01076113 DIGITAL SYSTEM FUNDAMENTALS IN PRACTICE 2566/1

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 1 Logic Trainer and Numbering System

<u>วัตถุประสงค์</u>

- 1. เพื่อให้นักศึกษาสามารถใช้งานเครื่องมือและอุปกรณ์ สำหรับการทดสอบวงจรดิจิทัลเบื้องต้นได้
- 2. เพื่อให้นักศึกษาเข้าใจการทำงานของลอจิกเทรนเนอร์ (Logic Trainer) พื้นฐานได้
- 3. เพื่อให้นักศึกษาสามารถแปลงเลขจากเลขฐาน 10 ไปเป็นเลขฐาน 2, 8, 16 และแปลงเลขจากเลขฐาน

2, 8, 16 ไปเป็นฐาน 10 ได้

ในการทดลองต่อไปนี้นักศึกษาจะได้ฝึกการใช้งานเครื่องมือเบื้องต้น โดยเครื่องมือที่ใช้คือ Logic Trainer

รูปที่ 1 รูปภาพแสดงโซนแต่ละโซนของลอจิกเทรนเนอร์

Logic Trainer

- 1. Power Supply เป็นส่วนจ่ายแรงดันให้กับอุปกรณ์ที่ใช้ในการทดลอง แรงดันที่จ่ายมี 4 ระดับคือ +5V, -5V, +12V และ -12V ส่วน 0V คือ Ground (GND) สำหรับในการทดลองนี้เราใช้แรงดัน **+5V เท่านั้น** หากในวงจรที่ นักศึกษากำลังต่อเกิดการลัดวงจร วงจรป้องกันจะทำงาน ดวงไฟโอเวอร์โหลด (Overload) จะสว่างขึ้น นักศึกษา ต้องรีบปลดสายจากวงจรที่เชื่อมต่อกับ Power Supply แล้วกดปุ่ม รีเซ็ต (Reset) หรือปิดเครื่องแล้วเปิดใหม่ แล้ว ตรวจหาสาเหตุทำให้เกิดการลัดวงจร
- 2. **Logic Switch** เป็นส่วนที่ใช้ป้อนอินพุตให้กับวงจรลอจิก ประกอบด้วยสวิตช์โยกและดวงไฟแสดงสถานะ จำนวน 8 หลัก จาก 0 ถึง 7
 - โยกสวิตช์ไปที่ ON เพื่อป้อนอินพุตลอจิก "1" (แรงดัน 5V) ให้กับวงจร โดยไฟแสดงสถานะสีแดงจะ สว่าง
 - โยกสวิตช์ไปที่ OFF เพื่อป้อนอินพุตลอจิก "0" (แรงดัน 0V) ให้กับวงจร โดยไฟแสดงสถานะสีเขียว จะสว่าง
- 3. **Logic Monitor** เป็นส่วนที่ใช้ตรวจสอบค่าลอจิก โดยใช้หลอดไดโอดเปล่งแสง (LED) จำนวน 8 หลอด สำหรับแสดงผล
 - หาก LED สว่างเป็นสีแดง ผลลัพธ์คือลอจิก "1"
 - หาก LED สว่างเป็นสีเขียว ผลลัพธ์คือลอจิก "0
 - หาก LED ไม่ติด หมายถึงไม่มีแรงดัน
- 4. **Protoboard** หรืออาจจะเรียกทับศัพท์ว่า Breadboard สำหรับในประเทศไทยมักจะนิยมใช้คำว่า Protoboard แต่หากจะให้เป็นสากล เรียกว่า Breadboard Protoboard เป็นอุปกรณ์ที่จะช่วยให้สามารถ เชื่อมต่อวงจรเพื่อทดลองง่ายขึ้น เมื่อนำอุปกรณ์อิเล็กทรอนิกส์มาเสียบตามรูต่างๆ จะทำให้พลังงานไฟฟ้าสามารถ

ไหลจากอุปกรณ์หนึ่งไปยังอีกอุปกรณ์หนึ่งได้ ผ่านรูที่มีการเชื่อมต่อกันด้านล่าง พื้นที่การเชื่อมต่อกันของโพรโท บอร์ด จะแบ่งได้เป็น 2 กลุ่มใหญ่ คือ

รูปที่ 2 เส้นทางการเชื่อมต่อบน Protoboard แบบแนวนอน

กลุ่มแนวนอน เป็นกลุ่มที่มีการเชื่อมต่อกันในแนวนอน ใช้สำหรับพักไฟที่มาจากแหล่งจ่าย เพื่อใช้
 สำหรับเชื่อมต่อไฟจากแหล่งจ่ายเลี้ยงให้วงจรต่อไป และจะมีสี สัญลักษณ์สกรีนเพื่อบอกขั้วที่ของ
 แหล่งจ่ายที่ควรนำมาพักไว้ โดยสีแดง จะหมายถึงขั้วบวก และสีดำ หรือสีน้ำเงิน จะหมายถึงขั้วลบ

รูปที่ 3 เส้นทางการเชื่อมต่อบน Protoboard แบบแนวตั้ง

กลุ่มแนวตั้ง เป็นกลุ่มที่เป็นพื้นที่สำหรับการเชื่อมต่อวงจร วางอุปกรณ์ จะมีช่องเว้นกลางกลุ่มและ
 บ่งบอกการแบ่งเขตเชื่อมต่อ

5. ส่วนแสดงผล 7 Segment จำนวน 2 หลักแบบ Anode

รูปที่ 4 ส่วนแสดงผล 7 Segment จำนวน 2 หลักแบบ Anode

6. **ส่วนแสดงผล 7 Segment** จำนวน 2 หลักแบบ Cathode

รูปที่ 5 ส่วนแสดงผล 7 Segment จำนวน 2 หลักแบบ Cathode

7. Electronic Thumbwhell switch เป็นวงจรที่สามารถกำหนดฟังก์ชั่นการทำงานได้ 2 ลักษณะดังนี้

7.1 ฟังก์ชั่นที่ 1 : Thumbwheel Switch

รูปที่ 6 Electronic Thumbwhell switch แบบ Thumbwheel Switch

เป็นอิเล็กทรอนิกส์สวิทช์ ที่ทำหน้าที่แปลง เลขฐานสิบ (0-9) เป็นรหัสเลขฐานสองในแบบ BCD (0000-1001) โดยมีส่วนแสดงผลแบบ 7-Segment และสามารถปรับเปลี่ยนค่าให้เพิ่มขึ้นหรือลดลงได้ด้วย การกดปุ่ม UP KEY และ DOWN KEY ตามลำดับ โดยฟังก์ชั่นการทำงานนี้ จุดต่อ CONNECTOR จะทำหน้าที่เป็นเอาต์พุต และให้ รหัส BCD ตามค่าของเลขฐานสิบ โดยมีนัยสำคัญของบิดดังนี้บิต 8 = MSB และบิต 1 = LSB

โดยปกติเมื่อเริ่มต้นการใช้งานชุดทดลอง หรือเริ่มจ่ายไฟให้แก่ชุดทดลองฟังก์ชั่น Thumbwheel Switch จะถูกกำหนดให้ทำงานเป็นฟังก์ชั่นแรกเสมอ และด้วยจำนวน Thumbwheel Switch ถึง 2 หลัก จึงสามารถ กำหนดค่าข้อมูลได้ตั้งแต่ 0 – 99

7.2 ฟังก์ชั่นที่ 2 : HEX-DECODER

รูปที่ 7 Electronic Thumbwhell switch แบบ HEX-DECODER

ทำหน้าที่เป็นวงจรถอดรหัสเลขฐานสองเป็นเลขฐานสิบหก เช่นเดียวกับการทำงานของวงจร Binary to Hex decoder ที่มีอยู่แล้วภายในชุดทดลองจำนวน 2 หลัก โดยฟังก์ชั่นที่ 2 นี้ จะช่วยขยายความสามารถของชุด ทดลองทางด้านวงจรถอดรหัสให้สูงขึ้น เป็น 4 หลัก เพื่อรองรับการทดลองวงจรดิจิตอลขั้นสูงได้อย่างสะดวก สำหรับการกำหนดฟังก์ชั่นการทำงานเป็น HEX - DECODER สามารถกระทำได้ดังนี้

- กดปุ่ม UP และ DOWN ค้างไว้ประมาณ 2 วินาที หรือจนกระทั่งสังเกตเห็นตัวอักษร "d" ปรากฏบน จอแสดงผล
- ปล่อยมือออกจากปุ่มกดทั้งสอง เพื่อเข้าสู่โหมดการ ทำงานเป็น Binary to Hex decoder
- ขณะนี้ขั้วต่อสัญญาณ 8421 จะทำหน้าที่เป็นอินพุต เพื่อ รับสัญญาณจากภายนอก กรณีที่ไม่มีการป้อน สัญญาณ อินพุตหรือปล่อยลอยขาสัญญาณไว้ จะมีสถานะเป็นlogic 1 เสมอ(1111 => F)

สำหรับการยกเลิกฟังก์ชันการทำงานนี้ สามารถทำได้โดยการกดปุ่ม UP หรือ DWN ปุ่มใด ปุ่มหนึ่ง เพื่อกลับ สู่โหมดการ ทำงานเป็น Thumbwheel อีกครั้ง

8. **ส่วนแสดงผล 7 Segment** พร้อมวงจรถอดรหัสเลขฐาน 2 เป็นเลขฐาน 16 (HEX DECODER) (0-F) จำนวน 2 หลัก

ร**ูปที่ 7** ส่วนแสดงผล 7 Segment พร้อมวงจรถอดรหัสเลขฐาน 2 เป็นเลขฐาน 16 (HEX DECODER)

ให้นักศึกษาอ่านคำอธิบายการใช้งาน Logic Trainer ด้านบนให้เข้าใจ แล้วทำการทดลองด้านล่างต่อไปนี้

1. การทดลองเกี่ยวกับ Power Supply

1.1 นำสายไฟไปจั๊มที่ +5V, -5V, +12V, -12V ในลอจิกเทรนเนอร์ จากนั้นมาวัดค่าความต่างศักย์ โดยใช้มัล ติมิเตอร์/โวลต์มิเตอร์ในการวัด พร้อมแนบรูปภาพจอแสดงผลของมัลติมิเตอร์/โวลต์มิเตอร์ทั้ง 4 แบบ มาประกอบ

THOUSEN'S MAPINISE TO THE STATE THE STATE STATE

วัดความต่างศักย์ +5V

วัดความต่างศักย์ −5V

วัดความต่างศักย์ **−12**V

วัดความต่างศักย์ +12V

- 2. การทดลองเกี่ยวกับการใช้งาน Logic Switch, Logic Monitor, Protoboard
- 2.1 นำสายไฟที่ต่อจาก Logic Switch (โซน 2) มาจั๊มลงบน Protoboard (โซน 4) ที่เป็นกลุ่มแนวตั้ง จากนั้น นำสายไฟอีกเส้นนึงมาจั๊มในแถวเดียวกันในแนวตั้ง แล้วนำไปต่อที่ LED (ต่อวงจรจากโซน 2 ไปโซน 4 แล้วต่อจาก โซน 4 ไปโซน 3)
- 2.2 กดปุ่มเปิดเครื่อง จากนั้นป้อน Input Logic 1 ที่ Logic Switch หลอดไฟ LED จะสว่างเป็นสีแดง แต่ถ้า ป้อน Input Logic 0 หลอดไฟจะสว่างเป็นสีเขียว

2.3 ทำซ้ำข้อ 2.1, 2.2 แต่ให้ต่อสายไฟในกลุ่มแนวนอน บันทึกผลการทดลองพร้อมแนบรูปภาพประกอบ

Input	Output		
Logic	Logic	สีไฟ LED	
0	0	เขียว	
1	1	แดง	

3. การทดลองเกี่ยวกับการใช้งาน 7 Segment

3.1 ให้นักศึกษาต่อวงจรแสดงผลบน 7 Segment แบบ Cathode กับ Anode (โซน 5) โดยนักศึกษาที่รหัส นักศึกษาลงท้ายด้วยเลขคี่ ให้ต่อวงจรแสดงผลบน 7 Segment แบบ Anode ส่วนนักศึกษาที่รหัสนักศึกษาลงท้าย ด้วยเลขคู่ ให้ต่อวงจรแสดงผลบน 7 Segment แบบ Cathode โดยแสดงผลเป็นเลขตัวสุดท้ายของรหัสนักศึกษา โดยใช้ Logic Switch (โซน 2) ในการป้อน Input ให้กับแต่ละ Segment ของ 7 Segment พร้อมแนบรูปภาพ ประกอบ (ต่อวงจรจากโซน 1 ไปยังโซน 5 และต่อจากโซน 2 ไปยังโซน 5)

รหัสนักศึกษา				Input			
371611011111111111	SW6	SW5	SW4	SW3	SW2	SW1	SW0
65010539	0	0	0	0	1	0	0

4. การทดลองเกี่ยวกับการใช้งาน 7 Segment ที่มีวงจร HEX DECODER

4.1 นำสายไฟเสียบลงบน Logic Switch 4 ตัว (โซน 2) โดยแต่ละตัวนำสายไฟอีกด้านหนึ่งไปต่อกับ 7 Segment ที่มีวงจร HEX DECODER (โซน 8) จากนั้นทำการป้อน Input ที่ Logic Switch โดยทำให้ 7 Segment แสดงผลออกมาเป็นตัว A พร้อมแนบรูปภาพประกอบ (ต่อวงจรจากโซน 2 ไปยังโซน 8)

Input			
SW3	SW2	SW1	SW0
1	0	1	Θ

4.2 นำสายไฟเสียบลงบน Logic Switch 4 ตัว (โซน 2) โดยแต่ละตัวนำสายไฟอีกด้านหนึ่งไปต่อ Electronic Thumbwhell switch ในฟังก์ชั่น HEX-DECODER (โซน 7) จากนั้นทำการป้อน Input ที่ Logic Switch โดยทำ ให้ 7 Segment แสดงผลออกมาเป็นตัว A พร้อมแนบรูปภาพประกอบ (ต่อวงจรจากโซน 2 ไปยังโซน 7)

Input			
SW3	SW2	SW1	SW0
1	0	1	0

4.3 ทำไมตัวเลขที่แสดงใน Electronic Thumbwhell switch ในโหมด Thumbwheel Switch ถึงแสดง

ได้แค่เลข 0-9
เพราะว่า มันทำหน้าที่แปลง เลขฐานสิบ(0-9) ไปเป็น BCD เลขฐาน 10 จึงมีค่าต่อหลักได้แค่ 0-9

ในการทดลองต่อไปนี้นักศึกษาจะได้ฝึกการแปลงเลขจากเลขฐาน 10 ไปเป็นเลขฐาน 2 , 8 ,16 และแปลง เลขจากเลขฐาน 2 , 8 , 16 ไปเป็นฐาน 10 โดยเริ่มจาก

เลขฐานสิบ	เลขฐานสอง	เลขฐานแปด	เลขฐานสิบหก
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

รูปที่ 8 ตารางแสดงตัวอย่างการเปรียบเทียบเลขฐานต่างๆกับเลขฐาน 10

เลขฐาน 2

เลขฐาน 2 (Binary Number System) ประกอบด้วยตัวเลข 0 และ 1 ระบบเลขฐานสอง มีสัญลักษณ์ที่ใช้ เพียงสองตัว คือ 0 และ 1 และการคำนวณตัวเลขในเลขฐานสองมีการคำนวณ ดังตัวอย่าง ตัวอย่าง เช่น

$$1101_2 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 8 + 4 + 0 + 1 = 13_{10}$$

การแปลงเลขจากเลขฐาน 10 ไปเป็นเลขฐาน 2

ตัวอย่าง แปลงเลข 39₁₀ เป็นเลขฐานสอง

วิธีทำ

การแปลงเลขจากเลขฐาน 2 ไปเป็นเลขฐาน 10

ตัวอย่าง แปลงเลข 100111₂ เป็นเลขฐานสิบ

วิธีทำ

$$100111_{2} = (1 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$

$$= 32 + 0 + 0 + 4 + 2 + 1$$

$$= 39_{10}$$

ดังนั้น 100111₂ เท่ากับ 39₁₀

5. ให้นักศึกษาแสดงวิธีทำการแปลงเลขฐานจากเลขฐาน 10 เป็นเลขฐาน 2 และแปลงเลขฐาน 2 กลับมาเป็นเลขฐาน 10 โดยใช้เลขจากรหัสนักศึกษา 3 ตัวท้าย แล้วบวกด้วย 111 **เช่น 65010<u>342</u> จะได้เป็น 342 + 111 = 453**

รหัสนักศึกษา : 65010539 ⇒ 539 + 111 = 650	1010001010 (base 2) = (1 x 2^9) + (0 x 2^8) + (1 x 2^7)
650 หารด้วย 2 เหลือเศษ 0	+ (0 x 2^6) + (0 x 2^5) + (0 x 2^4)
floor(650/2) = 325 หารด้วย 2 เหลือเศษ 1	+ (1 x 2^3) + (0 x 2^2) + (1 x 2^1)
floor(325/2) = 162 หารด้วย 2 เหลือเศษ 0	+ (0 x 2^0) (base 10)
floor(162/2) = 81 หารด้วย 2 เหลือเศษ 1	= 650 (base 10)
floor(81/2) = 40 หารด้วย 2 เหลือเศษ 0	
floor(40/2) = 20 หารด้วย 2 เหลือเศษ 0	
floor(20/2) = 10 หารด้วย 2 เหลือเศษ 0	
floor(10/2) = 5 หารด้าย 2 เหลือเศษ 1	
floor(5/2) := :2 : หารด้วย : 2 : เหลือเตษ : 0 : : : : :	
floor(2/2) · = · 1 · หารด้วย · 2 · เหลือเศษ · 1 · · · · · · · · · · · · · · · · ·	
floor(1/0).=.0	
ดังนั้น .650 .(base .10) .= .1010001010 .(base .2)	
เลขฐาน 8	

เขฐาน ช

เลขฐาน 8 (Octal Number System) ประกอบด้วยตัวเลข 0 – 7

การแปลงเลขจากเลขฐาน 10 ไปเป็นเลขฐาน 8

ตัวอย่าง แปลงเลข 437₁₀ เป็นเลขฐานแปด

วิธีทำ

การแปลงเลขจากเลขฐาน 8 ไปเป็นเลขฐาน 10

ตัวอย่าง แปลงเลข 3762₈ เป็นเลขฐานสิบ

วิธีทำ

$$3762_8 = (3 \times 8^3) + (7 \times 8^2) + (6 \times 8^1) + (2 \times 8^0)$$

$$= (3 \times 512) + (7 \times 64) + (6 \times 8) + (2 \times 1)$$

$$= 1536 + 448 + 48 + 2$$

$$= 2034_{10}$$

ดังนั้น 3762₈ เท่ากับ 2034₁₀

6. ให้นักศึกษาแสดงวิธีทำการแปลงเลขฐานจากเลขฐาน 10 เป็นเลขฐาน 8 และแปลงเลขฐาน 8 กลับมาเป็นเลขฐาน 10 โดยใช้เลขจากรหัสนักศึกษา 3 ตัวท้าย แล้วบวกด้วย 111 **เช่น 65010<u>342</u> จะได้เป็น 342 + 111 = 453**

รหัสนักศึกษา : 65010539 ⇒ 539 + 111 = 650	1212 (base 8) = (1 x 8^3) + (2 x 8^2) + (1 x 8^1) + (2 x 8^0
650 หารด้วย 8 เหลือเศษ 2	= 650 (base 10)
floor(650/8) = 81 หารด้วย 8 เหลือเศษ 1	
floor(81/8) = 10 หารด้วย 8 เหลือเศษ 2	
+toor(10/8) = 1 หารดวย 8 เหลอเศษ 1	
floor(1/8) = 0	
· ดังนั้น · 650 · (base · 10) · = · 1212 · (base · 8) · · · · · · · · · · · · · · · · ·	

เลขฐาน 16

เลขฐาน 16 (Hexadecimal Number System) ประกอบด้วยตัวเลข 0 – 9 และ A – F

การแปลงเลขจากเลขฐาน 10 ไปเป็นเลขฐาน 16

ตัวอย่าง แปลงเลข 578₁₀ เป็นเลขฐานสิบหก

วิธีทำ

การแปลงเลขจากเลขฐาน 16 ไปเป็นเลขฐาน 10

ตัวอย่าง แปลงเลข B8D9₁₆ เป็นเลขฐานสิบ

วิธีทำ

B8D9₁₆ =
$$(B \times 16^3) + (8 \times 16^2) + (D \times 16^1) + (9 \times 16^0)$$

= $(11 \times 4,096) + (8 \times 256) + (13 \times 16) + (9 \times 1)$
= $45,056 + 2,048 + 208 + 9$
= $47,321_{10}$

ดังนั้น B8D9₁₆ เท่ากับ 47,321₁₀

6. ให้นักศึกษาแสดงวิธีทำการแปลงเลขฐานจากเลขฐาน 10 เป็นเลขฐาน 16 และแปลงเลขฐาน 16 กลับมาเป็น เลขฐาน 10 โดยใช้เลขจากรหัสนักศึกษา 3 ตัวท้าย แล้วบวกด้วย 111 **เช่น 65010<u>342</u> จะได้เป็น 342 + 111**

= 453

าหัสนักศึกษา : 65010539 ⇒ 539 + 111 = 650	28A (base 16) = (2 x 16^2) + (8 x 16^1) + (A x 16^0)
650 mod 16 = 10	= 512 + 128 + 10 (base 10)
floor(650/16) = 40 mod 16 = 8	= 650 (base 10)
floor(40/16) = 2 mod 16 = 2	
floor(2/16) = 0	
ด้านั้น 650 (base 10) = 28A (base 16)	

7. ให้นักศึกษาทำการทดลองโดยต่อวงจรสำหรับการแสดงผล 7 Segments ที่มีวงจร HEX DECODER บน Logic Trainer โดยให้ทำการป้อน Input ที่ Logic Switch แล้วแสดงผลที่ 7 Segments เป็นเลข 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F และกรอก Input และ Output ในตารางด้านล่าง

Input			Output	
SW3	SW2	SW1	SW0	У
0	0	0	0	0
0	0	0	1	1
0	Θ	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
Θ	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	А
1	Θ	1	1	В
1	1	Θ	0	С
1	1	0	1	D
1	1	1	9	E
1	1	1	1	F

A36E ₁₆ ไปเป็นเลขฐาน 8 และเลขฐาน 2
A36E (base 16) ⇒ 1010 0011 0110 1110 (base 2)
1010 0011 0110 1110 (base 2) \Rightarrow 1010001101101110 (base 2)
1010001101101110 (base 2) ⇒ 001 010 001 101 101 110 (base 2)
001 010 001 101 101 110 (base 2) \Rightarrow 1 2 1 5 5 6 (base 8)
1 2 1 5 5 6 (base 8) ⇒ 121556 (base 8)
ดังนั้น A36E (base 16) = 1010001101101110 (base 2) = 121556 (base 8)

8. ให้นักศึกษาแปลงเลขฐานตามโจทย์ด้านล่างต่อไปนี้โดยการแสดงวิธีคิดโดยย่อ

73528 ไปเป็นเลขฐาน 2 และเลขฐาน 16

7352 (base 8) \Rightarrow 7 3 5 2 (base 8)

7 3 5 2 (base 8) \Rightarrow 111 011 101 010 (base 2)

111 011 101 010 (base 2) \Rightarrow 111011101010 (base 2)

111011101010 (base 2) \Rightarrow 1110 1110 1010 (base 2)

1110 1110 1010 (base 2) ⇒ EEA (base 16)

ดังนั้น 7352 (base 8) = 111011101010 (base 2) = EEA (base 16)

9. หลังจากที่ได้ทำการทดลองในข้อ 7, 8 เสร็จแล้ว ให้ส่งให้ผู้ควบคุมการทดลองตรวจ

ใบตรวจการทดลองที่ 1

วัน/เดือน/ปี	กลุ่มเช้า
รหัสนักศึกษา	_ ชื่อ-นามสกุล
การตรวจการทดลอง	
การทดลองข้อ 7 ลายเซ็นผู้ควบคุมการทดลอ	1
การทดลองข้อ 8 ลายเซ็นผู้ควบคุมการทดลอง	9

หมายเหตุ ไม่รับ ใบตรวจการทดลองที่มีร่องรอยการแก้ไข ขูด ลบ ขีดค่า เปลี่ยนแปลงทุกชนิด