Lecture Notes for INF281 Basics of Bioinformatics Sequence Analysis

Takaya Saito

This work is licensed under a Creative Commons Attribution 4.0 International License.

Contents

Ι		1
1	Introduction	1
	1.1 Introduction to Molecular Biology	1

Part I

1 Introduction

1.1 Introduction to Molecular Biology

Molecular biology is the study of biology focusing on organisms and cells at the molecular level.

Five essential facts about cells

1. Two primary types of cells - eukaryotes and prokaryotes

• Eukaryote: animals & plants

• Prokaryote: bacteria & archaea

Figure 1.1: Eukaryotic and prokaryotic cells (source: Wikipeida)

2. Cell size - around 1 to 100 micrometers

• Cell Size and Scale: http://learn.genetics.utah.edu/content/cells/scale

3. The number of cells

• Prokaryotes: 1 cell

• Human: Estimate of 15 trillion cells

4. An animal cell and cell organelles

Figure 1.2: An animal cell and organelles (source: Kelvinsong, Wikipedia)

5. Cellular processes

- Cell growth, cell development, cell signaling,
- Example: http://www.nature.com/nrg/multimedia/rnai

Central dogma of molecular biology

It describes the information flow within a cell.

Figure 1.3: Central dogma of molecular biology

DNA (deoxyribonucleic acid)

DNA stores genetic information. It has four different bases: cytosine (C), guanine (G), adenine (A), and thymine (T).

Figure 1.4: DNA double helix and base pairs (modified from the original version by Sponk, Wikimedia Commons)

Base pair matching (Watson-Crick base pair) Adenine (A) pairs with thymine (T), whereas cytosine (C) pairs with guanine (G).

DNA strand1: ACGT

DNA strand2: TGCA

RNA (Ribonucleic acid)

RNA has various biological roles and several sub-classes. Messenger RNAs (mRNAs) convey genetic information. It has four different bases: cytosine (C), guanine (G), adenine (A), and uracil (U).

Figure 1.5: Single strand RNA (modified from the original version by Sponk, Wikimedia Commons)

Transcription: mRNAs are transcribed from DNAs

DNA: ACGT -----> RNA: ACGU Transcription

Protein

Proteins are large molecules consisting of amino acids. There are 20 common amino acids.

Figure 1.6: Protein 3D structure and amino acids (sources: AzaToth, Wikimedia Commons), YassineMrabet, Wikimedia Commons)

Translation: Amino-acids are translated from mRNAs

mRNA: GUC -----> AA: Valine Translation

Universal genetic code A codon consists of three nucleic acids. Single-letter or three-letter names can be used for amino acids.

	Gentic code Amino acids Basic Acidic Polar Nonpolar (hydrophobic)							
		2nd base						
		U	С	Α	G			
		UUU (Phe/F) Phenylalanine	UCU (Ser/S) Serine	UAU (Tyr/Y) Tyrosine	UGU (Cys/C) Cysteine			
	u	UUC (Phe/F) Phenylalanine	UCC (Ser/S) Serine	UAC (Tyr/Y) Tyrosine NO	UGC (Cys/C) Cysteine			
	۱ŭ	UUA (Leu/L) Leucine	UCA (Ser/S) Serine	UAA Ochre (Stop)	UGA Opal (Stop)			
row r		UUG (Leu/L) Leucine	UCG (Ser/S) Serine	UAG Amber (Stop)	UGG (Trp/W) Tryptophan			
3rd base in each row		CUU (Leu/L) Leucine	CCU (Pro/P) Proline	CAU (His/H) Histidine	CGU (Arg/R) Arginine			
ase ir	c	CUC (Leu/L) Leucine	CCC (Pro/P) Proline	CAC (His/H) Histidine	CGC (Arg/R) Arginine			
rd ba	Ĭ	CUA (Leu/L) Leucine	CCA (Pro/P) Proline	CAA (Gln/Q) Glutamine	CGA (Arg/R) Arginine			
.,		CUG (Leu/L) Leucine	CCG (Pro/P) Proline	CAG (Gln/Q) Glutamine	CGG (Arg/R) Arginine			
ase		AUU (Ile/I) Isoleucine	ACU (Thr/T) Threonine	AAU (Asn/N) Asparagine	AGU (Ser/S) Serine			
1st base		AUC (Ile/I) Isoleucine	ACC (Thr/T) Threonine	AAC (Asn/N) Asparagine	AGC (Ser/S) Serine			
1,5	^	AUA (Ile/I) Isoleucine	ACA (Thr/T) Threonine	AAA (Lys/K) Lysine	AGA (Arg/R) Arginine			
		AUG (Met/M) Methionine	ACG (Thr/T) Threonine	AAG (Lys/K) Lysine	AGG (Arg/R) Arginine ™			
		GUU (Val/V) Valine	GCU (Ala/A) Alanine	GAU (Asp/D) Aspartic acid	GGU (Gly/G) Glycine			
	G	GUC (Val/V) Valine	GCC (Ala/A) Alanine	GAC (Asp/D) Aspartic acid 100 5H	GGC (Gly/G) Glycine ₩			
		GUA (Val/V) Valine	GCA (Ala/A) Alanine	GAA (Glu/E) Glutamic acid	GGA (Gly/G) Glycine			
		GUG (Val/V) Valine	GCG (Ala/A) Alanine	GAG (Glu/E) Glutamic acid	GGG (Gly/G) Glycine			

Figure 1.7: Universal genetic code (modified from the original version by Häggström, Wikimedia Commons)

Cellular functions of proteins

- Enzymes: catalyze chemical reaction
- Cell signaling: hormone (e.g. insulin), antibodies,
- Structural: collagen, cartilage, keratin,

Exercises 1.1

- 1. Draw a simple diagram of the central dogma of molecular biology and briefly explain the information flow of the molecules.
- 2. What are the DNA sequences of the opposite strand for the following DNA sequences?

Seq1 CCGATT Seq2 TTACGC Seq3 ACGCGC

- 3. What are the mRNA sequences transcribed from the following DNA sequences?
- 4. What are the polypeptide sequences translated from the following mRNA sequences? Answer them with both one-letter and three letter names.

Seq1 AUGUUUUAA Seq2 GCAGCAAAA