

COMPUTACIÓN AVANZADA

Práctica 2: Trayectoria de un proyectil en distintos casos

2 DE ABRIL DE 2023

UNIVERSIDAD AUTÓNOMA DE MADRID Pablo Gradolph Oliva En esta práctica, se pide estudiar el movimiento de un proyectil, su alcance y la trayectoria que describe en varios supuestos que se muestran y describen a continuación. En todos los casos he utilizado el método de Runge-Kutta de 4° orden para resolver los distintos sistemas de ecuaciones diferenciales que se plantean. He estudiado las trayectorias y los alcances para distintos ángulos (entre 30 y 55 grados) dentro de cada supuesto y he utilizado un valor para la variable dt=0.1. Por último, en todos los casos se ha trabajado con una velocidad inicial $v_0=700~m/s$ del proyectil y un valor para la gravedad $g=9.8~m/s^2$.

1. SIN ROZAMIENTO

Para este supuesto se pide estudiar la trayectoria descrita por el proyectil sin tener en cuenta la fuerza de rozamiento producida por el efecto del aire. De esta manera el sistema de ecuaciones diferenciales que queda a resolver es el siguiente:

$$\begin{cases} \frac{dx}{dt} = v_x & \frac{dy}{dt} = v_y \\ \frac{dv_x}{dt} = 0 & \frac{dv_y}{dt} = -g \end{cases}$$

Tras la resolución del sistema he obtenido la siguiente gráfica, con todas las trayectorias para los distintos ángulos:

Se puede apreciar como el alcance máximo obtenido es prácticamente de 50 km y que este valor se obtiene cuando lanzamos el proyectil con un ángulo de 45º sobre la horizontal.

2. CON ROZAMIENTO Y DENSIDAD DEL AIRE CONSTANTE

Para este segundo supuesto, se pide estudiar la trayectoria descrita por el proyectil teniendo en cuenta el efecto de la fuerza de rozamiento sobre la trayectoria y, por tanto, sobre el alcance del proyectil, suponiendo que la densidad del aire es constante para todas las distintas alturas que alcanza el proyectil. El sistema de ecuaciones que queda para resolver ahora es el siguiente:

$$\begin{cases} \frac{dx}{dt} = v_x & \frac{dy}{dt} = v_y \\ \frac{dv_x}{dt} = \frac{-B_2|v|v_x}{m} & \frac{dv_y}{dt} = -g - \frac{B_2|v|v_y}{m} \end{cases} con \frac{B_2}{m} = 4 * 10^{-5} m^{-1}$$

Obteniéndose, de esta manera, la siguiente gráfica:

Vemos como ahora, teniendo en cuenta el rozamiento con el aire, cambian las trayectorias, el proyectil alcanza alturas menos elevadas, el alcance máximo es de menos de la mitad de la distancia que en el caso anterior (ahora llega entorno a 22 km) y esto se da para un ángulo menor que 45º, en concreto, para un ángulo de 39º.

3. CON ROZAMIENTO Y VARIANDO LA DENSIDAD DEL AIRE CON LA ALTURA

En este último caso, se han estudiado las diferentes trayectorias teniendo en cuenta tanto la fuerza de rozamiento como la variación de la densidad del aire con la altura a la que se encuentra el proyectil. Para realizar esto se han propuesto dos modelos, la aproximación isoterma en la que se supone una temperatura constante para todas las alturas y la aproximación adiabática en la que se supone un proceso que permanece en equilibrio.

APROXIMACIÓN ISOTERMA

Para la aproximación isoterma el sistema que tenemos que resolver es el siguiente:

$$\begin{cases} \frac{dx}{dt} = v_x & \frac{dy}{dt} = v_y \\ \frac{dv_x}{dt} = -\frac{\rho}{\rho_0} \frac{B_{2 (y=0)} |v| v_x}{m} & \frac{dv_y}{dt} = -g - \frac{\rho}{\rho_0} \frac{B_{2 (y=0)} |v| v_y}{m} \end{cases}$$

$$con \rho = \rho_0 * \exp(-y/y_0)$$
; $y_0 = 10^4 m$; $\frac{B_{2 (y=0)}}{m} = 4 * 10^{-5} m^{-1}$

Y la siguiente gráfica muestra los resultados obtenidos:

Vemos como las trayectorias son similares al caso anterior, pero, en este caso, se obtiene un alcance máximo ligeramente mayor, de 22,5 km aproximadamente y esto se produce para un ángulo de 40º.

APROXIMACIÓN ADIABÁTICA

En el último supuesto, el sistema que tenemos que resolver es el mismo que en el caso anterior:

$$\begin{cases} \frac{dx}{dt} = v_x & \frac{dy}{dt} = v_y \\ \frac{dv_x}{dt} = -\frac{\rho}{\rho_0} \frac{B_{2\;(y=0)}|v|v_x}{m} & \frac{dv_y}{dt} = -g - \frac{\rho}{\rho_0} \frac{B_{2\;(y=0)}|v|v_y}{m} \end{cases} con \; \frac{B_{2\;(y=0)}}{m} = 4*10^{-5} \; m^{-1}.$$

Pero en este caso, lo que cambia es la siguiente expresión:

$$\rho = \rho_0 * \left(1 - \frac{ay}{T_0}\right)^{\alpha} con \, \alpha = 6.5 * 10^{-3} \frac{K}{m}, \alpha = 2.5 \, y \, T_0 = 300 K$$

Para el cuál se han obtenido los siguientes resultados:

En este caso, tanto el alcance máximo, como el ángulo de tiro en el que se consigue son algo mayores que en los dos casos anteriores. El alcance máximo es aproximadamente 24.5 km y este fenómeno se produce al lanzar el proyectil con un ángulo de 44º sobre la horizontal.

DATOS OBTENIDOS Y DISCUSIÓN DE LOS RESULTADOS.

Para finalizar, he querido mostrar una tabla con todos los datos obtenidos para los distintos ángulos y por los distintos métodos, unos pequeños comentarios acerca de éstos y todas las gráficas juntas que recogen estos datos para las trayectorias en intervalos de 5º y de 1º. La tabla con todos los datos es la siguiente: (se muestran los alcances en kilómetros).

Ángulo (en	Alcance sin	Alcance con	Alcance con	Alcance con
grados)	rozamiento	rozamiento	rozamiento y	rozamiento y
			aproximación	aproximación
			isoterma	adiabática
30	43.30125	21.28432	21.51699	22.60235
31	44.14737	21.45622	21.70538	22.87206
32	44.9397	21.60607	21.87189	23.12138
33	45.67727	21.73428	22.01687	23.3504
34	46.35918	21.84124	22.14067	23.55917
35	46.98461	21.9273	22.24354	23.74769
36	47.55281	21.99278	22.32578	23.91592
37	48.06307	22.03801	22.38762	24.0638
38	48.51477	22.06323	22.42927	24.19124
39	48.90738	22.06873	22.45094	24.29811
40	49.24038	22.05473	22.4528	24.38425
41	49.51339	22.02148	22.43501	24.44947
42	49.72609	21.96917	22.39773	24.49359
43	49.87819	21.898	22.34108	24.5164
44	49.96953	21.80815	22.26518	24.51764
45	49.99999	21.69979	22.17015	24.4971
46	49.96953	21.57307	22.05609	24.4545
47	49.87819	21.42816	21.92308	24.3896
48	49.72608	21.26518	21.77122	24.30212
49	49.5134	21.08427	21.60058	24.1918
50	49.24038	20.88556	21.41123	24.05837
51	48.90737	20.66916	21.20325	23.90156
52	48.51478	20.43519	20.9767	23.72114
53	48.06308	20.18376	20.73165	23.51685
54	47.55282	19.91496	20.46815	23.28845
55	46.98463	19.91496	20.18628	23.03574

Vemos como la principal diferencia está en tener o no en cuenta el rozamiento y es que, para los tres casos en los que se tiene en cuenta, el alcance se reduce entorno a la mitad. Otro fenómeno interesante que se produce en el caso sin rozamiento es que el ángulo para el que se alcanza el mayor alcance es 45º y que se produce también el efecto de los ángulos complementarios, es decir, se llega a la misma distancia lanzando el proyectil 40º que a 50º, a 35º que a 55º y así para todos los ángulos complementarios. Estos efectos son poco realistas, y es por esta razón, por la que se han estudiado los casos con rozamiento.

En los casos con rozamiento, me gustaría destacar que el alcance obtenido mediante la aproximación adiabática es ligeramente mayor que en los otros dos casos al igual que el ángulo para el que se obtiene el alcance máximo que es 44º un valor algo sorprendente puesto que es muy próximo a los 45º aunque también es ligeramente inferior, acorde con lo esperado.

Esto no es así para los otros dos casos en los que los alcances son muy similares y el ángulo para el que se obtiene el máximo alcance es 39º para el caso con rozamiento y densidad constante y 40º para el caso de la aproximación isoterma.

Por último, se muestran todas las trayectorias descritas juntas para apreciar bien estas diferencias en los distintos supuestos estudiados:

