

FIG. 1

^{2/7}
FIG. 2

frequency spectrogram of reference signal

(a) DIVIDE SPECTROGRAMS OF REFERENCE SIGNAL INTO
 SMALL-REGION SPECTROGRAMS

frequency spectrogram of reference signal

(b) DETECT SMALL-REGION STORED SIGNAL SPECTROGRAMS SIMILAR
 TO EACH F_{ti}, ω_m BASED ON SIMILARITY OF SMALL-REGION CODE

frequency spectrogram of reference signal

(c) CALCULATE DEGREE OF SEGMENT SIMILARITY $S(t)$

FIG. 3

$$\begin{bmatrix} \nu(\omega_{1,1,1}) & \nu(\omega_{1,1,2}) & \dots \\ \nu(\omega_{1,2,1}) & \nu(\omega_{1,2,2}) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

$$\begin{bmatrix} \nu(\omega_{2,1,1}) & \nu(\omega_{2,1,2}) & \dots \\ \nu(\omega_{2,2,1}) & \nu(\omega_{2,2,2}) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

⋮
⋮

FIG. 4

FIG. 5

FIG. 6

FIG. 7

6/7

FIG. 8

