IC-UNICAMP				
MC202 - Estruturas de	e dados,	Prova	1,	13/12/16

1000	Marie Contract			
RA:	Assinatura:			
The state of the s		All the second second		

- 1. Esta prova é individual e sem consulta.
- 2. Esta prova pode ser feita a lápis ou a tinta.

Questão 1 [10] Explique como simular o funcionamento de uma pilha usando uma única fila e uma quantidade constante de memória extra. As operações disponíveis na fila são enfileirar e desenfileirar,

□ Não sei esta questão. Assinatura: _____ [10% do valor da questão]

Uma fila se tornaria uma fila no momento em que o áltimo elemento a entrar ha fila fasse o primeiro a sair. Mo entanto as operaçãos de enfilerar posiciona o elemento ao final dos fila e desenfilerar retira o primeiro elemento (o elemento mais à frente).

Deve-re averecentar uma operação de inversão de fila, de modo que o último elemento a entrar reje o primeiro a rain.

Sija Q uma fila. Para arrecentar x à fila:

- · enfiler x;
- · Enquanto re não for o primeiro da fila:
 - durenfilera y;
 - enfilera gi

Desta forma é produzide uma inversão na fila e a opção de duenfileiras é equivalente ao POP da pilha.

y para interter a fila.

10,

Questão 2 [10] Uma tabela de hashing T com sondagem por hashing dupla e função definida pelo método da divisão terá tamanho m=13.

- a. Escreva a definição completa da função de hashing para a tabela ${\cal T}.$
- b. Complete a sequência abaixo com os dígitos do seu RA agrupados dois a dois a partir do primeiro.

18 55 21 49 68 50 07 47

Por exemplo, se o RA for $\underline{290338}$ então a sequência será

29 55 21 49 03 50 38 47

Insira dígitos na seqüência, em ordem, em T. Apresente a tabela final.

 \Box Não sei esta questão. Assinatura: ______ [10\% do valor da questão]

10,

0,

 ${\bf Questão~3}~[10]~$ Complete a sequência abaixo com os dígitos do seu RA agrupados dois a dois a partir do primeiro.

 $\frac{\{\S\ 26\ 25\ 08\ \S^2\ 32\ 55\ 48\ 36\ 80\ \P^2\ 96\ 21\ 93}{\text{Por exemplo, se o RA for }290338\ \text{então a seqüência será}}$

29 26 25 08 03 32 55 48 36 80 38 96 21 93

Insira os dígitos na sequência, em ordem, em uma árvore AVL. Ao terminar, escreva as chaves na ordem dada por um percurso em largura na árvore.

32-36-48-55-68-80-

□ Não sei esta questão. Assinatura: _____ |10% do valor da questão|

 ${\it Quest\~{ao}}$ 4 [10] Uma árvore binária Té chamada equilibrada se:

a. T é vazia ou

b. T consiste de uma raiz r tendo T_c e T_d como subárvores esquerda e direita respectivamente e o número de nós em T_c difere do número de nós em T_d em no máximo uma unidade.

Escreva, na página seguinte, uma função em C que recebe como primeiro parâmetro um apontador para a raiz de uma árvore binária e como segundo parâmetro o endereço de um int onde a função deve armazenar o número de nós da árvore. A função deve retornar 1 se a árvore for equilibrada e 0 caso contrário. O nó da árvore e o cabeçalho da função estão definidos abaixo.

typedef struct node {
 int info;
 struct node *left, *right;
} node;
int equilibrada(node* t, int* n);

 \Box Não sei esta questão. Assinatura: ______ [10\% do valor da questão]

stão 4	
napor	nhamon n incicializado com zero na main
CIIC	equilibrates (node of t, int in)
17	(t == NULL) return 1: // (out) arvore equilibrada
-11	nt ne, nd, nanta eq
3	manter = +n; +n=+n+1;
- (eq = equilibrade (t > left, n);
	If (eg == 0) return 0: // wrong descould brade
	ne = +n - nonter -1; // non à aquenda
	nantu= *n; ()
	ed = equilibrada (tright, n);
	if (e 0 == 0) return 0; 1 + (1)
1000	nd= +n-nanter;
	if (ne-nd>1 11 ne-nd <-1)
	return 0;
	elm
	return 1;
1 17/1	
-36.6	
123	
180	
1919	
628	

10,