THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Coursework 10

ne: CHAN CHO KIT,	0AVIO Student No.: [1551]5546
s: MATH 1510 61	
	The Section
	and of Hariagangidas malians and har har har
in academic work, and of the	are of University policy and regulations on hones ne disciplinary guidelines and procedures applic licy and regulations, as contained in the websi policy/academichonesty/
in academic work, and of the	ne disciplinary guidelines and procedures applic icy and regulations, as contained in the websi

General Guidelines for Coursework Submission.

- Please go to the class indicated by your registered course code via the CUSIS system.
 Failure to comply will result in a 2-point deduction of the final score.
- Please write your answers using a black or blue pen, NOT any other color or a pencil.
- Points will only be awarded for answers with sufficient justifications.
- All questions in Part A along with some selected questions in Part B will be graded. Question(s) labeled with * are more challenging.

For internal use only:

1	1.2	1 5 5	411	+) · · ·	7	
2	3			3			,
3	2	nj-	, .		7		
4 🏦	1 2+	У ³⁰ -	17	4	V -1	- 0	
5					Total		/ 10

Part A

1. Evaluate each of the following definite integrals.

(a)
$$\int_0^2 x \ln(x^2 + 1) dx$$

(b)
$$\int_0^5 |-x^2+7x-10| dx$$

$$du = 2x dx$$

$$\int_{2}^{4} \int_{1}^{8} \ln(u) du$$

$$= \frac{1}{2} \left[u \ln(u) \right]_{1}^{5} - \frac{1}{2} \int_{1}^{5} u \cdot (\frac{1}{u}) du$$

$$= \frac{5}{2} \ln 5 - \frac{1}{2} \left[u \right]_{1}^{5}$$

$$= \frac{2}{4} \ln 5 - 2$$

(b)
$$\int_{1}^{2} (-x)^{2} + 7x - (0) dx + \int_{2}^{2} (x^{2} - 7x + 10) dx$$

$$= \left[-\frac{1}{3}x^{3} + \frac{1}{2}x^{2} - 10x \right]_{2}^{2} + \left[\frac{1}{3}x^{3} - \frac{1}{2}x^{2} + 10x \right]_{2}^{2}$$

$$= 4 \int_{1}^{2} \frac{16}{3} x - \frac{16}{6} + \frac{16}{3}$$

$$f(x) = \frac{1}{(1+x)\sqrt{x}}.$$

Evaluate each of the following improper integrals.

(a)
$$\int_{1}^{\infty} f(x) dx$$

(b)
$$\int_0^1 f(x) \, dx$$

(a)
$$\int_{1}^{\infty} \frac{\int}{(1+x)\sqrt{x}} dx$$

Let
$$u = \int_{\infty}^{\infty} \int_{\infty}^{\infty} dv$$
, $du = \frac{1}{2\sqrt{2}} dv$

$$=2\int_0^1 \frac{1}{u^2+1} du$$

Part B

- 3. (a) Find $\frac{d}{dx} \int_0^x e^{(t^2)} dt$.
 - (b) Find $\frac{d}{dx} \int_0^{\sin 2x} e^{\sin t} dt$.
 - (c) By L'Hôpital's rule and parts (a),(b), evaluate

$$\lim_{x \to 0} \frac{\int_0^x e^{(t^2)} dt}{\int_0^{\sin 2x} e^{\sin t} dt}$$

(a) e^{x^2}

(c)
$$lm = \frac{e^{x^2}}{2\cos(2x)} e^{sh(sih2x)}$$

$$F(x) = \int_0^x |t| \, dt.$$

(a) F(x) can be stated explicitly in the form

$$F(x) = \begin{cases} g(x) & \text{if } x \ge 0 \\ h(x) & \text{if } x < 0, \end{cases}$$

where g, h are polynomials. Find g(x), h(x).

(b) Sketch the graph of F(x).

(a)
$$({}^{2}(x)) = \begin{cases} \int_{0}^{x} (t) dt & \text{if } x > 0 \\ -\int_{0}^{x} (t) dt & \text{if } x < 0 \end{cases}$$

$$= \begin{cases} \frac{1}{2}\chi^2 & \text{if } \chi \geq 0 \end{cases}$$

$$-\frac{1}{2}\chi^2 & \text{if } \chi < 0 \end{cases}$$

(6)

- 5. Let $f(x) = x^2$.
 - (a) Evaluate $\int_0^1 f(x) dx$.
 - (b) Suppose that the interval [0,1] is subdivided into n equal subintervals. Define A_n to be the Riemann sum of f(x) as shown below.

Find A_n in terms of n.

(Hint:
$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$
 and $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$)

(c) By parts (a), (b), verify that

$$\lim_{n\to\infty} A_n = \int_0^1 f(x) \, dx$$

(a)
$$\int_0^1 (x^2) dx = \left[\frac{1}{3} x^3 \right]_0^1$$

$$= \frac{1}{3}$$

(6)
$$A_{n} = \frac{1}{n} \times \left[\left(\frac{1}{n} \right)^{2} + \left(\frac{2}{n} \right)^{2} + \dots + \left(\frac{n-1}{n} \right)^{2} + \frac{1}{n^{2}} \right]$$

$$= \frac{1}{n} \times \left[\frac{N}{n^{2}} \cdot \frac{k^{2}}{n^{2}} \right]$$

$$=\frac{(n+1)(2n+1)}{6n^2}$$

$$\mathcal{A} = \frac{2n^2 + 3n + 1}{6n^2}$$

(c)
$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \left(\frac{2n^2 + 3n + 1}{6n^2} \right)$$

$$= \lim_{n\to\infty} \left(\frac{2+\frac{3}{n}+\frac{1}{n^2}}{6} \right)$$

$$= \frac{1}{3} \int_{0}^{1} f(x) dx$$

$$=\int_0^1 f(x) dx$$