高效液相色谱-质谱法测定牛奶中 6种氨基甲酸酯农药残留

田宏哲,赵瑛博,周艳明 (沈阳农业大学分析测试中心,辽宁沈阳 110866)

摘 要:为建立同时测定牛奶中 6 种氨基甲酸酯类农药残留量的方法,样品经乙腈提取,Oasis HLB 固相萃取柱净化后,采用高效液相色谱 - 离子阱质谱(HPLC-ESI-MS/MS)进行测定,测定条件为: C_{18} 色谱柱分离,甲醇 -0.02 mol/L 醋酸铵溶液梯度洗脱,多反应监测模式检测。结果表明,6 种杀虫剂的定量限为 $1.0 \sim 10.0 \, \mu\, g/k\, g$,平均添加回收率为 $79.21\% \sim 91.38\%$,相对标准偏差为 $3.44\% \sim 5.71\%$ 。本实验所建立的 6 种杀虫剂的测定方法完全可以满足当前农药残留分析的要求。

关键词:高效液相色谱-电喷雾电离质谱;杀虫剂;氨基甲酸酯农药;牛奶

Simultaneous Determination of Six Carbamate Pesticide Residues in Milk by HPLC-ESI-MS/MS

TIAN Hong-zhe , ZHAO Ying-bo , ZHOU Yan-ming (Analysis and Testing Center, Shenyang Agricultrual University, Shenyang 110866, China)

Abstract: A high performance liquid chromatography-ion trap mass spectrometric (HPLC-ESI-MS/MS) method was developed to determine six carbamate pesticide residues in milk samples simultaneously. Samples were extracted with acetonitrile, cleaned up on an Oasis HLB-SPE column, separated on a C_{18} column using mixed methanol and 0.02 mol/L ammonium acetate as a mobile phase (60:40, V/V) by gradient elution, followed by multiple reaction monitoring (MRM) mode detection. The limits of quantification ranged from 1.0 to 10.0 μ g/kg. The average recoveries in spiked samples were between 79.21% and 91.38% with relative standard deviations from 3.44% to 5.71%. The proposed method can meet the current requirements for the analysis residual pesticides.

Key words: high performance liquid chromatography-electrospray ionization mass spectrometry; insectcide; carbamate pesticide residue; milk

中图分类号: O654.7 文献标识码: A 文章编号: 1002-6630(2011)02-0187-04

由于氨基甲酸酯类农药是一类高效、低毒的广谱杀虫剂,在我国被广泛应用于谷物、蔬菜、水果等农作物的病虫害防治。这类农药的过量使用不仅会造成环境污染,同时由于食物链的传递,在动物性来源食品中也存在严重的残留现象,从而严重危害人体健康。

目前测定氨基甲酸酯类农药残留可采用液相色谱 - 串联质谱法[1-7]、酶联免疫法[8]、气相色谱 -FTD 法[9]、化学发光法[10-12]、液相色谱 - 紫外法[13-16]、荧光光谱法[17-20]等。其中:荧光检测法需要对目标组分进行衍生;氨基甲酸酯类农药由于极性较大采用气相色谱法受到一定限制;酶联免疫法测定氨基甲酸酯类农药时,目标组分不同需要制备不同的特异性抗体,方法相对较为

复杂;化学发光法和液相色谱-紫外法检测灵敏度较低;而液相色谱-串联质谱法能够实现对所有氨基甲酸酯类农药的同时测定,样品处理过程简单,分析速度快,检测灵敏度高,因此近年来在杀虫剂残留检测方面得到广泛的应用。本实验拟采用 HPLC-ESI-MS/MS 建立牛奶中 6 种氨基甲酸酯类农药残留的同时测定方法。

1 材料与方法

1.1 仪器与试剂

1100 LC-Trap SL 液相色谱 - 质谱仪(配有四元梯度 泵、自动进样器等) 美国 Agilent 公司; 质谱直接进

收稿日期:2010-03-05

样注射泵 美国 Scientific 公司; KQ-300DE 型医用数控超声波清洗器 昆山市超声仪器有限公司; TDL-40B 离心机 上海安亭科学仪器厂; RE-52AA 旋转蒸发器 上海亚荣生化仪器厂。

甲醇(色谱纯) Fluka 公司; "娃哈哈"纯净水 杭州娃哈哈集团; 其他试剂均为分析纯; Oasis HLB 固相萃取柱(30mg/1mL)、Sep-Pak C₁₈ 固相萃取柱(30mg/1mL) Waters 公司; PSA 萃取柱(60mg/3mL) Agela Technologies 公司; Diamonsil C₁₈ 色谱柱(250mm × 4.6mm, 5 μm) Dikma 公司。

1.2 标样及其溶液配制

抗蚜威(Pirimicarb)、西维因(Carbaryl)、速灭威(Metolcarb)、涕灭威(Aldicarb)、呋喃丹(Carbofuran)、异丙威(Isoprocarb)(纯度 > 98.0%) Sigma-Aldrich 公司。标准样品用色谱纯甲醇配成 1000mg/L 的储备液,然后稀释到 1.0mg/L 进行流动注射进样,分别获取标准样品的一级和二级质谱图,得到准分子离子峰和碎片离子峰的信息。

1.3 样品制备

称取 10.0g 牛奶样品(精确到 0.001g)于 150mL 锥形瓶中,加入 20mL 乙腈,旋涡混匀 1min,然后超声提取10min,倾出提取液到离心管中,管内加入 3g NaCl,残渣中再加入 20mL 乙腈提取 10min,合并提取液,4000r/min 离心 10min(20),静止 5min 后使水层与乙腈层分开。将 20mL 乙腈层转移到蒸发瓶中,在 50 蒸发近干,残渣用 1.5mL 甲醇溶解,然后用 2mL 水稀释,待净化。

Oasis HLB 固相萃取柱净化,首先分别用3mL 甲醇、3mL 水活化萃取柱。加入提取液,再分别用3mL水、3mL 甲醇-水(4:6, V/V)淋洗,然后吹干。最后用3mL 甲醇洗脱,收集洗脱液,在50 旋转蒸发近干,加入1mL 甲醇溶解,过0.45 μm 滤膜,待色谱分析。1.4 液相色谱条件

Diamonsil C₁₈ 色谱柱;流动相为甲醇-0.02mol/L 醋酸铵,配制的流动相均经过 $0.45\,\mu$ m 微孔滤膜过滤;梯度洗脱, $0\sim12min$,甲醇 $40\%\sim90\%$,保持 3min,然后回到初始状态,平衡 5min;流速 1.0mL/min,分流比 1:1;柱温 30 ;进样量 $20\,\mu$ L。

1.5 质谱条件

电喷雾电离源(ESI),正离子化模式;干燥气: 8.0L/min;干燥温度: 350 ;喷雾气: 30psi;毛细管电压: 4500V;扫描范围: $50\sim300$ m/z。多反应监测模式(MRM)(液相色谱-质谱联用优化参数见表 1)。

表 1 采用液质联用方法分析目标杀虫剂的优化参数
Table 1 Optimized HPLC-ESI-MS/MS parameters for the analysis of 6
analytes

杀虫剂	保留时间/min	相对分子质量	碰撞能量/V	监测离子对(m/z)	其他子离子(m/z)
涕灭威	9.6	190.15	0.8	213 > 116	89, 98, 156
速灭威	10.3	165.19	0.8	166 > 109	123
呋喃丹	10.8	221.26	0.8	222 > 165	123
西维因	11.6	201.22	0.8	202 > 145	117, 127
异丙威	12.4	193.12	0.8	194 > 152	137, 95
抗蚜威	12.5	238.15	1.0	239 > 182	72

2 结果与分析

2.1 分析条件的建立

由于氨基甲酸酯类农药大部分没有紫外吸收或紫外吸收较弱,所以采用电喷雾电离源-离子阱质谱进行目标组分的测定。在实验中为降低背景噪声,提高目标组分的检测灵敏度,采用多反应监测模式(MRM)对目标组分的子离子进行二级质谱测定,从而提高了待测组分的信噪比,同时避免了样品中基质及其他杂质成分的干扰。

实验中分别考察 4 种流动相甲醇 -0.2% 醋酸、甲醇 -0.1% 甲酸、乙腈 -0.1% 甲酸、甲醇 -0.02mol/L 醋酸铵对 6 种目标组分分离的影响:采用前三种流动相 6 种待测组分保留时间比较接近,谱峰重叠现象比较严重;而采用甲醇 -0.02mol/L 醋酸铵作为流动相,只有异丙威和抗蚜威谱峰重叠,其他组分都能得到基线分离,这两种杀虫剂虽然在全扫描条件下没有完全分离(图 1),但二级质谱以 MRM 模式监测目标组分,可以通过分别抽提异丙威和抗蚜威的二级质谱的萃取离子流图(EIC),从而排除未完全分离的化合物彼此间在定性及定量上的干扰,所以选择甲醇 -0.02mol/L 醋酸铵作为本方法的流动相。

1.涕灭威; 2.速灭威; 3.呋喃丹; 4.西维因; 5.异丙威; 6.抗蚜威。下同。 图 1 采用 MRM 模式分析 6 种杀虫剂标样(1.0mg/kg)的总离子流图 Fig.1 Total ion chromatogram of 6 insecticide standard (1.0 mg/kg) monitored by MRM transitions

2.2 提取溶剂的选择

目前文献中对谷物、蔬菜水果、动物性来源食

品、中药材等样品中的氨基甲酸酯类农药进行提取,主要采用乙腈、丙酮、乙酸乙酯或丙酮 - 乙酸乙酯混合溶剂。考虑牛奶中所含有的主要成分,本实验采用乙腈作为提取溶剂,既可以提取出目标组分,同时还可以沉淀牛奶中的蛋白质,随后通过盐析作用可以实现乙腈与牛奶中的水层分离。

2.3 净化柱的选择

在采用乙腈提取牛奶中的 6 种氨基甲酸酯农药时,虽然乙腈可以沉淀牛奶中的部分蛋白质,但是仍有其他基质成分被提取出来,从而干扰目标组分的分离效果和定量结果,影响了目标组分的检测灵敏度。因此,在采用乙腈提取目标组分后,需要采用必要的净化手段。根据 6 种目标组分的理化性质,分别选择 Oasis HLB 固相萃取柱、PSA 萃取柱、C18 固相萃取柱进行牛奶样品的净化。本实验考察了 6 种目标组分采用 3 种不同萃取柱净化后的回收率变化(表 2)。从实验结果可以发现,采用 Oasis HLB 固相萃取柱进行目标组分的净化,6 种待测组分回收率都达到 80% 以上,而采用其他两种萃取柱进行净化,部分目标组分的回收率偏低,不能满足农药残留检测的要求,所以选择 Oasis HLB 萃取柱作为牛奶样品的净化柱。

表 2 采用不同净化柱对 6 种杀虫剂回收率的影响

Table 2 Effect of solid-phase extraction columns on the recoveries of 6 analytes

			回收率/%			
固相萃取柱	涕灭威	速灭威	呋喃丹	西维因	异丙威	抗蚜威
C18	10.05	22.31	50.39	33.90	30.01	29.95
PSA	66.67	31.89	101.20	77.38	61.17	60.90
HLB	80.25	83.74	105.87	81.16	83.01	89.97

2.4 方法评价

图 2 采用 MRM 模式分析加标样品的总离子流图(添加水平 0.2mg/kg) Fig.2 Total ion chromatogram of spiked milk sample at a concentration of 0.2 mg/kg monitored by MRM transitions

采用牛奶为基质进行方法验证(加标谱图见图 2),确定了6种杀虫剂的检测限($R_{SN}=5$)、定量限、线性方程以及添加回收率和重现性(分别见表 3、4)。其中涕灭

威、速灭威、异丙威的线性范围为 $0.01 \sim 10.0 \,\mathrm{mg/kg}$, 呋喃丹、西维因、抗蚜威的线性范围分别为 $0.005 \sim 10.0 \sim 0.002 \sim 10.0 \sim 0.001 \sim 10.0 \,\mathrm{mg/kg}$, 6 种待测组分在线性范围内均呈良好的线性关系。6 种杀虫剂的检测限为 $0.5 \sim 5.0 \,\mu\,\mathrm{g/kg}$, 与目前欧盟、美国及日本等国对动物性食品中 6 种杀虫剂最大残留限量(抗蚜威在动物性食品中的最大残留限量为 $0.1 \,\mathrm{mg/kg}$; 其他杀虫剂尚无相关限量标准)要求相比,本实验所建立的 6 种杀虫剂的测定方法完全可以满足当前对这 6 种目标组分的检测要求。

目标杀虫剂的添加水平分别为 0.1、0.2mg/kg 和 0.5mg/kg,每个添加水平进行 3 次平行实验,6 种杀虫剂的平均添加回收率为 $79.21\% \sim 91.38\%$,相对标准偏差为 $3.44\% \sim 5.71\%$,本方法的准确度和精密度均符合农药残留分析的要求。

表 3 6 种杀虫剂的线性方程、检测限及定量限
Table 3 Linear equations, limits of detection and limits of quantification of 6 analytes

杀虫剂	线性方程	相关系数(r)	检测限/(µg/kg)	定量限/(µg/kg)
涕灭威	y = 302250x	0.9998	5.0	10.0
速灭威	$y = 3 \times 10^6 x$	0.9989	5.0	10.0
呋喃丹	$y = 2 \times 10^7 x$	0.9997	2.5	5.0
西维因	$y = 1 \times 10^7 x$	0.9971	1.0	2.0
异丙威	$y = 1 \times 10^7 x$	0.9994	5.0	10.0
抗蚜威	$y = 2 \times 10^7 x$	0.994	0.5	1.0

注:y.峰面积;x.样品水平/(mg/kg)。

表 4 6 种杀虫剂的平均添加回收率 Table 4 Average recoveries of 6 analytes in spiked milk samples

	添加水平					
杀虫剂	0.1mg/kg		0.2mg/kg		0.5mg/kg	
	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%
涕灭威	79.21	5.32	82.05	4.03	85.45	3.91
速灭威	80.24	5.02	82.52	4.24	84.25	4.07
呋喃丹	82.55	4.59	84.79	4.18	87.06	3.44
西维因	81.93	4.82	87.65	4.35	89.19	3.88
异丙威	79.58	5.71	83.94	4.77	88.92	3.93
抗蚜威	82.49	4.62	87.35	4.42	91.38	4.15

注:未检出本底值。

2.5 实际样品测定

为了考察本研究所建立的方法在实际样品测定中的可行性,将本研究建立的6种氨基甲酸酯类农药的检测方法应用于5种市售牛奶样品的分析,在市售牛奶样品中未检测出目标组分的残留。

3 结 论

本实验采用 HPLC-ESI-MS/MS 建立了牛奶中 6 种氨基甲酸酯类农药残留的同时测定方法,该方法具有操作

简单、可实现快速测定、检测灵敏度高等优势,不仅 为我国乳品质量安全控制提供了重要依据,同时可以满 足当前对乳制品等食品领域中农药残留检测的需求。

参考文献:

- [1] NUNES G S, MARCO M P, RIBEIRO M L, et al. Validation of an immunoassay method for the determination of traces of carbaryl in vegetable and fruit extracts by liquid chromatography with photodiode array and mass spectrometric detection[J]. J Chromatogr A, 1998, 823(1/2): 109-120.
- [2] GOTO T, ITO Y, YAMADA S, et al. The high throughput analysis of *N*-methyl carbamate pesticides in fruits and vegetables by liquid chromatography electrospray ionization tandem mass spectrometry using a short column[J]. Anal Chim Acta, 2006, 555(2): 225-232.
- [3] GOTO T, ITO Y, OKA H, et al. The high throughput analysis of N-methyl carbamate pesticides in wine and juice by electrospray ionization liquid chromatography tandem mass spectrometry with direct sample injection into a short column[J]. Anal Chim Acta, 2005, 53(1): 79-86.
- [4] GRANBY K, ANDERSEN J H, CHRISTENSEN H B. Analysis of pesticides in fruit, vegetables and cereals using methanolic extraction and detection by liquid chromatography-tandem mass spectrometry[J]. Anal Chim Acta, 2004, 520(1/2): 165-176.
- [5] NOGUERIA J M F, SANDRA T, SANDRA P. Multiresidue screening of neutral pesticides in water samples by high performance liquid chromatography-electrospray mass spectrometry[J]. Anal Chim Acta, 2004, 505(2): 209-215.
- [6] DUJAKOVIĆ N, GRUJIĆ S, RADIŠIĆ M, et al. Determination of pesticides in surface and ground waters by liquid chromatographyelectrospray-tandem mass spectrometry[J]. Anal Chim Acta, 2010, 678 (1): 63-72.
- [7] ORTELLI D, EDDER P, CORVI C. Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatography-electrospraytandem mass spectrometry[J]. Anal Chim Acta, 2004, 520(1/2): 33-45.
- [8] 张奇, 李铁军, 朱晓霞, 等. 氨基甲酸酯类杀虫剂速灭威酶联免疫吸附分析方法研究[J]. 分析化学, 2006, 34(2): 178-182.

- [9] 潘守奇, 孙军, 董静, 等. 气相色谱法测定水果和蔬菜中异丙威、嘧霉胺、抑霉唑残留量[J]. 食品科学, 2008, 29(12): 516-518.
- [10] 何树华, 何德勇, 章竹君. 流动注射化学发光法测定抗蚜威[J]. 分析 化学, 2006, 34(11): 1622-1624.
- [11] TSOGAS G Z, GIOKAS D L, NIKOLAKOPOULOS P G, et al. Determination of the pesticide carbaryl and its photodegradation kinetics in natural waters by flow injection-direct chemiluminescence detection[J]. Anal Chim Acta, 2006, 573/574: 354-359.
- [12] HUERTAS-PÉREZ J F, GARCÍA -CAMPAÑA A M. Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction [J]. Anal Chim Acta, 2008, 630(2): 194-204.
- [13] 杨秀敏, 王志, 王春, 等. 中空纤维液相微萃取 高效液相色谱法测定水中残留的氨基甲酸酯类农药[J]. 色谱, 2007, 25(3): 362-366.
- [14] JEONG M L, CHESNEY D J. Determination of N-methylcarbamate pesticides from spiked matrices using supercritical fluid extraction[J]. Anal Chim Acta, 1999, 38(1/3): 53-57.
- [15] GOULART S M, ALVES R D, NEVES A A, et al. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water[J]. Anal Chim Acta, 2010, 671(1/2): 41-47.
- [16] MARTY J L, MIONETTO N, LACORTE S, et al. Validation of an enzymatic biosensor with various liquid chromatographic techniques for determining organophosphorus pesticides and carbaryl in freeze-dried waters[J]. Anal Chim Acta, 1995, 311(3): 265-271.
- [17] OLMO M D, LASERNA J, ROMERO D, et al. Determination of trace amounts of carbaryl in water by solid-phase laser-induced fluorescence [J]. Talanta, 1997, 44(3): 443-449.
- [18] NI Yongyan, LIU Genlan, KOKOT S. Fluorescence spectrometric study on the interactions of isoprocarb and sodium 2-isopropylphenate with bovine serum albumin[J]. Talanta, 2008, 76(3): 513-521.
- [19] LAWRENCE J F, LEDUC R. High-pressure chromatographic analysis of carbofuran and two non-conjugated metabolites in crops as fluorescent dansyl derivatives[J]. J Chromatogr A, 1976, 152(2): 507-513.
- [20] FU Lingyan, LIU Xiujuan, HU Jia, et al. Application of dispersive liquid-liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples[J]. Anal Chim Acta, 2009, 632 (2): 289-295.