HIGH PERFORMANCE CIRCUIT DESIGN

Dr Noor Mahammad Sk

Center for High Performance Reconfigurable Computing Indian Institute of Information Technology Design and Manufacturing (IIITDM) Kancheepuram

High Performance Circuit Design

Delay Optimization

- Parallel processing
- Control and data path separation
- Pipelining

Parallel Processing

Conventional processing Time taken = Tc

R(i)=A(i)*B(i); i is varied from 0 to 25

R(i)=A(i)*B(i); i is varied from 25 to 49

R(i)=A(i)*B(i); i is varied from 50 to 74

R(i)=A(i)*B(i); i is varied from 75 to 99

Parallel processing Time taken = Tc/4

Control and Data Path Separation

- Data path Collection of functional units (arithmetic/ logical)
- Control path It commands the data path and memory according to the instructions

Pipelining

Clock	1	2	3	4	5	6	7
Task1	S1	S2	S3	S4			
Task2		S1	S2	S3	S4		
Task3			S1	S2	S3	S4	
Task4				S1	S2	S3	S4

Total time =
$$(K + n - 1)T_c$$

 K = No. of segments
 n = No. of tasks
 T_c = Clock period

Area optimization

Hardware reuse

Moore's law

 The number of transistors in a integrated circuit doubles approximately every two years

Hardware Reuse

Conventional design No. of multipliers - 4 No. of adders - 3 No. of cycles - 1

Hardware Reuse

Conventional design

No. of multipliers - 4

No. of adders - 3

No. of cycles - 1

Hardware reuse design

No. of multipliers - 1

No. of adders - 1

No. of cycles - 4

Power optimization

Dynamic Power

$$P_{\text{switching}} = \alpha C V_{DD}^2 f$$

Try to minimize:

- Activity factor
- Capacitance
- Supply voltage
- Frequency
- Clock gating

Clock Gating

Power Gating

- SLEEP=0 Normal Operation
- SLEEP=1 Low Power, PMOS and NMOS are OFF, No Leakage Power

