Сайт для симуляции орбит и орбитальных движений

Работу выполнили:

Калашников Алексей Дмитриевич

Киселёв Илья Алексеевич

Куликов Максим Петрович

Научный руководитель: Гришина Арина Александровна

Введение

Астрофизика занимается изучением физических и химических процессов астрономических объектов.

Астрофизика также занимается изучением орбит и движений тел по ним, в том числе с использованием компьютерного моделирования. Оно позволяет создавать теоретические модели орбит, опираясь на множество факторов.

Проект затрагивает как WEB-разработку, так и изучение физики, астрономии и астрофизики с программированием на нескольких языках программирования.

Цель проекта

Создание сайта с онлайн-симулятором орбит и орбитальных движений при различных значениях Кеплеровых элементов орбиты, которые пользователь сможет самостоятельно указывать.

Системы программирования:

Языки: HTML, CSS, JS, Python

Редакторы кода и IDE: PyCharm, VSC, WebStorm

Задачи проекта

- 1. Изучить необходимый теоретический материал из печатных литературных изданий и онлайн-ресурсов для создания симулятора орбит и орбитальных движений.
 - 2. Написать программу на языке программирования Python, которая будет производить расчёты на основе вводимых пользователем данных и симулировать орбиты и орбитальные движения тел на их основе.
 - 3. Создание сайта для симулятора при помощи программы «Figma», языка программирования Java Script, языка CSS и языка разметки HTML.
 - 4. Провести тестирование сайта и сделать выводы о его создании и работе, сделать предположения касательно его дальнейшего развития и разработки в будущем.

Теоретическая часть

Построение и симуляция орбиты происходит на основе Кеплеровых элементов орбиты: большой полуоси, эксцентриситета, наклонения, долготы восходящего узла, аргумента перицентра и средней аномалии.

Сама же симуляция орбиты основана на законе всемирного тяготения Ньютона, законах сохранения импульса и энергии, на законах Кеплера и множестве формул, связанных с небесной механикой.

В процессе изучения теории было изучено множество печатных и электронных источников.

Симулятор

Код симулятора написан на языке программирования Python.

Код позволяет отобразить движение объекта на орбите в различных проекциях (XY, YZ и XZ), создавая анимации (в виде GIF-файлов), которые отображают изменения положения объекта во времени.

Сайт проекта

На первой (главной) странице представлен сам симулятор орбит и орбитальных движений. На второй находится вырезка с теорией, касающейся астрофизики. На третьей – информация о проекте и его участниках. На четвёртой – ссылки на использованные картинки

Схема навигации между страницами сайта

Тестирование

Тестирование сайта проходило по методам «чёрного» и «белого» ящиков.

В ходе тестирования ошибок не было выявлено, а интерфейс сайта понятен для среднестатистического пользователя. Это может говорить о хорошей реализации кода и UX/UI элементов сайта.

№ пользователя	Удобство пользования	Удобство эксплуатации	
1	10	8	
2	8	9	
3	9	10	
4	10	9	
5	9	8	
Средняя оценка:	9,2	8,8	

Результаты тестирования

Номер теста	Назначение теста	Значение исходных данных	Ожидаемый результат	Реакция программы	Вывод
1	Проверка корректности работы кнопки «Теория»	Нажатие на кнопку «Теория»	Ожидается открытие страницы сайта с теорией	Открытие страницы сайта с теорией	Программа работает верно
2	Проверка корректности работы кнопки «О проекте»	Нажатие на кнопку «О проекте»	Ожидается открытие страницы сайта с информацией о проекте	Открытие страницы сайта с информацией о проекте	Программа работает верно
3	Проверка корректности работы кнопки «К симулятору»	Нажатие на кнопку «К симулятору»	Ожидается прокрутка сайта до блока, на котором находится симулятор	Произошла прокрутка сайта до блока, на котором находится симулятор	Программа работает верно
4	Проверка корректности работы кнопки «Рассчитать» (1)	Нажатие на кнопку «Рассчитать» при корректно заполненных полях ввода	Ожидается прокрутка сайта до блока, на котором находятся поля для вывода GIF с орбитами	Произошла прокрутка сайта до блока, на котором находится поля для вывода GIF с орбитами	Программа работает верно
5	Проверка корректности работы кнопки «Рассчитать» (2)	Нажатие на кнопку «Рассчитать» при некорректно заполненных полях ввода	Ожидается вывод плашки с ошибкой	Вывод плашки с ошибкой	Программа работает верно
6	Проверка корректности работы кнопки «Рассчитать» (3)	Нажатие на кнопку «Рассчитать» при корректно заполненных полях ввода	Ожидается отправка введённых значений на бэкенд и вывод 3 GIF с симуляцией орбиты в трёх плоскостях	Отправка введённых значений на бэкенд и вывод 3 GIF с симуляцией орбиты в трёх плоскостях (через 50 секунд)	Программа работает верно
7	Проверка всех гиперссылок на всех страницах сайта	Наведение мышкой на текст с ссылкой и нажатие на него	Ожидается изменение цвета текста с ссылками при наведении и открытие необходимой страницы при нажатии от всех гиперссылок	Изменение цвета текста с ссылками при наведении и открытие необходимой страницы при нажатии от всех гиперссылок	Программа работает верно

В ходе тестирования было выяснено, что работа кода симулятора занимает в среднем 50 секунд.

Выводы

Данный проект был сделан для того, чтобы имелась возможность моделировать орбиты в разных плоскостях и изучать изменения траектории тела, летящего вокруг Солнца, в зависимости от значений Кеплеровых элементов орбит.

Данный симулятор можно назвать новинкой, так как до этого программы, которая делает симуляцию орбиты в трёх плоскостях, не было.

Будущее проекта

Проект продолжит своё развитие. В будущем добавится 3D-моделирование орбиты при помощи языка программирования Java Script, работа над алгоритмом которого уже завершена.

Также планируется создание алгоритма для вычисления особенностей орбит и моделирования графиков на их основе.

Спасибо за внимание!

