

Structural Organisations in Animals - II

Key Takeaway

Earthworm

Morphology

Anatomy

Alimentary canal

Circulatory system

Excretory system

Nervous system

Reproductive system

Fertilisation & development

Cockroach

Morphology

Anatomy

Alimentary canal

Blood vascular system
Respiratory system

Excretion system

Nervous system

Reproductive system

Fertilisation

Development

Key Takeaway

Frog

Morphology

Anatomy

Digestive system

Respiratory system

Circulatory system

Lymphatic system

Excretory system

Nervous system

Reproductive system

Fertilisation & development

Summary

Earthworm

Earthworms are:

- Members of phylum **Annelida** and class Clitellata
- Reddish brown in color
- Commonly known as nightcrawlers, angleworms, lob worms, dew worms, granddaddy earthworms (Canada), or just as earthworms.

- **Terrestrial invertebrates**
- Live in upper layers of moist soil
- Form and live in burrows

- Earthworms have:
 - cylindrical body
 - metamerically segmented body with 100-120 segments
- Dorsal surface of earthworm bears the median mid dorsal line.
- Ventral surface bears the genital pores.
- In mature worms, a dark prominent bulged part is visible around the 14th-16th segment, known as the clitellum.
 - It is a glandular tissue.

Body segments

- Prostomium is a sensory organ
- It also acts as the covering of the mouth.
- Prostomium is not the first segment of the body.
- Prostomium also helps in opening up cracks in the soil so that the earthworms can crawl into those cracks.
- The first body segment is called the peristomium.

Spermathecal apertures (pores)

- Four pairs of spermathecal apertures are present
- Situated on the ventro-lateral position
- They are present on the intersegmental grooves, i.e.,
 5th to 9th segment.
- They store sperm that is released by the male during copulation.

Structures common to all segments

- Nephridiopores
 - They are a part of the excretory system.
 - Nitrogenous wastes are expelled through them.

Setae

- Minute S-shaped hair-like bristles
- Present on each segment (Except the first and last segments, and clitellum)
- Can be extended or retracted
- Help in locomotion

Earthworm: Anatomy

Body wall

- The outer part is made up of non-cellular cuticles.
- Inner epidermis:
 - It is made up of columnar epithelial cells that contain secretory glands.

Muscle layers

- The body is made up of two types of muscle layers, i.e., circular and longitudinal.
 - These muscles, along with setae, are used for the movement of earthworms.
- Coelom, which is located between the intestinal canal and the body wall, is covered by the innermost coelomic epithelium.

Earthworm: Alimentary Canal

Alimentary canal

Mouth

- First segment has the mouth
- Lobe over the mouth is termed as prostomium

Buccal cavity

- Mouth leads to the buccal cavity
- Present on segments 1-3

Pharynx

- Muscular and pear-shaped
- Present in segment 4

Oesophagus

- Thin-walled
- Present in segments 5-7

Gizzard

- Present in segments 8-9
- Helps in grinding the soil particles and decaying leaves

Earthworm: Alimentary Canal

Stomach

- Extends from 9th to 14th segment
- Narrow and tubular
- Highly vascularised and glandular
- Calciferous glands that are present in the stomach neutralise the humic acids present in the humus

Intestine

- Extends from the 15th segment till the end
- Ends in the anus
- Lining of the intestine are ciliated and has glandular cells
- Intestinal lining is folded to form villi
- One of these villi becomes larger and well-developed than the others to form typhlosole

Typhlosole

It hangs in the lumen of the intestine and runs mid-dorsally from the 26th segment up to the last except the last 23rd - 25th segment.

Earthworm: Alimentary Canal

Earthworm: Circulatory System

Blood vessel

- Consists of blood vessels, capillaries, heart, and exhibits a closed type of blood vascular system
 - Due to a closed circulatory system, blood does not flow beyond heart and blood vessels.
- Multiple hearts are present
- Blood is supplied to and from the heart by blood vessels.
- Blood circulation in one direction is maintained by contractions.
- Smaller blood vessels supply in the gut, nerve cord, and body wall
- Blood glands
 - Present on 4th, 5th, and 6th segments
 - Produce haemoglobin (gets dissolved in plasma)
 - Produce phagocytic blood cells

Closed Circulatory System

Earthworm: Excretory System

- The excretory organs in earthworms are in the form of segmentally arranged coiled tubules called nephridia.
- They regulate the volume and composition of the body fluids.
- They are of three types:
 - Septal nephridia
 - Integumentary nephridia
 - Pharyngeal nephridia

Earthworm: Nervous System

Central nervous system

- Nerve ring
 - Ring-like spherical structure
 - Bilobed (cerebral ganglia)
 - Present in the third and fourth segments
 - Forms a ring around the pharynx
- Ventral nerve cord
 - Runs from the fifth segment to the last

Peripheral nervous system

- Represented by nerves
- Arises from the ventral nerve cord
- Found in every segment

Earthworm: Reproductive System

- Earthworms are hermaphrodites
 - Male and female sex organs present
- Earthworms cannot fertilise their own eggs because
 - Positions of male and female genital apertures is different
 - They are protandrous i.e., male sex matures faster than female sex
- Only cross-fertilisation can take place

Earthworm: Reproductive System

Male reproductive system

- Represented by two pairs of testes
 - Present on the 10th and 11th segments
 - Sperms are formed in the testes
- Vasa deferentia
 - One from each testis
 - Runs upto 18th segment
 - Duct that collects sperms from the spermatic funnel
- Two pairs of accessory glands which holds two worms during copulation

- Prostatic duct
 - One from each gland are short, thick and curved
 - Produce prostatic fluid that is alkaline in nature
 - Activates sperms and keeps sperms motile
- Common prostatic and spermatic duct
 - Formed when prostatic duct joins the two vasa deferentia
 - Common duct opens separately through a pair of male genital aperture on the ventro-lateral side

Earthworm: Reproductive System

Female reproductive system

- Represented by a pair of ovaries
 - Present at intersegmental septum (12th and 13th)
 - Produce ova
- Four pairs of spermatheca.
 - Present from 6th 9th segment
 - Receive and store spermatozoa during copulation

- Ovarian funnels
 - Present beneath ovary and continue into oviducts
 - One from each gland
- Single genital pore on the 14th segment

- Any two earthworms can mate by joining (juxtaposing) and exchanging packets of sperms called spermatophores.
- A tube of mucus secreted by the clitellum forms an egg case (cocoon).
 - Ova are fertilised by sperm in the egg case.
- Fertilisation occurs and the egg case slips off the worm body.
- New worms hatch from the eggs.

- Direct development: Process of formation of mature adults from fertilised eggs without going through the larval stage
- After about three weeks, each cocoon produces two to twenty baby worms with an average of four that resemble the adult except in size and with the absence of clitellum.

Cockroach: Characteristics

- Nocturnal: Mostly active at night
- Omnivores: Feed on both plants and animals
- **Habitat:** Prefer damp places
- Size: Range from 0.6 cm to 7.6 cm
- Colour: Black, brown, red, green, and yellow
- Common species: Periplaneta americana (size ranges from 34–53 mm)
- Phylum: Arthropoda
 - Presence of jointed appendages
 - Jointed appendages allow the animal much greater flexibility and range of movement.
- Class: Insecta
 - Due to three pairs of legs or six legs

- The head is triangular in shape. Mobility of head in all directions is due to its flexible neck.
- Head of cockroach is made of six segments that are fused.
- The exoskeleton of head is made up of six sclerites (plates). It provides protection and prevents water loss in terrestrial arthropods.
- Head of cockroach bears one pair of compound eyes. Each compound eye has 2000 hexagonal units called ommatidia.
- A pair of **antenna**: sense organs in cockroach
- The mouthparts of cockroach are biting and chewing type as it takes in solid food.

Mouthparts:

- Labrum (upper lip)
- Labium (lower lip) has labial palps.
- Mandibles help in grinding of food.
- A pair of maxillae are present with maxillary palps.
- Tongue or hypopharynx lies within the cavity enclosed by mouth parts. It is flexible.

- Thorax is made of 3 segments, prothorax, mesothorax and metathorax.
- Thorax bears six legs on ventral side:
 - The pair of legs that appear from prothorax is called prothoracic leg
 - The pair of legs that appear from mesothorax is called mesothoracic leg
 - The pair of legs that appear from metathorax is called metathoracic leg.

- Thorax bears 2 pairs of wings on dorsal side:
 - Fore wings (protect hind wings and arises from mesothorax)
 - Opaque, dark, and leathery wings
 - Cover and protect hind wings at rest
 - Hind wings (help in flight and arises from metathorax).
 - Transparent and membranous
 - Help in flight

- Abdomen- Broader than thorax with 10 segments in both male and female; embryo has 11 segments
 - It is broader in females than in males.

Abdominal appendages

- Appendages are an organism's external body parts.
- Anal cerci are filamentous sensory structures present in the 10th segment.
- Anal style is a pair of short, thread-like structure.
- Sexual dimorphism: Males and females can be distinguished externally.
 - Males have anal styles
 - Females do not have anal styles

Cockroach: Anatomy

Cockroach: Alimentary Canal

- The alimentary canal of the cockroach is divided into three regions – foregut, midgut, hindgut.
- The foregut consists of mouth, pharynx, oesophagus, crop and gizzard.
- The food enters through the mouth cavity into the tubular pharynx.
- The pharynx leads to a narrow tube called the oesophagus.
- The oesophagus opens into a sac-like structure called the crop that stores food.
- The food from the crop enters into the gizzard, which helps in the grinding of food.
 - It has an outer layer of circular muscles and an inner layer of cuticle that forms chitinous teeth.

- Midgut is also known as mesenteron.
- At the junction of foregut and midgut, there are 6–8 blind tubules known as hepatic or gastric caeca which secrete digestive juices.
 - These digestive juices help in digestion and absorption.
- There are 100–150 yellow-coloured thin filamentous malpighian tubules that help in excretion.
 - They remove excretory wastes from the blood.
- Hindgut has three regions differentiated into a short narrow ileum, a long coiled colon, and a short wide rectum.
- Hindgut is broader than midgut.
- Rectum opens outside through anus.

Cockroach: Alimentary Canal

Cockroach: Blood Vascular System

Blood vascular system:

- Open type as blood does not flow through blood vessels, rather blood is pumped into the body cavity
 - Blood consists of plasma and haemocytes
- As body cavity is filled with blood, it is called haemocoel
- Heart consist of elongated muscular tube with ostia on either side

Path of circulation:

- Heart pumps blood and is associated with alary muscles
- Blood from perivisceral sinus enters heart through ostia
- Heart pumps the blood into head by aorta.

Cockroach: Respiratory System

- Consists of 10 pairs of spiracles
 - Openings on the lateral sides of the body through which air enters and reaches the tracheal tubes.
- Tracheal system that delivers oxygen directly to cells has evolved in insects.
- Tracheal tubes divide repeatedly and form tracheoles.
- Tracheoles are fine tubes that enter into cells and deliver oxygen.
- Exchange of gases through diffusion.
- The blood is colourless due to the absence of respiratory pigment.

Cockroach: Excretion System

- Excretion occurs through malpighian tubules.
- Malpighian tubules are lined by glandular and ciliated cells.
- These are 100–150 yellow-coloured thin filamentous structures present at the junctions of midgut and hindgut.
- They convert nitrogenous wastes into uric acid which is released through the hindgut.
- Fat body, nephrocytes, and urecose glands also help in excretion.
- Cockroach is **uricotelic** (secrete waste in form of uric acid).
- Uricotelic organisms are those that excrete nitrogen in the form of uric acid.

Cockroach: Nervous System

Nervous system of cockroach:

- Includes serially arranged fused ganglia and nerve cord
 - 3 ganglia lie in thorax and 6 in abdomen
- Brain is represented by supraoesophageal ganglion
 - Supplies nerves to antennae and compound eyes
- Double ventral nerve cord
- Sense organs include antennae, eyes, maxillary palps, labial palps, anal cerci etc.

Cockroach: Reproductive System

- Cockroaches exhibit sexual dimorphism. They have distinct male and female members.
- Cockroaches have well-developed reproductive organs in both males and females.

Cockroach: Male Reproductive System

Testes

One pair of trilobed testes Present in 4-6th abdominal segments

Vas deferens

It arises from the testes and opens into the ejaculatory duct through seminal vesicles.

Seminal vesicles

These are sac-like structures that secrete fluid in the semen.

Cockroach: Male Reproductive System

Phallic gland

Helps in formation of spermatophores

Mushroom gland

Present in 6-7th abdominal segments Functions as accessory reproductive gland

Ejaculatory duct

Opens into male gonopore

Right phallomere

Ventral phallomere

Left phallomere

Male gonapophysis

Chitinous, asymmetrical structures called phallomeres or external genitalia

Male gonopore

Genital pore through which sperms pass into a vagina

Cockroach: Reproductive System

Cockroach: Female Reproductive System

Ovaries

Pair of large ovaries present from 2nd - 6th abdominal segments

Each ovary - a group of 8 ovarian tubules/ovarioles with developing ova

Oviduct

Each ovary leads into an oviduct that joins to form vagina that opens into genital chamber

Common oviduct (Vagina)

Oviducts join to form a single median (common) oviduct or vagina.

Cockroach: Female Reproductive System

Collaterial glands

Sections help in formation of egg case (ootheca)

Genital chamber

It is a chamber to pass ova and sperms. Vagina and spermatheca opens into it.

Spermatheca

One pair present in 6th abdominal segment, opens into genital chamber, stores sperms received during copulation

Cockroach: Fertilisation

Fertilization in Cockroach

- Internal fertilisation occurs in genital chamber of female cockroach
- Female lays 9-10 oothecae
- Each ootheca has 14-16 fertilised eggs
- Since they produce numerous eggs that develop so quickly, their population grows very rapidly.

Oothecae (eggcase)

- Fertilised eggs in capsules found in damp places and food source
- Dark reddish to blackish brown in colour

Cockroach: Development

- The embryo develops into a mature individual through an intermediate sexually immature larval stage.
- Development is hence paurometabolous (indirect) i.e., through gradual metamorphosis which has a nymphal stage.
- Nymphs look very much like adults, but they don't have wings and unable to reproduce like adult cockroaches.

Frog

Occurrence & Habitat

- Scientific name: Rana tigrina (Indian bullfrog)
- Occurrence: Commonly found in India
- Habitat: Freshwater bodies like ponds, lakes, rivers

Classification of Frog

Kingdom: Animalia

Phylum: Chordata

Sub Phylum: Vertebrata

Class: Amphibia

Family: Ranidae

Order: Anura

Genus: Rana

Species: Rana tigrina

Frog: Characteristics

Amphibian

Can easily live on both land & in water

Aestivation

Remains dormant during summers

Camouflage

Changes colour to hide from predators and kill preys

Moist skin

Skin is always smooth & slippery due to presence of mucous

Hibernation

Remains dormant during winters

Mimicry

Evolved resemblance between species to protect themselves from predators

Cold-blooded

Cannot regulate their body temperature as per environment

Frog: Morphology

- Body is divided into head & trunk
- Neck & tail are absent
- Body has 2 surfaces- Dorsal & Ventral

Frog: Morphology

Nostrils

Pair of nostrils above the mouth

Tympanum

Membrane on sides of eyes, used for hearing

Hindlimb

Has five digits, larger & muscular than forelimbs and webbed

A pair of bulging eyes covered by nictitating membrane

Skin

Have smooth and slippery skin

Forelimb

Four digits, smaller than hindlimb

Limbs help in

- Leaping
- Swimming
- Burrowing

Frog: Digestive System

Step 1: Ingestion (Food is consumed)

- Frog captures its prey like insects using bilobed tongue
- Ingests food via mouth
- Food travels from buccal cavity, pharynx to oesophagus during ingestion
- Oesophagus opens into the stomach
- Food is partially digested (called chyme) with the help of HCl and gastric juices
- Chyme move into the first part of the small intestine duodenum
- Duodenum receives bile from gallbladder and pancreatic juice from pancreas called common duct
 - Bile emulsifies fat
 - Pancreatic juices digest carbohydrates and proteins

Frog: Digestive System

- Simple molecules, after the chemical and enzymatic breakdown of food, are absorbed in the small intestine.
- Villi and microvilli are microscopic projections present in the small intestine.
- Villi absorbs nutrients in the small intestine.
- Undigested food is ejected through the cloaca.

Frog: Respiratory System

Pulmonary respiration

- Respiration by lungs
 - Occurs on land

- Respiration by skin through diffusion
- Occurs on land & water

Lungs

Respiratory
System of
Frog

- Athin, high vascular lining of the buccopharyngeal membrane
- Occurs on land

Buccopharyngeal membrane

Absorb the dissolved oxygen from air

Frog: Circulatory System

Organs of circulatory system in frog

Heart

- Pumps blood to all body parts
- Muscular, located in upper body cavity
- Covered by pericardium
- Three-chambered
 - 2 atria
 - 1 ventricle

Lungs

Helps in oxygenation of blood

Blood vessels

Tubular structures that help carry nutrients & waste materials via blood across body

Frog: Circulatory System

Heart

- The right atrium receives deoxygenated blood and pumps it to the ventricle.
- Sinus venosus is through which the heart receives deoxygenated blood.
 - This occurs at the dorsal side of the heart.
 - Sinus venosus is a triangular structure.
 - It empties into the right atrium.
- Oxygenated blood from the lungs enters the left atrium.
- Both the atria simultaneously pump blood into the ventricle.
- The ventricle opens into a sac-like structure called conus arteriosus on the ventral side of the heart.
- From the ventricle, this blood is pumped into the lungs via the **conus arteriosus**.
 - The ventricle receives deoxygenated blood from the right atrium. It also receives oxygenated blood from the left atrium.
 - This blood (mixture of oxygenated and deoxygenated blood) is pumped into the conus arteriosus.

Frog: Circulatory System

Closed circulatory

system

Blood is pumped by a heart through vessels, and does not normally fill body cavities

Arterial system

Blood from the heart is carried to all parts of the body by the arteries.

Venous system

Veins collect blood from different parts of body and brings it to the heart.

Hepatic portal system

Special venous connection between liver and intestine

Renal portal system

Special venous connection between kidney & posterior parts of body

Frog: Lymphatic System

- Network of tissues, vessels and organs that help circulate colorless, watery fluid called lymph back into circulatory system
- Lymph is the fluid that flows through the lymphatic system network.
 - Lacks proteins and RBCs unlike blood
 - Helps in the removal of excess water from the the tissues of the body

Frog: Excretory System

Biological system that helps remove excess & unnecessary materials like nitrogenous waste, salts, etc.

- Kidneys are compact, dark red, bean-shaped structures.
 - Present on either sides of the vertebral column.
- Structural and functional unit called nephrons, present in large numbers in the kidney
 - Helps filter the blood to remove the nitrogenous wastes
 - Frogs excrete nitrogenous wastes in the form of urea and are hence called <u>ureotelic animals</u>
- The ureters acts as urinogenital duct which opens into cloaca in males while ureter and oviduct open separately into cloaca in females
- Ureters lead to the urinary bladder which stores urine
- Cloaca is the opening for the removal of urea

Frog: Nervous System

Complex network of nerves and cells that carry messages to and from the brain

Frog: Nervous System

Parts of brain

- Mass of nerve tissue enclosed in a cranium
- 10 pairs of cranial nerves arise from the brain

Frog: Nervous System

Endocrine gland

- The chemical coordination of various organs of the body is achieved by hormones which are secreted by the endocrine glands.
- The prominent endocrine glands found in frog are:
 - Pituitary
 - Thyroid
 - Parathyroid
 - Thymus

- Pineal body
- Pancreatic islets
- Adrenals
- Gonads

Frog: Male Reproductive System

Produce, maintain and transport the male reproductive cells called sperms

A pair of testes

- Yellowish and ovoid in appearance
- Attached to the kidneys by the mesorchium (double fold of peritoneum)
- Produces sperm

Vasa efferentia

- 10–12 in number
- Arise from the testes
- Enter the kidneys and open into the Bidder's canal

Cloaca

- Opens to the exterior of the body through the cloacal aperture
- Passes urine, sperm, and faecal matters

Frog: Female Reproductive System

Produce, maintain and transport the female reproductive cells called ova (2500 to 3000 ova at a time)

Ovaries

- Situated near the kidneys
- Produce about 2500–3000 ova at a time

Oviduct

 Carries ova from the ovary to the oviduct

Cloacal chambers

Pass urine and faecal matters

Frog: Fertilisation and Development

- Fertilisation is external as ova and sperms are released into water.
- The egg and sperm fuse together to form the zygote.
- After fertilisation, the zygote divides to form an embryo and then the tadpole hatches out.

Metamorphosis

 The process by which an immature larva transforms into the adult form is known as metamorphosis.

Frog

Importance

- They play a role of bioindicators.
 - They are sensitive to environmental changes like pollution.
 - Pollution can cause developmental malformations in frogs.
- They are an important part of the food chain and food web.
- They help in protecting crops by feeding on harmful insects.
- They serve as a food source.
 - In some cultures, muscular frog legs are consumed.

Anatomy

Earthworm

Earthworm

Excretory system

(Excretion through nephridia) Nephridia is classified into

Septal nephridia

(Found on the posterior part of the body)

Integumentary nephridia

(Attached to the body of the lining wall)

Three tufts of pharyngeal nephridia

Circulatory system

(Closed type, multiple hearts present, blood glands produce haemoglobin and blood cells)

Alimentary canal

(Consists of mouth, buccal cavity, pharynx, oesophagus, gizzard, stomach, and intestine)

Reproductive system of earthworm

Blood vascular system

Open-type circulation, body cavity divided into three sinuses, heart used to pump haemolymph

Respiratory system

Exchange of gases takes place through diffusion from spiracles to trachea to tracheoles to cells

Excretory system

Excretion takes place through malpighian tubules that converts nitrogenous wastes into uric acid

Anatomy

Cockroach

Body divisions

Head

Triangular in shape, bent at right angle, flexible neck

Head is made up of six segments, has compound eyes

Biting and chewing type mouthparts

Thorax

Made up of three segments, i.e., prothorax, mesothorax, metathorax

Bears two wings and six legs

Abdomen

Contains genital pouch in males, genital pouch in females, and abdominal appendages

© 2022, Aakash BYJU'S. All rights reserved.

Spinal nerves

Summary Frog Reproductive system **Anatomy of frog Excretory system** Male reproductive system Kidneys Testes (Produce sperm) Nephrons Vasa efferentia Ureters Bidder's canal Bladder Ureters Cloaca Cloaca **Endocrine system** Nervous system Female reproductive system Brain Pair of ovaries **CNS** Spinal cord Oviduct Cloacal chambers Cranial nerves **PNS**

© 2022, Aakash BYJU'S. All rights reserved.