### O algoritmo de conversão de Autômato Finito Não-Determinístico - AFND para Expressão Regular - ER

Eduardo Couto Dinarte, Iago Gade Gusmao Carrazzoni, Lucca Maciel de Moraes

24 de Novembro de 2018

#### Resumo

Este artigo consiste na apresentação e explicação de um algoritmo para converter um Autômato Finito Não Determinístico em um Autômato Finito Determinístico e, por fim, converter este em uma Expressão Regular. O método consiste em apresentar a teoria com imagens dos três estados da conversão seguida de um exemplo prático. O objetivo deste texto é fixar o conteúdo de conversão de autômatos e familiarizar os autores com a produção de artigos científicos utilizando a linguagem LaTex.

### 1 Introdução aos Autômatos

Um autômato é uma máquina abstrata que deve operar entre estados previamente definidos. É um modelo matemático utilizado para representar programas ou circuitos lógicos. É bem definido por uma quíntupla, cujos elementos são:

- Conjunto de estados (K);
- Alfabeto (A);
- Estado inicial (S);
- Conjunto de estados finais (F);
- Função de transição (ou função  $\Delta$ ).

A função de transição, por sua vez, é representada por uma tripla ordenada, onde os elementos são:

- Estado inicial;
- Transição;
- Estado final;

## ${\bf 2}$ Introdução ao Autômato Finito Não-Determinístico - AFND

Autômato finito não determinístico é aquele em que, em algum momento, não se tem certeza de qual é o estado atual, ou seja, é aquele que tem a palavra vazia ligando algum de seus estados. Segue um exemplo a seguir:



# 3 Introdução ao Autômato Finito Determinístico - AFD

Autômato finito determinístico é aquele em que se sabe exatamente qual o estado atual, ou seja, é aquele que não tem estados simultâneos (estados ligados por palavras vazias).



### 4 Introdução à Expressão Regular - ER

Expressão regular é uma cadeia de caracteres que engloba todas as palavras aceitas pelo autômato. Um autômato reduzido a expressão regular possui apenas um estado inicial e um estado final, ligados pela expressão regular.



No tipo citado, é comum a aparição do caractere  $\vee$ , assim como o parêntese. Este se aplica da mesma forma que na matemática. Aquele é o conectivo lógico 'ou', que se aplica da mesma forma que na lógica.

Também é comum a aparição do caractere '\*' na expressão regular. Ele se chama estrela de Kleene, e denota zero ou mais repetições do caractere ( ou cadeia de caracteres ) ao qual foi aplicado.

No exemplo acima, a estrela de Kleene foi aplicada ao caractere 'a' e à expressão (b  $\vee$  c). Neste, quer dizer que zero ou mais repetições da cadeia denotada serão aceitas, enquanto naquele, zero ou mais repetições do caractere denotado serão aceitos.

### 5 Conversão de AFND para AFD

Para essa conversão, é utilizado o Algoritmo de Conversão de um Autômato Finito Não-determinístico (AFND) em um Autômato Finito Determinístico, que consiste em:

- Identificar os estados simultâneos do AFND;
- Identificar o estado inicial P0, o qual seu conjunto possui apenas o estado inicial da AFND;
- Aplicar em P0 a leitura de todo o alfabeto. O conjunto novo será composto pelo lugar da chegada;
- Identificar os estados resultantes;
- Para cada estado resultante criado, aplica-se o alfabeto;
- Repetir o procedimento até que não existam mais estados novos;
- Identificar os estados finais, que serão aqueles estados que possuírem os estados finais da AFND;
- Montar a quíntupla do AFD;
- Por fim, esboçar o grafo.

Para exemplificar, será realizada a conversão do AFND a seguir, cuja quíntupla

```
K = \{0, 1, 2, 3, 4, 5\}
```

 $A = \{a, b, c\}$ 

 $S = \{0\}$ 

 $F = \{3, 4\}$ 

 $\Delta =$ 

 $(0, \epsilon, 1),$ 

 $(0, \epsilon, 2),$ 

(1, b, 3)

(1, a, 5),

(2, a, 5)

 $(2, \mathbf{a}, \mathbf{5})$ 

(3, a, 3),

(3, c, 4),

(5, c, 5), (5, b, 4).



Daqui em diante as seguintes notações serão usadas:

- E(x): denota o conjunto de estados simultâneos a x;
- P(x): denota um estado maior, que engloba vários outros;
- D(P(x), A): denota a função delta de P(x) aplicando o alfabeto.

Seguindo o algoritmo, o procedimento será o seguinte:

• Identificar os estados simultâneos do AFND:

$$E(0) = \{0, 1, 2\}$$

$$E(1) = \{1\}$$

$$E(2) = \{2\}$$

$$E(3) = \{3\}$$

$$E(4) = \{4\}$$

$$E(5) = \{5\}$$

 identificar o estado inicial P0, o qual seu conjunto possui o estado inicial da AFND:

$$P(0) = E(0) = \{0, 1, 2\}$$

• aplicar em P0 a leitura de todo o alfabeto. O conjunto novo será composto pelo lugar da chegada:

$$D(P(0), a) = (1, a, 5) U (2, a, 5) = E(5) U E(5) = \{5\}$$

$$D(P(0), b) = (1, b, 3) = E(3) = \{3\}$$

$$D(P(0), c) = vazio$$

• Identificar os estados resultantes:

$$P(1) = D(P(0), a) = E(5) = \{5\}$$

$$P(2) = D(P(0), b) = E(3) = \{3\}$$

• para cada estado resultante criado, aplica-se o alfabeto:

$$D(P(1), a) = vazio$$

$$D(P(1), b) = (5, b, 4) = E(4) = \{4\}$$

$$D(P(1), c) = (5, c, 5) = E(5) = \{5\}$$

$$D(P(2), a) = (3, a, 3) = E(3) = \{3\}$$

$$D(P(2), b) = vazio$$

$$D(P(2), c) = (3, c, 4) = E(4) = \{4\}$$

• repetir o procedimento até que não existam mais estados novos:

$$\begin{split} &D(P(1),\,b) = P(3) = E(4) = \{4\} \\ &D(P(1),\,c) = P(1) = E(1) = \{1\} \\ &D(P(2),\,a) = P(2) = E(2) = \{2\} \\ &D(P(2),\,c) = P(3) = \{4\} \\ &D(P(3),\,a) = vazio \\ &D(P(3),\,b) = vazio \\ &D(P(3),\,c) = vazio \end{split}$$

• identificar os estados finais, que serão aqueles estados que possuírem os estados finais do AFND:

$$F = P(1), P(3)$$

• montar a quíntupla do AFD:

$$K = \{P(0), P(1), P(2), P(3)\}$$

$$A = \{a, b, c\}$$

$$S = \{P(0)\}$$

$$F = \{P(2), P(3)\}$$

Pode ser difícil observar os elementos da função delta. Eles serão todos os D(P(x), 'caractere') que calculamos. Assim:

 $\begin{array}{l} \Delta = \\ (\text{P0, a, P1}), \\ (\text{P0, b, P2}), \\ (\text{P1, b, P3}), \\ (\text{P1, c, P1}), \\ (\text{P2, a, P2}), \\ (\text{P2, c, P3}). \end{array}$ 



#### 6 Conversão AFD - ER

Nessa conversão, o número de transições que o estado inicial possui será muito importante: a ER será uma composição das expressões obtidas seguindo cada um dos caminhos a partir do estado inicial. Por exemplo, se o estado inicial possui três transições para outros estados, a ER será uma composição de três expressões, separadas, na ER final, pelo conectivo lógico 'OU'. Em suma, se há três caminhos, é possível seguir pelo primeiro OU pelo segundo OU pelo terceiro. Essa lógica se mantém na ER. Esclarecida esta questão, inicia-se o algoritmo.

- Identificar a quantidade de transições do estado inicial.
   Nº de transições do estado inicial: 2.
- Criar dois outros estados. Um estará ligado aos estados finais do autômato por uma palavra vazia, enquanto o outro estará ligado ao estado inicial pela mesma. Aquele ligado ao estado inicial passará a ser o novo estado inicial, enquanto o ligado aos estados finais, passará a ser o estado final. Eles serão os únicos existentes na ER.



Colapsar estados até que só reste os dois criados. Consiste em retirar um estado, ligando o estado de chega nele ao estado no qual ele chega. A escolha do estado a se colapsar é completamente arbitrária.
No exemplo, os primeiros estados a serem colapsados serão o P4 e o P2.
A única transição nesses estados tem os mesmos como estado inicial e final. Portanto, é a mais simples situação a se considerar. Basta inserir A\* na transição, onde A é um caractere qualquer.



Colapsando simultaneamente os estados P3 e P4, vem:



A transição que liga P4 a P5 é a expressão regular.