

### Journal of Essential Oil Research



ISSN: 1041-2905 (Print) 2163-8152 (Online) Journal homepage: https://www.tandfonline.com/loi/tjeo20

# Chemical composition of the aliphatic compounds rich essential oil of *Hypericum japonicum* Thunb. ex Murray from India

Ram S. Verma , Rajendra C. Padalia , Amit Chauhan , Chandan Singh Chanotiya & Anju Yadav

**To cite this article:** Ram S. Verma, Rajendra C. Padalia, Amit Chauhan, Chandan Singh Chanotiya & Anju Yadav (2012) Chemical composition of the aliphatic compounds rich essential oil of *Hypericum japonicum* Thunb. ex Murray from India, Journal of Essential Oil Research, 24:6, 501-505, DOI: 10.1080/10412905.2012.728082

To link to this article: <a href="https://doi.org/10.1080/10412905.2012.728082">https://doi.org/10.1080/10412905.2012.728082</a>

|                | Published online: 23 Oct 2012.            |
|----------------|-------------------------------------------|
|                | Submit your article to this journal 🗷     |
| ılıl           | Article views: 332                        |
| Q <sup>L</sup> | View related articles ☑                   |
| 4              | Citing articles: 3 View citing articles 🗗 |



## Chemical composition of the aliphatic compounds rich essential oil of *Hypericum japonicum*Thunb. ex Murray from India

Ram S. Verma<sup>a</sup>\*, Rajendra C. Padalia<sup>a</sup>, Amit Chauhan<sup>a</sup>, Chandan Singh Chanotiya<sup>b</sup> and Anju Yadav<sup>b</sup>

<sup>a</sup>CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Pantnagar, Udham Singh Nagar, Uttarakhand, India; <sup>b</sup>CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India

(Received 7 August 2012; final form 10 August 2012)

Hydro-distilled essential oil of the aerial parts of *Hypericum japonicum* Thunb. ex Murray (Hypericaceae), grown in northern India was analyzed by gas chromatography (GC) and gas chromatography—mass spectrometry (GC–MS). A total of seventy constituents representing 93.6% of the total composition have been identified. Major constituents of the essential oil were 2-methyl octane (24.9%), *n*-nonane (21.4%), (2*Z*)-nonenol (16.5%), *n*-decanal (8.2%) and alloaromadendrene epoxide (3.3%). The characteristic of the *H.japonicum* essential oil was the presence of higher amount of aliphatic compounds (82.5%) compared with terpenoids.

Keywords: Hypericum japonicum; Hypericaceae; essential oil composition; 2-methyl octane; n-nonane

#### Introduction

The genus *Hypericum* belongs to Hypericaceae (Clusiaceae) family and consists of 460 species, distributed chiefly in the temperate regions of the world and about twenty-five species occur in India (1, 2). Numerous *Hypericum* species are used as medicine by the inhabitants in one way or the other due to their therapeutic efficacy. Amongst the species, *Hypericum perforatum* is most popular today in different countries of the world especially as an antidepressant (3). Besides *H. perforatum*, other species of the genus are also economically important and are used as fodder, fuel, dye and for medicinal purposes (4).

Hypericum japonicum Thunb. ex Murray, commonly known as 'Pikarichar' in India, another member of the genus, is an annual decumbent or prostrate herb occasionally found growing near rice fields, ditches, marshes, grasslands and in waste lands from sea level up to 3000 m (1). Bioactive compounds, phloroglucinol derivatives sarothralen A, B, C, D and G, have been isolated from *H. japonicum*. The antimicrobial activities of these compounds were comparable with or greater than that of streptomycin against the Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and the acid-fast bacterium (Mycobacterium smegmatis) (5). The entire herb of *H. japonicum*, named 'Tianjihuang' in China, has been widely used for the treatment of bacterial diseases, infectious hepatitis, acute and chronic hepatitis, gastrointestinal disorder, internal hemorrhage and tumor. It has also been noted as hepatoprotective in rats (6–8).

Several studies have been published in recent years on essential oil composition of different *Hypericum* species from different parts of the world. The major constituents of the essential oils of genus *Hypericum* are aliphatic compounds and terpenoids (9–20).

A literature survey revealed that no attempt has been made to date to investigate the volatile phytomolecules of *H. japonicum* growing in India. Therefore, the present investigation reports a detailed gas chromatography (GC) and GC–mass spectrometry (GC–MS) profile of *H. japonicum* essential oil from Kumaon region of western Himalaya, India.

#### **Experimental**

#### Plant material

Hypericum japonicum was collected from wild (Purara, Bageshwar western Himalaya) during 2005 and transplanted in the experimental field of the Central Institute of Medicinal and Aromatic Plants, Research Centre, Purara, for domestication. The plant was identified by botany department of Centre (Voucher Specimen: CIMPANT-294). The site is located at an altitude of 1250 m in the Kattyur valley, western Himalaya. Climatologically, it is categorized as a temperate zone. Fresh aerial parts of the H. japonicum were collected on 24 June 2009 at full flowering stage from a domesticated population.

#### Isolation of the essential oil

The essential oil of the fresh aerial parts of *H. japonicum* was extracted by hydrodistillation for 3 hours

<sup>\*</sup>Corresponding author. Email: rswaroop1979@yahoo.com

502 R.S. Verma et al.

Table 1. Essential oil composition of *Hypericum japonicum* from Uttarakhand, India.

| Compound                       | KI <sup>a</sup> | KI <sup>b</sup> | % of identified compound |
|--------------------------------|-----------------|-----------------|--------------------------|
| (E)-Hex-2-enal                 | 853             | 855             | tr                       |
| 2-Methyl octane                | 865             | 860             | 24.9                     |
| <i>n</i> -Nonane               | 904             | 900             | 21.4                     |
| α-Pinene                       | 936             | 939             | tr                       |
| Camphene                       | 945             | 954             | 0.1                      |
| 3-Methyl nonane                | 970             | 971             | 1.3                      |
| $\beta$ -Pinene                | 980             | 979             | tr                       |
| Myrcene                        | 989             | 990             | tr                       |
| Decane                         | 1002            | 1000            | 0.1                      |
| $\alpha$ -Phellandrene         | 1004            | 1002            | 0.1                      |
| <i>p</i> -Cymene               | 1026            | 1024            | 0.5                      |
| Limonene                       | 1030            | 1029            | 0.2                      |
| 1,8-Cineole                    | 1035            | 1031            | tr                       |
| $(Z)$ - $\beta$ -Ocimene       | 1039            | 1037            | tr                       |
| (E)-β-Ocimene                  | 1048            | 1050            | tr                       |
| γ-Terpinene                    | 1060            | 1059            | 0.2                      |
| 2-Methyl decane                | 1064            | 1067            | 0.4                      |
| (E)-2-Nonen-1-ol               | 1069            | _               | 0.3                      |
| 2-Nonanone                     | 1091            | 1090            | tr                       |
| <i>n</i> -Undecane             | 1102            | 1100            | 1.9                      |
| Nonanal                        | 1105            | 1100            | 0.2                      |
| (2Z)-Nonenol                   | 1172            | 1166            | 16.5                     |
| <i>n</i> -Nonanol              | 1177            | 1169            | tr                       |
| α-Terpineol                    | 1186            | 1188            | tr                       |
| (4Z)-Decenal                   | 1193            | 1194            | 0.1                      |
| n-Decanal                      | 1208            | 1201            | 8.2                      |
| (3Z)-Hexenyl-2-methylbutanoate | 1235            | 1232            | tr                       |
| (3Z)-Hexenyl-3-methylbutanoate | 1239            | 1235            | 3.0                      |
| 3-Undecanone                   | 1257            | 1255            | 0.1                      |
| n-Decanol                      | 1270            | 1269            | 0.5                      |
| 2-Undecanone                   | 1294            | 1294            | 0.1                      |
| <i>n</i> -Tridecane            | 1304            | 1300            | 0.3                      |
| 1,8-Octanediol                 | 1346            | 1341            | 0.8                      |
| Decanoic acid                  | 1373            | 1366            | 0.5                      |
| (2E)-Undecenol                 | 1378            | 1367            | 0.1                      |
| $\beta$ -Cubebene              | 1387            | 1388            | tr                       |
| Sibirene                       | 1396            | 1400            | 0.3                      |
| Dodecanal                      | 1409            | 1408            | 1.3                      |
| $\alpha$ -Cedrene              | 1411            | 1411            | tr                       |
| (E)-Caryophyllene              | 1421            | 1419            | 0.3                      |
| $\alpha$ -Aromadendrene        | 1438            | 1439            | 0.2                      |
| $\alpha$ -Humulene             | 1454            | 1454            | 0.5                      |
| $(E)$ - $\beta$ -Farnesene     | 1457            | 1456            | tr                       |
| allo-Aromadendrene             | 1461            | 1460            | tr                       |
| n-Dodecanol                    | 1467            | 1470            | 0.3                      |
| 10-epi-β-Acoradiene            | 1474            | 1475            | 0.4                      |
| Germacrene D                   | 1485            | 1481            | 0.2                      |
| (Z)-Cadina-1,4-diene           | 1494            | 1495            | 0.1                      |
| 10-Undecenol acetate           | 1498            | 1498            | 0.1                      |
|                                |                 |                 |                          |
| β-Himachalene                  | 1502<br>1507    | 1500            | tr<br>0.1                |
| $(E,E)$ - $\alpha$ -Farnesene  | 1507            | 1505<br>512     | 0.1                      |
| δ-Amorphene                    |                 |                 | tr                       |
| γ-Cadinene<br>\$ Cadinana      | 1513            | 1513            | tr                       |
| δ-Cadinene                     | 1523            | 1523            | tr                       |
| α-Calacorene                   | 1543            | 1545            | tr                       |
| (E)-Nerolidol                  | 1564            | 1563            | 0.5                      |
| Spathulenol                    | 1582            | 1578            | tr                       |
| Caryophyllene oxide            | 1584            | 1583            | 0.1                      |
| Globulol                       | 1591            | 1590            | 0.1                      |
| Humulene epoxide II            | 1610            | 1608            | 0.3                      |

(Continued)

Table 1. (Continued).

| Compound                   | $KI^{a}$ | $KI^b$ | % of identified compound |
|----------------------------|----------|--------|--------------------------|
| 10- <i>epi-</i> γ-Eudesmol | 1625     | 1623   | tr                       |
| 1-epi-Cubebol              | 1630     | 1628   | 0.2                      |
| γ-Eudesmol                 | 1634     | 1632   | 0.2                      |
| allo-Aromadendrene epoxide | 1641     | 1641   | 3.3                      |
| $\beta$ -Eudesmol          | 1651     | 1650   | tr                       |
| α-Cadinol                  | 1656     | 1654   | 0.1                      |
| $(Z)$ - $\alpha$ -Santalol | 1673     | 1675   | 1.0                      |
| α-Bisabolol                | 1685     | 1685   | 1.0                      |
| (2Z,6E)-Farnesol           | 1722     | 1723   | 1.1                      |
| Octadecane                 | 1800     | 1800   | 0.1                      |
| Grouped components         |          |        |                          |
| Aliphatics                 | 82.5     |        |                          |
| Terpenoids                 |          |        | 11.1                     |
| Monoterpene hydrocarbons   | 1.1      |        |                          |
| Sesquiterpene hydrocarbons | 2.1      |        |                          |
| Oxygenated monoterpenes    | tr       |        |                          |
| Oxygenated sesquiterpene   | 7.9      |        |                          |
| Identified compounds       | 93.6     |        |                          |

Notes:  $K1^a$ , Kovat's Index (experimental) on DB-5 column relative to n-alkane ( $C_8$ – $C_{25}$ );  $K1^b$ , Kovat's Index literature (Adams, 2007); tr: trace (component <0.05%).



Figure 1. Chromatogram (gas chromatography/flame ionization detector) of *Hypericum japonicum* essential oil from India (Peaks; 1: 2-methyl octane, 2: *n*-nonane, 3: α-pinene, 4: camphene, 5: 3-methyl nonane, 6: *p*-cymene, 7: limonene, 8: γ-terpinene, 9: 2-methyl decane, 10: (E)-2-nonen-1-ol, 11: n-undecane, 12: nonanal, 13: (2Z)-nonenol, 14: n-nonanol, 15: α-terpineol, 16: (4Z)-decenal, 17: n-decanal, 18: (3Z)-hexenyl-3-methylbutanoate, 19: n-decanol, 20: 2-undecanone, 21: n-tridecane, 22: 1,8-octanediol, 23: decanoic acid, 24: (2E)-undecenol, 25: sibirene, 26: dodecanal, 27: (E)-caryophyllene, 28: α-aromadendrene, 29: α-humulene, 30: n-dodecanol, 31: 10-*epi-β*-acoradiene, 32: (E)-nerolidol, 33: allo-aromadendrene epoxide, 34: (Z)-α-santalol, 35: α-bisabolol, 36: (2Z,6E)-farnesol). For other minor/trace constituents, please see Table 1.

504 R.S. Verma et al.

using a Clevenger apparatus (21). The percentage essential oil content (%v/w) was estimated on a fresh weight basis. The oil sample obtained was dehydrated over anhydrous sodium sulfate and kept in a cool and dark place before analyses.

#### Gas chromatography

The GC analysis of the oil samples was carried out on Perkin–Elmer Auto XL GC, fitted with an Equity-5 column ( $60 \,\mathrm{m} \times 0.32 \,\mathrm{mm}$  i.d., film thickness  $0.25 \,\mu\mathrm{m}$ ; Supelco Bellefonte, PA, USA). The oven column temperature ranged from 70 to  $250^{\circ}\mathrm{C}$ , programmed at  $3^{\circ}\mathrm{C/minute}$ , with initial and final hold time of 2 minutes, using  $\mathrm{H_2}$  as the carrier gas at  $1.0 \,\mathrm{mL/minute}$ , a split ratio of 1:30, an injection size of  $0.03 \,\mu\mathrm{L}$  neat, and injector and detector (FID) temperatures were 250 and  $280^{\circ}\mathrm{C}$ , respectively.

#### Gas chromatography/mass spectrometry

GC–MS analysis of the essential oil sample was carried out on a Perkin–Elmer AutoSystem XL GC interfaced with a Turbomass Quadrupole mass spectrometer fitted with an Equity-5 fused-silica capillary column ( $60 \,\mathrm{m} \times 0.32 \,\mathrm{mm}$  i.d., film thickness  $0.25 \,\mathrm{\mu m}$ ; Supelco Bellefonte, PA, USA). The oven temperature program was the same as described in capillary GC; injector, transfer line and source temperatures were 250°C; injection size  $0.03 \,\mathrm{\mu L}$  neat; split ratio 1:30; carrier gas He at  $1.0 \,\mathrm{mL/minute}$ ; ionization energy  $70 \,\mathrm{eV}$ ; mass scan range  $40{-}450 \,\mathrm{amu}$ .

#### Identification of compounds

Identification of the essential oil constituents was done on the basis of retention time, and Kovat index, using a homologous series of *n*-alkanes (C<sub>8</sub>–C<sub>25</sub> hydrocarbons, Polyscience Corp., Niles, IL, USA) under identical experimental conditions, co-injection with standards (Aldrich and Fluka) or known essential oil constituents, mass spectra library search (NIST/EPA/NIH version 2.1 and *Wiley Registry of Mass Spectral Data*, 7th edition) and by comparing the mass spectral and retention data with literature (22). The relative amounts of individual components were calculated based on the GC peak area (FID response) without using a correction factor.

#### Results and discussion

The essential oil yield in fresh aerial parts of H.japoni-cum was 0.22% ( $\pm$ 0.01). The resulted essential oil was analyzed by GC and GC-MS. A total of seventy constituents, forming 93.6% of the total oil composition were identified (Table 1). A chromatogram (GC/FID) of the essential oil is shown in Figure 1. The oil was dominated by aliphatic compounds (82.5%) followed by oxygenated sesquiterpenes (7.9%) and sesquiterpene

hydrocarbons (2.1%). Major aliphatic components of this essential oil were 2-methyl octane (24.9%), n-nonane (21.4%), (2Z)-nonenol (16.5%), n-decanal (8.2%), (3Z)-hexenyl-3-methylbutanoate (3.0%), n-undecane (1.9%), 3-methyl nonane (1.3%), dodecanal (1.3%) and 1,8-octanediol (0.8%). Oxygenated sesquiterpenes noted in higher amount in this essential oil were allo-aromadendrene epoxide (3.3%), (2Z,6E)-farnesol (1.1%), (Z)- $\alpha$ -santalol (1.0%),  $\alpha$ -bisabolol (1.0%) and (E)-nerolidol (0.5%). Further, representative sesquiterpene hydrocarbons of the oil were  $\alpha$ -humulene (0.5%), 10-epi- $\beta$ -acoradiene (0.4%) and (E)-caryophyllene (0.3%).

Essential oil composition of the different Hypericum species has been investigated earlier from different parts of the world. In general, all the investigated taxa of genus Hypericum are characterized by the presence of higher amount of aliphatics or terpenoids. The species like H. hirsutum, H. caprifoliatum, H. foliosum, H. hircinum and H. undulatum are dominated by aliphatic compounds; however, H. perforatum, H. alpinum, H. barbatum, H. rumeliacum, H. maculatum and so on are characterized by the presence of components of terpenoids group (2, 9, 12, 23). So far, essential oil composition of only one Hypericum species (H. perforatum) has been studied from India and it belongs to terpenoids ( $\alpha$ -pinene) group (10). However, H. japonicum, investigated in present study, showed similarity to Hypericum species rich in aliphatic compounds. The antimicrobial activity of the Hypericum essential oils is not attributed to aliphatic hydrocarbons (alkanes), because of their limited hydrogen capacity and water solubility (20, 25). However, the *H. japonicum* is being used for the treatment of several bacterial diseases, infectious hepatitis, gastrointestinal disorder and tumors (26). These activities are might be due to non-volatile compounds (xanthones, chromenes, flavanonols, dipeptide derivatives and phloroglucinol derivatives) present in H. japonicum (26).

#### Acknowledgements

We are thankful to the Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U.P., India for providing necessary facilities.

#### References

- R.D. Gaur, Flora of the District Garhwal, North-West Himalaya (with Ethnobotanical Notes). Trans Media, Srinagar (Garhwal), India (1999).
- A. Bertoli, C. Cirak and J.A. Teixeira da Silva, Hypericum species as source of valuable essential oils. Med. Arom. Plant Sci. Biotech., 5, 29–47 (2011).
- 3. V. Butterweck, Mechanism of action of St John's wort in depression: What is known? CNS Drugs, 17, 539–562 (2003).
- 4. E. Ernst, St. John's wort, an anti-depressant? A systematic, criteria-based review Phytomedicine, 2, 67–71 (1995).

- I.P. Singh and S.B. Bharate, *Phloroglucinol compounds* of natural origin. Nat. Prod. Rep., 23, 558–591 (2006).
- R.Y. Fang and Z.Y. Shi, Antihepatotoxic activity of some traditional Chinese medicines on carbon tetrachloride and d-Garactosamine-induced cytotoxity in primary cultured rat hepatocytes. J. Mod. Appl. Pharm., 1, 5–8 (1995).
- 7. Q.X. Li, R.X. Peng and P. Gao, Hepatoprotective effect of Tianjihuang injection against APAP-induced hepatic toxicity in mice. Chin. Pharm. J., 27, 472–474 (1992).
- Q.X. Li, Y.S. Wang and R.X. Peng, Hepatoprotective effect of Tianjihuang injection against tetrachlorideinduced hepatic injuries in mice. West China J. Pharm. Sci., 7, 146–149 (1992).
- C. Mathis and G. Ourisson, Chemotaxonomic study of the genus Hypericum. III. Distribution of saturated hydrocarbons and monoterpenes in the essential oils of Hypericum. Phytochem., 3, 133–141 (1964).
- P. Weyerstahl, U. Splittgerber, H. Marschall and V.K. Kaul, Constituents of the leaf essential oil of Hypericum perforatum L. from India. Flav. Fragr. J., 10, 365–370 (1995).
- B. Gudžić, J.M. Nedeljković, S. Đorđević and J.J. Čomor, Composition and anti-microbial activity of essential oil of Hyperici herb (Hypericum perforatum L.) from Vlasina Region. Facta Universitatis, 1, 47–51(1997).
- P.A.G. Santos, A.C. Figueiredo, J.G. Barroso, L.G. Pedro and J.J.C. Scheffer, Composition of the essential oil of Hypericum foliosum Aiton from five Azorean islands. Flav. Fragr. J., 14, 283–286 (1999).
- B. Gudžić, S. Dorđević, R. Palic and G. Stojanovic, *Essential oil of Hypericum olympicum L. and Hypericum perforatum L.* Flav. Fragr. J., 16, 201–203 (2001).
- J. Yu, L. Gu and X. Zhou, Study on chemical constituents in essential oil of stems, flowers and leaves of Hypericum japonicum. Zhongguo Yaoxue Zazhi (Chinese), 36, 199–200 (2001).
- A. Bertoli, F. Menichini, M. Mazzetti, G. Spinelli and I. Morelli, *Volatile constituents of the leaves and flowers of* Hypericum triquetrifolium. Flav. Fragr. J., 18, 91–94 (2003).

- B. Gudžić, S. Dorđević, J. Nedeljković and A. Šmelcerović, Essential oil composition of Hypericum atomarium Boiss. Hemijska Industrija, 58, 413–415 (2004).
- D. Mockute, G. Bernotiene and A. Judzentiene, *The essential oils with dominant germacrene D of Hypericum perforatum L. growing wild in Lithuania*. J. Essent. Oil Res., 20, 128–131 (2007).
- S.L. Crockett, B. Demirci, K.H.C. Başer and I.A. Khan, *Analysis of the volatile constituents of five African and Mediterranean* Hypericum L. (Clusiaceae, Hypericoideae) species. J. Essent. Oil Res., 19, 302–306 (2007).
- K. Hosni, K. Msaada, M. Ben Taarit, O. Ouchikh, M. Kallel and B. Marzouk, *Essential oil composition of* Hypericum perfoliatum *L. and* Hypericum tomentosum *L. growing wild* in *Tunisia*. Ind. Crops Prod., 27, 308–314 (2008).
- F. Maggi, C. Cecchini, A. Cresci, M.M. Coman, B. Tirillini, G. Sagratini, F. Papa and S. Vittori, Chemical composition and antimicrobial activity of the essential oils from several Hypericum taxa (Guttiferae) growing in central Italy (Appennino Umbro-Marchigiano). Chem. Biodiver., 7, 447–466 (2010).
- 21. J.F. Clevenger, *Apparatus for the determination of volatile oil.* J. Am. Pharm. Assoc., 17, 345–349 (1928).
- R.P. Adams, *Identification of Essential Oil Components* by Gas Chromatography/Mass Spectrometry. Allured Publishing Corp, Carol Stream, IL, USA (2007).
- A.B.F. Ferraz, R.P. Limberger, S.A.L. Bordignon, G.L. von Poser and A.T. Henriques, *Essential oil composition of six* Hypericum *species from southern Brazil*. Flav. Fragr. J., 20, 335–339 (2005).
- V. Saroglou, P.D. Marin, A. Rancic, M. Veljic and H. Skaltsa, Composition and antimicrobial activity of the essential oil of six Hypericum species from Serbia. Biochem. Syst. Ecol., 35, 146–152 (2007).
- G.S. Griffin, L.J. Markham and N.D. Leach, An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J. Essent. Oil Res., 12, 149–255 (2000).
- P. Fu, W.D. Zhang, T.Z. Li, R.H. Liu, H.L. Li, W. Zhang and H.S. Chen, A *New bisxanthone from* Hypericum japonicum *Thunb. ex Murray*. Chinese Chem. Let., 16, 771–773 (2005).