Matemática atuarial

Aula 17 Comutação

Danilo Machado Pires
danilo.pires@unifal-mg.edu.br
Leonardo Henrique Costa
leonardo.costa@unifal-mg.edu.br

- Comutação é a troca de ordem dos elementos, todavia, sem perder a sua realidade.
- Uma Tábua de comutação é uma tabela confeccionada a partir de probabilidades sobre as quais é aplicada uma taxa de juros compostos.
- As tábuas de comutação simplificam o cálculo de diversas operações relacionadas a previdência e a seguros contra morte.

➤ Johanes Nikolaus Tetens (Alemanha, 1736 1807).

➤ Matemática e atuário, (1785).

JOHN NICHOLAS TETENS

➤ Griffith Davies (Inglaterra- 1750-1833). ➤ Atuário, (1825).

- Utilizada para calcular os prêmios puros dos seguros de vida e anuidades.
 - > Simplificação para cálculos de prêmios.
- $ightharpoonup \acute{\rm E}$ o resultado das operações com os dados obtidos das colunas dos valores de l_x e d_x associados algebricamente com o valor da taxa de juros.
- ➤ A cada vez que se altera a taxa de juros obtêm-se tábuas de comutação.

➤ A tábua de comutação é formada por sete colunas, considerando as idades, sendo os valores de :

 D_{χ} , N_{χ} , S_{χ} \rightarrow Funções que se referem a sobrevivência.

 C_x , M_x , $R_x \rightarrow$ Funções que referem a mortalidade (falecimento).

- Uma tábua de comutação é constituída a partir de dois elementos:
 - → i) tábua de sobrevivência;
 - ➢ ii) taxa de juros (ou fator de desconto).

Griffith Davies X George Barret

Sistema Antigo.

Sistema moderno.

Uma das colunas e a forma de cálculo é que demonstra a diferença entre os sistemas.

TÁBUA DE SOBREVIVÊNCIA.

Idade
$$x$$
, q_x , p_x , d_x e l_x

- $ightharpoonup q_x$: Probabilidade de morte de uma pessoa com idade x antes de completar a idade de x+1 anos.
- p_x : $1 q_x$: Probabilidade de sobrevivência de uma pessoa com idade x antes de completar a idade x + 1.

VARIAÇÕES

- $ightharpoonup _{n}q_{x}$: Probabilidade de uma pessoa com idade x morrer antes de completar a idade de x+n anos.
- $parboonup p > np_x$: Probabilidade que uma pessoa com idade x, sobreviva pelo menos mais n anos.

TÁBUA DE SOBREVIVÊNCIA.

Idade
$$x$$
, q_x , p_x , d_x e l_x

- $> d_x$: Número de pessoas que faleceram entre a idade x e x+1.
- $\triangleright l_x$: Número (hipotético) de pessoas vivas com idade x.

RELAÇÕES

$$d_{x} = l_{x} - l_{x+1}$$

$$nq_{x} = \frac{l_{x} - l_{x+n}}{l_{x}}$$

$$np_{x} = \frac{l_{x+n}}{l_{x}}$$

$$m+lp_{x} = (mp_{x})(l_{x+m})$$

 \triangleright Coluna D_x

$$D_{x} = l_{x}v^{x} = \frac{l_{x}}{(1+i)^{x}}$$

- > A letra D refere-se a Denominador.
- $ightharpoonup D_x$ é o valor presente, à idade zero, de um benefício unitário pago a cada pessoa da coorte de l_0 que chegam vivas à idade x.

Suponha i=5% então $D_{\chi}=l_{\chi}v^{\chi}=\frac{l_{\chi}}{(1,05)^{\chi}}$

Idade	q_X	p_X	l_x	D_{χ}	_ 100000
25	0,00077	0,99923	100000	29530,28	$D_{25} = \frac{100000}{(1,05)^{25}}$
26	0,00081	0,99919	99923	28102,42	
27	0,00085	0,99915	99842	26742,51	
28	0,00090	0,99910	99757	25447,38	
29	0,00095	0,99905	99667	24213,73	22028 72
30	0,00100	0,99900	99572	23038,72	$D_{30} = \frac{23038,72}{(1,05)^{30}}$
31	0,00107	0,99893	99472	21919,60	(=,00)
32	0,00114	0,99886	99365	20853,35	
33	0,00121	0,99879	99251	19837,55	
34	0,00130	0,99870	99131	18870,06	4704040
35	0,00139	0,99861	99002	17948,10	$D_{35} = \frac{17948,10}{(1,05)^{35}}$
					(1,03)

	16	▼ (f_{z}	-												~
. /	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	
1	Х	qx	рх	lx	vx	Dx										
2	0	0,00231	0,99769	100000	1	100000										
3	1	0,00091	0,99909		0,952381	95018										
4	2	0,00050	0,99950	99678,51	0,907029	90411,35						Fator de a	tualização			
5	3	0,00041	0,99959	99628,27	863838	86062,65						i	5%			
6	4	0,00036	0,99964	99587,62	0,822702	81930,98]						
7	5	0,00032	0,99968	99552,07	0,783526	78001,65										
8	6	0,00030	0,99970	99519,82	0,746215	74263,22			$D_x =$	12X I						
9	7	0,00029	0,99971	99489,86	0,710681	705,59			D_{χ} –	ν ι_{χ}						
10	8	0,00033	0,99967	99461,41	0,676839	67319,39										
11	9	0,00036	0,99964	99428,78	0,644609	64092,68										
12	10	0,00039	0,99961	99392,79	0,613913	61018,55			Y	1						
13	11	0,00041	0,99959	99354,03	0,584679	58090,24		`v	$e^x = \frac{1}{C}$	1 : :) ?	-					
14	12	0,00043	0,99957	99312,99	0,556837	55301,19			($(1+i)^x$						
15	13	0,00045	0,99955	99270,19	0,530321	52645,1										
16	14	0,00046	0,99954	99225,91	0,505068	50115,83										
17	15	0,00047	0,99953	99180,47	0,481017	47707,5		\ ,	,							
18	16	0,00048	0,99952	99133,85	0,458112	45414,36		ι_{x}	$_{+1} = l$	$p_X p_X$						
19	17	0,00050	0,99951	99086,17	0,436297	43230,97										
20	18	0,00051	0,99949	99037,12	0,415521	41151,97										
21	19	0,00053	0,99947	98986,61	0,395734	39172,36										
22	20	0,00055	0,99945	98934,35	0,376889	37287,32										
23	21	0,00057	0,99943	98880,03	0,358942	35492,23										
24	22	0,00060	0,99940	98823,38	0,34185	33782,76										
25	23	0,00063	0,99937		0,325571	32154,78										
26	24	0,00066	0,99934	98702,26	0,310068	30604,4										
27	25	0,00069	0,99931	98637,41	0,295303	29127,9										
28	26	0,00071	0,99929	98569,74	0,281241	27721,83										
29	27	0,00074	0,99926	98499,36	0,267848	26382,89										
<u>_</u> 30	28	0,00076	0,99924	98426,67	0,255094	25108,02										
31	29	0,00077	0,99923	98352,06	0,242946	23894,27										_
14 4	▶ № Pla	n1 Plan2	Plan3	2	0 224277	22720.04				14						▶ J

 \triangleright Coluna N_{χ}

$$N_{x} = \sum_{t=0}^{\omega - x} D_{(x+t)} = \frac{l_{x}}{(1+i)^{x}} + \frac{l_{x+1}}{(1+i)^{x+1}} + \frac{l_{x+2}}{(1+i)^{x+2}} + \dots + \frac{l_{\omega}}{(1+i)^{\omega}}$$

- $\succ \omega$ corresponde a idade máxima atingida, e a letra N refere-se a Numerador.
- $\nearrow N_x$ é o valor presente do total gasto para pagar uma vitalícia de R\$ 1,00 por ano para a coorte da tábua de vida. Pagamentos são feitos a partir da idade x.
- > Na prática, constrói-se a coluna na ordem reversa.

Suponha
$$i=5\%$$
 então: $N_x=\sum_{t=0}^{\omega}D_{(x+t)}=\sum_{t=0}^{\omega}\frac{l_{x+t}}{(1,05)^{x+t}}$

Idade	q_X	p_X	l_x	D_{x}	N_{x}	90
25	0,00077	0,99923	100000	29530,28	6928266	$N_{25} = \sum_{t=0}^{\infty} D_{(25+t)} = D_{25} + D_{26} + \cdots D_{115}$
26	0,00081	0,99919	99923	28102,42	6573343	t=0
27	0,00085	0,99915	99842	26742,51	6235516	
28	0,00090	0,99910	99757	25447,38	5913968	
29	0,00095	0,99905	99667	24213,73	5607924	85
30	0,00100	0,99900	99572	23038,72	5316645	$N_{30} = \sum D_{(30+t)} = D_{30} + D_{31} + \cdots D_{115}$
31	0,00107	0,99893	99472	21919,60	5039426	t=0
32	0,00114	0,99886	99365	20853,35	4775598	
33	0,00121	0,99879	99251	19837,55	4524517	
						0
115	1,00000	00000	0,18042	0,000022	0,00066	$N_{115} = \sum_{t=0}^{\infty} D_{(115+t)} = D_{115}$
						$\overline{t=0}$

 \triangleright Coluna S_x

$$S_x = \sum_{t=0}^{\omega - x} N_{x+t} = N_x + N_{x+1} + N_{x+2} + \dots + N_{\omega}$$

 $\succ \omega$ corresponde a idade máxima atingida, e a letra S refere-se a soma.

A utilização de S_{x} pertence ao cálculo de rendas crescentes, assunto que foge ao escopo dessa disciplina.

 \triangleright Coluna C_x

$$C_x = v^{x+1} dx = \frac{d_x}{(1+i)^{x+1}}$$

Lembrando que $d_x = l_x - l_{x+1}$ e $_1q_x = \frac{l_x - l_{x+1}}{l_x}$, logo :

$$C_{x} = v^{x+1} q_{x} l_{x}$$

 \triangleright Valor presente total necessário a um benefício de 1u.m. Para todos os indivíduos da coorte que morrem com x anos.

Suponha i=5% então $C_x=v^{x+1}dx$

Idade	q_X	p_X	l_{x}	D_{x}	C_x
25	0,00077	0,99923	100000	29530,28	21,655
26	0,00081	0,99919	99923	28102,42	21,679
27	0,00085	0,99915	99842	26742,51	21,648
28	0,00090	0,99910	99757	25447,38	21,812
29	0,00095	0,99905	99667	24213,73	21,907
30	0,00100	0,99900	99572	23038,72	21,941
31	0,00107	0,99893	99472	21919,60	<u> </u>

$$C_{25} = v^{25+1}(l_{25} - l_{26}) = q_{25}l_{25}(v^{26})$$

$$C_{30} = v^{30+1} (l_{30} - l_{31}) = q_{30} l_{30} v^{31}$$

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	_
1	Х	qx	рх	lx	VX	Dx	Nx	Сх								
2	0	0,00231	0,99769		1	100000	2031767,454		!							
3	1	0,00091	0,99909		0,952381		1931767,454	81,98696								
4	2	0,00050	0,99950	99678,51	0,907029	90411,35	1836749,454	43,39745				Fator de a	tualização			
5	3	0,00041	0,99959	99628,27	0,863838	86062,65	1746338,107	33,44149				i	5%			
6	4	0,00036	0,99964	99587,62	0,822702	81930,98	1660275,46	27,85653								
7	5	0,00032	0,99968	99552,07	0,783526	78001,65	1578344,477	24,06908								
8	6	0,00030	0,99970	99519,82	0,746215	74263,22	1500342,825	21,28879								
9	7	0,00029	0,99971	99489,86	0,710681	70705,59	1426079,606	19,25885								
10	8	0,00033	0,99967	99461,41	0,676839	67319,39	1355374,02	21,0293		C	1	0+1 ~	1			
11	9	0,00036	0,99964	99428,78	0,644609	64092,68	1288054,625	22,09671		$_{-}$ ι_{10}	$=v^{\perp}$	$^{0+1}q_{10}l_{10} \ ^-$				
12	10	0,00039	0,99961	99392,79	0,613913	61018,55	1223961,946	22,66403								
13	11	0,00041	0,99959	99354,03	0,584679	58090,24	1162943,395	22,84883								
14	12	0,00043	0,99957	99312,99	0,556837	55301,19	1104853,154	22,69982								
15	13	0,00045	0,99955	99270,19	0,530321	52645,1	1049551,963	22,36163								
16	14	0,00046	0,99954	99225,91	0,505068	50115,83	996906,8625	21,86005								
17	15	0,00047	0,99953	99180,47	0,481017	47707,5	946791,0329	21,35479								
18	16	0,00048	0,99952	99133,85	0,458112	45414,36	899083,5315	20,8041								
19	17	0,00050	0,99951	99086,17	0,436297	43230,97	853669,1707	20,38031								
20	18	0,00051	0,99949	99037,12	0,415521	41151,97	810438,2026	19,9881								
21	19	0,00053	0,99947	98986,61	0,395734	39172,36	769286,2323	19,6981								
22	20	0,00055	0,99945	98934,35	0,376889	37287,32	730113,8678	19,49594								
23	21	0,00057	0,99943	98880,03	0,358942	35492,23	692826,552	19,36862								
24	22	0,00060	0,99940	98823,38	0,34185	33782,76	657334,3187	19,27226								
25	23	0,00063	0,99937	98764,18	0,325571	32154,78	623551,5603	19,201								
26	24	0,00066	0,99934	98702,26	0,310068	30604,4	591396,777	19,14961								
27	25	0,00069	0,99931	98637,41	0,295303	29127,9	560792,3748	19,03023								
28	26	0,00071	0,99929	98569,74	0,281241	27721,83	531664,4747	18,85084								
29	27	0,00074	0,99926	98499,36	0,267848	26382,89	503942,6477	18,5434								
30	28	0,00076	0,99924	98426,67	0,255094		477559,7586	18,1256								
31	29	0,00077		98352,06	-	-	452451,7409									
14 4	→ Ñ.	Plan1 Plan2	Dlan2	00075.04	0 224277	22720.04	420557 4607	46.07022				IIII				•
14 4	P PI	Platti / Plattiz	Plan3 🥂	<i>d</i> /								IIII				Ш

 \triangleright Coluna M_{χ}

$$M_{x} = C_{x} + C_{x+1} + C_{x+2} + \dots + C_{\omega} = \sum_{t=0}^{\omega} C_{x+t}$$

$$M_{x} = v^{x+1}q_{x}l_{x} + v^{x+2}q_{x+1}l_{x+1} + v^{x+3}q_{x+2}l_{x+2} + \cdots$$

 ω corresponde a idade máxima atingida, e a letra S refere-se a soma.

Na prática, constrói-se a coluna na ordem reversa.

 \triangleright Coluna R_x

$$R_{x} = \sum_{t=0}^{\omega - x} M_{x+t} = M_{x} + M_{x+1} + M_{x+2} + \dots + M_{\omega}$$

 $\succ \omega$ corresponde a idade máxima atingida, e a letra S refere-se a soma.

A utilização de R_{χ} pertence ao cálculo de seguro contra morte de capital crescente, assunto que foge ao escopo dessa disciplina.