Edinburgh course – Avril 2010 Linear Models – Contrasts – Variance components

Jean-Baptiste Poline

Neurospin, I2BM, CEA Saclay, France

Credits: Will Penny, G. Flandin, SPM course authors

Outline

• Part I: Linear model and contrast: going through it again and going further

• Part II: Variance component and group analyses*

* (shamelessly stolen from Will Penny SPM course)

Plan

- ◆ REPEAT: model and fitting the data with a Linear Model
- ◆ Make sure we understand the testing procedures : t- and F-tests
- But what do we test exactly?
- ◆ Examples almost real

One voxel = One test (t, F, ...)

General Linear Model

fitting

statistical image

Statistical image (SPM)

Regression example...

voxel time series box-car reference function Mean value

Regression example...

voxel time series box-car reference function Mean value

...revisited: matrix form

Box car regression: design matrix...

Fact: model parameters depend on regressors scaling

Q: When do I care?

A: ONLY when comparing manually entered regressors (say you would like to compare two scores)

What if two conditions A and B are not of the same duration before convolution HRF?

What if we believe that there are drifts?

Add more reference functions / covariates ...

...design matrix

...design matrix

Fitting the model = finding some estimate of the betas

How do we find the betas estimates? By minimizing the residual variance

Fitting the model = finding some estimate of the betas

finding the betas = minimising the sum of square of the residuals

$$\parallel Y - X \square \parallel^2 = \sum_i [y_i - \square X \square]$$

when β are estimated: let's call them b

when E is estimated: let's call it e

estimated SD of E : let's call it s

Take home ...

- We put in our model regressors (or covariates) that represent how we think the signal is varying (of interest and of no interest alike)
 - → WHICH ONE TO INCLUDE?
 - What if we have too many?
- ◆ Coefficients (= parameters) are estimated by minimizing the fluctuations, variability variance of estimated noise the residuals.
- Because the parameters depend on the scaling of the regressors included in the model, one should be careful in comparing manually entered regressors, or conditions of different durations

Plan

- ◆ Make sure we all know about the estimation (fitting) part
- ◆ *Make sure we understand t and F tests*
- But what do we test exactly?
- ◆ *An example almost real*

T test - one dimensional contrasts - $SPM\{t\}$

A contrast = a weighted sum of parameters: $\mathbf{c}' \times \mathbf{b}$

$$b_1 > 0$$
?

Compute
$$1xb_1 + 0xb_2 + 0xb_3 + 0xb_4 + 0xb_5 + ...$$

divide by estimated standard deviation of b₁

$$T = \frac{\begin{array}{c} contrast \text{ of} \\ estimated \\ \hline parameters \\ \hline variance \\ estimate \\ \end{array}}$$

$$T = \frac{c'b}{s^2c'(X'X)^2c}$$

From one time series to an image

spm_ResMS

$$T = \frac{c'b}{s^2c'(X'X)^2c} = \frac{1}{s^2c'(X'X)^2c}$$

spm_con??? images

spm_t??? images

F-test: a reduced model

 \mathbf{H}_0 : True model is X_0

$$\mathbf{H_0}: \underline{\beta}_1 = \mathbf{0}$$

$$F \sim (S_0^2 - S^2)/S^2$$

T values become F values. $F = T^2$

Both "activation" and "deactivations" are tested. Voxel wise p-values are halved.

F-test: a reduced model or ...

Tests multiple linear hypotheses: Does X1 model anything?

 $\mathbf{H_0}$: True (reduced) model is X_0

additional
variance
accounted for
by tested effects $F = \frac{}{\text{error}}$ variance
estimate

 $F \sim (S_0^2 - S^2)/S^2$

F-test: a reduced model or ... multi-dimensional contrasts?

tests multiple linear hypotheses. Ex: does drift functions model anything?

$$\mathbf{H_0}$$
: $\underline{\beta}_{3-9} = (0\ 0\ 0\ 0\ \dots)$

T and F test: take home ...

- ◆ T tests are simple combinations of the betas; they are either positive or negative (b1 b2 is different from b2 b1)
- ◆ F tests can be viewed as testing for the additional variance explained by a larger model wrt a simpler model, or
- \bullet *F* tests the sum of the squares of one or several combinations of the betas
- in testing "single contrast" with an F test, for ex. b1 b2, the result will be the same as testing b2 b1. It will be exactly the square of the t-test, testing for both positive and negative effects.

Plan

- ◆ Make sure we all know about the estimation (fitting) part
- ◆ *Make sure we understand t and F tests*
- ◆ But what do we test exactly? Correlation between regressors
- ◆ *An example almost real*

« Additional variance » : Again

Testing for the red

correlated contrasts

Testing for the green and yellow

If significant? Could be G or Y!

Testing for the green

Completely correlated regressors?
Impossible to test! (not estimable)

An example: real

Testing for first regressor: T max = 9.8

Including the movement parameters in the model

Testing for first regressor: activation is gone!

Implicit or explicit (1) decorrelation (or orthogonalisation)

This generalises when testing several regressors (F tests)

cf Andrade et al., NeuroImage, 1999

 L_{C2} : test of C2 in the implicit \perp model

L_{C1}[⊥]: test of C1 in the explicit ⊥ model

Correlation between regressors: take home ...

- ◆ Do we care about correlation in the design ? Yes, always
- Start with the experimental design: conditions should be as uncorrelated as possible
- use F tests to test for the overall variance explained by several (correlated) regressors

Plan

- ◆ Make sure we all know about the estimation (fitting) part
- ◆ *Make sure we understand t and F tests*
- ◆ But what do we test exactly? Correlation between regressors
- ◆ *An example almost real*

A real example (almost!)

Experimental Design Design Matrix

Factorial design with 2 factors: modality and category

- 2 levels for modality (eg Visual/Auditory)
- 3 levels for category (eg 3 categories of words)

Asking ourselves some questions ...

VAC₁C₂C₃

Test C1 > C2
$$: c = [0 \ 0 \ 1 \ -1 \ 0 \ 0]$$

Test V > A $: c = [1 \ -1 \ 0 \ 0 \ 0]$

Test the interaction MxC?

- Design Matrix not orthogonal
- Many contrasts are non estimable
- Interactions MxC are not modelled

Modelling the interactions

Test C1 > C2 : $c = [1 \ 1 - 1 - 1 \ 0 \ 0]$

Test V > A : c = [1-1 1-1 1-1 0]

Test the category effect:

$$c = \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & -1 & 0 \\ 1 & 1 & 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$

Test the interaction MxC:

$$c = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 0 & -1 & 1 & 0 \end{bmatrix}$$

- Design Matrix orthogonal
- All contrasts are estimable
- Interactions MxC modelled
- If no interaction ... ? Model is too "big"!

With a more flexible model

$\begin{array}{ccccc} C_1 & C_1 & C_2 & C_2 & C_3 & C_3 \\ \hline V & A & V & A & V & A \end{array}$


```
Test C1 > C2 ?
Test C1 different from C2 ?
from
```

$$c = [1 \quad 1 \quad -1 \quad -1 \quad 0 \quad 0]$$

to

$$c = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

becomes an F test!

What if we use only:

$$c = [10 \ 1 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0]$$

OK only if the regressors coding for the delay are all equal

Toy example: take home ...

- use F tests when
 - Test for >0 and <0 effects
 - Test for more than 2 levels in factorial designs
 - Conditions are modelled with more than one regressor
- Check post hoc

General Linear Model

$$y = X\theta + \varepsilon$$

Error Covariance

$$C_{\varepsilon} = \sum_{k} \lambda_{k} Q_{k}$$

N: number of scans

p: number of regressors

Model is specified by

- Design matrix X
- Assumptions about ε

Estimation

$$y = X \theta + \varepsilon$$
 $N \times 1 N \times p p \times 1 N \times 1$

1. ReML-algorithm

$$C_{\varepsilon} = \sum_{k} \lambda_{k} Q_{k}$$

Maximise $L = \ln p(y \mid \lambda) = \ln \int p(y \mid \theta, \lambda) d\theta$

$$g = \frac{dL}{d\lambda}$$

$$J = \frac{d^{2}L}{d\lambda^{2}}$$

$$\lambda = \lambda + J^{-1}g$$

2. Weighted Least Squares

$$\theta = (X^T C_e^{-1} X^T) X^T C_e^{-1} y$$

Friston et al. 2002, Neuroimage

Hierarchical model

Hierarchical model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

$$\vdots$$

$$\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$$

Multiple variance components at each level

$$C_{\varepsilon}^{(i)} = \sum_{k} \lambda_{k}^{(i)} Q_{k}^{(i)}$$

At each level, distribution of parameters is given by level above.

What we don't know: distribution of parameters and variance parameters.

Example: Two level model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

$$Y = X_{1}^{(1)} \qquad \theta^{(1)}$$

$$Y = X_{2}^{(1)} \qquad \theta^{(1)}$$

Estimation

Hierarchical model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

$$\vdots$$

$$\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$$

Single-level model

$$y = \varepsilon^{(1)} + X^{(1)} \varepsilon^{(2)} + \dots + X^{(1)} \dots X^{(n-1)} \varepsilon^{(n)} + X^{(1)} \dots X^{(n)} \theta^{(n)} + X^{(n)} \dots X^{(n)} \theta^{(n)} + \dots + X^{(n)} \dots X^{(n)} \theta^{(n)}$$

$$= X\theta + e$$

Group analysis in practice

Many 2-level models are just too big to compute.

And even if, it takes a long time!

Is there a fast approximation?

Summary Statistics approach

Validity of approach

The summary stats approach is exact if for each session/subject:

Within-session covariance the same

First-level design the same

All other cases: Summary stats approach seems to be robust against typical violations.

Auditory Data

Summary statistics

Hierarchical Model

Friston et al. (2004) Mixed effects and fMRI studies, Neuroimage

Multiple contrasts per subject

Stimuli:

Auditory Presentation (SOA = 4 secs) of words

Motion	Sound	Visual	Action
"jump"	"click"	"pink"	"turn"

Subjects:

(i) 12 control subjects

Scanning:

fMRI, 250 scans per subject, block design

Question:

What regions are affected by the semantic content of the words?

U. Noppeney et al.

ANOVA

1st level:

1.Motion

2.Sound

3.Visual

4. Action

SPM{T₄₃₄},

2nd level:

3,2

ANOVA

1st level:

Motion

Sound

Visual

SPM(T₄₃₄)

1 5 9 13 17 21 25 29 33 38

Design matic

Action

SPM(T₄₃₄)

| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| SPM(T₄₃₄)
| S

2nd level:

Summary

Linear hierarchical models are general enough for typical multisubject imaging data (PET, fMRI, EEG/MEG).

Summary statistics are robust approximation for group analysis.

Also accomodates multiple contrasts per subject.

Thank you for your attention!

jbpoline@cea.fr