C Trimble ASCII Interface Protocol (TAIP)

Trimble ASCII Interface Protocol (TAIP) is a Trimble-specified digital communication interface based on printable ASCII characters over a serial data link. TAIP was designed specifically for vehicle tracking applications but has become common in a number of other applications because of its ease of use. TAIP supports both scheduled and polled responses.

TAIP messages may be scheduled for output at a user specified rate starting on a given epoch from top of the hour. For communication robustness, the protocol optionally supports checksums on all messages. It also provides the user with the option of tagging all messages with the unit's user specified identification number (ID). This greatly enhances the functional capability of the unit in a network environment.

Additionally, given the printable ASCII format of all communication, TAIP is ideal for use with mobile data terminals, seven bit modems and portable computers. Although, sensors incorporating this protocol are shipped from the factory with a specific serial port setting, the port characteristics are fully programmable through TAIP messages.

This appendix is designed for easy reference to TAIP message formats and describes all the TAIP messages defined at the time of printing. Some of the defined TAIP messages are not supported by the Lassen SK II GPS receiver. The Lassen SK II GPS supports the following TAIP messages:

Lassen SK II GPS supported TAIP messages include:

AL Altitude/Up Velocity	PR Protocol
AP Auxiliary Port Characteristics	PT Port Characteristic
CP Compact Position Solution	PV Position/Velocity Solution
DC Differential Corrections	RM Reporting Mode
DD Delta Differential Corrections	RT Reset Mode
ID Identification Number	ST Status
IP Initial Position	TM Time/Date
LN Long Navigation Message	VR Version Number

C.1 Message Format

All TAIP communication uses printable, uppercase ASCII characters. The interface provides the means to configure the unit to output various sentences in response to queries or on a scheduled basis. Each sentence has the following general format:

where:

Table C-1. Message Formats

>	Start of new message
Α	Message qualifier
BB	a two character message identifier
С	data string
DDDD	Optional 4 character vehicle ID
FF	Optional 2 character checksum
<	delimiting character
{x}	signifies that x can occur any number of times.
[x]	signifies that x may optionally occur once.

C.1.1 Start of a New Message

The > character (ASCII code 62 decimal) is used to specify the start of a new sentence.

C.1.2 Message Qualifier

A one character message qualifier is used to describe the action to be taken on the message. The following table lists the valid qualifiers.

Table C-2 Message Format Qualifiers

Qualifier	Action
Q	Query for a single sentence (sent to GPS sensor).
R	Response to a query or a scheduled report (from the sensor)
F	Schedule reporting frequency interval in seconds
S	Enables equipment to be initialized, and sets various message types.
D	Specify a minimum distance traveled and a minimum and maximum time interval for the next report

Details on the use of message qualifiers are given in section C.24, Communication Using TAIP.

Note – All TAIP message characters must be in uppercase.

C-2 Lassen SK II GPS

C.1.3 Message Identifier

A unique two character message identifier consisting of alphabetical characters is used to identify type messages. For example: PR for Protocol or VR for Version Number.

C.1.4 Data String

The format and length of a data string is dictated by the message qualifier and the message identifier. The data string may contain any printable ASCII character with the exception of the >, <, and; characters. Detailed descriptions of each message format are provided in the specific message sections of this Appendix. Most messages are length sensitive and unless otherwise specified, field separators, including spaces are not used.

C.1.5 Vehicle ID

A vehicle identification(ID) may optionally be used in all the communications with the sensor. Each sensor in the fleet may be assigned a four character alpha-numeric ID and be forced to output that ID in all messages. The default is: ID set to 0000 and the ID Flag set to F (false).

The sensor will check all incoming messages for ID. If no ID is specified, the sensor will accept the message. If the ID is included in messages but does not compare with the ID previously set, the message will be ignored. This applies even when the ID Flag is turned off.

C.1.6 Checksum

The checksum field provides for an optional two digit hex checksum value, which is computed as XOR of *all characters* from the beginning of the sentence up to and including the * character. If provided, the checksum is always the last element of the sentence before the message delimiter. The default mode of operation is to include checksum in sentences. The use of checksums can help in instances where the communication channel is noisy.

Example:

The following message to set the vehicle ID flag on includes checksum.

The checksum (6F) was generated by XOR'ing the ASCII codes for > and S then XOR'ing that result with the ASCII code for R and so forth, up to and including the * character.

C.1.7 Message Delimiter

The < character signifies end of a sentence and is used as the message delimiter.

C.2 Sample PV Message

The Position/Velocity Solution (PV) message is one of the more commonly used TAIP messages and most sensors using TAIP are set by default to output the PV message once every 5 seconds.

The following analysis of a typical PV message is provided to further explain the TAIP message protocol.

>RPV15714+3739438-1220384601512612; ID=1234; *7F<

Table C-3. Sample PV Message Fields

ID	Meaning	
>	Start of Message Delimiter	
R	Response Qualifier	
PV	PV message Identifier	
15714	GPS Time of Day	
+3739438	Latitude	
-12203846	Longitude	
015	Speed	
126	Heading	
1	Source of Data	
2	Age of Data	
;ID=1234	Vehicle ID	
;*7F	Checksum	
<	End of Message Delimiter	

Note – Refer to the discussion of the PV message data string for more detail on how this message is interpreted.

C-4 Lassen SK II GPS

C.3 Time and Distance Reporting

The 'D' message qualifier allows you to specify a minimum distance traveled as well as a minimum and maximum time interval for the next report. Units that are stationed at a fixed location can be programmed to report only when the unit moves "off station" or after a certain elapsed time since last report, but no more often than the specified minimum time interval.

The message format used with the 'D' qualifier is shown below:

>DAABBBBCCCCEEEEFFFF[;ID=GGGG][;*HH]<

Table C-4. Time and Distance Reporting Message Format Qualifiers

ID	Meaning
>	start of message delimiter
D	the Distance message qualifier
AA	message to report (i.e. PV means Position Velocity message)
BBBB	minimum time (seconds) interval between reports (Tinterval)
CCCC	report epoch (number of seconds from top of the hour)
EEEE	delta distance (meters) from last reported distance
FFFF	maximum time (seconds) interval between reports (T _{max})
GGGG	optional vehicle identification number (user selected)
НН	optional checksum
<	End of message delimiter

Note – If BBBB = 0, then the message output is disabled. If FFFF = 0, maximum time feature is disabled (the unit will only report if current position is greater than or equal to the delta distance specified in EEEE).

Example:

When the message: $\gt{DPV0030000505000900}$; ID=0105< is sent to the GPS receiver, it specifies that vehicle number 105 (GGGG=0105) is to report the Position Velocity message (AA=PV) whenever its current position differs from the previously reported position by at least 500 meters (EEEE=0500), but no more often than every 30 seconds (BBBB=0030) or less often than every 15 minutes (FFFF=0900 seconds). The minimum and maximum time-out reports are to be issued with a 5 second offset (CCCC=0005) from the top of the hour. The optional checksum was not used in this example. The square brackets, [...], shown in the format description above are used to indicate optional data. The brackets themselves are never included in the actual TAIP message string.

The 'D' message qualifier was designed by Trimble for use by Ambulance Companies to limit communication traffic between mobile units and the base when the ambulances are stationary on-station. When the ambulance has reached its stationary dispatch site, the operator signals the base by voice or by pushing a button on a Mobile Data Terminal (MDT) signifying that the unit is now on station. Once this communication is made, the base operator issues a 'D' qualifier and message so that the ambulance will only report either when it moves off-station or at specific reporting intervals.

C.4 Latitude and Longitude Conversion

The TAIP protocol reports latitude as positive north decimal degrees and longitude as positive east decimal degrees, using the WGS-84 datum. For your application, you may wish to convert to degrees, minutes and seconds. The following example illustrates the conversion of decimal degrees to degrees, minutes and seconds.

Example:

Given latitude and longitude in decimal degrees,

Latitude:	+37.39438 degrees	
Longitude:	-122.03846 degrees	

Convert latitude by multiplying the decimal fraction of degrees by 60 to convert to minutes

 $0.39438 \times 60 = 23.6628 \text{ minutes}$

Retain the integer (23) portion as the minutes then multiply the decimal fraction by 60 to convert to seconds,

 $0.6628 \times 60 = 39.768$ seconds

Since the sign of the latitude in this example is positive the result is:

Latitude: N 37º 23' 39.77"

The longitude is converted in the same fashion:

Longitude: W 1220 02' 18.46"

 $\label{eq:Note-At the earth's equator, one degree of latitude and longitude represents 68.7 miles; therefore, 0.00001 degrees represents approximately 3.6 feet or 1.1 meters. Each second represents approximately 100.76 ft. (30.7 m).$

C-6 Lassen SK II GPS

C.5 Message Data Strings

The following table lists all the TAIP messages currently defined and comments regarding their application:

Table C-5. Message Data String Descriptions

Identifier	Message Name	Frequency and Distance	Query	Response/ Report	Set
AL	Altitude/Vertical Velocity	Х	Х	Х	X
AP	Auxiliary Port Characteristic		Х	X	Х
CP	Compact Position Solution	Х	Х	Х	Х
DC	Differential Corrections				Х
DD	Delta Differential Corrections				Х
ID	Vehicle ID	Х	Х	Х	Х
IP	Initial Position	Х	Х	Х	Х
LN	Long Navigation Message	Х	Х	Х	
PR	Protocol		Х	Х	Х
PT	Port Characteristic	Х	Х	Х	Х
PV	Position/Velocity Solution	Х	Х	Х	Х
RM	Reporting Mode	Х	Х	Х	Х
RT	Reset				Х
ST	Status	Х	Х	Х	
TM	Time/Date	Х	Х	Х	
VR	Version Number	Х	Х	Х	Х

The data string format of each message is described in the following pages.

Note 1. – The Trimble GPS sensor may not support all the message types. Please refer to page 1 of this appendix for a list of the messages your sensor supports.

Note 2. – All TAIP message characters must be in uppercase.

C.6 AL Altitude/Up Velocity

Note – The first character of altitude or vertical velocity is "+" or "-".

Data String Format:

AAAABBBBBBBCCCCDE

Table C-6. Altitude/Up Velocity Data String Descriptions

Item	# of Char	Units	Format	Value		
GPS Time of day	5	Sec	AAAAA			
Altitude	6	Meter	BBBBBB			
Vertical Velocity	4	MPH	cccc			
Source	1	n/a	D	0 = 2D GPS 1 = 3D GPS 2 = 2D DGPS 3 = 3D DGPS 6 = DR 8 = Degraded DR 9 = Unknown		
Age of Data Indicator	1	n/a	Е	2 = Fresh, <10 seconds 1 = Old, >10 seconds 0 = Not available		
Total # of characters is 17						

Altitude is above mean sea level in WGS-84. The GPS time of day is the time of fix rounded to the nearest second. This message contains data obtained from the last 3 dimensional fix and may not be current.

Note – The data in this message is to be considered invalid and should not be used, if the Age of Data Indicator is equal to 0 (signifying data not available).

C.7 AM Alarm

Lassen SK II GPS does not support this TAIP message.

C-8 Lassen SK II GPS

C.8 AP Auxiliary Port Characteristics

Data String Format:

AAAA,B,C,D,E,F

Table C-7. Auxiliary Port Characteristics Data String Descriptions

Item	# of Char	Units	Format	(Value)		
Baud Rate	4	n/a	AAAA	9600, 4800, 2400, 1200, or 0300		
# of data bits	1	n/a	В	7 or 8		
# of stop bits	1	n/a	С	1 or 2		
Parity	1	n/a	D	N = None O = Odd E = Even		
Auxiliary Port Number	1	n/a	E	1		
Reserved	1	n/a	F	0		
Total number of characters is 9 (includes commas)						

This message defines the characteristics for the auxiliary port. The auxiliary port must be the RTCM input port on differential ready sensors.

The default settings of the auxiliary port are 4800 baud, 8 data bits, parity none, and 1 stop bit.

Example:

The following command will set the auxiliary port characteristics to 2400 baud, 8 data bits, 1 stop bit and no parity.

>SAP2400,8,1,N,1,0<

Note 1. - See the inclusion of 0 in the reserved field.

Note 2. – The AP command applies only to receivers with dual serial ports.

Note 3. – The AP command requires commas between data fields.

C.9 CP Compact Position Solution

Note – The first character of latitude or longitude is "+" or "-".

Data String Format:

AAAAABBBCCCCDDDDEEEEFG

Table C-8. Compact Position Solution Data String Descriptions

Item	# of Char	Units	Format	(Value)		
GPS Time of day	5	Sec	AAAAA			
Latitude	7	Deg	BBBCCCC			
Longitude	8	Deg	DDDDEEEE			
Source	1	n/a	F	0 = 2D GPS 1 = 3D GPS 2 = 2D DGPS 3 = 3D DGPS 6 = DR 8 = Degraded DR 9 = Unknown		
Age of Data Indicator	1	n/a	G	2 = Fresh, <10 sec 1 = Old, >10 sec 0 = Not available		
Total number of characters is 22						

Position is in latitude (positive north) and longitude (positive east) WGS-84. The GPS time of day is the time of fix rounded to the nearest second.

Note – The data in this message is to be considered invalid and should not be used, if the Age of Data Indicator is equal to 0 (signifying data not available).

C-10 Lassen SK II GPS

C.10 DC Differential Corrections

The DC message provides the sensor with differential corrections from type-1 and type-9 RTCM-104 records. The numerical values are written out in hex format producing a two character hexadecimal number for each data byte.

Data String Format:

AAAABBCC { DDEEEEFFGG }

Table C-9. DC Delta Differential Corrections Data String Descriptions

Item	# of Char	Туре	Units	Format			
Modified Z-count	4	Word	.6 sec	AAAA			
Station health	2	Byte	N/A	ВВ			
Number of SVs	2	Byte	N/A	CC			
The next five bytes (10 chara	The next five bytes (10 characters) are repeated for each SV.						
SV PRN & scale factor	SV PRN & scale factor 2 Byte n/a DD						
Range correction	4	Word	RTCM-104	EEEE			
Range-rate correction	2	Byte	RTCM-104	FF			
IODE	2	Byte	n/a	GG			

Units and scale factors are defined by RTCM-104, version 2. The SV PRN and scale factor contains the SV PRN in the lower 5 bits and the scale factor in the higher 3 bits. The scale factor has only three acceptable values:

- 0 Use with low scale factor
- 4 Use with high scale factor
- 7 Do not use

Range corrections are scaled by 0.02 meters for low scale factor and 0.32 m/sec for high scale factor.

Note 1. – DC and DD TAIP messages are used to enclose differential corrections within the TAIP format.

Note 2. – DC and DD messages used to input corrections require only one communications channel. When the auxiliary port is used to input RTCM 104 corrections, it assumes a separate communications channel is available for broadcast and receipt of differential corrections.

Note 3. – The TAIP Software Toolkit does not support DC and DD messages.

C.11 DD Delta Differential Corrections

This message provides the sensor with delta differential corrections from RTCM-104 record type 2. The values are numerical values written out in hex format, thus for each byte of data there is a two digit hex number.

The format of the data string is as follows:

AAAABB { CCDDDD }

Table C-10. DD Delta Differential Corrections Data String Descriptions

Item	# of Char	Туре	Units	Format		
Modified Z-count	4	Word	.6 sec	AAAA		
Number of SVs	2	Byte	n/a	BB		
The next 3 bytes (6 characters) are repeated for each SV						
SV PRN	2	Byte	n/a	CC		
Delta Range Correction	4	Word	RTCM-104	DDDD		

Note 1. – The units and scale factors are as defined by RTCM-104 version 1. The health/ UDRE/scale factor given for the specific SV in the most recent message DC is used. Delta range corrections are scaled by 0.02 meters times 2 raised to the health power.

The DC and DD TAIP messages described herein apply only to differential ready sensors and are provided to enclose differential corrections within the TAIP format.

Use of DC and DD messages to input corrections requires only one communications channel. Use of the auxiliary port to input RTCM-104 corrections assumes a separate communications channel is available for broadcast and receipt of differential corrections.

Note 2. - The TAIP software toolkit, GPSSK, does not support DC and DD messages.

C-12 Lassen SK II GPS

C.12 ID Identification Number

Data String Format:

AAAA

Table C-11. Identification Number Data String Descriptions

Item	# of Char	Units	Format
Vehicle ID	4	n/a	AAAA
Total number of characters is 4			

This message is used to report or set the vehicle's (or sensor's) unique, four character, alpha-numeric, user assigned ID. The default at cold start is 0000.

Example:

The following message will set the vehicle ID to 101.

>SID0101<

The following is simply a response to a query for vehicle ID.

>RID0101<

Note – The sensor will always check incoming messages for ID and compare with the vehicle ID set in the sensor's memory. If no ID is included in the message, the sensor will assume a match and accept the message. If the message sent to the sensor does contain a vehicle ID but that ID does not match the ID previously set in the sensor, the message will be ignored. This process is followed even when the ID_Flag is turned off (refer to the message RM).

C.13 IP Initial Position

Data String Format:

AAABBBBCCCCC

Table C-12. Initial Position Data String Descriptions

Item	# of Char	Units	Format
Initial Latitude	3	Deg	AAA
Initial Longitude	4	Deg	BBBB
Initial Altitude	5	10 Meters	CCCCC
Total number of characters is 12			

This is a very coarse initial position that the user can provide to aid the sensor in obtaining its first fix. This is particularly useful with sensors that do not have non-volatile (Battery Backed-up) memory. In such cases, every time the unit is powered up, it goes through a complete cold-start and it has absolutely no knowledge of where it is. Providing this message improves performance by decreasing the time to first fix and enhances the accuracy of the initial two dimensional navigation solutions by providing a reference altitude. In case of units with non-volatile memory, sending this message is only helpful if the unit has moved more than 1,000 miles since its previous fix. In either case, the sensor can initialize itself appropriately without any data from the user; it merely requires more time.

Note - For all the above values, the first character specifies the sign (+/-).

Example:

The following message will set the initial position to 37° North, 122° West, altitude 10 meters.

>SIP+37-122+0001<

C-14 Lassen SK II GPS

C.14 LN Long Navigation Message

Note – The first character of latitude, longitude, altitude or vertical speed is "+" or "-".

Data String Format:

AAAAA.BBBCCCDDDDDDEEEEFFFFFFGGGGGGGHHIIIJKKKKLMMMNOOPPQQPPQQ...PPQQRRRRRRRRRRR

Table C-13. Long Navigation Message Data String Descriptions

Item	# of Char	Units	Format	Value
GPS Time of day	8	Sec	AAAAA.BBB	
Latitude	10	Deg	CCC.DDDDDDD	
Longitude	11	Deg	EEEE.FFFFFF	
Altitude above MSL	9	Ft	GGGGGGG.HH	
Horizontal Speed	4	MPH	III.J	
Vertical Speed	5	MPH	KKKK.L	
Heading	4	Deg	MMM.N	
Number of SVs used	2	n/a	00	
SV Id (see note)	2	n/a	PP	
IODE (see note)	2	n/a	QQ	
Reserved	10	n/a	RRRRRRRRR	
Source	1	n/a	S	0 = 2D GPS 1 = 3D GPS 2 = 2D DGPS 3 = 3D DGPS 6 = DR 8 = Degraded DR 9 = Unknown
Age of Data Indicator	1	n/a	Т	2 = Fresh, <10 sec 1 = Old, >10 sec 0 = Not available
Total number of characters is 65+4x(number of SV's used)				

Note 1. – At least 2 satellites are required to get the LN Message.

Position is in Degrees, minutes, decimal minutes. And latitude is (positive north) and longitude (positive east) WGS-84. Heading is in degrees from True North increasing eastwardly. The GPS time of day is the time of fix rounded to the nearest second.

Note 2. – The data in this message is to be considered invalid and should not be used, if the Age of Data Indicator is equal to 0 (signifying data not available).

C.15 PR Protocol

The protocol message (PR) is the method used to control which I/O protocols are active on each of the two Lassen SK II GPS ports. Each protocol can be set to:

- Off
- Input Only
- Output Only
- Both Input and Output

The PR data string format is:

Table C-14. PR Data String Descriptions

Item	# of Char	Units	Format	(Value)
Port 1 Protocol	1	n/a	х	T = Both in and out I = Input only O= Output only F = Off N = Not available
Port 2 Protocol	1	n/a	У	T = Both in and out I = Input only O= Output only F = Off N = Not available

Sending the following message will set the receiver to TAIP in and out on PORT 1, and RTCM in, NMEA out on PORT 2.

Note 1. – There are two restrictions to setting protocols: RTCM is input only, and TAIP cannot be running on both ports at the same time.

Note 2. – If a protocol is not implemented within the application, x and/or y will have the value N, and any set message for that protocol is ignored.

It is possible to turn off all input processing on a port. If this is done, neither TAIP nor TSIP can be used to change the active protocols. The break sequence must used.

If you do not use battery back-up, all port characteristics will reset to the default after power is removed.

C-16 Lassen SK II GPS

C.16 PT Port Characteristic

This message defines the characteristics for the primary TAIP port.

Data String Format:

AAAA,B,C,D

Table C-15. Port Characteristic Data String Descriptions

Item	# of Char	Units	Format	(Value)
Baud Rate	4	n/a	AAAA	9600, 4800, 2400, 1200, or 0300
# of data bits	1	n/a	В	(7 or 8)
# of stop bits	1	n/a	С	(1 or 2)
Parity	1	n/a	D	("N" = None)
				("O" = Odd)
				("E" = Even)
Total number of characters is10 (includes commas)				

Most TAIP using sensors use the following default port characteristics

- 4800 baud
- 8 data bits
- 1 stop bit
- No parity

Note 1. – The characteristics set by this message will be stored in the sensor's battery backed ram. The Lassen SK II GPS family of sensors do not include an internal battery but provide a battery back-up input line that may be used to retain memory when main power is removed.

Note 2. – If you do not use battery back-up, all port characteristics will reset to the default after power is removed.

Note 3. - The PT command uses commas between data fields.

C.17 PV Position/Velocity Solution

Note – The first character of latitude or longitude is "+" or "-".

Data String Format:

AAAAABBBCCCCCDDDDEEEEEFFFGGGHI

Table C-16. Position/Velocity Solution Data String Descriptions

Item	# of Char	Units	Format	Value
GPS Time of day	5	Sec	AAAAA	
Latitude	8	Deg	BBB.CCCCC	
Longitude	9	Deg	DDDD.EEEEE	
Speed	3	MPH	FFF	
Heading	3	Deg	GGG	
Source	1	n/a	H	0 = 2D GPS 1 = 3D GPS 2 = 2D DGPS 3 = 3D DGPS 6 = DR 8 = Degraded DR 9 = Unknown
Age of Data Indicator	1	n/a	I	2 = Fresh, <10 sec 1 = Old, >10 sec 0 = Not available
Total	30			

Position is in latitude (positive north) and longitude (positive east) WGS-84. Heading is in degrees from True North increasing eastwardly. The GPS time of day is the time of fix rounded to the nearest second.

Note – The data in this message is to be considered invalid and should not be used, if the Age of Data Indicator is equal to 0 (signifying data not available).

C-18 Lassen SK II GPS

C.18 RM Reporting Mode

Data String Format:

```
[;ID_FLAG=A] [;CS_FLAG=B] [;EC_FLAG=C] [;FR_FLAG=D]
[;CR_FLAG=E]
```

Table C-17. Reporting Mode Data String Descriptions

Item	# of Char	Units	Format	Value
ID Flag	1	n/a	Α	T = True F = False
CS Flag	1	n/a	В	T = True F = False
EC Flag	1	n/a	С	T = True F = False
FR Flag	1	n/a	D	T = True F = False
CR Flag	1	n/a	E	T = True F = False

ID Flag determines whether the unit is to include the vehicles ID with each report.

CS Flag determines whether the unit is to include a checksum as part of each message.

EC Flag, when set, will cause the unit to echo back all complete and properly formatted set commands, except for DC and DD, with a "Response qualifier". This provides an easy way to verify that the unit did in fact receive the intended data.

FR Flag indicates whether the unit is to report messages automatically per their individually scheduled frequency. When set to false, the unit will only respond when queried for a specific message.

CR Flag, when set to True, will cause the sensor to append a carriage return and line feed [CR] [LF] to the end of each message output. This is useful when viewing the unencoded sensor responses on a terminal or a PC.

The default value at start-up for ID flag and the CR flag is false; the default for CS, EC and FR flags is true.

Example:

The following command will turn checksums off and carriage return on:

Note - Note the use of semicolon before the flag name.

C.19 RT Reset Mode

Data String Format:

Any one of the following data strings can be set. Upper case characters are required.

[]
[COLD]
[FACTORY]
[SAVE_CONFIG]

Table C-18. Reset Mode Data String Descriptions

Message	Description
>SRT<	Warm start
>SRTCOLD<	Cold start
>SRTFACTORY<	Factory reset
>SRTSAVE_CONFIG<	Save serial EEPROM user values

The SAVE_CONFIG data string will save parameters entered in TSIP to SEEPROM. (See section A.18.11, Command Packet 0x8E-26 - SEEPROM Storage.)

To save parameters to a TAIP-speaking receiver, follow these steps:

- 1. Change the protocol to TSIP using the TAIP PR command.
- 2. Enter the parameters via TSIP commands (see section 3.7).
- 3. Change the protocol to TAIP using TSIP command 0xBC.
- 4. Save to SEEPROM using the TAIP command >SRTSAVE_CONFIG<.

C-20 Lassen SK II GPS

C.20 ST Status

Data String Format:

AABCDDEFGG

Note – This message provides information about the satellite tracking status and the operational health of the sensor. This information is contained in five status bytes which are output as five 2 digit hexadecimal values. The data format and the meanings of the hex characters are given in the following tables.

Table C-19. Data String Hex Characters

Item	# of Char	Units	Format	Definition
Tracking Status Code	2	n/a	AA	(see table below)
Status Codes - Nibble 1	1	n/a	В	(see table below)
Status Codes - Nibble 2	1	n/a	С	(see table below)
Machine ID	2	n/a	DD	
Status Codes - Nibble 3	1	n/a	E	(not currently used)
Status Codes - Nibble 4	1	n/a	F	(see table below)
Reserved	2	n/a	GG	(not currently used)

Table C-20. Tracking Status Code

Value	AA Meaning
00	Doing position fixes
01	Don't have GPS time yet
02	Not used
03	PDOP is too high
08	No usable satellites
09	Only 1 usable satellite
0A	Only 2 usable satellites
0B	Only 3 usable satellites
0C	Chosen satellite is unusable

Table C-21. Error Codes: Nibble 1

Value of B	Meaning
0	No problems reported
1	Antenna feedline fault

Table C-22 Error codes: Nibble 2

Value of B	Meaning
0	No problems reported
1	Battery-backup failed; RAM not available at power-up (see Note)

Table C-23 Error Codes: Nibble 4

Value of B	Meaning
0	No problems reported
2	RTC not available at power-up (see Note)
8	Stored almanac not complete and current
А	RTC not available; stored almanac not complete and current

Note – After the status is detected, this bit remains set until the sensor is reset.

C-22 Lassen SK II GPS

C.21 TM Time/Date

Data String Format:

AABBCCDDDEEFFGGGGHHIJJKLLLLL

Table C-24. TM Time/Data Data String Descriptions

Item	# of Char	Units	Format	(Value)	
Hours	2	Hour	AA		
Minutes	2	Min	BB		
Seconds	5	Sec	CC.DDD		
Date; Day	2	Day	EE		
Date; Month	2	Month	FF		
Date; Year	4	Year	GGGG		
GPS UTC Time Offset	2	Sec	НН		
Current Fix Source	1	n/a	I	0 = 2D GPS 1 = 3D GPS 2 = 2D DGPS 3 = 3D DGPS 6 = DR 8 = Degraded DR 9 = Unknown	
Number of Usable SVs	2	n/a	JJ		
GPS UTC Offset Flag	1	n/a	K	(1 = Valid) (0 = Invalid)	
Reserved	5	n/a	LLLLL		
Total	28				

This message outputs the time and date as computed by the GPS sensor. The time is most accurate when the unit is doing fixes. It is less accurate but still usable when the unit is not doing fixes but the Number of Usable SVs is one or more. If the GPS UTC offset is available, the time will be in UTC. If not, the time will be in GPS.

Note 1. – GPS UTC Time Offset is the difference between GPS and UTC time standards in seconds. The UTC time of Day is only valid if the GPS UTC Offset Valid Flag is indicating valid.

Note 2. – The TM message is not supported under the Set qualifier.

C.22 VR Version Number

Data String Format:

XXXXXXX; VERSION A.AA(BB/BB/BB); CORE VERSION C.CC (DD/DD/DD); E

Table C-25. Version Number Data String Descriptions

Item	# of Char	Units	Format
Product Name	n/a	n/a	n/a
Major Version number	4	n/a	A.AA
Major Release Date	8	n/a	BB/BB/BB

C.23 X1 Extended Status

The Lassen SK II GPS does not support this message.

C-24 Lassen SK II GPS

C.24 Communication Using TAIP

Communication with the unit takes place in four different ways. Message qualifiers are used to differentiate between these.

C.24.1 Query for Single Sentence

The query (Q) message qualifier is used to query the GPS sensor to respond immediately with a specific message. The format is:

where AA is the requested message identifier. Messages supported by this qualifier are AL, AP, CP, ID, IP, LN, PT, PV, RM, ST, TM, and VR.

C.24.2 Scheduled Reporting Frequency Interval

The scheduled reporting frequency interval(F) message qualifier is used to tell the unit how often and when to report a specific message. The format is:

```
>FAABBBBCCCC[;ID=DDDD][;*FF]<
```

where sending this sentence tells the unit to report message specified by the two digit identifier AA at the time interval of BBBB seconds with time epoch at CCCC seconds from top of the hour. Specifying time interval of 0000 stops scheduled reporting of the message. The default is 0000 time interval for all messages except PV. The output frequency for PV at cold-start is set at once every five seconds, zero seconds from top of the hour. Messages supported by this qualifier are AL, AP, CP, ID, IP, LN, PT, PV, RM, ST, TM, and VR.

Note – The data specified by this qualifier is the timing of the message output and may be different from the time tag of the data in the message.

C.24.3 The Response to Query or Scheduled Report

The response (R) qualifier carry various types of data between the unit and the user equipment. The format is:

```
>RAA[{B}][;ID=CCCC][;*DD]<
```

where AA is the two character message identifier and {B} specifies the data string within the message. For the format of {B}, please refer to the message definitions in the previous section. Messages supported by the response qualifier are AL, AP, CP, ID, IP, LN, PT, PV, RM, ST, TM, and VR.

C.24.4 The Set Qualifier

The set (S) qualifier enables the user equipment to initialize/set-up various types of data in the GPS unit. The format is:

```
>SAA[{B}][;ID=CCCC][;*DD]<
```

where AA is the two character message identifier and {B} specifies the data string within the message. For the format of {B}, please refer to the message definitions in the previous section. Note that all the messages have very specific formats and are length dependent. Messages normally supported by the set qualifier are AL, AP, CP, DC, DD, ID, IP, LN, PT, PV, and RM.

The set qualifier may be used with the AL, CP, LN, or PV message to set more precise initial position data into the GPS sensor than can be set with the IP message.

C.24.5 Sample Communication Session

The following is a sample communication session to illustrate how message qualifiers are used. Query the sensor for version number for the TAIP firmware:

```
>QVR<
```

The sensor responds with a message in the following form:

```
>RVR OEM SK8 OEM STTP APP; VERSION 7.52 (05/23/97);*38<
```


Note – The sensor identified its product name, firmware version number, core signal processing version number, and release dates, then included the checksum for the message (the default for the CS Flag is TRUE). Also notice that the sensor did respond to our query even though we did not send a checksum.

Query the sensor for its ID number:

```
>QID<
```

The sensor will respond (assuming factory default settings):

```
>RID0000;*70<
```

Set the ID to match the number for a vehicle in your fleet and then tell the sensor to include the Vehicle ID in its responses:

```
>SID1234<
>SRM;ID_FLAG=T<
```

C-26 Lassen SK II GPS

The Lassen SK II GPS sensor is set by default to report the PV message once every 5 seconds. To schedule the PV message from vehicle 1234 to respond once every 10 seconds, starting at 5 seconds after the top of the hour, use the following command:

>FPV00100005; ID=1234<

The sensor will check the ID included in the message for a match with its own and then reschedule the PV message. At the next scheduled time, the sensor will respond with:

>RPV15714+3739438-1220384601512612;ID=1234;*7F<

Note – The time given in the message is the time of the last GPS fix (04:21:54 GPS), not necessarily the time of the message response. If the time of last fix is 10 or more seconds old, the age flag will be set to 1.

C-28 Lassen SK II GPS