卒業論文

LLVM コンパイラ基盤を用いた ベクトル化コード生成についての検討

2022年3月 永池 晃太朗

宇都宮大学工学部 情報工学科

内容梗概

日本語アブストラクト

Consideration of Vectorized Code Generation Using LLVM Compiler Infrastructure

Kotaro Nagaike

Abstract

ENGLISH abst

目次

内 容 梗	· 概	i
Abstrac	rt	ii
目次		iii
1 はじめ	ンに	1
2 ロボッ	ットミドルウェアへの FPGA 導入	2
2.1	ROS について	2
2.2	ROS 準拠 FPGA コンポーネント (先行研究)	2
3 ROS i	通信のハードウェア化	4
3.1	ROS 通信の仕様および分析	4
3.2	通信のハードウェア化手法	4
3.3	高位合成を用いた画像処理回路のコンポーネント化	4
4 評価		5
4.1	評価目的	5
4.2	評価システム構成	5
4.3	通信性能 (ESS2018)	5
4.4	消費電力性能 (ETNET・Thai)	5
5 ROS2		6
5.1	ROS2 が登場した背景	6
5.2	ROS2 の通信方式	6
5.3	ROS2 通信の HW 化	6
5.4	ハードウェア構成 (未)	6
5.5	評価 (未)	6

6 おわりに	7
謝辞	8
参考文献	9

第1章 はじめに

修論はじめるよ.

第2章 ロボットミドルウェアへのFPGA導入

2章. 始まったばかり, 頑張れ.

2.1 ROS について

ここは 2.1 節です

図の挿入方法サンプル lena 画像を図 2.1 に示す.

2.2 ROS 準拠 FPGA コンポーネント (先行研究)

ここは 2.2 節です.

図 2.1 lena さん

第3章 ROS通信のハードウェア化

3章! 黙々と書こう.

3.1 ROS 通信の仕様および分析

ここは3.1節です.

3.2 通信のハードウェア化手法

ここは3.2節です.

3.3 高位合成を用いた画像処理回路のコンポーネント化 ここは 3.3 節です.

第4章 評価

ここは4章です.終わるまで振り返るな...文の推敲は後でもできる.

4.1 評価目的

ここは 4.1 節です.

4.2 評価システム構成

ここは 4.2 節です.

4.3 通信性能(ESS2018)

ここは 4.3 節です.

4.4 消費電力性能 (ETNET・Thai)

ここは 4.4 節です.

第5章 ROS2

5章.終盤,もう少し.

5.1 ROS2 が登場した背景

ここは 5.1 節です.

5.2 ROS2の通信方式

ここは 5.2 節です.

5.3 ROS2 通信の HW 化

ここは 5.3 節です.

5.4 ハードウェア構成(未)

ここは 5.4 節です.

5.5 評価(未)

ここは 5.5 節です.

第6章 おわりに

論文のまとめと課題.お疲れ様でした.

謝辞

本研究の機会を与えていただき,また,日頃から貴重な御意見,御指導いただいた,馬場 敬信教授,大津 金光准教授,大川 猛助教,横田 隆史教授,に深く感謝致します.そして,本研究において多大な御力添えを頂いた,Boaz Jessie Jackin 氏をはじめとする研究室, オプティクス教育研究センターの方々に感謝致します.

参考文献

- [1] J. Goodman: "Introduction to Fourier Optics, Roberts and Company Publishers," 2004.
- [2] D. G. Curry, G. L. Martinsen, and D. G. Hopper: "Capability of the human visual system," in "Cockpit Displays X, Proceedings SPIE,", D. G. Hopper, ed. 2003, pp. 58-69.
- [3] T. Yatagai, et al: "Interpolation method of computer-generated filters for large object formats," Optimal Communication, 23, 3, pp. 347-351, 1977.
- [4] Boaz Jessie Jackin, et al: "Proposal of Fast Calculation for Large-Scale Fresnel Hologram using Interpolation Method," International Workshop on Holography and Related Technologies 2013 (IWH 2013), 15d-4, Oct, 2013.
- [5] Takanobu Baba, et al.: "Interpolation-based Object Decompodition and Parallel Comptation Method for Large-Scale Computer-Generated Hologram," Prallel and Distributed Computing and Networks 2014 (PDCN 2014), Feb. 2014.
- [6] 宮田裕章, Boaz Jessie Jackin, 他.: "マルチ GPU 環境における大規模データの分割による 2D-FFT 処理手法の検討," 信学技報, Vol.114, No.155 pp.103-108(CPSY2014-34), 2014 年 7 月 30 日.
- [7] 宮田裕章, Boaz Jessie Jackin, 他.: "GPU を用いた大規模計算機ホログラム生成プログラムの最適化," 情報処理学会第76回全国大会講演論文集, pp.1-191-1-192, 2014.
- [8] 青木 尊之, 額田 彰: "はじめての CUDA プログラミング," 工学社, p.247, 2009.
- [9] 小山田 耕二, 岡田 賢治: "CUDA 高速 GPU プログラミング入門," 秀和システム, p.210, 2010.
- [10] NVIDIA CUDA C Programing Guide Version 6.5, August 1, 2014.