12 - Teoremi Notevoli del Calcolo Differenziale

Derivabilità e operazioni tra funzioni

Proposizione 12.1: G-derivabilità di una combinazione lineare

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Siano $f, g: A \to Y$ due funzioni G-derivabili in \mathbf{x}_0 .

Siano $\alpha, \beta \in \mathbb{R}$.

Si hanno i seguenti fatti:

- $\alpha f + \beta g$ è G-derivabile in \mathbf{x}_0 ;
- $(\alpha f + \beta g)'(\mathbf{x}_0) = \alpha f'(\mathbf{x}_0) + \beta g'(\mathbf{x}_0).$

Dimostrazione

Si fissi $\mathbf{v} \in X$; si ha

$$\lim_{\lambda \to 0} \frac{(\alpha f + \beta g)(\mathbf{x}_0 + \lambda \mathbf{v}) - (\alpha f + \beta g)(\mathbf{x}_0)}{\lambda} = \lim_{\lambda \to 0} \frac{\alpha (f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)) + \beta (g(\mathbf{x}_0 + \lambda \mathbf{v}) - g(\mathbf{x}_0))}{\lambda}$$

$$=\lim_{\lambda o 0} lpha rac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} + eta rac{g(\mathbf{x}_0 + \lambda \mathbf{v}) - g(\mathbf{x}_0)}{\lambda}$$

$$= \alpha f'(\mathbf{x}_0)(\mathbf{v}) + \beta g'(\mathbf{x}_0)(\mathbf{v})$$

Per definizione di $\alpha f + \mu g$ e successiva manipolazione dei termini

Per ulteriore manipolazione dell'espressione in esame

Per ipotesi di G-derivabilità di f e g in \mathbf{x}_0

Essendo $\alpha f'(\mathbf{x}_0) + \beta g'(\mathbf{x}_0)$ un operatore lineare continuo in quanto combinazione lineare di operatori lineari continui, segue che $\alpha f + \beta g$ è G-derivabile in \mathbf{x}_0 ;

la sua derivata in tale punto è data perciò da $\alpha f'(\mathbf{x}_0) + \beta g'(\mathbf{x}_0)$.

Proposizione 12.2: G-derivabilità di un prodotto (per funzioni a valori reali)

Sia $(X, \|\cdot\|_X)$ uno spazio normato.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Siano $f, g: A \to \mathbb{R}$ due funzioni G-derivabili in \mathbf{x}_0 .

Si supponga che almeno una tra f e g sia continua in \mathbf{x}_0 .

Si hanno i seguenti fatti:

- $f \cdot g$ è G-derivabile in \mathbf{x}_0 ;
- $(f \cdot g)'(\mathbf{x}_0) = g(\mathbf{x}_0) f'(\mathbf{x}_0) + f(\mathbf{x}_0) g'(\mathbf{x}_0)$.

Dimostrazione

Si supponga f continua in \mathbf{x}_0 .

Si fissi $\mathbf{v} \in X$; si ha

$$\lim_{\lambda \to 0} \frac{(f \cdot g)(\mathbf{x}_0 + \lambda \mathbf{v}) - (f \cdot g)(\mathbf{x}_0)}{\lambda} = \lim_{\lambda \to 0} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v})g(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)g(\mathbf{x}_0)}{\lambda} \qquad \text{Per definizione di } f \cdot g$$

$$=\lim_{\lambda o 0}rac{f(\mathbf{x}_0+\lambda\mathbf{v})g(\mathbf{x}_0+\lambda\mathbf{v})-f(\mathbf{x}_0+\lambda\mathbf{v})g(\mathbf{x}_0)+f(\mathbf{x}_0+\lambda\mathbf{v})g(\mathbf{x}_0)-f(\mathbf{x}_0)g(\mathbf{x}_0)}{\lambda}$$

Aggiungendo e sottraendo $f(\mathbf{x}_0 + \lambda \mathbf{v})g(\mathbf{x}_0)$ al numeratore dell'espressione in esame

$$=\lim_{\lambda o 0}rac{f(\mathbf{x}_0+\lambda\mathbf{v})\left(g(\mathbf{x}_0+\lambda\mathbf{v})-g(\mathbf{x}_0)
ight)+g(\mathbf{x}_0)\left(f(\mathbf{x}_0+\lambda\mathbf{v})-f(\mathbf{x}_0)
ight)}{\lambda}$$

Per ulteriore manipolazione dell'espressione in esame

$$=\lim_{\lambda o 0}f(\mathbf{x}_0+\lambda\mathbf{v})rac{g(\mathbf{x}_0+\lambda\mathbf{v})-g(\mathbf{x}_0)}{\lambda} + g(\mathbf{x}_0)rac{f(\mathbf{x}_0+\lambda\mathbf{v})-f(\mathbf{x}_0)}{\lambda}$$

Per ulteriore manipolazione dell'espressione in esame

$$f=f(\mathbf{x}_0)g'(\mathbf{x}_0)(\mathbf{v})+g(\mathbf{x}_0)f'(\mathbf{x}_0)$$

Per G-derivabilità di f,g in \mathbf{x}_0 e per continuità di f in \mathbf{x}_0

Essendo $g(\mathbf{x}_0) f'(\mathbf{x}_0) + f(\mathbf{x}_0) g'(\mathbf{x}_0)$ un operatore lineare continuo in quanto combinazione lineare di operatori lineari continui, segue che $f \cdot g$ è G-derivabile in \mathbf{x}_0 ;

la sua derivata in tale punto è data perciò da $g(\mathbf{x}_0) f'(\mathbf{x}_0) + f(\mathbf{x}_0) g'(\mathbf{x}_0)$.

Altri risultati notevoli

Proposizione 12.3: G-derivabilità e continuità della derivata implicano F-derivabilità

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \rightarrow Y$ una funzione G-derivabile in A.

Si supponga f' continua in \mathbf{x}_0 .

Allora, f è F-derivabile in \mathbf{x}_0 .

Dimostrazione

Essendo $\mathbf{x}_0 \in \overset{\circ}{A}$, esiste $\delta > 0$ tale che $B(\mathbf{x}_0, \delta) \subseteq A$.

Si definisca $g: B(\mathbf{0}_X, \delta) \to Y$ ponendo

$$g(\mathbf{v}) = f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{v})$$
 per ogni $\mathbf{v} \in B(\mathbf{0}_X, \delta)$.

Si osserva che q è G-derivabile in $B(\mathbf{0}_X, \delta)$, e vale

$$g'(\mathbf{v}) = f'(\mathbf{x}_0 + \mathbf{v}) - f'(\mathbf{x}_0)$$
 per ogni $\mathbf{v} \in B(\mathbf{0}_X, \delta)$.

Infatti:

- $\mathbf{v}\mapsto f(\mathbf{x}_0+\mathbf{v})$ è G-derivabile in $B(\mathbf{0}_X,\delta)$ per ipotesi di G-derivabilità di f in $\overset{\circ}{A}$, e la sua derivata è pari a $f'(\mathbf{x}_0+\mathbf{v})$;
- $\mathbf{v}\mapsto f'(\mathbf{x}_0)$ è costante, dunque G-derivabile in $B(\mathbf{0}_X,\delta)$ con derivata nulla;
- $\mathbf{v} \mapsto f'(\mathbf{x}_0)(\mathbf{v})$ è lineare in $B(\mathbf{0}_X, \delta)$, dunque ivi G-derivabile con derivata pari a $f'(\mathbf{x}_0)$.

Per derivazione di somme di funzioni ([Proposizione 12.1]), segue la G-derivabilità di g in $B(\mathbf{0}_X, \delta)$, e si ha $g'(\mathbf{v}) = f'(\mathbf{x}_0 + \mathbf{v}) - f'(\mathbf{x}_0)$ per ogni $\mathbf{v} \in B(\mathbf{0}_X, \delta)$.

Si provi che
$$\lim_{\mathbf{v} \to \mathbf{0}_X} \frac{f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{v})}{\|\mathbf{v}\|_X} = \mathbf{0}_Y.$$

Si fissi $\varepsilon > 0$.

Per continuità di f' in \mathbf{x}_0 , esiste $\rho > 0$ (si supponga $\rho < \delta$) tale che

 $||f'(\mathbf{x}_0 + \mathbf{v}) - f'(\mathbf{x}_0)||_{\mathcal{L}(X,Y)} < \varepsilon$ per ogni $\mathbf{v} \in B(\mathbf{0}_X, \rho)$ (il fatto che $\rho < \delta$ garantisce la buona definizione di $f'(\mathbf{x}_0 + \mathbf{v}) - f'(\mathbf{x}_0)$ su $B(\mathbf{0}_X, \rho)$).

Si ha dunque $\|g'(\mathbf{v})\|_{\mathcal{L}(X,Y)} < \varepsilon$ per ogni $\mathbf{v} \in B(\mathbf{0}_X, \rho)$.

Fissato $\mathbf{v} \in B(\mathbf{0}_X, \rho)$, g soddisfa allora le ipotesi del corollario al teorema di Lagrange ([Corollario 11.8]) in $B(\mathbf{0}_X, \rho)$, rispetto ai punti $\mathbf{0}_X$, \mathbf{v} , per $M = \varepsilon$.

Ne segue che, per ogni $\mathbf{v} \in B(\mathbf{0}_X, \rho)$ (si consideri $\mathbf{v} \neq \mathbf{0}_X$) si ha

$$\|g(\mathbf{v}) - g(\mathbf{0}_X)\|_Y \le \varepsilon \|\mathbf{v} - \mathbf{0}_X\|_X$$
 Per il corollario al teorema di Lagrange

$$\implies \|g(\mathbf{v})\|_Y \leq \varepsilon \|\mathbf{v}\|_X$$
 Essendo $g(\mathbf{0}_X) = \mathbf{0}_Y$

$$\implies \left\| \frac{g(\mathbf{v})}{\|\mathbf{v}\|_X} \right\|_{\mathbf{v}} \le \varepsilon$$
 Avendo supposto $\mathbf{v} \ne \mathbf{0}_X$

$$\implies \left\| \frac{f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{v})}{\|\mathbf{v}\|_X} \right\|_Y \le \varepsilon$$
 Per definizione di g

È stato cioè ricavato che, per ogni $\varepsilon > 0$, esiste $\rho > 0$ tale che $\left\| \frac{f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{v})}{\|\mathbf{v}\|_X} \right\|_Y \le \varepsilon$ per ogni $\mathbf{v} \in B(\mathbf{0}_X, \delta)$ con

 $\mathbf{v} \neq \mathbf{0}_X$, che per definizione equivale ad affermare che

$$\lim_{\mathbf{v}\to\mathbf{0}_X}\frac{f(\mathbf{x}_0+\mathbf{v})-f(\mathbf{x}_0)-f'(\mathbf{x}_0)(\mathbf{v})}{\|\mathbf{v}\|_X}=\mathbf{0}_Y.$$

Proposizione 12.4: Aperti e connessi in uno spazio normato sono connessi per poligonali

Sia $(X, \|\cdot\|_X)$ uno spazio normato.

Sia $A \subseteq X$ aperto e connesso.

Allora, A è connesso per poligonali;

cioè, per ogni $\mathbf{x}, \mathbf{y} \in A$, esiste $P(\mathbf{x}, \mathbf{y})$ poligonale di estremi iniziale e finale \mathbf{x} e \mathbf{y} , tale che $P(\mathbf{x}, \mathbf{y}) \subseteq A$.

Dimostrazione

Sia $\mathbf{x} \in A$.

Sia $C = \{ \mathbf{y} \in A : \exists P(\mathbf{x}, \mathbf{y}) \text{ poligonale di estremi } \mathbf{x}, \mathbf{y} : P \subseteq A \}$; si provi che C è simultaneamente aperto e chiuso in A.

Si mostri intanto che C è aperto in A.

Sia $y \in C$; sia quindi P(x, y) una poligonale di estremi $x \in y$, contenuta in A.

Essendo $\mathbf{y} \in A$ in quanto $C \subseteq A$ ed essendo A aperto, esiste $\rho > 0$ tale che $B(\mathbf{y}, \rho) \subseteq A$.

Si ha in effetti $B(\mathbf{y}, \rho) \subseteq C$;

infatti, per ogni $\mathbf{z} \in B(\mathbf{y}, \rho)$, si ha che $P(\mathbf{x}, \mathbf{y}) \cup [\mathbf{y}, \mathbf{z}]$ è una poligonale di estremi \mathbf{x} e \mathbf{z} ; inoltre, essa è contenuta in A.

Infatti, si ha $P(\mathbf{x}, \mathbf{y}) \subseteq A$ per costruzione, e si ha $[\mathbf{y}, \mathbf{z}] \subseteq B(\mathbf{y}, \rho) \subseteq A$ per convessità di $B(\mathbf{y}, \rho)$.

Pertanto, $\mathbf{z} \in C$, da cui segue $B(\mathbf{y}, \rho) \subseteq C$, e dunque C aperto essendo ogni suo punto interno ad esso.

Si provi adesso che C è chiuso in A.

Sia dunque $\{\mathbf{y}_n\}_{n\in\mathbb{N}}\subseteq C$ una successione convergente a $\mathbf{y}\in A$; si provi che $\mathbf{y}\in C$.

Essendo A aperto e $\mathbf{y} \in A$, esiste $\sigma > 0$ tale che $B(\mathbf{y}, \sigma) \subseteq A$.

Essendo $\lim_{n} \mathbf{y}_{n} = \mathbf{y}$, esiste $\nu \in \mathbb{N}$ tale che $\mathbf{z}_{n} \in B(\mathbf{y}, \sigma)$ per ogni $n \geq \nu$.

Essendo $\mathbf{y}_{\nu} \in C$, esiste una poligonale $\mathbf{P}(\mathbf{x}, \mathbf{y}_{\nu})$ di estremi \mathbf{x} e \mathbf{y}_{ν} , contenuta in A.

L'insieme $P(\mathbf{x}, \mathbf{y}_{\nu}) \cup [\mathbf{y}_{\nu}, \mathbf{y}]$ è una poligonale di estremi \mathbf{x} e \mathbf{y} ; inoltre, essa è contenuta in A.

Infatti, si ha $P(\mathbf{x}, \mathbf{y}_{\nu}) \subseteq A$ per costruzione, e si ha $[\mathbf{y}_{\nu}, \mathbf{y}] \subseteq B(\mathbf{y}, \sigma) \subseteq A$ per convessità di $B(\mathbf{y}, \sigma)$.

Dunque, $\mathbf{y} \in C$.

È stato così provato che C è contemporaneamente aperto e chiuso in A.

Essendo A connesso, ne segue che $C = \emptyset$ oppure C = A.

Essendo $C \neq \emptyset$ in quanto $\mathbf{x} \in C$, segue allora C = A.

Allora, per ogni $\mathbf{y} \in A$ esiste una poligonale di estremi \mathbf{x} e \mathbf{y} contenuta in A; segue la connessione per poligonali di A dall'arbitrarietà di $\mathbf{x} \in A$.

Proposizione 12.5: Corollario (al teorema di Lagrange) della derivata nulla

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$ aperto e connesso.

Sia $f: A \to Y$ G-derivabile in A, tale che $f'(\mathbf{x}) = \mathbf{0}_{\mathcal{L}(X,Y)}$ per ogni $\mathbf{x} \in A$.

Allora, f è costante in A.

Dimostrazione

Si fissino $\mathbf{x}, \mathbf{y} \in A$; si provi che $f(\mathbf{x}) = f(\mathbf{y})$.

Per la [Proposizione 12.4], esiste una poligonale $\mathbf{P} = [\mathbf{x} = \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n, \mathbf{z}_{n+1} = \mathbf{y}] \subseteq A$.

Sia $C_i = \{f'(\mathbf{z}_i + \lambda(\mathbf{z}_{i+1} - \mathbf{z}_i))(\mathbf{z}_{i+1} - \mathbf{z}_i) \mid \lambda \in]0; 1[\}$ per ogni $i \in \{1, \dots, n\}$, insieme ben definito per G-derivabilità di f in A, essendo $P \subseteq A$.

Si osserva che $C_i = \{\mathbf{0}_Y\}$ per ogni $i \in \{1, \dots, n\}$, in quanto $f'(\mathbf{x})(\mathbf{v}) = \mathbf{0}_Y$ per ogni $\mathbf{x}, \mathbf{v} \in X$.

Inoltre, f soddisfa le ipotesi del teorema di Lagrange ([Teorema 11.7]), sulle coppie dei vertici consecutivi della poligonale P.

Si ha pertanto $f(\mathbf{z}_{i+1}) - f(\mathbf{z}_i) \in \overline{\operatorname{conv}}(C_i) = \overline{\operatorname{conv}}(\{\mathbf{0}_Y\}) = \{\mathbf{0}_Y\}$, ossia $f(\mathbf{z}_{i+1}) = f(\mathbf{z}_i)$, per ogni $i \in \{1, \dots, n\}$.

In particolare, ne viene allora che $f(\mathbf{z}_1) = f(\mathbf{z}_{n+1})$, ossia $f(\mathbf{x}) = f(\mathbf{y})$.

Teorema 12.6: Teorema di Fermat

Sia $(X, \|\cdot\|_X)$ uno spazio normato.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \to \mathbb{R}$ una funzione G-derivabile in \mathbf{x}_0 .

Si supponga \mathbf{x}_0 di minimo locale per f.

Allora, $f'(\mathbf{x}_0) = \mathbf{0}_{X^*}$.

Dimostrazione

Essendo $\mathbf{x}_0 \in \overset{\circ}{A}$ e di minimo locale per f, esiste $\rho > 0$ tale che $B(\mathbf{x}_0, \rho) \subseteq A$ e $f(\mathbf{x}_0) \le f(\mathbf{x})$ per ogni $\mathbf{x} \in B(\mathbf{x}_0, \rho)$.

Per G-derivabilità di f si ha $\lim_{\lambda \to 0} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} = f'(\mathbf{x}_0)(\mathbf{v})$ per ogni $\mathbf{v} \in X$.

Si osserva adesso che, per ogni $\lambda > 0$ tale che $\mathbf{x}_0 + \lambda \mathbf{v} \in B(\mathbf{x}_0, \rho)$, si ha $\frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} \geq 0$ per via del segno di λ e per costruzione di $B(\mathbf{x}_0, \rho)$;

ne segue per confronto che $0 \leq \lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} = f'(\mathbf{x}_0)(\mathbf{v}).$

D'altra parte, per ogni $\lambda < 0$ tale che $\mathbf{x}_0 + \lambda \mathbf{v} \in B(\mathbf{x}_0, \rho)$, si ha $\frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} \leq 0$ per via del segno di λ e per costruzione di $B(\mathbf{x}_0, \rho)$;

ne segue per confronto che $0 \geq \lim_{\lambda \to 0^-} rac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} = f'(\mathbf{x}_0)(\mathbf{v}).$

Pertanto, $f'(\mathbf{x}_0)(\mathbf{v}) = 0$.