华东师范大学软件工程学院 2024 级《软件工程数学》

第一、二章测验题

	学号:
1.	Please say which of the following formulas are tautologies, which are contradictions, and which are contingencies. In each case, use truth tables plus accompanying text to prove your claims.
	(i) $(p \rightarrow q) \lor (q \rightarrow p)$ (ii) $p \oplus p$ (where \oplus is the exclusive disjunction) (iii) $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
	Aberdeen 2005
2.	Translate the following argument into propositional logic, and prove it. Premises: If it rains then it's wet. If it's wet then I'm miserable. I'm not miserable. Conclusion: It does not rain.
	Aberdeen 2006
3.	True or False. You do not need to justify your answers on this problem. N denotes the set of natural numbers, {0, 1, 2,}.
((((Z denotes the integers, $\{0, 1, 2,\}$.) (a) If the implication $P \rightarrow Q$ is true, then its converse is guaranteed to be true.) (b) $\forall w \in Z. \exists x \in Z. \forall y \in Z. \exists z \in Z. w + x = y + z$) (c) $\exists x \in N. \forall p \in Z. p > 5 \rightarrow x^2 \equiv 1 \pmod{p}$) (d) $\forall p \in Z. p > 5 \rightarrow \exists x \in N. x^2 \equiv 1 \pmod{p}$
	Berkeley Fall 2003 Midterm
4.	 (a) Consider the function f(x)=20-4x² from the set {-3,-2,-1,0,1,2,3} to the set {-16,4,16,20,36}. Is it an injection? Is it a surjection? Explain your answer. (b) Is the function f(x) =2x-1 a bijection from the set of positive integers to the set of positive integers? Explain your answer. (c) What is the inverse of f(x) =5-2x^{3/2}?
	(d) Let $f(x) = x^{2/3} + 2x + 7$ and $g(x) = 3x + 4$ be functions from the set of real numbers to the set of real numbers. What is $f \circ g$? And what is $g \circ f$?
	Queens Univ October 2006 Test1
5.	
	Stanford February 200

- 6. Prove or give a counterexample for each of the following:
 - (a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
 - (b) If $A \in B$ and $B \in C$, then $A \in C$

----Stanford February 2007

- 7. Let us add the following two operations to our dealings with sets:
 - Pairwise addition: $A \oplus B := \{a+b \mid a \in A, b \in B\}$ (This is also called the Minkowski addition of sets A and B.)
 - Pairwise multiplication: $A \otimes B := \{a \times b \mid a \in A, b \in B\}$

For example, if A is $\{1, 2\}$ and B is $\{10, 100\}$, then $A \oplus B = \{11, 12, 101, 102\}$ and $A \otimes$ $B = \{10, 20, 100, 200\}$. Please describe the following sets:

- ii. $N \oplus N$
- iii. $N^+ \oplus N^+$
- iv. $N^+ \otimes N^+$

-----Stanford Homework

- 8. 用一阶谓词公式描述下列命题的结构(使用全总个体域)
 - (a) 自然数不是奇数就是偶数
 - (b) 没有最大的自然数
- 9. 构造下面推理的证明

前提: $\exists x F(x) \rightarrow \forall y (G(y) \rightarrow H(y)),$ $\exists x M(x) \rightarrow \exists y (G(y))$

结论: $\exists x (F(x) \land M(x)) \rightarrow \exists y (H(y))$

10. 设 A, B, C 为任意的集合,

证明:

- (1) (A-B)-C=(A-C)-B
- $A\cap (B\oplus C)=(A\cap B)\oplus (A\cap C)$

说明: B ⊕ C 表示集合 B 和集合 C 的对称差, 即(BUC)-(B∩C),也即: (B-C)U(C-B)。

- 11. 若 A 是不可列的无限集, B 为无限可列集, 且 A∩B=Ø, 试建立 AUB 到 A 的——
- 12. 若 A₁, A₂, ……, Am 都是无限集、且都是可列集, 并且它们两两互不相交,

证明: □ **基** 是可列集.

13. (ECNU 2024, midterm) Let A, B and C be sets. Prove that $B - C \subseteq \overline{A}$ if and only if $A \cap B \subseteq C$