

FOOTBALL FLIGHT CURVE PREDICTION

GET THOSE BEAUTIFUL CURVES

Problem Statement

A football coach wants to leverage technology to help promote his business and has asked me to come up with something useful that he can use easily.

The type of the flight of the ball depends on many different factors

They include the following and many other factors:

- The angle of approach
- The run-up
- The angle of body parts
- Where the foot strike the ball
- Where the ball is struck
- The kick follow-through

Different situations call for different kind of football kicks.

The goal is to create a feedback application which returns information on the user on their football kicks to give the everyday footballer more tools to analyze themselves for training purposes.

This project will only focus on curve balls.

APPROACH METHODOLOGY

DATA COLLECTION

Youtube

Collected almost 150 videos of free kicks

Collected ~30 frames

Mediapipe, OpenCV and Davinci Resolve

Mediapipe's Pose Estimation

0. nose 17. left_pinky 1. left_eye_inner 18. right_pinky 2. left_eye 19. left_index 3. left_eye_outer 20. right_index 4. right_eye_inner 21. left_thumb 5. right_eye 22. right_thumb 23. left_hip 6. right_eye_outer 7. left_ear 24. right_hip 8. right_ear 25. left_knee 9. mouth_left 26. right_knee 10. mouth_right 27. left_ankle 11. left_shoulder 28. right_ankle 12. right_shoulder 29. left_heel 13. left_elbow 30. right_heel 31. left_foot_index 14. right_elbow 15. left wrist 32. right_foot_index

VIDEO

As there were many people in football matches, mediapipe had trouble focusing on the target

MASKING

Decision was made to gather angles from single frames instead of the whole video.

Masking was done manually in Da Vinci Resolve

MASKED FRAMES

Frames were stringed together into a video and loaded into notebooks

Data Collection

Curved Video

25

Straight Video

	rightankle	leftankle	rightknee	leftknee	righthip	lefthip	rightshoulder	leftshoulder
0	174.74	177.54	179.82	179.36	176.70	174.20	16.51	19.09
- 1	176.28	165.74	176.93	176.13	172.89	179.28	25.28	14.28
2	169.27	168.83	174.27	178.06	179.90	172.50	14.30	19.82
3	176.61	154.01	177.29	167.83	162.96	167.97	18.23	6.98
4	174.05	170.13	173.36	177.71	176.88	175.12	13.58	12.62
56	129.30	125.25	148.42	148.43	136.94	149.95	3.78	12.56
57	113.34	128.69	149.08	146.32	137.01	146.76	0.54	11.54
58	86.42	106.52	135.56	163.05	136.04	165.35	3.72	21.80
59	132.82	127.81	167.21	154.73	149.75	144.62	7.61	21.71
60	122.03	117.99	139.77	162.23	135.55	161.85	1.75	15.99

Cleaning & EDA

Exploratory Data Analysis

Not much correlation between lower body angles and curve shots

But interestingly, the most correlated feature to a curve ball is the shoulder angle

As expected even after polynomial feature engineering, the highest correlations were features with right shoulder.

Modelling

Baseline score is 57.7%

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
et	Extra Trees Classifier	0.8400	0.9133	0.8700	0.8512	0.8517	0.6680	0.6822	0.0250
rf	Random Forest Classifier	0.8389	0.8997	0.9033	0.8245	0.8568	0.6663	0.6861	0.0290
lightgbm	Light Gradient Boosting Machine	0.8189	0.8898	0.8167	0.8614	0.8229	0.6300	0.6471	0.0130
knn	K Neighbors Classifier	0.7978	0.8871	0.7767	0.8540	0.8014	0.5937	0.6122	0.0040
xgboost	Extreme Gradient Boosting	0.7778	0.8730	0.7933	0.8252	0.7874	0.5407	0.5669	0.0560
qda	Quadratic Discriminant Analysis	0.7678	0.8028	0.9833	0.7189	0.8263	0.5022	0.5514	0.0020
gbc	Gradient Boosting Classifier	0.7578	0.8390	0.8000	0.7769	0.7806	0.5042	0.5220	0.0120
dt	Decision Tree Classifier	0.7478	0.7417	0.7833	0.7721	0.7706	0.4876	0.5016	0.0020
ridge	Ridge Classifier	0.7367	0.0000	0.7033	0.7888	0.7323	0.4687	0.4844	0.0020
lda	Linear Discriminant Analysis	0.7267	0.7035	0.7033	0.7755	0.7262	0.4454	0.4603	0.0020
Ir	Logistic Regression	0.7256	0.7142	0.7033	0.7688	0.7226	0.4540	0.4691	0.0230
ada	Ada Boost Classifier	0.6967	0.7972	0.7167	0.7445	0.7219	0.3886	0.4010	0.0120
svm	SVM - Linear Kernel	0.6444	0.0000	0.7633	0.5492	0.6258	0.2355	0.2716	0.0020
nb	Naive Bayes	0.6267	0.6778	0.6100	0.6821	0.6306	0.2663	0.2693	0.0020

Extra trees classifier provided highest accuracy and AUC with similar F1 score to Random Forest

Model Comparison

	Accuracy	AUC	Precision	Recall	FI Score
Extra Trees	84%	0.9133	0.8512	0.87	0.8517
Bagged Extra Trees	85%	0.926	0.8788	0.8567	0.8627
Boosted Extra Trees	87%	0.9237	0.8679	0.9067	0.8822
Blended (ET, RF LightBGM)	84%	0.9017	0.8621	0.8533	0.8533

Model Comparison

	Accuracy	AUC	Precision	Recall	F1 Score	
Bagged Extra Trees (Train)	85%	0.926	0.8788	0.8567	0.8627	
Bagged Extra Trees (Test)	86%	0.93		0.778	0.875	
Boosted Extra Trees (Train)	87%	0.9237	0.8679	0.9067	0.8822	
Boosted Extra Trees (Test)	81.4%	0.9363	0.9524	0.74	0.8333	

Feature coefficients

Data was manipulated and gathered using only players which struck with the right foot

Top 5 features are the following:

- 1. Right Ankle x Right Hip
- 2. Right Ankle x Right Knee
- 3. Right Ankle x Left Knee
- 4. Right Ankle
- 5. Right Hip x Left Shoulder

Visualization

Relevant limb angles

Prediction Result

Ball Speed

Automatically stores image before release

Automatically stores image before strike

Automatically saves flight path for posterity

Possible future work

- Skeletal overlay with optimal angles
- Curve angle calculation
- Speed of kick calculation
- Speed of ball from back view
- Run up recording and processing
- Live demo for uploading user videos
- Try to deploy and make a full app

Things for improvement

- Allowing user inputs to set the region of interest for masking detection
- Autodetection of video resolution
- Learn more about computer vision masking for detection accuracy
- Improving pose estimation accuracy by trying with other packages

Special Thanks

Kishan S

Encourager, idea generator

Sharmaine C

Encourager, resource generator

 $\begin{tabular}{ll} Nicholas & R & Youtuber with free code on some pose estimation tutorials \\ \end{tabular}$

Murtaza H

Youtuber with free code on OpenCV painting

Sergio C

Youtuber with object detection tutorial

THANKS!

QUESTIONS?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Please keep this slide for attribution.

