6.1: Introduction to Time Series

Dr. Bean - Stat 5100

1 Why Time Series?

Recall our basic multiple linear regression model:

$$Y_t = \beta_0 + \beta_1 X_{t,1} + \ldots + \beta_{p-1} X_{t,p-1} + \varepsilon_t$$
 (t index for time)
 $\varepsilon_1, \ldots, \varepsilon_n \; \mathbf{iid} N(0, \sigma^2)$

Previous diagnostics focused on normality and constant variance, but not so much on *independence*.

Violations of independence sometimes detected by **patterns** in residuals over time.

This dependency is often due to auto-correlation ("self-correlation"), which is when the residuals are correlated with each other.

What are some examples where you would expect the residuals of a linear model to be auto-correlated over time?

• home prices — Seesan + Yearly

• stand market

1.1 Autocorrelation, whats the big deal?

- If a random variable is autocorrelated over time, then observations closer in time will tend to be more similar than observations far away in time.
- Thus, repeated samples of the variable *in* time will have **less** variability within the sample than the variability *across* time.
- This means we will **underestimate** the true variance of the random variable, which in OLS causes
 - 1. The estimates regression coefficients are unbiased, but no longer "best" (i.e. minimum variance)
 - 2. MSE will underestimate the true residual variance

3. OLS may also underestimate $s\{b_k\}$, which makes the t-tests unreliable (i.e. destroys inference)

7 mue likely to suggest "synificaent result then is actually true,

Figure 1: Examples of stationary and non-stationary time series.

2 Time Series Modeling

- autocorrelation means our data contain *structure* over time.
- Accounting for this structure should improve our ability to predict.
- One approach: Box-Jenkins (ARIMA) time series modeling:
 - 1. Make data stationary
 - 2. Test for independence
 - 3. Use sample autocorrelation and sample partial autocorrelation plots to identify potential dependence structures
 - 4. Fit dependence structures and asses model adequacy
 - 5. Using adequate model
 - Forecase response variable (w/ confidence interval)
 - Test model terms (incl. predictor variables)

1. Make data stationary:

• First Order (constant mean):

$$E\left[\epsilon_{t}\right] = \mu_{t} \equiv \mu \text{ for all } t$$

• Second Order (constant variance):

$$Var\left[\epsilon_t\right] = \sigma_t^2 \equiv \sigma^2 \text{ for all } t$$

- This means that if both conditions are satisfied, the time series will "look" the same no matter what time window (with appropriate scale) that we look at.
 - Graphical check: plot residuals \boldsymbol{e}_t vs t (see Figure 1):
 - SAC (sample autocorrelation; ACF) plot coming up, a useful diagnostic for stationarity
- Remedial Measures for Non-Stationarity
 - Non constant variance \rightarrow transform Y_t

Figure 2: Examples of different trends that may occur in a time series.

- Non-constant mean: "de-trend" the data using a predictive model where time is the explanatory variable.
 - * Use a scatter-plot of time vs residuals to determine an appropriate model (see Figure 2).
- "Differencing" for stubborn trends:
 - * First differences: $Z_t = Y_t Y_{t-1}, \quad (t = 2, ..., n)$
 - * Second differences: $W_t = Z_t Z_{t-1} = Y_t 2Y_{t-1} + Y_{t-2}$ (t = 3, ... n)
- HOWEVER, differencing will make periodic cycles unrecoverable, which can hurt our ability to make forecasts.
- For this reason, differencing is a remedial measure of last resort.

2. Test for independence

There is a difference in a series being a function of time (plus random noise) versus a series that is *correlated* in time.

Question: Failing to remove time-dependent trends in our data ruins our ability to check for time-dependent correlations, why is this?

they very

AFTER removing trends, determine if the data are just "white noise" (no dependence structure)

in SAS: χ^2 test for lags 1 through k, (where k is selected by the user). 3. Identify tentative dependence structures

 H_0 : Data are just white noise

- Notation: Z_t is the stationary time series after "transforming" (including estimating out time trends and other covariates) the original time series Y_1, \ldots, Y_n
- Sample autocorrelation function (ACF or SACF)

 r_m = linear association (correlation) between time series observations separated by a lag of m time units

Figure 3: Sample ACF plot for a non-stationary time series.

- PLOT 1: sample autocorrelation plot (or SAC / ACF): check for stationarity and identify tentative dependence structure
 - bar-plot r_m vs. m for various lags m
 - lines often added to represent 2 SE's (rough significance threshold)
 - SAC / ACF terminology:
 - * "spike" : r_m is "significant"
 - * "cuts off": no "significant" spikes after
 - * "dies down" : decreases in "steady fashion"
 - If Z_t stationary, SAC either cuts off fairly quickly or dies down fairly quickly (sometimes in "damped exponential" fashion)
 - If SAC dies down extremely slowly, Z_t nonstationary (see Figure 3)
- \bullet Sample partial autocorrelation function (PACF or SPACF)

 $r_{m,m}$ = autocorrelation of time series observations separated by a lag of m with the effects of the intervening observations eliminated

- \bullet PLOT 2: sample partial autocorrelation plot (or SPAC / PACF)
 - bar-plot $r_{m,m}$ vs. m for various lags m
 - lines often added to represent 2 SE's (rough significance threshold)
- Main dependence structures

- Auto-Regressin

- (a) AR(p) dependence structure: autoregressive process of order p:
 - current time series value depends on past values; common representation for AR(p):

$$Z_{t} = \delta + \phi_{1}Z_{t-1} + \phi_{2}Z_{t-2} + \dots + \phi_{p}Z_{t} + a_{t}$$

esas tom

- * ϕ_i are unknown parameters; random shock a_t iid $N(0, \sigma^2)$
- identify using SPAC: first p terms of SPAC will be non-zero, then drop to zero (sketch)

- (b) MA(q) dependence structure: moving average process of order q:
 - current time series value depends on previous random shocks
 - model:

$$Z_t = \delta + a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots - \theta_q a_{t-q}$$

 θ_i : unknown parameters Z_t : stationary "transformed" time series δ : unknown parameter a_t : random shocks

 $-\,$ identify using SAC: first q terms of SAC will be non-zero, then drop to zero (sketch)

Common Dependence Structures for Stationary Time Series

	SAC / ACF	SPAC / PACF
MA(1)	cuts off after lag 1	dies down, dominated by damped exponential decay
MA(2)	cuts off after lag 2	dies down, in mixture of damped exp. decay & sine waves
AR(1)	dies down in damped exponential decay	cuts off after lag 1
AR(2)	dies down, in mixture of damped exp. decay & sine waves	cuts off after lag 2
ARMA(1,1)	dies down in damped exp. decay	dies down in damped exp. decay

ARIMA(p,d,q) dependence structure: Autoregressive **Integrated** Moving Average Model

- a very flexible family of models ⇒ useful prediction
- recall first difference: $Z_t = Y_t Y_{t-1}, t = 2, \dots, n$ and second difference: $W_t = Z_t - Z_{t-1} = Y_t - 2Y_{t-1} + Y_{t-2}, t = 3, \dots, n$
- after differencing, AR and MA dependence structures may exist: ARIMA(p, d, q)
 - -p: AR(p) value at time t depends on previous p values)

Jusually Mas 0-2.

- d: # of differences (need to take d^{th} difference to make stationary)
- -q: MA(q) value at time t depends on previous q random shocks)
- use SAC and SPAC to select p and q but how to select d?
 - usually look at plots of time series
 - choose lowest d to make stationary (also SAC)
- sometimes see backshift notation: $BY_t = Y_{t-1}$
 - $-d = 1: Z_t = Y_t Y_{t-1} = Y_t BY_t = (1 B)Y_t$
 - general d: $Z_t = (1 B)^d Y_t$
- "Fit model" \rightarrow estimates & standard errors for β_i 's, ϕ_l 's, & θ_l 's
- Several approaches exist to estimate ϕ_l 's, θ_l 's, and β_j 's, and deal with initial lag; we'll use ULS (unconditional least squares) for MA(q) & AR(p)
- ARIMA(p,d,q) model rewritten, with t = 1, ..., n:

$$Y_t = g_1(Y_1, \dots, Y_{t-1}) + g_2(X_{t,1}, \dots, X_{t,k-1}) + g_3(a_1, \dots, a_t)$$

where

 g_1 = linear combination (LC) of previous observations

 g_2 = LC of predictors at time t, in terms of parameters β_i

 g_3 = function of random shocks in terms of parameters $\phi_l \& \theta_l$

4. Fit dependence structures and assess model adequacy

• General SAS code for ARIMA(p,d,q), Y in terms of X_1, \ldots, X_{k-1} :

proc arima data = a1; identify var = \underline{Y} (\underline{d}) crosscorr = ($\underline{X_1 \dots X_{k-1}}$); estimate p = \underline{p} q = \underline{q} input = ($\underline{X_1 \dots X_{k-1}}$) method = uls plot; forecast lead = \underline{L} alpha = \underline{a} noprint out = fout; run;

option	description	
<u>d</u> , p, q	differencing, AR, & MA settings (as before)	
plot	adds RSAC & RSPAC plots	
$\underline{\mathbf{L}}$	# times after last observed to forecast	
<u>a</u>	set confidence limit; $\underline{\mathbf{a}} = .10 \Rightarrow 90\%$ conf. limits	
noprint	optional, suppresses output	
out = fout	optional, sends forecast data to fout data set	

- Useful diagnostics for "goodness of fit":
 - Numerical

* Standard Error - measure of "overall fit"; in SAS: Std Error Estimate

$$S = \sqrt{\frac{\sum_{1}^{n} (Y_t - \hat{Y}_t)^2}{n - n_p}}, \quad n_p = \# \text{ parameters in model}$$

- * Ljung-Box statistic Q^* (& p-value); in SAS: lag 6 χ^2 for Autocorrelation Check of Residuals
 - \cdot basic idea: look at "local" dependence among residuals in first few sample autocorrelations
 - · under H_0 : "model is adequate", $Q^* \sim \chi_{df}^2$
- Graphical (PLOTS 3 and 4) focus on residuals
 - * Residual sample autocorrelation plot (RSAC)
 - * Residual sample partial autocorrelation plot (RSPAC)

Question: How will we know from these plots if we "succeeded"?

no significant Spikes

5. Using adequate model:

- (a) forecast response (*** w/ conf. interval ***) careful far beyond data
- (b) test model terms (incl. predictor variables, but also AR & MA parameters)