

# Relational Algebra

André Restivo

## Index

Introduction Unary Operators Set Operators Joins Division

### Introduction

### **Relational Model**

- A set of relations defined by their schemas.
- Each relation is composed by attributes and tuples.
- Schema of a relation R with attributes a\_1, a\_2, a\_3, ..., a\_n:

```
? R(a_1, a_2, a_3, ..., a_n)
```

### **Relational Model**

• The cardinality (number of tuples) in relation R:

#### ? |R|

• A tuple with attribute values v\_1, v\_2, v\_3, ..., v\_n:

```
? t = <v_1, v_2, v_3, ..., v_n>
```

• Attribute a\_i belonging to relation R:

```
? R.a_i
```

• The domain of attribute a\_i:

```
? Dom(a_i)
```

• The *null* value:

? \perp

```
?
Relation: Employee(id, name, salary, taxes, department)
Tuple: t = <1234, John, 1200, 200, 3>
Attribute: Employee.name
Domain: Dom(Employee.name) = text
```

Employee(id, name, salary, taxes, department)

| id | name       | salary | taxes | departament |
|----|------------|--------|-------|-------------|
| 1  | John Doe   | 1000   | 200   | 1           |
| 2  | Jane Doe   | 800    | 100   | 2           |
| 3  | John Smith | 1200   | 350   | 2           |
| 4  | Jane Roe   | 1000   | 200   | 3           |
| 5  | John Doe   | 1000   | 0     | \perp       |

|Employee| = 5

# **Unary Operators**

### Projection

The result of a projection is defined as the set that is obtained when all tuples in R are restricted to the set  $\{a_1, ..., a_n\}$ 

```
? Pi_{a_1,...,a_n}(R)
```

Consider L as a list containing attributes from R:

```
? S = Pi_{L}(R)
```

Relation S will only have the attributes from that list.

? If L does not contain a key from R, repeated tuples are eliminated.

? S = \Pi\_{name, salary}(Employee)

| name       | salary |
|------------|--------|
| John Doe   | 1000   |
| Jane Doe   | 800    |
| John Smith | 1200   |
| Jane Roe   | 1000   |

? Notice that one line was eliminated.

## Projection

### Renaming and Arithmetic Operators

The projection operator can also be used to rename attributes:

```
? S = \Pi_{name, wages = salary}(Employee)
```

And calculate simple arithmetic expressions:

```
? S = \Pi_{name, wages = salary - taxes}(Employee)
```

For simplicity the result should be renamed.

? S = \Pi\_{name, wages = salary - taxes}(Employee)

| id | name       | salary | taxes | departament |
|----|------------|--------|-------|-------------|
| 1  | John Doe   | 1000   | 200   | 1           |
| 2  | Jane Doe   | 800    | 100   | 2           |
| 3  | John Smith | 1200   | 350   | 2           |
| 4  | Jane Roe   | 1000   | 200   | 3           |
| 5  | John Doe   | 1000   | 0     | \perp       |

| name       | wages |
|------------|-------|
| John Doe   | 800   |
| Jane Doe   | 700   |
| John Smith | 850   |
| Jane Roe   | 800   |
| John Doe   | 1000  |

### Rename

Renaming the relation R to S:

```
? \rho_S(R)
```

Renaming attribute a to atribute x in relation R(a,b,c):

```
? \rho_{a/x}(R) \Rightarrow R(x,b,c)
```

Renaming attribute a to atribute x and c to atribute y in relation R(a,b,c):

? \rho\_{a/x, c/y}(R) \Rightarrow R(x,b,y)

### Selection

Select a set of tuples where a certain condition c holds:

```
? S = \sigma(R)
```

- c is a condition involving attributes from R.
- The condition can contain arithmetic (+ \times \div), conditional (< > \leq \geq \neq) and logical (\vee \wedge \neg) operators.
- S has the same attributes as R.

? S = \sigma\_{salary < 1000 \vee department = 3}(Employee)

Employees with a salary smaller than 1000 or that work at department 3.

| id | name       | salary | departament |
|----|------------|--------|-------------|
| 1  | John Doe   | 1000   | 1           |
| 2  | Jane Doe   | 800    | 2           |
| 3  | John Smith | 1200   | 2           |
| 4  | Jane Roe   | 1000   | 3           |
| 5  | John Doe   | 1000   | \perp       |

| id | name     | salary | departament |
|----|----------|--------|-------------|
| 2  | Jane Doe | 800    | 2           |
| 4  | Jane Roe | 1000   | 3           |

# Set Operators

### Union, Intersection and Difference



### Union, Intersection and Difference

The two relations involved must be union-compatible:

- they must have the same number of attributes
- the domain of each attribute must be the same in both R and S

```
?

R \cup S = \{x: x \in R \vee x \in S\}

R \cap S = \{x: x \in R \wedge x \in S\}

R - S = \{x: x \in R \wedge x \notin S\}
```

# **Union Example**

#### Employee

| id | name       | salary | taxes | departament |
|----|------------|--------|-------|-------------|
| 1  | John Doe   | 1000   | 200   | 1           |
| 2  | Jane Doe   | 800    | 100   | 2           |
| 3  | John Smith | 1200   | 350   | 2           |
| 4  | Jane Roe   | 1000   | 200   | 3           |
| 5  | John Doe   | 1000   | 0     | \perp       |

#### Manager

| id | name     | salary | taxes | departament |
|----|----------|--------|-------|-------------|
| 1  | John Doe | 1000   | 200   | 1           |
| 6  | Big Boss | 5000   | 0     | \perp       |

#### Employee \cup Manager

| id | name       | salary | taxes | departament |
|----|------------|--------|-------|-------------|
| 1  | John Doe   | 1000   | 200   | 1           |
| 2  | Jane Doe   | 800    | 100   | 2           |
| 3  | John Smith | 1200   | 350   | 2           |
| 4  | Jane Roe   | 1000   | 200   | 3           |
| 5  | John Doe   | 1000   | 0     | \perp       |
| 6  | Big Boss   | 5000   | 0     | \perp       |

### Intersection Example

#### Employee

#### Manager

| id | name     | salary | taxes | departament |
|----|----------|--------|-------|-------------|
| 1  | John Doe | 1000   | 200   | 1           |
| 6  | Big Boss | 5000   | 0     | \perp       |

#### Employee \cap Manager

| id | name     | salary | taxes | departament |
|----|----------|--------|-------|-------------|
| 1  | John Doe | 1000   | 200   | 1           |

## Difference Example

#### Employee

| id | name       | salary | taxes | departament |
|----|------------|--------|-------|-------------|
| 1  | John Doe   | 1000   | 200   | 1           |
| 2  | Jane Doe   | 800    | 100   | 2           |
| 3  | John Smith | 1200   | 350   | 2           |
| 4  | Jane Roe   | 1000   | 200   | 3           |
| 5  | John Doe   | 1000   | 0     | \perp       |

#### Manager

| id | name     | salary | taxes | departament |
|----|----------|--------|-------|-------------|
| 1  | John Doe | 1000   | 200   | 1           |
| 6  | Big Boss | 5000   | 0     | \perp       |

#### Employee - Manager

| id | name       | salary | taxes | departament |
|----|------------|--------|-------|-------------|
| 2  | Jane Doe   | 800    | 100   | 2           |
| 3  | John Smith | 1200   | 350   | 2           |
| 4  | Jane Roe   | 1000   | 200   | 3           |
| 5  | John Doe   | 1000   | 0     | \perp       |

## Joins

### Cartesian Product

The cartesian product R  $\times$  S is the set of all ordered pairs (r, s) where  $r \in R$  and  $s \in S$ .

```
R \times S = \{ \langle r,s \rangle : r \in R, s \in S \}
```

The cartesian product between relations  $R(a_1,...,a_n)$  and  $S(b_1,...,b_m)$  is a relation with n+m attributes  $(a_1,...,a_n,b_1,...,b_m)$  where there is a tuple for each possible combination of tuples from R and S.

The cardinality of the resulting relation is equal to the product between the cardinalities of the original relations:

```
? |R \times S| = |R| \times |S|
```

#### Employee

| id | name       | departament |
|----|------------|-------------|
| 1  | John Doe   | 1           |
| 2  | Jane Doe   | 2           |
| 3  | John Smith | 2           |
| 4  | John Doe   | \perp       |

#### Department

| number | designation |
|--------|-------------|
| 1      | Marketing   |
| 2      | Accounting  |

#### Employee \times Department

| id | name       | department | number | designation |
|----|------------|------------|--------|-------------|
| 1  | John Doe   | 1          | 1      | Marketing   |
| 2  | Jane Doe   | 2          | 1      | Marketing   |
| 3  | John Smith | 2          | 1      | Marketing   |
| 4  | John Doe   | \perp      | 1      | Marketing   |
| 1  | John Doe   | 1          | 2      | Accounting  |
| 2  | Jane Doe   | 2          | 2      | Accounting  |
| 3  | John Smith | 2          | 2      | Accounting  |
| 4  | John Doe   | \perp      | 2      | Accounting  |

### **Conditional Join**

A cartesian product between relations R and S followed by a selection on condition c:

? R\bowtie\_c S

The same as a cartesian product followed by a selection:

? R\bowtie\_c S = \sigma\_c(R\times S)

Allows the combination of relations that are associated by a foreign key.

#### Employee

| id | name       | departament |
|----|------------|-------------|
| 1  | John Doe   | 1           |
| 2  | Jane Doe   | 2           |
| 3  | John Smith | 2           |
| 4  | John Doe   | \perp       |

#### Department

| number | designation |  |
|--------|-------------|--|
| 1      | Marketing   |  |
| 2      | Accounting  |  |

#### Employee \bowtie\_{department=number} Department

| id | name       | department | number | designation |
|----|------------|------------|--------|-------------|
| 1  | John Doe   | 1          | 1      | Marketing   |
| 2  | Jane Doe   | 2          | 2      | Accounting  |
| 3  | John Smith | 2          | 2      | Accounting  |

### **Natural Join**

A particular case of a join where the condition is the equality of attributes on both relations having the same name.

#### ? R\bowtie S

Attributes used in the condition are merged together.

#### Employee

| id | name       | number |
|----|------------|--------|
| 1  | John Doe   | 1      |
| 2  | Jane Doe   | 2      |
| 3  | John Smith | 2      |
| 4  | John Doe   | \perp  |

#### Department

| number | designation |
|--------|-------------|
| 1      | Marketing   |
| 2      | Accounting  |

#### Employee \bowtie Department

| id | name       | number | designation |
|----|------------|--------|-------------|
| 1  | John Doe   | 1      | Marketing   |
| 2  | Jane Doe   | 2      | Accounting  |
| 3  | John Smith | 2      | Accounting  |

# Semijoin

A join where only attributes from one of the relations is kept.

```
? R \setminus S = \Psi_R (R \setminus S)
```

?  $R \setminus S = \langle Pi_S (R \setminus S) \rangle$ 

# Examplejavascript/#46

#### Employee

| id | name       | number |
|----|------------|--------|
| 1  | John Doe   | 1      |
| 2  | Jane Doe   | 2      |
| 3  | John Smith | 2      |
| 4  | John Doe   | \perp  |

#### Department

| number | designation |
|--------|-------------|
| 1      | Marketing   |
| 2      | Accounting  |
| 3      | Transports  |

#### Employee \ltimes Department

| id | name       | number |
|----|------------|--------|
| 1  | John Doe   | 1      |
| 2  | Jane Doe   | 2      |
| 3  | John Smith | 2      |

#### Employee \rtimes Department

| number | designation |  |
|--------|-------------|--|
| 1      | Marketing   |  |
| 2      | Accounting  |  |

### Outer Join

A join operation where unmatched tuples are part of the result set. This tuples can come from the R relation (left), the S relation (right) or from both (full).

Left outer join:

```
? R?_cS
```

Right outer join:

```
? R?_cS
```

Full outer join:

#### Employee

| id | name       | number |
|----|------------|--------|
| 1  | John Doe   | 1      |
| 2  | Jane Doe   | 2      |
| 3  | John Smith | 2      |
| 4  | John Doe   | \perp  |

#### Department

| number | designation |
|--------|-------------|
| 1      | Marketing   |
| 2      | Accounting  |
| 3      | Transports  |

#### Employee? Department

| id | name       | number | designation |
|----|------------|--------|-------------|
| 1  | John Doe   | 1      | Marketing   |
| 2  | Jane Doe   | 2      | Accounting  |
| 3  | John Smith | 2      | Accounting  |
| 4  | John Doe   | \perp  | \perp       |

#### Employee? Department

| id    | name       | number | designation |
|-------|------------|--------|-------------|
| 1     | John Doe   | 1      | Marketing   |
| 2     | Jane Doe   | 2      | Accounting  |
| 3     | John Smith | 2      | Accounting  |
| \perp | \perp      | 3      | Transports  |

## Division

### Division

The restrictions of tuples in  $\mathbb R$  to the attribute names unique to  $\mathbb R$  for which it holds that all their combinations with tuples in  $\mathbb S$  are present in  $\mathbb R$ .

?  $R(a,b,c) \setminus div S(b,c)$ 

In this example, the result of the division will have one attribute a (the one that does not exist in S), containing the values of a that are combined with all values of S.

#### Works

| id | name     | number | designation |
|----|----------|--------|-------------|
| 1  | John Doe | 1      | Big Rocket  |
| 1  | John Doe | 2      | Thingamabob |
| 1  | John Doe | 3      | Take a Nap  |
| 2  | Jane Doe | 2      | Thingamabob |
| 2  | Jane Doe | 3      | Take a Nap  |
| 3  | Jack Doe | 1      | Big Rocket  |
| 3  | Jack Doe | 2      | Thingamabob |

#### Project

| number | designation |  |
|--------|-------------|--|
| 1      | Big Rocket  |  |
| 2      | Thingamabob |  |
| 3      | Take a Nap  |  |

#### Works \div Project

| id | name     |  |
|----|----------|--|
| 1  | John Doe |  |

### **Division without Division**

```
? R(a_1,...,a_n,b_1,...,b_m) \div S(b_1, ..., b_m)
```

?  $R \cdot S = Pi_{a_1,...,a_n}(R) - Pi_{a_1,...,a_n}(Pi_{a_1,...,a_n}(R) \times S - R)$ 

All tuples from the first n attributes of R:

- ? \Pi\_{a\_1,...,a\_n}(R)
- ? \Pi\_{id,name}(Works)

| id | name     |  |
|----|----------|--|
| 1  | John Doe |  |
| 2  | Jane Doe |  |
| 3  | Jack Doe |  |

Cartesian product with S gives all possible combinations of those attributes with the tuples of S:

- ?  $\Pr{a_1,...,a_n}(R) \times S$
- ? \Pi\_{id,name}(Works) \times Project

| id | name     | number | designation |
|----|----------|--------|-------------|
| 1  | John Doe | 1      | Big Rocket  |
| 2  | Jane Doe | 1      | Big Rocket  |
| 3  | Jack Doe | 1      | Big Rocket  |
| 1  | John Doe | 2      | Thingamabob |
| 2  | Jane Doe | 2      | Thingamabob |
| 3  | Jack Doe | 2      | Thingamabob |
| 1  | John Doe | 3      | Take a Nap  |
| 2  | Jane Doe | 3      | Take a Nap  |
| 3  | Jack Doe | 3      | Take a Nap  |

Removing the original R tuples we get the tuples that are not present in the original R relation:

- ?  $\Pr\{a_1,...,a_n\}(R) \times S R$
- ? \Pi\_{id,name}(Works) \times Project Works

| id | name     | number | designation |
|----|----------|--------|-------------|
| 2  | Jane Doe | 1      | Big Rocket  |
| 3  | Jack Doe | 3      | Take a Nap  |

Projecting again we get the first n attributes of those tuples:

```
? Pi_{a_1,...,a_n} (Pi_{a_1,...,a_n}(R) \times S - R)
```

? \Pi\_{id,name} (\Pi\_{id,name}(Works) \times Project - Works)

| id | name     |  |  |
|----|----------|--|--|
| 2  | Jane Doe |  |  |
| 3  | Jack Doe |  |  |

```
? Pi_{a_1,...,a_n}(R) - Pi_{a_1,...,a_n}( Pi_{a_1,...,a_n}(R) \times S - R)
```

? \Pi\_{id,name}(Works) - \Pi\_{id,name} (\Pi\_{id,name}(Works) \times Project - Works)

