Yakeen NEET 2.0 2026

Physics By Manish Raj Sir

Vectors

DPP: 5

Q1 The angle between the two vectors

$$ec{A}=3\hat{i}+4\hat{j}+5\hat{k}$$
 and $ec{B}=3\hat{i}+4\hat{j}-5\hat{k}$ will be

- (A) 90°
- (B) 0°
- (C) 60°
- (D) 45°
- **Q2** If force $(\vec{F}) = 4\hat{i} + 5\hat{j}$ and displacement $(ec{s})=3\hat{i}+6\hat{k}$ then the work done is; (All the

values are in SI unit)

- (A) 4×3
- (B) 5×6
- (C) 6×3
- (D) 4×6
- Q3 In an clockwise system
 - (A) $\hat{j} imes \hat{k} = \hat{i}$
 - (B) $\hat{i}\cdot\hat{i}=0$
 - (C) $\hat{j} \times \hat{j} = 1$
 - (D) $\hat{k} \cdot \hat{j} = 1$
- **Q4** The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B} , then:
 - (A) $\alpha < \beta$
 - (B) $\alpha < \beta$ if A < B
 - (C) $\alpha < \beta$ if A > B
 - (D) $\alpha < \beta$ if A = B
- ${\bf Q5}~~{\rm Two~forces~of~magnitudes}~F~{\rm and}~\sqrt{3}F~{\rm act~at}$ right angle to each other. Their resultant makes and angle β with F. The value of β is

- (A) 30°
- (B) 45°
- (C) 60°
- (D) 135°
- **Q6** A truck travelling due north at 20 ms^{-1} turns west and travels with same speed. What are the changes in velocity?
 - (A) $20\sqrt{2} \text{ ms}^{-1}$ south-west
 - (B) $40~\mathrm{ms}^{-1}$ south-west
 - (C) $20\sqrt{2}~\mathrm{ms^{-1}}$ north-west
 - (D) 40 ms^{-1} north-west
- **Q7** If $|\vec{P}|=20$, then \vec{P} in cartesian form is

- (A) $10\sqrt{3}\hat{i} + 10\hat{j}$
- (B) $10\hat{i} + 10\sqrt{3}\hat{j}$
- (C) $-10\hat{i} + 10\sqrt{3}\hat{j}$
- (D) $-10\hat{i} 10\sqrt{3}\hat{i}$
- **Q8** A and B are two inclined vectors and \mathbf{R} is their sum. Choose the correct figure for the given description.

(B)

- **Q9** The vector $ec{A}=2\hat{i}+3\hat{j}+4\hat{k}$ and vector $ec{B}=4\hat{i}\,+6\hat{j}+8\hat{k}$ are given. What is the angle between these two vectors?
 - (A) 0°

(B) 45°

(C) 90°

- (D) 60°
- **Q10** If $ec{A}=7\hat{i}-2\hat{j}+3\hat{k}$, what is the vector $-3ec{A}$?

(A)
$$-21\hat{i}+6\hat{j}-9\hat{k}$$

(B)
$$-7\hat{i}+2\hat{j}-3\hat{k}$$

(C)
$$21\hat{i}-6\hat{j}+9\hat{k}$$

(D)
$$-7\hat{i}+6\hat{j}-9\hat{k}$$

Q11 If $\bar{A} \times \bar{B} = \vec{C}$, then which of the following statements is wrong?

(A)
$$ec{C} \perp ec{A}$$

(B)
$$ar{C} \perp ec{B}$$

(C)
$$ec{C} \perp (ar{A} + ec{B})$$

(D)
$$ec{C} \perp (ec{A} imes ec{B})$$

- Q12 If $\left|\overrightarrow{A}\right| = \left|\overrightarrow{B}\right| = a$ and heta is angle between \overrightarrow{A} and \overrightarrow{B} then $\left|\overrightarrow{A} - \overrightarrow{B}\right| = ?$

- (A) $2a\cos\left(\frac{\theta}{2}\right)$ (B) $2a\sin\left(\frac{\theta}{2}\right)$ (C) $4a\sin\left(\frac{\theta}{2}\right)$ (D) $4a\cos\left(\frac{\theta}{2}\right)$

Q13

If a unit vector is represented by

 $0.\,3\hat{i}\,-0.\,4\hat{j}+c\hat{k}$, then the value of 'c' is:

- (A) $\sqrt{0.75}$
- (B) $\sqrt{0.25}$
- (C) $\sqrt{0.01}$
- (D) $\sqrt{0.39}$
- Q14 Let q be the angle between vectors and . Which of the following figures correctly represents the angle θ ?

Answer I	Key
-----------------	------------

Q1	(A)	Q8	(D)
Q2	(A)	Q8 Q9	(A)
Q3	(A)	Q10	
Q4	(C)	Q11	
Q5	(C)	Q12	(A)
Q6	(A)	Q13	
Q7	(D)	Q14	(C)

