Análisis Predictivo de Riesgo de Crédito: Estudio de la Base de Datos de Crédito Alemán (*German Credit*)

Ignacio Fernández Sánchez-Pascuala

Universidad Complutense Madrid & Universidad Politécnica Madrid

29 de abril de 2024

Contenido

- Introducción
- 2 Base de Datos
 - Limpieza de Datos
 - Descripción de variables
- 3 Análisis relaciones y dependencias
 - Tablas contingencia
 - Gráficos caja y bigotes
 - Comparación de grupos
 - Influencia de una tercera variable
 - Pruebas Estadísticas
- Modelo predictivo regresión logística
 - Objetivo
 - Separación de Datos y Selección de Variables
 - Entrenamiento del modelo
 - Evaluación del Modelo

Introducción

- Para minimizar las pérdidas, el banco necesita una regla de decisión con respecto a a quién otorgar la aprobación de un préstamo.
- Se consideran los perfiles demográficos y socioeconómicos de los solicitantes antes de tomar una decisión.
- German Credit: Información sobre 20 variables y la clasificación de si un solicitante es considerado un riesgo de crédito Bueno o Malo para 1000 solicitantes.

Contenido

- Introducción
- 2 Base de Datos
 - Limpieza de Datos
 - Descripción de variables
- 3 Análisis relaciones y dependencias
 - Tablas contingencia
 - Gráficos caja y bigotes
 - Comparación de grupos
 - Influencia de una tercera variable
 - Pruebas Estadísticas
- Modelo predictivo regresión logística
 - Objetivo
 - Separación de Datos y Selección de Variables
 - Entrenamiento del modelo
 - Evaluación del Modelo

Base de Datos Inicial

	Creditability	Account.Balance	Duration.of.Creditmonth.	Payment.Status.of.Previous.Credit	Purpose	Credit.Amount	Value.Savings.Stocks
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1	1	1	18	4	2	1049	1
2	1	1	9	4	0	2799	1
3	1	2	12	2	9	841	2
4	1	1	12	4	0	2122	1
5	1	1	12	4	0	2171	1
6	1	1	10	4	0	2241	1

Limpieza/Transformaciones de Datos Realizadas:

- Valores numéricos a la categoría que representan.
- Combinación de categorías.
- Cambio nombre variables.

Base de Datos Limpia

Guarantors	Sex/Martial	Instalment	Employment_Length	Savings	Amount	Purpose	Previous_Credit	Duration	Account_Balance	Creditability
<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<int></int>	<fct></fct>	<fct></fct>	<int></int>	<fct></fct>	<fct></fct>
None	Male Divorced/Single	< 20%	< 1 Year/Unemployed	None	1049	Used Car	No Problems	18	No account	Good
None	Male Married/Widowed	(25%,35%)	[1,4)	None	2799	Other	No Problems	9	No account	Good
None	Male Divorced/Single	(25%,35%)	[4,7)	< 100 DM	841	Other	Paid Up	12	None	Good
None	Male Married/Widowed	[20%,25%)	[1,4)	None	2122	Other	No Problems	12	No account	Good

Duration_Adress	Valuable_Asset	Age	Concurrent_Credits	Housing	Num_Credits	Occupation	Num_Dependents	Telephone
<fct></fct>	<fct></fct>	<int></int>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>
> 7	Car	21	None	Free	1	Skilled	3 or More	No
[1,4)	None	36	None	Free	> 1	Skilled	Less than 3	No
> 7	None	23	None	Free	1	Unskilled Permanent Resident	3 or More	No
[1,4)	None	39	None	Free	> 1	Unskilled Permanent Resident	Less than 3	No

Descripción de variables

- Creditability- Binaria. Confianza en la devolución del crédito: Malo y Bueno.
- Duration- Continua. Duración del préstamo en meses.
- Amount- Continua. Cantidad de crédito solicitada.
- Age- Continua. Edad del cliente.
- Purpose- Categórica. Propósito del crédito: Coche Nuevo, Coche Usado, Relacionado con el Hogar y Otro.
- Housing- Categórica. Vivienda del solicitante: Gratis, Alquilada y Propia.
- Telephone- Binaria. Disponibilidad de teléfono del cliente: Sí y No.
- Occupation- Categórica. Ocupación del solicitante: Desempleado, No Cualificado, Cualificado y Ejecutivo.
- Num_Credits- Binaria. Número de créditos en este banco: 1 y Más de 1.
- **Employment_Length-** Categórica. Duración del empleo actual: Menos de 1 año/Desempleado, [1,4), [4,7) y Más de 7.

- Savings- Categórica. Ahorros del cliente: Ninguno, Menos de 100 DM, [100, 1000] DM y Más de 1000 DM.
- Previous_Credit- Categórica. Estado de pago del crédito anterior: Algunos Problemas, Pagado y Sin Problemas.
- Account_Balance- Categórica. Saldo cuenta del solicitante: Sin cuenta, Ninguno y Algún saldo.
- Instalment- Categórica. Porcentaje de los ingresos disponibles destinados a pagos de cuotas/préstamos: Más del 35 %, (25 %, 35 %), [20 %, 25 %) y Menos del 20 %.
- **Sex/Martial** Categórica. Género y estado civil del solicitante: Hombre Divorciado/Soltero, Hombre Casado/Viudo y Mujer.
- Guarantors- Binaria. Tipo de garante asociado con la solicitud de crédito: Ninguno y Sí.
- **Duration_Adress-** Categórica. Duración de residencia dirección actual: Menos de 1 año, [1, 4), [4, 7) y Más de 7.
- Valuable_Asset- Categórica. Activo más valioso: Ninguno, Coche, Seguro de Vida y Bienes Inmuebles.

- **Concurrent_Credits** Binaria. Situación crediticia simultánea del solicitante en otras instituciones financieras: Otros Bancos o Tiendas y Ninguna.
- Num_Dependents- Binaria. Cantidad de personas económicamente dependientes del solicitante: 3 o Más y Menos de 3.

Variable Objetivo: Creditability Distribución:

Malo: 300

• Bueno: 700

Contenido

- Introducción
- 2 Base de Datos
 - Limpieza de Datos
 - Descripción de variables
- 3 Análisis relaciones y dependencias
 - Tablas contingencia
 - Gráficos caja y bigotes
 - Comparación de grupos
 - Influencia de una tercera variable
 - Pruebas Estadísticas
- Modelo predictivo regresión logística
 - Objetivo
 - Separación de Datos y Selección de Variables
 - Entrenamiento del modelo
 - Evaluación del Modelo

Tablas Contingencia

Cuadro: Tabla de contingencia entre Creditability y Account_Balance

Creditability	No account	None	Some Balance
Bad	135	105	60
Good	139	164	397

Cuadro: Tabla de contingencia entre Creditability y Previous_Credit

Creditability	Some Problems	Paid Up	No Problems
Bad	53	169	78
Good	36	361	303

Cuadro: Tabla de contingencia entre Creditability y Savings

Creditability	None	< 100 DM	[100,1000] DM	> 1000 DM
Bad	217	34	17	32
Good	386	69	94	151

Cuadro: Tabla de contingencia entre Creditability y Employment_Length

Creditability	< 1 Year/Unemployed	[1,4)	[4,7)	Above 7
Bad	93	104	39	64
Good	141	235	135	189

Cuadro: Tabla de contingencia entre Creditability y Sex/Martial

Creditability	Male Divorced/Single	Male Married/Widowed	Female
Bad	129	146	25
Good	231	402	67

Gráficos Cajas y Bigotes

Comparación de grupos

Medidas de asociación:

• Diferencia de proporciones (PD): La diferencia entre la probabilidad de que ocurra un evento en un grupo y la probabilidad de que ocurra ese mismo evento en otro grupo.

$$DP = \pi_1 - \pi_2$$

donde π_i es la probabilidad del suceso de referencia o de éxito para el grupo i.

 Riesgo Relativo (RR): La proporción de la probabilidad de que ocurra un evento en un grupo en comparación con la probabilidad de que ocurra ese mismo evento en otro grupo.

$$RR = \frac{\pi_1}{\pi_2}$$

• Odds Ratio (OR): La relación de que ocurra un evento en un grupo frente a la posibilidad de que ocurra ese mismo evento en otro grupo.

$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$$

Resultados de las Medidas de Asociación

Variable	PD	RR	OR
Num_Dependents	0,0038	1,0129	1,0184
Num_Dependents	(-0,0745,0,0821)	(0,7784,1,3179)	(0,7002, 1,4813)
Telephone	0,0341	1,1218	1,1774
relephone	(-0,0234,0,0915)	(0,9217,1,3652)	(0,8919, 1,5543)
Num_Credits	0,0435	1,1596	1,2333
Num_Credits	(-0,0147,0,1017)	(0,9468,1,4201)	(0,9280, 1,6389)
Concurrent_Credits	0,1334	1,4848	1,8198
Concurrent_Credits	(0,0564,0,2104)	(1,2087, 1,8240)	(1,3078, 2,5322)
Guarantors	-0,0012	0,9961	0,9944
Guarantors	(-0,0991,0,0967)	(0,7195,1,3789)	(0,6244, 1,5835)

Influencia de una tercera variable

Razones de odds condicionales

Dado un factor condicional Z = k sobre un evento, la razón de odds condicional (conditional odds ratios) está dada por la expresión:

$$\theta_{X,Y|Z=k} = \frac{n_{11}^k \cdot n_{22}^k}{n_{12}^k \cdot n_{21}^k}$$

- En nuestro caso, X es Creditability, Y es Concurrent_Credits y Z es Amount (categorizada).
- ¿Se acentúa el riesgo de incumplimiento de los clientes al tener créditos fuera de este banco conforme aumenta la cantidad del préstamo?
- Categorizamos la variable Amount en 3 categorías: Bajo, Medio y Alto.

Categoria_Z	Razones de odds condicionales
Bajo	2.844
Medio	1.431
Alto	1.671

Pruebas Estadísticas

- Test de Contingencia de Chi-cuadrado (χ^2):
 - Utilizado para determinar asociación significativa entre variables categóricas.
 - H0: No hay asociación entre las variables.
 - H1: Hay asociación significativa entre las variables.
 - Fórmula:

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

- Prueba T de Student:
 - Utilizada para comparar las medias de dos grupos.
 - En el contexto de variables continuas y una variable respuesta categórica.
 - H0: No hay diferencia significativa entre las medias de los dos grupos.
 - H1: Sí hay diferencia significativa entre las medias de los dos grupos.
 - Fórmula:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Resultados de las Pruebas Estadísticas

Variable	P-Value
Account_Balance	0.00
Previous_Credit	0.00
Purpose	0.00
Savings	0.00
Employment_Length	0.00
Instalment	0.14
Sex/Martial	0.01
Guarantors	1.00
Duration_Address	0.86
Valuable_Asset	0.00
Concurrent_Credits	0.00
Housing	0.00
Num_Credits	0.17
Occupation	0.60
Num_Dependents	1.00
Telephone	0.28

Variable	Media_Good	Media_Bad	P-Value
Duration	19.20714	24.860	2.404081e-10
Amount	2985.44286	3938.127	2.477103e-05
Age	36.22000	33.960	3.778175e-03

Cuadro: Pruebas T-test Variables continuas

Contenido

- Introducción
- 2 Base de Datos
 - Limpieza de Datos
 - Descripción de variables
- 3 Análisis relaciones y dependencias
 - Tablas contingencia
 - Gráficos caja y bigotes
 - Comparación de grupos
 - Influencia de una tercera variable
 - Pruebas Estadísticas
- 4 Modelo predictivo regresión logística
 - Objetivo
 - Separación de Datos y Selección de Variables
 - Entrenamiento del modelo
 - Evaluación del Modelo

Objetivo

- Crear un modelo predictivo para determinar la probabilidad de devolución de créditos.
- Utilizar datos históricos de clientes para entrenar el modelo.
- Aplicar el modelo a nuevos clientes para prever su riesgo crediticio.
- La variable respuesta es Creditability.
- Evaluar el rendimiento del modelo mediante datos de entrenamiento y prueba.

La regresión logística es un modelo estadístico que modela la probabilidad de una variable binaria como una función lineal de una o más variables independientes:

$$P(Y = 1 | X_1, X_2, \dots, X_p) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)}}$$

Donde:

• $\beta_0, \beta_1, \dots, \beta_p$ son los parámetros del modelo que se estiman durante el proceso de ajuste.

Separación de Datos y Selección de Variables

- Separación estratificada del conjunto de datos en entrenamiento (70 %) y prueba (30 %).
- Se consideran las variables con asociación significativa a la variable respuesta en pruebas anteriores.
- Variables categóricas: Account_Balance, Previous_Credit, Purpose, Savings, Employment_Length, Sex/Martial, Housing, Concurrent_Credits, Instalment y Valuable_Asset.
- Variables continuas: Age, Duration y Amount.

Variables continuas

- Se ajustaron modelos separados para las variables continuas respecto a la variable objetivo.
- Se evaluó la significancia de cada modelo mediante el p-valor del test de Wald.

Figura: Modelos de regresión logística para las variables **Age**, **Duration** y **Amount**

Variables Ordinales

- Variables Savings,
 Employment_Length e Instalment podrían ser ordinales.
- Se evalúa si existe una relación lineal entre sus categorías codificadas por su orden y la variable respuesta.
- Se entrena un modelo de regresión logística para evaluar la significancia de esta relación.

P-valor Savings: 5.413247e-06 P-valor Employment Length: 0.002182612 P-valor Instalment: 0.0361554

Modelo Inicial

- Método stepwise regression para entrenar el modelo.
- Se ajustan modelos con todas las combinaciones de variables y se comparan utilizando el Criterio de Akaike (AIC).
- Uso función glm de R para ajustar los modelos.
- **1** Entrenamos el modelo inicial con todas las variables seleccionadas (AIC = 667,82):

```
Coefficients:
                                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
Account BalanceNone
                                  5.490e-01 2.496e-01
Account BalanceSome Balance
                                  1.832e+00 2.567e-01
Previous_CreditPaid Up
                                  1.152e+00 3.786e-01 3.042 0.002352 **
Previous_CreditNo Problems
                                  1.435e+00 3.862e-01 3.715 0.000203 ***
PurposeNew Car
                                  1.684e+00 4.159e-01
PurposeUsed Car
                                  5.697e-01 2.851e-01 1.998 0.045719 *
PurposeHome Related
                                  5.409e-01 2.468e-01 2.192 0.028411
`Sex/Martial`Male Married/Widowed 5.139e-01 2.239e-01 2.295 0.021739 *
`Sex/Martial`Female
                                  2.124e-01 3.784e-01 0.561 0.574539
HousingRented
                                  5.494e-01 2.637e-01 2.083 0.037223 *
HousingOwned
                                  3.316e-01 5.255e-01 0.631 0.527949
Concurrent CreditsNone
                                 4.811e-01 2.655e-01 1.812 0.069999 .
Valuable AssetCar
                                 -5.536e-01 2.955e-01 -1.873 0.061017 .
Valuable AssetLife Insurance
                                 -6.295e-01 2.757e-01 -2.283 0.022410 *
Valuable AssetReal Estate
                                 -1.120e+00 4.574e-01 -2.449 0.014306 *
                                 1.930e-02 1.013e-02 1.904 0.056897 .
Age
Duration
                                 -2.613e-02 1.064e-02 -2.457 0.014020 *
Amount
                                 -1.069e-04 4.987e-05 -2.143 0.032120 *
Savings ord
                                  2.967e-01 9.453e-02
                                                      3.139 0.001696 **
Employment Length ord
                                  1.335e-01 1.009e-01 1.323 0.185797
Instalment ord
                                  2.395e-01 1.013e-01 2.364 0.018058 *
```

Modelo final

2 Aplicamos el método Stepwise:

```
Coefficients:
                                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                -3.039e+00 6.858e-01 -4.431 9.37e-06 ***
Account BalanceNone
                                 5.324e-01 2.487e-01 2.141 0.032269 *
Account BalanceSome Balance
                                 1.841e+00 2.566e-01 7.174 7.29e-13 ***
Previous CreditPaid Up
                                 1.157e+00 3.767e-01 3.073 0.002122 **
Previous CreditNo Problems
                                 1.465e+00 3.840e-01 3.816 0.000136 ***
PurposeNew Car
                                 1.706e+00 4.179e-01 4.083 4.44e-05 ***
PurposeUsed Car
                                 5.439e-01 2.838e-01 1.917 0.055253 .
PurposeHome Related
                                 5.313e-01 2.458e-01 2.162 0.030639 *
Sex/Martial Male Married/Widowed 5.561e-01 2.212e-01 2.513 0.011954 *
`Sex/Martial`Female
                                  2.173e-01 3.787e-01 0.574 0.566185
HousingRented
                                 5.408e-01 2.633e-01 2.054 0.040009 *
HousingOwned
                                 3.223e-01 5.253e-01 0.613 0.539567
Concurrent CreditsNone
                                5.034e-01 2.644e-01
                                                      1.904 0.056865 .
Valuable AssetCar
                                -5.802e-01 2.951e-01 -1.966 0.049245 *
Valuable AssetLife Insurance
                                -6.269e-01 2.757e-01 -2.274 0.022994 *
Valuable_AssetReal Estate
                                -1.119e+00 4.587e-01 -2.439 0.014735 *
Age
                                 2.267e-02 9.891e-03 2.292 0.021928 *
Duration
                                -2.563e-02 1.063e-02 -2.412 0.015860 *
Amount
                                 -1.066e-04 4.992e-05 -2.135 0.032775 *
Savings ord
                                 3.078e-01 9.406e-02 3.273 0.001064 **
Instalment_ord
                                 2.316e-01 1.011e-01 2.290 0.022008 *
```

Se obtiene un AIC de 667.58.

Modelo final

Odds Ratio modelo final:

Account_BalanceNone	(Intercept)
1.70301763	0.04787629
Previous_CreditPaid Up	Account_BalanceSome Balance
3.18159353	6.30333247
PurposeNew Car	Previous_CreditNo Problems
5.50919704	4.32842281
PurposeHome Related	PurposeUsed Car
1.70114924	1.72279260
`Sex/Martial`Female	`Sex/Martial`Male Married/Widowed
1.24268591	1.74381260
HousingOwned	HousingRented
1.38025102	1.71729542
Valuable_AssetCar	Concurrent_CreditsNone
0.55977816	1.65436827
Valuable_AssetReal Estate	Valuable_AssetLife Insurance
0.32667069	0.53423346
Duration	Age
0.97469378	1.02292613
Savings_ord	Amount
1.36049296	0.99989344
	Instalment_ord

1.26055817

Evaluación del modelo

• Métricas usadas: AUC, precisión, exactitud y recall (Train y Test).

Métrica	Train	Test
AUC	0.833	0.727
Precision	0.897	0.828
Accuracy	0.787	0.72
Recall	0.816	0.783

Figura: Curvas ROC Train y Test

¡Gracias por su atención! ¿Alguna pregunta?