Марковские Цепи

Саттаров Никита, 322 гр.

October 2020

Цепь Маркова — последовательность случайных событий с конечным или счётным числом исходов, где вероятность наступления каждого события зависит от состояния, достигнутого в предыдущем событии. Характеризуется тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова (старшего), который впервые ввёл это понятие в работе 1906 года.

Содержание

T	цег	в Маркова с дискретным временем	Т
	1.1	Определение	1
	1.2	Переходная матрица и однородные цепи	1
	1.3	Конечномерные распределения и матрица перехода за n шагов	2
	1.4	Типы состояний	2
	1.5	Примеры	2
2	Цепь Маркова с непрерывным временем		
	2.1	Определение	2
	2.2	Матрица переходных функций и уравнение Колмогорова—Чепмена	3
	2.3	Матрица интенсивностей и дифференциальные уравнения Колмогорова	3
	2.4	Свойства матриц Р и Q	3
	2.5	Граф переходов, связность и эргодические цепи Маркова	4
	2.6	Примеры	4
3	Основное кинетическое уравнение		5
	3.1	Функции Ляпунова для основного кинетического уравнения	5
		3.1.1 Примеры функций Моримото $H_h(p)$	5
4	Пра	актическое применение	6

1 Цепь Маркова с дискретным временем

1.1 Определение

Последовательность дискретных случайных величин $\{X_n\}_{n\geq 0}$ называется простой цепью Маркова (с дискретным временем), если

$$\mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_n, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_n).$$

Таким образом, в простейшем случае условное распределение последующего состояния цепи Маркова зависит только от текущего состояния и не зависит от всех предыдущих состояний (в отличие от цепей Маркова высших порядков). Область значений случайных величин $\{X_n\}$ называется пространством состояний цепи, а номер n — номером шага.

1.2 Переходная матрица и однородные цепи

Матрица P(n), где

Рис. 1: Пример цепи с двумя состояниями

$$P_{ij}(n) \equiv \mathbb{P}(X_{n+1} = j \mid X_n = i)$$

называется матрицей переходных вероятностей на n-м шаге, а вектор $\mathbf{p} = (p_1, p_2, \ldots)^\top$, где

$$p_i \equiv \mathbb{P}(X_0 = i)$$

— начальным распределением цепи Маркова.

Очевидно, матрица переходных вероятностей является стохастической, то есть

$$\sum_{i} P_{ij}(n) = 1, \quad \forall n \in \mathbb{N}.$$

Цепь Маркова называется **однородной**, если матрица переходных вероятностей не зависит от номера шага, то есть

$$P_{ij}(n) = P_{ij}, \quad \forall n \in \mathbb{N}.$$

В противном случае цепь Маркова называется неоднородной. В дальнейшем будем предполагать, что имеем дело с однородными цепями Маркова.

1.3 Конечномерные распределения и матрица перехода за п шагов

Из свойств условной вероятности и определения однородной цепи Маркова получаем:

$$\mathbb{P}(X_n = i_n, \dots, X_0 = i_0) = P_{i_{n-1, i_n}} \cdots P_{i_0, i_1} P_{i_0},$$

откуда вытекает специальный случай уравнения Колмогорова — Чепмена:

$$\mathbb{P}(X_n = i_n \mid X_0 = i_0) = (P^n)_{i_0, i_n},$$

то есть матрица переходных вероятностей за n шагов однородной цепи Маркова есть n-я степень матрицы переходных вероятностей за 1 шаг. Наконец,

$$\mathbb{P}(X_n = i_n) = \left((P^T)^n \mathbf{p} \right)_{i_n}.$$

1.4 Типы состояний

- Возвратное состояние.
- Возвратная цепь Маркова.
- Достижимое состояние.
- Неразложимая цепь Маркова.
- Периодическое состояние.
- Периодическая цепь Маркова.
- \bullet Поглощающее состояние. Состояние i называется поглощающим если $P_{i,i}=1.$
- Эргодическое состояние.

1.5 Примеры

- Ветвящийся процесс;
- Случайное блуждание;

2 Цепь Маркова с непрерывным временем

2.1 Определение

Семейство дискретных случайных величин $\{X_t\}_{t>0}$ называется цепью Маркова (с непрерывным временем), если

$$\mathbb{P}(X_{t+h} = x_{t+h} \mid X_s = x_s, \ 0 < s \le t) = \mathbb{P}(X_{t+h} = x_{t+h} \mid X_t = x_t).$$

Цепь Маркова с непрерывным временем называется однородной, если

$$\mathbb{P}(X_{t+h} = x_{t+h} \mid X_t = x_t) = \mathbb{P}(X_h = x_h \mid X_0 = x_0).$$

2.2 Матрица переходных функций и уравнение Колмогорова—Чепмена

Аналогично случаю дискретного времени, конечномерные распределения однородной цепи Маркова с непрерывным временем полностью определены начальным распределением

$$\mathbf{p} = (p_1, p_2, \dots)^{\top}, \ p_i = \mathbb{P}(X_0 = i), \quad i = 1, 2, \dots$$

и матрицей переходных функций (переходных вероятностей)

$$\mathbf{P}(h) = (P_{ij}(h)) = \mathbb{P}(X_h = j \mid X_0 = i).$$

Матрица переходных вероятностей удовлетворяет уравнению Колмогорова — Чепмена: $ds\mathbf{P}(t+s) = \mathbf{P}(t)\mathbf{P}(s)$ или

$$P_{ij}(t+s) = \sum_{k} P_{ik}(t) P_{kj}(s).$$

2.3 Матрица интенсивностей и дифференциальные уравнения Колмогорова

По определению, матрица интенсивностей $\mathbf{Q} = \lim_{h \to 0} \frac{\mathbf{P}(h) - \mathbf{I}}{h}$ или, что эквивалентно,

$$\mathbf{Q} = (q_{ij}) = \left(\frac{dP_{ij}(h)}{dh}\right)_{h=0}.$$

Из уравнения Колмогорова — Чепмена следуют два уравнения:

• Прямое уравнение Колмогорова

$$\frac{d\mathbf{P}(t)}{dt} = \mathbf{P}(t)\mathbf{Q},$$

• Обратное уравнение Колмогорова

$$\frac{d\mathbf{P}(t)}{dt} = \mathbf{Q}\mathbf{P}(t).$$

Для обоих уравнений начальным условием выбирается $\mathbf{P}(0) = \mathbf{I}$. Соответствующее решение $\mathbf{P}(t) = \exp(\mathbf{Q}t)$...

2.4 Свойства матриц Р и Q

Для любого t > 0 матрица $\mathbf{P}(t)$ обладает следующими свойствами:

- 1. Матричные элементы $\mathbf{P}(t)$ неотрицательны: $P_{ij}(t) \geq 0$ (неотрицательность вероятностей).
- 2. Сумма элементов в каждой строке $\mathbf{P}(t)$ равна 1: $\sum_j P_{ij}(t) = 1$ (полная вероятность), то есть матрица $\mathbf{P}(t)$ является стохастической справа (или по строкам).
- 3. Все собственные числа λ матрицы $\mathbf{P}(t)$ не превосходят 1 по абсолютной величине: $|\lambda| \leq 1$. Если $|\lambda| = 1$ S, то $\lambda = 1$.
- 4. Собственному числу $\lambda=1$ матрицы $\mathbf{P}(t)$ соответствует, как минимум, один неотрицательный левый собственный вектор-строка (равновесие): $(p_1^*,\,p_2^*,\ldots); p_i^*\geq 0; \sum_i p_i^*=1; \sum_i p_i^*P_{ij}(t)=p_j^*.$
- 5. Для собственного числа $\lambda = 1$ матрицы $\mathbf{P}(t)$ все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.

Матрица **Q** обладает следующими свойствами:

- 1. Внедиагональные матричные элементы ${\bf Q}$ неотрицательны: $q_{ij} \geq 0 \ i \neq j$.
- 2. Диагональные матричные элементы **Q** неположительны: $q_{ii} \leq 0$.
- 3. Сумма элементов в каждой строке ${\bf Q}$ равна 0: $\sum_i q_{ij} = 0.$
- 4. Действительная часть всех собственных чисел μ матрицы \mathbf{Q} неположительна: $Re(\mu) \leq 0$. Если $Re(\mu) = 0$, то $\mu = 0$.

- 5. Собственному числу $\mu=0$ матрицы \mathbf{Q} соответствует, как минимум, один неотрицательный левый собственный вектор-строка (равновесие): $(p_1^*,\,p_2^*,...); p_i^*\geq 0; \sum_i p_i^*=1; \sum_i p_i^*q_{ij}=0.$
- 6. Для собственного числа $\mu=0$ матрицы ${\bf Q}$ все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.

2.5 Граф переходов, связность и эргодические цепи Маркова

Для цепи Маркова с непрерывным временем строится ориентированный граф переходов (кратко—граф переходов) по следующим правилам:

- Множество вершин графа совпадает со множеством состояний цепи.
- Вершины $i, j \ (i \neq j)$ соединяются ориентированным ребром $i \to j$, если $q_{ij} > 0$ (то есть интенсивность потока из i-го состояния в j-е положительна.

Топологические свойства графа переходов связаны со спектральными свойствами матрицы **Q**. В частности, для конечных цепей Маркова верны следующие теоремы:

- Следующие три свойства 1, 2, 3 конечной цепи Маркова эквивалентны (обладающие ими цепи иногда называют слабо эргодическими):
 - 1. Для любых двух различных вершин графа переходов $i, j \ (i \neq j)$ найдется такая вершина k графа («общий сток»), что существуют ориентированные пути от вершины i к вершине k и от вершины j к вершине k.
 - 3амечание: возможен случай k=i или ek=j; в этом случае тривиальный (пустой) путь от i к i или от j к j также считается ориентированным путём.
 - 2. Нулевое собственное число матрицы ${\bf Q}$ невырождено.
 - 3. При $t \to \infty$ матрица $\mathbf{P}(t)$ стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
- Следующие пять свойств 1, 2, 3, 4, 5 конечной цепи Маркова эквивалентны (обладающие ими цепи называют эргодическими):
 - 1. Граф переходов цепи ориентированно связен.
 - 2. Нулевое собственное число матрицы \mathbf{Q} невырождено и ему соответствует строго положительный левый собственный вектор (равновесное распределение).
 - 3. Для некоторого t>0 матрица $\mathbf{P}(t)$ строго положительна (то есть $P_{ij}(t)>0$ для всех i,j.
 - 4. Для всех t > 0 матрица $\mathbf{P}(t)$ строго положительна.
 - 5. При $t \to \infty$ матрица $\mathbf{P}(t)$ стремится к строго положительной матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).

2.6 Примеры

Рассмотрим цепи Маркова с тремя состояниями и с непрерывным временем, соответствующие графам переходов, представленным на рис. 2. В случае (а) отличны от нуля только следующие недиагональные элементы матрицы интенсивностей — q_{12} , q_{13} , в случае (b) отличны от нуля только q_{12} , q_{31} q_{32} , а в случае (c) — q_{12} , q_{31} q_{23} . Остальные элементы определяются свойствами матрицы \mathbf{Q} (сумма элементов в каждой строке равна 0). В результате для графов (a), (b), (c) матрицы интен-

сивностей имеют вид:
$$\mathbf{Q}_a = \begin{pmatrix} -(q_{12} + q_{13}) & q_{12} & q_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
 $\mathbf{Q}_b = \begin{pmatrix} -q_{12} & q_{12} & 0 \\ 0 & 0 & 0 \\ q_{31} & q_{32} & -(q_{31} + q_{32}) \end{pmatrix}, \mathbf{Q}_c = \begin{pmatrix} -q_{12} & q_{12} & 0 \\ 0 & -q_{23} & q_{23} \\ q_{31} & 0 & -q_{31} \end{pmatrix}.$

$$A_1 \longrightarrow A_2 \qquad A_1 \longrightarrow A_2 \qquad A_2 \longrightarrow A_3 \longrightarrow A_2 \qquad A_1 \longrightarrow A_2 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_3 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_3 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_3$$

Рис. 2: Примеры графов переходов для цепей Маркова: а) цепь не является слабо эргодической (не существует общего стока для состояний A_2 , A_3 ; b) слабо эргодическая цепь (граф переходов не является ориентированно связным) с) эргодическая цепь (граф переходов ориентированно связан).

3 Основное кинетическое уравнение

Основное кинетическое уравнение описывает эволюцию распределения вероятностей в цепи Маркова с непрерывным временем. «Основное уравнение» здесь — не эпитет, а перевод термина англ. $Master\ equation$. Для вектора-строки распределения вероятностей π основное кинетическое уравнение имеет вид:

$$\frac{d\pi}{dt} = \pi \mathbf{Q}$$

и совпадает, по существу, с прямым уравнением Колмогорова. В физической литературе чаще используют векторы-столбцы вероятностей и записывают основное кинетическое уравнение в виде, который явно использует закон сохранения полной вероятности:

$$\frac{dp_i}{dt} = \sum_{j,j \neq i} (T_{ij}p_j - T_{ji}p_i),$$

где $T_{ij} = q_{ji}$.

Если для основного кинетического уравнения существует положительное равновесие $p_i^* > 0$, то его можно записать в форме:

$$\frac{dp_i}{dt} = \sum_{j,j \neq i} T_{ij} p_j^* \left(\frac{p_j}{p_j^*} - \frac{p_i}{p_i^*} \right).$$

3.1 Функции Ляпунова для основного кинетического уравнения

Для основного кинетического уравнения существует богатое семейство выпуклых функций Ляпунова — монотонно меняющихся со временем функций распределения вероятностей. Пусть h(x) (x > 0) — выпуклая функция одного переменного. Для любого положительного распределения вероятностей ($p_i > 0$) определим функцию Моримото $H_h(p)$:

$$H_h(p) = \sum_i p_i^* h\left(\frac{p_i}{p_i^*}\right).$$

Производная $H_h(p)$ по времени, если p(t) удовлетворяет основному кинетическому уравнению, есть

$$\frac{dH_h(p(t))}{dt} = \sum_{i,j,i\neq j} T_{ij} p_j^* \left[h\left(\frac{p_i}{p_i^*}\right) - h\left(\frac{p_j}{p_j^*}\right) + h'\left(\frac{p_i}{p_i^*}\right) \left(\frac{p_j}{p_j^*} - \frac{p_i}{p_i^*}\right) \right] \le 0.$$

Последнее неравенство справедливо из-за выпуклости h(x).

3.1.1 Примеры функций Моримото $H_h(p)$

• $h(x) = |x - 1|, H_h(p) = \sum_i |p_i - p_i^*|;$

эта функция — расстояние от текущего распределения вероятностей до равновесного в l1-норме. Сдвиг по времени является сжатием пространства вероятностных распределений в этой норме. (О свойствах сжатий см. статью Теорема Банаха о неподвижной точке.)

• $h(x) = x \ln x, H_h(p) = \sum_i p_i \ln \left(\frac{p_i}{p_i^*}\right);$

эта функция — (минус) энтропия Кульбака (см. Расстояние Кульбака — Лейблера). В физике она соответствует свободной энергии, деленной на kT (где k — постоянная Больцмана, T — абсолютная температура): если $p_i^* = \exp(\mu_0 - U_i/kT)$ (распределение Больцмана), то

$$H_h(p) = \sum_i p_i \ln p_i + \sum_i p_i U_i / kT - \mu_0 = (\langle U \rangle - TS) / kT.$$

• $h(x) = -\ln x$, $H_h(p) = -\sum_i p_i^* \ln \left(\frac{p_i}{p_i^*}\right)$;

эта функция — аналог свободной энергии для энтропии Бурга, широко используемой в обработке сигналов:

$$S_{\text{Burg}} = \sum_{i} \ln p_i$$

•
$$h(x) = \frac{(x-1)^2}{2}, H_h(p) = \sum_i \frac{(p_i - p_i^*)^2}{2p_i^*};$$

это квадратичное приближение для (минус) энтропии Кульбака вблизи точки равновесия. С точностью до постоянного во времени слагаемого эта функция совпадает с (минус) энтропией Фишера, которую даёт следующий выбор,

•
$$h(x) = \frac{x^2}{2}, H_h(p) = \sum_{i} \frac{p_i^2}{2p_i^*};$$

это (минус) энтропия Фишера.

•
$$h(x) = \frac{x^q - 1}{q - 1}, q > 0, q \neq 1, H_h(p) = \frac{1}{q - 1} \left[\sum_i p_i^* \left(\frac{p_i}{p_i^*} \right)^q - 1 \right];$$

это один из аналогов свободной энергии для энтропии Тсаллиса.

$$S_{q \text{Tsallis}}(p) = \frac{1}{q-1} \left(1 - \sum_{i} p_i^q \right).$$

служит основой для статистической физики неэкстенсивных величин. При $q \to 1$ она стремится к классической энтропии Больцмана—Гиббса—Шеннона, а соответствующая функция Моримото — к (минус) энтропии Кульбака.

4 Практическое применение

Одной из первых научных дисциплин, в которой цепи Маркова нашли практическое применение, стала лингвистика (в частности текстология). Сам Марков для иллюстрации своих результатов исследовал зависимость в чередовании гласных и согласных в первых главах «Евгения Онегина» и «Детских годов Багрова-внука».

Список литературы

- [1] Кельберт М. Я., Сухов Ю. М. Вероятность и статистика в примерах и задачах. -2007.
- [2] Марков А.А. Распространение закона больших чисел на величины, зависящие друг от друга // Известия Физико-математического общества при Казанском университете. 1906. С. 135–156.
- [3] А.В. Прохоров. Маркова цепь // Большая российская энциклопедия. 2004. C. 35.
- [4] Kemeny John G, Snell James Laurie. Finite markov chains, undergraduate texts in mathematics. 1976.
- [5] Чжун К. Однородные цепи Маркова. Мир, 1964.
- [6] Нуммелин Э. Общие неприводимые цепи Маркова и неотрицательные операторы: пер. с англ. Мир, 1989.
- [7] Morimoto Tetsuzo. Markov processes and the H-theorem // Journal of the Physical Society of Japan. 1963. Vol. 18, no. 3. P. 328–331.
- [8] Яглом А. М., Яглом И. Вероятность и информация. Рипол Классик, 1960.
- [9] Kullback Solomon. Information theory and statistics.—Courier Corporation, 1997.
- [10] Burg John Parker. The relationship between maximum entropy spectra and maximum likelihood spectra // Geophysics. 1972. Vol. 37, no. 2. P. 375–376.
- [11] Tsallis Constantino. Possible generalization of Boltzmann-Gibbs statistics // Journal of statistical physics.— 1988.—Vol. 52, no. 1-2.—P. 479–487.
- [12] Рудой Ю. Г. Обобщенная информационная энтропия и неканоническое распределение в равновесной статистической механике // Теоретическая и математическая физика. 2003. Т. 135, M 1. С. 3–54.
- [13] Gorban Alexander N, Gorban Pavel A, Judge George. Entropy: the Markov ordering approach // Entropy. 2010. Vol. 12, no. 5. P. 1145–1193.