N/C101	m ,	1 (1)	0.1	\circ	0010
MS121.	rest	1(1)).	эuп.	CCU.	<i>Z</i> U19

, , , , , , , , , , , , , , , , , , , ,	
Name:	Student No.:

- ?. Let P, Q and R be propositions defined as follows:
- P: Bus 1 is late. Q: Bus 2 is late. R: I get to work.

The compound proposition 'If bus 1 is late and bus 2 is late, then I do not get to work.' can be expressed as

- (A) $R \Rightarrow [(\mathbf{not} \ P) \ \mathbf{or} \ (\mathbf{not} \ Q)]$, (B) $R \Rightarrow [(\mathbf{not} \ P) \ \mathbf{or} \ Q]$,
- $(C) \ R \Rightarrow [(\textbf{not} \ P) \ \textbf{and} \ (\textbf{not} \ Q)], \quad (D) \ P \Rightarrow [(\textbf{not} \ Q) \ \textbf{and} \ (\textbf{not} \ R)]$

Answer: A

The compound statement is $(P \text{ and } Q) \Rightarrow (\text{not} R)$. Using $A \Rightarrow B \equiv (\text{not } B) \Rightarrow (\text{not} A)$, this is equivalent to $\text{not}(\text{not} R) \Rightarrow \text{not } (P \text{ and } Q)$ which in turn is equivalent to $R \Rightarrow [(\text{not } P) \text{ or } (\text{not } Q)]$.

- ?. The negation of Q \Rightarrow P is equivalent to
- $(A)\ P\ \text{and}\ Q,\ \ (B)\ P\ \text{and}\ (\text{not}\ Q),\ \ (C)\ (\text{not}\ P)\ \text{and}\ Q,\ \ (D)\ (\text{not}\ P)\ \text{and}\ (\text{not}\ Q)$ $Answer:\ \boxed{C}$

We know $Q \Rightarrow P$ is equivalent to (notQ) or P so its negation is equivalent to not [(notQ) or P] or Q and (notP).

- ?. The negation of the statement 'All tests are difficult.' is the following:
- (A) All tests are not difficult. (B) All tests are difficult.
- (C) Some tests are not difficult. (D) Some tests are difficult.

Answer: C

Let 't' be a test and P(t) the predicate 'Test t is difficult'. Then the original statement can be expressed as $\forall t, P(t)$ and its negation is $\exists t, \mathbf{not}(P(t))$. This is the statement 'At least one test is not difficult'.

?. A sequence of numbers $x_1, x_2, \ldots, x_n, \ldots$ is defined inductively by $x_1 = 4$ and $x_{k+1} = 3x_k - 2$ for $k \ge 1$.

The numbers x_3 and x_4 take the following values respectively:

(A) 28 and 83, (B) 27 and 82, (C) 28 and 82, (D) 27 and 79.

Answer: C

$$x_2 = 3x_1 - 2 = 10, x_3 = 3x_2 - 2 = 28, x_4 = 3x_3 - 2 = 82.$$