- Consider a Boolean formula in CNF.
- In CNF, each clause is a disjunction of literals
- The formula is a conjunction of clauses.
- Another name for CNF is Product-of-Sums.

- We show that for any set of m clauses, there is a truth assignment that satisfies at least m/2 clauses.
- Proof: Consider a random assignment of truth values to variables as T/F.
- Consider a clause C_i of k variables.
- C_i is not satisfied with probability 2^{-k}.
- Define a random variable Z_i that indicates the event C_i is satisfied.
- $E[Z_i] = Pr(Ci \text{ is satisfied}) = 1 2^{-k}$.
- Define Z as the number of clauses satisfied. $Z = \sum Z_i$.
- $E[Z] = E[\sum Z_i] = \sum E[Z_i] = m(1 2^{-k}) \ge m/2 \text{ as } k \ge 1.$

- We show that for any set of m clauses, there is a truth assignment that satisfies at least m/2 clauses.
- Proof: Consider a random assignment of truth values to variables as T/F.
- $E[Z] = E[\sum Z_i] = \sum E[Z_i] = m(1 2^{-k}) \ge m/2 \text{ as } k \ge 1.$
- The above holds irrespective of whether the formula is satisfiable or not.
- The version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
- MAXSAT is also NP-hard indicating that no good polynomial solutions exist.

- The version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
 - Define for an instance I, m*(I) to be the maximum number of clauses that can be satisfied.
 - Let m^A(I) be the number of (expected) clauses that can be satisfied by an (randomized) algorithm A.
 - The ratio m^A(I)/m*(I) is the performance ratio of algorithm A.
 - We seek algorithms that this ratio as close to 1.
 - The previous approach gives us 1/2 as the ratio.

- This version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
 - The ratio m^A(I)/m*(I) is the performance ratio of algorithm
 A.
- We seek algorithms that this ratio as close to 1.
- The previous approach gives us 1/2 as the ratio.
 - Actually the ratio is 1-2-k.
- In fact, there are instances where one can satisfy only 1/2 of the clauses.

- This version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
- We now study an approach that does better than 1/2.
- Finally, we devise an algorithm that gets us a ratio of 3/4.

- The technique of LP Rounding uses the following approach.
- Write the optimization problem as an integer linear program (ILP).
- Relax some of the constraints of the ILP in a step called LP Relaxation to convert the ILP to a simple Linear Program (LP).
- Note that LP can be solved in polynomial time. Get an optimal solution to the LP.
- Round the solution from LP to satisfy the integrality constraints.
 - May lose some quality in this step but that is inevitable.

- Let us apply LP rounding to the MAXSAT problem.
- Consider a clause C_i.
- An indicator variable z_i with values in {0, 1} is defined to indicate whether C_i is satisfied or not.
- We now seek to maximize $\sum_{i} z_{i}$.
- For each variable x_j , we define an indicator variable y_j that takes values 1 or 0 corresponding to x_j = True or False respectively.
- Since variables can appear in either the pure form or the complemented form, we separate these as follows.

- Let us apply LP rounding to the MAXSAT problem.
- Consider a clause C_i.
- For each variable x_j , we define an indicator variable yj that takes values 1 or 0 corresponding to x_j = True or False respectively.
- Since variables can appear in either the pure form or the complemented form, we separate these as follows.
- Define C_{i+} to be the indices of variables that appear in pure form in C_i.
- Define C_{i} to be the indices of variables that appear in pure form in C_{i} .

- Let us apply LP rounding to the MAXSAT problem.
- Consider a clause C_i.
- For each variable x_j , we define an indicator variable y_j that takes values 1 or 0 corresponding to x_j = True or False respectively.
- Define C_{i+} to be the indices of variables that appear in pure form in C_i.
- Define C_{i-} to be the indices of variables that appear in pure form in C_{i-} .
- Now, clause C_i is satisfied if it holds that for each i

$$\sum_{j \text{ in } C_{j+}} y_j + \sum_{j \text{ in } C_{j-}} (1 - y_j) \ge z_i.$$

- Let us apply LP rounding to the MAXSAT problem.
- The entire integer linear program is:

$$\begin{array}{ccc} \text{Maximize} & \boldsymbol{\Sigma}_{\mathrm{i}} & \boldsymbol{Z}_{\mathrm{i}} \\ \text{subject to} & \end{array}$$

$$\sum_{j \text{ in } C_{i+}} y_j + \sum_{j \text{ in } C_{i-}} (1 - y_j) \ge z_i \text{ for all } I$$

where y_i , z_i in $\{0, 1\}$ for all i and j.

Example. Consider the following clauses

•
$$C_1 = x_1 \vee \neg x_2 \vee x_4$$
 $\neg : n^{\sigma t}$

•
$$C_2 = X_2 \ V \ X_3 \ V \ \neg X_4 \$$

•
$$C_3 = \neg x_1 \ V \ x_3$$

•
$$C_4 = \neg x_3 \lor \neg x_4$$

and write the corresponding integer linear program and the (relaxed) linear program.

- Let us apply LP rounding to the MAXSAT problem.
- Let us relax the constraints on y_j and z_i so that they can take values in [0,1]
- Note they are real numbers between 0 and 1 now and not just integral necessarily.
- We will use u_j and v_i for the values of the best solution to the relaxed linear program.
 - We use u's for the variables and v's for the clauses.
- Notice that $\sum_{i} v_{i}$ is an upper bound on the number of clauses that can be satisfied.
- But, the values of u_j are not integral, so they do not yet correspond to True/False values in a truth assignment.

- Let us relax the constraints on y_j and z_i so that they can take values in [0,1]
- We will use u_j and v_i for the values of the best solution to the relaxed linear program.
- But, the values of u_j are not integral, so they do not yet correspond to True/False values in a truth assignment.
- The next step in the technique suggests to round the u_i's so that a truth assignment can be obtained. This step is called randomized rounding.
- Our rounding does the following: Set y_i to 1 with probability
 - $\overrightarrow{\bullet}$ This sets x_j to True with the same probability.

- The next step in the technique suggests to round the u_j's so that a truth assignment can be obtained. This step is called randomized rounding.
- Our rounding does the following: Set y_j to 1 with probability u_i.
 - This sets x_i to True with the same probability.
- We now estimate the probability that a clause C_i is satisfied.

- We now estimate the probability that a clause C_i is satisfied.
- Claim: A clause C_i with k literals is satisfied with probability at least $1 (1-1/k)^k v_i$.
- Recall what is v_i.
- Let us assume wlog that all the variables in C_i appear in their pure form.
- So, $C_i = x_1 \ V \ x_2 \ V \dots x_k$ for some variables x_1 through x_k .
- In the relaxed LP, we satisfy the constraint u₁ + u₂ +... + u_k
 ≥ v_i.
- C_i now remains unsatisfied if the corresponding x₁ through x_k are all 0.

- Claim: A clause C_i with k literals is satisfied with probability at least 1 – (1-1/k)^k.v_i.
- Recall what is v_i.
- So, $C_i = x_1 \ V \ x_2 \ V \dots x_k$ for some variables x_1 through x_k .
- In the relaxed LP, we satisfy the constraint u₁ + u₂ +... + u_k
 ≥ v_i.
- C_i now remains unsatisfied if the corresponding x₁ through x_k are all 0.
- This happens with probability (1-u_j) for each variable and hence with probability $\Pi_{\rm i}$ (1-u_j) for the k variables.
- So, C_i is satisfied with probability $(1 \prod_{j=1}^{k} (1-u_j))$.

- Claim: A clause C_i with k literals is satisfied with probability at least 1 – (1-1/k)^k.v_i.
- This happens with probability (1-u_j) for each variable and hence with probability $\Pi_{\rm i}$ (1-u_j) for the k variables.
- So, C_i is satisfied with probability $1 \prod_i (1-u_i)$.
- We claim that the above is minimized when $u_j = v_j/k$ for each j. (Take the proof as a reading exercise).
- So, the probability of interest is $1 (1 v_i/k)^k$.
- We now claim that the function $f(r) = 1 (1 r/k)^k$ is at least $1 (1-1/k)^k$.r for all r in [0,1].
 - Take the proof of the above also as a reading exercise. You need to show that the function is concave.

- Claim: A clause C_i with k literals is satisfied with probability at least 1 – (1-1/k)^k.v_i.
- So, the probability of interest is $1 (1 v_i/k)^k$.
- We now claim that the function $f(r) = 1 (1 r/k)^k$ is at least $1 (1-1/k)^k$.r for all r in [0,1].
- By the above, we conclude that C_i is satisfied with probability at least (1-1/k)^k.v_i.
- Now, use linearity of expectations (over clauses) to show that the expected number of satisfied clauses is at least

$$\sum_{i} (1 - (1-1/k)^{k}).v_{i} \ge (1 - (1-1/k)^{k}). \sum_{i} v_{i}$$

$$\ge (1 - (1-1/k)^{k}). m^{*}(I).$$

 Notice that we satisfy at least (1 – (1-1/k)^k)-fraction of the maximum number of clauses that can be satisfied.

• There are two algorithms with expected performance guarantees as shown:

k	1 - (1/2 ^k)	1 - (1 - 1/k) ^k
1	0.5	1.0
2	0.75	0.75
3	0.875	0.703
4	0.938	0.684
5	0.969	0.672

• As k, the length of the clause, increases, the first algorithm does better, and as k is small, the latter is better.

- The next steps:
- We have two algorithms. One guarantees an approximation ratio of at least 1/2.
- The other guarantees an approximation ratio of at least 1 - (1 – 1/k)^k.
- We can use both to achieve an approximation ratio of at least 3/4.
- Idea 1: Run both algorithms and pick the best solution.
- Idea 2: Toss a fair coin and pick an algorithm based on the outcome......
- In both cases, we can show that the expected performance ratio will be at least 3/4.

- We have two algorithms. One guarantees an approximation ratio of at least 1/2. The other guarantees an approximation ratio of at least $1 (1 1/k)^k$.
- We can use both to achieve an approximation ratio of at least 3/4.
- Idea 2: Toss a fair coin and pick an algorithm based on the outcome......
- In this case, the expected number of clauses satisfied is $(n_1+n_2)/2$.
 - Here, n₁ and n₂ refer to the expected number of clauses satisfied by the first and the second algorithms.

- We have two algorithms. One guarantees an approximation ratio of at least 1/2. The other guarantees an approximation ratio of at least $1 (1 1/k)^k$.
- Idea 2: Toss a fair coin and pick an algorithm based on the outcome......
- In this case, the expected number of clauses satisfied is $(n_1+n_2)/2$.
 - Here, n₁ and n₂ refer to the expected number of clauses satisfied by the first and the second algorithms.
- We will show that $(n_1+n_2)/2 \ge \frac{3}{4} \sum_{i} v_i$

- In this case, the expected number of clauses satisfied is $(n_1+n_2)/2$.
 - Here, n₁ and n₂ refer to the expected number of clauses satisfied by the first and the second algorithms.
- We will show that $(n_1+n_2)/2 \ge \frac{3}{4} \sum_{i_1 v_j}$
- Focus on clauses that have k literals. Then,
- $n_1 = \sum_{k} \sum_{C_i \text{ has k literals}} (1 2^{-k}) \ge \sum_{k} \sum_{C_i \text{ has k literals}} (1 2^{-k}) \cdot v_j$
- We know that $n_2 \ge \sum_k \sum_{C_i \text{ has k literals}} \beta_k$. v_i where $\beta_k = 1 (1 1/k)^k$ $C_1 N C_2 N C_3 N$ $C_2 N C_3 N C_4 N C_4 N C_5 N C_6 N C_6$

- We will show that $(n_1+n_2)/2 \ge \frac{3}{4} \sum_{i_1 \vee i_2} v_{i_1}$
- Focus on clauses that have k literals. Then,
- $n_1 = \sum_k \sum_{C_i \text{ has } k \text{ literals}} (1 2^{-k}) \ge \sum_k \sum_{C_i \text{ has } k \text{ literals}} (1 2^{-k}). v_i$.
- We know that $n_2 \ge \sum_k \sum_{C_i \text{ has } k \text{ literals}} \beta_k$. v_i where $\beta_k = 1$ (1 1) $1/k)^k$

Br > 1 + 1 k

- So, $(n_1+n_2)/2 \ge \sum_k \sum_{C_i \text{ has k literals}} \frac{1}{2} [(1-2^{-k}) + \beta_k] \cdot v_i$.
- Prove that $(1-2^{-k}) + \beta_k$ is at least 3/2 for all k. $\geqslant 1$ Offline. Bk 1-(1-12)
- Ending the proof of the required claim.

- LP Rounding improved the expected performance guarantee for MAXSAT from ½ to ¾.
- There are other techniques developed too that apply to MAXSAT.
 - Semi-definite programming for instance.
- Practical SAT and MAXSAT solvers are also of interest
 - In particular, parallel ones! On a GPU, and scale to a large number of clauses and variables.