Closest Pair of Points

Iyad Kanj

Let $S = \{p_1, \ldots, p_n\}$ be a set of points, where $p_i = (x_i, y_i)$, for $i = 1, \ldots, n$. Let X be a list containing the points in S sorted w.r.t. their x-coordinates, and Y a list containing the points in S sorted w.r.t. their y-coordinates. Clearly, X and Y can be obtained in $\mathcal{O}(n \lg n)$ time.

Closest-Pair-Algo

- 1. if $|S| \leq 3$ return a closes pair (p_{min}, q_{min}) in S by brute force;
- 2. using X, compute a vertical line D of equation $x = \ell$ that partitions S into S_L, S_R of roughly-equal size such that all points in S_L are on D or to the left of it, and all points in S_R are on D or to the right of it;
- 3. using X and Y, create the arrays X_L, Y_L and X_R, Y_R ;
- 4. recurse on S_L, X_L, Y_L to compute a closest pair (p_L, q_L) ; let $\delta_L = |p_L q_L|$;
- 5. recurse on S_R, X_R, Y_R to compute a closest pair (p_R, q_R) ; let $\delta_R = |p_R q_R|$;
- 5. let $\delta = \min \{\delta_L, \delta_R\}$;
- 6. let S_{mid} be the set of points in S whose x-coordinate satisfies $\ell \delta \le x \le x + \delta$;
- 7. using Y, compute the list of points in S_{mid} sorted by their y-coordinates;
- 8. go over Y_{mid} (in the sorted order), and for each point, compute its distance to the next (at most) 7 points in Y_{mid} and keep track of the pair of points (p_{mid}, q_{mid}) of minimum distance;
- 9. return the closest pair (p_{mid}, q_{min}) among, $(p_L, q_L), (p_R, q_R)$, and (p_{mid}, q_{mid}) ;

Figure 1: The algorithm Closest Pair.

Let T(n) be the running time of Closest-Pair in the worst case on n points. Step 1 takes constant time. Steps 2-3 take $\mathcal{O}(n)$ time. Steps 4-5 result on two calls to the same algorithm, but on n/2 points each. Steps 6-9 can be implemented in $\mathcal{O}(n)$ time. Therefore, T(n) obeys the following recurrence relation:

$$T(n) = \begin{cases} \mathcal{O}(1) & \text{if } n \leq 3\\ 2T(n/2) + \mathcal{O}(n) & \text{otherwise} \end{cases}$$

We can solve T(n) using the master method to obtain $T(n) = \mathcal{O}(n \lg n)$.