XN297 Low Power 2.4GHz GFSK Transceiver

PRODUCT INTRODUCTION (DRAFT VERSION V1.0)

Table of Contents

1.	Product Description	. 2
	Recommended Operating Conditions	
	Block Diagram	
	Main Parameters	
	Packages (QFN20)	
6.	Typical applications	. 4
7.	Precautions	. Е

1. Product Description

XN297 is a short-range transceiver chip, using GFSK modulation. Chip integrates an RF transceiver channels, GFSK modem and data links. Users only need to send / receive channel for simple setup, you can communicate. In Auto Transceive mode, the chip can automatically determine the response information according to data delivery / reception was successful, so retransmission, packet loss, continue to send and wait for other operations, simplifying the use the user program.

- Communication features
- Integrated data process and state control
- Transfer up to 64-byte packets
- Multi-level FIFO data storage
- 8Mbps SPI Interface rate
- Burst and Enhanced communication
- Automatic answer and automatic retransmission
- GFSK modulation
- RSSI detection
- Address Identify and CRC Check
- Support Multiceiver
- 50 meters communication distance
- Support of Hardware and software
- PCB layout / microstrip antenna / cost reduction BOM
- Hopping algorithm / current optimization / enhanced mode

2. Recommended Operating Conditions

Operating Voltage: 2.0~3.6V

- Operating temperature: -40°C~85°C

3. Block Diagram

4. Main Parameters

- Operating Frequency:2400~2483MHz
- Frequency Channel: 1MHz@1Mbps 2MHz@2Mbps
- Data Rate:1/2Mbps

- Crystal frequency: 16MHz±60ppm

- StandbyI:50uA

TX: 23mA@8dBm 15mA@1dBmRX: 14mA@1Mbps 15mA@2Mbps

(Unless otherwise specified, VCC = 3.3V, TA = 25°C)

		Conditions (Unless otherwise specified, VCC = 3.3 (1 ± 5 °%) V,	Limit			Unit
Characteristics	Symbol	7A = 25C, INOSC input signal frequency: 16 (1 \pm 6X 10-5) MHz,	Minimum	Typical	Maximum	
Power-down mode current	I _{CC-PD}	_		2.5		uA
Idle mode current	I _{CC-STD}	_		0.8		mA
Current emission mode	I _{CC-Tx}	Output power P _O = 0dBm		14.5		mA
Receive mode current	I _{CC-Rx}	_		17.5		mA
Available bandwidth fop	f _{OP}	_	2400		2483	MHz
Phase-locked loop frequency hopping interval	f _{PLL-res}	_	1		83	MHz
Rate	R_{GFSK}	_	1		2	Mbps
Channel spacing	f _{CHANNEL}		1			1MHz
The maximum output power	P _{O-Max}			- 11~11dBm		dBm
Output power	P _{OFC}		-9		10	dBm
The maximum amplitude of the received	RX_{max}	Class 9 pseudorandom code input error rate <0.1%			3	dBm
Receiver sensitivity @ 2Mbps		Class 9 pseudorandom code input error rate <0.1%		-88		dBm
Receiver sensitivity @ 1Mbps	RX _{SENS1M}	Class 9 pseudorandom code input error rate <0.1%		-91		dBm

5. Packages (QFN20)

Note: 1) identification of terminals area. Millimeters

Symbol	Size			symbolic numerical values	Size		
No	minimum	nominal	maximum		minimum	nominal	maximum
A			0.80	b	0.15		0.25
D			3.10	e		0.40	
Е			3.10	L	0.35		0.45
Z			0.78				

Figure 1 enclosure outlines

6. Typical applications

- Wireless mouse and keyboard
- Wireless gaming controller and toys
- Smart TV remote controller
- Active radio
- Smart Home and security systems
- Industrial sensors and wireless industrial equipment

7. Typical external components

Pin assignment

- Inductor 3 / capacitance 9 / Resistance 2
- 16MHz crystal oscillator 1

8. Precautions

- (1) The product is a CMOS device, storage, transport, use the process should pay attention to antistatic.
- (2) The device you want to use a good grounding.