$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$J/\psi(1S)$ MASS

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
3096.900±0.006 OUR AVE	RAGE				
$3096.900 \pm 0.002 \pm 0.006$					$e^+e^- o$ hadrons
3096.89 ± 0.09	502				$e^+e^- o$ hadrons
$3096.91 \pm 0.03 \pm 0.01$		³ ARMSTRONG			, ,
$3096.95 \pm 0.1 \pm 0.3$	193	BAGLIN	87	SPEC	$\overline{p}p \rightarrow e^+e^-X$
• • • We do not use the fo	llowing da	ata for averages, fit	s, limi	its, etc.	• • •
$3096.66 \pm 0.19 \pm 0.02$	6.1k				$pp o J/\psi X$
$3096.917 \pm 0.010 \pm 0.007$		AULCHENKO	03	KEDR	$e^+e^- o$ hadrons
3097.5 ± 0.3		GRIBUSHIN	96	FMPS	$515 \pi^- \text{Be} \rightarrow 2\mu X$
3098.4 ± 2.0	38k	LEMOIGNE	82	GOLI	185 π^- Be \rightarrow
3096.93 ±0.09 3097.0 ±1	502	⁵ ZHOLENTZ ⁶ BRANDELIK			$\gamma \mu^+ \mu^- A$ $e^+ e^ e^+ e^-$

¹ Supersedes AULCHENKO 03.

$J/\psi(1S)$ WIDTH

<i>VALUE</i> (keV)	<u>EVT</u> S	DOCUMENT ID		TECN	COMMENT
		GE Error include			
$96.1\pm~3.2$	13k	$^{ m 1}$ ADAMS	06A	CLEO	$e^+e^- ightarrow \ \mu^+\mu^-\gamma$
$84.4\pm~8.9$		BAI		_	
91 ± 11 ± 6		² ARMSTRONG	93 B	E760	$\overline{p}p \rightarrow e^+e^-$
85.5^{+}_{-} $\begin{array}{c} 6.1 \\ 5.8 \end{array}$		³ HSUEH	92	RVUE	See Υ mini-review

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

² Reanalysis of ZHOLENTZ 80 using new electron mass (COHEN 87) and radiative corrections (KURAEV 85).

 $^{^3}$ Mass central value and systematic error recalculated by us according to Eq. (16) in ARMSTRONG 93B, using the value for the $\psi(2S)$ mass from AULCHENKO 03.

⁴ From a sample of $\eta_c(1S)$ and J/ψ produced in b-hadron decays. Systematic uncertainties not estimated.

not estimated. 5 Superseded by ARTAMONOV 00.

⁶ From a simultaneous fit to e⁺e⁻, $\mu^+\mu^-$ and hadronic channels assuming $\Gamma(e^+e^-)$ = $\Gamma(\mu^+\mu^-)$.

¹ Calculated by us from the reported values of $\Gamma(e^+e^-)\times B(\mu^+\mu^-)$ using $B(e^+e^-)=(5.94\pm0.06)\%$ and $B(\mu^+\mu^-)=(5.93\pm0.06)\%$.

²The initial-state radiation correction reevaluated by ANDREOTTI 07 in its Ref. [4].

³ Using data from COFFMAN 92, BALDINI-CELIO 75, BOYARSKI 75, ESPOSITO 75B, BRANDELIK 79c

Assuming $\Gamma(e^+e^-) = \Gamma(\mu^+\mu^-)$ and using $\Gamma(e^+e^-)/\Gamma_{\text{total}} = (5.94 \pm 0.06)\%$.

$J/\psi(1S)$ DECAY MODES

	, , ,	
	Mode	Scale factor/ Fraction (Γ_i/Γ) Confidence leve
Γ_1	hadrons	(87.7 ± 0.5) %
Γ_2	virtual $\gamma o ext{ hadrons}$	(13.50 \pm 0.30) %
Γ_3	ggg	(64.1 ± 1.0) %
Γ_4	γ g g	(8.8 ± 1.1) %
Γ_5	e^+e^-	$(5.971\pm0.032)\%$
Γ_6	$e^+e^-\gamma$	[a] $(8.8 \pm 1.4) \times 10^{-3}$
Γ_7	$\mu^+\mu^-$	$(5.961\pm0.033)\%$
	Decays involving ha	adronic resonances
Γ ₈	$ ho\pi$	(1.69 ± 0.15) % S=2.4
Γ_9	$ ho^0\pi^0$	$(5.6 \pm 0.7) \times 10^{-3}$
Γ_{10}	$a_2(1320) \rho$	(1.09 ± 0.22) %
Γ_{11}	$\omega \pi^+ \pi^+ \pi^- \pi^-$	$(8.5 \pm 3.4) \times 10^{-3}$
Γ_{12}	$\omega \pi^+ \pi^- \pi^0$	$(4.0 \pm 0.7) \times 10^{-3}$
	$\omega \pi^+ \pi^-$	$(8.6 \pm 0.7) \times 10^{-3}$ S=1.1
Γ_{14}	$\omega f_2(1270)$	$(4.3 \pm 0.6) \times 10^{-3}$
Γ_{15}	$K^*(892)^0 \overline{K^*}(892)^0$	$(2.3 \pm 0.6) \times 10^{-4}$
Γ_{16}	$K^*(892)^{\pm} K^*(892)^{\mp}$	(1.00 $^{+0.22}_{-0.40}$) \times 10 ⁻³
Γ ₁₇	$K^*(892)^{\pm} K^*(800)^{\mp}$	$(1.1 \begin{array}{c} +1.0 \\ -0.6 \end{array}) \times 10^{-3}$
Γ_{18}	$K_{S}^{0}\pi^{-}K^{*}(892)^{+}+\text{c.c.}$	$(2.7 \pm 0.9) \times 10^{-3}$
_	$K_S^0 \pi^- K^*(892)^+ + \text{c.c.} \rightarrow$	$(6.7 \pm 2.2) \times 10^{-4}$
	$K_S^0 K_S^0 \pi^+ \pi^-$	
	$\eta K^*(892)^0 \overline{K}^*(892)^0$	$(1.15 \pm 0.26) \times 10^{-3}$
	$K^*(892)^0\overline{K}_2^*(1430)^0+$ c.c.	$(4.66 \pm 0.31) \times 10^{-3}$
Γ_{22}	$K^*(892)^+ K_2^*(1430)^- + \text{c.c.}$	$(3.4 \pm 2.9) \times 10^{-3}$
Γ ₂₃	$K^*(892)^+ K_2^{\overline{*}}(1430)^- + \text{c.c.} \rightarrow K^*(892)^+ K_5^0 \pi^- + \text{c.c.}$	$(4 \pm 4) \times 10^{-4}$
Γ ₂₄	$K^*(892)^0 \overline{K}_2(1770)^0 + \text{c.c.} \rightarrow$	$(6.9 \pm 0.9) \times 10^{-4}$
• 24	$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(5.5 ± 5.5) × 15
Γ ₂₅	$\omega K^*(892)\overline{K}$ + c.c.	(6.1 ± 0.9) $ imes 10^{-3}$
	$K^+K^*(892)^- + \text{c.c.}$	$(5.12 \pm 0.30) \times 10^{-3}$
Γ ₂₇	$K^+K^*(892)^- + \text{c.c.} \rightarrow$	$(1.97 \pm 0.20) \times 10^{-3}$
21	$\mathcal{K}^+\mathcal{K}^-\pi^0$	
Γ ₂₈	$K^{+}K^{*}(892)^{-} + \text{c.c.} \rightarrow K^{0}K^{\pm}\pi^{\mp} + \text{c.c.}$	$(3.0 \pm 0.4) \times 10^{-3}$
Γ ₂₉	$K^{0}K^{\pm}\pi^{\mp} + \text{c.c.}$ $K^{0}K^{*}(892)^{0} + \text{c.c.}$	$(4.39 \pm 0.31) \times 10^{-3}$
Γ ₃₀	$K^0 \stackrel{\stackrel{\smile}{K}}{K} * (892)^0 + \text{c.c.} \rightarrow$	$(3.2 \pm 0.4) \times 10^{-3}$
	$K^0\overline{K}^*(892)^0+ ext{c.c.} ightarrow K^0K^\pm\pi^\mp+ ext{c.c.}$	
Γ_{31}	$K_1(1400)^\pmK^\mp$	$(3.8 \pm 1.4) \times 10^{-3}$
Γ_{32}	$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$	seen

HTTP://PDG.LBL.GOV

Page 2 Created: 5/30/2017 17:21

```
\omega \pi^0 \pi^0
                                                                               (3.4 \pm 0.8) \times 10^{-3}
          b_1(1235)^{\pm}\pi^{\mp}
                                                                             (3.0 \pm 0.5) \times 10^{-3}
          \omega K^{\pm} K_{S}^{0} \pi^{\mp}
                                                                                          \pm 0.5 ) \times 10^{-3}
                                                                             ( 3.4
         b_1(1235)^0\pi^0
                                                                               (2.3 \pm 0.6) \times 10^{-3}
         \eta K^{\pm} K_{S}^{0} \pi^{\mp}
                                                                      [b] (2.2 \pm 0.4) \times 10^{-3}
          \phi K^*(892)\overline{K} + \text{c.c.}
                                                                               ( 2.18 \pm 0.23 ) \times 10^{-3}
                                                                              ( 1.70~\pm0.32 ) \times\,10^{-3}
\Gamma_{39}
         \omega KK
           \omega f_0(1710) \rightarrow \omega K \overline{K}
                                                                               (4.8 \pm 1.1) \times 10^{-4}
\Gamma_{40}
                                                                              ( 1.66 \pm 0.23 ) \times 10^{-3}
          \phi 2(\pi^{+}\pi^{-})
\Gamma_{41}
\Gamma_{42}
          \Delta(1232)^{++}\overline{p}\pi^{-}
                                                                              (1.6 \pm 0.5) \times 10^{-3}
\Gamma_{43}
                                                                              (1.74 \pm 0.20) \times 10^{-3}
          \omega \eta
                                                                                                                           S = 1.6
\Gamma_{44}
          \phi K \overline{K}
                                                                              (1.77 \pm 0.16) \times 10^{-3}
                                                                                                                           S=1.3
          \phi K_S^0 K_S^0
                                                                              (5.9 \pm 1.5) \times 10^{-4}
\Gamma_{46}
                                                                              (3.6 \pm 0.6) \times 10^{-4}
         \phi f_0(1710) \rightarrow \phi K \overline{K}
\Gamma_{47}
              \phi K^+ K^-
                                                                              (8.3 \pm 1.2) \times 10^{-4}
                                                                               (3.2 \pm 0.6) \times 10^{-4}
\Gamma_{48}
         \phi f_{2}(1270)
        \Delta(1232)^{++}\overline{\Delta}(1232)^{--}
\Gamma_{49}
                                                                               (1.10 \pm 0.29) \times 10^{-3}
         \Sigma(1385)^{-}\overline{\Sigma}(1385)^{+} (or c.c.)
                                                                      [b] (1.16 \pm 0.05) \times 10^{-3}
        K^+K^-f_2'(1525)
                                                                               (1.04 \pm 0.35) \times 10^{-3}
\Gamma_{52}
          \phi f_2'(1525)
                                                                                          \pm 4
                                                                                                    ) \times 10^{-4}
                                                                                                                           S = 2.7
\Gamma_{53}
          \phi \pi^+ \pi^-
                                                                               (8.7 \pm 0.9) \times 10^{-4}
                                                                                                                           S=1.4
          \phi \pi^0 \pi^0
\Gamma_{54}
                                                                               (5.0 \pm 1.0) \times 10^{-4}
          \phi K^{\pm} K^0_S \pi^{\mp}
                                                                      [b] (7.2 \pm 0.8) \times 10^{-4}
\Gamma_{56}
          \omega f_1(1420)
                                                                               (6.8 \pm 2.4) \times 10^{-4}
\Gamma_{57}

\frac{\phi \eta}{\Xi^0} \overline{\Xi}^0

                                                                               (7.5 \pm 0.8) \times 10^{-4}
                                                                                                                           S=1.5
\Gamma_{58}
                                                                               (1.20 \pm 0.24) \times 10^{-3}
         \Xi(1530)^{-}\overline{\Xi}^{+}
                                                                              (5.9 \pm 1.5) \times 10^{-4}
\Gamma_{59}
          pK^{-}\overline{\Sigma}(1385)^{0}
                                                                              (5.1 \pm 3.2) \times 10^{-4}
\Gamma_{61}
                                                                              (4.5 \pm 0.5) \times 10^{-4}
                                                                                                                           S = 1.4
\Gamma_{62}
          \phi \eta'(958)
                                                                              (4.6 \pm 0.5) \times 10^{-4}
                                                                                                                           S = 2.2
          \phi f_0(980)
                                                                              (3.2 \pm 0.9) \times 10^{-4}
\Gamma_{63}
                                                                                                                           S=1.9
              \phi f_0(980) \to \phi \pi^+ \pi^-
                                                                              (2.60 \pm 0.35) \times 10^{-4}
\Gamma_{64}
              \phi f_0(980) \to \phi \pi^0 \pi^0
\Gamma_{65}
                                                                              (1.8 \pm 0.5) \times 10^{-4}
         \phi \pi^0 f_0(980) \rightarrow \phi \pi^0 \pi^+ \pi^-
                                                                              (4.5 \pm 1.0) \times 10^{-6}
          \phi \pi^0 f_0(980) \rightarrow \phi \pi^0 p^0 \pi^0
                                                                              (1.7 \pm 0.6) \times 10^{-6}
\Gamma_{67}
          \eta \phi f_0(980) \rightarrow \eta \phi \pi^+ \pi^-
                                                                              (3.2 \pm 1.0) \times 10^{-4}
          \phi a_0 (980)^0 \to \phi \eta \pi^0
\Gamma_{69}
                                                                               (5
                                                                                          \pm 4
                                                                                                     ) \times 10^{-6}
         \Xi(1530)^{0}\overline{\Xi}^{0}
\Gamma_{70}
                                                                              (3.2 \pm 1.4) \times 10^{-4}
          \Sigma(1385)^{-}\overline{\Sigma}^{+} (or c.c.)
\Gamma_{71}
                                                                      [b] (3.1 \pm 0.5) \times 10^{-4}
          \phi f_1(1285)
\Gamma_{72}
                                                                               (2.6 \pm 0.5) \times 10^{-4}
              \phi f_1(1285) \rightarrow \phi \pi^0 f_0(980) \rightarrow
                                                                              (9.4 \pm 2.8) \times 10^{-7}
\Gamma_{73}
                    \phi \pi^0 \pi^+ \pi^-
              \phi f_1(1285) \rightarrow \phi \pi^0 f_0(980) \rightarrow
\Gamma_{74}
                                                                              (2.1 \pm 2.2) \times 10^{-7}
                    \phi \pi^{0} \pi^{0} \pi^{0}
```

Γ ₇₅	$\eta \pi^+ \pi^-$	(4.0 =	± 1.7) $\times 10^{-4}$	
	ηho		$\pm 0.23 \) \times 10^{-4}$	
	$\omega \eta'(958)$		± 0.21) $\times 10^{-4}$	
	$\omega f_0(980)$		± 0.5) $\times 10^{-4}$	
Γ_{79}	$\rho \eta'(958)$	(1.05 =	$\pm 0.18) \times 10^{-4}$	
Γ ₈₀	$a_2(1320)^{\pm}\pi^{\mp}$	[b] < 4.3	$\times 10^{-3}$	CL=90%
Γ ₈₁	$K\overline{K}_{2}^{*}(1430)+$ c.c.	< 4.0	$\times 10^{-3}$	CL=90%
Γ ₈₂	$K_1(\bar{1270})^{\pm} K^{\mp}$	< 3.0	$\times 10^{-3}$	CL=90%
Γ ₈₃	$K_{S}^{0}\pi^{-}K_{2}^{*}(1430)^{+}+\text{c.c.}$	(3.6 =	$\pm 1.8 \) \times 10^{-3}$	
Γ ₈₄	$K_S^{0}\pi^{-}K_2^{*}(1430)^{+}+\text{c.c.} \rightarrow$	(4.5 =	$\pm 2.2) \times 10^{-4}$	
٠.	$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$			
Γ ₈₅	$K_2^*(1430)^0 \overline{K_2^*(1430)^0}$	< 2.9	× 10 ⁻³	CL=90%
Γ ₈₆	$\phi \pi^0$		or 1×10^{-7}	
Γ ₈₇	$\phi \eta (1405) \rightarrow \phi \eta \pi^+ \pi^-$		± 1.0) $\times 10^{-5}$	
	$\omega f_2^{\prime}(1525)$	< 2.2	× 10 ⁻⁴	CL=90%
Γ ₈₉	$\omega X(1835) \rightarrow \omega p \overline{p}$	< 3.9	× 10 ⁻⁶	CL=95%
	$\phi X(1835) \rightarrow \phi p \overline{p}$	< 2.1	× 10 ⁻⁷	CL=90%
	$\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$	< 2.8	× 10 ⁻⁴	CL=90%
-	$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$	< 6.13	\times 10 ⁻⁵	CL=90%
Γ ₉₃	$\eta \phi(2170) \rightarrow \eta \phi f_0(980) \rightarrow$		± 0.4) × 10 ⁻⁴	
33	$\eta \phi \pi^+ \pi^-$	•	,	
Γ_{94}	$\eta \phi$ (2170) $ ightarrow$	< 2.52	$\times10^{-4}$	CL=90%
	$\eta K^*(892)^0 \overline{K}^*(892)^0$			
Γ_{95}	$\Sigma(1385)^{0}\overline{\varLambda}+\text{c.c.}$	< 8.2	\times 10 ⁻⁶	CL=90%
Γ_{96}	$\Delta(1232)^{+}\overline{p}$	< 1	\times 10 ⁻⁴	CL=90%
	$\Lambda(1520)\overline{\Lambda}+ ext{c.c.} ightarrow \ \gamma\Lambda\overline{\Lambda}$	< 4.1	\times 10 ⁻⁶	CL=90%
Γ ₉₈	$\Theta(1540)\overline{\Theta}(1540) ightarrow$	< 1.1	\times 10 ⁻⁵	CL=90%
	$K_S^0 p K^- \overline{n} + \text{c.c.}$			
Γ_{99}	$\Theta(1540) K^- \overline{n} \rightarrow K_S^0 p K^- \overline{n}$	< 2.1	$\times 10^{-5}$	CL=90%
Γ_{100}	$\Theta(1540)K_{S}^{0}\overline{p} \rightarrow K_{S}^{0}\overline{p}K^{+}n$	< 1.6	$\times10^{-5}$	CL=90%
Γ_{101}	$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$	< 5.6	$\times10^{-5}$	CL=90%
Γ_{102}	$\overline{\Theta}(1540)K_{S}^{0}\rho \rightarrow K_{S}^{0}\rho K^{-}\overline{n}$	< 1.1	\times 10 ⁻⁵	CL=90%
Γ ₁₀₃	$\Sigma^{\hat{0}}\overline{A}$	< 9		CL=90%
100				
_		stable hadrons		
I 104	$2(\pi^{+}\pi^{-})\pi^{0}$	•	±0.5) %	S=2.4
l 105	$3(\pi^{+}\pi^{-})\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$	`	±0.6) %	6 1 5
l 106	$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$ $K^{+}K^{-}$	•	±0.07) %	S=1.5
l 107	π π π π π π π		±0.29) %	S=2.2
^I 108 Г	$4(\pi^{+}\pi^{-})\pi^{0}$	(9.0 =	± 3.0) $\times 10^{-3}$	
' 109 Г	$\pi^{+}\pi^{-}K^{+}K^{-}$ $\pi^{+}\pi^{-}K^{0}K^{0}$		$\pm 0.32 \times 10^{-3}$	
' 110 _	$\pi^{+}\pi^{-}K_{S}^{0}K_{L}^{0}$ $\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$		± 0.6) $\times 10^{-3}$	
l 111	$\pi'\pi \kappa_{\tilde{S}}\kappa_{\tilde{S}}$	(1.68 =	$\pm 0.19 \) \times 10^{-3}$	

Γ ₁₁₂	$K^+K^-K^0_SK^0_S$		(4.1	± 0.8) $\times10^{-4}$	
Γ_{113}	$\pi^{+}\pi^{-}K^{+}K^{-}\eta$			$\pm 0.28 \) \times 10^{-3}$	
Γ ₁₁₄	$\pi^{0} \pi^{0} K^{+} K^{-}$			$\pm 0.23~) \times 10^{-3}$	
Γ ₁₁₅	$K\overline{K}\pi$			± 1.0) $\times 10^{-3}$	
Γ ₁₁₆	$2(\pi^+\pi^-)$			$\pm 0.30\) \times 10^{-3}$	
Γ ₁₁₇	$3(\pi^+\pi^-)$			± 0.4) $\times 10^{-3}$	
Γ ₁₁₈	$2(\pi^{+}\pi^{-}\pi^{0})$			±0.21) %	
Γ ₁₁₉	$2(\pi^+\pi^-)\eta$			± 0.24) $\times 10^{-3}$	
Γ ₁₂₀	$3(\pi^+\pi^-)\eta$			± 1.5) $\times 10^{-4}$	
Γ ₁₂₁			•	$0 \pm 0.029) \times 10^{-3}$	
Γ ₁₂₂	$\rho \overline{\rho} \pi^0$			$\pm 0.08\) \times 10^{-3}$	S=1.1
Γ ₁₂₃	$\rho \overline{\rho} \pi^+ \pi^-$			± 0.5) $\times 10^{-3}$	S=1.3
Γ ₁₂₄	$\rho \overline{\rho} \pi^+ \pi^- \pi^0$	[c]		± 0.9) $\times 10^{-3}$	S=1.9
Γ ₁₂₅				$\pm 0.12^{\circ}) \times 10^{-3}$	
Γ ₁₂₆			< 3.1	, A	CL=90%
Γ ₁₂₇			(9.8	± 1.0) $\times10^{-4}$	S=1.3
	$p\overline{p}\eta'(958)$			± 0.4) $\times 10^{-4}$	
Γ ₁₂₉	$p\overline{p}a_0(980) \rightarrow p\overline{p}\pi^0\eta$			± 1.8) $\times 10^{-5}$	
Γ ₁₃₀				± 0.33) $\times 10^{-5}$	
Γ ₁₃₁				± 0.16) $\times 10^{-3}$	
Γ ₁₃₂	$n\overline{n}\pi^+\pi^-$			± 4) $\times 10^{-3}$	
Γ_{133}	$\Sigma^{+}\overline{\Sigma}^{-}$			± 0.24) $\times 10^{-3}$	
Γ_{134}	$\Sigma^0 \overline{\Sigma}{}^0$			± 0.09) $\times 10^{-3}$	
Γ ₁₃₅	$2(\pi^+\pi^-)K^+K^-$			± 0.7) $\times 10^{-3}$	S=1.3
	$p \overline{n} \pi^-$		(2.12	± 0.09) $\times 10^{-3}$	
	n N(1440)		seen		
	n N (1520)		seen		
Γ_{139}	n N(1535)		seen		
Γ_{140}	<u>=-`=</u> + ´		(9.7	± 0.8) $\times10^{-4}$	S=1.4
Γ_{141}			(1.61	± 0.15) $\times10^{-3}$	S=1.9
Γ_{142}	$\Lambda \overline{\Sigma}{}^- \pi^+$ (or c.c.)	[<i>b</i>]	(8.3	± 0.7) $\times10^{-4}$	S=1.2
Γ_{143}	$pK^{-}\overline{\Lambda}$		(8.9	± 1.6) $\times10^{-4}$	
Γ_{144}	$2(K^+K^-)$			± 0.7) $\times 10^{-4}$	
Γ_{145}	$pK^{-}\overline{\Sigma}^{0}$		(2.9	± 0.8) $\times10^{-4}$	
Γ_{146}	K^+K^-		(2.86	± 0.21) $\times10^{-4}$	
Γ_{147}	$K_S^0 K_L^0$		(2.1	± 0.4) $\times 10^{-4}$	S=3.2
Γ_{148}	$\Lambda \overline{\Lambda} \pi^+ \pi^-$		(4.3	± 1.0) $\times10^{-3}$	
Γ_{149}	$\Lambda \overline{\Lambda} \eta$		(1.62	± 0.17) $\times10^{-4}$	
Γ_{150}	$\Lambda \overline{\Lambda} \pi^0$		(3.8	± 0.4) $\times 10^{-5}$	
Γ_{151}	$\overline{\Lambda}nK_{S}^{0}$ + c.c.		(6.5	± 1.1) $\times10^{-4}$	
Γ ₁₅₂	$\pi^+\pi^-$			±0.14) $\times10^{-4}$	
Γ_{153}	$\Lambda \overline{\Sigma}$ + c.c.			± 0.23) $\times 10^{-5}$	
Γ ₁₅₄	$K_S^0 K_S^0$		< 1	× 10 ⁻⁶	CL=95%
-					

Radiative decays

	Radiative	aeca	ays		
Γ_{15}	$_{5}$ 3 γ		(1.16	± 0.22) $\times 10^{-5}$	5
Γ_{15}	$_{5}$ 4 γ		< 9	\times 10 ⁻⁶	
Γ ₁₅	γ 5 γ		< 1.5	× 10 ⁻⁵	CL=90%
Γ_{15}	$\gamma \pi^0 \pi^0$		(1.15	± 0.05) $\times 10^{-3}$	3
Γ_{15}	$\gamma \eta \pi^0$		(2.14	$\pm 0.31) \times 10^{-5}$	5
Γ_{16}	$\gamma a_0(980)^0 ightarrow \gamma \eta \pi^0$		< 2.5	\times 10 ⁻⁶	CL=95%
Γ_{16}	$\gamma a_2 (1320)^0 \rightarrow \gamma \eta \pi^0$		< 6.6	\times 10 ⁻⁶	CL=95%
	$\gamma \eta_c(1S)$		(1.7	± 0.4)%	S=1.5
Γ ₁₆			(3.8	$^{+1.3}_{-1.0}$) × 10 ⁻⁶	S=1.1
Γ_{16}	$_{1}$ $\gamma \pi^{+} \pi^{-} 2 \pi^{0}$		(8.3		3
	$5 \gamma \eta \pi \pi$		(6.1	,	
Γ_{16}	$\gamma \eta_2(1870) \rightarrow \gamma \eta \pi^+ \pi^-$		(6.2	,	
Γ_{16}	$\gamma \eta (1405/1475) ightarrow \gamma K \overline{K} \pi$	[d]	(2.8	,	
Γ_{16}	$\gamma \gamma \eta (1405/1475) ightarrow \gamma \gamma ho^0$		(7.8	± 2.0) $\times 10^{-5}$	S=1.8
Γ_{16}	$\gamma \eta (1405/1475) ightarrow \gamma \eta \pi^+ \pi^-$		(3.0	± 0.5) $\times 10^{-2}$	1
Γ_{170}	$\gamma \gamma \eta (1405/1475) ightarrow \gamma \gamma \phi$		< 8.2	× 10 ⁻⁵	CL=95%
Γ_{17}	$\gamma ho ho$		(4.5	± 0.8) $\times 10^{-3}$	
Γ_{17}	$_{2}$ $\gamma ho \omega$		< 5.4		
	$\gamma \rho \phi$		< 8.8		
Γ_{17}	$\gamma \eta'(958)$		(5.13	± 0.17) $\times 10^{-3}$	
	$\gamma 2\pi^{+}2\pi^{-}$		(2.8		
Γ_{17}	$\gamma f_2(1270) f_2(1270)$		(9.5	± 1.7) $\times 10^{-2}$	1
Γ ₁₇	$\gamma f_2(1270) f_2(1270)$ (non reso-		(8.2	± 1.9) $\times 10^{-2}$	1
Е	nant) K+K-+-		(0.1	106) 10=3	₹
	$\gamma K^+ K^- \pi^+ \pi^-$		(2.1	± 0.6) $\times 10^{-3}$, }
Γ ₁₇₉			(2.7	± 0.7) $\times 10^{-3}$, }
Γ ₁₈	$\gamma \omega \omega$			± 0.33) $\times 10^{-3}$	
	$\gamma \eta (1405/1475) \rightarrow \gamma \rho^0 \rho^0$			± 0.4) $\times 10^{-3}$	
I 18	$\gamma f_2(1270)$			± 0.12) $\times 10^{-3}$	
	$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$			± 1.5) $\times 10^{-2}$	
	$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$			$^{+0.11}_{-0.09}$) × 10 ⁻³	
	$\gamma f_0(1710) \rightarrow \gamma \pi \pi$			± 0.5) $\times 10^{-2}$	
Γ_{180}	$\gamma f_0(1710) \rightarrow \gamma \omega \omega$		(3.1	± 1.0) $\times 10^{-2}$	ł
Γ ₁₈	$\gamma \gamma f_0(1710) \rightarrow \gamma \eta \eta$		(2.4	$^{+1.2}_{-0.7}$) × 10 ⁻²	4
Γ ₁₈	$\gamma \eta$		(1.10	$4\pm0.034)\times10^{-3}$	3
Γ_{18}	$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$		(7.9	± 1.3) $\times 10^{-2}$	1
Γ ₁₉	$\gamma f_1(1285)$			± 0.8) $\times 10^{-2}$	
Γ ₁₉	$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$			± 1.2) $\times 10^{-2}$	
	$2 \gamma f_2'(1525)$			$^{+0.8}_{-0.5}$) $\times 10^{-4}$	
	$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$			± 1.4) × 10 ⁻⁵	

	$\gamma f_2(1640) \rightarrow \gamma \omega \omega$	(2.8		$) \times 10^{-4}$	
	$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	(2.0	± 1.4	$) \times 10^{-4}$	
	$\gamma f_0(1800) \rightarrow \gamma \omega \phi$	(2.5		$) \times 10^{-4}$	
Γ_{197}	$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	(5.4	$+3.5 \\ -2.4$	$) \times 10^{-5}$	
Γ ₁₉₈	$\gamma \mathit{f}_{2}(1950) ightarrow$	(7.0	± 2.2	$) \times 10^{-4}$	
	$\gamma K^*(892)\overline{K}^*(892)$				
	$\gamma K^*(892)\overline{K}^*(892)$			$) \times 10^{-3}$	
	$\gamma \phi \phi$	`		$) \times 10^{-4}$	S=2.1
	$\gamma p \overline{p}$) × 10 ⁻⁴	
	$\gamma \eta$ (2225)	(3.14	-0.19	$) \times 10^{-4}$	
	$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$			$) \times 10^{-4}$	
Γ ₂₀₄	$\gamma \eta (1760) \rightarrow \gamma \omega \omega$	(1.98	± 0.33	$) \times 10^{-3}$	
Γ_{205}	$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	(2.77	$^{+0.34}_{-0.40}$	$) \times 10^{-4}$	S=1.1
Γ ₂₀₆	$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(7.7	$^{+1.5}_{-0.9}$	$)\times10^{-5}$	
Γ ₂₀₇	$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	(3.3	$^{+2.0}_{-1.3}$	$)\times 10^{-5}$	
	$\gamma X(1840) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4	$^{+0.7}_{-0.8}$	$)\times 10^{-5}$	
Γ ₂₀₉	$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$	(7	± 4	$) \times 10^{-4}$	S=2.1
Γ ₂₁₀	$\gamma \pi^0$	(3.49	$^{+0.33}_{-0.30}$	$) \times 10^{-5}$	
	$\gamma \rho \overline{p} \pi^+ \pi^-$	< 7.9		$\times 10^{-4}$	CL=90%
Γ_{212}	$\gamma \Lambda \overline{\Lambda}$	< 1.3		$\times 10^{-4}$	CL=90%
	$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	(1.13	$+0.60 \\ -0.30$	$) \times 10^{-4}$	
	$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(6.2	± 1.0	$) \times 10^{-4}$	
l ₂₁₅	$\gamma f_0(2200)$	(5.0	112)10-4	
	$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$ $\gamma f_J(2220)$	(5.9	±1.3	$) \times 10^{-4}$	
Γ ₂₁ 0	$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	< 3.9		\times 10 ⁻⁵	CI =90%
	$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$			× 10 ⁻⁵	
	$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$			$) \times 10^{-5}$	
	$\gamma f_2(2340) \rightarrow \gamma \eta \eta$) × 10 ⁻⁵	
Γ ₂₂₂	$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	(1.09	±0.24	$) \times 10^{-4}$	
Γ_{223}	$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	(1.7	$^{+0.6}_{-1.4}$	$) \times 10^{-5}$	
	$\gamma A \rightarrow \gamma$ invisible	[e] < 6.3		\times 10 ⁻⁶	
Γ ₂₂₅	$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[f] < 5		\times 10 ⁻⁶	CL=90%
	Dalitz	decays			
Γ_{226}	$\pi^0 e^+ e^-$	(7.6	± 1.4	$) \times 10^{-7}$	

$$\begin{array}{lll} \Gamma_{226} & \pi^0 \, e^+ \, e^- \\ \Gamma_{227} & \eta \, e^+ \, e^- \\ \Gamma_{228} & \eta'(958) \, e^+ \, e^- \end{array} \\ & \begin{array}{lll} (\ 7.6 & \pm 1.4 \) \times 10^{-7} \\ (\ 1.16 & \pm 0.09 \) \times 10^{-5} \\ (\ 5.81 & \pm 0.35 \) \times 10^{-5} \end{array}$$

HTTP://PDG.LBL.GOV

Page 7

Weak decays

Γ_{229}	$D^-e^+\nu_e^{}+$ c.c.	<	1.2	$\times 10^{-5}$	CL=90%
Γ_{230}	$\overline{D}{}^0e^+e^-+$ c.c.	<	1.1	$\times 10^{-5}$	CL=90%
Γ_{231}	$D_s^- e^+ \nu_e + \text{c.c.}$	<	1.3	\times 10 ⁻⁶	CL=90%
Γ_{232}	$D_s^{*-} e^+ \nu_e + \text{c.c.}$	<	1.8	\times 10 ⁻⁶	CL=90%
Γ_{233}	$D^{-}\pi^{+}$ + c.c.	<	7.5	$\times 10^{-5}$	CL=90%
Γ_{234}	$\overline{D}^0\overline{K}^0$ + c.c.	<	1.7	$\times 10^{-4}$	CL=90%
Γ_{235}	$\overline{D}^0\overline{K}^{*0}$ + c.c.	<	2.5	\times 10 ⁻⁶	CL=90%
Γ_{236}	$D_{s}^{-}\pi^{+}$ + c.c.	<	1.3	\times 10 ⁻⁴	CL=90%
Γ_{237}	$D_{s}^{-} \rho^{+} + \text{c.c.}$	<	1.3	\times 10 ⁻⁵	CL=90%

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

		•	•	` '				
Γ ₂₃₈	$\gamma \gamma$		С	< 2.7	\times 10 ⁻⁷	CL=90%		
Γ_{239}	$\gamma\phi$		С	< 1.4	\times 10 ⁻⁶	CL=90%		
	$e^{\pm}\mu^{\mp}$		LF	< 1.6	\times 10 ⁻⁷	CL=90%		
	$e^{\pm} au^{\mp}$		LF	< 8.3	\times 10 ⁻⁶	CL=90%		
Γ_{242}	$\mu^{\pm} \tau^{\mp}$		LF	< 2.0	\times 10 ⁻⁶	CL=90%		
Other decays								
Голо	invisible			< 7	× 10 ⁻⁴	CL=90%		
1 243	IIIVISIDIC			< 1	× 10	CL-90/0		

[a] For $E_{\gamma} > 100$ MeV.

- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [c] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [d] See the "Note on the $\eta(1405)$ " in the $\eta(1405)$ Particle Listings.
- [e] For a narrow state A with mass less than 960 MeV.
- [f] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.

$J/\psi(1S)$ PARTIAL WIDTHS

 $\Gamma(\mathsf{hadrons})$ Γ_1

DOCUMENT ID TECN COMMENT

Created: 5/30/2017 17:21

\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet							
74.1± 8.1	BAI	95 B	BES	e^+e^-			
59 ±24	BALDINI	75	FRAG	e^+e^-			
59 ±14	BOYARSKI	75	MRK1	e^+e^-			
50 ±25	ESPOSITO	75 B	FRAM	e^+e^-			

VALUE (keV)

$\Gamma(e^+e^-)$						Γ ₅
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
$5.55 \pm 0.14 \pm 0.02$ O	_					
• • • We do not use	e the follo	owing data for ave	rages, 1	fits, limi	ts, etc. • • •	
$5.58\pm0.05\pm0.08$ 5.71 ± 0.16 5.57 ± 0.19 5.14 ± 0.39	13k 7.8k	¹ ABLIKIM ² ADAMS ² AUBERT BAI	06A 04	CLEO	3.773 $e^{+}e^{-}$ $e^{+}e^{-}$ $\mu^{+}e^{+}e^{-}$ $\mu^{+}e^{+}e^{-}$	$\mu^{-}\gamma$
$5.36^{+0.29}_{-0.28}$ 4.72 ± 0.35		³ HSUEH ALEXANDER		RVUE	See γ mini-re	
4.4 ±0.6 4.6 ±0.8 4.8 ±0.6 4.6 ±1.0		³ BRANDELIK ⁴ BALDINI BOYARSKI ESPOSITO	75 75	DASP FRAG MRK1 FRAM	e ⁺ e ⁻ e ⁺ e ⁻	
Using B($J/\psi \rightarrow \mu^+\mu^-$) = (5.973 \pm 0.007 \pm 0.037)% from ABLIKIM 13R. Calculated by us from the reported values of $\Gamma(e^+e^-)\times B(\mu^+\mu^-)$ using B($\mu^+\mu^-$) = (5.93 \pm 0.06)%. From a simultaneous fit to e^+e^- , $\mu^+\mu^-$, and hadronic channels assuming $\Gamma(e^+e^-)$ = $\Gamma(\mu^+\mu^-)$. Assuming equal partial widths for e^+e^- and $\mu^+\mu^-$.						
$\Gamma(\mu^+\mu^-)$ VALUE (keV)		DOCUMENT	T 10	TEC	OMMENT	Γ ₇
● ● We do not use	the follo					
5.13±0.52 4.8 ±0.6 5 ±1	ine ione	BAI BOYARSH ESPOSIT	9 (1 7	95в BES 75 MR		
Γ(γγ) VALUE (eV) <5.4	<u>CL%</u> 90	<i>DOCUMENT</i> BRANDEI		<u>TEC</u> '9C DA		Γ ₂₃₈

$J/\psi(1S)$ Γ(i)Γ(e^+e^-)/Γ(total)

This combination of a partial width with the partial width into $e^+\,e^-$ and with the total width is obtained from the integrated cross section into channel in the $e^+\,e^-$ annihilation.

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$						
VALUE (keV)	DOCUMENT ID		ΓΕCΝ	COMMENT		
• • • We do not use the fol	lowing data for averages	, fits, li	mits, e	tc. • • •		
4 ±0.8	¹ BALDINI					
3.9 ± 0.8	¹ ESPOSITO	75B F	FRAM	e^+e^-		

 $^{^{1}\,\}mathrm{Data}$ redundant with branching ratios or partial widths above.

 $\Gamma(e^+e^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_5\Gamma_5/\Gamma$ VALUE (eV) DOCUMENT ID KEDR 3.097 $e^+e^- \rightarrow e^+e^-$ **ANASHIN** $332.3 \pm 6.4 \pm 4.8$ • • • We do not use the following data for averages, fits, limits, etc. • • • BRANDELIK 79C DASP $e^+e^ 350 \pm 20$ ¹ BALDINI-... FRAG $e^+e^ 320 \pm 70$ ¹ ESPOSITO 75B FRAM $e^+e^ 340 \pm 90$ ¹ FORD SPEC 360 ± 100

$\Gamma(\mu^+\mu^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_7\Gamma_5/\Gamma$

\' · / \	,,	,			,
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT
333 \pm 4 OUR A	WERAGE				
$333.4 \pm \ 2.5 \pm 4.4$		ABLIKIM			3.773 $e^+e^- \to \mu^+\mu^-\gamma$
$331.8 \pm 5.2 \pm 6.3$		ANASHIN	10	KEDR	$3.097 \ e^+e^- \rightarrow \ \mu^+\mu^-$
$338.4 \pm 5.8 \pm 7.1$	13k	ADAMS	06A	CLEO	$e^+e^- ightarrow \mu^+\mu^-\gamma$
$330.1 \pm 7.7 \pm 7.3$	7.8k	AUBERT	04	BABR	$e^+e^- ightarrow \mu^+\mu^-\gamma$
• • • We do not us	se the follow	ing data for aver	ages,	fits, limit	ts, etc. • • •
510 ±90		DASP	75	DASP	e^+e^-
380 ±50		¹ ESPOSITO	75 B	FRAM	e^+e^-

¹ Data redundant with branching ratios or partial widths above.

$\Gamma(\omega \pi^+ \pi^- \pi^0) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_{12}\Gamma_5/\Gamma$

VALUE (10⁻² keV) EVTS DOCUMENT ID TECN COMMENT

2.2 \pm 0.3 \pm 0.2 170 AUBERT 06D BABR 10.6 e⁺ e⁻ $\rightarrow \omega \pi^+ \pi^- \pi^0 \gamma$

$\Gamma(\omega \pi^+ \pi^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_{13}\Gamma_{5}/\Gamma$

$53.6 \pm 5.0 \pm 0.4$	788	¹ AUBERT	07AU BABR	$10.6 \ e^{+} \ e^{-}$	$\rightarrow \omega \pi^+ \pi^- \gamma$	
¹ AUBERT 07AU	reports [Γ	$(J/\psi(1S) \rightarrow \omega$	$\pi^+\pi^-) \times \Gamma(.$	J/ψ (1S) $ ightarrow$	$e^+e^-)/\Gamma_{total}$	1
$ imes$ [B(ω (782) $-$	$\pi^+\pi^-\pi$	$[0] = 47.8 \pm 3.3$	1 ± 3.2 eV whic	h we divide l	by our best value	,
		$= (89.2 \pm 0.7)$;
error and our se	econd error	is the systemati	c error from usir	ng our best v	alue.	

 $\Gamma(K^*(892)^0\overline{K}^*(892)^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{15}\Gamma_{5}/\Gamma$

Created: 5/30/2017 17:21

VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

1.28 \pm 0.34 \pm 0.07 47 \pm 12 1 LEES 12F BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma$ • • • We do not use the following data for averages, fits, limits, etc. • •

 $1.28\pm0.40\pm0.11$ 25 ± 8 1,2 AUBERT 07AK BABR 10.6 $e^+e^-
ightarrow \pi^+\pi^-K^+K^-\gamma$

¹ Data redundant with branching ratios or partial widths above.

 $^{^1}$ Dividing by (2/3) 2 to take twice into account that B(K*0 \to K+ π^-) = 2/3 B(K*0 \to K π).

² Superseded by LEES 12F.

```
\Gamma(K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                \Gamma_{21}\Gamma_5/\Gamma
                                                   710 <sup>1,2,3</sup> LEES
                                                                                                               12F BABR 10.6 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                                     2,4 AUBERT 07AK BABR 10.6 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma
      <sup>1</sup>LEES 12F reports [\Gamma(J/\psi(1S) \rightarrow K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}) \times \Gamma(J/\psi(1S) \rightarrow K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.})
          e^{+}e^{-})/\Gamma_{\rm total}] \times [{\sf B}(K_{2}^{*}(1430) \to K\pi)] = 12.89 \pm 0.54 \pm 0.41 \; {\sf eV} \; {\sf which} \; {\sf we} \; {\sf disc}
          vide by our best value B(K_2^*(1430) \rightarrow K\pi) = (49.9 \pm 1.2) \times 10^{-2}. Our first error is
          their experiment's error and our second error is the systematic error from using our best
      <sup>2</sup> Dividing by 2/3 to take into account that B(K^{*0} \rightarrow K^+\pi^-) = 2/3 B(K^{*0} \rightarrow K\pi).
      <sup>3</sup> The K_2^*(1430) cannot be distinguished from the K_0^*(1430).
      ^4 Superseded by LEES 12F. AUBERT 07AK reports [\Gamma(J/\psi(1S)
ightarrow K^*(892)^0\overline{K}_2^*(1430)^0 +
          c.c.) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(K_2^*(1430) \to K\pi)] = 16.4 \pm 1.1 \pm 1.4
          eV which we divide by our best value B(K_2^*(1430) \rightarrow K\pi) = (49.9 \pm 1.2) \times 10^{-2}. Our
          first error is their experiment's error and our second error is the systematic error from
          using our best value.
\Gamma(K^*(892)^0 \overline{K}_2(1770)^0 + \text{c.c.} \rightarrow K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma(E^- e^-) / \Gamma(E^
Γ<sub>total</sub>
                                                                                                                                                                                                                \Gamma_{24}\Gamma_{5}/\Gamma
                                                                               DOCUMENT ID TECN COMMENT
VALUE (eV)
3.8±0.4±0.3 110 ± 14  1 AUBERT 07AK BABR 10.6 e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma
      <sup>1</sup> Dividing by 2/3 to take into account that B(K^{*0} \rightarrow K^+\pi^-) = 2/3.
\Gamma(K^+K^*(892)^- + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{total}
                                                                                                                                                                                                                \Gamma_{26}\Gamma_{5}/\Gamma
VALUE (eV)
                                                                                                                08S BABR 10.6 e^+e^- \rightarrow K^+K^*(892)^- \gamma
29.0±1.7±1.3
                                                                       AUBERT
\Gamma(K^+K^*(892)^- + \text{c.c.} \rightarrow K^+K^-\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                 DOCUMENT ID
                                                                                                                                       TECN COMMENT
                                                        EVTS
                                                                                                                          08S BABR 10.6 e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{0}\gamma
10.96\pm0.85\pm0.70
                                                                                  AUBERT
\Gamma(K^+K^*(892)^- + \text{c.c.} \rightarrow K^0K^{\pm}\pi^{\mp} + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
VALUE (eV)
                                                                                                                                       TECN COMMENT
                                                                                                                          08S BABR 10.6 e^+e^- \rightarrow \kappa_S^0 \kappa^{\pm} \pi^{\mp} \gamma
16.76 \pm 1.70 \pm 1.00
                                                                                 AUBERT
\Gamma(K^0\overline{K}^*(892)^0 + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                \Gamma_{29}\Gamma_5/\Gamma
VALUE (eV)
                                                                            DOCUMENT ID
                                                                                                                                  TECN COMMENT
                                                                                                                    08S BABR 10.6 e^+e^- \to K^0 \overline{K}^* (892)^0 \gamma
26.6 \pm 2.5 \pm 1.5
                                                                            AUBERT
\Gamma(K^0\overline{K}^*(892)^0 + \text{c.c.} \rightarrow K^0K^{\pm}\pi^{\mp} + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                                          08S BABR 10.6 e^+e^- \rightarrow K_S^0 K^{\pm} \pi^{\mp} \gamma
17.70 \pm 1.70 \pm 1.00
                                                                                  AUBERT
                                                           94
```

 $\Gamma(\omega K \overline{K}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{39}\Gamma_{5}/\Gamma$

¹ AUBERT 07AU reports $[\Gamma(J/\psi(1S) \to \omega \, K \, \overline{K}) \times \Gamma(J/\psi(1S) \to e^+ \, e^-)/\Gamma_{\text{total}}] \times [B(\omega(782) \to \pi^+ \pi^- \pi^0)] = 3.3 \pm 1.3 \pm 1.2 \text{ eV}$ which we divide by our best value $B(\omega(782) \to \pi^+ \pi^- \pi^0) = (89.2 \pm 0.7) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\phi 2(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{41}\Gamma_{5}/\Gamma$

 VALUE (10⁻² keV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.96±0.19±0.01
 35
 1 AUBERT
 06D
 BABR
 10.6 e⁺ e⁻ → φ2(π⁺π⁻)γ

¹ AUBERT 06D reports $[\Gamma(J/\psi(1S) \to \phi 2(\pi^+\pi^-)) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{total}] \times [B(\phi(1020) \to K^+K^-)] = (0.47 \pm 0.09 \pm 0.03) \times 10^{-2}$ keV which we divide by our best value $B(\phi(1020) \to K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\phi K^+ K^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_{47}\Gamma_5/\Gamma$

VALUE (eV)EVTSDOCUMENT IDTECNCOMMENT4.62 \pm 0.62 \pm 0.041631 LEES12FBABR $10.6 e^+e^- \rightarrow K^+K^-K^+K^-\gamma$

¹ LEES 12F reports $[\Gamma(J/\psi(1S) \to \phi K^+ K^-) \times \Gamma(J/\psi(1S) \to e^+ e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+ K^-)] = 2.26 \pm 0.26 \pm 0.16$ eV which we divide by our best value $B(\phi(1020) \to K^+ K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\phi f_2(1270)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{48}\Gamma_{5}/\Gamma$

 VALUE (eV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 1.79 \pm 0.32 $^{+0.02}_{-0.06}$ 61 \pm 10 1,2,3 LEES
 12F
 BABR
 10.6 $e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $4.08 \pm 0.73 {+0.04 \atop -0.14}$

 44 ± 7 2,4 AUBERT

07AK BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^- K^+K^- \gamma$

Created: 5/30/2017 17:21

¹ LEES 12F reports $[\Gamma(J/\psi(1S) \to \phi f_2(1270)) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(f_2(1270) \to \pi\pi)] = 1.51 \pm 0.25 \pm 0.10$ eV which we divide by our best value $B(f_2(1270) \to \pi\pi) = (84.2^{+2.9}_{-0.9}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Using B($\phi \to K^+K^-$) = (48.9 ± 0.5)%.

 $^{^3}$ Using $\pi^+\pi^-$ invariant mass between 1.1 and 1.5 GeV. May include other sources such as $f_0(1370)$.

⁴ Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S) \to \phi f_2(1270)) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(f_2(1270) \to \pi\pi)] = 3.44 \pm 0.55 \pm 0.28$ eV which we divide by our best value $B(f_2(1270) \to \pi\pi) = (84.2^{+2.9}_{-0.9}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

DOCUMENT ID

 $\Gamma(\phi \pi^+ \pi^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_{53}\Gamma_5/\Gamma$

4.50 ± 0.35 OUR AVERAGE

 $4.47 \pm 0.49 \pm 0.04$ 181

¹ LEES

12F BABR 10.6 e⁺

 $4.52 \pm 0.48 \pm 0.04$

 254 ± 23

² SHEN

• • We do not use the following data for averages, fits, limits, etc.

 $5.33 \pm 0.71 \pm 0.05$

³ AUBERT,BE 06D BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi$

¹LEES 12F reports $[\Gamma(J/\psi(1S) \rightarrow \phi \pi^+ \pi^-) \times \Gamma(J/\psi(1S) \rightarrow e^+ e^-)/\Gamma_{total}] \times$ $[B(\phi(1020) \rightarrow K^+K^-)] = 2.19 \pm 0.23 \pm 0.07$ eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 SHEN 09 reports 4.50 \pm 0.41 \pm 0.26 eV from a measurement of $[\Gamma(J/\psi(1S)
ightarrow$ $\phi\,\pi^+\,\pi^-\big) \ \times \ \Gamma\big(J/\psi(1S) \to \ \mathrm{e^+\,e^-}\big)/\Gamma_{\mathsf{total}}] \ \times \ [\mathsf{B}(\phi(1020) \to \ K^+\,K^-)] \ \mathsf{assuming}$ $B(\phi(1020) \rightarrow K^+K^-) = (49.2 \pm 0.6) \times 10^{-2}$, which we rescale to our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 3 Superseded by LEES 12F. AUBERT,BE 06D reports $[\Gamma(J/\psi(1S)
ightarrow \phi \pi^+ \pi^-) imes 1$ $\Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \rightarrow K^+K^-)] = 2.61 \pm 0.30 \pm 0.18$ eV which we divide by our best value B($\phi(1020) \rightarrow K^+K^-$) = (48.9 \pm 0.5) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\phi\pi^0\pi^0) \times \Gamma(e^+e^-)$

 $\Gamma_{54}\Gamma_{5}/\Gamma$

DOCUMENT ID 12F BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^0\pi^0\gamma$ ¹ LEES $2.78 \pm 0.57 \pm 0.03$

• We do not use the following data for averages, fits, limits, etc. •

² AUBERT,BE 06D BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^0\pi^0\gamma$

¹LEES 12F reports $[\Gamma(J/\psi(1S) \rightarrow \phi\pi^0\pi^0) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\rm total}] \times$ [B(ϕ (1020) $\rightarrow~$ K $^+$ K $^-$)] = 1.36 \pm 0.27 \pm 0.07 eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Superseded by LEES 12F. AUBERT,BE 06D reports $[\Gamma(J/\psi(1S)
ightarrow \phi \pi^0 \pi^0) imes 0$ $\Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 1.54 \pm 0.40 \pm 0.16$ eV which we divide by our best value B($\phi(1020) \rightarrow K^+K^-$) = $(48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\phi\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{57}\Gamma_{5}/\Gamma$

Created: 5/30/2017 17:21

VALUE (eV) 07AU BABR 10.6 $e^+e^- \rightarrow$ $6.1\pm2.7\pm0.4$

¹ AUBERT 07AU quotes $\Gamma^{J/\psi}$ · B $(J/\psi \rightarrow \phi \eta)$ · B $(\phi \rightarrow K^+K^-)$ · B $(\eta \rightarrow 3\pi)$ = $0.84 \pm 0.37 \pm 0.05$ eV.

$\Gamma(\phi f_0(980) \rightarrow \phi \pi^+ \pi^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$ $\Gamma_{64}\Gamma_5/\Gamma_{64}$

1.44±0.19 OUR AVERAGE

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $1.02\pm0.24\pm0.01$ 20 \pm 5 3 AUBERT 07AK BABR 10.6 $e^+e^-
ightarrow \, \pi^+\pi^-\, K^+\, K^-\, \gamma$

 1 LEES 12F reports [$\Gamma(J/\psi(1S) \to \phi \, f_0(980) \to \phi \, \pi^+ \, \pi^-) \times \Gamma(J/\psi(1S) \to e^+ \, e^-) / \Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+ \, K^-)] = 0.69 \pm 0.11 \pm 0.05 \text{ eV}$ which we divide by our best value B($\phi(1020) \to K^+ \, K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Multiplied by 2/3 to take into account the $\phi\pi^+\pi^-$ mode only. Using B($\phi\to K^+K^-$) = (49.2 ± 0.6)%.

³ Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S) \rightarrow \phi f_0(980) \rightarrow \phi \pi^+\pi^-) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{total}] \times [B(\phi(1020) \rightarrow K^+K^-)] = 0.50 \pm 0.11 \pm 0.04$ eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\phi f_0(980) \rightarrow \phi \pi^0 \pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{65}\Gamma_5/\Gamma$

VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

0.98±0.27±0.01 16 ± 4 1 LEES 12F BABR 10.6 $e^+e^- \rightarrow \pi^0\pi^0\kappa^+\kappa^-\gamma$ • • • We do not use the following data for averages, fits, limits, etc. • •

 $0.96 \pm 0.40 \pm 0.01$ 7.0 \pm 2.8 2 AUBERT 07AK BABR 10.6 $e^{+}e^{-}
ightarrow ~\pi^{0} \, \pi^{0} \, K^{+} \, K^{-} \, \gamma$

¹LEES 12F reports $[\Gamma(J/\psi(1S) \to \phi f_0(980) \to \phi \pi^0 \pi^0) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 0.48 \pm 0.12 \pm 0.05 \text{ eV}$ which we divide by our best value $B(\phi(1020) \to K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S) \to \phi f_0(980) \to \phi \pi^0 \pi^0) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 0.47 \pm 0.19 \pm 0.05 \text{ eV}$ which we divide by our best value $B(\phi(1020) \to K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta \pi^+ \pi^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_{75}\Gamma_5/\Gamma$

 $\Gamma_{104}\Gamma_5/\Gamma$

Created: 5/30/2017 17:21

 1 AUBERT 07AU reports $[\Gamma\big(J/\psi(1S)\to~\eta\,\pi^+\,\pi^-\big)\times \Gamma\big(J/\psi(1S)\to~e^+\,e^-\big)/\Gamma_{\text{total}}]\times [B(\eta\to~\pi^+\,\pi^-\,\pi^0)]=0.51\pm0.22\pm0.03$ eV which we divide by our best value $B(\eta\to\pi^+\,\pi^-\,\pi^0)=(22.92\pm0.28)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2(\pi^+\pi^-)\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

303±5±18 4990 AUBERT 07AU BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\gamma$

```
\Gamma(\pi^+\pi^-\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{106}\Gamma_5/\Gamma
VALUE (keV)
                                                                  04N BABR 10.6 e^+e^- \rightarrow
0.122 \pm 0.005 \pm 0.008
                                             AUBERT, B
\Gamma(\pi^+\pi^-\pi^0K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{107}\Gamma_5/\Gamma
                                                             TECN COMMENT
                                                      07AU BABR 10.6 e^+e^- \rightarrow K^+K^-\pi^+\pi^-\pi^0\gamma
107.0 \pm 4.3 \pm 6.4
                                     AUBERT
\Gamma(\pi^+\pi^-K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                          DOCUMENT ID
                                                                 TECN <u>COMMENT</u>
                                                          12F BABR 10.6 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma
37.94 \pm 0.81 \pm 1.10
                            3.1k
                                          LEES
• • • We do not use the following data for averages, fits, limits, etc. •
                                                         07AK BABR 10.6 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma
                             1.5k
                                       <sup>1</sup> AUBERT
36.3 \pm 1.3 \pm 2.1
                                                         05D BABR 10.6 e^+e^- \to K^+K^-\pi^+\pi^-\gamma
                                       <sup>2</sup> AUBERT
33.6 \pm 2.7 \pm 2.7
                             233
   <sup>1</sup> Superseded by LEES 12F.
   <sup>2</sup>Superseded by AUBERT 07AK.
\Gamma(\pi^{+}\pi^{-}K^{+}K^{-}\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}
                                                                                                            \Gamma_{113}\Gamma_5/\Gamma
                                                        07AU BABR 10.6 e^+e^- \to K^+K^-\pi^+\pi^-n\gamma
                                  <sup>1</sup> AUBERT
   <sup>1</sup> AUBERT 07AU reports [\Gamma(J/\psi(1S) \rightarrow \pi^+\pi^-K^+K^-\eta) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/
     \Gamma_{\text{total}}] \times [B(\eta \to 2\gamma)] = 10.2 \pm 1.3 \pm 0.8 \text{ eV} which we divide by our best value B(\eta \to 1.3)
     (2\gamma) = (39.41 \pm 0.20) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
\Gamma(\pi^0\pi^0K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{114}\Gamma_5/\Gamma
                                         DOCUMENT ID
                                                                 TECN COMMENT
                                                          12F BABR 10.6 e^+e^- \rightarrow \pi^0\pi^0K^+K^-\gamma
11.75 \pm 0.81 \pm 0.90
                             388
                                          LEES
• • • We do not use the following data for averages, fits, limits, etc. • •
                                       <sup>1</sup> AUBERT 07AK BABR 10.6 e^+e^- \rightarrow \pi^0\pi^0K^+K^-\gamma
13.6 \pm 1.1 \pm 1.3
                             203
   <sup>1</sup>Superseded by LEES 12F.
\Gamma(\pi^+\pi^-K^0_SK^0_I) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{110}\Gamma_5/\Gamma
VALUE (eV)
                                             DOCUMENT ID
                                                                  14H BABR e^+e^- \rightarrow \pi^+\pi^- K_S^0 K_I^0 \gamma
20.8 \pm 2.3 \pm 2.1
                                             LEES
\Gamma(\pi^+\pi^-K_s^0K_s^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{111}\Gamma_5/\Gamma
                            <u>EVTS</u>
                                             DOCUMENT ID
VALUE (eV)
                                                                         TECN COMMENT
                                                                  14H BABR e^+e^- \rightarrow \pi^+\pi^-K^0_SK^0_S\gamma
9.3\pm0.9\pm0.5
                              133
                                             LEES
\Gamma(K^+K^-K^0_SK^0_S) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                           DOCUMENT ID
                                                                     TECN COMMENT
                                                                14H BABR e^+e^- 
ightarrow \overline{K^0_\varsigma K^0_\varsigma K^+ K^- \gamma}
2.3\pm0.4\pm0.1
                                           LEES
                              29
```

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(K_s^0 \pi^- K^*(892)^+ + \text{c.c.}) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$ 14H BABR $e^+e^- \rightarrow \pi^+\pi^- K_S^0 K_S^0 \gamma$ ¹ LEES $14.8 \pm 4.8 \pm 1.2$ ¹ Dividing by 1/4 to take into account B($K^*(892) \rightarrow K_S^0 \pi$) = 1/4. $\Gamma(K_S^0 \pi^- K^*(892)^+ + \text{c.c.} \to K_S^0 K_S^0 \pi^+ \pi^-) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$ VALUE (eV) 14H BABR $e^+e^- \rightarrow \pi^+\pi^-K^0_SK^0_S\gamma$ $3.7 \pm 1.2 \pm 0.3$ $\Gamma(K_5^0\pi^-K_2^*(1430)^+ + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT

LEES 14H BABR $e^+e^- \rightarrow \pi^+\pi^- K_S^0 K_S^0 \gamma$ 20.1 ± 9.8 ± 0.5 ¹ Dividing by 1/4 to take into account B($K^*(1430) \rightarrow K^0_S \pi$) = 1/4 B($K^*(1430) \rightarrow K^0_S \pi$) ² LEES 14H reports $[\Gamma(J/\psi(1S) \rightarrow K_S^0 \pi^- K_2^*(1430)^+ + \text{c.c.}) \times \Gamma(J/\psi(1S) \rightarrow e^+ e^-)/E$ $\Gamma_{\text{total}}] \times [B(K_2^*(1430) \rightarrow K\pi)] = 10.0 \pm 4.8 \pm 0.8 \text{ eV}$ which we divide by our best value B($K_2^*(1430) \rightarrow K\pi$) = $(49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(K_S^0\pi^-K_2^*(1430)^+ + \mathrm{c.c.} o K_S^0K_S^0\pi^+\pi^-) imes \Gamma(e^+e^-)/\Gamma_{ ext{total}}$ 14H BABR $e^+e^-
ightarrow \pi^+\pi^-\kappa_S^0\kappa_S^0\gamma$ $2.5 \pm 1.2 \pm 0.2$ **LEES** $\Gamma(K^*(892)^{\pm}K^*(892)^{\mp}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (eV)

DOCUMENT ID TECN COMMENT

LEES 14H BABR $e^+e^- \rightarrow \pi^+\pi^-K_5^0K_5^0\gamma$

¹ Dividing by $(1/4)^2$ to take twice into account B($K^*(892) \rightarrow K^0_S \pi$) = 1/4.

 $\Gamma(K^*(892)^+ K_2^*(1430)^- + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $18.6 \pm 16.1 \pm 0.4$

 1 Dividing by $(1/4)^2$ to take into account B($K^*(892)
ightarrow \ K^0_S \, \pi) = 1/4$ and B($K^*(1430)
ightarrow$ $K_{S}^{0}\pi) = 1/4 \ \mathsf{B}(K^{*}(1430) \to K\pi).$

²LEES 14H reports $[\Gamma(J/\psi(1S) \rightarrow K^*(892)^+ K_2^*(1430)^- + \text{c.c.}) \times \Gamma(J/\psi(1S) \rightarrow K^*(892)^+ K_2^*(1430)^- + \text{c.c.}) \times \Gamma(J/\psi(1S) \rightarrow K^*(892)^+ K_2^*(1430)^- + \text{c.c.})$ $e^+e^-)/\Gamma_{ ext{total}}]$ imes [B($K_2^*(1430)
ightarrow ~K\pi)$] $= 9.28 \pm 8.0 \pm 0.32$ eV which we divide by our best value B($K_2^*(1430) \rightarrow K\pi$) = $(49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^*(892)^+ K_2^*(1430)^- + \text{c.c.} \rightarrow K^*(892)^+ K_S^0 \pi^- + \text{c.c.}) \times \Gamma(e^+ e^-) / K_S^0 \pi^- + \kappa^0 K_S^0$ l _{total} VALUE (eV) $2.32\pm2.00\pm0.08$

¹ Dividing by 1/4 to take into account B($K^*(892) \rightarrow K^0_{S}\pi$) = 1/4.

 $\Gamma(\phi K_S^0 K_S^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

14H BABR $e^+e^-
ightarrow K_S^0 K_S^0 K^+ K^- \gamma$ $3.27 \pm 0.84 \pm 0.03$

¹LEES 14H reports $[\Gamma(J/\psi(1S) \rightarrow \phi K_S^0 K_S^0) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\mathsf{total}}] \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\mathsf{total}}] \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\mathsf{total}}]$ $[B(\phi(1020) \rightarrow K^+K^-)] = 1.6 \pm 0.4 \pm 0.1$ eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\phi f_2'(1525)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

EVTS DOCUMENT ID TECN COMMENT

11 1,2 LEES 14H BABR $e^+e^- \rightarrow K_S^0 K_S^0 K^+ K^- \gamma$ VALUE (eV)

 1 Dividing by 1/4 to take into account B $(f_2'(1525)
ightarrow \mathcal{K}_S^0 \mathcal{K}_S^0) = 1/4$ B $(f_2'(1525)
ightarrow$ \overline{KK}) and using B($\phi \rightarrow K^+K^-$) = (48.9 \pm 0.5)%.

²LEES 14H reports $[\Gamma(J/\psi(1S) \rightarrow \phi f_2'(1525)) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\mathsf{total}}]$ \times [B($f_2'(1525) \rightarrow K\overline{K}$)] = 7.2 \pm 2.8 \pm 0.3 eV which we divide by our best value $B(f_2'(1525) \rightarrow K\overline{K}) = (88.7 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^+K^-f_2'(1525)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

EVTS DOCUMENT ID TECN COMMENT $16^{-1,2}$ LEES 14H BABR $e^+e^- \rightarrow K_S^0 K_S^0 K^+ K^- \gamma$

$\Gamma(2(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{116}\Gamma_5/\Gamma$

TECN COMMENT 12E BABR 10.6 $e^+e^- \rightarrow 2\pi^+2\pi^-\gamma$ $20.4 \pm 0.9 \pm 0.4$ **LEES**

• • • We do not use the following data for averages, fits, limits, etc. • •

¹ AUBERT

05D BABR 10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-)\gamma$

$$\Gamma(3(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$$

 $\Gamma_{117}\Gamma_5/\Gamma$

 $VALUE (10^{-2} \text{ keV})$ EVTS DOCUMENT ID TECN COMMENT 06D BABR 10.6 $e^+e^- \rightarrow 3(\pi^+\pi^-)\gamma$ $2.37\pm0.16\pm0.14$ **AUBERT**

$$\Gamma(2(\pi^+\pi^-\pi^0)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$$

 $\Gamma_{118}\Gamma_{5}/\Gamma$

Created: 5/30/2017 17:21

 $VALUE (10^{-2} \text{ keV})$ EVTS DOCUMENT ID 06D BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)_{\gamma}$ $8.9 \pm 0.5 \pm 1.0$ AUBERT

 $^{^1\, {\}rm Dividing}$ by 1/4 to take into account B($f_2'(1525) \, \rightarrow \, \, \, {\it K}_S^0\, {\it K}_S^0) \, = \, 1/4\,\, {\rm B}(f_2'(1525) \, \rightarrow \,$

² LEES 14H reports $[\Gamma(J/\psi(1S) \rightarrow K^+K^-f_2'(1525)) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\mathsf{total}}]$ \times [B($f_2'(1525) \rightarrow K\overline{K}$)] = 5.12 \pm 1.68 \pm 0.20 eV which we divide by our best value $B(f_2'(1525) \rightarrow K\overline{K}) = (88.7 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Superseded by LEES 12E.

 $\Gamma(2(\pi^+\pi^-)\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{119}\Gamma_5/\Gamma$

 $13.1 \pm 2.4 \pm 0.1$

07AU BABR 10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta\gamma$

 1 AUBERT 07AU reports [$\Gamma(J/\psi(1S) \rightarrow 2(\pi^{+}\pi^{-})\eta) \times \Gamma(J/\psi(1S) \rightarrow e^{+}e^{-})/\Gamma_{\text{total}}] \times [B(\eta \rightarrow 2\gamma)] = 5.16 \pm 0.85 \pm 0.39$ eV which we divide by our best value $B(\eta \rightarrow 2\gamma)$ 2γ) = (39.41 \pm 0.20) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{121}\Gamma_5/\Gamma$

VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT
11.9 ± 0.6 OUR AVERA	GE Error	includes scale factor of	1.8. See	e the ideogram below.
$11.3 \pm 0.4 \pm 0.3$			BABR	$e^+e^- ightarrow ho \overline{p} \gamma$
$12.9 \pm 0.4 \pm 0.4$	918	² LEES 13Y	BABR	$e^+e^- ightarrow ho \overline{p} \gamma$
9.7 ± 1.7		³ ARMSTRONG 93B	E760	$\overline{p}p \rightarrow e^+e^-$
14/ 1	c 11 ·		10 00	

We do not use the following data for averages, fits, limits, etc.

$$12.0\pm0.6\pm0.5$$

⁴ AUBERT 438

06B BABR $e^+e^- \rightarrow p\overline{p}\gamma$

WEIGHTED AVERAGE 11.9±0.6 (Error scaled by 1.8)

$$\Gamma(\Sigma^0\overline{\Sigma}^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$$

 $\Gamma_{134}\Gamma_5/\Gamma$

VALUE (eV) $6.4 \pm 1.2 \pm 0.6$

DOCUMENT ID **AUBERT**

07BD BABR 10.6 $e^+e^- \rightarrow \Sigma^0 \overline{\Sigma}{}^0 \gamma$

HTTP://PDG.LBL.GOV

Page 18

¹ISR photon reconstructed in the detector

²ISR photon undetected

 $^{^3}$ Using $\Gamma_{\text{total}} = 85.5^{+6.1}_{-5.8}$ MeV.

⁴Superseded by LEES 130

$\Gamma(2(\pi^+\pi^-)K^+$	$(K^{-}) \times \Gamma(C)$	$e^+e^-)/\Gamma_{ m total}$			Γ ₁₃₅ Γ _{5,}	/Г
$VALUE (10^{-2} \text{ keV})$	EVTS	DOCUMENT ID		TECN	COMMENT	
2.75±0.23±0.17	205	AUBERT	06 D	BABR	$\frac{10.6 e^{+} e^{-} \rightarrow K^{+} K^{-} 2(\pi^{+} \pi^{-})}{K^{+} K^{-} 2(\pi^{+} \pi^{-})}$	γ
$\Gamma(\Lambda\overline{\Lambda}) \times \Gamma(e^+$	e^-)/ Γ_{total}				$\Gamma_{141}\Gamma_{5}$	/Γ
VALUE (eV)	_	DOCUMENT ID			COMMENT	
$10.7 \pm 0.9 \pm 0.7$		AUBERT	07 BD	BABR	10.6 $e^+e^- \rightarrow \Lambda \overline{\Lambda} \gamma$	
$\Gamma(2(K^+K^-))$	* ,	/F _{total}	TECN	СОМ.	Γ ₁₄₄ Γ _{5,}	/Γ
4.00±0.33±0.29	287 ± 24		BAB	R 10.6	$e^+e^- \rightarrow 2(K^+K^-)$) γ
4.11±0.39±0.30 4.0 ±0.7 ±0.6	$156\pm15\\38$				$e^+e^- \rightarrow 2(K^+K^-)$ $e^+e^- \rightarrow 2(K^+K^-)$	
¹ Superseded by ² Superseded by		AK.				
$\Gamma(K^+K^-) \times \Gamma$ VALUE (eV)	-(e ⁺ e ⁻)/Γ ₁	t otal DOCUMENT ID		TECN	Γ ₁₄₆ Γ ₅ ,	/Γ
		ng data for averages			•	
$1.78 \pm 0.11 \pm 0.05$	462	¹ LEES			$e^+e^- \rightarrow K^+K^-\gamma$	
$1.94 \pm 0.11 \pm 0.05$		² LEES			$e^+e^- \rightarrow K^+K^-\gamma$	
$1.42\!\pm\!0.23\!\pm\!0.08$	51	³ LEES	13Q	BABR	$e^+e^- \rightarrow K^+K^-\gamma$	
$\frac{1}{2}\sin\phi > 0.$ $\frac{2}{3}\sin\phi < 0.$						
³ Interference wi	ith non-resona	nt K^+K^- producti	on not	t taken i	nto account.	

$J/\psi(1S)$ BRANCHING RATIOS

For the first four branching ratios, see also the partial widths, and (partial widths) $\times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ above.

$\Gamma(\text{hadrons})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.877±0.005 OUR AVERAGE					
0.878 ± 0.005	BAI	95 B	BES	e^+e^-	
0.86 ± 0.02	BOYARSKI	75	MRK1	e^+e^-	
$\Gamma(\text{virtual}\gamma \to \text{hadrons})/\Gamma_{\text{tot}}$	tal				Γ_2/Γ
VALUE	DOCUMENT ID			COMMENT	
0.135 ± 0.003	^{1,2} SETH	04	RVUE	e^+e^-	
• • • We do not use the following	ng data for average	es, fits,	limits, e	etc. • • •	
$0.17\ \pm0.02$	¹ BOYARSKI	75	MRK1	e^+e^-	
1 Included in $\Gamma(\text{hadrons})/\Gamma_{\text{tota}}$ Using $B(J/\psi \rightarrow \ell^{+}\ell^{-}) = \text{determined by a fit to data f}$	$= (5.90 \pm 0.09)\%$	from I AI 020	RPP-200	22 and R = 2.2	28 ± 0.04

HTTP://PDG.LBL.GOV Page 19 Created: 5/30/2017 17:21

 $\Gamma(ggg)/\Gamma_{\text{total}}$ VALUE (upits 10^{-2}) FVTS DOCUMENT ID TECH COMMENT

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT**64.1±1.0**6 M 1 BESSON08CLEO $\psi(2S) \rightarrow \pi^{+}\pi^{-}+$ hadrons

 $\Gamma(\gamma gg)/\Gamma_{\text{total}}$ Γ_4/Γ

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT8.79 ± 1.05200 k 1 BESSON08CLEO $\psi(2S) \rightarrow \pi^{+}\pi^{-}\gamma$ + hadrons

 $\Gamma(\gamma gg)/\Gamma(ggg)$ Γ_4/Γ_3

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
13.7±0.1±0.7	6 M	BESSON	80	CLEO	$\overline{\psi(2S)} \rightarrow \pi^+\pi^-J/\psi$

$\Gamma(e^+e^-)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{5}}/\Gamma$

<i>VALUE</i> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
5.971±0.032 OUR	AVERAGE				
$5.983 \pm 0.007 \pm 0.03$	37 720k	ABLIKIM	13 R	BES3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.945 \pm 0.067 \pm 0.04$	15k	LI			$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.90 \pm 0.05 \pm 0.10$)	BAI	98 D	BES	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
6.09 ± 0.33		BAI	95 B	BES	e^+e^-
$5.92 \pm 0.15 \pm 0.20$)	COFFMAN	92	MRK3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
6.9 ± 0.9		BOYARSKI	75	MRK1	e^+e^-

$\Gamma(e^+e^-\gamma)/\Gamma_{\text{total}}$ Γ_6/Γ

VALUE (units 10⁻³)

DOCUMENT ID

TECN COMMENT

1 ADMICTRONIC OF FIGURE 1

 $\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$ Γ_7/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
5.961±0.033 OUR AVE	RAGE				
$5.973 \pm 0.007 \pm 0.038$	770k	ABLIKIM	13 R	BES3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.960 \pm 0.065 \pm 0.050$	17k	LI	05 C	CLEO	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.84 \pm 0.06 \pm 0.10$		BAI	98 D	BES	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
6.08 ± 0.33		BAI	95 B	BES	e^+e^-
$5.90 \pm 0.15 \pm 0.19$		COFFMAN	92	MRK3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
6.9 ± 0.9		BOYARSKI	75	MRK1	e^+e^-

¹ Calculated using the value $\Gamma(\gamma gg)/\Gamma(ggg)=0.137\pm0.001\pm0.016\pm0.004$ from BESSON 08 and the PDG 08 values of B($\ell^+\ell^-$), B(virtual $\gamma\to$ hadrons), and B($\gamma\eta_c$). The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(\gamma gg)/\Gamma_{\rm total}$ measurement of BESSON 08.

 $^{^1}$ Calculated using the value $\Gamma(\gamma g\,g)/\Gamma(g\,g\,g)=0.137\pm0.001\pm0.016\pm0.004$ from BESSON 08 and the value of $\Gamma(g\,g\,g)/\Gamma_{\text{total}}$. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(g\,g\,g)/\Gamma_{\text{total}}$ measurement of BESSON 08.

 $\Gamma(e^+e^-)/\Gamma(\mu^+\mu^-)$ Tech comment

1.002 $\pm 0.021 \pm 0.013$ 3 ANASHIN 10 KEDR 3.097 $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-$ 0.997 $\pm 0.012 \pm 0.006$ LI 05C CLEO $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^ 1.011 \pm 0.013 \pm 0.016$ BAI 98D BES 1.00 ± 0.07 BAI MRK1 e^+e^- 75 1.00 ± 0.05 **BOYARSKI** 75B FRAM e^+e^- 0.91 ± 0.15 **ESPOSITO** SPEC $e^+e^ 0.93 \pm 0.10$ **FORD**

- HADRONIC DECAYS —

 $\Gamma(
ho\pi)/\Gamma_{
m total}$

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.69 ±0.15 OUR AV	ERAGE	Error includes scale	e facto	or of 2.4.	See the ideogram below.
2.18 ± 0.19		1,2 AUBERT,B	04N	BABR	$10.6 \begin{array}{l} e^+ e^- \\ \pi^+ \pi^- \pi^0 \end{array}$
$2.184 \pm 0.005 \pm 0.201$	220k	^{2,3} BAI		BES	$e^+e^- \rightarrow J/\psi \rightarrow \pi^+\pi^-\pi^0$
$2.091 \pm 0.021 \pm 0.116$		^{2,4} BAI	04н	BES	$\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$
1.21 ± 0.20		BAI	96 D	BES	$e^+e^- ightarrow ho\pi$
$1.42 \pm 0.01 \pm 0.19$		COFFMAN	88	MRK3	e^+e^-
1.3 ± 0.3	150	FRANKLIN	83	MRK2	e^+e^-
1.6 ± 0.4	183	ALEXANDER	78	PLUT	e^+e^-
1.33 ± 0.21		BRANDELIK	78 B	DASP	e^+e^-
1.0 ± 0.2	543	BARTEL	76	CNTR	e^+e^-
1.3 ± 0.3	153	JEAN-MARIE	76	MRK1	e^+e^-

 $^{^1}$ From the ratio of $\Gamma(e^+e^-)$ B($\pi^+\pi^-\pi^0)$ and $\Gamma(e^+e^-)$ B($\mu^+\mu^-)$ (AUBERT 04).

 $^{^{1}\,\}mathrm{From}$ 235.3k $J/\psi \rightarrow \ e^{+}\,e^{-}$ and 156.6k $J/\psi \rightarrow \ \mu^{+}\,\mu^{-}$ observed events.

 $^{^2}$ Not independent of the corresponding measurements of $\Gamma(e+~e-)/\Gamma_{total}$ and $\Gamma(mu+~mu-)/\Gamma_{total}$.

³ Not independent of the corresponding measurements of $\Gamma(e^+e^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ and $\Gamma(\mu^+\mu^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$.

² Not independent of their B($\pi^+\pi^-\pi^0$).

³ From $J/\psi \rightarrow \pi^+\pi^-\pi^0$ events directly.

⁴ Obtained comparing the rates for $\pi^+\pi^-\pi^0$ and $\mu^+\mu^-$, using J/ψ events produced via $\psi(2S) \to \pi^+\pi^-J/\psi$ and with B $(J/\psi \to \mu^+\mu^-) = 5.88 \pm 0.10\%$.

$\Gamma(ho^0\pi^0)/\Gamma(ho\pi)$				Γ_9/Γ_8
VALUE	DOCUMENT ID	TECN	COMMENT	-
$0.328 \pm 0.005 \pm 0.027$	COFFMAN 88	B MRK	3 e ⁺ e ⁻	
ullet $ullet$ We do not use the follow	ving data for averages, f	its, limits,	, etc. • • •	
0.35 ± 0.08	ALEXANDER 78	B PLUT	Γ e^+e^-	
0.32 ± 0.08	BRANDELIK 78			
0.39 ± 0.11	BARTEL 70	6 CNT	Re^+e^-	
0.37 ± 0.09	JEAN-MARIE 76	6 MRK	$1 e^{+}e^{-}$	
$\Gammaig(a_2(1320) hoig)/\Gamma_{ ext{total}}$				Γ ₁₀ /Γ
VALUE (units 10^{-3}) EVTS	DOCUMENT ID	TECN	COMMENT	
10.9 ± 2.2 OUR AVERAGE				
$11.7 \pm 0.7 \pm 2.5$ 7584			$J/\psi \rightarrow \rho^0$	
8.4 ± 4.5 36	VANNUCCI 77	MRK1	$e^+e^- \rightarrow$	$2(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma(\omega\pi^+\pi^+\pi^-\pi^-)/\Gamma_{\text{total}}$				Γ_{11}/Γ
VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID	TECN	COMMENT	
85±34 140	VANNUCCI 77	MRK1	$e^+e^- \rightarrow$	$3(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma(\omega\pi^+\pi^-\pi^0)/\Gamma_{ m total}$				Γ ₁₂ /Γ
$VALUE$ (units 10^{-2}) $EVTS$	DOCUMENT ID TE	COI	MMENT	
$0.40 \pm 0.06 \pm 0.04$ 170 1	AUBERT 06D B	ABR 10.	6 $e^+e^ \rightarrow$	$\omega \pi^+ \pi^- \pi^0 \gamma$
¹ Using $\Gamma(J/\psi \rightarrow e^+e^-) =$	= 5.52 \pm 0.14 \pm 0.04 ke	V.		

$\Gamma(\omega\pi^+\pi^-)/\Gamma_{\rm tot}$:al					Γ ₁₃ /Γ
	EVTS	DOCUMENT ID			MMENT	
8.6±0.7 OUR AVE						
$9.7 \pm 0.6 \pm 0.6$	788	^l AUBERT	07AU BA			$\rightarrow \omega \pi^{+} \pi^{-} \gamma$
7.0 ± 1.6	18058	AUGUSTIN		*. '		$+_{\pi}^{-})_{\pi}^{0}$
7.8 ± 1.6	215	BURMESTER			e ⁻	. 0
6.8 ± 1.9	348	VANNUCCI	77 MF	RK1 e^+	$e^- \rightarrow 2$	$2(\pi^{+}\pi^{-})\pi^{0}$
¹ AUBERT 07AU	quotes $\Gamma_{ee}^{{f J}/\psi}$	\cdot B($J/\psi \rightarrow \omega \pi^{-}$	+ π ⁻) ·B($\omega \to 3\pi$	r) = 47.8	\pm 3.1 \pm 3.2 eV.
$\Gamma(\omega f_2(1270))/\Gamma_0$						Γ_{14}/Γ
VALUE (units 10 ⁻³)		DOCUMENT ID	<u> </u>	ECN C	OMMENT	
4.3±0.6 OUR AVE					1	
$4.3 \pm 0.2 \pm 0.6$	5860	AUGUSTIN)M2 <i>e</i>		
4.0±1.6	70	BURMESTE				
• • • We do not us			_			0
1.9 ± 0.8	81	VANNUCCI	77 N	∕IRK1 e	+ e ⁻ →	$2(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma(K^*(892)^0\overline{K}^*(892)^{-1})$	892) ⁰)/Γ _{to}	tal				Γ ₁₅ /Γ
VALUE (units 10 ⁻⁴) Cl	_% EVTS	DOCUMENT II	D TE	CN CO	MMENT	
• • • We do not us	se the followi	ng data for avera	ages, fits,	limits, e	tc. • • •	
$2.3 \pm 0.7 \pm 0.1$	25 ± 8	¹ AUBERT	07AK BA	ABR 10.	.6 e ⁺ e ⁻ π ⁺ π ⁻ κ	$\overset{\rightarrow}{+}_{\kappa^{-}\gamma}$
< 5 90		VANNUCCI		RK1 e^+	$e^- \rightarrow e^-$	$\pi^+\pi^-K^+K^-$
¹ Superseded by L	EES 12F. AU	BERT 07AK rep	orts $\Gamma(J)$	$\psi(1S)$ –	→ K*(892	$(892)^{0} \overline{K}^{*} (892)^{0}$
		$[e^{-}] = (1.28 \pm$				
by our best valu	ie $\Gamma(J/\psi(1S))$	$0 \rightarrow e^+e^-) = 0$	5.55 ± 0.	$.14\pm0.$	02 keV. (Our first error is
Γ(K*(892) [±] K*([892) [∓])/Γ _t	otal				Γ ₁₆ /Γ
<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT	ID	TECN	COMMEN	Т
$1.00\pm0.19^{f +0.11}_{f -0.32}$	323	ABLIKIM	10E	BES2	J/ψ \rightarrow	$\kappa^{\pm} \kappa_{S}^{0} \pi^{\mp} \pi^{0}$
Γ(K*(892) [±] K*([800) [∓])/Γ _t	otal				Γ ₁₇ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT	ID	TECN	COMMEN	T
$1.09\!\pm\!0.18^{\displaystyle +0.94}_{\displaystyle -0.54}$	655	ABLIKIM	10E	BES2	J/ψ $ ightarrow$	$\kappa^{\pm} \kappa^0_S \pi^{\mp} \pi^0$
$\Gamma(\eta K^*(892)^0 \overline{K}^*$	(892) ⁰)/Γ _t	otal				Γ ₂₀ /Γ
VALUE (units 10 ⁻³)	,		TE	ECN CC	DMMENT	
1.15±0.13±0.22		DOCUMENT ID ABLIKIM	10C BE	$\overline{=}$ S2 $J/$	$\psi \to \eta P$	$K^{+}\pi^{-}K^{-}\pi^{+}$

 $\Gamma(K^*(892)^0\overline{K}_2^*(1430)^0 + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{21}/Γ

VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

 $5.9 \pm 0.6 \pm 0.2$ 317 ± 23 ^{1,2} AUBERT 07AK BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^- K^+K^-$

6.7±2.6 40 VANNUCCI 77 MRK1 $e^+e^- \rightarrow \pi^+\pi^-K^+K^-$

$\Gamma(\omega K^*(892)\overline{K} + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{25}/Γ

•	•			
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
61 ± 9 OUR A	VERAGE			
$62.0\!\pm\ 6.8\!\pm\!10.6$	899 ± 98	ABLIKIM	08E BES2	$J/\psi \rightarrow \omega K_S^0 K^{\pm} \pi^{\mp}$
$65.3\!\pm\!10.2\!\pm\!13.5$	176 ± 28			$J/\psi \rightarrow \omega K^+ K^- \pi^0$
$53 \pm 14 \pm 14$	530 ± 140	BECKER	87 MRK3	$e^+e^- o$ hadrons

$\Gamma(K^+K^*(892)^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{26}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
5.12±0.30 OUR AVE	RAGE				
$5.2 \pm 0.4 \pm 0.1$		$^{ m 1}$ AUBERT	08 S	BABR	10.6 $e^+e^- \rightarrow K^+K^*(892)^-\gamma$
$4.57 \pm 0.17 \pm 0.70$	2285	JOUSSET	90	DM2	$J/\psi ightarrow ext{hadrons}$
$5.26\!\pm\!0.13\!\pm\!0.53$		COFFMAN	88	MRK3	$J/\psi \rightarrow K^{\pm} K_S^0 \pi^{\mp},$
					$\kappa^+ \kappa^- \pi^0$

• • • We do not use the following data for averages, fits, limits, etc. • •

2.6 ± 0.6	24	FRANKLIN	83	MRK2 $J/\psi \rightarrow K^+K^-\pi^0$
3.2 ± 0.6	48	VANNUCCI	77	MRK1 $J/\psi \rightarrow \kappa^{\pm} \kappa_{S}^{0} \pi^{\mp}$
41 +12	30	BRALINSCH	76	DASP $I/\psi \rightarrow \kappa^{\pm} X$

 $^{^1}$ AUBERT 08S reports $[\Gamma(J/\psi(1S)\to K^+K^*(892)^-+\text{c.c.})/\Gamma_{\text{total}}]\times [\Gamma(J/\psi(1S)\to e^+e^-)]=(29.0\pm1.7\pm1.3)\times10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S)\to e^+e^-)=5.55\pm0.14\pm0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma \big(\textit{K}^+ \, \textit{K}^* (892)^- + \text{c.c.} \rightarrow \, \textit{K}^+ \, \textit{K}^- \, \pi^0 \big) / \Gamma_{\text{total}}$$

 Γ_{27}/Γ

Created: 5/30/2017 17:21

1.97 ± 0.20 ± 0.05 155 1 AUBERT 08S 1 BABR $10.6 \text{ } e^+e^- \rightarrow K^+K^-\pi^0\gamma$

¹ Using B($K_2^*(1430)^0 \to K\pi$) = (49.9 ± 1.2)%.

² Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S) \to K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.})/\Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \to e^+e^-)] = (32.9 \pm 2.3 \pm 2.7) \times 10^{-3} \text{ keV which we divide by our best value } \Gamma(J/\psi(1S) \to e^+e^-) = 5.55 \pm 0.14 \pm 0.02 \text{ keV}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^1}$ AUBERT 08S reports $[\Gamma(J/\psi(1S)\to K^+K^*(892)^-+\text{c.c.}\to K^+K^-\pi^0)/\Gamma_{\text{total}}]\times [\Gamma(J/\psi(1S)\to e^+e^-)]=(10.96\pm0.85\pm0.70)\times10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S)\to e^+e^-)=5.55\pm0.14\pm0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Citation: C. Patrignani et~al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(K^+K^*(892)^- + \text{c.c.} \rightarrow K^0K^\pm\pi^\mp + \text{c.c.})/\Gamma_{\text{total}} \qquad \Gamma_{28}/\Gamma_{28$

1 (// // (U32)	total				1 29/1
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
4.39±0.31 OUR	AVERAGE				
$4.8 \pm 0.5 \pm 0.1$		¹ AUBERT	08 S	BABR	$^{10.6}_{\ \ \kappa^0} e^+ e^{\ \ \kappa^*(892)^0 \gamma}$
$3.96 \pm 0.15 \pm 0.60$	1192	JOUSSET	90	DM2	$J/\psi ightarrow $ hadrons
$4.33\!\pm\!0.12\!\pm\!0.45$		COFFMAN	88	MRK3	$J/\psi \rightarrow K^{\pm}K_{S}^{0}\pi^{\mp}$
ullet $ullet$ We do not	use the following	data for average			
$2.7\ \pm0.6$	45	VANNUCCI	77	MRK1	$J/\psi \to K^{\pm} K^0_S \pi^{\mp}$
					$[\Gamma_{total}] imes [\Gamma(J/\psi(1S) ightarrow \Gamma_{total}] imes \Gamma(J/\psi(1S) ightarrow \Gamma_{total})$
	$65\pm0.14\pm0.02$ s the systematic e				xperiment's error and our

$\Gamma(K^0\overline{K}^*(892)^0 + \text{c.c.})/\Gamma($			Γ_{29}/Γ_{26}		
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.82 \pm 0.05 \pm 0.09$	COFFMAN	88	MRK3	$J/\psi \rightarrow K\overline{K}$	*(892)+c.c.

$\Gamma(K^0\overline{K}^*(892)^0 + \text{c.c.} \rightarrow K^0K^{\pm}\pi^{\mp} + \text{c.c.})/\Gamma_{\text{total}}$

VALUE (units 10^{-3})EVTSDOCUMENT IDTECN3.2 \pm 0.4 \pm 0.1941 AUBERT08SBABIT

 $\frac{\textit{DOCUMENT ID}}{1} \frac{\textit{TECN}}{\textit{AUBERT}} \quad 08S \quad BABR \quad 10.6 \text{ e}^{+} \text{e}^{-} \rightarrow \quad \textit{K}_{S}^{0} \textit{K}^{\pm} \pi^{\mp} \gamma$

Created: 5/30/2017 17:21

 1 AUBERT 08S reports [$\Gamma(J/\psi(1S) \to K^0 \overline{K}^*(892)^0 + \text{c.c.} \to K^0 K^\pm \pi^\mp + \text{c.c.})/\Gamma_{\text{total}}$] \times [$\Gamma(J/\psi(1S) \to e^+ e^-)$] = (17.70 \pm 1.70 \pm 1.00) \times 10⁻³ keV which we divide by our best value $\Gamma(J/\psi(1S) \to e^+ e^-) = 5.55 \pm 0.14 \pm 0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K_1(1400)^{\pm}K^{\mp})/\Gamma_{\text{total}}$ Γ_{31}/Γ

<u>VALUE (units 10⁻³)</u> **3.8±0.8±1.2**

 $\frac{DOCUMENT ID}{1}$ BAI 99C BES e^+e^-

$\Gamma(\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.})/\Gamma_{\text{total}}$

¹ Assuming B($K_1(1400) \rightarrow K^*\pi$)=0.94 ± 0.06

 $^{^1}$ A $K_0^*(800)$ is observed by ABLIKIM 06C in the $K^+\pi^-$ mass spectrum of the $\overline{K}^*(892)^0K^+\pi^-$ final state against the $\overline{K}^*(892)$. A corresponding branching fraction of the $J/\psi(1S)$ is not presented.

$\Gamma(\omega\pi^0\pi^0)/\Gamma_{ m tota}$	ıl				Γ ₃₃ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
$3.4 \pm 0.3 \pm 0.7$	509	AUGUSTIN	89	DM2	$J/\psi \rightarrow \pi^+\pi^-3\pi^0$
$\Gamma(b_1(1235)^{\pm}\pi^{\mp}$)/Γ _{total}				Γ ₃₄ /Γ
<i>VALUE</i> (units 10^{-4})	•	DOCUMENT ID		TECN	COMMENT
30±5 OUR AVERA					
31 ± 6	4600	AUGUSTIN	89	DM2	$J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$
29 ± 7	87	BURMESTER	77 D	PLUT	e^+e^-
$\Gamma(\omega K^{\pm} K_S^0 \pi^{\mp})$	/Γ _{total}				Γ ₃₅ /Γ
<i>VALUE</i> (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
34 ±5 OUR AV	ERAGE				
$37.7\!\pm\!0.8\!\pm\!5.8$	1972 ± 41	ABLIKIM	08E	BES2	$e^+e^- o J/\psi$
$29.5 \pm 1.4 \pm 7.0$	879 ± 41	BECKER	87	MRK3	$e^+e^- o$ hadrons
$\Gamma(b_1(1235)^0\pi^0)$	/Γ _{total}				Γ ₃₆ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
23±3±5	229	AUGUSTIN	89	DM2	e^+e^-
$\Gamma(\eta K^{\pm} K_S^0 \pi^{\mp})/$	Γ _{total}				Γ ₃₇ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TFCN	COMMENT
21.8±2.2±3.4	$\frac{232 + 23}{232 + 23}$				$e^+e^- \rightarrow J/\psi$
$\Gamma(\phi K^*(892)\overline{K} +$			OOL	DLJZ	Γ ₃₈ /Γ
*	EVTS			TECN	
21.8±2.3 OUR AV		DOCUMENT ID		TECN	COMMENT
$20.8 \pm 2.7 \pm 3.9$	195 ± 25	ABLIKIM	08E	BES2	$J/\psi ightarrow \phi K_S^0 K^{\pm} \pi^{\mp}$
$29.6 \pm 3.7 \pm 4.7$	238 ± 30			BES2	$J/\psi \rightarrow \phi K^+ K^- \pi^0$
$20.7 \pm 2.4 \pm 3.0$	200 ± 00			DM2	$J/\psi \rightarrow \text{hadrons}$
20 ± 3 ± 3	155 ± 20				$e^{+}e^{-} \rightarrow hadrons$
$\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}$					Γ ₃₉ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID	TEC	N CO	
17.0± 3.2 OUR A	<u> </u>	DOCOMENT ID	<u> </u>	<u> </u>	IIIII I
$13.6 \pm 5.0 \pm 1.0$	24	¹ AUBERT 07AU	u BA	BR 10	.6 e ⁺ e ⁻ $\rightarrow \omega K^+ K^- \gamma$
$19.8 \pm \ 2.1 \pm 3.9$		² FALVARD 88	DM	12 <i>J</i> /	$\psi ightarrow $ hadrons
16 ± 10	22	FELDMAN 77			
¹ AUBERT 07AU	guotes $\Gamma^{J/\psi}$.	$B(J/\psi \rightarrow \omega K^+ K^-)$	_) ·E	$3(\eta \rightarrow$	$3\pi)=3.3\pm1.3\pm0.2{ m eV}.$
2 Addition of ω K	$^{\prime +}$ $^{-}$ and $_{\omega}$ $^{\prime }$	$K^{0}\overline{K}^{0}$ branching rat	tios.	()	,
$\Gamma(\omega f_0(1710) \rightarrow$	$ω K \overline{K})/\Gamma_{tot}$:al			Γ ₄₀ /Γ
$VALUE$ (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
4.8±1.1±0.3		1,2 <u>DOCUMENT ID</u> FALVARD	88	DM2	$J/\psi ightarrow $ hadrons
¹ Includes unknow	wn branching f	fraction $f_0(1710) ightarrow K^-$ and $f_0(1710)$ –	Κk	₹.	

HTTP://PDG.LBL.GOV

$\Gamma(\phi 2(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{41}/Γ VALUE (units 10^{-4}) TECN 16.6±2.3 OUR AVERAGE 06D BABR 10.6 $e^+e^- \to \phi 2(\pi^+\pi^-)\gamma$ ¹ AUBERT $17.3 \pm 3.3 \pm 1.2$ 35 **FALVARD** $J/\psi ightarrow ext{hadrons}$ $16.0\pm 1.0\pm 3.0$ ¹ Using $\Gamma(J/\psi \to e^+e^-) = 5.52 \pm 0.14 \pm 0.04$ keV. $\Gamma(\Delta(1232)^{++}\overline{p}\pi^{-}$ Γ_{42}/Γ VALUE (units 10^{-3}) DOCUMENT ID $1.58 \pm 0.23 \pm 0.40$ 332 MRK2 e^+e^- **EATON** $\Gamma(\omega\eta)/\Gamma_{\text{total}}$ Γ_{43}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.74 ±0.20 OUR AVE	RAGE	Error includes scale	factor	of 1.6.	See the ideogram below.
$2.352\!\pm\!0.273$	5k	¹ ABLIKIM	06F	BES2	$J/\psi ightarrow \; \omega \eta$
$1.44 \pm 0.40 \pm 0.14$	13	² AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow \omega \eta \gamma$
$1.43 \pm 0.10 \pm 0.21$	378	JOUSSET	90	DM2	$J/\psi ightarrow $ hadrons
$1.71 \pm 0.08 \pm 0.20$		COFFMAN	88	MRK3	$e^+e^- o 3\pi\eta$

¹ Using B($\eta \to 2\gamma$) = (39.43 \pm 0.26)%, B($\eta \to \pi^+\pi^-\pi^0$) = 22.6 \pm 0.4%, B($\eta \to \pi^+\pi^-\gamma$) = 4.68 \pm 0.11%, and B($\omega \to \pi^+\pi^-\pi^0$) = (89.1 \pm 0.7)%.

WEIGHTED AVERAGE 1.74±0.20 (Error scaled by 1.6)

² Using $\Gamma(J/\psi \to e^+e^-) = 5.52 \pm 0.14 \pm 0.04 \text{ keV}.$

 $\Gamma(\phi K \overline{K})/\Gamma_{\text{total}}$

 Γ_{44}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
17.7± 1.6 OUR A	/ERAGE En	rror includes scale fa	ctor	of 1.3. S	See the ideogram below.
$16.6 \pm 1.9 \pm 1.2$	163 ± 19	LEES	12F	BABR	$10.6 e^+e^- \rightarrow$
					$2(K^+K^-)\gamma$
$21.4 \pm 0.4 \pm 2.2$		ABLIKIM	05	BES2	$2(K^+K^-)\gamma$ $J/\psi \rightarrow \phi \pi^+\pi^-$
48 $^{+20}_{-16}$ ± 6	$9.0^{+3.7}_{-3.0}$	^{1,2} HUANG	03	BELL	$B^+ o (\phi K^+ K^-) K^+$
$14.6 \pm 0.8 \pm 2.1$		³ FALVARD			$J/\psi ightarrow $ hadrons
18 ± 8	14	FELDMAN	77	MRK1	e^+e^-
-					

 $^{^1\,\}mathrm{We}$ have multiplied $K^+\,K^-$ measurement by 2 to obtain $K\,\overline{K}$. $^2\,\mathrm{Using}~\mathrm{B}(B^+\to~J/\psi\,K^+)=(1.01\pm0.05)\times10^{-3}.$ $^3\,\mathrm{Addition}$ of $\phi\,K^+\,K^-$ and $\phi\,K^0\,\overline{K}^0$ branching ratios.

WEIGHTED AVERAGE 17.7±1.6 (Error scaled by 1.3)

$\Gamma(\phi f_0(1710) \rightarrow \phi K \overline{K})/\Gamma_{\text{total}}$

 Γ_{46}/Γ

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
3.6±0.2±0.6	1,2 FALVARD 88	DM2	$J/\psi ightarrow ext{hadrons}$

¹ Including interference with f'_2 (1525).

² Includes unknown branching fraction $f_0(1710) \rightarrow K\overline{K}$.

$\Gamma(\phi f_2(1270))/\Gamma_{\rm t}$	otal						Γ ₄₈ /Γ
VALUE (units 10^{-3}) C	L% EVTS	DOCU	JMENT IL)	TECN	COMMENT	
• • • We do not us	e the follow	wing data fo	r averag	es, fits,	limits, e	etc. • • •	
$0.72 \pm 0.13 \pm 0.02$	44 ± 7	^{1,2} AUB	ERT	07AI	к BABR	$10.6 e^{+} e^{-} \\ \pi^{+} \pi^{-} K$	$\overset{\rightarrow}{+}_{\kappa}{\gamma}$
< 0.45	0	FALV	/ARD	88	DM2		
< 0.37 9	0	VAN	NUCCI	77	MRK1	$e^+e^{\pi^+\pi^-}K$	·
1 0/6/1076	,, ,	(04 o±2	4.0/			$\pi^{\top}\pi^{-}K$	+ K−
¹ Using B(f_2 (1270				 / -			\
² Superseded by L	EES 12F. A	AUBERT 07/	AK repor	ts [I (J)	$/\psi(15)$	$\rightarrow \phi t_2(1270)$)/I total ×
$[\Gamma(J/\psi(1S) ightarrow \Gamma(J/\psi(1S))]$							
best value $\Gamma(J/$ experiment's error	ψ (15) $ ightarrow$	<i>e ' e) =</i> second error	5.55 ± is the s	0.14 ± ⁄stemat	0.02 ke tic error ∶	v. Our first e from using our	rror is their best value.
		_		, 555			
$\Gamma(\Delta(1232)^{++}\overline{\Delta}($)/I total					Γ ₄₉ /Γ
VALUE (units 10^{-3})	EVTS	<u>DOCU</u>	MENT ID)		COMMENT	
$1.10\pm0.09\pm0.28$	233	EATO	N	84	MRK2	e^+e^-	
Γ(Σ(1385) ⁻ <u>Σ</u> (1	385) ⁺ (o	rc.c.))/Г+,	nt a l				Γ ₅₀ /Γ
VALUE (units 10^{-3})		DOCUMENT		TECN	СОМЛ	<i>MENIT</i>	30,
1.16 ±0.05 OUR		DOCOMENT	ID.	TECH	COMM	TET V	
$1.096 \pm 0.012 \pm 0.073$		ABLIKIM	16L	BES3	J/ψ .	$\rightarrow \Sigma(1385)^-$	Σ (1385)+
$1.258 \pm 0.014 \pm 0.078$	8 53k	ABLIKIM	16L			$\rightarrow \hat{\Sigma(1385)^+}$	
$1.23 \pm 0.07 \pm 0.30$	0.8k	ABLIKIM	12 P	BES2	J/ψ	$\rightarrow \Sigma(1385)^{-}$	$\overline{\Sigma}(1385)^+$
$1.50 \ \pm 0.08 \ \pm 0.38$	1k	ABLIKIM	12 P			$\rightarrow \Sigma(1385)^+$	$\overline{\Sigma}$ (1385) $^-$
$1.00 \pm 0.04 \pm 0.21$	0.6k	HENRARD		DM2		- → Σ*-	
$1.19 \pm 0.04 \pm 0.25$	0.7k	HENRARD		DM2		$- \rightarrow \Sigma^{*+}$	
$0.86 \pm 0.18 \pm 0.22$	56	EATON	84	MRK		$\stackrel{-}{\longrightarrow} \Sigma^{*-} $ $\stackrel{-}{\longrightarrow} \Sigma^{*+}$	
$1.03 \pm 0.24 \pm 0.25$	68	EATON	84	MRK	2 e e	→ ∑ "	
$\Gamma(\phi f_2'(1525))/\Gamma_0$	total						Γ ₅₂ /Γ
VALUE (units 10^{-4})	EVTS	DOCUM	ENT ID		TECN (COMMENT	
VALUE (units 10 ^{−4}) 8 ±4 OUR AVE	RAGE E	rror includes	scale fa	ctor of	2.7.		
$12.3 \pm 0.6 \pm 2.0$		1,2 FALVA				$J/\psi ightarrow \ hadro$	
4.8 ± 1.8	46				MRK2 .	$J/\psi \rightarrow K^+ K$	K-K+K-
¹ Re-evaluated usi			$\overline{K}) = 0.7$	713.			
² Including interfe	rence with	$f_0(1710)$.					
$\Gamma(\phi\pi^+\pi^-)/\Gamma_{\text{tot}}$	al						Γ ₅₃ /Γ
$VALUE$ (units 10^{-3}) E	EVTS DO	CUMENT ID	T	ECN (COMMEN [*]	Γ	
0.87±0.09 OUR AV	ERAGE	Error include	s scale 1	factor o	of 1.4. S	ee the ideogra	m below.
$0.81 \pm 0.08 \pm 0.03$	181 LE	ES				$e^- o K^+ K$	$-\pi^+\pi^-\gamma$
$1.09 \pm 0.02 \pm 0.13$		BLIKIM			, .	$\phi\pi^{+}\pi^{-}$	
		LVARD			$J/\psi \rightarrow$	hadrons	
2.1 ± 0.9		ELDMAN					
• • • We do not us							1
0.96 ± 0.13	103 ¹ Al	JBERT,BE	06D B	ABR 1	10.6 e ⁺	$e^- ightarrow K^+ K$	$-\pi^+\pi^-\gamma$

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

 1 Superseded by LEES 12F. Derived by us. AUBERT,BE 06D measures $\Gamma(J/\psi\to\ e^+\,e^-)$ $\times B(J/\psi\to\ \phi\pi^+\pi^-)\times B(\phi\to\ K^+\,K^-)=(2.61\pm0.30\pm0.18)~\rm eV$

 $\Gamma(\phi\pi^0\pi^0)/\Gamma_{\text{total}}$

 Γ_{54}/Γ

Created: 5/30/2017 17:21

VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

0.56 \pm 0.16 23 1 AUBERT,BE 06D BABR 10.6 $e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}\gamma$

 1 Superseded by LEES 12F. Derived by us. AUBERT,BE 06D measures $\Gamma(J/\psi\to~e^+\,e^-)$ $\times {\rm B}(J/\psi\to~\phi\pi^0\pi^0)\times {\rm B}(\phi\to~K^+\,K^-)=(1.54\pm0.40\pm0.16)~{\rm eV}$

$\Gamma(\phi K^{\pm} K_S^0 \pi^{\mp})/$	$\Gamma_{ ext{total}}$				Γ ₅₅ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
7.2±0.8 OUR AVE	RAGE				
$7.4\!\pm\!0.6\!\pm\!1.4$	227 ± 19	ABLIKIM	08E	BES2	$\mathrm{e^+e^-} ightarrow ~J/\psi$
$7.4 \!\pm\! 0.9 \!\pm\! 1.1$		FALVARD	88	DM2	$J/\psi ightarrow $ hadrons
$7 \pm 0.6 \pm 1.0$	163 ± 15	BECKER	87	MRK3	$e^+e^- ightarrow hadrons$
$\Gamma(\omega f_1(1420))/\Gamma_t$	otal				Γ ₅₆ /Γ
<i>VALUE</i> (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$6.8^{+1.9}_{-1.6}\pm 1.7$	111^{+31}_{-26}	BECKER	87	MRK3	$e^+e^- o$ hadrons

 $\Gamma(\phi\eta)/\Gamma_{
m total}$ $\Gamma_{
m 57}/\Gamma$

VALUE (units 10^{-3}) TECN COMMENT 0.75 ± 0.08 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below. ¹ AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow \phi \eta \gamma$ $1.4 \pm 0.6 \pm 0.1$ 05B BES2 $e^+e^- o J/\psi o {\sf hadr}$ $0.898 \pm 0.024 \pm 0.089$ ABLIKIM DM2 $J/\psi
ightarrow \,\, {
m hadrons}$ $0.64 \pm 0.04 \pm 0.11$ 346 **JOUSSET** MRK3 $e^+e^- \rightarrow K^+K^-\eta$ $0.661 \pm 0.045 \pm 0.078$ **COFFMAN**

¹ AUBERT 07AU quotes $\Gamma_{ee}^{J/\psi}\cdot {\rm B}(J/\psi\to\phi\eta)\cdot {\rm B}(\phi\to K^+K^-)\cdot {\rm B}(\eta\to\gamma\gamma)=0.84\pm0.37\pm0.05~{\rm eV}.$

$\Gamma(\Xi^0\overline{\Xi}^0)/\Gamma_{\text{total}}$						Γ ₅₈ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.20 \pm 0.12 \pm 0.21$	206	ABLIKIM	080	BES2	$\mathrm{e^+e^-} ightarrow ~J/\psi$	
Γ(Ξ(1530) ⁻ Ξ̄ ⁺)	/Γ _{total}					Γ ₅₉ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.59\pm0.09\pm0.12$	75 ± 11	HENRARD	87	DM2	e^+e^-	
$\Gamma(pK^{-}\overline{\Sigma}(1385)^{0}$)/Γ _{total}					Γ ₆₀ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.51 \pm 0.26 \pm 0.18$	89	EATON	84	MRK2	e^+e^-	

 $\Gamma(\omega\pi^0)/\Gamma_{\rm total}$ Γ_{61}/Γ

VALUE (units 10^{-3}) EVTSTECN COMMENT 0.45 ± 0.05 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. $J/\psi \rightarrow \omega \pi^0$ ¹ ABLIKIM 2090 06F BES2 $0.538 \pm 0.012 \pm 0.065$ DM2 $J/\psi \rightarrow {\rm hadrons}$ MRK3 $e^+e^- \rightarrow \pi^0\pi^+\pi^-\pi^0$ $0.360 \pm 0.028 \pm 0.054$ 222 **JOUSSET COFFMAN** $0.482 \!\pm\! 0.019 \!\pm\! 0.064$

WEIGHTED AVERAGE 0.45±0.05 (Error scaled by 1.4)

 $\Gamma(\omega\pi^0)/\Gamma_{total}$ (units 10^{-3})

$\Gamma(\phi\eta'(958))/\Gamma_{\text{total}}$

 Γ_{62}/Γ

$VALUE$ (units 10^{-4})	CL% EVTS	DOCUMENT ID		TECN	COMMENT		
4.6 ± 0.5 OUR A	WERAGE E	ror includes sca	le fac	tor of 2.	2. See the ideogram below.		
$5.10\!\pm\!0.03\!\pm\!0.32$	31k	ABLIKIM	1 6M	BES3	$e^+e^- o J/\psi o$ hadrons		
$5.46\!\pm\!0.31\!\pm\!0.56$		ABLIKIM	05 B	BES2	$e^+e^- o J/\psi o ext{ hadrons}$		
$4.1 \pm 0.3 \pm 0.8$	167	JOUSSET			$J/\psi ightarrow $ hadrons		
$3.08\!\pm\!0.34\!\pm\!0.36$		COFFMAN	88	MRK3	$e^+e^- ightarrow K^+K^-\eta'$		
• • • We do not use the following data for averages, fits, limits, etc. • • •							
< 13	90	VANNUCCI	77	MRK1	e^+e^-		

¹ Using B($\omega \to \pi^+ \pi^- \pi^0$) = (89.1 ± 0.7)%.

 $\Gamma(\phi f_0(980))/\Gamma_{\text{total}}$

 Γ_{63}/Γ

*					
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
3.2±0.9 OUR AVERAGE					
$4.6 \pm 0.4 \pm 0.8$		¹ FALVARD	88	DM2	$J/\psi ightarrow \;$ hadrons
2.6 ± 0.6	50	¹ GIDAL	81	MRK2	$J/\psi \rightarrow K^+K^-K^+K^-$
¹ Assuming B(f_0 (980	$() \rightarrow \pi\pi)$	= 0.78.			

 $\Gamma(\phi f_0(980) \rightarrow \phi \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{64}/Γ

<u>VALUE (units 10^{-3})</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • •

0.182 \pm 0.042 \pm 0.005 19.5 \pm 4.5 1,2 AUBERT 07AK BABR 10.6 e+e- $_{\pi^{+}\pi^{-}K^{+}K^{-}\gamma^{-}}$

$\Gamma(\phi f_0(980) \rightarrow \phi \pi^0 \pi^0)/\Gamma_{\text{total}}$

 Γ_{65}/Γ

Created: 5/30/2017 17:21

<u>VALUE (units 10^{-3})</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.171 \pm 0.073 \pm 0.004$ 7.0 ± 2.8 1,2 AUBERT 07AK BABR $^{10.6}e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}K^{+}K^{-}\gamma^{0}$

¹ Using B($\phi \to K^+K^-$) = (49.3 \pm 0.6)%.

² Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S) \rightarrow \phi f_0(980) \rightarrow \phi \pi^+\pi^-)/\Gamma_{total}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] = (1.01 \pm 0.22 \pm 0.08) \times 10^{-3} \text{ keV}$ which we divide by our best value $\Gamma(J/\psi(1S) \rightarrow e^+e^-) = 5.55 \pm 0.14 \pm 0.02 \text{ keV}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

```
<sup>1</sup> Using B(\phi \to K^+K^-) = (49.3 ± 0.6)%.
   <sup>2</sup> Superseded by LEES 12F. AUBERT 07AK reports [\Gamma(J/\psi(1S) \rightarrow \phi f_0(980) \rightarrow \phi \pi^0 \pi^0)/
     \Gamma_{\mathrm{total}}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] = (0.95 \pm 0.39 \pm 0.10) \times 10^{-3} \,\mathrm{keV} which we divide
     by our best value \Gamma(J/\psi(1S) 
ightarrow e^+e^-) = 5.55 \pm 0.14 \pm 0.02 keV. Our first error is
     their experiment's error and our second error is the systematic error from using our best
\Gamma(\phi\pi^0 f_0(980) \rightarrow \phi\pi^0\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{66}/\Gamma
VALUE (units 10^{-6})
                                                   DOCUMENT ID
                                  EVTS
                                                                                TECN
                                                                         15P BES3 J/\psi \rightarrow K^+K^-
4.50\pm0.80\pm0.61
                                    355
                                                   ABLIKIM
\Gamma(\phi\pi^0 f_0(980) \rightarrow \phi\pi^0 p^0\pi^0)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{67}/\Gamma
VALUE (units 10^{-6})
                                                   DOCUMENT ID
                                                                                TECN COMMENT
                                                                         15P BESE J/\psi \rightarrow K^+K^-3\pi
1.67 \pm 0.50 \pm 0.24
                                                   ABLIKIM
\Gamma(\eta\phi f_0(980) \rightarrow \eta\phi\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{68}/\Gamma
VALUE (units 10^{-4})
                                                   DOCUMENT ID
                                                                                           J/\psi \rightarrow \eta \phi f_0(980)
3.23\pm0.75\pm0.73
                                                   ABLIKIM
                                                                        08F BES
\Gamma(\phi a_0(980)^0 \rightarrow \phi \eta \pi^0)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{69}/\Gamma
VALUE (units 10^{-6})
                                                                                TECN COMMENT
                                                 ^{
m 1} ABLIKIM
                                                                        11D BES3 J/\psi \rightarrow \phi \eta \pi^0
5.0\pm 2.7\pm 2.5
   <sup>1</sup> Assuming a_0(980) - f_0(980) mixing and isospin breaking via \gamma^* and K^*K loops.
\Gamma(\Xi(1530)^0\overline{\Xi}^0)/\Gamma_{\text{total}}
                                                                                                                  \Gamma_{70}/\Gamma
VALUE (units 10^{-3})
                                                   DOCUMENT ID
0.32 \pm 0.12 \pm 0.07
                                                   HENRARD
                                                                        87 DM2
\Gamma(\Sigma(1385)^{-}\overline{\Sigma}^{+}(\text{or c.c.}))/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{71}/\Gamma
VALUE (units 10^{-3})
                                                   DOCUMENT ID
                                                                               TECN
0.31\pm0.05 OUR AVERAGE
0.30 \pm 0.03 \pm 0.07
                               74 \pm 8
                                                   HENRARD
                                                                              DM2
                                                                              DM2
0.34 \pm 0.04 \pm 0.07
                               77 \pm 9
                                                   HENRARD
                                                                              MRK2 e^+e^- \rightarrow \Sigma^{*-}
0.29 \pm 0.11 \pm 0.10
                                      26
                                                   EATON
                                                                              MRK2 e^+e^- \rightarrow \Sigma^{*+}
0.31 \!\pm\! 0.11 \!\pm\! 0.11
                                      28
                                                   EATON
\Gamma(\phi f_1(1285))/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{72}/\Gamma
                                          DOCUMENT ID
VALUE (units 10^{-4})
                                                                       TECN
```

2.6±0.5 OUR AV	EKAGE				
$3.4 \pm 1.8 \pm 1.5$	1.1k	$^{ m 1}$ ABLIKIM	15H	BES3	$e^+e^- \rightarrow J/\psi \rightarrow \phi \eta \pi^+\pi^-$
$3.2 \pm 0.6 \pm 0.4$		JOUSSET	90	DM2	$J/\psi ightarrow \phi 2(\pi^+\pi^-)$
$2.1\!\pm\!0.5\!\pm\!0.4$	25	² JOUSSET	90	DM2	$J/\psi ightarrow \phi \eta \pi^+ \pi^-$
• • • We do not	use the fo	ollowing data for	average	es, fits,	limits, etc. • • •
0.6+0.2+0.1	16	BECKER	87	MRK3	$I/\psi \rightarrow \phi K \overline{K} \pi$

 1 ABLIKIM 15H reports [$\Gamma(J/\psi(1S) \to \phi f_1(1285))/\Gamma_{total}] \times [B(f_1(1285) \to \eta \pi^+ \pi^-)] = (1.20 \pm 0.6 \pm 0.14) \times 10^{-4}$ which we divide by our best value B($f_1(1285) \to \eta \pi^+ \pi^-) = (35 \pm 15) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 We attribute to the $\it f_1(1285)$ the signal observed in the $\pi^+\pi^-\,\eta$ invariant mass distribution at 1297 MeV.

$\Gamma(\phi f_1(1285) \rightarrow \phi \pi^0 f_0(980) \rightarrow \phi \pi^0 \pi^+ \pi^-)/\Gamma_{\text{total}}$							
$VALUE$ (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT		
$9.36 \pm 2.31 \pm 1.54$	78	ABLIKIM	15 P	BES3	$J/\psi \rightarrow K^+ K$	-3π	
$\Gamma(\phi f_1(1285) \rightarrow \phi \pi^0 f_0(980) \rightarrow \phi \pi^0 \pi^0 \pi^0) / \Gamma_{\text{total}}$ Γ_{74}/Γ_{74}							
$VALUE$ (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT		
$2.08 \pm 1.63 \pm 1.47$	9	ABLIKIM	15 P	BES3	$J/\psi \rightarrow K^+K$	$ _{3\pi}$	

 $\Gamma(\eta \pi^+ \pi^-)/\Gamma_{\mathsf{total}}$

 Γ_{75}/Γ

VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 0.40 \pm 0.17 \pm 0.03 9 1 AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow \eta \pi^+\pi^- \gamma$

 1 AUBERT 07AU quotes $\Gamma_{ee}^{J/\psi}\cdot$ B $(J/\psi
ightarrow ~\eta ~\pi^+ ~\pi^-)\cdot$ B $(\eta
ightarrow ~3\pi)=0.51\pm 0.22\pm 0.03$ eV.

$\Gamma(\eta ho)/\Gamma_{total}$					Г ₇₆ /Г
$V\Delta IIF$ (units 10^{-3})	FVTS	DOCUMENT ID	TECN	COMMENT	

VALUE (units 10 ⁻³)	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
0.193±0.023 OUR AVE	RAGE				
$0.194 \pm 0.017 \pm 0.029$	299	JOUSSET	90	DM2	$J/\psi ightarrow $ hadrons
$0.193\!\pm\!0.013\!\pm\!0.029$		COFFMAN	88	MRK3	$e^+e^- ightarrow \pi^+\pi^-\eta$

$\Gamma(\omega\eta'(958))/\Gamma_{\text{total}}$ Γ_{77}/Γ

<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.182±0.021 OUR AVE	RAGE				
0.226 ± 0.043	218	¹ ABLIKIM	06F	BES2	$J/\psi ightarrow \ \omega \eta'$
$0.18 \ ^{+0.10}_{-0.08} \ \pm 0.03$	6	JOUSSET	90	DM2	$J/\psi ightarrow $ hadrons
$0.166 \pm 0.017 \pm 0.019$		COFFMAN	88	MRK3	$e^+e^- ightarrow 3\pi \eta'$

¹ Using B($\eta' \to \pi^+\pi^-\eta$) = (44.3 \pm 1.5)%, B($\eta' \to \pi^+\pi^-\gamma$) = 29.5 \pm 1.0%, B($\eta \to 2\gamma$) = 39.43 \pm 0.26%, and B($\omega \to \pi^+\pi^-\pi^0$) = (89.1 \pm 0.7)%.

$\Gamma(\omega f_0(980))/\Gamma_{\text{total}}$ Γ_{78}

$\Gamma(\rho\eta'(958))/\Gamma_{\text{total}}$ Γ_{79}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.105±0.018 OUR AVE	RAGE				
$0.083 \pm 0.030 \pm 0.012$	19	JOUSSET	90	DM2	$J/\psi ightarrow $ hadrons
$0.114 \pm 0.014 \pm 0.016$		COFFMAN	88	MRK3	$J/\psi \rightarrow \pi^+\pi^-\eta'$

¹ Assuming B($f_0(980) \to \pi \pi$) = 0.78.

	`			, ,	
$\Gamma(a_2(1320)^{\pm}\pi^{\mp}$	[≡])/Γ _{total}				Γ ₈₀ /Γ
$VALUE$ (units 10^{-4})	•	DOCUMENT ID	TECN	COMMENT	
<43	90	BRAUNSCH 76			
$\Gamma(K\overline{K}_2^*(1430) +$	- c.c.)/Γ _{total}				Γ ₈₁ /Γ
VALUE (units 10^{-4})	<u>CL%</u>	DOCUMENT ID			
<40	90	VANNUCCI 77			$0\overline{K}_{2}^{*0}$
• • • We do not ι	use the following	g data for averages, fits			
<66	90	BRAUNSCH 76	DASP	$e^+e^- \rightarrow K$	$\pm \overline{K}_{2}^{*\mp}$
$\Gamma(K_1(1270)^{\pm}K$	•				Γ ₈₂ /Γ
VALUE (units 10^{-3})		DOCUMENT ID			
<3.0	90	¹ BAI 99C	BES	e^+e^-	
1 Assuming B(K	$K_1(1270) \rightarrow K_{\mu}$	$(0)=0.42\pm0.06$			
$\Gamma(K_2^*(1430)^0\overline{K})$	*(1430) ⁰)/Γ _t	otal			Γ ₈₅ /Γ
$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT	
<29	90	VANNUCCI 77	MRK1	$e^+e^{\pi^+\pi^-K^+}$	- κ-
cance of 6.4	σ and cannot ${\bf k}$	of ABLIKIM 15K below be distinguished at this	moment		
VALUE (units 10 ⁻⁶)		TS DOCUMENT ID			
$2.94 \pm 0.16 \pm 0$	0.16 0.	8k ¹ ABLIKIM	15K BE		, ,
$0.124 \pm 0.033 \pm 0$).030 35 ±	g 9 ² ABLIKIM	15K BE	S3 $e^+e^- \rightarrow K^+K^-$	$J/\psi \rightarrow$
• • • We do not ι	use the following	g data for averages, fits	, limits,		1 1
< 6.4	90	³ ABLIKIM	05 в ВЕ	S2 $e^+e^- \rightarrow \phi \gamma \gamma$	$J/\psi \rightarrow$
<6.8	90	COFFMAN	88 MF	RK3 $e^+e^- \rightarrow \kappa^+\kappa^-$	0
angle between ² Corresponding	to one of the the resonant $J/$ to one of the the resonant $J/$	two fit solutions with δ $\psi o \phi \pi^0$ and non-phi wo fit solutions with δ $\psi o \phi \pi^0$ and non-phi	$J/\psi \rightarrow (-15)$	$5.9\pm1.5)^\circ$ for $K^+K^-\pi^0$ core $2.1\pm7.7)^\circ$ for	the phase ntributions.
$\Gamma(\phi\eta(1405) \rightarrow$					Γ ₈₇ /Γ
<u>VALUE (units 10⁻³)</u>	CL% EVTS	1 ABLIKIM 15H	<u>TECN</u>	COMMENT + - ,	<i>I</i> . (
2.01±0.58±0.82	172	- ABLIKIM 15H	BES3	$e \cdot e \rightarrow J_{\rho}$ $\phi \eta \pi^{+} \pi^{-}$	$/\psi \rightarrow$
• • • We do not ι	use the following	g data for averages, fits	, limits,	, ,	
< 17	90	² FALVARD 88		$J/\psi ightarrow hadr$	ons
1 With 3.6 σ sig 2 Includes unkno		raction $\eta(1405) ightarrow ~\eta \pi$, .	

HTTP://PDG.LBL.GOV

Page 36

$\Gamma(\omega f_2'(1525))/$	$\Gamma_{ ext{total}}$			Γ ₈₈ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN COM	MENT
<2.2	90	VANNUCCI 77 I	ЛRK1 e ⁺ е	$- \rightarrow \pi^+ \pi^- \pi^0 K^+ K^-$
• • • We do not		wing data for averages,		
<2.8	90	^l FALVARD 88 I	DM2 J/ψ	→ hadrons
¹ Re-evaluated a	assuming B($f_2'(1525) \rightarrow K\overline{K}) = 0$.713.	
		2' '		
$\Gamma(\omega X(1835) \rightarrow$	· ω ρ ρ)/Γ _t	otal		Γ ₈₉ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<3.9	95	ABLIKIM	13P BES3	$J/\psi \rightarrow \gamma \pi^0 p \overline{p}$
- /	_			·
$\Gamma(\phi X(1835) \rightarrow$	$\phi p \overline{p}) / \Gamma_{to}$	otal		Γ ₉₀ /Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID 1 ABLIKIM	<u>TECN</u>	<u>COMMENT</u>
$<2.1 \times 10^{-7}$	90	¹ ABLIKIM	16K BES3	
_				р р К ⁺ К ⁻
$^{ m 1}$ Upper limit ap	plies to any	$p\overline{p}$ mass enhancement	near thresho	old.
$\Gamma(\phi X(1835) \rightarrow$	4m=+==	·\/r		Г., /Г
• -		* ·	ECN COMM	Γ ₉₁ /Γ
<u>VALUE</u> ✓2 0 ∨ 10=4	00	DOCUMENT ID T	EC2 0+ 0-	$J/\psi \rightarrow \eta \pi^+ \pi^-$
<2.0 × 10	90	ADLIKIIVI 13H D	E33 e e	$\rightarrow J/\psi \rightarrow \psi \eta \pi \cdot \pi$
$\Gamma(\phi X(1870) \rightarrow$	$\phi\eta\pi^+\pi^-$	·)/Γ _{total}		Γ ₉₂ /Γ
VALUE		DOCUMENT ID T	ECN COMN	- •
$< 6.13 \times 10^{-5}$		ABLIKIM 15H B	ES3 e ⁺ e ⁻	$J/\psi \rightarrow \phi \eta \pi^+ \pi^-$
				• • • • • • • • • • • • • • • • • • • •
E(//01=0)	I C (000°	, , _		F /F
•		$) ightarrow \eta \phi \pi^+ \pi^- ig) / \Gamma_{ m tot}$		Γ ₉₃ /Γ
•	<u>EVTS</u>	DOCUMENT ID T	ECN COMM	1ENT
•	<u>EVTS</u>	DOCUMENT ID T	ECN COMM	
VALUE (units 10 ⁻⁴) 1.20±0.14±0.37	_ <u>EVTS</u> 471	DOCUMENT ID T ABLIKIM 15H B	ECN COMM	$\stackrel{\text{MENT}}{-} \rightarrow J/\psi \rightarrow \phi \eta \pi^+ \pi^-$
$\frac{VALUE \text{ (units } 10^{-4})}{1.20 \pm 0.14 \pm 0.37}$ $\Gamma(\eta \phi(2170) \rightarrow$	EVTS 471 η Κ*(892)	$\frac{DOCUMENT\ ID}{ABLIKIM}$ 15H B	ECN <u>COMM</u> ES3 e ⁺ e ⁻	MENT $J/\psi o \phi \eta \pi^+ \pi^ \Gamma_{94}/\Gamma$
VALUE (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴)	- EVTS 471 η Κ* (892) 	DOCUMENT ID ABLIKIM 15H B \[\bar{K}*(892)^0 \Big) / \Gamma_{\text{total}} \\ \text{DOCUMENT ID} \]	ECN <u>COMM</u> ES3 e ⁺ e ⁻ <u>TECN CO</u>	MENT $J/\psi o \phi \eta \pi^+ \pi^ \Gamma_{94}/\Gamma_{OMMENT}$
$\frac{VALUE \text{ (units } 10^{-4})}{1.20 \pm 0.14 \pm 0.37}$ $\Gamma(\eta \phi(2170) \rightarrow$	EVTS 471 η Κ*(892)	DOCUMENT ID ABLIKIM 15H B \[\bar{K}*(892)^0 \Big) / \Gamma_{\text{total}} \\ \text{DOCUMENT ID} \]	ECN <u>COMM</u> ES3 e ⁺ e ⁻ <u>TECN CO</u>	MENT $J/\psi o \phi \eta \pi^+ \pi^ \Gamma_{94}/\Gamma$
$VALUE$ (units 10^{-4}) 1.20±0.14±0.37 $\Gamma(\eta \phi(2170) \rightarrow VALUE$ (units 10^{-4}) <2.52	- EVTS 471 η K* (892) - CL% 90	DOCUMENT ID ABLIKIM 15H B Total DOCUMENT ID ABLIKIM 100	ECN <u>COMM</u> ES3 e ⁺ e ⁻ <u>TECN CO</u>	MENT $J/\psi o \phi \eta \pi^+ \pi^ \Gamma_{94}/\Gamma_{OMMENT}$
VALUE (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) ⁰ Λ+	- EVTS 471 η K*(892) - C.C.)/Γ _{tot}	DOCUMENT ID ABLIKIM 15H B Tokan 15H B Tokan 15H B Tokan 10H B Tokan 15H B Tok	ES3 e ⁺ e ⁻ - TECN CO BES2 J	$JOMMENT$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
VALUE (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) ⁰ Λ+ $VALUE$ (units 10 ⁻⁵)	- EVTS 471 η K*(892) - C.C.)/Γ _{tot}	DOCUMENT ID ABLIKIM 15H B Tokan 15H B Tokan 15H B Tokan 15H B DOCUMENT ID ABLIKIM 10C Tokan 15H B ABLIKIM 10C	ES3 e ⁺ e ⁻ TECN COMM BES2 J TECN TECN	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
VALUE (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) ⁰ Λ+ $VALUE$ (units 10 ⁻⁵) < 0.82	- EVTS 471 η K* (892) - CL% 90 - C.C.)/Γ _{tot} 90	DOCUMENT ID ABLIKIM 15H B TABLIKIM 15H B TABLIKIM 15H B DOCUMENT ID ABLIKIM 10C TABLIKIM 10C ABLIKIM ABLIKIM	ECN <u>COMM</u> ES3 e ⁺ e ⁻ TECN <u>CC</u> BES2 J TECN 13F BES3	MENT $ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & &$
$VALUE$ (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) 0 Λ+ $VALUE$ (units 10 ⁻⁵) < 0.82 • • • We do not 10	$ \frac{EVTS}{471} $ $ \eta K^*(892) $ $ \frac{CL\%}{90} $ - c.c.)/ Γ_{tot} $ \frac{CL\%}{90} $ use the follo	DOCUMENT ID ABLIKIM 15H B TABLIKIM 15H B TABLIKIM 10C ABLIKIM 10C TABLIKIM 10C ABLIKIM Moreoverages,	ES3 e^+e^- TECN COMM BES2 J_{ij} TECN 13F BES3 fits, limits, of	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$VALUE$ (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) 0 Λ+ $VALUE$ (units 10 ⁻⁵) < 0.82 • • • We do not 10 < <20	$\frac{EVTS}{471}$ $\eta K^*(892)$ $\frac{CL\%}{90}$ - c.c.)/ Γ_{tot} $\frac{CL\%}{90}$ use the follo	DOCUMENT ID ABLIKIM 15H B TABLIKIM 15H B TABLIKIM 15H B DOCUMENT ID ABLIKIM 10C TABLIKIM 10C ABLIKIM ABLIKIM	ES3 e^+e^- TECN COMM BES2 J_{ij} TECN 13F BES3 fits, limits, of	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$VALUE$ (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) 0 Λ+ $VALUE$ (units 10 ⁻⁵) < 0.82 • • • We do not 10	$\frac{EVTS}{471}$ $\eta K^*(892)$ $\frac{CL\%}{90}$ - c.c.)/ Γ_{tot} $\frac{CL\%}{90}$ use the follo	DOCUMENT ID ABLIKIM 15H B TABLIKIM 15H B TABLIKIM 10C ABLIKIM 10C TABLIKIM 10C ABLIKIM Moreoverages,	ES3 e^+e^- TECN COMM BES2 J_{ij} TECN 13F BES3 fits, limits, of	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$VALUE$ (units 10 ⁻⁴) 1.20±0.14±0.37 Γ($ηφ$ (2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ($Σ$ (1385) $^{0}Λ$ + $VALUE$ (units 10 ⁻⁵) < 0.82 • • • We do not 10 <20 Γ($Δ$ (1232) $^{+}\overline{p}$)	$ \frac{EVTS}{471} $ $ \eta K^*(892) $ $ \frac{CL\%}{90} $ - c.c.)/ Γ_{tot} $ \frac{CL\%}{90} $ use the follo $ 90 $ / Γ_{total}	DOCUMENT ID ABLIKIM 15H B OK*(892)O)/F _{total} DOCUMENT ID ABLIKIM 10C ABLIKIM ABLIKIM wing data for averages, HENRARD	ECN COMM ES3 e ⁺ e ⁻ TECN CO BES2 J, TECN 13F BES3 fits, limits, 637 DM2	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$VALUE$ (units 10 ⁻⁴) 1.20±0.14±0.37 Γ($ηφ$ (2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ($Σ$ (1385) $^{0}Λ$ + $VALUE$ (units 10 ⁻⁵) < 0.82 • • • We do not 10 <20 Γ($Δ$ (1232) $^{+}\overline{p}$)	$ \frac{EVTS}{471} $ $ \eta K^*(892) $ $ \frac{CL\%}{90} $ - c.c.)/ Γ_{tot} $ \frac{CL\%}{90} $ use the follo $ 90 $ / Γ_{total}	DOCUMENT ID ABLIKIM 15H B TABLIKIM 15H B TABLIKIM 10C ABLIKIM 10C TABLIKIM 10C ABLIKIM Moreoverages,	ECN COMM ES3 e ⁺ e ⁻ TECN COMM BES2 Jy TECN 13F BES3 fits, limits, of BTS BTS DM2	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
VALUE (units 10^{-4}) 1.20±0.14±0.37 $\Gamma(\eta\phi(2170) \rightarrow VALUE \text{ (units }10^{-4})$ <2.52 $\Gamma(\Sigma(1385)^{0} \overline{\Lambda} + VALUE \text{ (units }10^{-5})$ < 0.82 • • • We do not expected by the content of the content o	EVTS 471 η K* (892) - C.C.)/Γ _{tot} 90 - C.C.)/Γ _{tot} 90 - C.M. 90 /Γ _{total} - CL% 90	DOCUMENT ID ABLIKIM 15H B TABLIKIM 15H B TABLIKIM 15H B DOCUMENT ID ABLIKIM 10C ABLIKIM ABLIKIM Wing data for averages, HENRARD DOCUMENT ID HENRARD	ECN COMM ES3 e ⁺ e ⁻ TECN COMM BES2 Jy TECN 13F BES3 fits, limits, of BTS BTS DM2	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$VALUE$ (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) 0 Λ̄+ $VALUE$ (units 10 ⁻⁵) < 0.82 • • • We do not 10 <20 Γ(Δ(1232) $^{+}$ ρ̄) $VALUE$ (units 10 ⁻³) <0.1 Γ(Λ(1520) 1 Λ̄+ α	$\frac{EVTS}{471}$ $\eta K^*(892)$ $\frac{CL\%}{90}$ $- \text{c.c.})/\Gamma_{\text{total}}$ $\frac{CL\%}{90}$ $\sqrt{\Gamma_{\text{total}}}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	DOCUMENT ID ABLIKIM 15H B OK*(892)O)/Ftotal DOCUMENT ID ABLIKIM 10C ABLIKIM wing data for averages, HENRARD DOCUMENT ID HENRARD	ECN COMM ES3 e ⁺ e ⁻ TECN COMM BES2 J, TECN 13F BES3 fits, limits, of BT DM2 TECN 37 DM2	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
VALUE (units 10^{-4}) 1.20±0.14±0.37 Γ($\eta \phi$ (2170) → VALUE (units 10^{-4}) <2.52 Γ(Σ(1385) 0 Λ+ VALUE (units 10^{-5}) < 0.82 • • • We do not 0 <20 Γ(Δ(1232) $^{+}$ \overline{p}) VALUE (units 10^{-3}) <0.1 Γ(Λ(1520) $\overline{\Lambda}$ + $\overline{\rho}$) VALUE (units 10^{-6})	$\frac{EVTS}{471}$ $\eta K^*(892)$ $\frac{CL\%}{90}$ $-\text{c.c.})/\Gamma_{tot}$ $\frac{CL\%}{90}$ $y0$ $/\Gamma_{total}$ $\frac{CL\%}{90}$ $c.c. \rightarrow \gamma \Lambda$	ABLIKIM DOCUMENT ID ABLIKIM DOCUMENT ID ABLIKIM ABLIKIM DOCUMENT ID ABLIKIM Wing data for averages, HENRARD DOCUMENT ID HENRARD A)/Ftotal DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD	ECN COMM ES3 e+e- TECN COMM BES2 J, TECN 13F BES3 fits, limits, of the community of the c	NENT
$VALUE$ (units 10 ⁻⁴) 1.20±0.14±0.37 Γ(ηφ(2170) → $VALUE$ (units 10 ⁻⁴) <2.52 Γ(Σ(1385) 0 Λ̄+ $VALUE$ (units 10 ⁻⁵) < 0.82 • • • We do not 10 <20 Γ(Δ(1232) $^{+}$ ρ̄) $VALUE$ (units 10 ⁻³) <0.1 Γ(Λ(1520) 1 Λ̄+ α	$\frac{EVTS}{471}$ $\eta K^*(892)$ $\frac{CL\%}{90}$ $- \text{c.c.})/\Gamma_{\text{total}}$ $\frac{CL\%}{90}$ $\sqrt{\Gamma_{\text{total}}}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	DOCUMENT ID ABLIKIM 15H B OK*(892)O)/Ftotal DOCUMENT ID ABLIKIM 10C ABLIKIM wing data for averages, HENRARD DOCUMENT ID HENRARD	ECN COMM ES3 e+e- TECN COMM BES2 J, TECN 13F BES3 fits, limits, of the community of the c	NENT
VALUE (units 10^{-4}) 1.20±0.14±0.37 Γ($\eta \phi$ (2170) → VALUE (units 10^{-4}) <2.52 Γ(Σ(1385) 0 Λ+ VALUE (units 10^{-5}) < 0.82 • • • We do not 0 <20 Γ(Δ(1232) $^{+}$ \overline{p}) VALUE (units 10^{-3}) <0.1 Γ(Λ(1520) $\overline{\Lambda}$ + $\overline{\rho}$) VALUE (units 10^{-6})	$ \frac{EVTS}{471} $ $ \eta K^*(892) $ $ \frac{CL\%}{90} $ $ \frac{CL\%}{90} $ use the follo 90 $ \sqrt{\Gamma_{\text{total}}} $ $ \frac{CL\%}{90} $	ABLIKIM DOCUMENT ID ABLIKIM DOCUMENT ID ABLIKIM ABLIKIM DOCUMENT ID ABLIKIM Wing data for averages, HENRARD DOCUMENT ID HENRARD A)/Ftotal DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID HENRARD	ECN COMM ES3 e+e- TECN COMM BES2 J, TECN 13F BES3 fits, limits, of the company	NENT

$\Gamma(\Theta(1540)\overline{\Theta}(1540)$	$\rightarrow K_{SP}^{0}K$	$r = \overline{n} + \text{c.c.})/\Gamma_1$	total			Г ₉₈ /Г
VALUE (units 10^{-5})	•	DOCUMENT ID		TECN	COMMENT	30,
<1.1	90	BAI			e^+e^-	
$\Gamma(\Theta(1540)K^{-}\overline{n}\rightarrow K^{-}\overline{n})$	$K_S^0 p K^- \overline{n}$)/Γ _{total}				Г99/Г
<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
<2.1	90	BAI	04G	BES2	e^+e^-	
$\Gamma(\Theta(1540)K_S^0\overline{\rho}\to I$	$K_S^0 \overline{p} K^+ n$)/Γ _{total}				Γ ₁₀₀ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.6	90	BAI	04 G	BES2	e^+e^-	
$\Gamma(\overline{\Theta}(1540)K^+ n \rightarrow 0$	$K_S^0 \overline{p} K^+ n$)/Γ _{total}				Γ ₁₀₁ /Γ
<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
<5.6	90	BAI	04 G	BES2	e^+e^-	
$\Gamma(\overline{\Theta}(1540)K_S^0 \rho \to I$	$K_S^0 p K^- \overline{n}$	$)/\Gamma_{ m total}$				Γ ₁₀₂ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.1	90	BAI	04 G	BES2	e^+e^-	
$\Gamma(\Sigma^0 \overline{\Lambda})/\Gamma_{ ext{total}}$						Γ ₁₀₃ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.9	90	HENRARD	87	DM2	e^+e^-	
	s	TABLE HADR	ONS			
$\Gamma ig(2(\pi^+\pi^-)\pi^0 ig)/\Gamma_{ m tot}$	al					Γ ₁₀₄ /Γ
VALUE (units 10^{-2}) EVTS			TECN			
4.1 \pm 0.5 OUR AVERA					ee the ideogram	
$5.46 \pm 0.34 \pm 0.14$ 4990					$e^+e^- ightarrow 2(\pi^+ ightarrow 2(\pi^+\pi^-)\pi^0$	
3.25 ± 0.49 46055 3.17 ± 0.42 147				, ,	$ ightarrow~2(\pi^+\pi^-)\pi^\circ ightarrow ightarrow m hadrons$	

 ± 1 675 JEAN-MARIE 76 MRK1 $e^+e^ ^1$ AUBERT 07AU reports $[\Gamma(J/\psi(1S)\to 2(\pi^+\pi^-)\pi^0)/\Gamma_{\rm total}]\times [\Gamma(J/\psi(1S)\to e^+e^-)]=0.303\pm 0.005\pm 0.018$ keV which we divide by our best value $\Gamma(J/\psi(1S)\to e^+e^-)=5.55\pm 0.14\pm 0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

BURMESTER 77D PLUT e^+e^-

 3.64 ± 0.52

1500

 $\Gamma(\omega\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-)\pi^0)$ Γ_{13}/Γ_{104}

● ● • We do not use the following data for averages, fits, limits, etc. ● ●

0.3 1 JEAN-MARIE 76 MRK1 $e^{+}e^{-}$

 $\Gamma(3(\pi^+\pi^-)\pi^0)/\Gamma_{total}$ VALUE EVTS $O.029 \pm 0.006$ OUR AVERAGE $O.028 \pm 0.009$ $O.029 \pm 0.007$ $O.020 \pm 0.007$ O.0

 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ Γ_{106}/Γ

VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT **21.1** \pm **0.7 OUR AVERAGE** Error includes scale factor of 1.5. See the ideogram below. $21.37 \pm 0.04 \, {}^{+\, 0.64}_{-\, 0.62}$ ^{1,2} ABLIKIM 1.8M 12H BES3 $e^+e^- \rightarrow J/\psi$ ³ AUBERT 07AU BABR 10.6 $e^+e^ightarrow~J/\psi\,\pi^+\pi^-\gamma$ $23.0 \pm 2.0 \pm 0.4$ 256 04N BABR 10.6 $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$ ^{4,5} AUBERT,B 21.8 ± 1.9 1,5 BAI $21.84 \pm 0.05 \pm 2.01$ 220k 04H BES 5,6 BAI 04H BES $20.91 \pm 0.21 \pm 1.16$ 83 MRK2 $e^{+}e^{-}$ 15 ± 2 168 FRANKLIN

 $^{^1}$ Final state $(\pi^+\pi^-)\pi^0$ under the assumption that $\pi\pi$ is isospin 0.

⁶ Obtained comparing the rates for $\pi^+\pi^-\pi^0$ and $\mu^+\mu^-$, using J/ψ events produced via $\psi(2S) \to \pi^+ \pi^- J/\psi$ and with B $(J/\psi \to \mu^+ \mu^-) = 5.88 \pm 0.10\%$.

$\Gamma(\pi^+\pi^-\pi^0K^+K^-)/\Gamma_{total}$

 Γ_{107}/Γ

. (// · totai				. 101 / .
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1 70±0 20 OLID AVE	DACE Erro	r includes scale fo	actor of	2.2	
$1.93 \pm 0.14 \pm 0.05$	768	¹ AUBERT	07 AU	BABR	$10.6 e^{+}e^{-}_{K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}\gamma}$
$1.2\ \pm0.3$	309	VANNUCCI	77	MRK1	e^+e^-
					$[total] \times [\Gamma(J/\psi(1S) \rightarrow$
$e^+e^-)] = 0.1070$	$\pm 0.0043 \pm 0.$.0064 keV which v	ve divid	e by our	best value $\Gamma(J/\psi(1S) ightarrow$

 $e^+e^-) = 5.55 \pm 0.14 \pm 0.02$ keV. Our first error is their experiment's error and our

HTTP://PDG.LBL.GOV Page 40 Created: 5/30/2017 17:21

second error is the systematic error from using our best value.

¹ From $J/\psi \rightarrow \pi^+\pi^-\pi^0$ events directly.

 $^{^2}$ The quoted systematic error includes a contribution of 1.23% (added in quadrature) from the uncertainty on the number of J/ψ events.

AUBERT 07AU reports $[\Gamma(J/\psi(1S) \rightarrow \pi^+\pi^-\pi^0)/\Gamma_{\text{total}}] \times [\Gamma(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{\text{total}}] = (18.6 \pm 1.2 \pm 1.1) \times 10^{-3} \text{ keV which}$ 3 AUBERT 07AU reports $[\Gamma(J/\psi(1S)
ightharpoonup T]$ we divide by our best value $\Gamma(\psi(2S) \to J/\psi(1S)\pi^+\pi^-) \times \Gamma(\psi(2S) \to e^+e^-)/\Gamma_{total} = 0.807 \pm 0.013$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁴ From the ratio of $\Gamma(e^+e^-)$ B($\pi^+\pi^-\pi^0$) and $\Gamma(e^+e^-)$ B($\mu^+\mu^-$) (AUBERT 04).

⁵ Mostly $\rho \pi$, see also $\rho \pi$ subsection.

$\Gamma(4(\pi^+\pi^-)\pi^0)/\Gamma_{\text{total}}$						
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT		
90±30	13	JEAN-MARIE 76	MRK1	$e^{+}e^{-}$		

 $\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}$

 Γ_{109}/Γ

VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

6.5 \pm 0.4 \pm 0.2 1.6k 1 AUBERT 07AK BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma$ 6.1 \pm 0.7 \pm 0.2 233 2 AUBERT 05D BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$ 7.2 \pm 2.3 205 VANNUCCI 77 MRK1 e^+e^-

 1 Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S)\to\pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}]\times[\Gamma(J/\psi(1S)\to e^+e^-)]=(36.3\pm1.3\pm2.1)\times10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S)\to e^+e^-)=5.55\pm0.14\pm0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Superseded by AUBERT 07AK. AUBERT 05D reports $[\Gamma(J/\psi(1S) \to \pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \to e^+e^-)] = (33.6 \pm 2.7 \pm 2.7) \times 10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S) \to e^+e^-) = 5.55 \pm 0.14 \pm 0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\pi^+\pi^-K^+K^-\eta)/\Gamma_{\text{total}}$

 Γ_{113}/Γ

 VALUE (units 10⁻³)
 EVTS
 DOCUM

 1.84±0.28±0.05
 73
 1 AUBER

 $\frac{\text{DOCUMENT ID}}{1 \text{ AUBERT}} \qquad \frac{\text{TECN}}{07 \text{AU BABR}} \qquad \frac{\text{COMMENT}}{10.6 \text{ e}^+ \text{ e}^- \rightarrow} \\ K^+ K^- \pi^+ \pi^- \eta \gamma$

¹ AUBERT 07AU reports $[\Gamma(J/\psi(1S) \rightarrow \pi^+\pi^-K^+K^-\eta)/\Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] = (10.2\pm1.3\pm0.8)\times10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S) \rightarrow e^+e^-) = 5.55\pm0.14\pm0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\pi^0\pi^0K^+K^-)/\Gamma_{\text{total}}$

 Γ_{114}/Γ

VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $\begin{array}{lll} \text{2.45} \pm 0.31 \pm 0.06 & 203 \pm 16 & ^{1}\text{ AUBERT 07AK BABR 10.6 e}^{+}\,e^{-} \rightarrow \ \pi^{0}\,\pi^{0}\,K^{+}\,K^{-}\,\gamma \\ & ^{1}\text{Superseded by LEES 12F. AUBERT 07AK reports } [\Gamma(J/\psi(1S) \rightarrow \ \pi^{0}\,\pi^{0}\,K^{+}\,K^{-})/\Gamma_{\text{total}}] \\ & \times \ [\Gamma(J/\psi(1S) \rightarrow \ e^{+}\,e^{-})] = (13.6 \pm 1.1 \pm 1.3) \times 10^{-3} \text{ keV which we divide by our} \end{array}$

 \times [$\Gamma(J/\psi(1S) \to e^+e^-)$] = $(13.6 \pm 1.1 \pm 1.3) \times 10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S) \to e^+e^-) = 5.55 \pm 0.14 \pm 0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K\overline{K}\pi)/\Gamma_{\text{total}}$

 Γ_{115}/Γ

<i>VALUE</i> (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
61 ±10 OUR AVE	RAGE				
55.2 ± 12.0	25				$e^+e^- \rightarrow K^+K^-\pi^0$
$78.0\!\pm\!21.0$	126	VANNUCCI	77	MRK1	$e^+e^- \rightarrow K_S^0 K^{\pm} \pi^{\mp}$

```
\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}
                                                                                                       \Gamma_{116}/\Gamma
VALUE (units 10^{-3})
3.57 ± 0.30 OUR AVERAGE
                                                             05H BES2 e^+e^- 
ightarrow \psi(2S) 
ightarrow
3.53 \pm 0.12 \pm 0.29
                         1107
                                       <sup>1</sup> ABLIKIM
                                                                                  J/\psi \pi^+ \pi^-, J/\psi \rightarrow
                                         JEAN-MARIE 76
4.0 + 1.0
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                       <sup>2</sup> AUBERT
                                                             05D BABR 10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)\gamma
3.51 \pm 0.34 \pm 0.09
                           270
   <sup>1</sup> Computed using B(J/\psi \to \mu^{+}\mu^{-}) = 0.0588 ± 0.0010.
   ^2 AUBERT 05D reports [\Gamma(J/\psi(1S) \rightarrow 2(\pi^+\pi^-))/\Gamma_{	ext{total}}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)]
     = (19.5 \pm 1.4 \pm 1.3) \times 10^{-3} keV which we divide by our best value \Gamma(J/\psi(1S) \rightarrow
     e^+e^-)=5.55\pm0.14\pm0.02 keV. Our first error is their experiment's error and our
     second error is the systematic error from using our best value. Superseded by LEES 12E.
\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}
                                                                                                       \Gamma_{117}/\Gamma
VALUE (units 10^{-4})
                                         DOCUMENT ID
                                                                    TECN
                                                                             COMMENT
43 \pm 4 OUR AVERAGE
                                                             06D BABR 10.6 e^+e^- \rightarrow 3(\pi^+\pi^-)\gamma
                                       <sup>1</sup> AUBERT
43.0 \pm 2.9 \pm 2.8
                           496
                                                                   MRK1 e^+e^-
                                         JEAN-MARIE 76
40 \pm 20
                             32
   <sup>1</sup> Using \Gamma(J/\psi \to e^+e^-) = 5.52 \pm 0.14 \pm 0.04 keV.
\Gamma(2(\pi^+\pi^-\pi^0))/\Gamma_{\text{total}}
                                                                                                       \Gamma_{118}/\Gamma
VALUE (units 10^{-2}) EVTS
                                       DOCUMENT ID
                                                                TECN COMMENT
                                                          06D BABR 10.6 e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)\gamma
                                    <sup>1</sup> AUBERT
1.62\pm0.09\pm0.19
                           761
   <sup>1</sup> Using \Gamma(J/\psi \to e^+e^-) = 5.52 \pm 0.14 \pm 0.04 keV.
\Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}
                                                                                                       \Gamma_{119}/\Gamma
VALUE (units 10^{-3}) EVTS
                                                                  TECN COMMENT
2.29 ± 0.24 OUR AVERAGE
                                                           07AU BABR 10.6 e^+e^- \to 2(\pi^+\pi^-)\eta\gamma
05C BES2 e^+e^- \to 2(\pi^+\pi^-)\eta
                                     <sup>1</sup> AUBERT
2.35 \pm 0.39 \pm 0.20
                           85
                                       ABLIKIM
2.26 \pm 0.08 \pm 0.27 4839
   ^1 AUBERT 07AU quotes \Gamma_{ee}^{J/\psi}\cdot B(J/\psi 
ightarrow ~2(\pi^+\pi^-)\eta)\cdot B(\eta 
ightarrow ~\gamma\gamma)=5.16\pm0.85\pm0.85
     0.39 eV.
\Gamma(3(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}
                                                                                                       \Gamma_{120}/\Gamma
VALUE (units 10^{-4})
                                EVTS
                                                                         TECN COMMENT
                                                                   05C BES2 e^+e^- \to 3(\pi^+\pi^-)n
7.24 \pm 0.96 \pm 1.11
                                 616
                                               ABLIKIM
\Gamma(p\overline{p})/\Gamma_{\text{total}}
                                                                                                       \Gamma_{121}/\Gamma
VALUE (units 10^{-3})
                                               DOCUMENT ID
                                                                         TECN
                                                                                   COMMENT
2.120\pm0.029 OUR AVERAGE
                                                                   12c BES3
2.112 \pm 0.004 \pm 0.031
                                               ABLIKIM
                               314k
                                             ^{1} WU
                                                                                    B^+ \rightarrow p \overline{p} K^+
2.15 \pm 0.16 \pm 0.06
                                 317
                                                                   06
                                                                         BELL
                                                                  04E BES2
2.26 \pm 0.01 \pm 0.14
                               63316
                                               BAI
1.97 \pm 0.22
                                   99
                                               BALDINI
                                                                  98
                                                                         FENI
1.91 \pm 0.04 \pm 0.30
                                              PALLIN
                                                                         DM<sub>2</sub>
                                                                   87
HTTP://PDG.LBL.GOV
                                                                           Created: 5/30/2017 17:21
                                                  Page 42
```

$2.16 \pm 0.07 \pm 0.15$	1420	EATON	84	MRK2 e ⁺	e ⁻	
2.5 ± 0.4	133	BRANDELIK	79 C	DASP e^+	e ⁻	
2.0 ± 0.5		BESCH	78	BONA e^+	e ⁻	
2.2 ± 0.2	331	² PERUZZI	78	MRK1 e ⁺	e ⁻	
• • • We do not us	e the following	g data for average	s, fits,	limits, etc.	• • •	
2.0 ± 0.3	48	ANTONELLI	93	SPEC e^+	e [—]	
$^{ m 1}$ WU 06 reports	$[\Gamma(J/\psi(1S) -$	$\rightarrow p\overline{p}/\Gamma_{\text{total}}] \times$	[B(<i>B</i>	$^+ \rightarrow J/\psi$ ($1S(K^+)] = (2$.21 ±
0.13 \pm 0.10) $ imes$	10^{-6} which v	we divide by our	best v	alue B(B^+	$\rightarrow J/\psi(1S)K$	+) =
		first error is their		ment's error	and our second	error
is the systemation	error from us	ing our best value	.			
² Assuming angula	ar distribution	$(1+\cos^2\theta)$.				

 $\Gamma(p\overline{p}\pi^{0})/\Gamma_{\text{total}}$ Γ_{122}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.19±0.08 OUR AVER	AGE Error	includes scale fa	ctor o	f 1.1.	
$1.33\!\pm\!0.02\!\pm\!0.11$	11k	ABLIKIM	09 B	BES2	e^+e^-
$1.13\!\pm\!0.09\!\pm\!0.09$	685	EATON	84	MRK2	e^+e^-
1.4 ± 0.4		BRANDELIK	79 C	DASP	e^+e^-
1.00 ± 0.15	109	PERUZZI	78	MRK1	e^+e^-

 $\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{ ext{total}}$ Γ_{123}/Γ

VALUE (units 10^{-3}) **EVTS** DOCUMENT ID TECN COMMENT 6.0 ±0.5 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. MRK2 $e^+e^ 6.46 \pm 0.17 \pm 0.43$ 1435 **EATON** $3.8\ \pm1.6$ 81 BONA e^+e^- 48 **BESCH** MRK1 $e^+e^ 5.5\ \pm0.6$ 78 533 **PERUZZI**

WEIGHTED AVERAGE 6.0±0.5 (Error scaled by 1.3)

HTTP://PDG.LBL.GOV

Page 43

$\Gamma(p\overline{p}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$

 Γ_{124}/Γ

Including $p\overline{p}\pi^+\tau$	$\pi^-\gamma$ and excluding ω , η , η'
------------------------------------	---

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID)	TECN	COMMENT
2.3 ±0.9 OUR AVER	AGE Erro	or includes scale	factor o	of 1.9.	
$3.36 \!\pm\! 0.65 \!\pm\! 0.28$	364	EATON	84	MRK2	e^+e^-
1.6 ± 0.6	39	PERUZZI	78	MRK1	e^+e^-

$\Gamma(p\overline{p}\eta)/\Gamma_{\text{total}}$ Γ_{125}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.00 ± 0.12 OUR AVE	RAGE				
$1.91\!\pm\!0.02\!\pm\!0.17$	13k	$^{ m 1}$ ABLIKIM	09	BES2	e^+e^-
$2.03\!\pm\!0.13\!\pm\!0.15$	826	EATON	-	MRK2	
2.5 ± 1.2		BRANDELIK	79 C	DASP	e^+e^-
2.3 ± 0.4	197	PERUZZI	78	MRK1	e^+e^-

¹ From the combination of $p\overline{p}\eta \to p\overline{p}\gamma\gamma$ and $p\overline{p}\eta \to p\overline{p}\pi^+\pi^-\pi^0$ channels.

 $\Gamma(p\overline{p}\rho)/\Gamma_{\text{total}}$ Γ_{126}/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<0.31	90	EATON	84	MRK2	$e^+e^- ightarrow hadrons \gamma$

$\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ Γ_{127}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID)	TECN	COMMENT
0.98±0.10 OUR AVE	RAGE Erro	r includes scale t	factor o	f 1.3. Se	ee the ideogram below.
$0.90\!\pm\!0.02\!\pm\!0.09$	2670	ABLIKIM	13 P	BES3	e^+e^-
$0.98\!\pm\!0.03\!\pm\!0.14$	2449	ABLIKIM	80	BES2	e^+e^-
$1.10\!\pm\!0.17\!\pm\!0.18$	486	EATON	84	MRK2	e^+e^-
1.6 + 0.3	77	PERUZZI	78	MRK1	e^+e^-

WEIGHTED AVERAGE 0.98±0.10 (Error scaled by 1.3)

HTTP://PDG.LBL.GOV

Page 44

$\Gamma(\rho \overline{\rho} \eta'(958))/\Gamma_{\rm t}$	otal					Γ_{128}/Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT	· ID	TEC	CN COMMENT	
0.21 ±0.04 OUR		-				
$0.200 \pm 0.023 \pm 0.028$	265 ± 31	$^{ m 1}$ ABLIKIM	()9 BE	S2 e ⁺ e ⁻	
$0.68 \pm 0.23 \pm 0.17$	19	EATON	8	34 MR	RK2 e ⁺ e ⁻	
1.8 ± 0.6	19	PERUZZI	7	78 MF	RK1 e^+e^-	
$^{ m 1}$ From the combin	nation of $p \overline{p} \eta'$ -	$\rightarrow \rho \overline{\rho} \pi^+ \pi^- \eta$	and p	$p\overline{p}\eta' \rightarrow$	$p\overline{p}\gamma ho^0$ channe	ls.
$\Gamma(p\overline{p}a_0(980) \rightarrow p$	ρ $\overline{ ho}\pi^0\etaig)/\Gamma_{ m tota}$	al				Γ_{129}/Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	
6.8±1.2±1.3		ABLIKIM	14N	BES3	$e^+e^- \rightarrow J/v$	Þ
$\Gammaig(p \overline{p} \phi ig) / \Gamma_{ m total}$						Γ_{130}/Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
0.519±0.033 OUR	AVERAGE					
$0.523 \pm 0.006 \pm 0.033$	3 14K	ABLIKIM	16K	BES3	$J/\psi \rightarrow p\overline{p}K_{S}^{0}$	$^0_S \kappa^0_L$,
$0.45\ \pm0.13\ \pm0.07$		FALVARD	88	DM2	$p\overline{p}K^+K^ J/\psi o ext{ hadro}$	ns
$\Gamma(n\overline{n})/\Gamma_{\text{total}}$						Γ_{131}/Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.09±0.16 OUR AV	ERAGE					
$2.07\!\pm\!0.01\!\pm\!0.17$	36k	ABLIKIM	12 C	BES3		
2.31 ± 0.49	79	BALDINI	98	FENI	e^+e^-	
1.8 ± 0.9		BESCH	78	BONA	e^+e^-	
• • • We do not use	e the following o	lata for average	s, fits,	limits,	etc. • • •	
1.90 ± 0.55	40	ANTONELLI	93	SPEC	e^+e^-	
$\Gamma(n\overline{n}\pi^+\pi^-)/\Gamma_{\text{to}}$	tal					Γ_{132}/Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
3.8±3.6	5	BESCH	81		e^+e^-	
$\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{\text{total}}$	1					Γ ₁₃₃ /Γ
<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.50±0.10±0.22	399	ABLIKIM			$e^+e^- \rightarrow J/v$	þ
$\Gamma(\Sigma^0\overline{\Sigma}^0)/\Gamma_{ ext{total}}$						Γ ₁₃₄ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.29±0.09 OUR AV		<u> </u>		7207		
$1.15\pm0.24\pm0.03$		AUBERT	07 BD	BABR	10.6 $e^+e^- \rightarrow$	$\Sigma^{0}\overline{\Sigma}^{0}\gamma$
$1.33\pm0.04\pm0.11$	1779	ABLIKIM	06	BES2	$J/\psi \rightarrow \Sigma^0 \overline{\Sigma}^0$	_ ,
	884 ± 30	PALLIN	87	DM2	$e^+e^- \rightarrow \Sigma^0$	$\overline{\Sigma}^0$
$1.58 \pm 0.16 \pm 0.25$	90	EATON	84	MRK2	$e^+e^- \rightarrow \Sigma^0$	$\overline{\Sigma}^0$
$1.30 \pm 0.10 \pm 0.23$ 1.3 ± 0.4	52	PERUZZI	78	MRK1	$e^+e^- \rightarrow \Sigma^0$	<u></u> 0
• • • We do not use						
					$e^+e^- ightarrow \Sigma^+$	- -
2.4 ± 2.6	3	BESCH	81	DUNA	e ' e → ∑ '	_

¹ AUBERT 07BD reports $[\Gamma(J/\psi(1S) \to \Sigma^0 \overline{\Sigma}^0)/\Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \to e^+ e^-)] = (6.4 \pm 1.2 \pm 0.6) \times 10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S) \to e^+ e^-) = 5.55 \pm 0.14 \pm 0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2(\pi^+\pi^-)K^+K^-)/\Gamma_{\text{total}}$ Γ_{135}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN 47 \pm 7 OUR AVERAGE Error includes scale factor of 1.3. ¹ AUBERT 06D BABR 10.6 $e^+e^- \rightarrow$ 49.8± 4.2±3.4 205 $\omega K^{+} K^{-} 2(\pi^{+} \pi^{-}) \gamma$ 30 **VANNUCCI** 31 ± 13 ¹ Using $\Gamma(J/\psi \to e^+e^-) = 5.52 \pm 0.14 \pm 0.04 \text{ keV}$. $\Gamma(p\overline{n}\pi^-)/\Gamma_{\text{total}}$ Γ_{136}/Γ

= =					
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.12±0.09 OUR A	/ERAGE				
$2.36\!\pm\!0.02\!\pm\!0.21$	59k	ABLIKIM			$J/\psi ightarrow p\pi^-\overline{n}$
$2.47\!\pm\!0.02\!\pm\!0.24$	55k	ABLIKIM	06K	BES2	$J/\psi \rightarrow \overline{p}\pi^+ n$
$2.02\!\pm\!0.07\!\pm\!0.16$	1288	EATON	84		$e^+e^- ightarrow ho\pi^-$
$1.93\!\pm\!0.07\!\pm\!0.16$	1191	EATON	84	MRK2	$e^+e^- ightarrow \overline{p}\pi^+$
$1.7\ \pm0.7$	32	BESCH	81		$e^+e^- ightarrow ho\pi^-$
$1.6\ \pm1.2$	5	BESCH	81	BONA	$e^+e^- ightarrow \overline{p}\pi^+$
$2.16 \!\pm\! 0.29$	194	PERUZZI	78	MRK1	$e^+e^- ightarrow ho\pi^-$
$2.04 \!\pm\! 0.27$	204	PERUZZI	78	MRK1	$e^+e^- ightarrow \overline{p} \pi^+$

$(===)/I_{total}$					l ₁₄₀ /l
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.97 ± 0.08 OUR AVE	RAGE	Error includes scale	factor	of 1.4.	See the ideogram below.
$1.040\pm0.006\pm0.074$	43k	ABLIKIM	16L	BES3	$J/\psi ightarrow $
$0.90\ \pm0.03\ \pm0.18$	961	ABLIKIM			$J/\psi ightarrow \Xi^- \overline{\Xi}{}^+$
$0.70\ \pm0.06\ \pm0.12$	132	HENRARD	87	DM2	$e^+e^- ightarrow~ar{\Xi}^-\overline{\Xi}^+$

EATON

PERUZZI

MRK2 $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$

Created: 5/30/2017 17:21

78 MRK1 $e^+e^- \rightarrow \bar{\Xi}^- \bar{\Xi}^+$

 $1.14 \pm 0.08 \pm 0.20$

 1.4 ± 0.5

194

51

 $\Gamma(\Lambda \overline{\Lambda})/\Gamma_{total}$ Γ_{141}/Γ

EVTS	DOCUMENT ID		TECN	COMMENT
AGE Erro	r includes scale fa	ctor o	f 1.9. Se	ee the ideogram below.
	¹ AUBERT	07 BE	BABR	10.6 $e^+e^- \rightarrow \Lambda \overline{\Lambda} \gamma$
8887	ABLIKIM	06	BES2	$J/\psi o \Lambda \overline{\Lambda}$
46	2 WU	06	BELL	$B^+ o \Lambda \overline{\Lambda} K^+$
631	BAI	98G	BES	e^+e^-
1847	PALLIN	87	DM2	
365	EATON	84		
5	BESCH	81	BONA	e^+e^-
196	PERUZZI	78	MRK1	e^+e^-
	8887 46 631 1847 365 5	AGE Error includes scale fa 1 AUBERT 8887 ABLIKIM 46 2 WU 631 BAI 1847 PALLIN 365 EATON 5 BESCH	AGE Error includes scale factor of AUBERT OTBE 8887 ABLIKIM 06 46 2 WU 06 631 BAI 98G 1847 PALLIN 87 365 EATON 84 5 BESCH 81	AGE Error includes scale factor of 1.9. Second 1 AUBERT 07BD BABR 8887 ABLIKIM 06 BES2 46 2 WU 06 BELL 631 BAI 98G BES 1847 PALLIN 87 DM2 365 EATON 84 MRK2 5 BESCH 81 BONA

 $^{^{1}}$ AUBERT 07BD reports $[\Gamma(J/\psi(1S)\to\Lambda\overline{\Lambda})/\Gamma_{\rm total}]\times[\Gamma(J/\psi(1S)\to e^{+}\,e^{-})]=(10.7\pm0.9\pm0.7)\times10^{-3}$ keV which we divide by our best value $\Gamma(J/\psi(1S)\to e^{+}\,e^{-})=5.55\pm0.14\pm0.02$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^2}$ WU 06 reports $[\Gamma(J/\psi(1S) \rightarrow \Lambda \overline{\Lambda})/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow J/\psi(1S)K^+)] = (2.00^{+0.34}_{-0.29} \pm 0.34) \times 10^{-6}$ which we divide by our best value $B(B^+ \rightarrow J/\psi(1S)K^+)$ = $(1.026 \pm 0.031) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Lambda\overline{\Lambda})/\Gamma(\rho\overline{ ho})$				$\Gamma_{141}/\Gamma_{121}$
VALUE	DOCUMENT ID		TECN	COMMENT
$0.90^{f +0.15}_{f -0.14} \pm 0.10$	$^{1}\mathrm{WU}$	06	BELL	$B^+ \to p \overline{p} K^+, \Lambda \overline{\Lambda} K^+$

¹ Not independent of other $J/\psi \to \Lambda \overline{\Lambda}$, $p\overline{p}$ branching ratios reported by WU 06.

$\Gamma(\Lambda \overline{\Sigma}^- \pi^+ \text{(or)}$	c.c.))/ Γ_{total}					Γ_{142}/Γ
$VALUE$ (units 10^{-3})	<u>EVTS</u>	<u>DOCUMENT</u>	ID	TECN	COMMENT	
0.83 ±0.07 OU	IR AVERAGE	Error includes scal	e factor	of 1.2.		
$0.770\pm0.051\pm0.$.083 335	5 ¹ ABLIKIM	07н	BES2	$e^+e^- \rightarrow$	$\overline{\Lambda}\Sigma^{+}\pi^{-}$
$0.747 \pm 0.056 \pm 0.000$.076 254	i ¹ ABLIKIM			$e^+e^- \rightarrow$	
$0.90 \pm 0.06 \pm 0.$	$.16 225 \pm 15$	5 HENRARD	87	DM2	$e^+e^- \rightarrow$	$\overline{\Lambda}\Sigma^{+}\pi^{-}$
$1.11 \pm 0.06 \pm 0.$	$.20 342 \pm 18$	B HENRARD	87	DM2	$e^+e^- \rightarrow$	$\Lambda \overline{\Sigma}{}^-\pi^+$
$1.53 \pm 0.17 \pm 0.$.38 135	5 EATON	84	MRK2	$e^+e^- \rightarrow$	$\overline{\Lambda}\Sigma^{+}\pi^{-}$
$1.38 \pm 0.21 \pm 0.$.35 118	B EATON	84	MRK2	$e^+e^ \rightarrow$	$\Lambda \overline{\Sigma}{}^-\pi^+$

¹Using B($\Lambda \rightarrow \pi^- p$) = 63.9% and B($\Sigma^+ \rightarrow \pi^0 p$) = 51.6%.

$\Gamma(pK^-\Lambda)/\Gamma_{\text{total}}$						l ₁₄₃ /l
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.89 \pm 0.07 \pm 0.14$	307	EATON	84	MRK2	e^+e^-	

```
\Gamma(2(K^+K^-))/\Gamma_{\text{total}}
                                                                                                     \Gamma_{144}/\Gamma
VALUE (units 10^{-3})
                                                                 TECN
0.74±0.07 OUR AVERAGE
                                                                 BABR 10.6 e^+e^- \to 2(K^+K^-)\gamma
0.72 \pm 0.06 \pm 0.05 287 \pm 24
                                         LEES
     ^{+0.5}_{-0.4} \pm 0.2 11.0^{+4.3}_{-3.5}
                                       <sup>1</sup> HUANG
                                                                 BELL B^+ \rightarrow 2(K^+K^-)K^+
                                                                 MRK1 e^+e^-
0.7 \pm 0.3
                                         VANNUCCI 77
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.74 \pm 0.09 \pm 0.02 156 ± 15
                                       <sup>2</sup> AUBERT
                                                         07AK BABR 10.6 e^+e^- \rightarrow 2(K^+K^-)\gamma
                                                               BABR 10.6 e^+e^- \to 2(K^+K^-)\gamma
                                       <sup>3</sup> AUBERT
0.72 \pm 0.17 \pm 0.02
                                                         05D
   <sup>1</sup> Using B(B^+ \rightarrow J/\psi K^+) = (1.01 ± 0.05) × 10<sup>-3</sup>.
   <sup>2</sup>Superseded by LEES 12F. AUBERT 07AK reports [\Gamma(J/\psi(1S) \rightarrow 2(K^+K^-))/\Gamma_{total}]
     \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] = (4.11 \pm 0.39 \pm 0.30) \times 10^{-3} keV which we divide by our
    best value \Gamma(J/\psi(1S) \rightarrow e^+e^-) = 5.55 \pm 0.14 \pm 0.02 keV. Our first error is their
    experiment's error and our second error is the systematic error from using our best value.
   <sup>3</sup>Superseded by AUBERT 07AK. AUBERT 05D reports [\Gamma(J/\psi(1S) \rightarrow 2(K^+K^-))/
    \Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] = (4.0 \pm 0.7 \pm 0.6) \times 10^{-3} keV which we divide
    by our best value \Gamma(J/\psi(1S) \rightarrow e^+e^-) = 5.55 \pm 0.14 \pm 0.02 keV. Our first error is
    their experiment's error and our second error is the systematic error from using our best
\Gamma(pK^{-}\overline{\Sigma}^{0})/\Gamma_{\text{total}}
                                                                                                     \Gamma_{145}/\Gamma
VALUE (units 10^{-3})
                               EVTS
                                                                        TECN COMMENT
                                                                        MRK2 e^+e^-
0.29\pm0.06\pm0.05
                                              EATON
\Gamma(K^+K^-)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{146}/\Gamma
VALUE (units 10^{-4})
                            EVTS
                                          DOCUMENT ID
                                        <sup>1</sup> METREVELI
2.86\pm0.09\pm0.19
                              1k
• • We do not use the following data for averages, fits, limits, etc.
                                      <sup>2,3</sup> LEES
                                                              15J
                                                                    BABR e^+e^- \rightarrow K^+K^-\gamma
                             462
3.22 \pm 0.20 \pm 0.12
                                      <sup>3,4</sup> LEES
                                                                    BABR e^+e^- \rightarrow K^+K^-\gamma
3.50 \pm 0.20 \pm 0.12
                             462
                                                              15J
                                        <sup>5</sup> BALTRUSAIT...85D MRK3 e^+e^-
2.39 \pm 0.24 \pm 0.22
                             107
                                        <sup>5</sup> BRANDELIK 79C DASP e^+e^-
2.2 \pm 0.9
   ^{
m 1} Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
   <sup>3</sup> Using \Gamma(J/\psi \to e^+e^-) = (5.55 \pm 0.14) keV.
   <sup>5</sup> Interference with non-resonant K^+K^- production not taken into account.
\Gamma(K_S^0 K_L^0)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{147}/\Gamma
VALUE (units 10^{-4}) EVTS
                                      DOCUMENT ID
                                                                TECN
2.1 \pm 0.4 OUR AVERAGE
                                     Error includes scale factor of 3.2.
                                                         12 \psi(2S) \rightarrow \pi^+\pi^- K^0_S K^0_L
04A BES2 J/\psi \rightarrow K^0_S K^0_L \rightarrow \pi^+\pi^- X
                                   <sup>1</sup> METREVELI
2.62\pm0.15\pm0.14 0.3k
                                    ^{2} BAI
1.82 \pm 0.04 \pm 0.13 2.1k

    • • We do not use the following data for averages, fits, limits, etc.

1.18 \pm 0.12 \pm 0.18
                                      JOUSSET
                                                         90
                                                                DM2
                                                                          J/\psi 
ightarrow 	ext{hadrons}
                                      BALTRUSAIT...85D MRK3 e^+e^-
1.01\!\pm\!0.16\!\pm\!0.09
                          74
   <sup>1</sup>Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
   <sup>2</sup> Using B(K_S^0 \to \pi^+\pi^-) = 0.6868 ± 0.0027.
```

$\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\rm to}$	otal				Γ ₁₄₈ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
$4.30\pm0.13\pm0.99$	2.4k	ABLIKIM	12 P	BES2	J/ψ
$\Gamma(\Lambda \overline{\Lambda} \eta)/\Gamma_{\text{total}}$					Γ ₁₄₉ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT
16.2±1.7 OUR AV		1			
$15.7 \pm 0.80 \pm 1.54$					$J/\psi \rightarrow p\overline{p}\pi^{+}\pi^{-}\gamma\gamma$
	44				$e^+e^- \rightarrow \psi(2S)$
$\frac{1}{2}$ Using B($\Lambda \to \pi$					
² Using B($\Lambda \rightarrow \pi$	(-p) = 63.9%	and B $(\eta ightarrow \gamma \gamma)$	= 39	.4%.	
$\Gamma \left(\Lambda \overline{\Lambda} \pi^0 \right) / \Gamma_{\text{total}}$					Γ ₁₅₀ /Γ
VALUE (units 10^{-5})	CL% EVTS				
$3.78 \pm 0.27 \pm 0.3$	0 323	$^{ m 1}$ ABLIKIM	13F	BES3	$J/\psi \rightarrow \rho \overline{\rho} \pi^+ \pi^- \gamma \gamma$
• • • We do not us	e the following	data for averages	s, fits,	limits, e	etc. • • •
< 6.4	90	² ABLIKIM	07⊦	BES2	$e^+e^- ightarrow \ \psi(2S)$
23 ± 7 ± 8	11	BAI	980	BES	e^+e^-
22 ± 5 ± 5		HENRARD			
1 Using B($arLambda ightarrow \pi$	(-p) = 63.9%	and B($\pi^0 \rightarrow \gamma \gamma$	$\gamma) = 0$	98.8%	
² Using B($\Lambda \rightarrow \pi$,,	70.070.	
$\Gamma(\overline{\Lambda}nK_{S}^{0}+\text{c.c.})/$,				Γ ₁₅₁ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
6.46±0.20±1.07		¹ ABLIKIM			
					, ,
1 Using B($\overline{\varLambda} ightarrow \overline{ ho}$	(3.9%)	and $B(K_{\tilde{S}} \to \pi$	' 71) = 09.2	2/0.
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$					Γ ₁₅₂ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
1.47±0.14 OUR AV		1			
2 = 0.10 = 0.10	140				$\psi(2S) \rightarrow 2(\pi^+\pi^-)$
$1.58 \pm 0.20 \pm 0.15$		BALTRUSAIT.			
1.0 ± 0.5	5	BRANDELIK		DASP MRK1	
1.6 ±1.6	1	VANNUCCI			
		data but not aut	norea	by the (CLEO Collaboration.
$\Gamma(\Lambda \overline{\Sigma} + \text{c.c.})/\Gamma_{\text{to}}$					Γ ₁₅₃ /Γ
VALUE (units 10 ⁻⁵) 2.83±0.23 OUR	AVERAGE				TECN COMMENT
$2.74 \pm 0.24 \pm 0.22$	2 234 \pm	21 ¹ ABLIKI	М	12 B	BES3 $J/\psi \to \Lambda \overline{\Sigma}^0$ BES3 $J/\psi \to \overline{\Lambda} \Sigma^0$
$2.92 \pm 0.22 \pm 0.24$	4 308 \pm	24 ² ABLIKI	М	12 B	BES3 $J/\psi \rightarrow \overline{\Lambda} \Sigma^0$
• • • We do not us	e the following	data for averages	s, fits,	limits, e	etc. • • •
<15	90	PERUZ			MRK1 $e^+e^- \rightarrow \Lambda X$
¹ ABLIKIM 12B q					
² ABLIKIM 12B q	uotes B(J/ψ $-$	$_{ ightarrow}$ $\overline{arLambda} arSigma^0$) which w	e mul	tiply by	2.

$\Gamma(K_S^0 K_S^0)/\Gamma_{\text{total}}$						Γ ₁₅₄ /Γ
$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.01	95	¹ BAI		BES	e^+e^-	<u>.</u>
• • • We do not use	the following	data for average	s, fits,	limits, e	etc. • • •	
< 0.052	90	¹ BALTRUSAIT	85 C	MRK3	e^+e^-	
1 Forbidden by $\it CP$.						
,						
	—— K	ADIATIVE DE	CAT	· —		
$\Gamma(3\gamma)/\Gamma_{total}$						Γ ₁₅₅ /Γ
$VALUE$ (units 10^{-6}) CL ?	% EVTS	DOCUMENT ID)	TECN	COMMENT	
11.6±2.2 OUR AV	ERAGE					
$11.3\!\pm\!1.8\!\pm\!2.0$	113 ± 18	ABLIKIM			$\psi(2S) \rightarrow f$, ,
$12 \pm 3 \pm 2$	$24.2^{+7.2}_{-6.0}$	ADAMS	80		$\psi(2S) \rightarrow$	$\pi^+\pi^-J/\psi$
• • • We do not use	the following	data for average	s, fits,	limits, e	etc. • • •	
<55 90		PARTRIDGE	80	CBAL	e^+e^-	
$\Gamma(4\gamma)/\Gamma_{ m total}$						Γ ₁₅₆ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	•
<9	90	ADAMS	80		$\overline{\psi(2S)} \rightarrow \pi$	$-+\pi^-J/\psi$
$\Gamma(5\gamma)/\Gamma_{ m total}$						Γ ₁₅₇ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	1317
<15	90	ADAMS	08		$\psi(2S) \rightarrow \pi$	$+\pi^{-}1/\psi$
				00	φ(=0)	3/4
$\Gamma(\gamma\pi^0\pi^0)/\Gamma_{ m total}$						Г ₁₅₈ /Г
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
1.15 ± 0.05		1 ABLIKIM	15AE	BES3	$J/\psi \rightarrow \gamma \pi$	$0_{\pi}0$
$^{ m 1}$ The uncertainty i	s systematic a	s statistical is ne	tligible	e.		
$\Gamma(\gamma\eta\pi^0)/\Gamma_{ m total}$						Γ ₁₅₉ /Γ
<i>VALUE</i> (units 10^{-6})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
21.4±1.8±2.5	596	ABLIKIM	16 P	BES3	$J/\psi \rightarrow 5\gamma$	
$\Gamma(\gamma a_0(980)^0 \rightarrow \gamma$	$n\pi^0)/\Gamma_{\rm total}$	1				Γ ₁₆₀ /Γ
VALUE	,,	DOCUMENT ID		TECN	COMMENT	100/
$<2.5 \times 10^{-6}$		ABLIKIM				
					, . ,	
$\Gamma(\gamma a_2(1320)^0 \rightarrow \gamma$	$\gamma\eta\pi^{\sf o})/ \Gamma_{\sf tot}$					Γ ₁₆₁ /Γ
<u>VALUE</u> <6.6 × 10 ^{−6}	<u>CL%</u>	DOCUMENT ID				
$<6.6 \times 10^{-6}$	95	ABLIKIM	16 P	BES3	$J/\psi \rightarrow 5\gamma$	

$\Gamma(\gamma \eta_c(1S))/\Gamma_{\text{tota}}$		DOCUMENT	10	TECN	Γ ₁₆₂ /Γ
$\frac{VALUE \text{ (units } 10^{-2})}{1.7 \pm 0.4 \text{ OUR AVI}}$					COMMENT
$2.01 \pm 0.32 \pm 0.02$	LIGIOL LIIO				$e^+e^- ightarrow \gamma X$
1.27 ± 0.36					$J/\psi ightarrow \gamma X$
• • • We do not use	the following	data for average	s, fits,	limits, e	etc. • •
seen		ANASHIN	1	4 KEDI	R $J/\psi ightarrow \gamma \eta_{m c}$
0.79 ± 0.20	273 ± 43	² AUBERT	0	6E BABI	$R B^{\pm} \rightarrow K^{\pm} X_{C\overline{C}}$
seen		BALTRUSA			
¹ MITCHELL 09	reports (1.98	$3 \pm 0.09 \pm 0.30$	0) ×	10^{-2} f	rom a measurement of
			,		$\psi(1S)\pi^+\pi^-)]$ assuming
					10^{-2} , which we rescale
					$0.30) \times 10^{-2}$. Our first
error is their exp					stematic error from using
our best value.	a authors using	r an average of Ri	1/2/2	$\rightarrow \sim n$	$ imes$ B $(\eta_{\it C} ightarrow {\it K} {\it \overline{K}} \pi)$ from
BAI TRUSAITIS	86. BISELLO	91. BAI 04 and	$B(n_{-})$	$\rightarrow KK$	$\pi = (8.5 \pm 1.8)\%$ from
AUBERT 06E.	,		- (12) (0.0 = 2.0),0
Γ((1C) - 2-i	\				г /г
$\Gamma(\gamma\eta_c(1S)\to 3\gamma)$,				Γ ₁₆₃ /Γ
VALUE (units 10^{-6})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
3.8 ^{+1.3} _{-1.0} OUR AVER	RAGE Error i	ncludes scale fact			
$4.5\!\pm\!1.2\!\pm\!0.6$	33 ± 9	ABLIKIM	131	BES3	$\psi(2S) \rightarrow \pi^+\pi^-J/\psi$
$1.2^{+2.7}_{-1.1}\pm0.3$	$1.2^{+2.8}_{-1.1}$	ADAMS	80	CLEO	$\psi(2S) \rightarrow \pi^+\pi^-J/\psi$
1.1	1.1				
$\Gamma(\gamma\pi^+\pi^-2\pi^0)/\Gamma$	- total				Γ ₁₆₄ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT
$8.3 \pm 0.2 \pm 3.1$		¹ BALTRUSAIT	86 B	MRK3	$J/\psi ightarrow 4\pi\gamma$
$1_{4\pi}$ mass less tha	n 2.0 GeV.				
$\Gamma(\gamma\eta\pi\pi)/\Gamma_{total}$					Γ ₁₆₅ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT
6.1 \pm 1.0 OUR AVE	RAGE	_			
$5.85 \pm 0.3 \pm 1.05$		¹ EDWARDS	83 B	CBAL	$J/\psi \rightarrow \eta \pi^{+} \pi^{-}$
$7.8 \pm 1.2 \pm 2.4$		¹ EDWARDS	83 B	CBAL	$J/\psi \rightarrow \eta 2\pi^0$
$^{ m 1}$ Broad enhancem	ent at 1700 M	leV.			
$\Gamma(\gamma\eta_2(1870) \rightarrow \gamma_2(1870) \rightarrow \gamma$	$\gamma\eta\pi^+\pi^-)/1$	_ total			Γ ₁₆₆ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		<u>TE</u> CN	COMMENT
6.2±2.2±0.9		BAI			$J/\psi \to \gamma \eta \pi^+ \pi^-$

$\Gamma(\gamma\eta(1405/1475) \rightarrow \gamma K\overline{K}\pi)/\Gamma_{\text{total}}$

 Γ_{167}/Γ

DOCUMENT ID	TECN	COMMENT
Error includes scale fact	tor of 1.6. S	ee the ideogram below.
^{1,2} BAI (00D BES	$J/\psi \rightarrow \gamma K^{\pm} K_S^0 \pi^{\mp}$
³ AUGUSTIN	90 DM2	$J/\psi \rightarrow \gamma K \overline{K} \pi$
³ EDWARDS	82E CBAL	$J/\psi \rightarrow K^+K^-\pi^0\gamma$
^{3,4} SCHARRE	80 MRK2	e^+e^-
owing data for averages,	fits, limits, e	etc. • • •
3,5,6 AUGUSTIN	92 DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
^{3,7,8} AUGUSTIN	92 DM2	$J/\psi \to \gamma K \overline{K} \pi$
3,6,9 BAI	90c MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
3,8,10 BAI	90c MRK3	$J/\psi \to \gamma K_S^0 K^{\pm} \pi^{\mp}$
	Error includes scale fact 1,2 BAI 3 AUGUSTIN 3 EDWARDS 3,4 SCHARRE owing data for averages, 3,5,6 AUGUSTIN 3,7,8 AUGUSTIN 3,6,9 BAI	Error includes scale factor of 1.6. Social Section 1.2 BAI 00D BES 3 AUGUSTIN 90 DM2 3 EDWARDS 82E CBAL 3.4 SCHARRE 80 MRK2 owing data for averages, fits, limits, expression 1.5.6 AUGUSTIN 92 DM2 3.7.8 AUGUSTIN 92 DM2 3.6.9 BAI 90C MRK3

¹ Interference with the $J/\psi(1S)$ radiative transition to the broad $K\overline{K}\pi$ pseudoscalar state around 1800 is $(0.15\pm0.01\pm0.05)\times10^{-3}$.

WEIGHTED AVERAGE 2.8±0.6 (Error scaled by 1.6)

² Interference with $J/\psi \rightarrow \gamma f_1(1420)$ is $(-0.03 \pm 0.01 \pm 0.01) \times 10^{-3}$.

³ Includes unknown branching fraction $\eta(1405) \rightarrow K\overline{K}\pi$.

⁴ Corrected for spin-zero hypothesis for $\eta(1405)$.

⁵ From fit to the $a_0(980)\pi$ 0 $^-+$ partial wave.

 $^{^{6}}a_{0}(980)\pi$ mode.

⁷ From fit to the $K^*(892)K$ 0 $^{-+}$ partial wave.

⁸ *K** *K* mode.

⁹ From $a_0(980)\pi$ final state.

¹⁰ From $K^*(890) K$ final state.

$\Gamma(\gamma\eta(1405/1475) \rightarrow$	$\gamma\gamma\rho^0)/$	Γ_{total}				Γ_{168}/Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
0.78±0.20 OUR AVERA	GE Erro	r includes scale f				
$1.07 \pm 0.17 \pm 0.11$		¹ BAI			$J/\psi \rightarrow \gamma \gamma \pi^{+}$	
$0.64\!\pm\!0.12\!\pm\!0.07$		¹ COFFMAN	90	MRK3	$J/\psi \rightarrow \gamma \gamma \pi^{+}$	π^-
¹ Includes unknown bra	anching fra	action $\eta(1405)$ –	$\rightarrow \gamma \rho^0$			
$\Gamma(\gamma\eta(1405/1475) \rightarrow$	$\gamma\eta\pi^+\pi$	$^{-})/\Gamma_{total}$				Γ ₁₆₉ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
3.0 \pm 0.5 OUR AVERA	GE					
$2.6 \pm 0.7 \pm 0.4$		BAI			$J/\psi \rightarrow \gamma \eta \pi^{+}$	
$3.38 \pm 0.33 \pm 0.64$					$J/\psi \rightarrow \gamma \eta \pi^{+}$	π^-
• • • We do not use the	_	_				
$7.0 \pm 0.6 \pm 1.1$	261	² AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \eta \pi^+$	π^-
¹ Via $a_0(980)\pi$.						
² Includes unknown bra	anching fra	action to $\eta\pi^+\pi^-$				
$\Gamma(\gamma\eta(1405/1475) \rightarrow$	$\gamma \gamma \phi)/\Gamma$	- +o+ol				Γ ₁₇₀ /Γ
VALUE (units 10 ⁻⁴)	, .			TECN	COMMENT	•
	95	DOCUMENT ID	041	DECO	COMMENT	+ <i>v</i> -
<0.82	95	BAI	041	BES2	$J/\psi ightarrow \gamma \gamma K^{-1}$	' K
$\Gamma(\gamma ho ho)/\Gamma_{total}$						Γ ₁₇₁ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT	
4.5 ± 0.8 OUR AVEF	RAGE	1			- 4 .	
$4.7 \pm 0.3 \pm 0.9$		¹ BALTRUSAIT				
$3.75 \pm 1.05 \pm 1.20$	c 11 ·	² BURKE			$J/\psi \rightarrow 4\pi\gamma$	
• • • We do not use the						
< 0.09		³ BISELLO	89 B		$J/\psi \rightarrow 4\pi\gamma$	
1 2 4 π mass less than 2.0 2 4 π mass less than 2.0 3 4 π mass in the range	GeV. We		$2 ho^{0}$ n	neasuren	nent by 3 to obt	ain $2 ho$.
$\Gamma(\gamma ho\omega)/\Gamma_{total}$						Γ ₁₇₂ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT	
<5.4	90	ABLIKIM			$e^+e^- \rightarrow J/\psi$	l,
$\Gamma(\gamma ho\phi)/\Gamma_{total}$						Γ ₁₇₃ /Γ
VALUE (units 10^{-5})	CI%	DOCUMENT ID		TECN	COMMENT	110,
<8.8	90				$e^+e^- \rightarrow J/\psi$	/.
< 0.0	90	ABLIKIM	U8A	BES2	$e \cdot e \rightarrow J/\psi$,
$\Gamma(\gamma\eta'(958))/\Gamma_{total}$						Γ_{174}/Γ
VALUE (units 10 ⁻³) E		DOCUMENT ID				
5.13±0.17 OUR AVERA					_	below.
$4.78 \pm 0.22 \pm 0.08$	1	ABLIKIM			$J/\psi \rightarrow \eta' \gamma$	
$5.24\!\pm\!0.12\!\pm\!0.11$		PEDLAR			$J/\psi \rightarrow \eta' \gamma$	
5.55 ± 0.44	35k	ABLIKIM	06E E	BES2	$J/\psi \rightarrow \eta' \gamma$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$4.50\!\pm\!0.14\!\pm\!0.53$		BOLTON	92 B	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta, \eta \rightarrow$
$4.30 \pm 0.31 \pm 0.71$		BOLTON	92 B	MRK3	$J/\psi \to \gamma \pi^+ \pi^- \eta, \eta \to \pi^+ \pi^- \pi^0$
$4.04\pm0.16\pm0.85$	622	AUGUSTIN	90	DM2	$J/\psi \stackrel{\pi^+\pi^-\pi^0}{ ightarrow \gamma \eta \pi^+\pi^-}$
$4.39\!\pm\!0.09\!\pm\!0.66$	2420	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
$4.1 \pm 0.3 \pm 0.6$		BLOOM	83	CBAL	$e^+e^- o 3\gamma + \text{hadrons}$
2.9 ± 1.1	6	BRANDELIK	79 C	DASP	$e^+e^- o 3\gamma$
$2.4\ \pm0.7$	57	BARTEL	76	CNTR	$e^+e^- o 2\gamma ho$

 1 ABLIKIM 11 reports $(4.84\pm0.03\pm0.24)\times10^{-3}$ from a measurement of $[\Gamma(J/\psi(1S)\to\gamma\eta'(958))/\Gamma_{\rm total}]$ / $[B(\eta'(958)\to\pi^+\pi^-\eta)]$ / $[B(\eta\to2\gamma)]$ assuming B($\eta'(958)\to\pi^+\pi^-\eta)$ = $(43.2\pm0.7)\times10^{-2}$,B($\eta\to2\gamma)$ = $(39.31\pm0.20)\times10^{-2}$, which we rescale to our best values B($\eta'(958)\to\pi^+\pi^-\eta)$ = $(42.6\pm0.7)\times10^{-2}$, B($\eta\to2\gamma)$ = $(39.41\pm0.20)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

WEIGHTED AVERAGE 5.13±0.17 (Error scaled by 1.3)

 $\Gamma(\gamma \eta'(958))/\Gamma_{\text{total}} \text{ (units } 10^{-3})$

$\Gamma(\gamma 2\pi^+ 2\pi^-)/\Gamma_{\mathsf{total}}$

VALUE (units 10^{-3})	DOCUMENT ID TECN COMMENT
2.8 ± 0.5 OUR AVERAGE	Error includes scale factor of 1.9. See the ideogram below.
$4.32 \pm 0.14 \pm 0.73$	1 BISELLO 89B DM2 $J/\psi ightarrow 4\pi\gamma$
$2.08 \pm 0.13 \pm 0.35$	2 BISELLO 89B DM2 $J/\psi ightarrow 4\pi\gamma$
$3.05\pm0.08\pm0.45$	2 BALTRUSAIT86B MRK3 $J/\psi ightarrow 4\pi\gamma$
$4.85 \pm 0.45 \pm 1.20$	3 BURKE 82 MRK2 e $^+$ e $^-$

 Γ_{175}/Γ

$\Gamma(\gamma f_2(1270) f_2(1270)) / \Gamma_{\text{total}}$

 Γ_{176}/Γ

(12()2(- /// total			110/
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
9.5±0.7±1.6	646 ± 45	ABLIKIM	04м BES	$J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$

$\Gamma(\gamma f_2(1270) f_2(1270) \text{(non resonant)})/\Gamma_{\text{total}}$

 Γ_{177}/Γ

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
8.2±0.8±1.7	¹ ABLIKIM	04м BES	$J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$

 $^{^{1}\,\}mathrm{Subtracting}$ contribution from intermediate $\eta_{\mathcal{C}}(1S)$ decays.

$\Gamma(\gamma K^+ K^- \pi^+ \pi^-)$)/Г	total
--------------------------------------	-----	-------

 Γ_{178}/Γ

VALUE (units 10^{-3})	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
$2.1 \pm 0.1 \pm 0.6$	1516	BAI	00B BES	$J/\psi \rightarrow \gamma K^+ K^0 \pi^+ \pi^-$

$\Gamma(\gamma f_4(2050))/\Gamma_{\text{total}}$

 Γ_{179}/Γ

VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
2.7±0.5±0.5	¹ BALTRUSAIT87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$

¹ Assuming branching fraction $f_4(2050) \rightarrow \pi \pi / \text{total} = 0.167$.

 $^{^{1}}_{~2}4\pi$ mass less than 3.0 GeV. $^{2}_{~2}4\pi$ mass less than 2.0 GeV. $^{3}_{~4\pi}$ mass less than 2.5 GeV.

$\Gamma(\gamma\omega\omega)/\Gamma_{total}$						Γ ₁₈₀	ე/Г
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT IL)	TECN	COMMEN	Γ	
1.61±0.33 OUR AV	ERAGE	-			•		
$6.0\ \pm 4.8\ \pm 1.8$		ABLIKIM	08	A BES2	$J/\psi ightarrow$	$\gamma \omega \pi^+ \pi^-$	
$1.41 \pm 0.2 \pm 0.42$	120 ± 17	BISELLO	87	SPEC	$e^{+}e^{-}$, h	$nadrons\gamma$	
$1.76\!\pm\!0.09\!\pm\!0.45$		BALTRUSAI	T850	MRK3	e ⁺ e ⁻ -	\rightarrow hadrons γ	
$\Gamma(\gamma\eta(1405/1475) \rightarrow \gamma\rho^0\rho^0)/\Gamma_{\text{total}}$ Γ_{181}/Γ							
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT		
1.7 ±0.4 OUR AV	ERAGE	Error includes scale	factor	of 1.3.			
2.1 ± 0.4		BUGG	95	MRK3	$J/\psi \rightarrow \gamma$	$\pi^+\pi^-\pi^+\pi$	-
1.36 ± 0.38		^{1,2} BISELLO			$J/\psi ightarrow 4$		
1 Estimated by us	from vari	ous fits					

¹ Estimated by us from various fits.

$\Gamma(\gamma f_2(1270))/\Gamma_{\text{total}}$

 Γ_{182}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.64±0.12 OUR A	VERAGE	Error includes sca	ale fa	ctor of 1	.3. See the ideogram below.
$2.07 \pm 0.16 ^{+0.02}_{-0.07}$	2.4k	^{1,2} DOBBS	15		$J/\psi ightarrow \gamma \pi \pi$
$1.63\pm0.26^{+0.02}_{-0.06}$		³ ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
$1.42\!\pm\!0.21^{+0.01}_{-0.05}$		⁴ ABLIKIM			$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^0 \pi^0$
$1.33\!\pm\!0.05\!\pm\!0.20$		⁵ AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$1.36\!\pm\!0.09\!\pm\!0.23$		⁵ BALTRUSAIT.	87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$1.48\!\pm\!0.25\!\pm\!0.30$	178				$e^+e^- ightarrow~2\pi^0\gamma$
2.0 ± 0.7	35	ALEXANDER			
1.2 ± 0.6	30	⁶ BRANDELIK	78 B	DASP	$e^+e^- ightarrow \pi^+\pi^-\gamma$

 $^{^{}m 1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

² Includes unknown branching fraction to $\rho^0 \rho^0$.

² DOBBS 15 reports $[\Gamma(J/\psi(1S) \rightarrow \gamma f_2(1270))/\Gamma_{total}] \times [B(f_2(1270) \rightarrow \pi\pi)] =$ $(1.744 \pm 0.052 \pm 0.122) \times 10^{-3}$ which we divide by our best value B $(f_2(1270) \rightarrow \pi\pi)$ $=(84.2^{+2.9}_{-0.9})\times 10^{-2}$. Our first error is their experiment's error and our second error is

the systematic error from using our best value. ³ABLIKIM 06V reports $[\Gamma(J/\psi(1S) \rightarrow \gamma f_2(1270))/\Gamma_{\text{total}}] \times [B(f_2(1270) \rightarrow \pi \pi)] = (1.371 \pm 0.010 \pm 0.222) \times 10^{-3}$ which we divide by our best value $B(f_2(1270) \rightarrow \pi \pi)$ $=(84.2^{+2.9}_{-0.9})\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ ABLIKIM 06V reports $[\Gamma(J/\psi(1S) \rightarrow \gamma f_2(1270))/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(f_2(1270) \rightarrow \pi\pi)] =$ $(1.200 \pm 0.027 \pm 0.174) \times 10^{-3}$ which we divide by our best value B($f_2(1270) \rightarrow \pi\pi$) $=(84.2^{+2.9}_{-0.9})\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ Estimated using B($f_2(1270) \rightarrow \pi\pi$)=0.843 \pm 0.012. The errors do not contain the uncertainty in the $f_2(1270)$ decay.

⁶ Restated by us to take account of spread of E1, M2, E3 transitions.

 $\Gamma(\gamma f_0(1370) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$

 Γ_{183}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDCOMMENT**4.19±0.73±1.34**4781 DOBBS15 $J/\psi \rightarrow \gamma K \overline{K}$

$\Gamma(\gamma f_0(1710) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) CL% EVTS

 Γ_{184}/Γ

Created: 5/30/2017 17:21

	10.0	0.9	OUR A	AVERAGE	Error includes scale fa	ctor o	of 1.5.	See the ideogram
b	elow.				_			
	$11.76\pm$	0.54	± 0.94	1.2k	¹ DOBBS	15		$J/\psi ightarrow \gamma K \overline{K}$
	9.62 ± 0	29	$+3.51 \\ -1.86$		² BAI	03 G	BES	$J/\psi ightarrow \gamma K \overline{K}$
	5.0 ±	8.0	$^{+1.8}_{-0.4}$		3,4 BAI	96 C	BES	$J/\psi \rightarrow \gamma K^+ K^-$
	$9.2~\pm$	1.4	± 1.4		⁴ AUGUSTIN		DM2	$J/\psi \rightarrow \gamma K^+ K^-$
	10.4 \pm	1.2	± 1.6		⁴ AUGUSTIN	88	DM2	$J/\psi \rightarrow \gamma K_S^0 K_S^0$
	$9.6~\pm$	1.2	± 1.8					$J/\psi \rightarrow \gamma K^+ K^-$

• • • We do not use the following data for averages, fits, limits, etc. • •

¹Using CLEO-c data but not authored by the CLEO Collaboration.

WEIGHTED AVERAGE 10.0+1.1-0.9 (Error scaled by 1.5)

 $J/\psi(1S)$ mass (units 10^{-4})

$\Gamma(\gamma f_0(1710) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}$

 Γ_{185}/Γ

*	,				
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT II	D	TECN	COMMENT
3.8 ±0.5 OUR A	VERAGE				
$3.72 \pm 0.30 \pm 0.43$	483	¹ DOBBS	15		$J/\psi ightarrow \gamma \pi \pi$
$3.96 \pm 0.06 \pm 1.12$		² ABLIKIM	06∨	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
$3.99\!\pm\!0.15\!\pm\!2.64$		² ABLIKIM	06∨	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^0 \pi^0$
• • • We do not u	se the follo	owing data for a	verages,	fits, lin	nits, etc. • • •
$2.5 \pm 1.6 \pm 0.8$		BAI	98н	BES	$J/\psi \rightarrow \gamma \pi^0 \pi^0$

 $^{^{1}\,\}mbox{Using CLEO-c}$ data but not authored by the CLEO Collaboration.

$\Gamma(\gamma f_0(1710) \rightarrow \gamma \omega \omega)/\Gamma_{\text{total}}$

 Γ_{186}/Γ

(,,			,
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
$0.31 \pm 0.06 \pm 0.08$	180	ABLIKIM (06н BES	$J/\psi ightarrow \gamma \omega \omega$

HTTP://PDG.LBL.GOV

Page 59

 $^{^{}m 1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

² Includes unknown branching ratio to K^+K^- or $K^0_5K^0_5$.

³ Assuming $J^P = 2^+$ for $f_0(1710)$.

⁴ Includes unknown branching fraction to K^+K^- or $K^0_SK^0_S$. We have multiplied $K^+K^$ measurement by 2, and $K_S^0 K_S^0$ by 4 to obtain $K\overline{K}$ result. ⁵ Assuming $J^P=0^+$ for $f_0(1710)$.

⁶ Includes unknown branching fraction to $\rho^0 \rho^0$.

⁷ Includes unknown branching fraction to $\pi^+\pi^-$.

⁸ Includes unknown branching fraction to $\eta\eta$.

² Including unknown branching fraction to $\pi\pi$.

$\Gamma(\gamma f_0(1710) \rightarrow \gamma \eta \eta)/\Gamma_{\text{total}}$

 Γ_{187}/Γ

(,					
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.35 {+0.13 + 1.24 \atop -0.11 - 0.74}$	5.5k	¹ ABLIKIM	13N	BES3	$J/\psi ightarrow \gamma \eta \eta$	

¹ From partial wave analysis including all possible combinations of 0^{++} , 2^{++} , and 4^{++} resonances.

 $\Gamma(\gamma\eta)/\Gamma_{\text{total}}$ Γ_{188}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.104±0.034 OUR AV	ERAGE					
$1.101 \pm 0.029 \pm 0.022$		PEDLAR	09	CLE3	${\sf J}/\psi ightarrow ~\eta \gamma$	
1.123 ± 0.089	11k	ABLIKIM	06E	BES2	$J/\psi ightarrow \eta \gamma$	
\bullet \bullet We do not use t	he following	g data for average	s, fits,	limits,	etc. • • •	
$0.88 \pm 0.08 \pm 0.11$		BLOOM	83	CBAL	e^+e^-	
0.82 ± 0.10		BRANDELIK	79 C	DASP	e^+e^-	
13 +04	21	BARTFI	77	CNTR	e+e-	

$\Gamma(\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi) / \Gamma_{\text{total}}$

 Γ_{189}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
0.79±0.13 OUR AVERAGE					
$0.68 \pm 0.04 \pm 0.24$	BAI	00 D	BES	$J/\psi \rightarrow \gamma K^{\pm} K_{S}^{0} \pi^{\mp}$	
$0.76\!\pm\!0.15\!\pm\!0.21$				$J/\psi \rightarrow \gamma K \overline{K} \pi$	
$0.87 \pm 0.14 {+0.14 \atop -0.11}$	¹ BAI	90 C	MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$	

¹ Included unknown branching fraction $f_1(1420) \rightarrow K\overline{K}\pi$.

$\Gamma(\gamma f_1(1285))/\Gamma_{\text{total}}$

 Γ_{190}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
0.61 ±0.08 OUR AVERAGE					
$0.69\ \pm0.16\ \pm0.20$	1 BAI			$J/\psi \rightarrow \gamma \gamma \rho^0$	
$0.61\ \pm0.04\ \pm0.21$	² BAI	00 D	BES	$J/\psi \rightarrow \gamma K^{\pm} K_{S}^{0} \pi^{\mp}$	
$0.45\ \pm0.09\ \pm0.17$	³ BAI			$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$	
$0.625 \pm 0.063 \pm 0.103$	⁴ BOLTON	92	MRK3	$J/\psi \rightarrow \gamma f_1(1285)$	
$0.70\ \pm0.08\ \pm0.16$	⁵ BOLTON	92 B	MRK3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$	

¹ Assuming B($f_1(1285) \rightarrow \rho^0 \gamma$) = 0.055 ± 0.013.

$$B(J/\psi \to \gamma f_1(1285), f_1(1285) \to \pi \pi \pi \pi) = (1.44 \pm 0.39 \pm 0.27) \times 10^{-4};$$

 $B(J/\psi \to \gamma f_1(1285), f_1(1285) \to a_0(980)\pi, a_0(980) \to \eta \pi) = (3.90 \pm 0.42 \pm 0.87) \times 10^{-4}.$

$$B(J/\psi \to \gamma f_1(1285), f_1(1285) \to a_0(980)\pi, a_0(980) \to K\overline{K}) = (0.66 \pm 0.26 \pm 0.29) \times 10^{-4};$$

$$\mathsf{B}(J/\psi \to \gamma f_1(1285), f_1(1285) \to \gamma \rho^0) = (0.25 \pm 0.07 \pm 0.03) \times 10^{-4}.$$

² From fit to the $K^*(892)K1^{++}$ partial wave.

² Assuming $\Gamma(f_1(1285) \rightarrow K\overline{K}\pi)/\Gamma_{total} = 0.090 \pm 0.004$.

³ Assuming $\Gamma(f_1(1285) \rightarrow \eta \pi \pi)/\Gamma_{\mathsf{total}} = 0.5 \pm 0.18$.

⁴Obtained summing the sequential decay channels

⁵ Using B($f_1(1285) \rightarrow a_0(980)\pi$) = 0.37, and including unknown branching ratio for $a_0(980) \rightarrow \eta \pi$.

$\Gamma(\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{191}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
4.5±1.0±0.7	BAI	99	BES	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$	

 $\Gamma(\gamma f_2'(1525))/\Gamma_{\text{total}}$

 Γ_{192}/Γ

VALUE (units 10^{-4})	CL%	EVTS	DOCUMENT ID	TECN	COMMENT

$5.7 \begin{array}{l} +0.8 \\ -0.5 \end{array}$ OUR	AVERAGE	Error includes scale factor of 1.5. See the ideogram
below.		

below.					
$8.0 \pm 0.9 \pm 0.2$	750	^{1,2} DOBBS	15		$J/\psi ightarrow \gamma K \overline{K}$
$3.85\!\pm\!0.17^{+1.91}_{-0.73}$		³ BAI	03 G	BES	$J/\psi \to \gamma K \overline{K}$
$3.6 \pm 0.4 ^{+ 1.4}_{- 0.4}$		³ BAI	96 C	BES	$J/\psi \rightarrow \gamma K^+ K^-$
$5.6 \pm 1.4 \pm 0.9$		³ AUGUSTIN	88	DM2	$J/\psi \rightarrow \gamma K^+ K^-$
$4.5 \pm 0.4 \pm 0.9$					$J/\psi \rightarrow \gamma K_S^0 K_S^0$
$6.8 \pm 1.6 \pm 1.4$		³ BALTRUSAIT.	87	MRK3	$J/\psi \rightarrow \gamma K^+ K^-$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<3.4 90 4 BRANDELIK 79C DASP
$$e^+e^- \rightarrow \pi^+\pi^-\gamma$$
 <2.3 90 3 ALEXANDER 78 PLUT $e^+e^- \rightarrow K^+K^-\gamma$

WEIGHTED AVERAGE 5.7+0.8-0.5 (Error scaled by 1.5)

Using CLEO-c data but not authored by the CLEO Collaboration.

² DOBBS 15 reports $[\Gamma(J/\psi(1S) \to \gamma f_2'(1525))/\Gamma_{\text{total}}] \times [B(f_2'(1525) \to \kappa \overline{\kappa})] = (7.09 \pm 0.46 \pm 0.67) \times 10^{-4}$ which we divide by our best value $B(f_2'(1525) \to \kappa \overline{\kappa}) = (88.7 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Using B($f_2'(1525) \rightarrow K\overline{K}$) = 0.888. ⁴ Assuming isotropic production and decay of the $f_2'(1525)$ and isospin

Assuming isotropic production and decay of the $r_2^{\prime}(1525)$ and isospin.							
$\Gamma(\gamma f_2'(1525) \rightarrow \gamma f_2'(1525))$	$(\eta)/\Gamma_{tota}$	l				Γ ₁₉₃ /Γ	
<i>VALUE</i> (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT		
$3.42^{igoplus 0.43}_{-0.51}^{+1.37}_{-1.30}$	5.5k	¹ ABLIKIM	13N	BES3	$J/\psi ightarrow \gamma \eta \eta$		
¹ From partial wave resonances.	analysis inc	cluding all possible	comb	inations	of 0 ⁺⁺ , 2 ⁺⁺ ,	and 4 ⁺⁺	
$\Gamma(\gamma f_2(1640) \to \gamma \omega \omega)/\Gamma_{\text{total}}$ Γ_{194}/Γ							
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT		
$0.28 \pm 0.05 \pm 0.17$	141	ABLIKIM	06н	BES	$J/\psi ightarrow \gamma \omega \omega$		

0.20 2 0.00 2 0.21	1.1	ADEIMIN	OON DES	\mathbf{J}/φ , \mathbf{J}	υ ω
$\Gamma(\gamma f_2(1910) \rightarrow \gamma \omega c$	$ω)/\Gamma_{total}$				Γ ₁₉₅ /Γ

VALUE (units 10^{-3}) **EVTS** $0.20\pm0.04\pm0.13$ 06н BES 151 **ABLIKIM**

 $\Gamma(\gamma f_0(1800) \rightarrow \gamma \omega \phi)/\Gamma_{\text{total}}$ Γ_{196}/Γ

VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
2.5 ±0.6 OUR AVER	RAGE				
$2.00\!\pm\!0.08\!+\!1.38\\-1.64$	1.3k	ABLIKIM	13 J	BES3	$J/\psi ightarrow \gamma \omega \phi$
$2.61\!\pm\!0.27\!\pm\!0.65$	95	ABLIKIM	06J	BES2	$J/\psi ightarrow ho \omega \phi$

$\Gamma(\gamma f_2(1950) \rightarrow \gamma K^*(892) \overline{K}^*(892)) / \Gamma_{\text{total}}$ Γ_{198}/Γ

 $VALUE (units 10^{-3})$ $\frac{\textit{TECN}}{\mathsf{BES}} \quad \frac{\textit{COMMENT}}{\textit{J}/\psi \, \rightarrow \, \gamma \, \textit{K}^{+} \, \textit{K}^{0} \, \pi^{+} \, \pi^{-}}$ DOCUMENT ID $0.7 \pm 0.1 \pm 0.2$ 00B BES

$\Gamma(\gamma K^*(892)\overline{K}^*(892))/\Gamma_{\text{total}}$ Γ_{199}/Γ

VALUE (units 10^{-3}) TECN COMMENT **EVTS** $4.0\pm0.3\pm1.3$ 320 00B BES

$\Gamma(\gamma\phi\phi)/\Gamma_{\text{total}}$ Γ_{200}/Γ

VALUE (units 10^{-4}) **EVTS** DOCUMENT ID TECN COMMENT **4.0±1.2 OUR AVERAGE** Error includes scale factor of 2.1. See the ideogram below. 90B MRK3 $J/\psi
ightarrow \gamma 4K$ $7.5 \!\pm\! 0.6 \!\pm\! 1.2$ 168 90 DM2 $J/\psi \rightarrow \gamma K^+ K^- K^0_S K^0_L$ 86B DM2 $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ ¹ BISELLO 33 ± 7 $3.4 \pm 0.8 \pm 0.6$ ¹ BISELLO $3.1\!\pm\!0.7\!\pm\!0.4$

¹ From partial wave analysis including all possible combinations of 0^{++} , 2^{++} , and 4^{++}

¹Summed over all charges.

 $^{^{1}\,\}phi\,\phi$ mass less than 2.9 GeV, $\eta_{\it C}$ excluded.

$\Gamma(\gamma p \overline{p})/\Gamma_{\text{total}}$					Γ_{201}/Γ
$VALUE$ (units 10^{-3})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
$0.38 \pm 0.07 \pm 0.07$	49	EATON	84	MRK2	e^+e^-
• • • We do not use the	e following data for	averages, fits, limi	ts, e	tc. • • •	•
< 0.11	90	PERUZZI	78	MRK1	e^+e^-
$\Gamma(\gamma\eta(2225))/\Gamma_{\text{total}}$					Γ_{202}/Γ

VALUE (units 10^{-4}) $3.14^{+0.50}_{-0.19}$ OUR AVERAGE

TECN COMMENT

$2.40\pm0.10^{+2.47}_{-0.18}$		1,2 ABLIKIM	16N	BES3	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
$4.4 \pm 0.4 \pm 0.8$	196	² ABLIKIM	180	BES	$J/\psi \rightarrow \gamma K^+ K^- K^0_S K^0_I$
$3.3 \pm 0.8 \pm 0.5$		² BAI	90 B	MRK3	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
$2.7\ \pm0.6\ \pm0.6$		² BAI	90 B	MRK3	$J/\psi \rightarrow \gamma K^+ K^- K_S^0 K_I^0$
$2.4 \begin{array}{c} +1.5 \\ -1.0 \end{array}$		^{3,4} BISELLO	89 B	DM2	$J/\psi ightarrow 4\pi\gamma$

¹ From a partial wave analysis of $J/\psi \to \gamma \phi \phi$ that also finds significant signals for for $\eta(2100), 0^{-}+$ phase space, $f_0(2100), f_2(2010), f_2(2300), f_2(2340)$, and a previously unseen $0^{-}+$ state X(2500) (M = $2470^{+15}_{-19}^{+101}_{-23}$ MeV, $\Gamma=230^{+64}_{-35}^{+56}_{-33}$ MeV).

 $^{^2}$ Includes unknown branching fraction to $\phi\phi.$

³ Estimated by us from various fits.

⁴ Includes unknown branching fraction to $\rho^0 \rho^0$.

 $\Gamma(\gamma\eta(1760) \to \gamma\rho^0\rho^0)/\Gamma_{ ext{total}}$ VALUE (units 10⁻³)

DOCUMENT ID

TECN COMMENT

0.13\pm0.09 1,2 BISELLO 89B DM2 J/ψ

$\Gamma(\gamma\eta(1760) \rightarrow \gamma\omega\omega)/\Gamma_{\text{total}}$

 Γ_{204}/Γ

 Γ_{203}/Γ

\	,					
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.98±0.08±0.32	1045	ABLIKIM	06н	BES	$J/\psi \rightarrow \gamma \omega \omega$	

$\Gamma(\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta')/\Gamma_{\text{total}}$

 Γ_{205}/Γ

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT

2.77 $^{+0.34}_{-0.40}$ OUR AVERAGE Error includes scale factor of 1.1.

$\Gamma(\gamma X(1835) \to \gamma p \overline{p})/\Gamma_{\text{total}}$

 $0.70 \pm 0.04 + 0.19 \\ -0.08$

 Γ_{206}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT		
$0.77^{m{+0.15}}_{m{-0.09}}$ OUR AVERAGE							
$0.90 {}^{+ 0.04}_{- 0.11} {}^{+ 0.27}_{- 0.55}$		¹ ABLIKIM	12 D	BES3	$J/\psi ightarrow \gamma p \overline{p}$		
$1.14 ^{+ 0.43 + 0.42}_{- 0.30 - 0.26}$	231	² ALEXANDER	10	CLEO	$J/\psi ightarrow \gamma p \overline{p}$		

 $^{^{1}}$ From the fit including final state interaction effects in isospin 0 S-wave according to SIBIRTSEV 05A.

BAI

03F BES2 $J/\psi \rightarrow \gamma p \overline{p}$

$\Gamma(\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta) / \Gamma_{\text{total}}$

 Γ_{207}/Γ

VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT
3.31 ^{+0.33+1.96} -0.30-1.29	ABLIKIM	15T	BES3	$J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

¹ Estimated by us from various fits.

² Includes unknown branching fraction to $\rho^0 \rho^0$.

¹ From a fit of the measured $\pi^+\pi^-\eta'$ lineshape that accounts for the abrupt distortion observed at the $p\overline{p}$ threshold with a Flatte formula in addition to known backgrounds and contributors, as well as an *ad hoc* Breit-Wigner (M ≈ 1919 MeV; $\Gamma \approx 51$ MeV) that is required for a good fit. Another explanation for the distortion provided by ABLIKIM 16J is that a second resonance near 1870 MeV interferes with the X(1835); fits to this possibility yield product branching fraction values compatible with that shown within the respective systematic uncertainties.

² From a fit of the $\pi^+\pi^-\eta'$ mass distribution to a combination of γf_1 (1510), γX (1835), and two unconfirmed states γX (2120), and γX (2370), for $M(p\overline{p}) < 2.8$ GeV, and accounting for backgrounds from non- η' events and $J/\psi \to \pi^0\pi^+\pi^-\eta'$.

² From a fit of the $p\overline{p}$ mass distribution to a combination of $\gamma X(1835)$, γR with M(R) = 2100 MeV and $\Gamma(R) = 160$ MeV, and $\gamma p\overline{p}$ phase space, for $M(p\overline{p}) < 2.85$ GeV.

$\Gamma(\gamma X(1840) \rightarrow \gamma 3)$	$3(\pi^{+}\pi^{-}))$	/Γ _{total}				Г ₂₀₈ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.44 \pm 0.36 ^{+0.60}_{-0.74}$	0.6k	ABLIKIM	13∪	BES3	$J/\psi \rightarrow \gamma 3(c)$	$\pi^{+}\pi^{-}$)
$\Gamma(\gamma(K\overline{K}\pi)[J^{PC}]$	= 0 ⁻ +])	/Γ _{total}				Γ ₂₀₉ /Γ
VALUE (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	-
0.7 ±0.4 OUR AVE	RAGE Err		actor c	of 2.1.		
$0.58\!\pm\!0.03\!\pm\!0.20$		¹ BAI		BES	$J/\psi \rightarrow \gamma K^2$	
$2.1 \pm 0.1 \pm 0.7$		² BAI	00 D	BES	$J/\psi \rightarrow \gamma K^{2}$	$^{\pm}K_{S}^{0}\pi^{+}$
1 For a broad struct 2 For a broad struct	cure around	1800 MeV. 2040 MeV.				
$\Gamma(\gamma\pi^0)/\Gamma_{ m total}$						Γ ₂₁₀ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.49^{+0.33}_{-0.30}$ OUR AVE	RAGE					
$3.63 \pm 0.36 \pm 0.13$		PEDLAR	09	CLE3	$J/\psi \rightarrow \pi^0 \gamma$,
$3.13^{+0.65}_{-0.47}$	586	ABLIKIM	06E	BES2	$J/\psi \rightarrow \pi^0 \gamma$,
 ■ • • We do not use 	the followin	g data for average	es, fits,	limits, e	etc. • • •	
$3.6 \pm 1.1 \pm 0.7$		BLOOM	83		e^+e^-	
7.3 ±4.7	10	BRANDELIK		_		
$\Gamma(\gamma \rho \overline{\rho} \pi^+ \pi^-)/\Gamma_{tc}$	ntal					Γ ₂₁₁ /Γ
VALUE (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	===/
<0.79	90	EATON		MRK2		
$\Gamma(\gamma\Lambda\overline{\Lambda})/\Gamma_{\text{total}}$						Γ ₂₁₂ /Γ
` '	CL%	DOCUMENT ID		TECN	COMMENT	
<0.13	90	HENRARD	87	DM2	e^+e^-	
ullet $ullet$ We do not use	the followin	g data for average	es, fits,	limits, e	etc. • • •	
< 0.16	90	BAI	98 G	BES	e^+e^-	
$\Gamma(\gamma f_0(2100) \rightarrow \gamma i$	$(\eta\eta)/\Gamma_{total}$					Γ ₂₁₃ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT	_
$1.13^{+0.09}_{-0.10}^{+0.64}_{-0.28}$	5.5k	¹ ABLIKIM	13N	BES3	$J/\psi \rightarrow \gamma \eta \eta$	1
¹ From partial wave resonances.	analysis inc	cluding all possible	comb	inations	of 0 ⁺⁺ , 2 ⁺⁺	, and 4 $^{++}$
$\Gamma(\gamma f_0(2100) \rightarrow \gamma \gamma$	$(\pi\pi)/\Gamma_{total}$					Γ ₂₁₄ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		СОММЕ	NT	
6.24±0.48±0.87						

 $^{^{1}\,\}mbox{Using CLEO-c}$ data but not authored by the CLEO Collaboration.

$\Gamma(\gamma f_0(2200))/\Gamma_{to}$	otal					Γ ₂₁₅ /Γ
VALUE (units 10^{-4})	-	DOCUME	NT ID	TECN	COMMENT	,
• • • We do not us	e the follo					
1.5					$J/\psi \rightarrow \gamma \kappa_S^0$	κ_c^0
¹ Includes unknow	n branchi				/	3
$\Gamma(\gamma f_0(2200) \rightarrow \gamma$	•					Γ ₂₁₆ /Γ
<i>VALUE</i> (units 10 ⁻⁴)						
$5.86 \pm 0.49 \pm 1.20$	490	¹ DOBBS	15	$J/\psi \rightarrow$	$\gamma K \overline{K}$	
¹ Using CLEO-c d	ata but no	ot authored by t	he CLEO Co	llaboratio	on.	
$\Gamma(\gamma f_J(2220))/\Gamma_{\rm t}$	otal					Γ ₂₁₇ /Γ
<i>VALUE</i> (units 10^{-5})	CL% EV	TS DOCUM	IENT ID	TECN	COMMENT	
• • • We do not us	e the follo	wing data for a	verages, fits,	limits, et	tc. • • •	
>300		¹ BAI	961	BES	$e^+e^- \rightarrow \gamma$	$\gamma \overline{p} p$, $K \overline{K}$
>250	99.9	² HASA	N 96	SPEC	$\overline{p}p \rightarrow \pi^{+}\eta$ $J/\psi \rightarrow \gamma K$ $J/\psi \rightarrow \gamma K$	τ_
< 2.3	95	³ AUGU	STIN 88	DM2	$J/\psi \rightarrow \gamma K$	(+ K-
< 1.6	95	3 AUGU	STIN 88	DM2	$J/\psi \rightarrow \gamma K$	SKS
$12.4^{+6.4}_{-5.2}\pm 2.8$:	23 ³ BALTI	RUSAIT861	MRK3	$J/\psi \rightarrow \gamma K$	$\kappa_S^0 \kappa_S^0$
$8.4^{+3.4}_{-2.8}\pm1.6$	9	93 ³ BALTI	RUSAIT861	MRK3	$J/\psi ightarrow \gamma K$	(+ K-
¹ Using BARNES ² Using BAI 96B. ³ Includes unknow	n branchi		$^+$ K $^-$ or K 0	${}_{S}^{0}K_{S}^{0}$.		
$\Gamma(\gamma f_J(2220) \rightarrow \gamma$,					Γ_{218}/Γ
<u>VALUE</u> (units 10 ^{−5}) < 3.9	CL%	DOCUMENT ID	TECI	V <u>COMI</u>	MENT	
• • • We do not us	e the follo					
$14 \pm 8 \pm 4$		BAI		, .	$\rightarrow \gamma \pi^0 \pi^0$	т –
					$^- \rightarrow J/\psi \rightarrow$	$\gamma \pi^+ \pi^-$
1 Using CLEO-c d 2 For $\Gamma = 20/50$ M and $1.3/1.9 \times 10^{-2}$	MeV, the 9	00% CL upper lir	he CLEO Conits for $\pi^+\pi$	ollaboration $^-$ and π	on. $^0\pi^0$ are 2.6/5	5.2×10^{-5}
$\Gamma(\gamma f_J(2220) \rightarrow \gamma$. , .					Γ ₂₁₉ /Γ
$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID DOBBS	TECN	СОММ	IENT	
4.1• • • We do not us						
< 3.6		³ DEL-AMO-SA				$\gamma K^+ K^-$
< 2.9	;	³ DEL-AMO-SA	100 BABI	R e ⁺ e ⁻	$J/\psi \rightarrow$	$\gamma K_c^0 K_c^0$
$6.6 \pm 2.9 \pm 2.4$		BAI	96B BES	e^+e^-	$J/\psi \rightarrow$	$\gamma K^+ K^-$
$10.8\!\pm\!4.0\!\pm\!3.2$		BAI	96B BES	e^+e^-	$J/\psi \rightarrow J/\psi $	$\gamma K_S^0 K_S^0$
1 Using CLEO-c d 2 For $\Gamma=20/50$ M	ata but no 1eV, the 90	ot authored by t 0% CL upper lim	he CLEO Co	llaboratio	on.	
and $1.2/2.0 \times 10^3$ For spin 2 and h	0^{-5} , resp	ectively.				

$\Gamma(\gamma f_J(2220) \rightarrow \gamma \mu$	$(\overline{p})/\Gamma_{\text{tota}}$	ıl	Γ_{220}/Γ
$VALUE$ (units 10^{-5})		DOCUMENT ID TECN COMMENT	
$1.5 \pm 0.6 \pm 0.5$		BAI 96B BES $e^+e^- \rightarrow J/\psi$	$\gamma \rightarrow \gamma p \overline{p}$
$\Gamma(\gamma f_2(2340) \rightarrow \gamma f_2(2340))$,	ıl	Γ ₂₂₁ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID TECN COMMENT	
$5.60^{f +0.62+2.37}_{f -0.65-2.07}$	5.5k	1 ABLIKIM 13N BES3 $J/\psi ightarrow \gamma \eta \eta$	7
¹ From partial wave resonances.	analysis in	cluding all possible combinations of 0^{++} , 2^{++}	, and 4 ⁺⁺
$\Gamma(\gamma f_0(1500) \rightarrow \gamma \tau$,	al	Γ ₂₂₂ /Γ
VALUE (units 10 ⁻⁴) E 1.09±0.24 OUR AVE	<u>VTS</u> RAGE	DOCUMENT ID TECN COMMENT	
$1.21 \pm 0.29 \pm 0.24$	174 ¹ I	DOBBS 15 $J/\psi ightarrow \gamma \pi \pi$	
$1.00\!\pm\!0.03\!\pm\!0.45$	2 ,	ABLIKIM 06V BES2 $e^+e^- ightarrow J/\psi$ –	$\rightarrow \gamma \pi^+ \pi^-$
$1.02\!\pm\!0.09\!\pm\!0.45$	2,	ABLIKIM 06V BES2 $e^+e^- ightarrow~J/\psi$ –	$\rightarrow \gamma \pi^0 \pi^0$
• • • We do not use		ng data for averages, fits, limits, etc. ● ●	
$5.7\ \pm0.8$	3,4 _l	BUGG 95 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^-$	$\pi^+\pi^-$
	(1500) deca	g ratio for $f_0(1500) \to \pi^+\pi^-\pi^+\pi^-$. ays only to two <i>S</i> -wave dipions.	
*	,	ll	Г ₂₂₃ /Г
VALUE (units 10^{-5})	,	DOCUMENT ID <u>TECN</u> COMMENT	Γ ₂₂₃ /Γ
VALUE (units 10^{-5})	EVTS		
VALUE (units 10 ⁻⁵) 1.65+0.26+0.51 -0.31-1.40	<i>EVTS</i> 5.5k	DOCUMENT ID TECN COMMENT	7
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ 1 From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A wi	$\frac{EVTS}{5.5k}$ analysis in the $\frac{1}{2}$ / Γ_{total}	$\frac{\textit{DOCUMENT ID}}{1} \text{ ABLIKIM} \qquad 13\text{N} \text{BES3} J/\psi \to \gamma \eta \tau$ including all possible combinations of 0^{++} , 2^{++}	7 -, and 4 ⁺⁺ Γ ₂₂₄ /Γ
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ ¹ From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A wi	$\frac{EVTS}{5.5k}$ analysis in the $\frac{1}{2}$ / Γ_{total}	$\frac{\textit{DOCUMENT ID}}{1} \text{ ABLIKIM} \qquad 13\text{N} \text{BES3} J/\psi \to \gamma \eta \tau$ including all possible combinations of 0^{++} , 2^{++}	7 -, and 4 ⁺⁺ Γ ₂₂₄ /Γ
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ 1 From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A wince A	$\frac{EVTS}{5.5k}$ analysis in $\frac{e}{h}$ / Γ_{total} th m_A < $\frac{CL\%}{90}$	$\frac{DOCUMENT\ ID}{1} \ \frac{DOCUMENT\ ID}{1} \ \frac{TECN}{1} \ \frac{COMMENT}{1} \ \frac{1}{1} \ \frac{DOCUMENT\ ID}{1} \ \frac{DOCUMENT\ ID}{1} \ \frac{TECN}{1} \ \frac{COMMENT}{1} \ CO$	Γ_{7} , and 4^{++} Γ_{224}/Γ_{7} Γ_{7}
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{+0.51}_{-1.40}$ ¹ From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A with $VALUE$ (units 10^{-6}) <6.3 ¹ The limit varies with $VALUE$ (units $VALUE$)	$\frac{EVTS}{5.5k}$ analysis in th $m_A < \frac{CL\%}{90}$ ith mass m	DOCUMENT ID TECN COMMENT 1 ABLIKIM 13N BES3 $J/\psi \rightarrow \gamma \eta \eta$ Including all possible combinations of 0^{++} , 2^{++} 2 960 MeV) DOCUMENT ID 1 INSLER 10 CLEO $e^+e^- \rightarrow \pi$ 10 of a narrow state A and is 4.3×10^{-6} for m_A	Γ_{7} , and 4^{++} Γ_{224}/Γ_{7} Γ_{7}
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{+0.51}_{-1.40}$ ¹ From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A with ΔA with	$\frac{EVTS}{5.5k}$ analysis in th $m_A < \frac{CL\%}{90}$ ith mass m	$\frac{\textit{DOCUMENT ID}}{1} \text{ ABLIKIM} \qquad 13\text{N} \text{BES3} J/\psi \to \gamma \eta \tau$ including all possible combinations of 0^{++} , 2^{++}	Γ , and 4 ⁺⁺ Γ_{224}/Γ $\Gamma_{3}=0 \text{ MeV},$
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ 1 From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A with $VALUE$ (units 10^{-6}) <6.3 1 The limit varies with reaches its largest 960 MeV. $\Gamma(\gamma A^0 \rightarrow \gamma \mu^+ \mu^-)$	$\frac{EVTS}{5.5k}$ analysis in $\frac{E}{2}$ / Γ_{total} th m_A < $\frac{CL\%}{90}$ ith mass m_A value of 6.	DOCUMENT ID TECN COMMENT 1 ABLIKIM 13N BES3 $J/\psi \rightarrow \gamma \eta \eta$ Including all possible combinations of 0^{++} , 2^{++} C 960 MeV) DOCUMENT ID 1 INSLER 10 CLEO $e^+e^- \rightarrow \pi$ In A of a narrow state A and is 4.3×10^{-6} for m_A 3×10^{-6} at $m_A = 500$ MeV, and is 3.6×10^{-6}	Γ_{224}/Γ Γ_{224}/Γ $\Gamma_{3}=0 \text{ MeV},$ $\Gamma_{4}=0 \text{ MeV},$ $\Gamma_{5}=0 \text{ MeV},$ $\Gamma_{6}=0 \text{ MeV},$
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ 1 From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A with A	$\frac{EVTS}{5.5k}$ analysis in E)/ Γ_{total} th $m_A < \frac{CL\%}{90}$ ith mass m value of 6.)/ Γ_{total} with 0.2 G	DOCUMENT ID TECN COMMENT 1 ABLIKIM 13N BES3 $J/\psi \rightarrow \gamma \eta \eta$ Including all possible combinations of 0^{++} , 2^{++} 2 960 MeV) DOCUMENT ID 1 INSLER 10 CLEO $e^+e^- \rightarrow \pi$ 10 A of a narrow state A and is 4.3×10^{-6} for m_A 13 × 10 ⁻⁶ at $m_A = 500$ MeV, and is 3.6×10^{-6}	Γ_{7} , and 4^{++} Γ_{224}/Γ_{7} Γ_{7}
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ 1 From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A with $VALUE$ (units 10^{-6}) <6.3 1 The limit varies with reaches its largest 960 MeV. $\Gamma(\gamma A^0 \rightarrow \gamma \mu^+ \mu^-)$ (narrow state A^0 with A^0 wi	$\frac{EVTS}{5.5k}$ analysis in E)/ Γ_{total} th $m_A < \frac{CL\%}{90}$ ith mass m value of 6.)/ Γ_{total} with 0.2 G	DOCUMENT ID TECN COMMENT 1 ABLIKIM 13N BES3 $J/\psi \rightarrow \gamma \eta \eta$ Including all possible combinations of 0^{++} , 2^{++} 2 960 MeV) DOCUMENT ID 1 INSLER 10 CLEO $e^+e^- \rightarrow \pi$ 10 A of a narrow state A and is 4.3×10^{-6} for m_A 13 × 10 ⁻⁶ at $m_A = 500$ MeV, and is 3.6×10^{-6}	Γ_{7} , and 4^{++} Γ_{224}/Γ_{7} Γ_{7}
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ 1 From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A with $VALUE$ (units 10^{-6}) <6.3 1 The limit varies with reaches its largest 960 MeV. $\Gamma(\gamma A^0 \rightarrow \gamma \mu^+ \mu^-)$ (narrow state A^0 with $VALUE$ (units 10^{-5}) <0.5	$\frac{EVTS}{5.5k}$ analysis in E)/ Γ_{total} th $m_A < \frac{CL\%}{90}$ ith mass m value of 6.)/ Γ_{total} with 0.2 G $\frac{CL\%}{90}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ_{7} , and 4^{++} Γ_{224}/Γ_{7} Γ_{7}
VALUE (units 10^{-5}) 1.65 $^{+0.26}_{-0.31}$ $^{-1.40}$ 1 From partial wave resonances. $\Gamma(\gamma A \rightarrow \gamma \text{ invisible})$ (narrow state A with $VALUE$ (units 10^{-6}) <6.3 1 The limit varies with reaches its largest 960 MeV. $\Gamma(\gamma A^0 \rightarrow \gamma \mu^+ \mu^-)$ (narrow state A^0 with $VALUE$ (units 10^{-5}) <0.5	$\frac{EVTS}{5.5k}$ analysis in E)/ Γ_{total} th $m_A < \frac{CL\%}{90}$ ith mass m value of 6.)/ Γ_{total} with 0.2 G $\frac{CL\%}{90}$	DOCUMENT ID TECN COMMENT 1 ABLIKIM 13N BES3 $J/\psi \rightarrow \gamma \eta \eta$ Including all possible combinations of 0^{++} , 2^{++} 2 960 MeV) DOCUMENT ID 1 INSLER 10 CLEO $e^+e^- \rightarrow \pi$ 10 A of a narrow state A and is 4.3×10^{-6} for m_A 13 × 10 ⁻⁶ at $m_A = 500$ MeV, and is 3.6×10^{-6}	Γ_{7} , and 4^{++} Γ_{224}/Γ $\Gamma_{1}+\pi^{-}J/\psi$ Γ_{225}/Γ $\Gamma_{1}+\mu^{-}$

 $^{^1}$ For a narrow scalar or pseudoscalar, A^0 , with a mass in the range 0.212–3 GeV. The measured 90% CL limit as a function of m_{A^0} is in the range (2.8–495.3) \times 10 $^{-8}$. 2 For a narrow scalar or pseudoscalar, A^0 , with a mass in the range 0.21–3.00 GeV. The measured 90% CL limit as a function of m_{A^0} ranges from 4 \times 10 $^{-7}$ to 2.1 \times 10 $^{-5}$.

— DALITZ DECAYS —

		- DALITZ DECA	113			
$\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$						Γ ₂₂₆ /Γ
VALUE (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT	
$7.56 \pm 1.32 \pm 0.50$	39	ABLIKIM	141	BES3	$J/\psi \rightarrow \pi$	$^{0}e^{+}e^{-}$
$\Gamma(\eta e^+ e^-)/\Gamma_{\text{total}}$						Γ ₂₂₇ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.16 \pm 0.07 \pm 0.06$		$^{ m 1}$ ABLIKIM				e^+e^-
1 Using both $\eta ightarrow \gamma$	$\gamma\gamma$ and η -	$_{ ightarrow}$ $_{\pi}^{+}\pi^{-}\pi^{0}$ decay	s.			
$\Gamma(\eta'(958)e^+e^-)/\Gamma$	- total					Γ ₂₂₈ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$5.81 \pm 0.16 \pm 0.31$	1.4k	¹ ABLIKIM	141	BES3	$J/\psi ightarrow \eta^{\prime}$	$'e^+e^-$
1 Using both $\eta' ightarrow$	$\gamma\pi^+\pi^-$ a	and $\eta' \to \pi^+\pi^-\eta$	decay	/S.		
		- WEAK DECA	YS -		_	
$\Gamma(D^-e^+\nu_e + \text{c.c.})$	/Γ _{total}					Γ ₂₂₉ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.2	90	ABLIKIM	06м	BES2	$e^+e^- \rightarrow$	J/ψ
$\Gamma(\overline{D}^0 e^+ e^- + \text{c.c.})$	$/\Gamma_{ ext{total}}$					Γ ₂₃₀ /Γ
$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.1	90	ABLIKIM	06 M	BES2	$e^+e^- \rightarrow$	J/ψ
$\Gamma(D_s^- e^+ \nu_e + \text{c.c.})$	/Γ _{total}					Γ ₂₃₁ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
< 1.3	90	ABLIKIM	14 R	BES3	$e^+e^- \rightarrow$	J/ψ
• • • We do not use t	he followir	ng data for averages	s, fits,	limits,	etc. • • •	
<36	90	$^{ m 1}$ ABLIKIM	06м	BES2	$e^+e^ \rightarrow$	J/ψ
¹ Using B($D_s^- o \phi$	$(\pi^{-}) = 4.$	4 ± 0.5 %.				
$\Gamma(D_s^{*-}e^+\nu_e+\text{c.c.})$	$)/\Gamma_{ m total}$					Γ ₂₃₂ /Γ
<u>VALUE</u> <1.8 × 10 ^{−6}	CL%	DOCUMENT ID				
$<1.8 \times 10^{-6}$	90	ABLIKIM	14 R	BES3	e^+e^-	J/ψ
$\Gamma(D^-\pi^+ + \text{c.c.})/\Gamma$	total					Γ ₂₃₃ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID				
$< 7.5 \times 10^{-5}$	90	ABLIKIM	081	BES2	$e^+e^- \rightarrow$	J/ψ
$\Gamma(\overline{D}^{0}\overline{K}^{0}+\text{c.c.})/\Gamma_{t}$	otal					Γ ₂₃₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID			<u> </u>	
$<1.7 \times 10^{-4}$	90	ABLIKIM	08J	BES2	$e^+e^- \rightarrow$	J/ψ

$\Gamma(\overline{D}^0\overline{K}^{*0} + \text{c.c.})/\Gamma_{to}$					Γ ₂₃₅ /Γ
	<u>CL%</u>	DOCUMENT ID			COMMENT
$<2.5\times10^{-6}$	90	ABLIKIM	14K	BES3	$e^+e^- o J/\psi$
$\Gamma(D_s^-\pi^+ + \text{c.c.})/\Gamma_{\text{tot}}$	tal				Γ ₂₃₆ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.3 × 10 ⁻⁴	90	ABLIKIM	08J	BES2	$e^+e^- o J/\psi$
$\Gamma(D_s^-\rho^+ + \text{c.c.})/\Gamma_{\text{tot}}$	al				Γ ₂₃₇ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT
$<1.3 \times 10^{-5}$	90	ABLIKIM	14K	BES3	$e^+e^- o J/\psi$
—— CHAI					
$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$	AWILI IV	OWIDER (EI	, vic	Z	Γ ₂₃₈ /Γ
VALUE (units 10 ⁻⁷)	CI %	DOCUMENT ID		TECN	COMMENT
< 2.7	90	ABLIKIM			$\frac{\psi(2S) \to \pi^+ \pi^- J/\psi}{\psi(2S) \to \pi^+ \pi^- J/\psi}$
• • • We do not use the					
< 50	90	ADAMS	08	CLEO	$\psi(2S) \rightarrow \pi^+\pi^-J/\psi$
<1600	90 1	WICHT	80		$B^{\pm} \rightarrow K^{\pm} \gamma \gamma$
< 220	90	ABLIKIM	07 J	BES2	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
< 5000	90	BARTEL	77	CNTR	e^+e^-
					$J/\psi(1S)K^+)$] < 0.16 × C^+) = 1.026 × 10 ⁻³ .
$\Gamma(\gamma\phi)/\Gamma_{\text{total}}$					Γ ₂₃₉ /Γ
VALUE	CL%	DOCUMENT ID		TECN	
$<1.4 \times 10^{-6}$	90	ABLIKIM	14Q	BES3	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{total}$					Γ ₂₄₀ /Γ
VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT
< 1.6	90	ABLIKIM	13L	BES3	$\mathrm{e^+e^-} ightarrow ~J/\psi$
• • • We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
<11	90	BAI	03 D	BES	$\mathrm{e^+e^-} ightarrow ~J/\psi$
$\Gamma(e^{\pm} au^{\mp})/\Gamma_{ m total}$					Γ ₂₄₁ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<8.3	90	ABLIKIM	04	BES	$rac{ extit{COMMENT}}{ extit{e}^+ extit{e}^- ightarrow \; J/\psi}$
$\Gamma(\mu^{\pm} au^{\mp})/\Gamma_{ m total}$					Γ ₂₄₂ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<2.0	90	ABLIKIM	04	BES	$e^+e^- o J/\psi$

- Other Decays —

$\Gamma(\text{invisible})/\Gamma(e^{-})$	⁺ e ⁻)				Γ_{243}/Γ_{5}
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<6.6 \times 10^{-2}$	90	LEES	131	BABR	$B \rightarrow K^{(*)}J/\psi$
$\Gamma(\text{invisible})/\Gamma(\mu^{-1})$	$^+\mu^-)$				Γ_{243}/Γ_{7}
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<1.2 \times 10^{-2}$	90	ABLIKIM	08G	BES2	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$

$J/\psi(1S)$ REFERENCES

ABLIKIM	16E	PR D93 052005	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	16J	PRL 117 042002	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	16K	PR D93 052010	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	16L	PR D93 072003	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	16M	PR D93 072008	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	16N	PR D93 112011	M. Ablikim	(BES III Collab.)
ABLIKIM	16P	PR D94 072005	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	16Q	PL B761 98	M. Ablikim <i>et al.</i>	(BES III Collab.)
AAIJ	15BI	EPJ C75 311	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	-	PR D92 052003	M. Ablikim <i>et al.</i>	` ,
				(BES III Collab.)
ABLIKIM	15H	PR D91 052017	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	15K	PR D91 112001	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	15P	PR D92 012007	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	15T	PRL 115 091803	M. Ablikim et al.	(BES III Collab.)
ANASHIN	15	PL B749 50	V.V. Anashin <i>et al.</i>	(KEDR Collab.)
DOBBS	15	PR D91 052006	S. Dobbs <i>et al.</i>	(NWES)
LEES	15J	PR D92 072008	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ABLIKIM	14I	PR D89 092008	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	14K	PR D89 071101	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	14N	PR D90 052009	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	14Q	PR D90 092002	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	14R	PR D90 112014	M. Ablikim <i>et al.</i>	(BES III Collab.)
ANASHIN	14	PL B738 391	V.V. Anashin et al.	(KEDR Collab.)
AULCHENKO	14	PL B731 227	V.M. Aulchenko et al.	(KEDR Collab.)
LEES	14H	PR D89 092002	J.P. Lees <i>et al.</i>	(BABAR Collab)
ABLIKIM	13F	PR D87 052007	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	131	PR D87 032003	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	13J	PR D87 032008	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13L	PR D87 112007	Ablikim M. et al.	(BES III Collab.)
ABLIKIM	13N	PR D87 092009	Ablikim M. <i>et al.</i>	(BES III Collab.)
ABLIKIM	13P	PR D87 112004	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13R	PR D88 032007	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13U	PR D88 091502	M. Ablikim et al.	(BES III Collab.)
LEES	13I	PR D87 112005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	130	PR D87 092005	J.P. Lees et al.	(BABAR Collab.)
LEES	13Q	PR D88 032013	J.P. Lees et al.	(BABAR Collab.)
LEES	13Y	PR D88 072009	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ABLIKIM	12 12B	PR D85 092012	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM		PR D86 032008	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	12C	PR D86 032014	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	12D	PRL 108 112003	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	12H	PL B710 594	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	12P	CP C36 1031	M. Ablikim <i>et al.</i>	(BES II Collab.)
LEES	12E	PR D85 112009	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12F	PR D86 012008	J.P. Lees <i>et al.</i>	(BABAR Collab.)
METREVELI	12	PR D85 092007	Z. Metreveli <i>et al.</i>	(NWES, FLOR, WAYN $+$)
ABLIKIM	11	PR D83 012003	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11C	PRL 106 072002	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11D	PR D83 032003	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	10C	PL B685 27	M. Ablikim <i>et al.</i>	(BES II Collab.)
ABLIKIM	10E	PL B693 88	M. Ablikim <i>et al.</i>	(BES II Collab.)
ALEXANDER	10	PR D82 092002	J.P. Alexander et al.	`(CLEO Collab.)
ANASHIN	10	PL B685 134	V.V. Anashin et al.	(KEDR Collab.)
DEL-AMO-SA	. 100	PRL 105 172001	P. del Amo Sanchez et al.	(BABAR Collab.)
				,

INICLED	10	DD D01 001101		(6150 6 11 1)
INSLER	10	PR D81 091101	J. Insler <i>et al.</i>	(CLEO Collab.)
ABLIKIM	09	PL B676 25	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	09B	PR D80 052004	M. Ablikim <i>et al.</i>	(BES II Collab.)
MITCHELL	09	PRL 102 011801	R.E. Mitchell et al.	(CLEO Collab.)
PEDLAR	09	PR D79 111101	T.K. Pedlar <i>et al.</i>	(CLEO Collab.)
SHEN	09	PR D80 031101	C.P. Shen <i>et al.</i>	(BELLE Collab.)
ABLIKIM	80	EPJ C53 15	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	A80	PR D77 012001	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	08C	PL B659 789	M. Ablikim et al.	(BES Collab.)
ABLIKIM	08E	PR D77 032005	M. Ablikim <i>et al.</i>	(BES Collab.)
			M. Ablikim <i>et al.</i>	1 - 1
ABLIKIM	08F	PRL 100 102003		(BES Collab.)
ABLIKIM	08G	PRL 100 192001	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	180	PL B662 330	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	08J	PL B663 297	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	080	PR D78 092005	M. Ablikim <i>et al.</i>	(BES Collab.)
ADAMS	08	PRL 101 101801	G.S. Adams <i>et al.</i>	(CLEO Collab.)
AUBERT	08S	PR D77 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
BESSON	80	PR D78 032012	D. Besson <i>et al.</i>	(CLEO Collab.)
PDG	80	PL B667 1	C. Amsler <i>et al.</i>	(PDG Collab.)
WICHT	80	PL B662 323	J. Wicht <i>et al.</i>	(BÈLLE Collab.)
ABLIKIM	07H	PR D76 092003	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	07J	PR D76 117101	M. Ablikim <i>et al.</i>	(BES Collab.)
ANDREOTTI	07	PL B654 74	M. Andreotti <i>et al.</i>	(Femilab E835 Collab.)
AUBERT	07AK	PR D76 012008	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07AU	PR D76 092005	B. Aubert <i>et al.</i>	(BABAR Collab.)
Also			(errat.) B. Aubert et al.	(BABAR Collab.)
AUBERT	07PD	PR D76 092006	B. Aubert et al.	(BABAR Collab.)
-				(DADAIT COIIAD.)
ABLIKIM	06	PL B632 181	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06C	PL B633 681	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06E	PR D73 052008	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06F	PR D73 052007	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06H	PR D73 112007	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06J	PRL 96 162002	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06K	PRL 97 062001	M. Ablikim <i>et al.</i>	(BÈS II Collab.)
ABLIKIM	06M	PL B639 418	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06V	PL B642 441	M. Ablikim <i>et al.</i>	(BES Collab.)
ADAMS	06A	PR D73 051103	G.S. Adams et al.	(CLEO Collab.)
AUBERT	06B	PR D73 012005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06D	PR D73 052003	B. Aubert <i>et al.</i>	(BABAR Collab.)
	06E	PRL 96 052002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT				
AUBERT,BE	06D	PR D74 091103	B. Aubert <i>et al.</i>	(BABAR Collab.)
WU	06	PRL 97 162003	CH. Wu <i>et al.</i>	(BELLE Collab.)
ABLIKIM	05	PL B607 243	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05B	PR D71 032003	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05C	PL B610 192	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05H	PR D72 012002	M. Ablikim <i>et al.</i>	1 - 1
				(BES Collab.)
ABLIKIM	05R	PRL 95 262001	M. Ablikim <i>et al.</i>	(BES Collab.)
AUBERT	05D	PR D71 052001	B. Aubert <i>et al.</i>	(BABAR Collab.)
LI	05C	PR D71 111103	Z. Li <i>et al.</i>	(CLEO Collab.)
SIBIRTSEV	05A	PR D71 054010	A. Sibirtsev, J. Haidenbauer	
ABLIKIM	04	PL B598 172	M. Ablikim et al.	(BES Collab.)
ABLIKIM	04M	PR D70 112008	M. Ablikim <i>et al.</i>	(BES Collab.)
AUBERT	04	PR D69 011103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04N	PR D70 072004	B. Aubert <i>et al.</i>	(BABAR Collab.)
BAI	04	PL B578 16	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	04A	PR D69 012003	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	04D	PL B589 7	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	04E	PL B591 42	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	04G		J.Z. Bai <i>et al.</i>	(BES Collab.)
		PR D70 012004		
BAI	04H	PR D70 012005	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	04J	PL B594 47	J.Z. Bai <i>et al.</i>	(BES Collab.)
SETH	04	PR D69 097503	K.K. Seth	
AULCHENKO	03	PL B573 63	V.M. Aulchenko et al.	(KEDR Collab.)
BAI	03D	PL B561 49	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	03F	PRL 91 022001	J.Z. Bai <i>et al.</i>	(BES II Collab.)
BAI	03G	PR D68 052003	J.Z. Bai et al.	(BES Collab.)
HUANG	03	PRL 91 241802	HC. Huang et al.	(BELLE Collab.)
BAI	02C	PRL 88 101802	J.Z. Bai et al.	(BES Collab.)
ARTAMONOV	00	PL B474 427	A.S. Artamonov et al.	
BAI	00	PRL 84 594	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	00B	PL B472 200	J.Z. Bai <i>et al.</i>	(BES Collab.)
				` ,

BAI BAI BAI BAI BAI BALDINI ARMSTRONG BAI BAI	00D 99 99C 98D 98G 98H 98 96 96B 96C 96D	PL B476 25 PL B446 356 PRL 83 1918 PR D58 092006 PL B424 213 PRL 81 1179 PL B444 111 PR D54 7067 PRL 76 3502 PRL 77 3959 PR D54 1221	J.Z. Bai et al. T.A. Armstrong et al. J.Z. Bai et al.	(BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (FENICE Collab.) (E760 Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.)
GRIBUSHIN HASAN	96 96	PR D53 4723 PL B388 376	A. Gribushin <i>et al.</i> A. Hasan, D.V. Bugg	(E672 Collab., E706 Collab.) (BRUN, LOQM)
BAI BUGG	95B 95	PL B355 374 PL B353 378	J.Z. Bai <i>et al.</i> D.V. Bugg <i>et al.</i>	(BES Collab.) (LOQM, PNPI, WASH)
ANTONELLI	93	PL B301 317	A. Antonelli et al.	(FENICE Collab.)
ARMSTRONG BARNES	93B 93	PR D47 772 PL B309 469	T.A. Armstrong <i>et al.</i> P.D. Barnes <i>et al.</i>	(FNAL E760 Collab.) (PS185 Collab.)
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)
BOLTON BOLTON	92 92B	PL B278 495 PRL 69 1328	T. Bolton <i>et al.</i> T. Bolton <i>et al.</i>	(Mark III Collab.) (Mark III Collab.)
COFFMAN	92	PRL 68 282	D.M. Coffman et al.	(Mark III Collab.)
HSUEH	92	PR D45 R2181	S. Hsueh, S. Palestini	(FNAL, TORI)
BISELLO AUGUSTIN	91 90	NP B350 1 PR D42 10	D. Bisello <i>et al.</i> J.E. Augustin <i>et al.</i>	(DM2 Collab.) (DM2 Collab.)
BAI	90B	PRL 65 1309	Z. Bai et al.	(Mark III Collab.)
BAI BISELLO	90C 90	PRL 65 2507 PL B241 617	Z. Bai <i>et al.</i> D. Bisello <i>et al.</i>	(Mark III Collab.) (DM2 Collab.)
COFFMAN	90	PR D41 1410	D.M. Coffman et al.	(Mark III Collab.)
JOUSSET	90	PR D41 1389	J. Jousset <i>et al.</i>	(DM2 Collab.)
ALEXANDER AUGUSTIN	89 89	NP B320 45 NP B320 1	J.P. Alexander <i>et al.</i> J.E. Augustin, G. Cosme	(LBL, MICH, SLAC) (DM2 Collab.)
BISELLO	89B	PR D39 701	G. Busetto et al.	(DM2 Collab.)
AUGUSTIN COFFMAN	88 88	PRL 60 2238 PR D38 2695	J.E. Augustin <i>et al.</i> D.M. Coffman <i>et al.</i>	(DM2 Collab.) (Mark III Collab.)
FALVARD	88	PR D38 2706	A. Falvard <i>et al.</i>	(CLER, FRAS, LALO+)
AUGUSTIN	87	ZPHY C36 369	J.E. Augustin <i>et al.</i>	(LALO, CLER, FRAS+)
BAGLIN BALTRUSAIT	87 87	NP B286 592 PR D35 2077	C. Baglin <i>et al.</i> R.M. Baltrusaitis <i>et al.</i>	(LAPP, CERN, GENO, LYON+) (Mark III Collab.)
BECKER	87	PRL 59 186	J.J. Becker <i>et al.</i>	(Mark III Collab.)
BISELLO	87	PL B192 239	D. Bisello <i>et al.</i>	(PADO, CLER, FRAS+)
COHEN HENRARD	87 87	RMP 59 1121 NP B292 670	E.R. Cohen, B.N. Taylor P. Henrard <i>et al.</i>	(RISC, NBS) (CLER, FRAS, LALO+)
PALLIN	87	NP B292 653	D. Pallin et al.	(CLER, FRAS, LALO, PADO)
BALTRUSAIT BALTRUSAIT		PR D33 629 PR D33 1222	R.M. Baltrusaitis <i>et al.</i> R.M. Baltrusaitis <i>et al.</i>	(Mark III Collab.) (Mark III Collab.)
BALTRUSAIT		PRL 56 107	R.M. Baltrusaitis et al.	(CIT, UCSC, ILL, SLAC+)
BISELLO	86B	PL B179 294	D. Bisello et al.	(DM2 Collab.)
GAISER BALTRUSAIT	86 85C	PR D34 711 PRL 55 1723	J. Gaiser <i>et al.</i> R.M. Baltrusaitis <i>et al.</i>	(Crystal Ball Collab.) (CIT, UCSC+)
BALTRUSAIT		PR D32 566	R.M. Baltrusaitis <i>et al.</i>	(CIT, UCSC+)
KURAEV	85	SJNP 41 466 Translated from YAF 41	E.A. Kuraev, V.S. Fadin	(NOVO)
BALTRUSAIT	84	PRL 52 2126	R.M. Baltrusaitis <i>et al.</i>	(CIT, UCSC+)
EATON	84	PR D29 804	M.W. Eaton et al.	(LBL, SLAC)
BLOOM EDWARDS	83 83B	ARNS 33 143 PRL 51 859	E.D. Bloom, C. Peck C. Edwards <i>et al.</i>	(SLAC, CIT) (CIT, HARV, PRIN+)
FRANKLIN	83	PRL 51 963	M.E.B. Franklin et al.	` (LBL, SLAC)
BURKE EDWARDS	82 82B	PRL 49 632 PR D25 3065	D.L. Burke <i>et al.</i> C. Edwards <i>et al.</i>	(LBL, SLAC) (CIT, HARV, PRIN+)
EDWARDS	82D	PRL 48 458	C. Edwards <i>et al.</i>	(CIT, HARV, PRIN+)
Also	005	ARNS 33 143	E.D. Bloom, C. Peck	(SLAC, CIT)
EDWARDS LEMOIGNE	82E 82	PRL 49 259 PL 113B 509	C. Edwards <i>et al.</i> Y. Lemoigne <i>et al.</i>	(CIT, HARV, PRIN+) (SACL, LOIC, SHMP+)
BESCH	81	ZPHY C8 1	H.J. Besch et al.	(BONN, DESY, MANZ)
GIDAL PARTRIDGE	81 80	PL 107B 153 PRL 44 712	G. Gidal <i>et al.</i> R. Partridge <i>et al.</i>	(SLAC, LBL) (CIT, HARV, PRIN+)
SCHARRE	80	PL 97B 329	D.L. Scharre <i>et al.</i>	(SLAC, LBL)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents <i>et al.</i>	(NOVO)
Also		SJNP 34 814 Translated from YAF 34	A.A. Zholents <i>et al.</i> 1471.	(NOVO)

BRANDELIK ALEXANDER BESCH BRANDELIK PERUZZI BARTEL BURMESTER FELDMAN VANNUCCI BARTEL BRAUNSCH JEAN-MARIE BALDINI BOYARSKI DASP ESPOSITO FORD	79C 78 78 78B 78 77 77D 77 76 76 76 75 75 75 75B 75	ZPHY C1 233 PL 72B 493 PL 78B 347 PL 78B 347 PL 74B 292 PR D17 2901 PL 66B 489 PL 72B 135 PRPL 33C 285 PR D15 1814 PL 64B 483 PL 63B 487 PRL 36 291 PL 58B 471 PRL 34 1357 PL 56B 491 LNC 14 73 PRL 34 604	R. Brandelik et al. G. Alexander et al. H.J. Besch et al. R. Brandelik et al. I. Peruzzi et al. W. Bartel et al. J. Burmester et al. G.J. Feldman, M.L. Perl F. Vannucci et al. W. Bartel et al. W. Braunschweig et al. B. Jean-Marie et al. R. Baldini-Celio et al. A.M. Boyarski et al. W. Braunschweig et al. B. Esposito et al. R.L. Ford et al.	(DASP Collab.) (DESY, HAMB, SIEG+) (BONN, DESY, MANZ) (DASP Collab.) (SLAC, LBL) (DESY, HEIDP) (DESY, HAMB, SIEG+) (LBL, SLAC) (SLAC, LBL) (DESY, HEIDP) (DASP Collab.) (SLAC, LBL) IG (FRAS, ROMA) (SLAC, LBL) JPC (DASP Collab.) (FRAS, NAPL, PADO+) (SLAC, PENN)
--	--	--	--	---