Set Theory

jdRanda

October 19, 2020

1 Introduction

Axiom of Extensionality (for sets)

For two sets a, b, we say a = b iff:

$$\forall x, [x \in a \Rightarrow x \in b]$$

Axiom of Extensionality (for classes)

For two classes A, B, we say A = B iff:

$$\forall x, [x \in A \Rightarrow x \in B]$$

Axiom of Pair Set

For any sets x, y there is a set $z = \{x, y\}$ with elements just x and y. z is called the (unordered) pair set of x, y. NB: If x = y then we have $\{x, y\} = \{x, x\} = \{x\}$

Definition 1.1

Let $\mathcal{P}(x)$ denote the class $\{y|y\subseteq x\}$, called the *Power set of x*.

Definition 1.2

The *Empty Set*, denoted \emptyset , is the unique set with no elements.

- We can define \emptyset as $\{x|x \neq x\}$.
- For any set/class A, we have $\emptyset \subset A$.

2 Classes

Theorem 1.4

The collection $R = \{x | x \notin x\}$ does not define a set.

Proof. Suppose R was a set z. Assume $z \in R$, then by the definition of R, $z \notin z$. However if $z \notin R$ then we should have $z \in z$. This is a contradiction.

NB: This is an example of a class that is not a set. Any class which is not, or cannot be, a set is called a Proper Class.

Axiom of Subsets

Let $\Phi(x)$ be a definite, well defined property. Let x be a set. Then

$$\{y \in x | \Phi(y)\}$$
 is a set.

Corollary 1.5

Let V denote the class of all sets. Then V is a proper class.

Proof. If V were a set then we should have, $R = \{y \in V | y \notin y\}$ is a set by the Axiom of Subsets, however we have just shown R is not a set.

Definition 1.6

For any set Z there is a class, $\cup Z$, which consists of the members of members of Z.

$$\cup Z = \{x | \exists t (x \in t \in Z)\}$$

Axiom of Unions

For any set Z, $\cup Z$ is a set.

Definition 1.8

For any non-empty set Z, there is another set, $\cap Z$, which consists of the members of all members of Z.

$$\cap Z = \{x | \forall t \in Z (x \in t)\}\$$

or using index sets we write

$$x \in \cap_{j \in I} A_j \iff (\forall j \in I)(x \in A_j)$$

3 Relations and Functions

For two sets X, Y, there are relations R that hold between some elements of X and of Y, denoted xRy. The types of relation are:

- Reflexive: $x \in X \Rightarrow xRx$
- Irreflexive: $x \in X \Rightarrow \neg(xRx)$
- Symmetric: $(x, y \in X \land xRy) \Rightarrow yRx$
- Antisymmetric: $(x, y \in X \land xRy \land yRx) \Rightarrow x = y$
- Connected: $(x, y \in X) \Rightarrow (x = y \lor xRy \lor yRx)$
- Translative: $(x, y, z \in X \land xRy \land yRz) \Rightarrow xRz$

NB: recall that an equivalence relation is that R should satisfy symmetry, reflixivity and translativity.

Definition 1.10

A relation \prec on a set X is a (strict) partial ordering if it is irreflexitive and transitive. I.e.

- i) $x \in X \Rightarrow \neg (x \prec x)$.
- ii) $(x, y, z \in X \land x \prec y \land y \prec z) \Rightarrow (x \prec z)$

Definition 1.11

i) If \prec is a partial ordering of a set X, and $\emptyset \neq Y \subseteq X$, then $z \in X$ is a lower bound for Y in X if:

$$\forall Y (y \in Y \Rightarrow z \leq y)$$

- ii) $z \in X$ is an infimum or greatest lower bound (glb) for Y if it is a lower bound for Y and if z' is a lower bound for Y then $z' \leq z$.
- iii) The concepts of upper bound and supremum (least upper bound (lub)) are defined analogously.

Definition 1.12

i) We say $f:(X, \prec_1) \to (Y, \prec_2)$ is an order preserving map of the partial orders $(X, \prec_1), (Y, \prec_2)$ iff:

$$\forall x, z \in X(x, \prec_1 z \Rightarrow f(x), \prec_2 f(z))$$

- ii) Orderings $(X, \prec_1), (Y, \prec_2)$ are (order) isomorphic, written $(X, \prec_1) \cong (Y, \prec_2)$, if there is an order preserving map between them which is also a bijection.
- iii) There are completely analogous definitions between nonstrics orders \leq_1, \leq_2 .

Theorem 1.13 (Representation Theorem for partially ordered sets)

If \prec partially orders X, then there is a set Y of subsets of X which is such that (X, \preceq) is order isomorphic to (Y, \subseteq) .

Proof. Given any $x \in X$, let $X^x = \{z \in X | z \leq x\}$. Notice if $x \neq y$ then $X^x \neq X^y$. So the assignment of x to X^x is 1:1. Let $Y = \{X^x | x \in X\}$. Then we have

$$x \leq y \iff X^x \subseteq X^y$$

Coonsequently, setting $f(x) = X^x$ we have an order isomorphism.

NB: Often we deal with roderings where every element is comparable with every other, known as strong connectivity and we call the rdering total.

Definition 1.14

A relation \prec on X is a string total ordering if it is a partial ordering which is connected:

$$\forall x, y (x, y \in X \Rightarrow (x = y \lor x \prec y \lor y \prec x))$$

 $NB: For \leq we \ call \ the \ ordering \ non-strict.$

Definition 1.15

- i) (A, \prec) is a wellordering if it is a string total orderings and for any subset $Y \subseteq A, Y \neq \emptyset \Rightarrow Y$ has a \prec -least element. We write $(A, \prec) \in WO$
- ii) A partial ordering R on a set A, (A,R) is a wellfounded relation if for any subset $Y \subseteq A$, $Y \neq \emptyset \Rightarrow Y$ has an R-minimal element.

Lemma 1.16

A strict total ordering (A, \prec) is a wellordering iff any non-empty end segment $C \subseteq A$, has a \prec -least element. We say $C \subseteq A$ is an end segment of the strict total order (A, \prec) , if whenever $a \in C$ and $a \prec b$, then $b \in C$.

Proof.

Definition 1.17 (Kuratowski)

Let x, y sets. The ordered pair set of x and y is the set

$$\langle x, y \rangle = \{\{x\}, \{x, y\}\}\$$

Lemma 1.18 (Uniqueness theorem for ordered pairs)

$$\langle x, y \rangle = \langle u, v \rangle \iff x = u \land y = v$$

Proof. (\Leftarrow) is trivial. So Suppose $\langle x, y \rangle = \langle u, v \rangle$.

Case 1 x = y. Then $\langle x, y \rangle = \langle x, x \rangle = \{\{x\}, \{x, x\}\} = \{x\}, \{x\}\} = \{\{x\}\}$. If this equals $\langle x, v \rangle$ then we must have u = v. So $\langle u, v \rangle = \{\{u\}\} = \{\{x\}\}$. Hence by Extensionality $\{u\} = \{x\}$, and so again by Extensionality u = x = y = v.

Case 2 $x \neq y$. Then $\langle x, y \rangle$, $\langle u, v \rangle$ have the same two elements, $(u \neq v)$. Hence one of these elements has one member and the other two, so we cannot have $\{x\} = \{u, v\}$. So $\{x\} = \{u\}$ and x = u. But that means $\{x, y\} = \{u, y\} = \{u, v\}$. So of these last two sets, if they are the same then y = v.

Definition 1.20

We define ordered k-tuple by induction: $\langle x_1, x_2 \rangle$ has been defined; if $\langle x_1, x_2, \dots, x_k \rangle$ has been defined then $\langle x_1, \dots, x_k, x_{k+1} \rangle = \langle \langle x_1, \dots, x_k \rangle, x_{k+1} \rangle$.

Definition 1.21

- i) Let A, B be sets. $A \times B = \{\langle x, y \rangle | x \in A \land y \in B\}$. If A = B this is written as A^2 .
- ii) If A_1, \ldots, A_{k+1} sets we define $A_1 \times \cdots \times A_{k+1} = (A_1 \times \cdots \times A_k) \times A_{k+1} = \{\langle \ldots \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, \ldots, x_k \rangle, x_{k+1} \rangle | \forall i (1 \leq i \leq k+1 \Rightarrow x_i \in A_i). \}$
- iii) In general $A \times B \neq B \times A$, and further \times operation is not associative.

Definition 1.22

- i) A (binary) relation R is a class of ordered pairs. R is thus any subset of some $A \times B$.
- ii) We write $R^{-1} = \{\langle y, x \rangle | \langle x, y \rangle \in R.$

Definition 1.24

If R is a relation, then

$$dom(R) = \{x | \exists y \langle x, y \rangle \in R\}, ran(R) = \{y | \exists y \langle x, y \rangle \in R\}$$

The field of a relation R, $Field(R) = dom(R) \cup ran(R)$.

Definition 1.25

- i) A relation F is a function ("Func(F)") if $\forall x \in dom(F)$ there is a unique y s.t $\langle x, y \rangle \in F$.
- ii) If F is a function then F is (1-1) iff $\forall x, x'(\langle x, y \rangle \in F \land \langle x', y \rangle \in F \Rightarrow x = x')$

Definition 1.27

If X, Y sets, then ${}^{X}Y = \{F | F : X \to Y.$

Definition 1.28 (Indexed Cartesia Product)

Let I be a set, and for each $i \in I$ let $A_i = \emptyset$ be a set; then

$$\prod_{i \in I} A_i = \{f | Func(f), dom(f) = I \land \forall i \in I(f(i) \in A_i)\}$$

This allows us to take cartesian product indexed by any set, not just some finite n. NB: Our function f can be seen as a 'choice' function that choose some $f(i) \in A_i$ for each i.

Definition 1.30

A set x is transiative, Trans(x), iff $\forall y \in x(y \subseteq x)$. NB: We also equivalently abbreviate $Trans(x) = \cup x \subseteq x$

Definition 1.32 (The successor function)

Let x a set. Then $S(x) = x \cup \{x\}$.

Examples 1.33

If x is transitive then so too is S(x).

Proof. Assume x is transitive. Let $y \in S(x)$. If $y \in x$ then $y \subseteq x$ as x is transitive. Then $y \subseteq S(x)$. Else y = x, trivially $y \subseteq s(x)$, Hence transitive.

For X a class of transitive sets. Then $\cup X$ is transitive.

Proof. Let $y \in X$. Want to show $y \subseteq \cup X$. So let $z \in y$, as $y \in \cup X$ theres some $t \in X, Trans(t)$, with $y \in t$. Then $z \in y \subseteq t$. So $z \in t \in X$. So $zin \cup X$. Hence $y \subseteq \cup X$.

Lemma 1.33

 $Trans(x) \iff \bigcup S(x) = x$

Proof. First note that $\cup S(x) = \cup (x \cup \{x\}) = (\cup x) \cup (\cup \{x\}) = (\cup x) \cup x$. For (\to) , assume Trans(x); then $\cup x \subseteq x$. Hence by the above $\cup S(x) \subseteq x$. Hence $\cup S(x) = x$. For (\leftarrow) , assume $\cup S(x) = x$. We have from above $\cup x \subseteq (\cup x) \cup x = x$ by assumption. Hence transitive.

Definition 1.34 (Translative Closure)

We define by recursion on n:

$$\cup^{0} x = x; \cup^{n+1} x = \cup(\cup^{n} x); TC(x) = \cup\{\cup^{n} x | n \in \mathbb{N}\}\$$

Lemma 1.35

For any set x

- i) $x \subseteq TC(x)$, Trans(TC(x)).
- ii) $Trans(t) \wedge x \subseteq t$ then $TC(x) \subseteq t$. Hence TC(x) is the smallest transitive set containing x.
- iii) $Trans(x) \iff TC(x) = x$.

Proof. i) trivial.

- ii) $x \subseteq t$ then $\cup^0 \subseteq t$. By induction on k, assume $\cup^k \subseteq t$. Now use the fact $A \subseteq B \wedge Trans(B) \Rightarrow \cup A \subseteq B$ to deduce $\cup^{k+1} \subseteq t$. So it follows $TC(x) \subset t$. But t was arbitrary.
- iii) $x \subseteq TC(x)$, if Trans(x) then substitude x for t in the above, concluding $TC(x) \subseteq x$.

4 Number Systems

Definition 2.1

A set Y is called inductive if $\emptyset \in Y$ and $\forall x \in Y(S(x) \in Y)$. Axiom of Infinity: There exists an inductive set, $\exists Y(\emptyset \in Y \land \forall x \in Y(S(x) \in Y))$.

Definition 2.2

- i) x is a natural number if $\forall Y[Y \text{ is an inductive set } \rightarrow x \in Y]$.
- ii) ω is the class of natural numbers.

NB: $\omega = \bigcap \{Y | Y \text{ an inductive set} \}$

Proposition 2.3

 ω is a set.

Proof. Let z be any inductive set. By the Axiom of subsets: there is a set N so that:

$$N = \{x \in z | \forall Y [Y \text{ an inductive set } \rightarrow x \in Y]$$

Proposition 2.4

- i) ω is an inductive set.
- ii) It is the smallest inductive set.

Proof. We have proven ω is a set. To show inductivity, not by definition \emptyset is in any inductive set Y so $\emptyset \in \omega$. Moreover, if $x \in \omega$, then for any inductive set Y, we have both $x, S(x) \in Y$. Hence $S(x) \in \omega$. So ω closed under the S function. (ii) then follows.

Theorem 2.5 (Principle of Mathematical Induction)

Suppose Φ is a well-defined definite property of sets. Then

$$[\Phi(0) \land \forall x \in \omega(\Phi(x) \to \Phi(S(x))) \to \forall x \in \omega \quad \Phi(x)]$$

Proof. Assume the entecedent here, then it suffices to show that the set of $x \in \omega$ for which $\Phi(x)$ holds is inductive. Let $Y = \{x \in \omega | \Phi(x)\}$. However the antecedent then says $0 \in Y$; and moreover if $x \in Y$ then $S(x) \in Y$. That Y is inductive is then simply the antededent assumption. Hence $\omega \subseteq Y$. And so $\omega = Y$.

Proposition 2.6

Every natural number y is either 0 or is S(x) for some natural number x.

Proof. Let $Z = \{y \in \omega | y = 0 \lor \exists x \in \omega(S(x) = y)\}$. Then $0 \in Z$ and if $u \in Z$, then $u \in \omega$. Hence $S(u) \in \omega$ as ω inductive. Hence $S(u) \in Z$, so Z is inductive and thus ω .

Exercise 2.1

Every natural number is transitive

Proof. Wts $Z = \{x \in \omega | Trans(x) \}$ is inductive.

Lemma 2.7

 ω is translative.

Proof. Let $X = \{n \in \omega | n \subseteq \omega\}$. If X were inductive, then $X \subseteq \omega \subseteq X$, and then $Trans(\omega)$. Trivially $\emptyset \in X$. Assume $n \in X$, then $n \subseteq \omega$ and $\{n\} \subseteq \omega$. Hence $S(n) \in X$. So X is inductive.

Definition 2.10

For $m, n \in \omega$ set $m < n \iff m \in n$. Set $m \le n \iff m = n \lor m < n$

Lemma 2.11

- i) <, \leq are transitive.
- ii) $\forall n \in \omega \forall m (m < n \iff S(m) < S(n)).$
- iii) $\forall m \in \omega (m \not< m)$.