Error Analysis in an Automated Narrative Information Extraction Pipeline

by Josep Valls-Vargas, Jichen Zhu, and Santiago Ontanon

Sheyanova Mariya

NRU HSE

Table of contents

- 1. Introduction
- 2. Voz
- 3. Error Analysis
- 4. Conclusion

Introduction

Intro

- Motivation: gamedev with automatic plot generation
- · Data: unannotated Russian folk tales translated into English
- Information Schema: Vladimir Propp's narrative theory (Hero, Villain, Dispatcher, Donor, Helper, Soughtfor-person, and False Hero)
- Extraction tool: Voz (to be described)
- **Purpose**: quantify the contribution of each module to the final error, identify the bottleneck with the largest impact

Voz

What it is?

A fully-automated narrative extraction system.

Fig. 2. Architecture of the Voz system illustrating the modules and workflow of the narrative information extraction pipeline.

NL Preprocessing

Stanford CoreNLP suite:

- \cdot segmentation
- POS-tagging
- syntactic parsing
- · lemmatization

Coreference resolution: Stanford Coreference Resolution

Mention Extraction

A mention is a word or phrase used to refer to a specific entity or character, e.g. «the sister». Algorithm:

- 1. Voz traverses each of the sentence parse trees looking for an NP.
- 2. For each NP node, if the subtree rooted at the current NP node contains nested clauses, Voz traverses its subtrees. Otherwise, the node is marked as a mention.
- 3. For each mention, a feature vector is initialized.

The output of this module is a set of mentions (vectorized).

Other modules

- · Coreference Resolution
- Verb Extraction: Voz considers each verb as a relationship between an executor and receiver of an action, and thus extracts verb triplets
- Feature-Vector Assembly: allows later modules in the pipeline to predict which mentions correspond to characters
- Character Identification
- · Role Identification

Error Analysis

Questions

- 1. What is the error introduced by each module?
- 2. How much does the error introduced by one module affect a later module in the pipeline?

Methodology

- Formalize the information extraction pipeline as a directed acyclic graph. Then, compute one topological ordering1 of the nodes in the DAG.
- 2. Annotate an incremental Ground Truth dataset. (in fact, GS for each module)
- 3. *Individual Module Evaluation*. Evaluate each module m_i using as input GT_i 1 and comparing the output against GT_i .
- 4. Error propagation. Given a pair of modules m_a and m_b where $m_a m_b$, we compare the performance of m_b in two settings:
 - feed GT_a 1 to m_a then running the pipeline from m_a to m_b
 - feed GT_a to $m_a + 1$ then running the pipeline from $m_a + 1$ to m_b

Evaluation

Measures: precision, recall, f-measure.

Coreference resolution module: a measure, characterizing the spread of a single character:

- the average number of coreference groups with a reference to a single character
- the misgrouping of different characters

Baselines:

- · Random: generates predictions randomly
- Informed: always predicts the most common solution in the training set

Individual Module Evaluation

Each module m_i was evaluated using as input GT_i – 1 and comparing the output against GT_i .

Mention extraction, Coreference Resolution:

0/87 - 15/07	Р	R	f	
Rand.	.446	.488	.467	
Inf. B.	893	1.00	.944	
Auto	.893	1.00	.944	
<u> </u>				
	i			

	C/Gr	Gr/C		
Rand.	10.7	1.00		
Inf. B.	1.00	11.9		
w/GT	1.07	6.00		
Auto	1.07	6.00		

Individual Module Evaluation

Verb Extraction, Character Identification:

- 17- - 10-	Р	R	f	
Rand.	.021	.040	.027	
Inf. B.	.089	.324	.139	
Auto	.260	.204	.228	
A				

	Р	R	f
Rand.	.502	.446	.448
Inf. B.	.423	.650	.512
w/GT	.850	.852	.851
Auto	.844	.876	.860

Role Identification:

	Р	R	f
Rand.	.021	.143	.036
Inf. B.	.100	.316	.152
w/GT	.689	.672	.689
Auto	.685	.671	.675

TABLE III

Effect of the verb features (from m_3) on the character and role identification processes (m_5 and m_7). Rows report results using the automatically extracted verb features (m_3), using the verb features from the ground truth GT_3 , and completely removing the verb features (GT_4 w/o Verbs).

Input	Module	P	R	f
m_3	m_5	0.844	0.876	0.860
GT_3	m_5	0.850	0.852	0.851
GT_4 w/o Verbs	m_5	0.832	0.851	0.841
m_3	m_7	0.685	0.671	0.675
GT_3	m_7	0.689	0.672	0.689
GT_4 w/o Verbs	m_7	0.618	0.595	0.602

TABLE IV

Effect of coreference information (from m_2) on the majority voting processes (m_6 and m_8). Rows report results without coreference information, using the automatic coreference (m_2) and using the coreference from the ground truth GT_2 .

Voting	Module	P	R	f
Without Voting	m_6	0.844	0.876	0.860
m_2	m_6	0.859	0.878	0.868
GT_2	m_6	0.896	0.839	0.868
Without Voting	m_8	0.685	0.671	0.675
m_2	m_8	0.644	0.624	0.629
GT_2	m_8	0.728	0.713	0.714

Fig. 5. Summary of error distribution through the pipeline when running Voz

Discussion

Three phenomena:

- the error between some modules is mitigated (i.e., Verb Extraction to Character Identification)
- the error introduced by certain modules has a considerable impact in later modules (i.e., Coreference Resolution to Role Identification)
- the error between some modules is independent (Character Identification and Role Identification)

Discussion

The main implication: working toward improving modules such as verb extraction will have no immediate impact on the performance of the character and role identification tasks.

Conclusion

Summary

The authors:

- want to improve narrative applications such as plot generators and interactive storytelling systems
- present Voz, a system for automatic narrative information extraction
- propose a novel methodology to study error propagation in information extraction pipelines

Conclusions

- part of the error of certain NLP tasks may be mitigated by later modules
- verb extraction sufficient to reduce the overall error of the system
- the impact of the coreference and verb extraction modules to the final result of the pipeline is smaller than anticipated

Questions?