# Explication par génération d'exemples contre-factuels

L'objectif du TME est d'implémenter la méthode de génération d'explications par exemples contre-factuels appelée Growing Spheres et de faire des expérimentations en l'appliquant à divers jeux de données et classifieurs. Pour commencer, le TME utilise des données synthétiques en deux dimensions permettant de visualiser les exemples contre-factuels générés.

#### 1. Données

Implémenter une fonction qui génère une base de données synthétique de type halfMoons, telle qu'illustrée sur la figure ci-dessous pour quatre niveaux de bruit différents (sans bruit à gauche).

La classe du haut contient les points de coordonnées  $(\cos(t),\sin(t))$  pour t compris entre 0 et  $\pi$ , auxquelles on ajoute un bruit gaussien. La classe du bas contient les points de coordonnées  $(1-\cos(t),0.5-\sin(t))$  pour t compris entre 0 et  $\pi$ , auxquelles on ajoute un bruit gaussien.









FIGURE 1 – Données HalfMoons

#### 2. Classifieurs

En utilisant par exemple sklearn, implémenter quelques classifieurs (par exemple k-ppv, forêt aléatoire, SVM) et les entraı̂ner le cas échéant sur une base d'apprentissage constituée d'un sous-ensemble des données générées.

On doit alors disposer d'une fonction **predict** permettant de prédire la classe pour toute donnée.

#### 3. Génération d'exemples contrefactuels

Implémenter l'algorithme GS dont le pseudo-code est fourni en annexe.

#### 4. Visualisation

Implémenter une fonction permettant de visualiser les données, la frontière de décision, une donnée à expliquer ainsi l'exemple contrefactuel qui lui est associé.

#### 5. Expérimentations sur données artificielles

Définir un plan d'expérience permettant d'examiner la pertinence des exemples contrefactuels générés.

Il pourra par exemple examiner la stabilité de l'algorithme par rapport à sa composante aléatoire (qui peut varier selon le classifieur utilisé et la complexité de sa frontière de décision), faire varier la donnée à expliquer, le classifieur, les paramètres de l'algorithme (en particulier le cas extrême sans prise en compte de la parcimonie).

### 6. Expérimentations sur données classiques

Appliquer à d'autres jeux de données de dimensions supérieures disponibles dans sklearn comme wine ou Breast Cancer Wisconsin et évaluer subjectivement la qualité des explications générées.

Remarque : l'exemple contrefactuel n'est pas en lui-même une explication, celle-ci est constituée des attributs dont la valeur est modifiée.

## Pseudo-code de l'algorithme Growing Spheres

(Laugel et al., 18)

On note  $SL(x, a_0, a_1)$  la couche sphérique (Spherical Layer) de centre x et de rayon interne  $a_0$  et de rayon externe  $a_1: SL(x, a_0, a_1) = \{z \in \mathcal{X} | a_0 \leq ||x - z||_2 \leq a_1\}.$ 

```
Algorithm 1 Algorithme Growing Spheres Generation
Require: f: \mathcal{X} \to \{-1, 1\} a binary classifier
Require: x \in \mathcal{X} an observation to be interpreted
Require: Hyperparameters : \eta, n
Ensure: enemy e
   Generate (z_i)_{i \le n} in SL(x, 0, \eta) following a uniform distribution
   while \exists e \in (z_i)_{i \le n} | f(e) \ne f(x) do
       \eta = \eta/2
       Generate (z_i)_{i \leq n} in SL(x, 0, \eta) following a uniform distribution
   end while
   Set a_0 = \eta, a_1 = 2\eta
   while \not\exists e \in (z_i)_{i \leq n} | f(e) \neq f(x) \text{ do}
       Generate (z_i)_{i \le n} in SL(x, a_0, a_1) following a uniform distribution
       a_0 = a_1
       a_1 = a_1 + \eta
   end while
   return e, the l_2-closest generated enemy from x
```

### Algorithm 2 Algorithme Growing Spheres Feature Selection

```
Require: f: \mathcal{X} \to \{-1, 1\} a binary classifier
Require: x \in \mathcal{X} an observation to be interpreted
Require: e \in \mathcal{X} | f(e) \neq f(x) the solution of Algorithm ??
Ensure: enemy e^*
Set e' = e
while f(e') \neq f(x) do
e^* = e'
i = \arg\min_{j \in \{1, \dots, d\}, e'_j \neq x_j} | e'_j - x_j |
Update e'_i = x_i
end while
return e^*
```