Data Mining (Week 1)

dm24s1

Topic 06: Data Modelling

Part 01: Data Modelling - Introduction

reparation Dr Bernard Butler

Department of Computing and Mathematics, WIT.

Exploring Data (bernard.butler@setu.ie)ploring Data 2

Autumn Semester, 2024

Outline

- Components of a machine learning problem
- Machine learning concepts and notation
- Bias vs variance
- Learning curves
- Regularisation

Wrap up

Data Mining (Week 6)

Outline

1. Machine Learning (ML) Overview	3
1.1. Three Components of a Machine Learning Problem	4
1.2. Problem–Task–Experience Perspective	8
1.3. Taxonomy of Machine Learning Methods	9
1.4. Statistical Models vs Machine Learning Models	11
2. Modelling Process	12
2.1. Models and error	14
2.2. Dataset Splits	22
2.3. Feature engineering	24
2.4. Wrap up	26

Three Components of a Machine Learning Problem

It is easy to get lost among the multitude of choices one needs to make when given data mining problem. A good decomposition is the following:

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs		Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
l		

Representation refers to formulating the problem as a machine learning problem — typically a classification problem, a regression problem or a clustering problem.

• How do we represent the input?

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
l		

Representation refers to formulating the problem as a machine learning problem — typically a classification problem, a regression problem or a clustering problem.

- How do we represent the input?
- What features to use?

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search

Representation refers to formulating the problem as a machine learning problem — typically a classification problem, a regression problem or a clustering problem.

- How do we represent the input?
- What features to use?
- How do we learn additional features?

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
l		

Representation refers to formulating the problem as a machine learning problem — typically a classification problem, a regression problem or a clustering problem.

- How do we represent the input?
- What features to use?
- How do we learn additional features?
- With each type of problem, we have multiple subtypes: For example which classifier? a decision tree, a neural network, a support vector machine, etc.

Three Components of a ML Problem — Evaluation

Instances Accuracy/Error rate Combinatorial optimization K-nearest neighbor Precision and recall Greedy search Support vector machines Squared error Beam search	Representation	Evaluation	Optimization
	Instances	Accuracy/Error rate	Combinatorial optimization
Support vector machines Squared error Ream search	K-nearest neighbor	Precision and recall	Greedy search
Support vector machines Squared error Beam search	Support vector machines	Squared error	Beam search

Evaluation refers to an objective function or a scoring function, to distinguish a good model from a bad model.

For a classification problem, we need this function to know if a given classifier is good or bad. A
typical function can be based on the number of errors made by the classifier on a test set, using
precision and recall.

Three Components of a ML Problem — Evaluation

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search

Evaluation refers to an objective function or a scoring function, to distinguish a good model from a bad model.

- For a classification problem, we need this function to know if a given classifier is good or bad. A
 typical function can be based on the number of errors made by the classifier on a test set, using
 precision and recall.
- For a regression problem, it could be the squared error, or likelihood. Do we include regularisation?

Three Components of a ML Problem — Optimisation

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search

Optimisation is concerned with searching among the models in the language for the highest scoring model.

• How do we search among all the alternatives?

Three Components of a ML Problem — Optimisation

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search

Optimisation is concerned with searching among the models in the language for the highest scoring model.

- How do we search among all the alternatives?
- Can we use some greedy approaches, branch and bound approaches, gradient descent, linear programming or quadratic programming methods.

Data Modelling (aka Machine Learning)

As alternative to the three component (Representation / Evaluation / Optimisation) viewpoint we can think of a machine learning problem as

Definition 1 (Machine Learning)

Study of algorithms that improve their performance P at some task T with experience E.

Data Modelling (aka Machine Learning)

As alternative to the three component (Representation / Evaluation / Optimisation) viewpoint we can think of a machine learning problem as

Definition 1 (Machine Learning)

Study of algorithms that improve their performance P at some task T with experience E.

- · What metric should be used to measure performance?
- · What cost function should be used?
- What is the cost of incorrect prediction?
- Computational cost?

Data Modelling (aka Machine Learning)

As alternative to the three component (Representation / Evaluation / Optimisation) viewpoint we can think of a machine learning problem as

Definition 1 (Machine Learning)

Study of algorithms that improve their performance P at some task T with experience E.

- What metric should be used to measure performance?
- What cost function should be used?
- What is the cost of incorrect prediction?
- Computational cost?

- How complex is the task?
- Task type: classification, regression, ...
- Linear vs nonlinear?
- What family of functions should be used?

As alternative to the three component (Representation / Evaluation / Optimisation) viewpoint we can think of a machine learning problem as

Definition 1 (Machine Learning)

Study of algorithms that improve their performance P at some task T with experience E.

- What metric should be used to measure performance?
- What cost function should be used?
- What is the cost of incorrect prediction?
- Computational cost?

- How complex is the task?
- Task type: classification, regression, ...
- Linear vs nonlinear?
- What family of functions should be used?

- How many historical observations are needed?
- How accurate/noisy is the data?
- Do we have missing values?
- Is the data representative?

...by Intuition/Motivation

... by Algorithmic Properties

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.

by Algorithmic Properties

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.
- by Algorithmic Properties

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

by Algorithmic Properties

• Regression models predict a numeric output.

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

... by Algorithmic Properties

- Regression models predict a numeric output.
- Classification models predict a discrete class value.

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

... by Algorithmic Properties

- Regression models predict a numeric output.
- Classification models predict a discrete class value.
- Neural networks learn based on a biological analogy

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

... by Algorithmic Properties

- Regression models predict a numeric output.
- Classification models predict a discrete class value.
- Neural networks learn based on a biological analogy
- Local models predict in the local region of a query instance.

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

... by Algorithmic Properties

- Regression models predict a numeric output.
- Classification models predict a discrete class value.
- Neural networks learn based on a biological analogy
- Local models predict in the local region of a query instance.
- Tree-based models (recursively) partition the data to make predictions.

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

... by Algorithmic Properties

- Regression models predict a numeric output.
- Classification models predict a discrete class value.
- Neural networks learn based on a biological analogy
- Local models predict in the local region of a query instance.
- Tree-based models (recursively) partition the data to make predictions.
- Ensembles learn multiple models and combine their predictions.
- by Fixed/Variable Number of Parameters

by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

... by Algorithmic Properties

- Regression models predict a numeric output.
- Classification models predict a discrete class value.
- Neural networks learn based on a biological analogy
- Local models predict in the local region of a query instance.
- Tree-based models (recursively) partition the data to make predictions.
- Ensembles learn multiple models and combine their predictions.

by Fixed/Variable Number of Parameters

• Parametric models have a fixed number of parameters.

...by Intuition/Motivation

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty, modelled by means of probability distributions.
- Logical models are defined in terms of easily interpretable logical expressions.

... by Algorithmic Properties

- Regression models predict a numeric output.
- Classification models predict a discrete class value.
- Neural networks learn based on a biological analogy
- Local models predict in the local region of a query instance.
- Tree-based models (recursively) partition the data to make predictions.
- Ensembles learn multiple models and combine their predictions.

- Parametric models have a fixed number of parameters.
- In non-parametric models the number of parameters grows with the amount of training data.

Aside: Scikit-learn Flowchart of Models (Shallow Learners)

Aside: Scikit-learn Flowchart of Models (Shallow Learners)

A neural network with more than one hidden layer is called a deep learner, all other learners are shallow learners.

- Can be huge (million+ observations)
- Large dimension (1000+, more for vision)
- Too large for human to parse / understand
- Data not clean humans can't afford to understand/fix each point

Statistical Models Data Usually small (< 1000 observations) • Low dimension (< 10 variables) • Can have detailed understanding of data Data is clean — human has looked at each data point Models Simple models — complexity limited by theory • Detailed/complex statistical assumptions re data • Model known, and data is carefully examined to verify assumptions. Validation

- Can be huge (million+ observations)
- Large dimension (1000+, more for vision)
- Too large for human to parse / understand
- Data not clean humans can't afford to understand/fix each point
- "No" upper limit on model complexity
- · Fewer statistical assumptions re data
- Don't know right model? No problem! have multiple models and vote/weight results

• Analysis of errors using theoretical distributions

Statistical Models Data Usually small (< 1000 observations) • Low dimension (< 10 variables) • Can have detailed understanding of data Data is clean — human has looked at each data point Models Simple models — complexity limited by theory • Detailed/complex statistical assumptions re data • Model known, and data is carefully examined to verify assumptions. Validation Evaluation based on theoretical estimates under stated statistical assumptions

- Can be huge (million+ observations)
- Large dimension (1000+, more for vision)
- Too large for human to parse / understand
- Data not clean humans can't afford to understand/fix each point
- "No" upper limit on model complexity
- Fewer statistical assumptions re data
- Don't know right model? No problem! have multiple models and vote/weight results
- Empirical evaluation methods instead of theory how well does it work on unseen data?
- Don't calculate expected error, measure it from unseen data.

Statistical Models Data Usually small (< 1000 observations) • Low dimension (< 10 variables) • Can have detailed understanding of data Data is clean — human has looked at each data point Models Simple models — complexity limited by theory • Detailed/complex statistical assumptions re data • Model known, and data is carefully examined to verify assumptions. Validation Evaluation based on theoretical estimates under stated statistical assumptions • Analysis of errors using theoretical distributions Statistics would be very different if it had been born

after the computer instead of 100 years before

- Can be huge (million+ observations)
- Large dimension (1000+, more for vision)
- Too large for human to parse / understand
- Data not clean humans can't afford to understand/fix each point
- "No" upper limit on model complexity
- Fewer statistical assumptions re data
- Don't know right model? No problem! have multiple models and vote/weight results
- Empirical evaluation methods instead of theory how well does it work on unseen data?
- Don't calculate expected error, measure it from unseen data.

Statistical Models Data • Usually small (< 1000 observations) • Low dimension (< 10 variables) • Can have detailed understanding of data Data is clean — human has looked at each data point Models Simple models — complexity limited by theory • Detailed/complex statistical assumptions re data • Model known, and data is carefully examined to verify assumptions. Validation Evaluation based on theoretical estimates under stated statistical assumptions • Analysis of errors using theoretical distributions

ML Models

- Can be huge (million+ observations)
- Large dimension (1000+, more for vision)
- Too large for human to parse / understand
- Data not clean humans can't afford to understand/fix each point
- "No" upper limit on model complexity
- · Fewer statistical assumptions re data
- Don't know right model? No problem! have multiple models and vote/weight results
- Empirical evaluation methods instead of theory how well does it work on unseen data?
- Don't calculate expected error, measure it from unseen data.

Splitting data into train+test(+validation) is vital

Statistics would be very different if it had been born after the computer instead of 100 years before

Outline

1.1. Three Components of a Machine Learning Problem

1.2. Problem-Task-Experience Perspective

1.3. Taxonomy of Machine Learning Methods	9
1.4. Statistical Models vs Machine Learning Models	11
2. Modelling Process	12
2.1. Models and error	14
2.2. Dataset Splits	22
2.3. Feature engineering	24
2.4. Wrap up	26

The Pipeline Metaphor

The Pipeline Metaphor

Comments

- We saw the first two stages in previous weeks
- This week we look at the remaining stages
- Of course this pipeline is a simplification. In reality it is iterative.

13 of 2

Definition 2 (Linear Model)

General form of linear model used in this module looks like

$$y_i \sim f_i^{(1)} + f_i^{(2)} + \dots + f_i^{(n)}$$

where y_i is the value of the response variable for observation i, and $f_i^{(j)}$; j = 1, ..., n is the value of the i^{th} feature for that observation.

Definition 2 (Linear Model)

General form of linear model used in this module looks like

$$y_i \sim f_i^{(1)} + f_i^{(2)} + \dots + f_i^{(n)}$$

where y_i is the value of the response variable for observation i, and $f_i^{(j)}$; j = 1, ..., n is the value of the i^{th} feature for that observation.

The model is linear in the sense that it can be turned into the following linear equation:

$$y_i = a_0 + a_1 f_i^{(1)} + a_2 f_i^{(2)} + \ldots + a_n f_i^{(n)} + \varepsilon_i$$

Definition 2 (Linear Model)

General form of linear model used in this module looks like

$$y_i \sim f_i^{(1)} + f_i^{(2)} + \dots + f_i^{(n)}$$

where y_i is the value of the response variable for observation i, and $f_i^{(j)}$; $j = 1, \dots, n$ is the value of the j^{th} feature for that observation.

The model is linear in the sense that it can be turned into the following linear equation:

$$y_i = a_0 + a_1 f_i^{(1)} + a_2 f_i^{(2)} + \ldots + a_n f_i^{(n)} + \varepsilon_i$$

Note that the features f can be nonlinear but the model parameters a must appear linearly.

Definition 2 (Linear Model)

General form of linear model used in this module looks like

$$y_i \sim f_i^{(1)} + f_i^{(2)} + \ldots + f_i^{(n)}$$

where y_i is the value of the response variable for observation i, and $f_i^{(j)}$; j = 1, ..., n is the value of the i^{th} feature for that observation.

The model is linear in the sense that it can be turned into the following linear equation:

$$y_i = a_0 + a_1 f_i^{(1)} + a_2 f_i^{(2)} + \ldots + a_n f_i^{(n)} + \varepsilon_i$$

Note that the features f can be nonlinear but the model parameters a must appear linearly.

The goal of modelling is to find *a* so that the *prediction error* is a minimum.

Bias-Variance and Total Error

Bias-Variance and Total Error

Bias-Variance and Total Error

Look for a that minimise the generalization error (estimated using the test set)

Comments

- Given data with some error (noise)
- Expected underlying model is indicated by the grey curve

Comments

- Given data with some error (noise)
- Expected underlying model is indicated by the grey curve
- In the next slides we will compare different models, indicated by red curves

Comments

- Given data with some error (noise)
- Expected underlying model is indicated by the grey curve
- In the next slides we will compare different models, indicated by red curves
- The models have different numbers of features

Comments

- Given data with some error (noise)
- Expected underlying model is indicated by the grey curve
- In the next slides we will compare different models, indicated by red curves
- The models have different numbers of *features*
- The values prediced by each model lie on the red curve

Comments

- Given data with some error (noise)
- Expected underlying model is indicated by the grey curve
- In the next slides we will compare different models, indicated by red curves
- The models have different numbers of *features*
- The values prediced by each model lie on the red curve
- The loss function is an estimate of how much the grey and red curves differ

High Bias, Low variance

High Bias, Low variance

High Bias, Low variance

Need more features...

Low Bias, Low variance

Low Bias, Low variance

Low Bias, Low variance

About the right number of features...

Low Bias, High variance

Low Bias, High variance

Low Bias, High variance

Too many features...

Example Model Types

Model	Applications	Concerns
Logistic Regression	X-ray classification	Regression with transformed variable
Fully connected networks	Classification	Classical ANN: choose encoding and size
Convolutional Neural Networks	Image processing	deep learning - choose segmentation
Recurrent Neural Networks	Voice recognition	ANN with feedback - how much?
Random Forest	Fraud Detection	Ensemble method - how many?
Reinforcement Learning	Learning by trial and error	Choose goal and penalties
Generative Models	Image creation	Choose parameters
K-means	Segmentation	Choose distance function and <i>k</i>
k-Nearest Neighbors	Recommendation systems	Choose distance function and <i>k</i>
Bayesian Classifiers	Spam and noise filtering	Deal with imbalances

Before you start...

Does a *pre-trained* model exist?

Transfer Learning

- Building a model from scratch is resource-intensive
- Open source data and model exist, particularly for deep learning (not in this nmodule)
- Most frameworks provide example models that can be used as a template
 - Select a similar model
 - Prune it (remove unnecessary terms)
 - Train using the pruned model as a starting point

Training, test and valuation subsets: 3-way Holdout

Why Split?

Hold back some data to check how the model is doing.

- Training data is sample used to fit the model parameters.
- Test data is sample used to test the final model fitted to the training data.
- Validation data is sample used to test each interim model while tuning it.

Training, test and valuation subsets: 3-way Holdout

Why Split?

Hold back some data to check how the model is doing.

- Training data is sample used to fit the model parameters.
- Test data is sample used to test the final model fitted to the training data.
- Validation data is sample used to test each interim model while tuning it.

Training, test and valuation subsets: 3-way Holdout

Why Split?

Hold back some data to check how the model is doing.

- Training data is sample used to fit the model parameters.
- Test data is sample used to test the final model fitted to the training data.
- Validation data is sample used to test each interim model while tuning it.

Typical Splits Dataset **Training Testing Training** Testing Validation

sklearn example

from sklearn.model_selection import train_test_split
trainVal, test = train_test_split(df, test_size=0.2, seed=42)
train, validation = train_test_split(trainVal, test_size=0.1)

K-fold cross validation

Source: https://scikit-learn.org/stable/modules/cross_validation.html

sklearn example

from sklearn.model_selection import cross_val_score

clf is some classifier, X and y are the features and target of the training set scores = cross_val_score(clf, X, y, cv=5)

scores is a k=5 element array, can be used to estimate the prediction error (or other score) while building a model

Featuring engineering 1: Scaling of numerical variables

Scaling - what it does

- If numeric features have different scales, e.g. [-0.005, -0.003] and [10000, 10001] some terms dominate, others are "lost"
- Better: transfer the scaling from the feature to the model parameter
- A min-max scaling is often a good choice:

$$\tilde{X} = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

- Note that X is in the range $[X_{\min}, X_{\max}]$ but \tilde{X} is in the range [0, 1].
- Other options include StandardScaler (subtract mean and divide by standard deviation) and a max-abs scaler (scales to [-1,1])

Featuring engineering 1: Scaling of numerical variables

Scaling - what it does

- If numeric features have different scales, e.g. [-0.005, -0.003] and [10000, 10001] some terms dominate, others are "lost"
- Better: transfer the scaling from the feature to the model parameter
- A min-max scaling is often a good choice:

$$\tilde{X} = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

- Note that X is in the range $[X_{\min}, X_{\max}]$ but \tilde{X} is in the range [0, 1].
- Other options include StandardScaler (subtract mean and divide by standard deviation) and a max-abs scaler (scales to [-1,1])

sklearn example

from sklearn.preprocessing import MinMaxScaler

df is a dataframe with numeric features

scaler = MinMaxScaler()

dfScaled = scaler.fit(df))

dfScaled can be used instead of df with the advantage that the fitted parameters are more accurate.

Feature Engineering 2: Choice of Features

- How many to include? Use metrics to decide. Will see some when considering regression and classification.
- How do we handle different feature types? Need to encode categorical variables.
- Can we derive new numeric features? Yes, $f' = \log(f)$ etc. is possible

Outline

2.4. Wrap up

3. Resources

1.1. Three Components of a Machine Learning Problem	4
1.2. Problem–Task–Experience Perspective	8
1.3. Taxonomy of Machine Learning Methods	9
1.4. Statistical Models vs Machine Learning Models	11
2. Modelling Process	12
2.1 Models and error	1.4

27

Using Categorical Features in (Logistic) Regression

How can Categorical-valued features participate in linear models?

Using Categorical Features in (Logistic) Regression

How can Categorical-valued features participate in linear models?

Given the following fragment of a dataset, where the goal is to predict the salary of employees in a large organisation:

	Roie	Skilled	Salary
Name			
Alice	Designer	Yes	40000
Bob	Programmer	No	25000
Carol	Tester	No	30000

Dala Chillad Calarry

Using Categorical Features in (Logistic) Regression

How can Categorical-valued features participate in linear models?

Given the following fragment of a dataset, where the goal is to predict the salary of employees in a large organisation:

Name			
Alice	Designer	Yes	40000
Dob	ъ.		0.5000

Role Skilled Salary

BobProgrammer No25000CarolTesterNo30000

How can this data be represented by a linear model, where all quantities must take numeric values?

Using pandas .getdummies() on a binary-valued column

Skilled_No Skilled_Yes

Name		
Alice	0	1
Bob	1	0
Carol	1	0

Using pandas .getdummies() on a binary-valued column

Skilled_No Skilled_Yes

Name		
Alice	0	1
Bob	1	0
Carol	1	0

Note that a binary-valued column becomes 2 dummy columns

Reducing redundancy (by 1) in 2 dummy columns

IsSkilled Name Alice 1 Bob 0 Carol 0

Reducing redundancy (by 1) in 2 dummy columns

```
Name
Alice 1
Bob 0
```

Carol 0

A single indicator column can replace a group of 2 dummy columns

Using pandas .getdummies() on a multi-valued column

Role_Designer Role_Programmer Role_Tester

1	<pre>dfRoleDummies = pd.get_dummies(df['Role'],\</pre>
	prefix='Role',\
	dtype= int)
	dfRoleDummies

1	Name			
	Alice	1	0	0
	Bob	0	1	0
'	Carol	0	0	1

Using pandas .getdummies() on a multi-valued column

$Role_Designer\ Role_Programmer\ Role_Tester$

Ī	<pre>dfRoleDummies = pd.get_dummies(df['Role'],\</pre>
ı	prefix='Role',\
ı	dtype= int)
ı	dfRoleDummies
١	

)	Name			
l	Alice	1	0	0
l	Bob	0	1	0
	Carol	0	0	1

Note that an n-valued column becomes n dummy columns

Reducing redundancy (by 1) in n dummy columns

	IsProgrammer	IsTester
Name		
Alice	0	0
Bob	1	0
Carol	0	1

Reducing redundancy (by 1) in n dummy columns

	IsProgrammer	IsTester
Name		
Alice	0	0
Bob	1	0
Carol	0	1

n-1 indicator columns can replace a group of *n* dummy columns

• Identify potential categorical features in EDA Pass 1

- Identify potential categorical features in EDA Pass 1
- Identify whether each feature is (potentially) usable in EDA Pass 2

- Identify potential categorical features in EDA Pass 1
- Identify whether each feature is (potentially) usable in EDA Pass 2
- Identify whether each feature is (potentially) useful in EDA Pass 3

- Identify potential categorical features in EDA Pass 1
- Identify whether each feature is (potentially) usable in EDA Pass 2
- Identify whether each feature is (potentially) useful in EDA Pass 3
- Add all potentially usable and useful features (regardless of type) to a list F

- Identify potential categorical features in EDA Pass 1
- Identify whether each feature is (potentially) usable in EDA Pass 2
- Identify whether each feature is (potentially) useful in EDA Pass 3
- Add all potentially usable and useful features (regardless of type) to a list F
- For each categorical feature f_j in F having n levels

- Identify potential categorical features in EDA Pass 1
- Identify whether each feature is (potentially) usable in EDA Pass 2
- Identify whether each feature is (potentially) useful in EDA Pass 3
- Add all potentially usable and useful features (regardless of type) to a list F
- For each categorical feature f_i in F having n levels
 - Derive n-1 indicator features \tilde{f}_j^k , where $k=1,\ldots,n-1$

- Identify potential categorical features in EDA Pass 1
- Identify whether each feature is (potentially) usable in EDA Pass 2
- Identify whether each feature is (potentially) useful in EDA Pass 3
- Add all potentially usable and useful features (regardless of type) to a list F
- For each categorical feature f_i in F having n levels
 - Derive n-1 indicator features \tilde{f}_i^k , where $k=1,\ldots,n-1$
 - Replace the original categorical feature f_j in F with the derived indicator features \tilde{f}_j^k .

- Identify potential categorical features in EDA Pass 1
- Identify whether each feature is (potentially) usable in EDA Pass 2
- Identify whether each feature is (potentially) useful in EDA Pass 3
- ullet Add all potentially usable and useful features (regardless of type) to a list F
- For each categorical feature f_i in F having n levels
 - Derive n-1 indicator features \tilde{f}_i^k , where $k=1,\ldots,n-1$
 - Replace the original categorical feature f_i in F with the derived indicator features \tilde{f}_i^k .
- Build the model using the features in *F*.

Outline

2.4. Wrap up

1.1. Three Components of a Machine Learning Problem	4
1.2. Problem–Task–Experience Perspective	8
1.3. Taxonomy of Machine Learning Methods	9
1.4. Statistical Models vs Machine Learning Models	11
2. Modelling Process	12
2.1. Models and error	14

• We have reviewed different types of models and considered their general form.

- We have reviewed different types of models and considered their general form.
- We looked at the goals of modelling: minimise predictive error.

- We have reviewed different types of models and considered their general form.
- We looked at the goals of modelling: minimise predictive error.
- We considered how feature engineering can help.

- We have reviewed different types of models and considered their general form.
- We looked at the goals of modelling: minimise predictive error.
- We considered how feature engineering can help.
 - Scaling numerical features, so that variation is treated fairly between features.

- We have reviewed different types of models and considered their general form.
- We looked at the goals of modelling: minimise predictive error.
- We considered how feature engineering can help.
 - Scaling numerical features, so that variation is treated fairly between features.
 - Choosing a subset of features (more to come in future weeks...), looking for the sweet spot between underand over-fitting.

- We have reviewed different types of models and considered their general form.
- We looked at the goals of modelling: minimise predictive error.
- We considered how feature engineering can help.
 - Scaling numerical features, so that variation is treated fairly between features.
 - Choosing a subset of features (more to come in future weeks...), looking for the sweet spot between underand over-fitting.
 - Encoding categorical features as numerical dummy features (more to come in future weeks...), so they can
 participate in linear models

- We have reviewed different types of models and considered their general form.
- We looked at the goals of modelling: minimise predictive error.
- We considered how feature engineering can help.
 - Scaling numerical features, so that variation is treated fairly between features.
 - Choosing a subset of features (more to come in future weeks...), looking for the sweet spot between underand over-fitting.
 - Encoding categorical features as numerical dummy features (more to come in future weeks...), so they can
 participate in linear models
- In subsequent weeks we will put this theory into practice.

Outline

2.4. Wrap up

1.1. Three Components of a Machine Learning Problem	4
1.2. Problem–Task–Experience Perspective	8
1.3. Taxonomy of Machine Learning Methods	9
1.4. Statistical Models vs Machine Learning Models	11
2. Modelling Process	12
2.1. Models and error	14

Resources

• A Summary of the Basic Machine Learning Models

towardsdatascience.com/a-summary-of-the-basic-machine-learning-models-e0a65627ecbe

• Train-Test Split for Evaluating Machine Learning Algorithms

```
https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms
```

This week I have focused on the theory rather than its (python) implementation. This is a nice article that covers the implementation side of things.

Cross-Validation: Estimator Evaluator

 $\verb|medium.com/swlh/cross-validation-estimator-evaluator-897d28afb4ff|$

Nice article that covers cross-validation in a lot more detail — we will be using many of these variants in later weeks, especially k-fold stratified.