

Cálculo II

Lista de Exercícios: P2

Profa. Karla Katerine Barboza de Lima FACET/UFGD

1 EDO's de $2^{\underline{a}}$ ordem

1.1 Lineares com Coeficientes Constantes

Exercício 1 Resolva a equação diferencial.

a)
$$y'' + 16y = 0$$

b)
$$y' = 2y''$$

c)
$$y'' - 4y' + 13y = 0$$

d)
$$2y'' + 2y' - y = 0$$

Exercício 2 Resolva o problema de valor inicial.

a)
$$9y'' + 12y' + 4y = 0$$
, $y(0) = 1$ e $y'(0) = 0$

b)
$$y'' - 6y' + 10y = 0$$
, $y(0) = 2 e y'(0) = 3$

Exercício 3 Resolva o problema de valor de contorno, se possível.

a)
$$y'' + 4y' + 4y = 0$$
, $y(0) = 2$ e $y(1) = 0$

b)
$$y'' + 4y' + 20y = 0$$
, $y(0) = 1$ e $y(\pi) = 2$

Gabarito

1. a)
$$y = c_1 \cos(4x) + c_2 \sin(4x)$$

b)
$$y = c_1 + c_2 e^{x/2}$$

c)
$$y = e^{2x}(c_1\cos(3x) + c_2\sin(3x))$$

d)
$$y = c_1 e^{\frac{\sqrt{3}-1}{2}t} + c_2 e^{-\frac{\sqrt{3}+1}{2}t}$$

2. a)
$$y = e^{-2x/3} + \frac{2}{3}xe^{-2x/3}$$

b)
$$y = e^{3x} (2\cos x - 3\sin x)$$

3. a)
$$y = 2e^{-2x} - 2xe^{-2x}$$

b) Sem solução

2 Sequências e Séries

2.1 Sequências

Exercício 4 Liste os cinco primeiros termos da sequência, cujos termos gerais são dados abaixo.

$$a) \ a_n = \frac{2n}{n^2 + 1}$$

b)
$$a_n = \frac{3(-1)^n}{n!}$$

c)
$$a_1 = 1$$
, $a_{n+1} = 5a_n - 3$

Exercício 5 Determine se a sequência converge ou diverge. Se ela convergir, encontre o limite.

a)
$$\left\{ \frac{3+5n^2}{n+n^2} \right\}$$

b)
$$\{e^{1/n}\}$$

c)
$$\left\{ \frac{(-1)^{n-1} n}{n^2 + 1} \right\}$$

d)
$$\{\cos(n/2)\}$$

$$e) \left\{ \frac{e^n + e^{-n}}{e^{2n} - 1} \right\}$$

f)
$$\left\{\frac{n!}{2^n}\right\}$$

4. a)
$$a_1 = 1$$
, $a_2 = \frac{4}{5}$, $a_3 = \frac{3}{5}$, $a_4 = \frac{8}{17}$ e $a_5 = \frac{5}{13}$.

b)
$$a_1 = -3$$
, $a_2 = \frac{3}{2}$, $a_3 = -\frac{1}{2}$, $a_4 = \frac{1}{8}$ e $a_5 = -\frac{1}{40}$.

c)
$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 7$, $a_4 = 32$ e $a_5 = 157$.

2.2 Séries

Exercício 6 Determine se as séries são convergentes ou divergentes.

- a) $\sum_{n=1}^{\infty} 6(0,9)^{n-1}$
- b) $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$
- c) $\sum_{n=1}^{\infty} \sqrt[n]{2}$
- $d) \sum_{n=0}^{\infty} \left(\frac{\pi}{3}\right)^n$
- $e) \sum_{n=1}^{\infty} \frac{\sqrt{n} + 4}{n^2}$
- $f) \sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Exercício 7 Use o teste da integral para determinar se a série é convergente ou divergente.

- a) $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$
- $b) \sum_{n=1}^{\infty} \frac{n}{(n^2+1)}$

- 6. a) Converge
 - b) Converge
 - c) Diverge
 - d) Diverge
 - e) Converge
 - e) Diverge
- 7. a) Converge
 - b) Diverge

2.3 Séries Alternadas

Exercício 8 Teste a série quanto a convergência ou divergência.

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1}$$

b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{10^n}$$

d)
$$\sum_{n=1}^{\infty} (-1)^{n-1} e^{2/n}$$

- 8. a) Converge
 - b) Diverge
 - c) Converge
 - d) Diverge

2.4 Testes da Razão e da Raiz

Exercício 9 O que você pode dizer sobre a série $\sum a_n$ em cada um dos casos seguintes?

- a) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 8$
- b) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0.8$
- c) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$

Exercício 10 Use o teste da razão ou da raiz para testar a convergência das séries abaixo.

- a) $\sum_{n=1}^{\infty} n \left(\frac{2}{3}\right)^n$
- b) $\sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^n}$
- c) $\sum_{n=1}^{\infty} \left(\frac{2n}{n+1} \right)^n$
- $d) \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$
- e) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n!}$

- 9. a) Diverge.
 - b) Converge.
 - c) Nada pode ser afirmado.
- 10. a) Converge.
 - b) Diverge.
 - c) Diverge.
 - d) Diverge.
 - e) Converge.

2.5 Série de Potências

Exercício 11 Para quais valores de x as séries de potências abaixo convergem?

- a) $\sum_{n=1}^{\infty} nx^{n-1}$
- $b) \sum_{n=1}^{\infty} \frac{n^2}{2^n} x^n$
- c) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2+1}$
- $d) \sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$
- e) $\sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}$

- 11. a) |x| < 1
 - b) |x| < 2
 - c) $1 \le x \le 3$
 - d) $x \in (-\infty, \infty)$
 - e) $\frac{3}{5} \le x \le 1$

2.6 Aplicações dos Polinômios de Taylor.

12 Dadas as funções abaixo, aproxime-as por um polinômio de Taylor com grau n no número a. Use a Desigualdade de Taylor para estimar a precisão da aproximação $f(x) \approx T_n(x)$ quando x estiver no intervalo dado.

a)
$$f(x) = \sqrt{x}$$
, $a = 4$, $n = 2$, $4 \le x \le 4$, 2.

b)
$$f(x) = secx$$
, $a = 0$, $n = 2, -0, 2 \le x \le 0, 2$.

c)
$$f(x) = e^{x^2}$$
, $a = 0$, $n = 3$, $0 \le x \le 0, 1$.

d)
$$f(x) = x \operatorname{sen} x$$
, $a = 0$, $n = 4$, $-1 \le x \le 1$.

Gabarito

12. a) $2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2$. Precisão: $1,5625 \times 10^{-5}$.

b)
$$1 + \frac{1}{2}x^2$$
. Precisão: 0,0014.

c)
$$1 + x^2$$
. Precisão: 0,00006.

d)
$$x^2 - \frac{1}{6}x^4$$
. Precisão: 0,042.

Referências

[1] STEWART J., Cálculo, Volume II, Editora Thomson.

[2] Anton H., Cálculo, Volume II, Editora Bookman.