IPC-7351B CN

2010

表面贴装设计及连接盘图形标准通用要求

2010年6月 取代IPC-7351A 2007年2月

由 IPC 开发的国际标准

Association Connecting Electronics Industries

目录

1 范	围	3.4.5	导体35
1.1	目的	3.4.6	导通孔指南35
1.2	文件优先顺序	3.4.7	标准印制板制作公差37
1.2.1	元器件和连接盘图形系列结构 2	3.4.8	拼板39
1.3	性能分级	3.5	表面处理41
1.3.1	可生产性等级 2	3.5.1	阻焊膜涂层41
1.4	连接盘图形的确定2	3.5.2	阻焊膜开窗41
1.5	术语和定义	3.5.3	连接盘表面涂层41
1.6	修订版变化 6		
		4 元	器件质量验证42
2 引	用文件 7	4.1	验证技术42
2.1	IPC 7		
2.2	电子工业联盟 7	5 可	测试性43
2.3	联合工业标准 (IPC) … 7	5.1	印制板测试和组装测试43
2.4	国际电工技术委员会 7	5.1.1	裸板测试43
2.5	电子器件工程联合委员会(JEDEC)······7	5.1.2	组装后的线路板测试43
		5.2	节点可测性43
3 设	计要求 8	5.2.1	测试原则44
3.1	尺寸标注系统 8	5.2.2	裸板测试策略44
3.1.1	元器件公差 8	5.3	组装板的所有节点可测试性44
3.1.2	连接盘公差12	5.3.1	在线测试调节44
3.1.3	制造余量12	5.3.2	多探针测试45
3.1.4	组装公差12	5.4	部分节点可测45
3.1.5	尺寸和公差分析12	5.5	无测试节点45
3.2	设计的可生产性29	5.6	测试夹具的影响45
3.2.1	SMT 连接盘图形29	5.7	印制板测试特征45
3.2.2	标准元器件的选择29	5.7.1	测试连接盘间距45
3.2.3	电路基板开发29	5.7.2	测试连接盘尺寸和形状45
3.2.4	组装需要考虑的因素29	5.7.3	测试参数设计46
3.2.5	自动测试条款29		
3.2.6	SMT 用文件 ······30	6 即	制板基板类型46
3.3	环境条件30	6.1	总则48
3.3.1	潮湿敏感元器件30	6.1.1	类型49
3.3.2	最终使用环境需考虑因素30	6.1.2	热膨胀不匹配49
3.4	设计规则31	6.2	有机基材49
3.4.1	元器件间隔31	6.3	无机基材49
3.4.2	单面板和双面板组装32	6.4	可选的印制板结构49
3.4.3	清洗时元器件托高高度32	6.4.1	支撑面印制板结构49
3.4.4	基准标记33	6.4.2	高密度印制板技术49

6.4.3	芯板结构49	8.4	模制本体元器件(CAPMP、CAPM、
6.4.4	瓷化金属(金属芯)结构49		DIOM, FUSM, INDM, INDP,
			LEDM、RESM)57
7 表面	面贴装技术组装时需考虑的事项49	8.4.1	基本结构57
7.1	SMT 组装工艺顺序49	8.4.2	标识
7.2	基板准备50	8.4.3	载体封装方式57
7.2.1	点胶50	8.4.4	耐焊接温度57
7.2.2	导电胶50	8.5	金属电极面二极管 (DIOMELF、
7.2.3	焊膏涂敷50		RESMELF)57
7.2.4	预置焊料51	8.5.1	基本结构57
7.3	元器件贴装51	8.5.2	标识57
7.3.1	元器件数据传递51	8.5.3	载体封装方式57
7.4	焊接工艺51	8.5.4	耐焊接温度57
7.4.1	波峰焊接51	8.6	SOT2358
7.4.2	汽相焊接52	8.6.1	基本结构58
7.4.3	IR 红外再流焊接52	8.6.2	标识
7.4.4	热风/气体对流焊接 ·····52	8.6.3	载体封装方式58
7.4.5	激光再流焊接53	8.6.4	耐焊接温度58
7.4.6	传导再流焊接53	8.7	SOT8958
7.5	清洗53	8.7.1	基本结构58
7.6	维修/返工53	8.7.2	标识
7.6.1	散热影响53	8.7.3	载体封装方式58
7.6.2	印制板材料53	8.7.4	耐焊接温度58
7.6.3	连接盘和导线布局53	8.8	SOD123 ······58
		8.8.1	基本结构58
8 IPC	C-7352 分立元器件 ·····54	8.8.2	标识
8.1	片式电阻 (RESC) ······54	8.8.3	载体封装方式59
8.1.1	基本结构54	8.8.4	耐焊接温度59
8.1.2	标识55	8.9	SOT14359
8.1.3	载体封装方式55	8.9.1	基本结构59
8.1.4	耐焊接制程55	8.9.2	标识59
8.2	片式电容 (CAPC) ······55	8.9.3	载体封装方式59
8.2.1	基本结构55	8.9.4	耐焊接温度59
8.2.2	标识55	8.10	SOT223 ·····59
8.2.3	载体封装方式55	8.10.1	基本结构59
8.2.4	耐焊接温度56	8.10.2	标识59
8.3	电感(INDC、INDM、INDP) ······56	8.10.3	
8.3.1	基本结构56	8.10.4	
8.3.2	标识	8.11	DPAK 类型 (TO)60
8.3.3	载体封装方式56	8.11.1	基本结构60
8.3.4	耐焊接温度56	8.11.2	标识60

8.11.3	载体封装方式60	11 IP	PC-7355 本体四面具有鸥翼形引线元器件…66
8.11.4	耐焊接温度60	11.1	BQFP 或 PQFP ······68
8.12	铝电解电容 (CAPAE) ·······60	11.1.1	载体封装方式68
8.12.1	基本结构60	11.2	QFP68
8.12.2	标识60	11.2.1	载体封装方式68
8.12.3	载体封装方式60	11.3	CQFP68
8.12.4	耐焊接温度60	11.3.1	载体封装方式69
8.13	小外形二极管、扁平引脚(SODFL)/		
	小外形三极管、扁平引脚(SOTFL)······61	12 IP	C-7356 本体四面具有 J 形引线的元器件 …69
8.13.1	基本结构61	12.1	PLCC71
8.13.2	标识61	12.1.1	模制前的塑料芯片载体71
8.13.3	载体封装方式61	12.1.2	模制后的塑料芯片载体71
8.13.4	耐焊接温度61	12.2	PLCCR71
		12.2.1	模制前塑料芯片载体71
9 IPO	C-7353 本体两面具有鸥翼形引线的	12.2.2	模制后塑料芯片载体71
元	器件61		
9.1	SOIC62	13 II	PC-7357 本体两边有直插引线的
9.1.1	基本结构62	元	器件 (DIP) ······72
9.1.2	标识62	13.1	端子材料72
9.1.3	封装方式62	13.2	标识72
9.1.4	耐焊接温度62	13.3	载体封装方式72
9.2	SOP8/SOP64(SOP)63	13.4	耐焊接温度72
9.2.1	基本结构63		
9.2.2	标识63	14 II	PC-7358 面阵列元器件(BGA、FBGA、
9.2.3	封装方式63	C	GA, LGA, Chip Array) ······73
9.2.4	耐焊接温度64	14.1	面阵列结构73
9.3	SOP12764	14.1.1	BGA 封装 ······74
9.3.1	标识64		细间距 BGA 封装 (FBGA) ·······75
9.3.2	载体封装方式64	14.1.3	陶瓷柱栅阵列 (CGA)76
9.3.3	耐焊接温度 · · · · · · 64	14.1.4	塑料盘栅阵列 (LGA)76
9.4	CFP12764	14.2.1	器件外形76
9.4.1	标识64	14.2.2	连接矩阵选项76
9.4.2	载体封装方式64	14.2.3	选择性减少触点密度77
9.4.3	耐焊接温度64	14.2.4	连接座的计划77
		14.2.5	定义触点位置78
10 IF	C-7354 本体两面具有 J 形引线的元器件 ··· 65	14.3	处理和运输78
10.1	基本结构65	14.4	连接盘图形分析78
10.2	标识65	14.4.1	焊盘近似值79
10.3	载体封装方式65	14.4.2	总变差79
10.4	工艺考虑66	14.4.3	连接盘图形计算器80
		14.5	片式阵列元器件引线封装80

14.5.1	凹型片式阵列封装(RESCAV、	B.2	软件使用	95
	CAPCAV, INDCAV, OSCSC,	B.3	软件更新	95
	OSCCCC)80	B.4	软件更新	95
14.5.2	凸形片式阵列封装(RESCAXE,			
	RESCAXS)80			图
14.5.3	扁平片式阵列封装(RESCAF、CAPCAF)	图 3-1	外形公差	标注方法 8
	81	图 3-2	最佳焊料	填充条件下的 C3216(1206)
			电容器尺	寸标注示例 9
15 IP	C-7359 无引线元器件(QFN、PQFN、	图 3-3	鸥翼形引	线 SOIC 的外形尺寸标注10
SC	ON, PSON, DFN, LCC)81	图 3-4	多引线元	器件节距14
15.1	LCC81	图 3-5	装配边界	-区域状况22
15.1.1	标识82	图 3-6	连接盘形	状异型图例25
15.1.2	载体封装方式82	图 3-7	倒斜角昇	型图例27
15.1.3	工艺考虑82	图 3-8		器件排列朝向应用 · · · · · · 31
15.2	方形扁平无引线封装(QFN) ······83	图 3-9		件的排列 ······32
15.2.1	标识84	图 3-10	整板 / 拼	板基准33
15.2.2	载体封装方式84	图 3-11	局部基准	33
15.2.3	工艺考虑84	图 3-12	印制板上	的基准位置34
15.2.4	阻焊膜考虑84	图 3-13	基准的尺	寸和空白区要求34
15.3	小外形无引线封装 (SON) ************************************	图 3-14	在高元器	件密度印制板上的导通孔
15.3.1	标识85		的应用…	35
15.3.2	载体封装方式85	图 3-15	连接盘图	形与导通孔的关系 ······35
15.3.3	工艺考虑85	图 3-16		焊盘位置示例36
15.3.4	阻焊膜考虑85	图 3-17		元器件下36
15.4	引线为回缩型的小外形和方形扁平	图 3-18	填充孔和	盖孔示意图37
	无引线封装(PQFN、PSON)······85	图 3-19	焊盘内的	导通孔工艺说明37
15.5	双列扁平无引线封装 (DFN) ······85	图 3-20	导体说明	38
15.5.1	基本结构85	图 3-21	改型后的	连接盘图形示例39
	标识85	图 3-22	常见的铜	玻璃层压板拼板设计39
15.5.3	载体封装方式86	图 3-23	V型槽的	导体间隙40
15.5.4	耐焊接温度86	图 3-24	邮票孔(较低应力)辅料边分板 ······40
		图 3-25		41
16 元	器件的"0"度朝向86	图 3-26	阻焊开窗	·····41
		图 4-1	元器件运	行温度极限42
附录 A	(资料性)测试模型 – 工艺评估93	图 5-1	VIA 测记	点分布概念 · · · · · 44
A.1	测试试样93	图 5-2	测试接点	尺寸与测试探针漏测试的
A.2	测试模型 - 过程验证		关系	45
A.3	应力测试94	图 5-3	测试探针	·与元器件的距离 ······46
		图 7-1	单面 SM	Γ的典型工艺流程50
附录 B	IPC-7351 连接盘图形浏览器95	图 7-2	有 THT f	内双面 SMT 组装工艺流程 ·····50
B.1	软件安装95	图 8-1	分立元器	件的包装 54

冬	8-2	片式电阻结构55	图 15-1	LCC 元器件 ······82
冬	8-3	片式电容结构56	图 15-2	方形扁平无引线(QFN)结构 ······83
冬	8-4	电感结构56	图 15-3	方形扁平无引线(QFN)结构
冬	8-5	模制本体元器件结构57		(截面图)
冬	8-6	金属电极无引线面元器件结构57	图 15-4	具有多个锡膏掩膜开口的 QFN 器件 …84
冬	8-7	金属电极无引线面元器件的分解图57	图 15-5	小外形无引线 (SON) 结构 ······85
图	8-8	SOT23 结构 ······58	图 15-6	引线为回缩型的方形扁平无引线
冬	8-9	SOT89 结构 ······58		(PQFN) 和小外形无引线 (PSON)
图	8-10	SOD123 结构 ·····59		结构······85
图	8-11	SOT143 结构 ······59	图 15-7	DFN 封装结构 ······86
图	8-12	SOT223 结构 ······60	图 16-1	常用封装的元器件 0 角度 · · · · · 87
图	8-13	DPAK(TO) 类型 ······60	图 A-1	工艺测试连接图形和互连的通用描述…93
图	8-14	铝电解电容(CAPAE)的结构 ······60	图 A-2	测试板主面的图片 · · · · · 94
图	8-15	SODFL/SOTFL 结构 ·····61		
图	9-1	SOIC 结构 ······63		表
图	9-2	SOP8/SOP63 结构 ······63	表 3-1	片式元器件公差分析要素15
图	9-3	SOP127 结构 ······64	表 3-2	扁平带式L和鸥翼形引线(间距大于
图	9-4	CFP127 结构 ······64		0.625mm) (单位: mm) ······16
图	10-1	SOJ 结构 ······65	表 3-3	扁平带式L和鸥翼形引线(间距小于
图	11-1	BQFP 结构 ·····68		或等于 0.625mm) (单位: mm) ······16
图		QFP 结构 ······68	表 3-4	J形引线 (单位: mm)16
图	11-3	CQFP 结构 ·····68	表 3-5	大于或等于 1608 (0603) 的矩形或
冬	12-1	PLCC 结构71		方形端元器件(电容和电阻)
图	12-2	PLCCR 结构71		(单位: mm) ······17
图	13-1	DIP 结构 ······72	表 3-6	小于 1608 (0603) 的矩形或方形端
冬	14-1	球栅阵列(BGA)集成电路封装		元器件(电容和电阻)(单位: mm) …17
		图例 ·····74	表 3-7	圆柱体帽形端子(MELF)
图	14-2	塑料 BGA 封装结构图例74		(单位: mm) ······17
图	14-3	陶瓷/塑料柱栅阵列(CGA)封装 ·····76	表 3-8	城堡形端子的无引线芯片载体
图	14-4	塑料盘栅阵列(LGA)封装76		(单位: mm) ······17
图	14-5	封装外形中 BGA 触点间距的变化76	表 3-9	凹形片式阵列元器件引线封装
图	14-6	同一封装尺寸的两种全矩阵77		(单位: mm) ······18
图	14-7	热增强周边矩阵 ······77	表 3-10	凸形片式阵列元器件引线封装
图	14-8	交错矩阵 ······77		(单位: mm) ······18
图	14-9	选择性减少触点密度77	表 3-11	扁平片式阵列元器件引线封装
冬	14-10	器件方向和 A1 触点位置 ······78		(单位: mm) ······18
图	14-11	侧面凹型片式元器件81	表 3-12	直插连接 (单位: mm) ······18
		四角凹型片式元器件81	表 3-13	内弯扁平带式L形引线(模制电感、
		E 型凸形片式元器件 ······81		二极管和极性电容)(单位: mm) ·····19
		S 型凸形片式元器件 ······81	表 3-14	扁平焊片引线 (单位: mm) ······19
冬	14-15	扁平片式元器件 ·····81	表 3-15	方形扁平无引线 (单位: mm) ······19

表 3-16	小外形无引线 (单位: mm) ······19	表 10-3	封装最高再流温度66
表 3-17	球栅阵列元器件 (单位: mm) ······20	表 11-1	本体四面具有鸥翼形引线的元器件的
表 3-18	引线为回缩型的小外形方形扁平		可焊性测试 · · · · · 67
	无引线 (单位: mm) ······20	表 11-2	可焊性、浸入方法:测试严格条件
表 3-19	凹形角振荡器引线封装 (单位: mm)…20		(时间和温度)67
表 3-20	铝电解电容和 2 管脚晶振	表 11-3	封装最高再流温度 … 67
	(单位: mm) ······20	表 12-1	本体四面具有J形引线的元器件的
表 3-21	柱状和格状栅阵列 (单位: mm) ······21		可焊性测试 · · · · · · 69
表 3-22	小外形元器件、扁平引线	表 12-2	可焊性,浸入方法:测试严格条件
	(单位: mm) ······21		(时间和温度)70
表 3-23	IPC-7351 连接盘图形命名规则24	表 12-3	封装最高再流温度70
表 3-24	表面贴装电子产品的分类及极限情况	表 13-1	本体两边有直插引脚的元器件可焊性
	使用环境(仅供参考)30		测试 ······72
表 3-25	导线宽度公差,铜厚 0.046mm	表 13-2	可焊性,浸入方法:测试严格条件
	[0.00181in], mm[in]38		(时间和温度)73
表 3-26	要素定位精度(单位: mm[in])38	表 13-3	封装峰值再流焊温度 … 73
表 3-27	各种印制板表面涂层的主要属性42	表 14-1	分立元器件的可焊性测试 · · · · · · 74
表 6-1	印制板基板对比 · · · · · · 47	表 14-2	封装峰值再流焊温度 … 75
表 6-2	PCB 结构选择需注意事项 ······48	表 14-3	JEDEC 标准 JEP95 FBGA 的标准
表 6-3	PCB 基板材料属性48		球径 (mm) ······75
表 8-1	分立元器件的可焊性测试 ·····54	表 14-4	焊料球直径尺寸 (mm) ······78
表 8-2	可焊性, 浸入方法: 测试严苛性条件	表 14-5	可塌落焊料球的连接盘近似值 (mm)…79
	(时间和温度)55	表 14-6	非塌落焊料球的连接盘近似值 (mm)…79
表 8-3	封装再流焊峰值温度55	表 14-7	BGA 变差因素(mm) ······80
表 9-1	本体两面具有欧翼形引线的元器件的	表 14-8	适用现有和将来 BGA 封装的焊盘到
	可焊性测试 ······62		焊料球计算 (mm)
表 9-2	可焊性, 浸入方法: 测试严格条件	表 15-1	无引线元器件的可焊性测试 ·····82
	(时间和温度)63	表 15-2	可焊性,浸入方法:测试严格条件
表 9-3	封装最高再流焊温度 · · · · · 63		(时间和温度)83
表 10-1	本体两面具有J形引线的元器件的	表 15-3	封装峰值再流焊温度 · · · · · 83
	可焊性测试 ······65		
表 10-2	可焊性、浸入方法:测试严格条件		
	(时间和温度)66		

版权等原因,不能全部发布。 此为样本文件,如需更多内容,完整版: <u>单击进入</u>

www.file123.top

1395833280@qq.com

微信: IPCSTD

