hw1

September 11, 2018

1 Meteo 515 – Assignment 1 – Exploratory Data Analysis

1.1 Function definitions and module imports

```
In [3]: from __future__ import division
    from collections import OrderedDict
    import datetime as dt

import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import scipy.stats as ss
    #import statsmodels.api as sm
    from statsmodels.robust.scale import mad

# for some interactions with figures, and sizes closer to the usual sizes
%matplotlib notebook
```

In the following functions, we calculate the basic statistics using their formulas, which we can compare to the results given by functions provided by Pandas, NumPy, scipy.stats, and StatsModels.

```
def calc_std(x):
    """Calculate corrected sample standard deviation $s$"""
    n = x.size
    xbar = x.mean()
    ssqd = 1/(n-1)*np.sum((x-xbar)**2)
    s = np.sqrt(ssqd)
    return s
def calc_iqr(x):
    """Calculate IQR using fn calc_median"""
    #x.sort_values(inplace=True)
    x = np.array(x)
    x.sort()
    n = x.size
    if n % 2 == 0:
        i = int(n/2)
        x1 = x[:i]
        x2 = x[i:]
    else:
        i = int((n+1)/2)
        x1 = x[:i]
        x2 = x[(i-1):]
    q1 = calc_median(x1)
    q3 = calc_median(x2)
    return q3 - q1
def calc_iqr_pd(x):
    """Calculate IQR using Pandas quantile df method"""
    try:
        q1 = x.quantile(0.25)
        q3 = x.quantile(0.75)
        return q3 - q1
    except AttributeError:
        print('requires pd.Series input')
def calc_mad(x):
```

```
"""Calculate median absolute deviation using fn calc_median
           MAD := the median of the absolute deviations from the data's median
            #x.sort values()
            x_median = calc_median(x)
            absdevs = np.abs(x-x median)
           return calc_median(absdevs)
        def calc_skew(x):
            """Calculate skewness using fn calc_std"""
           n = x.size
           xbar = x.mean()
           m3 = 1/n * np.sum((x-xbar)**3) # 3rd moment
           s3 = calc_std(x)**3
            return m3/s3
In [5]: def summary_stats(x, save_table=False):
            """Descriptive stats for input np array or pd series x"""
           mean = x.mean() # using array method (Numpy) / Series method (Pandas)
            assert(np.isclose( mean, x.sum()/x.size ))
           median = x.median() # using array method (Numpy) / Series method (Pandas)
            assert(np.isclose( median, calc_median(x) ))
            std = x.std() # using array method (Numpy) / Series method (Pandas)
            assert(np.isclose( std, calc_std(x) ))
            iqr = ss.iqr(x) # using Scipy Stats
            assert(np.isclose( iqr, calc_iqr(x) ))
            assert(np.isclose( iqr, calc_iqr_pd(x) ))
            # c is a normalization constant
            # that we only need/want if we are relating MAD to the standard deviation
            # https://en.wikipedia.org/wiki/Median_absolute_deviation#Relation_to_standard_d
           mad_sm = mad(x, c=1) # using StatsModels (Pandas only has *mean* absolute dev)
            assert(np.isclose( mad_sm, calc_mad(x) ))
            skew = ss.skew(x) # using Scipy Stats; Series also have skew() method
            assert(np.isclose( skew, calc_skew(x), rtol=1e-4 )) # need a little more leeway h
            # still need Yule-Kendall
           names = ['mean', 'median', 'std', 'IQR', 'MAD', 'skewness']
```

```
varz = [mean, median, std, iqr, mad_sm, skew] # `vars` is a built-in
d = OrderedDict([(n, v) for n, v in zip(names, varz)])
return d
```

Now, with our ability to construct summary statistics in a table, we can proceed to the first part of the assignment.

But first we need to load the data.

1.2 a) Schematic plot and descriptive statistics table (without dealing with missing data)

1.2.1 Code to make the table and schematic plot

Note that, by default, whiskers in pyplot extend $\frac{3}{2}IQR$ past the quantiles that define the edges of the box. So, we do not have adjust the settings of whis in our call to boxplot https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html

```
In [90]: def make_table(dataframe, names, correct_missing=False):
    """ """
    results = {}
    for i, v in enumerate(names):

    if correct_missing:
        d = dataframe[v].loc[dataframe[v] != -99]
        if v == 'PCP':
            d = d.loc[d > 0] #d.loc[d != -1]

    else:
        d = dataframe[v]

    stats = summary_stats(d)

    if i == 0: # print header
        fmt = '{:^8s}'*(len(stats)+1)
        print(fmt.format('', *stats.keys()))
```

```
fmt = '{:^8s}' + '{:>8.3f}'*len(stats)
        print(fmt.format(v, *stats.values()))
        results[v] = stats
    return results
def make_schematic_plot(dataframe, names, figname='', correct_missing=False):
    f, aa = plt.subplots(1, 3, figsize=(6, 3.5), num=figname)
    for i, v in enumerate(varnames):
        ax = aa[i]
        if correct_missing:
            d = dataframe[v].loc[dataframe[v] != -99]
            if v == 'PCP':
                d = d.loc[d > 0] #d.loc[d != -1]
        else:
            d = dataframe[v]
        #> style points in different regions differently
        #IQR = stats_results[v]['IQR']
        q1 = d.quantile(0.25)
        q3 = d.quantile(0.75)
        IQR = q3 - q1
        #print(v, IQR)
        far_out = (d > q3 + 3*IQR) | (d < q1 - 3*IQR)
        in_fence = ((d > q3 + 1.5*IQR) | (d < q1 - 1.5*IQR)) & ~far_out
        in_whis = ~in_fence & ~far_out
        df v far out = d[far out]
        df_v_in_fence = d[in_fence]
        df_v_in_whis = d[in_whis]
        #print(v, df_v_far_out.size)
        x = np.ones(df_v_in_whis.size)
        x = np.random.normal(1, 0.02, size=df_v_in_whis.size)
        ax.plot(x, df_v_in_whis, '.', color='0.65', ms=2, alpha=0.05)
        x = np.ones(df_v_in_fence.size)
        ax.plot(x, df_v_in_fence, '.', color='orange', ms=6, alpha=0.5)
        x = np.ones(df_v_far_out.size)
```

```
ax.plot(x, df_v_far_out, 'r*', ms=6, alpha=0.5)
                 d.plot.box(ax=ax, showfliers=False)
                 #ax.boxplot(d, showfliers=False, labels=v)
                 ax.grid(True)
             #aa[0].get_shared_y_axes().join(aa[0], aa[1])
             aa[1].set_ylim(ymax=aa[0].get_ylim()[1])
             aa[0].set_ylim(ymin=aa[1].get_ylim()[0])
            plt.tight_layout()
In [91]: stats_results = make_table(df, varnames, correct_missing=False)
        make_schematic_plot(df, varnames, 'schematic_plots', correct_missing=False)
                 median
                                  IQR
          mean
                          std
                                          MAD
                                                skewness
                                  34.000 17.000 -0.430
 Tmax
          58.814 61.000 20.017
 Tmin
          39.893 40.000 18.332 28.000 14.000 -0.993
 PCP
          -0.077
                   0.000
                           0.509
                                   0.070
                                         0.020 -0.123
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
```

1.3 b) Repeat of a), but with missing values and trace precip values removed/ignored

```
In [92]: stats_results_2 = make_table(df, varnames, correct_missing=True)
        make_schematic_plot(df, varnames, figname='schematic_plots_corrected', correct_missing
         mean
                median
                         std
                                 IQR
                                         MAD
                                               skewness
         58.880 61.000 19.760 34.000 17.000 -0.245
  Tmax
 Tmin
         40.156 40.000 17.326 28.000 14.000 -0.251
 PCP
          0.282
                  0.140
                          0.369
                                  0.340
                                          0.120
                                                  2.907
<IPython.core.display.Javascript object>
```

1.3.1 Influence of removing missing values and trace precip

<IPython.core.display.HTML object>

On the order of 1/2 of the days in the dataset were non-precipitating, so removing that data, along with the trace precip, has a huge impact on the statistics. For example:

- the median is still very low compared to data in the right tail, but is now nonzero.
- the mean is now positive, as it should be to be physical

1.4 c) Discussion of a) and b) results

Tmax, although it is slightly skewed left, is roughly symmetrical, so the mean is not too bad a predictor of central tendency for Tmax. Tmax has no data points that extend past the whiskers. However, with $N \sim 45000$, we would expect our sample distribution to look more symmetric if Tmax were indeed normally distributed. Thus, I would recommend median for central tendency and MAD for spread.

Tmin has an interesting shape: the placement of the median between the quartiles suggests positive skewness, but the longer bottom whisker suggets negative skewness. Tmin has a few datapoints that extend into the lower "fence" region (with orange circle markers). Due to these attributes, I would recommend median for central tendency and MAD for spread.

We can see in the above figure that the distribution of precip is very skewed, with a pile-up of values around 0, and a long tail extending many standard deviations to the right. Since the distribution is highly asymmetric and we have large number of outliers (in the "far-out" region, marked by red stars), we need statistics that are robust and resistant: the median for central tendency and MAD for spread. The population probably could be described by a gamma distribution with shape parameter k < 1.

In the histograms below, we can see that the temperatures are relatively bimodal, probably corresponding to the main winter/summer regimes.