# Urban Informatics

Fall 2017

dr. federica bianco fbianco@nyu.edu





### Recap:

- Good practices with data: falsifiability, reproducibility
- Basic data retrieving and munging: APIs, Data formats
- SQL
- Basic statistics: distributions and their moments
- Hypothesis testing: *p*-value, statistical significance
- Statistical and Systematic errors
- Goodness of fit tests
- Likelihood
- OLS
- topics in Geospatial analysis



### Recap:

- Good practices with data: falsifiability, reproducibility
- Basic data retrieving and munging: APIs, Data formats
- SQL
- Basic statistics: distributions and their moments
- Hypothesis testing: *p*-value, statistical significance
- Statistical and Systematic errors
- Goodness of fit tests
- Likelihood
- OLS
- topics in Geospatial analysis

### Today

• Topics in (time) series analysis



# Topics in (time) series analysis

- smoothing
- de-trending
- event detection
- point of change detection
- period finding (Fourier analysis)
- clustering









Trend





Trend









# HD 209458, the first transiting planet to be discovered.



Period



# HD 209458, the first transiting planet to be discovered.



Period









event detection















# they do not have to be TIME series!





# CUSP-UO spectra of urban lights for light technology assessment





anomaly detection



- anomaly detection
- identification of trends



- anomaly detection
- identification of trends
- point of change detection



- anomaly detection
- identification of trends
- point of change detection
- prediction



- anomaly detection
- identification of trends
- point of change detection
- prediction
- periodicity detection



- anomaly detection
- identification of trends
- point of change detection
- prediction
- periodicity detection
- classification (clustering)



Method

• anomaly (event) detection

Thresholding



https://github.com/fedhere/Ulnotebooks/blob/master/
timeseries/FSNYdeaths.ipynb

Method

• anomaly (event) detection

Thresholding

# Jupyter

- take the mean (possibly a local mean)
- take the standard deviation (possibly a local stdev)
- find points that deviate from the mean by more than N standard deviation

https://github.com/fedhere/Ulnotebooks/blob/master/
timeseries/FSNYdeaths.ipynb

Problem Method

- anomaly (event) detection
- identification of trends



https://github.com/fedhere/UInotebooks/blob/master// timeseries/stationarity.ipynb



Problem Method

- anomaly (event) detection
- identification of trends

Stationary data
Smoothing (Rolling mean)
ADFuller test for unit root



https://github.com/fedhere/Ulnotebooks/blob/master// timeseries/stationarity.ipynb



Method

- anomaly (event) detection
- Bayesian
  Point of Change Search

- identification of trends
- point of change search



https://github.com/fedhere/UInotebooks/blob/master/timeseries/pointOfChange.ipynb



Method

- anomaly (event) detection
- Bayesian
  Point of Change Search

- identification of trends
- point of change search



https://github.com/fedhere/UInotebooks/blob/master/ timeseries/pointOfChange.ipynb

https://www.slideshare.net/FrankKelly3/changepoint-detection-with-bayesian-inference

Adam, MacKay 2007



Rasmussen 2001

### Method

• anomaly (event) detection

Fourier Transforms

- identification of trends
- point of change search
- periodicity





$$F(\omega) = \frac{1}{2\pi} \int f(t)e^{-i\omega t} dt$$



$$F(\omega) = \frac{1}{2\pi} \int f(t)e^{-i\omega t} dt$$

takes a function in time domain



$$F(\omega) = \frac{1}{2\pi} \int f(t)e^{-i\omega t} dt$$

takes a function in time domain

to a function in frequency domain



$$F(\omega) = \frac{1}{2\pi} \int f(t)e^{-i\omega t} dt$$

takes a function in space domain

to a function in spatial frequency domain



$$F(\omega) = \frac{1}{2\pi} \int f(t)e^{-i\omega t} dt$$

takes a function in time domain f(t) is measured in seconds

to a function in frequency domain f(t) is measured in 1/seconds or Hz



# Fourier

a time series





The square of the real part of the Fourier transform this is called a Power spectrum.

High value of the power spectrum indicate periodicity at the corresponding frequency

Fourier

a time series



its power spectrum





# Cosine and Sine... just in case



http://www.businessinsider.com/7-gifs-trigonometry-sine-cosine-2013-5



## Fourier



https://github.com/fedhere/Ulnotebooks/blob/master/ timeseries/fourier.ipynb



## Problem

## Method

event detection

ARMA/ARIMA

- identification of trends
- periodicity
- prediction



http://www.econ.ohio-state.edu/dejong/note2.pdf



## **ARIMA**

Autoregression

$$x(t)=a_1x(t-1)+\epsilon_t$$



## ARIMA

Autoregression

$$x(t)=a_1x(t-1)+\epsilon_t$$

$$x(t)=a_1x(t-1)+a_2x(t-2)+...+a_nx(t-n)+\epsilon_t$$



# http://statsmodels.sourceforge.net/devel/examples/notebooks generated/tsa\_arma\_0.html





### ARIMA

Autoregression

$$x(t) = \sum_{i=1}^{p} a_i x_{t-i} + \varepsilon_t$$

Moving Average Model

$$x(t) = \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} + \varepsilon_{t} + \mu$$





# Integration

$$x'(t)=x(t)-x(t-i)$$

## ARIMA

Autoregression

$$x(t) = \sum_{i=1}^{p} a_i x_{t-i} + \varepsilon_t$$

Moving Average Model

$$x(t) = \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t + \mu$$







Integration

$$x'(t)=x(t)-x(t-i)$$



ARIMA

Autoregression

$$x(t) = \sum_{i=1}^{p} a_i x_{t-i} + \varepsilon_t$$

Moving Average Model

$$x(t) = \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t + \mu$$



https://github.com/fedhere/Ulnotebooks/blob/master/
ARMA\_microdata.ipynb



### Homework:

## **Mandatory Reading**

Kim Larsen (MultiThreaded, SF) blog post on bayesian vs non-bayesian tsa

http://multithreaded.stitchfix.com/blog/2016/04/21/forget-arima/

(in class I mentioned JVP Seattle bike-share analysis (now optional reading). I switched cause I think this is more interesting. But it is also a bit more difficult. Still the concepts are accessible to all of you. The code is in R, but you do not have to work with it, and it is R is straightforwardly readable

Optional Reading: an excellent analysis of time series by Jake Vander Plas (UW e-science center)

https://jakevdp.github.io/blog/2014/06/10/is-seattle-really-seeing-an-uptick-in-cycling/



### Homework:

#### Data:

MTA subway fares. It is a complete dataset of rides logged by card swipes for 600 Manhattan stations.

It contains 23 different subway card types (e.g. monthly pass, daily pass, Act for Disability pass... i will give you this as a list)

Each time series (per station, per ticket type) contains the number of swipes per week for 194 weeks from 05/21/2010 to 02/21/2014.

it is given to you as a python data cube. you can load it as np.load("MTA\_Fare.npy") and you will end up with a python numpy array of shape (600,23,194)



### Homework:

#### Goal 1:

Some of the time series are stationary, some show a downward trend: Identify the time series with the most prominent downward trend.

### Goal 2:

Event detection: Identify the most prominent event. There is a very significant drop (>3-sigma) in *all* time series. Identify it and figure out what it is due to.

#### Goal 3:

Several stations show a prominent annual periodicity. Identify the 5 stations that show the most prominent periodic trend on an annual period. Figure out what the increase in rides is due to.



## Homework Hints:

#### Goal 1:

Some of the time series are stationary, some show a downward trend: Identify the time series with the most prominent downward trend.

work with all time series individually. you can use the rolling mean to find trends: compare rolling mean near beginning and end of time series. Goal 2:

Event detection: Identify the most prominent event. There is a very significant drop (>3-sigma) in *all* time series. Identify it and figure out what it is due to.

Since I am telling you the event is in all time series you can work with averages: for example average over all rise types per station. Since i am telling you it is a highly significant event you can find it by thresholding Goal 3:

Several stations show a prominent annual periodicity. Identify the 5 stations that show the most prominent periodic trend on an annual period. Figure out what the increase in rides is due to.

Work in Fourier space: find the series that have the most prominent peak at ~1 year frequency

VIII: Topics in Time series

# Homework ExtraCredit:

#### Cluster:

Cluster the time series: you can use KMeans for example to identify common trends. or PCA. Since this is extra credit I will leave it entirely to you to figure out the details. for KMeans for e.g.:

```
#i am flattening the first 2 dimensions of the cube to cluster all
light curves for all stations and all types
tots = data.transpose(2,0,1).reshape(data.shape[2],
    data.shape[1]*data.shape[0]).T
#removing empty light curves
tots = tots[tots.std(1)>0]
#ith Kmeans you have to choose the number of clusters ahead km
= KMeans(n_clusters=10)
#and standardize the lightcurves before clustering
vals = ((tots.T - tots.mean(1))/tots.std(1)).T
km.fit(vals)
```



# Key points:

- Time series analysis may be done for a number of purposes: classification, prediction, event detection, period finding
- smoothing, binning, detrending (difference, regression)
- prediction tools: autoregression, ARMA, ARIMA
- period finding (Fourier analysis)



## References:

Stationary and non stationary time series <a href="http://www.cas.usf.edu/~cconnor/geolsoc/html/chapter11.pdf">http://www.cas.usf.edu/~cconnor/geolsoc/html/chapter11.pdf</a>

Change point detection

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464762/

**ARMA & ARIMA** 

http://www.econ.ohio-state.edu/dejong/note2.pdf

Time series classification in python, which we did not cover but you should read about!

http://alexminnaar.com/time-series-classification-and-clustering-with-python.html

A basic but quite intuitive Fourier Transform tutorial <a href="http://www.thefouriertransform.com/">http://www.thefouriertransform.com/</a>

Fourier Transform for Imaging: it is actually a very common image analysis technique and urban science relies a lot on imaging and computer-vision techniques <a href="http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm">http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm</a>



# References on clustering

Clustering: Science or Art??
Ulrike von Luxburg, Robert C. Williamson, Isabelle Guyon, 2009
<a href="http://users.cecs.anu.edu.au/~williams/papers/P184.pdf">http://users.cecs.anu.edu.au/~williams/papers/P184.pdf</a>

Determining the number of groups from measures of cluster stability
G. Bel Mufti, P. Bertrand and L. El Moubarki, 2005
<a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.4941&rep=rep1&type=pdf">http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.4941&rep=rep1&type=pdf</a>

Clustering technique-based least square support vector machine for EEG signal classification Siulya, Yan Lia, Peng (Paul) Wenb, 2010 (This is in the field of neuroscience, but it discusses clustering of time series. You should have access to it from an NYU internet connection) <a href="http://www.sciencedirect.com/science/article/pii/S0169260710002907">http://www.sciencedirect.com/science/article/pii/S0169260710002907</a>

