Algebra Multilineal i Geometria

FME, UPC

Entregable 2

Aplicació estrella

Siguin (E, \langle, \rangle) un espai euclidià i $\mathcal{B} = \{e_1, \dots, e_n\}$ una base ortonormal. Orientem E per la base \mathcal{B} i denotem per $\sigma_n = e_1 \wedge \cdots \wedge e_n$ l'element de volum corresponent.

Definició. Per a cada $p \ge 0$, es defineix l'aplicació $*: \mathcal{A}^p(E) \longrightarrow \mathcal{A}^{n-p}(E)$ com l'aplicació lineal que sobre els elements de la base de $\mathcal{A}_p(E)$ està determinada per

$$*e_{i_1} \wedge \cdots \wedge e_{i_p} = \varepsilon(\sigma)e_{j_1} \wedge \cdots \wedge e_{j_{n-p}},$$

on $1 \le i_1 < \dots < i_p \le n, \ 1 \le j_1 < \dots < j_{n-p} \le n$ són els índexs complementaris de I i σ és la permutació $\sigma = (i_1, \ldots, i_p, j_1, \ldots j_{n-p}).$

- 1. Calculeu l'aplicació adjunta per a \mathbb{R}^2 i \mathbb{R}^3 , amb el producte escalar ordinari, $p \geq 0$.
- **2.** Si $u, v, w \in \mathbb{R}^3$, proveu que se satisfà

$$*(u \wedge v) = u \times v$$

$$*(u \wedge v \wedge w) = det(u, v, w).$$

- 3. Proveu que * satisfà les propietats següents:
 - (a) $\langle *f, g \rangle = (-1)^{p(n-p)} \langle f, *g \rangle, f \in \mathcal{A}^p(E), g \in \mathcal{A}^{n-p}(E).$ (b) $** = (-1)^{p(n-p)}.$

 - (c) $\langle f, g \rangle = *(g \wedge *f) = *(f \wedge *g), f, g \in \mathcal{A}^p(E).$
 - (d) Si $f, g \in \mathcal{A}^p(E)$, aleshores $f \wedge *g = g \wedge *f = \langle f, g \rangle \boldsymbol{\sigma}_n$.
- 4. Proveu que si u_1, \ldots, u_n és una base ortonormal qualsevol de E, aleshores

$$*\boldsymbol{u}_1 \wedge \cdots \wedge \boldsymbol{u}_p = \pm \boldsymbol{u}_{p+1} \wedge \cdots \wedge \boldsymbol{u}_n,$$

indicant quan es dona el signe + o el signe -. (Indicació: Proveu prèviament el resultat

Lema. Si M és una matriu ortogonal i considerem una descomposició per blocs de la forma

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

aleshores se satisfà

$$\left(\begin{array}{cc} A & B \\ 0 & I \end{array}\right) \left(\begin{array}{cc} A^T & C^T \\ B^T & D^T \end{array}\right) = \left(\begin{array}{cc} I & 0 \\ C^T & D^T \end{array}\right).$$

I deduïu que $\det D = \det M \det A$.)

5. Proveu que si els vectors v_1,\ldots,v_p són linealment independents, aleshores existeix una base w_1,\ldots,w_{n-p} del subespai $F^\perp=\langle v_1,\ldots,v_p\rangle^\perp$ tal que la base de E formada pels vectors $v_1,\ldots,v_p,\ w_1,\ldots,w_{n-p}$ és positiva i

$$*v_1 \wedge \cdots \wedge v_p = w_1 \wedge \cdots \wedge w_{n-p}.$$

Deduïu que

$$\operatorname{vol}(v_1,\ldots,v_p) = \operatorname{vol}(w_1,\ldots,w_{n-p}).$$

6. Sigui $v \in E$ i $\mathbf{v}^{\wedge} = v \wedge - : \mathcal{A}^{p}(E) \longrightarrow \mathcal{A}^{p+1}(E)$ l'aplicació lineal $w \mapsto v \wedge w$. Sigui \mathbf{v}^{*} l'aplicació adjunta de \mathbf{v}^{\wedge} , proveu que

$$v^*(w) = (-1)^{np} * (v \wedge (*w)).$$