CS2022: 數位系統設計

Gate-Level Minimization

Outline

- Introduction
- The Map Method
- Four-Variable Map
- Product-of-Sums Simplification
- Don't-Care Conditions
- NAND and NOR Implementation
- Other Two-Level Implementation
- Exclusive-OR Function

Introduction

■ Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit

Boolean function

- Sum of minterms (or product of maxterms) canonical form
- » Another form of truth table representation
- Sum of products (or product of sums) standard form
- A circuit with less hardware resource in the simplest form
- Minimum number of terms
- Minimum number of literals
- The simplified expression may not be unique

The Map Method

- **■** The complexity of the digital logic gates
 - The complexity of the algebraic expression
- Logic minimization
 - Algebraic approach is lack of specific procedure applying the theorems
 - The Karnaugh map
 - » A simple straight forward procedure
 - » A pictorial form of a truth table
 - » Applicable if the # of variables \leq 6
- A diagram made up of squares
 - Each square represents one minterm

Two-Variable Map

A two-variable map

- Four minterms
- \star x' = row 0; x = row 1
- y' = column 0; y = column 1
- A truth table in square diagram
- Fig. 3.2(a): $xy = m_3$
- Fig. 3.2(b): $x + y = x'y + xy' + xy = m_1 + m_2 + m_3$

Figure 3.1 Two-variable Map

A Three-Variable Map

A three-variable map

- Eight minterms
- The Gray code sequence
- Any two adjacent squares in the map differ by only one variable
 - » Primed in one square and unprimed in the other
 - » e.g., m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz(y' + y) = xz$

Figure 3.3 Three-variable Map

A Three-Variable Map

- \bullet m_0 and m_2 (m_4 and m_6) are adjacent
- \bullet $m_0 + m_2 = x'y'z' + x'yz' = x'z'(y' + y) = x'z'$
- \bullet $m_4 + m_6 = xy'z' + xyz' = xz'(y' + y) = xz'$

					$\searrow yz$			<i>y</i>		
					_	x	00	0 1	11	10
	m_0	m_1	m_3	m_2		0	x'y'z'	x'y'z	x'yz	x'yz'
	m_4	m_5	m_7	m_6	x	1	xy'z'	xy'z	xyz	xyz'
•	(a)				•				(z b)	,

Fig. 3-3 Three-variable Map

- **Example 1:** simplify the Boolean function $F(x, y, z) = \Sigma(2, 3, 4, 5)$
 - $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Figure 4 Map for Example 1, $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

- **Example 2:** simplify $F(x, y, z) = \Sigma(3, 4, 6, 7)$
 - $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Note: xy'z' + xyz' = xz'

Figure 5 Map for Example 2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Four adjacent Squares

Consider four adjacent squares

- 2, 4, and 8 squares
- $m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = x'z'(y' + y) + xz'(y' + y) = x'z' + xz' = z'$
- $m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz = x'z(y' + y) + xz(y' + y) = x'z + xz = z$

Figure 3 Three-variable Map

- **Example 3:** simplify $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$
- $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Figure 6 Map for Example 3, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

- **Example 4:** let F = A'C + A'B + AB'C + BC
 - a) Express it in sum of minterms
 - b) Find the minimal sum of products expression

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$$

Figure 7 Map for Example 4, A'C + A'B + AB'C + BC = C + A'B

Four-Variable Map

The map

- 16 minterms
- Combinations of 2, 4, 8, and 16 adjacent squares

m_0	m_1	m_3	m_2		
m_4	m_5	m_7	m_6		
m_{12}	m_{13}	m_{15}	m_{14}		
m_8	<i>m</i> ₉	m_{11}	m_{10}		
(a)					

Figure 8 Four-variable Map

Example 5: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Figure 9 Map for Example 5; $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$

Example 6: simplify F = A B C' + B CD' + A BCD' + AB C'

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D' A'B'D' + AB'D' = B'D'A'B'C' + AB'C' = B'C'

Figure 9 Map for Example 6; **A'B'C'+ B'CD'+ A'B'C'D'+ AB'C'= B'D'+ B'C'+A'CD'**

Prime Implicants

- Design objectives
 - All the minterms must be covered
 - Minimize the number of terms
- Prime Implicant (PI)
 - PI: A product term obtained by combining the maximum possible number of adjacent squares in Karnaugh map
 - Essential PI: a minterm is covered by only one prime implicant
 - » The essential PI must be included

Essential Prime Implicants

- **©** Consider $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$
 - The simplified expression may not be unique
 - F = BD+B'D'+CD+AD = BD+B'D'+CD+AB'
 = BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'

(a) Essential prime implicants *BD* and *B'D'*

(b) Prime implicants CD, B'C, AD, and AB'

Five-Variable Map

Map for more than four variables becomes complicated

Five-variable map: two four-variable map (one on the top of the other)

			<i>A</i> =	= 1		
		DE		1)	
Ì	BC	0 0	01	11	10	
	00	16	17	19	18	
	01	20	21	23	22	$\left. \left \right \right _C$
В	11	28	29	31	30	
	10	24	25	27	26	<u> </u>
	- '				,	-

Figure 12 Five-variable Map

Square Number and Literals

■ Table 1 shows the relationship between the number of adjacent squares and the number of literals in the term

Table 3.1The Relationship between the Number of Adjacent Squares and the Number of Literals in the Term

	Number of Adjacent Squares	Number of Literals in a Term in an <i>n</i> -variable Map					
K	2 ^k	n = 2	n = 3	n = 4	n = 5		
0	1	2	3	4	5		
1	2	1	2	3	4		
2	4	0	1	2	3		
3	8		0	1	2		
4	16			0	1		
5	32				0		

Example 7: simplify $F = \Sigma(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE

Example 7 (cont.)

Another Map for Example 7

Figure 13 Map for Example 7, F = A'B'E' + BD'E + ACE

Gate-Level Minimization-22

Six-Variable Map Example

EF CD 00 01 11 F(A,B,C,D,E,F)00 01 11 AB=00 $= \Sigma(2,8,10,18,24,26,34,37,42,45,50,53,58,61)$ AB=00 01 10 00 01 AB = 01AB=01 00 01 10 00 01 AB=11 AB=11 00 01 10 AB = 10AB=10

Gate-Level Minimization-23

Product of Sums Simplification

Approach #1

- Simplified F' in the form of sum of products
- ◆ Apply DeMorgan's theorem F = (F')'
- \bullet F': sum of products \rightarrow F: product of sums

Approach #2: duality

- Combinations of maxterms (it was minterms)
- $igoplus M_0M_1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C$

	CD			
AB \	00	01	11	10
00	M_0	M_1	M_3	M_2
01	M_4	M_5	M_7	M_6
11	M_{12}	M_{13}	M_{15}	M_{14}
10	M_8	M_9	M_{11}	M_{10}

Example 7: simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-of-products form and (b) product-of-sums form:

Figure 12 Map for Example 7, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

Example 7 (cont.)

Gate implementation of the function of Example 7

Figure 13 Gate implementations of the function of Example 7

Product of Maxterms Procedure

Consider the function defined in Table 1

In sum-of-minterm:

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

In product-of-maxterm:

$$F(x, y, z) = \Pi(0, 2, 5, 7)$$

Table 3.1 *Truth Table of Function F*

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Product of Sums Procedure

Consider the function defined in Table 1

Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

Combine the 0's:

$$F'(x, y, z) = xz + x'z'$$

◆ Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

Figure 14 Map for the function of Table 1

Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
 - BCD; 1010-1111: don't care
- The don't-care conditions can be utilized in logic minimization
 - Can be implemented as 0 or 1

Example 8: simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, 5)$

Example 8 (cont.)

- ightharpoonup F = yz + w'x'; F = yz + w'z
- \bullet $F = \Sigma(0, 1, 2, 3, 7, 11, 15); <math>F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable

Figure 15 Example with don't-care conditions

NAND and NOR Implementation

NAND gate is a universal gate

Can implement any Boolean function

Figure 16 Logic operations with NAND gates

NAND Gate

Two graphic symbols for a NAND gate

Figure 17 Two graphic symbols for NAND gate

Two-level Implementation

■ Two-level logic

- NAND-NAND = sum of products
- **♦** Example: *F* = *AB+CD*
- F = ((AB)' (CD)')' =AB+CD

Figure 18 Three ways to implement F = AB + CD

Example 9: implement F(x, y, z) **with NAND gates:**

Figure 19 Solution to Example 9

Procedure with Two Levels NAND

The procedure

- Simplified in the form of sum of products;
- A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
- A single NAND gate for the second sum term (the second level);
- A term with a single literal requires an inverter in the first level

Multilevel NAND Circuits

Boolean function implementation

- ◆ AND-OR logic → NAND-NAND logic
 - » AND → NAND + inverter
 - » OR: inverter + OR = NAND

(a) AND-OR gates Alternating levels of AND and OR gates

(b) NAND gates

Figure 20 Implementing F = A(CD + B) + BC'

NAND Implementation

Figure 21 Implementing F = (AB' + AB)(C + D')

Gate-Level Minimization-37

NOR Implementation

- NOR function is the dual of NAND function
- The NOR gate is also universal

Figure 22 Logic Operation with NOR Gates

Two Graphic Symbols for a NOR Gate

Figure 23 Two Graphic Symbols for NOR Gate

Example:
$$F = (A + B)(C + D)E$$

$$A \longrightarrow B$$

$$C \longrightarrow D$$

$$E' \longrightarrow B$$

Figure 24 Implementing
$$F = (A + B)(C + D)E$$

Example

Example: Implement F = (AB' + A'B)(C + D') with NOR gates

Figure 25 Implementing F = (AB' + AB)(C + D') with NOR gates

Other Two-level Implementations

Wired logic

- A wire connection between the outputs of two gates
- Open-collector TTL NAND gates: wired-AND logic
- ◆ The NOR output of ECL gates: wired-OR logic

$$F = (AB)' \cdot (CD)' = (AB + CD)' = (A' + B')(C' + D')$$
$$F = (A + B)' + (C + D)' = [(A + B)(C + D)]'$$

AND-OR-INVERT function
OR-AND-INVERT function

Figure 26 Wired Logic

Wired Logic

Wired-AND Logic

Digital System Design

Non-degenerate Forms

16 possible combinations of two-level forms

- Eight of them: degenerate forms = a single operation
 - » AND-AND, AND-NAND, OR-OR, OR-NOR, NAND-OR, NAND-NOR, NOR-AND, NOR-NAND.
- The eight non-degenerate forms
 - » AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, OR-NAND, AND-NOR.
 - » AND-OR and NAND-NAND = sum of products
 - » OR-AND and NOR-NOR = product of sums
 - » NAND-AND and AND-NOR = AND-OR-INVERT
 - » NOR-OR and OR-NAND = OR-AND-INVERT

AND-OR-Invert Implementation

AND-OR-INVERT (AOI) Implementation

- ◆ NAND-AND = AND-NOR = AOI
- ightharpoonup F = (AB+CD+E)' (sum of products + Inverter)
- + F' = AB + CD + E (sum of products)

Figure 27 AND-OR-INVERT circuits, F = (AB + CD + E)'

OR-AND-Invert Implementation

OR-AND-INVERT (OAI) Implementation

- OR-NAND = NOR-OR = OAI
- + F = ((A+B)(C+D)E)' (product of sums + Inverter)
- + F' = (A+B)(C+D)E (product of sums)

Figure 28 OR-AND-INVERT circuits, F = ((A+B)(C+D)E)'

Table 3.2 *Implementation with Other Two-Level Forms*

Equivalent Nondegenerate Form		Implements	Simplify	To Get
(a)	(b)*	the Function	into	an Output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

Example 10: Implement the following function with (a) AND-NOR (b) NAND-AND (c) OR-NAND (d) NOR-OR forms

(a) Map simplification in sum of products

(a) AND-NOR (b) NAND-AND

+ F' = x'y+xy'+z

(F': sum of products)

F = (x'y+xy'+z)'

(F: AOI implementation)

(c) OR-NAND (d) NOR-OR forms

• F = x'y'z' + xyz' (F: sum of products)

F' = (x+y+z)(x'+y'+z) (F': product of sums)

• F = ((x+y+z)(x'+y'+z))' (F: OAI)

Exclusive-OR Function

Exclusive-OR (XOR)

- \rightarrow $x \oplus y = xy' + x'y$
- Exclusive-NOR (XNOR)
 - $(x \oplus y)' = xy + x'y'$

Some identities

- $\rightarrow x \oplus 0 = x$
- \bullet $x \oplus 1 = x'$
- $\rightarrow x \oplus x = 0$
- $\rightarrow x \oplus x' = 1$
- \rightarrow $x \oplus y' = (x \oplus y)'$
- \rightarrow $x' \oplus y = (x \oplus y)'$

Commutative and associative

- $A \oplus B = B \oplus A$
- $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

Exclusive-OR Implementations

Implementations

(x' + y') x + (x' + y')y = xy' + x'y = x⊕y

Figure 30 Exclusive-OR Implementations

Odd/Even Function

- $A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C = AB'C' + A'BC' + ABC + A'B'C = \Sigma(1, 2, 4, 7)$
- ♦ XOR is an odd function \rightarrow an odd number of 1's, then F = 1
- ♦ XNOR is an even function \rightarrow an even number of 1's, then F = 1

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Figure 31 Map for a Three-variable Exclusive-OR Function

XOR and XNOR

Logic diagram of odd and even functions

Figure 32 Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

Four-variable Exclusive-OR function

Figure 33 Map for a Four-variable Exclusive-OR Function

Parity Generation and Checking

Parity Generation and Checking

- ♦ A parity bit: $P = x \oplus y \oplus z$
- **♦** Parity check: $C = x \oplus y \oplus z \oplus P$
 - » C=1: one bit error or an odd number of data bit error
 - » C=0: correct or an even # of data bit error

Figure 34 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.3 *Even-Parity-Generator Truth Table*

Three-Bit Message			Parity Bit
X	y	Z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Parity Generation and Checking

Table 3.4 *Even-Parity-Checker Truth Table*

		Bits ived	Parity Error Check	
x	y	z	P	c
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0