IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Art Unit

Examiner

1600 Market Street

Suite 3600

09/481996 1-11-00 B-60

Serial No.

: Not yet known : January 11, 2000

Philadelphia, PA 19103

Filed Inventor

: Florian Lesage, et al.

Docket: 989.6351DIV

Title

: Family of Mammalian Potassium Channels, Their Cloning And

: Their Use, Especially For The Screening of Drugs

Dated: January 11, 2000

REQUEST TO USE COMPUTER READABLE FORM FROM ANOTHER APPLICATION UNDER 37 C.F.R. §1 .821(E)

Box Patent Application Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

The computer readable Nucleotide Sequence and/or Amino Acid Sequence Disclosure in this divisional application is identical with that filed in parent application Serial No. 08/749.816, filed November 15, 1996. In accordance with 37 CFR 1.821(e), please use the last-filed computer readable form filed in that application as the computer readable form for the instant application. It is understood that the Patent and Trademark Office will make the necessary change in application number and filing date for the computer readable form that will be used for the instant application. A paper copy of the Sequence Listing is included in a separately filed preliminary amendment for incorporation into the specification, filed with this statement.

We submit that no fee is due. If, however, it is deemed that a fee is required, the Commissioner is authorized to charge Deposit Account 13-3405. This authorization is made in duplicate.

Respectfully submitted,

Gerard J. Weiser Reg. No. 19,763

SCHNADER HARRISON SEGAL & LEWIS LLP

Attorneys for Applicants

RAW SEQUENCE LISTING PATENT APPLICATION US/09/481,990

DATE: 06/20/2000 TIME: 03:23:38

INPUT SET: S35645.raw

This Raw Listing contains the General Information Section and up to the first 5 pages.

SEQUENCE LISTING 1 2 General Information: 3 (1) 4 (i) APPLICANT: Lesage, Florian 5 ENTERED Guillemare, Eric 6 7 Fink, Michel 8 Duprat, Fabrice Lazdunki, Michel 9 10 Romey, Georges 11 Barhanin, Jacques 12 (ii) TITLE OF INVENTION: FAMILY OF MAMMALIAN POTASSIUM CHANNELS, 13 THEIR CLONING AND THEIR USE ESPECIALLY FOR THE SCREENING 14 OF DRUGS 15 16 (iii) NUMBER OF SEQUENCES: 19 17 18 (iv) CORRESPONDENCE ADDRESS: 19 (A) ADDRESSEE: WEISER & ASSOCIATES 20 (B) STREET: 230 South Fifteenth Street, Suite 500 21 22 (C) CITY: Philadelphia 23 (D) STATE: PA 24 (E) COUNTRY: USA 25 (F) ZIP: 19102 26 27 (v) COMPUTER READABLE FORM: 28 (A) MEDIUM TYPE: Floppy disk 29 (B) COMPUTER: IBM PC compatible 30 (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 31 32 (vi) CURRENT APPLICATION DATA: 33 (A) APPLICATION NUMBER: US 09/481,990 34 (B) FILING DATE: 11-JAN-2000 35 (C) CLASSIFICATION: 36 37 (vii) PRIOR APPLICATION DATA: 38 (A) APPLICATION NUMBER: US 08/749,816 39 (B) FILING DATE: 15-NOV-1996 40 41 (viii) ATTORNEY/AGENT INFORMATION: 42 43 (A) NAME: Weiser, Gerard J. 44 (B) REGISTRATION NUMBER: 19,763 45 (C) REFERENCE/DOCKET NUMBER: 989.6351P 46

RAW SEQUENCE LISTING PATENT APPLICATION US/09/481,990

DATE: 06/20/2000 TIME: 03:23:39

INPUT SET: S35645.raw

47 48 49 50		(ix)	(I	A) TI		HONE	: 219	5-87	RMAT: 5-838 8394									
51 52	(2)	INFC	RMAT	rion	FOR	SEQ	ID 1	NO:1	:									
53 54 55 56 57 58 59		(i)	(<i>I</i> (E	A) LI 3) T C) S	CE CI ENGTI (PE: [RANI DPOL(H: 18 nuc. DEDNI	894 l leic ESS:	oase acio sino	pai: d	rs								
60 61	(ii) MOLECULE TYPE: cDNA																	
62 63 64 65 66	·	(ix)	(1		E: AME/I OCATI			11	90									
67 68		(xi)	SEÇ	QUENC	CE DI	ESCR	IPTIC	ON: S	SEQ :	ID NO	0:1:							
69 70 71	GGGC	AGGA	AG A	ACGG(CGCT	GC C	CGGA	GGAG	C GG(GGCG(GGCG	GGC	GCGC	GGG (GGAG	CGGGG	CG	60
72 73	GCGG	GCGG	GA C	GCCAC	GCC	CG G(GCGG	GGGC	G GG	GGCG	GCGG	GGC	CAGA	AGA (GGCG	GCGGC	GC .	120
74 75	CGCG	CTCC	GG (CCGG:	rctgo	CG GO	CGTT	GGCC'	T TG	GCTT'	rggc	TTT	GCG(GCG (GCGG	rggac	GA	180
76 77 78	AG AT											GTG (Val 2						227
79 80 81 82	CGG (275
83 84 85 86 87	CTC T																	323
88 89 90	TAT (371
92 93 94 95	TTG (419
96 97 98 99	GGC (Gly # 80																	467

RAW SEQUENCE LISTING PATENT APPLICATION US/09/481,990

DATE: 06/20/2000 TIME: 03:23:40

									•					Jλ	J PI IT	SET.	S35645.raw
100 101 102 103				AAC Asn										TTC	TTC	GCC	515
104 105 106 107				CTC Leu 115													563.
108 109 110				AAG Lys													611
112 113 114				CTG Leu													659
115 116 117 118 119				AGG Arg													707
120 121 122 123				GTG Val													755
124 125 126				TTC Phe 195													803
127 128 129 130 131				AAC Asn													. 851
132 133 134 135				GGC Gly													8.99
136 137 138 139				GAG Glu													947
140 141 142 143				GCC Ala													995
144 145 146 147				AAA Lys 275													1043
148 149 150 151				GTG Val													1091
152	ATC	ACA	GAC	CAG	GCA	GCT	GGC	ATG	AAA	GAG	GAC	CAG	AAG	CAA	AAT	GAG	1139

RAW SEQUENCE LISTING PATENT APPLICATION US/09/481,990

DATE: 06/20/2000 TIME: 03:23:42

	INPUT SET: S3564:	5.raw
153 154 155	Ile Thr Asp Gln Ala Ala Gly Met Lys Glu Asp Gln Lys Gln Asn Glu 305 310 315	
156 157 158 159	CCT TTT GTG GCC ACC CAG TCA TCT GCC TGC GTG GAT GGC CCT GCA AAC Pro Phe Val Ala Thr Gln Ser Ser Ala Cys Val Asp Gly Pro Ala Asn 320 335 330 335	1187
160 161 162 163	CAT TGAGCGTAGG ATTTGTTGCA TTATGCTAGA GCACCAGGGT CAGGGTGCAA His	1240
164 165	GGAAGAGGCT TAAGTATGTT CATTTTTATC AGAATGCAAA AGCGAAAATT ATGTCACTTT	1300
166 167	AAGAAATAGC TACTGTTTGC AATGTCTTAT TAAAAAACAA CAAAAAAAGA CACATGGAAC	1360
168 169	AAAGAAGCTG TGACCCCAGC AGGATGTCTA ATATGTGAGG AAATGAGATG TCCACCTAAA	1420
170 171	ATTCATATGT GACAAAATTA TCTCGACCTT ACATAGGAGG AGAATACTTG AAGCAGTATG	1480
172 173	CTGCTGTGGT TAGAAGCAGA TTTTATACTT TTAACTGGAA ACTTTGGGGT TTGCATTTAG	1540
174 175	ATCATTTAGC TGATGGCTAA ATAGCAAAAT TTATATTTAG AAGCAAAAAA AAAAAGCATA	1600
176 177	GAGATGTGTT TTATAAATAG GTTTATGTGT ACTGGTTTGC ATGTACCCAC CCAAAATGAT	1660
178 179	TATTTTTGGA GAATCTAAGT CAAACTCACT ATTTATAATG CATAGGTAAC CATTAACTAT	1720
180 181	GTACATATAA AGTATAAATA TGTTTATATT CTGTACATAT GGTTTAGGTC ACCAGATCCT	1780
182	AGTGTAGTTC TGAAACTAAG ACTATAGATA TTTTGTTTCT TTTGATTTCT CTTTATACTA	1840
183 184 185	AAGAATCCAG AGTTGCTACA ATAAAATAAG GGGAATAATA AAAAAAAAA AAAA	1894
186 187	(2) INFORMATION FOR SEQ ID NO:2:	
188 189 190 191 192 193	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 336 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	·
194 195	(ii) MOLECULE TYPE: protein	
196 197	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
198 199 200	Met Leu Gln Ser Leu Ala Gly Ser Ser Cys Val Arg Leu Val Glu Arg 1 5 10 15	
201 202 203	His Arg Ser Ala Trp Cys Phe Gly Phe Leu Val Leu Gly Tyr Leu Leu 20 25 30	
204 205	Tyr Leu Val Phe Gly Ala Val Val Phe Ser Ser Val Glu Leu Pro Tyr 35 40 45	

RAW SEQUENCE LISTING PATENT APPLICATION US/09/481,990

DATE: 06/20/2000 TIME: 03:23:43

INPUT SET: S35645.raw

006														111	11 01	SEI.
206 207 208 209	Glu	Asp 50	Leu	Leu	Arg	Gln	Glu 55	Leu	Arg	Lys	Leu	Lys 60	Arg	Arg	Phe	Leu
210 211 212	Glu 65	Glu	His	Glu	Cys	Leu 70	Ser	Glu	Gln	Gln	Leu 75	Glu	Gln	Phe	Leu	Gly 80
213 214 215	Årg	Val	Leu	Glu	Ala 85	Ser	Asn	Tyr	Gly	Val 90	Ser	Val	Leu	Ser	Asn 95	Ala
216 217 218	Ser	Gly	Asn	Trp 100	Asn	Trp	Asp	Phe	Thr 105	Ser	Ala	Leu	Phe	Phe 110	Ala	Ser
219 220 221	Thr	Val	Leu 115	Ser	Thr	Thr	Gly	Tyr 120	Gly	His	Thr	Val	Pro 125	Leu	Ser	Asp
222 223 224	Gly	Gly 130	Lys	Ala	Phe	Cys	Ile 135	Ile	Tyr	Ser	Val	Ile 140	Gly	Ile	Pro	Phe
225 226 227	Thr 145	Leú	Leu	Phe	Leu	Thr 150	Ala	Val	Val	Gln	Arg 155	Ile	Thr	Val	His	Val 160
228 229 230	Thr	Arg	Arg	Pro	Val 165	Leu	Tyr	Phe	His	Ile 170	Arg	Trp	Gly	Phe	Ser 175	Lys
231 232 233	Gln	Val	Val	Ala 180	Ile	Val	His	Ala	Val 185	Leu	Leu	Gly	Phe	Val 190	Thr	Val
234 235 236	Ser	Cys	Phe 195	Phe	Phe	Ile	Pro	Ala 200	Ala	Val	Phe	Ser	Val 205	Leu	Glu	Asp
237 238 239	Asp	Trp 210	Asn	Phe	Leu	Glu	Ser 215	Phe	Tyr	Phe	Cys	Phe 220	Ile	Ser	Leu	Ser
240 241 242	Thr 225	Ile	Gly	Leu	Gly	Asp 230	Tyr	Val	Pro	Gly	Glu 235	Gly	Tyr	Asn	Gln	Lys 240
243 244 245	Phe	Arg	Glu	Leu	Tyr 245	Lys	Ile	Gly	Ile	Thr 250	Cys	Tyr	Leu	Leu	Leu 255	Gly
246 247 248	Leu	Ile	Ala	Met 260	Leu	Val	Val	Leu	Glu 265	Thr	Phe	Cys	Glu	Leu 270	His	Glu
249 250 251	Leu	Lys	Lys 275	Phe	Arg	Lys	Met	Phe 280	Tyr	Val	Lys	Lys	Asp 285	Lys	Asp	Glu
252 253 254	Asp	Gln 290	Val	His	Ile	Ile	Glu 295	His	Asp	Gln	Leu	Ser 300	Phe	Ser	Ser	Ile
255 256	Thr 305	Asp	Gln	Ala	Ala	Gly 310	Met	Lys	Glu	Asp	Gln 315	Lys	Gln	Asn	Glu	Pro 320
257 258	Phe	Val	Ala	Thr	Gln	Ser	Ser	Ala	Cys	Val	Asp	Gly	Pro	Ala	Asn	His

SEQUENCE VERIFICATION REPORT PATENT APPLICATION US/09/481,990

DATE: 06/20/2000 TIME: 03:23:44

INPUT SET: S35645.raw

Line

Error

Original Text

SEQUENCE MISSING ITEM REPORT PATENT APPLICATION US/09/481,990

DATE: 06/20/2000 TIME: 03:23:44

INPUT SET: S35645.raw

< < THERE ARE NO ITEMS MISSING >>

SEQUENCE CORRECTION REPORT PATENT APPLICATION US/09/481,990

DATE: 06/20/2000

TIME: 03:23:44

INPUT SET: S35645.raw

Line

Original Text

Corrected Text