第3回 1変数関数の微分

問題 **3.1.** $x \to 0$ とするとき, 以下が成立することを示せ.

(1) $o(x^n)o(x^m) = o(x^{n+m})$ (2) $x^no(x^m) = o(x^{n+m})$ (3) $m \le n$ ならば $o(x^m) \pm o(x^n) = o(x^m)$

(4) 定数 C に対して $Co(x^n) = o(x^n)$

問題 3.2. $f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n) = b_0 + b_1 x + \dots + b_n x^n + o(x^n) (x \to 0)$ ならば、 $a_k = b_k (k = 0, 1, 2 \dots)$ が成立することを示せ.

問題 3.3. $f: \mathbb{R} \to \mathbb{R}$ が微分可能な偶関数であるとき, f' は奇関数であることを示せ. 偶関数と奇関数を入れ替えても主張が成立することを示せ.

問題 **3.4.** $f: \mathbb{R} \to \mathbb{R}$ が c で微分可能であるとき,

$$f'(c) = \lim_{n \to \infty} n \left(f(c + \frac{1}{n}) - f(c) \right)$$

が成立することを示せ、また、この逆は成立しないことを示せ、(右辺の極限が存在しても c で微分可能とは限らない、ということ)

問題 **3.5.** $\alpha > 0$ とする. $[0, \infty)$ 上の関数 f を f(0) = 0,

$$f(x) = x^{\alpha} \sin \frac{1}{x} \quad (x \neq 0)$$

と定める. 以下を満たす α の範囲をそれぞれ求めよ.

- (1) f は $[0,\infty)$ 上連続.
- (2) f は $[0,\infty)$ 上微分可能.
- (3) f は [0,∞) 上 2 階微分可能.

問題 3.6.

- (1) 半径 r の球に内接して体積が最大の直円柱の高さを求めよ.
- (2) 半径 r の球に内接して体積が最大の直円錐の高さを求めよ.

問題 3.7. 以下の不等式を示せ.

$$\frac{1}{x} + \frac{1}{\log(1-x)} < 1 \quad (x < 1, x \neq 0)$$

問題 3.8. $f: \mathbb{R} \to \mathbb{R}$ が f(x+y) = f(x)f(y) を満たすとき, f は微分可能でかつ f'(x) = f(x) であることを示せ.

問題 **3.9.** $a > b > 0, n \in \mathbb{N}$ とする. このとき,

$$a^{1/n} - b^{1/n} \le (a - b)^{1/n}$$

が成立することを示せ.

問題 **3.10.** [0,1] 上一様連続で (0,1) 上微分可能であるが、導関数が (0,1) 上有界でないものの例を挙げよ.

問題 3.11. f が 2 回微分可能ならば、

$$f(a+h) - 2f(a) + f(a-h) = h^2 f''(a+\theta h) \quad (-1 < \theta < 1)$$

なる θ が存在することを示せ.

問題 3.12. [a,b] 上で微分可能な関数 f で, f(a)=0 かつ $|f'(x)| \leq C|f(x)|$ なる定数 C が存在 するとする. このとき $f\equiv 0$ なることを示せ.

問題 **3.13.** f は I=[a,b] 上微分可能とする. f'(a) と f'(b) の間の任意の数 k に対して、ある $c\in(a,b)$ が存在して、f'(c)=k なることを示せ.

問題 3.14.

$$h(x) = \begin{cases} 0 & (x < 0) \\ 1 & (x \geqslant 0) \end{cases}$$

と定める. $f: \mathbb{R} \to \mathbb{R}$ で, 任意の $x \in \mathbb{R}$ に対して f'(x) = h(x) なるものは存在しないことを示せ.

問題 3.15.

(1) ルシャンドルの多項式

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

の根はすべて実数で, (-1,1) の中にあることを示せ.

(2) ラゲールの多項式

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$$

はn個の正の根をもつことを示せ.

(3) エルミートの多項式

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

はn個の実根をもつことを示せ.

問題 **3.16.** $f(x) = xe^x : (-1, \infty) \to (-1/e, \infty)$ の逆写像を g とおく. g'(0) を求めよ.

問題 3.17. 関数 $f,g:(-\sqrt{2},\sqrt{2})\to\mathbb{R}$ を $f(x)=x^2\cos^{-1}(1-x^2)$, $g(x)=x\cos^{-1}(1-x^2)$ と定める.

- (1) f,g の 0 における微分係数を求めよ.
- (2) $\lim_{x\to 0} f'(x)$, $\lim_{x\to 0} g'(x)$ を求めよ.
- (3) f,g の導関数は 0 で微分可能か.

問題 3.18. 甲堂君は映画の座席を予約する際にサイトで調べたところ, スクリーンの上辺と地面との距離が a , スクリーンの下辺と地面との距離が b であることが分かった. スクリーンを見込む角度が大きくなるよう鑑賞するには, スクリーンからどれだけ離れた座席を予約すればよいか. ただし、映画館の床は水平とする (!?).

問題 **3.19.** 次の関数の第 n 次導関数を求めよ.

(1)
$$\frac{1}{x^2 - 1}$$
 (2) xe^x (3) $\frac{x}{(1 - x)^2}$ (4) $\sin x$ (5) $e^x \sin x$

問題 **3.20.** $f(x) = e^{x^2}$ に対し, $f^{(n)}(0)$ を求めよ.

問題 3.21. (テイラー近似式の一意性)

 $f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$ を f の a における n 次のテイラー近似式と呼ぶこ とにする. つまり漸近展開は, n 次以下の多項式 $p_n(x)$ が a における f の n 次テイラー近似式な らば,

$$\lim_{x \to a} \frac{f(x) - p_n(x)}{(x - a)^n} = 0$$

が成立することを主張している. 実はこの逆も成立する. つまり, n 次以下の多項式 $q_n(x)$ が,

$$\lim_{x \to a} \frac{f(x) - q_n(x)}{(x - a)^n} = 0$$

を満たすならば, $q_n(x)$ は f の a における n 次テイラー近似式である. これを示せ.

問題 3.22. ゼミ資料の Cor 2.8 漸近展開では C^n 級という仮定を課しているが、実は n 回微分可能 で十分である. これを示せ.

問題 3.23. 以下の関数は C^{∞} 級であるが、テイラー展開不可能であることを示せ、

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

問題 **3.24.** 次の関数のマクローリン展開を求めよ. x の範囲も求めること.

(1) $\sin x$ (2) $\cos x$ (3) e^x (4) $\log x$ (5) $(1+x)^{\alpha}$ (6) $\frac{1}{3+2x}$ (7) $\frac{x}{1+x^2}$ (8) $\frac{x-1}{2x^2+3x-2}$ (9) $\sinh x$ (10) $\log(1+x-6x^2)$ (11) 2^x

(8)
$$\frac{x-1}{2x^2+3x-2}$$
 (9) $\sinh x$ (10) $\log(1+x-6x^2)$ (11) 2^x

問題 3.25. 次の関数の原点での漸近展開を x^4 の項まで求めよ.

(1)
$$\frac{1}{1+x+x^2}$$
 (2) $\log \cos x$ (3) $e^x \sin x$ (4) $e^{\cos x}$

問題 3.26. e の値を小数第 3 位まで決定せよ. ただし, 2 < e < 3 は既知としてよい.

問題 **3.27.** *e* は無理数であることを示せ.

問題 3.28. 次の極限が 0 でない値になるように α を定めよ.

$$(1) \lim_{x \to 0} \frac{\sin x - x \cos x}{x^{\alpha}} \qquad (2) \lim_{x \to 0} \frac{\cos x - e^x + x}{x^{\alpha}}$$

問題 **3.29.** e^{e-2} と 2 はどちらが大きい?

問題 3.30. 次の極限を求めよ.

(1)
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$$
 (2) $\lim_{x \to 0} \frac{\log(\tan 2x)}{\log(\tan x)}$ (3) $\lim_{x \to 0} \frac{\sqrt{1 + x} - 1 - x - \frac{1}{2}x + \frac{1}{8}x^2}{x^3}$

$$(1) \lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x} \qquad (2) \lim_{x \to 0} \frac{\log(\tan 2x)}{\log(\tan x)} \qquad (3) \lim_{x \to 0} \frac{\sqrt{1 + x} - 1 - x - \frac{1}{2}x + \frac{1}{8}x^2}{x^3}$$

$$(4) \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x + x^2}\right) \qquad (5) \lim_{x \to 1} x^{\frac{1}{1 - x}} \qquad (6) \lim_{x \to \infty} x^{\frac{1}{x}} \qquad (7) \lim_{x \to \infty} x \left\{e - \left(1 + \frac{1}{x}\right)^x\right\}$$

問題 **3.31.** $\alpha > 0$ に対し, 以下の極限を示せ.

$$(1) \lim_{x \to \infty} \frac{x^{\alpha}}{e^x} = 0$$

$$(2) \lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0$$

$$(3) \lim_{x \to 0+} x^{\alpha} \log x = 0$$

問題 **3.32.** ニュートンの近似法により, $x^5 - 30 = 0$ の根を小数第 2 位まで求めよ.

問題 **3.33.** f が (a,b) 上凸であるとき, $n=2^m$ に対し,

$$f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right) \leqslant \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n}$$

が成立することを示せ.

問題 3.34.

- (1) f は (a,b) 上微分可能とする. (a,b) 上で f'(x) が非減少であることと, f は (a,b) 上で下に凸 であることは同値であることを示せ.
- (2) f は (a,b) 上 C^2 級とする. (a,b) 上で f''(x) > 0 であることと, f は (a,b) 上で下に凸であ ることは同値であることを示せ.

問題 **3.35.** f, g は I 上で定まる凸関数とする.

- (1) $h(x) = \max f(x), g(x)$ は凸関数であることを示せ.
- (2) $j(x) = \min f(x), g(x)$ は凸関数とは限らないことを示せ.
- (3) fg は凸関数とは限らないことを示せ.

問題 **3.36.** f は (a,b) 上で凸かつ逆写像をもつとする. このとき f の逆写像は凸か.

問題 **3.37.** f は \mathbb{R} 上で微分可能とする. f が凸であることと, 任意の x,y に対して $f(x)-f(y) \geqslant$ f'(x)(x-y) が成立することは同値であることを示せ.

問題 3.38. x,y,z は三角形をなす 3 点とする. 以下の不等式を示せ.

$$(1)\,\sin x + \sin y + \sin z \leqslant \frac{3\sqrt{3}}{2}$$

$$(2)\,\sin x\sin y\sin z\leqslant\frac{3\sqrt{3}}{8}$$

$$(3) \ \frac{1}{3} \left(\frac{1}{\sin x} + \frac{1}{\sin y} + \frac{1}{\sin z} \right) \geqslant \frac{2}{\sqrt{3}}$$

問題 3.39. a,b>0 , p>1 , 1/p+1/q=1 に対し, 以下の不等式を示せ.

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

問題 **3.40.** 自然数 a, b, c, d の組で,

$$a^{bc}b^{ca}c^{ab} = d^{abc}, a \leq b \leq c, d \geqslant 3$$

を満たすものをすべて求めよ.

問題 3.41. x_1, \dots, x_n は正の数で、 $\sum_{i=1}^n x_i = k$ を満たすとする. このとき、不等式

$$\sum_{i=1}^{n} x_i \log x_i \geqslant k \log \frac{k}{n}$$

が成立することを示せ.