## 4.1 EXAM QUESTIONS MS

| 1. | (a) | Incre               | eased surface area (1)                                                                                                                                                                |                                                       |     |
|----|-----|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|
|    |     | more                | e collisions (1)                                                                                                                                                                      |                                                       | 2   |
|    | (b) | (i)                 | Experiment $2 = 9.6 \times 10^{-4}$ (1)                                                                                                                                               |                                                       |     |
|    |     |                     | Experiment $3 = 0.010$ (1)                                                                                                                                                            |                                                       |     |
|    |     |                     | Experiment $4 = 8.1 \times 10^{-4}$ (1)                                                                                                                                               |                                                       |     |
|    |     |                     | Experiment $5 = 0.035$ (1)                                                                                                                                                            |                                                       |     |
|    |     | (ii)                | $k = \frac{1.2 \times 10^{-4}}{(0.020)(0.020)^2}  (1) = 15$                                                                                                                           | (1) $\text{mol}^{-2}  \text{dm}^6  \text{s}^{-1}$ (1) | 7   |
|    |     |                     |                                                                                                                                                                                       |                                                       | [9] |
| 2. | (a) | order wrt $A = 1$ ; |                                                                                                                                                                                       |                                                       | 1   |
|    |     | order wrt NaOH = 1; |                                                                                                                                                                                       |                                                       | 1   |
|    |     |                     | 1                                                                                                                                                                                     |                                                       |     |
|    | (b) | (i)                 | r(ate) = k[A]                                                                                                                                                                         |                                                       |     |
|    |     |                     | OR                                                                                                                                                                                    |                                                       |     |
|    |     |                     | r(ate) = k[A][NaOH] <sup>0</sup> ;  (penalise missing [ ] but  (penalise missing [ ] one  (if wrong order, allow of  their rate eqs)  (penalise k <sub>a</sub> or k <sub>w</sub> etc) | re per paper)                                         | 1   |
|    |     | (ii)                | $k = \frac{9.0 \times 10^{-3}}{0.02};$                                                                                                                                                |                                                       | 1   |
|    |     |                     | = 0.45;                                                                                                                                                                               |                                                       | 1   |
|    |     |                     | $s^{-1};$                                                                                                                                                                             |                                                       | 1   |
|    |     | (iii)               | (large) excess of OH <sup>-</sup> or [OH <sup>-</sup> ]                                                                                                                               | is large/high;                                        | 1   |
|    |     |                     | [OH <sup>-</sup> ] is (effectively) constant                                                                                                                                          |                                                       |     |
|    |     |                     | OR                                                                                                                                                                                    |                                                       |     |
|    |     |                     | [A] is the limiting factor                                                                                                                                                            | $(Q \ of \ L \ mark)$                                 | 1   |
|    |     |                     |                                                                                                                                                                                       |                                                       | [9] |
| 3. | (a) |                     | er (or index or shown as $x$ in $[]^x$ ) at equation) (1)                                                                                                                             | of concentration term                                 | 1   |

(b) 2 (1)

- (c) (i) Order with respect to A: 2 (1)

  Order with respect to B: 0 (1)
  - (ii) Rate equation: (rate =) k [A]<sup>2</sup> (1) Allow conseq on c(i)

Units for rate constant: mol<sup>-1</sup> dm<sup>3</sup> s<sup>-1</sup> (1) conseq on rate equation

[6]

4

4. (a) Order with respect to A 1 (1)
Order with respect to B 1 (1)
Order with respect to C 2 (1)

3

(b) Value of k 
$$K = \frac{8.0 \times 10^{-5}}{(0.1)(0.2)(0.2)^2} = 0.1$$

$$Units of k \qquad mol^{-3} dm^9 s^{-1} (1)$$

$$Initial \ rate \qquad 1.0 \times 10^{-5} \ (mol \ dm^{-3} \ s^{-1})$$

$$(1)$$

4

(c) increases (1) 1 [8]

**5.** (a)

| (0 | .)                                                                                              |                                    |                                    |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|--|--|--|--|
|    | Substances <b>added</b> to an excess of zinc and 100 cm <sup>3</sup> of 0.2 M hydrochloric acid | Volume of hydrogen/cm <sup>3</sup> | Effect on initial rate of reaction |  |  |  |  |
|    | 100cm <sup>3</sup> water                                                                        | 240 (1)                            | decreased (1)                      |  |  |  |  |
|    | 10g zinc                                                                                        | 240 (1)                            | no change (1)                      |  |  |  |  |
|    | 50 cm <sup>3</sup> 0.2 M hydrochloric acid                                                      | 360 (1)                            | no change (1)                      |  |  |  |  |

6

4

(b) Order with respect to A 1 (1)

Order with respect to B 1 (1)

*Initial rate*  $2.8 \times 10^{-5} \text{ (mol dm}^{-3} \text{ s}^{-1} \text{) (1)}$ 

*either via*  $k = 1.56 \times 10^{-3}$  (1)

or via table eg expts 2 È 4: rate  $\times \frac{1}{2} \times \frac{3}{4} = \times \frac{3}{8}$  (1)

(c) (i) Calculation 
$$k = \frac{7.5 \times 10^{-3}}{(0.25)^2 (0.50)^2} (1) = 0.48 (1)$$

$$\frac{\text{mol dm}^{-3} \text{s}^{-1}}{(\text{mol dm}^{-3})^2 (\text{mol dm}^{-3})^2} = \text{mol}^{-3} \text{dm}^9 \text{s}^{-1}$$

<sup>1</sup> (1)



exp2  $4.0 \times 10^{-3}$ 1 6. (a) exp3  $0.45 \times 10^{-5}$ 1

 $9.0\times10^{-3}$ exp4

1

(b) 
$$\frac{1.8 \times 10^{-5}}{(3.0 \times 10^{-3})^2 (1.0 \times 10^{-3})}$$

2000 1  $mol^{-2} dm^6 s^{-1}$ 

[6]

(ii) 
$$0(1)$$

2

(b) (i) Value of k: 
$$k = \frac{\text{rate}}{[NO]^2[O_2]} = \frac{6.5 \times 10^{-4}}{(5.012 \times 10^{-2})^2 (2.0 \times 10^{-2})} = 13$$

*Units of k*:  $\text{mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$  (1)

(ii) rate = 
$$13 (6.5 \times 10^{-2})^2 (3.4 \times 10^{-2})$$
  
=  $1.9 \times 10^{-3}$  (mol dm<sup>-3</sup> s<sup>-1</sup>) (1)  
If k wrong, the mark in (ii) may be gained conseq for their  $k \times 1.437 \times 10^{-4}$ 

[6]

4

8. (a) (i) Experiment 2: 
$$0.4(0) \times 10^{-3}$$
 (1)  
Experiment 3: 0.15 (1)  
Experiment 4: 0.28 (1)

(ii) 
$$k = \frac{4.8 \times 10^{-3}}{(0.20)^2 \times (0.30)} = 0.4(0) \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$$

**(1)** 

**(1)** 

**(1)** 

6

1

[7]

9. (a) (i) (Experiment 
$$1 \rightarrow 2$$
) [A] doubled, ([B] constant,) rate doubled (1)

## stated or shown numerically

(ii) 
$$2 (1)$$
 or shown as ...  $[B]^2$ 

2

(b) (i) 
$$k = \frac{9.30 \times 10^{-5}}{(0.75)^2 \times (1.50)} = 1.1(0) \times 10^{-4}$$
(1) (1)

units of k:  $mol^{-2} dm^6 s^{-1}$  (1)

(ii) rate = 
$$(1.10 \times 10^{-4}) \times (0.20)^2 \times (0.10)$$
  
=  $4.4(1) \times 10^{-7}$  (mol dm<sup>-3</sup> s<sup>-1</sup>)

(1) for the answer

Ignore units

Conseq on (i)

Upside down expression for k scores zero in (i) for 9073 but rate =  $9073 \times (0.2)^2 \times (0.1) = 36(.3)$  conseq scores (1) in (ii)

4

## **10.** (a) (i)

| Expt | Initial [ <b>A</b> ]/mol dm <sup>-3</sup> | Initial [ <b>B</b> ]/mol dm <sup>-3</sup> | Initial rate/mol dm <sup>-3</sup> s <sup>-1</sup>          |
|------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------|
| 1    | 0.30                                      | 0.30                                      | $1.5 \times 10^{-2}$                                       |
| 2    | 0.60 (1) (0.58 to 0.63)                   | 0.60                                      | $6.0 \times 10^{-2}$                                       |
| 3    | 0.45                                      | 1.20 (1) (1.17 to 1.25)                   | $9.0 \times 10^{-2}$                                       |
| 4    | 0.90                                      | 0.60                                      | $9.0 \times 10^{-2} (1)$<br>(8.6 to $9.2 \times 10^{-2}$ ) |

(ii) 
$$K = \frac{\text{rate}}{[A][B]} = \frac{1.5 \times 10^{-2}}{0.3 \times 0.3} \text{ (1)} = 0.16\dot{6} \text{ (1)} \text{ (or } 0.17 \text{ or } 0.1\dot{6} \text{)}$$
  
(1) (1)
  
units:  $\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1} \text{ (1)}$ 

(b) surface area more (than doubled) (1) many more collisions (1) 2 [8]

6

11. (a) 
$$2 (1)$$
  
 $0$  (1)  
 $\text{rate} = k[J]^2 (1)$ 

(b) 
$$k = \frac{4 \times 10^{-4}}{(2 \times 10^{-2})^2 (5 \times 10^{-2})}$$
 (1) = 20 (1)  $mol^{-2} dm^6 s^{-1}$ 

(c) rate = k []<sup>n</sup> 
$$\therefore$$
 []<sup>n</sup> =  $\frac{\text{rate}}{k}$ 
units:  $\frac{\text{mol dm}^{-3} \text{ s}^{-1}}{\text{s}^{-1}}$  = mol dm<sup>-3</sup>  $\therefore$  n = 1 (2)
greater/increase (1)