准考		工位号	
密	注意: 只填写: 封	准考证号和工位号 线	号,否则试卷作废

"蓝桥杯"第六届全国软件和信息技术专业人才大赛 单片机设计与开发项目模拟试题

竞赛时间: 5小时

				/5/11/11/11/11
题 号	1	11	111	总分
配 分	10 分	30分	60分	100 分
得 分				

"简易温度采集与控制装置"设计任务书

功能简述

关注微信公众号:嵌入式基地后台回复:蓝桥杯 获取资料

模拟"温度采集与控制装置"用于实现温度的实时监测与控制。单片机采集 DS18B20 温度传感器的输出信号,并送到数码管进行显示;通过传感器得到的温度数据将与用户设定温度上限、下限值做比较,再由单片机启动控制或报警电路。系统硬件部分主要由单片机最小系统、数码管显示、DS18B20 温度传感器、矩阵键盘等模块组成。系统组成框图如图 1 所示:

图 1. 系统组成框图

单总线驱动程序、CT107D 单片机考试平台电路原理图以及本题所涉及到的芯片数据手册,可参考计算机上的电子文档。程序流程图及相关工程文件请以考生号命名,并保存在计算机上的考生文件夹中(文件夹名为考生准考证号,文件夹位于 Windows 桌面上)。

设计任务及要求

关注微信公众号: 嵌入式基地后台回复: 蓝桥杯 获取资料

1. 温度检测

温度检测采用 DS18B20 温度传感器,数据经过单片机处理后,与用户设定的温度上限(T_{MAX})和温度下限(T_{MIN})比较,确定当前温度所处的区间,数码管温度显示格式如图 2 所示:

图 2. 温度显示界面

关于温度区间的说明:

温度区间 0: 当前温度<T_{MIN}

温度区间 1: T_{MIN}≤当前温度≤T_{MAX}

温度区间 2: 当前温度>TMAX

可设定的最大温度区间:0℃~99℃

2. 用户输入-3X4矩阵键盘

通过矩阵键盘设定系统的工作参数,各个按键的功能定义如图 3 所示:

图 3. 矩阵键盘功能定义(左侧为按键标号,右侧为定义的按键功能)

"设置"按键按下后,进入工作参数设定界面,如图 4 所示,依次按下设定的数值,再次按下"设置"按键,保存当前输入的数据,并退出工作参数设定界面。

-	8	8	8	8	•	8	8
分隔符	温度上限	(T_{MAX})	不使用	月-熄灭	分隔符	温度下限	(T_{MIN})

图 4. 数码管显示格式-温度设定界面

以设定 T_{MAX} 为 35 摄氏度, T_{MIN} 为 25 摄氏度为例说明参数设定过程:按下"设置"按键,然后依次按下数字按键"3""5""2""5"如图 5 所示,再次按下"设置"按键,完成参数设定,并退出参数设定界面。在输入过程中,按下"清除"按键,将清除当前输入数据,若设定工作参数错误,如 T_{MAX}<T_{MIN}, L2 常亮,修正错

误设定并保存参数后, L2 熄灭。

-	3	5	8	8	-	2	5
分隔符	温度上限	$\left(T_{MAX}\right)$	不使用	月-熄灭	分隔符	温度下限	(T _{MIN})

图 5. 数码管显示格式-温度设定界面

3. 执行机构

执行机构由指示灯 L1 和继电器组成,用于报警和连接外部高低温执行机构。

- 3.1 实时温度处在温度区间 0,继电器关闭,指示灯 L1 以 0.8 秒为间隔闪烁;
- 3.2 实时温度处在温度区间 1,继电器关闭,指示灯 L1 以 0.4 秒为间隔闪烁;
- 3.3 实时温度处在温度区间 2, 继电器打开, 指示灯 L1 以 0.2 秒为间隔闪烁。

4. 初始化状态说明

系统默认的温度上限(T_{MAX})为 30°C,温度下限(T_{MIN})为 20°C,可以通过矩阵键盘修改。

5. 电路原理图设计

假定一个光敏电阻,在光线充足的状态下,阻值为 $5~K\Omega$,挡光状态下阻值 $\geq 45K\Omega$,使用简单阻容元件、晶体管、运算放大器等设计一个光敏电阻开关电路,挡光状态下电路驱动 5V 继电器 K1 吸合,反之,继电器断开。设计过程中,需要考虑信号抖动等因素,简述电路的工作原理与设计思路,并绘制出电路原理图。

项目名称	得分	评卷人
电路设计		

一. 电路原理图设计

根据设计任务要求,使用 Protel 99se 或 Altium Designer Summer09 软件设计电路原理图,设计必须使用给定的元器件,标明元器件参数。原理图文件保存在考生文件夹中(文件夹以考生的准考证号命名)。

关注微信公众号: 嵌入式基地 后台回复: 蓝桥杯 获取资料

项目名称	得分	评卷人
程序设计		

二. 程序编写及流程图绘制

- 1. 画出程序流程图,保存在考生文件夹中。
- 2. 按照设计要求完成程序设计任务,并将工程文件保存在考生文件夹中。

项目名称	得分	评卷人
硬件调试		

三. 软、硬件统调

将编译通过的程序下载到单片机芯片中,进行软、硬件统调。

- 1. 系统初始化状态正确;
- 2. 数码管显示功能,界面设计满足题目要求;
- 3. 继电器控制功能实现,无误动作;
- 4. LED 闪烁控制功能实现;
- 5. 温度测量功能;
- 6. 矩阵键盘参数设定功能实现。