Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 10

Abgabe: Freitag, 25.06.2021, 09:15 Uhr

Notation. Sei A ein kommutativer Ring mit Eins.

Aufgabe 1 (Noethersch und artinsch).

(6 Punkte)

Entscheiden Sie (mit Begründung), ob die unten stehenden Moduln (i) noethersch und (ii) artinsch sind:

- (a) $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ als \mathbb{Z} -Modul für eine Primzahl p.
- (b) $\mathbb{C}[T_i | i \in \mathbb{N}]/(T_i^2 | i \in \mathbb{N})$ als Modul über sich selbst.
- (c) $\mathscr{C}([0,1],\mathbb{R}) = \{f \colon [0,1] \to \mathbb{R} \mid f \text{ stetig}\}$ als Modul über sich selbst (mit punktweiser Addition und Multiplikation).

Aufgabe 2 (Endomorphismen noetherscher Moduln).

(6 Punkte)

Sei $\varphi: M \to M$ ein surjektiver Endomorphismus eines noetherschen A-Moduls. Zeigen Sie, dass φ ein Isomorphismus ist. *Hinweis*: Betrachten Sie $\ker(\varphi^n)$ für $n \in \mathbb{N}$.

Aufgabe 3. (6 Punkte)

Seien K ein Körper, $n \in \mathbb{N}$ und $A = K[T_1, \dots, T_n]$. Für Polynome $f_1, \dots, f_k \in A$ bezeichne

$$V(f_1,...,f_k) := \{(x_1,...,x_n) \in K^n \mid \forall i = 1,...,n \colon f_i(x_1,...,x_n) = 0\}$$

die Menge der gemeinsamen Nullstellen in K^n . Zeigen Sie:

- (a) Es gibt eine kanonische Bijektion $V(f_1, \ldots, f_k) \to \operatorname{Hom}_{K-\mathtt{Alg}}(A/(f_1, \ldots, f_k), K)$.
- (b) Für $\underline{x} = (x_1, \dots, x_n) \in K^n$ gilt genau dann $(f_1, \dots, f_k) \subset (T_1 x_1, \dots, T_n x_n)$ (als Ideale in A), wenn $\underline{x} \in V(f_1, \dots, f_k)$.

Aufgabe 4 (Irreduzibilität¹).

(6 Punkte)

Ein topologischer Raum X heißt irreduzibel, falls $X \neq \emptyset$ und X nicht als Vereinigung zweier echter abgeschlossener Teilmengen dargestellt werden kann (oder äquivalent dazu, falls jede nichtleere offene Teilmenge dicht in X ist). Zeigen Sie:

- (a) Der topologische Raum Spec(A) ist genau dann irreduzibel, wenn das Nilradikal $\mathfrak{N}(A)$ ein Primideal ist.
- (b) Der Ring A ist genau dann nullteilerfrei, wenn Spec(A) irreduzibel und A reduziert ist.

Zusatzaufgabe 5 (Boolesche Ringe / Ist "noethersch" lokal?).

(6 Punkte)

Wir nennen A einen booleschen Ring, falls $a^2 = a$ für jedes Element $a \in A$.

- (a) Sei A ein boolescher Ring. Zeigen Sie:
 - (1) Für jedes $a \in A$ ist 2a = 0. Ist A nullteilerfrei, so ist $A \cong \mathbb{Z}/2\mathbb{Z}$.
 - (2) Jedes Primideal von A ist maximal.
 - (3) Ist A ein lokaler Ring, so ist $A \cong \mathbb{Z}/2\mathbb{Z}$. Hinweis: Betrachten Sie das Nilradikal.
 - (4) Der Ring A ist genau dann noethersch, wenn er endlich ist.
- (b) Zeigen oder widerlegen Sie: Ist für einen kommutativen Ring A mit Eins für jedes Primideal $\mathfrak{p} \subset A$ die Lokalisierung $A_{\mathfrak{p}}$ ein noetherscher Ring, so ist A ein noetherscher Ring.²

¹Diese Aufgabe ist Teil einer Serie von Aufgaben über das Spektrum eines Ringes.

²Die umgekehrte Implikation gilt nach Satz 19.14 aus der Vorlesung.