BA/BBA ECONOMETRICS

Semester - 07

Individual Assignment – II ESTIMATION OF AR(1) MODEL WITH INTERPRETATION

Submitted to **Dr. Dhyani Mehta**

Date (12/11/23)

Submitted by

Roll No.	Name
20BABBA025	Arni Parikh

INTRODUCTION

Downloaded daily closing price data of TITAN for the past three years-743 observations to run and interpret the AR(1) model on the data. Autoregression models are run on stock market data to test the efficient market hypothesis.

METHODOLOGY AND DATA

Source: NSE

Time Period: 2020-2023

Auto Regressive Model: E-Views

Descriptive Statistics: Excel

DESCRIPTIVE STATISTICS

closing price					
Mean	2298.527				
Standard Error	19.48159				
Median	2423.875				
Mode	3274.5				
Standard					
Deviation	530.6722				
Sample Variance	281612.9				
Kurtosis	-0.86123				
Skewness	-0.22715				
Range	2064.8				
Minimum	1274.7				
Maximum	3339.5				
Sum	1705507				
Count	742				
	•				

Mean (Average): The average value of the dataset is approximately 2298.53. This is calculated by summing up all the values and then dividing by the total number of observations (742).

Standard Error: The standard error of the mean is 19.48. It represents the precision of the sample mean as an estimate of the population mean. A lower standard error suggests a more accurate estimate.

Median (50th Percentile): The middle value of the dataset, known as the median, is 2423.88. This value separates the higher half from the lower half when the data is arranged in numerical order.

Mode: The mode of the dataset is 3274.5, indicating that this value occurs most frequently among all the observations.

Standard Deviation: The standard deviation, a measure of the amount of variation in the dataset, is 530.67. A lower standard deviation suggests that the values are closer to the mean.

Sample Variance: The square of the standard deviation, the sample variance, is 281612.9. It provides another measure of the spread of the data points.

Kurtosis: The kurtosis is -0.86123, indicating that the distribution is slightly less peaked than a normal distribution.

Skewness: The skewness is -0.22715, suggesting a slight leftward skew. This means that the tail on the left side of the distribution is longer or fatter than the right side.

Range: The range of the dataset is 2064.8, representing the difference between the maximum and minimum values.

Minimum: The smallest value in the dataset is 1274.7.

Maximum: The largest value in the dataset is 3339.5.

Sum: The sum of all the values in the dataset is 1705507.

Count: There are 742 observations or data points in the dataset.

NORMALITY OF DATA (on returns)

Unit Root Test: Augmented Dickey Fuller

Null Hypothesis: RT has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-26.99381 -3.438948 -2.865225 -2.568788	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RT) Method: Least Squares Date: 11/09/23 Time: 11:56 Sample (adjusted): 2 742

Included observations: 741 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RT(-1) C	-0.994341 0.001423	0.036836 0.000606	-26.99381 2.347877	0.0000 0.0191
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.496479 0.495798 0.016434 0.199574 1993.917 728.6657 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	3.70E-05 0.023143 -5.376293 -5.363856 -5.371498 1.993922

H0: Data has unit root.

H1: Data does not have unit root.

INTERPRETATION:

t-stat: -26.99381

P value of returns (0.000) < 0.05.

We reject H0 and accept H1.

Rt is stationery at I(0) level of integration that is at level.

Jarque-Bera Test

Series: RT					
Sample 1 743	3				
Observations	742				
Mean	0.001425				
Median	0.000813				
Maximum	0.106023				
Minimum	-0.060409				
Std. Dev.	0.016412				
Skewness	0.590033				
Kurtosis	6.767748				
Jarque-Bera	481.9438				
Probability	0.0000002				

H0: Data is normally distributed.

H1: Data is not normally distributed.

INTERPRETATION:

Jarque-Bera stat: 481.9438

P value of JB (0.0000) < 0.05

We reject H0 and accept H1.

Returns (Rt) are not normally distributed.

Skewness and Kurtosis is not equal to zero.

Correlogram Test

Date: 11/09/23 Time: 12:12 Sample (adjusted): 1 742

Included observations: 742 after adjustments

Autocorrelation	Partial Correlation	CIIIO	AC	PAC	Q-Stat	Prob
ı l ı	l ili	1	0.006	0.006	0.0237	0.878
ιĺι	i di	:	-0.016		0.2242	0.894
ılıı	į ili	3	0.022	0.023	0.6011	0.896
ι İ t	j di	:	-0.015		0.7671	0.943
ı l ı	į ili	5	-0.007	-0.006	0.8048	0.977
ı j ı	į ili	6	0.002	0.001	0.8088	0.992
ı j ı	į ili	7	0.006	0.006	0.8324	0.997
ı (i)	į įį	8	-0.027	-0.027	1.3901	0.994
ı l ı	į į		-0.011		1.4869	0.997
ι ϸ ι	į į į	10	0.035	0.034	2.3984	0.992
d i	(11	-0.040	-0.039	3.6030	0.980
ι ϸ ι	I II	12	0.042	0.044	4.9474	0.960
ı (lı	10	13	-0.027	-0.031	5.4979	0.963
q ı	•	14	-0.062	-0.057	8.3855	0.868
ı (t	1	15	-0.006	-0.008	8.4111	0.906
ı ≬ ı	ļ uļi	16	-0.024	-0.025	8.8382	0.920
ı ļ i	ļ iļi	17	0.011	0.013	8.9335	0.942
ı ļ i	ļ iļi	18	0.033	0.032	9.7497	0.940
ı ļ i	ļ iļi	19	0.023	0.022	10.154	0.949
ı þ i	ļ i þ i	20	0.072	0.073	14.100	0.825
ı ğ ı	ļ di	21	-0.026	-0.025	14.603	0.842
ı ≬ ı	ļ di	22	-0.014	-0.019	14.748	0.873
ď:	ļ di	23	-0.051	-0.051	16.742	0.822
ı ļ i	ļ iļi	24	0.029	0.031	17.379	0.832
ı þi	ļ i ļ i	25	0.057	0.055	19.864	0.754
ı ļ i	ļ i ļ i	26	0.029	0.039	20.524	0.766
ı 🏚	I 	27	0.083	0.080	25.834	0.528
ı ļ i	ļ i ļ i	28	0.018	0.017	26.071	0.569
d i	[[-	29	-0.039	-0.039	27.251	0.558
ı ∮ ı	10	30	-0.012	-0.025	27.355	0.605
ı ≬ ı	10	31	-0.021	-0.018	27.684	0.637
d i	į di	:	-0.048		29.482	0.595
Q:	į di	:	-0.076		34.002	0.419
ı l ı	1		-0.015		34.185	0.459
ı l ı	1	:	-0.009		34.251	0.504
ı l lı	141	36	-0.027	-0.026	34.806	0.525

H0: Data does not have autocorrelation (AC) or partial autocorrelation (PAC).

H1: Data has autocorrelation (AC) or partial autocorrelation (PAC).

INTERPRETATION:

All P values > 0.05

We accept H0 and reject H1.

Returns (Rt) does not have autocorrelation (AC) or partial autocorrelation (PAC).

> SINCE TWO OUT TO THREE TESTS (ADF AND CORRELOGRAM) SAYS THAT THE DATA IS NORMALLY DISTRIBUTED, WE ACCEPT IT AND RUN REGRESSION. IT IS A SEMI STRONG FORM OF MARKET.

REGRESSION MODEL

Dependent Variable: RT Method: Least Squares Date: 11/09/23 Time: 13:00 Sample (adjusted): 2 742

Included observations: 741 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RT_1 C	0.005659 0.001423	0.036836 0.000606	0.153639 2.347877	0.8779 0.0191
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000032 -0.001321 0.016434 0.199574 1993.917 0.023605 0.877936	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.001430 0.016423 -5.376293 -5.363856 -5.371498 1.993922

Null Hypothesis- H₀: There is no relationship between the two variables.

<u>Alternate Hypothesis</u>- H₁: The two variables share a positive relationship.

- Returns (Rt): y (Dependent Variable)
- Previous Year Returns (Rt-1): x (Independent Variable)

Therefore, the function y = f(x) is y = 0.001423 + 0.005659x

Where $\beta_0 = 0.001423$ (constant) and $\beta_1 = 0.005659$

 β_1 represents that 1% change in 'x' will lead to a 0.5% change in 'y'.

- The data above is the regression function drawn out of the current year returns being the dependent variable and previous year returns being the independent variable from the year 2020-2023.
- Probability of β_{1} = 0.8 > 0.01 which shows that the coefficient is insignificant and that the hypothesis is not accepted at 90%, 95% and 99% confidence intervals. (p value is greater than alpha value at all levels of significance and hence are insignificant to the model)
- Durbin Watson stat at 1.99 shows that there is no positive or negative autocorrelation.

RESIDUAL DIAGNOSTICS

Breush-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 2 lags

F-statistic	0.948434	Prob. F(2,737)	0.3878
Obs*R-squared	1.902267	Prob. Chi-Square(2)	0.3863

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 11/09/23 Time: 13:27 Sample: 2 742

Included observations: 741

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RT_1 C RESID(-1) RESID(-2)	-5.781138 0.008241 5.781590 0.016243	4.437796 0.006355 4.437935 0.044600	-1.302705 1.296682 1.302766 0.364180	0.1931 0.1951 0.1931 0.7158
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002567 -0.001493 0.016435 0.199062 1994.869 0.632289 0.594331	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2.25E-19 0.016422 -5.373466 -5.348591 -5.363876 1.998078

H0: φ =0, Errors are not correlated.

H1: $\varphi \neq 0$, Errors are correlated.

Prob (F) > 0.05.

We accept H0 and reject H1.

Errors are not correlated to each other.

$$y_t = \beta_0 + \beta_1 \, y_{t\text{-}1} + E_t$$

$$y_t = 0.008241 - 5.781138 y_{t\text{-}1} + \mathrm{E}_t$$

E_t creates one more regression function:

$$\gamma_t = \alpha_0 + \alpha_1 y_{t\text{-}1} + 5.781590 E_{t\text{-}1} + 0.016243 E_{t\text{-}2} + \delta_i$$

values other than zero says that both errors affects the current value.

Correlogram Test

Date: 11/09/23 Time: 14:02 Sample (adjusted): 2 742

Included observations: 741 after adjustments

Autocorrelation	Partial Correlation	CITICO	AC	PAC	Q-Stat	Prob
ılı.	1 11	1 1	0.000	0.000	0.0002	0.989
ıııı	i di	:	-0.016		0.2007	0.905
(j i	į i j i	3	0.023	0.023	0.5785	0.901
ı l ı	į ili	4	-0.015		0.7372	0.947
ı l ı	į ili		-0.007		0.7746	0.979
<u>(</u>	ļ ı ļ i	6	0.002	0.001	0.7790	0.993
(þi	i i	7	0.005	0.006	0.7995	0.997
ı (lı	i -	8	-0.027	-0.027	1.3642	0.995
ı(h	10	9	-0.012	-0.012	1.4665	0.997
(þ i	ı þ ı	10	0.035	0.034	2.3876	0.992
d i	 I II	11	-0.040	-0.040	3.6187	0.980
ı İ li	i þ i	12	0.042	0.044	4.9743	0.959
ı (lı	•	13	-0.027	-0.031	5.5196	0.962
Q i	[[]	14	-0.061	-0.057	8.3791	0.869
ı l ı	ļ ı ļ ī	15	-0.005	-0.008	8.4007	0.907
ı ≬ ı	 I I	16	-0.024	-0.025	8.8289	0.920
Ф.	<u> </u>	17	0.011	0.013	8.9243	0.943
Ф.	ļ I ļ I	18	0.033	0.032	9.7299	0.940
(l)	I I	19	0.022	0.021	10.105	0.950
(D	ļ i þ	20	0.072	0.074	14.104	0.825
ı ≬ ı	ļ ų	:	-0.026		14.609	0.842
ψ	ļ Ņ	22	-0.014	-0.019	14.749	0.873
Q:	į d i		-0.051		16.728	0.822
ų (li	ļ I ļ I	24	0.029	0.030	17.360	0.833
(D)	ļ Ņ	25	0.056	0.055	19.784	0.758
· III	ļ ļ	26	0.028	0.039	20.395	0.772
' [ļ ļ	27	0.083	0.080	25.650	0.538
	<u> </u>	28	0.017	0.018	25.881	0.580
(ļ Q !	:	-0.039		27.072	0.568
ı j ı	ļ Ņ	:	-0.011		27.172	0.614
ı <u>l</u> lı	ļ U	i	-0.020		27.495	0.647
<u> </u>	ļ U ļ	i	-0.047		29.215	0.608
ا	ļ Q !		-0.076		33.699	0.433
111	ļ <u>"</u>		-0.015		33.871	0.474
ı j ı	<u> </u>	i	-0.009		33.928	0.520
· (1)		36	-0.027	-0.026	34.492	0.540

H0: Errors does not have autocorrelation (AC) or partial autocorrelation (PAC).

H1: Errors have autocorrelation (AC) or partial autocorrelation (PAC).

INTERPRETATION:

All P values > 0.05

We accept H0 and reject H1.

Errors (E) does not have autocorrelation (AC) or partial autocorrelation (PAC).

Jarque-Bera Test

H0: Errors are normally distributed.

H1: Errors are not normally distributed.

INTERPRETATION:

Jarque-Bera stat: 481.4045

P value of JB (0.0000) < 0.05

We reject H0 and accept H1.

Errors (E) are not normally distributed.

> SINCE TWO OUT TO THREE TESTS (BG-LM AND CORRELOGRAM) SAYS THAT THE ERROS ARE NORMALLY DISTRIBUTED AND ARE NOT CORRELATED TO EACHOTHER, IT IS A SEMI STRONG FORM OF MARKET.

TESTS TO CHECK HETEROSKEDASTICITY

Glejser Test

Heteroskedasticity Test: Glejser Null hypothesis: Homoskedasticity

F-statistic	0.319241	Prob. F(1,739)	0.5722
Obs*R-squared	0.319966	Prob. Chi-Square(1)	0.5716
Scaled explained SS	0.427634	Prob. Chi-Square(1)	0.5132

Test Equation:

Dependent Variable: ARESID Method: Least Squares Date: 11/09/23 Time: 14:27

Sample: 2 742

Included observations: 741

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RT_1	0.011775 -0.014521	0.000423 0.025700	27.85601 -0.565014	0.0000 0.5722
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000432 -0.000921 0.011465 0.097145 2260.671 0.319241 0.572236	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.011755 0.011460 -6.096277 -6.083840 -6.091482 1.818390

H0: β_1 = 0, no relationship between u_i and x_i . (no heteroskedasticity)

H1: $\beta_1 \neq 0$, relationship between u_i and x_i . (heteroskedasticity)

INTERPRETATION:

Prob (F-stat) = 0.572236

Prob (F-stat) > 0.05.

We accept H0 and reject H1 since it is insignificant.

Errors are not heteroskedastic in nature and are homoscedastic.

White's Test

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

C atatistic	0.700760	Drob F(2.720)	0.4400
F-statistic	0.799760	Prob. F(2,738)	0.4498
Obs*R-squared	1.602550	Prob. Chi-Square(2)	0.4488
Scaled explained SS	4.596829	Prob. Chi-Square(2)	0.1004

Test Equation:

Dependent Variable: RESID/2 Method: Least Squares Date: 11/09/23 Time: 14:38

Sample: 2 742

Included observations: 741

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RT_1/2 RT 1	0.000265 0.027138 -0.001854	2.57E-05 0.037956 0.001527	10.28219 0.714976 -1.213925	0.0000 0.4748 0.2252
	-0.001054	0.001321	-1.213923	0.2232
R-squared	0.002163	Mean dependent var		0.000269
Adjusted R-squared	-0.000541	S.D. dependent var		0.000647
S.E. of regression	0.000647	Akaike info criterion		-11.84300
Sum squared resid	0.000309	Schwarz criterion		-11.82435
Log likelihood	4390.833	Hannan-Quinn criter.		-11.83581
F-statistic	0.799760	Durbin-Watson stat		1.998978
Prob(F-statistic)	0.449826			

H0: There is no heteroskedasticity.

H1: There is heteroskedasticity.

INTERPRETATION:

Prob (F-stat): 0.4498

Prob (chi-square): 0.4488 & 0.1004

Prob (F- stat and chi-square) > 0.05

We accept H0 and reject H1.

Therefore, errors are homoscedastic.

Breusch-Pagan-Godfrey Test

Heteroskedasticity Test: Breusch-Pagan-Godfrey

Null hypothesis: Homoskedasticity

F-statistic	1.089050	Prob. F(1,739)	0.2970
Obs*R-squared	1.090390	Prob. Chi-Square(1)	0.2964
Scaled explained SS	3.127727	Prob. Chi-Square(1)	0.0770

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 11/09/23 Time: 14:46

Sample: 2 742

Included observations: 741

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RT_1	0.000271 -0.001514	2.39E-05 0.001451	11.37508 -1.043576	0.0000 0.2970
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001472 0.000120 0.000647 0.000310 4390.577 1.089050 0.297023	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion terion nn criter.	0.000269 0.000647 -11.84501 -11.83257 -11.84022 1.947272

H0: There is no heteroskedasticity.

H1: There is heteroskedasticity.

INTERPRETATION:

Prob (F-stat): 0.2970

Prob (chi-square): 0.2964 & 0.0770

Prob (F- stat and chi-square) > 0.05

We accept H0 and reject H1.

Therefore, errors are homoscedastic.

CONCLUSION

- > Two out of the three tests (ADF AND CORRELOGRAM) done to check the normality of data says that the data is normally distributed at level.
- > Two out of the three tests (BG-LM AND CORRELOGRAM) done to check the stationarity of errors says that the errors are normally distributed at level.
- All the three heteroscedasticity tests (GEJSER TEST, WHITE'S TEST & BP-GODFREY TEST) done to check whether the errors are heteroscedastic or homoscedastic states that they are homoscedastic in nature.
- ➤ Hence, this a **semi-strong form of market** which states that the market analysis of the TITAN stock is based on both fundamental analysis and public information available.