Principal component analysis

Anonymous

2021-10-26

Contents

1.	Setting up	1
	1.1 Load the required packages	1
	1.2 Import the data	1
	1.3 Transform variables	1
	1.4 Select the variables and rearrange the table	2
2.	Run the principal component analysis	2
	2.1 Run the PCA on the data matrix	2
	2.2 Check some diagnostics	2
	Run the principal component analysis 2.1 Run the PCA on the data matrix	2
3.	Plot the principal component analysis	3
	3.1 Biplot of PC1 and PC2	3
1.	1. Setting up	
1.	1 Load the required packages	

1.2 Import the data

using Pkg, Weave, CSV, DataFrames, Plots, MultivariateStats, Statistics

1.3 Transform variables

```
# Square root of ambush time and chase duration
data[:, :sqrt_ambush_time] = sqrt.(data[:, :ambush_time_close])
data[:, :sqrt_total_chase_duration] = sqrt.(data[:, :total_chase_duration])
```

```
# Log+1 of the latency and chase count
data[:, :log_latency_1st_capture] = log1p.(data[:, :latency_1st_capture])
data[:, :log_chase_count] = log1p.(data[:, :chase_count])
```

1.4 Select the variables and rearrange the table

2. Run the principal component analysis

2.1 Run the PCA on the data matrix

```
# Fit the pca to the data matrix
pca = fit(PCA, data_matrix; pratio = 1, maxoutdim = 4)

PCA(indim = 6, outdim = 4, principalratio = 0.9953922286008744)
```

2.2 Check some diagnostics

```
# Total variance
principalvars(pca)

# % of variance
principalvars(pca) ./ tvar(pca) * 100

4-element Vector{Float64}:
   74.87038460871871
   16.657100394028987
   7.397625179339015
   0.6141126780007244
```

2.3 Transform observations to principal components

```
transformed = projection(pca)' * (data_matrix .- mean(pca))

4×80840 Matrix{Float64}:
-15.7302 -3.51424 6.16461 ... -11.7483 -9.83942 3.60072
-6.01508 -6.69037 -4.15033 1.80566 2.24093 0.0646238
-1.75506 -2.12256 -3.53524 1.59429 0.399181 -0.86747
```

3. Plot the principal component analysis

3.1 Biplot of PC1 and PC2


```
legend = :bottomleft);
end
display(biplot)
```

