Теория вероятности 12

Содержание

1	\S{Oc}	новные правила комбинаторики	6
	1.1	Задание 1	7
	1.2	Задание 2	8
	1.3	Задание 3	9
	1.4	Задание 4	10
	1.5	Задание 5	11
	1.6	Задание 6	12
	1.7	Задание 7	13
	1.8	Задание 8	14
	1.9	Задание 9	15
	1.10	Задание 10	16
_	2.00		
2	•	учайное событие. Вероятностное пространство. Класси	
	_	еделение вероятности.	17
	2.1	Задание 11	17
	2.2	Задание 12	18
	2.3	Задание 13	19
	2.4	Задание 14	20
	2.5	Задание 15	21
	2.6	Задание 16	22
	2.7	Задание 17	23
	2.8	Задание 18	24
	2.9	Задание 19	25
	2.10	Задание 20	26
	2.11	Задание 21	27
	2.12	Задание 22	28
	2.13	Задание 23	29
	2.14	Залание 24	30

	2.15	Задание 25																											•	31
	2.16	Задание 26	•		٠	٠																								32
	2.17	Задание 27	•		٠	٠																								33
	2.18	Задание 28	•																										•	34
	2.19	Задание 29				٠																								35
	2.20	Задание 30						•		•				•	•		•			•		•	•	•		•				36
3	§Оп	ерации с со	бь	ITI	я	M	и,	þ	00	\mathbf{p}	M;	y J	ıa	ı c	л	ο>	K	ен	и	я	В	ep	0	ЯŢ	ГΗ	(O	СI	гe	й,	
	неза	ависимые с	об	ыт	и	Я																								37
	3.1	Задание 31			٠	٠																								38
	3.2	Задание 32	•																											39
	3.3	Задание 33				٠																								40
	3.4	Задание 34																												41
	3.5	Задание 35																											•	42
	3.6	Задание 36	•																										•	43
	3.7	Задание 37	•																										•	44
	3.8	Задание 38				٠																								45
	3.9	Задание 39				٠																								46
	3.10	Задание 40																												47
	3.11	Задание 41												•									•	•					٠	48
4	§Ус.	ловная верс	RC	гнс	oc	TŁ	•																							49
	4.1	Задание 42	•																										•	49
	4.2	Задание 43																											•	50
	4.3	Задание 44	•																											51
	4.4	Задание 45	•																											52
	4.5	Задание 46				٠																								53
	4.6	Задание 47								٠					٠		٠			٠		٠								54
	4.7	Задание 48																												55
	4.8	Задание 49																												56

	4.9	Задание 50																•							•	•				57
	4.10	Задание 51	•					٠	٠							٠		•	•						•	•				58
5	§Фо	рмулы пол	нο	й	ве	ep	O§	ΙΤ	ΗC	oc	TI	1	И	Е	a	й	ec	a												59
	5.1	Задание 52																												59
	5.2	Задание 53						٠										•							•	•				60
	5.3	Задание 54						٠										•							•	•				61
	5.4	Задание 55						٠										•							•	•				62
	5.5	Задание 56						٠																						63
	5.6	Задание 57																•							•	•				64
	5.7	Задание 58																•							•	•				65
	5.8	Задание 59																•							•	•				66
	5.9	Задание 60																•							•	•				67
	5.10	Задание 61																												68
	5.11	Задание 62																												69
	5.12	Задание 63																												70
	5.13	Задание 64																												71
	5.14	Задание 65																												72
	5.15	Задание 66		•				•								•													•	73
6	§Ис	пытание Бе	ерн	ıу	ЛЈ	ш		Бі	ин	Ю	м	иа	ал	ь	н	0€)	pa	ıc	пј	⊃ €	·д	еJ	те	H	и	e			74
	6.1	Задание 69						٠																				٠		74
	6.2	Задание 70																												75
	6.3	Задание 71																												76
	6.4	Задание 72																												77
	6.5	Задание 73																											•	78
	6.6	Задание 74																											•	79
	6.7	Задание 75																												80
	6.8	Задание 76																												81
	6.9	Задание 77																											•	82

	6.10	Задание 78	83
	6.11	Задание 79	84
	6.12	Задание 80	85
	6.13	Задание 81	86
	6.14	Задание 82	87
7	е п		
7	0, (скретная случаная величина и ее числовые характерис	тики: 88
		ематические ожидание и дисперсия	
	7.1	Задание 83	
	7.2	Задание 84	
	7.3	Задание 85	
	7.4	Задание 86	
	7.5	Задание 87	
	7.6	Задание 88	
	7.7	Задание 89	94
8	§Pac	спределение Пуассона	95
	8.1	Задание 90	95
	8.2	Задание 91	96
	8.3	Задание 92	97
	8.4	Задание 93	98
	8.5	Задание 94	99
	8.6	Задание 95	100
	8.7	Задание 96	101
	8.8	Задание 97	102
9	§Co	вместное распределение двух дискретных величин. Ко	вариация
	и ко	релляция двух случайных величин	103
	9.1	Задание 98	103
	9.2	Запание 99	104

9.3	Задание 1	00							•		•					105
9.4	Задание 1	01									•					106
9.5	Задание 1	02														107
9.6	Задание 1	03														108
9.7	Задание 1	04														109
9.8	Задание 1	05														111
9.9	Задание 1	06														113
9.10	Задание 1	07														114
9.11	Задание 1	08														116
0.12	Залание 1	nα														118

1 §Основные правила комбинаторики

Теория отлично дана в книге, поэтому сюда я ее не переписывал. Условия тоже не переписываются.

1.1 Задание 1

Тут надо знать, что 000 для цифр быть не может

Способ решения является следствием из правила умножения. У нас есть 3 позиции одного типа(для цифр) и 3 позиции другого типа(для букв). Для первого типа количетво всех возможных значений равно 10, для второго - 12. В учебнике аналогичный пример, только количество позиций каждого типа равно 1. В любом случае, в таких ситуациях количество всех возможных значений - это основание, а количество позиций - это степень.

Слеовательно, всех вариантов с цифрами может быть:

 $10^3 - 1 = 999$

Для букв:

 12^{3}

Правильный ответ (по правилу умножения):

 $12^3 * 999 = 1726272$

1.2 Задание 2

Тут все просто, 4 позиции, количество всех возможных значений 10. $10^4 = 10000$

1.3 Задание 3

Тут нужно понять, сколько видов бутеров у нас получается и составить решение по правилу умножения для каждого типа.

Первый тип, когда в бутере есть все компоненты.

Хлеб: 1 позиция, 3 вида хлеба = 3 в степени 1 = 3.

Колбаса: 5.

Масло: 1.

Количество всех возможных вариантов для первого типа бутеров:

 $3 \cdot 5 \cdot 1 = 15$

Второй тип, когда в бутере нет колбасы.

Хлеб:3.

Масло: 1.

Количество всех возможных вариантов для второго типа бутеров:

 $3 \cdot 1 = 3$

Третий тип, когда в бутере нет масла.

Хлеб:3.

Колбаса: 5.

Количество всех возможных вариантов для третьего типа бутеров:

 $3 \cdot 5 = 15$

Для всех типов:

15 + 15 + 3 = 33

1.4 Задание 4

От A до K, исключая Ё и Й будет 10 букв. Цифр тоже 10.

1 позиция для букв, 3 для цифр:

10(букв $)\cdot 10($ цифр $)\cdot 10($ цифр $)\cdot 10($ цифр)=10000

1.5 Задание 5

Тут подвох в том, что правильных ответа 3. Ведь один и тот же человек может решить все хадачи(правило умножения), любые 4 человека могут быть выбраны из 20(порядок не важен - правило сочетаний) и каждая задача может быть предначертана преподом конкретному студенту(порядок важен - правило размещений).

Поэтому:

по правилу умножения:

 20^{4}

по правилу сочетаний

$$C_n^k = \frac{20 \cdot 19 \cdot 18 \cdot 17}{1 \cdot 2 \cdot 3 \cdot 4} = 4845$$

по правилу размещений

$$A_n^k = 20 \cdot 19 \cdot 18 \cdot 17 = 116280$$

1.6 Задание 6

$$n=36, k=3$$

Иногда проще решать задачу наоборот. Вытащим всех тузов из колоды - количетсво всех неинтересующих нас случаев:

$$C_{32}^{3}$$

Количество вообще всех случаев:

$$C_{36}^{3}$$

Тогда проще вычесть из всех неинтересующие случаи, тогда получим только интересющие!

$$C_{36}^3 - C_{32}^3$$

1.7 Задание 7

 C_{10}^{3}

1.8 Задание 8

- а) 16!, потому что нужно составить все возможные варианты очередей (правило перестановок)
- б) A_{16}^3

1.9 Задание 9

$$n = 2^6 = 64$$

Исключаем вариант "все решки"и все варианты "1 орла": 64-1-6=57

1.10 Задание 10

 $n_1 = 20$

 $n_2 = 3$ $C_{20}^5 \cdot 3$

2 §Случайное событие. Вероятностное пространство. Классическое определение вероятности.

2.1 Задание 11

```
1)например, 6,6, орел.
```

3) дублей с орлом всего может быть 6, тогда

$$p$$
(дубль с орлом) = $\frac{6}{72}$

2.2 Задание 12

```
позиций = 4, алфавит = 2, тогда всего исходов: 2^4=16 Количество исходов, когда нет орлов = 1. Есть хотя бы 1 орел:16-1=15 p(\text{хотя бы 1 орел})=\frac{15}{16}
```

2.3 Задание 13

```
позиций = 2, алфавит = 6 Всего: 6^2 = 36 интересующие нас случаи(их 5): 2-6, 3-5, 4-4, 5-3, 6-2 p(\text{сумма очков равна 8}) = \frac{5}{36}
```

2.4 Задание 14

позиций =3, алфавит =6.

Всего исходов: $6^3 = 216$

Нас интересуют случаи(их 4):

666

665

656

566

 $p(\text{сумма очков больше 16}) = \frac{4}{216}$

2.5 Задание 15

```
позиций = 5, алфавит = 6.
```

Всего: 6^5

Нас интересуют случаи(их 6):

11111

11112

11121

11211

12111

21111

p(сумма мегьше, либо равна 6) = $\frac{6}{6^5} = \frac{1}{6^4}$

2.6 Задание 16

позиций =2, алфавит =6

Всего: $6^6 = 36$

Нас интересуют:

- 6-1
- 6-2
- 6-3
- 6-4
- 6-5
- 1-6
- 2-6
- 3-6
- 4-6
- 5-6

p(не более одного раза) = $\frac{10}{36} = \frac{5}{18}$

2.7 Задание 17

позиций =4, алфавит =10

Всего: $10^4 = 10000$

3 попытки. Тут странно, так как если ты ввел какой-нибудь пин-код, а он неверный, то вводить его еще раз ты не будешь. Значит, каждая следующая попытка уменьшает количество пинковод на 1, тем самым чуть-чуть увеличивая вероятность успеха. То есть

 $p(\text{угадать пин-код с 3 попытки}) = \frac{1}{10000} + \frac{1}{9999} + \frac{1}{9998}$ Но в ответах почему-то $\frac{3}{10000}$

2.8 Задание 18

 $\frac{n}{k}$

2.9 Задание 19

к сожалению, я не знаю, как это решить. Мне кажется, что в условии чего-то не хватает.

2.10 Задание 20

6 юношей, 14 девушек.

количество всех возможных способов вырать 2 юношей из 6:

$$C_6^2 = \frac{6 \cdot 5}{1 \cdot 2} = 15$$

количество всех возможных способов вырать 1 девушку из 14:

$$C_{14}^1 = 14$$

колиество способов выбрать 3 любых студента из вcex(6+14=20):

$$C_{20}^3 = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 20 \cdot 19 \cdot 3$$

$$p = \frac{C_6^2 \cdot C_{14}^1}{C_{20}^3} = \frac{14 \cdot 15}{20 \cdot 19 \cdot 3} = \frac{7}{38}$$

2.11 Задание 21

количество всех возможных способов вырать 3 из 12:

$$C_{12}^3 = \frac{12 \cdot 11 \cdot 10}{1 \cdot 2 \cdot 3} = 220$$

колиество способов выбрать 3 любых из вcex(12+3=15):

$$C_{15}^3 = \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} = 455$$

$$C_{15}^3 - C_{12}^3 = 455 - 220 = 235$$

$$C_{15}^{3} = \frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3} = 455$$

$$C_{15}^{3} - C_{12}^{3} = 455 - 220 = 235$$

$$p = \frac{C_{15}^{3} - C_{12}^{3}}{C_{15}^{3}} = \frac{235}{455} = \frac{47}{91}$$

2.12Задание 22

 C_n^m

В подобных задачах лучше чтобы у всех С, п было минимально. Тогда легче счистать.

Число интересующих исходов:

$$C_{20}^3 - (C_5^2 \cdot C_{15}^1 + C_5^3)$$

$$C_5^2 = \frac{5\cdot 4}{1\cdot 2} = 10$$

$$C_{15}^1 = 15$$

$$C_5^2 \cdot C_{15}^1 = 150$$

$$C_5^3 = \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3} = 10$$

$$C_5^2 \cdot C_{15}^1 + C_5^3 = 150 + 10 = 160$$

$$C_{20}^3 = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 1140$$

$$C_{20}^3 - (C_5^2 \cdot C_{15}^1 + C_5^3) = 1140 - 160 = 980$$

$$C_{20}^{3} = \frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3} = 1140$$

$$C_{20}^{3} - \left(C_{5}^{2} \cdot C_{15}^{1} + C_{5}^{3}\right) = 1140 - 160 = 980$$

$$p = \frac{C_{20}^{3} - \left(C_{5}^{2} \cdot C_{15}^{1} + C_{5}^{3}\right)}{C_{20}^{3}} = \frac{890}{1140} = \frac{49}{57}$$

2.13 Задание 23

Здесь проще наоборот, решаем случай, когда вообще нет юношей. Это когда есть только девушки)

Число всех интересующий исходов в таком случае:

$$\begin{split} &C_{25}^3 - C_{15}^3 \\ &p = \frac{C_{25}^3 - C_{15}^3}{C_{25}^3} \\ &C_{25}^3 = 2300 \\ &C_{15}^3 = 455 \\ &C_{25}^3 - C_{15}^3 = 2300 - 455 = 1845 \\ &p = \frac{C_{25}^3 - C_{15}^3}{C_{25}^3} = \frac{1845}{2300} = \frac{369}{460} \end{split}$$

Задание 24 2.14

На интересуют случаи, когда выбраны только 4 парня или когда выбраны 3 парня и 1 девушка:

$$C_{10}^4 + C_{10}^3 \cdot C_5^1$$

Тогда вероятность всех этих исходов будет:
$$p=\frac{C_{10}^4+C_{10}^3\cdot C_5^1}{C_{15}^4}=\frac{810}{1365}=\frac{54}{91}$$

2.15 Задание 25

Нас интересуют случаи, когда повезло 2 новичкам и одному бывалому и

$$3$$
 новичкам:
$$p=\frac{C_6^3+C_6^2\cdot C_9^1}{C_{15}^3}=\frac{135+20}{455}=\frac{31}{91}$$

2.16 Задание 26

Хотя бы один, это значит 1 и более.

Проше решать обратную задачу - найти количество всех вариантов англоговорящих делегаций, далее из вообще всех вариантов вычесть это число. Получим как раз те случаи, когда в делегации есть хоть один неговорящий. Число вариантов хорошо говорящих делегаций:

 C_6^3

Число всех:

 C_{10}^{3}

Число вариантов вообще не говорящих по английски делегаций:

$$C_{10}^3 - C_6^3$$

Вероятность того, что в делегацию попадет хотя бы один неговорящий:

$$p = \frac{C_{10}^3 - C_6^3}{C_{10}^3} = \frac{120 - 20}{120} = \frac{5}{6}$$

2.17 Задание 27

Нас интересуют случаи, когда проконтроллированы 2 брака и 2 нормальных трубы, и проконтроллированы все 3 брака и 1 нормальная труба:

$$p = \frac{C_3^2 \cdot C_{12}^2 + C_3^3 \cdot C_{12}^1}{C_{15}^4} = \frac{198 + 12}{1365} = \frac{2}{13}$$

2.18 Задание 28

$$p = \frac{C_{12}^3 \cdot C_{10}^1 + C_{12}^4}{C_{22}^4} = \frac{7}{19}$$

Задание 29 2.19

- 1) Тут проще сначала решать наоборот.
- $p = \frac{C_{23}^5 (C_8^1 \cdot C_{15}^4 + C_{15}^5)}{C_{23}^5}$ $2) \ p = \frac{C_{15}^3 \cdot C_8^2}{C_{23}^3}$

Задание 30 2.20

Нужно найти вероятности прохождения первого и второго туров.

$$p_1 = \frac{C_{25}^3 \cdot C_5^1 + C_{25}^4}{C_{30}^4}$$

$$p_2 = \frac{C_{18}^3 \cdot C_6^1 + C_{18}^4}{C_{24}^4}$$

Тут придется сначала прочитать теорию к следующе главе, чтобы знать, почему вероятности исходов первого и второго тура в коннце надо умножить. $p_1\cdot p_2=\frac{C_{25}^3\cdot C_5^1+C_{25}^4}{C_{30}^4}\cdot \frac{C_{18}^3\cdot C_6^1+C_{18}^4}{C_{24}^4}$

$$p_1 \cdot p_2 = \frac{C_{25}^3 \cdot C_5^1 + C_{25}^4}{C_{30}^4} \cdot \frac{C_{18}^3 \cdot C_6^1 + C_{18}^4}{C_{24}^4}$$

3 §Операции с событиями, формула сложения вероятностей, независимые события

Чтобы здесь хоть что-то решить, лучше полностью выучить теорию из всех прерыдущих глав.

3.1 Задание 31

Тут ошибка в ответах!

$$n = 36$$

А - на 1 кости четное

В - на 1 и 2 кости в сумме больше 3

Число исходов события В проще посчитать, если посчитать число исходов обратных В и вычесть это число из всех. Всего исходов для \overline{B} :

11

12

21

Тогда,

$$n_B = 36 - 3 = 33$$

$$n_A = 3 \cdot 6 = 18$$

$$P(A) = \frac{18}{36} = \frac{1}{2}$$

$$P(B) = \frac{33}{36} = \frac{11}{12}$$

a)
$$A \cap B$$
:

$$n_{A \cap B} = 6 + 6 + 5 = 17$$

$$P(A \cap B) = \frac{17}{36}$$

6)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{11}{12} - \frac{17}{36} = \frac{34}{36} = \frac{17}{18}$$

в)
$$P(A) = \frac{18}{36} = \frac{1}{2}$$

$$P(\bar{A}) = \frac{18}{36} = \frac{1}{2}$$

д)
$$n_{\overline{A \cap B}} = 36 - 17 = 19P(\overline{A \cap B}) = \frac{19}{36}$$

3.2 Задание 32

А - Анжи победит МЮ

В - Зенит победит Барселону

С - наши победят

D - только одна наша команда победит

Е - никто из наших не победит

F - выиграет только Зенит

$$P(A) = 0.3$$

$$P(B) = 0.4$$

$$P(C) = P(A \cap B) = 0.3 \cdot 0.4 = 0.12$$

$$P(D) = P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.3 \cdot 0.6 + 0.7 \cdot 0.4 = 0.4 \cdot 0.4 \cdot$$

0.76

$$P(E) = P(\overline{A} \cap \overline{B}) = P(\overline{A}) \cdot P(\overline{B}) = 0.6 \cdot 0.7 = 0.42$$

$$P(F) = P(\overline{A} \cap B) = 0.28$$

3.3 Задание 33

$$n=36$$

В - в сумме больше 9

$$P(A \cup B) - ?$$

$$n_A = 6$$

$$n_B = 6$$

$$A \cap B : 6 - 6, 5 - 5.$$

$$n_{A\cap B}=2$$

$$P(A) = \frac{6}{36}$$

$$P(B) = \frac{6}{36}$$

$$P(A \cap B) = \frac{2}{36}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{6}{36} + \frac{6}{36} - \frac{2}{36} = \frac{10}{36} = \frac{5}{18}$$

3.4 Задание 34

$$\begin{split} P(A \cap B) &= P(A) \cdot P(B) \\ P(A) &= 0.4 \\ P(B) &= 0.9 \\ P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup P(\overline{B}) \cdot P(\overline{A})) &= P(A \cap \overline{B}) + P(\overline{A} \cap B) + P(\overline{B}) \cdot P(\overline{A}) = \\ P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(\overline{A}) \cdot P(\overline{B}) &= 0.4 \cdot 0.1 + 0.6 \cdot 0.9 + 0.1 \cdot 0.6 = 0.64 \end{split}$$

3.5 Задание 35

А - книга есть в первой библиотеке В - книга есть во второй библиотеке

$$P(A) = 0.7$$

$$P(B) = 0.5$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(A) \cdot P(B) = 0.7 \cdot 0.5 + 0.3 \cdot 0.5 + 0.7 \cdot 0.5 = 0.5 \cdot (0.7 + 0.3 + 0.7) = 0.5 \cdot 1.7 = 0.85$$

3.6 Задание 36

$$P(A) = 0.4$$

$$P(B) = 0.7$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.4 \cdot 0.3 + 0.6 \cdot 0.7 = 0.54$$

3.7 Задание 37

$$\begin{split} P(A) &= 0.6 \\ P(B) &= 0.4 \\ P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(A) \cdot P(B) = \\ 0.4 \cdot 0.4 + 0.6 \cdot 0.6 + 0.6 \cdot 0.4 = 0.76 \end{split}$$

3.8 Задание 38

А - первый студент придет в срок

В - второй студент придет в срок

$$P(A) = 0.8$$

$$P(B) = 0.7$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.2 \cdot 0.7 + 0.8 \cdot 0.3 = 0.38$$

3.9 Задание 39

А - увидеть на телевидении

В - прочитать в прессе

$$P(A) = 0.7$$

$$P(B) = 0.4$$

$$P(A \cap \overline{B}) = 0.7 \cdot 0.6 = 0.42$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.7 + 0.4 - 0.7 \cdot 0.4 = 0.82$$

3.10 Задание 40

А - отлично по первому предмету

В - отлично по второму предмету

$$P(A) = 0.3$$

$$P(B) = 0.5$$

$$P(A \cap B) = P(A) \cdot P(B) = 0.3 \cdot 0.5 = 0.15$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) = 0.3 \cdot 0.5 + 0.7 \cdot 0.5 = 0.5$$

3.11 Задание 41

А - первый студент опоздает

В - второй студент опоздает

$$P(A) = 0.2$$

$$P(B) = 0.6$$

$$P((A \cap \overline{B}) \cup (\overline{A} \cap B) \cup (A \cap B)) = P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B) + P(A) \cdot P(B) = 0.8 \cdot 0.6 + 0.2 \cdot 0.4 + 0.2 \cdot 0.6 = 0.68$$

§Условная вероятность

4.1 Задание 42

А - сумма очков бюольше 8

В - выпало четное число

$$n = 36$$

$$n_{A\cap B}=3$$

$$n_B = 9$$

$$P(B) = \frac{9}{36}$$

$$P(A \cap B) = \frac{3}{36}$$

$$P(A \cap B) = \frac{3}{36}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3}{36} : \frac{9}{36} = \frac{1}{3}$$

4.2 Задание 43

А - на 1 любой выпало 6

В - на всех разные цифры

$$n = 216$$

$$n_B = 6 \cdot 5 \cdot 4$$

$$P(B) = \frac{120}{216}$$

$$n_{A \cap B} = 5 \cdot 4 \cdot 3 = 60$$

$$P(A \cap B) = \frac{60}{216}$$

$$P(A \cap B) = \frac{60}{216}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{60}{216} : \frac{120}{216} = \frac{1}{2}$$

4.3 Задание 44

А - четное на 1

В - в сумме 8

$$n = 36$$

$$n_B = 5$$

$$P(B) = \frac{5}{36}$$

$$n_A = 6 \cdot 3 = 18$$

$$P(A) = \frac{18}{36}$$

$$n_{A \cap B} = 3$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{3}{36} \neq \frac{18}{36} \cdot \frac{5}{36}$$

$$\frac{\frac{3}{36} \neq \frac{18}{36} \cdot \frac{5}{36}}{p(A|B)} = \frac{\frac{3}{36}}{\frac{3}{6}} : \frac{36}{5} = \frac{6}{10}$$

4.4 Задание 45

А - четное на 1

$$n = 8$$

$$n_B = 4$$

$$P(B) = \frac{4}{8}$$

$$n_A = 4$$

$$P(A) = \frac{4}{8}$$

$$n_{A\cap B}=3$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{3}{8} \neq \frac{4}{8} \cdot \frac{8}{4}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3}{36} : \frac{36}{5} = \frac{6}{10}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3}{36} : \frac{36}{5} = \frac{6}{10}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{4}{8} + \frac{4}{8} - \frac{3}{8} = 0.685$$

4.5 Задание 46

$$n = 36$$

$$n_B = 18$$

$$P(B) = \frac{18}{36}$$

$$n_A = 6$$

$$P(A) = \frac{6}{36}$$

$$n_{A \cap B} = 4$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{4}{36} \neq \frac{18}{36} \cdot \frac{6}{36}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{4}{36} : \frac{36}{18} = \frac{2}{9}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{6}{36} + \frac{18}{36} - \frac{4}{36} = \frac{20}{36}$$

4.6 Задание 47

$$\begin{split} n &= 216 \\ n_B &= 10 \\ P(B) &= \frac{10}{216} \\ n_A &= 180 \\ P(A) &= \frac{180}{216} \\ n_{A\cap B} &= 8 \\ P(A\cap B) &= P(A)\cdot P(B) \\ \frac{8}{216} &\neq \frac{10}{216} \cdot \frac{180}{216} \\ p(A|B) &= \frac{P(A\cap B)}{P(B)} = \frac{8}{216} : \frac{216}{10} = \frac{8}{10} \end{split}$$

4.7Задание 48

$$n=216$$

$$n_B = 108$$

$$P(B) = \frac{108}{216}$$

$$n_A = 10$$

$$P(A) = \frac{10}{216}$$

$$n_{A\cap B}=7$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{7}{216} : \frac{216}{108} = \frac{7}{108}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{7}{216} : \frac{216}{108} = \frac{7}{108}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{10}{216} + \frac{108}{216} - \frac{7}{216} = \frac{111}{216} = \frac{37}{72}$$

4.8 Задание 49

$$\begin{split} n &= 216 \\ n_B &= 4 \\ P(B) &= \frac{4}{216} \\ n_A &= 6 \\ P(A) &= \frac{6}{216} \\ n_{A\cap B} &= 1 \\ P(A\cap B) &= P(A)\cdot P(B) \\ \frac{1}{216} &\neq \frac{6}{216} \cdot \frac{4}{216} \\ p(A|B) &= \frac{P(A\cap B)}{P(B)} = \frac{1}{216} : \frac{216}{4} = \frac{1}{4} = 0.25 \end{split}$$

4.9 Задание 50

$$n = 10$$

$$n_B = 6$$

$$P(B) = \frac{6}{10}$$

$$n_A = 9$$

$$P(A) = \frac{9}{10}$$

$$n_{A \cap B} = 6$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\frac{6}{10} \neq \frac{9}{10} \cdot \frac{6}{10}$$

$$p(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{6}{10} : \frac{10}{9} = \frac{2}{3}$$

4.10 Задание 51

А - учебник у одного из друзей.

$$P(A) = \frac{8}{10}$$

$$P(\overline{A}) = \frac{2}{10}$$

А₁-учебник у Вани

 A_2 -учебник у Пети

$$P(A_1) = P(A_2) = \frac{4}{10}$$

В - у Вани учебника нет - учебник или у Пети или потерян

$$P(B) = P(A_2) + P(\overline{A}) = 0.4 - 0.2 = 0.6$$

P(учебник у Пети, если у васи его нет) = $\frac{P(A_2)}{P(B)} = \frac{0.4}{0.6} = \frac{2}{3}$

5 §Формулы полной вероятности и Байеса

5.1 Задание 52

- n = 30 $n_1 = 15$ $n_2 = 6$ $n_3 = 9$
- H_1 -первый сорт
- H_2 —второй сорт
- H_3 -третий сорт
- A-червивое
- $P(A|H_1) = 0.2$
- $P(A|H_2) = 0.5$
- $P(A|H_3) = 0.1$
- $P(H_1) = \frac{15}{30}$
- $P(H_2) = \frac{6}{30}$
- $P(H_3) = \frac{9}{30}$
- $P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + P(A|H_3) \cdot P(H_3)$
- $P(A) = 0.2 \cdot \frac{15}{30} + 0.5 \cdot \frac{6}{30} + 0.1 \cdot \frac{9}{30} = 0.23$

5.2 Задание 53

$$n = 150$$

$$n_1 = 75$$

$$n_2 = 60$$

$$n_3 = 15$$

 H_1 -первая партия

 H_2 -вторая партия

 H_3 -третья партия

А-голосует "ЗА"

$$P(A|H_1) = 0.3$$

$$P(A|H_2) = 0.4$$

$$P(A|H_3) = 0.7$$

$$P(H_1) = \frac{75}{150}$$

$$P(H_2) = \frac{60}{150}$$

$$P(H_3) = \frac{15}{150}$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + P(A|H_3) \cdot P(H_3)$$

$$P(A) = 0.3 \cdot \frac{75}{150} + 0.4 \cdot \frac{60}{150} + 0.7 \cdot \frac{15}{150} = 0.38$$

5.3 Задание 54

ЭТА ЗАДАЧА РЕШЕНА НЕВЕРНО ЭТА ЗАДАЧА РЕШЕНА НЕВЕРНО ЭТА ЗАДАЧА РЕШЕНА НЕВЕРНО

$$n = 10$$

$$n_1 = 7$$

$$n_2 = 3$$

$$H_1$$
-в клетку

$$H_2$$
-в линейку

$$A$$
—забыл

$$P(A|H_1) = \frac{1}{7}$$

$$P(A|H_2) = \frac{1}{3}$$

$$P(H_1) = \frac{7}{10}$$

$$P(H_2) = \frac{3}{10}$$

$$P(H_{1}|A) = \frac{10}{10}$$

$$P(H_{1}|A) = \frac{P(A|H_{1}) \cdot P(H_{1})}{P(A|H_{1}) \cdot P(H_{1}) + P(A|H_{2}) \cdot P(H_{2})}$$

$$P(H_{1}|A) = \frac{\frac{1}{7} \cdot \frac{7}{10}}{\frac{1}{7} \cdot \frac{7}{10} + \frac{1}{3} \cdot \frac{3}{10}} =$$

$$P(H_1|A) = \frac{\frac{1}{7} \cdot \frac{7}{10}}{\frac{1}{7} \cdot \frac{7}{10} + \frac{1}{3} \cdot \frac{3}{10}} =$$

5.4 Задание 55

 H_1 -благоприятная ситуация

 H_2 -неблагоприятная ситуация

A-продать

$$P(A|H_1) = 0.7$$

$$P(A|H_2) = 0.2$$

$$P(H_1) = 0.15$$

$$P(H_2) = 0.85$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.7 \cdot 0.15 + 0.2 \cdot 0.85 = 0.275$$

$$P(H_2|A) = \frac{P(A|H_2) \cdot P(H_2)}{P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)}$$

$$P(H_2|A) = \frac{0.2 \cdot 0.85}{0.275} = \frac{34}{55}$$

$$P(H_2|A) = \frac{0.2 \cdot 0.85}{0.275} = \frac{34}{55}$$

5.5 Задание 56

 H_1 -опытный

 H_2 -неопытный

A—ошибка

$$P(A|H_1) = 0.02$$

$$P(A|H_2) = 0.1$$

$$P(H_1) = 0.9$$

$$P(H_2) = 0.1$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.02 \cdot 0.9 + 0.1 \cdot 0.1 = 0.028$$

$$P(\overline{A}) = 1 - P(\overline{A})$$

$$P(\overline{A}) = 1 - 0.028 = 0.972$$

$$P(H_2|\overline{A}) = \frac{P(\overline{A}|H_2) \cdot P(H_2)}{P(\overline{A})}$$

$$P(H_2|\overline{A}) = \frac{P(\overline{A}|H_2) \cdot P(H_2)}{P(\overline{A})}$$

$$P(H_2|\overline{A}) = \frac{9}{10} \cdot \frac{1}{10} \cdot \frac{1000}{972} = \frac{5}{54}$$

5.6 Задание 57

 H_1 -первый округ

 H_2 -второй округ

 H_3 -третий округ

A—будет избран

$$P(A|H_1) = 0.4$$

$$P(A|H_2) = 0.2$$

$$P(A|H_3) = 0.8$$

$$P(H_1) = 0.3$$

$$P(H_2) = 0.2$$

$$P(H_2) = 0.5$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + P(A|H_3) \cdot P(H_3)$$

$$P(A) = 0.4 \cdot 0.3 + 0.2 \cdot 0.2 + 0.8 \cdot 0.5 = 0.56$$

5.7 Задание 58

 H_1 -отлично по математике на первом курсе

 H_2 —неотлично по математике на первом курсе

A-отлично по математике на втором курсе

$$P(A|H_1) = 0.8$$

$$P(A|H_2) = 0.15$$

$$P(H_1) = 0.1$$

$$P(H_2) = 0.9$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.8 \cdot 0.1 + 0.15 \cdot 0.9 = 0.215$$

5.8 Задание 59

 H_1 -отлично по математике на первом курсе

 H_2 —неотлично по математике на первом курсе

A—отлично по математике на втором курсе

$$P(A|H_1) = 0.7$$

$$P(A|H_2) = 0.25$$

$$P(H_1) = 0.2$$

$$P(H_2) = 0.8$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.7 \cdot 0.2 + 0.25 \cdot 0.8 = 0.34$$

Значит, 34 процента

5.9 Задание 60

 H_1 -горожанин

 H_2 -сельчанин

A—голос за Единую Россию

$$P(A|H_1) = 0.4$$

$$P(A|H_2) = 0.6$$

$$P(H_1) = 0.75$$

$$P(H_2) = 0.25$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.4 \cdot 0.75 + 0.6 \cdot 0.25 = 0.45$$

$$P(\overline{A}) = 1 - P(A) = 0.55$$

5.10 Задание 61

 H_1 -юноши

 H_2 -девушки

A—отлично на экзамене по тер. веру

$$P(A|H_1) = 0.2$$

$$P(A|H_2) = 0.3$$

$$P(H_1) = 0.25$$

$$P(H_2) = 0.75$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2)$$

$$P(A) = 0.2 \cdot 0.25 + 0.3 \cdot 0.75 = 0.275$$

5.11 Задание 62

P(брак проверен и признан годным(один поставщик)) = 0.05

 $P(\text{годное проверено и признано браком}(другой поставщик})) = 0.01$

P(произвести брак) = 0.03

P(произвести годное) = 0.97

P(брак проверен и признан браком) = 1 - 0.05 = 0.95

P(годный проконтроллирован и признан браком(считай изделия от первого поставщика оказалось бюраком)) = $0.97 \cdot 0.01 = 0.0097$

P(брак проконтроллирован и признан браком(считай изделия от второго поставщика оказалось бюраком)) = $0.03 \cdot 0.95 = 0.0285$

 $P(\Pi$ роконтроллирован брак в любом случае(полная вероятность)) = 0.0097 + 0.0285 = 0.0382

P(контроль забраковал, а но на самом деле годное(считаем брак, какой вероятностью это второй поставщик)) = $\frac{0.0097}{0.0382} = \frac{97}{382}$

Задание 63 5.12

 H_1-1 производитель

 H_2 —2 производитель

 H_3 —3 производитель

$$P(H_1) = 0.2$$

$$P(H_2) = 0.45$$

$$P(H_3) = 0.35$$

А-брак

$$P(A|H_1) = 0.08$$

$$P(A|H_2) = 0.02$$

$$P(A|H_3) = 0.05$$

$$P(A) = P(A|H_1) \cdot P(H_1) + P(A|H_2) \cdot P(H_2) + P(A|H_3) \cdot P(H_3)$$

$$P(A) = 0.08 \cdot 0.2 + 0.02 \cdot 0.45 + 0.05 \cdot 0.35 = 0.0425$$

$$P(H_2|A) = \frac{P(A|H_2) \cdot P(H_2)}{P(A)}$$

$$P(H_2|A) = \frac{P(A|H_2) \cdot P(H_2)}{P(A)}$$

$$P(H_2|A) = \frac{0.02 \cdot 0.45}{0.0425} = \frac{90}{485} = \frac{18}{85}$$

5.13Задание 64

 H_1 -отличники

 H_2 -хорошисты

 H_3 -середнячки

$$P(H_1) = 15/60$$

$$P(H_2) = 27/60$$

$$P(H_3) = 18/60$$

А-оценть положительно качество преподавания

$$P(A|H_1) = 0.95$$

$$P(A|H_2) = 0.9$$

$$P(A|H_3) = 0.5$$

$$P(\overline{A}|H_1) = 0.05$$

$$P(\overline{A}|H_2) = 0.1$$

$$P(\overline{A}|H_3) = 0.5$$

$$P(\overline{A}) = P(\overline{A}|H_1) \cdot P(H_1) + P(\overline{A}|H_2) \cdot P(H_2) + P(\overline{A}|H_3) \cdot P(H_3)$$

$$P(\overline{A}) = 0.05 \cdot \frac{15}{60} + 0.1 \cdot \frac{27}{60} + 0.5 \cdot \frac{18}{60} = \frac{1245}{6000}$$

$$P(H_3|\overline{A}) = \frac{P(\overline{A}|H_3) \cdot P(H_3)}{P(\overline{A})}$$

$$P(H_3|\overline{A}) = \frac{0.5 \cdot \frac{18}{60}}{\frac{1245}{6000}} = 60/83$$

$$P(H_3|\overline{A}) = \frac{P(\overline{A}|H_3) \cdot P(H_3)}{P(\overline{A})}$$

$$P(H_3|\overline{A}) = \frac{0.5 \cdot \frac{18}{60}}{\frac{1245}{6000}} = 60/83$$

5.14 Задание 65

Боже это слишком сложно

5.15Задание 66

$$H_1-1$$
 поставщик

$$H_2$$
—2 поставщик

$$H_3$$
—3 поставщик

$$P(H_1) = 0.6$$

$$P(H_2) = 0.3$$

$$P(H_3) = 0.1$$

$$A$$
-Брак

$$P(A|H_1) = 0.05$$

$$P(A|H_2) = 0.1$$

$$P(A|H_3) = 0.01$$

$$P(\overline{A}|H_1) = 0.95$$

$$P(\overline{A}|H_2) = 0.9$$

$$P(\overline{A}|H_3) = 0.99$$

$$P(\overline{A}) = P(\overline{A}|H_1) \cdot P(H_1) + P(\overline{A}|H_2) \cdot P(H_2) + P(\overline{A}|H_3) \cdot P(H_3)$$

$$P(\overline{A}) = 0.95 \cdot 0.6 + 0.9 \cdot 0.3 + 0.99 \cdot 0.1 = \frac{939}{1000}$$

$$P(H_2|\overline{A}) = \frac{P(\overline{A}|H_2) \cdot P(H_2)}{P(\overline{A})}$$

$$P(H_2|\overline{A}) = \frac{P(\overline{A}|H_2) \cdot P(H_2)}{P(\overline{A})}$$

$$P(H_2|\overline{A}) = \frac{0.9 \cdot 0.3}{\frac{939}{1000}} = 90/313$$

Остальные задачи в этой теме показались мне ахинеей, может потом я пойму, как их решать. Но пока что...следующая тема.

6 §Испытание Бернулли. Биномиальное распределение

6.1 Задание 69

p = 0.3

q=0.7

n=5

k=3

$$P(S_k = 3) = C_5^3 \cdot 0.3^3 \cdot 0.7^2 = 0.2323$$

6.2Задание 70

p = 0.5

q = 0.5

n=4

k=0,1

$$C_n^0 = 1$$

 $P(S_k < 2) = C_4^0 \cdot p^0 \cdot q^4 + C_4^1 \cdot p^1 \cdot q^3 = \frac{5}{16}$

6.3 Задание 71

p = 0.95

q = 0.05

n=4

k=1-4

Обратить внимание на НЕ в условии

Это меняет р и q местами

p = 0.05

q = 0.95

$$P(S_k > 0) = 1 - P(S_k = 0) = 1 - (C_4^0 \cdot 0.05^0 \cdot 0.95^4) = 1 - 0.95^4$$

6.4 Задание 72

$$p=1/4$$

$$q = 3/4$$

$$n=5$$

$$k=2-5$$

$$P(S_k > 1) = 1 - P(S_k < 2) = 1 - (C_5^1 \cdot (1/4)^1 \cdot (3/4)^4 + C_5^0 \cdot (1/4)^0 \cdot (3/4)^5) = \frac{47}{128}$$

6.5 Задание 73

p=1/6

q = 5/6

n=4

k=0-2

$$P(S_k < 3) = C_4^0 \cdot p^0 \cdot q^4 + C_4^1 \cdot p^1 \cdot q^3 + C_4^2 \cdot p^2 \cdot q^2 = \frac{425}{432}$$

6.6 Задание 74

$$p = 0.8$$

$$q = 0.2$$

$$n=4$$

$$k=2-4$$

$$P(S_k > 1) = 1 - P(S_k < 2) = 1 - (C_4^0 \cdot p^0 \cdot q^4 + C_4^1 \cdot p^1 \cdot q^3) = \frac{608}{625}$$

6.7 Задание 75

p = 0.1

q = 0.9

n=5

k=2-5

$$P(S_k > 1) = 1 - P(S_k < 2) = 1 - (C_5^1 \cdot p^1 \cdot q^4 + q^5) = 0.08146$$

6.8 Задание 76

ответ на эту задачу в 72 задаче - то, что вычитается из 1. $P(S_k<2)=C_5^1\cdot(1/4)^1\cdot(3/4)^4+C_5^0\cdot(1/4)^0\cdot(3/4)^5=\tfrac{81}{128}$

6.9 Задание 77

$$p=1/6$$

$$q = 5/6$$

$$n=4$$

$$k=2-4$$

$$P(S_k > 1) = 1 - P(S_k < 2) = 1 - (C_4^0 \cdot p^0 \cdot q^4 + C_4^1 \cdot p^1 \cdot q^3) = \frac{19}{144}$$

6.10 Задание 78

$$p = 1/4$$

$$q = 3/4$$

$$n=5$$

1)

$$k=3-5$$

$$P(S_k > 2) = C_5^3 \cdot p^3 \cdot q^2 + C_4^5 \cdot p^4 \cdot q^1 + C_5^5 \cdot p^5 \cdot q^0 = \frac{53}{512}$$

2)

$$k=5$$

$$P(S_k = 5) = C_5^5 \cdot p^5 \cdot q^0 = \frac{1}{1024}$$

6.11 Задание 79

Всегда путлася, хотя бы 1 неуспешный случай - это все кроме только успехов.

$$1 - 0.8^5 = 1 - \frac{4}{5}^5$$

6.12 Задание 80

хотя бы 1 выиграть - все случаи, кроме только проигрышей $1-0.99^8$

6.13 Задание 81

- p = 0.8
- q = 0.2
- n=5
- a)
- k=5
- $P(S_k = 5) = C_5^5 \cdot p^5 \cdot q^0 = 0.8^5 = 0.33$
- б)
- k=2
- $P(S_k = 2) = C_5^2 \cdot p^2 \cdot q^3 = \frac{32}{625} = 0.05$

6.14 Задание 82

$$p = 0.95$$

$$q = 0.05$$

$$n=4$$

a)

1-(вероятность случая, когда все удов.)

$$P(S_k = 3) = C_4^0 \cdot p^0 \cdot q^4 + C_4^1 \cdot p^1 \cdot q^3 = \frac{5}{16}$$

б)

$$C_4^1 \cdot p^1 \cdot q^3 = 0.000475$$

7 §Дискретная случаная величина и ее числовые характеристики: математические ожидание и дисперсия

7.1 Задание 83

Тут главное помнить, что в сумме все значения р из таблицы должны быть равны 1.

Отсюда

$$\begin{split} p(2) &= 1 - (p(-1) + p(0) + p(4)) = 1 - (0.1 + 0.1 + 0.3) = 0.5 \\ E(X) &= 0.1 * (-1) + 0.1 * 0 + 0.5 * 2 + 0.3 * 4 = 2.1 \\ E(X^2 + 1) &= 0.1 * 2 + 0.1 * 1 + 0.5 * 5 + 17 * 0.3 = 7.9 \end{split}$$

7.2 Задание 84

Тут главное помнить, что в сумме все значения р из таблицы должны быть равны 1.

Отсюда
$$p(0)=1-(p(-1)+p(2)+p(3))=0.4$$

$$E(X)=0.2*(-1)+0.1*2+0.3*3=0.9$$

$$E(3X-5)=0.2*(-8)+0.4*(-5)+0.1*1+4*0.3=-2.3$$

7.3 Задание 85

Номинал:	\$1	\$5	\$20	\$50	\$100
Кол-во:	10	5	3	1	1

Сумма выигрыша:	\$ -19	\$ -15	\$ 0	\$30	\$80
Кол-во:	0.5	0.25	0.15	0.05	0.05

$$E(X) = -19 * 0.5 - 15 * 0.25 + 30 * 0.05 + 80 * 0.05 = -7.75$$

$$E(X^2) = -19^2 * 0.5 - 15^2 * 0.25 + 30^2 * 0.05 + 80^2 * 0.05 = 601,75$$

$$E^2(X) = 60.0625$$

$$D(X) = E(X^2) - E^2(X)$$

Тут падла от автора, ответ умножили на 16 и оставили в виде дроби

$$D(X) = 601.75 - 60.0625 = 541.6875 = \frac{541.6875 \cdot 16}{16} = \frac{8667}{16}$$

7.4 Задание 86

X:	1	2	3	 n
P:	1/2	1/4	1/8	 $1/2^{n}$

Тут пришлось подсмотреть ответы. В условии не сказано ни одной вводной цифры, но цифры в ответе есть. Значит, до всего нужно догадывться.

Первое - число экспериментов от 1 до бесконечности(до n, это теперь понятно, но без ответов не смог понять).

Обычно все неизвестные необходимые входные параметры помечаются буквами и в ответе получается формула.

Тут вероятность выпадения решки = 1/2. Сторон всего 2, нас интересует только одна.

Не понятно, почему при увеличении $n, p = 1/2^n$, то есть вероятности на предыдущих n умножаются на текущую.

Версия первая - это независимые события поэтому их вероятности перемножаются.

Версия вторая - это эксперимент бернули, успешный всегда последний бросок, остальные неуспешные. Это как писать тест, в котором количество вопросов увеличивается на 1. Вы всегда 1 раз отвечаете правильно и n-1 раз неправильною

Поэтому 1/2 (вероятность успеха) умножается на вероятность 1/2 (вероятность неудачи) в степени n-1 (по формуле Бернули все дела). Отсюда $1/2^n$. Дальше непонятно почему $\mathrm{EX}=2$.

У меня:

$$EX = \sum_{i=1}^{n} n \cdot \frac{1}{2^n}$$

7.5 Задание 87

Номинал: Кол-во

1000 = 1

500 = 1

100 = 5

3 = 993

Выигрыш:	-3	97	497	997
P:	993/1000	5/1000	1/1000	1/1000

$$p(>200) = p(500) + p(1000) = 0.001 + 0.001 = 0.002$$

$$EX = \frac{993*(-3)}{1000} + \frac{5*97}{1000} + \frac{497}{1000} + \frac{997}{1000} = -1$$

7.6 Задание 88

-10=481

990 = 1

240 = 8

90 = 10

X:	-10	90	240	990
P/2:	481/500	10/500	8/500	1/500
P:	962/1000	$\frac{20}{1000} = 0.02$	16/1000	2/1000

$$p(>100) = p(240) + p(990) = 0.016 + 0.002 = 0.018$$

$$EX = \frac{962*(-10)}{1000} + \frac{2*90}{100} + \frac{16*240}{1000} + \frac{2*990}{1000} = -2$$

7.7 Задание 89

72 задача как подсказка

8 §Распределение Пуассона

$$P(x=k) = \frac{\lambda^k}{k!}e^{-\lambda}$$

8.1 Задание 90

$$\lambda = 2$$

$$P(X < 3) = P(0) + P(1) + P(2) = \frac{2^0}{0!}e^{-2} + \frac{2^1}{1!}e^{-2} + \frac{2^2}{2!}e^{-2} = e^{-2} + 2e^{-2} + 2e^{-2} = 5e^{-2}$$

8.2 Задание 91

$$\lambda = 1$$

$$X = 1$$

$$P(X > 1) = 1 - P(X < 2) = 1 - P(0) - P(1) = 1 - \frac{1^0}{0!}e^{-1} - \frac{1^1}{1!}e^{-1} = 1 - 2e^{-1}$$

8.3 Задание 92

В каждой задаче нужно все приводить к одной единице измерений. 24 в час, в часе 60 минут, в 60 минутах 12 кусочков, в 1 кусочке(5 минутах) 2 звонка

$$\lambda = 2$$

$$\begin{split} P(X>3)&=1-P(0)-P(1)-P(2)-P(3)=\\ \text{Из 90 задачи знаем, что }P(0)+P(1)+P(2)&=5e^{-2}\\ 1-5e^{-2}-\frac{2^3}{3!}e^{-2}&=1-\frac{19}{3}e^{-2} \end{split}$$

8.4 Задание 93

За 4 месяца будет 2 аварии.

$$\lambda = 2$$

$$P(X > 2) = 1 - P(0) - P(1) - P(2) =$$

Из 90 задачи знаем, что $P(0) + P(1) + P(2) = 5e^{-2}$

$$1 - 5e^{-2}$$

8.5 Задание 94

В минуту будет 2 звонка.

$$\lambda = 2$$

$$P(2,3) = P(2) + P(3) = 2e^{-2} + \frac{4}{3}e^{-2} = \frac{10}{3}e^{-2}$$

8.6 Задание 95

$$\lambda = 4$$

$$P(X < 3) = P(0) + P(1) + P(2) = e^{-4} + 4e^{-4} + 8e^{-4} = 13e^{-4}$$

8.7 Задание 96

$$\lambda = 4$$

$$P(X > 2) = 1 - (P(0) + P(1) + P(2)) = 1 - 13e^{-4}$$

8.8 Задание 97

в час =>12/12=>1 в 5 минут Тут подсмотрим 91 задачу: $P(0)+P(1)=2e^{-1}$ $\lambda=1$ $P(X>2)=1-(P(0)+P(1)+P(2))=1-2e^{-1}-\frac{1}{2}e^{-1}=1-\frac{5}{2}e^{-1}$

9 §Совместное распределение двух дискретных величин. Ковариация и корелляция двух случайных величин

9.1 Задание 98

X:	0	1	
P:	0.1	0.9	
Y:	-1	0	1
P:	0.2	0.3	0.5

$$X/Y = X \cdot Y$$

X/Y:	-1	0	1
0:	0.02	0.03	0.05
1:	0.18	0.27	0.45

9.2 Задание 99

$$P(X=0)=1/2$$

$$P(X=1)=1/2$$

$$P(Y=0)=5/6$$

$$X/Y = X \cdot Y$$
:

$$P(0,1)=1/12$$

$$P(1,0)=5/12$$

$$P(1,1)=1/12$$

ну и так далее

X/Y:	0	1
0:	5/12	1/12
1:	5/12	1/12

9.3 Задание 100

Х - монеты, Ү - пятерки.

X:	0	1	2
P:	1/4	2/4	1/4

Y:	0	1	2
P:	25/36	5/36	1/36

$$X/Y = X \cdot Y$$
:

$$P(0,2)=1/4 * 1/36 = 1/144$$

$$P(1,0)=2/4 * 25/36 = 50/144$$

ну и так далее

X/Y:	0	1	2
0:	25/144	5/144	4/155
1:	50/144	10/144	2/144
2:	25/144	5/144	1/144

9.4 Задание 101

Почему-то из всего не вычитается страховой взнос, хотя смысл имеет. Для 1 договора(X):

Х(тыс.руб.):	0	50	100
P:	0.94	0.05	0.01

Для 2 договора(Y):

Ү(тыс.руб.):	0	50	100
P:	0.94	0.05	0.01

X/Y:	0	50	100
0:	0.94*0.94	0.05*0.94	0.01*0.94
1:	0.94*0.05	0.05*0.05	0.01*0.05
2:	0.94*0.01	0.05*0.01	0.01*0.01

В ответах ошибка для 50/50

9.5 Задание 102

x(1)*y(1)=0.5*0.6=0.3

x*y=0 включает 3 исхода, проще невычислять их, а сделать 1-(x*y=1)(включает только x(1)*y(1))

X*Y:	0	1
P:	1-0.3	0.3

$$E(x * y) = 0 * 0.7 + 1 * 0.3 = 0.3$$

X:	0	1
P:	0.5	0.5
Y:	0	1
P:	0.4	0.6

$$E(x) = 0.5$$

$$E(y) = 0.6$$

$$E(x) * E(y) = 0.3$$

$$E(x) * E(y) = E(x * y)$$

Условие независимости выполняется, значит независимы.

9.6 Задание 103

X:	-1	1
P:	0.4	0.6

Y:	-1	0	2
P:	0.2	0.3	0.5

Вычисляем величину Х*Y:

$$P((x=-1)^*(y=-1))=P(XY=1)=0.2^*0.4=0.08$$

$$P((x=-1)*(y=0))=P(XY=0)=0.3*0.4=0.12$$

$$P((x=-1)*(y=2))=P(XY=-2)=0.4*0.5=0.2$$

$$P((x=1)^*(y=-1))=P(XY=-1)=0.6^*0.2=0.12$$

$$P((x=1)^*(y=0))=P(XY=0)=0.6*0.3=0.18$$

$$P((x=1)*(y=2))=P(XY=2)=0.6*0.5=0.3$$

$$P(XY=-2)=P((x=-1)*(y=2))$$

$$P(XY=-1)=P((x=1)*(y=-1))$$

$$P(XY=0)=P((x=-1)*(y=0))+P((x=1)*(y=0))$$

$$P(XY=1)=P((x=-1)*(y=-1))$$

$$P(XY=2)=P((x=1)*(y=2))$$

XY:	-2	-1	0	1	2
P:	0.2	0.12	0.3	0.08	0.3

$$E(XY) = -2*0.2 - 1*0.12 + 0.08 + 0.3*2 = -0.4 - 0.12 + 0.08 + 0.6 = 0.2 - 0.04 = 0.16$$

$$E(X) = 0.2$$

$$E(Y) = 0.8$$

$$E(XY)=E(X)E(Y)=>$$
 независимы

9.7 Задание 104

X:	0	2
P:	0.2	0.8

Y:	1	2	3
P:	0.5	0.1	0.4

X/Y:	1	2	3
0:	0.1	0	0.1
2:	0.4	0.1	0.3

Возможно дело вот в чем - если дано совместное распределение, то необходимо брать его как исходные данные для нахождения величин типа XY или X+Y. А если не задано, то использовать ряды распределения каждой величины в отдельности.

Для X+Y=3 есть 2 исхода: X=0/Y=3 и X=2/Y=1, то есть 0.1+0.4, отсюда и 0.5. В остальных случаях по одному исходу.

X+Y:	1	2	3	4	5
P:	0.1	0	0.5	0.1	0.3

Теперь для ХҮ:

 $X \mid Y$

0 * 1 = 0

0 * 2 = 0

0 * 3 = 0

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6

XY:	0	2	4	6
P:	0.2	0.4	0.1	0.3

$$E(XY)=0.8+0.4+1.8=3$$

$$E(X) = 1.6$$

$$E(Y) = 1.7$$

 ${\rm E}({\rm XY})$ не равно ${\rm E}({\rm X})^*{\rm E}({\rm Y})$ - величины зависимы.

9.8 Задание 105

Возможно дело вот в чем - если дано совместное распределение, то необходимо брать его как исходные данные для нахождения величин типа XY или X+Y. А если не задано, то использовать ряды распределения каждой величины в отдельности.

P(x=1,y=2)=0				
X:	-2	1		
P:	0.8	0.2		

Y:	-1	0	2
P:	0.3	0.3	0.4

$$E(X) = -1.6 + 0.2 = -1.4$$

$$E(Y) = -0.3 + 0.8 = 0.5$$

Для нахождения ряда распределения XY надо использовать X/Y, ни в коем случае не брать отдельно распределения X и Y. Хотя в задачах, когда изначально известны распределения X и Y отдельно и больше ничего, берут именно их за основу.

Найдем все возможные значения ХҮ:

- -2 * -1=2
- -2 * 0=0
- -2 * 2=-4
- 1 * -1=-1
- 1 * 0 = 0
- 1 * 2=2

Получаем два исхода для XY=2 и XY=0.

На примере XY=2 , это будет 0.1(X/Y для X=-2 и Y=-1) плюс 0(X/Y для X=1 и Y=2)

XY:	-4	-1	2	0
P:	0.4	0.2	0.1	0.3

E(XY) = -4*0.4-0.2+0.2 = -1.6

 ${\rm E}({\rm XY})$ не равно ${\rm E}({\rm X})+{\rm E}({\rm Y}),$ значит эти величины HE являются независимыми.

9.9 Задание 106

X:	0	1	2
P:	1/4	3/8	3/8

$$EX=3/8 + 6/8 = 9/8$$

X*X-3:	-3	-2	1
P:	1/4	3/8	3/8

$$E(X*X-3) = -3/4-6/8+3/8 = -9/8$$

X*X:	0	1	4
P:	1/4	3/8	3/8

$$E(X*X) = 3/8 + 12/8 = 15/8$$

 $DX = 15/8-81/64=39/64$

X*Y:	0	-4	-2	-1
P:	-7/16	5/16	1/16	3/16

$$EY = -5/4$$

$$E(XY) = -20/16 - 2/16/-3/16 = -25/16$$

$$Cov(XY) = -25/16 - (9/8*(-5/4)) = -5/32$$

9.10 Задание 107

X/Y:	-1	0	1
-0.5:	3/25	2/25	0
0:	7/25	3/25	3/25
0.5:	0	5/25	2/25

Y:	-1	0	1
P:	10/25	10/25	5/25

X:	-0.5	0	0.5
P:	5/25	13/25	7/25

$$EY = -10/25 + 5/25 = -0.2$$

Y*Y:	1	0	1
P:	10/25	10/25	5/25

$$DY=0.6-0.04=0.56$$

Y*Y*Y-4:	-5	-4	-3
P:	10/25	10/25	5/25

$$E(Y*Y*Y-4)=-21/5=-4.2$$

Y * X:

$$0 * 0 = 0$$

$$0*0.5=0$$

X*Y	-0.5	0	0.5
P:	0	20/25	5/25

$$E(X) = 0.04$$

$$E(XY)=0.5*5/25=1/10$$

$$\mathrm{DY}{=}0.56$$

$$Cov(X,Y)=1/10+0.04*0.2=0.108$$

X*X	0.25	0	0.25
P:	5/25	13/25	7/25

$$E(X*X)=5/100+7/100=12/100$$

$$DX{=}12/100\text{-}16/10000{=}0.1184$$

$$\operatorname{Cor}(X,Y) = \frac{0.108}{\sqrt{0.56} \cdot \sqrt{0.1184}} = 0.108/0.257 = 0.42023$$

9.11 Задание 108

Тут в лоб решать мутрно, решил воспользоваться некоторыми свойствами дисперсии и мат.ожидания.

Лучше их тупо знать наизусть, чтобы понять решение.

$$D(3X - 2Y) = D(3X) + D(-2Y) + 2COV(3X, -2Y) = 9D(X) + 4D(Y) + E(3X * (-2Y)) - E(3X) * E(-2Y) = 9D(X) + 4D(Y) + E(3X * (-2Y)) + 6E(X) * E(Y)$$

$$EY = -0.2$$

$$DY = 0.56$$

$$EX = 0.04$$

$$E(XY) = 1/10$$

$$DX = 0.1184$$

3X	-1.5	0	1.5
P:	5/25	13/25	7/25

-2Y:	2	0	-2
P:	10/25	10/25	5/25

$$3X^*(-2Y)$$
:

$$-1.5 * 2 = -3$$

$$0 * 2 = 0$$

$$1.5 * 2 = 3$$

$$-1.5 * 0 = 0$$

$$0 * 0 = 0$$

$$1.5 * 0 = 0$$

$$-1.5 * (-2) = 3$$

$$0 * (-2) = 0$$

$$1.5 * (-2) = -3$$

$$P(3X*(-2Y) = -3) = P(3X = -1.5) * P(-2Y = 2) + P(3X = 1.5) * P(-2Y = -2) = 5/25 * 10/25 + 7/25 * 5/25 = 17/125$$

$$P(3X*(-2Y) = 0) = P(3X = 0) * P(-2Y = 2) + P(3X = -1.5) * P(-2Y = 0) + P(3X = 0) * P(-2Y = 0) + P(3X = 1.5) * P(-2Y = 0) + P(3X = 0) * P(-2Y = -2) = 89/125$$

$$P(3X*(-2Y) = 3) = P(3X = 1.5) * P(-2Y = 2) + P(3X = -1.5) * P(-2Y = -2) = 19/125$$

3X*(-2Y)	-3	0	3
P:	17/125	89/125	19/125

$$E(3X*(-2Y)) = 6/125$$

$$D(3X - 2Y) = 9 * 0.1184 + 4 * 0.56 + 6/125 + 6 * 0.04 * (-0.2) = 1.0656 + 2.24 + 6/125 - 0.048 = 3.3056 = 33056/10000$$

За каким-то хером делим ответ на 16

33056/10000 = 2066/625

9.12 Задание 109

X/Y	-2	0	1
0:	0.1	0.1	0.2
1:	0.3	0.1	0.2

<u>Y*X:</u>

$$-2*0=0$$

$$0 * 0 = 0$$

$$1*0=0$$

$$-2 * 1 = -2$$

$$0 * 1 = 0$$

Для примера:

$$P(XY=0)=0.1+0.1+0.2+0.1=0.5$$

X*Y	-2	0	1
P:	0.3	0.5	0.2

$$E(XY) = -0.6 + 0.2 = -0.4$$

X	0	1
P:	0.4	0.6

Y	-2	0	1
P:	0.4	0.2	0.4

$$EX = 0.6$$

$$EX * X = 0.6$$

$$EY = 0.6$$

$$EY * Y = 2$$

$$E^2(X) = 0.16$$

$$E^2(Y) = 0.36$$

$$DY = 2 - 0.16 = 1.84$$

 $Cov(2X - 3Y + 5, Y - 3X + 2) =$