Predicting Fatal Heart Disease Using ML Models

Team 7b

Antonio Moral, Roozbeh Jafari, Xiang Zhou, Lai Zhang, Kai Guo

Heart failure: A major problem worldwide

Approximately:

17.9 million

People globally die each year from CVD

Approximately:

85%

Of these deaths are due to heart disease and stroke

Abstract

Background

Methods

Results

Conclusions

- → Number 1 cause of death globally
- → 31% of all deaths worldwide
- **→** EDA
- → Visualization
- → Three ML Models
- → Deducted-feature models
- → More accurate predictions
- → New supporting tool for physicians
- → Focus mainly on serum creatinine and ejection fraction.

What data to analyze?

We chose the **Heart Failure Clinical Records Dataset.**

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
	75.0		582				265000.00	1.9	130				1
	55.0		7861		38		263358.03	1.1	136				1
	65.0		146				162000.00	1.3	129				1
	50.0		111				210000.00	1.9					1
4	65.0		160				327000.00	2.7	116				1

	columns (total 13 columns):									
#	Column	Non-	-Null Count	Dtype						
0	age	299	non-null	float64						
1	anaemia	299	non-null	int64						
2	creatinine_phosphokinase	299	non-null	int64						
3	diabetes	299	non-null	int64						
4	ejection_fraction	299	non-null	int64						
5	high_blood_pressure	299	non-null	int64						
6	platelets	299	non-null	float64						
7	serum_creatinine	299	non-null	float64						
8	serum_sodium	299	non-null	int64						
9	sex	299	non-null	int64						
10	smoking	299	non-null	int64						
11	time	299	non-null	int64						
12	DEATH EVENT	299	non-null	int64						

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
count	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.00000	299.000000	299.000000	299.00000	299.000000	299.00000
mean	60.833893	0.431438	581.839465	0.418060	38.083612		263358.029264	1.39388	136.625418	0.648829	0.32107	130.260870	0.32107
std	11.894809	0.496107	970.287881	0.494067	11.834841	0.478136	97804.236869	1.03451	4.412477	0.478136	0.46767	77.614208	0.46767
min	40.000000	0.000000	23.000000	0.000000	14.000000	0.000000	25100.000000	0.50000	113.000000	0.000000	0.00000	4.000000	0.00000
25%	51.000000	0.000000	116.500000	0.000000	30.000000	0.000000	212500.000000	0.90000	134.000000	0.000000	0.00000	73.000000	0.00000
50%	60.000000	0.000000	250.000000	0.000000	38.000000	0.000000	262000.000000	1.10000	137.000000	1.000000	0.00000	115.000000	0.00000
75%	70.000000	1.000000	582.000000	1.000000	45.000000	1.000000	303500.000000	1.40000	140.000000	1.000000	1.00000	203.000000	1.00000
max	95.000000	1.000000	7861.000000	1.000000	80.000000	1.000000	850000.000000	9.40000	148.000000	1.000000	1.00000	285.000000	1.00000

Correlation of Features

Understanding the features most correlated to fatal heart disease.

Findings:

- We can see some initial tendencies such as age being a factor on whether a patient survives.
- Heart failure patients with lower ejection fraction are more likely to die
- The higher the serum creatinine value, patients are more likely to die
- Patients with lower serum sodium value are more likely to die
- Most death events occur during a short period of follow-up time

Examining other relationships between different attributes and a patients age.

Creating Machine Learning Models to Predict Fatal Heart Disease

Feature Importance Ranking

- Random Forest Classifier

Top features:

- time
- serum_creatinine
- ejection_fraction
- age

Accuracy of different classifier models

Sensitivity of different classifier models

- TP/P
- How many actually -died patients the model correctly identifies as died?

Specificity of different classifier models

- TN/N
- How many patients survived does the model correctly confirmed as survived?

Conclusion:

This discovery has the potential to impact on clinical practice, becoming a new supporting tool for physicians when predicting if a heart failure patient will survive or not.