Olympiad style inequalities

August 25, 2020

Problem 1. Let $a_2, ..., a_n$ be positive reals, so that $a_2...a_n = 1$. Prove that $(1 + a_2)^2 (1 + a_3)^3 ... (1 + a_n)^n > n^n$.

Problem 2. Let a, b, c be real numbers with abc = 1. Prove that $(a + \frac{1}{b})^2 + (b + \frac{1}{c})^2 + (c + \frac{1}{a})^2 \ge 3(a + b + c + 1)$.

Problem 3. Let a,b,c be positive numbers with a+b+c=3. Find the minimum value of the expression $A=\frac{2-a^3}{a}+\frac{2-b^3}{b}+\frac{2-c^3}{c}$.

Problem 4. Let a, b, c be positive real numbers. Prove that $\frac{8}{(a+b)^2+4abc} + \frac{8}{(b+c)^2+4abc} + \frac{8}{(c+a)^2+4abc} + a^2 + b^2 + c^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}$.

Problem 5. Let a, b be two distinct real numbers and c be a real positive number such that $a^4 - 2019a = b^4 - 2019b = c$. Prove that $-\sqrt{c} < ab < 0$.