Teoria da Computação

José Osvano da Silva, PMP

Sumário

- > 4. LINGUAGENS FORMAIS
 - Transformação de Autômato em Gramática;
 - Exemplos
 - Exercícios

Transformação de Autômato em Gramática

> Toda linguagem regular é livre de contexto. Assim, para este grupo de linguagem é possível construir autômatos e gramáticas, sendo possível, também, realizar conversão entres estes mecanismos reconhecedores.

Transformação de Autômato em Gramática

- Algoritmo:
- > Seja um autômato $M = \{\Sigma, Q, q0, F, \delta\}$ que se deseja converter em uma gramática $G = \{\Sigma, V, S, P\}$
 - Qualquer estado qi ∈ Q em M, definir uma variável A ∈ V em G;
 - Definir uma produção Ai → aij ∈ P em G se δ (qi, a) = qij uma transição ∈ δ em M;
 - Inserir uma produção Ai → ? (vazio) em P se qi ∈ F em M;
 - Inserir uma produção S → se em P se qi = q0 em M.

Exemplo 1

> Converter o seguinte autômato em gramática.

$$\rightarrow$$
 M = { Σ , Q, q0, F, δ);

$$\rightarrow$$
 G = { Σ , V, S, P}

Exemplo 1

> (M)

$$\Sigma = \{a, b\}$$

$$Q = \{1, 2, 3, 4, 5\}$$

$$q0 = \{1\}$$

$$F = \{5\}$$

$$\delta\{qi, \Sigma\} = qj \leftarrow$$
 Estado de destino

Estado de origem

а

$$\delta\{1, a\} = 2$$

 $\delta\{1, b\} = 1$
 $\delta\{2, a\} = 2$
 $\delta\{2, b\} = 3$
 $\delta\{3, a\} = 2$
 $\delta\{3, b\} = 4$
 $\delta\{4, a\} = 5$
 $\delta\{4, b\} = 1$
 $\delta\{5, a\} = 5$
 $\delta\{5, b\} = 5$

Exemplo 1

Gramática (G)

$$\Sigma = \{a, b\}$$

$$V = \{A, B, C, D, E\}$$

 $\delta\{1, a\} = 2$

$$\delta\{1, b\} = 1$$

$$\delta$$
{2, a} = 2

$$\delta$$
{2, b} = 3

$$\delta\{3, a\} = 2$$

$$\delta$$
{3, b} = 4

$$\delta$$
{4, a} = 5

$$\delta$$
{4, b} = 1

$$\delta$$
{5, a} = 5

$$\delta$$
{3, a} = 2 δ {5, b} = 5

1 2 3 4 5 \longrightarrow Corresponde a cada qi (Q)

$$P = A \rightarrow aB$$

$$B \rightarrow bC$$

$$D \rightarrow aE$$

$$E \rightarrow bE$$

$$A \rightarrow bA$$

$$C \rightarrow aB$$

$$D \rightarrow bA$$

$$E \rightarrow ?$$

$$B \rightarrow aB$$

$$C \rightarrow bD$$

$$E \rightarrow aE$$

$$S \rightarrow A$$

Exemplo 1

- $\rightarrow S \rightarrow A$
- $\rightarrow A \rightarrow aB \mid bA$
- \rightarrow B \rightarrow aB | bC
- \rightarrow C \rightarrow aB | bD
- $\rightarrow D \rightarrow aE \mid bA$
- \rightarrow E \rightarrow aE | bE | ?

> Esse formato de gramática é chamada de gramática regular ou linear à direita.

Exemplo 2

> Converter o seguinte autômato em gramática.

$$\rightarrow$$
 M = { Σ , Q, q0, F, δ);

$$\rightarrow$$
 G = { Σ , V, S, P}

```
\rightarrow (M)
\Sigma = \{0, 1\}
 Q = \{1, 2, 3, 4\}
q0 = \{1\}
 F = \{4\}
\delta\{qi, \Sigma\} = qj \leftarrow Estado de destino
Estado de origem
```

$$\delta\{1,\,0\}\,=\,1$$

$$\delta\{1, 1\} = 1$$

$$\delta\{1, 1\} = 2$$

$$\delta$$
{2, 0} = 3

$$\delta{2,?} = 3$$

$$\delta{3, 1} = 4$$

$$\delta{4, 0} = 4$$

$$\delta{4, 1} = 4$$

Exemplo 2

Gramática (G)

$$\Sigma = \{0, 1\}$$

$$V = \{A, B, C, D\}$$
1 2 3 4

1 2 3 4 — Corresponde a cada qi (Q)

$$P = A \rightarrow 0A$$

 $B \rightarrow 0C$

 $D \rightarrow 0D$

 $S \rightarrow A$

$$\delta\{1,\,0\}\,=\,1$$

$$\delta\{1,\,1\}\,=\,1$$

$$\delta\{1, 1\} = 2$$

$$\delta$$
{2, 0} = 3

$$\delta\{2, ?\} = 3$$

$$\delta{3, 1} = 4$$

$$\delta$$
{4, 0} = 4

$$\delta{4, 1} = 4$$

$$A \rightarrow 0A$$
 $A \rightarrow 1A$

$$B \rightarrow C$$

$$D \rightarrow 1D$$

$$A \rightarrow 1B$$

$$C \rightarrow 1D$$

$$D \rightarrow ?$$

- $\rightarrow S \rightarrow A$
- $\rightarrow A \rightarrow 0A \mid 1A \mid 1B$
- \rightarrow B \rightarrow 0C | C
- $\rightarrow C \rightarrow 1D$
- \rightarrow D \rightarrow 0D | 1D | ?

Exercício de Fixação

> Transformar os seguintes autômatos em gramática:

(M) $\Sigma = \{a, b\}$ $\Sigma = \{a, b\}$ $A \rightarrow ?$ $Q = \{1, 2, 3, 4, 5, 6\} \ V = \{A, B, C, D, E, F\} \ E \rightarrow ?$ $q0 = \{1\}$ $F = \{1, 4, 5\}$

(G)

 $F \rightarrow bF$

 $F \rightarrow ?$

 $S \rightarrow A$

 $\delta\{1, a\} = 2$ δ {1, b} = 5 δ {2, a} = 3 δ {3, a} = 3 δ {3, a} = 4 δ {4, b} = 3 δ {4, b} = 6 δ {5, b} = 6 δ {6, b} = 6

P = $A \rightarrow aB$ $A \rightarrow bE$ $B \rightarrow aC$ $C \rightarrow aC$ $C \rightarrow aD$ $D \rightarrow bC$ $D \rightarrow bF$

 $E \rightarrow bF$

 $S \rightarrow A$ $A \rightarrow aB|bE|$? $B \rightarrow aC$ $C \rightarrow aC|aD$ $D \rightarrow bC|bF$ $E \rightarrow bF|?$ $F \rightarrow bF|?$

TEORIA DA COMPUTAÇÃO

(M)

$$\Sigma = \{a, b\}$$

$$Q = \{1, 2, 3, 4, 5\}$$
 (G)

$$q0 = \{1\}$$

$$F = \{3, 5\}$$

$$\delta$$
{5, b} = 4

$$\delta$$
{5, b} = 4

$$\Sigma = \{a, b\}$$

$$V = \{A, B, C, D, E\}$$

$$D \rightarrow bD$$

$$E \rightarrow aE$$

$$E \rightarrow bD$$

$$C \rightarrow ?$$

$$E \rightarrow ?$$

$$S \rightarrow A$$

$$\delta$$
{1, a} = 2

$$\delta$$
{1, b} = 4

$$\delta$$
{2, a} = 2

$$\delta$$
{2, b} = 3

$$\delta$$
{3, a} = 2

$$\delta$$
{3, b} = 3

$$\delta$$
{4, a} = 5

$$\delta$$
{4, b} = 4

$$\delta$$
{5, a} = 5

$$P =$$

$$A \rightarrow aB$$

$$A \rightarrow bD$$

$$B \rightarrow aB$$

$$B \rightarrow bC$$

$$C \rightarrow aB$$

$$C \rightarrow bC$$

$$D \rightarrow aE$$

$$S \rightarrow A$$

$$A \rightarrow aB|bD$$

$$B \rightarrow aB|bC$$

$$C \rightarrow aB|bC|$$
?

$$D \rightarrow aE|bD$$

$$E \rightarrow bE|bD|$$
?

Dúvidas

