W4201 Advanced Data Analysis HW 5

Yao Chen (Uni: yc2798)

Due by 10/11/2013

Question (a)

Run

```
reg <- lm(medv~crim+zn+indus+nox+rm+age+tax+ptratio,data=Boston)
summary(reg)</pre>
```

obtaining,

Call:

```
lm(formula = medv ~ crim + zn + indus + nox + rm + age + tax +
    ptratio, data = Boston)
```

Residuals:

```
Min 1Q Median 3Q Max -14.034 -3.128 -0.689 1.929 40.201
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
          6.176513 4.891698 1.263 0.207306
          crim
          0.203 0.839488
indus
          0.014053 0.069345
         -10.606370 4.341827 -2.443 0.014920 *
nox
          6.977955 0.411199 16.970 < 2e-16 ***
          -0.017220 0.014288 -1.205 0.228704
age
         -0.001766
                  0.002762 -0.639 0.522947
          -1.045103
                   0.153838 -6.794 3.14e-11 ***
ptratio
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.735 on 497 degrees of freedom Multiple R-squared: 0.6174, Adjusted R-squared: 0.6112 F-statistic: 100.2 on 8 and 497 DF, p-value: < 2.2e-16

The fitted linear model is:

```
medv = 6.177 - 0.125 \times crim - 0.012 \times zn + 0.014 \times indus - 10.61 \times nox + 6.978 \times rm - 0.017 \times age - 0.0018 \times tax - 1.045 \times ptratio
```

Question (b)

i. linearity form

The p-value from the F-test of the linear model is less than 2.2E - 16. So the linear assumption is invalid.

ii. normality

Based on the Q-Q plot for regression residuals, the normality assumption is invalid.

Figure 1: Normal Q-Q plot for regression residuals.

For further consideration, Shapiro-Wilk normality test is conducted:

```
> shapiro.test(e)
Shapiro-Wilk normality test
data: e
W = 0.8299, p-value < 2.2e-16</pre>
```

The p-value from the test is less than 2.2E-16, which also shows that the normality assumption is invalid.

iii. Homoscedasticity

From the residuals v.s. fitted values plot, we can see that the homoscedasticity assumption is invalid. The relationship between residuals and fitted values is more like a quadratic relationship.

For further information, the residuals are separated into two groups. Compare the variances of such two groups:

```
> e <- reg$residuals
> var.test(e[1:253],e[254:506])
```


Figure 2: Regression residuals against fitted value.

```
F test to compare two variances
```

Since the p-value from the two variance F-test is extremely small, the homoscedasticity is invalid

iv. Uncorrelated error

Figure 3: Regression residuals against observation number.

From the figure, we can see there is potential correlation. For further information, a Durbin-Watson test for 1 st order AR model is conducted:

> dwtest(medv~crim+zn+indus+nox+rm+age+tax+ptratio,data=Boston)

Durbin-Watson test

```
data: medv \sim crim + zn + indus + nox + rm + age + tax + ptratio DW = 0.7919, p-value < 2.2e-16 alternative hypothesis: true autocorrelation is greater than 0
```

The p-value from DW test is extremely small, which indicates that there is autocorrelation greater than 0.

v. Influential points and outliers

Calculate the Studentized deleted residuals. The critical value is

$$t_{\frac{\alpha}{2n},n'-p-1} =$$

Run

```
lmi <- lm.influence(reg)
h <- lmi$hat
si <-lmi$sigma
student.resid <- e/(si*(1-h)^0.5)
critical.value <- qt(1-0.05/2/506,506-8-1)
abline(h=critical.value)
abline(h=-critical.value)
which(abs(student.resid)>critical.value)
```

Obtaining,

Figure 4: Studentized deleted residuals against observation number.

and the influential points and outliers are observation 366, 368, 369, 370, 371, 372, 373.

Question (c)

i. linearity form

Conduct EDA to check potential relationship between Y and X. Transform data properly. Or we can establish and fit a non-linear model.

ii. normality

We can still transform the data. Or we can use robust regression method.

iii. Homoscedasticity

We can use a WLS model instead of OLS model.

iv. Uncorrelated error

We can use a data transformation following Cochrane-Orcutt Procedure. Or we can use models that incorporate the correlation structure, such as Generalized Estimating Equations (GEE) method.