Le modèle Producteur - Consommateur

Définition

Le producteur et le consommateur sont deux processus cycliques.

Producteur	Consommateur
produire(messageP); déposer(case, messageP);	retirer(case, messageC); consommer(messageC);

Problèmes : déposer un message alors que le consommateur n'a pas retiré le prédent ou retirer un message alors que le producteur n'a rien déposé.

Solution à une case

On utilise 2 sémaphores *plein* et *vide* initialisé à **0** et **1**.

plein indique si la case est pleine et vide ...

Producteur	Consommateur
produire(messageP);	P(plein) retirer(case, messageC); consommer(messageC); V(vide)

Amélioration:

Producteur	Consommateur
P(vide) déposer(case, messageP);	P(plein) retirer(case, messageC); V(vide) consommer(messageC);

Solution à *n* cases

Hypothèse: tampon à n cases.

Il faut gérer le tampon. C'est-à-dire :

- si le tampon est *vide*, le consommateur ne peut rien *retirer*;
- si le tampon est *plein*, le producteur ne peut rien *déposer*;
- le tampon est *circulaire*, il faut empêcher que les indices *tête* et *queue* se *chevauchent*.

On utilise 2 sémaphores *plein* et *vide* initialisé à **0** et **n**.

Les indices tête et queue sont initialisés à 0.

plein indique le nombre de cases pleines et vide ...

Producteur	Consommateur
P(vide); tampon[$t\hat{e}te$] = messageP; $t\hat{e}te = (t\hat{e}te + 1) \mod n$;	P(plein); messageC = tampon[queue]; queue = (queue + 1) mod n; V(vide); consommer(messageC);

Solution à p producteurs et c consommateurs

Hypothèses:

- tampon à *n* cases ;
- p producteurs (e.g. utilisateurs déposant des requètes d'impression) ;
- c consommateurs (e.g. spool d'imprimantes banalisées).

Il faut protéger l'utilisation des indices.

On utilise 2 sémaphores *mutexprod* et *mutexcons* d'exclusion mutuelle initialisés à 1.

Producteur	Consommateur
P(vide); P(mutexprod); tampon[$t\hat{e}te$] = messageP; $t\hat{e}te = (t\hat{e}te + 1) \mod n$; V(mutexprod);	P(plein); P(mutexcons); messageC = tampon[queue]; queue = (queue + 1) mod n; V(mutexcons); V(vide); consommer(messageC);

On assure l'exclusion mutuelle entre les processus d'une même classe.