

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method for scheduling a plurality of virtual machines comprising:

determining a respective resource requirement for each virtual machine;

determining a respective interrupt period for each virtual machine based on estimating the respective interrupt period for periodic interrupts and converging the respective interrupt period to be substantially equal to actual periods for the periodic interrupts; and

scheduling said plurality of virtual machines based, at least in part, on said respective resource requirement and interrupt period values.

2. (Previously Presented) The method of claim 1 wherein, determining said respective resource requirement and interrupt period comprises communicating said respective resource requirement and interrupt period from an operating system running within said respective virtual machine.

3. (Previously Presented) The method of claim 1 wherein, determining said resource requirement and said interrupt period comprises communicating said resource requirement and said interrupt period from an application running within an operating system running within said respective virtual machine.

4. (Previously Presented) The method of claim 3 further comprising:

dynamically maintaining values for said resource requirement and said interrupt period, wherein said application is a resource management application.

5. (Previously Presented) The method of claim 1 wherein, determining said resource requirement comprises communicating said resource requirement from an operating system running within said respective virtual machine.

6. (Previously Presented) The method of claim 5 wherein, determining said resource requirement comprises communicating said resource requirement from an application running within an operating system running within said respective virtual machine.

7. (Previously Presented) The method of claim 6, wherein said application is a resource management application, which dynamically maintains said respective resource requirement.

8. (Previously Presented) The method of claim 1, wherein determining a respective resource requirement comprises:

monitoring whether a virtual machine reaches an idle loop;
increasing said respective resource requirement if said idle loop is not reached;
decreasing said respective resource requirement if said idle loop is reached before a predetermined percentage of said resource requirement has been utilized.

9. (Previously Presented) A method for scheduling a plurality of virtual machines comprising:

determining a respective resource requirement for each virtual machine;
determining a respective interrupt period for each virtual machine, said determining respective interrupt period values comprises:
filtering non-periodic interrupts,
rejecting aperiodic interrupts,
estimating said respective interrupt period values for periodic interrupts, and
converging said respective interrupt period values to be substantially equivalent to actual periods for said periodic interrupts; and
scheduling said plurality of virtual machines based, at least in part, on said respective resource requirement and interrupt period values.

10. (Currently Amended) An article comprising: a storage medium having stored thereon instructions that, when executed, result in a computing platform having the capability to:

acquire resource requirements for a plurality of virtual machines from the plurality of virtual machines; and

schedule a said plurality of virtual machines implemented in said computing platform based, at least in part, on a respective resource requirement and ~~an~~ a respective interrupt period for each of said plurality of virtual machines ~~virtual machines of said plurality..~~

11. (Currently Amended) The article of claim 10, wherein said instructions, when executed result in the capability to acquire ~~communicate~~ said respective resource requirements requirement from applications ~~an application~~ running within said plurality of virtual machines a ~~virtual machine of said plurality.~~

12. (Currently Amended) The article of claim 11, wherein said instructions, when executed result in the capability to acquire ~~communicate~~ said respective interrupt periods period from applications ~~an application~~ running within said plurality of virtual machines a ~~virtual machine of said plurality.~~

13. (Currently Amended) The article of claim 10, wherein said instructions, when executed result in the capability to acquire ~~communicate~~ said respective resource requirements requirement and said respective interrupt periods period from ~~an~~ operating systems system running within said plurality of virtual machines a ~~virtual machine of said plurality.~~

14. (Currently Amended) The article of claim 10, wherein said instructions, when executed result in the capability to acquire ~~communicate~~ said respective resource requirements requirement and said respective interrupt periods period from a resource management applications ~~application~~ running within said plurality of virtual machines a ~~virtual machine of said plurality.~~

15. (Previously Presented) The article of claim 10, wherein said instructions, when executed result in the capability to determine said respective interrupt period by comparing an expected interrupt period with an actual interrupt period and adjusting said respective interrupt period based, at least in part, on said comparison.

16. (Previously Presented) The article of claim 10, wherein said instructions, when executed result in the capability to determine said respective resource requirement by detecting the occurrence of an idle loop within a virtual machine of said plurality and adjusting resource requirement based, at least in part, on whether said idle loop occurs.

17. (Currently Amended) A method for determining interrupt period values comprising:

initializing said interrupt period values for a plurality of virtual machines;
~~generating virtualized interrupts by virtualizing hardware interrupts;~~
~~filtering known non-periodic interrupts;~~
~~rejecting detected aperiodic interrupts; and~~
adjusting said interrupt period values of said plurality of virtual machines iteratively until substantially equivalent to actual interrupt periods.; and
acquiring resource requirement values for said plurality of virtual machines from said plurality of virtual machines.

18. (Currently Amended) The method of claim 17, further comprising:
~~acquiring resource requirement values; and~~
scheduling a said plurality of virtual machines to achieve real-time deadlines based, at least in part, on said interrupt period values and resource requirement values.

19. (Previously Presented) A method for determining interrupt period values comprising:

initializing said interrupt period values;
generating virtualized interrupts by virtualizing hardware interrupts;
filtering known non-periodic interrupts;
rejecting detected aperiodic interrupts;
adjusting said interrupt period values iteratively until substantially equivalent to actual interrupt periods;

acquiring resource requirement values, said resource requirement values are acquired from said plurality of virtual machines; and

scheduling a plurality of virtual machines to achieve real-time deadlines based, at least in part, on said interrupt period values and resource requirement values.

20. (Currently Amended) The method of claim 17, ~~further comprising determining resource requirement values, wherein acquiring determining said resource requirement values comprises:~~

initializing said resource requirement values; and

adjusting said resource requirement values iteratively based, at least in part, on a determination of ~~an occurrence of~~ whether each virtual machine of the plurality of virtual machines executed a respective predetermined instruction.

21. (Currently Amended) The method of claim 20, wherein adjusting said resource requirement values comprises:

increasing said resource requirement values if execution of said respective predetermined instruction does not occur;

decreasing said resource requirement values if execution of said respective predetermined instruction occurs prior to a target time; and

scheduling a said plurality of virtual machines based, at least in part, on said interrupt period values and said resource requirement values.

22. (Currently Amended) An article comprising: a storage medium having stored thereon instructions that, when executed, result in a computing system having the capability to:

initialize interrupt period values ~~for a plurality of virtual machines;~~

~~generate virtualized interrupts by virtualizing hardware interrupts;~~

~~filter known non-periodic interrupts;~~

~~reject detected aperiodic interrupts;~~ and

adjust said interrupt period values iteratively until substantially equivalent to actual interrupt periods.;

increasing resource requirement values if a respective predetermined instruction does not occur;

decreasing said resource requirement values if said respective predetermined instruction occurs prior to a target time; and

scheduling said plurality of virtual machines based, at least in part, on said interrupt period values and said resource requirement values.

23. (Currently Amended) The article of claim 22, wherein said instructions, when executed, further result in the capability to:

~~acquire resource requirement values; and~~

~~schedule said a plurality of virtual machines to achieve real-time deadlines based, at least in part, on said interrupt period values and said resource requirement values.~~

24. (Currently Amended) An article comprising: a storage medium having stored thereon instructions that, when executed, result in a computing system having the capability to:

initialize interrupt period values;

generate virtualized interrupts by virtualizing hardware interrupts;

filter known non-periodic interrupts;

reject detected aperiodic interrupts;

adjust said interrupt period values iteratively until substantially equivalent to actual interrupt periods;

~~acquire resource requirement values, said resource requirement values are acquired from a said plurality of virtual machines; and~~

~~schedule said [[a]] plurality of virtual machines to achieve real-time deadlines based, at least in part, on said interrupt period values and said resource requirement values.~~

25. (Currently Amended) The article of claim 22, wherein said instructions, when executed, result in said computing platform having the further capability to:

~~determine resource requirement values, wherein determining said resource requirement values comprises:~~

initialize initializing said resource requirement values; and
adjust adjusting said resource requirement values iteratively based, at least in part, on a determination of an occurrence of said a respective predetermined instruction.

26. (Previously Presented) The article of claim 25, wherein adjusting said resource requirement values comprises:

increasing said resource requirement values if said respective predetermined instruction does not occur;

decreasing said resource requirement values if said respective predetermined instruction occurs prior to a target time; and

scheduling a plurality of virtual machines based, at least in part, on said interrupt period values and said resource requirement values.

27. (Currently Amended) A system comprising:

a computing platform;

said computing platform being adapted to implement, at least, a virtual machine monitor and a plurality of virtual machines;

said virtual machine monitor being capable of scheduling said virtual machines to execute real-time applications based, at least in part, on a resource requirement for each virtual machine and an interrupt period for each virtual machine, wherein said virtual machine monitor comprises

a detector capable of determining whether each of said virtual machines issues a predetermined instruction and indicating said determinations to a proportional integral derivative controller;

said proportional integral derivative controller being capable of adjusting said respective resource requirement for said each virtual machine based, at least in part, on said determination and communicating said adjusted respective resource requirement to said scheduler.

28. (Previously Presented) The system of claim 27, further comprising:

an interface capable of communicating respective resource requirement and interrupt period values for said each virtual machine to said virtual machine monitor.

29. (Previously Presented) The system of claim 27, wherein said virtual machine monitor comprises:

a feedback loop capable of determining a respective resource requirement for said each virtual machine;

a hardware interrupt virtualizer capable communicating device interrupts to said plurality of virtual machines and filtering non-periodic interrupts;

an interrupt period detector capable of determining said periods for periodic interrupts and communicating said periods to a scheduler; and

said scheduler being capable of said scheduling of said plurality of virtual machines.

30. (Cancelled).