$https://www.isibang.ac.in/\sim athreya/Teaching/PaSwR/$

- 1. Suppose X follows Bernoulli(p) distribution. Let p = 1/3
 - (a) Simulate for $n = 100 X_1, X_2, X_3, \dots X_n$ i.i.d X
 - (b) Demonstrate the Law of Large numbers by plotting the sample mean \bar{X}_n as a function of n.
 - (c) Using replicate command plot 15 independent trials of the above.
 - (d) Do the same when p = 0.001, n = 100, p = 0.5, n = 100, p = 0.99 on different plots
- 2. We wish to compute

$$\int_{a}^{b} f(x)dx$$

using the Law of Large numbers.

(a) Generate samples of $X_1, X_2, \dots X_n$ i.i.d. Uniform (a, b). Justify

$$(b-a)\sum_{i=1}^{n} \frac{f(X_i)}{n} \approx \int_{a}^{b} f(x)dx$$

- (b) Write an R-code to estimate the $\int_0^7 \frac{16+\sin(x)}{x^2+4} dx$ using the procedure described in the previous part with n=400.
- (c) Repeat the estimate 100 times and find the mean of these 100 simulations.
- (d) Use the integrate command in R to evaluate the integral. Compare the two answers.
- 3. Simulate 500 samples from each of the below distribution, X, using their respective distribution function F_X and the inbuilt runif.
 - (a) $X \sim \text{Binomial } (10, \frac{1}{3})$
 - (b) $X \sim \text{p.d.f } f \text{ given by}$

$$f(x) = \begin{cases} x & 0 \le x \le \sqrt{2} \\ 0 & \text{otherwise.} \end{cases}$$

- 4. Suppose p is the unknown probability of an event A, and we estimate p by the sample proportion \hat{p} based on an i.i.d. sample of size n.
 - (a) Design and implement the following simulation study to verify this behaviour. For p = 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.99,
 - (i) Simulate 1000 values of \hat{p} with n = 500.
 - (ii) Simulate 1000 values of \hat{p} with n chosen according to the formula derived above.

In each case, you can think of the 1000 values as i.i.d. samples from the distribution of \hat{p} , and use the sample standard deviation as an estimate of $SD[\hat{p}]$. Plot the estimated values of $SD(\hat{p})$ against p for both choices of n.