✅ 做大事,要成功,三个条件:

ø backbone! backbone! backbone!

❷ 相当于特征提取模块,无论啥任务都需要它!

∅ 蒋先生告诉浩南的道理,也是深度学习告诉我们的。。。

Ø EfficientNet可以说是当下武林比较强悍的backbone!

- ✓ 这效果有点碾压:
 - ♂ 其中B0-B7表示各种参数的版本

 - ❷ 这事也就谷歌爸爸能干出来

❤ 整体感觉:

- ❷ 给了我们─代神器,拿来主义就好!直接用就可以,各种任务往里套!

- 用就得了,根据对速度和精度等指标的要求选择对应版本即可!

✓ 出发点:

网络的特征图个数,层数,输入分辨率都会对结果产生影响

✓ 出发点:

❷ 单独提升这些指标,都能使得效果有所提升,但是会遇到瓶颈 (FLOPS:例如卷积计算量=H*W*K*K*M*N,HW为输出长宽,K是卷积核大小 M为输入特征图的通道数,N为卷积核个数)

✓ 出发点:

∅ 综合提升这些指标,用参数搜索的方法(谷歌爸爸专属)来得出结果

✓ 基本网络架构:

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	L_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

✓ Depthwise卷积

✓ SE模块:

♂ 对每个特征图计算其权重 (注意力机制)

✓ 计算流程:

```
def efficientnet params(model name):
    """ Map EfficientNet model name to parameter coefficients. """
    params dict = {
        # Coefficients: width, depth, res, dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
        'efficientnet-b8': (2.2, 3.6, 672, 0.5),
        'efficientnet-12': (4.3, 5.3, 800, 0.5),
    return params dict[model name]
```

❤ 效果依旧有点碾压:

❷ 对比了一些传统算法,效果还是可以的

∅ 同样是多个版本,跟backbone类似

Ø 相同重量级的优势比较明显

✓ FPN层:

∅ 现在你说啥领域能不提及特征融合呢?检测方法也是一样的:

✓ BiFPN:

∅ 可以重复多次,基础结构就是虚线框,堆叠多少次可以选择

✓ BiFPN:

	Input	Backbone	BiFPN		Box/class
	size R_{input}	Network	#channels W_{bifpn}	#layers D_{bifpn}	#layers D_{class}
$D0 (\phi = 0)$	512	В0	64	3	3
D1 ($\phi = 1$)	640	B1	88	4	3
D2 ($\phi = 2$)	768	B2	112	5	3
D3 ($\phi = 3$)	896	B3	160	6	4
D4 ($\phi = 4$)	1024	B 4	224	7	4
D5 ($\phi = 5$)	1280	B5	288	7	4
D6 ($\phi = 6$)	1280	B6	384	8	5
D7 ($\phi = 7$)	1536	B6	384	8	5
D7x	1536	B7	384	8	5

❤ 比较通用的网络:

❷ 物体检测,关键点定位任务都能完成,而且速度很快!

- ✓ 与其他经典算法的区别:
 - ❷ 一般检测算法都需要预先设置好anchor (框的大小,长宽比)
 - ♂ 这样可能导致速度较慢,而且不是纯的end2end方法

 - Ø CenterNet可以当做是不需要anchor或者单anchor的方法 (如果非得整两字来形容就是:很简单!)

✓ 基本原理:

❷ 特征图上每个点预测3个指标(各类别置信度,中心偏移,长宽)

✓ 与其他经典算法的区别:

(a) Standard anchor based detec- (b) Center point based detion. Anchors count as positive tection. The center pixel with an overlap IoU > 0.7 to is assigned to the object. any object, negative with an over- Nearby points have a relap IoU < 0.3, or are ignored oth- duced negative loss. Object erwise.

size is regressed.

✓ 与其他经典算法的区别:

∅ 首先通过下采样倍率将GT分布到下采样特征图上 (512->128)

利用高斯分布将GT分布到特征图中各个点上,如果重叠则取大值

$$Y_{xyc} = \exp\left(-\frac{(x-\tilde{p}_x)^2 + (y-\tilde{p}_y)^2}{2\sigma_p^2}\right)$$

0.02425801345428226	0.05103688810314776	0.07974465034866318	0.092535281158422	0.07974465034866318	0.05103688810314776	0.02425801345428226
0.06872199640635958	0.14458549326087305	0.225913452682986	0.26214880584576306	0.225913452682986	0.14458549326087305	0.06872199640635958
0.14458549326087305	0.30419612285238284	0.4753035374189698	0.5515397744971643	0.4753035374189698	0.30419612285238284	0.14458549326087305
0.225913452682986	0.4753035374189698	0.7426572389044386	0.8617756314171564	0.7426572389044386	0.4753035374189698	0.225913452682986
0.26214880584576306	0.5515397744971643	0.8617756314171564	1.0	0.8617756314171564	0.5515397744971643	0.26214880584576306
0.225913452682986	0.4753035374189698	0.7426572389044386	0.8617756314171564	0.7426572389044386	0.4753035374189698	0.225913452682986
0.14458549326087305	0.30419612285238284	0.4753035374189698	0.5515397744971643	0.4753035374189698	0.30419612285238284	0.14458549326087305
0.06872199640635958	0.14458549326087305	0.225913452682986	0.26214880584576306	0.225913452682986	0.14458549326087305	0.06872199640635958

❤ 反卷积:

❷ 上采样常用这两种方法:线性插值和反卷积

 \mathcal{O} 相当于卷积的逆过程, $Y = CX \rightarrow X = C^TY$ (只是维度满足要求, 数值不是)

$$input = egin{bmatrix} x_1 & x_2 & x_3 & x_4 \ x_5 & x_6 & x_7 & x_8 \ x_9 & x_{10} & x_{11} & x_{12} \ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} \hspace{0.5cm} kernel = egin{bmatrix} w_{0,0} & w_{0,1} & w_{0,2} \ w_{1,0} & w_{1,1} & w_{1,2} \ w_{2,0} & w_{2,1} & w_{2,2} \end{bmatrix}$$

❤ 反卷积:

整体感觉就是先通过填充方法来扩大原始输入,然后再执行卷积操作

∅ 执行步长为1的卷积操作后得到的特征图就变大了,相当于上采样

❤ 反卷积计算:

が輸入:
$$input = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad kernel = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- ♂ 要得到输出为特征图5*5, stride参数设置为2
- ② 首先进行填充操作,其中: n = strides 1, n为特征值之间插入0的个数

填充后的输入与计算结果:
(注意还有额外P=1)
$$input_{pad} = \begin{bmatrix} 1 & 0 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 5 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & 8 & 0 & 9 \end{bmatrix}$$
 $output = \begin{bmatrix} 1 & 0 & 2 & 0 & 3 \\ 0 & 6 & 0 & 8 & 0 \\ 4 & 0 & 5 & 0 & 6 \\ 0 & 12 & 0 & 14 & 0 \\ 7 & 0 & 8 & 0 & 9 \end{bmatrix}$

❤ 整体网络架构:

❷ 三个输出层,分别得到特征点结果

🖉 网络架构比较简单,能做各种任务

- ❤ 预测时特别之处:
 - Ø 这里没用到NMS,由于每个特征点只对应一个可能结果

 - ❷ 这样就可以快速的去掉重复的框,相当于一步到位!
 - ∅ 中心点重合可能是个问题,但是一般数据集中这个现象少之又少 (如果特殊问题,密集人群检测等,可能会有点问题了)