Algoritmos

Prof. Marcelo F. Siqueira Ed. Prof. Umberto S. Costa, Richard Bonichon

17 de março de 2015

SUMÁRIO

1	Intr	odução	7
	1.1	Algoritmos e problemas computacionais	7
	1.2	Representação de algoritmos	9
	1.3	Resolução de Problemas	10
	1.4	Computadores	10
	1.5	Exercícios propostos	12
2	Tipo	os de Dados e Variáveis	15
	2.1	Tipos de dados	15
	2.2	Variáveis	16
	2.3	Exemplos	17
	2.4	Nomes de variáveis	18
	2.5	Exercícios Resolvidos	19
	2.6	Exercícios propostos	19
3	Enti	rada e Saída	22
	3.1	Instruções de entrada e saída	22
	3.2	A estrutura de um algoritmo	23
	3.3	Exercícios resolvidos	24
	3.4	Exercícios propostos	25
4	Ехр	ressões Aritméticas – Parte 1	27
	4.1	Operadores aritméticos	27
	4.2	Precedência de operadores	27
	4.3	Alteração de prioridades	28
	4.4	A instrução de atribuição	31
	4.5	Exercícios resolvidos	31
	4.6	Exercícios propostos	32
5	Ехр	ressões Aritméticas – Parte 2	33
	5.1	Operadores aritméticos sobre os reais	33
	5.2	Regras semânticas	34
	5.3	Um algoritmo envolvendo constantes e variáveis reais	35
	5.4	Exercícios resolvidos	36
	5.5	Exercícios propostos	37
6	Exp	ressões Relacionais	38
	6.1	Operadores relacionais	38

	6.2	Relações e expressões aritméticas	
	6.3	Relações envolvendo tipos não inteiros	G
	6.4	Exercícios resolvidos	1
	6.5	Exercícios propostos	2
7	Estr	uturas Condicionais - Parte 1 4	3
	7.1	Motivação	3
	7.2	Comando <u>se-entao-senao-fimse</u>	4
	7.3	Aninhamento de comandos condicionais	-
	7.4	Comando se-entao-fimse	7
	7.5	Exercícios resolvidos	7
	7.6	Exercícios propostos	
8	Expr	essões Lógicas 5	2
•	8.1	Lógica proposicional	
	8.2	Proposições compostas	
	8.3	Operadores lógicos	
	8.4	Exercícios resolvidos	
	8.5	Exercícios propostos	
	0.0	Exercicios propostos	С
9		uturas Condicionais - Parte 2	
	9.1	Usando proposições compostas	
	9.2	Troca de conteúdo entre duas variáveis	
	9.3	O comando <u>escolha</u>	
	9.4	Exercícios propostos	3
10		uturas de Repetição - Parte 1 6	
		O comando <u>enquanto-faca-fimenquanto</u>	7
	10.2	Exemplos	9
	10.3	Exercícios propostos	(
11	Estr	uturas de Repetição 2	4
	11.1	A seqüência de Fibonacci	4
	11.2	Inversão da ordem dos dígitos de um número	5
		Teste de primalidade	7
		Exercícios propostos	8
12	Estr	uturas de Repetição 3 8	2
		O cálculo da média aritmética	
		O maior elemento de uma sequência	
		Os múltiplos de posição na sequência	
		Exercícios Propostos	
10	Ectr	uturas de Repetição 4 9	r
13		• •	
		Exemplo	
		Laço repita versus laço enquanto	

14	Veto		97
	14.1	Motivação	. 97
	14.2	Definição e manipulação de variáveis	. 98
	14.3	O cálculo do desvio padrão	. 100
	14.4	O comando para- <u>faca</u> -fimpara	. 101
	14.5	Exercícios propostos	. 102
15	Anin	nhamento de Laços	107
	15.1	Laços aninhados	. 107
	15.2	Ordenação	. 109
	15.3	Exercícios propostos	. 114
16	Mat	rizes - Parte 1	119
	16.1	Definição e Manipulação de Matrizes	. 119
	16.2	Exemplos	. 121
		16.2.1 Soma de duas matrizes	. 121
		16.2.2 Cálculo de norma matricial	. 123
		16.2.3 Cálculo da matriz transposta	. 123
	16.3	Exercícios propostos	. 124
17	Mat	rizes 2	128
	17.1	Mais exemplos	. 128
		17.1.1 Multiplicação de duas matrizes	. 128
		17.1.2 Quadrado mágico	. 130
	17.2	Exercícios propostos	. 133
18	Mod	dularização - Parte 1	136
	18.1	O Quê e Por Quê?	. 136
	18.2	Componentes de um módulo	. 137
	18.3	Funções e Procedimentos	. 137
	18.4	Chamando Funções e Procedimentos	. 140
	18.5	Passagem de Parâmetros	. 141
	18.6	Escopo de Dados e Código	. 142
	18.7	Exercícios propostos	. 143

LISTA DE ALGORITMOS

1.1 1.2	Algoritmo para calcular a área de um quadrado	9 11
3.1 3.2	Algoritmo para ler um numero inteiro e escrever o valor lido	24 25
4.1 4.2 4.3	Cálculo de algumas expressões aritméticas com números inteiros	29 30 32
5.1 5.2 5.3	Cálculo de expressões aritméticas com variáveis reais	34 36 37
7.1 7.2 7.3 7.4 7.5 7.6 7.7	Cálculo (incompleto) da mais alta de duas pessoas. Algoritmo para determinar a mais alta de duas pessoas. Algoritmo para determinar a mais alta de duas pessoas. Algoritmo para determinar situação escolar de aluno. Algoritmo para calcular salário líquido mensal de um funcionário. Soma dígitos de centena e milhar Algoritmo "Misterioso". Qual é a saída dele?	43 45 49 50 50 51
9.1 9.2 9.3 9.4	Cálculo da média harmônica ponderada de três notas	61 65 65 66
10.2	Escrita dos inteiros de 1 a n	72 73 73
11.2	Cálculo n-ésimo termo da sequência de Fibonacci	80 80 81
12.2	Cálculo da média aritmética de n números reais	83 84 89
13.1	Algoritmo para escrever os inteiros de 1 a n	91

	Algoritmo para calcular e escrever o resultado da série finita $\sum_{i=1}^{n} x^{i}/i$	
14.1 14.2 14.3	Algoritmo para calcular a média aritmética de cinco notas	104 105 105
15.1	Algoritmo para calcular desvio padrao com laço para	110
16.2 16.3	Primeira parte do algoritmo para somar duas matrizes	122 123
	Norma de soma máxima de linha	
	Multiplicação de 2 matrizes	

INTRODUÇÃO

1.1 Algoritmos e problemas computacionais

A palavra algoritmo tem origem no sobrenome do matemático, astrônomo, geólogo, geógrafo e autor persa Mohammed ibn-Musa al-Khwarizmi, que viveu entre 780 e 850 d.C [2]. No século XII, sua obra sobre numerais indianos foi traduzida para o latim e apresentou a notação posicional decimal para o Mundo Ocidental. Ele também apresentou a primeira solução sistemática das equações lineares e quadráticas e é considerado um dos fundadores da Álgebra [1]. O radical de algarismo e algoritmo vem de Algoritmi, a forma latina do sobrenome al-Khwarizmi.

Há tantas definições diferentes para o termo algoritmo quanto autores escrevendo sobre elas. No entanto, todas essas definições concordam que um **algoritmo** é uma seqüência finita de instruções, bem definidas e não-ambíguas, para resolver um dado problema. Cada instrução de um algoritmo deve ser executada por um período de tempo finito. Em geral, a definição de algoritmo é ilustrada através de qualquer processo "mecânico", tal como uma receita culinária ou a troca de pneu de um automóvel. No entanto, aqui, estamos interessados em **algoritmos computacionais**, ou seja, algoritmos que descrevem instruções a serem executadas por computador.

Para exemplificar o que entendemos por "algoritmo computacional", vamos considerar o problema de se calcular a área A de um quadrado Q de lado l. No ensino médio, aprendemos que

$$A = l^2. (1.1)$$

Então, dado o comprimento l dos lados do quadrado Q, uma forma de resolver o problema é usar a fórmula acima, ou seja, multiplicar o valor de l por ele próprio. Note que a fórmula em (1.1) pode ser usada para calcular a área A de qualquer quadrado. Tudo o que precisamos saber para utilizar a fórmula para obter a área A de qualquer quadrado é o comprimento l do lado do quadrado.

Suponha, agora, que devemos escrever uma seqüência de instruções para calcular A, a qual deve ser seguida por uma criança que sabe multiplicar dois números e sempre faz isso de forma correta. A criança deve nos solicitar o comprimento l do lado do quadrado Q e, depois de calcular A, ela deve nos informar o valor de A obtido por ela. Este valor deve ser escrito, pela criança, em uma folha de papel usando lápis ou caneta. Uma possível seqüência de instruções é

- 1. Solicite o comprimento l do lado do quadrado.
- 2. Multiplique l por l
- 3. Escreva o resultado da multiplicação na folha de papel.

A sequência acima, por mais simples que seja, ilustra todos os elementos essenciais da definição

de algoritmo. A seqüência é finita (há apenas três instruções). Cada uma delas está bem definida, não deixa nenhuma dúvida sobre o que deve ser feito e pode ser realizada em um período finito de tempo. Há ainda, no nosso exemplo, dois componentes fundamentais dos algoritmos computacionais: entrada e saída. A **entrada** consiste do conjunto de dados que deve ser fornecido ao algoritmo, enquanto a **saída** é o conjunto de dados produzidos pelo algoritmo. No exemplo acima, a entrada é o comprimento l do lado do quadrado e a saída é a área A do quadrado.

O exemplo acima também ilustra uma característica importante dos algoritmos computacionais: eles são agentes transformadores de dados de entrada em dados de saída. Este processo de transformação é comumente denominado **processamento**. Daí, o termo **processamento de dados**. No exemplo, o valor de l foi "processado" para gerar o valor de A. O processamento, neste caso, consiste na multiplicação de l por l. É importante perceber que um algoritmo não é a solução de um problema, mas sim um processo para se obter a solução. Um problema que pode ser resolvido por um algoritmo computacional é denominado **problema computacional**. Isto é, um problema computacional é aquele que pode ser resolvido por um computador através de um algoritmo.

Figura 1.1: A transformação de entrada em saída por um algoritmo.

Um problema computacional possui várias ocorrências (ou instâncias). Uma **ocorrência** de um problema computacional é uma instância qualquer da entrada do problema. Por exemplo, no problema do cálculo da área do quadrado, sabemos que a entrada do problema é o comprimento l do lado do quadrado. Então, qualquer valor válido para l, ou seja, qualquer real positivo, é uma instância do problema, por exemplo l=2. Um algoritmo deve sempre ser construído para resolver todas as possíveis ocorrências de um problema. O algoritmo do nosso exemplo contém instruções para o cálculo da área A do quadrado para qualquer valor de l dado.

Um algoritmo é dito **correto** se ele sempre termina e produz a resposta correta para *todas* as ocorrências de um dado problema. O algoritmo do nosso exemplo, portanto, é correto. Obviamente, a "criança" que executa as instruções deve saber cumpri-las de forma correta. Na nossa analogia, a criança é o computador. Os computadores que usamos na prática sempre cumprem as instruções que lhes damos de forma correta. Se houver algum erro na tentativa de solucionar um problema computacional através de um computador, este erro está nas próprias instruções que lhe demos. O computador apenas executa, fielmente, as instruções que lhe damos.

Quando começamos a construir algoritmos, umas das habilidades mais importantes é aquela de identificar qual é a entrada e qual é a saída do algoritmo a partir da descrição (ou declaração) do problema. Você deve procurar adquirir e aprimorar esta habilidade sem se preocupar em como resolver o problema ou escrever o algoritmo. Muitas vezes, o enunciado de um problema computacional descreve, de forma explícita, qual é a entrada e qual é a saída do algoritmo:

Escreva um algoritmo que recebe, como entrada, a base e a altura de um retângulo qualquer e produz como saída a área do retângulo.

Note que o próprio enunciado torna evidente que a entrada consiste dos comprimentos da base e altura de um retângulo e a saída, da área do retângulo. No entanto, o problema poderia ser descrito como

Dados a base e a altura de um retânqulo qualquer, calcule e escreva a área do retânqulo.

Note que, em ambos os casos, não é preciso saber calcular a área do retângulo ou escrever o algoritmo que faz este cálculo para determinar que a entrada do algoritmo é a base e a altura de um retângulo e a saída, ou seja, o dado que o algoritmo deve produzir como resposta, é a área do retângulo.

1.2 Representação de algoritmos

Em geral, algoritmos são descritos através de uma linguagem que se assemelha àquela que usamos para nos comunicar. O vocabulário das linguagens destinadas à descrição de algoritmos é extremamente pequeno quando comparado ao das linguagens coloquiais, mas rico o suficiente para resolvermos uma gama enorme de problemas computacionais. Aqui, descreveremos algoritmos com uma linguagem conhecida como **Portugol**, que é utilizada pela ferramenta VISUALG, que será utilizada na disciplina como forma de apoio ao aprendizado de algoritmos.

Por exemplo, usando a linguagem Portugol da VISUALG, o algoritmo que vimos na seção anterior para calcular a área de um quadrado a partir do comprimento de seus lados é descrito como em 1.2:

```
algoritmo "Area do quadrado"
var lado, area : real
inicio
escreva ("Entre com o comprimento dos lados do quadrado: ")
leia (lado)
area <- lado * lado
escreva ("A area do quadrado e: ", area)
fimalgoritmo
```

Algoritmo 1.1: Algoritmo para calcular a área de um quadrado.

Há uma série de detalhes sintáticos da linguagem Portugol da ferramenta VISUALG que devem ser dominados para que você possa escrever seus algoritmos usando esta linguagem. Parte do processo de aprendizado de construção de algoritmos é dedicada à familiarização com os aspectos sintáticos de alguma linguagem de descrição de algoritmos. Felizmente, as linguagens de descrição de algoritmos possuem estruturas sintáticas bastante parecidas entre si. Isto faz com que o uso de outra linguagem, após o aprendizado da primeira, seja bastante facilitado.

Uma outra forma de descrevermos algoritmos é através do uso de *fluxogramas*, que são diagramas com figuras que identificam as várias instruções do algoritmo. Nesta disciplina, também utilizaremos fluxogramas, embora a principal forma de descrição seja mesmo a linguagem Portugol.

1.3 Resolução de Problemas

Todo algoritmo está relacionado com a solução de um determinado problema computacional. Portanto, construir um algoritmo para um dado problema significa, antes de mais nada, determinar uma forma para solucionar um problema e descrevê-la como uma seqüência finita de instruções em alguma linguagem. A tarefa de encontrar a solução de um problema qualquer é, muitas vezes, realizada de forma empírica e um tanto quanto desorganizada; ocorrem vários procedimentos mentais, dos quais raramente tomamos conhecimento. A organização do processo de resolução de problemas é extremamente desejável, pois somente assim podemos verificar onde o processo não é eficiente. Identificadas as deficiências deste processo, procuramos formas de corrigi-las e, consequentemente, aumentamos a nossa capacidade de resolver problemas.

A capacidade para resolver problemas pode ser vista como uma habilidade a ser adquirida. Esta habilidade, como qualquer outra, pode ser obtida essencialmente pela combinação de duas partes:

- conhecimento e
- destreza.

Conhecimento é adquirido pelo estudo. Em termos de resolução de problemas, está relacionado a que táticas e estratégias usar e quando usar. Destreza é adquirida pela prática. A experiência no uso do conhecimento (prática) nos dá mais agilidade na resolução de problemas.

1.4 Computadores

O que é um computador? De acordo com o Webster's New World Dictionary of the American Language (segunda edição), um computador é "uma máquina eletrônica que, por meio de instruções e informações armazenadas, executa rápida e frequentemente cálculos complexos ou compila, correlaciona e seleciona dados". Basicamente, um computador pode ser imaginado como uma máquina que manipula informação na forma de números e caracteres. A informação é denominada, de maneira geral, de **dado**. O que faz dos computadores máquinas notáveis é a extrema rapidez e precisão com que eles podem armazenar, recuperar, manipular e produzir dados.

Quando desejamos utilizar, pela primeira vez, um computador para nos auxiliar na tarefa de processamento de dados, deparamo-nos com algumas questões inerentes a este processo: "Como informamos ao computador o algoritmo que deve ser executado para obtermos o resultado desejado?", "Como fornecemos a entrada do algoritmo?" e "Como recebemos o resultado do algoritmo?"

O ato de instruir o computador para que ele resolva um determinado problema é conhecido como **programação**. Esta tarefa nada mais é do que inserir no computador as ações do algoritmo e os dados referenciados pelas ações. Estas, quando executadas pelo coputador, produzem a solução do problema. Entretanto, antes de inserir as ações e os dados no computador, devemos reescrevê-las em uma linguagem apropriada para descrever algoritmos computacionais, ou seja, em uma **linguagem de programação**. O termo **programa** é comumente empregado para designar o algoritmo em uma linguagem de programação. Entretanto, não há distinção conceitual entre algoritmo e programa¹. O Algoritmo 1.2 escrito em linguagem C é mostrado no Programa 1.4. Compare os dois!

¹Em Teoria da Computação, existe uma distinção, mas ela não será levada em conta aqui.

Cada modelo de computador possui uma linguagem de programação própria, denominada linguagem de máquina, e, em geral, distinta das linguagens de máquina dos demais modelos de computador. Esta é a única linguagem de programação que o computador realmente entende. No entanto, para evitar que nós tenhamos de aprender a linguagem de máquina de cada computador diferente para o qual queremos programar, muitas linguagems de programação independentes de máquina foram criadas. Se você aprende uma linguagem independente de máquina, estará apto, pelo menos em princípio, a programar qualquer computador usando essa linguagem.

As linguagens de programação independentes de máquina não são compreendidas pelos computadores. Então, para que elas possam ser úteis para nós, um programa denominado **compilador** deve estar presente no computador. Um compilador para uma determinada linguagem de programação realiza a tradução automática de um programa escrito em uma certa linguagem para um programa equivalente escrito na linguagem de máquina. Tudo que precisamos fazer para executar um programa escrito em uma linguagem de programação que não seja a linguagem de máquina do computador é *compilar* o nosso programa com um compilador específico para aquela linguagem e, em seguida, executar o programa produzido pelo compilador.

```
#include <stdio.h>
    void main()
2
    {
3
      double lado, area;
4
      printf("Entre com o comprimento dos lados do quadrado:") ;
      scanf("%f\n", &lado);
      area = lado * lado ;
      printf("A area do quadrado e: %f\n", area);
8
      return ;
9
    }
10
```

Algoritmo 1.2: Programa em linguagem C para calcular a área de um quadrado.

Tanto o algoritmo quanto os seus dados de entrada são inseridos nos computadores por meio de equipamentos eletrônicos conhecidos como **periféricos de entrada**. O teclado e o *mouse* são exemplos de periféricos de entrada. As instruções e os dados inseridos no computador através de um periférico de entrada são armazenados em um dispositivo do computador denominado **memória** (primária ou secundária). Os dados de saída resultantes da execução do algoritmo pelo computador são apresentados também por meio de equipamentos eletrônicos denominados **periféricos de saída**. O monitor de vídeo e a impressora são exemplos de periféricos de saída.

O computador executa um determinado programa através de um dispositivo interno denominado **unidade central de processamento**, mais conhecido no mundo dos computadores pela sua abreviação em inglês: *CPU* (*Central Processing Unit*). A CPU é responsável por buscar as instruções e os dados do programa que estão armazenados na memória do computador, decodificar as instruções e executar a tarefa descrita por elas com os respectivos dados. A CPU pode ser vista como o "cérebro" do computador.

No mundo dos computadores, você ouvirá as pessoas falarem sobre hardware e software. Hardware se refere à máquina propriamente dita e a todos os periféricos conectados a ela. Software se refere aos programas que fazem a máquina realizar alguma tarefa. Muitos "pacotes" de software estão disponíveis nos dias atuais. Eles incluem processadores de texto, planihas eletrônicas, sistemas gerenciadores de banco de dados, jogos, sistemas operacionais e compiladores. Você pode e

aprenderá a criar seus próprios softwares. Para criar software, você deverá adquirir competências e habilidades para: (1) desenvolver algoritmos para solucionar problemas computacionais e (2) usar uma linguagem de programação. Aqui, dedicamo-nos à (1).

1.5 Exercícios propostos

- 1. O primeiro passo no desenvolvimento de um algoritmo para um dado problema computacional é o entendimento da entrada e da saída do problema. Este entendimento deve preceder qualquer tentativa de desenvolvimento de uma solução para o problema. Neste exercício, você deve descrever qual é a entrada e qual é a saída de cada um dos problemas listados abaixo:
 - a) Dado um número inteiro qualquer, calcule e escreva o antecessor e o sucessor do número dado.
 - b) Dados três números reais não-negativos, calcule e escreva a média aritmética dos números dados.
 - c) Dado um número real qualquer, calcule e escreva a terça parte do número dado.
 - d) Dados o termo inicial e a razão de uma PA, bem como um número inteiro positivo n, calcule e escreva o valor do n-ésimo termo dessa PA.
 - e) Escreva um algoritmo para ler o valor de uma temperatura em graus centrígados e escrever a mesma temperatura em graus Fahrenheit. Se c é o valor da temperatura em graus centrígados, então a temperatura, f, em Fahrenheit é dada por

$$f = \frac{9 \cdot c + 160}{5} \,.$$

- f) Chico Bento deseja calcular o saldo atual de uma de suas aplicações financeiras. Para tal, ele conhece o saldo anterior ao reajuste e sabe que este saldo foi reajustado em 1%. Escreva um algoritmo para calcular e escrever esse saldo atual.
- g) Chico Bento está preocupado com o consumo de energia de sua residência e deseja escrever um algoritmo para ajudá-lo a controlar suas despesas com energia. Chico Bento sabe que 100 quilowatts de energia equivalem a um sétimo do salário mínimo. Então, dados o valor do salário mínimo e a quantidade de quilowatts gasta na residência de Chico Bento, calcule e escreva (a) o valor em reais de cada quilowatt, (b) o valor em reais a ser pago e (c) o novo valor em reais a ser pago se Chico Bento ganhar um desconto de 10% por pagar em dia.
- h) Chico Bento possui um carro que faz, em média, 12 km com um litro de gasolina. Ele realizou uma viagem com seu carro e está interessado em saber quantos litros de combustível o carro consumiu. Para tal, ele dispõe de duas informações: o tempo gasto dirigindo e a velocidade média do carro. Escreva um algoritmo para calcular quantos litros de combustível o carro de Chico Bento consumiu.
- i) Escreva um algoritmo para ler um valor de hora, em termos de três números inteiros, hora, minuto e segundos, e calcular e escrever o número de segundos que se passou desde o começo do dia até o valor da hora que foi fornecido como entrada para o algoritmo.

- j) Dada uma centena, isto é, um número inteiro positivo da forma xyz tal que x é um dígito de 1 a 9 e tanto y quanto z são dígitos de 0 a 9, calcule e escreva a unidade do número dado.
 - Por exemplo, se o número dado é igual a 147, a solução do problema é 7. Observe que a entrada do problema consiste de um único valor, que é um número inteiro positivo representando uma centena, e não os três dígitos da centena.
- 2. Se você puder, escreva um algoritmo (ou seja, uma seqüência de instruções) para resolver cada um dos problemas acima. Você não precisa escrever as instruções na linguagem do VISUALG, mas sim de forma livre, como na primeira seqüência de instruções que foi dada para o problema da área do quadrado.

Figura 1.2: Fluxograma do algoritmo de cálculo da área do quadrado.

TIPOS DE DADOS E VARIÁVEIS

2.1 Tipos de dados

Os dados manipulados por um algoritmo podem possuir natureza distinta, isto é, podem ser números, letras, frases, etc. Dependendo da natureza de um dado, algumas operações podem ou não fazer sentido quando aplicadas a eles. Por exemplo, não faz sentido falar em somar duas letras. Para poder distinguir dados de naturezas distintas e saber quais operações podem ser realizadas com eles, os algoritmos utilizam o conceito de tipo de dados.

O tipo de um dado define o conjunto de valores ao qual o dado pertence, bem como o conjunto de todas as operações que podem atuar sobre qualquer valor daquele conjunto de valores. Por exemplo, como veremos mais adiante, a linguagem que utilizaremos para descrever nossos algoritmos possui o tipo de dado <u>inteiro</u>, que consiste no conjunto de todos os números inteiros, denotado por \mathbb{Z} , e todas as operações que podem ser aplicadas aos números inteitos (isto é, adição, subtração, multiplicação, divisão inteira e resto).

A seguir, descrevemos os tipos de dados oferecidos pela linguagem Portugol do VISUALG. Na nossa descrição, o nome de um tipo é escrito no formato tipo, assim como as demais palavras reservadas da linguagem Portugol. Além disso, ao definirmos um dado tipo de dados, não fornecemos uma descrição detalhada das operações que atuam sobre seus valores, pois tais operações serão objetos de estudo das próximas aulas.

- <u>inteiro</u>: consiste dos números inteiros e das operações de adição, subtração, multiplicação, divisão inteira e resto. Na linguagem Portugol, os números inteiros são escritos apenas como a concatenação dos dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9, tal como em 5, 100 e 1678. Números negativos são representados com o sinal "—" na frente do número, tal como —23.
- real: consiste dos números reais e das operações de adição, subtração, multiplicação, divisão. Na linguagem Portugol, os números reais são caracterizados por possuírem uma parte inteira e uma parte fracionária. Por exemplo, as partes inteira e fracionária do número real 3.141596 são 3 e 141596, respectivamente. Note que um "ponto" e não uma vírgula é usado para separar as partes inteira e fracionária.

Como sabemos, os números reais incluem os números inteiros. No entanto, para evitar ambigüidades na escrita de algoritmos, assumimos que todo número escrito sem a parte fracionária é do tipo <u>inteiro</u>. Por exemplo, 5 e 5.0 se referem ao mesmo número (cinco), mas o primeiro é do tipo <u>inteiro</u> e o segundo, do tipo <u>real</u>. Assim como os números inteiros negativos, números reais negativos são representados com o sinal "—" na frente do número, tal como 3.141596.

<u>caractere</u>: consiste de um único símbolo ou de uma concatenação de símbolos do alfabeto

usado pela linguagem Portugol. Este alfabeto inclui todas as letras do alfabeto romano, todos os dígitos, $0, 1, \ldots, 9$ e os caracteres de pontuação, tais como ?, ., ..., entre muitos outros símbolos. Os elementos do conjunto de valores do tipo <u>caractere</u> devem ser escritos, nos algoritmos, entre aspas duplas, como, por exemplo, "a", "Esta e uma frase formada por caracteres". Há um elemento especial, "o", que é denominado de **palavra vazia**, pois não possui nenhum símbolo.

• <u>logico</u>: inclui apenas os valores lógicos <u>falso</u> e <u>verdadeiro</u> e as operações de negação, conjunção e disjunção. Nós estudaremos este tipo em maiores detalhes mais adiante.

2.2 Variáveis

Um algoritmo manipula dados, que podem ser dados variáveis ou constantes. Dados variáveis são representados por *variáveis*, enquanto dados constantes são representados por *constantes*¹.

Uma variável pode ser imaginada como um "caixa" para armazenar valores de dados. Esta caixa só pode armazenar um único valor por vez. No entanto, o valor armazenado na caixa pode mudar inúmeras vezes durante a execução do algoritmo. Em um ambiente computacional de verdade, a caixa correspondente a uma variável é uma posição da memória do computador.

Uma variável possui nome, tipo e conteúdo. O **nome de uma variável** deve ser único, isto é, identificar, de forma única, a variável no algoritmo. O **tipo de uma variável** define os valores que podem ser armazenados na variável. O **conteúdo de uma variável** é o valor que ela armazena. É importante lembrar que uma variável só pode armazenar um valor de cada vez. No entanto, ela pode assumir vários valores distintos do mesmo tipo durante a execução do algoritmo.

O ato de se criar uma variável é conhecido como declaração de variável.

Na linguagem Portugol, declararamos uma variável usando uma sentença da seguinte forma:

 $\underline{\text{var}} \ nome : tipo$

onde nome é o nome da variável e tipo é o tipo da variável.

Por exemplo, a sentença

<u>var</u> lado : <u>real</u>

declara uma variável de nome lado do tipo real.

Podemos declarar mais de uma variável do mesmo tipo em uma mesma linha. Por exemplo,

var lado, area : real

Note que nenhum conteúdo (isto é, valor) foi associado à variável durante a sua declaração. Esta associação é denominada **definição** e deve ser realizada após a declaração da variável usando uma **instrução de leitura** ou um **comando de atribuição**. Vamos detalhar essas duas formas.

A instrução de leitura tem a forma

¹Não discutiremos constantes neste momento.

onde nome é o nome de uma variável. Por exemplo,

é uma instrução de leitura que atribui um valor à variável lado. O valor atribuído pela instrução deve ser fornecido como entrada para o algoritmo durante a sua execução. Para você ter uma idéia mais concreta do que estamos falando, demonstraremos, em sala de aula, a execução da instrução de leitura do comprimento dos lados de um quadrado que escrevemos para o Algoritmo 1.2.

A instrução de atribuição possui a forma

onde nome é o nome de uma variável e valor é um valor do mesmo tipo de dados da variável. Por exemplo,

lado
$$< -2.5$$

atribui o valor 2.5 à variável de nome *lado*. Para que uma instrução de atribuição faça sentido, a variável lado deve ser do tipo <u>real</u> e deve ter sido declarada antes da instrução de atribuição ser executada.

O símbolo <- é conhecido como operador de atribuição.

Muitas vezes, o valor atribuído a uma variável através de uma instrução de atribuição é resultante de uma expressão aritmética ou outro tipo de expressão que estudaremos mais adiante. Por exemplo,

é uma instrução de atribuição que atribui o valor da variável *lado* ao quadrado à variável *area*. O que vemos no lado direito do operador de atribuição, lado * lado, é um exemplo de expressão aritmética.

Um valor atribuído a uma variável permanece associado a ela até que uma instrução de atribuição, que o substitua por outro, seja executada. Em qualquer dado instante de tempo durante a execução de um algoritmo, o valor armazenado em uma qualquer variável (se algum) é denominado valor atual (ou valor corrente) da variável. Enquanto não atribuirmos um valor a uma variável, a variável permanecerá com valor desconhecido. Finalmente, é importante lembrar que uma variável só poderá receber uma valor através de uma instrução de leitura ou atribuição.

2.3 Exemplos

Seguem abaixo alguns exemplos de declaração de variáveis:

<u>var</u> fruta : <u>caractere</u> <u>var</u> letra : <u>caractere</u>

```
var resultado : logico
var altura : real
var idade : inteiro
A seguir, temos exemplos de instruções de atribuição que atribuem valores a essas variáveis:
fruta <- "maçã"</p>
letra <- "c"</p>
```

resultado <- falso altura <- 1.83 idade <- 5

As mesmas variáveis podem ter valores atribuídos a elas através de instruções de leitura como segue:

<u>leia</u> (fruta)<u>leia</u> (letra)<u>leia</u> (altura)<u>leia</u> (idade)leia (resultado)

2.4 Nomes de variáveis

Na linguagem Portugol, usamos as seguintes regras para criar um nome de variável:

- 1. Nomes de variáveis devem possuir como primeiro caractere uma letra ou o símbolo '_' (sublinhado). Os demais caracteres, se algum, devem ser letras, números ou sublinhado.
- 2. Nomes de variáveis não podem ser iguais a palavras reservadas.
- 3. Nomes de variáveis podem ter, no máximo, 127 caracteres.
- 4. Não há diferença entre letras maiúsculas e minúsculas em nomes de variáveis.

De acordo com a regra 1, nomes de variáveis não podem conter espaços em branco. De acordo com a regra 2, nomes de variáveis não podem ser palavras reservadas da linguagem Portugol. Uma **palavra reservada** é uma palavra que possui um significado especial para a linguagem Portugol. Em geral, uma palavra reservada identifica uma instrução. Neste texto, tais palavras aparecem sublinhas. O conjunto de palavras reservadas do Portugol é mostrado na Tabela 2.1.

Por exemplo,

```
12234, fruta e x123
```

são nomes válidos para variáveis, mas

maria bonita, pi, fru?ta e 1xed

não são. O nome $maria\ bonita$ contém um espaço em branco. O nome pi é uma palavra reservada. O nome fru?ta contém um caractere que não é letra, número nem sublinhado, ?. O nome 1xed inicia com um número. Com exceção de pi, que viola a regra 2, os demais nomes violam a regra 1

2.5 Exercícios Resolvidos

1. Escreva a declaração de uma variável do tipo <u>real</u> de nome x.

solução:

 $\underline{\text{var}} \times \underline{\text{real}}$

2. Escreva a declaração de uma variável do tipo <u>caractere</u> de nome *carro*.

solução:

var carro: caractere

3. Escreva a instrução de atribuição que atribui o valor 2.3 à variável do problema 1.

solução:

x < -2.3

4. Escreva a instrução de atribuição que atribui o valor "corsa" à variável do problema 2.

solução:

carro <- "corsa"

5. Quais dos seguintes nomes são válidos como nomes de variáveis?

- a) xyz 2
- b) _
- c) ____
- d) x123
- e) 123y
- f) 1 2

solução:

(a), (b), (c) e (d).

2.6 Exercícios propostos

- 1. Escreva a declaração de uma variável do tipo caractere de nome rua.
- 2. Escreva a instrução de atribuição que atribui o nome de sua rua à variável do problema 1.
- 3. Escreva a declaração de uma variável do tipo logico de nome achou.
- 4. Escreva a instrução de atribuição que atribui a palavra reservada <u>verdadeiro</u> à variável do problema 3.

c) x_y_1
d)
e) 34
6. Escreva o tipo de dado ideal para se representar cada uma das seguintes informações:
a) O nome de uma rua
b) A data de nascimento de uma pessoa
c) Se uma pessoa é diabética ou não
d) O saldo de uma conta bancária
e) O resultado de uma operação de raiz quadrada
7. Identifique o tipo de dados dos seguintes valores:
a) "9 de agosto de 1968"
b) 1.3
c) $falso$
d) -31
e) "?"

5. Quais dos seguintes nomes são válidos como nomes de variáveis?

a) meucarro

b) salute!

aleatorio	е	grauprad	passo
abs	eco	inicio	pausa
algoritmo	enquanto	int	pi
arcos	entao	interrompa	pos
arcsen	escolha	leia	procedimento
arctan	escreva	literal	quad
arquivo	exp	log	radpgrau
asc	faca	logico	raizq
ate	falso	logn	rand
caractere	fimalgoritmo	maiusc	randi
caso	fimenquanto	mensagem	repita
compr	fimescolha	minusc	se
copia	fimfuncao	nao	sen
cos	fimpara	numerico	senao
cotan	fimprocedimento	numpcarac	timer
cronometro	fimrepita	ou	tan
debug	fimse	outrocaso	var
declare	funcao	para	verdadeiro
			xou

Tabela 2.1: Palavras reservadas da linguagem Portugol.

Capítulo 3

Entrada e Saída

3.1 Instruções de entrada e saída

Todo algoritmo necessita de uma forma de obtenção dos dados de entrada do problema, assim como uma forma de comunicação da saída por ele produzida. Para tal, os algoritmos contam com instruções de *entrada* e *saída*. Na linguagem Portugol, a instrução de leitura é <u>leia</u> e a instrução de saída é <u>escreva</u>. Como vimos na aula anterior, a instrução de leitura requer o nome de uma variável para armazenar o dado de entrada a ser obtido.

Por exemplo,

leia (lado)

onde *lado* é o nome de uma variável. Quando a instrução acima é executada, o valor lido passa a ser o conteúdo de *lado*. Logo, para acessar o valor lido, basta usarmos o nome da variável. É importante lembrar que a variável tem de ser declarada antes de seu uso pela instrução de leitura.

A instrução de escrita, na linguagem Portugol, é denominada <u>escreva</u>. Esta instrução também requer um argumento, que corresponde ao valor a ser escrito como saída. Por exemplo, este valor pode ser o conteúdo de uma variável ou uma constante.

Assim,

escreva(lado)

escreve como saída o valor da variável de nome lado.

É interessante frisar que a instrução de escrita não é usada apenas para escrever o resultado do algoritmo, mas sim para escrever qualquer informação que auxilie a comunicação entre o algoritmo e o "mundo exterior". Por exemplo, é comum escrevermos uma mensagem antes de uma instrução de leitura. Esta mensagem, em geral, é uma descrição muito sucinta do valor que o algoritmo espera receber do "mundo exterior" para atribuir à variável na instrução de leitura.

Por exemplo, a instrução

escreva("Entre com o comprimento dos lados do quadrado: ")

pode preceder a instrução

leia(lado)

para indicar ao "mundo exterior" que o algoritmo espera um valor correspondente ao comprimento dos lados de um quadrado. A mensagem "Entre com o comprimento dos lados do quadrado: "

é um valor *constante*, ou seja, um valor do conjunto de valores do tipo <u>caractere</u>. Quando a instrução de escrita acima é executada, a saída correspondente é a sentença entre aspas duplas:

Entre com o comprimento dos lados do quadrado:

O uso da instrução de escrita para emitir mensagens é motivado pelo fato de um programa de computador, em geral, interagir com o ser humano durante sua execução; isto é, o "mundo exterior" é, em geral, um humano. Mais especificamente, é bastante comum que a entrada de um programa seja fornecida por um ser humano. Neste caso, as mensagens de saída têm como objetivo auxiliar a comunicação entre o programa e o ser humano, que é conhecido por **usuário**. Em um ambiente de programação típico, as mensagens de saída aparecem em um monitor de vídeo e os dados de entrada são fornecidos ao programa por meio de um teclado ou *mouse*.

3.2 A estrutura de um algoritmo

Um algoritmo escrito em Portugol pode ser tipicamente dividido nas seguintes partes:

 A linha de cabeçalho, que é a primeira linha do algoritmo, contém a palavra algoritmo

seguida por um texto que identifica o algoritmo.

- A declaração de variáveis, que é a seção em que as variáveis são declaradas, é iniciada pela palavra var e seguida por uma ou mais declarações de variáveis.
- O corpo do algoritmo, que contém as instruções que, de fato, fazem o "trabalho" descrito pelo algoritmo.

O corpo do algoritmo se inicia com a palavra

inicio

• A linha final, que é obrigatoriamente a última linha do algoritmo, contém a palavra

fimalgoritmo

que especifica o término do algoritmo.

Os algoritmos escritos na linguagem Portugol também possuem algumas particularidades que os tornam mais claros e mais fáceis de serem lidos e entendidos. As principais características são:

- Cada instrução do algoritmo é escrita em uma linha dedicada apenas à instrução.
- As declarações de variáveis e o conteúdo do corpo do algoritmo são identados com relação à linha de cabeçalho e a linha final. Além disso, pode ser que haja linhas em "branco" entre uma seqüência de linhas. Essas linhas em branco servem para separar partes do algoritmo que estão menos relacionadas.
- O algoritmo pode conter *comentários*. Comentários são linhas não "executáveis", ou seja, elas não fazem parte do processo de produção da saída do algoritmo e servem apenas para nos auxiliar na leitura e entendimento da solução do algoritmo. As linhas de comentário se iniciam obrigatoriamente com o símbolo //.

O Algoritmo 3.2 lê o valor de uma variável, denominada *num*, e escreve este mesmo valor como saída.

```
// Este algoritmo exemplifica as instrucoes de entrada e saida
1
2
    algoritmo "Leitura e escrita"
3
4
      // Secao de declaracao de variaveis
5
      num : inteiro
6
    inicio
      // Escreve uma mensagem para indicar o que deve ser lido pelo algoritmo
8
      escreva ("Entre com um numero inteiro: ")
9
10
     // Realiza a leitura de um numero inteiro e o associa a uma variavel
11
      leia (num)
12
13
     // Escreve o valor do numero lido
14
      escreva ("O numero que voce forneceu foi: ", num)
15
    fimalgoritmo
16
```

Algoritmo 3.1: Algoritmo para ler um numero inteiro e escrever o valor lido.

Alguns comentários sobre o algoritmo acima:

• O nome do algoritmo foi escrito cercado por aspas duplas:

```
algoritmo "'Leitura e escrita"
```

- Devemos declarar uma variável para cada dado de entrada. No problema computacional acima, a entrada consiste apenas de um número inteiro. Logo, declaramos apenas uma variável para a entrada do problema: num.
- A instrução de saída foi utilizada para emitir uma mensagem,

```
escreva ("Entre com um numero inteiro: ")
e para escrever a saída do algoritmo:
escreva ("O numero que voce forneceu foi: ", num)
```

Note que a linha acima possui dois "dados" separados por vírgula. O primeiro é a mensagem e o segundo é a variável *num*. Neste caso, os dados são escritos no dispositivo de saída em uma mesma linha, separados por um espaço e sem a vírgula.

3.3 Exercícios resolvidos

1. Considere o Algoritmo 1 para ler e escrever um número e uma palavra:

```
1
    // Este algoritmo le e escreve um numero e uma palavra
2
3
    algoritmo "Leitura e escrita de numero e palavra"
    var
6
      // Secao de declaracao de variaveis
8
      num : inteiro
9
      pal : caractere
10
    inicio
11
      // Escreve uma mensagem para solicitar um numero
12
      escreva ("Entre com um numero inteiro: ")
13
14
      // Realiza a leitura de um numero inteiro e o atribui a uma variavel
15
      leia (num)
16
17
      // Escreve uma mensagem para solicitar uma palavra
18
      escreva ("Entre com uma palavra: ")
19
20
      // Realiza a leitura de uma palavra e a atribui a uma variavel
21
      leia (pal)
22
23
      // Escreve numero e palavra lidos
24
      escreva ("O numero e a palavra fornecidos foram: ", num, " e ", pal)
25
    fimalgoritmo
26
```

Algoritmo 3.2: Algoritmo para ler um numero e uma palavra e escrever ambos.

Então, responda:

- a) Quais são os dados de entrada do algoritmo?
- b) Qual(is) é(são) a(s) variável(is) que armazena(m) o(s) valor(es) de entrada?
- c) Se fornecermos o o número inteiro 5 e a palavra "algoritmo" como entrada para o algoritmo, o que o algoritmo escreve como saída?

Solução:

- a) Um número inteiro e uma palavra.
 - b) num e pal.
 - c) O numero e a palavra fornecidos foram: 5 e algoritmo

3.4 Exercícios propostos

1. Escreva um algoritmo para ler um número real e uma letra e escrever o número e a letra lidos.

2. Use a ferramenta VisuAlg para executar o algoritmo que você escreveu para o proanterior.	oblema

Expressões Aritméticas – Parte 1

4.1 Operadores aritméticos

Os operadores aritméticos definem as operações aritméticas que podem ser realizadas sobre os números inteiros e reais. Para os inteiros, as operações aritméticas são a adição, subtração, multiplicação e resto. Para os números reais, as operações aritméticas são a adição, subtração, multiplicação e divisão. Nesta aula, restringiremos nossa atenção aos números inteiros apenas. Na linguagem Portugol, os operadores aritméticos correspondentes às operações definidas sobre os inteiros são

- + (adição)
- - (subtração ou menos unário)
- * (multiplicação)
- \ (divisão inteira)
- % (resto aplicado apenas aos valores inteiros).

Com os operadores acima, podemos escrever expressões aritméticas que envolvem constantes e variáveis inteiras. Por exemplo, suponha que a, b e c sejam variáveis do tipo <u>inteiro</u>. Então, temos que

$$a + b + c$$
, $a - b * c \% 2$, e $-5 + 3 * 8 \setminus 2$

são todas expressões aritméticas válidas na linguagem Portugol.

Nos exemplos acima, tivemos o cuidado de usar operandos do $mesmo\ tipo$. A razão para tal é que, por definição, cada operador aritmético atua sobre valores de um mesmo tipo e o resultado da operação deve sempre ser um valor do mesmo tipo dos operandos. Logo, não faz sentido escrevermos algo como a+2 quando a é uma variável ou constante do tipo real, pois existe uma ambigüidade em relação ao resultado da operação. No entanto, como veremos mais adiante, podemos definir $regras\ semânticas\ associadas\ aos\ operadores\ que nos\ permitem interpretar, de forma única, o resultado da operação aritmética correspondente. Tais regras nos permitirão escrever expressões aritméticas envolvendo variáveis e constantes dos tipos inteiro e real.$

4.2 Precedência de operadores

Qual é o valor da expressão aritmética

5*3%2 ?

Podemos dizer que o valor da expressão é igual a 1, se avaliarmos 5*3 primeiro e, depois, 15%2, ou podemos dizer que é igual a 5 se avaliarmos 3%2 primeiro e, depois, 5*1. As duas respostas são igualmente válidas. No entanto, como não podemos permitir ambigüidades em algoritmos, devemos definir **regras de precedência** de operadores, que são regras para definir a ordem em que os operadores aritméticos que vimos são aplicados em uma expressão aritmética qualquer.

Na linguagem Portugol, os operadores possuem **prioridades** associadas com eles. A operação associada a um operador com prioridade p é sempre executada antes da operação associada a um operador com prioridade q sempre que p > q. Quando p = q, a operação correspondente ao operador mais à esquerda é executado. O operador de maior prioridade é o **menos unário**, -. Em seguida, temos os operadores *, $\$ e %. Finalmente, com a prioridade mais baixa, temos os operadores + e -, onde + e - são os operadores de adição e subtração, respectivamente. A Tabela 4.1 resume essas prioridades.

Operador	Símbolo	Prioridade
menos unário	_	mais alta
multiplicação, divisão inteira e resto	*, \ e %	†
adição e subtração	+, -	mais baixa

Tabela 4.1: Operadores aritméticos sobre os inteiros e suas prioridades

Por exemplo, em

$$a+b+c$$
,

a operação a+b é realizada e, em seguida, o resultado dela é adicionado ao valor de c, pois os operadores possuem a mesma prioridade e, portanto, as operações são realizadas da esquerda para a direita.

Na expressão aritmética

$$a-b*c\%2$$
,

a operação b*c é efetuada primeiro e, em seguida, o resto da divisão de b*c por 2 é calculado. Finalmente, o resto é subtraído de a. Note que a multiplicação foi efetuada antes da divisão, pois os operadores *e % possuem a mesma prioridade, mas *e está mais à esquerda.

Uma boa forma de se familiarizar com os operadores aritméticos e as regras de precedência é escrevendo algoritmos para escrever o resultado de expressões aritméticas. O Algoritmo 4.3 calcula e escreve, usando a instrução <u>escreval</u>, o resultado de expressões envolvendo números inteiros. A instrução <u>escreval</u> faz o mesmo que a instrução <u>escreva</u>, mas gera um "salto de linha" após a escrita. Um algoritmo mais interessante, o Algoritmo 4.3, recebe, como entrada, três inteiros quaisquer e calcula e escreve o resultado de algumas expressões aritméticas envolvendo os inteiros lidos.

4.3 Alteração de prioridades

Algumas vezes é desejável alterar a ordem (imposta pelas regras de precedência) segundo a qual as operações são realizadas em uma expressão aritmética. Para tal, fazemos uso de parênteses. Por hipótese, todo operador possui prioridade mais baixa do que a dos parênteses. Isto garante que os operandos correspondentes ao valor das expressões entre parênteses sejam calculados antes de serem usados pelos demais operadores. É importante destacar que os parênteses devem

ocorrer em *pares* (um aberto e um fechado) nas expressões e podem ocorrer "aninhados" em diversos níveis.

```
algoritmo "Calculo de expressoes aritmeticas"
inicio
escreval("O resultado da expressao 5 * 3 % 2 e: ", 5 * 3 % 2)

escreval("O resultado da expressao -5 * 3 % 2 \ 8 e: ", -5 * 3 % 2 \ 8)

escreval("O resultado da expressao -5 - 3 - 6 * 3 e: ", -5 - 3 - 6 * 3)
fimalgoritmo
```

Algoritmo 4.1: Cálculo de algumas expressões aritméticas com números inteiros

Por exemplo, na expressão

$$(a-b)*(c\%2)$$
,

a operação a-b é realizada primeiro. Em seguida, a operação $c\%\,2$ é realizada e, por último, a multiplicação dos resultados das duas operações anteriores entre os parênteses é realizada. Mas, como sabemos disso? A idéia é imaginar as expressões entre parênteses como operandos a serem "descobertos". Com isso em mente, a expressão acima pode ser imaginada como tendo a forma

$$op_1 * op_2$$
,

onde op_1 e op_2 são as expressões (a-b) e (c%2). Então, o que temos é uma simples multiplicação de dois valores, op_1 e op_2 . No entanto, para que esta multiplicação seja realizada, precisamos dos valores op_1 e op_2 . Para tal, **assumimos** que o valor, op_1 , à esquerda do operador de multiplicação, *, será obtido antes do valor, op_2 , à direita dele. Para calcular op_1 , avaliamos a expressão

$$a-b$$
,

que se encontra dentro do parênteses. Neste momento, descobrimos que a subtração a-b é a primeira operação aritmética realizada. Uma vez que o valor op_1 tenha sido descoberto, avaliamos

$$c\%2$$

que é a expressão correspondente ao valor op_2 . Neste momento, descobrimos que a operação de resto de divisão, c%2, é a segunda operação aritmética realizada. Neste momento, dispomos dos valores op_1 e op_2 e, portanto, podemos realizar a multiplicação $op_1 * op_2$, que passa a ser a terceira operação realizada. Logo, os operadores são aplicados na ordem -, % e *. Usamos a notação

$$(a -_1 b) *_3 (c \%_2 2)$$

para indicar este fato. Isto é, os operadores possuem índices que indicam a ordem em que são aplicados.

```
algoritmo "Expressoes aritmeticas envolvendo variaveis e constantes"
1
2
       a , b , c : inteiro
3
    inicio
      escreva("Entre com o valor da variavel a: ")
      leia(a)
6
      escreva("Entre com o valor da variavel b: ")
8
      leia(b)
9
10
      escreva("Entre com o valor da variavel c: ")
11
      leia(c)
12
13
      escreval("O resultado da expressao a * b % c e: ", a * b % c)
14
15
      escreval("O resultado da expressao -a * b % c * 8 e: ", -a * b % c * 8)
16
17
      escreval("O resultado da expressao -a - b - c * 3 e: ", -a - b - c * 3)
18
    fimalgoritmo
19
```

Algoritmo 4.2: Cálculo de expressões aritméticas com variáveis inteiras

A expressão

$$((2+3)-(1+2))*3-(3+(3-2))$$

é bem mais complexa do que a anterior, mas podemos determinar a ordem em que os operadores são aplicados da mesma forma que antes. O primeiro passo é substituir as expressões dentro dos parênteses por operandos a serem descobertos. Isto é feito para os parênteses mais externos:

$$op_1 * 3 - op_2$$
.

Agora, vemos que se os valores entre parênteses fossem conhecidos, haveria apenas duas operações a serem realizadas: uma multiplicação e uma adição. A multiplição possui prioridade sobre a adição e ela precisa do valor op_1 para ser realizada. Então, considere a expressão correspondente a op_1 :

$$(2+3)-(1+2)$$
.

Esta expressão contém outras expressões dentro de parênteses e, assim como antes, ela pode ser vista como

$$op_3 - op_4$$
.

onde op_3 e op_4 correspondem às expressões 2+3 e 1+2, respectivamente. Para realizarmos a operação de subtração acima, precisamos dos valores op_3 e op_4 . Por estar à esquerda do operador, o valor op_3 é descoberto primeiro. Isto implica que a primeira operação realizada é a adição

$$2 + 3$$

e a próxima é a adição

$$1 + 2$$
.

Em seguida, temos a subtração $op_3 - op_4$:

$$(2+3)-(1+2)$$
.

Depois que a subtração acima for realizada, o valor op_1 se torna conhecido e, consequentemente, a multiplicação op_1*3 pode ser realizada, tornando-se a quarta operação realizada. O resultado desta operação é o primeiro operando disponível da subtração em op_1*3-op_2 . Mas, esta subtração não pode ser efetuada antes do valor op_2 ser conhecido, ou seja, antes da expressão

$$3 + (3 - 2)$$

ser avaliada. Assim como fizemos antes, podemos imaginar a expressão acima tendo a forma

$$3 + op_5$$

onde op_5 é o valor da expressão, 3-2, entre parênteses. A adição na expressão acima precisa do valor op_5 para ser realizada. Isto significa que a subtração 3-2 é a quinta operação realizada. Depois dela, a adição $3+op_5$ é realizada, tornando-se a sexta operação realizada. Logo em seguida, o valor op_2 se torna conhecido, o que possibilita a realização da sétima e última operação, que é a subtração em $op_1 * 3-op_2$. Usando a notação de subscrito, temos a seguinte ordem:

$$((2 +_1 3) -_3 (1 +_2 2)) *_4 3 -_7 (3 +_6 (3 -_5 2)).$$

4.4 A instrução de atribuição

Quando utilizamos expressões aritméticas em nossos algoritmos, necessitaremos, muito freqüentemente, armazenar o valor da expressão em uma variável. Como vimos na Aula 2, a atribuição de um valor a uma variável pode ser realizada através da instrução de leitura <u>leia</u> ou do operador de atribuição <-. A instrução <u>leia</u> é usada *apenas* quando o valor a ser atribuído à variável é fornecido como entrada para o algoritmo. Como o valor que queremos atribuir à variável é resultante da avaliação de uma expressão aritmética, devemos usar o operador de atribuição.

Por exemplo, suponha que o resultado da expressão

$$5 * \% 2$$

deva ser atribuído a uma variável inteira de nome *resultado*. Então, a atribuição pode ser realizada da seguinte forma:

resultado
$$<$$
 5 * $\%$ 2

Para um exemplo mais concreto do uso do operador de atribuição, considere o Algoritmo 4.5, que lê dois números inteiros, calcula o quadrado da soma dos dois números lidos, atribui o resultado a uma variável inteira, usando o operador <-, e escreve o valor da variável.

4.5 Exercícios resolvidos

1. Considere a expressão polinomial

$$5x^3 + 7x^2 - 3x - 1$$
,

onde x é uma variável. Escreva a expressão acima usando a linguagem Portugol. solução:

$$5 * x * x * x + 7 * x * x - 3 * x - 1$$
.

2. Avalie a seguinte expressão aritmética de acordo com as regras de precedência da linguagem Portugol:

$$2 - 3 * 5$$

solução:

$$2 - 3 * 5 = 2 - 15 = -13$$
.

```
algoritmo "Quadrado da soma de 2 inteiros"
1
2
       a, b, quadrado : inteiro
3
    inicio
4
      escreva("Entre com o primeiro inteiro: ")
5
      leia(a)
6
      escreva("Entre com o segundo inteiro: ")
      leia(b)
10
      quadrado \leftarrow (a + b) * (a + b)
11
12
      escreva("O quadrado da soma dos inteiros lidos e: ", quadrado)
13
    fimalgoritmo
```

Algoritmo 4.3: Cálculo do quadrado da soma de dois inteiros

4.6 Exercícios propostos

1. Escreva a expressão abaixo usando a linguagem Portugol:

$$x_0 + v \cdot t$$

2. Avalie a seguinte expressão aritmética de acordo com as regras de precedência da linguagem Portugol:

$$(2-3)*5$$

3. Suponha que a linha 11 do Algoritmo 4.5 seja substituída por

$$quadrado < -a + b * a + b$$

Você acha que o algoritmo continuará correto? Justifique sua resposta.

4. Suponha que a linha 11 do Algoritmo 4.5 seja substituída pelas duas seguintes linhas:

$$quadrado < -a + b$$

Você acha que o algoritmo continuará correto? Justifique sua resposta.

- 5. Escreva um algoritmo, usando a linguagem Portugol, para ler dois números inteiros, calcular o cubo da soma desses dois números e escrever o resultado calculado como saída.
- 6. Implemente o algoritmo anterior usando a ferramenta VISUALG.

Expressões Aritméticas – Parte 2

5.1 Operadores aritméticos sobre os reais

Como vimos na aula anterior, os operadores aritméticos definem as operações aritméticas que podem ser realizadas sobre os números inteiros e reais. Já estudamos os operadores aritméticos que atuam sobre os inteiros e, nesta aula, estudaremos aqueles que atuam sobre os reais:

- + (adição).
- – (subtração ou menos unário).
- * (multiplicação).
- / (divisão).

Observe que os três primeiros operadores são comuns aos reais e inteiros. Observe também que o operador de divisão, /, está definido apenas para os reais. Por sua vez, o operador de resto, %, está definido apenas para os inteiros. A Tabela 5.1 lista os operadores aritméticos sobre os reais e suas respectivas prioridades. Ao escrevermos expressões aritméticas, podemos alterar a prioridade desses operadores com o uso de parênteses da mesma forma que vimos antes.

Operador	Símbolo	Prioridade
menos unário	_	mais alta
multiplicação e divisão	*, /	↑
adição e subtração	+, -	mais baixa

Tabela 5.1: Operadores aritméticos sobre os reais e suas prioridades.

Por exemplo, considere a expressão

$$\frac{3a+2b}{c-\frac{a-1}{1+\frac{a+b}{2c}}},$$

onde $a,\ b$ e c são variáveis. Na linguagem Portugol, a expressão acima pode ser escrita como segue:

$$(3.0*a + 2.0*b) / (c - (a - 1.0) / (1.0 + (a + b) / (2.0*c))).$$

É importante notar que *todos* os parênteses são necessários para que a expressão, na linguagem Portugol, seja equivalente à expressão aritmética dada. Abaixo, indicamos, com índices nos

operadores, a ordem em que as operações da expressão são executadas quando a expressão é avaliada:

```
(3.0 *_1 a +_3 2.0 *_2 b) /_{11} (c -_{10} (a -_4 1.0) /_{9} (1.0 +_8 (a +_5 b) /_7 (2.0 *_6 c))).
```

O Algoritmo 5.1 calcula o valor da expressão acima para quaisquer valores de a, b e c fornecidos como entrada. O valor da expressão é atribuído a uma variável antes de ser escrito como saída.

```
algoritmo "Expressoes aritmeticas com variaveis e constantes reais"
    var
2
       a, b, c, res : real
3
    inicio
4
      escreva("Entre com o valor da variavel a: ")
5
      leia(a)
6
      escreva("Entre com o valor da variavel b: ")
      leia(b)
9
10
      escreva("Entre com o valor da variavel c: ")
11
      leia(c)
12
13
      res < (3.0 * a + 2.0 * b) /
14
                  (c - (a - 1.0) / (1.0 + (a + b) /
15
                  (2.0 * c))
16
17
      escreva ("O resultado da expressao e: ", res)
18
    fimalgoritmo
```

Algoritmo 5.1: Cálculo de expressões aritméticas com variáveis reais

5.2 Regras semânticas

Na expressão

$$(3.0*a + 2.0*b) / (c - (a - 1.0) / (1.0 + (a + b) / (2.0*c))),$$

as constantes foram escritas com números reais e as variáveis são todas do tipo <u>real</u>. Logo, cada operador aritmético atuará sobre dois valores reais e produzirá outro valor real. No entanto, é possível, na linguagem Portugol, escrevermos expressões aritméticas que envolvam constantes e variáveis dos tipos <u>inteiro</u> e <u>real</u>. Para que tais expressões façam "sentido", definimos a seguinte **regra semântica**: se os dois operandos de um operador binário possuem tipos distintos (um é do tipo <u>inteiro</u> e o outro, do tipo <u>real</u>), o valor do tipo <u>inteiro</u> é convertido para o valor do tipo <u>real</u> equivalente. Logo, a operação é executada sobre dois valores reais e o resultado é um valor do tipo <u>real</u>.

Por exemplo, na expressão

$$(a-b)*(c/2),$$

se as variáveis a, b e c são do tipo <u>real</u>, o inteiro 2 é convertido (automaticamente) para o real 2.0 imediatamente antes da operação de divisão ser executada. Em outras palavras, na linguagem

Portugol, a expressão acima é equivalente à expressão:

$$(a-b)*(c/2.0)$$
.

De maneira geral, o operador de divisão, /, pode ser utilizado para dividir valores inteiros. Por exemplo,

5/2

é igual ao valor real 2.5. Na expressão acima, não há nenhuma constante ou variável do tipo <u>real</u>. Mas, mesmo assim, os valores inteiros, que são operandos do operador /, são convertidos para os valores reais equivalentes antes da operação de divisão ser efetuada. Logo, nós podemos dividir dois inteiros usando /, mas o resultado da divisão é um valor do tipo <u>real</u> e não <u>inteiro</u>. Quando desejarmos realizar a divisão inteira dos dois inteiros, devemos usar o operador \.

Um outro aspecto importante das expressões aritméticas envolvendo valores inteiros e reais é a precedência de operadores. O que acontece se a expressão contiver os operadores / e %? Como sabemos, o operador % só pode ser aplicado a inteiros. Mas, nada impede que ele ocorra em uma expressão aritmética que envolva inteiros e o operador /. Por exemplo, considere a expressão

$$5\%2/2$$
.

Na linguagem Portugol, o operador % possui prioridade igual a do operador /. Logo, a operação 5%2 é realizada primeiro, produzindo o inteiro 1 como resultado. Em seguida, a operação 1/2 é realizada. Isto significa que os valores inteiros serão convertidos (automaticamente) para valores reais equivalentes e a divisão será executada, gerando o valor 0.5. Bem, e se a expressão fosse

$$5/2\%2?$$

Neste caso, a divisão 5/2 é a primeira operação realizada, gerando o número real 2.5 como resultado. Em seguida, a operação 2.5 % 2 deve ser realizada. Mas, como o operador % não pode atuar sobre números reais, a operação 2.5 % 2 não pode ser realizada. Você poderia imaginar que o número 2.5 seria convertido em um número inteiro (por arredondamento ou truncamento), de modo que a operação pudesse ser efetuada. Na linguagem Portugol, nenhum valor real pode ser automaticamente convertido em um valor inteiro. Isto significa que a segunda expressão aritmética acima é inválida na linguagem Portugol. A ferramenta VISUALG acusará um erro se tentarmos utilizar esta expressão em um algoritmo (verifique!). Em uma aula futura, veremos uma função da linguagem Portugol que nos permitirá obter a parte inteira de um um valor real qualquer.

5.3 Um algoritmo envolvendo constantes e variáveis reais

Considere o problema de desenvolver um algoritmo para determinar o volume, V, de uma esfera a partir do raio, r, da esfera. Como sabemos, a relação entre os valores V e r é dada pela fórmula

$$V = \frac{4}{3} \cdot \pi \cdot r^3 \,. \tag{5.1}$$

O nosso algoritmo deve ler o valor do raio r da esfera, calcular o valor de V e escrever este valor como saída. Para calcular o valor de V, nosso algoritmo pode se utilizar da fórmula em Eq. (5.1). Uma das particularidades da fórmula é que ela utiliza a constante π . Para lidar com situações

como essa, a linguagem Portugol possui uma palavra reservada, chamada pi, que representa a constante π . Logo, na linguagem Portugol, a fórmula acima pode ser escrita como segue:

```
(4/3) * pi * raio * raio * raio ,
```

onde assumimos que raio é o nome da variável que representa o raio r da esfera. Se a linguagem Portugol não nos fornecesse a constante pi, poderíamos escrever uma expressão para a fórmula, tal como

```
(4/3) * 3.141596 * raio * raio * raio ,
```

que se utiliza de um valor aproximado para o número π . No entanto, o uso da palavra pi é mais recomendado, pois ela faz com que a sintaxe da expressão resultante seja mais legível e significante.

Uma vez que saibamos como escrever, na linguagem Portugol, a expressão arimética que calcula o valor do volume V da esfera de raio r, podemos desenvolver o restante do algoritmo. A entrada do algoritmo consiste apenas do valor do raio, r, da esfera. Então, devemos declarar uma variável, digamos raio, para representar o valor de r. Após calcularmos o valor do volume, V, da esfera usando a fórmula em Eq. (5.1), atribuimos este valor a uma outra variável, digamos volume, que precisa ser declarada também. As duas variáveis do algoritmo são do tipo \underline{real} . Finalmente, escreveremos o valor da variável volume como saída. O algoritmo resultante é o Algoritmo 5.3.

```
algoritmo "Volume da esfera"

var

raio, volume : real

inicio

escreva("Entre com o valor do raio da esfera: ")

leia(raio)

volume <- (4 / 3) * pi * raio * raio

escreva ("O volume da esfera de raio ", raio, " e ", volume)

fimalgoritmo
```

Algoritmo 5.2: Cálculo do volume da esfera

5.4 Exercícios resolvidos

1. Escreva a seguinte expressão aritmética usando a linguagem Portugol e indique a ordem em que os operadores são aplicados na avaliação da expressão (use índices ao lado dos operadores):

$$\frac{1}{1+\frac{1}{1+a}}.$$

Assuma que a é uma variável do tipo <u>real</u>.

solução:

A expressão escrita em Portugol é a seguinte:

$$1/(1+1/(1+a))$$

Você também poderia ter escrito

$$1.0 / (1.0 + 1.0/(1.0 + a))$$

A ordem de avaliação dos operadores é indicada abaixo por índices:

$$1/_4(1+_31/_2(1+_1a))$$
.

2. Escreva um algoritmo que leia os valores correspondentes à base e altura de um retângulo, determine a área do retângulo e escreva a área como saída.

solução:

```
algoritmo "Area de um retangulo"
1
2
       base, altura, area : real
3
    inicio
4
      escreva("Entre com o comprimento da base do retangulo: ")
5
      leia(base)
6
      escreva("Entre com o valor da altura do retangulo: ")
      leia(altura)
10
      area <- base * altura
11
12
      escreva ("A area do retangulo e ", area)
13
    fimalgoritmo
```

Algoritmo 5.3: Cálculo da área de um retângulo

5.5 Exercícios propostos

1. Escreva a seguinte expressão aritmética usando a linguagem Portugol e indique a ordem em que os operadores são aplicados na avaliação da expressão (use índices ao lado dos operadores):

$$\frac{1}{b} + \frac{5}{2 + \frac{1}{1+a}} \,.$$

Assuma que a e b são variáveis do tipo <u>real</u>.

- 2. Escreva um algoritmo para calcular a área de um círculo. A entrada do seu algoritmo é o valor do raio do círculo. A saída é o valor da área do círculo.
- 3. Implemente o algoritmo anterior usando a ferramenta VISUALG.

Expressões Relacionais

6.1 Operadores relacionais

Uma **expressão relacional**, ou simplesmente **relação**, é uma comparação entre dois valores de um mesmo tipo. Esses valores são representados na relação através de constantes, variáveis ou expressões aritméticas. A operação de comparação é realizada por um **operador relacional**. Na linguagem Portugol da ferramenta VISUALG, temos os operadores relacionais mostrados na Tabela 6.1.

Operador	Descrição
=	igual a
<>	diferente de
>	maior que
<	menor que
>=	maior ou igual a
<=	menor ou igual a

Tabela 6.1: Operadores relacionais da linguagem Portugol.

Como exemplo, suponha que a, b e c sejam variáveis do tipo <u>inteiro</u>. Então, temos que

$$a=2$$
, $a>b$ e $c <= b$

são todos exemplos de expressões relacionais. Na expressão

$$a=2$$
,

estamos comparando o valor da variável a com a constante 2. O resultado desta comparação é o valor lógico verdadeiro se o valor de a é igual a 2; caso contrário, o resultado é o valor lógico falso. Na expressão

$$a > b$$
,

estamos comparando os valores das variáveis a e b. O resultado desta comparação é o valor lógico verdadeiro se o valor de a é maior do que o de b. Caso contrário, o resultado é o valor lógico falso. Na expressão

$$c <= b$$
,

estamos comparando os valores das variáveis c e b. O resultado desta comparação é o valor lógico verdadeiro se o valor de c é menor ou igual ao valor de b. Caso contrário, o resultado é o valor lógico falso.

6.2 Relações e expressões aritméticas

As relações podem envolver expressões aritméticas. Por exemplo,

$$a > (b+c)$$
 e $c <= (5-a)$,

onde $a, b \in c$ são variáveis do tipo <u>inteiro</u>, são relações válidas na linguagem Portugol. Na primeira delas, estamos comparando o valor de a com o valor resultante da expressão aritmética

$$b+c$$
.

Na segunda delas, estamos comparando o valor de c com o valor resultante da expressão aritmética

$$5-a$$
.

Em particular, podemos escrever relações da forma

$$(b+c) <= (c-10)$$
.

Isto é, podemos ter expressões aritméticas nos dois "lados" de um operador relacional. Neste caso, estamos comparando o valor da expressão aritmética do lado esquerdo do operador com o valor da expressão aritmética do lado direito do operador relacional. Além disso, não precisamos sequer usar os parênteses que utilizamos nos exemplos acima. Isto é, basta-nos escrever

$$a > b + c$$
, $c \le 5 - a$ e $b + c \le c - 10$,

que são as mesmas expressões, em Portugol, que

$$a > (b+c)$$
, $c <= (5-a)$ e $(b+c) <= (c-10)$.

Isto porque qualquer operador arimético possui prioridade maior do que qualquer operador relacional. Logo, a operação de comparação em uma expressão relacional é sempre realizada por último.

6.3 Relações envolvendo tipos não inteiros

É importante ressaltar que os operadores relacionais não se aplicam apenas a valores do tipo $\underline{\text{inteiro}}$. De fato, eles também podem ser usados com valores do tipo $\underline{\text{real}}$ e $\underline{\text{caractere}}$. Em particular, se a é uma variável do tipo real, então

$$a <= 5.7$$

é uma expressão que compara o valor de a com o número 5.7, do tipo <u>real</u>. Na expressão acima, se a fosse do tipo <u>inteiro</u>, seu valor seria primeiro convertido para o valor <u>real</u> equivalente e, depois, comparado com 5.7. Analogamente, se considerarmos uma expressão relacional tal como

$$b < 5$$
,

onde b é uma variável do tipo <u>real</u>, o valor 5, do tipo <u>inteiro</u>, é primeiro convertido para o valor do tipo <u>real</u> equivalente, isto é, para 5.0, e, em seguida, comparado com o valor real da variável b.

Suponha, agora, que a e b são duas variáveis do tipo <u>caractere</u>. Então, as expressões relacionais

$$a = b$$
 e $a <> b$

equivalem a perguntar se os caracteres representados por a e b são iguais ou distintos, respectivamente. Tais expressões são facilmente avaliadas com base nos valores de a e b, é claro. No entanto, como avaliamos as expressões relacionais envolvendo os demais operadores, por exemplo

$$a < b$$
, $a > b$, $a <= b$ e $a >= b$?

Ou seja, o que significa dizer que uma palavra é *menor do que* outra? Para responder esta pergunta, vamos primeiro considerar o caso em que os valores de a e b são um caractere cada. Depois, trataremos do caso em que esses valores são palavras com mais de um caractere. Quando os valores de a e b são um caractere cada, usamos o índice do caractere no *alfabeto* da linguagem Portugol da ferramenta VISUALG, denominado ASCII¹, para decidir o resultado da comparação.

Cada caractere que pode ser usado na linguagem Portugol possui um número único no alfabeto ASCII. Então, dizemos que a é menor do que b se, e somente se, o índice do caractere representado por a é menor do que o índice do caractere representado por b no alfabeto ASCII. As demais expressões relacionais (definidas pelos operadores >, <= e >=) são avaliadas de forma análoga. O alfabeto ASCII possui 256 símbolos e não cabe aqui descrever todos eles. No entanto, é bom saber que as letras maiúsculas de "A" a "Z" possuem os índices 65 a 90, respectivamente, as letras minúsculas de "a" a "z" possuem os índices 97 a 122, respectivamente, e os dígitos "0" a "9" possuem os índices 48 a 57, respectivamente. Logo, se o valor de a é "c" e o de b é "4",

$$a < b$$
, $a > b$, $a <= b$ e $a >= b$

resultam nos valores lógicos <u>falso</u>, <u>verdadeiro</u>, <u>falso</u> e <u>verdadeiro</u>, respectivamente, quando são avaliadas.

O que dizer se pelo menos um de a e b contém uma palavra com mais de um caractere?

Neste caso, usamos a **ordem lexicográfica** para determinar o resultado das comparações. Para tal, suponha que a palavra representada por a possua n caracteres, a_1, a_2, \ldots, a_n , nesta ordem, e a palavra representada por b possua m caracteres, b_1, b_2, \ldots, b_m , nesta ordem, com $m, n \in \mathbb{Z}$ e $m, n \geq 1$. Seja $k = \min\{n, m\}$. Então, encontramos o menor valor de i em $\{1, 2, \ldots, k\}$ tal que $a_i \neq b_i$. Em seguida, nós determinamos se $a_i < b_i$, $a_i > b_i$, $a_i \leq b_i$ ou $a_i \geq b_i$.

Por exemplo, se a = "abacate" e b = "abacaxi", então i = 6, pois as palavras em a e b coincidem nos cinco primeiros caracteres, isto é, ambas começam com o prefixo "abaca". O próximo passo é comparar a_6 com b_6 . Como podemos ver, a_6 é igual a "t" e b_6 é igual a "x". Então, $a_6 < b_6$ e $a_6 \le b_6$. Logo, sabemos que a é menor do que b, ou seja, sabemos que as expressões

$$a < b$$
 e $a <= b$

possuem valor lógico verdadeiro, enquanto as expressões

$$a > b$$
 e $a >= b$

possuem valor lógico <u>falso</u>.

¹A abreviação de American Standard Code for Information Interchange.

É possível que $a_i = b_i$ para todos os valores de i em $\{1, 2, ..., k\}$. Quando isto acontece, temos que a palavra em a é um prefixo da palavra em b ou a palavra em b é um prefixo da palavra em a. Por exemplo, se o valor de a é "bola" e o de b é "bolada", então a palavra em a é um prefixo da palavra em b e, por isso, $a_i = b_i$, para todo $i \in \{1, 2, 3, 4\}$. Quando isso ocorre, a palavra de menor comprimento é considerada a menor palavra. Isto quer dizer que as expressões

$$a < b$$
 e $a <= b$

possuem valor lógico verdadeiro, enquanto as expressões

$$a > b$$
 e $a >= b$

possuem valor lógico falso.

Mas, e se as palavras em a e b possuírem o mesmo comprimento? Neste caso, temos que m=n e, se $a_i=b_i$ para todos os valores de i em $\{1,2,\ldots,k\}$ onde $k=\min\{n,m\}$, então a e b são exatamente a mesma palavra! Por exemplo, se o valor de ambas as variáveis, a e b, é "bola", então

$$a = b$$
, $a \le b$ e $a >= b$

possuem valor lógico <u>verdadeiro</u>, enquanto

$$a <> b$$
, $a > b$ e $a < b$

possuem valor lógico falso.

Para concluir, note que não faz sentido utilizar operadores relacionais com valores do tipo $\underline{l\'{o}gico}$, exceto pelos operadores = e <>. Em outras palavras, não faz sentido dizer que o valor $\underline{verdadeiro}$ é menor, maior, menor ou igual ou maior ou igual ao valor \underline{falso} . Como veremos em uma outra aula, podemos construir expressões que relacionam valores lógicos usando operadores $l\'{o}gicos$.

6.4 Exercícios resolvidos

1. Avalie a relação abaixo:

$$10\%5*2 <> 5*2+1$$

solução:

$$10\% 5*2 <> 5*2+1 \Rightarrow 0*2 <> 5*2+1$$
$$\Rightarrow 0 <> 5*2+1$$
$$\Rightarrow 0 <> 10+1$$
$$\Rightarrow 0 <> 11$$
$$\Rightarrow \text{verdadeiro}$$

2. Suponha que x seja uma variável do tipo inteiro e considere a relação

$$x \% 3 > 1$$

Então, para quais valores de x a relação acima tem valor <u>verdadeiro</u>? solução:

O resultado de x % 3 é sempre -2, -1, 0, 1 ou 2. Como a relação terá valor <u>verdadeiro</u> se, e somente se, x % 3 for igual a 2, temos que o valor de x deve ser $2, 5, 8, \ldots$, ou seja, da forma

$$2+3\cdot k$$
,

para todo $k \in \mathbb{Z}_{+}^{*}$.

6.5 Exercícios propostos

1. Suponha que a, b, nome e profissao sejam variáveis do tipo <u>real, inteiro, caractere</u> e <u>caractere</u>, respectivamente. Então, considere as três expressões relacionais dadas a seguir:

$$a+1>=b*b$$
, nome <> "ANA" e profissao = "medico"

Qual é o valor dessas expressões quando a, b, nome e profissao assumem os valores abaixo?

- a) 3.0, 2, "MIRIAM" e "ADVOGADO"
- b) 5.0, $2 \cdot \sqrt{2}$, "PEDRO" e "MEDICO"
- c) 2.5, 9, "ANA" e "PROFESSOR"
- 2. Suponha que x seja uma variável do tipo real e considere a seguinte expressão relacional:

$$x^2 - 4 > 5$$
.

Então, para quais valores de x a expressão relacional acima possui valor <u>verdadeiro</u>?

- 3. Suponha que x seja uma variável do tipo <u>inteiro</u>. Então, escreva uma expressão relacional em Portugol que tenha valor <u>verdadeiro</u> se, e somente se, o valor de x é um número ímpar não-negativo.
- 4. Sejam a e b duas variáveis do tipo <u>caractere</u>. Então, escreva uma expressão relacional envolvendo a e b apenas que tenha resultado <u>verdadeiro</u> se, e somente se, a expressão relacional,

$$a < b$$
,

tenha resultado <u>falso</u>.

Estruturas Condicionais - Parte 1

7.1 Motivação

Até o presente momento, todos os algoritmos que vimos podem ser vistos como uma seqüência de comandos que são executados na *ordem* em que definida pela seqüência. Nesta aula, veremos um comando que nos permite "bifurcar" a seqüência de comandos de um algoritmo. Com isso, poderemos criar trechos de algoritmos que são mutuamente exclusivos com respeito à execução. Isto é, um trecho é executado se, e somente se, outro trecho não é executado.

Antes de apresentarmos o comando condicional, apresentamos um problema que justifica a existência de tal comando. Considere o problema de escrever um algoritmo para ler nome e altura de duas pessoas e produzir como saída o nome da pessoa mais alta. Vamos assumir que as pessoas possuam alturas distintas. Um algoritmo incompleto para o problema é mostrado em 7.1.

```
algoritmo "Pessoa mais alta - incompleto"
1
2
       nome1, nome2 : caractere
3
       alt1, alt2 : real
4
5
      escreva("Entre com o nome da primeira pessoa: ")
6
      leia(nome1)
      escreva( "Entre com a altura da primeira pessoa: " )
a
10
11
      escreva( "Entre com o nome da segunda pessoa: " )
12
      leia( nome2 )
13
14
      escreva( "Entre com a altura da segunda pessoa: " )
15
      leia( alt2 )
16
17
      // Escreva o nome da pessoa de maior altura
18
      // ?
19
    fimalgoritmo
20
```

Algoritmo 7.1: Cálculo (incompleto) da mais alta de duas pessoas.

Tudo que precisamos fazer para concluir o Algoritmo 7.1 é escrever sua saída. De fato, se a

primeira pessoa for mais alta do que a segunda, então podemos usar a seguinte linha de código:

```
escreva(nome1, " é mais alto(a) do que ", nome2 )

Caso contrário, podemos usar a linha
escreva(nome2, " é mais alto(a) do que ", nome1 )
```

O problema é que não sabemos qual das duas linhas acima deve ser inserida no algoritmo antes de lermos e compararmos as duas alturas. Em outras palavras, o algoritmo deve determinar qual das duas linhas acima deve ser escrita durante a sua execução. Esta é uma situação de exclusão mútua de dois comandos, pois somente um deles pode ser escrito. No entanto, até agora, não aprendemos nenhum comando que nos permita escrever um algoritmo que execute um comando em detrimento da execução de outro. Sem tal comando, não temos como concluir o algoritmo.

7.2 Comando se-entao-senao-fimse

A linguagem Portugol possui o seguinte comando condicional:

O comando <u>se-entao-senao-fimse</u> contém duas seções, cada uma das quais possui um ou mais comandos. A primeira delas é a que se situa entre o <u>entao</u> e o <u>senao</u>. A segunda é a que se situa entre o <u>senao</u> e o <u>fimse</u>. As seções são mutuamente exclusivas, o que significa que uma é executada se, e somente se, a outra não é executada. A seção a ser executada depende do valor lógico da *expressão lógica* que se situa entre o <u>se</u> e o <u>então</u>. Por enquanto, assuma que uma expressão lógica é uma expressão relacional (veja Aula 7). Na aula seguinte, veremos expressões lógicas mais gerais. Se a expressão lógica resultar em o valor <u>verdadeiro</u>, a primeira seção é executada. Caso contrário, isto é, se ela avaliar para o valor <u>falso</u>, a segunda seção é executada.

É importante ressaltar que independente da seção de código que for executada, o fluxo de execução do algoritmo segue para o primeiro comando *após* o <u>se-então-senão-fimse</u> assim que o último comando da seção for executado. Isto é, o comando condicional "bifurca" o fluxo de execução, mas após o comando condicional ser executado, o programa segue com seu fluxo seqüencial único que continua com o primeiro comando encontrado após o comando condicional.

O comando <u>se-então-senão-fimse</u> pode ser utilizado para completar o algoritmo que começamos a escrever na seção anterior. Em particular, o trecho que falta pode ser escrito como segue

```
se alt1 > alt2 entao
    escreva( nome1 , " é mais alto(a) do que " , nome2 )
senao
```

```
escreva( nome2 , " é mais alto(a) do que " , nome1 ) fimse

De fato, a expressão lógica,
```

alt1 > alt2,

avalia para o valor <u>verdadeiro</u> se, e somente se, a altura da primeira pessoa é maior do que a da segunda. Caso contrário, sabemos que a altura da primeira pessoa $n\tilde{a}o$ é maior do que a da segunda. Mas, como assumimos que as alturas são distintas, se a expressão relacional resultar em <u>falso</u>, então saberemos que a segunda pessoa é mais alta do que a primeira. O Algoritmo 7.2 é o Algoritmo 7.1 acrescido do comando se-entao-senao-fimse que gera a saída esperada.

```
algoritmo "Pessoa mais alta - primeira versao"
1
2
       nome1, nome2 : caractere
3
       alt1, alt2: real
    inicio
5
      escreva( "Entre com o nome da primeira pessoa: " )
      leia( nome1 )
7
      escreva( "Entre com a altura da primeira pessoa: " )
9
      leia(alt1)
10
11
      escreva( "Entre com o nome da segunda pessoa: " )
12
      leia( nome2 )
13
14
      escreva( "Entre com a altura da segunda pessoa: " )
15
      leia( alt2 )
16
17
      se alt1 > alt2 entao
18
         escreva( nome1 , " é mais alto(a) do que " , nome2 )
19
20
         escreva( nome2 , " é mais alto(a) do que " , nome1 )
21
      fimse
22
    fimalgoritmo
```

Algoritmo 7.2: Algoritmo para determinar a mais alta de duas pessoas.

7.3 Aninhamento de comandos condicionais

Alguns problemas podem requerer o "aninhamento" de comandos condicionais, ou seja, que um ou mais comandos condicionais ocorram dentro da seção de comandos de outro comando condicional. Para exemplificar esta situação, vamos considerar o problema da seção anterior e assumir que as alturas das duas pessoas não necessitem ser distintas. Então, a saída do problema envolve as seguintes três (e não apenas duas) instruções escreva mutuamente exclusivas:

```
escreva( nome1 , " é mais alto(a) do que " , nome2 )
```

```
escreva( nome2 , " é mais alto(a) do que " , nome1 )
e
escreva( nome1 , " possui a mesma altura de " , nome2 )
Quando a expressão
alt1 > alt2
```

resultar em <u>verdadeiro</u>, a primeira instrução acima deve ser executada. No entanto, quando a expressão resultar em <u>falso</u>, ainda teremos que determinar qual das duas instruções restantes deve ser executada. Isto pode ser feito com uma instrução <u>se-entao-senao-fimse</u> dentro do bloco <u>senao</u> que envolve a expressão relacional acima. Em outras palavras, podemos escrever algo como:

```
se alt1 > alt2 entao
    escreva( nome1 , " é mais alto(a) do que " , nome2 )
senao
    se alt1 < alt2 entao
        escreva( nome2 , " é mais alto(a) do que " , nome1 )
    senao
        escreva( nome1 , " possui a mesma altura de " , nome2 )
    fimse
fimse</pre>
```

Note que se o fluxo de execução do algoritmo atinge o bloco <u>senao</u> do comando <u>se-entao-senao-fimse</u> mais externo, então sabemos que a segunda pessoa não é mais baixa do que a primeira, mais ainda não sabemos se ela é mais alta ou possui a mesma altura da primeira. O comando <u>se-entao-senao-fimse</u> mais externo determina qual desses dois casos é verdadeiro e escreve a saída esperada. O Algoritmo 7.3 contém o código final para determinar a pessoa mais alta.

Um outro problema que requer aninhamento de comandos condicionais é o seguinte: escreva um algoritmo que leia as notas (de 0 a 10) de três provas de um aluno, calcule a média aritmética das três notas do aluno e escreva o *status* dele como saída. O *status* do aluno é "aprovado" se a média das notas é igual ou maior do que 7, "exame" se a média é igual ou maior do que 3, mas menor do que 7, e "reprovado" se a média é menor do que 3. Note que os status são mutuamente exclusivos, isto é, para qualquer valor encontrado para a média, apenas um status é possível.

Note que um único comando <u>se-entao-senao-fimse</u> não resolve o problema, pois tal comando só pode realizar uma classificação "binária", ou seja, em um de dois grupos. Por exemplo, podemos usar o comando condicional para saber se a média é maior ou igual a 7. Isto é suficiente para sabermos se o aluno foi "aprovado" quando a média é maior ou igual a 7. No entanto, se a média for menor do que 7, não temos como saber se o aluno está em "exame" ou foi "reprovado".

A observação crucial é que se a média for menor do 7, podemos determinar o status do aluno se usarmos mais um comando <u>se-entao-senao-fimse</u> dentro da seção de <u>senao</u> do <u>se-então-senão-fimse</u> que já temos. Isto é, se o fluxo de execução desviar para a seção <u>senao</u> é porque a média é menor do 7. Daí, para determinarmos se o *status* é "exame" ou "reprovado", basta compararmos o valor de *media* com 3. Se este valor for maior ou igual a 3, o *status* do aluno é "exame". Caso contrário, o *status* do aluno é "reprovado". O algoritmo completo pode ser visto em 7.4.

7.4 Comando se-entao-fimse

O comando <u>se-então-senão-fimse</u> possui uma forma simplificada: o comando <u>se-então-fimse</u>:

```
\begin{array}{c} \underline{\mathbf{se}} \ express\~{ao} \ l\'{o}gica \ \underline{\mathbf{ent\~{ao}}} \\ & \mathrm{comando_1} \\ & \mathrm{comando_2} \\ & \vdots \\ & \mathrm{comando}_n \end{array} fimse
```

No comando acima, há apenas uma seção de comandos entre o <u>se</u> e o <u>fimse</u>. Se a expressão lógica avalia para o valor <u>verdadeiro</u>, então a seção de comandos é executada. Caso contrário, a seção de comandos não é executada. Em qualquer um desses dois casos, o fluxo de execução segue com o comando imediatamente após a palavra <u>fimse</u>. Em outras palavras, ao invés de termos dos blocos de comandos mutuamente exclusivos, temos um bloco de comandos que pode ou não ser executado. O que ocorrerá depende unicamente do resultado da expressão lógica.

Por exemplo, considere o Algoritmo 7.5 que calcula o salário líquido mensal de um funcionário. O algoritmo recebe como entrada o valor do salário bruto mensal do funcionário e o número de filhos dele. O salário líquido é calculado como sendo 70% do salário bruto. Mas, se o funcionário possuir mais de dois filhos, ele recebe um acréscimo de R\$ 300,00 em seu salário líquido.

7.5 Exercícios resolvidos

- 1. Escreva a saída do Algoritmo 2 quando ele for executado nas seguintes entradas:
 - (a) 2
 - (b) 21

Solução:

- (a) O algoritmo escreve como saída a sentença "Passei pelo ponto 3" quando a entrada for 2.
- (b) O algoritmo escreve como saída a sentença "Passei pelo ponto 1" quando a entrada for 21.
- 2. Escreva um algoritmo que leia um número inteiro positivo com quatro dígitos e escreva "sim" se a soma dos algarismos da centena e milhar do número é par e "não" caso contrário. Solução:

7.6 Exercícios propostos

1. Escreva um algoritmo que leia dois números reais e escreva "iguais" se os números forem iguais e "diferentes" se os números forem diferentes.

- 2. Escreva um algoritmo que leia um número real e escreva "sim" se o número está compreendido no intervalo [20, 90] e "não" caso contrário.
- 3. Escreva um algoritmo que leia dois números reais e escreva o menor deles. Se os números forem iguais, qualquer um deles por ser escrito (pois são os mesmos).
- Escreva um algoritmo que leia dois números reais e escreva o maior deles. Se os números forem iguais, qualquer um deles por ser escrito (pois são os mesmos).
- 5. Escreva um algoritmo que leia um número inteiro e escreva como saída "múltiplo de 3" se o número for múltiplo de 3 ou "não é múltiplo de 3" caso contrário. Lembre-se de que um número n é múltiplo de 3 se ele é divisível por 3, ou seja, se o resto da divisão inteira de n por 3 é zero.
- 6. Escreva um algoritmo que leia o salário de um funcionário e escreva o imposto de renda correspondente. Considere as alíquotas de 15% para salário de até R\$ 2.500,00 e de 20% para salário de mais de R\$ 2.500,00.
- 7. Escreva um algoritmo que leia o peso (Kg) e a altura de uma pessoa (m) e calcule e escreva seu índice de massa corporal (IMC). O valor do IMC é dado pelo cálculo do peso dividido pela altura elevada ao quadrado. O algoritmo deve ainda escrever "peso normal", caso o IMC seja de até 25.0 e "acima do peso"caso o IMC seja maior do que 25.0.
- 8. (Adaptado de KOLIVER et al., 2009) Escreva um algoritmo que leia o nome de dois clientes de uma loja e o valor (em reais) que cada um desses clientes pagou por sua compra. O algoritmo deverá escrever: (a) o valor total pago pelos dois clientes; (b) o valor médio das compras efetuadas; (c) os nomes dos clientes que efetuaram compras superiores a 20 reais.

```
algoritmo "Pessoa mais alta - segunda versao"
    var
2
       nome1, nome2 : caractere
3
       alt1 , alt2 : real
4
    inicio
5
      escreva( "Entre com o nome da primeira pessoa: " )
6
      leia( nome1 )
      escreva( "Entre com a altura da primeira pessoa: " )
      leia( alt1 )
10
11
      escreva( "Entre com o nome da segunda pessoa: " )
12
      leia( nome2 )
13
14
      escreva( "Entre com a altura da segunda pessoa: " )
15
      leia( alt2 )
16
17
      se alt1 > alt2 entao
18
         escreva( nome1 , " é mais alto(a) do que " , nome2 )
19
      senao
20
         se alt1 < alt2 entao
21
            escreva( nome2 , " é mais alto(a) do que " , nome1 )
22
23
            escreva( nome1 , " possui a mesma altura de " , nome2 )
24
         fimse
25
      fimse
26
    fimalgoritmo
27
```

Algoritmo 7.3: Algoritmo para determinar a mais alta de duas pessoas.

```
algoritmo "Situacao escolar de aluno"
1
2
       n1, n2, n3, media : real
3
    inicio
      escreva( "Entre com a primeira nota: " )
      leia( n1 )
6
      escreva( "Entre com a segunda nota: " )
8
      leia( n2 )
10
      escreva( "Entre com a terceira nota: " )
11
      leia(n3)
12
13
      media \leftarrow (n1 + n2 + n3) / 3
14
15
      se media >= 7 entao
16
         escreva( "aprovado" )
17
18
         se media > 3 entao
19
             escreva( "em exame" )
20
         senao
21
             escreva( "reprovado" )
22
         fimse
23
      fimse
24
    fimalgoritmo
25
```

Algoritmo 7.4: Algoritmo para determinar situação escolar de aluno.

```
algoritmo "Salario liquido mensal de funcionario"
1
2
       salbruto, salario : real
3
       filhos : inteiro
4
5
      escreva( "Entre com o salário bruto mensal: ")
6
      leia ( salbruto )
      escreva( "Entre com o número de filhos: " )
9
      leia (filhos)
10
11
      salario <- 0.7 * salbruto
12
      se filhos > 2 entao
         salario <- salario + 300
14
15
16
       escreva ( "O salário líquido é: ", salario )
17
    fimalgoritmo
```

Algoritmo 7.5: Algoritmo para calcular salário líquido mensal de um funcionário.

```
algoritmo "Soma de digitos de centena e milhar"
1
    var
2
3
       n, m, c : inteiro
    inicio
       escreva ( "Entre com um número inteiro positivo:" )
       leia (n)
6
       m <- n \ 1000
7
       c <- n \ 100 % 10
8
       se ( c + m ) \frac{\%}{2} = 0 entao
           escreva ( "sim" )
10
       senao
11
           escreva ( "não" )
12
       fimse
13
    fimalgoritmo
14
```

Algoritmo 7.6: Soma dígitos de centena e milhar

```
algoritmo "Misterioso"
1
    var
2
       n : inteiro
3
    inicio
       escreva ( "Entre com um número inteiro positivo:" )
5
       leia (n)
6
       se (n \% 2) = 1 entao
7
         se (n \% 7) = 0 entao
8
             escreva ( "Passei pelo ponto 1" )
9
         senao
10
             escreva ( "Passei pelo ponto 4" )
11
         fimse
12
       senao
13
         se (n \% 4) = 0 entao
14
            escreva ( "Passei pelo ponto 2" )
15
16
            escreva ( "Passei pelo ponto 3" )
17
         fimse
18
       fimse
19
    fimalgoritmo
20
```

Algoritmo 7.7: Algoritmo "Misterioso". Qual é a saída dele?

EXPRESSÕES LÓGICAS

8.1 Lógica proposicional

Lógica é o estudo do raciocínio¹. Em particular, utilizamos lógica quando desejamos determinar se um dado raciocínio está correto. Nesta disciplina, introduzimos algumas noções básicas de Lógica Proposicional para que sejamos capazes de entender alguns tipos de dados e expressões utilizados nos algoritmos que desenvolveremos. No entanto, a relação entre lógica, resolução de problemas e programação de computadores é muito mais ampla, rica e complexa do que a discussão que apresentamos aqui.

A **Lógica Proposicional** consiste de uma *linguagem* e de um formalismo de *cálculo* para falar e deduzir fatos, respectivamente, sobre *proposições*. Uma **proposição** é uma sentença declarativa à qual podemos atribuir um valor *verdadeiro* ou *falso*. Há vários tipos de sentenças:

- Imperativas: "Multiplique 2 por 3."
- Exclamativas: "Que cerveja gelada!"
- Interrogativas: "Está chovendo lá fora?"
- Declarativas: "Todo aluno da UFRN é maior de idade."

O que distingue as sentenças declarativas das demais é o fato de que à elas podemos atribuir um valor verdadeiro ou falso, embora nem sempre sejamos capazes de saber que valor atribuir. Em lógica, assumimos que as proposições satisfazem dois princípios:

- 1. **Terceiro Excluído**: uma proposição ou é verdadeira ou é falsa, isto é, não existe uma terceira possibilidade.
- 2. Não-Contradição: uma proposição não pode ser, ao mesmo tempo, verdadeira e falsa.

As sentenças: "os únicos inteiros positivos que dividem 7 são 1 e o próprio 7" e "para todo inteiro positivo n, existe um primo maior do que n" são exemplos de proposições.

Aqui, usamos letras minúsculas, tais como p, q e r, para representar proposições e adotamos a notação

$$p: 1+1=3$$

para definir p como sendo a proposição 1 + 1 = 3.

¹Conjunto de argumentos ou idéias pensadas por alguém.

8.2 Proposições compostas

A linguagem utilizada em lógica para representar proposições e realizar cálculos sobre elas foi cuidadosamente desenvolvida para evitar ambiguidades. Este não é o caso da língua portuguesa, que nos permite facilmente construir sentenças ambíguas:

• Grandes carros e aviões.

O que é grande? Só os carros ou carros e aviões?

• José está vendo o jogo em cima das dunas.

Quem está em cima das dunas? O jogo? José? Ambos?

A linguagem que usaremos para construir algoritmos e as linguagens de programação também não são ambíguas, mas não servem para descrever argumentos, conhecimento, verdades, etc. É por isso que estudaremos uma linguagem própria para falar de proposições. Uma das características desta linguagem é o uso de conectivos lógicos para criar novas proposições, proposições compostas, a partir de proposições existentes.

Sejam $p \in q$ duas proposições. A **conjunção** de $p \in q$, representada por $p \wedge q$, é a proposição

$$p e q$$
.

A disjunção de p e q, representada por $p \vee q$, é a proposição

$$p$$
 ou q .

Por exemplo, se

$$p: 1+1=3$$

е

q: uma década equivale a 10 anos

então a conjunção de p e q é

$$p \wedge q$$
: $1+1=3$ e uma década equivale a 10 anos

e a disjunção de p e q é

$$p \lor q$$
: $1+1=3$ ou uma década equivale a 10 anos.

Os valores verdades das proposições, tais como conjunções e disjunções, podem ser descritos através de tabelas verdades. A **tabela verdade** de uma proposição p definida a partir das proposições p_1, \ldots, p_n lista todas as possíveis combinações de valores lógicos de p_1, \ldots, p_n , com T denotando verdadeiro e F denotando falso, e para cada combinação desses valores lógicos, a tabela verdade lista o valor lógico de p.

O valor lógico da proposição composta $p \wedge q$ é definido pela tabela verdade 8.1.

Por exemplo, se

$$p: 1+1=3$$

е

q: uma década equivale a 10 anos

p	q	$p \wedge q$
\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	\mathbf{F}
\mathbf{F}	\mathbf{V}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

Tabela 8.1: Tabela verdade da conjunção.

então p é falsa e q é verdadeira, o que implica que a conjunção

 $p \wedge q$: 1+1=3 e uma década equivale a 10 anos

é falsa.

O valor lógico da proposição composta $p \vee q$ é definido pela tabela verdade 8.2:

p	q	$p \lor q$
V	\mathbf{V}	V
\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{F}	\mathbf{V}	\mathbf{V}
\mathbf{F}	${f F}$	\mathbf{F}

Tabela 8.2: Tabela verdade da disjunção.

Por exemplo, se

$$p: 1+1=3$$

e

q: uma década equivale a 10 anos

então p é falsa e q é verdadeira, o que implica que a disjunção

$$p \wedge q$$
: $1 + 1 = 3$ ou uma década equivale a 10 anos

é verdadeira.

Existe ainda uma outra proposição importante:

Seja puma proposição qualquer. Então, a **negação** de p, denotada por $\overline{p},$ é a proposição

não é verdade que p.

O valor lógico da proposição \overline{p} é definido pela tabela verdade 8.3.

p	\overline{p}
\mathbf{V}	\mathbf{F}
\mathbf{F}	\mathbf{V}

Tabela 8.3: Tabela verdade da negação.

Por exemplo, se

$$p: 1+1=3$$

e

q: uma década equivale a 10 anos

então p é falsa e q é verdadeira, o que implica que

$$\overline{p}$$
: não é verdade que $1+1=3$

é verdadeira e

 \overline{q} : não é verdade que uma década equivale a 10 anos

é falsa.

Nós podemos utilizar conjunção, disjunção e negação para construir uma nova proposição a partir de duas proposições, onde cada uma delas pode ser uma proposição composta. Quando isto acontece, usamos parênteses e regras de precedência para determinar, de forma não-ambígua, como avaliar o valor lógico da proposição resultante.

Por exemplo, se p, q e r são proposições, então

$$(p \wedge \overline{q}) \vee r$$

também é uma proposição. Como podemos avaliar o valor lógico dessa proposição? Nós supomos que o operador de negação possui precedência sobre os conectivos de conjunção e disjunção. Então, a proposição

$$p \wedge \overline{q}$$

significa a conjunção de p com \overline{q} . Isto é, o operador de negação atua sobe q antes que o conectivo de conjunção atue sobre p e q.

Finalmente, quando temos mais duas proposições conectadas por \land ou \lor , usamos parênteses para determinar a ordem de composição das proposições. Por exemplo,

$$(p \wedge \overline{q}) \vee r$$

significa a disjunção da proposição $p \wedge \overline{q}$ com a proposição r. Isto é, os parênteses servem para determinar que a conjunção de p com \overline{q} deve ocorrer antes da disjunção de $p \wedge \overline{q}$ com r.

Se os parênteses fossem removidos, isto é, se tivéssemos

$$p \wedge \overline{q} \vee r$$

não poderíamos determinar se a sentença acima se trata da conjunção de p com $\overline{q} \vee r$ ou da disjunção de $p \wedge \overline{q}$ com r.

Agora, se supusermos que $p \notin \mathbf{V}$, $q \notin \mathbf{V}$ e $r \notin \mathbf{F}$, o valor lógico de $(p \wedge \overline{q}) \vee r \notin \mathbf{F}$

$$\begin{split} (p \wedge \overline{q}) \vee r &= (\mathbf{V} \wedge \overline{\mathbf{V}}) \vee \mathbf{F} \\ &= (\mathbf{V} \wedge \mathbf{F}) \vee \mathbf{F} \\ &= \mathbf{F} \vee \mathbf{F} \\ &= \mathbf{F}. \end{split}$$

Em alguns casos, no entanto, o uso de parênteses é desnecessário. Por exemplo,

$$(p \lor q) \land (\overline{p} \lor q) \land (p \lor \overline{q}) \land (\overline{p} \lor \overline{q})$$

No caso acima, não importa a ordem em que agrupamos as proposições definidas dentro dos parênteses, pois o valor lógico da proposição resultante será sempre o mesmo. Isto porque o conectivo "fora" que conecta as proposições parentizadas é o mesmo: \wedge .

8.3 Operadores lógicos

Como vimos na Aula 7, uma relação é, na verdade, uma proposição, pois ela é uma sentença declarativa (em particular, uma comparação entre dois valores) cujo valor só pode ser <u>verdadeiro</u> ou <u>falso</u>. Logo, é bastante natural nos perguntarmos se podemos *combinar* relações usando algum operador, assim como fizemos com as proposições que vimos na Seção 8.2 usando conectivos lógicos, conjunção e disjunção. A resposta é *sim*. Em particular, podemos construir **expressões lógicas**, que são expressões cujo resultado é um valor lógico. Toda relação é, portanto, uma expressão lógica. No entanto, uma expressão lógica pode consistir de mais de uma relação, as quais são combinadas através dos **operadores lógicos**. No Portugol da ferramenta VISUALG, os operadores lógicos são os mostrados na Tabela 8.4.

Operador	Descrição
nao	Negação
<u>e</u>	Conjunção
xou	Disjunção Exclusiva
ou	Disjunção

Tabela 8.4: Operadores lógicos da linguagem Portugol.

Suponha que a, b e c são variáveis do tipo inteiro. Então,

$$(a > b + c)$$
 e $(c <= 5 - a)$

é uma conjunção das relações

$$a > b + c$$

e

$$c <= 5 - a$$
.

O resultado da avaliação da expressão lógica

$$(a > b + c)$$
 e $(c <= 5 - a)$

(ou seja, da *conjunção* das duas relações acima) será o valor <u>verdadeiro</u> se, e somente se, o resultado das **duas** relações for o valor verdadeiro. Por outro lado, se a expressão lógica for

$$(a > b + c)$$
 ou $(c <= 5 - a)$

então o resultado da avaliação da expressão lógica (ou seja, da *disjunção*) será o valor <u>verdadeiro</u> se, e somente se, o resultado de **uma ou de ambas** as relações for o valor verdadeiro. Já

nao
$$(a > b + c)$$

é uma negação da relação

$$a > b + c$$
.

O resultado da avaliação da expressão lógica (ou seja, da negação) será o valor <u>verdadeiro</u> se, e somente se, o resultado da avaliação da relação for o valor <u>falso</u>.

As expressões lógicas podem combinar mais de duas relações. Por exemplo,

$$(a <> 4+b)$$
 ou $(2*5\% c=1)$ e $(a <= 5-c)$

$$\underline{\text{nao}} (c * 2 > 10) \underline{\text{ou}} (c - 3 <> 4) \underline{\text{ou}} (b > c * 4).$$

Como a utilização demasiada de parênteses pode prejudicar a legibilidade da expressão, o uso de regras de precedência de operadores é sempre útil. A Tabela 8.5 exibe a prioridade dos operadores lógicos da linguagem Portugol da ferramenta VISUALG. Estas prioridades podem ser modificadas pelo uso de parênteses, assim como fizemos com as expressões aritméticas.

Prioridade	Operador
mais alta	nao
†	<u>e</u>
†	<u>xou</u>
mais baixa	<u>ou</u>

Tabela 8.5: Prioridade de todos os operadores da linguagem Portugol vistos até o momento.

De acordo com essas precedências, o valor da expressão lógica

$$(2 > 3)$$
 e $(3 < 2)$ ou $(2 < 3)$

é verdadeiro, pois

$$\begin{array}{c} (2>3) \ \underline{\mathrm{e}} \ (3<2) \ \underline{\mathrm{ou}} \ (2<3) \Rightarrow \underline{\mathrm{falso}} \ \underline{\mathrm{e}} \ (3<2) \ \underline{\mathrm{ou}} \ (2<3) \\ \Rightarrow \underline{\mathrm{falso}} \ \underline{\mathrm{e}} \ \underline{\mathrm{falso}} \ \underline{\mathrm{ou}} \ (2<3) \\ \Rightarrow \underline{\mathrm{falso}} \ \underline{\mathrm{ou}} \ (2<3) \\ \Rightarrow \underline{\mathrm{falso}} \ \underline{\mathrm{ou}} \ (2<3) \\ \Rightarrow \underline{\mathrm{falso}} \ \underline{\mathrm{ou}} \ \underline{\mathrm{verdadeiro}} \\ \Rightarrow \underline{\mathrm{verdadeiro}} \, . \end{array}$$

Por outro lado, se o operador ou tivesse maior prioridade do que o operador e, então

avaliaria para falso, pois

$$(2 > 3) \ \underline{e} \ (3 < 2) \ \underline{ou} \ (2 < 3) \Rightarrow (2 > 3) \ \underline{e} \ \underline{falso} \ \underline{ou} \ (2 < 3)$$

$$\Rightarrow (2 > 3) \ \underline{e} \ \underline{falso} \ \underline{ou} \ \underline{verdadeiro}$$

$$\Rightarrow (2 > 3) \ \underline{e} \ \underline{verdadeiro}$$

$$\Rightarrow \underline{falso} \ \underline{e} \ \underline{verdadeiro}$$

No exemplo acima, as relações foram "cercadas" com parênteses. Na Lógica Proposicional, esses parênteses seriam desnecessários, pois qualquer operador relacional possui prioridade sobre todo operador lógico. No entanto, a ferramenta VISUALG exige que as relações que compõem uma expressão lógica sejam cercadas por parênteses. Logo, usando a linguagem Portugol desta ferramenta, as expressões lógicas acima não podem ser reescritas como mostrado a seguir:

$$2 > 3 + 3 < 2 + 2 < 3$$
.

8.4 Exercícios resolvidos

1. Avalie as seguintes expressões lógicas:

```
a) falso ou ( 10 % 5 * 2 <> 5 * 2 + 1 )
```

b) nao falso e ($3*3 \setminus 3 < 15 - 5\% 7$)

solução:

a)

$$\begin{array}{l} \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 10\ \%\ 5\ *\ 2\ <>\ 5\ *\ 2\ +\ 1\) \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 0\ *\ 2\ <>\ 5\ *\ 2\ +\ 1\) \\ \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 0\ <>\ 5\ *\ 2\ +\ 1\) \\ \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 0\ <>\ 10\ +\ 1\) \\ \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 0\ <>\ 11\) \\ \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 0\ <>\ 11\) \\ \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 0\ <>\ 11\) \\ \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ (\ 0\ <>\ 11\) \\ \Rightarrow \underline{\mathrm{falso}}\ \underline{\mathrm{ou}}\ \mathrm{verdadeiro} \\ \Rightarrow \mathrm{verdadeiro}. \end{array}$$

b)

2. Suponha que x seja uma variável do tipo <u>inteiro</u> e considere a seguinte expressão lógica:

$$(x \% 3 = 0) \underline{e} (x \% 7 = 0)$$

Então, para quais valores de x a expressão lógica acima avalia para o valor <u>verdadeiro</u>? solução:

Para todo valor inteiro que seja um múltiplo comum de 3 e de 7. Por exemplo, -21 e 21.

3. Suponha que x seja uma variável do tipo <u>inteiro</u>. Então, escreva uma expressão lógica envolvendo x que avalie para o valor <u>verdadeiro</u> se, e somente se, o valor de x for par e não for maior do que 11.

solução:

$$(x \% 2 = 0) e (x \le 11)$$

8.5 Exercícios propostos

1. Avalie o valor da expressão $p \in (q \text{ ou } r)$ quando sabe-se que:

- a) p é verdade, q é falso e r é falso
- b) p é verdade, q é verdade e r é falso
- c) p é falso, p é falso e r é verdade
- 2. Resolva as expressões lógicas:
 - a) $\underline{\text{nao}} (2 > 3)$
 - b) (6 < 8) ou (3 > 7)
 - c) nao (2 <> 2.0)
 - d) (5 >= 6) ou (6 < 7) ou nao (a + 5 6 = 8), onde a = 5
 - e) $((34 < 9) \underline{e} (5 + u = 34)) \underline{ou} ((5 = 15/3) \underline{e} (8 > 12))$, onde u = 29
- 3. Avalie as seguintes expressões lógicas:
 - a) nao $(7 <> 15 \setminus 2)$ ou verdadeiro e (4-6 > 4-20)
 - b) (2*5>3) ou (5+1<2) e (2<7-2)
- 4. Suponha que x seja uma variável do tipo real e considere a seguinte expressão lógica:

$$x * x - 4 > 5$$

Então, para quais valores de x a expressão lógica acima avalia para o valor <u>falso</u>?

- 5. Suponha que x seja uma variável do tipo <u>logico</u>. Então, escreva uma expressão lógica envolvendo x que avalie para o valor <u>falso</u> se, e somente se, o valor de x for <u>verdadeiro</u>.
- 6. Suponha que x seja uma variável do tipo <u>logico</u>. Então, escreva uma expressão lógica envolvendo x que avalie para o valor <u>verdadeiro</u> se, e somente se, o valor de x for <u>falso</u>.
- 7. Suponha que x seja uma variável do tipo <u>inteiro</u>. Então, escreva uma expressão lógica envolvendo x que avalie para o valor <u>verdadeiro</u> se, e somente se, o valor de x for par ou não for maior do que 11, mas não ambos.
- 8. Escreva um algoritmo para determinar se um aluno está aprovado ou reprovado em uma disciplina baseando-se em sua porcentagem de faltas, média parcial e nota do exame final. Um aluno para ser aprovado precisa cumprir as seguintes condições:
 - Sua porcentagem de faltas não deve ultrapassar 25%;
 - Sua média parcial deve ser igual ou maior que 7.0, ou a soma de sua média parcial e de sua nota do exame final deve ser igual ou maior que 10.0.

Os valores de porcentagem de faltas, média parcial e nota do exame final do aluno devem ser lidos pelo algoritmo. A saída do algoritmo deve ser "aluno aprovado" ou "aluno reprovado".

ESTRUTURAS CONDICIONAIS - PARTE 2

9.1 Usando proposições compostas

Considere o problema de se calcular a média harmônica ponderada de três notas de prova. As notas variam de 0 a 10 e os pesos são 1, 2 e 3 para a primeira, segunda e terceira notas, respectivamente. A fórmula da média harmônica ponderada, digamos mh, para os pesos dados acima é

$$mh = \begin{cases} \frac{6}{\frac{1}{n_1} + \frac{2}{n_2} + \frac{3}{n_3}} & \text{se } n_1, n_2 \text{ e } n_3 \text{ são todas diferentes de 0} \\ 0 & \text{caso contrário.} \end{cases}$$

onde n_1 , n_2 e n_3 são os valores da primeira, segunda e terceira notas, respectivamente. Note que a fórmula para se calcular mh é condicional. Em outras palavras, se todas as notas são distintas de zero, então o valor de mh, é inversamente proporcional a uma soma de frações. Caso contrário, isto é, quando pelo menos uma das notas é igual a zero, o valor de mh, é igual a zero.

Agora, vamos escrever um algoritmo para calcular mh. A entrada do algoritmo consiste dos valores das três notas, n_1 , n_2 e n_3 . A saída do algoritmo é o valor de mh. Para obter este valor, podemos utilizar a fórmula acima. No entanto, como a fórmula possui duas "partes", nosso algoritmo precisará de um comando condicional. Este comando deve testar se todas as notas são diferentes de zero. Como este teste pode ser escrito? Pelo que vimos na aula anterior, o teste desejado pode ser escrito como uma composição de três relações usando o conectivo de conjunção:

$$(nota1 <> 0)$$
 e $(nota2 <> 0)$ e $(nota3 <> 0)$

onde nota1, nota2 e nota3 são os nomes das variáveis que armazenam os valores de n_1 , n_2 e n_3 , respectivamente. Se a expressão lógica acima avaliar para <u>verdadeiro</u>, então o valor de mh é calculado por:

$$mh = \frac{6}{\frac{1}{n_1} + \frac{2}{n_2} + \frac{3}{n_3}} \,.$$

Caso contrário, o valor de mh deve ser igual zero. Um comando <u>se-então-senão-fimse</u> com a expressão lógica acima é tudo que precisamos para fazer o cálculo de mh. O algoritmo completo está em 9.1.

É interessante notar que o comando <u>se-então-senão-fimse</u> poderia ser substituído por um comando <u>se-então-fimse</u> se removermos a seção <u>senao</u> e inicializarmos o valor da variável *media* com 0 imediatamente acima do comando condicional, como mostrado no seguinte trecho de código:

```
algoritmo "Media harmonica ponderada"
1
2
       nota1, nota2, nota3, media : real
3
    inicio
4
      escreva( "Entre com a primeira nota: " )
5
      leia( nota1 )
      escreva( "Entre com a segunda nota: " )
7
      leia( nota2 )
      escreva( "Entre com a terceira nota: " )
9
      leia( nota3 )
10
      se ( nota1 \Leftrightarrow 0 ) e ( nota2 \Leftrightarrow 0 ) e ( nota3 \Leftrightarrow 0 ) entao
11
          media <- 6 / ( 1 / nota1 + 2 / nota2 + 3 / nota3 )
12
      senao
13
          media <- 0
14
15
       escreva( "A media harmonica ponderada das tres notas e: " , media )
16
    fimalgoritmo
```

Algoritmo 9.1: Cálculo da média harmônica ponderada de três notas

9.2 Troca de conteúdo entre duas variáveis

Quando escrevemos algoritmos mais complexos é comum nos depararmos com a tarefa de trocar os conteúdos de duas variáveis. Isto é, se x e y são duas variáveis do mesmo tipo, trocar os conteúdos de x e y significa atribuir o valor de x a y e atribuir o valor de y a x. Muitos iniciantes no estudo de algoritmos podem pensar em cumprir esta tarefa escrevendo o trecho de código

```
y <- x
x <- y
ou
x <- y
y <- x
```

que $n\tilde{a}o$ estão corretos. Para entender o porquê dos trechos acima não estarem corretos, vamos supor que x e y sejam variáveis do tipo <u>inteiro</u> e que possuam os valores 4 e 7, respectivamente, antes de qualquer um dos trechos de código ser executado. Como qualquer variável só pode armazenar um único valor de seu tipo em um mesmo instante de tempo, a execução do trecho de código

```
\begin{array}{l} y<-\;x\\ x<-\;y \end{array}
```

resulta em x e y com o valor 4. De fato, quando a instrução y < -x é executada, o valor de x, que é 4 antes da atribuição, é atribuído à variável y, que continha o valor 7 antes da atribuição. Desta forma, o antigo valor de y é substituído por 4 e, após a instrução, tanto x quanto y possuem 4 como conteúdo. A próxima instrução, x < -y, simplesmente atribui o valor atual de y, que agora é 4, à variável x, que já possui o valor 4. Logo, ao final das duas instruções, as duas variáveis possuem valor 4. O mesmo tipo de análise mostra que outro trecho de código,

deixa tanto x quanto y com valor 7. Como podemos realizar esta "simples" tarefa de forma correta?

A forma correta de trocar o valor de duas variáveis se utiliza de uma variável extra, comumente denominada de variável temporária ou variável auxiliar. Esta variável serve para armazenar, temporariamente, o valor que será sobrescrito por uma instrução de atribuição. Por exemplo, se queremos executar a instrução y <- x, então devemos guardar o valor de y, que será sobrescrito pela instrução, em algum local "seguro" de modo que ele possa ser usado quando necessitarmos. Este local seguro é a tal variável temporária. De forma concreta, suponha que z seja a variável temporária. Então, antes de executar a instrução y <- x, executamos z <- y. Isto faz com que o valor de y seja guardado em z antes de y receber o valor que está em x. Finalmente, atribuímos o antigo valor de y, que agora está em z, a x através da instrução x <- z.

O trecho de código correto é, portanto,

```
\begin{aligned} z &<- y \\ y &<- x \\ x &<- z \end{aligned}
```

Note que se x e y possuem os valores 4 e 7 antes do trecho acima ser executado, então z < -y faz com que z receba o valor 7, y < -x faz com que y receba o valor 4 e x < -z faz com que x receba o valor 7. Logo, ao final da execução do código acima, os valores em x e y são 7 e 4, respectivamente.

Para ilustrar a ocorrência de uma troca de valores de variáveis em um algoritmo, vamos considerar um problema extremamente simples: escrever em ordem não-decrescente dois números fornecidos como entrada para o problema. Um algoritmo para este problema deve ler os dois números, determinar qual deles é o menor e qual deles é o maior e escrever o menor seguido pelo maior. Quando os números forem iguais, a ordem de escrita dos números é indiferente.

Um algoritmo para o problema acima é dado em 9.2. Note que a idéia é trocar os valores das duas variáveis que recebem os números de entrada sempre que o primeiro número for maior do que o segundo. Se este não for o caso, a troca não é feita. Desta forma, podemos escrever um comando de saída que sempre escreve o valor da primeira variável seguido pelo valor da segunda. Como o valor da primeira variável é sempre menor ou igual ao valor da segunda variável imediatamente antes da instrução de escrita ser executada, o algoritmo sempre fornecerá a resposta esperada. Um outro algoritmo, que não usa troca de variáveis, é dado em 9.3.

9.3 O comando escolha

O uso do comando <u>se-então-senão-fimse</u> de forma aninhada e com vários níveis de aninhamento pode dificultar a leitura do algoritmo. Em tais situações, o melhor é usar um outro comando de estrutura condicional fornecido pela linguagem Portugol da ferramenta VISUALG: o comando <u>escolha</u>. Este comando permite que o resultado de uma única expressão, denominada <u>expressão</u> de seleção, seja comparado com os resultados de várias expressões. Essas expressões se encontram agrupadas e cada grupo está associado a uma seqüência de comandos. Se o valor de qualquer uma das expressões de um grupo é igual ao valor da expressão de seleção, todos os comandos associados ao grupo são executados. A sintaxe do comando escolha é mostrada abaixo:

```
escolha expressão de seleção

caso expressão 1, expressão 2, ..., expressão n_1
seqüência de comandos

caso expressão 1, expressão 2, ..., expressão n_2
seqüência de comandos

:

outrocaso
seqüência de comandos
fimescolha
```

Em geral, a expressão de seleção e as expressões de cada grupo são expressões aritméticas ou simplesmente constantes, tais como números, letras e frases. A palavra reservada <u>caso</u> representa um grupo de expressões (as quais estão descritas à direita da palavra <u>caso</u>) e um grupo de comandos (que está logo abaixo da palavra <u>caso</u>). A palavra reservada <u>outrocaso</u> representa o grupo de comandos executados quando o valor da expressão de seleção não é igual ao valor de nenhuma expressão dos grupos anteriores. É possível que grupos distintos contenham expressões que avaliem para o mesmo valor. Se este mesmo valor é igual ao valor da expressão de seleção, apenas os comandos do grupo mais próximo da expressão de seleção são executados.

Para ilustrar o comando <u>escolha</u>, considere o problema de classificar os atletas de um clube de futebol por categorias que se distinguem pela idade do atleta: Infantil (de 5 a 10 anos), Juvenil (de 11 a 15 anos), Junior (de 16 a 20 anos) e Profissional (de 21 a 25 anos). O nosso objetivo é construir um algoritmo que lê o nome e a idade de um atleta e escreve como saída o nome da categoria à qual ele pertence ("Infantil", "Juvenil", "Junior" ou "Profissional"). Se o atleta não pertence a nenhuma das categorias acima, o algoritmo deve escrever "Nenhuma categoria".

O problema pode ser resolvido naturalmente com o uso do comando <u>escolha</u>, pois cada categoria está relacionada a um grupo de valores (as idades). Um algoritmo que utiliza o comando escolha para resolver o problema é dado em 9.3. Como exercício, reeescreva o mesmo algoritmo usando comandos <u>se-então-senão-fimse</u> aninhados e compare seu algoritmo com o Algoritmo 9.3.

9.4 Exercícios propostos

1. Escreva um algoritmo que leia um número inteiro e escreva como saída "divisível por 3 e 7" se o número for divisível por 3 e por 7 ou "não é divisível por 3 e 7" caso contrário.

- 2. Crie um algoritmo que solicite o nome de um time de futebol ao usuário. Se o nome do time informado for "Flamengo", "Fluminense", "Vasco"ou "Botafogo", escreva "É um time carioca". Se o nome do time informado for "São Paulo", "Palmeiras", "Santos"ou "Corínthians", escreva "É um time paulista". Se o nome do time não for nenhum dos citados anteriormente, escreva "Time desconhecido".
- 3. A Prefeitura de Natal abriu uma linha de crédito para os funcionários estatutários. O valor máximo da prestação de um empréstimo não pode ultrapassar 30% do salário bruto do funcionário. Escreva um algoritmo que leia o nome de um funcionário, seu salário bruto e o valor da prestação do empréstimo que ele solicitou e, em seguida, escreva como saída o nome do funcionário seguido da mensagem "teve o crédito concedido" se o empréstimo solicitado puder ser concedido ou seguido da mensagem "crédito negado" caso contrário.
- 4. Escreva um algoritmo que leia um número real, n, e escreva "menor que 20", "igual a 20" ou "maior que 20" se n < 20, n = 20 ou n > 20, respectivamente.
- 5. Escreva um algoritmo que leia um número inteiro positivo com três dígitos e escreva como saída "par" se o dígito da centena é par e "ímpar" caso contrário.
- 6. Escreva um algoritmo que leia um número inteiro positivo com quatro dígitos e escreva como saída "sim" se a soma dos dígitos da unidade e da centena são múltiplos de 4 e "não" caso contrário.
- 7. Escreva um algoritmo que leia nome, sexo e idade de uma pessoa e escreva o nome e a mensagem "aceita" se a pessoa for do sexo feminino e tiver mais de 25 anos ou for do sexo masculino e tiver mais do que 30 anos. Caso contrário, o algoritmo deve escrever o nome e a mensagem "não aceita". O dado sexo deve ser informado com a letra M ou a letra F (maiúsculas).
- 8. Um comerciante compra um determinado produto para revender. O valor de revenda é calculado da seguinte forma: se o comerciante pagar menos de R\$ 20,00 pelo produto, o valor de revenda é tal que o comerciante obtenha um lucro de 45%; se o valor de compra é maior ou igual a R\$ 20,00, o valor de revenda é tal que o comerciante obtém um lucro de 30%. Então, escreva um algoritmo que leia o valor de compra de um produto e calcule e escreva o valor de revenda do produto.
- 9. Escreva um algoritmo que leia dois números reais e os escreva em ordem não-decrescente.
- 10. Escreva um algoritmo que leia dois números reais e os escreva em ordem não-crescente.
- 11. Escreva um algoritmo que leia três números reais distintos e os escreva em ordem nãodecrescente.
- 12. Escreva um algoritmo que leia cinco números reais distintos e escreva o maior e o menor deles.
- 13. Escreva um algoritmo que leia três números reais positivos e escreva "sim" se os três números podem ser as medidas dos lados de um trângulo e "não" caso contrário. Lembre-se de que três números podem ser as medidas dos lados de um triângulo se, e somente se, cada um deles é menor do que a soma dos outros dois.
- 14. Escreva um algoritmo que leia três números reais e escreva "equilátero" se eles formam os lados de um triângulo equilátero, "isósceles" se eles formam os lados de um triângulo isósceles, "escaleno" se eles formam os lados de um triângulo escaleno e "não formam os lados de um triângulo" se eles não formam os lados de um triângulo.

```
algoritmo "Numeros em ordem nao-decrescente - primeira versao"
1
2
       num1, num2, num3 : real
    inicio
      escreva( "Entre com o primeiro numero: " )
      leia( num1 )
6
      escreva( "Entre com o segundo numero: " )
      leia( num2 )
8
      se num1 > num2 entao
         num3 <- num1
10
         num1 <- num2
11
         num2 <- num3
12
13
      escreva( "Os numeros em ordem nao-decrescente: " , num1 , " e " , num2 )
14
    fimalgoritmo
```

Algoritmo 9.2: Escrita de dois números em ordem não-decrescente

```
algoritmo "Numeros em ordem nao-decrescente - segunda versao"
1
    var
2
       num1, num2 : real
3
    inicio
      escreva( "Entre com o primeiro numero: " )
      leia( num1 )
6
      escreva( "Entre com o segundo numero: " )
      leia( num2 )
8
      se num1 > num2 entao
         escreva( "Os numeros em ordem nao-decrescente: " , num2 , " e " , num1 )
10
11
         escreva( "Os numeros em ordem nao-decrescente: " , num1 , " e " , num2 )
12
      fimse
13
    fimalgoritmo
14
```

Algoritmo 9.3: Escrita de dois números em ordem não-decrescente v2

```
algoritmo "Atletas por categorias de idade"
1
2
       nome, categoria : caractere
3
       idade : inteiro
4
5
      escreva( "Entre com o nome do atleta: " )
6
      leia( nome )
      escreva( "Entre com a idade do atleta: " )
8
      leia( idade )
9
      escolha idade
10
         caso 5, 6, 7, 8, 9, 10
11
             categoria <- "Infantil"</pre>
12
         caso 11, 12, 13, 14, 15
13
             categoria <- "Juvenil"</pre>
14
         caso 16, 17, 18, 19, 20
15
             categoria <- "Junior"
16
         caso 21, 22, 23, 24, 25
17
             categoria <- "Profissional"</pre>
18
         outrocaso
19
             categoria <- "Nenhuma categoria"
20
      fimescolha
21
      escreva( "O atleta ", nome, " pertence a categoria ", categoria )
22
    fimalgoritmo
```

Algoritmo 9.4: Classificar atletas por categorias de idade

Estruturas de Repetição - Parte 1

10.1 O comando enquanto-faca-fimenquanto

Considere o problema de escrever um algoritmo para ler um número inteiro positivo, n, e escrever todos os números inteiros de 1 a n como saída. Por mais simples que este problema possa parecer, não temos como resolvê-lo com os comandos que aprendemos até aqui. A razão é que o valor de n não é conhecido antes de escrevermos o algoritmo. Logo, não temos como escrever um algoritmo com n comandos do tipo escreva(i), onde i é um inteiro de 1 a n. No entanto, se tivéssemos uma forma de "repetir" a execução do comando escreva um número variável de vezes, poderíamos facilmente resolver nosso problema. De fato, o que gostaríamos é de poder escrever algo como:

```
i < -1 
 execute \ n vezes as duas linhas abaixo:  \underbrace{escreva}_{i}(i)  i < -i+1
```

A linguagem Portugol da ferramenta VISUALG contém um comando, o <u>enquanto-faca-fimenquanto</u>, que faz exatamente o que queremos. Este comando possui a sintaxe descrita abaixo:

O comando <u>enquanto-faca-fimenquanto</u>, mais conhecido como **laço enquanto**, funciona da seguinte forma: a expressão lógica, denominada **condição** do laço, é primeiramente avaliada. Se o valor da expressão for <u>verdadeiro</u>, a seqüência de comandos do **corpo do laço**, isto é, a seção de comandos delimitada pelas palavras reservadas <u>faca</u> e <u>fimenquanto</u>, é executada e a expressão é novamente avaliada. Caso contrário, o primeiro comando após a palavra <u>fimenquanto</u> é executado. Note que se a expressão lógica que define a condição do laço avaliar para <u>falso</u> durante a primeira avaliação, a seqüência de comandos do corpo do laço não é executada nenhuma vez.

Usando o comando enquanto-faca-fimenquanto, podemos facilmente escrever o trecho de código que realiza a escrita dos número de $\overline{1}$ a n. Para tal, precisamos definir a condição do laço. Como

queremos executar o corpo do laço n vezes, uma escolha natural é a condição que testa se o valor de i é menor ou igual ao valor de n, i <= n. Enquanto esta condição for verdadeira, o comando de escrita é executado e o valor de i é incrementado em uma unidade. Em particular, temos:

A variável i realiza dois papéis importantes no trecho de código acima. Ela serve para enumerar os valores que serão escritos pelo algoritmo e para contar o número de vezes em que o corpo do laço é executado. Devido a este último papel, a variável recebe o nome de variável **contadora**. Para compreender como o trecho de algoritmo acima é executado, vamos supor que o valor de n seja 4. Se este for o caso, então os seguintes passos são executados pelo trecho acima:

- 1. atribui o valor 1 à variável i
- 2. compara o valor de i com 4
- 3. escreve o valor de i
- 4. incrementa o valor de i em uma unidade
- 5. compara o valor de i com 4
- 6. escreve o valor de i
- 7. incrementa o valor de i em uma unidade
- 8. compara o valor de i com 4
- 9. escreve o valor de i
- 10. incrementa o valor de i em uma unidade
- 11. compara o valor de i com 4
- 12. escreve o valor de i
- 13. incrementa o valor de i em uma unidade
- 14. compara o valor de i com 4

A Tabela 10.1 mostra o valor de i antes e depois de cada um dos passos acima. Note que o corpo do laço é executado exatamente 4 vezes (passos 3, 4, 6, 7, 9, 10, 12 e 13). Após a execução do passo 13, o valor da variável contadora, i, passa a ser 5, o que faz com que a expressão lógica que define a condição do laço (avaliada nos passos 2, 5, 8, 11 e 14) avalie para <u>falso</u> pela primeira vez

O algoritmo completo para o problema de escrever os número de 1 a n é mostra no Algoritmo 10.1.

10.2 Exemplos

O laço enquanto nos permite resolver alguns problemas bem mais complexos do que o que vimos na Seção 10.1. Como exemplo, considere o problema de escrever um algoritmo para ler dois números inteiros, a e b, com b > a, e calcular e escrever a soma de todos os números entre a e b, incluindo os próprios extremos a e b na soma. O problema acima pode ser resolvido sem o uso de um laço enquanto, mas a solução requer o uso de uma fórmula. Por outro lado, podemos usar o laço enquanto para "enumerar" todos os números inteiros de a a b e calcular a soma desejada de forma "incremental". Esta solução consiste de duas etapas que são discutidas a seguir.

A enumeração de todos os números entre a e b, inclusive, pode ser feita como segue:

```
i < -a
\underbrace{\text{enquanto}}_{i < -i} i < = b \underbrace{\text{faça}}_{i \text{fimenquanto}}
```

Note que o corpo do laço acima é executado b-a+1 vezes e, em cada execução, a variável i possui um valor distinto no intervalo $[a,b]\subset\mathbb{Z}$. O próximo passo é acumular, de forma incremental, o valor de i em uma variável. Para tal, fazemos uso de uma variável **acumuladora** como segue:

```
\begin{array}{l} soma < -\ 0 \\ i < -\ a \\ \underline{ \text{enquanto}}\ i < =\ b\ \underline{\text{faça}} \\ \underline{ soma} < -\ soma +\ i \\ i < -\ i +\ 1 \\ \text{fimenquanto} \end{array}
```

O nome variável acumuladora vem do fato que, ao final da j-ésima execução do corpo do laço, para $j \in \{1, \ldots, b-a+1\}$, o valor de soma é igual à soma dos valores $a, a+1, a+2, \ldots, a+j-1$. Isto significa que a variável acumula a soma dos valores que já foram enumerados pelo laço. Ao final da última iteração, ou seja, quando j assumir o valor b-a+1, a variável acumuladora será igual à soma dos números $a, a+1, a+2, \ldots, b$, que é o valor desejado.

O algoritmo completo é mostrado no Algoritmo 10.2.

Variáveis acumuladoras podem acumular valores de somas, subtrações, multiplicações e divisões. Um algoritmo no qual usamos uma variável acumuladora para acumular o valor de multiplicações é o que calcula o fatorial de um número inteiro. Por definição, o fatorial, n!, de n é dado por

$$n! = \begin{cases} 1 & \text{se } n = 0 \text{ ou } n = 1 \\ n \cdot (n-1)! & \text{se } n > 1 \end{cases}.$$

A definição acima é recursiva, pois o fatorial de n é definido em termos do fatorial de (n-1). No entanto, nós aprendemos que a definição recursiva equivale à definição não-recursiva dada a seguir:

$$n! = \begin{cases} 1 & \text{se } n = 0 \\ n \cdot (n-1) \cdots 2 \cdot 1 & \text{se } n > 0 \end{cases}.$$

Usando a definição não-recursiva e uma variável acumuladora, temos o algoritmo dado em 10.2. Note que a variável acumuladora "acumula" uma multiplicação e não uma soma. Logo, ela deve ser inicializada com 1 e não com zero, que foi o caso da variável soma do Algoritmo 10.2. Note também que a variável contadora é inicializada com o número de cujo fatorial queremos calcular e que ela é decrementada de uma unidade a cada execução do corpo do laço.

10.3 Exercícios propostos

- 1. Escreva um algoritmo que leia um número inteiro positivo, n, e escreva os n primeiros números pares positivos. Por exemplo, dado n=4, o algoritmo deveria escrever como saída os números 2, 4, 6 e 8.
- 2. Escreva um algoritmo que leia um número inteiro positivo, n, e escreva os n primeiros inteiros positivos ímpares. Por exemplo, dado n=4, o algoritmo deveria escrever como saída os números 1, 3, 5 e 7.
- 3. Escreva um algoritmo que leia um número inteiro positivo, n, e escreva o quadrado dos n primeiros inteiros positivos.
- 4. Escreva um algoritmo que leia dois números inteiros positivos, $a \in b$, com a < b, e calcule e escreva o quadrado de todos os números ímpares no intervalo [a, b].
- 5. Escreva um algoritmo que leia dois números inteiros positivos, $a \in b$, com a < b, e calcule e escreva a média aritmética de todos os números pares compreendidos no intervalo [a, b].
- 6. Dizemos que um número inteiro positivo, n, é perfeito se n for igual à soma de seus divisores positivos diferentes de n. Por exemplo, n=28 é perfeito, pois 1+2+4+7+14=28. Escreva um algoritmo que leia um número inteiro positivo, n, verifique se n é perfeito e escreva "é perfeito" em caso afirmativo e "não é perfeito" caso contrário.
- Qualquer número inteiro positivo de quatro algarismos pode ser dividido em duas dezenas formadas pelos seus dois primeiros e dois últimos dígitos. Por exemplo,

1297 : 12 e 97. 5314 : 53 e 14.

Escreva um algoritmo que imprima todos os números de quatro algarismos cuja raiz quadrada seja a soma das dezenas formadas pela divisão acima. Por exemplo,

$$\sqrt{9801} = 99 = 98 + 01$$
.

Portanto, 9801 é um dos números a serem escritos pelo algoritmo. Note que este algoritmo não possui nenhum dado de entrada!

8. Dado um inteiro positivo, n, o número harmônico, H_n , é definido pela soma

$$H_n = \sum_{k=1}^n \frac{1}{k} \,.$$

Escreva um algoritmo que leia n e escreva como saída o valor de H_n .

9. Escreva um algoritmo que leia um número inteiro n e escreva os números recíprocos (inversos multiplicativos) dos n primeiros inteiros positivos. O recíproco de um número i é dado por 1/i.

- 10. Escreva um algoritmo que leia o preço e a quantidade de cinco produtos diferentes de uma loja e escreva o valor total da compra.
- 11. Escreva um algoritmo que leia uma quantidade indeterminada de números inteiros positivos e escreva:
 - a) Quantos deles estão no intervalo [0..25]
 - b) Quantos estão no intervalo [26..50]
 - c) Quantos são maiores do que 50.

O algoritmo deve parar quando o usuário digital um número negativo.

- 12. Escreva um algoritmo que leia um número inteiro e escreva o quadrado desse número enquanto ele for positivo. Se um inteiro negativo for digitado, o algoritmo deve parar e escrever uma mensagem informando que um número negativo foi digitado.
- 13. Escreva um algoritmo que leia um número inteiro positivo n e escreva quantos divisores positivos ele possui.

Passo	Valor de i antes	Valor de i depois
1	desconhecido	1
2	1	1
3	1	1
4	1	2
5	2	2
6	2	2
7	2	3
8	3	3
9	3	3
10	3	4
11	4	4
12	4	4
13	4	5
14	5	5

Tabela 10.1: O valor i antes e depois de cada comando do trecho de algoritmo que ilustra o laço enquanto.

```
algoritmo "Inteiros de 1 a n"
1
2
       num, i : inteiro
3
4
      escreva( "Entre com um numero inteiro positivo: " )
      leia( num )
6
      i <- 1
      enquanto ( i \le num ) faca
8
         escreva( i , " " )
9
         i <- i + 1
10
      fimenquanto
11
    fimalgoritmo
12
```

Algoritmo 10.1: Escrita dos inteiros de 1 a \boldsymbol{n}

```
algoritmo "Soma de inteiros em um intervalo"
1
       a, b, i, soma : inteiro
3
    inicio
4
      escreva( "Entre com o menor inteiro do intervalo: " )
5
6
      escreva( "Entre com o maior inteiro do intervalo: " )
      leia( b )
      soma <- 0
      i <- a
10
      enquanto ( i <= b ) faca
11
         soma <- soma + i
12
         i <- i + 1
13
      fimenquanto
14
      escreva( "A soma dos numeros do intervalo e: ", soma )
15
    fimalgoritmo
16
```

Algoritmo 10.2: Soma dos inteiros de um dado intervalo

```
algoritmo "Fatorial de inteiro nao-negativo"
1
    var
2
     num, i , fat : inteiro
3
    inicio
      escreva( "Entre com um numero inteiro nao-negativo: " )
      leia( num )
6
      fat <- 1
7
      i <- num
8
      enquanto (i > 1) faca
9
         fat <- fat * i
10
         i <- i - 1
11
      fimenquanto
12
      escreva( "O fatorial de ", num , " e: ", fat )
13
    fimalgoritmo
14
```

Algoritmo 10.3: Fatorial de um inteiro não negativo

ESTRUTURAS DE REPETIÇÃO 2

11.1 A seqüência de Fibonacci

Um problema parecido, mas ligeiramente mais complicado do que o do cálculo do fatorial (veja as notas da Aula 14), é o do cálculo do n-ésimo termo da seqüência de Fibonacci, f_n , onde:

$$f_n = \begin{cases} 0 & \text{se } n = 0 \\ 1 & \text{se } n = 1 \\ f_{n-1} + f_{n-2} & \text{se } n > 1 \end{cases}$$

Em outras palavras, os dois primeiros termos da seqüência, f_0 e f_1 , são iguais a 0 e 1, respectivamente. A partir do terceiro termo, o valor de qualquer termo, f_i , com $i \ge 2$, é igual a soma dos dois termos anteriores:

$$f_i = f_{i-1} + f_{i-2}$$
.

Vamos escrever um algoritmo que leia um inteiro positivo, n, e calcule e escreva o n-ésimo termo, f_n , da seqüência de Fibonacci. A idéia por trás deste algoritmo é calcular f_n de forma incremental, isto é, o algoritmo começa com a inicialização de duas variáveis, a e b, com os valores $f_0 = 0$ e $f_1 = 1$. Em seguida, ele calcula o valor de f_2 como sendo a + b. O valor resultante é armazenado em uma variável temporária, t. Antes de calcular f_3 , o algoritmo copia o valor de b para a e o valor de t para t Desta forma, temos que t (o antigo valor de t) e t (o atual valor de t). Em seguida, o valor de t é calculado como t0 novamente, pois t1. Se obsevarmos bem, a soma t2 foi repetida no cálculo de t3 e t4. O que acabamos de descrever pode ser expresso como

$$\begin{array}{l} a<-0\\ b<-1\\ i<-1\\ \hline {i<-1}\\ \hline {enquanto}\ i<= \\ n\ \underline{faca}\\ t<-a+b\\ a<-b\\ b<-t\\ i<-i+1\\ \hline {fimenquanto} \end{array}$$

Se supusermos que n=3, o laço acima calcula o valor de f_3 da seguinte forma:

- 1. a recebe o valor 0.
- 2. b recebe o valor 1.
- 3. *i* recebe o valor 1.
- 4. O valor de i=1 é comparado com o valor n=3. Como $i=1 \le n=3$, o corpo do laço é executado pela primeira vez, para calcular f_1 .
- 5. t recebe o valor de $f_2 = a + b = 1$.
- 6. a recebe o valor $f_1 = b = 1$.
- 7. b recebe o valor de $t = f_2 = 1$.
- 8. O valor de i é incrementado e se torna 2.
- 9. O valor de i=2 é comparado com o valor n=3. Como $i=2 \le n=3$, o corpo do laço é executado pela segunda vez, para calcular f_2 .
- 10. t recebe o valor de $f_3 = a + b = 2$.
- 11. a recebe o valor $f_2 = b = 1$.
- 12. b recebe o valor de $t = f_3 = 2$.
- 13. O valor de i é incrementado e se torna 3.
- 14. O valor de i=3 é comparado com o valor n=3. Como $i=3 \le n=3$, o corpo do laço é executado pela terceira vez, para calcular f_3 .
- 15. t recebe o valor de $f_4 = a + b = 3$.
- 16. a recebe o valor $f_3 = b = 2$.
- 17. b recebe o valor de $t = f_4 = 3$.
- 18. O valor de i é incrementado e se torna 4.
- 19. O valor de i=4 é comparado com o valor n=3. Como i=4>n=3, o corpo do laço não é mais executado. Note que a contém o valor de f_3 .

Um algoritmo para calcular o n-ésimo termo da seqüência de Fibonacci é dado em 11.2. Note que o algoritmo também fornece a resposta correta quando n=0. De fato, como o valor da variável i é 1 na primeira vez em que a condição do laço é avaliada, o corpo do laço não é executado para n=0. Logo, o valor de a escrito pelo algoritmo é igual ao valor que fn.

11.2 Inversão da ordem dos dígitos de um número

Suponha que desejemos desenvolver um algoritmo para ler um número inteiro não-negativo, n, e escrever como saída o número inteiro correspondente a n, quando n é lido da direita para a esquerda. Isto é, queremos calcular um número que correspondente ao número obtido quando invertemos a ordem dos dígitos de n. Por exemplo, se n=43, então o algoritmo deveria escrever o número 34; se n=120, então o algoritmo deveria escrever o número 21; se n=1304, então o algoritmo deveria escrever o número 5. Qual estratégia devemos usar para construir o algoritmo desejado?

Uma possível estratégia é a seguinte: se os algarismos de n são d_1, d_2, \ldots, d_k , com $k \geq 1$

quando enumerados da direita para a esquerda, então o número que queremos calcular é igual a

$$d_1 \times 10^{(k-1)} + d_2 \times 10^{(k-2)} + \dots + d_k \times 10^{(0)} = d_1 \times 10^{(k-1)} + d_2 \times 10^{(k-2)} + \dots + d_k.$$

Por exemplo, se n=43 então o número a ser escrito é igual a

$$3 \times 10^{1} + 4 \times 10^{0} = 30 + 4 = 34$$
:

se n=120 então o número a ser escrito é igual a

$$0 \times 10^2 + 2 \times 10^1 + 1 \times 10^0 = 0 + 20 + 1 = 21$$
;

se n=1304 então o número a ser escrito é igual a

$$4 \times 10^3 + 0 \times 10^2 + 3 \times 10^1 + 1 \times 10^0 = 4000 + 0 + 30 + 1 = 4031$$
;

e se n=5 então o número a ser escrito é igual a

$$5 \times 10^0 = 5 \times 1 = 5$$
.

O problema com a estratégia acima é que nós não temos os algarismos individuais, d_1, d_2, \ldots, d_k , de n. Mas, com o que aprendemos até o presente momento, somos capazes de calculá-los.

O algarismo da unidade pode ser obtido com a operação resto, n % 10, da divisão de n por 10. Os demais algarismos podem ser obtidos por uma seqüência de operações de divisão inteira por 10 seguida por uma operação resto de divisão por 10. Por exemplo, se n=43 então o algarismo da unidade é igual a n % 10 = 43 % 10 = 3 e o algarismo da dezena é igual a $(n \setminus 10)$ % 10 = $(43 \setminus 10)$ % 10 = 4 % 10 = 4. Por sua vez, se n=120 então o algarismo da unidade é igual a n % 10 = 120 % 10 = 0 e os algarismos da dezena e centena são obtidos como segue:

$$(n\backslash 10)\%10 = (120\backslash 10)\%10 = 12\%10 = 2$$

 \mathbf{e}

$$((n \setminus 10) \setminus 10) \% 10 = ((120 \setminus 10) \setminus 10) \% 10 = (12 \setminus 10) \% 10 = 1 \% 10 = 1$$
.

Em geral, para k > 1, o k-ésimo algarismo da direita para a esquerda, pode ser obtido por uma seqüência de (k-1) operações de divisão (inteira) por 10 seguida por uma operação de resto de divisão por 10. Isto implica também que se o número n possui exatamente j dígitos, uma seqüência de j divisões inteiras por 10 resultará no valor zero. Por exemplo, se n = 5 então

$$n \setminus 10 = 5 \setminus 10 = 0$$
;

se n=43 então

$$(n \setminus 10) \setminus 10 = (43 \setminus 10) \setminus 10 = 4 \setminus 10 = 0;$$

e se n = 120 então

$$((n \setminus 10) \setminus 10) \setminus 10 = ((120 \setminus 10) \setminus 10) \setminus 10 = (12 \setminus 10) \setminus 10 = 1 \setminus 10 = 0$$
.

Uma vez que saibamos como calcular cada algarismo do número n, como podemos calcular o número que desejamos? Uma outra observação nos levará a uma solução bastante elegante. Sejam d_1 e d_2 dois dígitos quaisquer. Se quisermos obter o número d_1d_2 a partir de d_1 e d_2 , basta multiplicarmos d_1 por 10 e somar o resultado a d_2 : $d_1 \times 10 + d_2$. Por exemplo, se $d_1 = 4$ e $d_2 = 3$,

o número $d_1d_2=43$ é igual a $d_1\times 10+d_2=4\times 10+3$. De forma análoga, se quisermos obter o número $d_1d_2d_3$ a partir de d_1d_2 e d_3 , onde d_3 é outro dígito qualquer, basta multiplicarmos d_1d_2 por 10 e somar o resultado a d_3 : $d_1d_2\times 10+d_3$. Por exemplo, se $d_1d_2=43$ e $d_3=7$, o número $d_1d_2d_3=437$ é igual a $d_1d_2\times 10+d_3=43\times 10+7=437$. Agora, considere o seguinte laço enquanto:

$$m < -n \% 10$$

$$\underline{\text{enquanto}} (n \backslash 10) <> 0 \underline{\text{faca}}$$
 $n < -n \backslash 10$
 $m < -m * 10 + (n \% 10)$
fimenquanto

Note que as duas linhas repetidas serão executadas j-1, onde j é o número de algarismos de n. Em cada execução, o atual valor de m é multiplicado por 10 e somado com o "próximo" dígito de n. O algarismo d_1 é calculado antes do laço ser executado; isto é, a variável m recebe o valor n % 10, que é igual a d_1 . Na primeira execução do corpo do laço, o valor de m se torna

$$(d_1 \times 10) + d_2$$
.

Na próxima execução do corpo do laço, o valor de m se torna

$$((d_1 \times 10) + d_2) \times 10) + d_3$$

e assim por diante até que, na última execução do laço, o valor de m se torna

$$d_1 \times 10^{(j-1)} + d_2 \times 10^{(j-2)} + \dots + d_j$$
,

que é o número desejado. O Algoritmo 11.2 ilustra a solução completa para o problema que estudamos. Note que o algoritmo utiliza uma variável chamada q ao invés de n no cálculo de m. Isto é uma "boa" prática, que evita mudança de valor e dois usos distintos da variável de entrada.

11.3 Teste de primalidade

Um número **primo**, n, é um número inteiro maior do que 1 que só é divisível por 1 e por ele próprio. Um número inteiro maior do que 1 que não é primo é dito **composto**. Suponha que desejemos escrever um algoritmo para determinar se um dado número inteiro, n, com $n \ge 2$, é primo ou composto. A entrada do algoritmo é o número n e a saida é a sentença "é primo" se n é primo e "é composto" caso contrário.

A estratégia de solução que utilizaremos consiste em tentar dividir n por $2, 3, \ldots, n-1$. Se sucedermos então o número n não é primo. Caso contrário, ele é. As divisões podem ser realizadas em um laço, pois elas consistem da mesma operação. No entanto, como nem sempre realizaremos todas as divisões, não temos como saber quantas divisões serão executadas. Esta última observação é um forte indício de que precisamos de um laço enquanto. Mais especificamente, testaremos se n é divisível por i, para $i=2,3,\ldots,n-1$. No entanto, assim que determinarmos que n é divisível por i, não precisaremos continuar com os testes, pois já saberemos que n é composto.

Em outras palavras, podemos construir um laço tal como

$$\begin{array}{c} i < - \ 2 \\ \underline{\text{enquanto}} \ (n \ \% \ i) <> 0 \ \underline{\text{faca}} \\ i <- \ i + 1 \\ \text{fimenquanto} \end{array}$$

O laço acima terminará se o valor de i atingir n ou se n for divisível por i, para algum valor de i no intervalo $[2,n-1]\subset\mathbb{Z}$. Mas, como saberemos se o número é primo ou composto depois que o laço for encerrado? A resposta é simples: basta notar que se i atingir o valor de n, então i foi incrementada de i atingir o valor de i guais a i atingir o valor de i guais o valores de i guais a i atingir o valor de i guais o valor de i guais a i atingir i atingis i atingir i atingir i atingir i atingis i

```
 \begin{array}{c} \underline{\text{se}} \ i < n \ \underline{\text{entao}} \\ \underline{\text{escreva}} \big( \ \text{"e composto"} \ \big) \\ \underline{\text{senao}} \\ \underline{\text{escreva}} \big( \ \text{"e primo"} \ \big) \\ \underline{\text{fimse}} \end{array}
```

pode ser escrito após o laço enquanto para determinar se n é primo ou composto com base no valor da variável i quando o laço encerrar. A solução do teste de primalidade é mostrada no Algoritmo 11.3.

11.4 Exercícios propostos

1. Escreva um algoritmo que leia três números inteiros, a, b e n, com n > 0, e escreva como saída o n-ésimo termo, f_n , da seqüencia, $(f_i)_{i=1}^{\infty}$, tal que

$$f_i = \begin{cases} a & \text{se } i = 1\\ b & \text{se } i = 2\\ f_{i-1} + f_{i-2} & \text{se } i > 2 \end{cases}.$$

2. Escreva um algoritmo que leia três números inteiros, a, b e n, com n > 0, e escreva como saída o n-ésimo termo, f_n , da seqüencia, $(f_i)_{i=1}^{\infty}$, tal que

$$f_i = \begin{cases} a & \text{se } i = 1\\ b & \text{se } i = 2\\ f_{i-1} + f_{i-2} & \text{se } i > 2 \text{ e } i \text{ \'e impar}\\ f_{i-1} - f_{i-2} & \text{se } i > 2 \text{ e } i \text{ \'e par} \end{cases}.$$

3. Dizemos que um número inteiro positivo, n, tal que n possui pelo menos 2 dígitos e n não possui nenhum dígito 0, é palíndromo se, e somente se, o primeiro dígito de n é igual ao seu

último dígito, o segundo dígito de n é igual ao seu penúltimo dígito e assim sucessivamente. Por exemplo, 567765 é palíndromo, 32423 é palíndromo, mas 567675 não é palíndromo. Escreva um algoritmo que leia um número inteiro positivo, n, verifique se n é palíndromo e escreva "é palíndromo" em caso afirmativo e "não é palíndromo" caso contrário.

4. Uma maneira de calcular o valor do número π é utilizar a seguinte série

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \dots$$

Escreva um algoritmo que leia um número inteiro positivo, n, e calcule e escreva o valor de π através da série acima, levando em conta apenas os números com precisão de pelo menos n casas decimais. Isto é, adicione apenas os termos cujo valor absoluto seja maior ou igual a 10^{-n} .

5. Escreva um algoritmo que leia um número real x e um número inteiro positivo, n, e calcule e escreva uma aproximação para $\cos x$ usando os n primeiros termos da seguinte série

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots$$

- 6. Escreva um algoritmo que leia dois números inteiros positivos e escreva como saída o Mínimo Múltiplo Comum (MMC) desses dois números. Lembre-se de que o MMC de dois números, digamos a e b, é o menor número inteiro positivo que é um múltiplo tanto de a quanto de b.
- 7. Escreva um algoritmo que leia dois números inteiros positivos e escreva como saída o Máximo Divisor Comum (MDC) desses dois números. Lembre-se de que o MDC de dois números, digamos a e b, é o maior número inteiro positivo que é um divisor tanto de a quanto de b.
- 8. Dizemos que um número inteiro positivo, n, é triangular se ele é o produto de três números naturais consecutivos. Por exemplo, 120 é triangular, pois $4 \times 5 \times 6 = 120$. Escreva um algoritmo que leia um número inteiro positivo, n, verifique se ele é triangular e escreva "é triangular" em caso afirmativo e "não é triangular" caso contrário.
- 9. Escreva um algoritmo que leia três números inteiros positivos, n, a e b, e escreva, em ordem crescente, os n primeiros inteiros positivos que são múltiplos de a ou b ou ambos. Por exemplo, se n = 6, a = 2 e b = 3, o algoritmo deve escrever como saída os números 2, 3, 4, 6, 8 e 9.
- 10. Uma pessoa aplicou seu capital, C, a juros e deseja saber, trimestralmente, a posição de seu investimento inicial. Chamando i a taxa de juros do trimestre e n o número de trimestres do investimento, sabe-se que o valor atual, M_n , do investimento após n trimestres é dado pela fórmula

$$M_n = C \cdot (1+i)^n.$$

Escreva um algoritmo que receba como entrada o capital inicial, C, a taxa de juros, i, e o número, X, de anos completos em que o capital foi investido, e produza como saída o valor M_n , onde n é o número de trimestres dos X anos. Não utilize o operador de potenciação.

```
algoritmo "N-esimo termo da sequencia de Fibonacci"
1
2
       a, b, i, t, n : inteiro
3
4
      escreva ("Informe um valor inteiro não-negativo: ")
5
      leia (n)
      a \leftarrow 0
      b <- 1
8
      i <- 1
9
      enquanto i <= n faca
10
        t <- a + b
11
        a <- b
12
        b <- t
13
        i <- i + 1
14
      fimenquanto
15
      escreva( "O ", n , "-ésimo termo da sequência de Fibonacci é: ", a)
16
    fimalgoritmo
17
```

Algoritmo 11.1: Cálculo n-ésimo termo da sequência de Fibonacci

```
algoritmo "Numero da direita para a esquerda"
1
2
       n, m, q, r : inteiro
3
    inicio
4
      escreva( "Entre com um inteiro nao-negativo: " )
5
      leia(n)
6
      m < - n \% 10
      q <- n \ 10
      enquanto q <> 0 faca
         r <- q % 10
10
         m < - m * 10 + r
11
         q <- q \ 10
12
      fimenquanto
13
      escreva( "O numero ", n , " da direita para a esquerda e: ", m )
14
    fimalgoritmo
```

Algoritmo 11.2: Inverter a ordem dos dígitos de um número

```
algoritmo "Primo ou composto"
1
2
      n, i: inteiro
3
    inicio
4
      escreva( "Entre com um numero inteiro maior que 1: " )
      leia( n )
6
      i <- 2
7
      enquanto ( n % i ) <> 0 faca
8
         i <- i + 1
9
      fimenquanto
      se i < n entao
11
         escreva( "O numero ", n , " e composto")
12
13
         escreva( "O numero ", n , " e primo")
14
      fimse
15
    fimalgoritmo
```

Algoritmo 11.3: Determinar se um número é primo ou composto

ESTRUTURAS DE REPETIÇÃO 3

12.1 O cálculo da média aritmética

Considere o seguinte problema: dados um número inteiro positivo, n, e uma sequência, x_1, x_2, \ldots, x_n , com n números reais, calcule e escreva a média aritmética dos n números da sequência. Como sabemos, a média aritmética desses n números pode ser obtida através da fórmula

$$\frac{1}{n} \cdot \sum_{i=1}^{n} x_i.$$

No entanto, o que torna o problema acima um pouco complicado é o fato de não sabermos o valor de n antes de escrevermos o algoritmo. Consequentemente, não temos como saber quantas variáveis deveremos declarar no algoritmo para armazenar os valores da sequência, $(x_i)_{i=1}^n$, de entrada. Mas, note que precisamos dos valores da sequência apenas para calcular a soma da fórmula:

$$\sum_{i=1}^{n} x_i.$$

Como a soma acima pode ser calculada de forma iterativa através de um laço, de uma variável acumuladora e à medida que os valores da sequência forem lidos, não precisamos definir uma variável para armazenar cada valor. De fato, o seguinte trecho de algoritmo ilustra o cálculo da soma:

```
\begin{array}{l} \operatorname{soma} < -0 \\ i < -1 \\ \underline{\operatorname{enquanto}} \ i < = n \ \underline{\operatorname{faca}} \\ \underline{\operatorname{leia}}(\ x\ ) \\ \operatorname{soma} < - \operatorname{soma} + x \\ i < -i + 1 \\ \operatorname{fimenquanto} \end{array}
```

No trecho acima, o corpo do laço é executado n vezes e, para cada execução, um valor da entrada é lido e armazenado na variável x. Obviamente, quando um valor é lido da entrada e armazenado em x, o valor que estava em x é "perdido", pois x só pode armazenar um valor por vez. Mas, isso pouco importa, pois queremos apenas calcular a soma dos n números da sequência.

O algoritmo completo é dado em 12.1.

```
algoritmo "Media aritmetica de n numeros reais"
1
2
       i, n : inteiro
3
       soma, x, media : real
5
      escreva ("Entre com a quantidade de numeros: ")
6
      leia(n)
      soma <- 0
8
      i <- 1
9
      enquanto i <= n faca
10
         escreva( "Entre com o ", i , "-esimo numero: " )
11
         leia (x)
12
         soma <- soma + x
13
         i < -i + 1
14
      fimenquanto
15
      media <- soma / n
16
      escreva( "A media aritmetica dos ", n , " numeros e ", media )
17
    fimalgoritmo
18
```

Algoritmo 12.1: Cálculo da média aritmética de n números reais

12.2 O maior elemento de uma sequência

Suponha que desejemos escrever um algoritmo para ler um número inteiro positivo, n, seguido por uma sequência de n números reais, e escrever o maior de todos os números da sequência. Mais uma vez, temos uma situação em que a entrada do problema possui um tamanho variável, pois não sabemos quantos números podem fazer parte dela $antes\ de\ escrever\ o\ algoritmo$.

Em princípio, podemos fazer a leitura da entrada da mesma forma que fizemos para o problema da Seção 12.1. Mas, e quanto à estratégia de solução do problema? A solução do problema também pode ser encontra à medida que a entrada está sendo lida. De fato, podemos definir uma variável, digamos maior, para guardar o maior valor de todos os números lidos da entrada. Inicialmente, esta variável recebe o valor do primeiro número lido. Em seguida, para cada número, x, lido, comparamos o valor de x com o valor de maior. Se aquele for maior do que este, atribuímos o valor de x a maior. Caso contrário, o valor de maior permanece o mesmo. Isto é,

```
\begin{array}{l} \underline{\text{leia}}(\text{maior}) \\ i <- 2 \\ \underline{\text{enquanto}} \ i <= n \ \underline{\text{faca}} \\ \underline{\underline{\text{leia}}(x)} \\ \underline{\text{se}} \ x > maior \ \underline{\text{entao}} \\ \underline{\text{maior}} <- x \\ \underline{\underline{\text{fimse}}} \\ i <- i + 1 \\ \text{fimenquanto} \end{array}
```

Note que o primeiro número é lido antes do laço ser encontrado. Como o valor de n é supostamente positivo, podemos assumir que há pelo menos um valor a ser lido. Este valor é lido antes do laço ser encontrado para que a variável maior seja inicializada com o primeiro valor lido. Em

seguida, no corpo do laço, os demais valores são lidos. O corpo do laço se repete n-1 vezes, que é exatamente o número de valores restantes a serem lidos. Cada valor lido no corpo do laço é comparado com o maior valor lido antes dele, que está armazenado na variável maior. Se o valor em maior for menor do que o valor lido, maior recebe o valor lido. Logo, após a execução do laço, maior conterá o maior valor lido e tudo que precisamos fazer é escrever este valor.

O algoritmo completo é dado em 12.2.

```
algoritmo "Maior numero de uma sequencia"
    var
2
       i, n : inteiro
3
       maior, x : real
4
5
      escreva( "Entre com a quantidade de numeros da sequencia: " )
6
      leia( n )
      escreva( "Entre com o primeiro numero da sequencia: " )
      leia( maior )
9
10
      enquanto i <= n faca
11
         escreva( "Entre com o proximo numero da sequencia: " )
12
         leia (x)
13
         se x > maior entao
14
            maior <- x
15
         fimse
16
         i < -i + 1
17
      fimenquanto
18
      escreva( "O maior numero da sequencia e: ", maior )
19
    fimalgoritmo
20
```

Algoritmo 12.2: Cálculo do maior de uma sequência de n números reais

12.3 Os múltiplos de posição na sequência

Suponha que desejemos escrever um algoritmo para ler uma sequência de números inteiros seguida pelo número zero e escrever os números da sequência que forem múltiplos de suas respectivas posições, exceto o zero. Por exemplo, se a sequência for 3, 7, 8, 16 e 0, a saída deve ser 3 e 16, pois 3 é múltiplo de 1 (a posição do 3 na sequência), 7 não é múltiplo de 2 (a posição do 7 na sequência), 8 não é múltiplo de 3 (a posição do 8 na sequência) e 16 é múltiplo de 4 (a posição do 16 na sequência). Novamente, temos uma situação em que o tamanho da entrada (a quantidade de números da sequência) não é conhecido no momento em que escrevemos o algoritmo. Então, não podemos declarar uma variável para cada elemento da sequência. Além disso, o tamanho da entrada também não é informado na própria entrada, como nos exemplos anteriores.

A própria entrada possui uma propriedade que nos permite saber qual é o último número da sequência: o número que o sucede é igual a zero. Logo, a entrada pode ser lida com o seguinte laço:

```
\frac{\text{leia}}{\text{enquanto}} (x)enquanto x <> 0 faca
```

```
\frac{\text{leia}}{\text{fimenquanto}}(x)
```

O trecho algorítmico acima lerá números até que um zero seja lido. Agora, note que o problema nos pede para escrever os números da entrada que são múltiplos de suas respectivas posições. Esta operação de escrita pode ser feita à medida que os números sejam lidos, como segue:

```
\frac{\underline{\text{leia}}\ (x)}{\underline{\text{enquanto}}\ x <> 0\ \underline{\text{faca}}} \underline{\underline{\text{se}}\ x\ \acute{\text{e}}\ \text{m\'altimar}\ \text{de sua posição na seqüência}\ \underline{\text{entao}}} \underline{\underline{\text{escreva}}\ (x)} \underline{\underline{\text{fimse}}} \underline{\underline{\text{leia}}\ (x)} \underline{\text{fimenquanto}}
```

Mas, como podemos determinar se x é múltiplo de sua posição na sequência se não temos essas posições? Mais uma vez, uma observação mais cuidadosa da entrada nos conduz à solução: os números são lidos na ordem em que eles ocorrem na sequência. Esta observação nos diz que podemos definir uma variável para contar quantos números foram lidos até o momento. Com essa variável, podemos verificar se x é múltiplo de sua posição comparando o resto da divisão de x pelo valor da variável com zero. O trecho de algoritmo a seguir utiliza essa estratégia:

```
\frac{\text{leia}}{i < 1} (x)
i < 1
\underline{\text{enquanto}} \ x <> 0 \ \underline{\text{faca}}
\underline{\text{se}} \ (x \ \% \ i) = 0 \ \underline{\text{entao}}
\underline{\text{escreva}} \ (x)
\underline{\text{fimse}}
\underline{\text{leia}} \ (x)
i < -i + 1
\text{fimenquanto}
```

O algoritmo completo é mostrado em 3.

12.4 Exercícios Propostos

- 1. Escreva um algoritmo que leia um número inteiro positivo, n, e uma sequência, x_1, \ldots, x_n , de n números inteiros, calcule e escreva o triplo, $3 \cdot x_1, \ldots, 3 \cdot x_n$, de cada um dos n números da sequência.
- 2. Escreva um algoritmo que leia um número inteiro positivo, n, e uma sequência, x_1, \ldots, x_n , de n números inteiros, calcule e escreva o menor dentre todos os n números, x_1, \ldots, x_n , da sequência.
- 3. Escreva um algoritmo que leia cem números inteiros e escreva a quantidade de números de entrada que são maiores do que 30 e menores do que 50.
- 4. Escreva um algoritmo que leia vinte números inteiros, calcule e escreva a *soma* dos quadrados menores ou iguais a 225 dos vinte números dados como entrada.

- 5. Escreva um algoritmo que leia duzentos números inteiros e escreva a quantidade de números de entrada que são pares e a quantidade de números de entrada que são ímpares.
- 6. Escreva um algoritmo que leia a idade e o peso de 20 pessoas, calcule e escreva a média dos pesos das pessoas da mesma faixa etária. Os dados de entrada estão dispostos na forma $idade_1, peso_1, idade_2, peso_2, ..., idade_{20}, peso_{20}, onde <math>idade_i$ e $peso_i$ são a idade e o peso da i-ésima pessoa, para $i=1,\ldots,20$. A idade é um número inteiro positivo e o peso é um número real. As faixas etárias são de 1 a 10 anos, 11 a 20 anos, 21 a 30 anos e maiores de 30 anos.
- 7. No dia da estreia do filme "Senhor dos Anéis", uma grande emissora de TV realizou uma pesquisa logo após o encerramento do filme. Cada espectador respondeu a um questionário no qual constava sua idade e a sua opinião em relação ao filme: excelente 3, bom 2, regular 1. Escreva um algoritmo que leia a idade e a opinião de 20 espectadores, calcule e escreva
 - a média das idades das pessoas que responderam excelente;
 - a quantidade de pessoas que responderam regular;
 - a percentagem de pessoas que responderam bom entre todos os espectadores entrevistados.

Os dados de entrada estão dispostos na forma

```
idade_1, opini\tilde{a}o_1, ..., idade_{20}, opini\tilde{a}o_{20},
```

onde $idade_i$ e $opinião_i$ são a idade e a opinião da i-ésima pessoa, para $i=1,\ldots,20$. A idade é um número inteiro positivo, enquanto a opinião é um dos números inteiros: 1, 2 e 3.

- 8. Escreva um algoritmo que leia uma sequência de números reais terminada pelo número zero e calcule e escreva a quantidade de números lidos que estão no intervalo [100, 200].
- 9. Escreva um algoritmo que leia o sexo de uma certa quantidade de pessoas e escreva a quantidade de pessoas que são do sexo feminino. A entrada é dada como uma sequência de caracteres formada apenas pelas letras "F", "M", "f" ou "m" e seguida da letra "X". As letras "F" e "f" representam pessoas do sexo feminino, enquanto as letras "M" e "m" representam pessoas do sexo masculino.
- 10. Uma empresa de fornecimento de energia elétrica faz a leitura mensal dos medidores de consumo. Para cada consumidor são fornecidos os seguintes dados:
 - número do consumidor;
 - quantidade de kWh (quilowatts por hora) consumida durante o mês;
 - tipo do consumidor.

O número do consumidor é um número inteiro positivo que identifica unicamente o consumidor. A quantidade de kWh consumida durante o mês é um número real não-negativo e o tipo do consumidor é um dos números 1, 2 e 3, onde 1 significa consumidor residencial, 2 significa consumidor comercial e 3 significa consumidor industrial. Os valores em R\$ pagos por 1 kWh são R\$ 0,30, R\$ 0,50 e R\$ 0,70 para os consumidores dos tipos 1, 2 e 3, respectivamente. Escreva um algoritmo que leia os dados da leitura mensal dos medidores de consumo, calcule e escreva

- o custo total do consumo de cada consumidor;
- o total de consumo de energia de cada tipo de consumidor;
- a média de consumo dos consumidores dos tipos 1 e 2.

Os dados devem ser lidos como uma sequência de triplas da forma *número do consumidor*, quantidade de kWh consumida e tipo do consumidor. A sequência de entrada deve terminar com um número zero.

- 11. Uma empresa realizou uma pesquisa com 1000 habitantes de uma região para coletar sexo, idade e altura deles. A empresa deseja calcular as seguintes informações:
 - a média de idade dos habitantes da região;
 - a média de altura das mulheres da região com mais de 21 anos;
 - a maior altura entre os homens e
 - o percentual de habitantes com idade entre 18 e 30 anos.

Então, escreva um algoritmo para ler os dados de entrada da pesquisa e calcular e escrever as informações que a empresa deseja encontrar. A entrada se dará como uma sequência de triplas, *sexo*, *idade* e *altura*, onde sexo é um dos caracteres 'F', 'f', 'M' e 'm', idade é um inteiro positivo e altura é um número real positivo.

- 12. A Prefeitura de Natal fez uma pesquisa entre os habitantes assalariados de Natal para coletar dados sobre o salário e número de filhos deles. A Prefeitura deseja saber a média salarial dos assalariados, o número médio de filhos, o maior salário e o percentual de assalariados com salário até R\$ 800,00. Escreva um algoritmo para resolver o problema da Prefeitura. O algoritmo deve ler uma sequência de pares, salário e número de filhos, onde salário é um real positivo e número de filhos é um inteiro positivo. Esta sequência é seguida pelo número zero para indicar o seu término. A saída do algoritmo consiste da média salarial dos assalariados, número médio de filhos, maior salário e percentual de assalariados com salário até R\$ 800,00.
- 13. Uma das maneiras de se conseguir calcular a raiz quadrada de um número inteiro positivo é através da subtração, do número, de ímpares consecutivos a partir de 1 até se atingir o número zero. O número de subtrações realizadas é igual a raiz do número. Por exemplo, se número for 16, então temos

$$16 - 1 = 15$$

$$15 - 3 = 12$$

$$12 - 5 = 7$$

$$7 - 7 = 0$$

Logo, realizamos 4 subtrações, o que está de acordo com a raiz de 16. Se, por acaso, o resultado de uma subtração for negativo, o número não possui raiz quadrada exata e o processo de cálculo deve ser abortado. Por exemplo, se o número for 14, então temos

$$14 - 1 = 13$$

 $13 - 3 = 10$
 $10 - 5 = 5$
 $5 - 7 = -2$

Escreva um algoritmo que leia um número inteiro positivo, n, e aplique o processo acima para determinar se a raiz do número. Se o número admitir uma raiz inteira, o algoritmo deve escrever esta raiz. Caso contrário, o algoritmo deve escrever a mensagem "O número não possui raiz inteira".

```
algoritmo "Multiplos de posicao de uma sequencia"
1
2
       i, x : inteiro
3
4
      escreva( "Entre com o primeiro numero da sequencia ou zero: " )
      leia( x )
6
      i <- 1
      enquanto x \leftrightarrow 0 faca
8
         se ( x \% i ) = 0 entao
9
             escreva( x , " ")
10
         fimse
11
         escreva( "Entre com o proximo numero da sequencia ou zero: " )
12
         leia (x)
13
         i <- i + 1
14
      fimenquanto
15
    fimalgoritmo
```

Algoritmo 12.3: Escrever os números múltiplos de uma sequência de inteiros

ESTRUTURAS DE REPETIÇÃO 4

13.1 O laço repita

A linguagem Portugol da ferramenta VISUALG dispõe de outro comando de repetição que executa uma sequência de comandos repetidamente até que uma dada condição se torne verdadeira:

O comando <u>repita-ate</u> é semelhante ao comando <u>enquanto-faca-fimenquanto</u>, pois ele também repete uma <u>sequência</u> de comandos com base no valor de uma <u>expressão lógica</u>. No entanto, há uma diferença sutil entre eles: o comando <u>repita-ate</u> executa a sequência de comandos pelo menos uma vez e, só depois da primeira execução, é que a expressão lógica é avaliada. Se ela avaliar para <u>falso</u>, a sequência de comandos no corpo do laço é repetida. Caso contrário, o laço é finalizado.

O uso mais corriqueiro do comando <u>repita-ate</u> é na consistência da leitura de um valor de entrada. O que queremos dizer com isso? Vimos vários exemplos de algoritmos em que a entrada é restrita a um subconjunto dos valores possíveis de serem assumidos por uma variável. Por exemplo, algoritmos em que a entrada deve ser um número inteiro *positivo* e que usamos uma variável inteira para armazenar o valor lido. Tal variável pode armazenar valores não-positivos, tais como 0 e -13. Para esses algoritmos, assumimos que o "usuário" iria sempre entrar um valor que respeitasse a restrição, mas o fato é que não podemos garantir que isso vá acontecer. Se envolvermos o comando de leitura de n por um comando <u>repita-ate</u>, garantiremos que o restante do algoritmo só será executado quando um valor positivo for atribuído a n (veja o Algoritmo 13.1).

13.2 Exemplo

Há outras situações em que o comando <u>repita-ate</u> é mais naturalmente utilizado do que o comando <u>enquanto-faca</u>. Como exemplo, considere o problema de escrever um algoritmo para ler um número inteiro positivo, n, e um número real, x, e calcular e escrever o resultado da série

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}$$
.

```
algoritmo "Inteiros de 1 a n"
1
2
       num, i : inteiro
3
    inicio
4
      repita
        escreva( "Entre com um numero inteiro positivo: " )
6
        leia( num )
      ate num > 0
8
      i <- 1
9
      enquanto ( i <= num ) faca
10
          escreva( i , " " )
11
          i <- i + 1
12
      fimenquanto
13
    fimalgoritmo
14
```

Algoritmo 13.1: Algoritmo para escrever os inteiros de 1 a n.

A série possui n termos. Note que, para todo $i=1,\ldots,n$, o i-ésimo termo da série é da forma

$$\frac{x^i}{i}$$
.

Logo, podemos escrever um algoritmo para calcular a série com base na mesma estratégia usada para soma os n primeiros números inteiros. A única diferença é que acumularemos os termos da série ao invés dos índices deles. Isto é, podemos utilizar um laço como

```
\begin{array}{l} soma <- \ 0 \\ i <- \ 1 \\ \underline{\text{enquanto}} \ i <= n \ \underline{\text{faca}} \\ \underline{soma} <- soma + i \text{-} \text{\'esimo termo} \\ i <- \ i + 1 \\ \text{fimenquanto} \end{array}
```

O problema do laço acima é o cálculo do i-ésimo termo. Embora saibamos qual é o termo, ele possui uma potência e esta operação deve ser implementada com o uso de outro laço (já que não estudamos o operador de potenciação ainda). No entanto, uma observação cuidadosa dos termos da série nos leva a uma solução mais simples. Em particular, note que, para todo $i=1,\ldots,n-1$, o (i+1)-ésimo termo da série, $x^{(i+1)}/(i+1)$, pode ser obtido a partir do i-ésimo termo, x^i/i , multiplicando o numerador por x e incrementando o denominador em uma unidade. Esta observação sugere que a soma pode ser realizada através do seguinte laço:

```
\begin{array}{l} soma <-0 \\ i <-1 \\ num <-x \\ den <-1 \\ \underline{enquanto} \ i <= n \ \underline{faca} \\ soma <-soma + num \ / \ den \\ num <-num *x \\ den <-den +1 \\ i <-i +1 \\ \text{fimenquanto} \end{array}
```

Há duas outras observações importantes sobre o laço acima. A primeira delas diz respeito à redundância da variável den; isto é, esta variável possui o mesmo valor que i quando realizamos a acumulação dos termos da soma. Logo, podemos substituir a linha soma <-soma + num / den pela linha soma <-soma + num / i e remover a variável den e as demais linhas que envolvem esta variável. A segunda observação importante é que o corpo do laço enquanto será executado pelo menos uma vez, pois $n \ge 1$ por hipótese. Isto sugere a utilização do laço repita, como abaixo:

```
\begin{array}{l} soma <-0 \\ i <-1 \\ num <-x \\ \hline repita \\ \hline soma <-soma + num / i \\ num <-num * x \\ i <-i+1 \\ \hline \underline{ate} \ i > n \end{array}
```

Embora ambos os laços possam ser utilizados no trecho de algoritmo acima, note que a utilização do laço *repita* é bem mais "natural", pois o corpo do laço é executado pelo menos uma vez sem a necessidade de realizar um teste que sempre resultará no valor <u>verdadeiro</u>. Uma solução completa para o problema que acabamos de discutir acima está ilustrado em Algoritmo 13.2.

13.3 Laço repita versus laço enquanto

Os comandos <u>repita-ate</u> e <u>enquanto-faca-fimenquanto</u> são, de fato, equivalentes, pois tudo o que um deles faz, o outro também pode fazer. Mais especificamente, o laço repita com a forma

```
\begin{array}{c} \operatorname{comando_1} \\ \operatorname{comando_2} \\ \vdots \\ \operatorname{comando_n} \\ \underline{\operatorname{ate}} \ \operatorname{express\~ao} \ \operatorname{l\'ogica} \end{array}
\operatorname{pode} \ \operatorname{ser} \ \operatorname{transformado} \ \operatorname{no} \ \operatorname{laço} \ \operatorname{enquanto} \\ \operatorname{comando_1} \\ \operatorname{comando_2} \\ \vdots \\ \operatorname{comando_n} \\ \underline{\operatorname{enquanto}} \ \underline{\operatorname{nao}} \ \operatorname{express\~ao} \ \operatorname{l\'ogica} \ \underline{\operatorname{faça}} \\ \operatorname{comando_1} \\ \operatorname{comando_2} \\ \vdots \\ \operatorname{comando_2} \\ \vdots \\ \operatorname{comando_n} \\ \operatorname{fimenquanto} \\ \operatorname{nao} \ \operatorname{nao} \ \operatorname{omando_n} \\ \operatorname{fimenquanto} \\ \end{array}
```

repita

Em outras palavras, escrevemos os comandos no corpo do laço <u>repita</u> antes do laço <u>enquanto</u> para garantir que eles sejam executados pelo menos uma vez. Também negamos a expressão lógica, pois os comandos devem ser repetidos enquanto a expressão original avaliar para <u>falso</u>.

Por outro lado, um laço enquanto da forma

pode ser transformado em um laço repita da forma

```
\begin{array}{c} \underline{\text{se express\~ao l\'ogica } \underline{\text{entao}}} \\ \underline{\text{repita}} \\ \underline{\text{comando}_1} \\ \underline{\text{comando}_2} \\ \vdots \\ \underline{\text{comando}_n} \\ \underline{\text{ate } \underline{\text{nao}} \ express\~ao l\'ogica}} \end{array}
```

Em outras palavras, escrevemos o laço repita dentro de uma estrutura condicional para garantir que o corpo do laço seja executado uma vez apenas se a expressão lógica for verdadeira. Também negamos a expressão lógica para garantir que o corpo do laço enquanto seja repetido sempre que a expressão avaliar para o valor <u>verdadeiro</u>, que é exatamente o que ocorre com o laço enquanto.

Por exemplo, em uma aula anterior usamos o laço enquanto em um algoritmo para calcular a soma de todos os números de um intervalo fechado, [a, b], onde $a \in b$ são números inteiros, com a < b, dados como entrada para o algoritmo. Um algoritmo equivalente escrito com o laço repita é dado em 13.3. Note que simplesmente aplicamos a transformação discutida acima.

13.4 Exercícios propostos

- 1. Resolva todos os exercícios da aula anterior usando o laço repita. Tente desenvolver os algoritmos sem se preocupar em usar a transformação vista nesta aula; isto é, utilize o laço repita mais "naturalmente".
- 2. Numa fábrica trabalham homens e mulheres divididos em três classes:
 - A Os que fazem até 30 peças por mês;
 - B Os que fazem de 31 a 35 peças por mês;
 - C Os que fazem mais de 35 peças por mês.

Os trabalhadores da classe A recebem salário mínimo. Os trabalhadores da classe B recebem salário mínimo e mais 3% do salário mínimo por peça, acima das 30 iniciais. Os

trabalhadores da classe C recebem salário mínimo e mais 5% do salário mínimo por peça, acima das 30 iniciais. Escreva um algoritmo que leia o valor do salário mínimo e uma sequência com o seguinte "trio" de dados: o número do operário (um inteiro positivo e único para cada operário), o número de peças fabricadas por mês (um inteiro não-negativo) e o sexo do operário (a letra "F"ou "M"). A sequência de entrada é seguida pelo número 0. Em seguida, o algoritmo deve calcular e escrever o salário total de cada operário, o total da folha mensal de pagamento da fábrica, o número total de peças fabricadas por mês, a média de peças fabricadas pelos homens de cada classe, a média de peças fabricadas pelas mulheres de cada classe e o número do operário (ou operária) de maior salário (se houver empate, deve ser escrito o menor número).

3. Escreva um algoritmo que leia um inteiro positivo, n, e um valor real, x, e calcule e escreva o somatório

$$\frac{x}{n} - \frac{x^2}{n-1} + \frac{x^3}{n-2} - \dots + (-1)^{n+1} \cdot \frac{x^n}{1}$$
.

4. Escreva um algoritmo que calcule e escreva a soma dos 50 primeiros termos da série

$$\frac{1!}{1} - \frac{2!}{3} + \frac{3!}{7} - \frac{4!}{15} + \frac{5!}{31} - \cdots$$

5. Considere a equação

$$x^3 - 3x^2 + 1 = 0.$$

Qualquer raiz real da equação acima pode ser encontrada através de aproximações sucessivas obtidas com a utilização da fórmula

$$x_{n+1} = x_n - \frac{x_n^3 - 3x_n^2 + 1}{2x_n^2 - 6x_n}.$$

Escreva um algoritmo que receba como entrada uma estimativa inicial, x_1 , para uma raiz e calcule e escreva a trigésima aproximação. Usando a ferramenta VISUALG, execute o seu algoritmo usando como entrada $x_1 = 1.5$.

6. O número 3025 goza da seguinte propriedade

$$\begin{cases} 30 + 25 &= 55 \\ 55^2 &= 3025 \end{cases}$$

Escreva um algoritmo determine e escreva todos os números de quatro dígitos que possuem a propriedade acima. Note que este algoritmo não possui nenhum dado de entrada.

- 7. Numa universidade, cada aluno possui os seguintes dados:
 - Renda pessoal
 - Renda familiar
 - Total gasto com alimentação
 - Total gasto com outras despesas

Escreva um algoritmo que calcule e escreva a porcentagem dos alunos que gasta acima de R\$ 200,00 com outras despesas, o número de alunos com renda pessoal maior que renda familiar e a porcentagem gasta com alimentação e outras despesas em relação às rendas pessoal e familiar.

A entrada do algoritmo é uma sequência com quatro números reais positivos (renda pessoal, renda familiar, total gasto com alimentação e total gasto com outras despesas) para cada aluno, seguida pelo número zero.

- 8. Um número inteiro positivo, n, é dito triangular se, e somente se, ele é o resultado do produto de três números inteiros positivos e consecutivos. Por exemplo, 24 é triangular, pois $24 = 2 \times 3 \times 4$. Agora, escreva um algoritmo que leia um número inteiro positivo, n, e escreva como saída "é triangular" se n for triangular e "não é triangular" caso contrário.
- 9. Escreva um algoritmo para ler um número inteiro positivo, n, e escrever os dígitos de n, da esquerda para a direita, separados por um espaço. Por exemplo, se n = 2439, então a saída do algoritmo deveria ser $2 \ 4 \ 3 \ 9$.
- 10. Escreva um algoritmo que imprima a tabela de equivalência de graus Fahrenheit para Celsius (centígrados). Os limites são de 50 a 70 graus Fahrenheit com intervalo de 1 grau. A fórmula para conversão de Fahrenheit (F) para Celsius (C) é

$$C = \frac{F - 32}{1,8} \,.$$

```
algoritmo "Soma de termos de serie finita"
1
    var
2
       n, i : inteiro
3
       soma, num, x: real
4
    inicio
5
      repita
6
        escreva( "Entre com um numero inteiro positivo: " )
7
        leia( n )
      ate n > 0
9
      escreva( "Entre com o primeiro termo da serie: " )
10
      leia(x)
11
      soma <- 0
12
      i <- 1
13
14
      num <- x
      repita
15
         soma <- soma + num / i
16
         num <- num * x
17
         i <- i + 1
18
      ate i > n
      escreva( "A soma de x^i / i para i de 1 a ", n , " é igual a " , soma )
    fimalgoritmo
21
```

Algoritmo 13.2: Algoritmo para calcular e escrever o resultado da série finita $\sum_{i=1}^{n} x^{i}/i$.

```
algoritmo "Somar inteiros de um intervalo"
1
    var
2
       a, b, i, soma : inteiro
3
    inicio
      escreva( "Entre com o menor inteiro do intervalo: " )
5
6
      escreva( "Entre com o maior inteiro do intervalo: " )
      leia(b)
8
      soma <- 0
      i <- a
10
      se i <= b entao
11
         repita
12
            soma <- soma + i
13
            i < -i + 1
14
         ate i > b
15
16
      escreva( "A soma dos numeros do intervalo e: ", soma )
17
    fimalgoritmo
18
```

Algoritmo 13.3: Algoritmo para somar os inteiros de um dado intervalo.

VETORES

14.1 Motivação

Considere o problema de calcular a média aritmética das notas de 5 alunos de uma disciplina e determinar e escrever o número de alunos que obtiveram nota superior à média calculada. Como sabemos, o cálculo da média aritmética das notas de 5 alunos de uma disciplina pode ser feito com o uso de um laço enquanto como o que mostramos no trecho de código abaixo:

```
\begin{array}{l} \operatorname{soma} < -0 \\ i < -1 \\ \underline{\operatorname{enquanto}} \ i < = 5 \ \underline{\operatorname{faca}} \\ \underline{\operatorname{leia}}( \ \operatorname{nota} \ ) \\ \operatorname{soma} < - \ \operatorname{soma} + \ \operatorname{nota} \\ i < -i + 1 \\ \underline{\operatorname{fimenquanto}} \\ \overline{\operatorname{media}} < - \ \operatorname{soma} \ / \ 5 \end{array}
```

Mas, se seguirmos com este trecho de algoritmo, como determinaremos o número de alunos com nota superior à média calculada? Isto porque não guardamos as notas de cada um dos 5 alunos em variáveis, o que nos impede de comparar o valor da média com o das notas lidas depois que o trecho acima for executado. Logo, devemos optar por outro caminho. Um desses caminhos está ilustrado no Algoritmo 14.1, que utiliza cinco variáveis para guardar as notas lidas da entrada.

O Algoritmo 14.1 não utiliza uma estrutura de repetição para ler as notas. Ao invés disso, ele utiliza cinco instruções de leitura. Para determinar quantas notas são superiores à média, o algoritmo compara cada nota lida com a média. Se a nota é superior à média, o algoritmo incrementa um contador, que é inicializado com o valor zero. Note que o trecho do algoritmo que compara e, se necessário, incrementa o contador é o mesmo para cada uma das notas (o que muda é o nome da variável comparada e incrementada) e consiste de uma estrutura condicional.

Se o código é o "mesmo", por que não podemos utilizar uma estrutura de repetição? O problema aqui é que não temos como "trocar" o nome de uma variável a cada iteração de um laço. No problema que temos em mãos, há apenas 5 variáveis e a redundância que temos não chega a ser um "fardo". No entanto, se tivéssemos 100, 1000, ou mesmo 1000000 de notas, esta solução seria inviável, uma vez que teríamos de escrever, respectivamente, 100, 1000 ou 1000000 estruturas condicionais semelhantes, uma para cada nota. Felizmente, a linguagem Portugol possui uma forma eficaz de solução que utiliza uma estrutura de dados denominada vetor.

14.2 Definição e manipulação de variáveis

A estrutura de dados **vetor** é uma estrutura de dados linear utilizada para armazenar uma seqüência de valores do *mesmo tipo*. Um dado vetor é definido como tendo algum número *fixo* de *células* idênticas. Cada célula armazena um, e somente um, dos valores de dados do vetor. Cada uma das células de um vetor possui um *índice*, através do qual podemos referenciá-la de forma única.

Ao definirmos uma variável do tipo vetor, estamos, na verdade, especificando uma variável e um novo tipo de dados, que é o tipo vetor da variável. Isto porque o tipo da variável não está "pronto para uso", como é o caso dos tipos <u>inteiro</u>, <u>real</u>, <u>caractere</u> e <u>logico</u>. Para sermos mais específicos, vamos supor que queremos definir uma variável, denominada <u>notas</u>, como um vetor de 5 células do tipo <u>inteiro</u>. Na linguagem Portugol, esta definição segue a seguinte sintaxe:

```
nome : vetor [ tamanho ] de tipo
```

onde nome é o nome da variável do tipo vetor, tamanho é uma faixa de valores, que consiste do primeiro e do último índice, e tipo é o tipo dos valores das células do vetor. Então, definimos notas como

```
notas : \underline{\text{vetor}} [1..5] \underline{\text{de real}}
```

A declaração acima corresponde à declaração de cinco variáveis do tipo <u>real</u>. Essas cinco variáveis são as cinco células do vetor. Nós podemos manipular cada uma das células individualmente, usando o nome da variável e o índice da célula. Mais especificamente, temos as células

```
notas[1], \quad notas[2], \quad notas[3], \quad notas[4], \quad notas[5],
```

que correspondem, respectivamente, a primeira, segunda, terceira, quarta e quinta células do vetor *notas*. Cada uma das células acima corresponde a uma variável do tipo <u>real</u>. Tudo que fazemos com uma variável do tipo <u>real</u> pode ser feito com as células de *notas*. Por exemplo, o comando

```
leia(notas[1])
```

realiza a leitura de um valor do tipo $\underline{\text{real}}$ e faz com que este valor seja o conteúdo da célula notas[1]. Já

```
\underline{\text{escreva}}(notas[1])
```

escreve o conteúdo da célula notas[1]. De forma geral, podemos usar notas[1] em qualquer instrução que manipule um valor real. O seguinte trecho de algoritmo ilustra diversas manipulações:

```
\begin{array}{l} \underline{\text{leia}}(notas[1])\\ i<-3\\ \underline{\text{leia}}(notas[i])\\ notas[i-1]<-(\ notas[1]+\ notas[i]\ )\ /\ 2 \end{array}
```

Note que, ao escrevermos notas[i], estamos nos referindo à célula de índice i do vetor notas, ou seja, o conteúdo de i nos dá o índice da célula. É justamente esta flexibilidade que nos permite manipular vetores de forma bastante compacta. Para você ter uma idéia clara do que estamos falando, considere o trecho de algoritmo a seguir que faz a leitura de valores para as células de notas:

Podemos, facilmente, modificar o trecho acima para que ele calcule a média das notas também:

```
\begin{array}{l} i < -1 \\ \mathrm{soma} < -0 \\ \underline{\mathrm{enquanto}} \ i < = 5 \ \underline{\mathrm{faca}} \\ \underline{\mathrm{escreva}} \big( \text{``Entre com a nota''}, \ i \ , \text{``: ''} \ \big) \\ \underline{\mathrm{leia}} \big( \ \mathrm{notas}[i] \ \big) \\ \mathrm{soma} < - \ \mathrm{soma} \ + \ \mathrm{notas}[i] \\ i < -i + 1 \\ \underline{\mathrm{fimenquanto}} \\ \underline{\mathrm{media}} < - \ \mathrm{soma} \ \ / \ \ 5 \end{array}
```

Finalmente, podemos escrever um trecho de algoritmo bastante compacto para contar quantas das notas lidas são maiores do que a média da notas. Este trecho de algoritmo é mostrado a seguir:

```
\begin{array}{l} i < -1 \\ \text{maiores} < -0 \\ \underline{\text{enquanto}} \ i < =5 \ \underline{\text{faca}} \\ \underline{\text{se notas}}[i] > \text{media} \ \underline{\text{entao}} \\ \underline{\text{maiores}} < - \ \underline{\text{maiores}} + 1 \\ \underline{\text{fimse}} \\ i < -i + 1 \\ \text{fimenquanto} \end{array}
```

Note que, ao combinarmos os dois trechos acima, temos um algoritmo muito mais compacto do que o Algoritmo 14.1 para calcular a média aritmética de cinco notas e o número de notas acima da média. Mas, muito mais importante do que isso é que o mesmo algoritmo pode ser modificado, muito facilmente, para lidar com 100, 1000 e 1000000 de notas. De fato, considere o Algoritmo 14.2. Só precisamos trocar o número 5 por 100, 1000 ou 1000000 nas linhas 3, 9, 15 e 18 do algoritmo para obter um novo algoritmo que lida com 100, 1000 ou 1000000 notas, respectivamente.

Variáveis do tipo vetor são comumente chamadas variáveis compostas homogêneas. O termo "composta" se deve ao fato da variável ser formada por uma coleção de células. O termo "homogênea" se deve ao fato de todas as células da variável vetor serem de um mesmo tipo de dados. Um outro termo bastante comum, em Computação, para designar vetor é arranjo unidimensional.

14.3 O cálculo do desvio padrão

O desvio padrão é uma medida de resumo que nos dá uma idéia de quão disperso estão os valores de um conjunto em relação ao valor esperado dos valores. Se os valores são representados por

$$v_1,\ldots,v_n$$
,

então o desvio padrão desses valores com relação à média aritmética deles é dado pela fórmula

$$\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (v_i - \bar{v})^2},$$

onde \bar{v} é a média aritmética.

Vamos escrever um algoritmo para calcular o desvio padrão de 10 notas de prova em relação à média aritméticas dessas notas. Cada nota é um número real de 0 a 10. O algoritmo deve ler as dez notas, calcular a média e o desvio padrão e produzir, como saída, o valor da média e o desvio padrão.

Usaremos a fórmula que vimos anteriormente para cálculo do desvio padrão. Esta fórmula depende do cálculo da raiz quadrada de um número real. Para realizar este cálculo, faremos uso do operador de potenciação, ^. Este operador calcula o valor de expressões do tipo

$$x^y$$

onde x e y são números reais. Para calcular a raiz quadrada de x usando o operador $\hat{}$, escrevemos $x^0.5$

Assim como fizemos antes, definiremos um vetor chamado *notas* para armazenar as 10 notas que serão lidas da entrada. A leitura e cálculo da média das 10 notas podem ser feitos como segue:

```
\begin{array}{l} i < -1 \\ \mathrm{soma} < -0 \\ \underline{\mathrm{enquanto}} \ i < = 10 \ \underline{\mathrm{faca}} \\ \underline{\mathrm{escreva}} \big( \text{"Entre com a nota", } i, \text{": "} \ \big) \\ \underline{\mathrm{leia}} \big( \text{ notas}[i] \ \big) \\ \mathrm{soma} < - \text{ soma} + \text{ notas}[i] \\ i < -i + 1 \\ \underline{\mathrm{fimenquanto}} \\ \overline{\mathrm{media}} < - \text{ soma} \ / \ 10 \end{array}
```

Para calcular o desvio padrão, usamos o seguinte laço:

```
\begin{array}{l} i<-1\\ \operatorname{desvio}<-0\\ \underline{\operatorname{enquanto}}\ i<=10\ \underline{\operatorname{faca}}\\ \overline{\operatorname{desvio}}<-\operatorname{desvio}+(\ \operatorname{notas}[i]-\operatorname{media})\ *\ (\ \operatorname{notas}[i]-\operatorname{media})\\ i<-i+1\\ \underline{\operatorname{fimenquanto}}\\ \overline{\operatorname{desvio}}<-(\ \operatorname{desvio}\ /\ 9\ )^0.5 \end{array}
```

O algoritmo completo é mostrado em 14.3.

14.4 O comando para-faca-fimpara

Como você já deve ter notado, a manipulação de variáveis do tipo vetor é sempre realizada de forma indexada e através de laços. Usamos laços para ler, escrever e fazer cálculos com as variáveis do tipo vetor. Nos exemplos que vimos antes, usamos laços enquanto. De forma geral, o número de iterações do laço é controlado por uma variável que também serve para indexar o vetor. Esta variável é sempre incrementada em uma unidade e comparada com o tamanho do vetor ao final de cada iteração. Como este tipo de laço é tão freqüente quando usamos variáveis do tipo vetor, um laço mais apropriado para o uso com vetores, o **laço para**, foi definido.

O laço para é implementado pelo comando para-faca-fimpara, que tem a sintaxe dada a seguir:

A variável de controle assume o valor inicial, que passa a ser seu valor atual. Em seguida, o valor atual da variável de controle é comparado com o valor final. Se o valor atual for menor ou igual ao valor final, o corpo do laço é executado. Caso contrário, o laço termina. Se o corpo do laço é executado, então o valor atual da variável de controle é incrementado em uma unidade depois da execução do último comando do corpo do laço (sem que tenhamos de escrever código para isso) e comparado novamente com o valor final. Se o valor atual for menor ou igual ao valor final, o corpo do laço é executado novamente e assim por diante. Por exemplo, o laço para,

```
\frac{\text{para}}{\text{escreva}} \frac{i \text{ de } 1 \text{ ate } 10 \text{ faca}}{\text{escreva}(i, "")}fimpara
```

faz com que os números $1,2,\ldots,10$ sejam escritos. Note que a variável de controle, i, não é incrementada de forma explícita por nenhum comando de atribuição e soma. O incremento da variável é parte do comando do laço. O Algoritmo 14.4 é o Algoritmo 14.3 com o uso do laço para.

14.5 Exercícios propostos

- Escreva um algoritmo que defina um vetor de elementos inteiros de tamanho 100, leia valores de entrada para este vetor e escreva a soma dos elementos que ocupam as posições pares do vetor seguida pelo valor da soma dos elementos que ocupam as suas posições ímpares.
- 2. Escreva um algoritmo que defina um vetor v de elementos inteiros de tamanho 100, leia valores de entrada para este vetor e escreva a soma, $v_i + v_{101-i}$, de cada par de elementos, v_i e v_{101-i} , que ocupam as posições i e 101-i do vetor, para todo $i \in \mathbb{Z}$ variando de 1 a 50. Isto é, a saída do algoritmo consiste dos valores das somas $v_1 + v_{100}, v_2 + v_{99}, \ldots, v_{50} + v_{51}$.
- 3. Escreva um algoritmo que defina um vetor de elementos inteiros de tamanho 100, leia valores de entrada para este vetor, troque os valores dos elementos v_i e v_{101-i} , para todo $i \in \mathbb{Z}$ variando de 1 a 50, e escreva os elementos do vetor resultante em ordem crescente de posição (isto é, $v_1, v_2, \ldots, v_{100}$).
- 4. Escreva um algoritmo que defina um vetor de elementos inteiros de tamanho 100, leia um número inteiro, n, com n > 0 e $n \le 10$, e 100 valores de entrada para o vetor, troque os valores dos elementos v_i e v_j , para todo $i \in \mathbb{Z}$ variando de 1 a 100 e j = ((i+n) % 100) + 1, e escreva os elementos do vetor resultante em ordem crescente de posição (isto é, v_1 , v_2, \ldots, v_{100}).
- 5. Escreva um algoritmo que leia um número inteiro positivo, n, com $n \le 100$, e uma seqüência de n números reais e escreva a seqüência de n números em ordem inversa à de leitura.
- Escreva um algoritmo que leia o preço de compra e o preço e venda de 100 mercadorias e calcule e escreva a quantidade de mercadorias proporcionam (1) um lucro menor que 10%,
 (2) um lucro maior ou igual a 10% e menor ou igual a 20% e (3) um lucro maior do que 20%.
- 7. Escreva um algoritmo para calcular o produto escalar de dois vetores. A entrada do algoritmo consiste de um número n, com $n \leq 100$, e de $2 \cdot n$ números reais, x_1, x_2, \ldots, x_n e y_1, y_2, \ldots, y_n . A saída do algoritmo é o produto escalar, $\langle x, y \rangle$, dos vetores x e y definidos como

$$x = (x_1, x_2, \dots, x_n)$$
 e $y = (y_1, y_2, \dots, y_n)$,

isto é,

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i$$
.

- 8. Escreva um algoritmo que leia valores para um vetor de 100 inteiros e calcule e escreva o maior e o menor elemento lido, o percentual de números pares, a média dos elementos do vetor e o número de elementos do vetor que são menores do que a média.
- 9. Tentando descobrir se um dado de seis faces era viciado, um dono de cassino o lançou n vezes, onde $n \leq 100$. Escreva um algoritmo que leia os n resultados dos lançamentos (cada resultado é um número inteiro de 1 a 6), determine e escreva o número de ocorrências de cada face
- 10. Um jogador viciado em jogos de cassino deseja fazer um levantamento estatístico simples sobre uma roleta. Para isso, ele fez n, com $n \le 100$, lançamentos nesta roleta. Sabendo

que uma roleta contém 37 números (de 0 a 36), escreva um algoritmo que leia o resultado dos n lançamentos e calcule e escreva a freqüência de cada um dos 37 números da roleta.

```
algoritmo "Calcula media de notas e numero de notas superiores a media"
    var
2
       n1, n2, n3, n4, n5, media : real
3
       maiores : inteiro
    inicio
      escreva( "Entre com a primeira nota: " )
6
      leia( n1 )
7
      escreva( "Entre com a segunda nota: " )
      leia( n2 )
9
      escreva( "Entre com a terceira nota: " )
10
      leia( n3 )
11
      escreva( "Entre com a quarta nota: " )
12
      leia( n4 )
13
      escreva( "Entre com a quinta nota: " )
14
      leia(n5)
15
      media \leftarrow ( n1 + n2 + n3 + n4 + n5 ) / 5
16
      maiores <- 0
      se n1 > media entao
18
         maiores <- maiores + 1
19
      fimse
20
      se n2 > media entao
21
         maiores <- maiores + 1
22
      fimse
      se n3 > media entao
24
         maiores <- maiores + 1
25
26
      se n4 > media entao
27
         maiores <- maiores + 1
28
      fimse
29
      se n5 > media entao
30
         maiores <- maiores + 1
31
      fimse
32
      escreva( "A media das notas e: " , media )
33
      escreva( "O numero de notas maiores do que a media e: ", maiores)
34
    fimalgoritmo
```

Algoritmo 14.1: Algoritmo para calcular a média aritmética de cinco notas.

```
algoritmo "Calcula media de notas e numero de notas superiores a media"
    var
2
       n1, n2, n3, n4, n5, media : real
3
       maiores : inteiro
5
      escreva( "Entre com a primeira nota: " )
      leia( n1 )
      escreva( "Entre com a segunda nota: " )
      leia( n2 )
      escreva( "Entre com a terceira nota: " )
10
      leia(n3)
11
      escreva( "Entre com a quarta nota: " )
12
      leia( n4 )
13
      escreva( "Entre com a quinta nota: " )
14
      leia(n5)
15
      media \leftarrow ( n1 + n2 + n3 + n4 + n5 ) / 5
16
      maiores <- 0
17
      se n1 > media entao
         maiores <- maiores + 1
19
      fimse
20
      se n2 > media entao
21
         maiores <- maiores + 1
22
      fimse
23
      se n3 > media entao
         maiores <- maiores + 1
25
26
      se n4 > media entao
27
         maiores <- maiores + 1
28
      fimse
29
      se n5 > media entao
         maiores <- maiores + 1
31
      fimse
32
      escreva( "A media das notas e: " , media )
33
      escreva( "O numero de notas maiores do que a media e: " , maiores )
34
    fimalgoritmo
```

Algoritmo 14.2: Algoritmo para calcular a média aritmética de cinco notas usando vetor.

```
algoritmo "Calcula desvio padrao"var notas : vetor [ 1..10 ] de real soma, media, desvio : real i : inteiro inicio i <- 1 soma <- 0 enquanto i <= 10 faca escreva( "Entre com a nota ", i , ": ") leia( notas[ i ] ) soma <- soma + notas[ i ] i <- i + 1 fimenquanto media <- soma / 10 i <- 1 desvio <- 0 enquanto i <= 10 faca desvio <- desvio + ( notas[ i ] - media ) * ( notas[ i ] - media ) i <- i + 1 fimenquanto desvio <- raizq(desvio / 9) escreva( "A media das notas e: ", media ) escreva( "O desvio padrao e: ", desvio ) fimalgoritmo
```

Algoritmo 14.3: Algoritmo para calcular desvio padrão.

```
algoritmo "Calcula desvio padrao com laco para"
1
2
      notas : vetor [ 1..10 ] de real
3
      soma, media, desvio : real
      i : inteiro
5
    inicio
6
      soma <- 0
7
      para i de 1 ate 10 faca
8
         escreva( "Entre com a nota ", i , ": " )
9
         leia( notas[ i ] )
10
         soma <- soma + notas[ i ]</pre>
11
      fimpara
12
      media <- soma / 10
13
      desvio <- 0
14
      para i de 1 ate 10 faca
15
         desvio <- desvio + ( notas[ i ] - media ) * ( notas[ i ] - media )</pre>
16
      fimpara
17
      desvio <- raizq(desvio / 9)</pre>
18
      escreva( "A media das notas e: " , media )
19
      escreva( "O desvio padrao e: ", desvio)
20
    fimalgoritmo
21
```

Algoritmo 14.4: Algoritmo para calcular desvio padrão com laço para.

Aninhamento de Laços

15.1 Laços aninhados

Em princípio, qualquer comando pode fazer parte do corpo de um laço, inclusive um outro laço. Quando isto acontece, dizemos que os laços estão aninhados. Por exemplo, o trecho de algoritmo a seguir escreve os pares ordenados na forma (i, j), onde $i \in [1, 4] \subset \mathbb{N}$ e $j \in [5, 9] \subset \mathbb{N}$:

```
\frac{\overline{\text{para}}\ i\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ 4\ \underline{\text{faca}}}{\underline{\text{para}}\ j\ \underline{\text{de}}\ 5\ \underline{\text{ate}}\ 9\ \underline{\text{faca}}} \\ \underline{\frac{\text{para}\ j\ \underline{\text{de}}\ 5\ \underline{\text{ate}}\ 9\ \underline{\text{faca}}}{\text{escreva}(\text{``(", i, ",", j, ")"})}}
```

Para cada iteração do corpo do laço mais externo,

o laço mais interno é executado por completo. Com isso, a saída do trecho algorítmico acima é

```
\begin{pmatrix}
4 & , & 5 & ) \\
( & 4 & , & 6 & ) \\
( & 4 & , & 7 & ) \\
( & 4 & , & 8 & ) \\
( & 4 & , & 9 & )
\end{pmatrix}
```

Alguns problemas requerem o aninhamento de dois ou mais laços. Quando estudarmos matrizes, teremos oportunidade de resolver problemas com o aninhamento de três ou mais laços. Por enquanto, vamos discutir a solução de um problema que pode ser facilmente descrita com o aninhamento de dois laços. O problema consiste em contar o número de elementos comuns a dois subconjuntos, A e B, de números inteiros. O subconjunto A possui 10 elementos, enquanto o subconjunto B possui 5 elementos. Suponha que A e B $n\~ao$ possuam elementos repetidos.

Para solucionar o problema acima, usaremos dois vetores, a e b, para representar os conjuntos A e B, respectivamente. Para contar quantos elementos são comuns a a e b, basta utilizar um contador e procurar cada elemento do vetor a no vetor b. Toda vez que um elemento do vetor a estiver no vetor b, incrementamos o contador de elementos. Mas, como "procuramos" um elemento no vetor b? A ideia é comparar o elemento procurado, digamos a[i], com os elementos do vetor b até que uma igualdade seja verificada ou todos os elementos do vetor b tenham sido comparados. Esta operação de busca pode ser efetuada, de forma natural, com o seguinte laço enquanto:

```
\begin{array}{l} achou < - \; \underline{\mathrm{falso}} \\ j < - \; 1 \\ \underline{\mathrm{enquanto}} \; (\; \underline{\mathrm{nao}} \; achou \;) \; \underline{\mathrm{e}} \; (\; j <= 5 \;) \; \underline{\mathrm{faca}} \\ \underline{\mathrm{se}} \; a[i] = b[j] \; \underline{\mathrm{entao}} \\ achou < - \; \underline{\mathrm{verdadeiro}} \\ \underline{\mathrm{senao}} \\ j < - \; j + 1 \\ \underline{\mathrm{fimse}} \\ \mathrm{fimenquanto} \end{array}
```

Note que o laço enquanto acima termina por causa de uma de duas condições mutuamente exclusivas: (1) a variável achou recebeu o valor $\underline{verdadeiro}$ ou (2) o valor do contador j é maior do que 5. Quando o laço termina porque a condição (2) é verdadeira, o valor da variável achou é \underline{falso} . Logo, para saber se encontramos o elemento do vetor a que procuramos no vetor b, basta verificarmos o valor que a variável achou possui após o término do laço. Se o valor for da variável for $\underline{verdadeiro}$, então devemos incrementar o contador de achados para contabilizar o fato do elemento a[i] fazer parte do vetor b. Por exemplo, se comuns é a variável contadora, o código

```
\frac{\text{se } achou \ \underline{\text{entao}}}{comuns < - \ comuns + 1} fimse
```

pode ser escrito logo após o laço, incrementando a variável comuns se o valor de achou for verdadeiro.

O laço enquanto e a estrutura condicional acima nos permitem procurar um elemento do vetor a no vetor b. Mas, como fazemos para procurar todos os elementos do vetor a da mesma forma que fizemos para apenas um deles? Ora, basta notar que o código acima não depende do elemento do vetor a a ser procurado. O código, na verdade, considera o elemento a[i], mas o índice i é "desconhecido" do código. Este índice pode assumir qualquer valor de 1 a 10. Logo, podemos criar um novo laço que tem como corpo o código acima. Tudo que o novo laço fará é variar o índice i de a[i] de forma que todos os elementos do vetor a sejam procurados no vetor b:

```
\begin{array}{c} comuns < - \ 0 \\ \underline{\text{para}} \ i \ \underline{\text{de}} \ 1 \ \underline{\text{ate}} \ 10 \ \underline{\text{faca}} \\ achou < - \ \underline{\text{falso}} \\ j < - \ 1 \\ \underline{\text{enquanto}} \ ( \ \underline{\text{não}} \ achou \ ) \ \underline{\text{e}} \ ( \ j < = \ 5 \ ) \ \underline{\text{faça}} \\ \underline{\text{se}} \ a[i] = b[j] \ \underline{\text{entao}} \\ achou < - \ \underline{\text{verdadeiro}} \\ \underline{\text{senão}} \\ j < - \ j + 1 \\ \underline{\text{fimse}} \\ \underline{\text{fimenquanto}} \\ \underline{\text{se}} \ achou \ \underline{\text{entao}} \\ comuns < - \ comuns + 1 \\ \underline{\text{fimse}} \\ \underline{\text{fimpara}} \\ \\ \underline{\text{fimpara}} \end{array}
```

Note que temos um laço enquanto dentro de um laço para. O papel do laço para é "escolher" um elemento do vetor a por vez para ser procurado no vetor b. O papel do laço enquanto é procurar o elemento escolhido pelo laço para. Se o elemento escolhido for encontrado, então o contador comuns é incrementado. Assim, quado o laço para terminar de executar, o valor do contador comuns será igual ao número de elementos do vetor a que também são elementos do vetor b.

15.2 Ordenação

De forma análoga,

Em Computação, o termo *ordenação* se refere à tarefa de rearranjar uma sequência de valores para torná-la uma sequência crescente, decrescente, não-crescente ou não-decrescente. Por exemplo,

```
5 1 10 100 0
```

é uma sequência com 5 números inteiros. Esta sequência não está ordenada, pois ela nem é crescente, decrescente, não-crescente ou não-decrescente. Entretanto, se permutarmos a posição de alguns elementos, então podemos obter uma sequência crescente com os mesmos 5 inteiros:

```
0 1 5 10 100
100 10 5 1 0
```

é uma sequência decrescente obtida com outra permutação da posição dos elementos da sequência original. O problema da ordenação consiste em encontrar uma permutação da posição dos

elementos da sequência original que gere uma sequência crescente, decrescente, não-crescente ou não-decrescente. Obviamente, para falarmos de sequências crescentes, decrescentes, não-crescentes ou não-decrescentes, assumimos que qualquer valor da sequência original deve ser "comparável" com todos os demais para se determinar se um é maior, menor ou igual ao outro.

```
algoritmo "Numero de elementos comuns em dois vetores"
1
2
       a : vetor[ 1..10 ] de inteiro
3
       b : vetor[ 1..5 ] de inteiro
4
       i , j , comuns : inteiro
5
       achou : logico
6
    inicio
7
      para i de 1 ate 10 faca
8
          escreva( "Entre com o elemento ", i , " do vetor a: " )
9
         leia( a[ i ] )
10
      fimpara
11
      para i de 1 ate 5 faca
12
          escreva( "Entre com o elemento ", i , " do vetor b: " )
13
         leia( b[ i ] )
14
      fimpara
15
      comuns <- 0
16
      para i de 1 ate 10 faca
17
          achou <- falso
18
19
          enquanto ( nao achou ) e ( j <= 5 ) faca
20
              se a[ i ] = b[ j ] entao
21
                 achou <- verdadeiro
22
              senao
23
                 j < -j + 1
24
              fimse
25
         fimenquanto
26
          se achou entao
27
             comuns <- comuns + 1
28
         fimse
29
      fimpara
30
      escreva( "O numero de elementos comuns e: ", comuns )
31
    fimalgoritmo
32
```

Algoritmo 15.1: Algoritmo para contar número de elementos comuns.

O problema da ordenação é extremamente importante, pois é muito comum precisarmos ordenar um conjunto grande de dados antes de manipulá-lo. Um exemplo disso é um catálogo telefônico. Quando procuramos o telefone de alguém usando um catálogo telefônico, usamos o sobrenome e o nome desse alguém, pois sabemos que os números de telefone estão listados no catálogo em ordem lexicográfica crescente de sobrenome e nome dos assinantes. O fato dos sobrenomes e nomes aparecerem dessa forma faz com que a busca pelo número de um assinante seja feita de forma rápida. Você já imaginou uma busca sem que os sobrenomes e nomes estejam dispostos em ordem lexicográfica crescente? É por isso que alguém realizou a tarefa de ordenar os números dos assinantes da forma como conhecemos em um catálogo telefônico.

Veremos, agora, um algoritmo capaz de ordenar um conjunto de valores quaisquer (mas, comparáveis uns com os outros, é claro). Este algoritmo assume que o conjunto de valores a ser ordenado está armazenado em um vetor. O algoritmo pode ordenar os valores em ordem não-decrescente ou não-crescente. Para simplificar nossa exposição, vamos assumir que os valores sejam números inteiros distintos e que devam ser ordenados em ordem crescente. O algoritmo utiliza um método de ordenação bastante conhecido em Computação e denominado ordenação por seleção.

Para ilustrar o método de ordenação por seleção, vamos supor que o conjunto de valores a ser ordenado esteja armazenado no vetor a e que consista de: 23, -9, 12, 25, 7, 0, -1, 2, 35 e -4, nesta ordem:

Se o vetor possui n elementos, o método realiza a ordenação em n-1 passos. No primeiro passo, o menor valor do vetor é encontrado e colocado em sua primeira posição. No segundo passo, o segundo menor valor do vetor é encontrado e colocado em sua segunda posição. De forma geral, no i-ésimo passo, para $1 \le i \le n-1$, o i-ésimo menor elemento do vetor é encontrado e colocado na i-ésima posição do vetor. Após esses n-1 passos, o vetor estará ordenado!

De fato, considere o vetor a, que possui n=10 elementos. No passo i=1 do método de ordenação por seleção, encontramos o menor elemento de a e o colocamos na posição 1 de a. O menor elemento de a é -9, que está na posição 2; isto é, a[2]=-9. Queremos colocá-lo na posição 1. Para tal, trocamos os elementos a[1]=23 e a[2]=-9 de posição, obtendo o seguinte vetor a:

No passo i=2, encontramos o segundo menor elemento de a, que é o elemento a[10]=-4, e o colocamos na posição 2. Para tal, trocamos os elementos a[2]=23 e a[10]=-4 de posição, obtendo o vetor:

No passo i=3, encontramos o terceiro menor elemento de a, que é o elemento a[7]=-1, e o colocamos na posição 3. Para tal, trocamos os elementos a[3]=12 e a[7]=-1 de posição, obtendo o vetor:

No passo i=4, encontramos o quarto menor elemento de a, que é o elemento a[6]=0, e o colocamos na posição 4. Para tal, trocamos os elementos a[4]=25 e a[6]=0 de posição, obtendo o vetor:

No passo i=5, encontramos o quinto menor elemento de a, que é o elemento a[8]=2, e o colocamos na posição 5. Para tal, trocamos os elementos a[5]=7 e a[8]=2 de posição, obtendo o vetor:

No passo i=6, encontramos o sexto menor elemento de a, que é o elemento a[8]=7, e o colocamos na posição 6. Para tal, trocamos os elementos a[6]=25 e a[8]=7 de posição, obtendo o vetor:

No passo i = 7, encontramos o sétimo menor elemento de a, que é o elemento a[7] = 12, e o colocamos na posição 7. Mas, este elemento já está na sétima posição de a. Então, o vetor permanece inalterado neste passo:

No passo i=8, encontramos o oitavo menor elemento de a, que é o elemento a[10]=23, e o colocamos na posição 8. Para tal, trocamos os elementos a[8]=25 e a[10]=23 de posição, obtendo o vetor:

No passo i=9, encontramos o nono menor elemento de a, que é o elemento a[10]=25, e o colocamos na posição 9. Para tal, trocamos os elementos a[9]=35 e a[10]=25 de posição, obtendo o vetor:

Como podemos verificar, o vetor a está ordenado em ordem não-decrescente após os 9 passos que executamos do método de ordenação por seleção. Este método sempre funciona? Por quê? O método de ordenação por seleção coloca o i-ésimo menor elemento da sequência de entrada na i-ésima posição do vetor, para todo i variando de 1 a n-1. Mas, isto implica que, ao final de n-1 passos, o maior elemento do vetor estará na posição n, pois os n-1 menores do que ele estão nas posições $1, \ldots, n-1$. Logo, o vetor a estará ordenado após os n-1 passos do método.

Vejamos, agora, o algoritmo que implementa o método de ordenação por seleção acima. Uma operação chave deste algoritmo é aquela que encontra o i-ésimo menor elemento da sequência original de entrada. Para entender esta operação é preciso notar que, ao iniciarmos a busca pelo i-ésimo menor elemento da sequência, o vetor a está parcialmente ordenado, pois

$$a[1], a[2], \ldots, a[i-1]$$

já armazenam os i-1 menores elementos do vetor. Isto significa que o i-ésimo menor está entre os elementos

$$a[i], a[i+1], \ldots, a[n]$$
.

Logo, a busca pelo *i*-ésimo menor elemento deve se restringir aos elementos acima. Esta busca pode ser feita por um laço do tipo para como mostrado pelo trecho de algoritmo escrito logo abaixo:

```
\begin{array}{c} menor < -i \\ \underline{\text{para}} \ j \ \underline{\text{de}} \ i + 1 \ \underline{\text{ate}} \ n \ \underline{\text{faca}} \\ \underline{\text{se}} \ a[j] < a[menor] \ \underline{\text{entao}} \\ menor < -j \\ \underline{\text{fimse}} \\ \underline{\text{fimpara}} \\ \underline{\text{se}} \ i < > menor \ \underline{\text{entao}} \\ temp < -a[menor] \\ a[menor] < -a[j] \\ a[j] < -temp \\ \text{fimse} \end{array}
```

No trecho de algoritmo acima, a variável menor tem como finalidade guardar o índice do menor elemento visto até então entre os elementos $a[i], a[i+1], \ldots, a[n]$. Inicialmente, menor recebe o valor de i, que é a posição onde queremos colocar o i-ésimo menor elemento da sequência de entrada. Em seguida, o laço compara o elemento da posição menor com os elementos $a[i+1], \ldots, a[n]$. Toda vez que um elemento menor do que a[menor] é encontrado, o valor de menor passa a ser a posição deste elemento. Quando o laço termina, menor contém a posição do menor elemento entre os elementos $a[i], a[i+1], \ldots, a[n]$. Se esta posição não é i, trocamos os elementos a[i] e a[menor] de posição. Desta forma, o i-ésimo menor elemento sempre acabará na posição i.

O trecho algorítmico que vimos acima encontra o i-ésimo menor elemento da sequência de entrada e o coloca na posição i do vetor a. Para utilizar este trecho de algoritmo para colocar todos os elementos da sequência em suas devidas posições, basta executar o trecho para todos os valores de i variando de 1 a n-1. Mas, isto pode ser feito através do uso de um outro laço para, que terá como corpo o trecho de algoritmo acima. Mais especificamente, temos o seguinte:

```
\begin{array}{c} \underline{\text{para}} \ i \ \underline{\text{de}} \ 1 \ \underline{\text{ate}} \ n-1 \ \underline{\text{faca}} \\ menor <-i \\ \underline{\text{para}} \ j \ \underline{\text{de}} \ i+1 \ \underline{\text{ate}} \ n \ \underline{\text{faca}} \\ \underline{\text{se}} \ a[j] < a[menor] \ \underline{\text{entao}} \\ menor <-j \\ \underline{\text{fimse}} \\ \underline{\text{fimpara}} \\ \underline{\text{se}} \ i <> menor \ \underline{\text{entao}} \\ temp <-a[menor] \\ a[menor] <-a[i] \\ a[i] <- temp \\ \underline{\text{fimse}} \\ \underline{\text{fimpara}} \\ \underline{\text{fimse}} \\ \underline{\text{fimpara}} \end{aligned}
```

O algoritmo completo é mostrado em Algoritmo 15.2.

Há um detalhe importante no Algoritmo 15.2. O vetor a é definido como um vetor com 100 elementos, mas o algoritmo solicita como entrada o número de elementos a serem armazenados no vetor, que deve ser um número menor ou igual a 100. Logo, embora o vetor tenha tamanho 100, pode ser que um número bem menor de células seja efetivamente utilizado durante uma execução do algoritmo. Este artifício é bastante comum na prática, pois, em geral, não sabemos a priori quantos elementos receberemos como entrada. Então, utilizamos um vetor de tamanho "grande" o suficiente para armazenar qualquer entrada que achamos ser possível de ser dada ao algoritmo.

Na descrição do método de ordenação por seleção, assumimos que os números dados como entrada são distintos. O que acontece se houver números repetidos? O algoritmo ainda funciona corretamente? Execute o algoritmo em uma entrada de tamanho pequeno com alguns elementos repetidos e verifique que ele produz a saída correta. Em seguida, analise o algoritmo e descreva o porquê do algoritmo estar correto para entradas com números repetidos também.

15.3 Exercícios propostos

- 1. Escreva um algoritmo que leia um número inteiro positivo, n, e escreva a tabuada até 10 dos inteiros de 1 a n.
- 2. Escreva um algoritmo que leia um número inteiro positivo, n, e uma sequência de n números inteiros, determine e escreva a quantidade de segmentos de números iguais consecutivos que compõem essa sequência. Por exemplo, para n=9 e a sequência 5, 2, 2, 4, 4, 4, 4, 1, 1, então a saída deve ser o número 4, pois

possui quatro segmentos de números iguais consecutivos:

$$\underbrace{5}, \underbrace{2, 2}, \underbrace{4, 4, 4, 4}, \underbrace{1, 1}$$
.

Observe que há segmentos com um único elemento, tal como 5 no exemplo acima.

3. Escreva um algoritmo que leia um inteiro positivo, n, e uma sequência com n números inteiros e calcule e escreva o comprimento do maior segmento crescente da sequência. Por exemplo, se a entrada for

então a saída é 4, pois

é um segmento crescente com comprimento máximo e igual a 4 da sequência

$$5, 10, 3, \underbrace{2, 4, 7, 9}_{}, 8, 5$$

Se a entrada for

então a saída é 1, pois todos os segmentos crescentes de tamanho máximo da sequência

possuem tamanho 1 e há exatamente cinco segmentos crescentes de tamanho máximo:

$$10, 8, 7, 5, 2$$
.

4. Sabe-se que um número inteiro positivo da forma n^3 é igual à soma de n números ímpares consecutivos, isto é,

$$1^{3} = 1$$

$$2^{3} = 3 + 5$$

$$3^{3} = 7 + 9 + 11$$

$$4^{3} = 13 + 15 + 17 + 19$$

$$\vdots$$

Escreva um algoritmo que leia um número inteiro positivo, m, e, em seguida, calcule e escreva todos os ímpares consecutivos cuja soma é igual a n^3 para n variando de 1 a m.

5. Escreva um algoritmo que leia um número inteiro positivo, n > 1, e determine e escreva a sua decomposição em fatores primos, exibindo a multiplicidade de cada fator. Por exemplo, se a entrada for n = 18, então a saída deve ser da forma

pois $2 \cdot 3 \cdot 3 = 18$ e 2 e 3 são números primos.

- 6. Escreva um algoritmo que leia dois números inteiros positivos, n e m, e duas sequências ordenadas, em ordem não-decrescente, com n e m números inteiros, respectivamente. Em seguida, o algoritmo deve criar e escrever como saída uma única sequência ordenada em ordem não-decrescente com todos os m+n números das duas sequências de entrada. Assuma que $n, m \leq 100$.
- 7. Dadas duas sequências com n números inteiros entre 0 e 9, podemos interpretá-las como dois números inteiros de n algarismos para, em seguida, calcular a sequência de números que representa a soma dos dois inteiros. Por exemplo, se n=8 e 8,2,4,3,4,2,5,1 e 3,3,7,5,2,3,3,7 forem as duas sequências, então a soma dos dois "números" dados é igual a

Escreva um algoritmo que leia um número inteiro positivo, n, com $n \le 100$, e duas sequências com n números inteiros entre 0 e 9 e calcule e escreva a sequência que representa o número resultante da soma dos dois "números" dados pelas duas sequências de entrada (como acima).

115

8. Escreva um algoritmo que leia um número inteiro positivo, n, com $n \le 100$, e uma sequência,

$$x_1, x_2, \ldots, x_n$$

com n números inteiros, determine um segmento de soma máxima e escreva a soma dos elementos deste segmento. Por exemplo, se n for igual a 12 e a sequência dada como entrada for

$$5, 2, -2, -7, 3, 14, 10, -3, 9, -6, 4, 1$$

o segmento de soma máxima é 3, 14, 10, -3, 9 e a soma dos inteiros deste segmento é igual a 33. Observe que um segmento é um subsequência de elementos consecutivos da sequência.

9. Escreva um algoritmo que leia o nome dos alunos de uma turma de tamanho indefinido (mas não superior a 60) e sua nota em uma prova (0 a 10: o algoritmo deve verificar se a nota fornecida é válida. O algoritmo para de ler a entrada quando o nome do aluno fornecido for vazio (""). Para cada aluno, o algoritmo deve escrever seu nome e sua nota normalizada, dada pela fórmula

$$\frac{n_i}{n_{\max}}$$

onde n_i é a nota que o aluno tirou na prova e n_{\max} é a maior nota obtida dentre todos os alunos da turma.

10. Deseja-se escrever um algoritmo para fazer a emissão da folha de pagamento de uma empresa. Para cada um dos n funcionários, as seguintes informações são fornecidas, por funcionário, em sequência:

Código	Descrição
NOME	Nome do funcionário
SAL	Salário do funcionário
$_{ m HED}$	Horas extras diurnas
HEN	Horas extras noturnas
ND	Número de dependentes
FAL	Faltas em horas
DE	Descontos eventuais
REF	Gastos com refeições feitas na empresa
VAL	Vales retirados durante o mês

Para cada funcionário, o algoritmo deve escrever as seguintes informações:

Nome,

Salário,

Horas Extras = HED * SAL/160 + HEN * 1,2 * SAL/160,

Salário Família = ND * 0,05 * Salário Mínimo vigente,

Salário Bruto = Salário + Horas Extras + Salário Família.

e os descontos efetuados:

INSS = 0.08 * SAL,

Faltas = FAL * SAL/160,

Refeições,

Vales.

Descontos Eventuais,

Imposto de Renda = 0.08 * Salário Bruto.

e finalmente o seu Salário Líquido:

Salário Líquido = Salário Bruto - Descontos.

- 11. Reescreva o Algoritmo 15.2 para que ele ordene números reais.
- 12. Reescreva o Algoritmo 15.2 para que ele ordene palavras.
- 13. Use a ferramenta VisuAlG para testar os algoritmos que você escreveu para os problemas 13 e 14.

```
algoritmo "Ordenacao de inteiros usando o metodo de selecao"
1
    var
       a : vetor[ 1..100 ] de inteiro
3
       i , j , n , temp, menor : inteiro
4
    inicio
5
      escreva( "Entre com o numero de elementos do vetor (<= 100): " )
6
      repita
7
         leia(n)
8
      ate n <= 100
      para i de 1 ate n faca
10
         escreva( "Entre com o elemento ", i , " do vetor a: " )
11
         leia( a[ i ] )
12
      fimpara
13
      para i de 1 ate n - 1 faca
14
         menor <- i
         para j de i + 1 ate n faca
16
             se a[ j ] < a[ menor ] entao</pre>
17
                menor <- j
18
             fimse
19
         fimpara
20
         se i <> menor entao
21
             temp <- a[ menor ]</pre>
22
             a[ menor ] <- a[ i ]</pre>
23
             a[ i ] <- temp
24
         fimse
25
      fimpara
26
      escreva( "A sequencia ordenada e: ")
27
      para i de 1 ate n faca
28
          escreva( a[ i ] , " ")
29
      fimpara
30
    fimalgoritmo
```

Algoritmo 15.2: Ordenação de uma sequência de inteiros usando o método de seleção.

Matrizes - Parte 1

16.1 Definição e Manipulação de Matrizes

Sabemos como definir variáveis de um novo tipo de dados, denominado vetor, que representam sequências de valores de um mesmo tipo. Por possuírem uma estrutura sequencial, vetores são denominados arranjos unidimensionais. Nesta aula, generalizaremos a noção de arranjo para duas dimensões. Mais especificamente, definiremos variáveis de um novo tipo de dados, conhecido como matriz, que representa tabelas, com m linhas e n colunas, de valores de um mesmo tipo. Cada uma das m linhas de uma matriz pode ser vista como um vetor de tamanho n. É por isso que matrizes são também denominadas de arranjos bidimensionais.

Uma **matriz** é uma coleção de valores de um mesmo tipo de dados dispostos na forma de uma tabela com m linhas e n colunas, onde m e n são constantes inteiras positivas. Cada elemento ou *célula* de uma matriz armazena um único valor e todos os valores de uma matriz são de um mesmo tipo. Cada célula de uma matriz pode ser identificada de forma única por dois índices, digamos i e j, com $i, j \in \mathbb{Z}$, tais que $1 \le i \le m$ e $1 \le j \le n$. O índice i identifica a linha da tabela em que o elemento se encontra, enquanto o índice j identifica a coluna (veja Figura 16.1).

Figura 16.1: Uma matriz com 8 linhas e 8 colunas.

Cada linha de uma matriz com m linhas e n colunas, ou simplesmente uma matriz m por n, pode ser considerada como sendo um vetor contendo n elementos. Na linguagem Portugol da ferramenta VISUALG, uma variável do tipo matriz m por n é declarada através da seguinte sintaxe:

nome : vetor [tamanho1 , tamanho2] de tipo

onde nome é o nome da variável do tipo matriz, tamanho1 e tamanho2 são faixas de valores consistindo do primeiro e último índices das linhas e colunas da matriz, respectivamente, e tipo é o tipo dos valores das células do vetor. Se a matriz possui m linhas e n colunas, então tamanho1 e tamanho2 devem ser escritos como $m_1..m_2$ e $n_1..n_2$, respectivamente, onde $m_2 - m_1 = m - 1$ e $n_2 - n_1 = n - 1$. Comumente, temos $m_1 = n_1 = 1$, $m_2 = m$ e $n_2 = n$. No entanto, nada impede que usemos outros valores para m_1 , m_2 , n_1 e n_2 . Por exemplo, $m_1 = -1$, $m_2 = m - 2$, $n_1 = 0$ e $n_2 = n - 1$.

Por exemplo, o comando abaixo declara uma variável matriz 5 por 3 de valores inteiros:

```
tabela: vetor [ 1..5, 1..3 ] de inteiro
```

A declaração acima corresponde à declaração de $15 = 5 \times 3$ variáveis do tipo <u>inteiro</u>. Essas quinze variáveis são as quinze células da matriz. Nós podemos manipular cada uma das células individualmente, usando o nome da variável e os índices da célula. As células da matriz tabela são:

tabela[1,1]	tabela[1,2]	tabela[1,3]
tabela[2,1]	tabela[2,2]	tabela[2,3]
tabela[3,1]	tabela[3,2]	tabela[3,3]
tabela[4,1]	tabela[4,2]	tabela[4,3]
tabela[5,1]	tabela[5, 2]	tabela[5,3]

Cada uma das células acima corresponde a uma variável do tipo <u>inteiro</u>. Tudo que fazemos com uma variável do tipo <u>inteiro</u> pode ser feito com as células de *tabela*. Por exemplo, o comando

```
\underline{\text{leia}}(tabela[1,2])
```

realiza a leitura de um valor do tipo <u>inteiro</u> e faz com que este valor seja o conteúdo da célula tabela[1,2]. Já

```
escreva(tabela[1, 2])
```

escreve o conteúdo da célula tabela[1,2]. De forma geral, podemos usar tabela[1,2] em qualquer instrução que manipule um valor inteiro. O seguinte trecho de algoritmo ilustra diversas manipulações:

```
\begin{split} i <&- 2\\ j <&- 3\\ \underline{\text{leia}}(tabela[i,j])\\ tabela[i,j] <&- tabela[i,j-1] + tabela[i-1,j] \end{split}
```

Note que, ao escrevermos tabela[i,j], estamos nos referindo à célula da linha i e coluna j da matriz tabela, ou seja, o conteúdo de i nos dá a linha e o conteúdo de j nos dá a coluna da célula. Esta flexibilidade nos permitiu escrever algoritmos envolvendo vetores de forma bastante compacta. A mesma flexibilidade se estende para matrizes. Por exemplo, o trecho de algoritmo

```
\frac{\text{para } i \text{ } \underline{\text{de}} \text{ } 1 \text{ } \underline{\text{ate}} \text{ } 5 \text{ } \underline{\text{faca}}}{\text{para } j \text{ } \underline{\text{de}} \text{ } 1 \text{ } \underline{\text{ate}} \text{ } 3 \text{ } \underline{\text{faca}}}\\ \frac{\text{para } j \text{ } \underline{\text{de}} \text{ } 1 \text{ } \underline{\text{ate}} \text{ } 3 \text{ } \underline{\text{faca}}}{\text{tabela}[i,j] < -i+j}\\ \underline{\text{fimpara}}\\ \text{fimpara}
```

atribui o valor i+j para o elemento da i-ésima linha e j-ésima coluna de tabela. Já o trecho de algoritmo

```
\frac{\text{para } i \text{ } \underline{\text{de }} 1 \text{ } \underline{\text{ate }} 5 \text{ } \underline{\text{faca}}}{\underline{\text{para }} j \text{ } \underline{\text{de }} 1 \text{ } \underline{\text{ate }} 3 \text{ } \underline{\text{faca}}}
\frac{\text{escreva}(\text{ "Entre com o elemento } [\text{", } i \text{ , ",", } j \text{ , "]: "})}{\underline{\text{leia}}(\text{ } tabela[i,j] \text{ )}}
\underline{\text{fimpara}}
\text{fimpara}
```

só difere do anterior pelo corpo do laço mais interno, que faz a leitura de cada elemento da matriz tabela ao invés de uma atribuição de valor. De forma geral, a manipulação de todos os elementos de uma matriz, um de cada vez, é feita com dois laços aninhados, como nos exemplos acima. De fato, podemos facilmente modificar qualquer um dos dois trechos de algoritmo acima para escrever, ao invés de ler, o conteúdo de todos os elementos da matriz tabela:

```
\frac{\overline{\text{para}}\ i\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ 5\ \underline{\text{faca}}}{\underline{\text{para}}\ j\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ 3\ \underline{\text{faca}}} \underline{\frac{\text{para}\ j\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ 3\ \underline{\text{faca}}}{\text{escreva}}(\text{``tabela}\ [\text{"},\ i\ ,\text{"},",\ j\ ,\text{"}]=\text{"}\ ,\ tabela[i,j]\ )} \underline{\underline{\text{fimpara}}} \underline{\text{fimpara}}
```

16.2 Exemplos

Em geral, o uso de matrizes é mais frequente na resolução de problemas computacionais de Engenharia, os quais envolvem álgebra linear numérica. Neste contexto, variáveis do tipo matriz possuem uma relação direta com a noção de matriz em Matemática. No entanto, vários programas de computador utilizam matrizes para outras finalidades, que variam desde a representação de uma simples planilha a grades de interfaces gráficas. Os exemplos que veremos a seguir têm por finalidade familiarizar o leitor com a manipulação de matrizes. Por isso, eles são aplicações demasiadamente simples e que estão relacionadas à noção de matriz em Matemática.

16.2.1 Soma de duas matrizes

Aprendemos no Ensino Médio que se A e B forem matrizes de dimensão $m \times n$, então C = A + B também será $m \times n$ e tal que $c_{ij} = a_{ij} + b_{ij}$, para todo $i \in \{1, \ldots, m\}$ e todo $j \in \{1, \ldots, n\}$. Por exemplo, se

$$A = \begin{bmatrix} 8 & 6 \\ 1 & 4 \\ 5 & 7 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 2 & 1 \end{bmatrix},$$

então

$$C = A + B = \left[\begin{array}{cc} 9 & 8 \\ 1 & 7 \\ 7 & 8 \end{array} \right] \, .$$

Com a definição acima em mente, podemos construir um algoritmo para ler duas matrizes, A e B, de mesma dimensão, calcular a matriz soma, C, e escrever seus elementos. Vamos

representar as matrizes A, B e C por variáveis a, b e c do tipo matriz de elementos do tipo <u>real</u>. Assim como fizemos com vetores, vamos declarar a, b e c como tendo "muitas" linhas e colunas. Em seguida, solicitamos ao usuário que nos forneça o número, m, de linhas e o número, n, de colunas das matrizes. A próxima etapa é a leitura dos $m \times n$ elementos das matrizes A e B (veja Algoritmo 16.1).

```
algoritmo "Soma de duas matrizes"
1
2
      a, b, c : vetor [ 1..100 , 1..100 ] de real
3
      i, j, m, n : inteiro
5
      escreva( "Entre com o numero de linhas das matrizes (<= 100): ")
6
      repita
7
         leia( m )
8
      ate m <= 100
      escreva( "Entre com o numero de colunas das matrizes (<= 100): ")
10
      repita
11
         leia(n)
12
      ate n \le 100
13
      para i de 1 ate m faca
14
         para j de 1 ate n faca
15
            escreva( "Entre com o elemento a[ ", i , "," , j , "]: " )
16
            leia( a[ i , j ] )
17
            escreva( "Entre com o elemento b[ ", i , "," , j , "]: " )
18
            leia( b[ i , j ] )
19
         fimpara
20
     fimpara
21
```

Algoritmo 16.1: Primeira parte do algoritmo para somar duas matrizes.

Uma vez que tenhamos os elementos de A e B, precisamos calcular a matriz soma C = A + B. Por definição, sabemos que $c_{ij} = a_{ij} + b_{ij}$, para todo $i \in \{1, ..., m\}$ e todo $j \in \{1, ..., n\}$. Isto é,

```
c[i,j] <- a[i,j] + b[i,j]
```

para todos os valores que as variáveis i e j assumem nos intervalos de 1 a m e 1 a n, respectivamente. A soma e atribuição acima podem ser feitas com dois laços aninhados (veja Algoritmo 16.2).

```
para i de 1 ate m faca
    para j de 1 ate n faca
    c[i, j] <- a[i, j] + b[i, j]
    fimpara
    fimpara</pre>
```

Algoritmo 16.2: Segunda parte do algoritmo para somar duas matrizes.

Finalmente, os elementos da matriz C são escritos como mostrado em Algoritmo 16.3.

```
para i de 1 ate m faca
    para j de 1 ate n faca
    escreva( "c[", i , "," , j , "] = " , c[i , j] , " " )
fimpara
escreval( "" )
fimpara
fimalgoritmo
```

Algoritmo 16.3: Terceira parte do algoritmo para somar duas matrizes.

16.2.2 Cálculo de norma matricial

Em Álgebra Linear, aprendemos que o modo usual de expressarmos a "magnitude" de um vetor ou matriz é através de um escalar denominado norma. Uma norma matricial é uma função, $\|\cdot\|: \mathbb{R}^{m\times n} \to \mathbb{R}$, que associa um número real a cada matriz e que satisfaz às seguintes condições:

- $||A|| \ge 0$ e ||A|| = 0 se, e somente se, todo elemento de A é igual a zero,
- $||A + B|| \le ||A|| + ||B||$ e
- $||k \cdot A|| = |k| \cdot ||A||$,

onde $A, B \in \mathbb{R}^{m \times n}$ são matrizes de mesma dimensão e $k \in \mathbb{R}$ é um escalar. Uma norma matricial bastante conhecida e utilizada em cálculos numéricos é a norma de soma máxima de linha:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

Basicamente, a norma soma máxima de linha é igual a maior soma que obtemos quando somamos o valor absoluto dos elementos de uma linha da matriz. Por exemplo, se a matriz A é igual a

$$\left[\begin{array}{cc} 2 & -1 \\ 3 & 5 \end{array}\right],$$

então

$$||A||_{\infty} = \max\{|2| + |-1|, |3| + |5|\} = \max\{3, 8\} = 8.$$

O Algoritmo 16.2.2 lê uma matriz e calcula e escreve a norma de soma máxima de linha da matriz.

16.2.3 Cálculo da matriz transposta

A transposta de uma matriz A, denotada por A^T , é uma matriz obtida trocando-se as linhas de A pelas colunas, de modo que a linha i se torne a coluna i e a coluna j se torne a linha j. Por exemplo, se

$$A = \begin{bmatrix} 5 & 2 & 0 \\ 6 & 9 & 1 \\ 3 & 4 & 2 \\ 7 & 0 & 8 \\ 1 & 5 & 6 \end{bmatrix},$$

então

$$A^T = \left[\begin{array}{ccccc} 5 & 6 & 3 & 7 & 1 \\ 2 & 9 & 4 & 0 & 5 \\ 0 & 1 & 2 & 8 & 6 \end{array} \right] \,.$$

Em geral, temos que se A é uma matriz m por n, então A^T é uma matriz n por m tal que $a_{ij}^T = a_{ji}$, para todo $i \in \{1, \ldots, n\}$ e todo $j \in \{1, \ldots, m\}$. Usando esta definição, o Algoritmo 16.5 calcula e escreve os elementos da transposta de uma matriz de reais dada como entrada do algoritmo. Preste bastante atenção no uso correto dos índices nos laços aninhados do algoritmo.

16.3 Exercícios propostos

- Escreva, usando a linguagem Portugol da ferramenta VISUALG, três declarações distintas de uma mesma variável do tipo matriz com 10 por 20 elementos do tipo <u>caractere</u>. A diferença entre as declarações deve se dar, apenas, nas faixas de valores que definem a dimensão da matriz.
- 2. Escreva um algoritmo que leia valores para cada elemento de uma matriz B de 100 linhas e 200 colunas de números reais, calcule a soma dos elementos da linha de índice 40 e da coluna de índice 30 e escreva o resultado dessas duas somas.
- 3. Escreva um algoritmo para calcular a matriz resultante da multiplicação de um escalar por uma dada matriz. A entrada do algoritmo é composta por dois inteiros, m e n, um número real, λ , e pelos elementos de uma matriz, A, m por n de reais. Assuma que $m \leq 100$ e $n \leq 50$. A saída do algoritmo é composta pelos elementos da matriz $\lambda \cdot A$.
- 4. Escreva um algoritmo para calcular o vetor resultante da multiplicação de um dado vetor por uma dada matriz. A entrada do algoritmo é composta por dois inteiros m e n, pelos elementos de um vetor V de tamanho m de números reais e pelos elementos de uma matriz A, m por n de reais. Assuma que $m \leq 100$ e $n \leq 50$. A saída do algoritmo é composta pelos elementos do vetor $V \cdot A$ de tamanho n de números reais.
- 5. Escreva um algoritmo para verificar se existem elementos repetidos em uma dada matriz. A entrada do algoritmo é composta por dois inteiros, m e n, e pelos elementos de uma matriz, A, m por n de inteiros. Assuma que $m \le 100$ e $n \le 50$. A saída do algoritmo é a mensagem "sim" se A contiver pelo menos um elemento repetido e "não" caso contrário.
- 6. Deseja-se escrever um algoritmo para atualizar as contas correntes dos clientes de uma agência bancária. É dado o cadastro de n clientes contendo, para cada cliente, o número de sua conta e o seu saldo; o cadastro está ordenado pelo número da conta. Em seguida, é dado o número m de operações efetuadas no dia e, para cada operação, o número da conta, uma letra C ou D indicando se a operação é de crédito ou débito e o valor da operação.
 - A entrada do algoritmo é um inteiro positivo, n, uma sequência com n pares, (número da conta, saldo), de cada um dos n clientes, um número inteiro não-negativo m e uma sequencia de m pares, (número da conta, letra C ou D), com m transações bancárias. A saída do algoritmo é uma sequência de n pares, (número da conta, saldo), onde o saldo da conta é o saldo após as m transações terem sido efetuadas. Assuma que $n \le 40$ e $m \le 1000$.
- 7. Escreva um algoritmo para ler um número inteiro positivo, n, e escrever as n primeiras

linhas do triângulo de Pascal¹.

<

 $^{^{-1} \}mbox{Descoberto}$ em 1654 pelo matemático francês Blaise Pascal.

```
algoritmo "Norma da soma maxima de linha"
1
      a : vetor [ 1..100 , 1..100 ] de real
3
      soma, norma : real
4
      i, j, m, n : inteiro
5
    inicio
6
      escreva( "Entre com o numero de linhas da matriz (<= 100): ")
7
8
         leia( m )
      ate m <= 100
10
      escreva( "Entre com o numero de colunas da matriz (<= 100): ")
11
      repita
12
         leia(n)
13
      ate n \le 100
14
      para i de 1 ate m faca
         para j de 1 ate n faca
16
            escreva( "Entre com o elemento a[ ", i , "," , j , "]: " )
17
            leia( a[ i , j ] )
18
         fimpara
19
      fimpara
20
      norma <- 0
21
      para i de 1 ate m faca
^{22}
         soma <- 0
23
         para j de 1 ate n faca
24
            se a[i, j] < 0 entao
25
                 soma <- soma - a[i,j]
26
            senao
27
                 soma <- soma + a[ i , j ]
28
            fimse
29
         fimpara
30
         se soma > norma entao
31
            norma <- soma
32
         fimse
33
      fimpara
34
      escreva( "A norma da soma maxima de linha da matriz e: ", norma )
35
    fimalgoritmo
36
```

Algoritmo 16.4: Norma de soma máxima de linha

```
algoritmo "Transposta de uma matriz"
    var
2
      a, b : vetor [ 1..100 , 1..100 ] de real
3
     i, j, m, n : inteiro
4
    inicio
5
      escreva( "Entre com o numero de linhas da matriz (<= 100): ")
6
      repita
         leia( m )
8
      ate m <= 100
9
      escreva( "Entre com o numero de colunas da matriz (<= 100): ")
10
      repita
11
         leia( n )
12
      ate n <= 100
13
      para i de 1 ate m faca
14
         para j de 1 ate n faca
15
            escreva( "Entre com o elemento a[ ", i , "," , j , "]: " )
16
            leia( a[ i , j ] )
17
            b[j,i] <- a[i,j]
18
         fimpara
19
      fimpara
20
      para i de 1 ate n faca
21
         para j de 1 ate m faca
22
            escreva( "b[ ", i , "," , j , "] = " , b[ i , j ] , " ")
23
         fimpara
24
         escreval( "" )
25
      fimpara
26
    fimalgoritmo
27
```

Algoritmo 16.5: Cálculo da matriz transposta.

MATRIZES 2

17.1 Mais exemplos

Nesta aula, veremos mais dois algoritmos envolvendo matrizes. O primeiro deles calcula a matriz resultante da multiplicação de duas matrizes e utiliza três laços do tipo para aninhados. O segundo verifica se uma dada matriz é ou não é um quadrado mágico e utiliza uma combinação de laços do tipo para e enquanto. Os dois algoritmos são mais elaborados do que os que vimos antes.

17.1.1 Multiplicação de duas matrizes

Sejam A e B duas matrizes com dimensões $m \times p$ e $p \times n$, respectivamente. Então, a multiplicação

$$A \times B$$

da matriz A pela matriz B resulta em uma matriz, C, de dimensão $m \times n$ tal que o elemento c_{ij} é igual a

$$\sum_{k=1}^{p} a_{ik} \cdot b_{kj} ,$$

para $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$. Em outras palavras, cada elemento c_{ij} é igual ao produto

$$\left[\begin{array}{cccc} a_{i1} & a_{i2} & \cdots & a_{ip} \end{array}\right] \cdot \left[\begin{array}{c} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{array}\right]$$

da i-ésima linha de A pela j-ésima coluna de B. Por exemplo, se

$$A = \begin{bmatrix} 8 & 6 \\ 1 & 4 \\ 5 & 7 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix},$$

então

$$C = A \times B = A = \begin{bmatrix} 8 & 6 \\ 1 & 4 \\ 5 & 7 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 26 & 28 & 6 \\ 13 & 10 & 4 \\ 26 & 24 & 7 \end{bmatrix},$$

pois

$$c_{11} = \begin{bmatrix} 8 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 8 \cdot 1 + 6 \cdot 3 = 8 + 18 = 26,$$

$$c_{12} = \begin{bmatrix} 8 & 6 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 8 \cdot 2 + 6 \cdot 2 = 16 + 12 = 28,$$

$$c_{13} = \begin{bmatrix} 8 & 6 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 8 \cdot 0 + 6 \cdot 1 = 0 + 6 = 6,$$

$$c_{21} = \begin{bmatrix} 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1 \cdot 1 + 4 \cdot 3 = 1 + 12 = 13,$$

$$c_{22} = \begin{bmatrix} 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 1 \cdot 2 + 4 \cdot 2 = 2 + 8 = 10,$$

$$c_{23} = \begin{bmatrix} 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 \cdot 0 + 4 \cdot 1 = 0 + 4 = 4,$$

$$c_{31} = \begin{bmatrix} 5 & 7 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 5 \cdot 1 + 7 \cdot 3 = 5 + 21 = 26,$$

$$c_{32} = \begin{bmatrix} 5 & 7 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 5 \cdot 2 + 7 \cdot 2 = 10 + 14 = 24,$$

$$c_{33} = \begin{bmatrix} 5 & 7 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 5 \cdot 0 + 7 \cdot 1 = 0 + 7 = 7.$$

O que queremos, agora, é desenvolver um algoritmo para ler duas matrizes, A e B, com dimensões $m \times p$ e $p \times n$, respectivamente, e calcular e escrever a matriz $C = A \times B$ de dimensões $m \times n$. A entrada deste algoritmo é composta das dimensões m, n e p e dos elementos de A e B. A saída é composta pelos elementos da matriz C. É importante notar que o número de colunas de A e o número de colunas de B devem ser iguais. Como esses números são representados por p, não precisamos de quatro valores de entrada (mas sim três) para representar as dimensões de A e B.

O passo crucial do algoritmo que queremos construir é o que calcula os elementos de C, pois os demais passos se referem à entrada e saída de dados, que são realizadas da mesma forma que vimos em outros exemplos. Os elementos c_{ij} podem ser calculados com o seguinte código:

```
\frac{\text{para } i \text{ de } 1 \text{ ate } m \text{ faca}}{\text{para } j \text{ de } 1 \text{ ate } n \text{ faca}} \\ // \text{ calcule o elemento } c_{ij} \text{ da matriz } C = A \times B \\ \frac{\text{fimpara}}{\text{fimpara}}
```

Como sabemos,

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj} .$$

A soma acima pode ser feita com outro laço do tipo para e uma variável acumuladora, que pode ser a própria célula da variável matriz que representa C. De fato, se as matrizes A, B e C são

representadas pelas variáveis a, b e c, respectivamente, então cada c_{ij} pode ser obtido com o código

```
\begin{array}{l} c[i,j] < -\ 0 \\ \underline{\text{para}} \ k \ \underline{\text{de}} \ 1 \ \underline{\text{ate}} \ p \ \underline{\text{faca}} \\ c[i,j] < -\ c[i,j] + \ a[i,k] * b[k,j] \\ \text{fimpara} \end{array}
```

Note que os valores de i e j são "fixos" no laço acima. Apenas o valor da variável contadora k varia

Substituindo o código acima para calcular um único c_{ij} na linha de comentário dos laços aninhados que vimos antes, obtemos um trecho de código que calcula todos os elementos c_{ij} da matriz C:

```
\begin{array}{c} \underline{\text{para}}\ i\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ m\ \underline{\text{faca}}\\ \underline{para}\ j\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ n\ \underline{\text{faca}}\\ c[i,j]<-0\\ \underline{para}\ k\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ p\ \underline{\text{faca}}\\ c[i,j]<-c[i,j]+a[i,k]*b[k,j]\\ \underline{\underline{\text{fimpara}}}\\ \underline{\text{fimpara}}\\ \underline{\text{fimpara}}\\ \underline{\text{fimpara}}\\ \\ \underline{\text{fimpara}}\\ \end{array}
```

O algoritmo completo para a multiplicação de duas matrizes está em Algoritmo 17.1.1.

17.1.2 Quadrado mágico

A matriz

$$\left[\begin{array}{ccc}
8 & 0 & 7 \\
4 & 5 & 6 \\
3 & 10 & 2
\end{array}\right]$$

possui a seguinte propriedade: a soma dos elementos de qualquer uma de suas linhas, colunas, diagonal principal ou diagonal secundária é igual a 15. Quando isto acontece, dizemos que a matriz é um quadrado mágico. Um problema computacional interessante é o de verificar se uma dada matriz quadrada é ou não é um quadrado mágico. A entrada deste problema é um inteiro n, com $n \geq 2$, e uma matriz quadrada, digamos A, de ordem n. A saída do problema é a mensagem "A matriz não é um quadrado mágico" ou a mensagem "A matriz é um quadrado mágico".

O que queremos aqui é construir um algoritmo para resolver o problema acima. Basicamente, o algoritmo que queremos é um verificador de uma propriedade. Ele deve *decidir* se a entrada satisfaz uma dada propriedade. A saída do algoritmo deve indicar se a propriedade é ou não é satisfeita pela entrada. Algoritmos desta natureza são conhecidos como *algoritmos de decisão*.

Para construir nosso algoritmo, valeremo-nos de uma ideia simples. Suponha que recebemos m números reais, x_1, x_2, \ldots, x_m , e queremos decidir se esses números são todos iguais. Para fazer isso de forma eficiente, consideramos a seguinte propriedade: se a, b e c são três números tais que a = b e b = c, então a = c. Usando esta propriedade, escolhemos qualquer um dos números que recebemos, digamos x_i , e comparamos este número com todos os números x_j , tais que $i \neq j$

e $j \in \{1, ..., m\}$. O que podemos dizer se todas as comparações resultam em igualdade? A propriedade acima nos garante que todos os números são iguais. Por outro lado, se alguma comparação resultar em desigualdade, sabemos que $x_1, x_2, ..., x_m$ não são todos iguais. Mais ainda, quando $x_1, x_2, ..., x_m$ não forem todos iguais, alguma comparação de x_i com outro número resultará em desigualdade. Caso contrário, todos os $x_1, x_2, ..., x_m$ seriam iguais¹.

Mas, o que a ideia acima tem a ver com o nosso problema? Bem, se considerarmos que cada x_i é a soma dos elementos de uma linha, coluna, diagonal principal ou diagonal secundária da matriz, o problema que queremos resolver é "idêntico" ao problema que acabamos de discutir. Isto sugere que devemos calcular a soma dos elementos de cada linha, coluna, diagonal principal e diagonal secundária da matriz, separadamente, e comparar os valores obtidos com a estratégia acima. Esta é a estratégia de solução que utilizaremos, mas para fazer esta estratégia funcionar de forma eficiente, faremos as comparações, uma de cada vez, e enquanto obtivermos igualdade. Assim que uma desigualdade for descoberta, não precisamos mais continuar comparando, pois já sabemos que todos os valores não são iguais. O primeiro passo da nossa estratégia é o cálculo da soma dos elementos da primeira linha da matriz. Isto equivale a escolher o elemento x_i , que pode ser a soma dos elementos de qualquer linha, coluna, diagonal principal ou diagonal secundária da matriz. Arbitrariamente, escolhemos a primeira linha da matriz. O trecho de código dado a seguir calcula a soma dos elementos da primeira linha da matriz:

```
\begin{array}{c} s1 < -\ 0 \\ \underline{\text{para}}\ j\ \underline{\text{de}}\ 1\ \underline{\text{ate}}\ n\ \underline{\text{faca}} \\ s1 < -\ s1 + a[1,j] \\ \text{fimpara} \end{array}
```

Assumimos que a matriz está representada pela variável a e acumula a soma na variável s1.

Uma vez que saibamos o valor da soma dos elementos de *uma* linha, devemos comparar este valor com o valor da soma dos elementos das demais linhas, colunas, diagonal principal e diagonal secundária da matriz. Mas, não precisamos realizar *todas* as comparações se isto não for necessário. Faremos uma comparação por vez. Enquanto as comparações resultarem em igualdade, continuamos comparando. Mas, se uma desigualdade ocorrer, paramos de comparar.

O trecho de código dado a seguir calcula a soma dos elementos de uma linha da matriz que não seja a primeira. Em seguida, compara o valor desta soma com s1. Se a comparação resultar em igualdade, outra linha da matriz é considerada para cálculo da soma de seus elementos e comparação com s1. Se a comparação resultar em desigualdade, o cálculo da soma é abortado. Para que isto seja possível, usamos uma variável lógica de nome iqual e um laço do tipo enquanto:

```
\begin{array}{l} \textit{igual} < - & \underline{\text{verdadeiro}} \\ i < -2 \\ \underline{\text{enquanto}} & \textit{igual} \ \underline{\text{e}} \ (i <= n) \ \underline{\text{faca}} \\ s2 < -0 \\ \underline{\text{para}} & \textit{j} \ \underline{\text{de}} \ 1 \ \underline{\text{ate}} \ n \ \underline{\text{faca}} \\ s2 < -s2 + a[i,j] \\ \underline{\text{fimpara}} \\ \underline{\text{se}} & s1 = s2 \ \underline{\text{entao}} \\ & i < -i + 1 \end{array}
```

¹Concluímos isso por um argumento baseado em contradição!

```
\frac{\mathrm{senao}}{igual} < - \ \underline{\mathrm{falso}} \underline{\mathrm{fimse}} \mathrm{fimenquanto}
```

O laço que acabamos de ver implementa o teste das linhas. Se a variável igual possuir o valor verdadeiro após o término deste laço, sabemos que a soma dos elementos de qualquer uma das linhas da matriz é igual à soma dos elementos de qualquer outra linha da matriz. Mas, ainda não podemos afirmar que a matriz a é um quadrado mágico. Para isso, devemos realizar o teste das colunas e o teste das diagonais. Por outro lado, se a variável igual possuir o valor falso após o término do teste das linhas, já podemos afirmar que a matriz a não é um quadrado mágico e não precisamos realizar mais nenhum teste. O trecho de algoritmo a seguir mostra como realizar o teste das colunas se, e somente se, a variável igual possuir o valor verdadeiro após o término do teste das linhas. Este trecho é muito parecido com o que implementa o teste das linhas:

```
\begin{array}{c} j<-1\\ \underline{\text{enquanto}} \ igual \ \underline{\text{e}} \ (j<=n) \ \underline{\text{faca}}\\ s2<-0\\ \underline{\text{para}} \ i \ \underline{\text{de}} \ 1 \ \underline{\text{ate}} \ n \ \underline{\text{faca}}\\ s2<-s2+a[i,j]\\ \underline{\underline{\text{fimpara}}}\\ \underline{\underline{\text{se}} \ s1} = s2 \ \underline{\text{entao}}\\ j<-j+1\\ \underline{\underline{\text{senao}}}\\ igual<-\underline{\text{falso}}\\ \underline{\underline{\text{fimse}}}\\ \underline{\text{fimenquanto}} \end{array}
```

È importante observar que tanto o teste das linhas quanto o teste das colunas será abortado assim que uma desigualdade for encontrada, pois isto faz com que a variável igual receba o valor falso na estrutura condicional que verifica se s1 e s2 possuem o mesmo valor. Após o teste das colunas, realizamos o teste da diagonal principal, que é mostrado no seguinte trecho de algoritmo:

```
\begin{array}{c} \underline{\text{se } igual \ \underline{\text{entao}}} \\ s2 <- \ 0 \\ \underline{\text{para } i \ \underline{\text{de}} \ 1 \ \underline{\text{ate}} \ n \ \underline{\text{faca}}} \\ s2 <- \ s2 + a[i,i] \\ \underline{\underline{\text{fimpara}}} \\ \underline{igual} <- \ (s1 = s2) \\ \underline{\text{fimse}} \end{array}
```

O teste da diagonal secundária é quase idêntico e realizado logo a seguir:

```
\begin{array}{c} \underline{\text{se}} \ igual \ \underline{\text{entao}} \\ s2 <- \ 0 \\ \underline{\text{para}} \ i \ \underline{\text{de}} \ 1 \ \underline{\text{ate}} \ n \ \underline{\text{faca}} \\ s2 <- \ s2 \ + \ a[i,n-i+1] \\ \text{fimpara} \end{array}
```

```
igual < - \ (s1 = s2) fimse
```

É importante observar também que um teste, seja ele de coluna ou diagonal, só será executado se a matriz passar no teste anterior. Finalmente, após todos os testes acima, devemos verificar o valor de *igual* para saber se a matriz passou ou não por *todos* os testes. Note que a matriz passa por todos os testes se, e somente se, o valor da variável *igual* é <u>verdadeiro</u>. Então, o último trecho do algoritmo que verifica se a matriz é ou não é um quadrado mágico é como segue:

```
se igual entao
escreva( "A matriz e um quadrado magico" )
senao
escreva( "A matriz nao e um quadrado magico" )
fimse
```

O algoritmo completo é deixado como exercício para o aluno. Note apenas que deixamos de mostrar, apenas, a seção de declaração de variáveis e o trecho que realiza a leitura da entrada de dados, que consiste da ordem n da matriz e dos elementos da matriz. Esta tarefa deve ser trivial².

17.2 Exercícios propostos

1. Dizemos que uma matriz de inteiros, A, n por n, é uma matriz de permutação se em cada linha e em cada coluna houver n-1 elementos nulos e um único elemento 1. Por exemplo,

$$\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]$$

é uma matriz de permutação, mas

$$\left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

não é de permutação. Escreva um algoritmo para determinar se uma dada matriz quadrada de inteiros é de permutação. A entrada do algoritmo consiste de um inteiro positivo, n, e dos números inteiros que compõem a matriz. A saída do algoritmo é a mensagem "é de permutação" se a matriz é de permutação e a mensagem "não é de permutação" caso contrário. Assuma que $n \leq 1000$.

2. Escreva um algoritmo para ler um número inteiro positivo, n, e escrever as n primeiras linhas do triângulo de Pascal³.

²Pelo menos para aqueles que fizeram os exercícios da aula anterior.

³Descoberto em 1654 pelo matemático francês Blaise Pascal.

- 3. Uma matriz $D_{8\times8}$ pode representar a posição atual de um jogo de damas, sendo que 0 indica uma casa vazia, 1 indica uma casa ocupada por uma peça branca e -1 indica uma casa ocupada por uma peça preta. Supondo que as peças pretas estão se movendo no sentido crescente das linhas da matriz D, escreva um algoritmo para determinar as posições das peças pretas que:
 - a) podem tomar peças brancas;
 - b) podem mover-se sem tomar peças;
 - c) não podem se mover.

A entrada do algoritmo consiste dos elementos da matriz $D_{8\times8}$ e a saída consiste dos índices das posições que satisfazem (a), seguidos pelos índices das posições que satisfazem (b), seguidos pelos índices das posições que satisfazem (c).

4. Suponha que os elementos a_{ij} de uma matriz inteira $A_{n\times n}$ representem os custos de transporte da cidade i para a cidade j. Então, dado um itinerário com k cidades, podemos calcular o custo total de cada itinerário. Por exemplo, se

$$A = \left[\begin{array}{cccc} 4 & 1 & 2 & 3 \\ 5 & 2 & 1 & 400 \\ 2 & 1 & 3 & 8 \\ 7 & 1 & 2 & 5 \end{array} \right],$$

então o custo do itinerário 1 4 2 4 4 3 2 1 com k=8 cidades (não necessariamente distintas) é igual a

$$a_{14} + a_{42} + a_{24} + a_{44} + a_{43} + a_{32} + a_{21} = 3 + 1 + 400 + 5 + 2 + 1 + 5 = 417$$
.

Escreva um algoritmo que leia um inteiro positivo n, os elementos de uma matriz A, de n por n inteiros, um inteiro positivo $m \le n * (n-1)$, um inteiro positivo k e uma sequência de m itinerários, cada qual com k cidades, e que calcule e escreva o custo total de cada itinerário.

```
algoritmo "Multiplicacao de duas matrizes"
1
2
      a, b, c : vetor [ 1..100 , 1..100 ] de real
      i, j, m, p, n, k : inteiro
    inicio
5
      escreva( "Entre com o numero de linhas da primeira matriz (<= 100): ")
6
      repita
         leia( m )
8
      ate m <= 100
      escreva( "Entre com o numero de colunas da primeira matriz (<= 100): ")
10
      repita
11
         leia(p)
12
      ate p <= 100
13
      escreva( "Entre com o numero de colunas da segunda matriz (<= 100): ")
14
      repita
15
         leia( n )
16
      ate n \le 100
17
      para i de 1 ate m faca
18
         para j de 1 ate p faca
19
            escreva( "Entre com o elemento [ ", i , "," , j , "] da matriz A: " )
20
21
            leia( a[ i , j ] )
         fimpara
22
      fimpara
23
      para i de 1 ate p faca
24
         para j de 1 ate n faca
25
            escreva( "Entre com o elemento [ ", i , "," , j , "] da matriz B: " )
26
            leia( b[ i , j ] )
27
         fimpara
28
      fimpara
29
      para i de 1 ate m faca
30
         para j de 1 ate n faca
31
            c[i,j]<-0
32
            para k de 1 ate p faca
33
               c[i,j] <- c[i,j] + a[i,k] * b[k,j]
34
            fimpara
35
         fimpara
36
      fimpara
37
      para i de 1 ate m faca
38
         para j de 1 ate n faca
39
            escreval( "c[ ", i , "," , j , "] = " , c[ i , j ] )
40
         fimpara
41
      fimpara
42
    fimalgoritmo
43
```

Algoritmo 17.1: Multiplicação de 2 matrizes

Modularização - Parte 1

Os algoritmos que temos construído até então são muito simples, pois resolvem problemas simples e apresentam apenas os componentes mais elementares dos algoritmos: constantes, variáveis, expressões condicionais e estruturas de controle. Entretanto, a maioria dos algoritmos resolve problemas complicados, cuja solução pode ser vista como formada de várias subtarefas ou *módulos*, cada qual resolvendo uma parte específica do problema.

Neste tópico, veremos como escrever um algoritmo constituído de vários módulos e como estes módulos trabalham em conjunto para resolver um determinado problema algorítmico.

18.1 O Quê e Por Quê?

Um **módulo** nada mais é do que um grupo de comandos que constitui um trecho de algoritmo com uma função bem definida e o mais independente possível das demais partes do algoritmo. Cada módulo, durante a execução do algoritmo, realiza uma tarefa específica da solução do problema e, para tal, pode contar com o auxílio de outros módulos do algoritmo. Desta forma, a execução de um algoritmo contendo vários módulos pode ser vista como um processo cooperativo.

A construção de algoritmos compostos por módulos, ou seja, a construção de algoritmos através de **modularização** possui uma série de vantagens:

- Torna o algoritmo mais fácil de escrever. O desenvolvedor pode focalizar pequenas partes de um problema complicado e escrever a solução para estas partes, uma de cada vez, ao invés de tentar resolver o problema como um todo de uma só vez.
- Torna o algoritmo mais fácil de ler. O fato do algoritmo estar dividido em módulos permite que alguém, que não seja o seu autor, possa entender o algoritmo mais rapidamente por tentar entender os seus módulos separadamente, pois como cada módulo é menor e mais simples do que o algoritmo monolítico correspondente, entender cada um deles separadamente é menos complicado do que tentar entender o algoritmo como um todo de uma só vez.
- Eleva o nível de abstração. É possível entender o que um algoritmo faz por saber apenas o que os seus módulos fazem, sem que haja a necessidade de entender os detalhes internos aos módulos. Além disso, se os detalhes nos interessam, sabemos exatamente onde examiná-los.
- Economia de tempo, espaço e esforço. Freqüentemente, necessitamos executar uma mesma tarefa em vários lugares de um mesmo algoritmo. Uma vez que um módulo foi escrito, ele pode, como veremos mais adiante, ser "chamado" quantas vezes quisermos e de

onde quisermos no algoritmo, evitando que escrevamos a mesma tarefa mais de uma vez no algoritmo, o que nos poupará tempo, espaço e esforço.

• Estende a linguagem. Uma vez que um módulo foi criado, podemos utilizá-lo em outros algoritmos sem que eles sejam modificados, da mesma forma que usamos os operadores leia e escreva em nossos algoritmos.

A maneira mais intuitiva de proceder à modularização de problemas é realizada através da definição de um módulo principal, que organiza e coordena o trabalho dos demais módulos, e de módulos específicos para cada uma das subtarefas do algoritmo. O módulo principal solicita a execução dos vários módulos em uma dada ordem, os quais, antes de iniciar a execução, recebem dados do módulo principal e, ao final da execução, devolvem o resultado de suas computações.

18.2 Componentes de um módulo

Os módulos que estudaremos daqui em diante possuem dois componentes: corpo e interface. O **corpo** de um módulo é o grupo de comandos que compõe o trecho de algoritmo correspondente ao módulo. Já a **interface** de um módulo pode ser vista como a descrição dos dados de entrada e de saída do módulo. O conhecimento da interface de um módulo é tudo o que é necessário para a utilização correta do módulo em um algoritmo.

A interface de um módulo é definida em termos de parâmetros. Um **parâmetro** é um tipo especial de variável utilizado pelos módulos para receber ou comunicar valores de dados a outras partes do algoritmo. Existem três categorias de parâmetros:

- parâmetros de entrada, que permitem que valores sejam passados *para* um módulo a partir do algoritmo que solicitou sua execução;
- parâmetros de saída, que permitem que valores sejam passados do módulo para o algoritmo que solicitou sua execução; e
- parâmetros de entrada e saída, que permitem tanto a passagem de valores *para* o módulo quanto a passagem de valores *do* módulo para o algoritmo que solicitou sua execução.

Quando criamos um módulo, especificamos o número e os tipos das variáveis correspondentes aos parâmetros que ele necessita, isto determina a interface do módulo. Qualquer algoritmo que use um módulo deve utilizar os parâmetros que são especificados na interface do módulo para se comunicar com ele.

18.3 Funções e Procedimentos

Em Portugol, temos duas formas de definir um módulo:

- função: uma função é um módulo que produz um único valor de saída. Ela pode ser vista como uma expressão que é avaliada para um único valor, sua saída, assim como uma função em Matemática.
- **procedimento**: um procedimento é um tipo de módulo usado para várias tarefas, não produzindo valores de saída.

As diferenças entre as definições de função e procedimento permitem determinar se um módulo para uma dada tarefa deve ser implementado como uma função ou procedimento. Nas definições acima, estamos considerando que a produção de um valor de saída por uma função é diferente da utilização de parâmetros de saída ou de entrada e saída. Veremos mais adiante que os parâmetros de saída e de entrada e saída modificam o valor de uma variável do algoritmo que a chamou, diferentemente do valor de saída produzido por uma função que será um valor a ser usado em uma atribuição ou envolvido em alguma expressão.

Como exemplo da diferenciação do uso de funções ou procedimentos, considere, por exemplo, que um módulo para determinar o menor de dois números é necessário. Neste caso, o módulo deve ser implementado como uma função, pois ele vai produzir um valor de saída. Por outro lado, se um módulo para determinar o maior e o menor valor de uma seqüência de números é requerido, ele deverá produzir seus resultados via os parâmetros de saída e será implementado como um procedimento, pois ele vai produzir dois valores de saída.

A fim de escrevermos uma função ou procedimento, precisamos construir as seguintes partes: interface e corpo. Como dito antes, a interface é uma descrição dos parâmetros do módulo, enquanto corpo é a seqüência de instruções do módulo. A interface de uma função tem a seguinte forma geral:

<u>funcao</u> <nome> (de parâmetros formais>) :<tipo de retorno>

onde

- nome é um identificador único que representa o nome da função;
- lista de parâmetros formais é uma lista dos parâmetros da função;
- tipo de retorno é o tipo do valor de retorno da função.

Por exemplo:

funcao quadrado (real r): real

Logo após a descrição da *interface* podemos descrever o corpo do algoritmo. Para delimitar os comandos que fazem parte da função, utilizamos <u>fimfunção</u>.

O corpo de uma função é uma seqüência de comandos que compõe a função e que sempre finaliza com um comando especial denominado **comando de retorno**. O comando de retorno é da seguinte forma

retorne <valor de retorno>

onde valor de retorno é o valor de saída produzido pela função. Por exemplo:

retorne x

Vejamos um exemplo de uma função. Suponha que desejemos construir uma função para calcular o quadrado de um número. O número deve ser passado para a função, que calculará o seu quadrado e o devolverá para o algoritmo que a solicitou. Vamos denominar esta função de quadrado, como mostrado a seguir:

A interface de um procedimento tem a seguinte forma geral:

```
procedimento <nome> (de parâmetros formais>)
```

onde

- nome é um identificador único que representa o nome do procedimento;
- lista de parâmetros formais é uma lista dos parâmetros do procedimento.

Por exemplo,

```
procedimento ler\_n\'umero (\underline{var} val : \underline{real})
```

O corpo de um procedimento é uma seqüência de comandos que não possui comando de retorno, pois apenas funções possuem tal tipo de comando. Para delimitar os comandos que fazem parte do procedimento, utilizamos fimprocedimento.

Vejamos um exemplo de um procedimento. Suponha que desejemos construir um procedimento para ler um número e passar o número lido para o algoritmo que solicitou a execução do algoritmo através de um parâmetro de saída. Denominemos este procedimento de $ler_número$, como mostrado a seguir:

```
// procedimento para ler um número procedimento ler\_número (var val : real) inicio

// Solicita a entrada do número escreva ("Entre com um número:" )

leia(val)

fimprocedimento
```

Aqui, val é o parâmetro de saída que conterá o valor de entrada que será passado para o algoritmo que solicitar a execução do procedimento $ler_n\'umero$. A palavra-chave \underline{var} , que antecede o nome da variável na lista de parâmetros formais do procedimento, é utilizada para definir val como parâmetro de saída ou entrada e saída.

18.4 Chamando Funções e Procedimentos

Funções e procedimentos não são diferentes apenas na forma como são implementados, mas também na forma como a solicitação da execução deles, ou simplesmente **chamada**, deve ser realizada. A chamada de uma função é usada como um valor constante que deve ser atribuído a uma variável ou como parte de uma expressão, enquanto a chamada de um procedimento é realizada como um comando a parte.

Como exemplo, considere um algoritmo para ler um número e exibir o seu quadrado. Este algoritmo deve utilizar o procedimento ler_número e a função quadrado, vistos antes, para ler o número e obter o seu quadrado, respectivamente. O algoritmo segue abaixo:

```
\begin{tabular}{ll} // & algoritmo para calcular e exibir o quadrado de um número dado como entrada algoritmo "calcula_quadrado" $$ var $$ // declaração de variáveis $$ num, $x: real $$ $$ $$ inicio $$ // lê um número $$ ler_número(num) $$ // calcula o quadrado do número lido $$ $x \leftarrow quadrado(num) $$ // escreve o quadrado $$ escreva ("O quadrado do número é: ", $x$) $$ fimalgoritmo $$
```

Note a diferença da chamada do procedimento $ler_n\'umero$ para a chamada da função quadrado. Na chamada do procedimento, temos uma instrução por si só. Por outro lado, a chamada da função ocupa o lugar de um valor ou expressão em uma instrução de atribuição. Isto porque a chamada

quadrado(num)

é substituída pelo valor de retorno da função.

Tanto na chamada do procedimento $ler_n\'umero$ quanto na chamada da função quadrado, temos um parâmetro: a variável num. Na chamada do procedimento $ler_n\'umero$, num é um parâmetro de saída, como definido na interface do procedimento, e, portanto, após a execução do procedimento, num conterá o valor lido dentro do procedimento. Já na chamada da função quadrado, num é um parâmetro de entrada, como definido na interface da função, e, assim sendo, o valor de num é passado para a função.

A variável *num* é denominada **parâmetro real**. Um parâmetro real especifica um valor passado para o módulo pelo algoritmo que o chamou ou do módulo para o algoritmo que o chamou. Os parâmetros formais são aqueles da declaração do módulo. A lista de parâmetros reais deve concordar em número, ordem e tipo com a lista de parâmetros formais.

18.5 Passagem de Parâmetros

Os valores dos parâmetros reais de entrada são passados por um mecanismo denominado **cópia**, enquanto os valores dos parâmetros reais de saída e entrada e saída são passados por um mecanismo denominado **referência**.

O mecanismo de passagem por cópia funciona da seguinte forma. O valor do parâmetro real (uma constante ou o valor de uma variável ou expressão) de entrada é atribuído ao parâmetro formal quando da chamada do procedimento/função. Por exemplo, na chamada

$$x \leftarrow quadrado(num)$$

o valor da variável num é atribuído ao parâmetro formal r da função quadrado.

No mecanismo de passagem por referência, quando da chamada do procedimento/função, o parâmetro formal passa a compartilhar a mesma área de armazenamento de parâmetro real, assim, qualquer alteração no valor do parâmetro formal feita pelo procedimento/função acarretará uma modificação no parâmetro real quando do término do procedimento/função. Sendo assim, quando a chamada

é executada, a variável real num e a variável formal val (que está precedida da palavra chave \underline{ref}) compartilham uma mesma área de armazenamento, assim, num e val contêm o mesmo valor. Quando é feita a leitura do dado e armazenada em val, esta atualização afetará o valor de num. Ao término do procedimento a variável num conterá o valor atualizado.

Devemos observar que os parâmetros reais de saída e de entrada e saída devem *obrigatoria-mente* ser variáveis, uma vez que não faz sentido modificar o valor de uma constante ou de uma expressão.

18.6 Escopo de Dados e Código

O **escopo** de um módulo (ou variável) de um algoritmo é a parte ou partes do algoritmo em que o módulo (ou variável) pode ser referenciado. Quando iniciamos o estudo de modularização é natural nos perguntarmos qual é o escopo de um dado módulo e das constantes ou variáveis nele presentes. Em particular, o escopo de um módulo determina quais são os demais módulos do algoritmo que podem chamar-lhe e quais ele pode chamar.

Os módulos de um algoritmo são organizados por níveis. No primeiro nível, temos apenas o algoritmo principal. Aqueles módulos que devem ser acessados pelo algoritmo principal devem ser escritos dentro dele e, nesta condição, são ditos pertencerem ao segundo nível. Os módulos escritos dentro de módulos de segundo nível são ditos módulos de terceiro nível. E assim sucessivamente. Por exemplo, veja o algoritmo 18.1.

No algoritmo 18.1, desejávamos que a função quadrado e o procedimento ler_numero fossem chamados pelo módulo principal e, por isso, escrevemos tais módulos dentro do módulo principal, no segundo nível da hierarquia modular do algoritmo.

A regra para determinar o escopo de um módulo é bastante simples: um módulo X escrito dentro de um módulo A qualquer pode ser acessado apenas pelo módulo A ou por qualquer módulo escrito dentro de A ou descendente (direto ou não) de algum módulo dentro de A.

Como exemplo, considere um algoritmo no qual o módulo principal contém outros quatro módulos, S1, S2, F1, F2. Por sua vez, S1 contém mais dois módulos, S3 e F3; e F2 contém os módulos S4 e F4. De acordo com as regras de escopo descritas anteriormente, o módulo F3 só pode ser chamado por S1 e S3, enquanto o módulo F1 pode ser acessado por todos os módulos.

Variáveis podem ser locais ou globais. Uma variável (constante) é dita **local** a um módulo se ela é declarada naquele módulo. Por exemplo, a variável x da função quadrado é uma variável local a esta função. Uma variável é dita **global** a um módulo quando ela não está declarada

no módulo, mas pode ser referenciada a partir dele. Neste curso, consideraremos que variáveis são sempre locais, isto é, nenhum módulo poderá referenciar uma variável declarada em outro módulo.

18.7 Exercícios propostos

1. Para se determinar o número de lâmpadas necessárias para cada cômodo de uma residência, existem normas que fornecem o mínimo de potência de iluminação exigida por metro quadrado (m²) conforme a utilização deste cômodo. Suponha que só serão usadas lâmpadas de 60W. Seja a seguinte tabela:

Utilização	Classe	$Potência/m^2$
quarto	1	15
sala de TV	1	15
salas	2	18
cozinha	2	18
varandas	2	18
escritório	3	20
banheiro	3	20

- a) Faça um módulo (função ou um procedimento) que recebe a classe de iluminação de um cômodo e suas duas dimensões (largura e comprimento) e devolve o número de lâmpadas necessárias para o cômodo.
- b) Faça um algoritmo que leia um número indeterminado de informações, contendo cada uma o nome de um cômodo, sua classe de iluminação e as suas duas dimensões e, com base no módulo anterior, imprima a área de cada cômodo, sua potência de iluminação e o número total de lâmpadas necessárias. Além disso, seu algoritmo deve calcular o total de lâmpadas necessárias e a potência total para a residência.
- 2. A comissão organizadora de um rallye automobilístico decidiu apurar os resultados da competição através de um processamento eletrônico. Um dos programas necessários para a classificação das equipes é o que emite uma listagem geral do desempenho das equipes, atribuindo pontos segundo determinadas normas.
 - a) Escreva um módulo (função ou procedimento) que calcula os pontos de cada equipe em cada uma das etapas do rallye, seguindo o seguinte critério. Seja Δ o valor absoluto da diferença entre o tempo-padrão e o tempo despendido pela equipe numa etapa (fornecidos como parâmetros):

$\Delta < 3 \text{ minutos}$	atribuir 100 pontos à etapa
	atribuir 80 pontos à etapa
$\Delta > 5$	atribuir $80 - \frac{\Delta - 5}{5}$ pontos à etapa

- b) Faça um algoritmo que leia os tempos-padrão (em minutos) para as três etapas da competição e o número de equipes participantes. Para cada equipe, leia seu número de inscrição e os tempos (em minutos) despendidos para cumprir cada um das três etapas da competição, e, utilizando o módulo anterior, calcule: os pontos obtidos por cada equipe em cada etapa, a soma total de pontos por equipe e a equipe vencedora.
- 3. Faça uma função quantosdias que recebe o dia, o mês e o ano de uma data e retorna um

valor que contém o número de dias do ano até a data fornecida. Em seguida, faça um algoritmo que recebe n pares de datas, onde cada par deve ser fornecido no formato dia1, $m\hat{e}s1$, ano1, dia2, $m\hat{e}s2$, ano2, verifica se as datas estão corretas e mostra a diferença, em dias, entre essas duas datas. Utilize a função quantos dias.

- 4. Escreva uma função que recebe dois números inteiros positivos e determina o produto dos mesmos, utilizando o seguinte método de multiplicação:
 - (i) dividir, sucessivamente, o primeiro número por 2, até obter 1 como quociente;
 - (ii) paralelamente, dobrar, sucessivamente, o segundo número;
 - (iii) somar os números da segunda coluna que tenham um número ímpar na primeira coluna. O total obtido é o produto procurado. Exemplo para 9×6 :

Em seguida, escreva um programa que leia n pares de números e calcule os respectivos produtos, utilizando a função anterior.

5. Um número a é dito ser permutação de um número b se os dígitos de a formam uma permutação dos dígitos de b. Exemplo:

5412434 é uma permutação de 4321445, mas não é uma permutação de 4312455.

Observação: considere que o dígito 0 (zero) não aparece nos números.

- a) Faça uma função contadígitos que, dados um inteiro n e um inteiro d, $0 < d \le 9$, devolve quantas vezes o dígito d aparece em n;
- b) Utilizando a função do item anterior, faça um algoritmo que leia dois números a e b e responda se a é permutação de b.
- 6. Um número b é dito ser sufixo de um número a se o número formado pelos últimos dígitos de a são iguais a b. Exemplo:

a	b		
567890	890	\rightarrow	sufixo
1234	1234	\rightarrow	sufixo
2457	245	\rightarrow	não é sufixo
457	2457	\rightarrow	não é sufixo

- a) Construa uma função sufixo que dados dois números inteiros a e b verifica se b é um sufixo de a.
- b) Utilizando a função do item anterior, escreva um algoritmo que leia dois números inteiros a e b e verifica se o menor deles é subseqüência do outro. Exemplo:

a	b		
56789	00 678	\rightarrow	b é subseqüência de a
1234	2212345	\rightarrow	a é subseqüência de b
235	236	\rightarrow	Um não é subseqüência do outro

- 7. Escreva uma função que dados um vetor real A com n elementos e um vetor B com m elementos, ambos representando conjuntos (estes vetores devem ser representados por variáveis globais no Portugol do VisuAlg), verifica se A está contido em B ($A \subset B$). Em seguida, utilizando a função anterior, verifique se dois conjuntos são iguais (A = B se e somente se $A \subset B$ e $B \subset A$).
- 8. Escreva uma função que troca o conteúdo de duas variáveis. Em seguida, escreva uma função que recebe dois inteiros, i e j, e, utilizando o acesso a uma matriz real $A_{m\times n}$ representada como uma variável global, troca a linha i pela linha j.
- 9. Dizemos que uma matriz $A_{n\times n}$ é um quadrado latino de ordem n se em cada linha e em cada coluna aparecem todos os inteiros $1, 2, 3, \ldots, n$ (ou seja, cada linha e coluna é permutação dos inteiros $1, 2, \ldots, n$). Exemplo:

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
4 & 1 & 2 & 3 \\
3 & 4 & 1 & 2
\end{array}\right)$$

A matriz acima é um quadrado latino de ordem 4. Considerando que A é o nome de uma variável global que representa uma matriz inteira $n \times n$, pede-se:

- a) Escreva uma função que recebe um índice i e verifica se na linha i de A, ocorrem todos os inteiros de 1 a n.
- b) Escreva uma função que recebe um índice j e verifica se na coluna j de A, ocorrem todos os inteiros de 1 a n.
- c) Utilizando as funções acima, verifique se uma dada matriz inteira $A_{n\times n}$ é um quadrado latino de ordem n.
- 10. Um conjunto pode ser representado por um vetor da seguinte forma: V[0] é o tamanho do conjunto; $V[1], V[2], \ldots$ são os elementos do conjunto (sem repetições).
 - a) Faça uma função intersecção que dados dois conjuntos de números inteiros A e B, constrói um terceiro conjunto C que é a intersecção de A e B. Lembre-se de que em C[0] a sua função deve colocar o tamanho da intersecção.
 - b) Faça um algoritmo que leia um inteiro $n \ge 2$ e uma seqüência de n conjuntos de números inteiros (cada um com no máximo 100 elementos) e construa e imprima o vetor INTER que representa a intersecção dos n conjuntos.

Não é preciso ler todos os conjuntos de uma só vez. Você pode ler os dois primeiros conjuntos e calcular a primeira intersecção. Depois, leia o próximo conjunto e calcule uma nova intersecção entre esse conjunto lido e o conjunto da intersecção anterior, e assim por diante.

Bibliografia

O texto deste capítulo foi elaborado a partir dos livros abaixo relacionados:

- 1. Farrer, H. et. al. Algoritmos Estruturados. Editora Guanabara, 1989.
- 2. Shackelford, R.L. Introduction to Computing and Listings. Addison-Wesley Longman, Inc,

1998.

```
algoritmo "Calcula_Quadrado"
2
      // módulo para cálculo do quadrado de um número
3
      funcao quadrado (r : real) : real
4
      var
5
        // declaração de variáveis
        x : real
      inicio
8
        // calcula o quadrado
        x <- r * r
10
        // passa para o algoritmo chamador o valor obtido
11
        retorne x
12
      fimfuncao
13
14
      // módulo para ler um número
15
      procedimento ler_numero (var val : real)
16
      inicio
17
      // solicita um número ao usuário
        escreva ("Entre com um número: ")
19
        leia (val)
20
      fimprocedimento
21
22
      // declaração de constantes e variáveis
23
    var
24
      num, x : real
25
26
    inicio
27
28
      // lê um número
29
      ler_numero(num)
30
31
      // calcula o quadrado
32
      x <- quadrado(num)</pre>
33
34
      // escreve o quadrado
35
      escreva ("O quadrado do número é: ", x)
36
    fimalgoritmo
37
```

Algoritmo 18.1: Cálculo do Quadrado de um Número.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] S. Gandz. The origin of the term "algebra". The American Mathematical Monthly, 33(9):437–440, 1926. 1.1
- [2] D. J. Struik. A Concise History of Mathematics. Dover Publications, Inc., fourth edition, 1987. 1.1