Linear control

Signal Flow Graph

Calculate overall gain of a graph using mason rule

Name: Norhan Magdi Mohamed El-garawany

ID:69

Source code: https://github.com/norhanmagdi/SFG

Content

□ Features: page(3).
 □ Data structures and algorithms: page(4).
 □ Sample runs: page(5).
 □ User guide: page(11).

Features:

This is a javafx program for calculate the overall gain of a graph using manson rule and contains the following features:

- → Draw signal flow graph
- → Finding forward paths and calculate their gain
- → Finding loops and calculate their gain
- → Finding non touching loops and calculate their gain
- → Calculate delta
- → Calculate deltas for each path
- → Calculate overall gain

Data Structures & algorithms:

Graph:

Adjacency list is used to implement the graph manually such that each element of the list is Node consists of 2 values one for the node number and the other for weight of the path .

Storing data:

- -ArrayList for storing paths and loops as num of (path/loop) is the key and the value is (path/loop)
- -HashMap for storing gain of paths and loops as num of (path/loop) is the key and the value is the gain of (path/loop)

Algorithms used:

The main algorithm used is DFS (Depth First Search) to make sure that we reach target without passing the same node twice.

Sample run:

Forward paths:	Loops:	
M1 = 1,2,3,4,5,6 = 100.0 M2 = 1,2,5,6 = 12.0	L1 = 2,3,4,5,2 = -100.0 L2 = 2,5,2 = -12.0 L3 = 3,4,3 = -10.0 L4 = 4,5,4 = -4.0	
non-touching loops:	Delta :	
2,5,2 & 3,4,3	Delta = 247.0 Delta(1) = 1.0 Delta(2) = 11.0	

nal Flow Graph Details		
Forward paths:	Loops:	
M1 = 1,2,3,4,5 = 1.0 M2 = 1,3,4,5 = 1.0	L1 = 2,3,4,2 = -1.0 L2 = 3,4,3 = -1.0	
non-touching loops:	Delta :	
	Delta = 3.0 Delta(1) = 1.0 Delta(2) = 1.0	

Converd nother	Loons	
Forward paths: M1 = 1,2,3,4,5,6 = 1.0 M2 = 1,2,4,5,6 = 3.0	Loops: L1 = 2,3,4,5,2 = -2.0 L2 = 2,3,2 = -1.0 L3 = 2,4,5,2 = -6.0 L4 = 4,5,4 = -1.0	
non-touching loops: 2,3,2 & 4,5,4	Delta: Delta = 12.0 Delta(1) = 1.0 Delta(2) = 1.0	

User guide:

First user choose number of nodes:

Then the nodes are drawn,

To add edge: write the nodes and weight then click on ADD EDGE button

Then the edge is drawn,

After finishing drawing the graph to calculate overall gain click on *CALCULATE* button

After calculating overall gain to show the details (loops/paths/delta) click on DETAILS button

To start a new graph click on NEW button

