TD nº 1: Suites numériques, comparaisons de suites, développements limités

Rappel important : il existe un cours de L1 en ligne, intitulé "M@ths en L1gne", à l'adresse : http://ljk.imag.fr/membres/Bernard.Ycart/mel/ Plusieurs des exercices ci-dessous en sont d'ailleurs tirés. Il est crucial, pour toute la partie du cours sur les séries numériques, d'être à l'aise avec les suites numériques, les notions de limite et de continuité et les développements limités. Vérifiez donc cette aisance à l'aide des QCM, exercices, cours et compléments du site.

Organisation: les exercices sont divisés en trois catégories: * correspond aux exercices de base, à maîtriser impérativement, ** correspond aux exercices de difficulté moyenne, c'est en gros le niveau requis pour valider l'UE, *** correspond aux exercices plus avancés.

* Définitions à connaître par cœur

- suite (réelle ou complexe) convergente, suite divergente, limite d'une suite,
- développement limité d'une fonction f en un point x_0 à l'ordre k,
- relations de comparaison de suites : négligeabilité $u_n = o(v_n)$, domination $u_n = O(v_n)$, équivalence $u_n \sim v_n$,
- développement limité d'une suite $(u_n)_{n\in\mathbb{N}}$ avec reste en $o(1/n^k)$.

Exercice 1. * Existence et calcul de limites

Calculer la limite, si elle existe, des suites $(u_n)_n$ suivantes :

1.
$$u_n = \frac{1}{2n+1}$$
,
2. $u_n = \frac{n+2}{2n+3}$,
3. $u_n = \frac{n^2}{n+1}$,
4. $u_n = \frac{10n^2+1}{n^3-1}$,
5. $u_n = \frac{1}{\sqrt{n+1}-\sqrt{n}}$,
6. $u_n = \frac{(n+1)^2}{(n+1)^3-n^3}$,
7. $u_n = \frac{n^{10}}{1.01^n}$.

Exercice 2. * Équivalence, domination et négligeabilité

Pour chaque couple (u_n, v_n) suivant, identifier quelle relation est vraie parmi $u_n \sim v_n, u_n = O(v_n), u_n = o(v_n), v_n = O(u_n)$, et $v_n = o(u_n)$:

1.
$$u_n = 2^{-n}, v_n = \frac{1}{3^n},$$
 5. $u_n = \cos(n), v_n = 1,$
2. $u_n = \frac{1}{n}, v_n = \frac{1}{\sqrt{n}},$ 6. $u_n = \log(n), v_n = \sqrt{n},$
4. $u_n = \cos(1/n), v_n = e^{1/n}.$ 7. $u_n = \sin(1/n), v_n = 1/n.$

Exercice 3. * Une échelle de domination

1. Montrer que l'ensemble des suites suivantes est strictement ordonné par la relation d'ordre o et ordonner ces suites :

$$2^{-n}$$
, $\frac{\ln(n)^2}{n}$, $\frac{1}{n\ln(n)}$, $\frac{n}{e^n}$, $\frac{1}{n\sqrt{n}}$, $e^{-\frac{n}{2}}$, $\frac{1}{n^2}$.

2.** Ajouter les suites suivantes à l'ensemble précédent et les classer : $\frac{1}{n^2}2^{-n}$, $\frac{1}{\sqrt{n}}$, $\frac{\ln n}{n}$ $(1,5)^{-n}$, $\sqrt{n} e^{-\frac{n}{2}}$, $(1,1)^{-n\sqrt{n}}$, $\left(\frac{2}{3}\right)^n$, $(0,9)^n$, $\frac{(\ln n)^5}{n^{1,1}}$, $\frac{1}{n^2}\left(\frac{5}{4}\right)^{-\sqrt{n}}$, $n^{-2}\ln n$.

Exercice 4. * Développements limités

Donner un développement limité pour $(u_n)_n$ (lorsque n tend vers l'infini) avec un reste en $o(1/n^2)$, dans chacun des cas suivants :

1.
$$u_n = \frac{1}{2n+1}$$
,
2. $u_n = \frac{n+1}{3+2n}$,
3. $u_n = \frac{\log\left(1-\frac{1}{n}+\frac{1}{n^2}\right)}{\sqrt{1-\frac{1}{n}}}$,
4. $u_n = \frac{1-\frac{1}{\sqrt{n}}}{\sqrt{n}+2}$,
5.** $u_n = \left(1+\frac{1}{n}\right)^{n+2}$.

Exercice 5. * Quelques exemples

Donner des exemples des situations suivantes :

- 1. une suite décroissante positive ne tendant pas vers 0;
- 2. une suite bornée non convergente;
- 3. une suite positive non bornée ne tendant pas vers $+\infty$;
- 4. une suite non monotone qui tend vers 0;
- 5. deux suites divergentes $(u_n)_n$ et $(v_n)_n$ telles que $(u_nv_n)_n$ soit convergente.

Exercice 6. ** Limite d'un produit

Rappeler la démonstration du résultat suivant : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ des suites de complexes. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent, alors la suite $(u_nv_n)_{n\in\mathbb{N}}$ converge et on a

$$\lim_{n\to\infty} u_n v_n = (\lim_{n\to\infty} u_n) \times (\lim_{n\to\infty} v_n).$$

Exercice 7. ** Suites extraites

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe.

- 1. Montrer que si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite, alors $(u_n)_{n\in\mathbb{N}}$ converge.
- 2. Montrer que si les suites extraites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent, alors $(u_n)_{n\in\mathbb{N}}$ converge aussi.

Exercice 8. ** Calcul de limites à l'aide des fonctions usuelles

Calculer la limite, si elle existe, des suites $(u_n)_n$ suivantes :

1.
$$u_n = n^4 \left(\log \left(1 - \frac{1}{n^2} \right) + \frac{1}{n^2} \right)$$
2. $u_n = n(e^{\frac{2}{n}} - 1)$
3. $u_n = \frac{n!}{n^n}$
4. $u_n = \tan(1/n)\cos(2n + 1)$
5. $u_n = \frac{\sqrt{n-3} + i\log(2n)}{\log n}$
6. $u_n = \frac{\log(n^2 + 3n - 2)}{\log(n^{1/3})}$

Exercice 9. ** Suites adjacentes

1. Pour chacun des couples suivants, montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes :

(a)
$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $v_n = u_n + \frac{1}{n}$

(b)
$$u_n = \sum_{k=1}^n \frac{1}{k^3}$$
 et $v_n = u_n + \frac{1}{n^2}$

(c)
$$u_0 = a > 0$$
, $v_0 = b > a$, $v_{n+1} = \frac{u_n + v_n}{2}$ et $u_{n+1} = \sqrt{u_n v_n}$

- 2. On définit à présent les suites $(u_n)_n$ et $(v_n)_n$ par $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n!n}$.
 - (a) Montrer que ces suites sont adjacentes. Leur limite commune est notée e. (C'est une définition possible du nombre e. Il n'est alors pas évident qu'il correspond bien à $\exp(1)$. Ce sera vu dans ce cours, en complément, et au second semestre.)
 - (b) Montrer que e n'est pas rationnel. Pour cela on pourra raisonner par l'absurde : en supposant que e = p/q, on peut noter que, pour tout $n \in \mathbb{N}^*$, on a $n!u_n < n!p/q < n!v_n$; choisir n tel que n!p/q soit entier permet alors de conclure).

Exercice 10. ** Suites définies par récurrence

Soit f une fonction continue de [0,1] dans [0,1] telle que f(0)=0, f(1)=1 et

$$\forall x \in]0,1[, f(x) < x.$$

1. On définit par récurrence une suite $(u_n)_{n\geq 0}$:

$$\begin{cases} u_0 \in [0, 1], \\ \forall n \ge 0, \ u_{n+1} = f(u_n). \end{cases}$$

Montrer que la suite $(u_n)_{n\geq 0}$ converge et donner sa limite.

2. On définit par récurrence une suite $(v_n)_{n\geq 0}$:

$$\begin{cases} v_0 = 1/2, \\ \forall n \ge 0, \ v_{n+1} = \frac{v_n}{2 - \sqrt{v_n}}. \end{cases}$$

Montrer que la suite $(v_n)_{n\geq 0}$ converge et donner sa limite.

Exercice 11. ** Moyennes de Césaro

Soit $(u_n)_{n\geq 1}$ une suite de nombres complexes. On note :

$$\forall n \geq 1, \quad S_n = \frac{1}{n}(u_1 + \ldots + u_n).$$

- 1. Montrer que si $(u_n)_n$ converge dans \mathbb{C} , alors $(S_n)_n$ converge vers la même limite.
- 2. Exhiber une suite $(u_n)_n$ divergente telle que $(S_n)_n$ converge.
- 3. Soit $(u_n)_n$ une suite de nombres réels strictement positifs telle que $\left(\frac{u_{n+1}}{u_n}\right)_n$ converge. Montrer que $(u_n^{1/n})_n$ converge vers la même limite.

Exercice 12. ** Limite supérieure et limite inférieure

Soit $(u_n)_{n\geq 0}$ une suite bornée de nombres réels. On définit les suites $(i_n)_n$ et $(s_n)_n$ par :

$$\forall n \in \mathbb{N}, \quad i_n = \inf\{u_k \text{ t.q. } k \ge n\} \quad \text{ et } \quad s_n = \sup\{u_k \text{ t.q. } k \ge n\}.$$

- 1. Montrer que $(i_n)_n$ et $(s_n)_n$ convergent. La limite de i_n est appelée limite inférieure de la suite $(u_n)_n$ et est notée $\liminf_n u_n$. Celle de s_n est appelée limite supérieure de la suite $(u_n)_n$ et est notée $\limsup_n u_n$.
- 2. Montrer qu'il existe une sous-suite de $(u_n)_n$ convergeant vers $\liminf_n u_n$ et une autre convergeant vers $\limsup_n u_n$. Cela donne donc une autre démonstration du théorème de Bolzano-Weierstrass.
- 3. Montrer que $(u_n)_n$ converge si et seulement si $(i_n)_n$ et $(s_n)_n$ convergent dans \mathbb{R} vers la même limite.
- 4. *** Montrer que toute suite de Cauchy de nombres réels est bornée. Déduire ce ce qui précède que toute suite de Cauchy de nombres réels converge.