Word Embeddings - Part I

Pawan Goyal

CSE, IIT Kharagpur

Week 7, Lecture 4

Word Vectors

• At one level, it is simply a vector of weights.

Word Vectors

- At one level, it is simply a vector of weights.
- In a simple 1-of-N (or 'one-hot') encoding every element in the vector is associated with a word in the vocabulary.

Word Vectors

- At one level, it is simply a vector of weights.
- In a simple 1-of-N (or 'one-hot') encoding every element in the vector is associated with a word in the vocabulary.
- The encoding of a given word is simply the vector in which the corresponding element is set to one, and all other elements are zero.

One-hot representation

motel [0 0 0 0 0 0 0 0 0 1 0 0 0 0] AND hotel [0 0 0 0 0 0 0 1 0 0 0 0 0 0] = 0

Word Vectors - One-hot Encoding

- Suppose our vocabulary has only five words: King, Queen, Man, Woman, and Child.
- We could encode the word 'Queen' as:

Limitations of One-hot encoding

Limitations of One-hot encoding

Word vectors are not comparable

Using such an encoding, there is no meaningful comparison we can make between word vectors other than equality testing.

Word2Vec – A distributed representation

Distributional representation – word embedding?

Any word w_i in the corpus is given a distributional representation by an embedding

$$w_i \in R^d$$

i.e., a d-dimensional vector, which is mostly learnt!

Word2Vec – A distributed representation

Distributional representation – word embedding?

Any word w_i in the corpus is given a distributional representation by an embedding

$$w_i \in R^d$$

i.e., a *d*-dimensional vector, which is mostly learnt!

Distributional Representation

- Take a vector with several hundred dimensions (say 1000).
- Each word is represented by a distribution of weights across those elements.
- So instead of a one-to-one mapping between an element in the vector and a word, the representation of a word is spread across all of the elements in the vector, and
- Each element in the vector contributes to the definition of many words.

Distributional Representation: Illustration

If we label the dimensions in a hypothetical word vector (there are no such pre-assigned labels in the algorithm of course), it might look a bit like this:

Such a vector comes to represent in some abstract way the 'meaning' of a word

Word Embeddings

- *d* typically in the range 50 to 1000
- Similar words should have similar embeddings

Word Embeddings

- *d* typically in the range 50 to 1000
- Similar words should have similar embeddings

SVD can also be thought of as an embedding method

 It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.

- It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.
- Specifically, the regularities are observed as constant vector offsets between pairs of words sharing a particular relationship.

- It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.
- Specifically, the regularities are observed as constant vector offsets between pairs of words sharing a particular relationship.

Case of Singular-Plural Relations

If we denote the vector for word i as x_i , and focus on the singular/plural relation, we observe that

- It has been found that the learned word representations in fact capture meaningful syntactic and semantic regularities in a very simple way.
- Specifically, the regularities are observed as constant vector offsets between pairs of words sharing a particular relationship.

Case of Singular-Plural Relations

If we denote the vector for word i as x_i , and focus on the singular/plural relation, we observe that

$$x_{apple} - x_{apples} \approx x_{car} - x_{cars} \approx x_{family} - x_{families} \approx x_{car} - x_{cars}$$

and so on.

Perhaps more surprisingly, we find that this is also the case for a variety of semantic relations.

Good at answering analogy questions

a is to b, as c is to?

man is to woman as uncle is to? (aunt)

Perhaps more surprisingly, we find that this is also the case for a variety of semantic relations.

Good at answering analogy questions

a is to b, as c is to?

man is to woman as uncle is to ? (aunt)

A simple vector offset method based on cosine distance shows the relation.

Vcctor Offset for Gender Relation

Vcctor Offset for Singular-Plural Relation

Encoding Other Dimensions of Similarity

Analogy Testing

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger cold: colder		quick: quicker	
Miami - Florida	Baltimore: Maryland Dallas: Texas		Kona: Hawaii	
Einstein - scientist	Messi: midfielder Mozart: violinist		Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Analogy Testing

$$d = \arg\max_{x} \frac{(w_b - w_a + w_c)^T w_x}{||w_b - w_a + w_c||}$$

man:woman::king:?

- + king [0.30 0.70]
- man [0.20 0.20]
- + woman [0.60 0.30]

queen [0.70 0.80]

Country-capital city relationships

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them, as during the training we did not provide any supervised information about what a capital city means.

More Analogy Questions

Newspapers							
New York	New York Times	Baltimore	Baltimore Sun				
San Jose	San Jose Mercury News Cincinnati		Cincinnati Enquirer				
NHL Teams							
Boston	Boston Bruins	Montreal	Montreal Canadiens				
Phoenix	Phoenix Coyotes Nashville		Nashville Predators				
NBA Teams							
Detroit	Detroit Pistons	Toronto	Toronto Raptors				
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies				
Airlines							
Austria	Austrian Airlines	Spain	Spainair				
Belgium	Brussels Airlines	Greece	Aegean Airlines				
Company executives							
Steve Ballmer	Microsoft	Larry Page	Google				
Samuel J. Palmisano	IBM	Werner Vogels	Amazon				

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples). The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy of 72% on this dataset.

Element Wise Addition

We can also use element-wise addition of vector elements to ask questions such as 'German + airlines' and by looking at the closest tokens to the composite vector come up with impressive answers:

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two vectors are shown, using the best Skip-gram model.

Learning Word Vectors

Basic Idea

Instead of capturing co-occurrence counts directly, predict (using) surrounding words of every word.

Code as well as word-vectors: https://code.google.com/p/word2vec/

Two Variations: CBOW and Skip-grams

