

BANK OF AMERICA Credit Card Fraudulent Detection

Kartik Garg

Neo Liu

Zhiyi Zhao

Michelle Tan

Agenda

Introduction Of The Industry

The Banking Industry Overview

What is the industry

Banks: systems of financial institutions

What does the industry do

- Offer clients the opportunity to open accounts for saving or investing purposes
- Provides resources for transactions and investments.

Current trends in the industry

Online Banking Digital banking channels and services such as chatbots and mobile banking apps

Mobile Banking Access bank accounts using mobile devices.

Statistics

- In 2018: 61% V.S. In 2021: 65.3%
- Increasing rate of more than 1 % per year

Introduction of Bank of America

History Overview

Historical context

 Formed in 1998, San Francisco

Current practice

 One of the largest banking and financial services corporations worldwide.

Current Service

Financial solutions and services.

 Individual consumers, small and middlemarket businesses and large corporations

Increasingly digital key features

 Including mobile check deposits and digital lending applications and online platforms

Company Financials - Five-year summary

For the year	2020	2019	2018	2017	2016
Total Revenue	\$ 85,528	\$ 91,244	\$ 91,020	\$ 87,126	\$ 83,498
Net Income	17,894	27,430	28,147	18,232	17,822
Total assets	2,683,122	2,405,830	2,325,246	2,268,633	2,190,218
Total deposits	1,632,998	1,380,326	1,314,941	1,269,796	1,222,561
Earnings per common share	1.88	2.77	2.64	1.63	1.57
Total Shareholder Equity	267,309	267,889	264,748	271,289	265,843

(\$ in millions, except per share information

Customer Capabilities And Online Segments

Customer Capabilities							
66 million	\$1.3T	\$85.5B					
consumer	In Consumer deposits (combined Consumer and GWIM businesses)	revenue generated by Consumer and small business clients					
	Mobile Users Capabilities						
44 Million (67%)	\$0.65T (50%)	\$36B (42%)					
Mobile Users	of the payments made by consumers and small businesses using their credit cards.	Accomplished Online					

Culture, Mission and Values

BANK OF AMERICA

We must grow and win in the market – no excuses

We must grow within our customer-focused strategy

We must grow within our risk framework

We must grow in a sustainable manner

Credit Card Fraudulent Has Become a **Trend**

Proliferation of Digital Banking

- Combined credit/debit card spend up \$35 billion
- 2021 Combined credit / debit card spending of \$201B, increased by 21% from 3Q20, where credit card volume went up by 26%

Credit Card Fraud Caused Tremendous Loss for the Clients

 Mobile app fraud transactions have increased by over 600% since 2015

An innovative Solution to Detect Fraud is Paramount

 An innovative Solution to Detect Fraud is Paramount

Cause Of Online Fraudulence

Easy steps of access to stolen credit cards

- The personal identifiable information is easily stolen and sold (account takeover)
- Monetize from the account by transferring funds to other accounts or purchasing items online

Current fraud processing methods are too late and hard to execute

- An investigation often crosses states/nations
- Evidence can be difficult to capture
- Ecommerce fraud may be perceived a low-priority crime

Value Estimation

Current State

- Revenue \$22.8B
- Cost \$14.4B
- Current fraud detection algorithm -60%

Future State

Increase fraud detection precision to 75%

Gaps

- Increase revenue
 - Reinvesting \$3.4B to grow market share
 - Value \$3.4B
- Decrease costs
 - Current Cost \$14.4B
 - At 75% efficiency cost will be -\$13.2B
 - Value \$2.2B
- Execute Both
 - \$1.1B Save cost
 - \$1.1B reinvest

Data Exploration

	Time	V 1	V2	V 3	V 4	V 5	V 6	V 7	V 8	V 9	 V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0

Principal components obtained with PCA due to confidentiality

- Outlier Engineering interquartile range
- Feature Scaling Standardization

 Oversampling to achieve balanced dataset (SMOTE)

Models - Baseline models

Conventional Rule-based System

- Not Machine Learning
 - Made up of a set of rules
 - Predictive Stage

Logistic Regression

Supervised Machine Learning

- Modeling the probability of fraud
- Predictive Stage

Models - Decision Trees

Random Forest

- Supervised Machine Learning
 - An ensemble of decision trees
 - Predictive Stage

Light Gradient Boosting Machine (LightGBM)

Supervised Machine Learning

- Tree-based learning algorithms
- Predictive Stage

Models - Deep Learning

Keras neural network model

Supervised Deep Learning

- A neural network is a simplified model of the way the human brain processes information
- Predictive Stage and Prescriptive Stage

Success Metrics

- Confusion Matrix
 - Keep the false positive rate low
 - Keep the false negative rate low
- Classification Report
 - Precision
 - Recall
 - F1 score

Classification Report						
	Precision	Recall	F1 Score	Support		
Non-Fraud						
Fraud	High	High	Target 0.75			

Model Selection & Justification

Conventional Rule-based System

Logistic Regression (with SMOTE)

Random Forest

LightGBM

Keras NN

	Conventional Rule-based System	Logistic Regression	Random Forest	Light GBM	Keras NN
Recall (Sensitivity)	12%	62%	69%	82%	79 %
Precision	35%	88%	94%	75 %	89%
F1 Score	18%	73%	79%	79%	84%

Updated Economic Value Estimation

Best performance for deep learning case: Keras NN

Current State

- Revenue \$22.8B
- Cost \$14.4B
- Current fraud detection algorithm - 60%

Future State

 Increase fraud detection efficiency to 84% (instead of 75%)

Gaps

- Increase revenue
 - Reinvesting \$3.4B to grow market share
 - Value \$3.4B -> 6.7B
- Decrease costs
 - Current Cost \$14.4B
 - At 83% efficiency cost will be \$12.05B
 - Value \$2.35B -> 3.4B
- Execute Both
 - \$1.7B Save cost (instead of 1.1B)
 - \$1.7B reinvest (instead of 1.1B)

Value Of Our Business Case

Building the Right Team

Workflow

Data
acquisitionand labeling

Data cleaning and manipulation

Model training and testing

Model tuning

Model evaluation for live data

Deployment

Postdeployment monitoring

Building the Right Team

Role	Headcount	Job Function
Data Steward	1	Data quality check
Data Analyst	2	Data acquisition, labeling, and dashboard creation
Data Engineer	2	Data warehouse/mart/ETL pipeline construction
Data Scientist	4	Data acquisition, cleaning, manipulation, and model train/test/tune, post-deployment monitor
Data Science Lead	1	Leads the fraud team to achieve the desired goal
Software Engineer	2	Fraud monitoring platform construction
Domain Expert	1	Provides insights on fraud life stages and formats
Product Manager	1	Creates product profiles and communicates with other stakeholders

End To End Project Execution: Tools and Platform

Data Lake

AWS Simple Storage Service (S3)

 Amazon S3 is an object storage service that offers scalability, data availability, security, and performance.

Model training

Amazon Elastic MapReduce (EMR)

 It is a cloud big data platform for running large-scale distributed data processing jobs, interactive SQL queries, and machine learning applications

Amazon SageMaker

•It is a cloud machine-learning platform that enables developers to create, train, and deploy machine-learning models in the cloud.

Real time monitoring

Amazon Kinesis data firehose

•It is an extract, transform, and load (ETL) service that reliably captures, transforms, and delivers streaming data to data lakes, data stores, and analytics services.

Visualization

Amazon QuickSight

 Amazon QuickSight is a machine learning-powered business intelligence service built for the cloud

End To End Project Execution Architecture

End To End Project Execution: Change Management Plan

End To End Project: Execution Timelines (Drive Adoption)

Thanks for listening!

References

- "Overview Random Forest." Gaussian37, 3 Oct. 2018, https://gaussian37.github.io/ml-concept-RandomForest/.
- Serengil, Sefik. "A Gentle Introduction to LightGBM for Applied Machine Learning." Sefik Ilkin Serengil, 13 Oct. 2018, https://sefiks.com/2018/10/13/a-gentle-introduction-to-lightgbm-for-applied-machine-learning/.
- Ghallou, Ismail. "Build Your Perceptron Neural Net from Scratch." Medium, 22 Nov. 2018, https://medium.com/@ismailghallou/build-your-perceptron-neural-net-from-scratch-e12b7be9d1ef.
- https://feedzai.com/blog/fraud-attack-li fecycle/
- https://feedzai.com/blog/account-takeover/

