Homework 5

1 Consider the following curves:

1 Consider the following curves:
$$C_1: \mathbf{r}(t) \begin{cases} x = t \\ y = 2t^2 - 1 \end{cases}, \ 0 < t < 1,$$
 $C_2: \mathbf{r}(t) \begin{cases} x = t \\ y = 2t^2 - 1 \end{cases}, \ -1 < t < 1,$ $C_3: \mathbf{r}(t) \begin{cases} x = 2t \\ y = 8t^2 - 1 \end{cases}, \ 0 < t < \frac{1}{2},$ $C_4: \mathbf{r}(t) \begin{cases} x = \cos t \\ y = \cos 2t \end{cases}, \ 0 < t < \frac{\pi}{2},$ $C_5: \mathbf{r}(t) \begin{cases} x = t \\ y = 2t - 1 \end{cases}, \ 0 < t < 1,$ $C_6: \mathbf{r}(t) \begin{cases} x = 1 - t \\ y = 1 - 2t \end{cases}, \ 0 < t < 1,$ $C_7: \mathbf{r}(t) \begin{cases} x = \sin^2 t \\ y = -\cos 2t \end{cases}, \ 0 < t < \frac{\pi}{2},$ $C_8: \mathbf{r}(t) \begin{cases} x = t \\ y = \sqrt{1 - t^2} \end{cases}, \ -1 < t < 1,$ $C_9: \mathbf{r}(t) \begin{cases} x = \cos t \\ y = \sin t \end{cases}, \ 0 < t < \pi,$ $C_{10}: \mathbf{r}(t) \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \ 0 < t < 2\pi \text{ (ellipse)},$

Write down their velocity vectors.

Indicate parameterised curves which have the same image (equivalent curves).

In each equivalence class of parameterised curves indicate curves with same and opposite orientations.

2 Consider the curves C_1, C_2 given by the parametric equations

$$C_1 \colon \mathbf{r}(\tau) \ \begin{cases} r(\tau) = \frac{1}{2 - \cos \tau} \\ \varphi(\tau) = \tau \end{cases}, \ 0 \le \tau < 2\pi, \ C_2 \colon \mathbf{r}(t) \ \begin{cases} x(t) = \frac{2}{3} \cos t + \frac{1}{3} \\ y(t) = \frac{1}{\sqrt{3}} \sin t \end{cases}, \ 0 \le t < 2\pi.$$

Here the curve C_1 is defined in polar coordinates r, φ , the curve C_2 is defined in usual Cartesian coordinates $(x = r\cos\varphi, y = r\sin\varphi).$

Show that the images of both curves are ellipses.

Check that these ellipses coincide.

† Find foci of this ellipse *.

3 Consider the following curve (helix): $\mathbf{r}(t)$: $\begin{cases} x(t) = R \cos \Omega t \\ y(t) = R \sin \Omega t \end{cases}, \qquad 0 \le t \le t_0. \text{ Show that the image}$ of this curve belongs to the surface of cylinder $x^2 + y^2 =$

Find the velocity vector of this curve.

Find the length of this curve.

Finish the following sentence:

After developing the surface of cylinder to the plane the curve will develop to the...

- **4** Consider differential forms $\omega = xdy ydx$, $\sigma = xdx + ydy$ and vector fields $\mathbf{A} = x\partial_x + y\partial_y$, $\mathbf{B} = x\partial_x + y\partial_y$ $x\partial_y - y\partial_x$.
 - a) Calculate $\omega(\mathbf{A}), \omega(\mathbf{B}), \sigma(\mathbf{A}), \sigma(\mathbf{B})$.
 - b) Calculate differential forms ω and σ in polar coordinates $x = r \cos \varphi$, $y = r \sin \varphi$.
- **5** Consider differential forms $\omega = xdy ydx$ and $\sigma = xdx + ydy + zdz$ in \mathbf{E}^3 . Calculate $\omega(\mathbf{v})$ and $\sigma(\mathbf{v})$ on the velocity vectors of helix considered in question 3).

Ellipse can be defined as a locus of points in a plane such that the sum of the distances to two fixed points is a constant. These two fixed points are called foci of the ellipse.