International TOR Rectifier

Data Sheet No. PD60195-D

IR2010(S) & (PbF)

Features

HIGH AND LOW SIDE DRIVER

- Floating channel designed for bootstrap operation Fully operational to 200V
 - Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V logic compatible Separate logic supply range from 3.3V to 20V Logic and power ground ±5V offset
- CMOS Schmitt-triggered inputs with pull-down
- Shut down input turns off both channels
- Matched propagation delay for both channels
- Outputs in phase with inputs
- Also available LEAD-FREE

Product Summary

Voffset	200V max.
I _O +/-	3.0A / 3.0A typ.
Vout	10 - 20V
t _{on/off}	95 & 65 ns typ.
Delay Matching	15 ns max.

Applications

- Audio Class D amplifiers
- High power DC-DC SMPS converters
- Other high frequency applications

Description

The IR2010 is a high power, high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels, ideal for Audio Class D and DC-DC converter applications. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.0V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200 volts. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.

Packages

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating supply voltage	-0.3	225		
Vs	High side floating supply offset voltage	V _B - 25	V _B + 0.3		
V _{HO}	High side floating output voltage	V _S - 0.3	V _B + 0.3		
Vcc	Low side fixed supply voltage	-0.3	25	V	
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
V _{DD}	Logic supply voltage		-0.3	V _{SS} + 25	
V _{SS}	Logic supply offset voltage	V _{CC} - 25	V _{CC} + 0.3		
V _{IN}	Logic input voltage (HIN, LIN & SD)	V _{SS} - 0.3	V _{DD} + 0.3		
dV _s /dt	Allowable offset supply voltage transient (figure 2)		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(14 lead DIP)	_	1.6	W
	(16 lead SOIC)		_	1.25	VV
R _{THJA}	Thermal resistance, junction to ambient	(14 lead DIP)	_	75	°C/W
		(16 lead SOIC)	_	100	- 'C/VV
TJ	Junction temperature		_	150	
T _S	Storage temperature	-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)	_	300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 24 and 25.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	200	
V _{HO}	High side floating output voltage	Vs	V _B	
Vcc	Low side fixed supply voltage	10	20	V
V_{LO}	Low side output voltage	0	Vcc	V
V_{DD}	Logic supply voltage	V _{SS} + 3	V _{SS} + 20	
V _{SS}	Logic supply offset voltage	-5 (Note 2)	5	
V_{IN}	Logic input voltage (HIN, LIN & SD)	V _{SS}	V _{DD}	
TA	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -4 to +200V. Logic state held for V_S of -4V to -V_{BS}.

Note 2: When V_{DD} < 5V, the minimum V_{SS} offset is limited to - V_{DD} .

(Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, C_L = 1000 pF, T_A = 25°C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	7	50	95	135	· ns	V _S = 0V
t _{off}	Turn-off propagation delay	8	30	65	105		V _S = 200V
t _{sd}	Shutdown propagation delay	9	35	70	105		V _S = 200V
t _r	Turn-on rise time	10	_	10	20		
t _f	Turn-off fall time	11	_	15	25		
MT	Delay matching, HS & LS turn-on/off	6	_	_	15		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, T_A = 25°C and V_{SS} = COM unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN and SD. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	12	9.5	_	_		V _{DD} = 15V
V _{IL}	Logic "0" input voltage	13	_	_	6.0		VDD = 13V
V _{IH}	Logic "1" input voltage	12	2	_	_		V _{DD} = 3.3V
VIL	Logic "0" input voltage	13	_	_	1	V	VDD 0.0V
V _{OH}	High level output voltage, V_{BIAS} - V_{O}	14	_	_	1.0		I _O = 0A
VoL	Low level output voltage, VO	15	_	_	0.1		I _O = 0A
I _{LK}	Offset supply leakage current	16	_	_	50		$V_B = V_S = 200V$
I _{QBS}	Quiescent V _{BS} supply current	17	_	70	210		$V_{IN} = 0V \text{ or } V_{DD}$
IQCC	Quiescent V _{CC} supply current	18	_	100	230		$V_{IN} = 0V \text{ or } V_{DD}$
IQDD	Quiescent V _{DD} supply current	19	_	1	5	μA	$V_{IN} = 0V \text{ or } V_{DD}$
I _{IN+}	Logic "1" input bias current	20	_	20	40		$V_{IN} = V_{DD}$
I _{IN-}	Logic "0" input bias current	21	_	_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	22	7.5	8.6	9.7		
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold	23	7.0	8.2	9.4	V	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	24	7.5	8.6	9.7		
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	25	7.0	8.2	9.4		
I _{O+}	Output high short circuit pulsed current	26	2.5	3.0	_	_	$V_O = 0V$, $V_{IN} = V_{DD}$ $PW \le 10 \mu s$
I _{O-}	Output low short circuit pulsed current	27	2.5	3.0	_	A	V _O = 15V, V _{IN} = 0V PW ≤ 10 μs

Functional Block Diagram

Lead Definitions

Loud D			
Symbol	Description		
V _{DD}	Logic supply		
HIN	Logic input for high side gate driver output (HO), in phase		
SD	Logic input for shutdown		
LIN	Logic input for low side gate driver output (LO), in phase		
Vss	Logic ground		
VB	High side floating supply		
НО	High side gate drive output		
Vs	High side floating supply return		
Vcc	Low side supply		
LO	Low side gate drive output		
COM	Low side return		

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. Shutdown Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

Figure 7A. Turn-on Time vs. Temperature

Figure 7C. Turn-on Time vs VDD Voltage

Figure 8B. Turn-off Time vs. Vcc/VBs Voltage

Figure 7B. Turn-on Time vs. Vcc/VBs Voltage

Figure 8A. Turn-off Time vs. Temperature

Figure 8C. Turn-off Time vs. VDD Voltage

Figure 9A. Shutdown Time vs. Temperature

Figure 9B. Shutdown Time vs. Vcc/VBsVoltage

Figure 9C. Shutdown Time vs VDD Voltage

Figure 10A. Turn-on Rise Time vs. Temperature

Figure 10B. Turn-on Rise Time vs. VBIAS (V_{CC}=V_{BS}=V_{DD}) Voltage

Figure 11A. Turn-off Fall Time vs. Temperature

15 Logic '1' Input Threshold (V) min 0 -50 -25 50 75 100 125 Temperature (C)

Figure 11B. Turn-Off Fall Time

Figure 12A. Logic "1" Input Threshold vs. Temperature

Figure 12B. Logic "1" Input Threshold vs. VDD Voltage

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 13B. Logic "0" Input Threshold vs. VDD Voltage

Figure 14A. High Level Output vs. Temperature

Figure 14B. High Level Output vs. VBIAS Voltage

Figure 15A. Low Level Output vs. Temperature

Figure 15B. Low Level Output vs. VBIAS Voltage

Figure 16A. Offset Supply Current vs. Temperature

Figure 16B. Offset Supply Current vs. Offset Voltage

Figure 17A. Vbs Supply Current vs. Temperature

Figure 17B. Vbs Supply Current vs. Vbs Voltage

Figure 18B. Vcc Supply Current vs. Vcc Voltage

Figure 19B. Vdd Supply Current vs. VDD Voltage

Figure 18A. Vcc Supply Current vs. Temperature

Figure 19A. Vdd Supply Current vs. Temperature

Figure 20A. Logic "1" Input Current vs. Temperature

Figure 20B. Logic "1" Input Current vs. VDD Voltage

5.0

Figure 21B. Logic "0" Input Current vs. VDD Voltage

Figure 22. V_{BS} Undervoltage (+) vs. Temperature

Figure 23. V_{BS} Undervoltage (-) vs. Temperature

Figure 24. V_{CC} Undervoltage (+) vs. Temperature

Figure 25. V_{CC} Undervoltage (-) vs. Temperature

Figure 26B. Output Source Current vs. VBIAS Voltage

Figure 27B. Output Sink Current vs. VBIAS Voltage

Figure 26A. Output Source Current vs. Temperature

Figure 27A. Output Sink Current vs. Temperature

Figure 28. IR2010 Tj vs Frequency R_{GATE} = 10 Ohm, Vcc = 15V with IRFPE50

International TOR Rectifier

IR2010(S) & (PbF)

Figure 29. IR2010 Tj vs Frequency R_{GATE} = 16 Ohm, Vcc = 15V with IRFBC40

Figure 30. IR2010 Tj vs Frequency R_{GATE} = 22 Ohm, Vcc = 15V with IRFBC30

Figure 31. IR2010 Tj vs Frequency $R_{GATE} = 33$ Ohm, Vcc = 15V with IRFBC20

Figure 32. IR2010S Tj vs Frequency R_{GATE} = 10 Ohm, Vcc = 15V with IRFPE50

Figure 33. IR2010S Tj vs Frequency R_{GATE} = 16 Ohm, Vcc = 15V with IRFBC40

Figure 34. IR2010S Tj vs Frequency R_{GATE} = 22 Ohm, Vcc = 15V with IRFBC30

Figure 35. IR2010S Tj vs Frequency R_{GATE} = 33 Ohm, Vcc = 15V with IRFBC20

Case Outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

14-Lead PDIP IR2010 order IR2010 16-Lead SOIC IR2010S order IR2010S

Leadfree Part

14-Lead PDIP IR2010 order IR2010PbF 16-Lead SOIC IR2010S order IR2010SPbF

International

I⇔R Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

This product has been qualified per industrial level

Data and specifications subject to change without notice. 9/12/2004