#### 1 A SIMPLIFIED OVERVIEW OF THE CHEMONTO METHODOLOGY

#### 1.1 Reaction is Heck reaction as shown below:

PhI + CH<sub>2</sub> = CHPh 
$$\xrightarrow{Pd, PPh_3, N(Et)_3}$$
 (E) – Stilbene + (Z) – Stilbene + 1,1 – diphenylethylene

# Steps to construct CHEMONTO knowledge:

Step: (1) Read the setup file in XYZ format. Step: (2) SUI Identification. Step: (3) Chemical Unit Identification, Step: (4) Reaction Center Identification, Step: (5) Constructing the hybridization of atoms.



Fig. 1. The five basic steps of CHEMONTO . Step 1 corresponds to reading the setup file. Steps 2 and 3 address SUI and CUI, respectively. There are a total of six SUs. Step 3 further includes RCI; for example, the substrate PhI contains two RCs, styrene contains five RCs, while a ligand, a base, and a metal each contain one RC. The label M represents metal, L represents ligand, B represents base, and S represents substrate.

# 1.2 An example of ERPO of oxidative addition which provides paths to AFIR

(1) 
$$L_2Pd + PhI \xrightarrow{association} L_2Pd \cdots PhI$$

$$(2) PhI \xrightarrow{dissociation} Ph + I$$
(3)  $L_2Pd + Ph \xrightarrow{association} L_2Pd - Ph$ 
(4)  $L_2Pd - Ph + I \xrightarrow{association} L_2Pd$ 

In all the steps, it is assumed that both the Ls are attached to Pd. Steps (3) and (4) can be interchanged.

#### 1.3 The use of ERPO in section 1.2 to find oxidative addition from reaction network:

- (1) In ERPO definition of oxidative addition (section 1.2), the first option is not required for checking the completion of oxidative addition.
- (2)  $d(I_{Id}, Ph_{Id}) > \delta$ ,

- (3)  $d(Pd_{Id}, Ph_{Id}) < \delta$ ,
- (4)  $d(Pd_{Id}, I_{Id}) < \delta$ ,

where  $Pd_{Id}$ ,  $Ph_{Id}$ , and  $I_{Id}$  are the reaction centers of Pd, Ph, and I, respectively (Figure 1, step 4), and d(X,Y) measures Euclidean distance between X and Y.  $\delta = 3.0$  Å. During the evaluation of the above distance criteria, atomic hybridizations are additionally considered to verify the validity of each SU through the allowed\_changes option. For further details, please refer to the main manuscript.

# 1.4 Another example of ERPO of olefin insertion which provides paths to AFIR

(1) 
$$L_2Pd + CH_2 = CHPh \xrightarrow{association} L_2Pd$$
  $(A - B \equiv H_2C = CHPh)$ 

# 1.5 The use of ERPO in section 1.4 to find olefin insertion from reaction network:

- (1)  $d(Pd_{Id}, C1_{Id}) < \delta$ ,
- (2)  $d(Pd_{Id}, C2_{Id}) < \delta$ ,

where  $C1_{Id}$  and  $C2_{Id}$  represent atom IDs of two olefin carbon atoms.  $\delta = 3.0$  Å. During the evaluation of the above distance criteria, atomic hybridizations are additionally considered to verify the validity of each SU through the allowed\_changes option.

Similarly, other ERPOs can be built. Since the conditions for oxidative addition and olefin insertion are checked separately, their overlap leads to the idea of overlapping ERPOs.