Assignment 1

Computational Intelligence, SS2020

Team Members				
Last name	First name	Matriculation Number		
Blöcher	Christian	01573246		
Bürgener	Max	01531577		

1 Maximum Likelihood Estimation of Model Parameters

• Analytical derivation for the Gaussian distribution:

$$p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2}}$$

The data is independent identically distributed (iid), therefore the likelihood function is the sum of all individual likelihoods

$$P(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2}}$$

To convert the product to sum we use the logarithm.

$$L(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = ln \left[\prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2}} \right]$$

$$L(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} \left[ln(\frac{1}{\sqrt{2\pi\sigma^2}}) - \frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2} \right]$$

Since we want to find the parameter σ^2 , which maximizes the probability of the distance, we derive $L(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p})$ and set it to zero.

$$L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} \left[ln(1) - ln(\sqrt{2\pi\sigma^{2}} - \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{2\sigma^{2}} \right] \mid \frac{\partial}{\partial \sigma^{2}}$$

$$\frac{\partial}{\partial \sigma^{2}} L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} \left[-\frac{1}{\sigma^{2}} + \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{\sigma^{4}} \right] \stackrel{!}{=} 0$$

$$0 = \sum_{n=0}^{N-1} \left[-\frac{1}{\sigma^{2}} + \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{\sigma^{4}} \right]$$

$$\frac{N}{\sigma^{2}} = \sum_{n=0}^{N-1} \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{\sigma^{4}}$$

$$\sigma^{2} = \sum_{n=0}^{N-1} \frac{[\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]^{2}}{N}$$

• Analytical derivation for the Exponential distribution:

$$p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) = \begin{cases} \lambda_i e^{-\lambda_i [\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, p)]} &, \tilde{d}_n(a_i, \mathbf{p}) \ge d(a_i, \mathbf{p}) \\ 0 &, \text{else} \end{cases}$$

$$L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \sum_{n=0}^{N-1} ln(\lambda_{i}) - \lambda_{i} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})] \mid \frac{\partial}{\partial \lambda_{i}}$$

$$\frac{\partial}{\partial \lambda_{i}} L(\tilde{d}_{n}(a_{i}, \mathbf{p}) \mid \mathbf{p}) = \frac{N}{\lambda_{i}} - \sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})] \stackrel{!}{=} 0$$

$$\frac{N}{\lambda_{i}} = \sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]$$

$$\lambda_{i} = \frac{N}{N-1} \sum_{n=0}^{N-1} [\tilde{d}_{n}(a_{i}, \mathbf{p}) - d(a_{i}, \mathbf{p})]$$

$$\tilde{d}_{n}(a_{i}, \mathbf{p}) \geq d(a_{i}, \mathbf{p})$$

2 Estimation of the Position

2.1 Least-Squares Estimation of the Position

• Analytical conversion of the ML estimation equation:

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmax}} \prod_{n=0}^{N-1} p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p})$$

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmax}} \ln \left[\prod_{n=0}^{N-1} p(\tilde{d}_n(a_i, \mathbf{p}) \mid \mathbf{p}) \right]$$

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmax}} \sum_{i=0}^{N_A-1} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} - \frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2} \right)$$

The ln-term can be neglected since it's just a scaling factor. Furthermore —argmax is equal to argmin.

$$\hat{\mathbf{p}}_{ML}(n) = \underset{\mathbf{p}}{\operatorname{argmin}} \sum_{i=0}^{N_A-1} \frac{[\tilde{d}_n(a_i, \mathbf{p}) - d(a_i, \mathbf{p})]^2}{2\sigma^2} \approx \hat{\mathbf{p}}_{LS}(n)$$

2.2 Gauss-Newton Algorithm for Position Estimation

• Analytical solution for the Jacobian matrix.

$$[J(p)]_{i,1} = \frac{\partial}{\partial x} \left[\tilde{d}_n(a_i, \mathbf{p}) - \sqrt{(x_i - x)^2 + (y_i - y)^2} \right]$$

$$[J(p)]_{i,1} = -\frac{[(-)2(x_i - x)]}{2 \cdot \sqrt{(x_i - x)^2 + (y_i - y)^2}}$$

$$[J(p)]_{i,1} = \frac{(x_i - x)}{\sqrt{(x_i - x)^2 + (y_i - y)^2}}$$

$$[J(p)]_{i,2} = \frac{(y_i - y)}{\sqrt{(x_i - x)^2 + (y_i - y)^2}}$$

	Scenario 1	Scenario 2		Scenario 3
Scenario 1		with exponential anchor	without exponential anchor	
Error mean μ_e	0.2779	0.6402	0.3988	1.2697
Error variance σ_e^2	0.0216	0.2745	0.0541	0.9622

Table 1: .

2.3 Numerical Maximum Likelihood Estimation of the Position

	Least-Squares	Numerical Maximum Likelihood	Bayes
Error mean μ_e	0.9621	0.9154	0.3080
Error variance σ_e^2	1.2697	0.4889	0.0135

Table 2: .