First Principles of Math

"Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt"

"Det er ikke å vite, men å lære, ikke å eie, men å tilegne seg, ikke å være til stede, men å komme dit, som gir den største gleden."

— Carl Friedrich Gauss

Dokumentet er laget av Sindre Sogge Heggen. Teksten er skrevet i LATEX og figurane er lagd vha. Asymptote.

First Principles of Math by Sindre Sogge Heggen is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

Forord

Matematikk har et enormt omfang av forgreninger og anvendelser, men det aller meste bygger på en overkommeleg mengde med grunnprinsipper, og det er disse jeg ønsker å presentere i denne boka. Et prinsipp i oppsummert form har jeg valgt å kalle en regel. Regler finn du i blå tekstboksar, som oftest etterfulgt av et eksempel på bruk av regelen. Ett av hovudmålene til denne boka er å gi leseren en forståelse av hvorfor reglene er som de er. I kapittel 1-5 vil du finne forklaringer i forkant av hver regel, mens i kapittel 6 finner du forklaringer enten i forkant av eller direkte etter en regel (og eventuelle eksempel). Fra og med kapittel 7 er noen forklaringer lagt til den avsluttande seksjonen Forklaringer, dette indikerer at de kan vere noe krevende å forstå og/eller at regelen er så intuitiv at mange vil oppleve det som overflødig å få den forklart.

Boka si oppbygging

Boka er delt inn i en *Del I* og en *Del II. Del I* handler i stor grad om å bygge en grunnleggende forståelse av tallene våre, og hvordan vi regner med dem. *Del II* introduserer konseptet algebra og de nært beslektede temaene potenser, likninger og funskjoner. I tillegg har både *Del I* og *Del II* avsluttende kapittel som handler om geometri.

Obs! Denne boka er fri for både oppgaver og eksempler på praktiske anvendelser av matematikk. Dette er to viktige element som med tiden vil komme, enten integrert i denne boka eller som en frittstående bok.

¹Å forklare reglene i steden for å bevise dem er et bevisst valg. Et bevis stiller sterke matematiske krav som ofte må defineres både på forhand og underveis i en utledning av ein regel, noe som kan føre til at forståelsen av hovudpoenget drukner i smådetaljer. Noen av forklaringene vil likevel være gyldige som bevis.

Kjære leser.

Denne boka er i utgangspunktet gratis å bruke, men jeg håper du forstår hvor mykje tid og ressurser jeg har brukt på å lage den. Jeg håper også å kunne fortsette arbeidet med å lage lærebøker som er med på å gjøre matematikk lett tilgjengeleg for alle, men det kan bli vanskelig med mindre arbeidet gir en viss inntekt. Hvis du ender opp med å like boka håper jeg derfor du kan donere 50 kr via Vipps til 90559730 eller via PayPal. Vær vennlig å markere donasjonen med "Mattebok" ved bruk av Vipps. På forhand takk!

Boka blir oppdatert så snart som råd etter at skrivefeil og lignende blir oppdaget. Jeg vil derfor råde alle til å laste ned en ny versjon i ny og ne ved å følge denne linken.

Nynorskversjonen av boka finner du her.

For spørsmål, ta kontakt på mail: sindre.heggen@gmail.com

Symbol

=	"er lik"
<	"er mindre enn"
>	"er større enn"
≤ ≥	"er mindre enn eller lik"
\geq	"er større enn eller lik"
\in	"er inneholdt i"
V	"eller"
[a,b]	lukket intervall fra og med a til og med b
a	lengden/tallverdien til a
\perp	"vinkelrett på"
	"parallell med"
\triangle	"trekant"
	"firkant"

Contents

I	Nυ	imbers, calculations and geometry	7				
1	The numbers						
	1.1	The equal sign, amounts and number lines	8				
	1.2		11				
	1.3		14				
2	The	The four elementary operations					
	2.1		16				
	2.2	Subtraction	18				
	2.3	Multiplication	20				
	2.4	Division	23				
3	Factorization and order of operations						
	3.1	Factorization	27				
	3.2	Order of operations	28				
4	Frac	etions	34				
	4.1	Introduction	35				
	4.2	Values, expanding and simplifying	38				
	4.3	Addition and subraction	41				
	4.4	Fractions multiplied by integers	45				
	4.5	Fractions divided by integers	47				
	4.6		50				
	4.7	Cancelation of fractions	51				
	4.8	Division by fractions	54				
	4.9	Rational numbers	57				
5	Negative numbers 58						
	5.1	Introduction	59				
	5.2	The elementary operations	61				
	5.3	Negative numbers as amounts	67				
6	Geo	Geometry					
	6.1	Terms	69				
	6.2	Attrributes of triangles and quadrilaterals	78				
	6.3	Perimeter	82				
	6.4		83				

II	Al	gebra and geometry	90			
7	Alge		91			
	7.1	Introduction	92			
	7.2	Powers	97			
	7.3	Irrational numbers	105			
8	Equa	ations	108			
	8.1	Introduction	109			
	8.2	Solving by the four operations	110			
	8.3	Solving methods summarized	117			
9	Functions 121					
	9.1	Introduction	122			
	9.2	Linear functions and graphs	125			
10	Geometry 133					
	10.1	Formulas of area and perimeter	134			
	10.2	Congruent and similar triangles	144			
	10.3	Explenation	149			
Inc	leks	1	165			

Part I Numbers, calculations and geometry

Chapter 1

The numbers

1.1 The equal sign, amounts and number lines

The equal sign

As the name implies, the equal sign = refers to things that are the same. In what sense some things are the same is a philosophical question and initially we are bound to this: What equality = points to must be understood by the context in which the sign is used. With this understanding of = we can study some basic properties of our numbers and then later return to more precise meanings of the sign.

The language box

Common ways of expressing = is

- "equals"
- "is the same as"

Amounts and number lines

There are so many things numbers can represent, however, in this book we shall stick to two ways of interpreting a number; a number as an *amount* and a number as a *placement on a line*. All representations of numbers relies on the understanding of 0 and 1.

Numbers as amounts

Talking about an amount, the number 0 is connected to nothing. A figure showing nothing will therefore equal 0:

$$= 0$$

1 we'll draw like a box:

$$=1$$

In this way, other numbers are defined by how many one-boxes (ones) we have:

¹In Chapter 2 we'll se that there are also other interpretations of 0.

Numbers as placements on a line

When placing numbers on a line, 0 is our starting point:

Now we place 1 a certain length to the right of 0:

Other numbers are now defined by how many one-lengths (ones) we are away from 0:

Positive integers

We'll soon see that numbers do not necessarily have to be a whole amount of ones, but those who are have their own name:

1.1 Positive integers

Numbers which are a whole amount of ones are called $positive^1 integers$. The positive integers are

$$1, 2, 3, 4, 5$$
 and so on.

Positive integers are also called *natural numbers*.

What about 0?

Some authors also include 0 in the definition of positive integers/natural numbers. This is in some cases beneficial, in others not.

¹We'll see what the the word *positive* refers to in chapter *chapter 5*.

1.2 Numbers, digits and value

Our numbers consists of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and their position. The digits and their positions defines the value of numbers.

Integers larger then 10

Let's, as an example, write the number fourteen by our digits.

We can now make a group of 10 ones, then we also have 4 ones. By this, we write fourteen as

¹Later on, we'll also se that *signs* have an impact on a numbers value (see *Chapter* 5).

Decimal numbers

Sometimes we don't have a whole amount of ones, and this brings the need of dividing 1 into smaller pieces. Let's start off by drawing a one:

Now we divide our one into 10 smaller pieces:

Since we have divided 1 into 10 pieces, we name one such piece a tenth:

We indicate tenths by using the $decimal \ mark$. :

The language box

In a lot of countires, comma , is used as decimal mark instead of dot.

 $3,5 \quad (other)$

 $3.5 \quad (english)$

Base-10 positional notation

So far we have seen how we can express the value of a number by placing digits according to the amount of tens, ones and tenths, and the pattern continues:

1.2 Base-10 positional notation

The value of a number is given by the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and their position. In respect of the digit indicating ones,

- digits to the left (respectively) indicate amount of tens, hundeds, thousands etc.
- digits to the left (respectively) indicate amount of tenths, hundedths, thousandths etc.

1.3 Koordinatsystem

Two number lines can be put together to form a *coordinate system*. In that case we place one number line *horizontally* and one *vertically*. A position in a coordinate system is called a *point*.

In fact, there are a lot of types of coordinate systems but in this book we'll use the term about the *cartesian coordinate system*. It is named after the french mathematician and philosopher René Descartes.

A point is written as two numbers inside a bracket. We shall call these two numbers the *first coordinate* and the *second coordinate*.

- The first coordinate tells how many units to move along the horizontal axis.
- The second coordinate tells how many units to move along the vertical axis.

In the figure, the points (2,3), (5,1) and (0,0) are shown. The point where the axis intersect, that is (0,0), is called *origo*.

Chapter 2

The four elementary operations

2.1 Addition

Addition with amounts

When we have an amount and wish to add more we use the symbol +. If we have 2 and want to add 3, we write

The order in which we add have no impact on the result; starting off with 2 and adding 3 is the same as starting off with 3 and adding 2:

The language box

A calculation involving addition includes two or more terms and one sum. In the calculation

$$2 + 3 = 5$$

both 2 and 3 are terms while 5 is the sum.

Common ways of saying 2 + 3 are

- "2 plus 3"
- \bullet "2 added to 3"
- "2 and 3 added"

2.1 Addition is commutative

The order of the terms have no impact on the sum.

Example

$$2+5=7=5+2$$

$$6+3=9=3+6$$

Addition on the number line: moving to the right

On a number line, addition with positive numbers involves moving to $the \ right$:

Example 1

Example 2

Interpretation of =

+ brings the possibility of expressing numbers in different ways, for example is 5=2+3 and 5=1+4. In this context = means "have the same value as". This is also the case regarding subtraction, multiplication and divison, which we'll look at in the next three sections.

2.2 Subtraction

Subtraction with amounts

When removing a part of an amount, we use the symbol -:

$$5 - \frac{3}{3} = 2$$

The language box

A calculation involving subtraction includes one or more *terms* and one *difference*. In the calculation

$$5 - 3 = 2$$

both 5 and 3 are terms while 2 is the difference.

Common ways of saying 5-3 are

- "5 minus 3"
- "3 subtracted from 5"

A new interpretation 0

As mentioned earlier in this book, 0 can be interpreted as "nothing". However, subtraction gives brings the possibility of expressing 0 by other numbers, for example is 7-7=0 and 19-19=0. In many practical situations, 0 indicates some form of equilibrium, like two opposite (in direction) forces of equal magnutide.

Subtraction on the number line: Moving to the left

I Section 2.1, we have seen that + (with positive numbers) involves moving to the right on the number line. With - it's the opposite, we move to the left¹:

Example 2

Notice

At first it may seem a bit odd moving in the opposite direction of the way in wich the arrows point, as in *Example 1* og 2. However, in *Chapter 5* this will turn out to be useful.

¹In figures with number lines the red colored arrows indicates that one shall start at the arrow head and move to the other end.

2.3 Multiplication

Multiplication by integers: inital definition

When adding equal numbers, we can use the multiplication symbol • to write our calculations more compact:

Example

$$4 + 4 + 4 = 4 \cdot 3$$

$$8 + 8 = 8 \cdot 2$$

$$1+1+1+1+1=1\cdot 5$$

The language box

A calculation involving multiplication includes severeal factors and one product. In the calculation

$$4 \cdot 3 = 12$$

both 4 and 3 are factors, while 12 is the product.

Common ways of saying $4 \cdot 3$ are

- "4 times 3"
- "4 multiplied by 3"
- "4 and 3 multiplied together"

A lot of texts use × instead of ·. In computer programming,

* is the most common symbol for multiplication.

Multiplication involving amounts

Let us illustrate $2 \cdot 3$:

$$2 \cdot 3 = \boxed{ } + \boxed{ } + \boxed{ } = \boxed{ }$$

Now notice the product of $3 \cdot 2$:

2.2 Multiplication is commutative

The order of the factors have no impact on the product.

Example

$$3 \cdot 4 = 12 = 4 \cdot 3$$

$$6 \cdot 7 = 42 = 7 \cdot 6$$

$$8 \cdot 9 = 72 = 9 \cdot 8$$

Mulitplication on the number line

We can also use the number line to calculate multiplications. In the case of $2 \cdot 4$ we can think like this:

"2 · 4 means moving 2 places to the right, 4 times."

We can also use the number line to convince ourselves that multiplication is commutative:

" $4 \cdot 2$ means moving 4 places to the right, 2 times."

Final definition of multiplication by positive integers

It may be the most intuitive to interpret "2 times 3" as "3, 2 times". Then

"2 times
$$3$$
" = $3 + 3$

In this section we introduced $2 \cdot 3$, that is "2 times 3", as 2+2+2. With this interpretation, 3+3 corresponds to $3 \cdot 2$, but the fact that multiplication is a commutative operation (*Rule 2.2*) ensures that the one interpretation does not exclude the other; $2 \cdot 3 = 2 + 2 + 2$ and $2 \cdot 3 = 3 + 3$ are two expressions of same value.

2.3 Multiplication as repeated addition

Multiplication involving a positive integer can be expressed as repeated addition.

Example 1

$$4+4+4=4\cdot 3=3+3+3+3$$

$$8+8=8\cdot 2=2+2+2+2+2+2+2$$

$$1+1+1+1+1=1\cdot 5=5$$

Notice

The fact that multiplication with positive integers can be expressed as repeated addition does not exclude other expressions. It's nothing wrong with writing $2 \cdot 3 = 1 + 5$.

2.4 Division

: is the symbol for divison. Division has three different interpretations, here exemplified by the calculation 12:3:

2.4 The three interpretations of division

• Distribution of amounts

12:3= "The number in each group when evenly distributing 12 into 3 groups"

• Number of equal terms

12:3= "The number of 3's added to make 12"

• The inverse operation of multiplication

12:3= "The number which yields 12 when multiplied by 3"

The language box

A calculation involving division includes a dividend, a divisor and a quotient. In the calculation

$$12:3=4$$

12 is the dividend, 3 is the divisor and 4 is the quotient.

Common ways of saying 12:3 are

- \bullet "12 divided by 3"
- "12 to 3"

In a lot of contexts, / is used instead of :, especially in computer programming.

Sometimes 12:3 is called "the ratio of 12 to 3".

Distribution of amounts

The calculation 12:3 tells that we shall distribute 12 into 3 equal groups:

We observe that each group contains 4 boxes, which means that

$$12:3=4$$

Number of equal terms

12 equals the sum of 4 instances of 3, that is 12:3=4.

The inverse operation of multiplication

We have just seen that if we divide 12 into 3 equal groups, we get 4 in each group. Hence 12:3=4. The sum of these groups makes 12:

However, this is the same as multiplying 4 by 3, in other words: If we know that $4 \cdot 3 = 12$, we also know that 12 : 3 = 4. As well we know that 12 : 4 = 3.

Example 1

Since
$$6 \cdot 3 = 18$$
,

$$18:6=3$$

$$18:3=6$$

Since
$$5 \cdot 7 = 35$$
,

$$35:5=7$$

$$35:7=5$$

Chapter 3

Factorization and order of operations

3.1 Factorization

If an integer dividend and an integer divisor results in an integer quotient, we say that the dividend is *divisible* by the divisor. For example is 6 divisible with 3 because 6:3=2, and 40 is divisible with 10 because 40:10=4. The concept of divisibility contributes to the definition of *prime numbers*:

3.1 Primtal

A natural number larger than 1, and only divisible by itself and 1, is a prime number.

Example

The first five prime numbers are 2, 3, 5, 7 og 11.

3.2 Factorization

Factorization involves writing a number as the product of other numbers.

Example

Factorize 24 in three different ways.

Answer:

$$24 = 2 \cdot 12$$

$$24 = 3 \cdot 8$$

$$24 = 2 \cdot 3 \cdot 4$$

3.3 Prime factorization

Factorization involving prime factors only is called prime factorization.

Example

Prime factorize 12.

Answer:

$$12 = 2 \cdot 2 \cdot 3$$

3.2 Order of operations

Priority of the operations

Look at the following calculation:

$$2 + 3 \cdot 4$$

This *could* have been interpreted in two ways:

- 1. "2 plus 3 equals 5. 5 times 4 equals 20. The answer is 20."
- 2. "3 times 4 equals 12. 2 plus 12 equals 14. The answer is."

But the answers are not the same! This points out the need of having rules for what to calculate first. One of these rules is that multiplication and division is to be calculated *before* addition or subtraction, which means that

$$2+3\cdot 4=$$
 "Calculate $3\cdot 4$, then add 2"
= $2+12$
= 14

But what if we wanted to calculate 2 + 3 first, then multiplying the sum by 4? We use parentheses to tell that something is to be calculated first:

$$(2+3) \cdot 4 =$$
 "Calculate $2+3$, multiply by 4 afterwards"
= $5 \cdot 4$
= 20

3.4 Order of operations

- 1. Expressions with parentheses
- 2. Multiplication or division
- 3. Addition or subtraction

Example 1

Calculate

$$23 - (3+9) + 4 \cdot 7$$

Answer:

$$23 - (3+9) + 4 \cdot 7 = 23 - 12 + 4 \cdot 7$$
 Paranthesis
$$= 23 - 12 + 28$$
 Multiplication
$$= 39$$
 Addition and subtraction

Example 2

Calculate

$$18:(7-5)-3$$

Answer:

$$18: (7-5) = 18: 2-3$$
 Paranthesis
= $9-3$ Division
= 6 Addition and subtraction

Multiplication involving paranthesis

How many boxes are present in this figure?

To ways of thinking are these:

1. It is $2 \cdot 4 = 8$ purple boxes and $3 \cdot 4 = 12$ green boxes. In total there are 8 + 12 = 20 boxes. This we can write as

$$2 \cdot 4 + 3 \cdot 4 = 20$$

2. It is 2+3=5 boxes horizontally and 4 boxes vertically, so there are $5 \cdot 4 = 20$ boxes in total. This we can write as

29

$$(2+3)\cdot 4 = 20$$

From these two calculations it follows that

$$(2+3) \cdot 4 = 2 \cdot 4 + 3 \cdot 4$$

3.5 Distributive law

When an expression enclosed by a parenthesis is a factor, we can multiply the other factors with each term inside the parenthesis.

Example 1

$$(4+7) \cdot 8 = 4 \cdot 8 + 7 \cdot 8$$

Example 2

$$(10-7) \cdot 2 = 10 \cdot 2 - 7 \cdot 2$$

= $20 - 14$
= 6

Notice: Obviously, it would be easier to calculate like this:

$$(10-7) \cdot 2 = 3 \cdot 2 = 6$$

Example 2

Calculate $12 \cdot 3$.

Answer:

$$12 \cdot 3 = (10 + 2) \cdot 3$$
$$= 10 \cdot 3 + 2 \cdot 3$$
$$= 30 + 6$$
$$= 36$$

Notice

We introduced parenthesis as an indicator of what to calculate first, but $Rule\ 3.5$ gives an alternative and equivalent interpretation of parenthesis. The rule is especially useful when working with algebra (see $Part\ II$).

Multiplying by 0

Earlier who have seen that 0 can be expressed as the difference between two numbers, and this can help us calculate when multiplying by 0. Let's look at the calculation

$$(2-2) \cdot 3$$

By Rule 3.5, we get

$$(2-2) \cdot 3 = 2 \cdot 3 - 2 \cdot 3$$
$$= 6 - 6$$
$$= 0$$

Since 0 = 2 - 2, this means that

$$0 \cdot 3 = 0$$

3.6 Multiplication by 0

If 0 is a factor, the product equals 0.

Example 1

$$7 \cdot 0 = 0$$

$$0 \cdot 219 = 0$$

Associative laws

3.7 Associative law for addition

The placement of parentheses between terms have no impact on the sum.

$$(2+3)+4=8$$

$$2 + (3 + 4) = 8$$

3.8 Associative law for multiplication

The placement of parentheses between factors have no impact on the product.

Example

$$(2 \cdot 3) \cdot 4 = 6 \cdot 4 = 24$$

$$2 \cdot (3 \cdot 4) = 2 \cdot 12 = 24$$

Opposite to addition and multiplication, neither subtraction nor divison is associative:

$$(12-5)-4=7-4=3$$

$$12 - (5 - 4) = 12 - 1 = 11$$

$$(80:10):2=8:2=4$$

$$80:(10:2)=80:5=16$$

We have seen how parentheses hjelps indicating the *priority* of operations, but the fact that subtraction and divison is non-associative brings the need of having a rule of in which *direction* to calculate.

3.9 Direction of calculations

Operations which by *Rule 3.4* have equal priority, are to be calculated from left to right.

$$12 - 5 - 4 = (12 - 5) - 4$$
$$= 7 - 4$$
$$= 3$$

Example 2

$$80:10:2 = (80:10):2$$

= $8:2$
= 4

$$6: 3 \cdot 4 = (6:3) \cdot 4$$
$$= 2 \cdot 4$$
$$= 8$$

Chapter 4

Fractions

4.1 Introduction

4.1 Fractions as rewriting of divison

A fraction is a different way of writing a divison. In a fraction the dividend is called the *numerator* and the divisor the denominator.

$$1: 4 = \frac{1}{4} \stackrel{\longleftarrow}{\longleftarrow} \underset{Nemnar}{\text{Tellar}}$$

The language box

Common ways of saying $\frac{1}{4}$ are¹

- "one fourth"
- "1 of 4"
- "1 over 4"

Fractions as amounts

Let us present $\frac{1}{4}$ as an amount. We then think of the number 1 as a box¹:

¹We also have the expressions from the language box on page 23.

¹For practical reasons, we choose a unit box larger than the one used in *Chapter 1*.

Further, we divide this box into four smaller, equal-sized boxes. The sum of these boxes equals 1.

$$\begin{array}{c|c} \frac{1}{4} & \frac{1}{4} \\ \hline \frac{1}{4} & \frac{1}{4} \end{array} = 1$$

One such box equals $\frac{1}{4}$:

$$=\frac{1}{4}$$

However, if you from a figure only are to see how large a fraction is, the size of 1 must be known, and to make this more apparent we'll also include the "empty" boxes:

In this way, the blue and the empty boxes tells us how many pieces 1 is divided into, while the blue boxes alone tells how many of these boxes are *actually* present. In other words,

 $\label{eq:number of blue boxes} \begin{aligned} & \text{number of blue boxes} = \text{numerator} \\ & \text{number of blue boxes} + \text{number of empty boxes} = \text{denomiator} \end{aligned}$

$$= \frac{2}{3} \qquad = \frac{7}{10} \qquad = \frac{19}{20}$$

Fractions on the number line

On the number line, we divide the length between 0 and 1 into as many pieces as the denominator indicates. In the case of a fraction with denominator 4, we separate the length between 0 og 1 into 4 equal lengths:

Moreover, fractions larger than 1 are easily presented on the number line:

Numerator and denominator summarized

Although already mentioned, the interpretations of the numerator and the denominator is of such importance that we shortly summarize them:

- The denominator tells how many pieces 1 is divided into.
- The numerator tells how many of these pieces are present.

4.2 Values, expanding and simplifying

4.2 The value of a fraction

The value of a fraction is given by dividing the numerator by the denominator.

Example

Find the value of $\frac{1}{4}$.

Answer:

$$\frac{1}{4} = 0.25$$

Fractions with equal value

Fractions can have the same value even though they look different. If you calculate $1:2,\,2:4$ and 4:8, you will in every case end up with 0.5 as the answer. This means that

$$\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = 0.5$$

Expanding

The fact that fractions can look different but have the same vaue, implies that we can change a fraction's look without changing its value. Let's, as an expample, change $\frac{3}{5}$ into a fraction of equal value but with denominator 10:

- We can make $\frac{3}{5}$ into a fraction with denominator 10 if we divide each fifth into 2 equal pieces. In that case, 1 is divided into $5 \cdot 2 = 10$ pieces in total.
- The numerator of $\frac{3}{5}$ indicates that there are 3 fifths. When these are divided by 2, they make up $3 \cdot 2 = 6$ tenths. Hence $\frac{3}{5}$ equals $\frac{6}{10}$.

Simplifying

Notice that we can also go "the opposite way". We can change $\frac{6}{10}$ into a fraction with denominator 5 by dividing both the numerator and the denominator by 2:

$$\frac{6}{10} = \frac{6:2}{10:2} = \frac{3}{5}$$

4.3 Expanding of fractions

We can either multiply or divide both the numerator and the denominator by the same number without alternating the fractions value.

Multiplying by a number larger than 1 is called *expanding* the fraction. Dividing by a number larger than 1 is called *simplifying* the fraction.

Example 1

Expand $\frac{3}{5}$ into a fraction with denominator 20.

Answer:

Since $5 \cdot 4 = 20$, we multiply both the numerator and the denominator by 4:

$$\frac{3}{5} = \frac{3 \cdot 4}{5 \cdot 4}$$
$$= \frac{12}{20}$$

Example 2

Expand $\frac{150}{50}$ into a fraction with denominator 100.

Answer:

Since $50 \cdot 2 = 100$, we multiply both the numerator and the denominator by 2:

$$\frac{150}{50} = \frac{150 \cdot 2}{50 \cdot 2}$$
$$= \frac{300}{100}$$

Example 3

Simplify $\frac{18}{30}$ into a fraction with denominator 5.

Answer:

Since 30:6=5, we divide both the numerator and the denominator by 5:

$$\frac{18}{30} = \frac{18:6}{30:6}$$
$$= \frac{3}{5}$$

4.3 Addition and subraction

Addition and subtraction of fractions are in large parts focused around the denominators. Recall that the denominators indicates the partitioning of 1. If fractions have equal denominators, they represent amounts of equal-sized pieces. In this case it makes sense calculating addition or subtraction of the numerators. However, if fractions have unequal denominators, they represent amounts of different-sized pieces, and hence addition and subtraction of the numerators makes no sense directly.

Equal denominators

If we, for example, have 2 sixths and add 3 sixths, the sum is 5 sixths:

4.4 Addition/subtraction of fractions with equal denominators

When adding/subtracting fractions with equal denominators, we find the sum/difference of the numerators and keep the denominator.

$$\frac{7}{9} - \frac{5}{9} = \frac{7 - 5}{9}$$
$$= \frac{2}{9}$$

Unequal denominators

Let's examine the calculation¹

To write the difference as a single fraction, the two terms need to have denominators of equal value. Both of the fractions can have denominator 10:

$$\frac{3}{5} = \frac{3 \cdot 2}{5 \cdot 2} = \frac{6}{10}$$

$$\frac{3}{5} = \frac{3 \cdot 2}{5 \cdot 2} = \frac{6}{10}$$
 $\frac{1}{2} = \frac{1 \cdot 5}{2 \cdot 5} = \frac{5}{10}$

Hence

$$\frac{3}{5} - \frac{1}{2} = \frac{6}{10} - \frac{5}{10}$$

¹Recall that the red-colored arrow indicates that you shall start at the arrow head and then move to the other end.

Summarized, we have expanded the fractions such that they have denominators of equal value, that is 10. When the denominators are equal, we can calculate the difference of the numerators:

$$\frac{3}{5} - \frac{1}{2} = \frac{6}{10} - \frac{5}{10}$$
$$= \frac{1}{10}$$

4.5 Addition/subtraction of fractions with unequal denominators

When calculating addition/subtraction of fractions, we must expand the fractions such that they have a denominators of equal value, and then apply *Rule 4.4*.

Example 1

Calculate

$$\frac{2}{9} + \frac{6}{7}$$

Both denominators can be transformed into 63 if multiplied by a fitting integer. Therefore, we expand the fractions as follows:

$$\frac{2 \cdot 7}{9 \cdot 7} + \frac{6 \cdot 9}{7 \cdot 9} = \frac{14}{63} + \frac{54}{63}$$
$$= \frac{68}{63}$$

Common denominator

In Example 1 above, 63 is called a *common denominator* because there exists integers which, when multiplied by the original denominators, results in 63:

$$9 \cdot 7 = 63$$

$$7 \cdot 9 = 63$$

Multiplying together the original denominators always results in a common denominator but one can avoid large numbers by finding the *smallest* common denominator. Take, for example,

$$\frac{7}{6} + \frac{5}{3}$$

 $6 \cdot 3 = 18$ is a common denominator, but it's worth noticing that $6 \cdot 1 = 3 \cdot 2 = 6$ is too.

Example 2

Calculate

$$\frac{3}{2} - \frac{5}{8} + \frac{10}{4}$$

Answer:

All denominators can be transformed into 8 if multiplied by a fitting integer. Therefore, we expand the fractions as follows:

$$\frac{3}{2} - \frac{5}{8} + \frac{10}{4} = \frac{3 \cdot 4}{2 \cdot 4} - \frac{5}{8} + \frac{10 \cdot 2}{4 \cdot 2}$$
$$= \frac{12}{8} - \frac{5}{8} + \frac{20}{8}$$
$$= \frac{27}{8}$$

4.4 Fractions multiplied by integers

In Section 2.3 we observed that multiplying by an integer corresponds to repeated addition. Hence, if we are to calculate $\frac{2}{5} \cdot 3$, we can write

$$\frac{2}{5} \cdot 3 = \frac{2}{5} + \frac{2}{5} + \frac{2}{5}$$

$$= \frac{2+2+2}{5}$$

$$= \frac{6}{5}$$

$$\frac{2}{5} \qquad \frac{2}{5} \qquad \frac{2}{5}$$

$$0 \qquad \frac{1}{5} \qquad \frac{2}{5} \qquad \frac{3}{5} \qquad \frac{4}{5} \qquad \frac{5}{5} \qquad \frac{6}{5}$$

Noticing that $2+2+2=2\cdot 3$, we get

$$\frac{2}{5} \cdot 3 = \frac{2 \cdot 3}{5}$$
$$= \frac{6}{5}$$

Multiplication of integers and fractions are also commutative 1 :

$$3 \cdot \frac{2}{5} = 3 \cdot 2 : 5$$
$$= 6 : 5$$
$$= \frac{6}{5}$$

4.6 Brøk gonga med heiltal

When multiplying a fraction by an integer, we multiply the numerator by the integer.

 $^{^{1}}$ Recall that $\frac{2}{5}$ corresponds to 2:5.

$$\frac{1}{3} \cdot 4 = \frac{1 \cdot 4}{3}$$
$$= \frac{4}{3}$$

Example 2

$$3 \cdot \frac{2}{5} = \frac{3 \cdot 2}{5}$$
$$= \frac{6}{5}$$

An interpretation of multiplying by a fraction

By Rule 4.6 we can make an interpretation of multiplying by a fraction. For example, multiplying 3 by $\frac{2}{5}$ can be interpreted in these two following ways:

• We multiply 3 by 2 and divide by 5:

$$(3 \cdot 2) : 5 = \frac{3 \cdot 2}{5} = \frac{6}{5}$$

• We divide 3 by 5 and multiply the quotient by 2:

$$3:5=\frac{3}{5}$$
 , $\frac{3}{5}\cdot 2=\frac{3\cdot 2}{5}=\frac{6}{5}$

4.5 Fractions divided by integers

It is now important to recall two things:

- Division can be interpreted as an distribution of equal amounts
- In a fraction it is the numerator which indicates the amount (the denominator indicates the partitioning of 1)

When the numerator is divisible by the divisor

Let's calculate

We have 6 eights which are to be equally distributed into 2 groups. This results in 6:2=3 eights.

Thus

$$\frac{6}{8}:2=\frac{3}{8}$$

When the numerator is not divisible by the denominator

What if we are to divide $\frac{3}{4}$ by 2?

Thing is, we can always expand the fraction such that the numerator becomes divisible by the divisor. Since 2 is the divisor, we expand the fraction by 2:

$$\frac{3}{4} = \frac{3 \cdot 2}{4 \cdot 2} = \frac{6}{8}$$

$$= \frac{1}{0} = \frac{1}{4} = \frac{1}{24} = \frac{1}{4} = \frac{1$$

Now we have 6 eights. 6 eights divided by 2 equals 3 eights:

Hence

$$\frac{3}{4}$$
: $2 = \frac{3}{8}$

In effect, we have multiplied $\frac{3}{4}$ by 2:

$$\frac{3}{4} : 2 = \frac{3}{4 \cdot 2} \\ = \frac{3}{8}$$

4.7 Fractions divided by integers

When dividing a fraction by an integer, we multiply the denominator by the integer.

Example 1

$$\frac{5}{3}:6 = \frac{5}{3 \cdot 6} \\ = \frac{5}{18}$$

Notice

At the start of this section we found that

$$\frac{4}{8}:2=\frac{2}{8}$$

In that case, there were no need to multiply the denominator by 2, such as *Rule 4.7* implies. However, if we do, we have

$$\frac{4}{8}: 2 = \frac{4}{8 \cdot 2} = \frac{4}{16}$$

Now,

$$\frac{2}{8} = \frac{2 \cdot 2}{8 \cdot 2} = \frac{4}{16}$$

Hence, unsurprisingly, the two answers are of equal value.

4.6 Fractions multiplied by fractions

We have seen that¹ multiplying a number by a fraction involves multiplying the number by the numerator and then dividing the product by the denominator. Let us apply this to calculate

$$\frac{5}{4} \cdot \frac{3}{2}$$

Firstly, we multiply $\frac{5}{4}$ by 3, then we divide the resulting product by 2. By *Rule 4.6*, we have

$$\frac{5}{4} \cdot 3 = \frac{5 \cdot 3}{4}$$

And by Rule 4.7, we get

$$\frac{5\cdot 3}{4}: 2 = \frac{5\cdot 3}{4\cdot 2}$$

Hence

$$\frac{5}{4} \cdot \frac{3}{2} = \frac{5 \cdot 3}{4 \cdot 2}$$

4.8 Fractions multiplied by fractions

When multiplying a fraction by a fraction, we multiply numerator by numerator and denominator by denominator.

Example 1

$$\frac{4}{7} \cdot \frac{6}{9} = \frac{4 \cdot 6}{7 \cdot 9}$$
$$= \frac{24}{63}$$

$$\frac{1}{2} \cdot \frac{9}{10} = \frac{1 \cdot 9}{2 \cdot 10}$$
$$= \frac{9}{20}$$

¹Look at the text box with the title An interpretation of multiplying by a fraction on page 46.

4.7 Cancelation of fractions

When the numerator and the denomerator are of equal value, the fractions value always equals 1. For example, $\frac{3}{3} = 1$, $\frac{25}{25} = 1$ etc. We can exploit this fact to simplify expressions involving fractions.

Let us simplify the expression

$$\frac{8\cdot 5}{9\cdot 8}$$

Since $8 \cdot 5 = 5 \cdot 8$, we can write

$$\frac{8\cdot 5}{9\cdot 8} = \frac{5\cdot 8}{9\cdot 8}$$

And, as recently seen ($Rule\ 4.8$), we have

$$\frac{5\cdot 8}{9\cdot 8} = \frac{5}{9} \cdot \frac{8}{8}$$

Since $\frac{8}{8} = 1$,

$$\frac{5}{9} \cdot \frac{8}{8} = \frac{5}{9} \cdot 1$$
$$= \frac{5}{9}$$

When multiplication is exclusively present in a fraction, you can always shuffle the way we did in the above expressions. However, when you have understood the outcome of the shuffling, it is better to apply cancellation. You then draw a line across two and two equal factors, thus indicating that they constitute a fraction which equals 1. Hence, our most recent example can be simplified to

$$\frac{\cancel{8} \cdot 5}{9 \cdot \cancel{8}} = \frac{5}{9}$$

4.9 Cancellation of factors

When multiplication is exclusively present in a fraction, we can cancel pair of equal factors in numerator and denominator.

Example 1

Cancel as many factors as possible in the fraction.

$$\frac{3\cdot 12\cdot 7}{7\cdot 4\cdot 12}$$

Answer:

$$\frac{3\cdot\cancel{\cancel{1}}\cancel{\cancel{2}}\cdot\cancel{\cancel{7}}}{\cancel{\cancel{7}}\cdot\cancel{\cancel{4}}\cdot\cancel{\cancel{1}}\cancel{\cancel{2}}} = \frac{3}{4}$$

Example 1

Simplify the fraction $\frac{12}{42}$.

Answer:

$$\frac{12}{42} = \frac{\cancel{6} \cdot 2}{\cancel{6} \cdot 7}$$
$$= \frac{2}{7}$$

Example 2

Simplify the fraction $\frac{48}{16}$.

Answer:

$$\frac{48}{16} = \frac{3 \cdot \cancel{16}}{\cancel{16}}$$
$$= \frac{3}{1}$$
$$= 3$$

Notice: If all factors are canceled in the numerator or the denominator, 1 takes their place.

Fractions simplify calculations

The decimal number 0.125 can be written as the fraction $\frac{1}{8}$. The calculation

$$0.125 \cdot 16$$

is, for the most of us, rather strenuous to carry out. However, exploiting the nature of fractions, we have

$$0.125 \cdot 16 = \frac{1}{8} \cdot 16$$
$$= \frac{2 \cdot \cancel{8}}{\cancel{8}}$$
$$= 2$$

"Cancelling zeros"

A number such as 3000 equals $3 \cdot 10 \cdot 10 \cdot 10$, while 700 equals $7 \cdot 10 \cdot 10$. Hence, we can simplify $\frac{3000}{700}$ like this:

$$\frac{3000}{700} = \frac{3 \cdot \cancel{10} \cdot \cancel{10} \cdot \cancel{10}}{7 \cdot \cancel{10} \cdot \cancel{10}}$$
$$= \frac{3 \cdot \cancel{10}}{7}$$
$$= \frac{30}{7}$$

In practice, this is the same as "cancelling zeros":

$$\frac{3000}{700} = \frac{30}{7}$$

Aware! Zeros are the only digits we can "cancel" this way. For example, $\frac{123}{13}$ cannot be simplified in any way. Also, we can only "cancel" zeros which are right-most situated, e.g. we cannot "cancel" zeros in the fraction $\frac{101}{10}$.

4.8 Division by fractions

Divison by studying the number line

Let's calculate $4:\frac{2}{3}$. Since the fraction have denominator 3, it could be wise to transform aslo 4 into a fraction with denominator 3.

Recall that one of the interpretations of $4:\frac{2}{3}$ is

"The number of $\frac{2}{3}$'s added to make 4."

By studying a number line, we find that 6 instances of $\frac{2}{3}$ added together equals 4. Hence

A general method

We can't study the number line every time we are to divide by a fraction, so here we shall find a general method, again with $4:\frac{2}{3}$ as our example. In this case, we apply the following interpretation of divison:

$$4: \frac{2}{3} =$$
 "The number to multiply $\frac{2}{3}$ by to make 4."

We begin the search of this number by multiplying $\frac{2}{3}$ by the number which results in the product equal to 1. This number is the *inverted* fraction of $\frac{2}{3}$, namely $\frac{3}{2}$:

$$\frac{2}{3} \cdot \frac{3}{2} = 1$$

Now we only have to multiply by 4 to make 4:

$$\frac{2}{3} \cdot \frac{3}{2} \cdot 4 = 4$$

Therefore, to make 4 we must multiply $\frac{2}{3}$ by $\frac{3}{2} \cdot 4$. Consequently,

$$4: \frac{2}{3} = \frac{3}{2} \cdot 4$$
$$= 6$$

4.10 Fractions divided by fractions

When dividing a number by a fraction, we multiply the number by the inverted fraction.

$$6: \frac{2}{9} = 6 \cdot \frac{9}{2} \\ = 27$$

$$\frac{4}{3} : \frac{5}{8} = \frac{4}{3} \cdot \frac{8}{5}$$
$$= \frac{32}{15}$$

Example 3

$$\frac{3}{5} : \frac{3}{10} = \frac{3}{5} \cdot \frac{10}{3}$$
$$= \frac{30}{15}$$

In this case we should also observe that the fraction can be simplified:

$$\frac{30}{15} = \frac{2 \cdot \cancel{15}}{\cancel{15}}$$
$$= 2$$

Notice: Canceling factors along the way saves the labour of working with large numbers:

$$\frac{3}{5} \cdot \frac{10}{3} = \frac{\cancel{3} \cdot 2 \cdot \cancel{5}}{\cancel{5} \cdot \cancel{3}}$$
$$= 2$$

4.9 Rational numbers

4.11 Rational numbers

Any number which can be expressed as a fraction is a rational number.

Merk

Rational numbers is a collective name of

• Integers

For example $4 = \frac{4}{1}$.

- Decimal numbers with a finite number of digits For example $0.2 = \frac{1}{5}$.
- Decimal numbers with infite digits in a repeating manner

For example 1 $0.08\bar{3} = \frac{1}{12}$.

 $^{^1}$ $\bar 3$ indicates that 3 repeats infinite. Another way of expressing this is by using That is, $0.08\bar 3=0.08333333...$

Chapter 5

Negative numbers

5.1 Introduction

Earlier we have seen that e.g. 5 on a number line is placed 5 one-lengths to the right of 0.

But what if we move in the other direction, that is to the left? The question is answered by introducing *negative numbers*.

5.1 Positive and negative numbers

On a number line the following applies:

- Numbers placed to the right of 0 are positive numbers.
- Numbers placed to the left og 0 is negative numbers.

However, relying on the number line every time negative numbers are involved would be very inconvenient, and therefore we also use a symbol to indicate negative numbers. This is $\boxed{}$, that is the same symbol used to indicate subtraction. From this it follows that 5 is a positive number, while -5 is a negative number. On the number line we have that

- 5 is placed 5 one-lengths to the right of 0.
- -5 is placed 5 one-lengths to the left of 0.

Hence, the big difference between 5 and -5 is on which side of 0 the numbers are placed. Since 5 and -5 have the same distance from 0, we say that 5 and -5 have equal length.

5.2 Length (absolute value/modulus/magnitude)

The length of a number is expressed by the symbol $| \ |$.

The length of a positive number equals the value of the number.

The length of a negative number equals the value of the positive number with the corresponding digits.

Example 1

$$|27| = 27$$

Example 2

$$|-27| = 27$$

Forteikn

Sign is a collective name of + and -. + is the sign of 5 and - is the sign of -5.

5.2 The elementary operations

The introduction of negative numbers brings new aspects to the elementary operations, aspects which we are to discuss here. When adding, subtracting, multiplying or dividing by negative numbers we'll frequently, to make it more clear, write negative numbers enclosed by parenthesis. Then we'll write for example -4 as (-4).

Addisjon

When adding in Section 2.1 + implied moving to the right. Negative numbers forces an alternation of the interpretation of +:

+ "As long and in the same direction as"

Let's study the calculation

$$7 + (-4)$$

Our alternated definition of + implies that

7 + (-4) ="7 and as long and in the same direction as (-4)"

(-4) has length 4 and direction to the left. Hence, the calculation tells us to start at 7 and then move the length of 4 to the left.

$$7 + (-4) = 3$$

5.3 Addisjon med negative tal

Adding a negative numbers is the same as subtracting the number of equal magnitude.

Example 1

$$4 + (-3) = 4 - 3 = 1$$

$$-8 + (-3) = -8 - 3 = -11$$

Notice

Rule 2.1 declares that addition is commutative. This also applies after introducing negative numbers, for example is

$$7 + (-3) = 4 = -3 + 7$$

Subtraksjon

In Section 2.2 — implied moving to the left. The interpretation of — also needs an alternation when working with negative numbers:

- "As long and in *opposite* direction as"

Let's study the calculation

$$2 - (-6)$$

Our alternated definition of — implies that

2-(-6)= "2 and as long and in the opposite direction as (-6)"

-6 have length 6 and direction to the left. When moving an equal length, but in the *opposite* direction, we have to move the length of 6 to the right¹. This is equivalent to adding 6:

$$2 - (-6) = 2 + 6 = 8$$

5.4 Subtraksjon med negative tal

Subtracting a negative number is the same as adding the number of equal magnitude.

$$11 - (-9) = 11 + 9 = 20$$

¹Once again, recall that the red colored arrow indicates starting at the arrow head, then moving to the other end.

Example 2

$$-3 - (-7) = -3 + 7 = 4$$

Multiplikasjon

In <u>Section 2.3</u> multiplication by positive integers were introduced as repeated addition. By our alternated interpretations of addition and subtraction we can now also alternate the interpretation of multiplication:

5.5 Multiplication by positive and negative integers I

- Multiplication by a positive integer corresponds to repeated addition.
- Multiplication by a negative integer corresponds to repeated subtraction.

Example 1

$$2 \cdot 3 =$$
 "As long and in the same direction as 2, 3 times"
= $2 + 2 + 2$
= 6

Example 2

$$(-2)\cdot 3=$$
 "As long and in the same direction as $(-2),\,3$ times"
$$=-2-2-2$$

$$=-6$$

$$2 \cdot (-3) =$$
 "As long and in the *opposite* direction as 2, 3 times"
= $-2 - 2 - 2$
= -6

Example 4

$$(-3) \cdot (-4) =$$
 "As long and in the *opposite* direction as -3 , 4 times"
= $3 + 3 + 3 + 3$
= 12

Multiplikasjon er kommutativ

Example 2 and Example 3 on page 63 illustrates that Rule 2.2 also implies after introducing negative numbers:

$$(-2) \cdot 3 = 3 \cdot (-2)$$

It would be very laborious to calculate multiplication by repeated addition/subtrction every time a negative number is involved, however, as a direct consequence of $Rule\ 5.5$ we can make the two following rules:

5.6 Multiplication by negative numbers I

The product of a negative and a positive number is a negative number.

The magnitude of the factors multiplied together gives the magnitude of the product.

Example 1

Calculate $(-7) \cdot 8$

Answer:

Since $7 \cdot 8 = 56$, we have $(-7) \cdot 8 = -56$

Example 2

Calculate $3 \cdot (-9)$.

Answer:

Since $3 \cdot 9 = 27$, we have $3 \cdot (-9) = -27$

5.7 Multiplication ny negative numbers II

The product of two negative numbers is a positive number.

The magnitude of the factors multiplied together gives the value of the product.

Example 1

$$(-5) \cdot (-10) = 5 \cdot 10 = 50$$

Example 2

$$(-2) \cdot (-8) = 2 \cdot 8 = 16$$

Division

From the definition of division (see Section 2.4), combined with what we now know about multiplication involving negative number, it follows that

$$-18:6=$$
 "Talet eg må gonge 6 med for å få -18 "

$$6 \cdot (-3) = -18$$
, altså er $-18 : 6 = -3$

$$42:(-7)=$$
 "Talet eg må gonge -7 med for å få 42 "

$$(-7)\cdot(-8)=42,$$
altså er $42:(-7)=-8$

$$-45:(-5)=$$
"Talet eg må gonge -5 med for å få -45 "

$$(-5) \cdot 9 = -45$$
, altså er $-45 : (-5) = 9$

5.8 Division involving negative numbers

Division between a positive and a negative number results in a negative number.

Division between two negative numbers results in a positive number.

The magnitude of the dividend divided by the magnitude of the divisoren gives the magnitude of the quotient.

Example 1

$$-24:6=-4$$

Example 2

$$24:(-2)=-12$$

Example 3

$$-24:(-3)=8$$

Example 4

$$\frac{2}{-3} = -\frac{2}{3}$$

$$\frac{-10}{7} = -\frac{10}{7}$$

5.3 Negative numbers as amounts

Attention! This view of negative numbers will first come into use in Section 8.2, a section which a lot of readers can skip without loss of understanding.

So far we have studied negative number by the aid of number lines. Studying negative numbers as amounts is at first difficult because negative amounts makes no sense! To make an interpretation of negative numbers through the perspective of amounts, we'll use what we shall call the weight principle. Then we look upon the numbers as amounts of forces. The positive numbers are amounts of forces acting downward while the negative numbers are amounts of forces working upwards¹. In this way, the results of calculations involving positive and negative numbers can be looked upon as the result of a weighing of the amounts. Hence, a positive number and a negative number of equal magnitude will cancel each other.

5.9 Negative tal som mengde

Negative tal vil vi indikere som ei lyseblå mengde:

$$= -1$$

$$1 + (-1) = 0$$

$$+$$
 = 0

¹From reality one can look upon the positive and the negative numbers as balloons filled with air and helium, respectively. Balloons filled with air acts with a force downwards (they fall), while balloons filled with helium acts with a force upwards (they rise).

Chapter 6

Geometry

6.1 Terms

Punkt

A given position is called a¹ point. We mark a point by drawing a dot, which we preferably name by a letter. Beneath we have drawn the points A og B.

Line and segment

A straight dash with infinite length (!) is called a *line*. The fact that the line has infinite length makes *drawing* a line impossible, we can only *imagine* a line. Imagining a line we can do by drawing a straight dash and think of its ends as wandering out in each direction.

A straight dash between two points is called a *segment*.

The segment between the points A and B we write as AB.

Notice

A segment is an excerpt of a line, therefore a line and a segment have a lot of attributes in common. When writing about lines, it will be up to the reader to confirm whether the same applies for segments. Hence we avoid the need of writing "lines/segments".

¹See also Section 1.3.

Segment or length?

The segments AB and CD have equal length, but they are not the same segment. Still we'll write AB = CD. That is, we'll use the same names for the line segments and their lengths (the same applies for angles and their values, see page 72-74). We'll do this by the following reasons:

- The context will make it clear weather we are talking about a segment or length.
- Finding it necessary to write "the length of AB" e.g. would make sentences less readable.

Distance

There are infinite ways one can move from one point to another and some ways will be longer then other. When talking about a distance in geometry, we usually mean the *shortest* distance. For geometries studied in this book the shortest distance between two points will always equal the length of the segment (blue in the figure below) connecting them.

Circle; center, radius and diameter

If we make an enclosed curve where all points on this curve have the same distance to a given point, we have a *circle*. The point which all the points on the curve have an equal distance to is the *center* of the circle. A segment between a point on the curve and the center is called a *radius*. A segment between two points on the curve, and passing through the center, is called a *diameter*¹.

¹As mentioned, *radius* and *diameter* can just as well indicate the length of the segments.

Parallel lines

Lines aligned in the same direction are *parallel*. The figure below shows two pairs of parallel lines.

We use the symbol | to indicate that two geometries are parallell.

Vinklar

Non-parallel lines will sooner or later intersect. The gap formed by two non-parallel lines is called an *angle*. We draw angles as small circular curves:

Lines creating an angle are called the sides of the angle. The intersection point of the lines are called the vertex of the angle. It is common to use the symbol \angle to underline the angle in question. In the figure below we have the following:

- the angle $\angle BOA$ has angle sides OB and OA and vertex O.
- the angle $\angle AOD$ has angle sides OA and OD and vertex O.

Measure of angles in degrees

When measuring an angle in degrees, we imagine a circular curve divided into 360 equally long pieces. We call one such piece one degree, indicated by the symbol \circ .

Notice that an angle with measure 90° is indicated by the symbol \square . Such an angle is called a *right* angle. Lines/segments which form right angles are said to be *perpendicular* to one another, and this we indicate by the symbol \bot .

What angle?

Strictly speaking, when two segments (or lines) intersect they form two angles; the one larger than 180° and the other smaller than 180° . Usually it is the smaller angle we wish to study, therefore it is common to define $\angle AOB$ as the smaller angle formed by the segments OA og OB.

As long as there are only two segments/lines present, it is also common using only one letter to indicate the angle:

6.1 Vertical angles

Two opposite angles with a common vertex is called *vertical* angles. Vertical angles are of equal measure.

6.1 Vertical angles (forklaring)

We have

$$\angle BOC + \angle DOB = 180^{\circ}$$

$$\angle AOD + \angle DOB = 180^{\circ}$$

Hence, $\angle BOC = \angle AOD$. Similarly, $\angle COA = \angle DOB$.

Sides and vertices

When line segments form an enclosed shape, we have a *polygon*. The figure below shos (from left to right) a triangle, a quadrilateral and a pentagon.

The segments of a polygon are called *edges* or *sides*. The respective intersection points of the segments are the *vertices* of the polygon. That is, the triangle below have vertices A, B and C and sides (edges) AB, BC og AC.

Noitce

Often we'll only write a letter to indicate a vertex of a polygon.

Diagonals

Segments between two vertices not belonging to the same side of a polygon is called a diagonal. The figure below shows the diagonals AC and BD.

Altitudes and base lines

In Section 6.4, the terms base and height (altitude) plays an important role. To find the height of a triangle, we choose one of the sides to be the base. In the figure below, let's start with AB as the base. Then the height is the segmet from AB (potentially, as is the case here, the extension of AB) to C, perpendicular to AB.

Since there are three sides which can be bases, a triangle has three heights.

Notice

The terms altitude and base also applies to other polygons.

6.2 Attrributes of triangles and quadrilaterals

In addition to having a certain number of sides and vertices, polygons also have other attributes, such as sides or angles of equal measure, or parallel sides. There are specific names of polygons with special attributes, and these names can be put into an overview where some "inherit" attributes from others.

6.2 Trekantar

 $\label{eq:triangle} \mbox{Triangle} \mathrel{\stackrel{\textstyle \sim}{\smile}} \mbox{Right triangle} \\ \mbox{Isosceles triangle} \longrightarrow \mbox{Equilateral triangle}$

Trekant

Have three sides and three vertices.

Right triangle

Have an angle of 90° .

Isosceles triangle

At least two sides are of equal length. At least two angles are of equal measure.

Equilateral triangle

The sides are of equal length. Each of the angles equals 60°.

Example

Since an equilateral triangle have three sides of equal length and three angles equal to 60°, it is also an isosceles triangle.

The language box

The longest side of a right triangle is called the *hypotenuse*. The shortest sides are called legs.

¹In Rule 6.2 and Rule 6.4 this is indicated by arrows.

6.3 The sum of angles in a triangle

In a triangle, the sum of the angles equals 180° .

$$\angle A + \angle B + \angle C = 180^{\circ}$$

6.3 The sum of angles in a triangle (forklaring)

We draw a segment FG passing through C and parallel to AB. Moreover, we place E and D on the extension of AC and BC, respectively. Then $\angle A = \angle GCE$ and $\angle B = \angle DCF$. $\angle ACB = \angle ECD$ because they are vertical angles. Now

$$\angle DCF + \angle ECD = \angle GCE = 180^{\circ}$$

Hence

$$\angle CBA + \angle ACB + \angle BAC = 180^{\circ}$$

6.4 Quadrilaterals Quadrilateral Have four sides and four vertices. Trapezoid Have at least one pair of parallel sides. Parallelogram Have two pairs of parallel sides. Have two pairs of equal angles. Rhombus All sides are of equal length. Rectangle All angles equals 90°. Square

Example

The square is both a rhombus and a rectangle, which means it "inherits" their attributes. From this it follows that in a square

- all sides are of equal length.
- \bullet all angles equals 90°.

6.5 The sum of angles in a quadrilateral

In a quadrilateral, the sum of the angles equals 360° .

$$\angle A + \angle B + \angle C + \angle D = 180^{\circ}$$

6.5 The sum of angles in a quadrilateral (forklaring)

The total sum of angles of $\triangle ABD$ and $\triangle BCD$ equals the sum of the angles in $\Box ABCD$. By *Rule 6.3*, the sum of angles of triangles 180°, therefore the sum of the angles of $\Box ABCD$ equals $2 \cdot 180^{\circ} = 360^{\circ}$.

6.3 Perimeter

When we measure the length around an enclosed shape, we fint its *perimeter*. Let's find the perimeter of this rectangle:

The rectangle have two sides of length 4 and two sides of length 5.

Hence

The perimeter of the rectangle =
$$4 + 4 + 5 + 5$$

= 18

6.6 Perimeter

Perimeter is the length around a closed shape.

In figure (a) the perimeter equals 5 + 2 + 4 = 11.

In figure (b) the perimeter equals 4+5+3+1+6+5=24.

6.4 Area

Our surroundings are full of *surfaces*, for example the on a floor or a sheet. When measuring surfaces, we find their *area*. The concept of area is the following:

We imagine a square with sides of length 1. We call this the one-square.

Then, regarding the surface for which we seek the area of, we ask:

"How many one-squares does this surface contain?"

The area of a rectangel

Let's fin the area of a rectangle with baseline 3 and altitude 2.

Simply by counting we find that the rectangle contains 6 one-squares:

The area of the rectangle = 6

Looking back at Section 2.3, we notice that

The area of the rectangle = $3 \cdot 2$

= 6

6.7 The area of a rectangle

 $Area = baseline \cdot altitude$

base

Width and length

In a rectangle, the baseline and the altitude are also referred to as (in random order) the *width* and the *length*.

Example 1

Find the area of the rectangle¹.

Answer:

The area of the rectangle $= 4 \cdot 2 = 8$

Example 2

Find the area of the square.

Answer:

The area of the square $= 3 \cdot 3 = 9$

¹Notice: The lengths used in one figure will not necessarily correspond with the lengths in another figure. That is, a side of length 1 in one figure can might as well be shorter than a side of length 1 in a another figure.

The areaa of a triangle

Concerning triangles, there are three different cases to study:

1) The baseline and the altitude have a common end point Let's find the area of a right triangle with baseline 5 and altitude 3.

We can make a rectangle by copying our triangle, then joining the sides which are not the heights and altitudes in question:

By Rule 6.7, the area of the rectangle equals $5 \cdot 3$. The area of one of the triangles makes up half the area of the rectangle, so

The area of the blue triangle =
$$\frac{5 \cdot 3}{2}$$

Regarding the blue triangle we have

$$\frac{5 \cdot 3}{2} = \frac{\text{baseline} \cdot \text{altitude}}{2}$$

2) The altitude is placed outside the triangle

The triangle below has baseline 4 and altitude 3.

We make a rectangle containing the blue triangle:

Now we introduce the following names:

The area of the rectangle = R

The area of the blue triangle = B

The area of the orange triangle = O

The area of the green triangle = G

We have (both the red and the green triangles are right-angled)

$$R = 3 \cdot 10 = 30$$

$$O = \frac{3 \cdot 10}{2} = 15$$

$$G = \frac{3 \cdot 6}{2} = 9$$

Moreover,

$$B = R - O - G$$
$$= 30 - 15 - 9$$
$$= 6$$

Observe that we can write

$$6 = \frac{4 \cdot 3}{2}$$

Regarding the blue triangle we recognize this as

$$\frac{4 \cdot 3}{2} = \frac{\text{grunnlinje} \cdot \text{høgde}}{2}$$

3) The altitude is placed inside the triangle, but have no common end point with the baseline

The triangle below has baseline 5 and altitude 4.

We make a rectangle containing the blue triangle (split into red and yellow triangles):

Observe that

- the area of the red triangle makes up half the area of the rectangle formed by the red and the orange triangle.
- the area of the yellow triangle makes up half the area of the rectangle formed by the yellow and the green triangle.

It now follows that the sum of the areas of the yellow and the red triangle makes up half the area of the rectangle formed by the four colored triangles. The area of this rectangle equals $5 \cdot 4$, and since our original triangle (the blue) includes the red and the orange triangle, we have

The areae of the blue triangle
$$=\frac{5\cdot 4}{2}=\frac{\text{baseline} \cdot \text{altitude}}{2}$$

All three cases summarized

One of the cases discussed will always be valid for a chosen baseline in a triangle. All cases resulted in the same expression for the area of the triangle.

Example 1

Find the area of the triangle.

Answer:

The area of the triangle
$$=\frac{4\cdot 3}{2}$$

 $=6$

Example 2

Find the area of the triangle.

Answer:

The area of the triangle =
$$\frac{6 \cdot 5}{2} = 15$$

Example 3

Find the area of the triangle.

Answer:

The area of the triangle
$$=\frac{7\cdot 3}{2}=\frac{21}{2}$$

Part II Algebra and geometry

Chapter 7

Algebra

7.1 Introduction

Simply said, algebra is mathematics where letters represent numbers. This makes it easier working with general cases. For example, we have $3 \cdot 2 = 2 \cdot 3$ and $6 \cdot 7 = 7 \cdot 6$ but these are only two of the infinite many multiplication calculations there is! One of the aims of algebra is giving one example that explains all cases, and since our digits (0-9) are inevitably connected to specific numbers, we apply letters to reach this target.

The value of the numbers represented by letters will often vary, in that case we call the letter-numbers *variables*. If letter-numbers on the other han have a specific value, they are called *constants*.

In $Part\ I$ of the book we studied calculations through examples with specific numbers, however, most of these rules are general; they are valid for all numbers. One page 92-95, many of these rules are reproduced in a general form. A good way of getting acquainted with algebra is comparing the rules here presented by the way they are expressed in 1 i $Part\ I$.

7.1 Addition is commutative (2.1)

$$a+b=b+a$$

Example

$$7 + 5 = 5 + 7$$

7.2 Multiplication is commutative (2.2)

$$a \cdot b = b \cdot a$$

Example 1

$$9 \cdot 8 = 8 \cdot 9$$

$$8 \cdot a = a \cdot 8$$

 $^{^{1}}$ The number of the rules as found in $Part\ I$ is written in parentheses.

Multiplication by letters

When multiplying by letters, it is common to omit the symbol of multiplication. If a specific number and a letter are multiplied together, the specific number is written first. For example,

$$a \cdot b = ab$$

and

$$a \cdot 8 = 8a$$

We also write

$$1 \cdot a = a$$

In addition, it is common to omit the symbol of multiplication when an expression with parenthesis is involved:

$$3 \cdot (a+b) = 3(a+b)$$

7.3 Fractions as rewriting of divison (4.1)

$$a:b=\frac{a}{b}$$

Example

$$a:2=\frac{a}{2}$$

7.4 Fractions multiplied by fractions (4.8)

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Example 1

$$\frac{2}{11} \cdot \frac{13}{21} = \frac{2 \cdot 13}{11 \cdot 21} = \frac{26}{231}$$

$$\frac{3}{b} \cdot \frac{a}{7} = \frac{3a}{7b}$$

7.5 Division by fractions (4.10)

$$\frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

Example 1

$$\frac{1}{2} : \frac{5}{7} = \frac{1}{2} \cdot \frac{7}{5}$$

Example 2

$$\frac{a}{13} : \frac{b}{3} = \frac{a}{13} \cdot \frac{3}{b}$$
$$= \frac{3a}{13b}$$

7.6 Distributive law (3.5)

$$(a+b)c = ac + bc$$

Example 1

$$(2+a)b = 2b + ab$$

Example 2

$$a(5b-3) = 5ab - 3a$$

7.7 Multiplication by negative numbers I (5.6)

$$a \cdot (-b) = -(a \cdot b)$$

$$3 \cdot (-4) = -(3 \cdot 4)$$
$$= -12$$

Example 2

$$(-a) \cdot 7 = -(a \cdot 7)$$
$$= -7a$$

7.8 Multiplication ny negative numbers II (5.7)

$$(-a) \cdot (-b) = a \cdot b$$

Example 1

$$(-2) \cdot (-8) = 2 \cdot 8$$
$$= 16$$

Example 2

$$(-a) \cdot (-15) = 15a$$

Extensions of the rules

One of the strengths of algebra is that we can express compact rules which are easily extended to apply for other cases. Let's as an example find another expression of

$$(a+b+c)d$$

Rule 7.6 does not directly imply how to calculate between the expression in the parenthesis and d, but there is no wrong-doing in defining a + b as k:

$$a + b = k$$

Then

$$(a+b+c)d = (k+c)d$$

Now, by Rule 7.6 we have

$$(k+c)d = kd + cd$$

Inserting the expression for k, we have

$$kd + cd = (a+b)d + cd$$

By applying Rule 7.6 once more we can write

$$(a+b)d + cd = ad + bc + cd$$

Then

$$(a+b+c)d = ad + bc + cd$$

Notice! This example is not ment to show how to handle expressions not directly covered by Rule 7.1-7.8, but to emphasize why it's always sufficient to write rules with the least amount of terms, factors etc. Usually one applies extension of the rules without even thinking about it, and surely not in the meticulous manner here provided.

7.2 Powers

$$\operatorname{grunntal} \longrightarrow 2^3 \! \longleftarrow \operatorname{eksponent}$$

A power is composed by a *base* and an *exponent*. For example, 2^3 is a power with base 2 and exponent 3. An exponent which is a positive integer indicates the amount of instances of the base to be multiplied together, that is

$$2^3 = 2 \cdot 2 \cdot 2$$

7.9 Potenstall

 a^n is a power with base a and exponent n.

If n is a natural number, a^n corresponds to n instances of a multiplied together.

Notice: $a^1 = a$

Example 1

$$5^3 = 5 \cdot 5 \cdot 5$$
$$= 125$$

Example 2

$$c^4 = c \cdot c \cdot c \cdot c$$

Example 3

$$(-7)^2 = (-7) \cdot (-7)$$

$$= 40$$

The language box

Common ways of saying 2^3 are¹

- "2 to the power of 3"
- "2 to the third power"

In programming languages one usually writes the symbol or the symbols ** between the base and the exponent.

¹Attention! The examples illustrates a small paradox of the English language. Thing is, *power* is also a (and in the spoken language the preferred) synonym for *exponent*.

Notice

The next pages declares rules concerning powers with corresponding explanations. Even though one wish to have these explanations as general as possible, we choose to use exponents which are not variables. Using variables as exponents would lead to less reader-friendly expressions and it is our claim that the general cases are well illustrated by the specific cases.

7.10 Multiplication by powers

$$a^m \cdot a^n = a^{m+n}$$

Example 1

$$3^5 \cdot 3^2 = 3^{5+2} = 3^7$$

Example 2

$$b^4 \cdot b^{11} = b^{3+11} = b^{14}$$

Example 3

$$a^5 \cdot a^{-7} = a^{5-7}$$

= a^{-2}

(See *Rule 7.13* regarding how powers with negative exponents can be interpreted.)

7.10 Multiplication by powers (forklaring)

Let's study the case

$$a^2 \cdot a^3$$

We have

$$a^2 = 2 \cdot 2$$

$$a^3 = 2 \cdot 2 \cdot 2$$

Hence we can write

$$a^{2} \cdot a^{3} = \underbrace{a \cdot a}^{a^{2}} \cdot \underbrace{a \cdot a \cdot a}^{a^{3}}$$
$$= a^{5}$$

7.11 Division by powers

$$\frac{a^m}{a^n} = a^{m-n}$$

Example 1

$$\frac{3^5}{3^2} = 3^{5-2} = 3^3$$

$$\frac{2^4 \cdot a^3}{a^2 \cdot 2^2} = 2^{4-2} \cdot a^{3-2}$$
$$= 2^2 a$$
$$= 4a$$

7.11 Division by powers (forklaring)

Let's examine the fraction

$$\frac{a^5}{a^2}$$

Expanding the powers, we get

$$\frac{a^5}{a^2} = \frac{a \cdot a \cdot a \cdot a \cdot a}{a \cdot a}$$
$$= \frac{\alpha \cdot \alpha \cdot a \cdot a \cdot a}{\alpha \cdot \alpha}$$
$$= a \cdot a \cdot a$$
$$= a^3$$

The above calculations are equivalent to writing

$$\frac{a^5}{a^2} = a^{5-2}$$
$$= a^3$$

7.12 The special case of a^0 $a^0 = 1$

Example 1

$$1000^0 = 1$$

Example 2

$$(-b)^0 = 1$$

7.12 The special case of a^0 (forklaring)

A number divided by itself always equals 1, therefore

$$\frac{a^n}{a^n} = 1$$

From this, and Rule 7.11, it follows that

$$1 = \frac{a^n}{a^n}$$
$$= a^{n-n}$$
$$= a^0$$

7.13 Powers with negative exponents

$$a^{-n} = \frac{1}{a^n}$$

Example 1

$$a^{-8} = \frac{1}{a^8}$$

Example 2

$$(-4)^{-3} = \frac{1}{(-4)^3} = -\frac{1}{64}$$

7.13 Powers with negative exponents (forklaring)

By Rule 7.12, we have $a^0 = 1$. Thus

$$\frac{1}{a^n} = \frac{a^0}{a^n}$$

By Rule 7.11, we obtain

$$\frac{a^0}{a^n} = a^{0-n}$$
$$= a^{-n}$$

7.14 Fractions as base

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

Example 1

$$\left(\frac{3}{4}\right)^2 = \frac{3^2}{4^2} = \frac{9}{16}$$

$$\left(\frac{a}{7}\right)^3 = \frac{a^3}{7^3} = \frac{a^3}{343}$$

7.14 Fractions as base (forklaring)

Let's study

$$\left(\frac{a}{b}\right)^3$$

We have

$$\left(\frac{a}{b}\right)^3 = \frac{a \cdot a \cdot a}{b \cdot b \cdot b}$$
$$= \frac{a^3}{b^3}$$

7.15 Fatcors as base

$$(ab)^m = a^m b^m$$

Example 1

$$(3a)^5 = 3^5 a^5$$
$$= 243a^5$$

Example 2

$$(ab)^4 = a^4b^4$$

7.15 Fatcors as base (forklaring)

Let's use $(a \cdot b)^3$ as an example. We have

$$(a \cdot b)^3 = (a \cdot b) \cdot (a \cdot b) \cdot (a \cdot b)$$
$$= a \cdot a \cdot a \cdot b \cdot b \cdot b$$
$$= a^3 b^3$$

7.16 Powers as base

$$(a^m)^n = a^{m \cdot n}$$

Example 1

$$\left(c^4\right)^5 = c^{4\cdot 5}$$
$$= c^{20}$$

Example 2

$$\left(3^{\frac{5}{4}}\right)^8 = 3^{\frac{5}{4} \cdot 8}$$
$$= 3^{10}$$

7.16 Powers as base (forklaring)

Let's use $(a^3)^4$ as an expample. We have

$$\left(a^3\right)^4 = a^3 \cdot a^3 \cdot a^3 \cdot a^3$$

By Rule 7.10, we get

$$a^{3} \cdot a^{3} \cdot a^{3} \cdot a^{3} = a^{3+3+3+3}$$

$$= a^{3\cdot 4}$$

$$= a^{12}$$

7.17 *n*-rot

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

The symbol $\sqrt{}$ is called the *radical sign*. In the case of an exponent equal to $\frac{1}{2}$ it is common to omit 2 from the radical:

$$a^{\frac{1}{2}} = \sqrt{a}$$

Example

By Rule 7.16, we have

$$\left(a^{b}\right)^{\frac{1}{b}} = a^{b \cdot \frac{1}{b}}$$
$$= a$$

For example is

$$9^{\frac{1}{2}} = \sqrt{9} = 3$$
, since $3^2 = 9$

$$125^{\frac{1}{3}} = \sqrt[3]{125} = 5$$
, since $5^3 = 125$

$$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$$
, since $2^4 = 16$

The language box

 $\sqrt{9}$ is called "the square root of 9"

 $\sqrt[3]{8}$ is called "the cube root of 8"

 $\sqrt[5]{9}$ is called "the 5th root of 9".

7.3 Irrational numbers

7.18 Irrational numbers

A number which is *not* a rational number, is an irrational number 1 .

The value of an irrational number are decimal numbers with infinite digits in a non-repeating manner.

Example 1

 $\sqrt{2}$ is an irrational number.

 $\sqrt{2} = 1.414213562373...$

¹Strictly speaking, irrational numbers are all *real* numbers which are not rational numbers. But to explain what *real* numbers are, we have to mention *imaginary* numbers, and this we choose not to do in this book.

Kommentar (for den spesielt interesserte)

Mathematics is *axiomatically* founded. This means we declare¹ some propositions to be true, and these we call *aksioms* eller *postulates*. For the subject of calculations we have 12 axioms², but in this book we confined ourselves to explicitly mentioning the following 6:

Aksiom

For tala a, b og c har vi at

$$a + (b + c) = (a + b) + c$$
 (A1)

$$a + b = b + a \tag{A2}$$

$$a(bc) = (ab)c (A3)$$

$$ab = ba$$
 (A4)

$$a(b+c) = ab + ac (A5)$$

$$a \cdot \frac{1}{a} = 1 \qquad (a \neq 0) \qquad (A6)$$

- (A1) Assosiativ lov ved addisjon
- (A2) Kommutativ lov ved addisjon
- (A3) Assosiativ lov ved addisjon
- (A4) Kommutativ lov ved multiplikasjon
- (A5) Distributativ lov
- (A6) Eksistens av multiplikativ identitet

By applying axioms, we can derive more complex contexts which we call *theorems*. In this book we chose to let *rules* be the collective name for definitions, theorems and axioms. This is because alle three, in practice, draws up guidelines (rules) inside the mathematical system in which we wish to operate.

¹Preferably, as few as possible.

²The number can slightly vary, depending on how the axioms are expressed.

In $Part\ I$ we have tried to present the motivation behind the axioms, because obviously they are not randomly selected. The train of thoughts that leads us to the aforementioned axioms is the following:

- 1. Vi define positive numbers as representations of either an amount or a placement on a number line.
- 2. We define what addition, subtraction, multiplication and division entail for positive integers (and 0).
- 3. From the marks above, it's as good as self-evident that (A1)-(A6) is valid for all positive integers.
- 4. We define also fractions as representations of either an amount or a placement on a number line. What the elementary operations entail for fractions rests upon what is valid for the positive integers.
- 5. From the marks above, we conclude that (A1)-(A6) is valid for all, rational numbers.
- 6. We introduce negative numbers and an extended interpretation of addition and subtraction. This leads to the interpretations of multiplication and division involving negative numbers.
- 7. (A1)-(A6) is still valid after the introduction of negative integers. Deriving that they are also valid for negative rational numbers is a formality (omitted in the book).
- 8. We can never write the value of an irrational number exact, but it can be approximated by a rational number¹. Therefore, all calculations involving irrational umbers is, in practice, calculations involving rational numbers, and in this way we can conclude that² (A1)-(A6) is also valid for irrational numbers.

A similar train of thoughts can be applied concerning the power-rules found in *seksjon 7.2*.

 $^{^{1}\}text{For example, we can write}~\sqrt{2}=1.414213562373...\approx\frac{1414213562373}{1000000000000}$

 $^{^2\,}Obs!$ This explanation is good enough for the aim of this book but is an rather extreme simplification. Irrational numbers is a very complex subject, in fact, many books presenting advanced mathematics utilize several chapters to cover the subject in full depth .

Chapter 8

Equations

8.1 Introduction

Even though every mathematical expression involving is an *equation*, the word is, traditionally, closely linked to having an *unknown* number.

Say we want to find the number which when added by 4 results in 7. The name of this unknown number is free to chose, but it is most common to call it x. Our equation can now be written as

$$x + 4 = 7$$

The x-value¹ which results in the same values on each side of the equal sign is the *solution* of the equation. It it is nothing wrong done by simply observing what the value of x must be. Maybe you have already realized that x = 3 is the solution of the equation, since

$$3 + 4 = 7$$

However, most equations are difficult to solve simply by observing, and it is therefore vice to take the advantage of more general methods. In reality, there are only one principle to follow:

We can always carry out one mathematical operation on one of the sides of the equal sign, as long as we carry out the operation on the other side too.

The mathematical operations presented in this book is the four elementary operations. Concerning these we the principle sounds

We can always add, subtract, multiply or divide by a number on one side of the equal sign, as long as we also do it on the other side.

The principle follows from the meaning of =. When two expressions are of equal value, their values are necessarily still equal as long as we carry out identical mathematical operations on them. Still, in the coming section we'll specify this principle for every single elementary operation. If you already feel things make sense you can, without no great loss of insight, skip to section to Section 8.3.

¹In other cases it can be several values.

8.2 Solving by the four operations

In the figures of this section we'll understand equations from what we call the weight principle. In that case, = indicates¹ there is equally much weight (equal value) on the left and the right side.

Addition and subtraction; numbers changing sides

First example

We have already found the solution of this equation, but let's now solve it in a different way²:

$$x + 4 = 7$$

$$x + 4 = 7$$

The value of x becomes clear if x is alone on one of the sides, and we can isolate x on the left side by removing 4. But if we are to remove 4 from the left side, we must also remove 4 from the right side in order to preserve equal values on both sides.

$$x+4-4=7-4$$

$$x + 4 - 4 = 7 - 4$$

Since 4 - 4 = 0 and 7 - 4 = 3, we get

$$x = 3$$

$$x = 3$$

 $^{1 \}neq \text{symbols "not equal"}.$

²Notice: In earlier figures there have been a correspondence between the size of the boxes and the (absolute) value of the number they represent. This does not apply to the boxes representing x.

In a more abbreviated way this can be written as

$$x + 4 = 7$$
$$x = 7 - 4$$
$$x = 3$$

Between the first and second line it is common to say that 4 as changed side and therefore also sign (from + to -).

Second example

Let's move on to a somehow more complex equation¹:

To get an expression with x exclusively on one side, we remove 3x on both sides:

$$4x - 2 - 3x = 3x + 5 - 3x$$

Now,

To isolate x we add 2 on the left side. Then we must also add 2 on the right side:

$$x - 2 + 2 = 5 + 2$$

$$x + y + y = y + y$$

¹Notice that the figure illustrates 4x + (-2) (see Section 5.3) on the left side. However, 4x + (-2) equals 4x - 2 (see Section 5.2).

Hence

The steps we have made can be summarized in this way:

$$4x - 2 = 3x + 5$$
 1. figure $4x - 3x - 2 = 3x - 3x + 5$ 2. figure $x - 2 = 5$ 3. figure $x - 2 + 2 = 5 + 2$ 4. figure $x = 7$ 5. figure

In a more abbreviated way we can write

$$4x - 2 = 3x + 5$$
$$4x - 3x = 5 + 2$$
$$x = 7$$

8.1 Changing numbers across the equal sign

To solve an equation, we gather all x-terms and all known terms on respective sides of the equal sign. A term which changes sides, also changes sign.

Example 1

Solve the equation

$$3x + 3 = 2x + 5$$

Answer:

$$3x - 2x = 5 - 3$$
$$x = 2$$

Example 2

Solve the equation

$$-4x - 3 = -5x + 12$$

Answer:
$$-4x + 5x = 12 + 3$$
 $x = 15$

Gonging og deling

Divisjon

So far we have studied equations which resulted in a single instance of x on one side of the equal sign. Often there are several instances of x, as, for example, in the equation

If we separate the left side into three equal groups, we get a single x in each group. And by separating the right side into three equal groups, all groups present are of equal value

Therefore

$$x = 2$$

$$x = 2$$

Let's summarize our calculations:

$$3x = 6$$
 1. figure
$$\frac{3x}{3} = \frac{6}{3}$$
 2. figure
$$x = 2$$
 3. figure

Du huskar kanskje at vi gjerne skriv 3x

8.2 Deling på begge sider av ei likning

We can divide both sides of an equation by the same number.

Example 1

Solve the equation

$$4x = 20$$

Answer:

$$\frac{Ax}{A} = \frac{20}{4}$$
$$x = 5$$

Example 2

Solve the equation

$$2x + 6 = 3x - 2$$

Answer:

$$2x - 3x = -2 - 6$$

$$-x = -8$$

$$\cancel{-x} = \frac{-8}{-1}$$

$$x = 8$$

$$(-x = -1x)$$

Gonging

Let's solve the equation

$$\frac{x}{3} = 4$$

$$\frac{x}{3} =$$

We can get one single x on the left side if we add two more instances of $\frac{x}{3}$. The equation informs that $\frac{x}{3}$ equals 4, this implies that for every instance of $\frac{x}{3}$ we add to the left side, we must add 4 to the right side, in order to keep the balance.

$$\frac{x}{3} + \frac{x}{3} + \frac{x}{3} = 4 + 4 + 4$$

Now we notice that $\frac{x}{3} + \frac{x}{3} + \frac{x}{3} = \frac{x}{3} \cdot 3$ and that $4 + 4 + 4 = 4 \cdot 3$:

$$\frac{x}{3} \cdot 3 = 4 \cdot 3$$

Since $\frac{x}{3} \cdot 3 = x$ and $4 \cdot 3 = 12$, we have

$$x = 12$$

Our steps can be summarized in the following way:

$$\frac{x}{3} = 4$$

$$\frac{x}{3} + \frac{x}{3} + \frac{x}{3} = 4 + 4 + 4$$

$$\frac{x}{3} \cdot 3 = 4 \cdot 3$$

$$x = 12$$

In a more abbreviated form this can be written as

$$\frac{x}{3} = 4$$

$$\frac{x}{3} \cdot 3 = 4 \cdot 3$$

$$x = 12$$

8.3 Gonging på begge sider av ei likning

We can multiply both sides of an equation by the same number.

Example 1

Solve the equation

$$\frac{x}{5} = 2$$

Answer:

$$\frac{x}{5} \cdot 5 = 2 \cdot 5$$
$$x = 10$$

Example 2

Solve the equation

$$\frac{7x}{10} - 5 = 13 + \frac{x}{10}$$

$$\frac{7x}{10} - \frac{x}{10} = 13 + 5$$

$$\frac{6x}{10} = 18$$

$$\frac{6x}{10} \cdot \cancel{10} = 18 \cdot 10$$

$$6x = 180$$

$$\frac{\cancel{6}x}{\cancel{6}} = \frac{180}{6}$$

$$x = 30$$

8.3 Solving methods summarized

8.4 Løysingsmetodar for likningar

We can always

- add or subtract both sides of an equation by the same number. This is equaivalent to changing a term from one side to the other, as long as the terms sign is also changed.
- multiply or divide both sides of an equation by the same number.

Example 1

Solve the equation

$$3x - 4 = 6 + 2x$$

Answer:

$$3x - 2x = 6 + 4$$
$$x = 10$$

Example 2

Solve the equation

$$9 - 7x = 8x + 3$$

$$9-7x = -8x + 3$$
$$8x - 7x = 3 - 9$$
$$x = -6$$

Solve the equation

$$10x - 20 = 7x - 5$$

Answer:

$$10x - 20 = 7x - 5$$

$$10x - 7x = 20 - 5$$

$$3x = 15$$

$$\frac{3x}{3} = \frac{15}{3}$$

$$x = 5$$

Example 4

Solve the equation

$$15 - 4x = x + 5$$

Answer:

$$15 - 5 = x + 4x$$

$$10 = 5x$$

$$\frac{10}{5} = \frac{\cancel{5}x}{\cancel{5}}$$

$$2 = x$$

Example 5

Solve the equation

$$\frac{4x}{9} - 20 = 8 - \frac{3x}{9}$$

$$\frac{4x}{9} + \frac{3x}{9} = 20 + 8$$
$$\frac{7x}{9 \cdot 7} = \frac{28}{7}$$
$$\frac{x}{9} \cdot 9 = 4 \cdot 9$$
$$x = 36$$

Solve the equation

$$\frac{1}{3}x + \frac{1}{6} = \frac{5}{12}x + 2$$

Answer:

To avoid fractions, we multiply both sides by the common denominator 12:

$$\left(\frac{1}{3}x + \frac{1}{6}\right)12 = \left(\frac{5}{12}x + 2\right)12$$

$$\frac{1}{3}x \cdot 12 + \frac{1}{6} \cdot 12 = \frac{5}{12}x \cdot 12 + 2 \cdot 12$$

$$4x + 2 = 5x + 24$$

$$4x - 5x = 24 - 2$$

$$-x = 22$$

$$\cancel{x} x = \frac{22}{-1}$$

$$x = -22$$

Tip

There are som who like to make the rule that "we can multiply or divide all terms by the same number". In that case, we could have jumped to the second line in the calculations of the example above.

Solve the equation

$$3 - \frac{6}{x} = 2 + \frac{5}{2x}$$

Answer:

We multiply both sides by the common denominator 2x:

$$2x\left(3 - \frac{6}{x}\right) = 2x\left(2 + \frac{5}{2x}\right)$$
$$6x - 12 = 4x + 5$$
$$6x - 4x = 5 + 12$$
$$2x = 17$$
$$x = \frac{17}{2}$$

Chapter 9

Functions

9.1 Introduction

Variables are values that change. A value which changes in compliance with a variable is called a *function*.

In the above figure, the amount of boxes follows a specific pattern. Mathematicaly, we can illustrate the pattern like this:

Number of boxes in Figure $1 = 2 \cdot 1 + 1 = 3$ Number of boxes in Figure $2 = 2 \cdot 2 + 1 = 5$ Number of boxes in Figure $3 = 2 \cdot 3 + 1 = 7$ Number of boxes in Figure $4 = 2 \cdot 4 + 1 = 9$

Hence, for a figure of a random number x, we have

Number of boxes in Figure x = 2x + 1

The amount of boxes changes in complience with the change of x, in this case we say that

"Number of boxes in Figure x" is a function of x.

2x+1 is the expression of the function "Number of boxes in Figure x ".

General expressions

If we were to continue working with the function just studied, writing "Number of boxes in Figure x" all the time would be very cumbersome. It is common to let letters indicate functions and to write the associated variable in parenthesis. Let's rename "Number of boxes in Figur x" to a(x). Then

Number of boxes in Figure
$$x = a(x) = 2x + 1$$

If we write a(x), but substitute x by a specific number, we substitute x by this number also in the expression of our function:

$$a(1) = 2 \cdot 1 + 1 = 3$$

 $a(2) = 2 \cdot 2 + 1 = 5$
 $a(3) = 2 \cdot 3 + 1 = 7$
 $a(4) = 2 \cdot 4 + 1 = 9$

Let the number of boxes in the below pattern be given by a(x).

- a) Find the expression of a(x).
- **b)** How many boxes are there when x = 10?
- c) What is the value of x when a(x) = 628?

Answer:

- a) We notice that
 - When x = 1, there are $1 \cdot 1 + 3 = 4$ boxes.
 - When x = 2, there are $2 \cdot 2 + 3 = 7$ boxes.
 - When x = 3, there are $3 \cdot 3 + 3 = 12$ boxes.
 - When x = 4, there are $4 \cdot 4 + 3 = 17$ boxes.

Therefore

$$a(x) = x \cdot x + 3 = x^2 + 3$$

b)

$$a(10) = 10^2 + 3 = 100 + 3 = 1035$$

When x = 10, there are 103 boxes.

c) We have the equation

$$x^2 + 3 = 628$$
$$x^2 = 625$$

Hence

$$x = 15$$
 \vee $x = -15$

Since we seek a positive value of x, we have x = 15.

9.2 Linear functions and graphs

When a variabel x and a function f(x) are present, we have two values; the value of x and the associated value of f(x). These pairs of values can be put into a coordinate system (see Section 1.3), and this brings forth the graph of f(x).

Lets' use the function

$$f(x) = 2x - 1$$

as an example. We have

$$f(0) = 2 \cdot 0 - 1 = -1$$

$$f(1) = 2 \cdot 1 - 1 = 1$$

$$f(2) = 2 \cdot 2 - 1 = 3$$

$$f(3) = 2 \cdot 3 - 1 = 5$$

These pairs of values can be put into a table:

The table above gives the points

$$(0,-1)$$
 $(1,1)$ $(2,3)$ $(3,5)$

Now we place these points into a coordinate system (see the figore on page 126). Concerning functions it is common to name the horizontal and the vertical axis the x-axis and the y-axis, respectively. Now the graph of f(x) is an imaginary dash going through all the infinite many point we can create by x-values and the associated f(x)-values. Our function is a *linear* function, which means its graph is a straight line. Hence, the grah is created by drawing the line going through the points we found.

As earlier mentioned, we can never draw a line, only a part of it. This also applies to graphs. In the figure on page 126 we have drawn the graph of f(x) for x-values in the range -2 to 4. That x is included in this *interval* we write as $-2 \le x \le 4$ or $x \in [-2, 4]$.

¹Sjå symbolforklaringar på side 4.

9.1 Linear functions

A function with the expression

$$f(x) = ax + b$$

is a linear function with $slope\ a$ and $intercept\ b$.

The graph of a linear function is a straight line passing through the point (0, b).

For two distinct x-values, x_1 and x_2 , we have

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Find the slope and the intercept of the functions.

$$f(x) = 2x + 1$$

$$g(x) = -3 + \frac{7}{2}$$

$$h(x) = \frac{1}{4}x - \frac{5}{6}$$

$$j(x) = 4 - \frac{1}{2}x$$

- f(x) have slope 2 and intercept 1.
- g(x) have slope -3 and intercept $\frac{7}{2}$.
- h(x) have slope $\frac{1}{4}$ and intercept $-\frac{5}{6}$.
- j(x) har slope $-\frac{1}{2}$ and intercept 4.

Draw the graph of

$$f(x) = \frac{3}{4}x - 2$$

on for $x \in [-5, 6]$.

Answer:

To draw the graph of a linear funtion, we only need to know two points lying on it. The points are free to choose, therefore, in order to make calculations as simple as possible, we start off by finding the point where x=0:

$$f(0) = \frac{3}{4} \cdot 0 - 2 = -2$$

Further on, we choose x=4, since this also results in an easy calculation:

$$f(4) = \frac{3}{4} \cdot 4 - 2 = 1$$

Now we have all the information we need and for the record we put it into a table:

$$\begin{array}{c|c|c} x & 0 & 4 \\ \hline f(x) & -2 & 1 \end{array}$$

Now we place the points and draw the line passing through them:

Find the respective expressions of f(x) and g(x).

Answer:

At first we find the expression of f(x). The point (0,3) lies on the graph of f(x) (see also the figure on the next page), it then follows that f(0) = 3, and hence 3 is the interceptet if f(x). Moreover, we observe that (1,2) also lies on the graph of f(x). The slope of f(x) is then expressed by the fraction

$$\frac{2-3}{1-0} = -1$$

Therefore

$$f(x) = -x + 3$$

We now move our attention to finding the expression of g(x). The point (0, -1) lies on the graph of g(x), it then follows that f(0) = -1, and hence -1 is the intercept of g(x). Moreover, we observe that (5, 2) also lies on the graph of g(x). The slope g(x) is then expressed by the fraction

$$\frac{2 - (-1)}{5 - 0} = \frac{3}{5}$$

Therefore

$$g(x) = \frac{3}{5}x + 1$$

9.1 Linear functions (forklaring)

The expression of a

Given a linear function

$$f(x) = ax + b$$

For two distinct x-values, x_1 and x_2 , we have

$$f(x_1) = ax_1 + b (9.18)$$

$$f(x_2) = ax_2 + b (9.19)$$

Subtracting (9.2) from (9.19), we get

$$f(x_2) - f(x_1) = ax_2 + b - (ax_1 + b)$$

$$f(x_2) - f(x_1) = ax_2 - ax_1$$

$$f(x_2) - f(x_1) = a(x_2 - x_1)$$

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = a$$
(9.20)

The graph of a linear function is a straight line

Given a linear function f(x) = ax + b and two distinct x-values x_1 and x_2 . In the figure illustrating the graph of f(x), let $A = (x_1, b)$, $B = (x_2, b)$, $C = (b, f(x_1))$, $D = (0, f(x_2))$ and E = (0, b).

By (9.20), we obtain

$$\frac{f(x_1) - f(0)}{x_1 - 0} = a$$

$$\frac{ax_1 + b - b}{x_1} = a$$

$$\frac{ax_1}{x_1} = a$$
(9.21)

Similarly,

$$\frac{ax_2}{x_2} = a \tag{9.22}$$

Moreover,

$$AC = f(x_1) - b = ax_1$$

$$BD = f(x_2) - b = ax_2$$

$$EA = x_1$$

$$EB = x_2$$

From (9.21) and (9.22) it follows that

$$\frac{ax_1}{x_1} = \frac{ax_2}{x_2}$$

Hence

$$\frac{AC}{BD} = \frac{EA}{EB}$$

In addition, $\angle A = \angle B$, so $\triangle EAC$ and $\triangle EBD$ satisfy term iii from *Rule 10.12*, and hence the triangles are similar. Consequently, C and D lies on the same line which must be the graph of f(x).

Chapter 10

Geometry

10.1 Formulas of area and perimeter

A formula is an equation where (usually) one variable is isolated on one side of the equal sign. I Section 6.4 we have already looked at the formulas for the area of rectangles and triangles, but then using words instead of symbols. Here we shall reproduce these two formulas, followed by other classical formulas for area and perimeter.

10.1 The area of a rectangel (6.4)

The area A of a rectangle with base g and height h is

$$A = gh$$

Example 1

Find the area of the rectangle.

Answer:

The area A of the rectangle is

$$A = b \cdot 2 = 2b$$

Example 2

Find the area of the square.

Answer:

The area A of the square is

$$A = a \cdot a = a^2$$

10.2 The area of a triangle (6.4)

The area A of a triangle with base g and height h is

$$A=\frac{gh}{2}$$

Example

Which one of the triangles have the largest area?

Answer:

Let A_1 , A_2 and A_3 donate the areas of, respectively, the triangle to the left, in the middle and to the right. Then

$$A_1 = \frac{4 \cdot 3}{2} = 6$$

$$A_2 = \frac{2 \cdot 3}{2} = 3$$

$$A_3 = \frac{2 \cdot 5}{2} = 5$$

Hence, it is the triangle to the left which has the largest area.

10.3 The arealet of a parallelogram

The area A of a parallelogram with base g and height h is

Example

Find the area of the parallelogram

Answer:

The area A of the parallelogram is

$$A = 5 \cdot 2 = 10$$

10.3 The arealet of a parallelogram (forklaring)

From a parallelogram we can always, by drawing one of its diagonals, create two triangles which both have base g and height h.

Hence, both triangles have an area equal to $\frac{gh}{2}$. Therefore, the area A of the parallelogram is

$$A = \frac{gh}{2} + \frac{gh}{2}$$
$$= g \cdot h$$

10.4 The area of a trapezoid

The area A of a trapezoid with parallel sides a and b and height h is

Example

Find the area of the trapezoid.

Answer:

The area A of the trapezoid is

$$A = \frac{3(6+4)}{2}$$
$$= \frac{3 \cdot 10}{2}$$
$$= 15$$

Note

In respect of a base and a height, the area formulas for a parallelogram and a rectangle are identical. Applying $Rule\ 10.4$ on a parallelogram will also result in an expression equal to gh. This follows from the fact that a parallelogram is just a special case of a trapezoid (and a rectangle is just a special case of a parallelogram).

10.4 The area of a trapezoid (forklaring)

Also in a trapezoid we can, by drawing one of the diagonals, create two triangles :

In the above figure we have

The area of the blue triangle =
$$\frac{ah}{2}$$

The area of the green triangle =
$$\frac{bh}{2}$$

Therefore, the area A of the trapezoid is

$$A = \frac{ah}{2} + \frac{bh}{2}$$

$$=\frac{h(a+b)}{2}$$

10.5 The circumference (and the value of π)

The perimeter (the circumference) ${\cal O}$ of a circle with radius r is

$$O = 2\pi r$$

 $\pi = 3.141592653589793....$

Example 1

Find the circumference of the circle.

Answer:

The circumferene O is

$$O=2\pi\cdot 3$$

$$=6\pi$$

10.6 The area of a circle

The area A of a circle with radius r is

Example

Finn the area of the circle.

Answer:

The area A of the circle is

$$A = \pi \cdot 5^2 = 25\pi$$

10.6 The area of a circle (forklaring)

In the figure below we have separated a circle into 4, 10 and 50 (equal) pieces, and placed them consecutively.

In each case the small arcs makes up the the circumference of the circle. If the circle has radius r, this means that the sum of the arcs equals $2\pi r$. And when there are equally many pieces turned upwards as downwards, the total length equals πr on both the bottom and the top.

The more pieces the circle is separated into, the more the composition takes the form of a rectangle (in the figure below there are 100 pieces). The base g of this "rectangle" approximately equals πr , while the height approximately h equals r.

Hence, the area A of the "rectangle", that is, the circle, is

$$A \approx qh \approx \pi r \cdot r = \pi r^2$$

10.7 Pythagoras's theorem

In a right triangle, the area of the square formed by the hypotenuse equals the sum of the areas of the squares formed by the legs.

Example 1

Find the length of c.

Answer:

We know that

$$c^2 = a^2 + b^2$$

where a and b are the legs of the right triangle. Therefore

$$c^2 = 4^2 + 3^2$$
$$= 16 + 9$$
$$= 25$$

Since $\sqrt{25} = 5$, the length of c equals 5.

10.7 Pythagoras's theorem (forklaring)

The below figure shows equal-sized squares separated into different shapes.

We observe the following:

- 1. The area of the red square is a^2 , the area of the purple square is b^2 and the area of the blue square is c^2 .
- 2. The area of an orange square is ab and the area of a green triangle is $\frac{ab}{2}$.
- 3. If we remove the two orange rectangles and the four green triangles, the remaining area to the left equals the remaining area to the right (by mark 2).

Hence

$$a^2 + b^2 = c^2 (10.1)$$

Given a triangle with sides of length a, b and c, of which c is the longest length. As long as the triangle is right, we can always form two squares with sides of length a + b, as in the initial figure. Therefore, (10.1) is valid for alle right triangles.

10.2 Congruent and similar triangles

10.8 Unique construction of triangles

A triangle $\triangle ABC$, as shown in the below figure, can be uniquely constructed if one of the following terms are satisfied:

- i) $c, \angle A$ and $\angle B$ are known.
- ii) a, b and c are known.
- iii) b, c and $\angle A$ are known.

10.9 Congruent triangles

Two triangles of equal shape and size are congruent.

The congruence in the above figure is written

$$\triangle ABC \cong \triangle DEF$$

10.10 Formlike trekantar

Similar triangles constitute three pairs of angles of equal measure.

The similarity in the above figure is written

$$\triangle ABC \sim \triangle DEF$$

Corresponding sides

When studying similar triangles, *corresponding* plays an important role. Corresponding sides are sides in similar triangles adjacent to the same angel.

Regarding the similar triangles $\triangle ABC$ and $\triangle DEF$ we have

In $\triangle ABC$ is

I $\triangle DEF$ is

- BC adjacent to u.
- be adjacent to a.
- AC adjacent to v
- AB adjacent to w.

- FE adjacent to u.
- FD adjacent to v
- ED adjacent to w.

This means that these are corresponding sides:

- \bullet BC and FE
- \bullet AC and FD
- \bullet AB and ED

10.11 Ratios in similar triangles

If two triangles are similar, the ratios of corresponding sides are equal¹.

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

¹Here we take it for granted that the corresponding sides are apparent from the figure.

Example

The triangles are similar. Find the length of EF.

Answer:

We observere that AB corresponds to $DE,\,BC$ to EF and AC to DF. Therefore

$$\begin{split} \frac{DE}{AB} &= \frac{EF}{BC} \\ \frac{10}{5} &= \frac{EF}{3} \\ 2 \cdot 3 &= \frac{EF}{3} \cdot \cancel{3} \\ 6 &= EF \end{split}$$

Notice

From Regel 10.11 it follows that $\triangle ABC$ and $\triangle DEF$ er

$$\frac{AB}{BC} = \frac{DE}{EF} \quad , \quad \frac{AB}{AC} = \frac{DE}{DF} \quad , \quad \frac{BC}{AC} = \frac{EF}{DF}$$

10.12 Terms of similar triangles

Two triangles $\triangle ABC$ and $\triangle DEF$ are similar if one of these terms are satisfied:

i) They constitute two pairs of angels of equal measure.

ii)
$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

iii)
$$\frac{AB}{DE} = \frac{AC}{DF}$$
 and $\angle A = \angle D$.

Example 1

 $\angle ACB = 90^{\circ}$. Show that $\triangle ABC \sim ACD$.

Answer:

 $\triangle ABC$ and $\triangle ACD$ are both right and they have $\angle DAC$ in common. Hence, the triangles satisfy term i from Rule 10.12, and therefore they are similar.

Notice: Similarly it can be shown that $\triangle ABC \sim CBD$.

Example 2

Examine whether the triangles are similar.

Answer:

We have

$$\frac{AC}{FD} = \frac{18}{12} = \frac{3}{2} \quad , \quad \frac{BC}{FE} = \frac{9}{6} = \frac{3}{2} \quad , \quad \frac{AB}{DE} = \frac{12}{10} = \frac{6}{5}$$

$$\frac{AC}{IG} = \frac{18}{12} = \frac{3}{2}$$
 , $\frac{BC}{IH} = \frac{9}{6} = \frac{3}{2}$, $\frac{AC}{IG} = \frac{18}{12} = \frac{3}{2}$

Hence, $\triangle ABC$ and $\triangle GHI$ satisfy term ii from Rule 10.12, and therefore they are similar.

Example 3

Examine whether the triangles are similar.

Answer:

Whe have $\angle BAC = \angle EDF$. Also,

$$\frac{ED}{AB} = \frac{8}{4} = 2$$
 , $\frac{FD}{AC} = \frac{14}{7} = 2$

Hence, term *iii* from *Rule 10.12* is satisfied, and therefore the triangles are similar.

10.3 Explenation

10.5 The circumference (and the value of π) (forklaring)

Here we shall use regular polygongs along the path to our wanted result. In regular polygons, all sides are of equal length. Since all polygons here to be mentioned are regular, we'll mention them simply as polygons.

We'll start off by examining some approximations of the circumference O_1 of a circle with radius 1.

Øvre and nedre grense

When seeking a value, it is a good habit to ask if one can conclude how large or small one *expects* it to be. With this target, we enclose the circle by a square with sides of length 2:

Apparently, the circumference of the circle must be smaller then the perimeter of the square, therefore

$$O_1 < 2 \cdot 4$$

$$< 8$$

Now we inscribe a 6-gon (hexagon). The hexagon can be split into 6 equilateral triangles with, necessarily, sides of length 1. The circumference of the circle must be larger then 6 sidelengdene to mangekanten, noko som gir at

$$O_1 > 6 \cdot 1$$
$$> 6$$

Now advancing to a more sophisticated hunt for the circumference, we know that we seek a value between 6 and 8.

Stadig betre tilnærmingar

The idea of inscribing polygons carries on. We let the below figures work as a sufficient prove of the fact that the more sides of the polygon, the better estimate its perimeter makes of the circumference of the circle.

Since a 6-gon has sides of length 1, it is tempting to examine if this can help us find the side lengths of other polygons. By inscribing both a 6-gon and a 12-gon (and also drawing a triangle) we have a figure like this:

(a) A 6-gon and a 12-gon together with a triangle formed by the circle center and one side of the 12-gon.

(b) The triangle from figure (a).

Let s_{12} and s_6 denote the side lengths of the 12-gon and the 6-gon, respectively. Moreover, we observe that both A and C lies on the circular arc and that both $\triangle ABC$ and $\triangle BSC$ are right-angled (explain to yourself why!). We have

$$SC = 1$$

$$BC = \frac{s_6}{2}$$

$$SB = \sqrt{SC^2 - BC^2}$$

$$BA = 1 - SB$$

$$AC = s_{12}$$

$$s_{12}^2 = BA^2 + BC^2$$

To find s_{12} , we need to know BA, and to find BA we need to know SB. Hence, we start with finding SB. Since SC = 1 and $BC = \frac{s_6}{2}$,

$$SB = \sqrt{1 - \left(\frac{s_6}{2}\right)^2}$$
$$= \sqrt{1 - \frac{s_6^2}{4}}$$

Vi går så vidare to å finne s_{12} :

$$s_{12}^2 = (1 - SB)^2 + \left(\frac{s_6}{2}\right)^2$$
$$= 1^2 - 2SB + SB^2 + \frac{s_6^2}{4}$$

At first, it looks like the expression to the right cannot be simplified, but a small operation can change this. If -1 was a term present, we could have combined -1 and $\frac{s_6^2}{4}$ to become $-SB^2$. We obtain -1 by both adding and subtracting it on the right side of the equation:

$$s_{12}^{2} = 1 - 2SB + SB^{2} + \frac{s_{6}^{2}}{4} - 1 + 1$$

$$= 2 - 2SB + SB^{2} - \left(1 - \frac{s_{6}^{2}}{4}\right)$$

$$= 2 - 2SB + SB^{2} - SB^{2}$$

$$= 2 - 2SB$$

$$= 2 - 2\sqrt{1 - \frac{s_{6}^{2}}{4}}$$

$$= 2 - \sqrt{4}\sqrt{1 - \frac{s_{6}^{2}}{4}}$$

$$= 2 - \sqrt{4 - s_{6}^{2}}$$

Hence

$$s_{12} = \sqrt{2 - \sqrt{4 - s_6^2}}$$

Even though we have derived a relation between the side lengths s_{12} and s_6 , this relation is valid for all pairs of side lengths where one is the side length of a polygon with twice as many sides as the oter. Now let s_n and s_{2n} , respectively, denote the side lengths of a polygon and a polygon with twice as many sides. Then

$$s_{2n} = \sqrt{2 - \sqrt{4 - s_n^2}} \tag{10.2}$$

When the side length of a polygon is known, the estimate of the circumference of the circle equals the side length multiplied by the number of sides of the polygon. Applying (10.2) we can successively find the side length of a polygon with twice as many sides as the previous. The below table shows the side length and the associated estimate of the circumference up to a 96-gon:

Side length formula	Side length	Estimate, circumference
	$s_6 = 1$	$6 \cdot s_6 = 6$
$s_{12} = \sqrt{2 - \sqrt{4 - s_6^2}}$		$12 \cdot s_{12} = 6.211$
$s_{24} = \sqrt{2 - \sqrt{4 - s_{12}^2}}$	$s_{24} = 0.261$	$24 \cdot s_{24} = 6.265$
$s_{48} = \sqrt{2 - \sqrt{4 - s_{24}^2}}$		
$s_{96} = \sqrt{2 - \sqrt{4 - s_{48}^2}}$	$s_{96} = 0.065$	$96 \cdot s_{96} = 6.282$

In fact, the mathematician Arkimedes reached as far as the above calculation e.g. 250 b.c!

A computer have no problems performing calculations 1 on a polygon with extremely many sides. Calculating the perimeter of a 201 326 592-gong yields

Circumference of a circle with radius 1 = 6.283185307179586...

(With the aid of more advanced mathematics it can be proved that the circumference of a circle with radius 1 is an irrational numner, but that the digits shown above are correct, thereby the equal sign.)

The furmula and π

We shall now derive the famous formula for the circumference of any circle. Here as well, we take it for granted that the perimeter of an inscribed polygon yields an estimate of the circumference which gets more accurate the more sides the polygon has.

For the sake of simplicity, we shall use insbribed squares to illustrate the outline. We draw two circles of random size, but the one larger than the other, and inscribe a square in both. Let R and r denote the radius of the larger and the smaller circle, respectively. Also, let K and k denote the side length of the larger and the smaller square, respectively.

Both squares can be split into four isosceles triangles:

Since these triangles are similar,

$$\frac{K}{R} = \frac{k}{r} \tag{10.3}$$

Let $\tilde{O}=4K$ and $\tilde{o}=4k$ denote the estimated circumferences of the larger and the smaller circle, respectively. Multiplying both

sides of (10.3) by 4 yields

$$\frac{4A}{R} = \frac{4a}{r}$$

$$\frac{\tilde{O}}{R} = \frac{\tilde{o}}{r} \tag{10.4}$$

Now we observe this:

If we are to split the two circles into a polygons with 4, 100 or any number of sides, the polygons could still be split into triangles obeying (10.3). And in the same way as we did in the above example, we could then rewrite (10.3) into (10.4).

Let's therefore imagine polygons with such a large number of sides that we accept their respective perimeters as equal to the circumference of the circles. Letting O and o denote the circumferences of the larger and smaller circle respectively, we have

$$\frac{O}{R} = \frac{o}{r}$$

Since the circles are randomly chosen, we conclude that all circles have the same ratio between the circumference and the radius. An equivalent statement is that all circles have the same ratio between the circumference and the diameter. Let D and d donate the diameters of R and r, respectively. Then

$$\frac{O}{2R} = \frac{o}{2r}$$
$$\frac{O}{D} = \frac{o}{d}$$

The ratio of the circumference to the diameter in a circle is named π (pronounced "pi"):

$$\frac{O}{D} = \pi$$

The above equation yields the formula for the circumference of a circle with diameter D:

$$O = \pi D$$
$$= 2\pi r$$

Earlier we found that the circumference of a circle with radius 1 (and diameter 2) equals 6.283185307179586... Hence

$$\pi = \frac{6.283185307179586...}{2}$$
$$= 3.141592653589793...$$

10.11 Ratios in similar triangles (forklaring)

In the below figure we have BB'||CC'. Here we shall write the area of a triangle $\triangle ABC$ as ABC.

With BB' as base, HB' is the height of both $\triangle CBB'$ and $\triangle CBB'$. Therefore

$$CBB' = C'BB' \tag{10.5}$$

Moreover,

$$ABB' = AB \cdot HB'$$

$$CBB' = BC \cdot HB'$$

Hence

$$\frac{ABB'}{CBB'} = \frac{AB}{BC} \tag{10.6}$$

Similarly,

$$\frac{ABB'}{C'BB'} = \frac{AB'}{B'C'} \tag{10.7}$$

From (10.5), (10.6) and (10.7) it follows that

$$\frac{AB}{BC} = \frac{ABB'}{CBB'} \frac{ABB'}{C'BB'} = \frac{AB'}{B'C'}$$
 (10.8)

¹For those interested in computer programming, the iteration algorithm must be alternated in order to avoid instabilities when the number of sides are large.

For the similar triangles $\triangle ACC'$ and $\triangle ABB'$,

$$\frac{AC}{AB} = \frac{AB + BC}{AB}$$
$$= 1 + \frac{BC}{AB}$$

$$\frac{AC'}{AB'} = \frac{AB' + B'C'}{AB'}$$
$$= 1 + \frac{B'C'}{AB'}$$

By (10.8), the ratio of corresponding sides in the two triangles are equal.

Merk

In the following explanations of term *ii* and *iii* from *Rule 10.8* we assume this:

- Two circles intersects in maximum two points.
- Given a coordinate system placed in the center of one of the circles, such that the horizontal axis passed through both circle centers. If (a, b) is one of the intersection points, (a, -b) is the other.

The marks above is quite easy to prove, but since they are largely intuitively true, we hold them as granted. The marks informs that the triangle formed by the two centers and one of the intersection points is congruent to the triangle formed by the two centers and the other intersection point. By this, we can study attributes of triangles with the aid of semi-circles.

10.8 Unique construction of triangles (forklaring) Vilkår i

Given a length c and two angles u and v. We make a segment AB with length c. Then we dot two angle sides, such that $\angle A = u$ and B = v. As long as these angle sides are not parallel, they must intersect in one, and only one, point (C in the figure). Together with A and B, this point will form a triangle uniquely determined by c, u and v.

Vilkår ii

Given three lengths a, b and c. We make a segment AB with length c. Then we make two semi-circles with respective radii a and b and centers B and A. If a triangle $\triangle ABC$ is to have sides of length a, b and c, C must lie on both of the circular arcs. Since the arcs intersect in one point only, $\triangle ABC$ is uniquely determined by a, b and c.

Vilkår iii

Given two lengths b and c and an angel u. We begin as follows:

- 1. We make a segment AB with length c.
- 2. In A we draw a semi-circle with radius b.

By placing C randomly on this circular arc, we get all instances of a triangle $\triangle ABC$ with sides of length AB = c and AC = b. Specifically placing C on the arc of the semi-circle is equivalent to setting a specific value for $\angle A$. Now it remains to show that every placement of C implies an unique length of BC.

Let C_1 and C_2 denote two potential placements of C, where C_2 , along the semicircle, lies closer to E than C_1 . Now we dot a circular arc with radius BC_1 and center B. Since the dotted arc and the semi-circle only intersects in C_1 , other points will either lie inside or outside the dotted arc. Necessarily, C_2 lies outside the dotted arc, and therefore BC_2 is longer than BC_1 . From this we can conclude that the length of BC increases as C moves against E along the semi-circle. Therefore, specifying $\angle A = u$ yields an unique value of BC, and hence an unique triangle $\triangle ABC$ where AC = b, c = AB and $\angle BAC = u$.

10.12 Terms of similar triangles (forklaring)

Vilkår i

Given two triangles $\triangle ABC$ and $\triangle DEF$. By Rule 6.3,

$$\angle A + \angle B + \angle C = \angle D + \angle E + \angle F$$

If $\angle A = \angle D$ and $\angle B = \angle E$, it follows that $\angle C = \angle E$.

Vilkår ii

Given two triangles $\triangle ABC$ and $\triangle DEF$ where

$$\frac{AC}{DF} = \frac{BC}{EF} \qquad , \qquad \angle C = \angle F \tag{10.9}$$

Let a = BC, b = AC, d = EF and e = DF. We place D' and E' on AC and BC, respectively, such that D'C = e and $AB \parallel D'E'$. Then $\triangle ABC \sim \triangle D'E'C$, and hence

$$\frac{E'C}{BC} = \frac{D'C}{AC}$$
$$E'C = \frac{ae}{b}$$

By (10.9),

$$EF = \frac{ae}{h}$$

Hence E'C = EF. From term ii of Rule 10.9 it now follows that $\triangle D'E'C \cong \triangle DEF$. This implies that $\triangle ABC \sim \triangle DEF$.

Vilkår iii

Given two triangles $\triangle ABC$ and $\triangle DEF$ where

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} \tag{10.10}$$

We place D' and E' on AC and BC, respectively, such that D'C = e and E'C = d. From term i of Rule 10.12 we have $\triangle ABC \sim \triangle D'E'C$. Therefore

$$\frac{D'E'}{AB} = \frac{D'C}{AC}$$
$$D'E' = \frac{ae}{c}$$

By (10.10),

$$f = \frac{ae}{c}$$

Hence, the side lengths of $\triangle D'E'C$ and $\triangle DEF$ are pairwise equal, and then, from term *i* of *Rule 10.9*, they are congruent. This means that $\triangle ABC \sim \triangle DEF$.

Kommentar (for den spesielt interesserte)

Også i geometri har vi aksiom (sjå kommentar på side 106) som legg grunnlaget for det matematiske systemet vi skapar, men den aksiomatiske oppbygginga av geometri er mykje meir omstendeleg og uoversiktleg enn den vi har innanfor rekning. I tillegg er nokre teorem innanfor geometri så intuitivt sanne, at det i ei bok som dette ville blitt meir forvirrande enn oppklarande å skulle forklart alt i detalj.

Det som likevel bør nemnast, er at vi i Rule 10.8 opplyser om tre vilkår for å unikt konstruere ein trekant, og i Rule 10.9 gir eit vilkår for kongruens. I meir avanserte geometritekstar vil ein helst finne att innhaldet i desse to reglane som aksiom og teorem for kongruens:

Kongruens

To trekantar $\triangle ABC$ og $\triangle DEF$ er kongruente viss ein av desse vilkåra er oppfylt:

i)
$$AB = DE$$
, $BC = EF$ og $\angle A = \angle D$.

ii)
$$\angle A = \angle D$$
, $\angle B = \angle E$ og $AB = DE$.

iii)
$$AB = DE$$
, $BC = EF$ og $AC = FD$.

iv) AB = DE og BC = EF, i tillegg er AB = DE eller BC = EF eller AC = FD.

- i) Side-vinkel-side (SAS) aksiomet
- ii) Vinkel-side-vinkel (ASA) teoremet
- iii) Side-side-side (SSS) teoremet
- iv) Side-vinkel-vinkel (SAA) teoremet

Notice: Forkortingane over er gitt ut ifrå dei engelske namna for høvesvis side og vinkel; side og angle.

I tekstboksen på førre side gir også vilkår i)-iii) tilstrekkeleg informasjon om når ein trekant kan bli unikt konstruert, men i denne boka har vi valgt å skille unik konstruksjon og kongruens fra kvarandre. Dette er gjort i den tru om at dei fleste vil ha ein intuitiv tanke om kva trekantar som er kongruente eller ikkje, men ha større problem med å svare på kva som må til for å unikt konstruere ein trekant – og det er ikkje naudsynleg så lett å sjå dette direkte ut ifrå kongruensvilkåra.

Legg også merke til at vilkår iv) berre er ei meir generell form av vilkår ii), men altså ikkje kan brukast som eit vilkår for unik konstruksjon. Dette vilkåret finn ein derfor ikkje att i korkje *Rule 10.8* eller *Rule 10.9*.

Litteratur

Kiselev, A. (2006). Kiselev's Geometry: Book 1. Planimetry (A. Givental, Overs.). Sumizdat. (Opprinnelig utgitt 1892).

Lindstrøm, T. (2006). Kalkulus (2. utg). Oslo, Universitetsforlaget AS.

Moise, E. E. (1974). Elementary geometry from an advanced standpoint. Reading, Addison-Wesley Publishing Company.

Spivak, M. (1994). Calculus (3. utg). Cambridge, Cambridge University Press

Notis: Teksten, i alle fall ein veldig liknande ein, om Pytagoras' setning på side 143 sto første gong på trykk i Skage Hansen si bok Tempelgeometri (2020).

Indeks

π , 155	equation, 109
	exponent, 97
absolute value, 60	
algebra, 92	factor, 20
altitude, 77	factorization, 27
angle, 72	formula, 134
right, 73	fraction, 35
side, 72	expansion of, 39
vertical, 75	inverted, 55
area, 83	simplifying of, 39
areal	function, 122
til rektangel, 134	graph, 125
til sirkel, 140	linear, 125
til trapes, 137	
1 77 07	height, 77
base, 77, 97	hypotenuse, 78
cancellation, 51	1.00
circle, 71	intercept, 126
center, 71	interval, 125
common denominator, 43	logg 79
constant, 92	legs, 78
coordinate system, 14	length, 59, 84
	line, 69
degree, 73	naturlege tal, 10
denominator, 35	number
diameter, 71	irrational, 105
differense, 18	rational, 57
digits, 11	numbers
dividend, 23	
divisor, 23	negative, 59
odgo 76	positive, 59
edge, 76	prim, 27
equal sign, 9	numerator, 35

omkrins	corresponding, 145
til sirkel, 139	of polygon, 76
	sign, 60
parallel, 72	slope, 126
perimeter, 82	sum, 16
point, 14, 69	surface, 83
polygon, 76	
vertices of, 76	tal, 9
positive integers, 10	talverdi, 60
prime factorization, 27	term, 16, 18
produkt, 20	til parallellogram, 136
	til trekant, 135
quadrilateral, 76	triangle, 76
quotient, 23	congruent, 144
	similar, 144
radical sign, 104	
radius, 71	value, 11
ratio, 23	variabel, 92
	vinkel
segment, 69	vertex, 72
perpendicular, 73	
side	width, 84

Om forfattaren

Sindre Sogge Heggen har ein mastergrad i anvendt matematikk fra Universitetet i Oslo og ei årseining i praktisk-pedagogisk utdanning fra NTNU. I tillegg har han fleire års erfaring med undervising i både grunnskule og vidaregåande skule.