Aussagenlogik

 A,B,C,\ldots Aussagen (können nur wahr oder falsch sein) (1 oder 0, \top oder \bot)

A = "Paris ist die Hauptstadt Frankreich" B = "8 ist eine Primzahl"

A

Disjunktion \vee Konjunktion \wedge und Negation \neg

AVB

Α	В	\vee		Α
0 0 1 1	0	0		0
0	1 0	1	AAB	0
1	0	1		1
1	1	1		1

$$\begin{array}{c|c}
A & \neg A \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Weitere Operatoren

 \rightarrow Implikation, \leftrightarrow ganau dann wenn und \oplus (Xor-Funktion, exclusive or),

В	\rightarrow
0	1
1	1
0	0
1	1
	0

Α	В	\leftrightarrow
0	0	1
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|cccc} A & B & \oplus \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Aussagenlogische Formeln (AF)

Induktive Def.

- 1. 0 und 1 sind aussagenlogische Formeln.
- 2. Jede Aussage A ist eine AF.
- 3. Wenn A und B aussagenlogische Formeln sind, dann sind auch

A=0

$$(A \land B), (A \lor B), \neg A, (A \rightarrow B), (A \leftrightarrow B)$$
 aussagenlogische Formeln.

Aquivalenz

 $\neg (A \lor B) \equiv \neg A \land \neg B$

Zwei AF F, G heißen <u>aquivalent</u> ($F \equiv G$) falls sie unter allen möglichen Wahrheitsbelegungen denselben Wert annehmen.

$$A \lor \neg A \equiv 1$$
 $A \rightarrow B \equiv 7A \lor B$
 $A \land B \equiv B \land A$
 $A \lor B \equiv B \lor A$
 $A \lor B \equiv B \lor A$
 $A \lor B \equiv B \lor A$
 $A \lor B \equiv A \lor A$
 $A \lor B \equiv A \lor A$
 $A \lor B \equiv A \lor A$
 $A \hookrightarrow B \Longrightarrow A$
 $A \hookrightarrow B \Longrightarrow A$
 $A \hookrightarrow A \hookrightarrow A$
 $A \hookrightarrow A$

Erfüllbarkeit und Tautologie

Def: Eine AF heißt erfüllbar falls es mindestens eine passende Belegung gibt die die Formel wahr macht.

$$(A \vee \neg B) \wedge (B \vee C)$$

Def: Eine AF heißt gültig oder Tautologie falls alle passende Belegungen die die Formel wahr machen.

$$A \vee \neg A$$

$$(A \rightarrow (B \rightarrow A))$$

Prädikate und Quantoren

P Menge,
$$x \in P$$
, $P(x)$ ($x \in P$) $P(x)$ ($x \in P$)

Grundmenge M

Allquantor: $\forall x, P(x)$

(alle Elemente x in der Grundmenge erfüllen P).

Existenzquantor: $\exists x, P(x)$

(es gibt mindestens ein x in der Grundmenge das P erfüllt).

$$\neg \forall x, P(x) \equiv \exists x, \neg P(x)$$

$$\neg \exists x, P(x) = x, \neg P(x)$$

$$\neg \forall x \exists y \forall z, P(x, y, z) = \exists x \forall y \exists z \neg P(x, y, z).$$

7 4x Jy 62 Pcx,4,2) = Jx 7] 4 /2 P(x, 4, 2) = 3x dy TYZ P(x, 4,2) = 3x 84 32 7 P(x, 4,2)