IP Addressing and Subnetting Manual - Protocolos de Transporte e Roteamento

Gustavo Pimentel Filgueira

221006745

Types of IP Adresses

- 1. IPv4: A 32-bit address written in dotted decimal format (e.g., 192.168.1.1).
- 2. **IPv6**: A 128-bit address written in hexadecimal format, separated by colons (e.g., 2001:0db8:85a3:0000:0000:8a2e:0370:7334).

IPv4 Addressing

Address Classes

IPv4 addresses are categorized into five classes:

- Class A: 0.0.0.0 to 127.255.255.255 (Large networks)
 - Default Subnet Mask: 255.0.0.0 (/8)
 - Example: 10.0.0.1
- Class B: 128.0.0.0 to 191.255.255.255 (Medium-sized networks)
 - Default Subnet Mask: 255.255.0.0 (/16)
 - Example: 172.16.0.1
- Class C: 192.0.0.0 to 223.255.255.255 (Small networks)
 - Default Subnet Mask: 255.255.255.0 (/24)
 - Example: 192.168.1.1
- Class D: 224.0.0.0 to 239.255.255.255 (Multicasting)
- Class E: 240.0.0.0 to 255.255.255.255 (Experimental)

Reserved IP Ranges

- Private IP Addresses:
 - o Class A: 10.0.0.0 to 10.255.255.255
 - Class B: 172.16.0.0 to 172.31.255.255
 - o Class C: 192.168.0.0 to 192.168.255.255
- Loopback Address: 127.0.0.1 (Testing and diagnostics)
- APIPA: 169.254.0.0 to 169.254.255.255 (Automatic IP assignment when no DHCP is available)

Subnetting

Subnetting divides a large network into smaller segments, improving performance and security.

Subnet Masks

A subnet mask defines the boundary between the network ID and host ID. It is written in two formats:

1. Dotted Decimal: e.g., 255.255.255.0

2. CIDR (Classless Inter-Domain Routing): e.g., /24

Common Subnet Masks

CIDR	Subnet Mask	Total Subnets	Hosts per Subnet
/8	255.0.0.0	1	16,777,214
/16	255.255.0.0	256	65,534
/24	255.255.255.0	65,536	254
/30	255.255.255.252	4	2
/32	255.255.255.255	1	1

Subnetting Example

Given a network 192.168.1.0/24, to divide it into four subnets:

- New Subnet Mask: /26 (255.255.255.192)
- · Subnets:
 - 192.168.1.0 192.168.1.63
 - 192.168.1.64 192.168.1.127
 - 192.168.1.128 192.168.1.191
 - 192.168.1.192 192.168.1.255

Network Segments

Network segments are portions of a network separated by devices such as routers or switches.

Types of Segmentation

- 1. Physical Segmentation: Uses hardware like switches to divide networks.
- 2. Logical Segmentation: Uses VLANs or subnets to create virtual divisions.

Benefits

- Improved network performance
- Enhanced security

When to Use Specific Subnets

Small Office/Home Office (SOHO)

- CIDR: /24 (e.g., 192.168.1.0/24)
- Reason: Supports up to 254 devices, sufficient for small environments.

Medium-Sized Business

- CIDR: /22 (e.g., 192.168.4.0/22)
- Reason: Balances IP space utilization and management.

Point-to-Point Links

- CIDR: /30 or /31
- Reason: Minimal host requirements reduce IP wastage.

Loopbacks or IDs

- CIDR: /32 (e.g., 1.1.1.1/32)
- Reason: Only one IP for subnet necessary

Best Practices for IP Addressing

1. Plan the IP Scheme:

- Use private IPs for internal networks.
- Reserve IPs for critical devices (e.g., servers, routers).

2. Document the Addressing:

• Maintain a record of assigned addresses.

3. Use DHCP for Dynamic Assignments:

• Simplifies management for large networks.

4. Monitor and Audit:

• Regularly check for conflicts and unused IPs.