# ACEMFS FUT Minna Bioinformatics Workshop

Introduction to Bioinformatics Training

**Itunuoluwa Isewon PhD**Covenant University

## **CAPIC-ACE**

- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE) domiciled at Covenant University
- Mission: dedicated to building indigenous capacity through training in Computer Science, Bioinformatics, Chemistry, Biology and ICT to reduce the disease burden in Africa.
- Role in this workshop: Providing support,

  guidance and networking for participants.

  " // item is seven to contain the containing of the containing of



## **Workshop Overview**

- 3-day hands-on training
- Focus: Bioinformatics for mycology and mycotoxicology research
- Objective: Equip participants with foundational skills for sequence analysis and structural bioinformatics.



## https://bit.ly/ACE\_IBT25\_PreCourse

**Pre Workshop Survey** 

#### What is Bioinformatics?

- Definition: Application of computational and statistical techniques to understand biological data.
- Importance: Handles large-scale genomic and molecular data.
- **Example:** Analyzing fungal genomes for mycotoxin biosynthesis genes.



https://doi.org/10.3389/fbioe.2021.649906

## **Bioinformatics in Mycology**

- · Bioinformatics as a tool to study fungi
- Applications in fungal identification and genome analysis
- Detecting pathogenic and industrially important fungi



Article | Published: 24 November 2021

## Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection

<u>Amelia E. Barber</u>, <u>Tongta Sae-Ong</u>, <u>Kang Kang</u>, <u>Bastian Seelbinder</u>, <u>Jun Li</u>, <u>Grit Walther</u>, <u>Gianni Panagiotou</u>



Nature Microbiology 6, 1526-1536 (2021) Cite this article

9711 Accesses | 100 Citations | 240 Altmetric | Metrics

https://doi.org/10.1038/s41564-021-00993-x

## **Fungal Genome Sequencing**





https://doi.org/10.3390/diagnostics14151664

## **Comparative Genomics in Fungi**

- Comparing genomes across strains/species
- Identification of conserved and variable regions
- Detecting genes involved in toxin biosynthesis
- Case study: Aspergillus flavus vs. Aspergillus parasiticus



## **Functional Annotation of Fungal Genes**

- Predicting gene function using bioinformatics
- Gene ontology and pathway mapping
- Tools: InterProScan, BLAST, KEGG
- Relevance to mycotoxin pathway discovery



https://doi.org/10.1186/s40246-023-00512-5

## **Transcriptomics in Mycology**

- RNA-seq for studying gene expression
- Detecting genes activated under stress or toxinproducing conditions
- Example: Upregulation of aflatoxin biosynthesis genes
- Tools: HISAT2, featureCounts, DESeq2



https://doi.org/10.3390/jof9121193

## Regulatory Networks in Fungi

- Gene regulatory networks controlling toxin production
- Transcription factors and secondary metabolite clusters
- Visualizing networks:
   Cytoscape and coexpression analysis



https://doi.org/10.1016/j.cels.2023.05.002

### Bioinformatics in Mycotoxicology: Overview

- Linking fungal genomics to toxin production
- Predicting mycotoxin potential based on gene content
- Integrating omics data for risk assessment

## **Detection of Mycotoxin-Producing Fungi**

- Using genome and transcriptome data to identify toxin producers
- Marker genes for aflatoxins, fumonisins, ochratoxins
- Case study: Aspergillus flavus detection in stored grains

Machine Learning for Predicting Mycotoxin Occurrence in Maize



Marco Camardo Leggieri



Marco Mazzoni



Paola Battilani\*

Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy

https://doi.org/10.3389/fmicb.2021.661132

## **Predicting Toxin Production**

4

- Correlating gene presence with observed toxin levels
- Using bioinformatics pipelines for secondary metabolite prediction
- Tools: antiSMASH, SMURF, PRISM

Use of predictive modelling as tool for prevention of fungal spoilage at different points of the food chain

Sonia Marín 1 🖾 , Luísa Freire 2, Antoni Femenias 1, Anderson S Sant'Ana 2

Show more 🗸

+ Add to Mendeley 📽 Share 🗦 Cite

https://doi.org/10.1016/j.cofs.2021.02.006

Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic *Fusarium* 

by Chao Lin <sup>1</sup>, Xi-long Feng <sup>1</sup> <sup>10</sup>, Yu Liu <sup>1</sup>, Zhao-chen Li <sup>1</sup>, Xiu-Zhang Li <sup>2</sup> and Jianzhao Qi <sup>1,\*</sup> <sup>10</sup> <sup>10</sup>

- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
- <sup>2</sup> State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
- \* Author to whom correspondence should be addressed.

https://doi.org/10.3390/jof9080850

### Transcriptomic Analysis for Toxin Regulation

- RNA-seq to monitor expression of toxin biosynthesis genes
- Differential expression under different environmental conditions
- Visualizing results: heatmaps, volcano plots, PCA

Transcriptome analysis reveals the mechanism of tolerance to copper toxicity in the white rot fungus *Trametes hirsuta* AH28-2

```
Chenkai Wang abc, Kun Wu abc, Na Pang abc, Huifang Zhao abc, Shenglong Liu abc, Xinlei Zhang abc, Yazhong Xiao abc A ⊠, Zemin Fang abc A ⊠, Juanjuan Liu abc A ⊠
```

```
Show more V
```



https://doi.org/10.1016/j.ecoenv.2025.118194

## **Integrating Multi-Omics Data**







https://doi.org/10.3390/toxins10110433

#### Key Benefits of Bioinformatics in Mycotoxin Research

- Rapid identification of fungal strains and toxin potential
- Predicting secondary metabolite production pathways
- Understanding regulatory networks for toxin biosynthesis
- Designing targeted interventions or detection assays

## **Training Objectives**





Understand bioinformatics concepts and databases



Perform sequence quality control and alignment



Conduct differential gene expression analysis



Visualize genomic and structural data



Apply computational tools to mycotoxin research

#### **Facilitators**



Dr. Itunuoluwa Isewon **Covenant University** 



Emmanuel Alagbe **Covenant University** 



**Covenant University** 



Emmanuella Matumamboh **Covenant University** 



Temitayo Ogundimu **Covenant University** 

## Day 1 Plan: Genomics & Sequence Analysis

| Time          | Session                                       | Details                                                                                      |
|---------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|
| 9:00 - 9:30   | Welcome & Overview                            | Workshop objectives, introduction to bioinformatics, relevance to mycotoxin research         |
| 9:30 - 10:30  | Introduction to Biological Databases          | NCBI, ENA, UniProt, PDB, Ensembl,<br>KEGG – how to search, download, and<br>interpret        |
| 10:30 - 11:00 | Break                                         |                                                                                              |
| 11:00 – 12:30 | Sequence Retrieval & Quality Control (Galaxy) | Tool: FastQC; Dataset: Mycotoxin-<br>related fungal genome from ENA                          |
| 12:30 - 1:30  | Lunch                                         |                                                                                              |
| 1:30 - 3:00   | Primer Design for Gene Targeting              | Tool: Primer3 (via Galaxy or Primer-<br>BLAST); Task: Design primers for a<br>conserved gene |
| 3:00 - 4:30   | Variant Calling & Functional Annotation       | Tool: Galaxy, EnsemblFungi                                                                   |

## Day 2 Plan: Phylogenetics, Biostatistics & Transcriptomics

| Time          | Session                                    | Details                                                                  |
|---------------|--------------------------------------------|--------------------------------------------------------------------------|
| 9:00 - 09:30  | Recap of Day 1 Activities                  |                                                                          |
| 9:30 - 10:30  | Phylogenetic Tree Construction             | Tool: Clustal Omega , MEGA                                               |
| 10:30 - 11:00 | Break                                      |                                                                          |
| 11:00 – 12:30 | Biostatistics in R for Omics Data          | Tool: RStudio ; Task: Statistical tests and Visualizations               |
| 12:30 - 1:30  | Lunch                                      |                                                                          |
| 1:30 - 3:00   | Transcriptomic Data Analysis: RNA-<br>Seq  | Tools: Galaxy RNA-seq workflow –<br>HISAT2, featureCounts                |
| 3:00 - 4:30   | Differential Expression Analysis in Galaxy | Tools: DESeq2; Task: Fold change and volcano plots using example dataset |

## **Day 3 Plan: Structural Bioinformatics**

| Time          | Session                                       | Details                                                                            |  |  |
|---------------|-----------------------------------------------|------------------------------------------------------------------------------------|--|--|
| 9:00 - 10:30  | Recap of Day 1 and Day 2 Ac                   | Recap of Day 1 and Day 2 Activities                                                |  |  |
| 9:30 - 10:30  | Introduction to Protein Structure & Databases | Tools: RCSB PDB, UniProt, AlphaFold;<br>Visualizers: PyMOL or ChimeraX             |  |  |
| 10:30 - 12:00 | Ligand Preparation and Protein-Ligand Binding | Tools: AutoDock Vina, Chimera; Dataset:<br>Mycotoxin + fungal enzyme PDB structure |  |  |
| 12:00 - 1:00  | Lunch                                         |                                                                                    |  |  |
| 1:00 - 2:50   | Mini - Project Implementation                 | Mini - Project Implementation                                                      |  |  |
| 2:50 - 3:30   | Presentation of Mini-Project                  | Presentation of Mini-Projects                                                      |  |  |
| 3:30 - 4:00   | Wrap-up: Tools Integration<br>& Project Ideas | Group discussion: Apply tools to participants' own datasets or design miniprojects |  |  |
| 4:00 - 4:30   | Certificates & Feedback                       | Evaluation, group photo                                                            |  |  |

## **Group Mini Projects**





- Genomics
- Phylogenetics
- Transcriptomics

## 4

## https://bit.ly/ACE\_IBT25

**Course Page** 

## **Expected Outcomes for Participants**

- Practical skills in sequence and transcriptomic analysis
- Ability to use Galaxy, MEGA and R for mycotoxin research
- Understanding structural bioinformatics basics
- Confidence to start independent projects

### **Post-Training Resources**

- Access to Galaxy workflows and R scripts
- Recommended readings and databases
- CApIC ACE support and networking

#### **Selected References**

- Bertani, F. R., Businaro, L., Gambacorta, L., Mencattin, A., Brenda, D., Di Giuseppe, D., De Ninno, A., Solfrizzo, M., Martinelli, E., & Gerardino, A. (2020). Optical detection of Aflatoxins B in grained almonds using fluorescence spectroscopy and machine learning algorithms. arXiv. https://doi.org/10.48550/arXiv.2003.04096
- Bhatnagar, D., Rajasekaran, K., Gilbert, M., & Payne, G. (2008). The "omics" tools: Genomics, proteomics, metabolomics and their potential for solving the aflatoxin contamination problem. *World Mycotoxin Journal*, 1(1), 3–12. <a href="https://doi.org/10.3920/wmj2008.x001">https://doi.org/10.3920/wmj2008.x001</a>
- Bhatnagar, D., Rajasekaran, K., Gilbert, M., et al. (2018). Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. *World Mycotoxin Journal*, 11(1), 47–72. <a href="https://doi.org/10.3920/wmj2017.2283">https://doi.org/10.3920/wmj2017.2283</a>
- Chen, Z. Y., Rajasekaran, K., Brown, R. L., et al. (2015). Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance. *World Mycotoxin Journal*, 8(2), 211–224. <a href="https://doi.org/10.3920/wmj2014.1732">https://doi.org/10.3920/wmj2014.1732</a>
- Dhakal, R., Chai, C., Karan, R., Windham, G. L., Williams, W. P., & Subudhi, P. K. (2017). Expression profiling coupled with in-silico mapping identifies candidate genes for reducing aflatoxin accumulation in maize. *Frontiers in Plant Science*, 8, Article 503. <a href="https://doi.org/10.3389/fpls.2017.00503">https://doi.org/10.3389/fpls.2017.00503</a>
- Foster, Z. S., Sharpton, T. J., & Grunwald, N. J. (2017). Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. *PLoS Computational Biology, 13*(2), e1005404. https://doi.org/10.1371/journal.pcbi.1005404
- Frontiers in Microbiology. (2020). Whole-genome sequencing and bioinformatics analysis of *Apiotrichum mycotoxinivorans*: Predicting putative Zearalenone-degradation enzymes. *Frontiers in Microbiology*. <a href="https://doi.org/10.3389/fmicb.2020.01866">https://doi.org/10.3389/fmicb.2020.01866</a>
- Kõljalg, U., et al. (2013). Towards a unified paradigm for sequence-based identification of fungi. *Molecular Ecology*, 22, 5271–5277. https://doi.org/10.1111/mec.12481
- Kõljalg, U., et al. (2021). The airborne mycobiome and associations with mycotoxins and inflammatory markers in the Norwegian grain industry. *Scientific Reports*. <a href="https://doi.org/10.1038/s41598-021-88252-1">https://doi.org/10.1038/s41598-021-88252-1</a>
- Liew, W.-P. P., & Sabran, M.-R. (2022). Recent advances in immunoassay-based mycotoxin analysis and toxicogenomic technologies. Journal of Food and Drug Analysis, 30(4), 549–561. https://doi.org/10.38212/2224-6614.3430

#### **Selected References**

- Nekrasov, N., Jaric, S., Kireev, D., Emelianov, A. V., Orlov, A. V., Gadjanski, I., Nikitin, P. I., Akinwande, D., & Bobrinetskiy, I. (2021). Real-time detection of Ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. arXiv. <a href="https://doi.org/10.48550/arXiv.2104.10551">https://doi.org/10.48550/arXiv.2104.10551</a>
- Soni, P., Gangurde, S. S., Ortega-Beltran, A., et al. (2020). Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Frontiers in Microbiology, 11. <a href="https://doi.org/10.3389/fmicb.2020.00227">https://doi.org/10.3389/fmicb.2020.00227</a>
- Wikipedia. (2025). Toxicogenomics. In Wikipedia. Retrieved August 24, 2025, from <a href="https://en.wikipedia.org/wiki/Toxicogenomics">https://en.wikipedia.org/wiki/Toxicogenomics</a>
- Wu, B., Hussain, M., Zhang, W., Stadler, M., Liu, X., & Xiang, M. (2019). Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 10, 127–140. <a href="https://doi.org/10.1080/21501203.2019.1574393">https://doi.org/10.1080/21501203.2019.1574393</a>
- Xie, M., Wu, J., An, F., Yue, X., Tao, D., Wu, R., & Lee, Y. (2019). An integrated metagenomic/metaproteomic investigation of microbiota in dajiang-meju, a traditional fermented soybean product in Northeast China. Food Research International, 115, 414–424. https://doi.org/10.1016/j.foodres.2018.10.003
- Xu, X., Jiang, Y., Ma, L., Ma, X., Liu, Y., Shan, J., Ma, K., & Xing, F. (2020). Comprehensive transcriptome and proteome analyses reveal the modulation of aflatoxin production by Aspergillus flavus on different crop substrates. Frontiers in Microbiology, 11. <a href="https://doi.org/10.3389/fmicb.2020.01497">https://doi.org/10.3389/fmicb.2020.01497</a>
- Zhang, F., Guo, Z., Zhong, H., Wang, S., Yang, W., Liu, Y., & Wang, S. (2014). RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity. Toxins, 6, 3187–3208. https://doi.org/10.3390/toxins6113187
- Zielezinski, A., Girgis, H. Z., Bernard, G., Leimeister, C.-A., Tang, K., Dencker, T., Lau, A. K., Röhling, S., Choi, J. J., & Waterman, M. S. (2019). Benchmarking of alignment-free sequence comparison methods. Genome Biology, 20, Article 144. <a href="https://doi.org/10.1186/s13059-019-1773-7">https://doi.org/10.1186/s13059-019-1773-7</a>
- Zieliński, B., Sroka-Oleksiak, A., Rymarczyk, D., Piekarczyk, A., & Brzychczy-Włoch, M. (2020). Deep learning approach to describe and classify fungi microscopic images. arXiv. https://doi.org/10.48550/arXiv.2005.11772

## Closing & Questions **Recap of Objectives** and Day Plans