Feb 17

Q: What is the difference between the CFG's that Hunter taught us in 305 and the ones covered here in 338?

A: Good question!

- In a nutshell, the CFG's we are covering in 338 are more general and focus more on logic than format.
- On the other hand, the CFG's covered in 305 are Jeterministic, while CFG's covered here are non feterministic. Hence the CFG's covered in 305 is only a subset of what we are overing You'll see more details next week.

Ambiguity
If a grammar generates the same string in several different ways, we say the grammar (string) is ambiguous!
in soveral different ways, we say the
grammar (string) is ambiguous!
εx <e>→ <e>+<e> <e>) (<e>) α ρ</e></e></e></e></e>
<e> => <e> +<e> => <e> +<e> *<e></e></e></e></e></e></e>
= a + b * b.
<e></e>
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
<e> * <e> <e> + <e></e></e></e></e>
Chomsky Normal Form (CNF) regular:
S-a

A context-free grammar is in CNF if every rule is in the form of $A \rightarrow BC$ A -> a

STAT

Thun 2-9 Any context-free language is generated by a Context-free grammar in CNF. Proof: (By Construction) we'll follow an example. (S -> ASA | aB 1 A → BIS B → b/E 1) Add So -> S, where S is the original start variable So→S SS→ASAlaB A →BIS (2) Remove &-rules, i.e., A>E. We need to handle every occurrence of A. EX. SR > KAVAW We have 3 possibilities. RobuAw, RobuAvw, Robuvw. XB→E 5.→S 5 → ASA | aB | a |A→B|S|E B→b X月刊E S -> ASA | aB | a | SA | AS | S A -> BIS B -> b

(3) Remove unit rules
$$A \rightarrow B$$
 $X \xrightarrow{S \rightarrow S} \begin{cases} S \xrightarrow{S} \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B|S} \\ B \xrightarrow{b} \end{cases}$
 $X \xrightarrow{S \rightarrow S} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B|S} \\ A \xrightarrow{B|S} \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B|S} |aB|a|SA|AS \\ A \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{AS} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{B} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ A \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \end{cases}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \}$
 $X \xrightarrow{A \rightarrow B} \begin{cases} S \xrightarrow{ASA} |aB|a|SA|AS \\ S \xrightarrow{ASA} |aB|a|SA|AS \}$
 $X \xrightarrow{ASA} \Rightarrow S \xrightarrow{ASA} |aB|a|SA|AS$
 $X \xrightarrow{ASA} \Rightarrow S \xrightarrow{ASA} |aB|a|SA|AS }$
 $X \xrightarrow{ASA} \Rightarrow S \xrightarrow{ASA} |aB|a|SA|AS$
 $X \xrightarrow{ASA}$

(A, Az, A are new vanibles!)

 $\int S_0 \rightarrow AA_1 |aB| a|SA|AS$ $S \rightarrow AA_1 |aB| a|SA|AS$ $A \rightarrow b|AA_1|aB|a|SA|AS$ $A_1 \rightarrow SA$ $B \rightarrow b$ I// Ai is new Soral UBI a ISA | AS Srail UBI a ISA | AS | U is new Arrosa Arrosa Brob 2-2 push down automata CPDA or pda) NFA + Stack. State Control J Stack Q: How do we reagnize on I'm with a PDA?