

Calculus 3 Workbook

Surface integrals

SURFACE INTEGRALS

- 1. Evaluate the surface integral of the scalar vector field $f(x,y,z) = \ln(x+y+z)$ over the surface $\overrightarrow{r} = \langle 3u-7v+1, u+5v+2, -3u+v-1 \rangle$, where u changes from 0 to 4 and v changes from -1 to 1.
- 2. Evaluate the surface integral of the scalar vector field $f(x,y,z) = x^2 + y^2 + 4z^2$ over the part of the cylinder $x^2 + y^2 = 9$, where $-2 \le z \le 5$.
- 3. Evaluate the surface integral of the scalar vector field $f(x, y, z) = x^2 + y^2 + z + 1$ over the sphere centered at (2, -1, -3) with radius 2.

SURFACE INTEGRALS OF ORIENTED SURFACES

■ 1. Evaluate the surface integral of the vector field $\overrightarrow{F} = \langle x^2, y^2, x + y + z \rangle$ over S, where S is the surface of the cube $[0,2] \times [0,2] \times [0,2]$. Assume that S has a positive orientation.

■ 2. Evaluate the surface integral of the vector field $\overrightarrow{F} = \langle x + y, y + z, x + z \rangle$ over the surface S which is the part of the right elliptic cylinder with an axis that coincides with the y-axis, an x-semi-axis of S, a S-semi-axis of S, and S-semi-axis of S-axis, an S-semi-axis of S-axis, and S-axis, a

■ 3. Evaluate the surface integral of the vector field $\overrightarrow{F} = \langle x - 2, y + 1, z - 3 \rangle$ over the surface S, where S is the surface of revolution generated by rotating the function $y = x^2 + 1$ around the x-axis for $-2 \le x \le 2$. Assume that S has a negative orientation.

Calculus 3 Workbook

FLUX ACROSS THE SURFACE

■ 1. Find the flux of the vector field \overrightarrow{F} across the part the plane x+y+z-2=0 that lies within the rectangle defined by $-1 \le x \le 1$ and $-1 \le y \le 1$. Assume that S has an upward orientation.

$$\overrightarrow{F} = \left\langle \frac{1}{x^2 + 4}, \frac{1}{4y^2 + 1}, 0 \right\rangle$$

- 2. Find the flux of the vector field $\overrightarrow{F} = \langle x^2 + y^2 + z^2, 3y, 3 \rangle$ across the sphere with radius 4 and center at the origin. Assume that S has a positive orientation.
- 3. Suppose the velocity of a fluid in three-dimensional space is described by the vector field $\overrightarrow{F} = \langle x^2 + 1, y^2 + 1, z^2 + 1 \rangle$. Find the volume of fluid crossing the disk S defined by $(x+1)^2 + (y-2)^2 \le 4$ in the xy-plane per 10 units of time. Assume that S has an upward orientation.

W W W . K R I S I A K I N G M A I H . C O M