EP4179 — Microeconometría

Luis Chávez 2024-II Universidad Nacional Agraria La Molina Pset4: GMM

A. Herramientas intermedias

Problema 1. Para evaluar el plan para erradicar los incendios forestales en el Perú (setiembre, 2024), se ha especificado el modelo $E(y) = x_i'\beta$. Curiosamente, x_i es un vector 2×1 , con el patrón $x_i = (1,0)$ para i par y $x_i = (0,1)$ cuando i es impar. Se ha omitido el intercepto. Si $E(u_i) = 0$ y $V(u_i) = I_n$, se pide:

- a) Considerando la condición de momentos $E(y_i x_i'\beta) = 0$, con análogo muestral $n^{-1} \sum (y_i x_i'\beta)$, evaluar si es posible realizar la estimación óptima. Halle su varianza.
- b) Alternativamente, si se divide la muestra en dos grupos para estimar un ecuación con los nones y otra con los pares, se tendría $n_{non}^{-1} \sum_{i=1}^{k} (y_i x_i'\beta)$ y $n_{par}^{-1} \sum_{i=1}^{l} (y_i x_i'\beta)$. Comparar la varianza de estos estimadores y el obtenido en el inciso a).

Problema 2. Un estudio empírico de cáncer de cuello uterino a nivel distrital ha establecido el siguiente modelo simple:

$$y_i = \theta x_i + u_i$$

donde se ha omitido el intercepto, y_i es el número de mujeres con la condición clínica y x_i es el número de ocasiones en el cual su pareja utilizó profiláctico. El modelo asume la condición de momento:

$$E(u_i x_i) = 0$$

Considere que los datos iid satisfacen las dos primeras condiciones de momento: $E(x_i) = \mu$, $E(x_i^2) = \omega^2$, $E(u_i^2 x_i) = \delta$ y $E(u_i^2 x_i^2) = \gamma$.

a) Hallar la distribución asintótica de GMM asociado a los estimadores $\hat{\beta}_1$ y $\hat{\beta}_2$ los cuales minimizan la estructura GMM:

$$\bar{h}(\beta)'\hat{M}_j\bar{h}(\beta), \forall i=1,2$$

, donde $\bar{h}(\beta)$ es un vector muestral análogo a la condición de momento. Las matrices ponderadas son:

$$\hat{M}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\hat{M}_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

b) Hallar la varianza asintótica del estimador GMM óptimo basado en las dos condiciones de momentos.

B. Herramientas avanzadas

Problema 3. Considere el modelo condicional de momentos:

$$E[m(x_i, \theta)] = \begin{cases} = 0 & \text{si } \theta = \theta_0 \\ \neq 0 & \text{si } \theta \in \Theta | \theta_0 \end{cases}$$

El estimador GMM es:

$$\hat{\theta} = argmin \ \bar{m}_n(\theta)' W_n \bar{m}_n(\theta)$$

- a) Hallar la matriz de ponderaciones óptima.
- b) ¿Cómo se obtiene el estimador GMM?
- c) ¿Cuál es la matriz de ponderaciones óptima cuando la condición de momento es $E[(y-x_i'\beta)z_i]=0$? Nota: x_i es un vector de instrumentos.