# An R script to generate Figs. 1 - 3 and Performance Comparison Tables

Musa AA and Reinsch N

08-04-2025

```
knitr::opts_chunk$set(echo = TRUE)
options(scipen = 999) # Prevent scientific notation on axes
```

### Overview

This document loads data, processes it, and generates three figures along with several performance comparison tables:

- 1. Figure 1: Density plots of Mendelian sampling variances and trait correlations.
- 2. Figure 2: Similarity matrices and Euclidean clustering of the matrices for the aggregate genotype of milk traits.
- 3. Figure 3: Benchmark plots comparing computation time and memory usage.
- 4. Performance Comparison Tables 1 and 2: Summaries from the same benchmark dataset used in Figure 3. These tables report the mean computation time (in minutes) and peak memory usage (in GB) for PyMSQ and gamevar.
- 5. Performance Table 3: Benchmarking of similarity matrices using PyMSQ.

# 1. Density Plots

### **Import Packages**

We load required libraries

```
library(ggplot2)
                     # For creating plots
library(reshape2)
                    # For reshaping data
library(corrplot)
                    # For correlation plots
require(RColorBrewer) # For color palettes
library(pheatmap)
                 # For heatmaps
library(ggpubr)
                    # For arranging ggplot figures
library(plyr)
                     # For data manipulation
library(knitr)
                    # For document generation
library(reticulate) # For interfacing with Python
```

### Import Data from PyMSQ

```
# Replace "pymsq_dev" with the conda environment or virtualenv name.
# use_condaenv("pymsq_dev", required = TRUE)
# py_config() # confirm your environment is active
```

```
msq <- import("PyMSQ")</pre>
data <- msq$load_package_data() # now you're set to proceed below
data <- msq$load_package_data()</pre>
gmap <- data[["chromosome_data"]]</pre>
                                             # genetic map
meff <- data[["marker_effect_data"]]</pre>
                                             # marker effects
gmat <- data[["genotype data"]]</pre>
                                             # phased genotype
group <- data[["group_data"]]</pre>
                                             # group data
ped <- data[["pedigree_data"]]</pre>
# define number of traits and index weight
no_traits <- ncol(meff)</pre>
                                            # 3 traits
index_wt <-c(1, 1, 1)
```

### Compute Mendelian (co-)variance and correlation using PyMSQ

#### Prepare and Plot the Density Data

We extract, reshape, and plot the data:

```
# Extract relevant columns
msv_traits <- data.frame(msvmsc[, c("fat", "protein", "pH")])</pre>
# Compute coefficient of variation for each column
round(sapply(msv_traits, function(x) sd(x) / mean(x)) * 100, 2)
mscorr_traits <- data.frame(mscorr[, c("protein_fat", "pH_fat", "pH_protein")])</pre>
# Compute mean correlation
round(sapply(mscorr_traits, function(x) mean(x)), 2)
# Compute range of correlations
round(sapply(mscorr_traits, function(x) range(x)), 3)
# Compute percentage of negative values
round(sapply(mscorr_traits, function(x) (sum(x < 0)/265)*100), 1)
# Reshape data
df_msv <- melt(msv_traits)</pre>
colnames(df_msv) <- c("Trait", "Variance")</pre>
df mscorr <- melt(mscorr traits)</pre>
colnames(df_mscorr) <- c("Trait", "Correlation")</pre>
```

```
# Create density plots
plot1 <- ggplot(df_msv, aes(Variance, color = Trait)) +
    stat_density(geom = "line", position = "identity") +
    theme_classic() +
    theme(legend.position = "top") +
    scale_color_manual(values = c("black", "blue", "red")) +
    ylab("Density")

plot2 <- ggplot(df_mscorr, aes(Correlation, color = Trait)) +
    stat_density(geom = "line", position = "identity") +
    theme_classic() +
    theme(legend.position = "top") +
    scale_color_manual(values = c("black", "blue", "red")) +
    ylab("Density") +
    scale_x_continuous(limits = c(-0.3, 1), breaks = seq(-0.25, 1, by = 0.25))</pre>
```

### Save and Display Figure 1

We combine the density plots and save them as a TIFF file. We then embed the resulting image:



Figure 1: Density plots of Mendelian sampling variances and trait correlations. Panel A displays the variance in fat yield (FY, kg), protein yield (PY, kg), and pH (mol/L). Panel B shows correlations between these traits.

# 2. Similarity Matrices

We then derive similarity matrices.

```
sim_without_diag <- sim</pre>
diag(sim_without_diag) <- NA</pre>
range(sim without diag, na.rm = TRUE)
std sim without diag <- std sim
diag(std_sim_without_diag) <- NA</pre>
range(std_sim_without_diag, na.rm = TRUE)
# find the minimum value in sim and check the corresponding value in std_sim
minVal <- min(sim_without_diag, na.rm = TRUE)</pre>
minPos <- which(sim_without_diag == minVal, arr.ind = TRUE)</pre>
correspondingPos <- std_sim[minPos[1], minPos[2]]</pre>
```

### Save and Display Figure 2

```
# Determine number of individuals within each paternal half-sib family
pedigree <- data[["pedigree_data"]][-1, ]</pre>
ped <- as.data.frame(pedigree[,2])</pre>
no <- NULL
for (i in 1:length(unique(ped[, 1]))) {
  first <- length(which(ped[, 1] == i))</pre>
  if (i == 1) {
    no <- c(no, first)
  } else {
    no \leftarrow c(no, first + no[i-1])
}
png("Figure2.png", width = 8, height = 4, units = 'in', res = 700)
par(mfrow = c(1, 2), oma = c(0, 0, 0, 0.1) + 0.1, mar = c(0, 0, 0, 0) + 0.1)
cols <- brewer.pal(9, "Blues")</pre>
corrplot(sim, is.corr = FALSE, method = "color", cl.lim = range(sim),
         cl.digits = 1, cl.cex = 0.80, tl.col = "black", tl.pos = "n",
         col = cols, cl.align.text = "c", mar = c(0, 0, 1, 0)) -> p
corrRect(p, c(1, no), col = "red")
corrplot(std_sim, is.corr = FALSE, method = "color", cl.lim = range(std_sim),
         cl.digits = 1, cl.cex = 0.80, tl.col = "black", tl.pos = "n",
         col = cols, cl.align.text = "c", mar = c(0, 0, 1, 0)) -> p
corrRect(p, c(1, no), col = "red")
mtext(expression(bold("A")), side = 3, outer = TRUE, cex = 1, las = 0, line = -1, adj = 0)
mtext(expression(bold("B")), at = 0.52, side = 3, outer = TRUE, cex = 1, las = 0, line = -1)
dev.off()
## pdf
##
```

Now we display Figure 2:



Figure 2: Unstandardized (A) and standardized (B) similarity matrices for the aggregate genotype of some milk traits for 265 cows from five half-sib families (separated by red lines).

### 3. Benchmark Plots

We then process benchmark data (computation time and memory usage) and generate a  $2\times2$  panel plot.

```
library(dplyr)
library(ggplot2)
# Read csv files
perf_ind <- read.csv("performance_analysis.csv")</pre>
perf_mark <- read.csv("performance_analysis_mark.csv")</pre>
# Compute computation time (convert seconds to minutes) and its SD
time_ind_summary <- perf_ind %>%
  group by (no individuals) %>%
  summarise(
   PyMSQ mean = mean(time PyMSQ, na.rm = TRUE) / 60,
   PyMSQ_sd
              = sd(time_PyMSQ, na.rm = TRUE) / 60,
    gamevar mean = mean(time gamevar, na.rm = TRUE) / 60,
                 = sd(time_gamevar, na.rm = TRUE) / 60
    gamevar sd
# Compute peak memory usage (GB) and its SD
mem_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
   PyMSQ_mean = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
               = sd(peak_memory_usage_PyMSQ, na.rm = TRUE),
    gamevar_mean = mean(peak_memory_usage_gamevar, na.rm = TRUE),
                = sd(peak_memory_usage_gamevar, na.rm = TRUE)
    gamevar_sd
```

```
# Compute computation time (in minutes) & its SD (markers)
time_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   PyMSQ_mean = mean(time_PyMSQ, na.rm = TRUE) / 60,
   PyMSQ_sd = sd(time_PyMSQ, na.rm = TRUE) / 60,
   gamevar_mean = mean(time_gamevar, na.rm = TRUE) / 60,
   gamevar sd = sd(time gamevar, na.rm = TRUE) / 60
  )
# Compute peak memory usage (in GB) & its SD (markers)
mem_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   PyMSQ_mean = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
   PyMSQ_sd = sd(peak_memory_usage_PyMSQ, na.rm = TRUE),
    gamevar_mean = mean(peak_memory_usage_gamevar, na.rm = TRUE),
   gamevar_sd = sd(peak_memory_usage_gamevar, na.rm = TRUE)
 )
```

### Save and Display Benchmark Plot (Figure 3)

```
png("Figure3.png", width = 9, height = 8, units = "in", res = 700)
par(mfrow = c(2, 2), oma = c(5,3,1,4.6)+0.1, mar = c(2,1,1,0)+0.1)
# Panel A: Computation Time vs. Individuals
with(time_ind_summary, {
  plot(no_individuals, PyMSQ_mean, type = "l", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
       xlab = "", ylab = "Time (min)", xaxt = "n", yaxt = "n")
  axis(2, col.axis = "black", las = 2)
  box()
  lines(no individuals, gamevar mean, type = "l", col = "red")
  # PyMSQ error bars
  arrows(no_individuals, PyMSQ_mean - PyMSQ_sd,
         no_individuals, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  # gamevar error bars
  arrows(no_individuals, gamevar_mean - gamevar_sd,
         no_individuals, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
})
mtext(expression(bold("A")), side = 3, line = 0.5, adj = 0)
# Panel B: Computation Time vs. Markers
with(time_mark_summary, {
  plot(no_markers, PyMSQ_mean, type = "1", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
      xlab = "Number of Markers", ylab = "", axes = FALSE)
  axis(4, col.axis = "black", las = 2)
  box()
```

```
lines(no_markers, gamevar_mean, type = "l", col = "red")
  arrows(no_markers, PyMSQ_mean - PyMSQ_sd,
         no_markers, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  arrows(no_markers, gamevar_mean - gamevar_sd,
         no_markers, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
mtext(expression(bold("B")), side = 3, line = 0.5, adj = 0)
# Panel C: Peak Memory Usage vs. Individuals
with(mem_ind_summary, {
  plot(no_individuals, PyMSQ_mean, type = "1", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
       xlab = "Number of Individuals", ylab = "Peak Memory Usage (GB)",
       axes = FALSE)
  axis(2, col.axis = "black", las = 2)
  lines(no_individuals, gamevar_mean, type = "l", col = "red")
  arrows(no_individuals, PyMSQ_mean - PyMSQ_sd,
         no_individuals, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  arrows(no_individuals, gamevar_mean - gamevar_sd,
         no_individuals, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
  axlab = seq(0, max(no_individuals), length.out=11)
  Axis(side = 1, at = axlab, labels = format(axlab, scientific = FALSE), las = 2)
mtext(expression(bold("C")), side = 3, line = 0.5, adj = 0)
# Panel D: Peak Memory Usage vs. Markers
with(mem_mark_summary, {
  plot(no_markers, PyMSQ_mean, type = "1", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
       xlab = "Number of Markers", ylab = "", axes = FALSE)
  axlab = seq(0, max(no_markers), length.out=11)
  Axis(side = 1, at = axlab, labels = axlab, las = 2)
  axis(4, col.axis = "black", las = 2)
  box()
  lines(no_markers, gamevar_mean, type = "l", col = "red")
  arrows (no markers, PyMSQ mean - PyMSQ sd,
         no_markers, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  arrows(no_markers, gamevar_mean - gamevar_sd,
         no_markers, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
mtext(expression(bold("D")), side = 3, line = 0.5, adj = 0)
\# Add global x and y labels
mtext("Time (min)", at = .75, side = 2, outer = TRUE, cex = 1.2, las = 0, line = 1.8)
```

Now we display Figure 3:

### 4. Performance Comparison Tables

We compare PyMSQ and gamevar using two benchmark datasets:

- Individuals Dataset: Number of markers is fixed at 1000, while the number of individuals varies from 5000 to 100000.
- Markers Dataset: Number of individuals is fixed at 500, while the number of markers varies from 2500 to 50000. Both datasets involve 10 traits and 1 chromosome.

```
# For the individuals dataset:
time_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
    PyMSQ time = mean(time PyMSQ, na.rm = TRUE) / 60,
    Gamevar time = mean(time gamevar, na.rm = TRUE) / 60
  ) %>%
  mutate(Fold_Faster = Gamevar_time / PyMSQ_time)
mem_ind_summary <- perf_ind %>%
  group by (no individuals) %>%
  summarise(
    PyMSQ_memory = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
    Gamevar_memory = mean(peak_memory_usage_gamevar, na.rm = TRUE)
  mutate(Memory_Ratio = PyMSQ_memory / Gamevar_memory)
# Merge the summaries for individuals:
individuals_summary <- left_join(time_ind_summary, mem_ind_summary, by = "no_individuals") %>%
  rename(
    Number of Individuals = no individuals,
    `PyMSQ Time (min) = PyMSQ time,
    `Gamevar Time (min)` = Gamevar time,
    `Time Ratio (Gamevar/PyMSQ)` = Fold_Faster,
    `PyMSQ Memory (GB)` = PyMSQ_memory,
    `Gamevar Memory (GB)` = Gamevar_memory,
    `Memory Ratio (PyMSQ/Gamevar)` = Memory Ratio
```



Figure 3: Benchmark plots comparing computation time (Panels A, B) and memory usage (Panels C, D) for PyMSQ and gamevar.

```
# For the markers dataset:
time_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   PyMSQ_time = mean(time_PyMSQ, na.rm = TRUE) / 60,
   Gamevar_time = mean(time_gamevar, na.rm = TRUE) / 60
 mutate(Fold_Faster = Gamevar_time / PyMSQ_time)
mem_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   PyMSQ_memory = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
   Gamevar_memory = mean(peak_memory_usage_gamevar, na.rm = TRUE)
 mutate(Memory_Ratio = PyMSQ_memory / Gamevar_memory)
# Merge the summaries for markers:
markers_summary <- left_join(time_mark_summary, mem_mark_summary, by = "no_markers") %>%
 rename(
    `Number of Markers` = no_markers,
   `PyMSQ Time (min) = PyMSQ_time,
   `Gamevar Time (min)` = Gamevar_time,
   `Time Ratio (Gamevar/PyMSQ)` = Fold_Faster,
    `PyMSQ Memory (GB)` = PyMSQ_memory,
    `Gamevar Memory (GB)` = Gamevar_memory,
   `Memory Ratio (PyMSQ/Gamevar)` = Memory_Ratio
```

### Display the table for the individuals dataset:

Table 1: Performance Comparison (Individuals Dataset)

| PyMSQ    |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PyMSQ                                                 | Gamevar                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time     | Gamevar                                                                                         | Time Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Memory                                                | Memory                                                | Memory Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(\min)$ | Time (min)                                                                                      | (Gamevar/PyMSQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (GB)                                                  | (GB)                                                  | (PyMSQ/Gamevar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0735   | 1.6917                                                                                          | 23.0262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5492                                                | 0.0139                                                | 39.5290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.1340   | 3.3415                                                                                          | 24.9369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7896                                                | 0.0140                                                | 56.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.1945   | 4.9152                                                                                          | 25.2685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0361                                                | 0.0141                                                | 73.5025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.2380   | 6.5075                                                                                          | 27.3443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2809                                                | 0.0141                                                | 90.6188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.3052   | 8.1996                                                                                          | 26.8676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5272                                                | 0.0142                                                | 107.2078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.3567   | 9.7491                                                                                          | 27.3340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7837                                                | 0.0143                                                | 125.1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.4025   | 11.3988                                                                                         | 28.3166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0036                                                | 0.0143                                                | 139.8827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.4731   | 12.9819                                                                                         | 27.4391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2311                                                | 0.0143                                                | 155.8354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.5218   | 14.6783                                                                                         | 28.1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4683                                                | 0.0144                                                | 171.4445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.5775   | 16.2707                                                                                         | 28.1760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.7052                                                | 0.0144                                                | 187.2737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6475   | 17.8198                                                                                         | 27.5195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.9305                                                | 0.0145                                                | 202.6832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.6973   | 19.3777                                                                                         | 27.7896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1631                                                | 0.0145                                                | 217.8085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.7651   | 21.1444                                                                                         | 27.6373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3932                                                | 0.0145                                                | 234.1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | Time (min)  0.0735 0.1340 0.1945 0.2380 0.3052 0.3567 0.4025 0.4731 0.5218 0.5775 0.6475 0.6973 | Time (min) (min) (min) (1340 (min) (1340 (min)) (1340 (mi | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Time (min)         Gamevar (min)         Time Ratio (Gamevar/PyMSQ)         Memory (GB)         Memory (GB)           0.0735         1.6917         23.0262         0.5492         0.0139           0.1340         3.3415         24.9369         0.7896         0.0140           0.1945         4.9152         25.2685         1.0361         0.0141           0.2380         6.5075         27.3443         1.2809         0.0141           0.3052         8.1996         26.8676         1.5272         0.0142           0.3567         9.7491         27.3340         1.7837         0.0143           0.4025         11.3988         28.3166         2.0036         0.0143           0.4731         12.9819         27.4391         2.2311         0.0143           0.5218         14.6783         28.1301         2.4683         0.0144           0.5775         16.2707         28.1760         2.7052         0.0144           0.6475         17.8198         27.5195         2.9305         0.0145           0.6973         19.3777         27.7896         3.1631         0.0145 |

| Number of<br>Individuals | PyMSQ<br>Time<br>(min) | Gamevar<br>Time (min) | Time Ratio (Gamevar/PyMSQ) | PyMSQ<br>Memory<br>(GB) | Gamevar<br>Memory<br>(GB) | Memory Ratio<br>(PyMSQ/Gamevar) |
|--------------------------|------------------------|-----------------------|----------------------------|-------------------------|---------------------------|---------------------------------|
| 70000                    | 0.8220                 | 22.7347               | 27.6589                    | 3.6307                  | 0.0146                    | 249.1597                        |
| 75000                    | 0.8868                 | 24.2053               | 27.2962                    | 3.8740                  | 0.0145                    | 266.3079                        |
| 80000                    | 0.9366                 | 26.0018               | 27.7629                    | 4.1030                  | 0.0146                    | 280.3230                        |
| 85000                    | 0.9942                 | 27.4408               | 27.6023                    | 4.3259                  | 0.0147                    | 294.8262                        |
| 90000                    | 1.0470                 | 29.2895               | 27.9747                    | 4.5471                  | 0.0147                    | 309.1979                        |
| 95000                    | 1.1101                 | 30.7444               | 27.6947                    | 4.7721                  | 0.0147                    | 323.7633                        |
| 100000                   | 1.1609                 | 30.7995               | 26.5314                    | 4.9705                  | 0.0148                    | 334.9568                        |

### Display the table for the markers dataset:

Table 2: Performance Comparison (Markers Dataset)

| Number of<br>Markers | PyMSQ<br>Time<br>(min) | Gamevar<br>Time (min) | Time Ratio (Gamevar/PyMSQ) | PyMSQ<br>Memory<br>(GB) | Gamevar<br>Memory<br>(GB) | Memory Ratio<br>(PyMSQ/Gamevar) |
|----------------------|------------------------|-----------------------|----------------------------|-------------------------|---------------------------|---------------------------------|
| 2500                 | 0.0333                 | 2.4414                | 73.2419                    | 1.1052                  | 0.0729                    | 15.1675                         |
| 5000                 | 0.0668                 | 10.4440               | 156.3479                   | 1.2909                  | 0.2827                    | 4.5664                          |
| 7500                 | 0.1107                 | 24.6128               | 222.4045                   | 1.5237                  | 0.6321                    | 2.4105                          |
| 10000                | 0.1708                 | 41.5811               | 243.4966                   | 1.8872                  | 1.1213                    | 1.6831                          |
| 12500                | 0.2675                 | 61.8284               | 231.1198                   | 2.4206                  | 1.7502                    | 1.3830                          |
| 15000                | 0.3605                 | 95.3007               | 264.3447                   | 3.8162                  | 2.5188                    | 1.5151                          |
| 17500                | 0.4679                 | 135.2333              | 289.0526                   | 4.2710                  | 3.4270                    | 1.2463                          |
| 20000                | 0.5714                 | 173.6894              | 303.9894                   | 6.5295                  | 4.4750                    | 1.4591                          |
| 22500                | 0.7248                 | 224.9720              | 310.3847                   | 8.1461                  | 5.6627                    | 1.4386                          |
| 25000                | 0.9020                 | 276.2836              | 306.3011                   | 8.3819                  | 6.9901                    | 1.1991                          |
| 27500                | 1.0024                 | 338.1668              | 337.3515                   | 10.1369                 | 8.4571                    | 1.1986                          |
| 30000                | 1.2325                 | 404.2205              | 327.9635                   | 13.3481                 | 10.0639                   | 1.3263                          |
| 32500                | 1.3395                 | 472.9189              | 353.0519                   | 16.0859                 | 11.8104                   | 1.3620                          |
| 35000                | 1.6101                 | 558.0030              | 346.5678                   | 18.6937                 | 13.6965                   | 1.3648                          |
| 37500                | 1.8505                 | 634.4724              | 342.8685                   | 21.2675                 | 15.7224                   | 1.3527                          |
| 40000                | 2.1511                 | 781.0272              | 363.0799                   | 23.6134                 | 17.8880                   | 1.3201                          |
| 42500                | 2.3476                 | 809.9011              | 344.9935                   | 26.5606                 | 20.1932                   | 1.3153                          |
| 45000                | 2.6547                 | 908.1433              | 342.0889                   | 30.6722                 | 22.6381                   | 1.3549                          |
| 47500                | 3.0119                 | 987.5281              | 327.8773                   | 33.5492                 | 25.2228                   | 1.3301                          |
| 50000                | 3.2457                 | 1078.8873             | 332.4034                   | 36.3486                 | 27.9472                   | 1.3006                          |

# 5. Performance Table 3: Benchmark of similarity matrices

Using the same data set for benchmarking Mendelian (co-variability), we benchmarked the time and peak memory usage:

```
library(dplyr)
library(knitr)
# Read csv files
```

```
perf_ind <- read.csv("similarity_unsaved.csv")</pre>
perf_mark <- read.csv("similarity_mark_unsaved.csv")</pre>
# Compute computation time (in minutes) + SD for individuals
time_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
   times = mean(time, na.rm = TRUE) / 60,
   time sd = sd(time, na.rm = TRUE) / 60
mem_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
   memory = mean(peak_memory_usage, na.rm = TRUE),
   memory_sd = sd(peak_memory_usage, na.rm = TRUE)
  )
# Markers scenario
time_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   times = mean(time, na.rm = TRUE) / 60,
   time_sd = sd(time, na.rm = TRUE) / 60
mem_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   memory = mean(peak_memory_usage, na.rm = TRUE),
   memory_sd = sd(peak_memory_usage, na.rm = TRUE)
# Merge time & memory for Individuals
ind_summary <- left_join(time_ind_summary, mem_ind_summary, by = "no_individuals") %>%
    Time (min) = paste0(round(times, 2), " ± ", round(time_sd, 2)),
   Memory (GB) = paste0(round(memory, 2), " ± ", round(memory_sd, 2))
  select(no_individuals, `Time (min)`, `Memory (GB)`)
# Merge time & memory for Markers
mark_summary <- left_join(time_mark_summary, mem_mark_summary, by = "no_markers") %>%
  mutate(
    `Time (min)` = paste0(round(times, 2), " ± ", round(time_sd, 2)),
    `Memory (GB)` = paste0(round(memory, 2), " ± ", round(memory_sd, 2))
  select(no_markers, `Time (min)`, `Memory (GB)`)
# Rename to avoid duplicates
ind_summary_renamed <- ind_summary %>%
  rename(
    "No. Individuals" = no_individuals,
```

```
"Time (min) [Ind]" = "Time (min)",
   "Memory (GB) [Ind]" = "Memory (GB)"
)

mark_summary_renamed <- mark_summary %>%
  rename(
   "No. Markers" = no_markers,
   "Time (min) [Mark]" = "Time (min)",
   "Memory (GB) [Mark]" = "Memory (GB)"
)

# Combine side by side
results <- cbind(ind_summary_renamed, mark_summary_renamed)

# Print the merged table
kable(results, caption = "Benchmark Results for Similarity Matrix")</pre>
```

Table 3: Benchmark Results for Similarity Matrix

|                 | Time (min)      | Memory (GB)      | No. Mark- | Time (min)      | Memory (GB)      |
|-----------------|-----------------|------------------|-----------|-----------------|------------------|
| No. Individuals | [Ind]           | [Ind]            | ers       | [Mark]          | [Mark]           |
| 5000            | $0.08 \pm 0.02$ | $0.76 \pm 0.05$  | 2500      | $0.04 \pm 0.01$ | $0.37 \pm 0.03$  |
| 10000           | $0.17 \pm 0.01$ | $1.36 \pm 0.04$  | 5000      | $0.07 \pm 0$    | $0.63 \pm 0.03$  |
| 15000           | $0.3 \pm 0$     | $2.33 \pm 0.16$  | 7500      | $0.1 \pm 0$     | $1.04 \pm 0.06$  |
| 20000           | $0.44 \pm 0$    | $3.33 \pm 0.17$  | 10000     | $0.17 \pm 0$    | $1.57 \pm 0.19$  |
| 25000           | $0.66 \pm 0.02$ | $4.93 \pm 0.32$  | 12500     | $0.23 \pm 0$    | $2.33 \pm 0.06$  |
| 30000           | $0.89 \pm 0.02$ | $6.78 \pm 0.32$  | 15000     | $0.34 \pm 0$    | $3.15 \pm 0.05$  |
| 35000           | $1.16 \pm 0.02$ | $9.12 \pm 0.56$  | 17500     | $0.4 \pm 0.01$  | $4.16 \pm 0.04$  |
| 40000           | $1.45 \pm 0.01$ | $11.71 \pm 0.77$ | 20000     | $0.53 \pm 0$    | $5.93 \pm 0.22$  |
| 45000           | $1.82 \pm 0.02$ | $14.32 \pm 0.62$ | 22500     | $0.64 \pm 0$    | $7.66 \pm 0.12$  |
| 50000           | $2.2 \pm 0$     | $16.76 \pm 0.29$ | 25000     | $0.79 \pm 0.02$ | $7.92 \pm 0.03$  |
| 55000           | $2.62 \pm 0$    | $21.18 \pm 0.58$ | 27500     | $0.94 \pm 0$    | $9.45 \pm 0.04$  |
| 60000           | $3.06 \pm 0.02$ | $25.8 \pm 0.82$  | 30000     | $1.07 \pm 0$    | $12.24 \pm 0.41$ |
| 65000           | $3.56 \pm 0$    | $29.27 \pm 0.9$  | 32500     | $1.24 \pm 0.01$ | $15.05 \pm 0.36$ |
| 70000           | $4.07 \pm 0.02$ | $33.67 \pm 0.43$ | 35000     | $1.44 \pm 0$    | $17.57 \pm 0.28$ |
| 75000           | $4.6 \pm 0.03$  | $37.55 \pm 0.64$ | 37500     | $1.67 \pm 0.1$  | $20.09 \pm 0.19$ |
| 80000           | $5.26 \pm 0.03$ | $44.73 \pm 1.62$ | 40000     | $1.89 \pm 0.08$ | $22.5 \pm 0.38$  |
| 85000           | $5.86 \pm 0.05$ | $50.46 \pm 0.62$ | 42500     | $2.07 \pm 0.06$ | $24.78 \pm 0.68$ |
| 90000           | $6.48 \pm 0.05$ | $55.42 \pm 0.52$ | 45000     | $2.32 \pm 0.07$ | $30.03 \pm 0.43$ |
| 95000           | $7.15 \pm 0.07$ | $60.44 \pm 0.67$ | 47500     | $2.54 \pm 0$    | $32.82 \pm 0.35$ |
| 100000          | $7.93 \pm 0.09$ | $69.58 \pm 1.87$ | 50000     | $2.8 \pm 0.02$  | $34.28 \pm 0.22$ |