Problem Set 2 Solution

- 7. **Answer:** Since gcd(x,y,z) = 1, we exclude a case where x,y even where at least 2 is a common factor of x,y,z. If one of x,y is even and the other is odd then $z^2 = x^2 + y^2$ is odd $(z^2 = (2q-1)^2 + (2p)^2 = 4(q^2 q + p^2) + 1)$. If both x,y are odd numbers, $z^2 = 4(q^2 q + p^2 + p) + 2$, which implies z^2 is an even number. If z^2 is even, z is also even. If z is even then z^2 is a multiple of 4, but $z^2 = 4(q^2 q + p^2 + p) + 2$, which is not a multiple of four. It is not possible that x,y are odd numbers. Therefore, the only possible case is one of them is odd and the other is even, where z^2 is odd.
- 9. **Answer:** If $A = \emptyset$ then A contains zero elements and the power set (the set containing all subsets of A) contains 1 element (the set that contains the empty set. Assume it holds for n = k, i.e. $|A| = k \implies |P(A)| = 2^k$. This is $P(A) = \{b_1, b_2, \dots, b_{2^k}\}$, now consider $B = A \cup z$ where $z \notin A$, then |B| = k + 1. The only extra subsets of B compared to A are the ones that include z. I.e. $b_1 \cup z, b_2 \cup z, \dots, b_{2^k} \cup z$. We then have that $|P(B)| = 2 \cdot (2^k) = 2^{k+1}$.
- 11. **Answer:** Let $2^x + 2^{-x} = y$. Then we get $y^2 = 4^x + 4^{-x} + 2$. We can rewrite the given equation using the change of variable to

$$8(y^{2} - 2) - 54y + 101 = 0$$

$$8y^{2} - 54y + 85 = 0$$

$$(2y - 5)(4y - 17) = 0$$

$$y = \frac{2}{5} \text{ or } \frac{17}{4}$$

First let's look at the case where $y = \frac{2}{5}$. Let $z = 2^x$. Then we have

$$z + \frac{1}{z} = \frac{2}{5}$$
$$2z^2 - 5z + 2 = 0$$
$$(2z - 1)(z - 2) = 0$$

, which means x=-1,1. If we go through the same steps when $y=\frac{17}{4},$ then we can show x=-2,2.

- 12. **Answer:** Let's consider a sequence $\{x_n\}$ which converges to x. By the definition of a sequence's being convergent, given $\epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$, $d(x_n, x) < \epsilon$. In addition, for n < N, we can define $d_M = \max_{i=1,2,\dots,N-1} \{d(x_1,x), d(x_2,x), \dots, d(x_{N-1},x)\}$. Note that such maximum exsits because N-1 is finite. Then for all n, $d(x_n, x) \leq \max(\epsilon, d_M)$. We're done. (To be nicer, $d(x_n, 0) \leq d(x_n, x) + d(x, 0) \leq \max(\epsilon, d_M) + d(x, 0)$, and $\max(\epsilon, d_M) + d(x, 0)$ is finite.)
- 13. **Answer:** Based on the intuition $a_n b_n \to ab$, let's start with $|a_n b_n ab|$.

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|$$

$$\leq |a_n b_n - ab_n| + |ab_n - ab|$$

$$= |(a_n - a)b_n| + |a(b_n - b)|$$

$$\leq |a_n - a||b_n| + |a||b_n - b|$$

where the first inequality holds by the triangle inequality. From the previous question, we know that the convergent sequence b_n is bounded. Let's say $|b_n| < M$ by a sufficiently large M. For a given $\epsilon > 0$, we can fine a N_a s.t. $\forall n \geq N_a$, $|a_n - a| \leq \frac{0.5\epsilon}{M}$ and N_b s.t. $\forall n \geq N_b$, $|b_n - b| \leq \frac{0.5\epsilon}{|a|}$, $|a| \neq 0$. Then if we let $N = \max(N_a, N_b)$, we can get $|a_n - a||b_n| + |a||b_n - b| \leq \frac{0.5\epsilon}{M}M + |a|\frac{0.5\epsilon}{|a|} = \epsilon, \forall n \geq N, |a| \neq 0$. If |a| = 0, then $|a_n - a||b_n| + |a||b_n - b| = |a_n - a||b_n|$ so we only have to fine a N_a .

14. **Answer:** We can show that $\{a_n\} \to a$ using proof by contradiction. Let's assume that a_n does not converge to a, i.e. $\exists \epsilon$ s.t. $\forall N$, $\exists n \geq N$ s.t. $d(a_n, a) > \epsilon$. Then for N = 1, we can choose n_1 s.t. $d(a_{n_1}, a) > \epsilon$. Similarly, for $N = n_1 + 1$, $\exists n_2$ s.t. $d(a_{n_2}, a) > \epsilon$. By repeating this, we can construct a subsequence $\{a_{n_k}\}, k = 1, 2, 3, ...$ whose elements are all out of ϵ distance from a. Also, as the original sequence is bounded, this subsequence is bounded as well. Then by the Bolzano-Weierstrass theorem, there exists a convergent subsequence. But by the construction of this sequence $\{a_{n_k}\}$, this convergent subsequence does not converge to a. Contradiction.