ME4K03 ROBOTICS

Dr. Yan Fengjun

Solutions for Assignment #2

1] a) Frames 0 to 3 are shown on the following illustration:

b) D-H parameters are defined in the following table. The joint variables are shaded.

n+1	θ	d	a	α
1	90°	d ₁	0	90°
2	0 ₂	0	0	90°
3	0	d ₃	0	0

- **c)** All details including frames, joint variables, and non-zero *d* or *a* parameters are shown in the above illustration.
- **d)** A matrices and 0T3 are calculated as follows:

$${}^{n}T_{n+1} = A_{n+1} = \begin{bmatrix} C\theta_{n+1} & -S\theta_{n+1}C\alpha_{n+1} & S\theta_{n+1}S\alpha_{n+1} & a_{n+1}C\theta_{n+1} \\ S\theta_{n+1} & C\theta_{n+1}C\alpha_{n+1} & -C\theta_{n+1}S\alpha_{n+1} & a_{n+1}S\theta_{n+1} \\ 0 & S\alpha_{n+1} & C\alpha_{n+1} & d_{n+1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} C(90^{\circ}) & -S(90^{\circ})C(90^{\circ}) & S(90^{\circ})S(90^{\circ}) & (0)C(90^{\circ}) \\ S(90^{\circ}) & C(90^{\circ})C(90^{\circ}) & -C(90^{\circ})S(90^{\circ}) & (0)S(90^{\circ}) \\ 0 & S(90^{\circ}) & C(90^{\circ}) & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} C\theta_{2} & -S\theta_{2}C(90^{\circ}) & S\theta_{2}S(90^{\circ}) & 0 \\ S\theta_{2} & C\theta_{2}C(90^{\circ}) & -C\theta_{2}S(90^{\circ}) & 0 \\ 0 & S(90^{\circ}) & C(90^{\circ}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C\theta_{2} & 0 & S\theta_{2} & 0 \\ S\theta_{2} & 0 & -C\theta_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} C(0) & -S(0)C(0) & S(0)S(0) & (0)C(0) \\ S(0) & C(0)C(0) & -C(0)S(0) & (0)S(0) \\ 0 & S(0) & C(0) & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{\circ}T_{3} = {}^{\circ}T_{1} {}^{*} {}^{*}T_{2} {}^{*} {}^{*}T_{3} = A_{1} {}^{*}A_{2} {}^{*}A_{3}$$

$${}^{\circ}T_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C\theta_{2} & 0 & S\theta_{2} & 0 \\ S\theta_{2} & 0 & -C\theta_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{\circ}T_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ C\theta_{2} & 0 & S\theta_{2} & 0 \\ S\theta_{2} & 0 & -C\theta_{2} & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ C\theta_{2} & 0 & S\theta_{2} & d_{3}S\theta_{2} \\ S\theta_{2} & 0 & -C\theta_{2} & d_{1} - d_{3}C\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2] a) Frames 0 to 3 are shown on the following illustration:

b)

n+1	θ	d	a	α
1	0 ₁	0	a ₁	0 °
2	0 ₂	0	a ₂	0°
3	0 ₃	0	a 3	0 °

c) All details including frames, joint variables, and non-zero d or a parameters are shown in the previous illustration.

$$\begin{split} ^{w}T_{wtt} &= A_{wt} = \begin{bmatrix} C\theta_{wtt} & -S\theta_{wt}C\alpha_{wtt} & S\theta_{wt}S\alpha_{wtt} & a_{wt}C\theta_{wtt} \\ S\theta_{wt} & C\theta_{wt}C\alpha_{wtt} & -C\theta_{wt}S\alpha_{wtt} & a_{wt}S\theta_{wtt} \\ 0 & S\alpha_{ext} & C\alpha_{wtt} & a_{wt}S\theta_{wtt} \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \\ A &= \begin{bmatrix} C(\theta_{1}) & -S(\theta_{1})C(0) & S(\theta_{1})S(0) & (a_{1})C(\theta_{1}) \\ S(\theta_{1}) & C(\theta_{1})C(0) & -C(\theta_{1})S(0) & (a_{1})S(\theta_{1}) \\ 0 & S(0) & C(0) & 0 & 1 \end{bmatrix} = \begin{bmatrix} C\theta_{1} & -S\theta_{1} & 0 & a_{1}C\theta_{1} \\ S\theta_{2} & C\theta_{1} & 0 & a_{2}S\theta_{1} \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \\ A_{2} &= \begin{bmatrix} C(\theta_{2}) & -S(\theta_{2})C(0) & S(\theta_{2})S(0) & (a_{2})C(\theta_{2}) \\ S(\theta_{2}) & C(\theta_{2})C(0) & -C(\theta_{2})S(0) & (a_{2})S(\theta_{2}) \\ 0 & S(0) & C(0) & 0 & 1 \end{bmatrix} = \begin{bmatrix} C\theta_{2} & -S\theta_{2} & 0 & a_{2}C\theta_{2} \\ S\theta_{2} & C\theta_{2} & 0 & a_{2}S\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ A_{3} &= \begin{bmatrix} C(\theta_{3}) & -S(\theta_{1})C(0) & S(\theta_{1})S(0) & (a_{1})C(\theta_{1}) \\ S(\theta_{3}) & C(\theta_{1})C(0) & -C(\theta_{1})S(0) & (a_{1})S(\theta_{2}) \\ 0 & S(0) & C(0) & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C\theta_{2} & -S\theta_{2} & 0 & a_{2}C\theta_{2} \\ S\theta_{2} & C\theta_{2} & 0 & a_{2}S\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\ S\theta_{3} &= \begin{bmatrix} C(\theta_{1}) & -S(\theta_{1})C(0) & S(\theta_{1})S(\theta_{1}) \\ S(\theta_{1}) & C(\theta_{1})S(0) & (a_{1})S(\theta_{1}) \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C\theta_{2} & -S\theta_{3} & 0 & a_{2}C\theta_{3} \\ S\theta_{2} & C\theta_{2} & 0 & a_{2}S\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ S\theta_{3} &= \begin{bmatrix} C(\theta_{1}) & -S(\theta_{1})C(0) & S(\theta_{1})S(\theta_{1}) \\ S(\theta_{1}) & C(\theta_{1})S(0) & (a_{1})S(\theta_{1}) \\ S(\theta_{2}) & C(\theta_{1})S(0) & (a_{1})S(\theta_{1}) \\ S(\theta_{1}) & C(\theta_{1})S(0) & (a_{1})S(\theta_{1}) \\ S(\theta_{2}) & C(\theta_{2})S(\theta_{2}) \\ S(\theta_{2}) & C(\theta_{2})S(\theta_{2}) \\ S(\theta_{2}) & C(\theta_{2})S(\theta_{2}) \\ S(\theta_{2}) & C$$

] The D-H parameters are given in the table below.

n+1	θ	d	a	α
1	$-\pi/2$	0	-1	$\pi/2$
2	±π	-0.7	0.25	±π
3	0	0	-0.5	$\pi/2$
4	$\pi/4$	0	2.121	$\pi/2$