Table of Contents

Condensador	2
1.1 Campo eléctrico y capacidad	2
1.2 Soluciones	3

Paulino Posada pág. 1 de 9

1 Condensador

1.1 Campo eléctrico y capacidad

Una tensión eléctrica entre dos conductores, crea un campo eléctrico en el espacio existente entre esos conductores. En las unidades anteriores se ha estudiado la relación entre tensión y resistencia, en circuitos cerrados, formados por conductores que unen los componentes, por los que circulaba una corriente.

A diferencia de los circuitos cerrados necesarios para que circule una coriente, los campos actúan sin necesidad de materia. Sus efectos que pueden observarse en un espacio vacío.

El concepto de "campo" es algo abstracto. Al menos con la corriente eléctrica se pueden imaginar diminutas partículas llamadas electrones moviéndose entre los núcleos de los átomos dentro de un conductor, mientras que un "campo" no tiene masa y sus efectos se pueden observar inculso en un espacio vacío, libre de materia.

A pesar de su carácter abstracto, casi todos tenemos experiencia directa con campos, por ejemplo con el campo magnético generado por un imán. Es conocido el efecto de atracción y repulsión de los imanes, según su orientación. Percibimos un campo magnético, por la fuerza que ejerce sobre un objeto de hierro. Los campos electrico y magnético, no tienen masa, ni color, ni olor, actúan tanto con presencia de materia, como en el vacío y son inperceptible a nuestros sentidos.

Un campo magnético se puede visualizar con limaduras de hierro, que se orientan a lo largo de las líneas del campo, indicando su presencia.

Paulino Posada pág. 2 de 9

El principio de funcionamiento de un condensador está basado en un campo eléctrico. También los campos eléctricos producen efectos observables, como por ejemplo la atracción entre un globo cargado estáticamente a nuestra ropa. La causa que genera un campo eléctrico es un desequilibrio de electrones entre dos objetos. Siempre que exista una tensión eléctrica entre dos puntos, existirá también un campo eléctrico en el espacio que separa esos puntos.

Los campos tienen dos medidas: una fuerza de campo y un flujo de campo. La fuerza de campo es la cantidad de "empuje" que ejerce un campo sobre una distancia determinada. El flujo de campo es la cantidad total, o efecto, del campo en el espacio. La fuerza de campo y el flujo son análogos a la tensión ("empuje") y la corriente (flujo) a través de un conductor. La diferencia de una corriente eléctrica y el flujo de campo es que este puede manifestarse en un espacio vacío, mientras que la corriente sólo puede producirse donde haya electrones libres para moverse.

El flujo de campo varía, aumentando o disminuyendo, en función de la materia por la que se propaga. Esto es similar a la corriente eléctrica que será mayor o menor en función de la resistividad del material por el que tenga que circular.

En un material conductor, un campo eléctrico provoca una corriente, mientras que un material aislante que separa dos conductores, provoca un flujo de campo. Dependiendo de las características del aislante, el flujo de campo será mayor o menor.

Normalmente, la corriente sólo pueden circular en un circuito cerrado, donde la misma cantidad de corriente que sale de la fuente de alimentación, vuelve a la fuente de alimentación.

Si se observa dos conductores, separados por un aislante, se puede aumentar la concentración electrones libres en el primer conductor, y reducir la concentración de electrones libres en el segundo conductor. La diferencia de carga entre los conductores causa un flujo de campo eléctrico entre ellos, a través del material aislante que los separa.

Paulino Posada pág. 3 de 9

Este es el principio de funcionamiento de un condensador, dos conductores metálicos separados por un material aislante. La cantidad de carga que un condensador puede acumular se llama capacidad. La capacidad del condensador aumenta con la superficie de los conductores enfrentados y disminuye con el grosor del aislante que los separa. Este aislante también se llama dieléctrico. Además, la capacidad depende del material dieléctrico.

Símbolo del condensador

Al aplicar una tensión entre los conductores de un condensador, se crea un flujo de campo eléctrico entre ellos, que causa una diferencia de de concentración de electrones en los conductores. En el conductor conectado al polo positivo de la fuente de tensión, la concentración de electrones disminuye, mientras que en el conductor conectado al polo negativo, la concentración aumenta. El condensador almacena energía en forma de diferencia de carga entre sus conductores. A mayor diferencia de carga entre los conductores del condensador, mayor será el flujo de campo a través del dieléctrico y mayor la energía almacenada.

Paulino Posada pág. 4 de 9

La energía almacenada en un condensador aumenta con la tensión aplicada entre sus conductores. Esto significa que aumenta la concentración de electrones a la placa (-) y se reduce en la placa (+), lo que requiere una corriente en esa dirección. Por el contrario, para liberar energía de un condensador, la tensión aplicada debe disminuir y se produce una corriente de electrones de la placa (-) a la placa (+). La dirección de la corriente de descarga es contraria a la de carga.

Teóricamente, un condensador perfecto, mantiene su carga y tensión si es desconectado de la fuente de alimentación y su carga no puede circular del contacto positivo al negativo.

Únicamente la conexión de una fuente de alimentación con tensión distinta a la del condensador, o un componente conductor entre los contactos del condensador, causarán una variación de su tensión.

Los condensadores reales pierden su energía acumulada con el paso del tiempo, debido a fugas de corriente, a través del dieléctrico, entre sus conductores. Dependiendo del tipo de condensador, el proceso de descarga por fugas puede tardar años.

Al aumentar la tensión en el condensador, este aumenta su carga, comportándose como un consumidor de energía. Este proceso se llama cargar el condensador, ya que se está aumentando la energía almacenada en su campo eléctrico.

Paulino Posada pág. 5 de 9

Energy being absorbed by the capacitor from the rest of the circuit.

The capacitor acts as a LOAD

Al reducir la tensión en el condensador, este reduce su carga, comportándose como una fuente de energía. Este proceso se llama descargar el condensador, ya que se está reduciendo la energía almacenada en su campo eléctrico.

Energy being released by the capacitor to the rest of the circuit

The capacitor acts as a SOURCE

Paulino Posada pág. 6 de 9

Paulino Posada pág. 7 de 9

1.2 Soluciones

Paulino Posada pág. 8 de 9

Estos apuntes son una adaptación de "Lessons in electric circuits volume 1 DC" , del autor Tony R. Kuphaldt.

Traducción y adaptación Paulino Posada

Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator

Paulino Posada pág. 9 de 9