Anmerkungen:

Laborversuch 3

Versuch				etri-N							
Fach		Ereignisdiskrete Systeme SS 2024									
Semester											
Fachsemester				TIN 4							
Labortermine		13.06.2024									
Abgabe bis spätestens	s spätestens 21.06.2024										
Versuchsteilnehmer											
Name:	Vorname:										
Semester:	Matrikelnummer:										
Bewertung des Versuches											
Aufgabe:	a)	b)	c)	d)	e)	f)	g)	h)	i)	j)	
Punkte maximal:	7	2	6	3	5	5	5	6	5	6	
Punkte erreicht:											
Gesamtpunktezahl:	Note:					Zeichen:					

Aufgabe 1: (20+2+4+4+4+6+4+2+2+2=50 Punkte)

Thema: Petri-Netze: Modellierung einer einfachen Ampelanlage

Die folgende Skizze stellt eine einfache Ampelanlage ohne Linksabbieger dar. Die Steuerung der Ampeln A1 und A2 soll als Petri-Netz entworfen und simuliert werden.

Die zu modellierende Ampelanlage weist folgende Eigenschaften auf:

- A1 sowie A2 sollen zyklisch nacheinander aktiv werden.
- A1 und A2 haben die **Zustandsfolgen**

- Eine Ampel muss rot sein während die andere ihre Rotgelbphase, Grünphase oder Gelbphase hat.
- Es gibt die **Stellen**

• Weiter gibt es die **Transitionen**

- Mit Transition t1 soll S1 und S5 aktiviert werden.
- Mit den Transitionen t2 bis t6 werden die weiteren Schritte eingeleitet.

Bestimmen Sie:

- a) das Petri-Netz,
- b) eine Anfangsmarkierung M_0 ,
- c) die Inzidenzmatrix N,
- d) den Erreichbarkeitsgraph,
- e) die Netzeigenschaften,
- f) den Schaltvektor v_r mit $N \cdot v_r = 0$,
- g) den Nachweis für f) über $N \cdot v_r = 0$ und die entsprechende Schaltsequenz σ_r im Erreichbarkeitsgraph dafür.
- h) Modellieren Sie das Petri-Netz mit dem Tool Petri06,
- i) modellieren Sie das Petri-Netz mit dem Tool PetriEdiSim.
- j) Welche Vor- und Nachteile haben die Tools nach h) und i)?

Hinweise und Links:

- Das Tool Petri06 für das Praktikum finden Sie auf dem Infolaufwerk I:\ unter I:\INF\TI\Veranstaltungen\Knoblauch\EreignisdiskreteSysteme\Petrinetz_Simulation als Archiv "PetriNetSimulator.zip" zum Download.
- Online-Tutorial und das Tool "PetriEdiSim" ist zu finden unter http://olli.informatik.uni-oldenburg.de/PetriEdiSim/ http://olli.informatik.uni-oldenburg.de/PetriEdiSim/archive/archive.html oder alternativ auf dem Infolaufwerk I:\ unter https://unter.ii.nlm.nih.gov/II.Veranstaltungen\Knoblauch\EreignisdiskreteSysteme\Petrinetz_Simulation als Archiv "PetriEdiSim.zip" zum Download. Bitte im selben Verzeichnis die Hinweise in "README.txt" lesen!
- Eine Auflistung von zahlreichen Editoren ist zu finden unter http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html Die Editoren werden teils kommerziell und teils als Freeware vertrieben.
- Informationen und Tools zu Petri-Netzen ist zu finden unter http://www.informatik.uni-hamburg.de/TGI/PetriNets/