Comparing SNP positions from SNPchiMp

Arne B. Gjuvsland January 4, 2017

Contents

Getting the data	1
Comparing Native and UMD3.1 positions	1
SNPs that might need flipping of alleles	4
Summary / TODOs	5

Getting the data

The original data regarding flanking sequences, assembly and Illumina's inferred position can be found at:

- BovineSNP50 v1.0
- BovineSNP50 v2.0
- BovineHD

The NCBI dbSNP database https://www.ncbi.nlm.nih.gov/projects/SNP/ contains the same SNPs, but due to different assemblies and/or mapping procedures the positions are different.

The SNPSNPchiMp database contains both sets of information:

- Nicolazzi et al 2014. SNPchiMp: a database to disentangle the SNPchip jungle in bovine livestock
- Nicolazzi et al 2014. SNPchiMp v.2: An Open Access Web Tool for SNP Data Management on Bovine,
 Porcine and Equine Livestock
- Nicolazzi et al 2015. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species.]
- SNPchiMp website

Data for the Illumina chips 50Kv1, 50Kv2 and 777K was retriewed from http://bioinformatics.tecnoparco.org/SNPchimp/index.php/download/download-cow-data (see figure). Positions from both Illumina (assembly: "Native platform") and dbSNP (assembly: "UMD3.1") was downloaded as gzipped tab-separated files.

Comparing Native and UMD3.1 positions

First we read in and combine the positions for native and UMD3.1.

```
#read in SNPchimp data with positions from chip provider (assembly: Native platform)
#and from dbSNP (assembly: UMD3.1)
nat <- fread('zcat illumina_50Kv1_50Kv2_777K_native.tsv.gz',showProgress=F)
umd <- fread('zcat illumina_50Kv1_50Kv2_777K_UMD3.1.tsv.gz')
both <- merge(nat,umd,by=c('chip_name','SNP_name'))[,.(chip_name,SNP_name,chr.nat=chromosome.x,pos.nat=</pre>
```

Counting cases where the position differes between Native and UMD3.1 we find that:

- Almost every position differs for the Illumina 50Kv1 chip, indicating different assemblies.
- For the 50Kv2 and 777K chips only a few percent of the SNPs differ, indicating the same assembly.

Figure 1: Screenshot of download options at SNPchimp website

```
#For Illumina 50Kv1 the native position do not match UMD3.1 at all,
#For the other two chips only a small number of SNPs between Native and UMD3.1
both <- both[, N_snps:=. N, by=chip_name]
print('Table: Number of SNPs per chip (N_snps), and number of SNPs where the Native platform position d
## [1] "Table: Number of SNPs per chip (N_snps), and number of SNPs where the Native platform position
both[pos.nat!=pos.umd,.(`N_diffpos`=.N),by=c('chip_name','N_snps')]
          chip_name N_snps N_diffpos
## 1: Bov_Illu50Kv1 58276
                                58220
## 2: Bov_Illu50Kv2 58763
                                  927
## 3:
                                 3392
         Bov IlluHD 781797
Looking at the 53099 SNPs that are both on the 50Kv2 and 777K chips they all have the same position for
the same assembly.
#Compare positions of SNPs with same name in Illumina 50Kv2 and 777K
#all SNP with same name have same position for same assembly
snpchimp <- rbind(cbind(nat,assembly='Native'),cbind(umd,assembly='UMD3.1'))</pre>
pos_per_name <- snpchimp[chip_name!='Bov_Illu50Kv1',.(positions=length(unique(position)),chips_with_snp
pos_per_name[,.N,by=c('assembly','positions','chips_with_snp')]
##
      assembly positions chips_with_snp
## 1:
        Native
                        1
                                       1 734362
## 2:
        Native
                        1
                                       2 53099
## 3:
        UMD3.1
                        1
                                       1 734362
        UMD3.1
                                         53099
## 4:
Looking at the differences in position we see that the main changes are for unplaced SNPs (chr 0 in the
figures below). Many SNPs are unplaced by Illumina but placed on chromosomes by dbSNP and vice versa.
A few SNP are also moved from one chromsome to another chromosome.
both[chr.nat!=chr.umd][,.N,by=chip_name]
##
          chip_name
## 1: Bov_Illu50Kv1 2347
## 2: Bov_Illu50Kv2 1030
         Bov_IlluHD 5188
both[chr.nat==chr.umd&pos.nat!=pos.umd][,.N,by=chip_name]
##
          chip_name
                         N
## 1: Bov_Illu50Kv1 55929
## 2: Bov_Illu50Kv2
                        82
## 3:
         Bov_IlluHD
                       330
both[chr.umd=='99']$chr.umd<-'0'
p <- ggplot(both[chr.nat!=chr.umd,.N,by=c('chr.nat','chr.umd','chip_name')]) + geom_point(aes(x=chr.nat
p <- p + ggtitle('SNPs where snpchimp chromosome differ \n between Native and UMD3.1 assembly') + labs(
p + facet_wrap(~chip_name,nrow=2) + theme(legend.justification=c(1,0), legend.position=c(1,0))
```

SNPs where snpchimp chromosome differ between Native and UMD3.1 assembly

SNPs that might need flipping of alleles

The ANP chimp data also give an easy way to identify the SNPs that will be flipped if the wrong all el-coding is used during file conversion.

umd[,flip:=Alleles_A_B_FORWARD!=Alleles_A_B_TOP,by=SNP_name]

##		chip name	rs	Alleles A B FORWARD A	lleles A B TOP
##	1:	Bov_IlluHD		 A/G	 A/G
##	2:	Bov_IlluHD	rs17870417	T/C	A/G
##	3:	${\tt Bov_IlluHD}$	rs17870546	A/G	A/G
##	4:	Bov_IlluHD	rs17870550	A/G	A/G
##	5:	${\tt Bov_IlluHD}$	rs17870946	T/C	A/G
##					
##	898832:	${\tt Bov_IlluHD}$	NULL	T/G	A/C
##	898833:	Bov_IlluHD	NULL	T/G	A/C
##	898834:	Bov_IlluHD	NULL	T/C	•
##	898835:	Bov_IlluHD	NULL	T/C	A/G
##	898836:	${\tt Bov_IlluHD}$	NULL	A/G	A/G
##		${\tt chromosome}$	position	SNP_name	flip
##	1:	1	98367573	BovineHD4100000577	FALSE
##	2:	1	79326737	BovineHD4100000457	TRUE
##	3:	1	144579256	BovineHD0100041712	FALSE
##	4:	1	144587013	BovineHD4100000819	FALSE
##	5:	1	153282696	BovineHD0100044630	TRUE

```
##
## 898832:
                   99
                               0 Hapmap38311-BTA-39536
                                                         TRUE
## 898833:
                   99
                               0 Hapmap39460-BTA-109014
## 898834:
                   99
                                          UA-IFASA-2402
                                                         TRUE
## 898835:
                   99
                               0
                                          UA-IFASA-5520
                                                         TRUE
## 898836:
                   99
                               0
                                          UA-IFASA-7534 FALSE
umd[,.N,by=c('chip_name','flip')]
##
          chip_name flip
         Bov IlluHD FALSE 391761
## 1:
## 2:
         Bov_IlluHD TRUE 390036
## 3: Bov_Illu50Kv1 FALSE
## 4: Bov_Illu50Kv2 FALSE
                            29527
## 5: Bov_Illu50Kv1
                     TRUE
                            28985
## 6: Bov_Illu50Kv2 TRUE
                           29236
```

Summary / TODOs

- For consistent positions across all three chips we should use dbSNP positions.
- TODO: Check which positions have been used for converting Illumina files
- TODO: Compare Tims list of SNPs to be flipped with this data
- TODO: Compare Tims remapped positions with the dbSNP positions