BIOS 7747: Machine Learning for Biomedical Applications

Introduction to deep learning

Antonio R. Porras (antonio.porras@cuanschutz.edu)

Department of Biostatistics and Informatics
Colorado School of Public Health
University of Colorado Anschutz Medical Campus

Introduction to machine learning

Intelligence: capability of inferring new information, retaining is as knowledge that can be applied within a context or environment

Human intelligence: capability of <u>humans</u> to reach correct conclusions about what is true and false, and to solve problems. It is marked by complex cognitive skills and high levels of <u>motivation</u> and self-awareness.

Artificial intelligence: Systems or machines that can mimic human intelligence to perform specific tasks that can iteratively improve themselves based on collected information.

Machine learning: Branch of artificial intelligence and computer science that focuses on developing algorithms that imitate that way humans learn

Deep learning: Branch of machine learning that uses neural networks to leverage large amounts of data

Introduction to machine learning for biomedical applications

An overview of the machine learning approach in biomedicine

1. Data collection

3. Data representation

Data pre-processing

4. Data wrangling (and more pre-processing) and exploratory analysis

- 5. Feature selection and/or feature space transformation
- 6. Model construction
- 7. Model evaluation
- 8. Deployment

Machine learning?

2

Machine learning?

Introduction to machine learning for biomedical applications

An overview of the machine learning approach in biomedicine

1. Data collection

2. Data pre-processing

4.

Deep learning

6.

5.

7. Model evaluation

8. Deployment

Machine learning?

Machine learning?

Outline

- □ Introduction to neural networks
- □ Training and backpropagation
- □ The computational graph

□ (Actual) Neural networks

□ Artificial neural networks

Perceptron

• Function that maps its real valued input to a binary output value

$$f(x) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + b > 0, \\ 0 & \text{otherwise} \end{cases}$$
 w: weights **b**: bias

- □ Single layer of perceptrons
 - A perceptron is one of the simplest possible classifiers (remember the concepts of weak classifiers and aggregation?)
 - Single layer of perceptrons:

□ Single layer of perceptrons

■ Biological similarities

- $a_1 = f_1(x)$: axon activation signal
- $w_{g1}a_1$: interpretation of the signal a_1 from the axon of previous neuron at a dendrite using w_{g1}
- $\mathbf{w}_{q}^{T}\mathbf{a} + b_{q}$: interpretation of all input signals received at the dendrites
- $g(w_q^T a + b_q)$: output signal sent to the next neuron

■ Multi-layer perceptron

Multi-layer perceptron

This architecture represents a *feed-forward neural network*

- Shortcomings of basic multi-layer perceptron model
 - The decision of every perceptron is binary: a slight change of the combined signal of the input signal can have a dramatic effect on the activation function
 - The decision function is neither continuous not differentiable at the transition point: training the model to perform specific tasks can be very challenging

□ Can perceptrons provide pseudo-binary outputs that are continuous and differentiable?

□ Sigmoid neuron

• The sigmoid function:

$$f(x) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + b > 0, \\ 0 & \text{otherwise} \end{cases}$$

$$f(x) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$

$$f(x) = \frac{1}{1 + e^{-(w^T x + b)}}$$

Continuous and differentiable

- Forward propagation
- 2. Loss computation
- 3. Backpropagation
- 4. Parameter update

- Forward propagation
 - Estimation of \hat{y}

- 1. Forward propagation
 - Estimation of \hat{y}

$$z^2 = w^2 a^1 + b^2$$

$$a^2 = f(z^2)$$

- Forward propagation
 - Estimation of \hat{y}

2. Loss computation

Loss computation

- Classification problem with probabilistic output
 - Entropy or amount of information in a signal:

$$H(X) = -\sum p(x_i)\log(p(x_i))$$

How much information is there in X?

• Joint entropy:

$$H(A,B) = -\sum p(a,b)\log(p(a,b))$$

How much joint information is there between A and B?

• Cross-entropy:

$$H_{\hat{y}}(y) = -\sum p(y)\log(p(\hat{y}))$$

How much information do we lose if we try to recover y from \hat{y} ?

Loss computation

Classification problem with probabilistic output

$$L(\hat{y}, y) = -\sum_{\forall x, c} y_c \log(\hat{y}_c)$$
 c: class

High value: bad performance

Low value: good performance

• Using our sigmoid activation function on binary classification problem:

$$L(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

$$L(\hat{y}, y) = -y \log(f(z^3)) - (1 - y) \log(1 - f(z^3))$$

$$L(\hat{y}, y) = -y \log\left(\frac{1}{1 + e^{-(W^3 a^2 + b^3)}}\right) - (1 - y) \log\left(1 - \frac{1}{1 + e^{-(W^3 a^2 + b^3)}}\right)$$

3. Backpropagation

• Goal: calculate the gradient of the loss function with respect to the network parameters

Backpropagation: gradient calculation

• Uses the chain rule of derivation:

$$\frac{\partial L}{\partial W^2} = \frac{\partial L}{\partial z^3} \frac{\partial z^3}{\partial a^2} \frac{\partial a^2}{\partial z^2} \frac{\partial z^2}{\partial W^2}$$

The loss gradient at each layer depends on the gradients of the deeper layers

23

Backpropagation (gradient calculation)

$$L(\hat{y}, y) = -y\log(\hat{y}) - (1 - y)\log(1 - \hat{y})$$

$$\frac{\partial L(\hat{y}, y)}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1 - y}{1 - \hat{y}}$$

$$\hat{y} = f(z^3) \qquad \frac{\partial L(\hat{y}, y)}{\partial z^3} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^3} = \left(-\frac{y}{\hat{y}} + \frac{1 - y}{1 - \hat{y}}\right) \hat{y} (1 - \hat{y}) = \hat{y} - y$$

$$z^{3} = W^{3}a^{2} + b^{3} \qquad \frac{\partial L(\hat{y}, y)}{\partial W^{3}} = \frac{\partial L(\hat{y}, y)}{\partial z^{3}} \frac{\partial z^{3}}{\partial W^{3}} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{3}} \frac{\partial z^{3}}{\partial W^{3}} = (\hat{y} - y)a^{2}$$
$$\frac{\partial L(\hat{y}, y)}{\partial b^{3}} = \frac{\partial L(\hat{y}, y)}{\partial z^{3}} \frac{\partial z^{3}}{\partial b^{3}} = \frac{\partial L(\hat{y}, y)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{3}} \frac{\partial z^{3}}{\partial b^{3}} = \hat{y} - y$$
$$\frac{\partial L(\hat{y}, y)}{\partial a^{2}} = \frac{\partial L(\hat{y}, y)}{\partial z^{3}} \frac{\partial z^{3}}{\partial a^{2}} = \frac{\partial L(\hat{y}, y)}{\partial z^{3}} \frac{\partial z^{3}}{\partial a^{2}} = (\hat{y} - y)w^{3}$$

Input:

• a^2 : vector

Evaluation:

• z^3 : vector

Parameters:

- W³:vector
- b^3 : scalar

Activation/output:

• \hat{y} : scalar

Backpropagation (gradient calculation)

Input:

• *a*¹: vector

Evaluation:

• z^2 : vector

Parameters:

• W²: matrix

• b^2 : vector

Activation/output:

Backpropagation (gradient calculation)

Input:

• a^1 : vector

Evaluation:

• z^2 : vector

Parameters:

• W²: matrix

• b^2 : vector

Activation/output:

Backpropagation (gradient calculation)

 $\frac{\partial L(\hat{y}, y)}{\partial W_i^2}$ Matrix (nOutputs, nInputs)

 $\frac{\partial L(\hat{y}, y)}{\partial b_i^2}$ Vector (nOutputs)

Input:

• a^1 : vector

Evaluation:

• z^2 : vector

Parameters:

• W²: matrix

• b^2 : vector

Activation/output:

3. Backpropagation (gradient calculation)

 $\partial L(\hat{y}, y)$

 $\partial L(\hat{y}, y)$

 $\partial L(\hat{y}, y)$

 ∂z_i^1

 $\sum \frac{\partial L(\hat{y}, y)}{\partial x_{ij}} W_{ij}^2$

 $\left|\partial L(\hat{y},y)\right|a_i^1$

 ∂a_i^1

Input:

• *a*¹: vector

Evaluation:

• z^2 : vector

Parameters:

• W²: matrix

• b^2 : vector

Activation/output:

- Backpropagation (gradient calculation)
 - General rule:

$$z^{l} = W^{l}a^{l-1} + B^{l}$$

$$a^{l} = f(z^{l})$$

$$\delta_{i}^{l} = \frac{\partial L}{\partial z_{i}^{l}}$$

$$\delta_{j}^{l} = \frac{\partial L}{\partial a_{j}^{l}} \frac{\partial a_{j}^{l}}{\partial z_{j}^{l}} = \left(\sum_{\forall i} \frac{\partial L}{\partial z_{i}^{l+1}} \frac{\partial z_{i}^{l+1}}{\partial a_{j}^{l}}\right) \frac{\partial a_{j}^{l}}{\partial z_{j}^{l}} = \left(\sum_{\forall i} \delta_{i}^{l+1} W_{ij}^{l+1}\right) \frac{\partial f^{l}(z_{i}^{l})}{\partial z_{i}^{l}}$$

$$\partial L \quad \partial L \quad \partial z_{i}^{l} \qquad \partial L \quad \partial L \quad \partial z_{i}^{l} \qquad \partial L$$

$$\frac{\partial \mathbf{L}}{\partial W_{ij}^{l}} = \frac{\partial L}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{W_{ij}^{l}} = \delta_{j}^{l} \boxed{a^{l-1}}$$

$$\frac{\partial \mathbf{L}}{\partial b_{j}^{l}} = \frac{\partial L}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{b_{j}^{l}} = \delta_{j}^{l}$$

 $a^{l-1} = x$ for the first layer l = 1

4. Parameter update:

- Stochastic gradient descent (SGD)
- SGD with momentum
- Nesterov accelerated gradient
- Adagrad
- RMSProp
- Adam
- ...

Easy convex problem

4. Parameter update:

- Stochastic gradient descent (SGD)
- SGD with momentum
- Nesterov accelerated gradient
- Adagrad
- RMSProp
- Adam
- ...

Most NN optimization problems.

$$\Box \operatorname{Let} a = f(x_1, x_2)$$

Backpropagation

Needed gradients for optimization

$$\Box \operatorname{Let} a = f(x_1, x_2)$$

Backpropagation

Needed gradients for optimization

$$\Box \operatorname{Let} a = f(x_1, x_2)$$

Backpropagation

The computational graph

Let
$$\hat{y} = f(x; w, b) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + b))}$$
, and $L(y, \hat{y}) = y - \log(\hat{y}) - (1 - y)\log(1 - \hat{y})$

□ All operations can be represented in a single flow chart: the computational graph

The computational graph

Let
$$\hat{y} = f(x; w, b) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + b))}$$
, and $L(y, \hat{y}) = y - \log(\hat{y}) - (1 - y)\log(1 - \hat{y})$

The computational graph enables a simple gradient calculation using backpropagation

Next class

■ **Before** next class

- Install and test Pytorch (use pip)
 - https://pytorch.org
- Install and test Tensorboard (use pip)
 - Mac OS users with Tensorboard problems
 - Need to install Python through XCode: *sudo xcode-select –install*