* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists.

* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists. If f' exist, we say that f is **differentiable** at x.

* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists. If f' exist, we say that f is **differentiable** at x.

 $* \mathcal{D}(f') \subseteq \mathcal{D}(f)$

* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists. If f' exist, we say that f is **differentiable** at x.

* $\mathcal{D}(f') \subseteq \mathcal{D}(f)$ (If $x \in \mathcal{D}(f) - \mathcal{D}(f')$ and x is not endpoint of $\mathcal{D}(f)$, then x is called singular point of f.)

* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists. If f' exist, we say that f is **differentiable** at x.

- * $\mathcal{D}(f') \subseteq \mathcal{D}(f)$ (If $x \in \mathcal{D}(f) - \mathcal{D}(f')$ and x is not endpoint of $\mathcal{D}(f)$, then x is called singular point of f.)
- * At particular point x_0 :

* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists. If f' exist, we say that f is **differentiable** at x.

- * $\mathcal{D}(f') \subseteq \mathcal{D}(f)$ (If $x \in \mathcal{D}(f) - \mathcal{D}(f')$ and x is not endpoint of $\mathcal{D}(f)$, then x is called singular point of f.)
- * At particular point x_0 :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists. If f' exist, we say that f is **differentiable** at x.

- * $\mathcal{D}(f') \subseteq \mathcal{D}(f)$ (If $x \in \mathcal{D}(f) - \mathcal{D}(f')$ and x is not endpoint of $\mathcal{D}(f)$, then x is called singular point of f.)
- * At particular point x_0 :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ (take } x = x_0 + h)$$

* The **derivative** of *f* is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists. If f' exist, we say that f is **differentiable** at x.

- * $\mathcal{D}(f') \subseteq \mathcal{D}(f)$ (If $x \in \mathcal{D}(f) - \mathcal{D}(f')$ and x is not endpoint of $\mathcal{D}(f)$, then x is called singular point of f.)
- * At particular point x₀:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ (take } x = x_0 + h)$$

* If $f'(x_0)$ exist then the eq. of the tangent line to y = f(x) at $(x_0, f(x_0))$:

$$y = f(x_0) + f'(x_0)(x - x_0).$$

* If the limit exist

$$f'_+(x_0) = \lim_{x \to x_0+} \frac{f(x) - f(x_0)}{x - x_0}$$
 (right derivative at $x = x_0$)

* If the limit exist

$$f'_{+}(x_0) = \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0}$$
 (right derivative at $x = x_0$)

$$f'_{-}(x_0) = \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0}$$
 (left derivative at $x = x_0$).

* If the limit exist

$$f'_{+}(x_0) = \lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0}$$
 (right derivative at $x = x_0$)

$$f'_{-}(x_0) = \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0}$$
 (left derivative at $x = x_0$).

* f is differentiable on [a,b] if f'(x) exists for all x in (a,b) and $f'_+(a)$ and $f'_-(b)$ exist.

Some Examples:

* If
$$f(x) = c$$
, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Some Examples:

* If
$$f(x) = c$$
, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

Some Examples:

* If f(x) = c, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

* If f(x) = x, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Some Examples:

* If f(x) = c, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

* If f(x) = x, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

Some Examples:

* If f(x) = c, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

* If f(x) = x, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

* If
$$f(x) = \sqrt{x}$$
, then

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

Some Examples:

* If f(x) = c, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

* If f(x) = x, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

* If
$$f(x) = \sqrt{x}$$
, then

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

Some Examples:

* If f(x) = c, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

* If f(x) = x, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

* If
$$f(x) = \sqrt{x}$$
, then

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$
$$= \lim_{h \to 0} \frac{1}{(\sqrt{x+h} + \sqrt{x})}$$

Some Examples:

* If f(x) = c, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

* If f(x) = x, then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

* If
$$f(x) = \sqrt{x}$$
, then

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$
$$= \lim_{h \to 0} \frac{1}{(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}}.$$

General Power Rule: If $f(x) = x^r$, then

$$f'(x) = rx^{r-1}$$

for all $r \in \mathbb{R}$ and x for which x^{r-1} makes sense as a real number.

General Power Rule: If $f(x) = x^r$, then

$$f'(x) = rx^{r-1}$$

for all $r \in \mathbb{R}$ and x for which x^{r-1} makes sense as a real number. For example

$$* f(x) = x^{3/2}$$

General Power Rule: If $f(x) = x^r$, then

$$f'(x) = rx^{r-1}$$

for all $r \in \mathbb{R}$ and x for which x^{r-1} makes sense as a real number. For example

*
$$f(x) = x^{3/2} \implies f'(x) = \frac{3}{2}x^{(3/2)-1} = \frac{3}{2}\sqrt{x}$$
 for all $x \ge 0$.

General Power Rule: If $f(x) = x^r$, then

$$f'(x) = rx^{r-1}$$

for all $r \in \mathbb{R}$ and x for which x^{r-1} makes sense as a real number. For example

*
$$f(x) = x^{3/2} \implies f'(x) = \frac{3}{2}x^{(3/2)-1} = \frac{3}{2}\sqrt{x}$$
 for all $x \ge 0$.

Exercise: $f(x) = x^n$ where n = 1, 2, 3, ...

Show that $f'(x) = nx^{n-1}$.

Example

Find the derivative function of f(x) = |x|.

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x = 0

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0}$$

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x}$$

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x}$$

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x} = 1$$

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x} = 1$$

$$f'_{-}(0) = \lim_{x \to 0-} \frac{|x| - |0|}{x - 0}$$

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x} = 1$$

$$f'_{-}(0) = \lim_{x \to 0-} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0-} \frac{|x|}{x}$$

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x} = 1$$

$$f'_{-}(0) = \lim_{x \to 0-} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0-} \frac{|x|}{x} = \lim_{x \to 0-} \frac{-x}{x}$$

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x=0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x} = 1$$

$$f'_{-}(0) = \lim_{x \to 0-} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0-} \frac{|x|}{x} = \lim_{x \to 0-} \frac{-x}{x} = -1.$$

GTU, Fall 2020, MATH 101

Example

Find the derivative function of f(x) = |x|.

Solution: By definition of absolute value function

$$f'(x) = 1$$
 if $x > 0$ and $f'(x) = -1$ if $x < 0$.

f is not differentiable at x = 0 since the left and right derivatives both exist but are not equal:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0+} \frac{|x|}{x} = \lim_{x \to 0+} \frac{x}{x} = 1$$

$$f'_{-}(0) = \lim_{x \to 0-} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0-} \frac{|x|}{x} = \lim_{x \to 0-} \frac{-x}{x} = -1.$$

Then
$$f'(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases} = \frac{x}{|x|} = sgn(x).$$

* To show derivative of y = f(x) we can use:

$$\frac{dy}{dx} = \frac{d}{dx}f(x) \text{ (Leibniz' notation)}$$

* To show derivative of y = f(x) we can use:

$$\frac{dy}{dx} = \frac{d}{dx}f(x) \text{ (Leibniz' notation)}$$

$$f'(x)$$
 (Newton's notation)

* To show derivative of y = f(x) we can use:

$$\frac{dy}{dx} = \frac{d}{dx}f(x) \text{ (Leibniz' notation)}$$

f'(x) (Newton's notation)

or

$$D_{x}y$$
.

* To express the value of the derivative of f(x) at x_0 :

$$\frac{dy}{dx}\Big|_{x=x_0}=\frac{d}{dx}f(x)\Big|_{x=x_0}=f'(x_0)=D_xf(x_0).$$

* To show derivative of y = f(x) we can use:

$$\frac{dy}{dx} = \frac{d}{dx}f(x) \text{ (Leibniz' notation)}$$

$$f'(x)$$
 (Newton's notation)

or

$$D_{x}y$$
.

* To express the value of the derivative of f(x) at x_0 :

$$\frac{dy}{dx}\Big|_{x=x_0}=\frac{d}{dx}f(x)\Big|_{x=x_0}=f'(x_0)=D_xf(x_0).$$

* the symbol $\frac{d}{dx}$ is a differential operator and denoting "the derivative with respect to x of ...".

* To show derivative of y = f(x) we can use:

$$\frac{dy}{dx} = \frac{d}{dx}f(x) \text{ (Leibniz' notation)}$$

$$f'(x)$$
 (Newton's notation)

or

$$D_{x}y$$
.

* To express the value of the derivative of f(x) at x_0 :

$$\frac{dy}{dx}\Big|_{x=x_0}=\frac{d}{dx}f(x)\Big|_{x=x_0}=f'(x_0)=D_xf(x_0).$$

- * the symbol $\frac{d}{dx}$ is a differential operator and denoting "the derivative with respect to x of ...".
 - * $\frac{d}{dx}x^2 = 2x$ (the derivative with respect to x of x^2 is 2x)

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

Solution:

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

$$\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$$

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

$$\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0} = \lim_{h \to 0} \frac{\frac{0+h}{(0+h)^2 + 4} - \frac{0}{0^2 + 4}}{h}$$

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

$$\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0} = \lim_{h \to 0} \frac{\frac{0+h}{(0+h)^2 + 4} - \frac{0}{0^2 + 4}}{h}$$

$$=\lim_{h\to 0}\frac{\frac{h}{h^2+4}}{h}$$

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

$$\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0} = \lim_{h \to 0} \frac{\frac{0+h}{(0+h)^2 + 4} - \frac{0}{0^2 + 4}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{h}{h^2 + 4}}{h} = \lim_{h \to 0} \frac{h}{h^2 + 4} \cdot \frac{1}{h}$$

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

Solution: Put x = 0 in the expression for the Newton quotient before taking the limit:

$$\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0} = \lim_{h \to 0} \frac{\frac{0+h}{(0+h)^2 + 4} - \frac{0}{0^2 + 4}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{h}{h^2 + 4}}{h} = \lim_{h \to 0} \frac{h}{h^2 + 4} \cdot \frac{1}{h} = \lim_{h \to 0} \frac{1}{h^2 + 4}$$

GTU, Fall 2020, MATH 101

Example

Use the definition of the derivative to calculate $\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0}$.

Solution: Put x = 0 in the expression for the Newton quotient before taking the limit:

$$\frac{d}{dx} \left(\frac{x}{x^2 + 4} \right) \Big|_{x=0} = \lim_{h \to 0} \frac{\frac{0+h}{(0+h)^2 + 4} - \frac{0}{0^2 + 4}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{h}{h^2 + 4}}{h} = \lim_{h \to 0} \frac{h}{h^2 + 4} \cdot \frac{1}{h} = \lim_{h \to 0} \frac{1}{h^2 + 4} = \frac{1}{4}.$$

GTU, Fall 2020, MATH 101

The Newton quotient

$$\frac{f(x+h)-f(x)}{h}$$

can be written in the form $\Delta y/\Delta x$ where $\Delta y = f(x+h) - f(x)$ is the increment in y, and $\Delta x = (x+h) - x = h$. Using symbols:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Differentials

Differentials

The differential y = f(x) is defined as:

$$dy = f'(x)dx.$$

Differentials

The differential y = f(x) is defined as:

$$dy = f'(x)dx.$$

The figure below shows the relationship between the increment Δy and the differential dy.

 Δy represent the change in height of the curve y = f(x).

dy represent the change in height of the tangent line when x changes by an amount $dx = \Delta x$.

