Homework 3 and 4

HW3: implement a *corner matching* algorithm based on template matching:

- 1. The input is two images I_1 and I_2 , and the corner sets C_1 and C_2 detected in I_1 and I_2 using Harris Corner Detector (HW2).
- 2. Denote the $k \times k$ window patch centered at a corner f as P(f).
- 3. Using zero-mean normalized cross correlation (ZNCC), you can measure the similarity score S(P, P') between two patches P and P'.
- 4. For each $k \times k$ patch surrounding corners $f_i^1 \in C_1$, find its **most similar** patch from the patches surrounding corners $f_i^2 \in C_2$ using ZNCC, namely,

$$f_j^2 = argmin_{f_x^2 \in C_2} S(P(f_i^1), P(f_x^2)).$$

- 5. Make $F_i = (f_i^1, f_j^2)$ as a corresponding point pair if $S\left(P(f_i^1), P(f_j^2)\right) > \theta$ where $\theta = 0.8$ is a similarity threshold.
- 6. The output of your complete algorithm is a set of corresponding pairs $\{F_i = (f_{i_1}^1, f_{i_2}^2)\}$, where $f_{i_1}^1 \in I_1, f_{i_2}^2 \in I_2$.

HW4: implement an image panorama based on your HW3 result.

- 1. Following the 8-point algorithm, **compute a homography** H between I_1 and I_2 using the corresponding pairs $\{F_i = (f_{i_1}^1, f_{i_2}^2)\}$ you computed above, more specifically, making $f_{i_1}^1 = Hf_{i_2}^2$.
- 2. **Compute Dimension of the Stitched Image.** (See the figure and explanation in the next page for implementation detail.)
- 3. **Stitch** I_2 **to** I_1 , using the simple average blending. (See the explanation in the next page for implementation detail).
- 4. Your final output is the stitched image I_S .

HW3 and HW4 are due: 11:59pm, Apr. 17th and Apr. 23th, Respectively. Submit your codes and results on Moodle.

If you are late for k (k < 6) days, your score will be calculated as: Final homework score = (The score based on your codes) \times 0.95 k If you are late for more than 6 days, you get no score.

How to Find the Dimension of the Transformed Image $H(I_2)$ and the Stitched Image?

- 1. You need to first find the range of the transformed image I_2 under the transformation H. For each boundary pixel point $(u_i', v_i')^T \in B(I_2)$, compute its corresponding position (u_i, v_i) in the coordinate system of image I_1 : $(\hat{u}_i, \hat{v}_i, \hat{w}_i)^T = H(u', v'_i, 1)$, and then $(u_i, v_i) = (\frac{\hat{u}_i}{\hat{w}_i}, \frac{\hat{v}_i}{\hat{w}_i})$.
- 2. Compute the min and max x and y coordinates of transformed I_2 , and compare with the bounding box of I_1 , you will get the dimension (green bounding box) of I_S .
- 3. Find a translation of the coordinate system of I_s , so that its new range $R(I_s)$ has the smallest u and v being 1. Denote this translation as T_s . Then $I_s = T_s(I_1 \cup H(I_2))$.

How to Stitch and Blend the Two Images?

Initialize I_s as a black image with the right dimension. For each pixel $(x_i, y_i) \in I_s$, compute its corresponding position in I_1 , $p(u_i, v_i) = T_s^{-1}(x_i, y_i)$ and corresponding position in I_2 , $p_i'(u_i', v_i') = H^{-1}(T_s^{-1}(x_i, y_i))$.

Then:

- (1) if both p_i and p'_i are outside their corresponding lamge range, leave it as black.
- (2) if only p_i is within the parameter range of I_1 , fill it using $I_1(u_i, v_i)$;
- (3) if only p'_i is within the parameter range of I_2 , fill it using $I_2(u'_i, v'_i)$;
- (4) If both of these two pixels are within the range of their corresponding image, blend the grayscale value by choosing an average of grayscale value, $I_s(x_i, y_i) = (I_1(u_i, v_i) + I_2(u'_i, v'_i))/2$.

Note 1: we use $I_1(u, v)$ to denote the grayscale value in image I_1 on pixel location $(u, v)^T$, same for I_2 and I_s .

Note 2: if (u'_i, v'_i) does not have integer value, you should do a bilinear interpolation to get $I_2(u'_i, v'_i)$ from its neighboring integer pixel's grayscale values.