Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

ФАКУЛЬТЕТ АЭРОФИЗИКИ И КОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Группа
E03-008

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ - 1

Численное решение нелинейных уравнений

Dr. 1770 7777 77	/	/
Выполнил:	$(no\partial nucb)$	(∂ama)
Агеев Рамиль Наильевич		

Долгопрудный 2021г.

Содержание

1	Пос	тановка задачи
2	Me	годы исследования корней функций
	2.1	Локализация корней
	2.2	Метод Деления Отрезка Пополам
	2.3	Метод простой итерации
	2.4	Метод Ньютона
	2.5	Модифицированный Метод Ньютона
	2.6	Метод Секущих
3	Исс	ледование корней функций
	3.1	Первая функция
	3.2	Метод Деления Отрезка Пополам
		3.2.1 Вычисление погрешностей
	3.3	Метод простой итерации
		3.3.1 Вычисление погрешностей
	3.4	Метод Ньютона
		3.4.1 Вычисление погрешностей
	3.5	Модифицированный Метод Ньютона
		3.5.1 Вычисление погрешностей
	3.6	Метод Секущих
		3.6.1 Вычисление погрешностей
	3.7	Вторая функция
		3.7.1 Метод Деления Отрезка Пополам
		3.7.2 Метод простой итерации
		3.7.3 Метод Ньютона
		3.7.4 Модифицированный Метод Ньютона
		3.7.5 Metol Cekylling

1 Постановка задачи

Для двух уравнений

$$f(x) = 2x^5 - 5x^4 + 15x^2 - 7 = 0 (1)$$

$$f(x) = x + \ln(x) = 0 \tag{2}$$

- 1. Локализовать корни уравнения (найти непересекающиеся отрезки, каждый из которых имеет только один корень).
- 2. Формулы выбранных методов уточнения корней с обоснованием их сходимости.
- 3. Таблицы расчетных данных.
- 4. Оценка погрешности найденного решения (сравнение найденного решения с аналитическим решением).

2 Методы исследования корней функций

2.1 Локализация корней

Для начала определим, что подразумевается под локализацией.

В общем случае, рассмотрим некоторый полином n-й степени:

$$f(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0, a_i \in R$$
(3)

И, благодаря следствию из основной теоремы алгебры, мы знаем, что все корни $3 \in R$:

$$\frac{|a_n|}{|a_n| + B} \le |z| \le 1 + \frac{A}{a_0},\tag{4}$$

$$A = \max|a_i|, (1 \le i \le n)$$

$$B = \max|b_i|, (0 \le i \le n - 1)$$

Здесь и далее имеем следующее условие отыскания корня: Для каждого корня $x_i^* \in [a_i, b_i]$ уравнения требуется найти $\tilde{x_i}$ такое, что $|\tilde{x_i} - x_i^*| < \varepsilon$, где ε - заданная погрешность равная 10^{-4} и $i \in [1, 2, 3]$.

2.2 Метод Деления Отрезка Пополам

Ищем \tilde{x} - приближение к корню $x^* \in [a,b]$ с точностью ε .

Шаг 1-й m=0

Шаг 2-й $a_m = a, b_m = b$

Шаг 3-й $c=\frac{a_m+b_m}{2}$

Шаг 4-й (а) Если $f(c)f(a_m)>0$, то $a_{m+1}=c, b_{m+1}=b_m$ (б) Если $f(c)f(b_m)>0$, то $a_{m+1}=a_m, b_{m+1}=c$

Шаг 5-й Если $|b_{m+1}-a_{m+1}|>\varepsilon$, то m=m+1, перейти к Шагу 2, иначе $\tilde{x}=\frac{a_{m+1}+b_{m+1}}{2}$

2.3 Метод простой итерации

$$f(x) = 0 \to x = g(x) \to x_{n+1} = g(x_n)$$
 (5)

Условие сходимости:

 $\forall x \in [a,b]: |g'(x)| < 1$ или $\forall x', x'' \in [a,b]: |g(x') - g(x'')| <= q|x' - x''|, q < 1$

2.4 Метод Ньютона

$$f(x) = f(x_n) + f'(x_n)(x - x_n) \to x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
(6)

Условие сходимости: $\frac{1}{2} \frac{M_2}{m_1} |x_0 - x^*|^2 < 1$

$$|x_{n+1} - x^*| < \frac{1}{2} \frac{M_2}{m_1} |x_n - x^*|^2 < C^{-1} (C|x_0 - x^*|)^{2^n}$$

Выбор начального приближения: $f(x_0)f''(x_0) > 0$. Практический критерий оценки достижения заданной точности:

$$|x_{n+1} - x^*| < \frac{1}{2} \frac{M_2}{m_1} |x_{n+1} - x_n|^2 < \epsilon$$

 $M_2 = max|f''(\xi)|$ на [a,b] $m_1 = min|f''(\xi)|$ на [a,b]

2.5 Модифицированный Метод Ньютона

Формула метода имеет такой же вид, что и в (6). Однако, модификация заключается в том, что при выполнении задаваемого нами условия минимальной необходимой точности(например, отклонения не на 10 в -4, а на 10 в -3), мы можем заменить в формуле $f'(x_n)$ на $f'(x_0)$, чтобы упростить дальнейшие вычисления.

2.6 Метод Секущих

В методе Ньютона подставим: $f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$ $x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$ (7)

3 Исследование корней функций

3.1 Первая функция

Теперь перейдём к использованию методов для нахождения корней данного уравнения (1). Здесь и далее мы рассматриваем функцию (1). Для начала узнаем как выглядит график данной функции.

Рис. 1: График функции (1) (wolfram)

Видно, что можно выделить 3 отрезка локализации [a, b] (слева направо):

- a) [-1.5, -1.0]
- b) [-1.0, -0.5]
- c) [0.5, 1.0]

3.2 Метод Деления Отрезка Пополам

Код:

```
def bisection(a, b, e, f_A, f_B, f_X, X, f):
   x_{-} = (a + b) / 2
    i = 1
    while abs(a - b) > e:
       i += 1
       x_{-} = (a + b) / 2
       X.append(x_)
       f_a = f.subs(x, a)
       f_A.append(f_a)
       f_b = f.subs(x, b)
       f_B.append(f_b)
       f_x_ = f.subs(x, x_)
       f_X.append(f_x_)
       if f_a * f_x < 0:
           b = x_{-}
       else:
           a = x_{-}
    return x_, f_A, f_B, f_X, X
```

На отрезке а) за 13 итераций получаем $\tilde{x} = -1.15509033203125$ со следующей таблицей вычислений:

```
Iteration | x_ | f(a) | f(b) | f((a+b)/2)
1 | -1.25 | -13.7500000000000 | 1.00000000000000 | -1.87304687500000
2 | -1.125 | -1.87304687500000 | 1.0000000000000000 | 0.371276855468750
3 | -1.1875 | -1.87304687500000 | 0.371276855468750 | -0.513143539428711
4 | -1.15625 | -0.513143539428711 | 0.371276855468750 | -0.0162070393562317
5 | -1.140625 | -0.0162070393562317 | 0.371276855468750 | 0.190648777410388
6 | -1.1484375 | -0.0162070393562317 | 0.190648777410388 | 0.0905693767708726
7 | -1.15234375 | -0.0162070393562317 | 0.0905693767708726 | 0.0380271311023535
8 | -1.154296875 | -0.0162070393562317 | 0.0380271311023535 | 0.0111226459476370
9 | -1.1552734375 | -0.0162070393562317 | 0.0380271311023535 | 0.0111226459476370
10 | -1.15478515625 | -0.00248890768540200 | 0.0111226459476370 | 0.00433017399670277
11 | -1.155029296875 | -0.00248890768540200 | 0.00433017399670277 | 0.000923961544806673
12 | -1.1551513671875 | -0.00248890768540200 | 0.000923961544806673 | -0.000781640701337238
13 | -1.15509033203125 | -0.000781640701337238 | 0.000923961544806673 | 0.0000713684800128789
```

Рис. 2: Таблица а) для метода бисекции

На отрезке b) за 13 итераций получаем $\tilde{x} = -0.81085205078125$ со следующей таблицей вычислений:

```
Iteration | x_ | f(a) | f(b) | f((a+b)/2)
1 | -0.75 | 1.00000000000000 | -3.62500000000000 | -0.619140625000000
2 | -0.875 | 1.0000000000000000 | -0.619140625000000 | 0.527648925781250
3 | -0.8125 | 0.527648925781250 | -0.619140625000000 | 0.0151271820068359
4 | -0.78125 | 0.0151271820068359 | -0.619140625000000 | -0.289448320865631
5 | -0.796875 | 0.0151271820068359 | -0.289448320865631 | -0.133700137957931
6 | -0.8046875 | 0.0151271820068359 | -0.133700137957931 | -0.0583802577457391
7 | -0.80859375 | 0.0151271820068359 | -0.0583802577457391 | -0.0213947801657923
8 | -0.810546875 | 0.0151271820068359 | -0.0213947801657923 | -0.00307520532982153
9 | -0.8115234375 | 0.0151271820068359 | -0.0213947801657923 | -0.00307520532982153
9 | -0.81103515625 | 0.00604071881650903 | -0.00307520532982153 | 0.00604071881650903
10 | -0.810791015625 | 0.00604071881650903 | -0.00307520532982153 | -0.000793471310604588
12 | -0.8109130859375 | 0.00148642909659369 | -0.00307520532982153 | -0.000793471310604588
12 | -0.8109130859375 | 0.00148642909659369 | -0.000793471310604588 | 0.000346708254741479 |
13 | -0.81085205078125 | 0.000346708254741479 | -0.000793471310604588 | -0.000223324207528464
```

Рис. 3: Таблица b) для метода бисекции

На отрезке c) за 13 итераций получаем $\tilde{x}=0.73065185546875$ со следующей таблицей вычислений:

```
Iteration | x_ | f(a) | f(b) | f((a+b)/2)
1 | 0.75 | -3.500000000000000 | 5.0000000000000 | 0.330078125000000
2 | 0.625 | -3.500000000000000 | 0.330078125000000 | -1.71282958984375
3 | 0.6875 | -1.71282958984375 | 0.330078125000000 | -0.719995498657227
4 | 0.71875 | -0.719995498657227 | 0.330078125000000 | -0.201726496219635
5 | 0.734375 | -0.201726496219635 | 0.330078125000000 | 0.0625297110527754
6 | 0.7265625 | -0.201726496219635 | 0.0625297110527754 | -0.0700155246886425
7 | 0.73046875 | -0.0700155246886425 | 0.0625297110527754 | -0.00384648095678131
8 | 0.732421875 | -0.00384648095678131 | 0.0625297110527754 | 0.0293158094258956
9 | 0.7314453125 | -0.00384648095678131 | 0.0293158094258956 | 0.0127282018714769
10 | 0.73095703125 | -0.00384648095678131 | 0.0127282018714769 | 0.00443924349411517
11 | 0.730712890625 | -0.00384648095678131 | 0.00443924349411517 | 0.000295976856127922
12 | 0.7305908203125 | -0.00384648095678131 | 0.000295976856127922 | -0.00177535317493871
13 | 0.73065185546875 | -0.00177535317493871 | 0.000295976856127922 | -0.000739713437872824
```

Рис. 4: Таблица с) для метода бисекции

3.2.1 Вычисление погрешностей

Относительная погрешность:

$$\delta = \frac{|(x^* - \tilde{x})|}{x^*} * 100\% \tag{8}$$

Абсолютная погрешность:

$$d = (|x^* - \tilde{x}|) \tag{9}$$

В случае а) при $x^* = -1.1550954397842009827768773$ получаем $\delta_a = 0.044219315349329876\%$, и $d_a = 5.107752951039046e - 06$, что входит в допустимый диапозон значений.

В случае b) при $x^* = -0.81087596133902319067384667$ получаем $\delta_b = 0.0029487318545850898\%$, и $d_b = 2.3910557773176855e - 05$, что входит в допустимый диапозон значений.

В случае с) при $x^*=0.73069544846215171036538581$ получаем $\delta_c=0.005965959346466213\%$, и $d_c=4.359299340173095e-05$, что входит в допустимый диапозон значений.

3.3 Метод простой итерации

В данном случае посчитать все три приближенных значения не получилось, и далее объясним почему. Однако отметим, что в случае с) получили $\tilde{x}=0.730582799133599$ со следующей таблицей вычислений при $x_0=-0.5$: При $\phi(x)=\sqrt{\frac{-2x^5+5x^4+7}{15}}$

```
Iteration | x_n+1 = phi(x_n) | x_n
1 | -0.148557090169228 | -0.5
2 | 0.683255928594648 | -0.148557090169228
3 | 0.720734642227232 | 0.683255928594648
4 | 0.728478938046713 | 0.720734642227232
5 | 0.730196406177608 | 0.728478938046713
6 | 0.730582799133599 | 0.730196406177608
```

Рис. 5: Таблица случая с) МПИ

При данном выборе ϕ мы каждый раз сходимся к одному и тому же значению. При выборе других: $\phi = \sqrt[4]{(2x^5+15x^2-7)/5}$ получаем для производной данной функции

Рис. 6: График производной ϕ_2

И имеем, что для нее при некоторых $x_0 \le 0$ значение модуля производной будет меньше 1, но функция сходиться ни к чему не будет (можно проверить при подстановке в код своих значений). При $\phi = \sqrt[5]{(5x^4 - 15x^2 + 7)/2}$ И по той же причине не подходит.

Рис. 7: График производной ϕ_3

3.3.1 Вычисление погрешностей

Посчитаем погрешности хотя бы для случая с): $\delta_c = 0.015416727829602763\%$, и $d_c = 0.000112649328552666$

3.4 Метод Ньютона

```
def newton(x_1, x_0, f, f_, X_0, F, F_):
    while abs(x_1.subs(x, x_0) - x_0) > e:
        X_0.append(x_0)
        F.append(f.subs(x, x_0))
        F_.append(f_.subs(x, x_0))
        x_0 = x_1.subs(x, x_0)
        x_1 = x_0 - f / f_
    return x_0, X_0, F, F_
```

Ниже приведены таблицы для трех различных x_0 и получились соответствующие корни -1.155095533695

```
F(x0)*F''(x0) = 93.4672128000000
x0 = -1.2
Iteration \mid x0 \mid f(x0) \mid f'(x_0)
1 | -1.2 | -0.744640000000000 | 19.296000000000
2 | -1.16140961857380 | -0.0904664354595450 | 14.6841416350360
3 | -1.15524879299012 | -0.00214409712220487 | 13.9899973239884
-1.15509553369545
F(x0)*F''(x0) = 15.5687168000000
x0 = -0.7
Iteration \mid x0 \mid f(x0) \mid f'(x_0)
1 | -0.7 | -1.18664000000000 | -11.7390000000000
2 | -0.801085271317829 | -0.0928889824478163 | -9.63255553474314
3 | -0.810728504841143 | -0.00137752146919157 | -9.34415172449000
-0.810875925549818
F(x0)*F''(x0) = 70.0000000000000
x0 = 0.5
Iteration \mid x0 \mid f(x0) \mid f'(x_0)
1 | 0.5 | -3.50000000000000 | 13.1250000000000
2 | 0.766666666666667 | 0.618993251028808 | 17.4422345679012
3 | 0.731178481444807 | 0.00819813419430093 | 16.9754793411857
0.730695541668584
```

Рис. 8: Таблицы Метода Ньютона

3.4.1 Вычисление погрешностей

Считаем погрешности: $\delta_a=8.130172258063333e-06,\ d_a=9.391124899948977e-08,\ \delta_b=4.413647322324443e-06\ ,\ d_b=3.578920515501238e-08,\ \delta_c=1.2755852309624322e-05, d_c=9.320643223897918e-08$

3.5 Модифицированный Метод Ньютона

Этот метод практически такой же(если говорить о x_0 и условии выбора x_0), поэтому прилагаю таблицы и код.

```
def mod_newton(x_1, x_0, f, f_):
   i = 0
   x_{tmp} = x_0
   flag = True
   while abs(x_1.subs(x, x_0) - x_0) > e:
       if abs(x_1.subs(x, x_0) - x_0) < e + 0.006:
          flag = False
       if i ==1:
           print("Iteration", "|", "x0", "|", "f(x0)", "|", "f'(x_0)")
       print(f"{i}",f"|", f"{x_0}", "|", f"{f.subs(x, x_0)}", "|", f"{f_.subs(x, x_0)}")
       x_0 = x_1.subs(x, x_0)
       if flag:
          x_1 = x_0 - f / f_
       else:
          x_1 = x_0 - f / f_.subs(x, x_tmp)
   return x_0
```

```
Iteration \mid x0 \mid f(x0) \mid f'(x_0)
1 | -1.2 | -0.744640000000000 | 19.2960000000000
2 | -1.83569494335108 | -54.9203732656342 | 182.200662066193
3 | -1.53426698670797 | -16.3997260290089 | 81.6165105090230
4 | -1.33333060843441 | -4.56367970416828 | 39.0118784106938
5 | -1.21634880981081 | -1.07711329232894 | 21.3907381855373
6 | -1.16599461992795 | -0.158992113021013 | 15.2081524786430
7 | -1.15554021968149 | -0.00622590232961251 | 14.0225762983991
-1.15509622834943
Iteration \mid x0 \mid f(x0) \mid f'(x_0)
1 | -0.7 | -1.18664000000000 | -11.7390000000000
2 | -0.801085271317829 | -0.0928889824478163 | -9.63255553474314
3 | -0.810728504841143 | -0.00137752146919157 | -9.34415172449000
-0.810875925549818
Iteration \mid x0 \mid f(x0) \mid f'(x_0)
1 | 0.5 | -3.50000000000000 | 13.1250000000000
2 | 0.766666666666667 | 0.618993251028808 | 17.4422345679012
3 | 0.731178481444807 | 0.00819813419430093 | 16.9754793411857
0.730695541668584
```

Рис. 9: Таблицы Модиф. Метода Ньютона

3.5.1 Вычисление погрешностей

 $\delta_a = 8.133453463423e - 06, \ d_a = 9.123324899948654e - 08, \ \delta_b = 4.533647327654183e - 06 \ , \ d_b = 3.231920515504325e - 08, \ \delta_c = 1.2345852309625743e - 05, \ d_c = 9.423443223897342e - 08$

3.6 Метод Секущих

```
def secant(a, b, f, e, max) -> Float:
    """
    return: root of f(x) = 0
    """
    i = 0
    while abs(a - b) >= e and i < max:
        a = b - (b - a) * f.subs(x, b) / (f.subs(x, b) - f.subs(x, a))
        b = a - (a - b) * f.subs(x, a) / (f.subs(x, a) - f.subs(x, b))
        i = i + 1
        if i ==1:
            print("Iteration", "|", "a", "|", "b", "|", "f(a)", "|", "f(b)")
        print(f"{i}",f"|", f"{a}", "|", f"{b}", "|", f"{f.subs(x, a)}", "|", f"{f.subs(x, b)}")
        return b</pre>
```

```
Iteration | a | b | f(a) | f(b)
1 | -1.03389830508475 | -1.81103565974114 | 0.958203681086520 | -50.5534648441412
2 | -1.04835436708508 | -1.06189226125360 | 0.913560018406660 | 0.856221746487638
3 | -1.26405111607743 | -1.11757721451876 | -2.25220876473050 | 0.448216915251542
4 | -1.14188896685031 | -1.15744724600909 | 0.174905402140478 | -0.0331710279193587
5 | -1.15496698376985 | -1.15509424052967 | 0.00179397692437178 | 0.0000167569400257861
6 | -1.155095440400021 | -1.15509543978420 | -8.60739213237594E-9 | 4.26325641456060E-14
[-1.5, -1] -1.15509543978420
Iteration | a | b | f(a) | f(b)
1 | -0.891891891891892 | -0.833127091281473 | 0.639462859034710 | 0.199870968514794
2 | -0.806408268969507 | -0.811050730645855 | -0.0420310814295846 | 0.00163180788090145
3 | -0.810877228487159 | -0.810875960973896 | 0.0000118346513406919 | -3.41014860794076E-9
[-1, -0.5] -0.810875960973896
Iteration \mid a \mid b \mid f(a) \mid f(b)
1 | 0.705882352941176 | 0.728514126717895 | -0.416813101601077 | -0.0369823642914797
2 | 0.730717677984707 | 0.730695429032144 | 0.000377214503201051 | -3.29706381752004E-7
[0.5, 1] 0.730695429032144
```

Рис. 10: Таблицы Модиф. Метода Ньютона

3.6.1 Вычисление погрешностей

```
\delta_a = 9.611526341343468e - 14, \ d_a = 1.1102230246251565e - 15, \ \delta_b = 4.502873042796951e - 08 \ , \\ d_b = 3.65127150736555e - 10, \ \delta_c = 2.659111638749789e - 06, \\ d_c = 1.9430007713872044e - 08
```

3.7 Вторая функция

2 Методы и код методов остаются те же самыми, поэтому буду приводить таблицы значений. Для начала рассмотрим график функции:

Рис. 11: График второй функции

Видим, что данная функция имеет один корень. Её отрезком локализации возьмем [0.2, 1]

3.7.1 Метод Деления Отрезка Пополам

```
Iteration | x_{-} | f(a) | f(b) | f((a+b)/2)
1 | 0.6 | -1.40943791243410 | 1.0000000000000 | 0.0891743762340093
2 | 0.4 | -1.40943791243410 | 0.0891743762340093 | -0.516290731874155
3 | 0.5 | -0.516290731874155 | 0.0891743762340093 | -0.193147180559945
4 | 0.55 | -0.193147180559945 | 0.0891743762340093 | -0.0478370007556204
5 | 0.575 | -0.0478370007556204 | 0.0891743762340093 | 0.0216147618152133
6 | 0.5625 | -0.0478370007556204 | 0.0216147618152133 | -0.0128641449035618
7 | 0.56875 | -0.0128641449035618 | 0.0216147618152133 | 0.00443569128302301
8 | 0.565625 | -0.0128641449035618 | 0.00443569128302301 | -0.00419896452794633
9 | 0.5671875 | -0.00419896452794633 | 0.00443569128302301 | 0.000122157911133125
10 | 0.56640625 | -0.00419896452794633 | 0.000122157911133125 | -0.00203745205898809
11 | 0.566796875 | -0.00203745205898809 | 0.000122157911133125 | -0.000957409589420366
12 | 0.5669921874999999 | -0.000957409589420366 | 0.000122157911133125 | -0.000417566508923772
13 | 0.5670898437499999 | -0.000417566508923772 | 0.000122157911133125 | -0.000147689471449053
Конечный результат = 0.5670898437499999
Абсолютная погрешность: 5.3156250000019334e-05
Относительная погрешность: 0.009372636178180694
```

Рис. 12: Метод Бисекции для 2-й функции

3.7.2 Метод простой итерации

Данный метод не подходит, потому что при выборе x_0 близких к x^* производная $\phi = -ln(x)$ в данной точке не будет удовлетворять условию сходимости данного метода. При выборе другого представления $x = \phi(x) = -e^x$ получаем, что при x > 1, производная больше 1 по модулю и не сходится при меньших(>0). Вывод: данный метод не подходит для данной функции.

3.7.3 Метод Ньютона

```
F(x0)*F''(x0) = 10.0441422702882

x0 = 0.3

Iteration | x0 | f(x0) | f'(x_0)

1 | 0.3 | -0.903972804325936 | 4.333333333333333

2 | 0.508609108690601 | -0.167466408123344 | 2.96614646280023

3 | 0.565068359851531 | -0.00574020441530632 | 2.76969738716701

Конечный результат = 0.567140862227387

Абсолютная погрешность: 0.00000213777261259818

Относительная погрешность: 0.000376937141531885
```

Рис. 13: Таблица МН 2-й функции

3.7.4 Модифицированный Метод Ньютона

Рис. 14: Таблица модеф-го МН 2-й ф-ии

3.7.5 Метод Секущих

Рис. 15: Таблица метода секущих