Chapter 11: Vector Spaces April 27, 2023

Contents

1	1.1 1.2 1.3 1.4	General approach	1 1 1 2
2	Vec	tor Sub-Spaces	2
	2.1	Definition	2
	2.2	Properties	2
3	Rela	ations between Vs and Vss	3
	3.1	Linear Combinations	3
	3.2	Vss Intersection	3
	3.3	Vss Sum	3
	3.4	Generated Vss	3
4	Fan 4.1		3
	4.2	V	3
5	Basis 3		3
6	Din	nension of a Vss	3
7	Proofs		
	7.1	Intersection of linear subspaces	3
	7.2		3
	7.3	Spanned linear subspaces	3
	7.4		3
	7.5	Existence of a basis in a finite dimention	3

Mathematics 1 Introduction

1 Introduction

1.1 General approach

Studying Vector spaces will allow us to notice general theorems that can be applied to many mathematical structures.

1.2 Definition

A vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars.

1.3 Notation

A $\mathbb{K} - VectorSpace$ is non-empty set E that has :

• An internal law, which is an map of $E \times E$ in E:

$$E \times E \longrightarrow E$$

 $(u, v) \longmapsto u + v$

• An external law, which is an map of $\mathbb{K} \times E$ in E:

$$\mathbb{K} \times E \longrightarrow E$$
$$(\lambda, u) \longmapsto \lambda \cdot u$$

 $(\mathbb{K} \text{ is a set, often } \mathbb{R})$

The elements of E are called <u>vectors</u>

The elements of \mathbb{K} are called scalars

The neutral element 0_E is also called the null vector

The symmetrical -u is also called the opposite

The internal composition law on E, denoted +, is the addition

The external composition law on E is the multiplication by a scalar

axioms relative to the internal law:

- 0_E is unique
- -u is unique

1.4 Properties

To know is a space is a vector space, there is properties that need to match up.

- The internal law
- The external law
- Both laws together
- The neutral element
- It's symmetrical

This makes up 8 laws that need to be respected:

- 1. $u + v = v + u(\forall (u, v) \in E)$
- 2. $u + (v + w) = (u + v) + w(\forall (u, v, w) \in E)$
- 3. There exists a neutral element $0_E \in E$ so that $u + 0_E = u(\forall u \in E)$
- 4. All elements admit a symmetric u' so that $u + u' = 0_E$. This element u' is denoted -u
- 5. $1 \cdot u = u(\forall u \in E)$
- 6. $\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u(\forall \lambda, \mu \in \mathbb{K}, u \in E)$
- 7. $\lambda \cdot (v + u) = (\lambda \cdot v) + (\lambda \cdot u)(\forall \lambda \in \mathbb{K}, v, u \in E)$
- 8. $(\lambda + \mu) \cdot u = (\lambda \cdot u) + (\mu \cdot u)(\forall \lambda, \mu \in \mathbb{K}, u \in E)$

2 Vector Sub-Spaces

A sub space is very useful to prove that a set is a Vector space. We will see that a vector sub-space is vector space.

2.1 Definition

Let E be a vector space, F is a subspace if and only if

- $0_E \in F$
- $u + v \in F \ \forall (u, v) \in F^2$
- $\lambda \cdot u \in F \ \forall \lambda \in \mathbb{K}, v \in F$

2.2 Properties

Showing that a space is a subspace of a bigger (or equal) vector space if enough to prove that it is itself a vector space.

Mathematics 7 Proofs

3 Relations between Vs and Vss

3.1 Linear Combinations

Let $v_1, v_2, ..., v_n, n$ vectors from a vector space E. Then:

- 3.2 Vss Intersection
- 3.3 Vss Sum
- 3.4 Generated Vss
- 4 Families
- 4.1 Free Family
- 4.2 Spanning Family
- 5 Basis
- 6 Dimension of a Vss
- 7 Proofs
- 7.1 Intersection of linear subspaces
- 7.2 Sum of linear subspaces
- 7.3 Spanned linear subspaces
- 7.4 Basis
- 7.5 Existence of a basis in a finite dimention