- · N=400 composies
- . U= 150 lakhs
 - 6 = 20 lakhs.
- (i) Ear 100 larts

Zuariate 2=100

using formula
$$z = x - u$$

$$Z = 100 - 150$$
 20
 $= 50$
 20

) for
$$138$$
 larchs $x = 138$

wing
$$z_1 = z_1 - 0$$

$$= 138 - 150$$

$$z_2 = -0.6$$

$$= 0.2687$$
 area $= 6100 - 2.5 < 25 < -0.6$

) (a)	1	T E.		1000	T 672	· Ho = Thou is no diff blu Qi & E friguer 1. HI = There is diff blu
	Qu	Ei_	Oi-Ei	(a-Fi)	Q: EDZ	
RSY	315	312,75	2.25	5.0625	0.0161	0,1 \$
		7				· Significan
w & 7	101	104.25	3.25	10.5625	0.1013	Jen. = 57.
	3/14/19/19		Draw	1005-55		子,815
RSG	108	104.25	3.75	14.0625	0.1348	· Test stocke.
				1.000		
	A CA		2.75	7.5625	0.2176	
W&G	32	34,75	2-10	1 .36 25	10 2110	

Ei = 9:3:3:1

Toda = 16

For expected frequencies Ei:

For RDY= 9 x 556= 312.75

· For Wab = 1 x 551 = 94.75

· For WST = 3 x 556 = 104.25

· Ea PS6= 3 x 651=0 (0.4.25

It is farmula. $y_2 = 2 \left(\frac{\alpha i - E_i}{E_i} \right)^2$ - 0.4698 Combision

42(Cal) < 42 (Jato) 0.4698 7.815 & Ho is arripted. Section - B

1 (2 boy \$ 3gruel) = n Cn pr qn-4 = 5C2 p2 q2 25 6 (1/2) 26 (1/2) 3 25 3 4 4 8 2 16 No. of familee with 2 boy \$ 2 gill = 5 320 = 100 r of faule with 2 boy & 3 girls = 100 + 100 = 31.25 %. D (x21,2,3,4,0), 1-19(x20) 21-Plopegs 21-(1/2)3 = 1-1 = 31 No of fauille with at least one boy · 320631 = 310 1. By of familes with at leas du boy · 320 × 100 : 96.88 4.

3.b N2. n=5

n=5

Section-B.

Sol7 = 30) defects $\rightarrow 1,3,5,0,6,0,9,4,4,3$ C = Total no. of defects - 35 = 3-5Total No. of Sample 10

$$C = Total no. Graphe 10$$
 $CL = C = 3:5$

 $UCL = \overline{C} + 3\overline{D}\overline{C} \rightarrow 3.5 + 3\overline{D}.5 = 9.112$ $LCL = \overline{C} - 3\overline{D}\overline{C} \rightarrow 3.5 - 3\overline{D}.5 = -2.112$

Ans 3b
$$N = 320$$
 $n = 5$
 $p(prob of being boy) = \frac{1}{2}$
 $p(being guil) = \frac{1}{2}$

$$P(2boys £3 globs) = N \cdot nc_{\sigma} b^{r} \cdot q^{q}$$

here $\sigma = 2$

$$= 320 \times 5_{C_2} (\frac{1}{2})^2 (\frac{1}{2})^3$$

$$= 320 \times \frac{5!}{2!3!} \cdot \frac{1}{2!5}$$

$$= 320 \times \frac{14 \times 5}{2} \cdot \frac{1}{25}$$

$$= 320 \times 10 \times \frac{1}{32} = 100$$

out of 320 families only 100 families having 2 boys 2 3 girls.

Required percentage =
$$\frac{100}{320} \times 100 = \frac{1000}{32}$$

$$P(x=1,2,3,4,5) = 1 - P(x=0)$$

$$= 1 - 1 \times \frac{1}{32}$$

$$= 1 - \frac{1}{32} = \frac{31}{32}$$

• for the family having at least one boy =
$$\frac{31}{32} \times 100 = \frac{3100}{32} = 96.875\%$$

work has some workbook 0-94 same

Ang 2b Two properties of MaG. F

Let M.G. F of a R.V X M

Mx Lt) = E(ext), ter

property 1: Mx (ct) = Mx (ct), cui any content this property is called Translation property

property 2: 9f x_1 & x_2 are two independent random variable then $M_{x_1+x_2}(t) = M_{x_1}(t) \cdot M_{x_2}(t)$

property3:

the M. G. F. of a distribution, if it exists, uniquely determines the distribution Ang 2b Two properties of Mac. F

Let M.C. F of a R.V X M

Mx Lt) = E(ext), ter

property 1: Mexicold - Mx Ect?, cui any
this property is called Translation property

property 2: 9f \times_1 & \times_2 are two independent random variable then $M_{(X_1+X_2)}(t) = M_{X_1}(t) \cdot M_{X_2}(t)$

property3:

the M. G. F. of a distorbution, if it exists, uniquely determines the distribution