

NEWS IPC8 For general information regarding STN implementation of IPC 8

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 10:27:33 ON 23 JUN 2008

=> fil caplus
COST IN U.S. DOLLARS
SINCE FILE ENTRY SESSION
0.21 0.21
FULL ESTIMATED COST

FILE 'CAPLUS' ENTERED AT 10:27:48 ON 23 JUN 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 23 Jun 2008 VOL 148 ISS 26
FILE LAST UPDATED: 22 Jun 2008 (20080622/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

<http://www.cas.org/legal/info/policy.html>

=> d his

(FILE 'HOME' ENTERED AT 10:27:33 ON 23 JUN 2008)

FILE :CAPLUS: ENTERED AT 10:27:48 ON 23 JUN 2008

=> s reduction and palladium
342550 REDUCTION
178508 PALLADIUM
L1 7151 REDUCTION AND PALLADIUM

=> s 11 and diene
71779 DIENE
L2 26 L1 AND DIENE

=> s 12 and octadiene
4345 OCTADIENE
L3 1 L2 AND OCTADIENE

=> d bib abs

L3 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2008 ACS on STN
AN 2005:346922 CAPLUS

DN 142:411833

TI Schiff base metal complexes for use as catalysts in organic synthesis

IN Verpoort, Francis Walter Cornelius; Opstal, Tom

PA Universiteit Gent, Belg.

SO PCT Int. Appl., 94 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2005035121	A2	20050421	WO 2004-BE146	20041015
	WO 2005035121	A3	20050630		
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW			
	RW:	BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			

PRAI EP 2003-447257 A 20031016
US 2003-529010P P 20031212

OS MARPAT 142:411833

AB Schiff base metal complexes that are at least tetra-coordinated are useful as catalysts for ring-opening metathesis polymerization of unsatd. compds., cyclopropanation of styrene, oxidative cyclization of 2-aminobenzyl alc. with ketones, vinylation of terminal alkynes with carboxylic acids, and ring-closing metathesis of α,ω -dienes. A typical complex was manufactured by adding a solution of thallium ethoxide in THF dropwise to a solution of N-(4-bromo-2,6-dimethylphenyl)-2-hydroxy-1-phenylmethaneimine (I) in THF, stirring 2 h, adding (p-cymene)ruthenium dichloride dimer in THF to a THF solution of the resulting Tl salt of I, stirring 6 h, adding a MeLi solution in ether to an ether solution of the resulting intermediate complex at 0°, and slowly warming to room temperature, and stirring 4 h.

=> s palladium metal
178508 PALLADIUM
1842113 METAL
L4 628 PALLADIUM METAL
(PALLADIUM(W)METAL)

=> s zero valent palladium
217817 ZERO
15559 VALENT
178508 PALLADIUM
L5 48 ZERO VALENT PALLADIUM
(ZERO(W)VALENT(W)PALLADIUM)

=> s 15 and diene
71779 DIENE
L6 1 L5 AND DIENE

=> d bib abs

L6 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2008 ACS on STN
AN 2003:655952 CAPLUS
DN 139:323649
TI Zero-valent palladium complexes with
monodentate nitrogen α -donor ligands
AU Kluwer, Alexander M.; Elsevier, Cornelis J.; Buehl, Michael; Lutz, Martin;
Spek, Anthony L.
CS Institute of Molecular Chemistry, Universiteit van Amsterdam Nieuwe
Achtergracht 166, Amsterdam, 1018 WV, Neth.
SO Angewandte Chemie, International Edition (2003), 42(30), 3501-3504
CODEN: ACIEF5; ISSN: 1433-7851
PB Wiley-VCH Verlag GmbH & Co. KGaA
DT Journal
LA English
OS CASREACT 139:323649
AB Reaction of [Pd(nbd)(ma)] (ma = maleic anhydride, nbd = norbornadiene;
prepared by a modified lit. procedure) with appropriate nitrogen ligand, L
(NH₃, pyridine, aniline, Et₂NH) in dry THF at -70° to give
[Pd(L)₂(ma)] in typical yields of 65-70%. BP86/ECP1 level MO calcns. were
done on a number of selected [Pd(η 2-C₂H₄)(L)₂] compds. to assess the
driving force for their formation from corresponding tris alkene derivative
RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s palladium and diene
178508 PALLADIUM
71779 DIENE
L7 1824 PALLADIUM AND DIENE

=> s 17 and hexadiene
7937 HEXADIENE
L8 95 L7 AND HEXADIENE

=> s 18 and octadiene
4345 OCTADIENE
L9 13 L8 AND OCTADIENE

=> d 1-13 bib abs

L9 ANSWER 1 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 2006:689631 CAPLUS
DN 146:274425
TI Efficient and selective rhodium-catalyzed hydrophosphorylation of dienes
AU Ajellal, Noureddine; Thomas, Christophe M.; Carpentier, Jean-Francois
CS Organometalliques et Catalyse, UMR 6226 CNRS-Universite de Rennes 1,
Rennes, 35042, Fr.
SO Advanced Synthesis & Catalysis (2006), 348(9), 1093-1100
CODEN: ASCAF7; ISSN: 1615-4150
PB Wiley-VCH Verlag GmbH & Co. KGaA
DT Journal
LA English
OS CASREACT 146:274425
AB The hydrophosphorylation of a model 1,6-diene having a terminal
and an internal alkene function was studied. Free radical protocols lead
invariably to mixts. of cyclic phosphonate products, due to rapid
cyclization of the intermediary radical species. Rh catalysis using a
cyclic pinacol-derived phosphonate provides an efficient technique for the
highly selective (>99%) hydrophosphorylation at the terminal alkene

function. In situ modification of Wilkinson's complex by addition of 2-50 equiv (vs. Rh) of a monophosphine ($\text{PCy}_3 > \text{PPh}_3$) or carbene ligand greatly improves the catalyst performances (TON up to 2250 mol phosphonate/mol Rh). An even more efficient system was obtained with 2 equiv (vs. Rh) of the bidentate 1,6-bis(diphenylphosphino)hexane ligand, which affords so far unprecedented high catalytic productivity (TON up to 4,550 mol phosphonate/mol Rh) and activity (TOF up to 250 h⁻¹).

RE.CNT 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 2 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 2002:477203 CAPLUS
DN 137:185301
TI Synthesis of [n]- and [n.n]Cyclophanes by Using Suzuki-Miyaura Coupling
AU Smith, Beverly B.; Hill, Darren E.; Cropp, T. Ashton; Walsh, Rosa D.;
Cartrette, David; Hipps, Sherry; Shachter, Amy M.; Pennington, William T.;
Kwochka, William R.
CS Department of Chemistry and Physics, Western Carolina University,
Cullowhee, NC, 28723, USA
SO Journal of Organic Chemistry (2002), 67(15), 5333-5337
CODEN: JOCEAH; ISSN: 0022-3263
PB American Chemical Society
DT Journal
LA English
OS CASREACT 137:185301
GI

AB [N]metacyclophanes ($n = 7-10, 14$) and [6.6]cyclophanes such as [7]metacyclophane I and [6.6]cyclophane II are prepared in 1-17% yields in one pot by treatment of α,ω -dienes with 9-BBN in THF to give intermediate bisborylalkanes in situ followed by Suzuki-Miyaura coupling with aryl dibromides in the presence of tetrakis(triphenylphosphine) palladium and sodium hydroxide. [N]metacyclophanes ($n = 7-10, 14$) with 10-17 membered rings are prepared in 6-17% yields by reaction of 9-BBN with the dienes $\text{H}_2\text{C}:\text{CH}(\text{CH}_2)\text{mCH}:\text{CH}_2$ ($m = 3, 4, 5, 6, 10$) followed by palladium-catalyzed coupling with 1,3-dibromobenzene. [6.6]Cyclophanes are prepared by treatment of 1,5-hexadiene with 9-BBN followed by palladium-catalyzed coupling of the intermediate diborylhexane with aryl dibromides such as 1,4-dibromobenzene, 3,5-dibromotoluene, 2,6-dibromopyridine, and 2,7-dibromo-9H-fluorene; the [6]cyclophanes are not obtained. The structures of the [6.6]cyclophanes prepared are determined by X-ray crystallog. anal. II shows a particularly unusual structure in which the fluorene moieties are stacked facing one another with the rings bent inwards toward each other; this type of deformation with a $\pi-\pi$ stacking interaction between aromatic rings is rare.

RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 3 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 2001:861644 CAPLUS
DN 136:169404
TI Selective hydrogenation of diene hydrocarbons to olefins with mono- and bimetallic complexes of transition metals with oligoallene ligands
AU Khar'kova, E. M.; Rozantseva, L. E.; Frolov, V. M.
CS Inst. Neftekhim. Sinteza im. A. V. Topchieva, RAN, Moscow, Russia
SO Neftekhimiya (2001), 41(4), 287-292
CODEN: NEFTAH; ISSN: 0028-2421
PB Nauka
DT Journal
LA Russian
AB Mono-and bimetallic catalysts based on complexes of Pd, Ni, Co, and Fe with allene, 1,1-dimethylallene, and isoprene ligands were prepared. They exhibited high activity in hydrogenation of linear and cyclic dienes into olefins. Optimal conditions for synthesis of the catalysts were determined. Complexes of Co, Ni, and Fe were inactive in hydrogenation of isoprene. Synergistic effect was observed for bimetallic systems. Isomeric composition of hydrogenation products of isoprene and butadiene was determined.

L9 ANSWER 4 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 2001:817562 CAPLUS
DN 136:102715
TI Copolymerization of carbon monoxide with exo-methylenecycloalkane and dienes: synthesis of functionalized aliphatic polyketones
AU Kettunen, Mikko; Abu-Surrah, Adnan S.; Repo, Timo; Leskela, Markku
CS Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, FIN-00014, Finland
SO Polymer International (2001), 50(11), 1223-1227
CODEN: PLVIEI; ISSN: 0959-8103
PB John Wiley & Sons Ltd.

DT Journal
LA English
AB Synthesis of functional aliphatic polyketones was achieved by co- and terpolymn. of the strained exo-methylenecycloalkane, methylenecyclopropane (MCP), and also the dienes 1,5-hexadiene, 1,7-octadiene and 1,6-heptadien-4-ol, with carbon monoxide and propene, using the dicationic palladium(II) phosphine complex [Pd(dppp)(NCCH₃)₂](BF₄)₂ (I) (dppp is 1,3-bis(diphenylphosphino)propane) as the catalyst precursor. The resulting MCP/CO copolymer contains both ring-opened and cyclic microstructures. Ring-opening copolymn. yields exo-methylene functionalized polyketone. In contrast to hexadiene /carbon monoxide copolymer (Hx/CO), no ring structures were observed in the alternating octadiene/carbon monoxide (Oc/CO) and heptadien-4-ol/carbon monoxide (Hp-ol/CO) copolymers. The remaining double bonds were left intact to yield polymers with olefinic functionalities in the side chains.

RE.CNT 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 5 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 2001:85013 CAPLUS
DN 134:280492
TI A novel hydrogen transfer hydroalumination of alkenes with trisobutylaluminum catalyzed by Pd and other late transition metal complexes
AU Gagneur, Sebastien; Makabe, Hidefumi; Negishi, Ei-ichi

CS Department of Chemistry, Purdue University, West Lafayette, IN,
 47907-1393, USA
 SO Tetrahedron Letters (2001), 42(5), 785-787
 CODEN: TELEAY; ISSN: 0040-4039
 PB Elsevier Science Ltd.
 DT Journal
 LA English
 OS CASREACT 134:280492
 AB H transfer hydroalumination of terminal alkenes and dienes can be achieved with 1.1 equiv of (*i*-Bu)3Al and catalytic amounts of Cl2Pd(PPh3)2 and other late transition metal complexes containing Co, Rh, Ni, and Pt at ambient temperature
 in high yields. For example, 85% 1-iododecane was obtained from 1-decene, (*i*-Bu)3Al and Cl2Pd(PPh3)2 in CH2Cl2 followed by treatment with iodine. When 1,13-tetradecadiene was treated similarly except that the iodine treatment was replaced by O2/NaOH, 26% MeCH:CH(CH2)10CH2OH, 19% (CH2)10(CH2CH2OH)2, and 54% Et(CH2)10CH2CH2OH were obtained. 1,5-Hexadiene underwent a hydrometalation-cyclic carbometalation to give cyclopentylmethanol in 84% after oxidation by oxygen.
 RE.CNT 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 6 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
 AN 1999:595053 CAPLUS
 DN 131:230266
 TI Process and catalyst for selective hydrogenation of dienes and alkynes to olefins
 IN Cheung, Tin-Tack Peter; Johnson, Marvin Merrill
 PA Phillips Petroleum Company, USA
 SO PCT Int. Appl., 48 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 4

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9946041	A1	19990916	WO 1999-US5043	19990308
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ZW				
	RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BB, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	US 6096933	A	20000801	US 1998-39041	19980313
	AU 9929007	A	19990927	AU 1999-29007	19990308
	EP 1062038	A1	20001227	EP 1999-909915	19990308

R: BE, DE, FR, GB, IT, NL
 PRAI US 1998-39041 A1 19980313
 US 1996-595326 B2 1996201
 US 1997-867872 A2 19970604
 WO 1999-US5043 W 19990308
 AB A supported hydrogenation catalyst composition is disclosed which comprises a palladium component, at least one alkali metal iodide (such as potassium iodide), and an inorg. support material (such as alumina). The palladium component is concentrated in an area within about 150 µm of the exterior surface of the composition
 RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 7 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN

AN 1997:552710 CAPLUS
DN 127:234405
OREF 127:45749a,45752a
TI Palladium Migration along Linear Carbon Chains: The Detection of η^1 - η^2 -Enyl Intermediates and the Study of Their Rearrangement
AU Albeniz, Ana C.; Espinet, Pablo; Lin, Yong-Shou
CS Departamento de Quimica Inorganica Facultad de Ciencias, Universidad de Valladolid, Valladolid, 47005, Spain
SO Organometallics (1997), 16(19), 4138-4144
CODEN: ORGND7; ISSN: 0276-7333
PB American Chemical Society
DT Journal
LA English
OS CASREACT 127:234405
AB The reactions of [Pd(PfBr(NCMe)₂] (Pf = C₆F₅) with stoichiometric amts. of 1,5-hexadiene, 1,6-heptadiene, or 1,7-octadiene at low temperature result in the formation of several (η^1 - η^2 -enyl) palladium complexes that isomerize sequentially at different temps. depending on the ring size of the palladacycles (Tisom: 7.5- < 6.6- < 5.5-membered). These (η^1 - η^2 -enyl) palladium derivs. are intermediates in the Pd-migration process, arrested by coordination of the unattacked double bond. The final products of their isomerization are several isomeric Pf-(η^3 -allyl) palladium complexes (Pf = C₆H₅). The major allylic derivative in each case arises from Pd migration to the terminal double bond. Minor amts. of (η^3 -allyl) palladium complexes formed by double bond switches in the process of Pd migration are also seen, but this occurs only on putative 1,5- or 1,6-diene -hydrido-palladium intermediates. A small amount of cyclic organic derivs. coming from the cyclization of (η^1 - η^2 -enyl) palladium intermediates is detected in each case. The use of excess diolefin gives rise to addnl. (η^3 -allyl) palladium complexes without the Pf group and to the corresponding Pf-substituted linear dienes. These arise via displacement of the Pf dienes by the starting diolefin in a hydrido-palladium intermediate during the Pd-migration process.
RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 8 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 1995:739456 CAPLUS
DN 123:339180
OREF 123:60875a,60878a
TI Palladium-catalyzed allylic acetoxylation of olefins using hydrogen peroxide as oxidant
AU Jia, Chengguo; Mueller, Paul; Mimoun, Hubert
CS Department of Organic Chemistry, University of Geneva, CH 1211, Geneva, Switz.
SO Journal of Molecular Catalysis A: Chemical (1995), 101(2), 127-36
CODEN: JMCCF2; ISSN: 1381-1169
PB Elsevier
DT Journal
LA English
AB A new and efficient system for the allylic acetoxylation of olefins has been developed, which consists of a palladium (II) catalyst and hydrogen peroxide as oxidant in acetic acid. The acetoxylation reaction competes with the epoxidn. by the peracetic acid generated in situ in this system. Increase of the concentration of palladium catalyst and addition of benzoquinone (BQ), enhance the acetoxylation considerably. For the Pd(OAc)₂-BQ-H₂O₂ system, more than 1000 turnover number could be achieved in the acetoxylation of cyclohexene. Most internal and cyclic olefins tested gave the corresponding allylic acetates in fair to high yields. 1,3-Cyclohexadiene gave 1,4-diaceoxy-cyclohex-2-ene while 1,5-

hexadiene afforded 3-acetoxy-methylenecyclopentane; 1,7-octadiene produced 1-octen-7-one and octan-2,7-dione. Terminal olefins gave Me ketones in good yield with high turnover number both in the presence and absence of BQ. Possible mechanisms and involvement of palladium peroxidic species in both the catalytic acetoxylation and ketonization of olefins are discussed.

- L9 ANSWER 9 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
 AN 1995:397675 CAPLUS
 DN 122:214238
 OREF 122:39175a,39178a
 TI Configurational Assignment of Acyclic (π -Allyl) palladium Complexes: Analytical Application of Chelating Nitrogen Ligands
 AU Gogoll, Adolf; Gomes, Joao; Bergkvist, Magnus; Grennberg, Helena
 CS Department of Organic Chemistry, University of Uppsala, Uppsala, 751 21, Swed.
 SO Organometallics (1995), 14(3), 1354-64
 CODEN: ORGND7; ISSN: 0276-7333
 PB American Chemical Society
 DT Journal
 LA English
 AB A method for assignment of the relative stereochem. in acyclic (π -allyl) palladium complexes by ^1H NMR H-H coupling consts. has been developed. It is based on the introduction of nitrogen chelating ligands of the bipyridyl type into the complexes. The anal. suitability of several other types of nitrogen chelating ligands has also been investigated. A model for rationalization of the observed relation between stereochem. and spectral parameters is proposed. Introduction of the chelating ligand also affects the syn,anti equilibrium of the complexes. Isomer ratios depend upon the relative stereochem. of the side chain as well as on the chelating ligand.
- L9 ANSWER 10 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
 AN 1991:491646 CAPLUS
 DN 115:91646
 OREF 115:15751a,15754a
 TI Preparation of (1-alkene)-(1,3-alkadiene) adducts
 IN Ehlers, Jens; tom Dieck, Heindirk
 PA Hoechst A.-G., Germany
 SO Ger. Offen., 12 pp.
 CODEN: GWXXBX
 DT Patent
 LA German
 FAN.CNT 1
- | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|---|------|----------|-----------------|----------|
| PI DE 3906434 | A1 | 19900906 | DE 1989-3906434 | 19890301 |
| PRAI DE 1989-3906434 | | 19890301 | | |
| OS CASREACT 115:91646; MARPAT 115:91646 | | | | |
| AB R ₁ CH:CH ₂ (R ₁ = H, alkyl, ω -alkenyl, alkoxy, aryl) are added to R ₂ CH:CR ₃ CR ₄ :CR ₅ R ₆ (R ₂ -R ₆ = H, alkyl, alkenyl, aryl) in the presence of a catalyst system comprising: 1) an Fe, Ni, Pd, or Cr salt; 2) a Grignard reagent, a Li, or a Mg alkyl; and 3) R ₇ N:CR ₈ CR ₉ :NR ₁₀ (R ₇ ,R ₁₀ = alkyl, aryl; R ₈ ,R ₉ = H, alkyl; R ₈ R ₉ = atoms to complete a carbocyclic ring; R ₉ R ₁₀ = atoms to complete a heterocyclic ring). Thus, butadiene, ethene, Mg-butadiene-2THF, FeCl ₂ , and (PhN:CMe) ₂ were shaken in a glass ampul at room temperature to give, after 48 h, 97% a mixture comprising 21% (Z)-1,4-hexadiene and 79% (E,Z)-2,4-hexadiene. | | | | |
- L9 ANSWER 11 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
 AN 1991:448387 CAPLUS
 DN 115:48387

OREF 115:8389a,8392a
TI Palladium-catalyzed coupling of aryl iodides, nonconjugated dienes and carbon nucleophiles by palladium migration
AU Larock, Richard C.; Lu, Yong De; Bain, Anjali C.; Russell, Charles E.
CS Dep. Chem., Iowa State Univ., Ames, IA, 50011, USA
SO Journal of Organic Chemistry (1991), 56(15), 4589-90
CODEN: JOCEAH; ISSN: 0022-3263
DT Journal
LA English
OS CASREACT 115:48387
AB Aryl iodides, nonconjugated dienes, and carbon nucleophiles react in the presence of a palladium catalyst to give good yields of coupled products apparently formed by arylpalladium generation and addition to the less substituted end of the diene, palladium migration down the carbon chain to form a π -allylpalladium intermediate, and carbanion displacement of the palladium moiety. Coupling of PhI with H₂C:CHCH₂CH₂:CH₂ and H₂C(CO₂Et)₂ gave (E)-Ph(CH₂)₃CH:CHCH₂CH(CO₂Et)₂.

L9 ANSWER 12 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 1979:142652 CAPLUS

DN 90:142652

OREF 90:22561a,22564a

TI Silylhydrocarbyl phosphine transition metal complexes

IN Oswald, Alexis A.; Murrell, Lawrence L.

PA Exxon Research and Engineering Co., USA

SO U.S., 18 pp. Cont.-in-part of U.S. 4,083,803.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 4

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 4134906	A	19790116	US 1977-829898	19770901
US 3907852	A	19750923	US 1972-265507	19720623
US 4083803	A	19780411	US 1975-610628	19750905

PRAI US 1972-265507 A2 19720623

US 1975-610628 A2 19750905

AB Heterogeneous silylhydrocarbyl phosphine transition metal complex catalysts and intermediates therefore were prepared by the selective monoaddn. of silane having Cl, alkoxy, or acyloxy groups to an α,ω - diene, followed by the addition of a phosphine to the resulting ω -alkenyl silanes to form the corresponding silylalkyl phosphines, which were then covalently anchored as such or in the form of their transition metal complexes via condensation of their reactive silane substituents with hydroxy groups of silica and metal oxides, optionally followed by complexing the free phosphine groups of anchored silylalkyl phosphines with transition metal compds. The synthesis of numerous silanes, silane-phosphine compds., and transition metal complexes is given. Most of the catalysts are Rh-containing complexes, but other metal complexes containing Pd and Co were prepared

L9 ANSWER 13 OF 13 CAPLUS COPYRIGHT 2008 ACS on STN
AN 1975:478138 CAPLUS

DN 83:78138

OREF 83:12267a,12270a

TI Reaction of open-chain unconjugated dienes with palladium acetate. Dependence of the products on disposition of the two double bonds

AU Adachi, Nobuo; Kikukawa, Kiyoshi; Takagi, Makoto; Matsuda, Tsutomu

CS Fac. Eng., Kyushu Univ., Fukuoka, Japan

SO Bulletin of the Chemical Society of Japan (1975), 48(2), 521-5

CODEN: BCSJA8; ISSN: 0009-2673
DT Journal
LA English
AB The reaction of open chain unconjugated dienes with Pd(OAc)₂ in HOAc was examined particularly for the behavior of the two double bonds in the course of the acetoxylation. 1,5-Hexadiene produced 3-acetoxymethylenecyclopentane (64%), but 2,6-octadiene gave open-chain acetoxylated products: 3-acetoxyl-1,6-octadiene (46%) and 7-acetoxyl-2,5-octadiene (47%). The reactions of 1,6-heptadiene and diallyl ether gave cis- and trans-1-acetoxyl-1,6-heptadiene (63%) and γ-acetoxallyl allyl ethers (84%), resp. No participation of the second double bond was observed with 1,7-octadiene. The formation of a π,σ-Pd species possessing a stable pseudo-six membered ring was discussed.

=>

---Logging off of STN---

=>

Executing the logoff script...

=> LOG Y

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	78.61	78.82
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-12.00	-12.00

STN INTERNATIONAL LOGOFF AT 10:34:08 ON 23 JUN 2008