

Improving Natural Gas Demand Forecasting Through the Reconciliation of Incoherent Data Hierarchies

July 3, 2024

Colin Quinn
Richard Povinelli

info@marquetteenergyanalytics.com (414) 765-2839

309 N. Water St. Suite 400 Milwaukee, WI 53202

International Symposium On Forecasting 2024

Colin Quinn

Milwaukee, Wisconsin

Marquette University Computer Science Applied Statistics

Agenda

- Natural gas demand forecasting and reconciliation
- Coherent forecasts, aligned decision making
- Natural gas consumption data organized hierarchically
- Challenges in natural gas consumption data
 - Billing cycles, data frequency
- Hierarchical preprocessing technique for data incoherence
 - Implications for the natural gas industry
- Case study results and analysis
 - Cross-sectional reconciliation of natural gas demand forecasts
- Summary and future directions

Natural gas demand forecasting and reconciliation

- Natural gas is a fossil fuel energy source extracted for sale and consumption
 - Residential, commercial, and industrial uses
- Gas consumption data can be hierarchically organized to improve demand forecasting

Total

В

- Three approaches to organizing data hierarchically
 - Cross-sectional
 - 2. Temporal
 - Cross-temporal
- Gas consumption data organized geographically, temporally
 - Locked to the time of analysis

State of Wisconsin divided into service areas

Α

Challenge: forecasts at individual levels rarely align and provide conflicting intra-level results

Natural gas consumption data challenges

In general, observed gas consumption data are not coherent

Forecast reconciliation is the process of adjusting forecasts to make them coherent

Example: Alarm forecasting

Cross-temporal hierarchy for gas demand forecasting

0

Preprocessing technique for data incoherence

- No ground truth
- Relevant information available for demand estimation
- Customer → product owner

- Align incoherent base forecasts according to predefined linear constraints
 - Original hierarchical time series reconciliation → identified incoherence by comparing aggregated versions of time series
 - Lost and unaccounted for gas (LAUF)
- This study aims to investigate the effectiveness of a weighted reconciliation preprocessing technique applied to natural gas consumption data with significant insample incoherence to improve out-of-sample base forecast accuracy

Preprocessing technique for data incoherence

- Optimal forecast reconciliation (Hyndman et al., 2019)
 - Minimizes the forecast error of the set of coherent forecasts

$$\bullet b = (A, B, C)'$$

•
$$y = (y_{tot}, y_A, y_B, y_c)$$

•
$$y = Sb$$

Summation matrix

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• \hat{y}_h : h step ahead forecasts for y

909

Preprocessing technique for data incoherence

Hierarchy for gas demand forecasting

Forecast coherency in a natural gas distribution company setting

$$b = (A_{Hourly}, B_{Hourly}, C_{Hourly})'$$
 $y = Sb$

$$\begin{bmatrix} y_{tot_{Daily}} \\ y_{tot_{Hourly}} \\ y_{A_{Daily}} \\ y_{A_{Hourly}} \\ y_{B_{Daily}} \\ y_{B_{Hourly}} \\ y_{C_{Daily}} \\ y_{C_{Hourly}} \end{bmatrix} = S * \begin{bmatrix} A_{Hourly} \\ B_{Hourly} \\ C_{Hourly} \end{bmatrix}$$

909

Preprocessing technique for data incoherence

- Tradeoff: coherence and accuracy
 - G − ideally small permutation

$$\tilde{y}_t = SG\hat{y}_t$$

$$G = (S'W_t^{-1}S)^{-1}S'W_t^{-1}$$

- Advantages
 - 1. Point forecasts are reconciled across all levels of the hierarchy
 - In our case, reconciled across planning horizons and gas service areas
 - 2. Intra-hierarchy level interactions and correlations taken into account
 - Plan from long- to short-term horizons
 - 3. Ad hoc adjustments
 - Ensemble base forecasts result with preprocessed reconciled forecasts
 - 4. Forecast uncertainty

• Construction of S and G is nontrivial and computationally demanding

909

Case study results and analysis

$$RMSE = \sqrt{\frac{\sum_{d=1}^{N_D} (\hat{Y}_d - y_d)^2}{N_D}}$$

- Forecast accuracy is currently measured as:
 - root mean square error (RMSE)
 - mean absolute percentage error (MAPE)
 - weighed mean absolute percentage error (wMAPE)
- Base model: 5-param numerical weather forecasts

MAPE =
$$\frac{1}{N_D} \sum_{i=1}^{N_D} \frac{\left| \left(\hat{Y}_d - y_d \right) \right|}{Y_d}.$$

wMAPE =
$$100 x \frac{\sum_{d=1}^{N^{D}} |y_d - \hat{Y}_d|}{\sum_{d=1}^{N^{D}} |y_d|} \%$$

Table 1. Results for Total (daily)

Method	Coherent	RMSE [Dth]	MAPE [%]	wMAPE [%]
NAV	Yes	927.9	16.7	13.8
BASE	No	319.8	7.9	6.2
MinT	Yes	528.3	11.4	9.7
PPHR	No	643.5	10.1	8.4

Case study results and analysis

	AvgRelRMSE		
Unit of Analysis	Preprocessed	AvgRelRMSE	
	Base	1.000	
Tomporal	MinT	0.973	
Temporal	Bottom Up	0.986	
	Top Down	0.991	
	Base	1.000	
Spatial	MinT	0.961	
Spatial	Bottom Up	0.977	
	Top Down	0.984	
	Base	1.000	
Cross tomporal	MinT	0.927	
Cross-temporal	Bottom Up	0.939	
	Top Down	0.942	

- Total level
- Grouped by Unit of Analysis
- AvgRelRMSE < 1
- Cross-temporal approach shows promise
 - Temporal results averaged geometric mean
- Bottom up and Top Down

	Į.	A	E	3		С	То	tal	Ave	rage
Resolution	Hourly	Daily								
Method		MASE								
BF	3.14	0.69	2.34	0.68	3.11	0.75	2.95	0.68	2.92	0.70
VS	3.16	0.74	2.35	0.75	3.12	0.83	2.92	0.72	2.89	0.76
MinT	3.10	0.66	2.29	0.65	3.06	0.73	2.84	0.63	2.82	0.67
	RMSSE									
BF	2.73	0.60	2.04	0.60	2.81	0.66	2.63	0.60	2.58	0.61
VS	2.75	0.68	2.06	0.68	2.82	0.75	2.61	0.67	2.56	0.69
MinT	2.70	0.58	2.04	0.58	2.79	0.64	2.60	0.57	2.55	0.59
		AMSE								
BF	0.99	0.42	0.26	0.17	0.71	0.31	0.71	0.33	0.67	0.31
VS	1.01	0.42	0.28	0.16	0.72	0.30	0.68	0.30	0.67	0.29
MinT	1.09	0.45	0.33	0.18	0.86	0.36	0.75	0.33	0.76	0.33

Preprocessing technique for data incoherence

Base forecasts at each level can be estimated uniquely Total Daily LAUF H_1 H_2 H_{24} В H_{23} A Coherency Error Node Aggregate Error A + B + C H_2 H_1 H_{24} C В A 17

Next steps

- Feasibility of hierarchical forecasting in deep-temporal natural gas demand setting
 - Include more hierarchies (res, non res, ...)
 - Estimation of variance-covariance matrix W
- Different levels of gas distribution organization and time horizon of concern
 - Hourly, daily, monthly
- Improve base forecasts over 5-parameter model

LDC Service Area

Operating Area Code	Number of Customers	Number of Bills
A	82,438	4,946,280
В	25,823	1,549,380
C	147,325	8,839,500
D	50,683	3,040,980
E	13,659	819,540
F	234,752	14,085,120
G	316,166	18,969,960
Н	129,154	7,749,240

Questions?

Thank you.

colin.o.quinn@marquette.edu richard.povinelli@marquette.edu

info@marquetteenergyanalytics.com (414) 765-2839

309 N. Water St. Suite 400 Milwaukee, WI 53202