Deep Learning Fall 2019

Lecture 2: Recurrent neural network

Lecturer: Thomas Hofmann Scribes: Yao Zhang

It is the 1st version, updated November 21, 2019

Definition 2.1 (State space model). Given observation sequence $x^1, ..., x^s$. Identify hidden activities h with the state of a dynamical system. Discrete time evolution of hidden state space sequence

$$h^{t} = F(h^{t-1}, x^{t}, \theta), \quad h^{0} = 0, \quad t = 1, ..., s$$
 (2.1)

- 1. Markov property: hidden state at time t depends on input of time t as well as previous hidden state
- 2. Time-invariance: state evolution function F is independent of time t

How should F be chosen?

Definition 2.2 (Recurrent Neural Network). Linear dynamical system w/ elementwise non-linearity

$$\overline{F}(h, x, \theta) = Wh + Ux + b, \quad \theta = (U, W, b, ...)$$

$$F = \sigma \circ \overline{F}, \quad \sigma \in \{ \log istic, \, \tanh, \, \operatorname{Re} LU, ... \}$$
(2.2)

Optionally produce outputs via

$$y = H(h, \theta), \quad H(h, \theta) \triangleq \sigma(Vh + c), \quad \theta = (..., V, c)$$
 (2.3)

Unfolding of recurrency. Recurrent networks: feeding back activities (with time delays). Unfold computational graph over time (also called unrolling)

Lossy memorization: what does a recurrent network (RNN) do?

- 1. hidden state can be thought of as a noisy memory or a noisy data summary.
- 2. learn to memorize relevant aspects of partial observation sequence:

$$(x^1, \cdots, x^{t-1}) \mapsto h^t \tag{2.4}$$

3. more powerful than just memorizing fixed-length context.

Feedforward vs. Recurrent networks:

- 1. for any fixed length s, the unrolled recurrent network corresponds to a feedforward network with s hidden layers
- 2. however, inputs are processed in sequence and (optionally) outputs are produced in sequence
- 3. main difference: sharing of parameters between layers same function F and H at all layers / time steps.

Backpropagation through time:

- 1. backpropagation is straightforward: propagete derivatives backwards through time
- 2. parameter sharing leads to sum over t, when dealing with derivatives of weights
- 3. define shortcut $\sigma_i^t \triangleq \sigma'\left(\bar{F}_i\left(h^{t-1}, x^t\right)\right)$, then

$$\frac{\partial \mathcal{R}}{\partial w_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_{i}^{t}} \cdot \frac{\partial h_{i}^{t}}{\partial w_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_{i}^{t}} \cdot \overset{\cdot}{\sigma_{i}^{t}} \cdot h_{j}^{t-1}$$

$$\frac{\partial \mathcal{R}}{\partial u_{ik}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_{i}^{t}} \cdot \frac{\partial h_{i}^{t}}{\partial u_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_{i}^{t}} \cdot \overset{\cdot}{\sigma_{i}^{t}} \cdot x_{k}^{t}$$
(2.5)

RNN gradients: RNN where output is produced in last step: $y = y^s$. Remember backpropagation in MLPs:

$$\nabla_x \mathcal{R} = J_{F^1} \cdots J_{F^L} \nabla_y \mathcal{R} \tag{2.6}$$

Shared weights: $F^t = F$, yet evaluated at different points

$$\nabla_{x^{t}} \mathcal{R} = \left[\prod_{r=t+1}^{s} W^{T} S\left(h^{r}\right) \right] \cdot \underbrace{J_{H} \cdot \nabla_{y} \mathcal{R}}_{\triangleq z}$$

$$(2.7)$$

 $\text{ where } S\left(h^{r}\right)=diag\left(\overset{\cdot}{\sigma_{1}^{r}},...,\overset{\cdot}{\sigma_{n}^{r}}\right)\,,\,\,\text{which is}\leq I\,\,\text{for}\,\,\sigma\in\left\{logistic,\,\,tanh,\,\,ReLU\right\}.$

Exploding and/or vanishing gradients: spectral norm of matrix which is the largest singular value

$$||A||_2 = \max_{x:||x||=1} ||Ax|| = \sigma_{\max}(A)$$
 (2.8)

Note that $||AB||_2 \leq ||A||_2 \cdot ||B||_2$, hence with $S(\cdot) \leq I$

$$\left\| \prod_{s=t+1}^{s} W^{T} S\left(h^{t}\right) \right\|_{2} \leqslant \left\| \prod_{s=t+1}^{s} W^{T} \right\|_{2} \leqslant \left\| W \right\|_{2}^{s-t} = \left[\sigma_{\max}\left(W\right)\right]^{s-t} \tag{2.9}$$

If $\sigma_{\max}(W) < 1$, gradients are vanishing, i.e.

$$\|\nabla_{x^t} R\| \leqslant \sigma_{\max}(W)^{s-t} \cdot \|z\| \stackrel{(s-t) \to \infty}{\to} 0 \tag{2.10}$$

Conversely, if $\sigma_{\max}(W) > 1$ gradients may explode. (depends on gradient direction [1]).

Bi-directional recurrent networks: hidden state evolution does not always have to follow direction of time (or causal direction).

Define reverse order sequence

$$g^{t} = G\left(x^{t}, g^{t+1}, \theta\right) \tag{2.11}$$

as model w/ separate parameters.

Now we can interweave hidden state sequences. Backpropagation is also bi-directional.

Deep recurrent networks: hierchical hidden state:

$$h^{t,1} = F^{1} (h^{t-1,1}, x^{t}, \theta)$$

$$h^{t,l} = F^{l} (h^{t-1,l}, x^{t}, \theta) \quad l = 1, ..., L$$
(2.12)

Output connected to last hidden layer

$$y^t = H\left(h^{t,L}, \theta\right) \tag{2.13}$$

Can be combined with bi-directionality (how?).

Differentiable memory: long-term dependencies

- 1. sometimes: important to model long-term dependencies \Rightarrow network needs to memorize features from the distant past
- 2. recurrent networks: hidden state needs to preserve memory
- 3. conflicts with short-term fluctuations and vanishing gradients
- 4. conclusion: difficult to learn long-term dependencies with standard recurrent network
- 5. popular remedy: gated units

LSTM: overrall architecture, Long-Short-Term-Memory: unit for memory management

Figure 2.1: The repeating module in an LSTM contains four interacting layers

where

Figure 2.2: from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: flow of information

- 1. information propagates along the chain like on a conveyor belt
- 2. information can flow unchanged and is only selectively changed (vector addition) by σ -gates

where

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right) \tag{2.14}$$

Figure 2.3

Figure 2.4: LSTM: forget gate

1. keeping or forgetting of stored content?

Figure 2.5: LSTM: input \rightarrow memory value

where

$$i_{t} = \sigma (W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \tanh (W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$
(2.15)

1. preparing new input information to be added to the memory

Figure 2.6: LSTM: updating memory

where

$$C_t = f_t * C_{t-1} + i_t * \widetilde{C}_t \tag{2.16}$$

1. combining stored and new information

where

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$h_t = o_t * \tanh \left(C_t \right)$$
(2.17)

1. computing output selectively

Figure 2.7: LSTM: output gate

Figure 2.8: LSTM: gate memory units

where

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\widetilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \widetilde{h}_{t}$$
(2.18)

- 1. memory state = output. modification to logic [2]
- 2. convex combination of old and new information

Gated memory units:

- 1. GRUs and LSTMs can learn active memory strategies: what to memorize, overwrite and recall when
- 2. successful use cases:
 - (a) handwriting recognition
 - (b) speech recognition (also: Google)
 - (c) machine translation
 - (d) image captioning

3. notoriously difficult to understand what units learn... Resource-hungry. Slow in learning.

Language modeling:

Model	TEST PERPLEXITY	NUMBER OF PARAMS [BILLIONS]
Sigmoid-RNN-2048 (Ji et al., 2015a)	68.3	4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (Chelba et al., 2013)	67.6	1.76
Sparse Non-Negative Matrix LM (Shazeer et al., 2015)	52.9	33
RNN-1024 + MaxEnt 9-gram features (Chelba et al., 2013)	51.3	20
LSTM-512-512	54.1	0.82
LSTM-1024-512	48.2	0.82
LSTM-2048-512	43.7	0.83
LSTM-8192-2048 (No Dropout)	37.9	3.3
LSTM-8192-2048 (50% DROPOUT)	32.2	3.3
2-LAYER LSTM-8192-1024 (BIG LSTM)	30.6	1.8
BIG LSTM+CNN INPUTS	30.0	1.04
BIG LSTM+CNN Inputs + CNN SOFTMAX	39.8	0.29
BIG LSTM+CNN Inputs + CNN SOFTMAX + 128-DIM CORRECTION	35.8	0.39
BIG LSTM+CNN Inputs + Char LSTM predictions	47.9	0.23

Figure 2.9: Best results of single models on the 1B word benchmark [3]

- 1. evaluation on corpus w/ 1B words
- 2. number of parameters can be in the 100Ms or even Bs!
- 3. ensembles can reduce perplexity to ~ 23 (best result 06/2016)

Sequence to sequence learning:

- 1. important use of of memory units: sequence to sequence learning. Seminal paper [4]
- 2. encoder-decoder architecture

Encode sequence (e.g. sentence) into vector, decode sequence (e.g. translate) from vector(w/ autoregressive output feedback)

RNN encoder/decoder: How to make this work? [4]

- 1. deep LSTMs (multiple layers, e.g. 4)
- 2. different RNNs for encoding and decoding
- 3. teacher forcing (maximum likelihood) during training
- 4. beam search for decoding at test time
- 5. reverse order of source sequence
- 6. ensemble-ing
- $7. \Rightarrow$ state-of-the art results on WMT benchmarks at the time. Today: use of attention-based models.

Reading List

- [1] R. Pascanu, T. Mikolov and Y. Bengio, "On the difficulty of training Recurrent Neural Networks," *ArXiv*, 2013.
- [2] K.Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk and Y. Bengio, "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation," *Conference on Empirical Methods in Natural Language Processing (EMNLP 2014)*, 2014.
- [3] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer and Y. Wu, "Exploring the Limits of Language Modeling," *CoRR*, 2016.
- [4] I. Sutskever, O. Vinyals and Q. Le, "Sequence to sequence learning with neural networks," NIPS'14 Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, Vol. 2014, pp. 3104-3112.