Select results

Lia Ossanna

11/28/2021

Introduction

- Presented here are the results of single-moderator and model selection analysis for the exotic and native datasets.
- All models have undergone sensitivity analysis and outliers have been removed.
- Results are summarized in the form of forest plots, and heterogeneity statistics are presented in a single table
- Code is omitted to conserve space. See other documents for code and more details.

Summary

Summary effect

- Overall, C addition treatment significantly decreases exotic plant abundance but does not affect native plant abundance.
 - When predicting the effect of C addition on a random population, we would expect exotic plant abundance to decrease 71% of the time.
- Annual exotic plants largely behave similar to the overall effect from all types of exotic plants (included in this study).

Single moderator models

- C addition treatment has been most successful in southeast Australia (New South Wales) and the western United States, especially in the Southwest and Pacific Northwest.
- C addition treatment steadily becomes less effective over time (effect size decreases as duration since first and last C application increases).
- Sucrose alone is more effective than sawdust alone; but both had a significant effect when used alone, but not in combination.
 - However, this could be an artifact of sample size/number of comparisons. Only sucrose, sucrose AND sawdust, and sawdust have comparable n values (number of studies/comparisons).
- Increasing C rate decreases exotic plant abundance and increases native plant abundance.
 - Although these trends are statistically significant, practically speaking, the increase in effect likely
 does not compensate for the higher cost.
- The number and timing of C applications show inconsistent trends, but studies that applied C only once saw a simultaneous decrease in exotic plant abundance and increase in native plant abundance.

- Studies that applied C 3-6 times reported the greatest decrease in exotic plant abundance; however, native plant abundance also decreased.
- C application treatment was more effective on annual exotic plants than perennial, but perennial graminoids were still significantly affected.
- In the subset of annual exotic plants, forbs decreased slightly more than graminoids, but in the overall exotic dataset, graminoids decreased more than forbs, and to a larger degree.
 - C treatment had no significant effect on perennial native plant abundance.

Model selection

- Candidate model included region, dlc (duration since last C application), C_type, cratc (C rate as categorical), plotc (plot size), capt (months applying C), and plant_apgfs (plant lifeform).
- dlc, cratc, region, plotc, and plant_apgfs were important moderators for the exotic dataset (importance value > 0.8).
- dlc, cratc, region, C_type, and plant_apgfs were important moderators for the native dataset (importance value > 0.8).

No moderators (summary effect)

Exotic

• C treatment causes significant decrease in exotic plant abundance.

```
##
## pred se ci.lb ci.ub pi.lb pi.ub
## -0.5768 0.1009 -0.7746 -0.3791 -1.9782 0.8246
## [1] 0.705801
```

- The 95% confidence interval (ci.lb and ci.ub) indicates the precision of the mean/summary effect (pred).
- The prediction interval measures the distribution of true effects. A prediction of the effect size for any given population would fall within the prediction interval 95% of the time (Borenstein 2019, Research Synthesis Methods).
- Because the prediction interval (pi.lb and pi.ub) spans 0, we would expect exotic plant abundance to decrease only about 71% of the time $(\frac{pi.lb}{pi.lb-pi.ub})$.

```
## [1] I^2 = 56.4347952512755
```

- I^2 is a measure of relative heterogeneity. It is the proportion of variance in observed effects that is due to variance in true effects (effects in an infinitely large population with no sampling error), or, in other words, the ratio of excess dispersion to total dispersion ($\frac{V_{TRUE}}{V_{OBS}}$, expressed here as a percentage; Borenstein 2009).
- I^2 can be thought of as the inconsistency across studies; an I^2 of 0% means there is no observed variance that is actually due to true variance, and therefore no variance to explain, while an I^2 of 100% means that all the variance could be explained by something besides sampling error, such as the effect of moderators (Borenstein 2019, Research Synthesis Methods).

```
## [1] QM/QT = 0.0312595156674703
```

• QM/QT is the proportion of heterogeneity explained by the model $(\frac{Q_M}{Q_E+Q_M})$, and is "functionally equivalent" to the R^2 of a linear model (Koricheva 2013).

Native

• C treatment does not cause a significant change in native plant abundance.

```
##
## pred se ci.lb ci.ub pi.lb pi.ub
## -0.0742 0.0592 -0.1902 0.0417 -0.7502 0.6018
## [1] 0.4451126
## [1] I^2 = 20.5377724218779
```

- Native abundance increases only about 45% of the time.
- A low I^2 indicates most of the variance is due to randomness and cannot be explained with moderators. Therefore, the following native single moderator models should be interpreted with caution.

```
## [1] QM/QT = 0.00169661166339359
```

Single moderator models

Biome

Region

Soil suborder

Soil suborder (exotic) Estimate [95% CI] Overall (n = 410) -0.52 [-0.76, -0.28] -0.22 [-0.70, -0.26] -0.27 [-1.28, 0.73] -1.18 [-2.15, -0.22] -0.50 [-1.09, 0.09] -0.92 [-1.70, -0.14] -1.32 [-2.43, -0.21] Aqualfs (n = 9) Aquolls (n = 3) Argids ($\hat{n} = 53$) Blacktown (n = 31) Calcids (n = 8)-1.52 [-2.43, -0.21] 0.10 [-0.57, 0.76] -0.06 [-0.67, 0.55] -0.81 [-1.57, -0.05] -0.46 [-1.48, 0.56] 0.25 [-0.75, 1.26] -0.10 [-1.02, 0.82] Cambids (n = 16)Chernozems (n = 14) Humults (n = 15) Orthents (n = 3) Psamments, Udepts (n = 18) Udolls (n = 130) -0.10 [-1.02, 0.02] 0.78 [-0.91, 2.46] -0.07 [-0.73, 0.59] -0.82 [-1.88, 0.24] Udults (n = 1) Ustalfs (n = 28) Ustepts (n = 4)-0.62 [-1.66, 0.24] -0.47 [-0.98, 0.03] -7.05 [-9.46, -4.65] 0.13 [-1.01, 1.27] -0.01 [-1.24, 1.22] -1.24 [-1.85, -0.62] Ustolls (n = 51) Vertisols (n = 2) Xerands (n = 4) Xerepts (n = 4)Xerolls (n = 16)-10 -5 5 0 **Observed Outcome**

Duration since first C app

Duration since first (exotic)

Estimate [95% CI]

Duration since first (native)

Duration since last C app (dlc)

Duration since last (native)

36-49 (n = 20)

>100 (n = 13)

Duration (all)		Estimate [95% CI]
Overall (n = 486)	⊢∎⊢	-0.58 [-0.77, -0.38]
0-1.5 (n = 53)		-1.06 [-1.51, -0.61]
2 (n = 64)		-0.72 [-1.16, -0.28]
3-3.5 (n = 92)	⊢	-0.91 [-1.37, -0.44]
4-6 (n = 54)	—	-0.43 [-0.99, 0.13]
7-12 (n = 95)	⊢	-0.52 [-1.02, -0.02]
13–18 (n = 80)		-0.22 [-0.67, 0.24]
19–24 (n = 13)	F	-0.36 [-0.96, 0.24]
36-49 (n = 34)		-0.18 [-0.83, 0.47]
>100 (n = 3)	<u> </u>	0.07 [-1.18, 1.31]
	-2 -1 0 1 2	
	Observed Outcome	

Overall (n = 655) 0-1.5 (n = 127) 2 (n = 78) 3-3.5 (n = 10) 4-6 (n = 35) 7-12 (n = 14) 13-18 (n = 294) 19-24 (n = 64)

-0.5

-1

Estimate [95% CI]

0

Observed Outcome

0.5

C type

C type (exotic)

Estimate [95% CI]

C type (native)

C rate (cratc)

Months applying C (capt)

Months applying C (exotic)

Estimate [95% CI]

Months applying C (native)

Grass/forb/shrub

Grass/forb/shrub (exotic)

Estimate [95% CI]

Grass/forb/shrub (native)

Annual/perennial

Annual/perennial (exotic)

Estimate [95% CI]

Annual/perennial (native)

Annual/perennial and grass/forb/shrub

Annual/perennial and grass/forb/shrub (exotic)

Estimate [95% CI]

Annual/perennial and grass/forb/shrub (native)

Plot size

Seeding of native

Seeding of native (exotic)

Estimate [95% CI]

Seeding of native (native)

Table 1: Heterogeneity stats

Model	QE	QE_df	QE_p	QM	QM_df	QM_p	QM_QT
Summary	7						
Exotic	1013.0	485	0.00e+00	32.680	1	0.0000000	0.031260
Native	925.8	654	0.00e+00	1.573	1	0.2097000	0.001697
Biome							
Exotic	871.1	486	0.00e+00	80.150	17	0.0000000	0.084250
Native	801.1	654	1.56e-05	48.790	14	0.0000097	0.057410
Region							
Exotic	871.4	485	0.00e+00	71.990	11	0.0000000	0.076320
Native	841.8	654	3.00e-07	32.480	10	0.0003331	0.037150
Soil subo	rder						
Exotic	718.7	409	0.00e+00	80.390	19	0.0000000	0.100600
Native	619.5	479	1.50e-06	32.090	17	0.0146800	0.049250
Duration	since fir	rst C app					
Exotic	959.4	486	0.00e+00	60.610	9	0.0000000	0.059420
Native	884.8	654	0.00e+00	13.620	9	0.1364000	0.015160
Duration	since la	st C app					
Exotic	954.6	487	0.00e+00	64.110	9	0.0000000	0.062940
Native	883.2	654	0.00e+00	23.030	9	0.0061220	0.025420
C type							
Exotic	948.4	487	0.00e+00	42.870	12	0.0000238	0.043240
Native	814.0	654	5.60e-06	56.400	11	0.0000000	0.064800
C rate	0		0.000	001-00		0.000000	0.00-000
Exotic	879.8	464	0.00e+00	72.930	14	0.0000000	0.076540
Native	799.4	638	2.60e-06	41.870	14	0.0001297	0.049770
Months a							
Exotic	890.9	487	0.00e+00	98.500	7	0.0000000	0.099550
Native	866.5	654	0.00e+00	19.860	7	0.0058790	0.022410
Grass/for			0.000,00	-0.000	·	0.0000.00	0.000
Exotic	1003.0	487	0.00e+00	48.880	4	0.0000000	0.046450
Native	909.1	654	0.00e+00	10.630	4	0.0310600	0.011560
Annual/I							
Exotic	1034.0	487	0.00e+00	33.070	4	0.0000012	0.030980
Native	918.8	654	0.00e+00	4.090	5	0.5365000	0.004432
			•		Ů	0.0000000	0.004402
Exotic	973.9	i and gras 487	$\frac{\text{ss/forb/sh}}{0.00\text{e}+00}$	68.770	10	0.0000000	0.065950
Native	881.2	654	0.00e+00 0.00e+00	37.230	13	0.0003817	0.040530
Plot size	001.2	004	0.000 00	31.200	10	5.0005617	0.040000
Exotic	937.3	481	0.00e+00	37.840	11	0.0000833	0.038800
Native	937.3 824.1	648	9.00e+00	18.570	10	0.0000833	0.038800
			3.00 0- 01	10.010	10	0.0401400	0.022030
Seeding of			0.00 - 1.00	22 420	0	0.0000001	0.020100
Exotic Native	1005.0 894.7	486	0.00e+00	33.420 10.240	$\frac{2}{2}$	0.0000001 0.0059620	0.032190 0.011320
mative	094.7	654	0.00e+00	10.240		0.0059620	0.011320

Model selection

Exotic

• The top model has a weight of 94%.

Native

```
## model aicc weights ## 1 yi ~ 1 + dlc + cratc + region + C_type + plant_apgfs 1503.092 0.9702438
```

• The top model has a weight of 97%.

