Universidad Politécnica de Madrid

ROBÓTICA *MANIPULADORES*

Estudio del manipulador μArm

Autores:

Javier Alonso Silva - javier.asilva@alumnos.upm.es Roberto Álvarez Garrido - roberto.alvarezg@alumnos.upm.es José Alejandro Moya Blanco - alejandro.moya.blanco@alumnos.upm.es

Última modificación: 3 de noviembre de 2019

Conocimientos previos

Antes de ponernos a hablar sobre los resultados obtenidos en la práctica, antes vamos a hablar sobre algunas características básicas del brazo robótico e introducirlo brevemente. El manipulador robótico μArm es un dispositivo creado por la empresa UFACTORY el cual cuenta con cuatro grados de libertad. De dichos grados de libertad, tres son usados para mover el brazo robótico hasta ciertas posiciones y, el último, para mantener el extremo del mismo paralelo al suelo.

El manipulador es controlado mediante cuatro motores:

El **motor de la base** el cual permite la rotación del manipulador.

En el brazo, el **motor que está a la derecha** (ver la figura 1), coordina el movimiento de la parte inferior del brazo (*Lower Arm* en la figura) con la parte superior del mismo (*Upper Arm* en la figura).

En esta parte del manipulador, el movimiento es como el de un flexo: la parte superior del flexo está supeditada a la parte inferior, de manera que se mantiene de forma constante la altura a la que está el extremo final del mismo.

El otro motor, localizado a la **izquierda del brazo**, se encarga de mantener la orientación del extremo del manipulador. De esta manera, dicho extremo permanecerá paralelo al suelo. Teniendo en

Figura 1: zonas de actuación de los motores en el brazo [1]

cuenta esto, podríamos decir que el robot en verdad solo tiene tres grados de libertad en tanto a que no se controla directamente el movimiento del último grado, ya que al final se mueve para permanecer paralelo al suelo.

El motor localizado en el extremo, con el cual se puede actuar sobre el elemento que esté colocado allí. Por ejemplo, cuando se coloca una ventosa permite rotarla o, cuando se coloca la pinza, el movimiento del motor permite abrirla o cerrarla.

Para este estudio, este último motor se descartará, ya que no afecta a las posiciones accesibles por el robot.

Motor	Rango de trabajo
Base	$0^{\circ} \sim 180^{\circ}$
Derecho	$0^{\circ} \sim 130^{\circ}$
Izquierdo	$0^{\circ} \sim 106^{\circ}$
Extremo	$0^{\circ} \sim 180^{\circ}$

Cuadro 1: ángulo de giro de los motores

Figura 2: rango del manipulador μArm [2]

Toda la información relativa al desarrollo del proyecto puede ser encontrada en GitHub - UPM Robotics [3]. Allí están detallados los distintos hitos a conseguir así como más información sobre el robot.

Además, se encuentra disponible la siguiente bibliografía:

- Manual de usuario
- Especificaciones
- Guía del desarrollador
- Modelo en 3D
- Web de UFACTORY
- Soporte de UFACTORY

1. Configuración geométrica

En esta sección vamos a describir la configuración geométrica del brazo robótico. La configuración que obtuvimos fue la siguiente:

Figura 3: configuración geométrica del robot

Figura 4: los grados de libertar del brazo, representados por los diferentes Z_i

Usando los datos que están presentes en la documentación al desarrollador [1], pudimos obtener los siguientes datos para los a_i (distancia entre ejes) del manipulador; además, descubrimos que hay una pequeña desviación d_i entre las articulaciones $\{1,2\}$:

Figura 5: longitudes del brazo robótico [1]

$\mid i \mid$	$a_i \ (mm.)$	$d_i \ (mm.)$
1	106,1	0
2	142	13,2
3	158,8	0
4	44,5	0

Cuadro 2: longitudes y desviaciones del manipulador

De esta manera, con los datos obtenidos, obtenemos las siguientes tablas de Denavit-Hartenberg:

i	θ_i	$d_i \ (mm.)$	$a_i \ (mm.)$	α_i
1	θ_1	0	106,1	$-\frac{\pi}{2}$
2	$egin{array}{c} heta_1 \ heta_2 \end{array}$	13,2	142	0
3	θ_3	0	158,8	0
4	θ_4	0	$44,\!5$	0

Cuadro 3: tabla de Denavit-Hartenberg

Cuadro 4: tabla de Denavit-Hartenberg en función de a_i

2. Cinemática directa

A continuación, con los valores obtenidos en el apartado anterior, vamos a obtener las distintas matrices de transformación de referenciales de manipuladores. Para ello, partimos de la siguiente matriz:

$$A_{i-1}^{i} = \begin{pmatrix} \cos \theta_{i} & -\cos \alpha_{i} \sin \theta_{i} & \sin \alpha_{i} \sin \theta_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \alpha_{i} \cos \theta_{i} & -\sin \alpha_{i} \cos \theta_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Aplicando los distintos pasos, obtenemos:

$$A_0^1 = \begin{pmatrix} \cos \theta_1 & 0 & -\sin \theta_1 & a_1 \cos \theta_1 \\ \sin \theta_1 & 0 & \cos \theta_1 & a_1 \sin \theta_1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_1^2 = \begin{pmatrix} \cos \theta_2 & -\sin \theta_2 & 0 & a_2 \cos \theta_2 \\ \sin \theta_2 & \cos \theta_2 & 0 & a_2 \sin \theta_2 \\ 0 & 0 & 1 & 13,2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_2^3 = \begin{pmatrix} \cos \theta_3 & -\sin \theta_3 & 0 & a_3 \cos \theta_3 \\ \sin \theta_3 & \cos \theta_3 & 0 & a_3 \sin \theta_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_3^4 = \begin{pmatrix} \cos \theta_4 & -\sin \theta_4 & 0 & a_4 \cos \theta_4 \\ \sin \theta_4 & \cos \theta_4 & 0 & a_4 \sin \theta_4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Con todas las matrices ya obtenidas, podemos calcular la matriz de transformación directa del manipulador:

$$A_0^2 = \begin{pmatrix} \cos \theta_1 \cos \theta_2 & \cos \theta_1 (-\sin \theta_2) & -\sin \theta_1 & -\sin \theta_1 a_2 \cos \theta_2 \cos \theta_1 - 13, 2\sin \theta_1 + a_1 \cos \theta_1 \\ \sin \theta_1 \cos \theta_2 & \sin \theta_1 (-\sin \theta_2) & \cos \theta_1 & a_2 \cos \theta_2 \sin \theta_1 + 13, 2\cos \theta_1 + a_1 \sin \theta_1 \\ -\sin \theta_2 & -\cos \theta_2 & 0 & -a_2 \sin \theta_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Referencias

- [1] uArm Swift Pro_Developer Guide v1.0.6.pdf, en, 2019. dirección: http://download.ufactory.cc/docs/en/uArm%20Swift%20Pro_Developer%20Guide%20v1.0.6.pdf (visitado 02-11-2019).
- [2] uArm pro User Manual v1.1.0.pdf, en, 2019. dirección: http://download.ufactory.cc/docs/en/uArm%20pro%20User%20Manual%20v1.1.0.pdf (visitado 02-11-2019).
- [3] UPM-Robotics/uarm, original-date: 2019-11-01T11:13:54Z, nov. de 2019. dirección: https://github.com/UPM-Robotics/uarm (visitado 02-11-2019).