Test Case Selection Strategies II

Contents

This lecture covers

- random testing
- partition testing

Basic Concepts

- Input domain set of all possible inputs
- Failure-causing inputs inputs that exhibit failures
- Exhaustive testing
 - to test the program with the entire input domain

3

Basic Concepts (continue)

Consider the following program

INPUT I, J, K // -1M <= I, J, K <=1M, integers N = I + 2*J - 3*K OUTPUT N

Apply exhaustive testing to test this small program

Basic Concepts (continue)

I has 2,000,001 possible values J has 2,000,001 possible values K has 2,000,001 possible values

Number of possible inputs > 8 * (10**18)

Is it feasible to apply exhaustive testing?

4

Basic Concepts (continued)

- Exhaustive testing infeasible
- How to select inputs as test cases?

Various Test Case Selection Strategies

7

An Intuitive Approach

Use the information related to

- Inputs
- Outputs

Approaches

- Black box approach
 - Does not refer to the program code
 - Examples: random testing, category-partition method, classification tree method
- White box approach
 - Makes use of the program code
 - Examples: control-flow coverage, data-flow coverage

9

Random Testing

Random Testing

selects test cases from the entire input domain randomly and independently

11

Random Testing (continued)

- Two approaches
 - Uniform distributions
 each input is of equal selection probability
 - Operational distributions (profiles)
 selection probability follows the probability of being used

Random Testing (continued)

Consider a program whose inputs are names:

John, Jenny, Mary, Tom, Henry, Annie, David, Fanny, Karen, Peter,

(in the descending order of their uses)

13

Random Testing (continued)

John, Jenny, Mary, Tom, Henry, Annie, David, Fanny, Karen, Peter,
(in the descending order of their uses)

Uniform distributions:

John and Peter have the same chances to be selected as the test case

Random Testing (continued)

John, Jenny, Mary, Tom, Henry, Annie, David, Fanny, Karen, Peter,

(in the descending order of their usage)

Operational distributions
Suppose John 3 times be used than Peter
Then, Probability (John)=3*Probability(Peter)

1

Random Testing (continued)

- Advantages
 - Intuitively simple
 - Allows statistical quantitative estimation of the software's reliability
- Disadvantage
 - Ineffective (not using any information to guide the selection of test cases)

Pseudo Radom Numbers

- Not truly random
- Same sequences with same initial seeds
- Many pseudo random number generators available

17

Example

Assume the random number generator (RG) returns a value within [0, 1]

Uniform distributions:

Suppose you have 10 names:

Mary,, Tom

Generated value [0, 0.1) – Mary

.

Generated value (0.9, 1] – Tom

1

Example (continued)

Operational distributions:

Suppose you have 10 names:

Mary,,Tom

Mary's probability – 0.21

.

Tom's probability -0.06

Mary's probability – 0.21

.

Tom's probability -0.06

Generated value within [0, 0.21) - Mary

.

Generated value within (0.94, 1] - Tom

21

Partition Testing

Subdomain Testing

- Partitioning scheme
 - Dividing the input domain into subsets of inputs (known as subdomains)
- Test allocation scheme
 - Selection of test cases from each subdomain

23

Subdomain Testing (continued)

- Motivation
- Homogenous or revealing subdomain
 - Either all elements will cause the program to succeed or all cause it to fail
 - It is extremely difficult for every subdomain to be homogeneous

Partition Testing

- A special case of subdomain testing subdomains are disjoint
- Examples:
 - Path coverage
 - Category-Partition Method
 - **–**

25

Example of Path Coverage

Consider the program

INPUT X, Y //
$$0 \le X$$
, Y, ≤ 10 , real numbers
IF $(X + Y) \ge 5$ THEN $Z = X + Y$
ELSE $Z = 2*X - Y$

Example of Path Coverage (continued)

Two execution paths:

Path 1 (X=5,Y=3) Path 2 (X=2,Y=1)

INPUT X, Y INPUT X, Y

(X + Y) >= 5 (TRUE) (X + Y) >= 5 (FALSE)

Z=X+Y Z=2*X-Y OUTPUT Z

Z = 8 Z = 3

27

Example of Path Coverage (continued)

The input domain is partitioned into two disjoint partitions

- One partition containing inputs (X, Y) such that (X+Y) is greater than or equal to 5, which will execute the "TRUE" path
- One partition containing inputs (X, Y) such that (X+Y) is not greater than or equal to 5, which will execute the "FALSE" path

Category-Partition Method

- Specification-based technique
- Major steps:
 - Identify categories from the specifications (major aspects of parameters or environment conditions)
 - Identify the associated choices for each category (disjoint subsets of values for each category)

29

Category-Partition Method (continued)

- Define constraints amongst choices (from different categories)
- Generate all valid combinations of choices as test frames via these constraints
- Construct test cases from the generated test frames

Example

- Develop a program for a bank to process the loan applications
- The program will accept the following details:
 - Employment status either "employed" or "unemployed"
 - Type of employment either "self-employed" or "employed by others"
 - Type of contract (only for "employed by others") either "permanent" or "temporary"
 - Monthly salary (S) either "\$0<S<=\$3,000", "\$3,000<S<=\$5,000", or "S>\$5,000"
 - Type of applicant either "card holder" or "non-card holder"
 - Type of credit card either "gold" or "classic"
 - Credit limit- either "not more than \$2,000" or "\$2,001 to \$6,000"

31

Example (continued)

- Category: "Employment Status"
 - Choices: "employed" and "unemployed"
- Category: "Type of Employment"
 - Choices: "self-employed" and "employed by others"
- Category: "Type of Contract"
 - Choices: "permanent" and "temporary"

- Category: "Monthly Salary"
 - Choices: "\$1 to \$2,999", "\$3,000 to \$4,999" and ">\$4,999"
- Category: "Type of Applicant"
 - Choices: "card holder" and "non-card holder"
- Category: "Type of Credit Card"
 - Choices: "gold" and "classic"
- Category: "Credit limit"
 - Choices: "not more than \$2,000" and "\$2001 to \$6,000"

33

Example (continued)

A possible test frame which corresponds to a partition

- "Employment Status" "employed"
- "Type of Employment" "employed by others"
- "Type of contract" "permanent"
- "Monthly Salary" "\$3,000 to \$4,999"
- "Type of Applicant" "card holder"
- "Type of Credit Card" "gold"
- "Credit limit"- "\$2,001 to \$6,000"

A possible test case of this test frame (or of this partition)

- "Employment Status" "employed" yes
- "Type of Employment" "employed by others" yes
- "Type of contract" "permanent" yes
- "Monthly Salary" "\$3,000 to \$4,999" \$4,250
- "Type of Applicant" "card holder" yes
- "Type of Credit Card" "gold" yes
- "Credit limit"- "\$2,001 to \$6,000" \$4,500

35

Example (continued)

Another possible test frame which corresponds to another partition

- "Employment Status" "employed"
- "Type of Employment" "self employed"
-
- "Monthly Salary" "\$3,000 to \$4,999"
- "Type of Applicant" "card holder"
- "Type of Credit Card" "classic"
- "Credit limit"- "\$2,001 to \$6,000"

A possible test case of this partition

- "Employment Status" "employed" yes
- "Type of Employment" "self employed" yes

-

- "Monthly Salary" "\$3,000 to \$4,999" \$6,300
- "Type of Applicant" "card holder" yes
- "Type of Credit Card" "classic" yes
- "Credit limit"- "\$2,001 to \$6,000" \$3,150

37

Summary