

OPERATING SYSTEMS

Disk scheduling algorithms

Disk Parts

- One or more round plates coated with magnetic material
 - spinning at a constant speed with the magnetic head mechanism
 - which can be moved approximately radially above the plates
- Control assembly, interface to the electromechanical part
- System Bus Interface

HDD vs. SSD

- Hard disk drive
 - Use Disks
- Solid-state drive
 - Use flash memory (chips)

Source: Avast

Algorithms for scheduling disk jobs:

- FCFS
- SSTF
- SCAN (elevator)
- LOOK
- C-SCAN (one-way elevator)
- C-LOOK
- Seek distance search time
 - the time it takes to move the hand (arm) of the disk to a specific path where the data should be read or written.
- Reference String Data Structure
 - a list of sector numbers to which different tasks approach.

Why do we need algorithms?

- Multiple I/O requests can be made by different processes and only one I/O request can be served by a disk controller at a time. Therefore, other I/O requests must wait in the queue and should be scheduled.
- Two or more requests can be away from each other, so they can result in a larger shift of the disk arm.
- Hard drives are one of the slowest parts of the computer system and therefore need to be accessed in an effective way.

FCFS – First Come First Serve

- Aka. FIFO
- Tasks are granted access to the disk in the order in which they arrive
- Advantages:
 - No starvation (all will be served)
 - Easy to implement
- Disadvantage:
 - Accidental disk access
 - No time savings

FCFS - task

- Reference String: 82,170,43,140,24,16,190
- The disc head is currently on the sector: 50

Korak		enutna daća	Sljed	deća aća	R	azlika	
	ı	50		82		32	ABS(50-82)
	2	82		170		88	ABS(82-170)
3	3	170		43		127	ļ
4	Į.	43		140		97	
į	5	140		24		116	
	6	24		16		8	
7	7	16		190		174	

SUM:

SSTF - Shortest Seek Time First

- Minimum Search Time
- Algorithm:
 - When the new task comes, calculate the distance from the task currently accessing the disk
 - Place the task in the appropriate place in the queue (sorted by distance)
 - When the task is complete, select the nearest
 - It must always start from one task, and we will take that first position in a row or where the head is currently located

SSTF - task

- Reference String: 82,170,43,140,24,16,190
- The disc head is on: 50

Korak		Trenutna zadaća	Sljedeća zadaća	Razlika	
	1	50	43	7	
	2	43	24	19	
	3	24	16	8	
	4	16	82	66	ABS!
	5	82	140	58	
	6	140	170	30	
	7	170	190	20	

SUM:

208

Sequence: 50, 43, 24, 16, 82, 140, 170, 190

SSTF – pros/cons

Advantages:

- The average seek time is decreasing
- Throughput increases

Disadvantages:

- Overhead to calculate seek time in advance
- Can cause Starvation for a request if it has higher seek time as compared to incoming requests
- High variance of response time as SSTF favours only some requests

SCAN

- Aka. "Elevator"
 - When the new task comes, calculate the distance from the task currently accessing the disk
 - Place the task in the appropriate place in the queue (sorted by distance)
 - When the task is over, select the nearest one way
 - When we finish the one-way trip we go back in the opposite direction

SCAN - zadatak

- Reference String: 82,170,43,140,24,16,190
- The disc head is on: 50
 - The first sector of the disk is on 0, and the last in the 199th sector

Korak	Trenutna zadaća	Sljedeća zadaća	Razlika
1	50	82	32
2	82	140	58
3	140	170	30
	170	190	20
	190	199	9
•	199	43	156
7	43	24	19
8	24	16	8

Sequence: 50, 82, 140, 170, 190, **199**, 43, 24, 16

SUM: **332**

Quick Computing: ABS(50-199) + ABS(199-16) = 332

SCAN - pros/cons

Advantages:

- High throughput
- Low variance of response time
- Average response time

Disdvantage:

- The problem with fairness, the tasks that access the middle of the disk will be served twice as quickly as the rest
- Long waiting time for requests for locations just visited by disk arm

LOCK

 Same as SCAN but ignores the first and last sectors on the disk (if not in the reference string)

LOCK - task

- Reference String: 82,170,43,140,24,16,190
- The disc head is on: 50
 - The first sector of the disk is on **0**, and the last in the **199th** sector

Korak	Trenutna zadaća	Sljedeća zadaća	Razlika
1	50	82	32
2	82	140	58
3	140	170	30
4	170	190	20
5	190	43	147
6	43	24	19
7	24	16	8

SUM:

314

142 150 170 190 199

Sequence: 50, 82, 140, 170, 190, 43, 24, 16

Quick Computing: ABS(50-190) + ABS(190-16) = 314

LOCK – pros/cons

- Advantages:
 - Allows for a more uniform wait time compared to SCAN
- Disadvantage (the same as SCAN):
 - The problem with fairness, the tasks that access the middle of the disk will be served twice as quickly as the rest
 - Long waiting time for requests for locations just visited by disk arm

C-SCAN (one-way elevator)

- Circular SCAN
- One-way elevator the reading head only goes in one direction, when it reaches the end – it goes to the beginning

C-SCAN

- Reference String: 82,170,43,140,24,16,190
- The disc head is on: 50
 - The first sector of the disk is on 0, and the last in the 199th sector

Korak		Trenutna zadaća	Sljedeća zadaća	Razlika
	1	50	82	32
	2	82	140	58
	3	140	170	30
	4	170	190	20
	5	190	199	9
	6	199	0	199
	7	0	16	16
	8	16	24	8
	9	24	43	19

Sequence: 50, 82, 140, 170, 190, **199**, **0**, 16, 24, 43

SUM: **391**

Quick Computing: ABS(50-199) + ABS(199-0) + ABS(0-43) = 391

C-SCAN – prednosti/mane

Advantages:

- Improving weather compared to FIFO
- No starvation
- Addressed issue of serving the middle of the disk more frequently

Disadvantage:

Long wait time for requests for locations just visited by the disk

C-LOOK

• It does a table like C-SCAN with the exception that it does not visit the first or last sector if it is not in the reference string.

C-LOOK - zadatak

- Reference String: 82,170,43,140,24,16,190
- The disc head is on: 50
 - The first sector of the disk is on **0**, and the last in the **199th** sector

Korak	Trenutna zadaća	Sljedeća zadaća	Razlika
1	50	82	32
2	82	140	58
3	140	170	30
4	170	190	20
5	190	16	174
6	16	24	8
7	24	43	19

Quick Computing: ABS(50-190) + ABS(190-16) + ABS(16+43)= 341

C-LOCK – prednosti/mane

- Advantages:
 - Same as C-SCAN
 - It doesn't have to go to the beginning/end of the disk
- Disadvantage:
 - Long wait time for requests for locations just visited by the disk

Comparison

Algoritam	Rezultat
SSTF	208
LOOK	314
SCAN	332
C-LOCK	341
C-SCAN	391
FIFO	642

- SSTF starvation (others do not have this disadvantage)
- LOOK & C-LOOK do not return the reading head/arm to the beginning/end
- LOOK & SCAN fairness (the data in the middle of the disk will be served rather than those at the end)
- LOOK is similar to SCAN algorithm, as is CLOOK similar to CSCAN

Pitanje

Consider an operating system capable of loading and executing one consecutive user process at a time.

The algorithm used to arrange the disk head is First Come First Served (FCFS). If FCFS is replaced with the shortest search time (SSTF), which the supplier claims gives 50% better comparison results, what is the expected improvement in user program I/O performance?

Odaberite odgovor:

- A) More than 50%
- B) 50%
- C) Less then 50%
- D) 0%

Answer:

D) 0%

Since the operating system can perform **one successive** user process at a time (1 processor with 1 core/core), the disk is always accessed in an **FCFS** way. The OS never has the choice to choose an IO from multiple IOs because it always takes one at a time...

Single-processor vs. Multi-processor Single-core vs. Multiple-core (accessing the disk is a process!)

Single-processor – home computers, mobile devices (1-2 or more core) Multi-processor - blade servers

Task

- Reference String: 12, 11, 12, 11, 10, 5, 35, 11, 10, 1, 35, 30, 29, 12, 11, 14, 15, 10, 30, 31, 35, 1, 2, 3, 4
- The first sector is 1, the last sector is sector 35
- The disc head is on the sector: 12
- Use algorithms:
 - A) FIFO
 - B) SSTF
 - C) SCAN
 - D) LOOK
 - E) C-SCAN
 - F) C-LOOK
- For each algorithm make a table with steps and calculate seek distance.

Solutions:

- A) FIFO = 202
- B) SSTF = 55
- C) SCAN = 57
- D) LOOK = 57
- E) C-SCAN = 67
- F) C-LOOK = 67

