Table of content

- 1. Introduction
- 2. Data Requirments
- 3. Data collection
- 4. Load data
- 5. Data understanding
- 6. Data Preparation
- 7. Analysing and visualising data
- 8. Data Munging
 - · 8.1. Transform the Data
 - 8.2. Hot Encoding
 - 8.3. Check missing Values
- 9. Selecting the features
- 10. Training Machine learning algorithm and predicting
- 11. Conclusion

1- Introduction

In this research we will discuss a sensitive matter that affects the climate each day, We use cars daily in our lives without thinking of the CO2 car's emissions that have a serious impact on the climate, Regardless of the development that we have reached today and the laws that try to limit this issue, The climate still suffer from this impact. In this research, we will try to help with dealing with this issue by providing an Al algorithm to classify all the cars in the Netherlands that are provided from the RDW database from 1 to 10 according to the CO2 emissions it emits and fuel consumption.

2- Data Requirments

First I will give you a general information about the RDW datasets, Then I will list all the columns names and explain them for each dataset, Lastly, I will provide a short description of the European cars categorize because we are going to use them.

overview about the dataset:

The Registered vehicles data set contains 14.4 million rows and 67 columns.

The Registered_vehicles_fuel dataset has 13.7 million rows and 34 column.

The date of the last update was on October 12 2021 for both datasets.

The Datasets is in a CSV format

Note: I will only choose the columns that I will need because we have 2 data sets the datasets contain a total of 101 columns

Open Data RDW: Gekentekende_voertuigen (Registered_vehicles)columns names and explanation :

License Plate

The license plate of a vehicle consists of a combination of numbers and letters. This combination is stated on the registration certificate and the number plate. The license plate makes a vehicle unique and identifiable.

Vehicle type type of vehicle (personal or commercial)

Brand The brand of the vehicle

number of seats number of seats in the vehicle

Amount of cilinders The numbers of cilinders that exist in the car engin. The more cylders the more fuel consumption

Mass of empty vehicle

number of doors

European vehicle category European classification for vehicle category, based in UNECE standards

Technical max, vehicle mass

Open Data RDW:Gekentekende_voertuigen_brandstof(Registered_vehicles_fuel) columns names and explanation:

License Plate

The license plate of a vehicle consists of a combination of numbers and letters. This combination is stated on the registration certificate and the number plate. The license plate makes a vehicle unique and identifiable.

Fuel Sequence Number

Sequence number with which the emission data can be shown in the desired order for a specific fuel.

Fuel description specific fuel name

Out-of-town fuel consumption

The fuel consumption in I/100 km, during a standardized extra-urban journey, tested on a chassis dynamometer.

Fuel consumption combined

Fuel consumption in I/100 km, during a combination of standardized urban and extra-urban driving, tested on a chassis dynamometer.

City fuel consumption

The fuel consumption in I/100 km, during a standardized urban driving cycle, tested on a chassis dynamometer.

CO2 emissions combined

The weighted CO2 emissions in g/km of a plug-in hybrid vehicle, during a combination of an urban and an extra-urban trip, tested on a chassis dynamometer. The value is calculated based on the emissions generated by driving once with empty batteries and once with full batteries.

Weighted CO2 emissions

CO2 emissions measured on a vehicle measured on a chassis dynamometer, applicable to an externally rechargeable hybrid electric vehicle, weighted with an external charging combined according to the calculation in the directive.

overview over the European Commission and the United Nations classifieds vehicles as part of emission standards and other vehicle regulations

Because I will do my classification per Eu cars category I will explain how do they categorize them below per each category

CATEGORY: M

Category M – Motor vehicles having at least four wheels and for the carriage of passengers Category Vehicle Description:

Category M - Motor vehicles having at least four wheels and for the carriage of passengers

Category	Vehicle Description
M1	Vehicles designed and constructed for the carriage of passengers and comprising no more than eight seats in addition to the driver's seat, and having a maximum mass ("technically permissible maximum laden mass") not exceeding 3.5 tons
M2	Vehicles designed and constructed for the carriage of passengers, comprising more than eight seats in addition to the driver's seat, and having a maximum mass ("technically permissible maximum laden mass") not exceeding 5 tons
Мз	Vehicles designed and constructed for the carriage of passengers, comprising more than eight seats in addition to the driver's seat, and having a maximum mass exceeding 5 tons

CATEGORY: N

Category N – Power-driven vehicles having at least four wheels and for the carriage of goods

Category Vehicle Description:

variegory in the normalization remotes maring at teast real niness and for the earlings of goods

Category	Vehicle Description
N1	Vehicles for the carriage of goods and having a maximum mass not exceeding 3.5 tonnes
N2	Vehicles for the carriage of goods and having a maximum mass exceeding 3.5 tonnes but not exceeding 12 tonnes
N ₃	Vehicles for the carriage of goods and having a maximum mass exceeding 12 tonnes

Vehicles Category N1—Weight Classes

Class	Reference Mass, RW						
Class	Euro 1-2	Euro 3+					
I	RW ≤ 1250 kg	RW ≤ 1305 kg					
II	1250 kg < RW ≤ 1700 kg	1305 kg < RW ≤ 1760 kg					
III	1700 kg < RW	1760 kg < RW					

CATEGORY: L

Motor vehicles with less than four wheels [but does include light four-wheelers]

CATEGORY: 0

Trailers (including semi-trailers)

Category	Vehicle Description
01	Trailers with a maximum mass not exceeding 0.75 tonnes
O2	Trailers with a maximum mass exceeding 0.75 tonnes, but not exceeding 3.5 tonnes
03	Trailers with a maximum mass exceeding 3.5 tonnes, but not exceeding 10 tonnes
04	Trailers with a maximum mass exceeding 10 tonnes

3- Data collection

We are using for our analysis two datasets, the first dataset name is <u>Gekentekende_voertuigen (https://opendata.rdw.nl/Voertuigen/Open-Data-RDW-Gekentekende_voertuigen/m9d7-ebf2)</u> (Registered_vehicles), and the second is <u>Gekentekende_voertuigen_brandstof</u> (https://opendata.rdw.nl/Voertuigen/Open-Data-RDW-Gekentekende_voertuigen_brandstof/8ys7-d773)(Registered_vehicles_fuel).

Those datasets are provided from RDW(Rijksdienst voor het Wegverkeer (https://opendata.rdw.nl/)) (Road Traffic Department).

The dataset is licensed under Creative Commons Zero. As part of Creative Commons Zero.

The RDW website has different formats for the datasets(Export as (CSV, Excel,etc..),API), I used CSV files.

Problems encountered and possible solutions:

- The dataset is too large which could take a long time to load from API unless you're going to filter/search API is faster, but since this research need all the dataset it's better to export it as a CSV file and just read it.
- The dataset does not separate the hybrid and electric car, It's just saved as electric this problem could be solved by checking the column of CO2 emission if the car is electric the row will be zero since the electric car doesn't emit CO2.

4- Load data

```
In [1]: import numpy as np
        import pandas as pd
        import sklearn as sk
        import matplotlib
        import itertools
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        import statsmodels
        import statsmodels.api as sm
        from sklearn.metrics import mean squared error
        from sklearn.metrics import r2 score
        from sklearn.cluster import MiniBatchKMeans, KMeans
        import plotly.express as px
        from sklearn.preprocessing import StandardScaler
In [2]: #
             from google.colab import drive
             drive.mount('/content/drive/')
          cd drive/MyDrive/Fontys/S4/Challenges/classify impacts of cars on climate
In [3]:
```

Loading Data

5- Data Understanding

dataset shape: (14359160, 10)

First, I will print the shapes of our datasets and print the first 5 rows and check if we have duplicated rows, Then print the types of data to see what we are dealing with

```
In [5]: print(' dataset shape: {}'.format(Registered_vehicles.shape))
Registered_vehicles.head()
```

Out[5]:

	Kenteken	Voertuigsoort	Merk	Handelsbenaming	Aantal zitplaatsen	Aantal cilinders	Massa ledig voertuig	Aantal deuren	Europese voertuigcategorie	Technische max. massa voertuig
0	GS589N	Personenauto	NISSAN	NISSAN ALMERA	5.0	4.0	1226.0	4.0	M1	1710.0
1	2TDZ45	Personenauto	SEAT	LEON	5.0	4.0	1160.0	5.0	M1	1730.0
2	56NNFB	Personenauto	FIAT	FIAT PUNTO	5.0	4.0	835.0	2.0	M1	1370.0
3	20SGRP	Personenauto	BMW	3ER REIHE	4.0	6.0	1550.0	2.0	M1	1995.0
4	89TZPK	Personenauto	MINI	MINI COOPER S	4.0	4.0	1215.0	2.0	M1	1640.0

In [6]: Registered_vehicles.dtypes

Out[6]: Kenteken object Voertuigsoort object Merk object Handelsbenaming object float64 Aantal zitplaatsen Aantal cilinders float64 Massa ledig voertuig float64 Aantal deuren float64 object Europese voertuigcategorie Technische max. massa voertuig float64

dtype: object

In [7]: Registered_vehicles.describe()

Out[7]:

Aantal zitplaatsen	Aantal cilinders	Massa ledig voertuig	Aantal deuren	Technische max. massa voertuig
1.141328e+07	1.229534e+07	1.393472e+07	1.291778e+07	1.370538e+07
4.348436e+00	3.592200e+00	1.265088e+03	2.705507e+00	2.388887e+03
1.776908e+00	1.247446e+00	1.585481e+03	1.871985e+00	5.105317e+03
1.000000e+00	0.000000e+00	1.000000e+00	0.000000e+00	0.000000e+00
4.000000e+00	3.000000e+00	8.300000e+02	0.000000e+00	1.320000e+03
5.000000e+00	4.000000e+00	1.090000e+03	4.000000e+00	1.675000e+03
5.000000e+00	4.000000e+00	1.382000e+03	4.000000e+00	2.010000e+03
2.020000e+02	9.200000e+01	9.999900e+04	9.000000e+00	9.999900e+04
	1.141328e+07 4.348436e+00 1.776908e+00 1.000000e+00 4.000000e+00 5.000000e+00	1.141328e+07	1.141328e+07 1.229534e+07 1.393472e+07 4.348436e+00 3.592200e+00 1.265088e+03 1.776908e+00 1.247446e+00 1.585481e+03 1.000000e+00 0.000000e+00 1.000000e+00 4.000000e+00 3.000000e+00 8.300000e+02 5.000000e+00 4.000000e+00 1.090000e+03 5.000000e+00 4.000000e+00 1.382000e+03	1.141328e+07 1.229534e+07 1.393472e+07 1.291778e+07 4.348436e+00 3.592200e+00 1.265088e+03 2.705507e+00 1.776908e+00 1.247446e+00 1.585481e+03 1.871985e+00 1.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 4.000000e+00 3.000000e+00 8.300000e+02 0.000000e+00 5.000000e+00 4.000000e+00 1.090000e+03 4.000000e+00 5.000000e+00 4.000000e+00 1.382000e+03 4.000000e+00

In [8]: Registered_vehicles.duplicated(subset='Kenteken').sum()

Out[8]: 0

In [9]: print(' dataset shape: {}'.format(Registered_vehicles_fuel.shape)) Registered_vehicles_fuel.head()

dataset shape: (13650842, 6)

Out[9]:

Kenteken		Brandstof omschrijving	Brandstofverbruik buiten de stad	Brandstofverbruik gecombineerd	Brandstofverbruik stad	CO2 uitstoot gecombineerd
0	VFZ09K	Diesel	7.4	7.3	7.1	191.0
1	25MLST	Benzine	NaN	NaN	NaN	NaN
2	H655LS	Benzine	4.8	6.3	9.1	150.0
3	VDN70V	Benzine	NaN	NaN	NaN	NaN
4	10MLSX	Benzine	NaN	NaN	NaN	NaN

In [10]: Registered_vehicles_fuel.dtypes

Out[10]: Kenteken object Brandstof omschrijving object Brandstofverbruik buiten de stad float64 float64 Brandstofverbruik gecombineerd Brandstofverbruik stad float64 CO2 uitstoot gecombineerd float64 dtype: object

In [11]: Registered_vehicles_fuel.describe()

Out[11]:

	Brandstofverbruik buiten de stad	Brandstofverbruik gecombineerd	Brandstofverbruik stad	CO2 uitstoot gecombineerd
count	8.689929e+06	8.822610e+06	8.690352e+06	9.058195e+06
mean	4.949092e+00	5.827283e+00	7.395133e+00	1.402199e+02
std	1.181519e+00	1.656149e+00	2.494889e+00	4.240628e+01
min	0.000000e+00	0.000000e+00	0.000000e+00	1.000000e+00
25%	4.100000e+00	4.600000e+00	5.500000e+00	1.090000e+02
50%	4.800000e+00	5.600000e+00	7.000000e+00	1.340000e+02
75%	5.600000e+00	6.700000e+00	8.700000e+00	1.630000e+02
max	6.100000e+01	9.360000e+01	9.758000e+01	9.990000e+02

In [12]: Registered_vehicles_fuel.duplicated(subset='Kenteken').sum()

Out[12]: 621923

I see here that the data format and types are good, but we have the column names in dutch which need to be renamed in English also I see that the data has some null values which need to be deleted or filled, And we have duplicated rows (licenses) in the second dataset(Registered_vehicles_fuel), We see also that some values in the data are in dutch, the main two columns that I will use to analyze and predict will be the CO2 emission combined and the fuel consumption, Eu car category, and fuel description

6- Data Preparation

First, I will rename the dataset columns into English

```
In [13]: #col_list = ["License_plate", "Vehicle_type", "Brand", "number_of_seats", "Amount_of_cilinders", "Mass_of_empty_vehicle", "num
#"European_vehicle_category", "Technical_max_vehicle_mass"]
Registered_vehicles.columns=["License_plate", "Vehicle_type", "Brand", 'Trade name', "number_of_seats", "Amount_of_cilinders"

#col_list = ["License_plate", "Fuel_sequence_number", "Fuel_description", "Out_of_town_fuel_consumption", "Fuel_consumption]
# "City_fuel_consumption", "CO2_emissions_combined", "Weighted_CO2_emissions", "Class_hybrid_electric_vehicle"]

Registered_vehicles_fuel.columns=["License_plate", "Fuel_description", "Out_of_town_fuel_consumption", "Fuel_consumption_columns]

**Total Consumption of the consumption
```

Now before I join the tables I will check if we have null values in the license plate because I'm going to join on it

In [14]:	Registered_vehicles.isnull()	.sum()
Out[14]:	License_plate	0
	Vehicle_type	0
	Brand	532
	Trade name	235305
	number_of_seats	2945885
	Amount_of_cilinders	2063821
	Mass_of_empty_vehicle	424441
	number_of_doors	1441381
	European_vehicle_category	2536
	<pre>Technical_max_vehicle_mass dtype: int64</pre>	653784

Since I will use the Fuel_consumption_combined and CO2_emissions_combined because it is the main aspect to classify the cars I will delete all the rows that it's null so that we don't classify a car as the eco-environment because the values are null, I will also delete the European_vehicle_category null values because we will classify cars per category

```
In [16]: Registered_vehicles = Registered_vehicles[Registered_vehicles['European_vehicle_category'].notna()]
    Registered_vehicles_fuel = Registered_vehicles_fuel[Registered_vehicles_fuel['Fuel_consumption_combined'].notna()]
    Registered_vehicles_fuel = Registered_vehicles_fuel[Registered_vehicles_fuel['CO2_emissions_combined'].notna()]
```

Now I will delete the duplicated value in the second dataset(Registered vehicles fuel)

```
In [17]: Registered_vehicles_fuel['License_plate'].drop_duplicates(keep='last',inplace=True)
```

Now I will join the two tables, to have all the information needed in one table, We will use the license plate column to merge on.

```
In [18]: df=pd.merge(Registered_vehicles,Registered_vehicles_fuel,on='License_plate')
In [19]: import gc
    del Registered_vehicles
    del Registered_vehicles_fuel
    gc.collect()
Out[19]: 120
```

In [20]: df.head()

Out[20]:

	License_plate	Vehicle_type	Brand	Trade name	number_of_seats	Amount_of_cilinders	Mass_of_empty_vehicle	number_of_doors	European_vehic
0	GS589N	Personenauto	NISSAN	NISSAN ALMERA	5.0	4.0	1226.0	4.0	_
1	2TDZ45	Personenauto	SEAT	LEON	5.0	4.0	1160.0	5.0	
2	56NNFB	Personenauto	FIAT	FIAT PUNTO	5.0	4.0	835.0	2.0	
3	20SGRP	Personenauto	BMW	3ER REIHE	4.0	6.0	1550.0	2.0	
4	89TZPK	Personenauto	MINI	MINI COOPER S	4.0	4.0	1215.0	2.0	
4									>

Now we will check how many null values do we have in the combined dataset and what should we delete and what can we fill

```
In [21]: df.isnull().sum()
Out[21]: License_plate
                                               0
         Vehicle type
         Brand
         Trade name
                                             639
         number_of_seats
                                            1953
         Amount of cilinders
                                             351
         Mass of empty vehicle
                                               0
         number_of_doors
                                           63169
         European_vehicle_category
                                               0
         Technical max vehicle mass
                                             818
         Fuel_description
         Out_of_town_fuel_consumption
                                          130650
         Fuel_consumption_combined
                                               0
         City_fuel_consumption
                                          130389
         CO2_emissions_combined
                                               0
         dtype: int64
```

We still have some null values but we will not use them for our study it's just an extra information. I will mkae sure that the data is right byl searching my car license in the dataset to see if the info is correct

```
In [22]: print(' dataset shape: {}'.format(df.shape))
    df.loc[df['License_plate'] == '85TJRG']

dataset shape: (8808932, 15)
```

Out[22]:

	License_plate	Vehicle_type	Brand	Trade name	number_of_seats	Amount_of_cilinders	Mass_of_empty_vehicle	number_of_doors	Europea
445645	85TJRG	Personenauto	CHEVROLET	MATIZ	5.0	3.0	750.0	4.0	
< -									•

Okay everything seems right, Now I want to group by fuel description to see what types of fuels do we have

```
In [23]: df['Fuel_description'].value_counts()
```

Out[23]: Benzine 7132832 Diesel 1592486 LPG 68246 CNG 11816 Alcohol 3515 Elektriciteit 24 LNG 10 Waterstof 3

Name: Fuel_description, dtype: int64

We see that the majority of cars run on Benzine

In [24]: # I will check here the electric cars to see if we need to classify them
df.loc[df['Fuel_description'] == 'Elektriciteit']

Out[24]:

	License_plate	Vehicle_type	Brand	Trade name	number_of_seats	Amount_of_cilinders	Mass_of_empty_vehicle	number_of_doors	Euro
317780	HB221B	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
967773	86KPJ3	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
1002758	NZ882V	Personenauto	TOYOTA	TOYOTA AURIS	5.0	4.0	1285.0	4.0	
1378135	44LHZ9	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1920.0	4.0	
1704333	4ZKX98	Personenauto	LEXUS	LEXUS RX450H	5.0	6.0	2085.0	4.0	
1886671	HX170J	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
1954491	RF273V	Personenauto	TOYOTA	TOYOTA PRIUS	5.0	4.0	1400.0	4.0	
2007902	51ZDJ3	Personenauto	TOYOTA	TOYOTA PRIUS	5.0	4.0	1340.0	4.0	
2322672	33JKP8	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1920.0	4.0	
3180894	JP808X	Personenauto	ТОУОТА	TOYOTA YARIS HYBRID	5.0	4.0	1060.0	4.0	
3549388	JP327T	Personenauto	ТОУОТА	TOYOTA YARIS HYBRID	5.0	4.0	1060.0	4.0	
3859857	25ZTL6	Personenauto	ТОУОТА	TOYOTA PRIUS PLUS	7.0	4.0	1470.0	4.0	
3998842	JP144Z	Personenauto	TOYOTA	TOYOTA YARIS HYBRID	5.0	4.0	1060.0	4.0	

	License_plate	Vehicle_type	Brand	Trade name	number_of_seats	Amount_of_cilinders	Mass_of_empty_vehicle	number_of_doors	Euro
4339329	26NFB8	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
4375363	6TZP78	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
4894011	1ZLV09	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
5066223	ZJ143R	Personenauto	TOYOTA	CAMRY HYBRID	5.0	4.0	1600.0	4.0	
5278070	24JVV3	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
5407837	8SGF50	Personenauto	LEXUS	LEXUS RX450H	5.0	6.0	2085.0	4.0	
6900071	9XRG93	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1855.0	4.0	
6907372	5KBN07	Personenauto	AUDI	AUDI Q5 HYBRID	5.0	4.0	1885.0	4.0	
7623119	HJ145G	Personenauto	ТОУОТА	TOYOTA PRIUS PLUS	7.0	4.0	1475.0	4.0	
7906896	XT856Z	Personenauto	ТОУОТА	TOYOTA RAV4	5.0	4.0	1600.0	4.0	
8143319	KH738L	Personenauto	MERCEDES- BENZ	S 400 HYBRID	5.0	6.0	1920.0	4.0	

We can see that all the electric car is not only electric but hybrid so we need to keep the hybrid and delete the electic because it's not relevant to our study since it has 0 CO2 emissions and we need to find fuel cars that use the minimal CO2, So I will delete them, but of course that you noticed that we already delete all columns that doesnt have CO2 emission and electric cars is from them, but since I said that my research will help people with buying cheap fuel cars that have low emission unfortunately hybrid cars can not be listed because the minimum price of hybrid cars start 20000 Euro so I will exclude them from my research

```
In [25]: df = df[df.Fuel_description != "Elektriciteit"]
In [26]: df.dtypes
Out[26]: License plate
                                          object
         Vehicle type
                                          object
         Brand
                                          object
                                          object
         Trade name
         number of seats
                                         float64
         Amount of cilinders
                                         float64
         Mass of empty vehicle
                                         float64
         number of doors
                                         float64
         European vehicle category
                                          object
         Technical max vehicle mass
                                         float64
         Fuel description
                                          object
         Out of town fuel consumption
                                         float64
         Fuel consumption combined
                                         float64
         City fuel consumption
                                         float64
         CO2 emissions combined
                                         float64
         dtype: object
In [27]: df['CO2 emissions combined']=df['CO2 emissions combined'].astype('int')
```

In [28]: df.describe()

Out[28]:

	number_of_seats	Amount_of_cilinders	Mass_of_empty_vehicle	number_of_doors	Technical_max_vehicle_mass	Out_of_town_fuel_consumption
count	8.806955e+06	8.808557e+06	8.808908e+06	8.745739e+06	8.808090e+06	8.678266e+06
mean	4.709003e+00	3.822197e+00	1.208043e+03	3.491754e+00	1.796578e+03	4.947297e+00
std	8.895015e-01	7.255544e-01	3.470386e+02	1.373422e+00	4.774387e+02	1.177525e+00
min	1.000000e+00	0.000000e+00	5.500000e+01	0.000000e+00	0.000000e+00	0.000000e+00
25%	4.000000e+00	3.000000e+00	9.600000e+02	4.000000e+00	1.495000e+03	4.100000e+00
50%	5.000000e+00	4.000000e+00	1.170000e+03	4.000000e+00	1.740000e+03	4.800000e+00
75%	5.000000e+00	4.000000e+00	1.371000e+03	4.000000e+00	1.975000e+03	5.600000e+00
max	1.090000e+02	1.700000e+01	7.336000e+03	7.000000e+00	1.138500e+04	6.100000e+01

I noticed here that there is cars with fuel consumption combined equal to 0 which is strange since we already deleted all electric cars so I will investigate more below

```
In [29]: df[df['Fuel_consumption_combined'] == df['Fuel_consumption_combined'].min()]
```

0	ut	[2	9]

	License_plate	Vehicle_type	Brand	Trade name	number_of_seats	Amount_of_cilinders	Mass_of_empty_vehicle	number_of_doo
35312	3VPF62	Bedrijfsauto	ТОУОТА	TUNDRA 4X2	5.0	8.0	2559.0	Na
51806	VN742X	Bedrijfsauto	DODGE	RAM 1500	5.0	8.0	2504.0	Na
246212	3KNL24	Personenauto	AUDI	AUDI A2	4.0	4.0	870.0	4
328368	VN392X	Bedrijfsauto	FORD	F 150	5.0	8.0	2453.0	Na
744512	VN278P	Bedrijfsauto	DODGE	DODGE RAM 1500 SLT	5.0	6.0	2371.0	Na
8545757	VL881N	Bedrijfsauto	CADILLAC	ESCALADE	2.0	8.0	2664.0	Na
8617827	VL936J	Bedrijfsauto	DODGE	DODGE RAM 1500	5.0	8.0	2723.0	Na •

So we have cars that doesn't have a fuel consumption combined, previously when we deleted the null values I did not make sure that we could have null values but saved as 0, so I will delete them now

```
In [30]: df= df[df['Fuel_consumption_combined'] != 0]
```

The data have a lot of duplicate and null values, I deleted all the values that will be used by the algorithm to analyze and predict,I merged the data by the license plate, And now the data is clean and ready for analyzing and predicting

7-Analysing and visualising data

I will check here how many cars do we have per fuel type

I will check here how many Eu cars categories do we have in the dataset

In [33]: df.groupby('European_vehicle_category').count()

Out[33]:

	License_plate	Vehicle_type	Brand	Trade name	number_of_seats	Amount_of_cilinders	Mass_of_empty_vehicle	number_of
European_vehicle_category								
L1	51352	51352	51352	51164	51352	51352	51352	
L3	615	615	615	615	615	615	615	
L5	364	364	364	364	364	364	364	
M1	8117903	8117903	8117903	8117711	8115953	8117603	8117903	3
M2	29	29	29	29	29	29	29	
М3	4	4	4	4	4	4	4	
N1	635134	635134	635134	634875	635133	635083	635134	
N2	3441	3441	3441	3441	3439	3441	3441	

```
In [34]:
          ax = df.groupby('European_vehicle_category')['CO2_emissions_combined'].count().plot.bar(title="Number for each catagory"
          ax.set_xlabel('catagory')
          ax.set_ylabel('CO2 emissions combined')
Out[34]: Text(0, 0.5, 'CO2 emissions combined')
                                                           Number for each catagory
               le6
           :02 emissions combined
```

I will check here how many Eu cars categories per fuel type do we have in the dataset

In [35]: df.groupby(['Fuel_description', 'European_vehicle_category']).size() Out[35]: Fuel_description European_vehicle_category Alcohol Μ1 3512 N1 3 Benzine L1 51352 L3 615 L5 364 Μ1 7070648 9844 N1 N2 4 CNG Μ1 8824 N1 2971 N2 21 Diesel Μ1 967258 Μ2 29 М3 4 N1 621782 N2 3413 LNG Μ1 9 N1 1 LPG Μ1 67649 N1 533 N2 3 3 Waterstof Μ1 dtype: int64

Now I will create a box plot to see if we can classify cars by the CO2 emission or by fuel consumption and to see what can we understand from the patterns and to see the outliers

```
In [37]: df_features = tuple(df.columns[[12,14]].values)
    df.boxplot(column=df_features, by='European_vehicle_category', figsize=(20,10), layout=(1,2));
```

Boxplot grouped by European_vehicle_category

I will create another two boxplots one for the CO2 emission and the other for fuel consumption and plot them per Eu category to see if could see clear relations between them

we can conclude from those diagrams that there is a lot of inconsistency (outliers) and that we see that a lot of cars have huge fuel consumption and co2 emission on the other hand we can see from now that we do have average cars that could be used and classified as eco-friendly cars instead of non-eco-friendly cars

8. Data Munging

8.1. Transform the Data

```
In [40]: df['fuel_number'] = df['Fuel_description'].map( {'Benzine': 1, 'LPG': 2, 'Diesel': 3,'LNG':4,'Waterstof':5,'CNG':6,'Alcoldf['eu_ctagory_number'] = df['European_vehicle_category'].map( {'L1': 1, 'L3': 2, 'L5': 3,'M1':4,'M2':5,'M3':6,'N1':7,'N2']
```

8.2. Hot Encoding

Hot Encoding, We have a categorical feature attribute: Fuel_description, European_vehicle_category that we need to change to numbers and split each category in a separate column so we don't get a biased result

```
In [41]: df['Benzine'] = df['Fuel_description'].map( {'Benzine': 1, 'LPG': 0, 'Diesel': 0, 'LNG':0, 'Waterstof':0, 'CNG':0, 'Alcohol' df['LPG'] = df['Fuel_description'].map( {'Benzine': 0, 'LPG': 1, 'Diesel': 0, 'LNG':0, 'Waterstof':0, 'CNG':0, 'Alcohol':0 df['Diesel'] = df['Fuel_description'].map( {'Benzine': 0, 'LPG': 0, 'Diesel': 1, 'LNG':0, 'Waterstof':0, 'CNG':0, 'Alcohol':0 df['LNG'] = df['Fuel_description'].map( {'Benzine': 0, 'LPG': 0, 'Diesel': 0, 'LNG':0, 'Waterstof':0, 'CNG':0, 'Alcohol':0 df['Waterstof'] = df['Fuel_description'].map( {'Benzine': 0, 'LPG': 0, 'Diesel': 0, 'LNG':0, 'Waterstof':0, 'CNG':0, 'Alcohol':0 df['CNG'] = df['Fuel_description'].map( {'Benzine': 0, 'LPG': 0, 'Diesel': 0, 'LNG':0, 'Waterstof':0, 'CNG':1, 'Alcohol':0 df['Alcohol'] = df['Fuel_description'].map( {'Benzine': 0, 'LPG': 0, 'Diesel': 0, 'LNG':0, 'Waterstof':0, 'CNG':0, 'Alcohol':0 df['Alcohol'] = df['Fuel_description'].map( {'L1': 1, 'L3': 0, 'L5': 0, 'M1':0, 'M2':0, 'M3':0, 'N1':0, 'N2':0 }) .astype('Materstof':0, 'CNG':0, 'Alcohol':0 df['L3'] = df['European_vehicle_category'].map( {'L1': 0, 'L3': 0, 'L5': 0, 'M1':0, 'M2':0, 'M3':0, 'N1':0, 'N2':0 }) .astype('Materstof':0, 'CNG':0, 'Materstof':0, 'CNG':0, 'Materstof':0, 'CNG':0, 'Materstof':0, 'CNG':0, 'Materstof':0, 'CNG':0, 'Alcohol':0 df['M1'] = df['European_vehicle_category'].map( {'L1': 0, 'L3': 0, 'L5': 0, 'M1':0, 'M2':0, 'M3':0, 'N1':0, 'N2':0 }) .astype('Materstof':0, 'CNG':0, 'Materstof':0, 'CNG':0, 'Materstof':0,
```

8.3. Check missing Values

In [42]:	df.isna().sum()	
Out[42]:	License_plate	0
	Vehicle_type	0
	Brand	0
	Trade name	639
	number_of_seats	1953
	Amount_of_cilinders	351
	Mass_of_empty_vehicle	0
	number_of_doors	63119
	European_vehicle_category	0
	Technical_max_vehicle_mass	818
	Fuel_description	0
	Out_of_town_fuel_consumption	130579
	Fuel_consumption_combined	0
	City_fuel_consumption	130318
	CO2_emissions_combined	0
	fuel_number	0
	eu_ctagory_number	0
	Benzine	0
	LPG	0
	Diesel	0
	LNG	0
	Waterstof	0
	CNG	0
	Alcohol	0
	L1	0
	L3	0
	L5	0
	M1	0
	M2	0
	M3	0
	N1	0
	N2	0
	dtype: int64	

The columns the we are going to use them hav 0 cull values

9- Selecting the features

I will use Fuel_consumption_combined, CO2_emissions_combined, Fuel_consumption_combined and CO2_emissions_combined to determine the cars echo-friendly number(from 1 to 10)

```
In [43]: df.shape
Out[43]: (8808842, 32)
In [44]: # here I will try to make the classification with using hot encoding
         x df=df[['Benzine','LPG','Diesel','LNG','Waterstof','CNG','Alcohol','L1','L3','L5','M1','M2','M3','N1','N2','Fuel consum
         # here I will try to make the classification without using hot encoding
         x df without hot encoding=df[['fuel number','eu ctagory number','Fuel consumption combined','CO2 emissions combined']]
         # here I will try to make the classification after normalization
         scaler = StandardScaler()
         scaled features = scaler.fit transform(x df)
In [45]: x df.head()
Out[45]:
             Benzine LPG Diesel LNG Waterstof CNG Alcohol L1 L3 L5 M1 M2 M3 N1 N2 Fuel consumption combined CO2 emissions combined
          0
                  1
                       0
                             0
                                  0
                                           0
                                                 0
                                                                                  0
                                                                                                             6.7
                                                                                                                                   160
                  0
                       0
                                           0
                                                                                                             3.2
                                                                                                                                    8
                       0
                             0
                                  0
                                           0
                                                 0
                                                                                                             5.7
                                                                                                                                   136
                                                                                                                                   236
                  1
                                                 0
                                                                                                             9.8
                                                 0
                                                                                                             8.8
                                                                                                                                   21
```

10-Training Machine learning algorithm and predicting

I will first start MiniBatchKMeans and check the result then I will scale the data and perform the same algorithms to see the difference,I will also try the algorithm without hot encoding

Showing the Maximum and minimum of fuel consumption and CO2 to help us later to compare the result

```
In [47]: print('fuel consumption min:',df['Fuel_consumption_combined'].min(),'fuel consumption max:',df['Fuel_consumption_combined'].min(),'Co2 max:',df['Co2_emissions_combined'].max())

fuel consumption min: 0.2 fuel consumption max: 93.6
Co2 min: 12 Co2 max: 990
```

The effect of the initial cluster centroids

```
In [48]: # for n in range (20):
    # mbk = MiniBatchKMeans(n_clusters=10, random_state=n)
    # mbk.fit(x_df)
    # print('Random state = ',n,'\tNr iterations',mbk.n_iter_,'\tSum of squared distances ',mbk.inertia_)
```

So I will choose the minimum inertia: Random state = 12 Nr iterations 17 Sum of squared distances 380626823.54407,

I will comment this code since I already execute it and got my result because it takes tremendous time.

The Elbow method

```
In [49]: Sum of squared distances = []
         K = range(1,11)
         for k in K:
             mbk = MiniBatchKMeans(n clusters=k, random state=1,batch size=3072)
             mbk.fit(x df)
             Sum of squared distances.append(mbk.inertia )
             print('Nr clusters',k,'\tSum of squared distances ',mbk.inertia )
         Nr clusters 1 Sum of squared distances 14629065515.052933
         Nr clusters 2
                       Sum of squared distances 5354163319.034832
         Nr clusters 3 Sum of squared distances 2841173333.3897324
                        Sum of squared distances 1791384786.2536974
         Nr clusters 4
         Nr clusters 5
                        Sum of squared distances 1314824811.2003906
         Nr clusters 6
                       Sum of squared distances 930311557.2815778
                        Sum of squared distances 688648478.7868526
         Nr clusters 7
                       Sum of squared distances 575726638.3087895
         Nr clusters 8
                        Sum of squared distances 465382719.79970336
         Nr clusters 9
         Nr clusters 10 Sum of squared distances 416202356.5038332
```

```
In [50]: plt.plot(K, Sum_of_squared_distances, 'bx-')
    plt.xlabel('k')
    plt.ylabel('Sum of squared distances')
    plt.title('Elbow method for optimal k')
    plt.show()
```


as we see in the elbow method the best clusters is between 3 and 4 but my research objectives are to classify them from 1 to 10 for several reasons one of them is to have a variety of choices and to classify cars in a more detailed way ,So I will choose 10 clusters because it has the least sum of squared distance

MiniBatchKMeans algorithm

The MiniBatchKMeans is a variant of the KMeans algorithm which uses mini-batches to reduce the computation time, while still attempting to optimise the same objective function.

```
In [51]: mbk = MiniBatchKMeans(n_clusters=10,random_state=12,batch_size=3072)
In [52]: mbk = mbk.fit(x_df)
```

```
In [53]: cluster centers = mbk.cluster centers
         print(cluster centers)
         [[8.37612892e-01 1.07136533e-02 1.51319285e-01 0.00000000e+00
           0.0000000e+00 3.54170356e-04 0.00000000e+00 0.00000000e+00
           0.0000000e+00 0.0000000e+00 9.73968479e-01 0.00000000e+00
           0.00000000e+00 2.60315212e-02 0.00000000e+00 4.53056490e+00
           1.05966619e+02]
          [6.13787701e-01 1.60595378e-02 3.65452409e-01 0.00000000e+00
           0.0000000e+00 4.30865648e-03 3.91696044e-04 0.00000000e+00
           0.0000000e+00 0.0000000e+00 7.35213474e-01 0.00000000e+00
           0.00000000e+00 2.60086173e-01 4.70035253e-03 8.53216608e+00
           2.10370153e+021
          [8.73558801e-01 2.56213169e-03 1.23238534e-01 0.00000000e+00
           0.0000000e+00 3.84319754e-04 2.56213169e-04 0.00000000e+00
           0.0000000e+00 0.0000000e+00 9.44273636e-01 0.00000000e+00
           0.00000000e+00 5.57263643e-02 0.00000000e+00 5.86869459e+00
           1.39374327e+021
          [7.17656012e-01 1.52207002e-02 2.60273973e-01 0.00000000e+00
           0.0000000e+00 3.80517504e-03 3.04414003e-03 0.00000000e+00
           0.0000000e+00 0.0000000e+00 8.34094368e-01 0.00000000e+00
           0.0000000e+00 1.57534247e-01 8.37138508e-03 9.96511416e+00
           2.43712329e+021
          [8.13391197e-01 1.09526762e-02 1.72143005e-01 0.00000000e+00
           0.0000000e+00 2.06654267e-04 3.30646828e-03 0.00000000e+00
           0.0000000e+00 0.0000000e+00 8.92333127e-01 0.00000000e+00
           0.0000000e+00 1.07666873e-01 0.0000000e+00 7.08310395e+00
           1.70636495e+021
          [7.33244637e-01 1.16414435e-03 2.61599867e-01 0.00000000e+00
           0.0000000e+00 3.99135207e-03 0.0000000e+00 5.03908199e-02
           4.98919009e-04 0.00000000e+00 9.48943955e-01 0.00000000e+00
           0.0000000e+00 1.66306336e-04 0.0000000e+00 3.72091302e+00
           8.81137535e+011
          [8.26558266e-01 3.52303523e-02 1.38211382e-01 0.00000000e+00
           0.00000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
           0.0000000e+00 0.0000000e+00 9.37669377e-01 0.00000000e+00
           0.00000000e+00 5.69105691e-02 5.42005420e-03 1.28628455e+01
           3.12276423e+02]
          [8.24197211e-01 5.51410963e-03 1.67693805e-01 0.00000000e+00
           0.00000000e+00 1.62179695e-03 9.73078171e-04 0.00000000e+00
           0.00000000e+00 0.00000000e+00 9.15342199e-01 0.00000000e+00
```

In [54]: print(np.unique(mbk.labels_))

[0 1 2 3 4 5 6 7 8 9]

Maximum number of iterations for a single run

```
In [55]: print(mbk.n_iter_)
```

14

Inertia: Intuitively, inertia tells how far away the points within a cluster are. Therefore, a small of inertia is aimed for. The range of inertia's value starts from zero and goes up.

```
In [56]: print(mbk.inertia_)
```

407780586,9390222

```
In [57]: df['Cluster'] = mbk.labels_.astype(int)
          df.head(10)
                                                           3ER
           3
                  20SGRP Personenauto
                                                BMW
                                                                            4.0
                                                                                               6.0
                                                                                                                                     2.0
                                                                                                                  1550.0
                                                         REIHE
                                                          MINI
                   89TZPK Personenauto
                                                      COOPER
                                                                                                                                     2.0
                                                MINI
                                                                            4.0
                                                                                               4.0
                                                                                                                  1215.0
           4
                                                             S
                                                        ASTRA
           5
                   NJ731T Personenauto
                                               OPEL
                                                       SPORTS
                                                                            5.0
                                                                                               4.0
                                                                                                                  1212.0
                                                                                                                                     5.0
                                                      TOURER+
                   22STV1 Personenauto
                                                          3008
           6
                                           PEUGEOT
                                                                            5.0
                                                                                               4.0
                                                                                                                  1434.0
                                                                                                                                     4.0
                             Bedrijfsauto VOLKSWAGEN
                                                        CADDY
                                                                                                                                     0.0
           7
                   VN677N
                                                                            2.0
                                                                                               4.0
                                                                                                                  1404.0
                                                                                                                                     5.0
           8
                   L216BV Personenauto VOLKSWAGEN
                                                         T-ROC
                                                                            5.0
                                                                                               4.0
                                                                                                                  1247.0
                                                          7ER
                   75LVGH Personenauto
                                                BMW
                                                                            5.0
                                                                                               6.0
                                                                                                                  1875.0
                                                                                                                                     4.0
           9
                                                         REIHE
          10 rows × 33 columns
```

Exploring the result with 1 to see the CO2 and fuel consumption values if it makes sense

```
In [58]: df[['European_vehicle_category','Fuel_consumption_combined','C02_emissions_combined','Cluster']].loc[(df['Cluster']==1)
```

Out[58]:

	European_vehicle_category	Fuel_consumption_combined	CO2_emissions_combined	Cluster
4	M1	8.8	211	1
13	M1	8.6	202	1
51	M1	8.6	205	1
103	M1	9.2	220	1
138	M1	9.0	226	1
•••				
8808620	M1	8.8	211	1
8808655	M1	9.1	218	1
8808681	M1	9.3	223	1
8808734	M1	9.4	225	1
8808742	M1	8.5	203	1

239597 rows × 4 columns

```
In [59]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 5) )]
    print(' min:',df2['CO2_emissions_combined'].min(),'max:',df2['CO2_emissions_combined'].max())

min: 12 max: 97

In [60]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 6) )]
    print(' min:',df2['CO2_emissions_combined'].min(),' max:',df2['CO2_emissions_combined'].max())
```

min: 278 max: 990

```
In [61]: df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 7) )]
         print(' min:',df2['CO2 emissions combined'].min(),' max:',df2['CO2 emissions combined'].max())
           min: 148 max: 162
In [62]: | df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 8) )]
         print(' min:',df2['CO2 emissions combined'].min(),' max:',df2['CO2 emissions combined'].max())
           min: 113 max: 131
In [63]: | df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 9) )]
         print(' min:',df2['CO2 emissions combined'].min(),' max:',df2['CO2 emissions combined'].max())
           min: 179 max: 199
In [64]: #Plot the clusters obtained using k means
         # fig = plt.figure()
         \# ax = fig.add subplot(111)
         # scatter = ax.scatter(df['CO2 emissions combined'],df['Fuel consumption combined'],
                                c=df['Cluster'])
         # ax.set title('MiniBatchKMeans Clustering')
         # ax.set xlabel('CO2 emissions combined')
         # ax.set ylabel('Fuel consumption combined')
         # plt.colorbar(scatter)
```

First, I used this code to plot the clusters but It takes a very long time to execute so I replaced it with the below code which is much faster and has the same result

```
In [65]: #filter rows of original data
         filtered label0 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 0) )]
         filtered label1 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 1) )]
         filtered label2 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 2) )]
         filtered label3 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 3) )]
         filtered label4 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 4) )]
         filtered label5 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 5) )]
         filtered label6 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 6) )]
         filtered label7 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 7) )]
         filtered label8 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 8) )]
         filtered label9 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 9) )]
         #Plotting the results
         plt.scatter(filtered label0['CO2 emissions combined'], filtered label0['Fuel consumption combined'], color = 'purple')
         plt.scatter(filtered label1['CO2 emissions combined'] ,filtered_label1['Fuel_consumption_combined'],color = 'red')
         plt.scatter(filtered label2['CO2 emissions combined'],filtered label2['Fuel consumption combined'],color = 'black')
         plt.scatter(filtered label3['CO2 emissions combined'] ,filtered label3['Fuel consumption combined'],color = 'yellow')
         plt.scatter(filtered label4['CO2 emissions combined'],filtered label4['Fuel consumption combined'],color = 'green')
         plt.scatter(filtered label5['CO2 emissions combined'], filtered label5['Fuel consumption combined'], color = 'pink' )
         plt.scatter(filtered label6['CO2 emissions combined'] ,filtered label6['Fuel consumption combined'] ,color = 'beige')
         plt.scatter(filtered label7['CO2 emissions combined'] ,filtered label7['Fuel consumption combined'] ,color = 'orange')
         plt.scatter(filtered_label8['CO2_emissions_combined'] ,filtered_label8['Fuel consumption combined'] ,color = 'brown')
         plt.scatter(filtered label9['CO2 emissions combined'] ,filtered label9['Fuel consumption combined'],color = 'cyan' )
         plt.show()
```


If we manually compare the result of the first five rows from the category M1 we can see that cars with high CO2 and fuel consumption has a wrong result depending on other cars from the same category M1, but when we show the minimum and maximum co2 emission we notice that the data is classified but it's not organized like cluster 1 should have the data of cluster 3 so it's not sorted by cluster number.

Note: we have to compare manually because we don't have the data we are generating

Conclusion

After doing more research about this issue I discovered that This behavior is normal, as the ordering of cluster labels is dependent on the initialization. Cluster 0 from the first run could be labeled cluster 1 in the second run and vice versa. This doesn't affect clustering evaluation metrics.

But know the problem is how to make it organise it from the smaller to the bigger in clustering

after further investigation and researching I couldn't find a way to make Kmeans sort the clusters from small to big so I will hot encoding it

```
In [67]: #filter rows of original data
         filtered label0 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 0) )]
         filtered label1 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 1) )]
         filtered label2 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 2) )]
         filtered label3 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 3) )]
         filtered label4 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 4) )]
         filtered label5 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 5) )]
         filtered label6 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 6) )]
         filtered label7 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 7) )]
         filtered label8 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 8) )]
         filtered label9 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 9) )]
         #Plotting the results
         plt.scatter(filtered label0['CO2 emissions combined'], filtered label0['Fuel consumption combined'], color = 'purple')
         plt.scatter(filtered label1['CO2 emissions combined'] ,filtered_label1['Fuel_consumption_combined'],color = 'red')
         plt.scatter(filtered label2['CO2 emissions combined'],filtered label2['Fuel consumption combined'],color = 'black')
         plt.scatter(filtered label3['CO2 emissions combined'] ,filtered label3['Fuel consumption combined'],color = 'yellow')
         plt.scatter(filtered label4['CO2 emissions combined'],filtered label4['Fuel consumption combined'],color = 'green')
         plt.scatter(filtered label5['CO2 emissions combined'], filtered label5['Fuel consumption combined'], color = 'pink' )
         plt.scatter(filtered label6['CO2 emissions combined'] ,filtered label6['Fuel consumption combined'] ,color = 'beige')
         plt.scatter(filtered label7['CO2 emissions combined'] ,filtered label7['Fuel consumption combined'] ,color = 'orange')
         plt.scatter(filtered_label8['CO2_emissions_combined'] ,filtered_label8['Fuel consumption combined'] ,color = 'brown')
         plt.scatter(filtered label9['CO2 emissions combined'] ,filtered label9['Fuel consumption combined'],color = 'cyan' )
         plt.show()
```


MiniBatchKMeans algorithm with scalling

We still have a wrong result, I will try now first to scle the data than do the same algorithms

In [72]:	<pre>df['Cluster'] = mbk.labelsastype(int) df.head(10)</pre>								
	3	20SGRP	Personenauto	BMW	3ER REIHE	4.0	6.0	1550.0	2.0
	4	89TZPK	Personenauto	MINI	MINI COOPER S	4.0	4.0	1215.0	2.0
	5	NJ731T	Personenauto	OPEL	ASTRA SPORTS TOURER+	5.0	4.0	1212.0	5.0
	6	22STV1	Personenauto	PEUGEOT	3008	5.0	4.0	1434.0	4.0
	7	VN677N	Bedrijfsauto	VOLKSWAGEN	CADDY	2.0	4.0	1404.0	0.0
	8	L216BV	Personenauto	VOLKSWAGEN	T-ROC	5.0	4.0	1247.0	5.0
	9	75LVGH	Personenauto	BMW	7ER REIHE	5.0	6.0	1875.0	4.0
	10 row	s × 34 colu	mns						~

Out[73]:

	European_vehicle_category	Fuel_consumption_combined	CO2_emissions_combined	Cluster
3	M1	9.8	236	1
4	M1	8.8	211	1
13	M1	8.6	202	1
21	M1	8.1	193	1
23	M1	8.0	190	1
8808901	M1	8.4	199	1
8808906	M1	8.3	198	1
8808907	M1	8.2	196	1
8808919	M1	7.5	176	1
8808929	M1	7.7	188	1

1093746 rows × 4 columns

```
In [74]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 5) )]
print(' min:',df2['CO2_emissions_combined'].min(),'max:',df2['CO2_emissions_combined'].max())
min: 39 max: 337
```

```
In [75]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 6) )]
print(' min:',df2['CO2_emissions_combined'].min(),' max:',df2['CO2_emissions_combined'].max())
```

min: 79 max: 410

```
In [76]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 7) )]
    print(' min:',df2['CO2_emissions_combined'].min(),' max:',df2['CO2_emissions_combined'].max())

    min: 42 max: 822

In [77]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 8) )]
    print(' min:',df2['CO2_emissions_combined'].min(),' max:',df2['CO2_emissions_combined'].max())

    min: 88 max: 388

In [78]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 9) )]
    print(' min:',df2['CO2_emissions_combined'].min(),' max:',df2['CO2_emissions_combined'].max())

    min: 94 max: 275

In [79]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['Cluster'] == 4) )]
    print(' min:',df2['CO2_emissions_combined'].min(),' max:',df2['CO2_emissions_combined'].max())

    min: nan max: nan
```

```
In [80]: #filter rows of original data
         filtered label0 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 0) )]
         filtered label1 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 1) )]
         filtered label2 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 2) )]
         filtered label3 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 3) )]
         filtered label4 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 4) )]
         filtered label5 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 5) )]
         filtered label6 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 6) )]
         filtered label7 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 7) )]
         filtered label8 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 8) )]
         filtered label9 = df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 9) )]
         #Plotting the results
         plt.scatter(filtered label0['CO2 emissions combined'], filtered label0['Fuel consumption combined'], color = 'purple')
         plt.scatter(filtered label1['CO2 emissions combined'], filtered label1['Fuel consumption combined'], color = 'red')
         plt.scatter(filtered label2['CO2 emissions combined'],filtered label2['Fuel consumption combined'],color = 'black')
         plt.scatter(filtered label3['CO2 emissions combined'] ,filtered label3['Fuel consumption combined'],color = 'yellow')
         plt.scatter(filtered label4['CO2 emissions combined'],filtered label4['Fuel consumption combined'],color = 'green')
         plt.scatter(filtered label5['CO2 emissions combined'], filtered label5['Fuel consumption combined'], color = 'pink' )
         plt.scatter(filtered label6['CO2 emissions combined'] ,filtered label6['Fuel consumption combined'] ,color = 'beige')
         plt.scatter(filtered label7['CO2 emissions combined'] ,filtered label7['Fuel consumption combined'] ,color = 'orange')
         plt.scatter(filtered_label8['CO2_emissions_combined'] ,filtered_label8['Fuel consumption combined'] ,color = 'brown')
         plt.scatter(filtered label9['CO2 emissions combined'] ,filtered label9['Fuel consumption combined'],color = 'cyan' )
         plt.show()
```


As we see in the above plot and results something is wrong, My best estimation is that scaling a categorical data is not a good option

MiniBatchKMeans without hot encoding

```
In [81]: #df=df.drop(['Benzine','LPG','Diesel','LNG','Waterstof','CNG','Alcohol','L1','L3','L5','M1','M2','M3','N1','N2'], axis=1
In [82]: mbk = MiniBatchKMeans(n_clusters=10,random_state=12,batch_size=3072)
    mbk.fit(x_df_without_hot_encoding)
Out[82]: MiniBatchKMeans(batch_size=3072, n_clusters=10, random_state=12)
In [83]: print(np.unique(mbk.labels_))
    [0 1 2 3 4 5 6 7 8 9]
    Maximum number of iterations for a single run
In [84]: print(mbk.n_iter_)
    29
```

In [85]:

Sum of squared distances

print(mbk.inertia)

```
392139289.2835744
In [86]: mbk.labels
Out[86]: array([2, 4, 6, ..., 7, 2, 8])
In [87]: df['Cluster'] = mbk.labels
         df[['European_vehicle_category','Fuel_consumption_combined','CO2_emissions_combined','Cluster']].head(10)
Out[87]:
             European_vehicle_category Fuel_consumption_combined CO2_emissions_combined Cluster
           0
                                 M1
                                                          6.7
                                                                                 160
                                                                                          2
                                 M1
                                                           3.2
                                                                                  85
                                                                                          4
           2
                                 M1
                                                          5.7
                                                                                 136
                                                                                          6
                                 M1
                                                          9.8
                                                                                 236
                                                                                          1
                                 M1
                                                          8.8
                                                                                 211
                                                                                          1
                                                          4.9
                                 M1
                                                                                 114
                                                                                          0
                                 M1
                                                          7.1
                                                                                 167
                                                          5.6
                                                                                          2
                                 N1
                                                                                 147
           8
                                 M1
                                                          5.3
                                                                                 120
                                                                                          0
                                 M1
                                                          8.5
                                                                                 227
                                                                                          1
In [88]: #df=df.drop(['Benzine','LPG','Diesel','LNG','Waterstof','CNG','Alcohol','L1','L3','L5','M1','M2','M3','N1','N2'], axis=1
```

Exploring the result with 1 to see the CO2 and fuel consumption values if it makes sense

```
In [89]: df[['European vehicle category','Fuel consumption combined','CO2 emissions combined','Cluster']].loc[(df['Cluster']==1)
                3
                                      M1
                                                                9.8
                                                                                      236
                                      M1
                                                                8.8
                                                                                      211
                                      M1
                                                                9.2
                                                                                      220
               103
                                                                9.0
                                                                                      226
              138
                                      M1
              150
                                      M1
                                                                9.2
                                                                                      220
           8808620
                                      M1
                                                                8.8
                                                                                      211
           8808655
                                      M1
                                                                9.1
                                                                                      218
           8808681
                                                                9.3
                                                                                      223
                                      M1
           8808734
                                      M1
                                                                9.4
                                                                                      225
                                      M1
                                                                                      242
           8808777
                                                               10.1
          225277 rows × 4 columns
In [90]:
         df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 0) )]
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 108 CO2 max: 125
           Fuel consumption min: 0.3 Fuel consumption max: 56.3
         df2=df[((df['European vehicle_category'] == 'M1') & (df['Cluster'] == 1) )]
In [91]:
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 210 CO2 max: 245
           Fuel consumption min: 0.3 Fuel consumption max: 93.6
```

```
In [92]: df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 2) )]
         print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 144 CO2 max: 162
           Fuel consumption min: 0.7 Fuel consumption max: 60.0
In [93]: | df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 3) )]
         print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 163 CO2 max: 183
           Fuel consumption min: 4.6 Fuel consumption max: 77.0
In [94]: | df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 4) )]
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 12 CO2 max: 92
           Fuel consumption min: 0.6 Fuel consumption max: 86.0
         df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 5) )]
In [95]:
         print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 306 CO2 max: 990
           Fuel consumption min: 1.71 Fuel consumption max: 35.55
```

```
In [96]: df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 6) )]
         print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 124 CO2 max: 143
           Fuel consumption min: 0.5 Fuel consumption max: 62.0
         df2=df[((df['European vehicle_category'] == 'M1') & (df['Cluster'] == 7) )]
In [97]:
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
         print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 184 CO2 max: 209
           Fuel consumption min: 0.9 Fuel consumption max: 86.0
In [98]: | df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 8) )]
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 92 CO2 max: 107
           Fuel consumption min: 0.5 Fuel consumption max: 46.0
In [99]: | df2=df[((df['European vehicle category'] == 'M1') & (df['Cluster'] == 9) )]
         print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
           Co2 min: 246 CO2 max: 305
           Fuel consumption min: 0.88 Fuel consumption max: 82.0
```

View only the cars with M1 catagory and Benzin to see the difference since the algorithm take fuel type into consideration

```
In [100]: #filter rows of original data
          filtered label0 = df.loc[(df['Cluster']==0) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label1 = df.loc[(df['Cluster']==1) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label2 = df.loc[(df['Cluster']==2) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label3 = df.loc[(df['Cluster']==3) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label4 = df.loc[(df['Cluster']==4) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label5 = df.loc[(df['Cluster']==5) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label6 = df.loc[(df['Cluster']==6) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label7 = df.loc[(df['Cluster']==7) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label8 = df.loc[(df['Cluster']==8) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label9 = df.loc[(df['Cluster']==9) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          #Plotting the results
          plt.scatter(filtered label0['CO2 emissions combined'], filtered label0['Fuel consumption combined'], color = 'purple')
          plt.scatter(filtered label1['CO2 emissions combined'] ,filtered_label1['Fuel_consumption_combined'],color = 'red')
          plt.scatter(filtered label2['CO2 emissions combined'],filtered label2['Fuel consumption combined'],color = 'black')
          plt.scatter(filtered label3['CO2 emissions combined'] ,filtered label3['Fuel consumption combined'],color = 'yellow')
          plt.scatter(filtered label4['CO2 emissions combined'],filtered label4['Fuel consumption combined'],color = 'green')
          plt.scatter(filtered label5['CO2 emissions combined'], filtered label5['Fuel consumption combined'], color = 'pink' )
          plt.scatter(filtered label6['CO2 emissions combined'] ,filtered label6['Fuel consumption combined'] ,color = 'beige')
          plt.scatter(filtered label7['CO2 emissions combined'] ,filtered label7['Fuel consumption combined'] ,color = 'orange')
          plt.scatter(filtered_label8['CO2_emissions_combined'] ,filtered_label8['Fuel consumption combined'] ,color = 'brown')
          plt.scatter(filtered label9['CO2 emissions combined'] ,filtered label9['Fuel consumption combined'],color = 'cyan' )
          plt.show()
```


After further investigation and researching I couldn't find a way to make Kmeans sort the clusters from small to big so I will hot encoding it

```
In [101]: df['soorted_cluster'] = df['Cluster'].map( {4:1, 8:2, 0:3, 6:4, 2:5, 3:6, 7:7, 1:8, 9:9, 5:10} ).astype(int)
```

View only the cars with M1 catagory and Benzin to see the difference since the algorithm take fuel type into consideration

```
In [102]: #filter rows of original data
          filtered label0 = df.loc[(df['soorted cluster']==1) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label1 = df.loc[(df['soorted cluster']==2) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label2 = df.loc[(df['soorted cluster']==3) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label3 = df.loc[(df['soorted cluster']==4) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label4 = df.loc[(df['soorted cluster']==5) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label5 = df.loc[(df['soorted cluster']==6) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label6 = df.loc[(df['soorted cluster']==7) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label7 = df.loc[(df['soorted cluster']==8) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label8 = df.loc[(df['soorted cluster']==9) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          filtered label9 = df.loc[(df['soorted cluster']==10) & (df['Benzine']== 1) & (df['European vehicle category']== 'M1')]
          #Plotting the results
          plt.scatter(filtered label0['CO2 emissions combined'], filtered label0['Fuel consumption combined'], color = 'purple')
          plt.scatter(filtered label1['CO2 emissions combined'] ,filtered_label1['Fuel_consumption_combined'],color = 'red')
          plt.scatter(filtered label2['CO2 emissions combined'],filtered label2['Fuel consumption combined'],color = 'black')
          plt.scatter(filtered label3['CO2 emissions combined'] ,filtered label3['Fuel consumption combined'],color = 'yellow')
          plt.scatter(filtered label4['CO2 emissions combined'],filtered label4['Fuel consumption combined'],color = 'green')
          plt.scatter(filtered label5['CO2 emissions combined'], filtered label5['Fuel consumption combined'], color = 'pink' )
          plt.scatter(filtered label6['CO2 emissions combined'] ,filtered label6['Fuel consumption combined'] ,color = 'beige')
          plt.scatter(filtered label7['CO2 emissions combined'] ,filtered label7['Fuel consumption combined'] ,color = 'orange')
          plt.scatter(filtered_label8['CO2_emissions_combined'] ,filtered_label8['Fuel consumption combined'] ,color = 'brown')
          plt.scatter(filtered label9['CO2 emissions combined'] ,filtered label9['Fuel consumption combined'],color = 'cyan' )
          plt.show()
```



```
In [103]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['soorted_cluster'] == 1) )]
    print(' Co2 min:',df2['CO2_emissions_combined'].min(),' CO2 max:',df2['CO2_emissions_combined'].max())
    print(' Fuel consumption min:',df2['Fuel_consumption_combined'].min(),' Fuel consumption max:',df2['Fuel_consumption_combined'].min(),' Fuel consumption_combined'].min(),' Fuel consumption_combine
```

Co2 min: 12 CO2 max: 92 Fuel consumption min: 0.6 Fuel consumption max: 86.0

```
In [104]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['soorted_cluster'] == 2) )]
    print(' Co2 min:',df2['CO2_emissions_combined'].min(),' CO2 max:',df2['CO2_emissions_combined'].max())
    print(' Fuel consumption min:',df2['Fuel_consumption_combined'].min(),' Fuel consumption max:',df2['Fuel_consumption_combined'].min(),' Fuel consumption_combined'].min(),' Fuel consumption_combined'].min(
```

Co2 min: 92 CO2 max: 107
Fuel consumption min: 0.5 Fuel consumption max: 46.0

```
In [105]: df2=df[((df['European_vehicle_category'] == 'M1') & (df['soorted_cluster'] == 3) )]
    print(' Co2 min:',df2['CO2_emissions_combined'].min(),' CO2 max:',df2['CO2_emissions_combined'].max())
    print(' Fuel consumption min:',df2['Fuel_consumption_combined'].min(),' Fuel consumption max:',df2['Fuel_consumption_combined'].min(),' Fuel consumption_combined'].min(),' Fuel consumption_combine
```

Co2 min: 108 CO2 max: 125 Fuel consumption min: 0.3 Fuel consumption max: 56.3

```
In [106]: |df2=df[((df['European vehicle category'] == 'M1') & (df['soorted cluster'] == 4) )]
          print(' Co2 min:',df2['Co2 emissions combined'].min(),' Co2 max:',df2['Co2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
            Co2 min: 124 CO2 max: 143
            Fuel consumption min: 0.5 Fuel consumption max: 62.0
In [107]: df2=df[((df['European vehicle category'] == 'M1') & (df['soorted cluster'] == 5) )]
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
            Co2 min: 144 CO2 max: 162
            Fuel consumption min: 0.7 Fuel consumption max: 60.0
In [108]: |df2=df[((df['European vehicle category'] == 'M1') & (df['soorted cluster'] == 6) )]
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
          print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
            Co2 min: 163 CO2 max: 183
            Fuel consumption min: 4.6 Fuel consumption max: 77.0
In [109]: |df2=df[((df['European vehicle category'] == 'M1') & (df['soorted cluster'] == 7) )]
          print(' Co2 min:',df2['CO2 emissions combined'].min(),' CO2 max:',df2['CO2 emissions combined'].max())
           print(' Fuel consumption min:',df2['Fuel consumption combined'].min(),' Fuel consumption max:',df2['Fuel consumption combined'].min(),'
            Co2 min: 184 CO2 max: 209
            Fuel consumption min: 0.9 Fuel consumption max: 86.0
```

Out[110]: <matplotlib.colorbar.Colorbar at 0x2048cf39bb0>

Conclusion

The research was successfully completed and I got the result I wanted, By using the Kmeans algorithm which is useful for unsupervised ML for the unlabeled datasets, As we see in this research I achieved my goal to classify all the cars in the RDW dataset is a really efficient way, I learned a lot of useful information about data provisioning ,ML in specific Kmeans and MiniBatchKMeans algorithms and domain understanding different methods and techniques.