Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) An architecture of an ignition management system for an internal combustion engine, adapted to cooperate with an electronic engine control unit, the architecture comprising:
- a first module structured to process electric signals from which the <u>an</u> angular position of the <u>an</u> engine <u>drivingdrive</u> shaft can be obtained;
- a second module structured to process electric signals from which the <u>a</u> cycle phase of the engine can be obtained;
- a third module structured to supply suitable signals for driving the injectors so as to actuate the a desired injection profile stored inside the third module, in a manner that injections during a same operating phase of the engine are increased and are based at least in part on an angular position of the drive shaft; and
- a fourth module structured to enable the module and to-receive signals from the first and second modules and from the fourth module itself.
- 2. (Currently Amended) The architecture according to claim 1 wherein the first module is-receives an input a-signal from a sensor of a phonic wheel made rotatively rigid with respect to the engine drivingdrive shaft.
- 3. (Currently Amended) The architecture according to claim 1 wherein the second module is receives an input a signal from a sensor of a phonic wheel made rotatively rigid with respect to the an engine camshaft.
- 4. (Currently Amended) The architecture according to claim 1 wherein the third module is receives input a pair of input signals from the second module, said signal pair

relating to the engine cycle phase and to the <u>a</u> number of teeth of the <u>a</u> phonic wheel, and <u>furthermore the third module takes</u> an additional <u>input</u> signal from the first module, the additional signal relating to the angular position of the engine driving drive shaft.

- 5. (Currently Amended) The architecture according to claim 1 wherein the fourth enabling module is-receives input a first input signal relating to the angular position of the engine drivingdrive shaft, a second signal relating to the cycle phase of the engine, and a third signal indicating the operational state of the third module.
- 6. (Currently Amended) The architecture according to claim 2 wherein the phonic wheel has a predetermined number of equidistant teeth arranged on the a circumference, a small group of adjoining teeth being missing to define a reference point on the wheel detectable by the sensor.
- 7. (Original) The architecture according to claim 6 wherein the number of teeth of the phonic wheel and the number of missing teeth are programmable.
- 8. (Original) The architecture according to claim 1 wherein the first, second and third modules are structurally and functionally independent.
- 9. (Currently Amended) The architecture according to claim 3 wherein the second module is-receives an input a-signal of a teeth counter of thea drivingdrive shaft phonic wheel from the first module, and that a predetermined amount of phase displacement may be provided between said signal and the signal from the sensor associated with the camshaft in order to control the a cycle phase of variable timing engines.
- 10. (Original) The architecture according to claim 1 wherein the fourth module is a logic network.

4

- 11. (Currently Amended) The architecture according to claim 3 wherein the phonic wheel has a non-standardconfigurable arrangement of teeth along its circumference.
- 12. (Currently Amended) The architecture according to claim 3 wherein the second module may be programmed so as to be adapted to different camshaft phonic wheels.
- 13. (Currently Amended) The architecture according to claims 11 wherein the second module may be programmed so as to be adapted to different camshaft phonic wheels.
- 14. (Currently Amended) An electronic device for determining the <u>an</u> operating phase of an internal combustion motor, the device being of the <u>a</u> type structured to cooperate with an electronic motor control unit and <u>inputting-receiving an input</u> signal issued from a sensor of a phonic wheel associated with the motor camshaft, the device comprising:
- a first I/O interface module incorporating a plurality of registers and receiving signals from the electronic motor control unit;
- a second module connected bi-directionally to the first module and inputting receiving the input signal issued from said sensor to identify a camshaft reference and to supply the an operating phase of the motor; and
- a third module adapted to issue an interrupt signal toward to the unit electronic engine control unit according to an error signal incoming from the second module, wherein injections during a same operating phase of the motor are increased and are based at least in part on an angular position of a drive shaft.
- 15. (Original) The device according to claim 14 wherein the registers of the first module can be accessed both while reading and writing from the electronic engine control unit via a standard interface.
- 16. (Currently Amended) The device according to claim 14 wherein the <u>a</u> search for the reference and the a following calculation of the a camshaft position are carried out

in the second module by continually monitoring the signal from the sensor of the camshaft phonic wheel.

- 17. (Currently Amended) The device according to claim 14 wherein a second set of registers, inside the first module, contain data about the an internal state and the results of the second module.
- 18. (Currently Amended) The device according to claim 14 wherein once an interrupt signal is generated, a relevant internal register of the first module is also updated, from which the a type of error caused by the second module can be found.
- 19. (Currently Amended) The device according to claim 14 wherein the registers included in the first module are include:

start	Starts the state machine implemented in "cams_shaft"
Stop	Stops the state machine implemented in "cams_shaft" and
	brings it back to its initial state ready to start again.
mem_cam_changes1	Table of <i>size1</i> items, containing the number-of-tooth values
	of the drivingdrive shaft phonic wheel where transitions
	occur on the cam signal during the driving drive shaft
	rotation corresponding to phase zero.
profile1	Indicates the expected value of the cam profile stored in
	mem_cam_changes1.
size1	Indicates the number of items stored in the
	mem_cam_changes1 and profile1 tables.
mem_cam_changes2	Table of <i>size1</i> items, containing the number-of-tooth values
	of the drivingdrive shaft phonic wheel where transitions
	occur on the cam signal during the drivingdrive shaft
	rotation corresponding to phase one.

profile2	Indicates the expected value of the cam profile stored in
	mem_cam_changes2.
size2	Indicates the number of items stored in the
	mem_cam_changes2 and profile2 tables.
mem_cam_r	Table of <i>sizer</i> items, containing the number-of-tooth values
	of the drivingdrive shaft phonic wheel where transitions
	occur for the reconstructed cam signal.
Profiler	Indicates the expected value of the cam profile stored in
	mem_cam_r.
Sizer	Indicates the number of items stored in the mem_cam_r
	and <i>profiler1</i> tables.
Delta	Indicates the width of the interval around the time point
	when the system is expecting a tooth of the camshaft
	phonic wheel.
offset_out	Indicates the extent that the cam signal has to be shifted
	from the drivingdrive shaft phonic wheel signal.
a_ns	Indicates whether the shift has to occur in the forward or
	the backward direction.
cfg_phase	Indicates if the teeth counter of the drivingdrive shaft
	phonic wheel has to be shifted.

20. (Currently Amended) The device according to claim 19 wherein the second set of registers of the first module is updated by the second module are the following include:

error_at	Indicates the number of the tooth where the last error
	occurred.
teeth_cnt	Indicates the driving drive shaft angular position as phonic
	wheel teeth counter from 1 to 2* (n_tooth_holes).
cam_phase	Indicates the motor phase.

lock_cam	Indicates that the motor operating phase is found.
stato_out	Indicates the current state of the "cams_shaft" state
	machine.
rec_out	Desired camshaft profile.

- 21. (Currently Amended) The device according to claim 14 wherein the second module constantly checks the pulses of the signal from the sensor, and it evolves according to a state machine on the <u>a</u> basis of a table correlating the <u>a</u> profile of a driving drive shaft phonic wheel with the camshaft phonic wheel.
- 22. (Currently Amended) The device according to claim 21 wherein the <u>a</u> format of the correlation table is the following:

Phase 0		Phase 1	Phase 1	
mem_cam_changes1	profile1	mem-cam_changes2	Profile2	
2	1	14	1	
3	0	15	0	
		16	1	
		17	0	

and includes a firs-first table for Phase 0, containing the transitions of the signal during the a first rotation of the drivingdrive shaft, and a table for Phase 1 containing the transitions of the signal during the a second rotation of the drivingdrive shaft.

Application No. 10/722,375 Reply to Office Action dated May 31, 2005

- 23. (Currently Amended) An architecture of an electronic device for determining the angular position of a <u>drivingdrive</u> shaft in internal combustion engines, the architecture being of the type intended to cooperate with an engine's electronic control unit and receiving an input signal emitted by a sensor of a tone wheel associated to-<u>with</u> the <u>drivingdrive</u> shaft, the architecture comprising:
- a first I/O interface module embedding a plurality of registers and receiving signals from the electronic engine control unit of the engine;
- a second module bi-directionally connected to the first module and receiving the input signal emitted by the sensor to detect a reference on the <u>drivingdrive</u> shaft and provide its angular position moment by moment; <u>and</u>

a third module capable of emitting an interrupt signal toward the electronic engine control unit on the basis of an error signal received from the second module, wherein injections during a same operating phase of the engine are increased and are based at least in part on the angular position of a drive shaft.

- 24. (Original) The architecture according to claim 23 wherein the registers of the first module can be accessed in reading and writing mode by the electronic engine control unit via a standard interface.
- 25. (Currently Amended) The architecture according to claim 23 wherein in the second module the—a_search of the reference and the—a_subsequent calculation of the driving drive shaft position occur by constantly monitoring the signal transmitted by the sensor of the tone wheel.
- 26. (Currently Amended) The architecture according to claim 23 wherein a second set of registers internal to the first module contains data relating to the an internal status and the results of the second module.

- 27. (Currently Amended) The architecture according to claim 23 wherein the <u>a</u> generation of an interrupt signal also updates a related register internal to the first module from which it is possible to trace the <u>a</u> type of error generated by the second module.
- 28. (Currently Amended) The architecture according to claim 23 wherein the registers embedded in the first module are include:

Starts the state machine implemented in "fsm fonica".
Stops the state machine implemented in "fsm_fonica"
restoring its original status waiting for a new start-up.
Sets the waiting time limit so that the lack of teeth in
this time interval indicates a system error status.
This indicates the tone wheel number of teeth.
This indicates the tone wheel number of holes.
This indicates the number of revolutions of the
drivingdrive shaft to be waited after the lock before
passing to the injection phase.
This indicates the extent of the interval around the
time instant in which the system expects a tone wheel
tooth.
Enables or disables the digital filter to be applied on
the signal transmitted by the tone wheel.
This indicates whether it is necessary to reset, in case
of error, the count of already executed checks.
This indicates the number of tooth where the last
error occurred.
This indicates the current number of tooth of the tone
wheel.

i_teeth	This indicates an intermediate position between two adjacent teeth of the same tone wheel with a fixed accuracy.
Frt	Free running timer.
Stato_out	This indicates the current status of the state machine of the "fsm_fonica".
Diffdente_out	This indicates a value from which it is possible to trace the revolution speed of the drivingdrive shaft with the following expression: $rpm = \frac{f * 60}{n_tooth_holes * diffdente_out}$ where f is the system clock frequency (clk).
Pending	This indicates the type of error occurred.

- 29. (Original) The architecture according to claim 25 wherein the second module checks that every subsequent pulse of the signal occurs within a fixed temporal window or that no pulse is received within said window to pass through the tone wheel point of reference search status.
- 30. (Currently Amended) The architecture according to claim 29 wherein the temporal window is determined as <u>a_difference</u> (count2 count1) between the subsequent instants of reception of the signal-(fonica_signal), also determining the <u>a_center</u> of an interval in which the next pulse is expected; the <u>an_extent of the interval being calculated as ratio</u> (count2 count1) / n, with n equal to the based at least in part on a number of teeth of the tone wheel.
- 31. (Currently Amended) An architecture of a system for driving the <u>an</u> injection and/or ignition in internal combustion engines, of the <u>a</u> type intended to cooperate with an engine electronic control unit by driving corresponding injection drivers, and comprising:
- a first I/O interface module embedding a plurality of registers and receiving signals from the engine electronic engine control unit (ECU);

a second module bi-directionally connected to the first module from which it receives information at least on the-injection times and the-a quantity of fuel to be injected for generating driving signals for the injection drivers, thereby actuating a desired injection profile, in a manner that injections during a same operating phase of the engine are increased and are based at least in part on the angular position of a drive shaft of the engine; and

a third module capable of emitting an interrupt signal toward to the electronic engine control unit on the a basis of signals received by the second module.

- 32. (Original) The architecture according to claim 31 wherein the registers of the first module can be accessed in writing and reading mode from the ECU by a standard interface.
- 33. (Currently Amended) The architecture according to claim 31 wherein the registers embedded in the first module areinclude:

start	Its status is reported by the output "start dec"
Start	his status is reported by the output start_dec
Stop	Stops the state machine implemented in "inj" restoring
	its original status waiting for a new start.
presc_conf	Prescaler of the timer internal to module "inj"
Period	Period of the PWM signals to be generated
duty_high	Table containing a set of duty-cycle values of the
	PWM signals to be generated
Security	This indicates if the security condition is enabled
compare_value	Watchdog value
time_diag	This indicates the instants in which diagnostics should
	be carried out
cfg_diag	This indicates if diagnostics should be carried out
Index_diag	This indicates the element of the <i>time_diag</i> signal to
	be used for diagnostics

expected_diag	This indicates the value expected from the diagnostic
	check
cfg_diag_sec	This indicates whether diagnostics should be carried
	out in security condition
Index_diag_sec	This indicates the element of the <i>time_diag</i> signal to
	be used for diagnostics in security condition
expected_diag_sec	This indicates the value expected from the diagnostic
	check in security condition
time_prof	Table containing the instants of variation of the
	injection profile
Profile	Table containing the configuration values of signals
	curr_out and pwm_out for every instant of variation
	of the injection profile
cfg_time_prof	This indicates whether the actuation of the injection
	profile should be based on time or angles
cam_phase_conf	This indicates the phase in which injection should be
	carried out
num_shape	Number of shapes forming the injection profile
time_prof_sec	Table similar to time_prof but valid in security
	condition
profile_sec	Table similar to profile but valid in security condition
cfg_time_prof_sec	This indicates whether the actuation of the injection
	profile in security condition should be based on time
	or angles
cam_phase_conf_sec	This indicates the phase in which injection should be
	carried out in security condition
num_shape_sec	Number of shapes forming the injection profile in
	security condition
Output to "pend_inj"	

Mask	Interrupt mask
Input from "inj"	
stato_out	This allows to trace the "inj" state
cfg_pwm	This indicates the current configuration of module "pwm_inj"
curr_out	This indicates the current configuration of the steady driver driving signals
Input from "pend_inj"	,
Pending	This indicates the type of error occurred

- 34. (Currently Amended) The architecture according to claim 31 wherein the second module directly receives an input signal relating to the an engine phase, and a further pair of signals related to the an angular position of the a drive shaft.
- 35. (Original) The architecture according to claim 31 wherein when an interrupt signal is generated a relevant internal register of the first module is also updated from which it is possible to trace the type of error generated by the second module.
- 36. (Original) The architecture according to claim 31 wherein the second module comprises a main block for driving the injection drivers and an auxiliary block adapted for generating PWM signals through configuration commands provided by the main block.
- 37. (Currently Amended) The architecture according to claim 36 wherein the auxiliary block is in charge of generating both a square wave with the <u>a</u> desired duty-cycle and of obtaining either a high or a low logical value in output.

38. (Currently Amended) The architecture according to claim 37 wherein the main block operates in two modes by using a corresponding set of data in the registers; one of said modes being a security mode for which the <u>a</u> set of data taken into consideration is as follows in loudes:

time_prof_sec	Table similar to time_prof but valid in security condition
profile_sec	Table similar to profile but valid in security condition
cfg_time_prof_sec	This indicates whether the actuation of the injection profile in
	security condition should be based on time or angles
cam_phase_conf_sec	This indicates the phase in which injection should be carried out in
	security condition
num_shape_sec	Number of shapes forming the injection profile in security condition