Teorija aproksimacije

X ... vekt. prostor katerega el. aproksimiramo $S \subseteq X$... podprostor a proksimantov

 $A: X \to S$... operacijska shema (operator)

Prileganje aproksimanta ocenimo z normo:

• Neskončna norma

$$||f||_{\infty,[a,b]} = \max_{x \in [a,b]} |f(x)|$$

Numerični~približek:na intervalu[a,b]izberemo konkčno mnogo točk $a \leq x_0 < x_1 < \dots < x: n \leq b.$

$$||f||_{\infty,[a,b]} = \max_{i=0,\dots,n} |f(x_i)|$$

• Druga norma

$$||f||_2 = \sqrt{\langle f, f \rangle} \qquad \langle f, g \rangle = \int_a^b f(x)g(x)\rho(x)dx$$

Standardni skalarni produkt: $\rho \equiv 1$.

Numerični približek: vzamemo diskretni skalarni pro- $\textit{Izrek: } f^*$ je el. najboljše aproksimacije po MNK \iff dukt. Na intervalu [a,b] izberemo konkčno mnogo točk $f-f^*\perp S\iff f-f^*\perp l_i \quad \forall i=1,\dots n$ $a \le x_0 < x_1 < \dots < x : n \le b.$

$$\langle f, g \rangle = \sum_{i=0}^{n} f(x_i)g(x_i)\rho(x_i)dx$$

Optimalni aproksimacijski problem

Za $f \in X$ iščemo aproksimant $\hat{f} \in S$, da je

$$||f - \hat{f}|| = \min_{s \in S} ||f - s||$$

Aproksimacija po metodi najmanjših kvadratov

Naj boXvektorski prostor nad $\mathbb R$ s skalarnim produktom $\langle \cdot, \cdot \rangle$ in normo $\| \cdot \|_2 = \sqrt{\langle \cdot, \cdot \rangle}$

$$S = \operatorname{Lin}\{l_1, l_2, \dots, l_n\} \subseteq X$$

Iščemo element najboljše aproksimacije po MNK $f^* \in S,$ da $\|f - f^*\| = \min_{s \in S} \|f - s\|$

$$f^* = \alpha_1 l_1 + \dots + \alpha_n l_n$$

Iz zgornjega izreka sledi:

$$\langle f - f^*, l_i \rangle = 0 \quad \forall i$$

$$\langle f - \sum_{j=1}^n \alpha_j l_j, l_i \rangle = 0 \quad \forall i$$

$$\langle f, l_i \rangle - \sum_{j=1}^n \alpha_j \langle l_j, l_i \rangle = 0 \quad \forall i$$

V matrični obliki:

$$\underbrace{\begin{bmatrix} \langle l_1, l_1 \rangle & \dots & \langle l_n, l_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle l_1, l_n \rangle & \dots & \langle l_n, l_n \rangle \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}}_{C} = \begin{bmatrix} \langle f, l_1 \rangle \\ \vdots \\ \langle f, l_n \rangle \end{bmatrix}$$

 \boldsymbol{G} je simetrična pozitivno definitna matrika. Numerično tak sistem rešimo z razcepom Choleskega.

Reševanje sistema linearnih enačb se izognemo tako, da bazo za S ortonormiramo. Tedaj je G = I in

$$f^* = \sum_{i=1}^n \langle f, l_i \rangle l_i$$

Gram-Schmidtova ortogonalizacija

Definirajmo projekcijo vektorja v na u

$$\operatorname{proj}_u(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

Če želimo orotogonalizirati k linearno neodvisnih vektorjev $v_1,...,v_k$, uporabimo postopek:

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2})$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3})$$

$$\vdots$$

$$u_{k} = v_{k} - \sum_{i=1}^{k-1} \operatorname{proj}_{u_{j}}(v_{k})$$

Enakomerna aproksimacija zveznih funkcij s poli-

Za dano funkcijo $f \in \mathcal{C}([a,b])$ iščemo polinom najboljše enakomerne aproksimacije $p^* \in \mathbb{P}_n$, za katerega velja

$$\|f - p^*\|_{\infty, [a,b]} = \min_{p \in \mathbb{P}_n} \|f - p\|_{\infty, [a,b]} = \min_{p \in \mathbb{P}_n} \max_{x \in [a,b]} |f(x) - p(x)|$$

Izrek: Naj bo $f \in \mathcal{C}([a,b])$. Če je polinom $p \in \mathbb{P}_n$ takšen, da residual r = f - p doseže svojo normo $||r||_{\infty,[a,b]}$ alternirajoče: n+2 tokčah $x_i, a \leq x_0 < \cdots < x_{n+1} \leq b$

$$r(x_i)r(x_{i+1}) < 0 \qquad \forall i = 0, \dots, n$$

potem je p polinom najboljše enak. aproks. za f na [a,b].

Remesov postopek

Vhodni podatki: funkcija f, interval [a, b], stopnja n, toleranca ε

Izberi množico točk $E_0 = \{x_i, a \le x_0 < \cdots < x_{n+1} \le b\}.$ Ponavljaj k = 0, 1, 2, ...:

• Poišči polinom $p_k^* \in \mathbb{P}_n$, ki zadošča pogoju:

$$f(x_i) - p_k^* = (-1)^i m$$
 $\forall i = 0, 1, \dots, n+2$

• Poišči ekstrem residuala $r_k = f - p_k^*$. To je $u \in [a, b]$,

$$|r_k(u)|=\|r_k\|_{\infty,[a,b]}$$

• Če je $|r_k(u)| - |m| < \epsilon$, potem končaj in vrni $p^* = p_k^*$. Sicer pa naredimo zamenjavo točk v množici E_k z utako, da ogranimo alternacijo residuala.