hw1

Jingtao Scott Hong jh4ctf

September 12, 2021

1 Question 1

1.1 a

It is false because DFS can sometimes beat A* by luck when all the successors are on one side of track, which makes A* slower because it contains the factor of heuristic which drags the speed because it expands through other branches.

1.2 b

True because there is no other estimated distance can be higher than the distance of 0, which means that it is a admissible heuristic.

1.3 c

False because searching can be discrete and the robotics process eventually outputs a series of results.

1.4 d

It is true. "Breadth-first search is complete whenever the branching factor is finite." Therefore, even if the step cost is zero step, which is allowed.

1.5 e

False because the cost of a move can be more than a move, therefore the Manhattan distance can be more than true cost of move.

2 Question 2

It happens in a case where all nodes has a single successor, and there is a single goal at depth n. Then DFS will find the goal in n steps, but IDS will take $1 + 2 + 3 + ... + n = On^2$ steps.

3 Question 3

3.1 a

UCS can proceed BFS when the cost of steps are equal which means g(n) consists for depth(n).

3.2 b

Like the statement proved above: DFS is BFS when f(n) = depth(n).

3.3 c

UCS is A^* Search when h(n) = 0.

4 Question 4

First, by definition: a heuristic is consistent iff: $h(n) \le c(n, a, n') + h(n')$.

Base case: when n' is the goal state and n is the previous node of n'. Then $h(n') = 0, h(n) \le c(n, a, n')$, which also means that c(n, a, n') = h * (n). By $h(n) \le c(n, a, n') + h(n')$, we conclude $h(n) \le h * (n)$.

Inductive step: We can assume n' as a node that is k steps away from the goal node, so n is k+1 steps away from the goal node. By definition, we can say n' is admissible. But if we can prove n is admissible, then we can also infer that consistency can also infer admissibility.

The definition of consistency can allow us to know h(n) <= c(n, a, n') + h(n'). So we assume n' is admissible, $h(n') \le h * (n')$. Thus, $h(n) \le c(n, a, n') + h(n') \le c(n, a, n') + h * (n')$. Because c(n, a, n') is the true cost from n to n' and h*(n') is true cost from n' to goal node, c(n, a, n') + h * (n') is the true cost from n to goal node. Combining these two in-equations, we conclude that $h(n) \le c(n, a, n') + h(n') \le c(n, a, n') + h * (n')$. This infer $h(n) \le h * (n')$. Thus, n is admissible if n' is admissible.

By induction, if a heuristic is consistent, it must be admissible.

Assume S is the start state and G is the goal state. h(s)=8 and f(s)=8. h(a)=3, f(b)=g(b,g)+3=1+3=4, thus f(g)=3+4=7 which is not admissible as 7>3.