Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Test 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte) $a = 16 + 24i + 9i^2 + 9 - 24i + 16i^2 =$ 2p =16-9+9-16=0, care este număr natural 3p 2p $\Delta \ge 0 \Leftrightarrow m \in \left(-\infty, \frac{121}{4}\right]$, deci cel mai mare număr întreg m pentru care soluțiile ecuației 3p sunt numere reale este 30 $1 + \log_7 x + \frac{1}{\log_7 x} = 3 \Rightarrow \left(\log_7 x - 1\right)^2 = 0$ **3.** 3p $\log_7 x = 1$, deci x = 7, care convine 2p $C_n^2 = 45$, unde *n* este numărul de elemente al mulțimii, $n \in \mathbb{N}$, $n \ge 2$ 3p $\frac{n(n-1)}{2} = 45 \text{ si, cum } n \text{ este număr natural, obținem } n = 10$ 2p Distanta de la punctul A la dreapta BC este egală cu 6 3p $\mathcal{A}_{\Delta ABC} = \frac{BC \cdot d(A, BC)}{2} = \frac{4 \cdot 6}{2} = 12$ 2p $\cos x \cos x - \sin x \sin x = \frac{1}{2} \Leftrightarrow \cos 2x = \frac{1}{2}$ 3p Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $x = \frac{\pi}{6}$ 2p

	(- /	
SUBIECTUL al II-lea (30 de pu		
1.a)	$A(1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = $ $= 1 + 0 + 0 - 0 - 0 - 0 = 1$	2p 3p
b)		Эþ
D)	$A(a)A(b) = \begin{pmatrix} 1 & a & a^2 - a \\ 0 & 1 & 2a \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b & b^2 - b \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 1 & 2b + 2a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 1 & 2b + 2a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 1 & 2b + 2a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 1 & 2b + 2a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 1 & 2b + 2a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 1 & 2b + 2a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b^2 - b + 2ab + a^2 - a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b + a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b + a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b + a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b + a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b + a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b + a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b + a & b + a \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 &$	3р
	$= \begin{pmatrix} 1 & a+b & (a+b)^2 - (a+b) \\ 0 & 1 & 2(a+b) \\ 0 & 0 & 1 \end{pmatrix} = A(a+b), \text{ pentru orice numere reale } a \text{ si } b$	2p
c)	$A(3)A(-3) = A(0) = I_3$, deci inversa matricei $A(3)$ este matricea $A(-3)$	2p
	$X = A(-3) \cdot A(5) \Leftrightarrow X = A(2)$, de unde obţinem $X = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$	3p

	Centui Național de Evaluale și Examinale	
2.a)	$x * y = 2xy - 3x - 3y + \frac{9}{2} + \frac{3}{2} = 2\left(xy - \frac{3}{2}x - \frac{3}{2}y + \frac{9}{4}\right) + \frac{3}{2} =$	3р
	$= 2\left(x\left(y - \frac{3}{2}\right) - \frac{3}{2}\left(y - \frac{3}{2}\right)\right) + \frac{3}{2} = 2\left(x - \frac{3}{2}\right)\left(y - \frac{3}{2}\right) + \frac{3}{2}, \text{ pentru orice numere reale } x \text{ și } y$	2 p
b)	$2\left(x-\frac{3}{2}\right)^2 + \frac{3}{2} = 14 \Leftrightarrow \left(x-\frac{3}{2}\right)^2 = \frac{25}{4}$	2 p
	$x - \frac{3}{2} = -\frac{5}{2}$ sau $x - \frac{3}{2} = \frac{5}{2}$, deci $x = -1$ sau $x = 4$	3 p
c)	$4\left(2^{n} + \frac{3}{2} - \frac{3}{2}\right)\left(2^{n+1} + \frac{3}{2} - \frac{3}{2}\right)\left(2^{n+2} + \frac{3}{2} - \frac{3}{2}\right) + \frac{3}{2} = 2^{20} + \frac{3}{2} \Leftrightarrow 2^{2+n+n+1+n+2} = 2^{20}$	3 p
	3n+5=20, deci $n=5$	2p
SUBIECTUL al III-lea (30 de puncte)		
1.a)	$f'(x) = -\frac{2}{(x-1)^3} + \frac{2}{x^3} =$	3 p
	$= \frac{-2x^3 + 2x^3 - 6x^2 + 6x - 2}{x^3(x-1)^3} = \frac{-2(3x^2 - 3x + 1)}{x^3(x-1)^3}, \ x \in (1, +\infty)$	2 p
b)	Panta dreptei care este paralelă cu tangenta la graficul funcției f în punctul de abscisă $x = 2$	
	este $f'(2) = -\frac{7}{4}$	3 p
	Ecuația dreptei este $y-3=f'(2)(x-0)$, deci $y=-\frac{7}{4}x+3$	2p
c)	$\lim_{n \to +\infty} (f(2) + f(3) + \dots + f(n))^{n^2} = \lim_{n \to +\infty} \left(\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{3^2} + \dots + \frac{1}{(n-1)^2} - \frac{1}{n^2} \right)^{n^2} =$	3 p
	$= \lim_{n \to +\infty} \left(1 - \frac{1}{n^2} \right)^{n^2} = \lim_{n \to +\infty} \left(\left(1 + \frac{-1}{n^2} \right)^{-n^2} \right)^{-1} = e^{-1}$	2p
	$\int_{0}^{\sqrt{3}} \frac{x}{f(x)} dx = \int_{0}^{\sqrt{3}} \frac{x}{\sqrt{x^2 + 1}} dx = \sqrt{x^2 + 1} \Big _{0}^{\sqrt{3}} =$	3 p
	$=\sqrt{4}-\sqrt{1}=1$	2 p
b)	$= \sqrt{4} - \sqrt{1} = 1$ $\int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{x^{2} + 1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} \left(x \frac{x}{\sqrt{x^{2} + 1}} + \frac{1}{\sqrt{x^{2} + 1}}\right) dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} \frac{1}{\sqrt{x^{2} + 1}} dx = \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' dx + \int_{0}^{1} x \left(\sqrt{x^{2} + 1}\right)' d$	3p
	$= x\sqrt{x^2 + 1} \left \int_0^1 \int_0^1 \sqrt{x^2 + 1} dx + \ln\left(x + \sqrt{x^2 + 1}\right) \right _0^1, \det \int_0^1 f(x) dx = \frac{\sqrt{2} + \ln\left(1 + \sqrt{2}\right)}{2}$	2 p
c)	Funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \int_{0}^{x} e^{f^{2}(t)} dt - x$ este derivabilă și $g'(x) = e^{x^{2}+1} - 1$	2 p
	$g'(x) > 0$, pentru orice număr real x , deci funcția g este strict crescătoare pe \mathbb{R} și, cum	İ
	$g(0) = 0$, există un unic număr real x pentru care $\int_{0}^{x} e^{f^{2}(t)} dt = x$	3 p