Лабораторная работа №14

Модели обработки заказов

Алиева Милена Арифовна

Российский университет дружбы народов, Москва, Россия

Содержание

Содержание

- 1. Цель
- 2. Задания
- 3. Порядок выполнения
- 4. Вывод

Цель работы

Реализовать модели обработки заказов и провести анализ результатов

Задание

Задание

Реализовать с помощью gpss модель оформления заказов клиентов одним оператором, построить гистограмму распределения заявок в очереди, реализовать модель обслуживания двух типов заказов от клиентов в интернет-магазине, реализовать модель оформления заказов несколькими операторами

- 1. Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:
- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Таким образом, получаем модель (рис. (fig:001?))

После запуска симуляции получаем отчёт (рис. (fig:002?))

Далее для выполнения упражнения необходимо скорректировать модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин

Изменим интервалы поступления заказов и время оформления клиентов (рис. (fig:003?))

Рис. 3: Модель оформления заказов клиентов одним оператором с измененными интервалами

После запуска симуляции получаем отчёт (рис. (fig:004?))

2. Далее требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения

Рис. 5: Построение гистограммы распределения заявок в очереди

Получим отчет симуляции и проанализируем его (рис. (fig:006?)).

Проанализируем гистограмму (рис. (fig:007?)).

Рис. 7: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали.

3. Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй - заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE—DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE—RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора.

Отчёт по модели (рис. (fig:009?)).

	GPSS World	Simulation R	eport - Untitle	d Model 1.1.	1	
	Satur	day, May 10,	2025 18:13:53			
9	START TIME		IME BLOCKS FA	CILITIES STO	DRAGES	
		480.000 17 1				
	NAME		VALUE			
OPERATOR		10001.000				
OF	ERATOR Q		10000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COUNT	CURRENT COUNT	RETRY	
		GENERATE		0	0	
		OUEUE	32	4	0	
	3	SEIZE	28	0	0	
	4	DEPART	28	0	0	
	5	ADVANCE	28	1	0	
	6	RELEASE	27	0	0	
	7	TERMINATE	27	0	0	
		GENERATE		0	0	
	9	QUEUE	15	3	0	
	10	SEIZE	12	0	0	
	11	DEPART	12	0	0	
	12	ADVANCE	12	0	0	
	13	ADVANCE	12	0	0	
	14	RELEASE	12	0	0	
	15	TERMINATE	12	0	0	
	16	GENERATE	1	0	0	
	17	TERMINATE	1	0	0	

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Рис. 10: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. (fig:011?)).

	Satur	day, May 10,	2025	8:18:36						
S	TART TIME	END TIME BLO		BLOCKS I	OCKS FACILITIES		STORAGES			
	0.000		.000	11	1		0			
	NAME		V	LUE						
EXTRA		UNSPECIFIED								
NO	EXTRA			.000						
	ERATOR		10001	.000						
	ERATOR Q		10000							
	_									
LABEL	LOC	BLOCK TYPE	ENT	RY COUNT	CURRE	NT CO	UNT R	ETRY		
	1	GENERATE		33		0		0		
	2	QUEUE		33		0		0		
	3	SEIZE		33		0		0		
	4	DEPART		33		0		0		
	5	ADVANCE		33		0		0		
	6	TRANSFER		33		0		0		
	7	ADVANCE		8		1		0		
NOEXTRA	8	RELEASE		32		0		0		
	9	TERMINATE		32		0		0		
	10	GENERATE		1		0		0		
	11	TERMINATE		1		0		0		
FACILITY	ENTRIES	UTIL. AV	E. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELA	
OPERATOR		0.766								
	1.55				676.70					
QUEUE MAX C										
OPERATOR Q	1	0 33	25	0.054	4	0.781		3.220	0	

4. Реализуем последнюю модель - в интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки **operator STORAGE** 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор **operator**, 1, сегмент моделирования времени остается без изменений (рис. (fig:012?)).

Далее получим и проанализируем отчет (рис. (fig:013?)).

ST		END TIME BI			TORAGES 1
	NAME	VA	LUE		
	RATOR	10000	.000		
OPE	RATOR_Q	10001	.000		
LABEL	LOC BLOCK	TYPE ENT	RY COUNT	CURRENT COU	NT RETRY
BRUDE		TE E			0
		-		0	
	3 ENTER			0	0
	4 DEPART		93	0	0
	5 ADVANCE		93	2	0
	6 LEAVE		91	0	0
	7 TERMIN		91	0	0
	8 GENERA	ΓE	1	0	0
	9 TERMIN	ATE	1	0	0
OHEHE	MAX CONT. EN	TDV FNTDV/O	AVE CON	T AVE TIME	AVE (_O) DETDY
OPERATOR_Q	1 0				0.000 0
STORAGE	CAP. REM. MI		DTDG 310		
OPERATOR					
OPERATOR	4 2 0	7	90 I	1.926 0.	402 0 0
FEC XN PRI	BDT A	SEM CURRENT	T NEXT	PARAMETER	VALUE
95 0	480.457	95 0	1		
93 0	482.805	93 5	6		

Далее в упражнении изменим модель: требуется учесть в ней возможные отказы клиентов от заказа - когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Проанализируем полученный отчет (рис. (~ fig:015?)).

Выводы

В процессе выполнения данной лабораторной работы я реализовала с помощью gpss модель оформления заказов клиентов одним оператором, построила гистограмму распределения заявок в очереди, реализовала модель обслуживания двух типов заказов от клиентов в интернет-магазине, реализовала модель оформления заказов несколькими операторами