Clase 13: Inferencia Estadística

Justo Andrés Manrique Urbina

19 de noviembre de 2019

1. Ejemplo

Si $X \sim N(0, \sigma^2), n = 20$. Se vió, en un ejemplo anterior, que:

$$\frac{\sum_{i=1}^{n} X_j^2}{34,1696}; \frac{\sum_{i=1}^{n} X_j^2}{9,5908}.$$

es un intervalo de confianza del 9% para estimar a σ^2 . Deducir, a partir del intervalo anterior, uno para $\theta = P(X > 1)$.

1.1. Solución:

Sea:

$$X \sim N(0, \sigma^2).$$

$$\to Z = \frac{x}{\sigma} \sim N(0, 1).$$

$$\to \theta = P(X > 1).$$

$$= 1 - F_x(1).$$

$$\theta = 1 - F_z(\frac{1}{\sigma}).$$

Luego:

$$l_1 \le \sigma^2 \le l_2.$$

$$\sqrt{l_1} \le \sigma \le \sqrt{l_2}.$$

$$\frac{1}{\sqrt{l_2}} \le \frac{1}{\sigma} \le \frac{1}{\sqrt{l_1}}.$$

$$F_z(\frac{1}{\sqrt{l_2}}) \le F_z(\frac{1}{\sigma}) \le F_z(\frac{1}{\sqrt{l_1}}).$$

$$1 - F_z(\frac{1}{\sqrt{l_1}}) \le 1 - F_z(\frac{1}{\sigma}) \le 1 - F_z(\frac{1}{\sqrt{l_2}}).$$

Por lo tanto, este es un intervalo de confianza del 95 % para estimar a $\theta.$

2. Ejercicio

Sea $X \sim \exp(\theta)$. Deducir también, del intervalo 95 % de confianza, lo siguiente: P = P(X > 2).

2.1. Solución:

$$\rightarrow F_x(X) = 1 - e^{(-\theta X)}, x > 0.$$

$$\rightarrow p = P(X > 2).$$

$$= 1 - F_x(2).$$

$$= 1 - 1 - e^{-2\theta}.$$

$$p = e^{-2\theta}.$$

Luego se tiene que $L_1 \leq \theta \leq l_2$

$$e^{-2l_2} < e^{-2\theta} < e^{-2l_1}.$$

Por lo tanto, ese es un intervalo de confianza.

3. Contraste estadístico de hipótesis

Se tienen dos hipótesis acerca del parámetro θ : H_0 y H_1 . A la primera se le llama hipótesis nula y la segunda alternativa. A partir de los resultados de una muestra aleatoria se opta por una de las dos hipótesis.

Definition 1. Regla de decisión: Es una regla que determina lo que debe ocurrir con la muestra para rechazar H_0 .

Definition 2. Región crítica: Es otra forma de expresar la regla de decisión:

$$R.C = \{X_1, X_2, \dots, X_n\} : (X_1, X_2, \dots, X_n) \text{ satisface la regla de decisión.} \}.$$

Existen dos tipos de errores, al rechazar H_0 :

- Tipo 1: Rechazar H_0 siendo verdadera.
- **Tipo 2:** Aceptar H_0 siendo falsa

Las probabilidades correspondientes se denotan por α y β , respectivamente. Es decir:

- α : P(Rechazar H_0 siendo verdadera).
- β : P(Aceptar H_0 siendo falsa).

4. Ejemplo:

En el contexto del ejemplo anterior evaluar los riesgos de de la prueba y también la potencia de esta:

4.1. Solución:

 $\alpha = P(\text{rechazar } H_0 \text{ siendo verdadera}).$ $= P(x > 7, \mu = 5).$ $\alpha = P(X > 7, \mu = 5).$

Por otra parte, estandarizamos la variable X.

$$Z = \frac{\sqrt{20}(\bar{X} - \mu)}{\sqrt{10}} \sim N(0, 1).$$

De ello se desprende:

$$\alpha = P(\bar{x} > 7), \mu = 5.$$

$$= 1 - F_z(\frac{\sqrt{20}(7 - 5)}{\sqrt{10}}).$$

$$= 1 - F_z(2,83).$$

$$= 1 - 0,9977.$$

$$\alpha = 0,0023.$$

Análogamente, se tiene que:

$$\beta = P(\bar{X} \le 7, \mu = 9).$$

$$= F_{\bar{X}}(7), \mu = 9.$$

$$F_z(\frac{\sqrt{20}(7-9)}{\sqrt{10}}), \mu = 9.$$

$$= F_z(-2.83).$$

$$\beta = 0.0023.$$

Entonces, se le
e que el 100 $\alpha\%$ de las veces que se tome la decisión de rechazar H_0 se tomará una decisión equivocada.

Por otro lado, se le
e que el 100 β % de las veces que se tome la decisión de aceptar H_0 , se tomará una decisión equivocada.

Observación: Una buena regla de decisión es aquella que tenga α y β pequeños. En general, fijado el tamaño de muestra, no se puede minimizar α y β al mismo tiempo. Se suele fijar el valor de α y obtener una regla de decisión que tenga un β pequeño.

5. Lema de Neyman-Pearson

Dadas las hipótesis y α y η fija
ados. La regla de decisión óptima, es decir, la regla que tiene el menor valor posible de β , entre todas aquellas reglas con probabilidad de cometer el error tipo $1=\alpha$ es de la forma siguiente: Rechazar H_0 si:

$$\frac{L(\theta_1)}{L(\theta_0)} > c.$$

dónde c es P(Rechazar H_0 siendo verdadera) = α y $L(\theta)$ es la función de verosimlilitud de θ , pero considerando la muestra antes de ser registrada: