## IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Previously Presented): A propylene polymer which satisfies the following requirements (1) to (4):

- (1)  $\Delta H \ge 0.45 \text{ Tm} + 22$ , wherein  $\Delta H$  is a heat of fusion (J/g) and Tm is a melting point (°C) measured through differential scanning calorimetry;
  - (2) 110 ≤Tm ≤140, wherein Tm is the melting point;
- (3) Th ≤5, wherein Th is a half-value width (°C) of the peak top of its elution curve, the elution curve being obtained in programmed temperature fractionation where a sample solution in o-dichlorobenzene is fractionated by raising the temperature from 0°C to 135°C at a heating rate of 40°C/hr; and
- (4) an intrinsic viscosity [ $\eta$ ] of 0.5 to 5 dl/g when measured in a solvent of tetralin at 135°C.

Claims 2-11 (Cancelled).

Claim 12 (Previously Presented): The propylene polymer as claimed in claim 1, which is a propylene homopolymer having an isotactic pentad fraction (mmmm) of from 65 to 85 mol%.

Claim 13 (Previously Presented): The propylene polymer as claimed in claim 1, which is a propylene homopolymer having an isotactic pentad fraction (mmmm) of from 70 to 80 mol%.

Application No. 09/784,444
Reply to Office Action of November 5, 2003

Claim 14 (Previously Presented): A molding obtained by molding the propylene polymer of claim 1.

Claim 1 (Previously Presented): A method for producing the propylene polymer of claim 1, which comprises polymerizing propylene or propylene with ethylene and/or an α-olefin having from 4 to 20 carbon atoms, in the presence of an olefin polymerization catalyst that contains (A) a transition metal compound of the Group 4 of the Periodic Table represented by the following general formula (1), and (B) at least one compound selected from the group consisting of (B-1) aluminiumoxy compounds and (B-2) ionic compounds, the ionic compounds being capable of reacting with the transition metal compound to give cations:

$$R^{5}$$
 $R^{4}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{10}$ 
 $R^{10}$ 

Application No. 09/784,444
Reply to Office Action of November 5, 2003

wherein R<sup>8</sup> and R<sup>11</sup> are each hydrogen, R<sup>1</sup> to R<sup>7</sup>, R<sup>9</sup> to R<sup>10</sup>, and X<sup>1</sup> and X<sup>2</sup> each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having from 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having from 1 to 20 carbon atoms, a siliconcontaining group, an oxygen- containing group, a sulfur-containing group, a nitrogen-containing group, or a phosphorus- containing group; R<sup>3</sup> and R<sup>4</sup>, and R<sup>8</sup> and R<sup>9</sup> may be bonded to each other to form a ring; Y<sup>1</sup> is a is a divalent bridging group that bridges the two ligands, representing any of a hydrocarbon group having from 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having from 1 to 20 carbon atoms, a siliconcontaining group, a germanium-containing group, a tin-containing group, -O-, -CO-, -S-, -SO<sub>2</sub>-, -NR<sup>12</sup>-, -PR<sup>12</sup>-, -P(O)R<sup>12</sup>-, -BR<sup>12</sup>- or -AlR<sup>12</sup>-; R<sup>12</sup> represents a hydrogen atom, a halogen atom, a hydrocarbon group having from 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having from 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having from 1 to 20 carbon atoms; M<sup>1</sup> represents titanium, zirconium or hafnium.

Claim 16 (Cancelled).

Claim 17 (Previously Presented): The method for producing the propylene polymer as claimed in claim 15, wherein propylene or propylene with ethylene and/or an  $\alpha$ -olefin having from 4 to 20 carbon atoms is polymerized in a vapor phase.

Claim 18 (Previously Presented): The method for producing the propylene polymer as claimed in claim 15, wherein propylene or propylene with ethylene and/or an  $\alpha$ -olefin having from 4 to 20 carbon atoms is polymerized in the presence of liquid propylene.