Signals & Systems University of California, Los Angeles; Department of ECE Prof. Jonathan C. Kao TAs: Rakshith, Kalai, Yang

Due Friday, 21 Oct 2022, by 11:59pm to Gradescope.

Covers material up to Lecture 6. 100 points total.

1. (15 points) Linear systems

Determine whether each of the following systems is linear or not where the input is x(t) and the output is y(t). Explain your answers.

(a)
$$y(t) = x(t)e^{-jwt}$$
 (5 points)

(b)
$$y(t) = \int_{-\infty}^{\infty} [x(t)]^2 + x(t)dt$$
 where $x(t)$ is real (5 points)

(c)
$$y(t) = e^{x(t)}$$
 (5 points)

2. (20 points) LTI (Linear Time-Invariant) systems

(a) (10 points) Consider an LTI system whose response to $x_1(t)$ is $y_1(t)$.

Sketch the response of the system to $x_2(t)$.

(b) (10 points) Assume we have an LTI system whose output is $a^t \cos(t)$ when the input is u(t). What is the system output when the input is $0.5[\delta(t+1) + \delta(t-1)]$? Is this system causal?

3. (36 points) Convolution

- (a) (12 points) Compute the convolution integral for each pair of signals below.
 - i. $f(t) = \delta(t+1) + 5\delta(t-2)$, $g(t) = e^{-t}u(t)$ (2 points)
 - ii. $f(t) = 2\text{rect}(t \frac{3}{2}), \ g(t) = 2r(t 1)\text{rect}(t \frac{3}{2})$ (10 points)
- (b) (12 points) Find the impulse response h(t) for a system whose input-output relationship is described as $y(t) = \int_{t-T}^{t} (t-\tau)^2 x(\tau) d\tau$.
- (c) (12 points) Simplify the following expressions:
 - i. $e^t * \sum_{k=0}^{\infty} \delta(t-k)$ Where * means convolution (6 points) Hint: Geometric progression is of the form $a, ar, ar^2, ar^3, ...$ and the sum of these elements is $\frac{a}{1-r}$.
 - ii. $\frac{d}{dt}\{[u(t)-u(t-1)]*u(t-2)\}\$ (6 points) Hint: First show that u(t)*u(t)=r(t) where r(t) is the ramp function.

4. (12 points) LTI Systems and impulse response

Consider the following three LTI systems:

- S_1 : $y(t) = \int_{-\infty}^t e^{-3(t-\tau)} x(\tau) d\tau$;
- S_2 : $y(t) = \int_{-\infty}^{t-2} x(\tau) d\tau$
- S_3 is characterized by its impulse response: $h_3(t) = \delta(t-3)$.
- (a) (4 points) Compute the impulse response $h_1(t)$ of S_1 .
- (b) (2 points) Define $w(t) = S_1[x(t)] S_3\{S_2[x(t)]\}$. Represent this relationship using a block diagram where x(t) is the input and w(t) is the output.
- (c) (2 points) Determine the impulse response $h_{eq}(t)$ of the above system.

(d) (4 points) Determine the response of the overall system to $\delta(t) + 2\delta(t-3)$.

5. (17 points) Python tasks

import numpy as np

We provide a helper function nconv() as defined below:

def nconv(x, tx, h, th):
y = np.convolve(x, h) * (th[1] - th[0])
ty = np.linspace(tx[0] + th[0], tx[-1] + th[-1], len(y))
return y, ty

where the inputs are:

x: input signal vector

tx: times over which x is defined

h : impulse response vector

th: times over which h is defined

and the outputs are:

y : output signal vector

ty: times over which y is defined.

The function is implemented using numpy's convolve() function Link.

- (a) (10 points) Use nconv() to check your result for problem 3(a)(ii) and plot the output. Use the same step size for tx and th and label the plots.
- (b) (7 points) Use nconv() to convolve two unit rectangles: rect(t) * rect(t). Plot the result and label the axes.