Práctica 4

- 1.- Dados los alfabetos $A=\{0,1,2,3\}$ y $B=\{0,1\}$ y el homomorfismo f de A* a B* dado por: f(0)=00, f(1)=01, f(2)=10, f(3)=11. Resolver las siguientes cuestiones:
- a. Sea L1 el conjunto de palabras de B* tales que no comienzan con la subcadena 10. Construir un autómata finito determinista que acepte f -1(L1).

f⁻¹(L1)

b. Construir un autómata finito determinista que acepte el lenguaje L2= $\{uu-1 \mid u \in B^*\}$.

c. Sea L3 el conjunto de palabras de A* definido como L3= {0^k3^k / 1≤ k ≤20}. Construir una expresión regular que represente a f(L3).

El lenguaje L= $\{0^k3^k / 1 \le k \le 20\}$

apunta a que no es regular, así que vamos a ver qué nos dice el lema de Bombeo.

Tenemos $z = uvw = 0^n3^n$. Donde:

$$u = 0^k | v = 0^l | w = 0^{n-k-l}0^n$$

Se cumple:

1- |uv| <= n

2- |v| >= 1

A partir de esta z, se debe cumplir, para que el lenguaje sea regular, que para z = uvⁱw, z

L. Sin embargo, si:

$$i = 0 \rightarrow uv^2w = 0^k0^{2l}0^{n-k-l}3^n \rightarrow z \text{ no } \in$$

Como se puede ver si i=0, tenemos mayor número de "0" que de "3". No tiene expresión regular.

2.- Sea L4 el conjunto de palabras de B* que contienen la subcadena 11. Sea L5 el conjunto de las palabras de B* de longitud múltiplo de tres. Construir el AFD minimal que acepte el lenguaje L4∩L5.

L4

L5

L4∩**L**5

3.- Calcular el AFD Minimal que acepte el mismo lenguaje que el siguiente AFD. Utilizar el algoritmo de minimización visto en clase.

a)

b)

