1

	Claims:				
1	1. A system comprising:				
2	a radio moden unit; and				
3	an RF signal booster unit, wherein the booster unit is connectable to				
4	the RF signal booster unit with a connector adapted to transmit RF signals,				
5	wherein a DC offset at the connector is detected to determine whether the booster				
6	unit is connected to radio modem.				
1	2. The system of Claim 1, wherein the connector connects to a				
2	connection line between the radio modem unit and the booster unit.				
1	3. The system of Claim 1, wherein the offset detection circuitry is				
2	located within the radio modem unit.				
1	4. The system of Claim 1, wherein the offset detection circuitry				
2	includes an inductor to allow the DC offset to be placed onto the connector, but				
3	not allow radio frequency energy to pass up into the auto-detect circuit.				
1	5. The system of Claim 1, wherein the booster unit includes an				
2	element to reduce the DC power level to low if the radio modem unit is connected				
3	to the booster unit.				
1	6. The system of Claim 5, wherein the elements in the booster unit				
2	include an inductor.				
1	7. The system of Claim 1, wherein the voltage at the connector of the				
2	radio modem unit is high if no booster unit is connected but is low if a booster unit				
3	is connected.				

8. A radio modem unit comprising:

2	a radio;					
3	an RF signal connector operably connected to the radio, the connector					
4	being connectable to a RF antenna or a booster unit; and					
5	a detector unit adapted to detect a DC offset at the connector to					
6	determine whether the connector is connected to a booster unit.					
1	9. The radio modem unit of Claim 8, wherein the connector is					
2	connectable to a connector line which can connect the radio modem unit to a					
3	booster unit.					
1	10. The radio modem unit of Claim 8, wherein the DC offset of					
2	the connector is high if no booster unit is connected but is low if a booster unit is					
3	connected.					
1	11. The radio modem unit of Claim 8, wherein an inductor is					
2	used as part of an auto-detect circuit.					
1	12. The radio modem unit of Claim 8, wherein the radio modem					
2	unit is connected to a booster unit, the booster unit including a circuit to pull the					
3	DC offset at the connector to low.					

	•				
1	13. A system comprising:				
2	a radio modem unit; and				
3	an RF signal booster unit, wherein the booster unit is connectable to				
4	the RF signal booster unit with a connector adapted to transmit RF signals,				
5	wherein baseband signals transmitted to the connector by the radio modem are				
6	used by the booster unit to prepare for transmission.				
1	14. The system of Claim 13, wherein a connector line is				
2	connected between the connector at the RF signal booster unit to a connector at the				
3	radio modem unit.				
1	15. The system of Claim 13, wherein the baseband signals are				
2	power control signals.				
1	16. The system of Claim 13, wherein the power control signals				
2	are used to control the power and channel.				
1	17. The system of Claim 13, wherein the RF signal booster unit				
2	includes a switch in the transmit line that prevents RF energy from being provided				
3	to a power amplifier in the booster unit until a valid power controller message is				
4	received from the radio modem.				
1	18. The system of Claim 13, wherein DC offset signals are sent				
2	between the radio modem and booster unit to indicate whether the radio modem				
3	unit is connected to the booster unit.				
1	19. An RF signal booster unit adapted to amplify RF signals				
2	from a radio modem, the booster unit includes a switch that significantly attenuate				
3	the RF energy from the radio modem that is provided to a power amplifier in the				

	\int_{0}^{∞}			
4	booster unit until a valid power control message is received from the radio			
5	modem.			
1	20. The RF signal booster unit of Claim 19, wherein the switch			
2	includes a pair of diodes.			
1	The system of Claim 20, wherein the current flows through			
2	the diodes, the RF impedance of the diodes is reduced, turning the switch to			
3	closed, but when current is not flowing through the diodes, the RF impedance of			
4	the switch is high.			
1	22. Method of using a radio modem unit and an RF signal			
2	booster unit, the booster unit and radio modem unit connectable using a connector			
3	the method comprising:			
4	in the radio modem unit, detecting a DC offset on the connector to			
5	determine whether the booster unit is connected;			
6	if the booster unit is connected, transmitting baseband signals on the			
7	connector from the radio modem to the booster unit to allow the booster unit to			
8	prepare for transmission; and			
9	thereafter, transmitting an RF signal on the connector from the radio			
10	modem to the booster unit.			

1	23.	The n	nethod of Claim 22, wherein the connector line
2	connects between the	radio	modem unit and an RF signal booster unit.
1	24.	The n	nethod of Claim 22, wherein the baseband signal is the
2	power control signal.		
1	25.	The n	ethod of Claim 24, wherein the power control signal
2	includes a channel co	ntrol a	nd power level indications.