Mesure d'évaluation, Multi-classes

Cours 7 ARF Master DAC

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr
http://webia.lip6.fr/~baskiotisn

équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) Université Pierre et Marie Curie (UPMC)

S2 (2016-2017)

Plan

Mesures d'évaluation

2 Problème multi-classes

Mesures d'évaluation

Objectifs

- Estimer la qualité des prédictions fournies par une approche
- Comparer des approches entre elles sur un problème donné
- Comparer des algorithmes sur un ensemble de problèmes

Le résultat dépend

- Choix de la mesure
- Choix du protocole de test (paramétrisation)
- Choix de l'échantillage

Une mesure unique?

Tutorial icmla 2011, N. Japkowicz

4 D > 4 A > 4 B > 4 B >

Matrice de confusion

Contexte

- Un problème de classification binaire, étiquettes positif/négatif
- TP: Vrai positif (*True positive*), TN: Vrai négatif (*True negative*)
- FP : Faux positif (False positive), FN : Faux négatif (False negative)

Matrice de confusion

	Label +	Label –
f(x) = +1	TP	FP
f(x) = -1	FN	TN
	P = TP + FN	N = FP + TN

Mesures dérivées

• Erreur 0-1: $\frac{FP+FN}{P+N}$

• Précision : TP

• Rappel (TP rate) : $\frac{TP}{P}$

• FP Rate : $\frac{FP}{N}$

• $F_{\beta} = (1 + \beta^2) \frac{\text{precision} \times \text{rappel}}{\beta^2 \text{precision} + \text{rappel}}$

Exemple (ou le problème du déséquilibre)

	Label +	Label –
f(x) = +1	200	100
f(x) = -1	300	400
	500	500

• Erreur : 60%

• Précision : 40%, Rappel : 40%

• *F*₁: 0.4

	Label +	Label –
f(x) = +1	200	100
f(x) = -1	300	400
	500	500

• Erreur : 60%

Précision : 66%, Rappel : 40%

• $F_1:0.5$

	Label +	Label –
f(x) = +1	400	300
f(x) = -1	100	200
	500	500

• Erreur : 60%

Précision : 66%, Rappel : 80%

• $F_1: 0.66$

	Label +	Label –
f(x) = +1	200	100
f(x) = -1	300	0
	500	100

• Erreur : 66%

Précision : 66%, Rappel : 40%

• $F_1:0.5$

Courbe ROC et AUC

- Courbe ROC : TP rate en fonction du FP rate
- permet de calibrer un classifieur
- mesure d'intérêt : AUC, aire sous la courbe

Comment comparer deux algos?

Test statistique

8 / 13

Plan

Mesures d'évaluation

Problème multi-classes

9 / 13

Cas usuel

Contexte

- Classes : $C = \{C_1, C_2, \dots, C_K\}$
- Classification binaire ne marche pas directement

Approches "naïves" utilisant la classification binaire

- One-versus-one : matrice $M_{ij} = C_i$ vs C_j
- One-versus-all : vecteur $M_i = C_i$ vs $\{C_{j\neq i}\}$

Adaptation de la classification binaire

- Arbres, forets, k-nn: adaptation triviale
- SVMs multi-classes
- Réseau de neuronnes : vecteur de sortie \mathbf{y} et softmax : $p(y_j) = \frac{e^{-y_j}}{\sum_j e^{-y_i}}$

Très grand nombre de classes

Problèmes des approches usuelles

- ullet Coût d'une classification au
- au mieux linéaire en fonction de K: temps τK
- grand nombre de dimensions
- ⇒ passage à l'échelle difficile en temps de calcul et en perfs

Deux grandes familles d'approche

- Approche *flat* : plonger les classes dans un espace $\mathbb{R}^{K'}$, K' << K Intérêt : $K'\tau$ pour trouver la bonne classe
- Approche hiérarchique : organiser les classes hiérarchiquement dans un arbre de classes
 - Intérêt : inférence en $log(K)\tau$ pour un arbre binaire

Approches Error Correcting Output Code (ECOC)

Principe

- Plonger les classes dans $\mathbb{R}^{K'}$, K' << K
- Codage : une classe \Leftrightarrow un code dans K'
- Inférence = codage : $f: X \to K'$, f(x) donne un code dans K'
- Décodage : classe dont le code est le plus proche

En pratique

- Un code c^i : un vecteur ternaire de K: $(-1,0,1,\ldots,0,1)$
- A chaque code, un classifieur binaire f_i qui sépare $\{C_j|c_j^i>0\}$ et $\{C_j|c_i^i<0\}$
- ullet Matrice M de codage de K' : matrice K' imes K des $M_{ij} = c^i_j$
- Codage d'une classe C_j : $(c_i^1, c_i^2, \dots c_i^{K'})$
- codage d'un exemple : $(f_1(x), f_2(x), \dots, f_{k'}(x))$
- Inférence : $argmin_i d(f(x), M_i)$ en $O(K'\tau + K)$

12 / 13

Approche hiérarchique

Objectif

- Construire un arbre de partitionnement (hard ou soft) des classes
- Pour un nœud n :
 - un ensemble C_n de classes, pour les fils n_1, \ldots, n_c sous-ensembles $C'_{n_1}, \ldots, C'_{n_c} \subset C_n$, et $\bigcup C'_{n_j} = C_n$
 - un classifieur f_n à valeur dans $\{n_1, \ldots, n_c\}$
- Racine : ensemble de toutes les classes, feuilles : une seule classe
- Classification : un chemin dans l'arbre (en utilisant f_n), classe de la feuille

Problèmatiques

- Construire l'hiérarchie :
 - information a priori sur les classes : ontologie ou hiérarchie des classes
 - apprentissage de l'hiérarchie : clustering, approches gloutonnes
- Apprendre les classifieurs : problème de données non équilibrés
- Correction des erreurs : redondance des classes dans les nœuds de l'arbre