NETAJI SUBHAS UNIVERSITY OF TECHNOLOGY

Database Management Systems ICCSC09

Hospital Management System (HMS)

Submitted to	Submitted by	
Mrs. Sushma Nagpal	Krish Gupta	2022UIC3507
	Devansh Behl	2022UIC3582
	Meet Singh	2022UIC8057

Overview

The Hospital Management System (HMS) is a comprehensive solution designed to streamline and digitalize various processes within a hospital environment. This project aims to enhance the efficiency, accuracy, and accessibility of information across different departments.

Problem Statement

Healthcare institutions often face challenges in managing patient information, appointments, billing, and other administrative tasks. The Hospital Management System is developed to address these challenges by introducing a centralized digital platform.

The current hospital management system is plagued by inefficiencies and limitations that hinder the delivery of optimal healthcare services. These issues range from administrative bottlenecks to patient care challenges, and they impede the overall effectiveness of the healthcare institution. As such, there is an urgent need to develop and implement an advanced hospital management system.

Purpose of Project

- Automate hospital processes for improved efficiency.
- Enhance patient care by facilitating quick access to medical records.
- Improve resource management, including staff scheduling and inventory control.
- Ensure accurate billing and financial tracking.

ER Diagram

Relational Schema

Function Dependencies and Third Normal Form (3NF)

1. Shift

• Functional Dependencies

- shift_id → start_time
- shift_id → end_time

- 1st Normal Form (1NF): The table already meets 1NF since there are no repeating groups, and each cell contains atomic values.
- 2nd Normal Form (2NF): Since there's only one candidate key (shift_id), and both start_time and end_time are fully functionally dependent on the entire candidate key, we don't have partial dependencies. Thus, the table is already in 2NF.
- 3rd Normal Form (3NF): In this step, we check for transitive dependencies.
 Since there's only one non-prime attribute, start_time and end_time are both attributes that directly depend on the primary key. There are no transitive dependencies, so the table is already in 3NF.

2. Department

• Functional Dependencies

department id → department name

- 1st Normal Form (1NF): The table already meets 1NF since there are no repeating groups, and each cell contains atomic values.
- 2nd Normal Form (2NF): Since there's only one candidate key
 (department_id), and department_name is fully functionally dependent on
 the entire candidate key, we don't have partial dependencies. Thus, the
 table is already in 2NF.
- 3rd Normal Form (3NF): In this step, we need to ensure that there are no transitive dependencies. Since there's only one non-prime attribute (department_name), and it is directly dependent on the primary key, there are no transitive dependencies.

3. Ambulance

• Functional Dependencies

1. ambulance_number → registration_number

- First Normal Form (1NF): The table seems to be in 1NF because each attribute contains atomic values, and there are no repeating groups.
- Second Normal Form (2NF): Since there is only one non-prime attribute (registration_number), there are no partial dependencies. Thus, the table already satisfies the requirements of 2NF.
- Third Normal Form (3NF): To achieve 3NF, we need to ensure that there
 are no transitive dependencies. In this schema, there is only one
 non-prime attribute, so there are no transitive dependencies to address.

4. Staff

• Functional Dependencies

- staff id → speciality: Each doctor's staff id uniquely determines their specialty.
- staff_id → department_id:Each doctor's staff_id uniquely determines department.
- staff_id → license_number: Each driver's staff_id uniquely determines their license number.
- staff_id → ambulance_number: Similarly, each driver's staff_id uniquely determines the ambulance they are assigned to.
- staff_id → room_number: Each nurse's staff_id uniquely determines the room number they are assigned to.

Normal Form

- First Normal Form (1NF): The table already seems to be in 1NF because each attribute contains atomic values, and there are no repeating groups.
- Second Normal Form (2NF): The table is already in 2NF because there are no partial dependencies. Each non-prime attribute depends on the entire primary key.
- Third Normal Form (3NF):To achieve 3NF, we need to ensure there are no transitive dependencies. There is a transitive dependency between staff and shift_id. Since the shift details might not be directly related to the staff member, we should move this attribute to another table.

Normalized Schema:

```
staff_info:
staff(staff_id (primary key), f_name, l_name, gender, phone_number, house_no,
street_name, city, state, pincode, joining_date, salary)
shift_assignment:
shift_assignment(staff_id (foreign key), shift_id (foreign key), primary key(staff_id,
shift_id))
```

- 1. doctor(doctor_id(primary key), speciality, department_id, staff_id(foreign key)):
 - No changes required as it's a separate entity.
- 2. driver(driver_id (primary key), staff_id(foreign key), license_number, ambulance_number):
 - No changes required as it's a separate entity.
- 3. nurse(staff id (foreign key), room number):
 - No changes required as it's a separate entity.

5. Room

• Functional Dependencies

- roomnumber → roomtype
- roomnumber → staff id
- roomnumber → patient_id

- First Normal Form (1NF): The table appears to be in 1NF because each attribute contains atomic values, and there are no repeating groups.
- Second Normal Form (2NF): The table is already in 2NF because there are no partial dependencies. Each non-prime attribute depends on the entire primary key.
- Third Normal Form (3NF): To achieve 3NF, we need to ensure there are no transitive dependencies. Since roomnumber is a foreign key in both the "nurse" and "patient" tables, and it directly relates to the room type, there are no transitive dependencies to address.

6. Doctor

• Functional Dependencies

- doctor_id → speciality
- doctor_id → staff_id

- First Normal Form (1NF): The table appears to be in 1NF because each attribute contains atomic values, and there are no repeating groups.
- Second Normal Form (2NF): The table is already in 2NF because there are no partial dependencies. Each non-prime attribute depends on the entire primary key.
- Third Normal Form (3NF): To achieve 3NF, we need to ensure there are no transitive dependencies. Since doctor_id is a foreign key in the "patient" table and it directly relates to the doctor's specialty and staff ID, there are no transitive dependencies to address.

7. Driver

• Functional Dependencies

- driver_id → staff_id
- driver_id → license_number
- $\bullet \quad \text{driver_id} \rightarrow \text{ambulancenumber}$

- First Normal Form (1NF): The table already appears to be in 1NF because each attribute contains atomic values, and there are no repeating groups.
- Second Normal Form (2NF): The table is already in 2NF because there are no partial dependencies. Each non-prime attribute depends on the entire primary key.
- Third Normal Form (3NF): To achieve 3NF, we need to ensure there are no transitive dependencies. There are no transitive dependencies in the original schema.

8. Driver

• Functional Dependencies

• (staff_id, roomnumber) \rightarrow None

- First Normal Form (1NF): The table is already in 1NF as there are no repeating groups, and all attributes are atomic.
- Second Normal Form (2NF): Since there's no composite primary key, and both staff_id and roomnumber are attributes directly dependent on the entire primary key, the table is already in 2NF.
- Third Normal Form (3NF): There are no attributes that depend on any non-primary key attributes, so there are no transitive dependencies. Therefore, the table is already in 3NF.

9. Patient

• Functional Dependencies

 patient_id → f_name, l_name, age, gender, phone_number, house_no, street_name, city, state, pincode, doctor_id, roomnumber

- First Normal Form (1NF): The table is already in 1NF as there are no repeating groups, and all attributes are atomic.
- Second Normal Form (2NF): Since there's no composite primary key, and all non-prime attributes (f_name, l_name, age, gender, phone_number, house_no, street_name, city, state, pincode, doctor_id, roomnumber) are fully functionally dependent on the entire primary key (patient_id), the table is already in 2NF.
- Third Normal Form (3NF): There are no attributes that depend on any non-primary key attributes, so there are no transitive dependencies. Therefore, the table is already in 3NF.

10. Bill

• Functional Dependencies

 bill_number → doc_charges, lab_charges, room_charges, total_amount, billing_date, patient_id

- First Normal Form (1NF): Already satisfied.
- Second Normal Form (2NF): Since there's only one candidate key
 (bill_number), and all other attributes (doc_charges, lab_charges,
 room_charges, total_amount, billing_date, patient_id) are fully
 functionally dependent on the entire candidate key, we don't have partial
 dependencies. Thus, the table is already in 2NF.
- Third Normal Form (3NF): In this step, we need to ensure that there are no transitive dependencies. Since there are no attributes that depend on any non-primary key attributes, there are no transitive dependencies.

11. Records

• Functional Dependencies

- record id → date admitted, date discharged, diagnosis, patient id
- patient id → None

- First Normal Form (1NF): Already satisfied.
- Second Normal Form (2NF): Since there's only one candidate key
 (record_id), and all other attributes (date_admitted, date_discharged,
 diagnosis, patient_id) are fully functionally dependent on the entire
 candidate key, we don't have partial dependencies. Thus, the table is
 already in 2NF.
- Third Normal Form (3NF): In this step, we need to ensure that there are no transitive dependencies. Since there are no attributes that depend on any non-primary key attributes, there are no transitive dependencies.