Instrumentation and Modeling of Performance and Power Consumption for Massively Parallel Processors

Chen Song

Heidelberg University chen.song@iwr.uni-heidelberg.de

19/01/2021

GPU Mekong Project - Simplified Multi-GPU Programming

- Aim & Objective: provide a simplified path to scale out the execution of GPU programs from one GPU to almost any number.
- Funding: Federal Ministry of Education and Research of Germany BMBF.
- Funding period: 2017.02. 2020.06.
- Host Institute: Heidelberg University, Germany.
 - Engineering Mathematics and Computing Lab (EMCL), Mathematics Faculty.
 - Computing Systems Group (CSG), Informatics Faculty.
- The name "Mekong".
- Project website: https://www.gpumekong.org/

Research Team

Engineering Mathematics and Computing Lab (EMCL)

Vincent Heuveline

Chen Song

Sotirios Nikas

Simon Gawlok

Computing Systems Group (CSG)

Holger Fröning

Alexander Matz

Highlight Developments within GPU Mekong Project

Mini-Apps:

- Finite Element method (FEM) based CPU-GPU benchmark suites.
- Various solvers and schemes: e.g. CG, GMRES, Multi-Grid, Matrix-Free, ...
- https://emcl-gitlab.iwr.uni-heidelberg.de/mini_apps/Mini-Apps_Public

CUDA Flux:

- Lightweight instruction profiler for CUDA applications.
- PTX level.
- LLVM compiler framework based.
- Low Overhead.
- https://github.com/UniHD-CEG/cuda-flux

• GPU Mangrove:

- Performance & Power prediction model.
- Fast and easy to use.
- Machine learning based.
- https://github.com/UniHD-CEG/gpu-mangrove

19/01/2021

Chen Song HiPEAC Tutorial

HiPEAC Tutorial

- Background:
 - GPU application: typical example for heterogeneous computing.
 - Predictive model can assist the scheduler.
 - Performance and Power are two main metrics for designing algorithms and compute architecture.
- Our predictive model:
 - Simple: only rely on features obtained with minimal overhead.
 - Portable: easily transported to other GPU architectures.
 - Fast: machine learning based model, computing time is limited.
- Toady's tutorial main content:
 - Instrumentation.
 - Predictive model for performance and power.
- Length: full day.
 - Morning: Background and methodology.
 - Afternoon: Tooling and hands-on experiments.
- Publication:
 - A simple model for portable and fast prediction of execution time and power consumption of gpu kernels, ACM Trans. Archit. Code Optim. Dec. 2020.

Program

09:30 - 09:40 09:40 - 10:00 10:00 - 10:30	Introduction General Introduction for GPU Instrumentation in general	Chen Song Holger Fröning Lorenz Braun
10:30 - 11:15	Break	
11:15 - 11:45 11:45 - 12:15 12:15 - 12:45	Instrumentation for performance & power Building predictive models Cluster, tools and exercise introduction	Lorenz Braun Lorenz Braun Yannic Emonds
12:45 - 15:00	Lunch & Keynote	
15:00 - 16:00	Exercise - performance & power measurements	L. Braun & Y. Emonds
16:00 - 16:30	Break	
16:30 - 17:30 17:30 - 18:00	Prediction experiments Summary predictions & wrap-up	Hands-on Lorenz Braun

19/01/2021

6/7

Chen Song HiPEAC Tutorial

Thanks for your attention Enjoy our tutorial

 Chen Song
 HiPEAC Tutorial
 19/01/2021