数学クォータ科目「基礎数学 I」第 11 回

三角関数とそのグラフ

佐藤 弘康 / 日本工業大学 共通教育学群

今回の授業で理解してほしいこと

- 三角関数の性質(周期,振幅)
- 三角関数のグラフ

正弦関数 $y = \sin x$ のグラフ

- $y = \sin x$ のグラフは
 - 増加と減少を繰り返す波型の曲線(正弦波)である.
 - $\circ 2\pi$ ごとに同じパターンが現れる($\sin x$ は周期 2π の周期関数).
 - $\circ -1 \le \sin x \le 1$ より, y = -1 から y = 1 の間の領域の曲線である.

余弦関数 $y = \cos x$ のグラフ

- $y = \cos x$ のグラフは
 - 増加と減少を繰り返す波型の曲線(正弦波)である.
 - $\circ 2\pi$ ごとに同じパターンが現れる($\sin x$ は周期 2π の周期関数).
 - $\circ -1 \le \cos x \le 1$ より, y = -1 から y = 1 の間の領域の曲線である.

 $y = \sin x$ のグラフを x 軸負の方向に $\frac{\pi}{2}$ だけずらした曲線 である.

例1) $y = k \sin x$ のグラフ

- $y = k \sin x$ のグラフは • $y = k \sin x$ のグラフを y 軸方向に k 倍だけ拡大・縮小した曲線である.
- 波の中心(直線 y = 0)からの 最大変位は |k| である. これを 振幅 という.

例2) $y = \sin(kx)$ のグラフ

- $y = \sin X$ は、X が 0 から 2π への変化 に伴って、「一周」する.
- X = kx が 0 から 2π へ変化するのは、x が 0 から $\frac{2\pi}{k}$ へ変化 するときで ある.
- つまり, $y = \sin(kx)$ のグラフは 周期が $\frac{2\pi}{k}$ の正弦波 である.

例3) $y = \sin(x - k)$ のグラフ

- $y = \sin X$ は、X が 0 から 2π への変化 に伴って、「一周」する.
- X = x k が 0 から 2π へ変化するのは, x が k から $k + 2\pi$ へ変化 するときである.
- つまり, $y = \sin(x k)$ のグラフは $y = \sin x$ のグラフを k だけずらした 正弦波 である.

例4) $y = a \sin(\omega x - \varphi)$ のグラフ

• $y = a \sin(\omega x - \varphi)$ のグラフ

 $\uparrow y$ 軸方向に a 倍した曲線(振幅は |a|)

•
$$y = \sin(\omega x - \varphi) = \sin\left\{\omega\left(x - \frac{\varphi}{\omega}\right)\right\}$$
 のグラフ
↑周期を $\frac{2\pi}{\omega}$ にした曲線

•
$$y = \sin\left(x - \frac{\varphi}{\omega}\right)$$
 のグラフ

 $\uparrow x$ 軸方向に $\frac{\varphi}{\omega}$ だけずらした曲線

• $y = \sin x$ のグラフ

正接関数 $y = \tan x$ のグラフ

- $y = \tan x$ のグラフは
 - $\circ x$ が $-\frac{\pi}{2}$ から $\frac{\pi}{2}$ への変化に伴って値が増加する連続関数である.
 - $\circ \pi$ ごとに同じパターンが現れる($\tan x$ は周期 π の周期関数).
 - $\circ x$ が $\frac{\pi}{2} + m\pi$ (ただし, m は整数) のときは, 定義できない.

まとめと復習(と予習)

- 正弦関数、余弦関数のグラフはどのような曲線ですか?
- 正接関数のグラフはどのような曲線ですか?
- $y = a \sin(\omega x \varphi)$ の振幅, 周期, $y = \sin x$ とのズレは?

教科書 p.59~p.63

問題集 51~53