Министерство образования Республики Беларусь Учреждение образования «Брестский Государственный технический университет» Кафедра ИИТ

Лабораторная работа №1

По дисциплине: «Основы машинного обучения» **Тема:** «Знакомство с анализом данных: предварительная обработка и визуализация»

Выполнила:

Студентка 3 курса Группы АС-66 Прокурат В. Д. **Проверил:** Крощенко А. А. **Цель работы:** получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

Вариант 9

Выборка Melbourne Housing Market. Содержит данные о продажах домов в Мельбурне, включая цену, количество комнат, район и т.д.

Задачи:

- 1. Загрузите данные. Найдите столбец с наибольшим количеством пропущенных значений и удалите его.
 - 2. Удалите все строки, где отсутствует значение цены (Price).
 - 3. Постройте гистограмму распределения цен на недвижимость.
- 4. Рассчитайте среднюю цену за дом для 5 самых популярных пригородов (Suburb).
- 5. Создайте новый признак PropertyAge на основе года постройки (YearBuilt).
- 6. Преобразуйте признак Туре (тип недвижимости) в числовой формат с помощью One-Hot Encoding.

Код программы:

```
import pandas as pd
import matplotlib.pyplot as plt

pd.set_option('display.float_format', '{:.0f}'.format)
pd.set_option('show_dimensions', False)

# 1.

df = pd.read_csv('Melbourne_housing.csv', na_values=['missing', 'inf'],)

missing_counts = df.isna().sum()
print("Количество пропусков по столбцам:")
print(missing_counts.sort_values(ascending=False).head(5))

most_missing = missing_counts.idxmax()
print(f"\nУдаляем столбец с наибольшим количеством пропусков: {most_missing}
({missing_counts[most_missing]} пропусков)")
df.drop(columns=[most_missing], inplace=True)

print(f"Оставшиеся столбцы: {list(df.columns)}")
```

```
# 2
before_rows = len(df)
df.dropna(subset=['Price'], inplace=True)
after_rows = len(df)
print(f"\nУдалено строк без цены: {before_rows - after_rows}")
print(f"Оставшиеся строки: {after_rows}")
# 3
plt.figure(figsize=(10, 6))
plt.hist(df['Price'], bins=40, color='skyblue', edgecolor='black')
plt.title('Распределение цен на недвижимость в Мельбурне')
plt.xlabel('Цена (AUD)')
plt.ylabel('Количество объектов')
plt.grid(True)
plt.tight_layout()
plt.show()
# 4
top_suburbs = df['Suburb'].value_counts().nlargest(5).index
avg_prices = df[df['Suburb'].isin(top_suburbs)].groupby('Suburb')['Price'].mean()
avg_prices = avg_prices.round(0).astype(int)
print("\nСредняя цена по 5 самым популярным пригородам:")
print(avg prices)
# 5
current_year = pd.Timestamp.now().year
df['PropertyAge'] = current_year - pd.to_numeric(df['YearBuilt'])
print("\nШапка DataFrame c PropertyAge:")
print(df[['Suburb', 'YearBuilt', 'PropertyAge']].head())
df = pd.get_dummies(df, columns=['Type'], prefix='Type')
print("\nHовые столбцы после One-Hot Encoding:")
print([col for col in df.columns if col.startswith('Type_')])
print("\пШапка итогового DataFrame:")
print(df.head())
```

Результат работы программы:

#1

```
Количество пропусков по столбцам:
BuildingArea 21115
YearBuilt 19306
Landsize 11810
Car 8728
Bathroom 8226
dtype: int64

Удаляем столбец с наибольшим количеством пропусков: BuildingArea (21115 пропусков)
Оставшиеся столбцы: ['Suburb', 'Address', 'Rooms', 'Type', 'Method', 'SellerG', 'Date', 'Distance' uncilArea', 'Latitude', 'Longtitude', 'Regionname', 'Propertycount', 'ParkingArea', 'Price']
```

#2

Удалено строк без цены: 7610 Оставшиеся строки: 27247

#3


```
Средняя цена по 5 самым популярным пригородам:
Suburb
Bentleigh East 1131418
Brunswick 977989
Preston 877870
Reservoir 691104
Richmond 1067585
Name: Price, dtype: int64
```

#5

Шапка DataFrame с PropertyAge:							
	Suburb	YearBuilt	PropertyAge				
1	Airport West	2016	9				
2	Albert Park	1900	125				
3	Albert Park	NaN	NaN				
5	Alphington	1930	95				
6	Alphington	2013	12				

#6

```
Новые столбцы после One-Hot Encoding:
['Type_h', 'Type_t', 'Type_u']
```

Ша	Шапка итогового DataFrame:														
	Suburb	Address	Rooms M	ethod	SellerG	Date	Distance		Propertycount	ParkingArea	Price	PropertyAge	Type_h	Type_t	Type_u
1	Airport West	154 Halsey Rd		PI	Nelson	3/9/2016	14		3464	Detached Garage	840000		False	True	False
2	Albert Park	105 Kerferd Rd			hockingstuart	3/9/2016			3280	Attached Garage	1275000	125	True	False	False
3	Albert Park	85 Richardson St			Thomson	3/9/2016			3280	Indoor	1455000	NaN	True	False	False
5	Alphington	6 Smith St	4		Brace	3/9/2016			2211	Underground	2000000	95	True	False	False
6	Alphington	5/6 Yarralea St			Jellis	3/9/2016			2211	Outdoor Stall	1110000	12	True	False	False

Вывод: получила практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научилась выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.