CM146, Fall 2019

Problem Set 4: Learning Theory, Boosting, Multi-class Classification

Due December 8, 2019, 11:59pm

Submission instructions

- Submit your solutions electronically on the course Gradescope site as PDF files.
- If you plan to typeset your solutions, please use the LaTeX solution template. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app.

1 PAC Learning [25 pts]

(

/

		Hypothesis 1 (1st iteration)				Hypothesis 2 (2nd iteration)			
i	Label	D_0	$f_1 \equiv$	$f_2 \equiv$	$h_1 \equiv$	D_1	$f_1 \equiv$	$f_2 \equiv$	$h_2 \equiv$
			$[x >_{_}]$	$[y>_{_}]$	[]		$[x >_{_}]$	$[y>_{_}]$	[]
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	_								
2	_								
3	+								
4	_								
5	_								
6	_								
7	+								
8	_								
9	+								
10	+								

Table 1: Table for Boosting results

2 VC Dimension [15 pts]

$3\quad Boosting\ [40\ pts]$

i	x	y	Label
1	0	8	_
2	1	4	_
3	3	7	+
4	-2	1	_
5	-1	13	_
6	9	11	_
γ	12	7	+
8	-7	-1	_
9	-3	12	+
10	5	9	+

4 Multi-class classification [60 pts]

Consider a multi-class classification problem with k class labels $\{1, 2, ... k\}$. Assume that we are given m examples, labeled with one of the k class labels. Assume, for simplicity, that we have m/k examples of each type.

Assume that you have a learning algorithm L that can be used to learn Boolean functions. (E.g., think about L as the Perceptron algorithm). We would like to explore several ways to develop learning algorithms for the multi-class classification problem.

There are two schemes to use the algorithm L on the given data set, and produce a multi-class classification:

- One vs. All: For every label $i \in [1, k]$, a classifier is learned over the following data set: the examples labeled with the label i are considered "positive", and examples labeled with any other class $j \in [1, k], j \neq i$ are considered "negative".
- All vs. All: For every pair of labels $\langle i,j\rangle$, a classifier is learned over the following data set: the examples labeled with one class $i\in[1,k]$ are considered "positive", and those labeled with the other class $j\in[1,k], j\neq i$ are considered "negative".