Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен
Студенты <u>Ткачук С.А. и Чуб Д.О.</u>	Работа выполнена Соро
Преподаватель Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.03

Изучение центрального соударения двух тел. Проверка второго закона Ньютона

1. Цель работы

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки

2. Задачи, решаемые при выполнении работы

- 1. Измерение скоростей тележек до и после соударения.
- 2. Измерение скорости тележки при ее разгоне под действием постоянной силы.
- 3. Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- 4. Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

3. Объект исследования

Упругое и неупругое соударения

4. Метод экспериментального исследования

Лабораторный

5. Рабочие формулы и исходные данные

Формулы:

Импульсы 1-го тела до удара, 1-го тела после удара и 2-го тела после удара (m_1 - масса 1-го тела, m_2 - масса 2-го тела, v_{10x} - проекция скорости 1-го тела до удара на ось OX, v_{1x} - проекция скорости 1-го тела после удара на ось OX):

$$p_{10x} = m_1 v_{10x}, p_{1x} = m_1 v_{1x}, p_{2x} = m_2 v_{2x}$$
 (1)

Относительное изменение импульса системы при соударении (p_{10x} - проекция импульса 1-го тела до удара на ось OX, p_{1x} - проекция импульса 1-го тела после удара на ось OX, p_{2x} - проекция импульса 2-го тела после удара на ось OX):

$$\delta_p = \Delta p_x / p_{10x} = \frac{(p_{1x} + p_{2x})}{p_{10x}} - 1$$
 (2)

Относительное изменение кинетической энергии системы при соударении:

$$\delta_w = \Delta W_k / W_{k0} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$
 (3)

Среднее значение относительного изменения импульса (δ_{pi} - i-е значение δ_{p} , N - количество значений):

$$\overline{\delta_p} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N} (4)$$

Среднее значение относительного изменения энергии (δ_{Wi} - i-е значение δ_{W} , N - количество значений):

$$\overline{\delta_W} = \frac{\sum_{i=1}^N \delta_{Wi}}{N}$$
 (5)

Среднее значение экспериментального значения относительного изменения механической энергии ($\delta_{Wi}^{(3)}$ - i-е значение $\delta_{W}^{(3)}$, N - количество значений):

$$\overline{\delta_W^{(3)}} = \frac{\sum_{i=1}^N \delta_{Wi}^{(3)}}{N} \tag{6}$$

Импульс системы до соударения (m_1 - масса 1-го тела, v_{10} - скорость 1-го тела до соударения) $p_{10}=m_1v_{10}$ (7)

Импульс системы после соударения (m_1 - масса 1-го тела, m_2 - масса 2-го тела, v - скорость тел после соударения)

$$p = (m_1 + m_2)v (8)$$

Относительное изменение импульса (p - импульс системы после соударения, p_{10} - импульс системы до соударения):

до соударения):
$$\delta_{\rho}=rac{\Delta p}{p_{10}}=rac{p}{p_{10}}-1$$
 (9)

Экспериментальное значение относительного изменения механической энергии:

$$\delta_w^{(3)} = \Delta W_k / W_{k0} = \frac{(m_1 + m_2)v_2^2}{m_1 v_{10}^2} - 1$$
 (10)

Теоретическое значение относительного изменения механической энергии:

$$\delta_{W}^{(T)} = -\frac{w_{\text{пот}}}{\frac{m_{1}v_{10}^{2}}{2}} = -\frac{m_{2}}{m_{1}+m_{2}}$$
(11)

Ускорение тележки (x_1 , x_2 - значения координат оптических ворот, v_1 - начальная скорость тележки, v_2 - конечная скорость тележки):

$$a = \frac{(v_2)^2 - (v_1)^2}{2(x_2 - x_1)}$$
 (12)

Сила натяжения нити (m - масса подвешенного груза, g - ускорение свободного падения, a - ускорение тележки):

$$T = m(g - a) (13)$$

Соотношение силы натяжения нити T и ускорения тележки a (M - масса тележки, $F_{\rm rp}$ - сила трения) $T = Ma + F_{\rm rp}$ (14)

Погрешность среднего значения δ_p ($t_{\alpha,N}$ - коэффициент Стьюдента для доверительной вероятности α и количества проведенных измерений N, δ_{pi} - i-е значение δ_p , $\overline{\delta_p}$ - среднее значение δ_p):

$$\Delta \overline{\delta_p} = t_{\alpha,N} \cdot \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (\delta_{pi} - \overline{\delta_p})^2}$$
 (15)

Погрешность среднего значения δ_W ($t_{\alpha,N}$ - коэффициент Стьюдента для доверительной вероятности α и количества проведенных измерений N, δ_{Wi} - i-е значение δ_W , $\overline{\delta_W}$ - среднее значение δ_W):

$$\Delta \overline{\delta_W} = t_{\alpha,N} \cdot \sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} (\delta_{Wi} - \overline{\delta_W})^2$$
 (16)

Погрешность среднего значения $\delta_W^{(3)}$ ($t_{\alpha,N}$ - коэффициент Стьюдента для доверительной вероятности α и количества проведенных измерений N, $\delta_{Wi}^{(3)}$ - i-е значение $\delta_W^{(3)}$, $\overline{\delta_W^{(3)}}$ - среднее значение $\delta_W^{(3)}$):

$$\Delta \overline{\delta_W^{(3)}} = t_{\alpha,N} \cdot \sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} \left(\delta_{Wi}^{(3)} - \overline{\delta_W^{(3)}}\right)^2 (17)$$

Исходные данные:

 $g = 9.82 \text{ м/c}^2$ - ускорение свободного падения

 $\alpha=0.95$ - доверительная вероятность

 $x_1 = 0.150$ м, $x_2 = 0.800$ м - значения координат оптических ворот

6. Измерительные приборы

	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка на рельсе	Механический	0-1.3 м	0.5 см
2	ПКЦ-3 в режиме измерения скорости	Электронный	0-9.99 м/с	0.01 м/с
3	Лабораторные весы	Электронный	0-250 г	0.01 г

7. Схема установки

Рис. 1: общий вид экспериментальной установки: 1 - рельс с сантиметровой шкалой на лицевой стороне, 2 - сталкивающиеся тележки, 3 - воздушный насос, 4 - источник питания насоса ВС 4-12, 5 - опоры рельса, 6 - опорная плоскость (поверхность стола), 7 - фиксирующий электромагнит, 8 -

оптические ворота, 9 - цифровой измерительный прибор ПКЦ-3, 10 - пульт дистанционного управления прибором ПКЦ-3

8. Результаты прямых измерений и их обработки

Таблица 1:

1 4 07 17 14	• •				
№ опыта	m_1 , г	m_2 , г	v_{10} , м/с	v_1 , м/с	v_2 , м/с
1			0,33	-0,05	0,30
2			0,32	-0,05	0,29
3	51	47	0,34	-0,05	0,31
4			0,35	-0,06	0,31
5			0,31	-0,05	0,28

Таблица 2:

№ опыта	m_1 , г	m_2 , г	v_{10} , м/с	v_{1} , м/с	v_2 , м/с
1			0,35	-0,06	0,14
2			0,34	-0,06	0,11
3	51	98	0,36	-0,06	0,13
4			0,35	-0,05	0,13
5			0,35	-0,06	0,14

Таблица 3:

№ опыта	т1, г	т2, г	v_{10} , м/с	<i>v</i> , м/с
1			0,34	0,17
2			0,33	0,16
3	54	53	0,32	0,16
4			0,34	0,17
5			0,35	0,18

Таблица 4:

№ опыта	т1, г	т2, г	v_{10} , м/с	<i>v</i> , м/с
1			0,34	0,08
2			0,32	0,08
3	54	104	0,33	0,09
4			0,34	0,08
5			0,35	0,09

Таблица 5:

№ опыта	Состав гирьки	т, г	v_1 , м/с	v_2 , $\mathrm{M/c}$
1	подвеска	2	0,29	0,89
2	подвеска + одна шайба	3	0,30	1,02
3	подвеска + две шайбы	4	0,35	1,14
4	подвеска + три шайбы	5	0,46	1,23
5	подвеска + четыре шайбы	6	0,51	1,33
6	подвеска + пять шайб	7	0,54	1,41
7	подвеска + шесть шайб	8	0,59	1,5

Таблица 6:

1 40717144	- .			
№ опыта	Состав гирьки	т, г	v_1 , м/с	v_2 , м/с
1	подвеска	2	0,16	0,63
2	подвеска + одна шайба	3	0,25	0,77
3	подвеска + две шайбы	4	0,3	0,87
4	подвеска + три шайбы	5	0,34	0,94
5	подвеска + четыре шайбы	6	0,37	1,01
6	подвеска + пять шайб	7	0,4	1,06
7	подвеска + шесть шайб	8	0,43	1,1

9. Расчет результатов косвенных измерений

Задание 1. Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.

По данным Таблицы 1 рассчитаем и занесем в Таблицу 7 импульсы тел по формулам (1):

Таблица 7:

№ опыта	p_{10x} , м $\mathrm{H}\cdot\mathrm{c}$	p_{1x} , м $ ext{H} \cdot ext{c}$	p_{2x} , м $\mathrm{H}\cdot\mathrm{c}$	δ_p	δ_W
1	16,83	-2,55	14,1	-0,31	-0,22
2	16,32	-2,55	13,63	-0,32	-0,22
3	17,34	-2,55	14,57	-0,31	-0,21
4	17,85	-3,06	14,57	-0,36	-0,25
5	15,81	-2,55	13,16	-0,33	-0,22

Вычислим для каждой строки **Таблицы 7** относительные изменения импульса δ_p и кинетической энергии δ_W системы при соударении по формулам (2) и (3). Занесем результаты в **Таблицу 7**.

Рассчитаем средние значения $\overline{\delta_p}$, $\overline{\delta_W}$ относительных изменений импульса и энергии по двум последним колонкам **Таблицы 7** по формулам (4), (5):

$$\frac{\overline{\delta_p}}{\delta_W} = -0.33$$

$$\frac{\overline{\delta_p}}{\delta_W} = -0.22$$

По данным **Таблицы 2** вычислим импульсы по формуле (1) и относительные изменения импульса и энергии по формулам (2), (3). Результаты представим в **Таблице 8**.

Таблица 8:

№ опыта	p_{10x} , м $\mathrm{H}\cdot\mathrm{c}$	p_{1x} , м $\mathrm{H}\cdot\mathrm{c}$	p_{2x} , м $\mathrm{H}\cdot\mathrm{c}$	δ_p	δ_W
1	17,85	-3,06	13,72	-0,40	-0,66
2	17,34	-3,06	10,78	-0,55	-0,77
3	18,36	-3,06	12,74	-0,47	-0,72
4	17,85	-2,55	12,74	-0,43	-0,71
5	17,85	-3,06	13,72	-0,40	-0,66

По двум последним колонкам **Таблицы 8** найдем средние значения $\overline{\delta_p}$, $\overline{\delta_W}$ по формулам (4), (5):

$$\frac{\overline{\delta_p}}{\delta_W} = -0.45$$

$$\frac{\overline{\delta_p}}{\delta_W} = -0.71$$

По данным из **Таблицы 2** заполним следующую **Таблицу 9**, где p_{10} - импульс системы до соударения (по формуле (7)), p - импульс системы после соударения (по формуле (8)), δ_p - относительное изменение импульса (по формуле (9)), $\delta_W^{(3)}$ - экспериментальное значение относительного изменения механической энергии (по формуле (10)), $\delta_W^{(T)}$ - теоретическое значение относительного изменения механической энергии (по формуле (11)).

Таблица 9:

таолица о.					
№ опыта	p_{10} , м $ ext{H} \cdot ext{c}$	<i>р</i> , мН · с	δ_p	$\delta_W^{(\mathfrak{I})}$	$\delta_W^{(T)}$
1	18,36	18,19	-0,01	-0,50	-0,50
2	17,82	17,12	-0,04	-0,53	-0,50
3	17,28	17,12	-0,01	-0,50	-0,50
4	18,36	18,19	-0,01	-0,50	-0,50
5	18,9	19,26	0,02	-0,48	-0,50

Рассчитаем среднее значение $\overline{\delta_p}$ и $\overline{\delta_W^{(\Im)}}$ по формулам (4), (6): $\frac{\overline{\delta_p}}{\overline{\delta_W^{(\Im)}}}=0.01$

$$\frac{\overline{\delta_p}}{\delta_W^{(3)}} = 0.01$$

$$\frac{\delta_W^{(3)}}{\delta_W^{(3)}} = -0.50$$

Выполним предыдущие вычисления для данных из Таблицы 4 и заполним Таблицу 10:

Таблица 10:

№ опыта	p_{10} , м $\mathrm{H}\cdot\mathrm{c}$	p , м $ ext{H} \cdot ext{c}$	δ_p	$\delta_W^{(eta)}$	$\delta_W^{(T)}$
1	18,36	18,96	0,03	-0,64	-0,66
2	17,82	17,28	-0,02	-0,67	-0,66
3	17,28	17,38	0,01	-0,65	-0,66
4	18,36	18,96	0,03	-0,64	-0,66
5	18,9	18,96	0,00	-0,66	-0,66

Рассчитаем среднее значение $\overline{\delta_p}$ и $\overline{\delta_W^{(3)}}$ по формулам (4), (6): $\frac{\overline{\delta_p}}{\overline{\delta_W^{(3)}}}=0.01$

$$\frac{\overline{\delta_p}}{\delta_W^{(3)}} = 0.01$$
$$= -0.65$$

Задание 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона

Используя значения координат оптических ворот $x_1 = 0.150$ м, $x_2 = 0.800$ м и данные из **Таблицы 5**, вычислим и запишем в **Таблицу 11** ускорение a тележки и силу T натяжения нити по формулам (12) и (13):

Таблица 11:

№ опыта	т, г	а, м/c ²	Т, мН
1	2	0,54	18,55
2	3	0,73	27,27
3	4	0,91	35,66
4	5	1,00	44,10
5	6	1,16	51,96
6	7	1,31	59,61
7	8	1,46	66,86

Пользуясь **Таблицей 11**, нанесем на график (**Рис. 2**) точки экспериментальной зависимости T(a).

С помощью метода наименьших квадратов найдем коэффициенты зависимости T(a):

а, м/c ²	<i>Т,</i> мН
0,54	18,55
0,73	27,27
0,91	35,66
1,00	44,10
1,16	51,96
1,31	59,61
1,46	66,86

$$\bar{a} = \frac{1}{n} \sum a_i = 1,02$$

$$\bar{T} = \frac{1}{n} \sum T_i = 43,43$$

$$b = \frac{\sum (a_i - \bar{a})(T_i - \bar{T})}{\sum (a_i - \bar{a})^2} = 54,12$$

$$a = \bar{T} - b\bar{a} = -11,55$$

Уравнение: T = -11,55 + 54,12a

Найдем массу M_1 тележки как коэффициент наклона экспериментальной зависимости T(a):

$$M_1 = b = 54,12$$

Найдем величину силы трения F_{TP} как свободное слагаемое экспериментальной зависимости T(a):

$$F_{\rm TD} = |a| = 11,55$$

Построим с помощью найденных по МНК параметров M_1 и $F_{\rm Tp}$ на той же координатной сетке (Рис. 2) график зависимости (14).

Выполним предыдущие действия для данных из Таблицы 6, заполнив Таблицу 12, подобную Таблице 11:

Таблица 12:

№ опыта	т, г	а, м/c ²	Т, мН
1	2	0,29	19,07
2	3	0,41	28,24
3	4	0,51	37,23
4	5	0,59	46,15
5	6	0,68	54,84
6	7	0,74	63,55
7	8	0,79	72,25

а, м/c ²	Т, мН
0,29	19,07
0,41	28,24
0,51	37,23
0,59	46,15
0,68	54,84
0,74	63,55
0,79	72,25

$$\bar{a} = \frac{1}{n} \sum a_i = 0,57$$

$$\bar{T} = \frac{1}{n} \sum T_i = 45,90$$

$$b = \frac{\sum (a_i - \bar{a})(T_i - \bar{T})}{\sum (a_i - \bar{a})^2} = 103,86$$

$$a = \bar{T} - b\bar{a} = -13,54$$

Уравнение: T = -13,54 + 103,86a

$$M_1 = b = 103,86$$

 $F_{\text{Tp}} = |a| = 13,54$

Построим на той же координатной сетке (**Рис. 2**) график зависимости T от a при разгоне утяжелённой тележки.

Рис. 2: График зависимости Т(а)

- зависимость, полученная МНК из Таблицы 11

- зависимость, полученная МНК из Таблицы 12

10. Расчет погрешностей измерений

Найдем погрешности средних значений (**Таблица 7**) $\overline{\delta_p}$ и $\overline{\delta_W}$ по формулам (15) и (16): $\Delta \overline{\delta_p} = 0.0238$; $\Delta \overline{\delta_W} = 0.0174.$

$$\Delta\delta_W=0,0174.$$
 Доверительный интервал для $\overline{\delta_p}$:
$$\left[\overline{\delta_p}-\Delta\ \overline{\delta_p},\ \overline{\delta_p}+\Delta\ \overline{\delta_p}\right]\!: \quad [-0,3538;-0,3062]$$

Доверительный интервал для
$$\overline{\delta_W}$$
:
$$\left[\ \overline{\delta_W} - \varDelta\ \overline{\delta_W},\ \overline{\delta_W} + \varDelta\ \overline{\delta_W}\right]\!: \quad [-0,\!2438;-0,\!1962]$$

Найдем погрешности средних значений (**Таблица 8**) $\overline{\delta_p}$ и $\overline{\delta_W}$ по формулам (15) и (16): $\Delta \overline{\delta_p} = 0.0722$; $\Delta \overline{\delta_W} = 0.0530.$

Доверительный интервал для $\overline{\delta_p}$:

$$\left[\overline{\delta_p} - \Delta \overline{\delta_p}, \overline{\delta_p} + \Delta \overline{\delta_p}\right]: \left[-0.4744; -0.4256\right]$$

Доверительный интервал для
$$\overline{\delta_W}$$
: $\left[\overline{\delta_W} - \Delta \overline{\delta_W}, \overline{\delta_W} + \Delta \overline{\delta_W}\right]$: $\left[-0.7630; -0.6570\right]$

Найдем погрешности средних значений (**Таблица 9**) $\overline{\delta_p}$ и $\overline{\delta_W^{(9)}}$ по формулам (15) и (17): $\Delta \overline{\delta_p} = 0.0244$; $\Delta \overline{\delta_W^{(3)}} = 0.0206.$

Доверительный интервал для
$$\overline{\delta_p}$$
:
$$\left[\ \overline{\delta_p} - \varDelta\ \overline{\delta_p},\ \overline{\delta_p} + \varDelta\ \overline{\delta_p}\right] \! : \quad [-0.0144; 0.0344]$$

Доверительный интервал для
$$\overline{\delta_W^{(3)}}$$
:
$$\left[\overline{\delta_W^{(3)}} - \Delta \ \overline{\delta_W^{(3)}}, \ \overline{\delta_W^{(3)}} + \Delta \ \overline{\delta_W^{(3)}} \right] \colon \quad [-0,5206; -0,4794]$$

Найдем погрешности средних значений (**Таблица 10**) $\overline{\delta_p}$ и $\overline{\delta_W^{(3)}}$ по формулам (15) и (17): $\Delta \overline{\delta_p} = 0.0244$; $\Delta \overline{\delta_W^{(9)}} = 0.0150.$

Доверительный интервал для
$$\overline{\delta_p}$$
:
$$\left[\, \overline{\delta_p} - \varDelta \, \overline{\delta_p}, \,\, \overline{\delta_p} + \varDelta \, \overline{\delta_p} \right] \! : \quad [-0.0144; 0.0344]$$

Доверительный интервал для $\overline{\delta_W^{(3)}}$:

$$\left[\overline{\delta_W^{(3)}} - \Delta \overline{\delta_W^{(3)}}, \overline{\delta_W^{(3)}} + \Delta \overline{\delta_W^{(3)}} \right] : [-0,6650; -0,6350]$$

Рассчитаем погрешности ΔM_1 и $\Delta F_{\rm rp}$ (Таблица 11):

$$D = \sum (a_i - \bar{a})^2 \approx 0.62$$

$$d_i = T_i - (F_{\text{Tp}} + M_1 a_i)$$

d:	0,88	-0,69	-2.04	1,53	0.73	0,26	-0.61
α_l	0,00	0,00	_,0.	.,00	0,70	0,20	0,01

$$\begin{split} \sum d_i^2 &\approx 8,71 \\ S_b^2 &= \frac{1}{D} \frac{\sum d_i^2}{n-2} \approx 2,81 \\ S_a^2 &= \left(\frac{1}{n} + \frac{\bar{a}^2}{D}\right) \frac{\sum d_i^2}{n-2} \approx 3,17 \\ \varepsilon_{M_1} &= \frac{\Delta M_1}{M_1} \cdot 100\% \approx 5,2\% \\ &\qquad \qquad \varepsilon_{F_{\rm rp}} &= \frac{\Delta F_{\rm rp}}{F_{\rm rn}} \cdot 100\% \approx 27\% \end{split}$$

Рассчитаем погрешности ΔM_1 и $\Delta F_{\rm rp}$ (**Таблица 12**):

$$D = \sum (a_i - \bar{a})^2 \approx 0,20$$

$$d_i = T_i - (F_{\text{Tp}} + M_1 a_i)$$

_								
	d_i	2.49	-0.80	-2.20	-1,59	-2,24	0,23	3.74
	Ψ.	_, -,	0,00	_,	.,	-,	-,	-,

11. Окончательные результаты

Конечный результат (Таблица 11):

$$T=(-11,55\pm3,17)+(54,12\pm2,81)a$$
 H; $M_1=(54,12\pm2,81)$ кг; $\varepsilon_{M_1}=5,2\%;$ $\varepsilon_{T_{\rm TP}}=(-11,55\pm3,17)$ H; $\varepsilon_{F_{\rm TP}}=27\%;$

Конечный результат (Таблица 12):

12. Вывод и анализ результатов работы

Были экспериментально исследованы упругое и неупругое центральное соударения тел на примере тележек, движущихся с малым трением и доказан закон сохранения импульса. Также была выявлена и доказана зависимость ускорения тележки от приложенной силы и массы тележки. Рассчитаны все коэффициенты, зависимость показана на графике.