École universitaire Paris-Saclay Année universitaire 2023/2024 Licence de mathématiques (L3) MEU 302 Algèbre

Feuille d'exercices n°4

Rédaction solutions \mathcal{F} . \mathcal{J}

Exercice I

On considère plusieurs applications $\varphi: \mathbf{R}^2 \times \mathbf{R}^2 \to \mathbf{R}:$

- a. $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_2 + x_2 y_1$;
- b. $\varphi((x_1, x_2), (y_1, y_2)) = x_1y_2 x_2y_1$;
- c. $\varphi((x_1, x_2), (y_1, y_2)) = x_1x_2 + x_1y_2;$
- d. $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_1;$
- e. $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_2$.

(1) Lesquelles définissent une forme bilinéaire?

Solution : Si $u = (x_1, x_2), v = (y_1, y_2) w = (z_1, z_2) \text{ de } \mathbb{R}^3 \text{ et } \lambda \text{ de } \mathbb{R} \text{ on a :}$

- Pour la a. : Dans la question (2) on montre que cette application est symétrique, il suffit donc de montrer la linéarité par rapport à la variable de droite (ou de gauche) : $\varphi(u+\lambda v,w)=(x_1+\lambda y_1)z_2+(x_2+\lambda y_2)z_1=\varphi(u,w)+\lambda\varphi(v,w)$, donc φ est bien bilinéaire (symétrique par la réponde à la question b.).
- Pour le b. : bilinéaire facile ...
- Pour le c. : Le terme x_1x_2 met en défaut la linéarité à gauche : $\varphi(\lambda u, v) = \lambda^2 x_1 x_2 + \lambda x_1 y_2 = \lambda(\lambda x_1 x_2 + x_1 y_2) \neq \lambda \varphi(u, v)$.
- Pour le d. : bilinéaire facile...
- Pour le e. : bilinéaire facile...

(2) Parmi les formes bilinéaires, lesquelles sont symétriques? antisymétriques? Solution : Si $u=(x_1,x_2)$ et $v=(y_1,y_2)$ on a :

- Pour le a. : $\varphi(u,v)=x_1y_2+x_2y_1=y_1x_2+y_2x_1=\varphi(v,u)$, donc bilinéaire symétrique.
- Pour le b. : $\varphi(u,v)=x_1y_2-x_2y_1=-(y_1x_2-y_2x_1)=-\varphi(v,u)$, donc bilinéaire antisymétrique.
- Pour le c. : pas bilinéaire.
- Pour le d. bilinéaire symétrique facile...
- Pour le e. bilinéaire ni symétrique ni anti symétrique.

(3) Pour les formes bilinéaires, écrire la matrice de φ dans la base canonique, ainsi que la forme quadratique correspondante.

Solution : La matrice d'une application linéaire à pour coefficient $a_{i,j} = \phi(e_i,e_j)$ d'où :

$$Mat(\varphi_a, Can) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

$$Mat(\varphi_b, Can) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$$

$$Mat(\varphi_d, Can) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix};$$

$$Mat(\varphi_e, Can) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix};$$

Exercice II

Soit $A=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$. On note φ la forme bilinéaire symétrique sur ${\bf R}^2$ dont

la matrice dans la base canonique est A.

(1) Déterminer l'expression de φ .

Solution: On a $\varphi(u,v) = (U)^t AV$ pour tout $u,v \in \mathbb{R}^2$,

d'où $\varphi(u, v) = x_1 y_1 - x_2 y_2$.

(2) Soit $\mathscr{B}'=(e'_1,e'_2)$ la base de \mathbf{R}^2 définie par $e'_1=(\frac{1}{2},\frac{1}{2})$ et $e'_2=(\frac{1}{2},-\frac{1}{2})$. Déterminer l'expression de φ en fonction des coordonnées dans la base \mathscr{B}' ainsi que la matrice A' de φ dans la base \mathscr{B}' . On note \mathscr{C}_{an} la base canonique de \mathbb{R}^2 .

Solution : Si on note $P=Mat(id, \mathscr{B}', \mathscr{C}_{an})$ la matrice de chamgement de base, on a U=PU', d'où :

$$\varphi(u,v) = (PU')^t A P V' = (U')^t (P)^t A P V' = (U')^t (P^t A P) V' = \frac{1}{2} x_1 y_2 + \frac{1}{2} y_1 x_2,$$

on a la aussi
$$Mat(\varphi, \mathscr{B}') = P^t A P = \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}$$

Exercice III

On considère l'application la forme bilinéaire sur \mathbb{R}^2 définie par la formule $\varphi((x_1,x_2),(y_1,y_2))=x_1y_1-\frac{1}{2}x_2y_1+\frac{3}{2}x_1y_2-x_2y_2$.

- (1) Déterminer deux formes bilinéaires φ_1 et φ_2 telles que $\varphi = \varphi_1 + \varphi_2$, avec φ_1 symétrique et φ_2 antisymétrique.
- (2) Déterminer les matrices de φ , φ_1 et φ_2 dans la base canonique.

Exercice IV

Soit $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$. On note $f : \mathbf{R}^2 \to \mathbf{R}^2$ l'application linéaire dont A est la matrice dans la base canonique. Représenter graphiquement les sous-espaces $\ker f$, $\ker f^*$, $\operatorname{im} f$, $\operatorname{im} f^*$.

Exercice V

- (1) Parmi les applications $q: \mathbf{R}^n \to \mathbf{R}$ définies ci-dessous, les quelles sont des formes quadratiques?
 - a. $q(x_1, x_2) = 2x_1^2 + 3x_1x_2 + 6x_2^2$;
 - b. $q(x_1, x_2) = 2x_1^2 + x_1 + 3x_2 + 6x_2^2$;
 - c. $q(x_1, x_2, x_3) = 8x_1x_2 + 4x_2^2$;
 - d. $q(x_1, x_2, x_3) = x_1 x_2 x_3$;
 - e. $q(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 3x_2^2 + x_2x_3 + 7x_3^2$;
 - f. $q(x_1, x_2, x_3) = 4x_1x_2$;
 - g. $q(x_1, x_2, x_3) = x_1^2 + 4x_1x_2 + 4x_2^2 + 2x_1x_3 + x_3^2 + 2x_2x_3$.
 - h. $q(x_1, x_2, x_3) = 3x_1x_2 + 2x_1x_3 + x_2x_3$
- (2) Pour chacune des formes quadratiques identifiées à la question (1), déterminer sa forme bilinéaire symétrique associée, sa matrice dans base canonique, son rang.
- (3) Déterminer la signature des formes quadratiques identifiées à la question (1). (Dans un premier temps, ne pas traiter cette dernière question : y revenir quand la réduction de Gauss aura été vue en cours.)

Exercice VI

Soit $q:E\to {\bf R}$ une forme quadratique réelle. On note $\varphi:E\times E\to {\bf R}$ la forme bilinéaire symétrique associée.

- (1) Montrer que pour tout $\lambda \in \mathbf{R}$ et $u \in E$, $q(\lambda u) = \lambda^2 q(u)$. **Solution :** On sait que $q(u) = \varphi(u,u)$, donc on a $q(\lambda u) = \varphi(\lambda u, \lambda u) = \lambda^2 \varphi(u,u) = \lambda^2 q(u)$, car φ est la forme bilibénaire associée à q
- (2) Montrer que pour tout $(u,v) \in E^2$, $q(u+v) = q(u) + q(v) + 2\varphi(x,y)$. Solution : On a $q(u+v) = \varphi(u+v,u+v) = q(u) + 2\varphi(u,v) + q(v)$ car φ est symétrique donc $\varphi(u,v) + \varphi(v,u) = 2\varphi(u,v)$.
- (3) Montrer que pour tout $(u,v) \in E^2$, $\varphi(u,v) = \frac{1}{4} (q(u+v) q(u-v))$. Solution : On a $\frac{1}{4} (q(u+v) q(u-v)) = \frac{1}{4} (\varphi(u+v,u+v) \varphi(u-v,u-v)) = \frac{1}{4} (q(u) + q(v) + 2\varphi(u,v) q(u) q(v) + 2\varphi(u,v)) = \varphi(u,v)$.
- (4) Montrer que pour tout $(u, v) \in E^2$, (q(u+v) + q(u-v) = 2(q(u) + q(v)). **Solution :** On a $q(u+v) + q(u-v) = \varphi(u+v, u+v) + \varphi(u-v, u-v) = 2q(u) + 2q(v)$.

Exercice VII

Déterminer la signature de la forme quadratique $q(x_1, x_2, x_3) = (x_1 + x_2)^2 +$ $(x_1+x_3)^2-(x_2-x_3)^2$.

Solution : On développe et on utilise l'algorithme de Gauss qui nous donne une somme de formes linéaires indépendantes.

Exercice VIII

On munit ${\bf R}^2$ du produit scalaire canonique. On note ${\mathscr C}$ la courbe d'équation $5(x^2 + y^2) + 6xy = 16.$

- (1) Réduire la forme quadratique apparaissant dans le membre de gauche de l'équation dans une base orthonormale.
- (2) Déterminer les caractéristiques géométriques de \mathscr{C} .
- (3) Déterminer les valeurs minimales et maximales prises par la restriction de la fonction $(x,y) \mapsto 5(x^2+y^2)+6xy$ sur le cercle d'équation $x^2+y^2=1$.

Exercice IX

Soit q la forme quadratique sur \mathbb{R}^2 définie par la formule $q(x,y) = x^2 - y^2$. Existe-t-il un système de coordonnées (x', y') (i.e. x' et y' sont les fonctions coordonnées dans une base \mathscr{B}' de \mathbb{R}^2 bien choisie) telle que l'expression de qdevienne:

a.
$$q = 2x'^2 + \frac{1}{4}y'^2$$
;

Solution : Les formes quadratiques n'ont pas même signature, c'est donc impossible.

b.
$$q = 2x'^2 - \frac{1}{4}y'^2$$
;

Solution : si on fait le changement de variable $\sqrt{2}x' = x$ et $\frac{1}{2}y' = y$ on

a
$$x' = \frac{x}{\sqrt{2}}$$
 et $y' = 2y$, matriciellement on a $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$,

notons $P=\begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 2 \end{pmatrix}$, P est la matrice $Mat(id,\mathcal{B}',\mathcal{B})$, on a donc $Mat(q,\mathcal{B})=P^t\times Mat(q,\mathcal{B}')\times P$

$$Mat(q, \mathscr{B}) = P^{\iota} \times Mat(q, \mathscr{B}^{\iota}) \times$$

c.
$$q = -2x'^2 + \frac{1}{4}y'^2$$
;

d.
$$q = x'y'$$

e.
$$q = x'^2$$

Exercice X

Soit $(a, b, c) \in \mathbb{R}^3$. Montrer que la forme quadratique réelle $q(x, y) = ax^2 +$ $bxy + cy^2$ est définie positive si et seulement si a > 0 et $b^2 - 4ac < 0$.

Exercice XI

Soit E un espace euclidien. Soit $a \in E$ tel que $\|a\| = 1$. Soit $\lambda \in \mathbf{R}$. On définit $q: E \to \mathbf{R}$ par la formule $q(x) = \lambda ||x||^2 - \langle x, a \rangle^2$.

- (1) Vérifier que q est une forme quadratique sur E.
- (2) Justifier que tout vecteur de E s'écrit de manière unique sous la forme u+ta avec $u \in a^{\perp}$ et $t \in \mathbf{R}$. Calculer q(u+ta).
- (3) Notons $\varphi: E \times E \to \mathbf{R}$ la forme bilinéaire symétrique associée à q. Calculer $\varphi(u+ta,u'+t'a)$ où u et u' sont des éléments de a^{\perp} , et t et t' des réels.
- (4) On suppose que dim $E \ge 2$. À quelle condition nécessaire et suffisante portant sur λ est-ce que q est définie positive?

Exercice XII

Décrire les courbes déterminées par les équations cartésiennes suivantes dans \mathbf{R}^2 :

a.
$$5x^2 + 6xy + 5y^2 = 8$$
;

b.
$$3x^2 - 2xy - 3y^2 = 1$$
;

c.
$$3xy = 1$$
;

Exercice XIII

Décrire les surfaces déterminées par les équations cartésiennes suivantes dans ${\bf R}^3$:

a.
$$x + y + z = 3$$

b.
$$x^2 + y^2 + z^2 = 1$$

c.
$$x^2 + y^2 = 1$$

d.
$$x^2 + y^2 - z^2 = 0$$

e.
$$x^2 + y^2 - z^2 = 1$$
.

Exercice XIV

On considère la forme quadratique q(x,y,z)=2xy+2xz+2yz sur ${\bf R}^3$. Soit A la matrice de q dans la base canonique.

(1) Déterminer A.

(2) On pose
$$U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $V = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $W = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$. Calculer AU, AV ,

AW.

- (3) Quelle est la signature de q?
- (4) Déterminer la matrice de q dans la base $(\vec{u}, \vec{v}, \vec{w})$ (correspondant aux vecteurs-colonnes U, V, W).
- (5) Déterminer $q(x'\vec{u} + y'\vec{v} + z'\vec{w})$ en fonction des réels x', y' et z'.
- (6) Appliquer la réduction de Gauss à la forme quadratique q.
- (7) Quelle est la nature géométrique du cône isotrope de *q*?