Want more revision exercises? Get MathsFit HSC Mathematics for \$2.95/topic

2016 12 The diagram shows a semicircle with

b centre O. It is given that AB = OB,

 $\angle COD = 87^{\circ} \text{ and } \angle BAO = x^{\circ}.$ (i) Show that $\angle CBO = 2x^{\circ}$,

giving reasons.

(ii) Find the value of x, giving reasons.

(i) $\angle AOB = x^{\circ}$ (base \angle s of isos Δ)

 $\therefore \angle CBO = 2x^{\circ} \text{ (ext } \angle \text{ of } \triangle \text{ result)}$

State Mean: **0.80**

(ii)
$$\angle BCO = 2x^{\circ}$$
 (base \angle s of isos \triangle)
Let $\angle BOC = y^{\circ}$.
 $2x + 2x + y = 180$ (\angle sum of \triangle)
 $x + 87 + y = 180$ (straight \angle)

$$\therefore 2x + 2x = x + 87$$

$$3x = 87$$
$$x = 29$$

[OR:
$$\angle BCO = 2x^{\circ}$$
 (base \angle s of isos \triangle)
 $2x + x = 87$ (ext \angle of \triangle result)
and so on, see above]

State Mean: **1.30**

BOSTES: Notes from the Marking Centre

This information is released by BOSTES in late Term 1 2017.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.