ARCH and GARCH models

Daily log returns of INTC

ACF of the returns and squared returns

Volatility

 The daily log return has very mild autocorrelation, but the squared return has strong autor-correlations.
 Implication: The return may have dynamic and autocorrelated conditional variances.

Assume that the log return follows certain distribution with mean μ_t and variance σ_t^2 . The latter is called stock volatility.

- Volatility is important for Option pricing; Risk management (example on VaR); Interval forecasts ...
- However, volatility is not directly observed.

Volatility

 Formally, volatility is the conditional variance of the return of an asset. Namely

$$\sigma_t^2 = \operatorname{var}(r_t|F_{t-1}),$$

where F_{t-1} is the information available at time t-1, including the past returns. The above definition of volatility means the volatility at time t is determined by the information available at time t-1.

For stationary series, unconditional variance is a constant, but the conditional variance depends on time.

• Volatility clustering: large price changes happen in clusters.

Heavy tailness

Heavy tails (heavier than normal, might be close to some t distributions).

```
par(mfrow=c(3,2))
qqnorm(intel.returns)
qqline(intel.returns)
qqplot(rt(2000,6),intel.returns)
qqline(intel.returns)
qqplot(rt(2000,5),intel.returns)
qqline(intel.returns)
qqplot(rt(2000,4),intel.returns)
qqline(intel.returns)
qqplot(rt(2000,3),intel.returns)
qqline(intel.returns)
qqplot(rt(2000,2),intel.returns)
qqline(intel.returns)
```

t with different degrees of freedom

Figure: QQ plots with heavy tail distributions

Additional empirical properties

- Asymmetry: Price of a financial asset responds differently to positive and negative shocks. In fact, the distribution of returns are usually negatively skewed.
- Linear time series model like ARMA(p,q) can not capture these features. For example, ARMA(p,q) can not model the volatility clustering:
- Econometric modeling: ARCH GARCH.

Building a volatility model

- The conditional heteroscedasticity models are concerned with the evolution of the σ_t^2 .
- Basic model structure:

$$r_t = \mu_t + a_t, \mu_t = \phi_0 + \sum_{i=1}^p \phi_i r_{t-i} + \sum_{j=1}^q \theta_j a_{t-j}.$$

volatility models are concerned with time-evolution of

$$\sigma_t = \operatorname{var}(r_t|F_{t-1}) = \operatorname{var}(a_t|F_{t-1}).$$

• a_t : the shock or innovation of an asset return at time t. Model for μ_t : mean equation for r_t , for example ARMA(p,q). Model for σ_t^2 : volatility model, for example ARCH, GARCH.

Important univariate volatility models

- Autoregressive conditional heteroscedastic (ARCH) model of Engle (1982)
- Generalized ARCH (GARCH) model of Bollerslev (1986)
- IGARCH models
- Exponential GARCH (EGARCH) model of Nelson (1991)
- Threshold GARCH model of Zakoian (1994)
- Conditional heteroscedastic ARMA (CHARMA) model of Tsay (1987)
- Random coefficient autoregressive (RCA) model of Nicholls and Quinn (1982)

Steps for building a volatility model

- If necessary, build a linear model (e.g. ARMA(p,q)) for the return series to remove any linear dependence.
 - **1** Look at the time series plot of the return precess r_t .
 - remove the trend and seasonal component
 - choose orders p and q by ACF, PACF plots and AIC (or AICC, BIC)
 - Fit an ARMA model to r_t with the orders chosen in the previous step;
- The residual process of the mean equations is a_t. Use the residuals to test for ARCH effect
- Specify a volatility model if ARCH effects are statistically significant and perform a joint estimation of the mean and volatility equations
- Check the fitted model carefully and refine it if necessary

The ARCH model

An ARCH model of order p is defined as

$$a_t = \sigma_t \epsilon_t, \ \text{ and } \ \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_p a_{t-p}^2,$$
 where $\alpha_0 > 0$ and $\alpha_j \geq 0$, $\{\epsilon_t\} \sim \textit{IID}(0,1)$ independent of $a_{t-1}, a_{t-2}...$ Common distributions of ϵ_t : standard normal, standardized

student t, generalized error distribution or skewed student t distribution.

 The conditional variance is weighted average of past squared residuals.

The ARCH model

 \bullet ARCH can be expressed as an AR model for a_t^2

$$\begin{aligned} a_t^2 &= \sigma_t^2 \epsilon_t^2 = \sigma_t^2 + \sigma_t^2 (\epsilon_t^2 - 1) \\ &= \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_p a_{t-p}^2 + \eta_t, \end{aligned}$$

where η_t are uncorrelated.

Consider the ARCH(1) case

$$a_t = \sigma_t \epsilon_t, \ \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2$$

- **1** $E(a_t) = 0.$
- ② $var(a_t) = \alpha_0/(1 \alpha_1)$ if $0 < \alpha_1 < 1$.

The ARCH model

- Advantages of ARCH model
 - Simple
 - @ Generates volatility clustering
 - 4 Heavy tails
- disadvantages of ARCH model
 - Can not distinguish positive and negative shocks
 - Restrictive on parameters. For instance, to ensure finite 4th moment,

$$\sum_{j=1}^{p} \alpha_j < 1/\sqrt{3}.$$

Figure: ACF of INTC monthly return and square returns

- Analysis using the R package fGarch with garchFit command.
- Check the ACF of the monthly return of INTC. Note the autocorrelations on the squared returns.

```
library(fGarch)
da=read.table("m-intc7303.txt",header=T)
intc=log(da[,2]+1)
par(mfcol=c(1,2))
acf(intc)
acf(intc^2)
```

 There seems to be autocorrelation on the squared returns, although not as significant as what we observed for daily data.
 Peiro A. (2001) showed that the ARCH/GARCH effects are prominent in the daily and weekly data and less for the monthly data.

Figure: PACF of INTC monthly square returns

Now try some ARCH models using fGarch package.

```
library(fGarch)
> m2=garchFit(~garch(3.0),data=intc) # lots of output
   m2=garchFit(~garch(3,0),data=intc,trace=F) #no output printed.
   summary(m2) # Obtain results and model checking statististics
Title:
GARCH Modelling
Call:
garchFit(formula = ~garch(3, 0), data = intc, trace = F)
Mean and Variance Equation:
data ~ garch(3, 0)
Conditional Distribution:
 norm
Coefficient(s):
           omega
                   alpha1 alpha2
                                     alpha3
0.016572 0.012043 0.208649 0.071837 0.049045
Std. Errors:
based on Hessian
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
       mıı
omega 0.012043 0.001579 7.627 2.4e-14 ***
alpha1 0.208649 0.129177 1.615 0.10626
alpha2 0.071837 0.048551 1.480 0.13897
alpha3 0.049045 0.048847 1.004 0.31536
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
Log Likelihood:
233.4286
            normalized: 0.6274962
Standardised Residuals Tests:
                              Statistic p-Value
 Jarque-Bera Test
                       Chi^2 169.7730 0
Shapiro-Wilk Test
                              0.960696 1.970596e-08
Ljung-Box Test
                       Q(10) 10.97025 0.3598405
Ljung-Box Test
                       Q(15) 19.59024 0.1882211
Liung-Box Test
                        Q(20) 20.82192 0.40768
Ljung-Box Test
                   R^2 Q(10) 5.376602 0.864644
Ljung-Box Test
                   R^2 Q(15) 22.73460 0.08993975
Ljung-Box Test
                   R^2 Q(20) 23.70577 0.255481
LM Arch Test
                        TR^2 20.48506 0.05844884
Information Criterion Statistics:
     AIC
               BTC
                         SIC
                                 HQIC
```

-1.228111 -1.175437 -1.228466 -1.207193

• The three α all seem to be insignificant. Run ARCH(2)

• Only α_1 seems significant. Run ARCH(1)

• The fitted model is

$$r_t = 0.01657 + a_t, \ \sigma_t^2 = 0.0125 + 0.363a_{t-1}^2.$$

• We can change the innovation distribution from normal to t.

```
# Student-t innovations
> m2=garchFit(~garch(1.0),data=intc,trace=F,cond,dist=c("std"))
> summary(m2)
       Estimate Std. Error t value Pr(>|t|)
       0.021571
               0.006054 3.563 0.000366 ***
mıı
omega 0.013424 0.001968 6.820 9.09e-12 ***
alpha1 0.259867 0.119901 2.167 0.030209 *
shape 5.985979 1.660030 3.606 0.000311 ***
# use skewed Student-t innovations
> m3=garchFit(~garch(1,0),data=intc,trace=F,cond.dist=c("sstd"))
> summary(m3)
       Estimate Std. Error t value Pr(>|t|)
       0.017341 0.006294 2.755 0.00587 **
mıı
omega 0.013174 0.001820 7.238 4.55e-13 ***
alpha1 0.276969 0.112422 2.464 0.01375 *
       0.836063 0.070814 11.806 < 2e-16 ***
skew
shape 6.740548 2.058274 3.275 0.00106 **
```

Student t with 5.99 degree of freedom

$$r_t = 0.0216 + a_t$$
, $\sigma_t^2 = 0.0134 + 0.260a_{t-1}^2$.

skewed student t with 6.74 degree of freedom

$$r_t = 0.0173 + a_t, \ \sigma_t^2 = 0.0132 + 0.277a_{t-1}^2.$$

```
m5=garchFit(~garch(1,0),data=intc,trace=F,cond.dist=c("sstd"))
summary(m5)
sresi=residuals(m5,standardize=T)
qqplot(rsstd(5000,0,1,6.74,0.836),sresi)
qqline(sresi)
```

QQ norm plot

QQ plot

GARCH model

A natural generalization of ARCH

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i a_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2,$$

where ϵ_t is i.i.d. with mean 0, standard deviation 1 and independent of a_{t-1} ... Also $\alpha>0$, α_i and $\beta_j\geq0$, and $\sum_{i=1}^p\alpha_i+\sum_{j=1}^q\beta_j<1$. Such a model is called GARCH(p,q) model.

- σ_t^2 is weighted average of past volatilities and squared residuals.
- Facilitate the modeling of volatility clustering.
- Captures main features of volatilities by a low order GARCH such as GARCH(1,1).

GARCH model

• Reparametrization of GARCH: Let $\eta_t = a_t^2 - \sigma_t^2 = \sigma_t^2 (\epsilon_t^2 - 1)$. η_t is an uncorrelated series. The GARCH model becomes

$$a_t^2 = \alpha_0 + \sum_{i=1}^{q} (\alpha_i + \beta_i) a_{t-i}^2 + \eta_t - \sum_{j=1}^{q} \beta_j \eta_{t-j}.$$

It is an ARMA model of the series a_t^2 .

GARCH(1,1)

• For GARCH(1,1) we have

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

- Weak stationary condition is $0 \le \alpha_1, \beta_1 < 1$ and $\alpha_1 + \beta_1 < 1$.
- Volatility clustering.
- Heavy tails: If $1 2\alpha_1^2 (\alpha_1 + \beta_1)^2 > 0$, then $K(a_t) > 3$.
- One-step forecast.

$$\sigma_n^2(1) = \alpha_0 + \alpha_1 a_n^2 + \beta_1 \sigma_n^2$$

GARCH(1,1)

Two-step forecast

$$\sigma_{n}^{2}(2) = E(\sigma_{n+2}^{2}|a_{1}, \cdots, a_{n})
= E(\alpha_{0} + \alpha_{1}a_{n+1}^{2} + \beta_{1}\sigma_{n+1}^{2}|a_{1}, \cdots, a_{n})
= E(\alpha_{0} + \alpha_{1}\sigma_{n+1}^{2}\epsilon_{n+1}^{2} + \beta_{1}\sigma_{n+1}^{2}|a_{1}, \cdots, a_{n})
= \alpha_{0} + \alpha_{1}E(\sigma_{n+1}^{2}|a_{1}, \cdots, a_{n})E(\epsilon_{n+1}^{2}|a_{1}, \cdots, a_{n})
+ \beta_{1}E(\sigma_{n+1}^{2}|a_{1}, \cdots, a_{n})
= \alpha_{0} + (\alpha_{1} + \beta_{1})\sigma_{n}^{2}(1).$$

• In general, for h > 1,

$$\sigma_n^2(h) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_n^2(h-1).$$

GARCH example using fGarch package

```
da=read.table("sp500.txt")  # Load data
sp5=da[,1]
plot(sp5,type='1')  # plot the data
```


ACF and PACF for sp500 returns

Figure: ACF and PACF of SP500 monthly return

ARMA for sp500 returns

Based on the ACF and PACF plots, we run an AR model to remove serial correlations.

```
acf(sp5)
         # compute ACF of the data
pacf(sp5)
                   # compute PACF of the data
m1=arima(sp5,order=c(3,0,0)) # Fit an AR(3) model to remove
serial correlations.
Box.test(m1$residuals,10,type='Ljung') # check the residuals
    Box-Ljung test
data: m1$residuals
X-squared = 16.1361, df = 10, p-value = 0.0958
Box.test(m1$residuals^2,10,type='Ljung') # Test for ARCH effect.
       Box-Ljung test
data: m1$residuals^2
X-squared = 353.7695, df = 10, p-value < 2.2e-16
```

Joint estimations

Fit ARMA+GARCH model to the SP500 monthly returns.

```
m2=garchFit(~arma(3,0)+garch(1,1),data=sp5,trace=F)
 summary(m2)
garchFit(formula = ~arma(3, 0) + garch(1, 1), data = sp5, trace
        Estimate Std. Error t value Pr(>|t|)
mu 7.708e-03 1.607e-03 4.798 1.61e-06 ***
ar1 3.197e-02 3.837e-02 0.833 0.40473
ar2 -3.026e-02 3.841e-02 -0.788 0.43076
ar3 -1.065e-02 3.756e-02 -0.284 0.77677
omega 7.975e-05 2.810e-05 2.838 0.00454 **
alpha1 1.242e-01 2.247e-02 5.529 3.22e-08 ***
beta1 8.530e-01 2.183e-02 39.075 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Log Likelihood:
 1272.179 normalized: 1.606287
```

Joint estimations

Standardised Residuals Tests:

```
Statistic p-Value
                            73.04842 1.110223e-16
Jarque-Bera Test
                      Chi^2
Shapiro-Wilk Test
                 R.
                            0.9857969 5.961994e-07
               R
                      Q(10) 11.56744 0.315048
Ljung-Box Test
Ljung-Box Test
                      Q(15) 17.78747 0.2740039
Ljung-Box Test R
                      Q(20) 24.11916 0.2372256
Ljung-Box Test R^2 Q(10) 10.31614 0.4132089
Ljung-Box Test R^2 Q(15) 14.22819 0.5082978
Ljung-Box Test R^2 Q(20) 16.79404 0.6663038
LM Arch Test
                 R.
                      TR.^2
                            13.34305 0.3446075
Information Criterion Statistics:
```

ATC BTC STC HQIC -3.194897 -3.153581 -3.195051 -3.179018

Joint estimations

The estimated model is

$$r_t = 0.032r_{t-1} - 0.03r_{t-2} - 0.011r_{t-3} + 0.0077 + a_t$$
$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = 7.98 \times 10^{-5} + 0.853\sigma_{t-1}^2 + 0.124a_{t-1}^2.$$

• The unconditional variance of a_t is

$$\frac{7.98 \times 10^{-5}}{1 - 0.853 - 0.124} = 0.00352.$$

 The AR coefficients are all insignificant at 5% level. Thus we run a pure GARCH model

Refined model

```
> m3=garchFit(~garch(1,1),data=sp5,trace=F)
> summary(m3)
garchFit(formula = ~garch(1, 1), data = sp5, trace = F)
       Estimate Std. Error t value Pr(>|t|)
mu 7.450e-03 1.538e-03 4.845 1.27e-06 ***
omega 8.061e-05 2.833e-05 2.845 0.00444 **
alpha1 1.220e-01 2.202e-02 5.540 3.02e-08 ***
beta1 8.544e-01 2.175e-02 39.276 < 2e-16 ***
Jarque-Bera Test R Chi^2 80.32111 0
Shapiro-Wilk Test R W 0.9850517 3.141228e-07
Ljung-Box Test R Q(10) 11.2205 0.340599
Ljung-Box Test R Q(15) 17.99703 0.262822
Ljung-Box Test R Q(20) 24.29896 0.2295768
Ljung-Box Test R^2 Q(10) 9.920157 0.4475259
Ljung-Box Test R^2 Q(15) 14.21124 0.509572
Ljung-Box Test R^2 Q(20) 16.75081 0.6690903
LM Arch Test R
                     TR<sup>2</sup> 13.04872 0.3655092
     ATC
        BIC
                      SIC
                              HQIC
-3.195594 -3.171985 -3.195645 -3.186520 ->
```

Refined model

The simplified model is

$$r_t = 0.00745 + a_t, \ \sigma_t^2 = 8.06 \times 10^{-5} + 0.854 \sigma_{t-1}^2 + 0.122 a_{t-1}^2.$$

- What is the form for 1-step ahead forecast? What is the unconditional variance of at?
- In R we can use
- > predict(m3,5) # Perform prediction 1 to 5-step ahead.

	mount of coupt	meanning	D danaar abc v ra d ron
1	0.007449721	0.05377242	0.05377242
2	0.007449721	0.05388567	0.05388567
3	0.007449721	0.05399601	0.05399601
4	0.007449721	0.05410353	0.05410353
5	0 007449721	0 05420829	0 05420829

IGARCH model

- Special case of GARCH model with $\alpha_1 + \beta_1 = 1$.
- IGARCH(1,1)

$$\sigma_t^2 = \alpha_0 + (1 - \beta_1)a_{t-1}^2 + \beta_1\sigma_{t-1}^2.$$

• Effect of $\sigma_h(1)$ on future volatilities is persistent since

$$\sigma_h^2(I) = \sigma_h^2(1) + (I - 1)\alpha_0.$$

Key differences with GARCH.
 The unconditional variance of a_t for the usual GARCH model is defined. But for IGARCH model, the unconditional variance of a_t is undefined.

IGARCH model

• IGARCH(1,1) with $\alpha_0 = 0$ using igarch.R.

```
> Igarch(sp5,volcnt=F)
Maximized log-likehood: -1258.219

Coefficient(s):
        Estimate Std. Error t value Pr(>|t|)
mu 0.0068744 0.0015402 4.46332 8.07e-06 ***
beta 0.9007153 0.0158018 57.00082 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1</pre>
```

The resulting model is

$$r_t = 0.00687 + a_t, a_t = \sigma_t \epsilon_t; \ \ \sigma_t^2 = 0.0993a_{t-1}^2 + 0.9007\sigma_{t-1}^2.$$

GARCH-M model

The model is

$$r_t = \mu + c\sigma_t^2 + a_t, \ a_t = \sigma_t \epsilon_t, \ \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

where c is called risk premium. This is expected to be positive.

 Fitting the Garch-M model to the SP500 percentage returns, the estimated model is

$$r_t = 0.743 + 0.048\sigma_t^2 + a_t, \ \ \sigma_t^2 = 0.812 + 0.123a_{t-1}^2 + 0.854\sigma_{t-1}^2.$$

The risk premium estimate is not significant at 5% level.

GARCH-M model

```
> garchM(sp5*100)
[1] 2399.822
 0:
      2380.0229: 0.422452 0.00561297 0.806149 0.121976 0.8543
 3:
      2379.9525: 0.427596 0.00652832 0.806107 0.121466 0.8557
 6: 2378.4838: 0.606807 0.0375055 0.801889 0.126193 0.84683
 9: 2377.9587: 0.673997 0.00166937 0.798191 0.125517 0.8519
12: 2377.8474: 0.692209 0.0444464 0.802574 0.122278 0.85414
15:
      2377.7922: 0.742796 0.0480959 0.812187 0.122530 0.85350
Maximized log-likehood: 2377.792
Coefficient(s):
     Estimate Std. Error t value Pr(>|t|)
    mu
gamma 0.0480959 0.1408765 0.34140 0.7327991
beta 0.8535072 0.0219079 38.95885 < 2.22e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 = 1 = > 2 900
```

Threshold GARCH model

 Another volatility model commonly used to handle the asymmetric distribution is the threshold GARCH model, which is also called GJR model

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p (\alpha_i + \gamma_i N_{t-i}) a_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2,$$

where

$$N_{t-i} = \begin{cases} 1, & \text{if } a_{t-i} < 0, \\ 0, & \text{if } a_{t-i} \ge 0. \end{cases}$$

APARCH model

 The general APARCH(p,q) model (Ding, Granger and Engle 1993) is

$$a_{t} = \sigma_{t} \epsilon_{t},$$

$$\epsilon_{t} \sim D(0,1);$$

$$\sigma_{t}^{\delta} = \alpha_{0} + \sum_{i=1}^{p} \alpha_{i} (|a_{t-i}| - \gamma_{i} a_{t-i})^{\delta} + \sum_{j=1}^{q} \beta_{j} \sigma_{t-j}^{\delta},$$

where $\delta > 0$ and $-1 < \gamma_i < 1$.

 It adds the flexibility of a varying exponent with asymmetry coefficients.

APARCH model

- The family of APARCH models includes the following special cases:
 - ARCH model $\delta = 2, \gamma_i = 0, \beta_j = 0.$
 - GARCH model $\delta = 2, \gamma_i = 0$.
 - Threshold-GARCH (GJR-GARCH) when $\delta=2$.
 - T-ARCH when $\delta=1$.
- In fGarch, we can fix the value of δ using the subcommand such as "include.delta=F, delta = 2". in this case, the APARCH model is similar to the TGARCH model.

Consider the percentage log returns of monthly IBM stock from 1926 to 2009.

```
>
   library(fGarch)
> data=read.table("m-ibm2609.txt",header=T)
  ibm=log(data$ibm+1)*100 #IBM percentage monthly log return
  m1=garchFit(~aparch(1,1), data=ibm,trace=F, delta=2,
include.delta=F)
  summary(m1)
garchFit(formula = ~aparch(1, 1), data = ibm, delta = 2,
  include.delta = F, trace = F)
Conditional Distribution: norm
Error Analysis:
       Estimate Std. Error t value Pr(>|t|)
      1.18659
                   0.20019
                              5.927 3.08e-09 ***
mıı
omega 4.33663
                   1.34161
                             3.232 0.00123 **
alpha1 0.10767 0.02548 4.225 2.39e-05 ***
gamma1 0.22732
                   0.10018 2.269 0.02326 *
beta1 0.79468
                   0.04554 17.449 < 2e-16 ***
```

Standardised Residuals Tests:

```
Statistic p-Value
                             67.07416 2.775558e-15
Jarque-Bera Test
                       Chi^2
                  R.
Shapiro-Wilk Test
                  R.
                       W
                             0.9870144 8.599046e-08
Ljung-Box Test
                  R
                       Q(10)
                             16.90603 0.07646941
Ljung-Box Test
                       Q(15) 24.19033 0.06193097
Ljung-Box Test
                  R
                       Q(20) 31.89097 0.04447406
Ljung-Box Test
                  R^2
                      Q(10)
                             4.591691 0.9167342
Ljung-Box Test
                 R<sup>2</sup> Q(15) 11.98464 0.6801912
Ljung-Box Test R^2 Q(20) 14.79531 0.7879979
LM Arch Test
                       TR.^2
                             7.162971 0.8466584
```

Information Criterion Statistics:

AIC BIC SIC HQIC 6.615430 6.639814 6.615381 6.624694

> plot(m1)

Figure: QQ norm

Judging from the standardized residual QQ plot, the normality assumption is not adequate. We run the APARCH model with t innovations.

```
>m2=garchFit(~aparch(1,1),data=ibm,trace=F,
delta=2,include.delta=F,cond.dist="std")
> summary(m2)
```

```
Estimate Std. Error t value Pr(>|t|)
        1.20476
                   0.18715
                             6.437 1.22e-10 ***
mıı
        3.98975
                   1.45331
                             2.745 0.006046 **
omega
alpha1 0.10468
                   0.02793
                             3.747 0.000179 ***
gamma1
                   0.11595
        0.22366
                             1.929 0.053738 .
beta1
        0.80711
                            16.727 < 2e-16 ***
                   0.04825
shape
        6.67329
                   1.32779
                             5.026 5.01e-07 ***
```

```
Standardised Residuals Tests:
```

```
Statistic p-Value
                              67.82336 1.887379e-15
 Jarque-Bera Test
                   R.
                       Chi^2
Shapiro-Wilk Test
                              0.9869699 8.213668e-08
                       W
Ljung-Box Test
                       Q(10) 16.91352 0.07629961
Ljung-Box Test
                  R
                       Q(15) 24.08691 0.06363224
Ljung-Box Test
                       Q(20) 31.75305 0.04600187
Ljung-Box Test R^2 Q(10) 4.553248 0.9189583
Ljung-Box Test R^2 Q(15) 11.66891 0.7038973
Ljung-Box Test R^2 Q(20) 14.18533 0.8209764
LM Arch Test
                       TR<sup>2</sup> 6.771675 0.872326
                R.
Information Criterion Statistics:
    AIC
             BIC
                     SIC
                             HQIC
6.579782 6.609042 6.579711 6.590898
> plot(m2)
```

The fitted model on percentage return is

$$r_t = 1.2 + a_t, \ \epsilon_t \sim t_{6.67}$$

 $\sigma_t^2 = 3.99 + 0.105(|a_{t-1}| - 0.224a_{t-1})^2 + 0.807\sigma_{t-1}^2.$

The fitted models

The fitted model on percentage return are under normalilty

$$r_t = 1.19 + a_t,$$

 $\sigma_t^2 = 4.34 + 0.108(|a_{t-1}| - 0.227a_{t-1})^2 + 0.795\sigma_{t-1}^2.$

under t

$$r_t = 1.2 + a_t, \ \epsilon_t \sim t_{6.67}$$

 $\sigma_t^2 = 3.99 + 0.105(|a_{t-1}| - 0.224a_{t-1})^2 + 0.807\sigma_{t-1}^2.$