Lin Gui

5747 S. Ellis Avenue, Jones 203/204, Chicago, IL, 60637 Email: glin6@uchicago.edu; Website: https://gl-ybnbxb.github.io/

EDUCATION

Ph. D. in Statistics, The University of Chicago, Chicago, USA
M.S. in Statistics, The University of Chicago, Chicago, USA
B.S. in Statistics, University of Science and Technology of China, Hefei, China
2018-2020
2014-2018

RESEARCH INTERESTS

- Alignment for Large Language Models
- Causal Inference and Machine Learning
- Statistical Inference and Multiple Testing
- Controllable Generative Models

PUBLICATIONS

• Aggregating Dependent Signals with Heavy-Tailed Combination Test

Lin Gui, Yuchao Jiang, Jingshu Wang

Submitted to Journal of the American Statistical Association

- We undertook comprehensive theoretical and empirical evaluations to decipher the intricacies of the state-of-the-art Cauchy combination test and its extension, termed as the heavy-tailed combination test, tailored for the global test with correlated hypotheses. On top of that, we offered a general practical guideline about when the method should be applied and how much power gain can be expected.

• Concept Algebra for Score-Based Text-Controlled Generative Models

Zihao Wang, Lin Gui, Jeffrey Negrea, Victor Veitch *NeurIPS* 2023

 We established a mathematical framework linking representation structures with concepts in text-driven generative models. We demonstrated that the Stein score of the text-controlled distribution is an arithmetically composable representation of the input text, and developed concept algebra as a technique for manipulating the concepts expressed by the model through algebraic manipulation of this representation.

• Causal Estimation for Text Data with (Apparent) Overlap Violations

Lin Gui, Victor Veitch *ICLR* 2023

- We formulated a formal causal estimand tailored to the causal inference of the text-attribute question, and verified its identifiability under minimal conditions. We provided a computationally efficient estimation of the uncertainty quantification of this causal estimand, supported by theoretical assurances.

• Detecting Multiple Replicating Signals using Adaptive Filtering Procedures

Jingshu Wang, Lin Gui, Weijie J. Su, Chiara Sabatti, Art B. Owen *The Annals of Statistics* 50.4 (2022), 1890-1909

- We introduced an innovative multiple testing procedure that enhances detection power by adaptively filtering out unlikely candidates of PC nulls, and theoretically established the control of both Family-Wise Error Rate (FWER) and False Discovery Rate (FDR) for this method.

RESEARCH (ONGOING)

- Human Preference Alignment for Large Language Models
 - Developing methods to improve large language models aligned with human preference
 - Designing better reward models and investigating the theoretical and empirical performances
- A Theoretical and Practical Analysis of the Heavy-Tailed Combination Test for Global Test with Correlated Hypotheses
 - Estimating the tail probability of the summation of some heavy-tailed random variables with more general correlation structures to confirm the validity of the heavy-tailed combination test in more realistic scenarios.

CODING SKILLS

• R, Python, MATLAB, SQL; PyTorch, Numpy, Pandas

CONFERENCES AND PRESENTATIONS

- Concept Algebra for Score-Based Text-Controlled Generative Models
 - NeurIPS 2023
 - ICML 2023 Workshop SPIGM and SCIS
- Causal Estimation for Text Data with (Apparent) Overlap Violations
 - ICLR 2023
- Detecting Multiple Replicating Signals Using Adaptive Filtering Procedures
 - Joint Statistical Meetings 2021

HONORS & AWARDS

• Nominee, The 37th. Guo Moruo Scholarship (The highest honor at USTC)	2017
Winner, Outstanding Student Scholarship, USTC	2016-2017
Winner, China National Scholarship, USTC	2015

TEACHING EXPERIENCE

- STAT 22000: Statistical Methods and Applications Winter 2021, Spring 2021, Autumn 2021
- STAT 27420: Introduction to Causality with Machine Learning

 Autumn 2022
- STAT 24630: Causal Inference Methods and Case Studies Spring 2022