¿Todo esto para una tabla?

Curso de introducción a R

Pablo Cabrera-Álvarez

🕝 | 🛩 @pablocalv

Julio 2019

¿Cómo transformar la variable age en tres grupos (age_group) y crear una variable que sea la media de edad para cada grupo de age_group?

glimpse(gss_cat)


```
gss_cat %>%
  mutate(age_group = case_when(
    between(age, min(age), 29) ~ "18-29",
    between(age, 30, 64) ~ "30-64",
    TRUE ~ "65+" )) %>%
  group_by(age_group) %>%
  mutate(mean_age = mean(age, na.rm = TRUE)) %>%
  select(age, age_group, mean_age) %>%
  head()
```

```
## # A tibble: 6 x 3
## # Groups: age_group [3]
##
      age age_group mean_age
     <int> <chr>
##
                       <dbl>
## 1
        26 18-29
                        24.3
## 2
       48 30-64
                        45.9
## 3
       67 65+
                        74.4
## 4
        39 30-64
                        45.9
## 5
        25 18-29
                        24.3
        25 18-29
## 6
                        24.3
```

Frecuencias

Frecuencias en R

```
table(x, y)
```

• En R existe una función base para realizar tablas de frecuencias y tablas cruzadas (table()):

```
### Other Black White Not applicable ### 1959 3129 16395 0
```

• Sin embargo, ya existen paquetes con los que **producir tablas** de frecuencias como sjmisc.

Frecuencias en sjmisc

```
frq(x, sort.frq, weights, show.na, out, title, file)
```

• La función frq() permite crear tablas de frecuencias a partir de uno o varios factores.

```
frq(x = gss_cat, race)
```

```
##
## race <categorical>
## # total N=21483 valid N=21483 mean=2.67 sd=0.63
##
##
              val
                    frq raw.prc valid.prc cum.prc
4‡4‡
            Other
                  1959
                          9.12
                                    9.12
                                            9.12
            Black 3129 14.57
##
                                   14.57 23.68
##
            White 16395 76.32
                                   76.32 100.00
‡‡‡
   Not applicable
                      0.00
                                    0.00
                                          100.00
##
             <NA>
                          0.00
                                      NA
                                              NA
```

Frecuencias en sjmisc

• La función frq() cuenta con argumentos de tipo **estadístico**, como la inclusión de pesos (weights) y otros para **formatear** la tabla.

```
frq(x = gss_cat, race, sort.frq = "desc", show.na = FALSE, title = "Raza en EE.UU")
```

```
##
  Raza en EE.UU
## # total N=21483 valid N=21483 mean=2.67 sd=0.63
##
                   frq raw.prc valid.prc cum.prc
##
             val
           White 16395
##
                         76.32
                                  76.32
                                         76.32
           Black 3129
                       14.57
                                         90.88
##
                                 14.57
                                   9.12 100.00
##
           Other 1959 9.12
   Not applicable
                    0.00
                                   0.00
                                        100.00
```

Frecuencias en sjmisc

• Además, la función frq() permite guardar el output en un formato distinto a .txt (por defecto), utilizando los argumentos out y file. En out se puede establecer que el output sea visualizado en el "viewer" o en el "browser". El output se puede guardar en file.

```
frq(x = gss_cat, race, sort.frq = "desc", show.na = FALSE, title = "Raza en EE.UU",
  out = "viewer", file = "tablas1.html")
```

Raza en EE.UU				
val	frq	raw.prc	valid.prc	cum.prc
White	16395	76.32	76.32	76.32
Black	3129	14.57	14.57	90.88
Other	1959	9.12	9.12	100
Not applicable	0	0	0	100
total N=2	21483 · v	valid N=21	!483 · x=2.6	7 · σ=0.63

Frecuencias en *pipes*

• Otra oportunidad que ofrece la función frq() es que puede ser utilizada dentro de *pipes*:

```
gss_cat %>%
  select(race, marital) %>%
  frq()
```

Frecuencias en *pipes*

```
##
  race <categorical>
  # total N=21483 valid N=21483
                                    mean=2.67
##
##
                     frq raw.prc valid.prc cum.prc
               val
##
                    1959
                             9.12
                                       9.12
                                                9.12
             Other
##
             Black
                    3129
                           14.57
                                      14.57
                                              23.68
##
             White 16395
                            76.32
                                      76.32
                                             100.00
##
    Not applicable
                          0.00
                                       0.00
                                             100.00
##
              <NA>
                             0.00
                                         NA
                                                 NA
##
4⊧4⊧
  marital <categorical>
  # total N=21483 valid N=21483
                                    mean=4.48
                                               sd=1.67
##
##
                    frq raw.prc valid.prc cum.prc
              val
##
        No answer
                     17
                            0.08
                                      0.08
                                              0.08
                                             25.29
4#4#
    Never married
                   5416
                           25.21
                                     25.21
##
        Separated
                    743
                            3.46
                                      3.46
                                             28.75
                          15.75
                                     15.75
##
         Divorced
                   3383
                                             44.50
##
          Widowed
                   1807
                            8.41
                                      8.41
                                             52.91
```

Frecuencias con group_by()

• La función frq() se puede combinar con group_by():

```
gss cat %>%
  group_by(marital) %>%
  frq(race)
##
## race <categorical>
#非 # grouped by: No answer
## # total N=17 valid N=17 mean=2.65 sd=0.70
##
              val frq raw.prc valid.prc cum.prc
##
            Other
                                  11.76
##
                        11.76
                                         11.76
##
                                  11.76
            Black
                        11.76
                                          23.53
##
            White
                  13
                        76.47
                                  76.47 100.00
   Not applicable
                         0.00
                                    0.00
                                         100.00
##
                         0.00
                                      NA
                                              NA
              <NA>
##
##
  race <categorical>
## # grouped by: Never married
```

Frecuencias con *labelled*

frg(x = cis, P1)

• Otra característica de frq() es que funciona con objetos de tipo *labelled*:

```
##
  Valoración de la situación económica general de España (P1) < numeric>
  # total N=2487 valid N=2487 mean=3.60 sd=0.93
##
##
   val
            label
                  frq raw.prc valid.prc cum.prc
                                            0.24
##
      1 Muy buena
                          0.24
                                    0.24
                  185
                          7.44
                                    7.44
                                            7.68
##
            Buena
                                   42.62
##
          Regular 1060
                         42.62
                                           50.30
##
      4
            Mala 840
                         33.78
                                   33.78
                                           84.08
##
        Muy mala 376
                                   15.12
      5
                         15.12
                                           99.20
##
      8
             N.S.
                   19
                         0.76
                                    0.76
                                           99.96
             N.C.
##
                          0.04
                                    0.04
                                          100.00
##
               NA
                          0.00
                                      NA
                                              NA
```

Descriptivos

Descriptivos en R base

```
sd(x) | min(x) | max(x)
```

• Existen fórmulas para calcular los descriptivos en R base:

```
desc <- c(mean(gss_cat$age, na.rm = TRUE), sd(gss_cat$age, na.rm = TRUE), min(gss_cat$age, na.rm
names(desc) <- c("Media", "Desv. Típica", "Min.", "Max.")
desc

### Media Desv. Típica Min. Max.
### 47.18008 17.28750 18.00000 89.00000</pre>
```

Descriptivos en sjmisc

```
descr(x, weights, out)
```

• Con la función descr() se puede realizar una tabla de estadísticos descriptivos:

```
descr(x = gss_cat)
```

```
##
   ## Basic descriptive statistics
##
4‡4‡
                         label
                                    n NA.prc
                                                                  md trimmed
                 type
                                                        sd
                                                             se
        var
                                                mean
##
                integer
                           year 21483
                                        0.00 2006.50
                                                      4.45 0.03 2006 2006.38
       vear
##
    marital categorical marital 21483
                                                4.48
                                                     1.67 0.01
                                                                        4.61
                                        0.00
##
                integer
                            age 21407
                                        0.35
                                               47.18 17.29 0.12
                                                                  46
                                                                       46.30
        age
       race categorical
                                        0.00
                                                                        2.83
##
                           race 21483
                                                2.67 0.63 0.00
    rincome categorical rincome 21483
                                                      5.51 0.04
                                        0.00
                                                8.93
                                                                        8.78
##
    partyid categorical partyid 21483
                                        0.00
                                              7.14 2.10 0.01
                                                                        7.23
     relig categorical relig 21483
                                                                       14.14
##
                                        0.00
                                               13.59 2.45 0.02
                                                                  15
                          denom 21483
##
      denom categorical
                                        0.00
                                               21.21 10.74 0.07
                                                                  25
                                                                       22.39
                                                                        2.58
###
   tvhours
                integer tyhours 11337
                                       47.23
                                               2.98 2.59 0.02
##
            range skew
```

Descriptivos en sjmisc

• También con esta función se pueden realizar diferentes tipos de output:

```
descr(x = gss_cat, out = "browser")
```

Descriptivos con group_by()

• La función descr() también se puede combinar con otras funciones tidyverse:

```
gss_cat %>%
  group_by(race) %>%
  descr(age)
```

Descriptivos con group_by()

```
##
## ## Basic descriptive statistics
###
###
  Grouped by: Other
##
##
          type label n NA.prc mean sd se md trimmed range skew
   var
   age integer age 1951 0.41 39.48 14.39 0.33 37 38.12 71 (18-89) 0.84
##
##
  Grouped by: Black
##
##
         type label n NA.prc mean sd se md trimmed range skew
##
   var
##
   age integer age 3115 0.45 43.9 16.06 0.29 42 42.82 71 (18-89) 0.52
4‡4‡
4‡4‡
  Grouped by: White
###
##
       type label n NA.prc mean sd se md trimmed range skew
   var
   age integer age 16341 0.33 48.72 17.5 0.14 48 48.03 71 (18-89) 0.28
```

Tablas en R base

• La función table() de R base sirve para realizar tablas de contingencia:

```
table(gss_cat$marital, gss_cat$race)
```

<i>##</i>						
<i>4</i> <i>‡</i> <i>‡</i>		Other	Black	White	Not	applicable
<i>4‡4‡</i>	No answer	2	2	13		0
<i>4‡4‡</i>	Never married	633	1305	3478		0
<i>4</i> <i>‡</i> <i>‡</i>	Separated	110	196	437		0
4F4F	Divorced	212	495	2676		0
<i>4‡4‡</i>	Widowed	70	262	1475		0
<i>4</i> ‡4‡	Married	932	869	8316		0

Tabla con sjmisc

```
flat_table(data, ..., margin)
```

• En sjmisc existe una función para crear tablas cruzadas:

```
flat_table(data = gss_cat, marital, race)
```

<i>‡‡‡</i>		race	Other	Black	White	Not	applicable
<i>‡‡‡</i>	marital						
<i>‡‡‡</i>	No answer		2	2	13		0
<i>‡‡‡</i>	Never married		633	1305	3478		0
<i>‡‡‡</i>	Separated		110	196	437		0
<i>##</i>	Divorced		212	495	2676		O
<i>##</i>	Widowed		70	262	1475		0
<i>###</i>	Married		932	869	8316		0

Tabla con sjmisc

• La tabla puede contener celdas como porcentajes de columna o de fila en el argumento margin:

```
c("counts", "cell", "row", "col")
```

```
flat_table(data = gss_cat, marital, race, margin = "col")
```

```
##
                race Other Black White Not applicable
## marital
## No answer
                      0.10 0.06 0.08
                                                  NaN
## Never married
                     32.31 41.71 21.21
                                                  NaN
## Separated
                      5.62 6.26 2.67
                                                  NaN
## Divorced
                     10.82 15.82 16.32
                                                  NaN
#排 Widowed
                     3.57 8.37 9.00
                                                  NaN
#非 Married
                     47.58 27.77 50.72
                                                  NaN
```

crosstab(dep, indep, weight, prop.r, prop.c, prop.t, missing.include, format, plot =
FALSE)

• Otra alternativa es utilizar descr::crosstab() que permite realizar tablas de contingencia de aspecto similar a las que se hacen en SPSS:

```
descr::crosstab(gss_cat$marital, gss_cat$race, plot = FALSE)
```

```
Cell Contents
##
4‡4‡
              Count
###
##
     gss_cat$race
## gss_cat$marital
                  Black
             Other
                       White
                            Total
### No answer
                              17
 ______
## Never married
              633
                   1305
                        3478
                            5416
## Separated
                        437
              110
                   196
                             743
## Divorced
                   495
                       2676
              212
                            3383
## -----
## Widowed
               70
                   262
                       1475
                            1807
## Married
              932
                   869
                        8316
                            1.012e+04
```

• Se pueden pedir diferentes proporciones usando los argumentos prop.:

```
descr::crosstab(gss_cat$marital, gss_cat$race, prop.r = TRUE, plot = FALSE)
```

```
Cell Contents
##
4‡4‡
###
                   Count
4‡4‡
              Row Percent
##
##
     gss_cat$race
## gss_cat$marital Other Black White
                                      Total
               2 2 13
排 No answer
                                    17
4‡4‡
             11.8%
                       11.8% 76.5%
                                       0.1%
## Never married
              633
                         1305
                               3478
                                      5416
##
                  11.7%
                         24.1%
                               64.2%
                                      25.2%
## Separated
                  110
                        196 437
                                       743
4‡4‡
                  14.8%
                         26.4%
                               58.8%
                                       3.5%
## Divorced
                   212
                      495
                               2676
                                      3383
##
                   6.3%
                         14.6%
                               79.1%
                                      15.7%
```

• Existe la opción de que, además de la tabla, se realicen test chi cuadrado:

```
descr::crosstab(gss_cat$marital, gss_cat$race, chisq = TRUE, plot = FALSE)
```

```
## Warning in chisq.test(tab, correct = FALSE, ...): Chi-squared approximation
## may be incorrect
##
   Cell Contents
##
              Count
  _____
‡‡‡
4‡4‡
   gss_cat$race
## gss_cat$marital Other Black
                        White
                             Total
排 No answer
                2
                          13
                               17
## Never married
               633
                    1305
                              5416
## Separated
               110
                    196
                         437
                               743
## Divorced
               212
                    495
                         2676
                              3383
## Widowed
                70
                    262
                         1475
                              1807
## ------
```

Un paquete integral de tablas: expss

Tablas con exspss

```
apply_labels(...)
```

- El paquete exspss ofrece una serie de funciones que permiten realizar tablas personalizadas: frecuencias, contingencia y personalizadas
- Necesidad de definir las etiquetas de los valores y las variables con apply_labels()

Frecuencias

Tablas de frecuencias

fre(x, weight, drop_unused_labels)

fre(x = cis\$P1)

Valoración economía	Count	Valid percent	Percent	Responses, %	Cumulative responses, %
Muy buena	6	0.2	0.2	0.2	0.2
Buena	185	7.4	7.4	7.4	7.7
Regular	1060	42.6	42.6	42.6	50.3
Mala	840	33.8	33.8	33.8	84.1
Muy mala	376	15.1	15.1	15.1	99.2
N.S.	19	0.8	8.0	0.8	100.0
N.C.	1	0.0	0.0	0.0	100.0
#Total	2487	100	100	100	
<na></na>	0		0.0		

```
cro(cell_vars, col_vars, row_vars, weight, total_label, total_row_position)
```

• Crear una tabla de contingencia sencilla de **recuentos** se puede hacer con cro():

```
cro(cell_vars = cis$P1, col_vars = cis$P29, total_label = "Total")
```

	Género					
	Hombre	Mujer				
Valoración economía						
Muy buena	2	4				
Buena	113	72				
Regular	545	515				
Mala	382	458				
Muy mala	151	225				
N.S.	10	9				
N.C.	1					
#Total	1204	1283				

```
cro_cpct(cell_vars, col_vars, row_vars, weight, total_label, total_row_position)
```

• Crear una tabla de contingencia con porcentajes de columna se puede hacer con cro_cpct():

```
cro_cpct(cell_vars = cis$P1, col_vars = cis$P29, total_label = "Total")
```

Tablas de contingencia

	Géne	TO
	Hombre Muje	
Valoración ed	conomía	
Muy buena	0.2	0.3
Buena	9.4	5.6
Regular	45.3	40.1
Mala	31.7	35.7
Muy mala	12.5	17.5
N.S.	8.0	0.7
N.C.	0.1	
#Total	1204	1283

Tablas de contingencia

```
cro_rpct(cell_vars, col_vars, row_vars, weight, total_label, total_row_position)
```

• Crear una tabla de contingencia con **porcentajes de fila** se puede hacer con cro_rpct():

```
cro_rpct(cell_vars = cis$P1, col_vars = cis$P29, total_row_position = "none")
```

Tablas de contingencia

	Género		
	Hombre	Mujer	
Valoración economía			
Muy buena	33.3	66.7	
Buena	61.1	38.9	
Regular	51.4	48.6	
Mala	45.5	54.5	
Muy mala	40.2	59.8	
N.S.	52.6	47.4	
N.C.	100.0		

Tablas personalizadas

Tablas personalizadas

```
tab_cells(...)|tab_stat_cases(total_label, total_row_position, label)|tab_pivot()
```

Para construir una tabla personalizada hay que encadenar funciones de tipo tab_(). Los **elementos imprescindibles** para construir una tabla son:

- El data frame necesario para construir la tabla.
- Las variables en filas se incluyen en la función tab_cells().
- El **contenido de la tabla** (*por ej.* recuentos, porcentajes, estadísticos descriptivos) se establece en con una función del tipo tab_stat_().
- La función tab_pivot() para crear la tabla.

```
data %>%
  tab_cells(var1) %>%
  tab_stat_cases() %>%
  tab_pivot()
```

Un ejemplo...

```
cis %>%
  tab_cells(P1, P2) %>%
  tab_stat_cases() %>%
  tab_pivot()
```

Un ejemplo...

	#Total
Valoración economía	
Muy buena	6
Buena	185
Regular	1060
Mala	840
Muy mala	376
N.S.	19
N.C.	1
#Total cases	2487
Valoración economía ret	rospectiva
Mejor	585
Igual	1267

Añadir columnas

tab_cols(vars)

• Para **añadir columnas** solo es necesari incluir en el pipe la función tab_cols():

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(P29) %>%
  tab_stat_cases() %>%
  tab_pivot()
```

Añadir columnas

	Géne	ero
	Hombre Muje	
Valoración eco	onomía	
Muy buena	2	4
Buena	113	72
Regular	545	515
Mala	382	458
Muy mala	151	225
N.S.	10	9
N.C.	1	
#Total cases	1204	1283

Añadir super filas

tab_rows(data)

• Existe la posibilidad de añadir **filas adicionales** con la función tab_rows():

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(P29) %>%
  tab_rows(P29) %>%
  tab_stat_cases() %>%
  tab_pivot()
```

Añadir super filas

			Género	
			Hombre	Mujer
Género				
Hombre	Valoración economía	Muy buena	2	
		Buena	113	
		Regular	545	
		Mala	382	
		Muy mala	151	
		N.S.	10	
		N.C.	1	
		#Total cases	1204	
Mujer	Valoración economía	Muy buena		4
		Buena		72

Añadir porcentajes de fila o columna

```
tab_stat_rpct(label) | tab_stat_cpct(label)
```

• Dos funciones usuales son las que sirven para calcular los **porcentajes de filas y columnas**:

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(P29) %>%
  tab_stat_rpct() %>%
  tab_pivot()
```

Añadir porcentajes de fila o columna

	Géne	ro
	Hombre	Mujer
Valoración eco	onomía	
Muy buena	33.3	66.7
Buena	61.1	38.9
Regular	51.4	48.6
Mala	45.5	54.5
Muy mala	40.2	59.8
N.S.	52.6	47.4
N.C.	100.0	
#Total cases	1204	1283

Añadir estadísticos descriptivos

tab_stat_mean(label) | tab_stat_median(label) | tab_stat_se(label) | tab_stat_sum(label)

• También es posible añadir **estadísticos descriptivos** para variables de escala:

```
cis %>%
  tab_cells(P30) %>%
  tab_cols(P29) %>%
  tab_stat_mean() %>%
  tab_pivot()
```

	Género		
	Hombre Mujer		
Edad			
Mean	49.1	51.5	

Añadir estadísticos personalizados

```
tab_stat_fun(..., method)
```

• La función tab_stat_fun() permite crear combinaciones personalizadas de contenido para la tabla:

```
cis %>%
  tab_cells(P30) %>%
  tab_cols(P29) %>%
  tab_stat_fun(Mean = w_mean, "Std. dev." = w_sd, "Valid N" = w_n, method = list) %>%
  tab_pivot()
```

Añadir estadísticos personalizados

Género						
	Hombre Mujer			Mujer		
	Mean	Std. dev.	Valid N	Mean	Std. dev.	Valid N
Edad	49.1	17.9	1204	51.5	18	1283

• Existe la posibilidad de combinar varios tab_stat_(). Para ello se puede manipular la función tab_pivot() para decidir el posicionamiento en la tabla. Existen tres opciones: stat_position = c("outside_rows", "inside_rows", "outside_columns", "inside_columns"):

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(P29) %>%
  tab_stat_cases() %>%
  tab_stat_cpct() %>%
  tab_pivot()
```

Con la opción "inside_rows":

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(P29) %>%
  tab_stat_cases() %>%
  tab_stat_cpct() %>%
  tab_pivot(stat_position = "inside_rows")
```

	Géne	ero	
	Hombre Muje		
Valoración ec	onomía		
Muy buena	2.0	4.0	
	0.2	0.3	
Buena	113.0	72.0	
	9.4	5.6	
Regular	545.0	515.0	
	45.3	40.1	
Mala	382.0	458.0	
	31.7	35.7	
Muy mala	151.0	225.0	
	12.5	17.5	

Con la opción "outside_columns":

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(P29) %>%
  tab_stat_cases() %>%
  tab_stat_cpct() %>%
  tab_pivot(stat_position = "outside_columns")
```

	Género			
	Hombre	Mujer	Hombre	Mujer
Valoración eco	nomía			
Muy buena	2	4	0.2	0.3
Buena	113	72	9.4	5.6
Regular	545	515	45.3	40.1
Mala	382	458	31.7	35.7
Muy mala	151	225	12.5	17.5
N.S.	10	9	8.0	0.7
N.C.	1		0.1	
#Total cases	1204	1283	1204	1283

Añadir etiquetas a los estadísticos

• Utilizar el argumento label de las funciones de tipo tab_stat_():

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(P29) %>%
  tab_stat_cases(label = "Casos") %>%
  tab_stat_cpct(label = "% Col.") %>%
  tab_pivot(stat_position = "inside_rows")
```

Añadir etiquetas a los estadísticos

		Género		
		Hombre	Mujer	
Valoración ec				
Muy buena	Casos	2.0	4.0	
	% Col.	0.2	0.3	
Buena	Casos	113.0	72.0	
	% Col.	9.4	5.6	
Regular	Casos	545.0	515.0	
	% Col.	45.3	40.1	
Mala	Casos	382.0	458.0	
	% Col.	31.7	35.7	
Muy mala	Casos	151.0	225.0	
	% Col.	12.5	17.5	

Añadir una columna de totales

• Se puede añadir una columna de totales con total():

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(total(), P29) %>%
  tab_stat_cases(label = "Casos") %>%
  tab_stat_cpct(label = "% Col.") %>%
  tab_pivot(stat_position = "inside_rows")
```

Añadir una columna de totales

		#Total	Género	
			Hombre	Mujer
Valoración eco	nomía			
Muy buena	Casos	6.0	2.0	4.0
	% Col.	0.2	0.2	0.3
Buena	Casos	185.0	113.0	72.0
	% Col.	7.4	9.4	5.6
Regular	Casos	1060.0	545.0	515.0
	% Col.	42.6	45.3	40.1
Mala	Casos	840.0	382.0	458.0
	% Col.	33.8	31.7	35.7
Muy mala	Casos	376.0	151.0	225.0
	% Col.	15.1	12.5	17.5

Añadir un título a la tabla

set_caption(caption)

• Con la función set_caption() se pueden incluir títulos:

```
cis %>%
  tab_cells(P1) %>%
  tab_cols(total(), P29) %>%
  tab_stat_cases(label = "Casos") %>%
  tab_pivot(stat_position = "inside_rows") %>%
  set_caption("Tabla 1. Valoración económica según género")
```

Añadir un título a la tabla

Tabla 1. Valoración económica según género				
		#Total	Género	
			Hombre	Mujer
Valoración economía				
Muy buena	Casos	6	2	4
Buena	Casos	185	113	72
Regular	Casos	1060	545	515
Mala	Casos	840	382	458
Muy mala	Casos	376	151	225
N.S.	Casos	19	10	9
N.C.	Casos	1	1	
#Total cases	Casos	2487	1204	1283

Exportar a MS Excel

Exportar a Excel

- Para exportar las tablas a MS Excel se puede utilizar el paquete openxlsx.
- Antes de hacer la exportación es necesario crear un libro de Excel.
- Escribir la tabla en el libro de MS Excel y guardarlo

Crear una tabla y asignar el objeto

```
tabla_pers <- cis %>%
  tab_cells(P1, P2) %>%
  tab_cols(total(), P29, TAMUNI) %>%
  tab_stat_cases(label = "Casos") %>%
  tab_stat_cpct(label = "% Col.") %>%
  tab_pivot(stat_position = "inside_rows")
```

Crear un libro de trabajo y grabar la tabla

CreateWorkbook() | addWorksheet(wb, sheetname) | xl_write(obj, wb, sheet) | saveWorkbook(wb, file, overwrite)

• Crear un libro y una hoja de cálculo:

```
wb <- createWorkbook()
sh <- addWorksheet(wb = wb, sheetName = "Tables")</pre>
```

• **Grabar** el objeto tabla:

```
xl_write(obj = tabla_pers, wb = wb, sheet = sh)
```

• Guardar el libro de cáculo

```
saveWorkbook(wb = wb, file = "table1.xlsx", overwrite = TRUE)
```

```
## Note: zip::zip() is deprecated, please use zip::zipr() instead
```

Output en MS Excel

Curso de introducción a R