TEMA 2: EL ENFOQUE DE DATOS RELACIONAL

Andrés Molina Aguilar. Departamento de Informática Bases de Datos. GII

Tema 2. El Enfoque de Datos Relacional

- La estructura de datos relacional
- Álgebra relacional
- Resumen

La estructura de datos relacional

- Las bases de datos relacionales se basan en el modelo de datos relacional desarrollado por Codd a principio de los años 70
- Características
 - Basado en un reducido conjunto de conceptos
 - Permite la manipulación de los datos mediante operaciones algebraicas

TABLA: Conceptos básicos

Tabla CLIENTE

DNI	NOMBRE	APELLIDOS	DIREC	LOC	PROV	E_CIVIL
25005696	Alberto	Díaz Olid	Álamos, 7	Jaén	Jaén	Casado
27102234	María	Gómez Abad	Nogal, 5	Jaén	Jaén	Soltera
24566477	Salvador	Ros Bueno	Colón, 3	Martos	Jaén	Divorciado

- □ Toda la información se almacena en tablas, también denominadas relaciones
 - Una tabla es la forma en que un usuario ve sus datos
 - Se divide horizontalmente en filas y verticalmente en columnas
- A cada una de las filas de una tabla se le denomina tupla, y representa un registro
- □ A cada columna se le denomina **atributo** y contiene información referente a un único campo
- La cardinalidad de una tabla es el número de filas que contiene
- El grado de una tabla es el número de columnas que posee
- Cada fila de una tabla debe ser identificada de forma única por un atributo o conjunto de atributos denominado clave de la tabla
- Al conjunto de posibles valores que puede tomar una columna se denomina dominio, pudiendo ser :
 Dominio continuo o Dominio discreto
- Para representar una tabla utilizaremos el siguiente esquema
 CLIENTE (<u>DNI</u>, NOMBRE, APELLIDOS, DIR, LOC, PROV, E_CIVIL)

Ejemplo

Volvamos a nuestra tabla

CLIENTE(<u>DNI</u>, NOMBRE, APELLIDOS, DIREC, LOC, PROV, E_CIVIL)

DNI	NOMBRE	APELLIDOS	DIREC	LOC	PROV	E_CIVIL
25005696	Alberto	Díaz Olid	Álamos, 7	Jaén	Jaén	Casado
27102234	María	Gómez Abad	Nogal, 5	Jaén	Jaén	Soltera
24566477	Salvador	Ros Bueno	Colón, 3	Martos	Jaén	Divorciado

□ Grado: 7

Cardinalidad: 3

□ Clave: DNI

Dominio Discreto: PROV, LOC, E_CIVIL

Dominio Continuo: DNI, NOMBRE, APELLIDOS, DIREC

Clave foránea

CLIENTE (DNI, NOMBRE, APELLIDOS, DIREC, LOC, PROV, COD_E_CIVIL)

DNI	NOMBRE	APELLIDOS	DIREC	LOC	PROV	COD_E_CIVIL
25005696	Alberto	Díaz Olid	Álamos, 7	Jaén	Jaén	С
27102234	María	Gómez Abad	Nogal, 5	Jaén	Jaén	S
24566477	Salvador	Ros Bueno	Colón, 3	Martos	Jaén	D

ESTADO_CIVIL(COD_E_CIVIL, ESTADO_CIVIL)

COD_E_CIVIL	ESTADO_CIVIL
С	Casado
S	Soltero
D	Divorciado

Clave foránea: conjunto de atributos que es clave principal en otra tabla

Restricciones de las tablas

- Todos los registros de una tabla son del mismo tipo.
 Para almacenar registros distintos se usan tablas distintas
- Cada campo se almacena en una columna de la tabla. Cada columna se identifica mediante un nombre de columna
- No se permite la existencia de dos columnas (campos) con el mismo nombre
- En ninguna tabla existen registros duplicados
- □ El orden de los registros en la tabla es indiferente.
 En cada momento se pueden recuperar los registros en un orden particular

Álgebra relacional

- El álgebra relacional es un sistema cerrado de operaciones definidas sobre relaciones (tanto los operandos como los resultados son relaciones)
- Permite construir fórmulas o expresiones combinando unas operaciones con otras, de manera que los resultados de unas sean operando de otras
- El álgebra relacional se compone de un conjunto de operaciones definidas sobre tablas que usan operadores relacionales, obteniendo a su vez otras tablas

Tabla de ejemplo PEDIDOS

PEDIDOS (PIEZA, DESC, F_PEDIDO, F_SUMINISTRO, CANTIDAD)

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
1	Tornillo	21-4-2010	22-5-2010	40
2	Arandela	30-5-2010	10-6-2010	30
3	Tuerca	10-5-2010	15-5-2010	35
1	Tornillo	12-2-2010	21-2-2010	30
3	Tuerca	15-4-2010	30-4-2010	25
4	Taco	3-4-2010	10-4-2010	45
4	Taco	10-6-2010	15-6-2010	40
1	Tornillo	12-5-2010	20-5-2010	34

Operador Selección (S)

- Selecciona el subconjunto de tuplas (del conjunto total de tuplas existentes en la tabla) que cumplen una determinada condición
- Su sintaxis es la siguiente:
 - S(nombre_tabla, condición)
- El resultado se obtiene extrayendo de la tabla todas las tuplas que cumplan la condición
- La tabla resultado tendrá el mismo grado que la tabla inicial, mientras que la cardinalidad siempre será menor o igual (en el caso de que se cumpla la condición para todos los registro) que la cardinalidad de la tabla origen

Seleccionar los pedidos que superen 30 unidades: S(PEDIDOS, CANTIDAD>30)

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
1	Tornillo	21-4-2010	22-5-2010	40
3	Tuerca	10-5-2010	15-5-2010	35
4	Taco	3-4-2010	10-4-2010	45
4	Taco	10-6-2010	15-6-2010	40
1	Tornillo	12-5-2010	20-5-2010	34

Tablas de verdad de los operadores lógicos NOT, AND y OR

V1	V2	V1 OR V2	V1 AND V2	NOT V1
VERDAD	VERDAD	VERDAD	VERDAD	FALSO
VERDAD	FALSO	VERDAD	FALSO	FALSO
FALSO	VERDAD	VERDAD	FALSO	VERDAD
FALSO	FALSO	FALSO	FALSO	VERDAD

Crear una tabla con los pedidos realizado en mayo y otra en abril

P_MAYO :=S(PEDIDOS, (F_PEDIDO>{30-4-2010}) AND (F_PEDIDO<{1-6-2010}))

P_ABRIL :=S(PEDIDOS, (F_PEDIDO>={1-4-2010}) AND (F_PEDIDO<={30-4-2010}))

P_MAYO

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
2	Arandela	30-5-2010	10-6-2010	30
3	Tuerca	10-5-2010	15-5-2010	35
1	Tornillo	12-5-2010	20-5-2010	34

P_ABRIL

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
1	Tornillo	21-4-2010	22-5-2010	40
3	Tuerca	15-4-2010	30-4-2010	25
4	Taco	3-4-2010	10-4-2010	45

Operador Proyección (P)

- Este operador toma un subconjunto de atributos del conjunto total de atributos (o columnas) de una tabla
- Su sintaxis es la siguiente:
 - $P(nombre_tabla, A_1 A_2....A_k)$
- □ El resultado de la operación de proyección se obtiene extrayendo de la tabla los atributos A₁, A₂,....,Ak y contendrá todas las filas de la tabla inicial, excepto las duplicadas que aparecerán una única vez
- Si la cardinalidad de la tabla inicial es C, la cardinalidad de la tabla resultante después de aplicar una operación de proyección siempre será menor o igual a C. Por otra parte, el grado de la tabla resultado será K

PEDIDOS (PIEZA, DESC, F_PEDIDO, F_SUMINISTRO, CANTIDAD)

15

P(PEDIDOS, PIEZA DESC)

PIEZA	DESC
1	Tornillo
2	Arandela
3	Tuerca
4	Taco

P(S(PEDIDOS, CANTIDAD>30), PIEZA DESC)

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
1	Tornillo	21-4-2010	22-5-2010	40
3	Tuerca	10-5-2010	15-5-2010	35
4	Taco	3-4-2010	10-4-2010	45
4	Taco	10-6-2010	15-6-2010	40
1	Tornillo	12-5-2010	20-5-2010	34

PIEZA	DESC
1	Tornillo
3	Tuerca
4	Taco

Unión

- La unión de dos tablas requiere que ambas tengan el mismo grado G (el mismo número de columnas) y que las columnas estén definidas en el mismo dominio
- Su sintaxis es la siguiente:

U(nombre_tabla1 nombre_tabla2)

0

nombre_tabla1 U nombre_tabla2

 El resultado es una nueva tabla con grado G en la que aparecerán todas las filas de ambas tablas excepto aquellas que estén duplicadas, que sólo aparecerán una vez

Intersección

- La intersección de dos tablas requiere que ambas tengan el mismo grado G (el mismo número de columnas) y que las columnas estén definidas en el mismo dominio
- Su sintaxis es la siguiente:

∩(nombre_tabla1 nombre_tabla2)

O

nombre_tabla1 ∩ nombre_tabla2

El resultado es una nueva tabla con grado G en la que aparecerán todas las filas de la tabla 1 que también estén en la tabla 2, es decir las filas comunes a ambas tablas. La cardinalidad de la tabla resultante será menor o igual a la de la tabla con menor cardinalidad

Diferencia/Extracción

- La diferencia/extracción de dos tablas requiere que ambas tengan el mismo grado G (el mismo número de columnas) y que las columnas estén definidas en el mismo dominio
- Su sintaxis es la siguiente:

D(nombre_tabla1 nombre_tabla2)

0

nombre_tabla1 - nombre_tabla2

□ El resultado es una nueva tabla con grado G en la que aparecen todas las filas de la tabla 1 que no estén en la tabla 2

Ejemplos

P_MAYO

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
2	Arandela	30-5-2010	10-6-2010	30
3	Tuerca	10-5-2010	15-5-2010	35
1	Tornillo	12-5-2010	20-5-2010	34

MAYO:=P(P_MAYO, PIEZA DESC)

PIEZA	DESC
2	Arandela
3	Tuerca
1	Tornillo

Ejemplos

P_ABRIL

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
1	Tornillo	21-4-2010	22-5-2010	40
3	Tuerca	15-4-2010	30-4-2010	25
4	Taco	3-4-2010	10-4-2010	45

ABRIL:=P(P_ABRIL, PIEZA DESC)

PIEZA	DESC
1	Tornillo
3	Tuerca
4	Taco

MAYO ABRIL

PIEZA	DESC	PIEZA	DESC
2	Arandela	1	Tornillo
3	Tuerca	3	Tuerca
1	Tornillo	4	Taco

MAYO U ABRIL

PIEZA	DESC
2	Arandela
3	Tuerca
1	Tornillo
4	Taco

MAYO - ABRIL

PIEZA	DESC
2	Arandela

ABRIL - MAYO

PIEZA	DESC
4	Taco

MAYO ∩ ABRIL

PIEZA	DESC
3	Tuerca
1	Tornillo

Producto cartesiano

- El operador producto cartesiano o simplemente producto, aplicado sobre dos tablas, da como resultado otra nueva tabla cuyos atributos serán la concatenación de los atributos de las tablas iniciales y cuyas filas serán todas las posibles concatenaciones de las filas de la tabla 1 con la tabla 2
- Resulta evidente que el grado de la tabla resultante es la suma de los grados de las tablas iniciales, y su cardinalidad el producto aritmético de la cardinalidad de ambas
- Su sintaxis es la siguiente:

nombre_tabla1 * nombre_tabla2

PIEZA

Ejemplos

Tabla P MAYO

DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
Arandela	30-5-2010	10-6-2010	30
Tuerca	10-5-2010	15-5-2010	35
Tornillo	12-5-2010	20-5-2010	34

Tabla ABRIL

PIEZA	DESC
1	Tornillo
3	Tuerca
4	Taco

P_MAYO * ABRIL

P_MAYO.	P_MAYO.	F_PEDIDO	F_SUMINISTRO	CANTID	ABRIL.	ABRIL.
PIEZA	DESC			AD	PIEZA	DESC
2	Arandela	30-5-2010	10-6-2010	30	1	Tornillo
3	Tuerca	10-5-2010	15-5-2010	35	1	Tornillo
1	Tornillo	12-5-2010	20-5-2010	34	1	Tornillo
2	Arandela	30-5-2010	10-6-2010	30	3	Tuerca
3	Tuerca	10-5-2010	15-5-2010	35	3	Tuerca
1	Tornillo	12-5-2010	20-5-2010	34	3	Tuerca
2	Arandela	30-5-2010	10-6-2010	30	4	Taco
3	Tuerca	10-5-2010	15-5-2010	35	4	Taco
1	Tornillo	12-5-2010	20-5-2010	34	4	Taco

Join o Yunción

- Su sintaxis es la siguiente
 J(nombre_tabla1 nombre_tabla2, condición)
- El resultado de aplicar el operador join es una nueva tabla cuyas filas serán las resultantes de realizar el producto cartesiano entre ambas tablas, seleccionar aquellas filas que cumplan la condición incluida en la operación y eliminar los atributos comunes
- El operador join se puede considerar una combinación del producto cartesiano, el operador de selección y el operador de proyección
- La condición utilizada podrá ser simple o compleja. Sin embargo, el join más común incluye una condición de igualdad. Es lo que se denomina equijoin.

J(P_MAYO ABRIL, P_MAYO.PIEZA=ABRIL.PIEZA)

P_MAYO * ABRIL

	P_MAYO.	P_MAYO.	F_PEDIDO	F_SUMINISTRO	CANTID	ABRIL.	ABRIL.
25	PIEZA	DESC			AD	PIEZA	DESC
20	2	Arandela	30-5-2010	10-6-2010	30	1	Tornillo
	3	Tuerca	10-5-2010	15-5-2010	35	1	Tornillo
	1	Tornillo	12-5-2010	20-5-2010	34	1	Tornillo
	2	Arandela	30-5-2010	10-6-2010	30	3	Tuerca
	3	Tuerca	10-5-2010	15-5-2010	35	3	Tuerca
	1	Tornillo	12-5-2010	20-5-2010	34	3	Tuerca
	2	Arandela	30-5-2010	10-6-2010	30	4	Taco
	3	Tuerca	10-5-2010	15-5-2010	35	4	Taco
	1	Tornillo	12-5-2010	20-5-2010	34	4	Taco

S(P_MAYO * ABRIL, P_MAYO.PIEZA=ABRIL.PIEZA)

P_MAYO.	P_MAYO.	F_PEDIDO	F_SUMINISTRO	CANTID	ABRIL.	ABRIL.
PIEZA	DESC			AD	PIEZA	DESC
1	Tornillo	12-5-2010	20-5-2010	34	1	Tornillo
3	Tuerca	10-5-2010	15-5-2010	35	3	Tuerca

Proyección

PIEZA	DESC	F_PEDIDO	F_SUMINISTRO	CANTIDAD
1	Tornillo	12-5-2010	20-5-2010	34
3	Tuerca	10-5-2010	15-5-2010	35

25

Resumen

- Conceptos básicos del modelo relacional
- Álgebra relacional
- Operadores relacionales
 - Selección
 - Proyección
 - Unión, Intersección y Diferencia
 - Producto cartesiano
 - Join o Yunción