Cálculo Numérico Computacional

May 24, 2021

Autor: Renan Tonolli Mondini - RA: 191010324

1 Trabalho 2

Importando as bibliotecas:

```
import math
import numpy as np
import sympy
from sympy import *
from sympy.solvers import solve
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from IPython.display import HTML
from IPython.display import Markdown as md
x = sympy.symbols('x')
```

1.1

Definindo as funções e plotando a intersecção de y = cos(x) e $y = x^2 - 6$

```
[2]: def f1(x):
    return sympy.cos(x)
def f2(x):
    return x**2 - 6
def f(x):
    return sympy.cos(x) - x**2 + 6
```

```
[3]: f1_plot = sympy.plotting.plot(f1(x),xlim=(-4,4),ylim=(-7,4), show=False)
f2_plot = sympy.plotting.plot(f2(x), line_color = 'orange', show=False)
f1_plot.append(f2_plot[0])
f1_plot.show()
```


Define-se os intervalos de [a,b] como [-3,-2] e [2,3]

1.2

```
[4]: a = -3
b = -2
e = 0.01
x_k1 = 0
lista_x_k = list()
lista_er = list()
lista_f_x = list()
```

Função que decide qual limite substituir por \boldsymbol{x}_k

```
[5]: def escolher_lado(f_a, f_x, b, a, x_k1, x_k):
    if (f_a * f_x < 0):
        b = x_k
    else:
        a = x_k

    x_k1 = x_k
    return a, b, x_k1</pre>
```

Definindo o erro relativo como restrição $\frac{|x_k-x_{k-1}|}{max\{x_k,1\}}$

```
[6]: def erro_relativo(x_k, x_k1, max_xk_1):
    return (abs(x_k - x_k1)/max_xk_1)
```

Realizando as iterações, tem-se:

```
[7]: def metodo_biseccao(a, b, e, x_k1):
         eh_1_iteração = True
         lista_er.clear()
         lista_f_x.clear()
         lista_x_k.clear()
         while True:
             x_k = (a + b)/2
             f_x = f1(x_k) - f2(x_k)
             f_a = f1(a) - f2(a)
             lista_x_k.append(x_k)
             lista_f_x.append(abs(f_x))
             if abs(x_k) < 1:
                  \max_{xk_1} = 1
              else:
                  \max_{x} xk_1 = abs(x_k)
             lista_er.append(abs(x_k - x_k1)/max_xk_1)
              if not eh_1_iteração and (abs(f_x) >= e and erro_relativo(x_k, x_k1,_
      \rightarrowmax_xk_1) >= e ):
                  a, b, x_k1 = \text{escolher\_lado}(f_a, f_x, b, a, x_k1, x_k)
              elif eh_1_iteração and abs(f_x) >= e:
                  a, b, x_k1 = \text{escolher\_lado}(f_a, f_x, b, a, x_k1, x_k)
                  eh_1_iteração = False
              else:
                  break
         return x_k
```

```
[8]: x_k = metodo_biseccao(a, b, e, x_k1)
```

Plotando a tabela dos resultados obtidos pelas iterações.

```
[9]: df = pd.DataFrame({'Valor de x_k': lista_x_k,'Valor de f(x)': lista_f_x, 'ER':⊔

→lista_er})
```

[9]:

	Valor de x_k	Valor de f(x)	ER
0	-2.500000	1.051144	1.000000
1	-2.250000	0.309326	0.111111
2	-2.375000	0.360903	0.052632
3	-2.312500	0.023201	0.027027
4	-2.281250	0.143721	0.013699
5	-2.296875	0.060423	0.006803

Após 6 iterações pode-se concluir que $x_k = 2,296875$. Além disso na sexta iteração o erro relativo é menor que a precisão de ε .

1.3

Utilizando a mesma equação do erro relativo como restrição $\frac{|x_k - x_{k-1}|}{max\{x_k,1\}}$, bem como a equação que decide qual limite substituir por x_k , calculamos pelo método da falsa posição.

```
[10]: def metodo_falsa_posicao(a, b, e, x_k1):
          eh_1_iteração = True
          lista_er.clear()
          lista f x.clear()
          lista_x_k.clear()
          while True:
               f_a = float(f1(a) - f2(a))
               f_b = float(f1(b) - f2(b))
               x_k = (a * f_b - b * f_a)/(f_b - f_a)
               f_x = f1(x_k) - f2(x_k)
               lista_x_k.append(x_k)
               lista_f_x.append(abs(f_x))
               if abs(x_k) < 1:
                   max_xk_1 = 1
               else:
                   \max_{x_{k_1}} x_{k_1} = abs(x_k)
               lista_er.append(abs(x_k - x_k1)/max_xk_1)
               if not eh_1_iteração and (abs(f_x) >= e and erro_relativo(x_k, x_k1,_
       \rightarrowmax_xk_1) >= e ):
                   a, b, x_k1 = \operatorname{escolher\_lado}(f_a, f_x, b, a, x_k1, x_k)
```

```
elif eh_1_iteração and abs(f_x) >= e:
    a, b, x_k1 = escolher_lado(f_a, f_x, b, a, x_k1, x_k)
    eh_1_iteração = False

else:
    break
return x_k
```

Plotando a tabela dos resultados obtidos pelas iterações.

```
[11]: x_k = metodo_falsa_posicao(a, b, e, x_k1)

df = pd.DataFrame({'Valor de x_k': lista_x_k,'Valor de f(x)': lista_f_x, 'ER':

→lista_er})

md(df.to_markdown(numalign = 'center', stralign = 'center', floatfmt = '.6f',

→index=True))
```

[11]:

	Valor de x_k	Valor de f(x)	ER
0	-2.284158	0.128242	1.000000
1	-2.306449	0.009219	0.009665

Após 2 iterações pode-se concluir que $x_k = 2,306449$. Além disso na segunda iteração o erro relativo e o valor da f(x) são menores que a precisão de ε .

1.4

Utilizando a mesma equação do erro relativo como restrição $\frac{|x_k-x_{k-1}|}{\max\{x_k,1\}}$, bem como a equação que decide qual limite substituir por x_k , calculamos pelo método da bisecção e da falsa posição com $\varepsilon = 0,001$.

```
[12]: a = 3
b = 2
e = 0.0001
x_k1 = 1
```

```
[13]: x_k = metodo_biseccao(a, b, e, x_k1)
```

Plotando a tabela dos resultados obtidos pelas iterações do método da bisecção.

```
[14]: df = pd.DataFrame({'Valor de x_k': lista_x_k, 'Valor de f(x)': lista_f_x, 'ER':

→lista_er})

md(df.to_markdown(numalign = 'center', stralign = 'center', floatfmt = '.6f',

→index=True))
```

[14]:

	Valor de x_k	Valor de $f(x)$	ER
0	2.500000	1.051144	0.600000

	Valor de x_k	Valor de $f(x)$	ER
1	2.250000	0.309326	0.111111
2	2.375000	0.360903	0.052632
3	2.312500	0.023201	0.027027
4	2.281250	0.143721	0.013699
5	2.296875	0.060423	0.006803
6	2.304688	0.018651	0.003390
7	2.308594	0.002265	0.001692
8	2.306641	0.008196	0.000847
9	2.307617	0.002966	0.000423
10	2.308105	0.000351	0.000212
11	2.308350	0.000957	0.000106
12	2.308228	0.000303	0.000053

Após 13 iterações pode-se concluir que $x_k = 2,308228$. Além disso na décima terceira iteração o erro relativo é menor que a precisão de ε .

Plotando a tabela dos resultados obtidos pelas iterações do método da falsa posição.

```
[15]: x_k = metodo_falsa_posicao(a, b, e, x_k1)

df = pd.DataFrame({'Valor de x_k': lista_x_k,'Valor de f(x)': lista_f_x, 'ER':

→lista_er})

md(df.to_markdown(numalign = 'center', stralign = 'center', floatfmt = '.6f',

→index=True))
```

[15]:

	Valor de x_k	Valor de f(x)	ER
0	2.284158	0.128242	0.562202
1	2.306449	0.009219	0.009665
2	2.308048	0.000657	0.000693
3	2.308162	0.000047	0.000049

Após 4 iterações pode-se concluir que $x_k=2,308162$. Além disso na quarta iteração o erro relativo é menor que a precisão de ε .

1.5

Definindo a função e sua derivada

```
[16]: def f(x):
return sympy.cos(x) - x**2 + 6
```

```
[17]: def f_dx(x):
    return -2 * x - sympy.sin(x)
```

Definindo um valor inicial de $x_k = -2, 5$ e $\varepsilon = 0,0001$

```
[18]: x_k = -2.50
e = 0.0001
lista_x_k.clear()
lista_f_dx = list()
lista_f_ x = list()
lista_e = list()
```

Definindo o erro relativo como restrição $\frac{|x_k-x_{k-1}|}{max\{x_k,1\}}$

```
[19]: def erro_relativo(x_k, x_k1, max_xk_1):
    return (abs(x_k - x_k1)/max_xk_1)
```

Realizando as iterações do método de Newton:

```
[20]: def metodo_newton(x_k, e):
          eh_1_iteração = True
          x_k1 = 0
          while True:
              lista_x_k.append(x_k)
              lista_f_x.append(f(x_k))
              lista_f_dx.append(f_dx(x_k))
              if abs(x_k) < 1:
                   max_xk_1 = 1
               else:
                   \max_{x_{k_1}} x_{k_1} = abs(x_k)
              lista_e.append(abs(x_k - x_k1)/max_xk_1)
               if not eh_1_iteração and (abs(f(x_k)) >= e and erro_relativo(x_k, x_k1, u)
       \rightarrowmax_xk_1) > e):
                   x_k1 = x_k
                   x_k = x_k - (f(x_k)/f_dx(x_k))
               elif eh_1_iteração and abs(f(x_k)) >= e:
                   x_k1 = x_k
                   x_k = x_k - (f(x_k)/f_dx(x_k))
                   eh_1_iteração = False
               else:
                   break
          return x_k
```

```
[21]: x_k = metodo_newton(x_k, e)
```

Plotando a tabela dos resultados obtidos pelas iterações.

```
[22]: df = pd.DataFrame({'x_k': lista_x_k,'f_dx(x_k)': lista_f_dx, 'f(x_k)': 

→lista_f_x,'ER': lista_e})
md(df.to_markdown(numalign = 'center', stralign = 'center', floatfmt = '.6f', 

→index=True))
```

[22]:

	x_k	f_dx(x_k)	f(x_k)	ER
0	-2.500000	5.598472	-1.051144	1.000000
1	-2.312245	5.361980	-0.021832	0.081201
2	-2.308173	5.356581	-0.000011	0.001764

Após 3 iterações pode-se concluir que $x_k = 2,308173$. Além disso na terceira iteração o valor da f(x) é menor que a precisão de ε .

1.6

Definindo a função $g(x) = \sqrt{\cos(x) + 6}$

```
[23]: def g(x):
    return sqrt(sympy.cos(x) + 6)
```

Calculando a derivada de g(x):

$$[24]: g_dx = diff(g(x), x)$$

$$g_dx$$

[24]:
$$-\frac{\sin(x)}{2\sqrt{\cos(x)+6}}$$

Analisando a função é possível visualizar que a função sen(x) e cos(x) são periódicas e assumirão intervalos de -1 a 1, assim o maior valor que o numerador pode assumir é 1, e o menor valor que o denominador pode assumir será $2\sqrt{6}$. Portanto, para qualquer valor de x variando nos reais a função retornará valores entre 0 e $\frac{1}{2\sqrt{5}}$, respeitando a inequação $\left|\frac{-sen(x)}{2\sqrt{cos(x)+6}}\right| < 1$.

Definindo um valor inicial de $x_k = 2, 5$ e $\varepsilon = 0,001$

```
[25]: x_k = 2.5
e = 0.001
lista_x_k = list()
lista_g_x = list()
lista_f_x = list()
lista_e = list()
```

Realizando as iterações do método de ponto fixo:

```
[26]: def metodo_ponto_fixo(x_k, e):
    while True:
```

```
lista_x_k.append(x_k)
x_k1 = x_k
x_k = g(x_k)
lista_g_x.append(x_k)
lista_f_x.append(abs(f(x_k)))

if abs(x_k) < 1:
    max_xk_1 = 1

else:
    max_xk_1 = abs(x_k)

lista_e.append(abs(x_k - x_k1)/max_xk_1)

if(abs(f(x_k)) >= e and erro_relativo(x_k, x_k1, max_xk_1) > e):
    continue

else:
    break

return x_k1
```

```
[27]: x_k1 = metodo_ponto_fixo(x_k, e)
```

Plotando a tabela dos resultados obtidos pelas iterações.

```
[28]: df = pd.DataFrame({'x_k': lista_x_k, 'g(x_k)': lista_g_x, 'f(x_k)': lista_f_x, \( \to 'ER': lista_e \) md(df.to_markdown(numalign = 'center', stralign = 'center', floatfmt = '.6f', \( \to \) index=True))
```

[28]:

	x_k	g(x_k)	f(x_k)	ER
0	2.500000	2.280100	0.149838	0.096443
1	2.280100	2.312724	0.024405	0.014106
2	2.312724	2.307442	0.003903	0.002289
3	2.307442	2.308288	0.000626	0.000366

Após 4 iterações pode-se concluir que $x_k = 2,308288$. Além disso na quarta iteração o erro relativo e o valor da f(x) são menores que a precisão de ε .

1.7

Portanto, pelas mesmas razões explicadas para os intervalos positivos de x para a função $\left|\frac{-sen(x)}{2\sqrt{\cos(x)+6}}\right|$, pode-se usar valores negativos pois a função é em módulo, tornando qualquer valor

negativo em positivo.

1.8

Definindo um valor inicial de $x_k = 2, 5$ e $x_{k-1} = 2$ e $\varepsilon = 0,001$

```
[29]: x_k = 2.50
e = 0.001
lista_x_k.clear()
lista_f_dx = list()
lista_f_ x = list()
lista_e = list()
```

Definindo a função f(x) e sua derivada a partir de $f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$

```
[30]: def f(x):
return sympy.cos(x) - x**2 + 6
```

```
[31]: def f_dx(x):
return (f(x) - f(x_k1))/(x - x_k1)
```

Realizando as iterações do método das secantes:

```
[32]: def metodo_das_secantes(x_k, e):
          eh_1_iteração = True
          x_k1 = 2
          while True:
              lista_x_k.append(x_k)
              lista_f_x.append(f(x_k))
              lista_f_dx.append(f_dx(x_k))
               if abs(x_k) < 1:
                   max_xk_1 = 1
               else:
                   \max_{x} xk_1 = abs(x_k)
              lista_e.append(abs(x_k - x_k1)/max_xk_1)
               if not eh_1_iteração and (abs(f(x_k)) >= e and erro_relativo(x_k, x_k1,_{\sqcup}
       \rightarrowmax_xk_1) > e):
                   x_k1 = x_k
                   x_k = x_k - (f(x_k)/f_dx(x_k))
               elif eh_1_iteração and abs(f(x_k)) >= e:
                   x_k1 = x_k
```

```
x_k = x_k - (f(x_k)/f_dx(x_k))
eh_1_iteração = False

else:
    break
return x_k
```

```
[33]: x_k = metodo_das_secantes(x_k, e)
```

Plotando a tabela dos resultados obtidos pelas iterações.

[34]:

	x_k	f_dx(x_k)	f(x_k)	ER
0	2.500000	-5.479118	-1.051144	0.200000
1	2.308155	-5.356083	0.000088	0.083116

Após 2 iterações pode-se concluir que $x_k = 2,308155$. Além disso na segunda iteração e o valor da f(x) é menor que a precisão de ε .