INSA de Toulouse

Département GMM

BE - Processus de Poisson et Application en actuariat et fiabilité - 5 ModIA

Encadrant: Anthony Réveillac¹

A simple model of self-exciting counting process in a Cramér-Lundberg type model

Keywords: insurance, Hawkes processes, thinning method

Context of the project

The main goal of this project is to study a modification of the Cramér-Lundberg model where the counting process exhibits a so-called self-exciting feature. More precisely, recall the classical Cramér-Lundberg model for modelling the risk process (wealth) as:

$$R_t = u + ct - \sum_{i=1}^{N_t} Y_i, \quad t \ge 0.$$
 (1)

In this model it is assumed that the claim sizes Y_i 's and the counting process N are independent. In addition, the counting process has a constant intensity. However, in some practical situations, this last feature is not completely realistic. For instance, one main issue lies in the fact that for some contracts, the arrival of a claim increases the probability that another claim will occur shortly after. This property is captured by so-called "self-exciting" Poisson process such as the Hawkes process which has initially be introduced for modelling the arrival of earthquakes.

The main purpose of this project is to study a model of the form (1) where N is a integer-valued process that exhibits a so-called self-exciting structure meaning that the observation of a jump will increase the probability of observing new jumps.

Work to be performed

The work asked to the students goes in two different directions.

Theoretical results

First it is asked to the students to understand the model and the definition of the process N as in the section below.

¹anthony.reveillac@insa-toulouse.fr, Bureau 111 (Bâtiment GMM)

Numerical results

The second types of results is to perform numerical simulations for the premium in this model (using the thinning method, see for instance [1]). It will asked to compare them with the one obtained in the classical Cramér-Lundberg model. The numerical simulations, will be presented in a Notebook Python (only).

A simple model of self-exciting processes

The following model is inspired from the results in [2].

The main tool we are going to use is the thinning representation. We refer to [1] for a quick overview on the topic. Assume one is given a rectangle $[0,T] \times [0,M]$, T,M > 0 given and fixed. We simulate according to a Poisson random measure with intensity one some points $\mathcal{P} := \{(t_i, \theta_i), i = 1...n, n \sim \mathcal{P}(TM)\}$ in [0, M]. More precisely, we produce a sample of \mathcal{P} as follows.

```
Data: T,M n \sim \mathcal{P}(MT);
Simulate a vector of n-ordered uniform random variables (t_1, \ldots, t_n) on [0, T];
for i = 1..n do \mid \theta_i \sim \mathcal{U}([0, M]] end
Result: \mathcal{P} := \{(t_i, \theta_i), i = 1..n\}
Algorithm 1: Simulation of a sample of \mathcal{P}
```

For the following we fix:

$$0 < \mu < M; \quad \Phi(u) := \alpha e^{-\beta u} \mathbf{1}_{u>}; \quad 0 < \alpha < \beta.$$

The first pseudo-chaos

We set

$$N_t^{(1)} := \sum_{i=1}^{|\mathcal{P}|} \mathbf{1}_{\theta_i \le \mu} \mathbf{1}_{t_i \le t}, \ t \in [0, T].$$

We admit that $N^{(1)}$ is a Poisson process with intensity μ .

The second pseudo-chaos

We set

$$N_t^{(2)} := 2 \sum_{i_1=1}^{|\mathcal{P}|} \sum_{i_2=1; t_{i_2} > t_{i_1}}^{|\mathcal{P}|} \mathbf{1}_{\theta_{i_1} \le \mu} \mathbf{1}_{\mu < \theta_{i_2} \le \mu + \Phi(t_{i_2} - t_{i_1})} \mathbf{1}_{t_{i_2} \le t}, \ t \in [0, T].$$

Finally we set

$$N_t = N_t^{(1)} + N_t^{(2)}.$$

We admit that

$$\mathbb{E}[N_t^{(2)}] = 2 \int_0^t \int_0^{t_1} \int_0^M \int_0^M \mathbf{1}_{\theta_1 \le \mu} \mathbf{1}_{\mu < \theta_2 \le \mu + \Phi(t_2 - t_1)} d\theta_2 d\theta_1 dt_2 dt_1.$$

References

- [1] Y. Chen. Thinning algorithms for simulating point processes, 2016.
- [2] C. Hillairet and A. Réveillac. On the chaotic expansion for counting processes. *To appear in the Electronic Journal of Probability*, 2024.