Lecture 4: Static Competition

ECON 7510
Cornell University
Adam Harris

Slides draw upon lecture materials from Glenn & Sara Ellison (MIT).

Introduction

- Strategic interaction among firms involves many decision variables. They differ in the longevity of their effects.
- Today, we'll discuss the most short-run of these, focusing on the determination of prices and markups holding technologies and market structure fixed.
- We focus on markups because deadweight loss is an important welfare concern, but will also highlight other welfare considerations.
- We'll start with a quick review of classic models and then spend more time on the differentiated product demand models that are now most commonly used.

Competition with undifferentiated goods

Two models of competition for undifferentiated goods

1. Cournot competition: Quantity choice

2. Bertrand competition: Price choice

- N firms
- Inverse demand P(X) for homogeneous good
- Cost functions $c_i(x_i)$
- Firms simultaneously choose outputs $x_1, x_2, ..., x_N$. Price is $P(\sum_i x_i)$

- N firms
- Inverse demand P(X) for homogeneous good
- Cost functions $c_i(x_i)$
- Firms simultaneously choose outputs x_1, x_2, \dots, x_N . Price is $P(\sum_i x_i)$
- Question: Does this seem like a good representation of firms' choices?

- N firms
- Inverse demand P(X) for homogeneous good
- Cost functions $c_i(x_i)$
- Firms simultaneously choose outputs x_1, x_2, \dots, x_N . Price is $P(\sum_i x_i)$
- Question: Does this seem like a good representation of firms' choices? Is there a way we can interpret it that makes it more relevant?

- N firms
- Inverse demand P(X) for homogeneous good
- Cost functions $c_i(x_i)$
- Firms simultaneously choose outputs x_1, x_2, \dots, x_N . Price is $P(\sum_i x_i)$
- Question: Does this seem like a good representation of firms' choices? Is there a way we can interpret it that makes it more relevant?
- Literal interpretation might be appropriate for commodities like wheat, natural gas, iron ore.
- A more widely applicable interpretation: educed form for a situation where firms choose capacities of factories that will always run at full capacity.
- Not a go-to empirical model these days, but still potentially useful for thinking about the effects of competition/market power.

- N firms
- Inverse demand P(X) for homogeneous good
- Cost functions $c_i(x_i)$
- Firms simultaneously choose outputs x_1, x_2, \ldots, x_N . Price is $P(\sum_i x_i)$
- Question: Does this seem like a good representation of firms' choices? Is there a way we can interpret it that makes it more relevant?

Nash equilibrium FOC: If $(x_1^*, ..., x_N^*)$ is a NE then

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

Question: Does this FOC look familiar?

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

Question: Does this FOC look familiar?

A useful interpretation: *i* is a monopolist, facing the *residual demand curve*:

- Let $X_{-i} = \sum_{i \neq i} x_i$.
 - Then, let $\tilde{P}(x_i) = P(x_i + X_{-i})$.
 - Firm i's problem:

$$\max_{x_i} \left[\tilde{P}(x_i) - c_i(x_i) \right] x_i$$

- FOC:

$$\frac{\tilde{P}(x_i) - c'(x_i)}{\tilde{P}(x_i)} = -\tilde{P}'(x_i) \frac{x_i}{\tilde{P}(x_i)} = -\frac{1}{\tilde{\epsilon}}$$

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

- 1. Price exceeds the marginal cost of all firms with positive sales.
- 2. $L_i \equiv \frac{P c_i'(x_i^*)}{P} = -\frac{x_i^*}{X^*} \frac{1}{\epsilon}$. Markups roughly decline like 1/N.
- 3. The industry-wide Lerner index is $\frac{P-\sum_i \frac{x_i^*}{X^*} c_i'(x_i^*)}{P} = -\frac{H}{\epsilon}$, where $H = \sum_i \left(\frac{x_i^*}{X^*}\right)^2$ is the industry "Herfindahl Index".
- 4. **Question**: Can we think of *H* as a proxy for welfare?

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

- 1. Price exceeds the marginal cost of all firms with positive sales.
- 2. $L_i \equiv \frac{P c_i'(x_i^*)}{P} = -\frac{x_i^*}{X^*} \frac{1}{\epsilon}$. Markups roughly decline like 1/N.
- 3. The industry-wide Lerner index is $\frac{P-\sum_i \frac{x_i^*}{X^*} c_i'(x_i^*)}{P} = -\frac{H}{\epsilon}$, where $H = \sum_i \left(\frac{x_i^*}{X^*}\right)^2$ is the industry "Herfindahl Index".
- 4. **Question**: Can we think of *H* as a proxy for welfare? No. For example, in a symmetric model reducing one firm's cost raises welfare but also increases *H*.

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

- 1. Price exceeds the marginal cost of all firms with positive sales.
- 2. $L_i \equiv \frac{P c_i'(x_i^*)}{P} = -\frac{x_i^*}{X^*} \frac{1}{\epsilon}$. Markups roughly decline like 1/N.
- 3. The industry-wide Lerner index is $\frac{P-\sum_i \frac{x_i^*}{X^*} c_i'(x_i^*)}{P} = -\frac{H}{\epsilon}$, where $H = \sum_i \left(\frac{x_i^*}{X^*}\right)^2$ is the industry "Herfindahl Index".
- **4. Question**: Can we think of *H* as a proxy for welfare? No. For example, in a symmetric model reducing one firm's cost raises welfare but also increases *H*.
- 5. Question: Suppose firms are asymmetric. Is production efficient?

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

- 1. Price exceeds the marginal cost of all firms with positive sales.
- 2. $L_i \equiv \frac{P c_i'(x_i^*)}{P} = -\frac{x_i^*}{X^*} \frac{1}{\epsilon}$. Markups roughly decline like 1/N.
- 3. The industry-wide Lerner index is $\frac{P-\sum_i \frac{x_i^*}{X^*} c_i'(x_i^*)}{P} = -\frac{H}{\epsilon}$, where $H = \sum_i \left(\frac{x_i^*}{X^*}\right)^2$ is the industry "Herfindahl Index".
- 4. **Question**: Can we think of *H* as a proxy for welfare? No. For example, in a symmetric model reducing one firm's cost raises welfare but also increases *H*.
- 5. **Question**: Suppose firms are asymmetric. Is production efficient? No, since $c_i'(x_i^*) \neq c_j'(x_j^*)$.

$$\left[P\left(\sum_{i} x_{i}^{*}\right) - c_{i}'(x_{i}^{*})\right] + P'\left(\sum_{i} x_{i}^{*}\right) x_{i}^{*} = 0 \text{ for all } i \text{ with } x_{i}^{*} > 0$$

- 1. Price exceeds the marginal cost of all firms with positive sales.
- 2. $L_i \equiv \frac{P c_i'(x_i^*)}{P} = -\frac{x_i^*}{X^*} \frac{1}{\epsilon}$. Markups roughly decline like 1/N.
- 3. The industry-wide Lerner index is $\frac{P-\sum_i \frac{x_i^*}{X^*} c_i'(x_i^*)}{P} = -\frac{H}{\epsilon}$, where $H = \sum_i \left(\frac{x_i^*}{X^*}\right)^2$ is the industry "Herfindahl Index".
- 4. **Question**: Can we think of *H* as a proxy for welfare? No. For example, in a symmetric model reducing one firm's cost raises welfare but also increases *H*.
- 5. **Question**: Suppose firms are asymmetric. Is production efficient? No, since $c_i'(x_i^*) \neq c_i'(x_i^*)$.
- 6. Firm outputs are usually "strategic substitutes": $\frac{\partial BR_i}{\partial x_{-i}} < 0$. (Constant elasticity demand is one of the exceptions.) [Implicit Function Theorem]

- 2 firms (could be N)
- -X(p) is market demand function. Assume X(p) is weakly decreasing and pX(p) is bounded.
- Symmetric, constant marginal costs c
- Firms simultaneously announce prices. All demand goes to lowest price firms.

- 2 firms (could be N)
- -X(p) is market demand function. Assume X(p) is weakly decreasing and pX(p) is bounded.
- Symmetric, constant marginal costs c
- Firms simultaneously announce prices. All demand goes to lowest price firms.

Question: What is the unique Nash equilibrium?

- 2 firms (could be N)
- -X(p) is market demand function. Assume X(p) is weakly decreasing and pX(p) is bounded.
- Symmetric, constant marginal costs c
- Firms simultaneously announce prices. All demand goes to lowest price firms.

Question: What is the unique Nash equilibrium? $p_1^* = p_2^* = c$.

- 2 firms (could be N)
- -X(p) is market demand function. Assume X(p) is weakly decreasing and pX(p) is bounded.
- Symmetric, constant marginal costs c
- Firms simultaneously announce prices. All demand goes to lowest price firms.

Question: What is the unique Nash equilibrium? $p_1^* = p_2^* = c$. Bertrand is an "exemplifying theory." It illustrates forces using extreme assumptions that we would not see in practice.

- No product differentiation creates infinitely elastic firm-level demand
- Constant returns to scale with no capacity constraints
- One-shot interaction

With asymmetric costs, $c_1 < c_2$, an equilibrium is $p_1^* = p_2^* = c_2$ with all consumers purchasing from firm 1.

Competition with differentiated goods

- Continuum of consumers with types $\theta \sim U[0, 1]$ have unit demands
- Utility is $v t\theta p_1$ if buy from firm 1, $v t(1 \theta) p_2$ if buy from firm 2, and 0 if they don't buy.
- Constant marginal cost c
- Firms simultaneously announce p_1 , p_2

- Continuum of consumers with types $\theta \sim U[0,1]$ have unit demands
- Utility is $v t\theta p_1$ if buy from firm 1, $v t(1 \theta) p_2$ if buy from firm 2, and 0 if they don't buy.
- Constant marginal cost c
- Firms simultaneously announce p_1 , p_2

If v is sufficiently large relative to p_1 , p_2 , then all consumers will purchase from one firm or the other. The indifferent type has

$$v - t\theta - p_1 = v - t(1 - \theta) - p_2 \Rightarrow \theta = \frac{1}{2} + \frac{p_2 - p_1}{2t}$$

Assuming that equilibrium prices are sufficiently low relative to v so that this case applies:

$$BR_i(p_j) = \arg\max_{p} (p-c) \left(\frac{1}{2} + \frac{p_j - p}{2t}\right)$$

$$ext{FOC} \Rightarrow rac{1}{2} + rac{p_j - BR_i(p_j)}{2t} - rac{BR_i(p_j) - c}{2t} = 0$$

$$\Rightarrow BR_i(p_j) = \frac{1}{2} (c + t + p_j)$$

Assuming that equilibrium prices are sufficiently low relative to v so that this case applies:

$$BR_i(p_j) = \arg\max_{p} (p-c) \left(\frac{1}{2} + \frac{p_j - p}{2t}\right)$$

$$ext{FOC} \Rightarrow rac{1}{2} + rac{p_j - BR_i(p_j)}{2t} - rac{BR_i(p_j) - c}{2t} = 0$$

$$\Rightarrow BR_i(p_j) = \frac{1}{2} (c + t + p_j)$$

Solving, we find $p_1^* = p_2^* = c + t$.

— **Question**: Markups are proportional to t. How do we interpret that?

Assuming that equilibrium prices are sufficiently low relative to v so that this case applies:

$$BR_i(p_j) = \arg\max_{p} (p-c) \left(\frac{1}{2} + \frac{p_j - p}{2t}\right)$$

$$ext{FOC} \Rightarrow rac{1}{2} + rac{p_j - BR_i(p_j)}{2t} - rac{BR_i(p_j) - c}{2t} = 0$$

$$\Rightarrow BR_i(p_j) = \frac{1}{2} (c + t + p_j)$$

- **Question**: Markups are proportional to t. How do we interpret that?
- **Question**: What if both firms observe each consumer's θ ?

Assuming that equilibrium prices are sufficiently low relative to v so that this case applies:

$$BR_i(p_j) = \arg\max_{p} (p-c) \left(\frac{1}{2} + \frac{p_j - p}{2t}\right)$$

$$extsf{FOC} \Rightarrow rac{1}{2} + rac{p_j - BR_i(p_j)}{2t} - rac{BR_i(p_j) - c}{2t} = 0$$

$$\Rightarrow BR_i(p_j) = \frac{1}{2}(c+t+p_j)$$

- **Question**: Markups are proportional to t. How do we interpret that?
- **Question**: What if both firms observe each consumer's θ ?
- In an N-firm circular version markups decline like 1/N as in Cournot.

Assuming that equilibrium prices are sufficiently low relative to v so that this case applies:

$$BR_i(p_j) = \arg\max_{p} (p-c) \left(\frac{1}{2} + \frac{p_j - p}{2t}\right)$$

$$FOC \Rightarrow \frac{1}{2} + \frac{p_j - BR_i(p_j)}{2t} - \frac{BR_i(p_j) - c}{2t} = 0$$

$$\Rightarrow BR_i(p_j) = \frac{1}{2} (c + t + p_j)$$

- Question: Markups are proportional to t. How do we interpret that?
- **Question**: What if both firms observe each consumer's θ ?
- In an N-firm circular version markups decline like 1/N as in Cournot.
- Actions are "strategic complements": firms increase prices when rivals increase prices.

Assuming that equilibrium prices are sufficiently low relative to v so that this case applies:

$$BR_i(p_j) = \arg\max_{p} (p-c) \left(\frac{1}{2} + \frac{p_j - p}{2t}\right)$$

$$FOC \Rightarrow \frac{1}{2} + \frac{p_j - BR_i(p_j)}{2t} - \frac{BR_i(p_j) - c}{2t} = 0$$

$$\Rightarrow BR_i(p_j) = \frac{1}{2} (c + t + p_j)$$

- Question: Markups are proportional to t. How do we interpret that?
- **Question**: What if both firms observe each consumer's θ ?
- In an N-firm circular version markups decline like 1/N as in Cournot.
- Actions are "strategic complements": firms increase prices when rivals increase prices.

- Firms L and H produce goods of quality s_L and s_H , respectively, with $s_L < s_H$.
- Consumers with types $\theta \sim U[\underline{\theta}, \bar{\theta}]$ have unit demands with utility $u_i(\theta) = \theta s_i p_i$ if buy from i and 0 from outside good. For simplicity assume mass $\bar{\theta} \underline{\theta}$ of consumers.
- Both firms have constant marginal cost c.
- Firms simultaneously choose p_L , p_H .

- Firms L and H produce goods of quality s_L and s_H , respectively, with $s_L < s_H$.
- Consumers with types $\theta \sim U[\underline{\theta}, \overline{\theta}]$ have unit demands with utility $u_i(\theta) = \theta s_i p_i$ if buy from i and 0 from outside good. For simplicity assume mass $\overline{\theta} \underline{\theta}$ of consumers.
- Both firms have constant marginal cost c.
- Firms simultaneously choose p_L , p_H .

Question: What cutoff type(s) do we need to identify?

- Firms L and H produce goods of quality s_L and s_H , respectively, with $s_L < s_H$.
- Consumers with types $\theta \sim U[\underline{\theta}, \bar{\theta}]$ have unit demands with utility $u_i(\theta) = \theta s_i p_i$ if buy from i and 0 from outside good. For simplicity assume mass $\bar{\theta} \underline{\theta}$ of consumers.
- Both firms have constant marginal cost c.
- Firms simultaneously choose p_L , p_H .

Question: What cutoff type(s) do we need to identify?

Given prices p_L , p_H , let $\hat{\theta}_{LH}$ be the solution to $u_L(\hat{\theta}_{LH}) = u_H(\hat{\theta}_{LH})$, and let θ_{0L} be the solution to $u_L(\theta_{0L}) = 0$.

When $\theta_{0L} < \underline{\theta} < \hat{\theta}_{LH}$, demands are given by

$$D_H(p_L, p_H) = \bar{\theta} - \hat{\theta}_{LH} = \bar{\theta} - \frac{p_H - p_L}{s_H - s_L}$$

$$D_L(p_L, p_H) = \hat{\theta}_{LH} - \underline{\theta} = \frac{p_H - p_L}{s_H - s_I} - \underline{\theta}$$

Again, finding BRs and NE is easy with linear demand curves:

$$BR_{H}(p_{L}) = \arg\max_{p} (p - c) \left(\bar{\theta} - \frac{p - p_{L}}{s_{H} - s_{L}} \right) = \frac{1}{2} \left(p_{L} + c + \bar{\theta}(s_{H} - s_{L}) \right)$$

$$BR_{L}(p_{H}) = \frac{1}{2} \left(p_{H} + c - \underline{\theta}(s_{H} - s_{L}) \right)$$

The solution to these is the NE provided $\bar{\theta} \geqslant 2\underline{\theta}$ and $\frac{c+\theta-2\underline{\theta}}{3(s_H-s_L)} < \underline{\theta}s_L$:

$$p_L^* = c + rac{ar{\theta} - 2\underline{\theta}}{3(s_H - s_L)}$$
 $p_H^* = c + rac{2ar{\theta} - \underline{\theta}}{3(s_H - s_L)}$

Notes:

- 1. Vertical differentiation also creates finite elasticities and positive markups.
- 2. Firm H sets a higher price and earns higher profits.
- 3. When θ and $\bar{\theta}$ are too close together firm L is shut out of the market.

Empirical relevance

Suppose we wanted to take a model of competition to the data.

- What issues might we encounter using the Hotelling model empirically?
- What issues might we encounter using the vertical differentiation model empirically?

More flexible class of models

Variants of Hotelling's model (sometimes with some vertical differentiation as well) have become the dominant approach in empirical IO.

The standard N-firm implementation assumes consumers have an N+1 dimensional type $(\epsilon_{i0},\epsilon_{i1},\ldots,\epsilon_{iN})$ with joint CDF G and utility is

$$u_{ij} = \begin{cases} v_j - \alpha p_j + \epsilon_{ij} & \text{if } i \text{ purchases good } j \\ \epsilon_{i0} & \text{if } i \text{ consumes "outside good"} \end{cases}$$

More flexible class of models

Variants of Hotelling's model (sometimes with some vertical differentiation as well) have become the dominant approach in empirical IO.

The standard N-firm implementation assumes consumers have an N+1 dimensional type $(\epsilon_{i0}, \epsilon_{i1}, \dots, \epsilon_{iN})$ with joint CDF G and utility is

$$u_{ij} = \begin{cases} v_j - \alpha p_j + \epsilon_{ij} & \text{if } i \text{ purchases good } j \\ \epsilon_{i0} & \text{if } i \text{ consumes "outside good"} \end{cases}$$

Demand in this model in the general case is given by an *N*-dimensional integral:

$$x_{j}(p_{1},\ldots,p_{N}) = \int_{\{\epsilon_{i0},\epsilon_{i1},\ldots,\epsilon_{iN}|u_{ij}>u_{ik}\forall k\neq j\}} dG(\epsilon_{i0},\epsilon_{i1},\ldots,\epsilon_{iN})$$

Empirical papers sometimes approximate this by simulating draws of the $\epsilon_{\it ik}.$

More flexible class of models

Variants of Hotelling's model (sometimes with some vertical differentiation as well) have become the dominant approach in empirical IO.

The standard *N*-firm implementation assumes consumers have an N+1 dimensional type $(\epsilon_{i0}, \epsilon_{i1}, \dots, \epsilon_{iN})$ with joint CDF *G* and utility is

$$u_{ij} = \begin{cases} v_j - \alpha p_j + \epsilon_{ij} & \text{if } i \text{ purchases good } j \\ \epsilon_{i0} & \text{if } i \text{ consumes "outside good"} \end{cases}$$

Demand in this model in the general case is given by an N-dimensional integral:

$$x_{j}(p_{1},\ldots,p_{N}) = \int_{\{\epsilon: 0,\epsilon: j_{1},\ldots,\epsilon: |\mu|: \geq \mu: \nu \forall k \neq i\}} dG(\epsilon_{i0},\epsilon_{i1},\ldots,\epsilon_{iN})$$

Empirical papers sometimes approximate this by simulating draws of the ϵ_{ik} . A more tractable special case is when there is no outside good, the v_j are all equal, and the ϵ_{ik} are iid with density f. Demand when others all charge p is a one-dimensional integral:

$$x_i(p_i, p, \dots, p) = \int \left[1 - F \left(\theta + \frac{p_i - p}{(N-1)F(\theta)^{N-2}f(\theta)} \right) \right] d\theta$$

Perloff and Salop (REStud 1985) analyze this symmetric model and show:

Proposition: In this model the symmetric NE prices are

$$p_N^* = c + \frac{1}{M(N)} \frac{1}{\alpha}$$

with
$$M(N) = N(N-1) \int_{-\infty}^{\infty} F(\epsilon)^{N-2} f(\epsilon)^2 d\epsilon$$

Perloff and Salop (REStud 1985) analyze this symmetric model and show:

Proposition: In this model the symmetric NE prices are

$$p_N^* = c + \frac{1}{M(N)} \frac{1}{\alpha}$$

with $M(N) = N(N-1) \int_{-\infty}^{\infty} F(\epsilon)^{N-2} f(\epsilon)^2 d\epsilon$ Some corollaries of this result are:

1. When F is a uniform distribution this behaves just like the Hotelling model. $\frac{1}{\alpha}$ is analogous to the t and M(N) = N so the formula is saying $p_N^* = c + \frac{t}{N}$.

Perloff and Salop (REStud 1985) analyze this symmetric model and show:

Proposition: In this model the symmetric NE prices are

$$p_N^* = c + \frac{1}{M(N)} \frac{1}{\alpha}$$

with $M(N) = N(N-1) \int_{-\infty}^{\infty} F(\epsilon)^{N-2} f(\epsilon)^2 d\epsilon$ Some corollaries of this result are:

- 1. When F is a uniform distribution this behaves just like the Hotelling model. $\frac{1}{\alpha}$ is analogous to the t and M(N) = N so the formula is saying $p_N^* = c + \frac{t}{N}$.
- 2. If ϵ is bounded above or $\lim_{\epsilon \to \infty} \frac{f'(\epsilon)}{f(\epsilon)} = -\infty$, then $\lim_{N \to \infty} p_N^* = c$.

Perloff and Salop (REStud 1985) analyze this symmetric model and show:

Proposition: In this model the symmetric NE prices are

$$p_N^* = c + \frac{1}{M(N)} \frac{1}{\alpha}$$

with $M(N) = N(N-1) \int_{-\infty}^{\infty} F(\epsilon)^{N-2} f(\epsilon)^2 d\epsilon$ Some corollaries of this result are:

- 1. When F is a uniform distribution this behaves just like the Hotelling model. $\frac{1}{\alpha}$ is analogous to the t and M(N) = N so the formula is saying $p_N^* = c + \frac{t}{N}$.
- 2. If ϵ is bounded above or $\lim_{\epsilon \to \infty} \frac{f'(\epsilon)}{f(\epsilon)} = -\infty$, then $\lim_{N \to \infty} p_N^* = c$.
- 3. In the "logit" model, $F(\epsilon) = e^{-e^{-(\epsilon+\gamma)}}$, $p_N^* = c + k\left(1 + \frac{1}{N-1}\right)\frac{1}{\alpha}$ for some constant k.

Suppose two single-product firms merge.

- Premerger costs are (c_1, c_2) , merger cost changes are $(\Delta c_1, \Delta c_2)$

Suppose two single-product firms merge.

— Premerger costs are (c_1, c_2) , merger cost changes are $(\Delta c_1, \Delta c_2)$

The premerger FOC is $(p_i - c_i) \frac{\partial x_i}{\partial p_i} + x_i = 0$.

Suppose two single-product firms merge.

— Premerger costs are (c_1, c_2) , merger cost changes are $(\Delta c_1, \Delta c_2)$

The premerger FOC is $(p_i - c_i) \frac{\partial x_i}{\partial p_i} + x_i = 0$.

The postmerger FOC is $(p_i - c_i - \Delta c_i) \frac{\partial x_i}{\partial p_i} + x_i + (p_j - c_j - \Delta c_j) \frac{\partial x_j}{\partial p_i} = 0$.

Suppose two single-product firms merge.

- Premerger costs are (c_1, c_2) , merger cost changes are $(\Delta c_1, \Delta c_2)$

The premerger FOC is $(p_i - c_i) \frac{\partial x_i}{\partial p_i} + x_i = 0$.

The postmerger FOC is
$$(p_i - c_i - \Delta c_i) \frac{\partial x_i}{\partial p_i} + x_i + (p_j - c_j - \Delta c_j) \frac{\partial x_j}{\partial p_i} = 0$$
.

The merger creates "upward pricing pressure" for product *i* if

$$(p_j - c_j - \Delta c_j) \underbrace{\left(-\frac{\frac{\partial x_j}{\partial p_i}}{\frac{\partial x_i}{\partial p_i}}\right)}_{\text{Diversion ratio}} + \Delta c_i > 0$$

Suppose two single-product firms merge.

- Premerger costs are (c_1, c_2) , merger cost changes are $(\Delta c_1, \Delta c_2)$

The premerger FOC is $(p_i - c_i) \frac{\partial x_i}{\partial p_i} + x_i = 0$.

The postmerger FOC is
$$(p_i - c_i - \Delta c_i) \frac{\partial x_i}{\partial p_i} + x_i + (p_j - c_j - \Delta c_j) \frac{\partial x_j}{\partial p_i} = 0$$
.

The merger creates "upward pricing pressure" for product *i* if

$$(p_j - c_j - \Delta c_j) \underbrace{\left(-\frac{\frac{\partial x_j}{\partial p_i}}{\frac{\partial x_i}{\partial p_i}}\right)}_{\text{Diversion ratio}} + \Delta c_i > 0$$

Question: What does diversion ratio look like in the case of logit demand? For simplicity, suppose there are *N* symmetric firms pre-merger.

Next time

Dynamic competition