PUE Theoretische Informatik WS2019-2020

Übungsblatt 1

Aufgabe 1:

In dieser Aufgabe betrachten wir aussagenlogische Formeln über die atomaren Formeln $Var = \{A, B, C, D\}$. Beachten Sie dabei die formale Definition der Syntax der Aussagenlogik aus der Vorlesung.

- (a) Entscheiden Sie ob die folgenden Formeln syntaktisch korrekte aussagenlogische Formeln für die atomaren Formeln $Var=\{A,B,C,D\}$ sind und begründen Sie ihre Hypothese.
 - (i) $(((A \land \neg B) \lor \neg D) \lor C)$
 - (ii) $(A \wedge C \vee (\neg \wedge BD))$
 - (iii) $(A \to B \to (C \land D))$
 - (iv) $(A \lor (B \to \neg (D \lor C)))$
- (b) Sind die folgenden Belegungen Modelle für die syntaktisch korrekten Formeln aus (a)?

X	$\alpha(X)$	X	$\beta(X)$	X	$\gamma(X)$	X	$\delta(X)$
A	1	A	1	Α	0	A	1
В	1	В	0	В	0	В	1
$^{-}$ C	0	$^{\mathrm{C}}$	1	\mathbf{C}	0	\mathbf{C}	1
D	1	D	0	D	0	D	1

Aufgabe 2:

- (i) Wie aus der Vorlesung bekannt ist die Menge $\{\neg, \land, \lor\}$ funktional vollständig. Drücken Sie mit Hilfe der drei Operatoren die nor- und \oplus -Operatoren aus und zeigen Sie mit Hilfe von Wahrheitstafeln dass ihr Ausdruck tatsächlich äquivalent zur ursprünglichen Operatoren ist.
- (ii) Betrachten Sie die folgenden Mengen von Booleschen Funktionen und zeigen Sie das diese funktional vollständig sind.
 - 1. $\{\neg, \lor\}$
 - $2. \{nor\}$
 - $3. \{\rightarrow, \perp\}$

Hinweis: Verwenden Sie die Resultate aus der Vorlesung bzw. aus früheren Punkten der Aufgabe.

Aufgabe 3:

Formalisieren Sie die folgenden Sätze mittels Aussagenlogik:

- (i) Wenn das Barometer fällt, wird es regnen oder schneien.
- (ii) Wenn eine Anfrage eingeht, wird sie irgendwann bestätigt oder die Anfragebearbeitung macht überhaupt keinen Fortschritt mehr.
- (iii) Heute wird es regnen oder die Sonne wird scheinen, aber nicht beides.
- (iv) Wenn der Mond ein gelber Käse ist, ist 6 eine Primzahl.

Sind die Sätze Tautologien / erfüllbar? Geben Sie, falls existent, ein Modell an.

Aufgabe 4:

Beweisen Sie (i) mittels Wahrheitstafel und (ii) mittels Umformungen auf Basis des Ersetzungssatzes und der in der Vorlesung präsentieren Äquivalenzen, dass die folgenden Formeln semantisch äquivalent sind:

• $A \wedge (C \vee D \vee \neg E)$ und $(A \wedge C) \vee (A \wedge D) \vee (A \wedge \neg E)$

Welche Methode erscheint Ihnen besser geeignet?

Aufgabe 5:

Ist die folgende Aussagenmenge widerspruchsfrei?

- 1 Wenn ein Bier zu lange offen steht, dann trinke ich es nicht.
- 2 Wenn ich kein Bier trinke, dann kann ich Autofahren.
- 3 Ich kann nicht Autofahren.
- 4 Das Bier war zu lange offen.

Formalisieren Sie die Aussagen mittels Aussagenlogik und beweisen Sie Ihre Hypothese mit einer Wahrheitstafel.

Aufgabe 6:

Formaliseren Sie folgende Sätze mittels Aussagenlogik und überprüfen Sie, ob der Schluss von (1),(2),(3) auf (4) korrekt ist.

- 1. Wenn ich schlafe, dann träume ich.
- 2. Wenn ich esse, dann schlafe ich nicht.
- 3. Ich träume nicht.
- 4. Ich träume nicht und ich esse oder lerne.