1 Vocabulaire

a. Complète les phrases suivantes en utilisant les mots :

- Le (\mathcal{C}_1) de E passe par les points A, B, C, D et F.
- Le segment [EF] est un de ce cercle.
- Le segment [AC] est une de ce cercle.

2 Complète par Vrai (V) ou Faux (F).

Les points M, N et O sont les centres respectifs des cercles (\mathcal{C}_1), (\mathcal{C}_2) et (\mathcal{C}_3).

- **a.** [AC] est un diamètre du cercle (\mathcal{C}_2).
- **b.** A et C sont les points d'intersection des cercles (\mathcal{C}_1) et (\mathcal{C}_2) .
- **c.** [CD] est une corde de deux cercles.
- **d.** Le point A appartient aux trois cercles.
- **e.** MC est le rayon du cercle (\mathcal{C}_1).
- **f.** Le cercle (\mathcal{C}_2) passe par les points A, B et C......

3 Figures cachées

Sur la figure ci-dessus, trace : en bleu, le cercle de centre A et de rayon 2 cm ; en rouge, le cercle de centre K et de rayon [KB] ; en jaune, le cercle de centre L et de diamètre 4 cm ; en noir, le cercle de diamètre [NT] ; en vert, le cercle de centre Y et de rayon KB.

4 Le bon centre

- **a.** Trace : le cercle (\mathcal{C}_1) passant par G, N et L ;
- un arc du cercle (\mathcal{C}_2) passant par I, H et L ;
- le cercle (\mathcal{C}_3) passant par E, G et H;
- le cercle (\mathcal{C}_4) passant par A, F et I.

<u>Remarque</u>: Les centres des cercles sont parmi les points de la figure.

b. Complète le tableau ci-dessous.

	(\mathcal{C}_1)	(\mathcal{C}_2)	(℃₃)	(\mathcal{C}_4)
Centre				
Rayon (cm)				
Diamètre (cm)				

 B_{\times} C_{\downarrow}

 $^{\mathsf{N}}{}_{ imes}$ $^{\mathsf{P}}{}_{ imes}$

 $^{\mathsf{K}}_{\times}$