5005 Advanced Probability Theory

Q1

(a)

Suppose F_n , F are all distribution functions, $F_n(x)$ converge weakly to F, and F is a continuous function. Show that

$$\sup |F_n(x) - F(x)| \to 0$$

(b)

Show that X_n converge to X in probability if and only if

$$E[\frac{|X_n-X|}{1+|X_n-X|}]\to 0$$

(c)

Let $A_1,...,A_n$ are collections of sets that are independent to each other. Suppose each A_k is a π -system, prove that $\sigma(A_1),...,\sigma(A_n)$ are independent to each other.

(d)

Let $X_1,...X_n$ be any random variables, $S_n=\sum_{k=1}^n X_k$, Prove that $\frac{S_n}{n}$ converge to 0 in probability implies that $\frac{X_n}{n}$ converge to 0 in probability.

Q2

Let $X_1,...,X_n$ be independent variables such that $0 \leq X_i \leq 1$ and $S_n = \sum_{k=1}^n X_k$. Show that

$$rac{S_n}{ES_n}
ightarrow 1$$

almost surely.

Q3

Let $X_1,...,X_n$ be i.i.d. random variables such that $Ee^{tX_1}=1$ for some t. Let $S_n=\sum_{k=1}^n X_k$.

(a)

Show that $T_n = e^{tS_n}$ is a martingale with respect to $\mathcal{F}_n = \sigma(X_1,...,X_n)$

(b)

Show that $P(X_k > x \text{ for some } k) \leq e^{-tx}$

5030 Linear Model

Q1

Consider the ridge regression model with loss function

$$L(eta) = (Y - Xeta)^T(Y - Xeta) + \lambdaeta^Teta$$

(a)

Derive the estimation of ridge regression $\beta(k)$ (Show the detailed step properly).

(b)

Use the singular value decomposition of X to calculate the ridge estimator $\beta(k)$.

(c)

Let $\hat{\beta}$ be OLS estimator. Show that there exists a λ such that

$$MSE(eta(k)) \leq MSE(\hat{eta})$$

Q2

 eta_1,eta_2,eta_3 be interior angles of a triangle such that $eta_1+eta_2+eta_3=180.$

Let Y_1,Y_2,Y_3 be observations of β_1,β_2 and β_3 such that Y_i follows $N(\beta_i,\sigma^2)(\sigma^2$ unknown).

Derive a test statistic to test $\beta_0=\beta_1=\beta_3=60$ and specify your reject region under level α .