ASSAY FOR THE SECRETED ALKALINE PHOSPHATASE (SEAP)

- 1> From the 48-hour cotransfected cell cultures, remove 250 µl of each culture supernatant and transfer into Eppendorf tubes. To be on the safe side, maintain the cultures at 37°C until satisfactory data have been obtained.
- 2> Heat samples at 65°C for 5 minutes to inactivate endogenous phosphatases (Seap is stable at 65°C). homoarginère also mactivate endigeneurs prosphates
- 3> Centrifuge for 2 minutes at room temperature in a Microfuge.
- Transfer Surpernatants to new Eppendorf tubes. At this stage, samples may be stored at -20°C indefinately.
- In an Eppendorf tube, add 100 µl of 2 x Seap buffer to 100 µl of sample. As a Zero standard make up a mixture in triplicate substituting sample with water. Mix on a Vortex.
- Transfer the contents of each tube to a well of a flat bottom microtiterplate. Avoid creating air bubbles.
- 7> Incubate plate at 37°C for 10 15 minutes.
- During this incubation make up the p-nitrophenylphosphate solution (Seap enzyme substrate) and prewarm it at 37°C for 5 minutes.
- Add 20 pl of the substrate solution to each well, preferably using a multipipetter.
- Using an ELISA microplate reader with an automatic shaker and incubator unit, measure the OD at (405)nm at regular intervals (e.g. every 5 minutes) over 60 minutes while the plate is being incubated at 37°C. (Program a 5seconde shaking before any reading).
- Calculate the levels of Seap activity at a point on the curve when the changes in OD are linear with respect to time (e.g. at 15 - 30 minutes).

Buffer and Chemicals

V 2 x Seap Buffer (for 50 ml)

Amount Stock Final Conc. 10.51 g* diethanolamine (100% sol.) 2 M 50 µl 1 M MgCl₂ 1 mM L-homoarginine 226 mg 20 mM

(*) Weigh exactly 10.51 g of diethanolamine in a tared beacker. Add distilled water up to 45 ml. Stir to homógenize. Add 50 µl of 1 M MgC12 while stirring. In a separate 15-ml conical tube, dissolve 226 mg of Lhomoarginine in 2-3 ml of distilled water. Add the solution to diethanolamine/MgCl2 solution under constant stirring. Bring up to 50 ml.

120 mM p-nitrophenylphosphate is made in 1 x Seap buffer (fresh).

Amount G $(mg) = (120 \text{ mM} \times 371.12 \times \text{vol})/1000$ Where: vol = $[(# \text{ wells } \times 20 \text{ µl}) + 100 \text{ µl extra}]/(2000)$ * Make the solution in 1 x Seap buffer (make fresh)

for 51 wells of the microplate (48 samples + 3 blanks), dissolve 50 mg p-nitrophenylphosphate in 1.120 ml of 1 x Seap buffer. >> boom! stock + 600ml Hap

Chemicals

Name	Cat No	Storage
Diethanolamine (Fluka)	31589	-Room T
L-homoarginine hydrochloride (Sigma)	H-1007	4°C
p-nitrophenylphosphate* (Fluka)	71768	4°C

(*) Also known as 4-nitrophenylphosphate disodium salt hexahydrate

0,218115

Exhibit B(1) Page 1

SEAP ASSAY SHEET

I - Assay Title:

* Assay #: 72

Date #:

Investigator's Name: Wen

*Test Compounds: Maly & Maly 3Na+

transfected at 1

*Concentrations:

II - DNA Transfection: Ratio (2:1) HIV/SEAP:pcTAT

*HIV/Seap: 0.4 µg/well $\times 40 = 16.0 \text{ Mg} === \Rightarrow \text{From } 0.376 \% \text{stock: } 42.55 \%$

*PCTAT: 0.2 µg/well $x40 = 8.0 \text{ Mg} === \Rightarrow \text{From } 0.639 \text{ stock: } 12.52 \text{ }$

*Total DNA (μg) = $24 \mu g$

* Vol. Ceil Fection = Total DNA x 6 = 144>

* Vol. 150 mM NaCl = Ceriferia (µ1) / 0.6 = >40

* Transfection cocktail (µl)/ well:

2x0+2x0+144+2.55+12.52 = 16-981 40

III. Linbro® 24 flat bottom well of 17 mm

Preparation of Drug conc.

2430

<u> </u>		(1	OTE)			
	С		5			
	CT	, , , , , , , , , , , , , , , , , , , ,			paet	
	C	DMS				Promet payor y
	<7	> MS		27	Sail	And the second s

MAS. L

	I A	· .	and the second	***************************************	
				#3	
are seems to					
				D-	

40: 78 60: 97 60: 40

REPEATED-READS #: 0025

07:11:06.56 PM

TABLE OF ABSORBANCE VALUES

FILE: FILE 3 TITLE: FILE 3 REPORT

8 11 12 10 3 1 . 0#000-0#002 0#004-0.217-0.215-0/216 0.064 0.080 0 0.126 0.133 0.146 A 0.078 0.124 0.153 0.155 0.153 0.207 -0.210-0.214-0.205-0.215-0.215-b .213 70.151 0.170 (C) 0.171 0.1 0.016 0.060 0.044-0.214-0.214 0.105 0.089 0.13 0.070 0-048 9-641 (CT)0.172 0 0.689 0.649 0.663 0.756-0 .208-0.210 10.126 0.122 0.120 0.185 C DMSO 209 0.093 0.067 0.087 0.101 0.080 0.100 0.094 0.100 0.081 0.110-0.212-0. 0.680 0.711 0.680 0.614,-0.211-0.213 0.830 0.776 0.832 0.649 0.587 0.501 c NacH 0.064 0.067 0.080 0.079-0.203-0.211 0.089 0.114 0.100 0.114 0.118 0.098) 0.110 0.101 10.784 0.708 0.643 0.684-0.209-0.205 0.681 0.720 0.609 0.481 0.437 0.437 0.670 0.452 0.705 Ref : DMSO

Mal.4 - DMSO Ref : DMSO

Mal.4 - NaOH

% inhibition

10 Ng/ml : 84

10 Ng/ml : 97

10 Ng/ml : 10

40 Ng/ml : 23

60 Ng/ml : 46

SEAP assay of NDGA derivatives

- 1. Detach CoS7 cells from Jour 90 mm culture plates by 0.05% Trypsin in CMF-PBS, 1mM EGTA) 0.5 ml after 2 times CMF-PBS Wash.
- 2. Inactivate trypsin by adding 5ml complete medium (10% Fetal Bovine Serium, antibiotics) to each plate.
- 3 Suspend the Cells by gentle pipetting. Court by Hemocytometer 160 × 10 Cells/cm² is the cell-density.
- 4. Seed & Soul cell suspension into 10 I Linbro 24-wells culture plates which pre coated with 01% gelatin & contained 0.3 ml complete medium each well. (1.3×105 cells/well) (18:00)
- 5. Transfect the cells lafter 26h incubation (37°C.95% Air. 5% coz) by Adding 30 ul ppt (0.6 ug DNA/Well) to each well that centaining 0.3 ml fresh complete medium. The control wells accept same ppt without DNA. (1992) 20:00)
 - Ca-pou post preparation:

 a. for control wells: Cat soln (0.25M Callz.c.c25M HEPES, pH 7.1) ind

 drop into Inil bubbling Pour Soln (0.28M Nall, 0.025M

 HEPES, and M Nathou, pH 7.1).
 - b. for transfect wells:

 Three 2-ml tubescentaining per 14/15EAP 18,49, per 14/4 DVAs

 Les 675 ul an With DVAs

 (pBC12/HIV/SEAP 18,49, pBC12/CMV/t2 9,49) dropwise with bubbling.

 Then Six 30 min before use.
- 6. Inurbate at 37°c for 18h.

Map of plates:

I			II.
	C Mal.4 JOUM) CT Mal.4 YOUM)	C #1 20MM) CM #2 20MM CT #1 20MM CT #2 20MM	C #3 2011M C #5 2011M C #4 2011M 2011M 2011M 2011M CT #4 2011M CT #6 2011M CT #4 2011M 2011M 2011M 2011M 2011M
A	#Mal.4		B #1
;	C A COMM C	WUMM (C BOUM)	COUM COUM COUM
- :	C Mal: 43 mm C	3021M (C 10021M)	(C) 3 MM (C) 100 MM
	CT CUM CT	WALL CT GRAM	(CT OMM) (CT COMM) (CT GOMM)
•	CT Bum (CT	30MM (CT 150MM)	(CT 3 MM) (CT 30 MM) (CT 100 MM)
C	#2		D #3
	(C OMN)	10MM (60MM)	COUM COUM COUM
) :	(3MM) (C	30MM) C 100MM	3 mm C 30 mm C 100 mm
: :	CT CMM CT	10 MM CT GOUN	CT QUM CT 10MM CT 60MM
:	CT 3MM CT	30 ms CT /oung	CT 3 MM CT 30 MM CT 100 MM)
E	#4		7 #5
ŧ	COUNT	10MM (C GOMM)	c oun c lound c 60 mgs
;	(C BMM) C	BULLM) (C TOCLUM)	C 3 MM) C 30 MM C (60 MM)
	(CT Oum) (CT	10 um CT 60 um	CT OMM CT 10 MM CT 60 MM
•	CT 3 MM CT	BULLY (CT 100 MM)	(CT 3 MM CT 30 MM CT 100 MM
G	7 #6		H #2
	C OMM C	10mm C 60mm	(c- oung (10mg) (60mg)
!	C Birray C	BOULY (C 100 MM)	C 3 My C BOMY C 100M
	CT OUM (CT	10 mg (CT 60 mg)	CT DUM (CT 10MM) (CT 60MM)
	CT 30MM CT	30, m) (C7 100, m)	CT 3 mm CT 100 mm

C: Control wells (without PNA) cT: Transfect wells (with DNA)

Remove growth medium, add or 500 w medium containing test compounds. The final concentration of DMSO is 0.3% (DMSO is 0.3%)

Stock: Mono Me: 10.53 Mul USE 3 M in 1 ml medium = 100 MM

DiMe: 11.0 mg

Tri Me: 11.49 mg/ll

tetra Me: 11.93 mg/ll

1,

For lower concentration, dilute the stock by DMSD, & use 3ul in I'm medium to keep the final DMSD concentration is 0.3%. DMSD stock was mixed into medium just piror to use by vortexing.

- 9 Insubate for 48h. Remove 2000 medium from each well. for SEAP assay. (1990).
- 10 The medium used in SEAP assert is low for each sample.

PERSONNERS AS OCIS

05:50:03.28 PM

TABLE OF ABSORBANCE VALUES

68.2

FILE S TITLE FILE 3 REPORT

A 4 5 10 11 12 I -0#024 0#005 0#020-0.217-0.216-0.217 (0.011 0.012 0.013) 0.004}6.00540.002 0.612 0.004 0.007 $\sqrt{6.012}$ -0.008 0.012 0.012 0.020 0.008) $\sqrt{0.002}$ 0.004 0.005) 3 ∖0.003/∤0.019∳0.003. 0.000 6.00万 -0.004 0.004 0.016/0.004 0.008-0.001/0.585 0.704 0.631/ 2.646 #3 7000.0 0.530 0.411 0.416 <u>.126</u> 1.040 1.102 (0.801 0.766 0.811) 6.347 0.373 0.326 0.502 0 .428 0 .419! 09 0.793 1.086 Mak .010 0.855 0.915 €0.890 0.753 E 0.799 0.018 0.020 0.007 0.012 0.006 0.023 0.019 0.927 0.814 0.010 0.009 #2 -0.213-0.216-0.215-0.213-0.213-0.216/0.008 0.014/0.007-0.010/0.010 0.036 0,005/0.001 0.017 (1.323 1.433 (1.105 1.111) 0.292 0.26% 1508 0.018 20MM Mal. 4 % inhibition inthibition. 13 MM: 8.2 10MM : 19.2 78.0 25.3 30MM: 44.) 42.1 51.5 100 MM = 89.6 8.53 61.7

Exhibit B(3)

Page 4

107:46:07.64 PM

TABLE OF ABSORBANCE VALUES

FILE: FILE 3 TITLE: FILE 3 REPORT

1 2 3 4 5 6 7 8 9 10 11 12

terrescent and a fire date					D			
A	0#002	2-0#004	0#003-0.2	11-0.209-0,	212 0.008	0.01670	.003-0.001 .001	0.002 0.016
#	1.0.00	0.002	0.012 0.0 0.012	12,0.015 0	000 0 000 000 000 000 000 000 000 000	0.00 0.006	-,000-0,005 -0.003	.0.00 0.009 0.010
C	-{		**** #**	5 e - 3 e		•		0.374 0.357 0.366
. 1	10.385	5 1.306 • 346	(j. 025 1.0 1.062	9810.423 0	.464 11 .067	1.185: C	570 0.530	0.236 0.226
Secretary Secretary Secretary	1.288	8 1 827	30.905 1.0 0.95	05-0-330 0 7:32	31470.017	0.012	0.002 0.007	0.003 0.016
ř	~0.20	2-0.210	~0.210~0.2	10-0.209-0	.20940.006	0.01050 0.08	0.009 0.002 0.006	0.004 0.016
₽ 5	B (1.23)	9 1 354 1. 29 7	(1.209 1.2	39}0.4200 0.38	.350 1.12	2 1.205	0.921 0.933 09≥ 7	0.208 0.218
- -	1,38	7 1.279	20.682 0.5 0.637	in the state of th	· Photo repaired the same		• •	0.085 0.114
		, 	2_	, 2	_	-		The state of the s

#3 % inhibition # 2 % inhibition 6 inhibition #4 % inhibition 3 mm: 2.8 3 mm: - 3.3(0) 3M4 : 3.7 3MM : -1.3(0) 10 4: >1.9 108MM: 15.8 (0 ": 5.7 10MM: 19.8 30 11: >9.4 30 mm: 52.5 30 mM = 60.9 30 1: 52.8 60 4 : 62.8 60 MM : 69.3 60MM: 82.4 60 , : 20.8 100 mm: 81.0 100 11 : 16.3 (00 MM : 92.2 r :, : 86.0

NEPERTED-READS #1 0025

0911

09:06:41,21 PM

TABLE OF ABSORBANCE VALUES

FILE: FILE 3 TITLE: FILE 3 REPORT

1 2 3 4 5 6 7 8 9 10 11 12

A 0#000-0#008 0#010-0.210-0.208-0.210-0.209-0.209-0.210-0.210-0.208-0.209-0.209

B -0.207-0.208-0.209-0.208-0.208-0.209-0.209-0.208-0.209-0.209-0.209-0.209-0.2011

C (0.012 0.014) (0.012 0.022) (0.017 0.020) (0.011 0.014) (0.019 0.015) (0.013) (0.013) (0.014) (0.019 0.015) (0.013) (0.013) (0.014) (0.014) (0.019 0.015) (0.013) (0.013) (0.015) (0.014) (0.014) (0.015) (0.015) (0.017) (0

G -0.205-0.208-0.208-0.206-0.199-0.208-0.206-0.207-0.207-0.207-0.209-0.210

H -0.207-0.207-0.204-0.206-0.206-0.204-0.189-0.207-0.207-0.206-0.206-0.210

#6 % inhibition

My: -1.5 3 M/4: -15(0)

Har (OMM: 41.0

30 MM = 62.2

60MM = 78.2

(00mm: 84.9

#7 %inhibition

BUM: 26.1

(0MM: 56.0

30MM: 26.4

60 MM : 29.5

100 MM: 87.9

Exhibit B(3) Page 6

10:33:14.31 PM

TABLE OF ABSORBANCE VALUES

FILE: FILE 3 TITLE: FILE 3 REPORT

1 2 3 4 5 6 7 8 9 10 11 12

A -0#005-0#012 0#018-0.209-0.210-0.211-0.210-0.209-0.208-0.209-0.210-0.211

E -0.208-0.209-0.2

0.028 0.031 0.037 0.037 0.040 0.041 0.206-0.207-0.209-0.208-0.208-0.209

D (0.015 0.028 0.036 0.028)0.047 0.035 0.208-0.210-0.208-0.208-0.208-0.209

E (1.500 1.394)0.701 0.680 0.318 0.291 0.207-0.207-0.208-0.207-0.209-0.209

F [1.131 1.033]0.385 0.417\0.222 0.185]0.207-0.208-0.207-0.206-0.208-0.212

G -0.206-0.206-0.208-0.207-0.206-0.208-0.206-0.205-0.207-0.207-0.208-0.208

н -0.207-0.204-0.209-0.208-0.207-0.

3 mm : 25. Z

10 my: \$3538

30MM: 24.0

60 MM: 81.4

(00 MM: 88.5

20 Inhibition of NOGA Derivatives on SEAP assay.

	Mal.4	#1	#2	#3	#4	#5	#6	#7
3 244	8.2	0 (-33)	2.8	3.7	0-1.3	25.2	0-1.5	26.1
10 MM	19.2	5.7	21.9	15.8	19.8	53.8	40.1	56.0
HOUM	44.7	38-68	29.4	52.5	60.9	74.0	67.7	76.4
60 MM	80.0	5-8	67.8	69.3	82.4	81.4	78.2	79.5
						1	84.9	87.9

Figure B(1)

Inhibition of NDGA derivatives on SEAP assay

Figure B(2)

