ĐỀ THI CHÍNH THỨC

ILS_CONTEST

(Đề thi có 05 trang)

NĂM HỌC 2020 - 2021

Ngày thi: Day 2

Thời gian làm bài: 180 phút, không kể thời gian phát đề

Tổng quan bài thi: (Dấu * trong tên file chương trình được thay bởi PAS hoặc CPP)

Bài	Tên bài	File chương trình	File dữ liệu	File kết quả	Thời gian
4	Phản chiếu	REFLECTION.*	REFLECTION.INP	REFLECTION.OUT	1s/test
5	Trò chơi	BONUS3ROWS.*	BONUS3ROWS.INP	BONUS3ROWS.OUT	1s/test
6	Thu phí	TOLLBOOTHS.*	TOLLBOOTHS.INP	TOLLBOOTHS.OUT	1s/test

Hãy lập trình giải các bài toán sau:

Bài 4. PHẨN CHIẾU (7 điểm)

Các tấm gương ta thường gặp thực tế không phản chiếu 100% ánh sáng mà nó nhận được. Để đo lượng ánh sáng mà một gương có thể phản chiếu, ta cần đo lượng ánh sáng của nguồn sáng trước và sau khi bị phản chiếu bởi gương. Tuy vậy, làm như vậy sẽ khó xác định với độ chính xác cao kết quả, vì chỉ có một giá trị.

Một cách để tăng độ chính xác là không chỉ đo ánh sáng khi bị phản chiếu bởi gương một lần, mà cũng đo độ chính xác khi nó bị phản chiếu bởi các gương giống hệt nhau nhiều lần. Tuy nhiên, làm như thế này sẽ tốn rất nhiều gương.

Một người nghĩ rằng có thể sử dụng một gương để phán chiếu ánh sáng nhiều lần mà vẫn đo đạc tốt được. Người này dùng 4 tấm gương cắt từ một tấm gương to và xếp chúng thành một hình chữ nhật, mặt gương quay vào trong. Ở 4 góc của hình chữ nhật này, người đó để lại một kẽ hở vừa đủ để ánh sáng đi qua. Một tia sáng sẽ được chiếu từ góc trái dưới lên cạnh trên của hình chữ nhật, phản chiếu một số lần rồi có thể đi ra ở một trong các góc hoặc không đi ra ở góc nào (Có thể xem như tia sáng có độ rộng bằng 0). Xem hình vẽ minh họa:

Để tính chính xác được độ phản chiếu của gương, ta cần biết liệu tia sáng đã bị phản chiếu bao nhiêu lần trước khi đi ra khỏi gương. Ví dụ như trong hình vẽ minh họa, tia sáng bị phản chiều 3 lần trước khi đi ra khỏi gương.

Cho các tham số w, h, l, hãy tính số lần tia sáng bị phải chiếu trước khi đi ra khỏi gương. Dữ liệu đảm bảo rằng tia sáng sẽ đi ra khỏi gương.

Dữ liệu: Vào từ file văn bản REFLECTION.INP

• Gồm một dòng duy nhất chứa 3 số **nguyên** w, h, $l(1 \le w, h \le 10^9, 0 < l \le w)$.

Kết quả: Ghi ra file văn bản REFLECTION.OUT

• In ra một số duy nhất là số lần tia sáng bị phản chiếu trước khi đi ra khỏi gương.

Ví dụ:

REFLECTION.INP	REFLECTION.OUT	Giải thích
862	3	Ví dụ này được minh họa trong hình vẽ bên trên.
626	0	Tia sáng được chiếu thẳng từ góc trái dưới lên góc phải trên nên không bị phản chiếu lần nào.

Giới hạn:

- Có 30% test thỏa mãn điều kiện $w, h \le 100$.
- Có 40% test khác thỏa mãn điều kiện: $w, h \le 5 \times 10^5$. Dữ liệu đảm bảo rằng kết quả không vượt quá 10^6 .
- 30% test cuối cùng không có điều kiện thêm.

Bài 5. TRÒ CHƠI (7 điểm)

Một người chơi một trò chơi thám hiểm. Sân chơi là một ma trận gồm 3 dòng và n cột. Có tất cả q lần chơi, ở mỗi lần, người chơi cần di chuyển giữa hai ô trên ma trận sao cho sử dụng ít lượt đi nhất có thể. Người chơi có thể di chuyển giữa hai ô nếu hai ô này có chung cạnh, mỗi lần di chuyển tính bằng một lượt đi.

Ở mỗi ô (i,j) trên ma trận có một số a_{ij} . Mỗi lần người chơi đi vào ô (i,j), điểm số sẽ được cộng thêm a_{ij} , số ở ô bắt đầu cũng được tính vào điểm cuối cùng. Hỏi ở mỗi lần chơi, số điểm tối đa mà người chơi có thể nhận được là bao nhiêu?

Dữ liệu: Vào từ file văn bản BONUS3ROWS.INP

- Dòng đầu tiên chứa hai số nguyên n và q ($1 \le n, q \le 100000$).
- Dòng thứ i trong 3 dòng tiếp theo chứa n số là các giá trị a_{ij} $(1 \le j \le n, |a_{ij}| \le 10^9)$.
- Dòng thứ i trong q dòng tiếp theo chứa 4 số nguyên x_i, y_i, u_i, v_i $(1 \le x_i, u_i \le 3, 1 \le y_i, v_i \le n)$ mô tả một lần chơi: Ở lần chơi này, người chơi cần di chuyển từ ô (x_i, y_i) đến ô (u_i, v_i) .

Kết quả: Ghi ra file văn bản BONUS3ROWS.OUT

 Với mỗi truy vấn, in ra số điểm lớn nhất có thể nhận được trong các đường đi ngắn nhất có thể

Ví dụ:

BONUS3ROWS.INP	BONUS3ROWS.OUT	Giải thích
4 4	26385	Đường đi tối cho các truy vấn lần
9987 1246 7598 -486	8844	lượt là:
-2379 8488 6827 2566	22913	-(3, 2), (2, 2), (2, 3), (2, 4)
-322 8504 987 -8981	6109	-(1, 2), (1, 3)
3 2 2 4		-(2, 2), (2, 3), (1, 3)
1213		-(2, 1), (2, 2)
2 2 1 3		
2122		

Giới hạn:

- $30\% \text{ số test có } n \times q \leq 10^6$.
- 30% số test khác có $|x_i u_i| \le 1$ với mọi i.
- 40% test cuối cùng không có điều kiện thêm.

Bài 6. THU PHÍ (6 điểm)

Vì thời thế hỗn loạn, một thương gia cùng gia đình muốn di chuyển càng xa trung tâm thành phố càng tốt. Họ chọn một hướng để đi khỏi thành phố. Có thể xem như thành phố là gốc toa đô, và hướng đi là tia Ox.

Ở mỗi cây số (xem như tọa độ nguyên x = 1, 2, ...) sẽ có một trạm thu phí. Khi đi qua trạm thu phí, thương gia cùng cả gia đình sẽ phải trả tiền phí là 1 đồng vàng. Sau khi trả tiền, trạm thu phí sẽ cung cấp một giấy thông hành, cho phép đi theo chiều ngược lại qua trạm này một lần mà không phải trả tiền.

Thương gia này có tổng cả là n đồng vàng, đang được để ở trong thành phố (xem như là để ở gốc tọa độ). Gia đình thương gia có một xe chứa tiền, chứa được tối đa là k đồng vàng. Thương gia có thể để gia đình mình nghỉ lại ở bất kì điểm nào, để lại cho họ một số tiền bất kì và quay lại lấy thêm tiền.

Hỏi thương gia cùng gia đình có thể di chuyển tối đa là bao nhiều cây số từ trung tâm thành phố?

Dữ liệu: Vào từ file văn bản TOLLBOOTHS.INP:

• Gồm một dòng duy nhất chứa hai số nguyên n và k. $(1 \le n, k \le 10^6)$.

Kết quả: Ghi ra file văn bản TOLLBOOTHS.OUT:

• In ra một số duy nhất là khoảng cách tối đa có thể đi được.

Ví dụ:

TOLLBOOTHS.INP	TOLLBOOTHS.OUT	Giải thích
10 10	11	Vì gia đình thương gia có thể đem
		hết tiền đi, họ có thể trả hết các trạm
		thu phí từ 1 đến 10, tiếp tục đi cho
		đến trạm thu phí thứ 11, có khoảng
		cách là 11 cây số từ thành phố. Lưu ý
		chỉ khi đi qua trạm thì mới phải trả
		tiền.
8 4	7	Một cách đi để đạt được kết quả như
		sau:
		Thương gia này đem đi 4 đồng vàng,
		cùng gia đình đi đến trạm thứ 3
		(nhưng không đi qua). Vì dùng mất 2
		đồng vàng ở trạm 1 và 2, còn lại hai
		đồng. Thương gia bỏ lại gia đình với
		2 đồng vàng này, và đi ngược về
		thành phố (không mất phí). Thương
		gia sau đó lấy 4 đồng vàng còn lại rồi
		đi đến trạm thứ 3. Thượng gia cùng
		gia đình bây giờ có 4 đồng tiền, vừa
		đủ bỏ vào túi. Họ trả được các trạm

	3, 4, 5, 6 và đi tiếp đến trạm thứ 7, không thể đi qua vì hết tiền.
--	---

Giới hạn:

- $40\% \text{ số test có } n, k \leq 1000$
- 40% số test có n, k ≤ 10⁵
 20% số test có n, k ≤ 10⁶

------Hết------