	Roll No [Total No. of Pages : 3
3E1203	3E1203
	B.Tech. III-Sem. (Main/Back) Examination, January/February - 2024
	Artificial Intelligence and Data Science
	3AID3-04 Digital Electronics
	AID, CAI, CS,IT,CCS, CDS,CIT,CSD,CSR

Time: 3 Hours Maximum Marks: 70

Instructions to Candidates:

Attempt all **Ten** questions from Part A, **Five** questions out of **Seven** questions from Part B and **Three** questions out of **Five** questions from Part C.

Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. Units of quantities used/ Calculated must be stated clearly.

Use of following supporting material is permitted during examination. (Mentioned in form No.205)

PART - A

(Answer should be given up to 25 words only)

	All questions are compulsory.	$(10\times2=20)$
1.	List the different types of flip flops.	(2)
2.	Define reflective codes.	(2)
3.	State De Morgan's theorem.	(2)
4.	$Convert (10101101)_{B} \rightarrow ()_{G}$	(2)
5.	Explain race around condition in JK flip flop.	(2)
6.	Illustrate Excitation table of SR flip flop.	(2)
7.	Explain don't care condition.	(2)
8.	Show the classification of digital logic families.	(2)
9.	Solve (0100 1000. 01111001) $xS-3 = ()_{10}$	(2)
10.	Calculate the value of <i>x</i> . $(23)_x + (12)_x = (101)_x$.	(2)
201	202/2024	F. G 1

PART - B

(Analytical/Problem solving questions)

	Attempt any Five questions.	$(5\times4=20)$		
1.	What is multiplexer? Design 4:1 MUX using 2:1 MUX.	(4)		
2.	Interpret the function $f = A + BC$ in canonical POS form (Product of Sum form). (4)			
3.	Design full adder circuit using half adders.			
4.	Construct CMOS NAND and CMOS NOR gate for two inputs.			
5.	Show that			
	i) $AB + A'C + BC = AB + A'C$	(2)		
	ii) $AB+A'C = (A+C) (A'+B)$	(2)		
6.	Consider two binary numbers $X = 1010100$ and $Y = 1000011$, perform the subtractusing 2^xS complement.			
	i) X-Y	(2)		
	ii) Y-X	(2)		
7.	What are decoders? Implement the following boolean function $f(A,B,C) = \sum_{m} (2,4,5,7)$	using 3 to 8 decoder (4)		
	PART - C			
	(Descriptive/Analytical/Problem Solving/Design qu	estions)		
	Attempt any Three questions.	$(3\times10=30)$		
1.	Simplify the following boolean function using quine McCluske the result using k-map also. $F(A,B,C,D) = \sum_{m} (1,2,3,7,8,9,10)$	•		

3E1203 (2)

Design a 3-bit synchronous counter using JK flip flops.

(10)

2.

	i)	Naise Margin	(2)		
	ii)	Propagation Delay	(2)		
	iii)	Fan - In	(2)		
	iv)	Fan-out	(2)		
	v)	Power Dissipiation	(2)		
4.	Des	ign a 4-bit binary to gray code converter and realize it using logic gates.	(10)		
5. Ex		Explain the working of 4-bit serial in parallel -out shift register along with the waveform.			
			(10)		

3E1203 (3)

3.

Explain the following terms: