Vertiefungskurs Mathematik

Folgen

Definition Folge: Eine (reelle) Folge ist eine Abbildung $a: \mathbb{N} \to \mathbb{R}$, also eine Vorschrift, die jeder natürlichen Zahl n das n-te Folgenglied $a(n) \in \mathbb{R}$ zuordnet.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Wir können eine Folge auch ansehen als eine Funktion $f: \mathbb{N} \to \mathbb{R}$ mit $f(n) = a_n$.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Wir können eine Folge auch ansehen als eine Funktion $f: \mathbb{N} \to \mathbb{R}$ mit $f(n) = a_n$.

Wir können uns eine Folge vorstellen als eine Folge von Punkten auf der Zahlengeraden.

Beispiel: $(a_n) = 1, 1, 2, 3, 5, 8, 13, ...$ ist eine Folge mit $a_4 = 3$.

Wir können eine Folge auch ansehen als eine Funktion $f : \mathbb{N} \to \mathbb{R}$ mit $f(n) = a_n$.

Wir können uns eine Folge vorstellen als eine Folge von Punkten auf der Zahlengeraden.

Manchmal lässt man eine Folge auch beim Index 0 beginnen.

 $a_n = n^2 + 1$ beschreibt eine Folge mit den Folgengliedern

 $a_n = n^2 + 1$ beschreibt eine Folge mit den Folgengliedern $a_1 = 2, a_2 = 5, a_3 = 10...$

$$a_n = n^2 + 1$$
 beschreibt eine Folge mit den Folgengliedern $a_1 = 2, a_2 = 5, a_3 = 10...$

Manchmal ist es schwierig, eine Formel für das n-te Folgenglied zu finden. Eine Folge kann auch rekursiv beschrieben werden:

$$a_n = n^2 + 1$$
 beschreibt eine Folge mit den Folgengliedern $a_1 = 2, a_2 = 5, a_3 = 10...$

Manchmal ist es schwierig, eine Formel für das n-te Folgenglied zu finden. Eine Folge kann auch rekursiv beschrieben werden:

$$a_n = \begin{cases} 1, & n = 1, n = 2 \\ a_{n-1} + a_{n-2} & n > 2 \end{cases}$$

Der Wert eines Folgenglieds wird durch Rückgriff auf frühere Folgenglieder festgelegt.

$$a_n = 2^n$$
 für $n \ge 0$

$$a_n = 2^n$$
 für $n \ge 0$

$$b_n = \begin{cases} 1, & n = 0 \\ 2 \cdot b_{n-1} & n > 0 \end{cases}$$

$$a_n=2^n$$
 für $n\geq 0$

$$b_n = \begin{cases} 1, & n = 0 \\ 2 \cdot b_{n-1} & n > 0 \end{cases}$$

Die Folgen (a_n) und (b_n) sind gleich.

$$a_n = \begin{cases} 1, & \text{falls } n = 0, 1, 2 \\ a_{n-1} + a_{n-2} + a_{n-3} & \text{falls } n > 2 \end{cases}$$

$$a_n = \begin{cases} 1, & \text{falls } n = 0, 1, 2 \\ a_{n-1} + a_{n-2} + a_{n-3} & \text{falls } n > 2 \end{cases}$$

$$(a_n) = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, \dots$$

$$a_n = \begin{cases} 1, & \text{falls } n = 0, 1, 2 \\ a_{n-1} + a_{n-2} + a_{n-3} & \text{falls } n > 2 \end{cases}$$

$$(a_n) = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, \dots$$

$$b_n = \frac{a_{n+1}}{a_n}$$

$$a_n = \begin{cases} 1, & \text{falls } n = 0, 1, 2 \\ a_{n-1} + a_{n-2} + a_{n-3} & \text{falls } n > 2 \end{cases}$$

$$(a_n) = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, \dots$$

$$b_n=\frac{a_{n+1}}{a_n}$$

$$(b_n)=1,1,3,\frac{5}{3},\frac{9}{5},\frac{17}{9},\frac{31}{17},\frac{57}{31},\frac{105}{57}...$$

$$a_n = \begin{cases} 1, & \text{falls } n = 0, 1, 2 \\ a_{n-1} + a_{n-2} + a_{n-3} & \text{falls } n > 2 \end{cases}$$

$$(a_n) = 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, \dots$$

$$b_n = \frac{a_{n+1}}{a_n}$$

$$(b_n)=1,1,3,\frac{5}{3},\frac{9}{5},\frac{17}{9},\frac{31}{17},\frac{57}{31},\frac{105}{57}...$$

Die Folge (b_n) mit Dezimalzahlen:

- 1.00000000000000
- 1.000000000000000
- 3.00000000000000
- 1.6666666666667
- 1.80000000000000
- 1.8888888888889
- 1.82352941176471
- 1.83870967741935
- 1.84210526315789
- 1.83809523809524
- 1.83937823834197
- 1.83943661971831
- 1.83920367534456
- 1.03920307334430
- 1.83930058284763
- 1.83929379809869
- 1.83928131922225
- 1.83928810384049
- 1.83928701345944
- 1.8392870134594
- 1.83928642063210
- 1.83928686638422

1.000000000000000 1.000000000000000 3.000000000000000 1.66666666666667 1.800000000000000 1.8888888888888 1.82352941176471 1.83870967741935 1.84210526315789 1.83809523809524 1.83937823834197 1.83943661971831 1.83920367534456 1.83930058284763 1.83929379809869 1.83928131922225 1.83928810384049 1.83928701345944 1.83928642063210 1.83928686638422

Die Folgenglieder b_n scheinen sich einem Grenzwert b anzunähern.

3.000000000000000

1.6666666666667

1.800000000000000

1.888888888888

1.82352941176471

1.83870967741935 1.84210526315789

1.83809523809524

1.0300932300932

1.83937823834197

1.83943661971831

1.83920367534456

1.83930058284763

1.83929379809869

1.83928131922225

1.0392013192222

1.83928810384049

1.83928701345944

1.0392070134394

1.83928642063210

1.83928686638422

Die Folgenglieder b_n scheinen sich einem Grenzwert b anzunähern.

Wir schreiben
$$b = \lim_{n \to \infty} b_n$$

1.80000000000000 1.8888888888888

1.82352941176471

1.83870967741935

1.84210526315789 1.83809523809524

1.8380952380952

1.83937823834197

1.83943661971831

1.83920367534456

1.83930058284763

1.83929379809869

1.83928131922225

1.83928810384049

1.83928701345944

1.8392870134594

1.83928642063210

1.83928686638422

Die Folgenglieder b_n scheinen sich einem Grenzwert b anzunähern.

Wir schreiben $b = \lim_{n \to \infty} b_n$

Es kann schwierig sein, den genauen Grenzwert zu berechnen.

1.800000000000000

1.88888888888888 1.82352941176471

1.83870967741935

1.84210526315789 1.83809523809524

1.03009523009524

1.83943661971831

1.83920367534456

1.83930058284763

1.83929379809869

1.83928131922225

1.83928810384049

1.83928701345944

1.83928642063210

1.83928686638422

Die Folgenglieder b_n scheinen sich einem Grenzwert b anzunähern.

Wir schreiben
$$b = \lim_{n \to \infty} b_n$$

Es kann schwierig sein, den genauen Grenzwert zu berechnen. Für b_n ist es die Zahl:

$$\tfrac{1}{3}\sqrt[3]{19+3\sqrt{33}} - \tfrac{1}{3}\sqrt[3]{19-3\sqrt{33}} + \tfrac{1}{3}$$

$$\approx 1,8392867552$$

 $5, 12, 19, 26, 33, \dots$

$$5, 12, 19, 26, 33, \dots \quad a_n =$$

 $5, 12, 19, 26, 33, \dots$ $a_n = 5 + 7n.$

$$5, 12, 19, 26, 33, \dots$$
 $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$.

 $5, 12, 19, 26, 33, \dots$ $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

 $5, 12, 19, 26, 33, \dots$ $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine **geometrische Folge** ist ein Folge mit einem konstanten Quotienten zwischen den Folgengliedern.

3, 6, 12, 24, 48, 96..

$$5, 12, 19, 26, 33, \dots$$
 $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine **geometrische Folge** ist ein Folge mit einem konstanten Quotienten zwischen den Folgengliedern.

$$3, 6, 12, 24, 48, 96..$$
 $a_n =$

$$5, 12, 19, 26, 33, \dots$$
 $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine **geometrische Folge** ist ein Folge mit einem konstanten Quotienten zwischen den Folgengliedern.

$$3, 6, 12, 24, 48, 96..$$
 $a_n = 3 \cdot 2^n.$

$$5, 12, 19, 26, 33, \dots$$
 $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine **geometrische Folge** ist ein Folge mit einem konstanten Quotienten zwischen den Folgengliedern.

$$3, 6, 12, 24, 48, 96..$$
 $a_n = 3 \cdot 2^n.$

Allgemeine Form einer geometrischen Folge: $a_n = a_0 \cdot q^n$.

Eine **arithmetische Folge** ist ein Folge mit einer konstanten Differenz zwischen den Folgengliedern.

$$5, 12, 19, 26, 33, \dots$$
 $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine **geometrische Folge** ist ein Folge mit einem konstanten Quotienten zwischen den Folgengliedern.

$$3, 6, 12, 24, 48, 96..$$
 $a_n = 3 \cdot 2^n.$

Allgemeine Form einer geometrischen Folge: $a_n = a_0 \cdot q^n$.

Jedes Folgenglied ist das geometrische Mittel seiner Nachbarn.

Eine **arithmetische Folge** ist ein Folge mit einer konstanten Differenz zwischen den Folgengliedern.

$$5, 12, 19, 26, 33, \dots$$
 $a_n = 5 + 7n.$

Allgemeine Form einer arithmetischen Folge: $a_n = a_0 + d \cdot n$. Jedes Folgenglied ist das arithmetische Mittel seiner Nachbarn.

Eine **geometrische Folge** ist ein Folge mit einem konstanten Quotienten zwischen den Folgengliedern.

$$3, 6, 12, 24, 48, 96..$$
 $a_n = 3 \cdot 2^n.$

Allgemeine Form einer geometrischen Folge: $a_n = a_0 \cdot q^n$.

Jedes Folgenglied ist das geometrische Mittel seiner Nachbarn.

Das geometrische Mittel zweier Zahlen a, b ist definiert als $\sqrt{a \cdot b}$.

Wir untersuchen die Folge $a_n = \frac{6n+2}{3n+3}$

Wir untersuchen die Folge $a_n = \frac{6n+2}{3n+3}$ $a_1 =$ Wir untersuchen die Folge $a_n = \frac{6n+2}{3n+3}$ $a_1 = \frac{8}{6} = \frac{4}{3}$ Wir untersuchen die Folge $a_n = \frac{6n+2}{3n+3}$ $a_1 = \frac{8}{6} = \frac{4}{3}$ $a_{1000} =$ Wir untersuchen die Folge $a_n = \frac{6n+2}{3n+3}$ $a_1 = \frac{8}{6} = \frac{4}{3}$ $a_{1000} = \frac{6002}{3003} \approx 1.99866799866800$

Wir untersuchen die Folge
$$a_n = \frac{6n+2}{3n+3}$$

 $a_1 = \frac{8}{6} = \frac{4}{3}$
 $a_{1000} = \frac{6002}{3003} \approx 1.99866799866800$
 $a_{1000000} = \frac{6000002}{3000003} \approx 1.99999866666800$

Wir untersuchen die Folge
$$a_n = \frac{6n+2}{3n+3}$$

 $a_1 = \frac{8}{6} = \frac{4}{3}$
 $a_{1000} = \frac{6002}{3003} \approx 1.99866799866800$
 $a_{1000000} = \frac{6000002}{3000003} \approx 1.99999866666800$

Die Folge nähert sich der 2, wir schreiben: $\lim_{n\to\infty} a_n = 2$.

Wir untersuchen die Folge
$$a_n = \frac{6n+2}{3n+3}$$

 $a_1 = \frac{8}{6} = \frac{4}{3}$
 $a_{1000} = \frac{6002}{3003} \approx 1.99866799866800$
 $a_{1000000} = \frac{6000002}{3000003} \approx 1.99999866666800$

Die Folge nähert sich der 2, wir schreiben: $\lim_{n\to\infty} a_n = 2$.

Damit drücken wir aus: Wir können mit a_n beliebig nahe an die 2 kommen, wenn wir n nur groß genug wählen.

Wir untersuchen die Folge
$$a_n = \frac{6n+2}{3n+3}$$
 $a_1 = \frac{8}{6} = \frac{4}{3}$ $a_{1000} = \frac{6002}{3003} \approx 1.99866799866800$ $a_{1000000} = \frac{6000002}{3000003} \approx 1.99999866666800$

Die Folge nähert sich der 2, wir schreiben: $\lim_{n\to\infty} a_n = 2$.

Damit drücken wir aus: Wir können mit a_n beliebig nahe an die 2 kommen, wenn wir n nur groß genug wählen.

Für jedes $\epsilon > 0$ gibt es ein n_0 , so dass a_n nicht mehr als ϵ von 2 entfernt ist, wenn nur $n > n_0$ ist.

Definition Grenzwert: Eine Zahl $a \in \mathbb{R}$ heißt Grenzwert der Folge (a_n) wenn gilt:

$$\forall \epsilon > 0 \,\exists n_0 \in \mathbb{N} \, \forall n > n_0 : |a_n - a| < \epsilon$$

Definition Grenzwert: Eine Zahl $a \in \mathbb{R}$ heißt Grenzwert der Folge (a_n) wenn gilt:

$$\forall \epsilon > 0 \,\exists n_0 \in \mathbb{N} \,\forall n > n_0 : |a_n - a| < \epsilon$$

Besitzt eine Folge (a_n) eine Grenzwert a - auch Limes genannt - so sagt man, die Folge konvergiert gegen a und schreibt dafür $\lim_{n\to\infty} a_n = a$ oder $(a_n)\to a$ für $a\to\infty$.

Definition Grenzwert: Eine Zahl $a \in \mathbb{R}$ heißt Grenzwert der Folge (a_n) wenn gilt:

$$\forall \epsilon > 0 \,\exists n_0 \in \mathbb{N} \,\forall n > n_0 : |a_n - a| < \epsilon$$

Besitzt eine Folge (a_n) eine Grenzwert a - auch Limes genannt - so sagt man, die Folge konvergiert gegen a und schreibt dafür $\lim_{n\to\infty}a_n=a$ oder $(a_n)\to a$ für $a\to\infty$.

Andere Formulierung: a heißt Grenzwert der Folge (a_n) , wenn in jeder (noch so kleinen) ϵ -Umgebung von a fast alle Elemente der Folge liegen.

Beweis: Sei $\epsilon > 0$.

Beweis: Sei $\epsilon > 0$.

Wir müssen ein n_0 finden, so dass $|a_n - 1| < \epsilon$ für $n > n_0$.

Beweis: Sei $\epsilon > 0$.

Wir müssen ein n_0 finden, so dass $|a_n - 1| < \epsilon$ für $n > n_0$.

$$\begin{aligned} |a_n - 1| &< \epsilon \Leftrightarrow 1 - \frac{n+1}{n+2} < \epsilon \Leftrightarrow (n+2) - (n+1) < \epsilon (n+2) \\ &\Leftrightarrow \frac{1}{\epsilon} < n+2 \Leftrightarrow \frac{1}{\epsilon} - 2 < n. \end{aligned}$$

Beweis: Sei $\epsilon > 0$.

Wir müssen ein n_0 finden, so dass $|a_n - 1| < \epsilon$ für $n > n_0$.

$$|a_n - 1| < \epsilon \Leftrightarrow 1 - \frac{n+1}{n+2} < \epsilon \Leftrightarrow (n+2) - (n+1) < \epsilon(n+2)$$

$$\Leftrightarrow \frac{1}{\epsilon} < n+2 \Leftrightarrow \frac{1}{\epsilon} - 2 < n.$$
With the plant of a 7-14 with $n > 1$

Wähle als n_0 eine Zahl mit $n_0 \ge \frac{1}{\epsilon} - 2$.

Beweis: Sei $\epsilon > 0$.

Wir müssen ein n_0 finden, so dass $|a_n - 1| < \epsilon$ für $n > n_0$.

$$|a_n - 1| < \epsilon \Leftrightarrow 1 - \frac{n+1}{n+2} < \epsilon \Leftrightarrow (n+2) - (n+1) < \epsilon(n+2)$$

 $\Leftrightarrow \frac{1}{\epsilon} < n+2 \Leftrightarrow \frac{1}{\epsilon} - 2 < n$.
 Wähle als n_0 eine Zahl mit $n_0 \ge \frac{1}{\epsilon} - 2$.

Traine als n_0 ence $2\pi i \cdot m_0 = \frac{1}{\epsilon}$

Beispiel: für $\epsilon=\frac{1}{100}$ wählen wir $n_0=98$. Alle Folgenglieder nach a_{98} haben den Abstand kleiner als $\frac{1}{100}$ zum Grenzwert 1.

Folgen sind nützlich für näherungsweise Berechnungen.

Folgen sind nützlich für näherungsweise Berechnungen. Wir betrachten die ersten 7 Elemente der Folge

$$x_1 = 1$$
, $x_{n+1} = \frac{1}{x_n} + \frac{x_n}{2}$

- 1.00000000000000
- 1.50000000000000
- 1.41666666666667
- 1.41421568627451
- 1.41421356237469
- 1.41421356237310
- 1.41421356237310

Folgen sind nützlich für näherungsweise Berechnungen. Wir betrachten die ersten 7 Elemente der Folge

$$x_1 = 1$$
, $x_{n+1} = \frac{1}{x_n} + \frac{x_n}{2}$

1.00000000000000

1.50000000000000

1.41666666666667

1.41421568627451

1.41421356237469

1.41421356237310

1.41421356237310

Die Folge konvergiert gegen $\sqrt{2}$.

Folgen sind nützlich für näherungsweise Berechnungen. Wir betrachten die ersten 7 Elemente der Folge

$$x_1 = 1$$
, $x_{n+1} = \frac{1}{x_n} + \frac{x_n}{2}$

- 1.00000000000000
- 1.500000000000000
- 1.41666666666667
- 1.41421568627451
- 1.41421356237469
- 1.41421356237310
- 1.41421356237310

Die Folge konvergiert gegen $\sqrt{2}$. Wenn man eine gute Näherung für $\sqrt{2}$ benötigt, muss man nur weit genug in der Folge fortschreiten.

Die Folge heißt nach unten beschränkt, wenn es eine Zahl $s \in \mathbb{R}$ gibt, mit $s \leq a_n$ für alle $n \in \mathbb{N}$. s heißt dann untere Schranke der Folge.

Die Folge heißt nach unten beschränkt, wenn es eine Zahl $s \in \mathbb{R}$ gibt, mit $s \leq a_n$ für alle $n \in \mathbb{N}$. s heißt dann untere Schranke der Folge.

Die Folge heißt **beschränkt**, wenn sie nach oben und nach unten beschränkt ist.

Die Folge heißt nach unten beschränkt, wenn es eine Zahl $s \in \mathbb{R}$ gibt, mit $s \leq a_n$ für alle $n \in \mathbb{N}$. s heißt dann untere Schranke der Folge.

Die Folge heißt **beschränkt**, wenn sie nach oben und nach unten beschränkt ist.

Beispiele: Die Folge (a_n) mit $a_n = \sin(n)$

Die Folge heißt nach unten beschränkt, wenn es eine Zahl $s \in \mathbb{R}$ gibt, mit $s \leq a_n$ für alle $n \in \mathbb{N}$. s heißt dann untere Schranke der Folge.

Die Folge heißt **beschränkt**, wenn sie nach oben und nach unten beschränkt ist.

Beispiele: Die Folge (a_n) mit $a_n = \sin(n)$ ist eine beschränkte Folge. Die Folge (a_n) mit $a_n = n \cdot \sin(\frac{\pi n}{2})$

Die Folge heißt nach unten beschränkt, wenn es eine Zahl $s \in \mathbb{R}$ gibt, mit $s \leq a_n$ für alle $n \in \mathbb{N}$. s heißt dann untere Schranke der Folge.

Die Folge heißt **beschränkt**, wenn sie nach oben und nach unten beschränkt ist.

Beispiele: Die Folge (a_n) mit $a_n = \sin(n)$ ist eine beschränkte Folge. Die Folge (a_n) mit $a_n = n \cdot \sin(\frac{\pi n}{2})$ ist weder nach oben noch nach unten beschränkt.

Beweis: Sei (a_n) eine Folge und a ihr Grenzwert.

Beweis: Sei (a_n) eine Folge und a ihr Grenzwert. Wähle $\epsilon=1$. Dann liegen in der ϵ -Umgebung U=(a-1,a+1) fast alle Folgenglieder.

Beweis: Sei (a_n) eine Folge und a ihr Grenzwert. Wähle $\epsilon=1$. Dann liegen in der ϵ -Umgebung U=(a-1,a+1) fast alle Folgenglieder. Die endlich vielen Elemente außerhalb von U haben ein größtes und ein kleinstes Element.

Beweis: Sei (a_n) eine Folge und a ihr Grenzwert. Wähle $\epsilon=1$. Dann liegen in der ϵ -Umgebung U=(a-1,a+1) fast alle Folgenglieder. Die endlich vielen Elemente außerhalb von U haben ein größtes und ein kleinstes Element. Das sind die Schranken der Folge.

Beweis: Sei (a_n) eine Folge und a ihr Grenzwert. Wähle $\epsilon=1$. Dann liegen in der ϵ -Umgebung U=(a-1,a+1) fast alle Folgenglieder. Die endlich vielen Elemente außerhalb von U haben ein größtes und ein kleinstes Element. Das sind die Schranken der Folge. Falls unterhalb oder oberhalb von U keine Elemente vorhanden sind, wählen wir den Rand von U als Schranke.

(G1) Die Summenfolge $(a_n + b_n)$ ist konvergent und ihr Grenzwert ist die Summe der Grenzwerte von (a_n) und (b_n) :

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

(G1) Die Summenfolge $(a_n + b_n)$ ist konvergent und ihr Grenzwert ist die Summe der Grenzwerte von (a_n) und (b_n) :

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

(G2) Die Produktfolge $(a_n \cdot b_n)$ ist konvergent und ihr Grenzwert ist das Produkt der Grenzwerte von (a_n) und (b_n) :

$$\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$$

(G1) Die Summenfolge $(a_n + b_n)$ ist konvergent und ihr Grenzwert ist die Summe der Grenzwerte von (a_n) und (b_n) :

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

(G2) Die Produktfolge $(a_n \cdot b_n)$ ist konvergent und ihr Grenzwert ist das Produkt der Grenzwerte von (a_n) und (b_n) :

$$\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$$

(G3) Ist $\lim_{n\to\infty}b_n\neq 0$, so sind fast alle $b_n\neq 0$, und die (ggf. erst ab einem

Index N > 1 definierte) Quotientenfolge $(\frac{a_n}{b_n})$ konvergiert gegen:

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$$

(G1) Die Summenfolge $(a_n + b_n)$ ist konvergent und ihr Grenzwert ist die Summe der Grenzwerte von (a_n) und (b_n) :

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

(G2) Die Produktfolge $(a_n \cdot b_n)$ ist konvergent und ihr Grenzwert ist das Produkt der Grenzwerte von (a_n) und (b_n) :

$$\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$$

(G3) Ist $\lim_{n\to\infty}b_n\neq 0$, so sind fast alle $b_n\neq 0$, und die (ggf. erst ab einem

Index N > 1 definierte) Quotientenfolge $(\frac{a_n}{b_n})$ konvergiert gegen:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}$$

Man darf also den Limes in Summe, Produkt und Quotient zweier Folgen 'reinziehen', wenn(!) die Ausgangs-Folgen konvergent sind.

Lemma: Für zwei reelle Zahlen $x,y\in\mathbb{R}$ gilt die *Dreiecksungleichung*

$$|x+y| \le |x| + |y|$$

Lemma: Für zwei reelle Zahlen $x,y\in\mathbb{R}$ gilt die *Dreiecksungleichung*

$$|x + y| \le |x| + |y|$$

Beweis: Aus der Definition des Betrags folgt unmittelbar:

$$\pm x \le |x| \text{ und } \pm y \le |y|$$

Lemma: Für zwei reelle Zahlen $x, y \in \mathbb{R}$ gilt die *Dreiecksungleichung*

$$|x + y| \le |x| + |y|$$

Beweis: Aus der Definition des Betrags folgt unmittelbar:

$$\pm x \leq |x|$$
 und $\pm y \leq |y|$ Also gilt:

$$x + y \le |x| + |y|$$

Lemma: Für zwei reelle Zahlen $x, y \in \mathbb{R}$ gilt die *Dreiecksungleichung*

$$|x + y| \le |x| + |y|$$

Beweis: Aus der Definition des Betrags folgt unmittelbar:

$$\pm x \leq |x|$$
 und $\pm y \leq |y|$ Also gilt:

$$x + y \le |x| + |y| \text{ und } -(x + y) = (-x) + (-y) \le |x| + |y|.$$

Lemma: Für zwei reelle Zahlen $x, y \in \mathbb{R}$ gilt die *Dreiecksungleichung*

$$|x+y| \le |x| + |y|$$

Beweis: Aus der Definition des Betrags folgt unmittelbar:

$$\pm x \le |x|$$
 und $\pm y \le |y|$ Also gilt:

$$|x + y| \le |x| + |y| \text{ und } -(x + y) = (-x) + (-y) \le |x| + |y|.$$

Insgesamt gilt also: $|x + y| \le |x| + |y|$.

Sei $\epsilon > 0$ gegeben.

Sei $\epsilon>0$ gegeben. Dann gibt es $n_1,n_2\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für $n>n_1$ und $|b_n-b|<\frac{\epsilon}{2}$ für $n>n_2$.

Sei $\epsilon>0$ gegeben. Dann gibt es $n_1, n_2\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für $n>n_1$ und $|b_n-b|<\frac{\epsilon}{2}$ für $n>n_2$. Wir setzen n_0 als das Maximum von n_1 und n_2 .

Sei $\epsilon > 0$ gegeben. Dann gibt es $n_1, n_2 \in \mathbb{N}$ mit $|a_n - a| < \frac{\epsilon}{2}$ für $n > n_1$ und $|b_n - b| < \frac{\epsilon}{2}$ für $n > n_2$. Wir setzen n_0 als das Maximum von n_1 und n_2 . Dann gilt für alle $n > n_0$:

$$|a_n+b_n-(a+b)|=|a_n-a+b_n-b|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Sei $\epsilon>0$ gegeben. Dann gibt es $n_1, n_2\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für $n>n_1$ und $|b_n-b|<\frac{\epsilon}{2}$ für $n>n_2$. Wir setzen n_0 als das Maximum von n_1 und n_2 . Dann gilt für alle $n>n_0$:

$$|a_n+b_n-(a+b)|=|a_n-a+b_n-b|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Beweis von G2:

Sei $\epsilon > 0$ gegeben.

Sei $\epsilon>0$ gegeben. Dann gibt es $n_1,n_2\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für $n>n_1$ und $|b_n-b|<\frac{\epsilon}{2}$ für $n>n_2$. Wir setzen n_0 als das Maximum von n_1 und n_2 . Dann gilt für alle $n>n_0$:

$$|a_n+b_n-(a+b)|=|a_n-a+b_n-b|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Beweis von G2:

Sei $\epsilon > 0$ gegeben. Es gilt:

$$|a_nb_n - ab| = |a_nb_n + a_nb - a_nb - ab| = |a_n(b_n - b) + (a_n - a)b| \le |a_n(b_n - b)| + |(a_n - a)b| = |a_n||(b_n - b)| + |(a_n - a)||b|.$$

Sei $\epsilon>0$ gegeben. Dann gibt es $n_1,n_2\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für $n>n_1$ und $|b_n-b|<\frac{\epsilon}{2}$ für $n>n_2$. Wir setzen n_0 als das Maximum von n_1 und n_2 . Dann gilt für alle $n>n_0$:

$$|a_n+b_n-(a+b)|=|a_n-a+b_n-b|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Beweis von G2:

Sei $\epsilon > 0$ gegeben. Es gilt:

$$|a_nb_n - ab| = |a_nb_n + a_nb - a_nb - ab| = |a_n(b_n - b) + (a_n - a)b| \le |a_n(b_n - b)| + |(a_n - a)b| = |a_n||(b_n - b)| + |(a_n - a)||b|.$$

Da (a_n) konvergiert, gibt es eine Schranke S mit der wir den ersten Summanden abschätzen können. $|a_n||(b_n-b)| \leq S|(b_n-b)|$.

Sei $\epsilon>0$ gegeben. Dann gibt es $n_1,n_2\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für $n>n_1$ und $|b_n-b|<\frac{\epsilon}{2}$ für $n>n_2$. Wir setzen n_0 als das Maximum von n_1 und n_2 . Dann gilt für alle $n>n_0$:

$$|a_n+b_n-(a+b)|=|a_n-a+b_n-b|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Beweis von G2:

Sei $\epsilon > 0$ gegeben. Es gilt:

$$|a_nb_n - ab| = |a_nb_n + a_nb - a_nb - ab| = |a_n(b_n - b) + (a_n - a)b| \le |a_n(b_n - b)| + |(a_n - a)b| = |a_n||(b_n - b)| + |(a_n - a)||b|.$$

Da (a_n) konvergiert, gibt es eine Schranke S mit der wir den ersten Summanden abschätzen können. $|a_n||(b_n-b)| \leq S|(b_n-b)|$.

Wir wählen n_1 und n_2 so, dass beide Summanden für größere n kleiner als $\frac{\epsilon}{2}$ sind.

Sei $\epsilon>0$ gegeben. Dann gibt es $n_1,n_2\in\mathbb{N}$ mit $|a_n-a|<\frac{\epsilon}{2}$ für $n>n_1$ und $|b_n-b|<\frac{\epsilon}{2}$ für $n>n_2$. Wir setzen n_0 als das Maximum von n_1 und n_2 . Dann gilt für alle $n>n_0$:

$$|a_n+b_n-(a+b)|=|a_n-a+b_n-b|\leq |a_n-a|+|b_n-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

Beweis von G2:

Sei $\epsilon > 0$ gegeben. Es gilt:

$$|a_nb_n - ab| = |a_nb_n + a_nb - a_nb - ab| = |a_n(b_n - b) + (a_n - a)b| \le |a_n(b_n - b)| + |(a_n - a)b| = |a_n||(b_n - b)| + |(a_n - a)||b|.$$

Da (a_n) konvergiert, gibt es eine Schranke S mit der wir den ersten Summanden abschätzen können. $|a_n||(b_n-b)| \leq S|(b_n-b)|$.

Wir wählen n_1 und n_2 so, dass beide Summanden für größere n kleiner als $\frac{\epsilon}{2}$ sind. Für $n>\max\{n_1,n_2\}$ gilt dann:

$$|a_nb_n-ab|\leq S|(b_n-b)|+|b||(a_n-a)|\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

Entsprechend ist (streng) monoton fallend definiert.

Entsprechend ist **(streng) monoton fallend** definiert.

Eine Folge heißt **(streng) monoton**, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heißt **(streng) monoton**, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.

Beispiele: Die Folge (a_n) mit $a_n = n^2$

Entsprechend ist **(streng) monoton fallend** definiert.

Eine Folge heißt **(streng) monoton**, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.

Beispiele: Die Folge (a_n) mit $a_n = n^2$ ist streng monton wachsend.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heißt **(streng) monoton**, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.

Beispiele: Die Folge (a_n) mit $a_n = n^2$ ist streng monton wachsend.

Die Folge (b_n) mit $b_n = 1, 1, 2, 2, 3, 3, 4, 4, ...$

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heißt **(streng) monoton**, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.

Beispiele: Die Folge (a_n) mit $a_n = n^2$ ist streng monton wachsend.

Die Folge (b_n) mit $b_n = 1, 1, 2, 2, 3, 3, 4, 4, ...$ ist monton wachsend, aber nicht streng monoton wachsend.

Entsprechend ist (streng) monoton fallend definiert.

Eine Folge heißt **(streng) monoton**, wenn sie (streng) monoton wachsend oder (streng) monoton fallend ist.

Beispiele: Die Folge (a_n) mit $a_n = n^2$ ist streng monton wachsend.

Die Folge (b_n) mit $b_n = 1, 1, 2, 2, 3, 3, 4, 4, ...$ ist monton wachsend, aber nicht streng monoton wachsend.

Andere Formulierung: Eine Folge ist monoton, wenn alle Folgenglieder in dieselbe Richtung gehen.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch plausibel:

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste obere Schranke. Das ist dann der Grenzwert.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste obere Schranke. Das ist dann der Grenzwert.

Beispiel: Die Folge (a_n) sei gegeben durch $a_1=1$ und $a_{n+1}=\sqrt{a_n+2}$. Mit vollständiger Induktion wir zeigen wir, dass (a_n) streng monoton wächst und beschränkt ist: $0 \le a_n \le 2$ für alle $n \in \mathbb{N}$.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste obere Schranke. Das ist dann der Grenzwert.

Beispiel: Die Folge (a_n) sei gegeben durch $a_1=1$ und $a_{n+1}=\sqrt{a_n+2}$. Mit vollständiger Induktion wir zeigen wir, dass (a_n) streng monoton wächst und beschränkt ist: $0 \le a_n \le 2$ für alle $n \in \mathbb{N}$. Also hat (a_n) einen Grenzwert.

Statt eines formalen Beweises machen wir uns den Inhalt geometrisch plausibel: Da die Folge eine obere Schranke hat, hat sie auch eine kleinste obere Schranke. Das ist dann der Grenzwert.

Beispiel: Die Folge (a_n) sei gegeben durch $a_1=1$ und $a_{n+1}=\sqrt{a_n+2}$. Mit vollständiger Induktion wir zeigen wir, dass (a_n) streng monoton wächst und beschränkt ist: $0 \le a_n \le 2$ für alle $n \in \mathbb{N}$. Also hat (a_n) einen Grenzwert. Der Grenzwert erfüllt die Gleichung $x=\sqrt{x+2}$, daraus berechnen wir den Grenzwert a=2.

$$(a_n): 0, -1, 1, -2, 2, -3, 3, -4, 4, \dots$$

$$(a_n): 0, -1, 1, -2, 2, -3, 3, -4, 4, \dots$$

$$a_n = \begin{cases} -rac{n+1}{2}, & ext{falls n ungerade} \\ rac{n}{2} & ext{falls n gerade} \end{cases}$$

$$(a_n): 0, -1, 1, -2, 2, -3, 3, -4, 4, \dots$$

$$a_n = \begin{cases} -\frac{n+1}{2}, & \text{falls n ungerade} \\ \frac{n}{2} & \text{falls n gerade} \end{cases}$$

Zwei endliche Mengen haben gleich viele Elemente, wenn man eine eindeutige Zuordnung zwischen den Elementen der beiden Mengen herstellen kann.

$$(a_n): 0, -1, 1, -2, 2, -3, 3, -4, 4, \dots$$

$$a_n = \begin{cases} -\frac{n+1}{2}, & \text{falls n ungerade} \\ \frac{n}{2} & \text{falls n gerade} \end{cases}$$

Zwei endliche Mengen haben gleich viele Elemente, wenn man eine eindeutige Zuordnung zwischen den Elementen der beiden Mengen herstellen kann. Auf unendliche Mengen übertragen zeigt die Folge: Es gibt genauso viele natürliche Zahlen wie ganze Zahlen.

$$(a_n): 0, -1, 1, -2, 2, -3, 3, -4, 4, \dots$$

$$a_n = \begin{cases} -\frac{n+1}{2}, & \text{falls n ungerade} \\ \frac{n}{2} & \text{falls n gerade} \end{cases}$$

Zwei endliche Mengen haben gleich viele Elemente, wenn man eine eindeutige Zuordnung zwischen den Elementen der beiden Mengen herstellen kann. Auf unendliche Mengen übertragen zeigt die Folge: Es gibt genauso viele natürliche Zahlen wie ganze Zahlen.

Etwas Unendliches wird nicht notwendig kleiner, wenn man etwas wegnimmt.

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und 1 enthält?

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und 1 enthält?

Annahme: Es gibt Folge (a_n) , in der alle reellen Zahlen zwischen 0 und 1 vorkommen.

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und 1 enthält?

Annahme: Es gibt Folge (a_n) , in der alle reellen Zahlen zwischen 0 und 1 vorkommen. Jedes a_n hat eine Dezimalentwicklung.

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und 1 enthält?

Annahme: Es gibt Folge (a_n) , in der alle reellen Zahlen zwischen 0 und 1 vorkommen. Jedes a_n hat eine Dezimalentwicklung. Sei D die n-te Dezimalstelle von a_n .

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und 1 enthält?

Annahme: Es gibt Folge (a_n) , in der alle reellen Zahlen zwischen 0 und 1 vorkommen. Jedes a_n hat eine Dezimalentwicklung. Sei D die n-te Dezimalstelle von a_n . Wir konstruieren eine Zahl x mit

Die *n*-te Dezimalstelle von
$$x = \begin{cases} D+1, & \text{falls } D \leq 7, \\ D-1 & \text{falls } D=8 \text{ oder } D=9 \end{cases}$$

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und 1 enthält?

Annahme: Es gibt Folge (a_n) , in der alle reellen Zahlen zwischen 0 und 1 vorkommen. Jedes a_n hat eine Dezimalentwicklung. Sei D die n-te Dezimalstelle von a_n . Wir konstruieren eine Zahl x mit

Die *n*-te Dezimalstelle von
$$x = \begin{cases} D+1, & \text{falls } D \leq 7, \\ D-1 & \text{falls } D=8 \text{ oder } D=9 \end{cases}$$

Dann ist x eine reelle Zahl zwischen 0 und 1

Einfachere Version: Gibt es eine Folge, die jede reelle Zahl zwischen 0 und 1 enthält?

Annahme: Es gibt Folge (a_n) , in der alle reellen Zahlen zwischen 0 und 1 vorkommen. Jedes a_n hat eine Dezimalentwicklung. Sei D die n-te Dezimalstelle von a_n . Wir konstruieren eine Zahl x mit

Die *n*-te Dezimalstelle von
$$x = \begin{cases} D+1, & \text{falls } D \leq 7, \\ D-1 & \text{falls } D=8 \text{ oder } D=9 \end{cases}$$

Dann ist x eine reelle Zahl zwischen 0 und 1 , kann aber kein Element der Folge (a_n) sein, da es sich von jedem a_n in mindestens einer Dezimalstelle unterscheidet.