FPT ALGORITHMS, PART V: COLOR CODING

• Recall: a *path* in a graph G is a sequence of *distinct* vertices v_1, \ldots, v_k such that $v_i v_{i+1} \in E(G)$ for all $1 \le i \le k-1$. We also view paths as subgraphs.

k-Path:

INSTANCE: A graph G and integer k

PARAMETER: k

QUESTION: Does G contain a path on k vertices? (a k-path)

- Recall: We had an extremely unpractical FPT algorithm based on the Excluded Grid Theorem. (Either G contains a $k \times k$ -grid minor, or has tree width at most 20^{2k^5} .)
- (Q) Is there a faster FPT algorithm for k-Path?

- Kernelization?
- Branching?
- A good tree width based algorithm?
- ...?

Color coding

Main idea: 'Guess' a partition of the vertices into k sets (colors), and assume there is a k-path in which all vertices receive different colors.

- A k-color assignment for a graph G = (V, E) is a function $f : V \to \{1, ..., k\}$. (Note: this does not have to be a proper vertex coloring.)
- Let f be a k-color assignment of G. A subgraph H of G is colorful if all vertices of H are colored differently. The color set of H is $\{f(v): v \in V(H)\}$.

Colorful k-Path:

INSTANCE: A graph G with k-color assignment f, and integer k.

PARAMETER: k

QUESTION: Does G contain a colorful path of length k?

• Determining whether a *colorful k*-path exists turns out to be much easier!

• We do not lose too much by making this assumption: if we solve this problem for *enough* different k-color assignments, we can solve the original problem.

• Essential: 'enough' is a function of k!

Finding colorful k-paths

Colorful Rooted k-Path

INSTANCE: A graph G with k-color assignment f, a vertex

 $v \in V(G)$, and integer k.

PARAMETER: k

QUESTION: Does G contain a colorful path of length k, that

starts in v?

Proposition

An FPT algorithm for Colorful Rooted k-Path gives an FPT algorithm for Colorful k-Path.

Proof: Let G, f, k be an instance for Colorful k-Path.

Add a new vertex v and assign it a new color k+1. Connect it to all other vertices by an edge. This gives the graph G'.

G' has a colorful (k+1)-path starting in v if and only if G has a colorful k-path.

A dynamic programming algorithm

Let G be a graph with k-color assignment f and given start vertex v.

• For $C \subseteq \{1, ..., k\}$ and a vertex $w \in V(G)$, P(w, C) = 1 if there exists a colorful path from v to w with color set C, and P(w, C) = 0) otherwise. (So such a path has |C| vertices.)

Algorithm 1

```
For all w \in V and C \subseteq \{1, \ldots, k\}:
     P(w, C) = 0
P(v, f(v)) = 1
For i := 1, ..., k:
     For all pairs (w, C) with P(w, C) = 1 and |C| = i:
          If w has a neighbor u with f(u) \notin C:
                P(u, C \cup \{f(u)\}) = 1
If there is a vertex u with P(u, \{1, ..., k\}) = 1 then
     return 'YES'
else
     return 'NO'
```

- By induction over |C|: Algorithm 1 sets P(u, C) = 1 if and only if G contains a colorful path from v to u with color set C. (The different colors ensure that the vertices are distinct.)
- Therefore Algorithm 1 returns 'YES' if and only if G contains a colorful k-path starting in v.

ullet Complexity: every combination of a color set C and vertex w is considered once for initialization, and once for recursion.

For every such combination the computations take polynomial time.

So the total complexity is $2^k n^{O(1)}$, with n = |V(G)|. Summarizing:

Theorem

Deciding whether a graph G with k-color assignment f contains a colorful k-path starting at $v \in V(G)$ can be done in time $2^k n^{O(1)}$, with n = |V(G)|.

Randomized algorithms

(Q) What is the probability that by choosing an arbitrary k-color assignment and solving Colorful k-path, we also find the correct answer to k-Path on G?

Proposition

Let graph G contain a k-path P, and let f be a random k-color assignment for G. With probability at least e^{-k} , P is colorful.

Proof: P is colorful with probability $k!/k^k$. Using Stirling's formula $k! \approx \sqrt{2\pi k} (\frac{k}{e})^k$ we can write:

$$\frac{k!}{k^k} pprox \frac{\sqrt{2\pi k}}{e^k} \ge \frac{1}{e^k}.$$

Algorithm 2

Repeat the following $\lceil e^k \rceil$ times:

choose a random *k*-color assignment *f* for *G*If *G* contains a colorful *k*-Path for color assignment *f* then return 'YES'

return 'NO'

Proposition

If G contains no k-path, Algorithm 2 returns 'NO'. If G contains a k-path, Algorithm 2 returns 'YES' with probability at least 1/2.

Proof: The first statement is obvious.

Since the color assignments are chosen independently, the probability that a given k-path P is not colorful in any color assignment is

$$(1-e^{-k})^{\lceil e^k \rceil} \leq e^{-1} < \frac{1}{2}.$$

- A randomized algorithm A for a decision problem is a Monte Carlo algorithm if
- A always returns 'NO' on NO-instances, and
- A returns 'YES' with probability at least $\frac{1}{2}$ on YES-instances.

Theorem

A Monte Carlo algorithm with complexity $(2e)^k \cdot n^{O(1)}$ exists for deciding whether a graph on n vertices contains a k-path.

Derandomization

- Let V and P be sets and k = |P|. A k-perfect family of hash functions from V to P is a family F of functions $f: V \to P$ such that for every $K \subseteq V$ with |K| = k, there exists an $f \in F$ for which the restriction to K is bijective.
- So if V = V(G) and $P = \{1, \ldots, k\}$, this is a family of color assignments of G, such that every subset $K \subseteq V$ with |K| = k is colorful in at least one color assignment.

Theorem

For all $n, k \in \mathbb{N}$ there is a k-perfect family of hash functions from $\{1, \ldots, n\}$ to $\{1, \ldots, k\}$ of cardinality $2^{O(k)} \cdot \log^2 n$, which can be computed in time $2^{O(k)} \cdot n \cdot \log^2 n$.

Corollary

An FPT algorithm with complexity $2^{O(k)} \cdot n^{O(1)}$ exists for deciding whether a graph on n vertices contains a k-path.

Generalization: finding binary tree subgraphs

• A rooted tree *T* is *binary* if every non-leaf has two children.

k-Colorful Binary Tree Subgraph:

INSTANCE: A graph G with k-color assignment f, and a rooted binary tree T on k vertices.

PARAMETER: k

QUESTION: Does ${\it G}$ contain a colorful subgraph ${\it H}$ isomorphic to

Т?

• Let *T* be a (rooted) binary tree.

For $t \in V(T)$, T(t) denotes the subtree of T induced by t and all descendants of t, with root t.

The *height* of a rooted tree is the length of a longest path starting at the root. The *height* of $t \in V(T)$ is the height of T(t).

- Let T be a tree with root r, and G be a graph with $v \in V(G)$. We say that G contains a copy H of T rooted at v if G contains a subgraph H such that there is an isomorphism $\phi: V(T) \to V(H)$ with $\phi(r) = v$.
- Let G be a graph with k-color assignment f, and let T be a tree on k vertices.

For every $t \in V(T)$, $u \in V(G)$ and $C \subseteq \{1, ..., k\}$, define T(u, t, C) = 1 if G contains a copy H of T(t) rooted at u, such that H is colorful and has color set C, and T(u, t, C) = 0 otherwise.

(So if
$$T(u, t, C) = 1$$
, then $|C| = |V(T(t))|$.)

Recursion formula

Let $t \in V(T)$, $u \in V(G)$ and $C \subseteq \{1, ..., k\}$ with |C| = |V(T(t))| and $f(u) \in C$. Let t_1, t_2 be the children of t in T.

Proposition

T(u,t,C)=1 if and only if $C\setminus\{f(u)\}$ can be partitioned into sets C_1,C_2 , and neighbors u_1,u_2 of u can be identified, such that $T(u_i,t_i,C_i)=1$ for i=1,2.

• The above recursion formula computes T(u, t, C) using values (T, u_i, t_i, C_i) where the height of $T(t_i)$ is less than the height of T(t).

Algorithm 3

return 'NO'

INPUT: a graph G with k-color assignment f, and a binary tree T on k vertices with root r.

```
For all v \in V(G), t \in V(T) and C \subseteq \{1, \ldots, k\}:
     T(v, t, C) = 0
For all v \in V(G) and leaves t of T:
     T(v, t, f(v)) = 1.
For h = 1, ..., k:
     For all t \in V(T) of height h:
          For all C \subseteq \{1, \ldots, k\} with |C| = |V(T(t))|:
                For all v \in V(G) with f(v) \in C:
                     If we can identify neighbors v_1 and v_2 of v, and
                     partition C \setminus \{f(v)\} into C_1 and C_2 as stated above,
                           then: T(v, t, C) = 1.
If there is a vertex v \in V(G) with T(v, r, \{1, ..., k\}) = 1 then
     return 'YES'
else
```

◆ロト ◆個ト ◆量ト ◆量ト ■ めの()

• Algorithm 3 correctly answers whether G contains a colorful copy of \mathcal{T} .

• Complexity: $k \cdot k \cdot 2^k \cdot n \cdot n^2 \cdot 2^k \cdot n^{O(1)} \in 4^k \cdot n^{O(1)}$, where n = |V(G)|.

(At most: k choices of h, k choices of t, 2^k choices of C, n choices of v, n^2 choices of v_1 and v_2 , and 2^k choices of C_1 and C_2 .)

By combining this with a k-perfect family of k-color assignments:

Theorem

In time $2^{O(k)} \cdot n^{O(1)}$ we can decide whether a graph G on n vertices contains a given binary tree T on k vertices as subgraph.

Finding subgraphs of small tree width

k-Colorful Subgraph Isomorphism:

INSTANCE: A graph G with k-color assignment f, and graph H on k vertices.

PARAMETER: k

QUESTION: Does G have a colorful subgraph G' isomorphic to H?

Goal: an algorithm with complexity $n^{w+O(1)} \cdot 2^{O(k)}$, where n = |V(G)| and w is the tree width of H.

• The problem of deciding whether a graph G contains a complete graph on k-vertices is unlikely to admit an FPT algorithm for parameter k (it is W[1]-hard), so we cannot hope to remove w from the exponent.

Let (T,X) be a nice tree decomposition of a graph H.

• For $v \in V(T)$, define H(v) as before (the subgraph of H induced by the union of X_v and the sets X_w for all descendants w of v.)

Let $v \in V(T)$, let $\psi : X_v \to V(G)$, and let $C \subseteq \{1, \dots, k\}$.

- We define $S(v, \psi, C) = 1$ if there exists an isomorphism ϕ from H(v) to a subgraph G' of G such that
- G' is colorful with color set C, and
- for all $x \in X_v$, $\phi(x) = \psi(x)$, and $S(v, \psi, C) = 0$ otherwise.

Proposition (Introduce)

Let u be an introduce node of T with child v, with $X_u \setminus X_v = \{x\}$.

Then $S(u, \psi, C) = 1$ iff

- $S(v, \psi', C') = 1$, where ψ' is the restriction of ψ to X_v and
- $C' = C \setminus \{f(\psi(x))\}, \text{ and }$
- for all $y \in X_u$, if $xy \in E(H)$ then $\psi(x)\psi(y) \in E(G)$.

Proposition (Forget)

Let u be a forget node of T with child v, with $X_v \setminus X_u = \{x\}$. Then $S(u, \psi, C) = 1$ iff there exists a $\psi' : X_v \to V(G)$ such that ψ is its restriction to X_u , and $S(v, \psi', C) = 1$.

Proposition (Join)

Let u be a join node of T with children v and w.

Then $S(u, \psi, C) = 1$ iff there exist C_v and C_w with $C_v \cup C_w = C$, $C_v \cap C_w = X_u$ such that $S(v, \psi, C_v) = 1$ and $S(w, \psi, C_w) = 1$.

- With the above recursion formulas, we can compute $S(r, \psi, \{1, ..., k\})$ for all ψ .
- G contains a colorful copy of H if $S(r, \psi, \{1, ..., k\}) = 1$ for some ψ .

Theorem

In time $n^{w+O(1)} \cdot 2^{O(k)}$ we can decide whether a graph G on n vertices with k-color assignment f contains a colorful copy of a graph H on k vertices for which a tree decomposition of width w is given.

• Exercise: work out the details of the complexity bound.

Theorem

In time $n^{w+O(1)} \cdot 2^{O(k)}$ we can decide whether a graph G on n vertices contains a copy of a graph H on k vertices for which a tree decomposition of width w is given.

Color coding - Summary

- Color coding is a useful technique for solving various subgraph problems; fixing a coloring makes dynamic programming possible.
- This method can be generalized to finding homomorphisms between general relational structures.
- Similar to iterative compression, color coding shows that it may be useful to 'guess' properties of a solution.
- This gives an FPT algorithm for parameter k provided that we only need to consider f(k) different guesses to solve the original problem.
- Giving a randomized (Monte Carlo) algorithm may be easier than giving an algorithm that is always correct.

Techniques for FPT algorithms

Kernelization

Vertex Cover, Max Sat, d-Hitting Set, Max Leaves Spanning Tree

Branching / bounded search trees

Vertex Coloring Street

Vertex Cover, Vertex Coloring, Skew Separator

Iterative compression

Vertex Cover, (Directed) Feedback Vertex Set

Tree width

Dynamic Programming: Vertex Coloring, Vertex Cover Tree width based algorithms: Vertex Cover, FVS, (n-k)-Dominating Set, Max Leaves Spanning Tree, k-Path, Planar Vertex Cover/Independent Set/Dominating Set

• Color coding

k-Path, Binary Tree Subgraph, Subgraph Isomorphism