

"Experimental Data Processing"

Topic 3 "Optimal approximation at state space"

Tatiana Podladchikova
Term 1B, October 2018
t.podladchikova@skoltech.ru

Traditional approach to estimation and forecasting

Creation of a mathematical model of insufficiently studied processes is quite problematic

Extreme ultraviolet coronal wave December 7, 2007

Forces that affect motion of a geostationary satellite

Application area of quasi-optimal methods

Mathematical model requires prior assumptions about a process

These assumptions may significantly distort estimation output

Quasi-optimal methods do not need any prior assumptions that may distort a process

Thus they can extract hidden regularities for long-term forecasting of complicated processes

From Gauss to Kalman

Unintentional maneuver can be described by random acceleration a_i

ship pitching or undercurrents

→

Classical least –
square method
provides estimations
of constant parameters

Development

Kalman filter provides estimations of variable parameters x_i , V_i

A. Legendre, 1806 J. Gauss, 1809

R. Kalman, 1960

State equation

$$X_i = \begin{vmatrix} x_i \\ V_i \end{vmatrix}$$
 State vector It contains full information about the state of system at time i

State equation

$$X_i = \begin{vmatrix} x_i \\ V_i \end{vmatrix}$$
 State vector It contains full information about the state of system at time i

State equation
$$X_i = \Phi X_{i-1} + Ga_i$$

$$\Phi = \begin{vmatrix} 1 & T \\ 0 & 1 \end{vmatrix}$$
 Transition matrix $G = \begin{vmatrix} T^2/2 \\ T \end{vmatrix}$ Input matrix

Measurement equation

Measurement equation

$$z_i = HX_i + \eta_i$$

$$X_i = \begin{vmatrix} x_i \\ V_i \end{vmatrix}$$

$$H = |1 \quad 0|$$
 Observation matrix

State space model

State space model

State equation
$$X_i = \Phi_{i,i-1}X_{i-1} + w_i$$

Measurement equation $z_i = H_iX_i + \eta_i$

W_i
 Noise intrinsic to the process itself that should not be filtered

State space model separates noises in contrast to linear regression

η_i
Measurement noise that should be filtered

Kalman filter estimate from Least-Squares method

2 measurements

3 measurements

4 measurements

 $X_{0,0}$ - initial estimate of state vector

 $P_{0.0}$ - initial filtration error covariance matrix

Prediction Adjustment of future state of predicted estimate vector **Filtration Prediction**

1 Prediction (extrapolation)

Prediction of state vector at time i using i-1 measurements

$$X_{i,i-1} = \Phi_{i,i-1} X_{i-1,i-1}$$

Prediction error covariance matrix

$$P_{i,i-1} = \Phi_{i,i-1}P_{i-1,i-1}\Phi_{i,i-1}^T + Q_i$$

$$P_{i,i-1} = E[(X_i - X_{i,i-1})(X_i - X_{i,i-1})^T]$$

 $X_{i,i-1}$

First subscript *i* denotes time on which the prediction is made

Second subscript i-1 represents the number of measurements to get $X_{i,i-1}$

2 Filtration Adjustment of predicted estimate

Improved estimate by incorporating a new measurement

$$X_{i,i} = X_{i,i-1} + K_i(z_i - HX_{i,i-1})$$
Residual

Filter gain, weight of residual

$$K_{i} = P_{i,i-1}H_{i}^{T}(H_{i}P_{i,i-1}H_{i}^{T} + R_{i})^{-1}$$

Filtration error covariance matrix

$$P_{i,i} = (I - K_i H_i) P_{i,i-1}$$

$$P_{i,i} = E[(X_i - X_{i,i})(X_i - X_{i,i})^T]$$

Classical Least-Squares method (LSM) is particular case of Kalman filter

Dynamical model is deterministic. Covariance matrix of state noise w Q=0

The Kalman filter solution is equivalent to that of LSM

However recurrent form of Kalman filter solution has great advantage for implementation

Nonlinear dynamical model

Nonlinear relation between state and measurement vector

Biased state noise and/or measurement noise

Kalman filter modifications

Correlated state noise

(3)

Correlation between state and measurement noise

Correlated measurement noise

4

Tracking moving object using Kalman filter Stochastic model

 $P_{0,0}^{-1} = \infty$ $\sigma_a^2 = 0.04$ $\sigma_\eta^2 = 400$

Tracking moving object using Kalman filter Stochastic model

Kalman filter becomes stationary

After that there is no increase of estimation accuracy

Measurements always adjust prediction

Tracking moving object using Kalman filter Deterministic model

$$P_{0,0}^{-1} = \infty \ \sigma_a^2 = 0 \ \sigma_\eta^2 = 400$$

Tracking moving object using Kalman filter Deterministic model

High estimation accuracy achieved

Filter switches off from measurements

Alpha-beta filter – simplified case of Kalman filter

Object
$$x_i = x_{i-1} + VT$$

Measurements $z_i = x_i + \eta_i$

Let's use these parameters in Kalman filter algorithm

$$X_i = \begin{vmatrix} x_i \\ V_i \end{vmatrix} \quad \Phi = \begin{vmatrix} 1 & T \\ 0 & 1 \end{vmatrix} \quad H = \begin{vmatrix} 1 & 0 \end{vmatrix}$$

$$Q = 0 \quad P_{0,0}^{-1} = 0$$

Alpha-beta filter – simplified case of Kalman filter

Predicted estimate

$$x_{i,i-1} = x_{i-1,i-1} + V_{i-1,i-1}T$$

$$V_{i,i-1} = V_{i-1,i-1}$$

Filtered estimate

$$x_{i,i} = x_{i,i-1} + \alpha(z_i - x_{i,i-1})$$

$$V_{i,i} = V_{i,i-1} + \beta (z_i - x_{i,i-1})$$

$$\alpha = \frac{2(2i-1)}{i(i+1)} \begin{bmatrix} \beta = \frac{6}{i(i+1)T} \end{bmatrix}$$

Why does distance between true trajectory and estimation increase?

Divergence. Errors monotonously increase

Alpha-beta filter – simplified case of Kalman filter

Filtered estimate

$$x_{i,i} = x_{i,i-1} + \alpha(z_i - x_{i,i-1})$$

$$V_{i,i} = V_{i,i-1} + \beta (z_i - x_{i,i-1})$$

$$\alpha = \frac{2(2i-1)}{i(i+1)}$$

$$\beta = \frac{6}{i(i+1)T}$$

With increase of i coefficients $\alpha, \beta \rightarrow 0$

Filter switches off from measurements

Why does distance between true trajectory and estimation increase?

What happens if we use deterministic model, but in fact it is stochastic model?

Filter gain *K* approaches to zero for deterministic model

Filter diverges as it switches off from measurements

Kalman filter to forecast sunspot number 12 months ahead

Extrapolation 12 steps ahead

$$X_{12,1} = \Phi_{12,1}X_{1,1}$$

$$\Phi_{12,1} = \Phi_{12,11}\Phi_{11,10} + \cdots \Phi_{3,2}\Phi_{2,1}$$

Measurements of only velocity V_i are available $z_i = V_i + \eta_i$

Measurements of coordinate x_i are not available

Uniform
$$x_i = x_{i-1} + V_i T$$

$$V_i = V_{i-1}$$

Measurements of only velocity V_i are available $z_i = V_i + \eta_i$

Measurements of coordinate x_i are not available

Let's present the system at state space

State equation
$$X_i = \Phi X_{i-1}$$

$$X_i = \begin{vmatrix} x_i \\ V_i \end{vmatrix}$$
 State vector

$$\Phi = \begin{vmatrix} 1 & T \\ 0 & 1 \end{vmatrix}$$
 Transition matrix

$$H = |0 1|$$
 Observation matrix

Uniform
$$x_i = x_{i-1} + V_i T$$

$$V_i = V_{i-1}$$

Measurements of only velocity V_i are available $z_i = V_i + \eta_i$

Measurements of coordinate x_i are not available

Let's present the system at state space

State equation
$$X_i = \Phi X_{i-1}$$

$$X_i = \begin{vmatrix} x_i \\ V_i \end{vmatrix}$$
 State vector

Is it possible to estimate coordinate x_i using Kalman filter?

$$\Phi = \begin{vmatrix} 1 & T \\ 0 & 1 \end{vmatrix}$$
 Transition matrix

$$H = |0 1|$$
 Observation matrix

Coordinate x_i cannot be adjusted by measurements of V_i

the estimation error variance of velocity V, but not the coordinate x

The term "optimality" is applicable only for observable components

The initial error x_0 is kept during all the filtration interval

Measurements of only coordinate x_i are available

System is observable

Kalman filter provides estimation of full state vector X_i

$$X_i = \begin{vmatrix} x_i \\ y_i \end{vmatrix}$$
 State vector

Measurements of sum

$$x_i + y_i$$
 are available

Measurements of x_i , and y_i are not available

$$X_i = \begin{vmatrix} x_i \\ y_i \end{vmatrix}$$
 State vector

Measurements of sum $x_i + y_i$

are available

Measurements of x_i , and y_i are not available

The system at state space

State equation
$$X_i = \Phi X_{i-1}$$

$$\left[egin{array}{c|c} \Phi &= egin{array}{c|c} 1 & 0 \ 0 & 1 \end{array} \right]$$
 Transition matrix

$$H = |\mathbf{1} \quad \mathbf{1}|$$
 Observation matrix

Is it possible to estimate state vector X_i ?

To apply Kalman filter we need to analyze observability of a system

The observability is determined only by pair of matrices Φ and H.

$$rank[H^T \Phi^T H^T (\Phi^T)^2 H^T \dots (\Phi^T)^{n-1} H^T] = n$$

For stationary system

n – dimensionof state vector

To apply Kalman filter we need to analyze observability of a system

The observability is determined only by pair of matrices Φ and H.

$$rank[H^T \Phi^T H^T (\Phi^T)^2 H^T \dots (\Phi^T)^{n-1} H^T] = n$$

For stationary system

n – dimensionof state vector

$$rank\left[H^{T} \Phi^{T} H^{T} \left(\Phi^{T}\right)^{2} H^{T} \dots \left(\Phi^{T}\right)^{n-1} H^{T}\right] = q < n$$

Partial observability

$$\frac{q}{n}$$
 Observability degree

To apply Kalman filter we need to analyze observability of a system

$$rank[H^T \Phi^T H^T (\Phi^T)^2 H^T \dots (\Phi^T)^{n-1} H^T] = n$$

Analysis of system observability for example 1

$$\Phi = \begin{vmatrix} 1 & T \\ 0 & 1 \end{vmatrix}$$
 Transition matrix $H = \begin{vmatrix} 0 & 1 \end{vmatrix}$ Observation matrix

$$X_i = \begin{vmatrix} x_i \\ V_i \end{vmatrix}$$
 Dimension of state vector $n = 2$

$$rank \begin{bmatrix} H^T \Phi^T H^T \end{bmatrix} = rank \begin{bmatrix} \begin{vmatrix} 0 \\ 1 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ T & 1 \end{vmatrix} \cdot \begin{vmatrix} 0 \\ 1 \end{vmatrix} \end{bmatrix} = rank \begin{bmatrix} \begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix} \end{bmatrix} = 1$$

System is partly one component observable is observable

To apply Kalman filter we need to analyze observability of a system

Observability Gramian W for non-stationary system

$$W = \sum_{i=1}^{n} \Phi_{i,n}^T H_i^T H_i \Phi_{i,n} > 0$$

Positivedefinite matrix

 $\Phi_{i,n}$ is inverse matrix to transition matrix $\Phi_{n,i}$ $\Phi_{n,i} = \Phi_{n,n-1} \cdot \Phi_{n-1,n-2} \dots \cdot \Phi_{i+1,i}$

Ill-conditioned problem Example 1: scalar form

Unknown variable

Ill-conditioned problem Example 1: scalar form

Ill-conditioned problem Example 1: scalar form

We know
$$c = 0.001x$$

$$x = 1000c$$
Measurements of c
$$z = c + \eta$$

$$z = 0.001x + \eta$$

III-conditioned problem Example 1: scalar form

III-conditioned problem Example 1: scalar form

Unknown variable

We know
$$c = 0.001x$$
 $x = 1000c$

Measurements of c $z = c + \eta$ $z = 0.001x + \eta$

Estimation of x $x = 1000z$

Estimation $x - \hat{x} = 1000(z - c)$ $x - \hat{x} = 1000\eta$

III-conditioned problem Example 1: scalar form

Unknown variable

We know
$$c = 0.001x$$
 $x = 1000c$

Measurements of c $z = c + \eta$ $z = 0.001x + \eta$

Estimation of x $x = 1000z$

Estimation $x - \hat{x} = 1000(z - c)$ $x - \hat{x} = 1000\eta$

Estimation error is very high

Ill-conditioned problem Example 2: matrix form

Unknown vector

Ill-conditioned problem Example 2: matrix form

Ill-conditioned problem Example 2: matrix form

III-conditioned problem Example 2: matrix form

Estimation of
$$X$$

$$\widehat{X} = A^{-1}Z$$

III-conditioned problem Example 2: matrix form

We know
$$C = AX$$
 $X = A^{-1}C$

Measurements of C

Estimation of X
 $\widehat{X} = A^{-1}Z$

Estimation of X
 $\widehat{X} = A^{-1}Z$

Estimation of X
 $\widehat{X} = A^{-1}Z$

If matrix A is ill-conditioned, than it is close to singular

III-conditioned problem

Man-made satellite

Navigation satellite

II-conditioned problem

Satellite position is undefined!

Kalman filter needs noise statistics identification

Smoothing with fixed interval

Smoothing is performed in backward in time

$$X_{i,N} = X_{i,i} + A_i(X_{i+1,N} - \Phi_{i+1,i}X_{i,i})$$

$$i = N-1, N-2, \cdots 1$$

Coefficient
$$A_i = P_{i,i} \Phi_{i+1,i}^T P_{i+1,i}^{-1}$$

Smoothing error covariance matrix

$$P_{i,N} = P_{i,i} + A_i (P_{i+1,N} - P_{i+1,i}) A_i^T$$

 $X_{i,i}$ - filtered estimate, $X_{N,N}$ - initial estimate

 $P_{i,i}$ - filtration error covariance matrix

 $P_{i+1,i}$ - prediction error covariance matrix

Smoothing takes into account both current and future measurements and therefore provides improved estimation

Equivalence of exponential smoothing and stationary Kalman filter

Random walk model
$$z_i = x_{i-1} + w_i$$
$$z_i = x_i + \eta_i$$

This is state space model with following parameters

$$X_i = |x_i|$$
 State vector $\Phi = 1$ Transition matrix $H = 1$ Observation matrix

Stationary Kalman filter
$$x_{i,i} = x_{i-1,i-1} + K(z_i - x_{i-1,i-1})$$

Filter gain *K* becomes a constant

Exponential smoothing
$$x_i = x_{i-1} + \alpha(z_i - x_{i-1})$$

Optimal
$$\alpha$$
 $\alpha = K$

Conclusions

Kalman filter is effective tool for estimation and forecasting

However it requires good hands for tuning