Organización de Computadoras

Clase 4

- Circuitos Lógicos Combinacionales
- Circuitos Lógicos Secuenciales

- Responden a los valores lógicos en las entradas, la salida está determinada exclusivamente por los valores de las entradas en ese instante.
- Si cambia la entrada, cambia la salida.
- Los valores pasados de las entradas no influyen en los valores de las salidas.

Puertas lógicas en un chip

Multiplexor de 8 entradas •74151

Según valor de entradas A, B y C $F=D_x$

Para cada combinación de las entradas A, B y C sólo UNA de las salidas D_x vale '1'

Decodificador 3 a 8

Si todos los bits A_i son iguales a los B_i la salida es '1'

Comparador de 4 bits

Si **C=1**

AND derechas

"dejan pasar" el dato Di (1.Di =Di)

AND izquierdas

tienen 0 a la salidas sin importar Di (0.Di= 0)

Cada OR recibe un 0 de una AND y un Di de la otra AND

Su salida dependerá del valor Di ya que 0+Di = Di

Si **C=1**AND derechas

"dejan pasar" el dato Di (1.Di =Di)

AND izquierdas

tienen 0 a la salidas sin importar Di (0.Di= 0)

Cada OR recibe un 0 de una AND y un Di de la otra AND

Su salida dependerá del valor Di (Di+0 = Di)

Desplazador de 1 bit

Según el valor de la entrada C se 'correrán' un lugar a derecha o izquierda.

Ejemplo 5

Según F₁F₀ será la función que se realizará sobre A y B.

Carry in

Según F₁F₀ será la función que se realizará sobre A y B. Logical unit

Según F₁F₀ será la función que se realizará sobre A y B.

Respuesta temporal

Suponemos que los retardos de compuerta Δt son iguales

Circuitos Secuenciales

- Las salidas dependen tanto de las entradas como del estado interno del circuito.
 - ¿Qué es el estado interno del circuito?
- Tienen la característica de "almacenar" valores lógicos internamente.
- Estos valores se almacenan aunque las entradas no estén.

¿Cómo se almacena un valor lógico?

- ➤ La salida es también entrada
- ➤ En ningún circuito combinatorio una salida transportaba información hacia la entrada
- ➤ La ecuación lógica

$$Q=Q+S$$

¿Cómo se ...?(2)

¿Cómo se ...?(3)

$$Q = Q + S = 1 + 1 = 1$$

¿Cómo se ...?(4)

➤Ahora S=0

$$Q = Q + S = 1 + 0 = 1$$

➤ Una vez que la salida Q toma el valor 1 no hay forma de volver a 0

¿Cómo se ...?(5)

Ahora S=1 y R=0, Q=1
$$Q=(Q+S).\overline{R}$$

¿Cómo se ...?(6)

ightharpoonupSi ahora S=0 y R=0, Q=1. Nada cambia.

¿Cómo se ...?(7)

 \rightarrow Si ahora S=0 y R=1, Q=0.

¿Cómo se ...?(8)

- ightharpoonupSi ahora S=0 y R=0, Q=0.
- S puede cambiar y se reflejará en Q

¿Cómo se ...?(9)

¿Cómo se ...?(10)

Finalmente queda así

FLIP-FLOP SR

FLIP-FLOP SR(2)

- Aparece la salida Q_{n+1}
- $ightharpoonup Q_n = salida anterior$
- > S = Set = poner a 1
- ightharpoonup R = Reset = poner a 0
- ➤ Las salidas Q y Q son complementarias

FLIP-FLOP SR(3)

Supongamos S y R = 0 y Q = 1

 \rightarrow Mientras que Sy R = 0, Q permanece en 1

FLIP-FLOP SR(4)

Supongamos S y R = 0 y Q = 0

 \rightarrow Mientras que Sy R = 0, Q permanece en 0

FLIP-FLOP SR(4)

Si S y R =
$$0$$
,

"recuerda" cual era el estado anterior.

Supongamos S y R = 0 y Q = 0

 \rightarrow Mientras que Sy R = 0, Q permanece en 0

FLIP-FLOP SR(5)

♦Si ahora pasamos de S y R=0 a S=1 y R=0

FLIP-FLOP SR(5)

❖Si ahora pasamos de S y R=0 a S=1 y R=0

Memoria

- Se puede construir con un flip-flop una memoria de 1 bit.
- Se llama biestable porque el circuito posee sólo 2 estados posibles de funcionamiento, se queda en cada uno de ellos, salvo que las entradas provoquen un cambio.

- Según la manera en que las salidas respondan a las señales lógicas presentes en la entrada, los biestables se clasifican en:
 - SR
 - J-K
 - D
 - T

Secuenciales – Clasificación(2)

- Respecto del instante en que pueden cambiar dichas salidas, pueden ser:
 - Asincrónicos: cuando en la entrada se establece una combinación, las salidas cambiarán
 - Sincrónicos: la presencia de una entrada especial, determina "cuando" cambian las salidas acorde a las entradas

Reloj: "señal especial"

- El orden en que ocurren los sucesos es importante.
- A veces los sucesos deben ocurrir simultáneamente.
- Reloj: es una señal de tiempo precisa que determina cuando se producen eventos.

Reloj (Clock) (CLK)

Cada tiempo T, la señal se repite

Flip-Flop SR sincrónico

> S y R son las entradas que tendrán efecto cuando CK tome el valor 1.

_	CK	S	R	Q_{n+1}
•	1	0	0	Q _n
	1	0	1	0
	1	1	0	1
	1	1	1	Prohibido
	0	X	X	Q _n

Flip-Flop D

En el FF SR hay que aplicar 2 entradas diferentes para cambiar de estado.

El FF D permite aplicar una sola entrada para cambiar la salida.

Flip-Flop D

Flip Flop J-K

Flip Flop T

 La salida Q cambiará de 0 a 1 o 1 a 0 en cada pulso de la entrada T.

Notas de clase 4

Recordando un bit

- Con una señal (CK) se copia el valor de D en Q
- Sin esa señal, el valor de Q permanece igual

Puedo recordar un Bit

	D	Q
0	0	q
0	1	q
1	0	0
1	1	1

Recordando n bits

Si CK actúa sobre n bits simultáneamente

Registro n bits

Chip con 8 FF-D (74LS374)

Selección y operaciones

Registro con desplazamiento

Contador módulo 8

Un Registro

Varios Registros

mayor información ...

- Operaciones Lógicas
 - Apunte 3 de Cátedra
- Circuitos Secuenciales
 - Apunte 5 de Cátedra
- Apéndice A: Lógica digital (A.3., A.4.)
 - Stallings, W., 5° Edición.