

Steven Maenhout

e-mail: Steven.Maenhout@progeno.net

site: https://www.progeno.net

Progeno architecture

Progeno workflow

Breeding activities

- germplasm, trait, protocol specifications
- trial design, observations, metadata

Analytics

- phenotypic analysis, breeding values, ...
- GWAS, genomic prediction, ...

Decision support

- cross predictions, genomic prediction, marker-assisted selection
- pedigree browser, dendrogram, breeding pool visualisations

PDP = Processed Data Package

Progeno Analytics

Lane 1: Autonomous data analysis

- Autonomous: automatically processes incoming trial and marker data to breeding values
- Self-learning: uses all available data for each analysis, (genomic) breeding values become more reliable as new data is added.
- Correcting: detects and removes outliers in the observations
- Adapting: analysis models adjust automatically to the properties of the breeding pool

Lane 2: Progeno Analytics module

- provides a range of statistical analysis and visualisation techniques:
 - histograms, density plots, scatter plots, blox plots, GGE biplots, 3D scatter or surface plots, correlations, ...
 - linear models (ANOVA, t-test, regression, ...), mixed models, genomic predictions, ...
- direct connection to the Progeno Datawarehouse
- direct connection to R via Rstudio Server
- save datasets, analysis results and reports to personal or shared workspace
- package and publish breeding values as custom PDPs

Lane 3: Progeno-R:

Database query

- each phenotypic value has at least 3 coordinates:
 - 1. who: the physical position of the observed accession / plot: row, column, trial, location, ...
 - 2. when: the date/time of the observation
 - 3. what: the observed trait
- multiple ways to represent 3-dimensional observations in a 2-dimensional sheet

3D => 2D

EuclegID -	Row	Column	2019_11_28_Plantlength	2019_11_28_Seednumber
EUC_TU_001	3	10	104.8	85.4
EUC_TU_001	3	3	98.8	69.2
EUC_TU_001	1	1	76	40.6
EUC_TU_001	2	6	81.8	55.6
EUC_TU_002	3	8	115.4	49.4
EUC_TU_002	3	1	82.2	35.4
EUC_TU_002	2	5	80.4	38.2
EUC_TU_002	3	6	86.4	34
EUC_TU_003	3	7	97.2	39.8
EUC_TU_003	1	3	87.6	41.2
EUC_TU_004	1	9	99.4	52
EUC_TU_004	2	3	86.2	49.6
EUC_TU_005	1	7	81.8	99
EUC_TU_005	2	Eucle	alD▲ Row	Column Year
EUC_TU_006	1	EUCIE		Column real

EuclegID -	Row	Column	Year	Month	Day	Plantlength	Seednumber
EUC_TU_001	3	10	2019	11	28	104.8	85.4
EUC_TU_001	3	3	2019	11	28	98.8	69.2
EUC_TU_001	1	1	2019	11	28	76	40.6
EUC_TU_001	2	6	2019	11	28	81.8	55.6
EUC_TU_002	3	8	2019	11	28	115.4	49.4
EUC_TU_002	3	1	2019	11	28	82.2	35.4
EUC_TU_002	2	5	2019	11	28	80.4	38.2
EUC_TU_002	3	6	2019	11	28	86.4	34
EUC_TU_003	1	3	2019	11	28	87.6	41.2
EUC_TU_003	3	7	2019	11	28	97.2	39.8
EUC_TU_004	2	3	2019	11	28	86.2	49.6
EUC_TU_004	1	9	2019	11	28	99.4	52
EUC_TU_005	1	7	2019	11	28	81.8	99
EUC_TU_005	2	1	2019	11	28	80.8	99.4
EUC_TU_006	2	8	2019	11	28	104.2	-

Exercise Database query

- 1. What is the largest observed value for the trait Plantlength? Which accession in which trial?
- 2. Calculate the average observed "Thousandseedweight" for accessions "Tommy" and "William" per trial. Put the results side-by-side (Name and Year in rows, accessions in columns).
- 3. Which trial shows the lowest average Seedyield scores when only considering German accessions?
- 4. List the median "Rstage" for accession Munro for all available months and trials. In which trial / month was the highest median observed?

Exercise Box-plot

 Create dataset that contains all "SeedYield" observations from trial "ART trial 2018". Add the "ProvenanceCountry" of each accession to this dataset and make a boxplot showing the SeedYield distribution for each ProvenanceCountry.

Exercise scatter plot

 Which trial seems to indicate a positive correlation between the traits Seedyield and Proteincontent?

Exercise 3D + heatmap

- Extract the "Plantlength" observations from trial "Vuk Djordjevic" including the row and column coordinates. Examine the spatial distribution with three different plot types:
 - 3D scatter
 - 3D surface
 - Heatmap
- Which plot type is the most informative in your opinion?

AMMI: Additive Main effects and Multiplicative Interactions model

$$\underline{\mu}_{ij} = \mu + \mathrm{G}_i + \mathrm{E}_j + \sum_{k=1}^{\mathrm{K}} \mathrm{b}_{ik} \mathrm{z}_{jk} + \underline{arepsilon}_{ij}$$

GGE: Genotype main effects and GEI model

$$\underline{\mu}_{ij} = \mu + E_j + \sum_{k=1}^{K} b_{ik} z_{jk} + \underline{\varepsilon}_{ij}$$

PC-1 (52.26%)

Exercise correlation matrix

Calculate the correlation matrix for the traits
 Plantlength, Proteincontent, Seednumber,
 SeedYield and the row/column coordinates of trial ART2018.

Single trial analysis Mixed Model

- Incomplete block design, partial replication:
 - mixed model approach
 - focus on getting a good model fit
 - various options for modelling spatial trends

with
$$Var(\mathbf{e}) = \mathbf{R} \& Var(\mathbf{u}) = \mathbf{\Sigma}$$

Candidate model fitting

- Base model:
 - fixed effects:
 - trial mean y = mu + rep + genotype + e
 - full replication
 - random effects:
 - treatment (genotype)
- candidate random effects => use AIC criterion
 - incomplete block
 - row
 - column
- candidate spatial models => use AIC criterion
 - none (identity residual variance)
 - AR1 x AR1

Spatial correlations

First-order autoregressive in rows

$$\mathbf{R}_{\text{row}} = \begin{bmatrix} 1 & \rho & \rho^2 & \dots & \rho^{21} \\ \rho & 1 & \rho & \dots & \rho^{20} \\ \dots & \dots & \dots & \dots & \dots \\ \rho^{21} & \rho^{20} & \rho^{19} & \dots & 1 \end{bmatrix}$$

If we assume no correlations between columns

$$\mathbf{R}_{\mathsf{col}} = \mathbf{I}_{\mathsf{5}}$$

then

$$\mathbf{R} = \sigma_e^2(\mathbf{R}_{\mathsf{col}} \otimes \mathbf{R}_{\mathsf{row}})$$

Model Comparison

- information criteria like (AIC, BIC) generally preferred over likelihood ratio tests
- AIC = -2L + 2t
- BIC = $-2L + t \log n$
- t = # of variance parameters
- n = # of residual degrees of freedom =
- (nobservations nfixed_parameters).
- best model has smallest AIC/BIC
- if using REML estimates AIC/BIC only allow to compare models that have the same fixed effects structure

Trait 'Plantlength' of trial 'Vuk Djordjevic'

Model	AIC
Base model: y = mu + genotype	2957.08
+ random row	2949.05
+ random column	2948.93
+ AR1 x AR1 residual	3544.55

Automated trial / trait model search

- fits all combinations of model term candidates
- chooses candidate model with lowest AIC
- allows to extract genotypic effects (BLUPs) and residuals of best-fitting model

Exercise single trial model

- Find the best-fitting linear mixed model to analyse the trait "Seedyield" of trial "ART trial 2019"
- Make a scatter plot having the BLUPs of the accession on the X-axis and their standard error on the Y-axis.
- Can you explain the different levels of standard errors of the BLUPs?

Multi-environment trial analysis

 plant breeding trials generally organised in multiyear / multi-environment trials (MET)

Mixed model approach: Two-stage MET analysis

2-stage procedure

Two-stage MET analysis

- genotypes should be fitted as fixed effects in stage 1 to prevent "double shrinkage"
- various weighing mechanisms are used in stage 2 to correct for the difference in variance (and covariance) between adjusted means from stage 1
- simplified weighing models => adverse affects on estimates
- realistic weighing => prohibitive computational burden
- single-stage mixed model analysis is generally considered to be the golden standard

Multi-trial, single-stage model search

Efficiency gain

- Simulated MET phenotypes:
 - 5 trial years
 - 20 METs / year
 - 5 trials / MET
 - 50 parcels / replication / trial
 - random, heterogeneous spatial model for residuals
 - randomized complete block designs
 - connectivity by check and repeated varieties
 - entry mean heritability: $0.67 0.73^{\circ .810-}$
 - 100 iterations
- 3 model fit strategies:
 - 1. unweighted two-stage
 - 2. greedy search
 - 3. hill climbing search

Trial connectivity

- two trials are directly connected if they have at least one common accession
- two trials can be indirectly connected by having common accessions with a third trial
- fitting a linear mixed model to disconnected data is perfectly possible but the results are bogus
- Progeno Multi trial model search verifies trial connectivity before analysis

	h ₁	h ₂	h ₃	h ₄
e ₁	3	6	0	0
e ₂	3	4	0	0
e_3	0	0	7	5

Exercise multi-trial

- Query the database for all observations of the trait "Thousandseedweight". Export a dataset with the columns EuclegID, Name, Row, Column and Thousandseedweight.
- Make a boxplot per trial
- Find the best fitting multi-trial linear mixed model formulation, export the BLUPs
- Calculate the average Thousandseedweight (first by trial and then by accession) and compare these averages with the BLUPs in a scatter plot. What is the correlation between BLUPs and averages?

Exercise 2 multi-trial

- Query the database for all observations of the trait "Seedyield". Export a dataset with the columns EuclegID, Name, Block1, Row, Column and Seedyield.
- Try to find the best-fitting multi-trial linear mixed model
- Scale the SeedYield variable and retry
- Save the resulting BLUPs in your Personal storage

Genotype imputation

- the statistical inference of unobserved genotypes:
 - impute randomly missing genotypic data
 - impute genotypic data for alignment of different SNP arrays
 - impute genotypic data from low-density SNP array to high-density SNP array
 - impute genotypic data from low coverage sequencing data

Randomly missing genotypic data

low percentage of genotypes have not been called,
 e.g., <5%

Alignment of different SNP arrays

 different genotyping platforms are used with only a certain percentage of SNP common across platforms

"Missing Not At Random"

Impute from low-density to highdensity

- makes genomic prediction economically feasible:
 - elite material: genotype with high-density array
 - test / new material: genotype with low-density and impute missing SNP scores

Reference individuals genotyped at high-density

Individual genotyped at low-density

Individual with imputed genotype

Imputation methods

- naïve approaches
- basic statistical approaches
- population-based approaches
- family-based approaches

Naïve imputation

- often used when GS software does not handle missing data:
 - marker mean value (i.e. related to allele frequency)
 - heterozygous value (inbred lines)

Population-based approaches

- commonly used in human studies
- based on short-range LD information in a population
- often based on Hidden Markov models (HMM)
- several methods / implementations available that differ in accuracy, computational requirements, speed,
 - Beagle (Browning and Browning. 2009. AJHG 84: 210-223)
 - Impute v2 (Howie, et al. 2009. PLoS Genet 5: e1000529)
 - fastPHASE (Scheet and Stephens. 2006. AJHG 78: 629-644)

Marker redundancy

- remove markers that are either
 - monomorphic (var(RAF) < 0.01)</p>
 - strongly correlated (R >= 0.99) with other marker(s)
 - parallel computation => might produce different outcome on consecutive runs!

Population analysis

- Dimensionality of the marker matrix is reduced by means of principal component analysis (PCA):
- finds linear combinations of markers that explain the most variance

 Scree plot helps to identify the number of loadings to maintain

HCPC: Hierarchical Clustering on Principal Components

- clustering method that builds a hierarchical tree (i.e. dendrogram) from accession PCA scores
- Agglomerative clustering: consecutively merging (groups of) accessions until all belong to the same cluster (i.e. the root of the tree)
- Identify the position in the three where the "between inertia" ratio is minimized

Exercise Population analysis

- Perform a PCA and HCPC analysis on the RAFs of markers located on chromosome 4
- Retrieve the supplier information of the accessions and merge it with the HCPC cluster results. Can you link suppliers to HCPC clusters?

Genome-wide Association Study

- marker alleles are correlated with a trait on a population level
- can detect association by looking at unrelated individuals from a population
- does not necessarily imply that markers are linked to (are close to) genes influencing the trait.
- requires high-density molecular marker panel

Α	С	G	Α	G	1.3m	Å
Α	С	G	Α	Т	1.4m	
Α	Т	Α	Α	G	1.5m	30
С	Т	Α	G	Т	1.8m	A.
Α	Т	G	G	Т	2.0m	
Α	Т	G	G	G	2.0m	£.

Limitations of GWAS

- not very predictive for complex traits
- generally explains little heritability
- focus on common variation
- many associated variants are not causal

The case of the missing heritability

QK model

Both kinship and population stratification can bias GWA studies

- yij = mean + m(i) + population(i) + Individual(i) + residual
- Var(Individual) = scaled Kinship matrix

Correcting for multiple testing

- Performing more statistical test will always yield more hits
- Bonferroni: Threshold = alpha / NumTrials
- False Discovery Rate (Benjamini-Hochberg):
 - Threshold1 = (1 * alpha) / NumTrials
 - Threshold2 = (2 * alpha) / NumTrials
 - Threshold3 = (3 * alpha) / NumTrials
 - **—** ...
- If you are willing to accept a "fraction of false discoveries", FDR correction is acceptable

Exercise GWAS

- Extract the marker RAFs for SNPs located on chromosome 13 at a physical position greater than 35.000.000
- Impute missing values and remove redundant columns
- Perform population analysis and export cluster information
- Perform GWAS using the SeedyieldBLUP dataset from the shared storage space.
- Check "Reuse variance estimates" to speed up computations
- Report significant SNPs after FDR correction

Genomic selection

- GS aims to trace all the QTLs in the genome using large number of markers. - all markers can have some effect
- First introduced by Meuwissen et al. in 2001
- Very successful! It is routinely applied in breeding of many plant and animal species

GS Concept

- the effects of chromosome segments (markers, haplotypes, are estimated in a training population
- breeding values of individuals without phenotypes are predicted

Genomic Prediction methods

- RRBLUP or Ridge Regression BLUP: linear mixed model approach fitting a random effect for each marker
 - => fast computations
- GBLUP or Genomic BLUP: linear mixed model approach fitting a random effect for each accession => slower than RRBLUP
 - => provides reliabilities
- Random Forests: machine learning technique using resampled decision trees
 - => requires parameter optimization

Genomic prediction accuracy

- predictive ability: the expected Pearson correlation between genomic prediction and the actual phenotype
- prediction accuracy: the expected Pearson correlation between genomic prediction and the breeding value
- estimated through k-fold cross-validation:
 - randomly split the training data in k subsets
 - for each subset i:
 - remove the phenotypic data for all the members or subset I
 - construct a genomic prediction model from the remaining data
 - predict the phenotypes of the members of subset I from their genotypic data
 - correlate the predictions with the actual phenotypic values

Genomic Prediction exercise

- Analyze the available multi-trial data for the trait "ThousandSeedWeight". Export the BLUPs to a separate dataset.
- Train a genomic prediction model using the BLUPs as phenotypes and the "allMarkers.imputed.informative" matrix. What is the average cross-validation accuracy.
- Use the trained model to make genomic predictions for the matrix of selection candidates named "selectionMatrix"
- Which selection candidate has the highest predicted ThousandSeedWeight?

PDP = Processed Data Package

