A Hands-on Introduction to Graph Deep Learning, with Examples in PyTorch Geometric - I

Machine Learning and Dynamical Systems Seminar

November 2, 2023

Gabriele Santin (gabrielesantin.github.io)
Antonio Longa (antoniolonga.github.io)
Steve Azzolin (steveazzolin.github.io)
Francesco Ferrini (francescoferrini.github.io)

Introduction About us

Gabriele Santin
Assistant professor at University of Venice (Venice, Italy)
gabriele.santin@unive.it
https://gabrielesantin.github.io/

Antonio Longa
Assistant professor University of Trento (Trento, Italy)
antonio.longa@unitn.it
https://antoniolonga.github.io/

Steve Azzolin

ELLIS PhD Student at FBK and University of Trento (Trento, Italy)

steve.azzolin@unitn.it

https://steveazzolin.github.io/

Francesco Ferrini
PhD Student at University of Trento, (Trento, Italy)
francesco.ferrini@unitn.it
https://francescoferrini.github.io/

Introduction Organization and material

Tutorial in four parts (slides + Jupyter notebooks available):

- Part I: November 2, Presenter: GS
 Goals: Motivations, Intro of basic concepts, definition of GNNs
- Part II: November 9, Presenter: AL
 Goals: Implementation of GNNs: How to implement a full GNN pipeline in PyTorch
 Geometric.
- Part III: November 16, Presenter: SA
 Goals: Explainability of GNNs: How to inspect a model to try to understand the learned decision pattern.
- Part IV: November 23, Presenter: FF
 Goals: Heterogeneity in GNNs: How can GNNs effectively model and incorporate a diversity of nodes and edges with different types.

| Introduction | Why PyTorch Geometric

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

Where to get it:

GitHub repository: https://github.com/pyq-team/pytorch_geometric

Official page: https://pyq.org/

First paper: Matthias Fey and Jan E. Lenssen, *Fast Graph Representation Learning with PyTorch Geometric*, arXiv:1903.02428, 2019

| Introduction | Why PyTorch Geometric

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

Where to get it:

GitHub repository: https://github.com/pyq-team/pytorch_geometric

Official page: https://pyq.org/

First paper: Matthias Fey and Jan E. Lenssen, *Fast Graph Representation Learning with PyTorch Geometric*, arXiv:1903.02428, 2019

Other libraries: https://www.dgl.ai/ Deep Graph Library

Introduction Useful resources

Official documentation: https://pytorch-geometric.readthedocs.io/en/stable/ (including installation instructions)

Introduction Useful resources

Official documentation: https://pytorch-geometric.readthedocs.io/en/stable/

External resources: https://pytorch-geometric.readthedocs.io/en/stable/notes/resources.html

Introduction Useful resources

Official documentation: https://pytorch-geometric.readthedocs.io/en/stable/

External resources: https://pytorch-geometric.readthedocs.io/en/stable/notes/resources.html

Our tutorials:

- Pytorch Geometric tutorial https://antoniolonga.github.io/Pytorch_geometric_tutorials/index.html
- Advanced Pytorch Geometric tutorial
 https://antoniolonga.github.io/Advanced_PyG_tutorials/index.html
- Next session coming soon: check Steve Azzolin's page https://steveazzolin.github.io/

| Introduction | Outline - Part I

- Motivation
- Basic graph theory
- Graph Neural Networks
- Some computational aspects

| Motivation | Applications of Graph Neural Networks

Modelling of relational data:

Biological / Chemical structures:

- Nodes are chemical elements
- Edges are chemical bonds

Example use case:

Classify a molecule's property based on its structure (graph classification/regression)

| Motivation | Applications of Graph Neural Networks

Modelling of relational data:

User behavior

- Nodes are users or products
- Edges are users' preferences

Example use case:

Recommender Systems: Predict a user's preference (edge prediction)

| Motivation | Applications of Graph Neural Networks

Modelling of relational data:

Network science

- Nodes are persons
- Edges are interactions or contacts

Example use case:

Epidemic modelling: Classify a person's infection status based on its contact network (node classification)

Motivation

Opportunities for GNNs in Computational Sciences

Many **problems** come naturally in **graph** form:

- Meshes (Finite Elements Method (FEM), ...)
- Triangulated surfaces (e.g. for manifold discretization)
- ...

Typical use cases for Machine Learning:

- PDE/ODE solution methods (e.g. PINNs, DeepONets, ...)
- Surrogates to approximate a forward map:
 - UQ
 - Inverse problems
 - Parameter optimization

| Motivation | Opportunities for GNNs in Computational Sciences

Topology awareness

No need to vectorize, then process → Keep the graph structure

- Traditional NNs: The data points are (variable, output)
- GNNs: The data samples are (graph, output)

Motivation

Opportunities for GNNs in Computational Sciences

Topology awareness

No need to vectorize, then process → Keep the graph structure

- Traditional NNs: The data points are (variable, output)
- GNNs: The data samples are (graph, output)

Inductive learning

GNNs work by neighbouring aggregation → local

- Scalability (large graphs)
- Transferability across graphs (e.g. across scales, parameters, adaptive meshes, ...)

Basic graph theory Graphs

```
Graph G = (V, E)
```

V : Set of n nodesE⊂VxV : Set of m edges

- Undirected: (u,v)∈E implies (v,u)∈E

Basic graph theory Graphs

Graph G = (V, E)

- V : Set of n nodes
- **E⊂VxV** : Set of m edges
 - Undirected: (u,v)∈E implies (v,u)∈E

Features:

- Node features X^V
 - $n \times d_v$ dim. Matrix
 - E.g.: node pos. in a mesh
- Edge features X^E
 - $m \times d_F$ dim. Matrix
 - E.g.: distance btw nodes

| Basic graph theory | Neighbors, Adjacency, Laplacian

Useful notions given G = (V, E):

- Node neighborhood
 - $N^{1}(v) = \{u \in V: (u, v) \in E\}$
 - N^k (v) similar notion, with path of length k

	Α	В	С	D	Е	F
Α	0	0	0	0	0	1
В		0	1	0	1	1
С			0	0	1	0
D				0	1	0
Ε					0	1
F						0

| Basic graph theory | Neighbors, Adjacency, Laplacian

Fix an **enumeration** $V = \{v_1, ..., v_n\}$

- Adjacency matrix $A = (a_{ij})_{i,j=1,...,n}$: $n \times n$ matrix with $a_{ij} = 1$ iff $(v_i, v_j) \in E$
- Degree matrix D = diag(d₁₁,..., d_{nn}):
 n×n matrix with d_{ii} = deg(v_i)
- Laplacian matrix L = D A

	Α	В	С	D	Ε	F
Α	0	0	0	0	0	1
В		0	1	0	1	1
С			0	0	1	0
D				0	1	0
Ε					0	1
F	- 1					0

| Basic graph theory | Neighbors, Adjacency, Laplacian

Fix an enumeration $V = \{v_1, ..., v_n\}$

- Adjacency matrix $A = (a_{ij})_{i,j=1,...,n}$: $n \times n$ matrix with $a_{ii} = 1$ iff $(v_i, v_i) \in E$
- Degree matrix D = diag(d₁₁,..., d_{nn}):
 n×n matrix with d_{ii} = deg(v_i)
- Laplacian matrix L = D A

Vectorized representations of a graph G = (V, E)

	Α	В	С	D	Ε	F
Α	0	0	0	0	0	1
В		0	1	0	1	1
С			0	0	1	0
D				0	1	0
Е					0	1
F						0

| Basic graph theory | Invariance and equivariance

Multiple **equivalent representations** of the same graph:

The representation depends on the **enumeration**of the nodes

| Basic graph theory | Invariance and equivariance

Multiple **equivalent representations** of the same graph:

The representation depends on the **enumeration**of the nodes

Barrier for the application of plain NNs

We need representations/layers which are

- Permutation-invariant for graph
- Permutation-equivariant for nodes

| Graph Neural Networks | Learning node representations

Node features $X^{(0)} := X^{V}$ (or any assignment) Dimension $d^{(0)}=d_{V}$

| Graph Neural Networks | Learning node representations

| Graph Neural Networks | Learning node representations

Key properties of $f_w(v)$:

- **Locality:** It depends only on v and $N^k(v)$ (mostly for k=1)

- Invariance: Invariant w.r.t. permutations of Nk(v) and

Independent of $|N^k(v)|$

Graph Neural Networks Stacking

How to use a GNN layer?

- Stacking/composition of multiple layers
- **Final layer:** forget the topology, keep the node features
- These are **node embeddings**/mapped features
- Feed them to any **ML/DL method** (usually a final fully connected layer)

Graph Neural Networks Stacking

Optimize the layer's parameters by minimizing a loss function based on a dataset

How to use a GNN layer?

- Stacking/composition of multiple layers
- **Final layer:** forget the topology, keep the node features
- These are **node embeddings**/mapped features
- Feed them to any **ML/DL method** (usually a final fully connected layer)

Graph Neural Networks Pooling

Pooling for graph representation

- Aggregate the final node representation (e.g. sum, mean, max, ...)
- Pooling layers: dedicated layers that create a new (smaller) graph

Resulting computation graph

Resulting computation graph

| Graph Neural Networks | HowTo: Message passing

Properties:

- Used in actual implementations
- Fully **parallelizable** across the nodes
- Layer-wise application removes redundancy

| Graph Neural Networks | HowTo: Message passing

Properties:

- Used in actual implementations
- Fully **parallelizable** across the nodes
- Layer-wise application removes redundancy

Insights: Risk of "oversmoothing"

- Too many layers → Convergence to uniform node representations
- Number of layers related to the graph diameter
- **Limit** for truly deep architectures

Formalized representation

- We show a **prototype layer**, real examples will follow

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Input node features: $n \times d^{(i-1)}$

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Output node features: $n \times d^{(i)}$

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Learnable weights: $d^{(i-1)} \times d^{(i)}$

Formalized representation

$$X^{(i)} = \sigma(D^{-1}A)X^{(i-1)}W^{(i)}$$

Adjacency matrix: $n \times n$ (possibly with added self loops)

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Inverse degree matrix: $n \times n$ (possibly with added self loops)

Formalized representation

$$X^{(i)} \neq \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Component-wise nonlinear activation

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Linearly transformed features: $n \times d^{(i)}$

Formalized representation

$$X^{(i)} = \sigma(D^{-1}A X^{(i-1)}W^{(i)})$$

Neighborhood-aggregated features: $n \times d^{(i)}$ Sum aggregation → Permutation invariance

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Neighborhood-aggregated features: $n \times d^{(i)}$ Degree normalization \rightarrow **Indep. from** $|N^k(v)|$

Formalized representation

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Neighborhood-aggregated features: $n \times d^{(i)}$ Added **nonlinearity**

Properties:

- Not used in actual implementations
- Useful for layer analysis
- Equivalent to message passing via **sparse matrix** operations

Properties:

- Not used in actual implementations
- Useful for layer analysis
- Equivalent to message passing via sparse matrix operations

Insights:

Clear model transferability / inductive learning

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

Properties:

- Not used in actual implementations
- Useful for layer analysis
- Equivalent to message passing via sparse matrix operations

Insights:

Clear model transferability / inductive learning

G:

$$X^{(i)} = \sigma(D^{-1} A X^{(i-1)} W^{(i)})$$

G': $D^{-1} A X^{(i-1)}$

Complete list In PyG: https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

- Fully modular and composable

Complete list In PyG: https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

- Fully modular and composable
- Described in the following (with PyG notation):
 - GCN
 - GraphSAGE
 - GAT
 - Cheb
 - GIN

Complete list In PyG: https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

- Fully modular and composable
- Described in the following (with PyG notation):
 - GCN
 - GraphSAGE
 - GAT
 - Cheb
 - GIN

Shown without the nonlinear transform (custom choice)

Graph Convolutional Network

In PyG: GCNConv

$$\mathbf{X}' = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta}$$

Graph Convolutional Network

In PyG: GCNConv

Adjacency and degree matrices with added self loops Symmetric multiplication

Graph Sample and Aggregate

In PyG: SAGEConv

$$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \mathrm{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$$

Graph Sample and Aggregate

In PyG: SAGEConv

$$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \max_{j \in \mathcal{N}(i)} \mathbf{x}_j$$

Hidden dependency on A, D

Graph Sample and Aggregate

In PyG: SAGEConv

Different weighting of the node/neigh. features

Graph Attention Network

In PyG: GATConv

$$\mathbf{x}_i' = \alpha_{i,i} \mathbf{\Theta} \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \alpha_{i,j} \mathbf{\Theta} \mathbf{x}_j$$

Different weighting of the node/neigh. features

Graph Attention Network

In PyG: GATConv

$$\mathbf{x}_i' = \alpha_{i,i} \mathbf{\Theta} \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \alpha_{i,j} \mathbf{\Theta} \mathbf{x}_j$$

"Attention" parameters: Learnable edge weights

Graph Attention Network

In PyG: GATConv
$$\alpha_{i,j} = \frac{\exp\left(\operatorname{LeakyReLU}\left(\mathbf{a}^{\top}[\boldsymbol{\Theta}\mathbf{x}_{i} \parallel \boldsymbol{\Theta}\mathbf{x}_{j}]\right)\right)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\operatorname{LeakyReLU}\left(\mathbf{a}^{\top}[\boldsymbol{\Theta}\mathbf{x}_{i} \parallel \boldsymbol{\Theta}\mathbf{x}_{k}]\right)\right)}$$

$$\mathbf{x}_{i}' = \alpha_{i,i}\boldsymbol{\Theta}\mathbf{x}_{i} + \sum_{j \in \mathcal{N}(i)} \alpha_{i,j}\boldsymbol{\Theta}\mathbf{x}_{j}$$

Graph Attention Network

In PyG: GATConv

$$\mathbf{x}_i' = \alpha_{i,i} \mathbf{\Theta} \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \alpha_{i,j} \mathbf{\Theta} \mathbf{x}_j$$

$$\alpha_{i,j} = \frac{\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\top} \boldsymbol{\Theta} \mathbf{x}_{i} \parallel \boldsymbol{\Theta} \mathbf{x}_{j}\right]\right)\right)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\top} \boldsymbol{\Theta} \mathbf{x}_{i} \parallel \boldsymbol{\Theta} \mathbf{x}_{k}\right]\right)\right)}$$

Learnable feature weights
Same dim. as the node features
Transferability

Chebyshev Spectral Graph Convolution

In PyG: ChebConv

$$\mathbf{X}' = \sum_{k=1}^K \mathbf{Z}^{(k)} \cdot \mathbf{\Theta}^{(k)}$$

Chebyshev Spectral Graph Convolution

In PyG: ChebConv

Multi-level weights

Chebyshev Spectral Graph Convolution

In PyG: ChebConv

$$\mathbf{X}' = \sum_{k=1}^{K} \mathbf{Z}^{(k)} \cdot \mathbf{\Theta}^{(k)}$$

$$\mathbf{Z}^{(1)} = \mathbf{X}$$
 $\mathbf{Z}^{(2)} = \hat{\mathbf{L}} \cdot \mathbf{X}$
 $\mathbf{Z}^{(k)} = 2 \cdot \hat{\mathbf{L}} \cdot \mathbf{Z}^{(k-1)} - \mathbf{Z}^{(k-2)}$

Scaled and normalized laplacian

Chebyshev Spectral Graph Convolution

In PyG: ChebConv

$$\mathbf{X}' = \sum_{k=1}^{K} \mathbf{Z}^{(k)} \cdot \mathbf{\Theta}^{(k)}$$

$$egin{align} \mathbf{Z}^{(1)} &= \mathbf{X} \ \mathbf{Z}^{(2)} &= \mathbf{\hat{L}} \cdot \mathbf{X} \ \mathbf{Z}^{(k)} &= 2 \cdot \mathbf{\hat{L}} \cdot \mathbf{Z}^{(k-1)} - \mathbf{Z}^{(k-2)} \ \end{aligned}$$

Chebyshev approximation of a spectral filter

Graph Isomorphism Network

In PyG: GINConv

$$\mathbf{X}' = h_{\Theta} ((\mathbf{A} + (1 + \epsilon) \cdot \mathbf{I}) \cdot \mathbf{X})$$

Graph Isomorphism Network

In PyG: GINConv

$$\mathbf{X}' = h_{\mathbf{\Theta}} \left((\mathbf{A} + (1 + \epsilon) \cdot \mathbf{I}) \cdot \mathbf{X} \right)$$

Self loops with learnable weight

Graph Isomorphism Network

In PyG: GINConv

$$\mathbf{X}' = h_{\mathbf{\Theta}}(\mathbf{A} + (1 + \epsilon) \cdot \mathbf{I}) \cdot \mathbf{X})$$

Learnable MLP (on vector data)

Node regression problem from a simple test case in Model Order Reduction: Thermal block via PyMOR https://docs.pymor.org/latest/getting_started.html

The problem:

- Partial Differential Equation (PDE) in [0, 1]²
- Model of the heat distribution in a solid plate
- Plate divided in a 2x2 grid of blocks with different heat conductivity: 4-dim parameter
- Zero temperature on the boundary of the square

Node regression problem from a simple test case in **Model Order Reduction**: Thermal block via **PyMOR** https://docs.pymor.org/latest/getting_started.html

Problem discretization: get G = (V, E)

- V, E: Generate a uniform mesh: equally spaced points with diameter h, triangulated
- Flx a value of the parameter
- Define X^v as the concatenation of (node position, parameter value, diameter value)
- Define the target values y: Solve the problem with the Finite Element Method (FEM)

Node regression problem from a simple test case in Model Order Reduction:

Thermal block via PyMOR https://docs.pymor.org/latest/getting-started.html

Data generation for the node regression problem:

- Generate discretizations with
 - Diameters **h=0.01**, **0.02**, ..., **0.1** (implying different topologies)
 - Parameters $\mathbf{p} = \mathbf{p}_1, ..., \mathbf{p}_A$ randomly generated

Node regression problem from a simple test case in Model Order Reduction: Thermal block via PyMOR https://docs.pymor.org/latest/getting_started.html

Data generation for the node regression problem:

- Generate discretizations with
 - Diameters **h=0.01**, **0.02**, ..., **0.1** (implying different topologies)
 - Parameters $\mathbf{p} = \mathbf{p}_1, ..., \mathbf{p}_A$ randomly generated

Goal: Demonstrate model learning and transferability over multiple graphs

Node regression problem from a simple test case in **Model Order Reduction**: Thermal block via **PyMOR** https://docs.pymor.org/latest/getting_started.html

Data generation for the node regression problem:

- Generate discretizations with
 - Diameters **h=0.01**, **0.02**, ..., **0.1** (implying different topologies)
 - Parameters $\mathbf{p} = \mathbf{p}_1, ..., \mathbf{p}_A$ randomly generated

Goal: Demonstrate model learning and transferability over multiple graphs

Warning: we show no fine-tuning, no spectacular accuracies