Отчет о выполнении лабораторной работы 1.1.4 Измерение интенсивности радиационного фона

Тимонин Андрей Б01-208 01.09.22

Содержание

() Аннотация	2
2) Теоретические сведения	
у поражений	
I) Используемое оборудование	
б) Результаты измерений и обработка данных	
, · · · · · · · · · · · · · · · · · · ·	
б) Обсуждение результатов	
7) Заключение	14

1) Аннотация

Цель: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

Приборы: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

Ожидаемые результаты: среднеквадратическая ошибка отдельного измерения приблизительно равна корню из среднего значения измеряемой величины.

2) Теоретические сведения

• Основной величиной, характеризующей количество частиц в космических лучах, является интенсивность І. По определению интенсивность есть число частиц, падающих в единицу времени на единичную площадку, перпендикулярную к направлению наблюдения, отнесенное к единице телесного угла (стерадиану). Единицей измерения при это является:

$$\frac{\text{число частиц}}{\text{см}^2 \cdot \text{ср} \cdot \text{с}}$$

• Формула средней квадратичной ошибки числа:

$$\sigma = \sqrt{n}.$$

Формула с вероятностью (68%) показывает, что измеренное число частиц п отличается от искомого среднего не более чем на \sqrt{n} .

• Результат измерений с учетом средней квадратичной ошибки:

$$n_0 = n \pm \sqrt{n}.$$

• Формула среднего значения при N измерениях:

$$\bar{n} = \frac{1}{N} \sum_{i=1}^{N} n_i,$$

• Формула оценки стандартной ошибки отдельного измерения:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \bar{n})^2}.$$

• Формула наилучшего приближения стандартной ошибки отдельного измерения:

$$\sigma_{
m ota} pprox \sqrt{ar{n}}$$
.

• Формула стандартной ошибки отклонения:

$$\sigma_{\bar{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \bar{n})^2} = \frac{\sigma_{\text{отд}}}{\sqrt{N}}.$$

• Доля случаев, характеризующая вероятность получить п отсчетов, определяется по формуле:

$$w_n = \frac{\text{число случаев с отсчетом } n}{\text{полное число измерений } (N)}.$$

• Формула полуширины распределения:

$$arepsilon_{ar{n}_1} = rac{\sigma_{ar{n}_1}}{ar{n}_1} \cdot 100\% =$$

Высоты гистограммы определяется по формуле:

$$h = \frac{n_i}{n(x_i - x_{i-1})}$$

Формула размаха выборки R:

$$R=x_{max}-x_{min}$$

Количество интервалов в выборке определяется по формуле:

$$k\approx 1+\log_2 n\approx 1+3,221\cdot \lg n$$

Длина I интервала гистограммы, формула:

$$l=R/n$$

Формула эмпирической плотности распределения выборки имеет вид:

$$p(x) = \frac{n_i}{n \cdot l}$$

3) Методика измерений

Принцип работы счетчиков Гейгера основан на эффекте ударной ионизации газовой среды под действием радиоактивных частиц высоком ускоряющем напряжении.

Счетчик представляет собой наполненный газом сосуд с двумя электродами. Существует несколько типов таких счетчиков. Используемый в данной работе СТС-6 представляет собой тонкостенный металлический цилиндр, который является одним из электродом (катодом). Другим анодом является тонкая нить, натянутая вдоль оси цилиндра. Чтобы счетчик работал в режиме счета частиц, на электроды необходимо подать напряжение 400

В. Частицы космических лучей ионизируют газ, которым наполнен счетчик, а также выбивают электроны из его стенок. Образовавшиеся электроны, ускоряясь в сильном электрическом поле между электродами счетчика, соударяются с молекулами газа и выбивают из них новые вторичные электроны. Эти электроны ускоряются электрическим полем и затем ионизируют молекулы газа. В результате образуется целая лавина электронов, и через счетчик резко увеличивается ток.

Рисунок - 1. Устройство счетчика Гейгера-Мюллера

Основной методикой сбора данных в данной лабораторной работе является подсчет компьютером числа импульсов за выбранный промежуток времени, которые обозначают число зарегистрированных частиц за этот же промежуток времени.

При обработке экспериментальных данных нами будут использоваться приближения при оценки величин, что позволит нам достаточно точно при большом числе повторений эксперимента оценить среднюю величину зарегистрированных частиц за промежуток времени.

4) Используемое оборудование Гейгера-Мюллера СТС-6:

Источник излучения	Cs
МЭД	3,0 мкР*с-1; 210мкР-1±21,7мкР-1;
Номинальное рабочее напряжение прибора	400B
счетчик Гейгера-Мюллера СТС-6	
Напряжение начала счета	285B-335B;
Протяжность счетной характеристики	не менее 80В;
Наклон счетной характеристики	не более 0,125%/В;
Собственный фон прибора счетчик	не более 1,83с-1
Гейгера-Мюллера СТС-6	
Максимально рабочая МЭД	2500с-1, 30мкР·с-1, к. н. ±20%
Максимально допустимая МЭД	не менее 50Р ч-1
Габариты	22х22х199мм

Масса прибора счетчик Гейгера-Мюллера	25Γ
CTC-6	

Таблица - 1. Технические характеристики приборов Гейгера-Мюллера СТС- 6

Компьютер:

Погрешности при обработке данных и арифметических операциях с плавающей точкой.

5) Результаты измерений и обработка данных

Ссновной эксперимент

Время эксперинента:
4004 сек. из 4000 сек.
3амисичерана

По си У Отложено
мисле мастис тичованых
в течения окончены.
Ристоргамы
В течения окончены.
Ристоргамы
В течения окончены.
По си У Отложено
мисле мастис тичованых
в течения окончены.
По си У Отложено
мисле мастис тичованых
в течения окончены.
Распистичованых
в течения окончены.
В те

Лаб. данные - 1. Гистограмма по полученным данным в ходе эксперимента

Лаб. данные - 2. Данные для обработки

Лаб. данные - 3. Результаты натурного эксперимента.

Лаб. данные - 4. График зависимости числа частиц от номера измерения

Лаб. данные - 5. График изменения среднего значения регистрируемых частиц

Лаб. данные - 6. Логарифм СО

Лаб. данные - 7. График зависимости стандартного отклонения

Лаб. данные - 8. Все графики зависимостей

№ опыта	1	2	3	4	5	6	7	8	9	10
0	31	19	18	24	19	29	17	19	23	26
10	35	22	25	30	20	21	31	29	25	20
20	20	27	29	22	27	24	26	25	32	28
30	31	21	27	30	16	21	15	27	27	23
40	26	24	21	18	26	33	18	24	28	24
50	27	19	24	26	29	21	21	21	35	24
60	27	38	23	30	19	26	21	24	22	22
70	21	20	13	27	25	29	22	30	26	21
80	22	34	32	22	21	31	18	28	27	31
90	21	17	17	27	29	26	20	17	21	23
100	14	25	29	24	28	19	23	24	19	15
110	32	27	28	21	23	26	18	27	19	24
120	22	26	14	26	26	27	37	22	20	26
130	28	15	35	24	25	25	30	26	27	24
140	21	23	24	29	26	34	34	21	22	19
150	24	35	28	23	30	26	25	25	19	25
160	20	27	18	25	27	24	29	18	20	17
170	25	23	16	21	23	20	26	20	22	32
180	25	16	26	25	32	20	21	23	30	32
190	16	14	18	31	27	26	23	26	19	31

Таблица - 2. Число срабатываний счетчика за 20 секунд

Число импульсов n1	13	14	15	16	17	18	19	20
Число случаев	1	3	3	4	5	8	11	11
Доля случаев Wn	0.005	0.015	0.015	0.02	0.025	0.04	0.055	0.055

Таблица - 3. Данные для построения гистограммы распределения числа срабатываний за 20 секунд

Число импульсов n1	21	22	23	24	25	26	27	28
Число случаев	18	11	12	16	14	20	17	7
Доля случаев Wn	0.09	0.055	0.06	0.08	0.07	0.1	0.085	0.035

Таблица - 4. Данные для построения гистограммы распределения числа срабатываний за 20 секунд

Число импульсов n1	29	30	31	32	33	34	35	37	38
Число случаев	9	7	7	6	1	3	4	1	1
Доля случаев Wn	0.045	0.035	0.035	0.03	0.005	0.015	0.02	0.005	0.005

Таблица - 5. Данные для построения гистограммы распределения числа срабатываний за 20 секунд

Сумма:	4857	4898.755	
Среднее значение:	24.285	24.493775	
Корень из среднего значения:	4.927981331	4.949118608	Среднеквадратическая ошибка

Таблица - 6. Данные для построения гистограммы распределения числа срабатываний за 20 секунд

Число импульсов интервала n1	13-14	15-16	17-18	19-20	21-22	23-24	25-26	27-28	29-30	31-32	33-34	35-38
Число случаев	4	7	13	22	29	28	34	24	16	13	4	6
Доля случаев Wn	0.02	0.035	0.065	0.11	0.145	0.14	0.17	0.12	0.08	0.065	0.02	0.03

Таблица - 7. Данные для построения гистограммы распределения числа срабатываний по интервалам за 20 секунд

Гистограмма для 20 секунд

Гистограмма - 1. Гистограмма для 20 секунд

Рисунок - 2. График приближения данных гистограммы за 20 секунд к нормальному распределению Гаусса

№ опыта	1	2	3	4	5	6	7	8	9	10
0	50	42	48	36	49	57	55	41	60	45
10	44	51	51	51	60	52	57	37	42	50
20	50	39	59	42	52	46	50	50	42	59
30	65	53	45	45	44	41	40	54	52	47
40	56	54	52	46	58	38	44	55	37	44
50	39	53	47	47	34	59	49	59	45	43
60	48	40	53	59	46	43	59	50	56	51
70	44	53	60	55	41	59	51	56	50	44
80	47	43	51	47	37	48	37	43	46	54
90	41	51	52	44	62	30	49	53	49	50

Таблица - 8. Число срабатываний счетчика за 40 секунд

Число импульсов n2	30	34	36	37	38	39	40
Число случаев	1	1	1	4	1	2	2
Доля случаев Wn	0.01	0.01	0.01	0.04	0.01	0.02	0.02

Таблица - 9. Данные для построения гистограммы распределения числа срабатываний за 40 секунд

Число импульсов n2	41	42	43	44	45	46	47
Число случаев	4	4	4	7	4	4	5
Доля случаев Wn	0.04	0.04	0.04	0.07	0.04	0.04	0.05

Таблица - 10. Данные для построения гистограммы распределения числа срабатываний за 40 секунд

Число импульсов n2	48	49	50	51	52	53	54
Число случаев	3	4	8	7	5	5	3
Доля случаев Wn	0.03	0.04	0.08	0.07	0.05	0.05	0.03

Таблица - 11. Данные для построения гистограммы распределения числа срабатываний за 40 секунд

Число импульсов n2	55	56	57	58	59	60	62	65
Число случаев	3	3	2	1	7	3	1	1
Доля случаев Wn	0.03	0.03	0.02	0.01	0.07	0.03	0.01	0.01

Таблица - 12. Данные для построения гистограммы распределения числа срабатываний за 40 секунд

Сумма:	4864	4883.04	
Среднее значение:	48.64	48.8304	
Корень из среднего значения:	6.97423831	6.987875214	Среднеквадратическая ошибка

Таблица - 13. Данные для построения гистограммы распределения числа срабатываний за 40 секунд

Число импульсов интервала n2	30-34	36-37	38-39	40-41	42-43	44-45	46-47	48-49	50-51	52-53	54-55	56-57	58-59	60-65
Число случаев	2	5	3	6	8	11	9	7	15	10	6	5	8	5
Доля случаев Wn	0.02	0.05	0.03	0.06	0.08	0.11	0.09	0.07	0.15	0.1	0.06	0.05	0.08	0.05

Таблица - 14. Данные для построения гистограммы распределения числа срабатываний по интервалам за 40 секунд

Гистограмма - 2. Гистограмма для 40 секунд

Рисунок - 3. График приближения данных гистограммы за 40 секунд к нормального распределению Гаусса

6) Обсуждение результатов

Возможные погрешности:

Описание причины	Возможный способ устранения
Влияние естественного радиоактивного	Измерение интенсивности радиационного
излучения Земли	фона в верхних слоях атмосферы
Погрешность счетчика Гейгера-Мюллера	Использовать новые современные аналоги
CTC-6	(Например identiFINDER R200)
Погрешность при обработке данных с	Учет приближения чисел через ε (эпсилон)
плавающей точкой с помощью	
компьютера	
Погрешность округления при определении	Увеличить количество измерений для
длины интервала L при построении	увеличения выборки
гистограммы	
Погрешность приближения данных	Корректировка смещения при применении
нормальным распределением Гаусса и	формул приближения
распределением Пуассона	

7) Заключение

В ходе эксперимента нам удалось регистрировать частицы с помощью прибора Гейгера-Мюллера СТС-6 за промежутки времени 10, 20 секунд соответственно. Для проверки ожидаемых результатов такие же операции были проведены с данными для 40 секунд, которые были получены путем совмещения измерений для 20 секунд. При этом среднеквадратическая ошибка отдельного измерения как для 10, 20, так и 40 секунд приблизительно равна корню из среднего значения измеряемой величины.