Simple Linear Regression

既 始色什

6.1 THE MODEL

By (1.1), the *simple linear regression* model for *n* observations can be written as

$$\mathbf{y}_i = \beta_0 + \beta_1 \mathbf{x}_i + \boldsymbol{\varepsilon}_i, \quad i = 1, 2, \dots, n. \tag{6.1}$$

The designation simple indicates that there is only one x to predict the response y, and "linear" means that the model (6.1) is linear in β_0 and β_1 . [Actually, it is the assumption $E(y_i) = \beta_0 + \beta_1 x_i$ that is linear; see assumption 1 below.] For example, a model such as $y_i = \beta_0 + \beta_1 x_i^2 + \varepsilon_i$ is linear in β_0 and β_1 , whereas the model $y_i = \beta_0 + e^{\beta_1 x_i} + \varepsilon_i$

In this chapter, we assume that y_i and ε_i are random variables and that the values of (x_i) are known constants, which means that the same values of x_1, x_2, \ldots, x_n would be used in repeated sampling. The case in which the x variables are random variables is treated in Chapter 10. 紅 豐田 값이 에 백업대를 다들거임.

To complete the model in (6.1), we make the following additional assumptions:

- 1. $E(\varepsilon_i) = 0$ for all i = 1, 2, ..., n, or, equivalently, $E(y_i) = \beta_0 + \beta_1 x_i$. 2. $var(\varepsilon_i) = \sigma^2$ for all i = 1, 2, ..., n, or, equivalently, $var(y_i) = \sigma^2$. $\rightarrow \varepsilon$

Assumption 1 states that the model (6.1) is correct, implying that y_i depends only on x_i and that all other variation in y_i is random. Assumption 2 asserts/that the variance of ε or y does not depend on the values of x_i /(Assumption 2 is also known as the assumption of homoscedasticity, homogeneous variance or constant variance.) Under assumption 3, the ε variables (or the y variables) are uncorrelated with each other. In Section 6.3, we will add a normality assumption, and the y (or the ε) variables will thereby be independent as well as uncorrelated. Each assumption has been stated in terms of the ε 's or the y's. For example, if $var(\varepsilon_i) = \sigma^2$, then $var(y_i) = E[y_i - E(y_i)]^2 = E(y_i - \beta_0 - \beta_1 x_i)^2 = E(\varepsilon_i^2) = \sigma^2.$

Linear Models in Statistics, Second Edition, by Alvin C. Rencher and G. Bruce Schaalje Copyright © 2008 John Wiley & Sons, Inc.

细 chintinht X.

Any of these assumptions may fail to hold with real data. A plot of the data will often reveal departures from assumptions 1 and 2 (and to a lesser extent assumption 3). Techniques for checking on the assumptions are discussed in Chapter 9.

升松的 晚 就 数

6.2 ESTIMATION OF β_0 , β_1 , AND σ^2

Using a random sample of n observations y_1, y_2, \ldots, y_n and the accompanying fixed values x_1, x_2, \ldots, x_n , we can estimate the parameters β_0 , β_1 , and σ^2 . To obtain the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, we use the method of least squares, which does not require any distributional assumptions (for maximum likelihood estimators based on normality, see Section 7.6.2).

In the *least-squares* approach, we seek estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize the sum of squares of the deviations $y_i - \hat{y}_i$ of the *n* observed y_i 's from their predicted values $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$:

$$\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}. \tag{6.2}$$

Note that the predicted value \hat{y}_i estimates $E(y_i)$, not y_i ; that is, $\hat{\beta}_0 + \hat{\beta}_1 x_i$ estimates $\beta_0 + \beta_1 x_i$, not $\beta_0 + \beta_1 x_i + \varepsilon_i$. A better notation would be $\widehat{E(y_i)}$, but \hat{y}_i is commonly used. To find the values of $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize $\hat{\varepsilon}'\hat{\varepsilon}$ in (6.2), we differentiate with respect to $\hat{\beta}_0$ and $\hat{\beta}_1$ and set the results equal to 0:

$$\frac{\partial \hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}}}{\partial \hat{\boldsymbol{\beta}}_0} = -2 \sum_{i=1}^n (y_i - \hat{\boldsymbol{\beta}}_0 - \hat{\boldsymbol{\beta}}_1 x_i) = 0, \tag{6.3}$$

$$\frac{\partial \hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}}}{\partial \hat{\boldsymbol{\beta}}_1} = -2 \sum_{i=1}^n (y_i - \hat{\boldsymbol{\beta}}_0 - \hat{\boldsymbol{\beta}}_1 x_i) x_i = 0. \tag{6.4}$$

The solution to (6.3) and (6.4) is given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$
(6.5)

$$\hat{\boldsymbol{\beta}}_0 = \bar{\mathbf{y}} - \hat{\boldsymbol{\beta}}_1 \bar{\mathbf{x}}.\tag{6.6}$$

To verify that $\hat{\beta}_0$ and $\hat{\beta}_1$ in (6.5) and (6.6) minimize $\hat{\epsilon}'\hat{\epsilon}$ in (6.2), we can examine the second derivatives or simply observe that $\hat{\epsilon}'\hat{\epsilon}$ has no maximum and therefore the first $\hat{\epsilon}'\hat{\epsilon}$ of applications of the property of the pr

derivatives yield a minimum. For an algebraic proof that $\hat{\beta}_0$ and $\hat{\beta}_1$ minimize (6.2), see (7.10) in Section 7.3.1.

Example 6.2. Students in a statistics class (taught by one of the authors) claimed/that doing the homework had not helped prepare them for the midterm exam./The exam score y and homework score x (averaged up to the time of the midterm) for the 18 students in the class were as follows:

$$\frac{y}{95} \quad \frac{x}{96} \quad \frac{y}{72} \quad \frac{x}{89} \quad \frac{35}{35} \quad 0$$

$$80 \quad 77 \quad 66 \quad 47 \quad 50 \quad 30$$

$$0 \quad 0 \quad 98 \quad 90 \quad 72 \quad 59$$

$$0 \quad 0 \quad 90 \quad 93 \quad 55 \quad 77$$

$$79 \quad 78 \quad 0 \quad 18 \quad 75 \quad 74$$

$$77 \quad 64 \quad 95 \quad 86 \quad 66 \quad 67$$
Using (6.5) and (6.6), we obtain
$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}} = \frac{\sum (\lambda_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum (\lambda_{i} - \bar{x})^{2}} = \frac{\sum (\lambda_{i} - \bar{x})^{2} + n \bar{x}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}} = \frac{13,195 - 18(58.056)(61.389)}{80,199 - 18(58.056)^{2}} = .8726,$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x} = 61.389 - .8726(58.056) = 10.73.$$

The prediction equation is thus given by

$$\hat{y} = 10.73 + .8726x$$
.

This equation and the 18 points are plotted in Figure 6.1./It is readily apparent in the plot/that the slope $\hat{\beta}_1$ is the rate of change of \hat{y} /as x varies/and that the intercept $\hat{\beta}_0$ is the value of \hat{y} at x = 0.

The apparent linear trend in Figure 6.1 does not establish cause and effect/between homework and test results (for inferences that can be drawn, see Section 6.3). The assumption $var(\varepsilon_i) = \sigma^2$ (constant variance) for all i = 1, 2, ..., 18 appears to be reasonable.

Note that the three assumptions in Section 6.1 were not used/in deriving the least-squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ in (6.5) and (6.6)/It is not necessary that $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be based on $E(y_i) = \beta_0 + \beta_1 x_i$; that is, $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ /can be fit to a set of data for which $E(y_i) \neq \beta_0 + \beta_1 x_i$. This is illustrated in Figure 6.2, where a straight line has been fitted to curved data. If $\hat{\beta}_0 = \hat{\beta}_0 + \hat{\beta}_0 \hat{\beta}_0 = \hat{\beta}_0 + \hat{\beta}_0 \hat{\beta}_0 = \hat{\beta}_0$

Figure 6.1 Regression line and data for homework and test scores.

However, if the three assumptions in Section 6.1 hold, then the least-squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased and have minimum variance among all linear unbiased estimators (for the minimum variance property, see Theorem 7.3d in Section 7.3.2; note that $\hat{\beta}_0$ and $\hat{\beta}_1$ are linear functions of y_1, y_2, \ldots, y_n). Using the three

Figure 6.2 A straight line fitted to data with a curved trend.

assumptions, we obtain the following means and variances of $\hat{\beta}_0$ and $\hat{\beta}_1$:

$$E(\hat{\beta}_1) = \beta_1 \tag{6.7}$$

$$E(\hat{\beta}_0) = \beta_0 \tag{6.8}$$

$$\downarrow \operatorname{var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
(6.9)

$$\operatorname{var}(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]. \tag{6.10}$$

Note that in discussing $E(\hat{\beta}_1)$ and $var(\hat{\beta}_1)$, for example, we are considering random variation of $\hat{\beta}_1$ from sample to sample. It is assumed that the n values x_1 , x_2, \ldots, x_n would remain the same in future samples so that $var(\hat{\beta}_1)$ and $var(\hat{\beta}_0)$ are constant.

In (6.9), we see that $\operatorname{var}(\hat{\beta}_1)$ is minimized when $\sum_{i=1}^n (x_i - \bar{x})^2$ is maximized/If the x_i values have the range $a \le x_i \le b$,/then $\sum_{i=1}^n (x_i - \bar{x})^2$ is maximized/if half the x's are selected equal to a and half equal to b/(assuming that n is even; see Problem 6.4). In (6.10), it is clear that $\operatorname{var}(\hat{\beta}_0)$ is minimized when $\bar{x} = 0$.

The method of least squares does not yield an estimator of $var(y_i) = \sigma^2$; minimization of $\hat{\varepsilon}'\hat{\varepsilon}$ yields only $\hat{\beta}_0$ and $\hat{\beta}_1$. To estimate σ^2 , we use the definition in (3.6), $\sigma^2 = E[y_i - E(y_i)]^2$. By assumption 2 in Section 6.1, σ^2 is the same for each y_i , $i = 1, 2, \ldots, n$. Using \hat{y}_i as an estimator of $E(y_i)$, we estimate σ^2 by an average from the sample, that is

$$s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{\sum_{i} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})^{2}}{n-2} = \frac{SSE}{n-2},$$
 (6.11)

where $\hat{\beta}_0$ and $\hat{\beta}_1$ are given by (6.5) and (6.6) and SSE = $\sum_i (y_i - \hat{y}_i)^2 / \text{The deviation}$ $\hat{\epsilon}_i = y_i - \hat{y}_i$ is often called the *residual* of y_i , and SSE is called the *residual sum of squares* or *error sum of squares*. With n-2 in the denominator, s^2 is an unbiased estimator of σ^2 :

$$E(s^2) = \frac{E(SSE)}{n-2} = \frac{(n-2)\sigma^2}{n-2} = \sigma^2.$$
 (6.12)

Intuitively, we divide by n-2 in (6.11) instead of n-1 as in $s^2 = \sum_i (y_i - \bar{y})^2/(n-1)$ in (5.6), because $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ has two estimated parameters and should thereby be a better estimator of $E(y_i)$ than \bar{y} . Thus we

E(y_i) >1 best
$$\frac{1}{2}$$
 best $\frac{1}{2}$ best $\frac{1$

expect SSE = $\sum_i (y_i - \hat{y}_i)^2$ to be less than $\sum_i (y_i - \bar{y})^2$./In fact, using (6.5) and (6.6), we can write the numerator of (6.11) in the form

$$SSE = \sum_{i=1}^{n} (y_i - \overline{y}_i)^2 = \sum_{i=1}^{n} (y_i - \overline{y})^2 - \underbrace{\left[\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})\right]^2}_{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \qquad (6.13)$$

which shows that $\sum_{i} (y_i - \hat{y}_i)^2$ is indeed smaller than $\sum_{i} (y_i - \bar{y})^2$.

6.3 HYPOTHESIS TEST AND CONFIDENCE INTERVAL FOR β_1

Typically, hypotheses about β_1 are of more interest than hypotheses about β_0 ,/since our first priority is to determine/whether there is a linear relationship between y and x./ (See Problem 6.9 for a test and confidence interval for β_0 .)/In this section,/we consider the hypothesis H_0 : $\beta_1 = 0$, which states that there is no linear relationship between y and x in the model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. The hypothesis H_0 : $\beta_1 = c$ (for $c \neq 0$) is of less interest.

In order to obtain a test for H_0 : $\beta_1 = 0$, we assume that y_i is $N(\beta_0 + \beta_1 x_i, \sigma^2)$. Then $\hat{\beta}_1$ and s^2 have the following properties (these are special cases of results established in Theorem 7.6b in Section 7.6.3):

1.
$$\hat{\beta}_1$$
 is $N[\beta_1, \sigma^2/\sum_i (x_i - \bar{x})^2]$. $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{\sum (X_\lambda - \bar{x})^2})$
2. $(n-2)s^2/\sigma^2$ is $\chi^2(n-2)$. $\frac{(n-2)S^2}{\sqrt{2}} \sim \chi^2(n-2)$
3. $\hat{\beta}_1$ and s^2 are independent.

From these three properties it follows by (5.29) that

$$t = \frac{\hat{\beta}_1}{s / \sqrt{\sum_i (x_i - \bar{x})^2}} \quad \sim \quad t(N-2, \int) \qquad (6.14)$$

$$\int_{\sqrt{\sqrt{s}}} \frac{E(\hat{\beta}_1)}{\sqrt{\sqrt{s}}} = \frac{\beta_1}{\sqrt{\sqrt{\frac{1}{2}}(x_1 - \bar{x})^2}}$$

is distributed as $t(n-2, \delta)$, the noncentral t with noncentrality parameter δ . By a comment following (5.29), δ is given by $\delta = E(\hat{\beta}_1)/\sqrt{\mathrm{var}(\hat{\beta}_1)} = \beta_1/[\sigma/\sqrt{\sum_i (x_i - \bar{x})^2}]./\mathrm{If}\ \beta_1 = 0$, then by (5.28), t is distributed as $t(n-2)/\mathrm{For}\ a$ two-sided alternative hypothesis $H_1: \beta_1 \neq 0$, we reject $H_0: \beta_1 = 0$ if $|t| \geq t_{\alpha/2, n-2}$, where $t_{\alpha/2, n-2}$ is the upper $\alpha/2$ percentage point of the central t distribution and α is the desired significance level of the test/ (probability of rejecting H_0 when it is true). Alternatively, we reject H_0 if $p \leq \alpha$, where p is the p value/For a two-sided test, the p value is defined as twice the probability that t(n-2) exceeds the absolute value of the observed t.

A $100(1 - \alpha)\%$ confidence interval for β_1 is given by

$$\hat{\beta}_1 \pm t_{\alpha/2, \, n-2} \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$
(6.15)

Confidence intervals are defined and discussed further in Section 8.6. A confidence interval for E(y) and a prediction interval for y are also given in Section 8.6.

Example 6.3. We test the hypothesis H_0 : $\beta_1 = 0$ for the grades data in Example 6.2. By (6.14), the t statistic is

$$t = \frac{\hat{\beta}_1}{s/\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}} = \frac{.8726}{(13.8547)/(139.753)} = 8.8025.$$

Since $t = 8.8025 > t_{.025, 16} = 2.120$, we reject H_0 : $\beta_1 = 0$ at the $\alpha = .05$ level of significance. Alternatively, the p value is 1.571×10^{-7} , which is less than .05.

A 95% confidence interval for β_1 is given by (6.15) as

$$\hat{\beta}_1 \pm t_{.025, 16} \frac{s}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

$$.8726 \pm 2.120(.09914)$$

$$.8726 \pm .2102$$

$$(.6624, 1.0828).$$

6.4 COEFFICIENT OF DETERMINATION 1817 714.

The coefficient of determination r^2 is defined as

$$r^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}, \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \bar{y})^{2}}{\sum_{j=1}^{n} (y_{i} - \bar{y})^{2}}, \tag{6.16}$$

where SSR = $\sum_i (\hat{y}_i - \bar{y})^2$ is the regression sum of squares/and SST = $\sum_i (y_i - \bar{y})^2$ is the total sum of squares./The total sum of squares can be partitioned into SST = SSR + SSE, that is,

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$
 (6.17)

Thus r^2 in (6.16) gives the proportion of variation in y that is explained by the model or, equivalently, accounted for by regression on x.

We have labeled (6.16) as r^2 /because it is the same as the square of the *sample* correlation coefficient r between y and x

$$\mathbf{r} = \mathbf{r} = \frac{s_{xy}}{\sqrt{s_x^2 s_y^2}} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum_{i=1}^n (x_i - \bar{x})^2\right] \left[\sum_{i=1}^n (y_i - \bar{y})^2\right]}},$$
(6.18)

where s_{xy} is given by 5.15 (see Problem 6.11). When x is a random variable, r estimates the population correlation in (3.19). The coefficient of determination r^2 is discussed further in Sections 7.7, 10.4, and 10.5.

Example 6.4. For the grades data of Example 6.2, we have

$$r^2 = \frac{\text{SSR}}{\text{SST}} = \frac{14,873.0}{17,944.3} = .8288.$$

The correlation between homework score and exam score is $r = \sqrt{.8288} = .910$. The *t* statistic in (6.14) can be expressed in terms of *r* as follows:

$$t = \frac{\hat{\beta}_{1}}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}}} \frac{\sum_{\vec{x}} (\vec{x}_{i} - \bar{x})^{2}}{\sum_{\vec{x}} (\vec{x}_{i} - \bar{x})^{2}}$$

$$= \frac{\hat{\beta}_{1}}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}}} \frac{\sum_{\vec{x}} (\vec{x}_{i} - \bar{x})^{2}}{\sum_{\vec{x}} (\vec{x}_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (x_{i} - \bar{x})^{2}}$$

$$= \frac{\sqrt{n - 2 r}}{\sqrt{1 - r^{2}}}.$$

$$(6.19)$$

$$= \frac{\sqrt{n - 2 r}}{\sqrt{1 - r^{2}}}.$$

$$(6.20)$$

If H_0 : $\beta_1 = 0$ is true, then, as noted following (6.14), the statistic in (6.19) is distributed as t(n-2) under the assumption that the x_i 's are fixed and the y_i 's are independently distributed as $N(\beta_0 + \beta_1 x_i, \sigma^2)$. If x is a random variable such that x and y have a bivariate normal distribution, then $t = \sqrt{n-2} \ r/\sqrt{1-r^2}$ in (6.20) also has the t(n-2) distribution/provided that $H_0: \rho = 0$ is true, where ρ is the population correlation coefficient defined in (3.19) (see Theorem 10.5). However, (6.19) and (6.20) have different distributions if $H_0: \beta_1 = 0$ and $H_0: \rho = 0$ are false (see Section 10.4). If $\beta_1 \neq 0$, then (6.19) has a noncentral t distribution, but if $\rho \neq 0$, (6.20) does not have a noncentral t distribution.

PROBLEMS

- **6.1** Obtain the least-squares solutions (6.5) and (6.6) from (6.3) and (6.4).
- **6.2** (a) Show that $E(\hat{\beta}_1) = \beta_1$ as in (6.7).
 - **(b)** Show that $E(\hat{\beta}_0) = \beta_0$ as in (6.8).