riboflavin

12110248 赵一菡

	y.	x[, "AADK_at"]	x[, "AAPA_at"]	x[, "ABFA_at"]	x[, "ABH_at"]	x[, "ABNA_at"]	x[, "ABRB_at"]	x[, "ACCA_at"]	x[, "ACCB_at"]	x[, "ACCC_at"]	x[, "A(
1	-6,643856	8.492403	8.111450	8.320841	10.28711	8.261278	10.20827	9.745474	9.818821	9.676227	8.372
2	-6,947862	7.639379	7.239965	7.289050	9.862287,	7.303496	9.500023	9.216008	9.854945	9.650078	7,732
3	-7,930160	8,088340	7.855510	7.793395	9.676720	7.090273	9,473917	9.580384	9.926076,	9.787129	7.925
4	-8.287712	7.886820	7.939513	7.997587,	9.680562	7.408493	9.788725	9.447722	9.852772	9.546914	7.838
5	-7.310432	6.805762	7.554522	7.609902	0.551952	7,712406	8,490846	8.696248	8.573272	8.589660	7.905
6	-7.643856	7.178876	7.885714	7.757972	8.748767	7.667774	8.603118	8,943573	8.615258	8.726849	7.982
7	-6.137965	6.971955	7.695355	8.074744	8.751813	6.813235	8.905995	8.395549	8.803129	8.558474	8.272
8	-6.559792	8.035707	7.912118	8.239717	10.28784	8.055294	9.939948	9.354785	9.351944	9.416944	7.89€
9	-8.333516	6.700876	7.211641,	7.324891	9.272632	6.681405	9.593209	8.585038	8.718382	8.645985	7.505
10	-6.310432	6.893788	8.033640	8.172674	8.839805	7.361545	8.324694	8.288879	8.310754	8.422998	8.000
11	-6.615287	6.292866	7.324719	7,448579	8.540632	6.337293	7.794797	8.077470	7.969102	8.217208	7.855
12	-7,117787	6.327641	7.523628	7,354843	8.606369	7.284397	8.506239	8.272068	8.349110,	8.191391,	7.893
13	-6.333516	6.496524	7.581779.,	7.812213	9.355401	7,067614	9.462897	8.725616	8.589603	8.802301,	8.29C
14	-6.702750	7.101828	7.336413	7.671436	9.806513	7.228840	9.671816	8.897812	8.959056	9.071168	7.937
15	-7,310432	6.363434	7.436675	7.657328	9.142939	6.553575	8.770141	8.440705	8.613963	8.589429	8.263
16	-5.930160	7.700054	7.542364	7.901635	10.07514	8.538412	10.04083	8.988470	8.953778	8.959054	7.682
17	-6.287712	7.712096	7.813581	7.590394	10.53596	7.679025	9.929397	8.777188	8.949379	8.998269	7.541
18	-8.158429	7.034472	7.806579	8.273655	10.38531	7.915671	10.47558	8.931827	9.571879	9.531392	8.272
19	-5.673003	6.598248	7.631168	7.934089	9.293582	7.834631	9.253776	8.641318	8.262214	8.364870	8.067
20	-6.137965	6.821492	7.424457	7.490057	10.30227	7.186265	9.688242	8.532955	8.471036	8.631843	7.667
21	-7.333516	6.514229	7.611659	7.808278	9.496962	7.827977	9.969995	8.614048	8.719779	8.770864	7.950
22	-6.011588	6.993716	7.880063	8.104790	10.03200	7.608811	9.464803	8.403315	8.393172	8.242090	8.114
23	-7.265345	6.850524	8.637262	8.550220	9.320293	7.067916	8.983469	8.644782	8.783839	8.592625	8.395
24	-6.299028	6.283384	6.625481	6.853930	8.632215	5.054136	7.433181	6.877303	7.485159	7.767801	7.478
25	-6.429731	6.796129	6.651750	7.130069	7.217780	6.239585	8.684817	8.316517	7.986551	8.786225	7,823
			1								

- n=71, p=4088
- n<<p
- Dimensionality Reduction

PCA

Cumulative Variance Explained by Principal Components

- 41 explanatory variables
- 95% of the variance

Kernel Smoothing

 $h^* \simeq 3.491 sn^{-1/3}$.

Freedman-Diaconis rule

alexdonkey 2009年9月22日

似乎有点知道了,请大家指教

先检验下样本的分布情况,

如果样本分布服从正态分布的话,那么就用正态核来估计吧,hopt= 1.06*sigma*n^(-1/5),当然也可以选择 ?density 里的那些选择 nrd, bcv, ucv 等等

sinon, 那就可以用CV(h): validation croisée 来估计hopt 可以安装程序包 sm,用hcv 就OK了,还以用 Plug-in方法,不过在R里好像也只找到 noyau gaussien 的方法,这点不是很明日?

回复

Histogram of y with Density Curve

> shapiro.test(riboflavin\$y)

Shapiro-Wilk normality test

data: riboflavin\$y
W = 0.94412, p-value = 0.003326

- Left skewed
- Unimodal
- Not normal

Histogram of y with Density Curve

> shapiro.test(riboflavin2_boxcox\$y)

Shapiro-Wilk normality test

data: riboflavin2_boxcox\$y
W = 0.97885, p-value = 0.2746

- Almost no skewness
- Unimodal
- Normal

Linear Model

```
1.05164
                                                                                     3.00917
                                                                                               0.349
                                                                                                      0.72917
> summary(model)
                                                         x.YCLK_at
                                                         x.YUSJ_at
                                                                         -0.36367
                                                                                     1.30518
                                                                                              -0.279
                                                                                                      0.78244
                                                                                     1.00664
                                                                                              -0.837
                                                                                                      0.40915
                                                                         -0.84267
Call:
                                                         x.YKRP_at
                                                                                                      0.00271 **
                                                                          2.80358
                                                                                     0.85764
                                                                                               3.269
lm(formula = y \sim ... data = riboflavin2\_boxcox)
                                                         x.XKDO_at
                                                                         -0.76801
                                                                                     1.80022
                                                                                              -0.427
                                                                                                      0.67270
                                                         x.CHER_at
                                                                                     0.29608
                                                                         -0.42792
                                                                                              -1.445
                                                                                                       0.15875
Residuals:
                                                         x.NADB_at
                                                                         -0.40301
                                                                                     1.88493
                                                                                              -0.214
                                                                                                      0.83214
                                                         x.YURK_at
    Min
             1Q Median
                              3Q
                                     Max
                                                                          1.17299
                                                                                     1.97921
                                                                                               0.593
                                                                                                      0.55785
                 0.0586
                                                         x.YTAB_at
-3.7113 -0.6690
                         0.8813
                                 2.4658
                                                                         -0.79305
                                                                                     2.55682
                                                                                              -0.310
                                                                                                      0.75858
                                                         x.YERO_at
                                                         x.NADB_at.1
                                                                               NA
                                                                                          NΑ
                                                                                                  NA
                                                                                                            NA
Coefficients: (1 not defined because of singularities)
                                                                                               0.022
                                                         x.YRHA_at
                                                                          0.03247
                                                                                     1.46138
                                                                                                      0.98242
               Estimate Std. Error t value Pr(>|t|)
                                                         x.ALST_at
                                                                         -0.21853
                                                                                     1.78775
                                                                                              -0.122
                                                                                                      0.90352
                          65.79566 -2.949
             -194.00317
                                            0.00613 **
(Intercept)
                                                                          1.84829
                                                                                     1.41844
                                                                                               1.303
                                                                                                      0.20247
                                      0.212
                                                         x.PYRF_at
                0.34332
                           1.61964
                                             0.83356
x.YNDJ_at
                                                                          1.36118
                                                                                     1.88739
                                                                                               0.721
                                                                                                      0.47637
                                             0.77275
                                                         x.CYSE_at
               -0.50070
                           1.71829
                                     -0.291
x.YACD_at
                                                                                                      0.96274
                                                                         -0.06067
                                                                                     1.28794
                                                                                              -0.047
                                      1.072
                                             0.29241
                                                         x.FFH_at
                2.26359
                           2.11218
x.YXDJ_at
                                                                          2.33108
                                                                                     0.89617
                                                                                               2.601
                                                                                                      0.01429 *
                                                         x.YHDS_r_at
               -0.22895
                           2.02556
                                     -0.113
                                             0.91076
x.YWAE_at
                                                                         -1.20590
                                                                                     2.89078
                                                                                              -0.417
                                                                                                      0.67954
                                             0.12894
                                                         x.YVFK_at
               -2.03679
                           1.30453
                                     -1.561
x.XYLB_at
                                                                         -1.03051
                                                                                     2.17981
                                                                                              -0.473
                                                                                                      0.63981
                           1.53247
                                                         x.DPPD_at
               -2.58534
                                     -1.687
                                             0.10197
x.UREA_at
                                                                          2.48013
                                                                                     2.27678
                                                                                               1.089
                                                                                                      0.28469
                           1.76460
                                                         x.YEFA_at
               -0.43406
                                     -0.246
                                             0.80737
x.SPOVID_at
                                                                          0.29023
                                                                                     1.50563
                                                                                               0.193
                                                                                                       0.84844
                                                         x.PRFA_at
                0.25504
                           0.89546
                                      0.285
                                             0.77775
x.PHRK_at
                                                                          1.12029
                                                                                     1.78597
                                                                                               0.627
                                                                                                      0.53522
                           1.27818
                                      2.058
                                             0.04838 *
                                                         x.CSAA_at
                2.63040
x.ADHA_at
                                                         x.YEZC_at
                                                                         -1.02434
                                                                                     2.03714
                                                                                              -0.503
                                                                                                      0.61875
                                      3.218
                5.91973
                           1.83956
                                             0.00309 **
x.RIBA_at
                                                                          1.75717
                                                                                     2.98629
                                                                                               0.588
                                                                                                      0.56066
                                                         x.YVF0_at
                2.16976
                           1.69554
                                      1.280
                                             0.21046
x.BOFA_at
                                                                         -0.24351
                                                                                     1.54271
                                                                                              -0.158
                                             0.96220
                                                         x.GLNM_at
                                                                                                      0.87564
               -0.06068
                           1.26954
                                     -0.048
x.YKPC_at
                1.92565
                           2.52561
                                      0.762
                                             0.45174
x.YCNK_at
                                                         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                1.50610
                           1.68541
                                      0.894
                                             0.37864
x.PABB_at
                           1.57295
                                     -0.589
                                             0.56015
               -0.92676
x.SPOIIGA_at
                                                         Residual standard error: 2.034 on 30 degrees of freedom
                0.53573
                           1.67204
                                      0.320
                                             0.75088
x.CSBA_at
                                                         Multiple R-squared: 0.8277,
                                                                                          Adjusted R-squared: 0.598
                           2.47318
                                      0.597
                                             0.55492
x.HUTP_at
                1.47673
                                                          F-statistic: 3.603 on 40 and 30 DF, p-value: 0.0002349
                1.05164
                            3.00917
                                      0.349
                                             0.72917
x.YCLK_at
```

Residuals vs Fitted value

> print(bp_test)

studentized Breusch-Pagan test

data: model BP = 40.12, df = 40, p-value = 0.4649

- Linearity
- Homoscedasticity

		2 TO 1	1.5
>	VIT	(mode	I)
		(٠,

x.YNDJ_at	x.YACD_at	x.YXDJ_at	x.YWAE_at	x.XYLB_at	x.UREA_at	x.SPOVID_at	x.PHRK_at	x.ADHA_at
12.969803	5.343119	4.195356	5.353218	6.829044	7.810606	3.949662	3.819092	3.705367
x.RIBA_at	x.BOFA_at	x.YKPC_at	x.YCNK_at	x.PABB_at	x.SPOIIGA_at	x.CSBA_at	x.HUTP_at	x.YCLK_at
3.351136	5.023135	4.572193	6.114210	2.973912	3.164068	9.635928	2.753163	5.293606
x.YUSJ_at	x.YKRP_at	x.XKDO_at	x.CHER_at	x.NADB_at	x.YURK_at	x.YTAB_at	x.YERO_at	x.YRHA_at
2.617433	2.958422	3.326167	4.163400	2.050740	4.249037	7.776301	4.762744	3.834362
x.ALST_at	x.PYRF_at	<pre>x.CYSE_at</pre>	x.FFH_at	x.YHDS_r_at	x.YVFK_at	x.DPPD_at	x.YEFA_at	x.PRFA_at
3.399612	2.926549	4.095913	13.977456	2.172475	62.333463	19.462113	5.829215	2.841525
x.CSAA_at	x.YEZC_at	x.YVF0_at	x.GLNM_at					
4.162516	5.737347	55.285061	4.669691					

• Multicollinearity

```
model11 <- lm(y \sim .-x.NADB_at.1-x.YVFO_at, data = riboflavin2\_boxcox) model12 <- lm(y \sim .-x.NADB_at.1-x.FFH_at, data = riboflavin2\_boxcox) model13 <- lm(y \sim .-x.NADB_at.1-x.DPPD_at, data = riboflavin2\_boxcox) model14 <- lm(y \sim .-x.NADB_at.1-x.YVFK_at, data = riboflavin2\_boxcox)
```

```
> any(vif(model11)>10)
[1] TRUE
> any(vif(model12)>10)
[1] TRUE
> any(vif(model13)>10)
[1] TRUE
> any(vif(model14)>10)
[1] TRUE
```

Multicollinearity

```
> any(vif(model21)>10)
[1] FALSE
> any(vif(model22)>10)
[1] FALSE
> any(vif(model23)>10)
[1] TRUE
> any(vif(model24)>10)
[1] FALSE
> any(vif(model25)>10)
[1] FALSE
> any(vif(model25)>10)
[1] TRUE
```

Multicollinearity

> shapiro.test(riboflavin2_boxcox\$y)

Shapiro-Wilk normality test

data: riboflavin2_boxcox\$y
W = 0.97885, p-value = 0.2746

Normality

Full Model

· AIC

BIC

LASSO

```
> # prediction
> predicted <- predict(model2, x)</pre>
> lm_mse <- mean((riboflavin2_boxcox[,1]-predicted)^2)</pre>
> 1m_mse
[1] 1.75762
> prediction_AIC <- predict(modelAIC, newx = x)</pre>
> AIC_mse <- mean((prediction_AIC - riboflavin2_boxcox$y)^2)</pre>
> AIC mse
[1] 2.007884
> prediction_BIC <- predict(modelBIC, newdata = riboflavin2_boxcox)</pre>
> BIC_mse <- mean((prediction_BIC - y)^2)
> BIC_mse
[1] 2.270461
```

```
> y_pred <- predict(final_lasso_model, newx = as.matrix(x))
> LASSO_mse <- mean((y - y_pred)^2)
> LASSO_mse
[1] 2.819975
```

Full Model

Residual standard error: 1.975 on 32 degrees of freedom
Multiple R-squared: 0.8267 Adjusted R-squared: 0.6209
F-statistic: 4.017 on 38 and 32 DF, p-value: 6.055e-05

AIC√

Residual standard error: 1.61 on 55 degrees of freedom

Multiple R-squared: 0.802 Adjusted R-squared: 0.748

F-statistic: 14.85 on 15 and 55 DF, p-value: 3.155e-14

BIC

Residual standard error: 1.667 on 58 degrees of freedom Multiple R-squared: 0.7761, Adjusted R-squared: 0.7298 F-statistic: 16.76 on 12 and 58 DF, p-value: 1.163e-14

```
    LASSO
```

```
> ss_res <- sum((y - y_pred)^2)
> ss_tot <- sum((y - mean(y))^2)
> r_squared <- 1 - ss_res / ss_tot
> n <- length(y)
> lasso_coef <- coef(final_lasso_model, s = best_lambda)
> p <- sum(lasso_coef != 0) - 1
> adjusted_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
> r_squared
[1] 0.7219365
> adjusted_r_squared
[1] 0.6256838
```


Multivariate Adaptive Regression Splines(MARS)

- $\cdot R^2$
- Adjusted R²

```
> ss_res <- sum((y - predicted)^2)
> ss_tot <- sum((y - mean(y))^2)
> r_squared <- 1 - ss_res / ss_tot
> n <- length(y)
> p <- length(mars_model$selected.terms) - 1
> adjusted_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
> r_squared
[1] 0.8547289
> adjusted_r_squared
[1] 0.8246728
```

MSE

```
> predicted <- predict(mars_model, x)
> mars_mse <- mean((riboflavin2_boxcox[,1]-predicted)^2)
> mars_mse
[1] 1.473264
```

Classification And Regression Tree(CART)

- R²
- Adjusted R²

```
> ss_res <- sum((y - predicted)^2)
> ss_tot <- sum((y - mean(y))^2)
> r_squared <- 1 - ss_res / ss_tot
> n <- length(y)
> p <- length(unique(tree_model$frame$var[tree_model$frame$var != "<leaf>"]))
> adjusted_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
> r_squared
[1] 0.8319118
> adjusted_r_squared
[1] 0.8071119
```

MSE

```
> predicted <- predict(tree_model, as.data.frame(x))
> tree_mse <- mean((riboflavin2_boxcox[,1]-predicted)^2)
> tree_mse
[1] 1.704663
```


Lasso & Elastic Net

```
> ss_res <- sum((y - prediction_lasso)^2)</pre>
                                                                           > ss_res <- sum((y - prediction_elastic)^2)</pre>
> ss_{tot} <- sum((y - mean(y))^2)
                                                                           > ss_tot <- sum((y - mean(y))^2)
> r_squared <- 1 - ss_res / ss_tot
                                                                           > r_squared <- 1 - ss_res / ss_tot
> n <- length(y)
                                                                           > n <- length(y)
> p <- length(which(coef(model_lasso, s = "lambda.min") != 0)) - 1</pre>
                                                                           > p <- length(which(coef(model_elastic, s = "lambda.min") != 0)) - 1</pre>
> adjusted_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
                                                                           > adjusted_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
> r_squared
                                                                           > r_squared
[1] 0.6046345
                                                                           [1] 0.7361478
> adjusted_r_squared
                                                                           > adjusted_r_squared
[1] 0.4677773
                                                                           [1] 0.6070286
                                                                           > mse_elastic <- mean((prediction_elastic - riboflavin$y)^2)</pre>
> mse_lasso <- mean((prediction_lasso - riboflavin$y)^2)</pre>
                                                                           > mse elastic
> mse_lasso
                                                                           [1] 2.675852
[1] 4.009591
```

LASSO

Elastic Net

```
> ss_res <- sum((y - prediction_elastic)^2)
> ss_tot <- sum((y - mean(y))^2)
> r_squared <- 1 - ss_res / ss_tot
>
> n <- length(y)
> p <- length(which(coef(model_elastic, s = "lambda.min") != 0)) - 1
> adjusted_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
> r_squared
[1] 0.7361478
> adjusted_r_squared
[1] 0.6070286

> mse_elastic <- mean((prediction_elastic - riboflavin$y)^2)
> mse_elastic
[1] 2.675852
```

```
• Elastic Net
```

```
> sst <- sum((y_test - mean(y_test))^2)
> sse <- sum((y_test - y_test_pred)^2)
> r_squared <- 1 - (sse / sst)
>
> n <- length(y_train)
> p <- length(selected_variables)
> adjusted_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - p - 1))
> r_squared
[1] 0.8570204
> adjusted_r_squared
[1] 0.6387884

> mse <- mean((y_test - y_test_pred)^2)
> mse
[1] 0.08749318
```

Average Elastic Net

PCA+MARS v.s. Average Elastic Net

THANKS FOR LISTENING!