Ce devoir est constitué de deux problèmes totalement indépendants.

PROBLÈME 1

On notera N_n l'ensemble des entiers compris entre 1 et n, n désignant un entier naturel non nul.

 M_n désigne l'algèbre des matrices carrées d'ordre n à coefficients complexes, O_n la matrice nulle et I_n la matrice identité de cette algèbre.

Si E est un \mathbb{C} -espace vectoriel de dimension finie, L(E) est l'algèbre des endomorphismes de E. Étant donnés un endomorphisme u et une base e de E, on notera M(u,e) la matrice de u dans la base e.

Pour $A \in M_n$, on note $A = \left[a_{i,j}\right]$ où $a_{i,j}$ désigne l'élément de A situé à l'intersection de la ligne i et de la colonne j. A désigne la matrice transposée de A, et rg(A) le rang de A.

Pour i et j éléments de N_n , on note $E_{i,j}$ la matrice dont tous les coefficients sont nuls, sauf celui situé à l'intersection de la ligne i et de la colonne j, qui vaut 1. La famille $\left(E_{i,j}\right)_{(i,j)\in\mathbb{N}_n^2}$ est une base de M_n .

La partie I n'a pas de rapport direct avec les parties suivantes qui, elles, sont intimement liées.

Partie I

On appelle matrice de transvection toute matrice de la forme $I_n + \lambda E_{i,j}$ avec λ complexe et *i* différent de *j*.

- **1. a.** Calculer les produits matriciels $E_{i,j}$. $E_{k,l}$.
 - **b.** Calculer le déterminant d'une matrice de transvection.
 - c. Calculer le produit de deux matrices de transvection. En déduire l'inverse d'une telle matrice.
- **2.** Soit A un élément de M_n .
- **a.** Montrer que l'addition à une ligne de *A* d'un vecteur proportionnel à une autre ligne peut se faire en multipliant *A* à gauche par une matrice de transvection.
 - **b.** Établir un résultat analogue pour les colonnes.
- 3. Soit $A = (a_{i,j})$ un élément de M_n . On suppose que la première ligne ou la première colonne de A possède un élément non nul.

Montrer qu'il existe deux matrices P et Q de M_n , toutes deux produits de matrices de transvection, telles que la matrice B = PAQ ait son terme en position 1-1 égal à 1, et tous les autres termes de sa première ligne et de sa premières colonnes égaux à 0 (indication page suivante...).

(On pourra successivement envisager les cas suivants : i. $a_{1,1} = 1$; ii. $\exists i > 1$ tel que $a_{i,1} \neq 0$ ou $a_{1,i} \neq 0$; iii. $a_{1,1} \neq 1$ et $\forall i > 1$, $a_{i,1} = a_{1,i} = 0$).

4. Soit *A* un élément non nul de M_n , de rang égal à r.

Grâce à un raisonnement par récurrence, montrer qu'il existe deux matrices P et Q de M_n , toutes deux produits de matrices de transvection, telles que la matrice B = PAQ soit une matrice diagonale de coefficients $b_{i,j}$ vérifiant :

- i. $b_{i,i} = 1 \text{ pour } 1 \le i < r$.
- ii. $b_{i,i} = 0$ pour i > r.
- iii. $b_{i,i} = d$ avec d = 1 si r < n et $d = \det(A)$ si r = n.
- 5. Montrer que les matrices de transvection engendrent le groupe spécial linéaire d'ordre n.

Partie II

Soit E un \mathbb{C} -espace vectoriel de dimension n, et u et v deux endomorphismes de E fixés. On pose

$$A(u,v) = \{u \circ f \circ v, f \in L(E)\}.$$

- **1.** Montrer que A(u,v) est un sous-espace vectoriel de L(E).
- 2. Montrer (délicat, mais important et instructif...) que pour tout ϕ de L(E),

$$\phi \in A(u, v) \Leftrightarrow \text{Ker} v \subset \text{Ker} \phi \text{ et } \text{Im} \phi \subset \text{Im} u.$$

3. Soit F un supplémentaire de Kerv dans E. Montrer que les espaces vectoriels A(u,v) et $L(F, \operatorname{Im} u)$ sont isomorphes. En déduire la dimension de A(u,v).

Partie III

Pour toutes matrices A et B de M_n , on pose :

$$f_{(A,B)}: \begin{cases} M_n \to M_n \\ X \mapsto AX'B \end{cases}$$

1. Montrer que $f_{(A,B)}$ est linéaire.

2. Montrer que l'application $(A, B) \to f_{(A,B)}$ est bilinéaire de $M_n \times M_n$ dans $L(M_n)$, et que pour toutes matrices A, B, C et D de M_n , on a :

$$f_{(A,B)} \circ f_{(C,D)} = f_{(AC,BD)}$$
.

3. Déterminer le rang de $f_{(A,B)}$ en fonction des rangs de A et de B.

Donner une condition nécessaire et suffisante pour que $f_{(A,B)}$ soit bijectif. Donner dans ce cas une expression de $f_{(A,B)}^{-1}$. À quelle condition $f_{(A,B)}$ est-il nul ?

- **4.** a. Soit $M = \lfloor m_{i,j} \rfloor$ un élément de M_n . Calculer $f_{(E_{p,q},E_{r,s})}(M)$. Retrouver alors la valeur du rang de $f_{(E_{p,q},E_{r,s})}$ et donner une base de son image.
 - **b.** Montrer l'existence d'un complexe λ (que l'on explicitera) tel que :

$$f_{(E_{n,e},I_n)} \circ f_{(A,B)} \circ f_{(E_{n,e},I_n)} = \lambda f_{(E_{n,e},B)}$$

- 5. Soient $A_1, A_2, \ldots, A_p, B_1, B_2, \ldots, B_p$ 2p éléments de M_n (p entier non nul). On pose $f = \sum_{k=1}^p f_{(A_k, B_k)}$.
- **a.** On suppose que les p matrices B_k sont linéairement indépendantes. En utilisant ce qui précède, montrer que f est l'application nulle si et seulement si toutes les matrices A_k sont nulles.
 - **b.** Établir un résultat analogue en supposant l'indépendance linéaire des matrices A_k .
- **6.** Montrer que la famille $(f_{(E_{p,q},E_{r,s})})_{(p,q,r,s)\in\mathbf{N}_n^4}$ est une base de $L(M_n)$.
- 7. Soit f un élément non nul de $L(M_n)$, et D_f l'ensemble des systèmes $(A_1, A_2, \ldots, A_p, B_1, B_2, \ldots, B_p)$ d'éléments non nuls de M_n tels que $f = \sum_{k=1}^p f_{(A_k, B_k)}$. Une telle relation définit une décomposition de f de longueur p.
 - **a.** Montrer que D_f est non vide.
- **b.** Montrer que f admet une décomposition de longueur minimum μ , et que si $f = \sum_{k=1}^{\mu} f_{(A_k, B_k)}$ est une telle décomposition, les μ matrices A_k qui la constituent sont linéairement indépendantes, de même que les μ matrices B_k .

Partie IV

Dans cette partie, on s'intéresse à l'ensemble Γ des éléments f de $L(M_n)$, bijectifs, tels que :

$$\forall X,Y \in M_n, f(XY) = f(X)f(Y).$$

- 1. Quelles sont les matrices qui commutent avec toutes les autres ?
- **2.** Déterminer l'image de I_n par un élément quelconque de Γ .
- 3. Soit f un élément de Γ , et $f = \sum_{k=1}^{\mu} f_{(A_k,B_k)}$ une décomposition de f de longueur minimum.
 - **a.** Montrer que pour tout k de \mathbf{N}_{μ} et tout X de M_n , on a les relations $X^tB_k={}^tB_kf(X)$ et $A_kX=f(X)A_k$. En déduire que pour tout i et tout j de \mathbf{N}_{μ} , et tout X de M_n , on a $A_i{}^tB_jf(X)=f(X)A_i{}^tB_j$.
- **b.** Démontrer (attention) que pour tout i et tout j de \mathbf{N}_{μ} , $A_i^{\,t}B_j$ est une matrice scalaire, puis que l'une au moins de ces matrices est non nulle.

Calculer alors µ.

4. Déterminer Γ .

PROBLÈME 2

Le but de ce problème est d'étudier le comportement de la suite des puissances d'un endomorphisme ϕ d'un C-espace vectoriel de dimension finie E.

L(E) désignera l'algèbre des endomorphismes de E, et k la dimension de E.

E sera supposé muni d'une norme $\| \|$.

On rappelle que l'on définit une norme sur L(E) en posant, pour tout élément f de L(E) :

$$||f|| = \sup\{||f(x)||, x \in E, ||x|| = 1\}.$$

Partie I

1. Soit (ϕ_n) une suite d'éléments de L(E). Prouver que les trois propriétés suivantes sont équivalentes :

- i. La suite (ϕ_n) est convergente dans L(E).
- ii. Pour tout x de E, la suite $(\phi_n(x))$ converge dans E.
- iii. Étant donnée une base (e_1, \dots, e_k) de E, les k suites $(\phi_n(e_i))_n$, pour $1 \le i \le k$, convergent dans E.
- 2. De manière analogue, donner sans démonstration deux énoncés équivalents à l'énoncé suivant :

"la suite (ϕ_n) est bornée dans L(E)".

3. Soit ϕ un endomorphisme de E. Prouver que pour que la suite de ses puissances soit bornée, il est nécessaire que toutes les valeurs propres de ϕ soient de module inférieur ou égal à 1.

Prouver par un exemple que cette condition nécessaire n'est pas suffisante.

Dans la suite de cette partie, ϕ désigne un élément de L(E) tel que la suite (ϕ^n) soit bornée.

4. a. Soit λ une valeur propre de module 1 de ϕ (en supposant qu'il en existe une !). Soit x un élément du noyau de l'endomorphisme $(\phi - \lambda Id)^2$. Exprimer, pour n entier naturel non nul, le vecteur $\phi^n(x)$ en fonction de x et de $y = \phi(x) - \lambda x$. En déduire que x est dans le noyau de $\phi - \lambda Id$.

Prouver alors que *E* est somme directe de $Ker(\phi - \lambda Id)$ et de $Im(\phi - \lambda Id)$.

b. En déduire qu'il existe une base de E dans laquelle la matrice M de ϕ s'écrit par blocs :

$$M = \begin{bmatrix} D0 \\ 0A \end{bmatrix}$$

où *D* est une matrice diagonale — éventuellement de taille nulle — dont les éléments diagonaux sont tous de module 1, et *A* une matrice carrée dont les valeurs propres sont toutes de module strictement plus petit que 1.

(<u>Indication</u>: On pourra constater que $\text{Im}(\phi - \lambda Id)$ est stable par ϕ , et procéder par récurrence.)

c. λ désignant une valeur propre de module 1 de ϕ , que peut-on dire de la dimension de l'espace propre correspondant ?

Partie II

- 1. a. Soit λ un complexe de module strictement plus petit que 1, et N une matrice nilpotente. Prouver que la suite des puissances de la matrice $J = \lambda I_k + N$ tend vers zéro.
- **b.** Soit A une matrice carrée complexe dont toutes les valeurs propres sont de module strictement plus petit que 1. Démontrer, en utilisant le théorème de réduction spectrale (?), que la suite (A^n) tend vers zéro.

- 2. En déduire que la réciproque du résultat établi dans la question **I.4.b.** est exacte, à savoir que si un endomorphisme ϕ de E possède dans une bonne base une matrice du type décrit dans cette question, alors la suite (ϕ^n) de ses puissances est bornée.
- 3. Étant donné un endomorphisme f de E, déduire de tout ce qui précède une condition nécessaire et suffisante pour que :
 - a. la suite de ses puissances tende vers zéro.
 - **b.** la suite de ses puissances soit convergente.

Partie III

On donne p complexes $a_0, a_1, \ldots, a_{p-1}$ et on considère l'espace F des suites complexes (u_n) vérifiant la récurrence linéaire :

$$\forall n \in \mathbb{N}, u_{n+p} = a_{p-1}u_{n+p-1} + \ldots + a_1u_{n+1} + a_0u_n$$

1. Étant donné un élément $u = (u_n)$ de F, quelle relation matricielle intéressante obtient-on en posant, pour tout n

$$\operatorname{de} \mathbf{N}: \ X_n = \begin{bmatrix} u_n \\ u_{n+1} \\ \vdots \\ u_{n+p-1} \end{bmatrix} \ ?$$

- 2. Donner une condition nécessaire et suffisante pour que :
 - **a.** tout élément de F soit une suite bornée.
 - **b.** tout élément de *F* soit une suite convergente.

Partie IV

On étudie ici un algorithme itératif permettant d'inverser les matrices dites "à diagonale dominante".

1. a. Soit $M = \lfloor m_{i,j} \rfloor$ une matrice carrée complexe d'ordre n, telle que pour tout entier i plus petit que n, on ait $\left| m_{i,i} \right| > \sum_{i \neq i} \left| m_{i,j} \right|$ (une telle matrice sera dite à diagonale dominante). Prouver que M est inversible.

b. Soit $N = \lfloor n_{i,j} \rfloor$ une matrice carrée complexe d'ordre n. Prouver que toute valeur propre complexe de N est dans la réunion des disques de centre $n_{i,i}$ et de rayon $\sum_{i \neq i} |n_{i,j}|$.

On fixe dans la suite une matrice $A = [a_{i,j}]$ à diagonale dominante.

- 2. On pose A = D + G où D est une matrice diagonale et G une matrice de diagonale nulle.
- **a.** Vérifier que A et D sont inversibles, et que l'équation AX = B est équivalente à X = A'X + B', où l'on a posé $A' = -D^{-1}G$ et $B' = D^{-1}B$.
 - **b.** Prouver que le module de toutes les valeurs propres de A' est strictement plus petit que 1.
- c. Soit L l'unique solution du système AX = B. On définit une suite (X_p) en choisissant une matrice colonne X_0 quelconque et en posant, pour tout entier k: $X_{p+1} = A'X_p + B'$.

En étudiant la suite $(X_p - L)$, montrer que la suite (X_p) converge vers L.

Fin du devoir, bon courage et bonnes vacances!