Versuchsprotokoll zum Versuch Nr. 301

Leerlaufspannung und Innenwiderstand von Spannungsquellen

Johannes Kollek johannes.kollek@udo.edu Jean-Marco Alameddine jean-marco.alameddine@udo.edu

Durchführung: 24.11.2015

1. Abgabe

TU Dortmund – Fakultät Physik

1 Zielsetzung

Im vorliegenden Experiment wird das Verhalten von Spannungsquellen in Hinblick auf ihre Leerlaufspannung und ihren Innenwiderstand untersucht.

2 Theorie

Um elektrischen Bauteilen Energie zuzuführen, wird eine Spannungsquelle, beispielsweise ein Dynamo oder ein LC-Generator, benutzt. In der Theorie wird immer von einer idealen Spannungsquelle ausgegangen, dessen Innenwiderstand über einen zusätzlichen Widerstand R_i realisiert wird. Um nun in der Praxis Spannungsquellen zu benutzen, müssen die technischen Daten eben dieser bekannt sein. Es handelt sich um die Leerlaufspannung U_0 und den vorhin bereits erwähnten Innenwiderstand R_i .

Die Leerlaufspannung U_0 liegt an einer Spannungsquelle genau dann an, wenn ihr keine Leistung entnommen wird, also bei eingeschalteter Spannungsquelle kein Strom fließt. Sobald aber ein Strom über einen Lastwiderstand R_a fließt, wie beispielsweise in Abbildung 1, wird ein Sinken der Spannung U_k (Klemmspannung) parallel zur Spannungsquelle beobachtet.

Abbildung 1: Beispielaufbau [1]

Dies folgt aus den Kirchhoffschen Regeln, vor allem aus der Maschenregel (2). Die Knotenregel folgt direkt aus der Ladungserhaltung und besagt, dass in jedem Knotenpunkt einer Schaltung die Summe aller eingehenden und ausgehenden Ströme verschwinden muss:

$$\sum_{k=1}^{n} I_k = 0. (1)$$

Abbildung 2: Knotenregel.

Die zweite und hier tragende Regel ist die Maschenregel. Sie besagt, dass in jeder geschlossenen Masche der Schaltung die Summe der Spannungen null ergeben muss:

$$\sum_{i=1}^{n} U_i = 0. (2)$$

Demnach folgt für den Beispielaufbau 1, dass die Spannungsquelle einen Innenwiderstand R_i haben muss, der sich in der Formel

$$U_0 = IR_i + IR_a \tag{3}$$

äußert, wobei die oben genannte Klemmenspannung

$$U_k = IR_a = U_0 - IR_i \tag{4}$$

beträgt. Dass durch alle Bauteile derselbe Strom fließt, folgt aus der Knotenregel (1). Würde es den Innenwiderstand nicht geben, folgt aus dem Ohmschen-Gesetz,

$$U = RI, (5)$$

dass mit der Spannungsquelle eine unendlich große Stromstärke I und somit eine beliebig große Leistung P erreicht wird, da für sie

$$P = I^2 R_a \tag{6}$$

gilt. Im realen Fall durchläuft $P(R_a)$ ein Maximum. Es wird von Leistungsanpassung gesprochen, wenn R_a so gewählt wird, dass die Leistung P der Spannungsquelle maximal wird.

3 Durchführung

Zunächst wird im Versuchsaufbau eine Monozelle betrachtet, dessen Leerlaufspannung U_0 gemessen wird. Dazu wird die Monozelle direkt an ein Voltmeter mit möglichst hohem Eigenwiderstand $R_{\rm Eigen}$ angeschlossen und die Spannung abgelesen. Der Eigenwiderstand wird direkt am Voltmeter abgelesen.

Als nächstes wird ein einstellbarer Widerstand R_a , wie in Abbildung 3 beschrieben, in die Schaltung eingebaut. Dabei wird jeweils der Strom I durch ein in Reihe geschaltetes

Strommessgerät sowie die Klemmspannung U_k durch ein parallel geschaltetes Spannungsmessgerät betrachtet. Der Widerstand R_a wird variiert und mehrere Messungen für verschiedene Widerstände durchgeführt.

Abbildung 3: Messung von U_k in Abhängigkeit von R_a .

Im folgenden Versuchsteil wird der vorherige Aufbau durch eine Gegenspannung ergänzt, die, wie in Abbildung 4 beschrieben, hinter den Widerstand in Reihe geschaltet wird. Die Gegenspannung $U_{\rm Gegen}$ wird so gewählt, dass sie in etwa 2 V größer ist als die Leerlaufspannung der Monozelle. Der Messprozess von I und U_k findet analog zum ersten Aufbau statt.

Abbildung 4: Messung von U_k in Abhängigkeit von R_a mit Gegenspannung.

Zum Schluss wird die Gegenspannung wieder entfernt und die Monozelle als Spannungsquelle, wie in Abbildung 5 beschrieben, durch einen RC-Generator ersetzt. Dabei wird einmal eine Messreihe analog zu den bisherigen Messungen mit einer Rechteckspannung sowie einmal mit einer Sinusspannung durchgeführt. Bei beiden Messungen wird der Widerstand erneut variiert und verschiedene Messungen durchgeführt.

Abbildung 5: Messung von U_k in Abhängigkeit von R_a mit Wechselstromgenerator.

4 Auswertung

Der Eigenwiderstand des verwendeten Voltmeters beträgt $R_v = 10 \,\mathrm{M}\Omega$, dessen systematischer Fehler liegt bei $\pm 1.5\%$, der des Amperemeters beträgt $\pm 3\%$.

4.1 Monozelle und Gegenspannung

Der wie in der Durchführung beschriebene gemessene Wert für die Leerlaufspannung der Monozelle beträgt $U_{0,\mathrm{mono}}=1.55\,\mathrm{V}$. Bei der folgenden Messreihe wird der Widerstand R_a jeweils in einem Bereich von $0\,\Omega$ bis $50\,\Omega$ variiert. Die Messwerte sind in Tabelle 1a für die Monozelle und in Tabelle 1b für die Schaltung mit zusätzlicher Gegenspannung dargestellt.

(a) Messdaten Monozelle.

(b) Messdaten Gegenspannung.

$R_a - Wert$	$I[\mathrm{mA}]$	$U_k[V]$	•	$R_a - Wert$	$I[\mathrm{mA}]$	$U_k[V]$
0	100.000	0.016		0	220	0.34
10	86.000	0.056		10	160	0.29
20	59.000	0.087		20	125	0.25
30	50.000	0.095		30	76	0.23
40	42.000	0.110		40	72	0.22
50	36.000	0.115		50	59	0.21
60	32.000	0.118		60	52	0.21
70	29.000	0.120		70	47	0.20
80	26.000	0.125		80	42	0.19
90	23.000	0.128		90	39	0.19
100	21.000	0.130		100	36	0.19

Tabelle 1: Messdaten für die Monozelle und die Gegenspannung.

Somit ergibt sich der Monozellenplot in Abbildung 6,

Abbildung 6: Monozellenplot.

sowie der Plot mit der angesetzten Gegenspannung in Abbildung 7

Abbildung 7: Gegenspannungsplot.

Beide Ausgleichsgeraden werden mit SciPy auf eine lineare Funktion inklusive Fehlerbalken

der Form

$$f(x) = b + mx \tag{7}$$

gefittet, wobei für die Monozelle

$$U_k(I) = U_0 - R_i I \tag{8}$$

und für die gegenläufige Schaltung

$$U_k(I) = U_0 + R_i I \tag{9}$$

gilt. Zur Berechnung der jeweiligen Leerspannung und des Innenwiderstandes wird die Methode der linearen Regression,

$$m = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$
(10)

$$b = \frac{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2},$$
(11)

bei n Messwerten, gewählt.

Die Standardabweichungen berechnen sich zu

$$\sigma_m = \sqrt{\sigma_y^2 \frac{n}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x)^2}}$$
 (12)

$$\sigma_b = \sqrt{\sigma_y^2 \frac{\sum_{i=1}^n x_i^2}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x)^2}}$$
(13)

für die Steigung m, welche für den Innenwiderstand R_i steht, und für den y-Achsenabschnitt b, der die Leerlaufspannung U_0 darstellt.[2] Daraus folgen die jeweiligen Werte

$$\begin{split} U_{0,\mathrm{mono}} &= (1.61 \pm 0.04) \, \mathrm{V} & R_{i,\mathrm{mono}} &= (13.3 \pm 0.7) \, \Omega, \\ U_{0,\mathrm{gegen}} &= (1.64 \pm 0.03) \, \mathrm{V} & R_{i,\mathrm{gegen}} &= (7.8 \pm 0.3) \, \Omega. \end{split}$$

Es ist zu erwähnen, dass bei der anfänglichen Messung der Leerlaufspannung der Monozelle durch den vorhandenen Innenwiderstand des Voltmeters ergibt. Aus Gleichung 4 folgt, wenn der Eigenwiderstand des Voltmeters R_v für R_a eingesetzt wird sowie die aus der Maschenregel folgende Relation

$$I = \frac{U_k}{R_v} \tag{14}$$

genutzt wird, direkt die Formel

$$U_0 = U_k + \frac{R_i}{R_v} U_k \tag{15}$$

für die wahre Leerlaufspannung. Mit den gegebenen Werten für R_i und R_v beträgt die Abweichung von U_0 zu U_k

$$\Delta U_0 = (2.07 \pm 0.11) \,\mu\text{V}.$$

Würde das Amperemeter in Abbildung 3 zwischen der Spannungsquelle und dem Voltmeter liegen, so würde der Innenwiderstand des Amperemeters ebenfalls einen zusätzlichen systematischen Fehler ergeben.

4.2 Rechteckspannung und Sinusspannung

Bei der Messung unter einer Rechteckspannung wird R_a zwischen $20\,\Omega$ bis $250\,\Omega$ variiert, bei der Messung unter der Sinusspannung zwischen $100\,\Omega$ bis $5000\,\Omega$.

Die direkte Messung der Rechteckspannung am Generator ergibt $U_{0,\mathrm{rechteck}} = 0.56\,\mathrm{V}$, die direkte Messung der Sinusspannung ergibt $U_{0,\mathrm{sinus}} = 2\,\mathrm{V}$. Es ergeben sich die in Tabelle 2a und Tabelle 2b angegebenen Messwerte.

(a	ı)	Messdaten	Rechteckspannung.
----	----	-----------	-------------------

(b) Messdaten Sinusspannung.

R_a – Wert	$I[\mathrm{mA}]$	$U_k[V]$	R_a – Wert	$I[\mathrm{mA}]$	$U_k[$
0	6.80	0.02	0	2.10	0.0
10	6.00	0.02	10	1.85	0.0
20	4.70	0.03	20	1.25	0.1
30	3.70	0.04	30	0.92	0.1
40	3.10	0.04	40	0.72	0.1
50	2.75	0.04	50	0.62	0.1
60	2.20	0.04	60	0.53	0.1
70	2.10	0.04	70	0.45	0.1
80	1.90	0.05	80	0.38	0.1
90	1.70	0.05	90	0.34	0.1
100	1.60	0.05	100	0.31	0.1

Tabelle 2: Messdaten für die Rechteckspannung und Sinusspannung.

Hieraus ergibt sich für die Messung der Rechteckspannung der in Abbildung 8 angegebene Plot, für die Messung der Sinusspannung der in Abbildung 9 angegebene Plot.

Abbildung 8: Rechteckspannungsplot.

 ${\bf Abbildung~9:~Sinusspannung splot.}$

Analog zur Rechnung bei der Monozelle sowie bei der Gegenspannung werden mit SciPy Ausgleichsgeraden erstellt. Dabei werden die Messwerte an die Funktion 7 gefittet, so dass aus den errechneten Parametern nach 8 der Innenwiderstand R_i und die Leerspannung U_0 abgelesen werden können. Der y-Achsenabschnitt, die Steigung sowie deren Fehler

berechnen sich nach (10), (11), (12) und (13), so dass sich die Werte

$$\begin{split} U_{0,\text{rechteck}} &= (0.557 \pm 0.002)\,\text{V}, & R_{i,\text{rechteck}} &= (55.0 \pm 0.6)\,\Omega, \\ U_{0,\text{sinus}} &= (2.002 \pm 0.007)\,\text{V}, & R_{i,\text{sinus}} &= (686 \pm 7)\,\Omega \end{split}$$

ergebe

4.3 Leistung im Belastungswiderstand

Im Folgenden werden die Messergebnisse der Monozellenmessung aus Tabelle 1a betrachtet. Aus der gemessenen Klemmspannung U_k sowie dem Strom I lässt sich die Leistung zu

$$P = U_k I \tag{16}$$

berechnen. Diese Leistung wird gegen den Belastungswiderstand R_a abgetragen, welcher sich aus

$$R_a = \frac{U_k}{I} \tag{17}$$

ergibt. Hieraus folgen die in Tabelle 3 angegebenen Werte.

Tabelle 3: Leistung in Abhängigkeit des Belastungswiderstandes.

$R_a[\Omega]$	$\Delta R_a[\Omega]$	P[W]	$\Delta P[W]$
1.60	0.05	0.0160	0.0005
6.5	0.2	0.048	0.002
14.7	0.5	0.051	0.002
19.0	0.6	0.048	0.002
26.2	0.9	0.046	0.002
32	1	0.041	0.001
37	1	0.038	0.001
41	1	0.035	0.001
48	2	0.033	0.001
55	2	0.029	0.001
62	2	0.0273	0.0009

Für die Fehlerrechnung der einzelnen Fehler wird bei der vorliegenden Rechnung und bei allen folgenden Rechnungen das Gaußsche Fehlerfortpflanzungsgesetz

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \Delta x_2\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n} \Delta x_n\right)^2}$$
 (18)

für eine Funktion $f(x_1,x_2,\dots,x_n)$, bei der die Größen x_1,x_2,\dots,x_n voneinander unabhängig sind, verwendet. Hieraus folgt für den Fehler von P die Fehlerformel

$$\Delta P = \sqrt{\left(I\Delta U_k\right)^2 + \left(U_k \Delta I\right)^2} \tag{19}$$

sowie für R_a die Fehlerformel

$$\Delta R_a = \sqrt{\left(\frac{1}{I}\Delta U_k\right)^2 + \left(-\frac{U_k}{I^2}\Delta I\right)^2}.$$
 (20)

Zudem wird als Theoriekurve die Leistung nach Formel 6 sowie nach Formel 4 zu

$$P = \frac{U_0^2}{(R_i + R_a)^2} R_a \tag{21}$$

bestimmt. Hierbei werden für R_i sowie U_0 die in Kapitel 4.1 bestimmten Werte genutzt. Es ergibt sich somit der in Abbildung 10 dargestellte Plot.

Abbildung 10: Leistung in Abhängigkeit des Belastungswiderstandes.

5 Diskussion

Im Vergleich von dem direkt gemessenen U_0 und den im Nachhinein ermittelten Leerlaufspannungen zeigt sich, besonders bei der Sinusmessung sowie der Rechteckmessung keine signifikante Abweichung. Bei der Monozellenmessung sowie der Gegenspannungsmessung liegt der direkt gemessene Wert leicht unterhalb des bestimmten Fehlerinterval Dies mag in dem systematischen Fehler liegen, dass die Nutzung des regelbaren Widerstandes problematisch war. So zeigt sich, dass die zu ablesenden Werte abhängig vom Druck auf den Inbetriebnahmeschalter des Widerstandes sind. Dementsprechend gestaltet es sich als schwierig, die Werte I und U_k simultan bei gleichem Widerstand zu bestimmen.

Die Berechnung des systematischen Fehlers von U_0 zeigt, dass tatsächlich die Annahme $U_0 \approx U_k$ getroffen werden kann, da die Abweichung ΔU_0 hinreichend klein im Gegensatz zu den anderen genannten systematischen Fehlern ist.

Bei Betrachtung der Leistungskurve ist beim Peak der Theoriekurve eine nach oben tendierende Abweichung der Messwerte im Vergleich zur Theoriekurve zu beobachten. Diese Ursache dieser Abweichung kann nicht genau zurückverfolgt werden. Ansonten liegen die Werte der Theoriekurve im Rahmen der Fehlerbalken der Messwerte.

6 Anhang

	+	1 1 , 1 1 1 1					11111	111	
Versuh Nr. 301				d) v=0	01/2	1 Velly	volle Amplilude	1 Neclité	(k spring
0) Ulanly = 1.55 V	Rv = 10 M	0_		U ₀ = 1	0,56 V				
			24.	11.	0,	Rd- Wat			
5) I UK	Ra-Wat		5		160 mV	0	-	1.5	
0. 1 A 0.16 V				6 m A	230 mV	10		1.	
86 m A 0156 V				tile in A	- 30 %	-10		7	
59 m A 0.87		DU = ± 1,5%		417 m A	0.3 🗸	20			
50 mA 0.35 V	30			3,7 m A	0,35 V	30			
42 m A 111 V		01=13%		311 m 4		40			
30 m4 1.15 V				275 m A	6411	50			
32 mt 1175V				2,2 m 4	0441	60			
29 mA 1,2 V	70			2,1 m A	0144 V	70			
26 m/ 1,25 V	go			119m4	0145 V	80			
23 m/ 11275V				117 m 4	0146 V	90			
21 m/ 1,3 V	100		3	16 m 4	0147 V	100			
() O _{60,800} = 3,55V						1 Vol-1, yellp	dro bldp1	Sinus:	s p ann 11 y
1 0 0	Ra-West			U ₀ = 2					
0,226 3,40	0			1 1		Rd-Wat	1	Uk	Rd-Wort
0,16 A . 2,85 V					V = 210	0	0131 m4	1, KV	100
0,725-A 2,5 V				1,85 m.A	0.731	10			
045 76 m A 213 V	30			1,25 m.4	1.15 V	20			
72m 4 7,2 V	40			0192 mg	1,35 Y	3.0			
59m A 2,15 V	50			On2 mA	115 V	40			
52 m A 211 V	60			0.62 ma	11554	50			
47 mA 2,0 V	70			0153 mt	1.65 V	60			
42 m A 1,95V	80			0.142 w 7	1,71	0 0			
39 m A 1, 93V	90			0138 mA	1175 V	80			
36 m4 115 V	100			0134 mA	1177 V				

Abbildung 11: Originaldaten.

Literatur

- [1] TU Dortmund. Versuchsanleitung, Versuch Nr. 302. 2015. URL: http://129.217. 224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V301.pdf.
- [2] Wilhelm Walcher. Praktikum der Physik. Bd. 7. Teubner, 1994, S. 37–39.