Delivering Trust: Predicting E-Commerce Delivery Delays and Designing Smart Shipping Insurance

Group 1: Wei Xing, Rui Guo

Why Delivery Delays Matter in E-Commerce

Customers who experienced delivery delays left negative reviews. ➤ Within 9757 review, 1016 of them (11.07%) mentioned "delay-related" words:

Current Solutions & Our Innovation

- Platforms rely on static SLAs and broad refund policies, often reactive
- Existing delay handling = manual customer service or fixed refund policies

Dataset Overview

- Real commercial data, it has been anonymized
- 100k orders from 2016 to 2018 made at multiple marketplaces in Brazil

- Order/payment/shipping/delivery timestamps
- Product category, dimensions, weight
- Geolocation of both customers and sellers
- Customer review scores and text feedback

order_full.csv Size:(115730,21)

Exploratory Data Analysis (EDA)

•Delays are common: ~6.4% of orders exceed expected delivery date

Top 5 Delay-Prone Product Categories

- Seasonal home comfort appliances
- Audio devices and equipment
- Furniture and home textiles
- Intimate wear and beachwear
- ☐ General home comfort goods

Exploratory Data Analysis (EDA)

Strong seasonality effects (holidays, sales events)

•Geographic patterns: Rural destinations have higher delay rates

What Are We Trying to Discover?

RQ1: What factors most strongly predict delivery delays?

RQ2: How can we use existing order information to provide platforms with a fair and data-driven shipping insurance pricing strategy?

Methodology: Predicting Delivery Delays

Feature
engineering

Feature Creation

- •delay_days = actual_delivery_date estimated_delivery_date
- •actual_shipping_days = delivery_date purchase_timestamp
- •is_delayed = 1 if delay_days > 1 else 0

Missing Value Handling: remove missing values

One-Hot Encoding on categorical variables

	 _		
Pi			
		. = 1	

on-time vs. delay

number of delay days

Method

Classification

Regression

Model

Logistic Regression, Random Forest Classifier

Linear Regression, Random Forest Regressor

Evaluation

Accuracy, Precision, Recall

RMSE, R²

Variable Selection

Feature Name	Reason for Not Selection
customer_id, order_id	These are ID fields that carry no informational value and cannot be vectorized.
product_catego ry_name, seller_id	Too high-dimensional (too many categories), not suitable for direct input into the model; would require further embedding or clustering to use.
review_score	This is an "outcome" variable, likely influenced by delays, and therefore cannot be used to predict them.
geolocation, city, state	Geographical data is important, but requires preprocessing into numeric or distance-based features; processing is more complex.
order_purchase _timestamp, order_delivered _customer_dat e	These time-based features have already been converted into month and shipping_days for use.

Feature Name	Meaning	Reason for Selection			
Estimated number of days from purchase to delivery		Important factor about whether a delay occurred; serves as the key label feature for learning delay patterns.			
freight_value	Shipping cost	Shipping cost may be related to distance, weight, or priority, indirectly affecting delay probability.			
price	Price of items in the order (product value)	Product price may influence the shipping method (e.g., expensive items may use faster logistics).			
payment_valu e	Total payment amount by customer	May include multiple products and reflect the "importance" of the order; also potentially overlaps with freight, so retained for comparison.			
month Month of purchase		Seasonality and holidays may increase delivery risk; provides essential temporal signals.			

Binary Classification

Classification Report:		Logistic	c Regre	ssion		Rando	n Fore	est Clas	sifier
	precision	recal1	fl-score	support		precision	recal1	f1-score	support
0	0.97	0.99	0.98	21866	0	0.98	0.99	0.99	21904
1	0.76	0.39	0.52	1280	1	0.81	0.68	0.74	1242
accuracy			0.96	23146	accuracy			0.97	23146
macro avg	0.86	0.69	0.75	23146	macro avg	0.90	0.83	0.86	23146
weighted avg	0.95	0.96	0.95	23146	weighted avg	0.97	0.97	0.97	23146

Multi-class Classification

	precision	recal1	f1-score	support
0	0.98	0.99	0.99	21904
1	0.67	0.17	0.28	241
2	0.78	0.72	0.75	1001
accuracy			0.97	23146
-	0.81	0.63	0.67	23146
macro avg	0.01	0.03	0.01	23140
weighted avg	0.97	0.97	0.97	23146

Linear Regression

Linear Regression RMSE: 2.27

Linear Regression R^2 Score: [0.25]

Random Forest Regression

RMSE: 2.21 R^2 : 0.67

Further data mining

Considering the significant variation in delays across months, we trained separate models for each month's orders.

Month	RMSE	R ²	Month	RMSE	R ²
Jan	1.56	0.53	July	0.89	0.73
Feb	1.95	0.76	Aug	1.0	0.3
Mar	1.97	0.75	Sep	1.07	0.71
Apr	1.11	0.64	Oct	1.62	0.53
May	0.94	0.61	Nov	1.82	0.79
Jun	0.73	0.73	Dec	1.36	0.75

Use the month as an independent variable, 'order_month'

RMSE: 1.82 R² Score: 0.73

Methodology: Insurance Pricing Design

Predict whether delay with our classification model

Estimate the "delay probability" based on the predicted value for each month

pred_delay_prob = (TP + FP) / total_samples

Design a risk-based pricing mechanism

insurance_price = (delay_prob × average_shipping_cost × safety_factor) / coverage_rate

> This price represents an "expected cost plus profit" model, designed to cover the potential risk borne by the platform while ensuring a reasonable return.

order_id	customer_id	order_purchas e_timestamp	order_estim ated_deliver y_date	shippin g_days	order_it em_id	price	freight_va lue	product_c ategory_n ame	payment_ value	custo mer_st ate	Insura nce price
3f	14203/04/1222	2017/5/16 13:10	2017/6/7	9	1	59.99	15.17	automotivo	75.16	RS	1.22
33	208461ea51999		2017/3/6	9	1	19.9	16.05	moveis_dec oracao	35.95	SP	1.54
l Dt	31ad1d1b63eb996246 3f764d4e6e0c9d		2017/8/23	18	1	149.99	19.77	moveis_esc ritorio	161.42	SP	0.97
e6ce16cb79ec1d9 0b1da9085a6118a eb	494dded5b201313c64 ed7f100595b95c	2017/5/16 19:41	2017/6/7	12	1	99	30.53	ferramentas _jardim	259.06	RJ	2.45
34513ce0c4fab46 2a55830c0989c7e db	7711cf624183d843aaf e81855097bc37	2017/7/13 19:58	2017/8/8	5	1	98	16.13	informatica_ acessorios	114.13	RJ	0.79
82566a660a982b1 5fb86e904c8d329 18	d3e3b74c766bc6214e 0c830b17ee2341	2018/6/7 10:06	2018/7/18	12	1	31.9	18.23	perfumaria	50.13	SP	0.44
5ff96c15d0b717ac 6ad1f3d77225a35 0	11 0711 727 81686171 16271	2018/7/25 17:44	2018/8/8	4	1	19.9	12.8	cama_mesa _banho	32.7	MG	0.63
432aaf21d85167c 2c86ec9448c4e42 cc	3df704f53d3f1d48188 40b34ec672a9f	2018/3/1 14:14	2018/3/21	11	1	38.25	16.11	brinquedos	54.36	SP	4.63
dcb36b511fcac05 0b97cd5c05de84d c3	3b6828a50ffe546942b 7a473d70ac0fc	2018/6/7 19:03	2018/7/4	13	1	132.4	14.05	perfumaria	146.45	SP	0.34
403b97836b0c04a 622354cf531062e 5f		2018/1/2 19:00	2018/2/6	17	1	1299		construcao_ ferramentas _construcao	1376.45	GO	7.42

➤ If freight_value = 10

Month	Delay Rate	Insurance Price
Jan	3.99%	\$0.96
Feb	10.67%	\$2.56
Mar	11.97%	\$2.87
Apr	2.40%	\$0.58
May	3.34%	\$0.80
Jun	1.00%	\$0.24
July	2.04%	\$0.49
Aug	1.85%	\$0.44
Sep	2.58%	\$0.62
Oct	1.97%	\$0.47
Nov	10.18%	\$2.44
Dec	5.02%	\$1.20

Conclusions & Reflection

Data mining on E-commerce delay

In our dataset, delivery delays are not strongly correlated with order value, but show significant associations with product categories, seasonal factors, and geographic distribution.

- •The product categories with the highest average delays are: Seasonal home comfort appliances, Audio devices and equipment and Furniture and home textiles
- •February, March, and November are peak delivery months, likely due to national events and sales campaigns.
- •In Brazil's Northeastern region, where logistics infrastructure is less developed, the average delivery time is notably longer.

Prediction model

We demonstrated the feasibility of predictive delay modeling in E-commerce. We reach 68% recall on classification model and 0.73 R-square on regression model.

Insurance Pricing

We built a smart shipping insurance pricing mechanism that both improve customer satisfaction and earn 20% extra money.

Limitations: single-region dataset, lack of logistics info of manufacturer, unbalanced data