

Università degli Studi dell'Insubria Dipartimento di Scienze Teoriche e Applicate

Architettura degli elaboratori

Circuiti combinatori: esercizi

Marco Tarini
Dipartimento di Scienze Teoriche e Applicate

SCUDIOU ALLE

Esercizio 1: semplificazione

- F = XYZ + Y/Z + /YZ =
 XYZ + Y/Z + Y/ZX + /YZ =
 XY (Z+/Z) + Y/Z + /YZ =
 XY + Y/Z + /YZ = XY + Y⊕Z
- F = XYZ +Y/Z + /YZ =
 XYZ + Y/Z + /YZ + /YZX =
 Y/Z + /YZ + XZ (Y+/Y) =
 Y/Z + /YZ + XZ = Y⊕Z + XZ

Architettura degli elaboratori

-7-

Esercizi - Livello logico

[A = A + AB]

[A = A + AB]

Esercizio 2

Compilare la tabella di verità del seguente schema circuitale

- 8 -

Architettura degli elaboratori

 Data una funzione booleana rappresentata tramite la seguente tabella di verità, ottenere la rappresentazione equivalente come somma di prodotti

x	у	z	f(x,y,z)	
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

Architettura degli elaboratori

- 26 -

Esercizio 6: semplificazione ulteriore

- F(X,Y,Z) = /Y/Z + X/Z + /XYZ =
 = /Z (/Y+X) + Z (/XY) = (DeMorgan)
 = /Z (/Y+X) + Z /(X+/Y)
- Prima: formula realizzable mediante un circuito che impiega 2 porte a due ingressi e 2 porte a tre ingressi
- Dopo: formula implementabile con 4 porte a due ingressi.

Architettura degli elaboratori

- 30 -

- Progettare un circuito di controllo per un allarme antincendio.
- Il sistema riceve in ingresso quattro segnali provenienti da altrettanti sensori di fumo (S1, S2, S3, S4) e genera un segnale di uscita A.
- Il segnale di allarme A=1 deve essere attivato se almeno due sensori segnalano presenza di fumo (=1).

Architettura degli elaboratori

- 32 -

- La funzione f(x,y,u,v) è definita come somma dei mintermini (0, 1, 2, 4, 5, 6, 7, 8, 9, 10)
- Effettuarne la sintesi sia come somma di prodotti sia come *prodotto di* somme.
- Con il mintermine n si intende il prodotto logico corrispondente alla combinazione di variabili in ingresso uguale alla codifica binaria di n.
- Ad es. il mintermine 2 corrisponde all'ingresso 0010, quindi a /x/yu/v

Architettura degli elaboratori

- 34 -

Esercizio 8: Ta	ibolia ai vo		ч			
f(x, y, u, v) = somma dei	# mintermine	х	у	u	٧	f
mintermini (0, 1, 2, 4, 5, 6, 7, 8, 9, 10)	0	0	0	0	0	1
	1	0	0	0	1	1
	2	0	0	1	0	1
	3	0	0	1	1	0
	4	0	1	0	0	1
	5	0	1	0	1	1
	6	0	1	-	0	1
	7	0	1	1	1	1
	8	1		0	0	1
	9	1	0	0	1	1
	10	1	0	1	0	1
	11	1	•	•	1	0
	12	1	•	•	0	_
	13	-	1	-	1	
	14		1		0	0
	15	1	1	1	1	0

Esercizio 8: verifica

Verifichiamo che (/x+/y) (y + /u + /v) sia equivalente a /xy + /y/u + /y/v

$$(/x+/y) (y + /u + /v) =$$

 $/xy + /yy + /x/u + /y/u + /x/v + /y/v =$ [/yy=0]
 $/xy + /x(/u+/v) + /y(/u+/v)$

Ponendo z = (/u+/v) la fornula si può riscrivere /xy +/xz + /yz = (essendo /xz = /xzy+/xz/y)

/xy + /xzy + /xz/y + /yz = (per assorbimento)

/xy + /yz =

/xy + /y(/u+/v) =

/xy + /y/u + /y/v

Architettura degli elaboratori

- 39 -

Esercizi - Livello logico

Esercizio 9 (1)

- Si consideri la funzione booleana di 3 variabili F(a,b,c) che vale 1 per le tre combinazioni di ingressi 001, 011, 010, e vale 0 per tutte le altre combinazioni.
 - Esprimere F in prima forma canonica (somma di prodotti)
 - ▶ Disegnare una rete combinatoria che realizza la funzione espressa al punto precedente utilizzando solamente porte AND e OR a due ingressi (oltre alle porte NOT).
 - ▶ Calcolare il costo della rete disegnata al punto precedente considerando che ogni porta a due ingressi (AND oppure OR) ha costo pari a quattro, mentre una porta NOT ha costo pari a uno.

Architettura degli elaboratori

- 40 -

Esercizio 9 (2)

- Calcolare il ritardo della rete considerando i seguenti valori di ritardo:
 - AND (2 ingressi): ritardo = 10 nsec;
 - OR (2 ingressi): ritardo = 12 nsec;
 - NOT: ritardo = 2 nsec.
- Trasformare l'espressione di F determinata in precedenza in modo da minimizzare il costo della sua realizzazione.
 - ► Se si usa l'algebra di Boole bisogna indicare le singole operazioni svolte e il nome oppure la forma del teorema adottato (ad esempio, "Proprietà Associativa" oppure "(ab)c = a(bc)")
 - ▶ NB: si richiede di minimizzare il costo, anche se questo comporta un maggior ritardo
- Calcolare il costo della nuova funzione ottenuta

Architettura degli elaboratori

- 41 -

Esercizio 9 (4)

Espressione trasformata	Teorema utilizzato			
abc+abc+abc	X + X = X			
abc+abc+abc+abc	XY + XZ = X (Y + Z)			
\overline{a} c $(\overline{b}$ + b)+ \overline{a} b $(\overline{c}$ + c)	X + !X = 1			
ac+ab	XY + XZ = X (Y + Z)			
 ā(b + c)				

- Costo (F) = 1 + 4 + 4 = 9
- Ritardo (F) = max(2,10) + 12 = 22 ns

Architettura degli elaboratori - 43 - Esercizi - Livello logico

Realizzazione della funzione OR

- Abbiamo a disposizione NAND, AND e NOT.
- Il modo più semplice per realizzare l'OR è usare il teorema di De Morgan:
 - A+B = /(/A/B)

Architettura degli elaboratori

- 67 -

Esercizi - Livello logico

Conclusione

 Usando esclusivamente porte NAND si può realizzare qualunque funzione logica (cioè qualunque circuito combinatorio).

Architettura degli elaboratori

- 68 -

- Si desidera un circuito combinatorio che realizza la funzione definita come seque.
 - L'ingresso è un numero N codificato in complemento a due su 4 bit.
 - L'uscita è su un solo bit.
 - ▶ L'uscita vale 1 per i seguenti valori di N: -8, -7, -6, -5, 0, 3, 4, 6. Per gli altri valori possibili di N, l'uscita vale 0.
- Realizzare il circuito, utilizzando esclusivamente porte nand.

Architettura degli elaboratori

- 69 -

Esercizi - Livello logico

Esercizio 17

а	b	С	d	N	Z
0	0	0	0	0	1
0	0	0	1	0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1	1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0	0	1	0	2	0
0	0	1	1	3	1
0 0	1	0	0	4	1
0	1	0	1	5	0
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	-8	1
1	0	0	1	-7	1
1	0	1	0	-6	1
1	0	1	1	-5	1
1	1	0	0	-4	0
1	1	0	1	-3	0
1	1	1	0	-2	0
1	1	1	1	-1	0

- L'uscita vale 1 per i seguenti valori di N: -8, -7, -6, -5, 0, 3, 4, 6. Per gli altri valori possibili di N, l'uscita vale 0.
- Per comodità chiamiamo a, b, c, d i 4 bit X, essendo a il più significativo.

Architettura degli elaboratori

- 70 -

