Exos

- 1) On considère le morphisme β_u de la proposition 5. Montrer que
 - a) Si $u \simeq_{\partial} u'$ alors $\beta_u = \beta_{u'}$
 - b) $\beta_{c_{x_0}} = id$
 - c) $\beta_{u*v} = \beta_v \circ \beta_u$
 - d) On suppose $u \in \Omega(X, x_0)$. Quelle est la nature de β_u ?
- 2) Soit X un espace connexe par arcs. Montrer que X est simplement connexe ssi pour tout couple $(x_0, x_1) \in X \times X$ et tout couple de chemins (γ_1, γ_2) de $L(X, x_0, x_1)$ on a $\gamma_1 \cong_{\partial} \gamma_2$.

Le groupe fondamenta

Exos

3) Un *groupe topologique* est un groupe (G, \star) muni d'une topologie pour laquelle les applications

$$G^2 \rightarrow G, (x, y) \mapsto x \star y$$
 et $G \rightarrow G, x \mapsto x^{-1}$

sont continues.

- a) Donner des exemples de groupes topologiques.
- b) On note $e \in G$ l'élément neutre. Soit $\gamma_1, \gamma_2 \in \Omega(G, e)$. Montrer que \star définit une loi de composition sur $\pi_1(G, e)$ par

$$[\gamma_1] \star [\gamma_2] := [\gamma_1 \star \gamma_2].$$

c) En remarquant que

$$\gamma_1 * \gamma_2 = (\gamma_1 * c_e) \star (c_e * \gamma_2)$$

montrer que le groupe $\pi_1(G, e)$ est abélien.

Exos

4) Montrer les assertions de la proposition 7 :

Proposition 7.- On a

- a) $(id_X)_* = id_{\pi_1(X,x_0)}$
- b) Soient $f_1, f_2 \in C^0((X, x_0), (Y, y_0))$ alors

$$f_1 \simeq_{\partial} f_2 \implies (f_1)_* = (f_2)_*$$

c) Soient $f \in C^0((X, x_0), (Y, y_0)), g \in C^0((Y, y_0), (Z, z_0))$ alors

$$(g\circ f)_*=g_*\circ f_*$$

En particulier, si f est inversible alors f* l'est et

$$(f_*)^{-1} = (f^{-1})_*.$$

Exos

5) Soient $p_X: X \times Y \to X$ et $p_Y: X \times Y \to Y$ les projections canoniques, et

$$p_*: \pi_1(X \times Y, (x_0, y_0)) \longrightarrow \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

défini par

$$\rho_*([\gamma]) := ((\rho_X)_*[\gamma], (\rho_Y)_*[\gamma])$$

Montrer que p_* est un isomorphisme de groupes.