COLLEGE OF ENGINEERING Department of Metallurgical & Materials Engineering The University of Alabama

MTE 562 Dr. R. Reddy

Thermodynamics

QUIZ II

Q.1

a) (5 pts)

Define Gibbs Phase Rule

b) (10 pts)

Show that for a two phase equilibrium,

$$\frac{dT}{dP} = \frac{(V^{\Pi} - V^{I}) T}{\Delta H}$$

This relationship is called Clapeyron equation.

c) (20 pts)

The vapor pressures (in Torr) of solid and liquid uranium hexafluoride are:

$$logP_s = 10.648 - 2559.5/T$$

and

 $logP_1 = 7.540 - 1511.3/T$

a) Calculate the temperature of the triple point.

b) Assuming the latent heats of vaporization and sublimation to be independent of temperature, calculate their values.

Q.2

a) (5 pts)

Explain the conditions for the feasibility of chemical reactions

b) (10 pts)

For a chemical reaction,

derive that

$$\Delta_r G = \Delta_r G^o + RT \ln J$$

c) (20 pts)

Calculate $\Delta_r G^\circ$, $\Delta_r H^\circ$, and $\Delta_r S^\circ$ at 1100 K for the following reaction by using the

attached tables. AI (I) + 3HF (g) = AIF₃ (c) + 1.5 H₂ (g)

Q.3

a) (10 pts)

Explain the following:

1. Raoult's Law

b) (20 pts)

The vapor pressures (in mm Hg) of solid silver and solid silver-palladium alloys were expressed as functions of temperature (in the range 1092-1221 K)

as follows: For pure solid silver,

$$\log P_{Ag} = -13,696/T + 8.727$$

For solid Ag-Pd alloy, $X_{Ag} = 0.802$ (the vapor above the alloy contains no Pd), log PAg = -13,795/T + 8.649

- (a) Calculate the fugacity of silver in the pure state and in the alloy at 1200K.
- (b) Calculate the activity and activity coefficient for silver in Ag-Pd solid Solution at 1200 K.

Table 12.1 Thermodynamic properties of Al in its standard reference state. Reproduced from Gen. Ref. (1).

	(J K ⁻¹ mol ⁻¹)*			(kJ mol ⁻¹)*			
	C _p	۶° -	$-[G^{\circ}-H^{\circ}(T_r)]/T$	$H^o-H^o(T_r)$	Δ _f H°	ΔſĠ°	Log K
0	0,	0.	Infinite	-4.539	0.	0.	0.
100	12.997	6.987	47.543	-4.056	0.	0.	0.
200	21.338	19.144	30.413	-2.254	0.	0.	0,
298.15	24,209	28.275	28.275	ిం.	0.	0,	0.
	24.247	28.425	28.276	0.045	0.	0.	0.
300	25.784	35.630	29.248	2.553	0.	0.	0,
400	26.842	41.501	31.129	5.186	0.	0.	0.
500		46.485	33,283	7.921	0.	0.	0.
600	27.886	50.872	35.488	10.769	0.	0.	0.
700	29.100	54.850	37.663	13,749	0.	0.	0.
800	30.562 32.308	58.548	39.780	16.890	0.	0.	0.
900		59.738	40.474	17.982	Cry	stal ↔ L	iquid
933.450	32.959		40.474	28.693		Transitio	n
933.450	31.751	71.213	42.594	30.806	0.	0,	0.
1000	31.751	73.400		33.981	0.	0.	0.
1100)	31.751	76.426	45.534	37.156	0.	0.	0.
1200	31.751	79.189	48.225	40.331	0.	0.	0.
1300	31.751	81.730	50.706	43.506	0.	0.	0.
1400	31.751	84.083	53.007	46.681	0.	0.	0.
1500	31.751	86.273	55.153	49.856	0.	0.	0.
1600	31.751	88.323	57.162	53.031	0.	0.	0,
1700	31.751	90.247	59,052	56.207	0.	0.	0.
1800	31.751	92.062		59,382	0.	0.	0.
1900	31.751	93.779		62.557	0.	0.	0.
2000	31.751	95.408		65.732	0.	0.	0.
2100	31.751	96.957		68.907	0.	0.	0.
2200	31.751	98.434		72.082	0.	0.	0.
2300	31.751	99.845		75,257	0,	0.	0.
2400	31.751	101,196		78,432	0,	0.	0.
2500	31.751	102.493		81.607	0.	0.	0.
2600	31.751	103.738		84.782	0.	0.	0.
2700	31.751	104.936					cal Gas
2790.812	31.751	105.986		87,665	Liquid + Ideal Gas Fugacity = 1 bar		
2790.812	20.795	211.333	74.574	381.667		-	0.
2800	20.795	211.401		381.858	0.	0. 0.	0.
2900	20.796	212.131		383.938	0.	0.	0.
3000	20.798	212.836	84.163	386.017	0.		0.
3100	20.800	213.518		388.097	0.	0.	0.
3200	20.804	214.178	92.248	390.178	0.	0.	U.

Continued

Table 12.6 Thermodynamic properties of HF(g); adapted from Gen. Ref. (3).

T, K	$(J/(mol \cdot K))$			J/mol		
	C _p °	Z°	$-(G^{\circ}-H_{298}^{\circ})/T$	H°-H ₂₉₈	ΔH_f°	ΔG_f°
		200.086	188,636	20,649	-274,532	-278,455
1000.00	30.142	209.285	190.647	23,684	-274,870	-278,830
1700.00	30.516	212.178			-275,202	-279,176
1200:00	30.934	214.850	192.554	26,756		
	31.384	217.344	194.366	29,872	-275,519	-279,494
1300.00			196.091	33,033	-275,822	-279,788
1400.00	31.832	219.686	170.071	33,033		

Table 12.7 Thermodynamic properties of AIF₃(c); adapted from gen. Ref. (3).

		(J/(mol·K))			J/mol		
T, K	C _p °	Z°	$-(G^{\circ}-H_{298}^{\circ})/T$	H°H°298	ΔH°	ΔG_f°	
		179.487	112.139	67,348	-1,510,890	-1250,016	
1000.00	100.831	189.147	118.707	77.485	-1,509,488	1223,996	
1100.00	101.893 102.917	198.057	124.953	87,725	-1,508,014	-1198,107	
1200.00	102.917	206.334	130.898	98,067	-1,506,467	-1172,343	
1300.00 1400.00	103.913	214.071	136.566	108,508	-1,504,845	-1146,702	

Table 12.8 Thermodynamic properties of $H_2(g)$; adapted from Gen. Ref. (3).

		(J/mol)			
T, K	C _p °	S°	$-(G^{\circ}-H_{298}^{\circ})/T$	$H^{\circ} - H_{298}^{\circ}$	
1000.00	30,205	166.216	145.536	20,680	
1100.00	30.579	169.112	147.550	23,719	
1200.00	30.992	171.790	149.460	26,797	
1300.00	31.424	174.288	151.275	29,918	
1400.00	31.863	176.633	153.003	33,082	

Davjie Zhang

.). The freedom of a system is related to its component C and phases p

5 Degrees of freedom = C-p+2.

where 2 represents the temperature and pressure.

. At equilibrium. dGi = dGi.

Since dG = Vdp-SdT, we get_assumptims

 $V^{I}dP - S^{I}dT = V^{I}dP - S^{I}dT$ i.e. $\frac{dT}{dP} = \frac{V^{I} - V^{I}}{S^{I} - S^{I}} = \frac{V^{I} - V^{I}}{\Delta S}$

Noting that. $\Delta S = \Delta H/T$ the equation transforms into.

 $\frac{dT}{dP} = \frac{(V^2 - V^1)T}{\Delta H}$

lups = (10.668-2559.5/T) · m/0 = 24.518-5893.5/T

In P, = (7.540-1511.3/T) m/o = 17.361-3480.0/T

At equilibrium. Ge=Gs. i.e. RT lmps = RT lmpc.

24.518 - 5893-5/T = 17.361 - 3480.0/T.

which yields, T=337.2 K.V

- RT two = OH-TOS. => two == FT.

dwp = OH RTZ

rince the latent heats of vaporization and sublimation are assumed to be independent of temperature,

) OHung = 13+12-3480.0R ==28934.5 J/mol
OHung ==58935R ==649001.6 J/mol

[7]

).] = Kp or DG =0 at equilibrium

174p or 0670 the reaction tends to occur to sponteneously in the opposite

J < Kp or 16 60 the reaction tends to occur spontaneously

Noting that
$$DrG^\circ = CG^\circ + dG^\circ + dG$$

$$\sqrt{\text{DrG}} = \text{DrG}^{\circ} + \text{RTm} \frac{d\hat{c} + a\hat{d} + a\hat$$

- a). Raout's Law: the activity is equal to its mole fraction when xi > 1 $a_i = \chi_i$ $\lim_{\chi_i \neq 0} \gamma_i = 1$
- 10 Henry's Law: the activity is proposional to its mole fraction for an infinite

$$ai = \gamma_i^{\infty} \cdot \chi_i^{\infty} \qquad \lim_{\chi_i^{\infty} \to 0} \gamma_i = \gamma_i^{\infty}$$

- 1). For pure solid silver. In Pag = (-13696/1+8.727) Into = For solid Ag-Pd alloy. h. Pag = (+3795/T + 8.649) lmo = -31764.2/T+19.915.
- The fugarity is equal to the vapor pressure, at 1200K. For pure solid silver. for = Pag = 10+344/1200+8.727 = 0.00 2.059 × 10-3 mm. Hg. For solid By-Pd alloy, fry = Pry = 10 -13795/1200 +8.649 = 1.423 × 103 mm. Hg.

Since in Ag-Pd solid solution, the vapor contains above the alloy contains no Pd, the activity of for silver is, $a_{sg} = \frac{f_{sg}}{f_{sg}^0} = \frac{1.1023 \times 10^3}{2.019 \times 10^3} = 0.691.$

the activity coefficient for silver is.
$$Y_{ag} = \frac{a_{ag}}{x_{ag}} = \frac{0.691}{0.802} = 0.862.$$