9 Compléments sur les suites

I – Propriétés éventuelles d'une suite

1 - Suites monotones

Définition 9.1 – Soit (u_n) une suite réelle.

• (u_n) est dite **strictement croissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n < u_{n+1}.$$

• (u_n) est dite **strictement décroissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n > u_{n+1}.$$

• (u_n) est dite **croissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n \leqslant u_{n+1}.$$

• (u_n) est dite **décroissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n \geqslant u_{n+1}.$$

La suite (u_n) est dite **monotone** (resp. **strictement monotone**) lorsqu'elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

Méthode 9.2 - Montrer qu'une suite est croissante ou décroissante

Pour établir qu'une suite est monotone, on peut

1. Étudier le signe de la différence $u_{n+1} - u_n$. En effet, on a

$$(u_n)$$
 croissante $\iff \forall n \in \mathbb{N}, \quad u_{n+1} - u_n \geqslant 0,$
 (u_n) décroissante $\iff \forall n \in \mathbb{N}, \quad u_{n+1} - u_n \leqslant 0.$

2. Lorsque tous les termes de la suite (u_n) sont strictement positifs, comparer $\frac{u_{n+1}}{u_n}$ et 1. En effet, dans ce cas, on a

$$(u_n)$$
 croissante $\iff \forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} \geqslant 1,$ (u_n) décroissante $\iff \forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} \leqslant 1.$

Exemple 9.3 -

1. La suite (u_n) définie par $u_0 = 1$ et pour tout entier n, $u_{n+1} = u_n^2 + u_n + 1$ est strictement croissante. Nous avons $u_{n+1} - u_n = u_n^2 + 1 > 0$. La suite (u_n) est donc strictement croissante.

2. La suite (u_n) définie pour tout entier n par $u_n = \frac{2^n}{n+1}$ est strictement croissante. La suite (u_n) est à termes strictement positifs et pour tout entier naturel n,

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{n+2} \times \frac{n+1}{2^n} = \frac{2 \times (n+1)}{n+2} = \frac{2n+2}{n+2} = 1 + \frac{n}{n+2}.$$

Ainsi, la suite (u_n) est à termes strictement positifs et pour tout entier naturel n, $\frac{u_{n+1}}{u_n} \ge 1$ donc la suite (u_n) est croissante.

Exemple 9.4 –

· Cas des suites arithmétiques.

Soit (u_n) une suite arithmétique de raison r. Alors $u_{n+1} = u_n + r$ et donc

$$u_{n+1} - u_n = r.$$

La monotonie de la suite dépend donc du signe de r.

- 1. Si $r \ge 0$, alors $u_{n+1} u_n \ge 0$ et donc (u_n) est croissante.
- 2. Si $r \le 0$, alors $u_{n+1} u_n \le 0$ et donc (u_n) est décroissante.

Si $r \ge 0$, la suite (u_n) est croissante.

Si $r \leq 0$, la suite (u_n) est décroissante.

• Cas des suites géométriques.

Soit (u_n) une suite géométrique de raison q et de premier terme u_0 .

$$u_{n+1} - u_n = u_0 \times q^{n+1} - u_0 \times q^n = u_0 \times q^n \times (q-1).$$

La monotonie de la suite dépend du signe de u_0 , q^n et (q-1).

- 1. Si q < 0, alors q^n est positif pour n pair, négatif pour n impair donc la suite n'est pas monotone.
- 2. Si q > 0, alors la suite est monotone, croissante ou décroissante selon le signe du produit $u_0 \times (q-1)$.

2 – Suite majorée/minorée/bornée

Définition 9.5 – Soit (u_n) une suite réelle.

• (u_n) est dite **majorée** par M si

 $\forall n \in \mathbb{N}, \quad u_n \leqslant M.$

• (u_n) est dite **minorée** par m si

 $\forall n \in \mathbb{N}, \quad u_n \geqslant m.$

• (u_n) est dite **bornée** si elle est à la fois majorée et minorée.

Exemple 9.6 – La suite (u_n) définie pour tout entier n par $u_n = \frac{3n^2}{n^2+1}$ est majorée par 3.

Pour tout entier n, on a

$$u_n - 3 = \frac{3n^2}{n^2 + 1} - 3 = \frac{3n^2 - 3(n^2 + 1)}{n^2 + 1} = \frac{-3}{n^2 + 1}.$$

Or, -3 < 0 et $n^2 + 1 > 0$ donc $\frac{-3}{n^2 + 1} < 0$. Autrement dit, $u_n - 3 < 0$ soit $u_n < 3$. Donc, la suite (u_n) est bien majorée par 3.

II - Limite d'une suite réelle

1 – Limite infinie

Définition 9.7 –

• On dit qu'une suite (u_n) admet une limite égale à $+\infty$ quand n tend vers $+\infty$ si u_n prend des valeurs **positives** aussi grandes que l'on veut, pourvu que l'on choisisse n suffisamment grand. On écrit

$$\lim_{n\to+\infty}u_n=+\infty.$$

• On dit qu'une suite (u_n) admet une limite égale à $-\infty$ quand n tend vers $+\infty$ si u_n prend des valeurs **négatives** aussi grandes que l'on veut, pourvu que l'on choisisse n suffisamment grand. On écrit

$$\lim_{n\to+\infty}u_n=-\infty.$$

Exemple 9.8 – La suite définie pour tout entier n par $u_n = n^2$ tend vers $+\infty$ en $+\infty$. On a $\lim_{n \to +\infty} n^2 = +\infty$.

2- Limite finie

Définition 9.9 – Soit (u_n) une suite définie sur **N** et ℓ un réel.

1. Dire que la suite (u_n) admet pour **limite** le réel ℓ signifie que u_n devient aussi proche que l'on veut de ℓ pourvu que l'on choisisse n suffisamment grand. On écrit

$$\lim_{n\to+\infty}u_n=\ell.$$

2. Une suite qui admet pour limite un réel ℓ est dite **convergente**.

Exemple 9.10 – La suite définie pour tout entier $n \ge 1$ par $u_n = 1 - \frac{1}{n^2}$ tend vers 1 en $+\infty$.

On a
$$\lim_{n \to +\infty} 1 - \frac{1}{n^2} = 1$$
.

Proposition 9.11

La suite (u_n) converge vers un réel ℓ si et seulement si $\lim_{n \to +\infty} u_n - \ell = 0$.

Remarque 9.12 – Une suite peut ne pas admettre de limite. Par exemple la suite de terme général $(-1)^n$ prend alternativement les valeurs 1 et -1. Elle n'admet donc pas de limite.

III - Lien entre convergence et inégalités

1 - Minoration et majoration

Proposition 9.13

Soit (u_n) et (v_n) deux suites. On suppose que

$$\forall n \in \mathbb{N}, \quad u_n \leqslant v_n.$$

• Si (u_n) et (v_n) convergent, alors

$$\lim_{n\to+\infty}u_n\leqslant\lim_{n\to+\infty}v_n.$$

• Si au contraire $\lim_{n \to +\infty} v_n = -\infty$, alors (u_n) diverge et

$$\lim_{n\to+\infty}u_n=-\infty.$$

• Enfin, si $\lim_{n \to +\infty} u_n = +\infty$, alors (v_n) diverge et

$$\lim_{n\to+\infty}\nu_n=+\infty.$$

Exemple 9.14 – Soit (v_n) définie par

$$\forall n \in \mathbb{N}, \quad \nu_n = (2 + (-1)^n) n.$$

En posant $u_n = n$ pour tout n, on a bien

$$\forall n \in \mathbb{N}, \quad u_n \leqslant v_n.$$

C'est pourquoi on peut affirmer que

$$\lim_{n\to+\infty}v_n=+\infty.$$

2- Théorème des gendarmes

Théorème 9.15

Soient (u_n) , (v_n) , et (w_n) trois suites telles que

$$u_n \leqslant v_n \leqslant w_n$$
.

Si $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} w_n = \ell$, alors (v_n) converge et

$$\lim_{n\to+\infty}v_n=\ell.$$

Exemple 9.16 – Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par

$$u_n = \frac{1}{2n^2 + (-1)^n}.$$

Alors, pour tout $n \in \mathbb{N}$, on a

$$\frac{1}{2n^2+1} \leqslant u_n \leqslant \frac{1}{2n^2-1}$$

Or

$$\lim_{n \to +\infty} \frac{1}{2n^2 + 1} = 0 \qquad \text{et} \qquad \lim_{n \to +\infty} \frac{1}{2n^2 - 1} = 0$$

Donc, d'après le théorème des gendarmes, on a

$$\lim_{n\to+\infty}u_n=0$$

3 - Théorème de convergence monotone

Théorème 9.17 - Théorème de convergence monotone

- Si (u_n) est une suite croissante et majorée, alors (u_n) converge.
- Si (u_n) est une suite décroissante et minorée, alors (u_n) converge.

Exemple 9.18 – Soit (u_n) la suite définie pour tout entier naturel n par

$$u_{n+1} = u_n - u_n^2$$
 et $u_0 = \frac{1}{2}$.

1. Étudier les variations de la suite (u_n) .

Pour tout entier n, on a

$$u_{n+1} - u_n = u_n - u_n^2 - u_n = -u_n^2 \le 0.$$

Donc, la suite (u_n) est décroissante.

2. Montrer par récurrence que $u_n \in [0;1]$ pour tout entier naturel n.

Notons $\mathcal{P}(n)$ la propriété " $u_n \in [0;1]$ ".

Initialisation : $u_0 = \frac{1}{2} \in [0; 1]$. Ainsi, $\mathcal{P}(0)$ est vraie.

Hérédité : Soit $n \in \mathbb{N}$. Supposons $\mathscr{P}(n)$ vraie et montrons que $\mathscr{P}(n+1)$ l'est aussi.

Par hypothèse de récurrence, $u_n \in [0;1]$, donc $u_n \geqslant u_n^2$. Ainsi, $u_{n+1} = u_n - u_n^2 \geqslant 0$. Par ailleurs, puisque $u_n^2 \geqslant 0$, on a $u_{n+1} = u_n - u_n^2 \leqslant u_n \leqslant 1$. Bref, on a

$$0 \leqslant u_{n+1} \leqslant 1$$
, *i.e.*, $u_{n+1} \in [0;1]$.

Finalement, $\mathcal{P}(n+1)$ est vraie et la propriété \mathcal{P} est héréditaire.

Conclusion : La propriété \mathcal{P} est vraie pour tout $n \in \mathbb{N}$, à savoir

$$\forall n \in \mathbb{N}, \quad u_n \in [0;1]$$

3. En déduire que (u_n) converge.

La suite (u_n) est décroissante et minorée par 0. Donc, d'après le théorème, elle converge.

4. Déterminer sa limite ℓ .

On a $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1} = \ell$. Or, $u_{n+1} = u_n - u_n^2$ donc en passant à la limite quand n tend vers l'infini, on obtient

$$\ell = \ell - \ell^2$$

Autrement dit, $\ell^2 = 0$ donc $\ell = 0$. Ainsi

$$\lim_{n\to+\infty}u_n=\ell.$$