

Comparison of Dimensionality Reduction Schemes for Parallel Global Optimization Algorithms

Konstantin Barkalov, Vladislav Sovrasov and Ilya Lebedev

Lobachevsky State University of Nizhni Novgorod

25 September 2018 Moscow, Russia

C

Problem statement

$$\begin{split} \varphi(y^*) &= \min\{\varphi(y): y \in D\}, \\ D &= \{y \in \mathbb{R}^N: a_i \leq y_i \leq b_i, 1 \leq i \leq N\} \end{split}$$

 $\varphi(y)$ is multiextremal objective function, which satisfies the Lipschitz condition:

$$|\varphi(y_1) - \varphi(y_2)| \leq L \|y_1 - y_2\|, y_1, y_2 \in D,$$

where L>0 is the Lipschitz constant, and $||\cdot||$ denotes l_2 norm in \mathbb{R}^N space.

1

Dimension reduction

Peano-type curve y(x) allows to reduce the dimension of the original problem:

y(x) is non-smooth function which continuously maps the segment [0,1] to the hypercube D.

Properties of the reduced problem

After applying the Peano-type evolvent $\varphi(y(x))$ satisfies the uniform Hölder condition:

$$|\varphi(y(x_1))-\varphi(y(x_2))| \leq H|x_1-x_2|^{\frac{1}{N}}, x_1, x_2 \in [0,1],$$

 $\varphi(y(x))$ is non-smooth and has multiple local and **global** extremums even if $\varphi(y)$ is unimodal. The latter problem is caused by loss of the information about N-d neighborhood after the transformation to the 1-d space.

3

Non-univalent evolvent

One can try to recover all preimages of $y \in \mathbb{R}^N$ and make optimization method aware of their existence¹. This allows reducing the effect of growing amount of local minimas after dimension reduction. According to the theory of Peano-type curves, each N-d point could have up to 2^N preimages. For large N such preimages mining would be expensive.

¹R.G. Strongin. Numerical Methods in Multiextremal Problems (in Russian), 1978

Shifted and rotated evolvents

To create a fixed amount of preimages one can use a pre-defined set of different evolvents. These evolvents could be shifted or rotated versions of the original one. Set of shifted evolvents² is theoretically proven to generate at least one pair of close preimages if images are close and it perform better than the set of rotated curves.

²Strongin, R.G., Gergel, V.P., Barkalov, K.A. Parallel methods for global optimization problem solving (in Russian), 2009

Smooth evolvent

Smooth functions are more predictable for optimizer, so smooth approximation of the Peano-like y(x) curve could improve convergence rate 3 .

 $^{^3}$ Goryachih, A. A class of smooth modification of space-filling curves for global optimization problems, NET 2016

Basic parallel optimization method

Optimization method generates search sequence $\{x_k\}$ and consists of the following steps:

- Step 1. Sort the search information (one-dimensional points) in increasing order.
- Step 2. Compute the evolvent $y(x^k)$ and the function $\varphi(y(x^k))$.
- Step 3. For each interval (x_{i-1}, x_i) compute quantity R(i), called characteristic.
- Step 4. Choose an interval (x_{t-1},x_t) with the greatest characteristic and compute objective f(y(x)) in the point chosen using the decision rule d:

$$x^{k+1} = d(t) \in (x_{t-1}, x_t)$$

Step 5. If $x_t - x_{t-1} < \varepsilon$ stop the method.

Detailed description: Strongin R.G., Sergeyev Ya.D.: Global optimization with non-convex constraints. Sequential and parallel algorithms (2000), Chapter 7

7

Parallel optimization method with multiple evolvents

Test problems

Generator GKLS was employed to construct the sets of test problems:

$$f(x) = \begin{cases} C_i(x), x \in S_i, i \in 2, \dots, m \\ \|x - T\|^2 + t, x \not \in S_2, \dots, S_m \end{cases}$$

The generator allows to adjust:

- the number of local minimas;
- the size of the global minima attraction region;
- the space dimension.

Evolvents comparison

Operating characteristics on GKLS 2d Simple class

Evolvents comparison

Operating characteristics on GKLS 3d Simple class

Choice of evolvent for the parallel algorithm

Results of applying the parallel algorithm

Table: Averaged numbers of iterations executed by the parallel algorithm for solving the test optimization problems

		p	N = 4			N = 5	
			Simple	Hard	Simp	ole Hard	
ı	1 cluster node	1	12167	25635	2097	9 187353	
		32	328	1268	898	3 12208	
П	4 cluster nodes	1	25312	11103	147	2 17009	
		32	64	913	47	345	
Ш	8 cluster nodes	1	810	4351	868	5697	
		32	34	112	35	868	

Conclusions

- ▶ the smooth evolvent and the non-univalent one demonstrate the best result in the problems of small dimensionality and can be applied successfully in solving the problems with the computational costly objective functions.
- ▶ the shifted evolvents introduce large overhead costs on the execution of the method due to the requirement to adding an auxiliary constraint. About 95% of iterations are overhead to fight the auxiliary constraint.
- rotated evolvents perform almost the same as the shifted ones but without overhead.

Q&A

sovrasov.vlad@gmail.com https://github.com/sovrasov