Contents

Chapter 1

Exercise 1.3.3 Complete the proof for Lemma 1.3.4. That is, prove that \cdot and - for \mathbb{Z} are well-defined. The proof for \cdot is a bit more complicated than might be expected.

Proof. Let $(a,b),(c,d),(x,y),(z,w) \in \mathbb{N} \times \mathbb{N}$ be arbitrary. Suppose that [(a,b)] = [(x,y)] and [(c,d)] = [(z,w)]. Then a+y=b+x, and since addition on \mathbb{N} is commutative, y+a=x+b. Hence [(y,x)] = [(b,a)] which is the same as -[(a,b)] = -[(x,y)].

Now we show that \cdot is well-defined. By definition, we have that

$$x + b = y + a$$
$$z + d = w + c.$$

Our goal is to show that

$$(xz + yw) + (bc + ad) = (yz + xw) + (ac + bd)$$

which is equivalent to

$$[(x,y)] \cdot [(z,w)] = [(a,b)] \cdot [(c,d)].$$

Consider the following.

Hence, [(xz + yw, yz + xw)] = [(ac + bd, bc + ad)].

$$x+b=y+a$$

$$(x+b)c=(y+a)c \qquad \text{Multiply both sides by } c$$

$$yw+(x+b)c=yw+yc+ac \qquad \text{Add } yw \text{ to both sides}$$

$$yw+(x+b)c=y(w+c)+ac \qquad \text{Factor out } y$$

$$yw+(x+b)c=y(z+d)+ac \qquad \text{Substitute } z+a \text{ in place of } w+c$$

$$yw+xc+bc+ad=yz+yd+ac+ad \qquad \text{Distribute and add } ad \text{ to both sides}$$

$$yw+xc+bc+ad=yz+ac+(y+a)d \qquad \text{Factor out } d$$

$$yw+xc+bc+ad=yz+ac+(x+b)d \qquad \text{Substitute in } x+b \text{ in place of } y+a$$

$$yw+xc+bc+ad=yz+ac+xd+bd+xw \qquad \text{Distribute and add } xw \text{ to both sides}$$

$$yw+x(w+c)+bc+ad=yz+ac+xd+bd+xw \qquad \text{Factor out } x$$

$$yw+xz+xd+bc+ad=yz+ac+xd+bd+xw \qquad \text{Substitute } z+d \text{ in place of } w+c \text{ and distribute}$$

$$yw+xz+bc+ad=yz+ac+bd+xw \qquad \text{Cancel } xd \text{ from both sides}$$

$$(xz+yw)+(bc+ad)=(yz+xw)+(ac+bd) \qquad \text{Rearrange}$$

Exercise 1.3.5 Prove Theorem 1.3.5 (1) (3) (4) (5) (6) (7) (8) (10) (11) (13) (14). Throughout the proofs, we let $x = [(x_0, x_1)], y = [(y_0, y_1)]$ and $z = [(z_0, z_1)].$

$$(x+y) + z = [(x_0 + y_0, x_1 + y_1)] + [(z_0, z_1)]$$

$$= [((x_0 + y_0) + z_0, (x_1 + y_1) + z_1)]$$

$$= [(x_0 + (y_0 + z_0), x_1 + (y_1 + z_1))]$$

$$= [(x_0, x_1)] + [(y_0 + z_0, y_1 + z_1)]$$

$$= [(x_0, x_1)] + ([(y_0, y_1)] + [(z_0, z_1)])$$

$$= x + (y + z).$$

Proof of (3).

proof of (1).

$$x + 0 = [(x_0, x_1)] + [(1, 1)] = [(x_0 + 1, x_1 + 1)] = [(x_0, x_1)] = x.$$

One can justify $[(x_0 + 1, x_1 + 1)] = [(x_0, x_1)]$ by $(x_0 + 1) + x_1 = (x_1 + 1) + x_0$ (We've shown commutativity and associativity in \mathbb{N}).

Proof of (4).

$$x + (-x) = [(x_0, x_1)] + [(x_1, x_0)] = [(x_0 + x_1, x_1 + x_0)] = [(1, 1)] = 0.$$

 $[(x_0+x_1,x_1+x_0)]=[(1,1)]$ because $x_0+x_1+1=x_1+x_0+1$ (Apply commutativity, which we've proven on + in \mathbb{N}).

Proof of (5).

$$\begin{aligned} (xy)z &= \left[(x_0y_0 + x_1y_1, x_0y_1 + x_1y_0) \right] \cdot \left[(z_0, z_1) \right] \\ &= \left[(z_0(x_0y_0 + x_1y_1) + z_1(x_0y_1 + x_1y_0), z_1(x_0y_0 + x_1y_1) + z_0(x_0y_1 + x_1y_0)) \right] \\ &= \left[(x_0y_0z_0 + x_1y_1z_0 + x_0y_1z_1 + x_1y_0z_1, x_0y_0z_1 + x_1y_1z_1 + x_0y_1z_0 + x_1y_0z_0) \right] \\ &= \left[(x_0(y_0z_0 + y_1z_1) + x_1(y_1z_0 + y_0z_1), x_0(y_0z_1 + y_1z_0) + x_1(y_1z_1 + y_0z_0)) \right] \\ &= \left[(x_0, x_1) \right] \cdot \left[(y_0z_0 + y_1z_1, y_1z_0 + y_0z_1) \right] \\ &= x \cdot \left(\left[(y_0, y_1) \right] \cdot \left[(z_0, z_1) \right] \right) \\ &= x(yz). \end{aligned}$$

Note that we implicitly use properties we've proven for operations on the natural numbers (associativity and commutative for both addition and multiplication).

Proof of (6).

$$xy = [(x_0, x_1)] \cdot [(y_0, y_1)]$$

$$= [(x_0y_0 + x_1y_1, x_0y_1 + x_1y_0)]$$

$$= [(y_0x_0 + y_1x_1, y_0x_1 + y_1x_0)]$$

$$= [(y_0, y_1)] \cdot [(x_0, x_1)]$$

$$= yx$$

Proof of (7).

$$x \cdot 1 = [(x_0, x_1)] \cdot [(1+1, 1)]$$

$$= [(x_0(1+1) + x_1 \cdot 1, x_0 \cdot 1 + x_1(1+1))]$$

$$= [(x_0 + x_0 + x_1, x_0 + x_1 + x_1)]$$

$$= [(x_0, x_1)].$$

Since $(x_0 + x_0 + x_1) + x_1 = (x_0 + x_1 + x_1) + x_0$, the final step is justified.

proof of (8).

$$\begin{split} x(y+z) &= [(x_0,x_1)] \cdot ([(y_0+z_0,y_1+z_1)]) \\ &= [(x_0(y_0+z_0)+x_1(y_1+z_1),x_0(y_1+z_1)+x_1(y_0+z_0))] \\ &= [(x_0y_0+x_0z_0+x_1y_1+x_1z_1,x_0y_1+x_0z_1+x_1y_0+x_1z_0)] \\ &= [((x_0y_0+x_1y_1)+(x_0z_0+x_1z_1),(x_0y_1+x_1y_0)+(x_0z_1+x_1z_0))] \\ &= [(x_0y_0+x_1y_1,x_0y_1+x_1y_0)] + [(x_0z_0+x_1z_1,x_0z_1+x_1z_0)] \\ &= [(x_0,x_1)] \cdot [(y_0,y_1)] + [(x_0,x_1)] \cdot [(z_0,z_1)] \\ &= xy+xz. \end{split}$$

proof of (10). We show that at least one of x < y, x = y or x > y holds. Suppose that $x \not> y$, $x \not< y$ and $x \ne y$. Hence, $x_0 + y_1 \not< x_1 + y_0$ and $y_0 + x_1 \not< y_1 + x_0$. Using the trichotomy of order in \mathbb{N} , we can then deduce that $x_0 + y_1 = x_1 + y_0$. However, this contradicts the assumption that $x \ne y$. Hence, at least one of the three statements holds. Now we show that no two statements can hold simultaneously. Suppose that x < y and x = y. Then $x_0 + y_1 < x_1 + y_0$ but also $x_0 + y_1 = x_1 + y_0$ which clearly contradicts the trichotomy of order in \mathbb{N} . The other cases follow suit similarly.

proof of (11). Suppose that x < y and y < z. So $x_0 + y_1 < x_1 + y_0$ and $y_0 + z_1 < y_1 + z_0$. From the latter, we deduce that $y_1 + z_0 = y_0 + z_1 + q$ for some $q \in \mathbb{N}$. We can add this equality to both sides of the former to get $(x_0 + y_1) + (y_0 + z_1 + q) < (x_1 + y_0) + (y_1 + z_0)$. Then, using the cancellation law, we can simplify this to $x_0 + z_1 + q < x_1 + z_0$. So $x_1 + z_0 = x_0 + z_1 + q + r$ for some $r \in \mathbb{N}$. Since $q + r \in \mathbb{N}$, we get that $x_0 + z_1 < x_1 + z_0$. Hence, x < z.

proof of (13). Suppose that x < y and $z > \hat{0}$. We know, from Theorem 1.3.7 (2), that z = [(a+1,1)] for some $a \in \mathbb{N}$. Since $x_0 + y_1 < x_1 + y_0$, multiplying both sides by a yields $ax_0 + ay_1 < ax_1 + ay_0$. Hence,

$$[(ax_0, ax_1)] < [(ay_0, ay_1)]$$

$$[(ax_0 + x_0 + x_1, ax_1 + x_0 + x_1)] < [(ay_0 + y_0 + y_1, ay_1 + y_0 + y_1)]$$

$$[(x_0(a+1) + x_1, x_1(a+1) + x_0)] < [(y_0(a+1) + y_1, y_1(a+1) + y_0)]$$

$$[(x_0, x_1)][(a+1, 1)] < [(y_0, y_1)][(a+1, 1)]$$

$$xz < yz$$

proof of (14). Suppose that $\hat{0} = \hat{1}$. So [(1,1)] = [(1+1,1)]. By definition, this means 1+1=1+(1+1). Applying associativity with the law of cancellation for addition, we get 1=1+1. This contradicts peano axioms. Hence, $\hat{1} \neq \hat{0}$.

Exercise 1.3.6 Prove Theorem 1.3.7 (1) (3) (4b) (4c).

proof of (1). Suppose that i(a) = i(b) for some $a, b \in \mathbb{N}$. So [(a+1,1)] = [(b+1,1)] and (a+1)+1 = 1+(b+1). Applying the cancellation law twice, we yield a = b. As desired.

proof of (3). This holds true by definition of $\hat{1}$.

proof of (4b). Let $a, b \in \mathbb{N}$ be arbitrary natural numbers. Then

$$\begin{split} i(a)i(b) &= [(a+1,1)][(b+1,1)] \\ &= [((a+1)(b+1)+1,a+1+b+1)] \\ &= [(ab+a+b+1+1,a+1+b+1)] \\ &= [(ab+1,1)] \\ &= i(ab) \end{split}$$

proof of (4c). (\Longrightarrow) Suppose that a < b for some $a, b \in \mathbb{N}$. Using properties of order, we see that (a+1)+1 < (b+1)+1. Therefore, [(a+1,1)] < [(b+1,1)].

 (\Leftarrow) Every step in \Longrightarrow can be reversed to yield \Leftarrow .

Exercise 1.3.7 Let $x, y, z \in \mathbb{Z}$.

- 1. Prove that x < y if and only if -x > -y.
- 2. Prove that if z < 0, then x < y if and only if xz > yz.

proof for (1). Suppose that x < y. Adding (-x) + (-y) to both sides, we yield (-y) + ((-x) + x) < (-x) + ((-y) + y) which simplifies to -y < -x.

Now suppose that -x > -y. Adding x + y to both sides gives y + (x + (-x)) > x + (y + (-y)) which gives y > x after simplification using the law of additive inverses.

proof of (2). Suppose that z < 0, and suppose that x < y. We know from (1) that -z > -0 = 0. And we know from Theorem 1.3.5 (13) that -zx < -zy. Applying (1) again gives zx > zy which is the desired result.

We prove the converse using constraposition. Suppose that $x \ge y$. Either x = y or x > y. In the former, we deduce that xz = yz, and therefore, $xz \le yz$. In the latter, we apply the result we just proved to yield xz < yz which is also equivalent to $xz \le yz$.

Exercise 1.3.8 Let $x \in \mathbb{Z}$. Prove that if x > 0 then $x \ge 1$. Prove that if x < 0 then $x \le -1$.

Proof. Suppose that x > 0, and suppose that x < 1. So 0 < x < 1 which contradicts Theorem 1.3.9. Now suppose that x < 0, and that x > -1. We deduce that -1 < x < 0 which also contadicts Theorem 1.3.9. \square

Exercise 1.3.9

- 1. Prove that 1 < 2.
- 2. Let $x \in \mathbb{Z}$. Prove that $2x \neq 1$.

proof of (1). We know [(1+1+1,1)] = 2 and [(1+1,1)] = 1. Since (1+1)+1 < (1+1+1)+1, we deduce that 1 < 2.

proof of (2). Let $x \in \mathbb{Z}$ be arbitrary. Suppose that 2x = 1. Since 1 > 0, we know that 2x > 0 (Apply Lemma 1.3.8 (11)). And since 2 > 0, x > 0. Since x is positive and 1 < 2, it must be the case that x < 2x = 1. Therefore, 0 < x < 1. However, we know from Theorem 1.3.9 that no such x can exist. Therefore, we have a contradiction.

Lemma If $A \subseteq \{x \in \mathbb{Z} : x > \hat{0}\}$, $\hat{1} \in A$, and $a \in A$ implies $a + 1 \in A$, then $A = \{x \in \mathbb{Z} : x > \hat{0}\}$.

Proof. Let $R = \{x \in \mathbb{Z} : x > \hat{0}\}$. Let A be an arbitrary subset of R such that $\hat{1} \in A$. Furthermore, suppose that $a \in A$ implies $a+1 \in A$. Obviously $i(1) \in A$. Therefore, $1 \in i^{-1}[A]$. Now suppose that $a \in i^{-1}[A]$, meaning $i(a) \in A$. By the properties of A, we know that $i(a) + \hat{1} \in A$. Since $i(a) + \hat{1} = i(a) + i(1) = i(a+1)$, $i(a+1) \in A$. Therefore, $a+1 \in i^{-1}[A]$. Hence, $i^{-1}[A] = \mathbb{N}$. Therefore, $R \subseteq A$. Since $A \subseteq R$, it must be the case that A = R.

Exercise 1.3.10 Prove that the Well-Ordering Principle (Theorem 1.2.10), which was stated for \mathbb{N} in Section 1.2, still holds when we think of \mathbb{N} as the set of positive integers. That is, let $G \subseteq \{x \in \mathbb{Z} : x > 0\}$ be a non-empty set. Prove that there is some $m \in G$ such that $m \leq g$ for all $g \in G$. Use Theorem 1.3.7.

Proof. Let $R = \{x \in \mathbb{Z} : x > 0\}$. Suppose that there is no $m \in G$ such that $m \leq g$ for all $g \in G$. We will derive a contradiction. Let

$$H = \{a \in R : \text{if } b \in R \text{ and } b \leq a, \text{ then } b \notin G\}.$$

It follows from the definition of H that $H \cap G = \emptyset$. We will show H = R, using our previous Lemma in the process. It will then follow that G is empty which gives us our desired contradiction.

Suppose that $\hat{1} \notin H$. Then there is some $q \in R$ such that $q \leq \hat{1}$ and $q \in G$. Since $\hat{0} < q < \hat{1}$ contradicts Theorem 1.3.9 and $\hat{0} < q \leq \hat{1}$, it must be the case that $q = \hat{1}$. Hence, $\hat{1} \in G$. We know, from Theorem 1.2.9 (2) in \mathbb{N} , that $1 \leq a$ for all $a \in \mathbb{N}$. If we apply $i : \mathbb{N} \to \mathbb{Z}$ to both sides, we get $\hat{1} \leq i(a)$ for all $a \in \mathbb{N}$. Since $i[\mathbb{N}] = R$, it must be the case that $\hat{1} \leq r$ for all $r \in R$. But this would mean that $\hat{1}$ is a least element of G which is a contradiction to our hypothesis that no such element exists. Therefore, $\hat{1} \in H$.

Now suppose that $a \in H$. Suppose further that $a + \hat{1} \notin H$. Then there is some $p \in R$ such that $p \leq a + \hat{1}$ and $p \in G$. If it were the case that $p \leq a$, then we would have a contradiction due to the fact that $a \in H$. Hence, by the trichotomy of order in \mathbb{Z} , we see that a < p. Therefore, $a . From which follows immediately that <math>p = a + \hat{1}$. Thus, $a + \hat{1} \in G$. Now let $x \in G$. Suppose that $x < a + \hat{1}$. Since x and a are elements of R, there exists $a_0, x_0 \in \mathbb{N}$ such that $i(a_0) = a$ and $i(x_0) = x$. Hence, $i(x_0) < i(a_0 + 1)$. Via the properties of $i : \mathbb{N} \to \mathbb{Z}$, we have that $x_0 < a_0 + 1$. And using Theorem 1.2.9 (10) for \mathbb{N} , we see that $x_0 \leq a_0$. Therefore, $i(x_0) \leq i(a_0)$ and $x \leq a$. Because $a \in H$ it follows that $x \notin G$, which is a contradiction to the fact no such elements such as $a + \hat{1}$ exists in G. It follows that $a + \hat{1} \in H$ and $a \in R$.

Exercise 1.3.11 Prove Theorem 1.3.8 (1) (3) (4) (5) (7) (10) (11).

proof of (1).

$$x + z = y + z$$

 $x + z + (-z) = y + z + (-z)$
 $x + 0 = y + 0$
 $x = y$.

proof of (3). Consider x + y + (-x) + (-y) = 0.

$$x + y + (-x) + (-y) = 0$$

$$(x + y) + (-(x + y)) + (-x) + (-y) = -(x + y)$$

$$0 + (-x) + (-y) = -(x + y)$$

$$(-x) + (-y) = -(x + y)$$

proof of (4).

So $x = x + x \cdot 0$. Adding -x to both sides yields the desired result.

proof of (5). Suppose that $z \neq 0$ and xz = yz. Then xz + (-(yz)) = 0 and xz + (-y)z = (x + (-y))z = 0. Using Theorem 1.3.5 (9) (Which states that \mathbb{Z} have no zero divisors), we deduce that x + (-y) = 0. Therefore, x = y.

proof of (7). Suppose that $xy=\hat{1}$. Notice that x and y must have the same sign. If they were to have different signs, then (by Lemma 1.3.8 (11)) we'd have that xy<0 by we know 1>0. Which leads to a contradiction. First, suppose that both x and y are positive. We know that there exists $a,b\in\mathbb{N}$ such that x=i(a) and y=i(b). So i(a)i(b)=i(1) and i(ab)=i(1). Therefore, ab=1. We know from Theorem 1.2.7 on \mathbb{N} that ab=1 if and only if a=b=1. Any other positive solution would lead to a contradiction, therefore, x=1=y are the only positive solutions.

Now suppose that x and y are both negative (ie. x < 0 and y < 0). That means -x > 0 and -y > 0. So there exists $a, b \in \mathbb{N}$ such that -x = i(a) and -y = i(b). Since (-x)(-y) = xy = 1, we have that i(a)i(b) = i(1). Using the same argument used when both x and y are positive, we have that a = 1 = b (note that these are the **only** solutions in \mathbb{N}). Therefore, -x = i(1) and -y = i(1). So $x = -\hat{1}$ and $y = -\hat{1}$ are the only negative solutions.

proof of (10). Suppose that $x \leq y$ and $y \leq x$. Suppose that $x \neq y$, then x < y and y < x, which is a clear contradiction to the trichotomy of order in \mathbb{Z} .

proof of (11). Suppose that x > 0 and y > 0. Since y > 0, we have that $x \cdot y > 0 \cdot y = 0$. Now suppose that x > 0 but y < 0. Since x > 0, we have that $y \cdot x < 0 \cdot x = 0$.