

本科毕业论文

你的本科毕业论文题目

 学
 院
 你的学院

 专
 业
 你的专业全称

 学生姓名
 你的名字

 学生学号
 201400000000

 指导老师
 导师 1, 导师 2

 提交日期
 2000 年 00 月 00 日

摘 要

摘要内容应概括地反映出本论文的主要内容,主要说明本论文的研究目的、内容、方法、成果和结论.要突出本论文的创造性成果或新见解,不要与引言相混淆.语言力求精练、准确,以300-500字为宜.在摘要的下方另起一行,注明本文的关键词(3-5个).关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用技术词条(参照相应的技术术语标准).按词条的外延层次排列(外延大的排在前面).摘要与关键词应在同一页.

关键词: 多变量系统; 预测控制; 环境试验设备

Abstract

英文摘要内容与中文摘要相同,以 250-400 个实词为宜. 摘要下方另起一行注明英文关键词 (Keywords3-5 个).

Keywords: Writer recognition; Convolutional Neural Network; Handwritten character recognition

目 录

摘要.		Ι
${f Absti}$	ract	Π
目录.	•••••••••••••••••••••••••••••••••••••••	ΙIJ
第一章	章 绪论	1
1.1	上选题背景与意义	1
1.2	2 国内外研究现状和相关工作	1
1.3	3 本文的论文结构与章节安排	1
第二章	章 简单的使用例子	2
2.1	图片的插入	2
2.2	2 复杂图表的输入—tikz	3
2.3	3 公式的输入	4
2.4	1 表格的插入	5
2.5	5 插入代码块	5
2.6	5 字体、列表及脚注	6
	2.6.1 字体	6
	2.6.2 列表	6
第三章	章 页眉	7
第四章	章 研究方法	9
第五章	章 实验与结果	10
第六章	章 总结与展望	11
附录。	A 我是附录	12
附录]	B 我也是附录	14
	て献	
	~·····	

第一章 绪论

1.1 选题背景与意义

引言是论文正文的开端,应包括毕业论文选题的背景、目的和意义;对国内外研究现状和相关领域中已有的研究成果的简要评述;介绍本项研究工作研究设想、研究方法或实验设计、理论依据或实验基础;涉及范围和预期结果等.要求言简意赅,注意不要与摘要雷同或成为摘要的注解.

1.2 国内外研究现状和相关工作

对国内外研究现状和相关领域中已有的研究成果的简要评述

1.3 本文的论文结构与章节安排

本文共分为五章,各章节内容安排如下:

第一章引言.

第二章知识点.

第三章方法介绍.

第四章实验和结果.

第五章是本文的最后一章, 总结与展望. 是对本文内容的整体性总结以及对未来工作的展望.

第二章 简单的使用例子

2.1 图片的插入

论文主体是毕业论文的主要部分,必须言之成理,论据可靠,严格遵循本学科国际通行的学术规范.在写作上要注意结构合理、层次分明、重点突出,章节标题、公式图表符号必须规范统一.论文主体的内容根据不同学科有不同的特点,一般应包括以下几个方面:(1)毕业论文(设计)总体方案或选题的论证;(2)毕业论文(设计)各部分的设计实现,包括实验数据的获取、数据可行性及有效性的处理与分析、各部分的设计计算等;(3)对研究内容及成果的客观阐述,包括理论依据、创新见解、创造

图 1: 镶嵌在文中的图像

性成果及其改进与实际应用价值等; (4) 论文主体的所有数据必须真实可靠, 凡引用他人观点、方案、资料、数据等, 无论曾否发表, 无论是纸质或电子版, 均应详加注释. 自然科学论文应推理正确、结论清晰; 人文和社会学科的论文应把握论点正确、论证充分、论据可靠, 恰当运用系统分析和比较研究的方法进行模型或方案设计, 注重实证研究和案例分析, 根据分析结果提出建议和改进措施等.

可以插入单张图像:

图 2: 单张图像

甚至可以两张并排,如图3和图4所示,并且这句话已经实现了用 \ref{key} 来引用内容. 引用的内容包括公式、表格、图片、代码段等等. 对于参考文献的引用并非用 ref, 之后会提及.

对于多张图片的并排并统一标注 caption 可使用 subfigure 和 makebox; 因为这个功能用得较少, 用户可自行 Google.

2.2 复杂图表的输入—tikz

复杂图表最常见的可以算是算法流程图, 可以用 standalone 独立出一个文档用 tikz 来画, 生成 PDF 后作为图片插入

图 5: Flowchart

此外还有如图6的类似费曼图那样的示意图, 表示电磁级联的 $\gamma - B$ 过程. 用 \LaTeX 的 tikz 画相对有点复杂但并非不可实现; 有专门的包去画类似这样的费曼图, 但做毕设时 我还没学会.

图 6: cascade

2.3 公式的输入

一般的公式如下. 如果用户不想要编号 (目的可能是仅仅想摆个不重要的公式, 或者说是推导的中间过程), 可以在 equation 后面加个*, 即 \begin{equation*}.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{2.1}$$

推导的中间过程, 往往需要等号对齐. 可用 aligned 环境加 & 实现 (aligned 环境切记每行后面要有换行符 \\):

$$f(E, \mathbf{r}, t) = \int d^{3}\mathbf{r}' dt' dE' G(\mathbf{r}, t, E; \mathbf{r}', t', E') Q(\mathbf{r}', t', E')$$

$$= \int d^{3}\mathbf{r}' dt' dE' \frac{\delta[t - \tau(E, E') - t']}{b(E)[4\pi\lambda(E, E_{0})]^{3/2}} \exp\left[-\frac{(\mathbf{r} - \mathbf{r}')^{2}}{4\lambda(E, E_{0})}\right] Q(E') \delta^{3}(\mathbf{r}' - \mathbf{r}_{0}) \delta(t' - t_{0})$$

$$= \int dE' \frac{\delta[t - \tau(E, E') - t_{0}]}{b(E)[4\pi\lambda(E, E_{0})]^{3/2}} \exp\left[-\frac{(\mathbf{r} - \mathbf{r}_{0})^{2}}{4\lambda(E, E_{0})}\right] Q(E')$$

$$= \int dE' \frac{b(E_{0})\delta(E' - E_{0})}{b(E)[4\pi\lambda(E, E_{0})]^{3/2}} \exp\left[-\frac{(\mathbf{r} - \mathbf{r}_{0})^{2}}{4\lambda(E, E_{0})}\right] Q(E')$$

$$= \frac{b(E_{0})}{b(E)} \frac{Q(E_{0})}{[4\pi\lambda(E, E_{0})]^{3/2}} \exp\left[-\frac{(\mathbf{r} - \mathbf{r}_{0})^{2}}{4\lambda(E, E_{0})}\right]$$

$$= \frac{E_{0}^{2}}{E^{2}} \frac{Q(E_{0})}{[4\pi\lambda(E, E_{0})]^{3/2}} \exp\left[-\frac{(\mathbf{r} - \mathbf{r}_{0})^{2}}{4\lambda(E, E_{0})}\right]$$

$$= \frac{E_{0}^{2}}{E^{2}} \frac{Q(E_{0})}{[4\pi\lambda(E, E_{0})]^{3/2}} \exp\left[-\frac{(\mathbf{r} - \mathbf{r}_{0})^{2}}{4\lambda(E, E_{0})}\right]$$

$$(2.2)$$

如果要加个单边大括号, 并实现对齐, 可以适当使用 &, 一个不够就两个, 如 Eq 2.3

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \begin{cases} \bar{\chi}(i\cancel{D} - M)\chi & , \text{for fermionic}(\mathbb{B} \times \mathbb{F}) \chi \\ |D_{\mu}\chi|^2 - M^2|\chi|^2 & , \text{for scalar}(\overline{\kappa} \mathbb{B}) \chi \end{cases}$$
(2.3)

这里, 正体的 fermionic 和 scalar 是用了 {\rm text}, "费米子" 和 "标量" 用了 \mbox{中文}.

关于矩阵, 可以用 pmatrix 或者 bmatrix 或者 matrix 环境. pmatrix 自带弯的大括

号, bmatrix 自带大的中括号 [], matrix 不带括号 (当然你也可以配合 \left(\right) 加上括号). 一个宏伟的 MCMC 矩阵方程可以表达为

$$\begin{pmatrix}
p(\theta_{m,t+1,1}) \\
\vdots \\
p(\theta_{m,t+1,i}) \\
p(\theta_{m,t+1,j}) \\
\vdots \\
p(\theta_{m,t+1,s}|\theta_{m,t,1})
\end{pmatrix} = \begin{pmatrix}
p(\theta_{m,t+1,1}|\theta_{m,t,1}) & \cdots & p(\theta_{m,t+1,1}|\theta_{m,t,i}) & p(\theta_{m,t+1,1}|\theta_{m,t,j}) & \cdots & p(\theta_{m,t+1,1}|\theta_{m,t,s}) \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
p(\theta_{m,t+1,i}|\theta_{m,t,1}) & \cdots & p(\theta_{m,t+1,i}|\theta_{m,t,i}) & p(\theta_{m,t+1,i}|\theta_{m,t,j}) & \cdots & p(\theta_{m,t+1,i}|\theta_{m,t,s}) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
p(\theta_{m,t+1,j}|\theta_{m,t,1}) & \cdots & p(\theta_{m,t+1,j}|\theta_{m,t,i}) & p(\theta_{m,t+1,j}|\theta_{m,t,j}) & \cdots & p(\theta_{m,t+1,j}|\theta_{m,t,s}) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
p(\theta_{m,t+1,s}|\theta_{m,t,1}) & \cdots & p(\theta_{m,t+1,s}|\theta_{m,t,i}) & p(\theta_{m,t+1,s}|\theta_{m,t,j}) & \cdots & p(\theta_{m,t+1,s}|\theta_{m,t,s})
\end{pmatrix}$$

2.4 表格的插入

表格通常绘成三线表比较好看. 表格里也可以通过 \$a2_1+b2_1=c2_1\$ 这种语法来插入数学表达式的上下标, 如

Pulsar name	$\tau_c(\times 10^5 \text{ yr})$	$ \dot{E} (\times 10^{33} \text{ erg/s})$	$E_{\rm tot}(\times 10^{47} {\rm erg})$	$E_{\rm out}(\times 10^{47} {\rm erg})$	$\eta/\%$
J0357+3205	5.40	5.9	54.25	34^{+186}_{-29}	$63.62^{+344}_{-53.58}$
Geminga	3.42	32	118.03	$13.45^{+0.15}_{-0.15}$	$11.39^{+0.13}_{-0.12}$
Monogem	1.11	38	14.76	$3.58^{+0.23}_{-0.21}$	$24.28^{+1.56}_{-1.42}$
J0736-6304	5.07	0.052	0.42	$21_{-21}^{+9.6\times10^4}$	$5078^{+2.3\times10^7}_{-5077}$
B0922-52	3.33	3.4	11.89	$16.1^{+1.0}_{-0.9}$	135^{+9}_{-8}
B0940-55	4.61	3.1	20.78	$20.53^{+0.89}_{-0.84}$	$98.84^{+4.29}_{-4.03}$
B0941-56	3.23	3.0	9.87	$14.82^{+0.72}_{-0.66}$	150^{+7}_{-7}
J0954-5430	1.71	16	14.75	$7.07^{+0.15}_{-0.15}$	$47.93^{+1.03}_{-1.00}$
B0959-54	4.43	0.68	4.21	$19.62^{+0.46}_{-0.44}$	466^{+11}_{-10}
B1001-47	2.20	30	45.79	$9.12^{+0.58}_{-0.54}$	$19.91^{+1.27}_{-1.19}$
J1020-5921	4.85	0.84	6.23	$36^{+2.6\times10^4}_{-36}$	$584^{+4.2\times10^5}_{-584}$
B1055-52	5.35	30	270.79	$22.73_{-0.32}^{+0.33}$	$8.39_{-0.12}^{+0.12}$
J1732-3131	1.11	150	58.28	$11^{+1.3\times10^4}_{-11}$	$18^{+2.2\times10^3}_{-18}$
J1741-2054	3.86	9.5	44.64	$16.65^{+0.90}_{-0.85}$	$37.29^{+2.02}_{-1.91}$
B1742-30	5.46	8.5	79.91	$24.07^{+0.86}_{-0.83}$	$30.13^{+1.08}_{-1.04}$
B1822-09	2.32	4.6	7.80	$8.99^{+0.21}_{-0.19}$	$115.19_{-2.43}^{+2.68}$

表 1: 16 个脉冲星发射正负电子对的 η

表格当然也可以有行合并和列合并. 列合并的表格如表2.

2.5 插入代码块

代码块需要用户写好了保存为 py 文件再插入. LATEX 支持大多数主流的编程语言, 若要个性化插入的代码, 需要在本模板的第 51-88 行自行修改. 代码块的两个例子如 Listing 1 和 2 所示

表 2: 抛弃简化假设得到的 7 颗脉冲星的 15 个关键参数的拟合结果 (含 χ^2 和置信度)

Pulsar name	γ_s	η	A_{prim,e^-}	χ^2	C.I.
Geminga Monogem J0954-5430 B1001-47 B1055-52 J1741-2054 B1742-30	$\begin{array}{c} 2.24^{\pm0.19} \\ 1.81^{\pm0.2} \\ 2.25^{\pm0.3} \\ 2.41^{\pm0.3} \\ 1.83^{\pm0.4} \\ 1.90^{\pm0.36} \\ 2.02^{\pm0.13} \end{array}$	$\begin{array}{c} 0.40^{\pm 2.6}\% \\ 8.52^{\pm 7.9}\% \\ 1.26^{\pm 18}\% \\ 6.37^{\pm 6}\% \\ 0.70^{\pm 1.3}\% \\ 8.59^{\pm 3.2}\% \\ 7.87^{\pm 2.3}\% \end{array}$	$0.69^{\pm0.02}$	27.24/28	50.50%

Listing 1: for 循环

Listing 2: 用正则表达式修改文件的特定语句

2.6 字体、列表及脚注

2.6.1 字体

中文论文排版中除了宋体, 最常见的用于强调的字体是黑体和楷体.

2.6.2 列表

这是一个无序列表

- 引用文献 [2], 甚至可以上标引用[3]. 每引用一篇 ${\tt IMTEX}$ 就会在末尾自动加多一篇[1].
- 字体变红,粗体 这是一个有序列表
- 1. 索引前面的章节2.3、图4、表2
- 2. 加脚注1

 $^{^{1} \}rm https://github.com/OChicken/SCUT-Bachelor-Thesis-Template$

第三章 页眉

华工本科毕业论文的一个特色是其页眉也页脚分了奇偶页面来排版. 我将将这句话复制若干次直到下一页, 读者可以看看页眉的变化.

华工本科毕业论文的一个特色是其页眉也页脚分了奇偶页面来排版. 我将将这句话 复制若干次直到下一页, 读者可以看看页眉的变化.

华工本科毕业论文的一个特色是其页眉也页脚分了奇偶页面来排版. 我将将这句话复制若干次直到下一页, 读者可以看看页眉的变化.

在接下来的空白章节读者也可以感受一下页眉变化.

第四章 研究方法

第五章 实验与结果

第六章 总结与展望

附录 A 我是附录

像"附录 A"及其页眉也是可以设置的.

为了展示奇偶页眉的效果,将上面那句话复制若干次,直到附录A写到第二页位置,读者可以看看页眉的变化.

- 像"附录 A"及其页眉也是可以设置的.

像"附录 A"及其页眉也是可以设置的.

像"附录 A"及其页眉也是可以设置的.

可以试试写个公式. 公式的编号自动为 A.1

$$a^2 + b^2 = c^2 (A.1)$$

并且

$$c^2 = a^2 + b^2 \tag{A.2}$$

附录 B 我也是附录

到了附录B则自动编号为 B. 可以试试再写个公式

$$a + b = c (B.1)$$

甚至还能引用 A 的公式 E A.2

参考文献

- [1] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous detection and segmentation. In *Computer vision–ECCV 2014*, pages 297–312. Springer, 2014.
- [2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 3431–3440, 2015.
- [3] Joseph Tighe and Svetlana Lazebnik. Finding things: Image parsing with regions and per-exemplar detectors. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 3001–3008, 2013.

致谢

很惭愧, 我只做了一点微小的工作, 谢谢大家.

为了展示奇偶页眉的效果,将上面那句话复制若干次,直到致谢写到第二页位置,读者可以看看页眉的变化.

很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧, 就做了一点微小的工作, 谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家. 很惭愧,就做了一点微小的工作,谢谢大家.