A Quick Capacitor Charge Balance Control Method to Achieve Optimal Dynamic Response for Buck Converters

Eric Meyer* Yan-Fei Liu

Queen's Power Group, Queen's University
Department of Electrical and Computer Engineering
Kingston, Ontario, Canada

*Presenting Author

Presentation Outline

- Introduction / Controller Concept
- Controller Derivation
- Controller Operation
- Theoretical Results
- Simulation Results
- Experimental Results
- Conclusion

Buck Converter Under Load Transient

- VRMs undergo rapid, large load variations
- Capacitor must absorb/provide portion of load current
 - Voltage deviates from reference for finite time
- Goal: Minimize effect of load current transient

Conventional Controller

 Designed using frequency-domain small-signal model

Goals:

- Zero-steady state error
- Widest bandwidth with sufficient phase margin

Alternative Linear/Non-Linear Control

Conventional Response to Positive Load Current Step

t₀: Load current step

Controller slowly begins to increase duty cycle

t₁: Inductor current equals load current

Capacitor begins recharging

t₂: Output voltage recovered

Inductor currentLoad current

 t₃: Converter "recovered"

How can we improve this response?

Charge Balanced Response to Positive Load Current Step

- Set duty cycle to 100% immediately
 - Inductor current increases at fastest slew rate
 - Minimizes T_{dis}
 - Minimizes A_{discharge}
 - Minimizes Δv_o
- Set duty cycle to 0% at t₂ such that

$$A_{charge} = A_{discharge}$$

- Minimizes T_{ch}
- Minimizes settling time

Comparison with Traditional Controller

Quick Capacitor Charge Balance Control Method vs. Previous Work¹

- Inductor information not required
 - Increased accuracy
- Only simple analog functions (integration) performed
 - Only OpAmps, comparators, multiplexers required
- No sampling delay
 - Immediate reaction to transient
 - Minimum voltage deviation/settling time

¹ G. Feng, W. Eberle, Y-F. Liu, "A New Digital Control Algorithm to Achieve Optimal Dynamic Response in DC-to-DC Converters", IEEE 36th Power Electronics Specialists Conference (PESC 05), pp. 2744 - 2749

Presentation Outline

- Introduction / Controller Concept
- Controller Derivation
- Controller Operation
- Theoretical Results
- Simulation Results
- Experimental Results
- Conclusion

Controller Derivation

Goal: $A_{discharge} - A_{charge} = 0$

$$\iint_{T0} m_1 (dt)^2 - \iint_{T1} \frac{m_1 m_2 - m_1^2}{m_2} (dt)^2 = 0$$

Slopes m_1 and m_2 known $m_1 = (V_{in} - V_o)/L$, $m_2 = V_o/L$

$$A_{discharge} - A_{charge} = 0$$

$$V_o \iint_{T0} (dt)^2 - V_{in} \iint_{T1} (dt)^2 = 0$$

How to Solve t₂

Double Integrator

Negative Load Current Step

Double Integrator

Presentation Outline

- Introduction / Controller Concept
- Controller Derivation
- Controller Operation
- Theoretical Results
- Simulation Results
- Experimental Results
- Conclusion

Controller Operation During a Positive Load Current Step

- Capacitor current threshold not exceeded
- Steady-state operation
 - Conventional linear controller in use

Controller Operation During a Positive Load Current Step

- Capacitor current threshold exceeded (at point t_0)
- Positive load current step detected
 - Duty cycle set to 100%
 - k*V_o applied integrator 1a
 - V₁ increases linearly
 - V₂ increases exponentially

Controller Operation During a Positive Load Current Step

- Capacitor current zero cross-over detected (at point t₁)
 - Integrator 1a reset
 - -k*V_{in} applied to Integrator 1b
 - V₁ decreases linearly
 - V₂ decreases exponentially
- Duty cycle remains at 100%

Controller Operation During a Positive Load Current Step

- V₂ zero cross-over detected (at point t₂)
 - Duty cycle set to 0%

Controller Operation During a Positive Load Current Step

- Second capacitor current cross-over detected (at point t₃)
 - Proposed controller deactivated
 - Conventional linear controller resumes operation

Controller Operation During a Negative Load Current Step

- Similar to positive load current step operation
- (V_{in}-V_o) applied to the double integrator for t₀-t₁

www.queenspowergroup.com

Block Diagram of Proposed Controller

Capacitor Current Sensor

Series Differential Configuration

- Simple
- Effectively increases ESR and ESL

Increases voltage drop

- Does not increase voltage drop
- Difficult to implement when ESR is low

Capacitor Current Sensor

Trans-Impedance Configuration for Multiple Types of Capacitors

- Does not increase voltage drop
- Can be implemented even when using low ESR capacitors
- Is effective for mixed capacitor banks

Effect of Capacitor Tolerance

- Capacitor mis-match due to tolerance
- May cause pre-mature or late detection of capacitor current zero cross-over
- Will only effect settling time, not voltage deviation

Presentation Outline

- Introduction / Controller Concept
- Controller Derivation
- Controller Operation
- Theoretical Results
- Simulation Results
- Experimental Results
- Conclusion

Accurate Calculation of Transient Response

- Predictable response allows for simple and accurate calculation of voltage undershoot /overshoot (Δv_o) and settling time (T_{set})
 - Not possible for controller designed by small-signal model
- Greatly simplifies output filter design

Theoretical Voltage Deviation (Positive Load Current Step)

- Can choose output capacitance for desired undershoot
- $V_{in} = 12V$ $V_{o} = 1.5V$ L=1uH ESR=0.5mOhm

Theoretical Voltage Deviation (Negative Load Current Step)

- Can choose output capacitance for desired overshoot
- $V_{in} = 12V$ $V_{o} = 1.5V$ L=1uHESR=0.5mOhm
- Example:

 -10A Step
 For 150mV max overshoot,
 choose 215uF

Theoretical Settling Time

inductance

- Not dependant on output capacitance
- $V_{in} = 12V$ $V_0 = 1.5V$

Presentation Outline

- Introduction / Controller Concept
- Controller Derivation
- Controller Operation
- Theoretical Results
- Simulation Results
- Experimental Results
- Conclusion

Simulation (10A Step Up)

Buck Converter

 V_{in} = 12V V_{o} = 1.5V, f = 400kHz L = 1uH, C = 180uF, ESR = 0.5mOhm ESL = 100pF

Simulation (10A Step Up)

Capacitor Requirements

Example:

- -88mV voltage deviation
- 0→10A step change
 - Voltage mode control : 180uF
 - Proposed controller: 60uF

Simulation (10A Step Down)

Buck Converter

V_{in} = 12V V_o = 1.5V, f = 400kHz L = 1uH, C = 180uF, ESR = 0.5mOhm

ESL = 100pF

Simulation (10A Step Down)

Presentation Outline

- Introduction / Controller Concept
- Controller Derivation
- Controller Operation
- Theoretical Results
- Simulation Results
- Experimental Results
- Conclusion

Experimental Results(Voltage Mode Controller)

 $V_{in} = 12V$

 $V_{o} = 1.5V,$

f = 400kHz

L = 1uH,

C = 180 uF

ESR = 0.5mOhm,

ESL = 100pF

Step Up:

0A → ≈10A

di/dt > 50A/us

Experimental Results(Proposed Controller)

Settling time: 4us

Calculated: 4us

Improved by 80%

Undershoot: 30mV

Calculated: 27mV

Improved by 76%

Experimental Results(Voltage Mode Controller)

 $V_{in} = 12V$ $V_{o} = 1.5V$, f = 400kHz L = 1uH, C = 180uF ESR = 0.5mOhm, ESL = 100pF

Step Down: ≈10A → 0A di/dt > -50A/us

Experimental Results(Proposed Controller)

Settling time: 12us

Calculated: 14us

Improved by 83%

Overshoot: 180mV

Calculated: 180mV

- Asymmetric Response
- Improved by 10%
- Only modest improvement due to small duty cycle

Presentation Outline

- Introduction / Controller Concept
- Controller Derivation
- Controller Operation
- Theoretical Results
- Simulation Results
- Experimental Results
- Conclusion

Summary of Advantages

- Dynamic response to load transient can be accurately predicted
 - Greatly simplifies design of converter
- Very simple design
 - Only simple analog functions required
- Optimal response to load transient guaranteed every time
 - For $12V \rightarrow 1.5V$ applications:
 - Proposed controller significantly improves undershoot (76%) and settling time (80%) for load step-up
 - Proposed controller improves overshoot (10%) and significantly improves settling time (83%) for load step-down

Conclusions

- New control method described
- For a positive load current step
 - Duty cycle set to 100% for calculated period of time
 - Duty cycle set to 0% for period of time
- Capacitor current sensor and double integrator used to determine aforementioned time periods

Thank you for your time. Any Questions?

