Tandetron üzemeltetési gyakorlat

Asztalos Bogdán, Kadlecsik Ármin, Körtefái Dóra

Mérés időpontja: 2020.02.24-25.

1. Bevezetés

A Tandetron üzemeltetési gyakorlatot az ATOMKI Tandetron Laboratóriumában végeztük el. Megérkezésünket követően megismerkedhettünk a részecskegyorsító rendszer felépítésével, betekintést nyerhettünk, milyen célokra használhatóak a különböző nyalábvégek.

Első délután az 27 Al $(p,\gamma)^{28}$ Si, másnap pedig a 13 C $(p,\gamma)^{14}$ N reakciót vizsgáltuk. Mivel ezeknek a reakcióknak ismerjük a jellemző rezonanciaenergiájukat, alkalmasak a gyorsító energiahitelesítésére. Mindkét esetben a rezonanciaenergia megkeresése mellett a céltárgy vastagságának meghatározása is célunk volt.

Megvizsgáltuk a terminálfeszültség fluktuációját, az úgynevezett TV ripple-t. Hosszabb ideig is mértük a terminálfeszültséget, remélve, hogy láthatjuk benne a kísérlet elvégzése közben általunk irányított változásokat, illetve ellenőrizhetjük a terminálfeszültség stabilitását az éjszaka gyűjtött adatok segítségével.

2. Mérés leírása

2.1. A Tandetron részecskegyorsító felépítése

A részecskegyorsítóhoz tartozik három ionforrás, két multicusp ionforrás He vagy H ionok, illetve Cs-sputtering ionforrás a nehézionok előállítására. A mérésünk során mi végig H ionokkal dolgoztunk. A Tandetron az első szakaszon felgyorsítja a negatív ionnyalábot, majd az argonnal töltött részen megtörténik az elektronok lefosztása. Ezt követően a terminálfeszültség tovább tudja gyorsítani a pozitív nyalábot.

A megfelelő fókuszálást mágneses lencsék, elektrosztatikus kvadrupol triplett és apertúra segítségével valósíthatjuk meg. A nyalábból a megfelelő töltésű és energiájú részecskéket az analizáló mágnessel válogatjuk ki. A mintára a kapcsoló mágnes segítségével vezetjük a nyalábot. Az áramok ellenőrzését a Faraday-csészék teszik lehetővé. A teljes rendszerben megfelelő vákuumot tartanak fenn.

A gyorsító elrendezés főbb részeit a 1. ábrán láthatjuk.

2.2. Az ²⁷Al mintával végzett mérés spektrumainak felvétele

A vezérlő program segítségével betoltuk az egyik Faraday-csészét, majd az analizáló mágnes segítséglvel megkerestük a nyalábáram maximális értékét. Ezt követően a másik Faraday-csészét toltuk be, és a kapcsoló mágnessel a mintára irányítottuk a nyalábot. A gamma fotonokat egy germánium félvezető detektorral észleltük, a spektrumokat az ORTEC MAESTRO szoftverrel vettük fel és jelenítettük meg. A program a csúcsok területének meghatározását is elvégezte. Ennél a mintánál két csúcs volt számunkra fontos, várhatóan 10762 keV-nél és 1779 keV-nél.

Az 27 Al $(p,\gamma)^{28}$ Si két különböző energián felvett spektruma a 2. ábrán látható. Mostanáig a második ütem valósult meg.

$2.3.\ A^{13}{\rm C}$ mintával végzett mérés spektrumainak felvétele

Második reggel a ¹³C mintaval végzett mérés elkezdése előtt el kellett végezni a nyaláb fókuszálását. A treminálfeszültséget a rezonanciának megfelelő értékre állatítottuk, majd az alacsony és magas energiás részen beállítottuk a megfelelő X- és Y-steererket és az

1. ábra. Az elrendezés alaprajza.

2. ábra. Az 27 Al $(p,\gamma)^{28}$ Si folyamat spektruma a rezonancia alatt és felett.

elektrosztatikus kvadrupol tripletteket. A finomhangoláshoz segítségünkre volt a nyomkövetés és a mapping funkciója a programnak. A mérést $0, 5\mu A$ targetárammal szerettük volna elvégezni. Mivel a fókuszált nyaláb ennél nagyobb értéket adott, ezért lecsökkentettük a stripper csatorna nyomását, még elértük a kívánt áramot.

A spektrumok felvétele az előző mintához teljesen hasonlóan zajlott, azzal a különbséggel, hogy most csak egy csúcshoz tartozó területet kellett vizsgálni. Ennek oka az, hogy kü-

lönbözik a reakció bomlássémája. Míg a 27 Al $(p,\gamma)^{28}$ Si először az első gerjesztett állapotra, majd egy 1779 keV energiájú foton kibocsátásával kerül az alapállapotba, a 13 C $(p,\gamma)^{14}$ N reakció esetén legnagyobb valószínűséggel egyből az alapállapotra bomlik. A reakcióra jellemző spektrumok közül kettőt, egyet a rezonancia fölött és egyet az alatt a 3. ábrán láthatunk.

3. ábra. Az $^{13}{\rm C}({\rm p},\gamma)^{14}{\rm N}$ folyamat spektruma a rezonancia alatt és felett.

3. Kiértékelés

3.1. Rezonanciaenergia és céltárgyvastagság meghatározása

A nyaláb útjába kétféle céltárgyat tettünk, ²⁷Al és ¹³C mintát, és ezek relatív hozamát ábrázoltuk a protonenergia függvényében. Az alábbiakban a rezonanciagörbe alapján meghatározzuk a rezonanciaenergia nagyságát, és a céltárgy vastagságát.

3.1.1. ²⁷Al minta

Az itt megfigyelt reakció a $^{27}{\rm Al(p,\gamma)^{28}Si}$ szórás, ami során két foton keletkezik, melyek energiájának irodalmi értéke $10762\,{\rm keV}$ és $1779\,{\rm keV}$. Ezek számát a 2. ábrán látható spektrum kijelölt csatornáinak összegeként mértük. Ezzel ugyan sok olyan csatorna beütésszámát is számításba vesszük, amelyek nem tartoznak a detektálandó energiákhoz, de mivel az ezeken mérhető beütésszám nagyságrendekkel kisebb a csúcsoknál mért beütéseknél, ezért ez nem fog nagy hibát okozni (ahogy azt az 5. ábra alapján megállapíthatjuk majd).

A kisebb energiájú csúcsot meg tudtuk mérni önmagában is, és mivel a környezet alapján illeszthető volt rá egy háttér, ezt levonva, megkaptuk a reakcióban keletkező γ részecskék számát, de a nagyobb energián ez nem tehető meg. Mivel ezen γ foton energiájának nagy része elveszik a párkeltés jelensége miatt, az eredeti csúcs alatt 511 és 1022 keV-vel is megjelennek csúcsok. A több csúcs miatt a háttér nem vonható le egyszerűen, így a csúcsok teljes környezetében lévő beütések számát meg kell mérnünk.

A detektált γ -fotonokat és töltéseket különböző energiák esetén az 1. táblázat tartalmazza. Ezek számát, az ugyanannyi idő alatt mért töltésmennyiséggel normálva, a 4. és

$E_p [\text{keV}]$	töltés $[\mu C]$	$N_{1779\mathrm{keV}}$	$\Delta N_{1779\mathrm{keV}}$	$N_{11\mathrm{MeV}}$	$\Delta N_{11\mathrm{MeV}}$
1005,988	100,44	70	26	170	13,0
1008,012	95,56	91	26	289	17,0
1009,026	95,64	214	34	662	25,7
1009,498	90,80	1406	67	4495	67,0
1009,632	94,66	2560	77	8235	90,7
1009,970	106,70	5840	126	19856	140,9
1010,510	100,22	7482	148	25013	158,2
1010,982	109,14	8811	166	29214	170,9
1012,062	102,68	8288	180	28834	169,8
1016,042	101,11	8851	165	29139	170,7
1020,024	290,17	23341	292	81172	284,9
1021,980	196,34	13010	223	45950	214,4
1024,004	563,65	24166	290	82754	287,7
1026,300	2647,68	56831	438	64623	254,2
1030,010	166,70	857	70	2946	54,3
1035,004	149,98	256	49	813	28,5
1039,998	291,71	294	50	708	26,6

- 1. táblázat. Az $^{27}{\rm Al}(p,\gamma)^{28}{\rm Si}$ reakcióban keletkező, detektált γ részecskék száma, és a mért töltésmennyiség.
- 5. ábrák ábrázolják. Jól látható mindkét ábrán, hogy a rezonancia egy bizonyos energián kezdődik, majd valamivel nagyobb energián lecseng.

A rezonancia felfutására és levágására egy-egy Gauss-eloszlásnak hibafüggvényt illesztettünk, hogy megkapjuk a rezonancia, illetve a lecsengés helyét. Egy x_0 közepű, σ szórású Gauss-eloszlás eloszlásfüggvénye $F_{x_0,\sigma}=\frac{1}{2}\left[1+\mathrm{erf}\left(\frac{x-x_0}{\sqrt{2}\sigma}\right)\right]$. Mivel az illesztésnél megengedtük, hogy az alapvonal és a plató tetszőleges helyen legyenek, ezért az illesztett függvény:

$$f(x) = y_0 + \frac{A}{2} \left[1 + \operatorname{erf}\left(\frac{x - x_0}{\sqrt{2}\sigma}\right) \right]$$
 (1)

ahol y_0 , A, x_0 , és σ az illesztési paraméterek. A két rezonanciagörbe felfutására, és levágására történő illesztés eredménye a 2. táblázatban található. A két grafikon alapján tehát a rezonancia helye $E_{p, \text{ rez}} = 1009, 83 \text{ keV} \pm 0, 38 \text{ keV}$, a levágás helye $E_{p, \text{ le}} = 1024, 15 \text{ keV} \pm 2, 30 \text{ keV}$, tehát a minta vastagsága $d_{\text{Al}} = 14, 3 \text{ keV} \pm 1, 4 \text{ keV}$.

paraméterek	$y_0 [1/\mu C]$	$A [1/\mu C]$	$x_0 [\text{keV}]$	$\sigma [\text{keV}]$
$1779 \mathrm{keV}, \mathrm{fel}$	0.007 ± 0.002	0.822 ± 0.009	$1009,83 \pm 0,01$	0.38 ± 0.01
1779 keV, le	0.830 ± 0.009	-0.816 ± 0.009	$1024,21 \pm 0,06$	$3,05 \pm 0,06$
$10762 \mathrm{keV}, \mathrm{fel}$	0.022 ± 0.001	$2,719 \pm 0,009$	$1009,82 \pm 0,01$	0.37 ± 0.01
$10762 \mathrm{keV}, \mathrm{le}$	$2,741 \pm 0,007$	$-2,695 \pm 0,007$	$1024,08 \pm 0,01$	$1,54 \pm 0,01$

2. táblázat. Az $^{27}{\rm Al}(p,\gamma)^{28}{\rm Si}$ reakció rezonanciagörbéire történő illesztés eredménye.

Az ²⁷Al(p,γ)²⁸Si reakció hozamgörbéje (1779 keV-es csúcs alapján)

4. ábra. Az alumínium céltárgy esetén mért hozamgörbe az alacsony energiás $\gamma\text{-csúcs}$ alapján.

5. ábra. Az alumínium céltárgy esetén mért hozamgörbe az nagy energiás $\gamma\text{-csúcsok}$ alapján.

protonenergia [keV]

3.1.2. ¹³C minta

A mérés során a 13 C(p, γ) 14 N reakciót vizsgáltuk, mely során egy foton keletkezik 9172 keV energiával. Mivel a foton párkeltése itt is jelentős energiát visz el, ezért ebben az esetben is a csúcs környezetében kell mérni a beütések számát (ahogy a 3. ábrán látható).

A mért beütésszámokat a 3. táblázat tartalmazza. A beütésszámokat a töltéssel nor-

$E_p [\text{keV}]$	töltés $[\mu \ C]$	N	ΔN
1743,620	77,23	218	14,76
1745,578	75,05	494	22,23
1746,570	77,22	1528	39,09
1746,994	83,40	6082	77,99
1747,128	75,15	10769	103,77
1747,196	84,12	23021	151,73
1747,332	85,82	35863	189,38
1747,398	82,06	38590	196,44
1747,534	81,64	44101	210,00
1747,668	85,01	47587	218,14
1747,668	62,00	34829	186,63
1747,736	78,09	43518	208,61
1747,872	80,63	44977	212,08
1747,938	76,63	42145	205,29
1748,208	59,77	29884	172,87
1748,680	83,71	30578	174,87
1749,220	90,59	20082	141,71
1750,232	81,26	8035	89,64
1752,190	99,76	3855	62,09
1754,214	101,74	2422	49,21
1756,170	83,88	1464	38,26
1758,196	144,10	2144	46,30

3. táblázat. Az $^{13}{\rm C}(p,\gamma)^{14}{\rm N}$ reakcióban keletkező, detektált γ részecskék száma, és a mért töltésmennyiség.

málva, itt is megkaptuk a rezonanciagörbét, amit a 6. ábrán ábrázoltunk. Mivel ez a céltárgy sokkal vékonyabb volt az előző mérésben használtnál, ezért itt sokkal közelebb van egymáshoz a felfutás és a levágás, így a plató is keskenyebb.

A görbére ezúttal is két az (1) egyenletű görbét illesztettünk, megbecsülve a rezonancia és a levágás helyét, az illesztési paraméterek értékét a 4. táblázat tartalmazza. Ezek alapján tehát a rezonancia helye $E_{p \text{ rez}} = 1747, 22 \text{ keV} \pm 0, 18 \text{ keV}$, a levágás helye $E_{p \text{ le}} = 1749, 08 \text{ keV} \pm 0, 88 \text{ keV}$, a minta vastagsága pedig $d_{\text{C}} = 1, 86 \text{ keV} \pm 0, 53 \text{ keV}$.

paraméterek	$y_0 [1/\mu C]$	$A [1/\mu C]$	$x_0 [\mathrm{keV}]$	$\sigma [\text{keV}]$
9172 keV, fel	0.055 ± 0.002	$5,57 \pm 0,01$	$1747,22 \pm 0,01$	0.181 ± 0.001
9172 keV, le	$5,64 \pm 0,03$	$-5,44 \pm 0,03$	$1749,08 \pm 0,01$	0.88 ± 0.01

4. táblázat. Az $^{13}\text{C}(p,\gamma)^{14}\text{N}$ reakció rezonanciagörbéjére történő illesztés eredménye.

6. ábra. A szén céltárgy esetén mért hozamgörbe.

Reakció	Energia irodalmi értéke [keV]	Mért energia [keV]
$^{27}\mathrm{Al}(\mathrm{p},\gamma)^{28}\mathrm{Si}$	$991,756 \pm 0,017$	$1009,83 \pm 0,38$
$^{-13}\mathrm{C}(\mathrm{p},\gamma)^{14}\mathrm{N}$	1747.6 ± 0.9	$1747,22 \pm 0,18$

5. táblázat. A vizsgált reakciók rezonanciaenergiájának irodalmi értéke és általunk mért értéke.

3.1.3. Energiák összehasonlítása referenciákkal

Az előző két alfejezetben megkaptuk az 27 Al $(p,\gamma)^{28}$ Si valamint a 13 C $(p,\gamma)^{14}$ N reakciók rezonanciaenergiáit. Ezeket az értékeket az irodalmi értékekkel 1 összehasonlítva egy becslést adhatunk a gyorsító névleges energiája, és valódi energiája közötti összefüggésre.

A reakciók energiái és az általunk mért energiák összefoglalva az 5. táblázatban találhatók. Amint látható, a $^{13}\text{C}(p,\gamma)^{14}\text{N}$ reakció mért energiája hibán belül egyezik az irodalmi értékkel, de az $^{27}\text{Al}(p,\gamma)^{28}\text{Si}$ reakció esetében a két energia jelentősen eltér. A különbség oka valószínűleg az, hogy a Tandetron legutóbbi bontásakor kissé megváltozott a GVM kalibrációja, emiatt az energia mérése nem olyan pontos és ebből következik néhány százalék az eltérés.

Mivel a rezonanciagörbéket mindkét esetben viszonylag szépen megkaptuk, és az energiák értékei is elég pontosan kijöttek, ezért az a konklúzió mindenképpen levonható, hogy a nyaláb energiája stabil, mérés végzésére alkalmas, csupán a névleges energiája tér el a részecskék valódi energiájától. Feltételezve, hogy mindkét általunk mért reakció esetén ugyanolyan körülmények befolyásolták az energiamérést, a kettő közötti tartományon interpolálva, felírható a keresett összefüggés:

$$E_{n \text{ valós}} = 1,02503 \cdot E_{n \text{ névleges}} - 43,35 \text{ keV}$$
 (2)

Mivel mi csak két energián mértünk, ez az összefüggés nem olyan pontos mint ha több adatra illesztenénk egy kalibrációs egyenest, de további mérésekkel precízebbé tehető.

¹A reakciók rezonanciaenergiája az alábbi cikkben összegyűjtve megtalálhatók: I. Rajta, et al. NIM A880 (2018) 125.

Így egy adott energiájú folyamat tanulmányozásához a legjobb megoldás a nyalábenergia kalibrálására, ha kimérjük az energia közelébe eső, ismert energiájú reakciókat, és egyenesillesztéssel kalibráljuk a nyalábenergiát.

3.2. A TV ripple vizsgálata

A terminálfeszültség természetes fluktuációit nevezzük TV ripple-nek, ezt egy oszcilloszkóp segítségével mértük meg, melyről kimentett kép a 7. ábrán látható.

7. ábra. A TV-ripple.

A feszültséget egy ezerszeres feszültségosztón keresztül mértük, így az oszcilloszkópról leolvasható 11,9 mV 11,9 V_{RMS} -nek felel meg. Mivel a gyári specifikáció szerint a TV ripple $< 25V_{RMS}$, ezért megállapíthatjuk, hogy valóban megfelel ennek.

3.3. Éjszakai stabilitásvizsgálat

Egy rotációs voltmérő (GVM) segítségével mérhetjük a terminálfeszültség hosszúidejű stabilitását. A rotációs voltmérő egy olyan eszköz, amely MV nagyságrendű feszültségek mérésére is alkalmas. Felépítése egy álló és egy forgó rész, ahol a kimenő váltófeszültség abból adódik, hogy a szigetelt elektróda az egyik félperiódusban látja, a másikban pedig nem látja a terminál elektródát. Így a mért váltófeszültség amplitúdója arányos lesz a terminál feszültséggel.

A mérés eredménye látható a 8. ábrán. A mérést 15:16-kor indítottuk el, amikor még folytak egyéb munkák, így a spektrum elején még a terminálfeszültség aktív változtatása jelenik meg. Látható, hogy kis időbe telt amíg a feszültség stabil értékre állt be, ezt a konvergáló részt az átlag és szórás számításába ezért nem vettük bele.

Az ábrákon csak a feszültség ingadozása lett ábrázolva, ennek az átlagát kiszámolva és a számítógép által mért terminálfeszültséghez hozzáadva megkapjuk az éjszakai mért átlagfeszültséget:

$$U_{\text{atlag}} = (874297.89 + 4.01) \text{ V} = 874.302 \text{ kV},$$
 (3)

ahol az ingadozás átlaga az ábrán is jelölésre került. Az ingadozás standard szórása a vizsgált tartományon $1.938\cdot 10^{-5}$ DCV, mely így jellemzi a stabilitást.

8. ábra. Éjszakai stabilitásvizsgálat, 15:16:13-tól 08:07:46-ig. Az átlag és szórás számítása csak a stabilnak tekinthető tartományon történt, az ábrán a feszültség ingadozása látható.

A mérés során tapasztalt maximum érték 4.00962 DCV volt 16:24:16-kor, a minimum pedig 2.23801 DCV 15:59:56-kor, amely még egyéb mérések lefolyása alatt mért érték, ezért ilyen alacsony.

3.4. Kapcsoló mágnes terének vizsgálata

A kapcsolómágnesbe egy apró Hall-szondát helyezve a mágnes terében történő változások vizsgálhatóak a mérés során. Az első munkanapi vizsgálat eredménye látható a 9. ábrán, 12:51 órától. A második napi mérés során eszközölt változások láthatóak a 10. ábrán, reggel 8:10-től.

Az ábrákon jól láthatóak a mágnesbeli ugrások amikor a kapcsolómágnesen állítottunk a terminálfeszültség változtatása után. A nagy ugrás magyarázata a 10. ábrán egy véletlen hatalmas ugrás a terminálfeszültségben, ami után a mágneseket is újra kellett hangolni, és onnan folytatni a mérést.

9. ábra. Kapcsolómágnes terének vizsgálata 12:51-től, 10s-os időfelbontással mérve.

10. ábra. Kapcsolómágnes terének vizsgálata másnap 08:10-től, 10s-os időfelbontással mérve.

4. Diszkusszió

Mérésünk során megismerkedtünk a Tandetron részecskegyorsító felépítésével és működésével. Azt találtuk, hogy a berendezésre jellemző TV-ripple megfelel a gyári specifikációnak, a terminálfeszültséghez képest annak szórása kicsi, stabilan tudja a beállított feszültséget szolgáltatni. A kapcsolómágnes tere valóban követte a terminálfeszültség vál

tozásáit.

Mindkét vizsgált minta vastagságát és a jellemző rezoncia energiáját is sikerült megállapítani.