9. HYPERPARAMETER TUNING

LEV KIWI

FITTING GRAPH

CROSS-VALIDATION

Procédure

- 1. Le dataset est découpé en k-parties aléatoires de tailles égales.
- 2. En excluant chaque fois une partie du dataset, le modèle est entrainé sur les k-1 parties restantes.
- 3. La performance est calculée sur chacune des parties
- 4. La performance totale du modèle est la performance moyenne.

Mean and standard deviation of test sample performance

GRID SEARCH CROSS-VALIDATION

Procédé

On crée une grille multidimensionnelle composé du produit cartésien de toutes les valeurs à tester. L'algorithme va être cross-validé pour chacune des valeurs possibles.

Exemple. Supposons qu'on a un modèle M avec des hyperparamètres x_1 et x_2 pouvant chacun prendre les valeurs entre 0 et 1. On découpe l'espace en une grille de 10 x 10 cases. Les contours bleus indiquent les régions avec de bonnes performance tandis que les contours rouges avec de faibles performance.

RANDOM SEARCH CROSS-VALIDATION

Procédé

On tire aux hasards des valeurs d'hyperparamètres à tester. L'algorithme va être cross-validé pour chacune des valeurs sélectionnées.

Exemple. Supposons qu'on a un modèle M avec des hyperparamètres x_1 et x_2 pouvant chacun prendre les valeurs entre 0 et 1. On tire au hasard 100 valeurs dans l'espace des valeurs possibles.

BAYESIAN SEARCH CROSS-VALIDATION

Procédé

Approche d'optimisation globale qui construit un modèle probabiliste de la fonction d'objectifs et qui évalue de manière itérative les hyperparamètres les plus prometteurs.

