

71

## RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree
First year - Semester Examination - February/ March 2013

## **MAA 1203 – NUMERICAL ANALYSIS**

## Answer four questions only

Time: 2 hours

The Newton's Forward formula,

$$P_k = \sum_{i=0}^k \binom{k}{i} \Delta^i y_0$$

The Newton's Backward formula

$$P_k = y_0 + k \nabla y_0 + \frac{k(k+1)}{2!} \nabla^2 y_0 + \dots + \frac{k \dots (k+n-1)}{n!} \nabla^n y_0$$
; where k=0,-1,...,-n

The Gauss forward formula,

$$P_k = y_0 + \sum_{i=1}^n \left[ \binom{k+i-1}{2i-1} \delta^{2i-1} y_{1/2} \binom{k+i-1}{2i} \delta^{2i} y_0 \right]$$

The Gauss backward formula,

$$P_{k} = y_{0} + \sum_{i=1}^{n} \left[ {k+i-1 \choose 2i-1} \delta^{2i-1} y_{-1/2} {+k+i \choose 2i} \delta^{2i} y_{0} \right]$$

The stirling's formula , 
$$P_k = y_0 + \binom{k}{1} \delta \mu y_0 + \frac{(k)}{2} \binom{k}{1} \delta^2 y_0 + \binom{k+1}{3} \delta^3 \mu y_0 + \frac{(k)}{4} \binom{k+1}{3} \delta^4 y_0 + \dots + \binom{k+n-1}{2n-1} \delta^{2n-1} \mu y_0 + \frac{(k)}{2n} \binom{k+n-1}{2n-1} \delta^{2n} y_0$$

1). Solve the following difference equations:

I. 
$$y_{k+2} - 7y_{k+1} + 12y_k = \cos k$$
 with  $y_0 = 0$ ,  $y_1 = 0$ 

II. 
$$y_{k+2} + 6y_{k+1} + 25y_k = 2^{kK}$$
 with  $y_0 = 0$ ,  $y_1 = 0$ 

III. 
$$2y_{k+2} - 5y_{k+1} + 2y_k = 0$$
 with  $y_0 = 0$ ,  $y_1 = 1$ 

2).(a) Prove that any positive integer k,

$$\Delta^k y_0 = \sum_{i=0}^k (-1)^i \binom{k}{i} y_{k-i}$$
, Where the familiar symbol for binomial coefficients,

$$\binom{k}{i} = \frac{k!}{i!(k-i)!}$$
, has been used.

(b) Use Lagrange formula to produce a fourth degree polynomial which includes the following  $x_k$ ,  $f(x_i)$  number pairs. Thus evaluate this polynomial for  $x_k=9$ .

| $x_k$    | 5   | 7   | 11   | 13   | 17   |
|----------|-----|-----|------|------|------|
| $f(x_i)$ | 150 | 392 | 1452 | 2366 | 5202 |

3.(a) Apply Stirling's formula with n=2 to find a polynomial of degree four or less which takes the  $y_k$  values given in the table below.

| k              | -2 | -1 | 0 | 1 | 2  |
|----------------|----|----|---|---|----|
| $\chi_{\nu}$   | 2  | 4  | 6 | 8 | 10 |
| V <sub>k</sub> | -2 | 1  | 3 | 8 | 20 |

(b) The equation f(x) = 0, where

$$f(x) = 0.1 - \frac{x}{(1!)^2} + \frac{x^2}{(2!)^2} - \frac{x^2}{(3!)^2} + \frac{x^2}{(4!)^2} - \cdots$$
, with  $x_0 = 0.2$ 

has one root in the interval (0,1). Calculate this root correct to 5 decimals, using the **Newton-Raphson** method.

4.(a) Factorial polynomial are defined by

$$k^{(n)} = k(k-1)(k-2)....(k-n+1)$$

Prove that

$$\Delta k^{(n)} = nk^{(n-1)}$$
 for all integers.

- (b) Show that  $\binom{k}{n} = \frac{k^{(n)}}{n!}$  and prove the recursion formula,  $\binom{k+1}{n+1} = \binom{k}{n+1} + \binom{k}{n}$
- (c) Show that  $k^{(n)} = \frac{k^{(n+1)}}{k-n}$  and Find  $\Delta k^{(-1)}$
- 5). (a) Apply Gauss's forward central formula to find polynomial of degree four or less which takes the values given below.

| $x_k$ | 2 | 4 | 6 | 8 | 10 |
|-------|---|---|---|---|----|
| $y_k$ | 0 | 0 | 1 | 0 | 0  |

(b) Approximate f(2.0) using the following data and the **Newton backward** divided-difference formula

| x    | 1.0       | 1.3       | 1.6       | 1.9       | 2.2       |
|------|-----------|-----------|-----------|-----------|-----------|
| f(x) | 0.7651977 | 0.6200860 | 0.4554022 | 0.2818186 | 0.1103623 |

6). (a) Apply the Gauss backward formula to the following data.

| $x_k$ | 3 | 4  | 5  | 6   |
|-------|---|----|----|-----|
| $y_k$ | 6 | 24 | 60 | 120 |

\*

with the argument k shifted so that k=0 at k=0

- (b) Find the fourth order **Taylor polynomial** for  $f(x) = \ln x$  about x = 1.
- (c) Compute the 7<sup>th</sup> degree **Maclaurin polynomial** for the function  $f(x) = \log(\cos x)$ ,  $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$

\*\*\* END\*\*\*