

Finding Things: Image Parsing with Regions and Per-Exemplar Detectors

Joseph Tighe, University of North Carolina at Chapel Hill

Svetlana Lazebnik, University of Illinois at Urbana Champaign

Overview

We present a system for image parsing aimed at achieving broad coverage across hundreds of object categories, many of them sparsely sampled. The system combines region-level features with per-exemplar sliding window detectors. Region-level features are highly effective in identifying "stuff" categories (sky, road, building, etc.) but are quite bad at localizing "things" (car, person, sign, etc.). Conversely, sliding window detectors can reliably localize "things" but have a hard time with "stuff."

Dataset Overview

	SIFT Flow 2,488 training images 200 test images 33 class labels		LM+SUN 45,176 training images 500 test images 232 class labels		CamVid 468 training images 233 test images 11 class labels	
	Per-Pixel	Per-Class	Per-Pixel	Per-Class	Per-Pixel	Per-Class
Detector ML	65.1	25.8	33.0	14.1	61.2	45.5
Detector SVM	62.5	25.4	46.1	12.0	61.4	47.0
Detector SVM MRF	71.1	26.7	52.5	11.3	63.8	47.3
Region ML	74.1	30.2	51.5	7.5	82.7	51.2
Region SVM	75.0	35.9	56.3	6.7	81.4	55.7
Region SVM MRF	77.7	32.8	58.3	5.9	83.5	55.7
Reg.+Thing SVM	74.4	36.9	58.5	14.1	82.4	60.0
Reg.+Thing SVM MRF	77.5	35.7	60.0	12.9	84.2	59.5
Combined SVM	75.6	41.1	59.6	15.5	82.3	62.1
Combined SVM MRF	78.6	39.2	61.4	15.2	84.0	62.2

SIFT Flow Dataset

SIFT Flow	Per-Pixel	Per-Class
Combined MRF	78.6	39.2
Tighe and Lazebnik 2013	77.0	30.1
Liu et al. 2011	76.7	N/A
Farabet et al. 2012	78.5	29.6
Farabet et al. 2012 balanced	74.2	46.0
Eigen and Fergus 2012	77.1	32.5
Myeong et al. 2012	77.1	32.3

System Description

At training time, we train HOG based per-exemplar detectors (Malisiewicz et al. 2011), and compute the necessary features for our Superparsing system (Tighe and Lazebnik 2010).

Parsing pipeline:

- Obtain a retrieval set of globally similar training images
- Region based data term ($E_{\rm R}$) is computed using our Superparsing system
- Detector based data term $(E_{\rm D})$:
 - Run per-exemplar detectors for exemplars in the retrieval set
 - Transfer masks from all detections above a set detection threshold to test image
 - Detector data term is computed as the sum of these masks scaled by their detection score
- Combine these two data terms by training a SVM on the concatenation of $E_{\rm D}$ and $E_{\rm R}$
- Smooth the SVM output (E_{SVM}) using a MRF:

 $J(\mathbf{c}) = \sum_{p_i \in I} \max[0, M - E_{\text{SVM}}(p_i, c_i)] + \lambda \sum_{(p_i, p_j) \in \epsilon} E_{\text{smooth}}(c_i, c_j)$

An illustration of the generation of our detector based data term.

