

LECTURE 3-2: PYTHON BASICS II - DICTIONARY AND LOOP

Dr. James Chen, Animal Data Scientist, School of Animal Sciences

		6						
	19	20	21	22	23	24		
3	25	26	27	28	29	30		
	31	32	33	34	35	36		

		6						
	1	2	3	4	5	6		
3	7	8	9	10	11	12		
	13	14	15	16	17	18		

Г												
	1	9	20	0	2	1	2	2	2	3	2	4
1		2		3	3		4	[]	5	6	Ś	0
7	7	8		9		1	0	1	1	1	2	6
1	3	14	4	1	5	1	6	1	7	1	8	

19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

 3
 1
 2
 3
 4
 5
 6

 7
 8
 9
 10
 11
 12

 13
 14
 15
 16
 17
 18

		Dim. 2					
Dim. 0				6			—
2	1	9 2	0 2	1 2	2 2	3 24	4
	1	2	3	4	5	6	0
Dim. 1 3	7	8	9	10	11	12	6
	13	14	15	16	17	18	

	19	20	21	22	23	24		
ı	25	26	27	28	29	30		
	31	32	33	34	35	36		

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18

Axis = $0 ---> 3 \times 6$

10	11	12	13	14	15
16	17	18	19	20	21
22	23	24	25	26	27

3D matrix: 2 x 3 x 6

Axis =
$$0 ---> 3 \times 6$$

10	11	12	13	14	15
16	17	18	19	20	21
22	23	24	25	26	27

Axis =
$$1 ---> 2 \times 6$$

Axis =
$$0 ---> 3 \times 6$$

10	11	12	13	14	15
16	17	18	19	20	21
22	23	24	25	26	27

Axis =
$$1 ---> 2 \times 6$$

	25 2	26 2	27 2	28	29	30
7	8	9	10	11	12	2

Axis =
$$2 ---> 2 \times 3$$

21.5
27.5
33.5

Axis =
$$0 ---> 3 \times 6$$

10	11	12	13	14	15
16	17	18	19	20	21
22	23	24	25	26	27

$$Axis = (0, 1)$$

3D matrix: 2 x 3 x 6

Axis =
$$0 ---> 3 \times 6$$

10	11	12	13	14	15
16	17	18	19	20	21
22	23	24	25	26	27

Axis =
$$(0, 1)$$
 ----> 1 x 6

3D matrix: 2 x 3 x 6

e.g., np.mean(X, axis = 0)

Axis =
$$0 ---> 3 \times 6$$

10	11	12	13	14	15
16	17	18	19	20	21
22	23	24	25	26	27

Axis =
$$(0, 1)$$
 ----> 1 x 6

Axis =
$$(0, 2)$$
 ----> 1 x 3

12.518.524.5

- APSC-5984 Lab 3: Python Basics II
 - 0. Overview
 - 1. Lists
 - 1.1 Assign values to a list
 - 1.2 Accessing elements in a list
 - 2. NumPy Array
 - 2.1 Create a 1D array
 - 2.2 Multi-dimensional matrix
 - 2.3 Indexing and slicing
 - 2.4 Basic statistics
 - 2.5 Axis-wise operations
 - 3. Dictionaries
 - 3.1 Creating a dictionary
 - 3.2 Accessing elements in a dictionary
 - 4. Loops
 - 4.1 for loops
 - 4.2 while loops
 - 4.3 break and continue

Dictionary is a collection of key-value pairs

In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms an associative array is a function with finite domain.^[1] It supports 'lookup', 'remove', and 'insert' operations.

insert

lookup

remove

List

[value1, value2, value3]

```
nested_list = [['John', 20], ['Mary', 25], ['Michael', 30]]
```

Dictionary

{key1 : value1, key2 : value2, key3 : value3}

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

Dictionary

{key1: value1, key2: value2, key3: value3}

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

Use squared brackets (indexing)

```
person_age['David'] = 40
print(person_age) # {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth':
35, 'David': 40}
```

Use .update() method

```
person_age.update({'David': 40})
print(person_age) # {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth':
35, 'David': 40}
```

Dictionary

```
{key1: value1, key2: value2, key3: value3}
```

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

Use squared brackets (indexing)

```
john_age = person_age['John']
print(john_age) # 20
```

Use .get() method

```
john_age = person_age.get('John')
print(john_age) # 20
```

Dictionary

```
{key1: value1, key2: value2, key3: value3}
```

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

Get all keys

```
keys = person_age.keys()
print(keys) # dict_keys(['John', 'Mary', 'Michael', 'Elizabeth', 'David'])
```

Get all values

```
values = person_age.values()
print(values) # dict_values([20, 25, 30, 35, 40])
```

Challenge: How To Fetch the Last Key-Value Pair?


```
# step 1: get a list of keys in a dictionary
keys = person_age.keys()
print(keys) # dict_keys(['John', 'Mary', 'Michael', 'Elizabeth', 'David'])
# step 2: access the last key in the dictionary
last_key = list(keys)[-1]
print(last_key) # David
# step 3: access the value of the last key
last_value = person_age[last_key]
print(last_value) # 40
```


Output

```
# 1
# 2
```


for i in range(3): print(i)

Output

0 # 1 # 2

Output

1 # 2

For loop

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

```
for i in person_age:
   print(i)
```

For loop

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

Only "keys" were printed out

```
for i in person_age:
    print(i)
# John
# Mary
# Michael
# Elizabeth
```

For loop

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

Only "keys" were printed out

```
for i in person_age:
    print(i)
# John
# Mary
# Michael
# Elizabeth
```

Use an **index** to fetch the corresponding value

```
for key in person_age:
    print(person_age[key])
# 20
# 25
# 30
# 35
```

Loop - for Loops (Slow Motion)

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

```
for key in person_age:
    print(person_age[key])
# 20
# 25
# 30
# 35
```

```
print(person_age['John'])
print(person_age['Mary'])
print(person_age['Michael'])
print(person_age['Elizabeth'])
# 20
# 25
# 30
# 35
```

```
person_age = {'John': 20, 'Mary': 25, 'Michael': 30, 'Elizabeth': 35}
```

```
for key, value in person_age.items():
    print(key, value)

# John 20
# Mary 25
# Michael 30
# Elizabeth 35
```

While loop

```
i = 0
while i < 3:
    print(i)
    i = i + 1</pre>
```

Output

```
# 1
# 2
```

While loop

```
i = 0
while i < 3:
    print(i)
    i = i + 1</pre>
```

Output

```
# 1
# 2
```

```
i = 0
if i < 3:
    print(i)
    i = i + 1
    if i < 3:
        print(i)
        i = i + 1
        if i < 3:
            print(i)
             i = i + 1
            # ... and so on
        else:
             pass
    else:
        pass
else:
    pass
```

break

```
for i in range(5):
    if i == 2:
        break
    print(i)
```

continue

```
for i in range(5):
    if i == 2:
        continue
    print(i)
# 0
```