Math 255B Lecture 2 Notes

Daniel Raban

January 8, 2019

1 Perturbation of Fredholm Operators and The Logarithmic Law

1.1 Perturbation of Fredholm operators

Last time, said that $T \in \mathcal{L}(B_1, B_2)$ is **Fredholm** if dim ker $T < \infty$ and dim $B_2/$ im $T < \infty$. We were proving that the Fredholm property is preserved under small perturbations.

Theorem 1.1. Let $T \in \mathcal{L}(B_1, B_2)$ be a Fredholm operator. If $S \in \mathcal{L}(B_1, B_2)$ is such that $||S||_{\mathcal{L}(B_1, B_2)}$ is sufficiently small, then T + S is Fredholm, and $\operatorname{ind}(T + S) = \operatorname{ind} T$.

Proof. Produce

$$\mathcal{P} = \begin{bmatrix} T & R_- \\ R_+ & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_-} \to B_2 \oplus \mathbb{C}^{n_+},$$

where $n_{+} = \dim \ker T$ and $n_{-} = \dim \operatorname{coker} T$. We get that

$$\widetilde{\mathcal{P}} = \begin{bmatrix} T + S & R_- \\ R_+ & 0 \end{bmatrix}$$

is invertible as well, with inverse

$$\mathcal{E} = \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix} : B_2 \oplus \mathbb{C}^{n_+} \to B_1 \oplus \mathbb{C}^{n_-},$$

where

$$E: B_2 \to B_1, \qquad E_+: \mathbb{C}^{n_+} \to B_1, \qquad E_-: B_2 \to \mathbb{C}^{n_-}, \qquad E_{-+}: \mathbb{C}^{n_+} \to \mathbb{C}^{n_-}.$$

Since \mathcal{E} is a right inverse for $\widetilde{\mathcal{P}}$,

$$\begin{bmatrix} T+S & R_- \\ R_+ & 0 \end{bmatrix} \begin{bmatrix} E & E_+ \\ E_- & E_{-+} \end{bmatrix} = \begin{bmatrix} * & * \\ * & R_+E_+ \end{bmatrix}.$$

This is the identity map, so $R_+E_+=1$ on \mathbb{C}^{n_+} . So E_+ is injective. Similarly, we get $E_-R_-=1$ on \mathbb{C}^{n_-} , so E_- is surjective.

We claim that T+S is Fredholm. For the kernel, we have $x \in \ker(T+S) \iff (T+S)x = 0$. We can write this as

$$\widetilde{\mathcal{P}} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ a_+ \end{bmatrix},$$

where $a_{=} = R_{+}x \in \mathbb{C}^{n_{+}}$. Using the inverse \mathcal{E} , this is

$$\begin{bmatrix} x \\ 0 \end{bmatrix} = \mathcal{E} \begin{bmatrix} 0 \\ a_+ \end{bmatrix} = \begin{bmatrix} E_+ a_+ & E_{-+} \\ a_+ & . \end{bmatrix}$$

So we get that $x \in \ker(T+S) \iff x = E_+a_+$ for some $a_+ \in \ker E_+$. So $E_+ : \ker E_{-+} \to \ker(T+S)$ is surjective. Since we already know E_+ is injective, we get that $\ker(T+S)$ is dimensional with $\dim \ker(T+S) = \dim \ker(E_{-+}) \le n_+$.

Next consider $B_2/\operatorname{im}(T+S)$: Given y,

$$(T+S)x = y \iff \widetilde{\mathcal{P}} \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} y \\ a_+ \end{bmatrix}$$
$$\iff \begin{bmatrix} x \\ 0 \end{bmatrix} = \mathcal{E} \begin{bmatrix} y \\ a_+ \end{bmatrix}.$$

So we get that $x = Ey + E_{+}a_{+}$ and $0 = E_{-}y + E_{-+}a_{+}$. We get that $y \in \operatorname{im}(T+S) \iff E_{-}y \in \operatorname{im}E_{-+}$. Now consider $B_{2}/\operatorname{im}(T+S) \to \mathbb{C}^{n_{-}}/E_{-+}$ sending $y + \operatorname{im}(T+S) \to E_{-}y + \operatorname{im}E_{-+}$. This map is surjective, as E_{-} is surjective, and it is also injective. So $\operatorname{dim}\operatorname{coker}(T+S) = \operatorname{dim}\operatorname{coker}E_{-+} < \infty$.

So T + S is Fredholm, and

$$\operatorname{ind}(T+S) = \dim \ker E_{-+} - \dim \operatorname{coker} E_{-+} = \operatorname{ind} E_{-+} = n_{+} - n_{-} = \operatorname{ind}(T).$$

Corollary 1.1. The set of Fredholm operators is open in $\mathcal{L}(B_1, B_2)$, and $T \mapsto \operatorname{ind}(T)$ is locally constant.

The proof also gives the following:

Corollary 1.2. $T \mapsto \dim \ker T$ is upper-semicontinuous on the set of Fredholm operators.

1.2 The logarithmic law

Proposition 1.1. Let $T_1 \in \mathcal{L}(B_1, B_2)$ and $T_2 \in \mathcal{L}(B_2, B_3)$ be Fredholm. Then T_2T_1 is Fredholm, and we have the **logarithmic law**:

$$\operatorname{ind} T_2 T_1 = \operatorname{ind} T_2 + \operatorname{ind} T_1.$$

Proof. Consider $T_1': \ker T_2T_1 \to \ker T_2$ sending $x \mapsto T_1x$. Then $\ker T_1' = \ker T_1$, so $\dim(\ker T_2T_1)/\ker T_1 \leq \dim\ker T_2$. So $\dim\ker T_2T_1 < \infty$.

Now consider

$$0 \longrightarrow B_2/\operatorname{im} T_1 \xrightarrow{T_2'} B_3/\operatorname{im} T_2 T_1 \xrightarrow{q} B_3/\operatorname{im} T_2 \longrightarrow 0,$$

where

$$T_2'(x + \operatorname{im} T_1) = T_2 x + \operatorname{im} T_2 T_1, \qquad q(x + \operatorname{im} T_2 T_1) = x + \operatorname{im} T_2.$$

The sequence is exact at $B_3/\operatorname{im} T_2T_1$: $\operatorname{im} T_2' \subseteq \ker q$ by definition, and if $x+\operatorname{im} T_2T_1 \in \ker q$, then $x \in \operatorname{im} T_2$, so $x+\operatorname{im} T_2T_1 \in \operatorname{im} T_2'$. We have

 $\dim(\operatorname{coker}(T_2T_1)/\ker q) \leq \dim\operatorname{coker} T_2, \quad \dim\ker q = \dim\operatorname{im} T_2' \leq \dim\operatorname{coker} T_1,$

SO

$$\dim \operatorname{coker}(T_2T_1) \leq \dim \operatorname{coker} T_1 + \dim \operatorname{coker} T_2.$$

To compute the index, consider

$$L(t) = \begin{bmatrix} I_2 & 0 \\ 0 & T_2 \end{bmatrix} \begin{bmatrix} I_2 \cos t & I_2 \sin t \\ -I_2 \sin t & I_2 \cos t \end{bmatrix} \begin{bmatrix} T_1 & 0 \\ 0 & I_2 \end{bmatrix} : B_1 \oplus B_2 \to B_2 \oplus B_3, \qquad t \in \mathbb{R}, I_2 = \mathrm{id}_{B_2}.$$

This is a product of three Fredholm operators, so L(t) is Fredholm for all t and $t \mapsto \mathcal{L}(t)$ is continuous. So ind L(t) is independent of t! When t = 0,

$$L(0) = \begin{bmatrix} I_2 & 0 \\ 0 & T_2 \end{bmatrix} \begin{bmatrix} T_1 & 0 \\ 0 & I_2 \end{bmatrix} = \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix},$$

so ind $L(0) = \operatorname{ind} T_1 + \operatorname{ind} T_2$. When $t = -\pi/2$, we get

$$L(-\pi/2) = \begin{bmatrix} 0 & -I_2 \\ T_2 T_1 & 0 \end{bmatrix}.$$

So

$$L(-\pi/2) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ T_2 T_1 x \end{bmatrix},$$

which gives $\ker L(-\pi/2) = \ker T_2 T_1 \oplus \{0\}$. We get $\operatorname{ind} L(-\pi/2) = \operatorname{ind}(T_2 T_1)$. Since the index is locally constant, we get the logarithmic law.