AR 3

YING LIU

Ex. 1

1.1

1.2

Use gather function to convert the data from wide to long. The answer rules out NA

```
> number_of_choice
[1] 2773
```

1.3

First change the data from wide to long and then merge the information in datsss to the df. check if the sssdistrict same to jssdistrict

```
> number_same_sssjss
[1] 262194
```

1.4-1.6
Create a df to record the total information

•	schoolcode [‡]	number_of_students_admitted	cutoff [‡]	quality
1	10101	374	284	320.1898
2	10102	374 220	343	394.1273
3	10103	389	316	353.8226
4	10104	209	245	297.0096
5	10105	324	260	351.2778
6	10106	359	293	339.9081
7	10107	288	281	311.6597
8	10108	292	248	303.3459
9	10109	283	257	282.0353
10	10110	447	343	407.3714
11	10111	520	371	412.0635
12	10112	274	316	375.5620
13	10114	318	319	345.9937
14	10115	223	274	316.0628

Showing 1 to 15 of 517 entries, 4 total columns

Ex. 2 Here are the final dataset including district\ longitude and latitude \cutoff\ quality\ size at school-program level:

	schoolcode	choicepgm	sssdistrict	sss	long [‡]	ssslat	cutoff	quality	size
1	30107	Business	Cape Coast Municipal	-1	.3065939	5.153656	424	434.5333	45
2	30107	General Arts	Cape Coast Municipal	-1	.3065939	5.153656	417	429.0400	125
3	30107	General Science	Cape Coast Municipal	-1	.3065939	5.153656	433	444.9769	130
4	30107	Home Economics	Cape Coast Municipal	-1	.3065939	5.153656	403	416.8000	40
5	30107	Visual Arts	Cape Coast Municipal	-1	.3065939	5.153656	394	411.7250	40
6	30103	Business	Cape Coast Municipal	-1	.3065939	5.153656	412	428.0000	40
7	30103	General Arts	Cape Coast Municipal	-1	.3065939	5.153656	411	424.0429	70
8	30103	General Science	Cape Coast Municipal	-1	.3065939	5.153656	417	429.6286	70
9	30103	Home Economics	Cape Coast Municipal	-1	.3065939	5.153656	400	409.4500	20
10	30103	Visual Arts	Cape Coast Municipal	-1	.3065939	5.153656	393	405.2000	20
11	21003	Agriculture			ast 287	6.619226	372	389.4250	40
12	21003	Business	Kwahu South (Mpraeso)	/lunicip	al 287	6.619226	377	397.9600	100
13	21003	General Arts	Kwahu South (Mpraeso)	-0	.6355287	6.619226	403	412.8750	40
14	21003	General Science	Kwahu South (Mpraeso)	-0	.6355287	6.619226	411	429.8700	100

 $\label{eq:convert} Ex.\,3$ In this exercise, first use the df st_choice created in Q2 which convert the wide to long of the schoolcode and pgmcode

Then I merge the choice info for each student with jssdistrict info.

The answer below is a long format including each choice's distance for every student,

÷	V1 ^	time [‡]	schoolcode [‡]	choicepgm	dist [‡]
1	1	2	50107	General Arts	453.7276
2	1	3	50202	Visual Arts	454.0363
3	1	4	50202	Visual Arts	454.0363
4	1	1	50112	Home Economics	453.7276
5	1	5	50702	Home Economics	453.7238
6	1	6	50901	General Arts	453.9189
7	2	1	70102	General Arts	464.6703
8	2	2	70602	Business	465.0102
9	2	6	70603	General Arts	465.0102
10	2	5	70605	Home Economics	465.0102
11	2	3	70107	General Arts	464.6703
12	2	4	70105	General Arts	464.6703
13	3	3	50115	Business	470.8541
14	3	5	51603	Home Economics	470.9553

Ex. 4
4.1
Add the scode_rev in long format

^	V1 [‡]	score [‡]	schoolcode [‡]	choicepgm	time [‡]	rankplace [‡]	scode_rev [‡]
1	1	column	2: numeric 112	Home Economics	1	NA	501
2	1	with ran	ge 140 - 107	General Arts	2	NA	501
3	1	480	202	Visual Arts	3	NA	502
4	1	NA	50202	Visual Arts	4	NA	502
5	1	NA	50702	Home Economics	5	NA	507
6	1	NA	50901	General Arts	6	NA	509
7	2	NA	70102	General Arts	1	NA	701
8	2	NA	70602	Business	2	NA	706
9	2	NA	70107	General Arts	3	NA	701
10	2	NA	70105	General Arts	4	NA	701
11	2	NA	70605	Home Economics	5	NA	706
12	2	NA	70603	General Arts	6	NA	706
13	3	NA	50702	Business	1	NA	507
14	3	NA	50705	Home Economics	2	NA	507
	_				_		

howing 1 to 15 of 2,044,938 entries, 7 total columns

4.2

^	V1 [‡]	score	schoolcode	choicepgm	time [‡]	rankplace	scode_rev [‡]	pgm_rev
1	1	NA	50112	Home Economics	1	NA	501	economics
2	1	NA	50107	General Arts	2	NA	501	arts
3	1	NA	50202	Visual Arts	3	NA	502	arts
4	1	NA	50202	Visual Arts	4	NA	502	arts
5	1	NA	50702	Home Economics	5	NA	507	economics
6	1	NA	50901	General Arts	6	NA	509	arts
7	2	NA	70102	General Arts	1	NA	701	arts
8	2	NA	70602	Business	2	NA	706	economics
9	2	NA	70107	General Arts	3	NA	701	arts
10	2	NA	70105	General Arts	4	NA	701	arts
11	2	NA	70605	Home Economics	5	NA	706	economics
12	2	NA	70603	General Arts	6	NA	706	arts
13	3	NA	50702	Business	1	NA	507	economics
14	3	NA	50705	Home Economics	2	NA	507	economics

4.3

^	V1 [‡]	score	schoolcode +	choicepgm	time [‡]	rankplace [‡]	scode_rev [‡]	pgm_rev [‡]	choice_rev
1	1	NA	50112	Home Economics	1	NA	501	economics	501_economics
2	1	NA	50107	General Arts	2	NA	501	arts	501_arts
3	1	NA	50202	Visual Arts	3	NA	502	arts	502_arts
4	1	NA	50202	Visual Arts	4	NA	502	arts	502_arts
5	1	NA	50702	Home Economics	5	NA	507	economics	507_economics
6	1	NA	50901	General Arts	6	NA	509	arts	509_arts
7	2	NA	70102	General Arts	1	NA	701	arts	701_arts
8	2	NA	70602	Business	2	NA	706	economics	706_economics
9	2	NA	70107	General Arts	3	NA	701	arts	701_arts
10	2	NA	70105	General Arts	4	NA	701	arts	701_arts
11	2	NA	70605	Home Economics	5	NA	706	economics	706_economics
12	2	NA	70603	General Arts	6	NA	706	arts	706_arts
13	3	NA	50702	Business	1	NA	507	economics	507_economics
14	3	NA	50705	Home Economics	2	NA	507	economics	507_economics
	_				_				

4.4

^	V1 [‡]	score [‡]	rankplace [‡]	time [‡]	choice_rev [‡]	scode_rev [‡]	pgm_rev [‡]	cutoff [‡]	quality
1	1	NA	NA	1	501_economics	501	economics	207	349.1362
2	1	NA	NA	2	501_arts	501	arts	259	358.7018
3	1	NA	NA	3	502_arts	502	arts	205	317.1521
4	1	NA	NA	4	502_arts	502	arts	205	317.1521
5	1	NA	NA	5	507_economics	507	economics	212	275.2742
6	1	NA	NA	6	509_arts	509	arts	216	256.2021
7	2	NA	NA	1	701_arts	701	arts	202	297.1085
8	2	NA	NA	2	706_economics	706	economics	202	291.7585
9	2	NA	NA	3	701_arts	701	arts	202	297.1085
10	2	NA	NA	4	701_arts	701	arts	202	297.1085
11	2	NA	NA	5	706_economics	706	economics	202	291.7585
12	2	NA	NA	6	706_arts	706	arts	202	286.8746
13	3	NA	NA	1	507_economics	507	economics	212	275.2742
14	3	NA	NA	2	507_economics	507	economics	212	275.2742
				_					

15

Change the data format from long to wide and keep the 20000 highest score students

^	V1 =	score	rankplace	choice_rev_1	choice_rev_2	choice_rev_3	choice_rev_4	choice_rev_5	choice_rev_6	scode_rev_1	scode_rev_2
1	335624	469	1	301_science	301_economics	501_arts	215_economics	104_arts	101_arts	301	301
2	318458	468	1	210_science	401_science	301_science	102_economics	NA_others	NA_others	210	401
3	318492	467	1	210_science	201_science	213_science	204_science	105_others	215_arts	210	201
4	335584	467	1	301_science	211_science	203_arts	215_arts	NA_others	NA_others	301	211
5	318422	466	1	210_science	201_science	213_science	204_economics	NA_others	NA_others	210	201
6	318525	466	1	210_science	201_science	101_science	213_science	206_others	210_economics	210	201
7	335568	465	1	301_science	502_science	501_economics	101_science	NA_others	NA_others	301	502
8	335629	465	1	301_science	203_science	303_science	301_science	210_economics	206_economics	301	203
9	335722	465	1	301_science	301_economics	203_science	203_economics	102_science	102_others	301	301
10	239799	464	1	301_science	101_science	102_science	101_science	102_science	101_science	301	101
11	268535	464	1	301_science	301_science	309_science	306_science	102_arts	102_arts	301	301
12	289149	464	1	501_science	201_science	401_science	304_science	201_economics	210_economics	501	201
13	335866	464	1	301_science	301_arts	211_science	211_arts	NA_others	NA_others	301	301
14	335901	464	1	301 science	301 arts	301 arts	301 economics	NA others	NA others	301	301

Multinomial logit model is appropriate for this because score varies among students but is invariant across alternatives. For multinomial logit model,

```
Vij =x_j*beta_i,
x_ij = x_i, so x don't depend on choice's characteristic
```

The likelihood of function is as follows (where stch is the choice matrix and score is the characteristic matrix):

```
MLogit <- function(theta,X,Y){
    alpha = c(0,theta[n:(2*(n-1))])
    alpha = sapply(alpha,rep,20000)
    beta = c(0,theta[1:n-1])
    beta = sapply(beta,rep,20000)
    Vij = X*beta + alpha
    Pij = prop.table(exp(Vij),1)
    Pij[Pij>0.999999] = 0.999999
    Pij[Pij<0.000001] = 0.000001
    logl = sum(Y*log(Pij))
    Y = -logl

    return(Y)
}
5.2
```

Here we have part of 246 different choices in first choice, corresponding to the choice

	-
•	choice_rev_1
1	100_arts
2	100_economics
3	100_others
4	100_science
5	101_arts
6	101_economics
7	101_others
8	101_science
9	102_arts
10	102_economics
11	102_others
12	102_science
13	103_arts
14	103_economics

#for beta(coefficient), which is theta[1:245]here:

- [1] 0.4236992649 -0.4298517662 -0.4585390054 -0.3079843875 -0.1087260644 0.2782564128 -0.1870127216
- [8] -0.3810078779 -0.3487222474 0.2982587391 -0.3875480460 0.2350985822 0.4529696198 -0.1018956248
- [15] -0.4446969160 -0.4915754283 -0.0768017471 -0.1731771969 0.0356330243 0.0422914238 -0.0622675710
- [29] 0.2948127931 -0.2090365430 0.3760864609 0.3912455027 -0.1999099334 0.2796564433 0.2917125074
- [36] 0.0135740237 0.1709127009 0.1526615114 -0.2944075889 -0.2418978019 0.0636869979 0.3752865691
- [43] 0.4160368741 -0.0662471906 0.1092028255 0.2001414672 0.3286379678 0.0775107192 -0.1768893306
- [50] 0.2046021095 -0.0563824659 0.1285486538 0.4399895277 -0.0465938658 0.2620554098 0.0416609303
- [57] 0.0268957918 -0.1662422752 -0.2045858211 -0.1796305373 -0.2160139841 0.2814637758 0.2374683504
- [64] -0.4048971066 -0.0049814328 -0.0059507473 0.1135452532 -0.1474183584 0.2848484260 0.2067052613
- [71] 0.1974038093 -0.3889155497 0.1995989524 -0.1650123403 -0.2757734747 0.3205530832 0.5241142626
- [78] 0.0535019748 -0.0504499942 -0.4210424782 -0.0217124079 -0.2064573979 0.3906879914 -0.2450514478
- [85] -0.0522424355 -0.1397647946 -0.2670833215 0.3192989470 0.3799424402 0.2246646350 0.4780491584
- [92] -0.1912860950 -0.0008766323 0.1154075568 -0.1340273051 0.3448017093 0.3426854522 -0.4859375358
- [99] 0.4552259684 -0.2992421382 -0.2962045991 -0.3672678135 -0.1037999485 0.3270541797 -0.2238143268
- [106] 0.1845438040 0.4802556494 0.3596015032 -0.0316299333 0.1420212586 0.3197874755 -0.3612664717
- [113] 0.0179938485 -0.2032199802 0.1667506457 -0.2029696952 -0.1585414081 0.3479460459 0.1108614772
- [127] 0.0068995338 -0.0891191885 0.1432755552 0.2174658077 1.3131553219 0.4717817602 -0.0136590223
- $[134] \hbox{-} 0.2863367035 \hbox{-} 0.2195498473 \quad 0.0732818770 \quad 0.4094127882 \quad 0.4113748353 \hbox{-} 0.2382958911 \quad 0.1951695178$
- [141] 0.0962490498 -0.0496437892 0.2508900834 0.1957451801 -0.0218797224 0.0381163282 0.1714629000
- [148] 0.2208922992 -0.4342557434 -0.2192237685 0.0311137103 -0.0648685398 0.3184871350 0.0673349760

- [155] 0.1095447557 0.2638284417 -0.3454762481 -0.4233647983 -0.1443168835 0.2842750037 0.2000115968
- [162] -0.4276421482 0.2714707777 0.2768012155 -0.4887680321 0.2588931434 0.0119104648 0.4034985285

- [183] -0.3078744737 0.2849092060 0.2471641079 0.1126830410 -0.2812823630 0.1062211210 0.0991039139
- [190] -0.4577116910 -0.4656251231 -0.4036276005 0.1992802420 0.3578358067 0.4411045061 0.3994385789
- [197] -0.1723929022 -0.1094853193 -0.3978962961 -0.3446038701 0.2439527060 0.2691889605 -0.0139686707
- [204] -0.1282044908 -0.0792533641 0.0636437272 -0.2835924111 -0.0150479751 0.1192276250 0.2308882200
- $\begin{array}{l} [211] \hbox{--}0.1847864464 \hbox{--}0.4614551966 \hbox{--}0.2279936890} \quad 0.3900958730 \hbox{--}0.1219953990 \hbox{--}0.0250295552} \hbox{--}0.2899900482 \end{array}$
- [218] -0.0626034883 0.0307791110 -0.3270877516 0.1521494365 -0.1357823671 0.4803121799 0.3365696401
- [225] 0.2596253981 -0.1402450483 -0.2822606775 0.1605940692 -0.4688160846 0.1603679089 0.3092344112
- $[232] \hbox{--}0.0763354364 \hbox{--}0.2024060308 \hbox{--}0.3164384079 \hbox{--}0.3453871165 \hbox{--}0.3604544888 \hbox{--}0.2608802745 \hbox{--}0.1405644945$
- $[239] \hbox{-} 0.3752912988 \hbox{-} 0.4173100973 \hbox{-} 0.2101738474 \hbox{-} 0.1846518687 \hbox{-} 0.0646036516 \hbox{-} 0.4199135117 \hbox{-} 0.2133566020$

#for alpha(intercept), which is theta[246:490]here:

- [253] -0.1419243987 -0.2197559301 0.4446149028 -0.0446051327 -0.3737606693 0.0187492111 0.0741116498
- [260] -0.2071552651 -0.3334637010 -0.0860618413 0.2651371828 0.2350223868 0.2214429022 0.4767013320
- [267] 0.2088943094 -0.0247671823 0.1484691557 -0.2213512296 -0.2330391286 0.4374598567 0.0466074350
- [274] -0.2200763607 -0.2640684037 0.2957792259 -0.0454880288 0.0890967504 0.4162315654 0.2054540098
- [281] -0.0915469227 -0.2147006420 0.4065026066 -0.4155311314 -0.3735425160 0.1225719568 0.1427993102
- [288] 0.2840288898 0.1854993538 0.4919924249 0.3001029964 -0.0833725915 0.2998520595 -0.2229215745
- [295] 0.2587465141 0.3829946639 -0.3814407240 0.4402440675 0.0853109653 0.3337042839 -0.2447551452
- [302] 0.4447492724 0.0824640256 0.2580395045 -0.0524673271 -0.4053283527 -

- 0.1457768064 -0.2371506854
- [309] -0.4148981802 0.0584328228 -0.4432419133 0.0513450091 0.2455635017 0.4261938452 0.0087158787
- [316] 0.4498470630 0.3500533465 0.2712114358 -0.1901658685 0.0043093099 0.4081975759 -0.4913336527
- [323] 0.0573574880 -0.1845033646 0.0905282414 0.2137282703 0.2090477145 0.4190505664 0.4799704156
- [330] 0.3473045505 -0.0023816281 -0.1657258482 0.2974442909 -0.2530481815 0.0668219090 -0.0540779251
- [337] 0.1817745809 -0.1567061662 0.0520566269 0.0397826324 -0.1039879660 0.1336991175 0.3246997115
- [344] -0.1559645480 -0.3676084946 0.4929889834 -0.4867218486 0.3419736072 0.1572832288 -0.3628709621
- [351] -0.0480161284 -0.0529774307 0.0724874747 0.0970696686 0.0871942311 0.1530442892 -0.0476250765
- [365] 0.4359455097 0.1991528899 -0.3989477130 0.2907913837 -0.3446789312 0.3377286077 -0.4608222290
- [372] -0.2186131480 0.3589276245 0.0868427986 -0.3341391091 -0.4929518929 0.2863803045 -0.0885565514
- [379] 0.3758093100 0.4164319308 -0.0048810695 -0.3754304643 0.4188514932 0.3325635032 0.0981749666
- [386] 0.2018990540 -0.0229078268 -0.2437178942 0.4917441576 -0.2910255971 0.4304902896 -0.0246948942
- [393] -0.2921537200 -0.0207441400 0.1040640548 -0.1439720958 0.3314023162 0.3865812402 0.0460783548
- [407] -0.3053853340 0.2058509558 -0.4640356039 -0.3734385576 -0.2182497368 0.1034970190 0.3845589510
- [414] 0.4803277222 0.4200044926 -0.3860237270 -0.1187260600 0.2024314816 0.0300664220 0.4810177349
- [421] -0.3934989122 -0.2080171445 0.3138941891 0.3900338279 0.3981134358 0.2618523287 -0.2258663275
- [428] 0.0426168761 0.4701783683 -0.3028857845 -0.2528950593 -0.1839942567 0.4392478759 0.1360934053
- [442] -0.2754790457 -0.1360095912 -0.0362815771 0.3394258972 0.3572212635 0.0206428962 -0.2170061979
- [449] -0.3785115348 0.3949833612 0.4816679421 0.2891227845 0.2325388235 0.3073595706 0.2786357393
- [456] -0.1655445509 0.2097324715 -0.1311387308 -0.4904258489 0.0159260470

0.1335192407 0.2703746557

[463] 0.4244647562 -0.2268601381 -0.0417630316 0.2508126097 0.3474887863 - 0.3961425794 -0.3873614797

[470] 0.3711453832 0.2481785279 -0.3913609949 -0.0873235005 -0.3754839373 - 0.4753998867 -0.1964055435

[477] -0.4980753097 -0.1993316764 0.2209338292 0.2798484673 0.0746777358 0.2154335596 0.3362719563

[484] 0.0304102181 -0.3350533438 -0.3654829063 0.3791729691 -0.2746100405 0.4499928735 0.2160626689

As it shows, the intercept _i above implies that compared to choice 1(100science), how the students like choice_i. For example, the result shows that student is -0.5388 less likely to choose 101economics compared to 101arts.

the beta_i above implies that compared to choice 1, how the test scores affects the choice_i. For example, when the score is higher, the results shows that student is 0.9089 more likely to choose 101economics compared to 101arts.

The marginal effect is as follows:

The average marginal effect is as follows:

	V4 \$
	V1 *
1	-2.222265e-05
2	-1.105115e-05
3	-6.469923e-05
4	-2.266396e-05
5	3.314100e-04
6	-5.288593e-06
7	-1.013127e-05
8	-8.272089e-06
9	-2.668146e-05
10	-3.888782e-05
11	-1.078483e-05
12	-4.866730e-05
13	-5.059732e-05
14	-4.528241e-05
15	-4.856726e-05
16	-7.235517e-06
Showing 1	to 17 of 56 entri

Ex. 6

6.1

Conditional logit model is appropriate because I think quality of first choice here is invariant across alternatives. For the conditional model,

```
Vij = X_j*beta_i,
```

 $X_i = X_j, x$ don't depend on i, which is individual. Here is the likelihood function:

```
\begin{split} &CLogit <- \ function(theta, X) \{\\ &\# \ print(X)\\ &alpha = c(0, theta[2:n])\\ &alpha = sapply(alpha, rep, 20000)\\ &Vij = X*theta[1] + alpha\\ &Pij = prop.table(exp(Vij), 1)\\ &\# \ Pij[Pij > 0.999999] = 0.999999\\ &\# \ Pij[Pij < 0.000001] = 0.000001\\ &logl = sum(choice\_matrix*log(Pij))\\ &Y = -logl\\ &return(Y)\\ &\} \end{split}
```

#for beta(coefficient), which is theta[1]here, which is equals to 0.01596460, the sign is positive, then if the quality increases, the demand of choosing one of the alternatives will increase.

[1] 0.01596460

#for alpha(intercept), which is theta[2:246]here:

- 0.49451321 -0.35850258 0.61387693 3.65550568 3.09680773 1.40712067 3.12309839
- [9] 1.54371650 1.49958794 -0.64378152 0.64715519 -1.14657696 -2.49756281 -6.40337520 0.73010818
- [17] -0.61708717 -0.75194123 -9.34253863 -1.68757324 -0.15260189 0.05149802 -8.20622353 -1.05091054
- [25] 2.38137269 1.88633930 0.96987695 1.59728203 -13.46368673 -1.43604920 2.41193239 -2.40541925
- [33] 2.81188842 2.26204718 -2.61790066 1.02113861 2.19312344 0.97415001 0.38367222 -0.03422081
- [41] -1.48248564 -1.53880185 -2.77863530 -1.81605164 -0.07653109 -0.55993363 1.78345113 -1.30987370
- [49] -1.17317886 -2.08414438 -1.06698933 -1.11843310 -2.67642052 -1.99188455 2.51961331 2.36593550
- [57] 2.18047142 1.04132262 2.46054952 2.50573950 1.71087674 1.19900760 6.59624292 -7.46246253
- [65] 1.34802807 0.65653536 -1.07044955 0.60787163 -0.13073300 -0.30528576 0.02215191 3.38488463
- [73] 3.10979785 1.47549785 2.70738231 -3.43804289 1.75018571 1.14001871 0.43600057 -0.25718571
- [81] 0.91040344 1.08392546 -2.33298112 -0.79738588 -0.14708745 -0.06258964 1.89150945 -0.23131083
- [89] 0.47980337 -1.54581002 -0.93931272 -1.08670088 -2.76247320 -1.32338390 2.53785279 0.18028918
- [97] 0.41307119 -7.32765187 -0.59442484 -1.24670990 -1.92179603 -3.42747534 1.20572395 -2.44078274
- [105] -1.73205680 -2.90127802 -6.16706841 -1.45486745 2.14958754 1.93929120 1.46535807 1.56263562
- [113] -2.08476391 -1.47533164 -25.21431608 -1.61800696 -1.22075442 -1.95230636 2.13838537 -1.19639648
- [121] -1.89845762 -1.81860186 -2.46173190 -2.33295359 -1.24656647 -1.57278502 7.01476258 -2.03557295
- [129] -0.16627599 -0.89873486 3.57935253 3.25914940 1.03168356 3.20410194 2.53372956 1.94805809
- [137] -0.07142478 1.24679240 0.43498375 -0.20310941 -1.50621339 -0.19344797 1.86204024 1.27754315
- [153] 0.44895809 -0.02482992 -1.67679145 -0.59983083 -0.14203753 -0.25565473 0.68616412 -0.34061209
- [161] 13.60797426 21.68314422 6.32735098 1.81738256 16.98159052 7.69979787 -

- 0.47739854 -1.21462346
- [169] -2.25919156 -2.42434188 -1.35199070 -3.24489373 2.09664922 1.02904071 0.86822222 1.69861878
- [177] -8.02007317 -2.18317991 -0.67583705 -10.32463912 -12.58657718 -3.47424819 0.92220208 -13.74340893
- [185] -2.83543202 -0.71968646 -1.76765952 -2.34857069 -5.07039299 -1.86354770 -1.13948932 -4.66819750
- [193] -19.66925179 -1.82492155 -0.05587756 -0.49025709 -1.10610881 2.13108579 1.80284193 -0.20041050
- [201] 1.31598043 -0.90190758 -1.45186538 -1.70421408 -1.77039020 -2.23885792 0.26733443 0.77671442
- [209] -1.32735689 0.40270876 0.55743842 0.71215357 -1.23898963 0.84278266 -1.72340227 -0.64332972
- [217] -0.65633780 -0.68252208 -0.87282331 -20.59125229 -21.62613888 -1.71024352 1.92410093 -2.81797901
- [225] -2.29250566 0.08718731 -5.71800869 -0.93698801 -2.77914668 1.07473879 0.42586281 -0.73217622
- [233] 1.08198134 -2.81032542 -1.76882285 -1.51029071 0.35714849 -1.11464191 0.72749506 -1.23316061
- $[241] \ -0.66452380 \ -0.52169585 \ -0.49514331 \ -0.32895492 \ -0.63257463 \ -1.87594810$

As it shows, the intercept _i above implies that compared to choice 1(101arts), how the students like choice i.

the beta_i above implies that compared to choice 1, how the school quality affects the choice i.

The marginal effect is as follows:

7.1

I think MLogit model is appropriare because excluding "others" program here is a characteristic of choice but invariant for individual.

7.2

I create the new choice without others and run the clogit model again, the new subset dat now has 195 unique choices and 19302 individuals. Below is my coefficient answers:

- [1] 0.01266003 0.87058434 1.53179355 4.44621616 3.86511454 4.02224864 2.29405184 2.24417633
- [9] 1.39244354 -1.16080714 -1.39327693 -1.04127735 0.35373998 0.19933482 0.96520282 0.69653773
- [17] 0.70676037 -0.29909536 3.19910265 2.74944767 2.45124126 -1.87417327 0.87761389 -1.11763678
- [25] 3.59221151 2.99597874 2.02679820 2.79387654 1.89304604 -62.43086413 0.73874132 -0.56727860
- [33] -1.21158955 0.67874526 0.07087817 -1.12406792 -19.13317084 -0.95200643 0.26241076 -0.31299836
- [41] -1.72965203 -1.86756405 3.03437731 2.82905434 3.19890586 -9.53730988 2.27284922 -8.86766582
- [49] -1.77194253 -1.80026376 2.00614458 1.59639647 -0.05243628 1.21242542 0.71352865 -6.65250756
- [57] 4.26741061 3.96220819 3.71953664 -2.19922933 2.57045666 1.85873763 0.99080464 1.73367883
- [65] 1.84484874 -0.29978451 0.52951382 0.52539866 -29.00804520 0.51164255 1.05438436 0.02507024
- [73] -1.70362260 -0.69923273 -1.51296215 0.91942011 0.98866057 0.31891666 0.30808310 -0.61819062
- [81] -0.39204843 -1.76452047 -6.73828922 -2.33328578 -1.79569846 2.83372669 2.64439262 2.47849927
- [89] -1.09370333 -2.09306693 -0.83975072 -8.88210014 -0.99142419 -14.76938047 1.80236613 -1.51524192
- [97] -6.53253831 -0.31636101 -1.29247228 -1.13720125 0.55091826 -0.26138395 4.45452892 4.09051597
- [105] 4.15435172 3.33270269 2.76659802 2.04693292 1.19968487 0.42087681 0.16299274 2.57701018
- [113] 2.02623880 1.23093604 -0.11690456 -0.38942860 -0.35099049 -1.34860843 0.09954229 -1.57989287
- [121] 1.18831045 0.50723995 0.10747244 0.47421490 0.06878065 0.53162006 2.07372548 -1.90838806
- [137] -2.22518562 2.71947813 1.85624320 2.45625709 -2.04281342 -1.29212533 8.60711314 -1.90436130
- [145] -2.46826478 -0.02224623 -1.74396712 -0.07846879 -0.92242935 -20.22031917 -

1.97345843 -1.07920766

[153] -1.80054193 -1.30882234 -2.69427798 0.61917755 0.17727784 -0.43471937 2.78895821 2.46276616

[161] 1.93985895 -16.25021196 -10.40417648 -16.07418419 -1.11509714 0.76860057 1.39070003 1.22654063

[169] 1.33253986 1.28157181 1.68836844 -1.16142199 -0.24828151 0.19911256 - 42.99192776 -0.28487861

[177] -2.06357918 -1.70677046 -1.17974772 -1.07806068 -1.46401954 -7.10124633 - 1.95243252 -0.20675251

[193] 0.39866381 -0.01078481 0.52610310

7.3 I compare the coefficient in Exercise 6 excluding the choices contains "others" and the coefficient in Exercise 7 and calculate the difference for each coefficient.

The code is as follows:

```
Pij2_no_others = P_j_bar[,-as.numeric(which(others==TRUE))]
others_row = unlist(choice_rev_1_subject)
others_row = which(others_row[seq(2,length(others_row),2)]=='others')
Pij2_no_others = pij2_no_others[-others_row,]
pij_changes= Pij_2[1,]-Pij2_no_others[1,]
```