Степени тропических матриц и графы

Никита Шапошник, МФТИ научный руководитель – А.Э. Гутерман

29 ноября 2021

Тропическое полукольцо

 $\mathbb{R}_{\mathsf{max}} = \mathbb{R} \cup \{-\infty\}$ с операциями сложения \oplus и умножения \odot :

$$a \oplus b = \max(a, b)$$

$$a \odot b = a + b$$

 $\mathbb{R}_{\mathsf{max}}$ также называется max-plus алгеброй.

 $\mathbb{R}_{\textit{min}} = \mathbb{R} \cup \{\infty\}$ с операциями сложения \oplus и умножения \odot :

$$a \oplus b = min(a, b)$$

$$a \odot b = a + b$$

Свойства тропического полукольца

Для любых $a, b, c \in \mathbb{R}_{max}$ верно:

- Сложение и умножение ассоциативны.
- Сложение и умножение коммутативны.
- Дистрибутивность: $a \odot (b \oplus c) = a \odot b \oplus a \odot c$.
- $-\infty$ нулевой элемент: $a \oplus -\infty = a$.
- 0 единичный элемент: $a \odot 0 = a$.
- Результат умножения на тропический ноль тропический ноль: $a \odot -\infty = -\infty$.
- Несуществование обратного по сложению: если $a \neq -\infty$, то $a \oplus b \geq a > -\infty$.

Определения теории графов

- **①** Ориентированный граф $\mathcal{G} = \mathcal{G}(V, E)$. Петли разрешены, кратные рёбра нет.

$$p(W) = \bigodot_{i=1}^k p(e_i).$$

Связь матриц и графов

$$A \in M_d(\mathbb{R}_{max}) \longleftrightarrow \mathcal{G} = \mathcal{G}(V, E)$$
, если

- **1** |V| = d;
- $a_{ij} \neq -\infty \Leftrightarrow (i,j) \in E \text{ u } a_{ij} = p((i,j));$
- $a_{ij} = -\infty \Leftrightarrow (i,j) \notin E.$

Такая матрица A называется матрицей смежности графа \mathcal{G} . Граф, построенный по матрице A, обозначим через $\mathcal{G}(A)$.

Степени тропических матриц и графы

Утверждение

Рассмотрим $A \in M_{d \times d}(\mathbb{R}_{max})$, $i, j \in V(\mathcal{G}(A))$, $t \in \mathbb{N} \cup \{0\}$.

Тогда:

$$a_{ij}^t = \bigoplus \{p(W) : W \in \mathcal{W}^t(i \to j)\}$$

Доказательство.

База: t = 0:

$$A^{0} = I = diag(0, 0, ..., 0) = \begin{pmatrix} 0 & -\infty & ... & -\infty \\ -\infty & 0 & ... & -\infty \\ ... & ... & ... \\ -\infty & -\infty & ... & 0 \end{pmatrix}.$$

Переход:

$$a_{ij}^{t+1} = \bigoplus_{k=1}^{d} a_{ik}^{t} \odot a_{kj} = \max_{k} (a_{ik}^{t} + a_{kj})$$

Максимальный средний вес цикла

Определение

Максимальный средний вес цикла в \mathcal{G} :

$$\lambda(A) = \bigoplus_{k=1}^{d} \bigoplus_{i_1, \dots, i_k} (a_{i_1 i_2} \odot \dots \odot a_{i_k i_1})^{\odot 1/k} =$$

$$= \max_{k=1}^{d} \max_{i_1, \dots, i_k} \frac{(a_{i_1 i_2} + \dots + a_{i_k i_1})}{k}$$

Звезда Клини

Определение

Для $A \in M_{d \times d}(\mathbb{R}_{\sf max})$ с $\lambda(A) \leq 0$ определим звезду Клини:

$$A^* = \bigoplus_{i=0}^{\infty} A^i$$

Утверждение

$$A^* = \bigoplus_{i=0}^{d-1} A^i$$
 $(A^*)_{ij} = p(\mathcal{W}(i \to j))$

Критические циклы и критический подграф

Определение

Ориентированный цикл называется критическим, если у него максимальный средний вес.

Определение

Объединение всех критических циклов называется критическим подграфом.

Примитивные матрицы

Определение

- Матрица $A \in M_{n \times n}(\mathbb{R}), A \ge 0$ называется примитивной, если $\exists k \in \mathbb{N} : A^k > 0$.
- Матрица $A \in M_{n \times n}(\mathbb{R}_{max})$ называется примитивной, если $\exists k \in \mathbb{N} : A^k$ не содержит $-\infty$.
- Наименьшее такое k называется экспонентой A и обозначается через exp(A).

Теорема (Виландта)

Экспонента примитивной матрицы порядка n не превосходит $Wi(n) = n^2 - 2n + 2$.

Примитивность на языке графов

Матрица A примитивна тогда и только тогда, когда существует такое $k \in \mathbb{N}$, что в $\mathcal{G}(A)$ для любых вершин u и v есть путь из u в v длины k.

Сильная связность и неразложимость

Определение

Граф $\mathcal G$ зовётся сильно связным, если для любых $u,v\in V(\mathcal G)$ есть путь из u в v.

Определение

Матрица $A \in M_d(\mathbb{R}_{max})$ (или соответствующий ей граф) неразложима, если граф $\mathcal{G}(A)$ сильно связен, иначе разложима. Матрица $A \in M_d(\mathbb{R}_{max})$ (или соответствующий ей граф) полностью разложима, если в графе $\mathcal{G}(A)$ нет рёбер между различными компонентами сильной связности.

Индекс цикличности

Определение

Индекс цикличности $\sigma_{\mathcal{G}}$ графа \mathcal{G} равен:

- 1, если в \mathcal{G} есть только одна вершина (с петлей или без).
- НОД всех длин ориентированных циклов в \mathcal{G} , если \mathcal{G} сильно связен, и $|V(\mathcal{G})| \ge 2$.
- НОК цикличностей всех максимальных его сильно связных подграфов, если $\mathcal G$ не сильно связен.

Теорема

Неразложимая матрица примитивна тогда и только тогда, когда ее индекс цикличности равен 1.

Матрицы CSR

Пусть $A \in M_d(\mathbb{R}_{max})$, \mathcal{D} — подграф $\mathcal{G}^c(A)$ без тривиальных компонент сильной связности.

Введем обозначение: $M=((\lambda(A)^-\odot A)^\sigma)^*$, где

- ullet $\lambda(A)$ максимальный средний вес цикла в $\mathcal{G}(A)$.
- $\lambda(A)^- = -\lambda(A)$ обратный к $\lambda(A)$ по умножению элемент;
- ullet σ цикличность критического подграфа $\mathcal{G}^c(A)$.
- ullet $A^* = igoplus_{i=0}^{\infty} A^i$ звезда Клини матрицы A.

Определим матрицы $C, S, R \in M_r(\mathbb{R}_{\sf max})$:

$$c_{ij}=egin{cases} m_{ij},\ ext{если}\ j\in V(\mathcal{D})\ -\infty,\ ext{иначе}, \end{cases}$$
 $r_{ij}=egin{cases} m_{ij},\ ext{если}\ i\in V(\mathcal{D})\ -\infty,\ ext{иначе}, \end{cases}$ $s_{ij}=egin{cases} \lambda(A)^-\odot a_{ij},\ ext{если}\ (i,j)\in E(\mathcal{D})\ -\infty,\ ext{иначе}. \end{cases}$

Рассмотрим следующий граф $\mathcal{G}(A)$:

Ему соответствует матрица $A \in M_5(\mathbb{R}_{\mathsf{max}})$:

$$A = \begin{pmatrix} 0 & 0 & -1 & -\infty & -7 \\ 0 & 0 & -1 & -\infty & -7 \\ -1 & -1 & -1 & -3 & -7 \\ -3 & -\infty & -\infty & -2 & -7 \\ -7 & -7 & -7 & -7 & -3 \end{pmatrix}$$

$$\lambda(A) = 0.$$

Критический подграф: его цикличность равна: $\sigma=1$. Возьмем $\mathcal{D}=\mathcal{G}^c(A)$.

5

$$M = ((\lambda(A)^{-} \odot A^{\sigma})^{*} = A^{*} = \begin{pmatrix} 0 & 0 & -1 & -4 & -7 \\ 0 & 0 & -1 & -4 & -7 \\ -1 & -1 & 0 & -3 & -7 \\ -3 & -3 & -4 & 0 & -7 \\ -7 & -7 & -7 & -7 & 0 \end{pmatrix}$$

Замечание

В дальнейшем матрицы C, S, R, определённые через матрицу A, будем обозначать через CSR[A].

Γ раница T

Teopeма (Sergeev, 2009)

Пусть $A \in M_d(\mathbb{R}_{max})$ неразложима и CSR-матрицы определены через некоторый подграф \mathcal{D} графа $\mathcal{G}^c(A)$. Тогда $\exists T(A) \hookrightarrow \forall t \geq T(A)$:

$$A^t = \lambda(A)^{\odot t} \odot CS^t R[A].$$

Замечание

Если
$$\lambda(A) = 0$$
, то $\forall t \geq T(A)$:

$$A^t = CS^tR[A].$$

Вспомогательная матрица B

Введем новую матрицу $B \in M_d(\mathbb{R}_{\sf max})$:

Эта матрица нужна нам для определения следующих границ.

$\overline{\mathsf{\Gamma}}$ раницы T_1 и T_2

Teopeма (Merlet, Nowak, Sergeev, 2014)

Пусть $A \in M_d(\mathbb{R}_{\sf max})$ неразложима. Тогда $\exists T_1(A,B) \hookrightarrow \forall t \geq T_1(A,B)$:

$$A^t = (\lambda(A)^{\odot t} \odot \mathit{CS}^tR[A]) \oplus B^t.$$

$$\exists T_2(A,B) \hookrightarrow \forall t \geq T_2(A,B) :$$

$$\lambda(A)^{\odot t} \odot CS^t R[A] \geq B^t$$
.

Если $\lambda(A) = 0$, то равенства из определения T_1 и T_2 записываются в виде:

$$A^{t} = CS^{t}R[A] \oplus B^{t}$$
$$CS^{t}R[A] \ge B^{t}$$

Как относятся между собой разные границы

Утверждение

$$T(A) \leq \max(T_1(A, B), T_2(A, B)).$$

Доказательство.

Возьмем $t \ge \max(T_1(A, B), T_2(A, B))$. Тогда:

$$A^{t} = (\lambda(A)^{\odot t} \odot CS^{t}R[A]) \oplus B^{t}$$
$$\lambda(A)^{\odot t} \odot CS^{t}R[A] \ge B^{t}$$

и,значит,

$$A^t = \lambda(A)^{\odot t} \odot CS^t R[A]$$

Пример

Для матрицы A граница T(A) = 5, $T_1(A, B) = 2$, a $T_2(A, B) = 5$

Как выбрать подграф \mathcal{D} ?

 $\mathcal{D} = \mathcal{G}^c(A)$ — способ Нахтигалля.

Обозначения

Обозначим через B_N матрицу B, выбранную способом Нахтигалля.

Будем писать $T_{1,N}(A)$ вместо $T_1(A,B_N)$ и $T_{2,N}(A)$ вместо $T_2(A,B_N)$.

Инвариантность относительно умножения на скаляр

Утверждение (Kennedy-Cochran-Patrick, Merlet, Nowak, Sergeev)

Если $A'=\mu\odot A$, где $\mu\in\mathbb{R}$, то

- $\bullet \ \lambda(A') = \mu \odot \lambda(A)$
- $\bullet \ B_N[A'] = B_N[A]$
- CSR[A'] = CSR[A]

Значит, $T_1(A,B)$, $T_2(A,B)$ инвариантны относительно умножении матрицы на скаляр, что позволяет нам без разграничения общности говорить, что $\lambda(A)=0$.

Смысл матриц *CSR*

Утверждение (Kennedy-Cochran-Patrick, Merlet, Nowak, Sergeev)

Если $\lambda(A) = 0$, то верно следующее тождество:

$$(CS^{t}R[A])_{ij} = p(\mathcal{W}^{t,\sigma}(i \xrightarrow{\mathcal{G}^{c}(A)} j)), \tag{1}$$

где σ обозначает цикличность $\mathcal{G}^c(A)$, $p(\mathcal{W})$ — максимальный вес пути из множества \mathcal{W} ,

Некоторые оценки для $T_{1,N}(A)$

Teopeмa (Kennedy-Cochran-Patrick, Merlet, Nowak, Sergeev)

Для любой $A \in M_n(\mathbb{R}_{max})$ имеем:

- $T_{1,N}(A) \le n^2 2n + 2;$
- $T_{1,N}(A) \leq \hat{g}(n-2) + n$, где $\hat{g} = \hat{g}(\mathcal{G}^c(A)) oб$ хват критического подграфа, то есть наименьшая длина цикла.

Границы Т для цикла

Будем считать, что $\lambda(A) = 0$.

Границы Т для цикла

- $\mathcal{G}^{c}(A) = \mathcal{G}(A)$,
- $\bullet \ \sigma = n$,

•
$$M = (A^n)^* = E^* = E = \begin{pmatrix} 0 & -\infty & \dots & -\infty \\ -\infty & 0 & \dots & -\infty \\ \dots & \dots & \dots & \dots \\ -\infty & -\infty & \dots & 0 \end{pmatrix}$$

• C = R = E, S = A, $B = -\infty$.

Значит, $CS^tR[A] = A^t$ для любого неотрицательного t. Следовательно, $T = T_1 = T_2 = 0$.

Границы Т для двустороннего цикла

- Оба цикла длины 2 в этом графе имеют средний вес 0.
- $\mathcal{G}^c(A) = \mathcal{G}(A)$.

Границы Т для двустороннего цикла, п нечетно

- \bullet $\sigma = 1$
- $C = R = M = A^*$
- \bullet S = A
- $B = -\infty$
- В $CS^tR[A] = A^*A^tA^*$ нет $-\infty$. Значит, $CS^tR[A] = A^*$.
- Следовательно, $CS^tR[A] = A^t$ верно тогда и только тогда, когда $A^t = A^*$.
- T = exp(A)
- exp(A) = n 1

Значит, $T = T_1 = n - 1$, $T_2 = 0$.

Границы Т для двустороннего цикла, п четно

$$\bullet$$
 $\sigma = 2$

•
$$C = R = M = (A^2)^*$$

•
$$S = A^2$$

•
$$B = -\infty$$

•
$$A^t = CS^tR = egin{cases} (A^2)^*, \ \text{если} \ t \ \text{четно}, \ A\odot (A^2)^*, \ \text{если} \ t \ \text{нечетно}. \end{cases}$$
 при $t \geq T(A).$

$$T(A) = T_1(A) = \frac{n}{2}, \ T_2(A) = 0.$$

Примеры границ Т

Теорема

Если граф $\mathcal{G}(A)$

- сильно связен
- совпадает со своим критическим подграфом
- \bullet $\lambda(A)=0$
- \bullet его цикличность $\sigma=1$
- для произвольных двух вершин верно, что все пути между ними имеют одинаковый вес

то
$$T(A) = T_{1,N}(A) = \exp(A)$$
, а $T_{2,N}(A) = 0$.

Спасибо за внимание!