CSCI 3320: Fundamental of Machine Learning

Programming Assignment 1

Instructor: Prof. John C.S. Lui Due: 23:59 on Sun. Mar. 10th, 2019

1 Introduction

In Programming Assignment 1, you are required to do the following:

- Write a Python program with pandas (or any other packages) to process four input files.
- Implement your own classifier using the parametric methods we discussed in class and please do not use any learner from scikit-learn.

1.1 File Descriptions

To start, you need to download the asgn1.zip file from the course website. In asgn1.zip, we provide the following files for you:

- input_1.csv: contains the training and testing data for Problem 1.
- input 2.csv: contains the training and testing data for Problem 2.
- input_3.csv: contains the training and testing data for Problem 3.
- input 4.csv: contains the training and testing data for Problem 4.

Note: The details will be discussed in each problem.

2 Problem 1(25%)

In this programming exercise, you are asked to do classification via the <u>parametric method</u> we learnt in the lecture.

You need to read in a csv file, input_1.csv. The attributes of this file are: feature_value and class #. The feature values are outcomes from a Bernoulli distribution. In other words, the feature values will be either 0 or 1. These feature values came from two classes (C = 1 and C = 2). Use the first 80% of the inputs as training data and the remaining 20% for testing the accuracy of your prediction.

To accomplish this task, you have to perform the "parametric estimation" of p_i for class C_i , where i = 1, 2. While p_i is the probability of having an outcome 1 for class i.

You need to perform the following:

- Based on the input training data, compute the priors of C_1 and C_2 .
- Perform the parametric estimation on the input training data for p_1 and p_2 .
- Use the prior of C_i and the probability mass function of p_i to define discriminant functions $g_i()$ for i = 1, 2.
- Perform the testing of your classification using the two discriminant functions.
- Output the confusion matrix and save it in the **report.pdf** file.
- Output the (1) accuracy, (2) precision, (3) recall, (4) f1 score for each class as well as the average f1 score for the classification task and save them in the **report.pdf** file.
- Save your python script and name it as **p1.py**.

3 Problem 2(25%)

In this programming exercise, you continue to do classification using the parametric method.

You need to read in a csv file, input_2.csv. The attributes of this file are: feature_value and class #. The feature values are outcomes from a Gaussian distribution. In other words, the feature values will be some real numbers. These feature values came from two classes (C = 1 and C = 2). Use the first 80% of the inputs as training data and the remaining 20% for testing the accuracy of your prediction.

To accomplish this task, you have to perform the "<u>parametric estimation</u>" of m_i for class σ_i^2 , where i = 1, 2 and m_i and σ_i^2 are the estimated mean and variance for class i.

You need to perform the following:

- Based on the input training data, compute the priors of C_1 and C_2 .
- Perform the parametric estimation on the input training data for m_i and σ_1^2 for i=1,2.
- Use the prior of C_i and the probability density function of Gaussian distribution to define two discriminant functions $g_i()$ for i = 1, 2.
- Perform the testing of your classification using the two discriminant functions.
- Output the confusion matrix and save them in the **report.pdf**.
- Output the (1) accuracy, (2) precision, (3) recall, (4) f1 score for each class as well as the average f1 score for the classification task and save them in the **report.pdf** file.
- Save your python script and name it as **p2.py**

4 Problem 3(25%)

In this programming exercise, you continue to do classification using the parametric method.

You need to read in a csv file, input_3.csv. The attributes of this file are: feature_value and class #. The feature values are outcomes from a Gaussian distribution. In other words, the feature values will be some real numbers. These feature values came from four classes (C = 1, C = 2, C = 3, C = 4). Use the first 80% of the inputs as training data and the remaining 20% for testing the accuracy of your prediction.

To accomplish this task, you have to perform the "parametric estimation" of m_i for class σ_i^2 , where $i \in \{1, 2, 3, 4\}$ and m_i and σ_i^2 are the estimated mean and variance for class i.

You need to perform the following:

- Based on the input training data, compute the priors of C_i where $i \in \{1, 2, 3, 4\}$.
- Perform the parametric estimation on the input training data for m_i and σ_1^2 for i = 1, 2, 3, 4.
- Use the prior of C_i and the probability density function of Gaussian distribution to define four discriminant functions $g_i()$ for i = 1, 2, 3, 4.
- Perform the testing of your classification using the four discriminant functions.
- Output the confusion matrix and save it in the **report.pdf** file.
- Output the (1) accuracy, (2) precision, (3) recall, (4) f1 score for each class as well as the average f1 score for the classification task and save them in **report.pdf** file.
- Save your python script and name it as **p3.py**

5 Problem 4(25%)

In this programming exercise, you continue to do <u>multi-features classification</u> using the parametric method.

You need to read in a csv file, input_4.csv. The attributes of this file are: feature_value_1, feature_value_2 and class #. The first feature values are some real numbers from a Gaussian distribution while the second feature values are outcomes from a Bernoulli distribution. These feature values came from two classes (C = 1 and C = 2). Use the first 80% of the inputs as training data and the remaining 20% for testing the accuracy of your prediction.

To accomplish this task, you have to perform the "<u>parametric estimation</u>" of p_i , m_i and σ_i^2 for class i where i = 1, 2, and p_i , m_i and σ_i^2 are the probability of having a 1 for class i, estimated mean and estimate variance for class i respectively.

You need to perform the following:

- Based on the input training data, compute the priors of C_1 and C_2 .
- Perform the parametric estimation on the input training data for p_i , m_i and σ_1^2 for i = 1, 2.
- Use the prior of C_i , the probability mass function of Bernoulli and the probability density function of Gaussian distribution to define two discriminant functions $g_i()$ for i = 1, 2.
- Perform the testing of your classification using the two discriminant functions.
- Output the confusion matrix and save it in the **report.pdf** file.
- Output the (1) accuracy, (2) precision, (3) recall, (4) f1 score for each class as well as the average f1 score for the classification task and save them in the **report.pdf** file.
- Save your python script and name it as **p4.py**

6 Submission

Instructions for the submission are as follows. Please follow them carefully.

- 1. Make sure you have answered all questions in your report.
- 2. Test all your Python scripts before submission. Any script that has syntax error will not be marked. Also we recommend you to use Python 3 and Linux environment because we will run your scripts with such settings.
- 3. Zip all Python script files, i.e., the *.py files in asgn1.zip (Please do not change the filenames of the scripts.) and your report (report.pdf) into a single zipped file named <student-id>_asgn1.zip, where <student-id> should be replaced with your own student ID. e.g., 1155012345_asgn1.zip
- 4. Submit the zipped file <student-id>_asgn1.zip to CUHK Blackboard System https://blackboard.cuhk.edu.hk no later than 23:59 on Sun. Mar. 10th, 2019.