

MV JH RM IS GH LT

JH

KNOX GRAMMAR SCHOOL MATHEMATICS DEPARTMENT

2004
TRIAL HSC EXAMINATION

SET BY:

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this paper
- All necessary working should be shown in every question

Total marks (84)

- Attempt Questions 1–7
- All questions are of equal value
- Use a SEPARATE Writing Booklet for each question
- Please write your Board of Studies
 Student Number and Teachers Initials
 on the front cover of each of your
 writing booklets.

5. F. dr.	
NAME:	TEACHER:

Total marks (84) Attempt questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet	Marks
(a) Find $\lim_{x\to 0} \frac{\sin 2x}{4x}$.	2
(b) Find the exact value of $\int_{2}^{5} \left(\frac{x^{2}}{x^{3} - 7} \right) dx$.	3
(c) Solve for x : $\frac{2x}{x-1} \le 1$.	3
(d) Find $\frac{d}{dx} \left(\tan^{-1} \frac{x}{3} \right)$.	. 1
(e) The point $P(19, -15)$ divides an interval AB externally in the ratio 3:2. Find the coordinates of the point $B(x, y)$ given $A(-2, 3)$.	3

(a)

In the diagram above, PC is a tangent to the circle at C and QC bisects $\angle ACB$.

3

Copy the diagram into your writing booklet.

Prove, with reasons, that PC = PQ.

(b) Use the substitution
$$u = e^x$$
 to find:
$$\int \frac{dx}{e^x + 4e^{-x}}$$

3

(c) Evaluate
$$\int_0^{\frac{\pi}{2}} \cos^2 2x \ dx$$
.

3

(d) Find the exact value of
$$\cos^{-1} \left(\sin \frac{4\pi}{3} \right)$$
.

- (a) Find the value of the term independent of x in the expansion of $\left(x \frac{2}{x^3}\right)^{12}$.
- 2
- (b) (i) Find the equation of the tangent to the curve $y = x^2 x$ at the point where x = 2.
- 2
- (ii) Find the obtuse angle between the line $\frac{x}{3} + \frac{y}{2} = 1$ and the tangent found in part (i). Give your answer to the nearest degree.
- 2

(c) (i) Express $\sqrt{12} \sin x + 2\cos x$ in the form $A\cos(x-\alpha)$; where A > 0 and $0 < \alpha < \frac{\pi}{2}$.

- 2
- (ii) Hence, sketch the graph of $y = \sqrt{12} \sin x + 2 \cos x$, in the domain $0 \le x \le 2\pi$.
- 2
- (iii) State the number of solutions that satisfy the equation $\sqrt{12} \sin x + 2 \cos x = 1$ in the domain $0 \le x \le 2\pi$.
- 1

(iv) Write down the general solution to $\sqrt{12} \sin x + 2\cos x = 1$

(a) Use one application of Newton's method to find a better approximation to the root of the equation $e^{-x} - \log_e x = 0$, given that there is a root near x = 1.4. Give your answer to 3 decimal places.

3

(b) Use the Principle of Mathematical Induction to show that the expression 7" +5 is divisible by 6 for all positive integers n.

(c) (i) Find $\frac{d}{dx}\left(x\sin^{-1}\frac{x}{4}+\sqrt{16-x^2}\right)$.

3

(ii) Hence, evaluate $\int_0^4 \sin^{-1} \frac{x}{4} dx$.

- (a) Newton's Law of Cooling states that when an object at temperature T (°C) is placed in an environment at a temperature R (°C), then the rate of temperature loss is given by the equation \$\frac{dT}{dt} = k(T-R)\$; where t is the time in seconds and k is a constant.

 A packet of peas, initially at 24°C is placed in a snap-freeze refrigerator in which the internal temperature is maintained at \$-40°C\$. After 5 seconds the temperature of the packet is 19°C. Suppose \$T = R + Ae^h\$, where \$A\$ is a constant.
 - (i) State the value of A.
 - (ii) Show that $k = \frac{1}{5} \log_4 \left(\frac{59}{64} \right)$.
 - (iii) Hence show that it will take approximately 29 seconds for the packet's temperature to reduce to 0°C.
- (b) Prove that: $\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{\pi}{4} \theta\right) = 2\tan 2\theta$

(c)

Water is poured into a conical vessel, of base radius 20 cm, and height 30 cm at a constant rate of 24 cm³ per second. The depth of water is h cm at time t seconds and V is the volume of the water in the vessel at this time.

- (i) Explain why $r = \frac{2h}{3}$.
- (ii) Hence show that the volume of water in the vessel at any time t is given by $V = \frac{4\pi h^3}{27}.$
- (iii) Find the rate of increase of the area (A) of the surface of the water, when the depth is 16cm.

- (a) Two points $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabola $x^2 = 4ay$ (a > 0).
 - (i) By derivation, show that the equation of the chord is:

2

$$y = \frac{1}{2}(p+q)x - apq.$$

(ii) If the chord PQ passes through the focus, S, show that pq = -1.

2

3

- (iii) Using the fact that PQ = PS + SQ, or otherwise, show that the chord PQ has length $a\left(p + \frac{1}{p}\right)^2$.
- (b) A particle moves along a straight line such that its distance from the origin at time t(s) is x(m) and its velocity is v.
 - (i) Prove that $\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$.

2

(ii) If the acceleration satisfies $\frac{d^2x}{dt^2} \approx -4\left(x + \frac{16}{x^3}\right)$ and the particle is

initially at rest when
$$x = 2$$
, show that $v^2 = 4\left(\frac{16-x^4}{x^2}\right)$.

(a)

The diagram shows a parabola y = f(x), with vertex $(0, \alpha)$ and $\alpha > 0$. The parabola passes through the points $(-\pi, 0)$ and $(\pi, 0)$ as shown.

If a is the focal length of the parabola:

(i) Show that
$$4\alpha = \frac{\pi^2}{\alpha}$$
.

(ii) Show that
$$f(x)$$
 can be expressed in the form $f(x) = \alpha \left(1 - \frac{x^2}{\pi^2}\right)$.

(iii) Find the exact value of
$$\alpha$$
 given that the area between $y = f(x)$ and the x axis from $x = -\pi$ to $x = \pi$ is 4 square units.

(b) Assume that tides rise and fall in Simple Harmonic Motion. A ship needs

11 metres of water to pass down a channel safely. At low tide, the channel is

8m deep and at high tide 12 m deep. Low tide is at 10:00 am and high tide
at 4:00 pm.

Find the first time period during which the ship can safely proceed through the channel.

END OF PAPER