Fundaments of Machine learning for and with engineering applications

Enrico Riccardi¹

Department of Mathematics and Physics, University of Stavanger (UiS).1

Sep 17, 2025

© 2025, Enrico Riccardi. Released under CC Attribution 4.0 license

A linear model

Considering a univariate case, we have:

$$q = f(x)$$

which relates the independent variable x to the true dependent variable q.

Assuming a linear model

$$q = \beta_0 + \beta_1 x$$

where eta_i are the arbitrary selected coefficients.

Model set-up

For a given x we do not know the true response q, only the measurementa y_i for experiment i.

We have that:

$$y_i = q_i + \epsilon_i$$

 ${\sf NOTE}$: do not proceed if you do not fully understand this equation.

which is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Discussion point

Does ϵ_i matter? And why so?

Estimated model paramters

The model parameters β_0,β_1 are unknown, but they can be **estimated**. To distinguish estimates from true model parameters we call them b_0,b_1 . These estimates are calculated such that the model

$$\hat{y} = b_0 + b_1 x$$

fits the $\it n$ different experimental observations as well as possible.

Linear model example

We would like to find the TRUTH (What it it?)

Python Example

Estimation of linear regression parameters

For the 1-dimensional problem, we have

' '

$$\hat{y}=b_0+b_1x$$

where \hat{y} is the estimated y-value from the approximate model that has been generated from a set of measurements (x_i,y_i) . We aim to find the b_i parameters such that the regression line fits the observed data as well as possible.

This means we want to minimise the residuals

$$e_i = y_i - \hat{y}_i$$

Estimation of linear regression parameters

- ullet Cannot sum e_i values since they might be positive and negative and thus cancel
- ullet Could use e.g. $\sum_{i=1}^{n}|e_{i}|$, but is mathematically more difficult to handle
- lacktriangle Residual"smallness" measured by $\sum_{i=1}^n e_i^2$

Thus, we find the linear regression coefficients by minimising

$$R = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

How?

Regression!

Let's recaps

Before to continue, let's make sure to have all the main elements clear:

Splitting the data in dependent and independent variables

- 2 Assumption of a linear model between them
- 3 Recognise the difference between the truth and the estimation
- 4 Aiming to *minimize* the residuals

Discussion

What happen when the sum of residual is 0?

What happens where the data is heavily correlated?

Regression

$$\frac{\partial R}{\partial b_0} = 0$$

$$\frac{\partial R}{\partial b_1} = 0$$

where:

$$R = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2 = \sum_{i=1}^{n} u_i^2$$

Regression

Skipping the math (but you are more than welcome to try), here are the results:

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Straightforward derivation becomes very cumbersome for multiple variables. Thus, a different approach must be used. Yet, it is important to understand that there is an analytical solution (even if not all the time).

Linear model(s)

Does a linear model mean only straight lines (or hyperplanes in general)?

That answer to this is *no*. different. In general for a model f to be defined linear, it has to be linear with respect to the unknown parameters β_0, \cdots, β_n . The general linear model is

$$q = \beta_0 + \beta_1 f_1(x_1) + \beta_2 f_2(x_2) + \cdots + \beta_n f_n(x_n)$$

where $f_i(x_i)$ may be non-linear functions. It is the **form** of the equation which makes it linear, i.e. that $f_i(x_i)$ does not depend on the parameters β_i .

Linear model(s)

Consider the following model example - is it linear?

$$q = \beta_0 + \beta_1 x_1^2 + \beta_2 x_2^{-1} + \beta_3 \log x_3$$

The answer is yes because by simple substitution it is possible to convert this formula into a linear form.

With $h_1 = x_1^2$, $h_2 = x_2^{-1}$ and $h_3 = \log x_3$, then we can formulate the new model:

$$q = \beta_0 + \beta_1 h_1 + \beta_2 h_2 + \beta_3 h_3$$

which is in the standard linear form

Curvilinear models

A special class of linear models which we will investigate later are those which are expressed in terms of polynomials (here in only 1D):

$$q = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_m x^m = \sum_{i=0}^n \beta_i x^i$$

Such models are sometimes referred to as curvilinear instead of non-linear

Nonlinear models

$$q = \beta_0 + \log(x - \beta_1)$$

No substitution can transform this equation to the linear form.

That is the case for all the model that:

$$q \sim f(x, \beta)$$

Another example is:

$$f(x,\beta) = \frac{x\beta}{x+\beta}$$

Many variable equation

The general equation would look like:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n = \sum_{i=0}^m x_{ij} b_j$$

where we will have to solve all the n+1 equations (called the **normal equations**) of the form:

$$\frac{\partial R}{\partial b_i} = 0 \ \forall j \in [0, n]$$

Is there a way for us to simplify this?

We can use vector and matrix algebra

Let's recaps

Before to continue, let's make sure to have all the main elements clear:

- Splitting the data in dependent and independent variables
- Assumption of a linear model between them
- 3 Recognise the difference between the truth and the estimation
- 4 Aiming to *minimize* the residuals

Discussion

What happen when the sum of residual is 0?

What happens where the data is heavily correlated?

Regression

To minimize the sum of the square residuals, we can try to solve the following equations:

$$\frac{\partial R}{\partial b_0} = 0$$

$$\frac{\partial R}{\partial b_1} = 0$$

where:

$$R = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2 = \sum_{i=1}^{n} u_i^2$$

Regression

Skipping the math (but you are more than welcome to try), here are the results:

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Straightforward derivation becomes very cumbersome for multiple variables. Thus, a different approach must be used. Yet, it is important to understand that there is an analytical solution (even if not all the time).

Many variable equation

The general equation would look like:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n = \sum_{j=0}^m x_{ij} b_j$$

where we will have to solve all the n+1 equations (called the ${f normal}$ equations) of the form:

$$\frac{\partial R}{\partial b_{j}} = 0 \ \forall j \in [0, n]$$

Is there a way for us to simplify this?

We can use vector and matrix algebra

Regression via Matrix operation

Remember that

$$R = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

then we can define the vector e:

$$\mathsf{e} = \mathsf{y} - \hat{\mathsf{y}}$$

thus

$$e^T = [(y_1 - \hat{y}_1) (y_2 - \hat{y}_2) \cdots (y_N - \hat{y}_N)]$$

and can then write

$$R = e^T e$$

Regression via Matrix operation

Remember that

$$R = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

then we can define the vector $\boldsymbol{e}\colon$

$$e = y - \frac{1}{2}$$

$$e^{T} = [(y_1 - \hat{y}_1) (y_2 - \hat{y}_2) \\ \cdots (y_N - \hat{y}_N)]$$

and can then write

$$R = e^T e$$

From the following equation:

$$\hat{y}_i = b_0 + \sum_{j=1}^m x_{ij} b_j = \sum_{j=0}^m x_{ij} b_j$$

where $x_{i0}=1$ we make the matrix equation:

$$\hat{y} = Xb$$

where the first column in \boldsymbol{X} consists of ones only.

Residual

$R = e^T e$ $= (y - \hat{y})^T (y - \hat{y})$ $= (y - Xb)^{T}(y - Xb)$ $= (y^{T} - b^{T}X^{T})(y - Xb)$ $= y^{T}y - y^{T}Xb - b^{T}X^{T}y$ + $b^T X^T X b$

All the parts of this equation are scalar values. This means e.g. that

$$y^T X h = h^T X^T y$$

$$R = y^T y - 2y^T Xb + b^T X^T Xb$$

Residual

But how can we now compute $\frac{\partial R}{\partial b_i}$ more efficiently in matrix form?

Vector differentiation! Let

$$y = a^T x = a_1 x_1 + \cdots + a_n x_n$$

lf

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x} \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = a$$

and
$$y = x^T a$$
, then:

$$\frac{\partial y}{\partial x} = a$$

General solution

In general, when $y = \mathbf{x}^T \mathbf{A} \mathbf{x}$, then

$$\frac{\partial y}{\partial x} = 2Ax$$

if **A** is symmetric (check *Matrix calculus* for more properties)

We can use this to compute

$$\frac{\partial R}{\partial \mathsf{b}}$$

General solution

We have from above:

$$R = y^T y - 2y^T X b + b^T X^T X b$$

Vector differentiation gives

$$\frac{\partial R}{\partial b} = 0 - 2X^T y + 2X^T X b = 0$$

Solving this for b we get:

$$\begin{array}{rcl} X^T X b & = & X^T y \\ (X^T X)^{-1} X^T X b & = & (X^T X)^{-1} X^T y \\ b & = & (X^T X)^{-1} X^T y \end{array}$$

Multiple linear regression

Previous equation make the solution of MLR rather obvious!

When we have a matrix of y-variables \mathbf{Y} :

$$\mathsf{B} = (\mathsf{X}^\mathsf{T}\mathsf{X})^{-1}\mathsf{X}^\mathsf{T}\mathsf{Y}$$

in the equation:

$$Y = XB$$

These equations give us the multiple linear regression (MLR) solution.

Model evaluation

We can measure the accuracy of a prediction only when we have a 'truth' to compare with.

Model outcome

The accuracy of a prediction is limited by the available data set (not an universal quantity).

Given a dataset, we split the data in a train and a test set.

One has to be extremely careful to not introduce a ${f bias}$ in each of them when splitting. (or to introduce a ${f bias}$ properly, when for example, working with time series.

Train

A train dataset is a subset of the original data. Generally it is circa a 70 % (common practice, not a rule) of the <code>INSTANCES</code>.

For each selected instance, all the features are kept, as their labels.

Random measurements

Some models are able to also consider the sequence of instances; the selection of the $\frac{1}{2}$ train dataset has to be randomised.

The opposite consideration shall be done for time series, where each data point is correlated to the previous.

Validation

A validation dataset is a subset of the original data. Generally it is circa a 15 % (common practice, not a rule) of the <code>INSTANCES</code>.

It is aimed to provide a unbiased estimate of the model prediction error. This information is then used to $\it tune$ the model set up (indirectly). I.e. it is not independent from the test phase.

For each selected instance, all the features are kept, as their labels.

Random measurements

Some models are able to also consider the sequence of instances; the selection of the validation dataset has to be randomised.

The opposite consideration shall be done for time series, where each data point is correlated to the previous.

Test

A test dataset is a subset of the original data. Generally it is circa a $15\ \%$ (common practice, not a rule) of the <code>INSTANCES</code>.

For each selected instance, all the features are kept, as their labels.

Random measurements

Some models are able to also consider the sequence of instances, the selection of the alerttest dataset has to be randomised. $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2$

Model evaluation

Train-Validation-Test

- Data is split into train, validation and test dataset
- A model is trained on the train dataset
 The model (hyper)parameters are improved on the validation dataset
- The model performances (e.g. accuracy) are tested on the test dataset

Model evaluation

Cross validation

Cross validation-Test

- Data is split into train and test.
- 2 Train dataset is then split into k-folds (different subsets, usually 5 to 10)
- 3 A model is trained on all k subset but one, sequentially
- 4 The model is tested on the remaining k data subset and its output averaged
- 6 The model performances (e.g. accuracy) are tested on the test dataset

Cross validation

