Inferência Estatística Introdução

E.F.T¹

¹EACH-USP Universidade de São Paulo

ACH2053

Outline

- Introdução à Inferência Estatística
 - Conceitos Gerais de Inferência Estatística
 - Distribuições a priori
 - Distribuições a posteriori
 - A função de Verossimilhança
 - Observações Sequenciais
- Distribuições Conjugadas
 - Distribuições Conjugadas

Natureza Distribuições a priori Distribuições a posteriori A função de Verossimilhança Observações Sequenciais

Outline

- Introdução à Inferência Estatística
 - Conceitos Gerais de Inferência Estatística
 - Distribuições a priori
 - Distribuições a posteriori
 - A função de Verossimilhança
 - Observações Sequenciais
- Distribuições Conjugadas
 - Distribuições Conjugadas

Natureza Distribuições a priori Distribuições a posteriori A função dos Posturaçãos

Natureza da Inferência Estatística Qual a principal utilidade

Um problema de inferência estatística é um problema no qual dados que tem sido gerados de acordo com alguma distribuição de probabilidade desconhecida devem ser analisados e algum tipo de inferência sobre a distribuição desconhecida deve ser feita.

- Inferência sobre a distribuição.
- Inferência sobre os parâmetros da distribuição (se for conhecida a distribuição).

Natureza Distribuições a priori Distribuições a posteriori A função de Verossimilhança

Parâmetros Definição de parâmetro

Em um problema de Inferência Estatística, qualquer característica da distribuição que gerou os dados experimentais que tem um valor desconhecido (como a média μ ou desvio padrão σ é chamado de parâmetro da distribuição. O conjunto Ω de todos os possíveis valores de um parâmetro θ ou de vetor de parâmetros $(\theta_1,...,\theta_k)$ é chamado de espaço paramétrico. Notações ...

- Parâmetros
 - θ
 - $(\theta_1, ..., \theta_n)$ vetor de parâmetros
- Espaço paramétrico:

Natureza
Distribuições a priori
Distribuições a posteriori
A função de Verossimilhança
Observações Seguenciais

Parâmetros Definição de parâmetro

Em um problema de Inferência Estatística, qualquer característica da distribuição que gerou os dados experimentais que tem um valor desconhecido (como a média μ ou desvio padrão σ é chamado de parâmetro da distribuição. O conjunto Ω de todos os possíveis valores de um parâmetro θ ou de vetor de parâmetros $(\theta_1,...,\theta_k)$ é chamado de espaço paramétrico. Notações . . .

- Parâmetros
 - \bullet θ
 - $(\theta_1, ..., \theta_n)$ vetor de parâmetros
- Espaço paramétrico:
 - Ω

Parâmetros Definição de parâmetro

Em um problema de Inferência Estatística, qualquer característica da distribuição que gerou os dados experimentais que tem um valor desconhecido (como a média μ ou desvio padrão σ é chamado de parâmetro da distribuição. O conjunto Ω de todos os possíveis valores de um parâmetro θ ou de vetor de parâmetros $(\theta_1,...,\theta_k)$ é chamado de espaço paramétrico. Notações ...

- Parâmetros
 - θ
 - $(\theta_1, ..., \theta_n)$ vetor de parâmetros
- Espaço paramétrico:
 - Ω.

Natureza **Distribuições a priori** Distribuições a posteriori A função de Verossimilhança Observações Sequenciais

Outline

- Introdução à Inferência Estatística
 - Conceitos Gerais de Inferência Estatística
 - Distribuições a priori
 - Distribuições a posteriori
 - A função de Verossimilhança
 - Observações Sequenciais
- Distribuições Conjugadas
 - Distribuições Conjugadas

Suponha um problema de inferência estatística em que as observações são tomadas de uma distribuição $f(x|\theta)$, onde θ é um parâmetro com valor desconhecido. Assumimos que o valor de θ deve pertencer a um espaço paramétrico especificado Ω . O problema de I.E. consiste em determinar na base das observações de $f(x|\theta)$ em que lugar de Ω se encontra atualmente θ .

Em muitos problemas, antes da $f(x|\theta)$ gerar as observações, o analista será capaz de sumarizar (experiência anterior) sua informação prévia sobre em que lugar de Ω se encontra θ com maior probabilidade, sendo possível construir uma distribuição de probabilidade para θ no conjunto Ω . Esta distribuição é chamada de distribuição a priori de θ .

Distrib. a priori discretas e continuas

Se o parâmetro θ tomar um número de valores finito ou no máximo uma sequência contável infinita, então $\xi(\theta)$ será uma f.p. a priori. Se θ tomar valores num intervalo da reta, então $\xi(\theta)$ será uma f.d.p a priori de θ .

Exemplo: Moeda honesta ou de duas caras

Seja θ a probabilidade de obter cara quando certa moeda é lançada. Suponha que a moeda pode ser honesta ou ter duas caras. Portanto, os únicos valores possíveis para θ são $\theta=1/2$ ou $\theta=1$. Se a probabilidade a priori que a moeda é honesta é p, então a f.p a priori de θ é $\xi(1/2)=p$ e $\xi(1)=1-p$.

Exemplo: Exemplo: Proporção de itens defeituosos

Suponha que a proporção θ de itens defeituosos em um lote grande é desconhecido, e que a fdp a priori atribuida a θ é uma distribuição uniforme em (0,1). Então a fdp a priori de θ é :

$$\xi(\theta) = \begin{cases} 1 & \text{para } 0 < \theta < 1. \\ 0 & c.c. \end{cases}$$

Natureza Distribuições a priori **Distribuições a posteriori** A função de Verossimilhança Observações Sequenciais

Outline

- Introdução à Inferência Estatística
 - Conceitos Gerais de Inferência Estatística
 - Distribuições a priori
 - Distribuições a posteriori
 - A função de Verossimilhança
 - Observações Sequenciais
- Distribuições Conjugadas
 - Distribuições Conjugadas

Suponha que n v.a. $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição com $f(x|\theta)$. Suponha também que o valor do parâmetro θ é desconhecido e que a distribuição a priori de θ é $\xi(\theta)$. Assumimos que o espaço paramétrico é Ω . Como as v.a. $X_1, X_2, ..., X_n$ formam uma a.a. da distribuição com $f(x|\theta)$, então a distribuição conjunta será dada por:

$$f_n(x_1, x_2, ..., x_n | \theta) = f(x_1 | \theta) ... f(x_n | \theta)$$
 (1)

Se denotarmos $\mathbf{x} = (x_1, x_2, ..., x_n)$, a equação 1 pode ser escrita como $f_n(\mathbf{x}|\theta)$.

O parâmetro $\theta \sim \xi(\theta)$, e a função de probabilidade(densidade) $f_n(\mathbf{x}|\theta)$, dever então ser a distribuição condicional de $X_1, X_2, ..., X_n$ para um dado valor θ . Multiplicando $f_n(\mathbf{x}|\theta)$ e $\xi(\theta)$ obtemos a conjunta n+1-dimensional de $X_1, X_2, ..., X_n$ e θ , na forma $f_n(\mathbf{x}|\theta)\xi(\theta)$. Assim, a marginal de $X_1, X_2, ..., X_n$ pode ser obtido integrando a conjunta sobre todos os valores de θ :

$$g_n(\mathbf{x}) = \int_{\Omega} f_n(\mathbf{x}|\theta) \xi(\theta) d(\theta)$$
 (2)

Também, a distribuição condicional de θ dado que $X_1 = x_1, ..., X_n = x_n$ que denotaremos por $\xi(\theta|\mathbf{x})$, deve ser igual à conjunta de $X_1, X_2, ..., X_n$ e θ dividida pela marginal de $X_1, X_2, ..., X_n$. Assim, temos:

$$\xi(\theta|\mathbf{x}) = \frac{f_n(\mathbf{x}|\theta)\xi(\theta)}{g_n(\mathbf{x})}, \quad \text{para} \quad \theta \in \Omega$$
 (3)

A equação 3 é chamada a distribuição a posteriori de θ pois é a distribuição de θ após os valores de $X_1, X_2, ..., X_n$ terem sido observados.

Podemos dizer que a priori $\xi(\theta)$ representa a verossimilhança relativa que o valor verdadeiro de θ está em alguma região de Ω antes de que os valores de $X_1, X_2, ..., X_n$ sejam observados, e que a posteriori $\xi(\theta|\mathbf{x})$ representa esta verossimilhança relativa após os valores $X_1 = x_1, ..., X_n = x_n$ terem sido observados.

Natureza Distribuições a priori Distribuições a posteriori A função de Verossimilhança Observações Sequenciais

Outline

- Introdução à Inferência Estatística
 - Conceitos Gerais de Inferência Estatística
 - Distribuições a priori
 - Distribuições a posteriori
 - A função de Verossimilhança
 - Observações Sequenciais
- 2 Distribuições Conjugadas
 - Distribuições Conjugadas

A função de Verossimilhança

O denominador do lado direito da equação 3, é simplesmente a integral do numerador sobre todos os possíveis valores de θ . Este valor, depende então dos valores observados $x_1,...,x_n$ e não de θ e pode ser tratado como uma constante quando o lado direito da equação 3 é uma distribuição em θ . Temos portanto a relação:

$$\xi(\theta|\mathbf{x})\alpha f_n(\mathbf{x}|\theta)\xi(\theta) \tag{4}$$

Quando a conjunta $f_n(\mathbf{x}|\theta)$ das observações numa a.a. é considerada como uma função de θ para valores dados de $x_1,...,x_n$ é chamado de *função de verossimilhança*. Então o produto na equação 4 estabelece que a posteriori é proporcional ao produto da função de verossimilhança e a priori de θ .

Exemplo: proporção de itens defeituosos

Suponha que a proporção θ de itens defeituosos de um lote (grande) de peças é desconhecida e que a priori de θ é uma uniforme no intervalo (0,1). Suponha também que uma a.a. de n itens é tomado do lote, e para i=1,...,n seja $X_i=1$ se o i-ésimo item selecionado é defeituso e $X_i=0$ caso contrário. Então, $X_1, X_2, ..., X_n$ forma n ensaios de Bernoulli com parâmetro θ . Determine a posteriori de θ . Podemos ver que a distribuição para cada observação X_i é:

$$f(x|\theta) = \begin{cases} \theta^{x} (1-\theta)^{1-x} & para \quad x = 0, 1\\ 0 & c.c \end{cases}$$
 (5)

Exemplo: proporção de itens defeituosos

Seja $y = \sum_{i=1}^{n} x_i$, então a densidade conjunta de $X_1, X_2, ..., X_n$ pode ser escrita para $x_i = 0$ ou $x_i = 1$:

$$f_n(\mathbf{x}|\theta) = \theta^y (1-\theta)^{n-y}$$

como a priori $xi(\theta)$ é dado por

$$\xi(\theta) = \begin{cases} 1 & \text{para} 0 < \theta < 1. \\ 0 & \text{c.c.} \end{cases}$$

então, para $0 < \theta < 1$:

$$f_n(\mathbf{x}|\theta) = \theta^y (1-\theta)^{n-y}$$

vemos que exceto uma constante, a posteriori tem a forma de uma distribuição Beta com parâmetros $\alpha = y + 1$ e

$$\beta = n - y + 1$$
.

Outline

- Introdução à Inferência Estatística
 - Conceitos Gerais de Inferência Estatística
 - Distribuições a priori
 - Distribuições a posteriori
 - A função de Verossimilhança
 - Observações Sequenciais
- 2 Distribuições Conjugadas
 - Distribuições Conjugadas

Observações Sequenciais

Em muitos experimentos, as observações $X_1, X_2, ..., X_n$ que formam uma a.a. devem ser obtidos sequencialmente, isto é, um por vez. Em tais experimentos, o valor de X_1 é observado primeiro, depóis é observado X_2 , e assim sucessivamente. Suponha que a priori de θ é $\xi(\theta)$. Depois que o valor de X_1 for observado, a posteriori $\xi(\theta|x_1)$ pode ser calculado segundo a relação:

$$\xi(\theta|\mathbf{x}_1)\alpha f(\mathbf{x}_1|\theta)\xi(\theta)$$

Observações Sequenciais

Esta posteriori servirá como priori de θ quando o valor de X_2 seja calculado. Assim, após o valor x_2 de X_2 for observado, a posteriori $\xi(\theta|x_1,x_2)$ pode ser calculado da relação:

$$\xi(\theta|x_1,x_2)\alpha f(x_2|\theta)\xi(\theta|x_1)$$

Se continuarmos neste cálculo, teremos a seguinte relação:

$$\xi(\theta|\mathbf{x})\alpha f(x_n|\theta)\xi(\theta|x_1,...x_{n-1})$$

Outline

- Introdução à Inferência Estatística
 - Conceitos Gerais de Inferência Estatística
 - Distribuições a priori
 - Distribuições a posteriori
 - A função de Verossimilhança
 - Observações Sequenciais
- Distribuições Conjugadas
 - Distribuições Conjugadas

- Amostragem de uma distribuição de Bernoulli
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Bernoulli com
 - θ desconhecido (0 < θ < 1)
 - a priori de θ é uma Beta com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n \sum_{i=1}^{n} x_i$

- Amostragem de uma distribuição de Bernoulli
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Bernoulli com
 - θ desconhecido (0 < θ < 1)
 - a priori de θ é uma Beta com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n \sum_{i=1}^{n} x_i$

- Amostragem de uma distribuição de Bernoulli
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Bernoulli com
 - θ desconhecido (0 < θ < 1)
 - a priori de θ é uma Beta com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n \sum_{i=1}^{n} x_i$

- Amostragem de uma distribuição de Bernoulli
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Bernoulli com
 - θ desconhecido (0 < θ < 1)
 - a priori de θ é uma Beta com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n \sum_{i=1}^{n} x_i$

- Amostragem de uma distribuição de Poisson
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Poisson com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n$

- Amostragem de uma distribuição de Poisson
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Poisson com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n$

- Amostragem de uma distribuição de Poisson
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Poisson com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n$

- Amostragem de uma distribuição de Poisson
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Poisson com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Beta com parâmetros $\alpha + \sum_{i=1}^{n} x_i$ e $\beta + n$

- Amostragem de uma distribuição Normal
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Normal com
 - média θ desconhecido $(-\infty < \theta < \infty)$, σ^2 conhecido $(\sigma^2 > 0)$
 - a priori de θ é uma normal com média μ e variância ν^2
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma normal com parâmetros μ_1 e variância ν_1 :

$$\mu_1 = \frac{\sigma^2 \mu + n\nu^2 \bar{x}_n}{\sigma^2 + n\nu^2}$$
$$\nu_1^2 = \frac{\sigma^2 \nu^2}{\sigma^2 + n\nu^2}$$

- Amostragem de uma distribuição Normal
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Normal com
 - média θ desconhecido $(-\infty < \theta < \infty)$, σ^2 conhecido $(\sigma^2 > 0)$
 - a priori de θ é uma normal com média μ e variância ν^2
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma normal com parâmetros μ_1 e variância ν_1 :

$$\mu_1 = \frac{\sigma^2 \mu + n\nu^2 \bar{x}_n}{\sigma^2 + n\nu^2}$$
$$\nu_1^2 = \frac{\sigma^2 \nu^2}{\sigma^2 + n\nu^2}$$

- Amostragem de uma distribuição Normal
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Normal com
 - média θ desconhecido $(-\infty < \theta < \infty)$, σ^2 conhecido $(\sigma^2 > 0)$
 - a priori de θ é uma normal com média μ e variância ν^2
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma normal com parâmetros μ_1 e variância ν_1 :

$$\mu_1 = \frac{\sigma^2 \mu + n\nu^2 \bar{x}_n}{\sigma^2 + n\nu^2}$$
$$\nu_1^2 = \frac{\sigma^2 \nu^2}{\sigma^2 + n\nu^2}$$

- Amostragem de uma distribuição Normal
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma Normal com
 - média θ desconhecido $(-\infty < \theta < \infty)$, σ^2 conhecido $(\sigma^2 > 0)$
 - a priori de θ é uma normal com média μ e variância ν^2
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma normal com parâmetros μ_1 e variância ν_1 :

$$\mu_1 = \frac{\sigma^2 \mu + n \nu^2 \bar{x}_n}{\sigma^2 + n \nu^2}$$
$$\nu_1^2 = \frac{\sigma^2 \nu^2}{\sigma^2 + n \nu^2}$$

- Amostragem de uma distribuição exponencial
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma exponencial com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Gamma com parâmetros $\alpha + n$ e $\beta + \sum_{i=1}^{n} x_i$

- Amostragem de uma distribuição exponencial
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma exponencial com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Gamma com parâmetros $\alpha + n$ e $\beta + \sum_{i=1}^{n} x_i$

- Amostragem de uma distribuição exponencial
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma exponencial com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Gamma com parâmetros $\alpha + n$ e $\beta + \sum_{i=1}^{n} x_i$

- Amostragem de uma distribuição exponencial
 - $X_1, X_2, ..., X_n$ forma uma a.a. de uma exponencial com
 - θ desconhecido (0 < θ)
 - a priori de θ é uma Gamma com parâmetros $\alpha > 0$ e $\beta > 0$
 - a posteriori de θ dado que $X_i = x_i$ (i = 1, ..., n) será uma Gamma com parâmetros $\alpha + n$ e $\beta + \sum_{i=1}^{n} x_i$