

$\begin{array}{c} {\rm coalgebra\ isomorphisms\ and\ isomorphic} \\ {\rm coalgebras} \end{array}$

 ${\bf Canonical\ name} \quad {\bf Coalgebra Isomorphisms And Isomorphic Coalgebras}$

Date of creation 2013-03-22 18:49:28 Last modified on 2013-03-22 18:49:28

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130) Entry type Definition Classification msc 16W30 Let (C, Δ, ε) and $(D, \Delta', \varepsilon')$ be coalgebras.

Definition. We will say that coalgebra homomorphism $f: C \to D$ is a coalgebra isomorphism, if there exists a coalgebra homomorphism $g: D \to C$ such that $f \circ g = \mathrm{id}_D$ and $g \circ f = \mathrm{id}_C$.

Remark. Of course every coalgebra isomorphism is a linear isomorphism, thus it is "one-to-one" and "onto". One can show that the converse also holds, i.e. if $f: C \to D$ is a coalgebra homomorphism such that f is "one-to-one" and "onto", then f is a coalgebra isomorphism.

Definition. We will say that coalgebras (C, Δ, ε) and $(D, \Delta', \varepsilon')$ are isomorphic if there exists coalgebra isomorphism $f: C \to D$. In this case we often write $(C, \Delta, \varepsilon) \simeq (D, \Delta', \varepsilon')$ or simply $C \simeq D$ if structure maps are known from the context.

Remarks. Of course the relation $,,\simeq$ " is an equivalence relation. Furthermore, (from the coalgebraic point of view) isomorphic coalgebras are the same, i.e. they share all coalgebraic properties.