

Predict the popularity of a TED Talk

CS522 Course Project

Name: Liu, Shijie

Professor: Liu, Xinlian

Date: 12/10/2018

Computer Science Department Hood College of Frederick Maryland

Project Outline

Project Overview

Problem:

- TED Conferences LLC is a media organization that posts talks online for free distribution under the slogan "ideas worth spreading." People could also organize their own local TEDx event.
- How could TED filter which talk shall be published?
- What could an organizer do to make their talk more popular?

Objectives:

- What makes a popular TED Talk?
- What are the most popular Topics that people like talk about?
- Predict the popularity of an un-published TED Talk based on transcript.

Implementation

Data Collection

The Datasets being used for this project is being downloaded from <u>Kaggle</u>.

Data Understanding

Using Exploratory data analysis(EDA)

Technique to get a better understanding on the characteristics for existing attributes.

Data Pre-Processing

Handle missing values if there is any, normalize attributes upon needed, and add new attributes upon necessary.

Model Building

Build various
Classification Models
using different
Algorithms and train
the model with training
dataset.

Model Selection

Compare the performance and accuracy of different models and select the best Classification Model.

Data Collection

Data Source

TED Main (2550 x 17)

TED Transcript (2467 x 2)

https://www.kaggle.com/rounakbanik/ted-talks

Feature Name	Data Type	Description
comments	int64	The number of first level comments made on the talk.
description	object	A blurb of what the talk is about.
duration	int64	The duration of the talk in seconds.
event	object	The TED/TEDx event where the talk took place.
film_date	int64	The Unix timestamp of the filming.
languages	int64	The number of languages in which the talk is available.
main_speaker	object	The first named speaker of the talk.
name	object	The official name of the TED Talk. Includes the title and the speaker.
num_speaker	int64	The number of speakers in the talk.
published_date	int64	The Unix timestamp for the publication of the talk on TED.com.
ratings	object	A stringified dictionary of the various ratings given to the talk.
related_talks	object	A list of dictionaries of recommended talks to watch next.
speaker_occupation	object	The occupation of the main speaker.
tags	object	The themes associated with the talk.
title	object	The title of the talk.
views	int64	The number of views on the talk.
url	object	The URL of the talk.
transcript	object	The official English transcript of the talk.

Data Collection

TED Main- Example Data:

C	omments	description	duration	event	film_date	languages	main_speaker	name	num_speaker	published_date	ratings	related_talks	speaker_occupation	tags	title	url	views
4	553	Sir Ken Robinson makes an entertaining and pro	1164	TED2006	1140825600	60	Ken Robinson	Ken Robinso n: Do schools kill creativit y?	1	1151367060	[{'id': 7, 'name': 'Funny', 'count': 19645}, {	[{'id': 865, 'hero': 'https://pe.tedc dn.com/im	Author/educator	['childr en', 'creativi ty', 'culture ', 'dance', 	Do school s kill creativ ity?	https://w ww.ted.c om/talks/ ken_robin son_says_ sc	47227110

TED Transcript -Example Data:

transcript	url
Good morning. How are you?(Laughter)It's been great, hasn't it? I've been blown away by the whole thing. In fact, I'm leaving.(Laughter)There have been three themes running through the conference which are relevant to what I want to talk about. One is the extraordinary evidence of human creativity in all of the presentations that we've had and in all of the people here. Just the variety of it and the range of it. The second is that it's put us in a place where we have no idea what's going to happen, in terms of the future. No idea how this may play out. I have an interest in education. Actually, what I find is everybody has an interest in education. Don't you? I find this very interesting. If you're at a dinner party, and you say you work in education — Actually, you're not often at dinner parties, frankly. (Laughter)If you work in education, you're not asked. (Laughter)And you're never asked back, curiously. That's strange to me. But if you are, and you say to somebody, you know, they say, "What do you do?" and you say you work in education, you can see the blood run from their face. They're like, "Oh my God," you know, "Why me?" (Laughter)"My one night out all week. "(Laughter)But if you ask about their education, they pin you to the wall. Because it's one of those things that goes deep with people, am I right? Like religion, and money and other things. So I have a big interest in education, and I think we all do. We have a huge vested interest in it, partly because it's education that's meant to take us into this future that we can't grasp. If you think of it, children starting school this year will be retiring in 2065. Nobody has a clue, despite all the expertise that's been on parade for the past four days, what the world will look like in five years' time. And yet we're meant to be educating them for it. So the unpredictability, I think, is	https://www.ted.com/talks/ken_robinson_says_schools_kill_creativity

Data Understanding

Any Missing Values?

tedMain_speaker_occupation_fillna('UNKOWN', inplace=True)

Any outlier?

Data Normalization

Data Visualization

Distribution of views

Views Per Publish Month

Views Per Topic

Views Per Publish Weekday

Data Visualization

Number of talks per weekday

Number of talks per month

Number of talks per year

Number of talks per tag

Word Cloud based on tags

Data Correlation

Heatmap with selected features based on EDA

Regression visualization with selected features based on EDA

Model Building

Classification Model – 'TED Main'

Linear Regression Analysis

OLS Regression Results

OLS Regression Results							
Dep. Variable:		iews	R-sa	uared:		1.000	
Model:	V	OLS		R-squared:		1.000	
Method:	Least Squ		_	atistic:		3.571e+32	
	Mon, 10 Dec			(F-statistic)		0.00	
Time:	-	6:43		Likelihood:	•	47662.	
No. Observations:		2550	AIC:	LIKEIIIIOOG.		-9.530e+04	
Df Residuals:		2536	BIC:			-9.521e+04	
Df Model:		13	DIC.			3.3210104	
Covariance Type:	nonro						
covariance Type.		=====					
	coef	std	err	t	P> t	[0.025	0.975]
const	8.586e-10	3.05	e-10	2.818	0.005	2.61e-10	1.46e-09
comments				-13.128	0.000	-2.65e-12	-1.96e-12
duration	-2.092e-11	6.44	e-12	-3.248	0.001	-3.35e-11	-8.29e-12
languages	1.182e-11	4.69	e-12	2.519	0.012	2.62e-12	2.1e-11
	4.729e-11	1.77	e-10	0.267	0.790	-3.01e-10	3.95e-10
ratings	9.237e-14	1.94	e-14	4.772	0.000	5.44e-14	1.3e-13
views	1.0000	3	e-17	3.33e+16	0.000	1.000	1.000
number of attendences	-5.275e-11	3.71	e-11	-1.420	0.156	-1.26e-10	2.01e-11
film_month	7.276e-11	1.43	e-11	5.105	0.000	4.48e-11	1.01e-10
film weekday	-2.728e-11	2.04	e-11	-1.337	0.181	-6.73e-11	1.27e-11
pub_month	-2.569e-11	1.09	e-11	-2.348	0.019	-4.71e-11	-4.24e-12
pub_weekday	-6.276e-11	2.27	e-11	-2.770	0.006	-1.07e-10	-1.83e-11
event_class	1.091e-10	2.09	e-11	5.218	0.000	6.81e-11	1.5e-10
number_of_tags	-7.776e-11	8.76	e-12	-8.879	0.000	-9.49e-11	-6.06e-11
Omnibus:	2656	.255	Durb:	in-Watson:		0.970	
Prob(Omnibus):	0	.000	Jarq	ue-Bera (JB):		365207.498	
Skew:	-4	.815	Prob	(JB):		0.00	
Kurtosis:	60	.832	Cond	. No.		2.70e+07	

Classification Model – 'TED Transcript'

Model Selection

Model Evaluation on Classification Model – 'TED Main'

Train/Test Spilt

→ 0.8 Train(2040) & 0.2 Test(510)

LogisticRegression

Classification Report	Precision	Recall	F1-Score	Support
False	0.78	0.80	0.79	279
True	0.75	0.74	0.74	231
Average/Total	0.77	0.77	0.77	510

Confusion Matrix	Predicted		
Actual	1	0	
1	222	57	
0	61	170	

Apply RFE

DecisionTreeClassifier

Classification Report	Precision	Recall	F1-Score	Support
False	0.77	0.72	0.74	279
True	0.68	0.74	0.71	231
Average/Total	0.73	0.73	0.73	510

Confusion Matrix	Predicted				
Actual	1	0			
1	200	79			
0	61	170			

RandomForestClassifier

Classification Report	Precision	Recall	F1-Score	Support
False	0.82	0.79	0.81	279
True	0.76	0.79	0.77	231
Average/Total	0.79	0.79	0.79	510

Confusion Matrix	trix Predicted		
Actual	1	0	
1	227	58	
0	49	182	

Apply Scaling

Model Selection

Model Evaluation on Classification Model – 'TED Transcript'

Train/Test Spilt

→ 0.8 Train(1973) & 0.2 Test(494)

LogisticRegression

Classification Report	Precision	Recall	F1-Score	Support
False	0.64	0.56	0.60	259
True	0.58	0.65	0.61	235
Average/Total	0.61	0.61	0.60	494

Confusion Matrix	Predicted				
Actual	1	0			
1	146	113			
0	82	153			

MultinomialNB

Classification Report	Precision	Recall	F1-Score	Support
False	0.71	0.66	0.68	259
True	0.65	0.70	0.67	235
Average/Total	0.68	0.68	0.68	494

Confusion Matrix	Predicted		
Actual	1	0	
1	170	89	
0	70	165	

Cross Validation

→ 10-Fold Cross Validation

	Logistic Regression	Multinomial NB
Mean Accuracy	60 %	65 %

Conclusion

1 - What makes a popular TED Talk?

Top 5 features selected by RFE (Recursive Feature Elimination)

- Comments
- Languages
- Ratings
- Published Weekday
- Number of tags
- 2 What are the most popular Topics that people like talk about?
 - Technology
 - Culture
 - Global Issues
 - Design
 - Social change
- 3 Could the model predict the popularity of an TED Talk based on its transcript?

IT COULD! With a Prediction Accuracy of 68%.

Future Work

Apply Topic Modeling on text features

- In this project, there are some text features not being used while building the classification model, such as, **title**, **description**, and **tags** etc. due to time limitations. However, those features are actually more important.
- **Proposed Algorithm:** Latent Dirichlet Allocation(LDA) is a popular algorithm for topic modeling with excellent implementations in the Python's Gensim package.

Optimize the performance of Classification Models

- There are two kinds of classification models being built for this project, one is being trained based on the selected features from TED main dataset and the other one is trained based on the plain transcript of a talk. Neither model has HIGH prediction accuracy.
- Although the prediction accuracy depends on the dataset, planning further pre-pruning and post-post pruning to see if a better prediction accuracy can be obtained.

Thank You!

Q & A?

