

Fig. 1
Prior art

Fig. 2(a)

Fig. 2(b)

Fig. 2(c)

Fig. 3 (a)
Multiplexer
type

Fig. 3 (b)
Address
data

**Fig. 3
(c)**

**Fig. 3
(d)**
Direction separate type
Demultiplexer

Bandwidth

Fig. 4

Performance index (throughput, bus width, instruction quantity, memory quantity)

Performance table

Direction separate type CPU performance table	
Harvard type CPU performance table	
Neumann type CPU performance table	
100(P2·B2·M2·E2)	10(P·B1·M1·E1)
50(P1·B1·M1·E1)	50(P2·B2·M2·E2)
100(P1·B1·M1·E1)	10(P·B1·M1·E1)
APPLI_A	APPLI_A
FLOW_A	FLOW_A
MANG_A	MANG_A
LINK_A	LINK_A
PHY_A	PHY_A

Operation model independent of OS and device

Library A

Fig. 5 (a)

APPLI_A	FLOW_A	MANG_A	LINK_A	PHY_A
---------	--------	--------	--------	-------

Specification
model independent
of OS and device

APPLI_B	FLOW_B	MANG_B	LINK_B	PHY_B
---------	--------	--------	--------	-------

Fig. 5 (b)

Direction separate type CPU performance table	
Harvard type CPU performance table	
Neumann type CPU performance table	
200(P2·B2·M2·E2)	20(P·B1·M1·E1)
40(P1·B1·M1·E1)	40(P2·B2·M2·E2)
100(P1·B1·M1·E1)	100(P2·B2·M2·E2)
APPLI_B	APPLI_B
FLOW_B	FLOW_B
MANG_B	MANG_B
LINK_B	LINK_B
PHY_B	PHY_B

Fig. 6

Operation simulation

Fig. 7

Fig. 8

Fig. 9

Fig. 10 (a)

Fig. 10 (b)

Fig. 10 (c)

Fig. 10 (d)

Analysis index (weighted index)

Fig. 11 (a) Basis for determining performance index

Response time: R
Performance affecting coefficient of response time: $1x$
Bus transaction: T
Performance affecting coefficient of bus transaction: mx
Processing quantity: E
Performance affecting coefficient of processing quantity: nx
 $R1x \times Tmx \times En = \text{Performance index: } x$
Example) $1x = 1/1 \text{ sec.}, mx = 1/10 \text{ times}, nx = 1/10 \text{ MIPS}$

Fig. 11 (b) Basis for determining power index

Average (maximum) processing quantity: $Eav (Emx)$
Power affecting coefficient of processing quantity: $1y$
Hardware ratio: H
Power affecting coefficient of hardware ratio: my
Average (maximum) concurrent active ratio: Anv (Anx)
Power affecting coefficient of concurrent active ratio: ny
or $Eav 1y \times Hmy \times Aavny = \text{Average power index}$
 $Emx 1y \times Hmy \times Anxny = \text{Maximum power index}$
Example) $1y = 1/10 \text{ MIPS}, my = 1/20\%, ny = 1/25\%$

Fig. 11 (C) Basis for determining area index

Memory quantity: M
Area affecting coefficient of memory quantity: $1z$
FIFO quantity: F
Area affecting coefficient of FIFO quantity: mz
Bus width: B
Area affecting coefficient of bus width: nz
 $M1z \times Fmz \times Bnz = \text{Area index: } z$
Example) $1z = 1/1 \text{ kByte}, mz = 1/128 \text{ bytes}, nz = 1/16 \text{ bits}$

Fig. 11 (d)

Basis for determining analysis index

Performance index (performance)
Coefficient affecting performance index: a
Power index (power)
Coefficient affecting power index: b
Area index (area)
Coefficient affecting area index: c
 $ax + by + cz = \text{Optimal index}$
Example) $a = 0.5, b = 0.3, c = 0.2$

Fig. 12

Synthesis of optimal IF

Fig. 13

