1. Loading Dataset from ScikitLearn

Load iris dataset from ScikitLearn using $load_{iris}()$. Assign the dataset to x and the target values to y.

```
In [1]:
```

```
from sklearn.datasets import load_iris
iris_dataset = load_iris()
```

Print the dataset keys using iris_dataset.keys()

```
In [2]:
```

```
print("Keys of iris_dataset:\n", iris_dataset.keys())

Keys of iris_dataset:
    dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'featur'
    e_names', 'filename'])
```

Print the names of the categories in the target file

```
In [3]:
```

```
print("Target names:", iris_dataset['target_names'])
Target names: ['setosa' 'versicolor' 'virginica']
```

Print the feature names in the Iris dataset

```
In [4]:
```

```
print("Feature names:\n", iris_dataset['feature_names'])

Feature names:
  ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal
```

width (cm)']

Print the type of the Iris dataset.

```
In [15]:
```

```
print("Type of data:", type(iris_dataset['data']))
```

Type of data: <class 'numpy.ndarray'>

Print the shape of the Iris dataset.

localhost:8888/lab 1/12

```
In [6]:
print("Shape of data:", iris_dataset['data'].shape)
Shape of data: (150, 4)
Print the first five rows of the Iris dataset.
In [8]:
print("First five rows of data:\n", iris_dataset['data'][:5])
First five rows of data:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]]
Print the type of the target variable of Iris dataset.
In [9]:
print("Type of target:", type(iris_dataset['target']))
Type of target: <class 'numpy.ndarray'>
Print the shape of the target variable of Iris dataset.
In [10]:
print("Shape of target:", iris_dataset['target'].shape)
Shape of target: (150,)
Print the entire target variable values of the Iris dataset.
In [12]:
print("Target:\n", iris dataset['target'])
Target:
2 2
2 2]
```

localhost:8888/lab 2/12

Import numpy with import numpy as np and use the numpy.unique() function to print the unique values of the target variable of Iris dataset

```
In [14]:
```

```
import numpy as np
print(np.unique(iris_dataset['target']))
```

```
[0 1 2]
```

Split dataset into train and test datasets using from sklearn.model_selection import train_test_split

```
In [15]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
   iris_dataset['data'], iris_dataset['target'], random_state=0)
```

Print the shape of train/test datasets and the train/test target variables.

```
In [17]:
```

```
print("X_train shape:", X_train.shape)
print("y_train shape:", y_train.shape)

X_train shape: (112, 4)
y_train shape: (112,)

In [18]:

print("X_test shape:", X_test.shape)
print("y_test shape:", y_test.shape)

X_test shape: (38, 4)
y_test shape: (38,)
```

Build your K-neighbors classifier for nearest neighbor of 1 using from sklearn.neighbors import KNeighborsClassifier, fit the model to your train dataset and make a prediction for teh data point of [5, 1.9, 1, 0.2]. Print your prediction class value as an integer and also the corresponding string label.

```
In [23]:
```

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
```

localhost:8888/lab 3/12

```
In [24]:
knn.fit(X_train, y_train)
Out[24]:
KNeighborsClassifier(n_neighbors=1)
In [25]:
X_{new} = np.array([[5, 1.9, 1, 0.2]])
print("X_new.shape:", X_new.shape)
X new.shape: (1, 4)
In [26]:
prediction = knn.predict(X_new)
print("Prediction:", prediction)
print("Predicted target name:",
        iris_dataset['target_names'][prediction])
Prediction: [0]
Predicted target name: ['setosa']
Evaluate your model on the test dataste, print the accuracy of the model
In [27]:
y pred = knn.predict(X test)
print("Test set predictions:\n", y pred)
Test set predictions:
 [2 \ 1 \ 0 \ 2 \ 0 \ 2 \ 0 \ 1 \ 1 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 2 \ 1 \ 0 \ 0 \ 2 \ 0 \ 0 \ 1 \ 1 \ 0 \ 2 \ 1 \ 0 \ 2 \ 2
1 0
 21
In [28]:
print("Test set score: {:.2f}".format(np.mean(y_pred == y_test)))
Test set score: 0.97
In [29]:
print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))
Test set score: 0.97
```

2. Loading a Dataset and exploring it

import the modules needed to explore the data

localhost:8888/lab 4/12

```
In [30]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Import auto_mpg.csv dataset using pandas' read_csv function. Print the first three samples from your dataset, print the index range of the observations, and print the column names of your dataset

In [31]:

```
#filename = '/Users/nihalsahan/Documents/DataScience/AutoMPG/auto-mpg.csv'
#data = pd.read_csv(filename, index_col = 'car name')
data = pd.read_csv('auto_mpg.csv')
print(data.head(3))
print(data.index)
print(data.columns)

output = data.iloc[:,0]
features = data.iloc[:, 1:8]

X = features.values
y = output.values

mpg cylinders displacement horsepower weight acceleration \
```

```
307.0
                                                  3504
0
  18.0
                 8
                                        130.0
                                                                12.0
1
  15.0
                 8
                            350.0
                                        165.0
                                                  3693
                                                                11.5
  18.0
                 8
                            318.0
                                        150.0
                                                  3436
                                                                11.0
   model year origin
                                         car name
0
           70
                    1 chevrolet chevelle malibu
1
           70
                    1
                               buick skylark 320
           70
                    1
                               plymouth satellite
RangeIndex(start=0, stop=398, step=1)
Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
       'acceleration', 'model year', 'origin', 'car name'],
      dtype='object')
```

Assign mpg column as output and name it as y and the rest of the data as the features and assign it to X.

In [32]:

```
output = data.iloc[:,0]
features = data.iloc[:, 1:8]

X = features.values
y = output.values
```

Print the shape of the dataset.

localhost:8888/lab 5/12

```
In [33]:
```

```
data.shape
```

Out[33]:

(398, 9)

Bonus: Check the datasetif there are any missing values in any of the columns using <code>isnull().any()</code> functions.

In [34]:

```
data.isnull().any()
```

Out[34]:

False mpg cylinders False displacement False horsepower False weight False acceleration False model year False origin False car name False dtype: bool

Check the data types of each feature. Which columns are continuous and which are categorical?

```
In [36]:
```

```
# in some datasets, horsepower is object and it needs to be converted to object
# data.horsepower = data.horsepower.astype('float')
data.dtypes
```

Out[36]:

mpg	float64			
cylinders	int64			
displacement	float64			
horsepower	float64			
weight	int64			
acceleration	float64			
model year	int64			
origin	int64			
car name	object			
dtype: object				

localhost:8888/lab 6/12

- · mpg: continuous
- · cylinders: multi-valued discrete
- · displacement: continuous
- · horsepower: continuous
- · weight: continuous
- · acceleration: continuous
- · model year: multi-valued discrete
- · origin: multi-valued discrete
- car name: string (unique for each instance)

Look at the unique elements of horsepower

```
In [37]:
```

```
print(data.horsepower.unique())
[130. 165. 150. 140. 198. 220. 215. 225. 190. 170. 160.
                                                             95.
                                                                        85.
  88.
       46.
            87.
                  90. 113. 200. 210. 193. 104. 100. 105. 175. 153. 180.
       72.
            86.
                  70.
                       76.
                             65.
                                                  54. 208. 155. 112.
 110.
                                  69.
                                       60.
                                             80.
 145. 137. 158. 167.
                       94. 107. 230.
                                       49.
                                             75.
                                                  91. 122.
                                                             67.
                                                                  83.
                                                  53.
                                                       81.
  52.
       61.
            93. 148. 129.
                             96.
                                  71.
                                       98. 115.
                                                             79. 120. 152.
                                             66. 139. 103. 125. 133. 138.
 102. 108.
            68.
                  58. 149.
                             89.
                                  63.
                                       48.
 135. 142.
            77.
                  62. 132.
                             84.
                                  64.
                                       74. 116.
                                                  82.1
```

Let's describe data since everything looks in order.

• See the statistical details of the dataset using describe and info methods.

```
In [40]:
```

```
data.describe()
```

Out[40]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	104.462312	2970.424623	15.568090	76.010050
std	7.815984	1.701004	104.269838	38.199230	846.841774	2.757689	3.697627
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
25%	17.500000	4.000000	104.250000	76.000000	2223.750000	13.825000	73.000000
50%	23.000000	4.000000	148.500000	95.000000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	262.000000	125.000000	3608.000000	17.175000	79.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

localhost:8888/lab 7/12

```
In [41]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
                   Non-Null Count
    Column
                                   Dtype
    ----
 0
    mpq
                   398 non-null
                                   float64
    cylinders
                   398 non-null
                                   int64
 1
 2
                                   float64
    displacement 398 non-null
 3
    horsepower
                   398 non-null
                                   float64
 4
    weight
                   398 non-null
                                   int64
 5
    acceleration 398 non-null
                                   float64
    model year
                   398 non-null
                                   int64
 7
    origin
                   398 non-null
                                   int64
 8
    car name
                   398 non-null
                                   object
dtypes: float64(4), int64(4), object(1)
memory usage: 28.1+ KB
```

Let's specifically look at the description of the mpg feature

```
In [42]:
```

```
pd.set_option('precision', 2)
data.mpg.describe()
Out[42]:
         398.00
count
mean
          23.51
std
           7.82
min
           9.00
25%
          17.50
50%
          23.00
75%
          29.00
          46.60
Name: mpg, dtype: float64
```

Visualize the distribution of the features of the data using hist method, use bins=20.

localhost:8888/lab

In [43]:

```
data.hist(figsize=(12,8),bins=20)
plt.show()
```


• We can see that our variables mpg is skewed to the right. We can also see that our variables are not on the same scale.

BONUS: Visualize the relationships between these data points.

- Create a function to scale your dataset by using the formula \$b=\frac{x-min}{max-min}\$.
- Using this function, scale displacement, horsepower, acceleration, weight, and mpg`.
- Create a boxplot of mpg for different origin values before and after scaling.

localhost:8888/lab 9/12

In [44]:

```
#In order to visualize some relationship between data points, scale them between 0,

def scale(a):
    b = (a-a.min())/(a.max()-a.min())
    return b

# Use a copy of the original dataset
data_scale = data.copy()

data_scale ['displacement'] = scale(data_scale['displacement'])
data_scale['horsepower'] = scale(data_scale['horsepower'])
data_scale ['acceleration'] = scale(data_scale['acceleration'])
data_scale ['weight'] = scale(data_scale['weight'])
data_scale.head()
```

Out[44]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	0.24	8	0.62	0.46	0.54	0.24	70	1	chevrolet chevelle malibu
1	0.16	8	0.73	0.65	0.59	0.21	70	1	buick skylark 320
2	0.24	8	0.65	0.57	0.52	0.18	70	1	plymouth satellite
3	0.19	8	0.61	0.57	0.52	0.24	70	1	amc rebel sst
4	0.21	8	0.60	0.51	0.52	0.15	70	1	ford torino

localhost:8888/lab 10/12

In [45]:

```
#boxplot before the scaling

fig1 = data.boxplot(column = 'mpg', by='origin')
#fig1.axis(ymin=0, ymax=1)
plt.axhline(data.mpg.mean(), color='r', linestyle='dashed', linewidth = 2)
```

/Users/gceran/opt/anaconda3/envs/tensorflow_env/lib/python3.6/site-pack ages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray

return array(a, dtype, copy=False, order=order)

Out[45]:

<matplotlib.lines.Line2D at 0x1a150a47b8>

localhost:8888/lab 11/12

In [46]:

```
#boxplot after the scaling
var = 'origin'
data_plt = pd.concat([data_scale['mpg'], data_scale[var]], axis=1)
f, ax = plt.subplots(figsize=(8, 6))
fig = sns.boxplot(x=var, y="mpg", data=data_plt)
fig.axis(ymin=0, ymax=1)
plt.axhline(data_scale.mpg.mean(),color='r',linestyle='dashed',linewidth=2)
```

Out[46]:

<matplotlib.lines.Line2D at 0x1a15538278>

localhost:8888/lab 12/12