Data Mining (Minería de Datos)

Evaluación, sobreajuste y validación cruzada (cross-validation)

Sixto Herrera Rodrigo G. Manzanas Grupo de Meteorología Univ. de Cantabria – CSIC MACC / IFCA

Nov

Dic

Ene

Ene

18

9

16

11

13

14

24

27

Examen

Predicción Condicionada

Sesión de refuerzo/repaso.

NOTA: Las líneas de código de R en esta presentación se muestran sobre un fondo Master Universitario Oficial Data Science con el apoyo del PROBLEMS: CSIC

gris.

Presentación, introducción y perspectiva histórica Paradigmas, problemas canonicos y data challenges Reglas de asociación Practica: Reglas de asociación Evaluación, sobrejuste y crossvalidacion **Practica: Crossvalidacion** Árboles de clasificacion y decision Practica: Árboles de clasificación T01. Datos discretos Técnicas de vecinos cercano (k-NN) Práctica: Vecinos cercanos Comparación de Técnicas de Clasificación. Reducción de dimensión no lineal Reducción de dimensión no lineal T02. Clasificación Árboles de clasificación y regresion (CART) Práctica: Árboles de clasificación y regresion (CART) Practica: El paquete CARET T03. Prediccion **Ensembles: Bagging and Boosting** Random Forests y Gradient boosting Técnicas de agrupamiento Técnicas de agrupamiento

Cross-Validation

Data Mining: Data Modeling

Cross-Validation

LEARNING FROM DATA

- 1. Can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2. Can we make $E_{in}(g)$ small enough?

- 1. Can we make sure that $\mathbf{E}_{\mathrm{out}}(\mathbf{g})$ is close enough to $\mathbf{E}_{\mathrm{in}}(\mathbf{g})$?
- 2. Can we make $E_{in}(g)$ small enough?

The (*in-sample*) error is the unique which can be estimated:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) - y_n)^2$$

$$E_{out}(h)=E(f,h)$$

- 1. Can we make sure that $\mathbf{E}_{\mathrm{out}}(\mathbf{g})$ is close enough to $\mathbf{E}_{\mathrm{in}}(\mathbf{g})$?
- 2. Can we make $E_{in}(g)$ small enough?

The (*in-sample*) error is the unique which can be estimated:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) - y_n)^2$$

$$E_{out}(h)=E(f,h)$$

Vapnik-Chervonenkis (VC) Dimension

- 1. Can we make sure that $\mathbf{E}_{\mathrm{out}}(\mathbf{g})$ is close enough to $\mathbf{E}_{\mathrm{in}}(\mathbf{g})$?
- 2. Can we make $E_{in}(g)$ small enough?

The (*in-sample*) error is the unique which can be estimated:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) - y_n)^2$$

$$E_{out}(h)=E(f,h)$$

$$\mathbb{P}[|v - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

N=sample size M=model complexity

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2M e^{-2\epsilon^2 N}$$

Vapnik-Chervonenkis (VC) Dimension

Cross-Validation

The sample is divided in two subsets: **train** and **test**.

- Hold-out
- Leave-one-out

(N)

Source: Robert Kelley

Source: Robert Kelley


```
plot(Altura, Peso)
train <- 1:ceiling(n/2)
order.index <- order(Peso)</pre>
Peso.sort <- Peso[order.index]
Altura.sort <- Altura[order.index]
points(Altura.sort[train], Peso.sort[train], pch=16, col="red")
mean.peso <- mean(Peso.sort[train])
abline(h=mean.peso)
# El error de test es mucho mayor ya que el modelo no generaliza.
mse.train <- mse(Peso.sort[train],mean.peso); mse.train
mse.test <- mse(Peso.sort[-train],mean.peso); mse.test
```

200100. <u>1100011 11011</u>ey


```
# Mejor si cogemos los datos aleatoriamente.
set.seed(1) # Para obtener el mismo valor fijamos la semilla
train <- sample(n,ceiling(n/2))
plot(Altura, Peso)
points(Altura[train], Peso[train], pch=16, col="red")
#y.est=cte esa cte es la media de la variable y selecionada en train
mean.peso <- mean(Peso[train])
abline(h=mean.peso)
mse.train <- mse(Peso[train],mean.peso); mse.train
mse.test <- mse(Peso[-train],mean.peso); mse.test
```

200100. <u>1100011 11011</u>68


```
# Sin embargo, hay una gran variabilidad respecto a la muestra
plot(Altura, Peso)
for (i in c(1:5)){
 train <- sample(n,ceiling(n/2))
 mean.peso <- mean(Peso[train])</pre>
 abline(h=mean.peso)
 print(mse(Peso[-train],mean.peso))
```

игоо. <u>глорога гло</u>пеV

El problema se agudiza al incrementar la complejidad del modelo set.seed(1) train <- sample(n,ceiling(n/2)) plot(Altura, Peso) points(Altura[train], Peso[train], pch=16, col="red") Reg.2<-lm(Peso~Altura, data=Pulsaciones, subset=train) yest.2 <- predict(Reg.2, data.frame(Altura=Altura[-train])) mse.Reg.2<-mse(Peso[-train],yest.2); mse.Reg.2 yest.2.train <- predict(Reg.2, data.frame(Altura=Altura[train])) mse.Reg.2.train<-mse(Peso[train],yest.2.train); mse.Reg.2.train

Course. INCOURT INCINCY

The sample is divided in two subsets: **train** and **test**.

- Hold-out:
 - Variability related with the train-test splitting.
 - The sample size of the test sample leads to conservative results.
 - The sample size of the train sample limits the complexity of the model.
- Leave-one-out
- K-fold

- 1. Can we make sure that $\mathbf{E}_{\text{out}}(\mathbf{g})$ is close enough to $\mathbf{E}_{\text{in}}(\mathbf{g})$?
- 2. Can we make $E_{in}(g)$ small enough?

The sample is divided in two subsets: **train** and **test**.

- Hold-out:
 - Variability related with the train-test splitting.
 - The sample size of the test sample leads to conservative results.
 - The sample size of the train sample limits the complexity of the model.
- Leave-one-out
- K-fold

N - 1 points for training, and 1 point for validation!

$$D_n = (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), \frac{(x_n, y_n)}{(x_n, y_n)}, (x_{n+1}, y_{n+1}), \dots, (x_N, y_N)$$

Final hypothesis learned from D_n is g_n^-

$$e_n = E_{val}(g_n^-) = e(g_n^-(x_n), y_n)$$

cross validation error:
$$E_{cv} = \frac{1}{N} \sum_{n=1}^{N} e_n$$

The sample is divided in two subsets: **train** and **test**.

- Hold-out:
 - Variability related with the train-test splitting.
 - The sample size of the test sample leads to conservative results.
 - The sample size of the train sample limits the complexity of the model.
- Leave-one-out
- K-fold

N-1 points for training, and 1 point for validation! $D_n = (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), \frac{(x_n, y_n)}{(x_n, y_n)}, (x_{n+1}, y_{n+1}), \dots, (x_N, y_N)$

The sample is divided in two subsets: **train** and **test**.

- Hold-out:
 - Variability related with the train-test splitting.
 - The sample size of the test sample leads to conservative results.
 - The sample size of the train sample limits the complexity of the model.
- Leave-one-out:
 - High computational cost (small samples).
- K-fold

The sample is divided in two subsets: **train** and **test**.

- Hold-out:
 - Variability related with the train-test splitting.
 - The sample size of the test sample leads to conservative results.
 - The sample size of the train sample limits the complexity of the model.
- Leave-one-out:
 - High computational cost (small samples).
- K-fold

```
# Leave-One-Out Cross-Validation
yest.3<-rep(NA, length(train)) # La actualización es ineficiente
train <- 1:n
for (i in train){
   Reg.i<-lm(Peso~Altura, data=Pulsaciones, subset=train[-i])
   yest.3[i]<-predict(Reg.i,data.frame(Altura=Altura[i]))
}
mse.Reg.3<-mse(Peso,yest.3); mse.Reg.3</pre>
```

K-FOLD STRATEGY

Master Universitario Oficial Data Science

UNIVERSIDAD Universidad Menéndez I

con el apoyo del

K-FOLD STRATEGY

The sample is divided in two subsets: train and test.

- Hold-out:
 - Variability related with the train-test splitting.
 - The sample size of the test sample leads to conservative results.
 - The sample size of the train sample limits the complexity of the model.
- Leave-one-out:
 - High computational cost (small samples).
- K-fold:
 - Symilar results than leave-one-out with low number of folds.
 - Statistical analysis of the validation measures.

Appears in the International Joint Conference on Artificial Intelligence (IJCAI), 1995

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection

Ron Kohavi

Computer Science Department

Over 3000 scitations

Stanford University Stanford, CA. 94305

Reassessing Statistical Downscaling Techniques for Their Robust Application under Climate Change Conditions 3

J. M. Gutiérrez : D. San-Martín; S. Brands; R. Manzanas; S. Herrera

Cross J. Climate (2013) 26 (1): 171-188.

Valida https://doi.org/10.1175/JCLI-D-11-00687.1 Article history ©

K-FOLD STRATEGY


```
# 10-Fold Cross-Validation
idx.aleatorios <- sample(1:n,n,replace=F)
K <- 10
tam <- ceiling(n/K)
yest4 <- rep(NA, length(train)) # La actualización es ineficiente
for (i in 0:(K-1)){
 idx.test <- idx.aleatorios[(i*tam+1):((i+1)*tam)]
 idx.test <- idx.test[!is.na(idx.test)]
 Im4 <- Im(Peso~Altura, subset=-idx.test)</pre>
 yest4[idx.test] <- predict(Im4, data.frame(Altura=Altura[idx.test]))</pre>
mse4 <- mse(Peso,yest4); mse4
```


- Target Variable:
 - Y (discrete/factor or continuous)
- Predictive Model $\rightarrow Y = f(X_1, X_2, ..., X_N)$
- Clasificación Predicción

 APRENDIZAJE
 SUPERVISADO

- There is no target variable:
 - Association or segmentation
- Predictive Model → Algorithmic

Cross-Validation

Learning Paradigms

Cross-Validation

Learning Paradigms

Fatal Genetic Defect

10 out of every 100000 babies

Confusion Matrix Predicted label class 1 True label class 1 Correct true positive for class 1

for class 2

10 out of every 100000 babies

Fatal Genetic Defect

for class 1

Model predicting always No Defect

Precision: define how trustable is the result

Recall: expresses how well the model is able to detect that class

HR/HP: class is perfectly handled by the model

LR/HP: model can't detect the class well but is highly trustable when it does

HR/LP: class is well detected but the model include points of other classes in it

LR/LP: class is poorly handled by the model

Precision: define how trustable is the result

Recall: expresses how well the model is able to detect that class

F1: combines precision and recall of a class in one metric

False Alarm Rate (**FAR**) Hit Rate (**HIR**)

 $HIR = FAR = 0 \rightarrow Never predicting$

HIR = FAR = $1 \rightarrow$ Always predicting

Fawcett, T. (2006) An introduction to ROC analysis, In Pattern Recognition Letters, 27, 861-874, https://doi.org/10.1016/j.patrec.2005.10.010.

Master Universitario Oficial Data Science con el apoyo del *CSIC

DATA MINING:

Summarizes the performance of the system over all possible probability thresholds.

```
library(pROC)
obs<-c(rep(0,50),rep(1,50));
prd<-obs+2*(runif(100)-0.5);
prd[which(prd<0)]<-0; prd[which(prd>1)]<-1;
plot(roc(obs,prd), print.auc=TRUE)
hist(prd)</pre>
```


Cross-Validation

Summarizes the performance of the system over all possible probability thresholds.

```
library(pROC)
obs<-c(rep(0,50),rep(1,50));
prd<-obs+2*(runif(100)-0.5);
prd[which(prd<0)]<-0; prd[which(prd>1)]<-1;
plot(roc(obs,prd), print.auc=TRUE)
hist(prd)</pre>
```

Inst#	Class	Score	Inst#	Class	Score	Good
1	p	.9	11	p	.4	
2	p	.8	12	n	.39	Model Model
3	n	.7	13	p	.38	_ / /
4	p	.6	14	n	.37	Random Model
5	p	.55	15	n	.36	Random
6	p	.54	16	n	.35	2 / / "
7	n	.53	17	p	.34	
8	n	.52	18	n	.33	.≅ //
9	p	.51	19	p	.30	
10	n	.505	20	n	.1	False Positive Rate

https://www.kdnuggets.com/2018/01/machine-learning-model-metrics.html

Cross-Validation

```
data(iris)
fitControl <- trainControl(method="none",</pre>
                                 number=1,
                                 repeats=1,
                                 verboseIter=TRUE)
modelFit <- train(Species ~ ., data=iris, method="knn", trControl=fitControl)</pre>
pred <- predict(modelFit, newdata = iris[,-5])</pre>
acc<-confusionMatrix(iris$Species, pred)</pre>
                                                               Iris Data (red=setosa,green=versicolor,blue=virginica)
print(acc)
                                                                 Sepal.Length
                                                                              Sepal.Width
                                                                                          Petal.Length
                                                                                                       Petal.Width
```

Binary: Model Evaluation

5.5 6.5 7.5

Predicted label class 1

Predicted label class 2

wrong

false positive

Fatal Genetic Defect

10 out of every 100000 babies

True label

True label

for class 2

wrong false positive for class 1 true positive for class 2

Dealing with unbalanced data in machine learning

https://shiring.github.io/machine_learning/2017/04/02/unbalanced

Source: https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-7a0e84220f28

Master Universitario Oficial Data Science

DATA MINING:

Cross-Validation

Learning Paradigms

Model accuracy (training and validation).

Some models are trained using an **empirical error (cost) function**, which measures **model accuracy** as the difference between the predicted and the actual value. In this cas, this a natural **validation measure**.

This cost function could be anything:

Correlation (Pearson, Speman)

- Sum of absolute errors: $J = \sum |y u|$.
- Sum of square errors: $J = \sum (y u)^2$.
- As long as the minimum occurs when the distributions are the same, in theory it would work.
- One good idea is that u represents the parameters of the distribution of y.
 - Rationale: often natural processes are fuzzy, and any input might have a range of outputs.
 - This approach also gives a smooth measure of how accurate we are.
 - The maximum likelihood principle says that: $\theta_{ML} = \arg \max_{\theta} p(y; u)$
 - Thus we want to minimize: J = -p(y; u)
 - For i samples: $J = -\prod_i p(y_i; u)$
 - Taking log both sides: $\overline{J}' = -\sum_{i} \log p(y_i; u)$.
 - This is called cross-entropy.
- Applying the idea for: y ~ Gaussian(center = u):
 - $p(y; u) = e^{-(y-u)^2}$.
 - $J = -\sum \log e^{-(y-u)^2} = \sum (y-u)^2$
 - o This motivates sum of squares as a good choice.

Model performance: Validation diagnostics and metrics.

There are several domain-dependent diagnostics (computed separately for prediction 'p' and observation 'o') and metrics/errors for validating model performance.

Distributional consistency: evaluates the model capability to reproduce the distribution of the observed data.

- Bias = mean p mean o
- **Variance ratio** = var p / var o
- **Distributional similarity:** ks-score, Von Misses, pdf-score, etc.

The quantile-quantile plot is a typical tool to evaluate, in a graphical way, the distributional similarity of the order statistics (e.g. percentiles).

Different diagnostics for different fields.

Accuracy: assess the correspondence of the simulated and observed sequences. Two typical scores are usally used: Root Mean Square Error (RMSE) and the (Pearson/Spearman/Kendall) Correlation.

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - y_i)^2} \qquad r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Distributional consistency: evaluates the model capability to reproduce the distribution of the observed data. The most popular are the **bias** (mean difference) or the **ratio of variances/standard deviation**. In addition, there are hypothesis tests to evaluate in a global way the similarity of the observed and simulated series (e.g. **Kolmogorov-Smirnov**, **Perkins**, **Von Misses**, etc).

The **quantile-quantile plot** is a typical tool to evaluate, in a graphical way, the distributional similarity of the order statistics (e.g. **percentiles**).

```
## Example with R:
?qqplot
require(graphics)
y<-rt(200,df=5)
qqnorm(y)
qqline(y,col=2)
qqplot(y,rt(300,df=5))</pre>
```

Accuracy: assess the correspondence of the simulated and observed sequences. Two typical scores are usally used: Root Mean Square Error (**RMSE**) and the (Pearson/Spearman/Kendall) **Correlation**.

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - y_i)^2} \qquad r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Distributional consistency: evaluates the model capability to reproduce the distribution of the observed data. The most popular are the **bias** (mean difference) or the **ratio of variances/standard deviation**. In addition, there are hypothesis tests to evaluate in a global way the similarity of the observed and simulated series (e.g. **Kolmogorov-Smirnov**, **Perkins**, **Von Misses**, etc).

The **quantile-quantile plot** is a typical tool to evaluate, in a graphical way, the distributional similarity of the order statistics (e.g. **percentiles**).

```
## Example with R:
?qqplot
require(graphics)
y<-rt(200,df=5)
qqnorm(y)
qqline(y,col=2)
qqplot(y,rt(300,df=5))</pre>
```

How to create and use our own functions, including validation measures in R?

```
# install.packages('ISLR')
library(ISLR)
attach(Auto)
summary(Auto)
n <- length(mpg)
plot(horsepower, mpg)
lm1 <- lm(mpg~horsepower)
abline(lm1, col="red", lwd=3)
summary(lm1)</pre>
```



```
# install.packages('ISLR')
library(ISLR)
attach (Auto)
summary(Auto)
                                                   0
                                                                                          y=a+bx
                                               80
n <- length(mpg)</pre>
                                                                                          y=a+bx+bx^2
plot(horsepower, mpq)
                                         40
lm1 <- lm(mpg~horsepower)</pre>
abline(lm1, col="red", lwd=3)
                                                                      0
summary(lm1)
                                         30
plot(horsepower, mpg)
abline(lm1, col="red", lwd=3)
lm2 <- lm(mpg~poly(horsepower, 2))</pre>
xs <- seq(50, 220, length=100)
                                         20
ys <- predict(lm2,
     data.frame(horsepower=xs))
lines(xs, ys, type="l",
                                         10
     lwd=3, col="blue")
legend("topright",
                                               50
                                                            100
                                                                           150
                                                                                        200
     legend=c("y=a+bx", "y=a+bx+bx^2"),
    lty=1 , col=c("red", "blue"))
                                                                    horsepower
```

summary (1m2)

An Introduction to Statistical Learning: With Applications in R

James, G., Witten, D., Hastie, T., Tibshirani, R.

Springer (2013)

http://www-bcf.usc.edu/~gareth/ISL

install.packages("ISLR")
library("ISLR")
library(help = "ISLR")

- > data(Auto)
- > str(Auto)

```
'data.frame':
                 392 obs. of
                               9 variables:
$ mpq
                      18 15 18 16
               : num
  cylinders
                     8 8 8
                            8
                               8 8
               : num
  displacement: num
                      307 350 318 304
  horsepower
               : num
                      130 165 150 150
  weight
                      3504 3693 3436
               : num
  acceleration: num
  year
               : num
  origin
               : num
               : Factor w/ 304 levels ...
  name
```

> pairs(Auto)

CARET (ClAssification and REgresion Training) is a wrapper of a number of standard machine learning packages which performs model tunning (optimization of the model parameters) and cross-validation strategies. http://topepo.github.io/caret/index.html

```
> modelLookup (model = "lm")
 model parameter label forReg forClass probModel
     lm intercept intercept TRUE FALSE FALSE
trainControl (method , number, ...)
   method: "none", "cv", "LOOCV"
   number: For "cv" (2 => hold-out, 10 => 10-fold)
> ctrl <- trainControl(method = "LOOCV")</pre>
> mod <- train(weight ~ horsepower,
               data = Auto,
               method = "lm",
               trControl = ctrl)
         # metric="RMSE",
         # preProc = c("center", "scale")
```

```
> mod
Linear Regression | 392 samples | 1 predictor | No pre-
processing
Resampling: Leave-One-Out Cross-Validation
Summary of sample sizes: 391, 391, 391, 391, 391, 391, ...
Resampling results:
  RMSE
            Rsquared MAE
   429.5254 0.7436498 347.5039
> str(model$control$index$Fold001)
 int [1:391] 2 3 4 5 6
                       7 8 9 10 11 ...
> plot (mod$pred$obs, type="1");
      lines (1:392, mod$pred$pred, col="red")
```

