ACS: Information Theory

ABDELMALEK RHAYOUTE

November 15, 2022

Remark: I will not solve the easy questions

Exercise 2

Bayes' formula :
$$\begin{cases} P_{X|Y}(x \mid y) = \frac{P_{X,Y}(x,y)}{P_{Y}(y)} \\ P_{Y|X}(y \mid x) = \frac{P_{X,Y}(x,y)}{P_{X}(x)} \\ P_{Y}(y) = \sum_{x' \in \mathcal{X}} P_{X,Y}(x',y) \end{cases} \implies P_{X|Y}(x \mid y) = \frac{P_{X}(x)P_{Y|X}(y|x)}{\sum_{x'} P_{X}(x')P_{Y|X}(y|x')}$$

Exercise 3

Given $P_{X,Y}$ of the BSC(p) channel

Assume that $\mathcal{X} = \{0, 1\}$ and $\mathcal{Y} = \{0, 1, E\}$ and that $P_{X,Y}$ is given in the table

Y, X	0	1		Y X	0	1
0	$\frac{1-e}{2}$	0	\implies	0	1-e	0
1	0	$\frac{1-e}{2}$		1	0	1-e
E	$\frac{e}{2}$	$\frac{e}{2}$		E	e	e

e is called an erasure probability.

This channel model can also be written in a additive form,

$$Y = X \oplus W$$

where X is a Bern(0.5) random variable, W is a Bern(e) random variable on $\{E, 1\}$, X and W are independent, and \oplus is the binary XOR operation.

Exercise 5

The KL divergence verifies a certain set of properties :

- 1. Asymmetry : $D_{KL}(P_X||Q_X) \neq D_{KL}(Q_X||P_X)$.
- 2. Null element : $D_{KL}(P_X || P_X) = 0$.
- 3. Positivity: $D_{KL}(P_X||Q_X) \ge 0$, for all laws $(P_X, Q_X)! = 0$

Gibbs' inequality:

Suppose that

$$P = \{p_1, \dots, p_n\}$$

is a discrete probability distribution. Then for any other probability distribution

$$Q = \{q_1, \dots, q_n\}$$

the following inequality between positive quantities (since P and Q are between zero and one)

$$-\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} p_i \log q_i$$

with equality if and only if

$$p_i = q_i$$

for all i. Put in words, the **information entropy** of a distribution P is less than or equal to its **cross entropy** with any other distribution Q.

The difference between the two quantities is the Kullback-Leibler divergence or relative entropy

$$D_{\mathrm{KL}}(P||Q) \equiv \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i} \ge 0.$$

Proof:

First method: Let I denote the set of all i for which p_i is non-zero. Then, since $\ln x \le x - 1$ for all x > 0, with equality if and only if x = 1, we have:

$$-\sum_{i \in I} p_i \ln \frac{q_i}{p_i} \ge -\sum_{i \in I} p_i \left(\frac{q_i}{p_i} - 1\right)$$

$$= -\sum_{i \in I} q_i + \sum_{i \in I} p_i = -\sum_{i \in I} q_i + 1 \ge 0$$

= - $\sum_{i \in I} q_i + \sum_{i \in I} p_i = -\sum_{i \in I} q_i + 1 \ge 0$ The last inequality is a consequence of the p_i and q_i being part of a probability distribution. Specifically, the sum of all non-zero values is 1. Some non-zero q_i , however, may have been excluded since the choice of indices is conditioned upon the p_i being non-zero. Therefore the sum of the q_i may be less than 1.

So far, over the index set I, we have:

$$-\sum_{i\in I} p_i \ln \frac{q_i}{p_i} \ge 0$$

or equivalently

$$-\sum_{i\in I} p_i \ln q_i \ge -\sum_{i\in I} p_i \ln p_i$$

Both sums can be extended to all i = 1, ..., n, i.e. including $p_i = 0$, by recalling that the expression $p \ln p$ tends to 0 as p tends to 0, and $(-\ln q)$ tends to ∞ as q tends to 0. We arrive at

$$-\sum_{i=1}^{n} p_i \ln q_i \ge -\sum_{i=1}^{n} p_i \ln p_i$$

Second method: Below we give a proof based on Jensen's inequality:

Because log is a concave function, we have that:

$$\sum_{i} p_i \log \frac{q_i}{p_i} \le \log \sum_{i} p_i \frac{q_i}{p_i} = \log \sum_{i} q_i \le 0$$

The first inequality is due to Jensen's inequality, and the last is due to the same reason given in the above proof.

Third method:

Log sum inequality

==Statement==

Let a_1, \ldots, a_n and b_1, \ldots, b_n be nonnegative numbers. Denote the sum of all a_i s by a and the sum of all b_i s by b. The log sum inequality states that

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge a \log \frac{a}{b},$$

==Proof==

Notice that after setting $f(x) = x \log x$ we have

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} = \sum_{i=1}^{n} b_i f\left(\frac{a_i}{b_i}\right) = b \sum_{i=1}^{n} \frac{b_i}{b} f\left(\frac{a_i}{b_i}\right)$$

$$\geq b f\left(\sum_{i=1}^{n} \frac{b_i}{b} \frac{a_i}{b_i}\right) = b f\left(\frac{1}{b} \sum_{i=1}^{n} a_i\right) = b f\left(\frac{a}{b}\right)$$

$$= a \log \frac{a}{b},$$

where the inequality follows from **Jensen's inequality** since $\frac{b_i}{b} \ge 0$, $\sum_{i=1}^n \frac{b_i}{b} = 1$, and f is convex.

—Let $P = (p_i)_{i \in N}$ and $Q = (q_i)_{i \in N}$ be pmfs. In the log sum inequality, substitute $n = \infty$, $a_i = p_i$ and $b_i = q_i$ to get

$$D_{\mathrm{KL}}(P\|Q) \equiv \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}} \ge 1 \log \frac{1}{1} = 0$$

Fourth method : As particular case of Bregman divergence Exercise 6

Here are a few special cases of entropy:

1. The entropy of a constant random variable, X = c with probability 1, is given by

$$H(X) = 0.$$

2. The entropy of a random variable X uniformly distributed over \mathcal{X} , c.à.d, $P_X(x) = \frac{1}{|\mathcal{X}|}$ for all $x \in \mathcal{X}$, is given by

$$H(X) = \log_2(|\mathcal{X}|).$$

3. Let X be a binary Bernoulli random variable Bern(p) where $p = P_X(1)$. The entropy of X is given by

$$H(X) = H_2(p) - p \log_2(p) - (1-p) \log_2(1-p) = H_2(p).$$

 $H_2(p)$ is commonly known as the binary entropy function. It is maximal when p = 0.5 (equals 1 bit), and is minimal when p = 0 or p = 1, (equals 0 bits). It is symmetric around p = 0.5.

Exercise 7

Discrete entropy H(X) satisfies the following properties:

- 1. Minimum: $H(X) \ge 0$ for all discrete distributions P_X , and the minimum is achieved for a degenerate distribution, i.e., X is a constant.
- 2. Maximum: $H(X) \leq \log_2(|\mathcal{X}|)$ for all discrete distributions P_X , and the maximum is achieved for the uniform distribution over \mathcal{X} .
- 3. Data Processing Inequality (DPI): the entropy of a function f of X, is no greater than the entropy of X, i.e.,

with equality iif f is a one-to-one function.

Corollary of Gibbs' inequality

Information entropy of P is bounded by:

$$H(p_1,\ldots,p_n) \le \log n.$$

The proof is trivial – simply set $q_i = 1/n$ for all "i".

Exercise 9

Conditional entropy $H(X \mid Y)$ satisfies the following properties

- 1. Asymmetry : $H(X \mid Y) \neq H(Y \mid X)$
- 2. Minimum: $H(X \mid Y) \ge 0$ for all $P_{X,Y}$, and the minimum is achieved when $P_{X|Y}$ is degenrate, i.e., X is a function of Y.
 - 3. Upper bound: conditional entropy is always smaller than the individual entropy

$$H(X \mid Y) \le H(X)$$

with equality iif X and Y are independent : $P_{X,Y} = P_X P_Y$.

4. Maximum: $H(X \mid Y) \leq \log_2(|\mathcal{X}|)$ for all $P_{X,Y}$ and the maximum is achieved when X and Y are independent, and X is uniform, i.e.,

$$\begin{cases} Independence : \forall (x,y) & P_{X,Y}(x,y) = P_X(x)P_Y(y) \\ P_{X\mid Y}(x\mid y) = \frac{P_{X,Y}(x,y)}{P_Y(y)}, P_{Y\mid X}(y\mid x) = \frac{P_{X,Y}(x,y)}{P_X(x)} \\ H(X\mid Y) - \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y)\log_2\left(P_{X\mid Y}(x\mid y)\right) \\ = \sum_{y\in\mathcal{Y}} P_Y(y)H(X\mid Y=y) \\ H(X\mid Y=y) - \sum_{x\in\mathcal{X}} P_{X\mid Y}(x\mid y)\log_2\left(P_{X\mid Y}(x\mid y)\right) \\ Propertie \ 2: \ \text{When X is a function of Y} \end{cases} \Rightarrow \mathrm{H}(\mathrm{X}\mid Y) = H(X)$$

Hint:

$$\log_2 \left(P_{X|Y}(x \mid y) = 0 \right)$$

Exercise 10

Compute the conditional entropy $H(Y \mid X)$ where $Y = X \oplus W$, where X follows a Bern(1/2), independent from W which follows a Bern(p) and \oplus is the binary XOR operation. (Hint: $P_{X,Y}$ and $P_{Y|X}$ were given previously in example 2)

Propertie: The individual entropies H(X) and H(Y), the joint entropy H(X,Y) and the conditional entropies $H(X \mid Y)$ et $H(Y \mid X)$ can be related as follows

$$H(X,Y) = H(X) + H(Y \mid X)$$

= $H(Y) + H(X \mid Y)$

Exercise 13

The differential entropy of a real-valued Gaussian random variable $X_G \sim \mathcal{N}(\mu, \sigma^2)$ is given by

$$h\left(X_{G}\right) = \frac{1}{2}\log_{2}\left(2\pi e\sigma^{2}\right)$$

Exercise 14

Mutual information is positive.

Hint: proof is similar to the proof of positivity of the KL divergence.

Proof:

$$I(X;Y) \sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) \log_2\left(\frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}\right)$$

If we use this defintion and the exercise 5, we deduct simply many versions of the proof.

Exercise 18

Shannon formula for the AWGN:

$$\log_2(1 + SNR)$$

Let $X \sim \mathcal{N}(0, P)$ and $W \sim \mathcal{N}(0, \sigma^2)$ be two independent Gaussian random variables. Assume that we observe Y given by

$$Y = X + W$$
.

This model describes the so called Additive White Gaussian Noise (AWGN) channel with input signal X, additive noise W, and output signal Y.

The mutual information between X and Y is given by :

$$I(X;Y) = \frac{1}{2}\log_2\left(1 + \frac{P}{\sigma^2}\right).$$

Proof We have:

$$I(X;Y) = h(X) - h(Y \mid X)$$

= $h(X) - h(Y \mid X)$
= $h(X) + h(Y) - h(X;Y)$

Because X $\perp\!\!\!\perp$ W then

$$h(Y) = \frac{1}{2}log(2\pi \exp(\sigma^2 + P))$$

Or

$$h(Y|X) = h(W) = \frac{1}{2}log(2\pi \exp \sigma^2)$$

Finally:

$$I(X;Y) = h(X) - h(Y \mid X) = \frac{1}{2}log(2\pi \exp(\sigma^2 + P)) - \frac{1}{2}log(2\pi \exp\sigma^2) = \frac{1}{2}\log_2\left(1 + \frac{P}{\sigma^2}\right)$$