Home ► My courses ► EEE117-2019S-Sec1 ► Homework ► Homework 4 - Chapter 11

Started on	Wednesday, 13 February 2019, 9:27 AM
State	Finished
Completed on	Wednesday, 13 February 2019, 9:28 AM
Time taken	58 secs
Grade	100.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

P11.1_10ed

What is the phase sequence of each of the following sets of voltages?

a)
$$v_a = 137 \cos(\omega t + 63^\circ) \text{ V}$$
 $v_b = 137 \cos(\omega t - 57^\circ) \text{ V}$ $v_c = 137 \cos(\omega t + 183^\circ) \text{ V}$

abc – Positive Phase Sequence:

b)
$$v_a = 820 \cos(\omega t - 36^\circ) \text{ V}$$
 $v_b = 820 \cos(\omega t + 84^\circ) \text{ V}$ $v_c = 820 \sin(\omega t - 66^\circ) \text{ V}$ acb – Negative Phase Sequence: ▼ ✓

Correct

Correct

Mark 10.00 out of 10.00

P11.4_10ed

Assume that nodes a,b,c are "open circuited" with no external connections.

Given:
$$v_a = 188 \cos(\omega t + 60^\circ) \text{ V}$$
 $v_b = -188 \cos(\omega t) \text{ V}$ $v_c = 188 \cos(\omega t - 60^\circ) \text{ V}$

Determine the current circulating in this Δ -connected generator.

$$I_{\Delta} = \boxed{0}$$
 \checkmark A

Correct

Correct

Mark 10.00 out of 10.00

P11.6_8ed

a) Find the current $\mathbf{I_0}$ as shown in the circuit.

$$I_0 = 0$$

b) Find the voltage $\mathbf{V}_{\mathbf{AN}}$.

$$V_{AN} = 231$$
 + j -8.16 V

c) Find the voltage V_{AB} .

d) Is this circuit a balanced or unbalanced three-phase system?

Correct

Correct

Mark 10.00 out of 10.00

P11.6_10ed

Given that all voltages are rms values.

a) Find the current I_{aA} .

$$I_{aA} = 2.2$$
 + j 1.65 \checkmark A_{rms}

b) Find the current I_{bB} .

$$I_{bB} = \begin{bmatrix} -10.92 \\ \end{bmatrix} \checkmark + j \begin{bmatrix} -1.32 \\ \end{bmatrix} \checkmark A_{rms}$$

c) Find the current I_{cC}.

$$I_{cC} =$$
 .26 \checkmark + j 2.18 \checkmark A_{rms}

d) Find the current $\mathbf{I_0}$ as shown in the circuit.

 $I_0 = \begin{bmatrix} -8.46 \\ 4 \end{bmatrix} + j \begin{bmatrix} 2.51 \\ 4 \end{bmatrix} A_{rms}$

e) Is this circuit a balanced or unbalanced three-phase system?

Balanced/Unbalanced? Unbalanced ▼ ✓

Correct

Correct

Mark 10.00 out of 10.00

P11.19 8ed

A three-phase Δ -connected generator has an internal source impedance of $Z_{\Delta, \mathrm{gen}} = 0.6 + \mathrm{j} \ 4.8 \ \Omega/\Phi$. When the load is removed from the generator, the magnitude of the terminal voltage at the output is 34,500 V (where the load will connect). The generator feeds a Δ -connected load through a transmission line with an impedance of $Z_{\mathrm{T}} = 0.8 + \mathrm{j} \ 6.4 \ \Omega/\Phi$. The per-phase impedance of the load is $Z_{\Delta, \mathrm{load}} = 2,877 - \mathrm{j} \ 864 \ \Omega/\Phi$.

a) Calculate the magnitude of the current in the line feeding the load.

$$|I_{aA}| = |I_{bB}| = |I_{cC}| = \boxed{19.9}$$

b) Calculate the magnitude of the line voltage at the terminals of the load.

$$|\mathbf{V}_{\mathbf{A}\mathbf{B}}| = |\mathbf{V}_{\mathbf{B}\mathbf{C}}| = |\mathbf{V}_{\mathbf{C}\mathbf{A}}| = [34545]$$

c) Calculate the magnitude of the line voltage at the terminals of the source.

$$|\mathbf{V_{ab}}| = |\mathbf{V_{bc}}| = |\mathbf{V_{ca}}| = \boxed{34508}$$

d) Calculate the magnitude of the phase current in each leg of the load.

$$| \mathbf{I}_{AB} | = | \mathbf{I}_{BC} | = | \mathbf{I}_{CA} | = (11.5)$$

Correct

Correct

Mark 10.00 out of 10.00

P11.11_7ed

A balanced Δ -connected load has an impedance of Z_{Δ} = 60 + j 45 Ω/Φ .

The load is fed through a line have an impedance Z_T = 0.8 + j 0.6 Ω/Φ .

The phase voltage at the terminals of the load is $|V_{AB}| = 480 \text{ V}_{rms}$.

The phase sequence is positive.

Use $\mathbf{V}_{\mathbf{AB}}$ as the zero angle reference.

a) Calculate the three phase currents in the load.

$$I_{AB} = \begin{bmatrix} 5.2 \\ \checkmark \\ + j \end{bmatrix} -3.84$$
 $\checkmark A_{rms}$

$$I_{BC} = \begin{bmatrix} -5.88 \\ \checkmark \\ + j \end{bmatrix} -2.51$$
 $\checkmark A_{rms}$

$$I_{CA} = \begin{bmatrix} .76555 \\ \checkmark \\ + j \end{bmatrix} = \begin{bmatrix} 6.35 \\ \checkmark \\ A_{rms} \end{bmatrix}$$

b) Calculate the three line currents.

$$I_{aA} = \begin{bmatrix} 4.35 \\ \end{bmatrix} + j \begin{bmatrix} -10.19 \\ \end{bmatrix} + j \begin{bmatrix} A_{rms} \\ \end{bmatrix}$$

$$I_{bB} = \begin{bmatrix} -11 \\ \end{bmatrix} + j \begin{bmatrix} 1.32 \\ \end{bmatrix} + j \begin{bmatrix} 8.86 \\ \end{bmatrix} + j \begin{bmatrix} 8.86 \\ \end{bmatrix} + A_{rms}$$

c) Calculate the three line voltages at the sending end of the line.

$$V_{ab} = 499$$
 $+ j 0$ V_{rms}

$$V_{bc} = -249$$
 $+ j -432$ V_{rms}

$$V_{ca} = -249$$
 $+ j 432$ V_{rms}

Correct

Correct

Mark 10.00 out of 10.00

P11.12_7ed

A balanced Y-connected load having an impedance of $Z_Y = 72 + j \ 21 \ \Omega/\Phi$ is connected in parallel with a balanced Δ -connected load having an impedance of $Z_\Delta = 150 + j \ 0 \ \Omega/\Phi$. The parallel loads are fed from a line having an impedance of $Z_T = 0 + j \ 1 \ \Omega/\Phi$. The magnitude of the line-to-neutral voltage of the Y-connected load is 7,650 V_{rms}.

a) Calculate the magnitude of the current in the line feeding the loads.

$$|\mathbf{I_{aA}}| = |\mathbf{I_{bB}}| = |\mathbf{I_{cC}}| = \boxed{255}$$
 \checkmark $\mathbf{A_{rms}}$

b) Calculate the magnitude of the phase current in the Δ -connected load.

$$|\mathbf{I}_{\mathbf{A}\mathbf{B}}| = |\mathbf{I}_{\mathbf{B}\mathbf{C}}| = |\mathbf{I}_{\mathbf{C}\mathbf{A}}| = \boxed{88}$$

c) Calculate the magnitude of the phase current in the Y-connected load.

$$|\mathbf{I_{AN}}| = |\mathbf{I_{BN}}| = |\mathbf{I_{CN}}| = \boxed{102}$$
 \checkmark $\mathbf{A_{rms}}$

d) Calculate the magnitude of the line-to-line voltages at the sending end of the line.

$$|\mathbf{V}_{\mathbf{A}\mathbf{B}}| = |\mathbf{V}_{\mathbf{B}\mathbf{C}}| = |\mathbf{V}_{\mathbf{C}\mathbf{A}}| = \boxed{13301}$$
 \checkmark \mathbf{V}_{rms}

Correct

Correct

Mark 10.00 out of 10.00

P11.14_7ed

A Δ -connected source is connected to a Y-connected load by means of a balanced three-phase distribution line with an impedance of $Z_T = 9.1 + j$ 71.5 Ω/Φ . The source phase sequence is negative. The voltage $V_{ab} = 4,156$ at angle 0° V_{rms} . The D-connected source impedance of $Z_D = 2.7 + j$ 13.5 Ω/Φ . The load impedance is $Z_Y = 1,910 - j$ 636 Ω/Φ . This figure shows the single-phase equivalent circuit.

a) Determine the magnitude of the line voltage at the terminals of the load.

$$|\mathbf{V_{AN}}| = |\mathbf{V_{BN}}| = |\mathbf{V_{CN}}| = 2416$$
 $\mathbf{V_{rms}}$

b) Determine the magnitude of the phase currents in the Δ -connected source.

$$|\mathbf{I}_{\mathbf{A}\mathbf{B}}| = |\mathbf{I}_{\mathbf{B}\mathbf{C}}| = |\mathbf{I}_{\mathbf{C}\mathbf{A}}| = \boxed{.69}$$
 \checkmark $\mathbf{A}_{\mathrm{rms}}$

c) Determine the magnitude of the line voltage at the terminals of the source.

$$|\mathbf{V_{ab}}| = |\mathbf{V_{bc}}| = |\mathbf{V_{ca}}| = \boxed{4156}$$
 \checkmark V_{rms}

Correct

Marks for this submission: 10.00/10.00.

Question 9

Correct

Mark 10.00 out of 10.00

P11.23_8ed

The total apparent power supplied in a balanced three-phase Y- Δ system is 3,600 VA. The load line-to-line voltage is 208 V $_{rms}$. If the line impedance is negligible and the power factor angle of the load is 25°, determine the impedance of the load.

$$Z_{\text{load},\Delta} = \begin{bmatrix} 32.67 \\ \end{bmatrix} \checkmark + j \begin{bmatrix} 15.2 \\ \end{bmatrix} \circlearrowleft \Omega \text{ (Ohms)}$$

Correct

Correct

Mark 10.00 out of 10.00

P11.35 8ed

A balanced three-phase source is supplying 1,800 kVA at 0.96 pf leading to two balanced Y-connected parallel loads. The distribution line connecting the source to the load has negligible impedance. The power associated with load 1 is $Z_{load,1} = 192 + j 1,464$ kVA.

a) Determine the impedance per phase of load 2 if the line voltage $V_{line} = 11,085$ Vrms and the impedance components are in series.

$$Z_{load2,phase,series} = \boxed{30.6} + j \boxed{-38.8} \qquad \boxed{\checkmark} \quad \Omega \text{ (Ohms)}$$

b) Repeat a) with the load 2 impedance components are in parallel.

$$Z_{load2,phase,parallel} = \boxed{80} \checkmark + j \boxed{-62} \checkmark \Omega \text{ (Ohms)}$$

Correct

Jump to...

V

Homework 5 - Chapter 12 ▶