Introduction to Algorithms

Induction - Graphs

Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1 (So, every tree has a leaf)

Pf: (By contradiction)

Suppose every vertex has degree ≥ 2 .

Start from a vertex \$! and follow a path, $v_1, ..., v_i$ when we are at v_i we choose the next vertex to be different from v_{i-1} . We can do so because $\deg(v_i) \ge 2$.

The first time that we see a repeated vertex $(v_j = v_i)$ we get a cycle.

We always get a repeated vertex because G has finitely many vertices

Trees and Induction

Claim: Show that every tree with n vertices has n-1 edges.

Pf: By induction.

Base Case: n=1, the tree has no edge

IH: Suppose every tree with n-1 vertices has n-2 edges

IS: Let T be a tree with n vertices.

So, T has a vertex v of degree 1.

Remove v and the neighboring edge, and let T' be the new graph.

We claim T' is a tree: It has no cycle, and it must be connected.

So, T' has n-2 edges and T has n-1 edges.

#edges

Let G = (V, E) be a graph with n = |V| vertices and m = |E| edges.

Claim:
$$0 \le m \le \binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$$

Pf: Since every edge connects two distinct vertices (i.e., G has no loops)

and no two edges connect the same pair of vertices (i.e., G has no multi-edges)

It has at most $\binom{n}{2}$ edges.

Sparse Graphs

A graph is called sparse if $m \ll n^2$ and it is called dense otherwise.

Sparse graphs are very common in practice

- Friendships in social network
- Planar graphs
- Web graph

Q: Which is a better running time O(n + m) vs $O(n^2)$?

A: $O(n + m) = O(n^2)$, but O(n + m) is usually much better.

Storing Graphs (Internally in ALG)

Vertex set $V = \{v_1, \dots, v_n\}$

Adjacency Matrix: A

- For all, i, j, A [i, j] = 1 if $(v_i, v_j) \in E$
- Storage: n^2 bits

	2
4	
	3

	1	2	3	4
1	0	0	0	1
2	0	0	1	1
2 3 4	0	1	0	1
4	1	1	1	0

Advantage:

O(1) test for presence or absence of edges

Disadvantage:

 Inefficient for sparse graphs both in storage and edgeaccess

Storing Graphs (Internally in ALG)

Adjacency List:

O(n+m) words

Advantage

- Compact for sparse
- Easily see all edges

Disadvantage

- No O(1) edge test
- More complex data structure

Graph Traversal

Walk (via edges) from a fixed starting vertex *s* to all vertices reachable from *s*.

- Breadth First Search (BFS): Order nodes in successive layers based on distance from s
- Depth First Search (DFS): More natural approach for exploring a maze; many efficient algs build on it.

Applications:

- Finding Connected components of a graph
- Testing Bipartiteness
- Finding Aritculation points

Breadth First Search (BFS)

Completely explore the vertices in order of their distance from *s*.

Three states of vertices:

- Undiscovered
- Discovered
- Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices

BFS implementation

Global initialization: mark all vertices "undiscovered"

```
BFS(s)
   mark s "discovered"
   queue = \{s\}
   while queue not empty
      u = remove_first(queue)
      for each edge {u,x}
          if (x is undiscovered)
             mark x discovered
             append x on queue
      mark u fully-explored
```


BFS Analysis

Global initialization: mark all vertices "undiscovered"

```
BFS(s)
   mark s discovered
                                        O(n) times: Once from
                                     every vertex if G is connected
   queue = \{s\}
   while queue not empty
      u = remove_first(queue)
                                          deg(u) \le O(n) times
      for each edge {u,x}
          if (x is undiscovered)
              mark x discovered
             append x on queue
      mark u fully-explored
```

If we use adjacency list: $O(n) + O(\sum_{v} \deg(v)) = O(n + m)$

Properties of BFS

- BFS(s) visits a vertex v if and only if there is a path from s to v
- Edges into then-undiscovered vertices define a tree –
 the "Breadth First spanning tree" of G
- Level i in the tree are exactly all vertices v s.t., the shortest path (in G) from the root s to v is of length i
- All nontree edges join vertices on the same or adjacent levels of the tree

BFS Application: Shortest Paths

BFS Application: Shortest Paths

Properties of BFS

Claim: All nontree edges join vertices on the same or adjacent levels of the tree

Pf: Consider an edge $\{x,y\}$ Say x is first discovered and it is added to level i. We show y will be at level i or i+1

This is because when vertices incident to x are considered in the loop, if y is still undiscovered, it will be discovered and added to level i + 1.

Properties of BFS

Lemma: All vertices at level *i* of BFS(s) have shortest path distance *i* to s.

Claim: If L(v) = i then shortest path $\leq i$

Pf: Because there is a path of length *i* from *s* to *v* in the BFS tree

Claim: If shortest path = i then $L(v) \le i$

Pf: If shortest path = i, then say $s = v_0$, v_1 , ..., $v_i = v$ is the

shortest path to v.

By previous claim,

$$L(v_1) \le L(v_0) + 1$$

 $L(v_2) \le L(v_1) + 1$

...

$$L(v_i) \le L(v_{i-1}) + 1$$

So,
$$L(v_i) \leq i$$
.

This proves the lemma.