Implementation of FAPEC decorrelation stages for IQ and water column data

Author: Aniol Martí

Supervised by: Ferran de Cabrera, Jordi Portell, Jaume Riba

Barcelona, July 2021

- Introduction
- 2 The FAPEC data compressor
- Negentropy: a scale invariant metric
- Wave stage
- **6** KMALL stage
- 6 Conclusions

- Introduction
- Negentropy: a scale invariant metric
- **5** KMALL stage

- Two strategic projects of DAPCOM Data Services, a spin-off of UPC and UB.
- FAPEC is the data compressor from DAPCOM.

- Two strategic projects of DAPCOM Data Services, a spin-off of UPC and UB.
- FAPEC is the data compressor from DAPCOM.
- FAPEC works in a classical 2-stage structure.

Data compression is fundamental in environments where:

- Bandwidth is limited.
- · Computing power is limited.

Data compression is fundamental in environments where:

- · Bandwidth is limited.
- Computing power is limited.

Examples:

- · Space.
- · Offshore.

- Develop a FAPEC stage for IQ and audio data.
- Develop a FAPEC stage for the KMALL format from Kongsberg Maritime.
- Propose a scale invariant metric to evaluate the former stages.

- Introduction
- 2 The FAPEC data compressor
- 3 Negentropy: a scale invariant metric
- 4 Wave stage
- **6** KMALL stage
- 6 Conclusions

Background & features

- Designed to solve some limitations of the CCSDS compression standards.
- High computing performance.

8/39 Aniol Martí Barcelona, July 2021

Background & features

- Designed to solve some limitations of the CCSDS compression standards.
- High computing performance.
- Data chunking \Rightarrow better robustness to data corruption.
- Several preprocessing stages for different data types.

Aniol Martí Barcelona, July 2021

Background & features

- Designed to solve some limitations of the CCSDS compression standards.
- High computing performance.
- Data chunking \Rightarrow better robustness to data corruption.
- Several preprocessing stages for different data types.
- Multithreading support.
- Data encryption using AES.

Aniol Martí Barcelona, July 2021

- Introduction
- 2 The FAPEC data compressor
- 3 Negentropy: a scale invariant metric
- 4 Wave stage
- **6** KMALL stage
- 6 Conclusions

For a continuous random variable X with a density f(x), its differential entropy is:

$$h(X) = -\int_{-\infty}^{+\infty} f(x) \ln f(x) dx$$

The Normal distribution has maximum entropy. Thus, if G is a gaussian random variable with variance σ^2 :

$$h(G) = \ln\left(\sqrt{2\pi e\sigma^2}\right)$$

Negentropy is defined as:

$$J(X) = h(G) - h(X) \ge 0$$

where $G \sim \mathcal{N}(\mu, \sigma^2)$ and X is a random variable with variance σ^2 .

Important properties:

- · It provides an indicator of normality.
- It is invariant to any linear map.

Outline

- 1 Introduction
- 2 The FAPEC data compressor
- 3 Negentropy: a scale invariant metric
- Wave stage
- **6** KMALL stage
- 6 Conclusions

Pass-band signal:

$$s(t) = i_s(t) \cdot \cos(2\pi f_0 t) - q_s(t) \cdot \sin(2\pi f_0 t)$$

Pass-band signal:

$$s(t) = i_s(t) \cdot \cos(2\pi f_0 t) - q_s(t) \cdot \sin(2\pi f_0 t)$$

IQ samples: the discrete time samples of $i_s(t)$ and $q_s(t)$ = time series in two channels = stereo audio \Rightarrow FLAC \Rightarrow linear predictor.

- Compression ratio shall be better than that of Gzip.
- Compression speed shall be better than that of Gzip.

- Compression ratio shall be better than that of Gzip.
- Compression speed shall be better than that of Gzip.
- Compression ratio must be at least 80% of that from FLAC.
- Compression speed must be better than that of FLAC.

Linear predictor model:

$$\hat{x}(n) = \sum_{i=1}^{Q} h_i x(n-i)$$

Linear predictor model:

$$\hat{x}(n) = \sum_{i=1}^{Q} h_i x(n-i)$$

Finding h_i . The Yule-Walker equations:

$$r_X(j) = \sum_{i=1}^{Q} h_i r_X(|i-j|), \quad 1 \le j \le Q$$

Linear predictor model:

$$\hat{x}(n) = \sum_{i=1}^{Q} h_i x(n-i)$$

Finding h_i . The Yule-Walker equations:

$$r_X(j) = \sum_{i=1}^{Q} h_i r_X(|i-j|), \quad 1 \le j \le Q$$

The linear system is solved with the Levinson-Durbin algorithm with a complexity $O(Q^2)$.

Short-term autocorrelation:

$$r_x(i) = \sum_{m=0}^{T-1-i} x_N(m) x_N(m+i), i \ge 0$$

 $x_N(m)$ is assumed to be WSS and $T \leq N$.

Short-term autocorrelation:

$$r_x(i) = \sum_{m=0}^{T-1-i} x_N(m) x_N(m+i), i \ge 0$$

 $x_N(m)$ is assumed to be WSS and $T \le N$.

Prediction errors $e(n) = x(n) - \hat{x}(n)$ and coefficients h_i are sent to the entropy coder.

Additional features:

- Arbitrary number of channels.
- Channel coupling.

- Arbitrary number of channels.
- Channel coupling.
- Tunable period length N.
- Tunable training length T.

Additional features:

- Arbitrary number of channels.
- Channel coupling.
- Tunable period length N.
- Tunable training length T.
- Lossless or lossy compression.

Input settings:

- Filter order: Q = 10.
- Period length: *N* = 65536.
- Training length: *T* = 65536.
- Number of channels: 2.
- No coupling.
- No losses.

Comparison of original and prediction error samples distributions

Cumulative distributions of original and prediction error samples

Negentropies

Filename	J(X)	J(E)	J(E)/J(X)
03 - Manel - Formigues.wav	0.0018	0.0144	8.0
04 - Pink Floyd - Time.wav	0.0004	0.0238	59.5
06 - Manel - Els entusiasmats.wav	0.0012	0.0098	8.2
06 - Pink Floyd - Money.wav	0.0009	0.0090	10

Negentropy is not proportional to the compression ratio.

Comparison of FAPEC, FLAC and GZIP

File: 03 - Manel - Formigues.wav (×) File: 04 - Pink Floyd - Time.wav (•) File: 06 - Manel - Els entusiasmats.wav (▼) File: 06 - Pink Floyd - Money.wav (▲)

Euclidean distances for FAPEC, FLAC and Gzip

Filename	FAPEC dist.	FLAC dist.	GZIP dist.
03 - Manel - Formigues.wav	0.9040	1.0938	1.9161
04 - Pink Floyd - Time.wav	1.0630	1.2181	2.4851
06 - Manel - Els entusiasmats.wav	0.8242	0.9453	1.6197
06 - Pink Floyd - Money.wav	1.0333	1.2152	2.3294

FAPEC is the fastest option.

- 3 Negentropy: a scale invariant metric
- **6** KMALL stage

Important definitions:

- Ping: A ping is defined as a number of pulses transmitted at approximately the same time.
- Beam: Each ping is formed by some pulses in different angles, which we call beams.

- The KMALL format is the successor of the ALL format.
- It is structured in datagrams.
- Each .kmall file contains several datagrams.
- The most important are MRZ and MWC (multibeam).

- The KMALL format is the successor of the ALL format.
- It is structured in datagrams.
- Each .kmall file contains several datagrams.
- The most important are MRZ and MWC (multibeam).

Structure of a MWC datagram

Header 20 [B]	Partition 4 [B]	CmnPart 12 [B]	TxInfo 12 [B]	SectorData 9 x 16 [B]	RxInfo 16 [B]	$\begin{array}{c} BeamData \\ N_{B} \cdot (16 + N_{S} \cdot (1 + phaseFlag)) \; [B] \end{array}$

- Compression ratio shall be better than that of Gzip.
- Compression speed shall be better than that of Gzip.

· Usually files do not contain MRZ an MWC datagrams at the same time.

- Usually files do not contain MRZ an MWC datagrams at the same time.
- MRZ datagrams are a 92% of the total size.
- MWC datagrams are a 99% of the total size.

- Usually files do not contain MRZ an MWC datagrams at the same time.
- MRZ datagrams are a 92% of the total size.
- MWC datagrams are a 99% of the total size.
- · High correlation between beams.

Samples are predicted from the samples in the same position as those from the previous beam, when possible:

$$E_{i,j} = S_{i,j} - S_{i,j-1}, \qquad 0 \le i < \min(N_{S_{j-1}}, N_{S_j}), \quad 1 \le j < N_B$$

Otherwise, the previous sample is used:

$$E_{i,j} = S_{i,j} - S_{i-1,j}, \quad \min(N_{S_{j-1}}, N_{S_j}) \le i < N_{S_j}, \quad 1 \le j < N_B$$

The first beam is treated differently:

$$E_{i,0} = S_{i,0} - S_{i-1,0}, \qquad 1 \le i < N_{S_0}$$

And the first sample in the ping:

$$E_{0.0} = S_{0.0} + 128$$

Phase is not compressible. A simple differential is used:

$$E_{i,j} = S_{i,j} - S_{i-1,j}, \qquad 1 \le i < N_{S_i}, \quad 1 \le j < N_B$$

Comparison of original and prediction error samples distributions

Cumulative distributions of original and prediction error samples

Negentropies

Filename	J(X)	J(E)	J(E)/J(X)
0003_20200428_103716_ShipName.kmwcd	0.0004	0.0530	132.5
0004_20200428_093723_ShipName.kmwcd	0.0000	0.0252	-
0039_20200428_115408_ShipName.kmwcd	0.0001	0.0146	146
0010_20210409_092708.kmwcd	0.0001	0.0089	89

Remember that negentropies cannot be compared between different files.

Comparison of FAPEC and GZIP

File: 0003_20200428_103716_ShipName.kmwcd (×) File: 0004_20200428_093723_ShipName.kmwcd (•) File: 0039_20200428_115408_ShipName.kmwcd (▼) File: 0010_20210409_092708.kmwcd (▲)

Euclidean distances for FAPEC and Gzip

Filename	FAPEC dist.	GZIP dist.	
0003_20200428_103716_ShipName.kmwcd	5.0696	12.2123	
0004_20200428_093723_ShipName.kmwcd	2.6879	6.9850	
0039_20200428_115408_ShipName.kmwcd	5.2258	16.4260	
0010_20210409_092708.kmwcd	13.6912	28.4271	

FAPEC is the best option.

- 1 Introduction
- 2 The FAPEC data compressor
- 3 Negentropy: a scale invariant metric
- 4 Wave stage
- **6** KMALL stage
- **6** Conclusions

- Wave stage:
 - Linear predictor.
 - A bit worse ratios than those of FLAC.
 - Faster than FLAC.
- KMALL stage:
 - Tailored algorithm which takes advantage of the correlation between beams.
 - Better ratios than those of Gzip.
 - Faster than Gzip.
- Negentropy increases for all the dataset.
- All the goals are fulfilled.

- Analyze the entropy of each beam to detect zones with low entropy.
- Explore audio encoding algorithms such as TAK to improve the Wave stage.
- Add a new algorithm to the KMALL stage to also compress MRZ datagrams.
- Find a relation between negentropy and FAPEC ratio.

Thank you

Linear invariance of negentropy

Negentropy is a particular case of the Kullback–Leibler divergence:

$$J(X) = \int f(x) \ln \frac{f(x)}{\phi(x)} dx$$

As Kullback–Leibler divergence is invariant to any invertible change of coordinates, such is negentropy.

- The Wave stage is being deployed in two cubesats constellations from DAPCOM clients.
- Clients have reported that FLAC can be unstable.
- Custom losses for proprietary IQ formats.

Beyond Gzip: RAR & Zstd

Comparison of FAPEC, GZIP, RAR and Zstd

File: 0003_20200428_103716_ShipName.kmwcd (×) File: 0010_20210409_092708.kmwcd (•)

Thirty-four shades of KMWCD

