Inverse of the Jacobian

IK for target pose t: find q with F(q) = t - K(q) = t - p = 0

note:

- target t is constant
- hence Jacobian J for numerical IK
- directly via Jacobian of the forward kinematics K()

$$J = J_{F(q)} = -J_{K(q)}$$

Inverse of the Jacobian

- IK for target pose t:
 find q with F(q) = t K(q) = t p = 0
- forward kinematics (e.g., 7 DoF robot arm)
 - $-\mathbf{p} = K(\mathbf{q})$ with
 - joint parameters q (7-dim)
 - p and also t: pose (6-dim)
- i.e., F() not $\mathbb{R}^N \to \mathbb{R}^N$

Inverse of the Jacobian

IK: for $\mathbf{t} \in \mathbb{R}^n$ find $\mathbf{q} \in \mathbb{R}^m$ with $F(\mathbf{q}) = |\mathbf{t} - K(\mathbf{q})| = 0$

in general: F() not necessarily $\mathbb{R}^N \to \mathbb{R}^N$

- ⇒hence: Jacobian not necessarily square?!?!
- ⇒use **pseudo-inverse** (aka Moore-Penrose pseudoinverse)

Moore-Penrose Pseudoinverse

- generalization of the inverse matrix
- for non-square matrices
- twice discovered
 - Moore, 1920
 - Penrose, 1955 (independently)
- e.g., via Singular Value Decomposition (SVD)
- very useful (will see some uses)

Pseudoinverse Properties

n x m matrix A, pseudoinverse A⁺: m x n matrix with

- 1. $A A^{+}A = A$
- 2. $A^{+}A A^{+} = A^{+}$
- 3. $(AA^+)^T = A A^+$
- $4.(A^{+}A)^{T} = A^{+}A$

∀A ∃!A+:

1.- 4. are fulfilled

Pseudoinverse Properties

nxm matrix A is rectangular, hence either

- n>m, i.e., "tall"
 - if A has linearly independent columns
 - i.e., A^TA is invertible

$$A^{+}=(A^{T}A)^{-1}A^{T}$$

- n<m, i.e., "wide"
 - if A has linearly independent rows
 - i.e., AA^T is invertible

$$A^{+}=A^{T}(AA^{T})^{-1}$$

(note: $n=m => A^+=A^{-1}$)

A

A

Pseudoinverse Properties

n>m ("tall") & linearly independent columns

$$A^{+}=(A^{T}A)^{-1}A^{T}$$

aka left pseudo-inverse as A+A = I

n<m ("wide") & linearly independent rows</pre>

$$A^+=A^T(AA^T)^{-1}$$

aka right pseudo-inverse as AA+ = I

Pseudoinverse & IK

- if IK m>n ("tall" Jacobian)
 - i.e., less system DoF than end-effector DoF
 - then left pseudo-inverse A⁺=(A^TA)⁻¹A^T
- if IK n>m ("wide" Jacobian)
 - i.e., more system DoF than end-effector DoF
 - then right pseudo-inverse A⁺=A^T(AA^T)⁻¹

but computation often via SVD

Singular Value Decomposition (SVD)

- given m×n matrix A
- SVD computes matrices U, V, W with
- $A = UWV^T$
 - $-\mathbf{U}$, $m \times m$: orthonormal
 - $-\mathbf{W}$, $m \times n$: diagonal (aka singular values)
 - $-\mathbf{V}$, $n \times n$: orthonormal

very useful in general (will see it a few times)

Singular Value Decomposition (SVD)

$$\begin{pmatrix} \mathbf{A} & \\ \end{pmatrix} = \begin{pmatrix} \mathbf{U} & \\ \end{pmatrix} \begin{pmatrix} w_1 & \cdots & 0 & & \vdots \\ \vdots & \ddots & \vdots & \cdots & 0 \\ 0 & \cdots & w_n & & \vdots \\ \vdots & & & \vdots & \\ \cdots & 0 & \cdots & \cdots & 0 \end{pmatrix} \begin{pmatrix} \mathbf{V} & \\ \end{pmatrix}^{\mathrm{T}}$$

- A: m×n
- *U:* $m \times m$, orthonormal
- *W:* $m \times n$, diagonal (aka singular values)
- *V: n*×*n*, orthonormal

Singular Value Decomposition (SVD)

intuition:

M decomposed into

- 1. rotation V[™]
- 2. scaling Σ
- 3. rotation U

$$M = U \cdot \Sigma \cdot V^T$$

SVD and Inverse

- orthogonal matrices: inverse = transpose
- W is diagonal => W⁻¹ also diagonal
 - with reciprocals of the diagonal entries

$$- ie., W_{ij}^{-1} = 1/W_{ij}$$

$$A^{-1} = (UWV^{T})^{-1} = (V^{T})^{-1} W^{-1} U^{-1}$$

= $V W^{-1} U^{T}$

=> very easy to compute (given the SVD)

SVD and Pseudo-Inverse

SVD of $A = UWV^T$ pseudo-inverse $A^+=VW^+U^T$

with W+

- transpose and
- reciprocals of W for non-Zero values, i.e.
- $W_{ij}^+ = 1/W_{ji}$ if $W_{ij} \neq 0$, 0 else (note: diagonal elements can be 0, too)

Newton & IK

$$q_{k+1} = q_k + J(q_k)^+ [t - K(q_k)]$$

- iterations needed
- often: speed critical
- trick
 - transpose J^T
 - instead of (pseudo)inverse

$$q_{k+1} = q_k + J(q_k)^T [t - K(q_k)]$$

Newton & IK

- unlikely to start close to root
- step-wise motion towards target needed anyway
- ⇒only take a small partial step
- ⇒small factor α

$$q_{k+1} = q_k + \alpha \cdot \Delta q$$

$$\Delta q = J(q_k)^+ [t - K(q_k)]$$

Example: Numerical IK

planar (2D) 2 link arm with 2 rotational joints

forward kinematics: $\mathbf{p} = f(\mathbf{q})$

- $p_x = I_1 \cos(q_1) + I_2 \cos(q_1 + q_2)$
- $p_y = I_1 \sin(q_1) + I_2 \sin(q_1 + q_2)$

(note: closed form inverse kinematics easy; just as example)

Example: Numerical IK

numerical IK => need Jacobian

$$J_{ij} = \frac{\partial p_{j}}{\partial q_{i}}$$

notational abbreviations:

$$\sin / \cos(q_1) = s_1 / c_1$$

 $\sin / \cos(q_1 + q_2) = s_{12} / c_{12}$

i.e., forward kinematics

$$p_x = I_1 c_1 + I_2 c_{12}$$

$$p_y = I_1 s_1 + I_2 s_{12}$$

Example: Numerical IK

Jacobian

$$J_{ij} = \frac{\partial p_{i}}{\partial q_{j}}$$

$$J = \begin{pmatrix} \frac{\partial p_{y}}{\partial q_{1}} & \frac{\partial p_{y}}{\partial q_{2}} \\ \frac{\partial p_{x}}{\partial q_{1}} & \frac{\partial p_{x}}{\partial q_{2}} \end{pmatrix} = \begin{pmatrix} -l_{1}s_{1} - l_{2}s_{12} & -l_{2}s_{12} \\ l_{1}c_{1} + l_{2}c_{12} & l_{2}c_{12} \end{pmatrix}$$

Example: IK with Newton

$$J^{-1} = \begin{pmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \end{pmatrix}^{-1}$$

$$q_{k+1} = q_k + \alpha J(q_k)^{-1} [p_t - f(q_k)]$$

(just take an initial guess and iterate)

Example: IK with Newton(2)

$$J^{T} = \begin{pmatrix} -l_{1}s_{1} - l_{2}s_{12} & -l_{2}s_{12} \\ l_{1}c_{1} + l_{2}c_{12} & l_{2}c_{12} \end{pmatrix}^{T}$$

$$= \begin{pmatrix} -l_{1}s_{1} - l_{2}s_{12} & l_{1}c_{1} \\ -l_{2}s_{12} + l_{2}c_{12} & l_{2}c_{12} \end{pmatrix}$$

use Transpose:
$$q_{k+1} = q_k + \alpha J(q_k)^T [p_t - f(q_k)]$$

(just take an initial guess and iterate)

Alternative Option for IK: Gradient Descent

- in general useful optimization method
- to find minimum of F() : $\mathbb{R}^N \to \mathbb{R}$
- i.e., $\mathbf{x}^* \in \mathbb{R}^N$: min $F(\mathbf{x}^*)$
- by taking steps "down" the gradient

F():
$$\mathbb{R}^{N} \to \mathbb{R}$$
 gradient of F()
$$\nabla F(x) = \begin{bmatrix} \frac{\partial F(x)}{\partial x_{1}} \\ \vdots \\ \frac{\partial F(x)}{\partial x_{N}} \end{bmatrix}$$

$$\nabla F(x) = J^T$$

note: Jacobian is a generalization of the gradient, respectively gradient a special case of the Jacobian (for F(): $\mathbb{R}^N \to \mathbb{R}$)

iteration to find $\mathbf{x}^* \in \mathbb{R}^N$: min $F(\mathbf{x}^*)$

$$x_{k+1} = x_k - \alpha_k \nabla \mathsf{F}(x_k)$$

with a small factor α that can be

- constant $(\alpha_k = \alpha)$
- or adaptive using one of many possible strategies, e.g.,
- Barzilai-Borwein method: $\alpha_k = \frac{(x_k x_{k-1})^T \left[\nabla F(x_k) \nabla F(x_{k-1})\right]}{\left|\nabla F(x_k) \nabla F(x_{k-1})\right|^2}$

note: initial guess is important

option: randomization with multiple guesses

- can e.g. in general be used to solve
- a system of (noisy) linear equations Ax-b = 0
- formulated as least squares problem

$$F(x) = |Ax - b|^2$$

gradient:
$$\nabla F(x) = 2A^T(Ax - b)$$

Gradient Descent & IK

for IK: minimize error function E(q)

$$E(q) = \frac{1}{2} |t - K(q)|^2 = \frac{1}{2} [t - K(q)] [t - K(q)]^T$$

gradient of E(q)

$$\nabla E(q) = -J(q)^T \left[t - K(q) \right]$$

Gradient Descent & IK

i.e., iteration function:

$$q_{k+1} = q_k - \alpha \nabla E(q)$$

$$= q_k + \alpha J(q)^T [t - K(q)]$$

with step-width parameter α