

Induction, Data Types and Type Classes Practice

Christine Rizkallah CSE, UNSW (and Data61) Term 2 2019

Recap: Induction

Suppose we want to prove that a property P(n) holds for all natural numbers n.

Remember that the set of natural numbers $\ensuremath{\mathbb{N}}$ can be defined as follows:

Definition of Natural Numbers

- 1 0 is a natural number.
- **2** For any natural number n, n+1 is also a natural number.

Recap: Induction

Suppose we want to prove that a property P(n) holds for all natural numbers n.

Remember that the set of natural numbers $\mathbb N$ can be defined as follows:

Definition of Natural Numbers

- ① 0 is a natural number.
- **2** For any natural number n, n+1 is also a natural number.

Therefore, to show P(n) for all n, it suffices to show:

- \bullet P(0) (the base case), and
- **2** assuming P(k) (the *inductive hypothesis*), $\Rightarrow P(k+1)$ (the *inductive case*).

Recap: Induction on Lists

Haskell lists can be defined similarly to natural numbers.

Definition of Haskell Lists

- ① [] is a list.
- 2 For any list xs, x:xs is also a list (for any item x).

Recap: Induction on Lists

Haskell lists can be defined similarly to natural numbers.

Definition of Haskell Lists

- [] is a list.
- For any list xs, x:xs is also a list (for any item x).

This means, if we want to prove that a property P(1s) holds for all lists 1s, it suffices to show:

- \bullet P([]) (the base case)
- **2** P(x:xs) for all items x, assuming the inductive hypothesis P(xs).

Semigroups

A *semigroup* is a pair of a set S and an operation $\bullet: S \to S \to S$ where the operation \bullet is *associative*.

Semigroups

A *semigroup* is a pair of a set S and an operation $\bullet: S \to S \to S$ where the operation \bullet is *associative*.

Associativity is defined as, for all a, b, c:

$$(a \bullet (b \bullet c)) = ((a \bullet b) \bullet c)$$

Monoids

A *monoid* is a semigroup (S, \bullet) equipped with a special *identity* element z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

Monoids

A *monoid* is a semigroup (S, \bullet) equipped with a special *identity* element z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

Example

```
instance Monoid [a] where
mempty = []
mappend = (++)
```

List Monoid Example

List Monoid Example

Example (Monoid)

Prove for all xs, ys, zs:

$$((xs ++ ys) ++ zs) = (xs ++ (ys ++ zs))$$

List Monoid Example

Example (Monoid)

Prove for all xs, ys, zs:

$$((xs ++ ys) ++ zs) = (xs ++ (ys ++ zs))$$

Additionally Prove

- for all xs:
 - [] ++ xs == xs
- ② for all xs:
 - xs ++ [] == xs

(done on iPad)

List Reverse Example

Example

```
Prove for all 1s:
```

```
reverse (reverse ls) == ls
```

(done on iPad)

List Reverse Example

Example

```
Prove for all 1s:
```

```
reverse (reverse ls) == ls
```

(done on iPad) stuck!

List Reverse Example

Example

To Prove for all 1s:

reverse (reverse ls) == ls

First Prove for all ys:

reverse (ys ++ [x]) = x:reverse ys

(done on iPad)

Recap: Product Type Examples

Recap: Record Example

```
data Colour = Colour { redC :: Int
  , greenC :: Int
  , blueC :: Int
  , opacityC :: Int
  } deriving (Show, Eq)
```

Recap: Algebraic Data Types Example

Just as the Point constructor took two Float arguments, constructors for sum types can take parameters too, allowing us to model different kinds of shape:

type Picture = [PictureObject]

Live Coding: More Cool Graphics

Homework

- Do the first programming exercise, and ask us on Piazza if you get stuck. It is due in 6 days.
- Last week's quiz is due this Friday. Make sure you submit your answers.
- This week's quiz is also up, due next Friday (9 days away).