NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD

Computer Vision (Assignments)

Assignment: 03

Submitted to

Mr.Muhammad Waqar

Submitted By

Adeel Naeem (BSAI-146)

Submission Date: May 20th ,2025

1. Introduction

This report documents the design, training, and evaluation of a custom Convolutional Neural Network (CNN) and a

Transfer Learning model using a pre-trained VGG16 network. Both models are trained and tested on the CIFAR-10

dataset after manual preprocessing.

2. Data Handling and Manual Splitting

The CIFAR-10 dataset was downloaded in tar.gz format and extracted. Data from all five training batches was combined

and manually split into 80% training and 20% testing. The dataset was normalized and reshaped to (32x32x3) RGB

format.

3. Custom CNN Architecture

A custom CNN was built using TensorFlow/Keras. The architecture includes three Conv2D layers with ReLU activation

and MaxPooling, followed by a dense classifier. It was trained for 10 epochs using the Adam optimizer and

cross-entropy loss.

4. Transfer Learning with VGG16

Transfer learning was performed using the VGG16 model without its top layers. The base model's weights were frozen,

and a custom classifier was added on top. The model was then trained on the same manually split dataset.

5. Evaluation and Results

Both models were evaluated on the test set using accuracy and confusion matrix. Additionally, training and validation

curves were plotted to monitor learning progress.

6. Comparison and Analysis

Comparison between Custom CNN and VGG16 Transfer Learning Model:- Accuracy:

- Custom CNN: ~72%
- VGG16 Pre-trained: ~85% Convergence:
- VGG16 converged faster due to rich pre-learned features.- Generalization:
- VGG16 had better generalization with less overfitting.- Training Time:
- CNN trained faster due to smaller model size.
- VGG16 required more memory but gave better accuracy.

Conclusion: The pre-trained VGG16 model outperformed the custom CNN in terms of accuracy and generalization,

making it more suitable for image classification tasks on small datasets like CIFAR-10.

Code:

```
import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

import tarfile

file = tarfile.open(r"C:\Users\Adeel\Downloads\cifar-10-python.tar.gz")

file.extractall()

file.close()

import pickle

import numpy as np

def load_batch(file_path):

with open(file_path, 'rb') as f:

batch = pickle.load(f, encoding='bytes')
```

```
data = batch[b'data']
  labels = batch[b'labels']
  return data, labels
# Load all training batches
data_list = []
labels_list = []
for i in range(1, 6):
  data, labels = load_batch(f'cifar-10-batches-py/data_batch_{i}')
  data_list.append(data)
  labels_list.extend(labels)
X_all = np.concatenate(data_list)
y_all = np.array(labels_list)
print("Total data shape:", X_all.shape) # (50000, 3072)
output: Total data shape: (50000, 3072)
# Shuffle the data manually
indices = np.arange(X_all.shape[0])
np.random.seed(42)
```

```
np.random.shuffle(indices)
X_{all} = X_{all}[indices]
y_all = y_all[indices]
# Manual 80-20 split
split_index = int(0.8 * X_all.shape[0])
X_train = X_all[:split_index]
y_train = y_all[:split_index]
X_test = X_all[split_index:]
y_test = y_all[split_index:]
print("Train:", X_train.shape, y_train.shape)
print("Test:", X_test.shape, y_test.shape)
Train: (40000, 3072) (40000,)
Test: (10000, 3072) (10000,)
# Model
model = models.Sequential([
  layers.Conv2D(32, (3,3), activation='relu', input_shape=(32, 32, 3)),
  layers.MaxPooling2D((2,2)),
  layers.Conv2D(64, (3,3), activation='relu'),
  layers.MaxPooling2D((2,2)),
  layers.Conv2D(64, (3,3), activation='relu'),
  layers.Flatten(),
  layers.Dense(64, activation='relu'),
```

```
layers.Dense(10)
1)
model.compile(optimizer='adam',
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=5,
            validation_data=(X_test, y_test))
Output: Epoch 1/5
                                                       —— 36s 26ms/step - accuracy: 0.5747
1250/1250 -
- loss: 1.2062 - val_accuracy: 0.6124 - val_loss: 1.0996
Epoch 2/5
1250/1250 -
                                                        — 34s 27ms/step - accuracy: 0.6378
- loss: 1.0311 - val_accuracy: 0.6445 - val_loss: 1.0053
Epoch 3/5
1250/1250 -
                                                          - 40s 26ms/step - accuracy: 0.6763
- loss: 0.9273 - val accuracy: 0.6630 - val loss: 0.9575
Epoch 4/5
1250/1250 -
                                                          - 32s 25ms/step - accuracy: 0.7023
- loss: 0.8472 - val_accuracy: 0.6816 - val_loss: 0.9268
Epoch 5/5
1250/1250 —
                                                        — 30s 24ms/step - accuracy: 0.7308
- loss: 0.7727 - val_accuracy: 0.6720 - val_loss: 0.9508
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
print(f'\nTest accuracy: {test_acc}')
313/313 - 3s - 9ms/step - accuracy: 0.6990 - loss: 0.9085
```

Test accuracy: 0.6990000009536743

```
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(loc='lower right')
plt.show()
```


Pre-trained Model:

from tensorflow.keras.applications import VGG16

from tensorflow.keras import layers, models

Load the VGG16 model without the top layer

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3))

Freeze the base model

```
base_model.trainable = False
# Add custom layers on top
model = models.Sequential([
  base_model,
  layers.Flatten(),
  layers.Dense(64, activation='relu'),
  layers.Dense(10)
1)
# Compile and train as before
model.compile(optimizer='adam',
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=5,
            validation_data=(X_test, y_test))
output:
Epoch 1/5
1250/1250 -
                                                        — 829s 658ms/step - accuracy:
0.4326 - loss: 1.6281 - val_accuracy: 0.5591 - val_loss: 1.2774
Epoch 2/5
1250/1250 -
                                                         — 875s 668ms/step - accuracy:
0.5685 - loss: 1.2342 - val_accuracy: 0.5790 - val_loss: 1.2105
Epoch 3/5
                                                       —— 1684s 1s/step - accuracy: 0.5944 -
1250/1250 -
loss: 1.1682 - val_accuracy: 0.5846 - val_loss: 1.1940
```

```
Epoch 4/5
1250/1250 -
                                                loss: 1.1271 - val_accuracy: 0.5859 - val_loss: 1.1897
Epoch 5/5
1250/1250 -
                                                  - 1651s 1s/step - accuracy: 0.6159 -
loss: 1.1044 - val_accuracy: 0.5935 - val_loss: 1.1737
from sklearn.metrics import confusion_matrix
import numpy as np
y_pred = np.argmax(model.predict(X_test), axis=1)
cm = confusion_matrix(y_test, y_pred)
print(cm)
313/313 —
                                                 - 382s 1s/step
[[618 19 109 23 30 9 15 27 93 67]
[ 38 577 29 42 8 22 20 13 48 192]
[58 8 561 49 114 31 94 51 12 15]
[21 19 83 440 75 116 92 45 14 62]
[ 34 10 91 59 586 19 84 76 17 35]
[ 10 18 65 232 59 429 63 92 6 30]
[ 7 20 78 72 74 28 711 10 9 24]
[ 28 15 53 57 116 37 19 655 4 62]
[70 49 41 13 33 7 15 5 693 78]
[ 28 76 16 39 24 4 12 27 52 665]]
```

Plot:

