

微型计算机接口技术复习

说明:本次复习课未涉及到的知识点请同学们自行复习。

微机原理_与排口技术

第七章 输入/输出系统

- 一. 接口电路的作用
- 二、端口的概念、分类
- 三、端口有两种编址方式。PC系列机采用端口独立编址。
- 四、最常用的 I/O 指令
- 1.直接寻址 I/O 指令(8位端口地址)
 - IN AL, n OUT n, AL
- 2. DX间接寻址 I/O 指令(当端口地址 > 8位) IN AL, DX OUT DX,AL

微机原理。推力技术

五、微机系统与 I/O 端口的信息交换

有四种方式: 无条件传送, 查询方式,中断方式, DMA方式

六、直接存储器存取(DMA)方式

DMA (Direct Memory Access): 利用硬件完成高速外设与系统RAM之间的信息交换。

DMAC: DMA 控制器是实现DMA传送的核心芯片。

优点:传送速度快;缺点:硬件电路比较复杂。

微机原理与排口技术

DMA传送与中断方式的比较

响应时间: CPU接到"中断请求"后要等到当前指令执行完毕才响应,而CPU接到DMAC的"总线请求"后,只要当前指令的当前总线周期执行完毕就响应!

数据传送速度: DMAC传送比中断传送要快!

微机原理与推口技术

I/0设备信息交互四种方式的比较:

	优点	缺点
无条件传送方式	可以直接使用输入缓冲器 或锁存器与数据线相连, 程序设计简单	传送不能太频繁(保证每次传送设备都处在就绪状态)
查询方式	比无条件传送方式可靠, 时间确定	降低了CPU的工作效率, 不具有实时性
中断控制方式	提高了CPU的工作效率, 具备实时性,可并行工作, 不用反复查询外设的工作 状态。	每次进行数据传输,都要 保存现场,时间不确定、 有抖动
DMA方式	按数据块传输,不经过 CPU,不需要保护现场	硬件更复杂(DMA控制器)

微机原理。接口技术

第八章 中断系统

- 一. 中断概念
- 二、中断指令

STI CLI INT n IRET

要求掌握: 中断指令在中断程序设计中何时使用

CPU执行中断指令后,完成哪些操作

STI, CLI只对可屏蔽中断请求有效

例: CPU执行IRET指令后,从栈顶弹出____字节数据,分别赋给 、 和 。

微机原理与排口技术

三、微机系统中断分类

 PC机 256种 (内部中断)
 软件中断 (内部中断)

 中断 硬件中断 (外部中断)
 ※ 可屏蔽中断 INTR (外部中断)

可屏蔽中断是通过8259中断控制器连至CPU的 INTR。

微机原理与维力技术

四. 中断向量

中断向量是实模式下,中断服务子程序的入口地址 在实模式下,CPU把256种中断向量组成一张表设置在 系统的RAM最低端的1K单元(0~3FFH) n型中断向量存放在内存单元地址4*n~4*n+3这四个单元

中断向量表的引导作用

例:实模式下,从内存地址0000H:0048H开始的连续4个单元中存放的内容为00H,38H,30H,50H,则该地址所对应的中断类型码为_____,该中断所对应的中断服务子程序的入口地址为____。

微机原理。推力技术

五. 中断向量的写入

MOV AX, SEG SERVICE

MOV DS, AX

MOV DX, OFFSET SERVICE

MOV AH, 25H

MOV AL, n

INT 21H

微机原理与供口技术

六、对于微机系统可屏蔽硬件中断要求掌握:

中断源	中断级别	中断类型码
日时钟中断	最高	08H
键盘中断	1	09H
从8259IR0		70H
IR1		71H改向0AH
IR2		72H
•		•
IR7		77 H
辅串口		OBH
主串口		OCH
<u>并</u> 口2		ODH
软盘	ļ	OEH
并口1	最低	OFH

微机原理与集口技术

系统分配的8259口地址

中断屏蔽寄存器

接收中断结束命令的

寄存器口地址

口地址

21H

20H

从8259

主8259

A1H

A0H

微机原理与排口技术

响应非屏蔽中断的条件

- ①有非屏蔽中断请求,没有DMA请求
- ②一条指令执行完

响应可屏蔽中断的条件

- ①有可屏蔽中断请求,没有DMA请求,没有非屏蔽中断请求;
- ②CPU一条指令执行完毕;
- ③CPU处于开中断状态(I标=1)。

微机原理与供口技术

部分中断号所对应的中断如下:

0型中断 除法错中断

1型中断 单步或陷阱中断

2型中断 非屏蔽硬件中断

3型中断 断点中断

4型中断 溢出中断

5型中断 屏幕打印

08H~0FH型中断 可屏蔽硬件中断

10H~1FH型中断 BIOS中断

20H~3FH型中断 DOS中断

微机原理与维力技术

七、对于要求掌握的可屏蔽中断:

- (1) 用户中断 中断源 中断向量 71H, 0AH 用户可置换的中断向量 71H, 0AH
- (2) 日时钟中断中断 中断源中断向量 08H,1CH 用户可置换的中断向量 08H,1CH 重点掌握1CH

微机原理与供口投水

键盘中断(只要掌握原理)

中断源 中断向量 09H 由9型服务程序写入键代码,用户用INT 16H访问

键盘缓冲区,

∴键盘缓冲区是9型硬中断和INT 16H软中断之间 交换信息的缓冲区。

微机原理。推力技术

八、硬件中断和软件中断的相同点

(1) 中断的引发方式不同

硬件中断是由CPU以外的设备发出的接到引脚INTR和NMI上的中断请求信号而引发的。而软件中断是由于CPU执行INT n指令而引发的。

(2) CPU获取中断类型码的方式不同

可屏蔽硬件中断,中断类型码是由中断控制器8259A提供;非屏蔽硬件中断类型码自动产生;软件中断,中断类型码是由软件中断指令INT n本身提供的。

(3) CPU响应的条件不同

可屏蔽硬件中断是可以被屏蔽的,只有在CPU开中断时,才能响应;非屏蔽硬件中断和软件中断不能被屏蔽。

(4) 中断处理程序的结束方式不同

在硬件可屏蔽中断服务程序中,中断处理结束后,首先需要向8259A发出中断结束命令,然后执行IRET指令,中断返回。而在软件中断服务程序中,中断处理结束后只需执行IRET指令。

微机原理。推力技术

假设微机系统外扩了如下的一个'单脉冲发生器',该'单脉冲发生器'电路受一个自复开关K的控制,每按一次K,该电路输出一个正脉冲,输入到系统机从8259的IR1作为外部中断请求。

要求:每按一次K,屏幕上显示一行字符串"Welcome!"。主机键盘按任意键,程序结束,返回DOS。(要求给出完整的源程序)

微视原理与维力技术

.486

DATA SEGMENT USE16 MESG DB "B01040101","\$" DATA ENDS

CODE SEGMENT USE16

ASSUME CS: CODE, DS: DATA

BEG: MOV AX,DATA

MOV DS,AX

CLI

CALL WRITE0A

CALL 18259

STI

SCAN: MOV AH, 1

INT 16H

JZ SCAN

MOV AH, 4CH

INT 21H

微机原理。#D数者

SERVICE PROC

PUSHA PUSH DS MOV AX, DATA MOV DS, AX MOV AH, 9 **MOV DX, OFFSET MESG INT 21H** MOV AL, 20H OUT 20H, AL POP DS **POPA IRET SERVICE ENDP**

微机原理与供力技术

WRITE0A PROC
PUSH DS
MOV AX,CODE
MOV DS,AX
MOV DX,OFFSET SERVICE
MOV AX,250AH
INT 21H
POP DS
RET
WRITE0A ENDP

18259A PROC IN AL,21H AND AL,11111011B OUT 21H,AL IN AL, 0A1H AND AL,11111101B **OUT 0A1H,AL RET 18259A ENDP CODE ENDS END BEG**

微机原理与排口技术

第十章 串行通信

- 一. 基本概念
- 1. 串行通信方式: 串行异步通信、串行同步通信
- 2. 异步串行通信的数据传输方式: 单工通信、半双工通信、全双工通信。
- 三种传输方式的特点。
- 例: 单工、半双工、全双工通信方式的特点是什么?

微机原理。推力技术

3. 异步串行通信一帧数据的格式及通信速率的计算。

- 4. 为实现通信,收发双方一帧数据的格式和通信速率要保持一致。
- 5. RS232信号采用负逻辑。

"1"=
$$-3V \sim -15V$$
, "0"= $+3V \sim +15V$

微机原理与推力技术

- 二、8250芯片 8250内部寄存器的功能。
- 三. 8250的编程
 - (1)8250的初始化编程。
 - (2) 8250的应用编程 串行通信程序设计包括硬件连接和软件编程。

微机原理与维力技术

8250初始化步骤

- ① 80H→线路控制寄存器, 使除数寄存器访问位=1
- ② 根据波特率计算出除数高/低8位→除数寄存器高/ 低8位,确定通信速率
- ③ D7=0的命令字→线路控制寄存器: 有2个目的
 - ★ 定义一帧数据格式
 - ★ 使除数寄存器访问位=0,从而使后继的对合用端口的访问只读写非除数寄存器

微机原理与供力技术

- ④ 设置中断允许命令字 查询方式,则中断允许命令字=0,禁止中断 中断方式,使中断允许命令字相应位置1
- ⑤ 设置MODEM控制寄存器 中断方式: D3=1,允许8250送出中断请求

查询方式: D3=0

内环方式: D4=1

正常通信: D4=0

使用联络线: D1、D0位置1

微机原理与集口技术

8250查询方式下接收和发送程序的编程

在发送数据前,读通信线状态寄存器(状态口)获取发送保持或移位寄存器(数据口)是否空闲;在接收数据前,读通信线状态寄存器(状态口)获取接收缓冲寄存器(数据口)是否已经收到1帧数据。

8250采用中断方式交换信息,应采取以下措施:

- 1) 中断允许寄存器相应位置1;
- 2) MODEM控制寄存器D₃=1,即OUT₂=0,打通 8250的中断请求通道:
- 3) 8259A相应中断屏蔽位开放(主8259AIR3, IR4); 8259A
- 4) CPU处于开中断 (STI) 。 ————————— CPU

微机原理与排口技术

1. 外环自发自收

2. 短距离(无MODEM) 点-点全双工通信

3. 短距离单工通信

微机原理与供口投水

A、B两台PC机利用主串口进行点-点单工通信(不用联络线),发送采用查询方式,接收采用中断方式。一帧字符包含7个数据位,1个停止位,1个校验位,通信速率为4800波特(分频系数为0018H)。

(1)下图是A、B两机的RS—232C接口示意图,根据题意完成连线(不可有多余连线)。

2	
3	
4	
5	
6	
20	
7	

2
3
4
5
6
20
7

(2)下图是从PC机的RS-232C接口引脚观察到的波形,所传送字符的16进制ASCII码是______;该帧数据采用的奇偶校验方式是______校验;传送该帧数据需要的时间是_____。

← 传送方向

微机原理与排口技术

(3) 用对端口直接编程的方法为接收方编写8250初始化程序段。

I8250	PROC	
MOV	DX, 3FBH	
MOV	AL, 80H	
OUT	DX, AL	;寻址位置1
MOV	DX, 3F9H	
MOV	AL, 00H	
OUT	DX, AL	;写除数高8位
MOV	DX, 3F8H	
MOV	AL, 18H	
OUT	DX, AL	;写除数低8位

微机原理与集口技术

MOV DX, 3FBH

MOV AL, OAH

OUT DX, AL

MOV DX, 3F9H

MOV AL, 01H

OUT DX, AL

MOV DX, 3FCH

MOV AL, 08H

OUT DX, AL

RET

I8250 ENDP

;无校验传送,8位数据

横机原理与排口技术

第十一章 并行I/0接口

- 一、8255A定时器/计数器
 - (1) 内部结构、端口地址以及与系统总线的连接
- (2) 8255A三种工作方式(方式0~方式2)的工作特点和I/O过程

工作方式

适用于端口.....

方式0: 基本型入/出 A口、B口、C口

方式1: 选通型入/出 A口、B口

方式2: 双向传输 A口

微机原理与集口技术

(3) 读/写操作

CS	$\mathbf{A_1}$	$\mathbf{A_0}$	WR	RD	完成操作
0	0	0	1	0	读A口数据 → CPU
0	0	1	1	0	读B口数据 → CPU
0	1	0	1	0	读C口数据 → CPU
0	0	0	0	1	CPU数据 → A口数据寄存器
0	0	1	0	1	CPU数据 → B口数据寄存器
0	1	0	0	1	CPU数据 → C口数据寄存器
0	1	1	0	1	CPU送来的命令字→控制寄存器

注意: 对控制寄存器不能进行读操作!

微视原理与排口技术

(4)在方式1中C口哪几个引脚作为信号联络线,各信号联络线的含义。

例:8255的数据口中, 口可工作在双向方式。

例: 8255A的B口初始化定义为选通型(方式1)输入,对8255A采用查询方式,必须先查询_____;若采用中断方式,必须先置PC___为'1',并且利用 作为中断请求信号线。

- 二、8255初始化编程
- ① 工作在方式0时:方式选择命令字→控制口
- ② 工作在方式1、2时:
 - a) 方式选择命令字→控制口
 - b) 允许中断(或禁止中断)的命令字→控制口

微机原理。推力技术

a. 如果数据口(A,B或C)工作在方式0,

直接采用IN/OUT指令对其进行读写。

b. 如果数据口(A或B)工作在方式1,

如果采用查询方式,且 A或B口定义为输入口,先用 IN指令读入C口的内容,查询其中的IBF=1时,表示CPU可以继续用IN指令从A或B口读入外设送来的数据。

如果采用查询方式,且 A或B口定义为输出口,先用IN指令读入C口的内容,查询OBF=1 时,表示CPU可以用OUT指令向A或B口写数据以送给外设。

微机原理与供口技术

系统机外扩一片8255A及相应电路如下图所示,外扩8255A的端口地址为200H~203H,现利用系统机的日时钟外扩1CH型中断,实现每隔1s使八个发光二极管同时闪烁一次,主机键盘有按键按下时结束返回DOS操作系统。根据要求完成相关内容。

微视原理与推力技术

- (1) 从图可以分析出,A口工作在方式 0 的输 出 (入/出)。
- (2) 假设8255A的A口工作在方式1的查询输出方式,编写8255A的初始化子程序I8255。

I8255A PROC

MOV DX, 203H

MOV AL, 10100000B

OUT DX, AL

MOV AL, 00001100B

OUT DX, AL

RET

I8255 ENDP

(3)编写子程序WRITE完成中断向量的置换。

;写入工作方式字

微机原理与供力技术

(3)编写子程序WRITE完成中断向量的置换。

WRITE1C PROC

;写入用户1CH型中断向量

PUSH DS

MOV AX, CODE

MOV DS, AX

MOV DX, OFFSET SERVICE

MOV AX, 251CH

INT 21H

POP DS

RET

WRITE1C ENDP

微机原理。排口技术

第十二章 8254定时/计数器

(1) 掌握8254定时器/计数器的基本结构(三个16位计数器、控制寄存器)和计数器的外部引脚功能(GATE, CLK, OUT)。

例: 8254计数器电路中, GATE=1表示______。

(2) 8254有6种工作方式(方式0~方式5)

重点:方式2、方式3(包括计数过程、波形、周期和启动方式)方式2、3初值自动重装,其余四种方式没有初值自动重装功能。

微机原理与集口技术

工作方式的比较:

工作方式的比较:

	方式1	方式4	方式5			
功能	都是单脉冲发生器					
启动方式	硬件启动	软件启动 硬件启动				
输出	负脉宽=N×T _{CLK}	负脉宽=T _{CLK}				
初值重装	在计数过程中 (OUT=0期间) GATE从0→1时初值		计数过程中 (OUT=1期间) GATE从0 → 1			
	重装		时初值重装			

微机原理与集口技术

表7.1 8254内部寄存器读/写操作					
$\overline{\mathrm{CS}}$	RD	WR	A1	A0	操作
0	1	0	0	0	¼ÆÊý³õֵдÈë¼ÆÊýÆ÷
0	1	0	0	1	计数初值写入计数器#1
0	1	0	1	0	¼ÆÊý³õֵдÈë¼ÆÊýÆ÷
0	1	0	1	1	向控制字寄存器写控制字
0	0	1	0	0	读计数器#0当前计数值
0	0	1	0	1	¶Á¼ÆÊýÆ÷#1µ±Ç°¼ÆÊ
0	0	1	1	0	读计数器#2当前计数值
0	0	1	1	1	无操作
1	X	X	X	X	禁止
0	1	1	X	X	无操作

微机原理与排口技术

例:设8254计数器1工作于方式3,输入时钟为1000Hz,计数初值为10H,且采用二进制计数方式,则一个周期内计数器1输出信号的高电平和低电平分别为 ____和_ms。

(3) 掌握8254在微型计算机系统中的应用 (外扩8254和PC机系统中8254)

例: 8254的三个计数器在PC系列中是如何应用的?

- (4) 8254初始化编程
 - ★向控制寄存器写入方式选择命令字。

目的:选择一个计数器,并确定其工作方式和 计数值(或计数初值)的读/写顺序。

★向选择的计数器写入计数初值 (计数初值=Tout/Tclk)

微机原理与排口技术

锁存命令(D5 D4=00 标志该命令为"锁存命令")

D7 D6 D5 D4 D3 D0

计数器选择 0 0 × × × × D7 D6≠11
D5 D4 = 00

D7 D6 为锁存对象。

- =00,锁存0#当前计数值
- = 0 1, 锁存1#当前计数值
- =10,锁存2#当前计数值

锁存命令写到控制端口

微机原理。推力技术

作业1: 设PC 系统机外扩了一片8254 及相应的实验电路。

- (1) 根据由门电路构成的译码电路,分析出该片8254 的四个端口地址。其中控制口的地址是 213H 。
- (2) 设CLKO 已接至8MHz 时钟,为了能从0UTO 输出4KHz 的方波,编写了8254初始化程序,其中假设0 号定时计数器工作在二进制方式。

微机原理。推力技术

I8254 PROC MOV DX, 213H MOV AL, 00110110B **OUT DX, AL MOV DX, 210H MOV AX, 2000 OUT DX, AL** MOV AL, AH **OUT DX, AL** RET **I8254 ENDP**

微机原理。排口技术

最后: 掌握作业,实验!