

(43) Internationales Veröffentlichungsdatum
4. März 2004 (04.03.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/018694 A2

(51) Internationale Patentklassifikation⁷: C12P 23/00, C12N 9/14, 15/82 Christel Renate [DE/DE]; Konvent 38, 06484 Quedlinburg (DE).

(21) Internationales Aktenzeichen: PCT/EP2003/009106

(74) Anwalt: DÖRPER, Thomas; c/o BASF Aktienge-sellschaft, 67056 Ludwigshafen (DE).

(22) Internationales Anmeldedatum:

18. August 2003 (18.08.2003)

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR.

(25) Einreichungssprache:

Deutsch

Deutsch

(26) Veröffentlichungssprache:

(30) Angaben zur Priorität:

 102 38 980.2
 20. August 2002 (20.08.2002)
 DE

 102 38 978.0
 20. August 2002 (20.08.2002)
 DE

 102 38 979.9
 20. August 2002 (20.08.2002)
 DE

 102 53 112.9
 13. November 2002 (13.11.2002)
 DE

 102 58 971.2
 16. Dezember 2002 (16.12.2002)
 DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von (/S): SUNGENE GMBH & CO. KGAA [DE/DE]; Corrensstr. 3, 06466 Gatersleben (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SAUER, Matt [DE/DE]: Markt 9, 06484 Quedlinburg (DE), FLACH-MANN, Ralf [DE/DE]; Halberstädter Str. 20a, 06484 Quedlinburg (DE), KLEBSATTEL, Martin [DE/DE]; Weingarten 9, 06484 Quedlinburg (DE), SCHOPFER,

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

96

(54) Title: METHOD FOR PRODUCING KETOCAROTINOIDS IN GENETICALLY MODIFIED ORGANISMS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON KETOCAROTINOIDEN IN GENETISCH VERÄNDERTEN ORGANISMEN

(57) Abstract: The invention relates to a method for producing ketocarotinoids by cultivating genetically modified organisms having a modified ketolase activity compared to the wild type, to genetically modified organisms, and to the use thereof as foodstuffs and fodder and for producing ketocarotinoid extracts.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen, die im Vergleich zum Wild-typ eine veränderte Ketolase-Aktivität aufweisen, die genetisch veränderten Organis-men, sowie deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von Ketocarotinoidextrakten.

Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten Organismen

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen, die genetisch veränderten Organismen, sowie deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von Ketocarotinoidextrakten.

Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflanzen synthetisiert. Ketocarotinoide, also Carotinoide, die mindestens eine Keto-Gruppe enthalten, wie beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin sind natürliche Antioxidantien und Pigmente, die von einigen Algen und Mikroorganismen als Sekundärmetabolite produziert werden.

Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbesondere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und Shrimpszucht verwendet.

Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliche Ketocarotinoide, wie beispielsweise natürliches Astaxanthin, werden heutzutage in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise *Haematococcus pluvialis* oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen.

Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen Ketocarotinoiden ist daher von großer Bedeutung.

Nukleinsäuren kodierend eine Ketolase und die entsprechenden Proteinsequenzen sind aus verschiedenen Organismen isoliert und annotiert worden, wie beispielsweise Nukleinsäuren kodierend eine Ketolase aus *Agrobacterium aurantiacum* (EP 735 137, Accession NO: D58420), aus *Alcaligenes sp. PC-1* (EP 735137, Accession NO: D58422), *Haematococcus pluvialis Flotow em. Wille* und *Haematoccus pluvialis*, *NIES-*

144 (EP 725137, WO 98/18910 und Lotan et al, FEBS Letters 1995, 364, 125-128, Accession NO: X86782 und D45881), Paracoccus marcusii (Accession NO: Y15112), Synechocystis sp. Strain PC6803 (Accession NO: NP_442491), Bradyrhizobium sp. (Accession NO: AF218415) und Nostoc sp. PCC 7120 (Kaneko et al, DNA Res. 2001, 8(5), 205 - 213; Accession NO: AP003592, BAB74888).

EP 735 137 beschreibt die Herstellung von Xanthophyllen in Mikroorganismen, wie beispielsweise *E. coli* durch Einbringen von Ketolase-Genen (crtW) aus *Agrobacterium aurantiacum* oder *Alcaligenes sp. PC-1* in Mikroorganismen.

10

5

Aus EP 725 137, WO 98/18910, Kajiwara et al. (Plant Mol. Biol. 1995, 29, 343-352) und Hirschberg et al. (FEBS Letters 1995, 364, 125-128) ist es bekannt, Astaxanthin durch Einbringen von Ketolase-Genen aus *Haematococcus pluvialis* (crtW, crtO oder bkt) in *E. coli* herzustellen.

15

20

Hirschberg et al.(FEBS Letters 1997, 404, 129-134) beschreiben die Herstellung von Astaxanthin in *Synechococcus* durch Einbringen von Ketolase-Genen (crtO) aus *Haematococcus pluvialis*. Sandmann et al. (Photochemistry and Photobiology 2001, 73(5), 551-55) beschreiben ein analoges Verfahren, das jedoch zur Herstellung von Canthaxanthin führt und nur Spuren Astaxanthin liefert.

WO 98/18910 und Hirschberg et al. (Nature Biotechnology 2000, 18(8), 888-892) beschreiben die Synthese von Ketocarotinoiden in Nektarien von Tabakblüten durch Einbringen des Ketolase-Gens aus *Haematococcus pluvialis* (crtO) in Tabak.

25

WO 01/20011 beschreibt ein DNA Konstrukt zur Produktion von Ketocarotinoiden, insbesondere Astaxanthin, in Samen von Ölsaatpflanzen wie Raps, Sonnenblume, Sojabohne und Senf unter Verwendung eines Samen-spezifischen Promotors und einer Ketolase aus *Haematococcus pluvialis*.

30

Alle im Stand der Technik beschriebenen Verfahren zur Herstellung von Ketocarotinoiden und insbesondere die beschriebenen Verfahren zur Herstellung von Astaxanthin weisen den Nachteil auf, daß die transgenen Organismen eine große Menge an hydroxylierten Nebenprodukten, wie beispielsweise Zeaxanthin und Adonixanthin liefern.

10

25

30

35

Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen zur Verfügung zu stellen, bzw. weitere genetisch veränderte Organismen, die Ketocarotinoide herstellen, zur Verfügung zu stellen, die die vorstehend beschriebenen Nachteile des Standes der Technik in geringerem Maße oder nicht mehr aufweisen.

Demgemäß wurde ein Verfahren zur Herstellung von Ketocarotinoiden gefunden, indem man genetisch veränderte Organismen kultiviert, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen und die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

Die erfindungsgemäßen Organismen wie beispielsweise Mikroorganismen oder Pflanzen sind vorzugsweise als Ausgangsorganismen natürlicherweise in der Lage, Carotinoide wie beispielsweise β-Carotin oder Zeaxanthin herzustellen, oder können durch genetische Veränderung, wie beispielsweise Umregulierung von Stoffwechselwegen oder Komplementierung in die Lage versetzt werden, Carotinoide wie beispielsweise β-Carotin oder Zeaxanthin herzustellen.

Einige Organismen sind als Ausgangs- oder Wildtyporganismen bereits in der Lage, Ketocarotinoidewie beispielsweise Astaxanthin oder Canthaxanthin herzustellen. Diese Organismen, wie beispielsweise Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonisröschen, Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuolatus, Chlorela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea, Bacillus atrophaeus, Blakeslea weisen bereits als Ausgangs- oder Wildtyporganismus eine Ketolase-Aktivität auf.

In einer Ausführungsform des erfindungsgemäßen Verfahrens werden daher als Ausgangsorganismen Organismen verwendet, die bereits als Wildtyp oder Ausgangsorganismus eine Ketolaseaktivität aufweisen. In dieser Ausführungsform bewirkt die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp oder Ausgangsorganismus.

Unter Ketolase–Aktivität wird die Enzymaktivität einer Ketolase verstanden. Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-Ionon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

5

15

20

Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Canthaxanthin umzuwandeln.

Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das 10 Protein Ketolase umgesetzte Menge β-Carotin bzw. gebildete Menge Canthaxanthin verstanden.

Bei einer erhöhten Ketolase–Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Ketolase die umgesetzte Menge β-Carotin bzw. die gebildete Menge Canthaxanthin erhöht.

Vorzugsweise beträgt diese Erhöhung der Ketolase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Ketolase–Aktivität des Wildtyps.

Unter dem Begriff "Wildtyp" wird erfindungsgemäß der entsprechende Ausgangsorganismus verstanden.

Je nach Zusammenhang kann unter dem Begriff "Organismus" der Ausgangsorganismus (Wildtyp) oder ein erfindungsgemäßer, genetisch veränderter Organismus oder beides verstanden werden.

Vorzugsweise und insbesondere in Fällen, in denen der Organismus oder der Wildtyp nicht eindeutig zugeordnet werden kann, wird unter "Wildtyp" für die Erhöhung oder Verursachung der Ketolase-Aktivität, für die nachstehend beschriebene Erhöhung der Hydroxylase-Aktivität, für die nachstehend beschriebene Erhöhung der β-Cyclase-Aktivität und die Erhöhung des Gehalts an Ketocarotinoiden jeweils ein Referenzorganismus verstanden.

Dieser Referenzorganimus ist für Mikroorganismen, die bereits als Wildtyp eine Ketolase Aktivität aufweisen, vorzugsweise Haematococcus pluvialis.

Dieser Referenzorganismus ist für Mikroorganismen, die als Wildtyp keine Ketolase 5 Aktivität aufweisen, vorzugsweise Blakeslea.

Dieser Referenzorganismus ist für Pflanzen, die bereits als Wildtyp eine Ketolase-Aktivität aufweisen, vorzugsweise Adonis aestivalis, Adonis flammeus oder Adonis annuus, besonders bevorzugt Adonis aestivalis.

10

Dieser Referenzorganismus ist für Pflanzen, die als Wildtyp keine Ketolase-Aktivität in Blütenblätter aufweisen, vorzugsweise *Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta* oder *Tagetes campanulata*, besonders bevorzugt *Tagetes erecta*.

15

Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

20 E

Die Bestimmung der Ketolase-Aktivität in Pflanzen- oder Mikroorganismenmaterial erfolgt in Anlehnung an die Methode von Frazer et al., (J. Biol. Chem. 272(10): 6128-6135, 1997). Die Ketolase-Aktivität in pflanzlichen oder Mikroorganismus-Extrakten wird mit den Substraten β-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

30

25

Die Erhöhung der Ketolase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Translations- und Proteinebene oder durch Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, gegenüber dem Wildtyp, beispielsweise durch Induzierung des Ketolase-Gens durch Aktivatoren oder durch Einbringen von Nukleinsäuren, kodierend eine Ketolase, in den Organismus.

35

Unter Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, wird erfindungsgemäß in dieser Ausführungsform auch die Manipulation der Expression der Organismen eigenen endogenen Ketolasen verstanden. Dies kann beispielsweise

durch Veränderung der Promotor DNA-Sequenz für Ketolase kodierende Gene erreicht werden. Eine solche Veränderung, die eine veränderte oder vorzugsweise erhöhte Expressionsrate mindestens eines endogenen Ketolase Gens zur Folge hat, kann durch Deletion oder Insertion von DNA Sequenzen erfolgen.

5

Es ist wie vorstehend beschrieben möglich, die Expression mindestens einer endogenen Ketolase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.

10

Des weiteren kann eine erhöhte Expression mindestens eines endogenen Ketolase-Gens dadurch erzielt werden, dass ein im Wildtyporganismus nicht vorkommendes oder modifiziertes Regulatorprotein mit dem Promotor dieser Gene in Wechselwirkung tritt.

15

Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA-Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.

20

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Ketolase-Aktivität gegenüber dem Wildtyp durch die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

30

25

In einer weiter bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in die Organismen, wobei die Ketolasen die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz enthalten, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

35

In den erfindungsgemäßen transgenen Organismen liegt also in dieser Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Ketolase-Gen vor, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von die-

ser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Orga-5 nismus dementsprechend mindestens eine exogene (=heterologe) Nukleinsäure, kodierend eine Ketolase, auf oder mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, auf, wobei die Ketolasen die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz enthalten, die eine Identität von mindestens 42 % auf Aminosäu-10 reebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

In einer anderen, bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangsorganismen Organismen verwendet, die als Wildtyp keine Ketolaseaktivität aufweisen.

In dieser bevorzugten Ausführungsform verursacht die genetische Veränderung die Ketolase-Aktivität in den Organismen. Der erfindungsgemäße genetisch veränderte Organismus weist somit in dieser bevorzugten Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine Ketolase-Aktivität auf und ist somit vorzugsweise in der Lage, transgen eine Ketolase zu exprimieren, enthaltend die Aminosäureseequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

25 In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression

einer Nukleinsäure, kodierend eine Ketolase, analog zu der vorstehend beschriebenen Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, in den Ausgangsorganismus.

Dazu kann in beiden Ausführungsformen prinzipiell jede Nukleinsäuren, die eine Keto-35 lase kodiert, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser

15

20

SEQ. ID. NO. 2 aufweist, verwendet werden. Die Verwendung der erfindungsgemäßen Nukleinsäuren, kodierend eine Ketolase,

5 führt im erfindungsgemäßen Verfahren überraschenderweise zu Ketocarotinoiden mit einer geringeren Menge an hydroxylierten Nebenprodukten als bei der Verwendung der im Stand der Technik verwendeten Ketolase-Gene.

Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, 10 DNA- oder cDNA-Sequenz sein.

Bei genomischen Ketolase-Sequenzen aus eukaryotischen Quellen, die Introns enthalten, sind für den Fall, dass der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen wie die entsprechenden cDNAs zu verwenden.

Beispiele für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz 20 durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, die im erfindungsgemäßen Verfahren vorteilhaft verwendet werden können, sind beispielsweise Sequenzen aus

Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 1, Protein SEQ ID NO: 2),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ_AABC01000195, Basenpaar 55,604 bis 55,392 (SEQ ID NO: 3); Protein: Acc.-No. ZP_00111258 (SEQ ID NO: 4) (als putatives Protein annotiert) oder

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ_AABC01000196, Basenpaar 140,571 bis 139,810 (SEQ ID NO: 5), Protein: (SEQ ID NO: 6) (nicht annotiert),

30

25

Synechococcus sp. WH 8102, Nukleinsäure: Acc.-No. NZ_AABD01000001, Basenpaar 1,354,725-1,355,528 (SEQ ID NO: 46), Protein: Acc.-No. ZP_00115639 (SEQ ID NO: 47) (als putatives Protein annotiert),

Nodularia spumigena NSOR10, (Accession NO: AY210783, AAO64399; Nukleinsäure: SEQ ID NO: 52, Protein: SEQ ID NO: 53)

oder von diesen Sequenzen abgeleitete Ketolasesequenzen wie beispielsweise

- die Ketolasen der Sequenz SEQ ID NO: 8 oder 10 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 7 oder SEQ ID NO: 9, die beispielsweise durch Variation/Mutation aus der Sequenz SEQ ID NO: 4 bzw. SEQ ID NO: 3 hervorgehen,
- die Ketolasen der Sequenz SEQ ID NO: 12 oder 14 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 11 oder SEQ ID NO: 13, die beispielsweise durch Variation/Mutation aus der Sequenz SEQ ID NO: 6 bzw. SEQ ID NO: 5 hervorgehen, oder
- 20 die Ketolasen der Sequenz SEQ ID NO: 49 oder 51 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 48 oder SEQ ID NO: 50, die beispielsweise durch Variation bzw. Mutation aus der Sequenz SEQ ID NO: 47 bzw. SEQ ID NO: 46 hervorgehen.
- Weitere natürliche Beispiele für Ketolasen und Ketolase–Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche
 der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der vorstehend beschriebenen Sequenzen SEQ ID NO:
 2 leicht auffinden.
 - Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 1 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring 5 Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 10 2X SSC bei 50_C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50_C, bevorzugt bei 65_C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C ange-15 hoben werden.

Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

Hybridiserungsbedingungen mit zum Beispiel (1)

stringenten (hohe Stringenz) Bedingungen erfolgen.

- 4X SSC bei 65°C, oder (i)
- 6X SSC bei 45°C, oder (ii)
- 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder (iii)
- 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA 35 bei 68°C, oder

20

25

15

25

- (v) 6XSSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder
- (vi) 50 % Formamid, 4X SSC bei 42_C, oder
- (vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll, 0.1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6.5, 750 mM NaCl, 75 mM Natriumcitrat bei 42°C, oder
- 10 (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
 - (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42° (moderate Bedingungen).
 - (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
 - (i) 0.015 M NaCl/0.0015 M Natriumcitrat/0.1 % SDS bei 50°C, oder
 - (ii) 0.1X SSC bei 65°C, oder
- 20 (iii) 0.1X SSC, 0.5 % SDS bei 68°C, oder
 - (iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder
 - (v) 0.2X SSC, 0.1 % SDS bei 42°C, oder
 - (vi) 2X SSC bei 65°C (moderate Bedingungen).

In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein, die eine Ketolase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50%, vorzugsweise mindestens 65%, vorzugsweise mindestens 65%, vorzugsweise mindestens 70%, bevorzugter mindestens 75%, bevorzugter mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 95%, besonders bevorzugt mindestens 98% auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 aufweist.

10

20

25

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz, die ausgehend von der Sequenz SEQ ID NO: 2 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gln durch Asn, Val durch IIe, Leu durch IIe, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte
Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Vector NTI Suite 7.1 Software der Firma Informax (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

Multiple alignment parameter:

	, ,		
	Gap opening penalty	10	
30	Gap extension penalty	10	
	Gap separation penalty rang	е	8
	Gap separation penalty		off
	% identity for alignment delay	у	40
	Residue specific gaps	off	
35	Hydrophilic residue gap		off

0

Transition weighing

Pairwise alignment parameter:

FAST algorithm on

K-tuple size 1
Gap penalty 3
Window size 5
Number of best diagonals 5

Unter einer Ketolase, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 aufweist, wird dementsprechend eine Ketolase verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 2, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 42 % aufweist.

Beispielsweise weist nach obigen Programmlogarithmus mit obigem Parametersatz die Sequenz der Ketolase aus *Nostoc punctiforme ATTC 29133* (SEQ ID NO: 4) mit der Sequenz der Ketolase aus *Nostoc sp. Strain PCC7120* (SEQ ID NO: 2) eine Identität von 65% auf.

Die Sequenz der zweiten Ketolase aus *Nostoc punctiforme ATTC 29133* (SEQ ID NO: 2) weist mit der Sequenz der Ketolase aus *Nostoc sp. Strain PCC7120* (SEQ ID NO: 2) beispielsweise eine Identität von 58% auf.

Die Sequenz der Ketolase aus *Synechococcus sp. WH 8102* (SEQ ID NO: 47) weist mit der Sequenz der Ketolase aus *Nostoc sp. Strain PCC7120* (SEQ ID NO: 2) beispielsweise eine Identität von 44% auf.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

- 30 Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismusspezifischen "codon usage" häufig verwendet werden. Die "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
- In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 1, in den Organismus ein.

Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

Die Sequenz der Ketolase aus *Nostoc sp. Strain PCC7120* (SEQ ID NO: 2) weist mit den Sequenzen der Ketolasen die in den Verfahren des Standes der Technik verwendet werden eine Identität von 39% (*Agrobacterium aurantiacum* (EP 735 137, Accession NO: D58420), 40% (*Alcaligenes sp. PC-1* (EP 735137, Accession NO: D58422) und 20 bis 21 % (*Haematococcus pluvialis Flotow em. Wille* und *Haematoccus pluvialis*, *NIES-144* (EP 725137, WO 98/18910 und Lotan et al, FEBS Letters 1995, 364, 125-128, Accession NO: X86782 und D45881) auf.

20

5

10

15

In einer bevorzugten Ausführungsform werden Organismen kultiviert, die gegenüber dem Wildtyp zusätzlich zur erhöhten Ketolase-Aktivität eine erhöhte Hydroxylase-Aktivität und/oder β-Cyclase-Aktivität aufweisen.

25 Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydroxylase verstanden.

Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -Ionon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

30

Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.

Dementsprechend wird unter Hydroxylase–Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β-Carotin oder Canthaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

- Bei einer erhöhten Hydroxylase–Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge β-Carotin oder Canthaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.
- Vorzugsweise beträgt diese Erhöhung der Hydroxylase–Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase–Aktivität des Wildtyps.
- 15 Unter β-Cyclase-Aktivität wird die Enzymaktivität einer β-Cyclase verstanden.

Unter einer β-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen β-lonon-Ring zu überführen.

Insbesondere wird unter einer β -Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, γ -Carotin in β -Carotin umzuwandeln.

Dementsprechend wird unter β-Cyclase–Aktivität die in einer bestimmten Zeit durch das Protein β-Cyclase umgesetzte Menge γ-Carotin bzw. gebildete Menge β-Carotin verstanden.

Bei einer erhöhten β-Cyclase –Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein β-Cyclase die umgesetzte Menge an Lycopin bzw. γ-Carotin oder die gebildete Menge an γ-Carotin aus Lycopin bzw. die gebildete Menge an β-Carotin aus γ-Carotin erhöht.

Vorzugsweise beträgt diese Erhöhung der β-Cyclase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt min-

20

10

15

20

25

30

35

Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) *in vitro* bestimmt. Es wird zu einer bestimmten Menge an Organismusextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie β -Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.

Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320-328):

Der *in-vitro* Assay wird in einem Volumen von 0.250 ml durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Mono- und Digalaktosylglyzeriden (1:1), 0.2 mg Rinderserumalbumin und Organismusextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30°C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt.

Die Bestimmung der β-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

Die Aktivität der β-Cyclase wird nach Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15) *in vitro* bestimmt. Es werden zu einer bestimmten Menge an Organismusextrakt Kaliumphosphat als Puffer (pH 7.6), Lycopin als Substrat, Stromaprotein von Paprika, NADP+, NADPH und ATP zugegeben.

Besonders bevorzugt erfolgt die Bestimmung der β-Cyclase -Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):

Der in-vitro Assay wird in einem Volumen von 250 µl Volumen durchgeführt. Der An-5 satz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Organismusextrakt, 20 nM Lycopin, 250 μg an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30°C wird die Reaktion durch Zu-10 gabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15). 15

Die Erhöhung der Hydroxylase-Aktivität und/oder β-Cyclase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren, kodierend eine Hydroxylase, und/oder von Nukleinsäuren, kodierend eine β-Cyclase, gegenüber dem Wildtyp.

Die Erhöhung der Genexpression der Nukleinsäuren, kodierend eine Hydroxylase, und/oder die Erhöhung der Genexpression der Nukleinsäure, kodierend eine β-Cyclase, gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens und/oder β-Cyclase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien und/oder β-Cyclase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure, kodierend eine Hydroxylase, und/oder mindestens einer Nukleinsäure, kodierend eine β-Cyclase, in den Organismus. 30

Unter Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Hydroxylase und/oder β-Cyclase, wird erfindungsgemäß auch die Manipulation der Expression der Organismus eigenen endogenen Hydroxylase und/oder β-Cyclase verstanden.

20

WO 2004/018694

Es ist, wie vorstehend beschrieben, möglich, die Expression der endogenen Hydroxylase und/oder β -Cyclase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.

10

Des weiteren kann eine veränderte bzw. erhöhte Expression eines endogenen Hydroxylase- und/oder β -Cyclase-Gens dadurch erzielt werden, dass ein im nicht transformierten Organismus nicht vorkommendes Regulator-Protein mit dem Promotor dieses Gens in Wechselwirkung tritt.

15

Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA-Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.

20

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Hydroxylase, und/oder die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine β -Cyclase, durch Einbringen von mindestens einer Nukleinsäure, kodierend eine Hydroxylase, und/oder durch Einbringen von mindestens einer Nukleinsäure, kodierend eine β -Cyclase, in den Organismus.

25

Dazu kann prinzipiell jedes Hydroxylase–Gen bzw. jedes β -Cyclase-Gen, also jede Nukleinsäure, die eine Hydroxylase und jede Nukleinsäure, die eine β -Cyclase kodiert, verwendet werden.

30

Bei genomischen Hydroxylase-bzw. β-Cyclase-Nukleinsäure-Sequenzen aus eukaryotischen Quellen, die Introns enthalten, sind für den Fall, dass der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase bzw. β-Cyclase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs, zu verwenden.

15

20

25

30

Ein Beispiel für ein Hydroxylase-Gen ist eine Nukleinsäure, kodierend eine Hydroxylase, aus *Haematococcus pluvialis*, Accession AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 15, Protein: SEQ ID NO: 16).

5 Ein Beispiel für ein β-Cyclase-Gen ist eine Nukleinsäure, kodierend eine β-Cyclase aus Tomate (Accession X86452).(Nukleinsäure: SEQ ID NO: 17, Protein: SEQ ID NO: 18).

In den erfindungsgemäßen bevorzugten transgenen Organismen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase–Gen und/oder β-Cyclase-Gen vor.

In dieser bevorzugten Ausführungsform weist der genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase, oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase und/oder mindestens eine exogene Nukleinsäure, kodierend eine β-Cyclase, oder mindestens zwei endogene Nukleinsäuren, kodierend eine β-Cyclase, auf.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 16, und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.

Weitere Beispiele für Hydroxylasen und Hydroxylase–Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID. NO: 16 leicht auffinden.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 15 aus verschiedenen Organis-

15

men deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 16.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Kodons verwendet, die entsprechend des Organismusspezifischen "codon usage" häufig verwendet werden. Dieser "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Orga-

nismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 15, in den Organismus ein.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als β-Cyclase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 18, und die die enzymatische Eigenschaft einer β-Cyclase aufweisen.

Weitere Beispiele für β-Cyclasen und β-Cyclase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 18 leicht auffinden.

Weitere Beispiele für β -Cyclasen und β -Cyclase—Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 17 aus verschiedenen Organismen,

30

15

20

25

deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der β-Cyclase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der β-Cyclase der Sequenz SEQ. ID. NO: 18.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Kodons verwendet, die entsprechend des Organismusspezifischen "codon usage" häufig verwendet werden. Dieser "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 17 in den Organismus ein.

Alle vorstehend erwähnten Hydroxylase-Gene oder β-Cyclase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

30 Besonders bevorzugt werden im erfindungsgemäßen Verfahren genetisch veränderte Organismen mit folgende Kombinationen genetischer Veränderungen verwendet:

Genetisch veränderte Organismen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,

WO 2004/018694

10

20

genetisch veränderte Organismen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität und eine erhöhte Hydroxylase-Aktivität und eine erhöhte β-Cyclase-Aktivität aufweisen.

Die Herstellung dieser genetisch veränderten Organismen kann, wie nachstehend beschrieben, beispielsweise durch Einbringen einzelner Nukleinsäurekonstrukte (Expressionskassetten) oder durch Einbringen von Mehrfachkonstrukten erfolgen, die bis zu zwei oder drei der beschriebenen Aktivitäten enthalten.

Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtyp- oder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind,

15 Carotinoide, insbesondere β-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen.

Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen.

Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.

Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbringens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organismus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung Escherichia, die beispielsweise crt-Gene aus Erwinia enthalten, als auch Bakterien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispielsweise Bakterien der Gattung Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc oder Cyanobakterien der Gattung Synechocystis.

Bevorzugte Bakterien sind Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534,

15

das Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii oder Paracoccus carotinifaciens.

Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Besonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodo-5 zyma.

Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.

Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil.

Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird.

Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ranuncu-. 20 laceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassicaceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae. 25

Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, 35 Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha,

10

Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.

Im erfindungsgemäßen Verfahren zur Herstellung von Ketocarotinoiden wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Organismen ein Ernten der Organismen und weiter bevorzugt zusätzlich ein Isolieren von Ketocarotinoiden aus den Organismen angeschlossen.

Das Ernten der Organismen erfolgt in an sich bekannter Weise dem jeweiligen Organismus entsprechend. Mikroorganismen, wie Bakterien, Hefen; Algen oder Pilze oder Pflanzenzellen, die durch Fermentation in flüßigen Nährmedien kultiviert werden, können beispielsweise durch Zentrifugieren, Dekantieren oder Filtrieren abgetrennt werden. Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.

Die Kultivierung der genetisch veränderten Mikroorganismen erfolgt bevorzugt in Gegenwart von Sauerstoff bei einer Kultivierungstemperatur von mindestens etwa 20°C, wie z.B. 20°C bis 40°C, und einem pH-Wert von etwa 6 bis 9. Bei genetisch veränderten Mikroorganismen erfolgt vorzugsweise zunächst die Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff und in einem Komplexmedium, wie z.B. TB- oder LB- Medium bei einer Kultivierungstemperatur von etwa 20°C oder mehr, und einem pH-Wert von etwa 6 bis 9, bis eine ausreichende Zelldichte erreicht ist. Um die Oxidationsreaktion besser steuern zu können, bevorzugt man die Verwendung eines induzierbaren Promotors. Die Kultivierung wird nach Induktion der Ketolaseexpression in Gegenwart von Sauerstoff, z.B. 12 Stunden bis 3 Tage, fortgesetzt.

Die Isolierung der Ketocarotinoide aus der geernteten Biomasse erfolgt in an sich bekannter Weise, beispielsweise durch Extraktion und gegebenenfalls weiterer chemische oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie.

30

10

Die Isolierung von Ketocarotinoiden aus den geernteten Blütenblättern erfolgt in an sich bekannter Weise, beispielsweise durch Trocknung und anschließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Blütenblättern erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutylether.

Weitere Isolierverfahren von Ketocarotinoiden, insbesondere aus Blütenblättern, sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437-440) und Egger (Phytochemistry (1965) 4, 609-618) beschrieben.

Vorzugsweise sind die Ketocarotinoide ausgewählt aus der Gruppe Astaxanthin,
Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin
und Adonixanthin.

Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.

Je nach verwendetem Organismus fallen die Ketocarotinoide in freier Form oder als Fettsäureester an.

In Blütenblättern von Pflanzen fallen die Ketocarotinlide im erfindungsgemäßen Verfahren in Form ihrer Mono- oder Diester mit Fettsäuren an. Einige nachgewiesene Fettsäuren sind z.B. Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Linolensäure, und Laurinsäure (Kamata und Simpson (1987) Comp. Biochem. Physiol. Vol. 86B(3), 587-591).

Die Herstellung der Ketocarotinoide kann in der ganzen Pflanze oder in einer bevorzugten Ausführungsform spezifisch in Pflanzengeweben, die Chromoplasten enthalten, erfolgen. Bevorzugte Pflanzengewebe sind beispielsweise Wurzeln, Samen, Blätter,

20

30

Früchte, Blüten und insbesondere Nektarien und Blütenblätter, die auch Petalen bezeichnet werden.

In einer besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Blüten die höchste Expressionsrate einer Ketolase aufweisen.

Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines blütenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem blütenspezifischen Promotor in die Pflanze eingebracht.

In einer weiteren, besonderes bevorzugten Ausführungsform der erfindungsgemäßen
Verfahrens verwendet man genetisch veränderte Pflanzen, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.

Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem fruchtspezifischen Promotor in die Pflanze eingebracht.

In einer weiteren, besonderes bevorzugten, Ausführungsform der erfindungsgemäßen
Verfahrens verwendet man genetisch veränderte Pflanzen, die in Samen die höchste
Expressionsrate einer Ketolase aufweisen.

Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines samenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem samenspezifischen Promotor in die Pflanze eingebracht.

Das Targeting in die Chromplasten erfolgt durch ein funktionell verknüpftes plastidäres

Transitpeptid.

Im folgenden wird exemplarisch die Herstellung genetisch veränderter Pflanzen mit erhöhter oder verursachter Ketolase-Aktivität beschrieben. Die Erhöhung weiterer Aktivitäten, wie beispielsweise der Hydroxylase-Aktivität und/oder der β-Cyclase-Aktivität kann analog unter Verwendung von Nukleinsäuresequenzen, kodierend eine Hydroxylase bzw. β-Cyclase anstelle von Nukleinsäuresequenzen, kodierend eine Ketolase, erfolgen. Die Transformation kann bei den Kombinationen von genetischen Veränderungen einzeln oder durch Mehrfachkonstrukte erfolgen.

Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase enthält, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.

Diese Nukleinsäurekonstrukte, in denen die kodierende Nukleinsäuresequenz mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.

Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die die Transkription und Translation in Pflanzen gewährleisten.

Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, das jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.

25

Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen selbst beschrieben.

Die zur operativen Verknüpfung bevorzugten, aber nicht darauf beschränkten Sequenzen, sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärkern wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).

Als Promotor der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann.

"Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.

Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228), der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202), den Triose-Phosphat Translokator (TPT) Promotor aus *Arabidopsis thaliana* Acc.-No. AB006698, Basenpaar 53242 bis 55281; das Gen beginnend ab bp 55282 ist mit "phosphate/triose-phosphate translocator" annotiert, oder den 34S Promoter aus Figwort mosaic virus Acc.-No. X16673, Basenpaar 1 bis 554.

Ein weiterer geeigneter konstitutiver Promotor ist der pds Promoter (Pecker et al. (1992) Proc. Natl. Acad. Sci USA 89: 4962-4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), der Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc

10

15

20

Natl Acad Sci USA 86:9692-9696), der Smas Promotor, der Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hillebrand et al. (1996), Gene, 170, 197-200) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.

Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des Ketolase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinll-Promoter (EP375091).

25

30

35

Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, b-1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968(1989).

Weitere geeignete Promotoren sind beispielsweise fruchtreifung-spezifische Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO
94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß
entwicklungsabhängig erfolgt.

et al. (1994) The Plant J 6(2):141-150) und dergleichen.

Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel, Samen und Wurzeln und Kombinationen hieraus.

Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren sind beispielsweise der Patatin-Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.

- Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).
- 30 Blütenspezifische Promotoren sind beispielsweise der Phytoen-Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593), der AP3 Promoter aus Arabidopsis thaliana (siehe Beispiel 5), der CHRC-Promoter (Chromoplast-specific carotenoid-associated protein (CHRC) gene promoter aus Cucumis sativus Acc.-No. AF099501, Basenpaar 1 bis 1532), der EPSP_Synthase Promotor (5-enol-pyruvylshikimate-3-phosphate synthase gene promoter aus Petunia hybrida, Acc.-No.
- M37029, Basenpaar 1 bis 1788), der PDS Promotor (Phytoene desaturase gene pro-

moter aus Solanum lycopersicum, Acc.-No. U46919, Basenpaar 1 bis 2078), der DFR-A Promotor (Dihydroflavonol 4-reductase gene A promoter aus Petunia hybrida, Acc.-No. X79723, Basenpaar 32 bis 1902) oder der FBP1 Promotor (Floral Binding Protein 1 gene promoter aus Petunia hybrida, Acc.-No. L10115, Basenpaar 52 bis 1069).

5

Antheren-spezifische Promotoren sind beispielsweise der 5126-Promotor (US 5,689,049, US 5,689,051), der glob-I Promotor oder der g-Zein Promotor.

Samen-spezifische Promotoren sind beispielsweise der ACP05-Promotor (Acyl-carrier-Protein Gen, WO9218634), die Promotoren AtS1 und AtS3 von *Arabidopsis* (WO 9920775), der LeB4-Promotor von *Vicia faba* (WO 9729200 und US 06403371), der Napin-Promotor von *Brassica napus* (US 5608152; EP 255378; US 5420034),der SBP-Promotor von *Vicia faba* (DE 9903432) oder die Maispromotoren End1 und End2 (WO 0011177).

15

Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben in Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11 und Berger et al. (1989) Proc Natl Acad Sci USA 86:8402-8406).

20

Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive, samenspezifische, fruchtspezifische, blütenspezifische und insbesondere blütenblattspezifische Promotoren.

30

35

25

Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen blütenspezifischen oder insbesondere einen blütenblattspezifischen Promotor und eine Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer vorstehend beschriebenen Nukleinsäure, kodierend eine Ketolase, und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular

15

20

25

Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987), beschrieben sind.

Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Plastiden und insbesondere in Chromoplasten.

10 Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure–
Sequenz für ein Ketolase–Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins
ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für
die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Ketolase
in die Chromoplasten vom Ketolase–Teil enzymatisch abgespalten werden.

Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären *Nicotiana taba-cum* Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat Isomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.

Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als Kpnl/BamHI Fragmente mit einem ATG-Codon in der Ncol Schnittstelle:

pTP09

Kpnl_GGTACCATGGCGTCTTCTTCTCTCACTCTCTCAAGCTATCCTCTCTC
GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCT30 CACTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCGTACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGGATCC_BamHI

35 pTP10

pTP11

GATCC_BamHI

5

20

25

30

35

10 Kpnl_GGTACCATGGCGTCTTCTTCTCTCACTCTCTCAAGCTATCCTCTCTC
GTTCTGTCCCTCGCCATGGCTCTGCCTCTTCTTCTCAACTTTCCCCTTCTTCTCTCACTTTTTCCGGCCTTAAATCCAATCCCAATATCACCACCTCCCGCCGCCGC
TACTCCTTCCTCCGCCGCCGCCGCCGCCGTCGTAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGG15 GATCC_BamHI

Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphosphat Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380).

Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure-Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.

Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.

Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist.

Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.

15

20

5

10

Beispiele für einen Terminator sind der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1982;1(6):561-73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 3: 835-846).

25

Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können *in vitro*-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden.

30

Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.

35

Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-

Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.

Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.

Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.

10

Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone – die sogenannte "particle bombardment" Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch *Agrobacterium* vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.

20

15

Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, *Agrobacterium tumefaciens* zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).

25

Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

30

35

Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die eine Ketolase exprimiert, in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN5 und pSUN3 kloniert, der geeignet ist, in *Agrobacterium tumefaciens* transformiert zu werden. Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen ver-

WO 2004/018694

wendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression einer Nukleinsäure, kodierend eine Ketolase, enthalten.

Zur Transformation einer Wirtspflanze mit einer für eine Ketolase kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.

20 Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in *E. coli*, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16:11380), pBR332, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in *E. coli* als auch in Agrobakterien replizieren können.

Im folgenden wird die Herstellung der erfindungsgemäßen gentisch veränderten Mikroorganismen näher beschrieben:

Die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase oder β-Hydroxylase oder β-Cyclase sind vorzugsweise in Expressionskonstrukte eingebaut, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Enzym kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte.

Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.

- 10 Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie Translationsverstärker, Enhancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen.
- Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

25

30

Beispiele für brauchbare Promotoren in Mikroorganismen sind: cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, lambda-PR- oder im lambda-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden; sowie die gram-positiven Promotoren amy und SPO2 oder die Hefepromotoren ADC1, MFa , AC, P-60, CYC1, GAPDH. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduzierbarer Promotoren, wie der P_rP_r-Promotor.

Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

- Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen und die Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.
- Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit den vorstehend beschriebenen Nukleinsäuresequenzen, kodierend eine Ketolase, β-Hydroxylase oder β-Cyclase sowie einem Terminator- oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.

Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannte Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und Adenovirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre

20

25

30

10

15

20

25

30

35

DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.

Als Beispiele für geeignete Expressionsvektoren können genannt werden:

Übliche Fusionsexpressionsvektoren, wie pGEX (Pharmacia Biotech Inc; Smith, D.B. und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

Nicht-Fusionsprotein-Expressionsvektoren wie pTrc (Amann et al., (1988) Gene 69:301-315) und pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89) oder pBluescript und pUC-Vektoren.

Hefe-Expressionsvektor zur Expression in der Hefe *S. cerevisiae*, wie pYepSec1 (Baldari et al., (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Céll 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA).

Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Hrsg., S. 1-28, Cambridge University Press: Cambridge.

Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).

Weitere geeignete Expressionssysteme für prokaryontische und eukaryotische Zellen sind in Kapitel 16 und 17 von Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben.

Mit Hilfe der erfindungsgemäßen Expressionskonstrukte bzw. Vektoren sind genetisch veränderte Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind.

Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektionsmethoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, beschrieben.

Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und für Enzyme, die eine farbgebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden.

20 Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotikaresistenzgen (z.B. G418 oder Hygromycin) tragen, lassen sich durch entsprechende Antibiotika-enthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitätschromatographie genutzt werden.

Die Kombination aus den Wirtsorganismen und den zu den Organismen passenden Vektoren, wie Plasmide, Viren oder Phagen, wie beispielsweise Plasmide mit dem RNA-Polymerase/Promoter-System, die Phagen 8 oder andere temperente Phagen oder Transposons und/oder weiteren vorteilhaften regulatorischen Sequenzen bildet ein Expressionssystem.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung von genetisch veränderten Organismen, dadurch gekennzeichnet, das man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen Promotor und Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine

15

25

30

Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, und gegebenenfalls einen Terminator in das Genom des Ausgangsorganismus oder extrachromosomal in den Ausgangsorganismus einführt.

- Die Erfindung betrifft ferner die genetisch veränderten Organismen, wobei die genetische Veränderung die Aktivität einer Ketolase
 - A für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp erhöht und
 - B für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivitätaufweist, gegenüber dem Wildtyp verursacht
- und die nach A erhöhte oder nach B verursachte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- Wie vorstehend ausgeführt erfolgt die Erhöhung oder Verursachung der KetolaseAktivität gegenüber dem Wildtyp vorzugsweise durch eine Erhöhung oder Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die
 Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution,
 Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von
 mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
 - In einer weiter bevorzugten Ausführungsform erfolgt, wie vorstehend ausgeführt, die Erhöhung oder Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von Nukleinsäuren, kodierend eine Ketolase, in die Pflanzen und damit vorzugsweise durch Überexpression oder transgene Expression von Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäurebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

10

15

20

25

30

Die Erfindung betrifft ferner einen genetisch veränderten Organismus, enthaltend mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist. Dies ist der Fall, wenn der Ausgangsorganismus keine Ketolase oder eine endogen Ketolase aufweist und eine transgene Ketolase überexprimiert wird.

Die Erfindung betrifft ferner einen genetisch veränderten Organismus, enthaltend mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist. Dies ist der Fall, wenn der Ausgangsorganismus eine endogen Ketolase aufweist und die endogene Ketolase überexprimiert wird.

Besonders bevorzugte, genetisch veränderte Organismen weisen, wie vorstehend erwähnt, zusätzlich eine erhöhte Hydroxlase-Aktivität und/oder β-Cyclase-Aktivität gegenüber einem Wildtyporganismus auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.

Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtyp- oder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind, Carotinoide, insbesondere β-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen.

Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen.

Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.

35 Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbringens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organis-

10

15

mus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung *Escherichia*, die beispielsweise crt-Gene aus *Erwinia* enthalten, als auch Bakterien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispielsweise Bakterien der Gattung *Erwinia*, *Agrobacterium*, *Flavobacterium*, *Alcaligenes*, *Paracoccus*, *Nostoc* oder Cyanobakterien der Gattung *Synechocystis*.

Bevorzugte Bakterien sind *Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes* sp. PC-1, *Flavobacterium* sp. strain R1534,
das Cyanobacterium *Synechocystis* sp. PCC6803, *Paracoccus marcusii* oder *Paracoccus cus carotinifaciens*.

Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Besonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodozyma.

Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.

20 Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil.

Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird.

Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassicaceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae.

35 Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arni-

ca. Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea. Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, 5 Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussi-10 lago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.

Ganz besonders bevorzugte genetisch veränderte Pflanzen sind ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Adonis, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium oder Tropaeolum, wobei die genetisch veränderte Pflanze mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, enthält.

Die transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, - gewebe oder --teile, insbesondere deren Früchte, Samen, Blüten und Blütenblätter sind ein weiterer Gegenstand der vorliegenden Erfindung.

Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstellung von Ketocarotinoiden, insbesondere Astaxanthin verwendet werden.

Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Organismen, insbesondere Pflanzen oder Pflanzenteile, wie insbesondere Blütenblätter mit erhöhtem Gehalt an Ketocarotinoiden, insbesondere Astaxanthin können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter– und Nahrungsergänzungsmittel verwendet werden.

15

20

Die genetisch veränderten Organismen weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an Ketocarotinoiden auf.

Unter einem erhöhten Gehalt an Ketocarotinoiden wird in der Regel ein erhöhter Gehalt an Gesamt-Ketocarotinoid verstanden.

Unter einem erhöhten Gehalt an Ketocarotinoiden wird aber auch insbesondere ein veränderter Gehalt der bevorzugten Ketocarotinoide verstanden, ohne dass zwangsläufig der Gesamt-Carotinoidgehalt erhöht sein muss.

In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp einen erhöhten Gehalt an Astaxanthin auf.

Unter einem erhöhten Gehalt wird in diesem Fall auch ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin verstanden.

Die Erfindung betrifft ferner die neuen Ketolasen sowie die neuen Nukleinsäuren, die diese kodieren.

Insbesondere betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 8 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 4 nicht enthalten ist. Die Sequenz SEQ ID NO: 4 ist, wie vorstehend erwähnt, als putatives Protein in Datenbanken annotiert.

Ferner betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID.

NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Amino-

10

15

enthält.

säureebene mit der Sequenz SEQ. ID. NO. 6 aufweist. Die Sequenz SEQ ID NO: 6 ist, wie vorstehend erwähnt, in Datenbanken nicht annotiert.

In einer weiteren Ausführungsform betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 90%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 6 nicht enthalten ist.

Ferner betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 49 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 %, vorzugsweise mindestens 60%, besonders bevorzugt mindestens 70%, bevorzugter mindestens 80%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 49 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 47 nicht enthalten ist. Die Sequenz SEQ ID NO: 47 ist, wie vorstehend erwähnt, als putatives Protein in Datenbanken annotiert.

Die Erfindung betrifft ferner Nukleinsäuren, kodierend ein vorstehend beschriebenes Protein, mit der Maßgabe, dass die Nukleinsäure nicht die Sequenz SEQ ID NO: 5

Überraschenderweise wurde gefunden, dass ein Protein enthaltend die Aminosäuresequenz SEQ. ID. NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95%
auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 4 und die Eigenschaft einer Ketolase aufweist, eine Eigenschaft als Ketolase aufweist.

Die Erfindung betrifft daher auch die Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 %, vorzugsweise mindestens 75%, besonders bevorzugt mindestens

80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 4 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

Ferner wurde überraschenderweise gefunden, dass ein Protein enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 65%, vorzugsweise mindestens 70 %, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 und die Eigenschaft einer Ketolase aufweist, eine Egenschaft als Ketolase aufweist.

Die Erfindung betrifft daher auch die Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 65%, vorzugsweise mindestens 70 %, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95%auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

Ferner wurde überraschenderweise gefunden, dass ein Protein enthaltend die Aminosäuresequenz SEQ. ID. NO. 47 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50%, vorzugsweise mindestens 60 %, vorzugsweise mindestens 70%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 47 und die Eigenschaft einer Ketolase aufweist, eine Egenschaft als Ketolase aufweist.

30

35

15

20

25

Die Erfindung betrifft daher auch die Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 47 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50%, vorzugsweise mindestens 60 %, vorzugsweise mindestens 70%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter

mindestens 90%, bevorzugter mindestens 95%auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 47 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

Im Vergleich zu den Verfahren des Standes der Technik, liefert das erfindungsgemäße Verfahren eine höhere Menge an Ketocarotinoide, insbesondere Astaxanthin mit einer geringeren Menge an hydroxylierten Nebenprodukten.

Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:

10

Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem LaserfluoreszenzDNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).

Beispiel 1:

Amplifikation einer DNA, die die gesamte Primärsequenz der NOST-Ketolase aus Nostoc sp. PCC 7120 codiert

Die DNA, die für die NOST-Ketolase aus *Nostoc sp. PCC 7120* kodiert, wurde mittels PCR aus *Nostoc sp. PCC 7120* (Stamm der "Pasteur Culture Collection of Cyanobacterium") amplifiziert.

25

20

Für die Präparation von genomischer DNA aus einer Suspensionskultur von *Nostoc sp. PCC 7120*, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in *BG 11*-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4x3H2O, 0.075 g/l MgSO4xH2O, 0.036 g/l CaCl2x2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l ED-TA disodium magnesium, 0.04 g/l Na2CO3, 1ml trace metal mix A5+Co (2.86 g/l H3BO3, 1.81 g/l MnCl2x4H2o, 0.222 g/l ZnSO4x7H2o,0.39 g/l NaMoO4X2H2o, 0.079 g/l CuSO4x5H2O, 0.0494 g/l Co(NO3)2x6H2O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.

Protokoll für DNA Isolation aus Nostoc PCC7120:

Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10minütige Zentrifugation bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 5 10mM Tris HCl (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 µl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 µl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf Reaktionsgefäß 10 überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 µl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst. 15

Die Nukleinsäure, kodierend eine Ketolase aus *Nostoc PCC 7120*, wurde mittels "polymerase chain reaction" (PCR) aus *Nostoc sp. PCC 7120* unter Verwendung eines sense-spezifischen Primers (NOSTF, SEQ ID No. 19) und eines antisensespezifischen Primers (NOSTG SEQ ID No. 20) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 1 ul einer Nostoc sp. PCC 7120 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 30 0.2 mM NOSTF (SEQ ID No. 19)
 - 0.2 mM NOSTG (SEQ ID No. 20)
 - 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.

35

20

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

35X 94°C 1 Minute

55°C 1 Minuten

5 72°C 3 Minuten

10

1X 72°C 10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 19 und SEQ ID No. 20 resultierte in einem 805 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 21). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-T (Promega) kloniert und der Klon pNOSTF-G erhalten.

Sequenzierung des Klons pNOSTF-G mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 88,886-89,662 des Datenbankeintrages AP003592 identisch ist. Diese Nukleotidsequenz wurde in einem unabhängigem
Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im
verwendeten Nostoc sp. PCC 7120.

Dieser Klon pNOSTF-G wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet. Die Klonierung erfolgte durch Isolierung des 799 Bp Sphl-Fragmentes aus pNOSTF-G und Ligierung in den Sphl geschnittenen Vektor pJIT117. Der Klon, der die Ketolase von Nostoc sp. PCC 7120 in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJNOST.

Beispiel 2:

Konstruktion des Plasmides pMCL-CrtYIBZ/idi/gps für die Synthese von Zeaxanthin in E. coli

Die Konstruktion von pMCL-CrtYIBZ/idi/gps erfolgte in drei Schritten über die Zwischenstufen pMCL-CrtYIBZ und pMCL-CrtYIBZ/idi. Als Vektor wurde das mit highcopy-number Vektoren kompatible Plasmid pMCL200 verwendet (Nakano, Y., Yoshida, Y., Yamashita, Y. und Koga, T.; Construction of a series of pACYC-derived plasmid vectors; Gene 162 (1995), 157-158).

30

Die Biosynthesegene *crtY*, *crtB*, *crtI* und *crtZ* entstammen dem Bakterium *Erwinia uredovora* und wurden mittels PCR amplifiziert. Genomische DNA von *Erwinia uredovora* (DSM 30080) *wurde* von der Deutschen Sammlung von Mikroorganismen und Zellkuturen (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR-Reaktion wurde entsprechend den Angaben des Herstellers durchgeführt (Roche, Long Template PCR: Procedure for amplification of 5-20 kb targets with the expand long template PCR system). Die PCR-Bedingungen für die Amplifikation des Biosyntheseclusters von *Erwinia uredovora* waren die folgenden:

10

5

Master Mix 1:

- 1.75 ul dNTPs (Endkonzentration 350 μM)
- 0.3 μM Primer Crt1 (SEQ ID No. 22)
- 15 0.3 μM Primer Crt2 (SEQ ID No. 23)
 - 250 500 ng genomische DNA von DSM 30080

Aq. Dest. bis zu einem Gesamtvolumen von 50 μl

Master Mix 2:

20

- 5 ul 10x PCR Puffer 1 (Endkonzentration 1x, mit 1.75 mM Mg2+)
- 10x PCR Puffer 2 (Endkonzentration 1x, mit 2.25 mM Mg2+)
- 10x PCR Puffer 3 (Endkonzentration 1x, mit 2.25 mM Mg2+)
- 0.75 ul Expand Long Template Enzyme Mix (Endkonzentration 2.6 Units)
- 25 Aq. Dest. bis zu einem Gesamtvolumen von $50~\mu l$

Die beiden Ansätze "Master Mix 1" und "Master Mix 2" wurden zusammenpipetiert. Die PCR wurde in einem Gesamtvolumen von 50 ul unter folgenden Zyklusbedingungen durchgeführt:

30

1X 94°C 2 Minuten

30X 94°C 30 Sekunden

58°C 1 Minute

68°C 4 Minuten

35 1X 72°C 10 Minuten

5 Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-CrtYIBZ erhalten.

Das Plasmid pCR2.1-CrtYIBZ wurde Sall und HindIII geschnitten, das resultierende Sall/HindIII-Fragment isoliert und durch Ligierung in den Sall/HindIII geschnittenen Vektor pMCL200 transferiert. Das in pMCL 200 klonierte Sall/HindIII Fragment aus pCR2.1-CrtYIBZ ist 4624 Bp lang, kodiert für die Gene *CrtY*, *CrtI*, *crtB* und *CrtZ* und entspricht der Sequenz von Position 2295 bis 6918 in D90087 (SEQ ID No. 24). Der resultierende Klon heisst pMCL-CrtYIBZ.

Beispiel 2.2.: Konstruktion von pMCL-CrtYIBZ/idi

Das Gen *idi* (Isopentenyldiphosphat-Isomerase; IPP-Isomerase) wurde aus *E. coli* mittels PCR amplifiziert. Die Nukleinsäure, kodierend das gesamte *idi* Gen mit *idi*-Promotor und Ribosomenbindestelle, wurde aus *E. coli* mittels "polymerase chain reaction" (PCR) unter Verwendung eines sense-spezifischen Primers (5'-idi SEQ ID No. 28) und eines antisense-spezifischen Primers (3'-idi SEQ ID No. 29) amplifiziert.

20

10

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:

25

- 1 ul einer E. coli TOP10- Suspension
- 0.25 mM dNTPs
- 0.2 mM 5'-idi (SEQ ID No. 28)
- 0.2 mM 3'-idi (SEQ ID No. 29)
- 30 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 28.8 ul Aq. Dest

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

20X 94°C 1 Minute

62 °C1 Minute

72°C 1 Minute

5 1X 72°C 10 Minuten

10

15

Die PCR-Amplifikation mit SEQ ID No. 28 und SEQ ID No. 29 resultierte in einem 679 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 30). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-idi erhalten.

Sequenzierung des Klons pCR2.1-idi bestätigte eine Sequenz, die sich nicht von der publizierten Sequenz AE000372 in Position 8774 bis Position 9440 unterscheidet. Diese Region umfaßt die Promotor-Region, die potentielle Ribosomenbindestelle und den gesamten "open reading frame" für die IPP-Isomerase. Das in pCR2.1-idi klonierte Fragment hat durch das Einfügen einer Xhol-Schnittstelle am 5'-Ende und einer Sall-Schnittstelle am 3'-Ende des *idi*-Gens eine Gesamtlänge von 679 Bp.

- Dieser Klon wurde daher für die Klonierung des idi-Gens in den Vektor pMCL-CrtYIBZ verwendet. Die Klonierung erfolgte durch Isolierung des Xhol/Sall-Fragmentes aus pCR2.1-idi und Ligierung in den Xhol/Sall geschnittenen Vektor pMCL-CrtYIBZ. Der resultierende Klon heisst pMCL-CrtYIBZ/idi.
- Beispiel 2.3.: Konstruktion von pMCL-CrtYIBZ/idi/gps
 Das Gen gps (Geranylgeranylpyrophosphat-Synthase; ; GGPP-Synthase) wurde aus Archaeoglobus fulgidus mittels PCR amplifiziert. Die Nukleinsäure, kodierend gps aus Archaeoglobus fulgidus, wurde mittels "polymerase chain reaction" (PCR) unter Verwendung eines sense-spezifischen Primers (5'-gps SEQ ID No. 32) und eines antisense-spezifischen Primers (3'-gps SEQ ID No. 33) amplifiziert.

Die DNA von *Archaeoglobus fulgidus* wurde von der Deutschen Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein GGPP-Synthase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:

- 5 1 ul einer Archaeoglobus fulgidus-DNA
 - 0.25 mM dNTPs
 - 0.2 mM 5'-gps (SEQ ID No. 32)
 - 0.2 mM 3'-gps (SEQ ID No. 33)
 - 5 ul 10X PCR-Puffer (TAKARA)
- 10 0.25 ul R Taq Polymerase (TAKARA)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

15 1X 94°C 2 Minuten

20X 94°C 1 Minute

56°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

20

25

Das mittels PCR und den Primern SEQ ID No. 32 und SEQ ID No. 33 amplifizierte DNA-Fragment wurde mit an sich bekannten Methoden aus dem Agarosegel eluiert und mit den Restriktionsenzymen Ncol und HindIII geschnitten. Daraus resultiert ein 962 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 34). Unter Verwendung von Standardmethoden wurde das Ncol/HindIII geschnittene Amplifikat in den Vektor pCB97-30 kloniert und der Klon pCB-gps erhalten.

Sequenzierung des Klons pCB-gps bestätigte eine Sequenz für die GGPP-Synthase aus A. fulgidus, die sich von der publizierten Sequenz AF120272 in einem Nukleotid unterscheidet. Durch das Einfügen einer Ncol-Schnittstelle im gps-Gen wurde das zweite Kodon der GGPP-Synthase verändert. In der publizierten Sequenz AF120272 kodiert CTG (Position 4-6) für Leucin. Durch die Amplifikation mit den beiden Primern SEQ ID No. 32 und SEQ ID No. 33 wurde dieses zweite Kodon in GTG verändert, welches für Valin kodiert.

Der Klon pCB-gps wurde daher für die Klonierung des gps-Gens in den Vektor pMCL-CrtYIBZ/idi verwendet. Die Klonierung erfolgte durch Isolierung des KpnI/Xhol-Fragmentes aus pCB-gps und Ligierung in den Kpnl und Xhol geschnittenen Vektor pMCL-CrtYIBZ/idi. Das klonierte Kpnl/Xhol-Fragment (SEQ ID No. 34) trägt den Prrn16-Promotor zusammen mit einer minimalen 5'-UTR-Sequenz von rbcL, den ers-5 ten 6 Kodons von rbcL, die die GGPP-Synthase N-terminal verlängern, und 3' vom gps-Gen die psbA-Sequenz. Der N-Terminus der GGPP-Synthase hat somit anstelle der natürlichen Aminosäure-Abfolge mit Met-Leu-Lys-Glu (Aminosäure 1 bis 4 aus AF120272) die veränderte Aminosäure-Abfolge Met-Thr-Pro-Gln-Thr-Ala-Met-Val-Lys-Glu. Daraus resultiert, dass die rekombinante GGPP-Synthase, beginnend mit Lys in 10 Position 3 (in AF120272) identisch ist und keine weiteren Änderungen in der Aminosäuresequenz aufweist. Die rbcL- und psbA-Sequenzen wurden gemäß einer Referenz nach Eibl et al. (Plant J. 19. (1999), 1-13) verwendet. Der resultierende Klon heisst pMCL-CrtYIBZ/idi/gps.

15

Beispiel 3:

Biotransformation von Zeaxanthin in rekombinanten E. coli-Stämmen

Zur Zeaxanthin-Biotransformation wurden rekombinante *E. coli*-Stämme hergestellt,
welche durch heterologe Komplementation zur Zeaxanthin-Produktion befähigt sind.
Stämme von *E. coli* TOP10 wurden als Wirtszellen für die KomplementationsExperimente mit den Plasmiden pNOSTF-G und pMCL-CrtYIBZ/idi/gps verwendet.

Um *E. coli*-Stämme herzustellen, die die Synthese von Zeaxanthin in hoher Konzentration ermöglichen, wurde das Plasmid pMCL-CrtYIBZ/idi/gps konstruiert. Das Plasmid trägt die Bioynthesegene *crtY*, *crtB*, *crtl* und *crtY* von *Erwinia uredovora*, das Gen *gps* (für Geranylgeranylpyrophoshat-Synthastase) aus *Archaeoglobus fulgidus* und das Gen *idi* (Isopentenyldiphosphat-Isomerase) aus *E. coli*. Mit diesem Konstrukt wurden limitierende Schritte für eine hohe Akkumulation von Carotinoiden und deren biosynthtischen Vorstufen beseitigt. Dies wurde zuvor von Wang et al. in ähnlicher Weise mit mehreren Plasmiden beschrieben (Wang, C.-W., Oh, M.-K. und Liao, J.C.; Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli, Biotechnology and Bioengineering 62 (1999), 235-241).

10

15

Kulturen von *E.coli* TOP10 wurden in an sich bekannter Weise mit den beiden Plasmiden pNOSTF-G und pMCL-CrtYIBZ/idi/gps transformiert und in LB-Medium bei 30°C bzw. 37°C über Nacht kultiviert. Ampicillin (50 μg/ml), Chloramphenicol (50 μg/ml) und Isopropyl-β-thiogalactosid (1 mmol) wurden in an sich üblicher Weise ebenfalls über Nacht zugegeben.

Zur Isolierung der Carotinoide aus den rekombinanten Stämmen wurden die Zellen mit Aceton extrahiert, das organische Lösungsmittel zur Trockne eingedampft und die Carotinoide mittels HPLC über eine C30-Säule aufgetrennt. Folgende Verfahrensbedingungen wurden eingestellt.

Trennsäule: Prontosil C30-Säule, 250 x 4,6 mm, (Bischoff, Leonberg)

Flussrate: 1.0 ml/min

Eluenten: Laufmittel A - 100% Methanol

Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat

Laufmittel C - 100% t-Butyl-methylether

Gradientprofil:

Zeit	Flussrate	% Laufmittel A	% Laufmittel B	% Laufmittel C	
1.00	1.0	95.0	5.0	0	
1.05	1.0	80.0	5.0	15.0	
14.00	1.0	42.0	5.0	53.0	
14.05	1.0	95.0	5.0	0	
17.00	1.0	95.0	5.0	0	
18.00	1.0	95.0	5.0	0	

20

25

Detektion: 300 - 500 nm

Die Spektren wurden direkt aus den Elutionspeaks unter Verwendung eines Photodiodenarraydetektors bestimmt. Die isolierten Substanzen wurden über ihre Absorptionsspektren und ihre Retentionszeiten im Vergleich zu Standardproben identifiziert.

Abbildung 1 zeigt die chromatographische Analyse einer Probe erhalten aus einem mit pNOSTF-G und pMCL-CrtYIBZ/idi/gps transformierten *E. coli*-Stamm. Es zeigt sich,

(Peak 1), Adonirubin (Peak 2) und Canthaxanthin (Peak 3) eluiert.

Beispiel 3.1 5 Vergleichsbeispiel

10

15

20

25

30

35

Analog zu den vorhergehenden Beispielen wurde als Vergleichsbeispiel ein E.coli-Stamm hergestellt, der eine Ketolase aus Haematococcus pluvialis Flotow em. Wille exprimiert. Dazu wurde die cDNA die für die gesamte Primärsequenz der Ketolase aus Haematococcus pluvialis Flotow em. Wille codiert amplifiziert und gemäß Beispiel 1 in den gleichen Expressionsvektor kloniert.

Die cDNA, die für die Ketolase aus Haematococcus pluvialis codiert, wurde mittels PCR aus Haematococcus pluvialis (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen")Suspensionskultur amplifiziert. Für die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80), die 2 Wochen mit indirektem Tageslicht bei Raumtemperatur in Haematococcus- Medium (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgCl2x6H2O, 0.02 CaCl2x2H2O; pH 6.8; nach Autoklavieren Zugabe von 400 mg/l L-Asparagin, 10 mg/l FeSO4xH2O) gewachsen war, wurden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend wurden 100 mg der gefrorenen, pulverisierten Algenzellen in ein Reaktionsgefäß überführt und in 0.8 ml Trizol-Puffer (LifeTechnologies) aufgenommen. Die Suspension wurde mit 0.2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12 000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75% Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt.

Für die cDNA-Synthese wurden 2.5 ug Gesamt-RNA für 10 min bei 60_C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-primebeads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers PR1 (gcaagctcga cagctacaaa cc) in cDNA umgeschrieben.

unter Verwendung eines sense spezifischen Primers PR2 (gaagcatgca gctagcagcg

Die Nukleinsäure codierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis

acag) und eines antisense spezifischen Primers PR1 amplifiziert.

5

10

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz codiert, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 4 ml einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben).
- 0.25 mM dNTPs
- 0.2 mM PR1
- 0.2 mM PR2 15
 - 5 ml 10X PCR-Puffer (TAKARA)
 - 0.25 ml R Taq Polymerase (TAKARA)
 - 25.8 ml Aq. Dest.
- Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt: 20
 - 1X 94_C 2 Minuten

1 Minute 35X 94_C

53_C 2 Minuten

72_C 3 Minuten 25

> 72_C 10 Minuten 1X

Die PCR-Amplifikation mit PR1 und PR2 resultierte in einem 1155 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz codiert:

30						t	60
	gaagcatgca	gctagcagcg	acagtaatgt	tggagcagct	taccggaagc	gergaggeac	
	tenners	ddadaaddad -	gttgcaggca	actctgacgt	gttgcgtaca	tgggcgaccc	120
	LCaaygagaa	ggagaaggag		555	gagactgaag	aatgcctaca	180
	agtactcgct	tccgtcagag	gagtcagacg	eggeeegeee	gggaccguag	aacgeoteee	240
	agccaccacc	ttccgacaca	aagggcatca	caatggcgct	agctgtcatc	gactcctaaa	
35		catacacaca	atttttcaaa	traagettee	gacctccttg	gaccagctgc	300
33	ccgcagtgtt	CCLCCacgcc	200000000			acctactac	360
	actggctgcc	cgtgtcagat	gccacagctc	agctggttag	Cogcagcagc	agecegeege	420
	acategtegt	agtattettt	gtcctggagt	tcctgtacac	aggccttttt	atcaccacgc	_
	acaccaccac		atcaccataa	gaaacaggca	gcttaatgac	ttcttgggca	480
	atgatgctat	gcatggcatt	accyccacya	gaaacaggca		pageattaga	540
•	gagtatgcat	ctccttgtac	gcctggtttg	attacaacat	getgeactige	aagcaccggg	
40	3003003033	ccacactggc	gaggtgggca	aggaccctga	cttccacagg	ggaaaccctg	600
-10	agcaccacaa		agetteatat	ccacctacat	gregatgtgg	cagtttgcgc	660
	gcattgtgcc	ctggtttgcc	agetteatgt	ccagecacae	900900909	pagetactaa	720
	acctcacata	gragacagta	gtcatgcagc	tgctgggtgc	gccaatggcg	aaccigcegg	, 20

tgttcatggc	ggccgcgccc	atcctgtccg	ccttccgctt	gttctacttt	ggcacgtaca	780
	gcctgagcct					840
ggaagtcgcg	cactagccag	gcgtccgacc	tggtcagctt	tctgacctgc	taccacttcg	900
acctgcactg	ggagcaccac	cgctggccct	ttgccccctg	gtgggagctg	cccaactgcc	960
gccgcctgtc	tggccgaggt	ctggttcctg	cctagctgga	cacactgcag	tgggccctgc	1020
tgccagctgg	gcatgcaggt	tgtggcagga	ctgggtgagg	tgaaaagctg	caggcgctgc	1080
tgccggacac	gctgcatggg	ctaccctgtg	tagctgccgc	cactagggga	gggggtttgt	1140
agctgtcgag	cttgc					

10 Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO2 erhalten.

Sequenzierung des Klons pGKETO2 mit dem T7- und dem SP6-Primer bestätigte eine Sequenz, die sich lediglich in den drei Codons 73, 114 und 119 in je einer Base von der publizierten Sequenz X86782 unterscheidet. Diese Nukleotidaustausche wurden in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten Haematococcus pluvialis Stamm 192.80.

Dieser Klon wurde für die Klonierung in den unter Beispiel 1 beschriebenen Expressionsvektor verwendet. Die Klonierung erfolgte analog wie in Beispiel 1 beschrieben. Die Transformation der E.coli Stämme, deren Kultivierung und die Analyse des Carotinoidprofils erfolgte wie in Beispiel 3 beschrieben.

Abbildung 2 zeigt die chromatographische Analyse einer Probe erhalten aus einem mitdiesem Expressionsvektor und pMCL-CrtYIBZ/idi/gps transformierten *E. coli*-Stamm.
Unter Verwendung einer Ketolase aus *Haematococcus pluvialis*, wie beispielsweise in
EP 725137 beschrieben, eluieren mit zunehmender Retentionszeit Astaxanthin (Peak
1), Adonixanthin (Peak 2) und nicht umgesetztes Zeaxanthin (Peak 3). Dieses Carotinoidprofil wurde bereits in EP 0725137 beschrieben.

Tabelle 1 zeigt einen Vergleich der bakteriell produzierten Carotinoidmengen:

Tablelle 1: Vergleich der bakteriellen Ketocarotinoid-Synthese bei Verwendung zweier verschiedener Ketolasen, der erfindungsgemäßen NOST-Ketolase aus *Nostoc* sp. PCC7120 (Beispiel 3) und der Ketolase aus *Haematococcus pluvialis* als Vergleichsbeispiel (Beispiel 3.1). Carotinoidmengen sind in ng/ ml Kulturflüssigkeit angegeben.

Ketolase aus	Astaxanthin	Adonirubin	Adonixanthin	Canthaxanthin	Zeaxanthin
Haematococcus pluvialis	13		102		738
Flotow em. Wille					
(Vergleichsbeispiel)					
Nostoc sp. Strain	491	186		120	
PCC7120					

Die erfindungsgemäße Expression der Ketolase aus *Nostoc sp.* Strain PCC7120 führt zu einem Carotinoidmuster, welches sich von dem Carotinoidmuster nach Expression einer Ketolase aus *Haematococcus pluvialis* deutlich unterscheidet. Während die Ketolase aus dem Stand der Technik nur sehr unvollständig das gewünschte Ketocarotinoid Astaxanthin liefert, ist Astaxanthin bei der Verwendung der erfindungsgemäßen Ketolase das Hauptprodukt. Im erfindungsgemäßen Verfahren treten hydroxylierte Nebenprodukte in einer deutlich geringeren Menge auf.

10 Beispiel 4:

5

Herstellung von Expressionsvektoren zur konstitutiven Expression der *Nostoc sp. PCC* 7120 NOST-Ketolase in *Lycopersicon esculentum* und *Tagetes erecta*.

Die Expression der NOST-Ketolase aus *Nostoc sp. PCC7120* in *L. esculentum* und in *Tagetes erecta* erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin-NADPH- Oxidoreductase, Datenbankeintrag AB011474 Position 70127 bis 69493; WO03/006660), aus *Arabidopsis thaliana*. Das FNR-Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).

Das DNA Fragment, das die FNR Promotorregion aus *Arabidopsis thaliana* beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus *Arabidopsis thaliana* isoliert) sowie der Primer FNR-A (SEQ ID No.38) und FNR-B (SEQ ID No. 39) hergestellt.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das FNR-Promotorfragment FNR#1) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

20

- 100 ng genomischer DNA aus A.thaliana
- 0.25 mM dNTPs
- 0.2 mM FNR-A (SEQ ID No. 38)
- 0.2 mM FNR-B (SEQ ID No. 39)
- 5 5 ul 10X PCR-Puffer (Stratagene)
 - 0.25 ul Pfu Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

10

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

15 1X 72°C 10 Minuten

Das 647 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pFNR#1 erhalten.

- Sequenzierung des Klons pFNR#1 bestätigte eine Sequenz,die mit einem Sequenzabschnitt auf Chromosom 5 von Arabidopsis thaliana (Datenbankeintrag AB011474; WO03/006660) von Position 70127 bis 69493 übereinstimmt. Das FNR-Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert.
- pFNR wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 637 bp SacI-HindIII Fragmentes aus pFNR#1 (partialle SacI Hydrolyse) und Ligierung in den SacI-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter FNR#1 anstelle des ursprünglichen Promoters d35S enthält, heisst pJITFNR.

Zur Herstellung einer Expressionskassette pJFNRNOST wurde das 799 bp SpHI-Fragment NOSTF-G (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor

Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der Ketolase aus *Nostoc* in *L. esculentum* erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors pS3FNR:NOST (MSP101) wurde das 2.425 bp SacI-Xhol Fragment (partialle SacI Hydrolyse) aus pJFNRNOST mit dem
 SacI-Xhol geschnittenen Vektor pSUN3 ligiert (Abbildung 3, Konstruktkarte). In der Abbildung 3 beinhaltet Fragment FNR-Promotor den FNR Promotor (635 bp), Fragment rbcS TP Fragment das rbcS Transitpeptid aus Erbse (194 bp), Fragment Nost Ketolase CDS (777 bp) die gesamte Primärsequenz, kodierend für die Nostoc Ketolase, Fragment 35S Term (746 bp) das Polyadenylierungssignal von CaMV.

Die Herstellung einer Expressionskassette für die *Agrobacterium*-vermittelte Transformation des Expressionsvektor mit der Ketolase aus *Nostoc* in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Tagetes-Expressionsvektors pS5FNR:NOST (MSP102) wurde das 2.425 bp SacI-Xhol Fragment (partielle SacI Hydrolyse) aus pJFNRNOST mit dem SacI-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 4, Konstruktkarte). In der Abbildung 4 beinhaltet Fragment FNR Promotor den FNR Promotor (635 bp), Fragment rbcS Transit Peptide das rbcS Transitpeptid aus Erbse (194 bp), Fragment Nost Ketolase (777 bp) die gesamte Primärsequenz, kodierend für die Nostoc Ketolase, Fragment 35S Terminator (746 bp) das Polyadenylierungssignal von CaMV.

Beispiel 5:

Herstellung von Expressionsvektoren zur blütenspezifischen Expression der *Nostoc sp.*30 *PCC 7120* NOST-Ketolase in *Lycopersicon esculentum* und *Tagetes erecta*.

Die Expression der Ketolase aus *Nostoc* in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus Arabidopsis thaliana (AL132971: Nukleotidregion 9298-10200; Hill et al. (1998) Development 125: 1711-1721).

35

Das DNA Fragment, das die AP3 Promoterregion -902 bis +15 aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer AP3-1 (SEQ ID No.41) und AP3-2 (SEQ ID No. 42) hergestellt.

5

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (-902 bis +15) beinhaltet, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:

10

- 100 ng genomischer DNA aus A.thaliana
- 0.25 mM dNTPs
- 0.2 mM AP3-1 (SEQ ID No. 41)
- 0.2 mM AP3-2 (SEQ ID No. 42)
- 15 5 ul 10X PCR-Puffer (Stratagene)
 - 0.25 ul Pfu Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

20

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

25 1X 72°C 10 Minuten

Das 929 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pAP3 erhalten.

Sequenzierung des Klons pAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der Sequenz AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 Sequenz (AL132971, Nukleotidregion 9298-10200) unterscheidet. Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert

und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Arabidopsis thaliana Pflanzen.

Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pAP3 hergestellt. Die Region 10200 - 9771 wurde mit den Primern AP3-1 (SEQ ID No. 41) und Primern AP3-4 (SEQ ID No. 44) amplifiziert (Amplifikat A1/4), die Region 9526-9285 wurde mit den AP3-3 (SEQ ID No. 43) und AP3-2 (SEQ ID No. 42) amplifiziert (Amplifikat A2/3).

10 Die PCR-Bedingungen waren die folgenden:

Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die die Regionen Region 10200 - 9771 und Region 9526-9285 des AP3 Promoters beinhalten, erfolgte in 50 ul Reaktionsansätzen, in denen enthalten war:

15

- 100 ng AP3 Amplifikat (oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM sense Primer (AP3-1 SEQ ID No. 41 bzw. AP3-3 SEQ ID No. 43)
- 0.2 mM antisense Primer (AP3-4 SEQ ID No. 44 bzw. AP3-2 SEQ ID No. 42)
- 20 5 ul 10X PCR-Puffer (Stratagene)
 - 0.25 ul Pfu Taq Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

25

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

30 1X 72°C 10 Minuten

Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A1/4 und A2/3, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670 - 9526 deletiert sind.

Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) beider Amplifikate A1/4 und A2/3 erfolgte in einem 17.6 ul Reaktionsansatz, in dem enthalten war:

- 5 0.5 ug A1/4 Amplifikat
 - 0.25 ug A2/3 Amplifikat

Das Auffüllen der 3'-Enden (30 min bei 30°C) erfolgte in einem 20 ul Reaktionsansatz, in dem enthalten war:

10

- 17.6 ul A1/4 und A2/3-Annealingsreaktion (hergestellt wie oben beschrieben)
- 50 uM dNTPs
- 2 ul 1X Klenow Puffer
- 2U Klenow Enzym

15

Die Nukleinsäure kodierend für die modifizierte Promoterversion AP3P wurde mittels PCR unter Verwendung eines sense spezifischen Primers (AP3-1 SEQ ID No. 41) und eines antisense spezifischen Primers (AP3-2 SEQ ID No. 42) amplifiziert.

20 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 25 1 ul Annealingsreaktion (hergestellt wie oben beschrieben)
 - 0.25 mM dNTPs
 - 0.2 mM AP3-1(SEQ ID No. 41)
 - 0.2 mM AP3-2 (SEQ ID No. 42)
 - 5 ul 10X PCR-Puffer (Stratagene)
- 30 0.25 ul Pfu Taq Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

35 1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 41 (AP3-1) und SEQ ID No. 42 (AP3-2) resultierte in einem 777 Bp Fragment, das für die modifizierte Promoterversion AP3P kodiert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert und das Plasmid pAP3P erhalten. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200-9298 identische Sequenz, wobei die interne Region 9285 - 9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 767 Bp SacI-HindIII Fragmentes aus pAP3P und Ligierung in den SacI-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heisst pJI-TAP3P. Zur Herstellung einer Expressionskassette pJAP3NOST wurde das 799 Bp SpHI-Fragment NOSTF-G (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJITAP3P kloniert. Der Klon, der das Fragment NOSTF-G in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJAP3PNOST.

Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der AP3P-kontrollierten Ketolase aus Nostoc in *L. esculentum* erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors pS3AP3:NOST (MSP103) wurde das 2.555 bp SacI-XhoI Fragment aus pJAP3NOST mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 5, Konstruktkarte). In der Abbildung 5 beinhaltet Fragment AP3P PROMOTER den modifizierten AP3P Promoter (765 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NOST KETOLASE CDS (777bp) die gesamte Primärsequenz kodierend für die Nostoc Ketolase, Fragment 35S TERM (746 bp) das Polyadenylierungssignal von CaMV.

15

20

25

Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der AP3P-kontrollierten Ketolase aus Nostoc in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

5 Zur Herstellung des Expressionsvektors pS5AP3:NOST (MSP104) wurde das 2.555 bp Sacl-Xhol Fragment aus pS5AP3PNOST mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 6, Konstruktkarte). In der Abbildung 6 beinhaltet Fragment AP3P PROMOTER den modifizierten AP3P Promoter (765 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (207 bp), Fragment NOST KETOLASE CDS (777 bp) die gesamte Primärsequenz codierend für die Nostoc Ketolase, Fragment 35S TERM (746 bp) das Polyadenylierungssignal von CaMV.

Beispiel 6

Amplifikation einer DNA, die die gesamte Primärsequenz der NP196-Ketolase aus Nostoc *punctiforme ATCC 29133* kodiert

Die DNA, die für die NP196-Ketolase aus *Nostoc punctiforme ATCC 29133* kodiert, wurde mittels PCR aus *Nostoc punctiforme ATCC 29133* (Stamm der "American Type Culture Collection") amplifiziert.

20

25

Für die Präparation von genomischer DNA aus einer Suspensionskultur von *Nostoc punctiforme ATCC 29133*, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in *BG 11*-Medium (1.5 g/l NaNO₃, 0.04 g/l K₂PO₄x3H₂O, 0.075 g/l MgSO₄xH₂O, 0.036 g/l CaCl₂x2H₂O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na₂CO₃, 1ml Trace Metal Mix "A5+Co" (2.86 g/l H₃BO₃, 1.81 g/l MnCl₂x4H₂O, 0.222 g/l ZnSO₄x7H₂O, 0.39 g/l Na-MoO₄X2H₂O, 0.079 g/l CuSO₄x5H₂O, 0.0494 g/l Co(NO₃)₂x6H₂O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.

30

35

Protokoll für die DNA-Isolation aus Nostoc punctiforme ATCC 29133:

Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris_HCl (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Vo-

lumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.

10

5

Die Nukleinsäure, kodierend eine Ketolase aus *Nostoc punctiforme ATCC 29133*, wurde mittels "polymerase chain reaction" (PCR) aus *Nostoc punctiforme ATCC 29133* unter Verwendung eines sense-spezifischen Primers (NP196-1, SEQ ID No. 54) und eines antisense-spezifischen Primers (NP196-2 SEQ ID No. 55) amplifiziert.

15

20

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war

- 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 25 0.2 mM NP196-1 (SEQ ID No. 54)
 - 0.2 mM NP196-2 (SEQ ID No. 55)
 - 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.

30

35

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten 35X 94°C 1 Minute 55°C 1 Minuten

20

25

30

35

72°C 3 Minuten

1X 72°C 10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 54 und SEQ ID No. 55 resultierte in einem 792 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NP196, SEQ ID No. 56). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNP196 erhalten.

Sequenzierung des Klons pNP196 mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 140.571-139.810 des Datenbankeintrages NZ_AABC01000196 identisch ist (inverse orientiert zum veröffentlichen Datenbankeintrag) mit der Ausnahme, daß G in Position 140.571 durch A ersetzt wurde, um ein Standard-Startkodon ATG zu erzeugen. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc punctiforme ATCC 29133.

Dieser Klon pNP196 wurde daher für die Klonierung in den Expressionsvektor pJIT117(Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

pJIT117 wurde modifiziert, indem der 35S-Terminator durch den OCS-Terminator (Octopine Synthase) des Ti-Plasmides pTi15955 von Agrobacterium tumefaciens (Datenbankeintrag X00493 von Position 12,541-12,350, Gielen et al. (1984) EMBO J. 3 835-846) ersetzt wurde.

Das DNA-Fragment, das die OCS-Terminatorregion beinhaltet, wurde mittels PCR unter Verwendung des Plasmides pHELLSGATE (Datenbankeintrag AJ311874, Wesley et al. (2001) Plant J. 27 581-590, nach Standardmethoden aus *E.coli* isoliert) sowie der Primer OCS-1 (SEQ ID No. 58) und OCS-2 (SEQ ID No. 59) hergestellt.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die die Octopin Synthase (OCS) Terminatorregion (SEQ ID No. 60) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten waren:

- 100 ng pHELLSGATE plasmid DNA
- 0.25 mM dNTPs
- 0.2 mM OCS-1 (SEQ ID No. 58)
- 0.2 mM OCS-2 (SEQ ID No. 59)
- 5 5 ul 10X PCR-Puffer (Stratagene)
 - 0.25 ul Pfu Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

10

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

15 1X 72°C 10 Minuten

Das 210 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pOCS erhalten.

Sequenzierung des Klons pOCS bestätigte eine Sequenz, die mit einem Sequenzabschnitt auf dem Ti-Plasmid pTi15955 von Agrobacterium tumefaciens (Datenbankeintrag X00493) von Position 12.541 bis 12.350 übereinstimmt.

Die Klonierung erfolgte durch Isolierung des 210 bp Sall-Xhol Fragmentes aus pOCS und Ligierung in den Sall-Xhol geschnittenen Vektor pJIT117.

Dieser Klon heisst pJO und wurde daher für die Klonierung in den Expressionsvektor pJONP196 verwendet.

Die Klonierung erfolgte durch Isolierung des 782 Bp Sphl-Fragmentes aus pNP196 und Ligierung in den Sphl geschnittenen Vektor pJO. Der Klon, der die NP196-Ketolase von *Nostoc punctiforme* in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJONP196.

Herstellung von Expressionsvektoren zur konstitutiven Expression der NP196-Ketolase aus Nostoc *punctiforme ATCC 29133* in *Lycopersicon esculentum* und *Tagetes erecta*.

Die Expression der NP196-Ketolase aus *Nostoc punctiforme* in *L. esculentum* und in *Tagetes erecta* erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin-NADPH- Oxidoreductase, Datenbankeintrag AB011474 Position 70127 bis 69493; WO03/006660), aus *Arabidopsis thaliana*. Das FNR-Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).

Das DNA Fragment, das die FNR Promotorregion aus *Arabidopsis thaliana* beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus *Arabidopsis thaliana* isoliert) sowie der Primer FNR-1 (SEQ ID No. 61) und FNR-2 (SEQ ID No. 62) hergestellt.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das FNR-Promotorfragment FNR (SEQ ID No. 63) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 100 ng genomischer DNA aus A.thaliana
- 0.25 mM dNTPs
- 0.2 mM FNR-1 (SEQ ID No. 61)
- 25 0.2 mM FNR-2 (SEQ ID No. 62)
 - 5 ul 10X PCR-Puffer (Stratagene)
 - 0.25 ul Pfu Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.
- 30 Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
 - 1X 94°C 2 Minuten
 - 35X 94°C 1 Minute

50°C 1 Minute

35 72°C 1 Minute

15

25

30

1X 72°C 10 Minuten

Das 652 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pFNR erhalten.

Sequenzierung des Klons pFNR bestätigte eine Sequenz, die mit einem Sequenzabschnitt auf Chromosom 5 von Arabidopsis thaliana (Datenbankeintrag AB011474) von Position 70127 bis 69493 übereinstimmt.

Dieser Klon heisst pFNR und wurde daher für die Klonierung in den Expressionsvektor pJONP196 (in Beispiel 6 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 644 bp Smal-HindIII Fragmentes aus pFNR und Ligierung in den Ecl136II-HindIII geschnittenen Vektor pJONP196. Der Klon, der den Promoter FNR anstelle des ursprünglichen Promoters d35S und das Fragment NP196 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOFNR:NP196.

Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der NP196-Ketolase aus *Nostoc* in *L. esculentum* erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP105 wurde das 1.839 bp EcoRI-Xhol Fragment aus pJOFNR:NP196 mit dem EcoRI-Xhol geschnittenen Vektor pSUN3 ligiert (Abbildung 7, Konstruktkarte). In der Abbildung 7 beinhaltet Fragment *FNR Promotor* den FNR Promotor (635 bp), Fragment *rbcS TP FRAGMENT* das rbcS Transitpeptid aus Erbse (194 bp), Fragment *NP196 KETO CDS* (761 bp), kodierend für die *Nostoc punctiforme* NP196-Ketolase , Fragment *OCS Terminator* (192 bp) das Polyadenylierungssignal von der Octopin- Synthase.

Die Herstellung einer Expressionskassette für die *Agrobacterium*-vermittelte Transformation des Expressionsvektor mit der NP196-Ketolase aus *Nostoc punctiforme* in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO 02/00900).

Zur Herstellung des Tagetes-Expressionsvektors MSP106 wurde das 1.839 bp EcoRl-Xhol Fragment aus pJOFNR:NP196 mit dem EcoRl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 8, Konstruktkarte). In der Abbildung 8 beinhaltet Fragment *FNR Promotor* den FNR Promotor (635 bp), Fragment *rbcS TP FRAGMENT* das rbcS Transit-peptid aus Erbse (194 bp), Fragment *NP196 KETO CDS* (761 bp), kodierend für die *Nostoc punctiforme* NP196-Ketolase , Fragment *OCS Terminator* (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Beispiel 8:

5

15

Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP196-Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta

Die Expression der NP196-Ketolase aus Nostoc *punctiforme* in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promoters EPSPS aus Petunia hybrida (Datenbankeintrag M37029: Nukleotidregion 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).

- Das DNA Fragment, das die EPSPS Promoterregion (SEQ ID No. 66) aus Petunia hybrida beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Petunia hybrida isoliert) sowie der Primer EPSPS-1 (SEQ ID No. 64) und EPSPS-2 (SEQ ID No. 65) hergestellt.
- 25 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das EPSPS-Promoterfragment (Datenbankeintrag M37029: Nukleotidregion 7-1787) beinhaltet, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:

- 100 ng genomischer DNA aus A.thaliana
- 0.25 mM dNTPs
- 0.2 mM EPSPS-1 (SEQ ID No. 64)
- 0.2 mM EPSPS-2 (SEQ ID No. 65)
- 35 5 ul 10X PCR-Puffer (Stratagene)
 - 0.25 ul Pfu Polymerase (Stratagene)

28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

5 1X 94°C 2 Minuten

10

35X 94°C 1 Minute

50°C 1 Minute

72°C 2 Minute

1X 72°C 10 Minuten

Das 1773 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pEPSPS erhalten.

Sequenzierung des Klons pEPSPS bestätigte eine Sequenz, die sich lediglich durch zwei Deletion (Basen ctaagtttcagga in Position 46-58 der Sequenz M37029; Basen aaaaatat in Position 1422-1429 der Sequenz M37029) und die Basenaustausche (T statt G in Position 1447 der Sequenz M37029; A statt C in Position 1525 der Sequenz M37029; A statt G in Position 1627 der Sequenz M37029) von der publizierten EPSPS-Sequenz (Datenbankeintrag M37029: Nukleotidregion 7-1787) unterscheidet. Die zwei Deletionen and die zwei Basenaustausche an den Positionen 1447 und 1627 der Sequenz M37029 wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Petunia hybrida Pflanzen.

Der Klon pEPSPS wurde daher für die Klonierung in den Expressionsvektor pJONP196 (in Beispiel 6 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 1763 Bp Sacl-HindIII Fragmentes aus pEPSPS und Ligierung in den Sacl-HindIII geschnittenen Vektor pJ0NP196. Der Klon, der den Promoter EPSPS anstelle des ursprünglichen Promoters d35S enthält, heisst pJ0ESP:NP196. Diese Expressionskassette enthält das Fragment NP196 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS-Transitpeptid.

Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transfor-35 mation der EPSPS-kontrollierten NP196-Ketolase aus Nostoc punctiforme ATCC

10

15

29133 in *L. esculentum* erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP107 wurde das 2.961 KB bp Sacl-Xhol Fragment aus pJOESP:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert (Abbildung 9, Konstruktkarte). In der Abbildung 9 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment *rbcS TP FRAGMENT* das rbcS Transitpeptid aus Erbse (194 bp), Fragment *NP196 KETO CDS* (761 bp), kodierend für die *Nostoc punctiforme* NP196-Ketolase, Fragment *OCS Terminator* (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP196-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP108 wurde das 2.961 KB bp Sacl-Xhol Fragment aus pJOESP:NP196 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 10, Konstruktkarte). In der Abbildung 10 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Beispiel 9:

25 Amplifikation einer DNA, die die gesamte Primärsequenz der NP195-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert

Die DNA, die für die NP195-Ketolase aus *Nostoc punctiforme ATCC 29133* kodiert, wurde mittels PCR aus *Nostoc punctiforme ATCC 29133* (Stamm der "American Type Culture Collection") amplifiziert. Die Präparation von genomischer DNA aus einer Suspensionskultur von *Nostoc punctiforme ATCC 29133* wurde in Beispiel 19 beschrieben.

Die Nukleinsäure, kodierend eine Ketolase aus *Nostoc punctiforme ATCC 29133*, wurde mittels "polymerase chain reaction" (PCR) aus *Nostoc punctiforme ATCC 29133* unter Verwendung eines sense-spezifischen Primers (NP195-1, SEQ ID No. 67) und eines antisense-spezifischen Primers (NP195-2 SEQ ID No. 68) amplifiziert.

30

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 10 0.2 mM NP195-1 (SEQ ID No. 67)
 - 0.2 mM NP195-2 (SEQ ID No. 68)
 - 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.

15

5

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

35X 94°C 1 Minute

20 55°C 1 Minuten

72°C 3 Minuten

1X 72°C 10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 67 und SEQ ID No. 68 resultierte in einem 819
Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NP195, SEQ ID No. 69). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNP195 erhalten.

Sequenzierung des Klons pNP195 mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 55,604-56,392 des Datenbankeintrages NZ_AABC010001965 identisch ist, mit der Ausnahme, daß T in Position 55.604 durch A ersetzt wurde, um ein Standard-Startkodon ATG zu erzeugen. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reprodu-

ziert und repräsentiert somit die Nukleotidsequenz im verwendeten *Nostoc punctiforme ATCC 29133*.

Dieser Klon pNP195 wurde daher für die Klonierung in den Expressionsvektor pJ0 (in Beispiel 6 beschrieben) verwendet. Die Klonierung erfolgte durch Isolierung des 809 Bp Sphl-Fragmentes aus pNP195 und Ligierung in den Sphl geschnittenen Vektor pJO. Der Klon, der die NP195-Ketolase von *Nostoc punctiforme* in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJONP195.

10

5

Beispiel 10:

Herstellung von Expressionsvektoren zur konstitutiven Expression der NP195-Ketolase aus *Nostoc punctiforme ATCC 29133* in *Lycopersicon esculentum* und *Tagetes erecta*.

Die Expression der NP195-Ketolase aus *Nostoc punctiforme* in *L. esculentum* und in *Tagetes erecta* erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin-NADPH-Oxidoreductase, Datenbankeintrag AB011474 Position 70127 bis 69493; WO03/006660), aus *Arabidopsis thaliana*. Das FNR-Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).

Der Klon pFNR (in Beispiel 7 beschrieben) wurde daher für die Klonierung in den Expressionsvektor pJONP195 (in Beispiel 10 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 644 bp Sma-HindIII Fragmentes aus pFNR und Ligierung in den Ecl136II-HindIII geschnittenen Vektor pJONP195. Der Klon, der den Promoter FNR anstelle des ursprünglichen Promoters d35S und das Fragment NP195 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOFNR:NP195.

30

Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der NP195-Ketolase aus *Nostoc punctiforme* in *L. esculentum* erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP109 wurde das 1.866 bp EcoRI-Xhol Fragment aus pJOFNR:NP195 mit dem EcoRI-Xhol geschnittenen Vektor pSUN3 li-

5 denylierungssignal von der Octopin- Synthase.

Die Herstellung einer Expressionskassette für die *Agrobacterium*-vermittelte Transformation des Expressionsvektor mit der NP195-Ketolase aus Nostoc punctiforme punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO 02/00900).

Zur Herstellung des Tagetes-Expressionsvektors MSP110 wurde das 1.866 bp EcoRl-Xhol Fragment aus pJOFNR:NP195 mit dem EcoRl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 12, Konstruktkarte). In der Abbildung 12 beinhaltet Fragment *FNR* Promotor den FNR Promotor (635 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP195 KETO CDS (789 bp), kodierend für die Nostoc punctiforme NP195-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

20 Beispiel 11:

10

Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NP195-Ketolase aus Nostoc punctiforme ATCC 29133 in Lycopersicon esculentum und Tagetes erecta.

Die Expression der NP195-Ketolase aus *Nostoc punctiforme* in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promoters EPSPS aus Petunia hybrida (Datenbankeintrag M37029: Nukleotidregion 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).

Der Klon pEPSPS (in Beispiel 8 beschrieben) wurde daher für die Klonierung in den Expressionsvektor pJONP195 (in Beispiel 10 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 1763 Bp SacI-HindIII Fragmentes aus pEPSPS und Ligierung in den SacI-HindIII geschnittenen Vektor pJ0NP195. Der Klon, der den Promoter EPSPS anstelle des ursprünglichen Promoters d35S enthält, heisst

pJOESP:NP195. Diese Expressionskassette enthält das Fragment NP195 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS-Transitpeptid.

Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP195-Ketolase aus Nostoc punctiforme ATCC 29133 in *L. esculentum* erfolgte unter der Verwendung des binären Vektors pSUN3 (WO 02/00900).

Zur Herstellung des Expressionsvektors MSP111 wurde das 2.988 KB bp SacI-Xhol
Fragment aus pJOESP:NP195 mit dem SacI-Xhol geschnittenen Vektor pSUN3 ligiert (Abbildung 13, Konstruktkarte). In der Abbildung 13 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP195 KETO CDS (789 bp), kodierend für die Nostoc punctiforme NP195-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NP195-Ketolase aus Nostoc punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pŞUN5 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP112 wurde das 2.988 KB bp Sacl-Xhol Fragment aus pJOESP:NP195 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 14, Konstruktkarte). In der Abbildung 14 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment *rbcS TP FRAGMENT* das rbcS Transitpeptid aus Erbse (194 bp), Fragment *NP195 KETO CDS* (789 bp), kodierend für die *Nostoc punctiforme* NP195-Ketolase, Fragment *OCS Terminator* (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Beispiel 12:

30 Amplifikation einer DNA, die die gesamte Primärsequenz der NODK-Ketolase aus Nodularia spumignea NSOR10 codiert.

Die DNA, die für die Ketolase aus *Nodularia spumignea NSOR10* kodiert, wurde mittels PCR aus *Nodularia spumignea NSOR10* amplifiziert.

20

Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nodularia spumignea NSOR10, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11-Medium (1.5 g/l NaNO₃, 0.04 g/l K₂PO₄x3H₂O, 0.075 g/l MgSO₄xH₂O, 0.036 g/l CaCl₂x2H₂O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na₂CO₃, 1ml Trace Metal Mix "A5+Co" (2.86 g/l H_3BO_3 , 1.81 g/l MnCl₂x4 H_2 o, 0.222 g/l ZnSO₄x7 H_2 0, 0.39 g/l NaMoO₄X2 H_2 o, 0.079 g/l CuSO₄x5H₂O, 0.0494 g/I Co(NO₃)₂x6H₂O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.

Protokoll für die DNA-Isolation aus Nodularia spumignea NSOR10: 10

Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris_HCI (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 µl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 µl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zu-20 gabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 µl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.

25

15

Die Nukleinsäure, kodierend eine Ketolase aus Nodularia spumignea NSOR10, wurde mittels "polymerase chain reaction" (PCR) aus Nodularia spumignea NSOR10 unter Verwendung eines sense-spezifischen Primers (NODK-1, SEQ ID No. 71) und eines antisense-spezifischen Primers (NODK-2 SEQ ID No. 72) amplifiziert.

30

35

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 1 ul einer Nodularia spumignea NSOR10 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM NODK-1 (SEQ ID No. 71)
- 5 0.2 mM NODK-2 (SEQ ID No. 72)
 - 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.
- 10 Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:
 - 1X 94°C 2 Minuten
 - 35X 94°C 1 Minute

55°C 1 Minuten

15 72°C 3 Minuten

1X 72°C 10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 71 und SEQ ID No. 72 resultierte in einem 720 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NODK, SEQ ID No. 73). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNODK erhalten.

Sequenzierung des Klons pNODK mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 2130-2819 des Datenbank-eintrages AY210783 identisch ist (inverse orientiert zum veröffentlichen Datenbankeintrag). Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten *Nodularia spumignea NSOR10*.

30

20

25

Dieser Klon pNODK wurde daher für die Klonierung in den Expressionsvektor pJ0 (in Beispiel 6 beschrieben) verwendet. Die Klonierung erfolgte durch Isolierung des 710 Bp SphI-Fragmentes aus pNODK und Ligierung in den SphI geschnittenen Vektor pJO. Der Klon, der die NODK-Ketolase von *Nodularia spumignea* in der korrekten Orientie-

Beispiel 13:

15

pJONODK.

Herstellung von Expressionsvektoren zur konstitutiven Expression der NODK-Ketolase 5 aus Nodularia spumignea NSOR10 in Lycopersicon esculentum und Tagetes erecta.

Die Expression der NODK-Ketolase aus Nodularia spumignea NSOR10 in L. esculentum und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin-NADPH- Oxidoreductase, Datenbankeintrag AB011474 Position 70127 bis 10 69493; WO03/006660), aus Arabidopsis thaliana. Das FNR-Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).

Der Klon pFNR (in Beispiel 7 beschrieben) wurde daher für die Klonierung in den Expressionsvektor pJONODK (in Beispiel 12 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 644 bp Sma-HindIII Fragmentes aus pFNR und Ligierung in den Ecl136II-HindIII geschnittenen Vektor pJONODK. Der Klon, 20 der den Promoter FNR anstelle des ursprünglichen Promoters d35S und das Fragment NODK in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOFNR:NODK.

Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transfor-25 mation der NODK-Ketolase aus Nodularia spumignea NSOR10 in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP113 wurde das 1.767 bp EcoRI-Xhol Fragment aus pJOFNR:NODK mit dem EcoRI-Xhol geschnittenen Vektor pSUN3 ligiert 30 (Abbildung 15, Konstruktkarte). In der Abbildung 15 beinhaltet Fragment FNR Promotor den FNR Promotor (635 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NODK KETO CDS (690 bp), kodierend für die Nodularia spumignea NSOR10 NODK-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von der Octopin-Synthase.

Die Herstellung einer Expressionskassette für die *Agrobacterium*-vermittelte Transformation des Expressionsvektor mit der NODK-Ketolase aus *Nodularia spumignea NSOR10* punctiforme in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

5

10

Zur Herstellung des Tagetes-Expressionsvektors MSP114 wurde das 1.767 bp EcoRl-Xhol Fragment aus pJOFNR:NODK mit dem EcoRl-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 16, Konstruktkarte). In der Abbildung 16 beinhaltet Fragment *FNR Promotor* den FNR Promotor (635 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NODK KETO CDS (690 bp), kodierend für die *Nodularia spumignea NSOR10* NODK-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Beispiel 14:

Herstellung von Expressionsvektoren zur blütenspezifischen Expression der NODK-Ketolase aus *Nodularia spumignea NSOR10* in *Lycopersicon esculentum* und *Tagetes erecta*.

Die Expression der NODK-Ketolase aus *Nodularia spumignea NSOR10* in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des blütenspezifischen Promoters EPSPS aus Petunia hybrida (Datenbankeintrag M37029: Nukleotidregion 7-1787; Benfey et al. (1990) Plant Cell 2: 849-856).

Der Klon pEPSPS (in Beispiel 8 beschrieben) wurde daher für die Klonierung in den Expressionsvektor pJONODK (in Beispiel 12 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 1763 Bp Sacl-HindIII Fragmentes aus pEPSPS und Ligierung in den Sacl-HindIII geschnittenen Vektor pJ0NODK. Der Klon, der den Promoter EPSPS anstelle des ursprünglichen Promoters d35S enthält, heisst pJ0ESP:NODK. Diese Expressionskassette enthält das Fragment NODK in der korrekten Orientierung als N-terminale Fusion mit dem rbcS-Transitpeptid.

Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transfor-35 mation der EPSPS-kontrollierten NODK-Ketolase aus *Nodularia spumignea NSOR10*

in *L. esculentum* erfolgte unter der Verwendung des binären Vektors pSUN3 (WO 02/00900).

Zur Herstellung des Expressionsvektors MSP115 wurde das 2.889 KB bp SacI-Xhol
Fragment aus pJOESP:NODK mit dem SacI-Xhol geschnittenen Vektor pSUN3 ligiert (Abbildung 17, Konstruktkarte). In der Abbildung 17 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NODK KETO CDS (690 bp), kodierend für die Nodularia spumignea NSOR10 NODK-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der EPSPS-kontrollierten NODK-Ketolase aus *Nodularia spumignea NSOR10* in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP116 wurde das 2.889 KB bp SacI-Xhol Fragment aus pJOESP:NODK mit dem SacI-Xhol geschnittenen Vektor pSUN5 ligiert (Abbildung 18, Konstruktkarte). In der Abbildung 18 beinhaltet Fragment EPSPS den EPSPS Promoter (1761 bp), Fragment *rbcS TP FRAGMENT* das rbcS Transitpeptid aus Erbse (194 bp), Fragment *NODK KETO CDS* (690 bp), kodierend für die *Nodularia spumignea NSOR10* NODK-Ketolase, Fragment *OCS Terminator* (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

25 Beispiel 15:

15

20

30

35

Herstellung transgener Lycopersicon esculentum Pflanzen

Transformation und Regeneration von Tomatenpflanzen erfolgte nach der publizierten Methode von Ling und Mitarbeitern (Plant Cell Reports (1998), 17:843-847). Für die Varietät Microtom wurde mit höherer Kanamycin-Konzentration (100mg/L) selektioniert.

Als Ausgangsexplantat für die Transformation dienten Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wurde das Kulturmedium nach Murashige und Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) mit 2% Saccharose, pH 6,.1 verwendet. Die Keimung fand bei 21°C bei wenig Licht (20 - 100 μE) statt. Nach sieben bis zehn Tagen wurden die Kotyledonen

10

15

quer geteilt und die Hypokotyle in ca. 5 - 10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1, 3% Saccharose + 1 mg/l BAP, 0,1 mg/l NAA) gelegt, das am Vortag mit suspensionskultivierten Tomatenzellen beschickt wurde. Die Tomatenzellen wurden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgte für drei bis fünf Tage. Zellen des Stammes Agrobakterium tumefaciens LBA4404 wurden einzeln mit den Plasmiden pS3FNR:NOST,pS3AP3:NOST, pS3FNR:NP196, pS3EPS:NP196, pS3FNR:NP195, pS3EPS:NP195, pS3FNR:NODK und pS3EPS:NODK transformiert. Von den einzelnen mit den Binärvektoren pS3FNR:NP195, pS3EPS:NP196, pS3FNR:NP196, pS3EPS:NP196, pS3FNR:NP195, pS3EPS:NP196, pS3FNR:NP196, pS3EPS:NP196, pS3FNR:NP195, pS3EPS:NP195, pS3FNR:NODK und pS3EPS:NODK transformierten Agrobakterium-Stämmen wurde ieweils eine Über-

pS3EPS:NODK transformierten Agrobakterium-Stämmen wurde jeweils eine Übernachtkultur in YEB Medium mit Kanamycin (20 mg/l) bei 28 °C kultiviert und die Zellen zentrifugiert. Das Bakterienpellet wurde mit flüssigem MS Medium (3% Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate wurden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend wurden die Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21°C)

auf ihr Vorkulturmedium zurück gelegt.

Nach der Co-kultur wurden die Explantate auf MSZ2 Medium (MS pH 6,1 + 3% Saccharose, 2 mg/l Zeatin, 100 mg/l Kanamycin, 160 mg/l Timentin) transferiert und für die selektive Regeneration bei 21°C unter Schwachlicht Bedingungen (20 - 100 μE, Lichtrhythmus 16h/8h) aufbewahrt. Aller zwei bis drei Wochen erfolgte der Transfer der Explantate bis sich Sprosse bilden. Kleine Sprosse konnten vom Explantat abgetrennt werden und auf MS (pH 6,1 + 3% Saccharose) 160 mg/l Timentin, 30 mg/l Kanamycin, 0,1 mg/l IAA bewurzelt werden. Bewurzelte Pflanzen wurden ins Gewächshaus überführt.

Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Expressionskonstrukten folgende Linien erhalten:

Mit pS3FNR:NOST wurde erhalten: MSP101-1, MSP101-2, MSP101-3

Mit pS3AP3:NOST wurde erhalten: MSP103-1, MSP103-2, MSP103-3

Mit pS3FNR:NP196 wurde erhalten: MSP105-1, MSP105-2, MSP105-3

Mit pS3EPS:NP196 wurde erhalten: MSP107-1, MSP107-2, MSP107-3

5 Mit pS3FNR:NP195 wurde erhalten: MSP109-1, MSP109-2, MSP109-3

Mit pS3EPS:NP195 wurde erhalten: MSP111-1, MSP111-2, MSP111-3

Mit pS3FNR:NODK wurde erhalten: MSP113-1, MSP113-2, MSP113-3

Mit pS3EPS:NODK wurde erhalten: MSP115-1, MSP115-2, MSP115-3

Beispiel 16:

Herstellung transgener Tagetes Pflanzen

15

10

Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 15(1962), 473-497) pH 5,8, 2% Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18-28°C/20-200 μΕ/3 - 16 Wochen, bevorzugt jedoch bei 21°C, 20-70 μΕ, für 4-8 Wochen.

20

Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 - 60 mm² werden im Verlaufe der Präparation in flüssigem MS - Medium bei Raumtemperatur für maximal 2 h aufbewahrt.

25

30

35

Ein beliebiger Agrobakterium tumefaciens Stamm, bevorzugt aber ein supervirulenter Stamm, wie z.B. EHA105 mit einem entsprechenden Binärplasmid, das ein Selektionsmarkergen (bevorzugt *bar* oder *pat*) sowie ein oder mehrere Trait- oder Reportergene tragen kann wird (pS5FNR:NOST,pS5AP3:NOST pS5FNR:NP196, pS5EPS:NP196, pS5FNR:NP195, pS5EPS:NP195, pS5FNR:NODK und pS5EPS:NODK), über Nacht angezogen und für die Co-Kultivierung mit dem Blattmaterial verwendet. Die Anzucht des Bakterienstammes kann wie folgt erfolgen: Eine Einzelkolonie des entsprechenden Stammes wird in YEB (0,1 % Hefeextrakt, 0,5 % Rindfleischextrakt, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H₂0) mit 25 mg/l Kanamycin angeimpft und bei 28°C für 16 bis 20 h angezogen. Anschließend wird die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und

derart in flüssigem MS Medium resuspendiert, daß eine OD₆₀₀ von ca. 0,1 bis 0,8 entstand. Diese Suspension wird fuer die C-Kultivierung mit dem Blattmaterial verwendet.

Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blätt-5 chen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/l Benzylaminopurin (BAP) sowie 1 mg/l Indolylessigsäure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die 10 Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30 - 80 μMol/m² x sec, Temperatur: 22 – 24°C, hell/dunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zu-15 sätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l selektiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfah-20 rens sind denkbar.

Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sproßknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA₃, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.

Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:

Bevor die Explantate mit den Bakterien infiziert werden, können sie für 1 bis 12 Tage, bevorzugt 3 - 4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert

- Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt werden. Dadurch wird die Kontrolle des Agrobakterienwachstums verbessert.
 - Die Zugabe von $AgNO_3$ (3 10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.
- 10 Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus.
 - Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.
 - Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Expressionskonstrukten folgende Linien erhalten:
- 20 Mit pS5FNR:NOST wurde beispielsweise erhalten: MSP102-1, MSP102-2, MSP102-3,
 - Mit pS5AP3:NOST wurde beispielsweise erhalten: MSP104-1, MSP104-2, MSP104-3
 - Mit pS5FNR:NP196 wurde erhalten: MSP106-1, MSP106-2, MSP106-3
 - Mit pS5EPS:NP196 wurde erhalten: MSP108-1, MSP108-2, MSP108-3
 - Mit pS5FNR:NP195 wurde erhalten: MSP110-1, MSP110-2, MSP110-3
- 30 Mit pS5EPS:NP195 wurde erhalten: MSP112-1, MSP112-2, MSP112-3
 - Mit pS5FNR:NODK wurde erhalten: MSP114-1, MSP114-2, MSP114-3
 - Mit pS5EPS:NODK wurde erhalten: MSP116-1, MSP116-2, MSP116-3

Beispiel 17

Charakterisierung der transgenen Pflanzenblüten

Beispiel 9.1

5 Trennung von Carotinoidestern in Blütenblättern transgener Pflanzen

Allgemeine Arbeitsvorschrift:

Die Blütenblätter der transgenen Pflanzen werden in flüssigem Stickstoff gemörsert und das Petalenpulver (etwa 40 mg) mit 100% Aceton extrahiert (dreimal je 500 ul).

Das Lösungsmittel wird evaporiert und die Carotinoide in 100-200 ul Petrolether/Aceton (5:1, v/v) resuspendiert.

Die Carotinoide werden in konzentrierter Form mittels Dünnschicht-Chromatographie (TLC) auf Silica60 F254- Platten (Merck) in einem organischen Laufmittel (Petrolether/Aceton; 5:1) entsprechend ihrer Phobizität aufgetrennt. Gelbe (Xanthophyllester), rote (Ketocarotinoidester) und orange Banden (Mischung aus Xanthophyll- und Ketocarotinoidestern)auf der TLC werden ausgekratzt.

Die an Silica gebundenen Carotinoide werden dreimal mit 500 ul Aceton eluiert, das Lösungsmittel evaporiert und die Carotinoide mittels HPLC aufgetrennt und identifiziert.

Mittels einer C30-reverse phase-Säule kann zwischen Mono- und Diestern der Carotinoide unterschieden werden. HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al.(2000), Plant Journal 24(4): 551-558). Folgende Verfahrensbedingungen wurden eingestellt.

Trennsäule: Prontosil C30-Säule, 250 x 4,6 mm, (Bischoff, Leonberg)

Flussrate: 1.0 ml/min

30 Eluenten: Laufmittel A - 100% Methanol

Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat

Laufmittel C - 100% t-Butyl-methylether

Gradientprofil:

Zeit	Flussrate	% Laufmittel A	% Laufmittel B	% Laufmittel C
12.0	1.0	95.0	5.0	0
12.1	1.0	80.0	5.0	15.0
22.0	1.0	76.0	5.0	19.0
22.0	1.0	66.5	5.0	28.5
38.0	1.0	15.0	5.0	80.0
45.0	1.0	95.0	5.0	0
46.0	1.0	95.0	5.0	0
46.1	1.0	95.0	5.0	0

Detektion: 300 - 500 nm

5 Eine Identifizierung der Carotinoide ist aufgrund der UV-VIS-Spektren möglich.

Petalenmaterial der transgenen Tomatenpflanzen wird gemörsert und mit Aceton extrahiert. Extrahierte Carotinoide werden mittels TLC aufgetrennt. In den Linien können Mono- und Diester von Ketocarotinoiden detektiert werden; die Monoester sind in deutlich geringerer Konzentration als die Diester vorhanden.

Beispiel 18 Enzymatische Hydrolyse von Carotinoidestern und Identifizierung der Carotinoide

15 Allgemeine Arbeitsvorschrift

Gemörsertes Petalenmaterial (30-100 mg Frischgewicht) wird mit 100% Aceton (dreimal 500ul; jeweils etwa 15 Minuten schütteln) extrahiert. Das Lösungsmittel wird evaporiert. Carotinoide werden anschließend in 495 ul Aceton aufgenommen, 4,95 ml Kalium-phosphatpuffer (100 mM, pH7.4) zugegeben und gut gemischt. Danach erfolgt die Zugabe von ca. 17 mg Bile-Salze (Sigma) und 149 μl einer NaCl/CaCl2-Lösung (3M NaCl und 75 mM CaCl2). Die Suspension wird für 30 Minuten bei 37C inkubiert. Für die enzymatische Hydrolyse der Carotinoidester wird 595 μl einer Lipaselösung (50 mg/ml Lipase Typ7 von Candida rugosa(Sigma)) zugegeben und unter Schütteln bei 37C inkubiert. Nach etwa 21 Stunden erfolgte nochmals eine Zugabe von 595 μl Lipase mit erneuter Inkubation von mindestens 5 Stunden bei 37C. Anschließend werden

10

20

etwa ca. 700 mg Na2SO4x10H20 in der Lösung gelöst. Nach Zugabe von 1800 µl Petrolether werden die Carotinoide durch kräftig Mischen in die organische Phase extrahiert. Dieses Ausschütteln wird solange wiederholt, bis die organische Phase frablos bleibt. Die Petroletherfraktionen werden vereinigt und der Petrolether evaporiert. Freie Carotinoide werden in 100-120 ul Aceton aufgenommen. Mittels HPLC und C30-reverse phase-Säule können freie Carotinoide aufgrund von Retentionszeit und UV-VIS-Spektren identifiziert werden.

10

15

20

25

Patentansprüche

- 1. Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen, die im Vergleich zum Wildtyp eine veränderte Ketolasese-Aktivität aufweisen, und die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Organismen verwendet, die als Wildtyp bereits eine Ketolase-Aktivität aufweisen, und die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp bewirkt.
 - 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man zur Erhöhung der Ketolase-Aktivität die Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp erhöht.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression Nukleinsäuren in den Organismus einbringt, die Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Organismen verwendet, die als Wildtyp keine Ketolase-Aktivität aufweisen und die genetische Veränderung eine Ketolase-Aktivität im Vergleich zum Wildtyp verursacht.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man genetisch veränderte Organismen verwendet, die transgen eine Ketolase, enthaltend die Ami-

Fig/Seq

nosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, exprimieren.

5

10

- 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass man zur Verursachung der Genexpression Nukleinsäuren in die Organismen einbringt, die
 Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder
 eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 8. Verfahren nach Anspruch 5 oder 7, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 1 einbringt.
- 15
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Organismen zusätzlich gegenüber dem Wildtyp eine erhöhte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe Hydroxylase-Aktivität und β-Cyclase-Aktivität, aufweisen.
- 20

25

30

- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung mindestens einer der Aktivitäten, die Genexpression mindestens einer Nukleinsäure ausgewählt aus der Gruppe Nukleinsäuren, kodierend eine Hydroxylase, und Nukleinsäuren, kodierend eine β-Cyclase, gegenüber dem Wildtyp erhöht.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression mindestens eine Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine Hydroxylase und Nukleinsäuren kodierend eine β-Cyclase in den Organismus einbringt.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine Hydroxylase, Nukleinsäuren einbringt, die eine Hydroxylase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren

20

abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 16 aufweist.

- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 15 einbringt.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine β-Cyclase, Nukleinsäuren einbringt, die eine β-Cyclase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 18 aufweist.
- Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass
 man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 17 einbringt.
 - 16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnef, dass man nach dem Kultivieren die genetisch veränderten Organismen erntet und anschließend die Ketocarotinoide aus den Organismen isoliert.
 - 17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet daß man als Organismus einen Organismus verwendet, der als Ausgangsorganismus natürlicherweise oder durch genetische Komplementierung oder Umregulierung von Stoffwecheselwegen in der Lage ist, Carotinoide herzustellen.
- 18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß man als Organismen Mikroorganismen oder Pflanzen verwendet.
- Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man als Mikroorganismen Bakterien, Hefen, Algen oder Pilze verwendet.
 - 20. Verfahren nach Anspruch 19, dadurchgekennzeichnet, daß die Mikroorganismen ausgwählt sind aus der *Gruppe Escherichia*, *Erwinia*, *Agrobacterium*, *Flavobacterium*, *Alcaligenes*, *Paracoccus*, *Nostoc*, Cyanobakterien der Gattung *Synechocystis*, *Candida*, *Saccharomyces*, *Hansenula*, *Phaffia*, *Pichia*, *Aspergillus*, *Tri-*

choderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haemato-coccus, Phaedactylum tricornatum, Volvox oder Dunaliella.

- Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man als Organis-mus Pflanzen verwendet.
 - 22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae verwendet.
- Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass man als Pflanze 23. 15 eine Pflanze, ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astrágalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, 20 Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, 25 Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet.
- 24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Ketocarotinoide ausgewählt sind aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.

15

- 25. Genetisch veränderter Organismus, wobei die genetische Veränderung die Aktivität einer Ketolase
- A für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp erhöht und

B für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivitätaufweist, gegenüber dem Wildtyp verursacht

- und die nach A erhöhte oder nach B verursachte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 26. Genetisch veränderter Organismus nach Anspruch 25, dadurch gekennzeichnet, dass die Erhöhung oder Verursachung der Ketolase–Aktivität durch einé Erhöhung oder Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp bewirkt wird.
- 27. Genetisch veränderter Organismuse nach Anspruch 26, dadurch gekennzeichnet, dass man zur Erhöhung oder Verursachung der Genexpression Nukleinsäuren in den Organismus einbringt, die Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
 - 28. Genetisch veränderter Organismus, enthaltend mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion

von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

- 29. Genetisch veränderter Organismus, enthaltend mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 30. Genetisch veränderter Organismus nach einem der Ansprüche 25 bis 29, dadurch gekennzeichnet, dass die genetische Veränderung zusätzlich mindestens eine der Aktivitäten, ausgewählt aus der Gruppe Hydroxlase-Aktivität und β-Cyclase-Aktivität gegenüber dem Wildtypp erhöht.
- 15 31. Genetisch veränderter Organismus nach einem der Ansprüche 25 bis 30, dadurch gekennzeichnet daß er als Ausgangsorganismus natürlicherweise oder durch genetische Komplementierung in der Lage ist, Carotinoide herzustellen.
- 32. Genetisch veränderter Organismus nach einem der Ansprüche 25 bis 31, ausgewählt aus der Gruppe Mikroorganismen oder Pflanzen.
 - 33. Genetisch veränderter Mikroorganismus nach Anspruch 32, dadurch gekennzeichnet, daß die Mikroorganismen ausgewählt sind aus der Gruppe Bakterien, Hefen, Algen oder Pilze.
 - 34. Genetisch veränderter Mikroorganismus nach Anspruch 33, dadurch gekennzeichnet, daß die Mikroorganismen ausgwählt sind aus der Gruppe Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cyanobakterien der Gattung Synechocystis, Candida, Saccharomyces, Hansenula, Pichia, Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella.
 - 35. Genetisch veränderte Pflanze nach Anspruch 32, dadurch gekennzeichnet, dass die Pflanzen ausgewählt sind aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Bras-

25

30

siceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae verwendet.

5

10

15

36.

Genetisch veränderte Pflanze nach Anspruch 35, dadurch gekennzeichnet, dass Pflanzen ausgewählt sind aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet.

20

Verwendung der genetisch veränderten Organismen nach einem der Ansprüche25 bis 36 als Futter- oder Nahrungsmittel.

25

38. Verwendung der genetisch veränderten Organismen nach einem der Ansprüche 25 bis 36 zur Herstellung von Ketocarotinoid-haltigen Extrakten oder zur Herstellung von Futter– und Nahrungsergänzungsmittel.

30

39.

- Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 8 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 4 nicht enthalten ist.
- 40. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abge-

leitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 aufweist.

- 41. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 6 nicht enthalten ist.
- 10 42. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 49 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren. abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 49 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 47 nicht enthalten ist.
 - 43. Nukleinsäure, kodierend ein Protein gemäß einem der Ansprüche 39 bis 42, mit der Maßgabe, dass die Sequenz SEQ ID NO: 5 nicht enthalten ist.
- verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 4.
 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von
 Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70 % auf
 Aminosäureebene mit der Sequenz SEQ. ID. NO. 4 und die Eigenschaft einer
 Ketolase aufweist, als Ketolase.
- 25 45. Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 65 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 und die Eigenschaft einer Ketolase aufweist, als Ketolase.
- Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO.
 47 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 47 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

2/18

Abbildung 5

SEQUENCE LISTING

5	5	<110>	5	SunGe	ene (SmbH	& Cc	ь. ко	SaA										
· . 10)	<120> derte	Ve n Or	erfal rgan	nren ismen	zur	Hers	stell	lung	von	Keto	carc	tino	iden	in	gene	tiscl	n ver	än-
15	5	<130>	20	020	636	-	•									· .			
,		<160>	74	4															
20)	<170>	Pa	aten	tIn '	vers	ion :	3.1											
25	5	<210>	1															•	
		<211>	7	77															
30	0	<212>	D	AN															
		<213>	N	osto	c sp	. St	rain	PCC	7120										
3	5	<220>	>											. •	ı				
		<221>	> C	DS															
4	0	<222>	> (1)	(777)													
		<223>	>																
4	5	<400 atg 9 Met N			tgt Cys	caa Gln 5	cca Pro	tca Ser	tct Ser	ctg Leu	cat His 10	tca Ser	gaa Glu	aaa Lys	ctg Leu	gtg Val 15	tta Leu		48
5	5 0	ttg (tca Ser	tcg Ser	aca Thr 20	atc Ile	aga Arg	gat Asp	gat Asp	aaa Lys 25	aat Asn	att Ile	aat Asn	aag Lys	ggt Gly 30	ata Ile	ttt Phe		96
5	55	att (gcc Ala	tgc Cys 35	ttt Phe	atc Ile	tta Leu	ttt Phe	tta Leu 40	tgg Trp	gca Ala	att Ile	agt Ser	tta Leu 45	atc Ile	tta Leu	tta Leu		144
6	60	ctc Leu	tca Ser 50	ata Ile	gat Asp	aca Thr	tcc Ser	ata Ile .55	att Ile	cat His	aag Lys	agc Ser	tta Leu 60	tta Leu	ggt Gly	ata Ile	gcc Ala		192
6	3 5	atg Met 65	ctt Leu	tgg Trp	cag Gln	acc Thr	ttc Phe 70	tta Leu	tat Tyr	aca Thr	ggt Gly	tta Leu 75	ttt Phe	att	act Thr	gct Ala	cat His 80	•	240
17	70	gat Asp	gcc Ala	atg Met	cac His	ggc Gly 85	gta Val	gtt Val	tat Tyr	ccc Pro	aaa Lys 90	aat Asn	ccc Pro	aga Arg	ata Ile	aat Asn 95	aat Asn		288

									2/73)		
	ttt Phe	ata Ile	ggt Gly	aag Lys 100	ctc Leu	act Thr	cta Leu	atc Ile	tťg Leu 105	tat Tyr	gga Gly	cta Leu	ctc Leu	cct Pro 110	tat Tyr	aaa Lys	336
5	gat Asp	tta Leu	ttg Leu 115	aaa Lys	aaa Lys	cat His	tgg Trp	tta Leu 120	cac His	cac His	gga Gly	cat His	cct Pro 125	ggt Gly	act Thr	gat Asp	384
10	tta Leu	gac Asp 130	cct Pro	gat Asp	tat Tyr	tac Tyr	aat Asn 135	ggt Gly	cat His	ccc Pro	caa Gln	aac Asn 140	ttc Phe	ttt Phe	ctt Leu	tgg Trp	432
15	Tyr 145	Leu	His	ttt Phe	Met	Lys 150	Ser	Tyr	Trp	Arg	155	ınr	Gin	116	Pne	160	.480
	tta Leu	gtg Val	atg Met	att Ile	ttt Phe 165	cat His	gga Gly	ctt Leu	aaa Lys	aat Asn 170	ctg Leu	gtg Val	cat His	ata Ile	cca Pro 175	gaa Glu	528
20 .	aat Asn	aat Asn	tta Leu	att Ile 180	ata Ile	ttt Phe	tgg Trp	atg Met	ata Ile 185	cct Pro	tct Ser	att Ile	tta Leu	agt Ser 190	tca Ser	gta Val	576 -
25	caa Gln	cta Leu	ttt Phe 195	tat Tyr	ttt Phe	ggt Gly	aca Thr	ttt Phe 200	ttg Leu	cct Pro	cat His	aaa Lys	aag Lys 205	cta Leu	gaa Glu	ggt Gly	624
30	ggt Gly	tat Tyr 210	Thr	aac Asn	ccc Pro	cat His	tgt Cys 215	gcg Ala	cgc Arg	agt Ser	atc Ile	cca Pro 220	ьeu	cct Pro	ctt Leu	ttt Phe	672
35	tgg Trp 225	tct Ser	ttt Phe	gtt Val	act Thr	tgt Cys 230	tat Tyr	cac His	ttc Phe	ggc	tac Tyr 235	HIS	aag Lys	gaa Glu	cat His	cac His 240	720
	gaa 'Glu	tac Tyr	cct Pro	caa Gln	ctt Leu 245	cct Pro	tgg Trp	tgg Trp	aaa Lys	tta Leu 250	Pro	gaa Glu	gct Ala	tac His	aaa Lys 255	ata : Ile	768
40		tta Leu		•													777
45	<21	0>	2														
	<21	1>	258														
50	<21	2>	PRT														
	<21	3> .	Nost	oc s	p. S	trai	n PC	c712	0								
55	<40	0>	2														
60	Met 1	. Val	Gln	Cys	Gln 5	Pro	Ser	Ser	Lev	His	s Se:	r Gl	ı Ly	s Le	u Va 15	l Leu	
	Ļev	Ser	Ser	Thr 20	lle	Arç	Asp) Asp	25	s Ası	n Il	e As	n Ly	s Gl; 30	A 1J	e Phe	:
65	Ile	e Ala	Cys 35	: Phe	lle	e Lev	ı Phe	e Let 40	ı Tr	p Ala	a Il	e Se	r Le 45	u Il	e Le	u Lev	1
70	Leu	ı Ser	: Ile	e Asp	Thr	Sei	: Ile	e Ile	e Hi	s Ly	s Se	r Le	u Le	u Gl	y 11	e Ala	ì

60

55

3/73

5	Met 65	Leu	Trp	Gln	Thr	Phe 70	Leu	Туг	Thr	Gly	Leu 75	Phe	Ile	Thr	Ala	His 80
10	Asp	Ala	Met	His	Gly 85	Val	Val	Tyr	Pro	Lys 90	Asn	Pro	Arg	Ile	Asn 95	Asn
10	Phe	Ile	Gly	Lys 100	Leu	Thr	Leu	Ile	Leu 105	Tyr	Gly	Leu	Leu	Pro 110	Tyr	Lys
15	Asp	Leu	Leu 115	Lys	Lys	His	Trp	Leu 120	His	His	Gly	His	Pro 125	Gly	Thṛ	Asp
20	Leu	Asp 130	Pro	Asp	Tyr	Tyr	Asn 135	Gly	His	Pro	Gln	Asn 140	Phe	Phe	Leu	Trp
25	Tyr 145	Leu	His	Phe	Met	Lys 150	Ser	Tyr	Trp	Arg	Trp 155	Thr	Gln	Ile	Phe	Gly 160
30	Leu	Val	Met	Ile	Phe 165	His	Gly	Leu	Lys	Asn 170	Leu	Val	His	Ile	Pro 175	Glu
35	Asn	Asn	Leu	Ile 180	Ile	Phe	Trp	Met	Ile 185	Pro	Ser	Ile	Leu	Ser 190	Ser	Val
	Gln	Leu	Phe 195	Tyr	Pḥe	Gly	Thr	Phe 200	Leu	Pro	His	Lys	Lys 205	Leu	Glu	Gly
40	Gly	Туг 210	Thr	Asn	Pro	His	Cys 215	Ala	Arg	Ser	Ile	Pro 220	Leu	Pro	Leu	Phe
45	Trp 225	Ser	Phe	Val	Thr	Cys 230	Tyr	His	Phe	Gly	Tyr 235	His	Lys	Glu	His	His 240
50	Glu	Tyr	Pro	Gln	Leu 245	Pro	Trp	Trp	Lys	Leu 250	Pro	Glu	Ala	His	Lys 255	Ile
	Ser	Leu														
55		_	_												•	
		0>														
60		1>														
		2>														
65	<21	3>	Nost	oc p	unct	icor	me									
	<22	0>														
70	<22	1>	CDS													

<222> (1)..(789)

<223>

•																		
10	tta)> 3 aat Asn	ttt	tgt Cys	gat Asp 5	aaa Lys	cca Pro	gtt Val	agc Ser	tat Tyr 10	tat Tyr	gtt Val	gca Ala	ata Ile	gag Glu 15	caa Gln		·48
4.5	tta Leu	agt Ser	gct Ala	aaa Lys 20	gaa Glu	gat Asp	act Thr	gtt Val	tgg Trp 25	Gly ggg	ctg Leu	gtg Val	att Ile	gtc Val 30	ata Ile	gta Val		96
15	att Ile	att Ile	agt Ser 35	ctt Leu	tgg Trp	gta Val	gct Ala	agt Ser 40	ttg Leu	gct Ala	ttt Phe	tta Leu	cta Leu 45	gct Ala	att Ile	aat Asn		144
20	tat Tyr	gcc Ala 50	aaa Lys	gtc Val	cca Pro	att Ile	tgg Trp 55	ttg Leu	ata Ile	cct Pro	att Ile	gca Ala 60	ata Ile	gtt Val	tgg Trp	caa Gln		192
25	atg Met 65	ttc Phe	ctt Leu	tat Tyr	aca Thr	ggg Gly 70	cta Leu	ttt Phe	att Ile	act Thr	gca Ala 75	cat His	gat Asp	gct Ala	atg Met	cat His 80		240
30	Gly ggg	tca Ser	gtt Val	tat Tyr	cgt Arg 85	aaa Lys	aat Asn	ccc Pro	aaa Lys	att Ile 90	aat Asn	aat Asn	ttt Phe	atc Ile	ggt Gly 95	tca Ser		288
35	cta Leu	gct Ala	gta Val	gcg Ala 100	ctt Leu	tac Tyr	gct Ala	gtg Val	ttt Phe 105	cca Pro	tat Tyr	caa Gln	cag Gln	atg Met 110	tta Leu	aag Lys	/	336
33	aat Asn	cat His	tgc Cys 115	tta Leu	cat His	cat His	cgt Arg	cat His 120	cct Pro	gct Ala	agc Ser	gaa Glu	gtt Val. 125	gac Asp	cca Pro	gat Asp		384
40	ttt Phe	cat His 130	gat Asp	ggt Gly	aag Lys	aga Arg	aca Thr 135	aac Asn	gct Ala	att Ile	ttc Phe	tgg Trp 140	tat Tyr	ctc Leu	cat His	ttc Phe		432
45	atg Met 145	ata Ile	gaa Glu	tac Tyr	tcc Ser	agt Ser 150	tgg Trp	caa Gln	cag Gln	tta Leu	ata Ile 155	gta Val	cta Leu	act Thr	atc Ile	cta Leu 160		480
50	ttt Phe	aat Asn	tta Leu	gct Ala	aaa Lys 165	tac Tyr	gtt Val	ttg Leu	cac His	atc Ile 170	cat His	caa Gln	ata Ile	aat Asn	ctc Leu 175	atc Ile		528
55	tta Leu	ttt Phe	tgg Trp	agt Ser 180	att Ile	cct Pro	cca Pro	att Ile	tta Leu 185	agt Ser	tcc Ser	att Ile	caa Gln	ctg Leu 190	ttt Phe	tat Tyr		576
55	ttc Phe	gga Gly	aca Thr 195	ttt Phe	ttg Leu	cct Pro	cat His	cga Arg 200	gaa Glu	ccc Pro	aag Lys	aaa Lys	gga Gly 205	tat Tyr	gtt Val	tat Tyr		624
60	ccc Pro	cat His 210	tgc Cys	agc Ser	caa Gln	aca Thr	ata Ile 215	aaa Lys	ttg Leu	cca Pro	act Thr	ttt Phe 220	ttg Leu	tca Ser	ttt Phe	atc Ile		672
65	gct Ala 225	tgc Cys	tac Tyr	cac His	ttt Phe	ggt Gly 230	tat Tyr	cat His	gaa Glu	gaa Glu	cat His 235	cat His	gag Glu	tat Tyr	ccc Pro	cat His 240		720
70	gta Val	cct Pro	tgg Trp	tgg Trp	caa Gln 245	ctt Leu	cca Pro	tct Ser	gta Val	tat Tyr 250	aag Lys	cag Gln	aga Arg	gta Val	ttc Phe 255	aac Asn		768

	aat Asn	tca Ser	gta Val	acc Thr 260	aat Asn	tcg Ser	taa		•								-	789
5																		
	<210													•				
10	<211 <212		262 PRT													•		
	<213	> N	losto	c pu	ıncti	form	e											
15															•			
	< 400	i> 4		•											•			
20	Leu 1	Asn	Phe	Cys	Asp 5	Lys	Pro	Val	Ser	Tyr 10	Tyr	Val	Ala	Ile	Glu 15	Gln		
25	Leu	Ser	Ala	Lys 20	Glu	Asp	Thr	Val	Trp 25	Gly	Leu	Val	Ile	Val 30	Ile	Val .		-
30	Ile	Ile	Ser 35	Leu	Trp	Val	Ala	Ser 40	Leu	Ala	Phe	Leu	Leu 45	Ala	Ile	Asn		
	Tyr	Ala 50	Lys	Val	·Pro	Ile	Trp 55	Leu	Ile	Pro	Ile	Ala 60	Ile	Val	Trp	Gln	<i>/</i> ·	
35	Met 65	Phe	Leu	Tyr	Thr	Gly 70	Leu	Phe	Ile	Thr	Ala 75	His	Asp	Ala	Met	His 80		
40	Gly	Ser	Val	Tyr	Arg 85	Lys	Asn	Pro	Lys	Ile 90	Asn	Asn	Phe	Ile	Gly 95	Ser		
45	Leu	Ala	Val	Ala 100	Leu	Tyr	Ala	Val	Phe 105	Pro	Tyr	Gln	Gln	Met 110	Leu	Lys		
50	Asn	His	Cys 115	Leu	His	His	Arg	His 120	Pro	Ala	Ser	Glu	Val 125	Asp	Pro	Asp		
50	Phe	His 130		Gly	Lys	Arg	Thr 135	Asn	Ala	Ile	Phe	Trp 140	Tyr	Leu	His	Phe		
55	Met 145	Ile	Glu	Tyr	Ser	Ser 150	Trp	Gln	Gln	Leu	Ile 155	Val	Leu	Thr	Ile	100		
60	Phe	Asn	Leu	Ala	Lys 165	Tyr	Val	Leu	His	Ile 170	His	Gln	Ile	Asn	Leu 175	Ile		
65	Leu	Phe	Trp	Ser 180	Ile	Pro	Pro	Ile	Leu 185	Ser	Ser	Ile	Gln	Leu 190	Phe	. Tyr		
70	Phe	Gly	Thr 195		Leu	Pro	His	Arg 200	Glu	Pro	Lys	Lys	Gly 205	Tyr	Va]	Tyr		

	Pro His 210	Cys Ser	Gln T	hr Ile 215	Lys I	Leu P	ro I	Thr I	Phe I 220	Seu S	Ser I	Phe :	Ile		
5	Ala Cys 225	Tyr His	Phe G 2	ly Tyr 30	His C	Glu G	Slu F	His I 235	His (Glu 5	Tyr 1	Pro	His 240		
10	Val Pro	Trp Trp	Gln L 245	eu Pro	Ser \	Val T	ryr 1 250	Ľys (Gln A	Arg V	Val :	Phe . 255	Asn		
15	Asn Ser	Val Thr 260	Asn S	er											
	<210> 5	,													
20	<211> 7	62													
	<212> D	ANC													
25	<213> N	Jostoc p	unctif	orme											-
	<220>														
30	<221> C	DS													
	<222> ((1)(76	2)												
35	<223>													/	
40	<400> 5 gtg atc Val Ile 1	cad tta	gaa c Glu G 5	aa cca Sln Pro	ctc : Leu :	Ser I	cat His 10	caa Gln	gca Ala	aaa	ctg	act Thr 15	cca Pro		48
45	gta ctg Val Leu	aga agt Arg Ser 20	aaa t Lys S	ct cag Ser Gln	Phe	aag (Lys (25	ggg Gly	ctt Leu	ttc Phe	att Ile	gct Ala 30	att Ile	gtc Val		96
50	att gtt Ile Val	agc gca Ser Ala 35	Trp V	gtc att /al Ile	Ser	Leu :	Ser	Leu	ьeu	Leu	tcc Ser	ctt Leu	gac Asp		144
50	atc tca Ile Ser 50	aag cta Lys Leu	aaa t Lys E	tt tgg Phe Trp 55	atg Met	tta Leu	ttg Leu	cct Pro	gtt Val 60	ata Ile	cta Leu	tgg Trp	caa Gln		192
55	aca ttt Thr Phe 65	tta tat Leu Tyr	Thr C	gga tta Gly Leu 70	ttt Phe	att Ile	aca Thr	tct Ser 75	cat His	gat Asp	gcc Ala	atg Met	cat His 80		240
60	ggc gta Gly Val	gta ttt Val Phe	ccc o Pro 0	caa aac Gln Asn	acc Thr	aag Lys	att Ile 90	aat Asn	cat His	ttg Leu	att Ile	gga Gly 95	aca Thr		288
65	ttg acc Leu Thr	cta tco Leu Ser 100	Leu	tat ggt Tyr Gly	ctt Leu	tta Leu 105	cca Pro	tat Tyr	caa Gln	aaa Lys	cta Leu 110	Leu	aaa Lys		336
	aaa cat Lys His	tgg tta	a cac o	cac cac His His	aat Asn	cca Pro	gca Ala	agc Ser	tca Ser	ata Ile	gac Asp	ccg	gat Asp		384
70	<u> </u>	115			120					125					

	PCT/EP2003	/009106
tat tt	t cat ttt	432

-	ttt cac Phe His 13	Asn														432
5	atg aaa Met Lys 145					Trp										480
10	tat aad Tyr Asi															528
15	tac tti Tyr Phe															576
20	ttt ggt Phe Gly															624
25	cct cat Pro His 210	Cys														672
25	acg tgo Thr Cys 225															720
30	att tct Ile Ser												tag			762
				245					250				•			
35	<210>	6														
	<211>	253											•			
40	<212>	PRT														
	· <213>	Nost	oc pu	ıncti	forn	ne										
45	<400>	6														
50	Val Ile 1	Gln	Leu	Glu 5	Gln	Pro	Leu	Ser	His 10	Gln	Ala	Lys	Leu	Thr 15	Pro	
	Val Leu	Arg	Ser 20	Lys	Ser	Gln	Phe	Lys 25	Gly	Leu	Phe	Ile	Ala 30	Ile	Val	
55	Ile Val	Ser 35	Ala	Trp	Val	Ile	Ser 40	Leu	Ser	Leu	Leu	Leu 45	Ser	Leu	Asp	
60	Ile Ser	Lys	Leu	Lys	Phe	Trp 55	Met	Leu	Leu	Pro	Val 60	Ile	Leu	Trp	Gln	
	Thr Phe	Lou	Th ex	Thr	Gly	T ON	Dho	Tlo	Th ~	Sor	น่ะ	A c n	בות	Mat	Uic	
65	•	neu	+ <u>y</u> +	****	70	Den	- 11C	T-E	1111		1113	1135	111 CI	1100		
	65				, 0					75					80	
70	Gly Val	Val	Phe	Pro 85	Gln	Asn	Thr	Lys	Ile 90	Asn	His	Leu	Ile	Gly 95	Thr	

5	Leu	Thr	Leu	Ser 100	Leu	Tyr	Gly	Leu	Leu 105	Pro	Tyr	Gln	Lys	Leu 110	Leu	Lys	
	Lys	His	Trp 115	Leu	His	His	His	Asn 120	Pro	Ala	Ser	Ser	Ile 125	Asp	Pro	Asp	
10	Phe	His 130	Asn	Gly	Lys	His	Gln 135	Ser	Phe	Phe	Ala	Trp 140	Tyr	Phe	His	Phe	
15	Met 145	Lys	Gly	Tyr	Trp	Ser 150	Trp	Gly	Gln	Ile	Ile 155	Ala	Leu	Thr	Ile	Ile 160	
20	Туг	Asn	Phe	Ala	Lys 165	Tyr	Ile	Leu	His	Ile 170	Pro	Ser	Asp	Asn	Leu 175	Thr	
25	Tyr	Phe	Trp	Val 180	Leu	Pro	Ser	Leu	Leu 185	Ser	Ser	Leu	Gln	Leu 190	Phe	Tyr	-
	Phe	Gly	Thr 195	Phe	Leu	Pro	His	Ser 200	Glu	Pro	Ile	Gly	Gly 205	Tyr	Val	Gln	
30	Pro	His 210	Cys	Ala	Gln	Thr	Ile 215	Ser	Arg	Pro	Ile	Trp 220	Trp	Ser	Phe	Ile	
35	Thr 225	Cys	Tyr	His	Phe	Gly 230	Tyr	His	Glu	Glu	His 235	His		Tyr	Pro	His 240	•
40	Ile	Ser	Trp	Trp	Gln 245	Leu	Pro	Glu	Ile	Tyr 250	Lys	Ala	Lys				
	<21	0>	7												•		
45	<21	1>	789														
	<21	2>	DNA													•	
50	<21	3>	Künst	tlic	he S	eđne:	nz										
	<22	0>															
55	<22	1>	CDS														
	<22	2>	(1).	. (78	9)												
60	<22	3>															
65		0> aat Asn	+++	tgt Cys	gat Asp 5	aaa Lys	. cca : Pro	gtt Val	ago Sei	tat Tyr 10	tai	t gti r Val	t gca	a ata	a ga e Gl .15	g caa u Gln	48
70	tta Leu	agt Ser	gct Ala	aaa Lys 20	gaa Glu	gat Asp	act Thr	gtt Val	tgg Trp 25	Gly g ggg	g cto / Let	g gte u Va	g at l Il	t gt e Va 30		a gta e Val	91

PCT/EP2

5	att Ile	att Ile	agt Ser 35	ctt Leu	tgg Trp	gta Val	gct Ala	agt Ser 40	ttg Leu	gct Ala	ttt Phe	tta Leu	cta Leu 45	gct Ala	att Ile	aat Asn		1	14
5	tat Tyr	gcc Ala 50	aaa Lys	att Ile	cat His	aag Lys	tgg Trp 55	ttg Leu	ata Ile	cct Pro	att Ile	gca Ala 60	ata Ile	gtt Val	tgg Trp	caa Gln		19	92
10	atg Met 65	ttc Phe	ctt Leu	tat Tyr	aca Thr	ggg Gly 70	cta Leu	ttt Phe	att Ile	act Thr	gca Ala 75	cat His	gat Asp	gct Ala	atg Met	cat His 80		24	40
15	ggg Gly	tcạ Ser	gtt Val	tat Tyr	cgt Arg 85	aaa Lys	aat Asn	ccc Pro	aaa Lys	att Ile 90	aat Asn	aat Asn	ttt Phe	atc Ile	ggt Gly 95	tca Ser		28	88
20	cta Leu	gct Ala	gta Val	gcg Ala 100	ctt Leu	tac Tyr	gct Ala	gtg Val	ttt Phe 105	cca Pro	tat Tyr	caa Gln	cag Gln	atg Met 110	tta Leu	aag Lys		3	36
25	aat Asn	cat His	tgc Cys 115	tta Leu	cat His	cat His	cgt Arg	cat His 120	cct Pro	gct Ala	agc Ser	gaa Glu	gtt Val 125	gac Asp	cca Pro	gat Asp		3	84
20	ttt Phe	cat His 130	gat Asp	ggt Gly	aag Lys	aga Arg	aca Thr 135	aac Asn	gct Ala	att Ile	ttc Phe	tgg Trp 140	tat Tyr	ctc Leu	cat His	ttc Phe		4:	32
30	atg Met 145	ata Ile	gaa Glu	tac Tyr	tcc Ser	agt Ser 150	tgg Trp	caa Gln	cag Gln	tta Leu	ata Ile 155	gta Val	cta Leu	act Thr	atc Ile	cta Leu 160		4	80
35	ttt Phe	aat Asn	tta Leu	gct Ala	aaa Lys 165	tac Tyr	gtt Val	ttg Leu	cac His	atc Ile 170	cat His	caa Gln	ata Ile	aat Asn	ctc Leu 175	atc Ile	/	5:	28
40	tta Leu	ttt Phe	tgg Trp	agt Ser 180	att Ile	cct Pro	cca Pro	att Ile	tta Leu 185	agt Ser	tcc Ser	att Ile	caa Gln	ctg Leu 190	ttt Phe	tat Tyr		5	76
45	ttc Phe	gga Gly	aca Thr 195	ttt Phe	ttg Leu	cct Pro	cat His	cga Arg 200	gaa Glu	ccc Pro	aag Lys	aaa Lys	gga Gly 205	tat Tyr	gtt Val	tat Tyr		6	24
75	ccc Pro	cat His 210	tgc Cys	agc Ser	caa Gln	aca Thr	ata Ile 215	aaa Lys	ttg Leu	cca Pro	act Thr	ttt Phe 220	ttg Leu	tca Ser	ttt Phe	atc Ile		6	72
50	gct Ala 225	tgc Cys	tac Tyr	cac His	ttt Phe	ggt Gly 230	tat Tyr	cat His	gaa Glu	gaa Glu	cat His 235	cat His	gag Glu	tat Tyr	ccc Pro	cat His 240		7	20
55	gta Val	cct Pro	tgg Trp	tgg Trp	caa Gln 245	ctt Leu	cca Pro	tct Ser	gta Val	tat Tyr 250	aag Lys	cag Gln	aga Arg	gta Val	ttc Phe 255	aac Asn		7	68
60		tca Ser					taa							_				7	89
	<210)> {	3																
65	<211		262																
	<212	2> 1	PRT																
70	<213	B> 1	Künst	clich	ne Se	equei	nz												

<400> 8

- 5 Met Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 1 5 10 15
- Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val 10 20 25 30
- Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 35 40 45
- Tyr Ala Lys Ile His Lys Trp Leu Ile Pro Ile Ala Ile Val Trp Gln
 50 55 60
- 20
 Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 65 70 75 80
- 25 Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95
- Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys 100 105 110
- Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp 115 120 125
 - Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe 130 135 140
- Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 145 150 155 160
- 45 Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 175
- Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr 180 185 190
- Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr 195 200 205
 - Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile
- Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240
- 65 Val Pro Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 245 250 255
- Asn Ser Val Thr Asn Ser 70

	<210	> 9)													•		
5	<211	> 7	89															
	<212	> [ANC															
10	<213	> F	(ünst	lich	ie Se	equer	12											
	<220	>																
15	<221	.> 0	DS															
	<222	!> ((1)	(789)													
20	<223	>																
25	<400 atg Met 1	aat	ttt Phe	tgt Cys	gat Asp 5	aaa Lys	cca Pro	gtt Val	agc Ser	tat Tyr 10	tat Tyr	gtt Val	gca Ala	ata Ile	gag Glu 15	caa Gln		48
30	tta Leu	agt Ser	gct Ala	aaa Lys 20	gaa Glu	gat Asp	act Thr	gtt Val	tgg Trp 25	ggg Gly	ctg Leu	gtg Val	att Ile	gtc Val 30	ata Ile	gta Val		96
0.5	att Ile	att Ile	agt Ser 35	ctt Leu	tgg Trp	gta Val	gct Ala	agt Ser 40	ttg Leu	gct Ala	ttt Phe	tta Leu	cta Leu 45	gct Ala	att Ile	aat Asn	. ,	144
35	tat Tyr	gcc Ala 50	aaa Lys	gtc Val	cca Pro	att Ile	tgg Trp 55	ttg Leu	ata Ile	cct Pro	att Ile	gca Ala 60	ata Ile	gtt Val	tgg Trp	caa Gln		192
40	atg Met 65	ttc Phe	ctt Leu	tat Tyr	aca Thr	ggg Gly 70	cta Leu	ttt Phe	att Ile	act Thr	gca Ala 75	cat His	gat Asp	gct Ala	atg Met	cat His 80		240
45	Gly ggg	tca Ser	gtt Val	tat Tyr	cgt Arg 85	aaa Lys	aat Asn	ccc Pro	aaa Lys	att Ile 90	aat Asn	aat Asn	ttt Phe	atc Ile	ggt Gly 95	tca Ser		288
50	cta Leu	gct Ala	gta Val	gcg Ala 100	ctt Leu	tac Tyr	gct Ala	gtg Val	ttt Phe 105	cca Pro	tat Tyr	caa Gln	cag Gln	atg Met 110	tta Leu	aag Lys		336
	aat Asn	cat His	tgc Cys 115	tta Leu	cat His	cat His	cgt Arg	cat His 120	cct Pro	gct Ala	agc Ser	gat Asp	tta Leu 125	gac Asp	cca Pro	gat Asp		384
55	ttt Phe	cat His 130	gat Asp	ggt Gly	aag Lys	aga Arg	aca Thr 135	aac Asn	gct Ala	att Ile	ttc Phe	tgg Trp 140	tat Tyr	ctc Leu	cat His	ttc Phe		432
60	atg Met 145	ata Ile	gaa Glu	tac Tyr	tcc Ser	agt Ser 150	tgg Trp	caa Gln	cag Gln	tta Leu	ata Ile 155	gta Val	cta Leu	act Thr	atc Ile	cta Leu 160		480
65	ttt Phe	aat Asn	tta Leu	gct Ala	aaa Lys 165	tac Tyr	gtt Val	ttg Leu	cac His	atc Ile 170	cat His	caa Gln	ata Ile	aat Asn	ctc Leu 175	atc Ile		528
70	tta Leu	ttt Phe	tgg Trp	agt Ser 180	att Ile	cct Pro	cca Pro	att Ile	tta Leu 185	Ser	tcc Ser	att Ile	caa Gln	ctg Leu 190	Pne	tat Tyr		576

-	ttc Phe	gga Gly	aca Thr 195	ttt Phe	ttg Leu	cct Pro	cat His	cga Arg 200	gaa Glu	ccc Pro	aag Lys	aaa Lys	gga Gly 205	tat Tyr	gtt Val	tat Tyr		624
5	Pro	cat His 210	tgc Cys	agc Ser	caa Gln	aca Thr	ata Ile 215	aaa Lys	ttg Leu	cca Pro	act Thr	ttt Phe 220	ttg Leu	tca Ser	ttt Phe	atc Ile		672
10	gct Ala 225	tgc Cys	tac Tyr	cac His	ttt Phe	ggt Gly 230	tat Tyr	cat His	gaa Glu	gaa Glu	cat His 235	cat His	gag Glu	tat Tyr	ccc Pro	cat His 240		720
15	gta Val	cct Pro	tgg Trp	tgg Trp	caa Gln 245	ctt Leu	cca Pro	tct Ser	gta Val	tat Tyr 250	aag Lys	cag Gln	aga Arg	gta Val	ttc Phe 255	aac Asn		768
20	aat Asn	tca Ser	gta Val	acc Thr 260	aat Asn	tcg Ser	taa											789
	<210)>]	LO															-
25	<211	> 2	262															
	<212	-	PRT															
			Künst	-lic	ne Se	eauer	nz											
30	7213																	
	<400)> 3	10														,	
35	Met 1	Asn	Phe	Cys	Asp 5	Lys	Pro	Val	Ser	Туг 10	Tyr	Val	Ala	Ile ,	Glu 15	Gln		
40	Leu	Ser	Ala	Lys 20	Glu	Asp	Thr	Val	Trp 25	Gly	Leu	Val	Ile	Val 30	Ile	Val		
45	Ile	Ile	Ser 35	Leu	Trp	Val	Ala	Ser 40	Leu	Ala	Phe	Leu	Leu 45	Ala	Ile	Asn		
	Tyr	Ala 50	Lys ·	Val	Pro	Ile	Trp 55	Leu	Ile	Pro	Ile	Ala 60	Ile	Val	Trp	Gln		
50	Met 65	Phe	Leu	Tyr	Thr	Gly 70	Leu	Phe	Ile	Thr	Ala 75	His	Asp	Ala	Met	His 80		
55	Gly	Ser	Val	Tyr	Arg 85	Lys	Asn	Pro	Lys	Ile 90	Asn	Asn	Phe	Ile	Gly 95	Ser		
60	Leu	Ala	Val	Ala 100		Tyr	Ala	Val	Phe 105		Туг	Gln	Gln	Met 110	Leu	. Lys		
65	Asn	His	Cys 115	Leu	His	His	Arg	His 120		Ala	Ser	asp	Leu 125	Asp	Pro	Asp		
	Phe	His 130		Gly	Lys	Arg	Thr 135	Asn	. Ala	Ile	e Phe	Trp	у Туг)	: Leu	ı His	s Phe		

	Met 145	Ile	Glu	Tyr	Ser	Ser 150	Trp	Gln	Gİn	Leu	Ile 155	Val	Leu _.	Thr	Ile	Leu 160		
5	Phe	Asn	Leu	Ala	Lys 165	Tyr	Val	Leu	His	Ile 170	His	Gln	Ile	Asn	Leu 175	Ile		
10	Leu	Phe	Trp	Ser 180	Ile	Pro	Pro	Ile	Leu 185	Ser	Ser	Ile	Gln	Leu 190	Phe	Tyr		
15	Phe	Gly	Thr 195	Phe	Leu	Pro	His	Arg 200	Glu	Pro	Lys	Lys	Gly 205	Tyr	Val	Tyr		
	Pro	His 210	Cys	Ser	Gln	Thr	Ile 215	Lys	Leu	Pro	Thr	Phe 220	Leu	Ser	Phe	Ile		
20	Ala 225	Cys	Tyr	His	Phe	Gly 230	Tyr	His	Glu	Glu	His 235	His	Glu	Tyr	Pro	His 240		-
25	Val	Pro	Trp	Trp	Gln 245	Leú	Pro	Ser	Val	Tyr 250	Lys	Gln	Arg	Val	Phe 255	Asn		
30	Asn	Ser	Val	Thr 260	Asn	Ser												
	<210)> :	11														/	•
35	<21	1 -> '	762															
00														•				
	<212		DNA															
40	<213	3> 1	Künst	clich	ne Se	equei	nz	•										
	<220	0>		•														
45	<22	1>	CDS															
	<22	2>	(1).	. (762	2)													
50	<22	3>																
55		0> atc Ile	~~~	tta Leu	gaa Glu 5	caa Gln	cca Pro	ctc Leu	agt Ser	cat His 10	caa Gln	gca Ala	aaa Lys	ctg Leu	act Thr 15	cca Pro		48
60	gta Val	ctg Leu	aga Arg	agt Ser 20	aaa Lys	tct Ser	cag Gln	ttt Phe	aag Lys 25	Gly	ctt Leu	tto Phe	att Ile	gct Ala 30	att Ile	gtc Val		96
05	att Ile	gtt Val	agc Ser 35	gca Ala	tgg Trp	gtc Val	att Ile	agc Ser 40	ctg Leu	agt Ser	tta Leu	tta Lev	ctt Leu 45	tco Ser	ctt Lev	gac Asp		144
65	atc	tca	aag	att	cat	aag	tgg	atg Met	tta Leu	ttg Leu	cct	gtt Val	ata l Ile	cta Lei	rtgg	g caa Gln		192
	Ile	Ser 50	Lys	Ile	His	гуs	55	1100				60						

									14/73				,					
	Thr 65	Phe	Leu	Tyr	Thr	Gly 70	Leu	Phe	Ile	Thr	Ser 75	His	Asp	Ala	Met	His 80		
5	ggc Gly	gta Val	gta Val	tt Phe	ccc Pro 85	caa Gln	aac Asn	acc Thr	aag Lys	att Ile 90	aat Asn	cat His	ttg Leu	att Ile	gga Gly 95	aca Thr		288
10	ttg Leu	acc Thr	cta Leu	tcc Ser 100	ctt Leu	tat Tyr	ggt Gly	ctt Leu	tta Leu 105	cca Pro	tat Tyr	caa Gln	aaa Lys	cta Leu 110	ttg Leu	aaa Lys		336
·	aaa Lys	cat His	tgg Trp 115	tta Leu	cac His	cac His	cac His	aat Asn 120	cca Pro	gca Ala	agc Ser	tca Ser	ata Ile 125	gac Asp	ccg Pro	gat Asp		384
15	ttt Phe	cac His 130	aat Asn	ggt Gly	aaa Lys	cac His	caa Gln 135	agt Ser	ttc Phe	ttt Phe	gct Ala	tgg Trp 140	tat Tyr	ttt Phe	cat His	ttt Phe		432
20	atg Met 145	aaa Lys	ggt Gly	tac Tyr	tgg Trp	agt Ser 150	tgg Trp	ggg Gly	caa Gln	ata Ile	att Ile 155	gcg Ala	ttg Leu	act Thr	att Ile	att Ile 160		480
25	tat Tyr	aac Asn	ttt Phe	gct Ala	aaa Lys 165	tac Tyr	ata Ile	ctc Leu	cat His	atc Ile 170	cca Pro	agt Ser	gat Asp	aat Asn	cta Leu 175	act Thr		528
30	tac Tyr	ttt Phe	tgg Trp	gtg Val 180	cta Leu	ccc Pro	tcg Ser	ctt Leu	tta Leu 185	agt Ser	tca Ser	tta Leu	caa Gln	tta Leu 190	ttc Phe	tat Tyr		576
95	ttt Phe	ggt Gly	act Thr 195	ttt Phe	tta Leu	ccc Pro	cat His	agt Ser 200	gaa Glu	cca Pro	ata Ile	Gly ggg	ggt Gly 205	tat Tyr	gtt Val	cag Gln	/	624
35	cct Pro	cat His 210	tgt Cys	gcc Ala	caa Gln	aca Thr	att Ile 215	agc Ser	cgt Arg	cct Pro	att Ile	tgg Trp 220	tgg Trp	tca Ser	ttt Phe	atc Ile		672
40	acg Thr 225	tgc Cys	tat Tyr	cat His	ttt Phe	ggc Gly 230	tac Tyr	cac His	gag Glu	gaa Glu	cat His 235	cac His	gaa Glu	tat Tyr	cct Pro	cat His 240		720
45	att Ile	tct Ser	tgg Trp	tgg Trp	cag Gln 245	tta Leu	cca Pro	gaa Glu	att Ile	tac Tyr 250	aaa Lys	gca Ala	aaa Lys	tag				762
50	<210	0> :	12															
50	<21	1> 2	253															
	<21	2> 1	PRT															
55	<21	3> 1	Künst	tlic	ne Se	eđne	nz											
60	<40	0> :	12															
	Met 1	Ile	Gln	Leu	Glu 5	Gln	Pro	Leu	Ser	His 10	Gln	Ala	Lys	Leu	15 15	Pro		
65	Val	Leu	Arg	Ser 20	Lys	Ser	Gln	Phe	Lys 25	Gly	Leu	Phe	Ile	Ala 30	ı Ile	e Val		
70	Ile	Val	Ser 35	Ala	Trp	Val	Ile	Ser 40	Leu	Ser	Leu	Leu	Let 45	ı Sei	. Le	u Asp		

5	Ile	Ser 50	Lys	Ile	His	Lys	Trp 55	Met	Leu	Leu	Pro	Val 60	Ile	Leu	Trp	Gln
	Thr 65	Phe	Leu	Tyr	Thr	Gly 70	Leu	Phe	Ile	Thr	Ser 75	His	Asp	Ala	Met	His 80
10	Gly	Val	Val	Phe	Pro 85	Gln	Asn	Thr	Lys	Ile 90	Asn	His	Leu	Ile	Gly 95	Thr
15	Leu	Thr	Leu	Ser 100	Leu	Tyr ·	Gly	Leu	Leu 105	Pro	Tyr	Gln	Lys	Leu 110	Leu	Lys
20	Lys	His	Trp 115	Leu	His	His	His	Asn 120	Pro	Ala	Ser	Ser	Ile 125	Asp	Pro	Asp
25	Phe	His 130	Asn	Gly	Lys	His	Gln 135	Ser	Phe	Phe	Ala	Trp 140	Tyr	Phe	His	Phe
	Met 145	Lys	Gly	Tyr	Trp	Ser 150	Trp	Gly	Gln	Ile	Ile 155	Ala	Leu	Thr	Ile	Ile 160
30	Tyr	Asn	Phe	Ala	Lys 165	Tyr	Ile	Leu	His	Ile 170	Pro	Ser	Asp	Asn	Leu 175	Thr
35	Tyr	Phe	Trp	Val 180	Leu	Pro	Ser	Leu	Leu 185	Ser	Ser	Leu		Leu 190	Phe	туг
40	Phe	Gly	Thr 195	Phe	Leu	Pro	His	Ser 200	Glu	Pro	Ile	Gly	Gly 205	Туr	Val	Gln
45	Pro	His 210		Ala	Gln	Thr	lle 215	Ser	Arg	Pro	Ile	Trp 220	Trp	Ser	Phe	Ile
	Thr 225		Tyr	His	Phe	Gly 230	Tyr	His	Glu	Glu	His 235	His	Glu	Tyr	Pro	His 240
50	Île	Ser	Trp	Trp	Gln 245	Leu	Pro	Glu	Ile	Tyr 250	Lys	: Ala	Lys	i		
55	<21	0>	13													
	<21	1>	762													
60		2>			.			•								
	<21	3>	Küns	LTIC	he S	eque	mz		-							
65	<22	0>														
	<22	1>	CDS													
70	<22	2>	(1).	. (76	2)											

<223>

																		•
5	<400 atg Met 1	atc	cag Gln	tta Leu	gaa Glu 5	caa Gln	cca Pro	ctc Leu	agt Ser	cat His 10	caa Gln	gca Ala	aaa Lys	ctg Leu	act Thr 15	cca Pro		48
10	gta Val	ctg Leu	aga Arg	agt Ser 20	aaa Lys	tct Ser	cag Gln	ttt Phe	aag Lys 25	Gly ggg	ctt Leu	ttc Phe	att Ile	gct Ala 30	att Ile	gtc Val		96
15	att Ile	gtt Val	agc Ser 35	gca Ala	tgg Trp	gtc Val	att Ile	agc Ser 40	ctg Leu	agt Ser	tta Leu	tta Leu	ctt Leu 45	tcc Ser	ctt Leu	gac Asp		144
20	atc Ile	tca Ser 50	aag Lys	cta Leu	aaa Lys	ttt Phe	tgg Trp 55	atg Met	tta Leu	ttg Leu	cct Pro	gtt Val 60	ata Ile	cta Leu	tgg Trp	caa Gln		192
25	aca Thr 65	ttt Phe	tta Leu	tat Tyr	acg Thr	gga Gly 70	tta Leu	ttt Phe	att Ile	aca Thr	tct Ser 75	cat His	gat Asp	gcc Ala	atg Met	cat His 80		240
25	ggc Gly	gta Val	gta Val	ttt Phe	ccc Pro 85	caa Gln	aac Asn	acc Thr	aag Lys	att Ile 90	aat Asn	cat His	ttg Leu	att Ile	gga Gly 95	aca Thr		288
30	ttg Leu	acc Thr	cta Leu	tcc Ser 100	ctt Leu	tat Tyr	ggt Gly	ctt Leu	tta Leu 105	cca Pro	tat Tyr	caa Gln	aaa Lys	cta Leu 110	ttg Leu	aaa Lys		336
35	aaa Lys	cat His	tgg Trp 115	tta Leu	cac His	cac His	cac His	aat Asn 120	cca Pro	gca Ala	agc Ser	gat Asp	tta Leu 125	gac Asp	ccg Pro	gat Asp	/	384
40	ttt Phe	cac His 130	aat Asn	ggt Gly	aaa Lys	cac His	caa Gln 135	agt Ser	ttc Phe	ttt Phe	gct Ala	tgg Trp 140	tat Tyr	ttt Phe	cat His	ttt Phe		432
45	atg Met 145	aaa Lys	ggt Gly	tac Tyr	tgg Trp	agt Ser 150	tgg Trp	ggg Gly	caa Gln	ata Ile	att Ile 155	gcg Ala	ttg Leu	act Thr	att Ile	att Ile 160		480
45	tat Tyr	aac Asn	ttt Phe	gct Ala	aaa Lys 165	tac Tyr	ata Ile	ctc Leu	cat His	atc Ile 170	Pro	agt Ser	gat Asp	aat Asn	cta Leu 175	THI		528
50	tac Tyr	ttt Phe	tgg Trp	gtg Val 180	cta Leu	ccc Pro	tcg Ser	ctt Leu	tta Leu 185	Ser	tca Ser	tta Leu	caa Gln	tta Leu 190	Pne	tat Tyr		576
55	ttt Phe	ggt Gly	act Thr 195	ttt Phe	tta Leu	ccc Pro	cat His	agt Ser 200	Glu	cca Pro	ata Ile	ggg	ggt Gly 205	JAI	gtt Val	cag Gln		624
60	cct Pro	cat His 210	Cys	gcc Ala	caa Gln	aca Thr	att Ile 215	Ser	cgt Arg	cct Pro	att Ile	tgg Trp 220	Trp	tca Ser	ttt Phe	atc lle		672
GF.	acg Thr 225	Cys	tat Tyr	cat His	ttt Phe	ggc Gly 230	Tyr	cac His	gag Glu	gaa Glu	cat His 235	His	gaa Glu	tat Ty	cct Pro	cat His 240		720
65	att Ile	tct Ser	tgg Trp	tgg Trp	cag Gln 245	Leu	cca Pro	gaa Glu	att Ile	tac Tyr 250	. Lys	n gca s Ala	a aaa a Lys	a tag	a			762

	<21	.0>	14													
	<21	.1>	253													
5	<21	.2>	PRT													
	<21	3>	Küns	tlic	he S	eque	nz									
4.0							•									
10	<40	0>	14													
15	Met 1	Ile	Gln	Leu	Glu 5	Gln	Pro	Leu	Ser	His 10	Gln	Ala	Lys	Leu	Thr 15	Pro
00	Val	Leu	Arg	Ser 20	Lys	Ser	Gln	Phe	Lys 25	Gly	Leu	Phe	Ile	Ala 30	Ile	Val
20	Ile	Val	Ser 35	Ala	Trp	Val	Ile	Ser 40	Leu	Ser	Leu	Leu	Leu 45	Ser	Leu	Asp
25	Ile	Ser 50	Lys	Leu	Lys	Phe	Trp 55	Met	Leu	Leu	Pro	Val 60	Ile	Leu	Trp	Gln
30	Thr 65	Phe	Leu	Tyr	Thr	Gly 70	Leu	Phe	Ile	Thr	Ser 75	His	Asp	Ala	Met	His 80
35	Gly	Val	Val	Phe	Pro 85	Gln	Asn	Thr	Lys	Ile 90	Asn	His	Leu	Ile	Gly 95	Thr
40	Leu	Thr	Leu	Ser 100	Leu	Tyr	Gly	Leu	Leu 105	Pro	Tyr	Gln	Lys.	Leu 110	Leu	Lys
40	Lys	His	Trp 115	Leu	His	His	His	Asn 120	Pro	Ala	Ser	Asp	Leu 125	Asp	Pro	Asp
45	Phe	His 130	Asn	Gly	Lys	His	Gln 135	Ser	Phe	Phe	Ala	Trp 140	Tyr	Phe	His	Phe
50	Met 145	Lys	Gly	Tyr	Trp	Ser 150	Trp	Gly	Gln	Ile	Ile 155	Ala	Leu	Thr	Ile	Ile 160
55	Tyr	Asn	Phe	Ala	Lys 165	Tyr	Ile	Leu	His	Ile 170	Pro	Ser	Asp	Asn	Leu 175	Thr
	Tyr	Phe	Trp	Val 180	Leu	Pro	Ser	Leu	Leu 185	Ser	Ser	Leu	Gln	Leu 190	Phe	Tyr
60	Phe	Gly	Thr 195	Phe	Leu	Pro	His	Ser 200	Glu	Pro	Ile	Gly	Gly 205	Tyr	Val	Gln
65	Pro	His 210	Cys	Ala	Gln	Thr	Ile 215	Ser	Arg	Pro	Ile	Trp 220	Trp	Ser	Phe	Ile
70	Thr 225	Cys	Tyr	His	Phe	Gly 230	Tyr	His	Glu	Glu	His 235	His	Glu	Tyr	Pro	His 240

5	Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250	
	<210> 15	
	<211> 1608	
10	<212> DNA	
	<213> Haematococcus pluvialis	
15		
	<220>	
	<221> CDS	
20	<222> (3)(971)	
	<223>	-
25		
30	<pre><400> 15 ct aca ttt cac aag ccc gtg agc ggt gca agc gct ctg ccc cac atc Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile 1</pre>	47
	ggc cca cct cct cat ctc cat cgg tca ttt gct gct acc acg atg ctg Gly Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu 20 25 30	95
35	tcg aag ctg cag tca atc agc gtc aag gcc cgc cgc gtt gaa cta gcc Ser Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glu Leu Ala 35 40 45	143
40	cgc gac atc acg cgg ccc aaa gtc tgc ctg cat gct cag cgg tgc tcg Arg Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser 50 55 60	191
45	tta gtt cgg ctg cga gtg gca gca cca cag aca gag gag gcg ctg gga Leu Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly 65 70 75	239
50	acc gtg cag gct gcc ggc gcg ggc gat gag cac agc gcc gat gta gca Thr Val Gln Ala Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala 80 85 90 95	287
	ctc cag cag ctt gac cgg gct atc gca gag cgt cgt gcc cgg cgc aaa Leu Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Arg Lys 100 105 110	335
55	cgg gag cag ctg tca tac cag gct gcc gcc att gca gca tca att ggc Arg Glu Gln Leu Ser Tyr Gln Ala Ala Ala Ile Ala Ala Ser Ile Gly 115 120 125	383
60	gtg tca ggc att gcc atc ttc gcc acc tac ctg aga ttt gcc atg cac Val Ser Gly Ile Ala Ile Phe Ala Thr Tyr Leu Arg Phe Ala Met His 130 135 140	431
65	atg acc gtg ggc ggc gca gtg cca tgg ggt gaa gtg gct ggc act ctc Met Thr Val Gly Gly Ala Val Pro Trp Gly Glu Val Ala Gly Thr Leu 145	479
70	ctc ttg gtg gtt ggt ggc gcg ctc ggc atg gag atg tat gcc cgc tat Leu Leu Val Val Gly Gly Ala Leu Gly Met Glu Met Tyr Ala Arg Tyr 160 165 170	527

_	_	
4		
•		

5	gca Ala	cac His	aaa Lys	gcc Ala	atc Ile 180	tgg Trp	cat His	gag Glu	tcg Ser	cct Pro 185	ctg Leu	ggc Gly	tgg Trp	ctg Leu	ctg Leu 190	cac His		575
J	aag Lys	agc Ser	cac His	cac His 195	aca Thr	cct Pro	cgc Arg	act Thr	gga Gly 200	ccc Pro	ttt Phe	gaa Glu	gcc Ala	aac Asn 205	gac Asp	ttg Leu		623
10	ttt Phe	gca Ala	atc Ile 210	atc Ile	aat Asn	gga Gly	ctg Leu	ccc Pro 215	gcc Ala	atg Met	ctc Leu	ctg Leu	tgt Cys 220	acc Thr	ttt Phe	Gly		671
15	Phe	tgg Trp 225	ctg Leu	ccc Pro	aac Asn	gtc Val	ctg Leu 230	ggg Gly	gcg Ala	gcc Ala	tgc Cys	ttt Phe 235	gga Gly	gcg Ala	ggg Gly	ctg Leu		719
20	ggc Gly 240	atc Ile	acg Thr	cta Leu	tac Tyr	ggc Gly 245	atg Met	gca Ala	tat Tyr	atg Met	ttt Phe 250	gta Val	cac His	gat Asp	ggc Gly	ctg Leu 255		767
25	gtg Val	cac His	agg Arg	cgc Arg	ttt Phe 260	ccc Pro	acc Thr	Gly	ccc Pro	atc Ile 265	gct Ala	ggc Gly	ctg Leu	ccc Pro	tac Tyr 270	atg Met		815
23	aag Lys	cgc Arg	ctg Leu	aca Thr 275	gtg Val	gcc Ala	cac His	cag Gln	cta Leu 280	cac His	cac His	agc Ser	ggc	aag Lys 285	tac Tyr	ggt Gly		863
30	ggc	gcg Ala	ccc Pro 290	tgg Trp	ggt Gly	atg Met	ttc Phe	ttg Leu 295	ggt Gly	cca Pro	cag Gln	gag Glu	ctg Leu 300	cag Gln	cac His	att Ile		911
35	Pro	ggt Gly 305	gcg Ala	gcg Ala	gag Glu	gag Glu	gtg Val 310	gag Glu	cga Arg	ctg Leu	gtc Val	ctg Leu 315	gaa Glu	ctg Leu '	gac Asp	tgg Trp		959
40	tcc Ser 320			tag	ggto	gegga	aac d	caggo	cacgo	et g	gttt	cacao	c ct	catgo	cctg		:	1011
	tgat	aagg	gtg t	ggct	agaç	gc ga	atgc	gtgt	g aga	acgg	gtat	gtca	acgg	tcg a	actg	gtctga		1071
45	tggc	caat	gg c	catco	gcca	at gt	ctg	gtcat	cad	ggg	ctgg	ttg	ctg	ggt	gaag	gtgatg	,	1131
45	caca	tcat	ca t	gtgo	ggtt	g ga	gggg	gctgg	g cad	cagt	gtgg	gct	gaac	tgg (agca	gttgtc	,	1191
	cagg	ctgo	gog t	tgaa	tcag	gt ga	agggt	ttg	gat	ttgg	ggt	tgt	gaag	caa	tgac	tccgcc		1251
50	cata	ttct	at t	tgtg	ggag	jc to	gagat	gate	g gca	atgci	ttgg	gat	gtgc	atg	gatc	atggta.		1311
	gtgc	agca	iąa c	tata	ttca	ac ct	aggg	gctgi	t tg	gtag	gatc	agg	tgag	gcc	ttgc	acattg		1371
55	catg	atgt	ac t	cgto	atgo	gt gt	gtt	ggtga	a ga	ggat	ggat	gtg	gatg	gat	gtgţ	attctc		1431
55	agac	gtag	gac c	ttga	ctg	ga gg	gctt	gatc	g aga	agag	tggg	ccg	tatt	ctt	tgag	agggga		1491
	ggct	cgtc	jcc a	ıgaaa	tggt	gag	gtgga	atgad	tg:	tgac	gctg	tac	attg	cag	gcag	gtgaga		1551
60	tgca	ctgt	ct c	gatt	gtaa	a at	acat	tca	g at	gcaa	aaaa	aaa	aaaa	aaa	aaaa	aaa		1608
	<210	> 1	.6															
65	<211	> 3	322															
	<212	> F	PRT															
70	<213	> F	laema	tocc	ccus	plu	ıvia:	lis										

<400> 16

	/4U	0-														
5	Thr 1	Phe	His	Lys	Pro 5	Val	Ser	Gly	Ala	Ser 10	Ala	Leu	Pro	His	Ile 15	Gly
10	Pro	Pro	Pro	His 20	Leu	His	Arg	Ser	Phe 25	Ala	Ala	Thr	Thr	Met 30	Leu	Ser
15	Lys	Leu	Gln 35	Ser	Ile	Ser	Val	Lys 40	Ala	Arg	Arg	Val	Glu 45	Leu	Ala	Arg
	Asp	Ile 50	Thr	Arg	Pro	Lys	Val 55	Cys	Leu	His	Ala	Gln 60	Arg	Cys	Ser	Leu
20	Val 65	Arg	Leu	Arg	Val	Ala 70	Ala	Pro	Gln	Thr	Glu 75	Glu	Ala	Leu	Gly	Thr 80
25	Val	Gln	Ala	Ala	Gly 85	Ala	Gly	Asp	Glu	His 90	Ser	Ala	Asp	Val	Ala 95	Leu
30	Gln	Gln	Leu	Asp 100	Arg	Ala	Ile	Ala	Glu 105	Arg	Arg	Ala	Arg	Arg 110	Lys	Arg
35	Glu	Gln	Leu 115	Ser	Tyr	Gln	Ala	Ala 120	Ala	Ile	Ala	Ala	Ser 125	Ile	Gly	Val
	Ser	Gly 130	Ile	Ala	Ile	Phe	Ala 135	Thr	Tyr	Leu	Arg	Phe 140	Ala	Met	His	Met
40	Thr 145	Val	Gly	Gly	Ala	Val 150	Pro	Trp	Gly	Glu	Val 155	Ala	Gly	Thr	Leu	Leu 160
45	Leu	Val	Val	Gly	Gly 165	Ala	Leu	Gly	Met	Glu 170	Met	Tyr	Ala	Arg	Tyr 175	Ala
50	His	Lys	Ala	Ile 180	Trp	His	Glu	Ser	Pro 185	Leu	Gly	Trp	Leu	Leu 190	His	Lys
55	Ser	His	His 195	Thr	Pro	Arg	Thr	Gly 200	Pro	Phe	Glu	Ala	Asn 205	Asp	Leu	Phe
	Ala	Ile 210	Ile	Asn	Gly	Leu	Pro 215	Ala	Met	Leu	Leu	Cys 220	Thr	Phe	Gly	Phe
60	Trp 225	Leu	Pro	Asn	Val	Leu 230	Gly	Ala	Ala	Cys	Phe 235	Gly	Ala	Gly	Leu	Gly 240
65	Ile	Thr	Leu	Tyr	Gly 245	Met	Ala	Tyr	Met	Phe 250	Val	His	Asp	Gly	Leu -255	Val
70	His	Arg	Arg	Phe 260	Pro	Thr	Gly	Pro	Ile 265	Ala	Gly	Leu	Pro	Tyr 270	Met	Lys

5	Arg	Leu	Thr 275	Val	Ala	His	Gln	Leu 280	His	His	Ser	Gly	Lys 285	Tyr	Gly	Gly		
	Ala	Pro 290	Trp	Gly	Met	Phe	Leu 295	Gly	Pro	Gln	Glu	Leu 300	Gln	His	Ile	Pro		
10	Gly 305	Ala	Ala	Glu	Glu	Val 310	Glu	Arg	Leu	Val	Leu 315	Glu	Leu	Asp	Trp	Ser 320		
15	Lys	Arg													·			
20	<210 <211 <212	.> :	17 1650 DNA															%
25	<213	3> I	rycop	ersi	con	escu	lent	um										
30	<220 <221		CDS													•		
	<222		(112)	(1	614)	,											/	
35	<223	3>																
35 40	<400 ggca)> : acgaç												itt t		gatttt		60
40	<400 ggca)> : acgaç	gga a										gaaa	itt t	g at	gatttt g gat t Asp		60 117
	<400 ggca agga)> : acgaç accco	gga a at t		agttt	cca	tgaa aat	acaa	a ata	gaa	ttt	gttg	gaaaggaaa	itt t iaa g cca	g atomic	gat t Asp cat		
40	<400 ggca agga act Thr)> income the Leu	gga a cat t ttg Leu 5	tgaa	acc Thr	cca Pro	aat Asn	aac Asn 10	ctt Leu	gaa Glu aga	ttt Phe tct	gttg ctg Leu	gaaa ggaaa aac Asn 15	cca Pro	Me 1 cat His	g gat t Asp cat His		117
40 45	<400 ggca agga act Thr	ttg Leu ttt Phe 20	ttg Leu 5 gct Ala	aaa Lys	acc Thr aaa Lys	cca Pro gct Ala	aat Asn agt Ser 25	aac Asn 10 acc Thr	ctt Leu ttt Phe	gaa Glu aga Arg	ttt Phe tct Ser	ctg Leu gag Glu 30	aac Asn 15 aag Lys	cca Pro cat His	g ate Me 1 cat His cat	gat t Asp cat His aat Asn		117
40 45 50	<400 ggca agga act Thr ggt Gly ttt Phe 35	ttg Leu ttt Phe 20 ggt Gly	ttg Leu 5 gct Ala . tctr	aaa Lys gtt Val	acc Thr aaa Lys aag Lys	cca Pro gct Ala ttt Phe 40	aat Asn agt Ser 25 tgt Cys	aac Asn 10 acc Thr gaa Glu	ctt Leu ttt Phe act Thr	gaa Glu aga Arg ttg Leu	ttt Phe tct Ser ggt 45	ctg Leu gag Glu 30 aga Arg	aac Asn 15 aag Lys agt Ser	cca Pro cat His gtt Val	me 1 cat His cat His tgt Cys	gat t Asp cat His aat Asn gtt Val 50 aag		117 165 213
40 45 50 55	<400 ggca agga act Thr ggt Gly ttt Phe 35 aag Lys	ttg Leu ttt Phe 20 ggt Gly	ttg Leu 5 gct Ala .tctr agtr	aaa Lys gtt Val agg Arg	acc Thr aaa Lys aag Lys	cca Pro gct Ala ttt Phe 40 gct Ala	aat Asn agt Ser 25 tgt Cys	aacaa Asn 10 acc Thr gaa Glu tta Leu	ctt Leu ttt Phe act Thr gag Glu	gaa Glu aga Arg ttg Leu ctt Leu 60	ttt Phe tct Ser ggt 45 gta Val	ctg Leu gag Glu 30 aga Arg	aac Asn 15 aag Lys agt Ser gag Glu	cca Pro cat His Val acc Thr	cat His cat His Cys tgt Cys aaa Lys 65	cat His aat Asn gtt Val 50 aag Lys		117 165 213 261
40 45 50 55	<400 ggca agga act Thr ggt Gly ttt Phe 35 aag Lys	ttg Leu ttt Phe 20 ggt Gly ggt Gly	ttgu 5 gcta . ctr Ala . ctr ager cteu	aaa Lys gtt Val agg Arg agt Ser	acc Thr aaa Lys agt Ser 55 ttt Phe	cca Pro gct Ala ttt Phe 40 gct Ala gag Glu	aat Asn agt Ser 25 tgt Cys ctt Leu ctt	aac Asn 10 acc Thr gaa Glu tta Leu cct Pro	ctt Leu ttt Phe act Thr gag Glu atg Met 75	gaa Glu aga Arg ttg Leu ctt Leu f0 tat Tyr	ttt Phe tct Ser ggty 45 gta Val gac Asp	ctg Leu gag Glu 30 aga Arg cct Pro	aac Asn 15 aag Lys agt Ser gag Glu tca Ser	cca cat His gttl acc Thr aaa Lys	cat His cat His cat Cys aaa Lys 65 ggg Gly	gat t Asp cat His aat Asn gtt Val 50 aag Lys gtt Val		117 165 213 261 309

375

5	ctc ggt to Leu Gly S						Ser 7		_	1317
3	tgg aaa g Trp Lys A									1365
10	tgc ttc gg Cys Phe G 420		p Ile L							1413
15	agg ttc to Arg Phe Pl 435							Trp His		L461
20	ttc tta to Phe Leu So	eg tet eg er Ser Ar 45	g Leu P	tt cta he Leu	cct gaa Pro Glu 460	ctc ata Leu Ile	gtt t Val E	ttt ggg Phe Gly 465	ctg 1 Leu	1509
25	tct cta to Ser Leu Ph						Glu 1			1557
20	aag gga ac Lys Gly Th 48	r Val Pr								1605
30	aaa gaa to Lys Glu 500	ga atccga	gtaa tt	cggaato	et tgtcc	aatct cg	tgcc		1	L650
35	<210> 18								/	
	<211> 500	•					. •			
			•							
40	<212> PR7		n escul	entum						
40 45	<212> PR		n escul	entum						
	<212> PRT <213> Lyc	opersico			Asn Asn 10	Leu Glu	Phe I		Pro	
	<212> PRT <213> Lyc <400> 18 Met Asp Th	opersicon r Leu Leu 5	ı Lys T	hr Pro	10		Ser (Leu Asn 15		
45	<212> PRT <213> Lyo <400> 18 Met Asp Th	r Leu Lev 5 y Phe Ala 20 e Gly Se	ı Lys T	hr Pro ys Ala	10 Ser Thr 25	Phe Arg	Ser (Leu Asn 15 Glu Lys 30	His	
45 50	<212> PRT <213> Lyc <400> 18 Met Asp Th 1 His His Gl	r Leu Leu 5 y Phe Ala 20 e Gly Se	ı Lys T	hr Pro ys Ala ys Phe 40 er Ala	Ser Thr 25 Cys Glu	Phe Arg	Ser Gly A	Leu Asn 15 Glu Lys 30 Arg Ser	His Val	
45 50 55	<212> PRT <213> Lyc <400> 18 Met Asp Th 1 His His Gl His Asn Ph 35 Cys Val Ly	r Leu Leu 5 y Phe Ala 20 e Gly Sei	l Lys T	hr Pro ys Ala ys Phe 40 er Ala 5	Ser Thr 25 Cys Glu Leu Leu	Phe Arg Thr Leu Glu Leu 60	Ser C	Leu Asn 15 Slu Lys 30 Arg Ser	His Val Thr	
45 50 55 60	<212> PRT <213> Lyc <400> 18 Met Asp Th 1 His His Gl His Asn Ph 35 Cys Val Ly 50 Lys Lys Gl	r Leu Lei 5 y Phe Ala 20 e Gly Sei s Gly Sei	a Val Lys Tine Val Lys Arg Lys Ser S 5	hr Pro ys Ala ys Phe 40 er Ala 5	Ser Thr 25 Cys Glu Leu Leu Leu Pro	Phe Arg Thr Leu Glu Leu 60 Met Tyr 75	Ser C	Leu Asn 15 Glu Lys 30 Arg Ser Pro Glu	His Val Thr Lys 80	

		24/13														
	Ala	Val	Ala	Gln 100	Gln	Val	Ser	Glu	Ala 105	Gly	Leu	Ser	Val	Cys 110	Ser	Ile
5	Asp	Pro	Asn 115	Pro	Lys	Leu	Ile	Trp 120	Pro	Asn	Asn	Tyr	Gly 125	Val	Trp	Val
10	Asp	Glu 130	Phe	Glu	Ala	Met	Asp 135	Leu	Leu	Asp	Cys	Leu 140	Asp	Ala	Thr	Trp
15	Ser 145	Gly	Ala	Ala	Val	Tyr 150	Ile	Asp	Asp	Asn	Thr 155	Ala	Lys	Asp	Leu	His 160
	Arg	Pro	Tyr	Gly	Arg 165	Val	Asn	Arg	Lys	Gln 170	Leu	Lys	Ser	Lys	Met 175	Met
20	Gln	Lys	Cys	Ile 180	Met	Asn	Gly	Val	Lys 185	Phe	His	Gln	Ala	Lys 190	Val	Ile
25	Lys	Val	Ile 195	His	Glu	Glu	Ser	Lys 200	Ser	Met	Leu	Ile	Cys 205	Asn	Asp	Gly
30	Ile	Thr 210	Ile	Gln	Ala	Thr	Val 215	Val	Leu	Asp	Ala	Thr 220	Gly	Phe	Ser	Arg
35	Ser 225	Leu	Val	Gln	Tyr	Asp 230	Lys	Pro	Tyr	Asn	Pro 235	Gly	Tyr	Gln	Val	Ala 240
	Tyr	Gly	Ile	Leu	Ala 245	Glu	Val	Glu	Glu	His 250	Pro	Phe	Asp.	Wal	Asn 255	Lys
40	Met	Val	Phe	Met 260	Asp	Trp	Arg	Asp	Ser 265	His	Leu	Lys	Asn	Asn 270	Thr	Asp
45	Leu	Lys	Glu 275	Arg	Asn	Ser	Arg	Ile 280	Pro	Thr	Phe	Leu	Tyr 285	Ala	Met	Pro
50	Phe	Ser 290	Ser	Asn	Arg	Ile	Phe 295	Leu	Glu	Glu	Thr	Ser 300	Leu	Val	Ala	Arg
55	Pro 305	Gly	Leu	Arg	Ile	Asp 310	Asp	Ile	Gln	Glu	Arg 315	Met	Val	Ala	Arg	Leu 320
	Asn	His	Leu	Gly	Ile 325	Lys	Val	Lys	Ser	Ile 330	Glu	Glu	Asp	Glu	His 335	Cys
60	Leu	Ile	Pro	Met 340	Gly	Gly	Pro	Leu	Pro 345	Val	Leu	Pro	Gln	Arg 350	Val	Val
65	Gly	Ile	Gly 355	Gly	Thr	Ala	Gly	Met 360	Val	His	Pro	Ser	Thr 365	Gly	Tyr	Met
70	Val	Ala 370	Arg	Thr	Leu	Ala	Ala 375	Ala	Pro	Val	Val	Ala 380	Asr	a Ala	Ile	e Ile

5	Gln 385	Tyr	Leu	GΪ́	Ser	390	Arg	ser	HIS	Ser	395	ASII	GIU	Leu	Ser	400		
	Ala	Val	Trp	Lys	Asp 405	Leu	Trp	Pro	Ile	Glu 410	Arg	Arg	Arg	Gln	Arg 415	Glu		
10	Phe	Phe	Cys	Phe 420	Gly	Met	Asp	Ile	Leu 425	Leu	Lys	Leu	Asp	Leu 430	Pro	Ala		
15	Thr	Arg	Arg 435	Phe	Phe	Asp	Ala	Phe 440	Phe	Asp	Leu	Glu	Pro 445	Arg	Tyr	Trp		
20	His	Gly 450	Phe	Leu	Ser	Ser	Arg 455	Leu	Phe	Leu	Pro	Glu 460	Leu	Ile	Val	Phe		
25	Gly 465	Leu	Ser	Leu	Phe	Ser 470	His	Ala	Ser	Asn	Thr 475	Ser	Arg	Phe	Glu	Ile 480		
	Met	Thr	Lys	Gly	Thr 485	Val	Pro	Leu	Val	Asn 490	Met	Ile	Asn	Asn	Leu 495	Leu		
30	Gln	Asp	Lys	Glu 500														
35	<210	0> :	19	٠													. ′	
	<21	1> :	3 3											•				
	<212	2> 1	ONA															
40	<213> Künstliche Sequenz																	
45	<220	0>																
	<22	1> 1	orime	er_b	ind													
50	<222> (1)(33)																	
	<22	3>																
55	<400 gca		19 cta g	gacci	ttat	aa a	gata	tttt	g tg	a								33
60	<21	0> :	20															
	<21	1> :	33															
	<21	2> 1	DNA															
65	<21	3> 1	Küns	tlic	he S	egue	nz											
70	<22	0>																

PCT/EP2003/009106

```
<221> primer_bind
     <222>
           (1)..(33)
 5
     <223>
     <400> 20
                                                                           33
10
     gcatgcatct agaaatggtt cagtgtcaac cat
     <210> 21
15
     <211> 805
     <212> DNA
     <213> Nostoc sp. Strain PCC7120
20
     <220>
25
     <221> variation
     <222> (1)..(805)
     <223>
30
     <400> 21
     gcatgcatct agaaatggtt cagtgtcaac catcatctct gcattcagaa aaactggtgt 🗸
                                                                           60
35
                                                                           120
     tattgtcatc gacaatcaga gatgataaaa atattaataa gggtatattt attgcctgct
     ttatcttatt tttatgggca attagtttaa tcttattact ctcaatagat acatccataa
                                                                           180
                                                                           240
40
     ttcataagag cttattaggt atagccatgc tttggcagac cttcttatat acaggtttat
                                                                           300
     ttattactgc tcatgatgcc atgcacggcg tagtttatcc caaaaatccc agaataaata
                                                                           360
     attttatagg taagctcact ctaatcttgt atggactact cccttataaa gatttattga
45
     aaaaacattg gttacaccac ggacatcctg gtactgattt agaccctgat tattacaatg
                                                                           420
     gtcatcccca aaacttcttt ctttggtatc tacattttat gaagtcttat tggcgatgga
                                                                           480
     cgcaaatttt cggattagtg atgatttttc atggacttaa aaatctggtg catataccag
50
                                                                           540
                                                                           600
     aaaataattt aattatattt tggatgatac cttctatttt aagttcagta caactatttt
     attttggtac atttttgcct cataaaaagc tagaaggtgg ttatactaac ccccattgtg
                                                                           660
55
                                                                           720
     cgcgcagtat cccattacct cttttttggt cttttgttac ttgttatcac ttcggctacc
                                                                           780
     acaaggaaca tcacgaatac cctcaacttc cttggtggaa attacctgaa gctcacaaaa
                                                                           805
60
     tatctttata aggtctagag catgc
     <210> 22
65
     <211> 24
     <212> DNA
     <213> Künstliche Sequenz
```



```
<220>
 5
    <221> primer_bind
     <222> (1)..(24)
     <223>
10
     <400> 22
     aggtaccgca cggtctgcca atcc
15
     <210> 23
     <211> 26
20
     <212> DNA
     <213> Künstliche Sequenz
25
     <220>
     <221> primer_bind
30
     <222> (1)..(26)
     <223>
35
     <400> 23
     aagcttgacc tgattatcag cacggt
40
     <210> 24
     <211> 4624
.45
     <212> DNA
     <213> Erwinia uredovora
50
     <220>
     <221> CDS
55
     <222> (128)..(1267)
     <223>
60
     <220>
     <221> CDS
65
     <222> (1288)..(2766)
     <223>
```

WO 2004/018694 PCT/EP2003/009106

											•					
•	<220>						٠									
	<221>	CDS														
5	<222>	(2802).	. (368	9)												
	<223>															
40																
10	<220>															
	<221> i	DNA														
15	<222>	(3631).	. (415	8)												
	<223>															
00																
20	<400> 2 gtcgactt	24 tc ago	agcgc	at go	gcgaa	aaato	cag	jacag	jccc	ttcg	ıtttg	gc a	gggg	gcacc		60
	atggccgc															120
25	agcggct	atg ca	a ccg	cat	tat	gat	ctg	att	ctc	gtg	ggg	gct	gga	ctc		169
		Met Gl	n Pro	His	Tyr 5	Asp	Leu	Ile	Leu	10	GIĀ	Ala	GIA	rea		
30	gcg aat	ggc ct	t atc	gcc	ctg	cgt	ctt	cag	cag	cag	caa	cct	gat	atg Met		217
	Ala Asn 15	GIA re	u 11e	20	Leu	Arg	pea	GIII	25	GIII	GIII	FLO	den	30		
35	cgt att Arg Ile	ttg ct	t atc	gac	gcc Ala	gca	ccc	cag	gcg	ggc Glv	ggg Glv	aat Asn	cat His	acg Thr	.′	265
33	Arg ire	Dea De	35	пор	2124	2120	110	40		2			45			
	tgg tca Trp Ser	ttt ca Phe Hi	c cac s His	gat Asp	gat Asp	ttg Leu	act Thr	gag Glu	agc Ser	caa Gln	cat His	cgt Arg	tgg Trp	ata Ile		313
40	_	50					55					60				
	gct ccg Ala Pro	ctg gt Leu Va	g gtt l Val	cat His	cac His	tgg Trp	ccc Pro	gac Asp	tat Tyr	cag Gln	Val	cgc Arg	ttt Phe	ccc Pro		361
45		65				70					75					
	aca cgc Thr Arg	cgt cg Arg Ar	t aag g Lys	ctg Leu	aac Asn	agc Ser	ggc Gly	tac Tyr	ttt Phe	Cys	att Ile	act Thr	tct Ser	cag Gln		409
	80				85					90.						
50	cgt ttc Arg Phe	gct ga Ala Gl	g gtt u Val	tta Leu	cag Gln	cga Arg	cag Gln	ttt Phe	Gly	ccg Pro	cac His	ttg Leu	tgg Trp	Met		457
	95			100					105					110		
55	gat acc Asp Thr	gcg gt Ala Va	c gca l Ala	gag Glu	gtt Val	aat Asn	gcg Ala	Glu	tct Ser	gtt Val	cgg Arg	ttg Leu	ьуs	aag Lys		505
			115			٠		120					125			553
	ggt cag Gly Gln	Val Il	e Gly	gcc Ala	cgc Arg	gcg Ala	Val	att Ile	gac Asp	Gly	cgg	GLY	Tyr	Ala		222
60		13					135				- 4- 4-	140		~~~		601
	gca aat Ala Asn	Ser Al	a ctg a Leu	agc Ser	gtg Val	Gly	Phe	Gln	gcg Ala	Phe	Ile 155	Gly	Gln	Glu		001
65		145				150										640
	tgg cga Trp Arg	ttg ag Leu Se	c cac r His	ccg Pro	His	ggt Gly	tta Leu	tcg Ser	tct Ser	Pro	Ile	atc Ile	Met	Asp		649
	160				165		L = •		.	170	+	2~-	c+-	666		697
70	gcc acg	gtc ga	t cag	caa	aat	ggt	tat	cgc	ttc	gtg	tac	agc	ctg	ccg		031

								:	29/73								
	Ala 175	Thr	Val	Asp	Gln	Gln 180	Asn	Gly	Týr	Arg	Phe 185	Val	Tyr	Ser	Leu	Pro 190	
5	ctc Leu	tcg Ser	ccg Pro	acc Thr	aga Arg 195	ttg Leu	tta Leu	att Ile	gaa Glu	gac Asp 200	acg Thr	cac His	tat Tyr	att Ile	gat Asp 205	aat Asn	745
10	gcg Ala	aca Thr	tta Leu	gat Asp 210	cct Pro	gaa Glu	tgc Cys	gcg Ala	cgg Arg 215	caa Gln	aat Asn	att Ile	tgc Cys	gac Asp 220	tat Tyr	gcc Ala	793
16	gcg Ala	caa Gln	cag Gln 225	ggt Gly	tgg Trp	cag Gln	ctt Leu	cag Gln 230	aca Tḥr	ctg Leu	ctg Leu	cga Arg	gaa Glu 235	gaa Glu	cag Gln	ggc Gly	841
15	gcc Ala	tta Leu 240	ccc Pro	att Ile	act Thr	ctg Leu	tcg Ser 245	ggc Gly	aat Asn	gcc Ala	gac Asp	gca Ala 250	ttc Phe	tgg Trp	cag Gln	cag Gln	889
20	cgc Arg 255	ccc Pro	ctg Leu	gcc Ala	tgt Cys	agt Ser 260	gga Gly	tta Leu	cgt Arg	gcc Ala	ggt Gly 265	ctg Leu	ttc Phe	cat His	cct Pro	acc Thr 270	937
25	acc Thr	ggc Gly	tat Tyr	tca Ser	ctg Leu 275	ccg Pro	ctg Leu	gcg Ala	gtt Val	gcc Ala 280	gtg Val	gcc Ala	gac Asp	cgc Arg	ctg Leu 285	agt Ser	985
30	gca Ala	ctt Leu	gat Asp	gtc Val 290	ttt Phe	acg Thr	tcg Ser	gcc Ala	tca Ser 295	att Ile	cac His	cat His	gcc Ala	att Ile 300	acg Thr	cat His	1033
35	ttt Phe	gcc Ala	cgc Arg 305	gag Glu	cgc Arg	tgg Trp	cag Gln	cag Gln 310	cag Gln	ggc Gly	ttt Phe	ttc Phe	cgc Arg 315	atg Met	ctg Leu	aat Asn	1081
33	cgc Arg	atg Met 320	ctg Leu	ttt Phe	tta Leu	gcc Ala	gga Gly 325	ccc Pro	gcc Ala	gat Asp	tca Ser	cgc Arg 330	tgg Trp	cgg Arg	gtt Val	atg Met	1129
40	cag Gln 335	cgt Arg	ttt Phe	tat Tyr	ggt Gly	tta Leu 340	cct Pro	gaa Glu	gat Asp	tta Leu	att Ile 345	gcc Ala	cgt Arg	ttt Phe	tat Tyr	gcg Ala 350	1177
45	gga Gly	aaa Lys	ctc Leu	acg Thr	ctg Leu 355	acc Thr	gat Asp	cgg Arg	cta Leu	cgt Arg 360	att Ile	ctg Leu	agc Ser	ggc Gly	aag Lys 365	ccg Pro	1225
50	cct Pro	gtt Val	ccg Pro	gta Val 370	tta Leu	gca Ala	gca Ala	ttg Leu	caa Gln 375	gcc Ala	att Ile	atg Met	acg Thr	act Thr 380			1267
cc	cato	gtta	aaa g	gagco	gacta	ac at Me	g aa et Ly	aa co /s Pi	ca ac	ar Tl	eg gt nr Va 85	ta a al I	tt g le G	gt g ly A	la G	gc ttc ly Phe 90	1320
55	ggt Gly	ggc Gly	ctg Leu	gca Ala 395	ctg Leu	gca Ala	att Ile	cgt Arg	cta Leu 400	caa Gln	gct Ala	gcg Ala	ggg Gly	atc Ile 405	ccc Pro	gtc Val	1368
60	tta Leu	ctg Leu	ctt Leu 410	gaa Glu	caa Gln	cgt Arg	gat Asp	aaa Lys 415	ccc Pro	ggc Gly	ggt Gly	cgg	gct Ala 420	tat Tyr	gtc Val	tac Tyr	1416
65	gag Glu	gat Asp 425	cag Gln	ggg ggg	ttt Phe	acc Thr	ttt Phe 430	gat Asp	gca Ala	ggc Gly	ccg Pro	acg Thr 435	gtt Val	atc Ile	acc Thr	gat Asp	1464
70	ccc Pro 440	agt Ser	gcc Ala	att Ile	gaa Glu	gaa Glu 445	ctg Leu	ttt Phe	gca Ala	ctg Leu	gca Ala 450	gga Gly	aaa Lys	cag Gln	tta Leu	aaa Lys 455	1512

									•								
	gag Glu	tat Tyr	gtc Val	gaa Glu	ctg Leu 460	ctg Leu	ccg Pro	gtt Val	acg Thr	ccg Pro 465	ttt Phe	tac Tyr	cgc Arg	ctg Leu	tgt Cys 470	tgg Trp	1560
5	gag Glu	tca Ser	ggg Gly	aag Lys 475	gtc Val	ttt Phe	aat Asn	tac Tyr	gat Asp 480	aac Asn	gat Asp	caa Gln	acc Thr	cgg Arg 485	ctc Leu	gaa Glu	1608
10	gcg Ala	cag Gln	att Ile 490	cag Gln	cag Gln	ttt Phe	aat Asn	ccc Pro 495	cgc Arg	gat Asp	gtc Val	gaa Glu	ggt Gly 500	tat Tyr	cgt Arg	cag Gln	1656
15	ttt Phe	ctg Leu 505	gac Asp	tat Tyr	tca Ser	cgc Arg	gcg Ala 510	gtg Val	ttt Phe	aaa Lys	gaa Glu	ggc Gly 515	tat Tyr	cta Leu	aag Lys	ctc Leu	1704
20	ggt Gly 520	act Thr	gtc Val	cct Pro	ttt Phe	tta Leu 525	tcg Ser	ttc Phe	aga Arg	gac Asp	atg Met 530	ctt Leu	cgc Arg	gcc Ala	gca Ala	cct Pro 535	1752
O.E.	caa Gln	ctg Leu	gcg Ala	aaa Lys	ctg Leu 540	cag Gln	gca Ala	tgg Trp	aga Arg	agc Ser 545	gtt Val	tac Tyr	agt Ser	aag Lys	gtt Val 550	gcc Ala	1800
25	agt Ser	tac Tyr	atc Ile	gaa Glu 555	gat Asp	gaa Glu	cat His	ctg Leu	cgc Arg 560	cag Gln	gcg Ala	ttt Phe	tct Ser	ttc Phe 565	cac His	tcg Ser	. 1848
30	ctg Leu	ttg Leu	gtg Val 570	ggc Gly	ggc Gly	aat Asn	ccc Pro	ttc Phe 575	gcc Ala	acc Thr	tca Ser	tcc Ser	att Ile 580	tat Tyr	acg Thr	ttg Leu	1896
35	ata Ile	cac His 585	gcg Ala	ctg Leu	gag Glu	cgt Arg	gag Glu 590	tgg Trp	ggc Gly	gtc Val	tgg Trp	ttt Phe 595	ccg Pro	cgt Arg '	ggc Gly	ggc Gly	1944
40	acc Thr 600	ggc Gly	gca Ala	tta Leu	gtt Val	cag Gln 605	Gly ggg	atg Met	ata Ile	aag Lys	ctg Leu 610	ttt Phe	cag Gln	gat Asp	ctg Leu	ggt Gly 615	1992
45	ggc Gly	gaa Glu	gtc Val	gtg Val	tta Leu 620	aac Asn	gcc Ala	aga Arg	gtc Val	agc Ser 625	cat His	atg Met	gaa Glu	acg Thr	aca Thr 630	gga Gly	2040
45	aac Asn	aag Lys	att Ile	gaa Glu 635	gcc Ala	gtg Val	cat His	tta Leu	gag Glu 640	gac Asp	ggt Gly	cgc Arg	agg Arg	ttc Phe 645	ctg Leu	acg Thr	2088
50	caa Gln	gcc Ala	gtc Val 650	gcg Ala	tca Ser	aat Asn	gca Ala	gat Asp 655	gtg Val	gtt Val	cat His	acc Thr	tat Tyr 660	Arg	gac Asp	ctg Leu	2136
55	tta Leu	agc Ser 665	cag Gln	cac His	cct Pro	gcc Ala	gcg Ala 670	gtt Val	aag Lys	cag Gln	tcc Ser	aac Asn 675	гус	ctg Leu	cag Gln	act Thr	2184
60	aag Lys 680	cgc Arg	atg Met	agt Ser	aac Asn	tct Ser 685	ctg Leu	ttt Phe	gtg Val	ctc Leu	tat Tyr 690	Pne	ggt Gly	ttg Leu	aat Asr	cac His 695	2232
05	cat His	cat His	gat Asp	cag Gln	ctc Leu 700	gcg Ala	cat His	cac His	acg Thr	gtt Val 705	Cys	tto Phe	ggc Gly	ccg Pro	cgt Arg 710	tac Tyr	2280
65	cgc Arg	gag Glu	ctg Leu	att Ile 715	gac Asp	gaa Glu	att Ile	ttt Phe	aat Asn 720	His	gat Asp	ggc Gly	cto Lev	gca Ala 725	GIL	g gac 1 Asp	2328
70	ttc	tca	ctt	tat	ctg	cac	gcg	ccc	tgt	gto	acc	g gat	tcg	, tca	a ctg	g gcg	2376

	Phe	Ser	Leu 730	Tyr	Leu	His	Ala	Pro 735	Cys	Val	Thr	Asp	Ser 740	Ser	Leu	Ala	
5	cct Pro	gaa Glu 745	ggt Gly	tgc Cys	ggc Gly	agt Ser	tac Tyr 750	tat Tyr	gtg Val	ttg Leu	gcg Ala	ccg Pro 755	gtg Val	ccg Pro	cat His	tta Leu	2424
10	ggc Gly 760	acc Thr	gcg Ala	aac Asn	ctc Leu	gac Asp 765	tgg Trp	acg Thr	gtt Val	gag Glu	ggg Gly 770	cca Pro	aaa Lys	cta Leu	cgc Arg	gac Asp 775	2472
4.5	cgt Arg	att Ile	ttt Phe	gcg Ala	tac Tyr 780	ctt Leu	gag Glu	cag Gln	cat His	tac Tyr 785	atg Met	cct Pro	ggc Gly	tta Leu	cgg Arg 790	agt Ser	2520
15	cag Gln	ctg Leu	gtc Val	acg Thr 795	cac His	cgg Arg	atg Met	ttt Phe	acg Thr 800	ccg Pro	ttt Phe	gat Asp	ttt Phe	cgc Arg 805	gać Asp	cag Gln	2568
20	ctt Leu	aat Asn	gcc Ala 810	tat Tyr	cat His	ggc Gly	tca Ser	gcc Ala 815	ttt Phe	tct Ser	gtg Val	gag Glu	ccc Pro 820	gtt Val	ctt Leu	acc Thr	2616
25	cag Gln	agc Ser 825	gcc Ala	tgg Trp	ttt Phe	cgg Arg	ccg Pro 830	cat His	aac Asn	cgc Arg	gat Asp	aaa Lys 835	acc Thr	att Ile	act Thr	aat Asn	2664
30	ctc Leu 840	tac Tyr	ctg Leu	gtc Val	ggc Gly	gca Ala 845	ggc Gly	acg Thr	cat His	ccc Pro	ggc Gly 850	gca Ala	ggc Gly	att Ile	cct Pro	ggc Gly 855	2712
35	gtc Val	atc Ile	ggc Gly	tcg Ser	gca Ala 860	aaa Lys	gcg Ala	aca Thr	gca Ala	ggt Gly 865	ttg Leu	atg Met	ctg Leu	gag Glu	gat Asp 870	ctg Leu	2760
00	att Ile	tga	ataa	atccg	gtc g	gttad	ctcaa	at ca	atgco	ggtcg	g aaa			Ala V	gtt g Val (375		2813
40	Ile	aaa	agt	ttt	aca	aca	acc	tca	aag	tta	ttt	gat	Met 1 gca	Ala V 8 aaa	Jal (cgg	2813 2861
	tcg Ser	aaa Lys agc	agt Ser gta	ttt Phe 880	gcg Ala atg	aca Thr	gcc Ala tac	tca Ser	aag Lys 885 tgg	tta Leu tgc	ttt Phe cgc	gat Asp	gca Ala tgt	aaa Lys 890 gac	Jal (375 acc	cgg Arg gtt	
40	tcg Ser cgc Arg	aaa Lys agc Ser	agt Ser gta Val 895	ttt Phe 880 ctg Leu	gcg Ala atg Met acg Thr	aca Thr ctc Leu	gcc Ala tac Tyr ggc Gly	tca Ser gcc Ala 900 ttt Phe	aag Lys 885 tgg Trp	tta Leu tgc Cys gcc Ala	ttt Phe cgc Arg	gat Asp cat His	gca Ala tgt Cys 905 cct Pro	aaa Lys 890 gac Asp	Jal (375) acc Thr gat Asp	cgg Arg gtt Val	2861
40 45 50	tcg Ser cgc Arg att	aaa Lys agc Ser gac Asp 910	agt Ser gta Val 895 gat Asp	ttt Phe 880 ctg Leu cag Gln	gcg Ala atg Met acg Thr	aca Thr ctc Leu ctg Leu	gcc Ala tac Tyr ggc Gly 915	tca Ser gcc Ala 900 ttt Phe	aag Lys 885 tgg Trp cag Gln	tta Leu tgc Cys gcc Ala	ttt Phe cgc Arg cgg Arg	gat Asp cat His cag Gln 920	gca Ala tgt Cys 905 cct Pro	aaa Lys 890 gac Asp gcc Ala	Jal (375) acc Thr gat Asp	cgg Arg gtt Val caa. Gln	2861 2909
40 45	tcg Ser cgc Arg att Ile acg Thr 925 tat	aaa Lys agc Ser gac Asp 910 ccc Pro	agt Ser gta Val 895 gat Asp gaa Glu	ttt Phe 880 ctg Leu cag Gln caa Gln	gcg Ala atg Met acg Thr cgt Arg	aca Thr ctc Leu ctg Leu 930	gcc Ala tac Tyr ggc Gly 915 atg Met	tca Ser gcc Ala 900 ttt Phe caa Gln	aag Lys 885 tgg Trp cag Gln ctt Leu	tta Leu tgc Cys gcc Ala gag Glu	ttt Phe cgc Arg cgg Arg atg Met 935	gat Asp cat His cag Gln 920 aaa Lys	gca Ala tgt Cys 905 cct Pro acg Thr	aaa Lys 890 gac Asp gcc Ala cgc	Jal (375) acc Thr gat Asp tta Leu cag	cgg Arg gtt Val caa Gln gcc Ala 940 gaa	2861 2909 2957
40 45 50	tcg Ser cgc Arg att Ile acg Thr 925 tat Tyr	aaa Lys agc Ser gac Asp 910 ccc Pro	agt Ser gta Val 895 gat Asp gaa Glu gga Gly	ttt Phe 880 ctg Leu cag Gln caa Gln tcg Ser	gcg Ala atg Met acg Thr cgt Arg cag Gln 945	aca Thr ctc Leu ctg Leu 930 atg Met	gcc Ala tac Tyr ggc Gly 915 atg Met cac His	tca Ser gcc Ala 900 ttt Phe caa Gln gaa Glu	aag Lys 885 tgg Trp cag Gln ctt Leu ccg Pro	tta Leu tgc Cys gcc Ala gag Glu gcg Ala 950	ttt Phe cgc Arg cgg Arg atg Met 935 ttt Phe	gat Asp cat His cag Gln 920 aaa Lys gcg Ala	gca Ala tgt Cys 905 cct Pro acg Thr gct Ala	aaa Lys 890 gac Asp gcc Ala cgc Arg ttt Phe gat	Jal (375) acc Thr gat Asp tta Leu cag Gln cag Gln	cgg Arg gtt Val caa Gln gcc Ala 940 gaa Glu ctg	2861 2909 2957
40 45 50	tcg Ser cgc Arg att Ile acg Thr 925 tat Tyr gtg Val	aaa Lys agc Ser gac Asp 910 ccc Pro gca Ala gct	agt Ser gta Val 895 gat Asp gaa Glu gga Gly atg	ttt Phe 880 ctg Leu cag Gln caa Gln tcg Ser gct Ala960 gcc	gcg Ala atg Met acg Thr cgt Arg cag Gln 945 cat His	aca Thr ctc Leu ctg Leu g30 atg Met gat Asp	gcc Ala tac Tyr ggc Gly 915 atg Met cac His	tca Ser gcc Ala 900 ttt Phe caa Gln gaa Glu gcc Ala	aag Lys 885 tgg Trp cag Gln ctt Leu ccg Pro ccg Pro 965 gaa	tta Leu tgc Cys gcc Ala gag Glu gcg Ala 950 gct Ala	ttt Phe cgc Arg cgg Arg atg Met 935 ttte tac Tyr	gat Asp cat His cag Gln 920 aaa Lys gcg Ala gcg Ala	gca Ala tgts 905 ccto acg Thr gct Ala ttte Phe	aaa Lys 890 gac Asp gcc Ala cgc Ala cgc Arg ttt Phe gat Asp 970 caa	Jal (375) acc Thr gat Asp ttau cag Gln cagn 955 cat	cgg Arg gtt Val caa Gln gcc Ala0 gaa Glu ctg Leu gat	2861 2909 2957 3005

r	atg Met 1005	gcg Ala	caa Gln	atc Ile	atg Met	ggc Gly 1010	gtg Val	cgg Arg	gat Asp	aac Asn	gcc Ala 1015	acg Thr	ctg Leu	gac Asp	cgc Arg	3242
5	gcc Ala 1020	tgt Cys	gac Asp	ctt Leu	G]À aàa	ctg Leu 1025	gca Ala	ttt Phe	cag Gln	ttg Leu	acc Thr 1030	aat Asn	att Ile	gct Ala	cgc Arg	3287
10	gat Asp 1035	att Ile	gtg Val	gac Asp	gat Asp	gcg Ala 1040	cat His	gcg Ala	ggc Gly	cgc Arg	tgt Cys 1045	tat Tyr	ctg Leu	ccg Pro	gca Ala	3332
1 5	agc Ser 1050	Trp	ctg Leu	gag Glu	cat His	gaa Glu 1055	ggt Gly	ctg Leu	aac Asn	aaa Lys	gag Glu 1060	aat Asn	tat Tyr	gcg Ala	gca Ala	3377
20	cct Pro 1065	gaa Glu	aac Asn	cgt Arg	cag Gln	gcg Ala 1070	ctg Leu	agc Ser	cgt Arg	atc Ile	gcc Ala 1075	cgt Arg	cgt Arg	ttg Leu	gtg Val	3422
25	cag Gln 1080	Glu	Ala	Glu	Pro	Tyr 1085	Tyr	Leu	Ser	Ala	aca Thr 1090	Ala	Gly	Leu	Ala	3467
20	ggg Gly 1095	ttg Leu	ccc Pro	ctg Leu	cgt Arg	tcc Ser 1100	gcc Ala	tgg Trp	gca Ala	atc Ile	gct Ala 1105	Thr	gcg Ala	aag Lys	cag Gln	3512
30	gtt Val 1110	tac Tyr	cgg Arg	aaa Lys	ata Ile	ggt Gly 1115	gtc Val	aaa Lys	gtt Val	gaa Glu	cag Gln 1120	Ala	ggt	cag Gln	caa Gln	3557
35	gcc Ala 1125	tgg Trp	gat Asp	cag Gln	cgg Arg	cag Gln 1130	tca Ser	acg Thr	acc Thr	acg Thr	ccc Pro 1135	Glu	aaa Lys	tta Leu	acg Thr	√3602
40	ctg Leu 1140	ctg Leu	ctg Leu	gcc Ala	gcc Ala	tct Ser 1145	ggt Gly	cag Gln	gcc Ala	ctt Leu	act Thr 1150	Ser	cgg Arg	atg Met	Arg Arg	3647
45	gct Ala 1155	cat His	cct Pro	ccc Pro	cgc Arg	cct Pro 1160	gcg Ala	cat His	ctc Leu	tgg Trp	cag Gln 1165	Arg	ccg Pro	ctc Leu		3689
.0	tage	gccat	g to	ctttc	ccgg	g agc	gtcg	cct	gaag	tttt	ga ca	gggg	cggc	gca	tagagga	3749
	-														gccatat	
50															tgcacca	3869
															atccact	3929
55															gcaaaaa	3989
															gaaagat	4049 4109
															acttcca	4169
60															tctccgg	4229
															tctggcg	4229
65															tttcaga	4349
															tttcgac	4409
70															gcagtgaa aatcagg	4469
70	cgca	gctg	ug da	ayyc	yaac	- yyı	cyaa	yaa	cccy	ccac	99 ~2	,-95				

						h - 1.		4500
	ctgaaagcc	g ggcacgtc	aa acggc	ttcag ta	cggcaccc	acggtatgg	ga acttacc	gcg 4529
5	aggcgccag	g gccgcaaa	gt agggt	tgcca gt	cgagatcg	acggcgaco	g tgctgat	aat 4589
0	caggtcaaa	c tggcccgc	ca ggctt	tttaa ag	ctt			4624
10	<210> 25							
	<211> 38	0						
	<212> PR	T						
15	<213> Erv	winia ured	ovora					
			•				•	
	<400> 25							
20	Met Gln P	ro His Tyr	Asp Leu	Ile Leu	Val Gly	Ala Gly I	Leu Ala As	in.
	1	5			10		15	-
25	Gly Leu I	le Ala Leu	Ara Leu	Gln Gln	Gln Gln	Pro Asp N	Met Arg Il	.e
20	01, 200 1	20	9 200	25	00		30	
) - 3 33 -	33 - D	01 11-	Gl., Gl.,	Non His O	Nose Meso Co	
30	Leu Leu I:		Ala Pro	40	GIA GIA	45	int Ith se	: T
	Phe His His 50	is Asp Asp	Leu Thr 55	Glu Ser	Gln His	Arg Trp 1	le Ala Pr	7
35								
	Leu Val Va	al His His	Trp Pro	Asp Tyr	Gln Val	Arg Phe J	ro Thr Ar 80	
40	03		, 0		, 5			
40	Arg Arg Ly		Ser Gly	Tyr Phe		Thr Ser (ne
		85			90		9,5	
45	Ala Glu Va	al Leu Gln	Arg Gln	Phe Gly	Pro His	Leu Trp 1	Met Asp Th	nr
		100		105		3	110	
	Ala Val Al	la Glu Val	Asn Ala	Glu Ser	Val Arg	Leu Lys 1	Lvs Glv Gl	ln°
50	11			120		125		
	Tla Cl	7] - 7	71- 17-1	71- 3	Clu Ara	Clie There is	אל הוא	· m
	Val Ile Gl 130	ry Ala Alg	135	Tie Asp	GIY AIG	140	ila Ala As	•11
55					_			
	Ser Ala Le	eu Ser Val	Gly Phe 150	Gln Ala	Phe Ile 155	Gly Gln (3lu Trp Ai 16	
60								
	Leu Ser Hi		Gly Leu	Ser Ser		Ile Met A	Asp Ala Th 175	nr
		165			170		¥, J	
65	Val Asp Gl		Gly Tyr					er
		180		185			190.	
	Pro Thr Ar	g Leu Leu	Ile Glu	Asp Thr	His Tyr	Ile Asp	Asn Ala Tì	nr
70	19			200	-	205		

5	Leu	Asp 210	Pro	Glu	Cys	Ala	Arg 215	Gln	Asn	Ile	Cys	Asp 220	Tyr	Ala	Ala	Gln
	Gln 225	Gly	Trp	Gln	Leu	Gln 230	Thr	Leu	Leu	Arg	Glu 235	Glu	Gln	Gly	Ala	Leu 240
10	Pro	Ile	Thr	Leu	Ser 245	Gly	Asn	Ala	Asp	Ala 250	Phe	Trp	Gln	Gln	Arg 255	Pro
15	Leu	Ala	Cys	Ser 260	Gly	Leu	Arg	Ala	Gly 265	Leu	Phe	His	Pro	Thr 270	Thr	Gly
20	Tyr	Ser	Leu 275	Pro	Leu	Ala	Val	Ala 280	Val	Ala	Asp	Arg	Leu 285	Ser	Ala	Leu
25	Asp	290	Phe	Thr	Ser	Ala	Ser 295	Ile	His	His	Ala	Ile 300	Thr	His	Phe	Ala
	Arg 305	Glu	Arg	Trp	Gln	Gln 310	Gln	Gly	Phe	Phe	Arg 315	Met	Leu	Asn	Arg	Met 320
30	Leu	Phe	Leu	Ala	Gly 325	Pro	Ala	Asp	Ser	Arg 330	Trp	Arg	Val	Met	Gln 335	Arg
35	Phe	Tyr	Gly	Leu 340	Pro	Glu	Asp	Leu	Ile 345	Ala	Arg	Phe		Ala 350	Gly	Lys
40	Leu	Thr	Leu 355	Thr	Asp	Arg	Leu	Arg 360	Ile	Leu	Ser	Gly	Lys 365	Pro	Pro	Val
45	Pro	Val 370	Leu	Ala	Ala	Leu	Gln 375	Ala	Ile	Met	Thr	Thr 380				
	<21	0>	26													
50	<21	1>	492													
	<21	2>	PRT													
55	<21	3>	Erwi	nia 1	ured	ovor	a									
	<40		26													
60	Met 1	. Lys	Pro	Thr	Thr 5	Val	Ile	· Gly ·	Ala	10	Phe	e Gly	r Gly	/ Le	ı Ala 15	a Leu
65	Ala	lle	Arg	Leu 20	Gln	Ala	Ala	. Gly	7 Ile 25	e Pro	Val	l Lev	ı Let	30	u Gl	u Gln
70	Arç	, Asp	Lys 35	Pro	Gly	Gly	Arg	Ala 40	. Туз	· Val	Туз	c Gli	1 As) 45	p Gl	n Gl	y Phe

									-					_	_	
_		Phe 50	Asp	Ala	Gly	Pro	Thr 55	Val	Ile	Thr	Asp	Pro 60	Ser	Ala	Ile	Glu
5	Glu 65	Leu	Phe	Ala	Leu	Ala 70	Gly	Lys	Gln	Leu	Lys 75	Glu	Tyr	Val	Glu	Leu 80
10	Leu	Pro	Val	Thr	Pro 85	Phe	Tyr	Arg	Leu	Суs 90	Trp	Glu	Ser	Gly	Lys 95	Val
15		Asn	Tyr	Asp 100	Àsn	Asp	Gln	Thr	Arg 105	Leu	Glu	Ala	Gln	Ile 110	Gln	Gln
20		Asn	Pro 115	Arg	Asp	Val	Glu	Gly 120	Tyr	Arg	Gln	Phe	Leu 125	Asp	Tyr	Ser
		Ala 130	Val	Phe	Lys	Glu	Gly 135	Tyr	Leu	Lys	Leu	Gly 140	Thr	Val	Pro	Phe
25	Leu 145	Ser	Phe	Arg	Asp	Met 150	Leu	Arg	Ala	Ala	Pro 155	Gln	Leu	Ala	Lys	Leu 160
30	Gln	Ala	Trp	Arg	Ser 165	Val	Tyr	Ser	Lys	Val 170	Ala	Ser	Tyr	Ile	Glu 175	Asp
35		His	Leu	Arg 180	Gln	Ala	Phe	Ser	Phe 185	His	Ser	Leu	Leu	Val 190	Gly	Gly
40		Pro	Phe 195	Ala	Thr	Ser	Ser	Ile 200	Tyr	Thr	Leu	Ile	His 205	Ala	Leu	Glu
		Glu 210	Trp	Gly	Val	Trp	Phe 215	Pro	Arg	Gly	Gly	Thr 220	Gly	Ala	Leu	Val
45	Gln 225	Gly	Met	Ile	Lys	Leu 230	Phe	Gln	Asp	Leu	Gly 235	Gly	Glu	Val	Val	Leu 240
50	Asn	Ala	Arg	Val	Ser 245	His	Met	Glu	Thr	Thr 250	Gly	Asn	Lys	Ile	Glu 255	Ala
55	Val	His	Leu	Glu 260	Asp	Gly	Arg	Arg	Phe 265	Leu	Thr	Gln	Ala	Val 270	Ala	Ser
60		Ala	Asp 275	Val	Val	His	Thr	Tyr 280	Arg	Asp	Leu	Leu	Ser 285	Gln	His	Pro
		Ala 290	Val	Lys	Gln	Ser	Asn 295	Lys	Leu	Gln	Thr	Lys 300	Arg	Met	Ser	Asn
65	Ser 305	Leu	Phe	Val	Leu	Tyr 310	Phe	Gly	Leu	Asn	His 315	His	His	Asp	·Gln	Leu 320
70	Ala	His	His	Thr	Val	Cys	Phe	Gly	Pro	Arg	Tyr	Arg	Glu	Leu	Ile	Asp

. 330

5	Glu	Ile	Phe	Asn 340	His	Asp	Gly	Leu	Ala 345	Glu	Asp	Phe	Ser	Leu 350	Tyr	Leu
10	His	Ala	Pro 355	Cys	Val	Thr	Asp	Ser 360	Ser	Leu	Ala	Pro	Glu 365	Gly	Cys	Gly
	Ser	Tyr 370	Tyr	Val	Leu	Ala	Pro 375	Val	Pro	His	Leu	Gly 380	Thr	Ala	Asn	Leu
15	Asp 385	Trp	Thr	Val	Glu	Gly 390	Pro	Lys	Leu	Arg	Asp 395	Arg	Ile	Phe	Ala	Tyr 400
20	Leu	Glu	Gln	His	Туг 405	Met	Pro	Gly	Leu	Arg 410	Ser	Gln	Leu	Val	Thr 415	His
25	Arg	Met	Phe	Thr 420	Pro	Phe	Asp	Phe	Arg 425	Asp	Gln	Leu	Asn	Ala 430	Tyr	His
30	Gly	Ser	Ala 435	Phe	Ser	Val	Glu	Pro 440	Val	Leu	Thr	Gln	Ser 445	Ala	Trp	Phe
	Arg	Pro 450	His	Asn	Arg	Asp	Lys 455	Thr	Ile	Thr	Asn	Leu 460	Tyr	Leu	Val	Gly
35	Ala 465	Gly	Thr	His	Pro	Gly 470	Ala	Gly	Ile	Pro	Gly 475	Val	Ile	Gly	Ser	Ala 480
40	Lys	Ala	Thr	Ala	Gly 485	Leu	Met	Leu	Glu	Asp 490	Leu	Ile				
45	<21	1> :	27 296													
50	<21: <21:		PRT Erwi:	nia u	ıredo	ovor	a									
55	<40		27													
00	Met 1	Ala	Val	Gly	Ser 5	Lys	Ser	Phe	Ala	Thr 10	Ala	Ser	Lys	: Leu	Phe 15	Asp
60	Ala	Lys	Thr	Arg 20	Arg	Ser	Val	Leu	Met 25	Leu	Tyr	Ala	Trp	30 30	arg	, His
65	Cys	Asp	Asp 35	Val	Ile	Asp	Asp	Gln 40	Thr	Leu	Gly	Phe	Glr 45	n Ala	a Arç	g Gln
70 [.]	Pro	Ala 50	Leu	Gln	Thr	Pro	Glu 55	Gln	Arg	Leu	. Met	Glr 60	ı Lev	ı Glı	ı Met	Lys

BNSDOCID: <WO____2004018694A2_I_>

65

<211> 32

<212> DNA

<213> Künstliche Sequenz

PCT/EP2003/009106

```
<220>
 5
     <221> primer_bind
     <222> (1)..(32)
     <223>
10
     <400> 28
                                                                                  32
     tttttctcga gcgataaacg ctcacttggt ta
15
     <210> 29
     <211> 32
20
     <212> DNA
     <213> Künstliche Sequenz
25
      <220>
      <221> primer_bind
30
      <222>
             (1)..(32)
      <223>
35
      <400> 29
                                                                                   32
      tttttgtcga cacgttatgc tcacaacccc gg
40
      <210> 30
      <211>
             679
45
      <212> DNA
      <213> Escherichia coli
50
      <220>
      <221> CDS
55
             (87)..(635)
      <222>
      <223>
60
      <400> 30
                                                                                    60
      ctcgagcgat aaacgctcac ttggttaatc atttcactct tcaattatct ataatgatga
      gtgatcagaa ttacatgtga gaaatt atg caa acg gaa cac gtc att tta ttg
                                                                                   113
                                      Met Gln Thr Glu His Val Ile Leu Leu
65
      aat gca cag gga gtt ccc acg ggt acg ctg gaa aag tat gcc gca cac
Asn Ala Gln Gly Val Pro Thr Gly Thr Leu Glu Lys Tyr Ala Ala His
                                                                                   161
                            15
                                                  20
70
```


	acg Thr	gca Ala	gac Asp	acc Thr	cgc Arg 30	tta Leu	cat His	ctc Leu	gcg Ala	ttc Phe 35	tcc Ser	agt Ser	tgg Trp	ctg Leu	ttt Phe 40	aat Asn		209
5	gcc Ala	aaa Lys	gga Gly	caa Gln 45	tta Leu	tta Leu	gtt Val	acc Thr	cgc Arg 50	cgc Arg	gca Ala	ctg Leu	agc Ser	aaa Lys 55	aaa Lys	gca Ala		257
10	tgg Trp	cct Pro	ggc Gly 60	gtg Val	tgg Trp	act Thr	aac Asn	tcg Ser 65	gtt Val	tgt Cys	Gly	cac His	cca Pro 70	caa Gln	ctg Leu	gga Gly		305
15	gaa Glu	agc Ser 75	aac Asn	gaa Glu	gac Asp	gca Ala	gtg Val 80	atc Ile	cgc Arg	cgt Arg	tgc Cys	cgt Arg 85	tat Tyr	gag Glu	ctt Leu	ggc Gly		353
20	gtg Val 90	gaa Glu	att Ile	acg Thr	cct Pro	cct Pro 95	gaa Glu	tct Ser	atc Ile	tat Tyr	cct Pro 100	gac Asp	ttt Phe	cgc Arg	tac Tyr	cgc Arg 105		401
25	gcc Ala	acc Thr	gat Asp	ccg Pro	agt Ser 110	ggc Gly	att Ile	gtg Val	gaa Glu	aat Asn 115	gaa Glu	gtg Val	tgt Cys	ccg Pro	gta Val 120	ttt Phe		449
30	gcc Ala	gca Ala	cgc Arg	acc Thr 125	act Thr	agt Ser	gcg Ala	tta Leu	cag Gln 130	atc Ile	aat Asn	gat Asp	gat Asp	gaa Glu 135	gtg Val	atg Met		497
50	gat Asp	tat Tyr	caa Gln 140	tgg Trp	tgt Cys	gat Asp	tta Leu	gca Ala 145	gat Asp	gta Val	tta Leu	cac His	ggt Gly 150	att Ile	gat Asp	gcc Ala	<i>/</i> ·	545
35	acg Thr	ccg Pro 155	tgg Trp	gcg Ala	ttc Phe	agt Ser	ccg Pro 160	tgg Trp	atg Met	gtg Val	atg Met	cag Gln 165	gcg Ala	aca Thr	aat Asn	cgc Arg		593
40	gaa Glu 170	gcc Ala	aga Arg	aaa Lys	cga Arg	tta Leu 175	tct Ser	gca Ala	ttt Phe	acc Thr	cag Gln 180	ctt Leu	aaa Lys	taa				635
45	<210		ecg 8	acatt	tgco	eg gg	ggtt	gtga	g cat	taacq	gtgt	cgad	2					679
	<21	1> 3	182															
50	<212		PRT					•										
	<21	3> I	Esche	erich	ia o	coli												
55	<400	D> 3	31															
60	Met 1	Gln	Thr	Glu	His 5	Val	Ile	Leu	Leu	Asn 10	Ala	Gln	Gly	Val	Pro 15	Thr		
	Gly	Thr	Leu	Glu 20	Lys	Tyr	Ala	Ala	His 25	Thr	Ala	Asp	Thr	Arg 30	Leu	His		
65	Leu	Ala	Phe 35	Ser	Ser	Trp	Leu	Phe 40	Asn	Ala	Lys	Gly	Gln 45	Leu	Leu	Val		
70	Thr	Arg	Arg	Ala	Leu	Ser	Lys	Lys	Ala	Trp	Pro	Gly	Val	Trp	Thr	Asn		

50 55

Ser Val Cys Gly His Pro Gln Leu Gly Glu Ser Asn Glu Asp Ala Val 5 Ile Arg Arg Cys Arg Tyr Glu Leu Gly Val Glu Ile Thr Pro Pro Glu 10 Ser Ile Tyr Pro Asp Phe Arg Tyr Arg Ala Thr Asp Pro Ser Gly Ile 15 Val Glu Asn Glu Val Cys Pro Val Phe Ala Ala Arg Thr Thr Ser Ala 20 Leu Gln Ile Asn Asp Asp Glu Val Met Asp Tyr Gln Trp Cys Asp Leu Ala Asp Val Leu His Gly Ile Asp Ala Thr Pro Trp Ala Phe Ser Pro 25 Trp Met Val Met Gln Ala Thr Asn Arg Glu Ala Arg Lys Arg Leu Ser 30 Ala Phe Thr Gln Leu Lys 180 35 <210> 32 <211> 31 40 <212> DNA <213> Künstliche Sequenz 45 <220> <221> primer_bind 50 <222> (1)..(31) <223> 55 <400> 32 31 tttttccatg gtgaaggagg aaatagcgaa a 60 <210> 33 -<211> 32 65 <212> DNA

70

BNSDOCID: <WO____2004018694A2_I_>

<213> Künstliche Sequenz

	<220>							-									
	<221>	prim	er_b	ind													
5	<222>	(1).	. (32)													
	<223>																
10	<400> tttttaa	33 agct	ttcad	cttt	tt to	cttgi	taaco	c aa									32
15	<210>	34															
	<211>	962															
òο	<212>	DNA			٠												
20	<213>	Arch	aeog:	lobus	s ful	lgiđu	ıs										
25	<220>																٠
	<221>	CDS														•	
30	<222>	(3).	. (95	6)													
	<223>																
35	<400> cc atg Met 1	34 gtg a	aag (Lys (Glu (gaa a Glu I	ata q Ile <i>l</i>	gcg a	aaa a Lys 1	Arg A	gcc g Ala (gaa a Glu l	ata a [le]	atc a Tle <i>P</i>	Asn I	aaa Lys 15	. ′	47
40	gcc att	gaa Glu	gag Glu	ctt Leu 20	ctg Leu	ccc Pro	gaa Glu	agg Arg	gag Glu 25	ccg Pro	att Ile	gga Gly	ctc Leu	tac Tyr 30	aaa Lys		95
45	gcc gca Ala Ala	a agg a Arg	cat His 35	ctg Leu	atc Ile	aaa Lys	gca Ala	ggt Gly 40	ggc Gly	aag Lys	agg Arg	cta Leu	agg Arg 45	cct Pro	gta Val		143
50	ata ago Ile Sei	Leu	Leu	Ala	gtc Val	Glu	gcc Ala 55	ctt Leu	Gly ggg	aaa Lys	gac Asp	tac Tyr 60	aga Arg	aag Lys	att Ile		191
55	atc ccg Ile Pro 65	g gct Ala	gct Ala	gtc Val	agc Ser	att Ile 70	gaa Glu	aca Thr	atc Ile	cac His	aac Asn 75	ttc Phe	acc [.] Thr	ctc Leu	gtg Val		239
33	cat gad His Asp 80	gac Asp	ata Ile	atg Met	gac Asp 85	agg Arg	gac Asp	gag Glu	atg Met	agg Arg 90	agg Arg	gga Gly	gtt Val	ccg Pro	acg Thr 95		287
60	gta cad Val His	agg Arg	gtt Val	tat Tyr 100	ggg	gaa Glu	gcg Ala	acg Thr	gcc Ala 105	att Ile	tta Leu	gca Ala	ggc	gac Asp 110	aca Thr		335
65	ctc tt: Leu Phe	gct Ala	gaa Glu 115	gcc Ala	ttc Phe	aag Lys	ctg Leu	ctg Leu 120	aca Thr	aag Lys	tgc Cys	gat Asp	gtt Val 125	gag Glu	agc Ser		383
70	gag gga Glu Gly	atc / Ile 130	Arg	aaa Lys	gct Ala	aca Thr	gaa Glu 135	Met	ctt Leu	tcg Ser	gac Asp	gtt Val 140	Cys	ata Ile	aaa Lys		431

									-								
_	ata Ile	tgc Cys 145	gag Glu	ggg Gly	cag Gln	tac Tyr	tac Tyr 150	gac Asp	atg Met	agc Ser	ttt Phe	gag Glu 155	aaa Lys	aag Lys	gag Glu	agc Ser	479
5	gtt Val 160	tcc Ser	gag Glu	gag Glu	gag Glu	tat Tyr 165	ctc Leu	agg Arg	atg Met	gtc Val	gag Glu 170	ctg Leu	aag Lys	acc Thr	gga Gly	gtg Val 175	527
10	ctg Leu	att Ile	gca Ala	gct Ala	tct Ser 180	gca Ala	gca Ala	tta Leu	cct Pro	gcg Ala 185	gtg Val	ctt Leu	ttt Phe	G1Å aaa	gag Glu 190	agc Ser	575
15	gag Glu	gaa Glu	att Ile	gta Val 195	aag Lys	gcg Ala	ctg Leu	tgg Trp	gac Asp 200	tac Tyr	gga Gly	gtt Val	ctt Leu	agc Ser 205	ggt Gly	att Ile	623
20	ggc Gly	ttc Phe	cag Gln 210	atc Ile	cag Gln	gac Asp	gac Asp	ctg Leu 215	ctt Leu	gac Asp	ctg Leu	act Thr	gag Glu 220	gag Glu	acc Thr	gga Gly	671
05	aag Lys	gac Asp 225	tgg Trp	gga Gly	agc Ser	gac Asp	ctg Leu 230	ctt Leu	aaa Lys	ggg Gly	aag Lys	aaa Lys 235	acc Thr	ctg Leu	att Ile	gtc Val	71_9
25	ata Ile 240	aag Lys	gcg Ala	ttc Phe	gaa Glu	aag Lys 245	gga Gly	gtg Val	aag Lys	cta Leu	aag Lys 250	acg Thr	ttt Phe	gga Gly	aag Lys	gaa Glu 255	767
30	aag Lys	gcg Ala	gac Asp	gtc Val	tct Ser 260	gag Glu	att Ile	aga Arg	gat Asp	gat Asp 265	atc Ile	gaa Glu	aag Lys	tta Leu	aga Arg 270	gag Glu	815
35	tgt Cys	ggt Gly	gcg Ala	att Ile 275	gat Asp	tac Tyr	gct Ala	gcc Ala	agc Ser 280	atg Met	gca Ala	aga Arg	aag Lys	atg Met 285	gct Ala	gaa Glu	863
40	gag Glu	gcg Ala	aaa Lys 290	aga Arg	aag Lys	ctc Leu	gaa Glu	gtt Val 295	ctg Leu	cct Pro	gaa Glu	agc Ser	aaa Lys 300	gcc Ala	aag Lys	gaa Glu	911
45	aca Thr	ctg Leu 305	ctg Leu	gaa Glu	ctt Leu	acc Thr	gac Asp 310	ttc Phe	ttg Leu	gtt Val	aca Thr	aga Arg 315	aaa Lys	aag Lys	tga		956
45	aago	ett															962
50	<210		35														
	<213 <213		317 PRT														
55	<213		Archa	aeog:	lobus	s fu	lgidı	15									
	<400	O> :	35														
60	Met. 1	Val	Lys	Glu	Glu 5	Ile	Ala	Lys	Arg	Ala 10	Glu	Ile	Ile	Asn	Lys 15	: Ala	
65	Ile	Glu	Glu	Leu 20	Leu	Pro	Glu	Arg	Glu 25	Pro	Ile	Gly	Leu	туг 30	Lys	a Ala	
70	Ala	Arg	His 35	Leu	Ile	Lys	Ala	Gly 40	Gly	Lys	Arg	Leu	Arg 45	J Pro	Val	l Ile	

5	Ser	Leu 50	Leu	Ala	Val	Glu	Ala 55	Leu	Gly	Lys	Asp	Туr 60	Arg	Lys	Ile	Ile
	Pro 65	Ala	Ala	Val	Ser	Ile 70	Glu	Thr	Ile	His	Asn 75	Phe	Thr	Leu	Val	His 80
10	Asp	Asp	Ile	Met	Asp 85	Arg	Asp	Glu	Met	Arg 90	Arg	Gly	Val	Pro	Thr 95	Val
15	His	Arg	Val	Tyr 100	Gly	Glu	Ala	Thr	Ala 105	Ile	Leu	Ala	Gly	Asp 110	Thr	Leu
20	Phe	Ala	Glu 115	Ala	Phe	Lys	Leu	Leu 120	Thr	Lys	Cys	Asp	Val 125	Glu	Ser	Glu
25	Gly	Ile 130	Arg	Lys	Ala	Thr	Glu 135	Met	Leu	Ser	Asp	Val 140	Cys	Ile	Lys	Ile
	Cys 145	Glu	Gly	Gln	Tyr	Tyr 150	Asp	Met	Ser	Phe	G1u 155	Lys	Lys	Glu	Ser	Val 160
30	Ser	Glu	Glu	Glu	Туг 165	Leu	Arg	Met	Val	Glu 170	Leu	Lys	Thr	Gly	Val 175	Leu
35	Ile	Ala	Ala	Ser 180	Ala	Ala	Leu	Pro	Ala 185	Val	Leu	Phe		Glu 190	Ser	Glu
40	Glu	Ile	Val 195	Lys	Ala	Leu	Trp	Asp 200	Tyr	Gly	Val	Leu	Ser 205	Gly	Ile	Gly
45	Phe	Gln 210	Ile	Gln	Asp	Asp	Leu 215	Leu	Asp	Leu	Thr	Glu 220	Glu	Thr	Gly	Lys
	Asp 225	Trp	Gly	Ser	Asp	Leu 230	Leu	Lys	Gly	Lys	Lys 235	Thr	Leu	Ile	Val	Ile 240
50	Lys	Ala	Phe	Glu	Lys 245	Gly	Val	Lys	Leu [.]	Lys 250	Thr	Phe	Gly	Lys	Glu 255	Lys
55	Ala	Asp	Val	Ser 260	Glu	Ile	Arg	Asp	Asp 265	Ile	Glu	Lys	Leu	Arg 270	Glu	Cys
60	Gly	Ala	Ile 275	Asp	Tyr	Ala	Ala	Ser 280	Met	Ala	Arg	Lys	Met 285	Ala	Glu	Glu
65	Ala	Lys 290	Arg	Lys	Leu	Glu	Val 295	Leu	Pro	Glu	Ser	Lys 300	Ala	Lys	Glu	Thr
00	Leu 305	Leu	Glu	Leu	Thr	Asp 310	Phe	Leu	Val	Thr	Arg 315	Lys	Lys			
70																

	<210	> 3	6						•									
	<211	> 1	.293															
5	<212	> I	ANC															
	<213	> 2	rcha	eogl	.obus	ful	gidu	ıs										
40																		
10	<220	>																
	<221	.> C	DS															
15	<222	:> ((206)	(1	.159)													
	<223	>																
20	<400 taaa	> 3 acga	36 acg g	gccag	gtgag	je go	gcgt	aata	cga	ctca	cta	tagg	gcga	at t	gggt	accgg		60
05	gccc	cccc	tc g	gacgo	cgto	g tt	caat	gaga	atg	gata	aga	ggct	cgtg	gg a	ttga	cgtga		120
25	gggg	gcag	gg a	tggc	tata	at tt	ctgg	gago	gaa	ctcc	ggg	cgag	gatc	ta g	ttgt	aggga		180
30	ggga	ttca	atg a	acaco	acaa	aa ca	gcc	atg Met 1	gtg Val	aag Lys	gag Glu	gaa Glu 5	ata Ile	gcg Ala	aaa Lys	agg Arg		232
	gcc Ala 10	gaa Glu	ata Ile	atc Ile	aac Asn	aaa Lys 15	gcc Ala	att Ile	gaa Glu	gag Glu	ctt Leu 20	ctg Leu	ccc Pro	gaa Glu	agg Arg	gag Glu 25	. /	280
35	ccg Pro	att Ile	gga Gly	ctc Leu	tac Tyr 30	aaa Lys	gcc Ala	gca Ala	agg Arg	cat His 35	ctg Leu	atc Ile	aaa Lys	gca Ala	ggt Gly 40	ggc Gly		328
40	aag Lys	agg Arg	cta Leu	agg Arg 45	cct Pro	gta Val	ata Ile	agc Ser	ctc Leu 50	tta Leu	gca Ala	gtc Val	gaa Glu	gcc Ala 55	ctt Leu	ggg Gly		376
45	aaa Lys	gac Asp	tac Tyr 60	aga Arg	aag Lys	att Ile	atc Ile	ccg Pro 65	gct Ala	gct Ala	gtc Val	agc Ser	att Ile 70	gaa Glu	aca Thr	atc Ile		424
50	cac His	aac Asn 75	ttc Phe	acc Thr	ctc Leu	gtg Val	cat His 80	gac Asp	gac Asp	ata Ile	atg Met	gac Asp 85	agg Arg	gac Asp	gag Glu	atg Met		472
	agg Arg 90	agg Arg	gga Gly	gtt Val	ccg Pro	acg Thr 95	gta Val	cac His	agg Arg	gtt Val	tat Tyr 100	ggg Gly	gaa Glu	gcg Ala	acg Thr	gcc Ala 105		520
55	att Ile	tta Leu	gca Ala	ggc Gly	gac Asp 110	aca Thr	ctc Leu	ttt Phe	gct Ala	gaa Glu 115	gcc Ala	ttc Phe	aag Lys	ctg Leu	ctg Leu 120	aca Thr		568
60	aag Lys	tgc Cys	gat Asp	gtt Val 125	gag Glu	agc Ser	gag Glu	gga Gly	atc Ile 130	aga Arg	aaa Lys	gct Ala	aca Thr	gaa Glu 135	atg Met	ctt Leu		616
65	tcg Ser	gac Asp	gtt Val 140	tgc Cys	ata Ile	aaa Lys	ata Ile	tgc Cys 145	gag Glu	Gly	cag Gln	tac Tyr	tac Tyr 150	gac Asp	atg Met	agc Ser		664
70	ttt Phe	gag Glu 155	aaa Lys	aag Lys	gag Glu	agc Ser	gtt Val 160	Ser	gag Glu	gag Glu	gag Glu	tat Tyr 165	ctc Leu	agg Arg	atg Met	gtc Val		712

VO 2004/0	18694	

	•	
F	gag ctg aag acc gga gtg ctg att gca gct tct gca gca tta cct gcg Glu Leu Lys Thr Gly Val Leu Ile Ala Ala Ser Ala Ala Leu Pro Ala 170 185	760
5	gtg ctt ttt ggg gag agc gag gaa att gta aag gcg ctg tgg gac tac Val Leu Phe Gly Glu Ser Glu Glu Ile Val Lys Ala Leu Trp Asp Tyr 190 195 200	808
10	gga gtt ctt agc ggt att ggc ttc cag atc cag gac gac ctg ctt gac Gly Val Leu Ser Gly Ile Gly Phe Gln Ile Gln Asp Asp Leu Leu Asp 205 210 215	856
15	ctg act gag gag acc gga aag gac tgg gga agc gac ctg ctt aaa ggg Leu Thr Glu Glu Thr Gly Lys Asp Trp Gly Ser Asp Leu Leu Lys Gly 220 225 230	904
20	aag aaa acc ctg att gtc ata aag gcg ttc gaa aag gga gtg aag cta Lys Lys Thr Leu Ile Val Ile Lys Ala Phe Glu Lys Gly Val Lys Leu 235 240 245	952
25	aag acg ttt gga aag gaa aag gcg gac gtc tct gag att aga gat gat Lys Thr Phe Gly Lys Glu Lys Ala Asp Val Ser Glu Ile Arg Asp Asp 250 265	000
25	atc gaa aag tta aga gag tgt ggt gcg att gat tac gct gcc agc atg Ile Glu Lys Leu Arg Glu Cys Gly Ala Ile Asp Tyr Ala Ala Ser Met 270 275 . 280	048
30	gca aga aag atg gct gaa gag gcg aaa aga aag ctc gaa gtt ctg cct 1 Ala Arg Lys Met Ala Glu Glu Ala Lys Arg Lys Leu Glu Val Leu Pro 285 290 295	096
35	gaa agc aaa gcc aag gaa aca ctg ctg gaa ctt acc gac ttc ttg gtt /1 Glu Ser Lys Ala Lys Glu Thr Leu Leu Glu Leu Thr Asp Phe Leu Val 300 305 310	144
40	aca aga aaa aag tga aagcttcaat tgcatgctct agatgatcaa agaattcctg 1 Thr Arg Lys Lys 315	199
	gcctagtcta taggaggttt tgaaaagaaa ggagcaataa tcattttctt gttctatcaa 1	259
45	gagggtgcta ttgctccttt cttttttct cgag 1	293
	<210> 37	
50	<211> 317	
50	<212> PRT	
	<213> Archaeoglobus fulgidus	
55		
	<400> 37	
60	Met Val Lys Glu Glu Ile Ala Lys Arg Ala Glu Ile Ile Asn Lys Ala 1 5 10 15	
65	Ile Glu Glu Leu Leu Pro Glu Arg Glu Pro Ile Gly Leu Tyr Lys Ala 20 25 30	ŕ
	Ala Arg His Leu Ile Lys Ala Gly Gly Lys Arg Leu Arg Pro Val Ile 35 40 45	
70		

		- ·	
	<210>	38	
	<211>	35	
5	<212>	DNA	
	<213>	Künstliche Sequenz	
10			
10	<220>		
	<221>	primer_bind	
15	<222>	(1)(35)	
	<223>		
20			
	<400>	Sttca ttatttcgat tttgatttcg tgacc	3,5
	9-9		•
25	<210>	39	
	<211>	38	
30	<212>	DNA	
	<213>	Künstliche Sequenz	
			•
35	<220>		
	<221>	Primer	
40		(1)(38)	
	<223>		
45			
45	<400> aagctt	39 ggtt gatcagaaga agaagaagaa gatgaact	38
50	<210>	40	
	<211>		
55	<212>		
55	<213>	Arabidopsis thaliana	
	<220>		
60		Promotor	
		(1)(647)	
65	<223>	(1)(04/)	
55	~2237		*
	<400>	40	
70	gagete	ttca ttatttcgat tttgatttcg tgaccagcga acgcagaata ccttgttgtg	60

	taatact	tta	cccgtgtaaa	tcaaaaacaa	aaaggctttt	gagctttttg	tagttgaatt		120
_	tctctgg	gctg	atcttttctg	tacagattca	tatatctgca	gagacgatat	cattgattat		180
5	ttgagct	tct	tttgaactat	ttcgtgtaat	ttgggatgag	agctctatgt	atgtgtgtaa		240
	actttga	aaga	caacaagaaa	ggtaacaagt	gagggaggga	tgactccatg	tcaaaataga		300
10	tgtcata	aaga	ggcccatcaa	taagtgcttg	agcccattag	ctagcccagt	aactaccaga		360
	ttgtgag	gatg	gatgtgtgaa	cagtttttt	tttgatgtag	gactgaaatg	tgaacaacag		420
15	gcgcate	gaaa	ggctaaatta	ggacaatgat	aagcagaaat	aacttatcct	ctctaacact		480
15	tggcct	caca	ttgcccttca	cacaatccac	acacatccaa	tcacaacctc	atcatatatc		540
	tecege	taat	cttttttct	ttgatctttt	tttttttgct	tattatttt	ttgactttga		600
20	tctccc	atca	gttcatcttc	ttcttcttct	tctgatcaac	caagctt			647
	<210>	41							-
25	<211>	28							
	<212>	DNA							
	<213>		stliche Seq	ıenz					
30									
	<220>							/	
35	<221>	prin	mer_bind						
	<222>	(1)	(28)			. •			
4.0	<223>								
40									
	<400>	41		attaatta					28
45	gagete	actc	actgatttcc	accycccy					
	<210>	42							
50	<211>	23							
50	<212>	DNA		•					
	<213>	Kün	stliche Seq	uenz					
55									
	<220>								
60	<221>	Pri	mer						
00	<222>	(1)	(23)						
	<223>								
65									
	<400>	42 ttat	tgaagagatt	tgg					23
70		3-	. 5 - 5 - 5						
-									

	<210>	43	
	<211>	37	
5	<212>	DNA	
	<213>	Künstliche Sequenz	
10			
	<220>		
	<221>	primer_bind	
15	<222>	(1)(37)	
	<223>		
20			
	<400> cgccgt	43 taag tegatgteeg ttgatttaaa eagtgte	3,7
25	<210>	4.4	
	<211>	34	
30	<212>	DNA	
30	<213>	Künstliche Sequenz	
35	12205		•
3 3	<220>	nuiman hina	
		primer_bind (1)(34)	
40	<223>	(1)(34)	
	~2232		
45	<400> atcaac	44 aggac atcgacttaa cggcgtttgt aaac .	34
	<210>	45	
50	<211>	777	
	<212>	DNA	
55	<213>	Arabidopsis thaliana	
60	<220>		
	<221>	Promotor .	
	<222>	(1)(777)	
65	<223>		
70	<400>	45 actc actgatttcc attgcttgaa aattgatgat gaactaagat caatccatgt	60

PCT/EP2003/009106

	tagtttcaaa acaacagtaa ctgtggccaa cttagttttg aaacaacact aactggtcga	120
	agcaaaaaga aaaaagagtt tcatcatata tctgatttga tggactgttt ggagttagga	180
5	ccaaacatta tctacaaaca aagacttttc tcctaacttg tgattccttc ttaaacccta	240
	ggggtaatat totatttoc aaggatottt agttaaaggo aaatccggga aattattgtä	300
10	atcatttggg gaaacatata aaagatttga gttagatgga agtgacgatt aatccaaaca	360
10	tatatatete tttettetta ttteccaaat taacagacaa aagtagaata ttggetttta	420
	acaccaatat aaaaacttgc ttcacaccta aacacttttg tttactttag ggtaagtgca	480
15		540
	aaaagccaac caaatccacc tgcactgatt tgacgtttac aaacgccgtt aagtcgatgt	600
00	ccgttgattt aaacagtgtc ttgtaattaa aaaaatcagt ttacataaat ggaaaattta	660
20	tcacttagtt ttcatcaact tctgaactta cctttcatgg attaggcaat actttccatt	720
	tttagtaact caagtggacc ctttacttct tcaactccat ctctctctt ctatttcact	777
25	tctttcttct cattatatct cttgtcctct ccaccaaatc tcttcaacaa aaagctt	,,,
	<210> 46	
	<211> 804	
30	<212> DNA	
	<213> Synechococcus WH8102	
35		
	<220>	
	<221> CDS	
40	<222> (1)(804)	
	<223>	
45		
	<400> 46	48
	atg aaa acg aca aga tct att tcg tgg cca tcg act tgc tgg cat cac Met Lys Thr Thr Arg Ser Ile Ser Trp Pro Ser Thr Cys Trp His His	40
50	5 10 15	96
	cag ccg agt tgc tca agc tgg gtg gca aat gag ttc agc cct cag gcc Gln Pro Ser Cys Ser Ser Trp Val Ala Asn Glu Phe Ser Pro Gln Ala	90
55	20 25 30	344
	ctc aaa ggg ttg gct ctg gct ggt ctg att gga tca gcc tgg ctg ctc Leu Lys Gly Leu Ala Leu Ala Gly Leu Ile Gly Ser Ala Trp Leu Leu	144
	35 40 45	
	33	100
60	tcc ctg ggc ctg agc tac acc ctg cca ctt gat cag acg cct ggg ctg Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu	192
60	tcc ctg ggc ctg agc tac acc ctg cca ctt gat cag acg cct ggg ctg Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu 50 55 60	
	tcc ctg ggc ctg agc tac acc ctg cca ctt gat cag acg cct ggg ctg Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu 50 55 60 ttg att ggc agc ttg att ctg ctc aga gca ttt ctg cac acc ggg ctg Leu Ile Gly Ser Leu Ile Leu Leu Arg Ala Phe Leu His Thr Gly Leu	192 240
60 65	tcc ctg ggc ctg agc tac acc ctg cca ctt gat cag acg cct ggg ctg Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu 50 ttg att ggc agc ttg att ctg ctc aga gca ttt ctg cac acc ggg ctg Leu Ile Gly Ser Leu Ile Leu Arg Ala Phe Leu His Thr Gly Leu 65	240
	tcc ctg ggc ctg agc tac acc ctg cca ctt gat cag acg cct ggg ctg Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu 50 55 60 ttg att ggc agc ttg att ctg ctc aga gca ttt ctg cac acc ggg ctg Leu Ile Gly Ser Leu Ile Leu Leu Arg Ala Phe Leu His Thr Gly Leu	

									•								
_			ttg Leu														336
5	ggc	ttg Leu	tct Ser 115	tat Tyr	gag Glu	cgt Arg	tgt Cys	tcc Ser 120	cgc Arg	aac Asn	cac His	aga Arg	cgt Arg 125	cat His	cac His	ctg Leu	384
10	gca Ala	ccg Pro 130	gag Glu	acg Thr	ttc Phe	cag Gln	gat Asp 135	cct Pro	gac Asp	tac Tyr	caa Gln	cgt Arg 140	tgc Cys	acc Thr	aat Asn	aac Asn	432
15	aac Asn 145	atc Ile	cta Leu	gat Asp	tgg Trp	tat Tyr 150	gtt Val	cac His	ttc Phe	atg Met	ggc Gly 155	aac Asn	tat Tyr	ctg Leu	ggc Gly	atg Met 160	480
20	cgg Arg	caa Gln	ctg Leu	tta Leu	aat Asn 165	cta Leu	agc Ser	tgt Cys	ctt Leu	tgg Trp 170	ctg Leu	gcg Ala	cta Leu	atc Ile	att Ile 175	ctc Leu	528
05	aac Asn	ggt Gly	tct Ser	gat Asp 180	ctc Leu	cct Pro	gct Ala	cag Gln	atc Ile 185	atg Met	cat His	ctg Leu	ctg Leu	ttg Leu 190	ttc Phe	agc Ser	576
25	gtt Val	ctg Leu	ccg Pro 195	ttg Leu	atc Ile	atc Ile	agt Ser	tcc Ser 200	tgt Cys	caa Gln	ttg Leu	ttt Phe	cta Leu 205	gtg Val	gga Gly	acc Thr	624
30	tgg Trp	tta Leu 210	ccc Pro	cac His	cga Arg	cgt Arg	ggg Gly 215	gcc Ala	acg Thr	aca Thr	cga Arg	ccg Pro 220	ggc Gly	gtg Val	aca Thr	acg Thr	672
35			ctg Leu														720
40	ttt Phe	Gly	tat Tyr	cat His	cgt Arg 245	gaa Glu	cat His	cat His	gaa Glu	tcg Ser 250	cct Pro	tcc Ser	aca Thr	ccc Pro	tgg Trp 255	ttt Phe	768
45			cca Pro									tga					804
	<210)> 4	17														
50	<211		267														
	<212		PRT														
	<213	3> \$	Synec	hoco	occus	s WH8	3102										
55																	
	<400)> 4	17														
60	Met 1	Lys	Thr	Thr	Arg 5	Ser	Ile	Ser	Trp	Pro 10	Ser	Thr	Cys	Trp	His 15	His	
65	Gln	Pro	Ser	Cys 20	Ser	Ser	Trp	Val	Ala 25	Asn	Glu	Phe	Ser	Pro 30	Gln	Ala	
	Leu	Lys	Gly 35	Leu	Ala	Leu	Ala	Gly 40	Leu	Ile	Gly	Ser	Ala 45	Trp	Leu	Leu	

<222> (1)..(804)

<223>

J																		
10	<400 atg Met 1	aaa	48 acg Thr	aca Thr	aga Arg 5	tct Ser	att Ile	tcg Ser	tgg Trp	cca Pro 10	tcg Ser	act Thr	tgc Cys	tgg Trp	cat His 15	cac His		48
	cag Gln	ccg Pro	agt Ser	tgc Cys 20	tca Ser	agc Ser	tgg Trp	gtg Val	gca Ala 25	aat Asn	gag Glu	ttc Phe	agc Ser	cct Pro 30	cag Gln	gcc Ala		96
15	ctc Leu	aaa Lys	ggg Gly 35	ttg Leu	gct Ala	ctg Leu	gct Ala	ggt Gly 40	ctg Leu	att Ile	gga Gly	tca Ser	gcc Ala 45	tgg Trp	ctg Leu	ctc Leu		144
20	tcc Ser	ctg Leu 50	ggc Gly	ctg Leu	agc Ser	tac Tyr	acc Thr 55	ctg Leu	cca Pro	ctt Leu	gat Asp	cag Gln 60	acg Thr	cct Pro	Gly ggg	ctg Leu		192
25	ttg Leu 65	att Ile	ggc Gly	agc Ser	ttg Leu	att Ile 70	ctg Leu	tgg Trp	cag Gln	acc Thr	ttt Phe 75	ctg Leu	cac His	acc Thr	GJλ āāā	ctg Leu 80		240
30	ttc Phe	atc Ile	gtt Val	gcc Ala	cac His 85	gat Asp	tcc Ser	atg Met	cac His	gcc Ala 90	agt Ser	ctg Leu	gtt Val	ccg Pro	ggt Gly 95	cat His		288
35	ccc Pro	gga Gly	ttg Leu	aac Asn 100	cgc Arg	tgg Trp	atc Ile	ggc Gly	aaa Lys 105	gtg Val	tat Tyr	ttg Leu	ttg Leu	gtg Val 110	tat Tyr	gca Ala	./	336
00	ggc Gly	ttg Leu	tct Ser 115	tat Tyr	gag Glu	cgt Arg	tgt Cys	tcc Ser 120	cgc Arg	aac Asn	cac His	aga Arg	cgt Arg 125	cat His	cac His	ctg Leu		384
40	gca Ala	ccg Pro 130	gag Glu	acg Thr	ttc Phe	cag Gln	gat Asp 135	cct Pro	gac Asp	tac Tyr	caa Gln	cgt Arg 140	tgc Cys	acc Thr	aat Asn	aac Asn		432
45	aac Asn 145	atc Ile	cta Leu	gat Asp	tgg Trp	tat Tyr 150	gtt Val	cac His	ttc Phe	atg Met	ggc Gly 155	aac Asn	tat Tyr	ctg Leu	ggc Gly	atg Met 160		480
50	cgg Arg	caa Gln	ctg Leu	tta Leu	aat Asn 165	cta Leu	agc Ser	tgt Cys	ctt Leu	tgg Trp 170	ctg Leu	gcg Ala	cta Leu	atc Ile	att Ile 175	ctc Leu		528
55	aac Asn	ggt Gly	tct Ser	gat Asp 180	ctc Leu	cct Pro	gct Ala	cag Gln	atc Ile 185	atg Met	cat His	ctg Leu	ctg Leu	ttg Leu 190	ttc Phe	agc Ser		576
55	gtt Val	ctg Leu	ccg Pro 195	ttg Leu	atc Ile	atc Ile	agt Ser	tcc Ser 200	tgt Cys	caa Gln	ttg Leu	ttt Phe	cta Leu 205	gtg Val	gga Gly	acc Thr		624
60	tgg Trp	tta Leu 210	ccc Pro	cac His	cga Arg	cgt Arg	ggg Gly 215	gcc Ala	acg Thr	aca Thr	cga Arg	ccg Pro 220	ggc	gtg Val	aca Thr	acg Thr		672
65	cgc Arg 225	agc Ser	ctg Leu	gct Ala	ttg Leu	cat His 230	cca Pro	gcc Ala	ctc Leu	tct Ser	ttc Phe 235	gca Ala	gct Ala	tgt Cys	tac Tyr	aac Asn 240		720
70	ttt Phe	ggc Gly	tat Tyr	cat His	cgt Arg 245	gaa Glu	cat His	cat His	gaa Glu	tcg Ser 250	cct Pro	tcc Ser	aca Thr	ccc Pro	tgg Trp 255	ttt Phe		768

5	cag Gln	ctg Leu	cca Pro	caa Gln 260	ctt Leu	cga Arg	aat Asn	gaa Glu	tca Ser 265	ttc Phe	act Thr	tga					804
	<210)> 4	19														
10	<211		267 PRT														
	<212		Küns	-1:-1			at 0										
15	<213)> 1	, cuits		.1C V	ar Tái	100										
	<400)> 4	19														
20	Met 1	Lys	Thr	Thr	Arg 5	Ser	Ile	Ser	Trp	Pro 10	Ser	Thr	Cys	Trp	His 15	His	
25	Gln	Pro	Ser	Cys 20	Ser	Ser	Trp	Val	Ala 25	Asn	Glu	Phe	Ser	Pro 30	Gln	Ala	
25	Leu	Lys	Gly 35	Leu	Ala	Leu	Ala	Gly 40	Leu	Ile	Gly	Ser	Ala 45	Trp	Leu	Leu ·	
30	Ser	Leu 50	Gly	Leu	Ser	Tyr	Thr 55	Leu	Pro	Leu	Asp	Gln 60	Thr	Pro	Gly	Leu	
35	Leu 65	Ile	Gly	Ser	Leu	Ile 70	Leu	Trp	Gln	Thr	Phe 75	Leu	His		Gly	Leu 80	
40	Phe	Ile	Val	Ala	His 85	Asp	Ser	Met	His	Ala 90	Ser	Leu	Val	Pro	Gly 95	His	
45	Pro	Gly	Leu	Asn 100	Arg	Trp	Ile	Gly	Lys 105	Val	Tyr	Leu	Leu	Val 110	Tyr	Ala	
.0	Gly	Leu	Ser 115	Tyr	Glu	Arg	Cys	Ser 120	Arg	Asn	His	Arg	Arg 125	His	His	Leu	
50	Ala	Pro 130	Glu	Thr	Phe	Gln	Asp 135	Pro	Asp	Tyr	Gln	Arg 140	Cys	Thr	Asn	Asn	
55	Asn 145		Leu	Asp	Trp	Туг 150	Val	His	Phe	Met	Gly 155	Asn	Tyr	Leu	Gly	Met 160	
60	Arg	Gln	Leu	Leu	Asn 165	Leu	Ser	Cys	Leu	Trp 170	Leu	Ala	Leu	Ile	Ile 175	Leu	
65	Asn	Gly	Ser	Asp 180	Leu	Pro	Ala	Gln	Ile 185	Met	His	Leu	Leu	Leu 190	Phe	Ser	
UJ.	Val	Leu	Pro 195	Leu	Ile	Ile	Ser	Ser 200		Gln	Leu	Phe	Leu 205	Val	Gly	Thr	
70																	

	Trp Leu 210	Pro	His	Arg	Arg	Gly 215	Ala	Thr	Thr	Arg	Pro 220	Gly	Val	Thr	Thr		
5	Arg Ser 225	Leu	Ala	Leu	His 230	Pro	Ala	Leu	Ser	Phe 235	Ala	Ala	Cys	Tyr	Asn 240		
10	Phe Gly	Tyr	His	Arg 245	Glu	His	His	Glu	Ser 250	Pro	Ser	Thr	Pro	Trp 255	Phe		
15	Gln Leu	Pro	Gln 260	Leu	Arg	Asn	Glu	Ser 265	Phe	Thr							
	<210>	50	•											-	•		
00	<211>	804															
20	<212>	DNA													-		
•	<213>	Künst	clich	ne Va	arian	nte											٠
25																	
	<220>																
	<221>	CDS								•							
30	<222>	(1)	. (804	1)													
	<223>															_	
35			•														
40	<400> Satg aaa Met Lys	50 acg Thr	aca Thr	aga Arg 5	tct Ser	att Ile	tcg Ser	tgg Trp	cca Pro 10	tcg Ser	act Thr	tgc Cys	tgg Trp	cat His 15	cac His		48
	cag ccg Gln Pro	agt Ser	tgc Cys 20	tca Ser	agc Ser	tgg Trp	gtg Val	gca Ala 25	aat Asn	gag Glu	ttc Phe	agc Ser	cct Pro 30	cag Gln	gcc Ala		96
45	ctc aaa Leu Lys	ggg Gly 35	ttg Leu	gct Ala	ctg Leu	gct Ala	ggt Gly 40	ctg Leu	att Ile	gga Gly	tca Ser	gcc Ala 45	tgg Trp	ctg Leu	ctc Leu		144
50	tcc ctg Ser Leu 50	ggc Gly	ctg Leu	agc Ser	tac Tyr	acc Thr 55	ctg Leu	cca Pro	ctt Leu	gat Asp	cag Gln 60	acg Thr	cct Pro	Gly ggg	ctg Leu		192
55	ttg att Leu Ile 65	ggc Gly	agc Ser	ttg Leu	att Ile 70	ctg Leu	ctc Leu	aga Arg	gca Ala	ttt Phe 75	ctg Leu	cac His	acc Thr	Gly ggg	ctg Leu 80		240
60	ttc atc Phe Ile	gtt Val	gcc Ala	cac His 85	gat Asp	tcc Ser	atg Met	cac His	gcc Ala 90	agt Ser	ctg Leu	gtt Val	ccg Pro	ggt Gly 95	cat His		288
65	ccc gga Pro Gly	ttg Leu	aac Asn 100	cgc Arg	tgg Trp	atc Ile	ggc Gly	aaa Lys 105	gtg Val	tat Tyr	ttg Leu	ttg Leu	gtg Val 110	tat Tyr	gca Ala		336
55	ggc ttg Gly Leu	tct Ser 115	tat Tyr	gag Glu	cgt Arg	tgt Cys	tcc Ser 120	cgc Arg	aac Asn	cac His	aga Arg	cgt Arg 125	cat His	cac His	gga Gly		384
70	cat cct	ggt	act	gat	tta	gat	cct	gac	tac	caa	cgt	tgc	acc	aat	aac		.432

	56/73																	
	His	Pro 130	Gly	Thr	Asp	Leu	Asp 135	Pro	Asp	Tyr	Gln	Arg 140	Cys	Thr	Asn	Asn		
5	aac Asn 145	atc Ile	cta Leu	gat Asp	tgg Trp	tat Tyr 150	gtt Val	cac His	ttc Phe	atg Met	ggc Gly 155	aac Asn	tat Tyr	ctg Leu	ggc Gly	atg Met 160		480
10	cgg Arg	caa Gln	ctg Leu	tta Leu	aat Asn 165	cta Leu	agc Ser	tgt Cys	ctt Leu	tgg Trp 170	ctg Leu	gcg Ala	cta Leu	atc Ile	att Ile 175	ctc Leu		528
15	aac Asn	ggt Gly	tct Ser	gat Asp 180	ctc Leu	cct Pro	gct Ala	cag Gln	atc Ile 185	atg Met	cat His	ctg Leu	ctg Leu	ttg Leu 190	ttc Phe	agc Ser		576
15	gtt Val	ctg Leu	ccg Pro 195	ttg Leu	atc Ile	atc Ile	agt Ser	tcc Ser 200	tgt Cys	caa Gln	ttg Leu	ttt Phe	cta Leu 205	gtg Val	gga Gly	acc Thr		624
20	tgg Trp	tta Leu 210	ccc Pro	cac His	cga Arg	cgt Arg	ggg Gly 215	gcc Ala	acg Thr	aca Thr	cga Arg	ccg Pro 220	ggc Gly	gtg Val	aca Thr	acg Thr		672
25	cgc Arg 225	agc Ser	ctg Leu	gct Ala	ttg Leu	cat His 230	cca Pro	gcc Ala	ctc Leu	tct Ser	ttc Phe 235	gca Ala	gct Ala	tgt Cys	tac Tyr	aāc Asn 240		720
30	ttt Phe	ggc Gly	tat Tyr	cat His	cgt Arg 245	gaa Glu	cat His	cat His	gaa Glu	tcg Ser 250	cct Pro	tcc Ser	aca Thr	ccc Pro	tgg Trp 255	ttt Phe		768
35			cca Pro									tga					./	804
	<210> 51																	
	· <211	.> 2	267															
40	<212	2> I	PRT															
	<213	3> I	Künst	ilich	ne Va	arian	ıte											
45																		
	<400)> !	51															
50	Met 1	Lys	Thr	Thr	Arg 5	Ser	Ile	Ser	Trp	Pro 10	Ser	Thr	Cys	Trp	His 15	His		
55	Gln	Pro	Ser	Cys 20	Ser	Ser	Trp	Val	Ala 25	Asn	Glu	Phe	Ser	Pro 30	Gln	Ala		
00	Leu	Lys	Gly 35	Leu	Ala	Leu	Ala	Gly 40	Leu	Ile	Gly	Ser	Ala 45	Trp	Leu	Leu		
60	Ser	Leu 50	Gly	Leu	Ser	Tyr	Thr 55	Leu	Pro	Leu	Asp	Gln 60	Thr	Pro	Gly	Leu		
65	Leu 65	Ile	Gly	Ser	Leu	Ile 70	Leu	Leu	Arg	Ala	Phe 75	Leu	His	Thr	Gly	Leu 80		

Phe Ile Val Ala His Asp Ser Met His Ala Ser Leu Val Pro Gly His 85 90 95

5	Pro	Gly	Leu	Asn 100	Arg	Trp	Ile	Gly	Lys 105	Val	Tyr	Leu	Leu	Val 110	Tyr	Ala	
	Gly	Leu	Ser 115	Tyr	Glu	Arg	Cys _.	Ser 120	Arg	Asn	His	Arg	Arg 125	His	His	Gly	
10	His	Pro 130	Gly	Thr	Asp	Leu	Asp 135	Pro	Asp	Tyr	Gln	Arg 140	Cys	Thr	Asn	Asn	
15	Asn 145	Ile	Leu	Asp	Trp	Туг 150	Val	His	Phe	Met	Gly 155	Asn	Tyr	Leu	Gly	Met 160	
20	Arg	Gln	Leu	Leu	Asn 165	Leu	Ser	Cys	Leu	Trp 170	Leu	Ala	Leu	Ile	Ile 175	Leu	
25	Asn	Gly	Ser	Asp 180	Leu	Pro	Ala	Gln	Ile 185	Met	His	Leu	Leu	Leu 190	Phe	Ser	
	Val	Leu	Pro 195	Leu	Ile	Ile	Ser	Ser 200	Cys	Gln	Leu	Phe	Leu 205	Val	Gly	Thr	
30	Trp	Leu 210	Pro	His	Arg	Arg	Gly 215	Ala	Thr	Thr	Arg	Pro 220	Gly	Val	Thr	Thr	/
35	Arg 225	Ser	Leu	Ala	Leu	His 230	Pro	Ala	Leu	Ser	Phe 235	Ala		Cys '	Tyr	Asn 240	
40	Phe	Gly	Tyr	His	Arg 245	Glu	His	His	Glu	Ser 250	Pro	Ser	Thr	Pro	Trp 255	Phe	
45	Gln	Leu	Pro	Gln 260	Leu	Arg	Asn	Glu	Ser 265	Phe	Thr					•	
	<210)> 5	52														
50	<211 <212		90 ANC														
	<213	3> 1	lodu]	laria	a spu	ımige	ena l	NSOR:	LO								
55																	
	<220	O>															
00	<22	1> (DS														
60	<222	2>	(1)	. (690))												
	<22	3>															
65	•																
70	atα	O> : gcg Ala	atc	gcc Ala	att Ile 5	att Ile	agt Ser	ata Ile	tgg Trp	gct Ala 10	atc Ile	agc Ser	cta Leu	ggt Gly	ttg Leu 15	tta Leu	

									•								
	ctt Leu	tat Tyr	att Ile	gat Asp 20	ata Ile	tcc Ser	caa Gln	ttc Phe	aag Lys 25	ttt Phe	tgg Trp	atg Met	ttg Leu	tta Leu 30	ccg Pro	ctc Leu	96
5	ata Ile	ttt Phe	tgg Trp 35	caa Gln	aca Thr	ttt Phe	tta Leu	tat Tyr 40	acg Thr	gga Gly	tta Leu	ttt Phe	att Ile 45	aca Thr	gct Ala	cat His	144
10	gat Asp	gcc Ala 50	atg Met	cat His	Gly ggg	gta Val	gtt Val 55	ttt Phe	ccc Pro	aaa Lys	aat Asn	ccc Pro 60	aaa Lys	atc Ile	aac Asn	cat His	192
15	ttc Phe 65	att Ile	ggc Gly	tca Ser	ttg Leu	tgc Cys 70	ctg Leu	ttt Phe	ctt Leu	tat Tyr	ggt Gly 75	ctt Leu	tta Leu	cct Pro	tat Tyr	caa Gln 80	240
20	Lys	Leu	tta Leu	Lys	Lys 85	His	Trp	Leu	His	90	HIS	ASI	PIO	AIA	95	GIU	288
25	aca Thr	gat Asp	cca Pro	gat Asp 100	ttt Phe	cac His	aac Asn	Gly ggg	aag Lys 105	cag Gln	aaa Lys	aac Asn	ttt Phe	ttt Phe 110	gct Ala	tgg Trp	33,6
25	tat Tyr	tta Leu	tat Tyr 115	ttt Phe	atg Met	aag Lys	cgt Arg	tac Tyr 120	tgg Trp	agt Ser	tgg Trp	tta Leu	caa Gln 125	att Ile	atc Ile	aca Thr	384
30	tta Leu	atg Met 130	att Ile	att Ile	tat Tyr	aac Asn	tta Leu 135	cta Leu	aaa Lys	tat Tyr	ata Ile	tgg Trp 140	cat His	ttt Phe	cca Pro	gag Glu	432
35	gat Asp 145	aat Asn	atg Met	act Thr	tat Tyr	ttt Phe 150	tgg Trp	gta Val	gtt Val	ccc Pro	tca Ser 155	att Ile	tta Leu	agt Ser	tct Ser	tta Leu 160	480
40	caa Gln	tta Leu	ttt Phe	tat Tyr	ttt Phe 165	gga Gly	act Thr	ttt Phe	cta Leu	ccc Pro 170	His	agt Ser	gag Glu	cct Pro	gta Val 175	Giu	528
	ggt Gly	tat Tyr	aaa Lys	gag Glu 180	cct Pro	cat His	cgt Arg	tcc Ser	caa Gln 185	Thr	att	agc Ser	cgt Arg	Pro 190	TTE	tgg Trp	576
45	tgg Trp	tca Ser	ttt Phe 195	Ile	act Thr	tgt Cys	tac Tyr	cat His 200	Phe	ggt Gly	tat Tyr	cat His	tac Tyr 205	GIU	cat His	cat His	624
50	gaa Glu	tac Tyr 210	Pro	cat His	gtt Val	cct Pro	tgg Trp 215	Trp	caa Gln	tta Leu	cca Pro	gaa Glu 220	1 776	tat Tyr	aaa Lys	atg Met	672
55	tct Ser 225	Lys	tca Ser	aat Asn	ttg Leu	tga											690
60	<21	0>	53														
60	<21	1>	229														
	<21		PRT														
65	<21	.3>	Nodu	lari	a sp	oumiç	ena	NSOF	R10								
70	<40	0>	53		-											,	

	Met 1	Ala	Ile	Ala	Ile 5	Ile	Ser	Ile	Tŕp	Ala 10	Ile	Ser	Leu	Gly	Leu 15	Leu
5	Leu	Tyr	Ile	Asp 20	Ile	Ser	Gln	Phe	Lys 25	Phe	Trp	Met	Leu	Leu 30	Pro	Leu
10	Ile	Phe	Trp 35	Gln	Thr	Phe	Leu	Tyr 40	Thr	Gly	Leu	Phe	Ile 45	Thr	Ala	His
15	Asp	Ala 50	Met	His	Gly	Val	Val 55	Phe	Pro	Lys	Asn	Pro 60	Lys	Ile	Asn	His
	Phe 65	Ile	Gly	Ser	Leu	Cys 70	Leu	Phe	Leu	Tyr	Gly 75	Leu	Leu	Pro	Tyr	Gln 80
20	Lys	Leu	Leu	Lys	Lys 85	His	Trp	Leu	His	His 90	His	Asn	Pro	Ala	Ser 95	Glu
25	Thr	Asp	Pro	Asp 100	Phe	His	Asn	Gly	Lys 105	Gln	Lys	Asn	Phe	Phe 110	Ala	Trp
30	Tyr	Leu	Туг 115	Phe	Met	Lys	Arg	Tyr 120	Trp	Ser	Trp	Leu	Gln 125	Ile	Ile	Thr
35	Leu	Met 130	Ile	Ile	Туг	Asn	Leu 135	Leu	Lys	Tyr	Ile	Trp 140	His	Phe	Pro	Glu
	Asp 145	Asn	Met	Thr	Tyr	Phe 150	Trp	Val	Val	Pro	Ser 155	Ile	Leu	Ser	Ser	Leu 160
40	Gln	Leu	Phe	Tyr	Phe 165	Gly	Thr	Phe	Leu	Pro 170	His	Ser	Glu	Pro	Val 175	Glu
45	Gly	Tyr	Lys	Glu 180	Pro	His	Arg	Ser	Gln 185	Thr	Ile	Ser	Arg	Pro 190	Ile	Trp
50	Trp	Ser	Phe 195	Ile	Thr	Cys	Tyr	His 200	Phe	Gly	Tyr	His	Tyr 205	Glu	His	His
55	Glu	Tyr 210	Pro	His	Val	Pro	Trp 215	Trp	Gln	Leu	Pro	Glu 220	Ile	Tyr	Lys	Met
	Ser 225	Lys	Ser	Asn	Leu											
60	<210	n > '	54													
	<21		37	-												
65	<21	2> 1	DNA													
	<21	3> 1	Künst	lic	ne Se	eque	nz								•	

59/73

'	WO 2 004/01	60/73	
	<220>	-	
	<221>	Primer	
5	<222>	(1)(37)	
	<223>		
10	<400> gcgcat	54 gcat ctagaaatga tccagttaga acaacca	37
15	<210>	55	
	<211>	37	
	<212>	DNA	
20	<213>	Künstliche Sequenz	
25	<220>		-
25		Primer	
		(1)(37)	
30	<223>	, =/, , , ,	
35	<400> gcgcat	55 tgctc tagactattt tgctttgtaa atttctg	37
	<210>	56	
40	<211>	792	
	<212>	DNA	
45	<213>	Nostoc punctiforme ATCC 29133	
50	<220>		
00	<221>	CDS	
	<222>		
55			٠
60	<400>	56	49
	1	atg cat cta gaa atg atc cag tta gaa caa cca ctc agt cat caa Met His Leu Glu Met Ile Gln Leu Glu Gln Pro Leu Ser His Gln 10 15	
~-		1 5	97
65	gca aa Ala L	aa ctg act cca gta ctg aga agt aaa tct cag ttt aag ggg ctt ys Leu Thr Pro Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu	

70 ttc att gct att gtc att gtt agc gca tgg gtc att agc ctg agt tta 145

	Phe	Ile	Ala	Ile 35	Val	Ile	Val	Ser	Ala 40	Trp	Val	Ile	Ser	Leu 45	Ser	Leu		
5						atc Ile												193
10						aca Thr												241
15						ggc Gly 85												289
						ttg Leu												337
`20						aaa Lys												385
25						ttt Phe										gct Ala		433
30						atg Met												481
35						tat Tyr 165											/	529
40						tac Tyr												577
						ttt Phe												625
45						cct Pro												673
50	tgg Trp	tgg Trp 225	tca Ser	ttt Phe	atc Ile	acg Thr	tgc Cys 230	tat Tyr	cat His	ttt Phe	ggc Gly	tac Tyr 235	cac His	gag Glu	gaa Glu	cat His		721
55						att Ile 245												769
	gca Ala		tagt	ctag	ag c	atgc	gc											792
60																		
	<210	> 5	7															
65	<211	> 2	57															
55	<212	> P	RT															
	<213	> N	iosto	c pu	ncti	form	e AT	CC 2	9133	3						•		

<400> 57

	<400> 57															
5	Met 1	His	Leu	Glu	Met 5	Ile	Gln	Leu	Glu	Gln 10	Pro	Leu	Ser	His	Gln 15	Ala
10	Lys	Leu	Thr	Pro 20	Val	Leu	Arg	Ser	Lys 25	Ser	Gln	Phe	Lys	Gly 30	Leu	Phe
15	Ile	Ala	Ile 35	Val	Ile	Val	Ser	Ala 40	Trp	Val	Ile	Ser	Leu 45	Ser	Leu	Leu
	Leu	Ser 50	Leu	Asp	Ile	Ser	Lys 55	Leu	Lys	Phe	Trp	Met 60	Leu	Leu	Pro	Val
20	Ile 65	Leu	Trp	Gln	Thr	Phe 70	Leu	Tyr	Thr	Gly	Leu 75	Phe	Ile	Thr	Ser	His 80
25	Asp	Ala	Met	His	Gly 85	Val	Val	Phe	Pro	Gln 90	Asn	Thr	Lys	Ile	Asn 95	His
30	Leu	Ile	Gly	Thr 100	Leu	Thr	Leu	Ser	Leu 105	Tyr	Gly	Leu	Leu	Pro 110	Tyr	Gln
35	Lys	Leu	Leu 115	Lys	Lys	His	Trp	Leu 120	His	His	His	Asn	Pro 125	Ala	Ser	Ser
	Ile	Asp 130	Pro	Asp	Phe	His	Asn 135	Gly	Lys	His	Gln	Ser 140	Phe	₽he	Ala	Trp
40	Tyr 145	Phe	His	Phe	Met	Lys 150	Gly	Tyr	Trp	Ser	Trp 155	Gly	Gln	Ile	Ile	Ala 160
45	Leu	Thr	Ile	Ile	Туг 165	Asn	Phe	Ala	Lys	Tyr 170	Ile	Leu	His	Ile	Pro 175	Ser
50	Asp	Asn	Leu	Thr 180	Tyr	Phe	Trp	Val	Leu 185	Pro	Ser	Leu	Leu	Ser 190	Ser	Leu
55	Gln	Leu	Phe 195	Tyr	Phe	Gly	Thr	Phe 200	Leu	Pro	His	Ser	Glu 205	Pro	Ile	Gly
	Gly	Tyr 210	Val	Gln	Pro	His	Cys 215	Ala	Gln	Thr	Ile	Ser 220	Arg	Pro	Ile	Trp
60	Trp 225	Ser	Phe	Ile	Thr	Cys 230	Tyr	His	Phe	Gly	Tyr 235	His	Glu	Glu	His	His 240
65	Glu	Tyr	Pro	His	Ile 245	Ser	Trp	Trp	Gln	Leu 250		Glu	Ile	Tyr	Lys 255	Ala
70	Lys															

27

```
<210> 58
 5
     <211> 26
     <212> DNA
     <213> Künstliche Sequenz
10
     <220>
     <221> Primer
15
     <222> (1)..(26)
     <223>
20
     <400> 58
     gtcgaccctg ctttaatgag atatgc
25
     <210> 59
     <211> 27
30
     <212> DNA
     <213> Künstliche Sequenz
35
     <220>
     <221> Primer
40
     <222> (1)..(27)
     <223>
45
     <400> 59
     ctcgagcttg gacaatcagt aaattga
50
     <210> 60
     <211> 210
55
     <212> DNA
     <213> Agrobacterium tumefaciens
60
     <220>
     <221> Terminator
65
     <222> (1)..(210)
```

BNSDOCID: <WO____2004018694A2_I_>

70

<223>

**	2004/01	.002.		6-	1/73			•
	<400> gtcgac	60 cctg	ctttaatgag	atatgcgaga	cgcctatgat	cgcatgatat	ttgctttcaa	60
				aaaacctgag				120
5	tcggtt	catt	ctaatgaata	tatcacccgt	tactatcgta	tttttatgaa	taatattctc	180
	cgttca	attt	actgattgtc	caagctcgag				210
10	<210>	61						
	<211>							
15	<212>							
			stliche Sequ	ıenz				
			_					
20	<220>							
	<221>	Prin	mer					-
25	<222>	(1).	(37)					
	<223>							
30								
30	<400> cccggg	61 aatt	cttcattatt	tcgattttga	tttcgtg			37
35	<210>	62			•			
	<211>	38				•		
40	<212>	DNA						
40	<213>	Küns	tliche Sequ	ienz				
45	<220>							
	<221>	Prin						
50		(1).	. (38)					
	<223>							
55	<400>	62						
	aagctt	ggtt	gatcagaaga	agaagaagaa	gatgaact			38
0.5	<210>	63						
60	<211>	652						
	<212>	DNA						

70

<220>

<213> Arabidopsis thaliana

	<221>	Promoto	r						
	<222>	(1)(6	552)						
5	<223>								
10	<400>	63	cattatt	tcgattttga	tttcgtgacc	agcgaacgca	gaataccttg		60
10							ttttgtagtt		120
							gatatcattg	_	180
15							tatgtatgtg		240
							ccatgtcaaa		300
20							ccagtaacta		360
							aaatgtgaac		420
							atcctctcta		480
25							acctcatcat		540
							tttttttgac		600
30						tcaaccaagc			652
	<210>	64						. /	
35	<211>	29				. 1			
	<212>	DNA							
40	<213>	Künstli	.che Sequ	ienz					
	200								
45	<220>	5							
45	<221>	Primer	101						
	<222>	(1)(2	:9)						
50	<223>								
	<400>	64							
55		-	atcttat	gtggtacaa					29
55	<210>	65		•					
	<211>	29							
60	<212>	DNA							
•	<213>		iche Sequ	ıenz					
65	~~		504				•		
	<220>								
	<221>	Primer							
70	~~~								

```
(1)..(29)
     <222>
     <223>
 5
     <400> 65
                                                                            29
     aagcttttct tgaaagtaaa gattgagtc
10
            66
     <210>
            1773
     <211>
15
     <212> DNA
     <213> Petunia hybrida
20
     <220>
     <221>
            Promotor
25
           (1)..(1773)
     <222>
     <223>
30
     <400> 66
     gagetetage geaatettat gtggtacaaa tettgattag tegggaaaaa atgatgtgge
                                                                            60
     cctacaaatg gttggaggat gggagatttg gctctatcta gagttatgtg gttgttgaag /
                                                                           120
35
                                                                           180
     catttggtta ctctctgctg tggtagttgg catatccaca ttgtctcctt ccacttttat
     gacaattacg tgaaagttat gggttgtttt gtctattttt gtcgaggcct ttctttcct
                                                                           240
                                                                           300
40
     tccaggttgt tgaagatggt ccaattcgat tagaataatg ttttgagctt tagcatattc
     tctctcgttt acacgattat agtaataatg atataggatg acagaagttg acacataaat
                                                                           360
     tttttattct ctccatttac tttaatccaa atctcaccta ccctaaactt ctttaatatg
                                                                           420
45
                                                                           480
     tattcaatag tctatccgag taaattgtaa atttaacaac cattgataat attgacacct
     actaacatat actagtaaag agaatattaa catggcacat ataatttgat gcaaaatgag
                                                                           540
50
     tatgatgaaa tttaaaccca aaatctcttg attttgacag tgtcaccttg acttgttaac
                                                                           600
     taataagtca tgttttagtg gcagaaagac aaactcatcc accaactgta tagcaataaa
                                                                           660
                                                                           720
     aaatagaaga atcttcctga ggcaaagttt tggaaaaatt aagagtggct gagatttaat
55
                                                                           780
     ttcaacagga attagttcca cttaactttt aggttacgat acagtgctaa ttaaataact
                                                                           840
     taattgtatt agatatttct tgcacctaaa aaatttaaaa actgaaaaaa ggtagcaatc
60
                                                                           900
     aaaataaaca aaaggacaaa ataagtgaaa ggtacagcca ccaaccctgg cggctcactg
                                                                           960
     tttgttggtt aaaacgtaga cttacaccta ccaaaatcta caactaaaat gaggcaataa
                                                                          1020
     tactttqccc aaaattacca agaaaagaaa aagaaaggaa tcccttaata ttactctcct
65
                                                                          1080
     ccatttcaca ataaatatcc tagtttgact taaattagag tttaaaaaaat gaaagacgac
                                                                          1140
     ttttaaaact tgtaatctaa aataaatcat agttaaatgt gtggctataa atcattgtat
                                                                          1200
70
     taacqqtaaa gtggtaagtt taaaagttaa ttgttttcaa atataaaatt gtactatcat
```

PCT/EP2003/009106

	tctttt	tgga atq	ggactaat	aagaaaacta	tgacatccat	tatggagcgg	agggagtatc	1260
5	tccttt	taac aat	taaccttt	gtcccttcaa	ttcaattatc	agtatgcaaa	cattaaaaat	1320
5	tattat	tgat gtt	taagtacc	acatcatcct	taatgataga	atcatcgtag	aacgcttttc	1380
	caggca	caca tto	caaactag	ttagaccagt	accacacatc	gaatattcca	gacttctttg	1440
10	tttgaa	tagt cga	actacatt	ggataatgga	acttctcgaa	ttaacttcga	attagtcgag	1500
	cccaaa	ataa tat	tatacgtc	gggtggaaaa	ctataaaatg	tttgacaaaa	atgtcaaatt	1560
15	aatata	tcaa tct	tgcaacaa	ccttttcacc	ttgagaacac	agctgaaatt	ttttacaaag	1620
••	gtagtt	ggtg aag	gctagtca	gcgaatccca	ttaccttcca	ctctacctaa	ccccttcac	1680
	caacaa	caaa ttt	ctgtaat	ttaaaaacta	gccaaaaaag	aactctcttt	tacaaagagc	1740
20	caaaga	ctca atc	tttactt	tcaagaaaag	ctt			1773
	<210>	67						
25	<211>	39					•	
_	<212>	DNA						
	<213>	Künstli	.che Sequ	enz				
30								
	<220>		: .					
35	<221>	Primer					•	
	<222>	(1)(3	9)			. •		
40	<223>							
40								
45	<400> gcgcate	67 gcat cta	gaaatga	atttttgtga	taaaccagt			39
	<210>	68						
50	<211>	37						
50	<212>	DNA						
	<213>	Künstli	che Sequ	enz				
55							٠	
	<220>							
30	<221>	Primer						
,,,	<222>	(1)(3	7)					
	<223>							
35					,			
	<400>	68 ictc tag	attacga a	attggttact	gaattgr			37
70	J-504-5	,						٠,

67/73

	<210> 69																	
	<211	L> 8	319															
5	<212	2> I	ANC															
	<213	3> 1	lost	oc pi	ıncti	ifor	ne Al	rcc 2	9133	3								
4.0																		
10	<220)>																
	<221	L> (CDS															
15	<222	2>	(5).	. (802	2)													
	<223	3>																
00																		
20	<400)> (59									CCE	att	200	t = t	tat		49
	gcgo	Met	g cat	t cta	a gaa a Glu	ı Met	aat Asr	Phe	Cys	. yat	Lys 10	Pro	Val	Ser	Tyr	Tyr 15		
25		1				5						20+	~++	+~~	~~~			97
	gtt Val	gca Ala	Ile	gag Glu	caa Gln	Leu	Ser	Ala	Lys	Glu	Asp	Thr	Val	Trp	999 Gly 30	Leu		<i>3 1</i>
00										25	~+ ~	~~+	264	++~				145
30	gtg Val	att Ile	gtc Val	Ile	gta Val	Ile	Ile	agt Ser	Leu	Trp	Val	Ala	Ser	Leu	Ala	Phe		147
				35					40					45	aa+	¬++	_	193
35	tta Leu	cta Leu	Ala	Ile	aat Asn	Tyr	gcc Ala	Lys	Val	Pro	Ile	Trp	Leu	Ile	Pro	Ile		193
			50					55			~~~	a+-	60	, a++	act	ac a		241
	·gca Ala	Ile	gtt Val	tgg Trp	Gln	Met	Phe	Leu	Tyr	Thr	Gly	Leu 75	Phe	Ile	Thr	Ala		241
40		65					70					-			_++	2.2.t		289
	His	gat Asp	gct Ala	atg Met	cat His	Gly	cca Ser	Val	Tyr	Arg	Lys	Asn	Pro	Lys	Ile	Asn 95		203
45	80					85					90							337
	aat Asn	ttt Phe	atc Ile	ggt Gly	tca Ser	cta Leu	gct Ala	gta Val	gcg Ala	Leu	Tyr	Ala	Val	Phe	Pro	Tyr		337
50					100			,		105					110	200		385
50	caa Gln	cag Gln	atg Met	Leu	aag Lys	aat Asn	cat His	tgc Cys	Leu	His	His	Arg	His	Pro	Ala	Ser		303
				115					120					125				422
55	gaa Glu	gtt Val	gac Asp	cca Pro	gat Asp	ttt Phe	cat His	Asp	ggt Gly	aag Lys	aga Arg	aca Thr	Asn	gct Ala	Ile	Phe		433
			130					135					140					402
	tgg Trp	tat Tyr	ctc Leu	cat His	ttc Phe	atg Met	ata Ile	gaa Glu	tac Tyr	tcc Ser	agt Ser	\mathtt{Trp}	caa Gln	cag Gln	Leu	ata Ile		481
60		145					150					155						500
	gta Val	cta Leu	act Thr	atc Ile	cta Leu	ttt Phe	aat Asn	tta Leu	gct Ala	aaa Lys	tac Tyr	gtt Val	ttg Leu	cac His	atc Ile	cat		529
65	160					165					170					175		
	caa Gln	ata Ile	aat Asn	ctc Leu	atc Ile	tta Leu	ttt Phe	tgg Trp	agt Ser	att Ile	cct Pro	cca Pro	att Ile	tta Leu	agt Ser	tcc Ser		577
					180					185					190			
70	att	caa	ctg	ttt	tat	ttc	gga	aca	ttt	ttg	cct	cat	cga	gaa	CCC	aag		625

								•	69/73									
	Ile	Gln	Leu	Phe 195	Tyr	Phe	Gly	Thr	Phe 200	Leu	Pro	His	Arg	Glu 205	Pro	Lys		
5	aaa Lys	gga Gly	tat Tyr 210	gtt Val	tat Tyr	ccc Pro	cat His	tgc Cys 215	agc Ser	caa Gln	aca Thr	ata Ile	aaa Lys 220	ttg Leu	cca Pro	act Thr		673
10	ttt Phe	ttg Leu 225	tca Ser	ttt Phe	atc Ile	gct Ala	tgc Cys 230	tac Tyr	cac His	ttt Phe	ggt Gly	tat Tyr 235	cat His	gaa Glu	gaa Glu	cat His		721
	cat His 240	gag Glu	tat Tyr	ccc Pro	cat His	gta Val 245	cct Pro	tgg Trp	tgg Trp	caa Gln	ctt Leu 250	cca Pro	tct Ser	gta Val	tat Tyr	aag Lys 255		769
15	cag Gln	aga Arg	gta Val	ttc Phe	aac Asn 260	aat Asn	tca Ser	gta Val	acc Thr	aat Asn 265	tcg Ser	taat	ctag	ag c	atgo	:gc		819
20	<210	> 7	0			•												
	<211	> 2	66															•
25	<212	> F	PRT															
	<213	> N	losto	oc pi	ıncti	forn	ne Al	rcc 2	29133	3								
30	<400	> 7	0															
35	Met 1	His	Leu	Glu	Met 5	Asn	Phe	Cys	Asp	Lys 10	Pro	Val	Ser	Tyr	Tyr 15	Val	/	٠
	Ala	Ile	Glu	Gln 20	Leu	Ser	Ala	Lys	Glu 25	Asp	Thr	Val	Trp.	Gly 30	Leu	Val		
40	Ile	Val	Ile 35	Val	Ile	Ile	Ser	Leu 40	Trp	Val	Ala	Ser	Leu 45	Ala	Phe	Leu		
45	Leu	Ala 50	Ile	Asn	Tyr	Ala	Lys 55	Val	Pro	Ile	Trp	Leu 60	Ile	Pro	Ile	Ala		
50	Ile 65	Val	Trp	Gln	Met	Phe 70	Leu	Tyr	Thr	Gly	Leu 75	Phe	Ile	Thr	Ala	His 80		
55	Asp	Ala	Met	His	Gly 85	Ser	Val	Tyr	Arg	Lys 90	Asn	Pro	Lys	Ile	Asn 95	Asn		
	Phe	Ile	Gly	Ser 100	Leu	Ala	Val	Ala	Leu 105	Tyr	Ala	Val	Phe	Pro 110	Tyr	Gln		
60	Gln	Met	Leu 115	Lys	Asn	His	Cys	Leu 120	His	His	Arg	His	Pro 125	Ala	Ser	Glu		
65	Val	Asp 130	Pro	Asp	Phe	His	Asp 135	Gly	Lys	Arg	Thr	Asn 140	Ala	Ile	Phe	Trp		
70	Tyr 145	Leu	His	Phe	Met	Ile 150	Glu	Tyr	Ser	Ser	Trp 155	Gln	Gln	Leu	Ile	Val 160		

5	Leu	Thr	Ile	Leu	Phe 165	Asn	Leu	Ala	Lys	Tyr 170	Val	Leu	His	Ile	His 175	Gln		
	Ile	Asn	Leu	Ile 180	Leu	Phe	Trp	Ser	Ile 185	Pro	Pro	Ile	Leu	Ser 190	Ser	Ile		
10	Gln	Leu	Phe	Tyr	Phe	Gly	Thr	Phe 200	Leu	Pro	His	Arg	Glu 205	Pro	Lys	Lys		
15	Gly	Tyr 210	Val	Tyr	Pro	His	Cys 215	Ser	Gln	Thr	Ile	Lys 220	Leu	Pro	Thr	Phe		
20	Leu 225	Ser	Phe	Ile	Ala	Cys 230	Tyr	His	Phe	Gly	Tyr 235	His	Glu	Glu	His	His 240		
25	Glu	Tyr	Pro	His	Val 245	Pro	Trp	Trp	Gln	Leu 250	Pro	Ser	<u>V</u> al	Tyr	Lys 255	Gln		•
30	Arg	Val	Phe	Asn 260	Asn	Ser	Val	Thr	Asn 265	Ser								
	<21	0>	71															
	<21	1>	33														1	
35	<21	2>	AND															
	<21	3>	Küns	tlic	he S	eque	nz							. 1				
40																		
	<22	0>																
	<22	1>	Prim	er														
45	<22	.2>	(1).	. (33	()													
	<22	:3>																
50																		
	<40 gcg	00> gcat <u>o</u>	71 gcat	ctag	gaaat	gg (gato	gcc	at ta	at								3 3
55	<21	LO>	72															
		L1>	32															
60		L2>	DNA															
		13>	Küns	stlic	che s	Segu	enz									•		
65	<22	20>																
	<22	21>	Prin	ner														

433

481

W	O 200	4/018	694						71/73						PC1/	EP2003	/00910	J6
	<22	2>	(1).	. (32)				-									
	<22	3>																
5																		
		0> catg		taga	tcac	aa a	tttg	attt	a ga								•	32
10	<21	0>	73															
	<21	1>	720															
15	<01	2>	DNA										•					
	<21	3 >	Nodu	lari	a sp	umig	ena :	NSOR	10									
20	<220	0>																
	<22	1>	CDS															
25	<22	2>	(5).	. (70	3)								•					
	<222> (5)(703) <223>																	
30			g ca													atc		49
35		1				5					10					15	/	•
				ttg Leu														97
40				ccg Pro 35													:	145
45				gct Ala													:	193
50				aac Asn													:	241
55				tat Tyr													:	289
J J				agt Ser													:	337
00																		

aac ttt ttt gct tgg tat tta tat ttt atg aag cgt tac tgg agt tgg Asn Phe Phe Ala Trp Tyr Leu Tyr Phe Met Lys Arg Tyr Trp Ser Trp

tta caa att atc aca tta atg att att tat aac tta cta aaa tat ata Leu Gln Ile Ile Thr Leu Met Ile Ile Tyr Asn Leu Leu Lys Tyr Ile

tgg cat ttt cca gag gat aat atg act tat ttt tgg gta gtt ccc tca Trp His Phe Pro Glu Asp Asn Met Thr Tyr Phe Trp Val Val Pro Ser 145 150 155

135

120

140

60

65

70

115

130

F	att Ile 160	tta Leu	agt Ser	tct Ser	tta Leu	caa Gln 165	tta Leu	ttt Phe	tat Tyr	ttt Phe	gga Gly 170	act Thr	ttt Phe	cta Leu	Pro	cac His 175	529
5	agt Ser	gag Glu	cct Pro	gta Val	gaa Glu 180	ggt Gly	tat Tyr	aaa Lys	gag Glu	cct Pro 185	cat His	cgt Arg	tcc Ser	Gln	act Thr 190	att Ile	577
10	agc Ser	cgt Arg	ccc Pro	att Ile 195	tgg Trp	tgg Trp	tca Ser	ttt Phe	ata Ile 200	act Thr	tgt Cys	tac Tyr	cat His	ttt Phe 205	ggt Gly	tat Tyr	625
15	cat His	tac Tyr	gaa Glu 210	cat His	cat His	gaa Glu	tac Tyr	ccc Pro 215	cat His	gtt Val	cct Pro	tgg Trp	tgg Trp 220	caa Gln	tta Leu	cca Pro	673
20		att Ile 225									tgat	ctaç	gag c	atgo	gc		720
	<210)> 1	74														
25	<21:	1> 2	233														
	<21	2> 1	PRT														
30	<21		Nodu:	laria	a spi	ımige	ena I	NSOR:	10								
	<400)> ·	74														-
35	Met 1	His	Leu	Glu	Met 5	Ala	Ile	Ala	Ile	Ile 10	Ser	Ile		Ala	Ile 15	Ser	
40	Leu	Gly	Leu	Leu 20	Leu	Tyr	Ile	Asp	Ile 25	Ser	Gln	Phe	Lys	Phe 30	Trp	Met	
45	Leu	Leu	Pro 35	Leu	Ile	Phe	Trp	Gln 40	Thr	Phe	Leu	Tyr	Thr 45	Gly	Leu	Phe	
	Ile	Thr 50	Ala	His	Asp	Ala	Met 55	His	Gly	Val	Val	Phe 60	Pro	Lys	Asn	Pro	
50	Lys 65	Ile	Asn	His	Phe	Ile 70	Gly	Ser	Leu	Cys	Leu 75	Phe	Leu	Tyr	Gly	Leu 80	
55	Leu	Pro	Tyr	Gln	Lys 85	Leu	Leu	Lys	Lys	His 90	Trp	Leu	His	His	His 95	Asn	
60	Pro	Ala	Ser	Glu 100	Thr	Asp	Pro	Asp	Phe 105		Asn	Gly	Lys	110	Lys	Asn	
65	Phe	Phe	Ala 115	Trp	Tyr	Leu	Tyr	Phe 120		Lys	Arg	Tyr	Trp 125	Ser	Trp	Leu	
	Gln	Ile 130	Ile	Thr	Leu	Met	Ile 135		Tyr	Asn	Leu	Leu 140		Tyr	Ile	Trp	

73/73

	His 145	Phe	Pro	Glu	Asp	Asn 150	Met	Thr	Týr	Phe	Trp 155	Val	Val	Pro	Ser	11e
5	Leu	Ser	Ser	Leu	Gln 165	Leu	Phe	Tyr	Phe	Gly 170	Thr	Phe	Leu	Pro	His 175	Ser
10	Glu	Pro	Val	Glu 180	Gly	Tyr	Lys	Glu	Pro 185	His	Arg	Ser	Gln	Thr 190	Ile	Ser
15	Arg	Pro	Ile 195	Trp	Trp	Ser	Phe	Ile 200	Thr	Cys	Tyr	His	Phe 205	Gly	Tyr	His
	Tyr	Glu 210	His	His	Glu	Tyr	Pro 215	His	Val	Pro	Trp	Trp 220	Gln	Leu	Pro	Glu
20	Ile 225	Tyr	Lys	Met	Ser	Lys 230	Ser	Asn	Leu							

THIS PAGE BLANK (USPTO)