

APR 01, 2024

CODA (part 1): setting up environment and preparing sample dataset | HuBMAP | JHU-TMC

Kyu Sang Han¹, Pei-Hsun Wu¹, Joel Sunshine², Sashank Reddy², Ashley Kiemen², Denis Wirtz^{1,2}

¹Johns Hopkins University; ²Johns Hopkins Medicine

Human BioMolecular Atlas Program (HuBMAP) Method Development Community

TMC - Johns Hopkins University

DOI:

dx.doi.org/10.17504/protocols.io. q26g71rpkgwz/v1

Protocol Citation: Kyu Sang Han, Pei-Hsun Wu, Joel Sunshine, Sashank Reddy, Ashley Kiemen, Denis Wirtz 2024. CODA (part 1): setting up environment and preparing sample dataset | HuBMAP | JHU-TMC. protocols.io https://dx.doi.org/10.17504/protoc ols.io.q26g71rpkgwz/v1

MANUSCRIPT CITATION:

Kiemen, A.L., Braxton, A.M., Grahn, M.P. et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat Methods 19, 1490-1499 (2022). https://doi.org/10.1038/s41592-022-01650-9

Kyu Sang Han Johns Hopkins University

ABSTRACT

CODA workflow part 1. setting up environment and preparing dataset

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Mar 28, 2024

Last Modified: Apr 01, 2024

PROTOCOL integer ID: 97507

Keywords: CODA, deeplearning, tissuelabeling, segmentation

Funders Acknowledgement:

Institute of Arthritis and Musculoskeletal and Skin

Diseases

Grant ID: U54AR081774 National Cancer Institute Grant ID: U54CA143868

Software requirements

- MATLAB MATLAB (mathworks.com)
 Image processing toolbox Image Processing Toolbox MATLAB (mathworks.com)
 Deep learning toolbox Deep Learning Toolbox MATLAB (mathworks.com)
 MATLAB Resnet50 model MATLAB resnet50 (mathworks.com)
- 2 Aperio ImageScope Aperio ImageScope (leicabiosystems.com)
- 3 FIJI ImageJ Fiji Downloads (imagej.net)

Download Source code

4 Codes are available at the following GitHub: CODA Github Repository

Download Sample dataset

- Here, we discuss application to a sample dataset "lungs", containing 150 serial histological images. Download the sample dataset (serial images and sample annotations) here: Lung Sample Dataset on Google Drive
- Images are .ndpi format and were scanned at 20x magnification (approximately 0.5 micron / pixel resolution), spaced 10 micron apart. Save the images in a local drive folder (e.g. \\Users\Ashley\Documents\lungs).
- 7 Filenames for each image should be created such that tissue sections are read consecutively by Matlab. Therefore, include zero-padding in numerical indices.

<u>CORRECT FILENAMES: lungs_001.ndpi, lungs_002.ndpi, ..., lungs_011.ndpi</u>
<u>INCORRECT FILENAMES (no zero padding): lungs_1.ndpi, lungs_2.ndpi, ..., lungs_11.ndpi</u>

Create downsampled copies of high-resolution images

- The function **create_downsampled_tif_images** will create downsampled copies of the .ndpi files by directly loading each high-resolution images in tiles and down sampling it to the desired pixel resolutions.
- 9 First, decide the resolution of the images you want to create. Here, we create images of 1 micron / pixel, 2 microns / pixel, and 10 micron / pixel resolution:

ds=[1 2 10];

Apr 1 2024

protocols.io

Next, decide on the name of the output folders for each of the downsampled images you create. Here, we will save the images downsampled to 1 micron / pixel in a folder named "10x", the images downsampled to 2 micron / pixel in a folder named "5x," and the images downsampled to 10 micron / pixel in a folder named "1x."

subfolders=["10x" "5x" "1x"];

- 11 Finally, call the function: **create_downsampled_tif_images(pth,ds,subfolders)**;
- Using this function, you will make two subfolders within the original folder containing the .ndpi images. One subfolder named "10x" containing the 20x images downsampled by a factor of 2. The other subfolder named "1x" containing the 20x images downsampled by a factor of 20. Most calculations will be performed on these tif images. Note: here we use 10x and 1x for example, but other resolutions could be created as desired.

pth10x=[pth,10x];
pth1x=[pth,1x];

**Note: If this code fails due to memory constraints on your computer, try python Openslide.