ELEKTRİK TESİSLERİNDE KORUMA

- 1.) GİRİŞ (Güvenlik ve Koruma Kavramları Korumadan Beklenen Özellikler)
- 2.) ELEKTRİK ENERJİ SİSTEMLERİ- ÜRETİM-İLETİM-DAĞİTİM-YÜK DİZGELERİ
- 3.) DAĞITIM ŞEBEKELERİ (TT, TN, IT)
- **4.)** TANIMLAR (AG, ...GÖVDE,....U_N, I_N,...)
- 5.) HATA AKIMI DEVRESİ (HATA AKIMI, HATA GERİLİMİ, ...)
- **6.)** HATA AKIMININ ETKİLERİ
- 7.) KORUMA YÖNTEMLERİ
 - DİREKT TEMASA KARŞI
 - > ENDİREKT TEMASA KARŞI
 - TEHLİKELİ DURUM ÖNLENİR
- 8.) KORUMA KÜÇÜK GERİLİMİ KULLANMAK (SELV, PELV, FELV)
- **9.**) KORUMA YALITIMI (İZALASYONU)
 - TEHLİKELİ DURUM AZALTILIR,
- **10.**) KORUMA AYIRMASI
- 11.) IT ŞEBEKE KULLANMAK (Potansiyel dengelenmesi ve yalıtım kontrollu)
 - HATALI KISIM DEVREDEN ÇIKARTILIR
- 12.) HATA AKIMI ARTTIRILARAK
 - TOPRAKLAMA
 - KORUMA İLETKENİ
- 13.) HATA AKIMI İLE KORUMAK
- **14.**) HATA GERİLİMİ İLE KORUMAK
- 15.) AŞIRI AKIM / KISA DEVRELERE KARŞI KORUMA
- **16.**) SİGORTALAR
 - ERİYEN TELLİ (BUŞONLU BIÇAKLI)
 - TERMİK AÇICI / RÖLE
 - MANYETİK AÇICI / RÖLE
 - KONTAKTÖR
 - OTOMATİK SİGORTA (GÜÇ ANAHTARI)
- **17.**) SEKONDER KORUMA
- **18.**) RÖLELER
- **19.**) AŞIRI AKIM RÖLESİ
- **20.**) DİFERANSİYEL RÖLE
- **21.**) MESAFE RÖLESİ
- 22.) SCADA
- **23.**) FREKANS RÖLESİ
- **24.**) AŞIRI GERİLİME KARŞI KORUMA
- **25.**) PARAFUDURLAR
- **26.**) AŞIRI GERİLİM RÖLELERİ

1. GİRİŞ (Güvenlik – Koruma)

Güvenlik (Safety); Koruma (Protection)

Güvenlik; Dolaylı-Dolaysız İnsan Hayatı koruma, Yangına Karşı Koruma, Cihaz koruma esaslarını bir hata devresi sistematiği içinde inceler, önlemlerini söyler.

Koruma; daha çok elektrik cihazlarının (generatör, trafo, iletim hattı, çeşitli yükler vb.) özellikle aşırı akım ve aşırı gerilimlerden korunmasını inceler ve koruma cihazlarını tanıtır.

Korumadan Beklenen Özellikler

a.) Güvenilirlik (reliability) : Bütün arıza türlerinde koşulsuz çalışma sağlanmalıdır.

b.) Seçicilik (selectivity) : Arızanın büyüklüğü ve yerine göre, sistemin tümü değil yalnızca

arızalı kısım devre dışı kalmalıdır.

c.) Hız : Koruma cihazı/sistemi yeterince hızlı olmalıdır

d.) Basitlik ve sadelik : Bu cihazlar, kullanım yerlerine göre ilgili/yetkililerin anlayabileceği

basitlikte olmalıdır.

e.) Ekonomi : Cihaz/sistem amaca uygun ekonomiklikte olmalıdır.

2. ELEKTRİK ENERJİ SİSTEM DİZGELERİ (ŞEBEKELERİ)

Klasik anlamda elektrik enerjisi iletim sistemini, Üretim-İletim-Dağıtım diye nitelemek çok sık karşılaşılan bir sınıflamadır.

Tipik Tek Hat şeması

Diğer taraftan incelenen durum veya bölgeye göre sistemi daha ayrıntılı sınıflamak da mümkündür. Dağıtımım peşinden yüklerin gelmesi tabiidir. Öbür taraftan eğer sadece üretimle ilgilenilir ise, iletim ve dağıtım sistemleri bile yük olarak göz önüne alınabilirler.

Gerilim Seviyeleri:

Alçak Gerilim	Orta Gerilim	Yüksek Gerilim	Çok YG	Çok Çok YG
(Low Voltage)	(Medium Voltage)	(High Voltage)	(Extra HV)	(Ultra HV)
$Un < 1 \ kV$	1- 100 kV	100-220 kV	220-800 kV	800 kV < Un
190 / 110 V	6-36 kV	66 kV	345 kV	1000 kV
380 / 220 V		138 kV	400 kV	1500 kV
440 V		154 kV	500 kV	
660 V		220 kV	765 kV	

Dal Şebeke (Tek taraflı besleme)

Halka Şebeke (Çift taraflı besleme)

Ağ (Gözlü) Şebeke

Trafo Yıldız Noktası doğrudan topraklanabilir, empedans üzerinden topraklanabilir veya topraktan izole edilebilir

3. DAĞITIM ŞEBEKELERİ (TT, TN, IT)

Şebeke Sistemleri aşağıdaki kısaltmalarla karakterize edilmektedir:

1.Harf : Kaynağın Topraklama özelliklerini göstermektedir,

T : Bir noktanın direk olarak topraklanmasını

I : Tüm aktif kısımların Topraktan yalıtılmasını veya bir noktanın empedans üzerinden

topraklanmasını sembolize etmektedir.

2.Harf : Elektrik Cihazının Gövdesinin Topraklama koşullarını göstermektedir,

T : Gövdenin, kaynağa ait topraklamadan bağımsız bir şekilde, direk olarak

topraklanmasını

N : Gövdenin, direk olarak işletmeye ait topraklama hattına bağlanmasını sembolize

etmektedir.

Ayrıca TN Şebekede:

S : Nötr (N) ve Koruma (PE) hatları ayrıdır

C : Nötr (N) ve Koruma (PE) hatları ortaktır (PEN)

S (seperate :ayrı), C (common:ortak), PE (protection earth: koruma iletkeni) N (nötr)

ifade etmektedir.

TT SistemiSistem nötrü ve cihazlar ayrı ayrı topraklanmış

TN-S SistemiKoruma ve nötr fonksiyonları ayrı iletkenlerle

İletken kesitleri 10 mm² ye eşit veya küçük olan şebekelerde TN-S sistem kullanmak zorunludur.

TN-C-S SistemiKoruma ve nötr fonksiyonları şebekenin bir bölümünde birleştirilmiş

TN-C Sistemi Koruma ve nötr fonksiyonları birleştirilmiş

IT Sistemi Sistem nötrü yalıtılmış ve cihazlar topraklanmış

* IMD : Yalıtım İzleme Cihazı (Insulation Monitoring Device) https://www.bender.de/en/products/insulation-monitoring-overview https://file.scirp.org/Html/3-6401032_3325.htm#txtF2

4. TANIMLAR

Alçak Gerilim : Etkin değeri 1kV un altında olan gerilimlerdir

Tüketici Tesisi: Tüketicileri beslemek için yapılan elektrik tesisleridir

Tüketici : Elektrik enerjisini elektriksel olamayan diğer enerji türlerine

çeviren cihazlardır.

İşletme aracı : Elektrik enerjisinden yararlanmak üzere kullanılan cihazlardır.

Aktif Kısım : İşletme açısından gerilim altında bulunan ve işletme akım devresine ait sargı, direnç vb. iletken kısımlardır. Pasif

kısımlara karşı "işletme izolasyonu" ile yalıtılmışlardır.

Gövde (Pasif Kısım) : İşletme aracının her an temas edilebilecek olan, aktif

kısımlarından işletme izolasyonu ile ayrılan fakat bir izolasyon hatası sonucu gerilim altında kalabilen madeni ve iletken

kısımlardır

Yıldız Noktası : Herhangi bir işletme elemanının yıldız bağlı sargılarının ortak

düğüm noktasıdır.

Faz İletkeni : Kaynakla tüketicileri bağlayan iletkenlerdir, (R S T) veya (L1

L2 L3) olarak gösterilirler.

Nötr İletkeni : Üç fazlı sistemlerde yıldız nıktadından çıkan iletkendir (N)

veya (O) harfi ile gösterilir.

Koruma İletkeni : Cihazları temas gerilimine karşı korumak için, cihaz

gövdelerini işletme topraklamasına bağlayan iletkendir. (PEN)

ile gösterilir.

Anma Gerilimi (U_N) Şebekenin adlandırıldığı gerilim olup faz arası değerdedir.

Bir tesis bölümünde veya bir işletme aracında faz iletkenleri İşletme Gerilimi (Ui) arasındaki yerel gerilimdir. (Ui<=Un veya Ui>Un olabilir)

Hata Gerilimi (U_H) Bir gövde kaçağı (yalıtım hatası) olması durumunda, gövde ile

referans toprağı arasında oluşan gerilimdir

Topraklayıcı Gerilimi (UE) Bir gövde kaçağı (yalıtım hatası) sonucu topraklayıcıdan bir

hata akımı akması durumunda, topraklayıcı ile referans toprağı

arasında oluşan gerilimdir

Temas Gerilimi (U_T) Hata Geriliminin insan vücudu tarafından köprülenen kısmıdır

Topraklayıcı ile referans toprağı arasındaki gerilim dağılımıdır Yeryüzü Potansiyeli (φ)

Adım Gerilimi (Us) Bir kaçak olması durumunda, yeryüzü potansiyelinin insan

(veya canlı) ayakları arasında köprülenen kısmıdır

Hata Akımı (IH) Bir yalıtım hatası sonucunda, gövde, toprak veya koruma

iletkeninden geçen akımdır

Cihazların aktif kısımlarından, işletme izolasyonu üzerinden Kaçak Akım

gövdelerine geçen akımdır.

Toprakla iletken bir bağlantı kurmak amacıyla, toprağa Topraklayıcı (Elektrod; E)

gömülen iletken malzemelerdir.

Topraklama : Cihazların topraklanacak olan kısımlarının (örneğin, gövdelerinin) topraklama tesisi üzerinden, toprak ve iletken

bağlantısının yapılmasıdır.

Topraklama Tesisi : Birbirleriyle iletken olarak bağlanmış olan, topraklama hattı,

varsa topraklama barası ve topraklayıcıların tamamıdır.

Topraklama Hattı : Tesisin veya işletme araçlarının veya cihazların tıpraklanacak

olan bölümlerini, topraklayıcı ile bağlayan iletkendir.

Referans Toprağı : Bir topraklayıcıdan yeteri kadar uzaklıkta bulunan (yaklaşık 20

m) ve yeryüzü potansiyelinin yeterince küçük olduğu toprak

Zemin : İşletme araçlarının yerleştirildiği ve insanların ayak bastıkları

yerdir. Zeminle toprak arasında bir geçiş direnci söz konusu

olup bu direnç çeşitli faktörlere bağlıdır.

Yayılma (Geçiş) Direnci : Bir topraklayıcı ile referans toprağı arasındaki geçiş direncidir.

İşletme Topraklaması : İşletme araçlarının aktif kısımlarının ve nötr hattının

 $top raklan mas {\it id}{\it ir}$

Koruma Topraklaması : Bir yalıtım hatası durumunda, insanları yüksek temas

gerilimlerine karşı korumak için işletme araçlarının

gövdelerinin topraklanmasıdır

5. HATA AKIMI DEVRESİ

Şekil 5.1. Hata Oluşumu – Gövde Kaçağı

R_{TRF} : Trafo Faz Sargısının Direnci

RHAT : İletim Hattı Direnci

R_{G1} : Yalıtım hatasının oluştuğu yerdeki geçiş direnci

R_{G2} : Arızalı işletme aracı gövdesi ile insan eli geçiş direnci

Ri : İnsan vücudu direnci

R_{G3} : İnsan ayağının bastığı yerdeki ayak ile zemin arasındaki geçiş

direnci

R_{G4} : Zemin ile gerçek toprak arasındaki geçiş direnci

RE : Toprağın direnci

R_A : Arızalı işletme aracının üzerinde durduğu altlık direnci

RG5 : Altlık ile gerçek toprak arasındaki geçiş direnci

R_T : Koruma Topraklaması direnci

Ro : İşletme Topraklaması direnci

Şekil 5.1. Hata Akımı Eşdeğer Devresi (topraklama yok, motorun altlığı zeminden yalıtılmış)

Şekil 5.2. Hata Akımı Eşdeğer Devresi (topraklama var " R_T ")

Şekil 5.3. Hata Akımı Eşdeğer Devresi (koruma iletkeni var "R_{PEN}")

Örnek Problem 4.1.)

Aşağıda şekli verilen TT şebekeye bağlı cihazda bir gövde kaçağı olması durumunda;

- a) Cihaz topraklanmamış durumda iken, R_H =1 ohm, R_i =2000 ohm, R_{G4} = 198, R_o =1 ohm (diğer tüm dirençler ihmal) değerleri ile akacak **Hata akımını, Hata Gerilimini** ve **Temas Gerilimini** hesaplayınız
- **b**) Topraklama yapılması durumunda, topraklama direncini R_T =0,2 ohm kabul ederek; **Hata akımını, Hata Gerilimini** ve **Temas Gerilimini** hesaplayınız. (NOT : U_H =220 V)

Çözüm 4.1.

a.) Hata akımı devresindeki dirençlerin toplamı;

$$R_{TOPLAM} = R_H + R_{\dot{1}} + R_{G4} + R_o$$

 $R_{TOPLAM} = 1 + 2000 + 198 + 1 = 2200 \text{ Ohm}$

Hata akımı;

$$I_{H} = \frac{U_{R}}{R_{TOPLAM}} = \frac{220}{2200} = 0.1A$$

Hata Gerilimi:

$$U_H = (R_1 + R_{G4}) \times I_H = 2198 \times 0.1 = 219.8 \text{ V}$$

Temas Gerilimi:

$$U_T = R_i \times I_H = 2000 \times 0.1 = 200 V$$

b.) Yeni durumda hata akımı devresindeki dirençlerin toplamı;

$$\begin{split} R_{TOPLAM} &= R_H + (R_1 + R_{G4}) /\!/ \ R_T + R_o \\ R_{TOPLAM} &= 1 \ + (2000 + 198) /\!/ 0.2 \ + 1 \ = \ 1 + 0.2 + 1 \ = \ 2.2 \ Ohm \end{split}$$

Hata akımı;

$$I_{H} = \frac{U_{R}}{R_{TOPLAM}} = \frac{220}{2.2} = 100 A$$

Hata Gerilimi:

$$U_H = (R_1 + R_{G4})x)//R_T \times I_H = 0.2x \cdot 100 = 20 \text{ V}$$

Temas Gerilimi:

$$U_{T} = \frac{R_{i}}{R_{i} + R_{G4}} \cdot U_{H} = \frac{2000}{2198} \cdot 20 = 18,2 \text{ V}$$

Örnek Problem 4.2.)

Aşağıda şekli verilen **TN-C** şebekeye bağlı cihazda bir gövde kaçağı olması durumunda; **a-) Hata akımını, Hata Gerilimini** ve **Temas Gerilimini** Hesaplayınız **b-)** Gövdeyi koruma iletkenine bağlayan telin kopması durumunda; **Hata akımını, Hata Gerilimini** ve **Temas Gerilimini** Hesaplayınız

U_{Y}	••	220 V
$R_{TRF+HAT}$	••	0,4 Ω
R _{G1}	:	0,2 Ω
Ri	••	2000Ω
R _{G4}	:	198 Ω
Ro	••	1,4 Ω
R _{PEN}	:	0,4 Ω

Not: verilmeyen dirençler ihmal edilecektir!
Zemin ile cihaz gövdesi arası
"altlık" tam yalıtkandır!

Çözüm 4.2.

a.) Hata akımı devresindeki eşdeğer direnç;

$$R_{TOPLAM} = R_{TRF+HAT} + R_{G1} + R_{PEN} / / (R_{\dot{1}} + R_{G4} + R_{O})$$

$$R_{TOPLAM} = R_{TRF+HAT} + R_{G1} + \frac{(R_{PEN})x(R_{1} + R_{G4} + R_{O})}{(R_{PEN} + R_{1} + R_{G4} + R_{O})}$$

$$R_{TOPLAM} = 0.4 + 0.2 + \frac{(0.4)x(2000 + 198 + 1.4)}{(0.4 + 2000 + 198 + 1.4)} = 0.6 + \frac{0.4x2199.4}{2199.8} = 0.6 + 0.4 = 1\Omega$$

Hata akımı;

$$I_{H} = \frac{U_{R}}{R_{TOPLAM}} = \frac{220}{1} = 220 A$$

Hata Gerilimi:

$$U_{PEN} = R_{PEN} \times I_H = 0.4 \times 220 = 88 \text{ V}$$

 $U_{PEN}=U_{H}+U_{RO}$

$$U_{H} = \frac{R_{1} + R_{G4}}{R_{1} + R_{G4} + R_{O}} \times U_{PEN} = \frac{2198}{2199,4} \times 88 \cong 88 \text{ V}$$

Temas Gerilimi:

$$U_{T} = \frac{R_{1}}{R_{1} + R_{G4}} \times U_{H} = \frac{2000}{2198} \times 88 \cong 80 \text{ V}$$

b.) Hata akımı devresindeki dirençlerin toplamı;

$$\begin{split} R_{TOPLAM} &= R_{TRF+HAT} + \ R_{G1} + R_{1} + R_{G4} + R_{o} \\ R_{TOPLAM} &= 0,4 \ +0,2 + 2000 \ + \ 198 \ +1,4 \ = 2200 \ Ohm \end{split}$$

Hata akımı;

$$I_{\rm H} = \frac{U_{\rm R}}{R_{\rm TOPLAM}} = \frac{220}{2200} = 0.1A$$

Hata Gerilimi:

$$U_H = (R_1 + R_{G4}) \times I_H = 2198 \times 0.1 = 219.8 \text{ V}$$

Temas Gerilimi:

$$U_T = R_i \times I_H = 2000 \times 0.1 = 200 V$$

Tablo 5.1. Sigortaların 5s ve 0,4 s lik açma sürelerine karşılık gelen açma akımları

Alçak Ge	Alçak Gerilim gL, gG, gM sigortaları				
In	In	In			
(A)	(A)	(A)			
	5 s	0,4 s			
2	9,5	17			
4	19	32			
6	28	50			
10	48	80			
16	70	120			
20	86	150			
25	115	210			
32	150	250			
35	173	267			
40	200	300			
50	250	460			
63	330	610			
80	430	800			
100	580	1050			
125	715	1300			
160	950	1800			

Örnek Problem 4.3.) Motorun altlığının direncinin göz önüne alınması

Şekil 5.4. Hata Akımı Eşdeğer Devresi (topraklama yok, motorun altlığı belirli bir "R_A" dirence sahip)

Şekil 5.5. Hata Akımı Eşdeğer Devresi (topraklama var "R_T: Topraklama Direnci", motorun altlığı belirli bir "R_A" dirence sahip)

Şekil 5.6. Hata Akımı Eşdeğer Devresi (topraklama var "R_T: Topraklama Direnci", motorun altlığı ile insanın üzerinde durduğu zeminler farklı "R_{G5}: Motor altlığının durduğu zemin ile referans toprak arası geçiş direnci")

Örnek Problem 4.4.) Şekil 5.4 – 5.5 – 5.6.'da Topraklama yerine "Koruma İletkeni" kullanılması durumları için "hata akımı devreleri" ayrıca irdelenmelidir.

Ortak Topraklama İletkeni