ASTR 300B – Fall 2024 <u>Due: Tues. Sept. 10</u>

- 5. Consider a blackbody radiating at a temperature T.
- (a) The spectral index of a blackbody is defined as the logarithmic derivative $\alpha = \partial(\ln B_{\nu})/\partial(\ln \nu)$ or $\alpha = \partial(\ln B_{\lambda})/\partial(\ln \lambda)$. Calculate α for both B_{ν} and B_{λ} in the **Rayleigh-Jeans limit** and show that α is equal to the power-law exponent of the frequency dependence of B_{ν} and the wavelength dependence of B_{λ} , respectively, in the Rayleigh-Jean limit (i.e. show that $B_{\nu} \sim \nu^{\alpha}$ and $B_{\nu} \sim \lambda^{\alpha}$).
- (b) Prove that the peaks of B_{λ} and B_{ν} do **not** follow the relationship $\lambda_{pk}v_{pk}=c$. This is because B_{λ} and B_{ν} are two different versions of the Planck function, one per unit wavelength and the other per unit frequency.
- (c) As a result of the linear proportionality between monochromatic specific intensity and temperature in the Rayleigh-Jeans limit, radio astronomers sometimes convert their observed flux density into a "brightness temperature", T_B . Calculate the formula to convert from flux density, F_{ν} (Jy), to "brightness temperature" in K for a radio telescope with a (small on the sky) Gaussian Power Pattern with main beam FWHM of θ_{mb} . Write your answer so that you have solved for T_B (i.e. $T_B = \text{stuff} \times F_{\nu}$). Assume that the source intensity is constant and completely fills the solid angle of the telescope beam. HINT: Use results from prior homework.

Fig. 1: The logarithm of π X Planck function (per unit frequency) plotted vs. log frequency (note the y-axis is mis-labeled and is missing the factor of π). The different colors correspond to different T.