Multiple Regression

Example: Hospital Manpower Data

A monthly manpower problem was studied. Previous study showed that the **monthly man-hours** (*Y*) has a high correlation with the **monthly occupied bed days**. However, there are more variables that are related to the monthly man-hours, for instance:

Y: Monthly Man-hours

 X_1 : Average Daily Patient Load

 X_2 : Monthly X-ray Exposures

 X_3 : Monthly Occupied Bed Days

 X_4 : Eligible Population in the Area /1000

 X_5 : Average Length of Patients' Stay in Days

The related data is listed in Table 1:

Example : Hospital Manpower Data

Obs	X1	<i>X2</i>	<i>X3</i>	<i>X4</i>	<i>X5</i>	Y
1	15.57	2463	472.92	18.0	4.45	566.52
2	44.02	2048	1339.75	9.5	6.92	696.82
3	20.42	3940	620.25	12.8	4.28	1033.15
4	18.74	6505	568.33	36.7	3.90	1603.62
5	49.20	5723	1497.60	35.7	5.50	1611.37
6	44.92	11520	1365.83	24.0	4.60	1613.27
7	55.48	5779	1687.00	43.3	5.62	1854.17
8	59.28	5969	1639.92	46.7	5.15	2160.55
9	94.39	8461	2872.33	78.7	6.18	2305.58
10	128.02	20106	3655.08	180.5	6.15	3503.93
11	96.00	13313	2912.00	60.9	5.88	3571.89
12	131.41	10771	3921.00	103.7	4.88	3741.40
13	127.21	15543	3865.67	126.8	5.50	4026.52
14	252.90	36194	7684.10	157.7	7.00	10343.81
15	409.20	34703	12446.33	167.4	10.78	11732.17
16	463.70	39204	14098.40	331.4	7.05	15414.94
17	510.22	86533	15524.00	371.6	6.35	18854.45

Download the data set manpower1.txt from

Scatter plot for multiple variable

plot(manpower[,-6])

Example: Hospital Manpower Data

If we choose all independent variables as the regressors, <u>the Model</u> <u>Equation is:</u>

$$Y = 1954.10 + -17.10x1 + 0.0559x2 + 1.627x3 - 4.07x4 - 392.58x5$$

Use R

manpower<-read.table(file.choose(),header=T) lm(Y~.,data=manpower)

Call:

 $lm(formula = Y \sim ., data = manpower)$

Coefficients:

(Intercept) X1 X2 X3 X4 X5 1954.09898 -17.09758 0.05589 1.62707 -4.06894 -392.58143

Example: Hospital Manpower Data

If we choose x^2 , x^3 and x^5 as the regressors, <u>the Model Equation is:</u> $Y = 1523.39 + 0.0530 x^2 + 0.9785 x^3 - 320.951 x^5$

Use R

lm(Y~X2+X3+X5,data=manpower)

Call:

 $lm(formula = Y \sim X2 + X3 + X5, data = manpower)$

Coefficients:

(Intercept) X2 X3 X5

1523.38924 0.05299 0.97848 -320.95083

Interpretation: β_j is the net change in Y for each unit change in X_i holding all other values constant.

lm.manpower<-lm(Y~X2+X3+X5,data=manpower)

reg1<-summary(lm.manpower)

Residuals:

Min 1Q Median 3Q Max -687.40 -380.60 -25.03 281.91 1630.50

Test the Significance of each Independent Variable

H0: $b_j = 0$ Ha: $b_j \neq 0$

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1523.38924 786.89772 1.936 0.0749. $t=\frac{1}{100}$ X2 0.05299 0.02009 2.637 0.0205 * X3 0.97848 0.10515 9.305 4. 12e-07 *** X5 -320.95083 153.19222 -2.095 0.0563 .

Residual standard error: 614.8 on 13 degrees of freedom

Multiple R-Squared: 0.9901, Adjusted R-squared: 0.9878

reg1<-summary(lm.manpower)</pre>

Residuals:

Min 1Q Median 3Q Max -687.40 -380.60 -25.03 281.91 1630.50

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1523.38924 786.89772 1.936 0.0749. X2 0.05299 0.02009 2.637 0.0205 * X3 0.97848 0.10515 9.305 4. 12e-07 *** X5 -320.95083 153.19222 -2.095 0.0563 .

$$S = \sqrt{MSE} = \sqrt{\frac{SSE}{n-p}} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-p}}$$

Residual standard error: 614.8 on 13 degrees of freedom

Multiple R-Squared: 0.9901, Adjusted R-squared: 0.9878

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
Explained variation by regression model

reg1<-summary(lm.manpower)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1523.38924 786.89772 1.936 0.0749.

X2 0.05299 0.02009 2.637 0.0205 *

X3 0.97848 0.10515 9.305 4. 12e-07 ***

X5 -320.95083 153.19222 -2.095 0.0563

Residual standard error: 614.8 on 13 degrees of freedom

$$R^2 = \frac{\mathbf{SS}_{\text{Reg}}}{\mathbf{SS}_{\text{Total}}}$$
 the proportion of the total variation of the dependent variable that is explained by

Multiple R-Squared: 0.9901, Adjusted R-squared: 0.9878

reg1<-summary(lm.manpower)</pre>

Residuals:

Min 1Q Median 3Q Max -687.40 -380.60 -25.03 281.91 1630.50

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1523.38924 786.89772 1.936 0.0749.

X2 0.05299 0.02009 2.637 0.0205 *

X3 0.97848 0.10515 9.305 4. 12e-07 ***

X5 -320.95083 153.19222 -2.095 0.0563.
```

Residual standard error: 614.8 on 13 degrees of freedom

Multiple R-Squared: 0.9901, Adjusted R-squared: 0.9878

The Overall F Test $F = \frac{SS_{Reg}/(p-1)}{SS_{Res}/(n-p)} H_0: \beta_1 = \beta_2 = ... = \beta_{p-1} = 0 \text{ versus}$ $H_0: \beta_1 = \beta_2 = ... = \beta_{p-1} = 0 \text{ versus}$ $H_a: \text{At least one of } \beta_1, \beta_2, ..., \beta_{p-1} \neq 0$

Extracting information from Im results

Example: Hospital Manpower Data

reg1<-summary(lm.manpower)
names(reg1)</pre>

```
[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"
```

```
reg1$sigma
```

reg1\$r.squared

[1] 614.7794

[1] 0.9900682

reg1\$coefficients

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1523.38923568 786.89772473 1.935943 7.492387e-02
X2 0.05298733 0.02009194 2.637243 2.050318e-02
X3 0.97848162 0.10515362 9.305258 4.121293e-07
X5 -320.95082518 153.19222065 -2.095086 5.631250e-02
```

ANOVA table

Explained variation by regression model

Source	DF	SS		MS	F	p
Regression	P-1	SS_{Reg}	MS	$\mathbf{S}_{\text{Reg}} = \mathbf{S}\mathbf{S}_{\text{Reg}}/p-1$	$\mathbf{F} - M$	$S_{ m Reg}$
Error	<i>n</i> – <i>p</i>	SS_{Res}	M	$\mathbf{S}_{\mathrm{Res}} = \mathbf{S}\mathbf{S}_{\mathrm{Res}}/n-p$	M = M	$S_{ m Res}$
Total	n-1	SS _{Total}		Unexplained or R	Random	
				Variation		

Im.manpower<-lm(Y~X2+X3+X5,data=manpower) anova(lm.manpower)

```
Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X2 1 441952483 441952483 1169.3296 4.041e-14 ***

X3 1 46187675 46187675 122.2046 5.556e-08 ***

X5 1 1658984 1658984 4.3894 0.05631 .

Residuals 13 4913399 377954
```

aov1<-anova(lm.manpower)</pre>

Analysis of Variance Table

Response: Y

```
Sum Sq
                        Mean Sq F value
                                           Pr(>)
                      441952483 1169.3296 4.041e-14 ***
            441952483
X2
                                122.2046
                                            5.556e-08 ***
X3
           46187675
                      46187675
                                            0.05631.
X5
           1658984
                      1658984
                                 4.3894
Residuals 13 /4913399
                       377954
```

SS.reg=sum(aov1[1:3,2])

F.ratio<-MS.reg/aov1[4,3]

MS.reg=SS.reg/3

\underline{A}	N	O	V	A	:

Source	DF	SS	M.	S = F	p
Model	3	4897991	42 16326	66381 431.9	745 0.0001
Error	13	4913398.	50 37795	3.731	
Total	16	4947125	40		

Comparison of two models

Example: Hospital Manpower Data

Im.manpower<-Im(Y~X2+X3+X5,data=manpower)
Im.manpower2<-Im(Y~X2+X3+X5+X2*X3,data=manpower)
anova(Im.manpower,Im.manpower2)

Comparison of two models

Example: Hospital Manpower Data

```
lm.manpower1<-lm(Y~X2+X5,data=manpower)
lm.manpower2<-lm(Y~.,data=manpower)
anova(lm.manpower1,lm.manpower2)</pre>
```

```
Analysis of Variance Table

Model 1: Y ~ X2 + X5

Model 2: Y ~ X1 + X2 + X3 + X4 + X5

Res.Df RSS Df Sum of Sq F Pr(>F)

1 14 37639593
2 11 4543605 3 33095988 26.708 2.381e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

Prediction

predict(lm.manpower)

predict(lm.manpower,newdata)

Example: Hospital Manpower Data (cont...)

Suppose that X2(Monthly X-ray Exposures) is 5000, X3(monthly Occupied Bed Days) is 1000 and X5 (Average Length of Patients' Stay in Days) is 5. The estimated monthly man-hours is given by

Use R:

- >lm.manpower<-lm(Y~X,data=manpower)
- >newdata<-data.frame(X2=5000,X3=1000,X5=5)
- >predict(lm.manpower,newdata)

[1] 1162.053

Multiple Regression including Categorical or Indicator Variables

Example The Electronics World Case

Number of		Sales
Households		Volume
X	Location	у
161	Street	157.27
99	Street	93.28
135	Street	136.81
120	Street	123.79
164	Street	153.51
221	Mall	241.74
179	Mall	201.54
204	Mall	206.71
214	Mall	229.78
101	Mall	135.22
	Households x 161 99 135 120 164 221 179 204 214	Households x Location 161 Street 99 Street 135 Street 120 Street 164 Street 221 Mall 179 Mall 204 Mall 214 Mall

ele<-read.csv('d:\\Electronics1.csv',header=T)
lm1<-lm(Sales~Households+Location,data=ele)

Coefficients:

(Intercept) Households LocationStreet 46.576 0.851 -29.216

Example The Electronics World Case

plot(Sales~Households,pch=c(16,22)[Location],data=ele) abline(lm1\$coef[1],lm1\$coef[2],col='blue') abline(lm1\$coef[1]+lm1\$coef[3],lm1\$coef[2],col='blue') text(200,210,'Mall Location') text(140,130,'Street Location')

For any given number of households, we estimate that the mean monthly sales volume in a mall location is \$29,216 greater than the mean monthly sales volume in a street location.

Example Electronic World

	Number of Households,		Sales Volume,
Store	X	Location	y
1	161	Street	157.27
2	99	Street	93.28
3	135	Street	136.81
4	120	Street	123.79
5	164	Street	153.51
6	221	Mall	241.74
7	179	Mall	201.54
8	204	Mall	206.71
9	214	Mall	229.78
10	101	Mall	135.22
11	231	Downtown	224.71
12	206	Downtown	195.29
13	248	Downtown	242.16
14	107	Downtown	115.21
15	205	Downtown	197.82

Example Electronic World

```
ele2<-read.csv('d:\\Electronics2.csv',header=T)
lm2<-lm(Sales~Households+Location,data=ele2)
```

Call:

 $lm(formula = Sales \sim Households + Location, data = ele2)$

Coefficients:

(Intercept) Households LocationMall LocationStreet 21.8415 0.8686 21.5100 -6.8638

Example Electronic World

```
plot(Sales~Households,pch=c(16,21,23)[Location],data=ele2)
abline(lm2$coef[1],lm2$coef[2],col='blue')
abline(lm2$coef[1]+lm2$coef[3],lm1$coef[2],col='blue')
abline(lm2$coef[1]+lm2$coef[4],lm1$coef[2],col='blue')
text(200,210,'Mall Location',cex=0.7)
text(180,180,'Downtown',cex=0.7)
text(140,130,'Street Location',cex=0.7)
                                                                  Mall-Location
                                            200
                                                              Downtown
                                        Sales
                                            150
                                                     Street Location
                                            100
                                               100
                                                         150
                                                                   200
                                                                              250
```

Households

Example: Hospital Manpower Data (cont...)

```
a=c(1,3,8)
manpower1=manpower[-a,]
lm.manpower<-lm(Y~X2+X3+X5,data=manpower1)
predict(lm.manpower,newdata=manpower[a,])</pre>
```

Cross Validation for model selection and Determination of Model Performance

overfitting

- The higher the polynomial order, the better it will fit the existing dots.
- However, the high order polynomials, despite looking like to be better models for the dots, are actually overfitting them. It models the noise rather than the true data distribution.

Cross Validation for model selection and Determination of Model Performance

1. Training sample & Validation sample (Randomly split the data into two groups:

2. Based on the training sample, we get this regression model:

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

3. Using the regression model obtained in step 2, make prediction for validation data

$$\hat{y}_j = \hat{\beta}_0 + \hat{\beta}_1 x_{j1} + \dots + \hat{\beta}_k x_{jk}$$
, for $j = m + 1, \dots, n$

Calculate MSE for validation data.

$$MSE = \frac{1}{(n-m)} \sum_{j=m+1}^{n} (y_j - \hat{y}_j)^2$$

4. Repeat step1-step 3 at least n times (n≥100) and then calculate average MSE of n times trails.

The mean of MSE is a good criteria to determine the best candidate model.

Example:

use cross-validation to evaluate the predictability of the following model:

lm.manpower<-lm(Y~X2+X3+X5,data=manpower1)

- Select a random sample of 12 observations.
- Based on the selected 12 observations, develop the above regression model.
- Use the regression model to predict the monthly man-hours of the remaining unselected 5 observations and calculate the corresponding sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y - \hat{Y})^2$$

 Repeat step1-step 3 at least n times (n≥100) and then calculate average MSE of n times trails.

manpower=read.table(file.choose(),header=T)

PRESS Statistics

We establish the model without the i^{th} observation $\{y_i, x_{i1}, ..., x_{ik}\}$, and predict y_i by this model, denote it as:

$$\hat{y}_{i,-i}$$

The criteria:

$$PRESS = \sum_{i=1}^{n} (y_i - \hat{y}_{i,-i})^2 = \sum_{i=1}^{n} e_{i,-i}^2$$

can be used for model / variable selection.

Computation of PRESS

$$PRESS = \sum_{i=1}^{n} \left[\frac{e_i}{1 - h_{ii}} \right]^2.$$

In R:

Press=sum((reg1\$residuals/(1-hat(x)))^2)

or

Press=sum((residuals(Im1)/(1 - Im.influence(Im1)\$hat))^2)

Conceptual Predictive Criteria (The C_p Statistics)

$$C_p = p + \frac{(S_p^2 - s^2)(n - p)}{s^2}$$

 σ^2 unknown;

 s^2 : $\hat{\sigma}^2$ based on the full model.

In R:

```
Im1<-Im(Y~X2+X3+X5,data=manpower1)
Im2<-Im(Y~., data=manpower1)
reg1<-summary(Im1)
reg2<- summary(Im2)
Cp=4+(reg1$sigma^2-reg2$sigma^2)*(17-4)/(reg2$sigma^2)
```

Stepwise regression procedure

- Goal is to develop a model with the best set of independent variables
 - Easier to interpret if unimportant variables are removed
 - Lower probability of collinearity
- Stepwise regression procedure
 (Sequential Variable Selection Procedures)
- Forward Selection
- Backward Elimination
- Stepwise Regression

Stepwise regression:

Suppose that there are k independent variables x_1, \ldots, x_k in the problem. We want to find the "best" model.

Forward Selection:

- 1. Start with no variables in the model.
- 2. For each independent variable, fit simple regression model including only one independent variable. Choose the simple regression model with the largest correlation in absolute value with the response *y*.
- 3. Next, add a variable that improves the model the most.
- 4. Repeat step 3 until none improves the model.

Forward Selection

Add to the model using the following criterion:

Adding the variable will increase adjust R^2 more than any other single variable.

Or:

Adding the variable will decrease AIC at most. (Akaike information criterion)

$$AIC = 2k - 2ln(L)$$

The number of estimated parameters in the model

likelihood function of the parameters in model

The probability density is, under the model

$$\prod_{i=1}^{n} p(y_i|x_i; \beta_0, \beta_1, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - (\beta_0 + \beta_1 x_i))^2}{2\sigma^2}}$$

of observing that data set (x_1,y_1) , (x_2,y_2) ,... (x_n,y_n) .

$$\prod_{i=1}^{n} p(y_i|x_i; b_0, b_1, s^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{(y_i - (b_0 + b_1 x_i))^2}{2s^2}}$$

Likelihood function of the parameters in model

$$L(b_0, b_1, s^2) = \log \prod_{i=1}^{n} p(y_i | x_i; b_0, b_1, s^2)$$

$$= \sum_{i=1}^{n} \log p(y_i | x_i; b_0, b_1, s^2)$$

$$= -\frac{n}{2} \log 2\pi - n \log s - \frac{1}{2s^2} \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

Forward Selection

 Stop entering variables into the model when there are no more variables that result in a significant increase in adjust R²

 Stop entering variables into the model when there are no more variables that result in a decrease of AIC.

Backward Elimination

- 1. Fit the full model with all possible variables
- 2. Remove one variable that has the smallest contribution in the current model.

3. Repeat step 2 until none improves the model.

The stopping rule for the backward procedure is similar to that for the forward procedure

Stepwise Regression (Bidirectional)

The stepwise technique starts as in the forward procedure.

At each stage in the process, after a new variable is added, a test is made to check if some variables can be deleted without appreciably increasing the residual sum of squares (RSS).

Sequential Variable Selection Procedures

- 1. Forward Selection
- 2. Backward Elimination
- 3. Stepwise Regression

R:

```
step(object, scope, scale = 0, direction = c("both", "backward", "forward"), trace = 1, keep = NULL, steps = 1000, k = 2, ...)
```

Example

```
manpower=read.table(file.choose(),header=T)
reg1=Im(Y~.,data=manpower)
step(reg1,direction = c("backward"))
OR
library(MASS)
step <- stepAIC(reg1, direction="both")</pre>
```