

Laney is at the top of the mountain (point A). She hopes to ski **down** to point S (without going through trees or up hill). How many routes are possible?

# Pascal's Triangle

```
6
         10
            10
                5
    6 15 20 15
     21 35 35 21
   28 56 70 56 28
 36 84 126 126 84
                   36
45 120 210 252 210 120
                     45
```

Laney has 5 toes on her right foot. She wants to choose three of these nails to paint green. How many different ways can Laney do this?



When given 7 dots, how many distinct line segments connect 2 of those dots? In other words, with 7 nodes, how many edges can be drawn?



If there are 7 possible pizza toppings, and you will choose 3 of them, how many different pizzas are possible?

$$\binom{7}{3} = \frac{7!}{4! \cdot 3!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} =$$

Notice, these rearrangements are like anagrams.

### Combinatorics: combinations

Combinations: list of all anagrams of a "word" which contains only 2 letters. Often we use 1 for "yes" or "success" and use 0 for "no" or "failure".

for example: 0011 0101 0110 1001 1010 1100

We define:

n =word length

r = how many 1s

The typical problem: We have n objects and we will choose r of them as "yes" (and the rest as "no"). How many possibilities exist?

n choose 
$$r = {}_{n}C_{r} = \binom{n}{r} = \frac{n!}{(n-r)! \cdot r!}$$

### Evaluating *n* choose *r* with technology

```
If we wanted to evaluate \binom{40}{27}...
Geogebra Scientific Calculator:
```

```
nCr(40, 27)
```

R:

> choose(40,27)

[1] 12033222880

TI Calculator:

40 nCr 27

Imagine a dice game where a 6 is "success" and anything else is "failure".

What is the probability of rolling 5 dice and getting 3 successes?

Well... first let's do something easier...

Imagine a dice game where a 6 is "success" and anything else is "failure".

What is the probability of rolling 5 dice and getting (in this order) success, fail, success, success, and fail.

$$P(10110) = ?$$

What is the probability of rolling 5 dice and getting (in this order) fail, fail, success, success, and success.

$$P(00111) = ?$$

Imagine a dice game where a 6 is "success" and anything else is "failure".

What is the probability of rolling 5 dice and getting 3 successes?

#### Binomial mass function

Let X represent the number of successes when n trials are performed and each trial has p chance of success. We use a formula to calculate the probability that X is k.

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

For example, if n = 4 and p = 0.1, then:

| k | P(X = k) unsimped       | P(X=k) |
|---|-------------------------|--------|
| 0 | $(1)(0.1)^0(0.9)^4$     | 0.6561 |
| 1 | $(4)(0.1)^{1}(0.9)^{3}$ | 0.2916 |
| 2 | $(6)(0.1)^2(0.9)^2$     | 0.0486 |
| 3 | $(4)(0.1)^3(0.9)^1$     | 0.0036 |
| 4 | $(1)(0.1)^4(0.9)^0$     | 0.0001 |

Find the probabilities of  $X \sim Binomial(n = 2, p = 0.4)$ .

| k | P(X = k) unsimplified | P(X = k) simplified |
|---|-----------------------|---------------------|
|   |                       |                     |
|   |                       |                     |
|   |                       |                     |

Find the probabilities of  $X \sim Binomial(n = 2, p = 0.4)$ .

| k | P(X = k) unsimplified | P(X = k) simplified |
|---|-----------------------|---------------------|
|   |                       |                     |
|   |                       |                     |
|   |                       |                     |

Determine  $P(X \ge 1)$ . Determine the expected value.

Let  $X \sim Binomial(20, 0.8)$ . Calculate P(X = 15).

We are about to derive the following rules for binomials:

$$\mu = np$$
  $\sigma = \sqrt{np(1-p)}$ 

Determine the expected value and standard deviation of X.

A Bernoulli trial is a random variable that can take on two possible values, 0 or 1, and has a p chance of being 1. Let  $W \sim Bernoulli(p = 0.6)$ .

| W | P(W=w) |
|---|--------|
| 0 | 0.4    |
| 1 | 0.6    |

Determine  $\mu$  and  $\sigma$ .

Now, try this more generally. Let  $W \sim Bernoulli(p)$ .

| W | P(W=w) |
|---|--------|
| 0 |        |
| 1 |        |

Determine  $\mu$  and  $\sigma$ .

$$\mu = (0)(1-p) + (1)(p) = \boxed{p}$$

$$\sigma = \sqrt{(0-p)^2(1-p) + (1-p)^2p}$$

$$= \sqrt{p^2(1-p) + (1-p)^2p}$$

$$= \sqrt{p^2 - p^3 + p - 2p^2 + p^3}$$

$$= \sqrt{p - p^2}$$

$$= \sqrt{p(1-p)}$$

### A binomial is a sum of Bernoulli trials

In chapter 2.4 we learned the following rules.

$$E(W_1 + W_2 + \dots + W_n) = E(W_1) + E(W_2) + \dots + E(W_n)$$
  
 $Var(W_1 + W_2 + \dots + W_n) = Var(W_1) + Var(W_2) + \dots + Var(W_n)$ 

For a specific p, for all i between 1 and n, let  $W_i \sim Bernoulli(p)$ . Let X represent the sum of those variables, making  $X \sim Binomial(n, p)$ .

$$X = \sum_{i=1}^{n} W_i$$

If so, then we know (by using those rules):

$$E(X) = np$$

$$Var(X) = np(1 - p)$$

$$SD(X) = \sqrt{np(1 - p)}$$

### Binomial mean and standard deviation

Let  $X \sim Binomial(n, p)$ . The mean (expected value) of a binomial distribution:

$$\mu = np$$

The standard deviation of a binomial distribution:

$$\sigma = \sqrt{np(1-p)}$$

## Binomial Distributions are (often) approximately normal

Let  $X \sim Binomial(n=20, p=0.7)$ , which has  $\mu=14$  and  $\sigma=2.05$ . Let  $Y \sim N(\mu=14, \sigma=2.05)$ .

Let's overlay two density functions: the discrete binomial function and the continuous normal function.



#### Rule of thumb:

If  $np \ge 10$  and  $n(1-p) \ge 10$ , then the normal approximation will work well (except in the tails).

Let  $X \sim Binomial(n=20, p=0.7)$ , which has  $\mu=14$  and  $\sigma=2.05$ . Let  $Y \sim N(\mu=14, \sigma=1.79)$ . Estimate  $P(12 \le X \le 14)$  using the normal approximation.

