0_____

Problemă. Se dă un vector cu n numere și operații de genul:

- Adăugăm la poziția i valoarea x (x poate fi și negativ)
- Cerem maximul pe intervalul i, j (ex 3 6)

0	1	2	3	4	5	6	7	8
3	9	2	5	7	34	6	11	8

Cum putem face asta?

Problemă. Se dă un vector cu n numere și operații de genul:

- Adăugăm la poziția i valoarea x (x poate fi și negativ)
- Cerem minimul pe intervalul i, j (ex 3 6)

9				34		11		
3	9	2	5	7	34	6	11	8
0	1	2	3	4	5	6	7	8

Împărțim vectorul în zone de L (?) și calculăm minimul pe fiecare zonă în parte.

Problemă. Se dă un vector cu n numere și operații de genul:

- Adăugăm la poziția i valoarea x (x poate fi și negativ)
 - Pentru că, dacă facem maximul mai mic, trebuie să găsim noul maxim
 O(sqrt(n))
- Cerem maximul pe intervalul i, j (ex 3 6)

0	1	2	3	4	6	7	8
3		2	5	7		11	8
	9			7		11	

Cum răspundem la 0, 8? Dar la 0, 4? Dar la 1, 7 ?

Care este complexitatea?

Complexitate query: Împărțim în n/L zone de lungime L

 $O(n/L(nr de zone) + 2 * L(2 zone le pot itera aproape complet)) \rightarrow L = sqrt(n)$

$$O(\operatorname{sqrt}(n) + 2 * \operatorname{sqrt}(n)) = O(\operatorname{sqrt}(n))$$

0	1	2	3	4	5	6	7	8
3	9		5	7	3	6	11	8
	9			7			11	

Împărțim în zone de:

- o sqrt(n) sau...
- \circ sqrt(n)/2
- o sqrt(n) * 2 .. și
- Variațiuni
- O De ce?
 - Pentru că, în practică, nu sqrt(n) va fi cel mai rapid. Totuși, sqrt(n) este o alegere buna în general.

Problemă. Se dă un vector cu n numere. Sortați-l!

problemă: https://leetcode.com/problems/sort-an-array/submissions/

cod: https://pastebin.com/bFHYephh

	3			5			6	
3	9	50001	5	7	34	6	11	8
0	1	2	3	4	5	6	7	8

Problemă. Se dă un vector cu n numere și operații de genul:

- Adăugăm la poziția i valoarea x (x poate fi și negativ)
- Cerem minimul pe intervalul i, j (ex 3 6)

0	1	2	3	4	5	6	7	8	9	
3	9	2	5	7	34	6	11	8	44	

Arbore cu rădăcina ținând intervalul [0,n)

Pentru un nod ce ține intervalul [L, R] \rightarrow fiul stâng ține [L, (L+R)/2], cel drept [(L+R)/2, R]

0	1	2	3	4	5	6	7	8	9
3	9	2	5	7	34	6	11	8	44

0	1	2	3	4	5	6	7	8	9
3	9	2	5	7	34	6	11	8	44

Ţinem minimul!

0	1	2	3	4	5	6	7	8	9
3	9	2	5	7	34	6	11	8	44

Cum îl implementăm?

0	1	2	3	4	5	6	7	8	9
3	9	2	5	7	34	6	11	8	44

Cum îl implementăm?

- Arbore like
- Vector!


```
tree [1] = A[0:6]
tree [2] = A[0:3]
tree [3] = A[4:6]
tree [4] = A[0:1]
tree [5] = A[2:3]
tree [6] = A[4:5]
tree [7] = A[6:6]
tree [8] = A[0:0]
tree [9] = A[1:1]
tree [10] = A[2:2]
tree [11] = A[3:3]
tree [12] = A[4:4]
tree [13] = A[5:5]
```


Segment Tree represented as linear array

Reprezentare similară cu heapul:

- Rădăcina (1 de multe ori) are intervalul [0,n) [L,R)
 - Fiul stâng are [L, (L+R)/2]; el are poziția în vector i*2
 - Fiul drept are [(L+R)/2 + 1, R]; el are poziția în vector i*2+1
 - Vectorul poate avea niște elemente lipsă pe ultimul rând (vezi 2 slide-uri mai sus).

În total vectorul are 2*n noduri "active", dar avem nevoie de mai mult de 2*n memorie. 4*n e safe

O(n) memorie.

- Query pe index
- Query pe interval
 - Min
 - Sum
- Modificare element
- Modificare interval

- Query pe index
 - Ori avem "pointeri" spre frunze și răspund direct
 - Ori pornim top down

```
getValue(vector<int> arb_int, int index, int n) {
    int L = 0, R = n, poz = 1;
    while (L != R)  {
         if (index > (L + R)/2) {
              L = (L +R)/2, poz = poz*2 + 1;
         else {
             R = (L+R)/2, poz *=2;
    return arb_int[poz]; // L = R;
```


- Query pe interval
 - Evident, nu luăm toate valorile; ar putea fi liniar
 - \bigcirc Q(1,5) min

- Query pe interval
 - Evident, nu luăm toate valorile; ar putea fi liniar
 - \square Q(1,5) min
 - □ Pornim din rădăcina și mergem recursiv și L și R
 - Dacă intervalul nodului nu se intersectează, oprim
 - Dacă intervalul e inclus complet, luăm info & ne oprim
 - Câte noduri putem parcurge?

- Query pe interval
 - Evident, nu luăm toate valorile; ar putea fi liniar
 - \square Q(1,5) min
 - □ Pornim din rădăcina și mergem recursiv și L și R
- Caz I 🗆 Dacă intervalul nodului nu se intersectează, oprim
- Caz II

 Dacă intervalul e inclus complet, luăm info & ne oprim
 - Câte noduri putem parcurge?
 - Open Doar 4*log n
 - Coborâm pe o ramură până facem un split
 - După split, în fiecare parte, unul dintre fii va fi ori cazul I, ori cazul II, deci se va coborî pe maxim 2 drumuri până jos.

- Query pe index
- Query pe interval
 - □ Sum (1,5)

- Modificare element
 - Dacă țin suma, pot face top-down
 - Dacă țin minim, pot face ori:
 - Top down up
 - coborâm din rădăcină până găsim frunza pe care o modificăm
 - □ La urcare, facem update tata = min(cei 2 fii)
 - Bottom up
 - □ Exact ca mai sus, dar avem deja indexul ţinut
 - □ Înapoi la sortare (https://leetcode.com/problems/sort-an-array/submissions/)

- Modificare pe interval
 - Similar cu query pe interval
 - Merg recursiv în ambii fii
 - Mă opresc dacă nu am intersecție
 - Modific doar nodul actual dacă este inclus de tot în interval
 - Aici trebuie să ținem în nod o informație suplimentară (toate nodurile cresc cu o anumită valoare)
 - Cobor dacă e intersectie parțială

- Modificare pe interval
 - Add(3, 1, 3) (adaugă 3 la fiecare element din intervalul 1, 3)
 - O mică atenție la query-uri

RMQ, LCA, LA

Definirea problemelor

Range Minimum Query (RMQ):

Se dă un vector. Răspundeți cât mai eficient la întrebări de genul: **Care este cel mai mic element din intervalul i, j?**

0	1	2	3	4	5	6	7	8	9
3	9	2	8	5	3	8	7	6	11

https://www.infoarena.ro/problema/rmq

$$0.3 \rightarrow 2$$

$$59 \rightarrow 3$$

LCA

Lowest Common Ancestor (LCA):

Se dă un arbore. Răspundeți cât mai eficient la întrebări de genul: **Se dau două noduri într-un arbore. Găsiți cel mai apropiat strămoș comun.**

(https://www.infoarena.ro/problema/lca)

$$49 \rightarrow 2$$

$$411 \rightarrow 1$$

$$76 \rightarrow 2$$

$$89 \rightarrow 2$$

$$84 \rightarrow 4$$

Lowest Ancestor

Se dă un arbore. Răspundeți cât mai eficient la întrebări de genul: **Se dă un nod și un întreg k. Care este strămoșul de nivel k al nodului dat?**

<u>https://www.infoarena.ro/problema/stramosi</u> (adăugată cu 1 punct la temă)

$$21 \rightarrow 1$$

$$91 \rightarrow 6$$

$$64 \rightarrow -1$$

$$10.1 \rightarrow 3$$

Se dă un arbore. Răspundeți cât mai eficient la întrebări de genul: **Se dă un nod și un întreg k. Care este strămoșul de nivel k al nodului dat?**

$$2\ 1 \rightarrow 1 \qquad 9\ 1 \rightarrow 6$$

Cum facem?

Putem răspunde în O(h), parcurgand din tata in tata la fiecare querry.

Sau putem răspunde în O(1), dacă pentru fiecare nod rețin

D[i][j] = strămoșul de nivel j a lui i

$$D[9] = \{9, 6, 2, 1\}$$

Se dă un arbore. Răspundeți cât mai eficient la întrebări de genul: **Se dă un nod și un întreg k. Care este strămoșul de nivel k al nodului dat?**

$$21 \rightarrow 1$$
 $91 \rightarrow 6$

D[i][j] = strămoșul de nivel j a lui i

$$D[9] = \{9, 6, 2, 1\}$$

Memorie și preprocesare $O(n^*h)$ și răspuns O(1).

Se dă un arbore. Răspundeți cât mai eficient la întrebări de genul: **Se dă un nod și un întreg k. Care este strămoșul de nivel k al nodului dat?**

Sau pot folosi sqrt decomposition:

Țin tatăl de ordin radical din n.

Dacă radical din n este 100 și eu țin din 100 în 100:

Tatăl 300 este tata100[tata100[tata100[x]]];

Se dă un arbore. Răspundeți cât mai eficient la întrebări de genul: **Se dă un nod și un întreg k. Care este strămoșul de nivel k al nodului dat?**

$$21 \rightarrow 1$$
 $91 \rightarrow 6$

Țin tatăl de ordin radical din n.

Dacă radical din n este 100 și eu țin din 100 în 100:

Tatăl 301 este

tata[tata100[tata100[tata100[x]]]];

Soluție cu O(n) memorie suplimentară,

O(1) pe nod și O(sqrt(n)) pe query.

Se dă un arbore. Răspundeți cât mai eficient la întrebări de genul: **Se dă un nod și un întreg k. Care este strămoșul de nivel k al nodului dat?**

$$21 \rightarrow 1$$
 $91 \rightarrow 6$

Cum facem?

- O(n) query, O(1) memorie
- O(sqrt n) query şi O(n) memorie (Batog)
- O(log n) query și O(n log n) memorie

Pentru fiecare nod, țin tații de înălțime 1, 2, 4, 8, 16...

Pentru $7 \to 4, 2, -1, -1 ...$

Pentru $6 \to 2, 1, -1, -1 ...$

Cum calculăm vectorul de tați?

Pentru fiecare nod, țin tații de înălțime 1, 2, 4, 8, 16...

Pentru $7 \to 4, 2, -1, -1 ...$

Pentru $6 \to 2, 1, -1, -1 ...$

Cum calculăm vectorul de tați?

```
for (int i = 1; i < log n; ++i) {
  for (int j = 1; j < n; ++j)
    tata[j][i] = tata[tata[j][i-1]][i-1];
}</pre>
```


Pentru fiecare nod, țin tații de înălțime 1, 2, 4, 8, 16...

Pentru $7 \to 4, 2, -1, -1$

Pentru $6 \to 2, 1, -1, -1 ...$

Cum calculăm al k-lea strămoș?

- Similar cu căutarea binară discutată la curs
- Sărim cu puterea lui 2 cea mai mare

 $73 \rightarrow 7$ sărim 2 pași până la 2

Apoi 2 1 \rightarrow sărim 1 pas \rightarrow 1

Pentru fiecare nod, țin tații de înălțime 1, 2, 4, 8, 16...

Pentru $7 \to 4, 2, -1, -1 ...$

Pentru $6 \to 2, 1, -1, -1$

Cum calculăm al k-lea strămoș?

tata(x, 14) = tata(tata8[x], 6) = tata(tata4[tata8[x]], 2)

= tata2[tata4[tata8[x]]

Lowest Ancestor O(log n) query și O(n log n) memorie

Complexitate?

Lowest Ancestor O(log n) query și O(n log n) memorie

Complexitate

- O(n log n) preprocesoare
- O(n log n) memorie suplimentară
- O(log n) pe query
- Se poate obține O(n) memorie suplimentară
 - (vezi cursul de la <u>MIT</u>)

Range Minimum Query (RMQ):

Se dă un vector. Răspundeți cât mai eficient la întrebări de genul: **Care este cel mai mic element din intervalul i,j?**

0	1	2	3	4	5	6	7	8	9
3	9	2	8	5	3	8	7	6	11

Soluții?

- O(n) pe query
- Şmenul lui Batog O(sqrt (n)) pe query
- Tinem pentru fiecare element puterile lui 2 și răspundem similar LA în log n.

Tinem pentru fiecare element puterile lui 2 și răspundem similar LA în log n.

	0	1	2	3	4	5	6	7	8	9
min										
min2	3	2	2	5	3	3	7	6	6	11
min4	2	2	2	3	3	3	6	6	6	11
min8	2	2	2	3	3	3	6	6	6	11

DE SCHIMBAT EXEMPLUL sa nu fie crescator!

Tinem pentru fiecare element puterile lui 2 și răspundem similar LA în log n.

	0	1	2	3	4	5	6	7	8	9
min	3	9	2	8	5	3	8	7	6	11
min2	3	2	2	5	3	3	7	6	6	11
min4	2	2	2	3	3	3	6	6	6	11
min8	2	2	2	3	3	3	6	6	6	11

• Query în **log(n)**

- \Box 16 min4(1) 1-4 + min2(5) 5-6
- $29 \quad min8(2)$
- □ 36 min4(3) ->alte exemple si aici

Problemă adițională

Se dă un nr n $\leq 10^9$. Cum calculez logn în O(1)?

Problemă adițională

Se dă un nr n $\leq 10^9$. Cum calculez logn în O(1) ?

- Pot ține, pentru fiecare număr de la 1 la 256, care e cel mai semnificativ bit
 - \Box 14 \rightarrow 8
 - \square 230 \rightarrow 128
 - ····
- Pentru un număr pe 32 de biți, găsesc primul byte > 0 și aplic ce am calculat mai sus
- Pot ține rezultatul pt 2 bytes și atunci am nevoie de doar 2 operații

Ţinem pentru fiecare element puterile lui 2 şi răspundem în O(1)

	0	1	2	3	4	5	6	7	8	9
min	3	9	2	8	5	3	8	7	6	11
min2	3	2	2	5	3	3	7	6	6	11
min4	2	2	2	3	3	3	6	6	6	11
min8	2	2	2	3	3	3	6	6	6	11

- Query în **O(1)**? Cum?
 - 1 6 \rightarrow min(min(1,4), min(3,6)) prin urmare, putem face 2 query-uri [a, a + log(b-a)], [b log(b-a) + 1, b].
 - □ 20, $1000 \rightarrow \min [Q(20, 531), Q(489, 1000)] \rightarrow 2$ query-uri de mărime 512

- Ținem pentru fiecare element puterile lui 2 și răspundem în O(1)
- Query în **O(1)**? Cum?
 - 1 6 \rightarrow min(min(1,4), min(3,6)) prin urmare, putem face 2 query-uri [a, a + log(b-a)], [b log(b-a) + 1, b].
 - □ 20, $1000 \rightarrow \min [Q(20, 531), Q(489, 1000)] \rightarrow 2$ query-uri de mărime 512
 - Atenție! Ideea funcționează doar pentru minim, nu și pentru sumă, deoarece o parte din interval (489, 531) este inclus în ambele query-uri. Dacă vrem să calculăm minimul, acest lucru nu este o problemă, dar pentru sume da!
 - Pentru sumă, trebuie să facem O(logn) query-uri, deci probabil arborii de intervale sunt mai buni, deoarece au tot O(log n) pe query, dar au O(n) memorie suplimentară și O(n) construcție.

- Complexitate **O(n log n)** memorie și preprocesare și **O(1)** query
 - \Box Se poate obține O(n) preprocesare și memorie suplimentară și O(1) pe query.
 - o <u>Link</u>
 - Implementare
 - RMQ pe Infoarena: https://pastebin.com/7a8uVdtP
 - □ https://leetcode.com/problems/range-sum-query-immutable/
 - o am realizat la un seminar că problema nu cerea minim, prin urmare nu se putea rezolva în O(1) pe query. Vă dau două rezolvări diferite
 - o cu Batog: https://pastebin.com/5RUrVpVi
 - Totuși, problema se rezolvă cu sume parțiale în O(1) pe query

Problema LCA se poate reduce la RMQ

- Descriere pe larg
- Principiul este o liniarizare a arborelui

- Începem o parcurgere RSD din rădăcină şi scriem fiecare nod de fiecare dată când trecem prin el.
- Pentru fiecare nod, reţinem şi distanţa de la el la rădăcină.

- Începem o parcurgere RSD din rădăcină şi scriem fiecare nod de fiecare dată când trecem prin el.
- Pentru fiecare nod, reţinem și distanţa de la el la rădăcină
- Pentru fiecare nod, mai reţinem şi prima sa apariţie în parcurgerea Euler...
- De exemplu, pentru 4 e
 poziția 2, pentru 9 este 7

- LCA(i,j) este RMQ(first[i],
 first[j])...
- LCA(4,9) va fi RMQ pe parcurgerea Euler între primele apariții ale lui 4 și 9
- Deci RMQ(2,7)...
- RMQ se va face pe vectorul de distanțe, până la rădăcină (2, 7), prin urmare obținem distanța 1 către rădăcina care corespunde nodului 2.
- Orice drum între 4 și 9 trece prin 2, dar nu mai sus de 2!

