Deutsches Elektronen-Synchrotron - CMS experiment

CMS PDF Forum - 24 October 2017

Extraction of α_s and m_t from inclusive $\sigma_{t\bar{t}}$

Maria Aldaya Martin 1 , Till Arndt 1 , Matteo Defranchis 1 , Carmen Diez Pardos 1 , Jan Kieseler 2 , Katerina Lipka 1 , Andreas Meyer 1

¹Deutsches Elektronen-Synchrotron (DESY) ²CERN

measurement strategy

strategy:

- extract $\sigma_{t\bar{t}}$ from template fits to differential distributions of final state observables
- simultaneously fit $\sigma_{t\bar{t}}$ and m_t^{MC} to mitigate the MC dependency
- compare $\sigma^{obs}_{t\bar{t}}$ to fixed-order theory prediction to extract mass and strong coupling

idea:

- measure $\sigma_{t\bar{t}}$ in di-leptonic opposite-flavour channel $(e\mu)$ with the full 2016 dataset
- extend from "baseline" strategy outlined in TOP-17-001 to include m_t^{MC} extraction with m_{tb}^{min} method

CMS-TS-2016-007

simultaneous fit of $\sigma_{t\bar{t}}$ and m_t^{MC}

fit strategy:

- events classified in 12 mutually-exclusive categories to enhance fit power
- binned likelihood fit to final state distributions
- systematic uncertainties and m_t^{MC} treated as nuisance parameters
- bg normalization constrained in data

modelling of m_t^{MC} dependence:

• $\pm 3~{
m GeV}$ alternative mass samples

CMS Work in progress

$$\begin{split} \sigma_{t\bar{t}}^{\text{obs}} &= 826.9 \pm 1.9 \text{ (stat)} \ ^{+32.2}_{-30.5} \text{ (syst) pb} \\ m_{t}^{MC} &= 17x.xx \pm 0.16 \text{ (stat)} \pm 0.52 \text{ (syst)} \text{ GeV} \end{split}$$

0 b-tags, 0 add. jets

 $\sqrt{s} = 13 \text{ TeV (2016)}$

2 b-tags, 1 add. jets

 $\sqrt{s} = 13 \text{ TeV } (2016)$

$m_{+}^{\overline{MS}}$ extraction at NNLO

details:

- xFitter framework interfaced with Hathor
- **ABMP16 NNLO** pdf set (consistent treatment of $m_t^{\overline{MS}}$ in pdf determ.)
- using results from combined fit of $\sigma_{t\bar{t}}$ and m_t^{MC}

uncertainties:

- experimental: from σ_{tt̄} fit (contains m_t^{MC})
- PDF: from eigenvectors
- theory: from envelope of 6 possible μ_r and μ_f variations by factor of 2

 χ^2 profile - parabolic fit

CMS Work in progress

$$m_t^{\overline{MS}}(m_t) = 161.0 \pm 1.3 \ ({\rm exp}) \pm 0.8 \ ({\rm pdf}) \ ^{+0.1}_{-0.9} \ ({\rm scale}) \ {\rm GeV}$$

latest result quoted in PDG:

•
$$m_t^{\overline{MS}} = 160 ^{+5}_{-4} \ {
m GeV} \ o {
m out-performed}$$
 by a factor of 3

further results at NNLO: $m_t^{\overline{MS}}$ and m_t^{pole}

- different mass definitions: $m_t^{\overline{MS}}$, m_t^{pole}
- different PDF sets: ABMP16, CT14, NNPDF3.1, MMHT2014

	$m_t^{\overline{MS}}(m_t) \; [{ m GeV}]$	$m_t^{pole} \; [{ m GeV}]$
ABMP16_5_nnlo	$161.0 \pm 1.6 \; ({ m fit}) ^{+0.1}_{-0.9} \; ({ m scale})$	$170.0 \pm 1.4 \; ({ m fit}) {}^{+1.4}_{-1.9} \; ({ m scale})$
CT14nnlo	$164.4 \pm 1.7 \text{ (fit)} ^{+0.1}_{-1.1} \text{ (scale)}$	$173.6 \pm 1.7 \; ext{(fit)} \; ^{+1.3}_{-2.0} \; ext{(scale)}$
NNPDF31_nnlo_pdfas	$164.0 \pm 1.4 \; ({ m fit}) {}^{+0.1}_{-1.0} \; ({ m scale})$	$173.1 \pm 1.5 \; ({ m fit}) {}^{+1.3}_{-1.9} \; ({ m scale})$
MMHT2014nnlo68cl	$164.4 \pm 1.5 \; ext{(fit)} \; ^{+0.1}_{-1.0} \; ext{(scale)}$	173.5 \pm 1.6 (fit) $^{+1.3}_{-2.0}$ (scale)

- · good agreement between results with different PDF sets
- uncertainty on $m_t^{\overline{MS}}$ dominated by experimental uncertainties
- ullet uncertainty on m_t^{pole} mostly driven by theoretical uncertainties

latest 13 TeV result from CMS: $m_t^{pole} = 170.6 \pm 2.7 \text{ GeV} \text{ (CT14, arXiv:1701.06228 (2017))}$

α_s extraction at NNLO

details and uncertainties:

- same setup used for m_t extraction
- m_t treated consistently with PDF fit

CMS Work in progress

$$\alpha_s(M_Z) = 0.1146 \pm 0.0018$$
 (fit) $^{+0.0013}_{-0.0001}$ (scale)

• uncertainty from m_t^{MC} automatically taken into account (combined fit with $\sigma_{t\bar{t}}$)

latest result from DIS: (arXiv:1709.07251)

- $\alpha_s(M_Z) = 0.1142 \pm 0.0028$ (first NNLO result from hadron collider - inclusive jet production)
- $\rightarrow \sigma_{t\bar{t}}$ gives the best result at hadron collider so far

further results at NNLO: α_s

- · results in excellent agreement
- better precision achieved with ABMP16

summary, conclusions and outlook

summary:

- simultaneous fit of $\sigma_{t\bar{t}}$ and m_t^{MC} implemented based on TOP-17-001 results
- $\sigma_{t\bar{t}}^{obs}$ used to extract $m_t^{\overline{MS}}$, m_t^{pole} and $\alpha_s(M_Z)$ using fixed-order calculations

conclusions:

- $m_t^{\overline{MS}}$ extraction out-performs previous measurements
- best α_s result at hadron collider so far
- ullet improved m_t^{pole} precision with respect to previous 13 TeV result

outlook:

- still in the process of finalizing the $\sigma_{t\bar{t}}$ fit
- numbers might change slightly but overall strategy is defined

BACKUP

CMS-TOP-14-022

CMS Work in progress

$$\begin{split} \sigma_{t\tilde{t}}^{\text{obs}} &= 826.9 \pm 1.9 \text{ (stat)} ^{+32.2}_{-30.5} \text{ (syst) pb} \\ m_{t}^{MC} &= 17x.xx \pm 0.16 \text{ (stat)} \pm 0.52 \text{ (syst)} \text{ GeV} \end{split}$$

- consistent with previous CMS measurements
- competitive precision

highest contrib. to $\sigma_{t\bar{t}}$ uncert.

syst	contrib [%]
JES	0.6
PDF	0.7
Lept. ID/Iso	2.2
b-tagging	0.3
Color reconn.	0.4
Pile-up	0.3
Trigger	0.7
$t\bar{t}$ fragm.	1.0
tt̄ FSR scale	0.4
$t\bar{t}$ ISR scale	0.4
$t\bar{t}$ ME scale	0.3
top mass	0.2
DY norm.	1.3
tW norm.	0.3
VV norm.	0.6
Luminosity	2.6
Stat	0.2
PDF (extr)	±0.7
top mass (extr)	∓ _{0.4}
Total	$\pm^{3.9}_{3.7}$