

On the Benefits of Defining Vicinal Distributions in Latent Space ¹

Puneet Mangla, Vedant Singh, Shreyas Havaldar & Vineeth N Balasubramanian

Department of Computer Science Indian Institute of Technology, Hyderabad, India

¹Acknowledging DST, Govt of India (IMPRINT program) for funding; IIT-Hyderabad and JICA for provision of GPU servers .

Table of contents

ICLR

Introduction

Empirical Risk Minimization

Vicinal Risk Minimization

Mixup

Contributions

2 Our Approach

Motivation Illustration

Results

Out-of-Distribution Generalization

Calibration

Loss Landscapes

Empirical Risk Minimization (ERM): minimize the average error over the training dataset

Empirical Risk Minimization (ERM): minimize the average error over the training dataset

$$p_{actual}(x, y) \approx p_{\delta}(x, y) = \frac{1}{N} \cdot \sum_{i=1}^{N} \delta(x = x_i, y = y_i)$$

Empirical Risk Minimization (ERM): minimize the average error over the training dataset

$$p_{actual}(x, y) \approx p_{\delta}(x, y) = \frac{1}{N} \cdot \sum_{i=1}^{N} \delta(x = x_i, y = y_i)$$

$$w^* = \arg\min_{w} \int \mathcal{L}(F_w(x), y) \cdot dp_{\delta}(x, y) = \arg\min_{w} \frac{1}{N} \cdot \sum_{i=1}^{N} \mathcal{L}(F_w(x_i), y_i)$$

Empirical Risk Minimization (ERM): minimize the average error over the training dataset

$$p_{actual}(x, y) \approx p_{\delta}(x, y) = \frac{1}{N} \cdot \sum_{i=1}^{N} \delta(x = x_i, y = y_i)$$

$$w^* = \arg\min_{w} \int \mathcal{L}(F_w(x), y) \cdot dp_{\delta}(x, y) = \arg\min_{w} \frac{1}{N} \cdot \sum_{i=1}^{N} \mathcal{L}(F_w(x_i), y_i)$$

Drawback: Overparametrized NNs suffer from memorization \rightarrow leads to undesirable behavior of network outside the training distribution.

→ Popularly known as data augmentation.

- → Popularly known as data augmentation.
- \rightarrow define a vicinity or neighbourhood around each training example (eg. in terms of brightness, contrast, imperceptible noise, etc.)

$$\rho_{v}(x,y) = \frac{1}{N} \cdot \sum_{i=1}^{N} v(x,y|x_{i},y_{i})$$

, where v is the *vicinal distribution* that calculates the probability of a data point (x, y) in the vicinity of other samples (x_i, y_i) .

Expected Vicinal Risk is given by

$$w^* = arg \min_{w} \int \mathcal{L}(F_w(x), y) \cdot dp_v(x, y) = \frac{1}{N} \cdot \sum_{i=1}^{N} g(F_w, \mathcal{L}, x_i, y_i)$$

where
$$g(F_w, \mathcal{L}, x_i, y_i) = \int \mathcal{L}(F_w(x), y) \cdot dv(x, y|x_i, y_i).$$

Expected Vicinal Risk is given by

$$w^* = \arg\min_{w} \int \mathcal{L}(F_w(x), y) \cdot dp_v(x, y) = \frac{1}{N} \cdot \sum_{i=1}^{N} g(F_w, \mathcal{L}, x_i, y_i)$$

where
$$g(F_w, \mathcal{L}, x_i, y_i) = \int \mathcal{L}(F_w(x), y) \cdot dv(x, y|x_i, y_i)$$
.

ightarrow Gaussian and Mixup are few popular examples of vicinal distributions.

Introduction

Our Approach

Mixup

Mixup is a popular technique to train models for better generalisation

²Pang et al., Mixup inference: Better exploiting mixup to defend adversarial attacks, ICLR 2020

³Hendrycks et al., Augmix: A simple method to improve robustness and uncertainty under data shift, ICLR 2020

⁴Lamb et al., Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy. AISec'19

⁵Thulasidasan et al., On mixup training: Improved calibration and predictive uncertainty for deep neural networks. NeurIPS 2019

Mixup

Mixup is a popular technique to train models for better generalisation

 Pang et al., 2020²; Hendrycks et al., 2020³; Lamb et al., 2019 ⁴ - Mixup to improve the robustness of models.

²Pang et al., Mixup inference: Better exploiting mixup to defend adversarial attacks, ICLR 2020

³Hendrycks et al., Augmix: A simple method to improve robustness and uncertainty under data shift, ICLR 2020

⁴Lamb et al., Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy. AISec'19

⁵Thulasidasan et al., On mixup training: Improved calibration and predictive uncertainty for deep neural networks. NeurIPS 2019

Mixup

Mixup is a popular technique to train models for better generalisation

- Pang et al., 2020 ²; Hendrycks et al., 2020 ³; Lamb et al., 2019 ⁴ - Mixup to improve the robustness of models.
- Thulasidasan et al., 2019 ⁵ Mixup-trained networks are significantly better calibrated.

²Pang et al., Mixup inference: Better exploiting mixup to defend adversarial attacks. ICLR 2020

³Hendrycks et al., Augmix: A simple method to improve robustness and uncertainty under data shift, ICLR 2020

⁴Lamb et al., Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy. AlSec'19

⁵Thulasidasan et al., On mixup training: Improved calibration and predictive uncertainty for deep neural networks. NeurIPS 2019

Contributions

 Propose a new vicinal distribution called VarMixup (Variational Mixup) to sample better Mixup images.

Contributions

- Propose a new vicinal distribution called VarMixup (Variational Mixup) to sample better Mixup images.
- Experiments shows that VarMixup boosts the robustness to out-of-distribution shifts as well calibration.

Contributions

- Propose a new vicinal distribution called VarMixup (Variational Mixup) to sample better Mixup images.
- Experiments shows that VarMixup boosts the robustness to out-of-distribution shifts as well calibration.
- Additional analysis show that VarMixup significantly decreases the local linearity error of the neural network.

Motivation

 Generative models like VAEs - capture the latent space from which a distribution is generated provides us an unfolded manifold

Motivation

 Generative models like VAEs - capture the latent space from which a distribution is generated provides us an unfolded manifold

• linearity in between training examples is more readily observed.

Motivation

 Generative models like VAEs - capture the latent space from which a distribution is generated provides us an unfolded manifold

• linearity in between training examples is more readily observed.

 Leverage such latent to capture the induced global linearity in between examples, and define Mixup.

Our Approach

Details

 We opt for an MMD-VAE ⁶ because of its advantage over vanilla KL based VAF 7.

$$\mathcal{L}_{\textit{MMD-VAE}} = \gamma \cdot \textit{MMD}(q_{\phi}(z) \| p(z)) + \mathbb{E}_{x \sim p_{\textit{actual}}} \mathbb{E}_{z \sim q_{\phi}(z|x)} [\log(p_{\theta}(x|z))]$$

⁶Zhao et al., Infovae: Information maximizing variational autoencoder, 2017

⁷Kingma et al., Auto-encoding variational bayes, 2013

Details

ICLR

 We opt for an MMD-VAE ⁶ because of its advantage over vanilla KL based VAE 7:

$$\mathcal{L}_{\textit{MMD-VAE}} = \gamma \cdot \textit{MMD}(q_{\phi}(z) \| p(z)) + \mathbb{E}_{x \sim p_{\textit{actual}}} \mathbb{E}_{z \sim q_{\phi}(z|x)} [\log(p_{\theta}(x|z))]$$

Mixup vicinal distribution in the latent space of the trained VAE as $V_{VarMixup}(z, y|x_i, y_i) =$

$$\frac{1}{n} \cdot \sum_{j=1}^{N} \mathbb{E}_{\lambda} [\delta(z = \lambda \cdot \mathbb{E}_{z}[q_{\phi}(z|x_{i})] + (1-\lambda) \cdot \mathbb{E}_{z}[q_{\phi}(z|x_{j})], y = \lambda \cdot y_{i} + (1-\lambda) \cdot y_{j})]$$

⁷Kingma et al., Auto-encoding variational bayes, 2013 On the Benefits of Defining VicinalDistributions in Latent Space

⁶Zhao et al., Infovae: Information maximizing variational autoencoder, 2017

Details

ICLR

 We opt for an MMD-VAE ⁶ because of its advantage over vanilla KL based VAE ⁷:

$$\mathcal{L}_{\textit{MMD-VAE}} = \gamma \cdot \textit{MMD}(q_{\phi}(z) \| p(z)) + \mathbb{E}_{x \sim p_{\textit{actual}}} \mathbb{E}_{z \sim q_{\phi}(z|x)} [\log(p_{\theta}(x|z))]$$

• Mixup vicinal distribution in the latent space of the trained VAE as $v_{VarMixup}(z, y|x_i, y_i) =$

$$\frac{1}{n} \cdot \sum_{i=1}^{N} \mathbb{E}_{\lambda} [\delta(z = \lambda \cdot \mathbb{E}_{z} [q_{\phi}(z|x_{i})] + (1-\lambda) \cdot \mathbb{E}_{z} [q_{\phi}(z|x_{j})], y = \lambda \cdot y_{i} + (1-\lambda) \cdot y_{j})]$$

Equivalent to constructing VarMixup samples as:

$$x' = \mathbb{E}_{x} \left[p_{\theta} \left(x | \lambda \cdot \mathbb{E}_{z} [q_{\phi}(z|x_{i})] + (1 - \lambda) \cdot \mathbb{E}_{z} [q_{\phi}(z|x_{j})] \right) \right]$$
$$y' = \lambda \cdot y_{i} + (1 - \lambda) \cdot y_{i}$$

⁷Kingma et al., Auto-encoding variational bayes, 2013

⁶Zhao et al., Infovae: Information maximizing variational autoencoder, 2017

Illustration

Our Approach

Illustration

Mixup performs linear interpolations on the data space, assuming an induced global linearity on this space.

Our Approach

Illustration

Mixup performs linear interpolations on the data space, assuming an induced global linearity on this space.

Illustration

Introduction

Illustration

Our Approach

Out-of-Distribution Generalization

 Geirhos et al. (2018) 8: training against distortions can often fail to generalize to unseen distortions

Out-of-Distribution Generalization

- Geirhos et al. (2018) ⁸: training against distortions can often fail to generalize to unseen distortions
- Hendrycks et al. (2019) propose benchmarks for measuring generalization to unseen corruptions

Out-of-Distribution Generalization

- Geirhos et al. (2018) 8: training against distortions can often fail to generalize to unseen distortions
- Hendrycks et al. (2019) propose benchmarks for measuring generalization to unseen corruptions

Figure 2: Example ImageNet-C corruptions. These corruptions are encountered only at test time and not

Out-of-Distribution Generalization

- Robustness to common input corruptions on CIFAR-10-C, CIFAR-100-C and Tiny-Imagenet-C
- adv-VarMixup: Variant of VarMixup where we use adversarial robust VAE.

- Robustness to common input corruptions on CIFAR-10-C, CIFAR-100-C and Tiny-Imagenet-C
- adv-VarMixup: Variant of VarMixup where we use adversarial robust VAE.

Method	CIFAR-10-C	CIFAR-100-C	Tiny-Imagenet-C
AT (Madry et al., 2018) TRADES (Zhang et al., 2019)	73.12 \pm 0.31 (85.58 \pm 0.14) 75.46 \pm 0.21 (88.11 \pm 0.43)	45.09 ± 0.31 (60.28 ± 0.13) 45.98 ± 0.41 (63.3 ± 0.32)	15.74 ± 0.36 (22.33 ± 0.16) 16.20 ± 0.23 (26.12 ± 0.38)
IAT (Lamb et al., 2019)	81.05 ± 0.42 (89.7 ± 0.33)	50.71 ± 0.25 (62.7 ± 0.21)	18.69 ± 0.45 (18.08 ± 0.34)
EDM	CO 00 + 0.01 (04 F + 0.14)	47.2 + 0.20 (64.5 + 0.10)	17.24 0.07 (40.05 0.10)
ERM Mixup	$69.29 \pm 0.21 \ (94.5 \pm 0.14)$ $74.74 \pm 0.34 \ (95.5 \pm 0.35)$	$47.3 \pm 0.32 \ (64.5 \pm 0.10)$ $52.13 \pm 0.43 \ (76.8 \pm 0.41)$	$17.34 \pm 0.27 \ (49.96 \pm 0.12)$ $21.55 \pm 0.37 \ (53.83 \pm 0.17)$
Mixup-R	$74.27 \pm 0.22 \ (89.88 \pm 0.11)$	43.54 ± 0.15 (62.24 ± 0.21)	$21.34 \pm 0.32 \ (53.5 \pm 0.28)$
Manifold-Mixup	72.54 ± 0.14 (95.2 ± 0.18)	41.42 ± 0.23 (75.3 ± 0.48)	<u>-</u> `
VarMixup	82.57 \pm 0.42 (93.91 \pm 0.45)	52.57 ± 0.39 (73.2 ± 0.44)	24.87 ± 0.32 (50.98 \pm 0.11)
adv-VarMixup	$82.12 \pm 0.46 $ (92.19 \pm 0.32)	54.0 ± 0.41 (72.13 ± 0.34)	25.36 ± 0.21 (50.58 ± 0.23)

Calibration

- measures how good softmax scores are as indicators of the actual likelihood of a correct prediction.
- We measure the Expected Calibration Error (ECE, lower the better)

⁹Guo et al., On calibration of modern neural networks, 2017

Local Linearity of Loss Surfaces

 Qin et al., 2020 ¹⁰ showed that the local linearity of loss landscapes of NNs correlates robustness.

¹⁰Qin et al., Adversarial robustness through local linearization, NeurIPS 2019

Our Approach

Local Linearity of Loss Surfaces

- Qin et al., 2020 ¹⁰ showed that the local linearity of loss landscapes of NNs correlates robustness.
- The more the loss landscapes are linear, the more the robustness.

¹⁰Qin et al., Adversarial robustness through local linearization, NeurIPS 2019

Local Linearity of Loss Surfaces

- Qin et al., 2020 ¹⁰ showed that the local linearity of loss landscapes of NNs correlates robustness.
- The more the loss landscapes are linear, the more the robustness.
- Local linearity at a data-point x within a neighbourhood $B(\epsilon)$ as $\gamma(\epsilon, x, y) =$

$$\begin{aligned} & \max_{\delta \in B(\epsilon)} |\mathcal{L}(F_w(x+\delta), y) - \mathcal{L}(F_w(x), y) \\ & - \delta^T \nabla_x \mathcal{L}(F_w(x), y)| \end{aligned}$$

 $^{^{10}}$ Oin et al., Adversarial robustness through local linearization, NeurIPS 2019

Local Linearity of Loss Surfaces

- Qin et al., 2020 ¹⁰ showed that the local linearity of loss landscapes of NNs correlates robustness.
- The more the loss landscapes are linear, the more the robustness.
- Local linearity at a data-point x within a neighbourhood $B(\epsilon)$ as $\gamma(\epsilon, x, y) =$

$$\max_{\delta \in \mathcal{B}(\epsilon)} |\mathcal{L}(F_w(x+\delta), y) - \mathcal{L}(F_w(x), y) - \delta^T \nabla_x \mathcal{L}(F_w(x), y)|$$

¹⁰Oin et al., Adversarial robustness through local linearization, NeurIPS 2019

Conclusion

 Proposed VarMixup, which performs linear interpolation on an unfolded latent manifold where linearity in between training examples is likely to be preserved.

Conclusion

- Proposed VarMixup, which performs linear interpolation on an unfolded latent manifold where linearity in between training examples is likely to be preserved.
- VarMixup trained models are more robust to corruptions and are better calibrated.

Conclusion

- Proposed VarMixup, which performs linear interpolation on an unfolded latent manifold where linearity in between training examples is likely to be preserved.
- VarMixup trained models are more robust to corruptions and are better calibrated.
- Highlights the efficacy of defining vicinal distributions by using neighbors on unfolded latent manifold rather than data manifold.