6.110 Re-lecture 1

Regular expressions, automata, grammars, parse trees

4 lectures in 1

Focus on theory

Stop me

Ideal: 90 minutes

Plan

- Overview of compiler components and optimizations
- Regular expressions
- Finite automata
- Duality and constructions
- Tokenization
- Context-free grammar
- Ambiguity
- Precedence

Front end

```
(KEYWORD def)
(ID "fact")
(PUNCT" (")
(PUNCT" (")
(PUNCT" (")
(PUNCT" (")
(PUNCT" (")
(PUNCT (")
(P
```

```
# Comment 1
# Comment 2
# Factorial:

def fact( x\ ):

if x == -1:
    return 1:

elif x ==0:

    return 2

return x* fact(x

- 1)

s = "foo\ \\ \n\'\""

Module(
bodys[
Functionef(
name*'fact',
args=arguments(
posonlyargs=[],
arg(arg*'x')],
kwonlyargs=[],
kw qefaults=[],
defaults=[],
body

    return(1)
    defaults=[],
    de
```

Intermediate representation

$a \leftarrow a \times 2 \times b \times c \times d$

$$a \leftarrow a \times 2 \times b \times c \times d$$

$$t_0 \leftarrow a \times 2$$

$$t_1 \leftarrow t_0 \times b$$

$$t_2 \leftarrow t_1 \times c$$

$$t_3 \leftarrow t_2 \times d$$

$$a \leftarrow t_3$$

$a \leftarrow a \times 2 \times b \times c \times d$

```
// load 'a'
loadAI r_{arp}, @a \Rightarrow r_a
                                               // constant 2 into r<sub>2</sub>
loadI
                           \Rightarrow r_2
loadAI
                                               // load 'b'
                                              // load 'c'
loadAI
              r_{arp},0c \Rightarrow r_c
loadAI
              r_{arp}, @d \Rightarrow r_d
                                               // load 'd'
                                               // r_a \leftarrow a \times 2
mult
mult
                                               // r_a \leftarrow (a \times 2) \times b
                                               // r_a \leftarrow (a \times 2 \times b) \times c
mult
                                              // r_a \leftarrow (a \times 2 \times b \times c) \times d
mult
                           \Rightarrow \, r_a
                           \Rightarrow r<sub>arp</sub>, @a // write r<sub>a</sub> back to 'a'
```

$a \leftarrow a \times 2 \times b \times c \times d$

(b) Dependence Graph for the Example

Back end

$a \leftarrow a \times 2 \times b \times c \times d$

Formal languages

Alphabet

 $\Sigma = \{a, b, c, ..., z\}$

$$\Sigma = \{0, 1\}$$

 $\Sigma = \{ false, true \}$

 Σ = English words

String

abcdababab

11100011001

ε

00000...

'i' 'like' 'six' 'oh' 'three' 'five'

Language

L = {1, 01, 10, 001, 010, 100, 0001, 0010, 0100, 1000, 00001, 00010, 00100, 01000, 10000, 000001, ...}

L = set of binary strings that contain exactly one 1 $ (\text{assuming } \Sigma = \{0,1\}) $	$L(s) = \text{whether s contains exactly one 1 (yes or no)}$ $(\text{assuming } \Sigma = \{0, 1\})$
L = set of decimal numbers that are divisible by 3 $(\text{assuming }\Sigma=\{0,1,2,,9\})$	L = set of valid hexadecimal numbers (assuming Σ = ASCII characters)
L = set of syntactically valid Python programs $(\text{assuming } \Sigma = \text{ASCII characters})$	L = set of syntactically valid Python programs (assuming Σ = Python tokens)

L = set of Python source interpretable without erro	r

Regular languages

Regular expression

(617|857) - 253 - (0|1|..|9) (0|1|..|9) (0|1|..|9) (0|1|..|9)

0 Empty string

0 Empty string

 $\begin{array}{cc} 1 & \text{A letter from } \Sigma \\ & 0 \end{array}$

2 Concatenation $a \cdot b$

2 Concatenation *ab*

2 Concatenation 234324

3 Alternation $a \mid b$

3 Alternation/Union $\alpha \cup b$

3 Alternation 0|1

3 Alternation 000 | 001 | 100 | 101

3 Alternation (0|1)0(0|1)

3 Alternation
(617|857)-253-(0|1|..|9)(0|1|..|9)(0|1|..|9)

4 Kleene star $\alpha*$

4 Kleene star (0|1)*

4 Kleene star 0*10*

"regex"

[0-9A-Fa-f]

[01]{8}

0|(1[01]*)

0x[0-9A-Fa-f]+

Non-deterministic Finite Automata

L = set of binary strings containing a 1 in the third position from the end

L = set of binary strings with even number of 0s or even number of 1s

 $\mathsf{Regex} \to \mathsf{NFA}$

Thompson's construction

The $\textit{empty-expression}\ \epsilon$ is converted to

A **symbol** a of the input alphabet is converted to

The concatenation expression st is converted to

The Kleene star expression s^* is converted to

 $\mathsf{DFA}/\mathsf{NFA} \to \mathsf{Regex}$

Generalized NFA

$NFA \rightarrow DFA$

 $DFA \rightarrow NFA$

Trivial

Greedy

L = set of binary strings that start with 0s, followed by an equal number of 1s

Pumping lemma

Take 6.045 or 6.840.

For the quiz, you should know how to:

- Simulate regex/DFA/NFA
- Design a regex/DFA/NFA
- Convert regex to NFA
- Convert NFA to DFA

How to practice: Do textbook exercises!

Context-free grammar

```
\begin{split} &\langle \text{SENTENCE} \rangle \to \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle \\ &\langle \text{NOUN-PHRASE} \rangle \to \langle \text{CMPLX-NOUN} \rangle | \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle \\ &\langle \text{VERB-PHRASE} \rangle \to \langle \text{CMPLX-VERB} \rangle | \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle \\ &\langle \text{PREP-PHRASE} \rangle \to \langle \text{PREP} \rangle \langle \text{CMPLX-NOUN} \rangle \\ &\langle \text{CMPLX-NOUN} \rangle \to \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle \\ &\langle \text{CMPLX-VERB} \rangle \to \langle \text{VERB} \rangle | \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle \\ &\langle \text{ARTICLE} \rangle \to \text{a | the} \\ &\langle \text{NOUN} \rangle \to \text{boy | girl | flower} \\ &\langle \text{VERB} \rangle \to \text{touches | likes | sees} \\ &\langle \text{PREP} \rangle \to \text{with} \end{split}
```

$$(a + b) \times c$$

Ambiguity

Left factoring

Precedence climbing

Pushdown Automata

L = set of binary strings that start with 0s, followed by an equal number of 1s

Remember this?

expression ::= resize ('|' resize)*; resize ::= primitive ('0' size)*;
size ::= (number 'x' number);
primitive ::= filename | '(' expression ')';

::= [\\t\\r\\n]+; whitespace

Extended Backus-Naur form* (* in spirit)

$$A$$
 ::= $B \star C$

	For the	auiz.	vou	should	know	how	to:
--	---------	-------	-----	--------	------	-----	-----

- Parse a string using a given grammar (draw parse trees)
- Eliminate ambiguity
- Fix precedence issues

 - Make sure you understand the arithmetic examples.
 Reminder: You can collaborate/ask for help on miniquiz.

Top-down parsing

How to practice: Do textbook exercises!

Recursive descent parser

<rant>

Use first principles

Ask TAs

</rant> Project 1!

Left recursion

$$NT \rightarrow \epsilon$$
 \Rightarrow
 $NT \rightarrow^* \epsilon$

$$NT_0 \rightarrow NT_1NT_2...$$
 and $NT_i \rightarrow^* \epsilon$
 \Rightarrow
 $NT_0 \rightarrow^* \epsilon$

$$\mathbf{T} \in \mathsf{First}(\mathbf{T})$$

$$x \in First(S)$$
 \Rightarrow
 $x \in First(S S_1 S_2 S_3 ...)$

$$x \in First(S)$$

 \Rightarrow
 $x \in First(S\beta)$

$$First(S) \subseteq First(S\beta)$$

$$x \in First(\beta)$$
 and $NT \rightarrow^* \epsilon$
 \Rightarrow
 $x \in First(NT \beta)$

$$x \in First(S\beta)$$
 and $(NT \rightarrow S\beta)$
 \Rightarrow
 $x \in First(NT)$