CPSC 486/586: Probabilistic Machine Learning	February 22, 2023
Lecture 12	
Lecturer: Andre Wibisono	Scribe: Jake Tae

1 Introduction

In the last lecture, we discussed sampling from discrete distributions. In this lecture, we discuss sampling from continuous space. More concretely, assume we can sample from the uniform distribution on $[0,1] \in \mathbb{R}$. Let $\nu(x)$ be the target distribution on \mathbb{R} . How can we sample $x \sim \nu$?

We will explore two different algorithms that can achieve this objective: inverse CDF transform and rejection sampling.

2 Inverse CDF Transform

Let $\nu : \mathbb{R} \to \mathbb{R}$ be the PDF of the target distribution. Then the CDF (cumulative density function) $F_{\nu} : \mathbb{R} \to [0, 1]$ of ν is given by

$$F_{\nu}(t) = \mathbb{P}_{\nu}(X \le t)$$
$$= \int_{-\infty}^{t} \nu(x) dx.$$

Then the inverse CDF transform sampling algorithm is given as follows.

Algorithm 1 Inverse CDF Transform

```
\begin{aligned} & u \sim \text{Uniform}[0,1] \\ & \mathbf{return} \ x = F_{\nu}^{-1}(u) \\ & \mathbf{until} \ \text{convergence} \end{aligned}
```

Lemma 1. Output x has distribution ν .

Proof. WTS x has the same CDF F_{ν} as ν . It suffices to show $\forall t \in \mathbb{R}, \mathbb{P}(X \leq t) = F_{\nu}(t)$. By the algorithm,

$$\mathbb{P}(X \le t) = \mathbb{P}(F_{\nu}^{-1}(u) \le t)$$
$$= \mathbb{P}(u \le F_{\nu}(t))$$
$$= F_{\nu}(t).$$

Therefore, the inverse CDF transform works if we can evaluate F_{ν}^{-1} .

Example 1. $\nu = \text{Uniform}[a, b]$.

The CDF of ν is given by

$$F_{\nu}(t) = \int_{-\infty}^{t} \nu(x) dx$$
$$= \frac{t - a}{b - a}.$$

 $F_{\nu}^{-1} = x \iff u = F_{\nu}(x) = (x-a)/(b-a)$. So we can sample from this distribution by applying the transform x = a + u(b-a).

Example 2. $\nu = \text{Exp}(\lambda)$ with density $\nu(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$.

The CDF of ν is given by

$$F_{\nu}(t) = \int_{0}^{t} \nu(x) dx$$
$$= \int_{0}^{t} \lambda e^{-\lambda x} dx$$
$$= \left(-e^{-\lambda x} \right) \Big|_{0}^{t}$$
$$= 1 - e^{-\lambda t}.$$

Applying the inverse CDF transform, we have

$$x = F_{\nu}^{-1}(u) \iff u = F_{\nu}(x) = 1 - e^{-\lambda x}$$

$$\iff e^{-\lambda x} = 1 - u$$

$$\iff x = -\frac{1}{\lambda}\log(1 - u) = \frac{1}{\lambda}\log\frac{1}{1 - u} \sim \operatorname{Exp}(\lambda).$$

3 Rejection Sampling

Suppose we have a target probability distribution $\nu(x)$ on X and its unnormalized version $\tilde{\nu(x)} \propto \nu(x)$, i.e.,

$$\nu(x) = \frac{\tilde{\nu}(x)}{Z_{\nu}}, Z_{\nu} = \int_{X} \tilde{\nu}(x) \, dx,$$

where Z_{ν} is unknown an intractable.

Suppose we can sample from a proposal distribution $\mu(x)$ and we have the unnormalized version $\tilde{\mu}(x)$, i.e.,

$$\mu(x) = \frac{\tilde{\mu}(x)}{Z_{\mu}}, Z_{\mu} = \int_{X} \tilde{\mu}(x) dx.$$

Assume $\forall x \in X, \tilde{\mu}(x) \geq \tilde{\nu}(x)$. Then the rejection sampling algorithm is given as follows.

Algorithm 2 Rejection Sampling

```
\begin{aligned} \mathbf{repeat} \\ x &\sim \mu \\ u &\sim \mathrm{Uniform}[0,1] \\ \alpha(x) &\leftarrow \frac{\tilde{\nu}(x)}{\tilde{\mu}(x)} \\ \text{if } u &\leq \alpha \text{ then} \\ &\quad \text{return } x \\ \text{else} \\ &\quad \text{continue} \\ \text{end if} \\ \text{until convergence} \end{aligned}
```

Example 3. Suppose ν is uniform on $\mathbb{B}_2^d = \{x \in \mathbb{R}^d : \|x\|_2^2 = x_1^2 + \dots + x_d^2 \le 1\}$, and μ is uniform on $\mathbb{B}_{\infty}^d = \{x \in \mathbb{R}^d : \|x\|_{\infty} = \max_i |x_i| \le 1\}$. We can view ν and μ as a unit sphere and cube respectively, with $\mathbb{B}_2^d \subset \mathbb{B}_{\infty}^d$.

$$\nu(x) = \frac{1}{\operatorname{Vol}(\mathbb{B}_2^d)} \mathbb{1}_{\{x \in \mathbb{B}_2^d\}},$$
$$\mu(x) = \frac{1}{\operatorname{Vol}(\mathbb{B}_\infty^d)} \mathbb{1}_{\{x \in \mathbb{B}_\infty^d\}}.$$

$$\begin{split} \tilde{\nu}(x) &= \mathbbm{1}_{\{x \in \mathbb{B}_2^d\}}, \\ \tilde{\mu}(x) &= \mathbbm{1}_{\{x \in \mathbb{B}_\infty^d\}}. \end{split}$$

Note that $\tilde{\mu}(x) \geq \tilde{\nu}(x)$ as required, since the L_{∞} norm ball contains the L_2 norm ball.

Figure 1: In d=2, recall that \mathbb{B}_{∞} is the area inside the square $[-1,1] \times [-1,1]$ and \mathbb{B}_2 is that of the unit circle. This generalizes to higher dimensions d.

Then the rejection sampling algorithm can be written as follows.

Algorithm 3 Rejection Sampling on d-hypersphere

```
\begin{aligned} \mathbf{repeat} \\ x &\sim \mathrm{Uniform}(B_{\infty}^d) \\ \alpha(x) &\leftarrow \frac{\tilde{\nu}(x)}{\tilde{\mu}(x)} = \tilde{\nu}(x) \\ \mathbf{if} \ x &\in \mathbb{B}_2^d \ \mathbf{then} \\ \mathbf{return} \ x \\ \mathbf{else} \\ \mathbf{continue} \\ \mathbf{end} \ \mathbf{if} \\ \mathbf{until} \ \mathbf{convergence} \end{aligned}
```

Lemma 2. Properties of rejection sampling.

1. The output of rejection sampling x follows distribution ν .

2. Let N be the number of samples drawn from ν until acceptance. Then N has a geometric distribution with mean $Z_{\mu}/Z_{\nu} \geq 1$.

Proof. See Chewi, Theorem 7.1.1.

Example 4. From $\nu = \text{Uniform}(B_2^d)$ and $\mu = \text{Uniform}(B_\infty^d)$. Then

$$Z_{\nu} = \int_{X} \tilde{\nu}(x) dx$$

$$= \text{Vol}(B_{2}^{d})$$

$$= \frac{\pi^{d/2}}{(d/2)!}$$

$$\stackrel{d \to \infty}{=} 0.$$

$$Z_{\mu} = \int_{X} \tilde{\mu}(x) dx$$
$$= \operatorname{Vol}(B_{\infty}^{d})$$
$$= 2^{d}$$
$$\stackrel{d \to \infty}{=} \infty.$$

Then the average number of samples from μ is $Z_{\mu}/Z_{\nu} = 2^d (d/2)!/\pi^{d/2}$. When d=2, this quantity becomes $4/\pi$, and it is one way one might approximate π .

Example 5. Let $\nu(x) \propto e^{-f(x)}$ on \mathbb{R}^d . WLOG, assume $f(0) = 0, \nabla f(0) = 0$. Assume f is α -strongly convex and L-smooth, i.e., $0 \leq \alpha I \leq \nabla^2 f(x) \leq LI$.

$$\frac{\alpha}{2} \le f(x) \le \frac{L}{2} \|x\|^2 \implies \exp\left(-\frac{\alpha}{2}\right) \ge \exp(-f(x)) \ge \exp\left(-\frac{L}{2} \|x\|^2\right)$$
$$\implies \tilde{\mu}(x) \ge \tilde{\nu}(x)$$
$$\implies \mu = \mathcal{N}(0, \alpha^{-1}I) \text{ as proposal distribution.}$$

The rejection sampling algorithm for $x \sim \nu$ can be written as follows.

Next, we consider the notion of the consider number, which closely relates to the second property of Lemma 2.

Algorithm 4 Rejection Sampling

$\begin{aligned} \mathbf{repeat} \\ x &\sim \mu = \mathcal{N}(0, \alpha^{-1}I) \\ u &\sim \mathrm{Uniform}[0, 1] \\ \alpha(x) &\leftarrow \frac{\tilde{\nu}(x)}{\tilde{\mu}(x)} = \exp\left(\frac{\alpha}{2}\|x\|^2 - f(x)\right) \\ \mathbf{if} \ u &\leq \alpha \ \mathbf{then} \\ \mathbf{return} \ x \\ \mathbf{else} \\ &\quad \mathrm{continue} \\ \mathbf{end} \ \mathbf{if} \\ \mathbf{until} \ \mathrm{convergence} \end{aligned}$

$$Z_{\mu} = \int_{\mathbb{R}^d} \exp\left(-\frac{\alpha}{2}||x||^2\right) dx = \left(\frac{2\pi}{\alpha}\right)^{d/2}.$$
$$Z_{\nu} = \int_{\mathbb{R}^d} \exp(-f(x)) dx$$

$$Z_{\nu} = \int_{\mathbb{R}^d} \exp(-f(x)) dx$$

$$\geq \int_{\mathbb{R}^d} \exp\left(-\frac{L}{2} ||x||^2\right) dx$$

$$= \left(\frac{2\pi}{L}\right)^{d/2}.$$

Then we have

$$\begin{split} \mathbb{E}[\# \text{ samples drawn from } \mu] &= \frac{Z_{\mu}}{Z_{\nu}} \\ &\leq \frac{\left(\frac{2\pi}{\alpha}\right)^{d/2}}{\left(\frac{2\pi}{L}\right)^{d/2}} \\ &= \left(\frac{L}{\alpha}\right)^{d/2} \\ &= \kappa^{d/2}, \end{split}$$

where $\kappa = L/\alpha \ge 1$ is the condition number of ν . If $\kappa \approx 1$, the problem is "nice"; otherwise, if $\kappa \gg 1$, it is "ill-conditioned."