

# 目 录

| <b>—、</b> | 声明                     | 2  |
|-----------|------------------------|----|
| 二、        | Loongson2K1000LA 处理器介绍 | 2  |
| 三、        | 芯片结构图                  | 4  |
| 四、        | 概述                     | 5  |
| 4.        | .1 主板简介                |    |
|           | 2 交付清单                 |    |
|           |                        |    |
|           | 3 <b>补充的外接设备</b>       |    |
| 4.        | .5 结构尺寸                | 6  |
| 4.        | 6 叠层数量                 | 7  |
| 五、        | 硬件资源与布局                | 8  |
| 5.        | 1 资源与接口布局              | 8  |
| 5.:       | 2 规格一览                 | 9  |
| 5.        | 3 接口详细说明               | 10 |
|           | 5.3.1 排针信号             | 10 |
|           | 5.3.2 Ejtag 接口         |    |
|           | 5.3.3 M.2 接口           | 13 |
|           | 5.3.4 音频接口             | 13 |
|           | 5.3.5 HDMI 接口          | 13 |
|           | 5.3.6 USB2.0 接口        | 13 |
|           | 5.3.7 USB3.0 接口        | 13 |
|           | 5.3.8 网络接口             | 14 |
|           | 5.3.9 复位按键             | 14 |
|           | 5.3.10 调试接口            | 14 |
|           | 5.3.11 RTC 电池接口        | 14 |
|           | 5.3.12 电源              | 15 |
|           | 5.3.13 指示灯             | 15 |
|           | 5.3.14 网口指示灯           | 15 |
| 六、        | Loongnix 操作系统          | 16 |
|           | 6.1 安装系统               | 16 |



| 6.2    | 内核编译环境搭建                     | 17 |
|--------|------------------------------|----|
|        | 启动内核                         |    |
| 6.3.1  | 手动启动                         | 18 |
| 6.3.2  | 2 自动启动                       | 18 |
| 6.4    | 应用程序编译                       | 19 |
| 6.4.1  | 编译 C/C++语言程序                 | 19 |
| 6.4.2  | 2 QT Creator <b>交叉开发环境搭建</b> | 19 |
| 6.5    | 编译 QT 程序                     | 22 |
| 七、注意事项 |                              | 22 |

## 一、 声明

本手册仅供参考,并非万能,难免瑕疵,欢迎指正。2k 龙芯教育派为直接接触硬件,使用时请多加小心。

# 二、 Loongson2K1000LA 处理器介绍



图-12K1000LA **处理器** 

龙芯 2K1000LA 处理器 (简称龙芯 2K1000LA) 主要面向于网络应用, 兼顾平板应用及工控领域应用。片内集成 2 个 LA264 处理器核, 采用 LoongArch 指令系



统(龙架构), 主频 IGHz, 64 位 DDR3 控制器, 并集成各种系统 IO 接口。

| <b>龙芯</b> 2K1000LA <b>芯片规格</b> |                                                      |  |
|--------------------------------|------------------------------------------------------|--|
| 内核                             | 双核 64 位                                              |  |
| 主频                             | 1GHz                                                 |  |
| 功耗                             | 1W-5W(支持动态降频降压)                                      |  |
| 浮点单元                           | 128 位向量单元                                            |  |
| 峰值运算速度                         | 8GFlops                                              |  |
| 高速 I/O                         | PCle2.0 x 2、SATA2.0                                  |  |
| 其它接口                           | SPI、UART、GPIO、NAND、SDIO、DVO、12S、HDA、12C、USB 2.0、GMAC |  |
| 微体系结构                          | 双发射乱序执行 LA264                                        |  |
| 一级指令缓存                         | 32KB                                                 |  |
| 一级数据缓存                         | 32KB                                                 |  |
| 二级缓存                           | 共享 1MB                                               |  |
| 内存控制器                          | 64 位 DDR3-1066                                       |  |



# 三、 芯片结构图



图-22K芯片结构图

一级交叉开关连接两个处理器核、两个二级 Cache 一级 IO 子网络(Cache 访问路径)。二级交叉开关连接二级 Cache、内存控制器、启动模块(SPI 或者 LIO)以及 IO 自网络(Uncache 访问路径)。IO 子网络连接一级交叉开关,以减少处理器访问延迟。IO 自网络中包括需要 DMA 的模块(PCIE、GMAC、SATA、USB、HAD/I2S、NAND、SDIO、DC、GPU 和加解密模块)和不需要 DMA 的模块,需要 DMA 的模块可以通过 Cache 或者 Uncache 方式访问内存。



## 四、概述

## 4.1 主板简介



图-3 龙芯教育派 LA 主板正面图

龙芯教育派LA是基于龙芯2K1000LA开发的低成本Linux学习板,搭载适配龙芯2K1000LA的 Loongnix20操作系统,软件兼容 Debianl0 主线。该板卡提供 HDMI、千兆网口及 2 个 USB2.0、2 个 USB3.0 等丰富接口,扩展功能强大。60pin 排针可引出包括 PWM、I2C、GPIO 在内的扩展接口。

#### 龙芯教育派主要特点:

- 龙芯 2K1000LA 双核高性能低功耗处理器(2\*LA264@1GHz);
- 支持千兆网络传输;
- 2个 USB2.0 接口, 2个 PCIE 扩展的 USB3..0 接口;
- 1路 TTL UART 调试串口;
- 多路扩展 GPIO;
- 1路 HDMI 视频输出接口;
- TYPE-C供电



# 4.2 交付清单

- 龙芯教育派 LA\*1 块
- 16GB M.2 SATA 固态硬盘\*1 块

# 4.3 补充的外接设备

- TYPE-C 的电源线
- 网线
- HDMI 的连接显示器,如果连接线是 GVA,添加一个 HDMI 转 VGA 的转换器
- 串口的母头连接 USB
- 鼠标
- 键盘

# 4.5 结构尺寸

100mm\*110mm



# 4.6 叠层数量

此主板采用 8 层 PCB 板设计。



图- 4 PCB 板设计图



# 五、 硬件资源与布局

# 5.1 资源与接口布局



图-5 资源与接口布局



# 5.2 规格一览

| 功能      | 描述                                     |  |
|---------|----------------------------------------|--|
| CPU     | 龙芯 2K1000LA <b>处</b> 理器                |  |
| 内存      | <b>板载</b> 2GB DDR3, <b>主频</b> 400Mhz   |  |
| BIOS    | 8Mb SPI FLASH                          |  |
| GPIO    | 2.54mm <b>间距</b> 22 路 GPIO <b>双排插针</b> |  |
| 网络      | 1 <b>个千兆自协商网口(标准</b> RJ45 接口)          |  |
| USB     | 2 路 USB2.0 , 2 路 USB3.0                |  |
| EJTAG   | 1 <b>个</b> EJTAG <b>调试接口(预留</b> )      |  |
| 接口      | 2 路 CAN 接口,4 路串口(LVTTL*3,RS232*1),     |  |
|         | 4路PWM,2路I2C,1路SPI(2 <b>个片选</b> )       |  |
| 显示和音频接口 | 1路 HDMI (TYPE A 接口)                    |  |
|         | 1路 3.5mm 国际的音频输入/输出接口                  |  |
| 外存      | M.2 接口 16GB SSD 硬盘                     |  |
| 电源      | 5V , <b>至少</b> 2A , TYPE C 接口          |  |
| 按键      | 一个硬件复位按键                               |  |
| 尺寸      | 100mm*110mm                            |  |



# 5.3 接口详细说明

## 5.3.1 排针信号

教育派双排针上集成了不同的信号,双排针的规格为 2.54mm 2\*30pin。信号的定义如下图所示。



图-6 双排针信号定义

#### 上图中各个信号的名称定义如下表所示:

| 管脚号 | 信号定义          | 功能描述     |
|-----|---------------|----------|
| 1   | P3V3          | 3.3∨ 电源  |
| 2   | P5V           | 5V 电源    |
| 3   | LS2K_IIC1_SDA | 12C1 数据线 |
| 4   | P5V           | 5V 电源    |
| 5   | LS2K_IIC1_SCL | 12C1 时钟线 |
| 6   | GND           | 系统地      |
| 7   | LS2K_GPIO07   | GPIO7    |



| 8  | UART3_TXD     | 2K_UART3 <b>的发送</b>  |
|----|---------------|----------------------|
| 9  | GND           | 系统地                  |
| 10 | UART3_TXD     | 2K UART3 <b>的发送</b>  |
| 11 | LS2K_GPIO60   | GPIO60               |
| 12 | LS2K_GPIO1    | GPIO1                |
| 13 | LS2K_GPIO2    | GPIO2                |
| 14 | GND           | 系统地                  |
| 15 | LS2K_GPIO3    | GPIO3                |
| 16 | LS2K_GPIO04   | GPIO4                |
| 17 | P3V3          | 3.3∨ 电源              |
| 18 | LS2K_GPIO05   | GPIO5                |
| 19 | LS2K_SPI_SDO  | 2K SPI <b>的</b> MOSI |
| 20 | GND           | 系统地                  |
| 21 | LS2K_SPI_SDI  | 2K SPI 的 MISO        |
| 22 | LS2K_GPIO06   | GPIO6                |
| 23 | LS2K_SPI_SCK  | 2K SPI <b>的时钟</b>    |
| 24 | LS2K_SPI_CSN1 | 2K SPI <b>的片选</b> 1  |
| 25 | GND           | 系统地                  |
| 26 | LS2K_SPI_CSN2 | 2K SPI <b>的片选</b> 2  |
| 27 | LS2K_IICO_SDA | 2K I2CO <b>的数据线</b>  |
| 28 | LS2K_IICO_SCL | 2K I2CO <b>的时钟线</b>  |
| 29 | LS2K_GPIO08   | GPIO8                |
| 30 | GND           | 系统地                  |
| 31 | LS2K_GPIO09   | GPIO9                |
| 32 | LS2K_GPIO10   | GPIO10               |
| 33 | LS2K_GPIO11   | GPIO11               |
| 1  |               |                      |



| 34 | GND              | 系统地                 |
|----|------------------|---------------------|
| 35 | LS2K_GPIO12      | GPIO12              |
| 36 | LS2K_GPIO37      | GPIO37              |
| 37 | LS2K_GPIO13      | GPIO13              |
| 38 | LS2K_GPIO38      | GPIO38              |
| 39 | LS2K_GPIO40      | GPIO40              |
| 40 | LS2K_GPIO41      | GPIO41              |
| 41 | LS2K_GPIO56      | GPI056              |
| 42 | LS2K_GPI057      | GPI057              |
| 43 | LS2K_GPIO57      | GPIO58              |
| 44 |                  | GPI058              |
|    | LS2K_GPIO59      |                     |
| 45 | PWM0             | PWM0                |
| 46 | PWM1             | PWM1                |
| 47 | PWM2             | PWM2                |
| 48 | PWM3             | PWM3                |
| 49 | CANH0            | CANO <b>总线的</b> H   |
| 50 | CANLO            | CANO <b>总线的</b> L   |
| 51 | CANL1            | CAN1 <b>总线的</b> H   |
| 52 | CANL1            | CAN1 <b>总线的</b> L   |
| 53 | UART4_TXD        | 2K UART4 <b>的发送</b> |
| 54 | UART4_RXD        | 2K UART4 <b>的接收</b> |
| 55 | UART5_TXD        | 2K UART5 <b>的发送</b> |
| 56 | UART5_RXD        | 2K UART5 <b>的接收</b> |
| 57 | GND              | 系统地                 |
| 58 | GND              | 系统地                 |
| 59 | RS232_DEBUG_TXD0 | RS232 调试串口的发送       |
| 60 | RS232_DEBUG_RXD0 | RS232 调试串口的接收       |



## 5.3.2 Ejtag 接口

本板卡的 EJTAG 接口从 CPU 引出,但并未焊接对外连接器。如需使用 EJTAG 接口进行调试,可以与销售人员联系对接。如果需要针对 Nor Flash 进行烧写,可以直接将板上的 Nor Flash 拆下使用烧写器完成烧写。

#### 5.3.3 M.2 接口

本板卡的系统在出厂时已经烧录到 SSD 卡中,并且 SSD 卡已固定在板上,可以直接使用。用户也可以根据实际需求更换不同容量的 SSD 卡。SSD 卡的规格要求为 Key B-M,2242,SATA 协议,固定孔在中间。

### 5.3.4 音频接口

本板卡的音频接口集成了输入输出的功能。采用的是 3.5mm 国际 4 段式的耳机插孔,用户将耳机插入耳机插孔即可实现音频的输入输出。

## 5.3.5 HDMI 接口

本板卡采用 HDMI TYPE A 接口,用户只需要接上 HDMI 线和显示屏即可实现 HDMI 的数据显示。如果显示屏是使用的 VGA 的接口,需要添加 HDMI 转 VGA 的转接头。

## 5.3.6 USB2.0 接口

本板卡采用的是双 USB2.0 接口的连接器,可插入 TYPE A 接口的 USB 设备。

### 5.3.7 USB3.0 接口

本板卡采用的是双 USB3.0 接口的连接器,可插入 TYPE A 接口的 USB 设备。



## 5.3.8 网络接口

本板卡集成了1路千兆自适应网络。采用 RJ45 接口,用户在使用时将网线直接插入即可,网络使用前需要先配置网络的 IP 地址。

## 5.3.9 复位按键

本版卡集成了1个复位按键,用户可以实现手动复位。

### 5.3.10 调试接口

本板卡的调试接口在双排针上,用户在使用时需要将调试串口用杜邦线引出。

## 5.3.11 RTC 电池接口

本板卡预留了1路 RTC 电池的接口。注意不接 RTC 电池, RTC 计时功能不可用, 如需使用此功能, 用户需自行安装接线式的 3V 纽扣电池。RTC 电池接法如下图, 用户使用时注意不要接反。





图-7RTC接口

#### 5.3.12 电源

本板卡需要采用 5V, 至少 2A, TYPE C接口的电源输入。注意,需使用支持快充的电源 线。

### 5.3.13 指示灯

本版卡共有 2 个指示灯,分别是电源指示灯和复位指示灯,电源正常时电源指示灯亮, 在手动复位时,按下按键,复位指示灯亮,松开后复位指示灯灭。

## 5.3.14 网口指示灯

黄灯常亮、绿灯闪烁表明已建立网络连接且有数据传输; 黄灯常亮、绿灯熄灭表明已建立网络连接但无数据传输; 无网络连接情况下,如果板卡已上电启动,两个指示灯会处于熄灭状态。



## 六、 Loongnix 操作系统

Loongnix 操作系统是龙芯开源社区推出的 Linux 操作系统,龙芯教育派 LA 预装 Loongnix-embedded 操作系统,作为龙芯软件生态建设的成果验证和展示环境,集成了内核、工具链、图形环境等操作系统基础设施方面的最新研发成果。

## 6.1 安装系统

建议使用大于 4G 的 U 盘, 获取 Loongnix-embedded 镜像文件, 然后在 Linux 下使用 DD 命令制作安装 U 盘。 Loongnix 系统可启动终端, 使用 dd 命令进行 镜像制作。

在 linux 操作系统中,使用 dd 命令,将 Loongbian的 iso 镜像写入到 U 盘。

\$ sudo dd if=loongbian\_current\_lxde.iso of=/dev/sdX bs=1M status=progress oflag=direct

注意: 该操作将会删除 U 盘上的所有数据。

请将/dev/sdX 替换为您 U 盘的设备名,如/dev/sdc,不要加分区编号(如/dev/sdcl),请检查设备名是否正确,避免写错设备导致数据丢失。 制作好启动 U 盘后,将 U 盘插入教育派板卡的 USB2.0 接口(黑色),安装程序自动启动。启动过程可能需要一段时间,请耐心等待。启动完成后请按图形界面指引安装。



### 6.2 内核编译环境搭建

#### 安装编译依赖:

sudo apt install libncurses5 - dev libssl–dev

#### 指定交叉工具链:

export PATH=/opt/loongarch64-linux-gnu-2021-12-10-vector/bin:\$PATH

#### 采用 2K1000LA 的配置文件

cp arch/loongarch/configs/ls2k1000\_defconfig .config

make menuconfig ARCH=loongarch

#### 编译内核:

make vmlinuz ARCH=loongarch CROSS\_COMPILE=loongarch64-linux-gnu- -j 4

编译完成后,会在当前目录下看到生成的 vmlinux 文件,与压缩后的内核文件 vmlinuz。

编译脚本 mymake 如下:

#### #!/bin/sh

export LC\_ALL=C LANG=C

export PATH=/opt/loongarch64-linux-gnu-2021-12-10-vector/bin:\$PATH

make vmlinuz ARCH=loongarch CROSS\_COMPILE=loongarch64-linux-gnu- -j 4 "\$@"

#### 编译时执行:

./mymake menuconfig

./mymake vmlinuz



## 6.3 启动内核

### 6.3.1 手动启动

#### 进入 pmon 命令行,依次输入如下命令:

load (wd0,0)/vmlinuz #加载内核

initrd (wd0,0)/rootfs.cpio.gz #加载文件系统

g console=ttyS0,115200 rdinit=/sbin/init #启动

linux

此处为参考命令,内核启动支持 U 盘,硬盘,NAND,网络加载方式。

### 6.3.2 自动启动

使用 boot.cfg

PMON 启动最后会去常用存储设备的 boot 目录找 boot.cfg 文件,并按照

#### boot.cfg 的参数启动,例:

timeout 3

default 0

showmenu 1

title 'Loongnix power test'

kernel (wd0,0)/boot/vmlinuz\_test

args

console=tty console=ttyS0,115200 root=/dev/sda1

mytest=power

title 'Loongnix '

kernel (wd0,0)/boot/vmlinuz\_2kla

aras

console=tty console=ttyS0,115200 root=/dev/sda1 loglevel=8

title 'Loongnix reboot test'

kernel (wd0,0)/boot/vmlinuz\_2kla

args



console=tty console=ttyS0,115200 root=/dev/sda1 loglevel=8 mytest=reboot

其中 kernel 为内核二进制所在路径,args 为内核传参。

注:boot.cfg 启动支持 U 盘,硬盘,网络加载方式。

## 6.4 应用程序编译

## 6.4.1 编译 C/C++语言程序

#安装工具链

./loongarch64-toolchain.sh

#设置环境变量

source /opt/poky/3.3+snapshot/environment-setup-loongarch64-poky-linux

#编译

\$CC -o hello hello.c

# 6.4.2 QT Creator 交叉开发环境搭建

#### 步骤如下:

1. 选择菜单栏的工具-选项





2.设置 qmake,如图 Kits->QT versions 里添加 qmke 路径

/opt/poky/3.3+snapshot/sysroots/x86\_64-pokysdk-linux/usr/bin/qmake



3.设置 gcc 和 g++,如图 Kits->编译器里添加 gcc 路径:

/opt/poky/3.3+snapshot/sysroots/x86\_64-pokysdk-linux/usr/bin/loongarch64-poky-linux/loongarch64-poky-linux-gcc

4.g++路径:/opt/poky/3.3+snapshot/sysroots/x86\_64-



pokysdk-linux/usr/bin/loongarch64-poky-linux/loongarch64-poky-linux-g++



5.设置 Kits,如图 Kits->Kits 里添加 sysroot 路径及上面设置的 QMAKE、

gcc、g++,sysroot 路径:

/opt/poky/3.3+snapshot/sysroots/x86\_64-pokysdk-linux



6. 设置完成后保存,编译工程时选择 LA 即可



## 6.5 编译 QT 程序

#### 资料包提供了编译应用程序的交叉工具链,主要针对 Q T 应用

下载 loongarch64-toolchain.sh,并执行,具体流程如下:

./loongarch64-toolchain.sh source /opt/poky/3.3+snapshot/environment-setup-loongarch64-poky-linux

#查看 gmake 版本

amake -v

#进入需要编译的程序,命令行编译

qmake make

## 七、注意事项

- 教育派已经预装了龙芯版 Loongnix-embedded 操作系统,用户插上电源即可自动完成系统启动,无需制作系统盘与按动开机按键。
- 使用工具链编译软件时,注意工具链的版本。
- 教育派为直接接触硬件,使用时请多加小心,上电过程中请勿用手直接接触主板,若使 用不当可能直接导致硬件平台损毁。
- 教育派可以直接使用 TYPE-C 手机充电器供电,启动电压/电流为 5V/2A,经过测试,部分标称 2A 充电器实际电流无法达到 2A,可能导致主板启动失败,建议选用 2.1A 或以上的充电器供电。
- 部分 VGA 转 HDMI 转换器由于供电问题无法正常在教育派使用,建议使用原生接口。