《数值分析》期中考试卷						本题			
使用专业、班级	学号		姓名			[得分] 二、填空题 〖每空 2 分,共计 10 分〗			
题 数 一 二	三三四	五	六	总	分	1. 用列主元素消去法解线性方程组 $\begin{cases} -7x_1 + 2x_2 - 9x_3 = 0 \end{cases}$,第一次消元选取的主元 $\begin{cases} -6x_1 - 3x_2 + x_3 = 1 \end{cases}$			
得分						素是 ()。			
本题			位有	`効数字。		A 3 B -7 C -6 D -9			
1. $x^* = 2.142$ 作为准确值 $x = 2.139$ 的近似值,它具有位有效数字。 2. 设 $x^* > 0$, x^* 的相对误差为 δ , 则 $\ln x^*$ 的误差是。 3. 设 $A = \begin{pmatrix} -2 & -1 \\ 1 & 2 \end{pmatrix}$, 则 $\ A\ _1 = \frac{1}{2}$, $\ A\ _{\infty} = \frac{1}{2}$, $\ A\ _{\infty} = \frac{1}{2}$, $\ A\ _{\infty} = \frac{1}{2}$.					<u> </u>	2. 通过点 (x_0, y_0) , (x_1, y_1) 的 Lagrange 插值基函数 $l_0(x)$, $l_1(x)$ 满足()。 A $l_0(x_0) = 0$, $l_1(x_1) = 0$ B $l_0(x_0) = 0$, $l_1(x_1) = 1$ C $l_0(x_0) = 1$, $l_1(x_1) = 0$ D $l_0(x_0) = 1$, $l_1(x_1) = 1$			
4. 设 $f(x) = x^3 + x + 1$,则 $f[0,1,2] =$						3. 设 $s = \frac{1}{2}gt^2$,假定 g 是准确的,而对 t 的测量有误差。当 t 增加时, s 的绝对误差和相对误差分别()。			
5. 设非奇异矩阵 $A = (a_{ij})_{n \times n}$,Gauss-Seidel 迭代矩阵是		··,n)将	A 分裂 B	成 $A = D - I$	L-U , 则	A 增大,增大 B 增大,减少 C 减少,增大 D 减少,减少 4. 解线性方程组 $Ax = b$ 迭代法 $x^{(k+1)} = Bx^{(k)} + f$ 收敛的充要条件是()。 A $\rho(B) \le 1$ B $\rho(B) < 1$			
6. 当 N 充分大时,计算 \int_N^{N+1} 1+	<u>≀</u> _æ ²dx 的合理公式是			o		$C \rho(A) \le 1 \qquad D \rho(A) < 1$ $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} \text{ 的 } LU \text{ 分解情况是 } () .$			
7. 设近似值 $x_0 = \sqrt{2} \approx 1.41$ (三则用递推式 $x_n = 2x_{n-1} + 41.2$,定),它的误差是	(n = 1,2,···)计算的	为算法是_		(稳気	定或不稳	(4 8 3) A 能分解但不唯一 B 能分解且唯一 C不能分解 D 无法确定			
8. 设迭代格式 x (k+1) = Mx		= [0.5 () 9], g:	= [<mark>20</mark>],贝	训该迭代				
(收敛或;	发散)。 ————————————————————————————————————								

江 南 大 学 考 试 卷 专 用 纸

本題 得分 三、用直接三角分解法解 $\begin{bmatrix} 1 & 2 & 3 & 3 & x_1 \\ 2 & 3 & 5 & x_2 \\ 4 & 2 & 1 & x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$,并写出 L和 U矩阵。
用二次插值计算 $f(0.31)$ 的近似值。〖 15 分〗

本题 得分

五、设线性方程组

$$\begin{cases}
-2x_1 + x_2 + x_3 = 10, \\
-x_1 + 2x_2 + 3x_3 = 12, \\
4x_1 + 2x_2 + x_3 = 16,
\end{cases}$$

- (1) 写出 Jacobi 迭代法、Gauss-Seidel 迭代法解该方程组的迭代公式; 〖6分〗
- (2) 考察用 Gauss-Seidel 解该方程组的收敛性。〖12分〗

l	本题				_
I	得分	六、	用最小二乘拟合方法求一形如 $y = ax + bx^3$	(a,	b 为常
١	数)的:	经验公式,	其中数据表如下:		

X	-2	-1	0	1	2
У	-8.99	-1.51	0.001	1.47	9.02

〖18分〗