

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

D:-----

Function

Control

Doculto

Simulation

Summan

Family of Controllers for Attitude Synchronization in S^2

Pedro O. Pereira[†] and Dimos V. Dimarogonas[†]

† Department of Automatic Control, KTH Royal Institute of Technology

December 18th CDC 2015, Osaka

Summary

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

Distance

COILLIOI Law

Results

Simulation

Summa

Attitude Synchronization in \mathcal{S}^2

- Torque control (constrained torque)
- ② Distributed control laws
- Only local information
- Multiple equilibria

Objective

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

.....

Problem

Function

Control

D 1.

Simulation Summary

 $\mathcal{R}_2\mathbf{u}_2$

(a)

Objective

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introducti

Problem

Distance

Control

Б 1.

Simulation

Summa

Objective

Given fixed $\bar{\mathbf{n}}_1, \bar{\mathbf{n}}_2 \in \mathcal{S}^2$, denote $\mathbf{n}_1 = \mathcal{R}_1 \bar{\mathbf{n}}_1$ and $\mathbf{n}_2 = \mathcal{R}_2 \bar{\mathbf{n}}_2$.

Goal: $\lim_{t\to\infty} \mathbf{n}_1(t) = \lim_{t\to\infty} \mathbf{n}_2(t)$

Problem Statement

Attitude Synch, in S^2 Pereira &

Dimarogonas

Problem

Definition

(Incomplete) synchronization: when $\mathbf{n}_1 = \cdots = \mathbf{n}_N$

Problem Statement

Given $\{\bar{\mathbf{n}}_i\}_{i=1,\cdots,N}$,

$$\dot{\mathcal{R}}_i = \mathcal{R}_i \mathcal{S}(oldsymbol{\omega}_i),$$

$$\frac{d}{dt}\left(\mathcal{R}_i J_i \boldsymbol{\omega}_i\right) = \mathcal{R}_i \mathbf{T}_i,$$

design distributed torques $\{T_i\}_{i=1,\dots,N}$ that guarantee that synchronization is asymptotically reached.

W. Song, X. Hu, et al. Distributed Control for Intrinsic Reduced Attitude Formation with Ring Inter-Agent Graph, CDC 2015

Distance function in S^2

Attitude Synch, in S^2

Pereira & Dimarogonas

Distance **Functions**

Distance function $d(\mathbf{n}_1, \mathbf{n}_2)$

If

•
$$d(\mathbf{n}_1, \mathbf{n}_2) > 0$$
, $\mathbf{n}_1 \neq \mathbf{n}_2$

•
$$d(\mathbf{n}_1, \mathbf{n}_2) = 0$$
, $\mathbf{n}_1 = \mathbf{n}_2$

$$\bullet \ \mathcal{S}(\mathbf{n}_1) \frac{\partial d(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_1} = -\mathcal{S}(\mathbf{n}_2) \frac{\partial d(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_2},$$

Then

$$\dot{d}(\mathbf{n}_1, \mathbf{n}_2) = \underbrace{\begin{bmatrix} \boldsymbol{\omega}_1 \\ \boldsymbol{\omega}_2 \end{bmatrix}}^T \underbrace{\begin{bmatrix} \mathcal{R}_1^T & \mathbf{0} \\ \mathbf{0} & \mathcal{R}_2^T \end{bmatrix}}_{\boldsymbol{\mathcal{R}}^T} \underbrace{\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \otimes \mathbf{I} \right)}_{B \otimes \mathbf{I}} \underbrace{\mathcal{S}(\mathbf{n}_1) \frac{\partial d(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_1}}_{\mathbf{e}}$$

Distance function in \mathcal{S}^2

Attitude Synch. in S^2

Pereira & Dimarogonas

Introduction

Distance Functions

Function

Results

Simulation

Summa

Distance function $d(\mathbf{n}_1, \mathbf{n}_2)$

lf

•
$$d(\mathbf{n}_1, \mathbf{n}_2) > 0$$
, $\mathbf{n}_1 \neq \mathbf{n}_2$

•
$$d(\mathbf{n}_1, \mathbf{n}_2) = 0$$
, $\mathbf{n}_1 = \mathbf{n}_1$

•
$$S(\mathbf{n}_1) \frac{\partial d(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_1} = -S(\mathbf{n}_2) \frac{\partial d(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_2},$$

Then

$$\sum_{k=1}^{k=M} \dot{d}_k(\mathbf{n}_{k_1},\mathbf{n}_{k_2}) = oldsymbol{\omega}^T oldsymbol{\mathcal{R}}^T \left(B \otimes \mathbf{I}
ight) \mathbf{e}$$

$$(\mathbf{n}_1)$$
 $d_1(\mathbf{n}_1,\mathbf{n}_2)$ (\mathbf{n}_2) $d_2(\mathbf{n}_2,\mathbf{n}_3)$ (\mathbf{n}_3)

Distance function in \mathcal{S}^2

Attitude Synch. in S^2

Pereira & Dimarogonas

Introduction

Problem

Distance Functions

00111101

Results

Simulation

Summa

Distance function $d(\mathbf{n}_1, \mathbf{n}_2)$

lf

•
$$d(\mathbf{n}_1, \mathbf{n}_2) > 0$$
, $\mathbf{n}_1 \neq \mathbf{n}_2$

•
$$d(\mathbf{n}_1, \mathbf{n}_2) = 0$$
, $\mathbf{n}_1 = \mathbf{n}_2$

$$\bullet \ \mathcal{S}(\mathbf{n}_1) \frac{\partial d(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_1} = -\mathcal{S}(\mathbf{n}_2) \frac{\partial d(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_2},$$

Then, solution of the PDE is

$$d(\mathbf{n}_1, \mathbf{n}_2) = f(1 - \mathbf{n}_1^T \mathbf{n}_2),$$

where $f:[0,2]\mapsto \mathbb{R}_{>0}$ and f(0)=0.

Distance function in \mathcal{S}^2

Attitude Synch. in S^2

Pereira & Dimarogonas

Introduction

....

Distance Functions

Function

Control I

Danula

Simulations

Summa

Distance function $d(\mathbf{n}_1, \mathbf{n}_2)$:

$$d(\mathbf{n}_1, \mathbf{n}_2) = f(1 - \mathbf{n}_1^T \mathbf{n}_2).$$

Edge
$$k$$
 error $(\mathbf{e} = \begin{bmatrix} \mathbf{e}_1^T & \cdots & \mathbf{e}_M^T \end{bmatrix}^T)$

$$\bullet \ \mathbf{e}_k = \mathcal{S}(\mathbf{n}_1) \frac{\partial d_k(\mathbf{n}_1, \mathbf{n}_2)}{\partial \mathbf{n}_1} = -f_k' (1 - \mathbf{n}_1^T \mathbf{n}_2) \mathcal{S}(\mathbf{n}_1) \mathbf{n}_2.$$

$$\bullet \mathbf{e}_k = \mathbf{0} \Rightarrow \mathbf{n}_1 || \mathbf{n}_2$$

Proposed control law

Attitude Synch. in \mathcal{S}^2

Pereira & Dimarogonas

Introductio

Distance

Functions

Results

Simulation

Summa

Figure : Classes of $f':[0,2]\mapsto \mathbb{R}_{\geq 0}$ $\left(d^{\max}=\max_{s\in[0,2]}f(s)\right)$

Proposed control law

Attitude Synch. in S^2

Pereira & Dimarogonas

Introduction

Distance Function

Control Law

Results

Simulations

Summa

Proposed control law

$$\mathbf{T}_i = -\boldsymbol{\sigma}(\boldsymbol{\omega}_i) - \sum_{j \in \mathcal{N}_i} f'_{ij} (1 - \bar{\mathbf{n}}_i^T \mathcal{R}_i^T \mathbf{n}_j) \mathcal{S}(\bar{\mathbf{n}}_i) \mathcal{R}_i^T \mathbf{n}_j,$$

$$\mathbf{T} = -\boldsymbol{\sigma}(\boldsymbol{\omega}) - \boldsymbol{\mathcal{R}}^T(B \otimes \mathbf{I})\mathbf{e},$$

Proposed control law

$$\mathbf{T}_i = -\boldsymbol{\sigma}(\boldsymbol{\omega}_i) - \sum_{j \in \mathcal{N}_i} f'_{ij} (1 - \bar{\mathbf{n}}_i^T \mathcal{R}_i^T \mathbf{n}_j) \mathcal{S}(\bar{\mathbf{n}}_i) \mathcal{R}_i^T \mathbf{n}_j,$$

$$\mathbf{T} = -\boldsymbol{\sigma}(\boldsymbol{\omega}) - \boldsymbol{\mathcal{R}}^T(B \otimes \mathbf{I})\mathbf{e},$$

Lyapunov function

Proposed control law

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

....

Distance

Functions

Control Law

Simulation

Analysis

$$\dot{V}(\omega) \to 0 \Rightarrow \omega \to 0 \Rightarrow \dot{\omega} \to 0 \Rightarrow \mathrm{T} \to 0 \Rightarrow (B \otimes \mathbf{I})\mathbf{e} \to \mathbf{0}$$

Analysis

- $\bullet \ \, \text{Tree graph: } e \to 0$
- In general: $\mathbf{e} \to \mathcal{N}(B \otimes \mathbf{I})$

Proposed control law: Constrained Torque

Attitude Synch. in \mathcal{S}^2

Pereira & Dimarogonas

Introduction

Distance Function:

Control Law

Simulations

Proposed control law

Lyapunov function & Analysis: $\bar{\mathbf{n}}_i$ principal axis

$$\dot{V}(\omega) = -\sum_{l=1}^{l=N} \omega_l^T \sigma(\omega_l)^{m{\sigma}} (\Pi(ar{\mathbf{n}}_l)\omega_l)$$

$$\dot{V} \to 0 \Rightarrow \Pi(\bar{\mathbf{n}}_i)\omega_i \to 0 \Rightarrow \Pi(\bar{\mathbf{n}}_i)\dot{\omega}_i \to 0 \Rightarrow$$

 $\Rightarrow \mathbf{T}_i \to (\bar{\mathbf{n}}_i^T\omega_i)^2 \mathbf{S}(\bar{\mathbf{n}}_i) J_i \bar{\mathbf{n}}_i \Rightarrow (B \otimes \mathbf{I})\mathbf{e} \to \mathbf{0}$

Result: Tree Graphs

Attitude Synch. in S^2

Pereira &
$$d_{\min} := \min_{k \in \{1,\cdots,M\}} (d_k^{\max})$$

Introduction

Distance

Function

Control I

Results

Simulations

Summ

Result (Tree Graph)

If $H(0) \leq d_{\min}$ and if, for all $k \in \{1, \cdots, M\}$,

- $f'_k \in \bar{\mathcal{P}}$
- $d_k(\mathbf{n}_{k_1}, \mathbf{n}_{k_2})|_{t=0} \le \frac{1}{M} (d_{\min} H(0))$

then synchronization is asymptotically reached.

Result

In tree graph, if $f'_k \in \mathcal{P}^{\infty} \cup \mathcal{P}^{0,\infty}$, then synchronization is asymptotically reached for almost all initial conditions.

Result

Attitude Synch. in S^2

Introduction

Distance

Function

Control

Results

Simulation

Summa

$d^{\star} := \min_{k} f_{k} \left(\min_{k} f_{k}^{-1} \left(\min_{k} f_{k} \left(\frac{\pi}{2} \frac{1}{N-1} \right) \right) \right)$

Result

If $H(0) \leq d^*$ and, for all $k \in \{1, \dots, M\}$,

- $f'_k \in \bar{\mathcal{P}}$
- $d_k(\mathbf{n}_{k_1}, \mathbf{n}_{k_2})|_{t=0} \leq \frac{1}{M} (d^* H(0))$

then synchronization is asymptotically reached for almost all initial conditions.

Remark:

$$f_k\left(\frac{\pi}{2}\frac{1}{N-1}\right) \le d_k^{\max} \Rightarrow d^* \le d_{\min}$$

Equilibria solutions: $\mathbf{e} \in \mathcal{N}(B \otimes \mathbf{I})$

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

Distance

Functions

Control La

Results

Simulations

Summa

(a) No shared edges between cycles

(b) Planar unit vectors for each cycle

Equilibria solutions: $\mathbf{e} \in \mathcal{N}(B \otimes \mathbf{I})$

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

D:-----

Functions

Control La

Results

Simulations

Summar

(c) Cycles that share only one edge

(d) Planar unit vectors

Simulations

 $\begin{array}{c} {\sf Attitude} \\ {\sf Synch. in} \ \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introductio

Distance

Functions

Control La

Results

Simulations

Summary

Figure : N=10, M=10

Simulations

 $\begin{array}{c} {\sf Attitude} \\ {\sf Synch. in} \ \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

5 11

Distance

Function

Results

Simulations

Summary

Summary

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

Distance

Functions

Control Lav

Simulations

Summary

Attitude Synchronization in \mathcal{S}^2

- Torque control (constrained torque)
- ② Distributed control laws
- Only local information
- Multiple equilibria
- \odot Distance functions in \mathcal{S}^2

 $\begin{array}{c} \text{Attitude} \\ \text{Synch. in } \mathcal{S}^2 \end{array}$

Pereira & Dimarogonas

Introduction

Problem

Distance

Cambuall

Reculte

Simulations

Summary

Thank you! Questions?