Busca em Grafos

O problema de busca em grafos consiste na identificação de um caminho entre S e T em um grafo G(X, A) que satisfaça uma determinada condição, sendo:

 $G(X, A) \Rightarrow$ Grafo composto pelo conjunto de nós X e pelo conjunto de arcos A; S \Rightarrow Conjunto de nós iniciais (origem); T \Rightarrow Conjunto de nós finais (destino).

Observação: S e T provém de Start e Terminus.

Na resolução de um problema aplicando técnicas de busca em grafos, deve-se considerar:

- A forma de representação do problema;
- O processo de busca da solução;
- A resolução em um tempo aceitável.

A resolução do problema se constitui, portanto, na procura de um caminho através de um grafo, que maximize ou minimize alguma condição (custo, cardinalidade, etc.).

1. Especificação de Grafos

Um grafo pode ser especificado sob duas formas:

<u>Especificação</u>	É dada por uma tabela contendo todos os
explícita:	nós, seus sucessores e os custos dos arcos
	a eles associados.

<u>Especificação</u>	É dada pelo nó origem (raiz) e pelas regras
<u>implícita:</u>	que definem a geração dos nós sucessores.

A representação de um problema por meio de um grafo, fornece uma maneira simples de visualizar a forma como as técnicas de busca trabalham.

Um grafo representando o espaço de estados do problema será constituído por nós, que correspondem a cada estágio de solução do problema, e arcos, que representam as operações efetuadas para mudar de um estado para o outro. Temos dois estados num grafo que se destacam particularmente: o estado inicial e o estado final do problema.

Seja, como exemplo, a seguinte tabela, da qual se deseja definir o caminho de mínimo custo.

Nó	Nó	Custo
Inicial	final	
1	2 3	3
1	3	3 5
2	4	4 3
3	4 5	
3		4
4 4 5	6	4
4	7	5
5	7	4 4 5 5 5
6	8	5
7	8	3
7	9	4

A partir da tabela, pode-se construir o seguinte grafo:

2. Processos de busca

Existem diferentes métodos de busca, que basicamente diferem pela ordem em que os nós são considerados. Vamos dividí-los em dois grupos:

- De busca cega;
- De busca heurística.

A diferença básica entre os dois grupos é o fato de que os métodos do segundo grupo usam o que se chama de *heurística* para fazer a busca, minimizando ou maximizando algum componente ou aspecto do problema.

3. Algoritmos de Busca em Grafos

Um algoritmo de busca em grafos é um procedimento sistemático de geração de subgrafos, visando encontrar uma solução. Estes algoritmos podem ser classificados sob duas formas:

<u>Algoritmos</u> Garantem encontrar uma solução em um número finito de passos, porém sem garantir sua otimalidade.

<u>Algoritmos</u> Garantem encontrar uma solução ótima em <u>Admissíveis:</u> um, número finito de passos.

A escolha do algoritmo mais adequado ao problema deve ser feita com base na análise de diversos fatores:

- Memória total requerida;
- Tempo de resposta;
- Custos computacionais;
- Necessidade de resposta rápida;
- Rapidez de processamento do equipamento;
- Etc.