RAPPRESENTAZIONE E RAGIONAMENTO PROPOSIZIONALE

Nicola Fanizzi

Ingegneria della Conoscenza

CdL in Informatica • *Dipartimento di Informatica* Università degli studi di Bari Aldo Moro

indice

Proposizioni	Dimostrazione per Contraddizione			
Sintassi	Clausole di Horn			
Semantica	Assumibili e Conflitti			
Basi di Conoscenza	Diagnosi Basata sulla Consistenza			
La Prospettiva dell'Ingegnere della Conoscenza	Ragionamento su Clausole di Horn con Assunzioni			
La Prospettiva della Macchina	Implementazione Bottom-Up			
Vincoli Proposizionali	Implementazione Top-Down			
Clausole Definite Proposizionali	Assunzione di Conoscenza Completa			
Domande e Risposte	OWA vs. CWA			
Dimostrazioni	Completare la Base di Conoscenza			
Procedura Bottom-Up	Negation as Failure			
Procedura Top-Down	Ragionamento Non Monotono			
Algoritmo TD su Grafo di Ricerca	Default ed Eccezioni			
Questioni di Rappresentazione della Conoscenza	Procedure di Dimostrazione per la NAF			
Osservazioni e Conoscenza di Fondo	Procedura Bottom-Up + NAF			
Interrogare l'Utente	Procedura Top-Down + NAF			
Spiegazioni a Livello di Conoscenza	Abduzione			
Debugging a Livello di Conoscenza	Diagnosi Abduttiva			

PROPOSIZIONI

Proposizioni: enunciati riguardanti il mondo

- pongono vincoli su quello che potrebbe essere vero, definibili:
 - estensionalmente tabelle di assegnazioni lecite a variabili
 - intensionalmente formule

Logica Proposizionale (*propositional calculus*) linguaggio atto a rappresentare intensionalmente *vincoli* e *interrogazioni*

- formule: relazioni tra variabili
 - o più concise e leggibili dell'equivalente estensionale
 - o utili a rendere il ragionamento più efficiente
- modularità → debugging più facile
 - piccoli cambiamenti nel problema → poche modifiche alla base di conoscenza
- risposte alle interrogazioni più ricche delle semplici assegnazioni
- estendibile per ragionare su individui e relazioni fra di essi

Sintassi

Frasi formulate in un *linguaggio* con variabili booleane e connettivi logici (simboli poi associati a una semantica)

Proposizione atomica, o Atomo — simbolo/stringa di bit

- per *convenzione*: stringa alfanumerica, con eventuali "_", che inizia con una lettera *minuscola*
 - \circ ad es. ai_is_fun , $accesa_l_1$, piove, terminato, nuvoloso

Proposizione o formula logica: atomica oppure proposizione composta

• formata usando connettivi logici e proposizioni più semplici

Connettivi logici, in ordine di *precedenza*: $\neg \land \lor \rightarrow \leftarrow \leftrightarrow$

• date le proposizioni p e q:

sintassi	lettura	definizione		
eg p	"non p"	negazione di p		
$p \wedge q$	"p e q"	congiunzione di p e q		
p ee q	" p o q "	disgiunzione di p e q		
p o q	" $m{p}$ implica $m{q}$ "	implicazione di q da p		
$p \leftarrow q$	" p se q "	implicazione di p da q		
$p \leftrightarrow q$	" p se e solo se q "	equivalenza di p e q		

- parentesi per disambiguare / maggiore leggibilità
 - \circ ad es. $eg a \lor b \land c \to d \land
 eg e \lor f$ abbreviazione di $((
 eg a) \lor (b \land c)) \to ((d \land (
 eg e)) \lor f)$

Semantica — definisce il *significato* delle frasi/proposizioni

- corrispondenza tra simboli e stato del mondo rappresentato
- proposizioni: interpretabili come vere o false
 - o atomo, unità minima dotabile di significato
 - o significato di proposizioni più complesse, discende da quello degli atomi

Interpretazione $\pi: \mathrm{Atomi} \to \{true, false\}$

- se $\pi(a)=true$, a **vero** nell'interpretazione π
- se $\pi(a) = false$, a falso nell'interpretazione π

definibile anche come insieme I di atomi associati a true

• tutti gli altri interpretati come false

Estensione dell'interpretazione a proposizioni (non atomiche):

• determinata dalle tavole di verità:

p	q	eg p	$p \wedge q$	p ee q	$p \leftarrow q$	p o q	$p \leftrightarrow q$
true	true	false	true	true	true	true	true
true	false	false	false	true	true	false	false
false	true	true	false	true	false	true	false
false	false	true	false	false	true	true	true

- verità delle proposizioni dipende solo dall'interpretazione degli atomi
 - o diverse interpretazioni → possibili diversi valori di verità delle proposizioni

Esempio — Considerati ai_is_fun , happy e $light_on$

sia data I_1 che assegna

- true a ai_is_fun,
- false a happy,
- true a light_on

allora in I_1 :

- ai_is_fun vera e $\neg ai_is_fun$ falsa
- happy falsa e $\neg happy$ vera
- $ullet \ ai_is_fun \lor happy ext{ vera}$
- $ai_is_fun \leftarrow happy$ vera
- $ullet \ ai_is_fun
 ightarrow happy ext{falsa}$
- $ai_is_fun \leftarrow happy \land light_on$ vera

ossia π_1 definita da

- $\bullet \ \pi_1(ai_is_fun) = true$
- $\pi_1(happy) = false$
- $\pi_1(light_on) = true$

(..cont.)

Data l'interpretazione I_2 che assegna:

- false a ai_is_fun,
- true a happy
- false a light_on

allora in I_2 :

- ai_is_fun falsa
- ullet $\neg ai_is_fun$ vera
- *happy* vera
- $\neg happy$ falsa
- $ullet \ ai_is_fun \lor happy ext{vera}$
- $ai_is_fun \leftarrow happy$ falsa
- $ai_is_fun \leftarrow light_on$ vera
- $ai_is_fun \leftarrow happy \land light_on$ vera

BASI DI CONOSCENZA

Base di Conoscenza KB — insieme di proposizioni dette assiomi:

- da considerare come vere (senza dim.)
- servono a caratterizzare il mondo da rappresentare attraverso la sua **interpretazione intesa**
 - o quella nella mente dell'esperto di dominio
 - da formalizzare: assiomatizzazione compito dell'ingegnere della conoscenza

TEORIA DEI MODELLI E CONSEGUENZE LOGICHE

Modello di KB: interpretazione per la quale sia vero ogni assioma di KB

La proposizione g (goal) è conseguenza logica di KB, sse è vera in ogni modello di KB:

$$KB \models g$$

si dice anche che "g segue logicamente da KB" (in Inglese: KB entails g) Quindi:

- se $KB \models g$, non esistono modelli di KB per i quali g sia falsa
- $KB \nvDash g$, i.e. g non è conseguenza logica di KB, comporta che esiste un modello di KB in cui g è falsa

altre interpretazioni di g che non siano modelli di \overline{KB} non contano

Esempio — Data la *KB* contenente:

- \bullet $sam_is_happy.$
- \bullet $ai_is_fun.$
- $\bullet \ worms_live_under ground.$
- night_time.
- $ullet \ bird_eats_apple.$
- $ullet apple_is_eaten \leftarrow bird_eats_apple.$
- $ullet switch_1_is_up \leftarrow sam_is_in_room \land night_time.$

allora:

- $KB \models apple_is_eaten$.

mentre:

- $KB \nvDash switch_1_is_up$ ossia $KB \models bird_eats_apple$. \exists modello di KB in cui $switch_1_is_up$ falsa:
 - ∘ in tale modello l'implicazione [ℂ] resta vera anche qualora $sam_is_in_room$ fosse falsa

LA PROSPETTIVA DELL'INGEGNERE DELLA CONOSCENZA

Per caratterizzare un dominio tramite la KB, il/la progettista deve definire il mondo come interpretazione intesa:

- significato dei simboli definite attraverso proposizioni: assiomi che si possono assumere veri su tale mondo
 - \rightarrow conseguenze logiche di KB vere rispetto all'interpretazione intesa
- ullet significato *condiviso*: per interpretare le risposte a interrogazioni alla KB
- \models relazione semantica fra KB e g
- *KB* e *g* simboliche: <u>rappresentabili</u> nelle macchine ma significato riferito a un mondo esterno tipicamente *non simbolico*
- |= NON comporta computazione o dimostrazione
 - o specifica solo la verità di quello che consegue da certe assunzioni

Metodologia di *progetto* della *KB*: fasi

- 1. si decide il *dominio*/mondo da rappresentare → interpretazione intesa
 - (aspetti del) mondo *reale*
 - ad es. la struttura dei corsi e gli studenti universitari, un laboratorio in un particolare momento
 - mondo immaginario
 - ad es. mondo di Pinocchio in letteratura,
 o situazioni-limite in domotica
 - mondo astratto
 - ad es. numeri e insiemi
- 2. si scelgono gli *atomi* per rappresentare le proposizioni d'interesse
 - o con significato preciso rispetto all'interpretazione intesa
- 3. si definiscono le *proposizioni* che saranno vere nell'interpretazione intesa: **assiomatizzazione** del dominio
- 4. si pongono al sistema **domande** sulla KB
 - o risposte da interpretare in base ai significati associati ai simboli

Osservazioni

- Solo al passo 3. si comunica con la macchina
 - prima solo progettazione
- Documentazione dei simboli utile agli altri per
 - ricordare il loro significato
 - o controllare la veridicità delle proposizioni
- Specifica dei significati dei simboli: ontologia
 - o informalmente, come commenti
 - oppure attraverso linguaggi formali ai fini dell'interoperabilità semantica
 - capacità di usare insieme diverse KB
- Fase 4. utile a chi comprende il significato dei simboli e sa interpretarli rispetto al mondo considerato
 - nelle domande e nelle risposte
 - o conta l'attendibilità degli assiomi definiti dal progettista

LA PROSPETTIVA DELLA MACCHINA

Un KBS lavora sugli assiomi della KB, assunti come veri

- modelli di *KB*: tutti e soli i modi in cui il mondo potrebbe essere fatto
 - \circ se il significato dei simboli è stato codificato correttamente, l'interpretazione intesa è un modello di KB
 - o il sistema lo sa ma non sa quale modello sia
- per determinare la verità di g nell'interpretazione intesa, il sistema deve decidere se g è conseguenza logica di KB
 - o inferenza tramite procedure di dimostrazione trattate in seguito
 - \circ se $KB \models g$, potrà concludere che g è vera anche in tale modello
 - g vera in tutti i modelli di KB, quindi anche nell'interpretazione intesa
 - \circ se $KB \nvDash g$, allora non può trarre conclusioni
 - g potrebbe essere falsa proprio nell'interpretazione intesa ma il sistema non conoscendola non può stabilirlo

Esempio data *KB* dell'esempio precedente:

- l'utente saprebbe interpretare il significato dei simboli
- la macchina non comprende il significato, ma può trarre conclusioni basandosi su quello che è asserito, ad es.:
 - \circ $KB \models apple_is_eaten$ (i.e. vera nell'interpretazione intesa)
 - $ullet \ bird_eats_apple. \in KB$
 - $ullet apple_is_eaten \leftarrow bird_eats_apple. \in KB$
 - \circ $KB \nvDash switch_1_is_up$: falsa in qualche modello
 - $ullet switch_1_is_up \leftarrow sam_is_in_room \land night_time. \in KB$
 - $lacksquare night_time. \in KB$
 - $sam_is_in_room$ non è certo:
 - potrebbe essere falso in qualche suo modello

Osservazioni

- Se il/la progettista commette errori, codifica nella KB assiomi falsi nell'interpretazione intesa, non \hat{e} garantito che le risposte della macchina siano vere in tale interpretazione
- Le macchine *non comprendono* il significato dei simboli: sono gli umani ad attribuirglielo
 - sanno solo quanto viene loro detto del mondo
 - o ma da questo sono in grado di trarre conclusioni vere per quel mondo

VINCOLI PROPOSIZIONALI

Formule logiche: vincoli con struttura concisa ed elaborabile

Classe dei CSP proposizionali caratterizzata da:

- Variabili booleane: dominio $\{true, false\}$
 - \circ sintassi: X = true oppure x, e X = false oppure $\neg x$
 - ad es. data Happy booleana, happy sta per Happy = true e $\neg happy$ sta per Happy = false
- Vincoli clausali o clausole espressioni logiche della forma:

$$l_1 \vee l_2 \vee \cdots \vee l_k$$

- o ogni **letterale** l_i atomo a o negazione $\neg a$
 - i.e. un'assegnazione a una variabile booleana
 - a occorre negativamente (risp. positivamente) nel letterale $\neg a$ (risp. a)
- $0 \quad l_1 \lor l_2 \lor \cdots \lor l_k$, **soddisfatta** da un *mondo possibile* (i.e. interpretazione sse (almeno) un l_i è vero in tale mondo è un modello)

CLAUSOLE COME PROPOSIZIONI O VINCOLI

In Logica Proposizionale

- clausola: formula logica in una forma ristretta (normale)
 - ogni proposizione può essere convertita in forma di clausola
 - algoritmo [conversione]

Nei CSP

- clausola: vincolo su un insieme di variabili booleane
 - soddisfatto se almeno uno dei sui letterali è vero
 - o i.e. esclude assegnazioni per cui tutti i letterali risultino falsi

Esempio — clausola

$happy \lor sad \lor \lnot living$

- come vincolo su Happy, Sad e Living
 - \circ soddisfatto assegnando true a Happy o Sad oppure false a Living
 - poiché happy e sad vi occorrono positivamente e living negativamente
- assegnazione totale che viola il vincolo: $\neg happy, \neg sad, living$
 - o unica assegnazione che violi la clausola

CONVERSIONE CSP → **LOGICA PROPOSIZIONALE**

CSP finito \rightarrow problema di soddisfacibilità di una KB proposizionale:

- variabile Y del CSP, $dom(Y)=\{v_1,\ldots,v_k\}$ o variabili indicatrici booleane $\{Y_1,\ldots,Y_k\}$: Y_i vera se $Y=v_i$ e falsa altrimenti
 - \circ per rappresentare Y in $K\!B\!$: atomi y_1,\ldots,y_k
- clausole (vincoli) da inserire in KB
 - $\circ \ y_1 \lor \cdots \lor y_k$
 - uno degli y_i dev'essere vero
 - $\circ \
 eg y_i ee
 eg y_j$ per ogni $i,j \in \{1,\ldots,k\}$ con i < j
 - y_i e y_j non possono essere entrambi veri
- per ogni vincolo del CSP, una clausola per ogni assegnazione che lo violi
 - \circ i.e. assegnazioni alle Y_i non ammesse dal vincolo
 - o per semplificare, si possono combinare le clausole
 - **a** ad es. combinando $a \lor b \lor c$ e $a \lor b \lor \neg c$ si ha: $a \lor b$

Specifici per la soddisfacibilità di clausole: spesso superano quelli per CSP

• dominio binario \Rightarrow eliminando un valore si assegna l'altro ad es. togliendo true da D_X resta solo X=false

Consistenza (degli archi) usata per restringere insiemi di valori / di vincoli:

- assegnando un valore a una variabile si *semplifica* l'insieme dei vincoli:
 - 1. assegnando true a X, tutte le clausole con X=true diventano ridondanti: possono essere eliminate perché soddisfatte (analogamente, assegnando false)
 - 2. **risoluzione** unitaria: assegnando true a X, in ogni clausola con X=false si può eliminare tale letterale (analogamente, assegnando false)
- ullet se, dopo la semplificazione, resta una clausola con una sola assegnazione, Y=v, si può rimuovere l'altro valore da D_Y

una clausola senza atomi (assegnazioni possibili) rappresenta la contraddizione: vincoli insoddisfacibili

Esempio — Si consideri la clausola $\neg x \lor y \lor \neg z$

- ullet assegnando true a X, la si può semplificare in $y ee \neg z$
 - \circ assegnando poi false a Y, la si può semplificare ancora in $\neg z$
 - \circ infine true può essere rimosso dal dominio di Z
- invece assegnando false a X, l'intera clausola può essere rimossa (perché soddisfatta)

Letterale puro:

atomo che occorre solo positivamente o negativamente nella KB

- se serve trovare un solo modello (soddisfacibilità) e, dopo le semplificazioni, si ha un letterale puro, si può *fissare* l'assegnazione corrispondente
 - \circ ad es. se compare solo y (i.e. $\neg y$ non compare mai) a Y può essere assegnato true
 - o ciò semplifica il problema senza eliminare tutti i modelli:
 - le clausole che restano sono un sottoinsieme di quelle che rimarrebbero fissando Y=false

Algoritmo DPLL Davis-Putnam-Logemann-Loveland, 1962

- riduzione dei domini (pruning) e dei vincoli
- separazione dei domini
- assegnazione di letterali puri

efficiente con strutture dati indicizzate ad hoc

Esercizio — trovare *implementazioni* di risolutori di problemi di soddisfacibilità e *problemi* per testarle

Ricerca Locale su Struttura Proposizionale ◀

Ricerca locale stocastica metodi semplici ed efficienti per problemi di soddisfacibilità proposizionali con vincoli clausali:

- un solo valore alternativo per ogni assegnazione
- clausola non soddisfatta soddisfacibile con il *cambio* di valore di una sola variabile, ma conseguenze sulle altre:
 - \circ assegnando true a una variabile
 - clausole dove occorre negativamente potrebbero non essere più soddisfatte
 - clausole dove occorre positivamente soddisfatte
 - \circ ponendo una variabile a false: caso duale simmetrico
- favorisce un'efficiente indicizzazione delle clausole

Osservazioni — Rispetto ai CSP:

- Spazio di ricerca esteso
 - prima di trovare una soluzione:
 più di una Y_i vera → Y ha più valori
 oppure, Y_i tutte false → Y non ha valori ammissibili
 - assegnazioni che sono minimi locali nel problema originario potrebbero non esserlo più in questa rappresentazione
- Problemi di soddisfacibilità proposizionale molto più investigati
 - esistono risolutori più efficienti
 - o la ricerca ha esplorato uno spazio di algoritmi più ampio

CLAUSOLE DEFINITE PROPOSIZIONALI

Linguaggio delle **clausole definite proposizionali** sottolinguaggio della logica proposizionale

- non ammette ambiguità o incertezza nella rappresentazione
- stessa semantica della logica proposizionale
- forma più specifica di proposizioni ammesse:

clausole con un unico letterale positivo

$$a \vee \neg b_1 \vee \cdots \vee \neg b_m$$

SINTASSI

Di base: proposizioni atomiche o atomi

• clausola definita proposizionale:

NB:
$$A \vee \neg B \equiv A \leftarrow B$$

```
h \leftarrow a_1 \wedge \cdots \wedge a_m.
```

che si legge "h se a_1 e \cdots e a_m ":

- h testa (head), atomo
- $\circ \ a_1 \wedge \cdots \wedge a_m$ corpo, con a_i atomi
 - si dice **regola** se m>0
 - si chiama **clausola atomica** o **fatto** se m=0 (corpo vuoto) e si può omettere " \leftarrow "
- base di conoscenza: insieme di clausole definite

Esempio — Nella KB vista nella sezione precedente tutte clausole definite Le seguenti proposizioni <u>non sono</u> clausole definite:

- ullet $\neg apple_is_eaten.$
 - o manca la testa
- $ullet \ apple_is_eaten \wedge bird_eats_apple.$
 - testa non atomica
- $ullet sam_is_in_room \land night_time \leftarrow up_s_1.$
 - idem
- $\bullet \ Apple_is_eaten \leftarrow Bird_eats_apple.$
 - o nomi degli atomi in maiuscolo non ammessi
- $happy \lor sad \lor \neg alive$.
 - \circ testa non atomica: equivale a $happy \lor sad \leftarrow alive$.

SEMANTICA

$$h \leftarrow a_1 \wedge \cdots \wedge a_m$$

Nell'interpretazione *I*, essa è

cfr. tavola di verità di ←

- falsa se a_1, \ldots, a_m tutti veri ma h falsa;
- vera altrimenti

Clausola definita forma ristretta di clausola:

- clausola con esattamente un letterale positivo
 - \circ ad es. $a \leftarrow b \land c \land d$. equivalente a $a \lor \neg b \lor \neg c \lor \neg d$.
 - o non può rappresentare una disgiunzione di atomi (e.g. $a \lor b$), nemmeno se tutti negati (e.g. $\neg c \lor \neg d$)

Esempio — assiomatizzazione dell'ambiente intelligente per la simulazione (diagnostica)

- Rappresentazione dello stato di cavi (wire), prese (outlet), luci (light), commutatori (switch) e fusibili (circuit breaker), ...
 - dettagli trascurabili non verranno modellati (ad es. colori, peso, lunghezze, altezze, ecc.)

- livello di astrazione per la rappresentazione?
 - o per specialisti: voltaggi? correnti? frequenze?
 - o senso comune: comprensibile anche a non specialisti
- cosa rappresentare?
 - o proposizioni su accensione luci, funzionamento cavi, stato commutatori, ecc.
- atomi con significati precisi nel mondo
 - nomi descrittivi
 - up_s_2 : (commutatore/switch) s_2 in posizione up
 - $live_l_1$: (punto-luce) l_1 in tensione

- conoscenza di fondo (BK) sulle cose vere nel mondo, fornita al sistema attraverso altre clausole definite
 - o forma semplice: fatti (clausole senza corpo)
 - $light_l_1$.
 - $light_l_2$.
 - *ok_l*₁.
 - \bullet ok_l_2 .
 - \bullet ok_cb_1 .
 - \bullet ok_cb_2 .
 - \blacksquare $live_outside$.

• si può anche considerare una parte del dominio e definire altre regole

```
\circ \ live\_l_1 \leftarrow live\_w_0. "(punto-luce) l_1 in tensione se (cavo) w_0 in tensione"
```

$$\circ \ live_w_0 \leftarrow live_w_1 \wedge up_s_2.$$

$$\circ \ live_w_0 \leftarrow live_w_2 \wedge down_s_2.$$

$$\circ \ live_w_1 \leftarrow live_w_3 \wedge up_s_1.$$

$$\circ \ live_w_2 \leftarrow live_w_3 \wedge down_s_1.$$

$$\circ$$
 $live_l_2 \leftarrow live_w_4$.

$$\circ \ live_w_4 \leftarrow live_w_3 \wedge up_s_3.$$

$$\circ \ live_p_1 \leftarrow live_w_3.$$

$$\circ \ live_w_3 \leftarrow live_w_5 \wedge ok_cb_1.$$

$$\circ$$
 $live_p_2 \leftarrow live_w_6$.

$$\circ \ live_w_6 \leftarrow live_w_5 \wedge ok_cb_2.$$

$$\circ\ live_w_5 \leftarrow live_outside.$$

$$\circ \ lit_l_1 \leftarrow light_l_1 \wedge live_l_1 \wedge ok_l_1.$$

$$\circ \ lit_l_2 \leftarrow light_l_2 \wedge live_l_2 \wedge ok_l_2.$$

- A run-time, si forniranno al sistema osservazioni
 - o ad es. sullo stato dei commutatori, come:
 - $down_s_1$.
 - $\blacksquare up_s_2.$
 - $\blacksquare up_s_3.$

Domande e Risposte

Determinare fatti veri riguardanti il mondo/dominio rappresentato:

- un utente può porre domande
 - o sulle conseguenze logiche della KB fornita alla macchina
- la macchina può dare risposte
 - decidendo se proposizioni seguano logicamente oppure no
- l'utente può comprendere il significato di tali risposte
 - o conoscendo la semantica degli atomi

Query: domanda tesa a sapere se una data proposizione segua da una KB

sintassi

ask b.

- \circ b atomo o congiunzione di atomi, i.e. il *corpo* di una regola: $\leftarrow b_1 \wedge \cdots \wedge b_m$
- risposte possibili:
 - \circ yes se b è conseguenza logica, $KB \models b$
 - o no altrimenti, $KB \nvDash b$
 - non significa che b sia falso (per i modelli di KB)
 bensì che con la conoscenza disponibile è impossibile determinarne la verità

per KB di clausole definite

Esempio — data la KB precedente, la *macchina* sa rispondere a query come:

- ask light_l₁.
 risposta: yes
 fatto asserito
 ask light_l₆.
 - o non c'è info sufficiente a sapere se l_6 sia un punto luce
- ask lit_l_2 . risposta: yes

riposta: no

o acceso, atomo vero in tutti i modelli

L'utente sa interpretare le risposte sulla base dell'interpretazione intesa

Dimostrazioni

Come *calcolare* le risposte?

Proof Theory

• |= non specifica COME calcolare conseguenze logiche: problema della *deduzione*

forma di inferenza

Prova (*proof*): dimostrazione, derivabile anche *automaticamente*, del fatto che una proposizione segua logicamente da un insieme di assiomi

• teorema: proposizione dimostrabile

Procedura di dimostrazione (*proof procedure*): algoritmo, eventualmente non-deterministico, per costruire prove

data una procedura di dimostrazione,

$$KB \vdash g$$

indica che si può produrre una prova del fatto che g sia conseguenza di \overline{KB}

PROPRIETÀ E TIPI DI PROCEDURE

Relazioni tra prove e modelli:

• procedura **corretta** (**sound**) se ogni proposizione dimostrata dalla procedura è conseguenza logica di *KB*:

se
$$KB \vdash g$$
 allora $KB \models g$

• procedura **completa** se ogni conseguenza logica di *KB* può essere dimostrata dalla procedura:

se
$$KB \models g$$
 allora $KB \vdash g$

Due tipi di procedure:

- Bottom-Up (BU)
- Top-Down (TD)

Scopo — derivare tutte le conseguenze logiche di una KB

- si costruisce la prova gradualmente, basandosi su quanto è stato già dimostrato (atomi)
- concatenazione in avanti (forward chaining) su clausole definite:
 - o derivare fatti nuovi a partire da quanto è già stato provato

Una sola *regola di derivazione*, generalizzazione della regola d'inferenza detta **modus ponens**:

$$rac{p
ightarrow q}{q}$$

- se $h \leftarrow a_1 \wedge \cdots \wedge a_m$ è in KB e ogni a_i è già stato provato, allora si può derivare h
 - \circ ogni fatto (m=0) si considera immediatamente provato

```
procedure Prove DC BU(KB)
  Input
     KB: insieme di clausole definite
  Output
     insieme di tutte le conseguenze logiche di KB
  Local
     C insieme di atomi
  C \leftarrow \emptyset
  repeat
     selezionare h \leftarrow a_1 \wedge \cdots \wedge a_m da KB
     tale che \forall i \colon a_i \in C e h \notin C
     C \leftarrow C \cup \{h\}
  until nessun'altra clausola selezionabile
  return C
```

La procedura trova C, insieme delle conseguenze di KB

Risposta = yes ossia $KB \vdash g$ quando:

```
• g \in C
• \{g_1, \ldots, g_k\} \subseteq C g = g_1 \wedge \ldots \wedge g_k congiunzione
```

Esempio — KB con gli assiomi:

- $a \leftarrow b \wedge c$.
- $b \leftarrow d \wedge e$.
- $b \leftarrow g \wedge e$.
- $c \leftarrow e$.
- d.
- e.
- $f \leftarrow a \land g$.

Traccia dei valori via via assegnati a C dalla procedura:

- {}
- {*d*}
- {*e*, *d*}
- $\{c, e, d\}$
- $\{b, c, e, d\}$
- $\{a, b, c, e, d\}$

L'algoritmo termina con $C=\{a,b,c,e,d\}$

• quindi $KB \vdash a$, $KB \vdash b$, ecc.

Non viene mai usata l'ultima regola di KB

Non si riesce a provare né f né g

• difatti c'è un modello della KB in cui f e g sono entrambe false

PROPRIETÀ DELLA PROCEDURA

Consistenza — ogni atomo in C è conseguenza logica di KB:

• se $KB \vdash g$ allora $KB \models g$

Completezza — tutte le conseguenze logiche sono derivabili:

- se $KB \models g$ allora g è vera in ogni modello di KB
- ullet quindi anche in quello *minimo*, ovvero in C
- per cui $KB \vdash g$

Complessità *⋖*

L'algoritmo si ferma: itera per un numero limitato di volte determinato dal numero di clausole in \overline{KB}

- ogni clausola viene usata al più una volta
- complessità *lineare* nelle dimostrazioni da KB
 - indicizzando le clausole in modo che il ciclo interno sia eseguito in tempo costante

PUNTI FISSI

- C restituito è un **minimo punto fisso**: ogni ulteriore applicazione della regola di derivazione non lo cambia
- detta I l'interpretazione in cui ogni atomo in C è vero e gli altri sono falsi I dev'essere un modello di KB
- I modello minimale di KB:
 ha il minor numero di proposizioni vere tra tutti i modelli
 - \circ ogni altro modello può avere anche altri atomi veri oltre a quelli di $oldsymbol{C}$

Ricerca *backward* o *top-down* a partire da una query per determinare se segua logicamente dalle clausole di *KB*

Risoluzione (inferenza su clausole)

$$\frac{l_1 \vee \cdots \vee a \vee \cdots \vee l_r \qquad l'_1 \vee \cdots \vee \neg a \vee \cdots \vee l'_m}{l_1 \vee \cdots \vee l_r \vee l'_1 \vee \cdots \vee l'_m}$$

Risoluzione SLD

Selezione di un atomo usando una strategia

Lineare su clausole

Definite proposizionali

$$\frac{a \leftarrow a_1 \wedge \cdots \wedge \underline{a_i} \wedge \cdots \wedge a_r \quad a_i \leftarrow b_1 \wedge \cdots \wedge b_m}{a \leftarrow a_1 \wedge \cdots \wedge \underline{b_1} \wedge \cdots \wedge \underline{b_m} \wedge \cdots \wedge a_r}$$

• versione proposizionale di un metodo più generale

PROCEDURA TOP-DOWN CON CLAUSOLE DI RISPOSTA

Clausola di risposta: $yes \leftarrow a_1 \wedge a_2 \wedge \cdots \wedge a_m$

• dove yes è un atomo speciale, vero se la risposta alla query è "yes"

```
Data la query: ask q_1 \wedge \cdots \wedge q_m
```

o clausola di risposta iniziale: $yes \leftarrow q_1 \wedge \cdots \wedge q_m$

Procedura — data una clausola di risposta

- si seleziona un atomo del corpo (sotto-goal) da dimostrare
 - \circ ad es. a_1
- si procede quindi attraverso passi di risoluzione
 - o per cui si *sceglie* una clausola definita in KB avente come testa l'atomo selezionato (a_1)
 - se non ne esistono, si fallisce

Scelta vs Selezione (cfr. specchietto nel testo)

Risolvente della clausola di risposta e clausola scelta:

$$\dfrac{yes \leftarrow \underline{a_1} \wedge a_2 \wedge \cdots \wedge a_m \qquad a_1 \leftarrow b_1 \wedge \cdots \wedge b_p}{yes \leftarrow b_1 \wedge \cdots \wedge b_p \wedge a_2 \wedge \cdots \wedge a_m}$$

sotto-goal selezionato sostituito dal corpo della clausola scelta

Risposta: clausola di risposta con corpo vuoto:

$$yes \leftarrow$$

Derivazione SLD di una query ask $q_1 \wedge \cdots \wedge q_k$ da KB: sequenza di clausole di risposta $\gamma_0, \gamma_1, \ldots, \gamma_n$ tali che

- γ_0 query originaria $yes \leftarrow q_1 \wedge \cdots \wedge q_k$
- γ_i risolvente di γ_{i-1} con una clausola definita in KB
- γ_n risposta

PROCEDURA TOP-DOWN ALTERNATIVA

Parte da un insieme G (goal) di atomi da dimostrare:

- inizializzazione di G con tutti gli atomi della query (sotto-goal)
- G corrisponde a $yes \leftarrow \bigwedge_{g \in G} g$
- la clausola

$$a \leftarrow b_1 \wedge \cdots \wedge b_p$$

indica che a può essere sostituito dai sotto-goal b_1,\ldots,b_p

```
non-deterministic procedure Prove_DC_TD(KB, Query)
  Input
     KB: insieme di clausole definite
     Query insieme di atomi da dimostrare
  Output
     yes se KB \models Query, altrimenti fallisce (no)
  Local
     G insieme di atomi
  G \leftarrow Query
  repeat
     selezionare un atomo a \in G
     scegliere da KB una clausola con a come testa: a \leftarrow B
     // se possibile, altrimenti il tentativo fallisce
     G \leftarrow (G \setminus \{a\}) \cup B
  until G = \emptyset
  return yes
```

Osservazioni

- qualsiasi atomo del corpo può essere selezionato (tutti, prima o poi)
 - se una selezione non porta a terminare la prova, non serve tentare di selezionarne un altro
- procedura non-deterministica: scelta della clausola per la risoluzione che porti al successo del tentativo
 - \circ se ci sono scelte che portano a G vuoto, l'algoritmo ha successo (rispondendo yes) altrimenti il tentativo fallisce (e può rispondere no)
- ullet corpo della clausola: *insieme* di atomi, come G
 - \circ in alternativa, G lista ordinata di atomi che possono comparire più volte

Esempio — Data la KB seguente:

- $a \leftarrow b \wedge c$.
- $b \leftarrow d \wedge e$.
- $b \leftarrow g \land e$.
- $c \leftarrow e$.
- d.
- e.
- $f \leftarrow a \land g$.

e la query: ask a.

- qui G come clausola di risposta
 - o con selezione dell'atomo più a sinistra del corpo

risolventi γ_i clausole da KB

$$yes \leftarrow \underline{a}$$

$$yes \leftarrow a$$
 $a \leftarrow b \land c$

$$yes \leftarrow \underline{b} \wedge c \qquad \qquad b \leftarrow d \wedge e$$

$$b \leftarrow d \wedge e$$

$$yes \leftarrow \underline{d} \wedge e \wedge c \quad d$$

$$yes \leftarrow \underline{e} \wedge c$$

$$\boldsymbol{e}$$

$$yes \leftarrow \underline{c}$$
 $c \leftarrow e$

$$c \leftarrow e$$

$$yes \leftarrow \underline{e}$$

$$yes \leftarrow$$

Sequenza *alternativa* di scelte in cui si sceglie la seconda clausola per *b*:

- $yes \leftarrow a$
- $yes \leftarrow b \land c$
- $yes \leftarrow g \land e \land c$
 - \circ selezionando g, non ci sono regole da scegliere
 - questo tentativo fallisce: scegliere altre alternative

ALGORITMO TD SU GRAFO DI RICERCA

indotto dalla strategia di selezione

- nodi: clausole di risposta
- *vicini* di $yes \leftarrow \underline{a_1} \wedge \cdots \wedge a_m$ rappresentano tutte le possibili clausole di risposta ottenute risolvendo su a_1
 - generati dinamicamente
 - \circ uno per ogni clausola definita con testa a_1
- ullet nodi obiettivo: $yes \leftarrow$
- si può usare qualsiasi metodo di ricerca su grafo
 - o basta *un* percorso di successo perché la query sia conseguenza logica della KB
 - o per ogni nodo, spazio determinato dalla query e dall'atomo selezionato

Esempio — Data la seguente KB e la query ask $a \wedge d$.

$$KB = egin{cases} a \leftarrow b \wedge c. & a \leftarrow g. & a \leftarrow h. \ b \leftarrow j. & b \leftarrow k. & d \leftarrow m. \ d \leftarrow p. & f \leftarrow m. & f \leftarrow p. \ g \leftarrow m. & g \leftarrow f. & k \leftarrow m. \ h \leftarrow m. & p. \end{cases}$$

→ grafo (nei nodi, lista di atomi del *corpo* del risolvente):

CONFRONTO

- Dimostrazioni TD e BU interscambiabili
 - o utile a provare consistenza e completezza della TD
- BU prova ogni atomo una sola volta;
 TD potrebbe provare lo stesso atomo più volte,
 ma si concentra su quelli rilevanti per la query
- Con TD possibili cicli infiniti

Esempio — Data

$$\mathit{KB} = \{g \leftarrow a. \quad a \leftarrow b. \quad b \leftarrow a. \quad g \leftarrow c. \quad c. \}$$

e la query ask g.

- uniche conseguenze logiche (atomiche): g e c
- BU termina con il punto fisso $\{c,g\}$
- TD con DFS semplice potrebbe continuare indefinitamente
 - o a meno che non sia prevista la *potatura* dei cicli

STRATEGIA DI SELEZIONE

La strategia di selezione dell'atomo per la risoluzione condiziona efficienza e terminazione:

- negli es. precedenti: atomo più a sinistra
 - o problematica senza controllo sui cicli
- strategia migliore: atomo che porti al fallimento più facilmente
- strategia comune: ordinamento degli atomi per la selezione
 - o consente l'uso di un'euristica

QUESTIONI DI RAPPRESENTAZIONE DELLA CONOSCENZA

Osservazioni e Conoscenza di Fondo

Osservazioni — ricevute (a run-time) da utenti, sensori o altre sorgenti:

- rappresentate come *insiemi di atomi* (non direttamente come regole)
 - o es. diagnosi medica: il paziente comunica i sintomi
- interagiscono con la conoscenza di fondo (background knowledge, BK)
 - aggiunte alla BK / separate dalla BK

Incompletezza delle informazioni fornite dall'**utente**:

- 1. non sa usare il vocabolario; 2. non sa giudicare la rilevanza
- servirebbero:
 - 1. un'ontologia che specifichi il significato dei simboli
 - 2. un'interfaccia può aiutare a fornire informazioni rilevanti

Analogamente:

- sensori passivi ← osservazioni dirette (congiunzioni di atomi)
- sensori attivi ← risposte a richieste di info necessarie

Acquisizione: meccanismo ask-the-user nella procedura di ragionamento:

- atomo **askable**: verità acquisibile dall'utente a run-time
- la TD, selezionato un atomo da dimostrare
 - o usa una clausola della KB
 - oppure, se askable, chiede all'utente se sia vero o falso
 NB solo per atomi rilevanti
- classi di atomi:
 - 1. non askable
 - 2. askable senza risposta-utente
 - si può chiedere e memorizzare
 - 3. askable con risposta-utente memorizzata
 - usati senza chiedere di nuovo
- possibile anche con procedure BU
 - ma vanno evitate troppe richieste all'utente

Simmetria dei ruoli utente-sistema: entrambi possono fare domande e dare risposte

- <u>inizio</u>: l'utente fa una domanda al sistema (query)
- <u>a ogni passo</u>: il sistema può porre domande la cui risposta viene acquisita
 - ritrovando le clausole rilevanti oppure
 - chiedendo all'utente

Interazione caratterizzata da un *protocollo* di domande e risposte tra utente e sistema

Esempio — Smart home: non tutto può essere fornito dal progettista (KB + BK) → atomi *askable* Possibile *dialogo utente-sistema* (interfaccia minimale):

ailog: ask lit_l₁.
Is up_s₁ true? no.
Is down_s₁ true? yes.
Is down_s₂ true? yes.
Answer: lit_l₁.

solo domande rilevanti cui l'utente può rispondere

A volte sufficiente/preferibile che l'utente segnali casi inusuali:

- es. un paziente segnala un problema di salute
 - (dove) avverte dolore
- es. un sensore indica una scena cambiata
 - senza altri dettagli

Eventi eccezionali

- → possibili inferenze anche in mancanza di conoscenza:
- situazione di normalità, di *default*, superata a seguito di tali segnalazioni
 - esistono forme specifiche di ragionamento (cfr. abduzione)

Spiegazioni a Livello di Conoscenza

Uso esplicito della semantica

- → spiegazione/debugging a livello di conoscenza
- rende il sistema *usabile* da parte di utenti comuni
 - esso deve saper giustificare le risposte
 - ad es. una diagnosi medica
- utile a:
 - spiegare come è stato trovato un risultato
 - o correggere la KB

DOMANDE AL SISTEMA

Interrogazioni dell'utente per avere spiegazioni:

- 1. Come? (how question):
 - si chiede come sia stata provata una risposta
 - o il sistema fornisce le *clausole* utilizzate per dedurre la risposta
 - o si può poi chiedere anche per ogni atomo nel corpo d'una clausola
- 2. Perché? (why question):
 - si chiede il motivo di una domanda all'utente
 - o il sistema mostra la *regola* che ha prodotto la domanda
 - o l'utente può chiedere perché sia stata dimostrata la testa
 - utile a navigare la dimostrazione (anche parzialmente)
- 3. Perché no? (whynot question):
 - si chiede perché *non* sia stato possibile dimostrare un atomo

DOMANDE AL SISTEMA — COME?

Procedura di spiegazione alla domanda how

- se *g* ammette una dimostrazione:
 - *g* fatto*oppure*
 - \circ esiste $g \leftarrow a_1 \wedge \cdots \wedge a_k$ tale che ogni a_i sia stato dimostrato
- provato g, se l'utente chiede how.
 - il sistema è in grado di fornire la clausola usata per provare g
- se questa è una regola, l'utente potrebbe chiedere how i.
 - per avere la regola usata per dimostrare a_i
- ullet continuando con altri how si può esplorare la dimostrazione di g

Esempio — KB precedente, query ask lit_l_2

- utente: how
- sistema: $lit_l_2 \leftarrow light_l_2 \wedge live_l_2 \wedge ok_l_2$
- utente: how 2
- sistema (regola usata): $live_l_2 \leftarrow live_w_4$
- utente: how 1
- sistema: $live_w_4 \leftarrow live_w_3 \land up_s_3$
- utente: how 1
- sistema: $live_w_3 \leftarrow live_w_5 \wedge ok_cb_1$
- utente: how 2
- sistema: ok_cb_1

in risposta alla dimostrazione regola finale della dim.

com'è stato provato *live_l*₂?

com'è stato provato *live_w*₄?

com'è stato provato *live_w*₃?
regola usata per provarlo
per il secondo atomo
fatto già presente nella KB

spiegazione a *livello di conoscenza* e con sole clausole rilevanti: all'utente basta conoscere la semantica dei simboli (non la procedura)

DOMANDE AL SISTEMA — PERCHÉ?

Spiegazione del perché una domanda sia stata posta

- aumenta la *credibilità* del sistema
 - appare più intelligente / trasparente / affidabile
- misura di complessità di sistemi interattivi: numero di domande richieste (da minimizzare)
 - o conoscere le motivazioni aiuta a ridurre la complessità
- domanda irrilevante: sintomo di problema più grave
- si impara qualcosa dal sistema capendo i motivi delle sue azioni
 - come un apprendista

USO DI WHY

Il sistema pone all'utente una domanda q, ci dev'essere una regola che contiene q nel corpo:

- utente: why.
 - "perché mi stai ponendo questa domanda?"
- ullet sistema: fornisce la regola per cui serve sapere di q
- se l'utente chiede ancora why, il sistema spiega perché si sia domandato dell'atomo nella testa della regola...

why ripetute danno un *percorso* di sotto-goal fino alla query originaria:

• se tutte le regole sono ragionevoli, si ha una *giustificazione* dell'appropriatezza della domanda iniziale all'utente

Esempio — Dialogo con l'uso di why

- ailog: ask lit_l_1 .
- Is up_s_1 true? why.
- up_s_1 is used in the rule $live_w_1 \leftarrow live_w_3 \wedge up_s_1$: why.
- $live_w_1$ is used in the rule $live_w_0 \leftarrow live_w_1 \wedge up_s_2$: why.
- $live_w_0$ is used in the rule $live_l_1 \leftarrow live_w_0$: why.
- $live_l_1$ is used in the rule $lit_l_1 \leftarrow light_l_1 \wedge live_l_1 \wedge ok_l_1$: why.
- Because that is what you asked me!

NAVIGAZIONE DELLA DIMOSTRAZIONE

In genere how e why usate insieme:

- how sposta da sotto-goal a livello più alto a uno più basso
- why viceversa

Permettono all'utente di navigare l'albero di dimostrazione (proof tree):

- nodi ← atomi
- nodo + figli ← regola

Le KB possono presentare errori e omissioni

- occorre saperla correggere e/o completare
 - strumenti standard per il debugging del SW non appropriati
 - o non tutti comprendono il funzionamento interno del sistema
 - utenti/esperti di dominio non conoscono le *procedure* di ragionamento

Knowledge-level Debugging: richiede di conoscere *significato* dei simboli e *verità* degli atomi nell'interpretazione intesa

- obiettivo: coinvolgere gli esperti di dominio
 - o ad es. medicina, domotica
 - o senza aspettarsi conoscenze sull'Al

KNOWLEDGE-LEVEL DEBUGGING

Errori (non sintattici) nei sistemi a regole:

- 1. risposta non corretta derivata
 - derivato qualche atomo falso nell'interpretazione intesa
- 2. *risposta omessa* non derivata
 - o dimostrazione fallita per un atomo vero nell'interpretazione intesa
 - avrebbe dovuto avere successo
- 3. ciclo infinito
- 4. domande irrilevanti poste dal sistema

RISPOSTE ERRATE

Risposte della dimostrazione *false* nell'interpretazione intesa:

- casi di falsi positivi
- ma procedura sound → clausola errata impiegata nella dimostrazione

Si assume che chi opera il debugging conosca il *significato* dei simboli e il valore di *verità* di un atomo nell'interpretazione intesa

Per il debugging dei falsi positivi:

- Sia g l'atomo dimostrato, ma falso nell'interpretazione intesa e $g \leftarrow a_1 \wedge \cdots \wedge a_k$ la clausola usata per provarlo
- Casi possibili:
 - o uno o più a_i falsi nell'interpretazione intesa \rightarrow stesso problema
 - da risolvere ricorsivamente
 - \circ tutti gli a_i veri nell'interpretazione intesa
 - clausola $g \leftarrow a_1 \wedge \cdots \wedge a_k$ errata

```
procedure Debug_false(g, KB)
  Input
     KB base di conoscenza
     g atomo: KB \vdash g ma falso nell'interpretazione intesa
  Output
     clausola in KB falsa
  Trovare g \leftarrow a_1 \wedge \cdots \wedge a_k \in KB usata per provare g
  for each a_i do
     Chiedere all'utente se a_i sia vero
     if risponde che a_i è falso then
         return Debug_false(a_i, KB)
  return g \leftarrow a_1 \wedge \cdots \wedge a_k
```

Strategia da attuare usando il comando how:

- data una prova di g, si può chiedere come sia stato dimostrato
 - o sarà restituita la clausola usata
- se è una regola, si può usare how per cercare eventuali atomi nel corpo falsi nell'interpretazione intesa
 - o nel caso, si restituiranno le regole usate per dimostrarli
- si ripete il procedimento fino a trovare una clausola con tutti gli atomi del corpo veri (o corpo vuoto) che è quella *errata*

Esempio — Bug nella KB: è specificato erroneamente che la connessione di w_1 a w_3 dipende da s_3 anziché da s_1 , con la regola $live_w_1 \leftarrow live_w_3 \wedge up_s_3$.

- Per trovare tale regola, da KB si può derivare:
 - $\circ lit_l_1$ falso nell'interpretazione intesa, si può quindi chiedere how.
 - \circ con riposta: $lit_l_1 \leftarrow light_l_1 \wedge live_l_1 \wedge ok_l_1$. $live_l_1$ falso, perciò si chiede how 2.
 - \circ risposta: $live_l_1 \leftarrow live_w_0$. ma $live_w_0$ è falso per cui si chiede how 1.
 - \circ risposta: $live_w_0 \leftarrow live_w_1 \land up_s_2$. ma $live_w_1$ è falso, per cui si chiede how 1.
 - ∘ risposta: $live_w_1 \leftarrow live_w_3 \land up_s_3$. atomi del corpo veri nell'interpretazione intesa → regola difettosa

RISPOSTE MANCANTI

Una risposta attesa non viene derivata dal sistema

- fallimento:
 - \circ atomo g vero nell'interpretazione intesa ma $KB \nvdash g$
 - o caso di **falso negativo**

Segnala un caso di *clausole mancanti* tra gli assiomi della KB

- individuabile attraverso una procedura
 - o per trovare atomi cui manchino clausole utili alla loro dimostrazione:

```
procedure Debug_missing(q, KB)
   Input
      KB base di conoscenza
      g atomo: KB \not\vdash g ma g vero nell'interpretazione intesa
  Output
      atomo per il quale c'è una clausola mancante
   if esiste g \leftarrow a_1 \wedge \cdots \wedge a_k \in \mathit{KB} con tutti gli a_i veri
   nell'interpretazione intesa then
      Selezionare a_i che non può essere dimostrato
      return Debug_missing(a_i, KB)
   else
      return g
```

Debugging nel caso di risposte mancate

Se la dimostrazione di g fallisce, questo dipenderà dai *corpi* di *tutte* le clausole con g come *testa*:

- almeno per una di esse, tutti gli atomi del corpo dovevano risultare veri nell'interpretazione intesa
 - uno di tali atomi non è dimostrabile come vero:
 caso analogo da investigare ricorsivamente
- altrimenti: non ci sono clausole utili a provare g
 - → occorre aggiungerla alla KB

Domanda whynot per chiedere perché g non venga dimostrato

• per implementare Debug_missing il sistema deve saper porre domande rilevanti

Esempio — Si supponga che $down_s_2$ sia vero ma manchi la clausola per provarlo: in particolare, data la KB, non si riesce a dimostrare lit_l_1

- si trovano tutte le regole con lit_l_1 in testa, ossia la sola $lit_l_1 \leftarrow light_l_1 \wedge live_l_1 \wedge ok_l_1$.
- verificando che tutti gli atomi del corpo siano veri
 - $\circ \ light_l_1$ e ok_l_1 dimostrabili, ma non $live_l_1$ (da indagare)
- anche $live_l_1$ occorre come testa solo in una regola: $live_l_1 \leftarrow live_w_0$.
 - \circ ma $live_w_0$ non può essere dimostrato, mentre dovrebbe risultare vero nell'interpretazione intesa
- 2 regole per $live_w_0$:

```
live\_w_0 \leftarrow live\_w_1 \land up\_s_2. e live\_w_0 \leftarrow live\_w_2 \land down\_s_2.
```

- o l'utente sa determinare che il corpo della seconda regola è vero
- \circ ma, mentre $live_w_2$ è dimostrabile, mancano clausole per $down_s_2$ che viene quindi restituito come difettoso
- correzione: aggiunta di una clausola (fatto o regola) per provare l'atomo

CICLI INFINITI

KB **ciclica**: contiene un atomo a per il quale esiste in KB una sequenza

```
egin{array}{ll} a & \leftarrow \ldots a_1 \ldots \ a_1 \leftarrow \ldots a_2 \ldots \ dots & dots & dots \ a_n \leftarrow \ldots a \ldots \end{array}
```

• ad es. una KB precedente mostra un caso di loop (infinito) per TD

```
KB = \{g \leftarrow a. \quad a \leftarrow b. \quad b \leftarrow a. \quad g \leftarrow c. \quad c. \}
```

- per n=0, solo la clausola $a \leftarrow \ldots a \ldots$
- spesso indice di *bug* nella definizione della KB

KB **aciclica**: atomi della KB numerabili in modo che, per ogni clausola, i numeri degli atomi del corpo siano *minori* di quello dell'atomo in testa

BU <u>non</u> affetta dal problema:

• regola selezionabile solo se la testa non è già stata derivata

Controllo di Ciclicità in procedure TD

Si gestisce, una lista di antenati nella dimostrazione per ogni atomo:

- inizio $\forall i \colon ancestors(a_i) \leftarrow \emptyset$
- quando si usa $a \leftarrow a_1 \wedge \ldots \wedge a_k$ per dimostrare a: $ancestors(a_i) = ancestors(a) \cup \{a\}$
- una dimostrazione di un atomo fallisce quando esso risulta nell'insieme dei propri antenati → KB ciclica
 - o versione specializzata della potatura dei cicli

DIMOSTRAZIONE PER CONTRADDIZIONE

Contraddizioni

Cosa si può concludere quando dalla KB deriva una proposizione contraria a quanto si osserva nella realtà?

• ad es. si osserva che un punto luce è spento mentre dovrebbe essere acceso secondo la KB

Si può ragionare ammettendo regole che producano contraddizioni

- specifica di casi impossibili
- utilità: diagnostica
 - ad es. nel caso precedente può servire a dedurre che alcuni componenti non siano funzionanti

Clausole di Horn

Linguaggio delle clausole definite esteso per esplicitare contraddizioni:

- false: atomo speciale che codifica la contraddizione
 - falso in tutte le interpretazioni
- vincolo d'integrità: clausola con false come testa

$$false \leftarrow a_1 \wedge \cdots \wedge a_k$$

Clausola di Horn: clausola definita o vincolo d'integrità

• testa = atomo normale oppure false

CONCLUSIONI NEGATIVE

Da una KB di clausole di Horn, si possono derivare **negazioni** di atomi (pur non essendo ammesse come input) tramite **modus tollens**:

$$rac{p
ightarrow q \qquad
eg q}{
eg p}$$

Esempio — Base di conoscenza KB_1 :

1. $false \leftarrow a \land b$.

 $2.a \leftarrow c.$

 $3.b \leftarrow c.$

c è falso in tutti i modelli di KB_1

• <u>Dim.</u> (per contraddizione)

Pertanto: $KB_1 \models \neg c$

CONCLUSIONI DISGIUNTIVE

$$false \leftarrow a_1 \wedge \cdots \wedge a_k \ \equiv \ \lnot a_1 \lor \cdots \lor \lnot a_k \equiv \lnot (a_1 \wedge \cdots \wedge a_k)$$

si può quindi dimostrare che congiunzioni di atomi siano false in tutti i modelli di KB ovvero provare una disgiunzione di negazioni di atomi

Esempio — Sia KB_2 :

- **1.** $false \leftarrow a \land b$.
- $2. a \leftarrow c.$
- $3.b \leftarrow d.$
- $4.b \leftarrow e.$

Una fra c e d falsa in ogni modello di KB_2 : $KB_2 \models \neg c \lor \neg d$

• <u>Dim.</u> (per contraddizione)

Analogamente, una fra c ed e è falsa rispetto a KB_2 : $KB_2 \models \neg c \lor \neg e$

SODDISFACIBILITÀ E CONSISTENZA

Un insieme di clausole KB è **insoddisfacibile** se non ha modelli:

$$\mathit{KB} \models \mathit{false}$$

Un insieme di clausole KB è **inconsistente** rispetto a una procedura di dimostrazione \vdash se consente di derivare false:

$$\mathit{KB} \vdash \mathit{false}$$

• Se \vdash corretta e completa allora KB inconsistente sse KB insoddisfacibile

Una KB di clausole definite è sempre soddisfacibile

• e.g. interpretazione per cui tutti gli atomi siano veri

ciò <u>non vale</u> per KB di clausole di Horn

Esempio — La semplice KB

$$\left\{ egin{array}{l} a. \ false \leftarrow a. \end{array}
ight\}$$

non è soddisfacibile:

- nessuna interpretazione soddisfa entrambe le clausole
- non possono essere entrambe vere in un'interpretazione

Per provare l'inconsistenza si può usare TD o BU:

• ask false.

Assumibili e Conflitti

Contraddizioni: utili a individuare combinazioni di assunzioni incompatibili

- supposizioni che possono dimostrarsi false
 - ad es. in *diagnostica*: funzionamento normale delle componenti inconsistente rispetto a osservazioni fatte
 - in caso di malfunzionamento → diagnosi del guasto

Assumibile: atomo che può essere assunto (come vero) in una dimostrazione per contraddizione

• diagnostica: determinare disgiunzioni di negazioni di assumibili

Conflitto di KB : $C = \{c_1, \ldots, c_r\}$ di assumibili tale che $\mathit{KB} \cup C \models false$

• i.e. **risposta** a dim. per contraddizione: $KB \models \neg c_1 \lor \cdots \lor \neg c_r$

Conflitto minimale se nessun suo sottoinsieme è un conflitto

Esempio — Data KB_2 e l'insieme di atomi assumibili $\{c,d,e,f,g,h\}$:

$$\mathit{KB}_2 = \left\{egin{array}{l} false \leftarrow a \wedge b. \ a \leftarrow c. \ b \leftarrow d. \ b \leftarrow e. \end{array}
ight\}$$

- $\{c,d\}$ e $\{c,e\}$ conflitti minimali
- $\{c,d,e,h\}$ conflitto non minimale

Diagnosi Basata sulla Consistenza

Scopo: determinare possibili guasti

• in base a un modello del sistema e a osservazioni su di esso

Diagnosi:

- fa assunzioni sul funzionamento normale
 - o assumibile: assenza di guasti
- deriva i componenti *anormali*: *conflitti* (inconsistenza)
 - o anomalie nel sistema

Esempio — Si riconsideri la KB precedente (smart home)

si aggiungono:

- assunzioni di normalità i.e. assumibili
 - o atomi ok*: ogni componente dev'essere in buono stato per funzionare
- l'utente può osservare (e specificare):
 - o posizioni effettive dei commutatori (up/down)
 - stato delle luci (lit/dark)
- vincoli d'integrità: definiscono stati reciprocamente incompatibili
 - \circ es. possibile un solo stato d'accensione per le luci: $false \leftarrow dark_l_1 \wedge lit_l_1$.

(..cont.)

KB

- $light_l_1$.
- $light_l_2$.
- $\bullet \ live_outside.$
- $live_l_1 \leftarrow live_w_0$.
- $ullet \ live_w_0 \leftarrow live_w_1 \wedge up_s_2 \wedge ok_s_2.$
- $ullet \ \ live_w_0 \leftarrow live_w_2 \wedge down_s_2 \wedge ok_s_2.$
- $live_w_1 \leftarrow live_w_3 \wedge up_s_1 \wedge ok_s_1$.
- $ullet \ live_w_2 \leftarrow live_w_3 \wedge down_s_1 \wedge ok_s_1.$
- $ullet \ live_l_2 \leftarrow live_w_4.$
- $live_w_4 \leftarrow live_w_3 \wedge up_s_3 \wedge ok_s_3$.
- $live_p_1 \leftarrow live_w_3$.
- $ullet \ live_w_3 \leftarrow live_w_5 \wedge ok_cb_1.$
- $live_p_2 \leftarrow live_w_6$.
- $live_w_6 \leftarrow live_w_5 \wedge ok_cb_2$.
- $live_w_5 \leftarrow live_outside$.

- $lit_l_1 \leftarrow light_l_1 \wedge live_l_1 \wedge ok_l_1$.
- $ullet \ lit_l_2 \leftarrow light_l_2 \wedge live_l_2 \wedge ok_l_2.$

vincoli d'integrità:

- $false \leftarrow dark_l_1 \wedge lit_l_1$.
- $false \leftarrow dark_l_2 \wedge lit_l_2$.

osservazioni:

- up_s_1 .
- up_s_2 .
- up_s_3 .
- $dark_l_1$.
- $dark_l_2$.

dichiarazioni:

• assumable $ok_cb_1, ok_cb_2, ok_s_1, ok_s_2,$ $ok_s_3, ok_l_1, ok_l_2.$

(..cont.)

• Tutto considerato, ci sono due conflitti minimali:

```
\circ \{ok\_cb_1, ok\_s_1, ok\_s_2, ok\_l_1\}
\circ \{ok\_cb_1, ok\_s_3, ok\_l_2\}
```

• Pertanto:

$$\circ \ KB \models \neg ok_cb_1 \lor \neg ok_s_1 \lor \neg ok_s_2 \lor \neg ok_l_1 \\ \circ \ KB \models \neg ok_cb_1 \lor \neg ok_s_3 \lor \neg ok_l_2$$

• Quindi almeno una fra cb_1, s_1, s_2, l_1 non dev'essere ok, e almeno una tra cb_1, s_3, l_2 non è ok

Dato l'insieme dei conflitti, l'utente può diagnosticare il problema

• utile a farsi un'idea della numerosità dei possibili guasti

Diagnosi basata su consistenza (CBD): dato un insieme di conflitti, è un insieme di assumibili con almeno un elemento in ogni conflitto

- diagnosi minimale se nessun suo sotto-insieme è una diagnosi
 - intuitivamente, una sola delle diagnosi minimali è quella giusta:
 solo conflitti falsi nell'interpretazione intesa

Esempio — Nell'esempio precedente, due conflitti:

$$KB \models \neg ok_cb_1 \lor \neg ok_s_1 \lor \neg ok_s_2 \lor \neg ok_l_1$$
 e $KB \models \neg ok_cb_1 \lor \neg ok_s_3 \lor \neg ok_l_2$

Quindi, da *KB* segue:

$$(\lnot ok_cb_1 \lor \lnot ok_s_1 \lor \lnot ok_s_2 \lor \lnot ok_l_1) \land (\lnot ok_cb_1 \lor \lnot ok_s_3 \lor \lnot ok_l_2)$$

- proposizione in forma normale congiuntiva (CNF)
- distribuibile in **forma normale disgiuntiva** (*DNF*): disgiunzione di congiunzioni (qui di atomi negati): $\neg ok_cb_1 \lor (\neg ok_s_1 \land \neg ok_s_3) \lor (\neg ok_s_1 \land \neg ok_l_2)$

$$egin{aligned} ⅇ (\lnot ok_s_2 \land \lnot ok_s_3) \lor (\lnot ok_s_2 \land \lnot ok_l_2) \ ⅇ (\lnot ok_l_1 \land \lnot ok_s_3) \lor (\lnot ok_l_1 \land \lnot ok_l_2) \end{aligned}$$

- \circ i.e. cb_1 guasto o 6 possibili malfunzionamenti di coppie di componenti
- proposizioni corrispondenti a 7 diagnosi minimali:

$$\{ok_cb_1\}, \{ok_s_1, ok_s_3\}, \{ok_s_1, ok_l_2\}, \{ok_s_2, ok_s_3\}, \{ok_s_2, ok_l_2\}, \{ok_l_1, ok_s_3\}, \{ok_l_1, ok_l_2\}$$

una dev'essere causa del malfunzionamento

Obiettivo: ricerca dei conflitti in KB di clausole di Horn

IMPLEMENTAZIONE BOTTOM-UP

Estensione dell'algoritmo bottom-up per clausole definite:

- le conclusioni sono *coppie* $\langle a,A
 angle$
 - a atomo
 - \circ A insieme di assumibili che implicano a rispetto a KB
- inizializzazione, set di conclusioni: $C \leftarrow \{\langle a, \{a\} \rangle \mid a \text{ assumibile}\}$
- si usano le clausole per derivare nuove conclusioni:
 - \circ se $\exists h \leftarrow b_1 \wedge \cdots \wedge b_m \in \mathit{KB}$ tale che ogni $\langle b_i, A_i \rangle \in \mathit{C}$, allora si può aggiungere $\langle h, A_1 \cup \ldots \cup A_m \rangle$ a C
 - per i fatti (m=0) si aggiunge $\langle h, \{\} \rangle$

```
procedure Prove_conflict_BU(KB, As)
  Input
      KB: insieme di clausole di Horn
      As: insieme di atomi che si possono assumere veri
  Output
      insieme di conflitti
  Local
      C: insieme di coppie atomo/ins. di assumibili
  C \leftarrow \{\langle a, \{a\} 
angle \mid a \in As \}
  repeat
      selezionare la clausola h \leftarrow b_1 \wedge \cdots \wedge b_m tale che:
          per ogni \langle b_i, A_i 
angle \in C per ogni i e
          \langle h,A 
angle 
otin C , dove A=A_1 \cup \cdots \cup A_m
      C \leftarrow C \cup \{\langle h, A \rangle\}
  until nessun'altra selezione possibile
  return \{A \mid \langle false, A \rangle \in C\}
```

IMPLEMENTAZIONE TOP-DOWN

Anche l'implementazione top-down deriva dall'omologa per clausole definite, con 2 *differenze*:

- query principale da provare: false
- nella dimostrazione: atomi assumibili non vanno dimostrati, ma solo raccolti per essere assunti come veri

```
non-deterministic procedure Prove_conflict_TD(KB, As)
  Input
     KB: insieme di clausole di Horn
     As: insieme di atomi che si possono assumere veri
  Output
     un conflitto
  Local
     G insieme di atomi (che implicano false)
  G \leftarrow \{false\}
  repeat
     selezionare un atomo a \in G tale che a 
otin As
     scegliere una clausola a \leftarrow B di K\!B con a come testa
     G \leftarrow (G \setminus \{a\}) \cup B
  until G \subseteq As
  return G
```

Osservazioni

- diverse scelte ND → diversi conflitti trovati
- in mancanza di scelte, l'algoritmo fallisce

ASSUNZIONE DI CONOSCENZA COMPLETA

Conoscenza Completa

Spesso la conoscenza su un dominio viene considerata completa:

• semantica tipica dei DB

Esempio — smart home

- Il sistema potrebbe richiedere di specificare *esplicitamente* i commutatori che sono up e i fusibili broken e assumere per quelli non specificati che siano in condizioni *normali* / di *default*, ad es.:
 - $\circ down_s_i$ per gli commutatori
 - ∘ ok_cb_i per i fusibili

OWA vs. CWA

In logica normalmente <u>non</u> si assume che una KB definisca <u>tutta</u> la conoscenza su un dato dominio — **open-world assumption** (OWA)

- la mancanza di conoscenza *non consente* di trarre conclusioni: fallimento delle dimostrazioni
 - $\circ \neg a$ non può essere conseguenza logica di una KB di clausole definite

Assunzione di completezza della conoscenza:

- le clausole con uno stesso atomo come testa coprono tutti e soli i casi in cui esso è vero — closed-world assumption (CWA)
 - o tutto quanto sia rilevante è asserito esplicitamente nella KB
 - se non si riesce a provare che un atomo a è vero, si può concludere che sia falso: vera $\neg a$

COMPLETARE LA BASE DI CONOSCENZA

Dato l'atomo a e tutte le clausole della KB che lo definiscono:

$$egin{aligned} a \leftarrow b_1. \ dots \ a \leftarrow b_n. \end{aligned}$$

• con b_i (body): congiunzione di atomi oppure true (per clausole atomiche) esse si possono essere riassunte da un'<u>unica</u> proposizione clausola

$$a \leftarrow b_1 \lor \cdots \lor b_n$$

Se a vero allora, per la CWA, dovrà *necessariamente* essere vero uno dei b_i (rispetto a qualunque interpretazione) quindi si può aggiungere:

$$a
ightarrow b_1 ee \cdots ee b_n$$
 .

COMPLETAMENTO DI CLARK

Significato delle clausole per l'atomo *a* sotto CWA:

• congiunzione delle due proposizioni, i.e. equivalenza:

$$a \Leftrightarrow b_1 \vee \cdots \vee b_n$$

detta **completamento di Clark** delle clausole per *a*

 \circ se non ci sono regole per a, completamento: $a \Leftrightarrow false$!

Completamento della KB ricomprende i completamenti di tutti gli atomi della KB

Esempio — Si consideri la KB precedente con le clausole:

- $down_s_1$.
- up_s_2 .
- ok_cb_1 .
- $live_l_1 \leftarrow live_w_0$.
- $live_w_0 \leftarrow live_w_1 \land up_s_2$.
- $live_w_0 \leftarrow live_w_2 \wedge down_s_2$.
- $live_w_1 \leftarrow live_w_3 \land up_s_1$.
- $live_w_2 \leftarrow live_w_3 \wedge down_s_1$.
- $live_w_3 \leftarrow live_outside \wedge ok_cb_1$.
- $ullet \ live_outside.$

Si noti che non sono definite clausole per up_s_1 e $down_s_2$

(..cont.)

Completamento:

- $down_s_1 \Leftrightarrow true$.
- $up_s_1 \Leftrightarrow false$.
- $up_s_2 \Leftrightarrow true$.
- $down_s_2 \Leftrightarrow false$.
- $ok_cb_1 \Leftrightarrow true$.
- $live_l_1 \Leftrightarrow live_w_0$.
- $ullet \ live_w_0 \Leftrightarrow (live_w_1 \wedge up_s_2) \lor (live_w_2 \wedge down_s_2).$
- $ullet \ live_w_1 \Leftrightarrow live_w_3 \wedge up_s_1.$
- $live_w_2 \Leftrightarrow live_w_3 \wedge down_s_1$.
- $ullet \ live_w_3 \Leftrightarrow live_outside \wedge ok_cb_1.$
- $live_outside \Leftrightarrow true$.

Così, ad es., up_s_1 è falso, $live_w_1$ è falso e $live_w_2$ è vero

NEGATION AS FAILURE

Letterale: atomo o negazione di un atomo

- 1. Con il completamento *negazioni* dimostrabili, quindi possono essere ammesse anche nei corpi delle clausole
 - clausole definite estese: nel corpo letterali (non atomi)
 - \circ negazione sotto assunzione di conoscenza completa o **negation as failure** (NAF) denotata con $\sim\!a$
 - per distinguerla dalla negazione classica
- 2. sotto NAF, il corpo g è una conseguenza di KB se $KB' \models g$, dove KB' è il completamento di KB
 - $\sim a$ nel corpo di una clausola diventa $\neg a$ nel completamento

Esempio — Si consideri l'assiomatizzazione precedente

- ullet Semplifica la rappresentazione chiedendo all'utente di indicare solo i commutatori up
 - gli altri down per default
- Regole da aggiungere:
 - $\circ down_s_1 \leftarrow \sim up_s_1$.
 - $\circ \ down_s_2 \leftarrow \sim up_s_2$.
 - $\circ down_s_3 \leftarrow \sim up_s_3$.
- Analogamente, si potrebbe specificare che i fusibili sono *funzionanti* a meno che non risultino *rotti*:
 - \circ $ok_cb_1 \leftarrow \sim broken_cb_1$.
 - \circ $ok_cb_2 \leftarrow \sim broken_cb_2$.

(..cont.)

- Per rappresentare lo stato della figura, l'utente specifica:
 - $\circ up_s_2$.
 - $\circ up_s_3$.
- Il sistema può inferire che s_1 dev'essere down e i due fusibili funzionanti
- Completamento:
- $down_s_1 \Leftrightarrow \neg up_s_1$.
- $down_s_2 \Leftrightarrow \neg up_s_2$.
- $down_s_3 \Leftrightarrow \neg up_s_3$.
- $ok_cb_1 \Leftrightarrow \neg broken_cb_1$.
- $ullet ok_cb_2 \Leftrightarrow \neg broken_cb_2.$
- $up_s_1 \Leftrightarrow false$.

- $up_s_2 \Leftrightarrow true$.
- $up_s_3 \Leftrightarrow true$.
- $broken_cb_1 \Leftrightarrow false$.
- $ullet broken_cb_2 \Leftrightarrow false.$

NB atomi che non occorrono <u>mai come</u> <u>testa</u> considerati falsi

NB con la NAF, KB con cicli *problematiche* dal punto di vista semantico

- es. data la KB non aciclica:
 - \circ $a \leftarrow \sim b$.
 - \circ $b \leftarrow \sim a$.

completamento equivalente a $a \Leftrightarrow \neg b$,

- indica che a e b hanno valori di verità opposti: solo uno è vero
- es. KB non aciclica:
 - $\circ a \leftarrow \sim a$.

completamento $a \Leftrightarrow \neg a$, logicamente *inconsistente*!

Completamento di una base aciclica:

- sempre consistente
- prevede *un solo* valore di verità per ogni atomo

Ragionamento Non Monotono

Logica monotòna: ogni proposizione derivabile da una KB rimane derivabile dopo l'aggiunta di altre proposizioni

- aggiungendo assiomi *non* si riduce l'insieme delle proposizioni derivabili
- ad es. Logica delle clausole definite

Logica non monotona: alcune conclusioni possono essere invalidate con l'aggiunta di altri assiomi

ad es. Logica delle clausole definite + NAF

DEFAULT ED ECCEZIONI

Logica non monotona utile a rappresentare casi predefiniti:

- default: regola che resta valida fintantoché non si verifichi un'eccezione
 - \circ ad es. per asserire che *normalmente* b è vera se c è vera:

$$b \leftarrow c \land \sim ab_a$$
.

con ab_a che indica l'anormalit \dot{a} rispetto a qualche aspetto di a

- dato c si può derivare b, a meno che non venga asserito ab_a , l'aggiunta di ab_a inibisce la conclusione di b
 - regole che implicano ab_a possono inibire il default,
 sotto le condizioni del corpo della regola

Procedure di Dimostrazione per la NAF

PROCEDURA BOTTOM-UP + NAF

Fallimento (def. ricorsiva):

- p fallisce se, fallisce il corpo di ogni clausola che ha p come testa
- un corpo fallisce se almeno uno dei suoi letterali fallisce
- il letterale b_i / $\sim b_i$ fallisce se si può derivare $\sim b_i$ / b_i

Procedura BU per clausole definite modificata:

- quando p fallisce va aggiunto letterale $\sim p$ all'insieme C
 - conseguenze derivate

```
procedure Prove NAF BU(KB)
  Input
      KB: insieme di clausole che possono includere NAF
  Output
      insieme di letterali che seguono logicamente dal
      completamento di KB
  Local
      C insieme di letterali
  C \leftarrow \{\}
  repeat
      either
           selezionare (h \leftarrow b_1 \wedge \cdots \wedge b_m) \in \mathit{KB} tale che:
              h 
otin C e orall i \colon b_i \in C
          C \leftarrow C \cup \{h\}
      or
           selezionare h con \sim h \notin C tale che:
               per ogni (h \leftarrow b_1 \land \cdots \land b_m) \in \mathit{KB} si abbia che
                   \exists i \colon {\sim} b_i \in C oppure b_i = {\sim} g e g \in C
          C \leftarrow C \cup \{\sim h\}
  until non ci sono altre selezioni possibili
```

Osservazione

Sono ricompresi i casi

- ullet corpo vuoto: m=0 e atomo della testa aggiunto a C
- atomo non definito come testa di alcuna clausola: si aggiunge a C la sua negazione

Esempio — Si considerino le clausole:

1. $p \leftarrow q \land \sim r$.

 $2. p \leftarrow s.$

 $3. q \leftarrow \sim s.$

4. $r \leftarrow \sim t$.

5. *t*.

 $6.s \leftarrow w.$

possibile sequenza di letterali aggiunti a C:

- $C = \{t\}$ \circ 5. (fatto)
- $egin{aligned} ullet & C = \{t, \sim r\} \ & \circ \ t \in C \ exttt{e} \ 4. \end{aligned}$
- $\bullet \ \ C = \{t, {\sim} r, {\sim} w\}$
 - \circ non ci sono clausole per w
- $ullet C = \{t, \sim\!\!r, \sim\!\!w, \sim\!\!s\} \ \circ \sim\!\!w \in C \ \mathsf{e} \ \mathsf{6}.$
- $ullet C = \{t, \sim\!\!r, \sim\!\!w, \sim\!\!s, q\} \ \circ \sim\!\!s \in C \, \mathsf{e} \, \mathsf{3}.$
- $egin{aligned} ullet & C = \{t, \sim \!\! r, \sim \!\! w, \sim \!\! s, q, p\} \ & \circ \; q \in C, \sim \!\! r \in C \, \mathsf{e} \, \mathsf{1}. \end{aligned}$

PROCEDURA TOP-DOWN + NAF

Procedura TD analoga a quella delle clausole definite, ma procede per NAF

- non-deterministica
- implementabile come ricerca di scelte di successo:
 - \circ selezionato un atomo $\sim a$, parte una nuova dimostrazione per a
 - se questa fallisce allora
 - $\sim a$ ha successo
 - altrimenti l'algoritmo fallisce:
 - deve tentare altre scelte se possibile

```
non-deterministic procedure Prove_NAF_TD(KB, Query)
   Input
      KB: insieme di clausole che includono la NAF
      Query: insieme di letterali da dimostrare
   Output
      yes se Query segue dal completamento di KB, fail altrimenti
   Local
      G: insieme di letterali
   G \leftarrow Query
   repeat
      selezionare il letterale l \in G
      if l=\sim a then
          if Prove_NAF_TD(KB,a) = fail then
            G \leftarrow G \setminus \{l\}
         else
             return fail
      else
          scegliere una clausola l \leftarrow B \in KB
         G \leftarrow G \setminus \{l\} \cup B
   until G = \emptyset
   return yes
```

Esempio — Data la KB precedente e la query ask p:

- $G = \{p\}$ inizializzazione
- $G = \{q, \sim r\}$ sostituiti con il corpo di 1.
- $G = \{ \sim s, \sim r \}$ sostituito q con il corpo della 3.
- $G = \{ \sim r \}$ selezionato ed eliminato $\sim s$
 - ∘ la dim. di *s fallisce*
- $G = \{\} \sim r$, selezionato, dimostrato ed eliminato:
 - \circ la dim. di r fallisce:
 - usando la 4. sotto-goal $\sim t$: si tenta di dimostrare t
 - data 5. la dim. di t ha successo immediato, quindi quella di $\sim t$ fallisce
 - non ci sono altre regole per r

G vuoto \rightarrow output yes

Osservazione

Vale solo nel caso di *fallimento finito*: nessuna conclusione in caso di divergenza

- ad es., data la sola regola $p \leftarrow p$ e la query ask p, l'algoritmo non converge
 - \circ completamento: $p \Leftrightarrow p$
 - o pur potendosi accertare l'indimostrabilità di p, una procedura corretta non può concludere $\sim p$: non segue logicamente dal completamento

ABDUZIONE

Abduzione

Abduzione [Peirce] forma di ragionamento nella quale si fanno ipotesi/assunzioni per spiegare osservazioni

- invece di aggiungerle semplicemente alla KB
 - ad es. se si osserva che qualche luce non sta funzionando, si fanno ipotesi su quanto sta succedendo

Si differenzia dalla deduzione

• che mira alle conseguenze logiche di un set di assiomi

e dall'induzione

• che comporta l'inferenza di relazioni generali da casi particolari (esempi)

Dato un caso osservato, si fanno ipotesi che potrebbero risultare vere:

- ipotesi che *possono* implicare le osservazioni fatte
 - ossia ciò che, se verificato, rende vere le osservazioni
 - o senza contraddizioni: giustificherebbero qualsiasi conclusione
 - ex falso quodlibet

Formalizzazione

Dati:

- *KB*, insieme di clausole di Horn
- A, insieme di atomi, detti assumibili, per costruire ipotesi
 - o anche abducibili

Trovare: spiegazioni per le osservazioni

SCENARI E SPIEGAZIONI

Scenario di $\langle KB, A \rangle$: $H \subseteq A$ tale che $KB \cup H$ soddisfacibile

- i.e. esiste un modello in cui tutti gli elementi di KB e di H siano veri
- ullet per questo, nessun sottoinsieme di H dev'essere un conflitto di KB

Spiegazione (*ipotesi*) della proposizione g da $\langle KB, A \rangle$: scenario $H \subseteq A$ che, assieme a KB, implichi g:

- $KB \cup H \models g$
- $KB \cup H \nvDash false$

Spiegazione minimale di g da $\langle KB, A \rangle$: spiegazione H di g da $\langle KB, A \rangle$ tale che nessuna sua parte lo sia

Esempio — Si consideri una KB con assumibili per la *diagnosi medica*:

- $ullet bronchitis \leftarrow influenza.$
- $bronchitis \leftarrow smokes$.
- $coughing \leftarrow bronchitis$.
- $wheezing \leftarrow bronchitis$.
- $fever \leftarrow influenza$.
- $fever \leftarrow infection$.
- $ullet sore_throat \leftarrow influenza.$
- $false \leftarrow smokes \land nonsmoker$.
- ullet assumable smokes, nonsmoker, influenza, infection.

Se si osserva wheezing (respiro affannoso), due spiegazioni minime:

- $\{influenza\}$ **e** $\{smokes\}$
 - \circ che implicano bronchitis e coughing (tosse)

(..cont.)

Se si osservano $wheezing \land fever$, spiegazioni minimali:

• $\{influenza\}$ **e** $\{smokes, infection\}$

Se si osservano $wheezing \land nonsmoker$, spiegazione minimale:

- $\bullet \ \{influenza, nonsmoker\}$
 - \circ anche $\{smokes\}$ potrebbe spiegare wheezing, ma il vincolo la rende inconsistente rispetto a nonsmoker osservato

Esempio — Si consideri la KB:

- $alarm \leftarrow tampering$.
- $alarm \leftarrow fire$.
- $smoke \leftarrow fire$.

Se si osserva *alarm*, spiegazioni minimali:

• $\{tampering\}$ (manomissione) e $\{fire\}$

Se si osservano $alarm \wedge smoke$, spiegazione minimale:

- {*fire*}
 - \circ avendo osservato smoke non c'è bisogno di ipotizzare tampering per spiegare alarm: già spiegato da fire

DIAGNOSI ABDUTTIVA

AD — diagnosi dei problemi della KB in base a osservazioni sul comportamento Diagnosi Consistency-Based vs Diagnosi Abduttiva

- rappresentazione
 - CBD: modellato *solo* il comportamento normale
 - ipotesi: assunzioni di comportamento normale
 - AD: modellato anche il comportamento anomalo
 - assumibili anche per ciascun guasto (o caso anomalo)
- osservazioni
 - \circ CBD: sono semplicemente aggiunte alla KB e si dimostra false
 - AD: vanno anche spiegate
- dettaglio
 - AD modellazione più dettagliata → diagnosi migliori
 - KB e assunzioni consentono di dimostrare le osservazioni
 - anche per casi in cui non sia definibile un comportamento normale

ABDUZIONE PER LA PROGETTAZIONE ◀

- Query da spiegare → obiettivo di progettazione
- Assumibili → mattoni per la progettazione
- *Spiegazione* → progetto
- Consistenza → progetto possibile
- Implicazione dell'obiettivo di progetto → il progetto ha raggiunto dimostrabilmente l'obiettivo

RAGIONAMENTO ABDUTTIVO: PROCEDURE

Ragionamento basato su assunzioni mediante le procedure su clausole di Horn

- con BU si calcolano spiegazioni minimali per ogni atomo
 - o specializzabile con il pruning delle spiegazioni dominate
- con TD si trovano spiegazioni di un g generando i conflitti ma dimostrando g (anziché false)
 - spiegazione minimale di g:
 insieme minimale di assumibili raccolti nella prova

MODELLI CAUSALI ◀

Modelli Causali

Atomo primitivo definito attraverso fatti

Atomo derivato definito usando regole

- In genere il progettista scrive assiomi per atomi derivati e si aspetta che vengano specificati atomi primitivi veri
 - o un atomo derivato viene inferito come necessario dai primitivi e altri derivabili

Molte decisioni per la definizione della KB

Esempio — due proposizioni per la KB (devono essere vere)

- definibili in vari modi:
 - 1. *a* e *b* come clausole atomiche (atomi primitivi)
 - 2. *a* primitivo e *b* derivato:
 - a clausola atomica
 - lacktriangle e regola $b \leftarrow a$
 - 3. oppure, viceversa
 - b primitivo/clausola atomica
 - $a \leftarrow b$

- rappresentazioni logicamente equivalenti ma effetti diversi quando si modifica la KB:
 - se a per qualche ragione non è più vero
 - con la 1. e la 3. *b* ancora vera
 - con la 2. b non sarebbe più vero

MODELLI CAUSALI E DI EVIDENZA

Modello causale, o di *causalità*: rappresentazione che predice i risultati di un intervento

- intervento azione che forza una variabile ad avere un dato valore
 - o in modi diversi dalla modifica di altre variabili del modello
- un modello causale rappresenta come una causa implichi l'effetto per predire i risultati dell'intervento
 - se cambia una causa devono essere cambiati gli effetti

Modello d'evidenza: rappresenta il dominio nell'altra direzione, dall'effetto alla causa

• non necessariamente una causa precisa ma un insieme di proposizioni che, nel loro insieme, possono causare l'avverarsi dell'effetto

Modello causale spesso preferibile a uno d'evidenza: più trasparente, stabile e modulare

RIFERIMENTI

Bibliografia

- [1] D. Poole, A. Mackworth: Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press [Ch.5]
- [2] D. Poole, A. Mackworth, R. Goebel: Computational Intelligence: A Logical Approach. Oxford University Press
- [3] S. J. Russell, P. Norvig: Artificial Intelligence Pearson. 4th Ed. cfr. anche ed. Italiana
- [4] J. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations Brooks Cole/Cengage
- [5] I.M. Copi, C. Cohen: Introduction to Logic. Pearson
- [6] D.M. Gabbay, C.J. Hogger, J.A. Robinson: Handbook of Logic in Artificial Intelligence and Logic Programming Oxford University Press

[Logica_Proposizionale] it.wikipedia

[conversione] algoritmo di conversione dalle formule proposizionali alle clausole

[Modus_ponens] it.wikipedia

[Modus_tollens] it.wikipedia

[Forward_chaining] it.wikipedia

[Backward_chaining] it.wikipedia

[Proof_by_Contradiction] en.wikipedia e (reductio ad absurdum) it.wikipedia

[SAT] cfr. Treccani

[Abduzione] it.wikipedia

[◀] consigliata la lettura [versione] 17/10/2022, 08:59:55

Figure tratte da [1] salvo diversa indicazione

formatted by Markdeep 1.14 ø