Third Generation Sequencing Platforms

	Second Generation sequencing	PacBio: Single Molecule Real- Time Sequencing SMRT	Oxford Nanopore Technology: MinION
Read Length (bp)	150	15,000	90,000
Read output	2.5-5,000,000	~500,000	1,000,000
Cost Per Run (\$)	3000	850	700
Hardware Cost (\$)	900,000	350,000	1000
Observed Error Rate	<1%	~12%	~12%

Nanopore technology

PromethION

HPC + GPU

Library preparation and loading

Adaptive sampling

Adaptive sampling allows the automatic selection of an unlimited number of regions of interest during a sequencing run, without the need for additional library-preparation steps

Sequencing Pipeline

MinION – Nanopore Sequencing Technology

"Portable, real-time sequencing analyses"

- Very portable can take to the field*
- Produces long reads compared to NGS platforms
- Can produce very high depth and coverage high data yield.
- Still requires sophisticated lab techniques for library preparation
- Has a very high error rate compared to Illumina
- Is still under development high dependency on community contributions
- Data is very challenging to process and analyse

MinION run QC

Hybrid assembly

3

Hybrid assembly helps resolve ambiguities with higher coverage and differing read lengths

SARS-CoV-2 Sequencing

Real-Time Sequencing = Real-Time Surveillance

- Genome sequencing can provide a highresolution view of pathogen evolution and is increasingly sought after for outbreak surveillance.
- Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions.
- In April 2015 the MinION system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic.
- They presented sequence data and analysis of 142 EBOV samples collected during the period March to October 2015.

Letter | Published: 03 February 2016

Real-time, portable genome sequencing for Ebola surveillance

Joshua Quick, Nicholas J. Loman [™] [...] Miles W. Carroll

https://nextstrain.org/ebola?dmax=2014-09-26&dmin=2014-08-10

Zika Virus Morbidity

- Zika virus disease is caused by an RNA virus, a member of the *Flavivirus* genus.
- Other flavivirus include Dengue, yellow fever and West Nile Virus.
- The 2015-16 Zika outbreak in South America triggered the most recent WHO PHEIC, following association with microcephaly.
- The primary vector (transmitting agent) is the *Aedes Aegypti* mosquito.

SYMPTOMS OF MICROCEPHALY

Global Zika Burden

Nanopore Sequencing Data Activity

