribución exponencial con

FIGURA 3.1: Modelo de sistema para el sistema de enlace descendente NOMA

Figura 3.2: Modelo de sistema para el sistema de enlace ascendente NOMA

media 1 y se distribuye de forma independiente e idéntica (i.i.d.)

En el enlace descendente (DL), se agregaron perdidas por trayectoria con un exponente de pérdida y se calcula la interferencia entre celdas cumulativa de todas las bases adyacentes. En el enlace ascendente (UL), la interferencia inter-celdas proviene de todos los otros UEs que comparten la misma sub-banda. [Véanse Figuras 3.1, 3.2]

Como se puede observar, este trabajo se enfocó en NOMA pero para sistemas 5G en general, sin embargo no consideraron la actuación de dispositivos IoT los cuales al tener diferentes calidades de servicio, impactaría en la toma de decisiones con respecto a NOMA, más en concreto en el emparejamiento de usuarios.

Por el contrario, un grupo de autores de la Universidad Británica de Columbia [Mostafa2019] han trabajado en emplear NOMA para mejorar la densidad de conexión en los sistemas NB-IoT. En su propuesta cada subportadora puede dar servicio máximo a dos dispositivos con diversos requisitos de QoS.

Formularon problemas de asignación de potencia de transmisión y subportadora conjunta para los modos singletone y multitone. Además, propusieron algoritmos heurísticos con baja complejidad y dieron como resultado un rendimiento cercano a las soluciones óptimas y subóptimas en ambos casos. Los resultados de la simulación mostraron que el uso de NOMA aumentó la densidad de conexión hasta en un 87 % en comparación con OMA en el modo singletone y en el modo multitono, la densidad de conexión también se incrementó hasta en un 24 %.

Los autores en [37] desarrollaron un esquema NOMA en el dominio de potencia con agrupación

de usuarios en un sistema NB-IoT. Resolvieron un problema de optimización para maximizar el rendimiento total de la red al optimizar la asignación de recursos de los dispositivos MTC y la agrupación de NOMA al tiempo que satisface los requisitos de potencia de transmisión y QoS. Además, diseñaron un algoritmo heurístico eficiente para resolver el problema de optimización propuesto mediante la optimización conjunta de la agrupación NOMA y la asignación de recursos de dispositivos MTC.

En su modelo de sistema consideraron un escenario de una única celda (solo un eNB), que admite dispositivos MTC basado en el estándar NB-IoT. Asumieron que no hay interferencia entre células de otras células vecinas.

FIGURA 3.3: Grupos NOMA que incluyen dispositivos mMTC y URLLC, donde los dispositivos MTC comparten los subcanales asignados a cada clúster NOMA.

Propusieron un esquema NOMA de dominio de potencia agrupando (de entre 1 a 4) dispositivos mMTC y URLLC en una red NB-IoT como se muestra en la Figura 3.3 . Según el esquema NOMA, los dispositivos mMTC y URLLC comparten cada subportadora (subcanal) y transmiten datos de manera no ortogonal, es decir, más de un usuario puede compartir el mismo subcanal. Por lo tanto, los dispositivos se dividen en diferentes grupos, llamados grupos NOMA. Para decodificar con éxito los mensajes del mensaje recibido combinado, el eNB emplea el esquema SIC. Por lo tanto, los usuarios deben ordenarse en cada grupo de acuerdo con el método SIC.

Como vemos, se ha investigado bastante acerca del desempeño de los esquemas NOMA para IoT, sin embargo nuestra propuesta resulta diferente ya que además de considerar un escenario celular bajo un esquema PD-NOMA, se propone implementar un despliegue de UEs usando PPP, porque sirven como modelo de referencia para redes masivas y de interferencia limitada, un modelo de canal más realista y con pérdidas por desvanecimiento rápido, y por último, un modelo de trafico CMMPP que como se ha revisado en [34] son los modelos más realistas para el tráfico MTC.

Capítulo 4

Análisis

En este capítulo se realiza el análisis de las diversas aplicaciones de dispositivos IoT y su implementación en redes de comunicaciones móviles 5G. Se comienza con una breve descripción de estas tecnologías, y después se profundiza en el caso de uso mMTC donde se mencionan los escenarios más comunes de implementación, su clasificación y sus características, además se revisa el estándar actual (NB-IoT¹) que cumple con los requisitos para la implementación de mMTC. Finalmente se revisan los KPIs propuestos para este tipo de escenarios.

Por último, se presentan cuáles son los modelos que se usan para caracterizar el despliegue, la condición del canal y tráfico de dispositivos IoT en redes 5G y además, se presenta la actual propuesta de técnica de acceso múltiple al medio no ortogonal (NOMA) para redes 5G/IoT usando agrupamientos (clustering), enfocada a escenarios masivos de dispositivos tipo máquina (mMTC).

4.1. REDES 5G/IoT

Aunque gran parte de la comunicación IoT se ha implementado hasta el momento, no se ha considerado para una conectividad masiva y una mejor eficiencia energética.

El Internet de las cosas (IoT) en los sistemas 5G tendrán un importante papel en esta generación ya que abrirán una puerta para una nueva arquitectura inalámbrica y servicios inteligentes. La reciente red celular LTE (4G) no será lo suficientemente eficiente para satisfacer las demandas de conectividad de múltiples dispositivos, velocidad de datos, calidad de servicio (QoS) de baja latencia y eficiencia energética. Para abordar estos desafíos, 5G es la tecnología más prometedora [38].

Por lo tanto, el caso de uso referente a la comunicación masiva de tipo máquina (mMTC), será uno de los principales habilitadores clave para el despliegue de redes 5G-IoT.

¹Muchos de los modelos aquí propuestos están basados en trabajos de la 3GPP, como se revisó en el Capítulo II, la 3GPP, es una organización que está respaldada por organismos alrededor de todo el mundo, además de que se trata del grupo que estandariza tecnologías como LTE-M y NB-IoT, de manera que es una indudable referencia en su ahora inmersión en la estandarización de 5G.

4.2. CLASIFICACIÓN Y ANÁLISIS DE LOS ÁMBITOS DE IOT

La contribución en cuanto a la categorización de las aplicaciones de IoT que ya existen y las que se comenzarán a ver en años próximos, es vasta y no siempre compatible dependiendo del grupo que se consulte, de manera que se tomó como referencia el trabajo realizado en [39] como guía para los servicios que se espera brinden los nodos IoT en distintos ámbitos.

La mayor parte del artículo [39], los autores se dedicaron a la caracterización de las aplicaciones de IoT y sus dominios, los cuales se pueden dividir en 8, específicamente: edificios inteligentes y vivienda (Smart buildings and living), cuidado de la salud inteligente (Smart healthcare), medio ambiente inteligente (Smart environment), ciudades inteligentes (Smart city), energía inteligente (Smart energy), transporte y movilidad inteligentes (Smart transport and mobility), fabricación y venta inteligentes (Smart manufacturing and retail), agricultura inteligente (Smart agriculture). Para cada uno de los dominios se especifican aplicaciones típicas que se podrían encontrar, sus características de tráfico, las tecnologías de red más adecuadas para darles servicio entre otras cosas.

La primera parte del análisis correspondió a la selección de los dominios que resultasen adecuados para el sistema que se diseña, es decir los dominios cuya red que les brindará servicio primordialmente será una red de área amplia de bajo consumo (LPWAN, Low Power Wide Area Network). Esto se debe a que algunas de las aplicaciones en los dominios antes mencionados están pensadas para redes de distintas características en las que tecnologías como RFID, Bluetooth o ZigBee podrían ser una mejor solución. A continuación se presenta la caracterización de cada uno de los dominios que en [39] se consideran viables para redes LPWAN.

4.2.1. Ciudades inteligentes (Smart City):

Con el rápido incremento de la población y su concentración en poblaciones urbanas, se ha convertido en una prioridad la reducción del uso de recursos públicos, así como la reducción de costos de operación del día a día de una ciudad, ambas de la manera más óptima posible. Las aplicaciones en este dominio tratan justamente de abordar estos problemas y los servicios que brindan son bastante variados, los ejemplos van desde el control de luminarias hasta el manejo de desechos, estos y otros pueden encontrarse en la *Tabla 4.1*, acompañados de más información tal como la caracterización de su tráfico y su demanda de QoS.

4.2.2. Ambiente inteligente (Smart Environment)

Este dominio comprende las aplicaciones que se encargan de monitorear el ambiente a nuestro alrededor y lo que ocurre en él, y aunque no se pueda controlar la fuerza de la naturaleza, con una correcta observación se pueden detectar distintos fenómenos naturales y reaccionar a tiempo

TABLA 4.1: Características de las aplicaciones de Ciudades Inteligentes

Servicio	$egin{array}{ll} Tama \~no & de \ red & \end{array}$	Tasa de tráfi- co	$egin{array}{ccc} Demanda & de \ QoS & \end{array}$	Fuente de energía
Monitoreo del consumo de agua y electricidad en la ciudad	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj ca- da 10 min por dis- positivo	Baja, tolerante al retardo 1 min	Alimentado por la red eléctrica/ auto- alimentado
Control de ilu- minación	Grande, miles de dispositivos	Aleatorio, poco frecuente	Media, tolerante al retardo 15 seg	Alimentado por la red eléctrica
Vigilancia de es- tacionamientos	Grande, miles de dispositivos	Aleatorio, poco frecuente	Media, tolerante al retardo 10 seg	Alimentado por batería
Control del tráfi- co	Grande, miles de dispositivos	Periódico, 1 msj ca- da 10 min por dis- positivo, aleatorio para alarmas	Media, tolerante al retardo 15 seg, alta para alarmas	Alimentado por ba- tería
Mantenimiento de deshechos	Grande, miles de dispositivos	Aleatorio, poco frecuente	Media, tolerante al retardo 30 seg	Alimentado por batería
Monitoreo de condiciones urbanas	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj ca- da 15 min por dis- positivo, aleatorio para alarmas	Media, tolerante al retardo 30 seg, alta para alarmas	Alimentado por ba- tería
Monitoreo de la salud estructural de edificios	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj ca- da 15 min por dis- positivo, aleatorio para alarmas	Media, tolerante al retardo 30 seg, alta para alarmas	Alimentado por batería

Servicio	Tamaño de red	Tasa de tráfico	Demanda de QoS	Fuente de energía
Detección de in- cendios foresta- les	Media a grande, cientos a miles de dispositivos	Aleatorio, poco frecuente	Media, tolerante al retardo 15 seg	Alimentado por batería
Detección de te- rremotos	Media a grande, cientos a miles de dispositivos	Aleatorio, poco frecuente	Alta, tolerante al retardo 5 seg	Alimentado por batería
Detección de Tsunamis	Media a grande, cientos a miles de dispositivos	Aleatorio, poco frecuente	Alta, tolerante al retardo 5 seg	Alimentado por batería
Detección de de- rrumbes y ava- lanchas	Media a grande, cientos a miles de dispositivos	Aleatorio, poco frecuente	Alta, tolerante al retardo 5 seg	Alimentado por batería
Monitoreo de ac- tividad volcánica	Pequeña, 10s de dispositivos	Aleatorio, poco frecuente	Alta, tolerante al retardo 5 seg	Alimentado por batería
Monitoreo de la contaminación del aire	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj ca- da 15 min por dis- positivo	Media, tolerante al retardo 15 seg	Alimentado por batería
Rastreo de vida salvaje.	Media, cientos de dispositivos	Periódico, 1 msj ca- da 30 min por dis- positivo	Baja, tolerante a unas horas	Alimentado por batería

Tabla 4.2: Características de las aplicaciones de Ambiente Inteligente

ante ellos. En el caso especial de eventos que podrían ocasionar una catástrofe, es importante reaccionar lo más rápido posible por lo que el brindar el servicio a algunas de las aplicaciones de este dominio se volverá crítico. En la Tabla 4.2 podemos encontrar la caracterización de las aplicaciones consideradas en [39] para Ambiente Inteligente.

4.2.3. Energía inteligente (Smart Energy):

El dominio de Energía Inteligente Smart Energy se refiere a las mejoras en la distribución y el consumo de fuentes de energía o recursos necesarios, tales como la electricidad, el gas y el agua. Aunque el foco de atención está en la electricidad ya que existe una tendencia más marcada hacia su ahorro y la utilización de fuentes renovables.

Los nodos de IoT para aplicaciones de este dominio podrían monitorear las condiciones cambiantes de la red, para posteriormente generar una reconfiguración apropiada del servicio. En la *Tabla 4.3* podemos encontrar la caracterización descrita en [39] para distintas aplicaciones de Energía Inteligente.

Servicio	Tamaño de red	Tasa de tráfico	Demanda de QoS	Fuente de energía
Medición inteli- gente	Media a grande, 1 dispositivo por ho- gar	Periódico, 1 msj ca- da 15 min por dis- positivo	Media, tolerante al retardo 15 seg	Alimentado por la red eléctrica/ Bate- rías
Gestión de activos	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj ca- da 15 min por dis- positivo	Media, tolerante al retardo 15 seg	Alimentado por la red eléctrica/ Bate- rías
Detección de in- terrupciones en el servicio	Media a grande, 1 dispositivo por ho- gar	Aleatorio, poco frecuente	Alta, tiempo real	Alimentado por la red eléctrica/ Bate- rías

Tabla 4.3: Características de las aplicaciones de Energía Inteligente

4.2.4. Transporte y movilidad inteligentes (Smart Transport and Mobility):

Tanto el crecimiento urbano como el crecimiento de las fuentes de transporte de pasajeros y de mercancías, con más frecuentes congestiones viales y una mayor movilidad requerida, han creado una demanda de administrar el transporte y la movilidad de una manera más inteligente.

El objetivo de aplicaciones IoT en el dominio de Transporte y movilidad inteligentes (Smart Transport and Mobility) es ayudar a resolver el problema de movilidad tanto de pasajeros como de mercancías, haciéndolo más rápido, más barato y más seguro. En la Tabla 4.4 se encuentra la caracterización presentada en [39] para distintas aplicaciones de este dominio.

4.3. CARACTERÍSTICAS DEL ESCENARIO A IMPLE-MENTAR

Las distintas aplicaciones presentadas en la sección anterior pertenecen a varios dominios y estas muy seguramente se verán desplegadas en un futuro próximo en ciudades alrededor de todo el mundo. Una aserción que resulta importante es la gran cantidad de aplicaciones que se esperan para IoT [3], pero en este análisis se toman en consideración únicamente aquellas bajo el paradigma de redes LPWAN, para las cuales la red celular podría ser las más idónea para brindarles servicio. En estas aplicaciones lo primordial es tener un bajo consumo y complejidad de los dispositivos, además de una amplia cobertura y una gran densidad de dispositivos [40], en contraste con las aplicaciones más inclinadas a los casos de uso eMBB y URLLC donde lo primordial es el amplio ancho de banda disponible para las aplicaciones y una menor latencia, respectivamente.

Servicio	Tamaño de red	Tasa de tráfico	Demanda de QoS	Fuente de ener- gía
Automatización de vehículos	Grande, miles de dispositivos	Periódico, 1 msj cada 24 hrs por vehículo.	Baja, tolerante al retardo 1 min	Alimentado por batería del vehículo
Localización y monitoreo de vehículos	Grande, miles de dispositivos	Periódico, 1 msj cada 30 seg por vehículo	Media, tolerante al retardo 10 seg	Alimentado por batería del vehículo
Monitoreo de la calidad del embarque	Media, cientos de dispositivos	Periódico, 1 msj ca- da 15 min por dis- positivo	Media, tolerante al retardo 15 seg	Alimentado por batería
Control dinámi- co de semáforos	Grande, miles de dispositivos	Periódico, 1 msj ca- da min por disposi- tivo	Alta, tolerante al retardo 5 seg	Alimentado por la red eléctrica
Monitoreo de las condiciones del camino	Grande, miles de dispositivos	Aleatorio, poco frecuente	Media, tolerante al retardo 30 seg	Alimentado por batería

Tabla 4.4: Características de las aplicaciones de Transporte y Movilidad inteligentes

4.3.1. Análisis de las aplicaciones de IoT y selección de casos considerados

De todos los servicios descritos en las tablas anteriores [Tabla 4.1...4.4], se ha decidido simular solamente un grupo diverso de aplicaciones provenientes de distintos dominios. Este grupo se seleccionó a manera que fuera representativo de distintos comportamientos y requerimientos de QoS. El escenario propuesto consta de los servicios de: control de iluminación, monitoreo del consumo de agua y electricidad, detección de terremotos, monitoreo de contaminación del aire, detección de interrupciones en el servicio (agua, luz, gas), control dinámico de semáforos y un último servicio que se llamó "genérico". El servicio llamado genérico representará el conglomerado de todas las demás aplicaciones IoT que estarán presentes en la red y no corresponden a una de estas aplicaciones.

Se decidió entonces situar la simulación en un escenario urbano micro celular con nodos en exteriores, en el que se encontrarán todas las aplicaciones mencionadas en el párrafo anterior. La elección de un escenario urbano micro celular se debe a que en este se puede experimentar la congestión de las comunicaciones MTC y HTC, ya que corresponde a zonas urbanas densamente pobladas. Otra razón es que en un escenario tal se tienen presentes una mayor diversidad de aplicaciones IoT, con distintas características de tráfico y requerimientos de QoS. La densidad de dispositivos aunado a su diversidad ayudará a que la simulación contemple comportamientos reales y seamos capaces de evaluar los KPIs deseados.

En la *Tabla 4.5* se presentan las aplicaciones IoT del escenario urbano que se determinaron y como se puede apreciar, se seleccionaron aplicaciones provenientes de distintos dominios para tener cierta variedad, pero más importante que eso es la diversidad en las características del tráfico generado y en los parámetros de QoS requeridos por cada una de estas aplicaciones.

A continuación se hace una descripción de la Tabla 4.5. Se tienen tres aplicaciones con una alta demanda de QoS, después dos con una demanda media y finalmente una demanda baja, las distintas demandas de QoS se traducen en diferentes tolerancias a la latencia, las cuales van desde los minutos hasta aquellas que requieren de una respuesta casi inmediata. Es importante aclarar que el término "tiempo real" se arrastra de la descripción dada en [39], la cual en el contexto de nodos IoT dependerá dependiendo del caso de uso de estos, es decir, la consideración de tiempo real no es la misma para aplicaciones URLLC que para aplicaciones mMTC. Otra caracterización que se consideró para decidir entre las aplicaciones fue la tasa de tráfico de estas, se trató entonces de tener nodos con distintos periodos de transmisión, por ejemplo el servicio que brindarán nodos monitoreando la contaminación del aire tendrá un periodo de 15 minutos mientras que el de nodos controlando los semáforos será de 1 minuto. Por otro lado hay también nodos con tasas de trasmisión aleatorias como el caso del de detección de terremotos.

La decisión de agregar un servicio más que fuera genérico surge a raíz de la necesidad de representar en la red los dispositivos restantes con comportamientos de lo más diversos, razón por la cual se consideró que este tendrá una tasa de tráfico aleatoria y su requerimiento de QoS será superior al de la mayoría.

Finalmente se introduce una distinción entre nodos que se mencionará principalmente en el capítulo 5, se trata de la clasificación de dispositivos de Clase 1 y de Clase 2, esta distinción está ligada directamente a la aplicación del noto IoT que determina a su vez la demanda de QoS. Los nodos con mayores requerimientos de QoS que son a su vez la minoría del total de dispositivos corresponden a la clase 2, mientras que todo el resto de nodos corresponden a la clase 1. En la Tabla 4.5 los nodos que dicen requerir de una transmisión en tiempo real corresponderán entonces a aquellos de clase 2.

La distinción entre clases 1 y 2 será útil a la hora de implementar la tecnología de acceso múltiple, pues diversos nodos pertenecerán al mismo grupo y compartirán recursos, de manera que será necesario que exista una jerarquía entre ellos, todo esto será explicado en el diseño.

4.3.2. Análisis de las tecnologías para IoT y selección de casos considerados

NB-IoT y LTE-M (*LTE for MTC*) son dos tecnologías LPWA desarrolladas para aplicaciones IoT. Ambas son protocolos para comunicaciones celulares con un ancho de banda bajo que conectan a internet dispositivos que necesitan transmitir pequeñas cantidades de datos, a bajo coste (tanto en lo relativo al hardware como a la suscripción) y con una alta duración de la batería.

Tabla $4.5\colon$ Aplicaciones seleccionadas para la simulación

Servicio	Tamaño de red	Tasa de tráfico	Demanda de QoS	Fuente de energía
Control de ilu- minación (Ciu- dad Inteligente)	Grande, miles de dispositivos	Aleatorio, poco frecuente	Media, tolerante al retardo 15seg	Alimentado por la red eléctrica
Monitoreo del consumo de agua y electricidad en la ciudad (Ciudad Inteligente)	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj cada 10 min por dispositivo	Baja, tolerante al retardo 1min	Alimentado por la red eléctrica/ auto- alimentado
Detección de terremotos (Ambiente Inte- ligente)	Media a grande, cientos a miles de dispositivos	Aleatorio, poco frecuente	Alta, tolerante al retardo 3seg	Alimentado por batería
Monitoreo de contamina- ción del aire (Ambiente Inte- ligente)	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj ca- da 15 min por dis- positivo	Media, tolerante al retardo 15seg	Alimentado por ba- tería
Control dinámi- co de semáfo- ros (Transporte y Movilidad In- teligentes)	Grande, miles de dispositivos	Periódico, 1 msj ca- da min por disposi- tivo	Alta, tolerante al retardo 5seg	Alimentado por la red
Genérico	Grande, miles de dispositivos	Aleatorio, poco frecuente	Alta, tiempo real	Alimentado por batería

Para ser muy específicos, LTE-M y NB-IoT son las dos categorías de nivel superior de dispositivos de baja potencia y bajo ancho de banda explicados por el 3GPP. Dentro de cada uno hay subtipos y subtipos, muy necesarios para una mayor especialización en el estándar 3GPP.

Debido a la espera que NB-IoT y LTE-M cumplan con los requerimientos LPWAN del estándar 5G, 3GPP ha indicado a ITU-R que ambas tecnologías serán propuestas para el estándar, coexistiendo con los demás componentes de la red que en conjunto cumplirán con la QoS de todos los distintos casos de uso de la red 5G. De manera que esto convierte a NB-IoT y LTE-M como parte de 5G [41].

Las redes de largo alcance LPWAN utilizan tecnología capaz de transferir mensajes a decenas de kilómetros de distancia y cubrir una amplia área. Son redes especializadas en interconectar dispositivos en ambientes restringidos, de difícil acceso o que simplemente buscan reducir el consumo de energía en estos, manteniendo un bajo costo y complejidad. Por lo tanto concentran en un eficiente consumo de la energía y una cobertura amplia [39], (que se acopla bastante bien a lo que se requieren los nodos de IoT de las aplicaciones seleccionadas en la sección anterior).

A continuación se presentan las tecnologías de red actuales para nodos de IoT en redes móviles, especificadas por la 3GPP, que formarán parte también de las especificaciones de 5G:

- 1. <u>eMTC (enhanced Machine Type Communication:)</u> Forma parte de la familia LTE-M y es una evolución de LTE optimizada para IoT. Se desarrolló con el objetivo de una eficiencia energética.
- 2. <u>NB-IoT (Narrow-Band Internet of Things:)</u> fue estandarizado en el <u>release</u> 13 de 3GPP y se espera que consiga dar servicio a más dispositivos con energía limitada que eMTC. NB-IoT no requiere ningún desarrollo adicional de redes ya que se implementa en funcionalidades ya existentes de LTE [39] y en un futuro será implementado directamente en la banda de frecuencias de 5G NR [véase Figura 4.1] [41].

IoT masivo (mIoT) incluye principalmente áreas amplias que conectan grandes números de dispositivos, objetos y maquinas ya sean estáticos o móviles de baja complejidad y bajo costo con una batería de larga duración y un rendimiento relativamente bajo.

El soporte para mIoT ya se brinda en las redes LTE de hoy con NB-IoT y eMTC. Estas tecnologías se complementan entre sí y existe una tendencia emergente hacia los proveedores de servicios que implementan una red común que admita ambas tecnologías.

eMTC es adecuado para usar casos que requieren un rendimiento relativamente más alto, una latencia más baja y soporte de voz, mientras que la tecnología NB-IoT es conveniente para casos de uso bajo que toleran demoras pero requieren una cobertura extendida, además de que presenta una mejor cobertura en interiores [41].

Según [3] a finales de 2024, se espera que NB-IoT y eMTC representen cerca del 45 por ciento de todas las conexiones CIoT (*Celullar IoT*). Además, en el futuro NB-IoT y eMTC podrán

coexistir completamente en bandas de espectro con 5G NR, Figura 4.1.

FIGURA 4.1: 5G NR con LTE-M y NB-IoT en banda

En la *Tabla 4.6* se pueden encontrar características de estas tecnologías antes descritas, tales como la banda de frecuencia a la que operan y su tasa de transmisión y si bien pareciera que la diferencia entre ambas tecnologías es sutil, en realidad, ésta marca una clara pauta en el servicio que pueden brindar.

En la Figura 4.2 se puede observar otra comparación entre ambas tecnologías pero en esta ocasión desde la perspectiva de las aplicaciones a la que tanto NB-IoT y/o LTE-M estarían dando servicio preferentemente. A la izquierda de la Figura 4.2 tenemos las aplicaciones LPWAN a las que NB-IoT daría servicio que coinciden con una menor velocidad de transferencia y mayor tolerancia a la latencia mientras que a la derecha se aglomeran las aplicaciones que requieren una comunicación en tiempo real y una mayor tasa de transmisión, aplicaciones a las que estaría dando servicio preferentemente la tecnología eMTC.

Se decidió entonces concentrarse en la tecnología NB-IoT puesto que la totalidad de los servicios que se considerarán en nuestro sistema pueden situarse a la izquierda de la Figura 4.2, donde se presenta una mínima movilidad de los dispositivos, por ejemplo el control de la iluminación y el control dinámico de los semáforos podríamos colocarlos en Iluminación pública

Tecnología	Banda de Fre- cuen-	Range	$egin{array}{c} Tasa \ de \ trans- \end{array}$	Vida de la bate-	Topología	$Estandarizaci\'on$	Grupo	,
NB-IoT	cia 450 MHZ - 3.5 GHz (Espectro de 2G/3G/4G	10-15 km	misión 250 kbps	<i>ría</i> 10+ años	Estrella	Abierta	3GPP	
eMTC	450 MHZ - 3.5 GHz (El mismo que LTE)	10-15 km	1 Mbps	10+ años	Estrella	Abierta	3GPP	

Tabla 4.6: Características de las tecnologías de red para IoT en la red celular

y Ciudades inteligentes respectivamente, mientras que el monitoreo de consumo energético y el de la condición del aire podrían corresponder a Medidores inteligentes, de manera que quizá el único servicio que se encontraría en los límites de la tecnología NB-IoT sería el de detección de cortes en el suministro energético, el cual en [39] establece que requeriría de una mínima latencia.

Con esta argumentación se explica la decisión de haber seleccionado la tecnología de red NB-IoT como de la que partiremos para después agregar mejoras propuestas en otros trabajos y diseñar un modelo de sistema para la simulación en el que con modelos de tráfico adecuados se puedan medir los indicadores clave de rendimiento y determinar si la calidad de servicio esperada para los servicios LPWAN seleccionados se cumplirán en redes celulares 5G.

La Figura 4.3 muestra las distintas tecnologías con las que estaría trabando 5G NR para poder brindar servicio al amplio espectro de casos de uso de MTC [40]. La tecnología NB-IoT podemos situarla en las frecuencias de operación baja y con un una tolerancia al retardo mayor que la mayoría de las demás tecnologías.

4.4. ANÁLISIS DEL ESTÁNDAR NB-IoT

de Long Term Evolution (LTE) con un espaciado de sub-portadora de 15 kHz.

En particular, el estándar NB-IoT fue especificado en el reporte TR 45.820 (release 13) de la 3GPP [32]. Los parámetros fundamentales son:

Para el enlace de subida (*uplink*), como su nombre lo indica, tiene un ancho de banda estrecho de 180 kHz y un espacio de sub-portadora de 3.75 kHz (ancho de banda de transmisión mínimo para un dispositivo). Por lo tanto puede asignar 48 sub-portadoras [*véase Figura 4.4*]. El enlace de bajada (*downlink*), se conserva la estructura de transmisión del enlace descendente

FIGURA 4.2: Tecnologías líder para el caso de uso LPWA, [Fuente: https://www.iotforall.com/cellular-iot-explained-nb-iot-vs-lte-m/]

Por lo tanto, NB-IoT puede proporcionar velocidades de datos de casi $250~\rm kb$ / s en el enlace descendente y $20~\rm kb$ / s en el enlace ascendente.

Es preciso puntualizar que para lograr una mayor tasa de datos, de acuerdo con el Teorema de Shannon-Hartley (Ecuación 2.18), el ancho de banda debe ser elevado o una relación S/N alta. Para el caso de NB-IoT se cuenta con un ancho de banda muy pequeño $(3.75 \mathrm{KHz})$, por lo cual alcanzar una buena relación S/N (en este caso, para sistemas celulares S/I) es de suma importancia.

La tecnología NB-IoT al ocupar un ancho de banda de frecuencias de 180 kHz, corresponde a un bloque de recursos en la transmisión LTE.

4.4.1. Modos de operación

Independiente (stand-alone).

NB-IoT puede implementarse como una portadora autónoma utilizando cualquier espectro disponible con un ancho de banda superior a 180 kHz. Esto se conoce como la implementación stand-alone. Un caso de uso de este despliegue autónomo es que un operador GSM despliegue NB-IoT en su banda GSM reajustando parte de su espectro GSM [42].

FIGURA 4.3: 5G NR soportará múltiples servicios con distintos requerimiento de $$\operatorname{QoS}$$

Despliegue en banda (in-band) y en guarda de banda (guard-band) LTE.

NB-IoT también está diseñado para su despliegue en las redes LTE existentes, ya sea utilizando uno de los bloques de recursos físicos (PRB) de LTE o utilizando la banda de guarda LTE. El despliegue en banda de guarda hace uso del hecho de que el ancho de banda ocupado en LTE es aproximadamente el $90\,\%$ del ancho de banda del canal

Para el modo de operación independiente y de banda de guarda, el PRB de enlace descendente y ascendente debe establecerse simétricamente y para el modo en banda, el despliegue del PRB estará restringido a algunos prefijos de PRB's de acuerdo al ancho de banda LTE, (ya sea 3, 5, 10, 15 o 20 MHz.) esto debido por la sincronización entre el UE y la celda NB-IoT [43].

4.4.2. Bandas de frecuencia

Como se muestra en la Figura 4.1, en el futuro se espera que NB IoT sea implementada en las bandas 5G NR. Por el momento, la 3GPP ha definido un conjunto de bandas de frecuencia para las cuales se pueda usar NB-IoT en bandas LTE (EUTRA).

En la especificación técnica TS-36.101 de la 3GPP de su *release* 13 proporciona la lista de las bandas compatibles: 1, 2, 3, 5, 8, 12, 13, 17, 18, 19, 20, 26, 28, 66, el *release* 14 agregó las bandas : 11, 25, 31 y 70. Y el *release* 15 agregó más bandas: 4, 14 y 71. La información recibida por los miembros de *Mobile IoT*, hasta ahora, indica que se han utilizado una variedad de estas bandas

FIGURA 4.4: Estructura de ancho de banda y subportadoras en NB-IoT.

en diferentes regiones[43].

P. ej. en el caso de Latino América las bandas disponibles son las: 2 (1850-1990 MHz), 3 (1710-1880 MHz), 5 (824-894MHz) y 28 (703-803 MHz) [43].

4.4.3. Clases de Potencia

Algunas aplicaciones de IoT son particularmente sensibles al consumo de energía. Para minimizar el impacto de la conectividad en la duración de la batería del dispositivo, para el release 13, se determinó que los UE podrán usar dos opciones de clase de potencia. Uno es el nivel de potencia del dispositivo móvil LTE tradicional de **23dBm** (Power Class 3) y uno nuevo, con menos potencia de salida, de **20dBm** (Power Class 5). El release 14 de 3GPP agrega una nueva clase de potencia aún menor, de **14dBm** (Power Class 6) [43].

4.4.4. Modos de transmisión en enlace ascendente (UL)

Existen dos modos de transmisión para el estándar NB-IoT, en el modo *singletone* solo se puede asignar una subportadora a cada dispositivo NB-IoT. Y en el modo *multitone* la agregación de subportadoras es posible, esto con el fin de alcanzar una mayor tasa de transmisión [44].

Solo se admite el modo de *singletone*, cuando el PRB se divide en 48 subportadoras donde el ancho de banda de la subportadora es de 3.75 kHz. En [37] se ha trabajado el uso *multitone* en anchos de banda de subportadoras es de 3.75 kHz.

FIGURA 4.5: Modos de Operación en NB-IoT. [42]

Se admiten los modos de *singletone* y *multitone*, cuando el PRB se divide en 12 subportadoras donde el ancho de banda de la subportadora es de 15 kHz. En [Mostafa2019] se estudió más a fondo el uso de *singletone* y *multitone* en transmisiones UL. Una de las reglas que incorporaron es que en *multitone*, para cada dispositivo IoT únicamente se le pueden asignar 0, 1, 3, 6 o 12 subportadoras.

4.4.5. Indicadores clave de rendimiento (KPIs)

Hay muchas formas de medir el rendimiento de una red, por medio de sus características se pueden definir los indicadores clave de rendimiento para la evaluación integral, precisa y eficiente de las tecnologías de red 5G.

Con la profundización de la investigación de la tecnología 5G, se puede prever que habrá nuevos indicadores de evaluación. El diseño de estos indicadores directamente medibles, por un lado, necesita combinar las características de los nuevos servicios, y por otro lado, debe aprender completamente de la experiencia de los KPI clásicos de generaciones anteriores como lo son: el

throughput, dada una probabilidad de salida y la latencia. La densidad de conexión, la densidad de volumen de tráfico y el consumo de energía son nuevos KPI introducidos por las redes 5G/IoT [8].

Para cumplir con el conjunto de requisitos de mMTC, NB-IoT debe admitir principalmente cuatro indicadores clave de rendimiento (KPI).

- 1. Vida útil de la batería del dispositivo más allá de 10 años, suponiendo una capacidad de energía almacenada de 5 Wh.
- 2. Densidad de conexión masiva de hasta 1M dispositivos por km cuadrado en un entorno urbano.
- 3. Latencia de como máximo 10 s.
- 4. Una tasa máxima alcanzable de hasta 200kbps (subida).

El análisis fundamental del simulador contemplará como métricas de desempeño a la compensación entre la tasa máxima alcanzable y la densidad de usuarios atendidos en términos de una calidad de servicio QoS. Esta QoS dependerá de los cuatro principales KPIs para mIoT.

Por lo tanto, de acuerdo a las métricas que serán consideradas, los KPIs a considerar son: la tasa máxima alcanzable y la densidad de usuarios, sin embargo durante las investigaciones que hemos realizado en la literatura científica no hemos encontrado ningún artículo que proponga un modelo de sistema que alcance el KPI de soportar hasta 1 millón de dispositivos. Por lo que para esta métrica se buscará un diseño de sistema tal que a un determinado tope de usuarios se logre una óptima tasa UL, es decir, el dimensionamiento de la red.

4.4.6. Características del tráfico de paquetes

De acuerdo con la especificación de los Reportes autónomos móviles (MAR, *Mobile Autonomous Reporting* también se detallan algunos aspectos de tráfico en términos de los tamaños de paquetes que se esperan para NB-IoT. Se definen cuatro tipos de aplicaciones de tráfico diferentes:

Informes de excepción

Se espera que muchas aplicaciones de tipo sensor monitoreen una condición física y activen un informe de excepción cuando se detecte un evento. Estos eventos serán, en general, raros y ocurrirán cada pocos días, meses o incluso años. Ejemplos de tales aplicaciones incluyen detectores de alarma de humo, notificaciones de fallas de energía de medidores inteligentes, notificaciones de manipulación, etc.

Para el análisis de latencia, se supone que los informes de excepción MAR tienen una carga útil de la aplicación de enlace ascendente de 20 bytes. Se requiere que dichos informes se entreguen

casi en tiempo real, con un objetivo de latencia de 10 segundos.

Para cada informe de enlace ascendente generado (es decir, el 100 % de los informes de excepción de enlace ascendente), también se supone que la aplicación enviará un ACK de aplicación de enlace descendente. El tamaño del tamaño ACK de la capa de aplicación es cero. El tamaño total del paquete (por encima del equivalente de la capa SNDCP) es la sobrecarga debida COAP / DTLS / UDP / IP.

Informes periódicos

Se espera que los informes periódicos de enlace ascendente sean comunes para aplicaciones de IoT celular como informes de medición de servicios inteligentes (gas / agua / electricidad), agricultura inteligente, entorno inteligente, etc. El modelo de tráfico de informes de enlace ascendente periódico MAR se utiliza en simulaciones a nivel de sistema para análisis de capacidad.

Distribución del tamaño de la carga útil de la aplicación. UL. Sigue una distribución de Pareto con parámetro alfa = 2.5 y tamaño mínimo de carga útil de la aplicación = 20 bytes con un corte de 200 bytes, es decir, las cargas superiores a 200 bytes serán limitadas a 200 bytes.

Se supone un ACK de capa de aplicación DL para un evento de informe periódico de enlace ascendente en el 50 % de los informes periódicos UL MAR generados. Se supone que el tamaño de la carga útil ACK del enlace descendente de la aplicación es de 0 bytes. El tamaño total del paquete (superior al equivalente de la capa SNDCP) es la sobrecarga debida a COAP / DTLS / UDP / IP y se envía inmediatamente después de que la estación base recibe con éxito un paquete UL de aplicación.

Entonces, una vez revisadas estas clasificaciones de tráfico compatibles para NB-IoT, se procede a agrupar estos tipos de tráfico con los escenarios que se consideraron en la *Tabla 8* de la sección anterior, de tal manera que se establezcan las condiciones base de un ambiente NB-IoT de acuerdo a los servicios seleccionados (secXXXX).

La adición de la columna "Tamaños de paquete" para la Tabla ?? se da en la Tabla ??

Tabla 4.7: Caracterización del tráfico de paquetes en aplicaciones seleccionadas para la simulación.

Servicio	Tamaño de paquetes			
Control de iluminación (Smart City)	Activación aleatoria UL : 20 bytes payload DL : ACK de 0 bytes			
Monitoreo del consumo de agua y electricidad en la ciudad (Smart City)	Activación periódica UL : distribución de Pareto con parámetro alfa = 2.5 y tamaño mínimo de carga útil de la aplicación = 20 bytes con un corte a 200 bytes DL : ACK de 0 bytes 50 % de las veces.			
Detección de terremotos (Smart Envi- ronment)	Activación aleatoria UL : 20 bytes payload DL : ACK de 0 bytes			
Monitoreo de contaminación del aire (Smart Environment)	Activación periódica UL : distribución de Pareto con parámetro alfa = 2.5 y tamaño mínimo de carga útil de la aplicación = 20 bytes con un corte a 200 bytes DL : ACK de 0 bytes 50% de las veces.			
Control dinámico de semáforos (Smart Transport and Mobility)	Activación aleatoria UL : distribución de Pareto con parámetro alfa $= 2.5$ y tamaño mínimo de carga útil de la aplicación $= 20$ bytes con un corte a 200 bytes DL : ACK de 0 bytes 50% de las veces.			
$Gen\'erico$	Activación aleatoria UL : 20 bytes payload DL : ACK de 0 bytes			

4.5. ANÁLISIS DE MODELOS PARA LA EVALUA-CIÓN DE REDES 5G/IoT

En el modelado de redes 5g / IoT entran diferentes aspectos para representar y caracterizar el comportamiento correcto de estas redes. Para este caso, desde el punto de vista de simulaciones a nivel de sistema, los modelos se suelen concentrar en las capas superiores de la pila TCP / IP.

Los aspectos más importantes y considerados en la literatura [8], son:

- 1. Modelo de despliegue de BSs y UEs.
- 2. Modelo de antenas (MIMO, MISO, entre otras) y formación de haz.
- 3. Modulación y codificación.
- 4. Modelo de canal.
- 5. Patrones de Movilidad.
- 6. Calendarizadores (planificadores de recursos).
- 7. Esquema de acceso múltiple al medio.
- 8. Modelos de tráfico.

Como se puede leer, una simulación se puede realizar tan compleja como se desee, para este proyecto se contemplan solamente algunos de estos aspectos que son compatibles para una simulación a nivel de sistema. Estas simulaciones dan una buena estimación de un análisis fundamental desde la perspectiva del dimensionamiento que puede alcanzar una red. Los modelos que se incluyen en el simulador son los siguientes:

4.5.1. MODELO DE DESPLIEGUE DE BSs Y UES

En el modelado de posicionamiento de las estaciones base y los nodos IoT existen diferentes estrategias de despliegue (como se puede ver en la Figura 2.1) y es de mucha importancia dependiendo los objetivos de la simulación, es decir, para un alcance comercial resulta importante simular el despliegue determinístico de los actores de la red de acuerdo al escenario donde se vaya a montar una determinada red, por otro lado para un alcance con fines de análisis en el diseño y dimensionamiento de estas redes resulta más adecuado un despliegue aleatorio.

Muchos autores coinciden en que varias distribuciones de redes móviles siguen un proceso estocástico [45][36]. La geometría estocástica es una rama de la probabilidad con muchas aplicaciones que permiten el estudio de fenómenos aleatorios en el plano o en dimensiones superiores [10]. Está intrínsecamente relacionada con la teoría de los procesos puntuales. Inicialmente su desarrollo fue estimulado por aplicaciones en biología, astronomía y ciencias de los materiales. Hoy en día, también se utiliza en análisis de imágenes y en el contexto de redes de comunicación. Recientemente se ha utilizado con éxito para modelar la distribución espacial de células pequeñas como las femtoceldas [14].

Para esto, la distribución de terminales móviles se realiza de acuerdo con varios procesos de punto estacionario de Poisson independientes con intensidad λm . Con un PPP estacionario, la distancia entre un terminal móvil y su BS de servicio se distribuye independientemente de la ubicación exacta del terminal móvil.

En este proyecto con fines de diseño y análisis, se simularon ambos despliegues, uno uniforme y otro siguiendo una geometría estocástica, es decir, un PPP.

4.5.2. MODELO DE CANAL

Para conducir al diseño preciso y confiable de un sistema 5G es necesario tener buen conocimiento de las características del canal de propagación a través de las frecuencias de microondas y ondas milimétricas.

Los modelos de canal son necesarios para simular la propagación de una manera reproducible y rentable, y se utilizan para diseñar y comparar con precisión las interfaces de radio aire y el despliegue del sistema. Los parámetros comunes del modelo de canal inalámbrico incluyen frecuencia de portadora, ancho de banda, distancia 2D o 3D entre el transmisor (Tx) y el receptor (Rx), los efectos ambientales y otros requisitos necesarios para construir equipos y sistemas estandarizados a nivel mundial. El desafío definitivo para un modelo de canal 5G es proporcionar una base física fundamental, a la vez flexible y precisa, especialmente en un amplio rango de frecuencias como 0.5–100 GHz [46]. Los modelos de canal investigados se dividen principalmente de acuerdo al escenario en el que se están diseñando, ya sea Urban Macro (UMa) o Urban Micro (UMi), además de la condición del ambiente si es que hay línea de vista (LoS) entre el UE y la BS.

Existe una gama amplia de modelos de canal propuestos para redes 5G, (p.ej. 3GPP, WINNER I/II, QuaDRiga/ mmMagic, 5GCM, METIS, MiWEBA, IEEE [8]). Aunque existen diversos modelos, los modelos de canal 3GPP y WINNER II son los más conocidos y empleados en la industria de comunicaciones móviles [47], conteniendo una gran diversidad de escenarios de despliegue como lo son *UMi*, *UMa*, indoor office (InH), etc. Además proveen parámetros clave del canal incluyendo probabilidades de línea de vista (LoS), modelos de pérdida por trayectoria, retardos y niveles de potencia por trayectoria [47].

En la búsqueda del modelo de canal a implementar en el simulador nos enfocamos en buscar un modelo teórico y estocástico en vez de uno empírico, ya que nuestro proyecto va más enfocado en el teletráfico. Los modelos empíricos suelen ser más sofisticados y piden una gran cantidad de parámetros de entrada. Por lo tanto buscamos los modelos estocásticos que se adaptaran al rango de frecuencia de transmisión y a los ambientes urbanos que se proponen.

En [47], los autores evaluaron tres diferentes modelos de propagación estocásticos de perdida por trayectoria a larga escala para ser implementados a través de la banda de frecuencias de microondas y ondas milimétricas. ABG, CI y CIF son modelos estadísticos de propagación para multi-frecuencias (estocásticos) que describen los parámetros de larga escala con pérdida de trayectoria de acuerdo a la distancia.

Los modelos evaluados fueron:

- 1. ABG: Modelo Alpha-Beta-Gamma.
- 2. CI: Modelo de pérdida por trayectoria de distancia de referencia de espacio libre cercano.
- 3. CIF: Modelo CI con un exponente de pérdida de trayectoria ponderado en frecuencia.

Para el primero, la ecuación del modelo ABG está dada por:

$$L_p^{ABG}(f,d)_{[dB]} = 10\alpha \log_{10}\left(\frac{d}{1m}\right) + \beta + 10gamma \log_{10}\left(\frac{f}{1GHz}\right) + x_{\sigma}^{ABG}, donde \ d \ge 1m$$

$$(4.1)$$

 $\alpha \to coeficiente$ que representa la dependencia de la perdida por trayectoria con la distancia $\gamma \to coeficiente$ que representa la dependencia de la perdida por trayectoria con la frecuencia $\beta \to es$ un valor de compensación para la pérdida por trayectoria (en dB's)

 $x_{\sigma}^{ABG} \rightarrow es$ una variable aleatoria gaussiana de media cero con una desviación estándar sigma [dB], que describe las fluctuaciones de señal a gran escala (es decir, multitrayectoria) desvanecimiento tipo Rayleigh

Para el segundo, la ecuación del modelo CI está dada por:

$$L_p^{CI}(f,d)_{[dB]} = 32.4 + 10 \ n \ log_{10}\left(\frac{d}{d_0}\right) + 20 \ log_{10}\left(d_0\right) + 20 \ log_{10}\left(f\right) + x_{\sigma.}^{CI}, donde \ d \ge d_0$$

$$(4.2)$$

 $x_{\sigma.}^{CI} \rightarrow es$ una variable aleatoria gaussiana de media cero con una desviación estándar sigma [dB], que describe las fluctuaciones de señal a gran escala (es decir, multitrayectoria) desvanecimiento tipo Rayleigh

Para el tercero, la ecuación del modelo CIF está dada por:

$$L_p^{CIF}(f,d)_{[dB]} = 32.4 + 10 \ n \left(1 + b \left(\frac{f - f_0}{f_0}\right)\right) \log_{10}(d) + 20 \ \log_{10}(f) + x_{\sigma.}^{CIF}, donde \ d \ge 1m$$

$$(4.3)$$

 $x_{\sigma}^{CIF} \rightarrow es$ una variable aleatoria gaussiana de media cero con una desviación estándar sigma [dB], que describe las fluctuaciones de señal a gran escala (es decir, multitrayectoria) desvanecimiento tipo Rayleigh

Cada uno de estos modelos han sido recientemente estudiados por organizaciones de estandarización como 3GPP y son propuestos para el uso en el diseño de sistemas inalámbricos de comunicación de 5G enfocados en escenarios UMa, UMi, InH, y SM.

De acuerdo al análisis de sensibilidad en [47], se demostró que el modelo CI es el más adecuado para entornos al aire libre debido a su precisión, simplicidad y rendimiento de sensibilidad, dado que la pérdida de trayectoria medida depende poco de la frecuencia en ambientes exteriores más allá del primer metro de propagación de espacio libre.

Por otro lado, el modelo CIF es muy adecuado para entornos interiores, ya que proporciona una desviación estándar más pequeña que el modelo ABG en muchos casos, incluso con menos parámetros del modelo y tiene una precisión superior cuando se analiza con el análisis de sensibilidad.

Los modelos CI y CIF son más robustos y precisos en comparación con el modelo ABG, por lo que es confiable la aplicación del modelo CI para simular entornos en exteriores y el CIF para interiores [47].

De acuerdo a lo propuesto en la sección ?? , el ambiente urbano que consideraremos está dirigido a un entorno en exteriores por la aplicación de los sensores a implementar. Por lo que se selecciona al modelo CI (Modelo de pérdida por trayectoria de distancia de referencia de espacio libre cercano) como el que ayudará a caracterizar las perdidas por trayectoria y desvanecimiento por el canal.

Los parámetros que solicita este modelo (Ecuación 4.2) son: la distancia entre la BS y el UE, la frecuencia fundamental de operación y una variable aleatoria de media cero con una desviación estándar σ [dB], que describirá las fluctuaciones de señal a gran escala (es decir, la multitra-yectoria[multipath]). Además de esto también pide un valor d₀ que es la distancia cercana de referencia al espacio libre.

Por último lo autores proponen a $d_0 = 1m$ en los modelos de pérdida por trayectoria para sistemas 5G ya que se espera que las distancias de cobertura serán más cortas a frecuencias más altas. Además, lo que se espera son futuras celdas pequeñas, es probable que las BS se monten más cerca de las obstrucciones. La estandarización a una distancia de referencia de 1 m simplifica las comparaciones de mediciones y modelos y proporciona una definición estándar para el PLE, al tiempo que permite la intuición y el cálculo rápido de la pérdida de trayectoria.

4.5.3. ESQUEMA DE ACCESO MÚLTIPLE AL MEDIO

Acceso Múltiple No Ortogonal (NOMA)

Se estudióo en la Sección ??, que el uso de NOMA soporta eficientemente la conectividad masiva y cumple con los diversos requisitos de QoS de los usuarios. El diseño de NOMA en transmisiones de subida (*uplink*) ha sido propuesto en [48] y el diseño óptimo de NOMA en transmisiones de bajada (*downlink*) ha sido propuesto en [49].

Por una parte, en [36] se implementó NOMA emparejando selectivamente dos usuarios, es decir, se escogía a un usuario con una condición de canal muy buena (cerca de la BS) y otro con una condición de canal muy pobre (en el borde de la celda). Por otro lado en [37], se implementó NOMA usando la técnica de agrupamiento de usuarios, para esto, considerando un entorno donde conviven dispositivos mMTC y URLLC (mayores requisitos de velocidad de datos en comparación con los dispositivos mMTC), de igual manera se agrupan a un grupo de usuarios (p.ej., 2, 3 o 4 usuarios) de diferente tipo (mMTC y URLLC), se ordenan convenientemente para implementar SIC.

Entonces, como vemos hay dos maneras de implementar NOMA. Las dos son propuestas que han sido estudiadas para para cubrir los requerimientos de mMTC ya que NB-IoT no es capaz de proveer conectividad a una cantidad masiva de dispositivos IoT como se espera en el futuro. En nuestro simulador se implementará la metodologia en [37], donde los dispositivos activos de URLLC y mMTC comparten un PRB para la transmisión de datos de enlace ascendente en un intervalo de tiempo de transmisión (TTI). Se supone que el ancho de banda disponible de un PRB se divide en un conjunto de frecuencias de subcanal S y el ancho de banda de cada subcanal es W . De hecho, el ancho de banda del sistema se puede dividir por igual en 48 o 12 subportadoras en los sistemas NB-IoT.

En particular, el espacio de subportadora de 3.75 kHz puede ser soportado para transmisiones de enlace ascendente [9]. Por lo tanto, en este artículo, consideraron un PRB con 48 subportadoras de 3.75 kHz para las transmisiones de datos de enlace ascendente. Tenga en cuenta que, a diferencia del FDMA de una sola portadora (SC-FDMA) que se usa actualmente para las transmisiones de enlace ascendente en NB-IoT, este modelo de sistema puede admitir más dispositivos conectados al asignar múltiples dispositivos a cada subportadora. Por lo tanto, los dispositivos MTC se deben clasificar en diferentes grupos para compartir los mismos recursos espectrales asignados a su grupo.

Por lo tanto, en el simulador se propone implementar NOMA usando la técnica de agrupamiento de usuarios, en nuestro caso como consideraremos dos tipos de clase de sensores NB-IoT (mMTC) clase I y NB-IoT (uRLLC) clase II (con mayores requisitos de velocidad de datos en comparación con clase I). La relación de la distribución de dispositivos clase 1 con los de clase 2 será de 3 a 1. Con el fin de que por lo menos se un dispositivo de clase II se agrupe con tres de clase I. Todo esto con base en las consideraciones del modelo de sistema en [37].

La tasa de datos alcanzable de un dispositivo m (mMTC) en términos de la tasa agregada sobre las subportadoras asignadas se puede expresar como [37]:

$$R_{m} = \sum_{c \in \mathcal{C}} \sum_{k \in \mathcal{K}} \alpha_{m}^{c,k} \sum_{s \in \mathcal{S}} \gamma^{s,c} W \times \log_{2} \left(1 + \frac{\left| h_{m}^{s} \right|^{2} p_{m}^{s}}{N_{0} W + \sum_{d \in \mathcal{M} \setminus m} \sum_{h=k+1}^{k_{\text{máx}}} \alpha_{d}^{c,h} \left| h_{d}^{s} \right|^{2} p_{d}^{s}} \right)$$
(4.4)

Del mismo modo, la Tasa de datos alcanzable de un dispositivo u (URLLC) puede determinarse mediante el teorema de Shannon-Hartley. Hay que tomar en cuenta que los rangos de URLLC

siempre son mayores que los de mMTC en cada clúster NOMA. Por lo tanto, reciben interferencia de todos los miembros del clúster mMTC, así como de los miembros del clúster URLLC con rangos más altos. Por lo tanto, la tasa de datos alcanzable de un dispositivo u URLLC sobre las subportadoras asignadas es [37]:

$$R_{u} = \sum_{c \in \mathcal{C}} \sum_{k \in \mathcal{K}} \beta_{u}^{c,k} \sum_{s \in \mathcal{S}} \gamma^{s,c} W \times \log_{2} \left(1 + \frac{\left| h_{u}^{s} \right|^{2} p_{u}^{s}}{N_{0}W + \sum_{d \in \mathcal{U} \setminus u} \sum_{h=k+1}^{k_{\text{máx}}} \beta_{d}^{c,h} \left| h_{d}^{s} \right|^{2} p_{d}^{s} \sum_{m \in \mathcal{M}} \sum_{h=k+1}^{k_{\text{máx}}} \alpha_{d}^{c,h} \left| h_{m}^{s} \right|^{2} p_{m}^{s}} \right)$$

$$(4.5)$$

4.5.4. MODELOS DE TRÁFICO

Los modelos de tráfico en comunicaciones móviles buscan acercarse, lo más posible a cómo transmiten datos o realizan peticiones de acceso los dispositivos que intentan modelar. Estos modelos de tráfico pueden clasificarse en modelos de tráfico agregado y modelos de tráfico fuente [50], el tráfico agregado simula un flujo de tráfico que se agrupa para recibir un tratamiento común, mientras que en los modelos de tráfico fuente es justamente cada una de las fuentes generadoras del tráfico la que se simula y frecuentemente se hace acompañada de una cadena de Markov que intenta representar los distintos estados del dispositivo fuente y la probabilidad de transición entre ellos.

Sin importar el modelo de tráfico a utilizar, en [50] se señala que los modelos de tráfico que pretendan simular el comportamiento de dispositivos de MTC (*Machine Type Communications*) deben:

- Capturar con precisión el comportamiento de un solo dispositivo de MTC
- Permitir la simulación concurrente de una cantidad masiva de dispositivos con su potencial reacción síncrona a un evento.

La importancia de la elección correcta de un modelo de tráfico para los dispositivos IoT recae en un diseño correcto y la optimización futura de la red y el cumplimiento de su respectiva QoS sin comprometer los servicios convencionales de datos, voz y video. Sin embargo, antes de elegir un modelo es importante conocer las propiedades del tráfico máquina a máquina (M2M, *Machine to Machine*), el cual se considera una forma de transmisión de datos que no requiere necesariamente de la interacción humana (ETSI, 2010) y corresponde justamente al tráfico de los nodos IoT, de [50] tenemos:

- Cantidad masiva de dispositivos
- Pocos paquetes de un tamaño pequeño a ser transmitidos por dispositivo
- Periodos largos entre dos transmisiones consecutivas
- Tráfico de subida (uplink) dominante
- Transmisiones en tiempo real y transmisiones tolerantes al retraso
- Paquetes no sincronizados y paquetes sincronizados
- Activación de tráfico que depende del espacio y tiempo

Además, se hace la distinción de 3 patrones de tráfico que pueden presentarse en estos dispositivos:

- 1. Actualización periódica (PU, Periodic Update): Este tipo de tráfico ocurre cuando el dispositivo transmite reportes de estado y/o actualizaciones de estado de manera periódica. Puede verse como una activación por evento que ocurre por el mismo dispositivo en un intervalo periódico. Típicamente, el tráfico PU no necesita transmitirse en tiempo real y cuenta además de un patrón periódico de tiempo con un tamaño constante en sus paquetes. Un ejemplo típico de estos dispositivos son medidores inteligentes (por ejemplo gas, electricidad, agua).
- 2. Activación por evento (ED, Event-Driven): En caso de que un evento desencadene la transmisión de datos de un dispositivo, el patrón de tráfico corresponde a esta segunda clase. Un evento puede ser causado ya sea por la medición de un parámetro que sobrepasó un límite y activó alguna alarma o bien por el nodo que actúa como servidor y envía comandos al dispositivo. El tráfico Event-Driven puede requerir ser transmitido tanto en tiempo real o no, un ejemplo de mensajes de subida que debieran ser transmitidos en tiempo real son alarmas y notificaciones médicas de emergencia, en cuanto a los mensajes de bajada, estos podrían ser la distribución de mensajes de emergencia locales, por ejemplo en caso de sismo o tsunamis. En algunos casos, como ya se mencionó, este tráfico no necesita ser transmitido en tiempo real. Por ejemplo, cuando un dispositivo IoT envía una actualización de su ubicación al servidor o se reciba una actualización de firmware desde este.
- 3. <u>Intercambio de carga útil (PE, Payload Exchange)</u>: este último tipo de tráfico ocurre después de una transmisión previa (PU o ED). Comprende todos los casos en los que es necesario un mayor intercambio de datos entre el dispositivo que envía y su servidor, este tráfico se espera sea predominantemente de subida y puede ser de tamaño constante o variable según la aplicación.

Las aplicaciones en el mundo real que implementan dispositivos de IoT serán casi siempre una combinación de estos tipos de tráfico más un estado de reposo o de ahorro de batería.

Ahora se presentan los modelos de tráfico más recurrentes en la literatura para la simulación de comunicaciones M2M.

Modelos de tráfico agregado

Han sido propuestos por la 3GPP al reconocer la importancia de caracterizar el tráfico M2M. Se trata en realidad de 2 modelos de tráfico agregado generado por una gran cantidad de usuarios, el primero modela el tráfico generado de forma aleatoria y el segundo modela tráfico síncrono en el tiempo, esto se puede observar en la *Tabla 4.8*.

 Modelo 1 - Modelo de tráfico agregado sin correlación 3GPP: Genera tráfico sin correlación en un intervalo específico de tiempo. Lo que significa que no se tomarían en cuenta la

FIGURA 4.6: Estructura de los estados principales del tráfico M2M

Tabla 4.8: Modelos de tráfico agregado propuestos por la 3GPP para comunicaciones M2M

Sincronizado/Coordinado/Correlacionado (En un intervalo limitado en el tiempo)

Distribución de probabilidad de arribo de paquetes/peticiones f(t) en [0,1] : <u>Beta</u> (3,4) Número de dispositivos: 1 000, 3 000, 5 000, 10 000, 30 000.

Periodo T:10 s

No sincronizado/No coordinado/ No correlacionado

(En un intervalo limitado en el tiempo)

Distribución de probabilidad de arribo de paquetes/peticiones f(t) en [0,1]: <u>Uniforme</u> Número de dispositivos: 1 000, 3 000, 5 000, 10 000, 30 000.

Periodo T:60 s

correlación entre los dispositivos IoT. Utiliza una distribución uniforme para modelar el tráfico agregado en un intervalo de tiempo específico.

• Modelo 2 - Modelo de tráfico agregado con correlación 3GPP: Este modelo genera tráfico correlacionado en un intervalo de tiempo, asumiendo que todas las máquinas se encuentran sincronizadas. Utiliza una distribución beta para modelar en tráfico agregado en un intervalo de tiempo específico.

La principal ventaja de los modelos de tráfico agregado es su fácil implementación (en términos de una baja complejidad computacional) cuando se simulan una gran cantidad de dispositivos. Por otro lado, como se menciona en [7], la precisión de estos modelos al reflejar el comportamiento real del sistema es su principal desventaja.

Modelos de tráfico fuente

Los modelos de tráfico fuente de dispositivos MTC, modelan justamente el tráfico que genera cada uno de los dispositivos. Este tipo de modelado es más preciso que el de tráfico agregado ya que modela el comportamiento de cada fuente, sin embargo, puede fácilmente volverse muy complejo cuando se agrega una gran cantidad de dispositivos (fuentes). A continuación se presentan y analizan dos modelos de tráfico fuente.

■ Modelo 3: Modelo de fuente de Semi-Markov (Semi-Markov Models, SMM)

En este modelo de fuente cada dispositivo se modela utilizando una cadena de Markov en la que se define la probabilidad de transición entre estados. Los estados que se encontrarán casi siempre modelados son los mencionados anteriormente: el de actualización periódica (PU), el de activación por evento (ED) y el de intercambio de carga útil. La Figura 4.7 muestra cómo se verían modelados los estados de un dispositivo en una cadena de Markov.

La probabilidad de transición entre el mismo estado es 0, además los tiempos de espera y la longitud de los mensajes son generados de acuerdo a una distribución de probabilidad que es independiente de cada estado y potencialmente distinta para cada uno de ellos [7].

La principal ventaja del modelo de tráfico fuente SMM es que permitiría una descripción más detallada del comportamiento de los dispositivos IoT de manera individual, sin embargo no es capaz de capturar la relación que existe entre dos dispositivos cercanos que pudieran tener una cierta sincronía entre ellos, otra desventaja es que la complejidad del sistema aumenta considerablemente entre más dispositivos se simulan a diferencia de los modelos de tráfico agregado.

 Modelo 4: Modelo de fuente de Procesos de Poisson emparejados Markov-modulados (CMMPP, Coupled Markov Modulated Poisson Process)

En el modelo de tráfico CMPP cada dispositivo MTC es representado como una entidad por separado en el que a diferencia del modelo SMM sí puede representarse una sincronización espacial y temporal entre dispositivos similares. La clave en el diseño del modelo CMMPP se presenta en encontrar un balance entre el emparejamiento entre distintos dispositivos y una complejidad tolerable del sistema cuando se tiene una gran cantidad de dispositivos [34].

Los procesos de Poisson Modulados con Markov (Markov modulated Poisson processes, MMPP) consisten en procesos de Poisson que son modulados por la tasa $\lambda_{i[t]}$, que viene determinada por el estado de una cadena de Markov sn[t], este principio se ve presentado en la Figura 4.8 donde $p_{i,j}$ son las probabilidades de transición entre los estados de la cadena. En este modelo cada dispositivo n del total N se encuentra representado por una cadena de Markov y un correspondiente proceso de Poisson. Debido a que existe

FIGURA 4.7: Cadena de Markov del modelo SMM

una alta correlación en el cambio de estados de distintos dispositivos, tanto en el espacio como en el tiempo, es necesario realizar un emparejamiento. En los modelos genéricos, el emparejamiento se realiza introduciendo enlaces bidireccionales entre los dispositivos, pero esto sería sin lugar a dudas muy complejo de simular, de manera que en [34] se propone un proceso de fondo actuando como *maestro* el cual modula todos los dispositivos.

La principal ventaja como ya se mencionó del tráfico fuente frente al tráfico agregado es su precisión, por otra parte, la del tráfico agregado es su fácil implementación para un gran número de dispositivos. El modelo CMMPP es un intermedio entre estos dos casos, es decir mantiene la precisión del modelado de tráfico fuente mientras se mantiene la viabilidad para un gran número de máquinas. A continuación se presenta la *Tabla 4.9* con una comparativa entre los distintos modelos mencionados.

Como puede observarse en la *Tabla 4.9*, las ventajas que trae consigo la utilización de un modelo de tráfico como el CMMPP son bastante convenientes para modelar el tráfico de dispositivos mIoT, pues este es capaz de simular la relación espacial y temporal que existiría entre los nodos. Si se regresa a la *Tabla 4.5* en la que se presentan los servicios que se simularan, se encuentra que servicios como el monitoreo de la condición del aire en la ciudad, la detección de terremotos,

FIGURA 4.8: Modelo CMMPP: cada dispositivo MTC n está representado por una cadena de Markov con estados sn, que establecen el parámetro λ . Este parámetro es el promedio de la tasa de arribos, el cual modela el respectivo proceso de Poisson

TABLA 4.9:	Comparativa	entre los	modelos	de tráfico	MTC abordados

$M\'etrica$	Agregado	\mathbf{SMM}	CMMPP
Modelado de los dispositivos		✓	✓
Modelado de dispositivos coordinados	✓		✓
Coordinación espacial y temporal			✓
Modelado de los paquetes		✓	
Modelado de la tasa de arribo	√	✓	✓
Tiempo de ejecución aleatorio factible		✓	✓
Ubicación del dispositivo		✓	✓
Emparejamiento de estados			✓
Complejidad (N número de dispositivos)	O(1)	O(N)	O(N)

la manipulación de la iluminación y demás tendrá un comportamiento similar en un espacio confinado y para poder hacer hincapié en la importancia del diseño de la red para a la hora de cumplir con la QoS esperada, es necesario que se implemente la posibilidad de recibir una gran cantidad de dispositivos en el caso de uso mMTC, los cuales estarían tratando de acceder a los recursos del sistema simultáneamente. De manera que el modelo CMMPP es el seleccionado para la simulación de este sistema complementándolo con un modelo determinístico para las aplicaciones que sólo producen tráfico periódico.

Una explicación resumida del modelado de tráfico fuente CMMPP se realiza a continuación [34]:

1. Un conjunto de k estados se definen, cada uno asociado con una tasa de generación de paquetes λ_k . Un dispositivo IoT se encuentra en todo momento en algún de estos estados representados en una cadena de Markov formada por los estados antes mencionados.

- 2. La transición entre los k estados para cualquier n-ésimo dispositivo está definida por una matriz k x k de P_n la cual es a su vez una función de dos matrices de transición P_u y P_c (Para comportamiento no coordinado/no sincronizado y comportamiento coordinado/sincronizado respectivamente) definidas por la red de N nodos.
- 3. Un factor de correlación espacial δ_n se asigna a cada dispositivo n. Esto modela qué tanto se involucra un dispositivo durante la generación de tráfico coordinado en la red y dicta efectivamente la contribución de P_c en la matriz resultante de probabilidad de transición de ese dispositivo.
- 4. Se define un proceso $\Theta(t)$ el cual controla la matriz de transición instantánea de estado del n-ésimo dispositivo en el instante t.

Capítulo 5

Diseño

En este capítulo se propone el diseño de un simulador a nivel de sistema, para el cual se utilizó el análisis presentado en el capítulo anterior, de manera que las decisiones tomadas como resultado de tal análisis aquí aparecen asentadas para el diseño del simulador. El objetivo de esta sección fue crear un modelo de sistema, para el cual se especificó el escenario que se implementará y el modelado de cuatro principales componentes que acabarán siendo implementados en el simulador: el despliegue de UEs, el modelo de canal, el esquema de acceso al múltiple al medio y los modelos de tráfico.

5.1. MODELO DE SISTEMA PROPUESTO

Para empezar con el diseño de un simulador a nivel de sistema, se debe proponer un modelo de sistema que siga una norma o un modo determinado de operación, la gran parte de lo aquí planteado está fundamentado por aserciones hechas en diferentes publicaciones científicas, primordialmente de artículos de revistas IEEE.

En primera instancia se comenzó con la etapa de análisis (*Capítulo 4*), donde se analizaron los requisitos de la red, las características que debía tener el escenario que se propondría después y los distintos modelos que formarán parte de la simulación. Todo esto en el contexto de una red celular 5G que brinde servicio a nodos IoT.

En términos generales, se considerará una red celular uni-celda para transmisiones de subida (uplink), el escenario se trata de uno urbano macro celular (UMa) en donde frecuentemente los UEs se encuentran estáticos y en el exterior. De acuerdo a los modelos analizados y ya elegidos en el Capítulo 4, el modelo de sistema del simulador se concentrará en la implementación de los siguientes sub-sistemas [Figura 5.1]:

- 1. Uso de una geometría estocástica, es decir, despliegue de UEs siguiendo un PPP (Secci'on.
- 2. Pérdidas de canal usando un modelo CI para ambientes exteriores (Sección .
- 3. Incorporación de un esquema de acceso al medio no ortogonal (NOMA) usando una técnica de agrupamiento (clustering) de usuarios (Sección .
- 4. Diferentes modelos de tráfico que simulen distintos servicios para NB-IoT (Sección .

El simulador está enfocado en el caso de uso de mMTC (o mIoT) el cual se caracteriza por brindar servicio a un gran número de dispositivos, esto es, teniendo una alta densidad de volumen de tráfico en escenarios con aglomeración de dispositivos. Por lo tanto, como se revisó en la Seccion un excelente candidato para cumplir con los requerimientos del caso de uso mIoT y que forma ahora parte del estándar 5G, es la tecnología NB-IoT. De este estándar, se tomarán sus especificaciones técnicas (Sección), tales como los parámetros fundamentales para la comunicación entre la BS y los UEs en la simulación.

Se propone el Modelado de los primeros 3 módulos del simulador:

*Diseño del simulador

FIGURA 5.1: Diagrama general de bloques del simulador, constando principalmente de 4 módulos.

A continuación se definen las características generales de cada sub-sistema:

5.1.1. Uso de una geometría estocástica, es decir, despliegue de UEs siguiendo un PPP

De igual manera que como se realizó en [45] y [36] con el fin de obtener un análisis fundamental y más realista, se propone la generación de una geometría estocástica en 2D para la distribución de los UE. Se toma como modelo de despliegue de UE un Homogeneous Poisson Point Process (proceso puntual de Poisson homogeneo, HPPP) con distintas densidades para los diferentes tipos de dispositivos que se implementarán.

Escenario	Ambiente	Rango de Frecuen- cias	# Puntos de Datos	Rango de distan- cias entre BS y UE	Modelo Canal	PLE
UMa	LoS	2 - 38 GHz	1032	60 - 930 m	CI	2.0
	NLoS	2 - 38 GHz	1869	61 - 1238 m	CI	2.9

Tabla 5.1: Parámetros Modelo CI [Fuente: [47]]

5.1.2. Pérdidas de canal usando un modelo CI para ambientes exteriores

En la Sección se establecieron las aplicaciones de los diferentes dominios de IoT que se utilizarán para la implementación del simulador. Todas estas aplicaciones se encuentran presentes, no exclusivamente pero sí particularmente, en escenarios urbanos y en exteriores, por lo tanto se implementará el Modelo CI (Secc.) el cual de acuerdo a lo estudiado en [47] es el modelo que mejor estima la señal en este tipo de ambientes. Además, se agregarán perdidas por el desvanecimiento rápido, usando el modelo de desvanecimiento de Rayleigh (siguiendo una distribución exponencial con media 1 y que se distribuya de forma independiente e idéntica [i.i.d.]), este es ideal para entornos urbanos en situaciones donde hay un gran número de multi-trayectorias de la señal y reflexiones causadas por los edificios y objetos que obstruyen la línea de vista.

Con base en [47], para el Modelo CI en ambientes macro-urbanos se tienen los siguientes parámetros:

Se puede observar en la Tabla 5.1 que dependiendo el tipo de ambiente (ya sea con línea de vista [LoS] o sin línea de vista [NLoS]) los parámetros rango de distancia y el exponente de pérdida (PLE) varían. En nuestro modelo como se trata de un ambiente en exteriores, se considera que no habrá línea de vista entre los UE y la BS, por lo tanto, se propone una ambiente NLoS con distancias entre [61 - 1238 m] y un PLE de 2.9.

Algunos parámetros seguirán las características de las mediciones que se hicieron para validar el modelo CI, en [47]. Las mediciones se realizaron en Vestby, Aalborg, Dinamarca, en las bandas de frecuencia de 2, 10, 18 y 28 GHz en marzo. Vestby representa una típica ciudad europea de tamaño mediano con construcciones y anchos de calle regulares, que son de aproximadamente 17 m (cinco pisos) y 20 m, respectivamente. Para el escenario UMa, Para el escenario UMa, la antena BS está por encima de la altura de la azotea, típicamente 25 m más o menos por encima del suelo [47].

Por último, para la definición del rango de frecuencia de las transmisiones, como se pudó leer en la Sección ??, en la actualidad el despliegue de redes NB-IoT se ha realizado en bandas EUTRA

82 Capítulo 5. Diseño

(Acceso de radio en LTE) y bandas GSM (SA), por lo que nuestro modelo se implementará en la banda milimétrica, se ocupará la banda mas baja en la cual el modelo CI es válido, es decir, la banda de 2GHz.

5.1.3. Incorporación de un esquema de acceso al medio no ortogonal (NOMA) usando una técnica de agrupamiento de usuarios

Se predefine que existirá un bloque de recursos (PRB) para la BS dedicado para el estándar NB-IoT en la banda de 2GHz, dando servicio a comunicaciones tipo maquina (MTC). El recurso de radio tendrá un ancho de banda de 180kHz y este recurso se dividirá en 48 sub-portadoras de 3.75kHz con operación singletone y multitone.

Por lo tanto, para la compartición de recursos, en vías de dar servicio a un gran número de dispositivos, se propone la implementación de un esquema de acceso múltiple al medio no ortogonal (NOMA) descrito en la Sección y la implementación de una técnica de agrupamiento de usuarios (revisada en Sección) y se aprovechará la no ortogonalidad, para agrupar diferentes clases de nodos IoT en una misma sub-banda.

5.1.4. Diferentes modelos de tráfico que simulen distintos servicios para NB-IoT

En la implementación de modelos de tráfico se tendrá en cuenta el modelo CMMPP y un modelo determinístico. El modelo CMMPP tendrá una implementación distinta para cada una de las aplicaciones que proponemos en la *Tabla*?? a excepción de aquellas aplicaciones con tasas de transmisión periódicas, para las cuales se utilizará un modelo determinístico. Cada una de las implementaciones del modelo CMMPP tendrá su propio diseño de cadena de Markov con distintas tasas de generación de paquetes por estado, las cuales dependerán de la aplicación, además, cada implementación contará con su propia matriz de transición entre estados. Esto se debe a que la relación espacial y temporal que existe entre los nodos a la hora de transmitir dependerá del tipo de aplicación.

Cada nodo, al tener su propia cadena de Markov (la que determinará su estado en cada momento) contará con tres procesos (uno por cada aplicación con tráfico aleatorio), llamados procesos maestros. Estos procesos, uno por cada aplicación con tráfico aleatorio, estarán modificando las probabilidades de cambio de estado de cada nodo según su proximidad a otros nodos que estén cambiando de estado. Por ejemplo, digamos que un nodo, que llamaremos N1, que detecta terremotos se encuentra en estado de reposo y su probabilidad de transición al estado de transmisión por un evento es del 1%, ahora de pronto otro nodo (de la misma aplicación) en su proximidad cambia de estado a transmisión por evento, y unos instantes después la probabilidad de transición en nuestro nodo muestra que antes era del 1% aumenta hasta 90%, lo que desencadena que este nodo también comience a transmitir al cambiar de estado unos momentos después. El ejemplo anterior, en la vida real se traduciría como un terremoto ocurriendo en un lugar y una

gran cantidad de nodos que se encargan de detectarlo comenzando de pronto a transmitir con una indudable coordinación espacial y temporal.

FIGURA 5.2: Cadena de Markov propuesta

Habiendo explicado esto, la implementación del modelo CMPP en las aplicaciones, control de iluminación, detección de terremotos y genérico contará con un diseño de cadena de Markov como el que se presenta en la Figura 4.6. En esta figura se puede ver que se modelarán dos distintos estados para cada nodo IoT de estas aplicaciones. El primer estado, llamado normal corresponde al funcionamiento **normal** o principal de la aplicación, con una tasa de transmisión Lambda 1 (λ_1) , mientras que el segundo estado, llamado **Alerta** con tasa de transmisión Lambda 2 (λ_2) , este último corresponde al estado que acudirán los dispositivos IoT de acuerdo con eventos producidos aleatoriamente con base en la aplicación del nodo. Es justamente con la ayuda de este estado que el modelo será capaz de simular la coordinación espacial y temporal de los dispositivos. Otro componente clave del modelo CMMPP es la matriz P_n , la cual contiene las probabilidades de cambio de estado que se pueden apreciar en la Figura 4.6. Esta matriz se encontrará modulada por un proceso distinto para cada aplicación de la siguiente forma:

$$P_n[k] = {}_n[k]P_c + (1 - {}_n[k])P_u$$
 (5.1)

 $donde:\ n\ corresponde\ al\ n-\'esimo\ nodo$

y k a un determinado instante de tiempo

En la ecuación 5.1 vemos la forma en la que se modulan las matrices de probabilidad de transición entre los estados. Entonces para calcular la matriz $P_n[k]$, es decir la perteneciente al nodo n en el instante k, necesitamos de las matrices P_c y P_u que corresponden al comportamiento coordinado y no coordinado respectivamente y del valor $_n[k]$. Comenzaremos con las matrices P_c y P_u , estas matrices marcan el comportamiento que tendría el nodo en los casos extremos de coordinación o en la ausencia de esta, esto debido a que $_n[k]$ varía entre [0,1], entonces si existe una perfecta coordinación entre nodos y este valor es 1, en algún momento, el segundo sumando de la ecuación 5.1 sería 0 y $P_n[k] = P_c$. La propuesta inicial para P_c y P_u es la siguiente, tal y como se ha utilizado en [34] y [35]:

$$P_u = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \tag{5.2}$$

$$P_c = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{5.3}$$

Ahora se estudia el término n[k] que es el que se encarga de simular la correlación existente entre los nodos, el cual se compone de $n[k] = \delta_n[k]$, siendo δ_n el término encargado de la coordinación espacial y [k] el de la coordinación temporal. Para δ_n se utilizarán dos distribuciones: una exponencial decreciente y una ventana de coseno alzado según convenga para la aplicación tal y como se propone en [34], la posibilidad de implementar la ventana de coseno alzado es por el efecto de un término abrupto que puede simular, lo que evitaría el problema de inundación de tráfico por un incorrecto diseño. Finalmente para [k] se tiene una variable aleatoria beta que simulará la correlación temporal.

Mientras un nodo se encuentre en un estado, este generará paquetes a la tasa λ marcada en ese estado específico. Un cambio de estado se dará ya sea por la influencia de otro nodo vecino o por un cambio originado en el mismo nodo, esto último en el mundo real se traduciría a que este nodo es el primero en detectar el evento y cambiarse al estado de alarma, lo que desencadenaría que otros nodos posiblemente de igual manera cambien su comportamiento. En la *Figura 5.3* se presenta el diagrama de flujo que las distintas realizaciones del modelo CMMPP desarollarán en la simulación.

El segundo modelo se trata de uno determinístico, y será el que se implementará en las aplicaciones cuya tasa de tráfico es periódica. De manera que lo único que se debe conocer es la tasa de tráfico de los nodos y poner un temporizador en cada uno, con la finalidad de que cuando acabe, éste genere un evento de transmisión. Las aplicaciones contempladas para este modelo son: el monitoreo del consumo de agua y electricidad en la ciudad, el monitoreo de la contaminación del aire y el control dinámico de los semáforos.

Ahora, en la *Tabla 5.2* se presentan las aplicaciones mencionadas en la *sección* junto a su caracterización. Adicionalmente se anexa la distinción de las aplicaciones en dos clases distintas, lo que permitirá implementar el agrupamiento de los dispositivos para que compartan recursos en un esquema NOMA.

El hecho de considerar dos clases de nodos, es decir, clase 1 y clase 2, se buscará que por cada nodo de clase 2 hayan por lo menos 3 nodos de clase 1. por lo tanto se utilizarán diferentes tasas para la generación de estos nodos.

También, en la *Tabla 5.2* se puede ver que para las transmisiones de bajada (*downlink*) se componen de simples confirmaciones de llegadas (ACK) de paquetes de longitud 0 (*bytes*), es la razón por la que se limitó el análisis a un estudio del el enlace de subida (*uplink*). En el enlace de subida, solo se considerará la interferencia intracelular, proveniente de los UE que compartan un mismo grupo (*cluster*).

Tabla 5.2: Caracterización de las aplicaciones seleccionadas

Número de Servicio y Nombre 1 - Control de iluminación (Ciudad Inteligente)	Tamaño de red Grande, miles de dispositivos	Tasa de tráfico Aleatorio, poco frecuente	Demanda de QoS Media, tolerante al retardo 15seg	Clase	Tamaño de paquete Activación aleatoria UL: 20 bytes payload DL: ACK de 0 bytes
2 - Monitoreo del consumo de agua y electricidad en la ciudad (Ciudad Inteligente)	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj cada 10 min por dispositivo	Baja, tolerante al retardo 1min	1	Activación periódica UL: distribución de Pareto con parámetro alfa = 2.5 y tamaño mínimo de carga útil de la aplicación = 20 bytes con un corte a 200 bytes DL: ACK de 0 bytes 50 % de las veces.
3 - Detección de terremotos (Ambiente Inteli- gente)	Media a grande, cientos a miles de dispositivos	Aleatorio, poco frecuente	Alta, tole- rante al re- tardo 3seg	1	Activación aleatoria UL: 20 bytes payload DL: ACK de 0 bytes
4 - Monitoreo de contaminación del aire (Ambiente Inteli- gente)	Media a grande, cientos a miles de dispositivos	Periódico, 1 msj cada 15 min por dispositivo	Media, tolerante al retardo 15seg	1	Activación periódica UL: distribución de Pareto con parámetro alfa = 2.5 y tamaño mínimo de carga útil de la aplicación = 20 bytes con un corte a 200 bytes DL: ACK de 0 bytes 50 % de las veces.
5 - Control dinámi- co de semáforos (Transporte y Movi- lidad Inteligentes)	Grande, miles de dispositivos	Periódico, 1 msj cada min por dispositivo	Alta, tolerante al retardo 5seg	1	Activación periódica UL: distribución de Pareto con parámetro alfa = 2.5 y tamaño mínimo de carga útil de la aplicación = 20 bytes con un corte a 200 bytes DL: ACK de 0 bytes 50 % de las veces.
6 - Genérico	Grande, miles de dispositivos	Aleatorio, poco frecuente	Alta, tiempo real	2	Activación aleatoria UL: 20 bytes payload DL: ACK de 0 bytes

FIGURA 5.3: Generación de tráfico con modelo CMMPP

En la Figura 5.4 se plantea una aproximación del escenario mMTC descrito, usando un agrupamiento con cuatro nodos.

5.1.5. Parámetros generales del simulador

Para planear un modelo de sistema valido y coherente se contempló la incorporación de algunos parámetros generales de diseño revisados en artículos []. La *Tabla 5.3* describe el conjunto de parámetros de la simulación.

5.2.

Para la generación de variables aleatorias se pueden utilizar las librerías scipy, numpy ó random en Python.

TODO: Agregar nuevos diagramas de acuerdo con la simulación de eventos discretos

5.2. 87

Tabla 5.3: Parámetros de la simulación a nivel de sistema

Parámetro	Valor
Diseño celular	uni-celular
Radio de celula	máx. 1238 m
Movilidad de UEs	Nula - 0km/h
Distribución de UEs	Procesos puntuales de Poisson Homogeneos
Modelo de canal de propagación 'Path Loss'	Modelo CI $L_p^{CI}(f,d)_{[dB]} = 32.4 + 10 \ n \log_{10}\left(\frac{d}{d_0}\right) + 20 \log_{10}\left(d_0\right) + 20 \log_{10}\left(f\right) + x_{\sigma}^{CI}$
Número de antenas BS	1
Número de antenas UE	1
Potencia máxima de transmisión de nodos IoT	$23~\mathrm{dBm}$
Densidad de Ruido Térmico	-174 dbm/Hz
Frecuencia de operación	En banda y guarda de banda LTE estándar, Principalmente banda de 2GHz
Ancho de banda del sistema para un PRB (BW)	180 KHz
Espacio entre sub-portadoras Uplink	3.75kHz singletone y multitone [37]
Tasa de datos máxima	UL: 20kbps

FIGURA 5.4: Ejemplo ilustrativo de un escenario m Io
T unicelular aproximado, usando agrupaciones de 4 dispositivos

Capítulo 6

Implementación

En este capítulo se explica la implementación del modelo de sistema propuesto en los capítulos anteriores, se generaron los escenarios de prueba pertinentes para los cuatro modelos que comprende nuestro simulador y se muestran resultados específicos por cada modelo. Por último, se definió la metodología en cómo se interconectaron estos cuatro modelos con el fin de dar por terminada la fase de implementación y con esto poder generar distintos resultados globales del simulador en el capítulo siguiente.

6.1. Generación de una geometría estocastica

Generación de Puntos de Poisson en un círculo:

Para una generación de puntos en un círculo correcta que cumpla con la definición de un HPPP [Sección 2.1.3], el número total de puntos que se formaron en el círculo siguió una variable aleatoria de Poisson, además, estos puntos se distribuyeron de acuerdo a una distribución uniforme dentro del círculo, por último, al considerar un proceso homogéneo, la densidad de los puntos fue constante.

1. Número total de puntos:

En primer lugar, para cumplir con la definición de HPPP, el número total de puntos tendrá que seguir una distribución de Poisson. Para esto en cada realización se generó una variable aleatoria de Poisson con tasa constante λ y media λA donde $A = \pi r^2$.

2. Ubicación de los puntos:

Después, para la distribución uniforme de puntos en un círculo, se consideraron dos variables aleatorias uniformes, una que represente el radio y otra el ángulo (esto con base en las coordenadas polares).

Entonces, debido a que el área aumenta de manera cuadrática con relación al radio, un punto aleatorio ubicado uniformemente en un círculo de radio r tiene las coordenadas polares $[r(\sqrt{U}), 2\pi V]$, donde U y V son las dos variables aleatorias uniformes independientes, $U, V \in [0, 1]$.

6.1.1. Escenario de Prueba de PPP

En este escenario se validó la generación de una geometría estocastica siguiendo un HPPP.

En primer lugar, el número total de puntos debe seguir una distribución discreta de Poisson, esta se comprobó con la generación de la variable aleatoria Poisson en Python usando la libreria scipy [Véase Apéndice A].

Después, se comprobó la generación de puntos aleatorio ubicados uniformemente en un círculo de radio r en coordenadas polares $[r(\sqrt{U}), 2\pi V]$.

Se graficó en un círculo 2D la generación de puntos, con tasa constante $\lambda = 1x10_3$ y r = 100 con media λA donde $A = \pi r^2$ [véase Figura 6.1].

Por último, se validó que todos los puntos se generen dentro del areá del circulo, para esto se graficó de igual manera la distribución espacial de los puntos en un círculo en plano 2D pero ahora con una densidad mayor ($\lambda = 1x10_6$), de modo que se observe que los puntos rellenan toda el área del círculo [véase Figura 6.2].

6.2. Generación de ganancias de canal implementando pérdidas por distancia (PLE) y desvanecimiento Rayleigh

De acuerdo con el modelo de canal propuesto, el modelo CI (*Ecuación 4.2* de [47]), este implementa pérdidas de acuerdo con la distancia y frecuencia, dado un exponente de pérdida por trayectoria (PLE) y agrega pérdidas por el desvanecimiento rápido de Rayleigh.

En primera instancia, para el cálculo de la pérdida por trayectoria, se utilizó la ecuación 4.2. Retomando lo estudiado en la Sección 2.2.3, se tiene que cuando el desvanecimiento es tipo Rayleigh, la magnitud (amplitud) de la señal es distribuida por una variable aleatoria tipo Rayleigh pero en potencia es distribuida exponencialmente con media unitaria.

La ganancia de desvanecimiento Rayleigh se modeló por medio de la generación de una variable aleatoria que siguió una distribución Rayleigh con desviación estándar unitaria, la generación de esta variable se puede ver en el Apéndice A.

6.2.1. Escenario de Prueba de la pérdida por trayectoria

Se propuso un escenario UMa en exteriores en un ambiente con línea de vista (LoS), entonces de acuerdo con la Tabla 5.1, los parámetros válidos del modelo de canal CI en ambientes LoS, son: PLE = 2; frecuencia de operación = 2- 38GHz; rango de distancias 60- 930 m. La Figura 6.3 muestra las pérdidas por trayectoria que dependen de las distancias (entre BS y UE) y frecuencias en todo el rango en el cual es válido este modelo (sin tomar en cuenta el desvanecimiento). Se observa el incremento de las pérdidas conforme aumentan la distancia y la frecuencia.

6.2.2. Escenario de Prueba del Modelo de canal CI

Ahora bien, al incorporar el desvanecimiento tipo Rayleigh y las pérdidas por trayectoria, siguiendo la Tabla 5.3 donde se definen los parámetros de la simulación (PLE= 2 con radio celular de 200m, en una banda de 2 GHz), se generó el histograma (pdf) de los coeficientes de canal (ganancias de canal) esperados para el simulador, véase Figura 6.4, se puede observar que el valor promedio de las ganancias (h) es de 80.35 dB.

Para la generación de las ganancias h se utilizó la siguiente Ecuación:

$$h = 10^{\left(\frac{-L_{p[dB]}^{CI}}{10}\right)} \cdot \gamma \ [W] \tag{6.1}$$

Donde:

 $\gamma \to ganancia\ desvanecimiento\ Rayleigh$ $L_{p[dB]}^{CI} \to Path\ Loss\ Modelo\ CI$

FIGURA 6.3: Pérdidas por trayectoria según el Modelo CI

FIGURA 6.4: Ganancias de Canal Modelo CI

6.3. Esquema de acceso múltiple al medio no ortogonal, basado en potencia (PD-NOMA)

De acuerdo con el modelo de sistema (sección ??), se propuso implementar un esquema de acceso múltiple no ortogonal (NOMA), con base en [37], los autores desarrollaron un esquema NOMA basado en NB-IoT por medio de un agrupamiento óptimo de los usuarios y una optimización en la asignación de recursos, de acuerdo con la maximización de la tasa de transmisión total de subida de los dispositivos MTC.

6.3.1. Algoritmo de Agrupación de dispositivos uRLLC y mMTC

Se implementó el algoritmo de agrupamiento NOMA para los dispositivos mMTC y uRLLC descrito en [37][véase Algorithm 1], este algoritmo realiza un ordenamiento conveniente con respecto al uso de la Cancelación Sucesiva de Interferencia (SIC), es decir, se ordenan los dispositivos URLLC y mMTC de acuerdo con su ganancia de canal promedio dentro de los diferentes grupos NOMA para que puedan compartir el mismo recurso espectral (subportadora) asignado a cada grupo[véase Figura 6.6]. El Algoritmo da prioridad a los dispositivos uRLLC para que obtengan los rangos más bajos.

Por lo tanto, un mensaje combinado de los dispositivos mMTC y uRLLC con ruido aditivo es recibido en la BS, la BS emplea la recepción SIC de acuerdo en cómo son ordenados los dispositivos.

La recepción SIC decodifica primero el mensaje del dispositivo con el rango más bajo, por consiguiente los usuarios con los rangos siguientes (o más altos) le introducen interferencia y a su vez el usuario con el rango más alto no experimenta interferencia de ninguna señal.

Es importante notar que los dispositivos uRLLC tienen requerimientos de tasas de datos más altos, por lo tanto, su potencia de transmisión será mayor que la de los dispositivos mMTC. Es por esto que en cada grupo los dispositivos uRLLC tendrán los rangos más bajos y los dispositivos mMTC los más altos. De hecho, el decodificador SIC en la BS comienza a decodificar con URLLC y, en consecuencia, los dispositivos mMTC no se ven afectados por la alta interferencia de los URLLC [véase Figura NOMAgrupoexample].

FIGURA 6.5: Ejemplo ilustrativo del ordenamiento de 4 usuarios uRLLC y 8 usuarios mMTC en 3 grupos NOMA

Definición de variables de los algoritmos 1 y 2:

- U: Lista de dispositivos uRLLC
- M: Lista de dispositivoss mMTC
- S: Lista de Subportadoras s
- C: Lista de Grupos NOMA
- \blacksquare R_m^{th} : Tasa objetivo del enésimo dispositivo m mMTC
- R_u^{th} : Tasa objetivo del enésimo dispositivo u uRLLC

- P_m^{max} : Potencia máxima del enésimo dispositivo m mMTC
- $-P_u^{max}$: Potencia máxima del enésimo dispositivo u uRLLC (i.e. 23dBm)
- $lackbox{ } P_m^s$: Potencia del enésimo dispositivo m mMTC
- $lackbox{ } P_u^s$: Potencia del enésimo dispositivo u uRLLC
- $\bullet \ h_m^s$: Ganancia de canal del enésimo dispositivo m
 mMTC sobre la portadora s
- $\bullet \ h_u^s$: Ganancia de canal del enésimo dispositivo u uRLLC sobre la portadora s
- \hat{S} : Lista de subportadoras asignadas
- S_a^c : Lista de subportadoras asignadas al enésimo cluster

Asignar mMTC a los siguientes rangos ...

• C_{ns} : Lista de cluster aún no asignados

18:

19:

else

```
Algorithm 1 Algoritmo de agrupamiento de dispositivos uRLLC y mMTC para NOMA
    Entrada U, M, S, C, h_m^s, and h_u^s, \forall m \in \mathcal{M}, \forall u \in \mathcal{U}, \forall s \in \mathcal{S}
    Salida Lista de Clusters (C) con agrupamiento de dispositivos
 1: procedure Agrupación de dispositivos uRLLC
 2: Cálculo de la ganancia de canal promedio del enésimo dispositivo u
 3: h_u = \sum_{s \in \mathcal{S}} h_u^s / |S|
 4: Se ordenan descendentemente las ganancias de canal promedio de cada dispositivo u, i.e.
    \forall u \in \mathcal{U} : \tilde{h}_1 \geq \tilde{h}_2 \geq \cdots \geq \tilde{h}_U
        for each u in U do
 5:
 6:
            if |U| < |C| then
                Asignar uRLLC al rango mas bajo (k=1)
 7:
 8:
            else
                Asignar uRLLC al siguiente rango (k=2) [Solo se podrán asignar hasta un segundo
 9:
    rango
        Encontrar \tilde{k}, rango y grupo en el que se quedó la última asignación uRLLC
10:
11: procedure AGRUPACIÓN DE DISPOSITIVOS MMTC(\tilde{k})
12: Cálculo de la ganancia de canal promedio del enésimo dispositivo u
13: \tilde{h}_m = \sum_{s \in \mathcal{S}} h_m^s / |S|
14: Se ordenan descendentemente las ganancias de canal promedio de cada dispositivo u, i.e.
    \forall m \in \mathcal{M} : \tilde{h}_1 \geq \tilde{h}_2 \geq \cdots \geq \tilde{h}_M
        for each m in M do
15:
            if |M| < |C| then
16:
                Asignar mMTC al rango \tilde{k}
17:
```

6.3.2. Algoritmo de Asignación de Subportadoras

Este algoritmo garantiza una óptima asignación de portadoras (S), de acuerdo con la maximización de la tasa total de transmisión, para los grupos NOMA. En [37] se plantea la metodología para la asignación de subportadoras a los grupos NOMA.

Cabe destacar que en [37], el modelo de sistema no es implementado hacia una banda de frecuencias en específico, las ganancias de las subportadoras son estadíticas por el uso de un desvanecimiento tipo Rayleigh dentro de su simulación.

En nuestro caso como se ocupa un modelo de canal que depende de la frecuencia, se tuvo que escoger un PRB de 180 KHz, con un conjunto de subportadoras fijadas en una banda LTE, se escogió la banda de 2GHz, esto por el hecho de que LTE se implementa en bandas de microondas.

Para cada subportadora, el mejor grupo (c*) es el que maximiza el rendimiento total, [$v\'{e}ase$ Algorithm 2]. Luego, por consecuencia, las velocidades de datos de los dispositivos mMTC y URLLC y sus potencias de transmisión se actualizan. Durante el proceso de asignación de subportadoras, los clústeres asignados se excluyen del conjunto de Cns.

El algoritmo asigna iterativamente las subportadoras disponibles una por una. Dado que cada dispositivo MTC divide por igual su potencia de transmisión máxima entre todas las subportadoras asignados, las potencias de transmisión de los dispositivos MTC a través de las diferentes subportadoras no son óptimas utilizando el algoritmo planteado.

La fase de asignación de recursos termina hasta que las 48 subportadoras se asignan a los 48 clústeres NOMA, esto del hecho que se adapta para una transmisión singletone.

6.3.3. Escenario de Prueba de NOMA

En este escenario de pruebas, evaluamos el rendimiento del sistema del esquema NB-IoT basado en NOMA propuesto en [37], el cual implementó dos Algoritmos uno para la formación de grupos y otro para la asignación de recursos.

Consideraron una celda con un radio de 0.5 km donde las ubicaciones de los dispositivos mMTC y URLLC se generaron aleatoriamente (de manera uniforme) dentro de la celda. Además, consideraron un solo PRB con 48 subportadoras de 3.75 kHz para las transmisiones de enlace ascendente (UL) en un intervalo de tiempo (TTI).

Modelaron las ganancias de canal de los dispositivos mMTC como $h_s^m = \gamma d_{m,s}^{-\beta}$ (de manera similar h_s^u para URLLCs), donde γ es un valor aleatorio generado por la PDF de Rayleigh, $d_{-\beta}^{m,s}$ representa la distancia entre el UE y la BS, y β es el PLE el cual lo establecieron en $\beta = 3$ y d varía entre 0.1 y 500 m.

Algorithm 2 Algoritmo de asignación de recursos para NOMA

```
Entrada U, M, S, C, R_m^{th}, R_u^{th}, P_m^{max}, P_u^{max}, h_m^s, \text{ and } h_u^s, \forall m \in \mathcal{M}, \forall u \in \mathcal{U}, \forall s \in \mathcal{S}
      Salida Asignaciones de grupos con subportadoras (Asignación de todas las subportadoras
[48, NB-IoT singletone])
 1: procedure Asignación de subportadoras
 2: Inicialización:
 3: R_u = 0, R_m = 0, p_m^s = P_m^{max} \ y \ p_u^s = P_u^{max}, \forall m \in \mathcal{M}, \forall u \in \mathcal{U}, \forall s \in \mathcal{S}. \ \hat{S} \leftarrow \emptyset, \quad S_a^c \leftarrow \mathcal{M}
      \emptyset, C_{ns} \leftarrow \mathcal{C}
           while \mathcal{S} \neq \emptyset do
 4:
 5: Asignación de una subportadora a un grupo NOMA:
 6:
                for each s in S do
                      Seleccionar al mejor cluster c^* (el que maximiza el throughput):
 7:
                      c^* = \arg \max \left( \sum_{u \in \mathcal{U}} R_u + \sum_{m \in \mathcal{M}} R_m \right);
 8:
                      donde: Ru (Ecuación 4.5) y Rm (Ecuación 4.4), de acuerdo con [37]
 9:
                      Asignar la subportadora s con c^*:
10:
                      Actualizar S_a^{c^*} \leftarrow S_a^{c^*} \cup \{s\}, \hat{S} \leftarrow \hat{S} \cup \{s\}
11:
                      Actualizar las tasas: R_u = R_u + R_{u,s}, R_m = R_m + R_{m,s}
12:
                      Actualizar las potencias de los URLLC y mMTC de c^* individualmente :
13:
                     p_m^s = \frac{p_m^s}{\left|S_a^{c^*}\right|+1}, \ p_u^s = \frac{p_u^s}{\left|S_a^{c^*}\right|+1}, \forall s \in \mathcal{S}
14:
                     if S_a^{c^*} == 1 then C_{ns} \leftarrow C_{ns} \setminus \{c^*\}
15:
16:
     Asignación de subportadoras restantes:
                if C_{ns} \neq \emptyset then
18:
                      for each s in S do
19:
                           \mathcal{S} \leftarrow \mathcal{S} \backslash \hat{S}
20:
                           c^* = \operatorname*{arg\,máx}_{c \in C} \left( \sum_{u \in \mathcal{U}} R_u + \sum_{m \in \mathcal{M}} R_m \right)
21:
                           Actualizar \ S_a^{c^*} \leftarrow S_a^{c^*} \cup \{s\}
22:
                           Actualizar p_m^s = \frac{p_m^s}{|S_a^{c^*}|+1}, \ p_u^s = \frac{p_u^s}{|S_a^{c^*}|+1}
23:
```


FIGURA 6.6: Ejemplo ilustrativo de la distribución de potencia para PD-NOMA en Multitone

También, consideraron el ruido gaussiano blanco aditivo (AWGN) con una densidad espectral de potencia de -173dBm/Hz. Los presupuestos de potencia de transmisión máxima de todos los dispositivos URLLC y mMTC, $Pmax^u$ y $Pmax^m$ ($\forall m \in \mathcal{M}, \forall u \in \mathcal{U}$), se establecen en 23 dBm. Los umbrales de velocidad de datos de los dispositivos mMTC siguen una distribución uniforme, es decir, $R_{th}^m = Uniforme(0,1,2)kb/s$, $R_{th}^u = Uniforme(0,1,20)kb/s$.

Los autores en [37] proponen la oportunidad de asignar más de una subportadora (*multitone*) por grupo NOMA en transmisiones con anchos de banda UL de 3.75KHz para NB-IoT. Entonces, aunque aún no ha sido especificado la asignación de múltiples subportadoras por cluster en anchos de banda de 3.75KHz para NB-IoT, se tomó la propuesta de [37] en este simulador.

Cabe destacar que no necesariamente deben coincidir nuestros resultados con los del artículo ya que se tomaron algunas consideraciones diferentes a la de ellos. En la implementación del Algoritmo 2 se percató que los autores [37] siempre buscan alcanzar la tasa objetivo de cada dispositivo uRLLC y mMTC en cada cluster haciendo la agregación de multiples subportadoras a cada clúster, el problema que surge con esto, es que muchas de las veces que se corría la simulación, la mayoría de las subportadoras se asignaban de entre 1 - 3 clusters esto porque

Algorithm 3 Modo de Operacion Multitone

Entrada NumeroDispositivos

Output NumeroGrupos

- 1: procedure Ejemplo de procedimiento Multitone con kmax=4
- 2: if kmax == 4 then
- 3: **if** NumeroDispositivos <= 48 **then return** NumeroDispositivos
- 4: **if** NumeroDispositivos > 48 and NumeroDispositivos <= 96 **then return** NumeroDispositivos/2
- 5: **if** NumeroDispositivos > 96 and NumeroDispositivos <= 144 **then return** NumeroDispositivos/3
- 6: **if** NumeroDispositivos > 144 and NumeroDispositivos < 192 **then return** NumeroDispositivos/4
- 7: **if** NumeroDispositivos >= 192 **then return** 48

parecía difícil cumplir con las tasas de todos los dispositivos en estos grupos, dejando a los otros grupos sin subportadora. La modificación que se implementó es que siempre se logre asignar una subportadora para cada grupo aunque sus dispositivos no alcancen su tasa objetivo, es decir se adoptó un número fijo de grupos NOMA igual a 48.

Se intentó aplicar una transmisión multitone de otro modo, analizemos el siguiente ejemplo:

En un TTI, 50 dispositivos desean transmitir, en un modo *singletone* se crearían siempre 48 grupos, entonces, 48 usuarios se agruparían en el primer rango de cada grupo y los otros dos restantes se agruparían en el segundo rango de los dos primeros grupos. En este caso no puede hacerse *multitone* ya que las 48 subportadoras son ocupadas por cada grupo NOMA.

Ahora bien, un modo *multitone* se podría aplicar de la siguiente manera, si se consideran de igual manera 50 dispositivos queriendo transmitir, estos se pueden dividir en dos grupos de 25 dispositivos, es decir crear 25 grupos con su primer y segundo rangos completos, esto con la finalidad de que las 23 subportadoras restantes se agreguen en los grupos donde sus dispositivos aún no alcanzan su tasa objetivo, esto se implementó siguiendo la metodología del *Algorithm* ??.

Al comparar los resultados entre *multitone* y *singletone* en la Figura XXX se puede que el desempeño de ambos es similar, solo un caso, y es cuando el número de dispositivos es menor al número de clusters, es decir, en un modo *singletone*.

El impacto de la agregación de las subportadoras solo beneficia a aquellos dispositivos que tienen una buena condición de canal o que están en los últimos rangos (ya que experimentan menos interferencia).

Se estudió de igual manera el impacto de multitone con diferentes clases de potencia para los dispositivos MTC con kmax = 4 y su desempeño no resultó ser favorable. Igualmente, se evaluó

Figura 6.7

el desempeño con diferentes tamaños de grupos. Por ese motivo esos resultados no se reportaron.

Como se observa, no se logran satisfacer todos los requisitos de velocidad de datos de los dispositivos mMTC y URLLC pero si se incrementa significativamente la conectividad de usuarios en comparación con OFDMA donde solo se puede dar servicio a un usuario por subportadora, lo que son 48 usuarios.

FIGURA 6.8

6.4. Generación de Tráfico Fuente

6.4.1. Tráfico CMMPP

6.4.2. Escenario de Prueba de Tráfico CMMPP

Figura 6.9

6.5. Interconexión de los 4 módulos del Simulador

6.6. Simulador de Eventos Discretos

- 6.6.1. Definición de eventos
- 6.6.2. Interfaz de usuario del simulador de tráfico fuente
- 6.6.3. Descripción de los logs de salida

6.7. Optimización de tiempos de simulación

La generación de distintas variables aleatorias y el uso de algoritmos de asignación de recursos nos mantuvo en la preocupación de que los tiempos de simulación probablemente llegarán a ser excesivamente largos, por tal se propuso utilizar una técnica de paralelismo en python. Favorablemente esto no sucedió como se esperaba, el tiempo máximo de espera para una simulación rondó los 20 minutos como máximo.

De cualquier forma, la técnica de paralelización si se implementó pero solamente en la generación de resultados de NOMA para un TTI ya que en esta parte fue que se necesitaron obtener resultados promedio donde cada punto o muestra de los datos necesitaba simularse 1000 repeticiones para así obtener un promedio. En la Tabla ?? se observa la comparación de los tiempos de simulación e un caso normal (solamente 1 núcleo en uso) e implementando la paralelización (uso de todos los núcleos de la PC).

[Cabe mencionar que esta simulación se montó en una PC con procesador Intel(R) Core(TM) i7-7700HQ CPU @2.80 GHz y 16 GB de Memoria RAM.]

Capítulo 7

Resultados

El objetivo de este capítulo fue el de brindar resultados para distintos escenarios de interés, con el fin de dar comparaciones analíticas con base en la variación de los parámetros de entrada del simulador.

7.1. Escenario I

-1	T .	т
	Escenario	
 · I ·	Loccitatio	_

- 7.1.1. Parámetros de entrada
- 7.1.2. Resultados
- 7.2. Escenario II
- 7.2.1. Parámetros de entrada
- 7.2.2. Resultados
- 7.3. Escenario III
- 7.3.1. Parámetros de entrada
- 7.3.2. Resultados
- 7.4. Escenario IV
- 7.4.1. Parámetros de entrada
- 7.4.2. Resultados
- 7.5. Escenario V
- 7.5.1. Parámetros de entrada
- 7.5.2. Resultados
- 7.6. Escenario VI
- 7.6.1. Parámetros de entrada
- 7.6.2. Resultados
- 7.7. Escenario VII
- 7.7.1. Parámetros de entrada
- 7.7.2. Resultados
- 7.8. Escenario VIII
- 7.8.1. Parámetros de entrada
- 7.8.2. Resultados
- 7.9. Escenario IX

Capítulo 8

Conclusiones

En este capítulo se concluye el presente proyecto, compilando una discusión y un análisis crítico de los resultados en general, presentando las posibilidades de evolución futura de las comunicaciones móviles, así como las propuestas de trabajo académico futuro a mediano plazo.

8.1. Generales

8.2. Específicas

Apéndice A

Distribuciones estadísticas en Telecomunicaciones

El objetivo de este capítulo fue revisar las distribuciones de probabilidad mas utilizadas en los sistemas de comunicaciones móviles para caracterizar los fenómenos más importantes en este ámbito, después se describió la implementación y puesta a prueba de la generación de las variables aleatorias utilizadas en el simulador, esto con el fin de brindar fiabilidad en los resultados obtenidos.

A.1. DISTRIBUCIONES MÁS IMPORTANTES EN TE-LECOMUNICACIONES

El uso de modelos estadísticos es importante para describir [13]:

- Llamadas telefónicas y conexiones de datos
- Influencia del usuario en el rendimiento de la red
- Propagación no guiada en ambientes aleatorios
- Movilidad del usuario

Comúnmente se utilizan las siguientes distribuciones de probabilidad en telecomunicaciones [13]:

- 1. Distribución Uniforme: Es usada para describir la fase de una señal. También, se ha utilizado para simular el despliegue de BSs [14].
- 2. Distribución Normal (Gaussiana): Es usada para describir fluctuaciones alrededor de un valor medio, p.ej. *shadowing*. Esta distribución no puede ser usada para describir entidades que no pueden ser negativas.
- 3. Distribución Log-Normal: Es usada para describir entidades como la potencia de una señal, amplitudes, principalmente el desvanecimiento lento.
- 4. Distribución Rayleigh: Es usada para describir el desvanecimiento rápido-intenso.
- 5. Distribución Susuki: Describe conjuntamente el desvanecimiento lento y rápido.

- 6. Distribución Rice: Es usada para describir el desvanecimiento rápido no-intenso.
- 7. Distribución Exponencial: Es ampliamente usada para describir la duración de diferentes fenómenos, principalmente asociados con el desvanecimiento de señales y las llamadas telefónicas.
- 8. Distribución de Bernoulli: Es usada para describir la ocupación de canales de telecomunicaciones.
- 9. Distribución binomial: Es usada para describir llamadas telefónicas.

A.1.1. Generación de números aleatorios

La distribución uniforme (también llamada distribución rectangular) es una familia de curvas de dos parámetros que es notable porque tiene una función de distribución de probabilidad constante (PDF) entre sus dos parámetros delimitadores. La distribución uniforme se utiliza en técnicas de generación de números aleatorios, como el método de inversión [51].

Se puede usar la distribución uniforme estándar para generar números aleatorios para cualquier otra distribución continua mediante el método de inversión. El método de inversión se basa en el principio de que las funciones de distribución acumulativa continua (CDFs) varían uniformemente durante el intervalo abierto (0,1). Si u es un número aleatorio uniforme en (0,1), entonces $x = F^{-1}(u)$ genera un número aleatorio x a partir de la distribución continua con la CDF especificada F [51].

En teoría de la probabilidad y estadística, hay varias relaciones entre las distribuciones de probabilidad. Estas relaciones se pueden clasificar en los siguientes grupos [52]:

- Una distribución es un caso especial de otra con un espacio de parámetros más amplio.
- Transformaciones (función de una variable aleatoria).
- Combinaciones (función de varias variables).
- Relaciones de aproximación (límite).
- Relaciones compuestas (útiles para la inferencia bayesiana [Bayesian inference]).

FIGURA A.1: Las relaciones entre algunas de las distribuciones de probabilidad univariadas se ilustran con líneas conectadas, las líneas discontinuas significan relación aproximada. [Fuente: [52]]

A.2. IMPLEMENTACIÓN DE DISTRIBUCIONES UTI-LIZADAS EN EL SIMULADOR

A.2.1. Generación de variable aleatoria tipo Poisson

Como se revisó en la sección 6.1, uno de los requisitos para generar una geometría estocástica es que el número de puntos en el plano sea Poisson, es por esto que en esta sección se comprobó la generación de la variable aleatoria Poisson en Python usando la libreria *scipy*.

Para esto, se realizaron 10000 generaciones de numeros siguiendo una distribución de Poisson con tasa $\lambda = 20$, se obtuvo el histograma de todos los números generados y se comparó con su función de masa de probabilidad (PMF).

Se observa que la distribución del histograma sigue a la función masa de probabilidad de Poisson [$v\'{e}ase\ Figura\ A.2$], por lo que se valida la generación de números Poisson en Python.

FIGURA A.2: Gráfica comparación PMF e histograma de distribución Poisson en Python

A.2.2. Generación de variables aleatorias tipo Exponencial y Ray-leigh

Como se revisó en la sección 2.2.3, cuando el desvanecimiento es de tipo Rayleigh, la magnitud o amplitud de la señal es Rayleigh y la potencia es exponencial. En esta sección, se comprobó la generación de estas variables aleatorias en Python usando la libreria random.

Se realizaron 10000 generaciones de numeros siguiendo una distribución Exponencial negativa con media $\mu = 1$, se obtuvo el histograma de todos los números generados y se comparó con su función de densidad de probabilidad (PDF).

De la misma manera con la otra distribución, se realizaron 10000 generaciones de numeros siguiendo una distribución Rayleigh con desviación estándar $\sigma = 1$, se obtuvo el histograma de todos los números generados y se comparó con su función de densidad de probabilidad (PDF).

Se observa que la distribuciones de los histogramas siguen a su respectiva función densidad de probabilidad (PDF) [$v\'{e}anse\ Figuras\ A.3\ y\ A.4$], por lo que se valida la generación de números Exponenciales y Rayleigh en Python.

FIGURA A.3: Gráfica comparación PDF e histograma de distribución Exponencial en Python

FIGURA A.4: Gráfica comparación PDF e histograma de distribución Rayleigh en Python

A.2.3. Generación de variable aleatoria tipo Pareto

Como se revisó en la sección 4.4.6, la longitud de paquetes en la transmisión periodica siguió una distribución de Pareto con parámetro alfa = 2.5 y tamaño mínimo de carga útil de la aplicación = 20 bytes con un corte a 200 bytes.

La distribución de Pareto a veces se conoce como el Principio de Pareto o la regla '80 -20 ', en este caso la regla establece que el $80\,\%$ de los tamaños de paquete que se formarán, los producirán solo el $20\,\%$ de los dispositivos del sistema y viceversa.

La distribución de Pareto se puede replicar en Python usando el módulo Scipy.stats o NumPy. El módulo Scipy.stats abarca varias distribuciones de probabilidad y una biblioteca cada vez mayor de funciones estadísticas. Se comprobó la generación de esta variable aleatoria en Python usando la libreria *scipy*.

Se realizaron 100000 generaciones de numeros siguiendo una distribución areto con parámetro alfa $\alpha = 2,5$ acotada entre 20 y 200, se obtuvo el histograma de todos los números generados y se comparó con su función de densidad de probabilidad (PDF).

Se observa que la distribución del histograma sigue a la función densidad de probabilidad Pareto [véase Figura A.5], por lo que se valida la generación de números Pareto en Python.

FIGURA A.5: Gráfica comparación PDF e histograma de distribución Pareto en Python

Apéndice B

Simulación - Geometría celular hexagonal

- B.1. Generación de despliegue Uniforme de usuarios
- B.2. Análisis de Geometría Celular un una celda

- [1] G. Fettweis y S. Alamouti, «5G: Personal mobile internet beyond what cellular did to telephony,» *IEEE Communications Magazine*, 2014, ISSN: 01636804. DOI: 10.1109/MCOM. 2014.6736754.
- [2] G. P. Fettweis, «5G and the Future of IoT And on its Hardware / Software Impact,» n.º June 2016, págs. 21-24, 2020.
- [3] Ericsson, «Ericsson Mobility Report (June 2019),» n.º June, pág. 28, 2019.
- [4] Next Generation Mobile Networks Alliance 5G Initiative, «5G White Paper,» A Deliverable by the NGMN Alliance, pág. 124, 2015, ISSN: 0027-9684. DOI: 10.1021/la100371w. dirección: https://www.ngmn.org/uploads/media/NGMN%7B%5C_%7D5G%7B%5C_%7DWhite%7B%5C_%7DPaper%7B%5C_%7DV1%7B%5C_%7D0%7B%5C_%7D01.pdf.
- [5] GSM Association, GSMA Mobile IoT LPWA LTE-M & NB-IoT Commercial Launches / GSMA, 2019.
- [6] H. Yu, «What is 5G? Emerging 5G Mobile Services and Network Requirements,» págs. 1-22, 2017. DOI: 10.3390/su9101848.
- [7] T. Hossfeld y F. Metzger, «Traffic Modeling for Aggregated Periodic IoT Data,» n.º March, 2018. DOI: 10.13140/RG.2.2.30475.39203.
- [8] I. Dd, J. Xu, G. Shi y C.-X. Wang, 5G Wireless Systems: Simulation and Evaluation Techniques. 2018, ISBN: 978-3-319-61868-5. DOI: 10.1007/978-3-319-61869-2.
- [9] W. Ejaz, M. A. Imran y M. Jo, «Internet of Things (IoT) in 5G Wireless Communications,» n.º January, 2016. Doi: 10.1109/ACCESS.2016.2646120.
- [10] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse y M. Franceschetti, «Stochastic geometry and random graphs for the analysis and design of wireless networks,» *IEEE Journal on Selected Areas in Communications*, 2009, ISSN: 07338716. DOI: 10.1109/JSAC.2009.090902.
- [11] The Poisson Process: Everything you need to know Towards Data Science. dirección: https://towardsdatascience.com/the-poisson-process-everything-you-need-to-know-322aa0ab9e9a (visitado 05-07-2020).
- [12] W. H. Tranter, K. S. Shanmugan, T. S. Rappaport y K. L. Kosbar, *Principles of Communication Systems Simulation with Wireless Applications*. 2003, ISBN: 0134947908.
- [13] L. M. Correia, «Mobile Communications Systems Course Notes,» n.º February, 2018, ISSN: 0009-4978. DOI: 10.1016/b978-075064355-9/50006-4.

[14] F. Al-turjman, E. Ever y H. Zahmatkesh, «Small Cells in the Forthcoming 5G / IoT: Traffic Modelling and Deployment Overview,» *IEEE Communications Surveys & Tutorials*, vol. PP, n.º c, pág. 1, 2018. DOI: 10.1109/COMST.2018.2864779.

- [15] V. Mathuranathan, «Simulation of Digital Communication Systems Using Matlab,» Kind-le, 2016, ISSN: 1098-6596. DOI: 10.1017/CB09781107415324.004. arXiv: arXiv: 1011. 1669v3.
- [16] Rayleigh Fading an overview | ScienceDirect Topics. dirección: https://www.sciencedirect.com/topics/computer-science/rayleigh-fading (visitado 21-02-2020).
- [17] D. Tse y P. Viswanath, «Fundamentals of Wireless Communication 1,» Cambridge University Press, 2004, ISSN: 0018-9448. DOI: 10.1109/TIT.2008.2009814. arXiv: arXiv: 1011.1669v3.
- [18] M. Shirvanimoghaddam, M. Condoluci, M. Dohler y S. J. Johnson, «On the Fundamental Limits of Random Non-Orthogonal Multiple Access in Cellular Massive IoT,» *IEEE Journal on Selected Areas in Communications*, vol. 35, n.º 10, págs. 2238-2252, 2017, ISSN: 07338716. DOI: 10.1109/JSAC.2017.2724442. arXiv: 1705.10471.
- [19] Z. DIng, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan y V. K. Bhargava, «A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends,» *IEEE Journal on Selected Areas in Communications*, vol. 35, n.º 10, págs. 2181-2195, 2017, ISSN: 07338716. DOI: 10.1109/JSAC.2017.2725519.
- [20] Z. Ding, P. Fan y H. V. Poor, «Impact of User Pairing on 5G Nonorthogonal Multiple-Access Downlink Transmissions,» *IEEE Transactions on Vehicular Technology*, vol. 65, n.º 8, págs. 6010-6023, 2016, ISSN: 00189545. DOI: 10.1109/TVT.2015.2480766.
- [21] R. C. Kizilirmak, «Non-Orthogonal Multiple Access (NOMA) for 5G Networks,» en *Towards 5G Wireless Networks A Physical Layer Perspective*, 2016. DOI: 10.5772/66048.
- [22] A. Nair, G. Gupta y K. Srinivas, «REVIEW ON MULTIPLE ACCESS TECHNIQUES USED IN MOBILE TELECOMMUNICATION GENERATIONS,» International Research Journal of Engineering and Technology (IRJET), 2018.
- [23] W. Xiang y K. Z. Xuemin, 5G Mobile Communications, ISBN: 9783319342061.
- [24] G. A. Akpakwu, G. S. Member, B. J. Silva y S. Member, «A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges,» n.º December, 2017. DOI: 10.1109/ACCESS.2017.2779844.
- [25] G. Editorial, «Internet of Things (IoT) in 5G Wireless Communications,» vol. 4, págs. 10 310-10 314, 2020.
- [26] J. M. Carter, B. V. Gnendenko e I. N. Kovalenko, «Introduction to Queueing Theory,» The Mathematical Gazette, 1990, ISSN: 00255572. DOI: 10.2307/3618175.
- [27] L. Chen, W. Chen, B. Wang, X. Zhang, H. Chen y D. Yang, «System-level simulation methodology and platform for mobile cellular systems,» *IEEE Communications Magazine*, 2011, ISSN: 01636804. DOI: 10.1109/MCOM.2011.5936168.
- [28] J. Banks v J. H. Carson, Discrete Event Simulation System, 2005.

[29] Descripción general: documentación de SimPy 3.0.11. dirección: https://simpy.readthedocs.io/en/latest/ (visitado 14-11-2019).

- [30] Ventajas y desventajas del lenguaje de programación Python. dirección: https://medium.com/@mindfiresolutions.usa/advantages-and-disadvantages-of-python-programming-language-fd0b394f2121 (visitado 14-11-2019).
- [31] multiprocessing Process-based parallelism Python 3.8.0 documentation. dirección: https://docs.python.org/3/library/multiprocessing.html (visitado 20-11-2019).
- [32] 3GPP, The 3rd Generation Partnership Project (3GPP), 2019. dirección: https://www. 3gpp.org/about-3gpp/about-3gpp.
- [33] E. Celis y L. Martínez, «Análisis de rendimiento en sistemas celulares 4G mediante algoritmos de asignación de recursos (canal, sub-portadoras),» Tesis IPN, 2016.
- [34] V. Gupta, S. K. Devar, N. H. Kumar y K. P. Bagadi, «Modelling of IoT Traffic and Its Impact on LoRaWAN,» 2017 IEEE Global Communications Conference, GLOBECOM 2017 Proceedings, vol. 2018-Janua, págs. 1-6, 2018. DOI: 10.1109/GLOCOM.2017.8254512.
- [35] K. Smiljkovic, V. Atanasovski y L. Gavrilovska, «Machine-to-Machine traffic characterization: Models and case study on integration in LTE,» 2014 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace and Electronic Systems, VITAE 2014 Co-located with Global Wireless Summit, págs. 1-5, 2014. DOI: 10.1109/VITAE.2014.6934482.
- [36] Z. Zhang, H. Sun y R. Q. Hu, «Downlink and uplink non-orthogonal multiple access in a dense wireless network,» *IEEE Journal on Selected Areas in Communications*, vol. 35, n.º 12, págs. 2771-2784, 2017, ISSN: 07338716. DOI: 10.1109/JSAC.2017.2724646.
- [37] A. Shahini y N. Ansari, «NOMA Aided Narrowband IoT for Machine Type Communications With User Clustering,» *IEEE Internet of Things Journal*, vol. 6, n.º 4, págs. 7183-7191, 2019, ISSN: 2327-4662. DOI: 10.1109/jiot.2019.2914947. arXiv: 1812.08866.
- [38] L. Chettri y R. Bera, A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems, 2020. DOI: 10.1109/JIOT.2019.2948888.
- [39] J. Mocnej, A. Pekar y W. K. G. Seah, «Network Traffic Characteristics of the IoT Application Use Cases,»
- [40] 5GAmericas, 5G the future of IoT. dirección: https://www.5gamericas.org/wp-content/uploads/2019/07/5G%7B%5C_%7DAmericas%7B%5C_%7DWhite%7B%5C_%7DFINAL%7B%5C_%7D7. 16.pdf (visitado 20-11-2019).
- [41] Ericsson AB, «Cellular networks for Massive IoT enabling low power wide area applications,» *Ericsson*, 2016.
- [42] O. Liberg, M. Sundberg, Y.-P. E. Wang, J. Bergman y J. Sachs, "The Cellular Internet of Things," en Cellular Internet of Things, 2018. DOI: 10.1016/b978-0-12-812458-1.00001-0.

[43] GSMA, NB-IoT Deployment Guide. dirección: https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf (visitado 04-07-2020).

- [44] J. Schlienz y D. Raddino, «Narrowband Internet of Things Whitepaper NarrowBand_IoT 1MA266_0e,» inf. téc. dirección: www.rohde-schwarz.com/appnote/.
- [45] N. Kouzayha, Z. Dawy, J. G. Andrews y H. ElSawy, «Joint Downlink/Uplink RF Wake-Up Solution for IoT Over Cellular Networks,» *IEEE Transactions on Wireless Communications*, vol. 17, n.º 3, págs. 1574-1588, 2018, ISSN: 15361276. DOI: 10.1109/TWC.2017.2781696.
- [46] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios y J. Zhang, Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-With a Focus on Propagation Models, 2017. DOI: 10.1109/TAP.2017.2734243.
- [47] S. Sun, T. S. Rappaport, T. A. Thomas, A. Ghosh, H. C. Nguyen, I. Z. Kovacs, I. Rodriguez, O. Koymen y A. Partyka, «Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications,» *IEEE Transactions on Vehicular Technology*, vol. 65, n.º 5, págs. 2843-2860, 2016, ISSN: 00189545. DOI: 10.1109/TVT.2016.2543139.
- [48] M. Al-Imari, P. Xiao, M. A. Imran y R. Tafazolli, «Uplink non-orthogonal multiple access for 5G wireless networks,» 2014 11th International Symposium on Wireless Communications Systems, ISWCS 2014 Proceedings, págs. 781-785, 2014. DOI: 10.1109/ISWCS. 2014.6933459. arXiv: 1705.04108.
- [49] L. Zhu, J. Zhang, Z. Xiao, X. Cao y D. O. Wu, «Optimal User Pairing for Downlink Non-Orthogonal Multiple Access (NOMA),» *IEEE Wireless Communications Letters*, vol. 8, n.º 2, págs. 328-331, 2019, ISSN: 21622345. DOI: 10.1109/LWC.2018.2853741.
- [50] M. Laner, P. Svoboda, N. Nikaein y M. Rupp, «Traffic models for machine type communications,» en *Proceedings of the International Symposium on Wireless Communication Systems*, 2013, ISBN: 9783800735297.
- [51] Distribución uniforme (continua) MATLAB y Simulink MathWorks América Latina. dirección: https://la.mathworks.com/help/stats/uniform-distribution-continuous.html (visitado 05-07-2020).
- [52] L. M. Leemis y J. T. Mcqueston, «Univariate Distribution Relationships,» DOI: 10.1198/000313008X270448. dirección: www.math.wm.edu/.