VLSI DESIGN FLOW: RTL TO GDS

Lecture 15 Logic Optimization: Part II

Sneh Saurabh Electronics and Communications Engineering IIIT Delhi

Lecture Plan

Multilevel Logic Optimization

Multilevel Logic Optimization

Multilevel Logic Optimization: Introduction

Multilevel Logic: more than two levels of logic

Can appear naturally in RTL

Limitations of two-level logic

- Sum of Product (SOP) representations of some functions can become too big
 - Example: parity functions, adders, and multipliers.
- Cannot reduce area by trading off speed
 - Multilevel logic circuits offer more flexibility in exploring area-delay trade-off

Multilevel Logic Representations

- Factored Form
- Boolean Logic Network

S. Saurabh, "Introduction to VLSI Design Flow". Cambridge University Press, 2023.

Factored Form

A factored form consists of:

- a) literals
- b) sum (logical OR) of factored form
- c) product (logical AND) of factored form.
- Given an SOP, it can be converted to a factored form by factoring
- Factoring can convert a two-level representation to a multilevel representation.
- Given an SOP, its factored form is not unique

A factored form is an SOP, of SOP, of SOP, ..., of arbitrary depth.

- Consider the following Boolean function in the SOP form: ac + ad + bc + bd + ce
- We can obtain a factored form representation as:

$$(a + b)(c + d) + ce$$

 $(a + b)d + (a + b + e)c$

Number of literals in the factored form correlates with the circuit area

Boolean Logic Network (1)

- Boolean logic network is a directed acyclic graph
 - > annotate each vertex with a single-output local Boolean function
- It can conveniently represent multilevel logic circuit with more than one output.
- Consider the following set of equations:

$$p = a + b$$

$$q = ef$$

$$r = p + c'd + q$$

$$s = d' + q'$$

$$x = r$$

$$y = s$$

- Assume that inputs are a, b, c, d, e, and f.
- Assume that x and y are outputs
- The incoming edges to a vertex denote the variables on which the local function at that vertex depends

Boolean Logic Network (2)

Flexibility of Boolean logic network:

- Local functions in a Boolean logic network can be arbitrarily complicated
- Both its underlying graph and the local functions can be manipulated during optimization
- Optimization can explore both the behavioral and the structural features of the implementation

Estimating Area and Delay:

- Local functions restricted to be in an SOP form and made minimal with respect to single-implicant containment
- Estimating area: sum of all the literal counts of the local functions
- Estimating delay: number of stages of vertices in the logic network

Multilevel Logic Optimization

Transformations

- Multilevel logic optimization is performed by applying transformations.
 - > These transformations can be viewed as **operators** for the Boolean logic network.
- These operators applied iteratively until no more improvement in some QoR measures is possible.
 - > The final QoR depends on the order of operation and is hard to predict.

Eliminate

 It removes a vertex from the graph and replaces all its occurrences in the network with the corresponding local function

• We carry out eliminate in the hope that subsequent transformations can reduce the cost (area)

Simplify

 It simplifies the associated local SOP expression to reduce the literal count (two-level logic optimization carried out on each local function individually)

Reduces the literal count from 8 to 4

Substitute

- It replaces the local function with a simpler SOP by creating new dependencies and possibly removing other dependencies.
- Creates dependencies by searching for an appropriate match.
 - > It adds more structural information to the network.

- Reduces the literal count from 7 to 5
- Substitute operator needs to find whether local function f_i divides another local function f_j
 - \triangleright If it divides, we can replace $f_i = Q.f_i + R$
 - ➤ Need to perform division efficiently

Extract

- It finds a common subexpression for functions associated with two or more vertices.
 - > Subsequently, it creates a new vertex associated with the subexpression.
 - ➤ Then replaces the common subexpressions in the original functions with the variable of the new vertex.

- Reduces the literal count from 14 to 10
- Extract operator needs to find divisors for the local functions and then search vertices with matching divisors.
 - > Implementing extract operator is computationally challenging

Challenges of Multilevel Logic Optimization

Huge search space for optimization

Division Operation:

- During multilevel logic optimization, we need to carry out division too many times.
- Practical circuits have thousands of vertices in the Boolean logic network.
 - \triangleright Might need to divide each vertex with the rest $[O(n^2)]$ times, where n is the number of vertices in the Boolean logic network]
- Efficiency of division of expressions is critical for multilevel logic optimization

Divisors:

- Need to find good divisors (one that can reduce cost) for Boolean expressions
- Finding a good set of divisors for a given Boolean expression is nontrivial

Algebraic Model

Algebraic Model:

- Neglecting some Boolean properties of the local functions
- Simplified model treats the local Boolean functions as polynomials and employs rules of polynomial algebra
 - > Treat a variable and its complement as separate variables.

Applications of algebraic model:

- Efficient algorithms can be designed to carry out division in the algebraic model (rather than in the Boolean model)
- Good divisors or common subexpressions in a complex Boolean logic network can be determined efficiently in a complex Boolean logic network
 - > By intelligently pruning the search space (applying properties of algebraic models)

Algebraic Model versus Boolean Model

 Algebraic model (and associated mathematics) form the basis of fast multilevel optimization in the contemporary logic optimization tools.

Boolean Model:

- An algebraic model is weaker than a Boolean model for optimization
 - > Cannot fully optimize a Boolean logic network.
- Post algebraic model-based optimization, transformations that utilize the power of the Boolean model is applied

Multilevel Logic Optimization

Boolean Model

Don't Care (DC) Conditions

- Don't Care (DC) conditions arise naturally in Boolean logic network
 - > Due to the graph structure and dependencies among local functions.
- DCs are a rich source of optimization in multilevel logic synthesis
 - > Simplifying local functions and improving the circuit's overall QoR.
- A logic synthesis tool needs to discover them using Boolean algebra (in contrast to given DCs)

There are two types of DC that are useful in simplifying local functions in a Boolean logic network:

- 1. Controllability Don't Cares (CDCs)
- 2. Observability Don't Cares (ODCs).

Controllability Don't Cares (CDCs)

- The combination of input variables that can never occur at a given vertex in a Boolean logic network produces CDCs.
- Local functions can be simplified by accounting for CDCs and two-level logic minimizers

- At the input of vertex q, p = 1 and b = 0 can never occur
- pb' can be treated as CDC

001

100

S. Saurabh

- Cover is: q = p + bc
- Reduces the literal count by 1

Satisfiability Don't Cares (SDCs)

- CDCs can be computed using efficient algorithms by exploiting Satisfiability Don't Cares (SDCs).
- SDCs get enforced by the local functions associated with a vertex at its output.

Consider the vertex p = ab

- The following function will never evaluate to 1: $p \oplus ab = pa' + pb' + p'ab$
- Hence, the combination of values that make the above function 1 can never occur in the network:

$$p = 1, a = 0,$$

 $p = 1, b = 0,$
 $p = 0, a = 1, b = 1$

- These values can be treated as DCs for the Boolean logic network
- Logic synthesis tools typically derive CDCs algorithmically using SDCs.
- Subsequently, the CDCs get utilized in simplifying local functions.

Observability Don't Cares (ODCs)

- The ODCs are input variable combinations that obstruct the vertex output from being observed at the network output.
- We derive ODCs induced by vertices in the fanout of a given vertex.

- If c = 0, then x = 0 irrespective of p
- c = 0, can be treated as ODC for p

- Cover is: p = a + b
- Literal count reduces from 9 to 5

NPTEL 2023

S. Saurabh

References

- G. D. Micheli. "Synthesis and Optimization of Digital Circuits". *McGraw-Hill Higher Education*, 1994.
- S. Saurabh, "Introduction to VLSI Design Flow". Cambridge: Cambridge University Press, 2023.

