Föreläsning 5: Modellering II

- Repetition
- Begreppet tillstånd
- ► Tillståndsmodeller (linjära och olinjära)
- ightharpoonup Tillståndsmodell ightharpoonup överföringsfunktion

Lärandemål:

- Analysera linjära systems egenskaper i tids- och frekvensplanet och transformera mellan olika representationsformer.
- ► Formulera dynamiska modeller för enklare tekniska system, såväl i form av tillståndsekvationer som överföringsfunktioner.

Repetition – fysikaliskt modellbygge

- 1. Analysera systemets funktion, strukturera
 - Nedbrytning i delsystem
 - Vilka variabler?
 - Vilka kvalitativa samband?
 - → Graf eller blockschema
- 2. Ställ upp basekvationer
 - Balansekvationer
 - Konstitutiva samband
 - Dimensionskontroll
 - → Differentialekvationer och algebraiska samband
- 3. Formulera modell
 - Linjärisera?
 - Laplace-transformera, bilda överföringsfunktioner, eller...
 - Välj tillståndsvariabler och formulera tillståndsmodell (denna föreläsning)
 - $\rightarrow \ \mathsf{Differentialekvation}, \ \mathsf{\"overf\"{o}ringsfunktion} \ \mathsf{eller} \ \mathsf{tillst\^{a}ndsmodell}$

Repetition – analogier vid modellbygge

Energiflöden i tekniska system förmedlas ofta via en intensitet e(t) och ett flöde f(t), som tillsammans ger en effekt $P(t) = e(t) \cdot f(t)$.

Vanliga komponenter beskriver relationer mellan dessa variabler:

- ► Intensitetsupplagring (induktivt element)
- ► Flödesupplagring (kapacitivt element)
- Dissipation (resistivt element)

	Allmänt	Elektriskt	Flöde	Mekaniskt
Intensitet	e	и	р	F
Flöde	f	i	Q	V
Resistans	$e = \gamma f$	u = Ri	$p = R_f Q$	F = dv
Induktans	$f = \frac{1}{\alpha} \int e \cdot dt$	$i = \frac{1}{L} \int u \cdot dt$	$Q = \frac{1}{L_f} \int p \cdot dt$	$v = \frac{1}{m} \int F \cdot dt$
Kapacitans	$e = \frac{1}{\beta} \int f \cdot dt$	$u=\frac{1}{C}\int i\cdot dt$	$p = \frac{1}{C_f} \int Q \cdot dt$	$F = k \int v \cdot dt$

Några vanliga systemtyper

- Integral process $G(s) = \frac{K}{s}$ Ex. Tank med styrt inlopp eller utlopp
- Dubbelintegral process $G(s) = \frac{K}{s^2}$ Ex. Momentstyrd robot med försumbar friktion
- ► En tidskonstant $G(s) = \frac{K}{1+sT}$ Ex. Blandningsprocess
- Integrator + tidskonstant $G(s) = \frac{K}{s(1+sT)}$ Ex. DC-motor
- ▶ Dubbla tidskonstanter $G(s) = \frac{K}{(1+sT_1)(1+sT_2)}$ Ex. Dubbeltank
- ▶ Dämpad resonans $G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ Ex. Massa/fjädersystem med dämpning
- Instabila systemEx. Inverterad pendel
- Transportfördröjning (dödtid) $G(s) = e^{-sT_d}$ Ex. Transportband; kommunikationsfördröjning

Stegsvar för olika systemtyper

Tidsdiskreta modeller

De flesta tekniska system kan beskrivas av tidskontinuerliga modeller, men...

- ► Tidsdiskretisering kan ge en tidsdiskret modell
- Vissa fysikaliska fenomen är tidsdiskreta (ex. förbränningsmotor)
- Många data/informationssystem är till sin natur tidsdiskreta Ex. Mailserver

Styrsignalen u = MaxUsers, maximala antalet samtidiga användare. Utsignalen y = RIS, antalet processer (RPC) i servern. Modell baserad på experimentella data (tidsenhet min.):

$$y(k+1) = 0.43y(k) + 0.47u(k)$$

Tillståndsmodeller

En olinjär tillståndsmodell ges av:

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = g(x(t), u(t))$$

En linjär tillståndsmodell ges av:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

I båda fallen gäller att:

- $ightharpoonup x(t) = [x_1(t), \dots, x_n(t)]$ är tillståndsvektorn och n modellens ordningstal
- ightharpoonup u(t) är insignalen (som kan vara en vektor)
- \triangleright y(t) är utsignalen (som kan vara en vektor)

Tillståndsmodeller kallas också *interna* modeller (och tillståndsvariablerna interna variabler)

Varför tillståndsmodeller?

Tillståndsmodeller har flera fördelar:

- ► Naturligt resultat av fysikalisk modellering
- Kompakt modellbeskrivning, linjärt eller olinjärt
- Lätt att linjärisera
- Lämpligt för datorberäkningar inkl. simulering
- Flera in- och utsignaler möjligt

Från intern till extern modell

Anta att vi har en linjär tillståndsmodell, som beskriver vårt system:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Laplace-transformera och anta initialtillståndet är 0:

$$sX(s) - x(0) = AX(s) + BU(s)$$

$$Y(s) = CX(s) + DU(s)$$

$$\Rightarrow G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$

Notera att karakteristiska polynomet ges av det(sI - A) = 0, dvs polerna till G(s) ges av egenvärdena till matrisen A.

ERE103, Reglerteknik D, 2019