^a4. By graphical methods, locate approximations to all roots of the nonlinear equation ln(x + 1) + tan(2x) = 0.

XX-0.98, XXO, XX 1.23, XX2.68, XX4.2

Answer from back of book.

S-1-S,0, 4+ε, 34+ε, 54 +ε,... ξ where STO2 and E starts at approximately 0.4 and decreases

8. If a = 0.1 and b = 1.0, how many steps of the bisection method are needed to determine the root with an error of at most $\frac{1}{2} \times 10^{-8}$?

17/092 (b-a) enfrom google 1092 (1-0.1) 27, 4234 round up

> 8. In Exercises 1.2.10–1.2.12, several methods are suggested for computing ln 2. Compare them with the use of Newton's method applied to the equation $e^x = 2$.

 $\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{2}$

X1=1-e1-2 20,7 33759

$$f(x) = e^{x} - 2$$

$$f'(x) = e^{x}$$

$$\chi_{1} = 0.73 - e^{0.73} - 2$$

$$\chi_{1} = 0.694042$$

$$\chi_{1} = \chi_{1} - 2$$

$$\chi_{2} = 0.73 - e^{0.73} - 2$$

$$\chi_{3} = 0.69 - e^{0.69} - 2$$

$$\chi_{3} = 0.69 - e^{0.69} - 2$$

$$|n(2) = 0.693|$$

Compare - Newton's method converges faster than the methods in 1,2.10-1,2.12. In the back of the book it says it took at least 10 terms using those methods. Using Newton's Method it converged faster, because it took three times to converge.

20. Starting at
$$x = 3$$
, $x < 3$, or $x > 3$, analyze what happens when Newton's method is applied to the function $f(x) = 2x^3 - 9x^2 + 12x + 15$.

$$X_{n+1} = X_n - \frac{f(x_n)}{f(x_n)} \qquad f'(x) = 6x^2 - 18x + 12$$

$$X = 3$$

$$f(3) = 2(3)^3 - 9(3)^2 + 12(3) + 16$$

$$= 54 - 81 + 36 + 16 = 24$$

$$f'(3) = 6(3)^2 - 18(3) + 12$$

$$54 - 54 + 12 = 12$$

$$X = 3 - \frac{24}{12} = 3 - 2 = 2$$

$$X = 3 - 2 = 2$$

$$X = 3 - 2 = 3 - 2 = 2$$

$$\frac{7}{4(2)} = 2(2)^{3} - 9(2)^{2} + 12(2) + 15$$

$$= 16 - 36 + 24 + 15 = 19$$

$$= 16(2)^{2} - 18(2) + 12$$

$$= 24 - 36 + 12 = 0$$

$$Y = 1$$

 $f(1) = 2013 - 9(1)^2 + 1201 + 15$
 $= 2 - 9 + 12 + 15 = 20$
 $f'(1) = 6(1) - 18(1) + 12$
 $= 6 - 18 + 12 = 0$
 $X_1 = 1 - \frac{20}{0} \leftarrow \text{division by Dagain, method can}$
 $X = 3$
 $X = \frac{9}{12} = 12(9)^3 - 9(1)^2 + 12(9) + 15$
 $= 128 - 199 + 198 + 15 = 197$
 $f'(1) = 6(1)^2 - 18(1) + 12$
 $= 96 - 72 + 12 = 36$
 $X_1 = 9 - \frac{97}{36} \approx 2.69$
 $X = 5$
 $f(5) = 2(5)^3 - 9(5)^2 + 12(5) + 15 = 100$
 $f'(5) = 6(5)^2 - 18(6) + 12$
 $= 150 - 90 + 12 = 72$
 $X_1 = 5 - \frac{100}{72} \approx 3.6$
 $x_1 = 3$, method converges at $X_1 = 1$
 $X = 3$, method converges at different roots depending on starting point

three decimal places of $x^3 - 5x + 3 = 0$. (All roots are in [-3, +3].) $f(-3) = (-3)^3 - 6(-3) + 3 = -27 + 15 + 3 = -9$ $f(-2) = (-2)^3 - 6(-2) + 3 = -8 + 10 + 3 = 5$ $f(-1) = (-1)^3 - 5(-1) + 3 = 7$ f(0) = 3 $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$ $f(1) = 1^3 - 5(1) + 3 = 1 - 5 + 3 = -1$

5. Using the bisection method, Newton's method, and the

secant method, find the largest positive root correct to

 $f(2) = 2^3 - 5(2) + 3 = 8 - 10 + 3 = 1$ $f(3) = 3^3 - 5(3) + 3 = 27 - 15 + 3 = 15$

so we will use

```
(1,2)
 Bisection Method
 (1, 2)
 Xm = 172 = 1,5
f(1.5)=(1.5)^3-5(1.5)+3=-1.125 f(1.5)<0
 (1.5,2)
  xm=1,5+2=[.75
f(1.75) =(1.75)3-5(1.75)+35-0.3906
                                    早(1.75) 仁〇
(1.75,2)
   Km = 1.75+ = -1.875
 f(1.875) = (1.875)3 - 5(1.875)+35 0.1268 f(1.875)>0
x_{M} = \frac{1.73 + 1.875}{2} = 1.8125
f(1.8125) = (1.8125)^{3} - 5(1.8125) + 32 = 0.108 \quad f(1.8125) < 0
(1.75, 1.876)
(1.8125, 1.875)
       xm = 1.8125 + 1.875 = 1.84375
£(1,84375)=(1.84375)³-5(1,84375)+3 € 0.04892
                                            f(1.84375)>D
(1.812511.84375)
 Xm= 1.8125+1.84375 ~ 1.82813
                                          f(1,82813)<0
f(1.82813) = (1.82813)^3 - 5(1.82813) + 3\% - 0.03
 (1,8281311.83594)
 Km=1,82813+1,84375 7, 1,83 594
f(1.83594)=1,835943-5(1.83594) +3720,00865 f(1.83)20
       by bisection 21.835
  Newtons Method
                     f(x) = x^3 - 5(x) + 3
 X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)} + f'(x) = 3x^2 - 5
 X=2 f(2)=23-5(2)+3=1
```

$$\begin{array}{c} x_{1} = 2 - \frac{1}{7} 2 | 957 \\ f(x_{1}) = (x_{1})^{3} - 5(x_{1}) + 3 = 0.119 \\ f'(x_{1}) = 3(x_{1})^{2} - 5 = 5.315 \\ x_{2} = 1.857 - \frac{111}{5.345} = 1.83479 \\ f(x_{2}) = (x_{2})^{3} - 5(x_{2}) + 3 = .002773 \\ f'(x_{3}) = 3(x_{2})^{2} - 5 = 5.09933 \\ x_{3} = 1.83479 - \frac{002773}{3.09933} = 1.83424 \\ by Newton Method [1.834] \\ Secont Method [1.834] \\ x_{2} = 2 - f(x_{2}) \left(\frac{2-1}{f(x_{2}) - f(x_{1})}\right) \\ x_{2} = 2 - f(x_{1}) \left(\frac{1}{f(x_{2}) - f(x_{1})}\right) \\ x_{3} = 1.5 - f(1.5) \frac{(1.5 - 2)}{f(1.5) - f(2)} \\ f(1.5) = 1.5^{3} - 5(1.6)^{3} = -1.125 \\ x_{3} = 1.5 - (-1.125) \frac{(1.5 - 2)}{(-1.25) - 1} = 1.76471 \\ x_{4} = 1.76 - f(1.76) \frac{(1.76 - 1.5)}{f(1.76) + 32 - 0.348} \\ x_{4} = 1.76 - (-0.348) \frac{(1.76 - 1.5)}{(-0.348 - 1.76 - 1.25)} = 1.88377 \\ f(1.88) = 1.88^{3} - 5(1.88) + 3 = 0.26363 \\ x_{5} = 1.88 - f(1.86) \frac{(1.88 - 1.76)}{(-0.26 - (-0.348) - 1.76 - 1.25)} = 1.83224 \\ -1.88 - 0.26 \frac{(1.88 - 1.76)}{(-0.26 - (-0.348) - 1.76 - 1.25)} = 1.832224 \\ \end{array}$$

by Secant MicThod ~ 1,832 bisection: 1.835 Newton: 1.834 Secant: 1.832