Laboratorio di Elettronica Lezione 9: Tecnologia CMOS, logiche programmabili

Valentino Liberali, Alberto Stabile

UNIVERSITÀ DEGLI STUDI DI MILANO

Dipartimento di Fisica "Aldo Pontremoli"

E-mail: valentino.liberali@unimi.it, alberto.stabile@unimi.it

Milano, 26-27 maggio 2022

Transistore MOS

2 Logica CMOS

FPGA

4 Software, firmware, e hardware

Transistore MOS – 1

Il dispositivo elettronico più usato è il transistore MOS, o MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).

(da Wikipedia)

4 teminali:

- Gate (G) metallo o altro materiale conduttore, separato da
- strato di isolante (ossido di silicio o nitruro di silicio)
- Source (S)
- Drain (D)
- Body (B)

S, D, B sono in silicio drogato:

- nei transistori NMOS, S e D sono di tipo N e B è di tipo P
- nei transistori PMOS, S e D sono di tipo P e B è di tipo N

Transistore MOS – 2

Normalmente il transistore MOS viene usato con i terminali S e B collegati insieme.

Linear operating region (ohmic mode) (da Wikipedia)

Se le differenza di potenziale tra G e S e tra G e D sono nulle (o piccole), le giunzioni p-n sono tutte polarizzate inversamente e il transistore è spento ("off") – figura a sinistra.

Per un transistore NMOS, una tensione positiva al Gate provoca un campo elettrico diretto verticalmente verso il basso, che allontana le lacune sotto l'ossido e attira gli elettroni. Quando si supera la tensione di soglia $V_{\rm th}$, sotto il Gate si forma un sottile strato di elettroni liberi che mettono in conduzione i terminali D e S ("on") – figura a destra.

Il transistore PMOS funziona in modo analogo, ma la conduzione è dovuta alle lacune (e le tensioni sono negative).

- transistori NMOS sul substrato p e transistori PMOS nella n-well
- source e drain (p+ e n+) più drogati di well e substrato

DUE polarizzazioni:

- substrato p collegato alla tensione più bassa
- n-well collegata alla tensione più alta

Logica CMOS

Le porte logiche CMOS sono relizzati con transistori NMOS per il pull-down e transistori PMOS per il pull-up.

Se il pull-down è acceso, il pull-up è spento e viceversa

 \longrightarrow Bassa dissipazione di Potenza Statica

ALU

L'unità aritmetico-logica (ALU = Arithmetic Logic Unit) di un calcolatore è il circuito che esegue operazioni logiche, aritmetiche e di confronto tra numeri interi. È fatta con porte logiche elementari, ed è più semplice di FPU e GPU.

HDL - 1

Per la progettazione di circuiti logici complessi, si usano appositi linguaggi per la descrizione comportamentale (HDL = Hardware Description Language). Nella descrizione comportamentale ci si limita ad analizzare il comportamento del circuito (bit di uscita in funzione dei bit di ingresso), senza considerare le grandezze elettriche.

I linguaggi più usati sono VHDL e Verilog.

I numeri sono definiti come "vettori di bit", dal più significativo al meno significativo.

Si possono eseguire operazioni aritmetiche, operazioni logiche e confronti.

HDL - 2

Esempio: descrizione comportamentale di una ALU a 8 bit in VHDL

```
entity alu is
port ( -- the alu connections to external circuitry:
 A : in signed(7 downto 0); -- operand A
 B : in signed(7 downto 0): -- operand B
 OP : in unsigned(2 downto 0); -- opcode
 Y : out signed(7 downto 0)); -- operation result
end alu;
architecture behavioral of alu is
begin
 case OP is -- decode the opcode and perform the operation:
 when "000" => Y <= A + B: -- add
 when "001" => Y <= A - B: -- subtract
 when "010" => Y <= A - 1; -- decrement
 when "011" => Y <= A + 1; -- increment
 when "100" => Y <= not A; -- 1's complement
 when "101" => Y <= A and B; -- bitwise AND
 when "110" => Y <= A or B; -- bitwise OR
 when "111" => Y <= A xor B; -- bitwise XOR
 when others => Y <= (others => 'X');
 end case;
end behavioral;
```

FPGA - 1

FPGA: Field Programmable Gate Array

Sono circuiti logici programmabili, costituiti da una grande matrice di blocchi con interconnessioni. La programmazione hardware viene fatta con interruttori MOS (on/off) ciscuno dei quali è controllato dal bit contenuto in una cella di memoria "latch". Il file di bit di configurazione degli interruttori prende il nome di "firmware".

FPGA - 2

Esempio di sche con FPGA XILINX Virtex7

Confronto tra software, firmware, e hardware

- **Software**: programma costituito da una sequenza di istruzioni che vengono eseguite da un elaboratore. Può essere compilato o interpretato.
- **Firmware**: File di configurazione per un dispositivo logico programmabile (es. FPGA, PLC). Sono configurabili: le operazioni logiche, le interconnessioni, i blocchi di I/O.
- Hardware: Rete elettronica in cui ogni blocco esegue solo le operazioni per cui è stato progettato. Ha un numero limitato di modi di funzionamento (es.: modalità di test, stand-by, funzionamento normale).

	software	firmware	hardware
Operazioni	massima flessibilità	buona flessibilità	nessuna flessibilità
Dati	massima flessibilità	buona flessibilità	nessuna flessibilità
	(virgola mobile)	(virgola fissa)	(virgola fissa)
Esecuzione	sequenziale	parallela	parallela
		(concorrente)	(concorrente)

Differenze tra software e firmware

L'ottimizzazione di un algoritmo può essere molto diversa. Esempio: posso eseguire un calcolo in due modi, di cui uno breve (A) che fornisce il risultato giusto solo in alcuni casi, e uno lungo (B) che dà sempre il risultato giusto. Ottimizzazione software per ridurre il tempo di calcolo:

IF (condition) THEN {block A} ELSE {block B}

La traduzione in hardware dell'ottimizzazione del software comporta tre peggioramenti: area, consumo di potenza, tempo di propagazione.