Metabolomics_analysis_tools Basics

Let's get started! First, import functions we will use for this demo from the package metabolomics_analysis_tools@import_functions.

```
import metabolomics_analysis_tools.data_preprocessing.data_reading as dr
import metabolomics_analysis_tools.data_preprocessing.normalization as dn
import metabolomics_analysis_tools.stats_analyses.analyses as sa
import warnings
warnings.filterwarnings('ignore')
```

1. Then we can use the data_reading module to read in the data, by default it will read in the data from the resources/test_dataset folder in the package.

We can also use the data_reading module to read in the data from a custom path, by passing the path as an argument to the read_data_file function (file_path='path/to/file.csv').

The read data file function will return a pandas dataframe.

```
df=dr.read_data_file()
df.head()
```

data read successfully

the shape of the dataframe is: (77, 65)

	Patient ID	Muscle loss	1,6-Anhydro-beta-D-glucose	1-Methylnicotinamide	2-Aminobutyrate
0	PIF_178	cachexic	40.85	65.37	18.73
1	PIF_087	cachexic	62.18	340.36	24.29
2	PIF_090	cachexic	270.43	64.72	12.18
3	$NETL_005_V1$	cachexic	154.47	52.98	172.43
4	PIF_115	cachexic	22.2	73.7	15.64

2. Next we can use the normalization module to normalize the data, here we will use the median normalization method normalized_data=dn.normalize_by_median(df). We can have a look at the first 5 rows of the normalized data normalized_data.head().

normalized_data=dn.normalize_by_median(df)
normalized_data.head()

	Patient ID	Muscle loss	1,6-Anhydro-beta-D-glucose	1-Methylnicotinamide	2-Aminobutyrate
0	PIF_178	cachexic	0.895833	1.786066	1.78551
1	PIF_087	cachexic	1.363596	9.299454	2.315539
2	PIF_090	cachexic	5.930482	1.768306	1.161106
3	$NETL_005_V1$	cachexic	3.3875	1.447541	16.43756
4	PIF_115	cachexic	0.486842	2.013661	1.490944

3. (a) We can use the analyses module to perform statistical analyses on the data. Here we will first perform a PCA analysis on the data to see if there are any patterns in the data.

The PCA_analysis function will return a pandas dataframe containing the principal components principal_components=sa.PCA_analysis(normalized_data).

principal_components=sa.PCA_analysis(normalized_data)

3. (b)Next, we can do the same for the MA plot.

The MA_plot function will return a pandas dataframe containing the log2 fold change and the -log10 p-value

MA_plot=sa.ma_plot(normalized_data)

3. (c) We can also do a volcano plot, which can show us the significantly differentially expressed metabolites in the data.

The volcano_plot function will return a pandas data frame containing the $\log 2$ fold change and the -log10 p-value volcano_plot =sa.volcano_plot(normalized_data)

volcano_plot=sa.volcano_plot(normalized_data)

