2014 Algebra SEP \sim Grab Bag problems, by E. Dummit

- 1. (Jan-97.4) Let K be a field.
 - (a) If $char(K) \neq 2$, show that $GL_n(K)$ has exactly n conjugacy classes of elements of order 2.
 - (b) If char(K) = 2, show that $GL_n(K)$ has exactly $\lfloor n/2 \rfloor$ conjugacy classes of elements of order 2.
- 2. (Aug-08.5): Let R be a subring of $M_n(\mathbb{C})$ and suppose R is finitely generated as a \mathbb{Z} -module. Let $M \in \mathbb{R}$.
 - (a) Show that M is contained in a commutative subring S of $M_n(\mathbb{C})$ that is finitely generated as a \mathbb{Z} -module.
 - (b) Deduce that there is a monic polynomial $f(x) \in \mathbb{Z}[x]$ such that f(M) = 0.
 - (c) Prove that tr(M) is an algebraic integer.
- 3. (Aug-94.5) Let F be a field and $S = M_n(F)$.
 - (a) If $s \in S$ is nilpotent, show that tr(S) = 0.
 - (b) If R is a ring (not necessarily commutative) and $\theta: R \to S$ is a surjective ring homomorphism, let I be an ideal of R such that every element of I is a sum of nilpotent elements of R. Show that $\theta(I) = 0$.
- 4. (Aug-99.5) Let F be a field, f(x) and g(y) be nonconstant polynomials in R = F[x, y], and I = (f(x), g(y)), the ideal generated by f and g.
 - (a) Show that $I \neq R$.
 - (b) If $f(x) = x \alpha$ and $g(y) = y \beta$ for $\alpha, \beta \in F$, show that I is a maximal ideal.
- 5. (Jan-92.5) Let $\alpha_1, \dots, \alpha_n$ be the roots of the polynomial $f(x) = 2x^n + a_{n-1}x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$.
 - (a) Show that $2\alpha_i$ is an algebraic integer for $1 \leq i \leq n$.
 - (b) Show that $\mathbb{Z}[\alpha_1, \dots, \alpha_n] \cap \mathbb{Q} \subseteq \mathbb{Z}[1/2]$.
 - (c) If some a_j with $0 \le j \le n-1$ is odd, show that $1/2 \in \mathbb{Z}[\alpha_1, \dots, \alpha_n] \cap \mathbb{Q}$, and deduce that the latter intersection is $\mathbb{Z}[1/2]$. What happens if all a_j are even?
- 6. (Jan-12.5): Let K be a field where -1 is not a square, and let $G = GL_2(K)$.
 - (a) If $g \in G$, show that g has order 4 iff det(g) = 1 and tr(g) = 0.
 - (b) Find explicitly an element $g \in G$ of order 4.
 - (c) Suppose there exist elements $a, b \in K$ with $a^2 + b^2 = -1$. Show that G contains two elements g, h of order 4 such that gh also has order 4.
- 7. (Jan-96.5) Let q be a prime power and $f(x) = \frac{x^5 1}{x 1} = x^4 + x^3 + x^2 + x + 1 \in \mathbb{F}_q[x]$.
 - (a) If f has a root in \mathbb{F}_q , show that f splits completely over \mathbb{F}_q and show that this happens precisely when $q \equiv 0, 1 \mod 5$.
 - (b) If f(x) has an irreducible monic factor g(x) of degree 2, show that g has constant term 1.
 - (c) Factor f(x) into quadratic factors when q=29.

- 8. (Jan-01.5) Let V be a finite-dimensional F-vector space and $T:V\to V$. Assume that no nonzero proper subspace of V is mapped into itself by T.
 - (a) If $S \in F[T]$ is nonzero, show that $\{v \in V : Sv = 0\}$ is the zero subspace.
 - (b) Prove that F[T] is a field.
 - (c) Show that $|F[T]:F|=\dim_F V$.
- 9. (Jan-11.2) Let R be a commutative ring with 1, (a) = aR, and P a prime ideal properly contained in (a).
 - (a) Show that P = aP.
 - (b) If P is finitely generated, prove there exists $b \in R$ with (1 ab)P = 0.
 - (c) If R is a domain, conclude that either P = 0 or (a) = R.
- 10. (Jan-07.5) Let A be an additive abelian group and B a subgroup. We say B is essential in A (B ess A) if $B \cap X \neq 0$ for every nontrivial subgroup of A.
 - (a) If B_1 ess A_1 and B_2 ess A_2 show that $(B_1 \oplus B_2)$ ess $(A_1 \oplus A_2)$.
 - (b) If B ess A and B has no nonzero elements of finite order, show A has no nonzero elements of finite order.
 - (c) If \mathbb{Q} ess A for some abelian group A, show that $A = \mathbb{Q}$
- 11. (Jan-08.4) Let V be a finite-dimensional vector space over F of characteristic $p, T: V \to V$, and $W = \{v \in V: Tv = v\}$. Further suppose $T^p = I$ and $\dim_F W = 1$.
 - (a) Show that $(T-I)^p = 0$ and that $\dim_F V \leq p$.
 - (b) If $\dim_F V < p$ show that $(T-I)^{p-1} = 0$.
 - (c) If there exists $v \in V$ with $v + Tv + T^2v + \cdots + T^{p-1}v \neq 0$, show $\dim_F V = p$.
- 12. (Aug-11.2) Let R be a commutative ring with 1 and Q a primary ideal of R. For any $a \in R \setminus Q$, define the ideal $I_a = \{r \in R : ar \in Q\}$.
 - (a) Show that $rad(I_a) = rad(Q)$.
 - (b) Show that I_a is a primary ideal of R.
 - (c) If R is Noetherian, show that there exists an a such that I_a is a prime ideal.
- 13. (Aug-07.2) Let R be a commutative integral domain that is integrally closed in its field of fractions F.
 - (a) Suppose K is a field containing F and $\alpha \in K$ is integral over R. Show that the minimal monic polynomial of α over F is in R[x].
 - (b) Let $f(x) \in R[x]$ be monic. Show that f(x) is irreducible in R[x] iff it is irreducible in F[x].
- 14. (Jan-04.5) Let R be a ring with 1 and $V = X \oplus Y$ for nonzero (right) R-modules X and Y.
 - (a) Show that 0, X, Y, V are the only submodules of V iff X and Y are nonisomorphic simple R-modules.
 - (b) If X and Y are nonisomorphic simple R-modules, show that $\operatorname{End}_R(V)$ is isomorphic to the direct sum of two division rings.