Math 501 Homework (§5.4, Uniform Continuity)

Problem 2. Show that $f(x) := 1/x^2$ is uniformally continuous on A := $[1,\infty)$, but that it is not so on $B:=(0,\infty)$.

Solution. Let $x, u \in A$. The ratio |(f(x) - f(u))/(x - u)|

$$= \left| \frac{1/x^2 - 1/u^2}{x - u} \right| = \left| \frac{u^2 - x^2}{x^2 u^2 (x - u)} \right|$$
$$= \left| \frac{x + u}{x^2 u^2} \right|$$
$$= \frac{1}{x} \frac{1}{u^2} + \frac{1}{x^2 u}$$

Now since $x \ge 1$, $1/x \le 1$ and $1/x^2 \le 1$. The same can be established for u. Therefore the above ratio

$$\left|\frac{f(x) - f(u)}{x - u}\right| \le 2,$$

which makes f satisfy the **Lipschitz condition**. This also makes it **unifor**mally continuous on A.

In the case of $B := (0, \infty)$, if we fix $\delta > 0$ and set points $x_{\delta} = \delta/2 \in B$ and $u_{\delta} = \delta/4 \in B$ we have that $|x_{\delta} - u_{\delta}| = \delta/2 < \delta$. However the quantity $|f(x_{\delta}) - f(u_{\delta})| = |4/\delta^2 - 16/\delta^2| = 12/\delta^2$.

This means there exists $\epsilon_0 = 12/\delta^2$ such that $|f(x_\delta) - f(u_\delta)| \ge \epsilon_0$ which is one of the **Nonuniform Continuity Criteria**. Hence f is not uniformally continuous on B.