$$E \times 4$$
. $I(x) = (1 - \|x\|_{\ell^2})^2 + \sum_{k=1}^{\infty} x_k^2$
a) continuity: Write $I = I_1 + I_2$

$$T_n(x) = g(h(x))$$
 with $g(z) = (1 - z^2)^2$

$$h(x) = ||x||_{\ell^2}$$

$$g continuous (polynome)$$

$$h continuous (norm)$$

$$= 7 I_n continuous$$

Consider
$$|T_{2}(x) - T_{2}(y)|$$

 $\leq \sum_{k=1}^{\infty} \frac{1}{k} (x_{k}^{2} - y_{k}^{2}) = \sum_{k=1}^{\infty} \frac{1}{k} (x_{k} - y_{k}) (x_{k} + y_{k})$
 $\leq ||x + y||_{L^{2}} ||x - y||_{L^{2}}$
Hölde

=> locally Lipschitz cont.

We obviously have I(x) 20 I, and Iz (see above) are nonnegative Thus, I(x) = 0 if and only if $I_n(x) = 0$ and $I_2(x) = 0$ $T_1(x) = 0 = 7 \|x\|_{\ell^2} = 1$ => $\exists k \in \mathbb{N}: x_k \neq 0$ => $T_2(x) = 2 \frac{1}{k} x_k^2 > 0$ $T_{2}(X) = 0 = 7 \quad X = 0$ $= 7 I_n(x) = 170$ c) no minimizer exists. We show inf I =0 Consider sequence (of sequences)

b) positivity

 $x^{(e)} = e^{(e)} \text{ with } e^{(e)} = \begin{cases} 1 & l=k \\ 0 & else \end{cases}$ $(learly e^{(e)} e l^2 \text{ and } ||e^{(e)}|| = 1$ l^2 $Thus, \quad T(x^{(e)}) = T(e^{(e)}) = 0 + \frac{1}{e} \frac{l^{-10}}{-70}$

=7 inf I = 0If X_* was minimizer, we would have $I(X_*) = \inf I = 0$. However, due to part (5)

that is not possible.
Interesting questions:

1. In which sense does $x^{(e)} = e^{(e)}$ converge? (weak sense)

2. Is it possible for an infinizing sequence to converge strongly? (no, see (a) and (b))

3. Is I convex? (no, $g(x) = (1 - x^2)^2$ My observed)

Outlines double-well)

4. What happens if we restrict to bounded

set BR (0) Cl²? Br(0) is not compact w. v. t norm

Set BR (0) Cl²? Br(0) is not compact w. v. t norm

[Ana II: continuous function on compact set

attains minimum!

[Ex5]

[Vec C'(si: IRd) | Ver = u.lds.]

The set of the continuous function on compact set of the continuous function of the continuous $e(u) = \frac{1}{2} (\nabla u + \nabla u^{T}) \in \mathbb{R}_{sym}^{d \times d}$ $A \in \mathbb{R}^{d \times d}$: $|A| = \sum_{i,j=1}^{d} A_{ij}$, $A: B = \sum_{i,j=2}^{d} A_{ij} B_{ij}$ = tr (ATB) M is an affine space, in particular, $u_1 \in \mathcal{M}$, $u_2 \in \mathcal{M} \neq 1$ $u_1 + u_2 \in \mathcal{M}$ except if $u_0 \equiv 0$. $M = u_o + M_o$ with Mo = { ve C'(\overline{\pi}_i R^d) | v_{(\pi n)} = 0}

ueM, veMo =7 utveM since

$$(u+v)_{l\partial\Omega} = u_{l\partial\Omega} + v_{l\partial\Omega} = u_{ol\partial\Omega} + o$$
Consider for $u \in \mathcal{M}$, $v \in \mathcal{M}_o$

$$\frac{1}{2} \left(T \left(u + \varepsilon v \right) - T \left(u \right) \right)$$

$$\varepsilon \mathcal{M}$$

$$\frac{1}{2} \int \frac{\mu(x)}{2x} \left(\left| e(u+2v) \right|^2 - \left| e(u) \right|^2 \right)$$

$$- f(x) \cdot (u+2v-u) dx$$

$$e(u+v) = e(u) + e(v)$$

 $= \int \frac{1}{\epsilon} \frac{\mu(x)}{2} (|e(u)|^2 + \epsilon^2 |e(v)|^2 + 2\epsilon e(u) \cdot e(v)$ $- (e(u)|^2) - (k)v dx$ $= \int \frac{\mu(x)}{2} (\epsilon |e(v)|^2 + 2\epsilon e(u) \cdot e(v)) - (k)v dx$

$$= \varepsilon \int_{S}^{\infty} (v) + \int_{S} \mu(x) e(u) \cdot e(v) - f(x) v dx$$

$$= \varepsilon \int_{S}^{\infty} (v) + \int_{S} \mu(x) e(u) \cdot e(v) - f(x) v dx$$

=>
$$DI(u)[v] = \int \mu(u)e(u):e(v) - f(x)vdx$$

Observation: $R_{sym}^{dxd} \perp R_{sken}^{dxd}$
 $\begin{cases} A \in R^{dxd}/A^T = A \end{cases}$ $\begin{cases} B \in R^{dxd} \mid B^T = -B \end{cases}$
 $A:B = \sum_{i,j=2}^{d} A_{ij} B_{ji} = -\sum_{i,j=2}^{d} A_{ij} B_{ji}$
 $A^T = A = -\sum_{i,j=2}^{d} A_{ji} B_{ji} = -A:B$
=> $e(u):e(v) = e(u):(\nabla v - \frac{1}{2}(\partial v - \partial v^T))$
 $e(u):e(v) = e(u):(\nabla v - \frac{1}{2}(\partial v - \partial v^T))$

=> DI(u)[v] = J \(\mu(x) \c(u): \nabla v - f \var dx\)

Integration

by parts

so

\[
\begin{align*}
\text{Integration} \(\begin{align*}
-f \end{align*} \)

\[
\text{V} \text{Oliv} \left(\mu(x) \elu) \right) - f \right) \text{vdx}
\]

\[
\text{So} \quad \text{Parts} \quad \text{So} \quad \text{So} \quad \text{Parts} \quad \text{So} \quad \text{Parts} \quad \text{So} \quad \text{Parts} \quad \quad \text{Parts} \quad \qq\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad

+ f m(x) ela)·v v da Maybe, discuss formulas for Integration-by-parts in vector-valued case Eule - Lagrange equation via fundamental theorem of calculus of variations - div (µ(x) e(u)) = f in s $u = u_0$ on $\partial \Omega$ modifications u= uo on Toir C 252 . " fest functions" from which space? additional boundary contribation Sku² Ola and force I g uda

with De C (51 x R sym) is de symmetric? EX6 SCRd (could be unbounded) a) $a \in C^{\circ}(\mathfrak{I})$ s.t. $\forall \mathcal{L} \in C^{\circ}_{c}(\mathfrak{I})$ $\int a(x) \mathcal{H}(x) dx = 0$ Show $a \equiv 0$ in Ω Let's assume $\alpha \neq 0$. Then $x_0 \in \mathcal{I}$ exists with $\alpha(x_0) = \alpha_0 \neq 0$. Set a(x)= a(x). a. such that

 $I(u) = \int \overline{\Phi}(x, e(u)) - f(x) u dx$

· Let's take

$$\alpha \in C^{\circ}(\Omega)$$
 and $\alpha(x_0) = a_0^2 > 0$

=7
$$\exists 870 \text{ s.t.} B_8(x_0) csl (sl. open)$$

=7 ± 870 s.t. B₈(x₀) csr (sr open)

and
$$\forall x \in B_8(x_0) \propto (x) = \frac{1}{2} \propto (x_0) = 0$$

(continuity is important here)

Pick
$$\tilde{Y} \in C^{\infty}(S_{2})$$
 s.f. [sppt $\tilde{Y} \subset B_{s}(x_{0})$]
and $\tilde{S}\tilde{Y} dx = 1$, $\tilde{Y} \neq 0$ important
 $s \in (C_{not important})$

and
$$\int \mathcal{Y} dx = 1$$
, $\mathcal{Y} = 0$ important

 $\int \mathcal{Y} \left(\mathcal{C} \text{ not important} \right)$

for example $\mathcal{Y}(x) = \int_{S^{1}} P\left(\frac{x}{s} \right) \text{ with}$
 $\rho(x) = \int_{S^{1}} e^{-\frac{x^{2}}{s}} |x| < 1$
 $\rho(x) = \int_{S^{1}} e^{-\frac{x^{2}}{s}} dx$

otherwise

$$4(x) = \alpha(x) \mathcal{X}(x)$$

$$= 0 \quad 0 = \int \alpha(x) \mathcal{X}(x) dx = \int \alpha(x) \mathcal{X}(x) dx$$

$$= 0 \quad 0 = \int \alpha(x) \mathcal{X}(x) dx = \int \alpha(x) \mathcal{X}(x) dx$$

$$= 0 \quad 0 = \int \alpha(x) \mathcal{X}(x) dx = \int \alpha(x) \mathcal{X}(x) dx$$

awitaka)
$$B_8(x_0)$$

and $B_8(x_0)$
 $=7$ $\alpha=0$ in S_1 .

b) With Step(a) we know that $\alpha=0$
by considering $4 \in C_{\bullet}^{\infty}(S_1) \subset C_{\bullet}^{\infty}(S_1)$

 $\frac{470}{2} \int \frac{1}{2} \alpha(x_0) \frac{\gamma}{4}(x) dx = \frac{1}{2} \alpha(x_0) > 0$

Thus, we have \$ 600 4 (x) da = 0

arque as before: Pick x, ear

with
$$b(x_n) \neq 0 = 7 \ \mathcal{B}(x) = 5(x_n) \cdot 5(x)$$

=7 $\exists 870 \ \forall x \in \mathcal{B}_{\delta}(x_n) \cap \partial \Omega : \mathcal{B}(x) = \frac{1}{2}\beta(x_n) = \frac{1}{2}\beta(x_$

Pick if as above and set iw= BININ

=D 4 E C (si): 0= 3 b (x) 4 (x) de 2 1 B (x) 3 4 da

Br (x) non

706

a, & are used to ensure positivity Questions: What happens if a elass) only? Mollifier ne Cc (Rd) with $\int_{\mathcal{R}^d} n \, dx = 1$ 7720 normalization $c \exp\left(-\frac{1}{1-|x|^2}\right)$ Example for xeB,(0) otherwise $\eta_8(x) = \frac{1}{8}a \eta(\frac{x}{8})$ assume spot η $(B_1(0))$

a outside of 52 by o. ex lend

=7
$$\alpha_8(x) := (\eta_8 * \alpha)(x) = \int \eta_8(x-y)a(y)dy$$

well-defined, why?

on every $K \in \mathcal{R}$ compact, we have

 $\alpha_8 = \mathcal{C}^{\infty}(\mathfrak{R})$

After him $\alpha_8 \notin \mathcal{C}^{\infty}(\mathfrak{R})$

Proof (Rindler's version is not very precise).

Let $\omega \in \mathcal{R}$ bounded such that $\alpha_8 \notin (\omega, \partial \mathcal{R}) > \delta' > 0$

 $\mathcal{Y}_{8} = \mathcal{Y} * \eta_{8} \in C_{C}(\Omega) \text{ for } 8 < 8'$ Thus $0 = \int_{\Omega} \alpha \mathcal{Y}_{8} dx = \int_{\omega} \alpha_{8} \mathcal{Y} dx$

For any 4 c C c (w) we have that

=> the result for continuous functions a gives $a_g = 0$ in ω .

Since ω is arbitrary (take for example suitable balls), we also get $a_g = 0$ in Ω .

The convergence $a_g \rightarrow a$ in $L^1(\overline{\omega})$ yields the existence of a subsequence

The convergence $a_8 \rightarrow a$ in L'(w)yields the existence of a subsequence $8_k \rightarrow 0$ for $k \rightarrow \infty$ such that $a_c \rightarrow a$ a.e. in $\omega = 2$ a = 0 in a

 $\alpha_{8_{\kappa}}$ = 7 α = 0 in ω = 7 α = 0 in ω By arbitraryness of ω we get α = 0

in Ω .