COPSS: Force field

1. Particle - particle force types

Particle-particle force types defines the force types between particle and particles.

```
particle_particle_force_types = 'pp_ev_gaussian,
pp_ev_gaussian_polymerChain, ...'
pp_ev_gaussian = 'param1, param2, ...'
pp_ev_gaussian_polymerChain = 'param1, param2, ...'
```

Supposing that we have two particles i and j, located at R_i and R_j and the forces on which are f_i and f_j respectively.

 $ec{f}_{ij}$: force acting on particle i by particle j.

 $ec{R}_{ij}$: vector pointing from i to j , i.e., $ec{R}_{ij}=ec{R}_j-ec{R}_i$, which is automatically updated due to periodic boundary conditions.

 $ec{r}_{ij}$: unit vector of $ec{R}_{ij}$

 R_{size} : length of $ec{R}_{ij}$, i.e., $ec{R}_{ij} = R_{size} * ec{r}_{ij}$

a: bead radius. All lengths are non-dimensionalized by this length.

 b_k : Kuhn length

 $N_{k,s}$: number of Kuhn length per spring

 q_0 : maximum spring length, $q_0 = N_{k,s} * b_k$

L: contour length of the DNA molecule, $L=N_sst q_0$

 S^2_s : radius of gyration of an ideal chain consisting of $N_{k,s}$ Kuhn segments,

$$S_s^2 = N_{k,s} st b_k^2/6$$

pp_ev_gaussian

pp_ev_gaussian = '
$$c_1$$
', c_2 '

pp_ev_gaussian defines a gaussian potential between point particles (**beads only**), two nondimensional parameters need to be given for this force type, c_1 (energy) and c_2 (length).

Then this gaussian force:

$$ec{f}_{ij} = -c_1 * c_2 * e^{-c_2 * R_{size}^2} * ec{r}_{ij} \ ec{f}_{i} + = ec{f}_{ij}$$

pp_ev_gaussian_polymerChain

pp_ev_gaussian_polymerChain = '
$$ev$$
'

pp_ev_gaussian_polymerChain defines a gaussian potential between beads of worm-like polymer chain (polymer chain only), the only required parameter ev is the nondimensional excluded volume of beads. The coefficient of this gaussian potential is set by default as:

$$egin{align} c_1 &= ev*a^3*N_{k,s}^2*(rac{3.}{4.*\pi*S_s^2})^{3/2} \ c_2 &= 3.*rac{a^2}{4.*S_s^2} \ \end{array}$$

Then this gaussian force:

$$ec{f}_{ij} = -c_1 * c_2 * e^{-c_2 * R_{size}^2} * ec{r}_{ij} \ ec{f}_{i} + = ec{f}_{ij}$$

pp_ev_lj_cut = '
$$\epsilon$$
, σ , r_{cut} '

pp_ev_lj_cut defines a Lennard-Jones potential between two particle i and j. Three non-dimensional parameters, ϵ (energy), σ (particle diameter or slighter bigger, e.g., 2.1), r_{cut} (cutoff radius) are required for this force field.

Then the lj force:

if
$$R_{size} <= r_{cut}$$
 : $ec{f}_{ij} = -24*\epsilon*(2*(rac{\sigma}{r_{ij}})^{12}-(rac{\sigma}{r_{ij}})^6)$ $ec{f}_i += ec{f}_{ij}$ else: $ec{f}_i += ec{0}$

pp_ev_lj_repulsive

pp_ev_lj_repulsive = '
$$\epsilon$$
, σ '

pp_ev_lj_repulsive defines a repulsive Lennard-Jones potential between two particle i and j. Two non-dimensional parameters, ϵ (energy), σ (particle diameter or slighter bigger, e.g., 2.1) are required for this force field.

 r_{cut} is set to be the equilibrium length where Ij force is zero:

$$r_{cut}=2^{rac{1.}{6.}}*\sigma$$

Then the repulsive lj force:

if
$$R_{size} <= r_{cut}$$
 : $ec{f}_{ij} = -24*\epsilon*(2*(rac{\sigma}{r_{ij}})^{12} - (rac{\sigma}{r_{ij}})^6)$ $ec{f}_i + = ec{f}_{ij}$ else: $ec{f}_i + = ec{0}$

pp_ev_harmonic_repulsive

pp_ev_harmonic_repulsive =
$$k, r_0$$

pp_ev_harmonic_repulsive defined a repulsive harmonic potential between particle i and j. Two non-dimensional parameters, k(energy) and r_0 (equilibrium length) are required for this force field.

Then the repulsive harmonic force:

if
$$R_{size} < r_0$$
 : $ec{f}_{ij} = k*(R_{size} - r_0)*ec{r}_{ij}$ $ec{f}_{i} + = ec{f}_{ij}$ else : $ec{f}_{i} + = ec{0}$

pp_wormLike_spring

pp_wormLike_spring

pp_wormLike_spring defines spring forces for worm-like bead spring chains (**polymer chain only**). All parameters are set by default in COPSS.

$$egin{aligned} c_1 &= rac{a}{2*b_k} \ L_s &= rac{N_{k,s}*b_k}{a} \end{aligned}$$

Then the spring force:

$$egin{align} ec{f}_{ij} &= c_1 * ((1 - rac{R_{size}}{L_s})^{-2} - 1. + 4 * rac{R_{size}}{Ls}) * ec{r}_{ij} \ &= rac{a}{2*b_k} ((1 - rac{R_{size}}{N_{k,s}*b_k/a})^{-2} - 1. + 4 * rac{R_{size}}{N_{k,s}*b_k/a}) * ec{r}_{ij} \ ec{f}_i + &= ec{f}_{ij} \ \end{align}$$

p_constant

p_constant = '
$$f_x$$
, f_y , f_z '

p_constant defines a constant force field on all of the beads. Three parameters (force on x, y, z), f_x, f_y, f_z are needed for the force field.

Then the constant force:

$$ec{f}_{constant} = (f_x, f_y, f_z) \ ec{f}_i + = ec{f}_{constant}$$

2. Particle - wall force types

Particle-wall force types defines the force types between particles and wall, which has to be neither periodic boundary and inlet/outlet.

```
particle_wall_force_types = 'pw_ev_empirical_polymerChain,
pw_ev_lj_cut, ...'
pw_ev_empirical_polymerChain = 'param1, param2, ...'
pw_ev_lj_cut = 'param1, param2, ...'
```

Wall type can only be either **slit** or **sphere** for now, and will be extended to more types in further development. Supposing that we have particle i, located at R_i and the forces on which is f_i .

 $ec{f}_{iw}$: force acting on particle i by wall. $ec{R}_{iw}$: vector pointing from i to wall.

if wall_type = 'slit': $\vec{R}_{i,lo} = box_{min} - \vec{R}_i$, $\vec{R}_{i,hi} = box_{max} - \vec{R}_i$ And we need to compute particle-wall interaction for lower wall and upper wall separately. if wall_type = 'sphere': $\vec{R}_{iw} = \vec{r}_i * (R_{sphere} - |\vec{R}_i|)$, where \vec{r}_i is the unit vector of \vec{R}_i , $|\vec{R}_i|$ is the distance of particle i to origin.

 $ec{r}_{iw}$: unit vector of $ec{R}_{iw}$. R_{size} : length of $ec{R}_{iw}$, i.e., $ec{R}_{iw}=ec{r}_{iw}*R_{size}$

pw_ev_empirical_polymerChain

pw_ev_empirical_polymerChain

pw_ev_empirical_polymerChain defines an empirical bead_wall repulsive potential on polymer beads (**polymer chain only**). All parameters are set by default in COPSS:

$$egin{aligned} c_1 &= a/b_k \ c2 &= c1/\sqrt{N_{k,s}} = rac{a}{b_k * \sqrt{N_{k,s}}} \ d_0 &= 0.5/c_2 = rac{b_k * \sqrt{N_{k,s}}}{2*a} \ c_0 &= 25*c_1 = rac{25*a}{b_k} \end{aligned}$$

Then the empirical force:

if
$$R_{size} < d_0$$
: $ec{f}_{iw} = -c_0 * (1 - rac{R_{size}}{d_0})^2 * ec{r}_{iw}$ $= -rac{25*a}{b_k} (1 - rac{2*R_{size}*a}{b_k*\sqrt{N_{k,s}}})^2 * ec{r}_{iw}$ $ec{f}_i + = ec{f}_{iw}$ else : $ec{f}_i + = 0$

The corresponding potential is:

if
$$R_{size} < d_0$$
: $U_i^{wall} = rac{A_{wall}}{3*b_k/a*d_0}(R_{size}-d_0)^3$, where $A_{wall}=25/a$ else: $U_i^{wall}=0$

pw_ev_lj_cut

pw_ev_lj_cut = '
$$\epsilon$$
, σ , r_{cut} '

pw_ev_lj_cut defines a Lennard-Jones potential between particle i and the wall. Three non-dimensional parameters, ϵ (energy), σ (particle radius or slighter bigger, e.g., 1.05), r_{cut} (cutoff radius) are required for this force field.

Then the lj force:

if
$$R_{size} <= r_{cut}$$
 : $ec{f}_{iw} = -24*\epsilon*(2*(rac{\sigma}{r_{iw}})^{12} - (rac{\sigma}{r_{iw}})^6)$ $ec{f}_i + = ec{f}_{iw}$ else: $ec{f}_i + = ec{0}$

pw ev lj repulsive

pw_ev_lj_repulsive = '
$$\epsilon$$
, σ '

pw_ev_lj_repulsive defines a repulsive Lennard-Jones potential between particle i and the wall. Two non-dimensional parameters, ϵ (energy), σ (particle radius or slighter bigger, e.g., 1.05) are required for this force field.

 r_{cut} is set to be the equilibrium length where Ij force is zero:

$$r_{cut}=2^{rac{1.}{6.}}*\sigma$$

Then the repulsive lj force:

if
$$R_{size} <= r_{cut}$$
 : $ec{f}_{iw} = -24*\epsilon*(2*(rac{\sigma}{r_{iw}})^{12} - (rac{\sigma}{r_{iw}})^6)$ $ec{f}_i + = ec{f}_{iw}$ else: $ec{f}_i + = ec{0}$

pw_ev_harmonic_repulsive

pw_ev_harmonic_repulsive = 'k, r_0 '

pw_ev_harmonic_repulsive defined a repulsive harmonic potential between particle i and the wall. Two non-dimensional parameters, k(energy) and r_0 (equilibrium length, e.g., 1.1) are required for this force field.

Then the repulsive harmonic force:

if
$$R_{size} < r_0$$
 : $ec{f}_{iw} = k*(R_{size} - r_0)*ec{r}_{iw}$ $ec{f}_i + = ec{f}_{iw}$ else : $ec{f}_i + = ec{0}$