Problem 7: You want to perform 1-kNN-classification based on

- i) L_1 -norm
- ii) L_2 -norm

Prove or disprove: The L_2 -distance $d_2(\boldsymbol{x}, \boldsymbol{y}) = \left(\sum_{i=1}^d (x_i - y_i)^2\right)^{\frac{1}{2}}$ between two points $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$ is always smaller or equal than the L_1 -distance $d_1(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^d |x_i - y_i|$.

$$a_{i} := x_{i} - y_{i}$$
 $d_{2}(\vec{x}, \vec{y}) = (\vec{z} \ a_{i}) = [a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + a_{4}^{2}]^{1/2}$
 $d_{1}(\vec{x}, \vec{y}) = [a_{1} + a_{2} + a_{3}]^{1/2}$
 $d_{1}(\vec{x}, \vec{y}) = [a_{1} + a_{2} + a_{3}]^{1/2}$
 $d_{2}(\vec{x}, \vec{y}) = [a_{1} + a_{2}]^{1/2}$
 $d_{3}(\vec{x}, \vec{y}) = [a_{1} + a_{2}]^{1/2}$
 $d_{4}(\vec{x}, \vec{y}) = [a_{1} + a_{2}]^{1/2}$
 $d_{5}(\vec{x}, \vec{y}) = [a_{1} + a_{2}]^{1/2}$
 $d_{7}(\vec{x}, \vec{y}) = [a_{1} + a_{2}]^{1/2}$

to prove: $[a_1 + a_2 + ... + a_d] \leq [a_1 + a_2 + ... + a_d]$ $a_1^2 + a_2^2 + ... + a_d^2 \leq [[a_1 + a_2 + ... + a_d]]^2$

 $a_1^2 + a_2^2 + \dots + a_d^2 \leq |a_1|^2 + |a_2|^2 + \dots + |a_d|^2 + C$ (I)

$$C = \sum_{i=1}^{d} \sum_{j=1,j\neq i}^{d} |a_i| \cdot |a_j| \geq 0$$

Since C is greater or equal to zero, (I) is valid, which proves that the L2-distnace between two points is always smaller than or equal to the L1-distance.

Problem 8: Prove or disprove: Consider two arbitrary points $x, y \in \mathbb{R}^2$. If x is the nearest neighbor of y regarding the L_2 -norm then x is the nearest neighbor of y regarding the L_1 -norm.

Consider three points
$$\vec{y} = (0,0)^T$$
, $\vec{x} = (4,3)^T$ and $\vec{x}' = (0,6)$
 $d_2(\vec{x}, \vec{y}) = [(4-0)^2 + (3-6)^2]^{\frac{1}{2}} = \sqrt{16+9} = 5$
 $d_2(\vec{x}', \vec{y}) = \sqrt{6^2} = 6$

=> x is closer to y regarding the L2-distance

$$d_1(\vec{x}, \vec{y}) = |4|+|3| = 7$$

