8. Random variables and distributions

Principles of Data Science with R

Dr. Uma Ravat PSTAT 10

We did:

- Probability
 - Definitions
 - Rules of Probability: Addition, complement, multiplication
 - Conditional Probability
 - Mutually exclusive events
 - Independent events

Summary: Basic Probability Theory

- Experiment, Sample space, Events
- Probability Classical(Frequentist) Definition and Simulation based approach
- Probability Properties and Rules:
- 1. The probability of an event A, denoted by P(A), is a number between 0 and 1. 0 < P(A) < 1
- 2. For the sample space S, P(S) = 1
- 3. $P(\emptyset) = 0$; \emptyset is the null/empty set containing no elements.
- 4. Complement: $P(A^c) = 1 P(A)$
- 5. Addition rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - **Special case:** If A and B are mutually exclusive events, that is, $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- 6. Multiplication rule: $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$, where P(B|A) is the probability of event B given that event A happened.
 - **Special case:**If A and B are independent, ie P(B|A) = P(B), then $P(A \cap B) = P(A) \times P(B)$

Next we will see...

- Random Variables: Discrete or Continuous
- Discrete Random variables (By hand and using R)
 - P.m.f
 - Expectation
 - Variance
 - C.d.f

Mutually exclusive and independent events

- Two events, A and B, are independent if the occurrence of one event does not change the probability of the occurrence of the other event
 - P(A|B) = P(A)

- Two events are mutually exclusive if they cannot occur together. $(P(A \cap B) = 0)$
 - P(A|B) = 0

For events A and B

- Addition rule, OR rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - For mutually exclusive events : $P(A \cup B) = P(A) + P(B)$

- Multiplication rule, AND rule: $P(B \cap A) = P(A)P(B|A)$
 - For independent events: $P(A \cap B) = P(A)P(B)$

• Law of total probability: $P(A) = P(A \text{ and } B) + P(A \text{ and } B^c)$

• Law of complement: $P(A^c) = 1 - P(A)$

Random variable

A random variable is a variable whose numeric value is based on the outcome of a random experiment.

- We use a capital letter, like X, to denote a random variable
- The values of a random variable are denoted with a lowercase letter, in this case x
- For example, P(X = x)

Example Toss a fair coin and count number of "H"(or 1).

Outcome	Н	Т
Values: $X = x$	1	0
Probability: $P(X = x)$	1/2	1/2

Two types of random variables

- Discrete RV, where X can take only a finite (or countably infinite) number of values
 - 'things you count'
 - ex.: number of heads in 4 flips, cars that enter in a parking lot in a given period of time, etc.

- Continuous RV, where X can take any value on the real line in a bounded or unbounded interval.
 - 'things you measure'
 - ex.: height of PSTAT 10 students, time till the next bus arrives

Discrete Random variable

Example Flip a fair coin once

$$S = \{H, T\}$$
$$X(H) = 1, X(T) = 0$$

,

$$X = \begin{cases} 1 & \text{if coin lands heads} \\ 0 & \text{if coin lands tails} \end{cases}$$

In words, X = number of heads in one coin flip

Example: Flipping two coins

$$S = \{HH, HT, TH, TT\}$$

$$X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0,$$

$$X = \text{number of heads in flipping two coins}$$

$$X = \begin{cases} 2 & \text{if HH} \\ 1 & \text{if HT or TH} \\ 0 & \text{if TT} \end{cases}$$

In words, X = number of heads in two independent coin flips

Why RV's?

- describe events succinctly
- "Flipping two coins and getting at most one head" or "flipping two coins and getting either no or one head" vs " $X \le 1$ "
- "Flipping two coins" and getting exactly one head " vs "X=1"

Discrete Probability Distribution or p.m.f

A discrete probability distribution, also known as a **probability** mass function or p.m.f, consists of all of the values a random variable can take, along with the corresponding probabilities of taking those values.

Example Flip a fair coin once

Outcome	Н	Т
Values: $X = x$	1	0
Probability: $P(X = x)$	1/2	1/2

Note: The sum of these probabilities must be equal to 1.

Toss a coin twice and record the number of heads.

Outcome	TT	HT	HT	НН
# of Heads	0	1	1	2
Probability	0.25	0.25	0.25	0.25

The resulting pmf is the table

$$\sum_{\mathsf{all} \ \mathsf{x}} P(X = \mathsf{x}) = P(X = 0) + P(X = 1) + P(X = 2) = 1$$

Your turn: Theory

In a game of cards you win \$1 if you draw a heart, \$5 if you draw an ace (including the ace of hearts), \$10 if you draw the king of spades and nothing for any other card you draw. Write the probability mass function for your winnings.

- (What is the experiment?)
- What are the outcomes, sample space?
- What are you interested in counting?
- What is the random variable? it's values and probabilities?

The pmf for card game

Event	X	P(X)	
Heart (not ace)	1	$\frac{12}{52} \approx 0.23$	
Ace	5	$\frac{4}{52} \approx 0.08$	
King of spades	10	$\frac{1}{52} \approx 0.02$	
All else	0	$\frac{35}{52} \approx 0.67$	
Total		1	

The pmf for card game

[1] 0.67 0.23 0.08 0.02

Expected Value of a RV or Expectation

Given a random variable X with probability mass function (p.m.f.) p(x) = P(X = x),

Expected Value of X is

$$E(X) = \sum_{i=1}^{k} x_i p(x_i) = \sum_{i=1}^{k} x_i P(X = x_i)$$

Why?

- interested in what we might expect to see (the average outcome)
- We call this the expected value (mean, average value or expectation),
- It's the average of all possible values of X, weighted by their probabilities.

Your turn: Theory

 ${\sf Calculate\ your\ expected\ winning\ in\ the\ card\ game}.$

EV of card game from theory

Event	X	P(X)	X P(X)
Heart (not ace)	1	12 52	12 52
Ace	5	4 52	<u>20</u> 52
King of spades	10	$\frac{1}{52}$	$\frac{10}{52}$
All else	0	35 52	0
Total			$E(X) = \frac{42}{52} \approx 0.81$

On average, you expect to make 0.81 in this game.

Note Expected value doesn't need to be one of the values that the variable can take.

EV of card game from theory

[1] "ev from theory is $\,$ 0.81 probabilies are $\,$ 0.67 0.23 0.08 0.02"

r 21

From simulation

. This is a right skewed distribution since it has a long tail to the right.

Common Distribution Shapes

Symmetric:

Left-Skewed:

Right-Skewed:

Variability

We are also often interested in the variability in the values of a random variable (around the mean value of the rv).

$$\sigma^{2} = Var(X) = \sum_{i=1}^{k} (x_{i} - E(X))^{2} P(X = x_{i})$$
$$\sigma = SD(X) = \sqrt{Var(X)}$$

Variability of a discrete random variable

For the previous card game example, how much is the variability in the winnings?

$$\sigma^2 = Var(X) = \sum_{i=1}^{k} (x_i - E(X))^2 P(X = x_i)$$

			i=1	
X	P(X)	X P(X)	$(X-E(X))^2$	$(X - E(X))^2 P(X)$
1	12 52	$1 \cdot \frac{12}{52} = \frac{12}{52}$	$(1-0.81)^2 = 0.0361$	$\frac{12}{52} \cdot 0.0361 = 0.0083$
5	<u>4</u> 52	$5 \cdot \frac{4}{52} = \frac{20}{52}$	$(5-0.81)^2 = 17.5561$	$\frac{4}{52} \cdot 17.5561 = 1.3505$
10	$\frac{1}{52}$	$10 \cdot \frac{1}{52} = \frac{10}{52}$	$(10 - 0.81)^2 = 84.4561$	$\frac{1}{52} \cdot 84.0889 = 1.6242$
0	3 <u>5</u> 52	$0\cdot\tfrac{35}{52}=0$	$(0-0.81)^2 = 0.6561$	$\frac{35}{52} \cdot 0.6561 = 0.4416$
		F(X) = 0.81		V(X) - 3 1216

 $SD(X) = \sqrt{3.4246}$

Interpretation

```
## [1] "EV from theory is 0.81"
## [1] "Variance from theory is 3.42"
## [1] "SD from theory is 1.85"
```

Your typical winnings are somewhere between 0.81 \pm 1.85 ie between -1.04 to 2.66

Average of winnings from the 100 simulated games is 0.76

Cumulative distribution function (c.d.f)

For a discrete random variable X, cdf is given by,

$$F(k) = P(X \le k) = \sum_{x \le k} P(X = x)$$

The cumulative distribution function (or CDF) ,F(k) is the probability that the random variable X is at most some particular value k, or no bigger than k ie $P(X \le k)$

 cumsum() function in R executes a cumulative summation element by element For the previous card game example,

X	0	. 1	5.	. 10.
P(X = x)	35/52 = 0.67	12/52 = 0.23	4/52 = 0.08	1/52 = 0.02
$P(X \le x)$	35/52 = 0.67	35/52 + 12/52 = 47/52 = 0.9	47/52 + 4/52 = 51/52 = 0.98	51/52 + 1/52 = 52/52 = 1

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 35/52 & \text{if } 0 \le x < 1\\ 47/52 & \text{if } 1 \le x < 5\\ 51/52 & \text{if } 5 \le x < 10\\ 1 & \text{if } x \ge 10 \end{cases}$$

• What is $P(X \le 7)$? F(7)

Use R

[1] 0.9807692

```
What is P(X \le 7)? ie F(7) using R?
values <-c(0,1,5,10)
p \leftarrow c(35/52, 12/52, 4/52, 1/52)
р
## [1] 0.67307692 0.23076923 0.07692308 0.01923077
cp <- cumsum(p)
ср
## [1] 0.6730769 0.9038462 0.9807692 1.0000000
cp[3]
```

we did:

- Random Variables: Discrete or Continuous
- Discrete Random variables (By hand and using R)
 - P.m.f
 - E(X)
 - V(X)
 - C.d.f