实验 3 电介质材料性能测量 实验报告

实验时间:第十四周周二 15:20-16:55 组员:吴晨聪 玄松元 张译文 郑瑞坚

一、实验目的

- (1) 对电介质材料的基本介电性能有一定的认识,了解电介质性能的测试方法。
- (2) 对屏蔽(三电极法)有基本了解。
- (3) 掌握电介质材料绝缘电阻的测量方法。
- (4) 掌握使用西林电桥测量绝缘材料和电气设备的介质损耗因数的方法。
- (5) 根据所测量的结果判断所测材料或设备的绝缘质量。

二、实验内容

- (1) 测量三种绝缘材料的体积电阻率和表面电阻率。
- (2) 使用高压西林电桥测量电介质材料的介质损耗因数。

三、实验原理

1. 介质损耗的产生

电气设备的绝缘结构由各种绝缘介质所组成,由于介质的电导,极性介质中偶极子转动时的摩擦以及介质中的气隙放电等原因,使处于高电压下的介质(或整个绝缘结构)是有损耗的,这种损耗称为介质损耗 P,它是电气设备绝缘性能的重要指标。它的测量是预防性试验中不可缺少的一项。因为如果电力设备绝缘介质损耗因数大的话,说明设备运行中将有许多能量以热的形式损失掉,且可使绝缘老化,甚至造成损坏。所以在制造厂生产出的电力设备以后或运行中都要测试设备绝缘的介质损耗因数,若达不到一定的标准,将不能出厂或不能继续运行。

对设备的绝缘,通常可用串联或并联的电阻、电容组成的等效回路表示,其等效电路和相量图如图 1 所示。

图 1 有损耗介质的等效电路及相量图 (a) 串联回路(b) 并联回路

两种情况下介质损耗因数的表达式如下:

串联: $tan\delta = U_r/U_c = \omega R_s C_s$ 并联: $tan\delta = I_r/I_c = 1/\omega R_p C_p$

2. 介质损耗因素的测量

测量电气设备的介质损耗因数,通常用西林电桥来实现。西林电桥是一种交流电桥,它的基本回路由四个臂组成,两个高压臂,一个是试品 Z_1 ,一个是无损耗标准电容 C_0 ,一般为 $100 \mathrm{pF}$ 或 $50 \mathrm{pF}$,故只要选择相应额定电压下 C_0 ,即可使电桥在试品的额定电压下进行测量。

电桥的平衡靠调节 C_0 和 C_4 来获得。电桥平衡时,B,C 两点的电位相等,作为指零仪的检流计 G 指零。平衡条件为: $Z_1Z_4=Z_2Z_3$,经推导(推导过程请参阅教科书或自己根据所学知识独立完成)可得:

$$tan\delta = \omega R_4 C_4$$
$$C_x = C_0 R_4 / R_3$$

无论采用哪一种等效电路,用电桥测得的介损值是相同的,电容值也基本相等。当电源频率为 50Hz 时,为计算方便,常选 R_4 为 $10000/\pi$ 或 $1000/\pi$,这样介损值为 $tan\delta=C_4\times 10^6$,或 $C_4\times 10^5$ 。

图 2 西林电桥原理接线图

(a) 正接法; (b) 反接法; (c) 有分流电阻的西林电桥

图 2 (a) 称为西林电桥的正接法,它要求测试时试品对地绝缘。许多试品是外壳接地或无法对地绝缘,需采用反接法,如图 2 (b) 所示。此时桥本体处于高电位,当电桥的额定电压不超过 10kV 时,可用绝缘材料作为电桥的把手。

当试品电容较大时,流过 C_x 的电流可能超过电阻箱 R_3 允许的电流值,同时 C_x 较大,当电桥平衡时将使 R_3 很小,这将降低测量的灵敏度。此时可在 R_3 旁并联分流电阻 R_n ,如图 2 (c)所示。

3. 绝缘电阻的测量方法

电介质具有非常高的绝缘电阻,可以通过在介质两端施加直流电压,测量回路中流过的 微弱的直流电流来实现测量电阻的目的。本实验使用皮安表和 300V 直流电源来测量绝缘纸板的绝缘电阻,接线示意图如图 3 所示。

图 3 使用皮安表和直流电源测量绝缘材料的绝缘电阻

四、实验接线图

1. 测量绝缘材料的绝缘电阻

接线图如图 4 所示, 试品材料放在绝缘测试电极箱内部。

图 4 绝缘电阻测试接线图

2. 测量绝缘纸板的介质损耗因数

接线图如图 5 所示,本实验中采用正接法。

图 3 介质损耗因数测量接线图

五、数据处理

1. 体积电阻率和表面电阻率的测量

施加电压: U=200V

电极尺寸: $d_1 = 49.8$ mm, $d_2 = 53.7$ mm, $g = (d_2 - d_1)/2 = 1.95$ mm

绝缘电阻:

$$R = R_v = U/I_v$$

体积电阻率:

$$\rho_v = R_v \cdot A/d = R_v \cdot \pi (d_1 + g)^2/4d$$

表面电阻率:

$$\rho_{S} = R_{S} \cdot p/h = R_{S} \cdot \pi (d_{1} + g)/g$$

测量数据:

试品	体积电流 <i>I_v/</i> nA	表面电流 I _s /nA	样品厚度d/mm
试品 1	0.119931	0.133956	3.029
试品 2	0.119207	0.218911	3.013
试品 3	0.370817	0.219659	2.055

代入计算可得:

试品	绝缘电阻 R/Ω	体积电流率 $\rho_v/(\Omega \cdot cm)$	表面电流率 $\rho_s/(\Omega)$
试品 1	1.667×10^{12}	1.158×10^{14}	1.245×10^{14}
试品 2	1.677×10^{12}	1.171×10^{14}	7.617×10^{13}
试品 3	5.393×10^{11}	5.520×10^{13}	7.591×10^{13}

2. 绝缘材料介质损耗角正切的测量

 R_4 : $10/\pi k\Omega$ 损耗角正切:

 $tan\delta = \omega R_4 C_4$

实测数据:

试品	R_3/Ω	$C_4/(\mu F)$
试品 1	6502.00	0.0297
试品 2	6493.00	0.0296
试品3	4770.00	0.0205

代入可得:

试品	$tan\delta$
试品 1	0.0297
试品 2	0.0296
试品 3	0.0205

六、思考题

1. 测量体积电阻率,表面电阻率时与不用屏蔽三电极有何差别?

屏蔽三电极的作用,是将体积电流和表面电流的回路区分开,从而能够分别测出体积电阻和表面电阻,进而计算得到体积电阻率和表面电阻率;若只用两个电极,则测得的体积电流/表面电流都会大于实际值(因为包含了额外的表面电流/体积电流),进而计算得到的体积电阻率和表面电阻率都会比实际值偏小。

2. 如何测量介电常数ε_Γ?

在测量介质损耗因数的实验中,利用西林电桥可以得到试品的电容值:

$$C_x = C_0 R_4 / R_3$$

如果进一步测量得到实验中所用电极的直径D,结合测量体积电阻率和表面电阻率实验中测得的样品厚度d,忽略边缘效应,电容的电容值可以表示为:

$$C_x = \frac{\pi \varepsilon_0 \varepsilon_r D^2}{4d}$$

即:

$$\varepsilon_r = \frac{4dC_x}{\pi \varepsilon_0 D^2}$$

从而得到样品的相对介电常数 ε_r 。

3. 测量介质损耗角正切值时,需要采取哪些抗干扰措施?

- ①电磁屏蔽。电桥本体最好置于金属屏蔽箱中,实验中样品就是放在了一个金属盒中,尽可能消除外部电磁场的干扰。使用的引线最好要短,避免干扰。
- ②统一接地。确保电源和电桥是共地的,避免多点接地形成接地回路电流造成干扰。
- ③保证电源波形质量和频率稳定。电源谐波会使得电桥的平衡条件发生偏离,因此最好加装低频滤波器,避免电源侧的高频噪声产生干扰。同理,如果电源频率偏离 50Hz 也会给介质损耗角的计算带来误差,因此要保证电源频率准确。

七、实验收获

本次实验中我们利用西林电桥测量了样品的介质损耗角,利用伏安法测量了样品的表面电阻率和体积电阻率。在老师的指导下,我们迅速熟悉了西林电桥的调平步骤,交叉地调节电容和电阻,使得检流计的示数单调地下降,最终趋于零,体会到了交流电桥和直流电桥的相通之处和不同之处。在测量样品的表面电阻率和体积电阻率的间隙中,老师还为我们介绍了高压馆中的仪器那悠久的历史。也说到设备相关参数的高电压测量是反映设备运行状况的重要指标,而在目前的现场作业中,高电压测量已经基本上实现了自动化,给设备的检修运维带来了极大的便利。实验结束后,我们还在老师的带领下参观了高压馆的"重器"——一台五十年代苏联援助中国时期捐赠的一台 500kV 的高压变压器,围绕这台设备有很多有意思的历史故事。总之,这次实验中我们不仅熟悉了实验测量的原理,掌握了实验测量的相关规范和方法,还了解到高电压测量领域目前的发展状况,听了很多高压馆的很多历史,收获颇丰。

	电流(nA)	电流LNA
试品	体 积电阻率 R、(MΩ)	表面电阻率 R _s (MΩ)
试品 1	0.119831	0.133956
试品 2	0-119207	0.218911
试品 3	0.370817	0.219659

(2) 绝缘材料介质损耗角正切的测量

试品	$R_3(\Omega)$	C ₄ (µF)	$tan\delta$
试品 1	6502.00	0.0297	
试品 2	6493.00	0.0296	
试品 3	4770.00	0.0205	

R4 = 10/10 ks

环内径 53.8mm 53.5mm 53.4mm 53.8mm 53.9mm 圆直径 49.8mm 49.8mm 49.8mm

200 V

	试品	At Small prosess		muste p (MO)
	试品 1	体积电阻率 R _v (Ms	Ω) 表面电	阻率 R _s (MΩ)
	试品 2			
	试品3		14 3 3 3 3	
(2) 绝约	R材料介质损耗角	正切的测量		
	试品	$R_3(\Omega)$	C4 (µF)	tanó
	试品 1	6502.00	0.0297	
	试品 2	411	0.0205	
900	试品 3	NE LEWIS CO.	A15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE SECOND SECON
试	d; = d4 d. = d2 d4 d4	3.040 mm 3.040 mm 3.040 mm 3.004 mm 3.040 mm 3.040 mm 2.000 mm		
itian 3.	di=	2.031mm 2.120mm 2.050mm	dag = 2.0;) mm