EPC7018 – Rad Hard Power Transistor

 V_{DS} , 100 V $R_{DS(on)}$, 3.9 m Ω max I_D, 345 A 95% Pb / 5% Sn solder

Rad Hard eGaN® transistors have been specifically designed for critical applications in the high reliability or commercial satellite space environments. GaN transistors offer superior reliability performance in a space environment because there are no minority carriers for single event, and as a wide band semiconductor there is less displacement for protons and neutrons, and additionally there is no oxide to breakdown.

These devices have exceptionally high electron mobility and a low temperature coefficient resulting in very low $R_{DS(on)}$ values. The lateral structure of the die provides for very low gate charge (Q_G) and extremely fast switching times. These features enable faster power supply switching frequencies resulting in higher power densities, higher efficiencies and more compact designs.

Maximum Ratings					
	PARAMETER VALUE				
	Drain-to-Source Voltage (Continuous)				
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120	V		
	Continuous (T _A = 25°C)	90	۸		
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	345	Α		
.,	Gate-to-Source Voltage	6			
V _{GS}	Gate-to-Source Voltage	-4	V		
T _J	Operating Temperature		°C		
T _{STG}	Storage Temperature	-55 to 150	°C		

Thermal Characteristics					
	PARAMETER	ТҮР	UNIT		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.4			
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	1.1	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	42			

Note 1: R_{BIA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote Thermal Performance of eGaN FETs.pdf for details.

passivated die form

EPC7018 eGaN® FETs are supplied only in with solder bars.

Die size: 6.05 x 2.3 mm

Applications

- · Space Applications: DC-DC power, motor drives, lidar, ion thrusters
- Commercial satellite EPS & avionics
- Deep space probes
- High frequency Rad Hard DC-DC conversion
- Rad Hard motor drives

Features

- · Ultra high efficiency
- Ultra low $R_{DS(on)}$, Q_G , Q_{GD} Q_{OSS}, and 0 Q_{RR}
- Ultra small footprint
- · Light weight
- Total dose
- Rated > 1 Mrad
- Single event
 - SEE immunity for LET of 85 MeV/(mg/cm²) with V_{DS} up to 100% of rated breakdown
- Maintains Pre-Rad specification for up to 3 x 10¹⁵ Neutrons/cm²

Benefits

· Superior radiation and electrical performance vs. rad hard MOSFETs: smaller, lighter, and greater radiation hardness

Static Characteristics (T _J = 25°C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
BV_{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 0.4 \text{ mA}$	100			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$		0.001	0.4	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.01	0.5	
I _{GSS}	Gate-to-Source Forward Leakage#	V _{GS} = 5 V, T _J = 125°C		0.05		mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.01	0.5	
$V_{\text{GS(TH)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 12 \text{ mA}$	0.8	1.2	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 25 \text{ A}$		2.7	3.9	mΩ
V_{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A, } V_{GS} = 0 \text{ V}$		1.8		V

[#] Defined by design. Not subject to production test.

Dynamic Characteristics $(T_j = 25^{\circ}C)$ unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
C_{ISS}	Input Capacitance			1828		
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		5.8		
Coss	Output Capacitance			1025		pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 040 F0VVV 0V		1210		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		1543		
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}$		15.2		
Q_{GS}	Gate-to-Source Charge			4.0		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 25 \text{ A}$		2.6		
Q _{G(TH)}	Gate Charge to Threshold			2.9		nC
Q _{OSS}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		77		
Q _{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate shorted to source.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Typical Transfer Characteristics

Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

[#] Defined by design. Not subject to production test.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV $_{DSS}$.

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Reverse Drain-Source Characteristics

Figure 9: Normalized On-State Resistance vs. Temperature

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 10: Normalized Threshold Voltage vs. Temperature

Figure 11: Transient Thermal Response Curves

t₁, Rectangular Pulse Duration, seconds

 $t_1, Rectangular \, Pulse \, Duration, seconds$

Figure 12: Safe Operating Area

Figure 12: Safe Operating Area

 $T_1 = \text{max rated}, T_C = +25^{\circ}\text{C}, \text{ single phase}$

TAPE AND REEL CONFIGURATION

	Dimension (mm)		
EPC7018 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
c (Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	8.00	7.90	8.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60
h	1.50	1.50	1.75

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Dove				
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3	
EPC7018	7018	YYYY	ZZZZ	

Seating plane

DIE OUTLINE

Solder Bump View

	Micrometers			
DIM	MIN	Nominal	MAX	
A	6020	6050	6080	
В	2270	2300	2330	
c	2047	2050	2053	
d	717	720	723	
e	210	225	240	
f	195	200	205	
g	400	400	400	

Pad 1 is Gate;

Pads 2,5,6,9,10,13,14,17,18,21,22, 25, 26, 29, 30 are Source;

Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain

RECOMMENDED LAND PATTERN

(units in µm)

Side View

Land pattern is solder mask defined

Pad 1 is Gate; Pads 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29. 30 are Source; Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain

 $Efficient\ Power\ Conversion\ Corporation\ (EPC)\ reserves\ the\ right\ to\ make\ changes\ without\ further\ notice\ to\ any\ products\ herein\ to$ improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice. Revised April, 2022