Análise Multivariada II Lista III

Breno Cauã Rodrigues da Silva

1 Análise de Variância Multivariada a 2 Fatores (MANOVA Two Way)

1.1 Introdução

Neste relatório realiza-se a análise dos dados de feijão-vagem utilizando uma análise de variância multivariada a dois fatores (MANOVA Two Way). Os fatores de interesse são:

- S: Data de semeadura (níveis 1 a 4);
- V: Variedade (níveis 1 a 3).

As variáveis dependentes são:

- y1: Precocidade do Rendimento;
- y2: Precocidade da Área Foliar Específica (SLA);
- y3: Rendimento Total;
- y4: SLA Médio.

Cada combinação de níveis de S e V possui 5 repetições, totalizando 60 observações.

1.2 Análise Exploratória de Dados

Análise exploratória foi feita por medidas de resumo - média e desvio padrão - juntamente de gráficos com o objetivo de evidenciar, caso exista, diferênças entre os fatores ainda na etapa de análise descritiva.

A Tabela 1 apresenta as medidas de resumo para cada combinação entre os fatores e, para cada uma das variáveis y_1 , y_2 , y_3 e y_4 foi calculada a média e o desvio padrão. Os valores que mais chamam atenção na Tabela 1 são os da variável y_4 , apresentando médias distantes uma das outras a depender da iteração dos fatores.

Uma visualização proposta e muito eficaz na comparação de dados como os que esstão sendo analisados é o gráfico de caixa, mais conhecido como boxplot. Tal visualização foi desenhada na Figura 1.

Tabela 1: Medidas de Resumo das Variáveis em Análise segmentadas pelos Fatores.

	y_1		y_2		y_3		y_4	
V	Média	DP	Média	DP	Média	DP	Média	DP
S1								
$\overline{V1}$	60,30	0,6041523	5,22	0,7049823	38,22	0,6260990	317,0	19,735754
V2	59,42	0,3962323	5,44	0,8142481	37,54	0,8142481	297,2	20,166804
V3	60,18	0,4969909	6,34	1,1545562	37,40	0,7516648	305,6	6,188699
S2								
$\overline{V1}$	63,52	0,3834058	5,30	0,1732051	39,14	0,2190890	279,4	8,905055
V2	60,64	0,2509980	6,64	$0,\!4159327$	38,52	0,2588436	258,0	6,123724
V3	$63,\!32$	$0,\!2774887$	5,82	$0,\!2774887$	40,08	$0,\!2949576$	290,2	7,190271
S3								
$\overline{V1}$	68,36	0,2880972	3,20	0,2000000	42,02	0,3420526	280,4	7,266361
V2	63,56	0,2509980	3,80	0,2000000	41,28	0,2774887	247,0	12,000000
V3	68,48	$0,\!2949576$	3,58	0,1643168	41,80	0,6892024	287,6	8,532292
S4								
$\overline{V1}$	69,80	0,3316625	1,28	0,1095445	47,54	0,5941380	251,6	15,126136
V2	66,32	0,6140033	1,78	0,0836660	46,24	0,3974921	225,8	13,627179
V3	70,36	1,0945319	1,32	0,3768289	47,28	0,6418723	242,4	11,148991

DP: Desvio Padrão.

Figura 1: Boxplot das Variáveis Segmentadas pelos Fatores.

1.3 Teste a interação e efeitos principais usando as quatro estatísticas de teste da MANOVA a 2 Fatores

A Tabela 2 apresenta os resultados obtidos para cada teste realizado. São apresentados os graus de liberdade, Estatística, F aproximado e o nível descritivo de cada teste.

1.4 Faça a análise descrevendo a metodologia, procedimentos e conclusão.

Para investigar se há diferenças significativas nas variáveis-resposta multivariadas entre os níveis dos fatores considerados, foi utilizada a Análise Multivariada da Variância (MANOVA). Esta técnica é apropriada quando se deseja avaliar o efeito de variáveis independentes categóricas sobre múltiplas variáveis dependentes quantitativas de forma conjunta, levando em consideração a correlação entre elas.

Neste estudo, foram considerados dois fatores principais, denominados S e V, além da interação entre eles (S:V). As variáveis-resposta foram avaliadas simultaneamente, e a hipótese nula testada para cada fator/interação foi a de que não há diferença significativa nas médias vetoriais das variáveis-resposta entre os grupos.

O modelo base da MANOVA é expresso por:

$$Y_{kri} = \mu + S_k + V_r + (S \times V)_{kr} + \varepsilon_{kri},$$

foi conduzida com base em quatro estatísticas multivariadas clássicas:

• Wilks' Lambda

Tabela 2: Análise de Variància Multivariada a 2 Fatores.

Efeito	gl	Estatística	$F \approx$	$gl_{ m num}$	$gl_{ m den}$	Valor p	Signif.
Wilks							
\overline{S}	3	0,000623	151,940	12	119,35	< 2,2e-16	***
V	3	0,065574	32,682	6	96,00	< 2,2e-16	***
S:V	6	0,135002	5,111	24	158,20	1,076e-10	***
Pillai							
\overline{S}	3	2,359400	43,280	12	141,00	< 2,2e-16	***
V	3	1,103600	14,157	8	92,00	9,032e-13	***
S:V	6	1,333800	4,002	24	192,00	2,757e-08	***
Hotellin	ng						
\overline{S}	3	146,107000	531,670	12	131,00	< 2,2e-16	***
V	3	11,670000	64,190	8	88,00	< 2,2e-16	***
S:V	6	3,501000	6,350	24	174,00	5,244e-14	***
Roy							
\overline{S}	3	140,943000	1656,080	4	47,00	< 2,2e-16	***
V	3	10,251000	121,450	4	28,00	< 2,2e-16	***
S:V	6	2,686000	41,200	6	48,00	4,496e-12	***

Para $\alpha = 0$: '***'; $\alpha = 0.001$: '**'; $\alpha = 0.01$: '*'; $\alpha = 0.05$: '.'

- Pillai's Trace
- Hotelling-Lawley Trace
- Roy's Largest Root

Esses testes avaliam a razão da variabilidade explicada pelo modelo em relação à variabilidade residual, considerando a estrutura multivariada dos dados. Para cada teste, foram avaliadas as estatísticas correspondentes, graus de liberdade, valores de F aproximados e respectivos valores-p.

A análise foi conduzida no ambiente R, com os resultados organizados em tabela e formatados com o pacote gt. A significância estatística foi constatada perante um $\alpha = 0,05$ (5%).

Com base nos resultados obtidos por todos os testes (Wilks, Pillai, Hotelling e Roy), observou-se que:

- O fator S apresentou efeito altamente significativo sobre o conjunto das variáveisresposta, com valores-p inferiores a 0.001 em todos os testes. Isso indica que as médias vetoriais diferem entre os níveis de S.
- O fator V também apresentou efeito significativo, com valores-p inferiores a 0.001 nos quatro testes, indicando diferenças entre os níveis de V sobre as variáveis-resposta.
- A interação S:V foi igualmente significativa, sugerindo que o efeito combinado dos fatores altera de forma significativa a distribuição conjunta das variáveis-resposta.

Dessa forma, há evidências estatísticas fortes de que tanto os fatores principais quanto sua interação afetam significativamente o comportamento multivariado das variáveis dependentes analisadas.

2 Análise de Componentes Principais (ACP) em Dados de Heptatlo Feminino

2.1 Primeiros Passos - Leitura, Ajuste e Visualizações Primárias

A Análise de Componentes Principais (PCA) foi utilizada com o objetivo de explorar a estrutura multivariada dos dados do heptatlo feminino. Inicialmente, foi realizada a transformação das variáveis de tempo (hurdles, run200m e run800m), uma vez que, nessas provas, menores valores indicam melhor desempenho. A transformação consistiu em subtrair os tempos originais do maior tempo registrado, mantendo a coerência de interpretação com as demais variáveis (onde valores maiores são melhores).

Em seguida, os dados foram padronizados e submetidos à PCA. A matriz de correlação revelou padrões interessantes entre as variáveis. Foi possível observar correlações positivas entre algumas variáveis atléticas como longjump, shot e javelin, indicando um possível grupo de atletas com perfil mais técnico de força e explosão. Variáveis como run800m e hurdles apresentaram correlações distintas, sugerindo que podem representar outros aspectos do desempenho físico, como resistência e velocidade. Vejamos a Figura 2.

Figura 2: Mapa de Calor da Matriz de Correlação Linear de Perason.

Após isso, foi aplicada, de fato, a análise de componentes principais.

2.2 Gráficos de Apoio

Após a aplicação, a Figura 3 mostra o primeiro gráfico a ser analisado. Gráfico de Autovalores ou, popularmente *Scree Plot*, nos fornece um método para determinar o número de componentes principais.

Figura 3: Gráfico de Autovalores.

Também, foi desenhada a Figura 4, que apresenta o *biplot* - visualização que sobrepõe o gráfico de indivíduos e o gráfico de cargas fatoriais. Usado para avaliar a estrutura dos dados e as cargas fatoriais dos primeiros dois componentes em um gráfico.

Figura 4: Biplot dos Componentes Principais 1 e 2.

Por fim, foi construída a Figura 5. Este gráfico mostra as variáveis que são mais correlacionadas com o ${\rm CP}_1$ e ${\rm CP}_2$ são as mais importantes para explicar a variabilidade dos dados. As variáveis que não são correlacionadas com nenhum ${\rm CP}$ ou correlacionadas com as últimas dimensões (últimos ${\rm CP's}$) são variáveis com baixa contribuições e candidatas a serem removidas para simplificar a análise.

Figura 5: Gráfico de Contribuições das Variáveis nos Componentes Pricipais.

2.3 Conclusão da Análise de Componentes Principais

A Análise de Componentes Principais (ACP) aplicada aos dados do heptatlo feminino teve como objetivo explorar a estrutura de correlações entre variáveis de desempenho atlético e verificar como os escores das componentes se relacionam com a pontuação geral (score). A transformação das variáveis de tempo (hurdles, run200m, run800m) foi uma etapa essencial para alinhar a direção da interpretação maiores valores sempre indicando melhor desempenho. Após a padronização, a ACP foi executada considerando as correlações entre as variáveis.

A matriz de correlação revelou dois grupos principais de variáveis:

- Um primeiro grupo composto por variáveis de potência/explosão, como shot, longjump e highjump, que apresentaram forte correlação entre si;
- Um segundo grupo mais voltado à resistência e velocidade, representado por run800m, hurdles
 e run200m, o qual mostrou correlação negativa com o grupo anterior, refletindo a natureza
 multidimensional do desempenho atlético.

O scree plot indicou que as duas primeiras componentes principais explicam juntas cerca de 83% da variância total, sendo a Dimensão 1 (aproximadamente 68%) fortemente associada à variabilidade geral do desempenho técnico. A Dimensão 2, responsável por cerca de 15% da variância, representa aspectos secundários, mas ainda relevantes, ligados a atributos específicos.

O biplot, que tem como um de seus objetivos apresentar as cargas fatoriais, evidenciou nitidamente o agrupamento de algumas variáveis. Pode-se notar que todas as variáveis exercem influência na Dimensão 1, porém, com bem menos influência da variável javelin. Em contrpartida, as variáveis highjump, run800m, hurdles e longjump são mais influentes.

O **biplot** também mostra que grande parte das observações estou centradas. Talvez, com mais rigidez, possamos dizer que a amostra 1 possa ser um *outlier*, pois está mais distante da maioria. Entretanto, sem fazer muito esforço pode-se idetificar que a observação 25 pode ser problemática, já que a sua distância perante as demais observações é bastante evidente.

O gráfico das contribuições das variáveis também trouxe um panorama claro: variáveis como score, longjump e hurdles foram as que mais contribuíram para a formação da Dimensão 1, enquanto javelin é a que contribuí significativamente para a Dimensão 2, reforçando a dualidade técnica da estrutura dos dados.

3 Para Dados de Progênies de Eucalyptus sp

3.1 Primeiros Passos - Leitura, Ajuste e Visualizações Primárias

Figura 6: Mapa de Calor da Matriz de Correlação Linear de Perason para os Dados da Questão 3.

3.2 Gráficos de Apoio

Após a aplicação, a Figura 3 mostra o primeiro gráfico a ser analisado. Gráfico de Autovalores ou, popularmente *Scree Plot*, nos fornece um método para determinar o número de componentes principais.

Figura 7: Gráfico de Autovalores.

Também, foi desenhada a Figura 4, que apresenta o biplot - visualização que sobrepõe o gráfico de indivíduos e o gráfico de cargas fatoriais. Usado para avaliar a estrutura dos dados e as cargas fatoriais dos primeiros dois componentes em um gráfico.

Figura 8: Biplot dos Componentes Principais 1 e 2.

Por fim, foi construída a Figura 5. Este gráfico mostra as variáveis que são mais correlacionadas com o ${\rm CP}_1$ e ${\rm CP}_2$ são as mais importantes para explicar a variabilidade dos dados. As variáveis que não são correlacionadas com nenhum ${\rm CP}$ ou correlacionadas com as últimas dimensões (últimos ${\rm CP's}$) são variáveis com baixa contribuições e candidatas a serem removidas para simplificar a análise.

Figura 9: Gráfico de Contribuições das Variáveis nos Componentes Pricipais.

4 Códigos Utilizados

Para ter acesso aos códigos utilizados, acesse o link CODE UTILIZADO.