Prescriptive Analytics - HW 6

Saundarya Badhrinathan, Nabeel Ahmed, Divya Chandramohan, Uttara Thiagarajan, Megan Mugavero

- 1. Reading completed
- Arrival rate (λ): 5 cars/hr
 Service time per car (1/μ): 6 mins
 Service rate (μ): 10 cars/hr

$$L_s = \lambda /(\mu - \lambda)$$

= 5 / (10-5)
= 1

The number of cars in the queue is 0.5 per hour which is less than 4 cars per hour. The number of cars in the system is 1 per hour which is also less than 4 cars per hour. Because of this, there will never be a car parked in the no-parking area, so no cars would be fined.

Arrival rate (λ): 20 customers/hr
 Service time per car (1/μ): 2 mins/customer
 Service rate (μ): 30 customers/hr

a.
$$P(T \le 3) = 1 - e^{-2(3)} = 0.9975$$

 $P(T \le 6) = 1 - e^{-2(6)} = 0.9999$

$$P(T \le 6) - P(T \le 3) = 0.0024$$

b. Noontime arrival rate (λ): 60/2.5 = 24 customers/hr

$$P_{>5} = e^{(\lambda - \mu)t}$$

$$= e^{(24-30)(5/60)}$$

$$= 0.60653$$

$$P_{<5}$$
 = 1 - $P_{>5}$
= 1 - 0.60653

$$= 0.39347$$
$$0.39347 = 1 - e^{-5\mu}$$

$$\mu = 90/60$$
= 1.5 mins/customer

4. Arrival rate (λ): 17 flights/hr

Service time per flight $(1/\mu)$: 3 mins/flight

Service rate (µ): 20 flights/hr

Average fuel consumption for flight in air = 10 liters/min Fuel cost = \$20/liter

a.
$$L_q = \frac{\lambda^2}{[\mu(\mu-\lambda)]}$$

= $\frac{17^2}{[20(20-17)]}$
= $\frac{289}{(20*3)}$
= $\frac{4.8167}{[190]}$ flights

On average, there are 4.82 flights waiting for permission to land.

b.
$$W_q = L_q / \lambda$$

= 4.8167 / 17
= 0.2833 hrs / flight

On average, the fuel cost for the flight waiting to land

$$= (0.2833*60)*(10*$20)$$

= \$3399.60

c.
$$P_{ = 1 - $P_{>n}$
= 1 - ρ^{n+1}
= 1 - $(17/20)^4$
= 0.4779$$

d.
$$\rho = \lambda / \mu$$

= 0.85

5. Arrival rate (λ): 3 letters/hr Service rate (μ): 4 letters/hr

a. One secretary:
$$W_s = 1 / (4-3)$$

= 1 hr
Pooled Secretaries = 1 / (8-6)
= 0.5 hrs

The Professors would benefit by pooling the secretaries.

b. It reduces the wait time significantly for Professor A & B, thus allowing their secretaries to become more efficient.