Exponents and Logarithms Revision (Year 10)

Key revision questions from core concepts associated with logarithms and exponents.

NAME: _____

1. Simplify the following exponents and logarithms

a)
$$\frac{\sqrt[4]{2}}{\sqrt{2}}$$

b)
$$(5^{2/3})5^{4/3}$$

c)
$$\frac{\sqrt{q}}{q^2}$$

(2)
$$(b^4)^{\frac{1}{2}} + \left(\frac{2}{3}a^{\frac{2}{3}}\right)^5$$

e)
$$\log(8) + 2\log(6)$$

f)
$$\log(3^3) - \frac{2}{3}\log(6)$$

g)
$$\log_4(13) + 5\log_4(3)$$

h)
$$\log_5(12^2)$$

i)
$$\log_a 3 - \log_a 2$$

2. Determine an exact value for x, if
$$\log_2 64 = x$$

[2]

- 3. Convert the following numbers into surd form
- a) $5^{7/3}$
- b) $16^{4/6}$
- c) $p^{9/3}$
- 4. Convert the following surds into exponents
- a) $\sqrt{17}$
- b) $\sqrt[8]{94}$
- c) $^{14/4}\sqrt{788}$
- d) $3\sqrt[5]{13}$

5. Answer the following question through use of your graphics calculator for the function $f(x) = 3 \log(x)$ a) Find the value of y when x=2 and write to three significant figures [1] b) Find the value of y when x=3 and write to three significant figures [1] c) Find the value of y when x=4 and write to three significant figures [1] d) Find the value of y when x=100 and write to three significant figures [1] e) What is the x intercept of the function? [2] f) Define any asymptotes [2] g) Describe the behavior of the function as $x \to +\infty$ [2] 6. Describe the affect that changing the value of a has on the function $f(x)=a \log(x)$

7.	A function $f(x)$ passes through the points (0,3) and (1,6). Determine the function in the form of ab^x	orm
8.	A poster is 15cm in height. The height of the poster is to be as close to 200cm as possil however cannot be greater than this length. The height of a poster is given by P=15*1.5 where x is the number of enlargements. Hence, determine how many times the poster needs to be enlarged to fulfill the requirements.	[3] ble ;×
	needs to be enlarged to fulfill the requirements.	
9. a)	The graph of $y=2*3*$ where $x>0$, is a form of exponential growth What is meant by the term "aggrandizing rate of change"?	[4]
b)	What is the value of y when x=0?	[2]
		[1]

c)	Algebraically determine the value of x when y=10 and write to three significant figures	
		[3]
d)	Describe the behavior of the function as $x \to +\infty$	[2]
10.	The number of students attending the Australian Spelling and Music School is a form of exponential growth. In 2001, 50 students graduated. Principal Ryde has since determine that the number of students graduating increases by a factor of 1.2 each year.	ed
a)	Determine a function that can be used to calculate the number of people graduating t years after 2001 in the form of exponential growth ab*.	
b)	Hence, determine how many people would graduate this year (2013)	[4]
		[2]

c) Determine how many people would graduate in either 2005 or 2006

- d) Determine how many people would graduate in the year 2050 based on this model
- 11. A population of bacteria in a culture increases according to the model $p = 195(4.7)^{0.01}t$, where t is the number of hours and t = 0 corresponds to 10:00 a.m.
- a) Use this model to estimate the number of bacteria at 12.30pm algebraically.

b) Determine the increase in the number of bacteria between 1.00pm and 2.00pm

[2]

[3]

c)	Show that the number of bacteria that started in the culture is equal to the value of a for an exponential growth function in the form of ab ^x
	[3]
12	. You purchase a new computer on January 10 th 2009 for the price of \$1400. After one year it is worth \$1200. When answering these questions, write answers in the form of t, unless a date is specified.
a)	Write an exponential decay model for the value of the computer in the form of ab^t , where t is the number of years after the computer was purchased
b)	[3] Graph the model for the interval 0 <x<10 all="" clearly="" interval<="" on="" showing="" td="" this="" values=""></x<10>
~)	Graph the meder for the interval of the closury eneming all values on the interval

c)	Use the model to estimate the value after 10 years	
d)	Algebraically determine when the computer will be worth \$500	[2]
e)	Algebraically determine the value of the computer 2044 days after you purchased it	[3]
f)	Algebraically determine the value of the computer on January 10 th 2020	[4]
g)	Using your calculator, find when the computer will be worth 10% of what was paid for it.	[2]
		[1]

a)
$$2^x = 14$$

b)
$$2^{x-5}=3^x$$

[3]

[2]

c) $14^{x-7}=8^{x+2}$	
-----------------------	--

15. When 13 is raised to some power, x, the result is 7. Determine x to four significant figures.

16. A rollercoaster accelerates down a hill. Using exponential growth modeling, the velocity of the carriage in ms^{-1} can be modeled by $v(t) = 5(1.6)^t$, for the interval 0 < t < 4 seconds.

a) Determine the time when the rollercoaster was travelling at ½ of the maximum velocity.

[5]

[3]

b)	If Usain Bolt can run with a velocity of 11.2 ms ⁻¹ , determine when the rollercoaster has a velocity greater than what the world's fastest man can run at.
c)	What is the velocity change between t=2 and t=3 seconds?
	The rollercoaster then travels up another hill. Assuming that $t=0$ when the carriage begins to climb the second hill, the rollercoaster's velocity can be modeled by $v(t) = 6(0.72)^t$ ms ⁻¹ . If the rollercoasters velocity drops below 1ms ⁻¹ , then it will be unable to continue and make
-11	it over the hill.
a)	An engineer wants to build this hill so that it takes 7 seconds for the carriage to make it up the hill. Based on the conditions specified, would the rollercoaster be able to make it over the hill?