Week 2

```
Week 2
Multivariate Linear Regression
   Cost function
   Gradient Descent for Multiple Variables
   Matrix Notation
   Algorithm: Gradient Descent
   Feature Normalization - Speeding up Gradient Descent
       Feature Scaling
        Mean Normalization
   Learning Rate & Debugging
       Debugging gradient descent.
        Automatic convergence test.
        Example 1: Different Learning Rates
        Example 2: Oscillation
   Vectorized: Gradient Descent
        Derivation
Features
Polynomial Regression
Normal Equation - Computing Parameters Analytically
        Formula: Normal Equation
        Terminology:
   Example:
   Octave Code
   Intuition
   Pros & Cons
   Recap:
   Non-Inevitability
   Common Causes
```

Multivariate Linear Regression

Linear regression with multiple variables is also known as "multivariate linear regression".

We now introduce notation for equations where we can have any number of input variables.

```
\begin{split} x_j^{(i)} &= \text{value of feature } j \text{ in the } i^{th} \text{ training example} \\ x^{(i)} &= \text{the column vector of all the feature inputs of the } i^{th} \text{ training example} \\ m &= \text{the number of training examples} \\ n &= \left| x^{(i)} \right|; \text{(the number of features)} \end{split}
```

Now define the multivariable form of the hypothesis function as follows, accommodating these multiple features:

$$h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 x_2 + heta_3 x_3 + \dots + heta_n x_n$$

In order to develop intuition about this function, we can think about θ_0 as the basic price of a house, θ_1 as the price per square meter, θ_2 as the price per floor, etc. x_1 will be the number of square meters in the house, x_2 the number of floors, etc.

Using the definition of matrix multiplication, our multivariable hypothesis function can be concisely represented as:

$$h_{ heta}(x) = \left[egin{array}{cccc} heta_0 & & heta_1 & & \dots & & heta_n \end{array}
ight] \left[egin{array}{c} x_0 \ x_1 \ dots \ x_n \end{array}
ight] = heta^T x$$

This is a vectorization of our hypothesis function for one training example; see the lessons on vectorization to learn more.

Remark: Note that for convenience reasons in this course Mr. Ng assumes $x_0(i)=1$ for $(i\in 1,\ldots,m)$

[Note: So that we can do matrix operations with theta and x, we will set $x_0^{(i)} = 1$, for all values of i. This makes the two vectors θ and $x_{(i)}$ match each other element-wise (that is, have the same number of elements: n+1).]

The training examples are stored in X row-wise, like such:

$$X = egin{bmatrix} x_0^{(1)} & x_1^{(1)} \ x_0^{(2)} & x_1^{(2)} \ x_0^{(3)} & x_1^{(3)} \end{bmatrix}, heta = egin{bmatrix} heta_0 \ heta_1 \end{bmatrix}$$

You can calculate the hypothesis as a column vector of size (m x 1) with:

$$h_{ heta}(X) = X heta$$

For the rest of these notes, and other lecture notes, X will represent a matrix of training examples x(i) stored row-wise.

Cost function

For the parameter vector θ (of type \mathbb{R}^{n+1} or in $\mathbb{R}^{(n+1)\times 1}$, the cost function is:

$$J(heta) = rac{1}{2m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2$$

The vectorized version is:

$$J(heta) = rac{1}{2m} (X heta - ec{y})^T (X heta - ec{y})$$

Where \vec{y} denotes the vector of all y values.

Gradient Descent for Multiple Variables

The gradient descent equation itself is generally the same form; we just have to repeat it for our 'n' features:

$$egin{aligned} ext{repeat until convergence: } \{ & heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)} \ & heta_1 := heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - lpha \frac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - a \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ & heta_2 := heta_2 - a \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)} \ &$$

In other words:

repeat until convergence:
$$\{$$
 $heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \qquad ext{for j} := 0..n \}$

Matrix Notation

The Gradient Descent rule can be expressed as:

$$\theta := \theta - \alpha \nabla J(\theta)$$

Where $\nabla J(\theta)$ is a column vector of the form:

$$abla J(heta) = egin{bmatrix} rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_n} \end{bmatrix}$$

The j-th component of the gradient is the summation of the product of two terms:

$$egin{aligned} rac{\partial J(heta)}{\partial heta_j} & &= rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \cdot x_j^{(i)} \ &= rac{1}{m} \sum_{i=1}^m x_j^{(i)} \cdot \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \end{aligned}$$

Sometimes, the summation of the product of two terms can be expressed as the product of two vectors.

Here, $x_i^{(i)}$ for $i=1,\ldots,m$, represents the m elements of the j-th column, $ec{x}_j$, of the training set X.

The other term $(h_{\theta}(x^{(i)}) - y^{(i)})$ is the vector of the deviations between the predictions $h_{\theta}(x(i))$ and the true values $y^{(i)}$. Re-writing $\frac{\partial J(\theta)}{\partial \theta j}$, we have:

$$rac{\partial J(heta)}{\partial heta_j} = rac{1}{m} \overrightarrow{x_j}^T (X heta - ec{y})$$

$$abla J(heta) = rac{1}{m} X^T (X heta - ec{y})$$

Finally, the matrix notation (vectorized) of the Gradient Descent rule is:

$$heta := heta - rac{lpha}{m} X^T (X heta - ec{y})$$

Algorithm: Gradient Descent

Repeat until convergence:

$$heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} ext{ for j} := 0...$$
n

Context of gradient descent w.r.t. n=1

Note $x_0^i=1$ and the partial derivative of the cost function for $n\geq 1$

Feature Normalization - Speeding up Gradient Descent

We can speed up our algorithm by having our input values in roughly the same ranges. θ will descent quickly on small ranges and slowly on large ranges. i.e oscillation occurs on the uneven surface.

Two techniques to help with this are **feature scaling** and **mean normalization**. Feature scaling involves dividing the input values by the range (i.e. the maximum value minus the minimum value) of the input variable, resulting in a new range of just 1. *Mean normalization* involves subtracting the average value for an input variable from the values for that input variable, resulting in a new average value for the input variable of just zero.

Feature Scaling

Make sure features are on a **similar scale**

Get every feature into approximately a $a \leq x_i \leq b$ range

Naïve Method:

$$x_i := rac{x_i}{\max(x_i)}$$

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately **zero mean**

 $\overline{\mathsf{NOTE}}$ do not apply to $x_0=1$

Method: - This method will normalize and feature scale.

$$x_i := \frac{x_i - \mu_i}{s_i}$$

 μ_i – average of all values of feature i

 s_i - range of values (min-max) or its the standard deviation

NOTE The quizzes in this course use range - the programming exercises use standard deviation.

Learning Rate & Debugging

- If α is to small: slow convergence
- If α is to large: $J(\theta)$ may not decrease on every iteration; may not converge

Debugging gradient descent.

Make a plot with *number of iterations* on the x-axis. Now plot the cost function, $J(\theta)$ over the number of iterations of gradient descent. If $J(\theta)$ ever increases, then you probably need to decrease α .

Automatic convergence test.

Declare convergence if $J(\theta)$ decreases by less than E in one iteration, where E is some small value such as 10^{-3} . However in practice it's difficult to choose this threshold value.

Example 1: Different Learning Rates

The learning rates: $\alpha_B << \alpha_A << \alpha_C$

In graph C, the cost function is increasing- the learning rate is to high. Graph A,B converge to an optimum of the cost function, but graph B does so much slower due to how small α is.

Example 2: Oscillation

Observe what the cost function plot looks like when overshooting occurs:

Vectorized: Gradient Descent

$$heta := heta - rac{lpha}{m} X^T (X heta - ec{y})$$

Derivation

The Gradient Descent rule can be expressed as:

$$\theta := \theta - \alpha \nabla J(\theta)$$

Where $\nabla J(\theta)$ is a column vector of the form:

$$abla J(heta) = egin{bmatrix} rac{\partial J(heta)}{\partial heta_0} \ rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_0} \ \end{pmatrix}$$

The j-th component of the gradient is the summation of the product of two terms:

$$egin{aligned} rac{\partial J(heta)}{\partial heta_j} & =& rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \cdot x_j^{(i)} \ =& rac{1}{m} \sum_{i=1}^m x_j^{(i)} \cdot \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \end{aligned}$$

Sometimes, the summation of the product of two terms can be expressed as the product of two vectors.

Here, $x_j^{(i)}$ for $i=1,\ldots,m$, represents the m elements of the j-th column, $ec{x}_j$, of the training set X.

The other term $(h_{\theta}(x^{(i)}) - y^{(i)})$ is the vector of the deviations between the predictions $h_{\theta}(x(i))$ and the true values $y^{(i)}$. Re-writing $\frac{\partial J(\theta)}{\partial \theta j}$, we have:

$$rac{\partial J(heta)}{\partial heta_i} = rac{1}{m} \overrightarrow{x_j}^T (X heta - ec{y})$$

$$abla J(heta) = rac{1}{m} X^T (X heta - ec{y})$$

Finally, the matrix notation (vectorized) of the Gradient Descent rule is:

$$heta := heta - rac{lpha}{m} X^T (X heta - ec{y})$$

Features

We can **combine** multiple features into one.

For example:

We can combine x_1 and x_2 into a new feature $x_3 = x_1x_2$ i.e frontage x depth, no need for two separate parameters.

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Polynomial Regression

We can **change the behavior or curve** of our hypothesis function by making it a quadratic, cubic or square root function (or any other form).

If our hypothesis functions is $h_{\theta}(x) = \theta_0 + \theta_1 x_1$, we can create additional features based on x_1 .

$$h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 x_1^2$$

$$h_{ heta}(x)= heta_0+ heta_1x_1+ heta_2x_1^2+ heta_3x_1^3$$

$$h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 \sqrt{x_1}$$

NOTE Scaling becomes very important when dealing with polynomials terms

eg if x_1 has range 1 - 1000 then range of x_1^2 becomes 1 - 1000000 and that of x_1^3 becomes 1 - 1000000000

NOTE: We will look algorithms later that can determine what kind of polynomial to use

Normal Equation - Computing Parameters Analytically

Method for solving for θ analytically

NOTE Feature scaling is not needed

Formula: Normal Equation

$$\theta = (X^T X)^{-1} X^T y$$

Where θ is a vector containing the parameter values

Terminology:

• X - design matrix

Example:

Octave Code

$$pinv(x'*x)*x'*y$$

Intuition

Here we consider the **1D** case. essentially we find the 1st derivative of the cost function and equate it to zero - as is done to find the optimal solution of the curve.

Intuition: If 1D
$$(heta \in \mathbb{R})$$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\text{Set}}{\partial \phi} O$$
Solve for ϕ

 ${\it n}$ dimensional extension

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \dots = 0 \qquad \text{(for every } j\text{)}$$

Solve for
$$\theta_0, \theta_1, \dots, \theta_n$$

Pros & Cons

Gradient Descent	Normal Equation
Need to choose alpha	No need to choose alpha
Needs many iterations	No need to iterate
$O(kn^2)$	$O(n^3)$, need to calculate inverse of $X^T X$
Works well when $m{n}$ is large	Slow if $m{n}$ is very large

With the normal equation, computing the inversion has complexity O(n3). So if we have a very large number of features, the normal equation will be slow. In practice, when n exceeds 10,000 it might be a good time to go from a normal solution to an iterative process.

Recap:

Matrix identity

$$(X^TX)^{-1}$$
 is inverse of matrix X^TX .

Set $A = X^TX$
 $(X^TX)^{-1} = A^{-1}$

Non-Inevitability

What if X^TX is non-invertible?

NOTE Octave already considers this situation with pinv

Common Causes

- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. m ≤ n). In this case, delete some features or use "regularization" (to be explained in a later lesson).

Solutions to the above problems include deleting a feature that is linearly dependent with another or deleting one or more features when there are too many features.