CSCI-567: Assignment #4

Due on Monday, November 9, 2015

Saket Choudhary 2170058637

Contents

Problem 1	3
Problem 1: (a) Gradient Calculation	3
Problem 1: (b) Weak Learner Section	
Problem 1: (c) Step Size Selection	
Problem 2	4
Problem 2: (a)	4
Problem 2: (b)	5
Problem 2: (c)	6
Problem 2: (d)	
Problem 3.3	8
Problem 3.3: (a)	8
Problem 3.3: (b)	
Problem 3.3: (c)	8
Problem 3.4	8
Problem 3.4: (a)	8
Problem 3.4: (b)	8
Problem 3.5	8
Problem 3.5: (a)	8
Problem 3.5: (b)	9

Problem 1

Problem 1: (a) Gradient Calculation

$$L(y_i, \hat{y_i}) = \log(1 + \exp(-y_i \hat{y_i}))$$

$$g_i = \frac{\partial L(y_i, \hat{y_i})}{\partial \hat{y_i}}$$

$$g_i = \frac{-y_i \exp(-y_i \hat{y_i})}{1 + \exp(-y_i \hat{y_i})}$$

Problem 1: (b) Weak Learner Section

$$h^* = \min_{h \in H} \left(\min_{\gamma \in R} \sum_{i=1}^n (-g_i - \gamma h(x_i))^2 \right)$$

$$\implies \frac{\partial h^*}{\partial \gamma} = 0$$

$$\implies 2 \sum_{i=1}^n (-g_i - \gamma h(x_i))(-h(x_i)) = 0$$

$$\hat{h} = -\frac{\sum_{i=1}^n g_i h(x_i)}{\sum_{i=1}^n h(x_i)^2}$$

Also check if it is indeed minimum with a second derivative test:

$$\frac{\partial^2 h^*}{\partial \gamma^2} = 2\sum_{i=1}^n h(x_i)^2 > 0$$

Since the second derivative is positive definite, $ga\hat{m}ma$ is indeed where the minima occurs.

Problem 1: (c) Step Size Selection

$$\alpha^* = \arg\min_{\alpha \in R} \sum_{i=1}^{n} L(y_i, \hat{y}_i + \alpha h^*(x_i))$$

Newton's approximation:

$$\alpha_1 = \alpha_0 - \frac{f(\alpha_0)}{f'(\alpha_0)}$$

We start from $\alpha_0 = 0$ and hence:

$$f(\alpha_0) = \sum_{i=1}^n \log(1 + \exp(-y_i \hat{y_i}))$$

$$f'(\alpha_0) = \sum_{i=1}^n \frac{\partial L}{\partial \alpha}$$

$$= \sum_{i=1}^n \frac{-y_i h^*(x_i) \exp(-y_i (\hat{y_i} + \alpha h^*(x_i)))}{1 + \exp(-y_i (\hat{y_i} + \alpha h^*(x_i)))}$$

$$= \sum_{i=1}^n \frac{-y_i h^*(x_i) \exp(-y_i \hat{y_i})}{1 + \exp(-y_i \hat{y_i})}$$

Thus,

$$\alpha_1 = \frac{\sum_{i=1}^{n} (\log(1 + \exp(-y_i \hat{y_i})))}{\sum_{i=1}^{n} \frac{-y_i h^*(x_i) \exp(-y_i \hat{y_i})}{1 + \exp(-y_i \hat{y_i})}}$$

Problem 2

Problem 2: (a)

Primal form:

$$\min_{w} ||w||^2$$
 such that $|y_i - (w^T x_i + b)| \le \epsilon$

Problem 2: (b)

$$\min_{w,\epsilon_i} \frac{1}{2}||w||^2 + C\sum_i \epsilon_i$$

such that $(w^T x_i + b) - y_i \le n_i + \epsilon_i$ (positive deviation) and $y_i - (w^T x_i + b) \le p_i + \epsilon_i$ (negative deviation)

$$n_i \ge 0$$

$$p_i \ge 0$$

Also, the slackness loss needs further constraints:

$$n_i = \begin{cases} 0 & |n_i| < \epsilon_i, \\ |n_i| - \epsilon & otherwise \end{cases}$$

$$p_i = \begin{cases} 0 & |p_i| < \epsilon_i, \\ |p_i| - \epsilon & otherwise \end{cases}$$

So essentially n_i, p_i are non zero, only above the two blue lines

Problem 2: (c)

$$L = \frac{1}{2} ||w||^2 + C \sum_{i} (p_i + n_i)$$
$$- \sum_{i} (\eta_i p_i + \eta'_i n_i)$$
$$- \sum_{i} \alpha_i (\epsilon + p_i - (y_i - (w^T x_i + b)))$$
$$- \sum_{i} \beta_i (\epsilon + n_i + (y_i - (w^T x_i + b)))$$

 ${\bf Conditions}:$

$$\alpha_i \ge 0$$
$$\beta_i \ge 0$$
$$\eta_i \ge 0$$
$$\eta_i^* \ge 0$$

Dual Form:

$$\Delta_w L = 0$$

$$= w - \sum_i \alpha_i x_i + \sum_i \beta_i x_i = 0$$

$$\Delta_b L = 0$$

$$= \sum_i \alpha_i - \sum_i \beta_i = 0$$

$$\Delta_{p_i} L = 0$$

$$= C - \sum_i \eta_i - \sum_i \alpha_i = 0$$

$$\Delta_{n_i} L = 0$$

$$= C - \sum_i \eta_i' - \sum_i \beta_i = 0$$

Thus, w is given by:

$$w = \sum_{i} \alpha_i x_i - \sum_{i} \beta_i x_i$$

depends only on the support vectors.

This reduces the optimisation to:

$$\max f = \frac{1}{2} \sum_{i,j} (\alpha_i - \beta_i) x_i^T x_j (\alpha_j - \beta_j) + p_i (C - \sum_i \eta_i - \sum_i \alpha_i)$$

$$+ n_i (C + \sum_i \eta_i' - \sum_i \beta_i)$$

$$+ \epsilon (-\sum_i \alpha_i - \sum_i \beta_i)$$

$$+ \sum_i y_i (\alpha_i - \beta_i)$$

$$= \frac{1}{2} \sum_{i,j} (\alpha_i - \beta_i) x_i^T x_j (\alpha_j - \beta_j) - \epsilon (\sum_i (\alpha_i + \beta_i))$$

$$+ \sum_i y_i (\alpha_i - \beta_i)$$
such that $\sum_i (\alpha_i - \beta_i) = 0$
and $\alpha_i, \beta_i \in [0, C]$

Problem 2: (d)

Using Kernel transformation:

$$w = \sum_{i} (\alpha_i - \beta_i) \phi(x_i)$$

this happens because $x_i'x_j$ gets mapped onto by an equivalent kernel function $k(x_i, x_j) = \phi^T(x_i)\phi(x_j)$ and the objective function is:

$$\max_{f} = \frac{1}{2} \sum_{i,j} (\alpha_i - \beta_i) k(x_i, x_j) (\alpha_j - \beta_j) - \epsilon (\sum_{i} (\alpha_i + \beta_i))$$

Problem 3.3

Problem 3.3: (a)

C	Tr. Dataset 1(t)	Tr. Dataset 2(t)	Training Dataset 3(t)	CV
$4^{-6} = 0.000244$	0.606156	0.400791	0.346078	0.578976
$4^{-5} = 0.000977$	0.379495	0.477559	0.498054	0.907001
$4^{-4} = 0.003906$	0.529940	0.495841	0.534946	0.926001
$4^{-3} = 0.015625$	0.516236	0.577324	0.561874	0.935501
$4^{-2} = 0.062500$	0.512287	0.529517	0.554510	0.945006
$4^{-1} = 0.250000$	0.630195	0.663459	0.657651	0.943010
$4^0 = 1.0000000$	0.746649	0.601710	0.563063	0.939003
$4^1 = 4.000000$	0.633370	0.572011	0.595552	0.942501
$4^2 = 16.000000$	0.674677	0.681010	0.698041	0.943503

As seen from the table, the time seems to increase with C and the CV increases too. C determines the tradeoff between objective function complexity and the overall loss. When C is small, there are chances of overfitting, this is evident from low CV values for lower C (because the generalisation error is high) In terms of time complexity, if

The larger the value of C, the more is the penalisation and hence smaller the ϵ_i would be

Problem 3.3: (b)

Based on lowest cross validation error. $C=4^2$

Problem 3.3: (c)

With C = 16, test accuracy = 0.943500

Problem 3.4

Problem 3.4: (a)

'libsvm' gives 0.9455 as its accuracy which is pretty close to

Problem 3.4: (b)

'libsvm' gives 0.9455 as its accuracy which is pretty close to

Problem 3.5

Problem 3.5: (a)