Single-objective Optimization Problems

Main components of an optimization problem

Inputs (variables)

Output (objective)

Main components of an optimization problem

Formulating an optimization problem

Minimise: $f(x_1, x_2, ..., x_n)$ Suject to: Constraints

Optimization algorithm

Example: designing a table

Example: designing a table

The objective is to minimize the weight

Example: designing a table

Minimise: f(length, width) = 1*(Length + Width)

Suject to: 2 < length < 7
2 < width < 7

Search landscape of the table problem

Inputs:

width, length

Output:

weight

Table #1: W=10, L=10

Table #2: W=9 , L=10

Table #3: W=10, L=9

Table #4: W=9 , L=9

Search landscape of the table problem

Inputs:

width, length

Output:

weight

Table #1: W=10, L=10

Table #2: W=9 , L=10

Table #3: W=10, L=9

Table #4: W=9 , L=9

Inputs:

width, length

Output:

weight

8 tables

Inputs:

width, length

Output:

weight

50 tables

Inputs:

width, length

Output:

weight

100 tables

Inputs:

width, length

Output:

weight

Inputs:

width, length

Output:

weight

Constraints:

2< width <7

2< length <7

Search landscape

Inputs:

x , **y**

Output:

f(x,y)

Constraints:

$$(y \le 3.2) \lor (y \ge 3.4)$$

 $(x \le 2.2) \lor (x \ge 2.3)$
 $(x - 3)^2 + (y - 1)^2 \ge 0.1$
 $(x + 3)^2 + (y - 1)^2 \ge 0.3$
 $x^2 + y^2 \ge 1$
 $x \ne y$

Search landscape

Inputs:

x , **y**

Output:

f(x,y)

Constraints:

$$(y \le 3.2) \lor (y \ge 3.4)$$

 $(x \le 2.2) \lor (x \ge 2.3)$
 $(x - 3)^2 + (y - 1)^2 \ge 0.1$
 $(x + 3)^2 + (y - 1)^2 \ge 0.3$
 $x^2 + y^2 \ge 1$
 $x \ne y$

Difficulties of a real-world problem

- A large number of local solutions
- A large number of constraints
- Discrete variables
- Deceptive search space
- Multiple objectives
- Dynamically changing
- Uncertainties in inputs, outputs, or constraints
- Etc.