	Uneah
Name :	
Roll No.:	The Parameter and Explana
Inviailator's Sianature :	

CS/B.TECH(BME(N)/ECE(N)/EE(N)/EEE(N)/EIE(N)/ ICE(N)/PWE(N))/SEM-3/M(CS)-301/2011-12 2011

NUMERICAL METHODS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- Which of the following is not a computational error? i)
 - Truncation error a)
- Round-off error b)
- c) Inherent error
- None of these. d)
- Newton-Raphson method fails when ii)

 - a) f'(x) = 1 b) f'(x) = 0
 - c) f'(x) = -1 d) f''(x) = 0.

3003 (N) [Turn over

CS/B.TECH(BME(N)/ECE(N)/EE(N)/EEE(N)/EIE(N)/ICE(N)/PWE(N)) SEM-3/M(CS)-301/2011-12

- iii) Finite difference method is used to solve
 - a) a system of linear simultaneous equations
 - b) a system of non-linear simultaneous equations
 - c) partial differential equations
 - d) non-linear equations.
- iv) Regula-falsi method has a convergence rate of the order of
 - a) 2

b) 1.62

c) 1

- d) none of these.
- v) Gauss-Seidel method for solution of a system of linear simultaneous equations converges if

a)
$$|a_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

b)
$$|a_{ii}| > \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{ij}|$$

c)
$$|a_{ii}| / |a_{nn}| = 1$$

- d) none of these.
- vi) Modified Euler's method has a truncation error of the order of
 - a) *h*

b) h^2

c) h^4

d) h^3 .

- vii) Divided difference interpolation formula can be used for
 - a) the tabular values with independent variable unequally spaced
 - b) inverse interpolation
 - c) both (a) and (b)
 - d) none of these.
- viii) Truncation error in Simpson's $\frac{1}{3}$ rd rule is given by
 - a) $\frac{b-a}{180}$ h^4 $f^{iv}(\xi)$, $a \le \xi \le b$
 - b) $\frac{b-a}{90}$ h^5 $f^{iv}(\xi)$, $a \le \xi \le b$
 - c) $\frac{b-a}{6} h^4 f'''(\xi)$, $a \le \xi \le b$
 - d) $\frac{b-a}{90}$ h^4 $f^{iv}(\xi)$, $a \le \xi \le b$.
- ix) Which of the following relations is true?
 - a) $E = 1 \Delta$, $\Delta \square = \Delta$
 - b) $E = 1 \Delta$, $\Delta + \square = \Delta \square$
 - c) $E = 1 + \Delta$, $\Delta + \square = \Delta \square$
 - d) $E = 1 + \Delta$, $\Delta \square = \Delta \square$.
- x) Trapezoidal method can be used to integrate numerically a function represented in tabular form
 - a) with odd number of intervals only
 - b) with even number of intervals only
 - c) both (a) and (b)
 - d) none of these.

Condition of convergence for Euler's method xi)

a)
$$|1 + hf'(x_i, y_i)| < 1$$

b)
$$|1 + hf'(x_i, y_i)| \le 1$$

c)
$$|1 + hf'(x_i, y_i)| > 1$$

d)
$$|1 + hf'(x_i, y_i)| \ge 1$$
.

xii) Milne's corrector formula is

a)
$$y_{n+1} = y_n + \frac{h}{3} (y'_{n-1} + 4y'_n + 4y'_{n+1})$$

b)
$$y_{n+1} = y_{n-1} + \frac{h}{3} (y'_{n-1} + 4y'_n + 4y'_{n+1})$$

c)
$$y_{n+1} = y_n + \frac{4h}{3} (y'_{n-1} + 4y'_n + 4y'_{n+1})$$

none of these. d)

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

Given the function $y = \frac{1}{x}$, show that the divided difference 2. of n^{th} order

$$y\left[\;x_{_{0}}\,,\;x_{_{1}}\,,\;x_{_{2}}\,,\;\dots,\;x_{_{n}}\;\right]\;=\left(\;-\;1\;\right)^{n}\;\;/\;\left(\;x_{_{0}}\,x_{_{1}}\,x_{_{2}}\,\dots\,x_{_{n}}\;\right)$$

Solve the following system of linear equations by Gauss-3. Seidel iterative method:

$$9x + 2y + 3z = -7$$

$$x - 6y + 2z = -2$$

$$x + y + 3z = 5.$$

4. Fit a polynomial to the following table of values using Lagrange interpolation formula:

x :	0	1	3	4
y :	- 12	0	6	12

Find the value of y when

- a) x = 2
- b) x = 3.5.
- 5. Find the value of $\frac{1}{23}$ using Newton-Raphson method. Result is required to be corrected up to 4 decimal places.
- 6. Solve the following equation using bisection method :

$$3x + \sin x - e^x = 0$$

Take $x_0 = 1$ and $x_1 = 0$.

Result is required to be corrected up to 2 decimal places.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Derive the order of convergence for Newton-Raphson method.
 - b) Solve the following initial value problem using Euler's method:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y \text{ with } y(0) = 1.$$

Compute the first 5 steps of the solution with h = 0.1.

Compare the results (% relative error) with those obtained from the exact solution

$$y = 3e^{x} - x^{2} - 2x - 2. 10$$

CS/B.TECH(BME(N)/ECE(N)/EE(N)/EEE(N)/EIE(N)/ICE(N)/PWE(N)) SEM-3/M(CS)-301/2011-12

5

7

7

b) Use Newton's formula to find the area of a circle of diameter 98 cm.

D (cm) :	80	85	90	95	100
A (cm ²)	5026	5674	6362	7088	7854

- c) Derive Lagrange interpolation formula.
- 9. a) Derive the expression for total truncation error associated with Simpson's $\frac{1}{3}$ rd method.
 - b) Evaluate the following integral using trapezoidal method:

$$I = \int_{0}^{2} \left(1 / (x^{2} + 4) \right) dx.$$

Take h = 0.125. Hence obtain the value of π .

10. a) Solve the following system of equations using LU factorization method.

$$3x - y + 2z = 12$$

 $x + 2y + 3z = 11$
 $2x - 2y - z = 2$.

b) Find the inverse of the following matrix:

$$A = \left[\begin{array}{ccc} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{array} \right].$$

3003 (N)

8.

a)

- 11. a) Define Δ , \square and E.
 - b) Derive Newton's Backward difference interpolation formula.
 - c) Derive 4th order Runge-Kutta formula for solution of initial value problem of ordinary differential equation.

3003 (N) 7 [Turn over