Total No. of Questions : 4]	36	SEAT No. :
P8577		[Total No. of Pages : 2
	Oct 22/TE/Incom 557	

Oct-22/TE/Insem-557 T.E. (Information Technology) THEORY OF COMPUTATION (2019 Pattern) (Semester - I) (314441)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Design a DFA which accepts a binary number divisible by 4. [5]
 - b) Design a Mealy machine to increment binary number by 1. Write down transition table. [4]
 - c) Convert the following NFA with a moves to DFA. [6]

State/input	δ			
	3	a	bo	c
\rightarrow p	{q}	{p}	, O	ф
q	{r}	φ .	{q}	ф
\mathbf{r}^{x}	ф	Φ0	ф	{r}

POR

- Q2) a) Define the following terms with proper examples.
 - i) Alphabets
 - ii) String
 - iii) Natural language
 - b) Show whether the following automata $m_1 \& m_2$ are equivalent or not.[5]

P.T.O.

Construct a DFA over the alphabet {a,b} for accepting the strings ending c) with "ab".

Find the regular expression for the set of strings recognized by the given **Q3**) a) FA using Arden's theorem. [5]

- Determine the regular expression over the alphabet {0, 1} for the b) following: **[6]**
 - All the string containing exactly two 0
 - All the string that do not end with 01 ii)
 - All the string containing 1 as a third character from end.
- Explain the following terms c)

[4]

- i) Kleene closure
- ii) Positive closure

Explain any three closure properties of Regular language. **Q4**) a)

What is a Regular expression? Explain in brief the applications of regular b) expressions. [5]

Construct a NFA for the following RE using direct method AROLD STATE OF THE **[4]** c) RE = (ab + ba)*aa