CSCI-B609: A Theorist's Toolkit, Fall 2016

Oct 6

Lecture 14: Hamming and Hadamard Codes

Lecturer: Yuan Zhou Scribe: Kaiyuan Zhu

1 Recap

Recall from the last lecture that error-correcting codes are in fact injective maps from k symbols to n symbols in Σ ,

Enc:
$$\Sigma^k \to \Sigma^n$$

where k and n are referred to as the message dimension and block length respectively. We also call the image of the encoding function code, which is usually denoted by C, i.e. C = Im(Enc); and an element $y \in C$ a codeword.

The minimum distance d is defined as the smallest Hamming distance between two distinct codewords,

$$d = \min_{y_1 \neq y_2 \in C} \{ \Delta(y_1, y_2) \} = \min_{y_1 \neq y_2 \in C} |\{i : y_{1i} \neq y_{2i}\}|$$

We want d to be large so that more errors can be tolerated, but this makes the number of vertices we can put in Σ^n smaller. Therefore we have to sacrifice the rate $\frac{k}{n}$ to generate the same number of codeword. In many ways, coding theory is about exploring a tradeoff.

2 Linear Codes

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is still a codeword. Linear codes have the following advantages: i. easy to figure out the minimum distance; and ii. simple encoding and decoding algorithms.

Definition 1. (Linear code) Let $\Sigma = \mathbb{F}_q$ be a finite field with q elements, then C is linear if $\forall y_1, y_2 \in C \subseteq \mathbb{F}_q^n$, $y_1 + y_2 \in C$. In other words, let $G \in \mathbb{F}_q^{n \times k}$ be a full rank $n \times k$ matrix (making the map injective), then Enc: $\mathbb{F}_q^k \to \mathbb{F}_q^n$ becomes $x \mapsto Gx$, which defines a linear code with its generator matrix G.

Example. Let
$$q = 2$$
, $n = 3$ and $k = 2$. Then the generator matrix $G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, so that

$$G \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{pmatrix}. \text{ Thus } C = \text{Im}(G) = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Note that for linear codes, we introduce the following notation $[n, k(d)]_q$ henceforth, where n is the block length, k is the message dimension, and d is the minimum distance if known.

Definition 2. (Hamming weight) The Hamming weight of $x \in \mathbb{F}_q^n$ in a linear code is denoted by $wt(x) = \Delta(x,0)$.

Fact 1. In a linear code, the minimum distance d is equal to the minimum Hamming weight of a nonzero codeword.

Proof.

$$d = \min_{y_1 \neq y_2 \in C} \{ \Delta(y_1, y_2) \} = \min_{y_1 \neq y_2 \in C} \{ \Delta(y_1 - y_2, 0) \} = \min_{y = y_1 - y_2 \neq 0 \in C} \{ wt(y) \}$$

Definition 3. (Dual code) Given $[n,k]_q$ code C, denote the orthogonal space $C^{\perp} \triangleq \{y \in \mathbb{F}_q^n : y^Tx = 0, \forall x \in C\}$ as the dual code of C. Note that C^{\perp} has parameters $[n,n-k]_q$.

Definition 4. (Parity check matrix) The parity check matrix H of C is defined as an $(n-k) \times n$ matrix such that $C^{\perp} = Im(Enc^{\perp})$, where $Enc^{\perp} : \mathbb{F}_q^{n-k} \to \mathbb{F}_q^n$ maps w to H^Tw . In other words, H^T is the generator matrix of C^{\perp} .

Example. Reconsider the previous example, in which

$$C = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

Therefore
$$C^{\perp} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
 and $H = (1, 1, 1)$.

Fact 2. $y \in C \Leftrightarrow Hy = 0$. (re-express the code as null space of the parity check matrix)

Proof. Notice that H^T is the generator matrix of C^{\perp} , i.e. C^{\perp} is the row span of H. Let

$$H = \begin{pmatrix} h_1^T \\ h_2^T \\ \vdots \\ h_{n-k}^T \end{pmatrix}, \text{ then } Hx = 0 \Leftrightarrow \begin{cases} h_1^T x = 0 \\ h_2^T x = 0 \\ \vdots \\ h_{n-k}^T x = 0 \end{cases} \Leftrightarrow \forall a_1, a_2, \cdots, a_{n-k} \in \mathbb{F}_q, \ \left(\sum_{i=1}^{n-k} a_i h_i^T\right) x = 0 \Leftrightarrow \forall y \in C^\perp, y^T x = 0 \Leftrightarrow x \in (C^\perp)^\perp = C$$

Corollary 3. The minimum distance d is the minimum number of columns in H that are linearly dependent.

Proof.
$$d = \min_{y \neq 0 \in C} \{ wt(y) \} = \min \{ wt(y) \mid y \neq 0, Hy = 0 \}.$$

3 Hamming Code

Hamming code [1] is defined by the case of linear code that q=2, which has excellent rate $\frac{k}{n}\approx 1$ but lower distance as we will see later.

Definition 5. (Hamming code) Let $r \in \mathbb{N}^+$. Define the parity check matrix of a Hamming code as

$$H = \begin{pmatrix} 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \end{pmatrix}$$

i.e. $H \in \mathbb{F}_2^{r \times (2^r - 1)}$, which is spanned by all distinct $2^r - 1$ nonzero column vectors.

Example. For
$$r = 2$$
, $H = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, and $C = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$.

Theorem 4. Hamming code is $[2^r - 1, 2^r - 1 - r, 3]_2$ code.

Proof. We only need to prove d=3, which is equivalent to say the minimum number of linearly dependent column is 3. Since 0 is not a column of H, every 2 cloumns are linearly independent. But there exists obviously triple of linearly dependent columns, such

as,
$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$
.

Remark. Let $n = 2^r - 1$, then Hamming code is $[n, n - \log_2(n+1), 3]_2$ code.

Since the distance is 3, Hamming code is uniquely decodable for up to $\left\lfloor \frac{3}{2} \right\rfloor = 1$ error. In fact, we can correct one error easily. Let $y \in C$ be any codeword, and $z = y + e_i$ be the received message. Then

$$Hz = H(y + e_i) = He_i$$

which is just the *i* the column of *H*. Otherwise Hz = 0 implies that *y* is not modified. For example, with $y = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $z = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $Hz = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. This indicates that index 3 has changed.

Definition 6. (Perfect code) C is a perfect code if Hamming balls centered at codewords of radius t (i.e. max errors) can partition Σ^n exactly.

Theorem 5. Hamming code is perfect.

Proof.
$$\forall x \in \mathbb{F}_2^n$$
, if $Hx = 0$, then $x \in C$. Otherwise $Hx = h_i$, where h_i is the *i*-th column of H . Hence $H(x + e_i) = 0$ and therefore $x + e_i \in C$.

4 Hadamard Code

The *Hadamard code* is a code with extremely low rate but high distance. It is always used for error detection and correction when transmitting messages over very noisy or unreliable channels.

Definition 7. (Hadamard Code) Let $r \in \mathbb{N}^+$. The generator matrix of Hadamard code is a $2^r \times r$ matrix where the rows are all possible binary strings in \mathbb{F}_2^r .

Example. For
$$r=2$$
, we have $G=\begin{pmatrix}0&0\\0&1\\1&0\\1&1\end{pmatrix}$, which maps the messages to $Gx=\begin{pmatrix}0\\0\\1&1\end{pmatrix}$, $\begin{pmatrix}0\\1\\0\\1\end{pmatrix}$, $\begin{pmatrix}0\\1\\1\\0\end{pmatrix}$, $\begin{pmatrix}1\\1\\1\\0\end{pmatrix}$.

Fact 6. Hadamard code is a $[2^r, r, 2^r - 1]_2$ code.

Proof. It suffices to prove the minimum weight of a nonzero codeword is $2^r - 1$. Let $x \neq 0 \in$

 \mathbb{F}_2^n , i.e. $\exists k \text{ s.t. } x_k = 1$. Then

$$\frac{wt(Gx)}{2^r} = \mathbb{P}_{i \in [2^r]}[g_i^T x = 1]$$

$$= \mathbb{P}_{y \in \mathbb{F}_2^r}[y^T x = 1]$$

$$= \mathbb{P}_{y' \in \mathbb{F}_2^{[r] \setminus \{k\}}, y_k \in \mathbb{F}_2} \left[y_k x_k + \sum_{i \neq k} y_i' x_i = 1 \right]$$

$$= \mathbb{E}_{y' \in \mathbb{F}_2^{[r] \setminus \{k\}}} \mathbb{P}_{y_k \in \mathbb{F}_2} \left[\sum_{i: i \neq k} y_i' x_i = 1 + y_k \right] = \frac{1}{2}$$

where g_i^T denote the *i*-th row of G.

Remark. In other words, Hadamard code is $[n, \log_2 n, \frac{n}{2}]_2$ code with $n = 2^r$.

Reference

- [1] Hamming, R. W. (1950). Error detecting and error correcting codes. *Bell System technical journal*, 29(2), 147-160.
- [2] http://www.cs.cmu.edu/~odonnell/toolkit13/lecture10.pdf