

Technologiemodul

Electrical Shaft Position _____

Referenzhandbuch

Inhalt

1 1.1	Über diese Dokumentation									
1.2	Dokumenthistorie									
1.3	Verwendete Konventionen									
1.5	Definition der verwendeten Hinweise									
2	Sicherheitshinweise									
3	Funktionsbeschreibung "Electrical Shaft Position"	-								
3.1	Übersicht der Funktionen Wichtige Hinweise zum Betrieb des Technologiemoduls Funktionen LTTAR Flortisch Schoff Res (State (Ulich))	-								
3.2	Wichtige Hinweise zum Betrieb des Technologiemoduls	-								
3.3	Funktionsbaustein L_TT1P_ElectricalShaftPos[Base/State/High]	-								
	3.3.1 Eingänge und Ausgänge	-								
	3.3.2 Eingänge	-								
	3.3.3 Ausgänge	-								
	3.3.4 Parameter	-								
3.4	State machine									
3.5	Signalflussplan									
	3.5.1 Struktur des Signamusses	2								
	5.5.2 Struktur der Angritispunkte	2								
3.6	nandranren (Jogging)	2								
3.7	Referenzianit (Homing)	2								
3.8	Gleichlauf (SyncPos) Positions-Offset während des Gleichlaufes	2								
3.9	Positions-Offset während des Gleichlaufes	3								
3.10	Gleichlauf mit Ein-/Auskuppelmechanismus	3								
	3.10.1 Direktes Ein- und Auskuppeln									
	3.10.2 Relatives Ein- und Auskuppeln	3								
3.11	Positions-Trimmung	3								
3.12	Positions-Offset mit Profilgenerator	3								
3.13	Erweiterung des ein-/Auskubbeimechanismus	4								
	3.13.1 eSyncMode = Ramp Dist	4								
	3.13.2 eSynchroue = Kamp Time	4								
	3.13.3 eSyncMode = Ramp VeIAcc	4								
3.14	CPU-Auslastung (Beispiel Controller 3231 C)	4								
	Index									
	Ihre Meinung ist uns wichtig	4								

1 Über diese Dokumentation

Diese Dokumentation ...

- enthält ausführliche Informationen zu den Funktionalitäten des Technologiemoduls "Electrical Shaft Position";
- ordnet sich in die Handbuchsammlung "Controller-based Automation" ein. Diese besteht aus folgenden Dokumentationen:

Dokumentationstyp	Thema
Produktkatalog	Controller-based Automation (Systemübersicht, Beispieltopologien) Lenze-Controller (Produktinformationen, Technische Daten)
Systemhandbücher	Visualisierung (Systemübersicht/Beispieltopologien)
Kommunikationshandbücher Online-Hilfen	Bussysteme • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®
Referenzhandbücher Online-Hilfen	Lenze-Controller: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500
Software-Handbücher Online-Hilfen	Lenze Engineering Tools: • »PLC Designer« (Programmierung) • »Engineer« (Parametrierung, Konfigurierung, Diagnose) • »VisiWinNET® Smart« (Visualisierung) • »Backup & Restore« (Datensicherung, Wiederherstellung, Aktualisierung)

Weitere Technische Dokumentationen zu Lenze-Produkten

Weitere Informationen zu Lenze-Produkten, die in Verbindung mit der Controller-based Automation verwendbar sind, finden Sie in folgenden Dokumentationen:

Pla	nung / Projektierung / Technische Daten
	Produktkataloge
Мо	ntage und Verdrahtung
	Montageanleitungen
	Gerätehandbücher • Inverter Drives/Servo Drives
Par	rametrierung / Konfigurierung / Inbetriebnahme
	Online-Hilfe / Referenzhandbücher Controller Inverter Drives/Servo Drives I/O-System 1000 (EPM-Sxxx)
	Online-Hilfe / Kommunikationshandbücher • Bussysteme • Kommunikationsmodule
Bei	spielapplikationen und Vorlagen
	Online-Hilfe / Software- und Referenzhandbücher • Application Sample i700 • Application Samples 8400/9400 • FAST Application Template Lenze/PackML • FAST Technologiemodule

- ☐ Gedruckte Dokumentation
- ☐ PDF-Datei / Online-Hilfe im Lenze **Engineering Tool**

Aktuelle Dokumentationen und Software-Updates zu Lenze-Produkten finden Sie im Download-Bereich unter:

www.lenze.com

Zielgruppe

Diese Dokumentation richtet sich an alle Personen, die ein Lenze-Automationssystem auf Basis der Application Software Lenze FAST programmieren und in Betrieb nehmen.

1.1 Dokumenthistorie

1.1 Dokumenthistorie

Version	1		Beschreibung
3.3	05/2017	TD17	 Inhaltliche Struktur geändert. Allgemeine Korrekturen Neu: <u>Drehmoment-gesteuerter Antrieb als Master</u> (□ 12) Verwendung von Soll- oder Istwerten (□ 12)
3.2	11/2016	TD29	 Allgemeine Korrekturen Parameter ergänzt: L_TT1P_scPar_ElectricalShaftPos[Base/State/High] (119) Neu: Erweiterung des Ein-/Auskuppelmechanismus (1140)
3.1	04/2016	TD17	Allgemeine Korrekturen
3.0	11/2015	TD17	 Korrekturen und Ergänzungen Neu: Relatives Ein- und Auskuppeln (□ 34) Inhaltliche Struktur geändert.
2.1	05/2015	TD17	Allgemeine Korrekturen
2.0	01/2015	TD17	 Allgemeine redaktionelle Überarbeitung Modularisierung der Inhalte für die »PLC Designer« Online-Hilfe
1.0	04/2014	TD00	Erstausgabe

1.2 Verwendete Konventionen

1.2 Verwendete Konventionen

Diese Dokumentation verwendet folgende Konventionen zur Unterscheidung verschiedener Arten von Information:

Informationsart	Auszeichnung	Beispiele/Hinweise						
Zahlenschreibweise								
Dezimaltrennzeichen	Punkt	Es wird generell der Dezimalpunkt verwendet. Zum Beispiel: 1234.56						
Textauszeichnung	Textauszeichnung							
Programmname	» «	»PLC Designer«						
Variablenbezeichner	kursiv	Durch Setzen von <i>bEnable</i> auf TRUE						
Funktionsbausteine	fett	Der Funktionsbaustein L_MC1P_AxisBasicControl						
Funktionsbibliotheken		Die Funktionsbibliothek L_TT1P_TechnolgyModules						
Quellcode	Schriftart "Corier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>						
Symbole								
Seitenverweis	(□ 6)	Verweis auf weiterführenden Informationen: Seitenzahl in PDF-Datei.						

Variablenbezeichner

Die von Lenze verwendeten Konventionen, die für die Variablenbezeichner von Lenze Systembausteinen, Funktionsbausteinen sowie Funktionen verwendet werden, basieren auf der sogenannten "Ungarischen Notation", wodurch anhand des Bezeichners sofort auf die wichtigsten Eigenschaften (z. B. den Datentyp) der entsprechenden Variable geschlossen werden kann, z. B. xAxisEnabled.

1.3 Definition der verwendeten Hinweise

1.3 Definition der verwendeten Hinweise

Um auf Gefahren und wichtige Informationen hinzuweisen, werden in dieser Dokumentation folgende Signalwörter und Symbole verwendet:

Sicherheitshinweise

Aufbau der Sicherheitshinweise:

Piktogramm und Signalwort!

(kennzeichnen die Art und die Schwere der Gefahr)

Hinweistext

(beschreibt die Gefahr und gibt Hinweise, wie sie vermieden werden kann)

Piktogramm	Signalwort	Bedeutung
A	Gefahr!	Gefahr von Personenschäden durch gefährliche elektrische Spannung Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
\triangle	Gefahr!	Gefahr von Personenschäden durch eine allgemeine Gefahrenquelle Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
STOP	Stop!	Gefahr von Sachschäden Hinweis auf eine mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Anwendungshinweise

Piktogramm	Signalwort	Bedeutung
i	Hinweis!	Wichtiger Hinweis für die störungsfreie Funktion
	Tipp!	Nützlicher Tipp für zum einfachen Bedienen
(Verweis auf andere Dokumentation

2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise in dieser Dokumentation, wenn Sie ein Automationssystem oder eine Anlage mit einem Lenze-Controller in Betrieb nehmen möchten.

Die Gerätedokumentation enthält Sicherheitshinweise, die Sie beachten müssen!

Lesen Sie die mitgelieferten und zugehörigen Dokumentationen der jeweiligen Komponenten des Automationssystems sorgfältig durch, bevor Sie mit der Inbetriebnahme des Controllers und der angeschlossenen Geräte beginnen.

Gefahr!

Hohe elektrische Spannung

Personenschäden durch gefährliche elektrische Spannung

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

Die Spannungsversorgung ausschalten, bevor Arbeiten an den Komponenten des Automationssystems durchgeführt werden.

Nach dem Ausschalten der Spannungsversorgung spannungsführende Geräteteile und Leistungsanschlüsse nicht sofort berühren, weil Kondensatoren aufgeladen sein können.

Die entsprechenden Hinweisschilder auf dem Gerät beachten.

Gefahr!

Personenschäden

Verletzungsgefahr besteht durch ...

- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

- Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).
- Während der Inbetriebnahme einen ausreichenden Sicherheitsabstand zum Motor oder den vom Motor angetriebenen Maschinenteilen einhalten.

Stop!

Beschädigung oder Zerstörung von Maschinenteilen

Beschädigung oder Zerstörung von Maschinenteilen besteht durch ...

- Kurzschluss oder statische Entladungen (ESD);
- nicht vorhersehbare Motorbewegungen (z.B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Schutzmaßnahmen

- Vor allen Arbeiten an den Komponenten des Automationssystems immer die Spannungsversorgung ausschalten.
- Elektronische Bauelemente und Kontakte nur berühren, wenn zuvor ESD-Maßnahmen getroffen wurden.
- · Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).

3 Funktionsbeschreibung "Electrical Shaft Position"

[3-1] Typische Mechanik des Technologiemoduls

- In der Variante "Base" erfolgt die Aktivierung des Gleichlaufes sowie das Setzen eines Offsets mit einem Positionssprung.
- In der Variante "State" ist es zusätzlich möglich, sprungfrei einzukuppeln. Hierzu wird eine positionsabhängige Kupplung verwendet. Außerdem kann ein Offset zwischen Master- und Slave-Achse durch Trimmung analog zum Handfahren gesetzt werden. Der absolut wirkende Offset wird sofort mit einem Positionssprung übernommen.
- Die Variante "High" bietet ergänzend zur State-Variante eine sprungfreie Zuschaltung des Positions-Offset über einen Profilgenerator und die Funktion eines Ein- und Auskuppelmechanismusses.
- ▶ Übersicht der Funktionen (□ 11)

3.1 Übersicht der Funktionen

3.1 Übersicht der Funktionen

Neben den Grundfunktionen zur Bedienung des Funktionsbausteins **L_MC1P_AxisBasicControl**, der **Stopp-Funktion** und der **Halt-Funktion** bietet das Technologiemodul folgende Funktionalitäten, die den Varianten "Base", "State" und "High" zugeordnet sind:

Funktionalität	Variante			
	Base	State	High	
Handfahren (Jogging) (27)	•	•	•	
Referenzfahrt (Homing) (LL 28)	•	•	•	
Gleichlauf (SyncPos) (29)	•	•	•	
Positions-Offset während des Gleichlaufes (31)	•	•	•	
Gleichlauf mit Ein-/Auskuppelmechanismus (32)		•	•	
▶ <u>Direktes Ein- und Auskuppeln</u> (△ 33)		•	•	
▶ Relatives Ein- und Auskuppeln (□ 34)			•	
Positions-Trimmung (36)		•	•	
Positions-Offset mit Profilgenerator (37)			•	
Erweiterung des Ein-/Auskuppelmechanismus (40)			•	

»PLC Designer« Online-Hilfe

Hier finden Sie ausführliche Informationen zum Funktionsbaustein L_MC1P_AxisBasicControl, zur Stopp-Funktion und zur Halt-Funktion.

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

Das Technologiemodul "ElectricalShaft Position" unterstützt nur Achsen mit gleicher Fahrbereich-Einstellung: Entweder müssen sowohl die Master- als auch die Slave-Achse als rotatorische Achsen "Modulo" eingestellt sein oder beide als lineare Achsen "Limited".

Stellen Sie im »PLC Designer« für jede Achse unter der Registerkarte **Einstellungen** das Maschinenmaßsystem "Modulo" oder "Limited" ein:

Einstellung des Betriebsmodus

Der Betriebsmodus (Mode of Operation) für die Slave-Achse muss auf "Zyklisch synchrone Position" (csp) eingestellt werden, da die Achse über den Positionsleitwert geführt wird.

Drehmoment-gesteuerter Antrieb als Master

Das Technologiemodul kann als Master auch eine Achse haben, die im Betriebsmodus "Zyklisch synchrones Drehmoment" (cst) fährt.

Dabei werden die Istwerte auf die Sollwerte geschrieben.

Verwendung von Soll- oder Istwerten

Das Technologiemodul verwendet die Sollwerte der Master-Achse.

Durch die Filterfunktion **L_MC1P_AverageFilterSetValue** können die Sollwerte beeinflusst werden, so dass das Technologiemodul auf die Istwerte umgeschaltet werden kann.

Wichtige Hinweise zum Betrieb des Technologiemoduls 3.2

Kontrollierter Anlauf der Achsen

Bewegungsbefehle, die im gesperrten Achszustand (xAxisEnabled = FALSE) gesetzt werden, müssen nach der Freigabe (xRequlatorOn = TRUE) erneut durch eine FALSE TRUE-Flanke aktiviert werden.

So wird verhindert, dass der Antrieb nach der Reglerfreigabe unkontrolliert anläuft.

Beispiel Handfahren (Jogging) (27):

- 1. Im gesperrten Achzustand (xAxisEnabled = FALSE) wird xJogPos = TRUE gesetzt.
 - xRegulatorOn = FALSE (Achse ist gersperrt.) ==> Zustand "READY" (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (Handfahren soll ausgeführt werden.)
- 2. Achse freigeben.
 - xRegulatorOn = TRUE ==> Zustand "READY" (xAxisEnabled = TRUE)
- 3. Handfahren ausführen.
 - xJoqPos = FALSE

 TRUE ==> Zustand "JOGPOS"

3.3 Funktionsbaustein L_TT1P_ElectricalShaftPos[Base/State/High]

3.3 Funktionsbaustein L_TT1P_ElectricalShaftPos[Base/State/High]

Die Abbildung zeigt die Zugehörigkeit der Ein- und Ausgänge für die Varianten "Base", "State" und "High".

Die zusätzlichen Ein- und Ausgänge der Varianten "State" und "High" sind schattiert dargestellt.

3.3.1 Eingänge und Ausgänge

Bezeichner Datentyp		Beschreibung		Verfügbar in Variante		
			Base	State	High	
MasterAxis		Referenz auf die Master-Achse (Leitachse)	•	•	•	
	AXIS_REF					
SlaveAxis		Referenz auf die Slave-Achse	•	•	•	
	AXIS_REF					

Eingänge 3.3.2

Bezeichner Datentyp	Beschrei	bung		rfügbaı /arianto	
			Base	State	High
xEnableInternalControl BOOL	TRUE	In der Visualisierung ist die interne Steuerung der Achse über die Schaltfläche "Internal Control" auswählbar.	•	•	•
xEnable	Ausführ	ung des Funktionsbausteins	•	•	•
BOOL	TRUE	Der Funktionsbaustein wird ausgeführt.			
	FALSE	Der Funktionsbaustein wird nicht ausgeführt.			
scCtrlABC scCtrl_ABC	• scCtr • Liegt gewe • Vom	sstruktur für den Funktionsbaustein _AxisBasicControl ABC kann im Zustand "Ready" genutzt werden. eine Anforderung an, wird in den Zustand "Service" cchselt. Zustand "Service" wird zurück in den Zustand "Ready" cchselt, wenn keine Anforderung mehr anliegt.	•	•	•
xResetError BOOL	TRUE	Fehler der Achse oder der Software zurücksetzen.	•	•	•
xRegulatorOn BOOL	TRUE	Reglerfreigabe der Achse aktivieren (über den Funktionsbaustein MC_Power).	•	•	•
xStop BOOL	TRUE	 Aktive Bewegung abbrechen und Achse mit der über den Parameter IrStopDec definierten Verzögerung in den Stillstand führen. Ein Wechsel in den Zustand "Stop" erfolgt. Das Technologiemodul bleibt im Zustand "Stop", solange xStop = TRUE (oder xHalt = TRUE) gesetzt ist. Der Eingang ist auch bei "Internal Control" aktiv. 	•	•	•
xHalt BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrHaltDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xHalt = TRUE (oder xStop = TRUE) gesetzt ist.	•	•	•
scPar L_TT1P_scPar_ElectricalShaf tPos[Base/State/High]	Technolo Der Date	meterstruktur enthält die Parameter des ogiemoduls. entyp ist abhängig von der verwendeten Variante ate/High).	•	•	•
scAccessPoints L_TT1P_scAP_ElectricalShaft Pos[Base/State/High]	Der Date	der Angriffspunkte entyp ist abhängig von der verwendeten Variante ate/High).	•	•	•
xJogPos BOOL	TRUE	Achse in positive Richtung fahren (Handfahren). Ist xJogNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•
xJogNeg BOOL	TRUE	Achse in negative Richtung fahren (Handfahren). Ist xJogPos auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•
xHomeExecute BOOL	Der Eing Flanke a	rang ist flankengesteuert und wertet die steigende us.	•	•	•
	FALSE7 TRUE	Referenzierung starten. Der Abbruch der Funktion erfolgt über den Eingang xStop.			

Bezeichner	Datentyp	Beschreibung p			rfügbai /arianto	
				Base	State	High
xHomeAbsSwitch	BOOL	TRUE	Anschluss für Referenzschalter: Bei Referenzfahrmodi mit Referenzschalter verbinden Sie diesen Eingang mit dem Digitalsignal, das den Zustand des Referenzschalters wiedergibt.	•	•	•
xSyncPos	5001	Synchro	nisierung der Slave-Achse auf die Master-Achse	•	•	•
	BOOL	TRUE	Base: Synchronisierung ohne Kupplungsfunktion			
			State/High: Synchronisierung mit Positionskupplung			
IrSetOffsetSlave	LREAL	Die Posit Änderun	s-Offset zur Master-Achse tion wird im Zustand "POS_IS_SYNCHRONISED" bei ng des Wertes angefahren. eit: units	•	•	•
		Base/ State	Der Offset wird direkt übernommen.			
		High	Der Offset wird über den Profilgenerator vergeben.			
xTrimPos	BOOL	TRUE	Position in positive Richtung trimmen. Ist xTrimNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.		•	•
xTrimNeg	BOOL	TRUE	Position in negative Richtung trimmen. Ist xTrimPos auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.		•	•
xSyncInstant	BOOL	TRUE	Synchronisierung mit relativer Positionskupplung (in Verbindung mit xSyncPos) • Master-Achse im Stillstand: Die Slave-Achse kuppelt direkt (schlagartig) auf ihrer aktuellen Position ein. • Master-Achse in Bewegung: Die Slave-Achse kuppelt sofort über die Kuppeldistanz in Parameter IrSlaveSyncInDist ein (analog zu einer Geschwindigkeitskupplung).			•
xSyncOutInstant	BOOL	TRUE	Auskuppeln mit relativer Positionskupplung • Master-Achse im Stillstand: Die Slave-Achse kuppelt direkt (schlagartig) auf ihrer aktuellen Position aus. • Master-Achse in Bewegung: Die Slave-Achse kuppelt sofort über die Kuppeldistanz in Parameter IrSlaveSyncOutDist aus (analog zu einer Geschwindigkeitskupplung oder MC_Halt).			•
xSyncPosRestore	BOOL	FALSE7 TRUE	Mit einer FALSE/TRUE-Flanke wird der durch ein relatives Einkuppeln aufgebaute Positions-Offset durch diese Parameter ausgeglichen: • eOffsetSlaveDirection • eOffsetSlaveProfileType • IrOffsetSlaveVelPos • IrOffsetSlaveVelNeg • IrOffsetSlaveAccDec			•
		TRUE'N FALSE	Mit einer TRUE\(\text{TRUE}\)FALSE-Flanke wird der Synchronisationsvorgang abgebrochen. Ein eventuell verbleibender Positions-Offset wird am Ausgang IrOffsetSyncPos angezeigt.			

3

Ausgänge 3.3.3

Bezeichner Datentyp	Beschrei	bung		Verfügbar in Variante		
			Base	State	High	
xInternalControlActive BOOL	TRUE	Die interne Steuerung der Achse ist über die Visualisierung aktiviert. (Eingang xEnableInternalControl = TRUE)	•	•	•	
eTMState L_TT1P_States		r Zustand des Technologiemoduls machine (💷 23)	•	•	•	
scStatusABC scStatus_ABC	1	der Zustandsdaten des Funktionsbausteins _AxisBasicControl	•	•	•	
xError BOOL	TRUE	Im Technologiemodul liegt ein Fehler vor.	•	•	•	
xWarning BOOL	TRUE	Im Technologiemodul liegt eine Warnung vor.	•	•	•	
eErrorID L_IE1P_Error	ID der Fe oder xW	ehler- oder Warnungsmeldung, wenn xError = TRUE arning = TRUE ist.	•	•	•	
	Hier find	zhandbuch "FAST Technologiemodule": Ien Sie Informationen zu Fehler- oder gsmeldungen.				
scErrorInfo L_TT1P_scErrorInfo	Fehlerin Fehlerur	formationsstruktur für eine genauere Analyse der sache	•	•	•	
scSignalFlow L_TT1P_scSF_ElectricalShaft Pos[Base/State/High]	Der Date (Base/St	des Signalflusses entyp ist abhängig von der verwendeten Variante ate/High). flussplan (Ш 24)	•	•	•	
xAxisEnabled BOOL	TRUE	Die Achse ist freigegeben.	•	•	•	
xDone BOOL	TRUE	Die Anforderung/Aktion wurde erfolgreich abgeschlossen.	•	•	•	
xBusy BOOL	TRUE	Die Anforderung/Aktion wird zur Zeit ausgeführt.	•	•	•	
xIsHomed BOOL	TRUE	Die Achse ist referenziert (Referenz bekannt).	•	•	•	
IrActVel LREAL		Geschwindigkeit eit: units/s	•	•	•	
IrActPos LREAL		Position eit: units	•	•	•	
IrOffset LREAL	IrSetOff: Achse	ellter Positions-Offset aus dem Eingang setSlave zwischen der Master-Achse und der Slave- eit: units	•	•	•	
IrOffsetTrim LREAL	Master-	Positions-Offset aus der Trimmungsfunktion zwischen der Master-Achse und der Slave-Achse • Einheit: units			•	
IrOffsetTotal LREAL	Der Gesamtpositions-Offset zwischen der Master-Achse und der Slave-Achse enthält die Informationen des Master-Offset, Slave-Offset, Offset aus der Trimmungsfunktion und des durch relatives Einkuppeln verursachten Offset. • Einheit: units			•	•	
xSynchronised BOOL	TRUE	Die Achse ist gekuppelt mit Bezug zur Master-Achse.		•	•	

Bezeichner	Datentyp	Beschreibung		Verfügbar in Variante		
				Base	State	High
xAccDecSync	BOOL	TRUE	Die Synchronisierungsfunktion ist aktiv. Die Achse wird auf- oder absynchronisiert (die Kupplung öffnet oder schließt).		•	•
IrOffsetSyncPos	LREAL	Durch relatives Einkuppeln entstandener Positions-Offset. • Einheit: units				•

3.3 Funktionsbaustein L_TT1P_ElectricalShaftPos[Base/State/High]

3.3.4 Parameter

L_TT1P_scPar_ElectricalShaftPos[Base/State/High]

Die Struktur **L_TT1P_scPar_ElectricalShaftPos[Base/State/High]** enthält die Parameter des Technologiemoduls.

Bezeichner Datent		eschreibung			r in e
			Base	State	High
IrStopDec LRE	L Hardwa Schlepp • Einh	Verzögerung für die Stopp-Funktion und bei Auslösung der Hardware-Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: units/s ² • Initialwert: 10000			•
lrStopJerk LRE	Schlepp • Einh	r die Stopp-Funktion und bei Auslösung der Hardware- alter, Software-Endlagen und Ifehlerüberwachung eit: units/s ³ alwert: 100000	•	•	•
IrHaltDec LRE	Vorgab zum Sti • Einh • Initia	erung für die Halt-Funktion e, mit welcher Geschwindigkeitsänderung maximal bis Ilstand verzögert werden soll. eit: units/s ² alwert: 3600 positive Werte sind zulässig.	•	•	•
lrJerk LRE	L oder Ha • Einh	m Ausgleich bei einer Offsetwert-, Trimm-, Kupplungs- ltfunktion eit: units/s ³ alwert: 100000	•	•	•
lrJogJerk LRE	L • Einh	r das Handfahren eit: units/s ³ alwert: 10000	•	•	•
IrJogVel LRE	L durchge • Einh	Maximale Geschwindigkeit, mit der das Handfahren durchgeführt werden soll. • Einheit: units/s • Initialwert: 10			•
lrJogAcc LRE	Vorgabo beschle • Einh	unigung für das Handfahren e, mit welcher Geschwindigkeitsänderung maximal unigt werden soll. eit: units/s ² alwert: 100	•	•	•
lrJogDec LRE	L Vorgabo zum Sti • Einh	Verzögerung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s² • Initialwert: 100			•
IrHomePosition LRE	L • Einh	Referenzposition für eine Referenzfahrt (Homing) • Einheit: units • Initialwert: 0		•	•
xUseHomeExtParameter BO		nl der zu verwendenden Homing-Parameter alwert: FALSE	•	•	•
	FALSE	Die in den Achsdaten definierten Homing-Parameter werden verwendet.			
	TRUE	Die Homing-Parameter schomeExtParameter aus der Applikation werden verwendet.			
scHomeExtParameter L_MC1P_HomeParamet		g-Parameter aus der Applikation relevant, wenn xUseHomeExtParameter = TRUE.	•	•	•

Bezeichner	Datentyp	Beschreibung 'P		Verfügbai Variante	
			Base	State	High
scHomeExtTP MC_TRIC	GGER_REF	 Übergabe eines externen Touch-Probe-Ereignisses Nur relevant bei der Touch-Probe-Konfiguration "Externe Quelle". Zur Beschreibung der Struktur MC_TRIGGER_REF siehe Funktionsbaustein MC_TouchProbe. 	•	•	•
dwNumerator	DWORD	Dieser Wert geht als Zähler-Term in den resultierenden Gleichlauffaktor ein. • Initialwert: 1	•	•	•
dwDenominator	DWORD	Dieser Wert geht als Nenner-Term in den resultierenden Gleichlauffaktor ein. • Initialwert: 1	•	•	•
xLoadSyncPos	BOOL	Automatische Berechnung und Vorgabe der Getriebeausgangsposition zur direkten Einkupplung • Initialwert: FALSE • <u>Direktes Ein- und Auskuppeln</u> (33)		•	•
		TRUE Die Ausgangsposition des Getriebes wird unter Berücksichtigung der aktuellen Slave-Position berechnet. Im Anschluss an diesen Vorgang ist eine direkte, ruckfreie Einkupplung möglich.			
IrTrimAcc	LREAL	Beschleunigung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zum Master beschleunigt werden soll. Die auf den Antrieb wirkende Beschleunigung ist die Summe aus der Master- und Slave- Beschleunigung. • Einheit: units/s² • Initialwert: 100		•	•
IrTrimDec	LREAL	Verzögerung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zum Master verzögert werden soll. Die auf den Antrieb wirkende Verzögerung ist die Summe aus der Master- und Slave- Verzögerung. • Einheit: units/s² • Initialwert: 100		•	•
IrTrimVel	LREAL	Geschwindigkeit für die Trimmung Vorgabe, mit welcher Geschwindigkeit getrimmt werden soll. • Einheit: units/s • Initialwert: 50		•	•
IrSlaveSyncInDist	LREAL	Distanz der Einkuppelbewegung von der Slave-Achse (Wegbasierter Kupplungsmodus). • Einheit: units • Initialwert: 90		•	•
IrSlaveSyncOutDist	LREAL	Distanz der Auskuppelbewegung von der Slave-Achse (Wegbasierter Kupplungsmodus). • Einheit: units • Initialwert: 90		•	•
IrSlaveSyncOutPos	LREAL	Soll-Auskuppelposition der Slave-Achse An dieser Position wird die Slave-Achse angehalten, sobald der Auskuppelvorgang erfolgt ist (Weg-basierter Kupplungsmodus). • Einheit: units • Initialwert: 0		•	•

3

Bezeichner Datentyp	Beschreibung		Verfügbai Variante		
			Base	State	High
eOffsetSlaveDirection L_TT1P_Direction		gsvorgabe für den Profilgenerator lwert: 1 (Direction Master)			•
	0	Both: Die Slave-Achse darf in positive und negative Richtung fahren.			
	1	Direction Master: Die Slave-Achse darf nur in die Richtung fahren, in die auch die Master-Achse fährt.			
eOffsetSlaveProfileType L_TT1P_ProfileType		des Profilgenerators lwert: 2			•
	0	poly_4th_order (Polynom 4. Grades)			
	1	poly_2th_order (Polynom 2. Grades)			
	2	poly_5th_order (Polynom 5. Grades)			
IrOffsetSlaveVelPos LREAL	Maximale positive Geschwindigkeit, mit der das Profil geplant werden soll. Die Summe aus dieser Geschwindigkeit und der des Masters ist die auf die Slave-Achse wirkende Geschwindigkeit. • Einheit: units/s • Initialwert: 100				•
IrOffsetSlaveVelNeg LREAL	Maximale negative Geschwindigkeit, mit der das Profil geplant werden soll. Die Summe aus dieser Geschwindigkeit und der des Masters ist die auf die Slave-Achse wirkende Geschwindigkeit. • Einheit: units/s • Initialwert: 100				•
IrOffsetSlaveAccDec LREAL	soll. Die Sum die auf d Hinweis "poly_5t und der • Einhe	le Beschleunigung, mit der das Profil geplant werden me aus dieser Beschleunigung und der des Masters ist lie Slave-Achse wirkende Beschleunigung. : Bei der Profiltypen-Auswahl "poly_4th" und h" wird der Parameter-Profilwert der Beschleunigung Verzögerung überschritten. eit: units/s ² lwert: 1000			•
xLoadOffsetSlave BOOL	IrSetOffs	es Positions-Offset zur Master-Achse (über Eingang setSlave) lwert: FALSE			•
	TRUE	Der Positions-Offset wird zyklisch geladen.			
	FALSE	Der Positions-Offset wird über den Profilgenerator gefahren.			
eSyncDirection	Erlaubte	Einkuppelrichtung bezogen auf die Masterbewegung			•
L_TT1P_SyncDirection ElectricalShaftPos	-1	mcNegativeDirection (Startbedingung in negative Richtung der Masterachse)			
	1	mcPositiveDirection (Startbedingung in positive Richtung der Masterachse)			
	2	mcShortestWay (in beiden Richtungen auf dem kürzesten Weg)			
	Initialwe	ert := 0: mcCurrentDirection (in beide Richtungen)			

Bezeichner Datentyp	Beschreibung p		erfügba Variant		
		Base	State	High	
eSyncMode	ı-/Auskupplungsmodus:			•	
L_TT1P_SyncMode ElectricalShaftPos	Ramp_Time (zeitbasiertes Kuppeln innerhalb ein Zeitfensters)	es			
	4 Ramp_VelAcc (Kuppeln über einen Profilgenerato	or)			
	Ramp_Dist (wegbasiertes Kuppeln über die Dista der Slave-Achse)	nz			
	Initialwert := 5 Ramp_Dist				
lrSyncInTime LREAL	Relevant bei Kupplungsmodus: eSyncMode = 3 Ramp_TIme Dauer des Einkuppelns in Sekunden (zeitbasierter Kupplungsmodus). Initialwert := 5			•	
IrSyncOutTime LREAL	Relevant bei Kupplungsmodus: eSyncMode = 3 Ramp_TIme Dauer des Auskuppelns in Sekunden (zeitbasierter Kupplungsmodus). Initialwert := 5			•	
lrSyncVel LREAL	Maximale Geschwindigkeit, mit welcher der Ein-/ Auskuppelvorgang im Modus eSyncMode = 4 (ramp_VelAd durchgeführt werden soll. • Einheit: units/s • Initialwert: 100	:)		•	
lrSyncAcc LREAL	Beschleunigung für den Ein-/Auskuppelvorgang im Modus eSyncMode = 4 (ramp_VelAc) Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: units/s2 • Initialwert: 1000			•	
lrSyncDec LREAL	Verzögerung für den Ein-/Auskuppelvorgang im Modus eSyncMode = 4 (ramp_VelAc) Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s2 • Initialwert: 1000			•	
lrSyncJerk LREAL	Ruck für den Ein-/Auskuppelvorgang im Modus eSyncMode = 4 (ramp_VelAc) • Einheit: units/s3 • Initialwert: 1000000			•	

3.4 State machine

3.4 State machine

[3-2] State machine des Technologiemoduls

- (*1 Im Zustand "Ready" muss xRegulatorOn auf TRUE gesetzt werden.
- (*2 Im Zustand "ERROR" muss xResetError zum Quittieren und Zurücksetzen der Fehler auf TRUE gesetzt werden.

3.5 Signalflussplan

3.5 Signalflussplan

[3-3] Signalflussplan

In der Abbildung [3-3] ist der Haupt-Signalfluss der umgesetzten Funktionen dargestellt. Der Signalfluss der Zusatzfunktionen, wie z. B. "Handfahren", sind hier nicht dargestellt.

3.5 Signalflussplan

3.5.1 Struktur des Signalflusses

L_TT1P_scSF_ElectricalShaftPos[Base/State/High]

Die Inhalte der Struktur **L_TT1P_scSF_ElectricalShaftPos[Base/State/High]** sind nur lesbar und bieten eine praktische Diagnosemöglichkeit innerhalb des Signalflusses (<u>Signalflussplan</u> (<u>LLL</u> 24)).

Bezeichner Datenty		Beschreibung			erfügbar in Variante	
			Base	State	High	
IP01_IrSetOffsetSlave LREA	Die Posi Änderur	Positions-Offset zur Master-Achse Die Position wird im Zustand "POS_IS_SYNCHRONISED" bei Änderung des Wertes angefahren. • Einheit: units		•	•	
	Base/ State	Der Offset wird direkt übernommen.				
	High	Der Offset wird über den Profilgenerator vergeben.				
MP01_IrSetMasterPos LREA		ollposition der Master-Achse • Einheit: units		•	•	
MP02_IrSetSlavePos LREA		Sollposition der Slave-Achse • Einheit: units		•	•	
MP03_IrSetGearBoxPosOut LREA		rende Position aus dem Getriebe eit: units	•	•	•	
MP04_IrSetClutchPos LREA		tion für <u>Direktes Ein- und Auskuppeln</u> (🕮 33) eit: units	•	•	•	
OP01_IrOffset LREA	IrSetOff Achse	ellter Positions-Offset aus dem Eingang setSlave zwischen der Master-Achse und der Slave- eit: units	•	•	•	
OP02_IrOffsetTrim LREA	_ Master-	Positions-Offset aus der Trimmungsfunktion zwischen der Master-Achse und der Slave-Achse • Einheit: units		•	•	
OP03_IrOffsetTotal LREA	Slave-Ad	positions-Offset zwischen der Master-Achse und der hse eit: units		•	•	

3.5 Signalflussplan

3.5.2 Struktur der Angriffspunkte

L_TT1P_scAP_ElectricalShaftPos[Base/State/High]

Über die Angriffspunkte (AP) können Signale beeinflusst werden. Im Initialzustand haben die Angriffspunkte keine Wirkung.

Jeder Angriffspunkt wirkt als ein alternativer Zweig und wird über eine ODER-Verknüpfung oder einen Schalter aktiviert.

Bezeichner Datentyp	Beschreibung		Beschreibung Verfügbar Variant			
			Base	State	High	
AP01_xLoadGearBoxPosOut	Freigabe	des Angriffspunktes AP01_lrLoadGearBoxPosOut	•	•	•	
BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP01_IrLoadGearBoxPosOut LREAL		aden der resultierende Position aus dem Getriebe • Einheit: units				
AP02_xLoadTrimOffset	Freigabe	des Angriffspunktes AP02_lrLoadTrimOffset		•	•	
BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP02_IrLoadTrimOffset LREAL	Laden des resultierenden Abstandes aus der Trimmungsfunktion • Einheit: units					
AP05_xLoadOffsetSync	Freigabe	des Angriffspunktes AP05_lrLoadOffsetSync			•	
BOOL	TRUE	Der Angriffspunkt überschreibt die Werte des Synchronisations-Offset.				
AP05_IrLoadOffsetSync LREAL	Laden des Synchronisations-Offset					

3.6 Handfahren (Jogging)

3.6 Handfahren (Jogging)

Vorausetzung

- Das Technologiemodul befindet sich im Zustand "Ready".
- Die Slave-Achse ist freigeben (xRegulatorOn = TRUE).

Ausführung

Zum Handfahren der Achse wird die Handfahr-Geschwindigkeit IrJoqVel verwendet.

Mit dem Eingang xJogPos = TRUE wird die Achse in positive Richtung und mit dem Eingang xJogNeg = TRUE in negative Richtung gefahren. Die Achse wird solange gefahren, wie der Eingang TRUE gesetzt bleibt.

Der laufende Fahrbefehl kann nicht durch den anderen Jog-Befehl abgelöst werden. Erst wenn beide Eingänge zurückgesetzt wurden, wechselt die <u>State machine</u> (<u>QQ 23</u>) wieder zurück in den Zustand "Ready".

Einzustellende Parameter

Die Parameter für das Handfahren befinden sich in der Parameterstruktur LTT1P scPar ElectricalShaftPos[Base/State/High] (L19).

Die Parameterwerte können während des Betriebes verändert werden. Sie werden bei erneutem Setzen der Eingänge xJogPos = TRUE oder xJogNeg = TRUE übernommen.

3.7 Referenzfahrt (Homing)

3.7 Referenzfahrt (Homing)

Vorausetzung

- Das Technologiemodul befindet sich im Zustand "Ready".
- Die Slave-Achse ist freigeben (xRegulatorOn = TRUE).

Ausführung

Mit einer steigenden Flanke (FALSE/TRUE) am Eingang xHomeExecute wird die Referenzfahrt gestartet. Die Achse fährt solange, bis die Referenzposition erreicht ist. Nach erfolgreicher Referenzierung wechselt die <u>State machine</u> (LLL 23) wieder zurück in den Zustand "Ready".

Die Referenzfahrt wird <u>nicht</u> unterbrochen, wenn der Eingang *xHomeExecute* vorzeitig auf FALSE gesetzt wird. Der Abbruch der Funktion erfolgt über den Eingang *xStop*.

Einzustellende Parameter

Die Parameter für die Referenzfahrt befinden sich in der Parameterstruktur L_TT1P_scPar_ElectricalShaftPos[Base/State/High] (L) 19).

```
xUseHomeExtParameter : BOOL := FALSE;
lrHomePosition : LREAL := 0.0;
scHomeExtParameter : L_MC1P_HomeParameter;
scHomeExtTP : MC_TRIGGER_REF;
```

3.8 Gleichlauf (SyncPos)

3.8 Gleichlauf (SyncPos)

Hinweis!

Die Aktivierung des Gleichlaufes erfolgt mit einem Positionssprung.

Ausführung

Für den Gleichlauf von Slave-Achse und Master-Achse (Leitachse) wird mittels Gleichlauffaktoren eine Sollposition, ausgehend von der Master-Achse, errechnet. Der Gleichlauf wird gestartet, indem der Eingang xSyncPos = TRUE gesetzt wird. Dabei wird die errechnete Sollposition schlagartig auf die Achse geschaltet. Eine sprungfreie Zuschaltung ist nur im Stillstand – nach vorheriger Positionierung – möglich. Der Getriebefaktor ist auf 1:1 voreingestellt.

Einzustellende Parameter

Die Parameter für den Getriebefaktor befinden sich in der Parameterstruktur LTT1P scPar ElectricalShaftPos[Base/State/High] (19).

```
dwNumerator : DWORD := 1;
dwDenominator : DWORD := 1;
```

3.8

Beispiele

Wird der Getriebefaktor beispielsweise auf 2:1 eingestellt (dwNumerator = 2, dwDenominator = 1), stellt sich das Gleichlaufverhalten wie folgt dar:

[3-4] Gleichlaufverhalten bei Getriebefaktor 2:1

3.9 Positions-Offset während des Gleichlaufes

Hinweis!

Das Setzen eines Positions-Offset erfolgt mit einem Positionssprung.

Vorausetzung

Das Setzen eines Positions-Offset ist nur im Zustand "POS_IS_SYCHRONISED" möglich.

Ausführung

Ein variabler Positions-Offset zwischen Master und Slave wird mit dem Eingang *IrSetOffsetSlave* vorgegeben. Der Offset wird im Zustand "POS_IS_SYNCHRONISED" bei Änderung des Wertes schlagartig auf die Sollposition der Achse geschaltet.

Beispiel

[3-5] Positions-Offset IrSetOffsetSlave = 100

3.10 Gleichlauf mit Ein-/Auskuppelmechanismus

3.10 Gleichlauf mit Ein-/Auskuppelmechanismus

Ausführung

Der Gleichlauf von Slave-Achse und Master-Achse (Leitachse) ist erweitert um eine Kupplungsfunktion. Die Kupplungsfunktion synchronisiert die Position der Slave-Achse auf die Leitposition der Master-Achse. Die Positionierung erfolgt hierbei sprungfrei.

Das Einkuppeln startet bei einer beliebigen Position mittels xSyncPos = TRUE.

Beim Auskuppeln mittels xSyncPos = FALSE wird der Antrieb an der Position IrSlaveSyncOutPos zum Stillstand gebracht und in den Zustand "Ready" gewechselt.

Die Parameter IrSlaveSyncInDist (zum Einkuppeln) und IrSlaveSyncOutDist (zum Auskuppeln) bezeichnen den Weg, über den der Kuppelvorgang stattfinden soll. Für die Initialwerte der Parameter gilt, dass nach 90 units der Kuppelvorgang abgeschlossen ist.

Damit der Kuppelvorgang gestartet wird, muss sich die Position der Master-Achse um mindestens den doppelten Einkuppelweg vor der Position der Slave-Achse befinden. Sonst fährt die Master-Achse noch einen weiteren kompletten Takt, bis der Kuppelvorgang gestartet wird.

Hinweis!

Bei Achseinstellung "Limited":

- Die Slave-Achse wird eingekuppelt, wenn die Master-Achse den Abstand IrSlaveSyncInDist vor der Slave-Achse erreicht hat.
- Damit die Slave-Achse an der Auskuppelposition *IrSlaveSyncOutPos* ausgekuppelt wird, muss zuvor der Abstand *IrSlaveSyncOutDist* definiert werden.

Einzustellende Parameter

Die Parameter für die Kupplungsfunktion befinden sich in der Parameterstruktur L TT1P scPar ElectricalShaftPos[Base/State/High] (19).

```
lrSlaveSyncOutPos : LREAL := 0.0;
lrSlaveSyncInDist : LREAL := 90.0;
lrSlaveSyncOutDist : LREAL := 90.0;
```

3.10

Beispiel

[3-6] Ein-/Auskuppeln mit IrSlaveSyncOutPos = 100

Die Abbildung [3-6] zeigt den Einkuppelvorgang an Position 100.0, der über 90 units abgeschlossen wird und beim Auskuppelvorgang nach 90 units wieder auf der Position 100.0 endet.

3.10.1 Direktes Ein- und Auskuppeln

Die Kupplungsfunktion ermöglicht auch ein direktes Ein- und Auskuppeln. Setzen Sie dazu die Parameter *IrSlaveSyncInDist* und *IrSlaveSyncOutDist* auf den Wert '0.0'. Das Einkuppeln erfolgt dann direkt und schlagartig.

Um einen Positionssprung am Ausgang der Kupplung und somit der Slave-Achse zu verhindern, stehen folgende Möglichkeiten zur Vefügung:

• Positionierung der Slave-Achse auf die Eingangsposition der Kupplung (MP04:IrSetClutchPos) bevor hart eingekuppelt wird.

Diese Variante ermöglicht einen Positionsgleichlauf ohne Positionsversatz zwischen der Master-Achse und der Slave-Achse.

Weitere Informationen zu MP04:lrSetClutchPos finden Sie hier: L TT1P scPar ElectricalShaftPos[Base/State/High] (19)

• Automatische Berechnung und Vorgabe der Getriebeposition zur direkten Einkupplung mit Parameter xLoadSyncPos = TRUE.

Diese Variante ermöglicht einen Positionsgleichlauf mit Positionsversatz zwischen der Master-Achse und der Slave-Achse. Der hierbei entstehende Positionsversatz kann im Anschluss über das Aufschalten eines Offsets eliminiert werden.

3.10 Gleichlauf mit Ein-/Auskuppelmechanismus

3.10.2 Relatives Ein- und Auskuppeln

Diese Funktion ist nur in der High-Variante des Technologiemoduls verwendbar!

Die Anwahl dieser Funktionen erfolgt über Eingänge und nicht über die Auswahl eines Kupplungsmodus. Der Auswahl des allgemeinen Kupplkungsmodus bleibt von dieser Funktion unberührt.

Mit dem Eingang xSyncInstant = TRUE erfolgt die Synchronisierung mit relativer Positionskupplung.

- Befindet sich die Master-Achse im Stillstand, so kuppelt die Slave-Achse direkt (schlagartig) auf ihrer aktuellen Position ein.
- Bewegt sich die Master-Achse, kuppelt die Slave-Achse sofort über die Kuppeldistanz in Parameter *IrSlaveSyncInDist* ein (analog zu einer Geschwindigkeitskupplung).
- Für das Auskuppeln hat der Eingang xSyncInstant keine Funktion.

Mit dem Eingang xSyncOutInstant = TRUE wird mit relativer Positionskupplung ausgekuppelt.

- Befindet sich die Master-Achse im Stillstand, so kuppelt die Slave-Achse direkt (schlagartig) auf ihrer aktuellen Position aus.
- Bewegt sich die Master-Achse, kuppelt die Slave-Achse sofort über die Kuppeldistanz in Parameter *IrSlaveSyncOutDist* aus (analog zu einer Geschwindigkeitskupplung oder MC_Halt).
- Für das Einkuppeln hat der Eingang xSyncOutInstant keine Funktion.

Ein durch relatives Einkuppeln entstandener Positions-Offset wird am Ausgang IrOffsetSyncPos (in units) angezeigt.

Kupplungsverhalten bei zeitlich unterschiedlicher Stimulation der Eingänge

Einkuppeln über den Eingang xSyncInstant:

Kombinationen der Eingänge	Kupplungsverhalten		
xSyncPos	xSyncInstant		
FALSE7TRUE	FALSE	Kupplungsverhalten wie bisher	
FALSE	FALSE 7 TRUE	Keine Reaktion	
TRUE	FALSE 7 TRUE	Keine Reaktion	
FALSE 7 TRUE	FALSE/TRUE	Relatives Einkuppeln	
FALSE/TRUE	TRUE	Relatives Einkuppeln	

Auskuppeln über den Eingang xSyncOutInstant:

Kombinationen der Eingänge	Kupplungsverhalten	
xSyncPos	xSyncOutInstant	
TRUEIJFALSE	FALSE	Kupplungsverhalten wie bisher
TRUE⊿FALSE	FALSE 7 TRUE	Relatives Auskuppeln
TRUE	FALSE 7 TRUE	Relatives Auskuppeln

3.10 Gleichlauf mit Ein-/Auskuppelmechanismus

Einzustellende Parameter

Die Parameter für die Kupplungsfunktion befinden sich in der Parameterstruktur <u>L TT1P scPar ElectricalShaftPos[Base/State/High]</u> (LL 19).

```
lrSlaveSyncInDist : LREAL := 90.0;
lrSlaveSyncOutDist : LREAL := 90.0;
eOffsetSlaveDirection : L_TT1P_Direction := 1;
eOffsetSlaveProfileType : L_TT1P_ProfileType := 2;
lrOffsetSlaveVelPos : LREAL := 100;
lrOffsetSlaveVelNeg : LREAL := 100;
lrOffsetSlaveAccDec : LREAL := 1000;
```

3.11 Positions-Trimmung

3.11 Positions-Trimmung

Vorausetzung

Die Positions-Trimmung ist nur im Zustand "POS_IS_SYCHRONISED" möglich.

Ausführung

Mit der Positions-Trimmung ist es möglich, die Position der Slave-Achse gegenüber der Master-Achse (Leitachse) durch "Tippen" – wie beim <u>Handfahren (Jogging)</u> (<u>Q</u> 27) – zu verstellen.

Die Positions-Trimmung wird gestartet, indem der Eingang xTrimPos oder xTrimNeg auf TRUE gesetzt wird. Der Zustand "POS_IS_SYCHRONISED" wechselt dann richtungsabhängig in den Zustand "TRIM_POS_PLUS" oder "TRIM_POS_MINUS" und verlässt diesen erst wieder, wenn der jeweilige Eingang xTrimPos oder xTrimNeg auf FALSE zurückgetzt wird.

Durch die Trimmung verstellte Offsets lassen sich über den Ausgang *IrOffsetTrim* ermitteln. Der Wert von *IrOffsetTrim* lässt sich nur durch Ausschalten des Technologiemoduls zurück auf Null setzen.

Einzustellende Parameter

Die Parameter für die Positions-Trimmung befinden sich in der Parameterstruktur L TT1P scPar ElectricalShaftPos[Base/State/High] (119).

```
lrJerk : LREAL := 100000;
lrTrimAcc : LREAL := 100;
lrTrimDec : LREAL := 100;
lrTrimVel : LREAL := 50;
```

Die Beschleunigung und die Geschwindigkeit der Trimmung werden denen der Master-Achse überlagert. Somit ergibt sich für die zu vertrimmende Achse eine ...

- resultierende Geschwindigkeit von: v_{AchseRes} = v_{Leitachse} + IrTrimVel
- resultierende Beschleunigung von: a_{AchseRes} = a_{Leitachse} + IrTrimAcc

3.12 Positions-Offset mit Profilgenerator

3.12 Positions-Offset mit Profilgenerator

Vorausetzung

Das Setzen eines Positions-Offset ist nur im Zustand "POS_IS_SYCHRONISED" möglich.

Ausführung

Der Positions-Offset wird <u>ohne</u> Positionssprung über einen Profilgenerator an die Achse gegeben. Die Vorgabe des Offset erfolgt mit dem Eingang *IrSetOffsetSlave*.

Der Positions-Offset kann mittels Profilgenerator mit 3 verschiedenen Verschliffprofilen gefahren werden. Der Profilgenerator wird aktiviert, indem der Parameter xLoadOffsetSlave = FALSE gesetzt wird. Ein Profil kann über den Parameter eOffsetSlaveProfileType vorgegeben werden.

Über den Parameter *eOffsetSlaveDirection* wird festgelegt, ob der Antrieb entgegen der Master-Drehrichtung drehen darf (0: Both) oder nicht (1: Direction Master).

Die Rahmenbedingungen zur Berechnung des Profils werden über die Parameter IrOffsetSlaveVelPos, IrOffsetSlaveVelNeg und IrOffsetSlaveAccDec vorgegeben.

Einzustellende Parameter

Die Parameter für den Positions-Offset mit Profilgenerator befinden sich in der Parameterstruktur L_TT1P_scPar_ElectricalShaftPos[Base/State/High] (\subseteq 19).

```
xLoadOffsetSlave : BOOL := FALSE;
eOffsetSlaveProfileType : L_TT1P_ProfileType := 0;
eOffsetSlaveDirection : L_TT1P_Direction := 0;
lrJerk : LREAL := 100000;
lrOffsetSlaveVelPos : LREAL := 100;
lrOffsetSlaveVelNeg : LREAL := 100;
lrOffsetSlaveAccDec : LREAL := 1000;
```

3 3.12

._____

Beispiele

Wenn die Master-Achse z. B. in positive Richtung betrieben wird, kann mit *eOffsetSlaveDirection* = 1 (*DirectionMaster*) die Drehrichtung der Slave-Achse in negative Richtung verhindert werden. Die Abbildung [3-7] zeigt, wie die Slave-Achse (blau) auf die Master-Achse wartet, um ihren Positions-Offset *IrSetOffsetSlave* zu korrigieren.

[3-7] Drehrichtung nur in Master-Drehrichtung (eOffsetSlaveDirection = 1)

Die Abbildung [3-8] zeigt das Verhalten, wenn die Slave-Achse in positive und negative Richtung drehen darf (eOffsetSlaveDirection = 0 (Both)).

[3-8] Drehrichtung in positive und negative Richtung (eOffsetSlaveDirection = 0)

3.12 Positions-Offset mit Profilgenerator

In den Abbildungen [3-7] und [3-8] wurde das Verschliffprofil mit einem Polynom 4. Grades berechnet. Dies ist die Standard-Einstellung und wird über den Parameter *eOffsetSlaveProfileType* vorgegeben. Der Parameter bietet 3 mögliche Profile zur Auswahl:

```
eOffsetSlaveProfileType : L_TT1P_ProfileType := 0;
// 0: poly_4th_order (Polynom 4.Grades)
// 1: poly_2th_order (Polynom 2.Grades)
// 2: poly_5th_order (Polynom 5.Grades)
```

Der Positions-Offset IrSetOffsetSlave wechselt alle 3 Sekunden zwischen 40 und 80 units.

3.13 Erweiterung des Ein-/Auskuppelmechanismus

3.13 Erweiterung des Ein-/Auskuppelmechanismus

Diese Funktion ist nur in der High-Variante des Technologiemoduls verwendbar!

Der Ein- und Auskuppelmechanismus der State-Variante ist um den Modus scPar.eSyncMode erweitert.

3.13.1 eSyncMode = Ramp_Dist

Der Kupplungsmodus "Ramp_Dist" ist der Ein- und Auskuppelmechanismus aus der State-Variante. In diesem Modus kann die Slave-Achse über mehrere Takte der Master-Achse ein- oder auskuppeln. Die Slave-Achse kuppelt nur auf der Master-Position ein oder aus, wenn die Master-Achse fährt. Die Slave-Achse positioniert wegbasierend über ein Polynom 5. Ordnung von seiner derzeitigen Position auf die resultierende Zielposition.

Einkuppeln

[3-9] Einkuppeln mit eSyncMode = 5 Ramp_Dist

Auskuppeln

[3-10] Auskuppeln mit eSyncMode = 5 Ramp_Dist

3.13.2 eSyncMode = Ramp_Time

Der Kupplungsmodus "Ramp_Time" ist unabhängig von der Bewegung der Master-Achse. Die Slave-Achse wird auch bei stehender Master-Achse synchronisiert.

Einkuppeln

Die Slave-Achse kuppelt zeitbasierend innerhalb einer definierten Zeit (Parameter *IrSyncInTime*) über ein Polynom 5. Ordnung von seiner derzeitigen Position auf die Master-Position ein. Die Bewegung wird innerhalb des Slave-Taktes bei den Modulo-Achsen ausgeführt.

[3-11] Einkuppeln mit eSyncMode = 3 Ramp_Time

3.13

Auskuppeln

Das Auskuppeln wird mit dem Eingang xSyncPos = FALSE ausgelöst. Das zeitgesteuerte Auskuppeln führt die Slave-Achse von der derzeitigen Position innerhalb einer definierten Zeit (Parameter IrSyncOutTime) aus. Über den Parameter IrSlaveSyncOutPos wird die Anhalteposition der Slave-Achse definiert.

[3-12] Auskuppeln mit eSyncMode = 3 Ramp_Time

Einzustellende Parameter

Die einzustellenden Parameter befinden sich in der Parameterstruktur LTT1P scPar ElectricalShaftPos[Base/State/High] (L19).

```
eSyncMode : L_TT1P_SyncMode := L_TT1P_SyncMode.Ramp_time;
lrSlaveSyncOutPos
lrSyncInTime : LREAL := 5;
lrSyncOutTime : LREAL := 5;
lrSlaveSyncOutPos : LREAL := 0;
```

3.13.3 eSyncMode = Ramp_VelAcc

Hinweis!

Diese Ein- bzw. Auskuppelvariante ist unabhängig von der Masterbewegung, das heißt sie synchronisiert die Slave-Achse auch bei stehender Master-Achse.

Einkuppeln

Die Slave-Achse kuppelt über den Profilgenerator mit den Parametern IrSyncVel, IrSyncAcc, IrSyncDec und IrSyncJerk von seiner derzeitigen Position auf die Master-Position ein. Die Bewegung wird innerhalb des Slave-Taktes bei den Modulo-Achsen ausgeführt. Die resultierende Geschwindigkeit der Slave-Achse in der Einkuppelphase ergibt sich aus der Summe der Geschwindigkeit von der Master-Achse und der Geschwindigkeit IrSyncVel. Die Beschleunigung der Slave-Achse in der Einkuppelphase ergibt sich ebenfalls aus der Summe der Beschleunigung der Master-Achse und der Beschleunigung und Verzögerung der Kupplung (IrSyncAcc, IrSyncDec).

[3-13] Einkuppeln mit eSyncMode = 4 Ramp_Time

3.13

Auskuppeln

Das Auskuppeln wird über den Eingang xSyncPos = FALSE ausgelöst. Das profilgesteuerte Auskuppeln führt die Slave-Achse von der derzeitigen Position mit den Parametern IrSyncVel, IrSyncAcc, IrSyncDec und IrSyncJerk in den Stillstand. Über den Parameter IrSlaveSyncOutPos wird die Anhalteposition der Slave-Achse definiert.

[3-14] Auskuppeln mit eSyncMode = 4 Ramp_Time

Einzustellende Parameter

Die einzustellenden Parameter befinden sich in der Parameterstruktur <u>L TT1P scPar ElectricalShaftPos[Base/State/High]</u> (<u>LL 19</u>).

```
eSyncMode : L_TT1P_SyncMode := L_TT1P_SyncMode.Ramp_VelAcc;
lrSyncVel : LREAL := 100;
lrSyncAcc : LREAL := 1000;
lrSyncDec : LREAL := 10000;
lrSyncJerk : LREAL := 100000;
```

3.14 CPU-Auslastung (Beispiel Controller 3231 C)

3.14 CPU-Auslastung (Beispiel Controller 3231 C)

Die folgende Tabelle zeigt die CPU-Auslastung in Mikrosekunden am Beispiel des Controller 3231 C (ATOM™-Prozessor, 1.6 GHz).

Variante	Beschaltung des Technologiemoduls	CPU-Auslastung	
		Durchschnitt	Maximale Spitze
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncPos := TRUE;	40 μs	83 μs
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncPos := TRUE;	55 μs	83 μs
High	xEnable := TRUE; xRegulatorOn := TRUE; xSyncPos := TRUE;	70 μs	92 μs

A	К	
Access points 26	Kontrollierter Anlauf der Achsen 13	
Anlauf der Achsen 13	Kontrollierter Alliauf der Achself 13	
Anwendungshinweise 7	L	
Aufbau der Sicherheitshinweise 7	L_TT1P_ElectricalShaftPosBase <u>14</u>	
Ausgänge 17	 L_TT1P_ElectricalShaftPosHigh <u>14</u>	
Auskuppelmechanismus (Gleichlauf) 32	L_TT1P_ElectricalShaftPosState 14	
Auskuppelmechanismus Erweiterung 40	L_TT1P_scAP_ElectricalShaftPosBase <u>26</u>	
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L_TT1P_scAP_ElectricalShaftPosHigh <u>26</u>	
В	L_TT1P_scAP_ElectricalShaftPosState 26	
Betriebsmodus 12	L_TT1P_scPar_ElectricalShaftPosBase 19	
	L_TT1P_scPar_ElectricalShaftPosHigh 19	
C	L_TT1P_scPar_ElectricalShaftPosState 19	
CPU-Auslastung (Beispiel Controller 3231 C) 46	L_TT1P_scSF_ElectricalShaftPosBase <u>25</u>	
_	L_TT1P_scSF_ElectricalShaftPosHigh <u>25</u>	
D	L_TT1P_scSF_ElectricalShaftPosState <u>25</u>	
Direktes Ein- und Auskuppeln <u>33</u>		
Dokumenthistorie <u>5</u>	Р	
Drehmoment-gesteuerter Antrieb als Master 12	Parameterstruktur L_TT1P_scPar_ElectricalShaftPosBase/ State/High <u>19</u>	
E	Positions-Offset mit Profilgenerator 37	
Eingänge <u>15</u>	Positions-Offset während des Gleichlaufes 31	
Eingänge und Ausgänge <u>14</u>	Positions-Trimmung <u>36</u>	
Einkuppelmechanismus (Gleichlauf) 32	Profilgenerator <u>37</u>	
Einkuppelmechanismus Erweiterung 40	D.	
Electrical Shaft Position (Funktionsbeschreibung) <u>10</u>	R	
E-Mail an Lenze 48	Referenzfahrt (Homing) 28	
Erweiterung des Ein-/Auskuppelmechanismus 40	Relatives Ein- und Auskuppeln <u>34</u>	
eSyncMode = Ramp_Dist <u>40</u>	S	
eSyncMode = Ramp_Time <u>42</u>	Sicherheitshinweise 7, 8	
eSyncMode = Ramp_VelAcc <u>44</u>	Signalflussplan 24	
F	State machine 23	
Feedback an Lenze 48	Struktur der Angriffspunkte	
Funktionen des Technologiemoduls (Übersicht) 11	L_TT1P_scAP_ElectricalShaftPosBase/State/High <u>26</u>	
Funktionsbaustein L_TT1P_ElectricalShaftPosBase/State/High	Struktur des Signalflusses	
14	L_TT1P_scSF_ElectricalShaftPosBase/State/High <u>25</u>	
Funktionsbeschreibung "Electrical Shaft Position" 10	SyncPos (Gleichlauf) 29	
G	Т	
Gestaltung der Sicherheitshinweise 7	Trimmung 36	
Gleichlauf (SyncPos) 29	<u> </u>	
Gleichlauf mit Ein-/Auskuppelmechanismus 32	V	
dieleman mit Em-7 Auskuppermeenamsmus 32	Variablenbezeichner <u>6</u>	
Н	Verwendete Konventionen <u>6</u>	
Handfahren (Jogging) 27	Verwendung von Soll- oder Istwerten 12	
Hinweise zum Betrieb des Technologiemoduls 12	_	
Homing (Referenzfahrt) 28	Z Zielgruppe <u>4</u>	
J	Zustände 23	
Jogging (Handfahren) <u>27</u>	_	
2000 (. (a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(

Ihre Meinung ist uns wichtig

Wir erstellten diese Anleitung nach bestem Wissen mit dem Ziel, Sie bestmöglich beim Umgang mit unserem Produkt zu unterstützen.

Vielleicht ist uns das nicht überall gelungen. Wenn Sie das feststellen sollten, senden Sie uns Ihre Anregungen und Ihre Kritik in einer kurzen E-Mail an:

feedback-docu@lenze.com

Vielen Dank für Ihre Unterstützung. Ihr Lenze-Dokumentationsteam Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen GERMANY HR Hannover B 205381

+49 5154 82-0

<u>+49 5154 82-2800</u>

@ lenze@lenze.com

<u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal GERMANY

© 008000 24 46877 (24 h helpline)

💾 +49 5154 82-1112

@ service@lenze.com

