MA360 2019 - 2020 DS : 1h 3ième année

Questions de cours (4 points):

1. Donner la définition des coefficients de Fourier réels et énoncer le théorème de Dirichlet.

- 2. Donner la transformée de Fourier de $f(t) = \sin(\omega t)$ où $\omega = 2\pi f_0$
- 3. Soit $X \sim \mathcal{N}(m, \sigma)$, donner la densité de X.
- 4. Soit (X,Y) un couple de variables aléatoires de densité f, donner les lois marginales en fonction de f. Démontrer cette propriété.

Exercice 1 (4 points)

Soit le signal triangle f défini par $f(t) = \begin{cases} 1+t & \text{si } t \in [-1;0] \\ 1-t & \text{si } t \in [0;1] \\ 0 & \text{si } |t| > 1 \end{cases}$

1. Calculer la transformée de Fourier de f.

2. En déduire $\int_0^{+\infty} \frac{\sin^4 t}{t^4} dt$

Exercice 2 (3 points)

Soit l'échantillon d'un signal $(x(n))_{0 \le n \le 7}$ de taille N=8 défini par $x(n)=\begin{cases} 1 & \text{si } n=0 \text{ ou } n=4\\ 0 & \text{sinon} \end{cases}$ Calculer la transformée de Fourier discrète (TFD) de ce signal.

Exercice 3 4 points

On admet que le poids d'une personne, en kilogramme, est une variable aléatoire X qui suit une loi normale de moyenne 75 et d'écart-type 4.

- 1. Calculer $\mathbb{P}(X > 80)$ et $\mathbb{P}(65 < X < 85)$.
- 2. Soit $n \in \mathbb{N}^*$. On appelle X_i la variable aléatoire associée au poids d'une ième personne qui monte dans un ascenseur. Ces variables aléatoires sont supposées indépendantes et de même loi que X. On considère la variable aléatoire $S = X_1 + X_2 + ... + X_n$. Déterminer la loi de S.
- 3. Un ascenseur peut porter une charge de 500 kg. Quel est le nombre maximum de personnes que l'on peut autoriser à monter ensemble dans l'ascenseur si on veut que le risque de surcharge ne dépasse pas 10^{-3} ?

Exercice 4 5 points

Soit X une variable aléatoire à densité f définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} \frac{2}{a}(1 - \frac{x}{a}) & \text{si } x \in [0; a] \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que f est bien une densité de probabilité.
- 2. Soit X une variable aléatoire à densité f, calculer pour $k \in \mathbb{N}^*$, $\mathbb{E}(X^k)$. En déduire l'espérance et la variance de X.
- 3. Calculer la fonction de répartition de X.