Problem set 3 solutions

Math 521 Section 001, UW-Madison, Spring 2024

February 15, 2024

1. Let $x \in \mathbb{R}$. Prove that

$$A = \sup\{q \in \mathbb{Q} \mid q < x\} = x.$$

Solution. (i) By definition, q < x for all $q \in A$, so x is an upper bound.

- (ii) Suppose $\gamma < x$. By density of \mathbb{Q} in \mathbb{R} , there exists $q \in Q$ with $\gamma < q < x$. But then $q \in A$, so γ is not an upper bound for A.
- 2. Rudin 1.6-9, 1.12-14.
 - (1.6) We shall assume the following facts:
 - $b^n \cdot b^m = b^{m+n}$, for $m, n \in \mathbb{Z}$ (provable by induction)
 - $b^{m \cdot n} = (b^m)^n$, for $m, n \in \mathbb{Z}$ (provable by induction)
 - Since b > 1, $m < n \iff b^m < b^n$ (follows from Pset 2, problem 2c)
 - If x, y > 0, then $x^n = y^n \iff x = y$ (uniqueness of $\sqrt[n]{\cdot}$)
 - If $0 \le x < y$, then $0 \le x^n < y^n$ for all $n \in \mathbb{N}$ (similar to Pset 2, problem 2a)
 - The binomial formula:

$$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2 + \dots + \frac{n(n-1)}{2}x^2y^{n-2} + nxy^n + y^n.$$

(a) First note that since $\frac{m}{n} = \frac{p}{q}$, we have mq = np. Denote k := mq = np. To prove the claimed equality, since both sides are positive, it suffices to show

that the k'th powers of the LHS and the RHS are the same. We have:

$$(LHS)^{k} = ((b^{m})^{1/n})^{k} = ((b^{m})^{1/n})^{np}$$
$$= (((b^{m})^{1/n})^{n})^{p}$$
$$= (b^{m})^{p} = b^{mp}.$$

On the other hand, we have

$$(RHS)^{k} = ((b^{p})^{1/q})^{k} = ((b^{p})^{1/q})^{qm}$$
$$= (((b^{p})^{1/q})^{q})^{m}$$
$$= (b^{p})^{m} = b^{mp}.$$

Since $LHS^k = RHS^k$, we must have LHS = RHS, as desired.

(b) Let $r = \frac{m}{n}$, $s = \frac{p}{q}$. Then

$$r + s = \frac{mq + np}{nq}.$$

We need only check that $LHS^{nq} = RHS^{nq}$. We have

$$LHS^{nq} = (b^{r+s})^{nq} = b^{mq+np},$$

whereas

$$(b^r b^s)^{nq} = b^{rnq} b^{snq}$$
$$= b^{mq} b^{pn}$$
$$= b^{mq+np}.$$

Before doing (c), we will prove the following:

Lemma 0.1. If b > 1 and s < t, with both $s, t \in \mathbb{Q}$, then $b^s < b^t$.

Proof. Taking a common denominator, we may write $s = \frac{m}{q}$ and $t = \frac{n}{q}$, with q > 0. Since s < t, we have m < n. If $b^s \ge b^t$, then since b^s, b^t and q are positive, we have $b^{sq} \ge b^{tq}$. But then $b^m \ge b^n$, which is impossible since m < n and b > 1.

(c) Let

$$B(x) = \{b^t \mid t \le x, t \in \mathbb{Q}\}.$$

Suppose that $x \in \mathbb{Q}$. We need to show that $\sup B(x) = b^x$.

- (i) If t < x then $b^t < b^x$ by Lemma 0.1. If t = x then $b^t = b^x$. So b^x is an upper bound.
- (ii) Since $b^x \in B(x)$, it must be the least upper bound as usual.

Before proving (d), we will prove the following two Lemmas:

Lemma 0.2. For any x > 1 and y > 1, there exists $n \in \mathbb{N}$ such that $x^{\frac{1}{n}} < y$.

Proof. This is equivalent to choosing n such that $x < y^n$. Write $y = 1 + \alpha$, with $\alpha > 0$. By the binomial formula, we have

$$y^{n} = (1 + \alpha)^{n} = 1 + n\alpha + \dots + \alpha^{n}$$

$$\geq 1 + n\alpha.$$

Since $\alpha > 0$, by the Archimedean property, we can choose n large enough that $1 + n\alpha > x$. Then $y^n \ge 1 + n\alpha > x$, as desired.

Lemma 0.3. Let $\tilde{B}(x) = \{b^t \mid t < x, t \in \mathbb{Q}\}$. Then $\sup \tilde{B}(x) = \sup B(x)$.

Proof. (\leq) is clear because $\tilde{B}(x) \subset B(x)$.

We now show that strict inequality < is impossible, by contradiction. Note first that strict inequality is only possible if $t \in \mathbb{Q}$, since otherwise $\tilde{B}(x) = B(x)$ are exactly the same sets. By (c), we have $\sup B(x) = b^x$. So we will assuming (for contradiction) that

$$\sup \tilde{B}(x) < b^x.$$

In particular,

$$1 < \frac{b^x}{\sup \tilde{B}(x)}.$$

Applying the previous Lemma, we may choose $n \in \mathbb{N}$ such that

$$1 < b^{\frac{1}{n}} < \frac{b^x}{\sup \tilde{B}(x)}.$$

But then

$$\sup \tilde{B}(x) < b^{x - \frac{1}{n}}.$$

Since $x \in \mathbb{Q}$ and $\frac{1}{n} \in \mathbb{Q}$, we have $x - \frac{1}{n} \in \mathbb{Q}$, so $b^{x - \frac{1}{n}} \in \tilde{B}(x)$. This is a contradiction.

(d) We need to show that $\sup B(x+y) = \sup B(x) \sup B(y)$. Let $L = \sup B(x+y)$, $M = \sup B(x)$ and $N = \sup B(y)$.

(\leq) By Lemma 0.3, we have $\sup \tilde{B}(x+y) = \sup B(x+y) = L$. Let r < x+y. We claim that r = t+s for some t < x and s < y. To prove this, note that

$$r - y < x$$
.

By density of \mathbb{Q} in \mathbb{R} , we may choose $t \in \mathbb{Q}$ with r - s < t < x. Rearranging, we have r - t < y. Let $s = r - t \in \mathbb{Q}$. Then we have t < x, s < y, and s + t = r, as claimed. We now have

$$b^r = b^{s+t} = b^s b^t \le MN,$$

since $s \le y$ and $t \le x$. Since $r \in \tilde{B}(x+y)$ was arbitrary, we conclude that MN is an upper bound for $\tilde{B}(x+y)$, as desired.

We now assume for contradiction that strict inequality (<) holds. Then

$$L < MN$$
.

Note that for $n \in \mathbb{N}$, we have

$$\left(M - \frac{1}{n}\right)\left(N - \frac{1}{n}\right) = MN - \frac{1}{n}\left(M + N\right) + \frac{1}{n^2} \ge MN - \frac{M + N}{n}.$$

By the Archimedean property, we may choose n so that M + N < n(MN - L). Then

$$MN - L > \frac{M + N}{n}$$

and

$$\left(M - \frac{1}{n}\right)\left(N - \frac{1}{n}\right) \ge MN - \frac{M+N}{n} > L.$$

Now, since $M = \sup \tilde{B}(x)$, we may choose a rational t < x such that $M - \frac{1}{n} \le b^t < M$. Similarly we may choose a rational s < y such that $N - \frac{1}{n} \le b^s < N$. This gives

$$L < \left(M - \frac{1}{n}\right)\left(N - \frac{1}{n}\right) \le b^s b^t = b^{s+t} \in B(x+y).$$

But since $L = \sup B(x + y)$, this is a contradiction.

- (1.7) (a) We have $b^n 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + 1) \ge n(b-1)$, since there are n terms on the RHS and each is greater than or equal to one.
 - (b) This follows by applying (a) with $b^{1/n}$ in place of b.
 - (c) Since t-1>0, we may cross-multiply to obtain $n(t-1)>b-1\geq n(b^{1/n}-1)$. The result follows by cancelling n and adding 1 to both sides.
 - (d) We can either use Lemma 0.2 above or use (c) following Rudin's instructions.
 - (e) Same as (d).
 - (f) This follows the usual argument using (d) and (e).
 - (g) If suffices to show that if x < z, for $x, z \in \mathbb{R}$, then $b^x < b^z$. We have this for $t, s \in \mathbb{Q}$ by Lemma 0.1. Let $t, s \in \mathbb{Q}$ with $x \le t < s \le z$. Then $b^x = \sup B(x) \le b^t < b^s \le \sup B(y) = b^y$.
- (1.8) We have $i^2 = -1$ in \mathbb{C} . But -1 < 0, so if \mathbb{C} were an ordered field, this would contradict Proposition 1.18d.
- (1.9) (i) We need to show that either w < z, w = z, or w > z. Either a < c, in which case w < z, or a > c, in which case w > z, or a = c. In case a = c, either b > d, in which case w > z, or b < d, in which case w < z, or b = d, in which case both a = c and b = d, so w = z. So we're done.
 - (ii) Suppose z < w < u, and write r = e + if. In the first case, a < c. Then we must have $c \le e$, in which case a < e, so z < u and we're done. In the second case, a = c and b < d. Then either c < e, in which case a < e, or c = e and d < f, in which case a = c = e and a < d < f, so z < u and we're done.

We claim that the least-upper-bound property fails. We must exhibit a set E which is bounded above but does not have a least upper bound in \mathbb{C} with the lexicographic order. Take the imaginary axis

$$E = \{ iy \mid y \in \mathbb{R} \} \subset \mathbb{C}.$$

This is bounded above by $1 \in \mathbb{C}$.

Suppose that z = a + bi is the least upper bound of E. Then we must have $a \ge 0$, and if a > 0 then a/2 < a + bi is also an upper bound, so z is not the least upper

bound. Hence a = 0, so z = bi. But then letting y = b + 1, we have (b + 1)i > z and $(b + 1)i \in E$, so z is again not an upper bound. This is a contradiction.

(1.12) This follows by induction from Theorem 1.37(e), as follows. The base case n = 1 is trivial. Suppose that the inequality is true for n - 1, we have

$$|z_1 + \dots z_n| = |(z_1 + \dots z_{n-1}) + z_n| \le |z_1 + \dots + z_{n-1}| + |z_n|$$

$$\le |z_1| + \dots + |z_{n-1}| + |z_n|.$$

This completes the induction.

(1.13) Note that y + (x - y) = x, so by the triangle inequality (Theorem 1.37(e)), we have

$$|x| \le |y| + |x - y|.$$

This gives

$$|x| - |y| \le |x - y|.$$

Reversing the roles of x and y, we also have

$$|y| - |x| \le |y - x| = |x - y|$$
.

Overall, we obtain

$$||y| - |x|| \le |x - y|$$

as desired.

(1.14) We calculate

$$|1+z|^2 + |1-z|^2 = (1+z)(1+\bar{z}) + (1-z)(1-\bar{z})$$
$$= 1 + 2z\bar{z} + |z|^2 + 1 - 2z\bar{z} + |z|^2$$
$$= 2 + 2|z|^2 = 4.$$

- 3. Rudin 2.2-4.
 - (2.2) We need to assume the fact that for any such equation there are at most n distinct roots $z_1, \ldots, z_n \in \mathbb{C}$. (This follows from the "division algorithm," whereby one can factor any polynomial over \mathbb{C} into the product of its roots.)

Now, the set of all polynomials of degree n is countable, since it is in bijection with \mathbb{Z}^{n+1} . Since each polynomial has at most n roots, the set of roots of n'th degree polynomials is a countable union of finite sets, hence countable. Taking the union over n, we obtain the set of all algebraic numbers as a countable union of countable sets, which is therefore countable.

(2.3) Since the set of algebraic numbers is countable, it must be a proper subset of \mathbb{R} , which is uncountable.

- (2.4) Let $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$. If B were countable then since A is countable, $\mathbb{R} = A \cup B$ would also be countable. But \mathbb{R} is uncountable.
- 4. (Extra credit) Write down an explicit bijection between the sets $\{0,1,2,3\}^{\mathbb{N}}$ and $\{0,1\}^{\mathbb{N}}$.

Solution. We can make a bijection between $\{0,1,2,3\}$ and $\{0,1\} \times \{0,1\}$ by taking

$$\{0,1,2,3\} \rightarrow \{0,1\} \times \{0,1\}$$

 $0 \mapsto (0,0)$
 $1 \mapsto (0,1)$
 $2 \mapsto (1,0)$
 $3 \mapsto (1,1)$.

To construct a bijection between $\{0,1,2,3\}^{\mathbb{N}}$ and $\{0,1\}^{\mathbb{N}}$, we can do the following: a sequence

$$(3,1,0,2,\ldots)$$

gets mapped to the sequence

$$(1,0,0,1,0,0,1,0,\ldots).$$

To write this down formally, suppose that our bijection from $\{0,1,2,3\} \rightarrow \{0,1\} \times \{0,1\}$ is written as

$$a \mapsto (f(a), g(a)).$$

Then our map is given by

$$\{0,1,2,3\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$$

 $(a_1,a_2,a_3,\ldots) \mapsto (f(a_1),g(a_1),f(a_2),g(a_2),f(a_3),g(a_3),\ldots).$