Math 205 Theorems.

- 1. **Schwarz Lemma.** Let $f: \{z \in \mathbb{C}: |z| < 1\} \to \mathbb{C}$ be holomorphic and $|f(z)| \le 1$ for all z, and f(0) = 0. Then, $|f(z)| \le |z|$ and $f'(0) \le 1$. If for some $z_0 \ne 0$, $|f(z_0)| = |z_0|$ or if |f'(0)| = 1, then f(z) = cz for some $c \in \mathbb{C}$ with |c| = 1.
- 2. **Theorem.** Let $K \subseteq \mathbb{C}$ compact (write: $K \in \mathbb{C}$), $f: K \to \mathbb{C}$ continuous, f holomorphic on K. Then, $\sup_{z \in K} |f(z)| = \sup_{z \in \partial K} |f(z)|$.
- 3. **Theorem.** Let $f: \Omega \to \mathbb{C}$ holomorphic (Ω open & connected), $z_0 \in \Omega$, $|f(z_0)| = \sup_{z \in \Omega} |f(z)|$. Then, f is constant.
- 4. **Theorem** (**Horwitz**). Let $\Omega \subseteq \mathbb{C}$ be open & connected, $f : \Omega \to \mathbb{C}$, $f_n : \Omega \to \mathbb{C}$, f_n holomorphic, $f_n(\Omega) \subset \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$, $||f_n f||_k \to 0$ for all $K \subseteq \Omega$. Then, either f = 0 identically or $f(\Omega) \subset \mathbb{C} \setminus \{0\}$.
- 5. **Theorem.** Let $\Omega \subseteq \mathbb{C}$ be open, \mathscr{F} be a set of holomorphic function $\Omega \to \mathbb{C}$. Then, TFAE:
 - (a) For every $K \subseteq \Omega$, $\sup_{f \in \mathscr{F}} ||f||_K < \infty$.
 - (b) For every sequence $(f_n)_{n\in\mathbb{N}}\subset\mathscr{F}$, there exists a subsequence $(f_{n_j})_{j\in\mathbb{N}}$, $n_1< n_2<\ldots$, such that $(f_{n_j})_{j\in\mathbb{N}}$ is uniformly convergent on compact subsets of Ω .
- 6. **Lemma.** Let $K \subseteq \Omega$, \mathscr{F} family of holomorphic functions $\Omega \to \mathbb{C}$ so that for every $K \subseteq \Omega$, $\sup_{f \in \mathscr{F}} ||f||_K < \infty$. Given $\varepsilon > 0$, there is a $\delta > 0$ such that $z, z' \in K$ and $|z z'| < \delta$ imply $|f(z) f(z')| < \varepsilon$ for every $f \in \mathscr{F}$.