In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import scipy.stats as sps
from statsmodels.sandbox.stats.multicomp import multipletests
import matplotlib.pyplot as plt
matplotlib inline
```

Отток клиентов телекома

Данные https://github.com/Yorko/mlcourse_open/blob/master/data/telecom_churn.csv (https://github.com/Yorko/mlcourse_open/blob/master/data/telecom_churn.csv)

In [3]:

```
telecom = pd.read_csv('../6/telecom_churn.csv')
telecom.head()
```

Out[3]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	Tot e\ cal
0	KS	128	415	No	Yes	25	265.1	110	45.07	197.4	ξ
1	ОН	107	415	No	Yes	26	161.6	123	27.47	195.5	1(
2	NJ	137	415	No	No	0	243.4	114	41.38	121.2	11
3	ОН	84	408	Yes	No	0	299.4	71	50.90	61.9	}
4	ОК	75	415	Yes	No	0	166.7	113	28.34	148.3	12
4											•

Одинаково ли распределено количество минут днем?

График из предыдущего съезда

In [4]:

```
1
    sns.set(font scale=1.3)
    plt.figure(figsize=(12, 5))
2
3 ▼
    sns.kdeplot(telecom[telecom['Churn'] == True]['Total day minutes'],
4
                 label='True', lw=3)
5 ▼
    sns.kdeplot(telecom[telecom['Churn'] == False]['Total day minutes'],
6
                label='False', lw=3)
7
    plt.xlabel('Total day minutes')
8
    plt.legend(title='Churn');
```


Очевидно, что распределения разные. Критерий Уилкоксона-Манна-Уитни отвергает гипотезу однородности.

In [5]:

```
1  x = telecom[telecom['Churn'] == False]['Total day minutes']
2  y = telecom[telecom['Churn'] == True]['Total day minutes']
3
4  sps.mannwhitneyu(x, y, alternative='two-sided')
```

Out[5]:

MannwhitneyuResult(statistic=495604.0, pvalue=6.715053420859948e-23)

Оценка сдвига

In [6]:

```
1  W = (y[:, np.newaxis] - x[np.newaxis, :]).ravel()
2  shift = np.median(W)
3  shift
```

Out[6]:

33.80000000000001

Всякие параметры для вычисления доверительного интервала

In [7]:

```
1  alpha = 0.05
2  n, m = len(x), len(y)
3  z = sps.norm.ppf(1 - alpha)
4  k = int(np.floor(n*m/2 - 0.5 - z * np.sqrt(n*m*(n+m+1)/12)))
5  k
```

Out[7]:

656107

Доверительный интервал величины сдвига. По сравнению с формулами тут из индексов надо вычесть 1, поскольку используется нумерация с нуля.

In [8]:

```
1 W.sort()
2 W[k], W[n*m-k-1]
```

Out[8]:

```
(28.30000000000001, 39.3000000000001)
```

Вообще говоря, сдвиг в данном случае рассматривать не совсем корректно, поскольку распределения сильно отличаются еще и формой, как видно из графика.

Одинаково ли распределено количество минут ночью?

In [9]:

Критерий Уилкоксона-Манна-Уитни отвергает гипотезу, но при это pvalue сильно близко к пограничному.

In [10]:

```
1  x = telecom[telecom['Churn'] == False]['Total night minutes']
2  y = telecom[telecom['Churn'] == True]['Total night minutes']
3
4  sps.mannwhitneyu(x, y, alternative='two-sided')
```

Out[10]:

MannwhitneyuResult(statistic=649507.0, pvalue=0.04744034531465512)

Оценка сдвига. Как видим, разница составляет всего 5 минут, в то время как значения выборки 100-300 минут. Т.е. имеется статистическая значимость, в то время как практической значимости полученный результат не имеет.

In [11]:

```
W = (y[:, np.newaxis] - x[np.newaxis, :]).ravel()
shift = np.median(W)
shift
```

Out[11]:

4.900000000000006

Доверительный интервал сдвига очень близок к нулю.

In [12]:

```
1 W.sort()
2 W[k], W[n*m-k-1]
```

Out[12]:

```
(0.800000000000114, 9.0)
```

Распределения по графику похожи на нормальные, критерий Шапиро-Уилка нормальность не отвергает.

In [13]:

```
1 sps.shapiro(x), sps.shapiro(y)
```

Out[13]:

```
((0.9994863867759705, 0.673305869102478),
(0.997378408908844, 0.6467164158821106))
```

Критерий Стьюдента отвергает однородность с чуть меньшим pvalue. Но, вообще говоря, тут еще МПГ нужна.

In [14]:

1 sps.ttest_ind(x, y)

Out[14]:

Ttest_indResult(statistic=-2.049754997609212, pvalue=0.040466484637911
374)

Прикладная статистика и анализ данных, 2019

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)