Internetowe Kółko Olimpiady Matematycznej Juniorów

1. Przekształcenia algebraiczne

Rozwiązując zadania olimpijskie warto znać podstawowe wzory skróconego mnożenia. Przydatna jest też umiejętność przekształcania wyrażeń algebraicznych, dodawanie, mnożenie czy podnoszenie do kwadratu. Należy pamiętać o takich trikach jak "dodanie zera" czy "pomnożenie przez jeden", polegających odpowiednio na dodaniu i odjęciu lub podzieleniu i pomnożeniu przez to samo wyrażenie. Metody te znajdują swoje zastosowania nie tylko w zadaniach algebraicznych, ale też w teorioliczbowych, a nawet kombinatorycznych.

- $(a+b)^2 = a^2 + 2ab + b^2$
- $(a-b)^2 = a^2 2ab + b^2$
- $a^2 b^2 = (a+b)(a-b)$

Rozgrzewka

- 1. Wymnóż następujące wyrażenie $(a+b+c)^2$.
- 2. (XIII OMJ, zawody I stopnia) Liczby $a,\,b,\,c$ spełniają zależności 3a+4b=4c i 4a-3b=3c. Wykaż, że $a^2+b^2=c^2$.

Zadania wprowadzające

- 3. (X OMJ, zawody II stopnia) Dane są dodatnie liczby a,b,c,d spełniające warunki b+d=a+c i ab=cd. Wykaż, że a=d i b=c.
- 4. Znajdź wszystkie takie liczby pierwsze p, że liczba p + 400 jest kwadratem liczby całkowitej.
- 5. Wykaż, że dla wszystkich liczb całkowitych a i b liczbę $2a^2 + 2b^2$ da się przedstawić w postaci sumy dwóch kwadratów liczb całkowitych.
- **6**. Dane są liczby rzeczywiste a, b i c, że a+b+c=0. Wykaż, że $a^3+b^3+c^3=3abc$.

Zadania trudniejsze

- 7. Dodatnie liczby rzeczywiste a, b, c spełniają równość $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = 1$. Udowodnij, że $\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} = 0$.
- 8. Dane są niezerowe liczby rzeczywiste a, b, że $a+b\neq 0$ oraz spełniona jest równość $\frac{1}{a}=\frac{1}{b}+\frac{1}{a+b}$. Udowodnij, że $\frac{1}{a^2}=\frac{1}{b^2}+\frac{1}{ab}$.
- 9. (XIII OMJ, zawody II stopnia) Znajdź wszystkie trójki dodatnich liczb całkowitych (x,y,z) spełniających układ równań

$$\begin{cases} x - yz = 1\\ xz + y = 2. \end{cases}$$

10. Znajdź wszystkie pary liczb rzeczywistych (x,y) spełniających układ równań

$$\begin{cases} x^2 + x(y-4) = -2\\ y^2 + y(x-4) = -2. \end{cases}$$

Liga zadaniowa

11. Dane są parami różne niezerowe liczby rzeczywiste a, b, c spełniające zależność $a + \frac{1}{b} = b + \frac{1}{c} = c + \frac{1}{a}$. Wykaż, że |abc| = 1.

12. Dane są liczby rzeczywiste a, b i c spełniające równości $a^2+b^2+c^2+abc=5$ i a+b+c=3. Wykaż, że jedna z liczb a, b, c jest równa 2.

Rozwiązania powyższych dwóch zadań Ligi należy przesłać na adres zadania.ikomj@gmail.com

najpóźniej do dnia 26 grudnia 2018 r. (środa).

Podpowiedzi do zadań

- 1. Użyj dwukrotnie pierwszego ze wzorów skróconego mnożenia.
- 2. Podnieś równości z założenia stronami do kwadratu.
- 3. Dodaj wyrażenie ad do obu stron równości ab = cd.
- 4. Użyj wzoru na różnicę kwadratów.
- 5. Spróbuj dopasować wzory skróconego mnożenia.
- **6**. Podstaw do tezy c = -a b.
- 7. Przemnóż równość z założenia przez pewne wyrażenie zależne od $a,\,b$ i c.
- 8. Pomnóż tezę przez wyrażenie $\frac{\hat{a}+b}{ab}$.
- 9. Podnieś oba równania stronami do kwadratu.
- 10. Odejmij równości stronami.