Sequences, limits, continuity, differentiability

Satyankar Chandra Dept. of CSE, 2nd Year

MA105 Tutorial Sheet - 1 August 16, 2023 16:00-17:00

Problems to be discussed

Problem -

- 5
- 7
- 9
- 10
- 12
- 13. (i), (ii)

5. (ii)

Prove that the following sequence is convergent by showing that it is monotone and bounded. Also find its limit:

$$a_1 = \sqrt{2}, a_{n+1} = \sqrt{2 + a_n} \, \forall n \ge 1$$

Solution to 5. (ii) -

Claim 1: $a_n \le 2 \ \forall n$

We will show this by induction.

Base-case : n = 1 as $a_1 = \sqrt{2} \le 2$

Assuming that inductive hypothesis is true for $k \le n$,

$$a_{n+1}=\sqrt{2+a_n}\leq \sqrt{2+2}\leq 2$$

Claim 2: $\{a_n\}$ is monotonically increasing.

$$a_n \le a_{n+1}$$

 $\Leftrightarrow a_n \le \sqrt{2+a_n}$
 $\Leftrightarrow a_n^2 \le 2+a_n$
 $\Leftrightarrow (a_n+1)(a_n-2) \le 0$ which is true

Using both claims, $\{a_n\}$ is bounded and monotonic. Hence, it is convergent and converges to a limit L.

Now to find *L*, we use the continuity of $f(x) = \sqrt{2 + x}$,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$$

$$L = \lim_{n \to \infty} \sqrt{2 + a_n}$$

$$L = \sqrt{2 + \lim_{n \to \infty} a_n}$$

$$L = \sqrt{2 + L}$$

$$L = 2$$

Hence, $\lim_{n\to\infty} a_n = 2$.

You can also show this using $(\epsilon - N)$ definition of limits by *guessing* the limit as 2.

7.

If $\lim_{n\to\infty} a_n = L \neq 0$, then show that $\exists n_0 \in \mathbb{N}$ such that

$$|a_n| \geq \frac{|L|}{2} \quad \forall n \geq n_0$$

Solution to 7 -

It is given to us that $\lim_{n\to\infty} a_n = L$, and hence, $\forall \epsilon_0 > 0$, $\exists n_0(\epsilon_0) \in \mathbb{N}$ such that $\forall n > n_0$,

$$|a_n-L|<\epsilon_0$$

Now, set $\epsilon = \frac{|L|}{2}$. We get that $\exists n_0 \in \mathbb{N}$ such that

$$|a_n - L| < \frac{|L|}{2}$$

$$\Rightarrow ||a_n| - |L|| \le |a_n - L| < \frac{|L|}{2}$$

Which gives us $-\frac{|L|}{2} < |a_n| - |L|$ and hence $|a_n| \ge \frac{|L|}{2} \ \forall n > n_0$.

9.

For given sequences $\{a_n\}$ and $\{b_n\}$, prove or disprove the following,

- (i) $\{a_nb_n\}$ is convergent if $\{a_n\}$ is convergent
- (ii) $\{a_nb_n\}$ is convergent if $\{a_n\}$ is convergent and $\{b_n\}$ is bounded

Solution to 9. (i) -

Consider the following sequences $\forall n \geq 1$ -

$$a_n=\frac{1}{n}$$

$$b_n = n^2$$

Here, $\{a_n\}$ is convergent with $\lim_{n\to\infty}a_n=0$, but $\{a_nb_n\}=\{n\}$ is divergent.

Hence this statement is false.

Solution to 9. (i) -

Consider the following sequences $\forall n \geq 1$ -

$$a_n = 1$$

$$b_n = (-1)^n$$

Here, $\{a_n\}$ is convergent with $\lim_{n\to\infty}a_n=1$, and $\{b_n\}$ is bounded as $|b_n|\leq 1$, but $\{a_nb_n\}=\{(-1)^n\}$ is divergent.

Hence this statement is false.

Check that these sequences are also a counterexample for 9. (i).

10

Prove that the sequence $\{a_n\}$ is convergent **iff** the sequences $\{a_{2n}\}$ and $\{a_{2n+1}\}$ are convergent to the same limit.

Solution to 10 -

Let *L* be the common limit.

Forward implication: $\{a_n\}$ convergent $\Rightarrow \{a_{2n}\}, \{a_{2n+1}\}$ convergent to same limit.

We are given that $\forall \epsilon_0 > 0, \ \exists n_0(\epsilon_0)$ such that $|a_n - L| < \epsilon_0 \ \forall n > n_0$.

We need to prove that $\forall \epsilon_1 > 0$, $\exists n_1$ such that $|a_{2n} - L| < \epsilon_1 \ \forall n > n_1$.

Set $\epsilon = \epsilon_1$ in the given statement, and check that having

$$n_1 = n_0(\epsilon) = n_0(\epsilon_1)$$

works. Hence, the sequence $\{a_{2n}\}$ is convergent to L.

Similarly, the sequence $\{a_{2n+1}\}$ is convergent to L.

Reverse implication: $\{a_{2n}\}, \{a_{2n+1}\}$ convergent to same limit $\Rightarrow \{a_n\}$ is convergent.

We are given that $\forall \epsilon_1 > 0$, $\exists n_1(\epsilon_1)$ such that $|a_{2n} - L| < \epsilon_1 \ \forall n > n_1$ and $\forall \epsilon_2 > 0$, $\exists n_2(\epsilon_2)$ such that $|a_{2n+1} - L| < \epsilon_2 \ \forall n > n_2$.

We need to prove $\forall \epsilon > 0$, $\exists n_0$ such that $|a_n - L| < \epsilon \ \forall n > n_0$.

Again, set $\epsilon_1 = \epsilon_2 = \epsilon$ and check that having

$$n_0 = \max(2n_1(\epsilon), 2n_2(\epsilon) + 1)$$

works.

Hence, the sequence $\{a_n\}$ is convergent to L.

12.

Let $f : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to \alpha} f(x)$ exists for some $\alpha \in \mathbb{R}$. Show that,

$$\lim_{h\to 0}[f(\alpha+h)-f(\alpha-h)]=0$$

Analyze the converse.

Solution to 12 -

Let $\lim_{x\to\alpha} f(x)$ be equal to L.

Then
$$\lim_{h\to 0} f(\alpha+h) = \lim_{h\to 0} f(\alpha-h) = L$$
.

We have,

$$0 \leq |f(\alpha+h) - f(\alpha-h)| \leq |f(\alpha+h) - L| + |f(\alpha-h) - L|$$

By Sandwich/Squeeze theorem,

$$\lim_{h\to 0}|f(\alpha+h)-f(\alpha-h)|=0$$

Now, use converse of Problem 6 to show that,

$$\lim_{h\to 0}[f(\alpha+h)-f(\alpha-h)]=0$$

The **converse** is false.

Consider this example with $\alpha = 0$,

$$f(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{1}{|x|} & \text{otherwise} \end{cases}$$

We can see that $[f(\alpha + h) - f(\alpha - h)] = 0 \ \forall x \neq 0$.

But $\lim_{h\to 0} f(x)$ does not exist.

13. (i)

Discuss the continuity of

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ \sin(\frac{1}{x}) & \text{otherwise} \end{cases}$$

13. (ii)

Discuss the continuity of

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x \sin(\frac{1}{x}) & \text{otherwise} \end{cases}$$

Solution to 13. (i) -

We will use the sequential criterion of (dis)continuity.

Consider the 2 sequences $\{a_n\}$ and $\{b_n\}$,

$$a_n = \frac{1}{(4n+1)\frac{\pi}{2}}$$
$$b_n = 0$$

Note that $\lim_{n\to\infty} a_n = 0$ and $\lim_{n\to\infty} b_n = 0$.

But we have,

$$\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} \sin((4n+1)\frac{\pi}{2}) = \lim_{n\to\infty} 1 = 1$$
$$\lim_{n\to\infty} f(b_n) = \lim_{n\to\infty} 0 = 0$$

Since we have found 2 sequences $\{a_n\}$ and $\{b_n\}$, such that

$$\lim_{n\to\infty} a_n = x = 0$$
 and $\lim_{n\to\infty} b_n = x = 0$

but

$$1 = \lim_{n \to \infty} f(a_n) = \lim_{x \to 0} f(x) \neq \lim_{n \to \infty} f(b_n) = \lim_{x \to 0} f(x) = 0$$

The function is not continuous at x = 0.

Solution to 13. (ii) -

We claim that the function is continuous.

We need to prove that $\forall \epsilon > 0, \ \exists \delta > 0 \ \text{such that} \ \forall |x| < \delta$,

$$|x\sin(\frac{1}{x})|<\epsilon$$

Now, since $|\sin(\frac{1}{x})| \le 1 \ \forall x \in \mathbb{R} \setminus \{0\}$.

$$|x\sin(\frac{1}{x})| \le |x| < \delta$$

Hence, setting $\delta = \epsilon$ completes our proof.

Questions? Comments? Ask on group

The End