# ELECTRICAL SCIENCE-II (15B11EC211)

#### ELECRTICAL SCIENCE-2 (15B11EC211)

At the end of the course, students will be able to:

| S.No.           | Course Outcomes                                                                   | Cognitive     |
|-----------------|-----------------------------------------------------------------------------------|---------------|
|                 |                                                                                   | levels/Blooms |
| 2               |                                                                                   | taxonomy      |
| CO1             | Study and analyze the complete response of the first order and second order       | Analyzing     |
|                 | circuits with energy storage and/or non-storage elements.                         | (C4)          |
| CO2             | Understand two-port network parameters and study first order, second order        | Understanding |
| 2               | passive filters.                                                                  | (C2)          |
| CO3             | Study the properties of different types of semiconductors, PN junction diode,     | Analyzing     |
|                 | zener diode and analyze diode applications.                                       | (C4)          |
| CO <sub>4</sub> | Study the characteristics, operation of bipolar junction transistor (BJT) and its | Understanding |
|                 | biasing, stability aspects.                                                       | (C2)          |

# Course Description

| Module<br>No. | Title of the Module              | Topics in the Module                                                                                                                                                                                                                                                                | No. of<br>Lectures for<br>the module |
|---------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1             | Transient Analysis               | First order network analysis, sequential switching, Differential equation approach for DC and Non constant source, second order network analysis using differential equation approach for DC and non-constant source                                                                | 8                                    |
| 2             | Two Port Network<br>Parameters   | Definition of Z, Y, h and transmission parameters and their conversions                                                                                                                                                                                                             | 7                                    |
| 3             | Introduction to filters          | First order and Second order (Low pass, High pass, Band pass and Band Stop) RLC Filters                                                                                                                                                                                             | 4                                    |
| 4             | Introduction to<br>Semiconductor | Semiconductor Physics - Energy Band Model, Carrier Statistics, Intrinsic Semiconductors, Extrinsic Semiconductors, Fermi Level, Charge densities in a semiconductor Carrier Mobility and Drift Current, Hall Effect, Recombination of charges, diffusion and conductivity equation. | 5                                    |
| 5             | Diodes & Applications            | PN Junction, Biasing the PN Junction, Current–Voltage Characteristics of a PN Junction, PN Junction Diodes, Half Wave Rectifier & Full Wave Rectifier, Clipper & Clamping Circuits, Zener Diodes and applications, Line and load regulations                                        | 8                                    |
| 6             | Bipolar Junction<br>Transistor   | Transistor Construction and Basic Transistor Operation, Transistor Characteristics (CE, CB, CC), Transistor Biasing & Stability,                                                                                                                                                    | 10                                   |

| EvalComponents           | Maximum Marks?d Books |
|--------------------------|-----------------------|
| T1                       | 20                    |
| T2                       | 20                    |
| End Semester Examination | 35                    |
| TA                       | 25                    |
| Total                    | 100                   |

| Recommended Reading material: (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format) |                                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.                                                                                                                                                  | R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9 <sup>th</sup> ed, John Wiley & Sons, 2013.                    |  |  |
| 2.                                                                                                                                                  | Charles K. Alexander (Author), Matthew N.O Sadiku, "Fundamentals of Electric Circuits", 6 <sup>th</sup> ed, Tata Mc Graw Hill, 2019. |  |  |
| 3.                                                                                                                                                  | Oppenheim, A.V., Willsky, A.S. and Nawab, S.H., Signals and Systems. Prentice-Hall.                                                  |  |  |
| 4.                                                                                                                                                  | Abhijit Chakrabarti, Circuit Theory Analysis and Synthesis, 7th ed, Dhanpat Rai & Co. 2018.                                          |  |  |
| 5.                                                                                                                                                  | Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11 <sup>th</sup> ed, Prentice Hall of India, 2014.    |  |  |
| 5.                                                                                                                                                  | Jacob Millman, Millman's Electronic Devices and Circuits (SIE), 4th ed, McGraw Hill Education, 2015.                                 |  |  |

- ☐ If a circuit has one C or L then *circuit becomes dynamic* means
  - ☐ Its behaviour is a function of time.
    - ☐ Its behaviour is described by a (set of) differential equation(s).
- Resistive scircantisch aesponse asamslienta steady state.
  - □ When the switch is turned on, the voltage across R becomes V immediately (in zero time).

RL and RC circuits are called first-order circuits

# Capacitor

• 
$$C = ?A/d$$

#### Where

② = dielectric constant



d= Distance between plates

Capacitor voltage deposits a charge Q.

C = Constant of proportionality, it is capacitance of capacitor



$$\frac{1}{c}\int_{-\infty}^{t}i(t)dt$$

Voltage

$$i_c = C \frac{dv_c}{dt}$$

Energy in capacitor

$$w_c(t) = \int_{-\infty}^{t} vi \, dt$$

$$w_c(t) = \int_{-\infty}^{t} vC \frac{dv}{dt} \, dt$$

• 
$$w_c(t) = \int_{-\infty}^t vC dv$$

• 
$$w_c(t) = \frac{1}{2}cv^2$$

Capacitor was uncharged at  $t=-\infty$ ,  $v(-\infty)=0$ 

Unit of C is Farad

## Inductor

• 
$$L = \frac{\mu N^2 A}{l}$$



- N = No of turns
- A = Cross-sectional area of core
- I= length of winding
- μ= permeability

Voltage = 
$$V_L = L \frac{di_L}{dt}$$

Current

$$\frac{1}{L}\int_{-\infty}^{t}v(t)dt$$

Energy in inductor

$$w_{L}(t) = \int_{-\infty}^{t} vi \, dt$$

$$w_{L}(t) = \int_{-\infty}^{t} iL \frac{di}{dt} \, dt$$

$$w_{L}(t) = \int_{-\infty}^{t} iL di$$

• 
$$w_L(t) = \frac{1}{2}Li^2$$

Capacitor was uncharged at  $t=-\infty$ ,  $i(-\infty)=0$ 

Unit of L is Henry

### Resistor

Resistance

$$R = \frac{\rho l}{A}$$

• A = Cross-sectional area



- I= length of conductor
- $\rho$  = resistivity

Ohms law

$$V = iR$$

#### Initial Condition of Switched circuit

- Circuit include more than one switch that opens or closes at time  $t_0$
- $t_o^- = time\ immediately\ before\ the\ switch\ opens\ or\ closes$
- $t_o^+$  = time immediately after the switch opens or closes

#### Steady State:

- When the circuit have been in a position for long time at  $t = t_0$
- Circuit that contains only one constant source and is at steady state is called DC circuit.
- In DC circuit
  - Capacitor acts like open circuit
  - Inductor acts like short circuit
- Series and parallel capacitors, inductors and resistors can be reduced to equivalent values