Tsinghua University

DIFFERENTIAL GEOMETRY

Fall 2024

Homework 6

Lin Zejin October 9, 2024

• Collaborators: I finish this homework by myself.

Problem 1. Noticed that $\varphi: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$ is a global flow of vector field if and only if

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t}(s,p) = X_{\varphi(s,p)}, \, \varphi(0,p) = p$$

So it suffices to solve an differential equation, which is unquie if we gives the initial contidion by the previous result.

Now I give the answer and omit the check.

(1)
$$\varphi(t, p_1, p_2) = (\frac{1}{2}t^2 + p_2t + p_1, t + p_2)$$

(2)
$$\varphi(t, p_1, p_2) = (p_1 e^t, p_2 e^{2t})$$

(3)
$$\varphi(t, p_1, p_2) = (p_1 e^t, p_2 e^{-t})$$

$$(4) \ \varphi(t, p_1, p_2) = \left(\frac{p_1 + p_2}{2}e^t + \frac{p_1 + p_2}{2}e^{-t}, \frac{p_1 + p_2}{2}e^t - \frac{p_1 + p_2}{2}e^{-t}\right)$$

Problem 2. For (U,φ) chart of p, since $\lim_{t\to\infty}\gamma(t)=p$, if we restrict M to U, then we obtain an integral curve on $U,\,\hat{\gamma}:\mathbb{R}\cong(M,+\infty)\to U\cong\mathbb{R}^n$.

By proper transformation, WLOG we may assume $M = \mathbb{R}^n$.

Then
$$\gamma'(t) = X_{\gamma(t)} \Rightarrow$$

$$\gamma(n) = \gamma(m) + \int_{m}^{n} X_{\gamma(t)} dt$$
 (2.1)

Since $\gamma(n)$ converges to $p, \gamma(t)$ is Cauchy sequence \Rightarrow

$$0 = \lim_{m,n \to \infty} \int_{m}^{n} X_{\gamma(t)} = \lim_{m,n \to \infty} \int_{m}^{n} X_{p}.$$

Now if $X_p \neq 0$, then

$$0 = \lim_{m,n \to \infty} \int_{m}^{n} X_{\gamma(t)} = \lim_{m,n \to \infty} \int_{m}^{n} X_{p} = (n-m)X_{p}$$

Therefore, $X_p = 0$.

Problem 3. Dnote $M = \mathbb{R}^n$

Otherwise, suppose $\lim_{t\to b} |\gamma(t)| = p < \infty$.

Take $(t_i) \to b$ from left. Then $(\gamma(t_i)) \to p$.

Then $\exists U$ Nbh of p, local flow $\varphi: (-\epsilon, \epsilon) \times U \to M$. Take n large enough s.t. $b-t_n < \epsilon, \gamma(t_n) \in U$. Then $\gamma(-+t_n): (a-t_n, b-t_n) \to M$,

 $\varphi(-,\gamma(t_n)):(-\epsilon,\epsilon)\to M$ are both integral curves for X starting at $\gamma(t_n)$. By uniqueness, they coincide.

Let
$$\hat{\gamma}: (a, t_n + \epsilon) \to M$$
 be defined by $\hat{\gamma}(t) = \begin{cases} \gamma(t), t \in (a, b) \\ \varphi(t - t_n, \gamma(t_n)), t \in [b, t_n + \epsilon) \end{cases}$

Then $\hat{\gamma}$ is an integral curve with larger domain, then γ contradiction with the maxity of γ .

Problem 4. The global flow $\varphi : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ generated by X only need satisfy:

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t}(t, x_1, x_2) = X_{\varphi(t, x_1, x_2)}, \, \varphi(0, x_1, x_2) = (x_1, x_2)$$

Denote $\varphi = (\varphi_1, \varphi_2)$.

Then equivalently, $\varphi_1' = f \circ \varphi$, $\varphi_2' = g \circ \varphi$, $\varphi(0, -) = \text{id Noticed that } f, g$ is Lipschitz continuous by the condition, hence, by the Picard-Lindelöf theorem, φ exists.