Exercise 3. Suppose that A is a set and $\{f_n\}_{n\in\mathbb{Z}_+}$ is a given indexed family of injective functions

$$f_n:\{1,\ldots,n\}\to A$$

Show that A is infinite. Can you define an injective function $f: \mathbb{Z}_+ \to A$ without using the choice axiom?

Proof. For all $n \in \mathbb{Z}_+$, note $F_n = f_n(S_{n+1})$. Define f recursively by

$$f(1) = f_1(1)$$

$$f(n+1) = f_{n+1}(j)$$
with $j = \min \{ i \in S_{n+2} \mid f_{n+1}(i) \notin \{ f(1), \dots, f(n) \} \}$

Let us verify that this defines an injective function.

For all $n \in \mathbb{Z}_+$, we note $G_n = \{f(1), \ldots, f(n)\} = f|S_{n+1}(S_{n+1})$. Let \mathscr{A} be the set of positive integers such that $f|S_{n+1}$ is injective. We have $1 \in \mathscr{A}$ since $f|\{1\} = f_1$ is injective. Suppose that $n \in \mathscr{A}$; the definition of f gives $f(n+1) \in F_{n+1}$. Since f_{n+1} is injective, the set F_{n+1} has n+1 elements. From the inductive hypothesis, the set G_n has n elements. Therefore there exists some $f \in S_{n+2}$ such that $f_{n+1}(f) \notin G_n$. The set $f_n \in S_{n+2}$ is nonempty, and, as a subset of the well-ordered set $f_n \in S_{n+1}$ has a smallest element $f_n \in S_{n+1}$. From the above we have $f_n \in S_{n+1}$ is injective, and $f_n \in S_{n+1}$. We deduce that $f_n \in S_n$ is inductive, and therefore $f_n \in S_n$.

Let $i, j \in \mathbb{Z}_+$ such that $i \neq j$. By switching the roles of i and j if needed, we can suppose that i < j. The function $f|\{1, \ldots, j\}$ is injective, so that $f(i) \neq f(j)$, and therefore f is injective.

Since there exists an injection $f: \mathbb{Z}_+ \to A$, the set A is infinite. Moreover, the definition of f does not use the axiom of choice.