图算法篇: 单源最短路径问题之 Dijkstra算法

童咏昕

北京航空航天大学 计算机学院

中国大学MOOC北航《算法设计与分析》

算法思想

算法实例

算法分析

算法性质

• 从知春路到其他站点,如何安排路线?

使用广度优先搜索求最短路径

• 从知春路到其他站点,如何安排路线?

问题: 如何计算带权图中源点到所有其他顶点的最短路径?

单源最短路径问题 (边权为正)

Single Source Shortest Paths Problem with Positive Weights

输入

- 带权图G=<V,E,W>,其中 $w(u,v)\geq 0$ (图中所有边权为正), $(u,v)\in E$
- 源点编号s

单源最短路径问题 (边权为正)

Single Source Shortest Paths Problem with Positive Weights

输入

- 带权图 $G = \langle V, E, W \rangle$,其中 $w(u, v) \geq 0$ (图中所有边权为正), $(u, v) \in E$
- 源点编号s

输出

• 源点s到所有其他顶点t的最短距离 $\delta(s,t)$ 和最短路径< s, ..., t >

算法思想

算法实例

算法分析

算法性质

Edsger W. Dijkstra 1972, Netherlands ALGOL之父 提出单源最短路径Dijkstra算法

• 辅助数组

- dist表示距离上界(估计距离)
 - 。 源点s, dist[s] = 0; 其他顶点u, dist[u] 初始化为∞

Edsger W. Dijkstra

V	S	i	W	u	\boldsymbol{v}
dist	0	∞	∞	∞	∞

• 辅助数组

- dist表示距离上界(估计距离)
 - 。 源点s, dist[s] = 0; 其他顶点u, dist[u]初始化为∞
 - o dist[u]: 源点s到顶点u的距离上界, $\delta(s,u) \leq dist[u]$

Edsger W. Dijkstra

V	S	i	W	u	\boldsymbol{v}
dist	0	∞	∞	∞	∞
δ	0	2	1	3	4

真实最短距离。

• 辅助数组

- dist表示距离上界(估计距离)
 - 。 源点s, dist[s] = 0; 其他顶点u, dist[u] 初始化为∞
 - δ dist[u]: 源点s到顶点u的距离上界, $\delta(s,u) \leq dist[u]$
- color表示顶点状态
 - 。黑色: 到顶点u最短路已被确定

Edsger W. Dijkstra

V	S	i	W	u	v
dist	0 ×	∞	∞	∞	∞
δ	0	2	1	3	4

• 辅助数组

- dist表示距离上界(估计距离)
 - 。 源点s, dist[s] = 0; 其他顶点u, dist[u]初始化为∞
 - o dist[u]: 源点s到顶点u的距离上界, $\delta(s,u) \leq dist[u]$
- color表示顶点状态
 - 。黑色: 到顶点u最短路已被确定
 - o 白色: 到顶点u最短路尚未确定

Edsger W. Dijkstra

 ∞

u

 ∞

• 辅助数组

- dist表示距离上界(估计距离)
 - 。 源点s, dist[s] = 0; 其他顶点u, dist[u] 初始化为∞
 - δ dist[u]: 源点s到顶点u的距离上界, $\delta(s,u) \leq dist[u]$
- color表示顶点状态
 - 。黑色: 到顶点u最短路已被确定
 - o 白色: 到顶点u最短路尚未确定
- pred表示前驱顶点
 - (pred[u],u)为最短路径上的边

Edsger W. Dijkstra

• 核心思想

• 步骤1: 新建空的黑色顶点集 V_A

Edsger W. Dijkstra

• 核心思想

• 步骤1: 新建空的黑色顶点集 V_A

● 步骤2: 选择一个白色顶点变为黑色(到该顶点最短路被确定)

Edsger W. Dijkstra

 V_A 中顶点

 $V - V_A$ 中顶点

• 核心思想

• 步骤1: 新建空的黑色顶点集 V_A

● 步骤2: 选择一个白色顶点变为黑色(到该顶点最短路被确定)

● 步骤3: 重复步骤2

Edsger W. Dijkstra

 V_A 中顶点

 $V - V_A$ 中顶点

• 核心思想

• 步骤1: 新建空的黑色顶点集 V_A

● 步骤2: 选择一个白色顶点变为黑色(到该顶点最短路被确定)

步骤3: 重复步骤2,直至所有顶点均为黑色

Edsger W. Dijkstra

• 核心思想

• 步骤1: 新建空的黑色顶点集 V_A

步骤2: 选择一个白色顶点变为黑色(到该顶点最短路被确定)

• 步骤3: 重复步骤2, 直至所有顶点均为黑色

Edsger W. Dijkstra

问题: 选择哪个白色顶点变为黑色?

 V_A 中顶点

 $V - V_A$ 中顶点

• 核心思想

● 步骤1: 新建空的黑色顶点集V_A

步骤2: 选择一个白色顶点变为黑色(到该顶点最短路被确定)

● 步骤3: 重复步骤2, 直至所有顶点均为黑色

Edsger W. Dijkstra

问题: 选择哪个白色顶点变为黑色?

问题: 如何更新每顶点的估计距离?

 V_A 中顶点

 $V - V_A$ 中顶点

• 问题1: 选择哪个白色顶点变为黑色? 采用贪心策略

Edsger W. Dijkstra

- 问题1: 选择哪个白色顶点变为黑色? 采用贪心策略
 - 对每个白色顶点 $y \in V V_A$,都有一个估计距离dist[y]

Edsger W. Dijkstra

$oldsymbol{V}$	S	i	W	u	$oldsymbol{v}$
dist	0	2	1,5	∞	6
δ	0	2	1	3	4

- 问题1: 选择哪个白色顶点变为黑色? 采用贪心策略
 - 对每个白色顶点 $y \in V V_A$,都有一个估计距离dist[y]
 - 选择估计距离最小的顶点v, $dist[v] \leq dist[y]$, $v, y \in V V_A$

Edsger W. Dijkstra

V	S	i	w	u	$oldsymbol{v}$
dist	0	2	1,5	∞	6
δ	0	2	1	3	4

- 问题1: 选择哪个白色顶点变为黑色? 采用贪心策略
 - 对每个白色顶点 $y \in V V_A$,都有一个估计距离dist[y]
 - 选择估计距离最小的顶点v, $dist[v] \leq dist[y]$, $v,y \in V V_A$

Edsger W. Dijkstra

V	S	i	W	u	\boldsymbol{v}
dist	0	S 2	1,5	∞	6
δ	0	2	1	3	4

• 问题2: 如何更新每顶点的估计距离?

Edsger W. Dijkstra

- 问题2: 如何更新每顶点的估计距离?
 - 当前到顶点v的最短路径: $\langle s, w, v \rangle$, 距离为dist[v]

Edsger W. Dijkstra

- 问题2: 如何更新每顶点的估计距离?
 - 当前到顶点v的最短路径: $\langle s, w, v \rangle$,距离为dist[v]
 - 通过顶点u的新路径: $\langle s, ..., u, v \rangle$, 距离为dist[u] + w(u, v)

Edsger W. Dijkstra

- 问题2: 如何更新每顶点的估计距离?
 - 当前到顶点v的最短路径: $\langle s, w, v \rangle$,距离为dist[v]
 - 通过顶点u的新路径: $\langle s, ..., u, v \rangle$, 距离为dist[u] + w(u, v)
 - 如果新路径更短(dist[u] + w(u,v) < dist[v])
 - o 更新dist[v]: dist[v] = dist[u] + w(u, v)

Edsger W. Dijkstra

- 问题2: 如何更新每顶点的估计距离?
 - 当前到顶点v的最短路径: $\langle s, w, v \rangle$, 距离为dist[v]
 - 通过顶点u的新路径: $\langle s, ..., u, v \rangle$, 距离为dist[u] + w(u, v)
 - 如果新路径更短(dist[u] + w(u,v) < dist[v])
 - o 更新dist[v]: dist[v] = dist[u] + w(u, v)

松弛操作

Edsger W. Dijkstra

- 问题2: 如何更新每顶点的估计距离?
 - 当前到顶点v的最短路径: $\langle s, w, v \rangle$,距离为dist[v]
 - 通过顶点u的新路径: $\langle s, ..., u, v \rangle$, 距离为dist[u] + w(u, v)
 - 如果新路径更短(dist[u] + w(u,v) < dist[v])
 - o 更新dist[v]: dist[v] = dist[u] + w(u, v)

松弛操作

Edsger W. Dijkstra

 $V - V_A$ 中顶点

松弛操作的效果: $dist[v] \leq dist[u] + w(u, v)$

算法思想

算法实例

算法分析

算法性质

V of	S	t	\boldsymbol{x}	y	Z
color	W	W	W	W	W
pred	N	N	N	N	N
dist	∞	∞	∞	∞	∞

 V_A 中顶点

 $V - V_A$ 中顶点

u 被选中顶点

V	S	t	\boldsymbol{x}	y	\boldsymbol{z}
color	W	W	W	W	W
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

 V_A 中顶点

 $V - V_A$ 中顶点

V S	S	t	x	y	Z
color	W	W	W	W	W
pred	N	S	N	S	N
dist	0	8	∞	5	∞

 $V - V_A$ 中顶点

V	S	t	\boldsymbol{x}	y	Z
color	В	W	W	W	\mathbf{W}
pred	N	S	N	S	N
dist		8	∞	5	∞
					-½

 $V - V_A$ 中顶点

V S	S	t	\boldsymbol{x}	y	Z
color		W	W	W	W
pred	N	S	y	S	y
dist		8	14	5	7

 $V - V_A$ 中顶点

V	S	t	\boldsymbol{x}	y	\boldsymbol{Z}
color		W	W	В	\mathbf{W}
pred	N	S	y	S	y
dist		8	14	5	7
				'/_\	-½

 $V - V_A$ 中顶点

V	S	t	x	y	Z
color	В	W	W	В	W
pred	N	S	Z	S	y
dist		8	13	5	7

 $V - V_A$ 中顶点

V S	S	t	x	y	Z
color	В	W	W	B	B
pred	N	S	Z	S	y
dist		8	13	5	7

 V_A 中顶点

 $V - V_A$ 中顶点

	I	$\boldsymbol{\mathcal{X}}$	y	Z
В	W	W	В	В
N	S	Z	S	y
0	8	13		
	B N 0			

 V_A 中顶点

 $V - V_A$ 中顶点

V S	S	t	x	y	\boldsymbol{z}
color	В	W	W	В	B
pred	N	S	t	S	y
dist		8	9	5	7

 V_A 中顶点

 $V - V_A$ 中顶点

V	S	t	\boldsymbol{x}	y	Z
color	В	В	W	В	B
pred	N	S	t	S	y
dist		8	9	5	7
		-1/2/	-7		

 V_A 中顶点

 $V - V_A$ 中顶点

V	S	t	\boldsymbol{x}	y	Z
color		B	W	В	B
pred	N	S	t	S	y
dist		8	9	5	7
		-//	-7		

 V_A 中顶点

 $V - V_A$ 中顶点

V	S	t	x	y	\boldsymbol{z}
color	В	В	В	В	B
pred	N	S	t	S	y
dist					

 V_A 中顶点

 $V - V_A$ 中顶点

V o	S	t	x	y	Z
color	В	В	В	В	В
pred	N	S	t	S	y
dist	0	8	9	5	7

 V_A 中顶点

 $V - V_A$ 中顶点

问题背景

算法思想

算法实例

算法分析

算法性质

• Dijkstra(G, s)

```
输入: \[ egin{align*} & \mathbf{4} \ \mathbf{A} \ \mathbf{C} \ \mathbf{C}
```


• Dijkstra(G, s)

```
输入: 图G=< V, E, W>, 源点s 输出: 单源最短路径P 新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|] //初始化 for u\in V do \begin{array}{c} color[u]\leftarrow WHITE\\ dist[u]\leftarrow \infty\\ pred[u]\leftarrow NULL \end{array} fend \begin{array}{c} color[s]\leftarrow VULL \end{array} 源点到自身距离为0
```


\bullet Dijkstra(G, s)

```
-//执行单源最短路径算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
         end
     end
    for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
            dist[u] \leftarrow dist[rec] + w(rec, u)
           pred[u] \leftarrow rec
         end
     end
    color[rec] \leftarrow BLACK
 end
```

依次计算源点到各顶点的最短路

\bullet Dijkstra(G, s)

```
//执行单源最短路径算法
\mathbf{for} \ \underline{i} \leftarrow 1 \ to \ |V| \ \mathbf{do}
    \overline{min}\overline{Dist} \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to V \mid \mathbf{do}
         if color[j] \neq BLACK and dist[j] < minDist then
              minDist \leftarrow dist[j]
              rec \leftarrow j
          end
     end
     for u \in G.Adj[rec] do
         if dist[rec] + w(rec, u) < dist[u] then
              dist[u] \leftarrow dist[rec] + w(rec, u)
            pred[u] \leftarrow rec
          end
     end
    color[rec] \leftarrow BLACK
end
```

minDist记录最小估计距离 rec记录距源点最近的白色顶点

\bullet Dijkstra(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
   for j \leftarrow 1 \ to \ |V| \ \mathbf{do}
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
            dist[u] \leftarrow dist[rec] + w(rec, u)
           pred[u] \leftarrow rec
        end
    end
   color[rec] \leftarrow BLACK
end
```

选择距源点最近的白色顶点

\bullet Dijkstra(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
         if color[j] \neq BLACK and dist[j] < minDist then
              minDist \leftarrow dist[j]
              rec \leftarrow j
         end
    for u \in G.Adj[rec] do
         If \overline{dist}[\overline{rec}] + w(\overline{rec}, \overline{u}) < \overline{dist}[\overline{u}] then
              dist[u] \leftarrow dist[rec] + w(rec, u)
            pred[u] \leftarrow rec
         end
    end
    color[rec] \leftarrow BLACK
end
```

对rec出发的边进行松弛

\bullet Dijkstra(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
             minDist \leftarrow dist[j]
             rec \leftarrow j
         end
    end
    for u \in G.Adj[rec] do
        \overline{\mathbf{if}} \ dist[rec] + w(rec, u) < dist[u] \ \mathbf{then}
             dist[u] \leftarrow dist[rec] + w(rec, u)
           pred[u] \leftarrow rec
         \mathbf{end}
    \mathbf{end}
    color[rec] \leftarrow BLACK
end
```

松弛操作

$\mathbf{Dijkstra}(G, s)$

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
        -|-dist[u] \leftarrow dist[ree] + w(ree, u) - -
          pred[u] \leftarrow rec
        end
    \mathbf{end}
   color[rec] \leftarrow BLACK
end
```

记录前驱顶点

\bullet Dijkstra(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
   minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
   for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
            dist[u] \leftarrow dist[rec] + w(rec, u)
          pred[u] \leftarrow rec
        end
   color[rec] \leftarrow BLACK
end.
```

标记处理完成


```
输入: 图G = \langle V, E, W \rangle, 源点s 输出: 单源最短路径P 新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|] //初始化 for u \in V do  \begin{vmatrix} color[u] \leftarrow WHITE \\ dist[u] \leftarrow \infty \\ pred[u] \leftarrow NULL \end{vmatrix} end  dist[s] \leftarrow 0
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
   minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
       if color[j] \neq BLACK and dist[j] < minDist then
                                                                           O(|V|)
           minDist \leftarrow dist[j]
           rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
           dist[u] \leftarrow dist[rec] + w(rec, u)
          pred[u] \leftarrow rec
        end
    end
   color[rec] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
   minDist \leftarrow \infty
   rec \leftarrow 0
   for j \leftarrow 1 to |V| do
       if color[j] \neq BLACK and dist[j] < minDist then
                                                                          O(|V|)
           minDist \leftarrow dist[j]
           rec \leftarrow j
        end
    end
   for u \in G.Adj[rec] do
       if dist[rec] + w(rec, u) < dist[u] then
           dist[u] \leftarrow dist[rec] + w(rec, u)
                                                                          O(\deg(u))
          pred[u] \leftarrow rec
        end
    end
   color[rec] \leftarrow BLACK
end
```



```
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
   rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
                                                                            O(|V|)
            minDist \leftarrow dist[j]
            rec \leftarrow j
                                                                               O(|V|\cdot|V|) = O(|V|^2)
        end
    end
    for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
            dist[u] \leftarrow dist[rec] + w(rec, u)
                                                                            O(\deg(u))
          pred[u] \leftarrow rec
        end
    end
   color[rec] \leftarrow BLACK
end
```



```
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
                                                                               O(|V|)
            minDist \leftarrow dist[j]
            rec \leftarrow j
                                                                                  O(|V|\cdot|V|) = O(|V|^2)
        end
    \mathbf{end}
    for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
            dist[u] \leftarrow dist[rec] + w(rec, u)
                                                                               O(\deg(u))
           pred[u] \leftarrow rec
        end
    \mathbf{end}
    color[rec] \leftarrow BLACK
                                                                                             \deg\left(u\right)=2|E|
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
   minDist \leftarrow \infty
   rec \leftarrow 0
   for j \leftarrow 1 to |V| do
       if color[j] \neq BLACK and dist[j] < minDist then
           minDist \leftarrow dist[j]
           rec \leftarrow j
        end
    end
   for u \in G.Adj[rec] do
       if dist[rec] + w(rec, u) < dist[u] then
           dist[u] \leftarrow dist[rec] + w(rec, u)
          pred[u] \leftarrow rec
        end
    end
   color[rec] \leftarrow BLACK
                                             O(|V|^2)
end
```


 \bullet Dijkstra(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| do
   minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
       if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
           rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if dist[rec] + w(rec, u) < dist[u] then
            dist[u] \leftarrow dist[rec] + w(rec, u)
          pred[u] \leftarrow rec
        end
    end
   color[rec] \leftarrow BLACK
end
```


使用优先队列,加速查询

数据结构: 优先队列

优先队列

- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
 - Q. Insert() 时间复杂度O(logn)
 - 。 Q. ExtractMin() □ 时间复杂度O(logn)
 - Q. DecreaseKey() 时间复杂度O(logn)


```
输入: 图G = \langle V, E, W \rangle, 源点s
 输出: 单源最短路径P
 新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
 新建空优先队列Q
 for u \in V do
                                                      初始化辅助数组
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
\mathbf{end}
 \overline{dist[s]} \leftarrow 0
 Q.Insert(V, dist)
```



```
输入: 图G = \langle V, E, W \rangle, 源点s
输出: 单源最短路径P
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
dist[s] \leftarrow 0
                                              初始化源点和优先队列
Q.Insert(V,dist)
```



```
_//执行单源最短路径算法_
while 优先队列Q非空 do
                                              依次计算到各点最短路
  \neg v \leftarrow Q.ExtractMin()
    for u \in G.adj[v] do
       if dist[v] + w(v, u) < dist[u] then
           dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
           Q.DecreaseKey((u, dist[u]))
       end
    end
    color[v] \leftarrow BLACK
 end
```



```
//执行单源最短路径算法
_while_优先队列Q非空 do-
    v \leftarrow Q.ExtractMin()
                                         选择最小估计距离的白色顶点
    for u \in G.udj[v] do
       if dist[v] + w(v, u) < dist[u] then
           dist[u] \leftarrow dist[v] + w(v, u)
           pred[u] \leftarrow v
           Q.DecreaseKey((u, dist[u]))
        end
    end
    color[v] \leftarrow BLACK
 end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
                                             对u出发的边进行松弛
   for u \in G.adj[v] do
      if dist[v] + w(v,u) < dist[u] then
         dist[u] \leftarrow dist[v] + w(v, u)
         pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
      end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
                                          松弛操作,更新距离上界
         dist[u] \leftarrow dist[v] + w(v, u)
        pred[u] \leftarrow v
         Q.DecreaseKey((u, dist[u]))
      end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
                                                标记顶点计算完成
   color[v] \leftarrow BLACK
end
```



```
输入: 图G = \langle V, E, W \rangle, 源点s
输出: 单源最短路径P
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
                                    O(|V|)
  pred[u] \leftarrow NULL
end
dist[s] \leftarrow 0
Q.Insert(V, dist)
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
                                                                    O(\log |V|)
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
                                              O(\log |V|)
          Q.DecreaseKey((u, dist[u])) -
       end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行单源最短路径算法
while 优先队列Q非空 do
                                                                    O(\log |V|)
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
                                                             -O(\deg(u) \cdot |\log|V|)
                                              O(\log |V|)
          Q.DecreaseKey((u, dist[u])) -
       end
   end
   color[v] \leftarrow BLACK
end
```



```
O(|V|\log|V|)
//执行单源最短路径算法
while 优先队列Q非空 do
                                                                     O(\log |V|)
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
       if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
          pred[u] \leftarrow v
                                                              -O(\deg(u) \cdot |\log|V|)
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
end
```


$$\sum_{u\in V} \deg(u) = 2|E|$$


```
//执行单源最短路径算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.adj[v] do
      if dist[v] + w(v, u) < dist[u] then
          dist[u] \leftarrow dist[v] + w(v, u)
         pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
      end
   end
   color[v] \leftarrow BLACK
                                        时间复杂度O(|E| \cdot \log |V|)
end
```


问题背景

算法思想

算法实例

算法分析

算法性质

• 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 证明:

ullet 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u]
eq \delta(s,u)$

• 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 证明:

• 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$

• 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$

• 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 证明:

• 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$

• 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$

• 应存在一条长度为 $\delta(s,u)$ 的从 s到u的最短路径,不妨设其为< s, ..., x, y, ..., u>,其中边(x,y)横跨 $< V_A, V-V_A>$, $x\in V_A, y\in V-V_A$

• 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 证明:

• 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$

• 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$

• 应存在一条长度为 $\delta(s,u)$ 的从 s到u的最短路径,不妨设其为< s,...,x,y,...,u>,

其中边(x,y)横跨 $< V_A, V - V_A > , x \in V_A, y \in V - V_A$

• 算法令 V_A 中的顶点满足: $dist[x] = \delta(s,x), x \in V_A$

• 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$

• 证明:

• 采用反证法,假设Dijkstra算法将顶点u添加到 V_A 时, $dist[u] \neq \delta(s,u)$

• 由于dist[u]作为 $\delta(s,u)$ 的上界,故 $dist[u] > \delta(s,u)$

• 应存在一条长度为 $\delta(s,u)$ 的从 s到u的最短路径,不妨设其为< s,...,x,y,...,u>,

其中边(x,y)横跨 $< V_A, V - V_A > , x \in V_A, y \in V - V_A$

• 算法令 V_A 中的顶点满足: $dist[x] = \delta(s,x), x \in V_A$

问题: dist[y]和 $\delta(s,y)$ 具有何种关系?

- 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - < s, ..., x, y > 是最短路径< s, ..., x, y, ..., u >的子路径

- 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - < s, ..., x, y > 是最短路径< s, ..., x, y, ..., u >的子路径,故:

$$\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y) \quad (公式1)$$

- 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - < s, ..., x, y > 是最短路径< s, ..., x, y, ..., u >的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y) \quad (公式1)$
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)

- 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - < s, ..., x, y > 是最短路径< s, ..., x, y, ..., u >的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y) \quad (公式1)$
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)
 - 合并上述公式1和公式2,可得 $dist[y] = \delta(s, y)$

- 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - < s, ..., x, y > 是最短路径< s, ..., x, y, ..., u >的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y) \quad (公式1)$
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)
 - 合并上述公式1和公式2,可得 $dist[y] = \delta(s, y)$
 - 最短路径 $\langle s, ..., x, y, ..., u \rangle$ 中, y出现在u之前,故:
 - o $dist[u] > \delta(s, u) \ge \delta(s, y) = dist[y]$

- 定理: Dijkstra算法中,顶点u被添加到 V_A 时, $dist[u] = \delta(s,u)$
- 证明(接上页):
 - < s, ..., x, y > 是最短路径< s, ..., x, y, ..., u >的子路径,故:
 - $\delta(s,y) = \delta(s,x) + w(x,y) = dist[x] + w(x,y) \quad (公式1)$
 - 算法对顶点x出发的所有边(包括边(x,y))已进行松弛操作,故:
 - o $dist[y] \leq dist[x] + w(x,y)$ (公式2)
 - 合并上述公式1和公式2,可得 $dist[y] = \delta(s, y)$
 - 最短路径 $\langle s, ..., x, y, ..., u \rangle$ 中, y出现在u之前,故:
 - o $dist[u] > \delta(s, u) \ge \delta(s, y) = dist[y]$
 - dist[u] > dist[y], u ≠ y, u不应是下一个被添加顶点, 故产生矛盾

x

	广度优先搜索	Dijkstra算法
适用范围	无权图	带权图 (所有边权为正)
数据结构	队列	优先队列
运行时间	O(V + E)	$O(E \cdot \log V)$

