中国人民大学 2018-2019春季学期 数学分析期中考试

Edited by G.Cui

-. 设k是正整数.

- 1. 证明: $\int_0^{2\pi} \sin^{2k-1} x dx = 0$, $\int_0^{2\pi} x \sin^{2k-1} x dx = -\pi \int_0^{\pi} \sin^{2k-1} x dx$;
- 2. 计算: $\int_0^{\pi} x \sin^{2k-1} x dx$.

- 1. 记 D_1 : $y = e^x 1$. 求 D_1 , y = x, x = 1 围成的图形的面积以及 D_1 在 [0,1] 上的弧长.
- 2. 记 D_2 : $y = -\sqrt{x}$. 求 D_2 , y = x, x = 1 围成的图形绕 x 轴旋转一周形成的几何体的体积和侧面积.
- 三. 设函数f(x), g(x)在 [a,b] 可积. 对于 [a,b] 的任意划分 Δ : $a=x_0 < x_1 < \cdots < x_{n-1} < x_n = b$, 记 $\Delta x_k = x_k x_{k-1} (k=1,2,\ldots,n)$, $\lambda(\Delta) = \min_k \{\Delta x_k\}$. 求证:

$$\lim_{\lambda(\Delta) \to 0} \sum_{k=1}^{n} [f(x_{k-1}) + g(x_k)]^2 \Delta x_k = \int_a^b [f(x) + g(x)]^2 dx.$$

并求下列极限:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \left[\left| \frac{k-1}{n} - \frac{1}{2} \right| - \operatorname{sgn}\left(\frac{k}{n} - \frac{1}{2}\right) \right]^{2} \frac{1}{n}.$$

四. 判断下列广义积分敛散性.

$$\int_0^{+\infty} \sin(\frac{1}{x^{\alpha}}) \ln x \mathrm{d}x.$$

参考答案

҆

1. **证明**. 先考察 $\int_0^{2\pi} \sin^{2k-1} x dx$. 原式 = $\{\int_0^{\pi} + \int_{\pi}^{2\pi}\} \sin^{2k-1} x dx$. 在后一积分中令 $x = 2\pi - t$, 得 $I_2 = \int_{\pi}^0 \sin^{2k-1} (2\pi - t) d(2\pi - t) = -\int_0^{\pi} \sin^{2k-1} t dt$. 所以原式 = 0.

再考察 $\int_0^{2\pi} x \sin^{2k-1} x dx$. 原式 = $\{\int_0^{\pi} + \int_{\pi}^{2\pi} \} x \sin^{2k-1} x dx$.

在后一积分中令 $x = \pi + t$, 得 $I_2 = \int_0^{\pi} (\pi + t) \sin^{2k-1}(\pi + t) d(\pi + t) = -\int_0^{\pi} (\pi + t) \sin^{2k-1} t dt$. 所以原式 $= -\pi \int_0^{\pi} \sin^{2k-1} x dx$.

2. **解:** 原式 = $\{\int_0^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\pi} \} x \sin^{2k-1} x dx$. 在后一积分中令 $x = \pi - t$, 得 $I_2 = \int_{\frac{\pi}{2}}^{0} (\pi - t) \sin^{2k-1} (\pi - t) d(\pi - t) = \int_0^{\frac{\pi}{2}} (\pi - t) \sin^{2k-1} t dt$. 所以原式 = $\pi \int_0^{\frac{\pi}{2}} \sin^{2k-1} x dx$. 由课本例题¹知,原式 = $\pi \frac{(2k-2)!!}{(2k-1)!!}$.

- 1. **M**: $S = \int_0^1 (e^x 1 x) dx = e \frac{5}{2}$. $l = \int_0^1 \sqrt{1 + e^{2x}} dx = \int_{\sqrt{2}}^{\sqrt{1 + e^2}} \frac{u^2}{u^2 - 1} du = \int_{\sqrt{2}}^{\sqrt{1 + e^2}} \left[1 + \frac{1}{2(u - 1)} - \frac{1}{2(u + 1)}\right] du = \sqrt{1 + e^2} - \frac{1}{2(u - 1)} + \frac{1$
- 2. **解:** 注意到: 在 [0,1] 上, 有 $\sqrt{x} \ge x$. 结合对称性知, 旋转几何体与 $y = -\sqrt{x}$, $x \in [0,1]$ 绕 x 轴旋转一周形成的几何体完全相同. 所以 $V = \pi \int_0^1 x dx = \frac{1}{2}\pi$. $F = 2\pi \int_0^1 \sqrt{1 + \frac{1}{4x}} \sqrt{x} dx = \frac{5\sqrt{5}-1}{12}$.

 \equiv .

证明. 等式右侧积分 $\int_a^b [f(x) + g(x)]^2 dx = \lim_{\lambda(\Delta) \to 0} \sum_{k=1}^n [f(\xi_k) + g(\xi_k)]^2 \Delta x_k$. 作差:

$$\left| \sum_{k=1}^{n} [f(x_{k-1}) + g(x_k)]^2 \Delta x_k - \sum_{k=1}^{n} [f(\xi_k) + g(\xi_k)]^2 \Delta x_k \right|$$

^{1《}数学分析》(第三版 上册) 复旦大学数学系. 欧阳光中 等 编. pp.310. 例7

$$= |\sum_{k=1}^{n} [f(x_{k-1}) + f(\xi_k) + g(x_k) + g(\xi_k)][f(x_{k-1}) - f(\xi_k) + g(x_k) - g(\xi_k)] \Delta x_k|.$$
 (1)

分别记 f, g 在 $[x_{k-1}, x_k]$ 上的振幅为 $\omega_k(f)$ 和 $\omega_k(g)$. 又因为 f(x), g(x) 在 [a, b] 上都可积, 所以 $|\sum_{k=1}^n \omega_k(f) \Delta x_k| \to 0, |\sum_{k=1}^n \omega_k(g) \Delta x_k| \to 0, (\lambda(\Delta) \to 0),$

并且 $\exists M > 0$, 使得 |f(x)| < M, |g(x)| < M.

于是
$$(1)$$
式 $< |4M \cdot \sum_{k=1}^{n} [\omega_k(f) + \omega_k(g)] \Delta x_k| \to 0, (\lambda(\Delta) \to 0)$ 这就证明了左右相等.

下面考察 $\lim_{n\to+\infty}\sum_{k=1}^n[|\frac{k-1}{n}-\frac{1}{2}|-\mathrm{sgn}(\frac{k}{n}-\frac{1}{2})]^2\frac{1}{n}$. 令 $f(x)=|x-\frac{1}{2}|$, $g(x)=\mathrm{sgn}(x-\frac{1}{2})$. 考虑把 [0,1] 区间 n 等分,于是 $x_i=\frac{i}{n},\ i=0,1,\ldots,n$. 显然 $f(x),\ g(x)$ 在 [0,1] 都可积,则由上面的证明得:

原式 =
$$\int_0^1 [|x - \frac{1}{2}| + \operatorname{sgn}(x - \frac{1}{2})]^2 dx = \{\int_0^{\frac{1}{2}} + \int_{\frac{1}{2}}^1 \} [|x - \frac{1}{2}| + \operatorname{sgn}(x - \frac{1}{2})]^2 dx$$

= $\int_0^{\frac{1}{2}} (x + \frac{1}{2})^2 dx + \int_{\frac{1}{2}}^1 (x + \frac{1}{2})^2 dx = \int_0^1 (x + \frac{1}{2})^2 dx = \frac{13}{12}.$

四. **解**: 令 $x = \frac{1}{t}$, 原积分 = $-\int_0^{+\infty} \frac{\sin(t^\alpha) \ln t}{t^2} dt$, 所以只需考察 $\int_0^{+\infty} \frac{\sin(x^\alpha) \ln x}{x^2} dx$.

$$\int_0^{+\infty} \frac{\sin(x^{\alpha}) \ln x}{x^2} dx = \left\{ \int_0^1 + \int_1^{+\infty} \right\} \frac{\sin(x^{\alpha}) \ln x}{x^2} dx = I_1 + I_2.$$

先考察 I_1 : 由于 $sin(x^{\alpha}) \sim x^{\alpha}$, $(x \to 0)$, 所以 $\frac{\sin(x^{\alpha}) \ln x}{x^2} \sim x^{\alpha-2} \ln x$.

첫
$$\forall \varepsilon > 0$$
, $\lim_{x \to 0} x^{2-\alpha+\varepsilon} x^{\alpha-2} \ln x = \lim_{x \to 0} x^{\varepsilon} \ln x = 0$.

由 Cauchy 比较法以及 ε 的任意性得, 当 $2-\alpha+\varepsilon<1$, 即 $\alpha>1+\varepsilon>1$ 时, I_1 (绝对)收敛; 当 $\alpha\leq1$ 时, I_1 发散.

考察 I_2 : 当 x 充分大时, $\left|\frac{\sin(x^{\alpha})\ln x}{x^2}\right| \leq \left|\frac{\ln x}{x^2}\right| \leq \left|\frac{x^{\frac{1}{2}}}{x^2}\right| = \frac{1}{x^{\frac{3}{2}}}$. 由 Cauchy 比较法知,对 $\forall \alpha \in \mathbb{R}, I_2$ 都(绝对)收敛.

综上: 当 $\alpha > 1$ 时, 原积分绝对收敛; 当 $\alpha \le 1$ 时发散.