Университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа по ОПД №3 "Выполнение циклических прогамм"

вариант 8849

Преподаватель: Перцев Тимофей Сергеевич Выполнил: Щербаков Александр Валерьевич группа РЗ110

Задание

По выданному преподавателем варианту восстановить текстзаданного варианта программы, определить предназначение и составить описаниепрограммы, определить область представления и область допустимых значенийисходных данных и результата, выполнить трассировку программы.

Текст исходной программы

Адрес	Код	Мнемоника	Комментарий					
	команды							
54A	055E	-	Адрес первого элемента массива					
54B	A000	-	Адрес текущего элемента					
54C	E000	_	Длина массива					
54D	0200	_	Результат					
54E	AF80	LD \$80	Загрузка значения 80 в младший байт					
			АС с расширением знака					
54F	0740	DEC	Декремент АС					
550	0680	SWAB	Обмен старших и младших байтов АС					
			(в результате имеем 2^15-1)					
551	EEFB	ST (IP-5)	Сохранение АС в IP-5					
			(В рамках программы 54D)					
552	AF03	LD \$3	Загрузка значения З в АС					
553	EEF8	ST (IP-8)	Сохранение АС в ІР-8					
			(В рамках программы 54С)					
554	AEF5	LD (IP-11)	Загрузка значения из ІР-11 в АС					
			(В рамках программы 54А)					
555	EEF5	ST (IP-11)	Сохранение АС в ІР-11					
			(В рамках программы 54В)					
556	AAF4	LD (IP-12)+	Загрузка значения из ІР-12 в АС					
			(автоинкрементная адрессация)					
			(В рамках программы 54В)					
557	F303	BPL 03	Переход к 55B (IP = IP+3) если N=0					
558	7EF4	CMP (IP-12)	Сравнение АС и 54D(IP-12)					
			(В рамках программы 54D)					

	E004	DOE 04	T FEC (ID. 4.4)				
559	F901	BGE 01	Переход к 55С (IP+1+1) если больше				
			или равно				
			(В рамках программы 55С)				
55A	EEF2	ST IP-14	Сохранение АС в ІР-14				
			(В рамках программы 54D)				
55B	854C	LOOP 54C	Значение из 54C – 1 пока 54C > 0				
55C	CEF9	JUMP IP-7	Перейти к IP – 7				
			(В рамках программы 556)				
55D	0100	HLT	Останов				
55E	0680	-	Первый элемент массива				
55F	072C	-	Второй элемент массива				
560	455C	-	Третий элемент массива				

Описание исходной программы

Назначение программы – поиск наименьшего отрицательного числа в массиве из трёх элементов.

Элементы массива могут располгаться во всей области памяти БЭВМ, где помещается терёхэлементный массив.

ОД3:

- элементы массива могут быть любыми знаковыми числами
- Адрес первого элемента может принимать значения от 0 до 2^12-1
- Длина массива ограничена памятью БВМ и принимаетт значение от 0 до 2032, оставляя место для программы.
- Результатом программы будет наименьшее по модулю отрицательное число или 2^14-1(7FFF в представлении в разрядной сетке БЭВМ) если отрицательных чисел в массиве нет.

Трассировка

Числа для трассировки: 8880₁₆ 1313₁₆ FEA4₁₆

Адрес	Код	Мнемоника	IP	CR	AR	DR	BR	AC	NZVC	Адрес	Новое
	команды									изменяемой	значение
										ячейки	
54E	AF80	LD \$80	54F	AF80	54E	AF80	FF80	FF80	1000		
54F	0740	DEC	550	0740	54F	0740	054F	FF7F	1000		
550	0680	SWAB	551	0680	550	0680	0550	7FFF	0001		
551	EEFB	ST (IP-5)	552	EEFB	54D	7FFF	FFFB	7FFF	0001	54D	7FFF
552	AF03	LD \$3	553	AF03	552	AF03	0003	0003	0001		
553	EEF8	ST (IP-8)	554	EEF8	54C	0003	FFF8	0003	0001	54C	0003
554	AEF5	LD (IP-11)	555	AEF5	54A	055E	FFF5	055E	0001		
555	EEF5	ST (IP-11)	556	EEF5	54B	055E	FFF5	055E	0001	54B	055E
556	AAF4	LD (IP-12)+	557	AAF4	55E	8880	FFF4	8880	1001	54B	055F
557	F303	BPL 03	558	F303	558	F303	0557	8880	1001		
558	7EF4	CMP (IP-12)	559	7EF4	559	7FFF	FFF4	8880	0011		
559	F901	BGE 01	55A	F901	55A	F901	0559	8880	0011		
55A	EEF2	ST IP-14	55B	EEF2	54D	8880	FFF2	8880	0011	54D	8880
55B	854C	LOOP 54C	55C	854C	55C	0002	0001	8880	0011	54C	0002
55C	CEF9	JUMP IP-7	556	CEF9	55D	0556	FFF9	8880	0011		
556	AAF4	LD (IP-12)+	557	AAF4	55F	1313	FFF4	1313	0001	54B	0560
557	F303	BPL 03	55B	F303	557	F303	0003	1313	0001		
55B	854C	LOOP 54C	55C	854C	54C	0001	0000	1313	0001	54C	0001
55C	CEF9	JUMP IP-7	556	CEF9	55C	0556	FFF9	1313	0001		
556	AAF4	LD (IP-12)+	557	AAF4	560	FEA4	FFF4	FEA4	1001	54B	0561
557	F303	BPL 03	558	F303	557	F303	0557	FEA4	1001		
558	7EF4	CMP (IP-12)	559	7EF4	54D	8880	FFF4	FEA4	0001		
559	F901	BGE 01	55B	F901	559	F901	0001	FEA4	0001		
55B	854C	LOOP 54C	55D	854C	54C	0000	FFFF	FEA4	0001	54C	0000
55D	0100	HLT	55E	0100	55D	0100	055D	FEA4	0001		

Результатом выполнения программы сталоу число 8880₁₆ как наибольшее по модулю из всех отрицательных, представленных в массиве.

54D 7FFF

Вывод

В ходе выполнения работы был приобретен опыт работы с одномерными массивами и различными видами адресации в рамках БЭВМ. Я верю, что данный материал займёт свою нишу в моём понимании мира информационных технологий, а так же может

пригодится в будущем при написании программ использующих одномерные массивы и родственные им структуры данных.