Séries trigonométricas de Fourier

Aula 8: Sumário

- Funções periódicas, mudança de período.
- Extensões periódicas de funções
- Funções pares e ímpares
- Séries trigonométricas de Fourier
- Série trigonométrica de período 2π
- Série de Fourier definição
- Série de Fourier Observações
- Série de Fourier dos senos e dos cosenos
- Exercícios
- Exemplo 5.14
- Mais exercícios
- Teorema de Dirichlet
- Observação
- Exemplo 5.16 e exercícios

Aula 8: Funções periódicas

Definição: Uma função $f:R\longrightarrow \mathbb{R}$ diz-se periódica se existir T>0 tal que f(x+T)=f(x) para todo $x\in \mathbb{R}$. A T designamos um período (de repetição) de f e dizemos que f é T-periódica. Ao menor valor de T que verifica aquela igualdade chamamos período fundamental de f. Por exemplo, as funções seno e co-seno habituais têm período fundamental 2π . Qualquer outro múltiplo de 2π , por exemplo 6π , é um período do seno e do coseno.

Se f é P-periódica, então $g(x)=f(\frac{P}{T}x)$ é T-periódica. Por conseguinte, se f é T-periódica, então f(wx) é $\frac{T}{w}$ -periódica. Se f tem período fundamental T, então para todo $n\in\mathbb{N}$, f(nx) tem período fundamental $\frac{T}{n}$, mas continua a ser T-periódica.

Exercício 1:

- 1. Qualé o período das seguintes funções periódicas:
- (a) $\cos(2x)$, (b) $\sin(\frac{x}{2})$, (c) $\tan(3x)$, (d) $\cos(\frac{\pi}{30}x)$, (e) $\cos(nx)$, $n \in \mathbb{N}$.
- **2.** Determine ω de modo a que:
- (a) $f(x) = \cos(wx)$ tenha período $\frac{\pi}{6}$. (b) $g(x) = \operatorname{tg}(wx)$ tenha período $\frac{\pi}{6}$.

Aula 8: Extensões periódicas de funções

Dada uma função f definida em $[-\pi,\pi[$ ou em $]-\pi,\pi[$, (ou ainda em $[-\pi,\pi]$ se $f(-\pi)=f(\pi)$), podemos construir uma função 2π -periódica \widetilde{f} , a única extensão 2π -periódica de f, por repetição de f nos intervalos subjacentes:

Se $f:\mathbb{R} \to \mathbb{R}$ é 2π -periódica, então a sua extensão 2π -periódica é $\widetilde{f}=f$.

Exercício 2: Desenhe o gráfico das extensões 2π -periódicas das seguintes funções:

- (a) f(x) = |x| definida em $[-\pi, \pi]$.
- (b) f(x) = x definida em $[-\pi, \pi[$.

(c)
$$f(x) = \begin{cases} 0, & -\pi \le x < 0; \\ 1, & 0 \le x \le \frac{\pi}{2}; \\ 0, & \frac{\pi}{2} < x < \pi. \end{cases}$$

Integrais de senos e cosenos

$$\bullet \int_{-\pi}^{\pi} \cos(nx) dx = 0, \quad n > 0. \qquad \bullet \int_{-\pi}^{\pi} \sin(nx) dx = 0.$$

•
$$\int_0^{\pi} \cos(nx) dx = 0, \ \forall n \neq 0.$$

•
$$\int_0^{\pi} \sin(nx) dx = \frac{1 - (-1)^n}{n}, \ \forall n \neq 0.$$

•
$$\int_{-\pi}^{\pi} \cos(mx)\cos(nx)dx = \begin{cases} 0, & m \neq n; \\ \pi, & m = n \end{cases}$$

•
$$\int_{-\pi}^{\pi} \operatorname{sen}(mx) \operatorname{sen}(nx) dx = \begin{cases} 0, & m \neq n; \\ \pi, & m = n \end{cases}$$

•
$$\int_{-\pi}^{\pi} \operatorname{sen}(mx) \cos(nx) dx = 0, \ \forall, m, n \in \mathbb{N}.$$

Aula 8: Série trigonométrica de período 2π

Uma série trigonométrica 2π -periódica é uma série da forma

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

Se ela for convergente, a sua soma F(x) é a função 2π -periódica: $\mathbb{R} \to \mathbb{R}$,

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$
 (5.3)

Se a convergência for uniforme, os coeficientes a_n e b_n são completa/ determinadas por F(x):

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos(mx) dx$$
, $m = 0, 1, 2, ...$,

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \operatorname{sen}(mx) dx, \quad m = 1, 2, 3, \dots$$

Isto resulta multiplicando ambos os membros de (5.3) por $\cos(mx)$, para obter a_m , e por $\sin(mx)$ para obter b_m , e ter em conta que:

$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \begin{cases} 0, & m \neq n; \\ \pi, & m = n \end{cases} \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} 0, & m \neq n; \\ \pi, & m = n \end{cases}$$

$$\int_{-\pi}^{\pi} \sin(mx) \cos(nx) dx = 0, m, n \in \mathbb{N}. \text{ Estas formulas estabelecem-se imediatamente a partir das fórmulas trigonométricas:}$$

$$\cos(x)\cos(y) = \frac{1}{2}(\cos(x-y) + \cos(x+y)); \quad \sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y));$$

$$sen(x)cos(y) = \frac{1}{2}(sen(x-y) + sen(x+y)).$$

Aula 8: Série de Fourier - definição

Definição:

Seja f uma função definida em $[-\pi,\pi]$ e que seja integrável neste intervalo. Chama-se série de Fourier de f à série

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)], \qquad (5.7)$$

onde os coeficientes de Fourier a_n ($n \in \mathbb{N}_0$) e b_n ($n \in \mathbb{N}$) são determinados pelas fórmulas:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 e $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$, (5.8)

- lackloss Se a série (5.7) convergir, a sua soma F(x) define uma função $\mathbb{R} \to \mathbb{R}$ que é 2π -periódica, e pode muito bem ser diferente de f mesmo quando $f: \mathbb{R} \to \mathbb{R}$.
- lacktriangle Para exprimir que os coeficientes da série (5.7) foram calculados à custa de f (ou à custa da sua extensão 2π -peródica \widetilde{f}) através das fórmulas (5.8) escrevemos

$$f(x)$$
 ou $\widetilde{f}(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)].$

e dizemos que a série (5.7) está associada à função f (ou \widehat{f}).

Aula 8: Série de Fourier - Observações

• Se f for periódica de período 2π , os coeficientes de Fourier no intervalo $[-\pi,\pi]$ coincidem com os coeficientes obtidos em qualquer intervalo de amplitude 2π (i.e., da forma $[a,a+2\pi]$):

$$\int_{a}^{a+2\pi} f(x) \cos(mx) dx = \int_{-\pi}^{\pi} f(x) \cos(mx) dx; \quad \int_{a}^{a+2\pi} f(x) \sin(mx) dx = \int_{-\pi}^{\pi} f(x) \sin(mx) dx.$$

- lacktriangle A série de Fourier nem sempre é convergente e quando converge a sua soma F(x) (que é sempre uma função 2π -periódica) pode não coincidir com a função que lhe deu origem.
- ullet Uma função f pode ser a soma de uma série trigonométrica diferente da sua série de Fourier. Isto é, f pode ser a soma duma série do tipo $\frac{a_0}{2} + \sum\limits_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right]$ em que os coeficientes a_n e b_n não são os coeficientes de Fourier de f. Exemplo disto é $\sum\limits_{n=1}^{\infty} \frac{\sin(nx)}{\sqrt{n}}$. (ver!)
- ♦ As séries de Fourier permitem lidar com funções meramente integráveis, ao contrário das séries de Taylor onde é exigido que as funções sejam infinitamente diferenciáveis.

Aula 8: Série de Fourier dos senos e dos cosenos

Definição: Uma função $f:[-a,a]\longrightarrow \mathbb{R}$ diz-se par se f(-x)=f(x) e diz-se ímpar se f(-x)=-f(x), para todo $x\in [-a,a]$.

O coseno é função par e o seno é função ímpar. É fácil de verificar que o produto de duas funções com a mesma paridade é uma função par, enquanto que o produto de duas funções com paridades diferentes é uma função ímpar.

No caso de f ser par ou ímpar o cálculo dos coeficientes de Fourier simplifica-se:

$$f \text{ impar } \Rightarrow \int_{-\pi}^{\pi} f(x) dx = 0$$
 e $f \text{ dá origem à série de senos:}$

$$f(x) \sim \sum_{n=1}^{\infty} b_n \operatorname{sen}(nx).$$

$$f$$
 par $\Rightarrow \int_{-\pi}^{\pi} f(x)dx = 2\int_{0}^{\pi} f(x)dx$ e f dá origem à série de cossenos:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$$
.

Aula 8: Exemplo 5.13 - Exercícios 1

Considere a função par f(x) = |x|. Mostre que os coeficientes de Fourier são:

$$b_n=0 \ (n\in\mathbb{N})$$
 , $a_0=\pi$ e para $n\geq 1$, $a_n=\left\{ egin{array}{ll} 0, & n \ \mathrm{par}; \\ -rac{4}{\pi n^2}, & n \ \mathrm{impar}. \end{array}
ight.$

A série de Fourier de f é: $\frac{\pi}{2} - \frac{4}{\pi}\cos x - \frac{4}{\pi}\frac{\cos(3x)}{3^2} - \frac{4}{\pi}\frac{\cos(5x)}{5^2} - \cdots$ (ver aqui)

Justifique a igualdade:

$$f(x) \sim \frac{\pi}{2} + \sum_{n=1}^{\infty} \left[-\frac{4 \cos[(2n-1)x]}{(2n-1)^2} \right] = \frac{\pi}{2} - \frac{4 \cos[(2n-1)x]}{(2n-1)^2}.$$

Aula 8: Exemplo 5.14 - Exercícios 2

Considere a função
$$g(x) = \left\{ \begin{array}{ll} 0, & -\pi \leq x < 0; \\ \pi, & 0 \leq x < \pi \end{array} \right.$$

Mostre que os coeficientes de Fourier são dados por

$$a_0=\pi, \ a_n=0 \ (\forall n\in\mathbb{N}) \ e \ b_n=\left\{egin{array}{ll} rac{2}{n}, & n \ ext{impar}; \\ 0, & n \ ext{par}. \end{array}
ight.$$

Pelo que a série de Fourier de g toma a forma:

$$g(x) \sim \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{2n-1} \operatorname{sen}[(2n-1)x], \quad x \in \mathbb{R}.$$
 (ver aqui)

Aula 8: Teorema de Dirichlet

Se $f:[-\pi,\pi] \longrightarrow \mathbb{R}$ é uma função seccionalmente diferenciável (i.e. com derivadas seccionalmente contínuas) em $]-\pi,\pi[$, então a sua extensão 2π -priódica \widetilde{f} é seccionalmente diferenciável em \mathbb{R} .

Teor. 5.12 (Teorema de Dirichlet) Se $f: [-\pi, \pi] \longrightarrow \mathbb{R}$ é uma função seccionalmente diferenciável em $]-\pi,\pi[$, então a série de Fourier de f converge pontualmente em \mathbb{R} . Neste caso a sua soma S(x) satisfaz:

$$\forall c \in \mathbb{R}, \quad S(c) = \frac{f(c^+) + f(c^-)}{2},$$

isto é, a série de Fourier de f em c converge para a média dos limites laterais de \widetilde{f} no ponto c.

Se \widetilde{f} é contínua em \mathbb{R} , isto é, se f é contínua em $[-\pi,\pi]$ e $f(-\pi)=f(\pi)$, então

$$\forall x \in \mathbb{R}, \quad S(x) = \widetilde{f}(x).$$

Observação: Nas condições do teorema anterior, a série de Fourier de f converge (pontualmente)

para a função

$$S(x) = \begin{cases} \widetilde{f}(x), & \text{se } x \text{ \'e ponto de continuidade de } \widetilde{f};; \\ \frac{\widetilde{f}(x^+) + \widetilde{f}(x^-)}{2}, & \text{se } x \text{ \~n\~ao \'e ponto de continuidade de } \widetilde{f}. \end{cases}$$

Nota:
$$\widetilde{f}(c^+) := \lim_{x \to c^+} \widetilde{f}(x)$$
 e $\widetilde{f}(c^-) := \lim_{x \to c^-} \widetilde{f}(x)$.

Aula 8: Observação

Uma função f diz-se seccionalmente contínua em [a,b] se existir uma partição de [a,b] com marcas $\{a_0,a_1,\ldots,a_n\}$ $(n\in\mathbb{N})$, tal que f é contínua em cada subintervalo aberto $]a_{j-1},a_j[$ $(j=1,\ldots,n)$ e existirem e forem finitos os limites laterais $f(a_{j-1}^+):=\lim_{x\to a_{j-1}^+}f(x)$ e $f(a_j^-):=\lim_{x\to a_j^-}f(x)$.

A função f diz-se seccionalmente contínua em $\mathbb R$ se for seccionalmente contínua em qualquer intervalo fechado [a,b] de $\mathbb R$. Note-se que uma função seccionalmente contínua em [a,b] pode, eventualmente, não estar definida num conjunto finito de pontos deste intervalo.

Uma função f diz-se seccionalmente diferenciável se a sua derivada f' é uma função seccionalmente contínua.

Se $f:[a,b]\to\mathbb{R}$ é seccionalmente contínua, então a sua extensão 2π -periódica é seccionalmente contínua em \mathbb{R} .

Voltando ao exemplo 5.13: $\bar{f}(x)=|x|, x\in [-\pi,\pi]$. Seja f a extensão 2π -periódica de \bar{f} a \mathbb{R} . Como \bar{f} é seccionalmente diferenciável em $[-\pi,\pi]$, f é seccionalmente diferenciável em \mathbb{R} , e a sua série de Fourier é convergente em \mathbb{R} . Além disso, como \bar{f} é contínua em $[-\pi,\pi]$ e $\bar{f}(-\pi)=\bar{f}(\pi)$, a extensão f é contínua em \mathbb{R} . Pelo Teorema de Dirichlet, f(x) coincide com a soma da série de Fourier:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}, \quad x \in \mathbb{R}.$$

Quando assim acontece podemos substituir o símbolo " \sim " pela igualdade. Mostre que neste caso a convergência é uniforme. (Ver figura aqui)

Aula 8: Exercícios 3

1. Determine a série de Fourier das seguintes funções:

(a)
$$f(x) = x + x^2$$
, $x \in [-\pi, \pi[;$

(b)
$$g(x) = e^x$$
, $x \in [-\pi, \pi[;$

(c)
$$h(x) = \begin{cases} -1, & -\pi < x < 0;; \\ 0, & x = 0;; \\ 1, & 0 < x < \pi. \end{cases}$$

Revisão: (Aula5) Critério de Weierstrass para convergência uniforme

Teor. 5.6 (Critério de Weierstrass) Consideremos a série de funções $\sum f_n$,

$$\sum_{n=1}^{\infty} f_n$$

com as funções f_n definidas em D. Se

$$|f_n(x)| \le a_n, \ \forall n \ge n_0, \ \forall x \in D,$$

e a série numérica de termos não negativos $\sum a_n$ é convergente, então a série

$$\sum f_n$$
 converge uniformemente em D .