Tratamento Estatístico de Dados em Física Experimental - Atividade 03

Propagação de incertezas por "Toy Monte Carlo"

Faça as questões abaixo e depois transcreva suas respostas para o formulário do Google Forms correspondente https://forms.gle/ZE4xfA8RCtMLf6og6 (para ter acesso ao formulário é preciso estar logado no Google com uma conta da USP). Essa atividade deve ser entregue até às 23h59 do dia 08/09 (quarta-feira).

Escreva todo os resultados com 5 algarismos significativos (isto é, ignore a regra de que incertezas devem ser escritas com 1 ou 2 significativos). Resultados sem unidades, ou com número de significativos diferente do pedido serão considerados errados.

- 1) Considere uma grandeza f cuja relação com os dados T é dada por f=1/T. Suponha que os dados T sejam gaussianos com valor verdadeiro $T_0=0.250\,s$ e desvio-padrão (verdadeiro) $\sigma_T=0.010\,s$. Estime a incerteza de f usando "Toy Monte Carlo" com $N=50.000\,\mathrm{simulações}$.
- 2) Considere uma grandeza V cuja relação com os dados d é dada por $V=\frac{\pi}{6}d^3$. Suponha que os dados d sejam gaussianos com valor verdadeiro $d_0=10,0~mm$ e desvio-padrão (verdadeiro) $\sigma_d=2,0~mm$. Estime a incerteza de V usando "Toy Monte Carlo" com $N=50.000~{\rm simulações}$.
- 3) Considere uma grandeza P cuja relação com os dados U e R é dada por $P=\frac{U^2}{R}$. Suponha que U e R sejam gaussianos com valores verdadeiros $U_0=16,0~V$ e $R_0=4,0~\Omega$ e desviospadrões (verdadeiros) $\sigma_U=0,5~V$ e $\sigma_R=0,5~\Omega$. Lembre-se que $1^{V^2}/\Omega=1W$.
 - a) Estime a incerteza de P usando "Toy Monte Carlo" com N=50.000 simulações.
 - b) Faça simulações considerando o valor de R fixo (isto é, R igual à R_0 para todos os dados) para estimar a incerteza de P apenas por causa da incerteza de U (isto é, $\sigma_{P[U]}$).
 - c) Agora, faça simulações fixando o valor de U para estimar a incerteza de P apenas por causa de R (isto é, $\sigma_{P_{\lceil R \rceil}}$).
- 4) Estime todas as incertezas pedidas usando a Lei Geral de Propagação de Incertezas (LPGI) e compare com as estimativas obtidas por "Toy Monte Carlo" (TMC). Indique os casos em que as estimativas de incerteza por LPGI e TMC diferirem por mais de 2% do valor da menor delas.

Dica: no caso de incertezas devidas apenas a uma componente, pode-se usar $\sigma_{w_{[a]}} = \left| \frac{\partial w}{\partial a} \right| \sigma_a$.

Para discutir em aula: nos casos em que há divergência entre as estimativas de incerteza, qual das duas formas de estimar a incerteza (LPGI ou TMC) você acredita ser a mais confiável?