

Arquitetura Xtensa

Sistemas Embarcados

Bruno Prado

Departamento de Computação / UFS

- Visão geral
 - Criada em 1999 pela Tensilica que depois foi comprada pela Cadence Design Systems em 2013
 - Arquitetura RISC de 32 bits extensível e configurável

- Visão geral
 - Criada em 1999 pela Tensilica que depois foi comprada pela Cadence Design Systems em 2013
 - Arquitetura RISC de 32 bits extensível e configurável
 - Disponibilizado como código RTL sintetizável (IP)

- Visão geral
 - Criada em 1999 pela Tensilica que depois foi comprada pela Cadence Design Systems em 2013
 - Arquitetura RISC de 32 bits extensível e configurável
 - Disponibilizado como código RTL sintetizável (IP)
 - Possibilita que funções ou instruções personalizadas sejam utilizadas de forma nativa no desenvolvimento

- Visão geral
 - Criada em 1999 pela Tensilica que depois foi comprada pela Cadence Design Systems em 2013
 - Arquitetura RISC de 32 bits extensível e configurável
 - Disponibilizado como código RTL sintetizável (IP)
 - Possibilita que funções ou instruções personalizadas sejam utilizadas de forma nativa no desenvolvimento
 - Redução do tempo de projeto

- Xtensa LX
 - Arquitetura de 32 bits @ 400 MHz (< 76 μ W/MHz)
 - ▶ 64 registradores de propósito geral em janela
 - Personalização através da linguagem Tensilica Instruction Extension (TIE) e de formatos de instrução Flexible Length Instruction Xtension (FLIX)

- Placa de desenvolvimento Espressif ESP8266
 - Xtensa LX106 de 32 bits @ 80/160 MHz
 - ► Custo < US\$ 3
 - ▶ Temperatura de operação entre -40° C e +125° C
 - Voltagem: 2,5 V até 3,6 V (~ 80 mA)

Fonte: https://www.espressif.com/en/support/download/documents

- Placa de desenvolvimento Espressif ESP32
 - Dois núcleos Xtensa LX6 de 32 bits @ 80/240 MHz
 - Custo < US\$ 4</p>
 - Temperatura de operação entre -40° C e +85° C
 - Voltagem: 3,0 V até 3,6 V (~ 80 mA)

Fonte: https://www.espressif.com/en/support/download/documents

 16 registradores de propósito geral visíveis (AR0 -AR15), contador de programa (PC) e quantidade de deslocamentos (SAR) com 32 bits

Janela para rotação dos 64 registradores

O rotacionamento pode ser automático nas chamadas das subrotinas para preservar o contexto

Formatos de instruções

- ▶ Instruções com 24 bits
 - RRR, RRI4, RRI8, RI16, RSR, CALL, CALLX, BRI8 e BRI12

Formatos de instruções

- Instruções com 16 bits
 - ► RRRN, RI7 e RI6

Formatos de instruções

- Instruções com 16 bits
 - RRRN, RI7 e RI6

Também é possível a criação de blocos de instruções com 32 ou 64 bits (FLIX) para execução paralela (VLIW)

► Plataforma ESP8266

► Plataforma ESP8266

Plataforma ESP8266

Plataforma ESP32

Plataforma ESP32

Sem sistema operacional (non-OS SDK)

Sem sistema operacional (non-OS SDK)

Disponibiliza um conjunto de interfaces de programação (API) para controle do hardware, como recepção/transmissão por rede sem fio (Wi-Fi) utilizando a pilha de comunicação TCP/IP

Sem sistema operacional (non-OS SDK)

- Disponibiliza um conjunto de interfaces de programação (API) para controle do hardware, como recepção/transmissão por rede sem fio (Wi-Fi) utilizando a pilha de comunicação TCP/IP
- Reduz a quantidade de memória necessária para o funcionamento do sistema por não usar SO

Sem sistema operacional (non-OS SDK)

- Disponibiliza um conjunto de interfaces de programação (API) para controle do hardware, como recepção/transmissão por rede sem fio (Wi-Fi) utilizando a pilha de comunicação TCP/IP
- Reduz a quantidade de memória necessária para o funcionamento do sistema por não usar SO

https://www.espressif.com/sites/default/files/documentation/ 2c-esp8266_non_os_sdk_api_reference_en.pdf

Com sistema operacional de tempo real (RTOS SDK)

Com sistema operacional de tempo real (RTOS SDK)

O sistema operacional de tempo real (RTOS) possibilita o escalonamento e preempção de múltiplas tarefas, utilizando interfaces padronizadas para realizar o gerenciamento de memória, de temporização, de mensagens entre tarefas e sincronização

Com sistema operacional de tempo real (RTOS SDK)

- O sistema operacional de tempo real (RTOS) possibilita o escalonamento e preempção de múltiplas tarefas, utilizando interfaces padronizadas para realizar o gerenciamento de memória, de temporização, de mensagens entre tarefas e sincronização
- A utilização do RTOS causa um impacto negativo no tempo de execução e na utilização de memória

Com sistema operacional de tempo real (RTOS SDK)

- O sistema operacional de tempo real (RTOS) possibilita o escalonamento e preempção de múltiplas tarefas, utilizando interfaces padronizadas para realizar o gerenciamento de memória, de temporização, de mensagens entre tarefas e sincronização
- A utilização do RTOS causa um impacto negativo no tempo de execução e na utilização de memória

https://docs.espressif.com/projects/esp8266-rtos-sdk/en/latest/api-reference/wifi/esp_wifi.html

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK

#include "osapi.h"

#include "user_interface.h"

// Timer do blink

static os_timer_t blink_timer;

// Procedimento do blink

void ICACHE_FLASH_ATTR blink(void* arg) {

// Invertendo valor do pino 2

GPIO_OUTPUT_SET(2, !GPIO_INPUT_GET(2));

}
...

...
```

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
#include "osapi.h"
#include "user_interface.h"
// Timer do blink

static os_timer_t blink_timer;
// Procedimento do blink

void ICACHE_FLASH_ATTR blink(void* arg) {
    // Invertendo valor do pino 2
    GPIO_OUTPUT_SET(2, !GPIO_INPUT_GET(2));
}
...
```

Armazena a função na RAM para otimizar o desempenho

Ligando/desligando LED + Busca por redes sem fio

```
// Bibliotecas do SDK
   #include "osapi.h"
   // Procedimento de inicializacao
43
   void ICACHE FLASH ATTR user init() {
44
45
       // Iniciando Wi-Fi em modo estacao
       wifi_set_opmode(STATION_MODE);
46
47
       // Inicializando GPIO
48
       gpio_init();
49
       // Configurando pinos 2 e 4 como GPIO
50
       PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_GPIO2);
51
       PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO4_U, FUNC_GPIO4);
       // Setando pino 4 como entrada
52
53
       gpio_output_set(0, 0, 0, BIT4);
       // Ajustando gatilho para nível alto no pino 4
54
55
       gpio_pin_intr_state_set(GPIO_ID_PIN(4),
           GPIO_PIN_INTR_POSEDGE);
```

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "osapi.h"
       // Associando handler ao pino 4
56
       ETS_GPIO_INTR_ATTACH(wifi_scan, NULL);
57
       // Habilitando interrupcao
58
       ETS_GPIO_INTR_ENABLE();
59
       // Desarmando o timer do blink
60
       os_timer_disarm(&blink_timer);
61
       // Setando o callback do blink com argumento NULL
62
       os_timer_setfn(&blink_timer,
63
           (os_timer_func_t*)(blink), NULL);
64
       // Armando timer para 500 ms com repeticao
       os_timer_arm(&blink_timer, 500, 1);
65
66
```

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "osapi.h"
       // Associando handler ao pino 4
56
       ETS_GPIO_INTR_ATTACH(wifi_scan, NULL);
57
       // Habilitando interrupcao
58
       ETS_GPIO_INTR_ENABLE();
59
       // Desarmando o timer do blink
60
       os_timer_disarm(&blink_timer);
61
       // Setando o callback do blink com argumento NULL
62
       os_timer_setfn(&blink_timer,
63
           (os_timer_func_t*)(blink), NULL);
64
       // Armando timer para 500 ms com repeticao
       os_timer_arm(&blink_timer, 500, 1);
65
66
```

Associação de funções de callback

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "osapi.h"
   // Procedimento para escanear redes sem fio
29
   void ICACHE_FLASH_ATTR wifi_scan(void* arg) {
30
       // Checando status do pino 4
31
       if(GPIO_REG_READ(GPIO_STATUS_ADDRESS) & BIT(4)) {
32
           // Desabilitanto interrupcao no pino 4
33
           gpio_pin_intr_state_set(GPIO_ID_PIN(4),
34
               GPIO_PIN_INTR_DISABLE);
35
           // Buscando pontos de acesso
36
           wifi_station_scan(NULL, wifi_list);
```

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "osapi.h"
   // Procedimento para escanear redes sem fio
29
   void ICACHE_FLASH_ATTR wifi_scan(void* arg) {
30
       // Checando status do pino 4
31
       if(GPIO_REG_READ(GPIO_STATUS_ADDRESS) & BIT(4)) {
32
           // Desabilitanto interrupcao no pino 4
33
           gpio_pin_intr_state_set(GPIO_ID_PIN(4),
34
               GPIO_PIN_INTR_DISABLE);
           // Buscando pontos de acesso
35
36
           wifi_station_scan(NULL, wifi_list);
```

Após o escaneamento das redes, é chamada a função de *callback* wifi_list

Desenvolvimento (Non-OS)

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "osapi.h"
37
           // Limpando flag de interrupcao no pino 4
           GPIO_REG_WRITE (GPIO_STATUS_W1TC_ADDRESS,
38
               GPIO_REG_READ(GPIO_STATUS_ADDRESS) &
               BIT (4));
39
           // Habilitando interrupcao no pino 4
           gpio_pin_intr_state_set(GPIO_ID_PIN(4),
40
               GPIO_PIN_INTR_POSEDGE);
41
```

Desenvolvimento (Non-OS)

► Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "osapi.h"
   // Procedimento para listar redes sem fio
11
   void ICACHE_FLASH_ATTR wifi_list(void* arg, STATUS status) {
12
       // Checagem de status
1.3
       if(status == OK) {
14
15
           // Separador de texto
           os_printf("----\n");
16
17
           // Iterando na lista
           struct bss_info* lista = (struct bss_info *)(arg);
18
19
           while(lista != NULL) {
                // Imprimindo dados da rede sem fio
20
21
                os_printf("%-20s_{\sqcup}CANAL_{\sqcup}%02u_{\sqcup}(%02d)\n",
                    lista->ssid, lista->channel, lista->rssi);
22
                // Busca do proximo elemento da lista
                lista = STAILQ_NEXT(lista, next);
23
24
25
26
       // Mensagem de erro
27
       else os_printf("Errounaubuscauporuredesusemufio!\n");
28
```

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "esp_common.h"
   #include "gpio.h"
   // Procedimento de inicializacao
71
   void user init() {
72
       // Criando tarefa do blink
7.3
74
       xTaskCreate(blink, "blink", 256, NULL, 2, NULL);
       // Criando tarefa do wifi
75
       xTaskCreate(wifi, "wifi", 256, NULL, 1, NULL);
76
77
```

► Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "esp_common.h"
   #include "gpio.h"
   // Procedimento de inicializacao
71
   void user init() {
72
       // Criando tarefa do blink
7.3
74
       xTaskCreate(blink, "blink", 256, NULL, 2, NULL);
       // Criando tarefa do wifi
75
       xTaskCreate(wifi, "wifi", 256, NULL, 1, NULL);
76
77
```

https://www.freertos.org/a00125.html

Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "esp_common.h"
   // Tarefa do blink
   void ICACHE_FLASH_ATTR blink(void* pvParameters) {
       // Configurando pino 2 como GPIO
6
       PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U,
           FUNC_GPIO2);
       // Laco infinito
       while(1) {
           // Invertendo valor do pino 2
10
           GPIO_OUTPUT_SET(2, !GPIO_INPUT_GET(2));
11
           // Delay de 500 ms
12
           vTaskDelay(500 / portTICK_RATE_MS);
13
14
       // Finalizando tarefa
15
       vTaskDelete(NULL);
16
17
```

► Ligando/desligando LED + Busca por redes sem fio

```
// Biblitecas do SDK
   #include "esp_common.h"
   // Tarefa do wifi
50
   void wifi(void* pvParameters) {
51
       // Mensagem da tarefa
52
       printf("WIFI__START!\n");
53
       // Iniciando Wi-Fi em modo estacao
54
       wifi_set_opmode(STATION_MODE);
55
       . . .
       // Habilitando interrupcao
64
65
       _xt_isr_unmask(1 << ETS_GPIO_INUM);</pre>
       // Mensagem da tarefa
66
       printf("WIFI_LEND!\n");
67
       // Finalizando tarefa
68
       vTaskDelete(NULL);
69
70
```



```
$ miniterm.py /dev/ttyUSB0 76800
```

```
$ miniterm.py /dev/ttyUSB0 76800
--- Miniterm on /dev/ttyUSB0 76800,8,N,1 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
 ets Jan 8 2013, rst cause: 2, boot mode: (3,6)
load 0x40100000, len 31360, room 16
tail 0
chksum 0x22
load 0x3ffe8000, len 2128, room 8
tail 8 chksum 0x58
load 0x3ffe8850, len 624, room 0
tail 0
chksum 0x1d
csum 0x1d
OS SDK ver: 1.5.0-dev(caff253) compiled @ Oct 23 2017 17:42:20
phy ver: 1055_1, pp ver: 10.7
rf cal sector: 1019
```

```
tail 0
chksum 0x22
load 0x3ffe8000, len 2128, room 8
tail 8 chksum 0x58
load 0x3ffe8850, len 624, room 0
tail 0
chksum 0x1d
csum 0x1d
OS SDK ver: 1.5.0-dev(caff253) compiled @ Oct 23 2017 17:42:20
phy ver: 1055_1, pp ver: 10.7
rf cal sector: 1019
tcpip_task_hdl : 3ffef6a0, prio:10,stack:512
idle_task_hdl : 3ffef740,prio:0, stack:384
tim_task_hdl : 3fff1ef8, prio:2,stack:512
mode : sta(80:7d:3a:6e:38:ad)
add if0
WIFI START!
WIFI END!
```

Monitor serial

```
chksum 0x22
load 0x3ffe8000, len 2128, room 8
tail 8 chksum 0x58
load 0x3ffe8850, len 624, room 0
tail 0
chksum 0x1d
csum 0x1d
OS SDK ver: 1.5.0-dev(caff253) compiled @ Oct 23 2017 17:42:20
phy ver: 1055_1, pp ver: 10.7
rf cal sector: 1019
tcpip_task_hdl : 3ffef6a0, prio:10,stack:512
idle_task_hdl : 3ffef740,prio:0, stack:384
tim_task_hdl : 3fff1ef8, prio:2,stack:512
mode: sta(80:7d:3a:6e:38:ad)
add if0
WIFT START!
WIFI END!
scandone
```

Interrupção externa (botão pressionado)

```
phy ver: 1055_1, pp ver: 10.7
rf cal sector: 1019
tcpip_task_hdl : 3ffef6a0, prio:10,stack:512
idle_task_hdl : 3ffef740,prio:0, stack:384
tim_task_hdl : 3fff1ef8, prio:2,stack:512
mode: sta(80:7d:3a:6e:38:ad)
add if0
WIFI START!
WIFI END!
scandone
AAA
                  CANAL 01 (-42)
BBBBBBBBBBB
                  CANAL 01 (-90)
CCCCCCCCCCC CANAL 05 (-80)
DDDDDDDDDDDDDD
                  CANAL 06 (-91)
            CANAL 09 (-81)
CANAL 11 (-81)
                  CANAL 11 (-84)
```

```
rf cal sector: 1019
tcpip_task_hdl : 3ffef6a0, prio:10,stack:512
idle_task_hdl : 3ffef740,prio:0, stack:384
tim_task_hdl : 3fff1ef8, prio:2,stack:512
mode : sta(80:7d:3a:6e:38:ad)
add if0
WIFI START!
WIFI END!
scandone
AAA
           CANAL 01 (-42)
BBBBBBBBBB CANAL 01 (-90)
CCCCCCCCCCC CANAL 05 (-80)
DDDDDDDDDDDDDD CANAL 06 (-91)
           CANAL 09 (-81)
GGGGGGGGGG CANAL 11 (-81)
нининини
        CANAL 11 (-84)
--- exit ---
```

Exercício

- Estude e reproduza os experimentos vistos nesta aula
 - Analise os manuais técnicos (datasheets) das famílias de microcontroladores ESP8266 e ESP32
 - Verifique o impacto da utilização do Non-OS versus RTOS em termos de desempenho e de memória
 - Utilizando os frameworks vistos, realize a conexão com uma rede sem fio e crie um servidor que retorna mensagens de texto enviadas com protocolo TCP