void calculate_pore_dist(Particle *p1, double ppos[3], Particle
*c_p, Constraint_pore *c, double *dist, double *vec)

All happens in the upper half of this plane.
I and r are the centers of the smoothing circles
m is the intersection of those two angle bisectors

In the z-x coordinate system, we have

- k = (rad_right rad_left) / 2. / length;
- sec_k = sqrt(1+k*k);
- cm_z = 0
- cm_x = (rad_right + rad_left) / 2. + length * sec_slope;
- cl_z = smoothing_radius length;
- cl_x = rad_left + smoothing_radius * (sec_k + k);
- tan_lm = (cl_x cm_x) / cl_z;
- tan_lp = (x cl_x) / (z cl_z);

Similarly, on the right side, we have

- cr_z = length smoothing_radius;
- cr_x = rad_right + smoothing_radius * (sec_k k);
- tan_rm = (cr_x cm_x) / cr_z;
- tan_rp = (x cr_x) / (z cr_z);

else, we have

- *dist = (k*z x + rad_middle) * cos_k;
- 2. $vec[i] = *dist * (sin_k * e_z[i] cos_k * e_x[i]);$

void calculate_pore_dist(Particle *p1, double ppos[3], Particle
*c_p, Constraint_pore *c, double *dist, double *vec)

All happens in the upper half of this plane. I and r are the centers of the smoothing circles m is the intersection of those two angle bisectors