Boolean Algebra

- Invented by George Boole in 1854
- An algebraic structure defined by a set {0, 1}, together with two binary operators (+ and ·) and a unary operator (¬)

			-		
1.	\boldsymbol{X}	+	O	=	X

2.
$$X \cdot 1 = X$$

Identity element

3.
$$X+1=1$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$
 Idempotence

7.
$$X + \overline{X} = 1$$

X + X = X

8.
$$X \cdot \overline{X} = 0$$

9.
$$\overline{\overline{X}} = X$$

5.

10.
$$X + Y = Y + X$$

11.
$$XY = YX$$

Commutative

12.
$$(X + Y) + Z = X + (Y + Z)$$

13.
$$(XY)Z = X(YZ)$$

14.
$$X(Y+Z) = XY+XZ$$

15.
$$X + YZ = (X + Y)(X + Z)$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Logic and Computer Design Fundamentals, 4e PowerPoint® Sildes © 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 2

Some Properties of Boolean Algebra

- A two-valued Boolean algebra is also know as <u>Switching</u> <u>Algebra</u>.
- The <u>dual</u> of an algebraic expression is obtained by interchanging + and · and interchanging 0's and 1's.
- Sometimes, the dot symbol '•' (AND operator) is not written when the meaning is clear

Dual of a Boolean Expression

Example:
$$\mathbf{F} = (\mathbf{A} + \overline{\mathbf{C}}) \cdot \mathbf{B} + \mathbf{0}$$

dual $\mathbf{F} = (\mathbf{A} \cdot \overline{\mathbf{C}} + \mathbf{B}) \cdot \mathbf{1} = \mathbf{A} \cdot \overline{\mathbf{C}} + \mathbf{B}$

Example:
$$G = X \cdot Y + \overline{(W + Z)}$$

dual $G = (X+Y) \cdot \overline{(W \cdot Z)} = (X+Y) \cdot \overline{(W+Z)}$

Example:
$$\mathbf{H} = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$$

 $\mathbf{dual} \ \mathbf{H} = (\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} + \mathbf{C}) \cdot (\mathbf{B} + \mathbf{C})$

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 4

Boolean Algebraic Proof – Example 1

•
$$A + A \cdot B = A$$
 (Absorption Theorem)
Proof Steps Justification

$$= \mathbf{A} \cdot \mathbf{1} + \mathbf{A} \cdot \mathbf{B}$$

$$= \mathbf{A} \cdot (\mathbf{1} + \mathbf{B})$$

 $A + A \cdot B$

$$= A \cdot 1$$

$$= A$$

Identity element: $A \cdot 1 = A$

Distributive

$$1 + B = 1$$

Identity element

Boolean Algebraic Proof – Example 2

■ $AB + \overline{A}C + BC = AB + \overline{A}C$ (Consensus Theorem)

Proof Steps

$$AB + \overline{A}C + BC$$

$$= AB + \overline{A}C + 1 \cdot BC$$

$$= AB + \overline{A}C + (A + \overline{A}) \cdot BC$$

$$= AB + \overline{A}C + ABC + \overline{A}BC$$

$$= AB + ABC + \overline{A}C + \overline{A}CB$$

$$= AB \cdot 1 + ABC + \overline{A}C \cdot 1 + \overline{A}CB$$

$$= AB (1+C) + \overline{A}C (1+B)$$

$$= AB \cdot 1 + \overline{A}C \cdot 1$$

$$= AB + \overline{A}C$$

Justification

Identity element

Complement

Distributive

Commutative

Identity element

Distributive

1 + X = 1

Identity element

Boolean Algebra and Logic Gates 6

Logic and Computer Design Fundamentals, 4e PowerFoint® Stides © 2008 Pearson Education, Inc.

Useful Theorems

- Minimization $X Y + \overline{X} Y = Y$
- Minimization (dual) $(X+Y)(\overline{X}+Y) = Y$
- Absorption X + X Y = X
- Absorption (dual) $X \cdot (X + Y) = X$
- Simplification $X + \overline{X} Y = X + Y$
- Simplification (dual) $X \cdot (\overline{X} + Y) = X \cdot Y$
- DeMorgan's
- $\overline{X + Y} = \overline{X} \cdot \overline{Y}$
- DeMorgan's (dual)
- $\overline{\mathbf{X} \cdot \mathbf{Y}} = \overline{\mathbf{X}} + \overline{\mathbf{Y}}$

Useful Theorems

- Minimization $X Y + \overline{X} Y = Y$
- Minimization (dual) $(X+Y)(\overline{X}+Y) = Y$
- Absorption X + X Y = X
- Absorption (dual) $X \cdot (X + Y) = X$
- Simplification $X + \overline{X} Y = X + Y$
 - Simplification (dual) $X \cdot (\overline{X} + Y) = X \cdot Y$
- DeMorgan's
- $\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$
- DeMorgan's (dual)
- $\overline{\mathbf{X} \cdot \mathbf{Y}} = \overline{\mathbf{X}} + \overline{\mathbf{Y}}$

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 7

Truth Table to Verify DeMorgan's

Generalized DeMorgan's Theorem:

$$\overline{X_1 + X_2 + \dots + X_n} = \overline{X_1} \cdot \overline{X_2} \cdot \dots \cdot \overline{X_n}$$

$$\overline{X_1 \cdot X_2 \cdot \dots \cdot X_n} = \overline{X_1} + \overline{X_2} + \dots + \overline{X_n}$$

Canonical Forms

- Minterms and Maxterms
- 1- Sum-of-Minterm (SOM) Canonical Form
- 2- Product-of-Maxterm (POM) Canonical Form

Logic and Computer Design Fundamentals, 4 PowerPoint[®] Sildes © 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 11

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., $\overline{\mathbf{x}}$), there are 2^n minterms for n variables.
- Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

XY (both normal)

 $X\overline{Y}(X \text{ normal}, Y \text{ complemented})$

 $\overline{\mathbf{X}}\mathbf{Y}$ (X complemented, Y normal)

 $\overline{\mathbf{X}}\overline{\mathbf{Y}}$ (both complemented)

Thus there are four minterms of two variables.

ogic and Computer Design Fundamentals, 4e PowerPoint® Sifides D 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 12

Maxterms

- <u>Maxterms</u> are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

X + Y (both normal)

 $\mathbf{X} + \overline{\mathbf{Y}}$ (x normal, y complemented)

 $\overline{X} + Y$ (x complemented, y normal)

 $\overline{X} + \overline{Y}$ (both complemented)

13

Minterms & Maxterms for 2 variables

• Two variable minterms and maxterms.

X	y	Index	Minterm	Maxterm
0	0	0	$\mathbf{m}_0 = \overline{\mathbf{x}} \overline{\mathbf{y}}$	$\mathbf{M}_0 = \mathbf{x} + \mathbf{y}$
0	1	1	$\mathbf{m_1} = \overline{\mathbf{x}} \ \mathbf{y}$	$\mathbf{M}_1 = \mathbf{x} + \overline{\mathbf{y}}$
1	0	2	$\mathbf{m}_2 = \mathbf{x} \overline{\mathbf{y}}$	$\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$
1	1	3	$\mathbf{m_3} = \mathbf{x} \ \mathbf{y}$	$M_3 = \overline{x} + \overline{y}$

- The minterm m_i should evaluate for each combination of x and y.
- The maxterm is the complement of the minterm

Logic and Computer Design Fundamentals, PowerPoint® Slides © 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 14

Minterms & Maxterms for 3 variables

X	y	Z	Index	Minterm	Maxterm
0	0	0	0	$\mathbf{m}_0 = \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}}$	$\mathbf{M_0} = \mathbf{x} + \mathbf{y} + \mathbf{z}$
0	0	1	1	$\mathbf{m_1} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \mathbf{z}$	$\mathbf{M_1} = \mathbf{x} + \mathbf{y} + \overline{\mathbf{z}}$
0	1	0	2	$\mathbf{m}_2 = \overline{\mathbf{x}} \ \mathbf{y} \ \overline{\mathbf{z}}$	$\mathbf{M}_2 = \mathbf{x} + \overline{\mathbf{y}} + \mathbf{z}$
0	1	1	3	$\mathbf{m_3} = \overline{\mathbf{x}} \mathbf{y} \mathbf{z}$	$\mathbf{M}_3 = \mathbf{x} + \overline{\mathbf{y}} + \overline{\mathbf{z}}$
1	0	0	4	$\mathbf{m_4} = \mathbf{x} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}}$	$\mathbf{M_4} = \overline{\mathbf{x}} + \mathbf{y} + \mathbf{z}$
1	0	1	5	$\mathbf{m}_5 = \mathbf{x} \overline{\mathbf{y}} \mathbf{z}$	$\mathbf{M}_5 = \overline{\mathbf{x}} + \mathbf{y} + \overline{\mathbf{z}}$
1	1	0	6	$\mathbf{m}_6 = \mathbf{x} \mathbf{y} \overline{\mathbf{z}}$	$\mathbf{M}_6 = \overline{\mathbf{x}} + \overline{\mathbf{y}} + \mathbf{z}$
1	1	1	7	$\mathbf{m_7} = \mathbf{x} \mathbf{y} \mathbf{z}$	$\mathbf{M}_7 = \overline{\mathbf{x}} + \overline{\mathbf{y}} + \overline{\mathbf{z}}$

Maxterm M_i is the complement of minterm m_i $M_i = \overline{m_i}$ and $m_i = \overline{M_i}$

Logic and Computer Design Fundamentals, 4 PowerPoint[®] Slides

Boolean Algebra and Logic Gates 15

Purpose of the Minterms and Maxterms

- Minterms and Maxterms are designated with an index
- For Minterms:
 - · '1' means the variable is "Not Complemented" and
 - · '0' means the variable is "Complemented".
- For Maxterms:
 - · '0' means the variable is "Not Complemented" and
 - · '1' means the variable is "Complemented".

Standard Order

- All variables should be present in a minterm or maxterm and should be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms $(a + b + \bar{c})$, $(\bar{a} + b + \bar{c})$ are in standard order
 - However, (b + ā + c) is NOT in standard order
 (ā + c) does NOT contain all variables
 - Minterms (a b c

) and (a

) are in standard order
 - However, (b a c
) is not in standard order
 (a c) does not contain all variables

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 17

Sum-Of-Minterm Examples

- $F(a, b, c, d) = \sum (2, 3, 6, 10, 11)$
- $F(a, b, c, d) = m_2 + m_3 + m_6 + m_{10} + m_{11}$ $\bar{a} \, \bar{b} \, c \, \bar{d} + \bar{a} \, \bar{b} \, c \, d + \bar{a} \, b \, c \, \bar{d} + a \, \bar{b} \, c \, \bar{d} + a \, \bar{b} \, c \, d$
- $G(a, b, c, d) = \sum (0, 1, 12, 15)$
- $G(a, b, c, d) = \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_{12} + \mathbf{m}_{15}$ $\bar{a} \, \bar{b} \, \bar{c} \, \bar{d} + \bar{a} \, \bar{b} \, \bar{c} \, d + a \, b \, \bar{c} \, \bar{d} + a \, b \, c \, d$

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides Boolean Algebra and Logic Gates 18

Product-Of-Maxterm Examples

- $F(a, b, c, d) = \prod (1, 3, 6, 11)$
- $F(a,b,c,d) = \mathbf{M}_1 \cdot \mathbf{M}_3 \cdot \mathbf{M}_6 \cdot \mathbf{M}_{11}$ $(a+b+c+\overline{d}) (a+b+\overline{c}+\overline{d}) (a+\overline{b}+\overline{c}+d) (\overline{a}+b+\overline{c}+\overline{d})$
- $G(a, b, c, d) = \prod (0, 4, 12, 15)$
- $\mathbf{G}(a,b,c,d) = \mathbf{M}_0 \cdot \mathbf{M}_4 \cdot \mathbf{M}_{12} \cdot \mathbf{M}_{15}$ $(a+b+c+d) (a+\overline{b}+c+d) (\overline{a}+\overline{b}+c+d) (\overline{a}+\overline{b}+\overline{c}+\overline{d})$

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + B$
 - POS: $(A+B) \cdot (A+\overline{B}+\overline{C}) \cdot C$
- These "mixed" forms are neither SOP nor POS
 - \cdot (AB+C)(A+C)
 - $\bullet AB\overline{C}+AC(A+B)$

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides

Boolean Algebra and Logic Gates 20

Standard Sum-of-Products (SOP)

- A sum of minterms form for n variables can be written down directly from a truth table.
- This form often can be simplified so that the corresponding circuit is simpler.

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Sildes

Boolean Algebra and Logic Gates 21

Standard Sum-of-Products (SOP)

A Simplification Example:

$$F(A,B,C) = \sum (1,4,5,6,7)$$

Writing the minterm expression:

$$F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + AB\overline{C} + ABC$$

Simplifying:

$$F = \overline{A} \overline{B} C + A (\overline{B} \overline{C} + \overline{B} C + B \overline{C} + B C)$$

$$F = \overline{A} \overline{B} C + A (\overline{B} (\overline{C} + C) + B (\overline{C} + C))$$

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{B}} \ \mathbf{C} + \mathbf{A} \ (\overline{\mathbf{B}} + \mathbf{B})$$

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{B}} \ \mathbf{C} + \mathbf{A}$$

$$F = \overline{B} C + A$$

Simplified F contains 3 literals compared to 15

AND/OR Two-Level Implementation

The two implementations for F are shown below

It is quite apparent which is simpler!

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

Boolean Algebra and Logic Gates 23

SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms
 - · Simpler equations lead to simpler implementations