Week 9

Extension Topics

9.1 Intro to the Langlands Program

2/27:

- Sometime before 2:30 PM today, Nori will post an exam syllabus that will also put an upper bound on the types of questions he will ask.
 - "There's only so much you can cover in a 2-hour exam on an 8-week course."
- We now begin on some in Nori's opinion very interesting mathematics.
- Let $f \in \mathbb{Z}[X]$ be irreducible, monic, and of degree d.
- **Split** (prime for f): A prime number p for which

$$\bar{f} = \prod_{i=1}^d (X - a_i) \in \mathbb{F}_p[X]$$

- Langlands program: The name for the overall problem, "which primes are split for a given f?"
 - Gauss answers this for degree 2 polynomials using quadratic reciprocity.
 - There has been a lot of progress since then: See Artin's reciprocity law.
 - This is a major unsolved problem.
- Example: $X^2 + 1$.
 - Informally: If we go modulo a prime, does this factor or not?
 - Formally: For which primes p does there exist $m \in \mathbb{Z}$ such that $m^2 \equiv -1 \mod p$.
 - Answer: m exists if and only if $p \equiv 1 \mod 4$.
 - Proving this: Let p be an odd prime. Let $x \in \mathbb{F}_p \{0\}$. Let $S(x) = \{x, -x, 1/x, -1/x\}$ be the stabilizer. We either have $\{x, -x\} \cap \{1/x, -1/x\} = \emptyset$ or both elements. Thus, we either have $x = \pm 1$ or $x^2 = -1$. It follows that |S(x)| = 4 except when $\{1, -1\}$ or $\{\alpha, -\alpha\}$ with $\alpha \in \mathbb{F}_p$ satisfies $\alpha^2 = -1$.
 - $-\ p-1\equiv 2\bmod 4.$
 - Thus, we're partitioning the set into elements of multiplicity 4.
- We'll skip considering the Gaussian integers.
- Consider the d square-free integers for $d \neq 1$. Let $R_d = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d} \cong \mathbb{Z}[X]/(X^2 d)$.
 - If $d \equiv 2, 3 \mod 4$, no bueno.

- If $d \equiv 1 \mod 4$, then $R_d = \mathbb{Z} \oplus \mathbb{Z}\theta$, where

$$\theta = \frac{1 + \sqrt{d}}{2}$$

- All of these rings have an automorphic ring homomorphism $\sigma: R_d \to R_d$ defined by

$$a + b\sqrt{d} \mapsto a - b\sqrt{d}$$

- Recall the norm $N(a+b\sqrt{d})=|(a+b\sqrt{d})(a-b\sqrt{d})|=|a^2-b^2d|$.
- Let $I \subset R_d$ be a nonzero ideal. If $\alpha \in I$ nonzero, then $|\alpha \sigma \alpha| = N(\alpha) \in I$.
- Suppose $m \in \mathbb{N}$. Then $R_d/mR_d = \mathbb{Z}/(m) \oplus \sqrt{d}\mathbb{Z}/(m)$ has m^2 elements.
- In particular, R_d/I is finite as the quotient of a finite ring $R_d/R_dN(\alpha)$ (as implied by the fact that I is nonzero).
- Let $P \subset R_d$ be a nonzero prime ideal. We have just shown that $P \cap \mathbb{Z} \neq 0$. It follows that if $m \in \mathbb{N}$ and $m \in P$, then $p_1 \cdots p_r$ implies some $p_i \in P$.
- There exists a unique prime number p such that $p \in P$.
- Fix p. Search for all P prime ideals of R_d such that $p \in P$, i.e., $(p) \subset P \subset R_d$, i.e., P/(p) is a prime ideal of $R_d/(p)$.
- Recall that

$$R_d/(p) = \mathbb{F}_p \oplus \mathbb{F}_p \sqrt{d} \cong \mathbb{F}_p[X]/(X^2 - d)$$

- Case 1: $p \nmid d$ and $p \neq 2$.
 - Case 1(a): There exists an integer $m \in \mathbb{Z}$ such that $m^2 \equiv d \mod p$.
 - Case 1(b): No integer $m \in \mathbb{Z}$ exists such that $m^2 \equiv d \mod p$.
- Case 2: $p \mid d$.
- We now treat each case above individually.
- Case 2.
 - Let P be unique and $P = (p, \sqrt{d}) = \sigma P$.
 - We have $P\sigma P = (p, \sqrt{d})(p, \sqrt{d}) = (p^2, d, p\sqrt{d}) \subset (p)$.
 - Even in \mathbb{Z} , $\gcd_{\mathbb{Z}}(p^2,d)=p$ (because $p\mid d$ and $p^2\nmid d$; the latter claim follows because d is square-free).
 - This implies that $p \in P\sigma P$, which implies that $(p) = P\sigma P$.
- Case 1b.
 - $-X^2-d$ is irreducible in $\mathbb{F}_p[X]$.
 - Thus, P = (p).
 - It follows that $P = \sigma P$ and hence $P\sigma P = (p^2)$.
- Case 1a.
 - There exists an $m \in \mathbb{Z}$ such that $m^2 \equiv d \mod p$.
 - Let $P = (p, m \sqrt{d}), \ \sigma P = (p, m + \sqrt{d}).$
 - There exists exactly two prime ideals P.
 - Thus, $P \sigma P = (p^2, m^2 d, p(m \sqrt{d}), p(m + \sqrt{d})) \subset (p)$.
 - Adding the last two generators together, we obtain $(p^2, 2mp) \in P\sigma P$. But since $p \nmid m$ and p??, we know that

$$\gcd_{\mathbb{Z}}(p^2, 2mp) = p$$

- It follows that $P\sigma P=(p)\sim (p^2)$ in all cases.
- We now consider the p=2 case.
 - Let $R = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d}$. Let $\varepsilon = 0, 1$ and $\varepsilon = \varepsilon^2$.
 - Case 1(a): Does not exist; $\mathbb{F}_2[X]/(X^2-\varepsilon)$ and $\mathbb{F}_2[X]/((X-\varepsilon)^2)$.
 - Case 2: $2 \mid d$ and $4 \nmid d$. It follows that P is unique and equal to $(2, \sqrt{d})$. We have $p^2 = (2)$.
 - Case 1(b): p=2 and $2 \nmid d$. Let $\mathbb{F}_2[X]/(X^2-1)$. We have a unique P and $P=(2,1-\sqrt{d})=\sigma P=(2,1+\sqrt{d})$.
 - Let $P^2 = P\sigma P = (4, 1-d, 2(1-\sqrt{d})) = (2)$ if $d \equiv 3 \mod 4$. Note that $P\sigma P$ is not principal if $d \equiv 1 \mod 4$.
 - Consider (example): $F[X^2, X^3] \subset F[X]$.
 - If $R_d = \mathbb{Z} + \mathbb{Z}\theta$ and $d \equiv 1 \mod 8$, then there exists $P \neq \sigma P$ with $P\sigma P = (2)$.
 - If $d \equiv 5 \mod 8$, then P = (2).
- Next lecture: Dedekind domains.
 - Every nonzero ideal can be written as a product of nonzero not necessarily unique prime ideals.
 - Next best thing to a PID.
- Theorem: $\mathbb{Z}[\sqrt{-1}]$ is a Euclidean domain.

Proof. Given g, f, we want g = qf + r in $\mathbb{Z}[\sqrt{-1}]$ with N(r) < N(f).

Technique: Go outside the integers into $\mathbb{Q}(\sqrt{-1})$. This is a field. Consider $g/f \in \mathbb{Q}(\sqrt{-1})$. Choose the closest lattice point in $\mathbb{Z}[\sqrt{-1}]$ to $g/f \in \mathbb{Q}(\sqrt{-1})$, visualized as a complex plane and complex lattice subset. This makes g/f = q + c where $q \in \mathbb{Z}[\sqrt{-1}]$. Let $c = \alpha + \beta \sqrt{-1}$. Then $|\alpha| \le 1/2$, $|\beta| \le 1/2$, and $N(\alpha + i\beta) = \alpha^2 + \beta^2 \le 1/4 + 1/4 = 1/2$.

It follows that $g \in \mathbb{Z}[\sqrt{-1}]$ equals qf + (fc), where $qf \in \mathbb{Z}[\sqrt{-1}]$ and $fc = r \in \mathbb{Z}[\sqrt{-1}]$. Moreover, $N(r) = N(f)N(c) \le 1/2N(f)$.

• The same proof applies to $\mathbb{Z}[\sqrt{-1}]$, $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Z}[\sqrt{3}]$, $\mathbb{Z}[(1+\sqrt{-3})/2]$, $\mathbb{Z}[(1+\sqrt{p})/2]$, and in fact all Euclidean domains.

9.2 Factorization of Ideals

Nori proves that any ideal, perhaps under certain conditions, can be factored into prime ideals.

9.3 Office Hours (Nori)

- 3/7: Computing the JCF and RCF is going to be on the midterm.
 - Gauss's lemma may well be on the final. There is a difference between Gauss's lemma in class and in the textbook; the textbook version is a corollary of the real one (which Nori presented).
 - To clarify on the final, specify which version of Gauss's lemma you are using.
 - One question like the universal properties of polynomial rings stuff from the first midterm.
 - R' = R/(f) looks a lot like a final question.
 - We'll never have to decide which (JCF or RCF) to use; we'll only be asked, "what is the JCF/RCF of this?"
 - RCF: We'll be able to stop after writing down the invariant factors.

9.4 Final Review Sheet

- See midterm review sheet for everything rings-related.
- Gauss's lemma: Reducible polynomials in R[X] are reducible in R[X].
- Dividing the first and last coefficients of the polynomial by monomials.
- Left A-module: An abelian group (M, +) equipped with a binary operation $\cdot : A \times M \to M$ satisfying the following constraints.
 - 1. $a(v_1 + v_2) = av_1 + av_2$.
 - $2. \ (a+b)v = av + bv.$
 - 3. a(bv) = (ab)v.
 - 4. $1_A v = v$.
- Alternatively: $\rho: A \to \operatorname{End}(M)$ satisfies:
 - 1. $\rho(a)$ is a group homomorphism from $M \to M$.
 - 2. $\rho(a+b) = \rho(a) + \rho(b)$.
 - 3. $\rho(a)\rho(b) = \rho(ab)$.
 - 4. $\rho(1_A) = 1_{\text{End}(M)}$.
- Module homomorphism: A group homomorphism that commutes with scalar multiplication, i.e., T(av) = aT(v).
- $T: A^n \to M$ is defined by the action of T on the e_i 's.
- Module isomorphism: A bijective module homomorphism.
- Quotient module exist in a natural way.
- FIT for modules.
- Let R be a PID; then every R-submodule of R^n is isomorphic to R^m for some $0 \le m \le n$.
- If $M/M' \cong A^n$, then $M' \oplus A^n \cong M$.
- **R-algebra**: A pair (A, f), where A is a ring, $f : R \to A$ is a ring homomorphism, and R is a commutative ring, such that $f(R) \subset Z(A)$.
 - -A is an R-module under $r \cdot a = f(r) \cdot a$.
- R-algebra homomorphism: A ring homomorphism $\varphi: A \to B$ such that $\varphi(r \cdot a) = r \cdot \varphi(a)$.
- $\operatorname{Hom}_R(M,M)$ is a ring under componentwise addition and composition; it is an R-algebra when R is commutative.
- Poset.
- Maximal $(f \in P)$: An element $f \in P$ a poset such that for all $q \in P$, the statement q > f is false.
- Chain: A totally ordered subset of a poset.
- **Zorn's lemma**: If P is a poset such that $P \neq 0$ and every chain $C \subset P$ has an upper bound, then P has a maximal element.
- Corollary: Every nonzero finitely generated A-module M has a maximal submodule.
- \bullet Corollary: Every nonzero commutative ring R has a maximal ideal.

- Torsion module: An R-module such that for all $m \in M$, there exists a nonzero $a \in R$ such that am = 0.
- Torsion-free module: An R-module M such that for all nonzero $m \in M$ and for all nonzero $a \in R$, $am \neq 0$.
- Torsion element: An element $m \in M$ for which there exists a nonzero $a \in R$ such that am = 0.
- Tor(M): The set of all torsion elements in M.
- **p-primary** (module): An R-module M such that for all $m \in M$, there exists $k \ge 0$ for which $p^k m = 0$, where $p \in R$ is prime.
- **p-primary** (component): The submodule of a module M consisting of all $m \in M$ such that $p^k m = 0$ for some $k \in \mathbb{Z}_{>0}$ and $p \in R$ prime.
- All finitely generated torsion-free R-modules are isomorphic to R^n .
- Tor(M) is an R-submodule of M.
- $M/\operatorname{Tor}(M)$ is torsion-free.
 - To prove that something is torsion-free, it suffices to prove that every torsion element is zero.
- \bullet Every finitely generated R-module has a free submodule.
- Finitely generated torsion-free modules M over a PID R are isomorphic to \mathbb{R}^h .
- If M is a finitely generated R-module over a PID, then $M \cong \text{Tor}(M) \oplus R^h$, where Tor(M) is finitely generated.
- Finitely generated R-module are isomorphic iff they have the same rank and their torsion components are isomorphic.
- The direct sum of the p-primary components is equal to Tor(M).
- Every finitely generated p-primary module is the direct sum of the cyclic submodule Rei.
- **RCF**: Let R be a PID. Then every finitely generated R-torsion module is isomorphic to $R/(a_1) \oplus \cdots \oplus R/(a_\ell)$ where $a_\ell \mid a_{\ell-1} \mid \cdots \mid a_1$.
- Every finitely generated R-module, where R is a PID, is isomorphic to $R/I_1 \oplus R/I_2 \oplus \cdots$ for a unique increasing sequence of ideals $I_1 \subset I_2 \subset \cdots$ which have the property that $I_n = R$ for some n.
- Vector spaces (V,T) as F[X]-modules under $\rho: F[X] \to \operatorname{End}_F(V)$ defined by $X \mapsto T$.
- Minimal polynomial: The polynomial that generates $\ker(\rho)$, an ideal of the PID F[X].
- Cyclic vectors and linear dependence, defining the minimal polynomial by $g(X) = X^k (a_{k-1}X^{k-1} + \cdots + a_0)$.