CSC 137 MOCK MIDTERM 2 SOLUTIONS

1) a) State transition table:

q_1	\mathbf{q}_0	E	q_1^+	q_0^+
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	0
1	0	1	1	0
1	1	0	Х	Х
1	1	1	Х	Х

b) Boolean equations for the state variables:

$$q_1^+ = q_1 E + q_0 E$$

$$q_0^+ = q_1' E'$$

c) Output table:

q_1	\mathbf{q}_{0}	Υ
0	0	0
0	1	0
1	0	1
1	1	Χ

d) Boolean equation for the output:

$$Y = q_1$$

e) Moore machine circuit:

RESET Omitted

2) a) The logic at the register output to generate the necessary Z signal:

b) The control signals that are necessary for each micro-operation:

Table that shows which control signal will be generated at each RTL step:

Micro-operation	Control Signal(s)
Reg <- inbus	CO
Reg = Reg -1	C1
If Reg ≠ 0, goto Loop	No-op
goto End	No-op

c) The state transition diagram of the control unit:

Table that shows which state corresponds to which micro-operation (i.e. RTL step):

State	Micro-operation	Control Signal(s)
T0	Reg <- inbus	CO
T1	Reg = Reg -1	C1
T2	If Reg ≠ 0, goto Loop	No-op
T3	goto End	No-op

d) The state transition table for the control unit:

q_1	\mathbf{q}_0	Z	q_1^+	q_0^+
0	0	Χ	0	1
0	1	Х	1	0
1	0	0	1	1
1	0	1	0	1
1	1	Χ	1	1

e) The simplest Boolean equations for the state variables.

$$q_1^+$$
 $q_1^ q_1^ q_1^$

$$q_1^+ = q_0 + q_1 Z'$$

$$q_0^+ = q_1 + q_0^-$$

f) The output table for the control unit:

q ₁	q _o	C1	CO
0	0	0	1
0	1	1	0
1	0	0	0
1	1	0	0

g) The simplest Boolean equations for the outputs.

$$C1 = q_1' q_0$$

 $C0 = q_1' q_0'$

$$C0 = a_1' a_0$$