Apprentissage – Electronique analogique – TD 3

On s'attachera à donner l'expression littérale des résultats. Les applications numériques, comportant l'unité adéquate, seront effectuées lorsque les éléments nécessaires sont disponibles.

Exercice 1 Amplificateurs

- 1. Déterminer l'expression du gain V_S/i_e pour le circuit de la figure 1a. Comment doit-on choisir la valeur de R_1 par rapport à R_2 et R_3 pour que l'expression se simplifie en faisant apparaître l'expression du diviseur de tension R_2/R_3 ?
- 2. Déterminer l'expression du gain V_S/V_e pour le circuit de la figure 1b. Déterminez la valeur de R_0 pour que l'impédance d'entrée soit de $100k\Omega$. Choisissez les valeurs de R_1 , R_2 et R_3 dans la série E24 pour obtenir un gain de -1000.

Remarque: les valeurs standards de résistance sont comprises entre 1Ω et $2.2M\Omega$, avec 24 valeurs par décade dans le cas de la série E24. Le tableau ci-après donne ces valeurs ainsi que les rapports correspondants.

36 47 0,909 1,100 | 1,000 | 0,917 0,846 0,733 0,688 0,611 0,550 0,500 0,458 0,407 0,367 0,333 0,306 0,282 0,256 0,234 0,216 0,196 0,177 0,162 0,147 0,134 0,121 1.200 1.091 1.000 0.923 0.800 0.750 0.667 0.600 0.545 0.500 0.444 0.400 0.364 0.333 0.308 0.279 0.255 0.235 0.214 0.194 0.176 0.160 0.146 1.300 1.182 1.083 1,000 0,867 0,813 0,722 0,650 0,591 0,542 0,481 0,433 0,394 0,361 0,333 0,302 0,277 0,255 0,232 0,210 0,191 0,173 0,159 1,500 1,364 1,250
 1,154
 1,000
 0,938
 0,833
 0,750
 0,682
 0,625
 0,556
 0,500
 0,455
 0,417
 0,385
 0,349
 0,319
 0,294
 0,268
 0,222
 0,200
 0,183
 0,165
 1,600 1,333 1,231 1,067 1,000 0,889 0,800 0,727 0,667 0,593 0,533 0,485 0,444 0,410 0,372 0,340 0,314 0,286 0,258 1.800 1.636 1.500 1.385 1.200 1,125 1,000 0,900 0,818 0,750 0,667 0,600 0,545 0,500 0,462 0,419 0,383 0,353 0,321 0,290 0,265 0,240 0,220 0,198 1.333 1.250 1.000 0.909 0.833 0.741 0.667 0.606 0.556 0.513 0.465 0.426 0.392 0.357 0.323 0.294 0.267 0.244 2.000 1.818 1.667 1.538 1,111 1,000 0,917 0.815 0,733 0,667 0,611 0,564 0,512 0,468 0,431 0,393 0,355 0,324 0,293 0,268 2.200 2.000 1.833 1,692 1,467 1.375 1.222 1,100 2,400 2,182 2,000 1,846 1,600 1,500 1,333 1,200 1,091 1,000 0,889 0,800 0,727 0,667 0,615 0,558 0,511 0,471 0,429 0,387 0,353 0,320 0,293 0,900 0,818 0,750 0,692 0,628 2,700 2,455 2,250 2,077 1,800 1,688 1,500 1,350 1,227 1,125 1,000 0,574 0,529 0,482 0,435 0,397 0,360 0,329 3,000 2,727 2,500 2,308 2,000 1,875 1,667 1,500 1,364 1,250 1,111 1,000 0,909 0,833 0,769 0,698 0,638 0,588 0,536 0,484 0,441 0,400 0,366 0,330 1,650 1,100 1,000 0,917 0,846 0,767 3,300 3,000 2,750 2,538 2,200 2,063 1,833 1,500 1,375 1,222 0,702 0,647 0.589 0.532 0.485 0.440 0.402 3.600 3.273 3.000 2.769 2.400 2.250 2.000 1.800 1.636 1.500 1.333 1.200 1.091 1.000 0.923 0.837 0.766 0.706 0.643 0.581 0.529 0.480 0.439 3.900 3.545 3.250 3.000 2.600 2.438 2.167 1.950 1.773 1.625 1.444 1.300 1.182 1,083 1,000 0,907 0,830 0,765 0,696 0,629 0,574 0,520 0,476 1,792 1,433 1,303 1,194 4,300 3,909 3,583 3,308 2,867 2,688 2,389 2,150 1,955 1,593 1,103 1,000 0,915 0,843 0,768 0,694 0,632 0,573 0,524 0,473 4,700 4,273 3,917 3,615 3,133 2,938 2,611 2,350 2,136 1,958 1,741 1,567 1,424 1,306 1,205 1,093 1,000 0,922 0,839 0,758 0,691 0,627 0,573 0,516 5.100 4.636 4.250 3.923 3.400 3.188 2.833 2.550 2.318 2.125 1.889 1,700 1.545 1,417 1,308 1,186 1,085 1,000 0,911 0,823 0,750 0,680 0,622 5.600 5.091 4.667 4.308 3.733 3.500 3.111 2.800 2.545 2.333 2.074 1.867 1.697 1.556 1,302 1,098 1,000 0,903 0,824 0,747 0,683 0,615 1.436 1,191 6,200 5,636 5,167 4,769 4,133 3,875 3,444 3,100 2,818 2,583 2,296 2,067 1,879 1,722 1,590 1,442 1,319 1,216 1,107 1,000 0,912 0,827 0,756 0,681 6,800 6,182 5,667 5,231 4,533 4,250 3,778 3,400 3,091 2,833 2,519 2,267 2,061 1,889 1,744 1,581 1,447 1,333 1,214 1,097 1,000 0,907 0,829 0,747 7,500 6,818 6,250 5,769 5,000 4,688 4,167 3,750 3,409 3,125 2,778 2,500 2,273 2,083 1,923 1,744 1,596 1,471 1,339 1,210 1,103 1,000 0,915 0,824 8,200 7,455 6,833 6,308 5,467 5,125 4,556 4,100 3,727 3,417 3,037 2,733 2,485 2,278 2,103 1,907 1,745 1,608 1,464 1,323 1,206 9,100 8,273 7,583 7,000 6,067 5,688 5,056 4,550 4,136 3,792 3,370 3,033 2,758 2,528 2,333 2,116 1,936 1,784 1,625 1,468 1,338 1,213 $\overline{1,110}$ 1,000

Valeur du rapport A/B pour la série E24

Exercice 2 : Convertisseur d'impédance négative (NIC) et gyrateur

- 1. Déterminer l'expression de l'impédance d'entrée au point A pour le circuit de la figure 2a
- 2. Le circuit de la figure 2a peut être symbolisé par celui de la figure 2b. Redessinez le circuit de la figure 2c en utilisant cette propriété et déterminez l'impédance vue en A.
- 3. Pour $R_1 = 100k\Omega$ et si Z est une capacité de 100pF, quel est au point A le composant (nature et valeur) équivalent à l'ensemble du circuit de la figure 2c?

Exercice 3: Source de courant

1. Déterminez l'expression du courant IRL en fonction de V_1 et V_2 .

Pour les questions suivantes, $R_1=R_2=100k\Omega$, $R_{sh}=100\Omega$ et $V_1=0$.

- 2. Déterminez l'expression du courant I_{RL} en fonction de V_2 . Par quel composant est fourni le courant I_{RL} ? Quelle est la plage de valeur pour le courant I_{RL} ? A quelle plage de tension V_2 cela correspond-il ?
- 3. Quelle est l'expression de la tension au noeud A? Quelle est la plage de tension possible pour la tension au point A (rechercher le cas le plus défavorable)? Pour les valeurs extrêmes de V_2 , quelle est la valeur maximale admissible de R_L ? La tension V_{RL} correspondante est-elle compatible avec les caractéristiques d'entrée de l'AOP A2?
- 4. Pour $V_2 = 0$, quelle est l'erreur sur le courant I_{RL} due à la tension d'offset de l'AOP A2? Même question pour le courant de polarisation de l'AOP A2. Quel est l'effet dominant?

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15V$

At T_A = 25°C, V_S = ± 15 V, and R_L = $10k\Omega$ connected to ground, unless otherwise noted.

			OPA234U, E OPA2234U			OPA234UA, EA OPA2234UA OPA4234UA, U			
PARAMETER		CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage OPA4234U Model vs Temperature(1) vs Power Supply vs Time Channel Separation (Dual, Quad)	V _{OS} dV _{OS} /dT PSRR	$V_{\rm CM} = 0 V$ Operating Temperature Range $V_{\rm S} = \pm 1.35 V \ \ to \ \pm 18 V, \ V_{\rm CM} = 0 V$		±0.5 3 0.2 0.3	±250 ±5 10		* ±70 * * *	±500 ±250 * 20	μV μV/°C μV/V μV/mo μV/V
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current	I _B	V _{CM} = 0V V _{CM} = 0V		-12 ±1	-25 ±5		*	-50 *	nA nA
NOISE Input Voltage Noise Density Current Noise Density	v _n i _n	f = 1kHz		25 80			*		nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	CMRR	V _{CM} = -15V to 14V	(V–) 91	106	(V+) -1	* 86	*	*	V dB
INPUT IMPEDANCE Differential Common-Mode		V _{CM} = 0V		10 ⁷ 5 10 ¹⁰ 6			*		$\Omega \parallel pF$ $\Omega \parallel pF$
OPEN-LOOP GAIN Open-Loop Voltage Gain	A _{OL}	$V_{O} = -14.5V$ to 14V	110	120		100	*		dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1% 0.01% Overload Recovery Time	GBW SR	C _L = 100pF G = 1, 10V Step, C _L = 100pF G = 1, 10V Step, C _L = 100pF (V _{IN}) (Gain) = V _S		0.35 0.2 41 47 22			* * * *		MHz V/μs μs μs μs
OUTPUT Voltage Output: Positive Negative Short-Circuit Current Capacitive Load Drive (Stable Ope	I _{SC}	G = +1	(V+) -1 (V-) +0.5	(V+) -0.7 (V-) +0.15 ±22 1000		*	* * *		V V mA pF
POWER SUPPLY Specified Operating Voltage Operating Voltage Range Quiescent Current (per amplifier)	Ι _Q	I _O = 0	±1.35	±15 ±275	±18 ±350	*	*	*	V V μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance	$ heta_{ extsf{JA}}$		-40 -40 -55		+85 +125 +125	* *		* *	ပဲ ဂ
8-Pin DIP SO-8 Surface-Mount MSOP-8 Surface-Mount 14-Pin DIP SO-14 Surface-Mount				100 150 220 80 110			* * * *		°C/W °C/W °C/W °C/W

^{*} Specifications same as OPA234U, E.

NOTES: (1) Wafer-level tested to 95% confidence level. (2) Positive conventional current flows into the input terminals. (3) See Small-Signal Overshoot vs Load Capacitance typical curve.

- 1. Pour le schéma de la figure 4a, en supposant la diode D_2 absente et l'AOP A1 idéal, quelle est la forme d'onde en A et B pour $V_e=1\sin(2\pi\ 3105\ t)$?
- 2. Même question que précédemment mais en prenant en compte le slew-rate de l'AOP A1.
- 3. En fonction du résultat de la question précédente, justifiez l'intérêt de la diode D_2 .
- 4. Quelle est l'utilité de R_1 et de A2?
- 5. Quel est le courant maximum dans D_1 et D_2 pour $R_1=10k\Omega$?
- 6. Pour le schéma de la figure 4b, donnez la forme d'onde en V_S pour une tension sinusoïdale en entrée.
- 7. Question subsidiaire: quelle est la tension de seuil du redresseur ainsi réalisé?