INDIAN INSTITUTE OF TECHNOLOGY PALAKKAD

Department of Computer Science and Engineering CS5616 Computational Complexity January May 2024

Instructions

• Use of resources other than class notes and references is forbidden.

- Collaboration is not allowed. Credit will be given for attempts and partial answers.
- 1. (15 points) [More properties of R and RE] We saw in class that recursive languages are closed under complement. We will see more properties below.
 - (a) (5 points) Show that recursively enumerable languages are closed under union and intersection.
 - (b) (5 points) For a language L, and $i \ge 1$, $L^i = \{a_1 a_2 \dots a_i \mid a_1, \dots, a_i \in L\}$. The Kleene closure of L, denoted by L^* , is defined as $\{\epsilon\} \cup \bigcup_{i\ge 1} L^i$. Show that recursive and recursively enumerable languages are closed under Kleene closure.
 - (c) (5 points) For languages $L_1, L_2 \subseteq \Sigma^*$, define $L_1/L_2 = \{x \in \Sigma^* \mid \exists y \in L_2 \ xy \in L_1\}$. Show that if L_1 and L_2 are recursively enumerable, then so is L_1/L_2 .

Solution: Write your answer here.

(a) 1. To show: recursively enumerable are closed under union

Let L_1 and L_2 be the 2 recursively enumerable languages and let the turing machines (not necessarily total) accepting them be M_1 and M_2 respectively. Now we need to give a turing machine M, which accepts $L = L_1 \cup L_2$.

The description of M is as follows:

- "On input x,
- (a) Run one step of M_1 on x
- (b) Run one step of M_2 on x
- (c) As long as either of them does not accept, repeat steps 1a and 1b
- (d) If one of them accept, accept and halt

To prove : M accepts $L = L_1 \cup L_2$

(a) Proof of $L \subseteq L(M)$:

 $x \in L$

 $\implies x \in L_1 \cup L_2$

 $\implies x \in L(M_1) \lor x \in L(M_2) \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$

 \implies Either M_1 or M_2 will halt and accept (and since we are performing one step in each machine, we will not be stuck in a loop, even if one of the machine loops on the given input)

 $\Longrightarrow M$ halts and accepts

 $\implies x \in L(M)$

```
(b) Proof of L(M) \subseteq L:

x \in L(M)

\Longrightarrow M accepts x

\Longrightarrow M_1 accepted x and M reached 1d in the algorithm

\lor M_2 accepted x and M reached 1d in the algorithm

\Longrightarrow x \in L(M_1) \lor x \in L(M_2)

\Longrightarrow x \in L_1 \lor x \in L_2 \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2)\text{)}

\Longrightarrow x \in L_1 \cup L_2

\Longrightarrow x \in L
```

Hence Proved

2. To show: recursively enumerable are closed under intersection

Let L_1 and L_2 be the 2 recursively enumerable languages and let the turing machines (not necessarily total) accepting them be M_1 and M_2 respectively.

Now we need to give a turing machine M, which accepts $L = L_1 \cap L_2$.

The description of M is as follows:

- " On input x,
- (a) Run one step of M_1 on x
- (b) Run one step of M_2 on x
- (c) As long as both of them do not halt, repeat step 2a and step 2b
- (d) If both of them accept, accept and halt

To prove : M accepts $L = L_1 \cap L_2$

(a) Proof of $L \subseteq L(M)$:

 $x \in L$

 $\implies x \in L_1 \cap L_2$

 $\implies x \in L(M_1) \land x \in L(M_2) \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$

 \Longrightarrow By the description of the machine, since both M_1 and M_2 accepts, M accepts (and since we are performing one step in each machine, we will not be stuck in a loop, even if one of the machine loops on the given input)

 $\Longrightarrow M$ halts and accepts

 $\implies x \in L(M)$

(b) Proof of $L(M) \subseteq L$:

 $x \in L(M)$

 $\Longrightarrow M$ accepts x

 $\implies M_1$ accepted $x \wedge M_2$ accepted x

and hence M reached 2d in the algorithm

 $\implies x \in L(M_1) \land x \in L(M_2)$

 $\implies x \in L_1 \land x \in L_2 \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$

 $\implies x \in L_1 \cap L_2$

 $\implies x \in L$

Hence Proved

(b)

- 2. (10 points) [Non-determinism] The machines that we saw in class have a single valued transition function and hence are *deterministic*. A nondeterministic Turing machine is a machine where the transition function can take multiple values.
 - (a) (5 points) Give a rigorous formal definition of a non-deterministic Turing machine, including a definition of configuration, next configuration relation and acceptance.
 - (b) (5 points) Argue that deterministic machines and non-deterministic machines are equivalent (in the sense that they can simulate each other).

3. (15 points) [Undecidability]

- (a) (5 points) Consider the problem of deciding if two given Turing machines accept the same set. Formulate this as a language and show that it is undecidable.
- (b) (5 points) Consider the problem of deciding given a Turing machine and a state, whether it enters the state on some input. Formulate this as a language and show that it is undecidable.
- (c) (5 points) Show that if Membership problem is undecidable, then Halting problem is undecidable. [Note: We independently know the undecidability of both the problems. Nevertheless, this question asks to prove the implication.]
- 4. (10 points) [**Decidable or Undecidable ?**] Let |M| denote the length of the Turing machine description. Are the following problems decidable ? Justify.
 - (a) (5 points) Does a Turing machine M takes at least |M| steps on some input?
 - (b) (5 points) Does a Turing machine M takes at least |M| steps on all inputs?