

# arXiv – Cornell University Tue, 4 Oct 2022

- NGTS-21b: An Inflated Super-Jupiter Orbiting a Metal-poor K dwarf by <u>Douglas R. Alves et al.</u>
   Subjects: astro-ph.EP
- On the evolution of pebble-accreting planets in evolving protoplanetary discs by <u>Arnaud Pierens</u>
   Subjects: astro-ph.EP
- Collisional growth efficiency of dust aggregates and its independence of the strength of interparticle rolling friction by <u>Sota Arakawa et al.</u>

Subjects: astro-ph.EP, astro-ph.GA, astrp-ph.SR

- Orbital Stability of Proposed NY Virginis Exoplanets by <u>Xinyu Mai et al.</u> Subjets: astro-ph.EP, astro-ph.SR
- CO<sub>2</sub> ocean bistability on terrestrial exoplantes by <u>R. J. Graham et al.</u>
   Subject: astro-ph.EP
- A revised energy formalism for common-envelope evolution: repercussions for planetary engulfment and the formation of neutron star binaries by <u>Ricardo Yarza et al.</u>
   Subjects: astro-ph.SR, astro-ph.EP, astro-ph.HE



# arXiv – Cornell University Wed, 5 Oct 2022

 Large Interferometer For Exoplantes (LIFE): VIII. Detecting rocky exoplanets in the habitable zones of Sun-like stars by <u>Jens Kammerer et al.</u>

Subjects: astro-ph.EP, astro-ph.IM

- Evaluating the Plausible Range of N2O Biosignatures on Exo-Earths: An Integrated
   Biogeochemical, Photochemical and Spectral Modeling Approach by <u>Edward Schwieterman et al.</u>
   Subjects: astro-ph.EP
- No evidence for radius inflation in hot Jupiter from vertial advection of heat by <u>Aaron Schneider</u> et al.

Subjects: astro-ph.EP

 Survival of Terrestrial N2-O2 Atmospheres in Violent XUV Environments through Efficient Atomic Line Radiative Cooling by <u>Akifumi Nakayama et al.</u>

Subjets: astro-ph.EP, astro-ph.SR

 Directly tracing the vertical stratification of molecules in protoplanetary disks by <u>T. Paneque-</u> <u>Carreno et al.</u>

Subject: astro-ph.EP, astro-ph.SR



# arXiv – Cornell University Thu, 6 Oct 2022

- MAO-2020-BLG-208: Cool Sub-Saturn Planet Within Predicted Desert by <u>Greg Olmschenk et al.</u>
   Subjects: astro-ph.EP, astro-ph.GA
- Particle clustering in turbulence: Prediction of spatial and statistical properties with deep learning by <u>Yan-Mong Chan et al.</u>

Subjects: astro-ph.EP, cs.LG, physics.fludyn

 Searching for Hα emitting sources in the gaps of five transitional disks. SPHERE/ZIMPOL highcontrast imaging by N. Huelamo et al.

Subjects: astro-ph.EP, astro-ph.SR

Nonlinear Outcome of Coagulation Instability in Protoplanetary Disks II: Dust Ring Formation
 Mediated by Backreaction and Fragmentation by <u>Ryosuke Tominaga et al.</u>

Subjets: astro-ph.EP, astro-ph.SR





Università degli Studi di Padova

## ORBITAL STABILITY OF PROPOSED NY VIRGINIS EXOPLANETS

Xinyu Mai & Robert L. Mutel

Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA

**Key words:** binaries: close – binaries: eclipsing – stars: individual: NY Virginis – planetary systems



Dipartimento di Fisica e Astronomia "Galileo Galilei"

Patrizia Bussatori 10 October 2022



## Introduction ETVs Technique

Eclipse timing variations (ETVs): irregularities on eclipse timing measurements of a binary star system due to the presence of planets

#### **ADVANTAGES**

- Binary star systems are extremely common
- It is possible to measure the mass of the planet, even it is not directly observable

#### **DISADVANTAGES**

- Only big mass planets are detectable
- Usually in these systems the planets are far from the star





## Introduction ETVs Technique

Since the orbiting planets perturb the centre of mass of the binary system, it is possible to infer mass and orbital elements.

But there can be some **problems/limitations**!

- 1. Typical timing offsets caused by a Jovian size planet are **relatively small**, of order one percent of the orbital period
- 2. Several **other physical mechanisms** can contribute to timing variations in these binaries
- 3. Several published multi-component models have been subsequently shown to be highly **unstable** on timescales that are short compared with the expected lifetimes of the **post-common envelope phase**



Phase in which the binary system is contained in the same gas envelope



#### Introduction Goal

Determination of orbit stability of the twocomponent model recently reported by Er et al. (2021) for the sdB binary NY Virginis

**Er et al. (2021)** created a model that comprises **two planets** orbiting the binary system star with the following parameters:

|              | Planet 1               | Planet 2               | Unit      |
|--------------|------------------------|------------------------|-----------|
| P            | $8.97^{+0.36}_{-0.24}$ | $27.2^{+1.3}_{-1.2}$   | yr        |
| e            | $0.12^{+0.12}_{-0.12}$ | $0.19^{+0.09}_{-0.07}$ |           |
| a sin(i)     | $3.64^{+0.41}_{-0.37}$ | $7.64^{+0.45}_{-0.43}$ | AU        |
| Minimum mass | $2.74^{+0.37}_{-0.34}$ | $5.59^{+0.51}_{-0.49}$ | $M_{Jup}$ |



## **Orbit Stability Analysis**



Best-fit two-planet orbits proposed by Er et al. (2021).

The trajectory in **red** indicates for proposed inner body, trajectory in **blue** for the outer body. Orbits associated with the change of one uncertainty are shown as **black** lines. The binary star position is shown as a star at the center.

This figure is made by orbit simulation software *rebound* (Rein & Liu 2012) using best-fit parameters for each component in previous table



## Orbit Stability Analysis

Orbital stability has been studied performing **dynamical simulation** with previous parameters using:

- N-body orbital integration package REBOUND
- The chaotic indicator program Mean Exponential Growth factor of Nearby Orbits (MEGNO) → simulations with 128 semi-major axes and 128 eccentricity for inner and outer planets





Initial time step of  $0, 1 \ yr$  and integrated for  $100 \ Myr$ 

Binary star system treated as a single mass of  $M_{tot}=0.59~M_{\odot}$ 



#### Results



#### NY Vir stability plot

a) Time history of the eccentricities of both circumbinary companions over  $10 \ Myr$ .

b) Time history of semi-major axes of both circumbinary companions over  $10 \, Myr$ . Note that the outer planet (orange line) **escapes** the planetary system after  $3.5 \, Myr$ 



#### Results



MEGNO chaos parameter surface map for Er et al. (2021) **two-planet solution** for a range of eccentricities and semi-major axes for the (a) inner planet and (b) outer planet. The best-fit model parameter values are indicated by white dots with black borders. Both points lie in highly **chaotic regions** 



#### Discussion and Conclusion

We find that the proposed two-planet model for the binary NY Virginis proposed by Er et al. (2021) becomes **unstable** after  $\sim 3~Myr$ , a timescale much less than the estimated lifetime of the PCEB phase (100 Myr) of sdB binaries and is therefore **untenable** 



#### **CONCLUSION**

Observed ETVs signatures must be at least in part a result of other physical mechanisms



# THANK YOU FOR YOUR ATTENTION!

