

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

GRADO EN INGENIERÍA EN SISTEMAS DE TELECOMUNICACIONES

TRABAJO FIN DE GRADO

Deep Learning on TensorFlow

Autor: Ignacio Condés Menchén Tutor: José María Cañas Plaza Curso académico 2017/2018

©2018 Ignacio Condés Menchén

Esta obra está distribuida bajo la licencia de "Reconocimiento-CompartirIgual 4.0 Internacional (CC-BY-SA 4.0)" de Creative Commons.

Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-sa/4.0/ o envíe una carta a Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Introduction

Here, we will talk about current robotics applications, which can be really useful at daily tasks. These tasks are of greater interest when the behavioral of a robot tends to emulate the human one (without the human body limitations). This requires a polished (and somehow complex) behavioral.

But, almost every time, a behavioral is a reactive response, triggered by a certain input (typically perceived by on-board sensors, among others). This raw data is generally mapped into a concrete response. At this point, we can take much benefit from *Neural Networks*, which can yield a really effective, fast and **strong** response, specially when we are dealing with image processing.

There are several processing tools based on Neural Networks at the JdeRobot robotics platform (Detection Suite, TFG David, Nuria, PFC Roberto Calvo [this one does not implement NNs]), which as we have just mentioned, can make such a brilliant tandem along with a reactive behavioral.

As we will be able to see later, robotics + deep learning rocks!

Infrastructure

- 2.1 Python 2.7
- 2.1.1 threading library
- 2.2 TensorFlow
- 2.2.1 CUDA
- 2.3 Keras
- 2.4 JdeRobot
- 2.4.1 comm
- 2.4.2 PyQt5
- 2.4.3 Digit Classifier
- 2.4.4 Detection Suite
- 2.5 OpenCV
- 2.6 ROS
- 2.6.1 OpenNIServer
- 2.7 Hardware
- 2.7.1 Asus Xtion
- 2.7.2 Turtlebot / Kobuki
- 2.7.3 Sony EVI D100P

Objectives and Methodology

3.1 Objectives

With all this in mind, the objective of the present work has been to get a little further on **deep learning applied to robotics**, developing two successive components.

3.1.1 Detection: ObjectDetector

As it will be described on the suitable chapter, we have built a component (Object Detector) which implements a generic object detection structure on an image. This component is ready to work in *real time* (processing a streaming video flow).

3.1.2 Reactive behavioral: FollowPerson

The next milestone was to be able to connect this intelligent perception to a reactive behavioral, translated into a robot following a certain person. This requires of two main abilities:

- Object detection and discrimination: this is just what we achieved with the previous component. We only have to constrain the detections to only keep persons.
- People reidentification: as it will be seen, the component is able to track a certain person (which is called *mom*). This is achieved with a person-by-person face comparison with a reference face (which belongs to *mom*). This process is performed by a *siamese neural network*, which is inspired by [tfm marcos pieras].

With these capabilities, we can perform a neural control over physical actuators. Its main avail is the significant strength that a *convolutional neural network* can keep on variable light conditions, which is the main Damocles sword on the image processing field.

3.2 Methodology

3.2.1 TensorFlow Convolutional Neural Network (CNN)

SSD Detector

Network Architecture

Load of different models

Object Detector

- 4.1 Description
- 4.2 Functional architecture
- 4.3 Neural Network processing

Follow Person

- 5.1 Description
- 5.2 Functional architecture
- 5.3 Neural Network processing
- 5.4 Face detection and identification
- 5.5 Tracking algorithm (physical response)

Chapter 6
Conclusions

Future research lines

Chapter 8
Bibliography