2. Tribus et mesures

Tribus

- **2.1.** On considère un ensemble à trois éléments $E = \{a, b, c\}$. Décrire l'ensemble $\mathcal{P}(E)$, puis toutes les tribus de E.
- **2.2.** Soient E, F deux ensembles, et f une fonction de E dans F.
 - 1. Soit \mathcal{B} une tribu sur F, montrer que $\{f^{-1}(B), B \in \mathcal{B}\}$ est une tribu sur E. On l'appelle tribu image réciproque de f.

Si \mathcal{A} est une tribu sur E, $\{f(A), A \in \mathcal{A}\}$ n'est pas en général une tribu sur F. On peut cependant définir une notion de tribu image :

- 2. montrer que $\{B \subset F, f^{-1}(B) \in A\}$ est une tribu sur F. On l'appelle tribu image de f.
- **2.3.** Soit E un ensemble.
 - 1. Expliciter la tribu S engendrée par les singletons de E (c'est-à-dire $\sigma(\{\{x\}, x \in E\})$). Quelle est la tribu engendrée par les parties finies de E?
 - 2. Supposons que E ait au moins 2 éléments. Quelle est la tribu engendrée par les paires de E (c'est-à-dire $\sigma(\{\{x,y\},\ x,y\in E,\ x\neq y\}))$?
 - 3. Soient \mathcal{A} et \mathcal{B} deux tribus sur E. Les classes $\mathcal{A} \cap \mathcal{B}$ et $\mathcal{A} \cup \mathcal{B}$ sont-elles des tribus sur E?
- **2.4.** On considère la suite de tribus $A_n = \sigma(\{\{0\}, \{1\}, \dots, \{n\}\}) \subset \mathcal{P}(\mathbb{N})$. Expliciter la tribu $A_n, n \in \mathbb{N}$, et montrer que $\bigcup_n A_n$ n'est pas une tribu.

Mesures

- **2.5.** Soit μ une mesure sur un espace mesurable (E, A).
 - 1. Montrer que si $(A_n)_{n\in\mathbb{N}}$ est une suite de \mathcal{A} croissante pour l'inclusion, alors $\mu(\bigcup_n A_n) = \lim_{n\to\infty} \mu(A_n)$.
 - 2. Montrer que si $(A_n)_{n\in\mathbb{N}}$ est une suite de \mathcal{A} décroissante pour l'inclusion vérifiant :

(i) il existe
$$n_0$$
 tel que $\mu(A_{n_0}) < \infty$,

alors $\mu(\bigcap_n A_n) = \lim_{n \to \infty} \mu(A_n)$. Justifier l'importance de la condition (i).

2.6. Soient E un ensemble et $(A_n)_{n\in\mathbb{N}}$ une suite de sous-ensembles de E. Décrire les éléments des ensembles suivants :

$$\liminf_n A_n := \bigcup_{n\geqslant 0} \bigcap_{k\geqslant n} A_k \quad \text{et} \quad \limsup_n A_n := \bigcap_{n\geqslant 0} \bigcup_{k\geqslant n} A_k.$$

1. Soient μ une mesure sur (E, A) et $A_n \in A$, $n \ge 0$. Montrer que

$$\mu(\liminf_n A_n) \leqslant \liminf_n \mu(A_n),$$

et que

$$\mu(\cup_{n\geqslant 0}A_n)<\infty \Rightarrow \mu(\limsup_n A_n) \geqslant \limsup_n \mu(A_n).$$

2. Montrer le Lemme de Borel-Cantelli :

$$\sum_{n \in \mathbb{N}} \mu(A_n) < \infty \implies \mu(\limsup_n A_n) = 0.$$

- 3. Soit $(x_n)_n$ une suite de réels. Que peut-on dire de l'ensemble des points $x \in \mathbb{R}$ tels que la série $\sum_{n \geq 0} \frac{1}{3^n |x_n x|}$ converge?
- **2.7.** Soit (E, \mathcal{A}) un espace mesurable. Montrer qu'une application $\mu : \mathcal{A} \to \overline{\mathbb{R}}_+$ vérifiant :
 - (i) $\mu(\emptyset) = 0$,
 - (ii) si $A, B \in \mathcal{A}$ et $A \cap B = \emptyset$, alors $\mu(A \cup B) = \mu(A) + \mu(B)$,
- (iii) pour toute suite $(A_n)_{n\geqslant 1}$ d'éléments de \mathcal{A} , croissante pour l'inclusion, $\mu(\bigcup_n A_n) = \lim_n \mu(A_n)$, est une mesure sur (E, \mathcal{A}) .
- **2.8.** Soit (E, A, μ) un espace mesuré. Montrer que les deux conditions suivantes sont équivalentes :
 - (i) μ est une mesure de Dirac,
 - (ii) $\mu(\mathcal{A}) = \{0, 1\} \text{ et } \bigcap \{A \in \mathcal{A}, \ \mu(A) = 1\} \neq \emptyset.$
- **2.9.** Montrer qu'un ouvert de \mathbb{R} de mesure de Lebesgue nulle est vide. Soit $\varepsilon > 0$, donner un exemple d'ouvert dense dans \mathbb{R} dont la mesure est inférieure à ε .
- **2.10.** Montrer qu'un borélien $A \subset [0,1]$ tel que $\lambda([0,1] \setminus A) = 0$ est dense dans [0,1].
- **2.11.** Montrer que $\mathscr{B}(\mathbb{R}^d)$ est invariante par translation, c'est-à-dire que pour tous $B \in \mathscr{B}(\mathbb{R}^d)$ et $a \in \mathbb{R}^d$, $B + a \in \mathscr{B}(\mathbb{R}^d)$, où B + a désigne l'ensemble $\{x + a, x \in B\}$.
- **2.12.** Soit B une partie de \mathbb{R} et a un réel. Soit μ une mesure sur la tribu $\mathscr{B}(\mathbb{R})$ des boréliens de \mathbb{R} telle que $-\mu([0,1])=1$,
 - $-\mu(B+a)=\mu(B)$ pour tous $B\in\mathscr{B}(\mathbb{R})$ et $a\in\mathbb{R}$.
 - 1. Montrer que pour tout $x \in \mathbb{R}$, $\mu(\{x\}) = 0$.
 - 2. Montrer que pour tous réels a, b tels que $a < b, \mu(]a, b[) = b a$.
 - 3. Si I est un intervalle de \mathbb{R} , que vaut $\mu(I)$?
- **2.13.** Existence d'ensembles non mesurables. On cherche à montrer, en utilisant l'axiome du choix, qu'il n'existe pas de mesure λ sur $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ invariante par translation, telle que $\lambda([0,1]) = 1$. On suppose par contradiction qu'une telle mesure λ existe.

On introduit une relation d'équivalence sur \mathbb{R} notée \sim , définie par

$$x \sim y \Leftrightarrow x - y \in \mathbb{Q}$$
.

- 1. En utilisant l'axiome de choix, construire un ensemble $A \subset [0,1]$ qui contient exactement un point dans chaque classe d'équivalence.
 - On rappelle l'axiome du choix : pour tout ensemble non vide E, il existe une application $f: \mathcal{P}(E) \to E$ dite "fonction choix", telle que pour tout $A \subset E$ non vide, $f(A) \in A$.
- 2. Si $r, q \in \mathbb{Q}$ et $r \neq q$, déterminer $(A+r) \cap (A+q)$, où $A+x := \{y+x, y \in A\}$ pour $x \in \mathbb{R}$.
- 3. Montrer que $[0,1] \subset \bigcup_{r \in \mathbb{Q} \cap [-1,1]} (A+r) \subset [-1,2]$ et conclure.
- **2.14.** Ensemble de Cantor. Soit $C_0 = [0, 1]$. On définit la suite $(C_n)_n$ de la manière suivante : à partir C_n qui est une union finie d'intervalles fermés disjoints, on obtient C_{n+1} en retirant à chaque intervalle de C_n son tiers médian (on appelle tiers médian d'un intervalle I le sous-intervalle ouvert centré au centre de I, ayant pour longueur le tiers de celle de I).

On pose ensuite $C = \bigcap_{n \in \mathbb{N}} C_n$.

- 1. Calculer $\lambda(C)$.
- 2. Montrer que C est un compact non dénombrable, d'intérieur vide dont tous les points sont d'accumulation.
- 3. Montrer que

$$C = \left\{ \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n}, \ \alpha_n \in \{0, 2\} \text{ pour tout } n \in \mathbb{N}^{\star} \right\}.$$