Zusammenfassung Lineare Algebra II

Notation. Sofern nicht anders angegeben, bezeichne K im folgenden einen beliebigen Körper, V einen (möglicherweise unendlichdim.) K-Vektorraum und f einen Endomorphismus $V \to V$.

Definition. Zwei Matrizen $A, B \in K^{n \times n}$ heißen zueinander ähnlich, falls es eine Matrix $S \in GL(n, K)$ gibt mit $B = SAS^{-1}$.

Bemerkung. Dies definiert eine Äquivalenzrelation auf $K^{n\times n}$.

Definition. Eine Matrix $A \in K^{n \times n}$

- ist in **Diagonalform**, wenn A nur auf der Diagonalen von Null verschiedene Einträge besitzt.
- ist in **Triagonalform**, wenn A nur auf und oberhalb der Diagonalen von Null verschiedene Einträge besitzt.
- heißt diagonalisierbar bzw. triagonalisierbar, wenn A ähnlich zu einer Diagonal- bzw. Triagonalmatrix ist.

Ein Endomorphismus $f \in \text{End}(V)$ heißt diagonalisierbar bzw. triagonalisierbar, wenn es eine Basis von V gibt, sodass die darstellende Matrix von f bzgl. dieser Basis eine Diagonalmatrix ist.

Satz. Es sei $A \in K^{n \times n}$. Dann ist A als Matrix genau dann diagonalisierbar (triagonalisierbar), wenn der durch A beschriebene Endomorphismus $K^n \to K^n$ diagonalisierbar (triagonalisierbar) ist.

Definition. Sei $f \in \text{End}(V)$. Falls es ein $\lambda \in K$ und einen Vektor $v \in V \setminus \{0\}$ gibt, sodass $f(v) = \lambda v$, so heißt λ **Eigenwert** von f zum **Eigenvektor** v.

Satz. Sei $f \in \text{End}(V)$ und $(v_i)_{i \in I}$ eine Familie von Eigenvektoren von f zu paarweise verschiedenen Eigenwerten. Dann ist diese Familie linear unabhängig.

Definition. Ist $\lambda \in K$, so setzen wir

$$\operatorname{Eig}(f; \lambda) := \{ v \in V \mid f(v) = \lambda v \}$$
$$= \ker(f - \lambda \cdot \operatorname{id}_V).$$

Dies ist der zu λ gehörende **Eigenraum**, ein UVR von V.

Satz. Sei V endlichdim. und $f \in \text{End}(V)$ mit Eigenwerten $\lambda_1, ..., \lambda_k$. Dann ist f genau dann diagonalisierbar, wenn

$$\dim \operatorname{Eig}(f; \lambda_1) + ... + \dim \operatorname{Eig}(f; \lambda_k) = \dim V.$$

Satz. $\lambda \in K$ ist ein EW von $f \iff \det(f - \lambda i d_V) = 0$.

Definition. Sei $A \in K^{n \times n}$. Das Polynom $P_A(X) = \chi_A(X) := \det(A - X \cdot E_n) \in K[X]$ heißt **charakteristisches Polynom** von A. Für die darstellende Matrix A von f bzgl. einer beliebigen Basis von V setzen wir

$$P_f(X) := P_A(X) \in K[X].$$

Dieses Polynom ist von der gewählten Basis von V unabhängig.

Satz. $\lambda \in K$ ist ein EW von $f \iff \lambda$ ist Nullstelle von $P_f \in K[X]$

Definition. Sei $A = (a_{ij}) \in K^{n \times n}$. Dann heißt

$$spur(A) := \sum_{k=1}^{n} a_{kk} \in K$$

die **Spur** von A.

Satz. Seien $A, B \in K^{n \times n}$. Dann gilt spur(AB) = spur(BA).

Korollar. Ähnliche Matrizen haben die gleiche Spur.

 $\mathbf{Satz.}$ Für diagonalisierbare $f\in \mathrm{End}(V)$ zerfällt P_f in Linearfaktoren. Zerfalle umgekehrt P_f in Linearfaktoren, wobei jede Nullstelle nur mit Vielfachheit 1 auftrete. Dann ist f diagonalisierbar.

Definition. Sei λ ein EW von f.

- Dann heißt die Ordnung der Nullstelle λ von P_f algebraische Vielfachheit von λ (wird bezeichnet mit $\mu(f;\lambda)$).
- Die Dimension $d(f; \lambda) := \dim \text{Eig}(f; \lambda)$ heißt geometrische Vielfachheit von λ .

Satz. Für alle EW $\lambda \in K$ von f gilt

$$1 \le \dim \operatorname{Eig}(f; \lambda) \le \mu(P_f; \lambda).$$

Definition.

$$J(\lambda,n) := egin{pmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}$$

heißt der Jordanblock der Größe n zum EW λ .

Bemerkung. Es gilt $P_{J(\lambda,n)} = (\lambda - X)^n$ aber nur $\text{Eig}(f;\lambda) = \langle e_1 \rangle$.

Satz. Es sind äquivalent:

- f ist diagonalisierbar
- P_f zerfällt in Linearfaktoren und für alle Nullstellen λ von P_f gilt $\mu(f;\lambda) = \dim \operatorname{Eig}(f;\lambda)$.
- Sind $\lambda_1, ..., \lambda_k$ die paarweise verschiedenen EW von f, so gilt

$$V = \operatorname{Eig}(f; \lambda_1) \oplus ... \oplus \operatorname{Eig}(f; \lambda_k).$$

Satz. P_f zerfällt in Linearfaktoren $\iff f$ ist trigonalisierbar

Korollar. Jeder Endomorphismus eines endlichdim. \mathbb{C} -VR ist trigonalisierbar (Fundamentalsatz der Algebra).

 ${\bf Satz}$ (Cayley-Hamilton). Sei V endlichdim. und $f\in {\rm End}(V)$ mit charakteristischem Polynom $P_f(X)\in K[X].$ Dann gilt $P_f(f)=0.$

Definition. Sei $\lambda \in K$ ein EW von f mit alg. Vielfachheit $\mu := \mu(P_f, \lambda)$. Dann heißt

$$VEig(f, \lambda) := \ker(f - \lambda \cdot id_V)^{\mu}$$

der verallgemeinerte Eigenraum zum EW λ .

Satz. Es zerfalle P_f in Linearfaktoren, also

$$P_f = \pm (X - \lambda_1)^{\mu_1} \cdot \dots \cdot (X - \lambda_k)^{\mu_k}.$$

Dann gilt

$$V = VEig(f, \lambda_1) \oplus ... \oplus VEig(f, \lambda_k).$$

Notation. Es bezeichne R einen kommutativen Ring mit 1.

Definition. Eine Teilmenge $I \subset R$ heißt **Ideal**, falls I eine additive Untergruppe von R ist und ür alle $r \in R$ und $x \in I$ gilt, dass $r \cdot x \in I$.

Definition. Ist $S \subset R$ eine Teilmenge, so ist die Menge

$$\{r_1s_1 + ... + r_ks_k \mid k \ge 0, s_1, ..., s_k \in S, r_1, ..., r_k \in R\}$$

ein Ideal in R und wird von S erzeugtes Ideal genannt.

Definition. Ein Ideal $I \subset R$ heißt **Hauptideal**, falls I von einem einzigen Element erzeugt wird. Ein Ring, in dem jedes Ideal ein Hauptideal ist, heißt **Hauptidealring**.

Satz. Für jeden Körper K ist K[X] ein Hauptidealring.

Satz. Es sei R ein Hauptidealring und $a_1,...,a_k \in R$. Dann existiert ein ggT von $a_1,...,a_k$.

 ${\bf Satz}$ (Jordan-Chevalley-Zerlegung). Sei Vendlichdim, und zerfalle P_f in Linearfaktoren. Dann gibt es einen diagonalisierbaren Endomorphismus $D:V\to V$ und einen nilpotenten Endomorphismus $N:V\to V$ mit

- $\bullet \ \ f=N+D$
- $D \circ N = N \circ D$

Satz. Zerfalle P_f in Linearfaktoren. Für alle EW $\lambda_1,...,\lambda_k$ gilt dann:

$$\dim VEig(f, \lambda_i) = \mu(f, \lambda_i).$$

Satz (Normalform nilpotenter Matrizen). Sei $N \in K^{n \times n}$ nilpotent. Dann ist N ähnlich zu einer Matrix der Form

$$\begin{pmatrix} J(0, n_1) & 0 & 0 & 0 \\ 0 & J(0, n_2) & 0 & 0 \\ & & \ddots & \\ 0 & 0 & 0 & J(0, n_r) \end{pmatrix}$$

Satz (Jordansche Normalform). Sei V endlichdim. und zerfalle P_f in Linearfaktoren. Dann gibt es eine Basis von V, sodass die darstellende Matrix von f folgende Form hat:

$$\begin{pmatrix} J(\lambda_1, m_1) & 0 & \cdots & 0 \\ 0 & J(\lambda_2, m_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J(\lambda_q, m_q) \end{pmatrix}$$

Dabei sind $m_1,...,m_q\in\mathbb{N}$ mit $m_1+...+m_q=\dim V$ und $\lambda_1,...,\lambda_q$ EWe von f (mit Vielfachheiten).

Definition. • Euklidische Norm: Für $x=(x_1,...,x_n)\in\mathbb{C}^n$ setzen wir $\|x\|:=\sqrt{|x_1|^2+...+|x_n|^2}$

• Operatornorm: Für $A \in \mathbb{C}^{n \times n}$ setzen wir $\|A\| := \max\{\|Av\| \mid v \in \mathbb{C}^n, \|v\| = 1\}$

Satz. Für alle $A \in \mathbb{C}^{n \times n}$ konvergiert die Reihe

$$\sum_{k=0}^{\infty} \frac{1}{k!} \cdot A^k$$

absolut.

Definition. Die Funktion

$$\exp: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}, \quad A \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} \cdot A^k$$

heißt Exponentialfunktion für Matrizen.

Bemerkung. Es gilt:

- $\exp(0) = E_n$
- $\exp(\lambda \cdot E_n) = e^{\lambda} \cdot E_n$ für $\lambda \in \mathbb{C}$
- $\exp\begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$
- exp ist stetig.

Satz. Für zwei Matrizen $A, B \in \mathbb{C}^{n \times n}$ mit AB = BA gilt

$$\exp(A+B) = \exp(A) \cdot \exp(B).$$

Definition. Für eine Matrix $A \in \mathbb{C}^{n \times n}$ sei

$$\phi_A: \mathbb{R} \to \mathbb{C}^{n \times n}, \quad t \mapsto \exp(t \cdot A)$$

Satz. Die Abbildung $\phi_A: \mathbb{R} \to \mathbb{C}^{n \times n}$ ist differenzierbar mit Ableitung

$$\phi_A'(t) = A \cdot \phi_A(t).$$

Satz. Es gilt:

$$\exp(t \cdot J(\lambda, n)) = \exp(t\lambda) \cdot \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{n-1}}{(n-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{n-2}}{(n-2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & t \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Definition. Für $x = (x_1, ..., x_n) \in \mathbb{R}^n$ und $y = (y_1, ..., y_n) \in \mathbb{R}^n$ definieren wir

$$\langle x, y \rangle := x_1 y_2 + \dots + x_n y_n.$$

Dies ist das Skalarprodukt im \mathbb{R}^n .

Definition. Für

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in K^{m \times n}$$

definieren wir die transponierte Matrix durch

$$A^T := \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix} \in K^{m \times n}.$$

Definition. Es sei K ein Körper und V ein K-VR. Eine **Bilinearform** auf V ist eine Abbildung

$$\gamma: V \times V \to K$$
,

sodass γ linear in jedem Argument, d. h. die Abbildungen

$$\gamma(v,-): V \to K, \quad w \mapsto \gamma(v,w)$$

 $\gamma(-,w): V \to K, \quad v \mapsto \gamma(v,w)$

für beliebige $v, w \in V$ linear sind.

Definition. Für eine Bilinearform γ auf einem Vektorraum V und eine Basis $\mathcal{B} = (b_1, ..., b_n)$ von V definieren wir die **darstellende Matrix** von γ bzgl. \mathcal{B} durch

$$M_B(\gamma)_{ij} := \gamma(b_i, b_j).$$

Satz. Sei $A \in K^{n \times n}$ die darstellende Matrix einer Bilinearform γ bezüglich einer Basis $\mathcal{B} = (b_1, ..., b_n)$. Für $v, w \in V$ mit Koordinatenvektoren

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

gilt

$$\gamma(v, w) = x^T A y.$$

Korollar. Sind γ und γ' zwei Bilinearformen mit $M_B(\gamma) = M_B(\gamma')$, so gilt $\gamma = \gamma'$.

Satz. Sei \mathcal{C} eine weitere Basis von V und $T_{\mathcal{C}}^{\mathcal{B}}$ die Koordinatentransformations von \mathcal{B} nach \mathcal{C} . Dann gilt

$$M_{\mathcal{B}}(\gamma) = (T_{\mathcal{C}}^{\mathcal{B}})^T \cdot M_{\mathcal{C}}(\gamma) \cdot T_{\mathcal{C}}^{\mathcal{B}}.$$

Definition. Eine Bilinearform $\gamma: V \times V \to K$ heißt symmetrisch, falls $\gamma(v,w) = \gamma(w,v)$ für alle $v,w \in V$ gilt. Äquivalent dazu ist eine Bilinearform auf einem endlichdim. VR V symmetrisch, wenn $M_{\mathcal{B}}(\gamma)^T = M_{\mathcal{B}}(\gamma)$ gilt.

Definition. Sei V ein \mathbb{R} -Vektorraum.

- Eine symmetrische Bilinearform $\gamma: V \times V \to \mathbb{R}$ heißt positiv definit, falls $\gamma(v, v) > 0$ für alle $v \in V \setminus \{0\}$ gilt.
- Eine symmetrische, positive definite Bilinearform auf einem R-VR heißt (euklidisches) Skalarprodukt.
- Ein R-VR, auf dem ein euklidisches Skalarprodukt definiert ist, heißt (euklidischer) Vektorraum.

Definition. Sei V ein \mathbb{C} -Vektorraum.

Eine Abbildung γ : V × V → C heißt Sesquilinearform, falls γ linear im ersten Argument, jedoch konjugiert-linear im zweiten Argument ist, d. h. für alle v, w₁, w₂ ∈ V und λ₁, λ₂ ∈ C gilt

$$\gamma(v, \lambda_1 w_1 + \lambda_2 w_2) = \overline{\lambda_1} \gamma(v, w_1) + \overline{\lambda_2} \gamma(v, w_2).$$

• Eine Sesquilinearform γ heißt **hermitesch**, falls

$$\gamma(v,w) = \overline{\gamma(w,v)}$$

für alle $v,w\in V.$ Für alle $v\in V$ gilt dann $\gamma(v,v)=\overline{\gamma(v,v)},$ also $\gamma(v,v)\in\mathbb{R}.$

• Eine hermitische Sesquilinearform γ heißt (unitäres) Skalarprodukt, falls γ positiv definit ist, d. h. $\gamma(v, v) > 0$ für alle $v \in V$ ist.

Definition. Sei $\gamma: V \times V \to \mathbb{C}$ eine Sesquilinearform auf einem $\mathbb{C}\text{-VR }V$ und $\mathcal{B}=(b_1,...,b_n)$ eine Basis von V. Dann ist die darstellende Matrix von γ

$$(M_{\mathcal{B}})_{ij} := \gamma(b_i, b_j).$$

Bemerkung. Eine Bilinearform auf einem endlichdim. \mathbb{C} -VR ist genau dann hermitisch, wenn $M_{\mathcal{B}}(\gamma)^T = \overline{M_{\mathcal{B}}(\gamma)}$ gilt.

Definition. Für euklidische bzw. euklidische VRV und $v \in V$ setzen wir

$$||v|| := \sqrt{\langle v, v \rangle}.$$

Definition. Sei V ein euklidischer/unitärer VR.

- Zwei Vektoren $v, w \in V$ heißen **orthogonal** (geschrieben $v \perp w$), falls $\langle v, w \rangle = 0$ gilt.
- Eine Familie $(v_i)_{i \in I}$ von Vektoren heißt **orthogonal**, falls $v_i \perp v_j$ für alle $i, j \in I$ mit $\neq j$ gilt.
- Eine Familie $(v_i)_{i \in I}$ heißt **orthonormal**, falls sie orthogonal ist und zusätzlich $||v_i|| = 1$ für alle $i \in I$ erfüllt.
- Eine orthogonale Familie, die eine Basis von V ist, heißt Orthogormalbasis

Satz. Für $v, w \in V$ mit $v \perp w$ gilt $||v + w||^2 = ||v||^2 + ||w||^2$.

Satz (Cauchy-Schwarzsche Ungleichung). Es sei V ein euklidischer oder unitärer Vektorraum. Dann gilt für alle $v,w\in V$

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||.$$

 ${\bf Satz.}\,$ Sei Vein euklidischer/unitärer VR. Dann definiert die Funktion

$$\|-\|:V\to\mathbb{R},\quad v\mapsto\sqrt{\langle v,v\rangle}$$

eine Norm auf V.

Satz. Sei V ein euklidischer/unitärer VR, $(v_i)_{i \in I}$ eine orthogonale Familie und $v_i \neq 0$ für alle $i \in I$. Dann ist die Familie (v_i) linear unabhängig.

Definition. Zwei UVR $U, W \subset V$ heißen **orthogonal** (geschrieben $U \perp W$), falls $u \perp w$ für alle $u \in U$ und $w \in W$ gilt.

Definition. Ist $U \subset V$ ein UVR, so ist

$$U^{\perp} := \{ v \in V \, | \, v \perp u \text{ für alle } u \in U \}$$

ein UVR von V und heißt das **orthogonale Komplement** von U in V

Bemerkung. Es gilt: $U \perp U^{\perp}$.

Satz. Jeder endlichdimensionale euklidische/unitäre VR besitzt eine Orthonormalbasis.

Korollar. Sei V ein euklidischer/unitärer VR und $W \subset V$ ein endlichdim. UVR. Dann gilt

$$V = W \oplus W^{\perp}$$
.