

GGAGTCGACCCACCGCTCCGCAGGGCTGAGGAACC	H	S	P	S	P	T	A	L	F	W	C	L		11
ATG TCT CCA TCC CCG ACC GCC CTC TTC TGT CTT														68
G L C L G R V P A Q S G P L P K P S L Q														31
GGG CTG TGT CTG CGG CGT GTG CCA GCG CAG AGT GGA CCG CTC CCC AAG CCC TCC CTC CAG														128
A L P S S L V P L E K P V T L R C Q G P														51
GCT CTG CCC ACC TCC CTG GTG CCC CTG GAG AAG CCA GTG ACC CTC CGG TGC CAG GGA CCT														188
P G V D L Y R L E K L S S S R Y Q D Q A														71
CCG CGC GTG GAC CTG TAC CGC CTG GAG AAG CTG AGT TCC AGC AGG TAC CAG GAT CAG GCA														248
V L F I P A H K R S L A G R Y R C S Y Q														91
GTC CTC TTC ATC CCG GCC ATG AAG AGA AGT CTG GCT GGA CGC TAC CGG TGC TCC TAC CAG														308
N G S L W S L P S D Q L E L V A T G V F														111
AAC GGA AGC CTC TGG TCC CTG CCC AGC GAC CAG CTG GAG CTC GTT GCC ACG GGA GTT TTT														368
A K P S L S A Q P G P A V S S G G D V T														131
GCC AAA CCC TCG CTC TCA GCC CAG CCC CGG CGG GTG TCG TCA GGA GGG GAC GTC ACC														428
L Q C Q T R Y G F D Q F A L Y K E G D P														151
CTA CAG TGT CAG ACT CGG TAT GGC TTT GAC CAA TTT GCT CTG TAC AAG GAA GGG GAC CCT														488
A P Y K N P E R W Y R A S F P I I T V T														171
GCG CCC TAC AAG AAT CCC GAG AGA TGG TAC CGG GCT AGT TTC CCC ATC ATC ACG GTG ACC														548
A A H S G T Y R C Y S F S S R D P Y L W														191
GCC GCC CAC AGC GGA ACC TAC CGA TGC TAC AGC TTC TCC AGC AGG GAC CCA TAG CTG TGG														608
S A P S D P L E L V V T G T S V T P S R														211
TCG GCC CCC AGC GAC CCC CTG GAG CTT GTC GTC ACA GGA ACC TCT GTG ACC CCC AGC CGG														668
L P T E P P S S V A E F S E A T A E L T														231
TTA CCA ACA GAA CCA CCT TCC TCG GTA GCA GAA TTC TCA GAA GCC ACC GCT GAA CTG ACC														728
V S F T N K V F T T E T S R S I T T S P														251
GTC TCA TTC ACA AAC AAA GTC TTC ACA ACT GAG ACT TCT AGG AGT ATC ACC ACC AGT CCA														768
K E S D S P A G P A R Q Y Y T K G N L V														271
AAG GAG TCA GAC TCT CCA GCT GGT CCT GCC CGC CAG TAC TAC ACC AAG GGC AAC CTG GTC														848
R I C L G A V I L I I L A G F L A E D W														291
CGG ATA TGC CTC CGG GCT GTG ATC CTA ATA ATC CTG CGG GGG TTT CTG GCA GAG GAC TGG														908
H S R R K R L R H R G R A V Q R P L P P														311
CAC AGC CGG AGG AAG CGC CTG CGG CAC AGG GGC AGG GCT GTG CAG AGG CGG CTT CGG CCC														968
L P P L P Q T R K S H G G Q D G G R Q D														331
CTG CGG CCC CTC CGG CAG ACC CGG AAA TCA CAC GGG GGT CAG GAT GGA GGC CGA CAG GAT														1028
V H S R G L C S *														340
GTT CAC AGC CGC GGG TTA TGT TCA TGA														1055

FIGURE 1a

CGCGTGAACCCAGGCACGGTGTATCCAAGGGAGGGATCATGGCATGGAGGGACTCAAAACACTGGCGTGTCGGAG 1134
CGTGAAGCAGGAGGGCAGAGGCTACAGCTGTGAAACGAGGCCATGCTGCCCTCTCTGGTGTTCATCAAGGGAGCCG 1213
TTGGCCAGTGTCTGTCTGTCTGCCCTCTGTCTGAGGGCACCCCTCCATTGGATGGAAGGAATCTGTGGAGAC 1292
CCCATCCCTCCCTGCACACTGTGGATGACATGGTACCCCTGGCTGGACCACATACTGGCTCTTCTCAACCTCTCT 1371
AATATGGGCTCCAGAOGGATCTCTAAGGTCTCCAGCTCTCAGGGTTGACTCTGTCCATCCCTGTGCAAATCCCT 1450
GTGCTTCCCTTGGCCCTCTGTCTGTCTGGTTTCCCTAGAAAACCTCTCACCCCTCACCCATCTCCACTGGGTC 1529
TAACAAATCTCCCTTGTCTCTCAGAACGGGTCTTCAGGCAAGTTCGGGTATGTCAATTCAATTTCCTTAGTGTAAA 1608
AGCACGTTGCCGCTTCCCTCACATTAGAACAAAGATCAGCCTGTGCAACATGGTAAACCTCATCTTACCAACAA 1687
AACAAC 1766
ATGGCTTGAGCCTGGAGGCAGAGGTTGCACTGAGATCACACCAACTGCACTCTAGCTGGGTGACGAAGCCCTGA 1845
CCTTGTCTCAAAAAATACAGGGATGAATATGTCAATTACCCCTGATTGATCATGCACGTTGATAACATGTACTGCAAT 1924
ATTCGCTGTCCACCCCCATAAAATATGTACAATTATGTATACTTTTAAACATAAAAATAAGATAATGAAAAAAAAAAA 2003
AAAAAAAAAAGGGCGGGCGCTAGACTAGTCTAGAGAACAA 2047

FIGURE 1b

FIGURE 2

ALIGN calculates a global alignment of two sequences
 version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
 > U91928 ORF 1893 aa vs.
 > ht268 ORF 1017 aa
 scoring matrix: pam120.mat, gap penalties: -12/-4
 37.7% identity; Global alignment score: -8

	10	20	30	40	50	60	70
inputs	ATGACGCCCGCCCTCAGGCCCTGCTGCCCTGGGCTGAGTCTGGCCCCAGGACCCGCGTCAGGCAG						
	::::: :: :::: : ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::						
	ATGTCTCCATCCCCGACCGCCCTCTCTGCTTGGGCTGTCTGGGGCG-TGTGCCAGC--GCAGACTG						
	10	20	30	40	50	60	70
inputs	GGCCCTCCCCAAACCCACCCCTGGGCTGAGCCAGGCTCTGTGAT-CAGCTGGGGAGCCCCGTGACCA						
	::::: ::::::::::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::						
	GACCGCTCCCCAAGCCCTCCCTCCAGGCTCTGCCAGCTCCCTGGTCCCCCTGGAGAAGCCA-GTGACCC						
	70	80	90	100	110	120	130
inputs	TCTGGTCTAGGGGAGGCTGGAGGCCAGGACTGGATAAAAGAGGGAAAGCCCAGAGCCCTTGGG						
	:: :::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::						
	TCCGGTGCCAGGG--ACCT-----CCGGGCTG--GACCTGTA-----CCGCTGGAG---AAG						
	140	150	160	170	180	190	200
inputs	CAGAAATAACCCACTGGAACCCAGAACAGAACAGGCCAGATTCTCATCCATCCATGACAGAGCACCATGCC						
	::::: :: ::::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::						
	CTGAGTT--CCAGCAGGTAC-AGGATCA-GGCAGTCCTTCATCCGGCCATGAAGAGAAGTCTGGCT						
	190	200	210	220	230	240	250
inputs	CGGAGATAACCGCTGCCACTATTACAGCTCTGCAG--GCTGCTCAGAGGCCAGCGACCCCCCTGGAGCTGG						
	:: ::::: :: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::						
	GGACGCTACCGCTGCTCCCTAC--CAGAACCGAACGCCCTGGTCCCTGCCAGCGACCAGCTGGAGCTGT						
	250	260	270	280	290	300	310
inputs	GATGACAGGATTCTACAACAAACCCACCCCTCTAGGCCAGGCCAGGGCTGTGGTGGCTCAGGGGGAAAT						
	- ::::: : : - ::::::: ::::::: ::::::: ::::::: ::::::: ::::::: ::::::: :::::						
	TGCCAOGGGAGTTTGCCAAACCCCTCGCTCTAGCCCAGCCCGCCGGGGGTGTGTCAGGGAGGGAC						
	320	330	340	350	360	370	380
inputs	ATGACCCCTCCGATGTGGCTCAGAACGGATATCACCATTTGTTCTGATGAAGGAAGGAGAACACCCAGC						
	::::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::						
	GTAACCCCTACAGTGTCAAGCTCGGTATGGCTTGACCAATTGCTCTGTACAGGAAGG-----						
	390	400	410	420	430	440	450
inputs	TCCCCCOGGACCCCTGGACTCACAGCAGCTCACAGTGGGGGTTCCAGGCCCTGTTCCCTGTGGGGCCCGT						
	::::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::						
	490	500	510	520	530	540	550
inputs	: :						

FIGURE 3a

FIGURE 3b

```

inputs GAGCTCATAAAGTACCAAGGCTGAATTCCCCATGAGTCCTGTGACCTCAGCCCACGGGGGACCTACAGGTG
    :..          ::::::: :       .::.:..:   ::: ..   ::: .
GTA-----CCAGAATTCTC-----ACAGCCAC-----CGCTGA-----ACTG--A
660           670           680           690

1190      1200      1210      1220      1230      1240      1250
inputs CTACGGCTCATACAGCTCCAAACCCCCACCTGCTGTCTTCCCCAGTGACCCCTGGAACTCATGGTCTCA
: : : ::::::: : :::       .::.:..:   ::: ..   ::: .
C---CGTCTCATTCACAAAC-----AAAGTCTT--CACAA-----CTGAGACT----TCT--
700           710           720           730

1260      1270      1280      1290      1300      1310      1320
inputs GGACACTCTGGAGGCTCCAGCCTCCACCCACAGGGCCGCCACACCTGGTCTGGGAAGATAACCTGG
. ::: . : .::: . ::: .::: . : .: .::: . : .: .
---AGGAGTATC--ACCACCACTCCAAAGGA--GTCAGACTCTCCAG--CTGG-----
740           750           760           770

1330      1340      1350      1360      1370      1380      1390
inputs AGCTTTGATTGGGTCTCGCTGGCCTCGTCCTGCTCTCCTCCTCTCCTCCGACCG
: : : : :       :: : ..   :: : .: : .
---TCCTGC-----CCGGCACTA---CTACACCAAGG
780           790           800

1400      1410      1420      1430      1440      1450      1460
inputs TCAGCGTCACAGCAAAACACAGGACATCTGACCAGAGAAAAGACTGATTCCAGCGTCTGCAGGGGCTGCG
: : .       :: : .       : : .: : .: .
GCAAC-----CTGGTC-----CGGATAT--GCCTC---GGGGCTG--
810           820           830

1470      1480      1490      1500      1510      1520      1530
inputs GAGACACAGCCCAAGGACAGGGCCCTGCTGAGGAGGTCCAGCCAGCTGCTGACGTCCAGGAAGAAAACC
. :: : : : .       :: : .: : .: .       :: : : .: .
---TGATCCTAATAA-----TCCTG--GGGGGTITCTG-----GCAGA-GGACTGG-----C
840           850           860           870

1540      1550      1560      1570      1580      1590      1600
inputs TCTATGCTGCCGTGAAGGACACACAGCTGAGG-ACAGGGTGGAGCTGGACAGT-CAGAGCCCACACGAT
. : .: : .: .: .: .: .: .: .: .: .: .: .: .
AC----AGCGG--GAGGAAGCGC--CTGGGGCACAGGG---GCAGGGCTGTCAGAGGGGGCT---
880           890           900           910           920

1610      1620      1630      1640      1650      1660      1670
inputs CAAGACCCCCAGGCAGTGACGTATGCCCGTGAAACACTCCAGTCCTAGGAGAGAAATGGCTCTCCTC
. : .       :: : : .       :: : .: : .
---TCC-----CCCGCTG-----CCGC---C
930           940

1680      1690      1700      1710      1720      1730      1740
inputs CCTOCTCACTGCTGGGAATTCCCTGGACACAAGGACAGACAGGGTGGAGAGAGACAGGCAGATGGACAC
. : .: .: .: .: .: .: .: .: .: .: .: .
CCTOC-OGCAGAC-----COGGAAATCA---CA--CGGG-----GTCAGG---ATGGA---
950           960           970           980

```

FIGURE 3c

7853-211

(SHEET 7 OF 39)

```

1750      1760      1770      1780      1790      1800      1810
inputs TGAGGCTGCTCCATCTGAAGCCTCCCAGGATGTGACCTACGCCGGCTGCACAGCTTGACCCCTAGACGG
     ::::    :::::    :::::::    :::::::    :::::::    :::::    :::::
     ---GGC---CGAC-----AGGATGTT-----CACAGC-----CG-
     990                      1000

1820      1830      1840      1850      1860      1870      1880
inputs AAGGCAACTGAGCCTCCATCCCAGGAAGGGGAACTCCAGCTGAGCCCAGCATCTACGCCACTCTGG
     :::::::    :::::    :::::    :::::
     -----CGGGTTATG-----TICA-----TTCA-----
     1010

1890
inputs CCATCCAC

```

FIGURE 3d

FIGURE 4a

TEPKDRGLLRRSSPAADVQEENLYAAVKTQSEDRLVELDSQSPHDEDPQAVTYAPVKHSSPRREMASPPS
500 510 520 530 540 550 560

300 310 320 330
inputs -----LRHRGRAVQ--RPL-----PPLPPLPQTRK-----SHGGQDGGRQDVHSRGLC
: .. : .. : .. : .. : .. : .. : .. : .. : .. : ..
SLSGEFLDTKDRQVEEDRQMDEAAASEASQDVTYAQLHSLTLRRKATEPPPSQEGERPAEPMIYATLAI
570 580 590 600 610 620 630

inputs S

H

FIGURE 4b

Alignments of top-scoring domains:
ig: domain 1 of 2, from 41 to 90: score 4.1, E = 6.1

*->GesvtLtcsvsgfgppgvsvtWvfknk.lgpsllgysysrlesgek
hT268 41 + vtL+C+ + v Y + k ++ r++ +
EKPVTLRCQGP-----PGVDLY-RLEK1SSS-----RYQDQ-- 70
anlsegrfsissltLtissvekeDsGtYtCvv<-*
ht268 71 ++L i ++ +G Y+C
-----AVLFIPAMKRSIAGRYRCSY 90

FIGURE 5A

sig: domain 2 of 2, from 127 to 182: score 19.1, E = 0.1
*->GesvtLtcsvsgfgppgvsvtWYfkngk.lgpsllgysysrlesgek
G++vtL+C++ + ++ Y k+g++ + y++
ht268 127 GGDVTLQCQTR---YGFDQFALY-KEGDpAP-----YKNPERWYR-- 162
anlsegrfsissltLtissvekeDsGtYtCvv<-*
+++++i++v++ sGtY+C
ht268 163 -----ASFPIITVTAAHSGTYRCYS 182

FIGURE 5B

GAGCTGACCCACCGTCCGTTCCCTGCTGGCCACATAGCTCAGGACTGGGTTCAGAAC	H	S	P	A	
ATG TCT CCA GCC	74				
S P T F F C I G L C V L Q V I Q T Q S G	24				
TCA CCC ACT TTC TTC TGT ATT GGG CTG TGT GAA CTG CAA GTG ATC CAA ACA CAG AGT GGC	134				
P L P K P S L Q A Q P S S L V P L G Q S	44				
CCA CTC CCC AAC CCT TCC CTC CAG CCT CAG CCC ACT TCC CTG GAA CCC CTG CCT CAG TCA	154				
V I L R C Q G P P D V D L Y R L E K L R	64				
GTT ATT CTG AGG TCC CAG GGA CCT CCA GAT GTG GAT TTA TAT CGC CTG GAG AAA CTG AAA	254				
P E K Y E D Q D F L F I P T M E R S N A	84				
CCG GAG AAG TAT GAA GAT CAA GAC TTT CTC TTC ATT CCA ACC ATG GAA AGA AGT AAT GCT	314				
G R Y R C S Y Q N G S H W S L P S D Q L	104				
GGA CGG TAT CGA TGC TCT TAT CAG AAT GGG AGT CAC TGG TCT CTC CCA AGT GAC CAG CTT	374				
E L I A T G V Y A H P S L S A H P S S A	124				
GAG CTA ATT GCT ACA GGT GTG TAT GCT AAA CCC TCA CTC TCA GCT CAT CCC AGC TCA GCA	434				
V P Q G R D V T L E C Q S P Y S F D E F	144				
GTC CCT CAA CGC AGG GAT GTG ACT CTC AAG TGC CAG AGC CCA TAC AGT TTT GAT GAA TTC	494				
V L Y K E G D T G P Y E R P E K W Y R A	164				
GTT CTA TAC AAA GAA GGG GAT ACT GGG CCT TAT AAG AGA CCT GAG AAA TGG TAC CGG CCC	554				
N F P I I T V T A A H S G T Y R C Y S F	184				
AAT TTC CCC ATC ATC ACA GTG ACT GCT GAC AGT GGG AGC TAC CGG TGT TAC AGC TTC	614				
S S S P Y L W S A P S D P L V L V V T	204				
TCC AGC TCA TCT CCA TAC CTG TGG TCA GCC CCG AGT GAC CCT CTA GTG CTT GTG GTT ACT	674				
G L S A T P S Q V P T E E S F P V T E S	224				
GGA CTC TCT GCC ACT CCC AGC CAG GTC CCC ACG GAA TCA TTT CCT GTG ACA GAA TCC	734				
S R R P S I L P T N K I S T T E K P M N	244				
TCC AGG AGA CCT TCC ATC TTA CCC ACA AAC AAA ATA TCT ACA ACT GAA AAG CCT ATG AAT	794				
I T A S P E G L S P P I G F A H Q H Y A	264				
ATC ACT GCC TCT CCA GAG GGG CTG AGC CCT CCA ATT GGT TTT GCT CAT CAG CAC TAT GCC	854				
K G N L V R I C L G A T I I I I L L G L	284				
AAG GGG AAT CTG GTC CGG ATA TGC CTT GGT GCC ACG ATT ATA ATA ATT TTG TTG GGG CTT	914				
L A E D W H S R K R C L Q H R H R A L Q	304				
CTA GCA GAG GAT TGG CAC AGT CGG AAG AAA TCC CTG CAA CAC AGG ATG AGA GCT TTG CAA	974				
R P L P P' L P L A .	314				
AGG CCA CTA CCA CCC CTC CCA CTG GCC TAG	1004				
AAAATACTTGGCTTCAGCAGAGGGATTGACCAGACATCCATGCCACAAACCATGGACATCACCACTAGAGCCACAGACAT	1083				
GGACATACTCAAGAGTGGGGAGGTATATAAAGGAGTGTGGAGAATAAATGAGAGGCCAACAGGTGAAAAAAA	1162				

A

1163

FIGURE 6

FIGURE 7

ALIGN calculates a global alignment of two sequences
version 2.0 Please cite: Myers and Miller, CABIOS (1989)
> U91928 ORF 1893 aa vs.
> mT268 ORF 939 aa
scoring matrix: pam120.mat, gap penalties: -12/-4
34.3% identity; Global alignment score: -836

10	20	30	40	50	60	70
inputs ATGACGCCGCCCTCACAGCCCTGCCTCTGCCCTGGGCTGAGCTCTGGGCCAGGACCCCGTGCAGGCAG						
::::: :: :::: :::: ::	:: :::: :::: ::	:: :::: :::: ::	:: :::: :::: ::	:: :::: :::: ::	:: :::: :::: ::	:: :::: :::: ::
ATGTCTCCAGCC-TCAC--CC---ACTTTCTT---CTGTAT-----						
10	20	30				
80	90	100	110	120	130	140
inputs GGCCCTTCCCCAAACCCACCCCTCTGGGCTGAGCCAGGCTCTGTGATCAGCTGGGGAGCCCCGTGACCAT						
:::::::	:::::::	:::::::	:::::::	:::::::	:::::::	:::::::
-----TGGGCTG-----TGTGTACTGC-----						
40						
150	160	170	180	190	200	210
inputs CTGGTGTCAAGGGGACCCCTGGAGGCCAGGACTGGATAAGAGGAAGCCCAGAGCCCTTGGAC						
:::::::	:::::::	:::::::	:::::::	:::::::	:::::::	:::::::
----AAGTGATCC-----AAACACAGAG---TGG--						
50				60	70	
220	230	240	250	260	270	280
inputs AGAAATAACCCACTGGAACCCAAAGAACAAAGCCAGATTCTCCATCCATCCATGACAGAGCACCATGCGG						
::::: :::: :::: :::: :::: :::: :::	::::: :::: :::: :::: :::: :::	::::: :::: :::: :::: :::: :::	::::: :::: :::: :::: :::: :::	::::: :::: :::: :::: :::: :::	::::: :::: :::: :::: :::: :::	::::: :::: :::: :::: :::: :::
----CCCACT---CC---CAAG-----CCTTCCC-TCCAGG-----						
80				90		
290	300	310	320	330	340	350
inputs CGAGATAACCGCTGCCACTATTACAGCTCTGCAGGCTGGTCAGAGCCCAGCGACCCCTGGAGCTGGTGAT						
:::::	:::::	:::::	:::::	:::::	:::::	:::::
----CTCAGCC-----CACTTCCCTG-GTACCCCTGGGTCA-----						
100				110	120	
360	370	380	390	400	410	420
inputs CACAGGATTCTACAACAAACCCACCCCTCTCAGCCCTGCCAGCCCTGTGGTGGCCTCAGGGGGGAATATG						
::::: :: :: ::	::::: :: :: ::	::::: :: :: ::	::::: :: :: ::	::::: :: :: ::	::::: :: :: ::	::::: :: :: ::
----TCAG---TTATTC-----TGAGGTG-C--CACCGA-----						
130				140	150	
430	440	450	460	470	480	
inputs ACCCTCC-GATGTGGCTCACAGAAGGGATATCACCATTGTTCTGATGAAGGAAGGAGAACACCCAGCTC						
::::: :::::::	::::: :::::::	::::: :::::::	::::: :::::::	::::: :::::::	::::: :::::::	
----CCTCCAGATGTGG-----ATTIATATCGCTGGAGAAAATGAAA-----						
160	170	180	190			
490	500	510	520	530	540	550
inputs CCCGGACCCCTGGACTCACACCGAGCTCACAGTGGGGGTTCAGGCCCTGTTCCCTGTGGGCCCGTGA						
::::: :::	::::: :::::::	::::: :::::::	::::: :::::::	::::: :::::	::::: :::	:::

FIGURE 8a

--CCGGA-----CA-----AGTATGAAGATCAAGAC---TTTCTCTT-----CATT-
 200 210 220
 560 570 580 590 600 610 620
 inputs ACCCCAGCCACAGGTGGAGGTTCACATGCTATTACTATTATGAAACACCCCCCAGGTGTGGTCCCACCC
 ::::: :::::::::::: ::::: :::::
 --CCAACCATGGAAAGAACTA---ATGCT-----GGAC-----GCTAT-----
 230 240 250 260
 630 640 650 660 670 680 690
 inputs CAGTGACCCCCCTGGAGATTCTGCCCTCAGGCAGTCTAGGAAGCCCTCCCTCTGACCCCTGCAGGGCCCT
 ::::: ::::: ::::: ::::: ::::: :::::
 CGATG---CTCTTA-----TCAGA-----ATGGGAGTC-----ACTGGTCTCT
 270 280 290
 700 710 720 730 740 750 760
 inputs CTCCCTGGCCCCCTGGCCAGAGCCCTGACCCCTCAGTGTGGCTCTGATGTCGGCTACGACAGATTTGTTCTGT
 ::::: ::::: ::::: ::::: :::::
 -----CCCAAG-----TGACCAGCTTGAG---CTAATT---GCTAC-----
 300 310 320
 770 780 790 800 810 820 830
 inputs ATAGGGAGGGGGAAACGTGACTTCTCCAGCGCCCTGGCCAGCAGCCCCAGGCTGGCTCTCCAGGCCAA
 ::::: ::::: :::::
 ---AGGTGTCTATGCTAAAC--CCTC-----ACTCTC-----
 330 340 350
 840 850 860 870 880 890 900
 inputs CTTCACCCCTGGCCCCCTGTGAGCCCCCTCCACGGGGGCCAGTACAGGTGCTATGGTCACACACACCTCTCC
 ::::: :::::
 -----AGCTCATCCCA-----GCT-----
 360
 910 920 930 940 950 960 970
 inputs TCCGAGTGGTCGGCCCCCAGCGACCCCTGAACATCCTGATGGCAGGACAGATCTATGACACCGTCTCCC
 ::::: ::::: ::::: ::::: :::::
 -----CACCAGTCCC-----TC---AAGGCAGG---CAT---GTGACTCTGA-----
 370 380 390 400
 980 990 1000 1010 1020 1030 1040
 inputs TGTCAACCACAGCCGGGGCCCACAGTGGCCTCAGGAGAGAACGTGACCCCTGCTGTGTCAGTCATGGTGGCA
 ::::: ::::: :::::
 AGT-----GCCAGAGCCCATA-----CAGTTTGATGA--
 410 420
 1050 1060 1070 1080 1090 1100 1110
 inputs GTTGACACTTTCTCTGACCAAAGAACGGGCAGCCCCATCCCCACTGCGTCTGAGATCAATGTACGGA
 ::::: ::::: ::::: ::::: ::::: :::::
 -----ATTCGTTCTATACAAAAGAGGGG-----AT-----ACTGGGCCTTATA--AGAGACCTGA
 430 440 450 460 470
 1120 1130 1140 1150 1160 1170 1180

FIGURE 8b

```

inputs GCTCATAAGTACCAGGCTGAATTCCCCATGAGTCCTGTACCTCAGCCCACGGGGGACCTACAGGTGCT
: : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G--AAATGGTACCGGGCCAATTCCCCATCATCACACTGACTGCTGCTCACACTGGGACGTACCGGTGTT
480      490      500      510      520      530      540

1190      1200      1210      1220      1230      1240      1250
inputs ACGGCTCATACAGCTCCAACCCCCACCTGCTGCTTCCCCAGTGAGCCCTGGAACCTCATGGTCTCAGG
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ACAGCTCTCCAGCTCATCTCCATACCTGCTGCTCAGCCCCAGTGACCCCTAGTGCTTGTGGTTACTGG
550      560      570      580      590      600      610

1260      1270      1280      1290      1300      1310      1320
inputs ACACCTGGAGGCTCCAGCCTCCCACCCACAGGGCCGCCCTCCACACCTGGCTGGAAAGATAACCTGGAG
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ACTCTCTG----CCA--CTCCCACCC--AGGT--ACCCAC----GGA-AGAATCATTCTG---
620      630      640      650      660

1330      1340      1350      1360      1370      1380      1390
inputs GTTTGATGGGCTCTGGTGGCCTCGTCCCTGCTGCTCTTCCTCCTCTCTCCCTCCGACGTC
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
---TCA----CAGAATCCT---CCAGGAGACCTTCA---TCTTAC---CCACAAACAA
670      680      690      700

1400      1410      1420      1430      1440      1450      1460
inputs AGCGTCACAGCAAACACAGGACATCTGACAGAGAAGACTGATTTCCAGCGTCCGCAGGGGCTCGGA
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A---TATCTACAR---CTGAA---AAGCTATGAATATC--ACTGCCT-C-TCCAG-AGGGGCTG---
710      720      730      740      750

1470      1480      1490      1500      1510      1520      1530
inputs CACAGAGCCCAGGCACAGGGGCTGCTGAGGAGGTCCAGCCCAGCTGCTGACGTCCAGGAAGAAAACCTC
: . . . . . . . . . . . . . . . . . . . . . . . . . . . .
---AGCCCT----CC---AATTGGTTTGCTCATCAGCA-----C
760      770      780

1540      1550      1560      1570      1580      1590      1600
inputs TATGCTGCCGTGAAGGACACACAGTCTGAGGACAGGGTGGAGCTGGACAGTCAGAGCCCACACGATGAAG
: . . . . . . . . . . . . . . . . . . . . . . . . .
TATGC---CAAGGGGAATCTGGTC-----CGGATATG
790      800      810

1610      1620      1630      1640      1650      1660      1670
inputs ACCCCCAGGCAGTGCAGTATGCCCGGTGAAACACTCCAGTCCTAGGAGAGAAATGCCCTCTCCCTC
: . . . . . . . . . . . . . . . . . . . . . . . .
---CCTTGG---TGCCACGAT-----TATAATAATTTGT-----
820      830      840

1680      1690      1700      1710      1720      1730      1740
inputs CTCACTGTCTGGGGATTCTGGACACAAAGGACAGACAGGTGGAAGAGGACAGGCAGATGGACACTGAG
: . . . . . . . . . . . . . . . . . . . . . . . .
---TGGGGCTT--CTAG---CAGAGGATTGCC-----ACAGTOGGAAGAA---AT
850      860      870      880

```

FIGURE 8c

1750 1760 1770 1780 1790 1800 1810
inputs GCTGCTGCATCTGAAGCCTCCCAGGATGTGACCTACGCCAGCTGCACAGCTTGACCCCTAGACGGAAAGG
:: :::::::
GC--CTGCAACA-----CAGGATGAGA-----GCTTGCG-----AAAGG
890 900 910

1820 1830 1840 1850 1860 1870 1880
inputs CAACTGAGCCTCCTCCATCCCAGGAAGGGGAACTCCAGCTGAGGCCAGCATCTACGCCACTCTGGCCAT
: :::. :::::
CCACTA-----CCACC-----CCTCC-----CACTGGCC--
920 930

1890
inputs CCAC

FIGURE 8d

FIGURE 9a

TEPKDRGLLRRSSPAADVQEENLYAAVKDTQSEDRVELDSQSPPHDEDPQAVTYAPVTHSSPRREMASPPS
500 510 520 530 540 550 560

280 290 300 310
inputs CLGATIIIIILGLLAEDWH-----SRKKCLQHRMRAALQRPL----PP-----LPL
: : : : : : : : : : : : : : : :
SLSGEFLDTKDRQVEEDRQMDEAAKASEASQDVTYAQLHSLTLLRKATEPPPSQEGERPPAEPSIYATLAI
570 580 590 600 610 620 630

inputs λ.
H

FIGURE 9b

Alignments of top-scoring domains:
ig: domain 1 of 2, from 42 to 91: score 10.2, E = 1.4

mT268 42 *->GesvtLtCsvsgfgppgvsvtWYfkngk.lgpsllgysysrlesgek
 G+sv L+C+ ++v y + k ++ +++e +
 GQSVILRCQGP-----PDVDLY-RLEK1KP-----EKYEDQ-- 71

mT268 72 anlseggrfsissltltissvekeDsGtYtCvv<- *
 L i + e+++G Y+C
 -----DFLFIPPTMERSNAGRYRCSY 91

FIGURE 10A

ig: domain 2 of 2, from 128 to 183; score 9.6, E = 1.6
*->GesvtLtcsvsgfgppgvsvtWYfkngk.lgpsllgysysrlesgek
mT268 128 G +vtL C++ + y k+g++ + Y+r+e +
GRDVTLKCQSP---YSFDEFVLY-KEGDtGP-----YKRPEKW-Y 162

anlsegrfsissltLtissvekeDsGtYtCvv<-+
mT268 163 RA-----NFPIITVTAAHSGTYRCYS 183

FIGURE 10B

ALIGN calculates a global alignment of two sequences
 version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
 > hT268 a.a. 339 aa vs.
 > mT268 a.a. 313 aa
 scoring matrix: psm120.mat, gap penalties: -12/-4**
 64.4% identity; Global alignment score: 1011

	10	20	30	40	50	60			
inputs	HSPSP	TALFCLGLC	LGRV-P	QSGPLPKPSLQALPSSLV	PLEKPVT	LRCQGPPGV	DLYRLEKLSSSRYQD		
	:::::		
	HSPASPTFFCIGLCVLQVIQI	QSGPLPKPSLQAPSSLV	PILGQS	VILRCQGPPDV	DLYRLEKLKPEKYED				
	10	20	30	40	50	60	70		
	70	80	90	100	110	120	130		
inputs	QAVLFIPAYKPSL	LAGRYRC	SYQNGSLW	SLPSDQ	LELVATGVFA	KPSLSAQPGPAV	SSGGDVT	LQCQTRYC	
	...:	...:	...:	...:	...:	...:	...:	...:	
	QDFLFIP	THERSNAG	RYRC	SYQNGSH	WPSDQ	LELIATGVYAKPSL	AHPSSAVP	QGRDVTLKCQSPYS	
	80	90	100	110	120	130	140		
	140	150	160	170	180	190	200		
inputs	FDQFALYKE	GDPAPYKN	PERWYP	ASFPITVTA	AHSGTYRC	YRCYSFSSRD	PYLWSAPS	DPLELVV	GTGSVTP
	...:	...:	...:	...:	...:	...:	...:	...:	...:
	FDEFVLYKE	GDTGPYKR	PEKHYRA	TFPIITVTA	AHSGTYRC	YRCYSFSSSPY	LWSAPS	DPLVLV	VTLGSA
	150	160	170	180	190	200	210		
	210	220	230	240	250	260	270		
inputs	SPLPTEPPSSVAE	FSEATAELTV	SFTNKVFT	TTETSR	SITTS	PKESDSPAG	PARQYYTKGNLVRICLGAVI		
	...:	...:	...:	...:	...:	...:	...:		
	SQVPTEESFPV	TESSRRPSILP	--TNKISTTEKPN	NITASPEGL	SPPIGFAH	QHYAKGNLVRICLGATI			
	220	230	240	250	260	270			
	280	290	300	310	320	330			
inputs	LIILAGFLAEDW	HSRRKRLRHR	GRAVQRPL	PLPPLP	QTRKSHGG	QDGGRQDV	HSRG	LCS	
	...:	...:	...:	...:	...:	...:	...:		
	IIILLGLLAEDW	HSRKCLQHRM	RALQRP	PLPPLP	-LA	-----	-----	-----	
	280	290	300	310					

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

7853-211

(SHEET 30 OF 39)

FIGURE 19

FIGURE 20

Effet des monoclonaux sur la liaison
GPIIb/IIIa / Convulxine

FIGURE 21

FIGURE 22

FIGURE 23a

FIGURE 23b

7853-211

(SHEET 36 OF 39)

FIGURE 24

scFv1:A4
scFv2:B4
scFv3:A9
scFv4:C3
scFv5:C9
scFv6:C10
scFv7:A10

FIGURE 25

7853-211

(SHEET 38 OF 39)

A4 A9 A10

B4 C3 C9 C10

FIGURE 26

FIGURE 27