Exercise 1

For each of the following formulas use the DPLL procedure to determine whether ϕ is satisfiable or unsatisfiable. Give a complete trace of the algorithm, showing the simplified formula for each recursive call of the DPLL function. Assume that DPLL selects variables in alphabetical order (i.e. A, B, C, D, E, \ldots), and that the splitting rule first attempts the value False (F) and then the value True (T).

(a)
$$\phi_1 = (A \lor B) \land (B \lor C) \land (\neg B \lor D) \land (\neg A \lor \neg D) \land (\neg C \lor E) \land (A \lor \neg B \lor \neg D)$$

(b)
$$\phi_2 = (\neg A \lor \neg B \lor \neg C) \land (A \lor \neg B) \land (A \lor \neg D) \land (B \lor \neg E) \land (\neg C \lor D) \land (C \lor E) \land (C \lor \neg E) \land (\neg D \lor E)$$

Exercise 2

For the two formulas below, use resolution to prove that the formulas are unsatisfiable. To do so, first give a set of clauses Δ that is equivalent to the formula and second, use resolution to prove that it is unsatisfiable. Write the resolution process in the form of a tree for easier readability.

(a)
$$\phi_1 = (A \lor B \lor C) \land (\neg A \lor B \lor C) \land (A \lor \neg B \lor C) \land (A \lor B \lor \neg C) \land (\neg A \lor \neg B \lor C) \land (\neg A \lor \neg B \lor \neg C) \land (A \lor \neg B \lor \neg C) \land (\neg A \lor \neg B \lor \neg C)$$

(b)
$$\phi_2 = (G \vee \neg H) \wedge (\neg G \vee H) \wedge (A \to B) \wedge (\neg B \vee C) \wedge (A \vee D) \wedge (\neg C \vee \neg A \vee \neg E) \wedge (\neg D \vee A) \wedge F \wedge (F \leftrightarrow E)$$

Exercise 3

Transform the following formulas to CNF. To do so, follow the steps from the lecture (Chapter 9 slide 21) and give the intermediate results (you may skip those steps where there is nothing to do for the formula at hand). Simplify the resulting formulas where possible.

(a)
$$(P \to Q) \leftrightarrow (P \to R)$$

(b)
$$\neg (P \leftrightarrow Q) \lor (Q \to R)$$

(c)
$$(P \to R) \land (Q \to R) \land \neg(\neg Q \land (\neg R \lor P))$$

Exercise 4

Consider the formulas in Exercise 3. Are they satisfiable? Draw the truth table and give the number of interpretations that satisfy the formula.

Exercise 5

Encode the example in the slides of Chapter 7 as a logical formula to verify that if the counter is initialized in the range 0-2, it cannot transition to the value 3.

- Counter, repeatedly from c = 0 to c = 2.
- 2 bits x_1 and x_0 ; $c = 2 * x_1 + x_0$.
- ("FF" Flip-Flop, "D" Data IN, "CLK" Clock)
- \rightarrow The circuit simply repeats the operations: $x_0 \leftarrow NOR(x_0, x_1) = \neg(x_0 \lor x_1)$; and $x_1 \leftarrow x_0$. The clock is there so that both operations happen simultaneusly, so x_0 and x_1 are updated at the same time.

Hint: you need to refer to two different states of the counter (before and after an operation), so you'll need different propositions for those.

Hint: If you want to prove that given your knowledge encoded as a formula ϕ_K , some statement ϕ_S is true, then you need to encode the formula $\phi = \phi_K \land \neg \phi_S$. If ϕ is unsatisfiable, then it means that if we assume ϕ_K , ϕ_S must be true (as $\neg \phi_S$ leads to contradiction).