Data Warehousing

EDUCATION SECTOR

Company: Education

Name: Syracuse University - School of information Studies

Location: 343 Hinds Hall, Syracuse, NY 13210

Background and Introduction

In simple terms, a data warehouse (DW) is a pool of data produced to support decision making; it is also a repository of current and historical data of potential interest to managers throughout the organization. Data are usually structured to be available in a form ready for analytical processing activities (e.g. online analytical processing [OLAP], data mining, querying, reporting and other decision supporting applications). A data warehouse is a subject-oriented, integrated, time -variant, non-volatile collection of data in support of management's decision-making process. The day-to-day operations of an organization are done by using the OLTP system. The lack of historical data in OLTP makes it unsuitable to provide a comprehensive information about the operations of the business. DW on the other hand, provides a central repository of historical data which provides an integrated platform for historical analysis of data. With a data warehouse and Online Analytical Processing (OLAP), users can perform better data analysis.

In today's ambitious environment, educational institutions have been privatized and are competitive throughout all top universities. Currently, one of the top schools, the School of Information Studies at Syracuse University has an unorganized data system that is difficult to manage and maintain properly. In order for the institution to maintain their reputation and rankings the institution needs to be more organized and needs to take better decisions while handling heavy data and reports. By creating a data warehouse educational institutions could overcome their problems. Not only will it provide a centralized and organized database but also offer good quality management solutions. It is important to have top management in the educational institutes because it often need timely analysis reports of students, faculty, course records, and so forth. In addition, they need to provide timely analysis reports to assist in making long-term decisions. It has been shown that most of the reporting and analysis, time was spent on collecting data from the various systems before the analysis can be made. Therefore, the purpose of creating the data warehouse is to provide good quality, convenient and accessible data in one centralized system to the educational institution providing top level management.

Proposed Solution / Justification

The case study used as a model for the project is a student course management system in Syracuse University. The school registers students every semester and students take courses and exams. These are being managed by an online transaction processing (OLTP) system. A simplified representation of the logical design of the OLTP system is shown in Figure

After analyzing the current situation of the educational institution our team proposed to create a Data Warehouse to help the institution with making their database more organized, easily retrieving different types of data, user friendly interface, and providing reports efficiently and effectively. The solution we hope to implement is a centralized Data warehousing technology to help collect large amount of data from many kinds of databases and unify them under a star schema in order to be used by Online Analytical Processing (OLAP) to help users utilize the

system. We would be retrieving raw data from flat files (txt or csv), SQL tables, and excel files and cleaning them before loading them into our star schema. We could then use the star schema to answer different questions that the institutions may have.

Scope

To create a data warehouse for the educational system. It will provide a functioning data warehouse that contains all the entries for the students, courses and the employees. The features of a data warehouse are to easily access student as it will be a large dataset and improving the performance and provide reports.

The scope of our project includes extracting, transforming, and loading all the OLTP data into our data warehouse from different sources like flat files and other SQL databases. We will use SSIS ETL tool for this purpose and we will also provide visualizations and a plan to obtain intelligence from the data warehouse via a BI plan.

In Scope

- Create a functional star schema data warehouse that contains students, faculty, and course records.
- We will do data profiling and use ETL tools to load the data into our data warehouse
- We will also give out visualizations and a plan for obtaining intelligence from our system.

Out of Scope

Developing a system interface.

Sponsor/Champion

- Inhouse
 - o Dean
 - Head of departments
 - Faculty/staff
 - Board members

Business Reasons

Direct benefits:	Indirect benefits:	
Simplification of data accessEnhanced system performance	 Enhance business knowledge 	

 Allows end users to perform extensive analysis

- Present competitive advantage
- Facilitate decision making

Interview and answers

1. What is the business objective of the project? What are they trying to achieve?

The purpose of this project is to warehouse the data of the school's course management system so that the school can use the data to obtain some intelligence from it at a later stage.

2. What are the different sources of data for the warehouse?

There are numerous sources of the data like csv files and also a sql database table. This is further explained in this document.

3. What is our data loading frequency (daily/weekly/monthly)?

The data would be loaded into the data warehouse on a monthly basis as there is no greater need for a higher frequency since the data would not change much during the course of the semester.

4. Who will be the users of the system?

The system would be used by the school administration for long term data analysis for decision making purposes.

Some other questions that we thought were pertinent and were asked during the interviews that were conducted:

- 1. What are input sources? Where are they going to get there data from?
- 2. What is the technology and version of input sources?
- 3. What is our data loading frequency (daily/weekly/monthly)?
- 4. How will the application be rolled out?
- 5. Who will support the application?
- 6. What all documents are required by Support team?
- 7. What is the distribution mechanism of re ports
- 8. What are the security requirements?

Management Team

Roles:	Responsibilities:	Skills:
Project manager	Tracks the progress and acts as a mediator among the team members	 Communication Leadership Team management Risk management Negotiation
DBA	Creates the logical design of the database	 Database Design Metadata management ERP and business knowledge Backup and recovery Performance management and tuning
Technical Architect	Relays the technical architecture of the company to the DBA	 data Modeling Understanding Framework Design tools Knowledge of UML Analytic problem solving
ETL Developer	Researches about the different sources of data for the target database	SQLDebuggingETL tools/softwareScripting Language
Front End Developer	Uses .Net or Access to connect with SQL server and have a GUI for users to query the database	ProgrammingSQLCommand LineGUI
OLAP Developer	Analyzes the data to see what insights can be gained from it via reports	 Oracle Siebel Analytics SSRS Report Builder Crystal Reports
Trainer	Providing resources and training sessions for users to make them comfortable with the new system	CommunicationSQL dataReportingAnalytics

Data Modeler	Work with ETL developer	 Expertise in data modeling principles/methods including conceptual, logical & physical Data Models
QA Group	Maintenance of quality throughout the development lifecycle	 Problem Solving skills Identify Areas of Improvement Ability to Code Automated Tests

Issues List

Issue No.	Description	Priority	Reported By	Assigned To	Status
1	Cost of construction of a database.	High	Ammen	Ammen	Close
2	Data Quality-Unstructured, vague, and undefined source data	Medium	Latefa	Latefa	Open
3	Change Management-Training the concerned people	Medium	Vaibhav	Vaibhav	Close
4	Lack of technical skills	High	Ammen	Ammen	Open
5	Tme constraints	Medium	Latefa	Latefa	Open
ε	Fuzzy testing scenario	Medium	Vaibhav	Vaibhav	Close
7	Ensuring acceptable performance	High	Ammen	Ammen	Close

Data Dictionary

<u>Students</u>	Description	Data Type
Student ID	The ID of the student	INT
Last Name	Last Name of the student	VARCHAR
First Name	First name of the student	VARCHAR
Student Permanent Address	Permanent Address of the student	VARCHAR
Student City	City of the student	VARCHAR
Student Date of birth	Date of birth of student	DATE
Student Gender	Gender of Student	CHAR
Student Address	Address of the student	VARCHAR
Student Email	Emails of the student	VARCHAR

Staff/Faculty	Description	Data Type
First Name	First Name of the staff/fac	VARCHAR
Last Name	Last Name of the staff/fac	VARCHAR
Address	Address of the staff/fac	VARCHAR
Gender	Gender of the staff/fac	
Email	Email of the staff/fac	VARCHAR
Address	Address of the staff/fac	VARCHAR
ID	ID of the staff/fac	INT
Titles	titles of the staff/fac	VARCHAR
Courses	Description	Data Type
Course ID	Course ID	INT
Credits	Number of Credits	INT
Staff ID	Staff number ID	INT
School	The Name of the School	VARCHAR
Course Name	The Name of the course	VARCHAR
Total students	Total number of students	INT
Prerequisite	Perquisite course	INT

Data Marts

We will have 3 data marts:

- 1. Students
- 2. Faculty
- 3. Courses

Each data mart would include all of the attributes of their concerned tables and the user would be able to choose from any of the attributes to find the rest of them using a key.

Work Breakdown Structure

Estimated Cost and ROI

Roles	Number	Amount	Duration	Cost
		\$		\$
Data Modeler	1	90,000.00	0.1	9,000.00
		\$		\$
DBA	1	80,000.00	0.5	40,000.00
		\$		\$
ETL Developer	1	90,000.00	0.9	81,000.00
Front End		\$		\$
Developer	1	80,000.00	0.5	40,000.00
		\$		\$
OLAP Developer	1	70,000.00	0.5	35,000.00
		\$		\$
Project manager	1	100,000.00	1	100,000.00
		\$		\$
QA Group	1	90,000.00	0.5	45,000.00
		\$		\$
Technical Architect	1	110,000.00	0.8	88,000.00
		\$		\$
Trainer	1	80,000.00	0.1	8,000.00

Star Schema

Snowflake Schema

SQL for Create

Example SQL for Inserting

SQL Dimension Tables- DimStudent

SQL Dimension Tables- DimFaculty

SQL Dimension Tables- DimCourse

SQL Fact Table

Implementation plans (SSIS)

Source Target Analysis and ETL

We have created three CSV files namely "Student", "Faculty" and "Course" which we processed using SSIS tool to get the main table. Then we loaded the truncated dimensional files which we extracted from the respective flat files. Then we integrated all the fact tables which had all the data loaded into all the dimensional tables to create a truncated main table and to maintain referential integrity, after which we loaded the main table to the data warehouse.

The SSIS images for the three files are shown below in the three images. It shows the way we downloaded the different files onto the data warehouse from different sources like csv files and sql database.

ETL for DimStudent dimension

ETL for DimFaculty and DimCourse

ETL for Fact Table

Whole ETL System execution

Work Distribution in the team

We were a team of three members and we divided the work accordingly. Latefa was responsible for combining the report and bringing it all together. Ammen was responsible for implementation of the ETL tool and Vaibhav was responsible for data profiling and other documents like the issues log and Work breakdown structure. This distribution of work ensured that we were always abreast with what was needed to be done and therefore managed to finish the project in time.

Maintenance and support of the Data Warehouse

- Monitoring the realization of expected benefits
- Providing ongoing support to users (see deployment)
- Training new staff
- Assisting with the identification and cleansing of dirty data
- Maintaining both feeds & meta-data as source systems change over time;
- Tuning the warehouse for maximum performance (this includes managing indexes and aggregates according to actual usage)
- Purging dormant data
- Recording successes and using these to continuously market the warehouse