

DEPARTMENT OF INFORMATICS ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

Functional and Logic Programming

Bachelor in Informatics and Computing Engineering 2021/2022 - 1st Semester

Introduction to Logic Programming

Agenda

- Logic Programming
- Prolog
- Applications
- Extensions

Logic Programming

- Logic Programming is a Declarative style of programming
 - The programmer describes what he wants the result to be
 - You already know some examples:
 - SQL
 - Haskell
- Contrasts with Imperative Programming
 - The programmer specifies how the computer should obtain the result
 - Most of what you have worked with, so far

How vs What

Imperative

```
var clients;
forall (client in clients)
{
    if(client.age > 18)
        print client.name;
}
```

Declarative

SELECT name FROM Clients WHERE age > 18;

Logic Programming

- The idea behind logic programming is that, when given a problem, instead of designing and writing an algorithm to solve it, we simply specify the problem and the computer solves the problem
 - In reality, we have to be mindful about how the solver works

Advantages

- There are several reasons to use Logic Programming
 - Rapid prototyping
 - Usually small code footprint
 - Flexible and intuitive (once you get to know it)
- Also provides with better reasoning skills (from learning a different 'way of thinking about problems')

Logic programming is usually easier to learn than traditional programming Yet, expert computer programmers often have more trouble with logic programming than novice learners

Prolog

- Prolog is the most well-known Logic Programming language
 - Programs are descriptions of knowledge / relations
 - In the form of first-order logic predicates
 - A computation starts as a query, the program tries to prove the query
 - Not purely declarative (a compromise needed to make the language efficient, practical and useful)

History of Prolog

- Origins in logic
 - Aristotle's works on logic (Organon, 40BC)
 - 1879: Begriffsschrift, by Gottlob Frege
 - Foundation of first-order logic, introduces quantifier notation, and solves problems such as multiple generality
 - 1910-1913: *Principia Mathematica*, by Alfred N. Whitehead and Bertrand Russell
 - Foundations of mathematics, attempting to derive mathematical truths from axioms and inference rules in symbolic logic

BEGRIFFSSCHRIFT,

PORMELSPRACHE

DES REINEN DENKENS.

PRIVATIONENTEN DER MATHEMATIK AN DER UNIVERSITÄT JENA.

HALLE */S. VERLAG VON LOUIS NEBERT. 1879.

Key People

Robert Kowalski

- Automated theoremproving in first-order logic
- Question-answering system using natural language (French)

Alain Colmerauer

Philippe Roussel

Robert Pasero Jean Trudel

Abridged Timeline

- 1960s: Early developments on automated theorem-proving in first-order logic and natural language processing
- 1971: First steps, ideas and collaborations
- 1972: Prolog (*Programmation en Logique*) is born
- 1973: Final version of Prolog
- 1970s: Other advances in Prolog systems (Compiler, DCGs, ...)
- 1980s: Prolog gains popularity, especially in Europe and Japan
 - 1982: Fifth Generation Computer Systems Project

According to an old joke, Logic Programming was invented in Edinburgh in 1974, and implemented in Marseille in 1972.

Languages	
JavaScript	7,834,034
Java	6,404,953
HTML	5,131,637
Python	3,954,697
PHP	2,000,895

Applications

- Prolog is not the most widely-used or popular programming language in the world, but...
- Used in several projects and areas:
 - NASA Clarissa
 - IBM Watson
 - First Erlang interpreter
 - New Zealand's main <u>stock broking system</u>

12

•

See https://www.quora.com/What-is-Prolog-used-for-today

DEI / FEUP

Applications

- For many years, Prolog was one of the foremost languages used in Artificial Intelligence, in particular in some noticeable application areas, such as:
 - Natural Language Processing
 - Expert Systems
 - Knowledge-Based Systems
 - Computational Law
 - Planning and Scheduling

• ...

Extensions

- There are several extensions to Logic Programming, such as
 - Abductive Logic Programming (ALP)
 - Inductive Logic Programming (ILP)
 - Concurrent Logic Programming
 - Constraint (Logic) Programming

"Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it."

Eugene Freuder, 1997

('In Pursuit of the Holy Grail', Constraints: An International Journal, 2, 57-61)

Additional Readings

Origins of Prolog

- Robert A. Kowalski (1988). The Early Years of Logic Programming. Communications of the ACM, 31(1), pp. 38-43 (DOI: 10.1145/35043.35046)
- Alain Colmerauer and Philippe Roussel (1996). The Birth of Prolog. In History of Programming Languages, pp. 331-367 (DOI: 10.1145/234286.1057820)

Prolog Applications

- Fumio Mizoguchi (1991). Prolog and its Applications: A Japanese Perspective. Springer (ISBN: 978-0-412-37770-9)
- Alex M. Andrew (2005). The commercial use of PROLOG. Kybernetes, 34(5), pp. 599-601 (DOI: 10.1108/03684920510595300)
- Manny Rayner, Beth Ann Hockey, Jean-Michel Renders, Nikos Chatzichrisafis and Kim Farrell (2005).
 Spoken Language Processing in the Clarissa Procedure Browser. Natural Language Engineering 1(1),
 28 pages (ICSI Technical Report TR-05-005)
- Joseph Armstrong (2003). Making reliable distributed systems in the presence of software errors.
 PhD thesis. Royal Institute of Technology, Stockholm, Sweden.
- Alessandro Dal Palù and Paolo Torroni (2010). 25 Years of Applications of Logic Programming in Italy. A 25-Year Perspective on Logic Programming, pp. 300-328

Q & A

DEI / FEUP