Organização de Computadores

ALU e aritmética computacional

Prof. José Paulo G. de Oliveira Engenharia da Computação, UPE

jpgo@poli.upe.br

Conteúdo

- ULA (ALU)
- Representação numérica
- Operações básicas
- Algoritmo de Booth
- Números reais e ponto flutuante

Conteúdo

- ULA (ALU)
- Representação numérica
- Operações básicas
- Algoritmo de Booth
- Números reais e ponto flutuante

Unidade de lógica de aritmética

- Faz os cálculos.
- Tudo o mais no computador existe para atender a essa unidade.
- Trata números binários
- Pode tratar de números de ponto flutuante (reais).
 - Pode ser uma FPU separada (coprocessador matemático).
 - Pode estar no chip da CPU separado (486DX +).

Entradas e saídas da ALU

Conteúdo

- ULA (ALU)
- Representação numérica
- Operações básicas
- Algoritmo de Booth
- Números reais e ponto flutuante

Representação de operandos numéricos

- Só há 0 & 1 para representar tudo
- Números armazenados em binário
- E.g., 41=00101001
- Sem sinal negativo!
- Sem ponto!

Representação de operandos numéricos

- Só há 0 & 1 para representar tudo
- Números armazenados em binário
- E.g., 41=00101001
- Sem sinal negativo!
- Sem ponto!

- Como solucionar?
 - Sinal-magnitude
 - Complemento a dois

— ...

Sinal-magnitude

- Bit mais à esquerda é bit de sinal
- 0 significa positivo
- 1 significa negativo
- \bullet +18 = 00010010
- -18 = 10010010
- Problemas:
 - -Precisa considerar sinal e magnitude na aritmética
 - ─Duas representações de zero (+0 e -0)

Complemento a dois

- +3 = 00000011
- +2 = 00000010
- \bullet +1 = 00000001
- \bullet +0 = 00000000
- -1 = 111111111
- -2 = 111111110
- -3 = 111111101

Complemento a dois – complemento a 2^N

Exemplo (Número de bits N = 3)

Complemento a 2^N de 011 é 101, pois:

1000 - 011 = 101

Benefícios

- Uma representação de zero.
- Aritmética funciona naturalmente (ver mais adiante).
- Negação é muito fácil:

- $\square 3 = 00000011$
- □ Complemento Booleano gera 11111100
- □ Adicione 1 11111101

Negação especial - caso 1

- 0 = 00000000
- NOT bit a bit 11111111
- Some 1 ao LSB +1
- Resultado 1 0000000
- Como o bit de estouro (N+1) não é considerado:
 - 0 = -0

Negação especial - caso 2

- NOT bit a bit 01111111
- Some 1 ao LSB +1
- Resultado 10000000
- Portanto:
- -(-128) = -128
- Monitore msb (bit de sinal)
- Ele deve mudar durante a negação

Faixa de valores

Complemento a 2 com 8 bits:

$$-+127 = 011111111 = 2^7 -1$$

$$-128 = 10000000 = -27$$

Complemento a 2 com 16 bits:

$$-+32767 = 0111111111111111111111 = 2^{15} - 1$$

$$-32768 = 100000000 00000000 = -2^{15}$$

-Faixa: -2^{n-1} até $+2^{n-1}$ - 1

Conversão entre tamanhos

- Números positivos com 0's iniciais
- \bullet +18 = 00010010
- \bullet +18 = 00000000 00010010

Conversão entre tamanhos

- Números positivos com 0's iniciais
- \bullet +18 = 00010010
- \bullet +18 = 00000000 00010010
- Números negativos com 1's iniciais
- -18 = 11101110
- \bullet -18 = 11111111 11101110
- Ou seja, sequência com msb (bit de sinal)

Lembrando...

(c) Deslocamento aritmético à direita

(d) Deslocamento aritmético à esquerda

Conteúdo

- ULA (ALU)
- Representação numérica
- Operações básicas
- Algoritmo de Booth
- Números reais e ponto flutuante

Adição e subtração

- Adição binária normal
- Monitore estouro no bit de sinal

Adição e subtração

- Adição binária normal
- Monitore estouro no bit de sinal
- Subtração: Tome o complemento a dois do subtraendo e some ao minuendo
 - -Ou seja, a b = a + (-b)
- Assim, só precisamos de circuitos de adição e complemento

Hardware para adição e subtração

0F = bit de overflow (do inglês overflow bit)

SW = seletor - multiplexador (seleciona adição ou subtração)

Multiplicação (sem sinal)

- Complexa
- Calcule produto parcial para cada dígito
- Cuidado com o valor da casa (coluna)
- Some produtos parciais

```
    1011 Multiplicando (11 dec)
    x 1101 Multiplicador (13 dec)
    1011 Produtos parciais
    0000
    1011
    1011
    10001111 Produto (143 dec)
```

```
    1011 Multiplicando (11 dec)
    x 1101 Multiplicador (13 dec)
    1011 Produtos parciais
    1011 Deslocamento das casas binárias
    1011 Deslocamento das casas binárias
    1011 Produto (143 dec)
```


 Nota1: se bit multiplicador for 1, copia o Multiplicando (valor da casa). Caso contrário, copia '0000'

```
Multiplicando (11 dec)
     1011
             Multiplicador (13 dec)
   x 1101
                                             Deslocamento
             Produtos parciais
     1011
                                             das casas
    0000
                                             binárias
   1011
 1011
            Produto (143 dec)
10001111
Nota1: se bit multiplicador for 1, copia o Multiplicando (valor
da casa). Caso contrário, copia '0000'
```

Nota2: resultado deve ser representado com tamanho duplo

HW para multiplicador binário (sem sinal)

Fluxograma para a multiplicação binária sem sinal

Execução do exemplo: 11 x 13 (n = 4)

С	A	Q	M		
0	0000	1101	1011	Valores	iniciais

C	A 0000	Q 1101	M 1011	Valores iniciais
0	1011	1101	1011	Adição Primeiro
	0101	1110	1011	Desl. Sciclo

C	A	Q	M	Valores iniciais
O	0000	1101	1011	
0	1011	1101	1011	Adição) Primeiro
	0101	1110	1011	Desl. } ciclo
0	0010	1111	1011	Desl. } Segundo ciclo

С	A	Q	M	
0	0000	1101	1011	Valores iniciais
0	1011	1101	1011	Adição} Primeiro Desl. ∫ ciclo
0	0101	1110	1011	Desi. ∫ ciclo
0	0010	1111	1011	Desl. } Segundo ciclo
0	1101 0110	1111 1111	1011 1011	Adição Terceiro Desl. Soiclo

С	A	Q	М	
0	0000	1101	1011	Valores iniciais
0	1011	1101	1011	Adição) Primeiro
	0101	1110	1011	Desl. S ciclo
0	0010	1111	1011	Desl. } Segundo
0	1101	1111	1011	Adição Terceiro
	0110	1111	1011	Desl. Soiclo
1	0001	1111	1011	Adição] Quarto
	1000	1111	1011	Desl. S ciclo

Cont = 0

Execução do exemplo: 11 x 13

C	A	Q	M	Valores iniciais
O	0000	1101	1011	
0	1011	1101	1011	Adição] Primeiro
	0101	1110	1011	Desl. } ciclo
0	0010	1111	1011	Desl. } Segundo ciclo
0	1101	1111	1011	Adição Terceiro
	0110	1111	1011	Desl. Seciclo
1	0001	1111 1111	1011 1011	Adição] Quarto Desl. S ciclo

Conteúdo

- ULA (ALU)
- Representação numérica
- Operações básica
- Algoritmo de Booth
- Números reais e ponto flutuante

Multiplicando números negativos

- Complemento a dois direto não funciona!
- Solução 1:
 - —Converta para positivo, se for preciso
 - Multiplique como antes
 - —Se sinais diferentes, negue a resposta

Multiplicando números negativos

- Complemento a dois direto não funciona!
- Solução 1:
 - —Converta para positivo, se for preciso
 - Multiplique como antes
 - —Se sinais diferentes, negue a resposta
- Solução 2:
 - Algoritmo de Booth

HW para algoritmo de Booth

Algoritmo de Booth

Resultado - AQ

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0] = M \times [2^4 + 2^3 + 2^2 + 2^1] = M \times 30$$

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0] = M \times [2^4 + 2^3 + 2^2 + 2^1] = M \times 30$$

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0] = M \times [2^5 - 2^1] = M \times 30$$

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0] = M \times [2^4 + 2^3 + 2^2 + 2^1] = M \times 30$$

$$M \times [0\ 0\ 0\ 1\ 1\ 1\ 1\ 0] = M \times [2^5 - 2^1] = M \times 30$$

Ou:

$$M \times [0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0] = M \times [2^6 + 2^5 + 2^4 + 2^3 + 2^1]$$

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0] = M \times [2^4 + 2^3 + 2^2 + 2^1] = M \times 30$$

$$M \times [0\ 0\ 0\ 1\ 1\ 1\ 1\ 0] = M \times [2^5 - 2^1] = M \times 30$$

Ou:

$$M \times [0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0] = M \times [2^6 + 2^5 + 2^4 + 2^3 + 2^1]$$

$$M \times [0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0] = M \times [2^7 - 2^3 + 2^2 - 2^1]$$

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0] = M \times [2^4 + 2^3 + 2^2 + 2^1] = M \times 30$$

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0] = M \times [2^5 - 2^1] = M \times 30$$

Ou:

$$M \times [0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0] = M \times [2^6 + 2^5 + 2^4 + 2^3 + 2^1]$$

$$M \times [0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0] = M \times [2^7 - 2^3 + 2^2 - 2^1]$$

O algoritmo de Booth usa este esquema:

• Efetua uma subtração quando encontra o primeiro 1 de um bloco (1-0) e uma adição ao encontrar o fim do bloco (0-1).

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0] = M \times [2^4 + 2^3 + 2^2 + 2^1] = M \times 30$$

$$M \times [0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0] = M \times [2^5 - 2^1] = M \times 30$$

Ou:

$$M \times [0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0] = M \times [2^6 + 2^5 + 2^4 + 2^3 + 2^1]$$

$$M \times [0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0] = M \times [2^7 - 2^3 + 2^2 - 2^1]$$

O algoritmo de Booth usa este esquema:

• Efetua uma subtração quando encontra o primeiro 1 de um bloco (1-0) e uma adição ao encontrar o fim do bloco (0-1).

Algoritmo de Booth

Algoritmo de Booth

Exemplo do algoritmo de Booth: 7×3 (n = 4)

A Q Q₋₁ M 0000 0011 0 0111 Valores iniciais

A	Q	Q_1	M	Valores iniciais
0000	0011	0	0111	
1001	0011	0	0111	A ← A - M}Primeiro
1100	1001	1	0111	Deslocamento∫ ciclo

A	Q	Q_1	M	Valores iniciais
0000	0011	O	0111	
1001	0011	0	0111	A ← A - M)Primeiro
	1001	1	0111	Deslocamento, ciclo

ARITMÉTICO!!!

A	Q	Q_1	M	Valores iniciais
0000	0011	O	0111	
1001	0011	0	0111	A ← A - M }Primeiro
1100	1001	1	0111	Deslocamento∫ ciclo
1110	0100	1	0111	Deslocamento Segundo ciclo

A	Q	Q_1	M	Valores iniciais
0000	0011	0	0111	
1001	0011	0	0111	A ← A − M }Primeiro
1100	1001	1	0111	Deslocamento∫ ciclo
1110	0100	1	0111	Deslocamento Segundo ciclo
0101	0100	1	0111	A ← A + M }Terceiro
0010	1010	0	0111	Deslocamento∫ ciclo

A	Q	Q_1	M	Valores iniciais
0000	0011	0	0111	
1001	0011	0	0111	A ← A - M }Primeiro
1100	1001		0111	Deslocamento∫ ciclo
1110	0100	1	0111	Deslocamento Segundo ciclo
0101	0100	1	0111	A ← A + M }Terceiro
0010	1010	0	0111	Deslocamento∫ ciclo
0001	0101	0	0111	Deslocamento Quarto
	\Rightarrow = 2.1			

Exrcício:

Use o algoritmo de Booth para calcular -7 x 3

Conteúdo

- ULA (ALU)
- Representação numérica
- Operações básica
- Algoritmo de Booth
- Números reais e ponto flutuante

• Números com frações

- Números com frações
- Poderia ser feito em binário puro

$$-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9,625$$

- Números com frações
- Poderia ser feito em binário puro

$$-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9,625$$

- Ponto binário fixo
 - -Representação Muito limitada
 - Para grandes números e para pequenas frações

- Números com frações
- Poderia ser feito em binário puro

$$-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9,625$$

- Ponto binário fixo
 - -Representação Muito limitada
 - Para grandes números e para pequenas frações

Ex. limitação ponto fixo

- Números com frações
- Poderia ser feito em binário puro

$$-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9,625$$

- Ponto binário fixo
- Ponto móvel
 - -Como você mostra onde ele está?
 - -E o sinal?

Ponto flutuante - REPRESENTAÇÃO

- +/- significando x 2^{exponente}
- Nome impróprio
- Ponto é realmente fixo entre bit de sinal e corpo da mantissa
- Expoente é que "se move" e indica valor da casa (posição do ponto)

Detalhes da implementação

1- Polarização do expoente

- Expoente está em notação polarizada
 - -Polarização = 2^{k-1}-1
 - —Ex.: polarização 127 significa campo de expoente com 8 bits

1- Polarização do expoente

- Expoente está em notação polarizada
 - -Polarização = 2^{k-1}-1
 - —Ex.: polarização 127 significa campo de expoente com 8 bits
 - —Intervalo de valor puro 0 até 255
 - —Subtraia 127 para obter valor correto:
 - Intervalo de -127 a +128

1- Polarização do expoente

- Expoente está em notação polarizada
 - -Polarização = 2^{k-1}-1
 - —Ex.: polarização 127 significa campo de expoente com 8 bits
 - —Intervalo de valor puro 0 até 255
 - —Subtraia 127 para obter valor correto:
 - Intervalo de -127 a +128
- Assim, é possível representar números fracionários (com Expoente < 0)

2 - Normalização

• Várias possibilidades de representação:

$$0.110x2^5 = 110x2^2 = 0.0110x2^6$$

2 - Normalização

Várias possibilidades de representação:

$$0.110x2^5 = 110x2^2 = 0.0110x2^6$$

- Números de PF geralmente são normalizados, ou seja, expoente é ajustado de modo que bit inicial (MSB) da mantissa (significando) seja 1
- Por ser sempre 1, não é preciso armazená-lo

2 - Normalização

Várias possibilidades de representação:

$$0.110x2^5 = 110x2^2 = 0.0110x2^6$$

- Números de PF geralmente são normalizados, ou seja, expoente é ajustado de modo que bit inicial (MSB) da mantissa (significando) seja 1
- Por ser sempre 1, não é preciso armazená-lo
- Como na notação científica, onde os números são normalizados para um único dígito antes do ponto decimal: 3,123 x 10³

$$PF = \pm 1.bbbbbb ...bx2^E, b = (0 ou 1)$$


```
\begin{array}{c} 1.1010001 \times 2^{10100} \\ -1.1010001 \times 2^{10100} \\ 1.1010001 \times 2^{-10100} \\ -1.1010001 \times 2^{-10100} \end{array}
```

$$PF = \pm 1.bbbbbb ...bx2^E, b = (0 ou 1)$$

$$PF = \pm 1.bbbbbb \dots bx2^{E}, b = (0 ou 1)$$

$$PF = \pm 1.bbbbbb \dots bx2^{E}, b = (0 ou 1)$$

1. Converter: -10.5 decimal --> -1010.1 binário

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)
- **3. Sinal** = 1, pois o número é negativo

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)
- **3. Sinal** = 1, pois o número é negativo
- 4. Mantissa (101010000...0)

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)
- 3. Sinal = 1, pois o número é negativo
- 4. Mantissa (101010000...0)
- 5. Ignora o primeiro 1:
- 6. \Rightarrow Mantissa = 01010000...0

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)
- 3. Sinal = 1, pois o número é negativo
- 4. Mantissa (101010000...0)
- 5. Ignora o primeiro 1:
- 6. \Rightarrow Mantissa = 01010000...0

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)
- 3. Sinal = 1, pois o número é negativo
- 4. Mantissa (101010000...0)
- 5. Ignora o primeiro 1:
- 6. \Rightarrow Mantissa = 01010000...0
- 8. Expoente é + 3.

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)
- **3. Sinal** = 1, pois o número é negativo
- 4. Mantissa (101010000...0)
- 5. Ignora o primeiro 1:
- 6. \Rightarrow Mantissa = 01010000...0
- 8. Expoente é + 3.
- 9. Soma polarização 127:

 $127 + (+3) = 130 \text{ decimal} \Rightarrow E = 10000010 \text{ binário}.$

- 1. Converter: -10.5 decimal --> -1010.1 binário
- 2. Normalizar: -1010.1 binário --> -1.0101 * 2^(+3)
- 3. Sinal = 1, pois o número é negativo
- 4. Mantissa (101010000...0)
- 5. Ignora o primeiro 1:
- 6. \Rightarrow Mantissa = 01010000...0
- 8. Expoente é + 3.
- 9. Soma polarização 127:

$$127 + (+3) = 130$$
 decimal $\Rightarrow E = 10000010$ binário.

10. Resultado:

11000001101010000000000000000000

Intervalos dos valores em PF

Com 32 bits, números nas seguintes faixas podem ser representados:

Números negativos entre - $(1 - 2^{-24}) \times 2^{128} e - 0.5 \times 2^{-127}$

Números positivos entre 0.5 x 2^{-127} e (1 - 2^{-24}) x 2^{128}

Números representáveis

Números representáveis

(b) Floating-point numbers

Números negativos entre $-(2 - 2^{-23}) \times 2^{128} e^{-2^{-127}}$

Números positivos entre 2^{-127} e $(2 - 2^{-23})$ x 2^{128}

Densidade dos números de ponto flutuante

IEEE 754

- Padrão para armazenamento de ponto flutuante
- Padrões de 32 e 64 bits
- Expoente de 8 e 11 bits, respectivamente

Formatos IEEE 754

Converter 0,645 para notação em ponto flutuante com expoente polarizado de 8 bits e mantissa de 23 bits

Converter 0,645 para notação em ponto flutuante com expoente polarizado de 8 bits e mantissa de 23 bits

Solucao:

$$0,645 = 1,01001... \times 2^{-1};$$

Converter 0,645 para notação em ponto flutuante com expoente polarizado de 8 bits e mantissa de 23 bits

Solucao:

$$0,645 = 1,01001... \times 2^{-1};$$

Portanto, o significando é 01001 (o primeiro 1 é implícito)

Converter 0,645 para notação em ponto flutuante com expoente polarizado de 8 bits e mantissa de 23 bits

Solucao:

$$0,645 = 1,01001... \times 2^{-1};$$

Portanto, o significando é 01001 (o primeiro 1 é implícito)

$$O sinal = 0$$

Converter 0,645 para notação em ponto flutuante com expoente polarizado de 8 bits e mantissa de 23 bits

Solucao:

$$0,645 = 1,01001... \times 2^{-1};$$

Portanto, o significando é 01001 (o primeiro 1 é implícito)

$$O sinal = 0$$

E o expoente =
$$-1 + 127 = 126$$

Leitura recomendada

- Stallings, Capítulo 9
- IEEE 754 no site do IEEE