

POLITECHNIKA WARSZAWSKA Wydział Matematyki i Nauk Informacyjnych

PRACA DYPLOMOWA LICENCJACKA NA KIERUNKU MATEMATYKA

IFS - ITERATED FUNCTION SYSTEMS

Autor: Marta Sommer

Promotor: dr Agnieszka Badeńska

Spis treści

$\operatorname{Wst} olimits \operatorname{p} olimits$			
1.	Wymiar Hausdorffa	7	
2.	Twierdzenia pomocnicze	9	
3.	Twierdzenie o istnieniu atraktora	11	
4.	Twierdzenie o wymiarze fraktali	15	
5.	Przykłady	21	

Wstęp

Do wyjaśnienia własności iterowanych systemów funkcyjnych potrzebna jest definicja wymiaru Hausdorffa. Spróbuję ją więc w tym rozdziale wprowadzić i wyjaśnić.

Wymiar Hausdorffa

Definicja 1.1. Niech A - dowolny podzbiór \mathbb{R}^n , ustalmy s>0. Weźmy pod uwagę dowolne przeliczalne pokrycie A tzn. zbiory $U_1, U_2, \ldots \subset \mathbb{R}^n$ takie, że $A \subset \bigcup_{i=1}^{\infty} U_i, \ \delta > 0$. Wtedy miarą zewnętrzną Hausdorffa zbioru A nazywamy:

$$\mathcal{H}_{\delta}^{s}(A) = \inf \sum_{i=1}^{\infty} (diam U_{i})^{s}, \tag{1.1}$$

gdzie diam - średnica zbioru, a infimum jest wzięte po wszystkich takich pokryciach $\{U_i\}_{i=1}^{\infty}$ zbioru A, że $diamU_i < \delta$ dla każdego U_i .

Definicja 1.2. Miarą Hausdorffa zbioru A nazywamy:

$$\mathcal{H}^s(A) = \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(A) \tag{1.2}$$

Granica z powyższej definicji istnieje dla każdego $F\subset\mathbb{R}^n$, gdyż \mathcal{H}^s_δ jest niemalejącą funkcją δ . Wynika to z tego, że zmniejszając δ zawężamy klasę dopuszczalnych pokryć, po których brane jest infimum.

Okazuje się, że istnieje taka liczba $t \ge 0$, że:

$$\forall_{s < t} \quad \mathcal{H}^s(A) = +\infty \tag{1.3}$$

$$\forall_{s < t} \quad \mathcal{H}^{s}(A) = +\infty$$

$$\forall_{s > t} \quad \mathcal{H}^{s}(A) = 0$$

$$(1.3)$$

Wtedy liczbę t nazywamy wymiarem Hausdorffa zbioru A i oznaczamy $dim_H(A)$.

Skąd jednak wiemy, że taka liczba istnieje? Przedstawię poniżej krótkie wyprowadzenie tego faktu.

Rozważmy równianie (1.1). Łatwo widać, że dla dowolnego zbioru $F \subset \mathbb{R}^n$ i $\delta < 1$, $\mathcal{H}^s_{\delta}(F)$ jest nierosnącą funkcją s. Wynika z tego, że \mathcal{H}^s również jest nierosnącą funkcją s. Tak naprawdę prawdą jest jeszcze więcej. Otóż, jeśli s < t i $\{U_i\}$ jest δ -pokryciem F, to:

$$\sum_{i} |U_i|^t = \sum_{i} |U_i|^{t-s} |U_i|^s \leqslant \delta^{t-s} \sum_{i} |U_i|^s$$

Zatem, biorąc infimum po pokryciach, otrzymujemy, że $\mathcal{H}^t_{\delta}(F) \leqslant \delta^{t-s}\mathcal{H}^s_{\delta}(F)$. Gdy $\delta \to 0$ oraz $\mathcal{H}^s(F) < \infty$, to $\mathcal{H}^t(F) = 0$ dla t > s.

Bardziej formalnie można to zapisać jako:

$$dim_H(A) = \inf\{s : \mathcal{H}^s(A) = 0\} = \sup\{s : \mathcal{H}^s(A) = \infty\}$$

$$\tag{1.5}$$

Twierdzenia pomocnicze

Twierdzenie 2.1. (Mass distribution principle)

Niech μ będzie miarą na F i przypuśćmy, że dla pewnego s istnieją c>0 i $\delta>0$ takie, że:

$$\forall_{U \text{ takiego, } \dot{z}e \mid U \mid \leq \delta} \quad \mu(U) \leq c|U|^s$$
 (2.1)

Wtedy $\mathcal{H}^s(F) \geqslant \frac{1}{c}\mu(F)$ oraz $s \leqslant dim_H F \leqslant dim_B F \leqslant \overline{dim_B F}$

$Dow \acute{o} d$

Niech U_i - dowolne pokrycie F. Widzimy wtedy, że:

$$0 \le \mu(F) \leqslant \mu(\bigcup_i U_i) \leqslant \sum_i \mu(U_i) \leqslant \sum_i c|U_i|^s = c \sum_i |U_i|^s$$

A zatem:

$$\sum_{i} |U_{i}|^{s} \geqslant \frac{\mu(F)}{c}$$

Bierzemy infimum po wszystkich pokryciach:

$$\inf \sum_{i} |U_i|^s \geqslant \frac{\mu(F)}{c}$$

$$\mathcal{H}^s_{\delta}(F) \geqslant \frac{1}{c}\mu(F)$$

Czyli przy $\delta \to 0^+$:

$$\mathcal{H}^s(F) \geqslant \frac{1}{c}\mu(F)$$

A skoro $\mu(F) > 0$, to $dim_H F \geqslant s$.

Twierdzenie 2.2. (O jabłkach w koszyku)

Niech $\{V_i\}$ będzie rodziną rozłącznych i otwartych podzbiorów \mathbb{R}^n takich, że każdy V_i zawiera kulę o promieniu a_1r i jest zawarty w kuli o promieniu a_2r , gdzie $a_1, a_2 > 0$ i r > 0.

Wtedy dowolna kula B o promieniu r przecina co najwyżej $(1+2a_2)^n a_1^{-n}$ domknięć $\overline{V_i}$.

$Dow \acute{o} d$

Jeśli $\overline{V_i}$ przecina B, wtedy $\overline{V_i}$ jest zawarte w kuli współśrodkowej z B o promieniu $(1+2a_2)r$. Wynika to z prostego rachunku:

$$r + 2a_2r = r(1 + 2a_2)$$

Przypuśćmy, że q zbiorów $\overline{V_i}$ przecina B. Wtedy, sumując objętości odpowiednich wewnętrznych kul o promieniach a_1r , otrzymujemy:

$$q(a_1r)^n \leqslant (1+2a_2)^n r^n$$

Czyli:
$$q \leq (1 + 2a_2)^n a_1^{-n}$$

Twierdzenie 2.3. (Banacha o punkcie stałym)

Niech (X,ρ) będzie przestrzenią metryczną zupełną a funkcja $f:X\longrightarrow X$ kontrakcją. Wtedy:

- 1. f ma dokładnie jeden punkt stały x_0 , tzn. $\exists !_{x_0} \quad f(x_0) = x_0$
- 2. Dla każdego $x \in X$ ciąg $(x, f(x, f(f(x))), \ldots)$ jest zbieżny do x_0 .

Twierdzenie o istnieniu atraktora

Twierdzenie 3.1. Rozważmy iterowany układ funkcyjny (IFS) określony na zbiorze $D \subset \mathbb{R}^n$ kontrakcjami $\{S_1, \ldots, S_m\}$ tzn. funkcjami takimi, że $S_i: D \longrightarrow D$ oraz

$$\forall_{x,y \in D} \ \forall_{i=1,\dots,m} \ |S_i(x) - S_i(y)| \le c_i |x - y|,$$
 (3.1)

gdzie $c_i < 1$.

Wtedy istnieje jednoznacznie wyznaczony atraktor F, tj. niepusty i zwarty zbiór taki, że:

$$F = \bigcup_{i=1}^{m} S_i(F) \tag{3.2}$$

Jeśli dodatkowo zdefiniujemy przekształcenie S na klasie X niepustych i zwartych podzbiorów D jako:

$$\forall_{E \in X} \quad S(E) = \bigcup_{i=1}^{m} S_i(E)$$
(3.3)

oraz oznaczymy przez S^k - k-tą iterację S tzn.

$$S^0(E) = E$$
,

$$S^k(E) = S(S^{k-1}(E)) \quad \text{dla } k \ge 1.$$

Wtedy:

$$\forall_{E \in X \text{ takiego, że } \forall_{i=1,\dots,m}} \ S_i(E) \subset E \qquad F = \bigcap_{k=0}^{\infty} S^k(E)$$
 (3.4)

Dowód pierwszy

Zauważmy, że S przekształca zbiory z X na zbiory z X. Do dowodu wykorzystamy poniższe twierdzenie.

Twierdzenie 3.2. Przekształcenie $S = \bigcup_{i=1}^m S_i$: $X \longrightarrow X$ jest kontrakcją w metryce Hausdorffa, jeśli wszystkie przekształcenia S_1, \ldots, S_m : $D \longrightarrow D$ są kontrakcjami.

$Dow \acute{o} d$

Niech S_1, \ldots, S_m - kontrakcje.

Zatem istnieje liczba c < 1 ($c = \max_{1 \leqslant i \leqslant m} c_i$) taka, że:

$$\forall_{p,q \in D} \ \forall_{i=1,\dots,m} \ |S_i(p) - S_i(q)| \leq |p - q|$$

Niech $A, B \in X$. Wtedy:

$$\forall_{p \in A} \ \exists_{q \in B} \ |p - q| \le d(A, B),$$

gdzie d - metryka Hausdorffa. Oznaczmy d(A, B) jako δ .

Zatem:

$$\forall_{i=1,\dots,m}$$
 $|S_i(p) - S_i(q)| \le c|p-q| \le cd(A,B) = c\delta$

Czyli $S_i(A) \subset (S_i(B))_{c\delta}$.

Stad
$$S(A) = \bigcup_{i=1}^{m} S_i(A) \subset \bigcup_{i=1}^{m} (S_i(B))_{c\delta} = (\bigcup_{i=1}^{m} S_i(B))_{c\delta} = (S(B))_{c\delta}.$$

Analogicznie $S(B) \subset (S(A))_{c\delta}$.

Czyli $d(S(A), S(B)) \leq c\delta = cd(A, B)$.

Wróćmy teraz do dowodu naszego twierdzenia.

Wiemy zatem, że S jest kontrakcją na (X, d).

Można pokazać, że d jest zupełną metryką na X. Spełnione są więc założenia tw. Banacha o punkcie stałym - tw. (2.3). Zatem, jako wniosek z tego twierdzenia, otrzymujemy, że S ma jednoznacznie wyznaczony punkt stały F. Czyli S(F) = F, co dowodzi (3.2).

Co więcej, $S^k(E) \to F$, gdy $k \to \infty$. W szczególności, jeśli $S_i(E) \subset E$ dla każdego i, wtedy $S(E) \subset E$ i $\{S^k(E)\}_{k=1}^{\infty}$ jest zstępującą rodziną zbiorów niepustych i zwartych. Czyli $F = \bigcap_{k=0}^{\infty} S^k(E)$, co dowodzi (3.4).

Dowód drugi

Niech $E \in X$ będzie zbiorem takim, że $S_i(E) \subset E$ dla każdego i = 1, ..., m. Taki zbiór istnieje. Weźmy na przykład $E = D \cap \overline{B}(0,r)$ dla odpowiednio dużego r > 0, gdzie $\overline{B}(0,r)$ oznacza kulę domkniętą o promieniu r i środku w 0. Uzasadnię, że nasz zbiór E spełnia żądany warunek.

Wiemy, że $S_i(D) \subset D$ (z definicji S_i). Jeśli znajdziemy takie r > 0, dla którego $S_i(\overline{B}(0,r)) \subset \overline{B}(0,r)$, wtedy będziemy mieć, że $S_i(D \cap \overline{B}(0,r)) \subset D \cap \overline{B}(0,r)$.

Niech $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$.

$$S_i(x) = c_i x + y_i$$

Zatem,

$$S_i(\overline{B}(0,r)) = \overline{B}(y_i, c_i r) \subset \overline{B}(0,r)$$

r szacujemy więc w następujący sposób:

$$r > |y| + c_i r$$

$$r(1 - c_i) > |y|$$

$$r > \frac{|y|}{1-c_i}$$
, bo $c_i < 1$

Zatem dla odpowiednio dużego r wybrane E spełnia warunek $S_i(E) \subset E$.

Wtedy
$$S^k(E) \subset S^{k-1}(E)$$
.

Czyli $\{S^k(E)\}_{k=0}^\infty$ jest zstępującą rodziną zbiorów niepustych i zwartych (bo E jest domknięty - jako domknięcie zbiorów domkniętych - i ograniczony), czyli istnieje niepuste i zwarte przecięcie $F = \bigcap_{k=0}^\infty S^k(E)$. Wynika to z twierdzenia, że zstępująca rodzina zbiorów domkniętych ma domknięte przecięcie.

Wtedy:

$$S(F) = S(\bigcap_{k=0}^{\infty} S^k(E)) = \bigcap_{k=0}^{\infty} S(S^k(E)) = \bigcap_{k=0}^{\infty} S^{k+1}(E) = \bigcap_{n=1}^{\infty} S^n(E) = \bigcap_{n=0}^{\infty} S^n(E) = F(E)$$

Czyli F spełnia (3.3), czyli jest atraktorem IFS. Ale czy wyznaczonym jednoznacznie?

Niech A, B - atraktory IFS. Zatem:

$$S(A) = A \text{ oraz } S(B) = B.$$

Ponieważ S jest kontrakcją ze stałą $c = \max_{1 \le i \le m} c_i$, 0 < c < 1, patrz (tw. 3.2), więc:

$$d(S(A), S(B)) \leq cd(A, B)$$

$$d(A, B) \leqslant cd(A, B)$$

$$d(A, B) - cd(A, B) \leq 0$$

$$d(A,B)(1-c) \leq 0$$

$$d(A,B) \leq 0 \Longrightarrow d(A,B) = 0 \lor c \leq 1$$
, co jest sprzeczne z założeniem.

Zatem d(A, B) = 0. A z definicji metryki wiemy, że wtedy A = B.

Twierdzenie o wymiarze fraktali

Definicja 4.1. Funkcje S_1, \ldots, S_m takie, że $S_i : D \longrightarrow D$ spełniają warunek zbioru otwartego ("open set condition"), jeśli istnieje niepusty, ograniczony i otwarty zbiór V taki, że:

$$\bigcup_{i=1}^{m} S_i(V) \subset V \tag{4.1}$$

oraz $S_i(V)$ są parami rozłączne dla i = 1, ..., m.

Definicja 4.2. Funkcje $S_1, \ldots, S_m : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ nazywamy podobieństwami, gdy spełniają warunek:

$$\forall_{x,y \in \mathbb{R}^n} \quad |S_i(x) - S_i(y)| = c_i |x - y|, \tag{4.2}$$

gdzie $c_i \in (0,1)$.

Twierdzenie 4.1. Przypuśćmy, że podobieństwa S_1, \ldots, S_m określone na \mathbb{R}^n ze stałymi $c_i \in (0,1)$ dla $i=1,\ldots,m$ spełniają warunek zbioru otwartego.

Jeśli F jest atraktorem IFS $\{S_1, \ldots, S_m\}$ tzn.

$$F = \bigcup_{i=1}^{m} S_i(F), \tag{4.3}$$

wtedy $dim_H F = dim_B F = s$, gdzie s jest rozwiązaniem równania:

$$\sum_{i=1}^{m} c_i^s = 1 \tag{4.4}$$

Co więcej, dla tej wartości $s, 0 < \mathcal{H}^s(F) < \infty$.

$Dow \acute{o} d$

Niech sspełnia (4.4) tzn. $\sum_{i=1}^m c_i^s = 1.$

Niech I_k będzie zbiorem zawierającym ciągi długości k o elementach ze zbioru $\{1, \ldots, m\}$.

Dla dowolnego zbioru A i dla każdego ciągu $(i_1, \ldots, i_k) \in I_k$ definiujemy $A_{i_1,\ldots,i_k} = S_{i_1} \circ \ldots \circ S_{i_k}(A) = S_{i_1}(\ldots(Si_k(A))\ldots)$

Zauważmy, że wtedy: $F = \bigcup_{I_k} F_{i_1,\dots,i_k}$. Wynika to z tego, że:

$$F = \bigcap_{k=0}^{\infty} S^k(F) = \bigcap_{k=0}^{\infty} \bigcup_{I_k} S_{i_1} \circ \dots \circ S_{i_k}(F) = \bigcap_{k=0}^{\infty} \bigcup_{I_k} F_{i_1,\dots,i_k}$$

Czyli $F = \bigcup_{I_k} F_{i_1,\dots,i_k}$ dla każdego k.

Otrzymujemy więc pewne pokrycia F. Dzięki nim dostaniemy górne ograniczenie miary Hausdorffa atraktora.

Tak więc zauważmy najpierw, że $S_{i_1} \circ \ldots \circ S_{i_k}$ jest podobieństwem o stałej c_{i_1}, \ldots, c_{i_k} .

Wtedy mamy, że:

$$\sum_{I_k} |F_{i_1,\dots,i_k}|^s = \sum_{I_k} |S_{i_1} \circ \dots \circ S_{i_k}(F)|^s = \sum_{I_k} (c_{i_1},\dots,c_{i_k}|F|)^s = \sum_{I_k} (c_{i_1},\dots,c_{i_k})^s |F|^s = (\sum_{i_1} c_{i_1}^s) \dots (\sum_{i_k} c_{i_k}^s) |F|^s = 1 \cdot \dots \cdot 1 \cdot |F|^s = |F|^s$$

Tak więc pokazaliśmy, że $\sum_{I_k} |F_{i_1,\dots,i_k}|^s = |F|^s$, gdzie F_{i_1,\dots,i_k} są pokryciami F. Dla każdej $\delta>0$ możemy zatem wybrać k takie, że: $|F_{i_1,\dots,i_k}|\leqslant c^k|F|\leqslant \delta$. Wynika to z poniższego rachunku:

$$|F_{i_1,\ldots,i_k}| = S_{i_1} \circ \ldots \circ S_{i_k}(F) = c_{i_1},\ldots,c_{i_k}|F| \leqslant (\max_{1\leqslant i\leqslant m} c_i)^k|F| \leqslant c^k|F| \leqslant \delta$$
, gdyż $c\in(0,1)$, czyli przy $k\to\infty$, $c^k\longrightarrow 0$.

W takim razie:

$$\mathcal{H}_{\delta}^{s}(F) = \inf \sum_{i=1}^{\infty} |F_{i_1,\dots,i_k}|^s \leqslant |F|^s$$

Zatem
$$\mathcal{H}^s(F) = \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(F) \leqslant |F|^s$$
.

Dolne ograniczenie będzie trochę bardziej skomplikowane.

Zdefiniuję zbiór I, jako $I = \{(i_1, i_2, \dots) : 1 \le i_j \le m\}$, czyli zbiór ciągów nieskończonych o wyrazach z $\{1, \dots, m\}$. Zdefiniuję również zbiór J_{i_1, \dots, i_k} , jako $J_{i_1, \dots, i_k} = \{(i_1, \dots, i_k, q_{k+1}, q_{k+2}, \dots) : 1 \le i_j \le m, 1 \le q_j \le m\}$, czyli zbiór ciągów o ustalonych k pierwszych wyrazach (tzw. cylinder długości k).

Możemy teraz zdefiniować miarę μ na podzbiorach I. Żeby to zrobić definiujemy najpierw miarę μ na cylindrach $J_{i_1,...,i_k}$, a następnie rozszerzymy ją na 2^I . Tak więc:

$$\mu(J_{i_1,\dots,i_k}) = (c_{i_1} \cdot \dots \cdot c_{i_k})^s$$

Zauważmy, że $(c_{i_1} \cdot \ldots \cdot c_{i_k})^s = \sum_{i=1}^m (c_{i_1} \cdot \ldots \cdot c_{i_k} \cdot c_i)^s$ Wynika to z tego, że:

$$\sum_{i=1}^{m} (c_{i_1} \cdot \ldots \cdot c_{i_k} \cdot c_i)^s = (c_{i_1} \cdot \ldots \cdot c_{i_k})^s \sum_{i=1}^{m} c_i^s = (c_{i_1} \cdot \ldots \cdot c_{i_k})^s \cdot 1 = (c_{i_1} \cdot \ldots \cdot c_{i_k})^s$$

A zatem:

$$\mu(J_{i_1,\dots,i_k}) = (c_{i_1} \cdot \dots \cdot c_{i_k})^s = \sum_{i=1}^m (c_{i_1} \cdot \dots \cdot c_{i_k} \cdot c_i)^s = \sum_{i=1}^m \mu(J_{i_1,\dots,i_k,i})$$

Czyli
$$\mu(J_{i_1,\dots,i_k}) = \sum_{i=1}^m \mu(J_{i_1,\dots,i_k,i})$$

Wynika z tego, że w takim razie μ jest właściwie miarą na podzbiorach I, gdyż cylindry generują 2^{I} . Można również zauważyć, że:

$$\mu(I) = \sum_{I_k} \mu(J_{i_1,\dots,i_k}) = \sum_{I_k} \sum_{i=1}^m \mu(J_{i_1,\dots,i_k,i}) = \sum_{I_k} \sum_{i=1}^m (c_{i_1} \cdot \dots \cdot c_{i_k} \cdot c_i)^s = (\sum_{i_1} c_{i_1}^s) \cdot \dots \cdot (\sum_{i_k} c_{i_k}^s) \cdot (\sum_{i=1}^m c_i^s) = 1 \cdot \dots \cdot 1 = 1$$

Zatem $\mu(I) = 1$.

Możemy więc w naturalny sposób przekształcić miarę μ zdefiniowaną na 2^I na miarę $\tilde{\mu}$ zdefiniowaną na podzbiorach F w następujący sposób:

$$\forall_{A \subset F} \quad \tilde{\mu} = \mu\{(i_1, i_2, \ldots) : x_{i_1, i_2, \ldots} \in A\},\$$

gdzie:
$$\{x_{i_1,i_2,...}\} = \bigcap_{k=1}^{\infty} F_{i_1,...,i_k} = \bigcap_{k=1}^{\infty} S_{i_1} \circ \circ S_{i_k}(F).$$

Tak więc miara $\tilde{\mu}$ zbioru jest miarą μ kodów elementów należących do tego zbioru. Widać zatem, że $\tilde{\mu}(F)=1$.

Pokażemy teraz, że $\tilde{\mu}$ spełnia założenia twierdzenia (2.1).

Niech V będzie zbiorem z definicji warunku zbioru otwartego, czyli $S(V) \subset V$, V - niepusty, ograniczony i otwarty oraz $S_i(V)$ są parami rozłączne.

Z ciągłości podobieństw S_i wiemy, że:

$$\bigcup_{i=1}^m S_i(\overline{V}) = S(\overline{V}) \subset \overline{V}$$
, wiec:

 $F = \bigcap_{k=0}^{\infty} S^k(\overline{V})$ - bo $S(\overline{V}) \subset \overline{V}$ oraz \overline{V} jest niepusty, domknięty i ograniczony, czyli niepusty i zwarty w \mathbb{R}^n .

W szczególności $F \subset \overline{V}$ oraz

$$F_{i_1,\dots,i_k} \subset \overline{V}_{i_1,\dots,i_k},\tag{4.5}$$

gdyż $S_{i_1} \circ \ldots \circ S_{i_k}(F) \subset S_{i_1} \circ \ldots \circ S_{i_k}(\overline{V})$ dla każdego ciągu $(i_1 \ldots, i_k)$.

Niech B - kula o promieniu r < 1.

Szacujemy $\tilde{\mu}(B)$ rozważając zbiory V_{i_1,\dots,i_k} o średnicach porównywalnych z diam(B) i z domknięciami przecinającymi $F \cap B$.

Obcinamy każdy nieskończony ciąg $(i_1,i_2,\ldots)\in I$ po pierwszym wyrazie i_k , dla którego:

$$(min_{1 \leq i \leq m} c_i) \cdot r \leq c_{i_1} c_{i_2} \dots c_{i_k} \leq r \tag{4.6}$$

Takie i_k będzie istniało dla każdego ciągu. Wynika to z poniższej konstrukcji:

Weźmy dowolny ciąg $(i_1, i_2, \ldots) \in I$. Niech k będzie najmniejszym indeksem, dla którego: $c_{i_1} \ldots c_{i_k} \leqslant r$.

Wtedy dla k > 1:

$$c_{i_1} \dots c_{i_{k-1}} > r \mid \cdot c_{i_k}$$

$$c_{i_1} \dots c_{i_{k-1}} \cdot c_{i_k} > r \cdot c_{i_k} \leqslant r \cdot (min_i c_i)$$

Niech Q stanowi skończony zbiór wszystkich skończonych ciągów otrzymanych w ten sposób. Q jest skończony, bo:

$$\exists_K \quad (max_ic_i)^K \leqslant r$$

Czyli dla dowolnego ciągu $(i_1, i_2, ...), k \leq K$.

Mamy wtedy, że skończonych ciągów długości nie większej niż K o wyrazach z $\{1,\ldots,m\}$ jest nie więcej niż m^k , czyli skończenie wiele.

Zatem, przy tak zdefiniowanym Q, dla każdego nieskończonego ciągu $(i_1, i_2, \ldots) \in I$ istnieje dokładnie jedna wartość k, dla której $(i_1, \ldots, i_k) \in Q$.

Ponieważ V_1, \ldots, V_m , gdzie $V_j = S_j(V)$ są rozłączne (wynika to z def. (4.1)), więc $V_{i_1,\ldots,i_k,1},\ldots,V_{i_1,\ldots,i_k,m}$ też są rozłączne dla każdego $(i_1,\ldots,i_k) \in Q$.

A zatem zbiory otwarte V_{i_1,\dots,i_k} dla $(i_1,\dots,i_k)\in Q$ są parami rozłączne.

Podobnie
$$F \subset \bigcup_Q F_{i_1,...,i_k} \subset \bigcup_Q \overline{V}_{i_1,...,i_k}$$
.

Drugie zawieranie otrzymujemy natychmiast z (4.5). Pierwsze natomiast można łatwo pokazać:

Niech $x \in F$. Wtedy x ma przypisany kod (i_1, i_2, i_3, \ldots) , dzięki któremu możemy do F trafić. Gdy go obetniemy, to otrzymamy, że $x \in F_{i_1, \ldots, i_k}$, gdzie $(i_1, \ldots, i_k) \in Q$.

Wybieramy teraz $a_1 > 0$ i $a_2 > 0$ takie, że V zawiera kulę o promieniu a_1 (może, bo jest otwarty) oraz jest zawarty w kuli o promieniu a_2 (może, bo jest ograniczony).

Wtedy dla każdego $(i_1, \ldots, i_k) \in Q$ zbiór V_{i_1, \ldots, i_k} zawiera kulę o promieniu $c_{i_1} \cdot \ldots \cdot c_{i_k} \cdot a_1$, a zatem również kulę o promieniu $a_1 \cdot r \cdot min_{1 \leq i \leq m} c_i$ - z (4.6) - oraz jest zawarty w kuli o promieniu $c_{i_1} \cdot \ldots \cdot c_{i_k} \cdot a_2$, a zatem również w kuli o promieniu a_2r .

Niech Q_1 będzie zbiorem tych ciągów $(i_1,\ldots,i_k)\in Q$, dla których B przecina $\overline{V}_{i_1,\ldots,i_k}$. Korzystając z tw. (2.2), mamy co najwyżej $q=(1+2a_2)^na_1^{-n}(min_ic_i)^{-n}$ ciągów w Q_1 .

Wtedy:

$$\tilde{\mu}(B) := \tilde{\mu}(F \cap B) = \mu(\{(i_1, i_2, \dots) : x_{i_1, i_2, \dots} \in F \cap B\}) \leqslant \mu(\bigcup_{Q_1} I_{i_1, \dots, i_k})$$

Rysunek 4.1: Rysunek wyjaśniający nierówność: $\tilde{\mu}(B) \leq \mu(\bigcup_{Q_1} I_{i_1,\dots,i_k})$. Łatwo widać, że $F \cap B \subset \bigcup_{Q_1} F_{i_1,\dots,i_k}$.

Tak więc:

$$\tilde{\mu}(B) \leqslant \sum_{Q_1} \mu(I_{i_1,\dots,i_k}) = \sum_{Q_1} (c_{i_1} \dots c_{i_k})^s \leqslant \sum_{Q_1} r^s \leqslant qr^s$$

Ponieważ dowolny zbiór Ujest zawarty w kuli o promieniu |U|, wiemy, że:

$$\tilde{\mu}(U)\leqslant |U|^sq$$

Tak więc z tw. (2.1) mamy: $\mathcal{H}^s(F) \geqslant \frac{1}{q} > 0$ oraz $dim_H F \geqslant s$.

Czyli ostatecznie: $dim_H F = s$.

Przykłady

W tym rozdziale przytoczę trzy przykłady zastosowania twierdzenia 4.1.

5.1. Przykład 1.

5. Przykłady

Oświadczenie

Oświadczam	ı, że	pracę	licencja	acką	pod	tytulem	"IFS	S -	iterated	function	systems"	, k	ctórej
promotorem	jest	dr Ag	nieszka	Bad	eńska	wykona	łam s	san	nodzielnie	e, co pośw	wiadczam	wł	asno-
ręcznym pod	lpise	m.											

3 f	a

Marta Sommer