Linear Regression Finding the Line of Best Fit

- Linear regression is a linear model, e.g. a model that assumes a linear relationship between the input variables (x) and the single output variable (y). More specifically, that y can be calculated from a linear combination of the input variables (x).
- When there is a single input variable (x), the method is referred to as simple linear regression. When there are multiple input variables, it is referred as multiple linear regression.

Application Areas

- Company sales or profit predictions.
- In business to evaluate trends and make estimates and predictions.
- Predicting housing price based on the area and prices of other houses.
- Stock Market predictions.
- Bus company cost function.
- Credit card industry to minimize the risk portfolio.
- Engine performance from the test data.

Linear Regression: Finding the Line of Best Fit

Year	1998	1999	2000	2001	2002	2003
Gross receipts	48.00	51.45	54.04	55.94	60.49	64.10

Source: 2006 Statistical Abstracts of the United States.

Example 1:

- Independent variable is t number of years since 1900
- Dependent variable is G gross receipts of movie industry, in billions of dollars

Linear Regression: Finding the Best Fit Line Example 1

Year	1998	1999	2000	2001	2002	2003
Gross receipts	48.00	51.45	54.04	55.94	60.49	64.10

Source: 2006 Statistical Abstracts of the United States.

Scatter Plot

Possible Line Fits

Linear Regression: Finding the Best Fit Line Example 1

Year	1998	1999	2000	2001	2002	2003
Gross receipts	48.00	51.45	54.04	55.94	60.49	64.10

Source: 2006 Statistical Abstracts of the United States.

- How to determine the line that fits this data set in the best possible way?
- Line that passes as close as possible to ALL data points.
- Note: This line may not necessarily contain any of the points in the data set

The Least Squares Criterion

- The least-squares criterion the line that best fits a set of data
 points is the one having the
 smallest possible sum of squared
 errors
- Note if we sum these errors some will be positive, others will be negative so they would cancel out – something to be avoided
- So we SQUARE all these differences(errors) before summing them up

Example 2 – Line of Best Fit

x	0	1	2	3	4	5	6	7	8
у	6	12	14	16	21	28	27	35	44

Example 2 – Line of Best Fit

- Which of the 3 lines captures the pattern in the data in the best possible way?
- Need to compute the sum of the squares

x	у	$y_L = 4x + 10$	$y-y_L$	$(y - y_L)^2$
0	6	10	-4	16
1	12	14	-2	4
2	14	18	-4	16
3	16	22	-6	36
4	21	26	-5	25
5	28	30	-2	4
6	27	34	-7	49
7	35	38	-3	9
8	44	42	2	4
				163

Example 2 – Line of Best Fit (continued)

	y = 4x + 4					y = 5x + 3				
x	У	y_L	$y-y_L$	$(y-y_L)^2$	х	у	y_L	$y-y_L$	$(y-y_L)^2$	
0	6	4	2	4	0	6	3	3	9	
1	12	8	4	16	1	12	8	4	16	
2	14	12	2	4	2	14	13	1	1	
3	16	16	0	0	3	16	18	-2	4	
4	21	20	1	1	4	21	23	-2	4	
5	28	24	4	16	5	28	28	0	0	
6	27	28	-1	1	6	27	33	-6	36	
7	35	32	3	9	7	35	38	-3	9	
8	44	36	8	64	8	44	43	1	1	
				115					80	

Correlation between two variables

- A relationship between two variables.
- The data can be represented by ordered pairs (x, y)
 - *x* is the **independent variable**
 - *y* is the **dependent variable**

Correlation

A **scatter plot** can be used to determine whether a linear (straight line) correlation exists between two variables.

Example:

x	1	2	3	4	5
y	-4	-2	-1	0	2

Types of Correlation

