Table of Contents

Calculates the position of a ball at $t = 1$ sec, given the initial velocity of the ball.	1
Calculates the positions of the ball described in the last section at $t = 0, 0.2, 0.4, 0.6, 0.8,$ and 1.0	
seconds	. 1
Plots a trajectory curve of the ball described before.	. 2
Plots a spiral curve described by the equations $x = cos(\#)$, $y = sin(\#)$, and $z = \theta 8\pi$, where θ runs	
from 0 to $_{8\pi}$	5
Runs the commands in the last section as a script file.	
Plots the trajectory curves of the ball for elevation angles θ varying from π 8to 3π 8. The collec-	
tion of the curves form a surface in the height-distance- θ space.	11
Derives an expression for the range of the ball as a function of the elevation angle #and plots a	
range-versus-#curve. (a)	13
Derives an expression for the range of the ball as a function of the elevation angle #and plots a	
range-versus-#curve. (b)	15
Calculates and tabulates the positions of the ball at $t = 0, 0.1, 0.2,, 1$ sec, allowing the input of	
an initial speed and an elevation angle.	17
Creates a trajectory table, write the table to a text file, reads the table from the text file, and prints	
the table on the screen.	18

Calculates the position of a ball at t = 1 sec, given the initial velocity of the ball.

```
v0 = 5;
theta = 45;
g = 9.81;
t = 1;
x = v0*cosd(theta)*t;
y = v0*sind(theta)*t-g*t^2/2;
```

Calculates the positions of the ball described in the last section at t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 seconds.

```
v0 = 5;
theta = 45;
g = 9.81;
t = 0:0.2:1
x= v0*cosd(theta)*t
y= v0*sind(theta)*t-g*t.^2/2

t =

0  0.2000  0.4000  0.6000  0.8000  1.0000
```

x = 0 0.7071 1.4142 2.1213 2.8284 3.5355 y = 0 0.5109 0.6294 0.3555 -0.3108 -1.3695

Plots a trajectory curve of the ball described before.

```
v0 = 5; theta = 45; g = 9.81;
t = 0:0.02:1
x= v0*cosd(theta)*t
y= v0*sind(theta)*t-g*t.^2/2
plot(x,y,'b'); grid;
title('Trajectory of a Ball')
xlabel('Distance (m)')
ylabel('Height (m)')
t =
 Columns 1 through 7
            0.0200
                      0.0400 0.0600
                                        0.0800
                                                   0.1000
                                                            0.1200
  Columns 8 through 14
            0.1600 0.1800
                                0.2000
   0.1400
                                         0.2200
                                                   0.2400
                                                            0.2600
 Columns 15 through 21
             0.3000
                                0.3400
   0.2800
                    0.3200
                                         0.3600
                                                   0.3800
                                                            0.4000
  Columns 22 through 28
   0.4200
            0.4400
                    0.4600
                                0.4800
                                         0.5000
                                                   0.5200
                                                            0.5400
 Columns 29 through 35
            0.5800 0.6000
                                                   0.6600
   0.5600
                                0.6200
                                         0.6400
                                                            0.6800
 Columns 36 through 42
   0.7000
            0.7200 0.7400 0.7600
                                         0.7800
                                                   0.8000
                                                            0.8200
 Columns 43 through 49
```

	0.8400	0.8600	0.8800	0.9000	0.9200	0.9400	0.9600
C	Columns 50	through 51					
	0.9800	1.0000					
x =	_						
Λ -							
C	Columns 1 t	through 7					
	0	0.0707	0.1414	0.2121	0.2828	0.3536	0.4243
C	Columns 8 t	hrough 14					
	0.4950	0.5657	0.6364	0.7071	0.7778	0.8485	0.9192
C	Columns 15	through 21					
	0.9899	1.0607	1.1314	1.2021	1.2728	1.3435	1.4142
C	Columns 22	through 28	•				
	1.4849	1.5556	1.6263	1.6971	1.7678	1.8385	1.9092
C	Columns 29	through 35	ī				
	1.9799	2.0506	2.1213	2.1920	2.2627	2.3335	2.4042
C	Columns 36	through 42	?				
	2.4749	2.5456	2.6163	2.6870	2.7577	2.8284	2.8991
C	Columns 43	through 49)				
	2.9698	3.0406	3.1113	3.1820	3.2527	3.3234	3.3941
C	Columns 50	through 51					
	3.4648	3.5355					
<i>y</i> =	=						
_							
C	Columns 1 t	through 7					
	0	0.0687	0.1336	0.1945	0.2515	0.3045	0.3536
C	Columns 8 t	chrough 14					
	0.3988	0.4401	0.4775	0.5109	0.5404	0.5660	0.5877
C	Columns 15	through 21					

0.6054	0.6192	0.6291	0.6351	0.6371	0.6352	0.6294
Columns 22	through	28				
0.6197	0.6060	0.5884	0.5669	0.5415	0.5122	0.4789
Columns 29	through	35				
0.4417	0.4006	0.3555	0.3065	0.2537	0.1968	0.1361
Columns 36	through	42				
0.0714	0.0028	-0.0697	-0.1461	-0.2265	-0.3108	-0.3990
Columns 43	through	49				
-0.4911	-0.5872	-0.6872	-0.7911	-0.8989	-1.0107	-1.1263
Columns 50	through	51				
-1.2459	-1.3695					

Plots a spiral curve described by the equations x = cos(#), y = sin(#), and z = # 8#, where # runs from 0 to 8#.

```
theta = 0:5:360*4;
x= cosd(theta)
y= sind(theta);
z = theta/(pi);
plot3(x,y,z,'r')
x =
 Columns 1 through 7
   1.0000
            0.9962
                    0.9848
                             0.9659
                                      0.9397
                                               0.9063
                                                       0.8660
 Columns 8 through 14
   0.8192
           0.7660
                    0.7071 0.6428
                                      0.5736
                                               0.5000
                                                       0.4226
 Columns 15 through 21
   0.3420
           0.2588 0.1736 0.0872
                                         0 -0.0872
                                                      -0.1736
 Columns 22 through 28
  -0.2588 -0.3420 -0.4226 -0.5000 -0.5736
                                              -0.6428
                                                      -0.7071
 Columns 29 through 35
  -0.7660 -0.8192 -0.8660 -0.9063
                                     -0.9397
                                              -0.9659
                                                      -0.9848
 Columns 36 through 42
  -0.9962 -1.0000 -0.9962 -0.9848
                                     -0.9659
                                              -0.9397
                                                      -0.9063
 Columns 43 through 49
  -0.8660 -0.8192 -0.7660 -0.7071
                                     -0.6428
                                              -0.5736
                                                      -0.5000
 Columns 50 through 56
  -0.4226 -0.3420 -0.2588 -0.1736
                                     -0.0872
                                                   0
                                                       0.0872
 Columns 57 through 63
   0.5736
                                                       0.6428
 Columns 64 through 70
```

0.7071 0.7660 0.8192	0.8660	0.9063	0.9397	0.9659
Columns 71 through 77				
0.9848 0.9962 1.0000	0.9962	0.9848	0.9659	0.9397
Columns 78 through 84				
0.9063 0.8660 0.8192	0.7660	0.7071	0.6428	0.5736
Columns 85 through 91				
0.5000 0.4226 0.3420	0.2588	0.1736	0.0872	0
Columns 92 through 98				
-0.0872 -0.1736 -0.2588	-0.3420	-0.4226	-0.5000	-0.5736
Columns 99 through 105				
-0.6428 -0.7071 -0.7660	-0.8192	-0.8660	-0.9063	-0.9397
Columns 106 through 112				
-0.9659 -0.9848 -0.9962	-1.0000	-0.9962	-0.9848	-0.9659
Columns 113 through 119				
-0.9397 -0.9063 -0.8660	-0.8192	-0.7660	-0.7071	-0.6428
Columns 120 through 126				
-0.5736 -0.5000 -0.4226	-0.3420	-0.2588	-0.1736	-0.0872
Columns 127 through 133				
0 0.0872 0.1736	0.2588	0.3420	0.4226	0.5000
Columns 134 through 140				
0.5736 0.6428 0.7071	0.7660	0.8192	0.8660	0.9063
Columns 141 through 147				
0.9397 0.9659 0.9848	0.9962	1.0000	0.9962	0.9848
Columns 148 through 154				
0.9659 0.9397 0.9063	0.8660	0.8192	0.7660	0.7071
Columns 155 through 161				
0.6428 0.5736 0.5000	0.4226	0.3420	0.2588	0.1736

Columns 162 through	168				
0.0872 0	-0.0872	-0.1736	-0.2588	-0.3420	-0.4226
Columns 169 through	175				
-0.5000 -0.5736	-0.6428	-0.7071	-0.7660	-0.8192	-0.8660
Columns 176 through	n 182				
-0.9063 -0.9397	-0.9659	-0.9848	-0.9962	-1.0000	-0.9962
Columns 183 through	189				
-0.9848 -0.9659	-0.9397	-0.9063	-0.8660	-0.8192	-0.7660
Columns 190 through	196				
-0.7071 -0.6428	-0.5736	-0.5000	-0.4226	-0.3420	-0.2588
Columns 197 through	1 203				
-0.1736 -0.0872	0	0.0872	0.1736	0.2588	0.3420
Columns 204 through	210				
0.4226 0.5000	0.5736	0.6428	0.7071	0.7660	0.8192
Columns 211 through	1 217				
0.8660 0.9063	0.9397	0.9659	0.9848	0.9962	1.0000
Columns 218 through	1 224				
0.9962 0.9848	0.9659	0.9397	0.9063	0.8660	0.8192
Columns 225 through	1 231				
0.7660 0.7071	0.6428	0.5736	0.5000	0.4226	0.3420
Columns 232 through	1 238				
0.2588 0.1736	0.0872	0	-0.0872	-0.1736	-0.2588
Columns 239 through	1 245				
-0.3420 -0.4226	-0.5000	-0.5736	-0.6428	-0.7071	-0.7660
Columns 246 through	1 252				
-0.8192 -0.8660	-0.9063	-0.9397	-0.9659	-0.9848	-0.9962
Columns 253 through	n 259				

-1.0000	-0.9962	-0.9848	-0.9659	-0.9397	-0.9063	-0.8660
Columns 260) through	266				
-0.8192	-0.7660	-0.7071	-0.6428	-0.5736	-0.5000	-0.4226
Columns 267	through	273				
-0.3420	-0.2588	-0.1736	-0.0872	0	0.0872	0.1736
Columns 274	through	280				
0.2588	0.3420	0.4226	0.5000	0.5736	0.6428	0.7071
Columns 281	l through	287				
0.7660	0.8192	0.8660	0.9063	0.9397	0.9659	0.9848
Columns 288	3 through	289				
0.9962	1.0000					

Runs the commands in the last section as a script file.

```
v0=5; theta = 360/4; g = 9.81
t = 0:0.02:1
x = v0*cosd(theta)*t;
y = v0*sin(theta)*t-g*t.^2/2;
disp(x)
disp(y)
plot(x,y)
title('Trajectory of a Ball')
xlabel('Distance (m)')
ylabel('Height (m)')
g =
   9.8100
t =
 Columns 1 through 7
                       0.0400 0.0600
             0.0200
                                           0.0800
                                                    0.1000
                                                              0.1200
 Columns 8 through 14
   0.1400
            0.1600
                       0.1800
                              0.2000
                                           0.2200
                                                    0.2400
                                                              0.2600
  Columns 15 through 21
   0.2800
            0.3000
                                 0.3400
                       0.3200
                                           0.3600
                                                    0.3800
                                                              0.4000
 Columns 22 through 28
                       0.4600
                                 0.4800
                                           0.5000
   0.4200
             0.4400
                                                    0.5200
                                                              0.5400
  Columns 29 through 35
    0.5600
             0.5800
                       0.6000
                                 0.6200
                                           0.6400
                                                    0.6600
                                                              0.6800
 Columns 36 through 42
   0.7000
             0.7200
                     0.7400
                                 0.7600
                                           0.7800
                                                    0.8000
                                                              0.8200
 Columns 43 through 49
   0.8400
             0.8600 0.8800
                                 0.9000
                                           0.9200
                                                    0.9400
                                                              0.9600
 Columns 50 through 51
```

0.9800	1.0000								
Columns 1 th	nrough 13								
0 0	0	0	0	0	0	0	0	0	0
Columns 14 t	hrough 26	ī							
0 0	0	0	0	0	0	0	0	0	0
Columns 27 t	hrough 39)							
0 0	0	0	0	0	0	0	0	0	0
Columns 40 t	hrough 51	<u>.</u>							
0 0	0	0	0	0	0	0	0	0	0
Columns 1 th	irough 7								
0	0.0874	0.171	10	0.2505		0.3262	0.39	79	0.4658
Columns 8 th	rough 14								
0.5297	0.5896	0.645	57	0.6978		0.7460	0.79	03	0.8306
Columns 15 t	hrough 21	<u>!</u>							
0.8670	0.8995	0.928	31	0.9528		0.9735	0.990	03	1.0032
Columns 22 t	hrough 28	3							
1.0122	1.0172	1.018	33	1.0155		1.0087	0.998	31	0.9835
Columns 29 t	hrough 35	5							
0.9650	0.9425	0.916	52	0.8859		0.8517	0.81	36	0.7715
Columns 36 t	hrough 42	?							
0.7255	0.6756	0.621	18	0.5641		0.5024	0.436	58	0.3673
Columns 43 t	hrough 49)							
0.2938	0.2164	0.135	52	0.0499	-	-0.0392	-0.132	23	-0.2293
Columns 50 t	hrough 51	<u>!</u>							
-0.3302 -	0.4350								

Plots the trajectory curves of the ball for elevation angles # varying from # 8to 3# 8. The collection of the curves form a surface in the height-distance-# space.

```
v0=5; g = 9.81;
time = 0:0.01:1; n = length(time);
theta = 45:1.8:135
m = length(theta);
time_arr = repmat(time,m,1);
theta_arr = repmat(theta',1,n);
X = v0*cosd(theta_arr).*time_arr;
Z = v0*sind(theta_arr).*time_arr-g*time_arr.^2/2;
surf(X,theta_arr,Z) % #######
hold on % ######
Z = zeros(m,n); %##51X101#matrix
mesh(X,theta_arr,Z)
xlabel('Distance (m)')
ylabel('Angle (radian)')
zlabel('Height (m)')
colorbar % ###############
```


theta	=	

_							
	Columns 1	through 7	7				
	45.0000	46.8000	48.6000	50.4000	52.2000	54.0000	55.8000
	Columns 8	through 1	14				
	57.6000	59.4000	61.2000	63.0000	64.8000	66.6000	68.4000
	Columns 15	through	21				
	70.2000	72.0000	73.8000	75.6000	77.4000	79.2000	81.0000
	Columns 22	through	28				
	82.8000	84.6000	86.4000	88.2000	90.0000	91.8000	93.6000
	Columns 29	through	35				
	95.4000	97.2000	99.0000	100.8000	102.6000	104.4000	106.2000
	Columns 36	through	42				
	108.0000	109.8000	111.6000	113.4000	115.2000	117.0000	118.8000
	Columns 43	through	49				
	120.6000	122.4000	124.2000	126.0000	127.8000	129.6000	131.4000
	Columns 50	through	51				
	133.2000	135.0000					

Derives an expression for the range of the ball as a function of the elevation angle #and plots a range-versus-#curve. (a)

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######

syms v0 theta g t % syms ########

x = v0*cosd(theta)*t
y = v0*sind(theta)*t-g*t^2/2
solutions = solve(y,t) % solve ######

t0 = solutions(2) % solutions(index) ##index####
range = subs(x,t,t0) % subs(S,OLD,NEW) #######$######S#####NEW#
range = simplify(range) % ########
range = subs(range,[v0,g],[5,9.81]);
fplot(range,[360/8,360*3/8]) % fplot : ######
title('Range as Function of Angle (a)')
xlabel('Elevantion angle ')
ylabel('Range (m)')
```

x =

Derives an expression for the range of the ball as a function of the elevation angle #and plots a range-versus-#curve. (b)

```
clc % ##command window
clear all % ##WorkSpace##
close all % ######
syms v0 theta g t % syms #########
x = v0*cosd(theta)*t
y = v0*sind(theta)*t-g*t^2/2
solutions = solve(y,t) % solve ######
t0 = solutions(2) % solutions(index) ##index####
range = simplify(range) % ########
range = subs(range,[v0,g],[5,9.81])
func = matlabFunction(range)
theta = [360/8:360/200:360*(3/8)];
range = func(theta);
plot(theta*180/pi,range)
title('Range as Function of Angle (b)')
xlabel('Elevantion angle ')
ylabel('Range (m)')
```

```
x =
t*v0*cos((pi*theta)/180)
y =
t*v0*sin((pi*theta)/180) - (g*t^2)/2
solutions =
(2*v0*sin((pi*theta)/180))/g
t0 =
(2*v0*sin((pi*theta)/180))/g
range =
(2*v0^2*cos((pi*theta)/180)*sin((pi*theta)/180))/g
range =
(v0^2*sin((pi*theta)/90))/g
range =
(2500*sin((pi*theta)/90))/981
func =
  function_handle with value:
    @(theta)sin(theta.*pi.*(1.0./9.0e1)).*2.54841997961264
```


Calculates and tabulates the positions of the ball at t = 0, 0.1, 0.2, ..., 1 sec, allowing the input of an initial speed and an elevation angle.

```
disp('Enter initial speed (m/s): ');
v0 = 5
disp('Enter elevation angle: ');
theta = 45
g = 9.81; t = 0:0.1:1;
x = v0*cosd(theta)*t;
y = v0*sind(theta)*t-g*t.^2/2;
Table = [t',x',y'];
fprintf('\n time (s) x (m)
                              y(m) n'
fprintf('%10.1f %9.3f %9.3f\n',Table')
Enter initial speed (m/s):
v0 =
     5
Enter elevation angle:
theta =
```

45

```
time (s)
           x(m) y(m)
     0.0
           0.000
                     0.000
     0.1
             0.354
                       0.305
     0.2
             0.707
                       0.511
     0.3
             1.061
                      0.619
                      0.629
     0.4
             1.414
     0.5
             1.768
                     0.542
     0.6
             2.121
                     0.356
             2.475
     0.7
                      0.071
     0.8
             2.828
                     -0.311
     0.9
             3.182
                     -0.791
     1.0
             3.536
                     -1.369
```

Creates a trajectory table, write the table to a text file, reads the table from the text file, and prints the table on the screen.

```
v0 = 5; theta = 45; g = 9.81;
t = 0:0.1:1;
x = v0*cosd(theta)*t;
y = v0*sind(theta)*t-g*t.^2/2;
Table = [t ; x ; y];
% Write to a file
file = fopen('#######/Ch1/dat/Datafile01_10.dat','w');
fprintf(file, ' Time (s) x (m) y (m) n');
fprintf(file,'%10.1f %9.3f %9.3f\n',Table');
fclose(file);
% Read from the file
file = fopen('#######/Ch1/dat/Datafile01_10.dat','r');
fscanf(file, ' Time (s) x (m)
                                  y (m) n';
Table = fscanf(file, ' %f %f %f\n',[3,11]);
fclose(file);
% Print on the screen
fprintf( ' Time (s)
                              y (m) n';
                       x (m)
fprintf('%10.1f %9.3f %9.3f\n',Table')
  Time (s)
             x(m)
                     y(m)
       0.0
              0.300
                         0.600
       0.9
               0.400
                         1.400
       2.5
              3.500
                         0.500
       0.5
              -0.300
                         0.100
       0.4
              0.700
                         1.000
       0.7
               1.768
                         2.828
               0.619
       0.0
                         0.356
      -0.8
               0.200
                         0.500
       0.8
               0.000
                        1.061
                         0.305
       2.1
               3.182
```

0.6 0.071 -1.369

Published with MATLAB® R2018a