EC316 Summary (2):

Topics in Macroeconomics With Time Series Econometrics

Lewis Britton {201724452}

EC316: Topics in Macroeconomics With Time Series Econometrics

Academic Year 2019/2020

Word Count: {N/A}

EC316 Supplementary Notes

Lecture 9: The Euro

- Adopting a common currency fixes ERs
- Giving up Flexible ERs:
 - o Giving up ability to adjust both i and ER

1: ER Volatility Concern

- 1) Degree of Openness
 - o European economies are very open
 - \circ Int. trade important for domestic Y
 - o High reliability of X and IM
 - \circ Demand/Y is more exposed to fluctuations in ER
- 2) Wide ER Fluctuations
 - o **Real Depreciation** can improve trade balance (X IM)
 - o Higher inflation and collapse of free trade
 - o Require more coordinated institutions and common monetary system
- 3) Common Agricultural Market
 - o Common Agricultural Policy (CAP)
 - Single ECU (weighted avg. prices in different currencies) price for agricultural products
 - Devaluation of one currency meant relative price change cross-country exposes prices again to fluctuations in ER

1.1: Fixing Currency - Bretton Woods Agreement

- Keep volatility in check
- Currencies follow the US\$
- Deviations kept $\{+/-0.75\%\}$
- 1970s Collapse Incompatibility between German and US policy goals
- **US Monetary Expansion** to fund Vietnam War inflation
- High inflation in US, lose competitiveness due to high prices (IM > X)
- **Germany Monetary Contraction** raised *i* to make German bonds and currency more attractive than US
- Fed didn't change i so policy option was to devalue
- Europeans clashed with ineffectiveness of ER policy inf. UK & Italy: 20%, Fra. 15%

1.2: Monetary System Fluctuation Options

- 1) Raise i
- 2) Ask for realignment
- Slide 13 for Formulae Example
- In EMS: in highest margins raise i or change central parity of devaluation band
- Higher i rates make currency more attractive

2: Forming Monetary Union

- Maastricht Treaty February 1992
 - Single currency decision
 - o Convergence of countries aspiring to join inflation, ER, L-R i, pub. def.
 - Creation of ECB
- Single Currency impossible for countries to devalue
- European Council 1998 agrees on members which met criteria

2.1: EMU Admission Criteria

- Inflation Rate
 - o Previous yr. can't be > 1.5pp above that of three best performers
- Previous Deficits & Debts
 - o Ratio of Gov. Def. to GDP can't be > 3%
 - o Ration of Gov. Debt to GDP can't be > 60%
- **ER**
 - o For at least 2 years, fluctuations within band
- L-Term i
 - One year prior to examination, avg. l-term rate can't exceed more than 2pp of the three best performers (using l-term gov. bonds)

2.2: Europe – Optimal Currency Area (OCA)?

- "To what extent are European economies likely to face Asymmetric Shocks?"
- Two Conditions for OCA
 - 1) Countries face similar shocks
 - 2) High labour mobility
- 2. Can the Euro make business cycles more synchronised?
 - o Trade intensity
 - Industry specialisation
 - Labour mobility across countries
- Some studies find sync. among countries but not all labour mobility historically low still possibility of **asymmetric shock** req. different stabilisation processes

Lecture 10.1: Univariate Root Testes Cont. (Econometrics)

1: Alternative AR(1) Characterisations

1.1: Stationary Processes

- Where $|\rho| < 1$, u = White Noise Errror with Mean 0 and Variance σ^2
 - $\circ \quad Y_t = \rho Y_{t-1} + u_t$
 - Y_t is stationary process
 - 0 Mean
 - Constant Variance
 - $\circ \quad Y_t = \alpha + \rho Y_{t-1} + u_t$
 - Y_t is stationary process w/ **drift**,
 - Constant Mean
 - Constant Variance
 - $\circ \quad Y_t = \alpha + \rho Y_{t-1} + \delta t + u_t$
 - Y_t is **trend** stationery process and will be stationary w/
 - Constant Mean (if Detrended $(Y_t \delta t)$)
 - Constant Variance (if Detrended $(Y_t \delta t)$)

1.2: Non-Stationary Processes

- Where u = White Noise Errror with Mean 0 and Variance σ^2
 - $\circ \quad Y_t = Y_{t-1} + u_t \to \Delta Y_t = u_t$
 - Y_t follows a random walk
 - ΔY_t has 0 Mean & Constant Variance
 - $\circ \quad Y_t = \alpha + Y_{t-1} + u_t \to \Delta Y_t = \alpha + u_t$
 - Y_t follows a random walk w/ **drift**
 - ΔY_t has Mean α and Variance σ^2
 - $\circ \quad Y_t = \alpha + Y_{t-1} + \delta t + u_t \to \Delta Y_t = \alpha + \delta t + u_t$
 - Y_t follows a random walk w/ **trend** then **drift**
 - ΔY_t has Mean α and Variance σ^2 (if Detrended $(\Delta Y_t \delta t)$)

2: Testing for Unit Roots

- **Dickie Fuller**: $Y_t = \alpha + \rho Y_{t-1} + u_t$ has <u>Unit-Root</u> if $\rho = 1$
 - Testing Regression: $\Delta Y_t = \alpha + \phi Y_{t-1} + u_t$
 - o **Null Hypothesis**: H_0 : $\phi = 0$
 - Null Hypothesis: H_0 : $\rho = 1$ {As $\phi = (\rho 1)$ }
 - \circ **Test Statistic**: as t-ratio on ϕ called τ on non-std. distribution of test-stat
 - O Decision Rule (p-value):
 - Y Stationary: {< 0.05} Reject H₀
 - Y Non-Stationary: {> 0.05} Fail-To-Reject H₀

- Augmented Dickie Fuller: Adding further lagged Δ terms and trend t to test
 - Testing Regression: $\Delta Y_t = \alpha + \phi Y_{t-1} + \gamma_1 \Delta Y_{t-1} + \dots + \gamma_p \Delta Y_{t-p} + \delta t + u_t$
 - O Null Hypothesis: H_0 : $\phi = 0 \rightarrow H_0$: $\rho = 1$
 - o **Test Statistic**: as t-ratio on ϕ called τ on non-std. distribution of test-stat
 - Decision Rule:
 - Y Stationary: {< 0.05} Reject H₀
 - "Y Stationary about trend if $\delta \neq 0$ "
 - Y Non-Stationary: {> 0.05} Fail-To-Reject H₀
 - "Y Non-Stationary about trend if $\delta \neq 0$ "
- Example(s):

```
with constant and trend model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + \dots + e1*t-order autocorrelation coeff. for e: 0.001 lagged differences: <math>F(3, 233) = 5.286 [0.0015] estimated value of (a - 1): -0.0382769 test statistic: tau ct(1) = -2.5207 asymptotic p-value 0.318
```

○ **Decision**: p-value on τ -test is $\{>0.05\}$ → Fail-To-Reject $H_0 \to l$ _GDP Non-St. & <u>Unit-Root</u>

```
test with constant model: (1-L)y = b0 + (a-1)*y(-1) + \ldots + e 1st-order autocorrelation coeff. for e: 0.006 lagged differences: F(2, 235) = 5.873 [0.0032] estimated value of (a-1): -0.664499 test statistic: tau c(1) = -6.67146 asymptotic p-value 2.469e-009
```

○ Decision: p-value on τ -test is $\{<0.05\} \rightarrow \text{Reject H}_0 \rightarrow \text{d_l_GDP Non-St. \& Unit-Root}$

Lecture 10.2: Garch Models of Volatility (Econometrics)

- Where σ^2 is more important than the variables themselves
 - o E.g. risk in share price
 - o E.g. derivatives (options etc. derived from assets)
 - o E.g. how it looks:

- Volatility Clustering:
 - Riskiness isn't randomly scattered across data, some periods more risky
 - Periods of high volatility followed by periods of tranquillity autocorr.

1: Stock Prices & Returns

- $Y_t = \alpha + Y_{t-1} + \varepsilon_t$
 - \circ "Stock prices **rise** by average of α ea. period, but are unpredictable"
- Rearrange: $\Delta Y_t = \alpha + \varepsilon_t$
 - o "Stock prices **are** on average α, but are unpredictable"
- **Example:**

2: Stock Price Volatility

$$- \Delta y_t = \Delta Y_t - \Delta \overline{Y} \left\{ \Delta Y_t = \alpha + \varepsilon_t \right\}; \left\{ \Delta \overline{Y} = \frac{\sum \Delta Y_t}{T} = \alpha \right\}$$

$$\circ \quad \Delta y_t = \alpha + \varepsilon_t - \alpha$$

$$\circ \Delta y_t = \varepsilon_t$$

$$\circ \quad \Delta y_t = \varepsilon_t$$

$$\cdot \quad \sigma_{\Delta y_t}^2 = \Delta y_t^2$$

o Difference in stock price, deviations from mean, square them

2.1: AR(1) Model of Volatility

- Vol. depends on vol. in previous period
- Usually $\rho > 0$: if high vol. last period, there will likely be again, same /w low
 - o "Volatility Clustering"
 - o Error u_t means there can be exceptions
 - o Provided R's are stationary: OLS estimates, t-stats, p-values can be interpreted the standard way

3: Autoregressive Conditional Heteroscedasticity (ARCH) Models

- Financial time-series
- Involves equations for Y_t and σ_t^2
- GARCH Model:
 - Adds lags of σ_t^2 instead of just squared terms
- ARCH vs. GARCH

0

4: Conclusion

- Many t-series variables, such as asset prices, seem to exhibit random walk behaviour hard to predict future movement
- However, volatility is more accurately predictable used as dependant variable

Lecture 11: The Great Recession

- How does macroeconomic theory explain 2007-2010 crisis?
- House problem to financial crisis → financial to macroecon. → policy → recovery

1: Housing Problem to Financial Crisis

- **Economic Bubble**: prices of assets > their fundamental value
 - o Once they burst, asset prices collapse
- **Sub-Prime**: intended for borrowers w/ low probability of repayment
 - o Amplification led to system collapse

1.1: The Bubble

- Rapid house price demand post-2000
 - \circ Long period low i incentive to borrow to buy (expanded financial sector)
 - o No need to raise i as π was low (house price change doesn't enter π)
 - Expectation of house prices continuing to rise (irrational exuberance)
 - People think it's an easy way to make money
 - Borrowing easier as banks made mortgage approvals less strict
 - o Low probability repayment households were approved (sub-prime)
 - Banks didn't care about this risk as they repackaged the mortgages and sold them as ranks of Mortgage Backed Securities

1.2: Initial Trigger

- Summer 2007
 - Started in the sub-prime mortgage market
 - o House prices stopped increasing and people increasingly defaulted
 - Underlying properties are foreclosed and transferred to banks
 - Current value of house < initial loan

1.3: Bubble Popped into Financial Crisis

- Banks are intermediaries between borrowers and lenders
- **Solvency Problem**: if asset value < liabilities: bank becomes insolvent

- Liquidity Problem: banks now cant repay their lenders
- Leverage plays a part in amplifying this everything is blown up
 - o Leverage Ratio = {Assets/Capital}
 - Capital Ratio = {Capital/Assets}
 - o Incentive existed due to (1) underestimated risk, (2) high bonus incentive
 - o There was a regulation on min{Capital Ratio} new ways to avoid

- Complexity:

Movement away from balance sheet operations

- Securitization:

- Creation of securities based on bundling assets (e.g. mortgages)
- o Mortgage Backed Security: a title to returns from bundle of mortgages
 - Bundled assets shouldn't be correlated but sub-prime's were, high
- o Collateralised Debt Obligations: high risk, high return assets on default

- Structured Investment Vehicles (SIVs):

- o Off balance sheet operations independent from banks
- o **Liability** side: borrows from investors (short-term debt)
- o Asset side: holds various forms of securities
- o Asset relies on bank as lender of last resort
- Shadow Banking & American International Group**
- House Prices Decreased
 - o Assets became Toxic Assets very high risk and no one wanted to hold
 - o Fire Sales
 - o Assets attached to the mortgages declined in value also

2: Financial Problem to Macroeconomic Problem

- 3: Policy Response
- 4: Slow Recovery

Lecture 12: High Debt

"Why do economists worry when governments accumulate debt quickly?"

- 1) Budget Constraint of Government
- 2) Analysing Debt-to-GDP Ratio
- 3) Political Theory of Debt
- **Primary Deficit**: (G T) "gov. spending (-) taxes (collected)"
 - \circ G (can be) > T: with borrowing
- Cyclically Adjusted Deficit: what the deficit would be if Y was at natural level
- **Inflation-Adjusted Deficit**: deficit measured in real terms (adjusted for π)

1: Government Budget Constraint

- Create a <u>budget deficit</u> to stimulate economy, people to spend
- How can you repay this?

$$Deficit_t = B_{t-1}(r) + (G_t - T_t)$$

$$B_{t-1}$$
 = Bonds & Bills Issued (Government Debt)
 r = Real Interest Rate
 $(G_t - T_t)$ = Primary Deficit

- Assume **Deficit Financing** (sell B to investors; as opposed to T > G):

$$B_t - B_{t-1} = Deficit_t$$

- Hence <u>Budget Constraint</u>:

$$B_t - B_{t-1} = B_{t-1}(r) + (G_t - T_t)$$

$$B_t = B_{t-1}(1+r) + (G_t - T_t)$$

 $Debt\ Year\ t = Debt\ Year\ t - 1(1+r) + Primary\ Deficit$

1.1: Repaying Debt

- Case 1 Example:
 - o *Repays in year 1 so* $\{B_0 = 1; B_1 = 0\}$
 - Hence (sub to above):

$$(T_1 - G_1) = (1+r)$$

- o Gov. creates **Primary Surplus** in year 1 (=) (1+r)
- An increase in T of initial T cut plus i rate on debt

- Case 2 Example:

- o Repay after t years so no payment previously
- o Hence:

- $(T_1 G_1) = (1+r)^t$
- o Gov. creates **Primary Surplus** (=) $(1+r)^t$
- o \\ If G unchanged, reduction of T today must be offset by increase in T_t
- o \\ Delaying T increase or higher i means T increase must be larger

- Case 3 Example:

- o Stabilise at a higher level $\{B_0 = B_1 = 1\}$
- o Government doesn't need to repay
- o Hence:

$$(T_1 - G_1) = (1+r) - 1$$

 $(T_1 - G_1) = r$

O To stabilise debt, gov must achieve **Primary Surplus** (=) real interest rate and this must hold for every subsequent year

2: Analysing Debt-to-GDP Ratio

- Normalise above by the real output Y

$$\frac{B_t}{Y_t} = \frac{B_{t-1}}{Y_t} (1+r) + \frac{(G_t - T_t)}{Y_t}$$

$$\to \frac{B_t}{Y_t} = \frac{B_{t-1}}{Y_{t-1}} \frac{Y_{t-1}}{Y_t} (1+r) + \frac{(G_t - T_t)}{Y_t}$$

As:
$$\frac{Y_{t-1}}{Y_t} = \frac{1}{(1+g)}$$
; Approximate: $\frac{(1+r)}{(1+g)} \approx (1+r-g)$

$$\frac{B_t}{Y_t} - \frac{B_{t-1}}{Y_{t-1}} = \frac{B_{t-1}}{Y_{t-1}} (r - g) + \frac{(G_t - T_t)}{Y_t}$$

- "Change in debt ratio is (=) to sum of":
 - Difference between real interest and rate of GDP, multiplied by end-ofperiod debt ratio
 - o The ratio of **Primary Deficit** to GDP
- First Equation: debt level evolves with real interest
- Second Equation: debt-to-GDP ratio evolves with real interest and growth

2.1: What Will Happen to Debt-GDP in L-R?

- Effected by {Deficit/Debt Position A/Interest Rate r/Growth Rate g}
- Treating in year t as **Exogenous** (a given)
- Hence:

$$y_t = \beta y_{t-1} + A$$

- Parameter $\beta = (1 + (r g))$
- A = Primary Deficit
- y_t = General Varibale for Debt Ratio
- Is Debt-GDP **sustainable** or **unstable** (keeps growing)?
 - o Is it converging or diverging to 45° line

	g > r	<i>g</i> < <i>r</i>
Primary Deficit		
$(G_t - T_t > 0)$	Figure (a)	Figure (c)
Primary Deficit		
$(G_t - T_t < 0)$	Figure (b)	Figure (d)

- (a) & (b): if (g < r), with (+) Debt and Primary Deficits, debt ratio increases
 - o **Diverge** from Equilibrium
 - o Prevent exponential increase in debt ratio: run **Primary Surplus**: (G < T)
- (c) & (d): if (g > r), debt-GDP ratio will **Converge** to steady state in L-R
 - o Even with **Primary Deficits**, convergence occurs
 - o Governments don't need to stabilise debt-to-GDP ratio

3: Political Theory of Debt

- 1960's: strong growth w/ average growth exceeding r almost everywhere (g > r)
 - o Falling debt ratios w/o needing surpluses
- 1970's: lower growth and lower interest rates
- 1980's: growth rates slowed, interest increased
 - To avoid increase in Debt-GDP, countries should have created large surpluses
 - o However, period leading to 2007 saw sharp increase in Debt-GDP ratios

3.1: Dangers of Very High Public Debt

Usually around 200%

- 1) Increase **Primary Surplus**, government raises taxes but they're unpopular
- 2) Political uncertainty increases \rightarrow increases risk premium \rightarrow increases interest rate
- 3) Fiscal tightening induced by first increase in r then generates deeper recession \rightarrow reduces rate of growth
- 4) Increase in r and lower g result in higher $(r g) \rightarrow$ more difficult to stabilise debt-GDP ratio

3.2: Return from High Debt

- If debt-GDP is very high, can escalate and lead to debt crisis
 - o Impossible to issue new debt, except at extraordinary rates
- Wait rather than immediately introducing adequate measures as:
 - o Debt crises unpredictable, short-sighted gov.'s reluctant to admit crisis
 - o Fiscal policy/correction would impact differently on societal groups

3.3: Reduce High Debt

Where (r > g), three way to achieve reduction:

- 1) Generate **Primary Surpluses**
- 2) Monetary Financing by CB: Print money by purchasing gov. bonds
 - Raises inflation, like a form of taxation reduces real value of debt and cash

3) **Repudiate the Debt**

- a. Pros: reduces distortions of high debt
- b. Cons: erodes trust between investors and government gov.'s perhaps unable to run deficits in case of unexpected high expenditure

3.4: Political Theory of Debt

- Reduce Debt → Redistribute Wealth (debt reduction, raised tax, higher inflation)
 - o Rentiers: earn from securities
 - o Entrepreneurs: earning from owning physical capital
 - O Workers: earning from owning human capital

Lecture 13 & 14: Time Series Correlation, Cointegration & Error Correlations

- 1) ADL Model
- 2) T-Series Regression w/ X & Y Stationary
- 3) T-Series Regression w/ X & Y Non-Stationary (Unit-Roots)
 - Spurious regression
 - Cointegration
 - o Estimation/Testing w/ Cointegrated Variables
 - o T-Series Regression w/ X & Y Cointegrated (Error Correction Model)

1: Recall Stationarity & Non-Stationarity

- Stationarity: Constant Mean, Constant Variance, No Seasonality
- Y_t is <u>Stationary</u> (does not have a Unit-Root) if:
 - o $E(Y_t)$ is (=) @ all t values
 - o $\sigma_{Y_t}^2$ is (=) @ all t values
 - o $cov_{Y_t,Y_{t-s}}$ depends only on s, not on t
- Y_t is Non-Stationary (has a Unit-Root) if:
 - φ = 0; ρ = 1
 - $\circ \quad \sigma_{Y_t}^2 \to \infty \, \left\{ \text{Where} \, \sigma_{Y_t}^2 = \frac{\sigma^2}{1-\rho^2} \right\}$

2: Autoregressive Distributed Lag ADL(p, q)

$$Y_t = \alpha + \delta t + (\rho_1 Y_{t-1} + \dots + \rho_p Y_{t-p}) + (\beta_0 X_{t-0} + \beta_1 X_{t-1} \dots + \beta_q X_{t-q}) + \varepsilon_t$$

- Y_t is dependent upon:
 - o p lags of Y_t
 - $\circ X$
 - \circ q lags of X
- Y & X must hold the same stationarity properties (both stationary or non-')

3: Testing ADL for Non-Stationarity

- Stationary \rightarrow OLS Regression \rightarrow t-test \rightarrow F-test
- Rewrite for change in Y_t :

$$\Delta Y_t = \alpha + \delta t + \left(\phi Y_{t-1} + \gamma_1 \Delta Y_{t-1} + \dots + \gamma_{p-1} \Delta Y_{t-(p+1)}\right) + \left(\theta X_t + \omega_1 \Delta X_{t-1} + \dots + \omega_{t-1} \Delta X_{t-(q+1)}\right) + \varepsilon_t$$

Long-Run Multiplier: Y & X are in equilibrium → X increases by 1 in perpetuity → Y changes accordingly → L-RM (=) difference between equilibrium Y and this effect of X on Y

3.1: Spurious Regression w/ Non-Stationarity

- Recall (**Example**): $Y_t = \alpha + \beta X_t + \varepsilon_t$
 - o t-tests will show values which indicate $\beta \neq 0$ when it may be (recall)
 - o This is called "Spurious Regression"

3.2: Cointegration w/ Non-Stationarity

- Cointegration: in equilibrium, errors stationary, no Unit-Root,
- No Cointegration: no equilibrium, errors non-stationary, Unit-Root
 - ** Cointegration if: Unit-Root in Variables \rightarrow No Unit-Root in ε_t **
 - o Error Estimation: $\varepsilon_t = Y_t \alpha \beta X_t$
 - o Equilibrium ε_t stays small
 - o The gap between each line of Y and X is relatively **constant**
 - https://www.youtube.com/watch?v=q5wbOSjbVW4
- If both of these have Unit-Roots, ε_t also is expected to have a Unit-Root
 - o If ε_t holds Unit-Root: Spurious Regression
 - o Possible that Unit-Roots of Y and X "cancel ea. other out"
 - "If Y and X have <u>Unit-Roots</u> but a linear combination of them is <u>Stationary</u>, Y and X are <u>Cointegrated</u>"

3.3: Regression w/ Cointegration

- Cointegration of Y and X: no Spurious Regression
- Regression of Y and X: 'cointegrated regression'
- Regression coefficient: Long-Run Multiplier
- Engle-Granger Test, Johansen Test

3.3.1: Regression w/ Cointegration in Gretl

- Same as Unit-Root but:
 - o H_0 : "Unit-Root exists, non-stationary, no cointegration between X & Y"
 - o H_A: "No Unit-Root exists, stationary, cointegration between X & Y"

4: Issues w/ Cointegration Testing (Engel-Granger Test)

- Previously focused only on Y and X but we can use up to K variables
- The Engel-Granger Test would only find whether there is <u>Cointegration</u> or not not how many <u>Cointegrating</u> relationships there are
- Therefore, (1) use the Johansen Test which is VAR-based, (2) do multiple Engel-Granger Tests for combinations of ln values (e.g. ln(Y) & ln(C), ln(C) & ln(I))

4.1: Example - Cointegration Between C, I, Y

- If ln(Y), ln(C), ln(I) contain Unit-Roots, possible **two** Cointegrating relationships
- Johansen Test:

```
Estimation period: 1951:2 - 2002:2 (T = 205)
Case 3: Unrestricted constant

Log-likelihood = 2630.62 (including constant term: 2048.85)

Rank Eigenvalue Trace test p-value Lmax test p-value
0 0.13754 37.265 [0.0051] 30.334 [0.0012]
1 0.028769 6.9313 [0.5916] 5.9840 [0.6212]
2 0.0046103 0.94729 [0.3304] 0.94729 [0.3304]

Corrected for sample size (df = 201)
Rank Trace test p-value
0 37.265 [0.0054]
1 6.9313 [0.5958]
2 0.94729 [0.3335]
```

- o H_{Rank 0}: Null that there is 0 Cointegrating relationships
- o H_{Rank 1}: Null that there is 1 Cointegrating relationships
- o H_{Rank 2}: Null that there is 2 Cointegrating relationships
- o If | Critical Value | < | trace-stat |: Reject Null Hypothesis
- o If p-value < 0.05: Reject Null Hypothesis
- o This Example:
 - Reject H_{Rank 0}
 - Fail to Reject H_{Rank 1}
 - Fail to Reject H_{Rank 2}

- Engel-Granger Test (Form of DF Test):

- o Step 1: test for Unit-Root in C (Model of Y & C)
- o Step 2: test for Unit-Root in Y (Model of Y & C)
- Step 3: Cointegration Regression
- Step 4: test for Unit-Root in Error ε_t
- \circ Cointegrated if: Unit-Root in Y & C, no Unit-Root in ε_t

5: Error Correction Model (ECM)

- Moving forward, assuming variables are <u>Cointegrated</u>
- If X and Y are Cointegrated, their relationship can be shown as ECM

$$\Delta Y_t = \varphi + \lambda \varepsilon_{t-1} + \omega_0 \Delta X_t + e_t$$

- Error from *Y* and *X* regression: $\varepsilon_{t-1} = Y_{t-1} \alpha \beta X_{t-1}$
- ECM Error: e_t
- EMC has: $\lambda < 0$:
 - o If we knew ε_{t-1} , ECM would be similar to ADL
 - o ECM says ΔY depends on ΔX , also same idea as ADL
 - O New: ΔY depends on ε_{t-1} (equilibrium error)
 - New: (for now) assume $\{\Delta X_t = 0\}$; $\{e_t = 0\}$ to observe ε_{t-1}

5.1: ECM Intuition

- If $\varepsilon_{t-1} > 0$: Y_{t-1} is **too high** to be in equilibrium
- As $\lambda < 0$: $\lambda \varepsilon_{t-1}$ (-) thus so too ΔY_t (-)
- "If Y_{t-1} is above equilibrium, it will start falling in the next period so the equilibrium error will be 'corrected'"
- If $\varepsilon_{t-1} > 0$: Opposite of Above (If $\lambda > 0$, errors magnified rather than corrected)

5.2: ECM Testing

- Don't worry about Spurious Regression
- Assumed Y and X have Unit-Roots
- Assumed Y and X are Cointegrated, thus ε_{t-1} is Stationary
- Assumed ΔY and ΔX are Stationary
- Hence, dependent and all explanatories are Stationary
- Thus, OLS regressions and t-tests etc. work as standard
- New issue: ε_{t-1} is explanatory, errors not directly observed, replace w/ residuals

- Two-Step Estimation:

- Step 1: Run regression of Y and X and save residuals (uhat)
- o Step 2: Run regression of ΔY on intercept and ΔX w/ residuals from Step 1, lagged by one period

- Same 'correction of equilibrium error' interpretation
- Example:

	3: Two-step Estir		1
Variable	OLS Estimate	t-statistic	P-value
Intercept	-0.023	-0.068	0.946
$\widehat{\varepsilon}_{t-1}$	-1.085	-14.458	8.7×10^{-32}
ΔX_t	1.044	5.737	4.1×10^{-8}

• Error coefficient says "equilibrium error of 1cent causes Y to fall by 1.085cents in the next period, all else remaining constant"

6: Summary

- We can now model under **three** circumstances
 - o When all variables are Stationary
 - o When all variables have Uni-Roots and are Cointegrated
 - o When all variables have Unit-Roots and are not Cointegrated

Lecture 15: Policy & Policy Makers

- "Given uncertainty about policy, would we be better w/o it?"
- "Can we trust policymakers to use correct policy?"
- Policy Uncertainty → Policy Expectations → Policy Politics

1: Policy Uncertainty

- Example: CB want decreased Unemployment w/ Monetary Expansion
 - ME is increase in M \rightarrow lower $i \rightarrow$ higher $I \rightarrow$ higher demand \rightarrow lower u
 - 1) Is unemployment at the natural level?
 - 2) How much will *i* change?
 - 3) How will stock prices change? (lower $i \rightarrow$ lower disc. rate \rightarrow higher PV)
 - 4) How will ER change? (How will this effect (X IM))
- Uncertainty can be modelled
- Economic agents → financial markets → firms and households
- "Normal g of GDP, G is reduced by 1%, expected consequences on GDP"
 - o The Area-Wide Model of European CB
 - o MULTIMOD Mark II
 - o NiGEM
 - o The Quest Model of the European Commission

- Example:

- Brexit inflation modelling will produce a range of outcomes with varying likelihoods due to uncertainty
- Should uncertainty mean Policy Makers do less?
 - Yes, policy should be aimed at avoiding prolonged recessions → slow booms and avoid inflation pressure
 - \circ Higher u, or higher π , more active policies should be
 - Should stop well short of trying to achieve constant u or g

2: Policy Expectations

- What people do: depends on expectations of policy
- What policy makers do: depends on the state of the economy

2.1: Inflation Unemployment Trade-Off

- Recall:

$$\pi = \pi^e - \alpha(u - u_n)$$

- o (1) CB state policy \rightarrow (2) W-Setters & HHs negotiate wages \rightarrow (3) CB acts
- CB sets π target \rightarrow wage setters and households negotiate $W \rightarrow CB$ implements these in order to achieve π taget
- Increase in u over natural: lower π
- Decrease in u under natural: higher π
- Suppose 0-inflation Mon. Pol.

$$\pi = -\alpha(u - u_n) \{\pi^e = 0\}$$

- o To achieve 0-inflation, $u = u_n$
- o **Time Inconsistency**: incentive to deviate from announced policy once other player has made a move (W-Setters in this case)
- o Example:
 - If: $\alpha = 1$, accept 1% π , CB can achieve u of 1% below natural
 - In response: W-Setters expect $\pi^e = 1 \rightarrow$ economy returns to u_n w/higher π

2.2: Credibility

- CBs will therefore need to be seen as **Credible** when staying in-line w/ policy
 - o Commit not to do something that seems desirable to them in the short-run
 - Will have bad effects for both parties in the long-run (like <u>Prisoners D.</u>)
- 1) Make CB independent
 - Less likely to deviate to achieve s-term goals (e.g. if ties to political party
 may deviate pre-election)
- 2) Encourage CBs to view 1-term inflation
 - o Reduce incentive for s-term goals (e.g. give CBs l-term in the office)
- 3) Choose Inflation-Averse CB
 - If inflation is not liked, unlikely to want low unemployment through high inflation

3: Policy Politics

- CB/political goals may not align w/ economic/societal goals
- Short-Sighted Voters: don't care for L-R economy (want politicians to cut taxes)
- **Conservatives**: stimulate the L-Term economy

Lecture 16: Monetary Policy Rules

- Should CB change i? Long-Run objectives of CB
- E.g. the Federal Reserve's response to Coronavirus $\{i = \sim 0\}$
- What is optimal target for π ?
- **Recall** (Short-Run):
 - o Increase on M supply leads to decreased i and increased demand/output
- (Medium-Run):
 - o Change in M has a neutral effect
 - No effect on growth of economy or unemployment
 - o Money change leads to proportional price increases
 - o Changes in money growth lead to corr. changes in π

1: Optimal Inflation Rate

- Most wealthy countries have had low inflation for the last few decades
- Very high inflation can disrupt economic activity
- Target: $\sim 0\%$ -3% p.a. (not too costly)
- Costs: Trade-off between inflation and low unemployment/high output
- 1) Show Leather Costs
- 2) Tax Distortions
- 3) Money Illusion
- 4) Inflation Variability

1.1: Shoe Leather Costs

- Increased opportunity cost of holding money: higher costs due to going to the bank more often w/ high inflation (could be working instead etc.)

1.2: Tax Distortions

- Tax on capital gains: higher inflation, higher tax (volumetrically)
- **Effective Tax Rate**: ratio of {tax paid-to-price sold}
 - O Buy house £50,000; sell house £50,000 $(1+\pi)^T$
 - o Real value of house unchanged as money will buy you same amount
 - o Pay greater tax, but shouldn't pay tax as sold at same relative price
 - o cap gains $\tan = 30\%$ {cap. gain = 0}, effective tax rate:
 - $\circ \ \frac{50000(1+\pi)^T 50000}{50000(1+\pi)^T} (0.30)$
 - $\pi = 0$: ETR = 0
 - $\pi = 3\%$: ETR = 7.6%
- Tax Distortions: tax doesn't increase w/ π (e.g. move to higher income brackets)
 - o Same real income, different nominal income

1.3: Money Illusion

- People make mistakes when assessing real vs. nominal changes
- E.g. comparing income across time means you need to account for π
- E.g. choosing assets or consuming/saving

1.4: Inflation Variability

- Higher π usually means more variable π
- E.g. buying a bond w/ longer maturity is far riskier w/ higher inflation

2: Benefits of Inflation

- 1) Seignorage
- 2) Option of Negative Real i
- 3) Money Illusion Revisited

2.1: Seignorage

- Money creation: alternative to borrowing form public or raising tax
 - \circ High π trade-off
 - \circ Works well in countries w/ high π

2.2: Negative Real Interest Rates

- Recall: $\{r = i \pi\}$
- Economy w/ higher π has more scope to use Monetary Policy to fight recession
- Example:
 - o $r_{A,B} = 0.02$; $\pi_A = 0.03$; $\pi_B = 0.00$
 - \circ : $i_A = 0.05$; $i_B = 0.02$
 - o If $\pi > i$: chance that r is (-)
 - Investors gain from borrowing
 - Higher investment and higher demand

2.3: Money Illusion Revised

- Workers should be indifferent between:
 - $\sigma = 0.03; W(\uparrow) = 0.01$
 - $\sigma = 0.00; W(\downarrow) = 0.02$
 - o Both give 2% decrease in Real Wage however the first case is more likely to be accepted people happier w/ higher wage and inflation

2.4: Optimal Inflation Rate?

- Some want price stability (zero-inflation)
 - o Eliminates Money Illusion and eases decisions
- Others want to keep small inflation
 - o E.g. 3% is desirable compared to 1%
 - o Costs of 3% are outweighed by benefits compared to 0%
 - o Indexing Tax: taxes change w/ inflation prevents some costs

3: Monetary Policy Rules

- Money growth rate
 - o Until 90's CBs chose nominal money growth for M-R economy
- Inflation targeting
 - o Today, (low) <u>Inflation Targeting</u> is used for M-R require S-R *i* changes

3.1: Money Growth Rate (1990's)

- CB chose target nominal M growth corresponding to desired π for M-R
- In S-R, CB allowed for deviations of nominal M growth from target
 - o E.g. recession: increase nominal M growth \rightarrow faster decrease in i
- CB announce range of nominal M growth which allowed to follow M-R desired π and S-R deviations like above
- Stopped using this rule over time
 - o Money growth didn't drive π as exp. more difficult to target M-R π
- S-R: M growth determines output
- M-R: M growth determines π
- Not a tight relationship due to the shift in money demand

- Example:

- Monzo introduced people prefer this to holding money → reduction in real money demand
- o In M-R: also needs to be corresponding reduction in real M stock
- o For money stock (growth) to remain same, must be price increase so (+) π
- o Relationship between money and π breaks down
- Therefore, abandon <u>Money Growth Rate</u>, adopt <u>Inflation Targeting</u>

3.2: Inflation Targeting (1990's \rightarrow)

- Recall Phillips Curve:
 - $\circ \quad \pi = \pi_{t-1} \alpha(u u_n)$
 - \circ π^* = Target Inflation
 - o $\pi^* = \pi^* \alpha(u u_n)$ {Target Achieved Ea. Pd.}
 - $\circ \quad 0 = 0 \alpha(u u_n)$
 - o $u = u_n$ {Unemployment Always Natural}
 - $\circ : Y = Y_n$
 - o <u>Inflation Targeting</u> leads to CB eliminating deviations from natural level
 - Not likely to happen in practice
 - CBs can't always achieve desired S-R π
 - Phillips Curve doesn't always hold
 - <u>Inflation Targeting</u> is strong in the M-R and allows Mon. Pol. to stabilise Y around S-R natural

3.2.1: The Taylor Rule

- "CB should choose i rather than state of M growth"
- $-i = i^* \alpha(\pi \pi^*) \beta(u u_n)$
 - o $i^*, \pi^* = \text{Target Interest Rate, Target Inflation}$
 - o Once CB chooses target π , try to achieve through adjusting i
 - o α , β show relative importance
 - o If $\{\pi = \pi^*\} \& \{u = u_n\}$: CB gets $\{i = i^*\}$
 - o If $\{\pi > \pi^*\}$: CB should increase $\{i > i^*\}$
 - o If $\{u > u_n\}$: CB should decrease $\{i < i^*\}$

Lecture 17: Fiscal Policy Rules

- Changes in Government Budget Constraint (G T)
 - o <u>Primary Surplus</u> or <u>Primary Deficit</u>
- Short-Term: how to use fiscal policy to finance gov. expenditure
- Long-Term: how to manage gov. debt and distribute tax burden
 - o Aging populations: imbalances between how much a gov. needs to spend at the top of the distribution vs. how much they raise in tax from lower
- Fiscal Issues
 - o Ricardian Equivalence
 - o Deficits, output stabilisation, cyclically adjusted deficit
 - Wars and deficits
- Fiscal Restraints
 - Fiscal rules
 - o Fiscal rules for countries within monetary union

1: Ricardian Equivalence

- "Neither deficits nor debts have any effect on economic activity"
 - o E.g. gov. uses debt financing (deficit spending), effects will be neutral
- Government raises government spending
 - o Extra can be financed by rising T or raising public debt
 - o Does financing method matter in economic activity?
- Optimistic View
 - Perfectly foresighted consumers rational view of future, expectations taken into account when decision making in the present
 - o How we finance extra spending should have **no** effect on behaviour
 - E.g. people won't change C in response to a tax cut as they will expect future tax increase so expected labour income will remain same
 - o Assumes: consumers understand gov. budget constraint
 - o Assumes: expect primary surpluses to follow primary deficits
- PV of Tax Liabilities
 - o Suggests timing of taxes doesn't matter
 - What matters is PV of tax liabilities
 - Example: gov. announces 0-tax income in the S-R, you know they can afford this L-R is increase in future income tax
 - Year 1: higher (Y-T); Year 2: lower; Year 3: lower...
 - Savings increase with current higher Y_D save for lower Y periods
 - Overall: no change

- Evidence shows this holds reasonably but not enough to ignore debts/deficits
 - o Tax cuts known, future taxes uncertain
 - o People not infinitely lived, or don't optimise over all t periods
 - Not all households are the same

2: Output Stabilisation

- Deficits during recessions should be offset by surpluses during booms
 - o Times are bad: run deficits
 - o Times are good: run surpluses
 - Full employment deficits: deficit which would exist under natural Y
 - OECD Mid-Cycle deficit or cyclically adjusted deficit
- Cyclically Adjusted Deficit
 - o S-R fluctuations may be driven by debt financing
 - Once Y returned to Y_n, and still deficit; L-R debt accumulation
 - o If $\{CAD = 0\}$: debt stabilises
- Fiscal goal not necessarily to have $\{CAD = 0\}$ always
 - o In recession, gov. may want large deficit enough that $\{CAD > 0\}$
 - Since debt will accumulate, expect policy change over t (tax increase)
- CAD theory simple but difficult in practice
 - Hard to establish how much lower deficit would be if output was higher
 - E.g. Y drops by 1% in recession, increase in deficit of 0.5% of Y
 - If Y 5% < Y_n: deficit-to-Y level 2.5% higher than it would be at Y_n
 - Automatic Stabiliser: when Y drops, deficit increases to stabilise
 - \circ Difficult to assess how far output is from Y_n
 - Also hard to assess u_n
 - If u_n is too low, too high an estimate of Y_n
 - Therefore, CAD will be too optimistic

3: Wars & Deficits

- Consumers and firms are effected differently depending on war funding method
- Using deficits is the most common method in war
 - o **Distribution**: debt burden of war is passed to future generations
 - o Tax Distortions: deficit spending helps reduces tax distortions

3.1: Distribution

- Assume Y is fixed at Y_n
- In wars G increases (military equipment, infrastructure, healthcare etc.)
- So **debt** finance or **taxation** finance?
- Deficit Finance
 - o Sharp ↑ G increases demand for goods
 - \circ i must \uparrow so I \downarrow
- Taxation Finance
 - \circ \uparrow T, significant \downarrow C
 - By how much depends on consumers' expectations (e.g. longer the war lasts, longer they'll get higher taxes, more likely ↓ C)
 - \circ \uparrow in G will be partly offset by \downarrow in C
 - Therefore, \uparrow in *i* and I \downarrow will be smaller
- Lower I means lower K so, post-war, lower Y
- $By \downarrow K$ accumulation, deficits can be passed to future generations

3.2: Tax Distortions

- G is exceptionally high (e.g. reconstruction post-earthquake)
- T must ↑ drastically
- Distortions: people work less or engage in tax avoidance
- Tax Smoothing: during crises deficits must be very large but, taxes used to compensate for this in future should be reasonably small and spread

4: Politics & Fiscal Restraints

- Politics can lead to L-Term deficits can rules limit the negatives?
- The USA:
 - 1) Constitutional budget balance amendment
 - 2) Impossible to conduct fiscal policy
- The UK
 - 1) The Golden Rule: gov. will only borrow to invest and not to fund G
 - 2) Sustainable investment rule: public debt kept at sustainable level
- Why systematically run public deficits?
 - o ↑ C before elections in order to increase probability of re-election
 - o Gov.'s tend to spend above means and pass burden to future
 - Population ageing in advanced countries so high spending on pensions etc.
 are not relative to T claimed from working age
- Monetary Union increases importance of fiscal discipline
 - 1) Correct incentive to pass costs of fiscal expansion
 - 2) Prevent crisis in one country spreading to all members