MLT: Week 6

Ridge, Lasso Regression & Cross Validation Methods

Vivek Sivaramakrishnan

The following weight vectors are learned from a six dimensional dataset, using Linear, Ridge and Lasso regression, not necessarily in the same order. Find the method used based on the weight vectors.

$$\mathbf{w}_1 = [0.5, 0, 0.25, 0, 0, -0.14]$$

$$\mathbf{w_2} = [0.8, -0.23, 0.45, 0.2, 0.31, -0.54]$$

$$\mathbf{w}_3 = [0.24, -0.03, 0.1, 0.02, 0.09, -0.14]$$

The following weight vectors are learned from a six dimensional dataset, using Linear, Ridge and Lasso regression, not necessarily in the same order. Find the method used based on the weight vectors.

 $\mathbf{w}_1 = [0.5, 0, 0.25, 0, 0, -0.14]$

$$\mathbf{w_2} = [0.8, -0.23, 0.45, 0.2, 0.31, -0.54]$$

$$\mathbf{w}_3 = [0.24, -0.03, 0.1, 0.02, 0.09, -0.14]$$

Lasso.

The weight vectors from Lasso regression are sparse; some of the components are 0

The following weight vectors are learned from a six dimensional dataset, using Linear, Ridge and Lasso regression, not necessarily in the same order. Find the method used based on the weight vectors.

 $\mathbf{w}_1 = [0.5, 0, 0.25, 0, 0, -0.14]$

$$\mathbf{w}_1 = [0.5, 0, 0.25, 0, 0, -0.14]$$

$$\mathbf{w_2} = [0.8, -0.23, 0.45, 0.2, 0.31, -0.54]$$

$$\mathbf{w}_3 = [0.24, -0.03, 0.1, 0.02, 0.09, -0.14]$$

Lasso.

The weight vectors from Lasso regression are sparse; some of the components are 0

The norm of weight vectors from ridge is lower than that of regular linear regression, hence \mathbf{w}_3 in contrast to \mathbf{w}_2 is from ridge,

The following weight vectors are learned from a six dimensional dataset, using Linear, Ridge and Lasso regression, not necessarily in the same order. Find the method used based on the weight vectors.

$$\mathbf{w}_1 = [0.5, 0, 0.25, 0, 0, -0.14]$$

 $\mathbf{w_2} = [0.8, -0.23, 0.45, 0.2, 0.31, -0.54]$

$$\mathbf{w}_3 = [0.24, -0.03, 0.1, 0.02, 0.09, -0.14]$$

Lasso.

The weight vectors from Lasso regression are sparse; some of the components are 0

Linear.

Only option left out.

The norm of weight vectors from ridge is lower than that of regular linear regression, hence \mathbf{w}_3 in contrast to \mathbf{w}_2 is from ridge,

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process.

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data,

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

The error is calculated as the average of errors obtained from n_1 iterations of the cross-validation process. Each iteration involves training a model on a subest of size n_2 of the training data, and evaluating its performance on a disjoint subset of size n_3 .

