מבוא לתורת הקבוצות - שיעור 10

2023 באוגוסט, 2023

יונתן מגר

העוצמה א

נסמן א|[0,1]|. כדי להגדיר את הממשיים ובפרט את משתמשים באקסיומת השלמות: "קיימת קבוצה כך שלכל תת-קבוצה חסומה שלה יש חסם מלעיל מינימלי". לעוצמה א קוראים **עוצמת הרצף**.

$\aleph \neq \aleph_0$

נוכיח: נשתמש בלמה של קנטור מהקורס חדו"א 1 - "בהינתן סדרה $\{I_j\}$ של קטעים סגורים מקוננים $I_{j+1} < I_j$ המקיימת בלמה של קנטור מהקורס חדו"א - " $\bigcap_{j=1}^\infty I_j = \{c\}$ מתקיים כי $|I_j| \underset{j \to \infty}{\to} 0$

נרצה להציג כל מספר ממשי כשבר בינארי אינסופי. קיים מכשול קטן - ישנם מספרים בעלי שני ייצוגים שונים. למשל, את נרצה להציג כל מספר ממשי כשבר בינארי אינסופי. $\frac{1}{2}$ ניתן לכתוב באמצעות שבר בינארי בשתי דרכים: $\frac{1}{2}$ ניתן לכתוב באמצעות שבר בינארי בשתי דרכים: ... 0.100 או

למה:

 $|Y| \leq \aleph_0$ - תהיינה X,Y קבוצות כך

- $X \cup Y \sim X$ אינסופית, אינסופית (1)
- $X\cup Y\sim X$ אם $|X\cup Y|>$ אם (2)

:וכיח:

- מכילה מכילה אינסופית שכל קבוצה הקודם, ראינו ($Y\setminus X$ ב-Y את החרת, נחליף את זרות (אחרת, נחליף את ב-X. בשיעור הקודם, ראינו שכל אינסופית מכילה אינסופית בת-קבוצה בת-מניה. לכן $X_0\cup Y\sim X_0\cup X_1=X$ לכן, ממשפט מהשיעור שעבר, $X_0\cup X=X_0\cup X_1=X$ מכיוון שהאיחוד הוא חילופי, קיבלנו $X_0\cup X=X_0\cup X_1=X$
 - .(1). מהשיעור הטענה לנתון בסתירה בסתירה א בסתירה נקבל כי נקבל כי הקודם, נקבל הטענה מהשיעור כי צניח בשלילה (2)

$$\aleph=2^{\aleph_0}$$

נוכיח: ראינו כי $\{0,1\}^\mathbb{N}$ (סדרות אינסופיות ב"מ של אפסים ואחדות) היא קבוצה מעוצמה 0 2. נביט בתת-הקבוצה הבאה של נוכיח: ראינו כי $\{0,1\}^\mathbb{N}$ (סדרות אינסופיות ב"מ של אפסים ואחדות) היא קבוצה מעוצמה $D=\{\varepsilon\in\{0,1\}^\mathbb{N}\mid\exists n_0\in\mathbb{N}:\forall n\geq n_0,\varepsilon_n=0\}:[0,1]^\mathbb{N}\}$ אז לפי הלמה, נקבל כי $E:=\{0,1\}^\mathbb{N}\setminus D\sim\{0,1\}^\mathbb{N}\}$ מכיוון ש- $E:=\{0,1\}^\mathbb{N}\setminus D\sim\{0,1\}^\mathbb{N}$ באופן הבא: מקבלים קבוצה סופית). נגדיר העתקה חח"ע $f:E\to[0,1]$ (ונקבל ש-א $f:E\to[0,1]$ באופן הבא:

$$0 < f(\varepsilon) = \sum_{m=1}^{\infty} \varepsilon_m 2^{-m} \leq \sum_{m=1}^{\infty} 2^{-m} = \frac{1}{1 - \frac{1}{2}} - 1 = 1$$

0 ל-1. העובדה שההעתקה מוגדרת נובעת מכך שהטור חסום בין

לכל $arepsilon_i=\delta_i$ כלומר, $arepsilon_{n_0}\neq\delta_{n_0}$ -ש כך של האשון (כך "כל העם"). כו לכן פר כי כל כל כל כי כל פר כי $arepsilon_i=\delta_i$. נקבל: $\delta_{n_0}=0$ - ו $arepsilon(n_0)=1$ בה"כ נקבע . $i=1,...,n_0-1$

$$f(\varepsilon) - f(\delta) = \sum_{i=n_0}^{\infty} \frac{\varepsilon_i - \delta_i}{2^i} = \frac{1}{2^{n_0}} + \sum_{i=n_0+1}^{\infty} \frac{\varepsilon_i - \delta_i}{2^i} > \frac{1}{2^{n_0}} + \sum_{i=n_0+1}^{\infty} \frac{-1}{2^i} = \frac{1}{2^{n_0}} - \frac{1}{2^{n_0+1}} \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 0$$

.(0-מ גדול מ-שההפרש הרול (הרי שההפרש גדול מ- $f(\varepsilon) \neq f(\delta)$

כי מתקיים אז g(x)=arepsilon שאם די כך שנבטיח חח"ע אל פון $g:[0,1) o \{0,1\}^{\mathbb{N}}$ אז מתקים נגדיר אניים כי מכיוון השני נקבל שני גבולות שונים $arepsilon=\delta$ אחרת אם $arepsilon=\delta$ נקבל שני גבולות שונים . $x=\sum_{m=1}^\infty arepsilon_m 2^{-m}$ $arepsilon_{n}$ באינדוקציה על באינדור את נגדיר את נגדיר עבור $x\in [0,1)$ באינדוקציה על

$$0 \leq x - \sum_{i=1}^{n-1} \frac{\varepsilon_i}{2^i} \leq \frac{1}{2^{n-1}} \Leftrightarrow 0 \leq y = 2^{n-1}x - \sum_{i=1}^{n-1} \varepsilon_i \cdot 2^{n-1-i} < 1$$

נבחר את באופן באופן הבא:

$$0 \leq x - \sum_{i=1}^{n-1} \frac{\varepsilon_i}{2^i} - \frac{\varepsilon_n}{2^n} < \frac{1}{2^n} \Leftrightarrow 0 \leq 2^{n-1}x - \sum_{i=1}^{n-1} \varepsilon_i 2^{n-i-1} - \frac{\varepsilon_n}{2} < \frac{1}{2}$$

 $\varepsilon_n=1$ החרת בחר פהר $\varepsilon_n=0$ נבחר נבחר אם $0\leq y<1$ אם

, לכן, אכן פי הראנו כי $x=\sum_{m=1}^\infty \varepsilon_m 2^{-m}$ ומכך ומכך $x-\sum_{m=1}^n \varepsilon_m 2^{-m} < 2^{-n}$ כה"כ לכל ו

מספרים אלגבריים וטרנסצנדנטיים

מספר ממשי שהוא פתרון של המשוואה p(x)=0 כאשר כאשר שלינום עם מקדמים שלמים. מספר נקרא טרנסצנדנטי אם המשוואה פתרון של פתרון משל, למשל, המתאימות הקבוצות תתי-הקבוצות וב $\mathbb{R}_{ ext{trans}}$ וגם פתרון של המשוואה אינו אלגברי. נסמן ב . הם מספרים אלגבריים $x^7 - 17x^6 + 30x + 4 = 0$

מהמשפט הקודם, נובע כי ישנם $_{0}$ א מספרים אלגבריים, ו-א מספרים טרנסצנדנטייים. נוכיח: יש $_{0}$ א פולינומים עם מקדמים $\|R_{ ext{l}}\|=\|\mathbb{R}|=|\mathbb{R}|$, אולם $\|R_{ ext{trans}}\|=\mathbb{R}$, ולכן מהלמה מתחילת השיעור א $\|R_{ ext{alg}}\|=\mathbb{R}$, אולם שלמים, לכן $\|R_{ ext{l}}\|=\|R_{ ext{trans}}\|$

חשבון עוצמות

חיבור

נראה כי: $a+b=|A\cup B|$ נגדיר (גדיר B|=bו ו-A|=aינר, בראה זרות, ויהיו A,B נראה (בי: a,b נראה כי

- (1) ההגדרה טובה: כלומר, קיימות קבוצות זרות מכל עוצמה ואין תלות בבחירת המייצגים.
 - (2) החיבור חילופי (נובע מהגדרת איחוד).
 - (3) החיבור אסוציאטיבי (נובע מהגדרת איחוד).
 - $a+b \leq a'+b'$ מקיים $a \leq a', b \leq b'$ צוצמות: על סדר ליחס סדר מותאם (4)
 - a + 0 = a לכל a + 0 = a לכל הטבעיים: (5)

2