Telecomunicações e conectividade móvel no Brasil em 2020 e 2021

Projeto de Conclusão de Curso – Engenharia de Dados BC17

DESENVOLVEDORES

Gabriel Janjacomo

Jum Sahek i

Luma Guimarães

Victor Ribeir o

SUMÁRIO

Esse projeto teve por objetivo exercitar e demonstra o aprendizado do conjunto de tecnologias e infraestruturas que foram passados ao longo do bootcamp.

Utilizando uma base fornecida pelos professores, fomos encarregados de analisar, somar, normalizar e tratar dados a fim de gerar/insights e finalmente visualizações gráficas.

TECNOLOGIAS UTILIZADAS

TRANSFORMAÇÕES NOS FORMATOS DE ARQUIVO

TRANSFORMAÇÕES NOS FORMATOS DE ARQUIVO

```
PUXA ARQUIVO CSV DO BUCKET GCP CONVERTE PARA JSON E SALVA LOCAL
listaNomes = ['Acessos Telefonia Movel 202107-202112.csv',
              'Acessos Telefonia Movel 202107-202112 Colunas.csv', 'Acessos Telefonia Movel 202201-202106 Colunas.csv',
               'Acessos_Telefonia_Movel_202201-202206.csv', 'Acessos_Telefonia_Movel_Pre_Pos_Total.csv',
               'Acessos_Telefonia_Movel_Total.csv', 'Densidade_Telefonia_Movel.csv']
for nomeArquivo in listaNomes:
    GCpath = "gs://soulcode-bc17-telecom/" + nomeArquivo
    if nomeArquivo == 'Acessos_Telefonia_Movel_202107-202112.csv':
      colsList = [0, 1, 3, 6, 7, 11, 12, 13, 14, 15,16]
      with pd.read_csv(GCpath, sep=';', usecols=colsList, chunksize=5000000) as leitor:
        for chunk in leitor:
          nomeArquivo = listaNomes[0].split('.')
          nomeProcc = (str(nomeArquivo[0]) + ' chunk' + str(chunkNO) + '.json')
          localpath = r"/content/ArquivosOut/" + nomeProcc
          chunk.to_json(localpath)
          chunkNO = chunkNO + 1
      dfCSV = pd.read_csv(GCpath, sep=';')
      nomeProcc = nomeArquivo.split('.')
      nomeArquivo = nomeProcc[0] + '.json'
      localpath = r"/content/ArquivosOut/" + nomeArquivo
      dfCSV.to json(localpath)
```


INFRAESTRUTURA DE ARMAZENAMENTO EM NUVEM

INFRAESTRUTURA DE ARMAZENAMENTO EM NUVEM

CRIAÇÃO DOS TRIGGERS EM POSTGRESQL

```
CREATE OR REPLACE FUNCTION public.reg acessos()
    RETURNS trigger
   LANGUAGE 'plogsol'
    COST 100
    VOLATILE NOT LEAKPROOF
AS SBODYS
BEGIN
--Trigger operation inserção
IF (TG_OP = 'INSERT') THEN
INSERT INTO Log changes (log id, data criacao, operacao)
VALUES (new.acessos, current_timestamp, ' Operação de inserção.
A linha: ' || NEW.acessos || 'foi inserida');
RETURN NEW:
-- Trigger operation atualização
ELSIF (TG_OP = 'UPDATE') THEN
INSERT INTO Log_changes (log_id, data_criacao, operacao)
VALUES (NEW.acessos, current_timestamp, 'Operação de atualização.
A linha: ' || NEW.acessos || ' foi atualizada'
|| OLD || ' com ' || NEW. * || '.');
RETURN NEW;
-- Trigger operation exclusão
ELSIF (TG_OP = 'DELETE') THEN
INSERT INTO Log_changes (log_id, data_criacao, operacao)
VALUES (OLD.acessos, current_timestamp, 'Operação de exclusão. A linha: '
|| OLD.acessos || ' foi excluída');
RETURN OLD:
END IF:
RETURN NULL:
$BODY$;
ALTER FUNCTION public.reg_acessos()
    OWNER TO postgres:
```

CREATE TRIGGER trigger_acessos

AFTER INSERT OR DELETE OR UPDATE

ON public."Acessos_Telefonia_Movel_Pre_Pos_Total"

FOR EACH ROW

EXECUTE FUNCTION public.reg_acessos();

CONECTIVIDADE VIA PYTHON Google Cloud Platform

```
# Conectando ao drive para acessar a chave
drive.mount('/content/drive')

# Utilizando a chave para obter as informações de acesso
serviceAccount = '/content/drive/MyDrive/SoulCode/Datasets/macro-mercury-349020-d9ed9a670580.json'
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = serviceAccount

# Conectando ao bucket
client_bucket = storage.Client()
bucket = client_bucket.get_bucket('soulcode-bc17-telecom')
```

CONECTIVIDADE VIA PYTHON MongoDB

ANÁLISE PRELIMINAR DOS DATASETS

```
1 # Quantidade de linhas
2 df_blf2021.shape
3 # Tipo de dado de cada coluna
4 df_blf2021.dtypes
5 # Valores únicos por coluna
6 df_blf2021.nunique()
7 # Valores vazios
8 df_blf2021.isna().sum()
9 # Determinando o número de duplicatas
10 df_blf2021.duplicated().sum()
11 pd.unique(df_blf2021['Mês'])
```

```
1 # Quantidade de Linhas
2 df_blf2022.shape
3 # Tipo de dado de cada coluna
4 df_blf2022.dtypes
5 # Valores únicos por coluna
6 df_blf2022.nunique()
7 # Valores vazios
8 df_blf2022.isna().sum()
9 # Determinando o número de duplilcatas
10 df_blf2022.duplicated().sum()
```

ANÁLISE COM PANDAS

```
1 df2_extrai=pd.read_csv('gs://telecomunicacao2/Velocidade_Contratada_SCM.csv', sep=";")
   # Copy
   df2 pd = df2 extrai.copy()
   df2_pd.head(2)
6 # Unique
   pd.unique(df2_pd['Mês'])
8 # Info
9 df2_pd.info()
10 # Duplicated
11 df2_pd.duplicated().sum()
12 df_pd=df2_pd[df2_pd.duplicated()]
14 # Drop duplicates
15 df2_pd = df2_pd.drop_duplicates()
   pd.isnull(df2_pd).sum()
17 # Drop
   df2_pd=df2_pd.drop(columns=['municipio_uf'])
```

VISUALIZAÇÃO COM PANDAS

TRANSFORMAÇÃO PARA SPARK

```
df spark blf = spark.createDataFrame(df blf)
df spark bfl = (spark.read.format("parquet")
                .option("header", True)
                .option("delimiter", ",")
                .load("https://storage.googleapis.com/soulcode-bc17-telecom/Tratados/Acessos_Banda_Larga_Fixa.parquet")
df_spark_bfl=spark.read.parquet("https://storage.googleapis.com/soulcode-bc17-telecom/Tratados/Acessos_Banda_Larga_Fixa.parquet")
```

CHECAGEM DOS DADOS (PYSPARK)

```
# Número de linhas e colunas
   print((df spark cob.count(), len(df spark cob.columns)))
   # Tipo de dados
   df spark cob.printSchema()
   # Contagem de valores únicos por coluna
   df spark cob.select([F.countDistinct(c).alias(c) for c in df spark cob.columns]).show()
   # Valores nulos
   df_spark_cob.select([F.count(F.when(F.col(c).contains('None') | \
                               F.col(c).contains('NULL') | \
                               (F.col(c) == '') | \
                               F.col(c).isNull() | \
                               F.isnan(c), c
12
                               )).alias(c)
13
                       for c in df spark cob.columns]).show()
   # Valores duplicados
   total = (df spark cob.count()) - (df spark cob.dropDuplicates().count())
   print(total)
```

1 # Tipo de dado de cada coluna 2 df blf2021.dtypes int64 Ano Mês int64 object Grupo Econômico object **Empresa** int64 CNPJ Porte da Prestadora object object Município object Código IBGE Município int64 Faixa de Velocidade object Tecnologia object Meio de Acesso object object Tipo de Pessoa

Acessos

dtype: object

int64

TRANSFORMAÇÃO DE DADOS (PYSPARK)

```
# Trocando o tipo dos dados de float para inteiro

df_mov_col['2021-07'] = df_mov_col['2021-07'].astype('Int64')

df_mov_col['2021-08'] = df_mov_col['2021-08'].astype('Int64')

df_mov_col['2021-09'] = df_mov_col['2021-09'].astype('Int64')

df_mov_col['2021-10'] = df_mov_col['2021-10'].astype('Int64')

df_mov_col['2021-11'] = df_mov_col['2021-11'].astype('Int64')

df_mov_col['2021-12'] = df_mov_col['2021-12'].astype('Int64')

# Removendo colunas

df_mov_col = df_mov_col.drop('Código Nacional', axis=1)

df_mov_col = df_mov_col.drop('Grupo Econômico', axis=1)

df_mov_col = df_mov_col.drop('Código IBGE Município', axis=1)

# Trocando o tipo dos dados de float para inteiro

df_mov_col2['2022-01'] = df_mov_col2['2022-01'].astype('Int64')

df_mov_col2['2022-02'] = df_mov_col2['2022-02'].astype('Int64')

df_mov_col2['2022-03'] = df_mov_col2['2022-03'].astype('Int64')
```

NORMALIZAÇÃO DOS DADOS (PYSPARK)

```
1 # Eliminando a coluna 'Operadora' pois ela possuiu somente um valor
  df spark cob = df spark cob.drop('Operadora')
   # Eliminando a coluna 'Localidade Agregadora' pois ela está vazia
   df spark cob = df spark cob.drop('Localidade Agregadora')
  # Substituindo os valores nulos por 'Não informado'
  df_spark_cob = df_spark_cob.fillna(0)
   # Renomeando as colunas devido à compatibilidade com Spark
   df spark cob = (df spark cob.withColumnRenamed('Código Setor Censitário', "Codigo Setor Censitario")
                               .withColumnRenamed('Tipo Setor', 'Tipo_Setor')
                               .withColumnRenamed('Código Localidade','Codigo Localidade')
                               .withColumnRenamed('Nome Localidade','Nome Localidade')
                               .withColumnRenamed('Categoria Localidade','Categoria Localidade')
                               .withColumnRenamed('Código Município','Codigo Municipio')
                                .withColumnRenamed('Município','Municipio')
                                .withColumnRenamed('Região','Regiao')
                               .withColumnRenamed('Área (km2)', 'Area_km2')
                               .withColumnRenamed('Domicílios', 'Domicilios')
                               .withColumnRenamed('Percentual Cobertura', 'Percentual Cobertura')
```

UPLOAD PARA BANCO POSTGRESQL/GCP

```
from sqlalchemy import create engine
# Credenciais de acesso para o banco de dados Postgres sql criado na GCP
engine = create_engine("postgresql://postgres:xk5fMiHn74FDBw_@34.132.83.213/projeto_final")
df_cob.to_sql('Cobertura_Todas',engine,if_exists='replace',index=False)
```

QUERY COM SPARK

- 1 # Acessos por Estado
- 2 spark.sql("select uf, sum(acessos) as acessos, round((sum(acessos)/122858439)*100,2) as porcent From bandfixa group by uf order by porcent desc ").show(3)

QUERY COM SPARK

- 1 # Empresas responsáveis pelas maiores quantidades de acesso
- 2 spark.sql("select empresa,sum(acessos) as acessos,round((sum(acessos)/122858439)*100,2) as porcent From bandfixa group by empresa order by porcent desc ").show(4)

QUERY COM SPARK

- 1 # Tecnologia e meio de acessos
- 2 spark.sql("select Tecnologia, meioacesso, sum(acessos) as acessos,round((sum(acessos)/122858439)*100,2) as porcent From bandfixa group by tecnologia, meioacesso order by porcent desc ").show(7)

BIGQUERY

LIDERANÇA DE COBERTURA MÓVEL NO BRASIL

Row	Operadora	Cobertura				
1	VIVO	1560608.61				
2	CLARO	1442949.09				
3	TIM	885242.64				
4	OI	529072.33				
5	NEXTEL 279764.12					

TIM assume liderança de operadoras móveis no Brasil após integração com Oi Móvel

Por Dácio Castelo Branco | Editado por Claudio Yuge | 17 de Maio de 2022 às 22h20

Reprodução/FM-Pas/Wikimedia Commons

https://canaltech.com.br/telecom/tim-assume-lideranca-de-operadoras-moveis-no-brasil-apos-integracao-com-oi-movel-216591/

BIGQUERY

1		obertura FF	ROM <u>macro-</u> n	nercury-3	Area_km2*(Perce 49020.ProjetoFi				ea_km2)), <mark>2</mark>) AS ecnologia = '2G3G4	4G' GRO	UP
					_				Press Alt+F1 for Acc	essibility	y Options
Que	ery results						▲ SAVE RE	SULTS *	EXPLORE DAT	ГА 🔻	\$
JOB	INFORMATION	RESUL	TS JS	ON	EXECUTION DETA	AILS					
Row 1	Regiao Centro-oeste	Tipo_Setor Rural	porcentagem 13.46	_cobertura							
2	Centro-oeste	Urbano	83.25								
3	Nordeste	Rural	30.85								
4	Nordeste	Urbano	98.67								
5	Norte	Rural	10.41								
6	Norte	Urbano	93.18								
7	Sudeste	Rural	36.96								
8	Sudeste	Urbano	92.89								
9	Sul	Rural	38.14								
10	Sul	Urbano	96.4								

Banda Larga fixa

Total de Acessos

40,8 mi

Acessos por Mês

UF	Acessos
SP	12,8 mi
MG	4,4 mi
RJ	3,7 mi
RS	2,9 mi
PR	2,9 mi
SC	2,2 mi
BA	1,5 mi
CE	1,4 mi
GO	1,2 mi
	0101

Faixa de velocidade por estado

DATA STUDIO

UF	Acessos	
SP	1 bi	
MG	326,8 mi	
RJ	280,2 mi	
BA	203,1 mi	
RS	184,2 mi	
PR	181,4 mi	
PE	137,7 mi	
CE	131,9 mi	
SC	114,7 mi	
~~	****	

Tecnologia por estado

RELATÓRIO DE ACOMPANHAMENTO DO SETOR DE TELECOMUNICAÇÕES / ANATEL

