Modulo II - Introdução à Estatística Básica

Umberto Mignozzetti

6/1/2020

- Objetivo Stat é analisar dados.
- ► Três etapas:
 - 1. Entender os dados: análise descritiva
 - 2. Modelar os dados: probabilidade
 - 3. Formular hipóteses: inferencia estatística

 Modelagem: propor uma representação que explique a maior parte da variabilidade dos dados

Figura 1.1: Relação entre consumo e rendimento.

Podemos, então, escrever de modo esquemático:

Figure 1: f1

- Gráficos: visualizar os dados que temos.
- Objetivos:
 - Buscar padrões
 - Checar expectativas
 - Descobrir fenômenos
 - Confirmar suposições
 - Apresentar resultados
- Altamente recomendável!

- Softwares estatísticos:
 - ► R / S+
 - ► SPSS / PSPP
 - Excel / Calc
 - ► SAS
 - Stata
- ▶ Qual usar? Qual vc preferir. (Esse tipo de pergunta importa?!)
- Eu uso R. Motivo: de graça e bom!

Medidas Resumo

Tipos de variáveis

- Qualitativas: descrevem atributos dos casos:
 - Pessoa casada
 - Votou no Bolsonaro
 - Cidade com mais Corona no Brasil
 - Superior completo...
- Quantitativas: realizações de uma contagem / mensuração
 - Idade
 - Renda
 - Numero de ligações

Tipos de variáveis

Qualitativas:

► Nominais: sexo

Ordinais: escolaridade

Quantitativas:

Discretas: numero de filhos

Contínuas: salário

Tipos de variáveis

##

Classifique o banco:

```
dat <- read.csv('https://raw.githubusercontent.com/umberton
head(dat)
```

```
##
    N Estado. Civil Grau. de. Instrução N. de. Filhos Salario
           solteiro ensino fundamental
## 1 1
                                                 NΑ
## 2.2
             casado ensino fundamental
## 3 3
             casado ensino fundamental
## 4 4
           solteiro
                          ensino médio
                                                 NA
## 5 5
           solteiro ensino fundamental
                                                 NA
## 6 6
             casado ensino fundamental
##
```

Região.de.Procedência ## 1 interior

2 capital

capital ## 3

4 outra

outra

interior

Tabela de frequência

- Contagem de valores para cada um dos níveis pré-definidos
- ► E.g., Grau de Instrução:

Tabela 2.2: Freqüências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB segundo o grau de instrução.

Grau de	Freqüência	Proporção	Porcentagem 100 f _i
instrução	n ₁	f _i	
Fundamental	12	0,3333	33,33
Médio	18	0,5000	50,00
Superior	6	0,1667	16,67
Total	36	1,0000	100,00

Figure 2: f2

Tabela de frequência

Tabela 2.2: Freqüências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB segundo o grau de instrução.

Grau de instrução	Freqüência n _i	Proporção $f_{_{\!f}}$	Porcentagem 100 f _i
Fundamental Médio Superior	12 18 6	0,3333 0,5000 0,1667	33,33 50,00 16,67
Total	36	1,0000	100,00

Figure 3: f2

Stats:

Contagem

Frequencia (relativa): $f_i = \frac{n_i}{n}$ Porcentagem: $prop_i = 100 \times \frac{n_i}{n}$

Tabela de frequência

- Para uma variável quanti, temos o seguinte:
 - 1. Criamos intervalos
 - 2. Contamos valores nos intervalos

Tabela 2.4: Freqüências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB por faixa de salário.

Classe de salários	Freqüência n,	Porcentagem 100 f,
4,00 ⊢ 8,00	10	27,78
8,00 ← 12,00	12	33,33
12,00 ← 16,00	8	22,22
16,00 ← 20,00	5	13,89
20,00 ← 24,00	1	2,78
Total	36	100,00

Fonte: Tabela 2.1.

Figure 4: f3

Gráficos

Basta colocar as tabelas que montamos em figuras!?

Figura 2.2: Gráfico em barras para a variável Y: grau de instrução.

Figure 5: f4

Gráficos

Basta colocar as tabelas que montamos em figuras!?

Figura 2.3: Gráfico em setores para a variável Y: grau de instrução.

1 = Fundamental, 2 = Médio e 3 = Superior

Figure 6: f5

Gráficos

Basta colocar as tabelas que montamos em figuras!?

Figura 2.7: Histograma da variável S: salários.

Figure 7: f6

Exercício

 As taxas médias geométricas de incremento anual (por 100 habitantes) dos 30 maiores municípios do Brasil estão dadas abaixo.

3,67	1,82	3,73	4,10	4,30
1,28	8,14	2,43	4,17	5,36
3,96	6,54	5,84	7,35	3,63
2,93	2,82	8,45	5,28	5,41
7,77	4,65	1,88	2,12	4,26
2,78	5,54	0,90	5,09	4,07

(a) Construa um histograma.

Figure 8: f7

Medidas-Resumo

Medidas Resumo

- Dois tipos mais importantes:
 - Posição
 - Dispersão
- Além dessas, temos algumas outras que são boas para analisar os dados.

Medidas de posição

Média:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

► Média (com frequências relativas):

$$\bar{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n}$$

Exercício: calcule a média dos dados: 1,5,2,3,2,4,10

Medidas de posição

Posição e medidas de ordem: em que lugar está o dado se ordenarmos?

Consideremos, agora, as observações ordenadas em ordem crescente. Vamos denotar a menor observação por $x_{(1)}$, a segunda por $x_{(2)}$, e assim por diante, obtendo-se

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n-1)} \le X_{(n)}.$$
 (3.4)

Por exemplo, se $x_1=3$, $x_2=-2$, $x_3=6$, $x_4=1$, $x_5=3$, então $-2 \le 1 \le 3 \le 3$, de modo que $x_{(1)}=-2$, $x_{(2)}=1$, $x_{(3)}=3$, $x_{(4)}=3$ e $x_{(5)}=6$.

Figure 9: f8

Ex.:

$$x \leftarrow c(3,-2,6,1,3)$$

[1] 3 -2 6 1 3

Medidas de posição

► Mediana:

 $x \leftarrow c(3,-2,6,1,3)$

[1] 3 -2 6 1 3 sort(x)

[1] -2 1 3 3 6

median(x)

[1] 3

$$\operatorname{md}(X) = \begin{cases} \frac{X_{\left(\frac{n+1}{2}\right)}}{2}, & \text{se } n \text{ impar;} \\ \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2} + 1\right)}}{2}, & \text{se } n \text{ par.} \end{cases}$$

Medidas de dispersão

Suponha as notas dos alunos em cinco grupos:

```
grupo A (variável X): 3, 4, 5, 6, 7 grupo B (variável Y): 1, 3, 5, 7, 9 grupo C (variável Z): 5, 5, 5, 5, 5 grupo D (variável W): 3, 5, 5, 7 grupo E (variável V): 3, 5, 5, 6, 6
```

Figure 11: f10

Exercício: quais são as médias? Elas ajudam a diferenciar esses dados?

Medidas de dispersão

- Não ajudam nesses casos: os dados acima eram claramente diferentes!
- Duas medidas mais usadas: desvio-médio absoluto e variância.

$$dm(X) = \frac{\sum_{i=1}^{n} |X_i - \overline{X}|}{n},$$

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n},$$

Figure 12: f11

 Exercício: vamos fazer no R? Considere os dados do exercício acima.

Medidas de dispersão: exercício

- Quer se estudar o número de erros de impressão de um livro. Para isso escolheu-se uma amostra de 50 páginas, encontrando-se o número de erros por página da tabela abaixo.
 - (a) Qual o número médio de erros por página?
 - (b) E o número mediano?
 - (c) Qual é o desvio padrão?
 - (d) Faça uma representação gráfica para a distribuição.
 - (e) Se o livro tem 500 páginas, qual o número total de erros esperado no livro?

Erros	Freqüência
0	25
1	20
2	3
3	1
4	1

Figure 13: f12

► □...

- Apenas com média e desvio-padrão não temos ideia do que está acontecendo nos dados:
 - Valores extremos?
 - Assimetria?
- Quantís: boas medidas de resumo dos dados
- Posição e medidas de ordem: em que lugar está o dado se ordenarmos?

Consideremos, agora, as observações ordenadas em ordem crescente. Vamos denotar a menor observação por $x_{(1)}$, a segunda por $x_{(2)}$, e assim por diante, obtendo-se

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n-1)} \le X_{(n)}.$$
 (3.4)

Por exemplo, se $x_1=3$, $x_2=-2$, $x_3=6$, $x_4=1$, $x_5=3$, então $-2 \le 1 \le 3 \le 6$, de modo que $x_{(1)}=-2$, $x_{(2)}=1$, $x_{(3)}=3$, $x_{(4)}=3$ e $x_{(5)}=6$.

Figure 14: f8

- Quantís: medidas de posição, para uma dada ordem nos dados.
- ▶ E.g.: mediana: q(0.5): valor que divide os dados pela metade.
- ▶ E.g.: percentil 0.95: q(0.95): valor que divide os dados com 95% dos casos abaixo e 5% acima desse valor.

```
x \leftarrow c(15, 5, 3, 8, 10, 2, 7, 11, 12)
sort(x)
## [1] 2 3 5 7 8 10 11 12 15
quantile(x)
## 0% 25% 50% 75% 100%
## 2 5 8 11 15
quantile(x, probs = 0.95)
## 95%
## 13.8
summary(x)
##
     Min. 1st Qu. Median Mean 3rd Qu. Max.
##
    2.000 5.000 8.000
                          8.111 11.000 15.000
```

- Box-plot: jeito de apresentar os quantís que dá uma noção da distribuição e disperção dos dados.
- \blacktriangleright LS = MD + 1.5 × IIQ
- $ightharpoonup LI = MD 1.5 \times IIQ$
- IIQ = q(0.75) q(0.25)

Figura 3.4: Box Plot.

Motivo estatístico

Figura 3.8: Área sob a curva normal entre LI e LS.

Figure 16: f14

Exercício

Faça uma análise dos dados da empresa MB.