Discussion - Week 6

Example 1 (Sample Sum and Sample Mean)

A sample of size 50 is taken from a distribution with mean 38 and standard deviation 0.5.

- (a) Find the expected value and standard error of the sample sum.
- (b) What is the distribution of the sample sum?
- (c) Find the expected value and standard error of the sample mean.
- (d) What is the distribution of the sample mean?
- (e) What is the probability that the sample sum is less than 1890?
- (f) What is the probability that the sample mean is larger than 40?

Example 2 (Estimated Standard Error of the sample mean)

In each case, estimate the standard error of the sample mean \bar{x}

- (a) $n = 15, s^2 = 1$
- (b) $n = 100, s^2 = 1$
- (c) $n = 15, s^2 = 5$
- (d) $n = 100, s^2 = 5$
- (e) How does the estimated standard error change when n increases?
- (f) How does the estimated standard error change when s^2 increases?

Example 3 (Using the t Table)

Find t_{α} given the values of α and degrees of freedom below. If the given degrees of freedom are not in the table, round down.

- (a) $\alpha = 0.005$, 13 degrees of freedom
- (b) $\alpha = 0.05$, 28 degrees of freedom
- (c) $\alpha = 0.025, 4$ degrees of freedom
- (d) $\alpha = 0.005$, 67 degrees of freedom
- (e) $\alpha = 0.01$, 58 degrees of freedom
- (f) $\alpha = 0.05$, 33 degrees of freedom

Example 4

A random sample of size n=49 from a population yielded a sample mean $\bar{x}=29$ and sample variance $s^2=4$.

- (a) Estimate the standard error of \bar{x} .
- (b) Compute a 95% confidence interval for the population mean (μ) .
- (c) Interpret the interval. What does "95% confident" mean?

Example 5

Find a $(1-\alpha)100\%$ confidence interval for a population mean μ for the following values.

(a)
$$\alpha = 0.10, n = 38, \bar{x} = 54, \sigma^2 = 11$$

(b)
$$\alpha = 0.01, n = 38, \bar{x} = 54, \sigma^2 = 11$$

(c)
$$\alpha = 0.01$$
, $n = 80$, $\bar{x} = 54$, $\sigma^2 = 11$