MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II

Numer zadania	Numer czynności	Etapy rozwiązania zadania	Liczba punktów
11.	11.1.	Obliczenie wyróżnika: $\Delta = m^4 + 8m^3 + 12m^2$ i wskazanie pierwiastków wielomianu $m^4 + 8m^3 + 12m^2$: $m_1 = 0, m_2 = -6, m_3 - 2$, lub zapisanie wyróżnika w postaci iloczynowej: $\Delta = m^2 (m+2) \cdot (m+6)$.	2
	11.2.	Rozwiązanie nierówności $\Delta > 0$ i zapisanie dziedziny: $m \in (-\infty, -6) \cup (-2, 0) \cup (0, \infty)$.	1
	11.3.	Zapisanie wzoru funkcji: $f(m) = \frac{3m+2}{m+2}$	1
	11.4.	Naszkicowanie wykresu funkcji f.	2
	12.1.	Wykorzystanie własności $ x ^2 = x^2$ i doprowadzenie drugiego równania do postaci: $(y+1)^2 + (y+1)^2 = 8$.	1
	12.2.	Wyznaczenie wartości zmiennej y: $y = -3$ lub $y = 1$.	1
12.	12.3.	Rozwiązanie układu równań $\begin{cases} y = -3 \\ x = -2 \end{cases} \text{ lub } \begin{cases} y = 1 \\ x = 2 \end{cases}$ $\begin{cases} x = 2 \\ y = 1 \end{cases} \text{ lub } \begin{cases} x = -2 \\ y = 1 \end{cases}.$	2
	Inna metoda. 12.1. Zastosowanie definicji wartości bezwzględnej i zapisanie alternatywy układów równań lub dwóch równań. 12.2. Przekształcenie otrzymanych układów równań do równań z jedną niewiadomą. 12.3. Rozwiązanie równań, układów równań. Metoda graficzna. 12.1. Geometryczna interpretacja pierwszego równania. 12.2. Geometryczna interpretacja drugiego równania. 12.3. Podanie rozwiązania układu		
	13.1.	Zapisanie założeń: $x > 0$ i $x \ne 1$ i $4^x - 12 \cdot 2^x + 32 > 0$.	1
	13.2.	Doprowadzenie nierówności $4^x - 12 \cdot 2^x + 32 > 0$. na przykład $t^2 - 12t + 32 > 0$, gdzie $t = 2^x$ i $t > 0$.	1
13.	13.3.	Rozwiązanie nierówności ze zmienną t : $t < 4$ lub $t > 8$.	1
13.	13.4.	Rozwiązanie nierówności: $2^x < 4$ lub $2^x > 8$: $x < 2$ lub $x > 3$.	1
	13.5.	Wyznaczenie dziedziny funkcji f : $D = (0, 1) \cup (1, 2) \cup (3, \infty)$.	1

14.	14.1.	Zapisanie, że długość boku każdego kolejnego trójkąta jest iloczynem długości boku trójkąta poprzedniego i liczby $\frac{\sqrt{3}}{2}$.	1
	14.2.	Zapisanie, że ciąg pól utworzonych trójkątów jest nieskończonym ciągiem geometrycznym o pierwszym wyrazie równym $P_1 = \frac{a^2 \sqrt{3}}{4}$ i ilorazie $q = \frac{3}{4}$.	2
	14.3.	Obliczenie sumy pól wszystkich trójkątów: $S = a^2 \sqrt{3}$.	1
15.	15.1.	Zapisanie założenia: $\sin x \neq 0$.	1
	15.2.	Zastosowanie wzoru redukcyjnego i zapisanie równania w postaci: $\frac{1}{\sin x} + \frac{\cos x}{\sin x} - \sin x = 0$.	1
	15.3.	Przekształcenie równania do postaci: $\cos x(\cos x + 1) = 0$.	1
	15.4.	Zapisanie rozwiązań równania: $x = \frac{\pi}{2} + k\pi, k \in \mathbb{C}$.	1
16.	16.1.	Zastosowanie wzoru na prawdopodobieństwo sumy zdarzeń.	1
	16.2.	Wykorzystanie niezależności zdarzeń i otrzymanie równania $(1-P(A))(1-P(B))=0$.	2
	16.3.	Wywnioskowanie, że przynajmniej jedno ze zdarzeń <i>A</i> lub <i>B</i> jest zdarzeniem pewnym.	1
17.	17.1.	Podanie przedziałów, w których funkcja jest malejąca: $\left(-\infty; -4\right)$, $\left<0;4\right>$.	1
	17.2.	Stwierdzenie, że funkcja osiąga maksimum dla $x = 0$, podanie warunku koniecznego i warunku wystarczającego istnienia maksimum.	2
	17.3.	Napisanie równania kierunkowego stycznej w punkcie A : $y = -2x + 4$.	2
18.	18.1.	Przedstawienie metody wyznaczenia współrzędnych punktu <i>C</i> (w tym 1 punkt za zapisanie warunku prostopadłości prostych)	2
	18.2.	Wyznaczenie współrzędnych punktu C : $C = (3, 0)$.	1
	18.3.	Zapisanie współrzędnych środka okręgu opisanego na trójkącie ABC : $S = (3, 5)$ i długości promienia tego okręgu: $r = 5$.	1
	18.4.	Wyznaczenie współrzędnych środka obrazu okręgu: $S' = (-3, -10)$ (w tym 1 punkt za metodę).	2
	18.5.	Zapisanie długości promienia obrazu okręgu: <i>r</i> '=10.	1
	18.6.	Zapisanie równania obrazu okręgu: $(x+3)^2 + (y+10)^2 = 100$.	1
19.	19.1.	Sporządzenie rysunku ostrosłupa z zaznaczonym przekrojem.	1

		$A \xrightarrow{S} C$ B			
	19.2.	Obliczenie długości krawędzi bocznej ostrosłupa: $\frac{a\sqrt{2}}{2}$.	1		
		Metoda I			
		Wyznaczenie cosinusa kąta nachylenia krawędzi bocznej			
	19.3.	ostrosłupa do płaszczyzny jego podstawy: $\cos \alpha = \frac{\sqrt{6}}{3}$.	1		
	19.4.	Obliczenie długości wysokości przekroju: $ DE = \frac{a\sqrt{6}}{4}$.	2		
	Metoda II				
		Obliczenie długości boków SD i ES w trójkącie EDS:			
19.	19.3.	$ SD = \frac{a}{2} i SE = \frac{a\sqrt{2}}{4}.$	1		
	19.4.	Obliczenie długości wysokości przekroju: $ DE = \frac{a\sqrt{6}}{4}$.	2		
	Metoda III				
	19.3.	Obliczenie długości odcinka <i>EB</i> : $ EB = \frac{a\sqrt{10}}{4}$.	1		
	19.4.	Obliczenie długości wysokości przekroju: $ DE = \frac{a\sqrt{6}}{4}$.	2		
	19.5.	Obliczenie pola przekroju: $S = \frac{\sqrt{6}}{8}a^2$.	1		
	20.1.	Sprawdzenie warunku dla $n = 1$.	1		
20.	20.2.	Napisanie założenia indukcyjnego i tezy indukcyjnej.	1		
	20.3.	Przeprowadzenie dalszej części dowodu.	2		
_					

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.