Package 'saotd'

September 4, 2023

```
Title Sentiment Analysis of Twitter Data
Version 0.3.1
Date 2023-09-03
Maintainer Evan Munson <evan.l.munson@gmail.com>
BugReports https://github.com/evan-l-munson/saotd/issues
Description This analytic is an in initial foray into sentiment analysis.
      This analytic will allow a user to access the Twitter API (once they create
      their own developer account), ingest tweets of their interest, clean / tidy
      data, perform topic modeling if interested, compute sentiment scores
      utilizing the Bing Lexicon, and output visualizations.
License GPL (>= 2)
URL https://github.com/evan-l-munson/saotd
Language en-US
Imports dplyr, widyr, stringr, tidytext, rtweet, tidyr, igraph,
      ggplot2, ggraph, scales, reshape2, lubridate, utils, stats,
      magrittr, ldatuning, topicmodels
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0), knitr, rmarkdown, httr, base64enc,
      tibble, covr
Depends R (>= 3.5.0)
VignetteBuilder knitr
SystemRequirements GSL (>=2.4), MPFR (>= 4.0.0), udunits2 (>=2.2.26-3)
Encoding UTF-8
LazyLoad true
Config/testthat/edition 3
NeedsCompilation no
```

Type Package

2 bigram

```
Author Evan Munson [aut, cre] (<a href="https://orcid.org/0000-0002-9958-6800">https://orcid.org/0000-0002-9958-6800</a>), Christopher Smith [aut] (<a href="https://orcid.org/0000-0002-8288-270X">https://orcid.org/0000-0002-8288-270X</a>), Bradley Boehmke [aut] (<a href="https://orcid.org/0000-0002-3611-8516">https://orcid.org/0000-0002-3611-8516</a>), Jason Freels [aut] (<a href="https://orcid.org/0000-0002-2415-0340">https://orcid.org/0000-0002-2415-0340</a>)
```

Repository CRAN

Date/Publication 2023-09-04 08:40:07 UTC

R topics documented:

bigram	2
bigram_network	3
merge_terms	4
number_topics	5
posneg_words	
raw tweets	
trigram	
tweet_acquire	
tweet_box	
tweet_corpus_distribution	
tweet_distribution	
tweet_max_scores	
tweet_min_scores	
tweet_scores	
tweet_tidy	16
tweet_time	16
tweet_topics	17
tweet_violin	18
unigram	19
word corr	
word corr network	
	20

22

bigram Twitter Bi-Grams

Description

Index

Determines and displays the text Bi-Grams within the Twitter data in sequence from the most used to the least used. A Bi-Gram is a combination of two consecutive words.

Usage

bigram(DataFrame)

bigram_network 3

Arguments

DataFrame Data Frame of Twitter Data.

Value

A tibble.

Examples

```
## Not run:
library(saotd)
data <- raw_tweets
TD_Bigram <- bigram(DataFrame = data)
TD_Bigram
## End(Not run)</pre>
```

bigram_network

Twitter Bi-Gram Network

Description

Displays the Bi-Gram Network. Bi-Gram networks builds on computed Bi-Grams. Bi-Gram networks serve as a visualization tool that displays the relationships between the words simultaneously as opposed to a tabular display of Bi-Gram words.

Usage

```
bigram_network(
   BiGramDataFrame,
   number,
   layout = "fr",
   edge_color = "royalblue",
   node_color = "black",
   node_size = 3,
   set_seed = 1234
)
```

Arguments

BiGramDataFrame

Data Frame of Bi-Grams.

number The minimum desired number of Bi-Gram occurrences to be displayed (number

= 300, would display all Bi-Grams that have at least 300 instances).

layout Desired layout from the 'ggraph' package. Acceptable layouts: "star", "circle",

"gem", "dh", "graphopt", "grid", "mds", "randomly", "fr", "kk", "drl", "lgl"

edge_color User desired edge color.

4 merge_terms

node_colorUser desired node color.node_sizeUser desired node size.set_seedSeed for reproducible results.

Value

A ggraph plot.

Examples

merge_terms

Merge Terms

Description

Function to merge terms within a data frame and prevent redundancy in the analysis. For example many users may refer to the same entity in multiple different ways: President Trump, The U.S. President, POTUS, Trump, President Donald Trump, Donald Trump, etc. While each entry is different, they all refer to the same individual. Using Merge Terms will allow all be converted into a single term.

Usage

```
merge_terms(DataFrame, term, term_replacement, ignore_case = TRUE)
```

Arguments

DataFrame Data Frame of Twitter Data. term Term selected for merging.

term_replacement

Desired replacement term.

ignore_case True is the default setting and will ignore case sensitivity of the selected terms.

Selecting FALSE will maintain case sensitivity.

number_topics 5

Value

A Tibble with user selected term replacement.

Examples

number_topics

Number Topics

Description

Determines the optimal number of Latent topics within a data frame by tuning the Latent Dirichlet Allocation (LDA) model parameters. Uses the 'ldatuning' package and outputs an ldatuning plot. __This process can be time consuming depending on the size of the input data frame.__

Usage

```
number_topics(
  DataFrame,
  num_cores = 1L,
  min_clusters = 2,
  max_clusters = 12,
  skip = 2,
  set_seed = 1234
)
```

Arguments

DataFrame Data Frame of Twitter Data.

num_cores The number of CPU cores to processes models simultaneously (2L for dual core processor).

min_clusters Lower range for the number of clusters.

max_clusters Upper range for the number of clusters.

skip Integer; The number of clusters to skip between entries.

set_seed Seed for reproducible results.

6 posneg_words

Value

A Tidy DataFrame.

Examples

posneg_words

Twitter Positive and Negative Words

Description

Determines and displays the most positive and negative words within the twitter data.

Usage

```
posneg_words(DataFrameTidy, num_words, filterword = NULL)
```

Arguments

DataFrameTidy DataFrame of Twitter Data that has been tidy'd.

num_words Desired number of words to be returned.

filterword Word or words to be removed.

Value

A ggplot

Examples

raw_tweets 7

raw_tweets

Twitter Data Set

Description

Dataset from a [Twitter US Airline Sentiment] (https://www.kaggle.com/crowdflower/twitter-airline-sentiment) Kaggle competition, from December 2017. The dataset contains 14,487 tweets from 6 different hashtags (2,604 x #American, 2,220 x #Delta, 2,420 x #Southwest, 3,822 x #United, 2,913 x #US Airways, 504 x #Virgin America).

Usage

```
data(raw_tweets)
```

Format

A tribble with 14,483 rows and 6 variables.

id ID of this status.

hashtags Hashtag that the individual tweet was acquired from.

screenName Screen name of the user who posted this status.

text The text of the status.

created_at When this status was created.

key Unique key based on the tweets originators user id and the created date time group.

8 tweet_acquire

trigram

Twitter Tri-Grams

Description

Determines and displays the text Tri-Grams within the Twitter data in sequence from the most used to the least used. A Tri-Gram is a combination of three consecutive words.

Usage

```
trigram(DataFrame)
```

Arguments

DataFrame

Data Frame of Twitter Data.

Value

A tribble.

Examples

```
## Not run:
library(saotd)
data <- raw_tweets
TD_Trigram <- trigram(DataFrame = data)
TD_Trigram
## End(Not run)</pre>
```

tweet_acquire

Acquire Twitter Tweets

Description

Function will enable a user to access the Twitter API through the [Twitter Developers Account](https://dev.twitter.com/) site. Once a user has a Twitter developers account and has received their individual consumer key, consumer secret key, access token, and access secret they can acquire Tweets based on a list of hashtags and a requested number of entries per query.

tweet_acquire 9

Usage

```
tweet_acquire(
  twitter_app,
  consumer_api_key,
  consumer_api_secret_key,
  access_token,
  access_token_secret,
  query,
  num_tweets,
  reduced_tweets = TRUE,
  distinct = TRUE
)
```

Arguments

twitter_app The name of user created Twitter Application.

consumer_api_key

Twitter Application management consumer API key.

consumer_api_secret_key

Twitter Application management consumer API secret key. Application must have Read and write access level and Callback URL of http://l27.0.0.1:1410.

access_token Twitter Application management access token (apps.twitter.com).

access_token_secret

Twitter Application management access secret token (apps.twitter.com).

query A single query or a list of queries the user has specified. Character string, not to

exceed 500 characters. To search for tweets containing at least one of multiple possible terms, separate each search term with spaces and "OR" (in caps). For example, the search $q = "data \ science"$ looks for tweets containing both "data" and "science" located anywhere in the tweets and in any order. When "OR" is entered between search terms, query = "data OR science", Twitter's REST

API should return any tweet that contains either "data" or "science."

num_tweets Number of Tweets to be acquired per each hashtag.

reduced_tweets Logical. If reduced tweets = TRUE, the data frame returned to the user will be

significantly reduced specifically for use in the 'saotd' package. If reduced_tweets

= FALSE, the full results from the Twitter API will be returned.

distinct Logical. If distinct = TRUE, the function removes multiple Tweets that originate

from the same Twitter id at the exact same time.

Value

A Data Frame with tweets and meta data.

Examples

10 tweet_box

```
tweets <- tweet_acquire(</pre>
 twitter_app = "twitter_app",
 consumer_api_key = consumer_api_key,
 consumer_api_secret_key = consumer_api_secret_key,
 access_token = access_token,
 access_token_secret = access_token_secret,
 query = "#icecream",
 num\_tweets = 100,
 distinct = TRUE)
Or the Twitter API keys and tokens can be saved as an .Renviron file in the
working directory. If using a `.Renviron` file, the data should be saved
like the below example:
The `tweet_acquire` function would access the keys and tokens using the
`Sys.getenv()` function and would appear like the below example:
tweets <- tweet_acquire(</pre>
 twitter_app = "twitter_app",
 consumer_api_key = Sys.getenv('consumer_api_key'),
 consumer_api_secret_key = Sys.getenv('consumer_api_secret_key'),
 access_token = Sys.getenv('access_token'),
 access_token_secret = Sys.getenv('access_token_secret'),
 query = "#icecream",
 num_tweets = 100,
 distinct = TRUE)
## End(Not run)
```

tweet_box

Twitter Data Box Plot

Description

Displays the distribution scores of either hashtag or topic Twitter data.

```
tweet_box(DataFrameTidyScores, HT_Topic)
```

Arguments

```
{\tt DataFrameTidyScores}
```

DataFrame of Twitter Data that has been tidy'd and scored.

HT_Topic If using hashtag data select: "hashtag". If using topic data select: "topic".

Value

A ggplot box plot.

Examples

```
## Not run:
library(saotd)
data <- raw_tweets</pre>
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                             HT_Topic = "hashtag")
ht_box <- tweet_box(DataFrameTidyScores = score_data,</pre>
                      HT_Topic = "hashtag")
ht_box
data <- raw_tweets
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                             HT_Topic = "topic")
topic_box <- tweet_box(DataFrameTidyScores = score_data,</pre>
                         HT_Topic = "topic")
topic_box
## End(Not run)
```

 $tweet_corpus_distribution$

Twitter Corpus Distribution

Description

Determines the scores distribution for the entire Twitter data corpus.

```
tweet_corpus_distribution(
  DataFrameTidyScores,
  binwidth = 1,
  color = "black",
  fill = "grey"
)
```

12 tweet_distribution

Arguments

DataFrameTidyScores

DataFrame of Twitter Data that has been tidy'd and scored.

binwidth The width of the bins. Default is 1.

color The user selected color to highlight the bins.

fill The interior color of the bins.

Value

A ggplot.

Examples

tweet_distribution

Twitter Hashtag or Topic Distribution

Description

Determines the scores distribution by hashtag or topic for Twitter data.

```
tweet_distribution(
  DataFrameTidyScores,
HT_Topic,
bin_width = 1,
color = "black",
fill = "black"
)
```

tweet_max_scores 13

Arguments

DataFrameTidyScores

DataFrame of Twitter Data that has been tidy'd and scored.

HT_Topic If using hashtag data select: "hashtag". If using topic data select: "topic".

bin_width The width of the bins. Default is 1.

color The user selected color to highlight the bins.

fill The interior color of the bins.

Value

A facet wrap ggplot.

Examples

tweet_max_scores

Twitter Data Maximum Scores

Description

Determines the Maximum scores for either the entire dataset or the Maximum scores associated with a hashtag or topic analysis.

Usage

```
tweet_max_scores(DataFrameTidyScores, HT_Topic, HT_Topic_Selection = NULL)
```

Arguments

DataFrameTidyScores

DataFrame of Twitter Data that has been tidy'd and scored.

HT_Topic If using hashtag data select: "hashtag". If using topic data select: "topic".

HT_Topic_Selection

The hashtag or topic to be investigated. NULL will find min across entire data frame.

14 tweet_min_scores

Value

A Tibble.

Examples

```
## Not run:
library(saotd)
data <- raw_tweets
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                             HT_Topic = "hashtag")
min_scores <- tweet_max_scores(DataFrameTidyScores = score_data,</pre>
                                 HT_Topic = "hashtag")
data <- twitter_data
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                             HT_Topic = "hashtag")
min_scores <- tweet_max_scores(DataFrameTidyScores = score_data,</pre>
                                 HT_Topic = "hashtag",
                                 HT_Topic_Selection = "icecream")
## End(Not run)
```

tweet_min_scores

Twitter Data Minimum Scores

Description

Determines the minimum scores for either the entire dataset or the minimum scores associated with a hashtag or topic analysis.

Usage

```
tweet_min_scores(DataFrameTidyScores, HT_Topic, HT_Topic_Selection = NULL)
```

Arguments

 ${\tt DataFrameTidyScores}$

DataFrame of Twitter Data that has been tidy'd and scored.

HT_Topic If using hashtag data select: "hashtag". If using topic data select: "topic". HT_Topic_Selection

The hashtag or topic to be investigated. NULL will find min across entire dataframe.

Value

A Tibble.

tweet_scores 15

Examples

```
## Not run:
library(saotd)
data <- raw_tweets
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                             HT_Topic = "hashtag")
min_scores <- tweet_min_scores(DataFrameTidyScores = score_data,</pre>
                                  HT_Topic = "hashtag")
data <- raw_tweets</pre>
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                       HT_Topic = "hashtag")
min_scores <- tweet_min_scores(DataFrameTidyScores = score_data,</pre>
                                  HT_Topic = "hashtag",
                                  HT_Topic_Selection = "icecream")
## End(Not run)
```

tweet_scores

Score Tidy Twitter Data

Description

Function to Calculate Sentiment Scores that will account for sentiment by hashtag or topic.

Usage

```
tweet_scores(DataFrameTidy, HT_Topic)
```

Arguments

DataFrameTidy Data Frame of Twitter Data that has been tidy'd.

HT_Topic If using hashtag data select: "hashtag". If using topic data select: "topic"

Value

A Scored DataFrame.

Examples

16 tweet_time

```
## End(Not run)
```

tweet_tidy

Tidy Twitter Data

Description

Function to Tidy Twitter Data. This function will remove a significant amount of the original twitter metadata, as it is not needed to determine the sentiment of the tweets. This function will remove all emoticons, punctuation, weblinks while maintaining actual Tweet text.

Usage

```
tweet_tidy(DataFrame)
```

Arguments

DataFrame

Data Frame of Twitter Data.

Value

A Tidy tibble.

Examples

```
## Not run:
library(saotd)

data <- raw_tweets
tidy_data <- tweet_tidy(DataFrame = data)
tidy_data
## End(Not run)</pre>
```

tweet_time

Twitter Data Timeseries Plot.

Description

Displays the Twitter data sentiment scores through time. The sentiment scores by hashtag or topic are summed per day and plotted to show the change in sentiment through time.

```
tweet_time(DataFrameTidyScores, HT_Topic)
```

tweet_topics 17

Arguments

DataFrameTidyScores

DataFrame of Twitter Data that has been tidy'd and scored.

HT_Topic

If using hashtag data select: "hashtag". If using topic data select: "topic".

Value

A ggplot plot.

Examples

```
## Not run:
library(saotd)
data <- raw_tweets</pre>
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                              HT_Topic = "hashtag")
ht_time <- tweet_time(DataFrameTidyScores = score_data,</pre>
                        HT_Topic = "hashtag")
ht_time
data <- raw_tweets</pre>
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                              HT_Topic = "topic")
topic_time <- tweet_time(DataFrameTidyScores = score_data,</pre>
                           HT_Topic = "topic")
topic_time
## End(Not run)
```

tweet_topics

Tweet Topics

Description

Determines the Latent topics within a data frame by using Latent Dirichlet Allocation (LDA) model parameters. Uses the 'ldatuning' package and outputs an ldatuning plot. Prepares Tweet text, creates DTM, conducts LDA, display data terms associated with each topic.

```
tweet_topics(
  DataFrame,
  clusters,
  method = "Gibbs",
  num_terms = 10,
  set_seed = 1234
)
```

18 tweet_violin

Arguments

DataFrame Data Frame of Twitter Data.

clusters The number of latent clusters.

method method = "Gibbs"

num_terms The desired number of terms to be returned for each topic.

set_seed Seed for reproducible results.

Value

Returns LDA topics.

Examples

tweet_violin

Twitter Data Violin Plot

Description

Displays the distribution scores of either hashtag or topic Twitter data.

Usage

```
tweet_violin(DataFrameTidyScores, HT_Topic)
```

Arguments

 ${\tt DataFrameTidyScores}$

DataFrame of Twitter Data that has been tidy'd and scored.

HT_Topic If using hashtag data select: "hashtag". If using topic data select: "topic".

Value

A ggplot violin plot.

unigram 19

Examples

```
## Not run:
library(saotd)
data <- raw_tweets
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                             HT_Topic = "hashtag")
ht_violin <- tweet_violin(DataFrameTidyScores = score_data,</pre>
                            HT_Topic = "hashtag")
ht_violin
data <- raw_tweets</pre>
tidy_data <- Tidy(DataFrame = data)</pre>
score_data <- tweet_scores(DataFrameTidy = tidy_data,</pre>
                             HT_Topic = "topic")
topic_violin <- tweet_violin(DataFrameTidyScores = score_data,</pre>
                               HT_Topic = "topic")
topic_violin
## End(Not run)
```

unigram

Twitter Uni-Grams

Description

Determines and displays the text Uni-Grams within the Twitter data in sequence from the most used to the least used. A Uni-Gram is a single word.

Usage

```
unigram(DataFrame)
```

Arguments

DataFrame

Data Frame of Twitter Data.

Value

A tibble.

Examples

```
## Not run:
library(saotd)
data <- raw_tweets
TD_Unigram <- unigram(DataFrame = data)
TD_Unigram
## End(Not run)</pre>
```

20 word_corr_network

word_corr

Twitter Word Correlations

Description

The word correlation displays the mutual relationship between words.

Usage

```
word_corr(DataFrameTidy, number, sort = TRUE)
```

Arguments

DataFrameTidy Data Frame of Twitter Data that has been tidy'd.

number The number of word instances to be included.

sort Rank order the results from most to least correlated.

Value

A Tibble.

Examples

word_corr_network

Twitter Word Correlations Plot

Description

The word correlation network displays the mutual relationship between words. The correlation network shows higher correlations with a thicker and darker edge color.

word_corr_network 21

Usage

```
word_corr_network(
  WordCorr,
  Correlation = 0.15,
  layout = "fr",
  edge_color = "royalblue",
  node_color = "black",
  node_size = 2,
  set_seed = 1234
)
```

Arguments

WordCorr
Data Frame of Word Correlations.

Correlation
Minimum level of correlation to be displayed.

layout
Desired layout from the 'ggraph' package. Acceptable layouts: "star", "circle", "gem", "dh", "graphopt", "grid", "mds", "randomly", "fr", "kk", "drl", "lgl"

edge_color
User desired edge color.

user desired node color.

user desired node size.

Value

An igraph plot

set_seed

Examples

```
## Not run:
library(saotd)
data <- raw_tweets</pre>
tidy_data <- Tidy(DataFrame = data)</pre>
TD_Word_Corr <- word_corr(DataFrameTidy = tidy_data,</pre>
                            number = 500,
                            sort = TRUE)
TD_Word_Corr_Network <- word_corr_network(WordCorr = TD_Word_Corr,</pre>
                                          Correlation = 0.15,
                                          layout = "fr",
                                          edge_color = "royalblue",
                                          node_color = "black",
                                          node_size = 2,
                                          set\_seed = 1234)
TD_Word_Corr_Network
## End(Not run)
```

Seed for reproducible results.

Index

```
* datasets
    raw_tweets, 7
bigram, 2
merge_terms, 4
number_topics, 5
posneg\_words, 6
raw_tweets, 7
trigram, 8
{\tt tweet\_acquire}, \textcolor{red}{8}
tweet_box, 10
tweet_corpus_distribution, 11
{\tt tweet\_distribution}, {\tt 12}
tweet_max_scores, 13
tweet_min_scores, 14
tweet_scores, 15
tweet_tidy, 16
tweet_time, 16
tweet_topics, 17
tweet_violin, 18
unigram, 19
word_corr, 20
\verb|word_corr_network|, 20
```