# 磁路和磁能



的金属导线 极附近的电流 电流



金属导体

电阻法勘探矿藏时的电流

## 一。腦腦定理

### 1. 磁路的概念

由于铁磁材料的高磁导率,铁芯有使磁感应通 量集中到自己内部的作用。工程上把由磁性材料组 成的、(可包括气隙),能使磁力线集中通过的 整体,称为磁路。

#### 磁路特点

- ① 铁心中的磁场比周围空气中的磁场强得多;
- ② 在限定的区域内利用较小的电流获得较强的磁场;
- ③ 主磁通远远大于漏磁通;

主磁通 漏磁通 边缘效应



铁磁材料构成磁 场的"导体回路"

-磁路





直流电机的磁路

交流接触器的磁路

#### 2. 磁路欧姆定理

设截面积为S、长为l,磁导率为 $\mu$ 的铁环上,绕以紧密的线圈N 匝,线圈中通过的电流为l。

#### 利用磁介质中的安部理

$$\oint \vec{H} \cdot \mathbf{d} \, \vec{l} = \sum I$$

$$Hl = NI \Rightarrow H = \frac{NI}{l}$$
$$\therefore \Phi = BS = \mu HS = \mu S \frac{NI}{l}$$



$$\therefore \Phi = \frac{NI}{\frac{l}{\mu S}}$$

$$\Phi = \frac{NI}{l} \longrightarrow I = \frac{\varepsilon}{R} = \frac{\varepsilon}{l}$$

$$\frac{l}{\gamma S}$$

$$\Phi = \frac{F_m}{R_m^{\circ}}$$

磁路的欧 姆定理

电导率

其中 $F_m = NI$  为磁路的 磁通势,单位为 A 。

$$R_m = \frac{l}{\mu S}$$
为闭合磁路的磁阻,单位为  $A/Wb$  。

### 磁路与电路的类比

| 磁路                                                  | 电路                                               |
|-----------------------------------------------------|--------------------------------------------------|
| 磁通势 $F$                                             | 电动势 E                                            |
| 磁通Φ                                                 | 电流 /                                             |
| 磁感应强度B                                              | 电流密度 J                                           |
| 磁阻 $R_{\rm m} = \frac{l}{\mu S}$                    | 电阻 $R = \frac{\iota}{\gamma S}$                  |
|                                                     | + $E$ $R$                                        |
| $\Phi = \frac{F}{R_m} = \frac{NI}{\frac{1}{\mu S}}$ | $I = \frac{E}{R} = \frac{E}{\frac{1}{\gamma S}}$ |

### 为什么可以将磁路与电路的类比?

答案: 基本规律相同

#### 磁高斯定理



### 恒定电流条件

通过任意闭合曲面的 磁通量必等于零:

$$\oint_{S} \vec{\boldsymbol{B}} \cdot d\vec{\boldsymbol{S}} = 0$$





$$\Phi = \int_{S} \vec{\boldsymbol{B}} \cdot d\vec{\boldsymbol{S}}$$



$$I = \int_{S} \vec{\mathbf{j}} \cdot \mathbf{d} \vec{\mathbf{S}}$$





#### 3. 磁路的基尔霍夫第一定律

$$\sum \Phi = 0$$

$$\Phi_1 + \Phi_2 - \Phi_3 = 0$$



#### 4. 磁路的基尔霍夫第二定律

$$\sum (Hl) = \sum (IN)$$



对于如图所示的ABCDA回路,可以得出

$$H_1l_1 + H_1\dot{l}_1 + H_1\ddot{l}_1 + H_1\ddot{l}_1 - H_2l_2 = I_1N_1 - I_2N_2$$

#### 磁阻的串联与并联

## 课下作业







### 磁屏蔽

把磁导率不同 的两种磁介质放 到磁场中,在它 们的交界面上磁 场要发生突变, 引起了磁感应线 的折射。磁力线 趋向于在磁导率 大的区域里存在 (对应于电流趋 向于在电导率大 的区域里流动)



$$\mu_2 >> \mu_1$$

## 磁场的能量和能量密度

1.自感能:

$$W_{ms} = \frac{1}{2}LI^2$$

3.磁场能:

$$w_m = \frac{1}{2\mu_0} B^2$$

$$W_m = \int w_m dV = \frac{1}{2\mu_0} \int B^2 dV$$

## 磁介质中长直螺线管的物理量



- 长度=l,
- 截面=S,
- 匝数=N,

$$H = nI$$

$$B = \mu nI = \mu_0 \mu_r nI$$

$$\Phi_N = NBS = \mu n^2 VI$$

$$L = \frac{\Phi_N}{I} = \mu n^2 V$$

• 螺线管中磁介质的磁导率  $\mu$ 

自感线圈能够储存能量通电过程电源消耗的多 余能量就储存在自感线圈中断电过程储存在自 感线圈中的这部分能量又释放出来

$$W_m = \frac{1}{2}LI^2$$
 磁能的普适公式

• 长直螺线管自感  $L = \mu_0 \mu_r n^2 V$ 

$$L = \mu_0 \mu_r n^2 V$$

$$W_m = \frac{1}{2}LI^2 = \frac{1}{2}\mu_0\mu_r n^2 I^2 V$$

$$= \frac{1}{2}(\mu_0 \mu_r nI)(nI)V = \frac{1}{2}BHV = \frac{1}{2}\mathbf{B} \cdot \mathbf{H}V$$

## 磁场能量密度普适公式

磁能密度:单位体积内的磁能

$$\omega_m = \frac{W_m}{V} = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}$$

$$W_m = \iiint \omega_m dV = \frac{1}{2} \iiint \mathbf{B} \cdot \mathbf{H} dV$$

普遍成立

# 本章小结

|      | 电介质                                          | 磁介质                                                                 |
|------|----------------------------------------------|---------------------------------------------------------------------|
| 与场相互 | 转向极化                                         | 均产生与 $\vec{B}_0$ 反向的附加磁矩 $\Delta \vec{m}$                           |
| 作用机制 | 转向极化 } 位移极化                                  | 抗磁质: 只有 $\sum \Delta \vec{m}$                                       |
|      |                                              | 顺磁质:转向 + 附加磁矩                                                       |
|      | $\sum \vec{p}_e \neq 0$                      | $\sum \vec{m} + \sum \Delta \vec{m} \approx \sum \vec{m}$           |
|      | 极化强度:                                        |                                                                     |
|      | $\vec{P} = \frac{\sum \vec{p}_e}{\vec{p}_e}$ | 磁化 $\vec{M} = \frac{\sum \vec{m} + \sum \Delta \vec{m}}{\Delta V}$  |
| 描述   | $P = \frac{\Delta V}{\Delta V}$              | $\rightarrow \sum \Delta \vec{m}$                                   |
|      | 极化电荷:                                        | 抗: $M = \frac{\Delta V}{\Delta V}$ 与 $\vec{B}_0$ 反向                 |
|      | $\sigma' = P_n$                              | 顺: $\vec{M} \approx \frac{\sum \vec{m}}{\Delta V}$ 与 $\vec{B}_0$ 同向 |
|      | $\oint \vec{P} \cdot d\vec{S} = -\sum q'$    | 磁化电流: $\oint_{L} \vec{M} \cdot d\vec{l} = \sum_{s} I_{s}$           |
|      | <b>J</b> <sub>S</sub> (S内)                   | $\mathbf{J}_L$ (穿过 $L$ )                                            |
|      | _                                            |                                                                     |

|          | 电介质                                                            | 磁介质                                                                          |
|----------|----------------------------------------------------------------|------------------------------------------------------------------------------|
| 介质中      | $\vec{E}_0 \rightarrow \vec{P} \rightarrow q'(\sigma'. \rho')$ | $\vec{B}_0 \to \vec{M} \to I_s(j_s)$                                         |
| 的场       | $\uparrow$ $\downarrow$                                        | $\uparrow$ $\downarrow$                                                      |
|          | $\vec{E} \leftarrow \vec{E}' + \vec{E}_0$                      | $\vec{B} \leftarrow \vec{B}' + \vec{B}_0$                                    |
|          | 电位移矢量:                                                         | 磁场强度: $\vec{H} = \frac{\vec{B}}{-} - \vec{M}$                                |
| 基本规律     | $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$                    | $\mu_0$                                                                      |
| <u> </u> | 介质中的高斯定理:                                                      | 介质中的安培环路定理:                                                                  |
|          | $\oint_{S} \vec{D} \cdot d\vec{S} = \sum_{(S \nmid I)} q_{0}$  | $\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{(\vec{y} \not \supseteq L)} I_{0}$ |

|             | 电介质                                                   | 磁介质                                                                          |
|-------------|-------------------------------------------------------|------------------------------------------------------------------------------|
| 其它对应<br>关 系 | $ec{P}=\chi_earepsilon_0ec{E}$                        | $ec{M}=\chi_{\scriptscriptstyle m}ec{H}$                                     |
|             | $\varepsilon_r = 1 + \chi_e$                          | $\mu_r = 1 + \chi_m$                                                         |
|             | $\vec{D} = \mathcal{E}_0 \mathcal{E}_r \vec{E}$       | $ec{B}=\mu_0\mu_rec{H}$                                                      |
| 求解思路        | (1) 对称性分析,<br>选高斯面                                    | (1) 对称性分析,选安培环路                                                              |
|             | (2)                                                   | (2) 由 $\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{(\hat{g} \uplus_{L})} I_{0}$ |
|             | 求 $\vec{D}$                                           | 求 $\vec{H}$                                                                  |
|             | (3) 由 $\vec{E} = \vec{D}/\varepsilon_0 \varepsilon_r$ | (a) 上式                                                                       |
|             | 求 $ec{E}$                                             | (3) 由 $\vec{B} = \mu_0 \mu_r \vec{H}  \vec{\mathcal{R}}  \vec{B}$            |
|             |                                                       |                                                                              |

