

## CONTENTS

01 추진배경

O3 Et게 고객 INSIGHT

02 분석 과제화

**04** 제안 및 정리



01 추진배경



# 이 추진배경 유통업계 현안







온라인 유통, 편의점, 홈쇼핑 등에서 보이는 높은 고객 구매 행동 패턴

# 이 추진배경 유통업계 현안



## 이 추진배경 보유 데이터

(데이터수, 항목수)

### 고객 Demo

(19383, 4)

- 고객번호
- 연령대
- 성별
- 거주지역

### 멤버십 가입

(7456, 3)

- 고객번호
- 멤버십명
- 가입년월



### 구매데이터

(28593030, 10)

- 제휴사
- 고객번호
- 영수증번호
- 점포코드
- 대분류코드
- 구매일자
- 중분류코드
- 구매시간
- 소분류코드
- 구매금액

### 상품분류

(,4926,6)

- 제휴사
- 소분류코드
- 대분류코드
- 중분류명
- 중분류코드
  - 소분류명

### 채널 이용

(8824, 3)

- 고객번호
- 제휴사
- 이용횟수

# 01 추진배경 데이터 탐색 기준

### 데이터 분석 기준

- 2014년 상반기 : 1분기
- 2014년 하반기 : 2분기
- 2015년 상반기 : 3분기
- 2015년 하반기: 4분기
- train data = 1~3분기
- test data = 4분기



### 구매감소고객 기준

전체 매출의 증감에서 고객별로 차지하는 구매 총금액의 증감의 비교가 1보다 작은 고객

고객별 구매 총금액의 증감률

전체 매출의 증감률

1분기, 3분기 *데이터* 의 증감과 전체매출의 증감을 비교하여 구매감소고객 패턴 분석

## 01 추진배경



# 48.7% (감소) 이(일반) 51.3%

### 1.3반기 구매금액 증감 고객 비교



구매금액/건수의 구매감소고객 분석 결과,

과과 48.7%, 52.2%

# 01 추진배경

### 통합데이터 활용을 위해 분류체계 통일 후 다시 탐색

□ 새분류: 카테고리로 분류. \*명품 또한 중분류명에 카테고리로 분류되어 있어서 이용함. [가전, 가구/인테리어, 의류/잡화, 보석, 명품, 레저/스포츠, 식품, 일상용품, 뷰티, 기타, 유아/아동용품, 교육/문화/사무용품]

### **새로운** 분류체계

#### □ 삼분류: 편의품/선매품/전문품

• 편의품: 식품, 일상용품, 교육/문화/ 사무용품, 기타

선매품: 가전, 뷰티, 스포츠/레저,
 의류/잡화, 유아/아동용품

● 전문품:명품,보석,가구/인테리어,악기류 (소분류명)

#### - 삼분류 기준 : <u>소비재의 종류와 마케팅</u>

|        | 편의품          | 선매품         | 전문품        |
|--------|--------------|-------------|------------|
| 구매빈도   | 높다           | 중간          | 낮다         |
| 관여도 수준 | 낮다           | 비교적 높다      | 매우 높다      |
| 제품 예시  | 치약. 세제. 비누   | 패션, 승용차, 가구 | 고급 제품, 보석류 |
| 가격     | <b>X</b> 171 | 괴가          | 매우 높은 가격   |



### 새로운 분류로 고객 탐색

#### 삼분류별 상품구매건수 고객 누적 그래프



#### 삼분류별 상품구매금액 고객 누적 그래프



( x축 : 품목명, y축 : 고객수 )

편의품/선매품/전문품의 감소소객 탐색

: 주로 다나가를 고려함 (저/중/고)

구매건수, 구매금액 감소고객이 더 많거나 비슷한 품목



# 이 추진배경

### 새로운 분류로 고객 탐색

#### 분류별 상품구매건수 감소고객 누적 그래프



#### 분류별 상품구매금액 감소고객 누적 그래프



( x축 : 품목명, y축 : 고객수 )

(구매건수감소 품목): 스포츠/레저, 교육/문화/사무용품, 가구/인테리어, 유아/아동용품, 가전, 명품, 보석

→ 12개 항목 중 7개 항목에서 구매건수 감소

(구매금액감소 품목): 일상용품, 스포츠/레저, 교육/문화/사무용품, 가구/인테리어, 유아/아동용품, 가전, 명품, 보석

→ 12개 항목 중 8개 항목에서 구매비용 감소

# 01 추진배경

### 새로운 분류로 고객 탐색

### 구매 감소 고객을 예측해보고자 함



( x축 : 품목명, y축 : 고객수 )

(구매건수감소 품목): 스포츠/레저, 교육/문화/사무용품, 가구/인테리어, 유아/아동용품, 가전, 명품, 보석

→ 12개 항목 중 7개 항목에서 구매건수 감소

(구매금액감소 품목): 일상용품, 스포츠/레저, 교육/문화/사무용품, 가구/인테리어, 유아/아동용품, 가전, 명품, 보석

→ 12개 항목 중 8개 항목에서 구매비용 감소



02 분석 과제화



## 02 분석 <u>가</u>제한 변수 및 데이터셋 설정

- 종속변수 설정 -

#### 증감률 =

(고객별 3분기 총구매금액 - 고객별 1분기 총구매금액)

고객별 1분기총구매금액

( 3분기 총매출액 - 1분기 총매출액)

1분기 총매출액

( 1분기를 기준으로 )

Target

구매 감소고객: 증감비 (1 → 1

\* 감소고객이 아닌 경우 0

고객별 구매 총금액의 증감률

1

전체 매출의 증감률

Y(타겟) 구매감소고객

(감소: 1, 증가: 0)

## 02 분석 <u>과제화</u> 변수 및 데이터셋 설정

- 변동변수 산출 -

### 1) 고객별 집계

| 1.2.3.4분기별 새분류별         |  | 삼분류별 | A.B.C.D 제휴사별 |  |
|-------------------------|--|------|--------------|--|
| 총구매금액 및 총구매 갯수 ABS, NET |  |      |              |  |

### 2) 고객 집계항목 등급 나누기

- 사분위수에 따라 4등급으로 부여

| 1등급 | 2등급 | 3등급         | 4등급  |
|-----|-----|-------------|------|
| 25% | 50% | <b>7</b> 5% | 100% |



### 3) 등급 간의 변동 계산하여 지수 산출

- 반기별 변동지수 -> abs (absolute value sum, 변동 폭)
- 총 변동(증감) 지수 -> Net 계산

## 02 분석 <u>과제화</u> 변수 및 데이터셋 설정

- 독립변수 선정 -

- 1 고객 특성 변수
  - 성별
    - (여성: 1, 남성: 0)
  - 연령대
  - 구매시간대
  - 멤버십 여부

- 2 변동폭(ABS) 변수
- 반기별 총 구매금액 변동폭
- 제휴사별 구매금액 변동폭
- 상품분류별 구매금액 변동폭
- 상품금액대분류별구매금액 변동폭

- 3 변동 Net 변수
- 반기별 총 구매금액 증감
- 제휴사별 구매금액 증감
- 상품분류별 구매금액 증감
- 상품금액대분류별구매금액 증감

다중공선성, 변수중요도를 고려하여 전체 96개의 변수중에 40개를 분석변수로 선정

## 02 분석 <u>가</u>제한 데이터 분석모델링

### 구매감소 고객 예측모델 탐색

(혼동행렬 평가 지표(Accuracy, Precision, Recall, F1 score)

|      | DecisionTree                                                                                                  | LightGBM                                                                                                                                                                              | RandomForest XGBoost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | catBoost                                                                                                                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000 | Accuracy: 0.6853 Precision: 0.6976 Recall: 0.7164 F1 score: 0.7069                                            | <ul> <li>□ Accuracy : 0.7052</li> <li>□ Precision: 0.7312</li> <li>□ Recall : 0.7013</li> <li>□ F1 score : 0.7159</li> </ul>                                                          | □ Accuracy : 0.7137       □ Accuracy : 0.6932         □ Precision: 0.7353       □ Precision: 0.7118         □ Recall : 0.7180       □ Recall : 0.7071         □ F1 score : 0.7265       □ F1 score : 0.7094                                                                                                                                                                                                                                                                                          | <ul> <li>□ Accuracy : 0.7084</li> <li>□ Precision: 0.7289</li> <li>□ Recall: 0.7158</li> <li>□ F1 score : 0.7223</li> </ul>                                                                 |
| -    | 구매증감지수 중요도 : 1순위 - 편의품 비중 2순위 - 선매품 비중 분기 sum_net이 중요도 1순위 상품 관점에서 뷰티, 스포츠/레저, 가구/인테리어, 가전 구매건수 Net으로 중요도 상위권 | <ul> <li>편의품 구매금액 Net이 중요도 1순위</li> <li>전체 구매건수, 구매금액 Net 중요도 상위권에 존재.</li> <li>뷰티, 가전, 가구/인테리어, 스포츠/레저 구매건수 Net 으로 중요도 상위권.</li> <li>명품, 편의품, 선매품 구매금액 변동폭이 중요도 하위권에 존재함.</li> </ul> | - 구매증감지수 중요도 : 편의품 〉 선매품 〉 전문품 : 편의품 〉 선매품 〉 전문품 : 1순위 - 편의품 비중 : 2순위 - 선매품 비중 : 2순위 - 선매품 비중 : (둘의 차이는 크지 않고 다른 변수로는 A〉B〉C〉D : 전서임 상품관점에서 봤을때. 일상용품 sum_net 소포츠/레저 sum_net · 스포츠/레저 sum_net · 가전 count_net 등이 중요도가 높음 : 관련변수의 중요도가 높음 : 구매증감지수 중요도 : 1순위 - 편의품 비중 : 2순위 - 선매품 비중 : (둘의 차이는 크지 않고 다른 피처와는 큰 차이가 나타남) · 스포스에서 봤을때. 일상용품 sum_net · 스포츠/레저 sum_net · 가전 count_net 등이 중요도가 높음 : 등이 중요도가 높음 : 등이 중요도가 높음 : 기관 · 중요도가 높음 : 등이 중요도가 높음 : 기관 · 중요도가 높음 : · · · · · · · · · · · · · · · · · · | <ul> <li>편의품 비중이 중요도 1순위</li> <li>분기sum_net이 중요도 2순위</li> <li>전반적으로 net에대한 항목의<br/>중요도가 높음</li> <li>B-〉A사 순으로 변수 중요도가<br/>높음</li> <li>12가지로 나뉜 새분류보다<br/>삼불류에 대한 변수의 중요도가<br/>높음</li> </ul> |

## 02 분석 과제화 모델 선정



# 02 분석 과제화 모델 선정

### - RandomForest -

x\_train: 1-2반기 등급변동폭(절대값) , Net(+,-) y\_train: 1-3기 타겟(감소고객) x\_test: 1-3반기 등급변동폭(절대값) , Net(+,-) y\_test: 1-4기 타겟(감소고객)

● 총 고객 정보(n=19169)를 이용한 모델 정확도 : **0.7137** (Feature Importance 상위 40개 변수 채택)



### 모델 기반 변수 선택

: 트리 기반 모델(또는 선형모델)들이 특성 중요도(Feature Importance)를 제공하는 것에 기반한 방법

# 02 분석 과제한 균집 및 유형화

### - 감소고객 분석 -

- 1. 군집분석에 사용할 중요 변수를 선정
- 2. 엘보우 방법과 Dendrogram 통해 최적의 군집수 4개 도출
- 3. 군집유형 파악





## 

기준: 등급증가 등급감소

| 구분       | 고객 특성                          |                      |                       | 비중                                          |                     |                |
|----------|--------------------------------|----------------------|-----------------------|---------------------------------------------|---------------------|----------------|
|          |                                |                      | 가전 총구매액 증감 〉 0.5      | 가전<br>총구매액 변동폭 > 1<br>A사<br>총구매액 증감 > 0.5   | 군집1<br>(43.8%)      |                |
| 구매<br>감소 | 예측되는<br>구매감소고객<br>(9740/19169) | 총분기<br>구매건수 증감 〉 0.5 | <b>감소고객</b>           |                                             | A사<br>총구매액 증감 > 0.5 | 군집2<br>(18.4%) |
| 고객<br>-  | 50.22%                         |                      | 총분기<br>총구매금액 증감 〉 0.5 | 의류잡화<br>총구매액 증감〉 0.5<br>A사<br>총구매액 증감 〉 0.5 | 군집3<br>(19.3%)      |                |
|          |                                |                      |                       | 선매품<br>총구매액 증감 〉 0.5                        | 군집4<br>(18.5%)      |                |



## O3 타겟 고객 INSIGHT



## 03 타겟 고객 INSIGHT : 균집1

4269명(감소고객 전체의 43.8%)

평균 구매 건수 : ● 명균 구매 금액 : ◆ 연균 구매 금액 : ★ 연균 구

#### [ 구매 변화 상위 3개, 하위 2개 ]

| 구분      | 평균 구매건수<br>등급증감 |
|---------|-----------------|
| 스포츠/레저  | 0.29            |
| 식품      | 0.28            |
| 의류/잡화   | 0.27            |
| 가구/인테리어 | -0.21           |
| 가전      | 0.020           |

| 구분      | 평균 구매금액<br>등급증감 |
|---------|-----------------|
| 식품      | 0.39            |
| 의류/잡화   | 0.26            |
| 일상용품    | 0,22            |
| 가구/인테리어 | -0.23           |
| 가건      | -0.018          |

#### 평균 구매금액 평균 구매건수 구분 등급증감 등급증감 0.11 0.13 Α 0.10 B 0.14 0.06 C 0.06 -0.06 -0.04편의품 0.27 0.37 선매품 0.24 0.20

0.02

-0.11

[구매 등급증가 변화]

### 〈인사이트〉

- 1. 군집A.B.C.D 평균 대비 평균 구매금액은 낮고 평균 구매건수는 높은 고객이다.
- 2. 편의품과, 선매품의 구매건수 및 구매금액 감소가 눈에 띄게 높은 고객이다.
- 3. 편의품에서는 식품이, 선매품 에서는 스포츠/레저와 의류/잡화의 구매건수가 감소하였다.
- 4. A.B.C사 평균 구매건수 및 구매금액이 전반적으로 감소한 고객이다.

#### 〈마케팅 방안〉

- 평균 구매금액이 낮고 평균 건수가 높은 성질을 띠고 있으므로 중저가의 상품 위주로 마케팅 필요함.
- 감소한 선매품과 편의품에 대한 할인 프로모션과 품목의 다양성 확보. 신제품 발굴 및 빠른 확보 등이 필요할 것으로 생각됨.
- 편의품의 구매 건수와 금액이 전반적으로 감소하였으므로 편의품에 대한 베네핏(ex.카테고리 한정 쿠폰. 카테고리한정 적립 2배)을 제공하여 구매 욕구 상승을 유도.

전문품

## 03 타것 고객 INSIGHT : 군집2

#### 1791명(감소고객 전체의 18.4%)

평균 구매 건수 : 1228 건 1448 건 평균 구매 금액 : 47.522.023 원 71.294.012 원

#### [ 구매 변화 상위 3개, 하위 2개 ]

| 구분      | 평균 구매건수<br>등급감소 |
|---------|-----------------|
| 명품      | 0.42            |
| 의류/잡화   | 0,20            |
| ₩ЕI     | 0.19            |
| 71전     | -0.87           |
| 가구/인테리어 | -0.25           |

| 구분      | 평균 구매금액<br>등급감소 |
|---------|-----------------|
| 명품      | 0.21            |
| 의류/잡화   | 0.20            |
| 식품      | 0.15            |
| 가접      | -0.93           |
| 가구/인테리어 | -0.27           |

#### 평균 구매금액 평균 구매건수 구분 등급증감 등급증감 0.10 0.12 Α -0.03-0.02 B C 0.01 -0.01 -0.10 -0.08편의품 0.13 0.14 선매품 0.14 0.09 전문품 -0.09 -0.11

[구매 등급증가 변화]

### 〈인사이트〉

- 1. 군집 평균 대비 구매건수는 낮고 구매금액은 높았다.
- 2. 명품과 의류/잡화의 구매가 감소했고, 편의품의 구매가 감소한 고객이다.
- 3. 가전, 가구/인테리어와 A제휴사에서 구매가 증가한 고객이다.
- 4. A제휴사에서 구매가 감소, C제휴사에서 변화가 미약, B,D제휴사에서는 증가한 고객임을 확인할 수 있다.

#### 〈마케팅 방안〉

- 평균 구매 금액이 높고 평균 건수가 낮은 성질을 띠고 있으며 전문품의 구매 증가가 눈에 띄므로 고가 상품 위주 마케팅이 필요함.
- 가구/인테리어, 가전에 대한 구매 건수 및 금액이 증가하였으므로 해당 항목에 대한 베스트 상품 등을 추천.
- 구매 건수 및 구매 금액이 감소한 의류/잡화/뷰티와 관련한 할인 행사를 진행한다.

## 03 타것 고객 INSIGHT : 군집3

1875명(감소고객 전체의 19.3%)

평균 구매 건수 : 1341 건 1448 건 평균 구매 금액 : 46.644.957 원 47.522.023 원

#### [ 구매 변화 상위 3개, 하위 2개 ]

| 구분      | 평균 구매건수<br>등급감소 |
|---------|-----------------|
| 71전     | 2.14            |
| 명품      | 0.31            |
| 의류/잡화   | 0,25            |
| 가구/인테리어 | 0.12            |
| 뷰EI     | 0.14            |

| 구분      | 평균 구매금액<br>등급감소 |
|---------|-----------------|
| 가건      | 2.02            |
| 식품      | 0.34            |
| 일상용품    | 0.28            |
| 가구/인테리어 | 0.10            |
| 명품      | 0.16            |

#### 평균 구매금액 평균 구매건수 구분 등급증감 등급증감 0.18 0.22 Α 0.08 0.14 B 0.01 0.03 C -0.09 -0.06 편의품 0.19 0.22 선매품 0.26 0.30 전문품 0.09 -0.01

[구매 등급증가 변화]

### 〈인사이트〉

- 1. 군집 평균 대비 구매건수가 낮고 구매금액도 낮은 고객이다.
- 2. 가전에서의 구매가 크게 감소했고, 식품, 명품에서 갑소가 있으며 가구/인테리어에서 구매갑소가 낮다.
- 3. 편의품, 선매품의 구매건수 및 구매금액의 등급이 감소하였으며, 전문품의 평균 구매금액만 증가했다.
- 4. D 제휴사를 제외한 A.B.C 제휴사의 평균 구매건수. 금액 모두 감소했다.

#### 〈마게팅 방안〉

- 평균 구매 금액이 낮고 평균 건수도 낮은 고객으로 이탈 고객이 될 가능성이 큰 군집.
- 전반적으로 모든 품목에서 구매 감소가 보이므로 고객 특성을 이용한 상품 추천 활용 필요
- 가전 관련된 전문 코너를 새로 오픈하는 등, 이탈 예방을 위한 대책 마련이 시급함.

## 03 타겟 고객 INSIGHT : 군집4

#### 1805명(감소고객 전체의 19.3%)

평균 구매 건수 : 1425 건 1448 건 평균 구매 금액 : 44.319.351 원 47.522.023 원

#### [ 구매 변화 상위 3개, 하위 2개 ]

| 구분      | 평균 구매건수<br>등급감소 |
|---------|-----------------|
| 가구/인테리어 | 1.14            |
| 스포츠/레저  | 0.39            |
| 명품      | 0.30            |
| 일상용품    | 0.18            |
| 가전      | 0.06            |

| 구분      | 평균 구매금액<br>등급감소 |
|---------|-----------------|
| 가구/인테리어 | 1.27            |
| 스포츠/레저  | 0.32            |
| 식품      | 0.31            |
| 명품      | 0.11            |
| 가전      | -0.01           |

#### 평균 구매금액 평균 구매건수 구분 등급증감 등급증감 0.24 0.22 Α 0.15 0.10 B 0.01 0.01 C -0,08 -0.07편의품 0.22 0.29 선매품 0.24 0.15 전문품 0.48 -0.30

[구매 등급증가 변화]

### 〈인사이트〉

- 1. 군집 평균 대비 구매금액이 낮고 구매건수도 낮은 고객이다.
- 2. 가구/인테리어, 스포츠/레저와 같은 선매품에서 구매건수 및 구매금액이 뚜렷하게 감소한 것을 확인할 수 있는 고객이다.
- 3. 삼분류에서 전문품의 평균 구매건수 감소가 가장 큰 고객이다.
- 4. A.B.C사에서 전반적으로 구매금액이 감소한 고객이다.

#### 〈마케팅 방안〉

- 평균 구매 금액이 낮고 평균 건수도 낮은 고객으로 이탈 고객이 될 가능성이 큰 군집
- 가전에 대한 구매 건수 및 금액이 증가하였으므로 해당 항목에 대한 베스트 상품 등을 추천.
- 트렌디한 가구/인테리어 상품을 전시한 팝업스토어를 런칭하여 기존고객층의 이탈을 예방하고 새로운 고객층 확보를 시도.



## 04 제안 및 정리



## 04 제안 및 정리 추가적인 활용방안

< 군집별 고객별 맞춤 추천 상품 >

### 〈 뉴스레터 〉

- 할인 쿠폰 발급
- 신제품 서포터즈 모집 정보
- 할인 행사 정보
- 기념일 축하 쿠폰 발급(연1회)

# 04 제안 및 정리 추가적인 활용방안

#### 뉴스레터 구성 예시









### python TEAMstargram





what we used:

### 조경림(팀장)

GitHub :

https://github.com/00ong

E-Mail philosophic.code@gmail.com

#### 정하림

• GitHub:

https://github.com/hharimjung

E-Mail :

halim7401@naver.com



GitHub: PerfectTruth (github.com)

E-Mail : truestar0807@gmail.com

#### 송유빈

GitHub:

https://github.com/yibnn

E-Mail:

hiyub.985@gmail.com

#### 최혜정

GitHub:

https://github.com/601chl

• E-Mail:

gwe121292@gmail.com







Direct us!

CAKD3\_Team\_2: 팀워크와 분위기는 단연 쉼내 1등이라고 자부할 수 있었던 팀. 미숙한 부분은 서로 채워주며

#협조 #긍정 #적극성

어려움을 배움으로 승화시킬 수 있었다. 사랑을 담은 메세지를 Direct로 보냅니다.



