1. Which of the fo	ollowing is a techniq	jue for using an SV	M as a multi-class classifier?
A. Split group class	sification		
B. One versus all			
C. All versus all			
D. N-way split			
classifier with k =		Manhattan distanc	apply the k-nearest neighbors e) given the training data X = [[1, 4,
A. 2	B. 0	C. 1	D. 3
3. If we have the find value of P(B A)?	following probabiliti	es for events P(A)=	=0.5 P(B)=0.9 P(A B)=0.3, what is the
A. 0.27	B. 0.75	C. 0.63	D. 0.54
4. Which of the fo	ollowing is a linear o	lassifier?	
A. A two layer neur	ral network with ReLl	J activations	
B. A 3-NN classifie	r		
C. An SVM with po	lynomial kernel		
D. A neuron with n	o activation		
	ned parameters (we = 5, output layer siz	•	I a network with input size = 2,
A. 10	B. 8	C. 13	D. 21
6. If the data is split into 9 classes, and we want to train a SVM for classification. How many binary classifiers will be trained in the one-vs-one approach?			
A. 18	B. 9	C. 36	D. 81
7. In which scena model properly?	rio is measuring the	e accuracy of the m	nodel not enough to evaluate the
A. When the datas	et is imbalanced		
B. When the data	set is balanced but th	e training set and te	st set come from different sources

C. When there are 3 classes in the dataset

D. When the data set is made out of audio samples

8. What is the recall of the classifier if the ground-truth labels are $y = [0, 1, 1, 0, 0, 0, 1]$ and the predicted labels are $y_hat = [1, 0, 0, 0, 1, 1, 1]$?				
A. 0.33	B. 0.23	C. 0.99	D. 0.45	
			candies, 3 - likes, 4 - she, 5 - he}. sentence "she likes dogs and	
A. [1, 0, 0, 1, 1, 0,	1, 1]			
B. [1, 0, 0, 1, 1, 0]				
C. [1, 0, 1, 1, 1, 0]				
D. [2, 0, 0, 1, 1, 0]				
10. Which of the f gradient descent	•	constitute a valid lo	oss for a neural network trained with	
A. L1 Loss	B. Cross Entropy	C. MSE	D. L2 Loss	
11. What advanta	ge does using a bia	s value bring in the	e context of the artificial neuron?	
A. It significantly in	nproves convergence	e time		
B. It prevents the r	neuron hyperplanes f	rom being forced to	go through the origin	
C. It significantly he misrepresented cla	•	imbalanced data se	ets by provinding a bias towards the	
D. It does not bring	g any advantage			
12. The training data set contains the following examples [(3, PASS), (2, PASS), (2, PASS), (4, PASS), (0, FAIL), (1, FAIL), (1, FAIL)], the first component being the number of hours of study and the second denoting wether the student passed the exam. What is the probability of passing the exam with 2 hours of study - P(PASS 2)?				
A. 25%	B. 50%	C. 75%	D. 100%	
13. What is the dimension of the weights from the second layer of a neural network with the following configuration 4-6-2-1 (the first number is the input size, the other numbers represent the amount of neurons in each layer)?				
A. 6x2	B. 6x1	C. 4x6	D. 2x1	
14. What is the output of the perceptron if input=[2.4, 3.0], weights=[-0.5, 0.2], bias=1.0 (activation function - sign)?				
A. 1	B. 2.2	C. 0	D1	

15. What is the MS	SE for the following predicted labels y_pred = [0.1, 0.4, 0.7, 0.3]	and truth
labels=[1, 0, 1, 0]?	?	

A. 0.3315

B. 0.1430

C. 0.0715

D. 0.2875

16. What is the difference between using an L1 loss and an L2 loss?

A. Using the L1 loss you can avoid getting stuck in a local minima when using stochastic gradient descent in the case of neural networks.

- B. The L2 loss generally favors having smaller errors instead of a having fewer but greater errors while the L1 loss does not differentiate between these cases.
- C. The L1 loss generally favors having smaller errors instead of a having fewer but greater errors while the L2 loss does not differentiate between these cases.
- D. Using the L2 loss you can avoid getting stuck in a local minima when using stochastic gradient descent in the case of neural networks.

17. What is the resulting data after applying L1 normalization to this vector [10, 20, 30]?

A. [0.0, 0.5, 1.0]

B. [10, 20, 30]

C. [0.16, 0.33, 0.5]

D. [1, 2, 3]

18. What is the f1-score of the classifier if the ground-truth labels are y = [0, 1, 1, 0, 0, 0, 1, 1] and the predicted labels are $y_hat = [1, 0, 0, 0, 1, 1, 1]$?

A. 0.7

B. 0.5

C. 0.6

D. 0.4

19. Which machine learning model can achieve the best performance in the context of an audio classification problem?

- A. Depends on problem details and should be determined by means of validation
- B. An SVM classifer
- C. A Neural Network with five layers
- D. A Neural Network with two layers

20. How many neurons should the hidden layer of a network with a single hidden layer and an output layer have in the context of a classification problem with 25 classes have?

A. Depends on the problem and should be determined by means of validation

\sim	1	Λ
U.	- 1	U

D. 25

21. Which of the following neuron activation is the result of the tanh activation function?

A. [0.99, 0.05, 0.99]

B. [-1.2, 0.11, 1.2]

C. [1.01, 0.11, 0.2]

D. [0.9, 0.11, -1.1]

22. What is the value of the loss function of a Rigde regression model if the predicted values $y_hat are [-2, -3, -1]$, the ground-truth values are [-2, -3, -2.5], the wights are W = [1, 0], bias = 5 and alpha = 0.1?

- A. 0.85
- B. 0.75
- C. 0.22
- D. 0.95

23. What is the label of the test example t = [5, 3, 8] if you apply the k-nearest neighbors classifier with k = 3 and metric = L1 (Manhattan distance) given the training data X = [[1, 4, 2], [5, 4, 8], [2, 6, 5], [1, 1, 1], [2, 9, 6]], <math>Y = [2, 3, 3, 1, 2]?

- A. 2
- B. 3
- C. 1
- D. 0

24. Can an SVM be used to achieve 100% training accuracy on the following 2D data set [([0, 1], 1), ([1, 0], 1), ([0, 0], 1), ([-2, 2], 0), ([2, 2], 0), ([-2, -2], 0), ([2, -2], 0)]?

A. Yes, but only if the data is normalized

B. No, because the data is not linearly separable

C. Yes, by using the kernel trick

D. No, because the dataset is imbalanced

25. Which of the following neuron activation is the result of the softmax activation function?

A. [0.6, 0.2, 0.2]

B. [0.5, 0.2, 0.2]

C. [0.6, 0.2, 0.3]

D. [0.6, -0.2, 0.2]

26. How many neighbors should you consider in order to obtain the best result from a KNN classifier on the test set?

A. 1

B. 3				
C. 7				
D. It depends on the prob	lem and should be determir	ned by means of validation		
regressor with k = 3 and	the test example t = [1, 2, 0 metric = L1 (Manhattan c , 1], [2, 9, 6]], Y = [0.3, 0.6	listance) given the trainin	_	
A. 0.6	B. 0.55	C. 0.65	D. 0.1	
28. What will be the shapstride=1 and no padding	pe of the activation maps y to a 16x16 image?	if we apply a 5x5 convolu	tional filter with	
A. 14x14	B. 12x12	C. 18x18	D. 16x16	
• •	has the following metrics negatives)=30. What is th	• •	•	
A. P=50%, R=75%				
B. P=75%, R=50%				
C. P=10%, R=50%				
D. P=30%, R=75%				
	can achieve 100% training), 10], 1), ([5, 4], 0), ([6, 5],	-	_	
A. Cosine				
B. None of the answers				
C. L2				
D. L1				
31. What is the value of the Mean Absolute Error function if the ground-truth labels are y = [6, 8, -9, 5] and the predicted labels are y_hat = [6.5, 7.2, 1, 7]?				
A. 13.3	B. 3.325	C. 3.5	D. 13.5	
32. What is the output of neuron having sign activation for the input $x = [1, -1]$, if the				
weights are W = [-1, 2], E		0.0	D 0	
A. 1	B1	C. 2	D. - 2	

33. What is the la				
A. 4	B. 3		C. 2S	D. 1
34. What is the re 0.5], [0.3, 0.6]] (3	_		nax scaling to this	s data [[0.1, 0.4], [0.2,
A. [[0.0, 0.5], [0.25	, 0.75], [0.5, 1.0]]			
B. [[0.1, 0.4], [0.2,	0.5], [0.3, 0.6]]			
C. [[0.0, 0.4], [0.25	, 0.5], [0.5, 0.6]]			
D. [[0.0, 0.0], [0.5,	0.5], [1.0, 1.0]]			
35. Which classifi	ier can achieve t	:he best performa	ance on a e-mail s	spam classification task?
A. A Neural Netwo	rk with three laye	rs		
B. Depends on pro	blem details and	should be determ	ined by means of	validation
C. An SVM with RE	3F kernel			
D. An SVM with lin	ear kernel			
36. What will be the stride=2 to a 32x3	•	•	if we apply a 2x2	max pooling with
A. 16x16	B. 32x32	C. 14x14	D. 28x28	
37. Calculate the y_true=[10, 1, 9, 4	•	•	aving weights=[3,	2], alpha=0.1,
A. 36.23	B. 23.36	C. 23.00	D. 0.10	
38. Which of the f	ollowing is equi	valent to a single	e artificial neuron	without activation?
A. A KNN classifier	with 3 neighbors	;		
B. A Naive Bayes	classifier			
C. A neural networ	k with no activation	ons		
D. An SVM with po	lynomial kernel			
_	.26], and the foll	owing validation	losses for each e	s for each epoch [0.60, epoch [0.55, 0.43, 0.27,

A. Neither	B. Overffiting	C. Both	D. Underfitting	
	the input x = [1, -2],		len units and 1 output unit hav • W1 = [-0.5, 3, -2; 2, -1, 0], B1 =	•
A. 1	B. 4.5	C. 0	D. 8	
41. What is the	value of PReLU(x) -	· parametric ReL	J, where alpha=0.1 and x=-0.2?	?
A1	B. 0	C. 0.002	D0.02	
			.4], their gradients are=[-2.4, -1 he weights update operation?	.2], and
A. [0.52, 0.44]				
B. [0.44, 0.52]				
C. [0.44, 0.44]				
D. [0.52, 0.52]				
	output of SVM clas d the bias is b = 0.5?	-	t X = [0.1, -2, -5], if the weights	are W =
A. 2	B. 0	C. 1	D1	
	re [-2, -3, -1], the gro		regression model if the predicate [-2, -3, -2.5], the wights are	
A. 0.85	B. 0.75	C. 0.22	D. 0.95	
45. What is the (activation fun		ptron if input= [2	.4, 3.0], weights= [-0.5, 0.2], bia	ıs=1.0

C. 0

D. -1

A. 1

B. 2.2