HOME MONITORING SYSTEM

David Wachenschwanz

Fall 2017 UCSC IoT x413

Home Monitoring System Description

- Multiple Inexpensive "dumb" Sensors Throughout Home Including Outdoors
 - 9 Sensors Used in Demo
 - Each sensor contains Moteino (Atmel Atmega328 MCU), HopeRF RFM69HCW ISM Transceiver, Bosch BME280 and 18650 PCB-Protectd 3.7V Li-Ion Battery (2600 mAh)
 - Transmits Temperature, Pressure, Humidity & Battery Voltage ~ Once-per-Minute, Otherwise goes into Deep Sleep Mode to Preserve Battery Life
 - Programmed in C++ Using Arduino Development Environment

• 1st Raspberry Pi 3 Gateway

- HopeRF RFM69HCW Transceiver connected to SPI0 for received data from "dumb" sensors
- MQTT Gateway: C program running as daemon to receive data from "dumb" sensors and then publish data by MQTT over internal network. RFM69HCW connected by SPIO and GPIO lines for interrupts

2nd Raspberry Pi 3 Gateway

- MQTT-to-MongoDB Service: Python program running as a Linux service to subscribe to MQTT stream and save Temperature, Pressure, Humidity and Battery Voltage data to a MongoDB database
- Flask Server: Flask server for providing overview of current sensor readings as well as for plotting data over a specific time period by location
- Gigabyte Mini PC GB-BXi5-4570R: Hosting MongoDB in Ubuntu 16.04 LTS Linux
- NOTE: In the future, the MQTT Gateway and MQTT-to-MongoDB Service may be combined into one service and the MQTT portion eliminated.

Moteino with RFM69HCW Transceiver & BME280 Shield

Moteino Back w/RFM69HCW

Supplier: https://lowpowerlab.com

BME280 Shield

Onboard battery monitor from VIN, reading on A7, through a 2/3 (1MEG+2MEG resistor divider) and p-channel MOSFET to control powering on & off.

Moteino Sensor Message Protocol

Structure for Data Transmission over RFM69

```
typedef struct {
   int nodeID;
   int devID;
   int cmd;
   long intVal;
   float fltVal;
   char payLoad[32];
} // Radio packet format
   // node identifier
   // device identifier
   // read or write
   // integer payload
   // floating payload
   // string payload
}
```

Note:

- Each Moteino Sensor has a unique nodeID (Each sensor is initialized using RFM Initializer code)
- devID indicates type of data being transmitted
- RFM_Node is normal operational code for running sensor
- Sensors transmits data ~once per minute and then goes to deep sleep

Device Definitions

Current defined devices are:

```
0 uptime:
          read uptime node in minutes
1 node:
           read/set transmission interval in seconds, 0 means no periodic transmission
2 RSSI: read radio signal strength
3 Version: read version node software
4 voltage: read battery level
5 ACK: read/set acknowledge message after a 'set' request
6 toggle: read/set toggle function on button press
7 timer:
            read/set activation timer after button press in seconds, 0 means no timer
8 Garage Opener
9 retry:
          read number of retransmissions needed in radiolink//
16 actuator: read/set LED or relay output
              tx only: message sent when button pressed
48 temperature: read temperature
49 humidity: read humidity
50 pressure: read pressure
51 temperature: OneWire Sensor
63 Light Level: level in DAC's of light level
64 garage button: pulse garage relay
               tx only: error message if no wireless connection (generated by gateway)
90 error:
92 error:
               tx only: device not supported
```

64-bit unique ID from OneWire DS18S20 tx only: first message sent on node startup

Raspberry Pi 3 with RFM69HCW Transceiver

- RFM69HCW transmits at 915 MHz
- 300 kb/sec data rate
- 128-bit AES hardware encryption
- Max. 255 nodes per network
- Range: >500 meters line-of-site

Wiring Connections (RFM69 to Pi):

- 3.3V to pin 17
- GND to pin 20
- SLCK to pin 23
- MISO to pin 21
- MOSI to pin 19
- NSS to pin 24
- DID0 to pin 22

RFM-to-MQTT Gateway on Raspberry Pi 3

- A C program runs as a daemon on the Raspberry Pi 3 with the RFM69 transceiver connected to it through SPI and using interrupt lines
- Program interprets data structure protocol from Moteino sensor transmissions and resends data as a MQTT stream that can be subscribed to by devices in the network

MQTT-to-mongDB Service on Raspberry Pi 3

Configuration file on Raspberry Pi to run mqtt2mongodb.py as a service

```
pi@raspberrypiiot:/lib/systemd/system $ cat mqtt2mongodb.service
[Unit]
Description=MQTT to MongoDB Service
After=multi-user.target

[Service]
Type=idle
ExecStart=/usr/bin/python3 /home/pi/mqtt_to_mongodb/mqtt2mongodb.py > /home/pi/mqtt_to_mongodb/mqtt2mongodb.log 2>&1

[Install]
WantedBy=multi-user.target
```

- To enable and start service:
 - sudo chmod 644 /lib/systemd/system/mqtt2mongodb.service
 - sudo systemctl daemon-reload
 - sudo systemctl enable mgtt2mongodb.service
 - sudo systemctl start mqtt2mongodb.service
- Service will re-start at boot and run continously
- Program subscribes to MQTT stream, grabs temperature, humidity, pressure and battery voltage data and packages it together to save as a document in a mongoDB collection

mongoDB iot_db database

```
Documents in Device Name Mapping Collection
             MongoDB shell version: 3.2.18
                                                                                                                                                                                             > db.Device_Name_Mapping.find()
              connecting to: iot db
            > show collections
                                                                                                                                                                                                    "_id" : 7, "Location" : "Living Room" }
                                                                                                                                                                                                    "_id" : 2, "Location" : "Master Bedroom" }
              Device Name Mapping
              device02
                                                                                                                                                                                                           _id" : 11, "Location" : "Garage" }
              device03
                                                                                                                                                                                                                      : 3, "Location" : "Family Room" }
                                             Collections in iot db
              device05
                                                                                                                                                                                                    " id" : 6, "Location" : "Hallway" }
              device06
                                                                                                                                                                                                           id" : 90, "Location" : "Office" }
              device07
                                                                                                                                                                                                           id" : 88, "Location" : "Mailbox" }
              device10
                                                                                                                                                                                                    "_id" : 5, "Location" : "Outside" }
              device11
                                                                                                                                                                                                           _id" : 23, "Location" : "Michael's Bedroom" }
              device12
                                                                                                                                                                                                          id" : 10. "Location" : "Kirsten's Bedroom" }
              device23
                                                                                                                                                                                                   "_id" : 12, "Location" : "Fourth Bedroom" }
              device88
              device90
              doors
                                                                             Documents in device02 Collection (device02 is the Master Bedroom
        > db.device02.find()
        { "_id" : ObjectId("5a28b4f7a6d15703c3ef72e1"), "device_id" : 2, "humidity" : 47.39, "gateway" : 1, "temperature" : 64.89, "pressure" : 1015.16, "bat_voltage" : 4.29, "event_time" : ISODate("2017-12-07T03:26:47.408Z") }
       { "_id": ObjectId("5a28b547a6d15703c3ef72el"), "device_id": 2, "humidity": 47.43, "gateway": 1, "temperature": 64.85, "pressure": 1015.16, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:26:47.4808") } { "_id": ObjectId("5a28b542a6d15703c3ef72el"), "device_id": 2, "humidity": 47.45, "gateway": 1, "temperature": 64.8, "pressure": 1015.17, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:29:09.842Z") } { "_id": ObjectId("5a28b585a6d15703c3ef7303"), "device_id": 2, "humidity": 47.45, "gateway": 1, "temperature": 64.78, "pressure": 1015.07, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:29:09.842Z") } { "_id": ObjectId("5a28b659a6d15703c3ef730e"), "device_id": 2, "humidity": 47.48, "gateway": 1, "temperature": 64.74, "pressure": 1015.11, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:31:17.112Z") } { "_id": ObjectId("5a28b6486d15703c3ef730e"), "device_id": 2, "humidity": 47.51, "gateway": 1, "temperature": 64.74, "pressure": 1015.11, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:31:17.112Z") } { "_id": ObjectId("5a28b6486d15703c3ef730e"), "device_id": 2, "humidity": 47.56, "gateway": 1, "temperature": 64.71, "pressure": 1015.12, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:31:17.112Z") } { "_id": ObjectId("5a28b649a6d15703c3ef730e"), "device_id": 2, "humidity": 47.56, "gateway": 1, "temperature": 64.71, "pressure": 1015.2, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:32:16.316Z") } { "_id": ObjectId("5a28b649a6d15703c3ef730e"), "device_id": 2, "humidity": 47.56, "gateway": 1, "temperature": 64.71, "pressure": 1015.2, "bat_voltage": 4.28, "event_time": ISODate("2017-12-07103:32:16.316Z") } { "_id": ObjectId("5a28b649a6d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d1570a5d157
       { "_id" : ObjectId("Sa28b649a6d15703c3ef7321"), "device_id" : 2, "humidity" : 47.56, "gateway" : 1, "temperature" : 64.71, "pressure" : 1015.21, "bat_voltage" : 4.28, "event_time" : ISODate("2017-12-07103:33:23.7472") } { "_id" : ObjectId("5a28b64a6d15703c3ef7322"), "device_id" : 2, "humidity" : 47.66, "gateway" : 1, "temperature" : 64.67, "pressure" : 1015.14, "bat_voltage" : 4.28, "event_time" : ISODate("2017-12-07103:33:28.2522") } { "_id" : ObjectId("5a28b707a6d15703c3ef733b"), "device_id" : 2, "humidity" : 47.7, "gateway" : 1, "temperature" : 64.63, "pressure" : 1015.17, "bat_voltage" : 4.28, "event_time" : ISODate("2017-12-07103:35:35.6152") } { "_id" : ObjectId("5a28b707a6d15703c3ef733f"), "device_id" : 2, "humidity" : 47.7, "gateway" : 1, "temperature" : 64.6, "pressure" : 1015.16, "bat_voltage" : 4.29, "event_time" : ISODate("2017-12-07103:36:42.8512") }
                                                                                         Documents in doors collection ("device id": 11 is the Garage
> db.doors.find().skip(db.doors.count() - 10)
{ "_id" : ObjectId("5a316156a6d15703b4173dd6"), "gateway" : 1, "door_status" : "CLOSING", "device_id" : 11, "event_time" : ISODate("2017-12-13T17:20:22.735Z") } { "_id" : ObjectId("5a316162a6d15703b4173dda"), "gateway" : 1, "door_status" : "CLOSED", "device_id" : 11, "event_time" : ISODate("2017-12-13T17:20:34.130Z") }
 { "_id" : ObjectId("5a316339a6d15703b4173e2f"), "gateway" : 1, "door_status" : "OPENING", "device_id" : 11, "event_time" : ISODate("2017-12-13T17:28:25.619Z") }
   "_id" : ObjectId("5a316345a6d15703b4173e31"), "gateway" : 1, "door_status" : "OPEN", "device_id" : 11, "event_time" : ISODate("2017-12-13T17:28:37.235Z") }
{ "_id" : ObjectId("5a31635ca6d15703b4173e36"), "gateway" : 1, "door_status" : "CLOSING", "device_id" : 11, "event_time" : ISODate("2017-12-13T17:29:00.295Z") } { "_id" : ObjectId("5a316367a6d15703b4173e37"), "gateway" : 1, "door_status" : "CLOSED", "device_id" : 11, "event_time" : ISODate("2017-12-13T17:29:11.812Z") } { "_id" : ObjectId("5a31853da6d15703b4174451"), "gateway" : 1, "door_status" : "OPENING", "device_id" : 11, "event_time" : ISODate("2017-12-13T19:53:3.386Z") }
```

{ "id" : ObjectId("5a318548a6d15703b4174454"), "gateway" : 1, "door status" : "OPEN", "device id" : 11, "event time" : ISODate("2017-12-13T19:53:44.996Z") }

Index Page for Home Monitoring Website Current Conditions

As of Wednesday 3:34:34 PM Dec 13, 2017:

Location	Temperature °F	Humidity % RH	Pressure hPa	Voltage V	Last Updated
Michael's Bedroom	65.5	43.9	1008.6	4.18	Wed 3:34:22 PM PST
Office	67.3	40.3	1008.4	3.77	Wed 3:34:22 PM PST
Fourth Bedroom	62.8	43.5	1008.0	4.14	Wed 3:34:17 PM PST
Kirsten's Bedroom	66.0	43.8	1008.9	4.20	Wed 3:34:16 PM PST
Outside	63.9	32.0	1007.8	4.86	Wed 3:34:10 PM PST
Family Room	69.1	51.2	1006.3	3.96	Wed 3:34:00 PM PST
Hallway	66.5	42.8	1007.4	4.19	Wed 3:33:57 PM PST
Master Bedroom	65.5	45.1	1008.1	3.96	Wed 3:33:44 PM PST
Living Room	64.7	54.5	1006.4	4.10	Wed 3:33:40 PM PST
Garage	67.5	43.5	1008.3	3.34	Wed 3:33:37 PM PST
Mailbox	62.8	36.5	1008.3	3.84	Wed 3:29:39 PM PST

Specific Location Conditions (Reached by clicking on Location)

Outside Conditions

over the past 24 hours as of Wednesday 3:38:05 PM Dec 13, 2017:

Security Enhancements

- Need to add login system onto flask website server
 - Username and hashed password will be stored on mongoDB database
- Change website from http: to https:
- Add encryption to MQTT (currently is password protected but sent in clear text)
 - Other option is to eliminate MQTT and just have a RFM-to-mongoDB service running, skipping the MQTT all together

Updates

- Updates to Moteino Sensors can be done over-the-air (OTA) although not currently implemented. Also there is an issue trying to wake them up from deep sleep to do the OTA update that has to be addressed
- Firmware running on Raspberry Pi gateway could occasionally call to a centralized server to check for any software updates for either the gateway or the Moteino Sensors and then push the updates accordingly
- Lots of work still needed to address details

Final Comments

- Enhancements needed to the Flask web server:
 - Provide login security
 - Add ability to get automatic update of garage door opening and closing while website is being viewed,
 - Add ability to get summary statistics of conditions in each room
 - Add electronics to control HVAC system (furnace) instead of a normal thermostat
- Code for project is available on my github:
 - https://github.com/wachenda/IOT_Sensors_Platforms_Communications-Class.git