PROBLEMS FOR CHAPTER 5

1. Compute the value of definite integrals using Trapezoidal rule.

(a)
$$\int_{3}^{6} \frac{x \, dx}{4 + x^2}$$
 using 6 sub intervals

(b)
$$\int_{1}^{9} \frac{dx}{x} \text{ using 8 sub intervals}$$

(c)
$$\int_{0}^{\pi} \sin x \, dx \text{ using 6 sub intervals}$$

(d)
$$\int_{0}^{1} e^{x} dx \text{ in steps of } 0.5$$

Solutions:

(a)
$$\int_{3}^{6} \frac{x \, dx}{4 + x^2} \text{ using 6 sub intervals}$$

Therefore
$$f(x) = \frac{x dx}{4 + x^2}$$
, n= 6 and h=0.5

n	0	1	2	3	4	5	6
х	3	3,5	4	4,5	5	5,5	6
F(x)	0,230769	0,215385	0,2	0,185567	0,172414	0,160584	0,15

$$I = \int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right]$$

$$I \approx \frac{0.25}{2} \left[0.23077 + 2(0.2154 + 0.2 + 0.1856 + 0.1724 + 0.1606) + 0.15 \right] = 0.562167$$

(b)
$$\int_{1}^{9} \frac{dx}{x}$$
 using 8 sub intervals

Therefore
$$f(x) = \frac{1}{x}$$
 n= 8 and h= 1

n	0	1	2	3	4	5	6	7	8
Х	1	2	3	4	5	6	7	8	9
F(x)	1	0,5	0,333333	0,25	0,2	0,166667	0,142857	0,125	0,111111

$$I = \int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right]$$

$$I \approx \frac{1}{2} \left[1 + 2(0.5 + 0.3333 + 0.25 + 0.2 + 0.16667 + 0.14286 + 0.125) + 0.1111 \right] = 2.2734$$

(c) $\int_{0}^{\pi} \sin x \, dx$ using 6 sub intervals

Therefore $f(x) = \sin x$ n= 6 and h= $\pi/6$ or 0.5236

n	0	1	2	3	4	5	6
х	0	0,523599	1,047198	1,570796	2,094395	2,617994	3,141593
F(x)	0	0,5	0,866025	1	0,866025	0,5	0

$$I = \int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right]$$

$$I \approx \frac{\pi}{2 \times 6} [0 + 2(0.5 + 0.866025 + 1 + 0.866025 + 0.5) + 0] = 1.19541$$

(d)
$$\int_{0}^{1} e^{x} dx$$
 in steps of 0.5

Therefore $f(x) = e^x$ n= 2 and h= 0.5

n	0	1	2
Х	0	0,5	1
F(x)	1	1,648721	2,718282

$$I = \int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right]$$

$$I \approx \frac{0.5}{2} [1 + 2(1.6487) + 2.71823] = 1.753931$$

6. Apply Trapezoidal rule to integrate with 4 intervals.

$$I = \frac{1}{2} \int_0^4 \sqrt{x \sqrt{x}} \, dx$$

Solution:

$$I = \frac{1}{2} \int_0^4 \sqrt{x \sqrt{x}} \, dx$$

$$f(x) = \frac{1}{2}\sqrt{x\sqrt{x}}$$

n	0	1	2	3	4
x	0	1	2	3	4
f(x)	0	0.5	0.840896	1.13975	1.414214

$$I = \frac{1}{2} [0 + 2(0.5 + 0.840896 + 1.1397) + 1.414214$$
=3.187757

11. Compute
$$\int_{1}^{4} (2x^3 - 11x^2 + 24x) dx$$

using Simpson's rule with two intervals.

Solution:

$$\int_{1}^{4} (2x^{3} - 11x^{2} + 24x) dx \text{ with 2 intervals}$$
$$f(x) = (2x^{3} - 11x^{2} + 24x)$$

n	0	1	2
x	1	2.5	4
fx	15	22.5	48

$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$
$$= \frac{1.5}{3} [15 + 4(22.5) + 48] = 76.5$$

21. Integrate
$$I = \int_0^1 \exp(x^2) dx$$
 using Gauss-Legendre quadrature. Use n = 3 points.

Note:
$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left[\frac{(b-a)t + b + a}{2}\right] \left(\frac{b-a}{2}\right) dt$$

Roots	Coefficients
0.7746	0.5556
0.0000	0.8889
-0.7746	0.5556

Solution:

$$I = \int_{0}^{1} e^{x^2} dx$$

The first step is to transform the function so that it will yield the same result in the interval [-1, 1].

Therefore
$$t = \frac{1}{(b-a)}(2x-a-b)$$

In this case substitute a = 0 and b = 1

$$t=2x-1 \text{ or } x = \frac{t+1}{2} \text{ and } dx = \frac{1}{2}dt$$

Substituting these parameters for x and dx and with n = 3, we get

$$\int_{0}^{1} e^{x^{2}} dx = \int_{-1}^{1} \frac{1}{2} e^{\left(\frac{t+1}{2}\right)^{2}} dt \approx \sum_{i=1}^{3} C_{i} f(t_{i})$$

Corresponding t_i and Ci from the table are:

$$I \approx 0.5556 * \left(\frac{1}{2}e^{\frac{(0.7746+1)^2}{2}}\right) + 0.8889 * \left(\frac{1}{2}e^{\frac{(0+1)^2}{2}}\right) + 0.5556 * \left(\frac{1}{2}e^{\frac{(-0.7746+1)^2}{2}}\right)$$

23. Evaluate $y = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$ by Gauss quadrature with n=3 for x = 0 to 5π in steps of $1/4\pi$. From your estimate find the smallest positive value of x for which y = 0.

Solution:

$$I = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$$

The first step is to transform the function so that it will yield the same result in the interval [-1, 1].

Therefore

$$t = \frac{1}{(b-a)}(2\theta - a - b)$$

In this case substitute a = 0 and $b = \pi$

$$t = \frac{1}{\pi} (2\theta - \pi)$$
 or $\theta = \frac{\pi(t+1)}{2}$ and $d\theta = \frac{\pi}{2} dt$

Substituting these parameters for θ and $d\theta$ and with n = 3, we get

$$I = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta = \frac{1}{\pi} \int_{-1}^{1} \cos\left(x \sin\left(\frac{\pi(t+1)}{2}\right)\right) \frac{\pi}{2} dt \approx \sum_{i=1}^{3} C_i f(t_i)$$

For x=0

Corresponding t_i and Ci from the table are:

$$\begin{array}{ccc} \underline{t_i} & C_i \\ 0.7746 & 0.5556 \\ 0.0000 & 0.8889 \\ -0.7746 & 0.5556 \end{array}$$

$$I \approx 0.5556* \cos \left(0 \times \sin \left(\frac{\pi (0.7746 + 1)}{2}\right)\right) \frac{1}{2} + 0.8889* \cos \left(0 \times \sin \left(\frac{\pi (0 + 1)}{2}\right)\right) \frac{1}{2} + 0.5556* \cos \left(0 \times \sin \left(\frac{\pi (-0.7746 + 1)}{2}\right)\right) \frac{1}{2}$$

$$I \approx 1.00005$$

i	х	I(x)
0	0	1,00005
1	π/4	0,849402
2	π/2	0,475222
3	3π/4	0,066023
4	π	-0,1871
5	5π/4	-0,19884
6	3π/2	-0,03499
7	7π/4	0,13144
8	2π	0,127247
9	9π/4	-0,11392
10	5π/2	-0,50764
11	11π/4	-0,86394
12	3π	-0,99564
13	13π/4	-0,82637
14	7π/2	-0,43527
15	15π/4	-0,01209
16	4π	0,251044
17	17π/4	0,268076
18	9π/2	0,104416
19	19π/4	-0,06694
20	5π	-0,07242

The lowest value of x for y=0 is between $3\pi/4$ (2.3562) and π (3.14), therefore we use secant method discussed previously.

i	xi	fxi	xi-1	fx-1	f'xi	xi+1
C	2,356194	0,066023	1,570796	0,475222	-0,52101	2,482915
1	2,482915	0,010667	2,356194	0,066023	-0,43683	2,507335
2	2,507335	0,000549	2,482915	0,010667	-0,41434	2,50866
3	2,50866	5,34E-06	2,507335	0,000549	-0,41031	2,508673

Therefore for x=2.508673, y=0