Propagação de Epidemias por Autômatos Celulares: Uma Abordagem Espacial Baseada no Modelo SEIR

Resumo

A disseminação de epidemias é um processo profundamente enraizado na estrutura espacial das populações humanas. Este trabalho explora como autômatos celulares, com regras simples de interação local, podem capturar e representar a dinâmica da propagação de doenças infecciosas. Baseado no modelo SEIR — Suscetível, Exposto, Infectado e Recuperado —, o estudo revela como padrões complexos emergem da interação entre estados individuais ao longo do tempo.

1. Introdução

As epidemias são fenômenos dinâmicos que resultam da interação entre agentes biológicos, comportamentos humanos e estruturas sociais. Modelos clássicos de epidemiologia frequentemente ignoram a influência do espaço geográfico, tratando as populações como homogêneas e bem misturadas.

No entanto, a propagação de uma doença raramente ocorre de forma global instantânea. Ao contrário, ela avança de maneira local, de indivíduo para indivíduo, criando ondas de infecção, bolsões de resistência e caminhos de expansão. Autômatos celulares são ferramentas matemáticas ideais para representar essas dinâmicas locais e discretas.

2. Estrutura Conceitual do Modelo SEIR Espacial

Neste modelo, o espaço é representado por uma grade bidimensional, onde cada célula equivale a um indivíduo. A cada passo de tempo, o estado de uma célula depende de seu próprio estado e dos estados de seus vizinhos imediatos. O modelo utiliza quatro estados epidemiológicos fundamentais:

- Suscetível (S): indivíduo saudável, porém vulnerável à infecção.
- Exposto (E): indivíduo que foi infectado, mas ainda não transmite a doença.
- Infectado (I): indivíduo que transmite ativamente o agente infeccioso.
- Recuperado (R): indivíduo imune, que não pode mais ser infectado.

Cada transição entre estados ocorre com uma certa probabilidade, refletindo o comportamento esperado da doença.

3. Transições Epidemiológicas no Modelo

As transições de estado seguem a lógica do modelo SEIR, adaptada ao contexto de interações locais:

3.1. Infecção local

Um indivíduo suscetível pode se tornar exposto se estiver próximo a um ou mais infectados. A chance de infecção aumenta com o número de vizinhos infectados. A probabilidade de infecção é dada por:

$$P(S \rightarrow E) = 1 - (1 - \beta)^n I$$

Onde:

- β: probabilidade de contágio por um único vizinho infectado;
- nI: número de vizinhos infectados ao redor da célula.

Imagem 1: Propagação Inicial

3.2. Período de incubação

Uma vez exposto, o indivíduo não transmite a doença imediatamente. Ele passa por um período latente, após o qual torna-se infeccioso com probabilidade:

$$P(E \rightarrow I) = \sigma$$

Este parâmetro representa a velocidade com que a doença se ativa no organismo após a infecção.

3.3. Recuperação

Indivíduos infectados podem se recuperar espontaneamente com o tempo, tornando-se imunes:

$$P(I \rightarrow R) = \gamma$$

Imagem 2: Fase 1 de propagação

Imagem 3: Fase 2 de propagação, com sinais de recuperação da população

Essas transições ocorrem simultaneamente em toda a grade, a cada passo de tempo, e produzem dinâmicas que evoluem organicamente.

4. Comportamentos Espaciais e Padrões Emergentes

O modelo revela como regras simples de contato podem levar à formação de estruturas complexas:

- Frentes de propagação: a infecção avança em anéis concêntricos ou formas irregulares, dependendo da disposição local dos suscetíveis.
- Clustering: regiões densas de suscetíveis favorecem surtos intensos.
- Barreiras naturais: áreas recuperadas atuam como bloqueios ao avanço da infecção.
- Saturação: quando a maioria dos vizinhos já se recuperou, a propagação desacelera ou cessa.

Imagem 4: Formação de clusters de infecção em determinadas áreas

Tais padrões não são definidos previamente, mas emergem da iteração contínua entre células. Isso destaca o caráter auto-organizado do sistema.

5. Reflexões Conceituais

Este tipo de modelagem permite uma visão intuitiva e visualmente rica da evolução de epidemias. Ao contrário dos modelos contínuos, a estrutura espacial é representada explicitamente, e cada célula pode ser interpretada como um agente individual com trajetória própria.

A abordagem também mostra que:

- O tempo e o espaço são cruciais para a evolução epidêmica;
- Pequenas mudanças locais podem causar grandes diferenças globais;
- A heterogeneidade espacial pode alterar profundamente a dinâmica da epidemia.

Além disso, essa estrutura permite fácil expansão para incluir fatores como mobilidade, vacinação, isolamento social e redes de contato heterogêneas.

6. Conclusão

Modelar a propagação de epidemias com autômatos celulares oferece uma abordagem rica, espacialmente explícita e emergente. A partir de regras locais e estados discretos, observam-se comportamentos globais que refletem com fidelidade certos padrões encontrados em surtos reais.

Essa forma de modelagem é valiosa tanto para fins educacionais quanto para estudos exploratórios, oferecendo uma base sólida para discussões sobre estratégias de mitigação e compreensão da dinâmica epidêmica.

Imagem 5

Referências

- 1. Keeling, M. J., & Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton University Press.
- 2. Schiff, J. L. (2008). Cellular Automata: A Discrete View of the World. Wiley-Interscience.