Segmentez des clients d'un site e-commerce

PROJET 05/ Openclassrooms

Gulsum Kapanoglu

Dans ce Project..

- ✓ Problématique
- ✓ Nettoyage des données
- ✓ Exploration des données et Feature Engineering
- ✓ Modelés d'apprentissage non supervisé
- ✓ Simulation pour déterminer la fréquence nécessaire de m-à-j du modèle de segmentation.
- **✓** Conclusion

Problématique

Problématique

Olist voudrais une **segmentation des clients** pour ses équipes d'e-commerce et aussi pour qu'elles pourront utiliser au quotidien pour leurs campagnes de communication.

Nos objectif est de **comprendre les différents types d'utilisateurs** grâce à leur comportement et à leurs données personnelles.

Il voudrai aussi qu'une **proposition de contrat de maintenance** basée sur une analyse de la stabilité des segments au cours du temps.

Données

- √ Base de données anonymisée
- ✓ Clients: 99441
- ✓ Produits achetés
- ✓ Historique des commandes
- ✓ Commentaires de satisfaction
- ✓ Vendeurs

Nettoyage des données

Nettoyage des données

J'ai détecté et supprimé des données manquantes et infinies Apres nettoyage:

J'ai continué avec le feature engineering.

Exploration des données & Feature engineering

En termes de Commandes

il y a des commandes en cours ou annulées. Ne traitons que ceux qui ont été livrés. Nous ne pouvons pas considérer comme clients ceux qui n'ont pas effectué d'opération d'achat de produit sur le site.

Nous constatons une augmentation de fin d'année en 2017 ; ça doit être les achats de Noël. Et aussi On peut voir la répartition du nombre de commandes par mois, jour de la semaine ou heure de la journée

En termes de Commandes

Nous voyons des ventes avec une forte augmentation en août, ceux-ci pourraient être des achats de retour à l'école.

En termes de Commandes

En termes de Commandes

• Pendant la journée, nous constatons que la plupart des commandes sont passées près de la pause déjeuner ou vers la fin de la journée de travail. (11h à 16h)

En termes de Clients

On peut voir que seuls environ 3% des clients ont réalisé plus d'une commande.

En termes de Clients

Dans ce graphique, nous voyons le nombre moyen de produits par commande pour chaque client

Top 10 Meilleurs acheteurs

Top 10 Meilleurs acheteurs

Top 10 Meilleurs acheteurs

En termes de Commande et Son Temps

• Nous constatons que les clients qui achètent les produits sont généralement satisfaits

- Il y a 72 catégories au total. Ceux-ci peuvent causer des problèmes dans le encodage des données. Pour un examen facile, nous rassemblerons les catégories sous les rubriques les plus larges.
- Fashion, clothing and accessories Health and Beauty Toys and baby equipment Books, CDs and other physical media Groceries, food and drink Technology (including phones and computers), Home and furniture Flowers and gifts Other et nous ajoutons la catégorie sport.

Modelés d'apprentissage non supervisé

Modelés d'apprentissage

- ✓ Algorithme K-means
- ✓ Agglomerative clustering
- ✓ Clustering par DBSCAN
- ✓ Segmentation RFM

Algorithme K-means

- Scaler les donnés pour preprocessing avec StandardScaler,
- Pour les données numériques et un get dummies pour les données catégorielles.
- Corrélations entre certaines variable

Méthode du coude : Détermination du meilleur K

Coefficient de silhouette

Silhouette score

Valeurs en fonction de K

Distances intercluster

KMeans Intercluster Distance Map (via MDS)

5

Radar plot

Comparaison des moyennes par variable des clusters

Clustering sans catégorie

Plot radars sans catégorie

Comparaison des moyennes par variable des clusters

Intercluster Distance

Cluster size

Feature Importance Sans Catégorie

Importance des features dans la construction du cluster N° 1 pour le clustering kmeans_label

Feature Importance Sans Catégorie

Importance des features dans la construction du cluster N° 3 pour le clustering kmeans_label

Feature Importance Sans Catégorie

Réduction dimensionnelle - PCA

Il faut donc conserver 4 axes principaux pour expliquer la variance à 95%.

Agglomérative clustering

Construire et visualiser

les différents modèles de clustering pour différentes valeurs de k

Silhouette scores

Bien que silhouette score 6 dit bon, On voit que les 5 clusters sont plus homogènement répartis. Donc, le nombre optimal des clusters est bien 5.

Cluster size pour Agglomérative clustering

Clustering par DBSCAN

Mauvaise segmentation avec cette méthode

Segmentation de RFM

Segmentation RFM

• La segmentation RFM ou méthode RFM est une méthode de segmentation principalement développée à l'origine pour les actions de marketing direct et qui s'applique désormais également aux acteurs du e-commerce et du commerce traditionnel.

La segmentation RFM prend en compte:

- · La Récence (date de la dernière commande)
- La Fréquence des commandes
- Le Montant (de la dernière commande ou sur une période donnée) pour établir des segments de clients homogènes.

RECENCY OF PURCHASE

FREQUENCY OF PURCHASE

MONETARY VALUE

Segmentation RFM

Par exemple:

- Quels sont vos meilleurs clients?
- Quels clients sont sur le point de baratter ?
- Qui a le potentiel d'être converti en clients plus rentables
- Quels clients sont perdus/inactifs?
- Quels clients est-il essentiel de fidéliser?
- Qui sont vos fidèles clients?
- Quel groupe de clients est le plus susceptible de répondre à votre campagne actuelle ?

Segmentation RFM

Calcul d'un RFM score

RFM score	RFM level
>= 9	Can't loose them
>= 8 & < 9	Champions
>= 7 & < 8	Loyal
>= 6 & < 7	Potential
>= 5 & < 6	Promising
>= 4 & < 5	Needs Attention
Others	Require Activation

ègmen

1

RFM level pour chaque client

Segmentation

KMeans avec RFM

KMeans avec RFM

Importance pour RFM et Choix de modélisation final

Profils des clients

Groupe 1:

- ✓ Clients
 géographiquement
 éloignés avec des
 délais de livraison
 longs
- ✓ Passer des commandes pour des volumes élevés et des frais d'expédition élevés. Les avis de ces clients sont bons.

Groupe 2:

- ✓ Des clients
 géographiquem
 ent proches
 avec un grand
 nombre de
 commandes
 mais peu de
 produits et de
 faibles
 quantités.
- ✓ Les critiques sont très bonnes.

Groupe 3:

- ✓ Clients
 relativement
 proches, ils
 commandent
 beaucoup
 d'articles pour
 des montants
 élevés.
- ✓ Des clients insatisfaits..

Groupe 4:

- ✓ Clients qui dépensent peu avec peu d'articles.
- ✓ Leurs avis sont moyennement bons

Maintenance

Stabilité Temporelle de la segmentation

- Dans le but d'établir un contrat de maintenance de l'algorithme de segmentation client, nous devons tester sa stabilité dans le temps.
- Pour déterminer le moment où les clients changent de cluster, nous allons itérer le K-Means sur toute la période des commandes (23 mois) avec des deltas de 2 mois et calculer le score ARI.

Stabilité Temporelle de la segmentation

Prévoir la maintenance du programme de segmentation tous les 6 mois

Sur ce plot des scores ARI obtenus sur les itérations par période de 2 mois, on remarque une forte inflexion après 6 mois sur les clients initiaux.

Conclusion

- Segmentation RFM avec un K-means à renouveler tous les 6 mois.
- Utilise Random-state paramètre est très importante

Merci!