- For deterministic classes, C = co-C.
- P is considered the only tractable complexity class.
- Satisfiability and validity are complementary problems, hence determining that satisfiability is in C immediately implies that validity is in co-C, and vice versa.

•

sdfasdfqweasdfs

P		
\cap		
NP	$PL_{Sat} = \mathbf{S5}_{Sat}$: NP-complete	PL_{Valid} : co-NP-comple
\cap		
PSPACE	$\mathbf{K}_{Sat} = \mathbf{T}_{Sat} = \mathbf{S}4_{Sat} = QBF_{Sat} = QBF_{Valid}$: PSPACE-complete	
\cap		
EXPTIME	$PDL_{Sat} = PDL_{Valdi}$: ExpTime-complete	

PL: propositional logic.

QBF: the logic of quantified Boolean formulas.

PDL: propositional dynamic logic.

PSPACE and EXPTIME are deterministic complexity classes, co-PSPACE is identical to PSPACE and co-EXPTIME is identical to EXPTIME

Table 1: The complexity of the satisfiability problem for modal logics.

NP-complete	PSPACE-complete	ExpTime-complete
$\mathrm{PL},\mathbf{S5},\mathbf{KD45}$	$\mathbf{K}_n, \mathbf{T}_n, \mathbf{S4}_n, \ n \geq 1$	$\mathbf{K}_n^C, \mathbf{T}_n^C, n \ge 1$
	$\mathbf{S5}_n, \mathbf{KD45}_n, n \geq 2$	$\mathbf{S4}_n^C, \mathbf{S5}_n^C, \mathbf{KD45}_n^C, n \geq 2$
S4.3+	QBF	PDL
		$\mathbf{K}^{E,A}$
	${f S5} imes {f S5}$	

- See [Halpern and Moses, 1992, Table 1, p. 350]
- ullet C: the logic with common knowledge operator
- D: adding distributed knowledge (intersection operator) to the language does not affect the complexity
- in these cases of single-agent for $\mathbf{S4}^C$, $\mathbf{S5}^C$ and $\mathbf{KD45}^C$, common knowledge reduces to knowledge.
- S4.3+: any (consistent) normal extension of S4.3. Hemaspaandra's Theorem: every normal logic extending S4.3 is NP-complete.
- $\mathbf{K}^{\mathsf{E},\mathsf{A}}$: the expansion of modal logic \mathbf{K} with the universal modality.