Devoir surveillé nº 6

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

Vocabulaire et notations

- ▶ Pour un réel t, on notera |t| la partie entière de t.
- ▶ La notation [0, 9] désigne l'ensemble $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- ▶ On dit qu'une suite (u_n) est périodique à partir d'un certain rang s'il existe $N \in \mathbb{N}$ et $T \in \mathbb{N}^*$ tel que $u_{n+T} = u_n$ pour tout $n \ge N$. On dit alors que (u_n) est T-périodique à partir du rang N.

Soit x un nombre réel. On définit deux suites (d_n) et (ϵ_n) de la manière suivante :

- ▶ On pose $d_0 = \lfloor x \rfloor$ et $\epsilon_0 = x \lfloor x \rfloor$.
- $\blacktriangleright \ \, \mathrm{Pour} \,\, \mathrm{tout} \,\, n \in \mathbb{N}, \, \mathrm{on} \,\, \mathrm{pose} \,\, d_{n+1} = \lfloor 10\epsilon_n \rfloor \,\, \mathrm{et} \,\, \epsilon_{n+1} = 10\epsilon_n \lfloor 10\epsilon_n \rfloor.$
- 1. Dans cette question uniquement, on suppose x = 123,456. Calculer d_0, d_1, d_2, d_3 et $\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_3$. Que valent d_n et ϵ_n pour $n \ge 4$?
- 2. On revient au cas général.
 - **a.** Montrer que pour tout $n \in \mathbb{N}$, $\varepsilon_n \in [0, 1[$.
 - **b.** En déduire que pour tout $n \in \mathbb{N}^*$, $d_n \in [0, 9]$.
 - c. On pose $S_n = \sum_{k=0}^n \frac{d_k}{10^k}$ pour tout $n \in \mathbb{N}$. Montrer que $x = S_n + \frac{\varepsilon_n}{10^n}$ pour tout $n \in \mathbb{N}$.
 - **d.** En déduire que (S_n) converge vers x.
- 3. Soient $T \in \mathbb{N}^*$ et $N \in \mathbb{N}$. On suppose que la suite (d_n) est T-périodique à partir du rang N.
 - $\mathbf{a.} \ \ \mathrm{Pour} \ n \in \mathbb{N}, \ \mathrm{on \ pose} \ u_n = 10^{N+T} S_{n+N+T} 10^N S_{n+N}. \ \mathrm{Montrer \ que \ la \ suite} \ (u_n) \ \mathrm{est \ constante}.$
 - **b.** En déduire qu'il existe $p \in \mathbb{Z}$ tel que pour tout $n \in \mathbb{N}$

$$10^{N+T}S_{n+N+T} - 10^{N}S_{n+N} = p$$

- \mathbf{c} . En déduire que \mathbf{x} est rationnel.
- 4. Soit α le nombre dont l'écriture décimale est 0, 123 456 456 456 456 Montrer que α est rationnel et l'écrire sous la forme d'une fraction de deux entiers.
- 5. On suppose que x est rationnel. Il existe donc $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$ tel que $x = \frac{a}{b}$. On définit deux suites (q_n) et (r_n) de la manière suivante.
 - \triangleright q₀ et r₀ sont respectivement le quotient et le reste de la division euclidienne de a par b.
 - ▶ Pour tout $n \in \mathbb{N}, q_{n+1}$ et r_{n+1} sont respectivement le quotient et le reste de la division euclidienne de $10r_n$ par b.

- a. Justifier qu'il existe deux entiers naturels N et M distincts tels que $r_N = r_M$.
- **b.** En déduire que (r_n) est périodique à partir d'un certain rang.
- c. En déduire que (q_n) est également périodique à partir d'un certain rang.
- **d.** Montrer que pour tout $n \in \mathbb{N}$, $r_n = b\varepsilon_n$ et $q_n = d_n$. On a donc prouvé que la suite (d_n) était périodique à partir d'un certain rang.
- 6. On suppose que $x = \frac{13}{35}$. Déterminer $N \in \mathbb{N}$ et $T \in \mathbb{N}^*$ tels que la suite (d_n) soit T-périodique à partir du rang N.

EXERCICE 2.

Soient \mathfrak{m} et \mathfrak{n} des entiers naturels non nuls. On pose $G=\big\{z_1z_2,(z_1,z_2)\in \mathbb{U}_{\mathfrak{m}}\times \mathbb{U}_{\mathfrak{n}}\big\}.$

- 1. Dans cette question uniquement, on pose $\mathfrak{m}=4$ et $\mathfrak{n}=6$. Déterminer les éléments et le cardinal de $\mathbb{U}_{\mathfrak{m}}$, $\mathbb{U}_{\mathfrak{n}}$, $\mathbb{U}_{\mathfrak{m}}\cap\mathbb{U}_{\mathfrak{n}}$ et G.
- **2.** Montrer que $\mathbb{U}_{\mathfrak{m} \wedge \mathfrak{n}} \subset \mathbb{U}_{\mathfrak{m}} \cap \mathbb{U}_{\mathfrak{n}}$.
- **3.** A l'aide d'une relation de Bézout entre \mathfrak{m} et \mathfrak{n} , montrer que $\mathbb{U}_{\mathfrak{m}} \cap \mathbb{U}_{\mathfrak{n}} \subset \mathbb{U}_{\mathfrak{m} \wedge \mathfrak{n}}$.
- **4.** Montrer que $G \subset \mathbb{U}_{m \vee n}$.
- 5. A l'aide d'une relation de Bézout entre \mathfrak{m} et \mathfrak{n} , montrer que $\mathbb{U}_{\mathfrak{m}\vee\mathfrak{n}}\subset\mathsf{G}.$

EXERCICE 3.

L'objectif de cet exercice est d'obtenir une majoration du nombre de divisions euclidiennes effectuées lors du calcul d'un PGCD par l'algorithme d'Euclide.

- 1. On considère la suite (F_n) telle que $F_0=0$, $F_1=1$ et $F_{n+2}=F_n+F_{n+1}$ pour tout $n\in\mathbb{N}$. On note par ailleurs ϕ l'unique racine strictement positive du trinôme X^2-X-1 .
 - a. Calculer φ.
 - **b.** Montrer que $F_{n+2} > \varphi^n$ pour tout $n \in \mathbb{N}^*$.
- **2.** Soit $(a, b, q, r) \in \mathbb{Z}^4$ tel que a = bq + r. Montrer que $a \wedge b = b \wedge r$.
- 3. Soit $(a,b) \in \mathbb{N}^2$ tel que 0 < b < a. On rappelle le principe de l'algorithme d'Euclide appliqué au couple (a,b): il consiste à construire une suite finie $(r_k)_{0 \le k \le N+1}$ telle que
 - $ightharpoonup r_0 = a \text{ et } r_1 = b;$
 - $\blacktriangleright \ \, \mathrm{pour} \,\, \mathrm{tout} \,\, k \in [\![0,N-1]\!], \, r_{k+2} \,\, \mathrm{est} \,\, \mathrm{le} \,\, \mathrm{reste} \,\, \mathrm{de} \,\, \mathrm{la} \,\, \mathrm{division} \,\, \mathrm{euclidienne} \,\, \mathrm{de} \,\, r_k \,\, \mathrm{par} \,\, r_{k+1} \,;$
 - $ightharpoonup 0 = r_{N+1} < r_N < \dots < r_1 < r_0.$

L'entier N est donc le nombre de divisions euclidiennes effectuées dans l'algorithme d'Euclide appliqué au couple $(\mathfrak{a},\mathfrak{b})$.

- a. Dans cette question uniquement, on suppose a = 154 et b = 48. Déterminer N.
- **b.** Justifier que $a \wedge b = r_N$.
- **c.** Montrer que $r_k \ge r_{k+1} + r_{k+2}$ pour tout $k \in [0, N-1]$.
- **d.** Montrer par récurrence que $r_k \geqslant F_{N+2-k}$ pour tout $k \in [0, N]$.
- **e.** Dans cette question uniquement, on suppose $N \ge 2$. Montrer que $N < \frac{\ln b}{\ln \omega} + 1$.
- **f.** Soit $k \in \mathbb{N}^*$. On suppose que b s'écrit avec au plus k chiffres en base 10. Montrer que $N \le 5k$. On donne $\frac{\ln 10}{\ln \omega} \approx 4,78$.
- 4. a. Écrire une fonction Python d'arguments deux entiers naturels a et b renvoyant le PGCD de a et b calculé à l'aide de l'algorithme d'Euclide décrit dans la question précédente.
 - b. Modifier légèrement la fonction de la question précédente afin qu'elle renvoie le nombre de divisions euclidiennes effectués dans l'algorithme d'Euclide.