Corrigé de la fiche de TD 4 (1ère Partie)

Damerdji Bouharis A. Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique. [Ch.0]

Fiche de TD 4 (1ère Partie)

Dérivabilité des fonctions réelles

Enoncés des exercices

Exercice 1:

1. Etudier la dérivabilité des fonctions suivantes en x_0 , et donner $f'(x_0)$ (quand elle existe)

a.
$$f(x) = \begin{cases} xe^{\frac{1}{x}} & \text{si } x < 0\\ 0 & \text{si } x = 0\\ x^2 \ln\left(1 + \frac{1}{x}\right) & \text{si } x > 0 \end{cases}, \quad x_0 = 0$$

b.
$$g(x) = \begin{cases} arctg \ x & \text{si} \ |x| \le 1 \\ \frac{\pi}{4} sign(x) + \frac{x-1}{2} & \text{si} \ |x| > 1 \end{cases}$$
, $x_0 = 1, x_0 = -1$

c.
$$h(x) = \begin{cases} e^{\frac{1}{x^2 - a^2}} & \text{si } |x| < a \\ 0 & \text{si } |x| \ge a \end{cases}$$
, $x_0 = a$

2. Déterminer les constantes a, b, c et d pour que f soit dérivable sur \mathbb{R} :

$$f(x) = \begin{cases} ax + b & \text{si} \quad x \le 0\\ cx^2 + dx & \text{si} \quad 0 < x \le 1\\ 1 - \frac{1}{x} & \text{si} \quad x > 1 \end{cases}$$

Exercice 2:

a) Calculer les dérivées des fonctions suivantes :

1/
$$f_1(x) = \sin(\ln x)$$
, $2/f_2(x) = \ln(\cos(\frac{1}{x}))$, $3/f_3(x) = \frac{(shx)^2}{e^x}$, $4/f_4(x) = e^{arctgx}$, $5/f_5(x) = \cos(\arcsin x)$, $6/f_6(x) = arctg(\frac{2x}{3+x})$.

b) Etudier les variations de la fonction $f(x) = arctg(x + \sqrt{x^2 - 1})$.

Exercice 3: Calculer les dérivées n-ièmes des fonctions suivantes :

1.
$$f_1(x) = (1+x)^{\alpha}$$
, pour $\alpha = -1$ et $\alpha = \pm \frac{1}{2}$,

2.
$$f_2(x) = \ln(1+x)$$
, $3/f_3(x) = (x+1)^3 e^{-x}$.

Exercice 4: On considère la fonction f définie par $f(x) = \frac{x^2}{x+2}e^{\frac{1}{x}}$

- 1. Déterminer D_f le domaine de définition de f.
- 2. Etudier la continuité et la dérivabilité de f sur D_f .
- 3. f est-elle prolongeable par continuité sur \mathbb{R} ?
- 4. Etudier les variations de f.

 $[\S 0.0]$

Exercice supplémentaire (Examen 2019)

Considérons f la fonction définie de $\left[0,\frac{1}{2}\right]$ dans $\mathbb R$ par

$$f(x) = \begin{cases} \frac{\arcsin x}{x} & \text{si } x \in \left]0, \frac{1}{2}\right] \\ 1 & \text{si } x = 0 \end{cases}$$

- 1. Etudier la continuité de la fonction f sur $\left[0,\frac{1}{2}\right]$.
- 2. Etudier la dérivabilité de la fonction f sur $\left[0,\frac{1}{2}\right]$, puis calculer f' sa dérivée sur $\left[0,\frac{1}{2}\right]$.
- 3. Montrer que pour tout x, tel que $0 < x \le \frac{1}{2}$ on a $f(x) < \frac{1}{\sqrt{1-x^2}}$. En déduire que f est strictement croissante sur $\left[0, \frac{1}{2}\right]$.
- 4. Montrer que f admet une fonction réciproque f^{-1} , et qu'elle est continue et strictement croissante.
- 5. Déterminer $D_{f^{-1}}$ le domaine de définition de f^{-1} .

NB. Il n'est pas demandé de calculer $f^{-1}(x)$.

4 [Ch.0]

Corrigés

Exercice 1:

1. (a)
$$f(x) = \begin{cases} xe^{\frac{1}{x}} & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ x^2 \ln\left(1 + \frac{1}{x}\right) & \text{si } x > 0 \end{cases}$$
, $x_0 = 0$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{xe^{\frac{1}{x}}}{x} = 0$$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \ln(1 + \frac{1}{x})}{x}$$

$$= \lim_{x \to 0} [x \ln(x + 1) - x \ln x] = 0.$$

d'où f est dérivable en $x_0 = 0$ et on a f'(0) = 0.

(b)
$$g(x) = \begin{cases} arctg \ x & \text{si} \ |x| \le 1 \\ \frac{\pi}{4} sign(x) + \frac{x-1}{2} & \text{si} \ |x| > 1 \end{cases}$$

•
$$\lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = \lim_{x \to 1} \frac{\arctan x - \frac{\pi}{4}}{x - 1} = \frac{1}{2}$$
$$\lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = \lim_{x \to 1} \frac{\frac{\pi}{4}x + \frac{x - 1}{2} - \frac{\pi}{4}}{x - 1} = \frac{1}{2}$$

d'où g est dérivable en $x_0 = 1$ et donc g'(1) n'existe pas.

•
$$\lim_{x \to -1} \frac{g(x) - g(-1)}{x + 1} = \lim_{x \to -1} \frac{-\frac{\pi}{4}x + \frac{x - 1}{2} + \frac{\pi}{4}}{x + 1} = +\infty.$$

d'où g n'est pas dérivable en $x_0 = -1$.

(c)
$$h(x) = \begin{cases} e^{\frac{1}{x^2 - a^2}} & \text{si } |x| < a \\ 0 & \text{si } |x| \ge a \end{cases}$$
, $x_0 = a$

$$\lim_{x \le a} \frac{h(x) - h(a)}{x - a} = \lim_{x \le a} \frac{e^{\frac{1}{x^2 - a^2}}}{x - a} = 0$$

$$\lim_{x \ge a} \frac{h(x) - h(a)}{x - a} = 0$$

d'où h est dérivable en $x_0 = a$ et on a h'(0) = 0.

2.
$$f(x) = \begin{cases} ax + b & \text{si} \quad x \le 0 \\ cx^2 + dx & \text{si} \quad 0 < x \le 1 \\ 1 - \frac{1}{x} & \text{si} \quad x > 1 \end{cases}$$

Comme f est dérivable sur \mathbb{R} alors f est dérivable et continue en $x_0 = 0$ et $x_0 = 1$ alors :

•
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} f(x) \Leftrightarrow \lim_{x \to 0} ax + b = \lim_{x \to 0} cx^2 + dx \Leftrightarrow b = 0$$

•
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} f(x) \Leftrightarrow \lim_{x \to 1} cx^2 + dx = \lim_{x \to 1} 1 - \frac{1}{x} \Leftrightarrow c + d = 0 \dots (1)$$

$$\bullet \lim_{x \stackrel{<}{>} 0} \frac{f(x) - f(0)}{x} = \lim_{x \stackrel{>}{>} 0} \frac{f(x) - f(0)}{x - 0} \Leftrightarrow \lim_{x \stackrel{<}{>} 0} \frac{ax}{x} = \lim_{x \stackrel{>}{>} 0} cx + d \Leftrightarrow a = d \dots (2)$$

[0.0]5

•
$$\lim_{x \le 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \le 1} \frac{cx^2 + dx - 0}{x - 1},$$

et en faisant le changement de variables t = x - 1, on obtient :

$$\lim_{x \stackrel{<}{>} 1} \frac{f(x) - f(1)}{x - 1} = \lim_{t \stackrel{<}{>} 0} \frac{2ct + dt}{t} = 2c + d \stackrel{(2)}{=} c \dots (3)$$

et
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} \lim_{x \to 1} \frac{1 - \frac{1}{x} - 0}{x - 1} = 1 \dots (4)$$

de (3) et (4) on a c = 1 alors d = a = -1.

Exercice 2:

1. (a)
$$f_1'(x) = \frac{\cos(\ln x)}{x}$$
,

(b)
$$f_2'(x) = \frac{tg(\frac{1}{x})}{x^2}$$
,

(c)
$$f_3'(x) = \frac{2shxchx - sh^2x}{e^x}$$
,
(d) $f_4'(x) = \frac{e^{arctyx}}{1+x^2}$,

(d)
$$f_4'(x) = \frac{e^{arctgx}}{1+x^2}$$

(e)
$$f_5'(x) = -\frac{\sin(\arcsin x)}{\sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}}$$
,

(f)
$$f_6'(x) = \frac{\left(\frac{2x}{3+x}\right)'}{1+\left(\frac{2x}{3+x}\right)^2} = \frac{6}{5x^2+6x+9}.$$

2.
$$f(x) = \arctan(x + \sqrt{x^2 - 1})$$

$$D_f = \{x \in \mathbb{R} / x^2 - 1 \ge 0 \} =]-\infty, -1] \cup [1, +\infty[$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \arctan\left(x + \sqrt{x^2 - 1}\right) = \lim_{x \to -\infty} \arctan\frac{\left(x + \sqrt{x^2 - 1}\right)\left(x - \sqrt{x^2 - 1}\right)}{\left(x - \sqrt{x^2 - 1}\right)}$$

$$= \lim_{x \to -\infty} \arctan\frac{1}{\left(x - \sqrt{x^2 - 1}\right)} = 0.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \arctan\left(x + \sqrt{x^2 - 1}\right) = \frac{\pi}{2}.$$

On a
$$f'(x) = \frac{1}{2x\sqrt{x^2-1}}$$

Exercice 3:

1.
$$f_1(x) = (1+x)^{\alpha}$$
, $f'_1(x) = \alpha (1+x)^{\alpha-1}$, $f''_1(x) = \alpha (\alpha-1) (1+x)^{\alpha-2}$,... alors $f_1^{(n)}(x) = \alpha (\alpha-1) ... (\alpha-n+1) (1+x)^{\alpha-n}$, $\forall n \in \mathbb{N}$ (à vérifier facilement par récurrence.)

6 [Ch.0

(a) Pour $\alpha = -1$: $f_1(x) = \frac{1}{1+x}$ $\forall n \in \mathbb{N},$

$$f_1^{(n)}(x) = (-1)(-2)...(-n)(1+x)^{-1-n} = \frac{(-1)^n n!}{(1+x)^{1+n}}.$$

(b) Pour $\alpha = \frac{1}{2}$: $f_2(x) = \sqrt{1+x}$ $\forall n \in \mathbb{N}$,

$$f_1^{(n)}(x) = \left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right) \dots \left(\frac{3}{2} - n\right) (1+x)^{\frac{1}{2}-n}$$
$$= \frac{(-1)^{n-1}}{2^n} 1.3.5 \dots (2n-3) (1+x)^{\frac{1}{2}-n}$$

(c) Pour $\alpha = -\frac{1}{2}$: $f_3(x) = \frac{1}{\sqrt{1+x}}$ $\forall n \in \mathbb{N}$,

$$f_1^{(n)}(x) = \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right) \dots \left(\frac{1}{2} - n\right) (1+x)^{-\frac{1}{2} - n}$$
$$= \left(-\frac{1}{2}\right)^n 1.3.5 \dots (2n-1) (1+x)^{-\frac{1}{2} - n}$$

2. $f_2(x) = \ln(1+x) \Rightarrow f'_2(x) = \frac{1}{1+x} = f_1(x)$, alors $\forall n \in \mathbb{N}$,

$$f_2^{(n)}(x) = \left(\frac{1}{1+x}\right)^{(n-1)} = f_1^{(n-1)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}.$$

3. $f_3(x) = (x+1)^3 e^{-x}$

On a la formule de Leibnitz : $(g.h)^{(n)} = \sum_{k=0}^{n} C_n^k g^{(k)} . h^{(n-k)}$

On pose $g(x) = (x+1)^3$ et $h(x) = e^{-x}$,

Alors:

$$g'(x) = 3(x+1)^2$$
, $g''(x) = 3.2(x+1)$, $g'''(x) = 3.2.1$, d'où

$$\forall n = 0, 1, 2, 3, \ g^{(n)}(x) = \frac{3!}{(3-n)!} (x+1)^{3-n} \ \text{et } g^{(n)}(x) = 0; \forall n \ge 4$$

et

$$\forall n \in \mathbb{N}, h^{(n)}(x) = (-1)^n e^{-x},$$

donc

$$\forall n \in \mathbb{N}, \ f_3^{(n)}(x) = \sum_{k=0}^{3} C_n^k \cdot \frac{3!}{(3-k)!} (x+1)^{3-k} (-1)^{n-k} e^{-x}$$

[80.0]

(à vérifier facilement par récurrence).

$\underline{\text{Exercice } 4}$:

$$\overline{f(x) = \frac{x^2}{x+2}}e^{\frac{1}{x}}$$

- 1. $D_f =]-\infty, -2[\cup]-2, 0[\cup]0, +\infty[.$
- 2. f est continue sur D_f car c'est la composée, le produit et le quotient (division) de fonctions continues sur D_f .

f est dérivable sur D_f car c'est la composée, le produit et le quotient (division) de fonctions dérivables sur D_f .

3.
$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x^2}{x+2} e^{\frac{1}{x}} = -\infty$$
$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x^2}{x+2} e^{\frac{1}{x}} = +\infty$$

d'où f n'admet pas un prolongement par continuité en $x_0 = -2$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2}{x + 2} e^{\frac{1}{x}} = 0$$

 $\lim_{x \stackrel{>}{\to} 0} f\left(x\right) = \lim_{x \stackrel{>}{\to} 0} \frac{x^2}{x+2} e^{\frac{1}{x}}, \text{ en faisant le changement de variables } t = \frac{1}{x}, \text{ on obtient } \lim_{x \stackrel{>}{\to} 0} f\left(x\right) = \lim_{t \to +\infty} \frac{1}{t(1+2t)} e^t = +\infty$

d'où f n'admet pas un prolongement par continuité en $x_0 = 0$.

4.
$$f'(x) = \frac{x^2 + 3x - 2}{(x+2)^2} e^{\frac{1}{x}} = \frac{(x-x_1)(x-x_2)}{(x+2)^2} e^{\frac{1}{x}}$$

où $x_1 = \frac{-3 - \sqrt{17}}{2} < -2$ et $x_2 = \frac{-3 + \sqrt{17}}{2} > 0$

x	$-\infty$	x_1	_	-2	0		x_2		$+\infty$
f'(x)	+	0	_	_		_	0	+	
f(x)	$-\infty$	$f(x_1)$	$-\infty$	$+\infty$	$0 + \infty$	_	$f(x_2)$		$+\infty$

Exercice supplémentaire. (Examen 2019)

$$f(x) = \begin{cases} \frac{\arcsin x}{x} & \text{si } x \in \left]0, \frac{1}{2}\right] \\ 1 & \text{si } x = 0 \end{cases}$$

1. La fonction f est continue sur $\left]0,\frac{1}{2}\right]$ car c'est le quotient (la division) de deux fonctions continues sur $\left]0,\frac{1}{2}\right]$ et on a

 $\lim_{x\to 0} f\left(x\right) = \lim_{x\to 0} \frac{\arcsin x}{x} = \lim_{x\to 0} \frac{x}{x} = 1 = f\left(0\right), \text{ car } \arcsin x \sim x, \text{ alors } f \text{ est continue en } x_0 = 0. \text{ Donc } f \text{ est continue sur } \left[0, \frac{1}{2}\right].$

8 [Ch.0]

2. La fonction f est dérivable sur $\left]0,\frac{1}{2}\right]$ car c'est le quotient (la division) de deux fonctions dérivables sur $\left]0,\frac{1}{2}\right]$ et on a

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{\arcsin x}{x} - 1}{x} = \lim_{x \to 0} \frac{\arcsin x - x}{x^2}$$

$$\stackrel{RH1}{=} \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - 1}{2x} \stackrel{RH2}{=} \lim_{x \to 0} \frac{x}{2(1 - x^2)^{\frac{3}{2}}}$$

$$= 0$$

alors f est dérivable en $x_0 = 0$ et f'(0) = 0.

Donc f est dérivable sur $\left[0,\frac{1}{2}\right]$ et on a pour tout x dans $\left[0,\frac{1}{2}\right]$,

$$f'(x) = \frac{\frac{x}{\sqrt{1-x^2}} - \arcsin x}{x^2} = \frac{x - \sqrt{1-x^2}\arcsin x}{x^2\sqrt{1-x^2}}.$$

D'où sa dérivée sur $\left[0,\frac{1}{2}\right]$ est donnée par

$$f'(x) = \begin{cases} \frac{x - \sqrt{1 - x^2 \arcsin x}}{x^2 \sqrt{1 - x^2}} & \text{si } x \in \left]0, \frac{1}{2}\right] \\ 0 & \text{si } x = 0 \end{cases}$$

3. Pour tout $x \in \left]0, \frac{1}{2}\right]$, on pose $g(x) = \arcsin x$, alors on a g est continue sur [0, x], g est dérivable sur [0, x[, donc d'après le théorème des accroissements finis; il existe $c \in \left]0, x[$; tel que

$$g(x) - g(0) = g'(c)(x - 0) \Leftrightarrow \arcsin x = \frac{x}{\sqrt{1 - c^2}} \Leftrightarrow \frac{\arcsin x}{x} = \frac{1}{\sqrt{1 - c^2}}$$

or

$$\begin{array}{ll} 0 < c < x & \Leftrightarrow 1 - x^2 < 1 - c^2 < 1 \\ & \Leftrightarrow \sqrt{1 - x^2} < \sqrt{1 - c^2} < 1 \quad \text{car } 1 - x^2 > 0 \text{ pout tout } x \in \left]0, \frac{1}{2}\right]. \\ & \Leftrightarrow 1 < \frac{1}{\sqrt{1 - c^2}} < \frac{1}{\sqrt{1 - x^2}}, \end{array}$$

par conséquent : $\forall x \in \left]0, \frac{1}{2}\right]$;

$$\frac{\arcsin x}{x} < \frac{1}{\sqrt{1 - x^2}} \Leftrightarrow f(x) < \frac{1}{\sqrt{1 - x^2}}.$$

On déduit de ce qui précède que $\forall x \in \left]0, \frac{1}{2}\right]$;

$$\frac{\arcsin x}{x} < \frac{1}{\sqrt{1-x^2}} \Leftrightarrow x - \sqrt{1-x^2} \arcsin x > 0$$

d'où $\forall x \in \left[0, \frac{1}{2}\right]$;

$$\frac{x - \sqrt{1 - x^2} \arcsin x}{x^2 \sqrt{1 - x^2}} > 0 \Leftrightarrow f'(x) > 0,$$

alors f est strictement croissante sur $\left]0,\frac{1}{2}\right].$

[0.0]

4. f est continue et strictement croissante sur $\left]0,\frac{1}{2}\right]$, alors f est bijective de $\left]0,\frac{1}{2}\right]$ dans $f\left(\left]0,\frac{1}{2}\right]\right)$ et admet une fonction réciproque f^{-1} de $f\left(\left]0,\frac{1}{2}\right]\right)$ dans $\left]0,\frac{1}{2}\right]$ qui est continue et strictement croissante.

5. On a $\forall x \in]0, \frac{1}{2}];$

$$0 < x \le \frac{1}{2} \iff f\left(0\right) < f\left(x\right) \le f\left(\frac{1}{2}\right), \quad \text{car } f \text{ est strictement croissante} \Leftrightarrow 1 < f\left(x\right) \le \frac{\pi}{3}.$$

alors $f\left(\left]0,\frac{1}{2}\right]\right) = \left]1,\frac{\pi}{3}\right]$ par conséquent $D_{f^{-1}} = \left]1,\frac{\pi}{3}\right]$.