# On the computation and inversion of the Normal Inverse Gaussian cumulative distribution function

#### Guillermo Navas-Palencia

#### g.navas.palencia@gmail.com

 $\mathrm{June}\ 23,\ 2024$ 

#### Abstract

Abstract

# Contents

| 1 | Introduction                                         | 2                                                                    |  |  |  |  |  |  |  |  |
|---|------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 2 | Distribution properties 2.1 Density function         | 2<br>2<br>2<br>3                                                     |  |  |  |  |  |  |  |  |
| 3 | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 3<br>3<br>4<br>7<br>9<br>9<br>10<br>11<br>11<br>12<br>12<br>12<br>13 |  |  |  |  |  |  |  |  |
| 4 | 4.1 Handling large parameters                        | 13<br>13<br>13<br>13<br>14<br>14                                     |  |  |  |  |  |  |  |  |
| 5 | Numerical experiments 14                             |                                                                      |  |  |  |  |  |  |  |  |
| 6 | Conclusions                                          | 14                                                                   |  |  |  |  |  |  |  |  |
|   | A.0.1 Expansion $t \to 0$                            | 14<br>14<br>15<br>16                                                 |  |  |  |  |  |  |  |  |

#### 1 Introduction

## 2 Distribution properties

Variance-mean mixture distribution

$$Z \sim \mathcal{IG}(\delta \gamma, \gamma^2), \quad X \sim \mathcal{N}(\mu + \beta Z, Z),$$
 (2.1)

where  $\gamma = \sqrt{\alpha^2 - \beta^2}$ . The domain of the parameters is

$$0 < |\beta| < \alpha, \quad \mu \in \mathbb{R}, \quad \delta > 0. \tag{2.2}$$

#### 2.1 Density function

The density function is given as

$$f(x;\alpha,\beta,\mu,\delta) = \frac{\alpha\delta}{\pi} \frac{K_1 \left(\alpha\sqrt{\delta^2 + (x-\mu)^2}\right)}{\sqrt{\delta^2 + (x-\mu)^2}} e^{\delta\gamma + \beta(x-\mu)}$$
(2.3)

Parameterization: Standard case  $\mu = 0$  and  $\delta = 1$ . The parameters have the following interpretation:  $\alpha$  is the tail heaviness,  $\beta$  is the asymmetry or skewness,  $\mu$  is the location parameter and  $\delta$  the scale parameter. Where  $\mu$  is the location of the density,  $\beta$  is the skewness parameter,  $\alpha$  measures the heaviness of the tails.

#### 2.2 Cumulative distribution function

The cumulative distribution function is given by

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\alpha \delta e^{\delta \gamma}}{\pi} \int_{-\infty}^{x} \frac{K_1 \left(\alpha \sqrt{\delta^2 + (t-\mu)^2}\right)}{\sqrt{\delta^2 + (t-\mu)^2}} e^{\beta(t-\mu)} dt$$
 (2.4)

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta}{\sqrt{2\pi}} \int_0^\infty \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{(\delta - \gamma t)^2}{2t}} dt$$
 (2.5)

Also denote

$$\tilde{F}(x;\alpha,\beta,\mu,\delta) = 1 - F(-x;\alpha,-\beta,-\mu,\delta). \tag{2.6}$$

Follows from the reversion formula of  $\Phi(x)$ .

**Proposition 2.1** For  $x - \mu < 0$ , an incomplete Laplace-type integral representation in terms of modified Bessel function  $K_0(x)$  is given by

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\sqrt{2\delta}e^{\delta\gamma}}{\pi} \int_{\beta/\sqrt{2}}^{\infty} e^{\sqrt{2}(x-\mu)t} K_0\left(\sqrt{2((x-\mu)^2 + \delta^2)}\sqrt{\frac{\gamma^2}{2} + t^2}\right) dt, \tag{2.7}$$

and (2.6), otherwise.

**Proof:** Consider the integral representation of the function  $\Phi\left(\frac{x-\mu}{\sqrt{t}} - \beta\sqrt{t}\right)$ 

$$\Phi\left(\frac{x-\mu}{\sqrt{t}} - \beta\sqrt{t}\right) = \sqrt{\frac{t}{\pi}}e^{-\frac{(x-\mu)^2}{2t}} \int_{\beta/\sqrt{2}}^{\infty} e^{-(tu^2-\sqrt{2}(x-\mu)u)} du.$$

Replacing in (2.5) and interchanging the order of integration we obtain

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta e^{\delta \gamma}}{\sqrt{2}\pi} \int_{\beta/\sqrt{2}}^{\infty} e^{\sqrt{2}(x-\mu)u} \int_{0}^{\infty} t^{-1} e^{-\frac{\left((x-\mu)^2+\delta^2\right)}{2t} - \left(\frac{\gamma^2}{2}+u^2\right)t} dt du.$$

The observation that the inner integral can be represented in terms of the modified Bessel function  $K_0(x)$ 

$$\int_0^\infty t^{-1} e^{-\frac{\left((x-\mu)^2+\delta^2\right)}{2t} - \left(\frac{\gamma^2}{2} + u^2\right)t} dt = 2K_0 \left(2\sqrt{\frac{(x-\mu)^2+\delta^2}{2}}\sqrt{\frac{\gamma^2}{2} + t^2}\right).$$

**Proposition 2.2** The Fourier sine transform of the cumulative distribution function in terms of elementary functions is given by

$$F(x; \alpha, \beta, \mu, \delta) = 1 - \frac{e^{\delta \gamma}}{\pi} \int_0^\infty \frac{t e^{-(x-\mu)\left(\sqrt{t^2 + \alpha^2} - \beta\right)}}{\sqrt{t^2 + \alpha^2} \left(\sqrt{t^2 + \alpha^2} - \beta\right)} \sin(\delta t) \, dt, \quad x - \mu > 0, \tag{2.8}$$

and apply (2.6) for  $x - \mu < 0$ .

**Proof:** Consider the integral representation (2.4). We use the sine transform [1, §2.4]

$$\frac{K_1(\alpha\sqrt{t^2+\delta^2})}{\sqrt{t^2+\delta^2}} = \frac{1}{\alpha\delta} \int_0^\infty \frac{ze^{-t\sqrt{z^2+\alpha^2}}}{\sqrt{z^2+\alpha^2}} \sin(\delta z) \, dz,$$

valid for  $t \geq 0$ . Replacing in (2.4) and interchanging the order of integration, we have

$$\begin{split} F(x;\alpha,\beta,\mu,\delta) &= 1 - \frac{\alpha \delta e^{\delta \gamma}}{\pi} \frac{1}{\alpha \delta} \int_0^\infty \frac{z \sin(\delta z)}{\sqrt{z^2 + \alpha^2}} \int_{x-\mu}^\infty e^{-t\sqrt{z^2 + \alpha^2} + \beta t} \, dt \, dz \\ &= 1 - \frac{e^{\delta \gamma}}{\pi} \int_0^\infty \frac{z \sin(\delta z)}{\sqrt{z^2 + \alpha^2}} \frac{e^{-(x-\mu)\left(\sqrt{z^2 + \alpha^2} - \beta\right)}}{\sqrt{z^2 + \alpha^2} - \beta} \, dz \end{split}$$

where the inner integral converges for  $t \in [x - \mu, \infty)$ .

In a similar manner, we can obtain a Fourier cosine transform in terms of the exponential integral.

**Proposition 2.3** The Fourier cosine transform integral representation in terms of the exponential integral  $E_1(x)$  is given by

$$F(x;\alpha,\beta,\mu,\delta) = 1 - \frac{\delta e^{\delta \gamma}}{\pi} \int_0^\infty E_1\left((x-\mu)(\sqrt{t^2 + \alpha^2} - \beta)\right) \cos(\delta t) dt, \quad x - \mu > 0.$$
 (2.9)

**Proof:** This result can be derived from the sine transform in (2.8) using integration by parts. Alternatively, we can use the cosine transform  $[1, \S 1.4]$ 

$$\frac{K_1\left(\alpha\sqrt{\delta^2+t^2}\right)}{\sqrt{\delta^2+t^2}} = \frac{1}{\alpha t} \int_0^\infty e^{-t\sqrt{z^2+\alpha^2}} \cos(\delta z) dz.$$

Thus.

$$F(x; \alpha, \beta, \mu, \delta) = 1 - \frac{\alpha \delta e^{\delta \gamma}}{\pi} \int_{x-\mu}^{\infty} \frac{e^{\beta t}}{\alpha t} \int_{0}^{\infty} e^{-t\sqrt{z^2 + \alpha^2}} \cos(\delta z) \, dz \, dt,$$

where the inner integral is expressible in closed form in terms of the exponential integral  $E_1(x)$ 

$$\int_{x-\mu}^{\infty} \frac{1}{t} e^{-(\sqrt{z^2 + \alpha^2} - \beta)t} dt = E_1 \left( (x - \mu)(\sqrt{z^2 + \alpha^2} - \beta) \right).$$

#### 2.3 Moments and cumulants

 $\mathbb{E}[X^m] = \frac{\alpha \delta}{\pi} \int_{-\infty}^{\infty} t^m \frac{K_1 \left(\alpha \sqrt{\delta^2 + (t - \mu)^2}\right)}{\sqrt{\delta^2 + (t - \mu)^2}} e^{\delta \gamma + \beta(t - \mu)} dt.$  (2.10)

$$\mathbb{E}[X^m] = \frac{\alpha \delta}{\pi} e^{\delta \gamma - \beta \mu} \sum_{k=0}^{\infty} \frac{\beta^k}{k!} \int_{-\infty}^{\infty} (t - \mu)^{m+k} \frac{K_1 \left(\alpha \sqrt{\delta^2 + t^2}\right)}{\sqrt{\delta^2 + t^2}} dt.$$
 (2.11)

Use binomial theorem, and compute coefficients recursively (binomial sum of Bessel functions). Treat special case  $\mu = 0$  and  $\beta = 0$ .

# 3 Methods of computation

In this Section, we describe the methods used for efficient computation of the CDF for the general case and various special cases. Subsequently, we discuss several approaches for computing the inverse of the CDF.

#### 3.1 Expansions: case $\beta = 0$

Most of the techniques and numerical methods introduced in this section shall be used for the expansions of other special cases and the general case.

#### **3.1.1** Expansions $|x - \mu| \rightarrow 0$

For developing a series expansion for the case  $|x - \mu| \to 0$ , we start from the integral representation in (2.5) after expanding the exponent term of the integrand,

$$F(x;\alpha,0,\mu,\delta) = \frac{\delta e^{\delta\alpha}}{\sqrt{2\pi}} \int_0^\infty \Phi\left(\frac{x-\mu}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t} - \frac{\alpha^2}{2}t} dt.$$
 (3.1)

We proceed expanding the term  $\Phi\left(\frac{x-\mu}{\sqrt{t}}\right)$ , by using the two well-known absolutely convergent series expansions of  $\Phi(x)$  [5, §2]

$$\Phi(x) = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2^k k! (2k+1)},$$
(3.2)

and

$$\Phi(x) = \frac{1}{2} + \frac{e^{-x^2/2}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!!}.$$
(3.3)

If we choose the expansion (3.2) and interchange the order of integration and summation, the resulting integral has the form

$$F(x;\alpha,0,\mu,\delta) = \frac{\delta e^{\delta \alpha}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k (x-\mu)^{2k+1}}{2^k k! (2k+1)} \int_0^{\infty} t^{-k-2} e^{-\frac{\delta^2}{2t} - \frac{\alpha^2}{2}t} dt, \tag{3.4}$$

where the integral has a closed-form in terms of the modified Bessel function

$$\int_0^\infty t^{\lambda - 1} e^{-a/t - zt} dt = 2 \left(\frac{\alpha}{z}\right)^{\lambda/2} K_\lambda(2\sqrt{\alpha z}). \tag{3.5}$$

Inserting (3.5) in (3.4) and rearranging terms, we obtain the the alternating series

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{\delta e^{\delta \alpha}}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k (x-\mu)^{2k+1}}{2^k k! (2k+1)} \left(\frac{\alpha}{\delta}\right)^{k+1} K_{k+1}(\alpha \delta).$$
(3.6)

Moreover, to obtain a similar series with positive terms for  $x - \mu > 0$ , we choose the alternative expansion of  $\Phi(x)$  in (3.3), yielding

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{\delta e^{\delta \alpha}}{\pi} \sum_{k=0}^{\infty} \frac{(x-\mu)^{2k+1}}{(2k+1)!!} \left(\frac{\alpha}{\omega}\right)^{k+1} K_{k+1}(\alpha\omega), \quad \omega = \sqrt{\delta^2 + (x-\mu)^2}.$$
 (3.7)

Note that the series expansions (3.6) and (3.7) can be written as a truncated series with the corresponding remainder term. For example, truncating the series (3.7) at N, we can write

$$\sum_{k=0}^{\infty} T_k = \sum_{k=0}^{N-1} T_k + \sum_{k=N}^{\infty} T_k, \quad T_k = \left(\frac{(x-\mu)^2 \alpha}{\omega}\right)^k \frac{K_{k+1}(\alpha \omega)}{(2k+1)!!}.$$
 (3.8)

Thus, one has the series with remainder term  $R_N = \sum_{k=N}^{\infty} T_k$ 

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{\delta e^{\delta \alpha}}{\pi} \frac{(x-\mu)\alpha}{\omega} \left( \sum_{k=0}^{N-1} T_k + R_N \right).$$
 (3.9)

For a rigorous evaluation of error bounds given a number of terms N, it is convenient to calculate an upper bound for  $R_N$  in (3.8). We can, for example, bound  $R_N$  by comparison with a geometric series

$$|R_N| \le \frac{|T_N|}{1 - C}, \quad C = \left| \frac{T_{N+1}}{T_N} \right| \tag{3.10}$$

iff C < 1, where  $T_N$  is the first omitted term in the expansion. The following lemma provides an upper bound for  $K_{\nu+1}(x)$ , required for a posterior derivation of an upper bound for the term  $T_N$ .

**Lemma 3.1** For  $x \ge 0$  and  $\nu \ge -\frac{1}{2}$  we have

$$K_{\nu+1}(x) < \frac{\Gamma(\nu+1)2^{\nu}}{x^{\nu+1}}.$$
 (3.11)

**Proof:** The proof reduces to combining the uniform bound in [3]

$$xK_{\nu+1}(x)I_{\nu}(x) \le 1. \tag{3.12}$$

with the lower bound [6]

$$\left(\frac{x}{2}\right)^{\nu} \frac{1}{\Gamma(\nu+1)} < I_{\nu}(x). \tag{3.13}$$

Then, it follows that

$$K_{\nu+1}(x) \le \frac{1}{xI_{\nu}(x)} < \frac{\Gamma(\nu+1)2^{\nu}}{x^{\nu+1}}.$$
 (3.14)

**Theorem 3.2** Given  $\alpha > 0$ ,  $\omega > 0$ ,  $x - \mu \in \mathbb{R}$  and  $N \in \mathbb{N}$ , the remainder term in (3.9) satisfies

$$R_N \le \frac{|T_N|}{1 - C},\tag{3.15}$$

where

$$T_N < \frac{1}{2\alpha\omega} \left(\frac{x-\mu}{\omega}\right)^{2N} \sqrt{\frac{\pi}{N+1/2}}.$$
 (3.16)

and

$$C < \left(\frac{x-\mu}{\omega}\right)^2 \frac{N+3/2 + \sqrt{(N+3/2)^2 + (\alpha\omega)^2}}{2N+3}.$$
 (3.17)

**Proof:** The use of Lemma 3.1 gives

$$T_{N} = \left(\frac{(x-\mu)^{2}\alpha}{\omega}\right)^{N} \frac{K_{N+1}(\alpha\omega)}{(2N+1)!!}$$

$$< \left(\frac{(x-\mu)^{2}\alpha}{\omega}\right)^{N} \frac{\Gamma(N+1)2^{N}}{(\alpha\omega)^{N+1}(2N+1)!!}$$

$$= \frac{1}{\alpha\omega} \left(\frac{x-\mu}{\omega}\right)^{2N} \frac{(N!2^{N})^{2}}{(2N+1)!}.$$

An upper bound for the ratio of factorials in the previous inequality is given by

$$\frac{(N!2^N)^2}{(2N+1)!} = \frac{\sqrt{\pi}}{2} \frac{\Gamma(N+1)}{\Gamma(N+3/2)} \le \frac{1}{2} \sqrt{\frac{\pi}{N+1/2}},$$

where we use the fact that  $\Gamma(N+3/2)=(N+1/2)\Gamma(N+1/2)$  and the upper bound of the ratio of gamma functions [12]

$$\frac{\Gamma(x+1)}{\Gamma(x+s)} \le (x+s)^{1-s}, \quad s \in (0,1).$$
(3.18)

Thus, the following bound for  $T_N$  holds

$$T_N < \frac{1}{2\alpha\omega} \left(\frac{x-\mu}{\omega}\right)^{2N} \sqrt{\frac{\pi}{N+1/2}}.$$
 (3.19)

For the ratio C, an explicit formula in terms of the ratio of modified Bessel functions is

$$C = \frac{T_{N+1}}{T_N} = \frac{(x-\mu)^2 \alpha}{\omega (2N+3)} \frac{K_{N+2}(\alpha \omega)}{K_{N+1}(\alpha \omega)}.$$
 (3.20)

The ratio can be bounded using a sharp bound for the ratio of modified Bessel functions [8], yielding

$$\frac{K_{N+2}(\alpha\omega)}{K_{N+1}(\alpha\omega)} < \frac{N+3/2+\sqrt{(N+3/2)^2+(\alpha\omega)^2}}{\alpha\omega}.$$
(3.21)

Then, we have

$$C < \left(\frac{x-\mu}{\omega}\right)^2 \frac{N + 3/2 + \sqrt{(N+3/2)^2 + (\alpha\omega)^2}}{2N+3}.$$

To study the regime of applicability for the expansion, we can estimate the required number of terms N equating the bound of  $T_N$  in (3.16) times the normalizing factor with the requested absolute error  $\epsilon$  and solving for N, which gives

$$N \approx -\frac{\Re(W_{-1}(D))}{4\log(A)} + \frac{1}{2}, \quad A = \frac{x - \mu}{\omega}, \quad B = \frac{A\delta e^{\delta \alpha}}{2\omega \pi}, \quad C = \frac{\epsilon^2}{B^2 \pi}, \quad D = -\frac{4\log(A)}{CA^2}$$
 (3.22)

5

where  $W_k(x)$  denotes the Lambert W function [2, §4.13]. The branch k = -1 is used to obtain the maximum real N. Note that since A < 1 by definition, D > 0. When  $CA^2$  is tiny,  $W_{-1}(D)$  can be approximated as  $\Re(W_{-1}(D)) \sim \log(D) - \log(\log(D))$  using the first two terms of the asymptotic expansion in [2, §4.13.10].

The previous analysis performed on the expansion (3.7) is repeated for the alternating expansion (3.6). The main results are summarized below for the purpose of brevity. The expansion (3.6) rewritten including the remainder term follows

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{(x-\mu)\alpha e^{\delta\alpha}}{\pi} \left( \sum_{k=0}^{N-1} T_k + R_N \right), \quad T_k = \left( -\frac{(x-\mu)^2 \alpha}{\delta} \right)^k \frac{K_{k+1}(\alpha\delta)}{2^k k! (2k+1)}. \tag{3.23}$$

The last omitted term  $T_N$  satisfies<sup>1</sup>

$$|T_N| < \frac{1}{\alpha \delta} \left(\frac{x-\mu}{\delta}\right)^{2N} \frac{1}{2N+1},\tag{3.24}$$

and the number of terms N can be determined employing the Lambert W function for a given error  $\epsilon$ 

$$N \approx \frac{\Re(W_{-1}(D)) + \log(A)}{2\log(A)}, \quad A = \frac{x - \mu}{\delta}, \quad B = \frac{Ae^{\delta\alpha}}{\pi}, \quad C = \frac{\epsilon}{B}, \quad D = -\frac{\log(A)}{CA}. \tag{3.25}$$

Now we are in position to compare both series and their respective domains of applicability. A first important observation is that the alternating series (3.6) does not converge when  $|x - \mu| > \delta$ , and the number of terms N increases rapidly when  $|x - \mu| \sim \delta$ . In contrast, the series (3.7) is absolutely convergent. The convergence of the latter can be reliably assessed applying to  $T_k$  in (3.8) the asymptotic estimates of  $K_{k+1}(\alpha\omega)$  for  $\alpha\omega \to 0$  and  $\alpha\omega \to \infty$ , (B.1) and (B.2), respectively:

$$T_k \sim \frac{\sqrt{\pi}}{2\alpha\omega} \left(\frac{x-\mu}{\omega}\right)^{2k} \frac{\Gamma(k+1)}{\Gamma(k+3/2)}, \qquad \alpha\omega \to 0,$$

$$T_k \sim \sqrt{\frac{\pi}{2\alpha\omega}} \left(\frac{(x-\mu)^2\alpha}{\omega}\right)^k \frac{e^{-\alpha\omega}}{(2k+1)!!}, \qquad \alpha\omega \to \infty.$$

The asymptotic estimates of  $T_k$  show that the series expansion (3.7) is slowly convergent when

$$\left(\frac{x-\mu}{\omega}\right)^2 \to 1 \Longleftrightarrow \delta \to 0,$$

and the ratio of convergence improves when  $\delta \to \infty$ , then it can be viewed as an asymptotic expansion for large  $\delta$ . For  $k \to \infty$ ,  $T_k$  follows the asymptotic behaviour

$$T_k \sim \frac{1}{\alpha\omega} \left(\frac{x-\mu}{\omega}\right)^{2k} \sqrt{\frac{\pi}{e}} \frac{1}{\sqrt{4k+2}} \left(\frac{2k+2}{2k+1}\right)^{k+\frac{1}{2}}, \quad k \to \infty,$$

where we use the asymptotic estimate of modified Bessel function for large order (B.3) and apply Stirling's approximation for the double factorial. It remains to analyze the accuracy of the bound in (3.15) for different parameters. Table 1 shows the effectiveness of the bound (3.15) after estimating N to achieve machine-precision absolute error using (3.22). For small values of  $\alpha\omega$  the bound is accurate, but it is conservative for larger values, precisely where the rate of convergence improves. As a remark, the estimation of N for large  $\alpha\omega$  can be enhanced by selecting N using the asymptotic estimate for  $\alpha\omega \to \infty$  via binary search. Although, the bound might overestimate N for some parameters, the main purpose of the estimation of N using (3.22) is to decide whether the series expansion should be selected as the method of computation given a certain parameter region. Table 1 also shows that for small  $\delta$  and  $\alpha\omega$ , the required number of terms makes the series expansion impractical. In the next section, we present a convergence acceleration method to obtain a rapidly convergent series for theses cases.

| $\overline{x}$ | α    | $\mu$ | δ    | $\alpha\omega$ | N(3.22) | $R_N$                | Bound (3.15)         |
|----------------|------|-------|------|----------------|---------|----------------------|----------------------|
| 1              | 5    | 1/4   | 1    | 6.25           | 42      | $8.8 \cdot 10^{-19}$ | $1.1 \cdot 10^{-18}$ |
| 1/2            | 1/3  | 1/4   | 1/10 | 0.09           | 236     | $2.9 \cdot 10^{-17}$ | $2.9 \cdot 10^{-17}$ |
| 1/3            | 10   | 1/5   | 1/50 | 1.35           | 1,494   | $2.1 \cdot 10^{-16}$ | $2.2 \cdot 10^{-16}$ |
| 1              | 10   | 1/5   | 5    | 50.64          | 25      | $1.9 \cdot 10^{-29}$ | $4.0 \cdot 10^{-21}$ |
| 3              | 10   | 1/5   | 10   | 103.85         | 53      | $2.4 \cdot 10^{-36}$ | $1.4 \cdot 10^{-19}$ |
| 10             | 1/10 | 1/5   | 10   | 1              | 53      | $3.8 \cdot 10^{-18}$ | $3.9 \cdot 10^{-18}$ |

Table 1: The remainder of the series expansion (3.7) and bound (3.15), estimating N using (3.22) to achieve machine precision.

 $<sup>^{1}</sup>$ The corresponding upper bound for C can be computed straightforwardly following the procedure described in Theorem 3.2.

#### Convergence acceleration of the expansion $|x - \mu| \to 0$

Table 1 showed that for small values of  $\delta$  and  $\alpha\omega$  the required number of terms grows considerably, thereby, resorting to numerical integral (see Section 3.4) might be a more efficient approach. Alternatively, a common technique to reduce the number of terms of slowly convergent series is to use series acceleration methods (Shank's transformation and Levin-type transformations among others). Attempts to use Shank's transformation were unsuccessful; we did not observe a significant reduction in N while achieving only around ten correct digits systematically for all cases. In addition, a major drawback is that Shank's acceleration requires higher-precision arithmetic to compensate for cancellation effects, discarding them for any implementation in double-precision arithmetic.

In the following, we consider the use of exponentially improved asymptotic expansions. When the information about the remainder is available, this technique consists of re-expanding the remainder, obtaining an expansion exhibiting faster convergence. For further details, we refer to [7, §14].

Again, consider the convergent series expansion in (3.8)

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{\delta e^{\delta\alpha}}{\pi} \frac{(x-\mu)\alpha}{\omega} \left( \sum_{k=0}^{N-1} T_k + \sum_{k=N}^{\infty} T_k \right), \tag{3.26}$$

where

$$T_k = \frac{K_{k+1}(\alpha\omega)}{(2k+1)!!} z^k, \quad z = \frac{(x-\mu)^2 \alpha}{\omega}.$$
 (3.27)

and remainder  $R_N = \sum_{k=N}^{\infty} T_k$ . An integral representation of  $R_N$  can be obtained using Basset's integral [2, §10.32.11] representation of the modified Bessel function

$$K_{k+1}(\alpha\omega) = \frac{\Gamma(k+3/2)}{\sqrt{\pi}} \left(\frac{2\alpha}{\omega}\right)^{k+1} \int_0^\infty \frac{\cos(\omega t)}{(t^2 + \alpha^2)^{k+3/2}} dt.$$
 (3.28)

Basset's integral is chosen to split the problematic term  $\alpha\omega$ . Thus, it follows that inserting (3.28) into the remainder in (3.8), we obtain an integral representation of  $R_N$ 

$$R_{N} = \frac{1}{\sqrt{\pi}} \left(\frac{2\alpha}{\omega}\right) \int_{0}^{\infty} \frac{\cos(\omega t)}{(t^{2} + \alpha^{2})^{3/2}} \left[ \sum_{k=N}^{\infty} \left(\frac{2z\alpha}{\omega(t^{2} + \alpha^{2})}\right)^{k} \frac{\Gamma(k+3/2)}{(2k+1)!!} \right] dt$$

$$= C \int_{0}^{\infty} \frac{\cos(\omega t)}{(t^{2} + \alpha^{2})^{N+3/2}} \frac{1}{\left(2 - \frac{m}{t^{2} + \alpha^{2}}\right)} dt .$$
(3.29)

where, for the purpose of brevity, we use

$$m = \frac{2z\alpha}{\omega} = 2\left(\frac{(x-\mu)\alpha}{\omega}\right)^2, \quad C = \frac{2}{\sqrt{\pi}}\left(\frac{2\alpha}{\omega}\right)\frac{\Gamma(N+3/2)}{(2N+1)!!}m^N. \tag{3.30}$$

Now, we expand the term  $\cos(\omega t)$ , recall that  $\omega = \sqrt{\delta^2 + (x-\mu)^2}$ , yielding

$$R_N = C \sum_{k=0}^{\infty} \frac{(-1)^k \omega^{2k}}{(2k)!} \int_0^{\infty} \frac{t^{2k}}{(t^2 + \alpha^2)^{N+3/2}} \frac{1}{\left(2 - \frac{m}{t^2 + \alpha^2}\right)} dt, \tag{3.31}$$

and note that the integrals above converge for k < N. Using Mathematica [13], we obtain a closed-form expression for the previous integral in terms of the Gauss hypergeometric function  ${}_{2}F_{1}(a,b;c;z)$ 

$$\int_0^\infty \frac{t^{2k}}{(t^2 + \alpha^2)^{N+3/2}} \frac{1}{\left(2 - \frac{m}{t^2 + \alpha^2}\right)} dt = P_k + Q_k, \tag{3.32}$$

with

$$P_{k} = \frac{2^{N-2}\alpha^{2(k-N-1)}\Gamma(N+1-k)\Gamma(k-1/2)}{\sqrt{\pi}(2N+1)!!} {}_{2}F_{1}\left(1,N+1-k;\frac{3}{2}-k,1-\frac{m}{2\alpha^{2}}\right), \qquad (3.33)$$

$$Q_{k} = \frac{2^{N-1-k}(2\alpha^{2}-m)^{k-1/2}\pi\sec(k\pi)}{m^{N+1/2}}. \qquad (3.34)$$

$$Q_k = \frac{2^{N-1-k}(2\alpha^2 - m)^{k-1/2}\pi \sec(k\pi)}{m^{N+1/2}}.$$
(3.34)

The Gauss hypergeometric function is defined

$$_{2}F_{1}(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}k!} z^{k},$$

where  $(a)_k = \Gamma(a+k)/\Gamma(a)$  is the Pochhammer symbol or rising factorial. The series is defined on the disk |z| < 1, and by analytic continuation with respect to z elsewhere. Substituting (3.32) in (3.31), we write  $R_N$  as the sum of two series  $R_N = S_P + S_Q$  given by

$$S_{P} = \frac{(2m)^{N}}{\alpha^{2N+1}\omega\pi} \frac{\Gamma(N+3/2)}{(2N+1)!!(2N-1)!!} \sum_{k=0}^{N} \frac{(-1)^{k}(\alpha\omega)^{2k}}{(2k)!} \Gamma(N+1-k)\Gamma(k-1/2) {}_{2}F_{1}\left(1,N+1-k;\frac{3}{2}-k,1-\frac{m}{2\alpha^{2}}\right)$$

$$(3.35)$$

and

$$S_{Q} = C \frac{2^{N-1}}{m^{N+1/2} \sqrt{2\alpha^{2} - m}} \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} \left( \frac{\omega^{2} (2\alpha^{2} - m)}{2} \right)^{k} \sec(k\pi)$$

$$= \frac{\Gamma(N+3/2) 2^{N+1}}{(2N+1)!!} \frac{\alpha}{\omega} \sqrt{\frac{\pi}{m(2\alpha^{2} - m)}} \cosh\left(\sqrt{\frac{\omega^{2} (2\alpha^{2} - m)}{2}}\right). \tag{3.36}$$

The sum  $S_P$  is terminating at k = N due to the term  $\Gamma(N+1-k)$  in the series. Thus, the resulting series to compute  $F(x; \alpha, 0, \mu, \delta)$  is

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{\delta e^{\delta \alpha}}{\pi} \frac{(x-\mu)\alpha}{\omega} \left( \sum_{k=0}^{N-1} T_k + S_P + S_Q \right). \tag{3.37}$$

Subsequently, we focus on the determination of the optimal N for a desired precision  $\epsilon$ . The smallest term in  $S_P$  occurs when k=N

$$\frac{(-1)^{N}(\alpha\omega)^{2N}}{(2N)!}\Gamma(N-1/2){}_{2}F_{1}\left(1,1;\frac{3}{2}-N,1-\frac{m}{2\alpha^{2}}\right). \tag{3.38}$$

Moreover, taking the argument of  $_2F_1$  in (3.35)

$$1 - \frac{m}{2\alpha^2} = 1 - \left(\frac{x - \mu}{\omega}\right)^2 < 1,\tag{3.39}$$

we see that for  $\alpha\omega \to 0$ ,  $\delta \to 0$ , the argument is close to 1. Therefore, the last term can be effectively approximated taking the limit  $\lim_{x\to 0} {}_2F_1\left(1,1,\frac{3}{2}-k,x\right)=1$ . Then, it remains to solve the following equation for N

$$\frac{(\sqrt{2m}\omega)^{2N}}{\alpha\omega\pi} \frac{\Gamma(N-1/2)\Gamma(N+3/2)}{(2N)!(2N+1)!!(2N-1)!!} = \epsilon.$$
(3.40)

For large N, we use Stirling approximation of the ratio of gamma functions and double factorials

$$\frac{\Gamma(N-1/2)\Gamma(N+3/2)}{(2N)!(2N+1)!!(2N-1)!!} \sim \frac{\sqrt{\pi}}{4} \left(\frac{e}{N}\right)^{2N} 2^{-4N}, \quad N \to \infty.$$
 (3.41)

obtaining a simplified equation

$$\left(\sqrt{2m\omega}\right)^{2N} \left(\frac{e}{N}\right)^{2N} 2^{-4N} = 4\sqrt{\pi}\alpha\omega\epsilon. \tag{3.42}$$

The solution of the last equation permits a closed-form in terms of principal branch of the Lambert Wfunction

$$N \approx -\frac{\log(A)}{W\left(-\frac{\log(A)}{2e\sqrt{2m}\omega}\right)}, \quad A = 4\sqrt{\pi}\alpha\omega\epsilon. \tag{3.43}$$

Table 2 shows the estimated number of terms of the accelerated convergent series (3.37),  $N_{acc}$ , and the actual number of terms  $N^*$  to achieve machine-precision for small values of  $\alpha\omega$  and  $\delta$ . The first and more notable observation is the reduction in the number of terms compared with convergent series (3.22), especially for  $\alpha \leq 1$ . The second observation is the accuracy of the estimate in  $N_{acc}$  in (3.22), which only seems to slightly underestimate N for large  $\alpha\omega$ .

| $\boldsymbol{x}$ | $\alpha$ | $\mu$ | $\delta$ | $\alpha\omega$ | N(3.22)    | $N_{acc} (3.43)$ | error                | $N^*$ | error                |
|------------------|----------|-------|----------|----------------|------------|------------------|----------------------|-------|----------------------|
| 1                | 50       | 1/5   | 1/3      | 43.33          | 324        | 69               | $2.9 \cdot 10^{-13}$ | 73    | $1.1 \cdot 10^{-17}$ |
| 2                | 5        | 1/5   | 1/10     | 9.01           | 10,242     | 25               | $4.6 \cdot 10^{-21}$ | 22    | $1.1 \cdot 10^{-16}$ |
| 1                | 1/10     | 1/5   | 1/100    | 0.08           | 179,715    | 5                | $1.3 \cdot 10^{-21}$ | 4     | $2.4 \cdot 10^{-17}$ |
| 5                | 1        | 1/5   | 1/100    | 4.8            | 5,645,686  | 18               | $1.1 \cdot 10^{-22}$ | 15    | $1.5 \cdot 10^{-17}$ |
| 20               | 1/100    | 1/5   | 1/100    | 0.198          | 84,914,922 | 6                | $1.1 \cdot 10^{-22}$ | 5     | $4.5 \cdot 10^{-19}$ |

Table 2: Absolute error and bound (3.15) estimating N using (3.22) for the series expansion (3.7) with machine-precision absolute error.

• Computation of 2F1, use partial sums recursion with Mathematica.

**Remark 3.3** Simpler bound  $R_N$ . Review FF expansion.

$$R_N = C \int_0^\infty \frac{\cos(\omega t)}{(t^2 + \alpha^2)^{N+3/2}} \frac{1}{\left(2 - \frac{m}{t^2 + \alpha^2}\right)} dt$$

$$\leq \frac{C}{\left(2 - \frac{m}{\alpha^2}\right)} \int_0^\infty \frac{\cos(\omega t)}{(t^2 + \alpha^2)^{N+3/2}} dt$$

$$= \frac{1}{1 - \left(\frac{x - \mu}{\omega}\right)^2} T_N$$

using the upper bound for  $T_N$  in (3.16)

$$R_N < \frac{1}{1 - \left(\frac{x - \mu}{\omega}\right)^2} \frac{1}{2\alpha\omega} \left(\frac{x - \mu}{\omega}\right)^{2N} \sqrt{\frac{\pi}{N + 1/2}}.$$
 (3.44)

#### **3.1.3** Expansion $|x - \mu| \to \infty$

For  $x - \mu < 0$ 

$$F(x;\alpha,0,\mu,\delta) = \frac{\delta e^{\delta \alpha}}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k+1} \Gamma(2k+1)}{2^k k! (x-\mu)^{2k+1}} \left(\frac{\omega}{\alpha}\right)^k K_k(\alpha \omega), \quad \omega = \sqrt{(x-\mu)^2 + \delta^2}.$$
(3.45)

#### **3.1.4** Uniform expansion $\alpha \to \infty$ , $\alpha \sim \delta$ and $|x - \mu| \gg 0$

For large  $\alpha$ , we consider the uniform asymptotic expansion in terms of modified Bessel functions described in [10] and [11, §27]. We write the Laplace-type integral (2.5) in the standard form

$$F_{\lambda}(z,r) = C \int_0^{\infty} t^{\lambda - 1} e^{-z(t + r^2/t)} f(t) dt,$$

where C is a normalizing constant,  $\lambda = -1/2$ ,  $z = \alpha^2/2$ ,  $r = \delta/\alpha$  and  $f(t) = \Phi((x - \mu)/\sqrt{t})$ . The saddle point of  $e^{-z(t+r^2/t)}$  occurs at  $\pm r$ , but only the positive saddle point r lies inside the interval of integration. Thus, we expand f(t) at the saddle point r

$$f(t) = \sum_{k=0}^{\infty} c_k(r)(t-r)^k,$$

after interchanging the order of summation and integration, we obtain

$$F_{\lambda}(z,r) \sim \frac{1}{z^{\lambda}} \sum_{k=0}^{\infty} \frac{c_k(r)Q_k(\zeta)}{z^k}, \quad z \to \infty,$$
 (3.46)

where

$$Q_k(\zeta) = \zeta^{\lambda+k} \int_0^\infty t^{\lambda-1} (t-1)^k e^{-\zeta(t+1/t)} dt, \quad \zeta = rz.$$

For  $f(t) = \Phi((x - \mu)/\sqrt{t})$  the coefficients at t = r satisfy the recurrence in (A.14) setting  $a = x - \mu$  and b = 0. In particular, the recurrence can be simplified as follows

$$c_0(r) = \Phi\left(\frac{x-\mu}{\sqrt{r}}\right), \quad c_1(r) = -\frac{(x-\mu)}{2r^{3/2}}\phi\left(\frac{x-\mu}{\sqrt{r}}\right)$$
(3.47)

and

$$c_k(r) = \frac{(k-1)((x-\mu)^2 - 4r(k-2) - 3r)c_{k-1}(r) - (2(k-2)^2 + k - 2)c_{k-2}(r)}{2r^2(k-1)k}, \quad k \ge 2.$$
 (3.48)

The functions  $Q_k(\zeta)$  can be expressed as a binomial sum of modified Bessel functions, and satisfy the recurrence relation [11, §27.3.28]

$$Q_{k+2}(\zeta) = \left(k + \frac{1}{2} - 2\zeta\right) Q_{k+1}(\zeta) + \zeta \left(2k + \frac{1}{2}\right) Q_k(\zeta) + k\zeta^2 Q_{k-1}(\zeta), \quad k \ge 1, \tag{3.49}$$

with initial values

$$Q_0(\zeta) = \frac{2}{\sqrt{\zeta}} K_{\frac{1}{2}}(2\zeta), \quad Q_1(\zeta) = 0, \quad Q_2(\zeta) = 2\zeta^{3/2} \left( K_{\frac{3}{2}}(2\zeta) - K_{\frac{1}{2}}(2\zeta) \right), \tag{3.50}$$

where the special case  $K_{m+1/2}(x)$ ,  $m \in \mathbb{N}$ , is a terminating sum of elementary functions requiring m terms, see [Ref to Appendix]. Thus, rearranging terms we have

$$F(x;\alpha,0,\mu,\delta) = \frac{\alpha \delta e^{\delta \alpha}}{2\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{2^k c_k \left(\frac{\delta}{\alpha}\right) Q_k \left(\frac{\alpha \delta}{2}\right)}{\alpha^{2k}}, \quad \alpha \to \infty.$$
 (3.51)

The expansion (3.51) is a uniform expansion as  $\alpha \to \infty$ , uniformly with respect to  $\delta/\alpha > 0$ . Note that large values of  $\delta$  improves the rate of convergence of the expansion, as observed taking well-know asymptotic estimates for large argument of the modified Bessel function. We remark that expansions (3.6) and (3.7) are also adequate for large values of  $\alpha$  and  $\delta$ , but unlike the present expansion, the number of terms increases significantly for  $|x - \mu| \gg 0$ .

#### 3.2 Expansions: case $x = \mu$

First consider the case  $x = \mu$  and  $\beta = 0$ . Then, the distribution is symmetric and centered at  $x = \mu$ , and it follows that

$$F(\mu;\alpha,0,\mu,\delta) = \frac{1}{2}.$$
(3.52)

For the case  $\beta \neq 0$ , the integral representation of this special case is given by simple substitution in (2.4)

$$F(\mu; \alpha, \beta, \mu, \delta) = \frac{\alpha \delta e^{\delta \gamma}}{\pi} \int_{-\infty}^{0} \frac{K_1 \left(\alpha \sqrt{\delta^2 + t^2}\right)}{\sqrt{\delta^2 + t^2}} e^{\beta t} dt.$$
 (3.53)

Using series expansion of the exponential function and interchanging the order of integration and summation in (3.53) gives that

$$F(\mu; \alpha, \beta, \mu, \delta) = 1 - \frac{\alpha \delta e^{\delta \gamma}}{\pi} \sum_{k=0}^{\infty} \frac{\beta^k}{k!} \int_0^{\infty} t^k \frac{K_1 \left(\alpha \sqrt{\delta^2 + t^2}\right)}{\sqrt{\delta^2 + t^2}} dt.$$

The integral is expressible in closed form using [4, §6.596]

$$\int_{0}^{\infty} t^{k} \frac{K_{1}\left(\alpha\sqrt{\delta^{2}+t^{2}}\right)}{\sqrt{\delta^{2}+t^{2}}} dt = \frac{2^{\frac{k-1}{2}}\Gamma\left(\frac{k+1}{2}\right)}{\alpha^{\frac{k+1}{2}}\delta^{\frac{-k+1}{2}}} K_{\frac{k-1}{2}}(\alpha\delta),$$

and rearranging terms and using the connection formula  $2^{k/2}\Gamma\left(\frac{k+1}{2}\right)/k! = \sqrt{\pi}2^{-k/2}/\Gamma\left(\frac{k}{2}+1\right)$  yields

$$F(\mu; \alpha, \beta, \mu, \delta) = 1 - \sqrt{\frac{\alpha \delta}{2\pi}} e^{\delta \gamma} \sum_{k=0}^{\infty} \frac{\beta^k}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2} + 1\right)} \left(\frac{\delta}{\alpha}\right)^{\frac{k}{2}} K_{\frac{k-1}{2}}(\alpha \delta)$$
(3.54)

$$= \sqrt{\frac{\alpha \delta}{2\pi}} e^{\delta \gamma} \sum_{k=0}^{\infty} \frac{(-\beta)^k}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}+1\right)} \left(\frac{\delta}{\alpha}\right)^{\frac{k}{2}} K_{\frac{k-1}{2}}(\alpha \delta). \tag{3.55}$$

The resulting expansions are convergent and the latter series expansion is preferred for  $\beta < 0$  to avoid cancellation errors. A more rapidly convergent expansion for  $\delta < \gamma$  or large values of  $\delta$  and  $\gamma$  can be obtained using the integral (2.5) and expanding the term  $\Phi(-\beta\sqrt{t})$ . Replacing  $\Phi(-\beta\sqrt{t})$  in the integral (2.5) with the expansion (3.2) and interchanging the order of integration and summation, we obtain

$$F(\mu; \alpha, \beta, \mu, \delta) = \frac{1}{2} + \frac{\delta e^{\delta \gamma}}{2\pi} \sum_{k=0}^{\infty} \frac{(-1)^k (-\beta)^{2k+1}}{2^k k! (2k+1)} \int_0^{\infty} t^{k-1} e^{-\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t} dt, \tag{3.56}$$

where we can express the integral in terms of the modified Bessel function (3.5). Plugging in (3.56), now yields the alternating series

$$F(\mu; \alpha, \beta, \mu, \delta) = \frac{1}{2} + \frac{\delta e^{\delta \gamma}}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k (-\beta)^{2k+1}}{2^k k! (2k+1)} \left(\frac{\delta}{\gamma}\right)^k K_k(\gamma \delta). \tag{3.57}$$

Similarly, using (3.3) yields

$$F(\mu; \alpha, \beta, \mu, \delta) = \frac{1}{2} + \frac{\delta e^{\delta \gamma}}{\pi} \sum_{k=0}^{\infty} \frac{(-\beta)^{2k+1}}{(2k+1)!!} \left(\frac{\delta}{\alpha}\right)^k K_k(\alpha \delta).$$
 (3.58)

The latter expansion being more convenient when  $\gamma \to 0$ , i.e.,  $\alpha \sim \beta$ .

#### 3.3 Expansions: general case

3.3.1 Expansions  $|x - \mu| \to 0$  (option 1)

#### 3.3.2 Expansions $|x - \mu| \to 0$ (option 2)

The starting point is the integral representation in (2.5) after expanding the exponential

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta e^{\delta\gamma}}{\sqrt{2\pi}} \int_0^\infty \Phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t} dt,$$

and replacing  $\Phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right)$  by the expansion in (A.9)

$$F(x; \alpha, \beta, \mu, \delta) = \frac{\delta e^{\delta \gamma}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{2^{k/2} (x - \mu)^k}{k!} \int_0^{\infty} \Gamma\left(\frac{k+1}{2}, \frac{\beta^2}{2} t\right) t^{-3/2 - k/2} e^{-\frac{\omega^2}{2t} - \frac{\gamma^2}{2} t} dt,$$

where  $\omega = \sqrt{\delta^2 + (x - \mu)^2}$ . Consider the ascending series of the incomplete gamma function given by [2, §8.7]

$$\Gamma(a,x) = \Gamma(a) - \sum_{j=0}^{\infty} \frac{(-1)^j x^{a+j}}{j!(a+j)}.$$
(3.59)

We proceed splitting the inner integral into two terms

$$T_1 = \Gamma\left(\frac{k+1}{2}\right) \int_0^\infty t^{-3/2 - k/2} e^{-\frac{\omega^2}{2t} - \frac{\gamma^2}{2}t} dt$$
 (3.60)

$$T_2 = \sum_{j=0}^{\infty} \frac{(-1)^j \left(\frac{\beta^2}{2}\right)^{\frac{k+1}{2}+j}}{j!(\frac{k+1}{2}+j)} \int_0^{\infty} t^{j-1} e^{-\frac{\omega^2}{2t} - \frac{\gamma^2}{2}t} dt, \tag{3.61}$$

and observe that both integrals are expressible in terms of modified Bessel function, resulting in the sums  $S_1$  and  $S_2$ , such that  $F(x; \alpha, \beta, \mu, \delta) = C(S_1 - S_2)$ , defined as follows

$$S_{1} = \sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^{k}}{k!} \Gamma\left(\frac{k+1}{2}\right) 2K_{\frac{k+1}{2}}(\omega \gamma) \left(\frac{\gamma}{\omega}\right)^{\frac{k+1}{2}}$$
(3.62)

$$S_2 = \sum_{k=0}^{\infty} \frac{2^{k/2} (x - \mu)^k}{k!} \sum_{j=0}^{\infty} \frac{(-1)^j \left(\frac{\beta^2}{2}\right)^{\frac{k+1}{2} + j}}{j! \left(\frac{k+1}{2} + j\right)} 2K_j(\omega \gamma) \left(\frac{\omega}{\gamma}\right)^j.$$
(3.63)

Interchanging the order of summation in  $S_2$ , we observe that the sum in k is convergent an expressible in terms of the lower incomplete gamma function  $\gamma(a, x)$ . Assuming  $\beta > 0$ 

$$\sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^k}{k! (\frac{k+1}{2}+j)} \left(\frac{\beta^2}{2}\right)^{\frac{k+1}{2}} = -\frac{\sqrt{2}}{(x-\mu)^{2j+1} \beta^{2j}} \gamma \left(2j+1, -(x-\mu)\beta\right). \tag{3.64}$$

Thus.

$$S_{2} = -2\sqrt{2} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} \frac{\gamma (2j+1, -(x-\mu)\beta)}{(x-\mu)^{2j+1}\beta^{2j}} \left(\frac{\beta^{2}}{2}\right)^{j} K_{j}(\omega \gamma) \left(\frac{\omega}{\gamma}\right)^{j}$$

Rearranging terms

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta e^{\delta\gamma}}{\pi\sqrt{2}} \left[ \sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^k}{k!} \Gamma\left(\frac{k+1}{2}\right) K_{\frac{k+1}{2}}(\omega\gamma) \left(\frac{\gamma}{\omega}\right)^{\frac{k+1}{2}} + \sqrt{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{\gamma \left(2k+1, -(x-\mu)\beta\right)}{(x-\mu)^{2k+1}} K_k(\omega\gamma) \left(\frac{\omega}{2\gamma}\right)^k \right]$$
(3.65)

If  $\beta < 0$  then  $F(x; \alpha, \beta, \mu, \delta) = 1 - F(-x; \alpha, -\beta, -\mu, \delta)$ . The expansion is convergent for small  $x - \mu$  and fixed values of the rest of parameters. Moreover, the convergence improves when  $\gamma \sim \omega$ , also valid for large values for these two parameters.

#### **3.3.3** Expansion $\alpha \to \infty, \delta \to \infty$

#### **3.3.4** Expansion $|x - \mu| \to \infty$

The expansion of  $\Phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right)$  at  $t\to 0$  is given in terms of the Bessel polynomial  $y_k(x)$ . To simplify notation, we take  $a=x-\mu$  and  $b=-\beta$ . Then,

$$\Phi\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right) = 1 + \frac{e^{-a^2/(2t) - ab - b^2/2t}}{a\sqrt{2\pi}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k y_k \left(\frac{1}{ab}\right) t^{\frac{1}{2} + k}$$
(3.66)

Using the connection of the Bessel polynomials with the modified Bessel function of the second kind  $K_n(x)$  given by

$$y_n(x) = \sqrt{\frac{2}{\pi x}} e^{1/x} K_{n+\frac{1}{2}} \left(\frac{1}{x}\right),$$
 (3.67)

we replace in the integral, we obtain

$$F(x;\alpha,\beta,\mu,\delta) = 1 + \delta e^{\delta \gamma} \sqrt{\frac{b}{2a\pi^3}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k K_{k+\frac{1}{2}}(ab) \int_0^{\infty} t^{k-1} e^{-\frac{\delta^2 + a^2}{2t} - \frac{\gamma^2 + b^2}{2}t} dt$$
 (3.68)

$$\int_{0}^{\infty} t^{k-1} e^{-\frac{\delta^2 + a^2}{2t} - \frac{\gamma^2 + b^2}{2}t} dt = 2K_k(\omega \alpha) \left(\frac{\omega}{\alpha}\right)^k, \tag{3.69}$$

where  $\omega = \sqrt{\delta^2 + (x - \mu)^2}$ . Rearranging terms

$$F(x;\alpha,\beta,\mu,\delta) = 1 + \delta e^{\delta\gamma} \sqrt{\frac{2\beta}{(\mu-x)\pi^3}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{\beta\omega}{\alpha(\mu-x)}\right)^k K_{k+\frac{1}{2}}((\mu-x)\beta) K_k(\omega\alpha)$$
(3.70)

#### 3.4 Numerical integration

For cases do not covered by the described expansions, we need to resort to numerical integration. The Laplace-type integral (2.5), whose integrand includes the complementary error function, should be faster to evaluate than the Bessel integral in (2.4).

To use numerical integration methods requiring a finite interval, we truncate the integral (2.5) at some point N, such that

$$I = \int_0^N \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t} dt + \int_N^\infty \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t} dt,$$

and  $F(x; \alpha, \beta, \mu, \delta) = CI$ , where  $C = \frac{\delta e^{\delta \gamma}}{\sqrt{2\pi}}$ . The truncation error can be bounded by

$$\int_{N}^{\infty} \Phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t}-\frac{\gamma^2}{2}t} \, dt \leq \frac{e^{-\frac{\delta^2}{2N}}}{N^{3/2}} \int_{N}^{\infty} e^{-\frac{\gamma^2}{2}t} \, dt \leq \frac{2e^{-\frac{\delta^2}{2N}-\frac{\gamma^2}{2}N}}{N^{3/2}\gamma^2}.$$

We can select N for a desired absolute tolerance  $\epsilon$  via a bisection procedure or by solving using root-finding methods the equation

$$\frac{2e^{-\frac{\delta^2}{2N} - \frac{\gamma^2}{2}N}}{N^{3/2}\gamma^2} = \frac{\epsilon}{C}.$$
 (3.71)

Moreover, a slightly lesser sharper bound allows a closed-form solution of the above equation in terms of the principal branch of the Lambert W function [2, §4.13]

$$\frac{2e^{-\frac{\gamma^2}{2}N}}{N^{3/2}\gamma^2} = \frac{\epsilon}{C} \longrightarrow N = \frac{3}{\gamma^2} W_0\left(\frac{\gamma^2}{3u}\right), \quad u = \left(\frac{\gamma^2 \epsilon}{2C}\right)^{2/3}. \tag{3.72}$$

To accurately estimate N to achieve a relative tolerance, we need an estimate of the order of magnitude of I. First, we rewrite the integrand as  $e^{g(t)}$ , where

$$g(t) = -\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t - \frac{3}{2}\log(t) + \log\left(\Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right)\right),$$

and

$$g'(t) = \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t} - \varphi(x;\beta,\mu), \quad \varphi(x;\beta,\mu) = \frac{1}{2} \left( \frac{x-\mu}{t^{3/2}} + \frac{\beta}{\sqrt{t}} \right) \frac{\phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right)}{\Phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right)}$$

The saddle point  $t_0$  and maximum contribution  $e^{g(t_0)}$  of the integrand is obtained as the solution of the equation g'(t) = 0. Thus, N for relative tolerance can be estimated after replacing  $\epsilon$  with  $\epsilon e^{g(t_0)}$  in (3.72).

For the case where  $\gamma$  and  $\delta$  are both large and  $\beta$  and  $x - \mu$  are fixed, the last term in g'(t) can be neglected, obtaining the quadratic equation

$$g'(t) \approx \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t}, \quad t_0 = \frac{-\frac{3}{2} + \sqrt{\frac{9}{4} + (\gamma\delta)^2}}{\gamma^2},$$
 (3.73)

taking the positive internal saddle point  $t_0$ . The case where  $\gamma$  and  $\delta$  are small requires further analysis. If  $x - \mu > 0$ , as  $x - \mu$  increases the contribution of  $\varphi(x; \beta, \mu)$  vanishes and (3.73) is valid. Contrarily, if  $x - \mu < 0$  and  $\beta \to 0$  (since  $|\beta| < \gamma < \alpha$ ),  $\varphi(x; \beta, \mu)$  can be approximated as follows

$$\frac{\phi\left(\frac{x-\mu}{\sqrt{t}}\right)}{\Phi\left(\frac{x-\mu}{\sqrt{t}}\right)} \approx -\frac{x-\mu}{\sqrt{t}}, \quad \varphi(x;\beta,\mu) \approx -\frac{(x-\mu)^2}{2t^2},$$

then, we have another quadratic equation

$$g'(t) \approx \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t} + \frac{(x-\mu)^2}{2t^2}, \quad t_0 = \frac{-\frac{3}{2} + \sqrt{\frac{9}{4} + \gamma^2 ((x-\mu)^2 + \delta^2)}}{\gamma^2}.$$

If  $\beta < 0$ , a better approximation is

$$g'(t) \approx \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t} + \frac{(x-\mu)^2}{2t^2} + \frac{\beta(x-\mu)}{2t}, \quad t_0 = \frac{h + \sqrt{h^2 + \gamma^2 \left((x-\mu)^2 + \delta^2\right)}}{\gamma^2}, \quad h = \frac{\beta(x-\mu) - 3}{2}.$$

The saddle point estimates  $t_0$  can also be used as a starting point for root-finding, however, for the purpose of approximating the order of magnitude of I, the approximations are sufficient.

- Gauss-Legendre
- Double-exponential tanh-sinh numerical integration

A double-exponential integration arises as follows. Because  $|\beta| < \alpha$ , we can write  $\beta = \alpha \tanh(\theta)$ . Substituting in (2.4)  $x - \mu = \delta \sinh(\theta + u)$  we obtain

$$F(x; \alpha, \beta, \mu, \delta) = \frac{\alpha \delta e^{\delta \gamma}}{\pi} \int_{-\infty}^{\tau} K_1(\alpha \delta \cosh(\theta + u)) e^{\beta \delta \sinh(\theta + u)} du, \tag{3.74}$$

where

$$\tau = \operatorname{arcsinh}\left(\frac{x-\mu}{\delta}\right) - \theta. \tag{3.75}$$

#### 3.5 Inversion methods

Ideas:

- Central region
  - 1. The moment generating function is simple. The computation of its central moments is easy.
  - 2. Use multiple central moments to estimate the quantile using a Cornish-Fisher expansion.
- Tails (asymptotic methods) [11, §42]
  - 1. Direct application using the standard form integral representation (2.4).
- Root-finding: Halley's or Schwarzian-Newton method.

# 4 Algorithmic details and implementation

#### 4.1 Handling large parameters

Exponent overflow issues in  $\exp(\alpha \delta)$ . Logarithmic transformation. Use scaled Bessel function.

#### 4.2 Evaluation of Bessel-type expansions

#### 4.2.1 Partial sums recurrence

As an example, series (3.7). It is worth noticing that performing a naive computation of the terms  $T_k$  in double-precision arithmetic for large N poses underflow and overflow problems since the numerator (denominator) rapidly goes to infinity (zero) as N increases. In Section 4.2, we discuss alternative summation methods to avoid cancellation issues and precision loss for large N.

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{\delta e^{\delta \alpha}}{\pi} \frac{(x-\mu)\alpha}{\omega} S_K, \tag{4.1}$$

where  $S_K$  is the k-th partial sum. The first partial sums are

$$S_0 = 0, \quad S_1 = K_1(\alpha \omega), \quad S_2 = S_1 + \frac{K_2(\alpha \omega)z}{3},$$
 (4.2)

and for  $k \geq 0$ , the partial sums satisfy the recursion relation

$$S_{k+3} = \frac{-\alpha\omega z^2 S_k + z \left(-2(2+k)(3+2k) + \alpha\omega\right) S_{k+1} + (3+2k) \left((5+2k)\alpha\omega + 2(2+k)z\right) S_{k+2}}{(3+2k)(5+2k)\alpha\omega}, \quad (4.3)$$

where

$$z = \frac{(x-\mu)^2 \alpha}{\omega}. (4.4)$$

Stopping criterion is

$$\left|1 - \frac{S_K}{S_{K-1}}\right| < \epsilon. \tag{4.5}$$

#### 4.3 Evaluation of asymptotic expansions

#### 4.4 Implementation

## 5 Numerical experiments

#### 6 Conclusions

# **A** The function $\Phi\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)$

In this section, we present some results to be used throughout this work.

The function  $F(t; a, b) = \Phi\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)$  is part of the integrand of the integral representation in (2.5). Given its relevance throughout this work, we introduce here some results that shall be used subsequently. F(t; a, b) has the following integral representation [2, §7.7.6]

$$F(t;a,b) = \frac{1}{2}\operatorname{erfc}\left(-\frac{\frac{a}{\sqrt{t}} + b\sqrt{t}}{\sqrt{2}}\right) = \sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{2t}}\int_{-b/\sqrt{2}}^{\infty} e^{-(tu^2 - \sqrt{2}au)} du \tag{A.1}$$

#### **A.0.1** Expansion $t \to 0$

Let us consider the case a < 0, since we can use the mirror property  $\Phi(z) = 1 - \Phi(-z)$  otherwise. To obtain an expansion for  $t \to 0$ , we expand  $e^{-tu^2}$  and interchange summation and integration obtaining

$$F(t; a, b) = \sqrt{\frac{t}{\pi}} e^{-\frac{a^2}{2t}} \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} \int_{-b/\sqrt{2}}^{\infty} e^{\sqrt{2}au} u^{2k} du.$$

For a < 0 the integral can be expressed in closed form in terms of the incomplete gamma function,  $\Gamma(a, x)$ 

$$\int_{-b/\sqrt{2}}^{\infty} e^{\sqrt{2}au} u^{2k} du = \frac{\Gamma(2k+1, -ab)}{(\sqrt{2}a)^{2k+1}},$$

and for the special case b = 0, it reduces to

$$\int_0^\infty e^{\sqrt{2}au} u^{2k} \, du = \frac{\Gamma(2k+1)}{(\sqrt{2}a)^{2k+1}}.$$

Then, we obtain the series expansion valid for  $t \to 0$ ,  $a \to -\infty$  and fixed b

$$F(t;a,b) = \sqrt{\frac{t}{\pi}} e^{-\frac{a^2}{2t}} \sum_{k=0}^{\infty} \frac{(-1)^{k+1} t^k}{k!} \frac{\Gamma(2k+1,ab)}{(\sqrt{2}a)^{2k+1}}.$$
 (A.2)

Moreover, another expansion valid for large values of a > 0 and b can be obtained after expanding F(t; a, b) at t = 0. The first coefficients are

$$c_0 = \frac{1}{a}, \quad c_1 = \frac{ab+1}{a^3}, \quad c_2 = \frac{a^2b+3ab+3}{a^5}, \quad c_3 = \frac{a^3b^3+6a^2b^3+15ab+15}{a^7}$$
 (A.3)

and the expansion reads

$$F(t;a,b) = 1 + \frac{e^{-\frac{1}{2}\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)^2}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} (-1)^{k+1} c_k t^{k+\frac{1}{2}}.$$
 (A.4)

The coefficients are expressible in terms of Bessel polynomials  $y_k(x)$  [9, §A001498], and it follows that

$$F(t;a,b) = 1 + \frac{e^{-\frac{1}{2}\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)^2}}{a\sqrt{2\pi}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k y_k \left(\frac{1}{ab}\right) t^{k+\frac{1}{2}},\tag{A.5}$$

where  $y_k(x)$  has an explicit formula

$$y_k(x) = \sum_{m=0}^k \binom{k}{m} (k+1)_m \left(\frac{x}{2}\right)^m.$$
 (A.6)

Using the connection of the Bessel polynomials with the modified Bessel function of the second kind  $K_k(x)$  given by [11, §33.1.3]

$$y_k(x) = \sqrt{\frac{2}{\pi x}} e^{1/x} K_{k+\frac{1}{2}} \left(\frac{1}{x}\right),$$
 (A.7)

the resulting expansion is represented as a Bessel-type expansion

$$F(t;a,b) = 1 + \frac{e^{-\frac{a^2}{2t} - \frac{b^2}{2}t}}{\pi} \sqrt{\frac{b}{a}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k K_{k+\frac{1}{2}}(ab) t^{k+\frac{1}{2}}.$$
 (A.8)

The expansion is convergent for t < 1. The convergence follows from the asymptotic estimate of  $(b/a)^k K_k(ab) \sim (b/a)^k \sqrt{\frac{\pi}{2ab}} e^{-ab}$  as  $|ab| \to \infty$ . The expansion can be seen as an asymptotic expansion for large a, or as a uniform asymptotic expansion for  $a \sim b$ . The coefficients can be computed by using a recurrence relation for the modified Bessel function.

#### **A.0.2** Expansion $t \to \infty$

Let us focus on the case  $t \to \infty$ . We can develop an asymptotic expansion after expanding the term  $e^{\sqrt{2au}}$  in (A.1), which yields

$$F(t;a,b) = \sqrt{\frac{t}{\pi}} e^{-\frac{a^2}{2t}} \sum_{k=0}^{\infty} \frac{(\sqrt{2}a)^k}{k!} \int_{-b/\sqrt{2}}^{\infty} e^{-tu^2} u^k du.$$

Considering the case b < 0 (again, we can use the mirror property), the integral has a closed-form

$$\int_{-b/\sqrt{2}}^{\infty} e^{-tu^2} u^k \, du = \frac{\Gamma\left(\frac{k+1}{2}, \frac{b^2}{2}t\right)}{2t^{\frac{k+1}{2}}}.$$

Thus.

$$F(t;a,b) = \sqrt{\frac{t}{\pi}} \frac{e^{-\frac{a^2}{2t}}}{2} \sum_{k=0}^{\infty} \frac{(\sqrt{2}a)^k}{k!} \frac{\Gamma\left(\frac{k+1}{2}, \frac{b^2}{2}t\right)}{t^{\frac{k+1}{2}}}.$$
 (A.9)

The asymptotic behaviour of the terms in the series is

$$\frac{\Gamma\left(\frac{k+1}{2},\frac{b^2}{2}t\right)}{t^{\frac{k+1}{2}}} \sim \left(\frac{b^2}{2}\right)^{\frac{k+1}{2}} e^{-\frac{b^2}{2}t}, \quad t \to \infty.$$

In fact this series is convergent, as can be observed taking the asymptotic estimate of  $\Gamma(k,x)$  as  $k \to \infty$ . A simpler convergent expansion can be obtained transforming the integral in (A.1)

$$\sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{2t}}\int_{-b/\sqrt{2}}^{\infty}e^{-(tu^2-\sqrt{2}au)}\,du = \sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{2t}-ab-\frac{b^2}{2}t}\int_{0}^{\infty}e^{\sqrt{2}(a+bt)u}e^{-tu^2}\,dt,$$

and expanding  $e^{\sqrt{2}(a+bt)u}$  obtaining

$$F(t;a,b) = \sqrt{\frac{t}{\pi}} \frac{e^{-\frac{a^2}{2t} - ab - \frac{b^2}{2}t}}{2} \sum_{k=0}^{\infty} \frac{(\sqrt{2}(a+bt))^k}{k!} \frac{\Gamma(\frac{k+1}{2})}{t^{\frac{k+1}{2}}}.$$
 (A.10)

Similarly to the expansion at  $t \to 0$ , we can obtain an asymptotic expansion expanding F(t; a, b) at  $t \to \infty$ . For b > 0, the first terms of the expansion are

$$c_0 = 1$$
,  $c_1 = 2 + 2ab + a^2b^2$ ,  $c_2 = 24 + 24ab + 12a^2b^2 + 4a^3b^3 + a^4b^4$ , (A.11)

$$F(t;a,b) = 1 + \frac{e^{-ab - \frac{b^2}{2}t}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2^k k!} \frac{c_k}{b^{2k+1}} \left(\frac{1}{t}\right)^{k+\frac{1}{2}}.$$
 (A.12)

The coefficients  $c_k$  are expressible in terms of the incomplete gamma function, since

$$c_k = \sum_{j=0}^{2k} \frac{(2k)!}{j!} (ab)^j = e^{ab} \Gamma(2k+1, ab).$$

Rearranging terms, we get

$$F(t;a,b) = 1 + \frac{e^{-\frac{b^2}{2}t}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2^k k!} \frac{\Gamma(2k+1,ab)}{b^{2k+1}} \left(\frac{1}{t}\right)^{k+\frac{1}{2}}.$$
 (A.13)

#### **A.0.3** Expansion $t \rightarrow u$

Lastly, we study the expansion of F(t; a, b) at t = u. This expansion shall be crucial when developing various Bessel-type asymptotic expansions later on. The first coefficients of the Taylor series are

$$c_0 = \Phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_0, \quad c_1 = \phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_1, \quad c_2 = -\phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_2, \quad c_3 = \phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_3,$$

where

$$\begin{split} d_0 &= 1 \\ d_1 &= \frac{-a+bu}{2u^{3/2}} \\ d_2 &= \frac{a^3 - 3au - a^2bu + bu^2 - ab^2u^2 + b^3u^3}{8u^{7/2}} \\ d_3 &= \frac{-a^5 + 10a^3u + a^4bu - 15au^2 - 6a^2bu^2 + 2a^3b^2u^2 + 3bu^3 - 6ab^2u^3 - 2a^2b^3u^3 + 2b^3u^4 - ab^4u^4 + b^5u^5}{48u^{11/2}} \end{split}$$

and  $\phi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$  is the probability density function of the standard normal distribution. Thus, we have

$$F(t; a, b) = \sum_{k=0}^{\infty} c_k (t - u)^k.$$
 (A.14)

Additional terms satisfy the following recurrence

$$c_{k+4} = \frac{f_0(k)c_k + f_1(k)c_{k+1} + f_2(k)c_{k+2} + f_3(k)c_{k+3}}{f_4(k)}, \quad k \ge 0$$
(A.15)

where

$$f_0(k) = -kb^3$$

$$f_1(k) = -(1+k)b(1+2k-ab+3b^3u)$$

$$f_2(k) = (2+k)(5a+2ka+a^2b-8bu-6kbu+2ab^2u-3b^3u^2)$$

$$f_3(k) = -(3+k)(a^3-11au-4kau-a^2bu+13bu^2+6kbu^2-ab^2u^2+b^3u^3)$$

$$f_4(k) = 2(3+k)(4+k)u^2(-a+bu)$$

#### B The modified Bessel function of the second kind

Asymptotic behaviour with respect to the argument

$$K_{\nu}(x) \sim \frac{2^{|\nu|-1}\Gamma(|\nu|)}{x^{|\nu|}}, \quad x \to 0, \quad \nu \neq 0.$$
 (B.1)

$$K_{\nu}(x) \sim \sqrt{\frac{\pi}{2x}} e^{-x}, \quad x \to \infty, \quad \nu \in \mathbb{R}.$$
 (B.2)

Asymptotic behaviour with respect to the order

$$K_{\nu}(x) \sim \sqrt{\frac{\pi}{2\nu}} \left(\frac{ex}{2\nu}\right)^{-\nu}, \quad \nu \to \infty, \quad x \neq 0.$$
 (B.3)

#### References

- [1] H. Bateman and Bateman Manuscript Project. *Tables of Integral Transforms*. McGraw-Hill Book Company, 1954. Funding by Office of Naval Research.
- [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21.
  F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- [3] R. E. Gaunt. Uniform bounds for expressions involving modified Bessel functions. *Math. Inequal.* Appl., 19:1003–1012, 2016.
- [4] I. S. Gradshteyn and I. M. Ryzhik. *Table of integrals, series, and products*. Elsevier/Academic Press, Amsterdam, seventh edition, 2007.
- [5] N. N. Lebedev. Special Functions and Their Applications. Dover Publications, 1972.
- Y. L. Luke. Inequalities for generalized hypergeometric functions. Journal of Approximation Theory, 5(1):41-65, 1972.
- [7] F. W. J. Olver. Asymptotics and Special Functions. A. K. Peters, Wellesley, MA, 1997. Reprint, with corrections, of original Academic Press edition, 1974.
- [8] J. Segura. Simple bounds with best possible accuracy for ratios of modified Bessel functions. *Journal of Mathematical Analysis and Applications*, 526(1):127211, 2023.
- [9] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
- [10] N. M. Temme. Uniform asymptotic expansions of a class of integrals in terms of modified bessel functions, with application to confluent hypergeometric functions. SIAM Journal on Mathematical Analysis, 21(1):241–261, 1990.
- [11] N. M. Temme. Asymptotic Methods for Integrals, volume 6 of Series in Analysis. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
- [12] J. G. Wendel. Note on the Gamma Function. American Mathematical Monthly, 55:563, 1948.
- [13] Wolfram Research, Inc. Mathematica 10.