Übung 6

6.1 Unendliche Mengen (3pt)

In der Vorlesung haben wir gezeigt, dass $\{0,1\}^{\infty}$, also die Menge der (einseitig) unendlichen binären Strings, überabzählbar ist. Benutzen Sie dieses Resultat, um zu beweisen, dass $\mathcal{P}(\mathbb{N})$, also die Potenzmenge der natürlichen Zahlen, ebenfalls überabzählbar ist.

6.2 Zwei Relationen (2pt)

Gegeben sind zwei Relationen T und V auf den natürlichen Zahlen \mathbb{N} , definiert als

$$T = \{(x, y) | x \text{ teilt } y\}$$

 $V = \{(x, y) | x \text{ ist ein Vielfaches von } y\}$

Beschreiben Sie die folgenden Relationen:

- a) $T \cup V$;
- b) $T \cap V$;
- c) $T \setminus V$;
- d) $V \setminus T$.

6.3 Eigenschaften von Relationen (3pt)

Bestimmen Sie für jede der folgendenen Relationen R auf der Menge der rationalen Zahlen \mathbb{Q} , ob sie reflexiv, symmetrisch oder transitiv ist, wobei xRy gegeben ist durch:

- a) x y = 0;
- b) |x| = y;
- c) $\frac{x}{y} \in \mathbb{N}$
- d) $xy \ge 1$;
- e) xy = 0;
- f) xy > 0;
- g) x = 2y;
- h) $x > y^2$;
- i) x = 1 oder y = 1;
- i) x = 1.

6.4 Matrixdarstellung (2pt)

Eine Relation R auf einer Menge $\mathcal X$ kann durch eine binäre $|\mathcal X| \times |\mathcal X|$ Matrix M dargestellt werden. Beschreiben und erklären Sie Eigenschaften von M, falls

- a) R reflexiv ist;
- b) R symmetrisch ist.

Zeigen Sie ebenfalls je ein Beispiel einer Relation mit der angegebenen Eigenschaft.