一、 實驗數據

尖擋版(β= 45°)					
Nozzle	Weight (g)	Q (m3/h)	V_{x} (m/s)	V _i (m/s)	F(N)
5mm	50	0.66	9.3371	9.2950	1.6990
	100	0.85	12.0250	11.9924	2.8230
	150	0.9	12.7324	12.7015	3.1659
8mm	50	0.98	5.4157	5.3428	1.4501
	100	1.28	7.0736	7.0179	2.4878
	150	1.63	9.0077	8.9641	4.0466
平擋版(β= 90°)					
Nozzle	Weight (g)	Q (m3/h)	V_{x} (m/s)	V _i (m/s)	F(N)
5mm	50	0.4	5.6588	5.5891	0.6191
	100	0.51	7.2150	7.1604	1.0114
	150	0.6	8.4883	8.4419	1.4028
8mm	50	0.66	3.6473	3.5381	0.6467
	100	0.81	4.4762	4.3877	0.9843
	150	0.9	4.9736	4.8941	1.2199
凹擋版(β= 135°)					
Nozzle	Weight (g)	Q (m3/h)	V_{x} (m/s)	V _i (m/s)	F(N)
5mm	50	0.37	5.2344	5.1589	0.5286
	100	0.49	6.9321	6.8753	0.9330
	150	0.55	7.7809	7.7303	1.1775
8mm	50	0.45	2.4868	2.3237	0.2896
	100	0.69	3.8131	3.7088	0.7087
	150	0.8	4.4210	4.3313	0.9596

● 請依照實驗數據,附上各擋板衝擊力趨勢圖

二、問題與討論

1. 請問實驗誤差來源為何?

可能是人眼觀察數據造成的誤差、實驗器材少一個螺帽或配重塊擺放 未位於正上方產生的誤差。

尖擋板的誤差最主要來自噴嘴口中心未對準尖擋板中心,屬於器材上 的不可抗力。

2. 請問此次實驗中,各樣品受到水流衝擊力由大到小的排列為何?

不論是 5mm 噴嘴或是 8mm 噴嘴,在相通的配重情況下所受到的衝擊力都是監擋板>平擋板>凹擋板。

3. 請問生活中有那些實際的例子運用本次實驗的原理?

較常見的有菜園的自動噴水器,藉由水衝擊旋轉板而自動旋轉噴水。

三、 心得

這次實驗本身不難,只需要快速的更快各個實驗項目的噴嘴、配重, 量測流量值後就可以了。但在寫結報時,卻發生了令我意外的狀況: 沒想到尖擋板的受力是最大的!

在寫結報之前如果問我衝擊力的問題,我應該會以為因為凹擋板受到水集中衝擊而應該受力最大;反之,尖擋板最小。但實驗結果卻讓我了解到更深的一層流體知識,而非只能以肉眼猜測判別。