Лінійні відображення

<u>Означення 1.</u> Нехай L_1 та L_2 – векторні простори над одним і тим самим полем F. Тоді відображення $\varphi: L_1 \to L_2$ називається *лінійним* (або *гомоморфізмом*), якщо $\forall x, y \in L_1$ та $\forall \alpha \in F$ виконуються наступні умови:

1)
$$\varphi(x + y) = \varphi(x) + \varphi(y)$$

2)
$$\varphi(\alpha x) = \alpha \varphi(x)$$

Зауваження. Ін'єктивний гомоморфізм називають мономорфізмом.

Сюр'єктивний гомоморфізм називають епіморфізмом.

Бієктивний гомоморфізм називають ізоморфізмом.

<u>Означення 2.</u> Відображення $\theta: L_1 \to L_2$ називається *нульовим*, якщо усі елементи відображаються у нуль: $\theta(x) = 0_{L_2}, \forall \ x \in L_1$.

<u>Означення 3.</u> Відображення $\varepsilon: L \to L$ називається *томожнім*, якщо кожний елемент відображаються у себе: $\varepsilon(x) = x$, $\forall x \in L$.

Означення 4. Образом $Im \ \varphi$ та ядром $Ker \ \varphi$ лінійного відображення $\varphi \colon L_1 \to L_2$ називають відповідно множини:

$$Im \ \varphi = \{ y \in L_2 | \varphi(x) = y, \forall x \in L_1 \}$$

$$Ker \ \varphi = \{ x \in L_1 | \varphi(x) = 0_{L_2} \}$$

<u>Означення</u> 5. Якщо $L_1 = L_2$, то лінійне відображення називається *лінійним* оператором.

Матриця лінійного оператора

Нехай $\varphi\colon L \to L$ — лінійний оператор, $\{e_1, e_2, \dots, e_n\}$ — базис L.

Розглянемо
$$\varphi(e_k)=a_{1k}e_1+a_{2k}e_2+\cdots+a_{nk}e_n, \forall \ k=\overline{1,n},$$
 тобто: при $k=1$: $\varphi(e_1)=a_{11}e_1+a_{21}e_2+\ldots+a_{n1}e_n$ при $k=2$: $\varphi(e_k)=a_{12}e_1+a_{22}e_2+\ldots+a_{n2}e_n$

при
$$k=n$$
: $\varphi(e_n)=a_{1n}e_1+a_{2n}e_2+\cdots+a_{nn}e_n$

Тоді матриця
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 називається матрицею лінійного оператора

 φ у базисі $\{e_1, e_2, ..., e_n\}$.

Якщо
$$y=\varphi(x)$$
, то $Y=AX$ або $\begin{pmatrix} y_1\\y_2\\...\\y_n \end{pmatrix}=A\begin{pmatrix} x_1\\x_2\\...\\x_n \end{pmatrix}$.

Нехай A — матриця лінійного оператора φ у базисі $\{e_1,e_2,\ldots,e_n\}$,

A' – матриця лінійного оператора φ у базисі $\{e_1', e_2', \dots, e_n'\}$,

T – матриця переходу від $\{e_1, e_2, \dots, e_n\}$ до $\{e_1', e_2', \dots, e_n'\}$, тоді:

$$A' = T^{-1}AT$$