pandas

2018年2月8日

1 pandas

第 15-20 个视频

1.1 15. 数据读取

```
In [1]: import pandas
        food_info = pandas.read_csv("food_info.csv")
        print(type(food_info))
        #print(food_info)
        #print(help(pandas.read_csv))
        print(food_info.dtypes)
<class 'pandas.core.frame.DataFrame'>
NDB_No
                     int64
Shrt_Desc
                    object
Water_(g)
                   {\tt float64}
Energ_Kcal
                     int64
Protein_(g)
                   float64
Lipid_Tot_(g)
                   float64
Ash_(g)
                   float64
Carbohydrt_(g)
                   float64
Fiber_TD_(g)
                   float64
Sugar_Tot_(g)
                   float64
Calcium_(mg)
                   float64
Iron_(mg)
                   float64
Magnesium_(mg)
                   float64
Phosphorus_(mg)
                   float64
Potassium_(mg)
                   float64
```

```
Sodium_(mg)
                   float64
Zinc_(mg)
                   float64
Copper_(mg)
                   float64
Manganese_(mg)
                   float64
Selenium_(mcg)
                   float64
Vit_C_(mg)
                   float64
Thiamin_(mg)
                   float64
Riboflavin_(mg)
                   float64
Niacin_(mg)
                   float64
Vit_B6_(mg)
                   float64
Vit_B12_(mcg)
                   float64
Vit_A_IU
                   float64
                   float64
Vit_A_RAE
Vit_E_(mg)
                   float64
                   float64
Vit_D_mcg
Vit_D_IU
                   float64
Vit_K_(mcg)
                   float64
FA_Sat_(g)
                   float64
FA_Mono_(g)
                   float64
FA_Poly_(g)
                   float64
Cholestrl_(mg)
                   float64
dtype: object
In [2]: first_rows = food_info.head()
        print(first_rows)
        print(food_info.head(3))
        print(food_info.columns)
        print(food_info.shape)
   NDB_No
                                      Water_(g) Energ_Kcal Protein_(g) \
                           Shrt_Desc
0
     1001
                   BUTTER WITH SALT
                                           15.87
                                                         717
                                                                      0.85
           BUTTER WHIPPED WITH SALT
                                           15.87
                                                                      0.85
1
     1002
                                                         717
2
                                                                      0.28
     1003
               BUTTER OIL ANHYDROUS
                                            0.24
                                                         876
3
     1004
                         CHEESE BLUE
                                           42.41
                                                         353
                                                                     21.40
4
     1005
                        CHEESE BRICK
                                          41.11
                                                         371
                                                                     23.24
   Lipid_Tot_(g)
                  Ash_(g)
                            Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) \
0
           81.11
                      2.11
                                      0.06
                                                      0.0
                                                                     0.06
1
           81.11
                      2.11
                                      0.06
                                                      0.0
                                                                     0.06
```

0.00

0.0

0.00

2

99.48

0.00

3	28.74	5.11	2.3	34	0.0	0.50	
4	29.68	3.18	2.7	79	0.0	0.51	
		Vit_A_IU	Vit_A_RAE	<pre>Vit_E_(mg)</pre>	Vit_D_mcg	Vit_D_IU	\
0		2499.0	684.0	2.32	1.5	60.0	
1		2499.0	684.0	2.32	1.5	60.0	
2		3069.0	840.0	2.80	1.8	73.0	
3	• • •	721.0	198.0	0.25	0.5	21.0	
4	• • •	1080.0	292.0	0.26	0.5	22.0	
	Vit_K_(mcg) F	FA Sat (g)	FA Mono (g)	FA Polv (g)	Cholestr	1 (mg)	
0	7.0	51.368	21.021	3.043		215.0	
1	7.0	50.489	23.426	3.012		219.0	
2	8.6	61.924	28.732	3.694		256.0	
3	2.4	18.669	7.778	0.800)	75.0	
4	2.5	18.764	8.598	0.784	Ļ	94.0	
[5	rows x 36 colu	ımns]					
	NDB_No	Sh	rt_Desc Wat	ter_(g) Ener	g_Kcal Pr	otein_(g)	\
0	1001	BUTTER WI	TH SALT	15.87	717	0.85	
1	1002 BUTTER	R WHIPPED WI	TH SALT	15.87	717	0.85	
2	1003 BU	JTTER OIL AN	IHYDROUS	0.24	876	0.28	
	Lipid_Tot_(g)	_	-		-	_	\
0	81.11	2.11	0.0		0.0	0.06	
1	81.11	2.11	0.0		0.0	0.06	
2	99.48	0.00	0.0	00	0.0	0.00	
		Vit A IU	Vit A RAE	Vit_E_(mg)	Vit D mcg	Vit D IU	\
0	• • •	2499.0	684.0	2.32	1.5		•
1	• • •	2499.0	684.0	2.32	1.5		
2	• • •	3069.0	840.0	2.80	1.8		
	Vit_K_(mcg) F	FA_Sat_(g)	FA_Mono_(g)	FA_Poly_(g)	Cholestr	1_(mg)	
0	7.0	51.368	21.021	3.043	3	215.0	
1	7.0	50.489	23.426	3.012	2	219.0	
2	8.6	61.924	28.732	3.694	Ļ	256.0	

[3 rows x 36 columns]

1.2 16. 索引与计算

Series object representing the seventh row.
print(food_info.loc[6])

NDB_No	1007
Shrt_Desc	CHEESE CAMEMBERT
Water_(g)	51.8
Energ_Kcal	300
Protein_(g)	19.8
<pre>Lipid_Tot_(g)</pre>	24.26
Ash_(g)	3.68
<pre>Carbohydrt_(g)</pre>	0.46
Fiber_TD_(g)	0
<pre>Sugar_Tot_(g)</pre>	0.46
<pre>Calcium_(mg)</pre>	388
<pre>Iron_(mg)</pre>	0.33
Magnesium_(mg)	20
Phosphorus_(mg)	347
Potassium_(mg)	187
Sodium_(mg)	842
Zinc_(mg)	2.38
Copper_(mg)	0.021
Manganese_(mg)	0.038

Selenium_(mcg)	14.5
Vit_C_(mg)	0
Thiamin_(mg)	0.028
<pre>Riboflavin_(mg)</pre>	0.488
Niacin_(mg)	0.63
Vit_B6_(mg)	0.227
<pre>Vit_B12_(mcg)</pre>	1.3
Vit_A_IU	820
Vit_A_RAE	241
<pre>Vit_E_(mg)</pre>	0.21
Vit_D_mcg	0.4
Vit_D_IU	18
<pre>Vit_K_(mcg)</pre>	2
<pre>FA_Sat_(g)</pre>	15.259
FA_Mono_(g)	7.023
FA_Poly_(g)	0.724
Cholestrl_(mg)	72

Name: 6, dtype: object

1.3 查看数据类型

In [4]: #object - For string values
 #int - For integer values
 #float - For float values
 #datetime - For time values
 #bool - For Boolean values
 print(food_info.dtypes)

NDB_No	int64
Shrt_Desc	object
Water_(g)	float64
Energ_Kcal	int64
Protein_(g)	float64
Lipid_Tot_(g)	float64
Ash_(g)	float64
Carbohydrt_(g)	float64
Fiber_TD_(g)	float64
<pre>Sugar_Tot_(g)</pre>	float64
Calcium_(mg)	float64
<pre>Iron_(mg)</pre>	float64

Magnesium_(mg)	float64
Phosphorus_(mg)	float64
Potassium_(mg)	float64
Sodium_(mg)	float64
Zinc_(mg)	float64
Copper_(mg)	float64
Manganese_(mg)	float64
Selenium_(mcg)	float64
Vit_C_(mg)	float64
Thiamin_(mg)	float64
Riboflavin_(mg)	float64
Niacin_(mg)	float64
Vit_B6_(mg)	float64
Vit_B12_(mcg)	float64
Vit_A_IU	float64
Vit_A_RAE	float64
Vit_E_(mg)	float64
Vit_D_mcg	float64
Vit_D_IU	float64
<pre>Vit_K_(mcg)</pre>	float64
FA_Sat_(g)	float64
FA_Mono_(g)	float64
FA_Poly_(g)	float64
Cholestrl_(mg)	float64
dtype: object	

dtype: object

In [5]: # Returns a DataFrame containing the rows at indexes 3, 4, 5, and 6.
 print(food_info.loc[3:6])
 print(food_info.loc[[2,5,10]])

NDB_No	Shrt_Desc	$Water_(g)$	Energ_Kcal	Protein_(g)	\
1004	CHEESE BLUE	42.41	353	21.40	
1005	CHEESE BRICK	41.11	371	23.24	
1006	CHEESE BRIE	48.42	334	20.75	
1007	CHEESE CAMEMBERT	51.80	300	19.80	
	1004 1005 1006	1004 CHEESE BLUE 1005 CHEESE BRICK 1006 CHEESE BRIE	1004 CHEESE BLUE 42.41 1005 CHEESE BRICK 41.11 1006 CHEESE BRIE 48.42	1004 CHEESE BLUE 42.41 353 1005 CHEESE BRICK 41.11 371 1006 CHEESE BRIE 48.42 334	1004 CHEESE BLUE 42.41 353 21.40 1005 CHEESE BRICK 41.11 371 23.24 1006 CHEESE BRIE 48.42 334 20.75

	Lipid_Tot_(g)	Ash_(g)	Carbohydrt_(g)	Fiber_TD_(g)	Sugar_Tot_(g)	\
3	28.74	5.11	2.34	0.0	0.50	
4	29.68	3.18	2.79	0.0	0.51	
5	27.68	2.70	0.45	0.0	0.45	

6	24.26	3.68	0.4	6	0.0	0.46
		Vit_A_IU V	it_A_RAE	Vit_E_(mg)	Vit_D_mcg	Vit_D_IU \
3		721.0	198.0	0.25	0.5	21.0
4		1080.0	292.0	0.26	0.5	22.0
5		592.0	174.0	0.24	0.5	20.0
6		820.0	241.0	0.21	0.4	18.0
		14 G · () TA	w ()		Ci. J.	
	_	'A_Sat_(g) FA	_			
3	2.4	18.669	7.778	0.800		75.0
4	2.5	18.764	8.598	0.784		94.0
5	2.3	17.410	8.013	0.826		100.0
6	2.0	15.259	7.023	0.724	•	72.0
[4	rows x 36 colu	mns]				
	NDB_No		sc Water	(g) Energ_K	cal Prote	in (g) \
2	_	R OIL ANHYDRO		-	876	0.28
5	1006	CHEESE BR		.42	334	20.75
10	1011	CHEESE COL			394	23.76
	Lipid_Tot_(g)	Ash_(g) Ca	rbohydrt_(g) Fiber_TD	(g) Suga	r_Tot_(g) \
2	99.48	0.00	0.	00	0.0	0.00
5	27.68	2.70	0.	45	0.0	0.45
10	32.11	3.36	2.	57	0.0	0.52
	• • •	Vit_A_IU	Vit_A_RAE	_	Vit_D_mcg	Vit_D_IU \
2	• • •	3069.0	840.0	2.80	1.8	73.0
5	• • •	592.0	174.0	0.24	0.5	20.0
10		994.0	264.0	0.28	0.6	24.0
	Vit K (mcm)	FA_Sat_(g) F.	A Mono (a)	EA Doly (a	·) Chologt	rl (mg)
2	8.6	61.924	28.732			256.0
5	2.3	17.410	8.013			100.0
10	2.3	20.218				95.0
10	2.1	20.210	9.280	0.95	i.j	90.0

[3 rows x 36 columns]

print(food_info[["NDB_No","Shrt_Desc"]])

	NDB_No	Shrt_Desc
0	1001	BUTTER WITH SALT
1	1002	BUTTER WHIPPED WITH SALT
2	1003	BUTTER OIL ANHYDROUS
3	1004	CHEESE BLUE
4	1005	CHEESE BRICK
5	1006	CHEESE BRIE
6	1007	CHEESE CAMEMBERT
7	1008	CHEESE CARAWAY
8	1009	CHEESE CHEDDAR
9	1010	CHEESE CHESHIRE
10	1011	CHEESE COLBY
11	1012	CHEESE COTTAGE CRMD LRG OR SML CURD
12	1013	CHEESE COTTAGE CRMD W/FRUIT
13	1014	CHEESE COTTAGE NONFAT UNCRMD DRY LRG OR SML CURD
14	1015	CHEESE COTTAGE LOWFAT 2% MILKFAT
15	1016	CHEESE COTTAGE LOWFAT 1% MILKFAT
16	1017	CHEESE CREAM
17	1018	CHEESE EDAM
18	1019	CHEESE FETA
19	1020	CHEESE FONTINA
20	1021	CHEESE GJETOST
21	1022	CHEESE GOUDA
22	1023	CHEESE GRUYERE
23	1024	CHEESE LIMBURGER
24	1025	CHEESE MONTEREY
25	1026	CHEESE MOZZARELLA WHL MILK
26	1027	CHEESE MOZZARELLA WHL MILK LO MOIST
27	1028	CHEESE MOZZARELLA PART SKIM MILK
28	1029	CHEESE MOZZARELLA LO MOIST PART-SKIM
29	1030	CHEESE MUENSTER
8588	43544	BABYFOOD CRL RICE W/ PEARS & APPL DRY INST
8589	43546	BABYFOOD BANANA NO TAPIOCA STR
8590	43550	BABYFOOD BANANA APPL DSSRT STR
8591	43566	SNACKS TORTILLA CHIPS LT (BAKED W/ LESS OIL)
8592	43570	CEREALS RTE POST HONEY BUNCHES OF OATS HONEY RSTD
8593	43572	POPCORN MICROWAVE LOFAT&NA

8594	43585	BABYFOOD FRUIT SUPREME DSSRT
8595	43589	CHEESE SWISS LOW FAT
8596	43595	BREAKFAST BAR CORN FLAKE CRUST W/FRUIT
8597	43597	CHEESE MOZZARELLA LO NA
8598	43598	MAYONNAISE DRSNG NO CHOL
8599	44005	OIL CORN PEANUT AND OLIVE
8600	44018	SWEETENERS TABLETOP FRUCTOSE LIQ
8601	44048	CHEESE FOOD IMITATION
8602	44055	CELERY FLAKES DRIED
8603	44061	PUDDINGS CHOC FLAVOR LO CAL INST DRY MIX
8604	44074	BABYFOOD GRAPE JUC NO SUGAR CND
8605	44110	JELLIES RED SUGAR HOME PRESERVED
8606	44158	PIE FILLINGS BLUEBERRY CND
8607	44203	COCKTAIL MIX NON-ALCOHOLIC CONCD FRZ
8608	44258	PUDDINGS CHOC FLAVOR LO CAL REG DRY MIX
8609	44259	PUDDINGS ALL FLAVORS XCPT CHOC LO CAL REG DRY MIX
8610	44260	PUDDINGS ALL FLAVORS XCPT CHOC LO CAL INST DRY
8611	48052	VITAL WHEAT GLUTEN
8612	80200	FROG LEGS RAW
8613	83110	MACKEREL SALTED
8614	90240	SCALLOP (BAY&SEA) CKD STMD
8615	90480	SYRUP CANE
8616	90560	SNAIL RAW
8617	93600	TURTLE GREEN RAW

[8618 rows x 2 columns]

In [7]: print(food_info.columns)

1.4 columns.tolist() 列出列名

3.012

1

```
In [8]: print(food_info.columns.tolist())
['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)', 'Lipid_Tot_(g)', 'Ash_(g)', 'Car
In [9]: col_names = food_info.columns.tolist()
        gram_columns = []
        for c in col_names:
            if c.endswith("(g)"):
                gram_columns.append(c)
        gram_df = food_info[gram_columns]
        print(gram_df.head(9))
   Water_(g) Protein_(g) Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) \
0
       15.87
                      0.85
                                    81.11
                                               2.11
                                                                0.06
1
       15.87
                      0.85
                                    81.11
                                               2.11
                                                                0.06
2
        0.24
                      0.28
                                    99.48
                                               0.00
                                                                0.00
3
       42.41
                     21.40
                                    28.74
                                               5.11
                                                                2.34
4
       41.11
                     23.24
                                    29.68
                                               3.18
                                                                2.79
5
       48.42
                     20.75
                                    27.68
                                               2.70
                                                                0.45
6
       51.80
                     19.80
                                     24.26
                                               3.68
                                                                0.46
7
       39.28
                     25.18
                                     29.20
                                               3.28
                                                                3.06
8
                     24.04
                                     33.82
                                               3.71
                                                                1.33
       37.10
   Fiber_TD_(g)
                 Sugar_Tot_(g) FA_Sat_(g) FA_Mono_(g) FA_Poly_(g)
                                     51.368
                                                   21.021
0
            0.0
                           0.06
                                                                  3.043
1
            0.0
                           0.06
                                     50.489
                                                   23.426
                                                                  3.012
2
            0.0
                           0.00
                                                   28.732
                                                                  3.694
                                     61.924
3
            0.0
                                                    7.778
                                                                  0.800
                           0.50
                                     18.669
4
            0.0
                           0.51
                                     18.764
                                                    8.598
                                                                  0.784
            0.0
                           0.45
                                     17.410
                                                    8.013
                                                                  0.826
5
6
            0.0
                           0.46
                                      15.259
                                                    7.023
                                                                  0.724
7
            0.0
                            {\tt NaN}
                                     18.584
                                                    8.275
                                                                  0.830
8
            0.0
                           0.28
                                                                  1.433
                                      19.368
                                                    8.428
In [10]: print(food_info["FA_Poly_(g)"].head(6))
0
     3.043
```

```
3
     0.800
4
     0.784
5
     0.826
Name: FA_Poly_(g), dtype: float64
In [11]: print(food_info["FA_Poly_(g)"]**2)
           9.259849
0
1
           9.072144
2
          13.645636
           0.640000
3
           0.614656
4
5
           0.682276
6
           0.524176
7
           0.688900
8
           2.053489
9
           0.756900
10
           0.908209
11
           0.015129
           0.015376
12
13
           0.000009
14
           0.006889
           0.000961
15
           2.064969
16
17
           0.442225
18
           0.349281
           2.735716
19
20
           0.879844
21
           0.431649
22
           3.003289
23
           0.245025
           0.808201
24
25
           0.585225
           0.605284
26
           0.222784
27
           0.741321
28
29
           0.436921
           . . .
8588
           0.053361
```

2

3.694

8589

0.001681

```
0.002209
8590
8591
          25.240576
8592
           1.708249
8593
          12.759184
8594
           0.004624
8595
           0.032400
8596
           0.810000
8597
           0.259081
8598
        2073.800521
8599
        1091.179089
8600
           0.000000
8601
          56.791296
8602
           1.071225
8603
           0.017161
8604
           0.000000
8605
           0.000064
           0.000000
8606
8607
           0.000081
8608
           0.016900
8609
           0.002500
8610
           0.187489
8611
           0.656100
8612
           0.010404
8613
          38.564100
8614
           0.049284
8615
           0.000000
8616
           0.063504
8617
           0.028900
Name: FA_Poly_(g), Length: 8618, dtype: float64
In [12]: #It applies the arithmetic operator to the first value in both columns, the second value
         water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
         iron_grams = food_info["Iron_(mg)"] / 1000
         food_info["Iron_(g)"] = iron_grams
         print(food_info.shape)
(8618, 37)
In [13]: \#Score=2\mathbb{E}(Protein_(g))0.75\mathbb{E}(Lipid_Tot_(g))
```

```
weighted_protein = food_info["Protein_(g)"] * 2
    weighted_fat = -0.75 * food_info["Lipid_Tot_(g)"]
    initial_rating = weighted_protein + weighted_fat

In [14]: # the "Vit_A_IU" column ranges from 0 to 100000, while the "Fiber_TD_(g)" column ranges f
    #For certain calculations, columns like "Vit_A_IU" can have a greater effect on the resul
    #due to the scale of the values
    # The largest value in the "Energ_Kcal" column.
    max_calories = food_info["Energ_Kcal"] .max()
    # Divide the values in "Energ_Kcal" by the largest value.
    normalized_calories = food_info["Energ_Kcal"] / max_calories
    normalized_protein = food_info["Protein_(g)"] / food_info["Protein_(g)"].max()
    normalized_fat = food_info["Lipid_Tot_(g)"] / food_info["Lipid_Tot_(g)"].max()
    food_info["Normalized_Protein"] = normalized_protein
    food_info["Normalized_Fat"] = normalized_fat
```

1.5 17. 数据预处理

1.6 ascending=true/false 排序

```
In [15]: #By default, pandas will sort the data by the column we specify in ascending order and re
         # Sorts the DataFrame in-place, rather than returning a new DataFrame.
         #print food info["Sodium (mq)"]
         food_info.sort_values("Sodium_(mg)", inplace=True)
         print (food_info["Sodium_(mg)"])
         #Sorts by descending order, rather than ascending.
         food_info.sort_values("Sodium_(mg)", inplace=True, ascending=False)
         print (food_info["Sodium_(mg)"])
760
        0.0
758
        0.0
405
        0.0
761
        0.0
        0.0
2269
763
        0.0
764
        0.0
770
        0.0
774
        0.0
396
        0.0
395
        0.0
6827
        0.0
```

394	0.0
393	0.0
391	0.0
390	0.0
787	0.0
788	0.0
2270	0.0
2231	0.0
407	0.0
748	0.0
409	0.0
747	0.0
702	0.0
703	0.0
704	0.0
705	0.0
706	0.0
707	0.0
8153	NaN
8155	NaN
8155 8156	NaN NaN
8156	NaN
8156 8157	NaN NaN
8156 8157 8158	NaN NaN NaN
8156 8157 8158 8159	NaN NaN NaN NaN
8156 8157 8158 8159 8160	NaN NaN NaN NaN
8156 8157 8158 8159 8160 8161	NaN NaN NaN NaN NaN
8156 8157 8158 8159 8160 8161 8163	NaN NaN NaN NaN NaN NaN
8156 8157 8158 8159 8160 8161 8163 8164	NaN NaN NaN NaN NaN NaN NaN NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165	NaN NaN NaN NaN NaN NaN NaN NaN NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165 8167	NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165 8167 8169	NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165 8167 8169 8170	NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165 8167 8169 8170	NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165 8167 8169 8170 8172 8173	NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165 8167 8169 8170 8172 8173 8174	NaN
8156 8157 8158 8159 8160 8161 8163 8164 8165 8167 8169 8170 8172 8173 8174 8175	NaN

```
8178
         {\tt NaN}
8179
         {\tt NaN}
8180
         {\tt NaN}
8181
         {\tt NaN}
8183
         {\tt NaN}
8184
         {\tt NaN}
8185
         {\tt NaN}
8195
         {\tt NaN}
8251
         {\tt NaN}
8267
         {\tt NaN}
Name: Sodium_(mg), Length: 8618, dtype: float64
276
         38758.0
5814
         27360.0
6192
         26050.0
1242
         26000.0
1245
         24000.0
1243
         24000.0
1244
         23875.0
292
         17000.0
1254
         11588.0
5811
         10600.0
8575
          9690.0
291
          8068.0
1249
          8031.0
5812
          7893.0
1292
          7851.0
293
          7203.0
4472
          7027.0
4836
          6820.0
          6580.0
1261
3747
          6008.0
1266
          5730.0
4835
          5586.0
4834
          5493.0
1263
          5356.0
1553
          5203.0
1552
          5053.0
1251
          4957.0
1257
          4843.0
```

```
294
          4616.0
8613
          4450.0
          . . .
8153
              {\tt NaN}
8155
              NaN
8156
              NaN
8157
              NaN
8158
              {\tt NaN}
8159
              NaN
8160
              NaN
8161
              NaN
8163
              NaN
8164
              {\tt NaN}
8165
              NaN
8167
              NaN
8169
              {\tt NaN}
8170
              NaN
8172
              {\tt NaN}
8173
              {\tt NaN}
8174
              {\tt NaN}
8175
              NaN
8176
              NaN
8177
              {\tt NaN}
8178
              NaN
8179
              NaN
8180
              NaN
8181
              NaN
8183
              {\tt NaN}
8184
              {\tt NaN}
8185
              NaN
8195
              NaN
8251
              NaN
8267
              {\tt NaN}
Name: Sodium_(mg), Length: 8618, dtype: float64
    泰坦尼克数据训练
In [16]: import pandas as pd
          import numpy as np
          titanic_survival = pd.read_csv("titanic_train.csv")
```

titanic_survival.head()

```
Out [16]:
             PassengerId Survived
                                      Pclass
                        2
          1
                                    1
                                             1
          2
                        3
                                             3
                                    1
          3
                         4
                                    1
                                             1
                                             3
          4
                        5
```

```
Name
                                                         Sex
                                                               Age SibSp
0
                             Braund, Mr. Owen Harris
                                                        male 22.0
                                                                        1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                      female 38.0
                                                                        1
2
                              Heikkinen, Miss. Laina female
                                                                        0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                              35.0
                                                      female
                                                                        1
4
                            Allen, Mr. William Henry
                                                        male 35.0
                                                                        0
```

```
Parch
                    Ticket
                                Fare Cabin Embarked
0
       0
                 A/5 21171
                             7.2500
                                       NaN
                  PC 17599 71.2833
                                       C85
                                                  C
1
2
         STON/02. 3101282
                             7.9250
                                       NaN
                                                  S
3
                                                  S
       0
                    113803 53.1000
                                      C123
4
                    373450
                                                  S
       0
                              8.0500
                                       NaN
```

```
In [17]: #The Pandas library uses NaN, which stands for "not a number", to indicate a missing valu
#we can use the pandas.isnull() function which takes a pandas series and returns a series
age = titanic_survival["Age"]
#print(titanic_survival.loc[0:10])
```

```
age_is_null = pd.isnull(age)
#print(age_is_null)
age_null_true = age[age_is_null]
#print(age_null_true)
```

age_null_count = len(age_null_true)

print(age_null_count)

177

1.7 18. 数据预处理(常用方法)

```
In [18]: #The result of this is that mean_age would be nan. This is because any calculations we do
mean_age = sum(titanic_survival["Age"]) / len(titanic_survival["Age"])
print (mean_age)
```

nan

1.8 查看缺失值

```
In [19]: #we have to filter out the missing values before we calculate the mean.
         good_ages = titanic_survival["Age"][age_is_null == False]
         print (good_ages)
         correct_mean_age = sum(good_ages) / len(good_ages)
         print (correct_mean_age)
0
       22.0
1
       38.0
2
       26.0
       35.0
3
4
       35.0
       54.0
6
7
       2.0
8
       27.0
       14.0
9
       4.0
10
11
       58.0
12
       20.0
13
       39.0
       14.0
14
15
       55.0
       2.0
16
       31.0
18
       35.0
20
21
       34.0
22
       15.0
23
       28.0
24
       8.0
25
       38.0
27
       19.0
30
       40.0
       66.0
33
       28.0
34
35
       42.0
37
       21.0
38
       18.0
```

```
. . .
856
       45.0
857
       51.0
858
      24.0
      41.0
860
      21.0
861
862
       48.0
      24.0
864
865
       42.0
866
       27.0
867
       31.0
      4.0
869
       26.0
870
871
       47.0
872
       33.0
873
       47.0
874
       28.0
875
      15.0
876
       20.0
       19.0
877
879
      56.0
880
       25.0
881
      33.0
      22.0
882
883
       28.0
      25.0
884
      39.0
885
     27.0
886
     19.0
887
889
       26.0
890
       32.0
Name: Age, Length: 714, dtype: float64
29.69911764705882
```

1.9 运算求均值

29.69911764705882

```
In [21]: #mean fare for each class
        passenger_classes = [1, 2, 3]
        fares_by_class = {}
        for this_class in passenger_classes:
             pclass_rows = titanic_survival[titanic_survival["Pclass"] == this_class]
             pclass_fares = pclass_rows["Fare"]
             fare_for_class = pclass_fares.mean()
             fares_by_class[this_class] = fare_for_class
        print (fares_by_class)
{1: 84.15468749999992, 2: 20.66218315217391, 3: 13.675550101832997}
1.10 pivot_table 透视表
In [22]: #index tells the method which column to group by
         #values is the column that we want to apply the calculation to
         #aggfunc specifies the calculation we want to perform
        passenger_survival = titanic_survival.pivot_table(index="Pclass", values="Survived", aggf
        print (passenger_survival)
        Survived
Pclass
1
        0.629630
2
        0.472826
3
        0.242363
In [23]: passenger_age = titanic_survival.pivot_table(index="Pclass", values="Age")
        print(passenger_age)
              Age
Pclass
        38.233441
2
        29.877630
3
        25.140620
In [24]: port_stats = titanic_survival.pivot_table(index="Embarked", values=["Fare","Survived"], a
        print(port_stats)
```

Fare Survived

```
Embarked
С
          10072.2962
                             93
Q
           1022.2543
                             30
S
          17439.3988
                            217
In [25]: #specifying axis=1 or axis='columns' will drop any columns that have null values
         drop_na_columns = titanic_survival.dropna(axis=1)
         new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age", "Sex"])
         print (new_titanic_survival)
     PassengerId Survived Pclass \
0
               1
                          0
                                  3
               2
1
                          1
                                  1
2
               3
                          1
                                  3
3
               4
                          1
                                  1
4
               5
                          0
                                  3
6
               7
                          0
                                  1
7
               8
                          0
                                  3
8
               9
                          1
                                  3
9
              10
                          1
                                  2
                                  3
                          1
10
              11
11
              12
                          1
                                  1
12
              13
                          0
                                  3
              14
                          0
13
                                  3
14
              15
                          0
                                  3
                                  2
15
                          1
              16
16
              17
                          0
                                  3
18
              19
                          0
                                  3
20
                          0
                                  2
              21
              22
                          1
                                  2
21
22
                                  3
              23
                          1
                          1
23
              24
                                  1
24
              25
                          0
                                  3
                                  3
25
              26
                          1
27
              28
                          0
                                  1
30
              31
                          0
                                  1
                          0
                                  2
33
              34
                                  1
34
              35
                          0
35
              36
                          0
                                  1
```

37	38	0	3
38	39	0	3
856	857	1	1
857	858	1	1
858	859	1	3
860	861	0	3
861	862	0	2
862	863	1	1
864	865	0	2
865	866	1	2
866	867	1	2
867	868	0	1
869	870	1	3
870	871	0	3
871	872	1	1
872	873	0	1
873	874	0	3
874	875	1	2
875	876	1	3
876	877	0	3
877	878	0	3
879	880	1	1
880	881	1	2
881	882	0	3
882	883	0	3
883	884	0	2
884	885	0	3
885	886	0	3
886	887	0	2
887	888	1	1
889	890	1	1
890	891	0	3

	Name	Sex	Age	SibSp	\
0	Braund, Mr. Owen Harris	male	22.0	1	
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	
2	Heikkinen, Miss. Laina	female	26.0	0	
3	Futrelle, Mrs. Jacques Heath (Lilv May Peel)	female	35.0	1	

0	35.0	male	Allen, Mr. William Henry	4
0	54.0	male	· · · · · · · · · · · · · · · · · · ·	6
3	2.0	male	Palsson, Master. Gosta Leonard	7
0	27.0	female	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	8
1	14.0	female	Nasser, Mrs. Nicholas (Adele Achem)	9
1	4.0	female	Sandstrom, Miss. Marguerite Rut	10
0	58.0	female	Bonnell, Miss. Elizabeth	11
0	20.0	male	Saundercock, Mr. William Henry	12
1	39.0	male	Andersson, Mr. Anders Johan	13
0	14.0	female	Vestrom, Miss. Hulda Amanda Adolfina	14
0	55.0	female	Hewlett, Mrs. (Mary D Kingcome)	15
4	2.0	male	Rice, Master. Eugene	16
1	31.0	female	Vander Planke, Mrs. Julius (Emelia Maria Vande	18
0	35.0	male	Fynney, Mr. Joseph J	20
0	34.0	male	Beesley, Mr. Lawrence	21
0	15.0	female	McGowan, Miss. Anna "Annie"	22
0	28.0	male	Sloper, Mr. William Thompson	23
3	8.0	female	Palsson, Miss. Torborg Danira	24
1	38.0	female	Asplund, Mrs. Carl Oscar (Selma Augusta Emilia	25
3	19.0	male	Fortune, Mr. Charles Alexander	27
0	40.0	male	Uruchurtu, Don. Manuel E	30
0	66.0	male	Wheadon, Mr. Edward H	33
1	28.0	male	Meyer, Mr. Edgar Joseph	34
1	42.0	male	Holverson, Mr. Alexander Oskar	35
0	21.0	male	Cann, Mr. Ernest Charles	37
2	18.0	female	Vander Planke, Miss. Augusta Maria	38
1	45.0	female	Wick, Mrs. George Dennick (Mary Hitchcock)	856
0	51.0	male	Daly, Mr. Peter Denis	857
0	24.0	female	Baclini, Mrs. Solomon (Latifa Qurban)	858
2	41.0	male	Hansen, Mr. Claus Peter	860
1	21.0	male	Giles, Mr. Frederick Edward	861
0	48.0	female	Swift, Mrs. Frederick Joel (Margaret Welles Ba	862
0	24.0	male	Gill, Mr. John William	864
0	42.0	female	Bystrom, Mrs. (Karolina)	865
1	27.0	female	Duran y More, Miss. Asuncion	866
	31.0	male	Roebling, Mr. Washington Augustus II	867
0			-	
0	4.0	${\tt male}$	Johnson, Master. Harold Theodor	869

871	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1
872	Carlsson, Mr. Frans Olof	male	33.0	0
873	Vander Cruyssen, Mr. Victor	male	47.0	0
874	Abelson, Mrs. Samuel (Hannah Wizosky)	female	28.0	1
875	Najib, Miss. Adele Kiamie "Jane"	female	15.0	0
876	Gustafsson, Mr. Alfred Ossian	male	20.0	0
877	Petroff, Mr. Nedelio	male	19.0	0
879	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0
880	Shelley, Mrs. William (Imanita Parrish Hall)	female	25.0	0
881	Markun, Mr. Johann	male	33.0	0
882	Dahlberg, Miss. Gerda Ulrika	female	22.0	0
883	Banfield, Mr. Frederick James	male	28.0	0
884	Sutehall, Mr. Henry Jr	male	25.0	0
885	Rice, Mrs. William (Margaret Norton)	female	39.0	0
886	Montvila, Rev. Juozas	male	27.0	0
887	Graham, Miss. Margaret Edith	female	19.0	0
889	Behr, Mr. Karl Howell	male	26.0	0
890	Dooley, Mr. Patrick	male	32.0	0

	Parch	Ticket	Fare	Cabin	Embarked
0	0	A/5 21171	7.2500	NaN	S
1	0	PC 17599	71.2833	C85	C
2	0	STON/02. 3101282	7.9250	NaN	S
3	0	113803	53.1000	C123	S
4	0	373450	8.0500	NaN	S
6	0	17463	51.8625	E46	S
7	1	349909	21.0750	NaN	S
8	2	347742	11.1333	NaN	S
9	0	237736	30.0708	NaN	C
10	1	PP 9549	16.7000	G6	S
11	0	113783	26.5500	C103	S
12	0	A/5. 2151	8.0500	NaN	S
13	5	347082	31.2750	NaN	S
14	0	350406	7.8542	NaN	S
15	0	248706	16.0000	NaN	S
16	1	382652	29.1250	NaN	Q
18	0	345763	18.0000	NaN	S
20	0	239865	26.0000	NaN	S
21	0	248698	13.0000	D56	S

22	0	330923	8.0292		NaN	Q
23	0	113788	35.5000		A6	S
24	1	349909	21.0750		NaN	S
25	5	347077	31.3875		NaN	S
27	2	19950	263.0000	C23 C25	C27	S
30	0	PC 17601	27.7208		NaN	C
33	0	C.A. 24579	10.5000		NaN	S
34	0	PC 17604	82.1708		NaN	C
35	0	113789	52.0000		NaN	S
37	0	A./5. 2152	8.0500		NaN	S
38	0	345764	18.0000		NaN	S
856	1	36928	164.8667		NaN	S
857	0	113055	26.5500		E17	S
858	3	2666	19.2583		NaN	C
860	0	350026	14.1083		NaN	S
861	0	28134	11.5000		NaN	S
862	0	17466	25.9292		D17	S
864	0	233866	13.0000		NaN	S
865	0	236852	13.0000		NaN	S
866	0	SC/PARIS 2149	13.8583		NaN	C
867	0	PC 17590	50.4958		A24	S
869	1	347742	11.1333		NaN	S
870	0	349248	7.8958		NaN	S
871	1	11751	52.5542		D35	S
872	0	695	5.0000	B51 B53	B55	S
873	0	345765	9.0000		NaN	S
874	0	P/PP 3381	24.0000		NaN	C
875	0	2667	7.2250		NaN	C
876	0	7534	9.8458		NaN	S
877	0	349212	7.8958		NaN	S
879	1	11767	83.1583		C50	C
880	1	230433	26.0000		NaN	S
881	0	349257	7.8958		NaN	S
882	0	7552	10.5167		NaN	S
883	0	C.A./SOTON 34068	10.5000		NaN	S
884	0	SOTON/OQ 392076	7.0500		NaN	S
885	5	382652	29.1250		NaN	Q
886	0	211536	13.0000		NaN	S

887	0	112053	30.0000	B42	S
889	0	111369	30.0000	C148	C
890	0	370376	7.7500	NaN	Q

[714 rows x 12 columns]

1.11 19. 自定义函数

\

Name	Pclass	Survived	PassengerId	
Barkworth, Mr. Algernon Henry Wilson	1	1	631	630
Svensson, Mr. Johan	3	0	852	851
Artagaveytia, Mr. Ramon	1	0	494	493
Goldschmidt, Mr. George B	1	0	97	96
Connors, Mr. Patrick	3	0	117	116
Mitchell, Mr. Henry Michael	2	0	673	672
Crosby, Capt. Edward Gifford	1	0	746	745
Wheadon, Mr. Edward H	2	0	34	33
Ostby, Mr. Engelhart Cornelius	1	0	55	54
Duane, Mr. Frank	3	0	281	280

	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
630	male	80.0	0	0	27042	30.0000	A23	S
851	male	74.0	0	0	347060	7.7750	NaN	S
493	male	71.0	0	0	PC 17609	49.5042	NaN	C
96	male	71.0	0	0	PC 17754	34.6542	A5	C
116	male	70.5	0	0	370369	7.7500	NaN	Q

672	male	70.0	0	0	C.A.	24580	10.5000	NaN	S		
745	male	e 70.0	1	1	WE/	P 5735	71.0000	B22	S		
33	male	66.0	0	0	C.A.	24579	10.5000	NaN	S		
54	male	65.0	0	1		113509	61.9792	B30	C		
280	male	e 65.0	0	0		336439	7.7500	NaN	Q		
					——排/	亨后索引	值也重新系	建立			
]	Passer	ngerId	Surviv	ed Pcla	ss				Name	Sex	\
0		631		1	1 B	arkwort	h, Mr. A	lgernon He	enry Wilson	male	
1		852		0	3			Svensson	, Mr. Johan	male	
2		494		0	1		Art	agaveytia	, Mr. Ramon	male	
3		97		0	1		Golds	chmidt, M	r. George B	male	
4		117		0	3			Connors, N	Mr. Patrick	male	
5		673		0	2		Mitchel	l, Mr. Hen	nry Michael	male	
6		746		0	1		Crosby,	Capt. Edwa	ard Gifford	male	
7		34		0	2		W.	headon, Mi	r. Edward H	male	
8		55		0	1	0s	tby, Mr.	Engelhart	t Cornelius	male	
9		281		0	3			Duane	, Mr. Frank	male	
	Age	SibSp	Parch	Tic	ket	Fare	Cabin E	mbarked			
0 8	30.0	0	0	27	042	30.0000	A23	S			
1	74.0	0	0	347	060	7.7750	NaN	S			
2	71.0	0	0	PC 17	609	49.5042	l NaN	C			
3	71.0	0	0	PC 17	754	34.6542	A5	C			
4	70.5	0	0	370	369	7.7500	NaN	Q			
5	70.0	0	0	C.A. 24	580	10.5000	NaN	S			
6	70.0	1	1	WE/P 5	735	71.0000	B22	S			

 ${\tt NaN}$

B30

 ${\tt NaN}$

S

С

Q

```
In [28]: # This function returns the hundredth item from a series
    def hundredth_row(column):
```

0 C.A. 24579 10.5000

336439

113509 61.9792

7.7500

Extract the hundredth item
hundredth_item = column.iloc[99]
return hundredth_item

7 66.0

8 65.0

9 65.0

0

0

1

0

```
# Return the hundredth item from each column
hundredth_row = titanic_survival.apply(hundredth_row)
print (hundredth_row)
```

```
PassengerId
                              100
Survived
                                0
                                2
Pclass
Name
               Kantor, Mr. Sinai
Sex
                             male
                               34
Age
SibSp
                                1
Parch
                                0
Ticket
                           244367
Fare
                               26
Cabin
                              {\tt NaN}
                                S
Embarked
dtype: object
In [29]: def not_null_count(column):
             column_null = pd.isnull(column)
             null = column[column_null]
             return len(null)
         column_null_count = titanic_survival.apply(not_null_count)
         print (column_null_count)
PassengerId
                 0
Survived
                 0
Pclass
                 0
Name
                 0
Sex
                 0
               177
Age
SibSp
                 0
Parch
                 0
Ticket
                 0
Fare
                 0
Cabin
               687
                 2
Embarked
dtype: int64
```

1.12 which_class 加标签

```
In [30]: #By passing in the axis=1 argument, we can use the DataFrame.apply() method to iterate or
         def which_class(row):
             pclass = row['Pclass']
             if pd.isnull(pclass):
                 return "Unknown"
             elif pclass == 1:
                 return "First Class"
             elif pclass == 2:
                 return "Second Class"
             elif pclass == 3:
                 return "Third Class"
         classes = titanic_survival.apply(which_class, axis=1)
         print (classes)
0
        Third Class
1
        First Class
2
        Third Class
3
        First Class
        Third Class
4
5
        Third Class
6
        First Class
7
        Third Class
8
        Third Class
9
       Second Class
        Third Class
10
        First Class
11
12
        Third Class
13
        Third Class
14
        Third Class
       Second Class
15
        Third Class
16
17
       Second Class
        Third Class
18
19
        Third Class
20
       Second Class
21
       Second Class
22
        Third Class
23
        First Class
```

24	Third	Class	
25	Third	Class	
26	Third	Class	
27	First	Class	
28	Third	Class	
29	Third	Class	
861	Second	Class	
862	First	Class	
863	Third	Class	
864	Second	Class	
865	Second	Class	
866	Second	Class	
867	First	Class	
868	Third	Class	
869	Third	Class	
870	Third	Class	
871	First	Class	
872	First	Class	
873	Third	Class	
874	Second	Class	
875	Third	Class	
876	Third	Class	
877	Third	Class	
878	Third	Class	
879	First	Class	
880	Second	Class	
881	Third	Class	
882	Third	Class	
883	Second	Class	
884	Third	Class	
885	Third	Class	
886	Second	Class	
887	First	Class	
888	Third	Class	
889	First	Class	
890	Third	Class	
Length:	891,	dtype:	object

```
In [31]: def is_minor(row):
             if row["Age"] < 18:</pre>
                 return True
             else:
                 return False
         minors = titanic_survival.apply(is_minor, axis=1)
         #print (minors)
         def generate_age_label(row):
             age = row["Age"]
             if pd.isnull(age):
                 return "unknown"
             elif age < 18:
                 return "minor"
             else:
                 return "adult"
         age_labels = titanic_survival.apply(generate_age_label, axis=1)
         print (age_labels)
0
         adult
1
         adult
2
         adult
3
         adult
         adult
4
5
       unknown
         adult
6
7
         minor
8
         adult
9
         minor
10
         minor
11
         adult
12
         adult
13
         adult
14
         minor
15
         adult
16
         minor
17
       unknown
         adult
18
```

19	unknown
20	adult
21	adult
22	minor
23	adult
24	minor
25	adult
26	unknown
27	adult
28	unknown
29	unknown
861	adult
862	adult
863	unknown
864	adult
865	adult
866	adult
867	adult
868	unknown
869	minor
870	adult
871	adult
872	adult
873	adult
874	adult
875	minor
876	adult
877	adult
878	unknown
879	adult
880	adult
881	adult
882	adult
883	adult
884	adult
885	adult
886	adult
887	adult

```
888
       unknown
889
         adult
890
        adult
Length: 891, dtype: object
In [32]: titanic_survival['age_labels'] = age_labels
         age_group_survival = titanic_survival.pivot_table(index="age_labels", values="Survived")
        print (age_group_survival)
            Survived
age_labels
           0.381032
adult
minor
            0.539823
            0.293785
unknown
1.13 20.Series 结果
In [33]: #Series (collection of values)
         #DataFrame (collection of Series objects)
         #Panel (collection of DataFrame objects)
         #A Series object can hold many data types, including
         #float - for representing float values
         #int - for representing integer values
         #bool - for representing Boolean values
         #datetime64[ns] - for representing date & time, without time-zone
         #datetime64[ns, tz] - for representing date & time, with time-zone
         #timedelta[ns] - for representing differences in dates & times (seconds, minutes, etc.)
         #category - for representing categorical values
         #object - for representing String values
         #FILM - film name
         #RottenTomatoes - Rotten Tomatoes critics average score
```

#RT_norm - Rotten Tomatoes critics average score (normalized to a 0 to 5 point system)
#RT_user_norm - Rotten Tomatoes user average score (normalized to a 0 to 5 point system)

#RottenTomatoes_User - Rotten Tomatoes user average score

#Metacritic - Metacritic critics average score
#Metacritic_User - Metacritic user average score

In [34]: import pandas as pd

```
fandango = pd.read_csv('fandango_score_comparison.csv')
         series_film = fandango['FILM']
         print(series_film[0:5])
         series_rt = fandango['RottenTomatoes']
         print (series_rt[0:5])
0
     Avengers: Age of Ultron (2015)
1
                  Cinderella (2015)
2
                     Ant-Man (2015)
             Do You Believe? (2015)
3
     Hot Tub Time Machine 2 (2015)
Name: FILM, dtype: object
0
     74
1
     85
2
     80
3
     18
     14
Name: RottenTomatoes, dtype: int64
In [35]: # Import the Series object from pandas
         from pandas import Series
         film_names = series_film.values
         print (type(film_names))
         print (film_names)
         rt_scores = series_rt.values
         print (rt_scores)
         series_custom = Series(rt_scores , index=film_names)
         series_custom[['Minions (2015)', 'Leviathan (2014)']]
<class 'numpy.ndarray'>
['Avengers: Age of Ultron (2015)' 'Cinderella (2015)' 'Ant-Man (2015)'
 'Do You Believe? (2015)' 'Hot Tub Time Machine 2 (2015)'
 'The Water Diviner (2015)' 'Irrational Man (2015)' 'Top Five (2014)'
 'Shaun the Sheep Movie (2015)' 'Love & Mercy (2015)'
 'Far From The Madding Crowd (2015)' 'Black Sea (2015)' 'Leviathan (2014)'
 'Unbroken (2014)' 'The Imitation Game (2014)' 'Taken 3 (2015)'
 'Ted 2 (2015)' 'Southpaw (2015)'
 'Night at the Museum: Secret of the Tomb (2014)' 'Pixels (2015)'
 'McFarland, USA (2015)' 'Insidious: Chapter 3 (2015)'
```

```
'The Man From U.N.C.L.E. (2015)' 'Run All Night (2015)'
'Trainwreck (2015)' 'Selma (2014)' 'Ex Machina (2015)'
'Still Alice (2015)' 'Wild Tales (2014)' 'The End of the Tour (2015)'
'Red Army (2015)' 'When Marnie Was There (2015)'
'The Hunting Ground (2015)' 'The Boy Next Door (2015)' 'Aloha (2015)'
'The Loft (2015)' '5 Flights Up (2015)' 'Welcome to Me (2015)'
'Saint Laurent (2015)' 'Maps to the Stars (2015)'
"I'll See You In My Dreams (2015)" 'Timbuktu (2015)' 'About Elly (2015)'
'The Diary of a Teenage Girl (2015)'
'Kingsman: The Secret Service (2015)' 'Tomorrowland (2015)'
'The Divergent Series: Insurgent (2015)' 'Annie (2014)'
'Fantastic Four (2015)' 'Terminator Genisys (2015)'
'Pitch Perfect 2 (2015)' 'Entourage (2015)' 'The Age of Adaline (2015)'
'Hot Pursuit (2015)' 'The DUFF (2015)' 'Black or White (2015)'
'Project Almanac (2015)' 'Ricki and the Flash (2015)'
'Seventh Son (2015)' 'Mortdecai (2015)' 'Unfinished Business (2015)'
'American Ultra (2015)' 'True Story (2015)' 'Child 44 (2015)'
'Dark Places (2015)' 'Birdman (2014)' 'The Gift (2015)'
'Unfriended (2015)' 'Monkey Kingdom (2015)' 'Mr. Turner (2014)'
'Seymour: An Introduction (2015)' 'The Wrecking Crew (2015)'
'American Sniper (2015)' 'Furious 7 (2015)'
'The Hobbit: The Battle of the Five Armies (2014)' 'San Andreas (2015)'
'Straight Outta Compton (2015)' 'Vacation (2015)' 'Chappie (2015)'
'Poltergeist (2015)' 'Paper Towns (2015)' 'Big Eyes (2014)'
'Blackhat (2015)' 'Self/less (2015)' 'Sinister 2 (2015)'
'Little Boy (2015)' 'Me and Earl and The Dying Girl (2015)'
'Maggie (2015)' 'Mad Max: Fury Road (2015)' 'Spy (2015)'
'The SpongeBob Movie: Sponge Out of Water (2015)' 'Paddington (2015)'
'Dope (2015)' 'What We Do in the Shadows (2015)' 'The Overnight (2015)'
'The Salt of the Earth (2015)' 'Song of the Sea (2014)'
'Fifty Shades of Grey (2015)' 'Get Hard (2015)' 'Focus (2015)'
'Jupiter Ascending (2015)' 'The Gallows (2015)'
'The Second Best Exotic Marigold Hotel (2015)' 'Strange Magic (2015)'
'The Gunman (2015)' 'Hitman: Agent 47 (2015)' 'Cake (2015)'
'The Vatican Tapes (2015)' 'A Little Chaos (2015)'
'The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)'
'Escobar: Paradise Lost (2015)' 'Into the Woods (2014)'
'It Follows (2015)' 'Inherent Vice (2014)' 'A Most Violent Year (2014)'
"While We're Young (2015)" 'Clouds of Sils Maria (2015)'
```

```
'Testament of Youth (2015)' 'Infinitely Polar Bear (2015)'
 'Phoenix (2015)' 'The Wolfpack (2015)'
 'The Stanford Prison Experiment (2015)' 'Tangerine (2015)'
 'Magic Mike XXL (2015)' 'Home (2015)' 'The Wedding Ringer (2015)'
 'Woman in Gold (2015)' 'The Last Five Years (2015)'
 'Mission: Impossible â "Rogue Nation (2015)' 'Amy (2015)'
 'Jurassic World (2015)' 'Minions (2015)' 'Max (2015)'
 'Paul Blart: Mall Cop 2 (2015)' 'The Longest Ride (2015)'
 'The Lazarus Effect (2015)' 'The Woman In Black 2 Angel of Death (2015)'
 'Danny Collins (2015)' 'Spare Parts (2015)' 'Serena (2015)'
 'Inside Out (2015)' 'Mr. Holmes (2015)' "'71 (2015)"
 'Two Days, One Night (2014)' 'Gett: The Trial of Viviane Amsalem (2015)'
 'Kumiko, The Treasure Hunter (2015)']
                                                     51
[ 74
     85 80
             18 14 63
                         42 86
                                 99 89
                                         84
                                             82
                                                 99
                                                         90
                                                              9
                                                                 46
                                                                     59
  50
             59
                 68 60
                         85
                             99
                                         96
                                             92
                                                 96
                                                     89
                                                         92 10
     17 79
                                 92
                                     88
                                                                 19
                                                                     11
  52 71 51
             60 94 99
                         97
                             95
                                 75 50
                                             27
                                                     26
                                                             32
                                                                      8
                                         30
                                                  9
                                                         67
                                                                 54
 71
     39 34
             64 12 12
                        11
                             46
                                 45
                                     26
                                         26
                                             92 93
                                                     60
                                                         94
                                                             98 100
                                                                     93
                         30
                                    72
 72 81 61
             50
                 90
                     27
                             31
                                 55
                                         34
                                             20 13
                                                     20
                                                         81
                                                             54
                                                                 97
                                                                     93
 78
     98 87
             96
                 82
                         99
                             25
                                 29
                                     57
                                         26
                                                 62
                                                     17
                                                         17
                                                              7
                     96
                                             16
                                                                49
                                                                     13
  40
     67 52
             71
                 96
                     73
                         90
                             83
                                 89
                                     81
                                         80
                                             99
                                                 84
                                                     84
                                                         95
                                                             62
                                                                 45
                                                                     27
 52
     60
         92 97
                 71 54
                         35
                              5
                                         22
                                                 52
                                 31
                                     14
                                             77
                                                     18
                                                         98
                                                             87
                                                                 97
                                                                     97
 100 87]
Out[35]: Minions (2015)
                            54
        Leviathan (2014)
                            99
        dtype: int64
In [36]: # int index is also aviable
        series_custom = Series(rt_scores , index=film_names)
         series_custom[['Minions (2015)', 'Leviathan (2014)']]
        fiveten = series_custom[5:10]
        print(fiveten)
The Water Diviner (2015)
                               63
Irrational Man (2015)
                               42
Top Five (2014)
                               86
Shaun the Sheep Movie (2015)
                               99
Love & Mercy (2015)
                               89
dtype: int64
```

```
In [37]: original_index = series_custom.index.tolist()
         print (original_index)
         sorted_index = sorted(original_index)
         sorted_by_index = series_custom.reindex(sorted_index)
         print (sorted_by_index)
['Avengers: Age of Ultron (2015)', 'Cinderella (2015)', 'Ant-Man (2015)', 'Do You Believe? (2015)'
'71 (2015)
                                                     97
5 Flights Up (2015)
                                                     52
A Little Chaos (2015)
                                                     40
A Most Violent Year (2014)
                                                     90
About Elly (2015)
                                                     97
Aloha (2015)
                                                     19
American Sniper (2015)
                                                     72
American Ultra (2015)
                                                     46
Amy (2015)
                                                     97
                                                     27
Annie (2014)
Ant-Man (2015)
                                                     80
Avengers: Age of Ultron (2015)
                                                     74
Big Eyes (2014)
                                                     72
Birdman (2014)
                                                     92
Black Sea (2015)
                                                     82
Black or White (2015)
                                                     39
Blackhat (2015)
                                                     34
Cake (2015)
                                                     49
Chappie (2015)
                                                     30
Child 44 (2015)
                                                     26
Cinderella (2015)
                                                     85
Clouds of Sils Maria (2015)
                                                     89
Danny Collins (2015)
                                                     77
Dark Places (2015)
                                                     26
Do You Believe? (2015)
                                                     18
Dope (2015)
                                                     87
Entourage (2015)
                                                     32
Escobar: Paradise Lost (2015)
                                                     52
Ex Machina (2015)
                                                     92
Fantastic Four (2015)
                                                      9
                                                     . .
The Loft (2015)
                                                     11
The Longest Ride (2015)
                                                     31
```

The Man From U.N.C.L.E. (2015)	68
The Overnight (2015)	82
The Salt of the Earth (2015)	96
The Second Best Exotic Marigold Ho	otel (2015) 62
The SpongeBob Movie: Sponge Out of	Water (2015) 78
The Stanford Prison Experiment (20	015) 84
The Vatican Tapes (2015)	13
The Water Diviner (2015)	63
The Wedding Ringer (2015)	27
The Wolfpack (2015)	84
The Woman In Black 2 Angel of Deat	th (2015) 22
The Wrecking Crew (2015)	93
Timbuktu (2015)	99
Tomorrowland (2015)	50
Top Five (2014)	86
Trainwreck (2015)	85
True Story (2015)	45
Two Days, One Night (2014)	97
Unbroken (2014)	51
Unfinished Business (2015)	11
Unfriended (2015)	60
Vacation (2015)	27
Welcome to Me (2015)	71
What We Do in the Shadows (2015)	96
When Marnie Was There (2015)	89
While We're Young (2015)	83
Wild Tales (2014)	96
Woman in Gold (2015)	52
Length: 146, dtype: int64	
<pre>In [38]: sc2 = series_custom.sort_</pre>	index()
sc3 = series_custom.sort_	
#print(sc2[0:10])	
print(sc3[0:10])	
primo (200 [0.10])	
Paul Blart: Mall Cop 2 (2015)	5
Hitman: Agent 47 (2015)	7
Hot Pursuit (2015)	8
Fantastic Four (2015)	9
Taken 3 (2015)	9

10

The Boy Next Door (2015)

```
The Loft (2015)
                                  11
Unfinished Business (2015)
Mortdecai (2015)
                                  12
Seventh Son (2015)
                                 12
dtype: int64
In [39]: #The values in a Series object are treated as an idarray, the core data type in NumPy
         import numpy as np
         # Add each value with each other
         print (np.add(series_custom, series_custom))
         # Apply sine function to each value
         np.sin(series_custom)
         # Return the highest value (will return a single value not a Series)
         np.max(series_custom)
Avengers: Age of Ultron (2015)
                                                   148
Cinderella (2015)
                                                   170
Ant-Man (2015)
                                                   160
Do You Believe? (2015)
                                                    36
Hot Tub Time Machine 2 (2015)
                                                    28
The Water Diviner (2015)
                                                   126
Irrational Man (2015)
                                                    84
Top Five (2014)
                                                   172
Shaun the Sheep Movie (2015)
                                                   198
Love & Mercy (2015)
                                                   178
Far From The Madding Crowd (2015)
                                                   168
Black Sea (2015)
                                                   164
Leviathan (2014)
                                                   198
Unbroken (2014)
                                                   102
The Imitation Game (2014)
                                                   180
Taken 3 (2015)
                                                    18
Ted 2 (2015)
                                                    92
Southpaw (2015)
                                                   118
Night at the Museum: Secret of the Tomb (2014)
                                                   100
Pixels (2015)
                                                    34
McFarland, USA (2015)
                                                   158
Insidious: Chapter 3 (2015)
                                                   118
The Man From U.N.C.L.E. (2015)
                                                   136
Run All Night (2015)
                                                   120
```

Trainwreck (2015)	170
Selma (2014)	198
Ex Machina (2015)	184
Still Alice (2015)	176
Wild Tales (2014)	192
The End of the Tour (2015)	184
Clouds of Sils Maria (2015)	178
Testament of Youth (2015)	162
Infinitely Polar Bear (2015)	160
Phoenix (2015)	198
The Wolfpack (2015)	168
The Stanford Prison Experiment (2015)	168
Tangerine (2015)	190
Magic Mike XXL (2015)	124
Home (2015)	90
The Wedding Ringer (2015)	54
Woman in Gold (2015)	104
The Last Five Years (2015)	120
Mission: Impossible â " Rogue Nation (2015)	184
Amy (2015)	194
Jurassic World (2015)	142
Minions (2015)	108
Max (2015)	70
Paul Blart: Mall Cop 2 (2015)	10
The Longest Ride (2015)	62
The Lazarus Effect (2015)	28
The Woman In Black 2 Angel of Death (2015)	44
Danny Collins (2015)	154
Spare Parts (2015)	104
Serena (2015)	36
Inside Out (2015)	196
Mr. Holmes (2015)	174
'71 (2015)	194
Two Days, One Night (2014)	194
Gett: The Trial of Viviane Amsalem (2015)	200
Kumiko, The Treasure Hunter (2015)	174
Length: 146. dtvpe: int64	

Out[39]: 100 In [40]: #will actually return a Series object with a boolean value for each film series_custom > 50 series_greater_than_50 = series_custom[series_custom > 50] criteria_one = series_custom > 50 criteria_two = series_custom < 75</pre> both_criteria = series_custom[criteria_one & criteria_two] print (both_criteria) 74 Avengers: Age of Ultron (2015) The Water Diviner (2015) 63 Unbroken (2014) 51 Southpaw (2015) 59 Insidious: Chapter 3 (2015) 59 The Man From U.N.C.L.E. (2015) 68 Run All Night (2015) 60 5 Flights Up (2015) 52 Welcome to Me (2015) 71 Saint Laurent (2015) 51 Maps to the Stars (2015) 60 Pitch Perfect 2 (2015) 67 The Age of Adaline (2015) 54 The DUFF (2015) 71 Ricki and the Flash (2015) 64 Unfriended (2015) 60 American Sniper (2015) 72 The Hobbit: The Battle of the Five Armies (2014) 61 Paper Towns (2015) 55 72 Big Eyes (2014) Maggie (2015) 54 Focus (2015) 57 The Second Best Exotic Marigold Hotel (2015) 62 The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015) 67 Escobar: Paradise Lost (2015) 52 Into the Woods (2014) 71 Inherent Vice (2014) 73 Magic Mike XXL (2015) 62 Woman in Gold (2015) 52

60

The Last Five Years (2015)

```
Jurassic World (2015)
                                                                            71
Minions (2015)
                                                                            54
Spare Parts (2015)
                                                                            52
dtype: int64
In [41]: #data alignment same index
         rt_critics = Series(fandango['RottenTomatoes'].values, index=fandango['FILM'])
         rt_users = Series(fandango['RottenTomatoes_User'].values, index=fandango['FILM'])
         rt_mean = (rt_critics + rt_users)/2
         print(rt_mean)
FILM
Avengers: Age of Ultron (2015)
                                                   80.0
Cinderella (2015)
                                                   82.5
Ant-Man (2015)
                                                   85.0
Do You Believe? (2015)
                                                   51.0
Hot Tub Time Machine 2 (2015)
                                                   21.0
The Water Diviner (2015)
                                                   62.5
Irrational Man (2015)
                                                   47.5
                                                   75.0
Top Five (2014)
Shaun the Sheep Movie (2015)
                                                   90.5
Love & Mercy (2015)
                                                   88.0
Far From The Madding Crowd (2015)
                                                   80.5
Black Sea (2015)
                                                   71.0
Leviathan (2014)
                                                   89.0
Unbroken (2014)
                                                   60.5
The Imitation Game (2014)
                                                   91.0
Taken 3 (2015)
                                                   27.5
Ted 2 (2015)
                                                   52.0
Southpaw (2015)
                                                   69.5
Night at the Museum: Secret of the Tomb (2014)
                                                   54.0
Pixels (2015)
                                                   35.5
McFarland, USA (2015)
                                                   84.0
Insidious: Chapter 3 (2015)
                                                   57.5
The Man From U.N.C.L.E. (2015)
                                                   74.0
Run All Night (2015)
                                                   59.5
Trainwreck (2015)
                                                   79.5
Selma (2014)
                                                   92.5
Ex Machina (2015)
                                                   89.0
```

Still Alice (2015)	86.5
Wild Tales (2014)	94.0
The End of the Tour (2015)	90.5
Clouds of Sils Maria (2015)	78.0
Testament of Youth (2015)	80.0
Infinitely Polar Bear (2015)	78.0
Phoenix (2015)	90.0
The Wolfpack (2015)	78.5
The Stanford Prison Experiment (2015)	85.5
Tangerine (2015)	90.5
Magic Mike XXL (2015)	63.0
Home (2015)	55.0
The Wedding Ringer (2015)	46.5
Woman in Gold (2015)	66.5
The Last Five Years (2015)	60.0
Mission: Impossible â "Rogue Nation (2015)	91.0
Amy (2015)	94.0
Jurassic World (2015)	76.0
Minions (2015)	53.0
Max (2015)	54.0
Paul Blart: Mall Cop 2 (2015)	20.5
The Longest Ride (2015)	52.0
The Lazarus Effect (2015)	18.5
The Woman In Black 2 Angel of Death (2015)	23.5
Danny Collins (2015)	76.0
Spare Parts (2015)	67.5
Serena (2015)	21.5
Inside Out (2015)	94.0
Mr. Holmes (2015)	82.5
'71 (2015)	89.5
Two Days, One Night (2014)	87.5
Gett: The Trial of Viviane Amsalem (2015)	90.5
Kumiko, The Treasure Hunter (2015)	75.0
Length: 146, dtype: float64	

In [42]: import pandas as pd

```
#and will drop that column from the DataFrame
         #without the FILM column dropped
         fandango = pd.read_csv('fandango_score_comparison.csv')
        print (type(fandango))
         fandango_films = fandango.set_index('FILM', drop=False)
        print(fandango_films.index)
<class 'pandas.core.frame.DataFrame'>
Index(['Avengers: Age of Ultron (2015)', 'Cinderella (2015)', 'Ant-Man (2015)',
       'Do You Believe? (2015)', 'Hot Tub Time Machine 2 (2015)',
       'The Water Diviner (2015)', 'Irrational Man (2015)', 'Top Five (2014)',
       'Shaun the Sheep Movie (2015)', 'Love & Mercy (2015)',
       'The Woman In Black 2 Angel of Death (2015)', 'Danny Collins (2015)',
       'Spare Parts (2015)', 'Serena (2015)', 'Inside Out (2015)',
       'Mr. Holmes (2015)', ''71 (2015)', 'Two Days, One Night (2014)',
       'Gett: The Trial of Viviane Amsalem (2015)',
       'Kumiko, The Treasure Hunter (2015)'],
      dtype='object', name='FILM', length=146)
In [43]: # Slice using either bracket notation or loc[]
        fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
         fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"]
         # Specific movie
        fandango_films.loc['Kumiko, The Treasure Hunter (2015)']
         # Selecting list of movies
        movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)
         fandango_films.loc[movies]
         #When selecting multiple rows, a DataFrame is returned,
         #but when selecting an individual row, a Series object is returned instead
Out [43]:
                                                                            FILM \
        FILM
        Kumiko, The Treasure Hunter (2015) Kumiko, The Treasure Hunter (2015)
        Do You Believe? (2015)
                                                         Do You Believe? (2015)
         Ant-Man (2015)
                                                                  Ant-Man (2015)
```

	${\tt RottenTomatoes}$	RottenTomatoes_User \
FILM		
Kumiko, The Treasure Hunter (2015)	87	63
Do You Believe? (2015)	18	84
Ant-Man (2015)	80	90
	Metacritic Met	tacritic_User IMDB \
FILM		
Kumiko, The Treasure Hunter (2015)	68	6.4 6.7
Do You Believe? (2015)	22	4.7 5.4
Ant-Man (2015)	64	8.1 7.8
	Fandango_Stars	Fandango_Ratingvalue \
FILM		
Kumiko, The Treasure Hunter (2015)	3.5	3.5
Do You Believe? (2015)	5.0	4.5
Ant-Man (2015)	5.0	4.5
	RT_norm RT_use	er_norm \
FILM		
Kumiko, The Treasure Hunter (2015)	4.35	3.15
Do You Believe? (2015)	0.90	4.20
Ant-Man (2015)	4.00	4.50
		<pre>IMDB_norm \</pre>
FILM		
Kumiko, The Treasure Hunter (2015)		3.35
Do You Believe? (2015)		2.70
Ant-Man (2015)		3.90
	RT_norm_round	RT_user_norm_round \
FILM		
Kumiko, The Treasure Hunter (2015)	4.5	3.0
Do You Believe? (2015)	1.0	4.0
Ant-Man (2015)	4.0	4.5
	Metacritic_norm	n_round \
FILM	_	_
Kumiko, The Treasure Hunter (2015)		3.5
,		

Do You Believe? (2015) Ant-Man (2015)	1.0	
FILM	Metacritic_user_norm_	round \
Kumiko, The Treasure Hunter (2015)		3.0
Do You Believe? (2015)		2.5
Ant-Man (2015)		4.0
	IMDB_norm_round \	
FILM Vimila The Treedure Hunter (2015)	3.5	
Kumiko, The Treasure Hunter (2015) Do You Believe? (2015)	2.5	
Ant-Man (2015)	4.0	
FILM	Metacritic_user_vote_	count \
Kumiko, The Treasure Hunter (2015)		19
Do You Believe? (2015)		31
Ant-Man (2015)		627
ETIM	IMDB_user_vote_count	Fandango_votes \
FILM Kumiko, The Treasure Hunter (2015)	5289	41
Do You Believe? (2015)	3136	1793
Ant-Man (2015)	103660	12055
	Fandango_Difference	
FILM Kumiko, The Treasure Hunter (2015)	0.0	
Do You Believe? (2015)	0.5	
Ant-Man (2015)	0.5	
[3 rows x 22 columns]		
#The apply() method in Pandas allow	us us to specify Python	logic
#The apply() method requires you to pass in a vectorized operation		
#that can be applied over each Series object.		
import numpy as np		

In [44]:

```
# returns the data types as a Series
         types = fandango_films.dtypes
         #print types
         # filter data types to just floats, index attributes returns just column names
         float_columns = types[types.values == 'float64'].index
         # use bracket notation to filter columns to just float columns
         float_df = fandango_films[float_columns]
         #print float_df
         # `x` is a Series object representing a column
         deviations = float df.apply(lambda x: np.std(x))
         print(deviations)
Metacritic_User
                              1.505529
IMDB
                              0.955447
Fandango_Stars
                              0.538532
Fandango_Ratingvalue
                              0.501106
RT_norm
                              1.503265
RT_user_norm
                              0.997787
Metacritic_norm
                              0.972522
Metacritic_user_nom
                              0.752765
{\tt IMDB\_norm}
                              0.477723
                              1.509404
RT_norm_round
RT_user_norm_round
                              1.003559
Metacritic_norm_round
                              0.987561
Metacritic_user_norm_round
                              0.785412
IMDB_norm_round
                              0.501043
Fandango_Difference
                              0.152141
dtype: float64
In [45]: rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
         rt_mt_user.apply(lambda x: np.std(x), axis=1)
Out[45]: FILM
         Avengers: Age of Ultron (2015)
                                                            0.375
         Cinderella (2015)
                                                            0.125
         Ant-Man (2015)
                                                            0.225
         Do You Believe? (2015)
                                                            0.925
         Hot Tub Time Machine 2 (2015)
                                                            0.150
         The Water Diviner (2015)
                                                            0.150
```

Irrational Man (2015)	0.575
Top Five (2014)	0.100
Shaun the Sheep Movie (2015)	0.150
Love & Mercy (2015)	0.050
Far From The Madding Crowd (2015)	0.050
Black Sea (2015)	0.150
Leviathan (2014)	0.175
Unbroken (2014)	0.125
The Imitation Game (2014)	0.250
Taken 3 (2015)	0.000
Ted 2 (2015)	0.175
Southpaw (2015)	0.050
Night at the Museum: Secret of the Tomb (2014)	0.000
Pixels (2015)	0.025
McFarland, USA (2015)	0.425
Insidious: Chapter 3 (2015)	0.325
The Man From U.N.C.L.E. (2015)	0.025
Run All Night (2015)	0.350
Trainwreck (2015)	0.350
Selma (2014)	0.375
Ex Machina (2015)	0.175
Still Alice (2015)	0.175
Wild Tales (2014)	0.100
The End of the Tour (2015)	0.350
Clouds of Sils Maria (2015)	0.100
Testament of Youth (2015)	0.000
Infinitely Polar Bear (2015)	0.075
Phoenix (2015)	0.025
The Wolfpack (2015)	0.075
The Stanford Prison Experiment (2015)	0.050
Tangerine (2015)	0.325
Magic Mike XXL (2015)	0.250
Home (2015)	0.200
The Wedding Ringer (2015)	0.825
Woman in Gold (2015)	0.225
The Last Five Years (2015)	0.225
Mission: Impossible â "Rogue Nation (2015)	0.250
Amy (2015)	0.075
,	•

Jurassic World (2015)	0.275
Minions (2015)	0.125
Max (2015)	0.350
Paul Blart: Mall Cop 2 (2015)	0.300
The Longest Ride (2015)	0.625
The Lazarus Effect (2015)	0.650
The Woman In Black 2 Angel of Death (2015)	0.475
Danny Collins (2015)	0.100
Spare Parts (2015)	0.300
Serena (2015)	0.700
Inside Out (2015)	0.025
Mr. Holmes (2015)	0.025
'71 (2015)	0.175
Two Days, One Night (2014)	0.250
Gett: The Trial of Viviane Amsalem (2015)	0.200
Kumiko, The Treasure Hunter (2015)	0.025
Length: 146, dtype: float64	

In []: