# LABORATOR 1

BAZE DE DATE

#### CHESTIUNI ORGANIZATORICE

- Nota finala: (Nota design + Nota finala SQL )/2
- Nota finala SQL: 2/3\*SQL laborator + 1/3\*SQL examen
  - Nota de la laborator va avea o valoare de la 1p la 10p.
  - Nota de la SQL examen va avea o valoare de la 1p la 10p.
  - Nu este permisa o diferenta >=5p intre nota de la examenul scris si cea de la laborator (cu bonus inclus), daca una dintre cele doua note este <5 in acest caz intreaga parte de SQL se considera nepromovata, altfel ramane nepromovata doar proba cu nota <5.
  - In urma rezultatelor obtinute la examen, studentilor li se va comunica proba care trebuie refacuta la restanta(test laborator sau SQL scris)
- Prezenta: 14 laboratoare (din care ultimul este Testul) (maxim 5 absente pentru a participa la testul de la laborator)
- Nota SQL laborator: Test final: 10p
  - Bonus:
    - Prezenta laborator + activitate minima: 2p
    - Activitate laborator constanta: 4p
    - Maxim 2 p obtinute din bonusuri se vor adauga notei de la laborator, daca aceasta este >= 5.
    - (Bonus nefolosit: 50% se adauga la SQL examen in limita a 2p, daca nota la SQL examen este >= 5)
- Contact: natalia.moanga@drd.unibuc.ro

### **OBIECTIVE**

• Introducere

• Ce este SQL

• Analiza comenzii SELECT

• Interogari simple mono-relatie

Baza de date este un ansamblu structurat de date coerente, fără redondanță inutilă, astfel încât acestea pot fi prelucrate eficient de mai mulți utilizatori într-un mod concurent. Baza de date este o colectie de date persistente, care sunt folosite de catre sistemele de aplicatii ale unei anumite "intreprinderi".

Un sistem de gestiune a bazei de date (SGBD – Data Base Management System) este un produs software care asigură interacțiunea cu o bază de date, permiţând definirea,

consultarea și actualizarea datelor dir

**Retinem:** un user/ o aplicatie nu poate accesa direct datele din BD,ci doar via SGBD



In lucrul cu Baze de Date, se remarca activitatile urmatoare, pe care le veti studia in cadrul cursului de Baze de Date:

- Proiectarea Bazei de Date
  - numai la curs !!!
- Crearea Bazei de Date Limbajul de definire a datelor
  - -la curs si in partea a III-a a semestrului la lab.
- Prelucrarea Datelor din Baza de Date
  - la curs si tot semestrul la lab.
- Administrarea Bazei de Date
  - la curs si in partea a III-a a semestrului la lab.
  - aprofundare la cursul de SGBD (an III) si la Master Baze de Date si Tehnologii
     Web

# Concepte si termeni:

- \* Dicționarul datelor, structurat și administrat ca o bază de date (metabază de date), contine "date despre date", furnizează descrierea tuturor obiectelor unei baze de date, starea acestor obiecte etc.
- \* Obiectele dintr-o baza de date pot fi: tabele, indecsi, subprograme stocate(proceduri,functii), pachete, triggeri, sinonime, view-uri, etc.
- \* La laboratorul de BD vom lucra cel mai mult cu tabele. Tabelele tin de modelul relational. Conceptele utilizate pentru a descrie formal, uzual sau fizic elementele de bază ale organizării datelor sunt date în următorul tabel:

| Formal  | Uzual           | Fizic        |
|---------|-----------------|--------------|
| relație | tablou / tabela | fișier       |
| tuplu   | linie           | înregistrare |
| atribut | coloană         | câmp         |
| domeniu | tip de dată     | tip de dată  |

• Exercitiile din cadrul laboratorului vor folosi urmatoarele tabele:

Consideram modelarea datelor din domeniul gestiunii resurselor umane intr-o firma.



• Exercitiile din cadrul laboratorului vor folosi urmatoarele tabele:

Explicatie:

JOBS este o tabela.

Job\_id,job\_title,min\_salar y, max\_salary sunt coloane in tabela JOBS.

O linie din tabela JOBS

JOB\_ID JOB\_TITLE MIN\_SALARY MAX\_SALARY
ST\_MAN Stock Manager 5500 8500



Concepte si termeni (cont):

Valoarea null intr-o coloana a unei linii din tabela semnifica faptul ca valoarea nu este cunoscuta sau atributul nu este aplicabil pentru linia respectiva.

Ex: in tabela

DEPARTMENTS, in linia

pentru departamentul

DEPARTMENT\_ID DEPARTMENT\_NAME MANAGER\_ID LOCATION\_ID

Treasury NULL 1700

codul managerului (coloana

Manager\_id)



Concepte si termeni (continuare):

Cheia primara este o mulțime minimală de atribute ale căror valori identifică unic un tuplu într-o relație.

Legatura intre 2 tabele este realizata prin intermediul cheii externe. Cheia externa dintr-o tabela refera cheia primara din cealalta tabela.

Modelul relațional respectă **3 reguli de integritate structural**ă. Regula 1 – unicitatea cheii:

Cheia primară trebuie să fie unică și minimală.

Regula 2 – integritatea entității:

Atributele cheii primare trebuie să fie diferite de valoarea null.

Regula 3 – integritatea referirii.

O cheie externă trebuie să fie ori null în întregime, ori să corespundă unei valori a cheii primare asociate.

# Aplicatie:

Cheia primara din tabela

**EMPLOYEES:** 

EMPLOYEE\_ID

# Cheia primara din tabela

JOB\_HISTORY: este compusa din

2 coloane (EMPLOYEE\_ID,

START\_DATE)

In tabela EMPLOYEES, job\_id este cheie externa, face legatura cu tabela JOBS

=> coloana JOB\_ID din tabela EMPLOYEES refera cheia primara din tabela JOBS, care este ........



# CE ESTE SQL?

**SQL** (**Structured Query Language**) este un limbaj neprocedural pentru interogarea și prelucrarea informatiilor din baza de date.

Compilatorul limbajului SQL generează automat o procedură care accesează baza de date și execută comanda dorită.

SQL permite atât definirea, prelucrarea și interogarea datelor, cît și controlul accesului la acestea. Comenzile SQL pot fi integrate în programe scrise în alte limbaje, de exemplu Cobol, C, C++, Java etc.

# Comenzile SQL se termina cu;

### CE ESTE SQL?

- În functie de tipul actiunii pe care o realizează, instructiunile SQL se împart în mai multe categorii. Datorită importantei pe care o au comenzile componente, unele dintre aceste categorii sunt evidentiate ca limbaje în cadrul SQL, și anume:
- · limbajul de definire a datelor (LDD)
  - comenzile CREATE, ALTER, DROP;
- · limbajul de prelucrare a datelor (LMD)
  - comenzile INSERT, UPDATE, DELETE, SELECT;
- · limbajul de control al datelor (LCD)
  - comenzile COMMIT, ROLLBACK.

Pe lângă comenzile care alcătuiesc aceste limbaje, SQL cuprinde:

- · instructiuni pentru controlul sesiunii;
- · instructiuni pentru controlul sistemului;
- · instructiuni SQL încapsulate.

# COMANDA DESCRIBE

- Aceasta comanda poate fi folosita pentru a afla informatii despre structura unei tabele cu nume dat, tipul de date al fiecarei coloane din tabela, precum si a constrangerilor NOT NULL asupra coloanelor ce nu pot lua valoarea aceasta.
- Comanda DESCRIBE **nu** ne arata cheia primara si nici cheile externe(daca ar exista chei externe).

# Exemplu:

| DESCRIBE JOBS; | Name                | Nu11? | Туре                         |  |
|----------------|---------------------|-------|------------------------------|--|
|                | JOB_ID<br>JOB_TITLE |       | VARCHAR2(10)<br>VARCHAR2(35) |  |
|                | MIN_SALARY          |       | NUMBER(6)                    |  |
|                | MAX SALARY          |       | NUMBER(6)                    |  |

#### ANALIZA COMENZII SELECT

```
SELECT { [ {DISTINCT | UNIQUE} | ALL] lista_campuri | *}
FROM [nume schemă.]nume obiect ]
     [, [nume schemă.]nume obiect ...]
[WHERE condiție_clauza_where]
START WITH condiție clauza start with
CONNECT BY condiție clauza connect by
[GROUP BY expresie [, expresie ...]
 [HAVING condiție_clauza_having]]
[ORDER BY {expresie | poziție} [, {expresie | poziție} ...]]
FOR UPDATE
  [OF [ [nume_schemă.]nume_obiect.]nume_coloană
     [, [ [nume_schemă.]nume_obiect.]nume_coloană] ...]
  [NOWAIT | WAIT număr întreg] ];
```

\_\_\_\_\_\_

Bibliografie: pag 170 – 173, Popescu I & al (2004), BIBLIOTECA DE MATEMATICA: II 40038

#### ANALIZA COMENZII SELECT

Minimal, o cerere SELECT are clauza SELECT si clauza FROM.

In clauza FROM specificam din ce tabela (tabele) sa se extraga datele.

In clauza SELECT precizam lista coloanelor/expresii pe baza coloanelor ce se doresc regasite in BD

• Daca dorim informatii complete – selectam toate coloanele tabelei cu \*

|                 |   |     | 00B_1D                          | OAD_LITE                                                  | пти-онгнит           | циу-онгиут            |
|-----------------|---|-----|---------------------------------|-----------------------------------------------------------|----------------------|-----------------------|
| <b>SELECT</b> * |   |     | AD_PRES<br>AD_UP                | President Administration Vice President                   | 20000<br>15000       | 40000<br>30000        |
| FROM JOBS;      |   |     | AD_ASST<br>FI_MGR<br>FI_ACCOUNT | Administration Assistant<br>Finance Manager<br>Accountant | 3000<br>8200<br>4200 | 6000<br>16000<br>9000 |
| 1 •             | • | • . |                                 | Accounting Manager Public Accountant                      | 8200<br>4200         | 16000<br>9000         |

• Daca dorim numai anumite coloane (projectie), le enumeram separate de

| virgula                                                                    |                                       |  |
|----------------------------------------------------------------------------|---------------------------------------|--|
| SELECT JOB_ID, MIN_SALARY, MAX_SALARY  FROM JOBS;  AD_ AD_ AD_ FI_ FI_ AC_ | ASST 3000<br>MGR 8200<br>ACCOUNT 4200 |  |

Putem folosi alias-uri si expresii in campurile din select:
 SELECT JOB\_ID, (MAX\_SALARY - MIN\_SALARY) AS "diferenta"
 FROM JOBS;

| JOB_I D    | DIFERENTA |
|------------|-----------|
| AD_PRES    | 20000     |
| AD_UP      | 15000     |
| AD_ASST    | 3000      |
| FI_MGR     | 7800      |
| FI_ACCOUNT | 4800      |
| AC_MGR     | 7800      |
| AC_ACCOUNT | 4800      |
|            |           |

### EXERCITII – SETUL 1

### Ex3&4)

- a) Afisati si comentati structura tabelei EMPLOYEES.
- b)Care este aritatea tabelei? (Aritate=nr de coloane)
- c) Afisati date complete despre angajatii firmei.
- d)Care este cardinalitatea tabelei? (Cardinalitate=nr linii)

# EXERCITII – SETUL 1: Rasp.

a) Afisati si comentati structura tabelei EMPLOYEES.

# **DESCRIBE EMPLOYEES;**

b) Care este aritatea tabelei? (Aritate=nr de coloane) 11 coloane

c)Afisati date complete despre angajatii firmei.

**SELECT**\*

### FROM EMPLOYEES;

d)Care este cardinalitatea tabelei?

(Cardinalitate=nr linii) 107 linii

# **EXERCITII – SETUL 2**

EX 7 & 10 & 11)

- e) Să se afișeze codul angajatului, numele, codul job-ului, data angajarii pentru toti angajatii din firma
- f) Să se afișeze pentru fiecare angajat numele concatenat cu job\_idul, separate prin virgula si spatiu, si etichetati coloana "Angajat si titlu"

(Concatenarea sirurilor este ||ex: 'a'||'b'||first\_name)

g) Creati o cerere prin care sa se afiseze toate datele din tabelul EMPLOYEES. Separati fiecare coloană printr-o virgulă. Etichetati coloana "Informatii complete"

# EXERCITII -SETUL 2 - Rasp.

e) Să se afișeze codul angajatului, numele, codul job-ului, data angajarii pentru toti angajatii din firma

SELECT EMPLOYEE\_ID, LAST\_NAME, JOB\_ID, HIRE\_DATE FROM EMPLOYEES;

f) Să se afișeze pentru fiecare angajat numele concatenat cu job\_id-ul, separate prin virgula si spatiu, si etichetati coloana "Angajat si titlu"

(Concatenarea sirurilor este || ex: 'a'||'b'||first\_name)

SELECT LAST\_NAME||', '||JOB\_ID AS ''Angajat si titlu'' FROM EMPLOYEES;

g) Creati o cerere prin care sa se afiseze toate datele din tabelul EMPLOYEES.

Separati fiecare coloană printr-o virgulă. Etichetati coloana "Informatii complete"

SELECT

EMPLOYEE\_ID||','||FIRST\_NAME||','||LAST\_NAME||','||EMAIL||','||PHON E\_NUMBER||','||HIRE\_DATE||','||JOB\_ID||','||SALARY||','||COMMISSION \_PCT||','||MANAGER\_ID||','||DEPARTMENT\_ID AS ''Informatii complete''

FROM EMPLOYEES;

#### FORMATAREA DATELOR CALENDARISTICE

Datele calendaristice pot fi formatate cu ajutorul funcţiei TO\_CHAR(data, format), unde formatul poate fi alcătuit dintr-o combinaţie a următoarelor elemente:

| Element       | Semnificație                                                               |  |
|---------------|----------------------------------------------------------------------------|--|
| D             | Numărul zilei din săptămâna (duminica=1;                                   |  |
|               | luni=2;sâmbătă=6)                                                          |  |
| DD            | Numărul zilei din lună.                                                    |  |
| DDD           | Num <b>ă</b> rul zilei din an.                                             |  |
| DY            | Numele zilei din săptămână, printr-o abreviere de 3 litere (MON, THU etc.) |  |
| DAY           | Numele zilei din săptămână, scris în întregime.                            |  |
| MM            | Numărul Iunii din an.                                                      |  |
| MON           | Numele lunii din an, printr-o abreviere de 3                               |  |
|               | litere (JAN, FEB etc.)                                                     |  |
| MONTH         | Numele lunii din an, scris în întregime.                                   |  |
| Υ             | Ultima cifră din an                                                        |  |
| YY, YYY, YYYY | Ultimele 2, 3, respectiv 4 cifre din an.                                   |  |
| YEAR          | Anul, scris în litere (ex: two thousand four).                             |  |
| HH12, HH24    | Orele din zi, între 0-12, respectiv 0-24.                                  |  |
| MI            | Minutele din oră.                                                          |  |
| SS            | Secundele din minut.                                                       |  |
| SSSSS         | Secundele trecute de la miezul nopţii.                                     |  |

In baza de date exista o tabela speciala, numita DUAL, cu o singura coloana numita DUMMY avand ca tip de date VARCHAR2(1), si o singura linie. Aceasta tabela speciala poate fi folosita pentru a interoga pseudo-coloane precum SYSDATE (data curenta), expresii aritmetice:

SELECT SYSDATE FROM DUAL;

SELECT TO\_CHAR(SYSDATE,'MONTH') FROM DUAL;

SELECT 2+3 AS "SUMA" FROM DUAL;

TO\_CHAR<S FEBRUARY

11-FEB-13

SIIMA

5

#### ORDONAREA REZULTATULUI UNEI CERERI

Pentru o ordona rezultatul unei interogari, la partea minimala formata din clauzele SELECT si FROM, adaugam clauza ORDER BY. Aceasta va fi mereu ultima clauza dintr-o cerere! Implicit, ordoneaza ascendent (ASC), mic -> mare.

• Ordonare dupa un camp din clauza SELECT, scrieri echivalente:

| Specific prin nume        | Specific prin alias  | Specific prin pozitie |
|---------------------------|----------------------|-----------------------|
| SELECT                    | SELECT               | SELECT                |
| FIRST_NAME,SALARY as "s1" | FIRST_NAME,SALARY as | FIRST_NAME,SALARY     |
|                           | "s1"                 |                       |
| FROM EMPLOYEES            | FROM EMPLOYEES       | FROM EMPLOYEES        |
| ORDER BY SALARY DESC;     | ORDER BY "s1" DESC;  | ORDER BY 2 DESC;      |

• Ordonare dupa un camp ce nu apare in SELECT:

SELECT FIRST\_NAME, SALARY FROM employees ORDER BY COMMISSION\_PCT;

!!! Implicit, valorile NULL sunt considerate cele mai

#### **EXERCITII - SETUL 3**

# EX 18 & propuse)

- h) Să se afișeze data și ora curentă, pana la precizie de minut.
- i) Ce efect are comanda:

SELECT SYSDATE

**FROM** 

EMPLOYEES;

- j) Pentru fiecare angajat sa se scrie codul, numele si ziua din saptamana in litere in care a fost angajat
- k) Ordonati angajatii din firma crescator dupa anul angajarii in firma, iar la egalitate de an crescator dupa ziua din an in care au fost angati.

#### **CLAUZA WHERE**

Clauza WHERE poate fi folosită pentru a impune anumite condiții liniilor din care se vor extrage coloanele specificate în clauza SELECT.

Clauza WHERE este pozitionata mereu dupa clauza FROM:

```
SELECT ....
FROM ....
WHERE ....
ORDER BY ...;
```

Ordinea in care se vor executa clauzele din cererea mono-relatie:

- 1) From € stabileste din ce tabela se extrag datele
  - 2) Where € filtreaza datele, numei unele linii sunt selectate
- 3) Select € proiectie a.i. numai unele coloane sunt alese, iar alias-urile(daca exista) stabilesc etichetarea coloanelor in rezultatul final
  - 4) Order By € sorteaza rezultatul final.

Morala: in clauza WHERE NU putem folosi alias-urile campurilor din clauza SELECT

#### **CLAUZA WHERE**

Exemple de conditii posibile in clauza WHERE:

- De testarea egalitatii/inegalitatii cu o constanta
- De testarea egalitatii/inegalitatii cu o alta coloana din aceeasi linie
- De testarea valorii NULL cu IS NULL
- De testarea apartenentei la o lista de valori cu IN (10,20,30)
- De testarea apartenentei la un interval cu BETWEEN 10 AND
   15
- La siruri, de testarea conformitatii cu un sablon cu LIKE '\_A%'

In clauza WHERE putem avea conditii compuse prin AND si/sau
OR Seva tine cont de prioritatea
operatorilor: OR sparge conditia
compusa in subconditii

WHERE a=1 AND b=2 OR c=3 AND d=4 # WHERE (a=1 AND b=2) OR (c=3 AND d=24)

#### **EXERCITII - SETUL 4**

# EX 12&15&16&25&20&26)

- 1) Sa se listeze numele si salariul angajatilor care câştigă mai mult de 2850 \$.
- m)Să se afișeze numele, job-ul și data la care au început lucrul salariatii angajati între 20 Februarie 1987 și 1 Mai 1989. Rezultatul va fi ordonat crescător după data de început.
- n) Să se afișeze numele salariatilor și codul departamentelor pentru toti angajatii din departamentele 10, 30 și 50 în ordine alfabetică a numelor
- o) Să se afiseze numele, job-ul si salariul pentru toti salariatii al caror job contine șirul "clerk" sau "rep" si salariul nu este egal cu 1000, 2000 sau 3000 \$.
- p) Să se afișeze numele și job-ul pentru toti angajatii care nu au manager
- q) Afisati numele, salariul si comisionul pentru toti angajatii al caror salariu este mai mare decat comisionul (salary\*commission\_pct) marit de 5 ori.