

ELECTROMAGNETIC MATERIAL PARAMETERS & RELATIONS

FUNDAMENTAL PARAMETERS

These parameters are fundamental to Maxwell's equations, but it is difficult to conclude their effect on fields and waves.

MEANINGFUL PARAMETERS

These parameters isolate specific information about fields and waves into single quantities. They are more intuitive than the fundamental parameters.

Electrical Permittivity, ε

$$\begin{array}{ll} \varepsilon \equiv \text{permittivity} & \varepsilon = \varepsilon_0 \varepsilon_r \\ \varepsilon_0 \equiv \text{free space permittivity} & \varepsilon_r \equiv \text{relative permittivity} & \varepsilon_r \geq 1 \\ & \text{(dielectric constant)} & \varepsilon_0 = 8.8541878176 \times 10^{-12} \text{ F/m} \end{array}$$

Magnetic Permeability, μ

 $\mu = \mu_0 \mu_r$ $\mu \equiv \text{permeability}$ μ_0 = free space permeability $\mu_{\rm r} \ge 1$ $\mu_{\rm r}$ = relative permeability $\mu_0 = 1.2566370614 \times 10^{-6} \text{ H/m}$

Electrical Conductivity, σ

 $\sigma \equiv \text{conductivity } (1/\Omega \cdot m)$

Two Sets of Electrical Properties

Real permittivity ε and real conductivity σ $\tilde{\varepsilon} = \varepsilon' - j\varepsilon'' = \varepsilon + \sigma/j\omega$ Complex permittivity $\tilde{\varepsilon}$ $\varepsilon' = \varepsilon$ $\varepsilon'' = \sigma/\omega$

Frequency, Velocity, and Wavelength

Wave velocity $f \equiv \text{ordinary frequency (Hz)}$ $\omega = 2\pi f \equiv \text{angular frequency (s}^{-1})$ $c_0 = 1/\sqrt{\mu_0 \varepsilon_0}$ $\lambda_0 \equiv$ free space wavelength $\lambda = \lambda_0 / n_0 \equiv$ wavelength inside medium $c_0 = f \lambda_0 = 299,792,458 \text{ (m/w)} \equiv \text{speed of light in vacuum}$

Refractive Index, *n*

 $n = n_{\rm o} - j\kappa = \sqrt{\mu_{\rm r}} \varepsilon_{\rm r}$ For non-magnetic materials: $\varepsilon_{\rm r} = n^2$ $\eta = \frac{\eta_0}{\eta}$

The ordinary refractive index n_0 is the factor by which the phase of a wave slows down inside of a medium.

The extinction coefficient κ quantifies growth or decay of a wave due to gain or loss, respectively.

$$E(z) = e^{-jk_0nz} = \underbrace{e^{-jk_0n_0z}}_{\text{speed/oscillation growth/decay}} e^{-k_0\kappa z}$$

Impedance, η

$$\eta = \eta' + j\eta'' = |\eta| \measuredangle \theta_{\eta} = \sqrt{\frac{\mu}{\varepsilon}}$$

Impedance η quantifies the relationship between the electric field ${\it E}$ and magnetic field H due to the coupling in Maxwell's equations. $\eta = E_0/H_0$

$$\eta_0 = \sqrt{\mu_0/\varepsilon_0} = 376.73031346177 \ \Omega \equiv \text{free space impedance}$$

 $\eta' \equiv \text{resistive component}$ $|\eta| \equiv$ amplitude relation between E_0 and H_0 $\eta'' \equiv \text{reactive component}$ $\theta_n \equiv \text{phase relation between } E_0 \text{ and } H_0$

Propagation Constant, γ

 $\gamma = \alpha + j\beta = jk_0n$ $E(z) = e^{-\gamma z} = e^{-\alpha z} e^{-j\beta z}$ growth/decay speed/oscillation $\alpha \equiv$ attenuation coefficient (m⁻¹)

 $\beta = \frac{2\pi}{\lambda} = k_0 n \equiv \text{wave number (m}^{-1})$

Loss Parameters

 $P(z) = P_0 e^{-\alpha_P z}$ The absorption coefficient α_P $\alpha_P = 2\alpha$ describes decay of power.

The loss tangent $an\delta$ describes decay of power.

describes decay of power.
$$P(z) = P_0 e^{-\delta k_0 n_0 z}$$

$$\delta = 2\kappa/n_o = \frac{2\alpha}{k_0 n_o}$$

