Problem 3

• According to the definition of big O, a function, f(n) is in O(g(n)) if there exists positive real number c and a real number k such that for all n > k, $0 < f(n) < c \cdot g(n)$

Applying this to our problem.

$$2^{n+1} \le c \cdot 2^n$$

$$2^n \times 2 \le c \cdot 2^n$$

So, it appears that, for $c \ge 2$,

 $c \cdot 2^n$ will always be $\ge 2^{n+1}$

Hence, for $c \ge 2$, 2^{n+1} is in $O(2^n)$