For gradors only	Question	1(a)	1(b)	2(a)	2(b)	2(c)	3(a)	3(b)	3(c)	Total
For graders only:	Marks									

MIDTERM II (CA2)

MH1812 - Discrete Mathematics

April 2024	7	ΓIME ALLC	OWED: 50 minutes
Name:			
Matric. no.:	 Γutor group:		

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT TURN OVER PAPER UNTIL INSTRUCTED.
- 2. This midterm paper contains **THREE** (3) questions.
- 3. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 4. Read the question carefully to see how to write your answers.
- 5. Clearly indicate your answers. Unclear or ambiguous answers will receive **zero marks**.
- 6. For questions that require you to **circle** to indicate your answer, the choice that you circle will be interpreted as your answer.
- 7. This IS NOT an OPEN BOOK exam.
- 8. Calculators are allowed.

- (a) Consider the recurrence relation $a_n = 13a_{n-1} 42a_{n-2}$ for $n \ge 2$, with initial conditions $a_0 = 2$, $a_1 = 11$.
 - (i) $[1 \text{ mark}] a_7 = \boxed{}$
 - (ii) [4 marks] We can write $a_n = us_1^n + vs_2^n$ where $s_1 > s_2$. Complete the table:

u		v		s_1		s_2				

(b) Use induction to show that, for each $n \in \mathbb{N} - \{0\}$,

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}.$$

Denote the above predicate by P(n).

(i) [2 marks] Base case. Show that P(1) is true:

(ii) [3 marks] Inductive step. Show that $P(k) \to P(k+1)$:

– Blank Page For Rough Work –

QUESTION 2. (9 marks)

In this question no justification is required. For each part, give an explicit number as

your answer, not an expression.

(a)	Find the number of	
	(i) [1 mark] distinguishable permutations of the word "BANANA":	
	(ii) [1 mark] elements in the power set of $\{a, b, c, d, e, f\}$:	
	iii) [1 mark] subsets of $\{1, 2, 3, 4\}$ that have cardinality at most 2:	
(b)	Consider all ternary strings of length 6. E.g., 012102.	
	(i) [1 mark] How many are there in total?	
	(ii) [1 mark] How many contain at least five '0's?	
	iii) [1 mark] How many begin with a '1' or a '2'?	
(c)	Consider all distinguishable permutations of the digits of 123213.	
	(i) [1 mark] How many are divisible by 3?	
	(ii) [1 mark] How many are odd?	

(iii) [1 mark] How many are less than 200000?

– Blank Page For Rough Work –

For t	his question, recall that $P(A)$ denotes the power set of the set A.
(a)	Let A , B , and C be sets. Determine the truth value of the following statements.
	(Circle "T" or "F" to indicate your answer.)
	(i) [1 mark] If $A \subseteq B$ and $B \subseteq C$ then $A \in P(C)$.
	(ii) [1 mark] If $A \cap B = C$ then $C \in P(A) \cap P(B)$.
	(iii) [1 mark] If $A \subseteq B \cup C$ then $A \in P(B) \cup P(C)$.
	No justification is required.
(b)	Consider the sets
	$A = \{a, b\}, B = \{b, c\}, \text{ and } C = \{a, c\}.$
	Write out the elements of each of the following sets.
	(i) $[2 \text{ marks}] ((A \cup B) - C) \cup (A \cap B)$:
	(ii) [2 marks] $P(B \cup C) \cap P(A \cap B)$:
	No justification is required.
(c)	[3 marks] Let A, B, and C be sets. Show that $(A - B) \times C \subseteq (A \times C) - (B \times C)$:

(10 marks)

QUESTION 3.

– Blank Page For Rough Work –