

University of Palestine

Computer Graphics

ITGD3107

Assistant Professor

Dr. Sana'a Wafa Al-Sayegh

2nd Semester 2008-2009

ITGD3107 Computer Graphics

Chapter 9-10

Three Dimensional Concepts and Object Representations

Object Representation

- Graphics scenes can contain many different kinds of objects and material surfaces
 - Trees, flowers, clouds, rocks, water, bricks, wood paneling, rubber, paper, steel, glass, plastic and cloth
- So it may not be surprising that there is no single method that we can use to describe all the characteristics of these different shapes/materials

Object Representation

• Scene = an assembly of one or more models

- A model contains
 - Structural description: Geometry of the shape
 - Surface description: Appearance and light

3D Object Representations

- Boundary representation
 - A set of surfaces that separate the object interior from the environment
 - Eg) Polyhedra, curved boundary surfaces
- Space-partitioning
 - Partitioning the spatial region into a set of small, non overlapping, contiguous solids (usually cubes)
 - Eg) Volumetric data, trees
- Procedural methods
 - Fractals, shape grammars
- Constructive solid geometry
- Physically-based modeling

Issues in Model Selection

- Computational cost
 - Storage space
 - Model construction time
 - Display time
- Effectiveness in modeling the desired phenomena
 - Geometry
 - Looks good for image synthesis
 - Accuracy for simulation
 - Appearance
 - Looks / Accuracy

Issues in Model Selection

- Implementation complexity
 - The number of primitives
 - The complexity of each primitives
- Ease of acquiring (or creating) data
- Ease of manipulation
 - Operations on models
- Ease of animation
 - Match to simulator
 - Cost of conversion
 - Physics of motion

Polyhedra

- A polyhedron is a 3D solid which consists of a collection of polygons, usually joined at their edges
- The inside of the solid is divided by the polygons from the outside of the solid

Figure 8-1

A perspective view of the five GLUT polyhedra, scaled and positioned within a display window by procedure displayWirePolyhedra.

Polyhedra

- Euler formula
 - Determines the validity of planar graphs

$$V - E + F = 2$$

- V: The number of vertices
- − E: The number of edges
- F: The number of faces

Polyhedra

- Euler-Poincare formula
 - Generalizes the Euler formula for arbitrary dimension and genus
 - Polyhedra in three-dimension space follows

$$V - E + F - L = 2(S - G)$$

- L: The number of Inner loops
- S: The number of shells
- G: The number of holds

Functional Representation

• Explicit surfaces z = f(x, y)

$$z = f(x, y)$$

Implicit surfaces

$$f(x, y, z) = 0$$

- Parametric surfaces
- (x(t), y(t), z(t)) for $t \in [a,b]$ Issues
 - Representation power
 - Easy to render
 - Easy to manipulate (translate, rotate, and deform)

Implicit Surfaces

- Quadric surfaces
 - Implicit second-order polynomial equations
- Superquadric surfaces
 - A generalization of quadric surfaces
- Blobby objects (metaballs)
 - A collection of spherical density functions

Quadric surfaces

• Double cones

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

• Ellipsoids

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

• Hyperboloids of one sh $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Hyperboloids of two sheets

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Quadric surfaces

• Elliptic parabolo $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$

Hyperbolic paraboloids

$$\frac{y^2}{h^2} - \frac{x^2}{a^2} = \frac{z}{c}$$

Superquadrics

- A generalization of quadric surfaces, formed by incorporating additional parameters into quadric equations
 - Increased flexibility for adjusting object shapes

Superquadrics

Superellipsoid

$$\left[\left(\frac{x}{a} \right)^{2/S_1} + \left(\frac{y}{b} \right)^{2/S_2} \right]^{S_2/S_1} + \left(\frac{x}{c} \right)^{2/S_1} = 1$$

FIGURE 8-7 Superellipsoids plotted with values for parameters s_1 and s_2 ranging from 0.0 to 2.5 and with $r_x = r_y = r_z$.

Blobby Objects

• A collection of density functions

• Equi-density surfaces

Spatial Partitioning

- Volume data
 - Use identical cells (voxels)
 - Space-filling tesselation with cubes or parallelopipeds
 - Expensive storage but simple data structure
 - Useful for medical imaging: volume visualization

Spatial Partitioning

Octrees

- Partition space into 8 cubes, recursively
- Increase space efficiency of solid tesselations

Figure 8-65

Quadtree representation for a square region of the xy plane that contains a single foreground-color area on a solid-color background.

Spatial Partitioning

- Binary Space Partitioning (BSP) trees
 - Subdivide a scene into two sections at each step with a plane that can be at any position and orientation

Constructive Solid Geometry

- Recursively combine simple primitives by boolean operations
 - Simple primitives

- Transform or deform
- Tree structure

Constructive Solid Geometry

Tree structure

Constructive Solid Geometry

- Ray-casting methods for rendering CSG objects
 - Cast a ray through each pixel
 - Perform boolean operations along each ray

Operation	Surface Limits
Union Intersection Difference $(obj_2 - obj_1)$	A, D C, B B, D

- Self-similar fractals
 - Substitution

- Example: Koch curve

• Substitution rules

Figure 8-76

Self-similar constructions for a fern. (*Courtesy of Peter Oppenheimer, Computer Graphics Lab, New York Institute of Technology.*)

• Terrain by random perturbation

• Natural scenes with trees, flowers, and grass

Physically Based Modeling

Particle systems

Shape description is combined with physical

simulation

Physically Based Modeling

• Procedural modeling + physically based simulation

