4.3 How derivatives affect the shape of a graph

微分應用之四: 分析函數圖形。

(★ 授課順序與 §4.4 調換。)

- 1. the first derivative 一階導數 f'
- 2. the second derivative 二階導數 f''

0.1 The first derivative

Increasing/Decreasing Test: 增減測試

- (a) $f' > 0 \implies f$ is increasing 遞增。(有些書上用 \nearrow 符號表示。)
- (b) $f' < 0 \implies f$ is decreasing 遞減。(有些書上用 _ 符號表示。)

Proof. (a) ((b) is similar) Say f'(x) > 0 on (a, b). $\forall x_1, x_2 \in (a, b)$ with $x_1 < x_2$, f is continuous on $[x_1, x_2]$ and differentiable on (x_1, x_2) , by the Mean Value Theorem, $\exists c \in (x_1, x_2), \exists f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0$, $f(x_2) > f(x_1)$. Therefore, f is increasing on (a, b).

Note: 遞增/遞減 的區間通常回答開區間 ((a,b) 不含端點), 除非另外檢查。

The First Derivative Test: 一階導數測試

c is a critical number of a continuous function f

- (a) f' changes from positive to negative at $c \implies f$ has local max at c.
- (b) f' changes from negative to positive at $c \implies f$ has local min at c.
- (c) f' does **NOT** change sign at $c \implies f$ has **NO** local max/min at c.

Recall: critical number c: f'(c) = 0 or f'(c) 不存在。

Recall: f has local max/min at $c \implies c$ is a critical number. 反向 (\Leftarrow) 不保證, 但是加上 The First Derivative Test 就能保證有沒有。

Example 0.1 Find where $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and decreasing, and its extreme values.

(找臨界値分段) f'(x) = 12x(x-2)(x+1), f'(x) = 0 when x = -1, 0, 2. (計算 f' 正負判斷增減)

Interval	f'(x)	f(x)
x < -1	(-*-*-=)-	decreasing on $(-\infty, -1)$
-1 < x < 0	(-*-*+=)+	increasing on $(-1,0)$
0 < x < 2	(+*-*+=)-	decreasing on $(0,2)$
x > 2	(+*+*+=)+	increasing on $(2, \infty)$
(州際福估)		

(判斷極值)

abs. max	no
abs. min	f(2) = -27
$local\ max$	f(0) = 5
$local\ min$	f(-1) = 0 and $f(2) = -27$

Example 0.2 Find where $g(x) = x + 2\sin x$, $0 \le x \le 2\pi$ is increasing and decreasing, and its extreme values.

$$g'(x) = 1 + 2\cos x, \ g'(x) = 0 \text{ when } x = \frac{2}{3}\pi, \frac{4}{3}\pi.$$

Interval	g'(x)	g(x)
$0 < x < \frac{2}{3}$	π +	increasing on $(0, \frac{2}{3}\pi)$
$\frac{2}{3}\pi < x < \frac{2}{5}$	$\frac{4}{3}\pi$ -	decreasing on $(\frac{2}{3}\pi, \frac{4}{3}\pi)$
$\frac{4}{3}\pi < x < 2$	2π +	increasing on $(\frac{4}{3}\pi, 2\pi)$
7	(0)	0.00

(代好算的數字判斷正負) $g'(\frac{\pi}{2}) = 1 + 2(0) = 1$ $g'(\pi) = 1 + 2(-1) = -1$ $g'(\frac{3\pi}{2}) = 1 + 2(0) = 1$

abs. max	$g(2\pi) = 2\pi \approx 6.28$
abs. min	g(0) = 0
local max	$g(\frac{2}{3}\pi) = \frac{2}{3}\pi + \sqrt{3} \approx 3.83$
local min	$g(\frac{4}{3}\pi) = \frac{4}{3}\pi - \sqrt{3} \approx 2.46$

0.2 The second derivative

Define:

f is **concave upward** on an interval I if f lies above all its tangent lines. f is **concave downward** on an interval I if f lies below all its tangent lines.

Concavity Test: 凹性測試

- (a) $f'' > 0 \implies f$ concave upward 凹向上。
- (b) $f'' < 0 \implies f$ concave downward 凹向下。

Note: 凹向上/下減 的區間通常回答開區間 ((a,b)不含端點)。

Define: (p, f(p)) is an *inflection point* 反曲點 if f *continuous* at p and f changes from CU to CD or from CD to CU at (p, f(p)). (連續換凹)

Note: 反曲點要連續。Ex: $f(x) = \frac{1}{x}$ at 0.

Note: 反曲點要用點座標寫 (····,···)。

The Second Derivative Test 二階導數測試

f'' is continuous near c

- (a) f'(c) = 0 and $f''(c) > 0 \implies f$ has local min at c.
- (b) f'(c) = 0 and $f''(c) < 0 \implies f$ has local max at c.

Note: 二階導數測試只能針對 f'(c) = 0 的臨界值, f'(c) 不存在的不能用。

4

Example 0.3 Sketch f:

- 1. f'(x) > 0 on $(-\infty, 1)$, f'(x) < 0 on $(1, \infty)$.
- 2. f''(x) > 0 on $(-\infty, -2)$ and $(2, \infty)$, f''(x) < 0 on (-2, 2).
- 3. $\lim_{x \to -\infty} f(x) = -2$, $\lim_{x \to \infty} f(x) = 0$.

(Think yourself: f'(1) = 0 or does not exist? and $f''(\pm 2)$?)

♦ Additional:

Example 0.4 Discuss $y = x^4 - 4x^3$ w.r.t. concavity, inflection point, local max/min and Sketch y.

Example 0.5 Sketch $f(x) = x^{2/3}(6-x)^{1/3}$.

$$f'(x) = \frac{4 - x}{x^{1/3}(6 - x)^{2/3}},$$

$$f'(x) = \frac{4 - x}{x^{1/3}(6 - x)^{2/3}},$$

$$f'(x) = 0 \text{ when } x = 4, f'(x) \text{ does not exist when } x = 0, 6.$$

$$f''(x) = \frac{-8}{x^{4/3}(6 - x)^{5/3}}, f''(x) \text{ does not exist when } x = 0, 6.$$

$$| \quad | \quad < 0 \quad | \quad 0 \quad | \quad 0 < x < 4 \quad | \quad 4 \quad | \quad 4 < x < 6 \quad | \quad 6 \quad | \quad 6$$

	< 0	0	0 < x < 1	$4 \mid 4$	4 < x < 6	6	6 <
f'	_	∄	+	0	_	∄	_
f''	_	∄		_		∄	+
		igg min		max		IP	
			(x)				
loca	al max	f(4) =	$2^{5/3}$				
loca	al min	f(0) =	0				
	CU	$(6,\infty)$					

 $(-\infty, 0), (0, 6)$ CD(6,0)IP

Attention: $(-\infty,0),(0,6)$ 不可以改用 $(-\infty,6)$, 因爲 x=0 時不對。

Additional: $y = x^{2/3}(6-x)^{1/3}$ 有斜漸近線 (slant asymptote), 你會找嗎?

Example 0.6 (Need asymptote.) Sketch $f(x) = e^{1/x}$ with asymptote.

$$f'(x) = -\frac{e^{1/x}}{x^2} < 0 \text{ for } x \neq 0, \ f'(x) \text{ does not exist when } x = 0.$$

$$f'(x) = -\frac{e^{1/x}}{x^2} < 0 \text{ for } x \neq 0, \ f'(x) \text{ does not exist when } x = 0.$$

$$f''(x) = \frac{e^{1/x}(2x+1)}{x^4}, \ f'' = 0 \text{ when } x = -\frac{1}{2}, \text{ does not exist when } x = 0.$$

$$\lim_{x \to 0^+} f(x) = \infty, \lim_{x \to 0^-} f(x) = 0, \implies v.a. \ x = 0;$$

$$\lim_{x \to \infty} f(x) = 1, \lim_{x \to -\infty} f(x) = 1, \implies h.a. \ y = 1.$$

$$\lim_{x \to 0^+} f(x) = \infty$$
, $\lim_{x \to 0^-} f(x) = 0$, $\implies v.a. \ x = 0$

$$\lim_{x \to \infty} f(x) = 1, \lim_{x \to -\infty} f(x) = 1, \implies h.a. \ y = 1.$$

$x \rightarrow \infty$		$x \rightarrow -$	\mathcal{X}		
	$< -\frac{1}{2}$	$\left -\frac{1}{2} \right $	$\left -\frac{1}{2} < x < 0 \right $	0	0 <
f'		_	_	∄	_
f''	_	0	+	∄	+
		IP	f(n)	no	

	f(x)
local max	no
local min	no
CU	$(-\frac{1}{2},0)\cup(0,\infty)$
CD	$(-\infty, -\frac{1}{2})$
IP	$\left(-\frac{1}{2}, e^{-2}\right)$

(∪: union 聯集。)

Note: 沒有漸進線, 不知道怎麼畫。