Digitalna vezja UL, FRI

P3 – Minimizacija, NAND, NOR

Vsebina

- Minimizacija
 - Minimalna disjunktivna normalna oblika (MDNO)
 - Minimalna konjunktivna normalna oblika (MKNO)
 - Minimalna normalna oblika (MNO)
- Funkcijsko polni sistemi
 - Operatorji NAND
 - Operatorji NOR

Minimizacija logičnih funkcij

Karnaughjev diagram:

http://en.wikipedia.org/wiki/Karnaugh_map

Veitchev diagram

http://de.wikipedia.org/wiki/Karnaugh-Veitch-Diagramm

Tabelarični in grafični zapis mintermov (n=2, n=3)

Х	у	m _i
0	0	0
0	1	1
1	0	2
1	1	3

<u>Mintermi</u>
<u> </u>
<i>x.y</i>
$x.\underline{y}$
x.y
x.y

$$\overline{X}$$
 0 1 X 2 3

x y	0	1
0		
1		

Х	у	Z	m _i
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

$\overline{x}.\overline{y}.\overline{z}$
<u>x.y.z</u>
x.y.z
$\overline{x}.\underline{y}.\underline{z}$
<i>x.y.z</i>
<i>x.y.<u>z</u></i>
x.y.z
x.y.z

\ 7		
x y z	0	1
00	0	-
01	2	3
11	6	7
10	4	5

Zapis logične funkcije (n=3) v Karnaughjevem diagramu

x y z	m_i	f(x.y.z)	$\overline{f(x.y.z)}$
0 0 0	0	1	0
0 0 1	1	0	1
0 1 0	2	0	1
0 1 1	3	1	0
1 0 0	4	0	1
1 0 1	5	0	1
1 1 0	6	0	1
1 1 1	7	1	0

$$f(x,y,z) \rightarrow f_i = 0$$

vhodne kombinacije, kjer ima funkcija vrednost 0

$$f(x,y,z) \rightarrow f_i=1$$

vhodne kombinacije, kjer ima funkcija vrednost 1

$$\begin{array}{c|cccc} \overline{z} & z \\ \overline{x} \ \overline{y} & 1 \\ \hline \overline{x} \ y & 1 \\ x \ y & 1 \\ x \ \overline{y} & 1 \\ \end{array}$$

Negirana funkcija: $\overline{f(x,y,z)} \rightarrow f_i = 1$

	Z	Z
$\overline{x} \overline{y}$		0
\overline{x} y	0	
ху	0	
$x \overline{v}$	0	0

SOSEDNOST

združevanje dveh konjunktivnih izrazov, ki se razlikujeta v eni spremenljivki za negacijo in nenegacijo (x in \overline{x})

▶ Sosednost konjunkcij dolžine k=n, n-1,n-2,...

$$f(X, Y, Z) = \overline{X}.\overline{Y}.\overline{Z} \vee \overline{X}.\overline{Y}.Z \vee \overline{X}.Y.Z \vee X.Y.Z = \overline{X}.\overline{Y}.(\overline{Z} \vee Z) \vee Y.Z.(\overline{X} \vee X) = \overline{X}.\overline{Y} \vee Y.Z$$

SOSEDNOST

združevanje dveh konjunktivnih izrazov, ki se razlikujeta v eni spremenljivki za negacijo in nenegacijo (x in \overline{x})

▶ Sosednost konjunkcij dolžine k=n, n-1,n-2,...

$$\overline{x}.\overline{y}.\overline{z} \vee \overline{x}.\overline{y}.z \vee \overline{x}.y.\overline{z} \vee \overline{x}.y.z = \overline{x}.\overline{y}.(\overline{z} \vee z) \vee \overline{x}.y.(\overline{z} \vee z) = \overline{x}.\overline{y} \vee \overline{x}.y = \overline{x}.(\overline{y} \vee y) = \overline{x}$$

	\overline{z}	Z	
$\overline{x} \overline{y}$	1	1	<u></u>
\overline{x} y	1	1	
ху			
$x \overline{y}$			

MDNO (n=3)

Iskanje zapisa z najmanjšim številom logičnih vrat in povezav.

Х	У	Z	f(x.y.z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$f(x, y, z) =$$

$$= \overline{x.y.z} \lor \overline{x.y.z} \lor x.y.z =$$

$$= \overline{x.y.z} \lor y.z(\overline{x} \lor x) =$$

$$= \overline{x.y.z} \lor y.z$$

$$f(x, y, z) = \overline{x}.\overline{y}.\overline{z} \lor y.z$$

MDNO (n=4)

Minimalna disjunktivna normalna oblika: $f(A, B, C, D) = B.D \lor A.C \lor B.C \lor \overline{A.C}.D$

DV Trebar

MDNO – nepopolne log. funkcije

- Logična funkcija je podana z nedoločeno vrednostjo izhodov (x) pri vhodni kombinaciji x=y=1.
- Imenujemo jo nepopolna logična funkcija ali funkcija z redundancami.
- Iskanje zapisa z najmanjšim številom logičnih vrat in povezav poteka tako, da minterme, ki imajo nedoločeno vrednost upoštevamo pri združevanju na osnovi sosednosti, če omogočajo enostavnejšo obliko logične funkcije.

f(x,y,z): $f_6=f_7=x$ -> vrednost ima lahko 0 ali 1)

Х	у	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	X (0,1)
1	1	1	X (0,1)

$$f(X,Y,Z)=\overline{X}.Y\vee\overline{Z}$$

$$f(X,Y,Z)=Y\vee \bar{Z}$$

MKNO (n=4)

Minimalna konjunktivna normalna oblika (MKNO):

- 1. Minimiziramo negirano funkcijo (f): $f_i = 0$
- 2. Zapišemo MDNO negirane funkcije
- 3. Levo in desno stran enačbe negiramo
- 4. Po DeMorganovem izreku pretvorimo desno stran. Dobimo MKNO

Funkcija f(A,B,C,D)

	C D	C D	C D	CD
ĀB		1		
Ā B		1	1	1
АВ		1	1	1
$A\overline{B}$			1	1

f(A,B,C,D)

			$\overline{C}\overline{D}$	C D	C D	CD
1.	C.D	ĀB	1		1	1
		Ā B	1			
		ΑВ	1			
		ΑB	1	1		

	C D	C D	C D	CD
$\overline{A}\overline{B}$	1		1	1
$\overline{C}.\overline{D}$ \overline{A} B	1			
A.B.C AB	1			
A.B.C A B		1		

2.
$$\bar{f}(A,B,C,D) = \bar{C}.\bar{D} \vee A.\bar{B}.\bar{C} \vee \bar{A}.\bar{B}.\bar{C}$$

3.
$$\bar{f}(A,B,C,D) = \overline{C.\overline{D} \vee A.\overline{B}.\overline{C} \vee \overline{A}.\overline{B}.C}$$

4.
$$f(A,B,C,D) = (C \lor D).(\overline{A} \lor B \lor C).(A \lor B \lor \overline{C})$$

MKNO

MNO

- 1. Poiščemo MDNO in MKNO
- 2. Določimo: [Število operatorjev / število vhodov]

MNO dobimo tako, da izberemo enostavnejšo obliko preklopne funkcije glede na operatorje in nato glede na vhode, če je število enih ali drugih različno.

Primer: $f_{MDNO}(x_1, x_2, x_3) = x_1 x_3 v x_2 v \overline{x_1} \overline{x_3}$

Naloga 1: PDNO, Booleova algebra, MDNO

Zapis vsote produktov (PDNO)

Poenostavitev logične funkcije

Booleova algebra

MDNO - Veitchev diagram

у	Z	f
0	0	1
0	1	0
1	0	0
1	1	0
0	0	1
0	1	1
1	0	0
1	1	0
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

$$f = \overline{X}.\overline{y}.\overline{Z} \lor X.\overline{y}.\overline{Z} \lor X.\overline{y}.Z$$

$$f = \overline{X}.\overline{y}.\overline{Z} \lor X.\overline{y}.\overline{Z} \lor X.\overline{y}.Z =$$

$$= \overline{y}.\overline{Z}(X \lor \overline{X}) \lor X.\overline{y}.Z =$$

$$= \overline{y}.\overline{Z} \lor X.\overline{y}.Z =$$

$$= \overline{y}.(\overline{Z} \lor X.\overline{y}) =$$

$$= \overline{y}.(\overline{Z} \lor X)(\overline{Z} \lor Z) =$$

$$= \overline{y}.\overline{Z} \lor \overline{y}.X =$$

$$= \overline{y}.\overline{Z} \lor \overline{X}.\overline{y}$$

$$= \overline{y}.\overline{Z} \lor X.\overline{y}$$

$$= \overline{y}.\overline{Z} \lor X.\overline{y}$$

Naloga 2: PKNO, MKNO

Zapis produkta vsot (PKNO)

Poenostavitev logične funkcije - Veitchev diagram

X	у	Z	f
0	0	0	1
0	0	1	0
0	1	0	0
0 1	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Naloga 3: MNO

Zapišite: MDNO, MKNO, MNO

Х	у	Z	f(x.y.z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

MNO		Z	Z		
	$\overline{x} \overline{y}$	1			
<u> </u>	\overline{x} y	1	1	\rightarrow	$\bar{x}.y$
	ху				
$f(x,y,z) = \overline{x}.y \vee \overline{y}.\overline{z}$	$x \overline{y}$	1			
MDNO: [3, 6]		_			

PDNO:

$$f(X,Y,Z) = \overline{X}.\overline{Y}.\overline{Z} \vee \overline{X}.\overline{Y}.\overline{Z} \vee \overline{X}.\overline{Y}.Z \vee X.\overline{Y}.Z$$

MNO=MDNO=MKNO

$$f(x,y,z) = (\overline{x} \vee \overline{y}).(y \vee \overline{z}) \quad \chi \overline{y}$$

MKNO: [3, 6]

Funkcijsko polni sistemi (NAND, NOR)

- Operatorji: NOT, AND, OR
 - Vsaka logična funkcija z n spremenljivkami je določena z njimi.
- Nabor operatorjev je funkcijsko poln, če je z njim mogoče zapisati vse osnovne logične funkcije v Booleovi algebri (NOT, AND, OR)

NAND)
$$x \uparrow y = \overline{x \cdot y} = \overline{x} \lor \overline{y}$$

$$\overline{x} = \overline{x \cdot x} = x \uparrow x$$

$$x \cdot y = \overline{x \cdot y} = \overline{x} \uparrow y = (\overline{x} \uparrow y) \cdot (\overline{x} \uparrow y) = (x \uparrow y) \uparrow (x \uparrow y)$$

$$x \lor y = \overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{y} = \overline{x} \uparrow \overline{y} = (x \uparrow x) \uparrow (y \uparrow y)$$

NOR)
$$x \downarrow y = \overline{x \lor y} = \overline{x}.\overline{y}$$

$$\overline{x} = \overline{x \lor x} = x \downarrow x$$

$$x.y = \overline{x}.\overline{y} = \overline{x} \lor \overline{y} = \overline{x} \downarrow \overline{y} = (x \downarrow x) \downarrow (y \downarrow y)$$

$$x \lor y = \overline{x \lor y} = \overline{x} \lor \overline{y} = (x \downarrow y) \lor (x \downarrow y) = (x \downarrow y) \downarrow (x \downarrow y)$$

Dvonivojske funkcije: PSNO, PKNO

- ▶ NAND: $X \uparrow y = \overline{x.y} = \overline{x} \lor \overline{y}$
- NOR: $X \downarrow Y = X \lor Y = \overline{X}.\overline{Y}$
- ▶ PDNO \rightarrow PSNO (Popolna Shefferjeva normalna oblika)
- ► PKNO → PPNO (Popolna Pierceova normalna oblika)

Х	у	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$f = \overline{X}.y.Z \lor X.\overline{y}.\overline{Z} \lor X.y.\overline{Z}$$

$$f = \overline{\overline{X}.y.Z} \lor X.\overline{y}.\overline{Z} \lor X.y.\overline{Z} =$$

$$f = (\overline{X}.y.\overline{Z}).(\overline{X}.\overline{y}.\overline{Z}).(\overline{X}.y.\overline{Z})$$

$$f = (\overline{X} \uparrow y \uparrow z) \uparrow (x \uparrow \overline{y} \uparrow \overline{z}) \uparrow (x \uparrow y \uparrow \overline{z})$$

$$f = (x \lor y \lor z).(x \lor y \lor \overline{z}).(x \lor \overline{y} \lor z).(\overline{x} \lor y \lor \overline{z}).(\overline{x} \lor \overline{y} \lor \overline{z})$$

$$f = (x \lor y \lor z).(x \lor y \lor \overline{z}).(x \lor \overline{y} \lor z).(\overline{x} \lor y \lor \overline{z}).(\overline{x} \lor \overline{y} \lor \overline{z})$$

$$f = (x \lor y \lor z).(x \lor y \lor \overline{z}).(x \lor \overline{y} \lor z).(\overline{x} \lor y \lor \overline{z}).(\overline{x} \lor \overline{y} \lor \overline{z})$$

$$f = (x \lor y \lor z) \lor (x \lor y \lor \overline{z}) \lor (x \lor \overline{y} \lor z) \lor (\overline{x} \lor y \lor \overline{z}) \lor (\overline{x} \lor \overline{y} \lor \overline{z})$$

$$f = (x \lor y \lor z) \lor (x \lor y \lor \overline{z}) \lor (x \lor \overline{y} \lor z) \lor (\overline{x} \lor y \lor \overline{z}) \lor (\overline{x} \lor \overline{y} \lor \overline{z})$$

$MDNO \rightarrow NAND, NOR$

- Zapis funkcije f(x,y,z) v MDNO
- Zapis MDNO z operatorji NAND (MSNO) in NOR

Х	у	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

MDNO: $f = x \lor yz$

NAND

$$\overline{\overline{f}} = \overline{\overline{X \vee y.Z}} = \overline{\overline{X}.(\overline{y.Z})} = \overline{X} \uparrow (\overline{y.Z}) = \overline{X} \uparrow (y \uparrow Z)$$

NOR

$$\overline{\overline{f}} = \overline{\overline{X \vee yz}} = \overline{X \downarrow (\overline{X \cdot y})} = \overline{X \downarrow (\overline{\overline{y} \vee \overline{z}})} = \overline{X \downarrow (\overline{y} \downarrow \overline{z})}$$

$MKNO \rightarrow NOR, NAND$

- Zapis funkcije f(x,y,z) v MKNO
- Zapis MKNO z operatorji NOR (MPNO) in NAND

X	у	Z	f	f
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$MKNO$$

$$\overline{f} = \overline{X}.\overline{Z} \vee \overline{X}.\overline{Y}$$

$$\overline{f} = \overline{\overline{X}.\overline{Z}} \vee \overline{X}.\overline{Y}$$

$$f = (\overline{X}.\overline{Z}).(\overline{X}.\overline{Y}) = (X \vee Z)(X \vee Y)$$

NOR

$$\overline{\overline{f}} = \overline{(\overline{X \vee Z})(\overline{X \vee Y})} = \overline{(\overline{X \vee Z}) \vee (\overline{X \vee Y})} = (X \downarrow Z) \downarrow (X \downarrow Y)$$

NAND

$$\overline{\overline{f}} = \overline{(\overline{X \vee Z})(\overline{X \vee Y})} = \overline{(\overline{X \vee Z}) \uparrow (\overline{X \vee Y})} = \overline{(\overline{\overline{X \vee Z}}) \uparrow (\overline{\overline{X \vee Y}})} = \overline{(\overline{X \vee Z}) \uparrow (\overline{X \vee Y})}$$

Naloga 1: Nepopolne logične funkcije – NAND, NOR

- Zapišite: PDNO za redundance x=0
- MDNO, MKNO, MNO

Х	у	Z	f(x.y.z)
0	0	0	0
0	0	1	Χ
0	1	0	Χ
0	1	1	1
1	0	0	Χ
1	0	1	1
1	1	0	1
1	1	1	0

$$\bar{f} = \bar{X}.\bar{y} \lor X.y.Z$$

$$\bar{f} = \overline{\bar{X}.\bar{y}} \lor X.y.Z$$

$$f(x,y,z)$$

$$= (x \lor y).(\bar{x} \lor \bar{y} \lor \bar{z})$$

$$= (x \downarrow y) \downarrow (\bar{x} \downarrow \bar{y} \downarrow \bar{z})$$

Ζ

X