7 Correction des tests

Correction du test 1 (Retour à l'énoncer.)

Les fonctions $(x, y) \mapsto x^2 - y^2$ et $(x, y) \mapsto x^2 - 2xy + y^2 + 1$ sont polynomiales donc continues sur \mathbb{R}^2 .

De plus, pour tout $(x, y) \in \mathbb{R}^2$, $x^2 - 2xy + y^2 + 1 = (x - y)^2 + 1 > 0$ donc la fonction $(x, y) \mapsto x^2 - 2xy + y^2 + 1$ ne s'annule pas sur \mathbb{R}^2 .

Ainsi, la fonction $(x, y) \mapsto \frac{x^2 - y^2}{x^2 - 2xy + y^2 + 1}$ est continue sur \mathbb{R}^2 en tant que quotient de fonctions continues sur \mathbb{R}^2 dont le dénominateur ne s'annule pas sur \mathbb{R}^2 .

Correction du test 2 (Retour à l'énoncer.)

- 1. La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ est polynomiale donc continue $\sup \mathbb{R}^2$. La fonction $(x, y) \mapsto e^y$ est continue $\sup \mathbb{R}^2$ par composition. Donc, par somme, $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2 + e^y$ est continue $\sup \mathbb{R}^2$ et à valeur dans $[1, +\infty[$. La fonction logarithme est continue $\sup [1, +\infty[$. Par composition, la fonction $(x, y) \in \mathbb{R}^2 \mapsto \ln(1 + x^2 + e^y)$ est donc continue $\sup \mathbb{R}^2$.
- 2. Les fonctions $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy$ et $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ sont polynomiales donc continues sur \mathbb{R}^2 . La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ ne s'annule pas sur \mathbb{R}^2 donc, par quotient, $(x, y) \in \mathbb{R}^2 \mapsto \frac{1}{1 + x^2}$ est continue sur \mathbb{R}^2 .

Enfin, $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1+x^2}$ est continue sur \mathbb{R}^2 en tant que somme de fonctions continues sur \mathbb{R}^2 .

Correction du test 3 (Retour à l'énoncer.)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par :

$$\forall (x, y) \in \mathbb{R}^2, \quad f(x, y) = y^3 - 2xy^2 + 3x^2y^2 + 1.$$

Soit $x \in \mathbb{R}$. La fonction $f_x : y \mapsto y^3 - 2xy^2 + 3x^2y^2 + 1$ est polynomiale donc dérivable sur \mathbb{R} . Ainsi, pour tout $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $\partial_2(f)(x,y)$ existe et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = 3y^2 - 4xy + 6x^2y.$$

Correction du test 4 (Retour à l'énoncer.)

Pour montrer que les dérivées partielles d'ordre 1 existent, on va utiliser les résultats d'opération sur les fonctions de classe C¹ (c'est ainsi que l'on procédera toujours désormais).

- 1. Les fonctions $(x, y) \mapsto xy$ et $(x, y) \mapsto 1 + x^2 + y^2$ sont polynomiales donc de classe \mathbb{C}^1 sur \mathbb{R}^2 .
 - La fonction exponentielle est de classe C^1 sur \mathbb{R} donc par composition, $(x, y) \mapsto e^{xy}$ est de classe C^1 sur \mathbb{R}^2 .
 - La fonction $(x, y) \mapsto 1 + x^2 + y^2$ est à valeurs dans \mathbb{R}_+^* et la fonction logarithme est de classe \mathbb{C}^1 sur \mathbb{R}_+^* donc par composition, $(x, y) \mapsto \ln(1 + x^2 + y^2)$ est de classe \mathbb{C}^1 sur \mathbb{R}^2 .

Par produit, la fonction f est donc de classe C^1 sur \mathbb{R}^2 . En particulier, elle possède des dérivées partielles d'ordre 1 en tout point de \mathbb{R}^2 . De plus,

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_1(f)(x,y) = ye^{xy} \ln(1+x^2+y^2) + e^{xy} \frac{2x}{1+x^2+y^2}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = xe^{xy} \ln(1 + x^2 + y^2) + e^{xy} \frac{2y}{1 + x^2 + y^2}.$$

2. La fonction f est polynomiale donc de classe C^1 sur \mathbb{R}^2 . En particulier, elle possède des dérivées partielles d'ordre 1 en tout point de \mathbb{R}^2 . De plus,

$$\forall (x, y) \in \mathbb{R}^2$$
, $\partial_1(f)(x, y) = y(2x - 2y + 1) + 2(1 + xy)$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = x(2x - 2y + 1) - 2(1 + xy).$$

1

Correction du test 5 (Retour à l'énoncer.)

Les fonctions $(x,y)\mapsto x^2-y^2$ et $(x,y)\mapsto x^2-2xy+y^2+1$ sont polynomiales donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . De plus, pour tout $(x,y)\in\mathbb{R}^2$, $x^2-2xy+y^2+1=(x-y)^2+1>0$ donc la fonction $(x,y)\mapsto x^2-2xy+y^2+1$ ne s'annule pas sur \mathbb{R}^2 .

Ainsi, la fonction $(x,y)\mapsto \frac{x^2-y^2}{x^2-2xy+y^2+1}$ est de classe \mathbb{C}^1 sur \mathbb{R}^2 en tant que quotient de fonctions de classe \mathbb{C}^1 sur \mathbb{R}^2 dont le dénominateur ne s'annule pas sur \mathbb{R}^2 .

Correction du test 6 (Retour à l'énoncer.)

1. La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ est polynomiale donc de classe C^1 sur \mathbb{R}^2 . La fonction $(x, y) \mapsto e^y$ est de classe C^1 sur \mathbb{R}^2 par composition. Donc, par somme, $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2 + e^y$ est de classe C^1 sur \mathbb{R}^2 et à valeur dans $[1, +\infty[$. La fonction logarithme est de classe C^1 sur $[1, +\infty[$. Par composition, la fonction $(x, y) \in$ $\mathbb{R}^2 \mapsto \ln(1+x^2+e^y)$ est donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . De plus

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_1(f)(x,y) = \frac{2x}{1 + x^2 + e^y}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = \frac{e^y}{1 + x^2 + e^y}$$

2. Les fonctions $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy$ et $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ sont polynomiales donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ ne s'annule pas sur \mathbb{R}^2 donc, par quotient, $(x, y) \in \mathbb{R}^2 \mapsto \frac{1}{1 + x^2}$ est de classe \mathbb{C}^1

Enfin, $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy + \frac{1}{1+x^2}$ est de classe \mathbb{C}^1 sur \mathbb{R}^2 en tant que somme de fonctions de classe \mathbb{C}^1 sur \mathbb{R}^2 . De plus

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f)(x, y) = 1 + 2y - \frac{2x}{(1 + x^2)^2}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = 2x.$$

Correction du test 7 (Retour à l'énoncer.)

D'après le test 3,

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f)(x, y) = 3y^2 - 4xy + 6x^2y.$$

La fonction $\partial_2(f)$ est polynomiale donc de classe \mathbb{C}^1 sur \mathbb{R}^2 . En particulier, les dérivées partielles d'ordre 2 $\partial_{1,2}^2(f)$ et $\partial_{2,2}^2(f)$ sont définies sur \mathbb{R}^2 . De plus :

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{1,2}^2(f)(x,y) = \partial_1(\partial_2(f))(x,y) = -4y + 12xy$$

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{2,2}^2(f)(x,y) = \partial_2(\partial_2(f))(x,y) = 6y - 4x + 6x^2.$$

Correction du test 8 (Retour à l'énoncer.)

Justifier que les fonctions suivantes sont de classe \mathbb{C}^2 sur \mathbb{R}^2 . Déterminer les dérivées partielles secondes.

- 1. Les fonctions $(x, y) \mapsto xy$ et $(x, y) \mapsto 1 + x^2 + y^2$ sont polynomiales donc de classe \mathbb{C}^2 sur \mathbb{R}^2 .
 - La fonction exponentielle est de classe C^2 sur \mathbb{R} donc par composition, $(x, y) \mapsto e^{xy}$ est de classe C^2 sur \mathbb{R}^2
 - La fonction $(x, y) \mapsto 1 + x^2 + y^2$ est à valeurs dans \mathbb{R}_+^* et la fonction logarithme est de classe \mathbb{C}^2 sur \mathbb{R}_+^* donc par composition, $(x, y) \mapsto \ln(1 + x^2 + y^2)$ est de classe \mathbb{C}^1 sur \mathbb{R}^2 .

Par produit, la fonction f_1 est donc de classe \mathbb{C}^2 sur \mathbb{R}^2 . De plus, d'après le test 4 on a :

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_1(f_1)(x,y) = ye^{xy} \ln(1+x^2+y^2) + e^{xy} \frac{2x}{1+x^2+y^2}$$

2

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_2(f_1)(x,y) = xe^{xy}\ln(1+x^2+y^2) + e^{xy}\frac{2y}{1+x^2+y^2}.$$

Donc

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{1,2}^2(f_1)(x,y) = \partial_{2,1}^2(f_1)(x,y) = e^{xy} \left((1+xy) \ln{(1+x^2+y^2)} + \frac{2y^2}{1+x^2+y^2} + x - \frac{4xy}{(1+x^2+y^2)^2} \right)$$

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{1,1}^2(f_1)(x,y) = e^{xy} \left(y^2 \ln{(1+x^2+y^2)} + \frac{4xy}{1+x^2+y^2} + \frac{2-2x^2+2y^2}{(1+x^2+y^2)^2} \right)$$

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{2,2}^2(f_1)(x,y) = e^{xy} \left(x^2 \ln(1+x^2+y^2) + \frac{4xy}{1+x^2+y^2} + \frac{2-2y^2+2x^2}{(1+x^2+y^2)^2} \right).$$

2. La fonction $(x,y) \in \mathbb{R}^2 \mapsto 1 + x^2$ est polynomiale donc de classe C^2 sur \mathbb{R}^2 . La fonction $(x,y) \mapsto e^y$ est de classe C^2 sur \mathbb{R}^2 par composition. Donc, par somme, $(x,y) \in \mathbb{R}^2 \mapsto 1 + x^2 + e^y$ est de classe C^2 sur \mathbb{R}^2 et à valeur dans $[1, +\infty[$. La fonction logarithme est de classe C^2 sur $[1, +\infty[$. Par composition, la fonction $(x,y) \in \mathbb{R}^2 \mapsto \ln(1+x^2+e^y)$ est donc de classe C^2 sur \mathbb{R}^2 . De plus, d'après le test 6, on a :

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_1(f_2)(x,y) = \frac{2x}{1+x^2+e^y}$$

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_2(f_2)(x,y) = \frac{e^y}{1 + x^2 + e^y}.$$

Donc

$$\forall (x,y) \in \mathbb{R}^2, \quad \hat{\mathcal{C}}_{2,1}^2(f_2)(x,y) = \hat{\mathcal{C}}_{1,2}^2(f_2)(x,y) = -\frac{2xe^y}{(1+x^2+e^y)^2}$$

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{2,2}^2(f_2)(x,y) = \frac{e^y(1+x^2+e^y)-e^{2y}}{(1+x^2+e^y)^2} = \frac{e^y(1+x^2)}{(1+x^2+e^y)^2}$$

et

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{1,1}^2(f_2)(x,y) = \frac{2(1+x^2+e^y)-4x^2}{(1+x^2+e^y)^2} = \frac{2(1-x^2+e^y)}{(1+x^2+e^y)^2}$$

3. La fonction f_3 est polynomiale donc de classe \mathbb{C}^2 sur \mathbb{R}^2 . De plus, d'après le test 4 :

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f_3)(x, y) = y(2x - 2y + 1) + 2(1 + xy)$$

et

$$\forall (x, y) \in \mathbb{R}^2$$
, $\partial_2(f_3)(x, y) = x(2x - 2y + 1) - 2(1 + xy)$.

Donc

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_{2,1}^2(f_3)(x, y) = \partial_{1,2}^2(f_3)(x, y) = 4x - 4y + 1$$

$$\forall (x, y) \in \mathbb{R}^2$$
, $\partial_{1,1}^2(f_3)(x, y) = 4y$ et $\partial_{2,2}^2(f_3)(x, y) = -4x$

4. Les fonctions $(x, y) \in \mathbb{R}^2 \mapsto x + 2xy$ et $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ sont polynomiales donc de classe \mathbb{C}^2 sur \mathbb{R}^2 . La fonction $(x, y) \in \mathbb{R}^2 \mapsto 1 + x^2$ ne s'annule pas sur \mathbb{R}^2 donc, par quotient, $(x, y) \in \mathbb{R}^2 \mapsto \frac{1}{1 + x^2}$ est de classe \mathbb{C}^2 sur \mathbb{R}^2 .

Enfin, f_4 est de classe \mathbb{C}^2 sur \mathbb{R}^2 en tant que somme de fonctions de classe \mathbb{C}^2 sur \mathbb{R}^2 . De plus, d'après le test 6:

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_1(f_4)(x, y) = 1 + 2y - \frac{2x}{(1 + x^2)^2}$$

et

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial_2(f_4)(x, y) = 2x.$$

Donc

$$\forall (x, y) \in \mathbb{R}^2, \quad \partial^2_{1,2}(f_4)(x, y) = \partial^2_{2,1}(f_4)(x, y) = 2$$

$$\forall (x,y) \in \mathbb{R}^2, \quad \partial_{1,1}^2(f_4)(x,y) = \frac{2(1-3x^2)}{(1+x^2)^3} \quad et \quad \partial_{2,2}^2(f_4)(x,y) = 0.$$