Simon Wang

Email: wang.c.simon@gmail.com Website: https://simoncwang.github.io/ Research interests: Machine Learning & AI, Computer Graphics, AR/VR, HCI

Education

University of MarylandCollege Park, MDM.S., Computer Science (Current GPA: 3.83/4.0)Expected May 2025B.S., Computer Science (GPA: 3.52/4.0)December 2023University Honors2019-2023Presidential Scholarship2019-2023

Skills

Programming: Python, Java, HTML, Javascript, C, C# (Unity), C++, SQL

ML/AI: Pytorch, HuggingFace Transformers, Ollama, OpenCV, OpenAI API, Langchain, FER, Gradio Software/Tools: GitHub, VSCode, Fusion 360, Docker, Unity, Google Suite, MS Office, MATLAB, Arduino

Work Experience

Research AssistantJune-December 2023University of MarylandCollege Park, MD

- Coded software tool to annotate data visualization SVGs
- Used JavaScript, HTML, and Python to develop front-end and back-end of a web page

Student Initiated Course Facilitator

January-May 2023 College Park, MD

University of Maryland

- Co-taught course on creating custom shaders in Three.js (CMSC398K)
- Prepared course materials and lectured about linear algebra needed for computer graphics
- Graded and gave feedback on homework and coding assignments

Software Development Engineer Intern, Amazon's Choice *Amazon*

May-August 2022 Seattle, WA

- Developed quality assurance tools to improve Amazon's Choice recommendation system
- Used Java, Apache Spark, and AWS to push and test code on Amazon databases
- Collaborated with 20+ software engineers in fast-paced environment with daily meetings
- Presented solution ideas and final product to Amazon's Choice team and received feedback

Projects | Full Articles

MMO: An Investigation of Multi-modal Multi-agent Organization and Robust Benchmarking - Course Research Project

October-December 2024

GitHub

Technologies: Python, PyTorch, HuggingFace, SLURM, OpenAI API

Technical Report

- Individual course project for CMSC848K Multimodal Foundation Models (Prof. Jia-Bin Huang)
- Developed a multi-agent framework using multimodal large language models (MLLMs), using OpenAl gpt-4o to coordinate open-source MLLMs through Huggingface Transformers
- Produced an improved benchmark evaluation tool to mitigate inconsistencies in current benchmarking methods to enable more robust comparison of MLLMs

Monte Carlo Renderer and Disney Principled BRDF - Course Project

Technologies: Python, PyTorch

September-December 2024
Technical Report

- Implemented Monte Carlo path tracing using PyTorch from course-provided skeleton code
- Utilized concepts learned in adv. computer graphics course to render with various techniques (MC integration, multiple importance sampling, neural radiosity, inverse rendering)
- Built upon path tracing code to implement the Disney Principled BRDF (bidirectional reflectance distribution function) technique, including 10+ parameters to create fine-grained controllable shading of rendered objects

AI Art Advisor - Personal Project

July-August 2024

Technologies: Gradio, Python, OpenAI API, HuggingFace Spaces

GitHub

- Created full-stack web app using Python, OpenAl API for multi-modal LLM analysis, and Gradio for front-end
- Demonstrated capability of language models to understand art, and positive application of artificial intelligence for helping artists improve rather than replacing them
- Published app to HuggingFace Spaces for public sharing

Diffusion-based Generative Video Consistency - Course Research Project

January-May 2024

Technologies: Python, PyTorch, SLURM, Overleaf

Paper with Rebuttal

- Investigated angles to improving state-of-the-art deep learning topics in a group of 2
- Conducted extensive literature review on diffusion-based video generation and editing
- Proposed and tested a new approach improving upon and combining previous techniques such as neural layered atlases and Uni-ControlNet
- Participated in a within-course mock-conference with two rounds of anonymous peer-reviews and ultimately completed a paper that was accepted by the Professor and TAs

VR Classroom - Course Research Project Leader

January-May 2024

Technologies: Unity, C#, Meta Quest III

GitHub

- Ideated and proposed project investigating the potential applications of VR for education
- Led a team of 5 to develop a Unity application to run on the Meta Quest III over the course of a semester by delegating tasks and collaborating with teammates
- Conducted an IRB-approved user study of 30+ participants, presented findings to class and wrote a <u>technical report</u> summarizing the research process and impacts

Publications

 Chen Chen, Hannah K. Bako, Peihong Yu, John Hooker, Jeffrey Joyal, Simon C. Wang, Samuel Kim, Jessica Wu, Aoxue Ding, Lara Sandeep, Alex Chen, Chayanika Sinha, Zhicheng Liu. "VisAnatomy: An SVG Chart Corpus with Fine-Grained Semantic Labels." arXiv preprint arXiv:2410.12268 (2024)

Relevant Coursework

Multimodal Foundation Models, Deep Learning, Human-Computer Interaction, XR, Advanced Computer Graphics, Game Programming, Data Visualization, Advanced Algorithms, Data Structures, Applied Probability & Statistics, Linear Algebra, Calculus 3