A Primer on Power Series

May 3, 2002

Suppose that

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \tag{\ddagger}$$

has radius of convergence R>0. Let S be the function defined on $D=N_R(z_0)=\{\,z\in {\bf C}:|z-z_0|< R\,\}$ by

$$S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

You should be familar with the following statements and terms.

- The series (‡) converges absolutely and uniformly for all z in any closed disk $\{z: |z-z_0| \leq R_1\}$ contained in D; that is, for all $R_1 < R$.
- S is analytic on D, and (\ddagger) is the Taylor series for S about the point z_0 . That is,

$$a_n = \frac{S^{(n)}(z_0)}{n!}$$
 for $n = 0, 1, 2, \dots$

• The series (‡) can be differentiated term-by-term so that for all $z \in D$

$$S'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}.$$

• The series (\ddagger) can be integrated term-by-term in the following sense. Let C be any contour in D and g any continuous function on C^* . Then

$$\int_{C} g(z)S(z) dz = \sum_{n=0}^{\infty} a_n \int_{C} g(z)(z - z_0)^n dz.$$

Similar statements hold for Laurent series. We haven't proved all of these statements in lecture, but you are welcome to use them. Anyway, suppose we are given two series. First a power series (‡) and a series

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}.$$
 (*)

There is a number $r \geq 0$ (we also allow $r = \infty$) such that (*) converges absolutely if $|z - z_0| > r$ and diverges if $|z - z_0| < r$. If r < R, then we can define a function f in the domain $A = \{ z \in \mathbb{C} : r < |z - z_0| < R \}$ by

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}.$$
 (**)

Then the following are true.

• The function f is analytic in A and (*) is the Laurent series for f in A. That is, if C is any positively oriented simple closed contour in A that contains z_0 in its interior, then

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 for $n = 0, 1, 2, ...,$ and $b_n = \frac{1}{2\pi i} \int_C f(z)(z - z_0)^{n-1} dz$ for $n = 1, 2,$

• The series (**) can be integrated term by term. That is, given a contour C in A and a function g which is continuous on C^* , then

$$\int_C g(z)f(z) dz = \sum_{n=0}^{\infty} a_n \int_C g(z)(z-z_0)^n dz + \sum_{n=1}^{\infty} b_n \int_C \frac{g(z)}{(z-z_0)^n} dz.$$

• To prove all this we would have needed to prove that both series in (**) converge absolutely and uniformly in any closed annulus of the form

$$A_1 = \{ z : r < r_1 \le |z - z_0| \le R_1 < R \}$$

contained in A.