Math40003 Linear Algebra and Groups

Problem Sheet 6

1. Let $\mathcal{B} = \{(1,3), (1,2)\} \subseteq \mathbb{R}^2$.

(a) Show that \mathcal{B} is a basis of \mathbb{R}^2 .

(This works only because we are in dimension 2. Why?) (1,2) is not a scalar multiple of (1,3). (There are other ways to solve this that work in general.)

(b) Compute the basis change matrix form \mathcal{B} to the canonical basis of \mathbb{R}^2 $(\{(1,0)^t,(0,1)^t\}).$

The matrix is

$$P = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}.$$

(c) Compute the basis change matrix from the canonical basis to \mathcal{B} .

The desired matrix is found by inverting P. This can be done by elementary row operations. (notice that here I haven't written out the operation I am performing for each step. However, this is something you should always do in your solutions, here I left the operations unspecified because understanding what is going on at each step is a good review exercise for you.)

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 3 & 2 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & 1 \end{pmatrix} \sim$$

$$\begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & -1 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3 & -1 \end{pmatrix}$$

The desired matrix is $\begin{pmatrix} -2 & 1 \\ 3 & -1 \end{pmatrix}$.

2. Let

$$\mathcal{B} = \left\{ \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\4 \end{pmatrix} \right\} \subseteq \mathbb{R}^3.$$

(a) Show that \mathcal{B} is a basis of \mathbb{R}^3 .

The matrix

$$P = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 3 & 4 \end{pmatrix}$$

has rank 3 as it can be shown by bringing it in Reduced Row-Echelon Form. (We do this below as part of the solution to the next point.)

(b) Compute the basis change matrix from the canonical basis of \mathbb{R}^3 to \mathcal{B} . The basis change matrix we are after is computed by inverting P. This can be done as usual by reducing P with row operations. We get

$$\begin{pmatrix} -1 & 0 & 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 3 & 4 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 2 & 1 & 0 \\ 0 & 3 & 4 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & -5 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 7 & 4 & -1 \\ 0 & 0 & 1 & -5 & -3 & 1 \end{pmatrix}.$$

Thus
$$P^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 7 & 4 & -1 \\ -5 & -3 & 1 \end{pmatrix}$$
.

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x+z \\ x+z \end{pmatrix}$$

Write the matrix $_{\mathcal{B}}[T]_{\mathcal{B}}$ where \mathcal{B} is the basis

$$\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3.$$

Let \mathcal{C} be the canonical basis of \mathbb{R}^3 . We have

$$A = c[T]_{\mathcal{C}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

The basis change from \mathcal{B} to \mathcal{C} is

$$B = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}$$

The matrix $_{\mathcal{B}}[T]_{\mathcal{B}}=B^{-1}AB$, so it remains to compute B^{-1} and the product of the three matrices. We compute B^{-1} using row operations:

$$\begin{pmatrix} 2 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -3 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -3 & 0 & 2 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -3 & 0 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -3 & 0 & -2 \end{pmatrix}.$$

Thus

$$_{\mathcal{B}}[T]_{\mathcal{B}} = B^{-1}AB = \begin{pmatrix} -1 & -1 & 1 \\ -1 & 0 & 0 \\ -4 & -3 & 3 \end{pmatrix}.$$

4. Let V be a vector space of dimension 2 (over an arbitrary field containing $\mathbb Q$) and let

$$\mathcal{B} = \{v_1, v_2\}$$
 $\mathcal{B}' = \{v_1', v_2'\}$

be two bases of V such that

$$v_1 = 6v_1' - 2v_2' \qquad v_2 = 9v_1' - 4v_2'.$$

(a) Compute the basis change matrix from \mathcal{B} to \mathcal{B}' .

The question gives us the coordinates of v_1 with respect to \mathcal{B}' . They are

$$\begin{pmatrix} 6 \\ -2 \end{pmatrix}$$

The coordinates of v_2 are also given by the question. The basis change matrix from \mathcal{B} to \mathcal{B}' is the matrix whose columns are the coordinates of the vectors of \mathcal{B} written with respect to the basis \mathcal{B}' . Thus the desired basis change matrix is

$$\begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix}$$

If in doubt ask yourself what happens to the coordinates of the vector v_1 when fed to the matrix $_{\mathcal{B}'}[Id]_{\mathcal{B}}$: the coordinates of v_1 with respect to \mathcal{B} are $(1,0)^t$ and the coordinates of v_1 with respect to \mathcal{B}' are $(6,-2)^t$. When multiplying a matrix by $(1,0)^t$ we get its first column, so the first column of the matrix we are after has to be $(6,-2)^t$. The same argument applies to the second column.

(b) Compute the coordinates of $-3v_1 + 3v_2$ with respect to \mathcal{B}' .

This can be done by substituting the expression of v_2 and v_2 in $-3v_1+3v_2$. Since we already have the basis change matrix, however it suffices to compute

$$\begin{pmatrix} 6 & 9 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} -3 \\ 3 \end{pmatrix} = \begin{pmatrix} 9 \\ -6 \end{pmatrix}.$$

Check the result using the substitution method.

(c) Why did we assume that the base field contained \mathbb{Q} ? What happens if we try and answer the same questions with base field $\mathbb{Z}/2\mathbb{Z}$?) If the base field is $\mathbb{Z}/2\mathbb{Z}$ then \mathcal{B} is not a basis because $v_1 = 0$.

5. Let A be a square matrix of dimension n over an arbitrary field. Assume that there exists $m \in \mathbb{N}$ such that A^m is the zero matrix. Show that $I_n + A$ is invertible.

We write

$$I_n = I_n + A^m = (I_n + A)(I_n - A + A^2 \cdots + (-1)^{m-1}A^{m-1}).$$