MAC0422 - EP1

Gabriel de Russo e Carmo Victor Wichmann Raposo Setembro de 2016

Sumário

- Shell
- Escalonadores
 - FCFS
 - SRTN
 - Múltiplas filas
- Resultados dos experimentos

Shell

- Exibição do prompt (getcwd)
- Leitura da linha (GNU readline), histórico (GNU history) e tokenização (strtok)
- Comandos:
 - chmod (sys/stat.h)
 - id -u (getuid)
 - binários (fork e execve)
 - exit (para verificação de leaks)

Escalonadores

- Lê o processo (no tempo adequado)
- Cria uma thread pausada
- Insere na fila de prontos
- Função next_process decide quem vai rodar

Implementação

- Struct para processos
- Biblioteca utility (para qualquer algoritmo)
- Variáveis globais (semáforos, contadores, estruturas e flags)
- pthread_cond_wait e pthread_cond_signal (controle das threads)
- Threads também tomam decisões nos algoritmos

First come first served

- Fila (lista ligada)
- Sem preempção
- Cria uma thread sempre que um processo chega
- Quando uma thread acorda, ela executa até o fim
- No fim da execução, tenta acordar outra thread

Shortest remaining time next

- Fila de prioridades (min heap)
- Com preempção
- Cria uma thread sempre que um processo chega e pode haver uma mudança de contexto
- Se houver, a thread executando para e nova acorda
- No fim da execução, tenta acordar outra thread

Múltiplas filas

- Classes de prioridade
- Vetor de filas (para cada classe)
- Cada processo roda por uma quantidade de quanta relacionado a sua classe
- Processos são rebaixados se não terminam
- Muita preempção

Múltiplas filas

- Quantum evolui exponencialmente
- Threads mais complexas
- Rodam durante seu quanta e podem se rebaixar
- Classes de menor quanta são executadas primeiro
- Desempate pelo tempo de chegada

Experimentos

- Pequeno: 20 processos
- Médio: 100 processos
- Grande: 400 processos
- Duas máquinas diferentes, 30 vezes cada (aproximadamente 24 horas de teste)
- Programa em python para gerar traces

Deadlines - pequeno

Máquina A

IC 0.95

FCFS: 0.283

SRTN: 0.627

Multi: 0.307

Máquina B

IC 0.95

FCFS: 0.272

SRTN: 0.587

Multi: 0.155

Deadlines - médio

Máquina A

IC 0.95

FCFS: 0.387

SRTN: 1.035

Multi: 0.526

Máquina B

IC 0.95

FCFS: 0.292

SRTN: 1.208

Multi: 0.541

Deadlines - grande

Máquina A

IC 0.95

FCFS: 0.312

SRTN: 2.586

Multi: 0.658

Máquina B

IC 0.95

FCFS: 0.337

SRTN: 2.533

Multi: 0.592

Contexto - pequeno

Máquina A

IC 0.95

FCFS: -

SRTN: 0.665

Multi: 1.409

Máquina B

IC 0.95

FCFS: -

SRTN: 0.505

Multi: 1.243

Contexto - médio

Máquina A

IC 0.95

FCFS: -

SRTN: 1.020

Multi: 2.732

Máquina B

IC 0.95

FCFS: -

SRTN: 1.164

Multi: 2.706

Contexto - grande

Máquina A

IC 0.95

FCFS: -

SRTN: 2.695

Multi: 6.242

Máquina B

IC 0.95

FCFS: -

SRTN: 2.839

Multi: 4.969