Mounir Abderrahmani	mounir1badi@gmail.com
	ECE 551 Homework 2 (Spring 2016)
	March 25th, 2016
	1viai 25 ai, 2010

Mounir Abderrahmani

Q1: State Transition

For the small training set ATGATACTTgtccgagTATATAG

ATGTTTTgtggcagAAAGA

ATGAAT gtcgcgagTTTTATAG

	Exon	Intron
Exon	0,59	0,049
Intron	0.049	0.312

mounir1badi@gmail.com

Emission Probabilities

	A	T	С	G
EXON	0.4	0.42	0.041	0.14
INTRON	0.123	0.123	0.213	0.541

Testing the set	gives PATH :	OUTPUT file
atgttaagtggccagttaatga	EEIIIIIIIIIIEEEEEE	ATgttaagtggccagTTAATGA
atgaaaagtggggccagtaatga	EEEEEEIIIIIIIIIEEEEEE	ATGAAAAgtggggccagTAATGA
atggtcagtag	EEEIIIIEEE	ATGgtcagTAG

E denotes Exon state, and I to Intron state. The codes are here

Q2:

2)ATG_=
$$0.1*0.25*1*0.5*0.1*0.25*1*0.1*0.2*1$$

Begin, I₁, M₁, I₂, M₂, D3, end=

4) AT__G=0.1*0.25*1*0.5*0.2*1*0.4*0.9
 Begin,
$$I_1$$
, M_1 , D_2 , M_3 , end

5)A_TG =
$$0.7*0.1*0.2*1*0.1*0.1*0.25*1$$

Begin, M₁, D₂, M₃, I₄, end.

Mounir Abderrahmani O3:

mounir1badi@gmail.com

Motifs: GGAGG, GGAG or GAGG with probability 72%, 16% and 12%, comes after 4th or 6th position of a codon!

Here I made 10 upstream start of codons respecting the probabilities of the motifs:

CODON1: ____ GGAGG

CODON2: _ _ _ GGAGG _ _

CODON3: _ _ _ GGAGG _

CODON4: _ _ _ GGAGG

CODON5: _ _ _ GGAGG _

CODON6: ____ GGAGG

CODON7: ____ GGAGG _

CODON8: ____ GGAG __

CODON9: _ _ _ GGAG _ _ _

CODON10: _ _ _ GAGG _

The probabilities won't be accurate unless if we fix the conservative columns, if we consider that alignment we can do this: since they are randomly generated, but the emission observations are almost constant (G,A) starts with G and ends with G and has an A, Gs are duplicate 72% in both sides and 16% in first and 12% in the last side so we can have only 3 columns that is one for matching As and other two for matching Gs, and calculate the looping probabilities for insertions and deletion. We have number of max length of string is 11.

The orange insertion is a different HMM that need to be calculated with different emissions its length between 4 and 6

Mounir Abderrahmani

mounir1badi@gmail.com

Q4: choosing 3 column out of 4 as most conservative columns, and one as insertion and one deletion occur in the second sequence in the transition from the second to the third column. (empty entries correspond to 0 probability)

B: since I have only 3 column and the first insertion doesn't loop that is it produce only once (c) , the sequence GCCAG can't be generated with the above model.