

期末复习(一)

日期:	时间:	姓名:	
Date:	Time:	Name:	

Y	初露锋芒
(-188)	

一、铁及其化合物的复习
1. 完成下列方程式的默写
(1) 金属 Fe 与 Cl ₂ 的反应:
(2) 金属 Fe 与 S 的反应:
(3) 在高温条件 Fe 下与水蒸气反应:
(4) Fe 与 FeCl₃溶液反应的离子方程式:
(5) 少量的 Fe 与稀硝酸反应:
(6) 过量的 Fe 与稀硝酸反应:
(7) Fe(OH)3 受热分解:
(8) Fe(OH)3 与稀盐酸反应的离子方程式:
(9) Fe(OH) ₂ 转变为 Fe(OH) ₃ 的反应:
(10) FeO 与稀硝酸的反应:
(11) 氯化铁腐蚀铜:
【答案】(1) 2Fe+3Cl ₂ $\xrightarrow{\text{点燃}}$ 2FeCl ₃ (2) Fe+S $\xrightarrow{\Delta}$ FeS (3) 3Fe+4H ₂ O(g) $\xrightarrow{\text{高温}}$ Fe ₃ O ₄ +4H ₂
(4) $2Fe^{3+}+Fe\rightarrow 3Fe^{2+}$ (5) $Fe+4HNO_3\rightarrow Fe(NO_3)_3+NO\uparrow +2H_2O$
(6) $3\text{Fe} + 8\text{HNO}_3 \rightarrow 3\text{Fe}(\text{NO}_3)_2 + 2\text{NO} \uparrow + 4\text{H}_2\text{O}$ (7) $2\text{Fe}(\text{OH})_3 \xrightarrow{\Delta} \text{Fe}_2\text{O}_3 + 3\text{H}_2\text{O}$
(8) Fe(OH) ₃ +3H ⁺ →Fe ³⁺ +3H ₂ O (9) 4Fe(OH) ₂ +O ₂ +2H ₂ O→4Fe(OH) ₃ 白色沉淀,逐渐变成灰绿色
最后变成红褐色。(10)3FeO+10HNO₃→3Fe(NO₃)₃+NO↑+5H₂O (11)Cu+2FeCl₃→CuCl₂+2FeCl₂
2. 其他知识补充
(1)金属晶体由和构成。
(2) 合金的硬度比各成分;熔点比各成分。
(3) 溶液的颜色 Fe ²⁺ :
(4) Fe ²⁺ 的检验;
Fe ³⁺ 的检验:。
(5) 与 Fe ²⁺ 不能共存的离子有:
与 Fe ³⁺ 不能共存的离子有:

	(6) 制备无水 FeCl ₃ 的方法:
	(7) 亚铁盐溶液在保存时,应在溶液中放少量铁粉以防其被氧化,同时滴加少量的相应酸以防其水解。
	(8) 制备 Fe(OH) ₂ 的方法很多,原则有两点:
_	0
	【答案】(1)金属阳离子 自由移动的电子 (2)大 低 (3)浅绿色 棕黄色
	(4) Fe ²⁺ 的检验: ①沉淀法; ②先滴加 KSCN 溶液,再通入氯气; Fe ³⁺ 的检验: ①沉淀法; ②滴加 KSCN
溶液;	$(5) \ NO_{3}^{-}(H^{+}), \ ClO^{-}, \ MnO_{4}^{-}(H^{+}), \ HCO_{3}^{-}, \ CO_{3}^{2-}, \ OH^{-} \\ S^{2-}, I^{-}, SO_{3}^{2-}, HCO_{3}^{-}, CO_{3}^{2-}, OH^{-}, SCN^{-} \\ S^{2-}, I^{-}, SO_{3}^{2-}, HCO_{3}^{2-}, CO_{3}^{2-}, OH^{-}, SCN^{-} \\ S^{2-}, I^{-}, SO_{3}^{2-}, HCO_{3}^{2-}, CO_{3}^{2-}, OH^{-}, SCN^{-} \\ S^{2-}, I^{-}, SO_{3}^{2-}, I^{-}, SO_{3}^{2-}, I^{-}, SO_{3}^{2-}, I^{-}, SO_{3}^{2-}, OH^{-}, SCN^{-} \\ S^{2-}, I^{-}, SO_{3}^{2-}, I^{-}, SO_{3}^{2-$
	(6) 在 HCl 气流中加热蒸干 FeCl ₃ 溶液。(8) 一是溶液中的溶解氧必须提前除去;二是反应过程中必须
与 O ₂	隔绝
=,	铝及其化合物的复习
1	. 完成下列方程式的默写
	(1) 铝热反应 Al 与 Fe ₂ O ₃ 的反应:
	(2) 金属 Al 与稀硫酸反应的离子方程式:
	(3) Al 与 NaOH 溶液反应:
	(4) Al 与沸水反应:
	(5) Al ₂ O ₃ 与氢氧化钠溶液反应:
	(6) Al(OH) ₃ 受热分解:
	(7) Al(OH)3 与氢氧化钠溶液反应:
	(8) Al(OH) ₃ 的两性电离方程式:
	(9) 氯化铝与氨水反应的离子方程式:
	(10) 少量的 CO ₂ 通入 NaAlO ₂ 溶液中:
	(11) 过量的 CO ₂ 通入 NaAlO ₂ 溶液中:
	(12) NaAlO ₂ 溶液与 AlCl ₃ 溶液混合:
	(13) AlCl ₃ 与过量 NaOH 溶液反应:
	(14) 少量盐酸与 NaAlO ₂ 溶液反应:
	(15) 过量盐酸与 NaAlO ₂ 溶液反应:
	【答案】(1) $2Al + Fe_2O_3 \xrightarrow{\overline{ala}} Al_2O_3 + 2Fe$ (2) $2Al + 6H^+ \rightarrow 2Al^{3+} + 3H_2 \uparrow$
	(3) $2Al+2NaOH+2H_2O\rightarrow 2Al(OH)_3+3H_2\uparrow$ H_2O Al (4) $2Al+6H_2O\rightarrow 2Al(OH)_3+3H_2\uparrow$
	$(5) Al2O3 + 2NaOH \rightarrow 2NaAlO2 + H2O $ $(6) 2Al(OH)3 \xrightarrow{\Delta} Al2O3 + 3H2O$
	(7) $Al(OH)_3+NaOH \rightarrow NaAlO_2+2H_2O$ (8) $Al^{3+}+3OH \rightleftharpoons Al(OH)_3 \rightleftharpoons AlO_2+H^++H_2O$
	(9) $Al^{3^{+}} + 3NH_{3} \cdot H_{2}O \rightarrow Al(OH)_{3} \downarrow + 3NH_{4}^{+}$ (10) $2AlO_{2}^{-} + CO_{2} \cdot (\cancel{b}) + 3H_{2}O \rightarrow 2Al(OH)_{3} \downarrow + CO_{3}^{2^{-}}$
	$(11) AlO_{2}^{-}+CO_{2}_{(\mathcal{E})}+2H_{2}O \rightarrow Al(OH)_{3}\downarrow +HCO_{3}^{-} (12) 3AlO_{2}^{-}+Al^{3+}+6H_{2}O \rightarrow 4Al(OH)_{3}\downarrow$
	(13) $Al^{3+} + 4OH^{-} \rightarrow AlO_{2}^{-} + 2H_{2}O$ (14) $AlO_{2}^{-} + H^{+} + H_{2}O \rightarrow Al(OH)_{3} \downarrow$
	$(15) AlO_2^{-} + 4H^{+} \rightarrow Al^{3+} + 2H_2O$

2. 其他知识补充

(1) 什么是铝热反应?

铝热剂在工业上有什么用途? (2) 刚玉的主要成分是。 (3) 氢氧化铝是 色胶状物质, 溶于水,有强的吸附性,可以吸附水中的悬浮物和各种色素。 (4) 明矾的净水原理: (5) 氢氧化铝作为碱时是三元碱;作为酸时是 酸(HAIO₃)。 (6) ①等量铝分别与足量盐酸和氢氧化钠溶液反应,产生氢气体积比 $\frac{V_{\mathrm{HCl}}}{V_{\mathrm{HCl}}}$ = ②足量的铝分别与等物质的量的盐酸和氢氧化钠溶液反应,产生氢气的体积比 $\frac{V_{\mathrm{HCl}}}{-}$ (7) Al³⁺只能存在于强酸性溶液中,不能与显碱性的物质大量共存,如 等: AIO 2 只能存在于强碱性溶液中,不能与显酸性的物质大量共存,如 (8) 既能和酸反应,又能和碱反应的物质有 (9) 铝是活泼金属,但铝抗腐蚀性相当强,因为 【答案】(1)铝粉和氧化铁的混合物叫做铝热剂。当加热反应时,反应中会放出大量的热, 使混合物达到很高的温度, 生成氧化铝与液态铁, 这个反应叫做铝热反应。 冶炼某些难熔的金属(如钒、铬、锰) (2) Al₂O₃ (3) 白 难 (4) Al³⁺+3H₂O──Al(OH)₃(胶体)+3H⁺, Al(OH)₃ 胶体吸附水中杂质形成沉淀而净水 (5) $-\vec{\pi}$ (6) 1:1 1:3 (7) OH⁻, AlO₂⁻, CO₃⁻(HCO₃⁻), S²⁻ H^+ , HCO_3^- , Al^{3+} , Fe^{3+} (8) Al, Al_2O_3 , $Al(OH)_3$, $NaHCO_3$, CH_3COONH_4

3. 图像问题

(9) 铝表面生成一层致密的氧化物薄膜

(1) 基础图像

- 图(1)为向 AlCl₃溶液中滴入 NaOH 溶液;图(2)为向 NaOH 溶液中滴入 AlCl₃溶液;
- 图(3)为向盐酸酸化了的AlCl3溶液中滴入NaOH溶液;
- 图(4)为向盐酸中加入NaAlO2溶液;图(5)为向溶液NaAlO2中加入盐酸;
- 图(6)为向AlCl3溶液中滴入NaAlO2溶液。

(2) 拓展图像

- ①向 AICI;溶液中逐滴加入氨水或 NaAIO;溶液至过量,图像如图 1 所示。
- ②向 NaAlO₂ 溶液中逐滴加入 AlCl₃ 溶液或通入 CO₂ 至过量,图像如图 2 所示。

③向 MgCl₂、AlCl₃ 和盐酸的混合溶液(即将 Mg、Al 溶于过量盐酸所得的溶液)中逐滴滴入 NaOH 溶液至过量,图像如图3所示。

④向 MgCl₂、AlCl₃混合溶液中先加入 NaOH 溶液,后加入盐酸(NaOH 与盐酸的物质的量浓 度相等), 沉淀图像如图 4 所示。

【练一练】Al3+、Al(OH)3与AlO2[—]相互转化

有关离子方程式:

A. Al3+与 AlO2^一的相互转化

 $(1)Al^{3+} \rightarrow AlO_2$:

 $\textcircled{2}AlO_2 \longrightarrow Al^{3+}$:

B. Al3+与 Al(OH)3 的相互转化

 $\textcircled{3}Al(OH)_3 \rightarrow Al^{3+}$: $\textcircled{4}Al^{3+} \rightarrow Al(OH)_3$:

C. AlO₂⁻与 Al(OH)₃ 的相互转化

 $\textcircled{5}AlO_2$ → $Al(OH)_3$: $\textcircled{6}Al(OH)_3$ → AlO_2 :

【答案】A. ①Al³++4OH-→AlO₂+2H2O

 $2AlO_2^+ + 4H^+ \rightarrow Al^{3+} + 2H_2O$

B. $(1)Al(OH)_3+3H^+ \rightarrow Al^{3+}+3H_2O$

 $2Al^{3+}+3OH^{-}\rightarrow Al(OH)_{3}$

C. $(1)AIO_2^- + H^+ + H_2O \rightarrow AI(OH)_3\downarrow$ $(2)AI(OH)_3 + OH^- \rightarrow AIO_2^- + 2H_2O$

三、元素周期表和周期律

1. 元素周期表

【练一练】请绘制出元素周期表的结构图,并填写周期和族的编号;同时标出金属和非金属的 分界线。 【答案】族从左到右依次是:IA、IIA、IIIB、IVB、VB、VIB、VIIB 第八族、IB、IIB、 IIIA、IVA、 VA、VIA、VIIA、第 0 族(通过此问复习元素周期表的结构)

2. 元素周期表中的递变规律

	同周期(左→右)	同主族(上→下)
电子层数		
最外层电子数		
原子半径		
主要化合价		
金属性		
非金属性		
单质的还原性		
单质的氧化性		
阳离子氧化性		
阴离子还原性		
气态氢化物稳定性		
最高价氧化物水化物酸性		
最高价氧化物水化物碱性		

【答案】

	同周期 (左→右)	同主族(上→下)
电子层数	相同	逐渐增大
最外层电子数	逐渐增大	相同
原子半径	逐渐减小(不考虑零族)	逐渐增大
主要化合价	递变	相同
金属性	逐渐减弱	逐渐增强
非金属性	逐渐增强	逐渐减弱
单质的还原性	逐渐减弱	逐渐增强
单质的氧化性	逐渐增强	逐渐减弱
阳离子氧化性	逐渐增强	逐渐减弱
阴离子还原性	逐渐减弱	逐渐增强
气态氢化物稳定性	逐渐增强	逐渐减弱
最高价氧化物水化物酸性	逐渐增强	逐渐减弱
最高价氧化物水化物碱性	逐渐减弱	逐渐增强

3. 金属性与非金属性的比较

金属性越强,	则	۱:
--------	---	----

(1) 单质与水或非氧化酸反应置换出氢气越。
(2) 简单离子的氧化性越, 其单质的还原性越。
(3)最高价氧化物对应的水化物的碱性越。
(4)根据置换反应判断。
非金属性越强,则:
(1) 非金属与氢气化合的越,以及生成的氢化物的稳定性越。
(2) 非金属单质和盐溶液的置换反应。
活泼非金属把不活泼非金属从其盐溶液中置换出来。
(3)最高价氧化物对应的水化物的酸性越。HClO ₄ 是最强的酸。(F、O 例外)
(4) 单质的氧化性越; 阴离子还原性越。
(5)参加置换反应的非金属单质的非金属性比生成的非金属单质的非金属性

【答案】金属性:容易 弱 强 强 非金属性:容易 稳定 能 强 强 弱 强

根深蒂固

- 将 100mL3mol·L⁻¹ 的 NaOH 溶液与 100mL1mol·L⁻¹AlCl₃溶液按下列两种方法混合:
 - (1) 将 NaOH 溶液分多次加到 AlCl₃溶液中(边加边搅拌)
 - (2) 将 AlCl₃ 溶液分多次加到 NaOH 溶液中(边加边搅拌)

上述两种实验所得正确的结论为 ()

- A. 现象相同,沉淀量相等
- B. 现象相同,沉淀量不等
- C. 现象不相同, 沉淀量相等
- D. 现象不同, 沉淀量不同

【难度】★★

【答案】C

- 2. 某溶液中有 Fe^{2+} 、 Mg^{2+} 、 Al^{3+} 、 Cu^{2+} 等四种离子,在试管中,向其中加入过量的 NaOH 溶液,微热并搅 拌,再加入过量的盐酸,溶液中大量减少的阳离子是 (
 - A. Fe²⁺
- B. Mg²⁺
- C. Al³⁺
- D. Cu²⁺

【难度】★★

【答案】A

- 3. 下列各对物质中不能产生氢气的是 (
 - A. Zn+HCl
- B. Al+HNO₃(浓)
- C. Al+NaOH 溶液 D. Fe+H₂O(g)

【难度】★

【答案】B

4. 向盐酸和氯化铝的混合液中不断滴加氢氧化钠溶液,下列图象中,能正确表示上述反应的是(横坐标表示 加入氢氧化钠溶液的体积,纵坐标表示反应生成沉淀的质量)

【难度】★

【答案】C

- 5. 下列金属①铁 ②镁 ③锰 ④钒 ⑤铬,可用铝热法制备的有 (
 - A. (1)(2)(4)
- B. (1)(2)(3)(5)
- C. 1345 D. 12345

【难度】★

【答案】C

6.	以下实验能证明某溶液中不含 Fe ³⁺ 而可能含有 Fe ²⁺ 的是()
	A. 滴入 KSCN 溶液,不显红色
	B. 滴加足量氯水,再加 KSCN 溶液,显红色
	C. 滴入 KSCN 溶液,不显红色,再加氯水,溶液变红
	D. 滴入 KSCN 溶液,不显红色,再加足量高锰酸钾溶液,溶液变红
	【难度】★
	【答案】C
7.	下列实验中,有沉淀产生且不会消失的是 ()
	A. 将氨水逐滴滴入 AlCl ₃ 溶液中,直到过量
	B. 将 NaOH 溶液逐滴滴入 AlCl ₃ 溶液中,直到过量
	C. 向 AlCl ₃ 溶液中逐滴滴入稀 H ₂ SO ₄
	D. 向 NaAlO ₂ 溶液中逐滴滴入 HCl
	【难度】★★
	【答案】A
8.	相同质量的下列物质分别与等浓度的 NaOH 溶液反应,至体系中均无固体物质,消耗碱量最多的是
	A. Al B. $Al(OH)_3$ C. $AlCl_3$ D. Al_2O_3
	【难度】★★
	【答案】A
9.	用含少量镁的铝片制取纯净的氢氧化铝,下述操作步骤中最恰当的组合是 ()
	①加盐酸溶液 ②加烧碱溶解 ③过滤 ④通入过量 CO2 生成 Al(OH)3 沉淀
	⑤加入盐酸生成 Al(OH)3 沉淀 ⑥加入过量 NaOH 生成 Al(OH)3 沉淀
	A. 1563 B. 2363 C. 2343 D. 2353
	【难度】★★
	【答案】C
10.	在含 Fe^{3^+} 的溶液中加入 Cu 粉与 Fe 粉,充分反应后发现溶液中 Cu^{2^+} 存在,下列说法错误的是()
	A. 容器中已肯定无 Fe 粉存在 B. 容器中肯定无 Cu 粉存在
	C. 溶液中 Fe ²⁺ 比 Cu ²⁺ 多 D. 溶液中可能存在 Fe ³⁺
	【难度】★★
	【答案】B

11.	在 Al ₂ (SO ₄) ₃ 和 MgSO ₄ 的混合溶液中,滴加 N	NaOH 溶液, 生成沉淀的	量与滴入 NaOH 溶液的体积关系如下
	图所示,则原混合液中Al ₂ (SO ₄) ₃ 与MgSO ₄ 的	的物质的量浓度之比为	() 沉 ↑
	A. 1:3 B. 1:2 C. 1:1	D. 2:1	淀
	【难度】★★		量
	【答案】C		
			40 50 V(NaOH)/mL
12.	称取两份铝粉,第一份加入足量的浓 NaOH	溶液,第二份加足量盐	酸,如果放出等体积的氢气(同温同
	压),两份铝粉的质量之比为 ()		
	A. 1:2 B. 1:3	C. 3:2	D. 1:1
	【难度】★★		
	【答案】D		
13.	向含有 1 mol KAl(SO ₄) ₂ 的溶液中加入 Ba(OF	H) ₂ 溶液,使沉淀的物质	的量最大时,此时沉淀的物质的量为
	()		
	A. 1.25 mol B. 2mol	C. 2.5mol	D. 3 mol
	【难度】★★★		
	【答案】C		
14.	元素的性质呈现周期性变化的根本原因是	()	
	A. 元素的相对原子质量的递增		
	B. 元素的原子半径呈现周期性变化		
	C. 元素原子的核外电子排布呈周期性变化		
	D. 元素的金属性和非金属性呈周期性变化		
	【难度】★		
	【答案】C		
15.	能说明镁比铝还原性强的事实是 ()	
	A. 镁原子的价电子数比铝少		
	B. 镁与稀盐酸溶液的反应要比铝剧烈		
	C. 镁遇冷浓 HNO ₃ 和 H ₂ SO ₄ 表面不能钝化,	 而铝均能	
	D. 铝比镁的硬度大,延展性好、溶点高		
	【难度】★		
	【答案】B		

- 16. 右图表示 1~18 号元素原子的结构或性质随核电荷数递增的变化。图中纵坐标表示 (
 - A. 电子层数
- B. 原子半径
- C. 最高化合价
- D. 最外层电子数

)

【难度】★★

【答案】D

17. 同周期的 X、Y、Z 三种元素,已知最高价氧化物的水化物酸性由强到弱的顺序为 HXO₄>H₂YO₄>H₃ZO₄,

则下列判断正确的是 (

A. 非金属性 X>Y>Z

B. 原子半径 X>Y>Z

C. 气态氢化物的稳定性 Z>Y>X

D. 原子最外层电子数 Z>Y>X

【难度】★★【答案】A

- 18. 同主族元素所形成的同一类型的化合物,其结构和性质往往相似,化合物 PH4I 是一种无色晶体,下列对 它的描述中不正确的是(
 - A. 在加热时此化合物可以分解,分解产物为PH₃和HI
 - B. 它是一种离子化合物
 - C. 这种化合物能跟强碱发生反应
 - D. 该化合物在一定条件下由 PH3 与 HI 化合而成

【难度】★★★【答案】A

19. 根据下表信息,判断以下叙述正确的是 (

部分短周期元素的原子半径及主要化合价

元素代号	L	M	Q	R	T
原子半径/nm	0.160	0.143	0.112	0.104	0.066
主要化合价	+2	+3	+2	+6, -2	-2

- A. 氢化物的沸点为 $H_2T < H_2R$ B. 单质与稀盐酸反应的速率为 L < Q
- C. M = T 形成的化合物具有两性 D. $L^{2+} = R^{2-}$ 的核外电子数相等

【难度】★★★

【答案】C

- 20. 将 1mol/L 的 AlCl₃ 溶液,逐滴加入到 600 毫升 2mol/L 的 NaOH 中,
 - (1) 最少需要滴加 毫升 AlCl₃ 后,再滴入时产生的沉淀不再消失。
 - (2) 最少需要滴加 毫升 AlCl₃ 后,再滴入而沉淀的量不再增加。

【难度】★★

【答案】300;400

枝繁叶茂

知识点 1: 图像题

【例 1】溶液中可能含有 H^+ 、 NH_4^+ 、 Mg^{2+} 、 Al^{3+} 、 Fe^{3+} 、 CO_3^{2-} 、 SO_4^{2-} 、 NO_3^- 中的几种。①加入铝片,产生无色无味的气体;②加入 NaOH 溶液,产生白色沉淀,且产生的沉淀量与加入 NaOH 的物质的量之间的关系如下图所示。则下列说法正确的是

- A. 溶液中一定不含 CO_3^{2-} ,可能含有 SO_4^{2-} 和 NO_3^{-}
- B. 在滴加 NaOH 溶液物质的量为 0.5 至 0.7mol 时,发生的离子反应为: Al3++4OH-→AlO2-+2H2O
- C. 溶液中的阳离子只有 H+、Mg²⁺、Al³⁺
- D. $n(H^+)$: $n(NH_4^+)$: $n(Mg^{2+}) = 2$: 4:1

【难度】★★★【答案】D【解析】由①可知溶液中有 H^+ ,无 CO_3^{2-} 和 NO_3^- ,根据溶液电中性,溶液中一定存在 SO_4^{2-} ;加入 NaOH 溶液产生白色沉淀,所以一定不存在 Fe^{3+} ,根据图象可知: $0\le n$ (NaOH) $\le 0.1 mol$ 时, $H^++OH^-\rightarrow H_2O$; $0.1 mol \le n$ (NaOH) $\le 0.5 mol$ 时, $Al^{3+}+3OH^-\rightarrow Al$ (OH) $3\downarrow$, $Mg^{2+}+2OH^-\rightarrow Mg$ (OH) $2\downarrow$; $0.5 mol \le n$ (NaOH) $\le 0.7 mol$ 时, $NH_4^++OH^-\rightarrow NH_3^\bullet H_2O$; $0.7 mol \le n$ (NaOH) $\le 0.8 mol$ 时,Al(OH) $_3+OH^-\rightarrow AlO_2^++H_2O$,计算可得:n(H^+) =0.1 mol,n(Al^{3+}) =0.1 mol,n(Mg^{2+}) =0.05 mol,n(NH_4^+) =0.2 mol,A、根据分析可知:溶液中一定不存在 CO_3^{2-} 、 Fe^{3+} 、 NO_3^- ,一定存在 H^+ 、 NH_4^+ 、 Mg^{2+} 、 Al^{3+} 、 SO_4^{2-} ,故 A 错误;B、在滴加 NaOH溶液物质的量为 0.5 至 0.7 mol 时,沉淀的物质的量不变,发生的反应为 $NH_4^++OH^-\rightarrow NH_3^\bullet H_2O$,故 B 错误;C、溶液中一定存在的阳离子为 H^+ 、 NH_4^+ 、 Mg^{2+} 、 Al^{3+} ,故 C 错误;D、根据以上计算可知,n(H^+) =0.1 mol,n(Al^{3+}) =0.1 mol,n(Mg^{2+}) =0.05 mol,n(NH_4^+) =0.2 mol,所以 n(NH_4^+) : n(NH_4^+) : n(NH_4^+) =0.1 mol: 0.2 mol : 0.05 mol = 2: 4: 1, 故 D 正确;故选 D。

变式 1: 下图(纵坐标为沉淀的量,横坐标为加入物的量)中不正确的是 ()

- A. 向 1L 浓度均为 0.1 mol/L 的 Ba(OH)2、NaAlO2 混合液加入 0.1 mol/L 稀 H2SO4 溶液
- B. 向含有 0.1 mol/L AlCl₃和 0.3mol/L NH₄Cl 的混合液 1L 中加 0.1mol/L NaOH 溶液
- C. 向烧碱溶液滴加明矾[KAl(SO₄)₂]溶液
- D. 向 AlCl₃溶液滴加过量氨水

【难度】★★【答案】AD

变式 2: 某溶液中只可能含有 Fe^{2+} 、 Mg^{2+} 、 Cu^{2+} 、 NH_4^+ 、 Al^{3+} 、 Cl^- 、 OH^- 、 CO_3^{2-} 。当加入一种淡黄色固体并 加热时,有刺激性气体放出和白色沉淀产生,加入淡黄色固体的物质的量(横坐标)与析出的沉淀和产生气体的 物质的量(纵坐标)的关系如右图所示。该淡黄色物质做焰色反应实验显黄色。

【难度】★★★【答案】NH4⁺、Al³⁺、Mg²⁺ Cl⁻; 3: 1: 1: 8; Na₂O₂

知识点 2: 计算题

【例 2】将一定量的钠和铝的混合粉末投入水中,粉末完全溶解后,得到 20mLpH=14 的溶液。然后再向其中 加入 1mol/L 的盐酸,到沉淀最大时消耗盐酸 40mL,则混合粉末中钠的物质的量是

9 10 淡黄色物质的物质的量n

A. 0.01mol

B. 0.02mol

C. 0.03mol

D. 0.04mol

【难度】★★【答案】D【解析】当沉淀的量最大时,此时溶液中的溶质是氯化钠,根据氯化钠中氯离子 和钠离子是1:1 的关系进行解题。

变式 1: 取一定量的镁、铝混合粉末,加入 1 mol / L 的硫酸 300 mL,使之完全溶解(酸过量);再加入过量的 未知浓度的 KOH 溶液 200 mL,得到 5.8 g 沉淀;过滤后向滤液中加入 2 mol/L 盐酸 100 mL,恰好沉淀完全; 将沉淀滤出,洗涤、干燥,称量为7.8 g。求:

- (1) 原混合物中镁的物质的量。
- (2) 原混合物中铝的质量分数 (保留两位小数)。
- (3) 所用 KOH 的物质的量浓度。

【难度】★★【答案】(1) 0.1 mol (2) 52.94% (3) 4 mol/L

【解析】镁、铝混合粉末,加入1 mol/L 的硫酸 300 mL,使之完全溶解(酸过量),所得溶液含有硫酸镁、 硫酸铝、剩余的硫酸, 再加入过量的未知浓度的 KOH 溶液 200 mL, 得到 5.8 g 沉淀, 该沉淀为 Mg(OH)2, 滤 液中含有硫酸钾、偏铝酸钾、可能含有氢氧化钾,向滤液中加入2mol/L盐酸100mL,恰好沉淀完全,沉淀 7.8 g 为 Al(OH)3 的质量,溶液中溶质为硫酸钾、氯化钾。

- (1) 5.8 g 的 Mg(OH)₂ 即镁的物质的量为: 0.1 mol。
- (2) 根据 Mg 元素守恒可知, $m(Mg) = 0.1 \text{ mol} \times 24 \text{ g} / \text{mol} = 2.4 \text{ g}, 7.8 \text{ g} \text{Al}(OH)_3 的物质的量为 0.1 mol,$ 根据 Al 元素守恒可知,m(Al) = 0.1 mol × 27 g/mol = 2.7 g,故化合物中 Al 的质量分数为 52.94%。
 - (3) 最后所得的溶液为中溶质为硫酸钾、氯化钾,根据钾离子守恒有 $n(KOH) = n(KCI) + 2n(K_2SO_4)$,根

据氯离子与硫酸根守恒有 $n(\text{KCl}) = n(\text{HCl}) = 0.1 \text{ L} \times 2 \text{ mol} / \text{L} = 0.2 \text{ mol}, \quad n(\text{K}_2\text{SO}_4) = n(\text{H}_2\text{SO}_4) = 0.3 \text{ L} \times 1 \text{ mol} / \text{L} = 0.3 \text{ mol}, \quad \text{in}(\text{KOH}) = n(\text{KCl}) + 2n(\text{K}_2\text{SO}_4) = 0.2 \text{ mol} + 2 \times 0.3 \text{ mol} = 0.8 \text{ mol}, \quad \text{in}(\text{KOH}) = 4 \text{ mol} / \text{L}.$

知识点 3: 实验题

【例 3】在实验室里按照下图装置制取少量 FeCl3, 所通过的气体过量且反应充分。试回答以下问题:

Α	
(1) B 装置中盛放的溶液是; C 装置的作用是;	
(2) 写出 D 装置中反应的化学方程式:;	
(3) 写出 E 装置中反应的离子方程式:;	
(4) 用此方法可制得无水氯化铁。你认为能否改用 Fe 和盐酸反应,再通入过量氯气、蒸干溶 液的方	
法来制取无水氯化铁? (填"是"或"否"); 说明理由:	
【难度】★★【答案】(1) 饱和 NaCl 溶液 干燥 Cl ₂	
$(2) 2Fe+3Cl2 \xrightarrow{\Delta} 2FeCl3 $ (3) $Cl2+2OH Cl +ClO +H2O$	elli •
(4) 否 FeCl ₃ 会发生水解反应 硫酸 A B N	aOl
变式 1: 按图所示装置,用两种不同操作分别进行实验,观察 B 管中现象。	液
(1)操作①: 先夹紧止水央 a. 再使 A 管开始反应,实验中在 B 管中观察到的现象是。	
B 管中发生反应的化学方程式是:。	
(2)操作②:打开止水夹 a, 使 A 管开始反应一段时间后再来夹紧止水夹 a。实验中在 B 管中观察到的现象	泉
是。	
B 管中发生反应的离子方程式是。	
(3)请说明造成两种操作现象不同的原因(若两种现象相同,此小题不需要回答)	
0	

【难度】★★

【答案】(1) 开始产生白色沉淀, 然后沉淀迅速变成灰绿色, 最后变成红褐色;

 $FeSO_4+2NaOH \rightarrow Fe(OH)_2\downarrow +Na_2SO_4 \quad 4Fe(OH)_2+O_2+2H_2O \rightarrow 4Fe(OH)_3$

- (2)打开止水夹时,试管 B 中的导管口有气泡冒出,夹紧后 B 中产生白色絮状沉淀,一段时间内沉淀不变色; $Fe^{2+}+2OH^-→ Fe(OH)_2$ ↓
 - (3) 操作 1 中没有排出 B 试管中的空气,而操作 2 中 A 试管产生的 H_2 将 B 试管中的空气排出。

【难度】★★【答案】B

变式 2: 工业上用铝土矿(含氧化铝、氧化铁等)制取铝的过程如下:

请回答下列问题:	
(1) 沉淀 C 的化学式为, 该物质除了用于金属冶炼以外,还可用作	
•	
(2) 电解熔融的氧化铝时,若得到标准状况下 $22.4LO_2$,则同时生成	
(3)操作I、操作II和操作III都是(填操作名称),实验室要洗涤 Al(OH)3 沉淀	应该在
(4) 生产过程中,除 NaOH、H ₂ O 可以循环使用外,还可以循环使用的物质有	_ (填化
学式)。用此法制取铝的副产品是(填化学式)。	
(5) 写出 Na ₂ CO ₃ 溶液与 CaO 反应的离子方程式:。	
(6) 若铝土矿中还含有二氧化硅,此生产过程中得到的氧化铝将混有杂质:	(填化
学式)。	
【难度】★★★【答案】(1) Fe ₂ O ₃ , 颜料 (2) 36 (3) 过滤, 过滤, 向漏斗中加蒸	馏水至浸没
沉淀,使水自然流完,重复操作 $2-3$ 次	$_{1}O + H_{2}O \rightarrow$
$CaCO_3\downarrow + 2OH^-$ (6) SiO_2	
知识点 4: 元素周期律	
【 \mathbf{M} 4】 \mathbf{X} 、 \mathbf{Y} 为同周期元素,如果 \mathbf{X} 的原子半径大于 \mathbf{Y} ,则下列判断不正确的是 ()	
A. 若 X、Y 均为金属元素,则 X 的金属性强于 Y	
B. 若 X、Y 均为金属元素,则 X 的阳离子氧化性比 Y 的阳离子的氧化性强	
C. 若 X、Y 均为非金属元素,则 Y 的气态氢化物比 X 的稳定	
D. 若 X、Y 均为非金属元素,则最高价含氧酸的酸性 Y 强于 X	
【难度】★★【答案】B	
变式 1: 短周期主族元素 X、Y、Z 最外层电子数之和为 11,它们在周期表中的相对位置如下图所	示。下列关
于 X、Y、Z 元素的说法正确的是 ()	
A. X、Z 的高价态氧化物性质相似 X	
B. 工业上常用电解法生产 Y 的单质 Y Z	
C. 原子半径的大小顺序为 $r_X < r_Y < r_Z$	
D. 元素 X 的最高价氧化物对应的水化物的酸性比 Z 的弱	

变式 2: X、Y、Z、W、R 是 5 种短周期元素, 其原子序数依次增大。X 是周期表中原子半径最小的元素, Y 原子最外层电子数是次外层电子数的 3 倍, Z、W、R 处于同一周期, R 与 Y 处于同一族, Z、W 原子的核外 电子数之和与Y、R原子的核外电子数之和相等。下列说法正确的是(

- A. 元素 Y、Z、W 具有相同电子层结构的离子, 其半径依次增大
- B. 元素 X 不能与元素 Y 形成化合物 X₂Y₂
- C. 元素 Y、R 分别与元素 X 形成的化合物的热稳定性: $X_mY > X_mR$
- D. 元素 W、R 的最高价氧化物的水化物都是强酸

【难度】★★【答案】C

变式 3: A、B、C、D、E、F 六种短周期主族元素,原子序数依次增大,A、B、F 三者原子序数之和为 25, 且知 B、F 同主族, 1.8g E 与足量的盐酸反应生成 ECl₃ 和 2.24L 氢气 (标准状况下), D⁺和 E 的离子具有相同 的电子层结构,工业上用电解元素 B 和 E 能形成离子化合物的方法冶炼 E 单质,试判断:

(1) 六种元素中非金属性最强的是_ (填代号),该元素位于周期表中第 周期第 族;

由A、B、D三种元素形成化合物的电子式

- (2) 下列能够说明 B、F 非金属性强弱的方法有
 - a. 最高价氧化物对应水化物酸性
- b. 气态氢化物的热稳定性
- c. 气态氢化物的沸点 B 比 F 高
- d. 向 F 的气态氢化物溶液中通入 B 单质,有浑浊
- (3) 写出下列反应的化学方程式
 - ①E 与足量的盐酸反应的化学方程式

②工业上用电解法冶炼 E 单质

(4) 写出足量 D 的高价氧化物对应水化物与 ECI₃ 相互反应的离子方程式

【难度】★★

【答案】(1) C 第二周期VIIA

Na⁺ [³Ω³H]⁻

(2) bd

(4) $4OH^- + Al^{3+} \rightarrow AlO_2^- + 2H_2O$

【方法提炼】

瓜熟蒂落

- 1. 人体正常的血红蛋白中应含 Fe^{2+} 。若误食亚硝酸钠,则导致血红蛋白中的 Fe^{2+} 转化为高铁血红蛋白而中毒。 服用维生素 C 可解除亚硝酸钠中毒。下列叙述中正确的是 ()
 - A. 亚硝酸钠表现了还原性
- B. 维生素 C 表现了还原性
- C. 维生素 C 将 Fe^{3+} 氧化成 Fe^{2+} D. 亚硝酸钠被氧化

【难度】★【答案】B

- 2. 0.7 g 铁粉放入 40 mL 1 mol/L 的稀硝酸中,反应停止后溶液中的盐是 ()
 - A. 只有 Fe(NO₃)₃

B. 只有 Fe(NO₃)₂

C. Fe(NO₃)₃和 Fe(NO₃)₂

D. 不能确定

【难度】★★【答案】C

3. 在加入铝粉能产生氢气的溶液中,下列各组离子可能大量共存的是 ()

A. Fe^{2+} , K^+ , NO_3^- , Cl^-

- B. Na⁺, Ba²⁺, Cl⁻, NO₃⁻
- C. Na⁺, Mg²⁺, AlO₂⁻, SO₄²⁻
- D. NH₄⁺, ClO⁻, SO₄²⁻, Na⁺

【难度】★★【答案】B

- 4. 下列有关金属的说法中,正确的是 (
 - ①纯铁不容易生锈。 ②钠着火用水扑灭。 ③铝在空气中耐腐蚀,所以铝是不活泼金属。
 - ④缺钙会引起骨质疏松,缺铁会引起贫血。 ⑤青铜、不锈钢、硬铝都是合金。
 - ⑥KSCN 溶液可以检验 Fe³+离子。 ⑦Al 和 Fe 都能与某些氧化物反应。
 - A. 14567
- B. 2345 C. 13457 D. 1256

【难度】★★【答案】A

5. 某稀溶液中含有等物质的量的 ZnSO4, Fe₂(SO₄)₃, H₂SO₄, CuSO₄, 向其中逐渐加入铁粉,溶液中 Fe²⁺的 物质的量(纵坐标/mol)和加入铁粉的物质的量(横坐标/mol)之间的关系为 ()

【难度】★★★【答案】A

【解析】微粒的氧化性强弱顺序是: Fe3+>Cu2+>H+>Zn2+, 向含有等物质的量的 ZnSO4, Fe2(SO4)3, H2SO4,

CuSO₄的溶液中逐渐加入铁粉,假设盐的物质的量都是 1 mol,则首先发生反应: $2 \text{Fe}^{3+} + \text{Fe} \rightarrow 3 \text{Fe}^{2+}$,然后发生反应: $C u^{2+} + \text{Fe} \rightarrow \text{Fe}^{2+} + \text{Cu}$,接着发生反应: $2 H^+ + \text{Fe} \rightarrow \text{Fe}^{2+} + \text{H}_2 \uparrow$;由于金属活动性 Z n > Fe,所以无论再怎样加入铁粉,也不反应,这时溶液中溶液中 $E e^{2+}$ 的物质的量达到最大值,是 $E e^{2+}$ 5 mol,因此选项是 $E e^{2+}$ 6 mol,包含的物质的量达到最大值,是 $E e^{2+}$ 6 mol,因此选项是 $E e^{2+}$ 6 mol,包含的物质的量达到最大值,是 $E e^{2+}$ 6 mol,因此选项是 $E e^{2+}$ 6 mol,包含的物质的量达到最大值,是 $E e^{2+}$ 6 mol,因此选项是 $E e^{2+}$ 6 mol,因此选项是 $E e^{2+}$ 6 mol,包含的物质的量达到最大值,是 $E e^{2+}$ 6 mol,因此选项是 $E e^{2+}$ 6 mol,包含的物质的量达到最大值,是 $E e^{2+}$ 6 mol,因此选项是 $E e^{2+}$ 6 mol,但是 $E e^{2+}$ 6 mol $E e^{2+}$ 6 mol $E e^{2+}$ 6 mol $E e^{2+}$

6. 甲、乙、丙、丁均为中学化学中常见的单质或化合物,它们之间的转化关系如下图所示(部分产物已略去), 下列各组物质中不能按图示关系转化的是()

选项	物质转化关系	甲	乙	丙	丁
A	Z	NaOH	NaHCO ₃	Na ₂ CO ₃	CO ₂
В	过量丁	AlCl ₃	NaAlO ₂	Al(OH) ₃	NaOH
С	# T	Fe	Fe(NO ₃) ₃	Fe(NO ₃) ₂	HNO ₃
D	少量丁	С	СО	CO ₂	O_2

【难度】★★

【答案】D

7. 下列各图示中能较长时间看到 Fe(OH)2 白色沉淀的是

- A. 12345
- B. (1)(2)(3)(5)
- C. (1)(2)(3)(4)
- D. (2)(3)(4)(5)

【难度】★★【答案】B

【解析】因为 $Fe(OH)_2$ 在空气中很容易被氧化为红褐色的 $Fe(OH)_3$,即发生 $4Fe(OH)_2+O_2+2H_2O \rightarrow 4Fe(OH)_3$ 。因此要较长时间看到 $Fe(OH)_2$ 白色沉淀,就要排除装置中的氧气或空气。①、②原理一样,都是先用氢气将装置中的空气排尽,并使生成的 $Fe(OH)_2$ 处在氢气的保护中;③的原理为铁作阳极产生 Fe^{2+} ,与电解水产生的 OH^- 结合生成 $Fe(OH)_2$,且液面用汽油保护,能防止空气进入;⑤中液面加苯阻止了空气进入;④由于空气中的氧气,能迅速将 $Fe(OH)_2$ 氧化,因而不能较长时间看到白色沉淀。

	· · ·	B. HCl和 Na ₂ CO ₃ D. AlCl ₃ 和 NaOH	
9.		分成两等份:一份在高温下恰好反应,再与足量稀硫酸反应,生化钠溶液中充分反应,在同条件下生成氢气 b L,则 a:b 为	生
	A. 1:1 B. 3:4 【难度】★★ 【答案】B	C. 4:3 D. 8:9	
10.	将 5.4 g Al 投入到 200 mL 2.0 mol/L 的某 () A. HNO₃溶液 B. Ba(OH)₂溶 【难度】★★ 【答案】D	某溶液中有氢气产生,充分反应后有金属剩余。该溶液可能,溶液 C. H ₂ SO ₄ 溶液 D. HCl 溶液	是
11.	表为元素周期表短周期的一部分,有关元A. X 晶体的结构微粒是原子,故属于原B. Y、Z 可形成 ZY6分子C. 原子半径: Z>M>YD. Z 离子的结构示意图可表示为: (+16)【难度】★★【答案】A		
12.	 A、B两种元素是短周期元素, A⁺和 B⁻离 A. 离子半径: A⁺>B⁻ C. 核电荷数: A > B 【难度】★★ 【答案】A 	五子具有相同的电子层结构,则下列说法中错误的是() B. 原子半径: A>B D. 单质的熔点: A>B	

8. 下列各组物质的稀溶液相互反应,无论是前者滴入后者,还是后者滴入前者,反应现象都相同的是

13.	W, X, Y	、Z 均为	短周期元素	, W 的最外层电	子数与核外电	且子总数之比	为 7: 17, 2	X与 W 同主族;	Y的
	原子序数	是 W 和	X 的原子序	数之和的一半;	含Z元素的	的物质焰色反	应为黄色。	下列判断正确	角的是
	()							

A. 金属性: Y>Z

B. 氢化物的沸点: X>W

C. 离子的还原性: X>W

D. 原子及离子半径: Z>Y>X

【难度】★★

【答案】B

- 14. 下列排列顺序正确的是 ()
 - ①热稳定性: H₂O>HF>H₂S ②原子半径: Na>Mg>O

A. (1)(3)

B. (2)(4)

C. (1)(4)

D. (2)(3)

【难度】★★

【答案】B

- 15. 同周期的三种非金属元素 X、Y、Z,它们的原子半径由小到大的顺序为 X<Y<Z,则下列判断中正确的是 ()
 - A. 非金属性 X<Y<Z
 - B. 气态氢化物的热稳定性按 X、Y、Z 顺序减弱
 - C. X、Y、Z的最高价氧化物对应水化物酸性由弱到强
 - D. X、Y、Z 最外层电子数依次减少

【难度】★★

【答案】B

16. 下表为部分短周期元素的原子半径及主要化合价。下列说法正确的是 (

元素代号	L	M	Q	R	Т
原子半径/nm	0.186	0.143	0.104	0.075	0.066
主要化合价	+1	+3	+6, -2	+5、-3	-2

- A. 气态氢化物的稳定性:R>T
- B. 工业上电解 MCl₃ 溶液制备单质 M
- C. 化合物 L_2T 与 QT_2 所含化学键类型相同
- D. L 与 Q 的最高价氧化物对应水化物均能与 M(OH)3 反应

【难度】★★

【答案】D

17. 下表标出的是元素周期表的一部分元素,回答下列问题:

1													
2									D		В	Α	
3	J	Ι						Н		С	G	F	Е
4	L	K										N	
5					M								
6													

(1) 表中用字母

标出的 14 种元素中,化学性质最不活泼的是(用元素符号表示,下同),金属性最强的是	;
非金属性最强的是,常温下单质为液态的非金属元素是。	
(2) B, F, C 气态氢化物的化学式分别为, 其中以最不稳定。	
(3) 第三周期主族元素中原子半径最小的是。	
(4) G比F的非金属性(填强、弱),如何用事实说明?	

【难度】★【答案】(1) Ar K F Br (2) H₂O HCl PH₃, PH₃(3) Cl (4) 弱, 合理即可

18. 下表是周期表中的一部分,根据 A—I 在周期表中的位置,用**元素符号或化学式**回答下列问题:

IA								
a	IIA	IIIA	IVA	VA	VIA	VIIA		
	c			e	g	h	j	
b		d		f		i		

(1)	表中的主族元素中,	原子半径最大的是	_
\ I /	1\(\mathbb{L}\)		0

(2)h 离子的结构示意图是	, b 和 h 按 1:1 化合而形成的化合物的电子式是

(3)最高价氧化物的水化物碱性最强的是______,酸性最强的是_____;

(4) 表中元素, 化学性质最不活泼的是_____, 氧化性最强的单质是_____;

(5) a 分别与 e、f、g、h 形成的化合物中, 最稳定的_____;

(6) c 的性质和 d 相似,写出 c 的最高价氧化物的水化物和 b 最高价氧化物的水化物反应的化学反应方

程式。

【难度】★★

【答案】(1)Na

2) (+9)2

- $(3) \ NaOH \qquad HClO_4 \qquad \quad (4) \ Ne \qquad F_2 \qquad \quad (5) \ HF$
- (6) $Be(OH)_2 + 2NaOH \rightarrow Na_2BeO_2 + 2H_2O$

19. 在一定条件下,用普通铁粉和水蒸气反应,可以得到铁的氧化物,该氧化物又可以经此反应的逆反应,生成颗粒很细的铁粉。某校化学小组利用下图所列装置进行铁与水反应的实验,并利用产物进一步与四氧化三铁反应制取铁粉。(装置中的铁架台、铁夹等必要的夹持仪器在图中均已略去)

(1) 烧瓶 A 中常加入碎瓷片, 其作用	月是	, B 中石棉绒的作用
,小试管	C的作用是	o
(2) 反应开始时先点燃处(填	A或B)酒精灯,为了安全,在E管中的	反应发生前,在F出口处
必须,E管中的反应开始	台后,在 F 出口处应	0
(3) 写出高温下 Fe 与 H ₂ O(g)反应的体	化学方程式	,在一定条件下该
反应实际上是可逆反应,试用化学平	衡移动原理加以解释本实验中是如何实	现 Fe 向 Fe ₃ O ₄ 的转变的
(4) 停止反应, 待 B 管冷却后, 取其。	中固体加入过量稀盐酸,充分反应后过滤。	简述证明滤液中含有 Fe ³⁺
的实验操作及现象		
【难度】★★		
【答案】(1) 防止液体暴沸;增大铁料	分与水蒸气的接触面积;冷凝水蒸气。	
(2) A; 检验氢气的纯度; 点燃氢气	0	

实验中不断通入水蒸气增大反应物浓度,并移走氢气减小生成物浓度,从而使反应正向进行。

- (4) 取滤液少量,向其中滴加 KSCN 溶液,若溶液变为血红色,即证明含有 Fe³⁺。
- 20. 一定量的铝铁合金与 300ml 2mol/L HNO₃ 完全反应生成 3.36 升 NO (标况) 和三价铁盐、铝盐等,再向反应 后的溶液中加入 3mol/L NaOH 溶液,使铁元素完全沉淀下来,则所加 NaOH 溶液体积是

【难度】★★

【答案】150mL

21. 把 NaOH、MgCl₂、AlCl₃三种固体组成的混合物溶于足量水后,产生 1.16g 白色沉淀,再向所得浊液中加 入 1mol·L-1HCl 溶液,加入 HCl 溶液的体积与生成沉淀的关系如图所示。

(4) C 点 HCl 溶液的体积为 ml

【难度】★★★

试完成下列问题:

【答案】(1) Mg(OH)₂ 加入的盐酸恰好中和氢氧化钠

(2) AlO_2 - $+H^++H_2O\rightarrow Al(OH)_3\downarrow$ (3) 5.20 (4) 130

22. 在标准状况下进行下列实验: 甲、乙各取 30.0ml 同浓度的盐酸,加入同一镁一铝合金粉末产生气体,有 关数据列表如下:

实验序号	甲	Z	丙
合金质量/mg	255	385	510
气体体积/ml	280	336	336

(1) 盐酸的物质的量浓度为 mol/L, 在表中可作为计算依据的是

(填实

验序号,符合要求的全部写出)

(2)据(填实验序号)中的数据,	可计算此镁一铝合金中镁与铝的物质的量之比
------------------	----------------------

(3) 在乙实验中,可以判断

- A. 金属过量 B. 恰好反应 C. 金属不足 D. 无法判断

(4) 在丙实验之后,向容器中加入一定量的 1.00mol/l 的 NaOH 溶液能使合金中的铝粉恰好完全溶解, 再过滤出不溶性的固体,请填下表:

滤液中的溶质	NaCl	NaAlO ₂
对应物质的量/mol		
加入NaOH溶液的体积/mL		

【难度】★★★

【答案】(1) 1 乙 丙 (2) 甲 1:1 (3) A (4) 0.03mol 0.01mol 40mL