

Dr. Mukta Bansal

School of Chemistry, Chemical Engineering & Biotechnology (CCEB)

Office: N1.2 - B2 - 28

Email: mbansal@ntu.edu.sq

Chapter Overview

This chapter consists of the following topics:

- 1. Block Diagram Representation
 - Process
 - Composition Sensor-Transmitter (Analyzer)
 - Controller
 - Current-to-Pressure (I/ P) Transducer
 - Control Valve
- 2. Block Diagram: Standard Notation
 - Block Diagram Algebra
 - Closed-Loop Transfer Functions

Chapter Overview

This chapter consists of the following topics:

- 3. Closed-Loop Responses of Simple Control Systems
 - Effect of Proportional Control on Closed-Loop Responses
 - Effect of PI Control on Closed-Loop Responses

Learning Objectives

At the end of this chapter, you will be able to:

- Illustrate the development of block diagram
- Analyze closed-loop transfer functions
- Analyze closed-loop responses of simple control systems

1. Feedback Control Loop (or Closed-Loop)

- Feedback control loop:
 - Combination of the process, feedback controller, and the instrumentation.
- Closed-loop system:
 - Denote the controlled process.
- Block diagrams and transfer functions provide a useful description of closed-loop systems.
- We will analyze the dynamic behavior of several simple closed-loop systems.

Block Diagram Representation

- Transfer function for each of 5 elements.
- Flow rate w_1 is assumed to be constant and the system is initially operating at the nominal steady state.

1.1 Process

Process

$$X'(s) = \left(\frac{K_1}{\tau s + 1}\right) X_1'(s) + \left(\frac{K_2}{\tau s + 1}\right) W_2'(s) \tag{10 - 1}$$

Where

$$au = rac{V
ho}{\overline{w}}, \qquad K_1 = rac{\overline{w_1}}{\overline{w}}, \qquad ext{and} \qquad K_2 = rac{1-ar{x}}{\overline{w}} \qquad (10-2)$$

Block Diagram for the Process

- Effect of changes is additive as a direct consequence of the superposition principle for linear systems.
- Transfer function representation is valid only for linear systems and for nonlinear systems that have been linearized.

1.2 Composition Sensor-Transmitter (Analyzer)

Approximated by a first-order transfer function:

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.261). Hoboken, NJ: Wiley.

• This instrument has negligible dynamics when $\tau \gg \tau_m$:

$$\frac{X_m'(s)}{X'(s)} = K_m$$

1.3 Controller

PI Controller is used

$$\frac{P'(s)}{E(s)} = K_c \left(1 + \frac{1}{\tau_I s} \right) \tag{10-4}$$

• where P'(s) and E(s) are the Laplace transforms of the controller output p'(t) and the error signal e(t). K_c is dimensionless

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.262). Hoboken, NJ: Wiley.

Controller (Cont'd)

Error signal:

$$e(t) = \tilde{x}'_{sp}(t) - x'_{m}(t)$$

Taking laplace:

$$E(s) = \tilde{X}'_{sp}(s) - X'_{m}(s)$$

- The symbol $\tilde{x}_{sp}'(t)$ denotes the *internal set-point* composition expressed as an equivalent electrical current signal.
- $\tilde{x}'_{sp}(t)$ is related to the actual composition set point by sensor-transmitter gain K_m :

$$\tilde{x}_{sp}'(t) = K_m x'_{sp}(t)$$

1.4 Current-to-Pressure (I/P) Transducer

• The transducer transfer function merely consists of a steady-state gain K_{IP}

$$\frac{P_t'(s)}{P'(s)} = K_{IP} {10 - 9}$$

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.262). Hoboken, NJ: Wiley.

1.5 Control Valve

Control valves

- Usually designed such that the flow rate is a nearly linear function of the signal to the valve actuator
- Therefore, a first-order transfer function is an adequate model:

$$\frac{W_2'(s)}{P_t'(s)} = \frac{K_v}{\tau_v s + 1} \tag{10 - 10}$$

Composite Block Diagram of the Controlled System

and control (2nd ed.)(pp.263). Hoboken, NJ: Wiley.

14

2. Block Diagram: Standard Notation

- *Y*: Controlled variable
- *U*: Manipulated variable
- D: Disturbance (or load) variable G_v : TF for the final control
- *P*: Controller output
- *E*: Error signal
- *Y_m*: Measured value of *Y*
- Y_{sp}: Set point
- \tilde{Y}_{sp} : Internal set point (used by controller)
- Y_u : Change in Y due to U

- Y_d : Change in Y due to D
- G_c : Controller TF
- G_v : TF for the final control element
- G_p : Process TF
- G_d : Disturbance TF
- G_m : TF for sensor add transmitter
- $K_{m_{\underline{D}}}$: Steady-state gain for G_m

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.264). Hoboken, NJ: Wiley.

Standard Block Diagram

- General block diagram
 - Variable is the Laplace transform of a deviation variable.
 - Primes and s dependence have been omitted.
 - Forward path: Path from E to Y through G_c , G_v and G_{p} .
 - Feedback path: Path from Y to the comparator through G_m

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.264). Hoboken, NJ: Wiley.

2.1 Block Diagram Algebra

- Important things to look for:
 - Circle represents algebraic relations.
 - Arrows represent flow of information.
 - Block diagram relates input and output.
- Block diagram reduction
- Block in series

Equivalent block diagram

$$X_1 \longrightarrow G_1(s)G_2(s)$$

Block Diagram Algebra (Cont'd)

Comparator

2.2 "Closed-Loop" Transfer Functions

- Closed-loop transfer functions
 - The objective is to find the transfer functions between inputs $(Y_{sp} \text{ or } D)$ and output (Y) of the closed loop.
 - Indicate the dynamic behavior of the controlled process (i.e., process plus controller, transmitter, valve, etc.).
- Set-point changes ("Servo problem")
 - No disturbance changes.
 - D = 0.
- Disturbance changes ("Regulator problem")
 - Process is regulated at a constant set point.

"Closed-Loop" Transfer Functions (Cont'd)

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.264). Hoboken, NJ: Wiley.

- $Y = Y_d + Y_u$ where $Y_d = G_d D \& Y_u = G_p U$
- Combining $Y = G_p U + G_d D$ where $U = G_v P = G_v G_c E$
- $E = \widetilde{Y_{sp}} Y_m$ where $\widetilde{Y_{sp}} = Y_{sp}K_m \& Y_m = G_mY$
- $U = (Y_{sp}K_m G_mY)G_vG_c$
- $Y = (Y_{sp}K_m G_mY)G_vG_cG_p + G_dD$

"Closed-Loop" Transfer Functions (Cont'd)

Rearranging

$$Y = \frac{K_m G_p G_c G_v}{(1 + G_m G_p G_c G_v)} Y_{Sp} + \frac{G_d}{(1 + G_m G_p G_c G_v)} D$$

- Set-point changes "Servo"
 - Assume $Y_{sp} \neq 0$ and D = 0 (set-point changes while disturbance change is zero).

$$\frac{Y(s)}{Y_{sp}(s)} = \frac{K_m G_c G_v G_p}{1 + G_c G_v G_p G_m}$$
 (10 – 26)

"Closed-Loop" Transfer Functions (Cont'd)

Disturbance changes "Regulator"

$$\frac{Y(s)}{D(s)} = \frac{G_d}{1 + G_c G_v G_p G_m}$$
 (10 – 29)

- Note that both TF (10-26 & 10-29) have the same denominator $(1+G_cG_vG_pG_m)$.
- Denominator is often written as $(1 + G_{OL})$.
- *G*_{OL}: Open loop transfer function

Short-Cut Method for Closed-Loop TF

Closed-loop transfer functions for block diagrams:

$$\frac{Z}{Z_i} = \frac{\pi_f}{1 + \pi_e} \quad (10 - 31)$$

- Z: Output variable or any internal variable within the control loop.
- Z_i : Input variable (e.g., Y_{sp} or D).
- π_f : Product of the transfer functions in the forward path from Z_i to Z.
- π_e : Product of every transfer function in the feedback loop.
- Applicable only to portions of a block diagram that includes a feedback loop with a negative sign in the comparator.

Exercise 10.1

• Find Y/Y_{sp}

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.267). Hoboken, NJ: Wiley.

3. Closed-Loop Responses of Simple Control Systems

- Given
 - Process
 - Type of controller
 - Other dynamics such as valve, transmitter, etc.
- Analyze responses
 - Set-point changes
 - Disturbance

Closed-Loop Responses of Simple Control Systems (Cont'd)

- Liquid-level control system
 - Controlled variable h; manipulated variable q_2 ; disturbance variable q_1 .
 - Flow-head relation is linear $q_3 = h/R$.

Dynamics

Process Dynamics

$$H(s) = \frac{R}{(ARS+1)}Q_1(s) + \frac{R}{(ARS+1)}Q_2(s)$$

$$G_p = \frac{K_p}{(\tau s + 1)} = \frac{H(s)}{Q_2(s)}$$
 (10 - 34)

$$G_d = \frac{K_p}{(\tau s + 1)} = \frac{H(s)}{Q_1(s)}$$
 (10 - 35)

- Note that $G_p \& G_d$ are identical, because q_1 and q_2 are both inlet flow rate and thus have the same effect on h.
- $K_p = R$; $\tau = AR$

Other Dynamics

- For simplicity, assume negligible dynamics for level transmitter, transducer, and control valve
- Level transmitter $G_m(s) = Km$
- I/P transducer $G_{IP}(s) = KIP$
- Control valve $G_v(s) = K_v$

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.268). Hoboken, NJ: Wiley.

3.1 Effect of Proportional Control on Closed-Loop Responses

- Proportional controller $G_c(s) = Kc$
- Closed-loop TF

$$H = \frac{K_m G_p K_c K_{IP} K_v}{(1 + G_p K_c K_{IP} K_v K_m)} H_{sp} + \frac{G_p}{(1 + G_p K_c K_{IP} K_v K_m)} Q_1$$

Plugging G_p

$$H = \frac{K_1}{(1+\tau_1 s)} H_{sp} + \frac{K_2}{(1+\tau_1 s)} Q_1$$

$$K_1 = \frac{K_{OL}}{1 + K_{OL}}$$

$$K_2 = \frac{K_p}{1 + K_{OL}}$$

$$\tau_1 = \frac{\tau}{1 + K_{OL}}$$

$$K_{OL} = K_c K_{IP} K_v K_p K_m$$

Effect of Proportional Control on Closed-Loop Responses

$$H = \frac{K_1}{(1+\tau_1 s)} H_{sp} + \frac{K_2}{(1+\tau_1 s)} Q_1$$

- Closed-loop (CL) process has first order dynamics with time constant τ_1 .
- For both TFs, time constant is the same (Characteristics equation), but gain is different.
- Which response is faster? Open loop or closed loop?

$$\tau_1 = \frac{\tau}{1 + K_c K_{IP} K_v K_p K_m}$$

• Decreases with increasing K_c always $< \tau$, i.e., CL response is faster than OL response.

3.1 Effect of Proportional Control on Closed-Loop Responses

Gain?

$$K_1 = \frac{K_p K_c K_{IP} K_v K_m}{1 + K_p K_c K_{IP} K_v K_m}$$

$$K_2 = \frac{K_p}{1 + K_p K_c K_{IP} K_v K_m}$$

- K_1 not equal to 1 unless K_c = infinity, K_1 always < 1
- K_2 not equal to 0 unless K_c = infinity, K_2 always < K_p

Set-Point Change (Servo Problem)

 CL Response of step change of magnitude M in set point.

•
$$H_{sp} = \frac{M}{s}$$
 (D = 0 or $Q_1 = 0$)

•
$$h(t) = K_1 M (1 - e^{-t/\tau_1})$$

$$(10 - 41)$$

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.270). Hoboken, NJ: Wiley.

Set-Point Change (Cont'd)

- Offset
 - Steady state error
 - Difference between the steady state value of set point and the height
 - $h'_{sp}(\infty) h'(\infty)$
 - $\bullet \frac{M}{1 + K_p K_c K_{IP} K_v K_m}$
- How the offset can be reduced?

Set-Point Change (Cont'd)

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.272). Hoboken, NJ: Wiley.

- Offset can be reduced by increasing gain of controller.
- Making K_c too large can cause oscillatory or unstable responses.

Disturbance Changes (Regulator)

$$= H = \frac{K_1}{(1+\tau_1 s)} H_{sp} + \frac{K_2}{(1+\tau_1 s)} Q_1$$

$$K_2 = \frac{K_p}{1 + K_p K_c K_{IP} K_v K_m}$$

$$- H_{sp} = 0$$

$$\tau_1 = \frac{\tau}{1 + K_p K_c K_{IP} K_v K_m}$$

 CL response of step change of magnitude M in disturbance

$$Q_1 = \frac{M}{s} \quad (H_{sp} = 0)$$

•
$$h(t) = K_2 M (1 - e^{-t/\tau_1})$$

$$(10 - 56)$$

Disturbance Changes (Regulator)

- Offset
 - $h'_{sp}(\infty) h'(\infty)$
 - Offset = $0 K_2 M = -K_2 M = -\frac{K_p M}{1 + K_p K_c K_{IP} K_v K_m}$
- Increasing K_c reduces the amount of offset (same as for servo problem).

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.273). Hoboken, NJ: Wiley.

3.2 Effect of PI Control on Closed-Loop Responses

$$H = \frac{K_m G_p G_c K_{IP} K_v}{(1 + G_p G_c K_{IP} K_v K_m)} H_{sp} + \frac{G_p}{(1 + G_p G_c K_{IP} K_v K_m)} Q_1$$

• Plug G_c and G_p

•
$$G_p = \frac{K_p}{(\tau s + 1)} = \frac{H(s)}{Q_2(s)}$$

$$G_c = K_c (1 + \frac{1}{\tau_r s})$$

Disturbance Changes (Regulator)

$$= \frac{H}{Q_1} = \frac{G_p}{(1 + G_p G_c K_{IP} K_p K_m)} = \frac{K_p \tau_I s}{\tau_I s (\tau s + 1) + K_{OL}(\tau_I s + 1)}$$
 (10 - 59)

$$K_3 = \frac{\tau_I}{K_c K_{IP} K_v K_m}$$
 (10 - 61)

Disturbance Changes (Regulator)

CL response of unit step change in disturbance

$$H(s) = \frac{K_3}{\tau_3^2 s^2 + 2\zeta_3 \tau_3 s + 1}$$
 (10 - 64)

• Response is a damped oscillation for $0 < \zeta_3 < 1$

$$h(t) = \frac{K_3}{\tau_3 \sqrt{1 - \zeta_3^2}} e^{-\zeta_3 t/\tau_3} \sin[\sqrt{1 - \zeta_3^2} t/\tau_3]$$
 (10 - 65)

Offset?

Disturbance Changes (Regulator)

Time (min)

-0.02

-0.04

- Integral action eliminates offset.
- $\uparrow K_c$ or $\tau_I \downarrow$ speeds up the response.
- Response is oscillatory as either $K_c \downarrow$ (unexpected) or $\tau_I \downarrow$ (expected).
- In general, closed loop response becomes more oscillatory as $K_c \uparrow$.
- Unexpected result because of the dynamic lags associated with the control valve and transmitter are neglected.

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2011). *Process dynamics and control* (2nd ed.)(pp.275). Hoboken, NJ: Wiley.

16

Summary

- We consider the dynamic behavior of processes that are operated using feedback control.
- Block diagrams and transfer functions provide a useful description of closed-loop systems.
- We analyze the dynamic behavior of several simple closed-loop systems.
- We consider the dynamic behavior of several elementary control problems for disturbance variable and set-point changes. The transient responses can be determined in a straightforward manner if the CLTFs are available.
- Suggested Reading: Chapter 10 of Seborg

Review Questions

- 1 Go to wooclap.com
- 2 Enter the event code in the top

Event code

CH3101WEEK9

The End