#### LEC019 MAB I

#### VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

# Basic RL for combining learning and decisions

Multi-Armed Bandit Problem



#### **MAB**

- Different machine generates different random rewards
- Gambler decides which slot machine to play with each token
- Maximize reward (\$\$)











#### Online decision-making: learning while doing

- Online decision-making involves a fundamental choice:
  - Exploration: Gather more information
  - Exploitation: Make the best decision given current information



The best long-term strategy may involve short-term sacrifices







It turns out



always pays \$5/round



It turns out



always pays \$5/round





It turns out



always pays \$5/round





pays **\$100** a quarter of the time (**\$25**/round on average)

# A/B Testing

- Exploration: Gather more information about which design is better
- Exploration: Show the best design to the customer



## Revenue Management

- Retailers are interested in finding an optimal (pricing) policy to max revenue
- Unknown relationship between price and customer's purchasing decision (demand distribution)
  - Exploration: Gather more information about customers behavior using different prices
  - Exploitation: Make the best price based on the current information





### **Inventory Management**

- Retailers are interested in finding an optimal (ordering) policy to min cost
- Unknown demand distribution (can only observe sales censored demand)
  - Exploration: Order more to find out about true demand distribution
  - Exploitation: Order just right to minimize the cost



#### Other Applications

- Clinical trials
- Recommender systems
- Advertising: what ad to put on a web-page?
- Auctions
- Financial portfolio design
- Crowdsourcing

### Many algorithms for MAB



 $\epsilon$ -greedy algorithm

- Upper confidence bound (UCB)
  - Add confidence bonus to the estimated mean
  - If the estimator is reliable, add less; if not, add more



$$i_t = \arg\max\left[\hat{\mu}_i + \sqrt{\frac{c\log t}{n_i}}\right]$$

$$P\{| ilde{p}-p|\leq \delta\}\geq 1-2e^{-2n\delta^2}$$

当  $\delta$  取值为  $\sqrt{2\ln T/n}$  时 (其中T表示有T个客人,n表示菜被吃过的次数),可以得到

$$P\{|\tilde{p}-p| \leq \sqrt{2\ln T/n}\} \geq 1 - \frac{2}{T^4}$$

- Thompson sampling
  - Bayesian setup with a prior distribution over reward parameters
  - Choose the auction that maximizes the expected reward under posterior

### Online Network RM using TS

- $\sim$ \$300B industry with  $\sim$ 10% annual growth over the last 5 years
  - IBISWorldUS Industry Report; excludes online sales of traditionally brick & mortar stores









- Online retailers have additional information as compared to brick & mortar retailers, e.g. real-time customer purchase decisions (buy / no buy)
  - How can we use this information to develop a more effective revenue management strategy?

## Setting

- Finite selling horizon of T periods
  - One customer arrives per period
  - Sequentially observe customer purchase decisions
- Finite set of prices; i-th price denoted by  $p_i$



- Unknown mean demand per price ("purchase probability")  $d_i$
- Given unlimited inventory and known demand, select price with highest revenue  $= p_i \times d_i$
- Challenges: unknown demand
- Exploration vs. Exploitation Tradeoff

- Retailer decides...
  - Which price to offer to a customer
  - How many times to offer each price
  - In what order to offer prices to customers
- · Learns demand at each price to max revenue













- Customer arrives
- 2. Retailer samples  $\theta_1$  and  $\theta_2$  from current distributional estimation of  $d_1$  and  $d_2$
- 3. Retailer offers price that maximizes  $p_i\theta_i$
- 4. Customer makes purchase decision (according to  $d_i$ )
- 5. Retailer observes purchase decision and updates demand estimation

$$\hat{d}_2 \sim Beta(1,1)$$
  
True (unknown)  $d_2 = 0.3$ 







 $\hat{d}_1 \sim Beta(1,1)$ True (unknown)  $d_1 = 0.6$ 





 $\hat{d}_2 \sim Beta(1,1)$ True (unknown)  $d_2 = 0.3$ 



 $\hat{d}_2 \sim Beta(1, 1 + 1)$ True (unknown)  $d_2 = 0.3$ 



Customer does not buy item 2













 $\hat{d}_2 \sim Beta(1,2)$ True (unknown)  $d_2 = 0.3$ 

update





Customer buys item 1

#### RM-MAB: 2 Price Example

As each price is offered more times...

- Beta pdf converges to reflect true mean demand
- Will choose optimal price with high probability



 $\hat{d}_1 \sim \text{Beta}(1 + \# \text{"buy"}, 1 + \# \text{"no buy"})$ True (unknown)  $d_1 = 0.6$ 



 $\hat{d}_2 \sim \text{Beta}(1 + \text{# "buy"}, 1 + \text{# "no buy"})$ True (unknown)  $d_2 = 0.3$ 

# **Advantages of Thompson Sampling**

- Empirical and theoretical results show it's a highly competitive algorithm for unlimited inventory
- Easy to implement and understand
- Non-parametric



Continuous exploration & exploitation

#### How do we incorporate inventory constraints?

#### **Key Tradeoffs:**

- · Exploration vs. Exploitation
- Explore at the cost of running out of inventory



## RM-with inventory constraint

- 1. Customer arrives
- 2. Retailer samples  $\theta_1$  and  $\theta_2$
- 3. Retailer solves a deterministic LP to identify the optimal fraction of remaining customers to offer  $p_1$  and  $p_2$ , using
  - $\theta_1$  and  $\theta_2$
  - Remaining unsold inventory & customers
- 4. Retailer offers price  $p_i$  with probability based on fraction found in Step 3
- 5. Customer makes purchase decision
- 6. Retailer observes decision and updates  $\hat{d}_i$

## RM-with inventory constraint

 $x_i = \text{fraction of remaining customers } (T-t) \text{ to offer price } p_i$ 





$$\max_{x_1, x_2} \sum_{T-t} p_1 \theta_1 x_1 + p_2 \theta_2 x_2$$

$$s.t. x_1 + x_2 \le 1$$

$$(T-t)(\theta_1x_1+\theta_2x_2)\leq Inv(t)$$

$$x_1, x_2 \ge 0$$

maximize revenue over remaining customers

fraction of remaining customers  $\leq 1$ 

expected inventory sold is upperbounded by remaining inventory



### RM-with inventory constraint



Regret = E[Revenue of Optimal Policy with Known Demand] – E[Revenue of Algorithm]

≤ Upper Bound on Optimal Policy –
E[Revenue of Algorithm]

#### <u>Theorem</u>

Suppose the LP of the underlying true demand (i.e. benchmark) is nondegenerate. Then, for the modified Thompson Sampling with Inventory Algorithm,

$$Regret(T) \le O(\sqrt{T} \log T \log \log T) = \tilde{O}(\sqrt{T})$$