Assignment on Games in Coalition Form

Coal1.

Find the characteristic function of the 3-person game in strategic form when the payoff vectors are:

Coal2.

Graph the core for the 3-person game with characteristic function:
$$v(\emptyset) = 0$$
, $v(\{1\}) = 0$, $v(\{2\}) = -1$, $v(\{3\}) = 1$, $v(\{1,2\}) = 3$, $v(\{1,3\}) = 2$, $v(\{2,3\}) = 4$, and $v(N) = 5$.

Coal3.

Suppose
$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$$

 $v(\{1, 2\}) = v(\{2, 3\}) = v(\{1, 3\}) = a$
 $v(\{1, 2, 3\}) = 3$

For what values of a is the core non-empty?

Coal4.

Given the Glove Game of 3 players such that Player I, II each possesses a left glove and Player III a right glove. A pair (left and right) has value 10, one glove or two of the same kind has value 0. Find the core of this game.

Coal5.

Suppose (N, v) is a game in coalition form. $N=\{1, 2, 3\}$. Suppose the core is nonempty. Show that the following inequalities are valid.

$$v(1,2,3) \ge v(1) + v(2) + v(3)$$

$$v(1,2,3) \ge v(1,2) + v(3), v(1,2,3) \ge v(1,3) + v(2), v(1,2,3) \ge v(2,3) + v(1),$$

$$v(1,2,3) \ge \frac{1}{2} v(1,2) + \frac{1}{2} v(1,3) + \frac{1}{2} v(2,3).$$

Coal6.

Let (N, v) be a convex game. For any $T \subseteq N$, we define the T-marginal game v_T on subsets S of $N \setminus T$ such that $v_T(S) = v(S \cup T) - v(T)$.

Show that v_T is a characteristic function on $N \setminus T$ and that $(N \setminus T, v_T)$ is a convex game.

(In fact, this condition is also sufficient.)