b) Evaluate
$$\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} yz \, dx dy dz$$

o 0 1

c) Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ u_{Sign} double integrals.

double integrals. Unit – IV

7. a) If
$$f(t)$$
 is a periodic function with period T so that $f(t+T)=f(t)$ for all values of t

prove that $L(f(t))=\frac{1}{1-e^{-sT}}\int\limits_{0}^{T}e^{-st}f(t)dt$.

- b) Solve $x''(t)+4x'(t)+4x(t)=4e^{-2t}$; x(0)=-1 x'(0)=4 by the Laplace a) Solve p(p+y)=xtransform method
- Find Laplace transform of (i) $e^{-3t} (2\cos 5t 3\sin 5t)$ (ii) $\frac{\cos at \cos bt}{t}$
- a) Using partial fractions obtain inverse Laplace transform of (i) $\frac{s^2 + s 2}{s(s+3)(s-2)}$ (ii) Find $L^{-1}\left\{\frac{15}{e^2+4c+13}\right\}$.
 - b) Rewrite the following functionusing unit step function and find its Laplace transform, $f(t) = \begin{cases} t^2 & 0 < t \le 3 \\ 4t & t > 3 \end{cases}$
 - Find the inverse Laplace transform of $\frac{1}{(s^2+1)(s+1)}$ using convolution

Unit - V a) Formulate a partial differential equation of Z = yf(x) + xg(y)

- b) Determine the solution of $\left(x^2 y^2 z^2\right)p + 2xyq = 2xz$ by Lagrange's b) Solve the difference
- Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ given c) Solve $(D^2 2)$ $u(0, y) = 8e^{-3y} + 4e^{-5y}$
- 10. a) Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that when x=0, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$. Apply the method of separation of variables to determine the solution of b) Evaluate $\int_{0}^{2\pi} \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial x} = 0$ $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$
- c) Derive one dimensional wave equation in the form $\frac{\partial^2 y}{\partial^2 t} = c^2 \frac{\partial^2 y}{\partial x^2}$ BT* Bloom's Taxonomy, L* Level

LIBRARY Second Sem

tion: 3 Hours

Note: Answer Fiv

Solve
$$p(p+y)=x$$

b) Solve
$$(xy^2 - e^{\frac{y}{x^3}})$$

e.m.f E volts, th

$$E = 10 \sin t$$
 volts

a) Solve
$$y = -px +$$

c) Solve
$$(5x^4 + 6x)$$

- c) A spring is such be attached to t weight is started damping or impr
- a) Solve the differe

c) Solve
$$(D^2 - 2)$$

Evaluate
$$\int_{0}^{a} \int_{0}^{x+1} dx$$

c) Using double in

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester B.E. (Credit System) Degree Examinations, (BRARY April - May 2016

		April - May 2016			
		15MA201 - ENGINEERING MATHEMATICS - II	to Marke	100	
yral	ion:	2 Horis	lax. Marks:	100	
		Note: Answer Five full questions choosing One full question from each L		DT	
		Unit – I	Marks	BT*	
	a)	Show that the differential equation			
		$(y\cos x + \sin y + y)dx + (\sin x + x\cos y + x)dy = 0$ is exact. Hence find its solution.	6	L3	ı
	b)	Obtain the orthogonal trajectories of the family of curves $r^n = a \sin n\theta$.	7	L5	
	c)	Find the general and singular solutions of $p = \log(px - y)$	7	L2	
				L3	1
2	a)	Solve $xp^2 + x = 2yp$.	6	Lo	
	b)	When a resistance R ohms is connected in series with an inductance L henries with an e.m.f E volts, the current i amperes at time t is given by			
		$L\frac{di}{dt} + Ri = E$. If $E = 10\sin t$ volts and $i = 0$, when $t = 0$, find i as a function			
		dt	7	L2	Ш
	c)	of t. Solve $y(x+y+1)dx + x(x+3y+2)dy = 0$.	7	L3	1
		Unit - II	6	L3	-14
	a)	Solve (D^2-4D+3) y = $\sin 5x$	7	L3 L4	37
	b) c)	Solve (D^2+5D+6) y = $e^{-x} \sin 2x$	7		
			1	1 13	遇
NAME OF TAXABLE PARTY.	a) b)	Solve (D^2-D-2) $y = 36xe^{-x}$ by the method of undetermined multipliers.		7 L4	
	0)	Unit – III		10.000	图
5	а	Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.		7 4	
THE PROPERTY OF		Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi .$		6 1.3	
THE PROPERTY.		Evaluate $\int_{0}^{1} x^{7} (1 - x^{4})^{3} dx$ in terms of gamma function.		7/ L3	
National Property lies	6.	a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dy dx$ by changing the order of integration.		7	3
-		P.	T.O.	11/1	

b) Evaluate $\int \int xe^{-\left(\frac{x^2}{y}\right)} dy dx$ by changing the order of integration.

c) Find the volume bounded by the xy plane, the cylinder $x^2 + y^2 = 1$ and the plane x+y+z=3.

7. a) Find Laplace transform of (i) $4\sin^2 2t + 5\cos 4t$

(ii)
$$\int_{0}^{t} e^{-t} \cos t \, dt$$

- b) If f(t) is a periodic function with period T so that f(t+T) = f(t) for all values of t prove that $L(f(t)) = \frac{1}{1 - e^{-sT}} \int_{-st}^{T} e^{-st} f(t) dt$.
- c) Find the inverse Laplace transform of $\frac{1}{(s^2+1)(s+1)}$ using convolution theorem.
- a) Rewrite f(t)= $\begin{cases} \sin t & 0 < t \le \frac{\pi}{2} \\ \cos t & t > \frac{\pi}{2} \end{cases}$ using unit step function and find its Laplace transform.
 - Using partial fractions obtain inverse Laplace transform of $\frac{2s+3}{(s-1)(s+2)^3}$.
 - A voltage $E = E_0 e^{-at}$ where E_0 and a are constants, is applied at time t=0 to an LR circuit of inductance L and resistance R. Find the current at time t>0.
- Unit V a) Formulate a partial differential equation by eliminating the function F from the 9.

 $F\left(x^2+y^2,z-xy\right)=0$

- b) Determine the solution of $(x^2 yz)p + (y^2 zx)q = z^2 xy$ by Lagrange's
- c) Solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that when x = 0, $\frac{\partial z}{\partial x} = a \sin y$ and $\frac{\partial z}{\partial y} = 0$
- 10. a) Solve $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x y) = 0$
 - b) Apply the method of separation of variables and hence determine the solution of
- Derive one dimensional heat flow equation in the form $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ ET* Bloom's Taxonomy, L* Level

Sec

tion: 3 Hours

Note: A

- Show tha (vcosx solution.
- b) Obtain th
- c) Find the
- Solve X
- b) When a

 - c) Solve

 - b) Solve
 - c) Solve
 - a) Solve

 - Solve
 - a) Prove
 - b) Prove
 - c) Evalua
 - a) Evalua

USN

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester B.E. (Credit System) Degree Examinations Make up / Supplementary Examinations - July 2016

15MA201 - ENGINEERING MATHEMATICS - II

Max. Marks: 100 STE 3 Hours

il - May

 $s\theta)$.

t, prove

y (0)

0 & hav

show

Note: Answer Five full questions choosing One full question from each Unit.

		Unit - I	Marks	200
	Show that the differential equat Hence find its solution.	ion $(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$ is exact.	6	L*3
	Hence into its condition	r^2 v^2		

Find the orthogonal trajectories of family
$$\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$$
 where λ is a parameter.

Find the general and singular solutions of
$$y = xp + \frac{a}{p}$$
.

Solve
$$\left(x\frac{dy}{dx}\right)^2 + xy\frac{dy}{dx} - 6y^2 = 0$$
.

If a body originally is at
$$80^{\circ}C$$
 cools down to $60^{\circ}C$ in 20 minutes. The temperature of air being $40^{\circ}C$. Find the temperature of the body after 40 minutes from the original.

Solve
$$[xy\sin(xy) + \cos(xy)]ydx + [xy\sin(xy) - \cos(xy)]xdy = 0$$
.

Unit – II 6 L3

Solve (D³-6D²+11D-6)
$$y = e^{-2x} + e^{-3x}$$
7 L3

a) Solve (D³-6D²+11D-6)
$$y = e^{-2x} + e^{-3x}$$

7 L3
b) $v = (D^3 + D^2 + D + 1) y = \cos 2x$
7 L3
7 L3

Solve (D³+D²+D+1)
$$y = \cos 2x$$

Solve (D²-4D+4) $y = (e^{2x}/x)$ using the method of variation of parameters.

Solve
$$(D^2-4D+3)$$
 $y = \sin x$
a) Solve (D^2-4D+3) $y = \sin x$
7 L3

Unit - III

a) Evaluate
$$\int_{0}^{1} \frac{x^{\alpha} - 1 dx}{\log x} \alpha \ge 0$$
 using differentiation under the integral sign.

b) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

c) Evaluate i)
$$\int_{0}^{\infty} x^{4} e^{-x^{2}} dx$$
 ii) $\int_{0}^{\infty} x^{6} e^{-2x} dx$ 7 L3

a) Evaluate
$$\iint_{0}^{a} \iint_{0}^{x+y+z} e^{x+y+z} dz dy dx$$