Methods Lesson 4

3. WE5 Evaluate the following definite integrals.

a.
$$\int_0^{\frac{\pi}{2}} \sin(x) \, dx$$

b.
$$\int_{\frac{\pi}{2}}^{\pi} 3\sin(4x)\,dx$$

c.
$$\int_0^{\pi} 5 \sin\left(\frac{x}{4}\right) dx$$

7. WE6 Given that $\int_2^5 m(x)\,dx=7$ and $\int_2^5 n(x)\,dx=3$, calculate:

a.
$$\int_2^5 3m(x) \, dx$$

b.
$$\int_2^5 (2m(x)-1)\,dx$$

5. Evaluate the following.

a.
$$\int_0^3 (3x^2-2x+3)\,dx$$

b.
$$\int_{1}^{2} \frac{2x^3 + 3x^2}{x} dx$$

20. The graph of $y=2\,\sin\,(x)$, $-rac{3\pi}{2} \le x \le rac{3\pi}{2}$ is shown.

a. Calculate
$$\int_{ heta}^{rac{\pi}{2}} 2 \sin(x) \, dx$$

b. Hence, or otherwise, calculate the area of the shaded region.

19. The graph of f:R o R, $f(x)=3x^3$ is shown.

- a. Calculate the area bounded by the curve and the x-axis from x=0 to x=1.
- b. Hence, or otherwise, calculate the area of the shaded region.
- 5. WE9 Consider the function $y=\left(x^2-1\right)\left(x^2-9\right)$. a. Sketch the graph of the function, stating all axis intercepts.

 - b. Determine the area enclosed by the function, the lines x=-3 and x=3, and the x-axis.

Find the Area

d.

e.

