Lecture 1 - Introduction & Preliminaries

赵尉辰

南开大学 统计与数据科学学院

目录

- ① 课程概况
- 2 概率论的公理化体系
- ③ 随机变量
- 4 随机变量序列
- ⑤ σ- 代数流

目录

- ① 课程概况
- ② 概率论的公理化体系
- ③ 随机变量
- 4 随机变量序列
- **5** σ- 代数流

本人信息

• 授课老师: 赵尉辰

• 电子邮箱: zhaoweichen@nankai.edu.cn

• 个人主页: https://my.nankai.edu.cn/stat/zwc/list.htm

• 研究领域:

采样与扩散模型;

图深度学习方法及应用;

深度学习理论。

课程信息

• 课程主页:

https://weichenzhao1996.github.io/WeichenZhao.io/STAT0041-2025.html

• 教材: Lecture Note

参考书:

- 钱忠民,应坚刚,随机分析引论
- Bernt Øksendal, Stochastic differential equations: an introduction with applications
- 高洪俊,石洋洋,乔会杰,随机微分方程导论
- 龚光鲁,随机微分方程及其应用概要
- 黄志远, 随机分析学基础 (第二版)
- 教学方式: 板书为主, Slides 为辅, 智慧小雅
- 考核方式:
 - 5 次平时作业 30%
 - 出勤 10%
 - 期末考试 60%

课程简介

课程定位:随机分析导论/应用随机分析概率论专业/涉及随机分析工具的交叉学科(人工智能、金融数学、随机优化)

• 预备课程: 概率论、随机过程、(实分析、泛函分析)

• 随机分析的应用: 建模随机现象

建模粒子的运动:统计物理、化学; 建模金融产品的价格波动:金融数学;

建模数据分布的演化:人工智能。

课程简介

(数学/实)分析: "好"的函数 (光滑/可测)→ 微积分 (黎曼/勒贝格)→ 微分方程
 随机分析: "好"的随机过程 → 随机微积分 → 随机微分方程

• 主要内容:

概率论基础

鞅论初步

布朗运动

Itô 随机积分

随机微分方程

随机分析在人工智能中的应用

目录

- ① 课程概况
- ② 概率论的公理化体系
- ③ 随机变量
- 4 随机变量序列
- **5** σ- 代数流

样本空间

Motivation

概率论是研究随机现象确定性规律的理论。为了使用数学工具,我们首先要建立随机现象的数学模型。

在概率论中, 我们假定随机试验(random trial) 可以在相同条件下重复地进行, 每次试验的结果可能不止一个, 并且能事先确定试验的所有可能结果, 但每次试验的结果事先又不可预测。这样一组定义明确的可能结果, 称为样本空间。

定义 1 (样本空间)

把随机试验每一个可能的结果称为一个样本点 (sample point), 通常用 ω 表示,所有可能的结果组成的集合称为样本空间(sample space), 通常用 Ω 表示.

考虑先后掷两次硬币可能出现的结果是: (正,正)(正,反)(反,正)(反,反),把这四个结果作为样本点构成这个随机试验样本空间。

事件

事实上,我们感兴趣的是试验中出现的一些事,比如,先后掷两次硬币这个随机试验中 我们可能感兴趣"两次出现的结果相同"这件事,它是指(正,正)(反,反)这两个样本点 之一出现。这些"事"是样本点的集合,称为事件。

定义 2 (事件)

事件 (event) 定义为样本点的某个集合. 称某事件发生当且仅当它所包含的某个样本点出现。

我们把样本空间 Ω 本身也作为一个事件。每次试验必然有 Ω 中的某个样本点出现,即 Ω 必然发生。因此,我们称 Ω 为必然事件 (certain event)。我们把空集 \emptyset 也作为一个事件,每次试验中,它都不发生,因此,称为 \emptyset 为不可能事件 (impossible event)。

事件

我们需要能够用简单的事件来刻画复杂的事件,这是由集合的运算实现的:

- 称事件 A 发生意味着事件 B 发生, 如果 $A \subset B$. $A = B \iff A \subset B \boxminus B \subset A$:
- 由所有不包含在事件 A 中的样本点所组成的事件称为事件 A 的对立事件,记为 A^{c} ;
- 用 $A \cap B$ 或者 AB 表示 A 和 B 都发生;
- 用 A∪B 表示事件 A 和 B 至少有一个发生;
- 用 A\B 表示事件 A 发生, 但是 B 不发生。

事件域

如果我们对事件 A 感兴趣,那么我们应该知道与 A 相关的事件,也就是我们需要找出通过集合运算得到的事件。所有这些事件的集合,称为事件域。

定义 3 (事件域)

 \mathscr{F} 是由样本空间 Ω 的一些子集组成的集合,称为事件域(event field) 如果满足:

- (1) 非空 ℱ ≠ ∅;
- (2) 对补运算封闭 $A \in \mathscr{F} \Longrightarrow A^c \in \mathscr{F}$;
- (3) 对可列并运算封闭 $A_n \in \mathcal{F}, n = 1, 2, \dots \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}.$

事件域

事件与事件域是紧密联系的,在表述事件时,必须明确是在哪个事件域中。

例 1

考虑有两个正方形盒子,被分成四个区域,其中盒子 1 盒盖是完全透明的,盒子 2 的乙和丁区域是不透明的。考虑盒子中均有一个小球可以滚动,随意晃动盒子,小球停止运动后,随机地停留在这四块区域中的某块中 (假设处于理想状态,不考虑小球处于分割线)。

事件域

这两个随机试验的样本空间均为 $\Omega = \{ \Psi, Z, \overline{\Lambda}, T \}$ 。

但是试验 1 的事件域 \mathscr{F}_1 为 Ω 的全体子集组成的集合,其中共有 16 个事件。对于试验 1 的每一个结果 ω ,对于 Ω 的每个子集 A,总能判断出 ω 是否属于 A,也就是说每次实验后,总能知道事件 A 是否发生。

试验 2 的事件域

$$\mathscr{F}_2 = \{\Omega, \emptyset, \{\Pi\}, \{\overline{\Lambda}\}, \{\Pi, \overline{\Lambda}\}, \{Z, T\}, \{\Pi, Z, T\}, \{\overline{\Lambda}, Z, T\}\},\$$

只包含了 8 个事件。对于试验的某些结果,虽然可以看到小球停留在不透明的区域,但是我们不能判断此时小球是否在"乙"区域,也就是说,不知道 ${\{Z\}}$ 是否发生了。因此,对于事件域 ${\mathscr S}_2$, Ω 的子集 ${\{Z\}}$ 就不是事件。同样的, ${\{T\}}$ 和 ${\{P\}}$ 、等也不是事件。

概率

搞清楚了我们感兴趣的事件的集合,我们现在需要量化它发生的可能性,这就需要引入 概率。

定义 4 (概率)

称集合函数 P 是事件域 ℱ 上的概率测度(Probability measure), 如果

- (1) 非负性: $P(A) \ge 0, \forall A \in \mathcal{F}$;
- (2) $P(\emptyset) = 0, P(\Omega) = 1;$
- (3) 可列可加性: 对于不相交的集合 $A_n \in \mathcal{F}, n = 1, 2, \cdots$

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$

概率空间

总结一下, 我们需要三个部分来建立随机现象的数学模型:

- 随机试验的样本空间 Ω,它是包含了这个试验所有可能结果的非空集合;
- 事件域 矛, 它是我们感兴趣的事件, 以及这些事件通过运算得到的事件的全体;
- 概率 P, 它量化了事件发生的可能性。

定义 5 (概率空间)

我们称数学三元组 (Ω, \mathscr{F}, P) 为一个概率空间(Probability space),其中 Ω 是非空集合, \mathscr{F} 是 Ω 的一个事件域,P 是 \mathscr{F} 上的概率。

补充概念

测度空间

在测度论中,满足事件域定义的集合族 $\mathscr F$ 也称为 σ -代数 (σ -algebra) 或者 σ -域,(Ω , $\mathscr F$) 称为一个可测空间(measurable space)。

可以定义 \mathscr{F} 上的集合函数 μ 满足非负性和可列可加性,称为 \mathscr{F} 上的测度(measure), $(\Omega, \mathscr{F}, \mu)$ 称为测度空间(measure space)。

注. 概率空间是一类特殊的测度空间。

生成 σ -代数

设 \mathscr{C} 是 Ω 的非空集族, 称 \mathscr{S} 是 \mathscr{C} 生成的 σ -代数, 如果:

- (1) $\mathscr{C} \subset \mathscr{S}$;
- (2) 对任意 Ω 上的 σ -代数 $\widehat{\mathscr{S}}$, 如果 $\mathscr{C} \subset \widehat{\mathscr{S}}$, 那么 $\mathscr{S} \subset \widehat{\mathscr{S}}$;
- 即 $\mathscr S$ 是包含 $\mathscr C$ 的最小 σ -代数,记为 $\sigma(\mathscr C)$ 。

注. 对任意非空集族 ε, σ(ε) 是存在且唯一的。

补充概念

测度空间

在测度论中,满足事件域定义的集合族 $\mathscr F$ 也称为 σ -代数 (σ -algebra) 或者 σ -域,(Ω , $\mathscr F$) 称为一个可测空间(measurable space)。

可以定义 \mathscr{I} 上的集合函数 μ 满足非负性和可列可加性,称为 \mathscr{I} 上的测度(measure), $(\Omega, \mathscr{I}, \mu)$ 称为测度空间(measure space)。

注. 概率空间是一类特殊的测度空间。

生成 σ -代数

设 \mathscr{C} 是 Ω 的非空集族, 称 \mathscr{S} 是 \mathscr{C} 生成的 σ -代数, 如果:

- (1) $\mathscr{C} \subset \mathscr{S}$;
- (2) 对任意 Ω 上的 σ -代数 $\tilde{\mathscr{S}}$, 如果 $\mathscr{C} \subset \tilde{\mathscr{S}}$, 那么 $\mathscr{S} \subset \tilde{\mathscr{S}}$;
- 即 $\mathscr S$ 是包含 $\mathscr C$ 的最小 σ -代数,记为 $\sigma(\mathscr C)$ 。
- **注**. 对任意非空集族 \mathscr{C} , $\sigma(\mathscr{C})$ 是存在且唯一的。

例 2 (Borel σ -代数)

记 ℝ 上左开右闭区间组成的集合族为

$$\mathscr{C} = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

称 $\mathscr C$ 的生成 σ -代数 $\sigma(\mathscr C)$ 为 $\mathbb R$ 上的Borel σ -代数,记为 $\mathscr B(\mathbb R)$,其中的元素称为Borel 集。

注 1. 事实上,对于左闭右开区间组成的集合族、开区间组成的集合族以及闭区间组成的集合族都生成 $\mathcal{B}(\mathbb{R})$.

注 2. 上述定义可以自然地扩展到 n 维欧氏空间 \mathbb{R}^n .

注 3. 假设 f 是一非负可积的函数满足 $\int_{\mathbb{R}} f(x) dx = 1$. 对于任意的 $B \in \mathcal{B}(\mathbb{R})$, 定义

$$P(B) \triangleq \int_{B} f(x) dx,$$

则 $(\mathbb{R},\mathscr{B}(\mathbb{R}),\mathrm{P})$ 是一个概率空间,并称 f 为概率测度 P 的密度函数。 \blacktriangleleft E \star E P

例 2 (Borel σ -代数)

记 ℝ 上左开右闭区间组成的集合族为

$$\mathscr{C} = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

称 $\mathscr C$ 的生成 σ -代数 $\sigma(\mathscr C)$ 为 $\mathbb R$ 上的Borel σ -代数,记为 $\mathscr B(\mathbb R)$,其中的元素称为Borel 集。

注 1. 事实上,对于左闭右开区间组成的集合族、开区间组成的集合族以及闭区间组成的集合族都生成 $\mathcal{B}(\mathbb{R})$.

注 2. 上述定义可以自然地扩展到 n 维欧氏空间 \mathbb{R}^n

注 3. 假设 f 是一非负可积的函数满足 $\int_{\mathbb{R}} f(x) dx = 1$. 对于任意的 $B \in \mathcal{B}(\mathbb{R})$, 定义

$$P(B) \triangleq \int_{B} f(x) \, dx$$

则 $(\mathbb{R},\mathcal{B}(\mathbb{R}),\mathrm{P})$ 是一个概率空间,并称 f 为概率测度 P 的密度函数。 \bullet 是 \bullet \bullet 是 \bullet

例 2 (Borel σ -代数)

记 ℝ 上左开右闭区间组成的集合族为

$$\mathscr{C} = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

称 $\mathscr C$ 的生成 σ -代数 $\sigma(\mathscr C)$ 为 $\mathbb R$ 上的Borel σ -代数,记为 $\mathscr B(\mathbb R)$,其中的元素称为Borel 集。

注 1. 事实上,对于左闭右开区间组成的集合族、开区间组成的集合族以及闭区间组成的集合族都生成 $\mathcal{B}(\mathbb{R})$.

注 2. 上述定义可以自然地扩展到 n 维欧氏空间 \mathbb{R}^n .

注 3. 假设 f 是一非负可积的函数满足 $\int_{\mathbb{R}} f(x) dx = 1$. 对于任意的 $B \in \mathcal{B}(\mathbb{R})$, 定义

$$P(B) \triangleq \int_{B} f(x) \, dx,$$

例 2 (Borel σ -代数)

记 ℝ 上左开右闭区间组成的集合族为

$$\mathscr{C} = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

称 $\mathscr C$ 的生成 σ -代数 $\sigma(\mathscr C)$ 为 $\mathbb R$ 上的Borel σ -代数,记为 $\mathscr B(\mathbb R)$,其中的元素称为Borel 集。

注 1. 事实上,对于左闭右开区间组成的集合族、开区间组成的集合族以及闭区间组成的集合族都生成 $\mathcal{B}(\mathbb{R})$.

注 2. 上述定义可以自然地扩展到 n 维欧氏空间 \mathbb{R}^n .

注 3. 假设 f 是一非负可积的函数满足 $\int_{\mathbb{R}} f(x) dx = 1$. 对于任意的 $B \in \mathcal{B}(\mathbb{R})$, 定义

$$P(B) \triangleq \int_{B} f(x) dx,$$

则 $(\mathbb{R},\mathscr{B}(\mathbb{R}),\mathrm{P})$ 是一个概率空间,并称 f 为概率测度 P 的密度函数。 (\mathbb{R}) (\mathbb{R}) (\mathbb{R}) (\mathbb{R})

例 3 (Dirac 测度)

给定点 $x \in \mathbb{R}^n$, 对任意的集合 $B \in \mathcal{B}(\mathbb{R}^n)$, 定义

$$\delta_x(B) = \begin{cases} 1, & x \in B, \\ 0, & x \notin B, \end{cases}$$

则 $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \delta_x)$ 是一个概率空间, 称 δ_x 为在点 x 处的*Dirac* 测度。

目录

- ① 课程概况
- ② 概率论的公理化体系
- ③ 随机变量
- 4 随机变量序列
- **5** σ- 代数流

随机变量

Motivation

现实中,随机现象纷繁复杂,相应的样本空间千差万别。有些可以用数来表示,比如测量误差,有些则不行,比如掷一枚硬币。

我们希望能将这些试验结果用"数"来表示,最简单的办法就是把样本点映射到一个实数上,即 $\xi:\Omega\to\mathbb{R}$ 。但是我们知道,描述事件时需要明确所对应的事件域,这引入了随机变量的概念。

定义 6 (随机变量)

给定概率空间 (Ω, \mathcal{F}, P) , 随机变量 (random variable, r.v.) 是一个函数 $\xi: \Omega \to \mathbb{R}$ 满足: 对于所有的 $B \in \mathcal{B}(\mathbb{R})$, $\{\omega: \xi(\omega) \in B\} \in \mathcal{F}$.

注. 测度论中,这样的函数称为可测函数 (measurable function)。

基本概念

定义 7 (概率分布)

设 ξ 是概率空间 (Ω, \mathscr{F}, P) 上的随机变量, $\mathscr{B}(\mathbb{R})$ 上的概率测度

$$P_{\xi}: \mathscr{B}(\mathbb{R}) \to [0,1], \quad P_{\xi}(A) := P \circ \xi^{-1}(A), \ \forall A \in \mathscr{B}(\mathbb{R})$$

称为 ξ 的概率分布(probability distribution).

- **注** 1. 若两个随机变量 ξ 和 η 具有相同的概率分布,则称 ξ 和 η 是同分布的, ξ 和 η 可以是两个不同概率空间上的随机变量,但它们可以有相同的分布。
- **注 2.** $F(x) = P(\omega : \xi(\omega) \le x), x \in \mathbb{R}$ 称为 ξ 的分布函数 (distribution function).

数学期望

定义 8 (Expectation)

设 ξ 是概率空间 (Ω, \mathscr{F}, P) 上的随机变量, 如果 $\int_{\Omega} |\xi(\omega)| dP(\omega) < \infty$, 则称 ξ 的数学期望存在. 定义

$$\mathbb{E}[\xi] \triangleq \int_{\Omega} \xi(\omega) dP(\omega) = \int_{\mathbb{R}} x dP_{\xi}(x)$$

为 ξ 的数学期望(mathematical expectation).

注. $\int_{\Omega} \xi(\omega) \mathrm{d} P(\omega)$ 为 Lebesgue 积分。直观上, $\xi(\omega)$ 的值落入 x 的 $\epsilon-$ 邻域 $[x-\epsilon,x+\epsilon)$ 的概率为 $P(\omega:\xi(\omega)\in[x-\epsilon,x+\epsilon))$,近似作为 $\xi(\omega)$ 在 x 取值的权重。将 $\xi(\omega)$ 的值域划分成之多可列个这样互不相交的区间 $[x_i-\epsilon,x_i+\epsilon)$,那么, $\xi(\omega)$ 的加权平均为

$$\sum_{i} x_{i} \mathsf{P} \big(\omega : \xi(\omega) \in [x_{i} - \varepsilon, x_{i} + \varepsilon) \big).$$

令 $\epsilon \to 0$, 上式的极限就是 Lebesgue 积分 $\int_{\Omega} \xi(\omega) dP(\omega)$.

目录

- □ 课程概况
- ② 概率论的公理化体系
- ③ 随机变量
- 4 随机变量序列
- 5 σ- 代数流

随机过程

定义 9 (随机过程)

设 (Ω,\mathscr{F},P) 为概率空间, (E,\mathscr{E}) 为可测空间,指标集 $T\subset\mathbb{R}$,若对任何 $t\in T$,映射

$$X_t: \Omega \mapsto E$$
,

可测,则称 $\{X_t: t \in T\}$ 是 (Ω, \mathscr{F}, P) 上的取值于 E 的随机过程,称 (E, \mathscr{E}) 为其 "相空间"或 "状态空间",称 T 为其 "时间域"。

注. 简单来说,随机过程 $\{X_t(\omega): t \in T\}$ 是一族随机变量,若指标集 T 是可数集,则我们称 $\{X_t\}$ 为离散时间的随机过程,若 T 是连续统,则称 $\{X_t\}$ 为连续时间的随机过程。

随机过程

定义 10 (样本轨道)

设 $\{X_t:t\in T\}$ 是一个取值于 E 的随机过程。 $\{X_t\}$ 的样本轨道(Sample path) 定义为在 固定 $\omega\in\Omega$ 情况下的映射

$$T\ni t\mapsto X(t,\omega).$$

即,X 样本轨道的集合是那些由 $\omega \in \Omega$ 索引的,从时间集合 T 到状态空间 E 的映射的集合

$$\{t \mapsto X_{\omega}(t)\}_{\omega \in \Omega}$$

随机变量的收敛

设 (Ω, \mathscr{F}, P) 为一个概率空间, $\{X_n\}$ 为 (Ω, \mathscr{F}, P) 上随机变量序列,

(1) 依概率收敛(Convergence in probability): 记为 $X_n \stackrel{\mathrm{P}}{\to} X$, 如果对于 $\epsilon > 0$

$$\lim_{n\to\infty} P(\omega : |X_n(\omega) - X(\omega)| > \epsilon) = 0.$$

(2) 几乎处处收敛(Almost sure convergence): 记为 $X_n \to X$, a.s., 如果

$$P(\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1.$$

(3) 依分布收敛(Convergence in distribution): 记为 $X_n \stackrel{d}{\to} X$, 如果对于任意有界连续函数 f

$$\lim_{n\to\infty} \int f \mathrm{d} P_{X_n} = \int f \mathrm{d} P_X.$$

(4) L^p 收敛(Convergence in L^p): 记为 $X_n \stackrel{L^p}{\longrightarrow} X$, 如果

$$\lim_{n \to \infty} ||X_n - X||_p \triangleq \lim_{n \to \infty} (\mathbb{E}|X_n - X|^p)^{1/p} = 0.$$

随机变量的收敛1

$$\begin{array}{ccc}
\stackrel{L^r}{\longrightarrow} & \Longrightarrow & \stackrel{L^s}{\longrightarrow} \\
& & \downarrow \\
\xrightarrow{a.s.} & \Longrightarrow & \stackrel{P}{\longrightarrow} & \Longrightarrow & \stackrel{d}{\longrightarrow}
\end{array}$$

^{11.4} 随机序列的收敛性. 应坚刚. 随机过程基础 (第三版). 复旦大学出版社. 2024 ▶ 《 臺 ▶ 《 臺 ▶ 🧵 臺

目录

- □ 课程概况
- ② 概率论的公理化体系
- ③ 随机变量
- 4 随机变量序列
- **5** σ- 代数流

σ — 代数流

Motivation

由于现实中充满不确定性,人们不能精确预测未来,但人们总是希望通过已知的过去和现在的信息来帮助预测未来。

如何在概率空间的框架下来定义这种"信息"? 这需要引入 σ - 代数流。

定义 11 (σ- 代数流)

 (Ω, \mathscr{F}, P) 上的 σ - 代数流 (filtration) 是一族 \mathscr{F} 的子 σ - 代数 $(\mathscr{F}_t)_{t \in T}$, 由指标集 $T = \mathbb{R}^+ \cup \{0, \infty\}$ 或者 $T = \mathbb{Z}^+ \cup \{0, \infty\}$ 索引,满足

$$\mathscr{F}_s \subset \mathscr{F}_t, \quad \forall s \leq t \leq \infty.$$

其中 $\mathscr{F}_{\infty} \triangleq \sigma\left(\bigcup_{t} \mathscr{F}_{t}\right) \subset \mathscr{F}$ 。称 $(\Omega, \mathscr{F}, (\mathscr{F}_{t}), P)$ 为一个带 *(*滤子*)* 流的概率空间 (filtered probability space)。

考虑先后掷三次硬币这一随机过程, 样本空间为

$$\Omega = \{000, 001, 010, 011, 111, 110, 101, 100\} = \{0, 1\}^3$$

样本点表示成 $\omega = (\omega_1 \omega_2 \omega_3)$, 事件域为 $\mathcal{F} = \mathscr{P}(\Omega)$.

掷 0 **次**: 在掷硬币之前, 我们只能确定所有的样本点是什么, 但并不知道哪个样本点将出现。我们所能了解的信息仅仅是:

必然事件 Ω 发生, 不可能事件 \emptyset 不发生,

也就是说, 这时我们能知道的事件域是

$$\mathscr{F}_0 = \{\emptyset, \Omega\}.$$

掷 1 **次**: 虽然试验还未完成,我们不能预测具体某个样本点 ω 是否最终出现,但这时已经知道 ω 的部分 "信息"。

若掷 1 次得到的结果是 $\omega_1 = 1$, 那么我们知道事件"第一次是正面"发生,事件"第一次是反面"不发生,加上知道的必然事件和不可能事件,我们知道以下四个事件

$$\omega \in A_1 = \{$$
第一次是正面 $\} = \{111, 110, 101, 100\},$
 $\omega \notin A_0 = \{$ 第一次是反面 $\} = \{000, 001, 010, 011\},$
 $\omega \in \Omega,$
 $\omega \notin \emptyset.$

同理,若掷 1 次得到的结果是 $\omega_1=0$,我们知道事件"第一次是正面"不发生,而事件"第一次是反面"发生,还知道必然事件和不可能事件,所以这时我们知道的事件域

$$\mathscr{F}_1 = \{\emptyset, A_1, A_0, \Omega\}.$$

掷 2 次:当第 1 次和第 2 次试验完成,若结果是 $\omega_1\omega_2=10$,那么我们知道以下六个事件的信息

$$\omega \in A_{10} = \{100, 101\}, \omega \notin A_{11} = \{110, 111\}, \omega \in \Omega,$$

$$\omega \notin A_{00} = \{000, 001\}, \omega \notin A_{01} = \{010, 011\}, \omega \notin \emptyset.$$

此外,我们知道 ω 是否属于这几个事件的交、并、对立事件,以及其交、并、对立事件 再交、并和对立事件,即我们此时知道的事件域

$$\mathscr{F}_2 = \{\Omega, \emptyset, A_1, A_0, A_{11}, A_{10}, A_{01}, A_{00}, A_{11}^c, A_{10}^c, A_{01}^c, A_{00}^c, A_{11} \cup A_{01}, A_{11} \cup A_{00}, A_{10} \cup A_{01}, A_{01} \cup A_{00}\}.$$

掷 3 次: 当 3 次试验都完成后,我们知道 $\mathscr{S}_3 := \mathscr{T}$ 中所有事件的信息,即,对于任何 $A \in \mathscr{T}_3$,我们知道 A 是否发生。

适应过程

定义 12 (适应过程)

一个随机过程 $\{X_t\}$ 称为 \mathscr{F}_t -适应过程 $(\mathscr{F}_t$ -adapted process), 如果对于任意 t, X_t 是 \mathscr{F}_t -可测的。

σ - 代数流

定义 13 (通常条件)

我们称带滤子流的概率空间 $(\Omega,\mathscr{F},(\mathscr{F}_t)_{t\geq 0},P)$ 满足通常条件 (usual condition), 如果

- (1) 右连续性: $\forall t \geq 0, \mathscr{F}_t = \mathscr{F}_{t+} := \bigcap_{\delta \downarrow 0} \mathscr{F}_{t+\delta}$.
- (2) 完备性: \mathcal{F}_0 包含所有的 P-零测集。

例 4 (自然 σ -代数流)

设 $X = \{X_t\}$ 为一随机过程, X 的自然 σ -代数流(natural filtration) 定义为

$$\mathscr{F}_t^X = \sigma(X_s, 0 \le s \le t), \quad \mathscr{F}_{\infty}^X = \sigma(X_s, s \ge 0).$$

自然 σ -代数流是使得 X 适应的最小 σ -代数流.

总结

- 样本空间: 包含了随机试验所有可能结果的集合:
- 事件域: 事件、以及这些事件通过运算得到的事件的集合 (集族);
- 概率:事件域上的函数,量化事件发生的可能性;
- 概率空间 (Ω, \mathcal{F}, P) : 建立了随机性的数学模型
- 随机变量: 样本空间上的实值可测 $(\forall B \in \mathcal{B}(\mathbb{R}), \{\omega : \xi(\omega) \in B\} \in \mathcal{F})$ 函数;
- σ-代数流: 递增的子事件域集合,刻画了过去和现在已知的信息。