Cours de probabilité Avancée

Diffalah LAISSAOUI

Université de Médéa Faculté des sciences Département de mathématiques et Informatique

L3 Maths

Mars 2022

Sur un ensemble de *N* valeurs ou tirages, on peut définir les concepts suivants :

Fréquence :

Definition

si l'événement A se produit N(A) fois sur les N, la "fréquence de l'événement A" est $\frac{N(A)}{N}$

Probabilité:

Definition

quand le nombre de tirages augmente, on passe de la statistique à la probabilité, on remplace la fréquence par la probabilité de l'événement

$$i$$
, $p(i)$. La somme des N valeurs de $p(i)$ vaut $1:\sum_{i=1}^{N}p(i)=1$.

Espace de probabilité

Remarque

Les liens entre probabilité et statistique sont forts. Les statistiques partent de la réalité d'une population et cherchent à la modéliser avec des lois mathématiques pour l'expliquer et/ou extrapoler son comportement à une autre population. Les probabilités définissent les lois mathématiques auxquelles obéissent des expériences régies par le hasard.

Definition

on considère le triplet (Ω, \mathcal{F}, P) ou Ω : espace fondamental ou bien l'univers et \mathcal{F} est appelé tribu ou σ -algèbre. les éléments de \mathcal{F} sont appelés les événements. La mesure P est appelée probabilité ou, mieux, mesure de probabilité, et pour un événement A de \mathcal{F} , le nombre réel P(A) s'appelle la probabilité de l'événement A.

Definition

1 la tribu F vérifie les propriété suivante : $\Omega \in F$

Remarque

Si on remplace la propriété 3 par la propriété suivante si

 $A_1, A_2,, A_n \in F$ alors $\bigcup_{i=1}^n A_i \in F$ alors F ne sera qu'une algèbre.

Definition

- **1** la tribu F vérifie les propriété suivante : $\Omega \in F$
- ② si $A \in F$ alors $\overline{A} \in F$,

Remarque

Si on remplace la propriété 3 par la propriété suivante si

 $A_1, A_2,, A_n \in F$ alors $\bigcup_{i=1}^n A_i \in F$ alors F ne sera qu'une algèbre.

Definition

- **1** la tribu F vérifie les propriété suivante : $\Omega \in F$
- 2 si $A \in F$ alors $\overline{A} \in F$,
- \bullet si $A_1, A_2, \ldots, A_n, \ldots \in F$ alors $\bigcup_{i=1}^{\infty} A_i \in F$

Remarque

Si on remplace la propriété 3 par la propriété suivante si

$$A_1, A_2,, A_n \in F$$
 alors $\bigcup_{i=1}^n A_i \in F$ alors F ne sera qu'une algèbre.

Example

① Soit Ω un espace q.c.q : $F = {\Omega, \emptyset} \sigma$ -algèbre triviale;

Definition

Le couple (Ω, F) ainsi défini est appelé espace probabilisable.

Example

- **1** Soit Ω un espace q.c.q : $F = {\Omega, \emptyset} \sigma$ -algèbre triviale;
- ② Ω espace q.c.q et $A \subset \Omega$ alors $F = \{\emptyset, \Omega, A, \overline{A}\}\ \sigma$ -algèbre engendré par A;

Definition

Le couple (Ω, \mathcal{F}) ainsi défini est appelé espace probabilisable.

Example¹

- **1** Soit Ω un espace q.c.q : $F = {\Omega, \emptyset} \sigma$ -algèbre triviale ;
- ② Ω espace q.c.q et $A \subset \Omega$ alors $F = \{\emptyset, \Omega, A, \overline{A}\}\ \sigma$ -algèbre engendré par A;
- $\begin{array}{l} {\mathfrak O} \ \ \Omega \ \text{espace q.c.q et } P(\Omega) \ \text{l'ensemble des parties de } \Omega \ \text{alors} \\ F=P(\Omega) \ \text{c'est une } \sigma\text{-algèbre (la plus grande)}. \end{array}$

Definition

Le couple (Ω, \mathcal{F}) ainsi défini est appelé espace probabilisable.

Definition

lacktriangledown On appelle probabilité P sur (Ω, \mathcal{F}) une application

$$P: F \rightarrow [0.1]$$

et vérifient les conditions suivantes : $P(A) \ge 0 \ \forall A \in F$.

Definition

① On appelle probabilité P sur (Ω, F) une application

$$P: \ \digamma \rightarrow [0.1]$$

et vérifient les conditions suivantes : $P(A) \ge 0 \ \forall A \in F$.

2 $P(\Omega) = 1$.

Definition

① On appelle probabilité P sur (Ω, F) une application

$$P: F \rightarrow [0.1]$$

et vérifient les conditions suivantes : $P(A) > 0 \ \forall A \in F$.

- **2** $P(\Omega) = 1$.
- ③ $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ si $A_i \cap A_j = \emptyset$ ($i \neq j$). Le triplet (Ω, F, P) est appelé espace de probabilité.

- $\emptyset \in F$
- 2 Si A_1 , $A_2 \in F$ alors $A_1 \cup A_2 \in F$

- $\emptyset \in F$
- \bigcirc Si A_1 , $A_2 \in F$ alors $A_1 \cup A_2 \in F$

- $\emptyset \in F$

- $P(\overline{A}) = 1 P(A).$

- $\emptyset \in F$
- **3** $A_1, A_2,, A_n, \in F$ alors $\bigcap_{i=1}^{\infty} A_i \in F$
- $P(\overline{A}) = 1 P(A).$
- **5** $P(\emptyset) = 0$.

- $\emptyset \in F$
- 2 Si A_1 , $A_2 \in F$ alors $A_1 \cup A_2 \in F$
- **3** $A_1, A_2,, A_n, \in F$ alors $\bigcap_{i=1}^{\infty} A_i \in F$
- $P(\overline{A}) = 1 P(A).$
- **1** $P(\emptyset) = 0.$

- $\emptyset \in F$
- 2 Si A_1 , $A_2 \in F$ alors $A_1 \cup A_2 \in F$
- $P(\overline{A}) = 1 P(A).$
- **1** $P(\emptyset) = 0.$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C), ∀A, B, C ∈ F.$

$$P(\bigcup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i \neq j} P(A_{i} \cap A_{j}) + \sum_{i \neq j \neq k} P(A_{i} \cap A_{j} \cap A_{k}) + \dots + (-1)^{k+1} \sum_{k} P(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}) + \dots + (-1)^{n+1} P(\bigcap_{i=1}^{n}).$$

$$P(\bigcup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i \neq j} P(A_{i} \cap A_{j}) + \sum_{i \neq j \neq k} P(A_{i} \cap A_{j} \cap A_{k}) + \dots + (-1)^{k+1} \sum_{k} P(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}) + \dots + (-1)^{n+1} P(\bigcap_{i=1}^{n}).$$

② $A_1, A_2 \in F$ si $A_1 \subset A_2$ alors $P(A_1) \leq P(A_2)$.

$$P(\bigcup_{i=1}^{n} A_{i}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i \neq j} P(A_{i} \cap A_{j}) + \sum_{i \neq j \neq k} P(A_{i} \cap A_{j} \cap A_{k}) + \dots + (-1)^{k+1} \sum_{k} P(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}) + \dots + (-1)^{n+1} P(\bigcap_{i=1}^{n}).$$

- ② $A_1, A_2 \in F \text{ si } A_1 \subset A_2 \text{ alors } P(A_1) \leq P(A_2).$
- **③** \forall *A* ∈ *F* , $0 \le P(A) \le 1$.

Example

Soit une population de n personnes, m de ces personnes soit males, r personnes on les yeux bleux dont q sont males, on selctionne un male au hasard. Quelle est la probabilité pour qu'il les yeux bleus?

Solution

Soit les évènements A" population male" et B" yeux bleus". Dans cet exemple une information est donnée a priori (choix du male) c-a-d condition sur l'information donné, on fait des calculs sur le nouvel espace fondamental. $A \cap B =$ "male aux yeux bleux", $P(A) = \frac{m}{n}$, $P(A \cap B) = \frac{q}{n}$, donc $P(\text{la personne choisie ait les yeux bleux sachant que c'est un garçon}) = \frac{q}{\frac{q}{n}} = P(B/A)$.

Definition

Soient (Ω, F, P) un espace de probabilité et soit B un évènement tel que P(B)>0, la probabilité d'un évènement A sachant que l'évènement B est réalisé est donnée par $P(A/B)=\frac{P(A\cap B)}{P(B)}$.

$$P(A/B) = P_B(A)$$
.

Remarque

• $0 \le P(A/B) \le 1$.

Exemple

Deux dés sont jettes, on observe le 1er dé N° 3 apparait. Quelle est la probabilité pour que la somme des deux soit égale à 8.

Definition

Soient (Ω, F, P) un espace de probabilité et soit B un évènement tel que P(B) > 0, la probabilité d'un évènement A sachant que l'évènement B est réalisé est donnée par $P(A/B) = \frac{P(A \cap B)}{P(B)}$.

$$P(A/B) = P_B(A)$$
.

Remarque

- $0 \le P(A/B) \le 1$.
- P(A/B) est une probabilité sur l'espace probabilisable (Ω, F) .

Exemple

Deux dés sont jettes, on observe le 1er dé N° 3 apparait. Quelle est la probabilité pour que la somme des deux soit égale à 8.

Exemple

On jette une pièce de monnaie, l'apparition de face nous permet de tirer une bille d'une boite N° 1 qui contient une bille de 1000 DA; 9 bille de 1 DA. L'apparition de pile nous permet de tirer une bille d'une boite N° 2 qui contient 5 bille de 50 DA, 5 bille de 1 DA. L'évènement intéréssant A=" gagner 1000 DA".

Remarque

Exemple

On jette une pièce de monnaie, l'apparition de face nous permet de tirer une bille d'une boite N° 1 qui contient une bille de 1000 DA; 9 bille de 1 DA. L'apparition de pile nous permet de tirer une bille d'une boite N° 2 qui contient 5 bille de 50 DA, 5 bille de 1 DA. L'évènement intéréssant A=" gagner 1000 DA".

Remarque

- $P(A \cap B \cap C) = P(A)P(B/A)P(C/A \cap B).$

Exemple

On jette une pièce de monnaie, l'apparition de face nous permet de tirer une bille d'une boite N° 1 qui contient une bille de 1000 DA; 9 bille de 1 DA. L'apparition de pile nous permet de tirer une bille d'une boite N° 2 qui contient 5 bille de 50 DA, 5 bille de 1 DA. L'évènement intéréssant A=" gagner 1000 DA".

Remarque

- **1** $P(A \cap B) = P(A/B).P(B) = P(B/A).P(A).$
- $P(A \cap B \cap C) = P(A)P(B/A)P(C/A \cap B).$
- **3** $P(A_1 \cap A_2 \cap \cap A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2).....P(A_n/A_1 \cap \cap A_{n-1}).$

Formule de probabiltés totale

Soient (Ω, \mathcal{F}, P) un espace de probabilité et soit $A_1, \ldots, A_{n-1}, A_n$ un système complet d'évènement de Ω tel que $P(A_i) > 0 \ \forall i = 1, \ldots, n$ et soit $A \in \mathcal{F}$ quelconque on a

$$A = A \cap \Omega = A \cap (\cup_{i=1}^n A_i) = \cup_{i=1}^n (A \cap A_i)$$

 $A \cap A_i$ sont 2 à 2 incompatibles

$$P(A) = \sum_{i=1}^{n} P(A_i) P(A/A_i).$$

Exemple

Trois machines M_1 , M_2 et M_3 produisent 30%, 45% et 25% des pièces de production; le pourcentage des pieces défectueuses est 2% pour M_1 , 3% pour M_2 et 1% pour M_3 . Quelle est la probabilité qu'une pièce prise au hasard de la production soit défectueuse.

Formule de Bayes

Soit $(A_i)_{i=1...n}$ un système complet d'évènement, $\forall A \in \mathcal{F}$ on se propose de calculer $P(A_i/A)$. A est réalise

$$A = A \cap \Omega = A \cap (\cup_{i=1}^n A_i) = \cup_{i=1}^n (A \cap A_i)$$

donc

$$P(A) = \sum_{i=1}^{n} P(A \cap A_i)$$

et comme

$$P(A \cap A_i) = P(A)P(A_i/A) = P(A_i)P(A/A_i)$$

ďou

$$P(A_i/A) = \frac{P(A_i)P(A/A_i)}{P(A)}$$
$$= \frac{P(A_i)P(A/A_i)}{\sum_{i=1}^{n} P(A_i)P(A/A_i)}$$

Exemple

Trois machines M_1 , M_2 et M_3 produisent 30%, 45% et 25% des pièces de production; le pourcentage des pieces défectueuses est 2% pour M_1 , 3% pour M_2 et 1% pour M_3 . Calculer la probabilité que la pièce défectueuse provienne de la machine M_i $1 \le i \le 3$.

Evènements indépendants

Si la réalisation d'un évènement A ne change pas les chances de réalisation d'un évènement B on dit que A et B sont indépendants et on écrit

$$P(A/B) = P(A)$$
.

par conséquent

$$P(B/A) = P(B) = \frac{P(A \cap B)}{P(A)}$$

d'ou

$$P(A \cap B) = P(A) \times P(B)$$
.

Definition

A et $B \in F$ sont indépendants si P(B/A) = P(B) ou $P(A \cap B) = P(A) \times P(B)$.

Definition

Si A et $B \in \mathcal{F}$ sont incompatible alors $A \cap B = \emptyset$

Exemple

une carte sélectionnée au hasard d'un jeu de 52 carte, soit les évènements $A = \{as\}$ et $B = \{pique\}$ A et B sont ils indépendants?

Exemple

On jette une pièce de monnaie deux fois, soit les évènements $A = \{1 \text{ ere face}\}\ \text{et } B = \{2 \text{eme pile}\}\ A \text{ et } B \text{ sont ils indépendants}\ ?$

Exemple

On jette deux dés, soit les évènements $A = \{la \ somme = 6\}$ et $B = \{1 \ ere \ dé \ donne \ 4\}$ A et B sont ils indépendants ?

Exemple

1/ Montrer que si A et B sont indépendants alors \overline{A} et B sont aussi ainsi que A et \overline{B} , \overline{A} et \overline{B} .2/ Calculer $P(A \cap \overline{B})$ en fonction de P(A) et $P(A \cap B)$.3/ Montrer que si $P(B/\overline{A}) = P(B/A)$ alors A et B sont indépendants.