Functional Analysis

Alex Rutar* University of Waterloo

Fall 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: November 22, 2019

Contents

Chapter	Analysis in Metric Spaces					
1	Topology	1				
	1.1 Metric Topology	1				
Chapter	r II Basic Elements of Functional Analysis					
2	Banach Spaces	3				
	2.1 Sequence Spaces					
	2.2 Bounded Continuous Functions into a Normed Space					
3	Linear Functionals and Operators	6				
4	Axiom of Choice and the Hahn-Banach Theorem	10				
	4.1 Geometric Hahn-Banach	13				
5	Some Applications of Baire Category Theorem	15				
		18				
6	On Compactness of the Unit Ball	21				
7	More Topology	22				
8		27				
	8.1 Nets and Topology	28				
	8.2 Roles of weak and weak* topologies in convexity	29				
	8.3 Extreme Points and the Krein-Milman Theorem	32				
9	Euclidean and Hilbert Spaces	35				
	9.1 Various Identities	37				
10	Adjoint Operators	43				
11	Spectral Theory for Bounded operators					
12		50				

I. Analysis in Metric Spaces

1 Topology

Let *X* denote a non-empty set, and $\mathcal{P}(X)$ denote the power set of *X*.

Definition. A **topology** on a set X is a set τ of subsets of X such that

- (i) \emptyset , $X \in \tau$
- (ii) If $U_{\alpha} \in \tau$ for all $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \tau$.
- (iii) If $n \in \mathbb{N}$ and $U_i \in \tau$ for each $1 \le i \le n$, then $\bigcap_{i=1}^n U_i \in \tau$.

The sets $U \in \tau$ are the **open sets** in X, and sets $X \setminus U$ for some open set U are the **closed sets** in X. The pair (X, τ) is called a **topological space**.

Example. (i) *Sorgenfry line:* Set $X = \mathbb{R}$, and consider

$$\sigma = \{ V \subseteq \mathbb{R} \mid \text{ for any } s \in V, \text{ there is } \delta = \delta(s) > 0 \text{ s.t. } [s, s + \delta) \subseteq V \}$$

It is a straightforward exercise to verify that $\tau_{|\cdot|} \subseteq \sigma$. We say that σ is **finer** than $\tau_{|\cdot|}$. (ii) *Relative or subset topology*: let (X, τ) be a topological space and $\emptyset \neq A \subseteq X$. Then we can define a topology $\tau|_A = \{U \cap A : U \in \tau\}$.

1.1 Metric Topology

A metric space (X, d) is naturally a topological space, where the topology is given by

$$\tau_d = \{ U \subseteq X \mid \text{ for each } x_0 \in U, \text{ there is } \delta = \delta(x_0) \text{ s.t. } B_\delta(x_0) \subseteq U \}.$$

Given two metrics d, ρ on X, we say that $d \sim \rho$ are **equivalent** if and only if there are c, C > 0 such that

$$cd(x,y) \le \rho(x,y) \le Cd(x,y)$$
 for any $x,y \in X$

Note that $d \sim \rho$ implies that $\tau_d = \tau_\rho$, but the reverse implication is not true. An example of this are the metrics on $X = \mathbb{R}$ given by d(x,y) and $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$. Then $d \nsim \rho$ but $\tau_d = \tau_\rho$. Let (X,d), (Y,ρ) be metric spaces. A map $f: X \to Y$ is an **isometry** if for any $x,y \in X$, $d(x,y) = \rho(f(x),f(y))$. By non-degeneracy, f is automatically injective. In particular, when (X,d) is complete, then $(f(X),\rho|_{f(X)})$ is a complete metric space.

Definition. Let (X, τ) and (Y, σ) be topological spaces, and $f : X \to Y$. We say that f is $(\tau - \sigma -)$ **continuous at** x_0 in X if for any $V \in \sigma$ such that $f(x_0) \in V$, then there exists $U \in \tau$ such that $x_0 \in U$ and $f(U) \subseteq V$. We say that f is $(\tau - \sigma -)$ **continuous** if it is continuous at each x_0 in X.

An easy application of definitions yields the following:

1.1 Proposition. Let (X,τ) , (Y,σ) be topological spaces and $f:X\to Y$. Then f is continuous if and only if for any $U\in\sigma$, $f^{-1}(U)\in\tau$.

1.2 Lemma. If $x_0 \in X$ where (X, τ) is a topological space, then

$$\mathcal{I}(x_0) = \{ f \in C_b(X) \mid f(x_0) = 0 \}$$

is closed, hence complete, subspace of $C_b(X)$.

PROOF If $(f_n)_{n=1}^{\infty} \subseteq \mathcal{I}(x_0)$ and $f = \lim_{n \to \infty} f_n$ with respect to $\|\cdot\|_{\infty}$ in $C_b(X)$, then $f(x_0) = \lim_{n \to \infty} f_n(x_0) = 0$. Thus $f \in \mathcal{I}(x_0)$, and closed subsets of complete spaces are themselves complete.

II. Basic Elements of Functional Analysis

2 Banach Spaces

Throughout, we denote by \mathbb{F} either the field \mathbb{R} or the field \mathbb{C} .

Definition. Let X be a vector space over \mathbb{F} . A **seminorm** is a functional $\|\cdot\|: X \to \mathbb{R}$ such that it is

- (non-negative) $||x|| \ge 0$ for any $x \in X$
- (subadditive) $||x+y|| \le ||x|| + ||y||$ for $x, y \in X$
- $(|\cdot| homogenous) ||\alpha x|| = |\alpha| ||x|| \text{ for } \alpha \in \mathbb{F}, x \in X.$

If in addition, $\|\cdot\|$ satisfies the added requirement

• (non-degenerate) ||x|| = 0 if and only if x = 0

we call $\|\cdot\|$ a **norm** for X. In this case, the pair $(X, \|\cdot\|)$ a **normed vector space**. We say that $(X, \|\cdot\|)$ is a **Banach space** provided that X is complete with respect to the metric $\rho(x,y) = \|x-y\|$ induced by the norm.

Example. Here are some standard examples of Banach spaces:

- (i) $(\mathbb{F}, |\cdot|)$ is probably the simplest example of a Banach space.
- (ii) *Finite-dimensional space*: denoted $(\mathbb{F}^d, \|\cdot\|_p)$ with points $x = (x_j)_{j=1}^n$ equipped with the p-norm

$$||x||_p = \begin{cases} \left(\sum_{i=1}^n |x_j|^p\right)^{1/p} & 1 \le p < \infty \\ \max_{j=1,\dots,n} |x_j| & p = \infty \end{cases}$$

is a Banach space

(iii) If you have a background in basic measure theory, the space $L_{p,\mathbb{F}}(\Omega)$, where Ω is a compact domain. For a concrete example, take for example

$$L^p\mathbb{F}([0,1]) = \left\{ f: [0,1] \to \mathbb{F} \mid f \text{ is Lebesgue measurable,} \left(\int_0^1 |f|^p \right)^{1/p} < \infty \right\} \Big|_{\infty \text{a.e.}}$$

where $1 \le p < \infty$. To enforce non-degeneracy, we must mod out by equivalence almost everywhere.

- (iv) The space of essentially bounded functions, $L_{\infty}^{\mathbb{F}}[0,1]$, $\|f\|_{\infty} = \operatorname{ess\,sup}_{t \in [0,1]} |f(t)|$.
- (v) Function spaces: let (X,d) be a metric space, and define

$$C_b(X, \mathbb{F}) = \{ f : X \to \mathbb{F} \mid f \text{ is continuous and bounded} \}, \qquad \|f\|_{\infty} = \sup_{x \in X} |f(x)|.$$

Here, we define a more involved example.

Example. Let (X, d) be a metric space. We define the space of *Lipschitz functions*

$$\operatorname{Lip}_{\mathbb{F}}(X,d) = \left\{ f: X \to \mathbb{F} \middle| f \text{ is bounded, } L(f) = \sup_{\substack{x,y \in X \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} < \infty \right\}$$

Note that for any $f: X \to \mathbb{F}$, $f \in \operatorname{Lip}_{\mathbb{F}}(X,d)$ if and only if there is some $L \ge 0$ such that $|f(x) - f(y)| \le Ld(x,y)$ for all x,y in X. One may verify that L(f) is the infimum over all values of L for which this inequality holds over X.

It is an easy exercise to see that $\operatorname{Lip}_{\mathbb{F}}(X,d)$ is a vector space and that $L: \operatorname{Lip}_{\mathbb{F}}(X,d) \to \mathbb{R}$ is a seminorm. However, we do not have non-degeneracy - for example, if f is constant, then L(f) = 0. To define a norm on the space of Lipschitz functions, we essentially force non-degeneracy by construction: we define the *Lipschitz norm*

$$||f||_{\text{Lip}} = ||f||_{\infty} + L(f).$$

In this case, we do in fact have what we want:

2.1 Proposition. $(\text{Lip}_{\mathbb{F}}(X,d), \|\cdot\|_{\text{Lip}})$ is a Banach space.

PROOF Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $(\text{Lip}_{\mathbb{F}}(X,d),\|\cdot\|_{\text{Lip}})$. Since $\|\cdot\|_{\infty} \leq \|\cdot\|_{\text{Lip}}$ on $\text{Lip}_{\mathbb{F}}(X,d)$, this sequence is uniformly Cauchy and hence converges to some $f \in C_b(X,\mathbb{F})$ with respect to the uniform norm. Moreover, if $x,y \in X$, then

$$|f(x) - f(y)| = \lim_{n \to \infty} |f_n(x) - f_n(y)| \le \sup_{n \in \mathbb{N}} |f_n(x) - f_n(y)|$$

$$\le \sup_{n \in \mathbb{N}} L(f_n) d(x, y) \le \sup_{n \in \mathbb{N}} ||f_n||_{\text{Lip}} d(x, y).$$

Since Cauchy sequences are bounded in norm, we have that $|f(x) - f(y)| \le Ld(x,y)$ where $L = \sup_{n \in \mathbb{N}} ||f_n||_{\text{Lip}} < \infty$, so in fact $f \in \text{Lip}_{\mathbb{F}}(X,d)$. It is easy to verify that $\lim_{n \to \infty} ||f - f_n||_{\text{Lip}} = 0$.

2.1 SEQUENCE SPACES

Since we do not assume the background of measure theory in this treatment, one of our main basic examples of Banach spaces will be the sequence spaces. Let $\mathbb{F}^{\mathbb{N}}$ denote the set of all sequences in \mathbb{F} , and define

$$\ell^{1} = \left\{ x = (x_{j})_{j=1}^{\infty} \in \mathbb{F}^{\mathbb{N}} \middle| ||x||_{1} = \sum_{j=1}^{\infty} |x_{j}| < \infty \right\}.$$

It is easy to see that $(\ell_1, \|\cdot\|_1)$ is a normed vector space.

More generally, for 1 , we may define

$$\ell^p = \left\{ x \in \mathbb{F}^{\mathbb{N}} \middle| ||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p \right)^{1/p} < \infty \right\}.$$

As always, it is easy to verify that the ℓ^p -spaces, for $1 \le p < \infty$, are in fact normed vector spaces. The interesting work is in proving that they are Banach spaces.

Let q = p/(p-1) so that 1/p + 1/q = 1. Then q is called the **conjugate index** to p. We have a number of standard inequalities on ℓ_p -spaces, the proofs of which can be found in general in [*TODO*: eventually link measure theory result].

- **2.2 Proposition.** (Inequalities in ℓ^p -spaces) Throughout, let $1 < p, q < \infty$ be conjugate exponents.
 - Young's Inequality: If $a, b \ge 0$ in \mathbb{R} , then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$, with equality if and only if $a^p = b^q$.
 - Hölder's Inequality: If $x \in \ell^p$ and $y \in \ell^q$, then $xy = (x_i y_i)_{i=1}^{\infty} \in \ell_1$, with

$$\sum_{i=1}^{\infty} \left| x_i y_i \right| \le \left\| x \right\|_p \left\| y \right\|_q.$$

Note that equality holds if and only if the following two conditions hold:

- (i) $\operatorname{sgn}(x_i y_i) = \operatorname{sgn}(x_k y_k)$ for all $j, k \in \mathbb{N}$ where $x_i y_i \neq 0 \neq x_k y_k$, and
- (ii) $|x|^p = (|x_j|^p)_{j=1}^{\infty}$ and $|y|^q$ are linearly dependent in ℓ_1 .
- Minkowski's Inequality: If $x, y \in \ell_p$, then $||x + y||_p \le ||x||_p + ||y||_p$ with equality exactly when one of x or y is a non-negative scalar combination of the other.

In particular, Minkowski's Inequality [TODO: cite certain labels by name? and also link - would be nice]

2.2 Bounded Continuous Functions into a Normed Space

Let $(Y, \|\cdot\|)$ be a normed space and $\tau = \tau_{\|\cdot\|}$ the topology induced by $\|\cdot\|$. Let (X, τ) be any topological space. We define the space

$$C_b(X, Y) = \{ f : X \to Y \mid f \text{ is bounded and } \tau - \tau_{\|\cdot\|} - \text{continuous} \}$$

With pointwise operations, we see that $C_b(X, Y)$ is a vector space. We also define for $f \in C_b(X, Y)$, $||f||_{\infty} = \sup\{||f(x)|| : x \in X\}$, making $(C_b(X, Y), ||\cdot||_{\infty})$ a normed vector space.

2.3 Theorem. If $(Y, \|\cdot\|)$ is a Banach space, then $(C_b(X, Y), \|\cdot\|_{\infty})$ is a Banach space.

PROOF Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $(C_b(X,Y),\|\cdot\|_{\infty})$. Then for any $x \in X$, we have that $(f_n(x))_{n=1}^{\infty}$ is Cauchy in $(Y,\|\cdot\|)$ since $\|f_n(x)-f_m(x)\| \le \|f_n-f_m\|_{\infty}$, and hence admis a limit f(x). This defines a pointwise limit $f:X\to Y$. Fix $x_0\in X$: we must show that f is continuous at x_0 . Given $\epsilon>0$, set

- n_1 so that whenever $n, m \ge n_1$, $||f_n f_m||_{\infty} < \epsilon/4$.
- n_2 so that whenever $n \ge n_2$, $||f_n(x_0) f(x_0)|| < \epsilon/4$.
- $N = \max\{n_1, n_2\}.$
- $U \in \tau$, $x_0 \in U$ such that $f_N(U) \subseteq B_{\epsilon/4}(f(x_0)) \subset Y$.

Then for $x \in U$, we let n_x be so $n_x \ge n_1$ and $n \ge n_x$, so that $||f_n(x) - f(x)|| < \epsilon/4$. We then have

$$\begin{split} \|f(x) - f(x_0)\| &\leq \left\| f(x) - f_{n_x}(x) \right\| + \left\| f_{n_x}(x) - f_N(x) \right\| + \|f_N(x) - f_N(x_0)\| + \|f_N(x_0) - f(x_0)\| \\ &< \frac{\epsilon}{4} + \left\| f_{n_x} - f_N \right\|_{\infty} + \frac{\epsilon}{4} + \frac{\epsilon}{4} < \epsilon \end{split}$$

in other words that $f(U) \subseteq B_{\epsilon}(f(x_0))$ so that f is continuous.

Now let us check that $||f||_{\infty} < \infty$. Since $|||f_n||_{\infty} - ||f_m||_{\infty}| \le ||f_n - f_m||_{\infty}$, $(||f_n||_{\infty})_{n=1}^{\infty} \subseteq \mathbb{R}$ is Cauchy, hence bounded. If $x \in X$, then

$$||f(x)|| = \lim_{n \to \infty} ||f_n(x)|| \le \sup_{n \in \mathbb{N}} ||f_n(x)|| \le \sup_{n \in \mathbb{N}} ||f_n||_{\infty} < \infty$$

so $||f||_{\infty} = \sup_{x \in X} ||f(x)|| < \infty$.

Finally, to show that the limit indeed converges approriately, if ϵ , n_1 , x_0 , N are as above, we have for $n \ge n_1$

$$||f_n(x_0) - f(x_0)|| \le ||f_n(x_0) - f_N(x_0)|| + ||f_N(x_0) - f(x_0)|| < \frac{\epsilon}{2}$$

so $||f_n - f||_{\infty} = \sup_{x_0 \in X} ||f_n(x_0) - f(x_0)|| \le \epsilon/2 < \epsilon$. The convergence is uniform since n_1 is chosen uniformly in X.

2.4 Corollary. $(C_b(X, \mathbb{F}), ||\cdot||_{\infty})$ is a Banach space.

Example. (i) Let T be a non-empty set and let

$$\ell^{\infty}(T) = \left\{ x = (x_t)_{t \in T} \in \mathbb{F}^T \mid ||x||_{\infty} \right\} < \infty$$

With pointwise operations, $(\ell_{\infty}, \|\cdot\|_{\infty})$ is a normed space. In fact, it is a Banach space, since

$$f \mapsto (f(t))_{t \in T} : C_b(T, \mathcal{P}(T)) \to \ell_{\infty}(T)$$

is a surjective linear isometry, and the result follows.

(ii) Let $c = \{x \in \ell_{\infty} \mid \lim_{n \to \infty} x_n \text{ exists} \}$. Then $(c, \|\cdot\|_{\infty})$ is a Banach space. Consider the topological space given by $\omega = \mathbb{N} \cup \{\infty\}$, with topology

$$\tau_{\omega} = \mathcal{P}(\mathbb{N}) \cup \bigcup_{n \in \mathbb{N}} \{k \in \mathbb{N} : k \ge n\}$$

The map $f \mapsto (f(n))_{n=1}^{\infty} : C_b(\omega) \to c$ is a linear surjective isometry.

- (iii) Recall that $\mathcal{I}(\infty)$ is a closed, and hence complete, subspace of c. We may define $c_0 = \left\{ x \in \mathbb{F}^{\mathbb{N}} \mid \lim_{n \to \infty} x_n = 0 \right\} \subseteq c \subseteq \ell_{\infty}$. In this case, $f \mapsto (f(n))_{n=1}^{\infty} : \mathcal{I}(\infty) \to c_0$ is a (linear) surjective isometry.
- (iv) Consider the Sorgenfry line (\mathbb{R} , σ). One may verify that

$$C_b((\mathbb{R}, \sigma), \mathbb{F}) = \left\{ f : \mathbb{R} \to \mathbb{F} \mid f \text{ is bounded and } \lim_{t \to t_0^+} f(t) = f(t_0) \text{ for } t \in \mathbb{R} \right\}$$

3 Linear Functionals and Operators

Let X, Y be vector spaces. We let $\mathcal{L}(X, Y) = \{ S : X \to Y \mid S \text{ is linear } \}$; this is itself a vector space with pointwise operations. Let $(X, \|\cdot\|)$ be a normed space. We denote

$$D(X) = \{x \in X : ||x|| < 1\}$$
$$S(X) = \{x \in X : ||x|| = 1\}$$

$$B(X) = \{x \in X : ||x|| \le 1\}$$

(Yes, this notation is confusion. No, I didn't choose it.)

- **3.1 Proposition.** If X, Y are normed spaces and $S \in \mathcal{L}(X,Y)$, then the following are equivalent:
 - (i) S is continuous
 - (ii) S is continuous at some $x_0 \in X$
- (iii) $||S|| = \sup_{x \in D(X)} ||Sx|| < \infty$.

Moreover, in this case, we have

$$||S|| = \min\{L > 0 : ||Sx|| \le L||x|| \text{ for } x \in X\}$$

= $\sup_{x \in S(X)} ||Sx|| = \sup_{x \in B(X)} ||Sx||$

PROOF $(i \Rightarrow ii)$ By definition.

 $(ii \Rightarrow iii)$ Note that

$$Sx_0 + D(Y) = \{Sx_0 + y : t \in D(Y)\} = \{y \in Y : ||Sx_0 - y'|| < 1\}$$

is a neighbourhood of Sx_0 . By the definition of metric continuity, there is $\delta > 0$ such that

$$x_0 + \delta D(X) = \{x_0 + \delta x : x \in D(x)\} = \{x' \in X : ||x_0 - x'|| < \delta\}$$

such that

$$Sx_0 + \delta S(D(X)) = S(x_0 + \delta D(x) \subseteq Sx_0 + D(Y)$$

which implies that $\delta S(D(X)) \subseteq D(Y)$ and $S(D(X)) \subseteq D(Y)/\delta$, in other words that $||Sx|| \le 1/\delta$ for $x \in D(X)$.

 $(iii \Rightarrow i)$ If $x \in X$ and $\epsilon > 0$, then

$$||Sx|| = (||x|| + \epsilon) \left| \left| S\left(\frac{1}{||x|| + \epsilon} ||x||\right) \right| \right| \le (||x|| + \epsilon) ||S||$$

Then, letting $\epsilon \to 0^+$, we see that

$$||Sx|| \le ||x|| ||S|| = ||S|| ||X||$$

If $x, x' \in X$, then $||Sx - S'x|| \le ||S|| ||x - x'||$ is S is Lipschitz, hence continuous.

To complete the proof, the content of (iii) implies (i) tellus us that the Lipschitz constant $L(S) \le ||S||$. Furthermore, if ||x|| = 1, the preceding proof gives us that $||S||_{S(X)}$. Conversely,

$$||S|| = \sup_{x \in D(X) \setminus \{0\}} ||Sx|| = \sup_{x \in D(X) \setminus \{0\}} ||x|| \left| \left| S\left(\frac{1}{||x||}x\right) \right| \right| \le \sup_{x \in S(X)} ||Sx||$$

The remaining equivalence is obvious.

We now let $\mathcal{B}(X,Y) = \{ S \in \mathcal{L}(X,Y) \mid S \text{ is bounded } \}$. We will see that $\|\cdot\|$, above, defines a norm on $\mathcal{B}(X,Y)$.

3.2 Theorem. If X, Y are normed spaces, then $(\mathcal{B}(X, Y), \|\cdot\|)$ is a normed space. Furthermore, if Y is a Banach spaces, then so to is $(\mathcal{B}(X, Y), \|\cdot\|)$.

Proof Define

$$\Gamma: \mathcal{B}(X,Y) \to C_h^Y(B(X))$$

given by $\Gamma(S) = S|_{B(X)}$. Then, by definition, Γ is linear, with

$$||\Gamma(S)||_{\infty} = \sup_{x \in B(X)} ||Sx|| = ||S||$$

Thus $\|\cdot\|$ is a norm: if $S, T \in \mathcal{B}(X, Y), \alpha \in \mathbb{F}$,

$$||S + T|| = ||\Gamma(S + T)||_{\infty} = ||\Gamma(S) + \Gamma(T)||_{\infty} \le ||\Gamma(S)||_{\infty} + ||\Gamma(T)||_{\infty} = ||S|| + ||T||$$
$$||\alpha S|| = ||\Gamma(\alpha S)||_{\infty} = |\alpha| ||\Gamma(S)||_{\infty} = |\alpha| ||S||.$$

Furthermore, $\Gamma: \mathcal{B}(X,Y) \to C_h^Y(\mathcal{B}(X))$ is an isometry.

Now suppose that Y is a Banach space. We will show that $\Gamma(\mathcal{B}(X,Y))$ is closed in $C_b^Y(B(X))$, and hence $B(X,Y) = \Gamma^{-1}(\Gamma(\mathcal{B}(X,Y)))$ is complete. Let $(S_n)_{n=1}^\infty \subset \mathcal{B}(X,Y)$ be $\|\cdot\|$ —Cauchy. Then $(\Gamma(S_n))_{n=1}^\infty$ is $\|\cdot\|_\infty$ —Cauchy in $C_b^Y(B(X))$, and hence there is $f \in C_b^Y(B(X))$ such that $\lim_{n\to\infty} \|\Gamma(S_n) - f\|_\infty = 0$. Then we let $S: X \to Y$ be given by

$$Sx = \begin{cases} ||x|| f\left(\frac{x}{||x||}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

If $x, x' \in X$ and $\alpha \in \mathbb{F}$ are all such that $x, x', x + \alpha x' \neq 0$, then

$$S(x + \alpha x') = \|x + \alpha x'\| f\left(\frac{1}{x + \alpha x'}(x + \alpha x')\right)$$

$$= \|x + \alpha x'\| \lim_{n \to \infty} S_n\left(\frac{1}{x + \alpha x'}(x + \alpha x')\right)$$

$$= \lim_{n \to \infty} (S_n x + \alpha S_n x') = \lim_{n \to \infty} \left[\|x\| S_n\left(\frac{1}{\|x\|}x\right) + \alpha \|x'\| S_n\left(\frac{1}{\|x\|}x'\right)\right]$$

$$= \|x\| f\left(\frac{x}{\|x\|}\right) + \alpha \|x'\| f\left(\frac{x'}{\|x\|}\right)$$

$$= Sx + \alpha Sx'$$

The above computation is easily performed if any of x, x', $x + \alpha x'$ are 0. Hence $S \in \mathcal{L}(X, Y)$. We se that S is continuous (say, at a point on S(X)), so $S \in \mathcal{B}(X, Y)$. Finally, as $S|_{\mathcal{B}(X)} = f = \lim_{n \to \infty} S_n|_{\mathcal{B}(X)}$ (with respect to the uniform norm), we have

$$||S - S_n|| = \sup_{x \in B(X)} ||(S - S_n)x|| = ||f - \Gamma(S_n)||_{\infty}$$

goes to 0 as n goes to infinity.

Definition. Given a vector space X, let $X' = \mathcal{L}(X, \mathbb{F})$ denote the **algebraic dual**. If further X is a normed space, we let $X^* = \mathcal{B}(X, \mathbb{F})$ denote the (continuous) dual.

3.3 Corollary. If X is a normed spaces, then X^* is always a Banach space.

3.4 Theorem. Let for $x \in \ell_1$, $f_x : c_0 \to \mathbb{F}$ be given by $f_x(y) = \sum_{j=1}^{\infty} x_j y_j$. Then $f_x \in c_0^*$ with $||f_x|| = ||x||_1$. Furthermore, every element of c_0^* arises as above.

PROOF If $x \in \ell_1$ and $y \in c_0 \subseteq \ell_\infty$, then

$$\sum_{j=1}^{\infty} |x_j y_j| \le \sum_{j=1}^{\infty} |x_j| \|y\|_{\infty} = \|x\|_1 \|y\|_{\infty} < \infty$$

so $f_x(y) = \sum_{j=1}^{\infty} x_j y_j$ is well-defined. It is obvious that f_x is linear: $f_x(y + \alpha y') = f_x(y) + \alpha f(y')$ for $y, yl \in c_0$ and $\alpha \in \mathbb{F}$. Also, $||f_x|| \le ||x||_1$. We let $y^n = (\overline{\operatorname{sgn} x}, \dots, \overline{\operatorname{sgn} x_n}, 0, 0, \dots) \in c_0$, with $||y^n|| = 1$. Then

$$||f_x|| \ge |f_x(y^n)| = \sum_{i=1}^n x_i \overline{\operatorname{sgn} x_i} = \sum_{i=1}^n |x_i|$$

so that $||f_x|| \ge ||x||_1$, and hence equality holds.

Now let $f \in c_0^*$, and write $e_n = (0, ..., 0, 1, 0, 0, ...) \in c_0$, and let $x_n = f(e_n)$. Then, let $y \in c_0$ and $y^n = (y_1, ..., y_n, 0, 0, ...)$ and we have

$$||y - y^n||_{\infty} = \sup_{j \ge n+1} |y_j|$$

which goes to 0 as n goes to infinity. Then since f is continuous, we have

$$f(y) = \lim_{n \to \infty} f(y^n) = \lim_{n \to \infty} \sum_{j=1}^{n} y_j x_j = \sum_{j=1}^{\infty} x_j y_j = f_x(y)$$

We use sequence $(y^n)_{n=1}^{\infty}$ as in $y^n \in c_0$, to see that

$$\sum_{j=1}^{n} |x_i| = |f(y^n)| \le ||f|| < \infty$$

so $x \in \ell_1$. Thus $f = f_x$, as desired.

3.5 Corollary. $\ell_1 \cong c^*$ isometrically isomorphically.

Proof For $y \in c$, let $L(y) = \lim_{n \to \infty} y_n$. Given $y \in c$, let $y^n = (y_1, \dots, y_n, L(y), L(y), \dots) \in c$. Notice that $\|y - y^n\|_{\infty} \to 0$ similarly as above.

We let 1 = (1, 1, ...), and $1_n = (0, ..., 0, 1, 1, ...)$. If m < n, then $1_n - 1_m \in c_0$, so

$$|f(1_n) - f(1_m)| = |f_x(1_n - 1_m)| \le \sum_{j=m+1}^n |x_j|$$

so that $(f(1_n))_{n=1}^{\infty}$ is Cauchy in \mathbb{F} . Let $x_0 = \lim_{n \to \infty} f(1_n)$. Let $\tilde{x} = (x_0, x_1, ...) \in \ell_1$. Then letting $x_j = f(e_j)$, we see that

$$f(y) = \lim_{n \to \infty} f(y^n) = \sum_{j=1}^{\infty} x_j y_j + x_0 L(y)$$

Similarly as above, we may show that $||f|| = ||\tilde{x}||_1$.

Remark. We write $c_0^* \cong \ell_1$ isometrically.

3.6 Corollary. $(\ell_1, ||\cdot||_1)$ is complete.

4 Axiom of Choice and the Hahn-Banach Theorem

Definition. Let S be a non-empty set. A **partial ordering** is a binary relation \leq on S which satisfies for $s, t, n \in S$,

- (i) (reflexivity) $s \le s$
- (ii) (transitivity) $s \le t$, $t \le u$ implies $s \le u$
- (iii) (anti-symmetry) $s \le t$, $t \le s$ implies s = t

We call the pair (S, \leq) a **partially ordered set**. We say that (S, \leq) is **totally ordered** if, given $s, t \in S$, at least one of $s \leq t$ or $t \leq s$ holds. We say that (S, \leq) is **well-ordered** if given any $\emptyset \neq S_0 \subseteq S$, there is some $s_0 \in S_0$ such that $s_0 \leq s$ for $s \in S_0$. A **chain** in a poset (S, \leq) is any $\emptyset \neq C \subseteq S$ such that $(S, \leq)_C$ is totally ordered.

Example. (i) $X \neq \emptyset$, $(\mathcal{P}(X), \subseteq)$ is a poset

- (ii) (\mathbb{R}, \leq) is a totally ordered set
- (iii) (\mathbb{N}, \leq) , $(\omega = \mathbb{N} \cup \{\infty\}, \leq)$, are well-ordered sets.
 - **4.1 Theorem.** The following are equivalent:
 - (i) (Axiom of Choice 1): For any $x \neq \emptyset$, there is a function $\gamma : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ such that $\gamma(A) \in A$ for each $A \in \mathcal{P}(X) \setminus \{\emptyset\}$.
 - (ii) (Axiom of Choice 2): Given any $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ where $A_{\lambda}\neq\emptyset$ for each λ ,

$$\prod_{\lambda \in \Lambda} A_{\lambda} = \{(a_{\lambda})_{\lambda \in \Lambda} : a_{\lambda} \in A_{\lambda} \text{ for each } \lambda\} \neq \emptyset$$

- (iii) (Zorn's Lemma): In a poset (S, \leq) , if each chain $C \subseteq S$ admits an upper bound in S, then (S, \leq) admis a maximal element.
- (iv) (Well-ordering principle): Any $S \neq \emptyset$ admits a well-ordering

Proof Exercise.

Definition. Let X be a vector space (over k). A subset $S \subseteq X$ is called

- **linearly independent** if for any distinct $x_1, ..., x_n \in S$, the equation $0 = \alpha_1 x_1 + \cdots + \alpha_n x_n = 0$ where $\alpha_i \in k$ implies $\alpha_1 = \cdots = \alpha_n = 0$.
- **spanning** if each $x \in X$ admits $x_i \in S$ and $\alpha_i \in k$ such that $x = \alpha_1 x_1 + \cdots + \alpha_n x_n$.
- Hamel basis if it is both linearly independent and spanning
- **4.2 Proposition.** Any vector space X admits a Hamel basis.

PROOF Let $\mathcal{L} = \{L \subseteq X : L \text{ is linearly independent}\}$. Then (\mathcal{L}, \subseteq) is a poset. Verify that for any chain $\mathcal{C} \subseteq \mathcal{L}$, that $U = \bigcup_{L \in \mathcal{C}} L \in \mathcal{L}$ and is an upper bound for \mathcal{C} . Apply Zorn to find a maximal element M in (\mathcal{L}, \subseteq) . Verify that M is spanning for X.

4.3 Corollary. If X is an infinite dimensional normed space, then there exists $f \in X' \setminus X^*$.

Proof Our assumption provides $\{e_n\}_{n=1}^{\infty}$ which is linearly independent. By normalizing each element, we may and will suppose that each $||e_n|| = 1$. Let

$$\operatorname{span}\{e_n\}_{n=1}^{\infty} = \left\{ \sum_{j=1}^{m} \alpha_j e_{n_j} : m \in \mathbb{N}, \alpha_i \in \mathbb{F}, n_1 < \dots < n_m \right\}$$

and let B be any linearly independent set containing $\{e_n\}_{n=1}^{\infty}$. Define $f: X = \operatorname{span} B \to \mathbb{F}$ be given for $x = \sum_{b \in B \setminus \{e_n\}_{n=1}^{\infty}} \alpha_b b + \sum_{j=1}^n \alpha_j e_{n_j}$ by $f(x) = \sum_{j=1}^m \alpha_j n_j$. The point is that $f(e_n) = n$ and f(e) = 0 for any other $e \in B$. Notice that

$$||f|| = \sup_{x \in B(X)} |f(x)| \ge \sup_{n \in \mathbb{N}} |f(e_n)| = \sup_{n \in \mathbb{N}} n = \infty$$

Definition. Let X be a \mathbb{R} -vector space. A **sublinear functional** is any $\rho: X \to \mathbb{R}$ such that it satisfies

- (non-negative homogenity) $\rho(tx) = t\rho(x)$ for $t \ge 0$, $x \in X$.
- (subadditivity) $\rho(x+y) \le \rho(x) + \rho(y)$ for $x, y \in X$.

4.4 Theorem. (Hahn-Banach) Let X be a \mathbb{R} -vector space, $\rho: X \to \mathbb{R}$ a sublinear functional, $Y \subseteq X$ a subspace and $f \in Y'$ such that $f \leq \rho|_Y$. Then there exists $F \in X'$ such that $F|_Y = f$ and $F \leq \rho$ on X.

PROOF We first do this for extensions by a single point $x \in X \setminus Y$. We wish to find $c \in \mathbb{R}$ such that

$$f(y) + \alpha c \le \rho(y + \alpha x)$$

for $y \in Y$ and $\alpha \in \mathbb{R}$. In this case, we let $F : \operatorname{span} Y \cup \{x\} \to \mathbb{R}$ be given by $F(y + \alpha x) = f(y) + \alpha c$, and we have that F is linear and satisfies $F \le \rho$ on $\operatorname{span} Y \cup \{s\}$. To do this, let y_+, y_- in Y and observe that $f(y_+) + f(y_-) = f(y_+ + y_-) \le \rho(y_+ + y_-) \le \rho(y_+ + x) + \rho(y_- - x)$ so that $f(y_-) - \rho(y_- - x) \le \rho(y_+ + x) - f(y_+)$. It thus follows that

$$\sup\{f(y) - \rho(y - x) : y \in Y\} \le \{\rho(y + x) - f(y) : y \in Y\}$$

so we may find $c \in \mathbb{R}$ for which

$$\sup\{f(y) - \rho(y - x) : y \in Y\} \le c \le \inf\{\rho(y + x) - f(y) : y \in Y\}$$

If t > 0, then for $y \in Y$,

$$c \le \rho\left(\frac{1}{t}y + x\right) - f\left(\frac{1}{t}y\right) \Longrightarrow tc \le \rho(y + tx) - f(y) \Longrightarrow f(y) + tc \le \rho(y + tx)$$

and if s > 0, then for $y \in Y$,

$$f\left(\frac{1}{s}y\right) - \rho\left(\frac{1}{s}y - x\right) \le c \Rightarrow sc \le f(y) - \rho(y + sx) \Rightarrow f(y) - sc \le \rho(y - sx)$$

Clearly, $f(y) + 0 \le \rho(y + 0x)$. Hence, we have our desired inequality.

We now use Zorn's lemma to lift this result to the whole space. Consider the set of "p-extensions" of f,

$$\mathcal{E} = \{ (\mathcal{M}, \psi) \mid Y \subseteq \mathcal{M} \subseteq X, \mathcal{M} \text{ is a subspace, } \psi \in \mathcal{M}', \psi|_{Y} = f, \psi \leq P|_{\mathcal{M}} \}$$

Define a partial order on \mathcal{E} by

$$(\mathcal{M}, \psi) \leq (\mathcal{N}, \phi)$$
 iff $\mathcal{M} \subseteq \mathcal{N}, \phi|_{\mathcal{M}} = \psi$

Suppose $C \subseteq \mathcal{E}$ is a chain with respect to \leq . We let

- $\mathcal{U} = \bigcup_{(\mathcal{M}, \varphi)} \mathcal{M}$ which is a subspace, since \mathcal{C} is a chain.
- and define $\phi: \mathcal{U} \to \mathbb{R}$ by $\phi(x) = \psi(x)$ whenever $x \in \mathcal{M}$, which is again well-defined since C is a chain.

Furthermore, we see that $\phi \in U'$, since if $x,y \in \mathcal{U}$, get $x \in \mathcal{M}$, $y \in \mathcal{N}$ for some $(\mathcal{M},\psi) \leq (\mathcal{N},\psi') \in \mathcal{C}$. Then $\phi(x+y) = \psi'(x+y) = \psi'(x) + \psi'(y) = \phi(x) + \phi(y)$, etc. Likewise, $\psi \leq p|_{\mathcal{U}}$. Thus by Zorn's lemma, \mathcal{E} admits a maximal element \mathcal{M} , F Then $\mathcal{M} = X$, for if not, then we would find $x \in X \setminus \mathcal{M}$ and we apply step one to span $\mathcal{M} \cup \{x\}$ to get F', a strictly larger element violating maximality.

Trivially, any \mathbb{C} -vector siace is a \mathbb{R} -vector space.

- **4.5 Lemma.** Let X be a \mathbb{C} -vector space.
 - (i) If $f \in X'_{\mathbb{R}}$ into \mathbb{R} , then define $f_{\mathbb{C}}$ given by $f_{\mathbb{C}}(x) = f(x) if(ix)$ defines an element of $X' = X'_{\mathbb{C}}$.
 - (ii) If $g \in X'$, then f = Re g in $X'_{\mathbb{R}}$ satisfies $g = f_{\mathbb{C}}$.
- (iii) If X is a normed \mathbb{C} -vector space, then for $f \in X'_{\mathbb{R}}$,

$$f \in X_{\mathbb{R}}^*$$
 if and only if $f_{\mathbb{C}} \in X^* = X_{\mathbb{C}}^*$ with $||f|| = ||f_{\mathbb{C}}||$

PROOF (i) and (ii) are straightforward exercises; let's see (iii). We let fr $x \in X$, $z = \operatorname{sgn} f_{\mathbb{C}}(x)$. Then

$$\mathbb{R} \ni |f_{\mathbb{C}}(x)| = \overline{z} f_{\mathbb{C}}(x) = f_{\mathbb{C}}(\overline{z}x) = \operatorname{Re} f_{\mathbb{C}}(\overline{z}x) = f(\overline{z}x) = |f(\overline{z}x)|$$

$$\leq ||f|| ||\overline{z}x|| = ||f|| ||\overline{z}|| ||x|| = ||f|| ||x||$$

so we see that $||f_{\mathbb{C}}|| \le ||f||$. Conversely,

$$|f(x)| = |\operatorname{Re} f_{\mathbb{C}}(x)| \le |f_{\mathbb{C}}(x)| \le ||f_{\mathbb{C}}|| \, ||x|| \text{ so that } ||f|| \le ||f_{\mathbb{C}}||$$

4.6 Corollary. If X is a normed space, $Y \subseteq X$ a subspace and $f \in Y^*$, then there exists $F \in X^*$ such that $F|_Y = f$ and ||F|| = ||f||.

PROOF Define $\rho: X \to \mathbb{R}$ be given by $p(x) = ||f|| \cdot ||x||$, so p is sublinear and $\operatorname{Re} f \leq p|_Y$. Apply Hahn-banach to to this data and get $\tilde{F} \in X_{\mathbb{R}}^*$ such that $\tilde{F}|_Y = \operatorname{Re} f$ and $\tilde{F} \leq p$, and let $F = \tilde{F}_{\mathbb{C}}$.

4.7 Corollary. If X is a normed space, $x \in C$, then there is $f \in X^*$ such that

$$||x|| = f(x) = |f(x)|$$
 and $||f|| = 1$

PROOF Let $f_0 : \mathbb{F} x \to \mathbb{F}$ be given by $f_0(\alpha x) = \alpha ||x||$. If $x \neq 0$, then

$$||f_0|| = \sup_{\|\alpha x\| \le 1} |f_0(\alpha x)| = \sup_{\|\alpha x\| \le 1} |\alpha| ||x|| = 1$$

and apply the previous corollary. If x = 0, this is trivial.

4.8 Theorem. Let X be a normed space and X^{**} denote the bidual. For $x \in X$, define $\hat{x}: X^* \to \mathbb{F}$ by $\hat{x}(f) = f(x)$. Then $\hat{x} \in X^{**}$ with $||\hat{x}|| = ||x||$, so that $x \mapsto \hat{x}: X \to X^{**}$ is a linear isometry.

PROOF Notice that $|\hat{x}(f)| = |f(x)| \le ||f|| ||x||$ so $||\hat{x}|| \le ||x||$. The last corollary provides for $x \in X$ an $f_x \in S(X^*)$ with $|f_x(x)| = ||x||$. Then $||\hat{x}|| \le |\hat{x}(f_x)| = ||x||$. Hence $||\hat{x}|| = ||x||$. Clearly $x \mapsto \hat{x}$ is linear.

Remark. Since X^{**} , being a dual space, is complete, we have that $\hat{X} = \{\hat{x} : x \in X\}$ satisfies that its closure $\hat{X} \subseteq X^{**}$ is complete. Hence \hat{X} is a Banach space containing a dense copy of X. Often, we will simply write $\hat{X} = \overline{X}$ and call it the **completion** of X.

4.1 Geometric Hahn-Banach

If $A, B \subset X$ with $A \cap B = \emptyset$ (and other suitable assumptions), we will find a \mathbb{R} -hyperplane between A and B.

Definition. In a vector space, a **hyperplane** is any set of the form $x_0 + \ker f$ with $x_0 \in X$ and $f \in X'$. Then a \mathbb{R} **-hyperplane** is any set of the form $x_0 + \ker R$ is any set of t

- **4.9 Proposition.** Let X be a normed space.
 - (i) If $f \in X^* \setminus \{0\}$, then ker f is closed and nowhere dense.
- (ii) if $f \in X' \setminus X^*$, then $\overline{\ker f} = X$.

Thus a hyperplane in X is either closed and nowhere dense, or it is dense.

PROOF To see (i), $\ker f = f^{-1}(\{0\})$ is a closed set since f is continuous. Furthermore, if $Y \subseteq X$ is a proper closed subspace, then it is nowhere dense. If not, then there would exist $y_0 \in T$ and $\delta > 0$ such that $y_0 + \delta D(X) \subseteq Y$. But then $D(X) \subseteq \frac{1}{\delta}(Y - y_0) = Y$, so $X = \operatorname{span} D(X) \subseteq Y$, a contradiction.

To see (ii), suppose that ker f is not dense in X. Then there would be $x_0 \in X$ and $\delta > 0$ such that $(x_0 + \delta D(X)) \cap \ker f = \emptyset$, so

$$0 \notin f(x_0 + \delta D(X)) = f(x_0) + \delta f(D(X)) \Longrightarrow \frac{1}{\delta} f(x_0) \notin -f(D(X)) = f(D(X)) \tag{4.1}$$

But then $||f|| \le \frac{1}{\delta}f(x_0)$, for if $||f|| > \frac{1}{\delta}f(x_0)$, there would be $x \in D(X)$ such that $|f(x)| > \frac{1}{\delta}|f(x_0)|$. Thus

$$\left| \frac{f(x_0)}{\delta f(x)} \right| < 1 \Longrightarrow \frac{f(x_0)}{\delta f(x)} = \frac{1}{\delta} f(x)$$

contradicting the statement in (4.1).

Definition. Let $\emptyset \neq A \subseteq X$. We say that A is

- **convex** if for $a, b \in A$ and $0 < \lambda < 1$, $(1 \lambda)a + \lambda b \in A$.
- **absorbing** at $a_0 \in A$ if for any $x \in X$, there is $\epsilon(a_0, x) > 0$ such that $a_0 + tx \in A$ for $0 \le t < \epsilon$.

For example, if *X* is a normed space, then any open set is absorbing around any of its points.

4.10 Lemma. (Minkowski Functional) Let $A \subset X$ be a convex set containing 0 and absorbing at 0. Define $p: X \to \mathbb{R}$ by $p(x) = \inf\{t > 0: x \in tA\}$. Then p is a sublinear functional. Moreover, we have that

(i)
$$\{x \in X : p(x) < 1\} \subseteq A \subseteq \{x \in X : p(x) \le 1\}$$
; and

(ii) if X is normed and A is a neighbourhood of 0, then there is N > 0 such that $p(x) \le N ||x||$ for $x \in X$.

PROOF First note, for any $x \in X$, if A is absorbing at 0, there is s > 0 such that $sx \in A$, so $x \in \frac{1}{s}A$ and hence $0 \le p(x) < \infty$.

Let's see non-negative homogeneity. Clearly p(0) = 0. If s > 0 and $x \in X$, then

$$p(sx) = \inf\{t > 0 : sx \in tA\} = \inf\left\{t > 0 : x \in \frac{t}{s}A\right\} = s \cdot \inf\left\{\frac{t}{s} > 0 : x \in \frac{t}{s}\right\} = sp(x)$$

We also have subadditivity. First, note that if s, t > 0 and $a, b \in A$, then

$$sa + tb = (s+t)\left(\frac{s}{s+t}a + \frac{s}{s+t}b\right) \in (s+t)A \Longrightarrow sA + tA \subseteq (s+t)A$$

by convexity, and also $(s+t)A = \{(s+t)a : a \in A\} \subseteq \{sa+tb : a,b \in A\} = sA+tA$. Thus sA+tA = (s+t)A. Now for $x,y \in X$, we have

$$p(x) + p(y) = \inf\{s > 0 : x \in sA\} + \inf\{t > 0 : y \in tA\}$$

$$= \inf\{s + t : s > 0, t > 0, x \in sA, y \in tA\}$$

$$\geq \inf\{s + t : s > 0, t > 0, x + y \in sA + tA = (s + t)A\}$$

$$= \inf\{r > 0 : x + y \in rA\} = p(x + y)$$

so that p is a sublinear functional. Then

- (i) If p(x) < 1, then there is 0 < t < 1 so $x \in tA$; i.e. $\frac{1}{t}x \in A$ and $x = (1 t) = +t\frac{1}{t}x \in A$. The second inclusion is obvious.
- (ii) The assumptions provide $\delta > 0$ so $\delta D(X) \subseteq A$. Then for $x \in X$ and $\epsilon > 0$,

$$x \in (||x|| + \epsilon)D(X) = \frac{||x|| + \epsilon}{\delta}\delta D(X) \subseteq \frac{||x|| + \epsilon}{\delta}A$$

so $p(x) \le \frac{\|x\| + \epsilon}{\delta}$ so $p(x) \le \frac{1}{\delta} \|x\|$; the result follows with $N = 1/\delta$.

4.11 Theorem. (Hyperplane Separation) Let X be an \mathbb{F} –vector space, $A, B \subset X$ be convex with $A \cap B = \emptyset$ and A absorbing at some a_0 . Then there are $f \in X'$ and $\alpha \in \mathbb{R}$ such that

$$\operatorname{Re} f(a) \ge \alpha \ge \operatorname{Re} f(b)$$

for $a \in A$ and $b \in B$. Moreover, if X is normed, then

- If A is a neighbourhood of a_0 , we have $f \in X^*$; and
- if A is absorbing around each of its points (for example if A is open), then we have $\operatorname{Re} f(a) > \alpha \ge \operatorname{Re} f(b)$.

PROOF We first re-centre at 0. Let $A - B = \{a - b : a \in A, b \in B\}$. Then it is easy to verify that

- (i) A B is absorbing at any $a_0 b$, $b \in B$
- (ii) A B is convex
- (iii) if X is normed and A a neighbourhood of a_0 , then A B is a neighbourhood of each $a_0 b$, $b \in B$; and if A is absorbing around any of its points (resp. open), then A_B is absorbing around any of its points (resp. open).

Let $x_0 = a_0 - b_0$ for some $b_0 \in V$, and set $C = x_0 - (A - B)$, so we have $0 = x_0 - x_0 \in C$. Then by the above points, C is absorbing at 0, convex, and if X is normed and A a neighbourhood of a_0 , then C is a neighbourhood of 0; and if A is absorbing at any of its points (resp. A is open), then C is absorbing at each of its points (resp. open).

Let p be the Minkowski functional of C. Notice that since $A \cap B = \emptyset$, $0 \notin A - B$ so $x_0 \notin C$. Thus by (i) of the lemma, $p(x_0) > 1$.

Let us find f and α . Let $f_0: \mathbb{R} x_0 \to \mathbb{R}$, by $f_0(sx) = sp(x_0)$. Hence f_0 is linear and $f_0 \le p|_{Rx_0}$, so by Hahn-Banach, get $f \in X_{\mathbb{R}}'$ such that $f \le p$ on X. If $a \in A$ and $b \in B$, then $x_0 - (a - b) \in C$, so by (i) of the lemma, since $p(x_0) \ge 1$, we have $f(x_0 - (a - b)) \le p(x_0 - (a - b)) \le 1$. Thus $f(x_0) + f(b) \le 1 + f(a)$ so in fact $f(b) \le f(a)$. Thus there exists some $\alpha \in \mathbb{R}$ such that

$$\sup\{f(b):b\in B\}\leq\alpha\leq\inf\{f(a):a\in A\}$$

If $\mathbb{F} = \mathbb{R}$, we are done; otherwise, we shall replace f by $f_{\mathbb{C}}$

For the remainder of the proof, we suppose X is a normed space, and A is a neighbourhood of a_0 . Then part (ii) of the lemma provides N>0 so that $p(x) \leq N ||x||$. Then for $x \in X$, $f(x) \leq p(x) \leq N ||x||$ and $-f(x) = p(-x) \leq N ||-x|| = N ||x||$ so $|f(x)| \leq N ||x||$, in other words that $||f|| \leq N$ and $f \in X^*$. If A is absorbing around any of its points, then $f(a) > \alpha$ for any $a \in A$. Indeed, suppose $f(a) = \alpha$. Then there would be t > 0 so $a + t(-x_0) \in A$. But then $\alpha \leq f(a - tx_0) = f(a) - tf(x_0) < \alpha$, a contradiction.

Definition. If $\emptyset \neq S \subset X$, then its **convex hull** is given by

$$\operatorname{conv}(S) = \{ \sum_{i=1}^{n} \lambda_j x_j : n \in \mathbb{N}, x_1, \dots, x_n \in S \text{ and } \lambda_1, \dots, \lambda_n \ge 0 \text{ with } \sum_{j=1}^{n} \lambda_j = 1 \}$$

One can verify that conv(S) is in fact convex, and is the smallest convex set containing S, i.e.

$$conv(S) = \bigcap \{C : S \subseteq C \subseteq X, C \text{ convex}\}\$$

If *X* is normed, we let $\overline{\text{conv}}(S)$ denote the **closed convex hull**, i.e. the closure of the convex hull

Definition. A **half-space** of *X* is any set of the form $H = \{x \in X : \text{Re } f(x) \le \alpha\}$ for some $f \in X'$, $\alpha \in \mathbb{R}$.

If *X* is normed, then the last proposition shows *H* is closed if and only if *f* is bounded.

4.12 Theorem. If X is a normed vector space and $\emptyset \neq S \subset X$, then $\overline{\operatorname{conv}}(S) = \cap \{H : S \subseteq H \subset X, H \text{ a closed half space}\}.$

PROOF It is immediate that $\overline{\operatorname{conv}}(S) \subseteq \cap \{H : S \subseteq H \subset X, H \text{ a closed half-space}\}$. Thus suppose $x_0 \notin \overline{\operatorname{conv}}(S)$. Then there is $\delta > 0$ such that $(x_0 + \delta D(X)) \cap \overline{\operatorname{conv}}(S) = \emptyset$. Since $x_0 + \delta D(X)$ is open and convex, hyperplace separation gives provides $f \in X^*$ and $\alpha \in \mathbb{R}$ so $\operatorname{Re} f(a) > \alpha \geq \operatorname{Re} f(b)$ for $a \in x_0 + \delta D(X)$ and $b \in \overline{\operatorname{conv}}(S)$. Then $S \subset H = \{y \in X : \operatorname{Re} f(x) \leq \alpha\}$ but $x_0 \notin H$.

5 Some Applications of Baire Category Theorem

5.1 Theorem. (Baire Category I) If (X,d) is a complete metric space and $\{U_n\}_{n=1}^{\infty}$ is a countable collection of dense, open subsets, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X.

Definition. Let (X,d) be a metric space. A subset $F \subset X$ is **nowhere dense** if $X \setminus F$ is dense in X; equivalently, \overline{F} contains no non-trivial open subsets. We say that a subset $M \subseteq X$ is **meagre** (1st category) if $M = \bigcup_{n=1}^{\infty} F_n$ and each F_n is nowhere dense; and a set is **non-meagre** (2nd category) otherwise.

5.2 Theorem. (Baire Category II) Let (X,d) be a complete metric space. Then a non-empty open $U \subseteq X$ is non-meagre.

Proof Suppose not, so $U = \bigcup_{n=1}^{\infty} F_n \subseteq \bigcup_{n=1}^{\infty} \overline{F}_n$, each F_n (hence \overline{F}_n) nowhere dense. Then each $V_n = X \setminus \overline{F}_n$ is open and dense, and hence by BCT I, $G = \bigcap_{n=1}^{\infty} V_n$ is dense in X, and hence $U \cap G \neq \emptyset$, violating assumption

5.3 Theorem. (Banach-Steinhaus) Let X, Y be normed spaces, $U \subseteq X$ be non-meagre, and $\mathcal{F} \subset \mathcal{B}(X,Y)$ be such that for each $x \in U$, $\sup\{\|Tx\| : T \in \mathcal{F}\} < \infty$ (pointwise bounded). Then \mathcal{F} is uniformly bounded, i.e. $\sup\{\|T\| : T \in \mathcal{F}\} < \infty$.

Proof Let for each $n \in \mathbb{N}$

$$F_n = \bigcap_{T \in \mathcal{F}} T^{-1}(nB(Y)) = \{ x \in X : ||Tx|| \le n \text{ for all } T \in \mathcal{F} \}$$

so each F_n is closed and, by the pointwise boundedness assumption, $U \subseteq \bigcup_{n=1}^{\infty} F_n$. By assumption of non-meagreness of U, at least one F_{n_0} admis an interior point: there is $x_0 \in F_{n_0}$ and $\delta > 0$ such that $x_0 + \delta D(X) \subseteq F_{n_0}$. Then if $x \in D(X)$, we have

$$Tx = \frac{1}{\delta} \left[T \left(x_0 + \frac{\delta}{2} x \right) - T \left(x_0 - \frac{\delta}{2} x \right) \right]$$

so $||Tx|| \le \frac{2}{\delta}n_0$, in other words

$$||T|| = \sup_{x \in D(x)} ||Tx|| \le \frac{2n_0}{\delta} < \infty$$

where the bound is independent of T.

5.4 Theorem. (Open Mapping) Let X, Y be Banach spaces, and $T \in B(X, Y)$ surjective. Then T is an open map; i.e. T(U) is open in Y whenver U is open in X.

Remark. Given $x \in X$ and $\alpha \in \mathbb{F} \setminus \{0\}$, non-empty $A \subset X$, we have that $\overline{x + \alpha A} = x + \alpha \overline{A}$. Indeed, note that for $(a_k)_{k=1}^{\infty} \subset A$, we have

$$a_k \to a \in \overline{A}$$
 if and only if $x + \alpha a_k \to x + \alpha a \in x + \alpha \overline{A}$

5.5 Lemma. With the assumptions as above, we have that if $\overline{T(D(X)} \supset rB(Y)$ for some r > 0, then $T(D(X)) \supseteq rD(Y)$.

PROOF Let $z \in rD(Y)$ and let $0 < \delta < 1$ be so $||z|| < r(1-\delta) < r$. Set $y = z/(1-\delta)$ so $||y|| < r/(1-\delta)$. It suffices to show that $y \in \frac{1}{1-\delta}T(D(X))$. To begin, let $A = T(D(X)) \cap rB(Y)$, so $\overline{A} = rB(Y)$. Indeed, if $y \in rB(Y) \subseteq \overline{T(D(X))}$, then there is $(y_k)_{k=1}^{\infty} \subset \overline{T(D(X))}$, so $y = \lim y_k$. But then there is $x_k \in D(X)$ so each $||y_k - T(x_k)|| < 1/k$ so $y = \lim T(x_k)$ with each $x_k \in D(X)$. Now we inductively build a sequence $(y_n)_{n=1}^{\infty}$ as follows.

- Since $y \in rD(Y) \subseteq \overline{A}$, there is $y_1 \in A \cap (y + \delta rD(Y))$
- $y \in y_1 + \delta r(D(Y)) \subseteq y_1 + \delta \overline{A} = \overline{y_1 + \delta A}$, so there is $y_2 \in (y_1 + \delta A) \cap (y + \delta^2 r D(Y))$
- $y \in y_n + \delta^n rD(Y) \subseteq y_n + \delta^n A$, so there is $y_{n+1} \in (y_n + \delta^n A) \cap (y + \delta^{n+1} rD(Y))$

By construction, $y_{n+1} - y_n \in \delta^n A$, so $\|y_{n+1} - y_n\| \le \delta^n r$ and there is $x_n \in \delta^n D(X)$ such that $y_{n+1} - y_n = Tx_n$. Likewise, $y_1 \in A \subseteq T(D(X))$ so $y = T(x_0)$ for some $x_0 \in D(X)$. Notice that each $y_n \in y + \delta^n r \in D(Y)$, so $\|y_n - y\| \le \delta^n r \to 0$. Since X is complete, we let $x = \sum_{n=0}^{\infty} x_n$, and by construction

$$||x|| \le \sum_{n=0}^{\infty} ||x_n|| < \sum_{n=0}^{\infty} \delta^n = \frac{1}{1-\delta}$$

Then by linearity and continuity of T, we have

$$Tx = \sum_{n=0}^{\infty} Tx_n = y_1 + \sum_{n=1}^{\infty} (y_{n+1} - y_n) = y_N + \sum_{n=N}^{\infty} (y_{n+1} - y_n) \to y$$

so that indeed T(x) = y, as required.

Remark. So far, we've only used completeness of *X* and continuity and linearity of *T*.

We now proceed with the proof of the open mapping theorem.

PROOF It suffices to see that T(D(X)) contains a neighbourhood of 0 in Y. Indeed, if $\emptyset \neq U \subseteq X$ is open, $x \in U$, then there is $\delta > 0$ such that $x + \delta D(X) \subseteq U$, so $U - x \supseteq \delta D(X)$. If $T(D(X)) \supseteq rD(Y)$, then $T(U - x) \supseteq \delta T(D(X)) \supseteq r\delta D(Y)$ so that $Tx + r\delta D(Y) \subseteq T(U)$. In other words, T(U) is a neighbourhood of any of its points, and thus open.

Now write $X = \bigcup_{n=1}^{\infty} nD(X)$, and we assume that T(X) = Y. Hence $Y = \bigcup_{n=1}^{\infty} nT(D(X))$, so $Y = \bigcup_{n=1}^{\infty} n\overline{T(D(X))}$. But Y is complete, so by Baire category theorem, there is some n so that $n\overline{T(D(X))}$ has non-empty interior. Since nT(D(X)) is convex and symmetric, and hence $n\overline{T(D(X))}$ is convex and symmetric as well. Thus if $y \in D(Y)$, then $y_0 \pm \epsilon \in y_0 + \epsilon D(Y)$ so

$$\epsilon y = \frac{1}{2} \left[y_0 + \epsilon y - (y_0 - \epsilon y) \right] \in n \overline{T(D(X))}$$

and $\frac{\epsilon}{n}y \in \overline{T(D(X))}$, i.e. $\frac{\epsilon}{n}D(Y) \subseteq \overline{T(D(X))}$. Thus applying the main lemma, $\frac{\epsilon}{n}D(Y) \subseteq T(D(X))$.

5.6 Theorem. (Inverse Mapping) If X, Y are Banach spaces and $T \in \mathcal{B}(X, Y)$ is invertible, $T^{-1} \in \mathcal{B}(Y, X)$

Proof Direct application of the open mapping theorem.

Let X, Y be normed spaces. Then we define for $(x, y) \in X \oplus Y$, and we let $||(x, y)||_1 = ||x|| + ||y||$. It is easy to check that $||\cdot||_1$ is a norm on $X \oplus Y$, and if X, Y are Banach, then so is $(X \oplus Y, ||\cdot||_1)$. In this case, we write $X \oplus_1 Y$.

5.7 Theorem. (Closed Graph) Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. Then $T \in \mathcal{B}(X, Y)$ if and only if $\Gamma(T) = \{(x, Tx) : x \in X\}$ is closed in $X \oplus_1 Y$.

PROOF Let $T \in \mathcal{B}(X,Y)$. If $(x_n) \to x$ in X, then $Tx_n \to Tx$ in Y. Thus if $(x,y) \in \overline{\Gamma(T)}$, then $(x,y) = \lim_{n \to \infty} (x_n, Tx_n)$ where $(x_n, Tx_n) \in \Gamma(T)$. But then

$$||y - Tx|| \le ||y - Tx_n|| + ||Tx_n - Tx|| \le ||x - x_n|| + ||y - Tx_n|| + ||Tx_n - tx|| = ||(x - y) - (x_n, Tx_n)||_1$$

so in fact y = Tx so (x, y) = (x, Tx).

Conversely, if $\Gamma(T)$ is closed in $X \oplus_1 Y$, then $\Gamma(T)$ is a Banach space. Define $S : \Gamma(T) \to X$ by S(x, Tx) = x. Notice that S is linear, and

$$||S(x, Tx)|| = ||x|| \le ||(x, Tx)||_1$$

so $||S|| \le 1$, so S is bounded. It is also clear that S is bijective, with $S^{-1}: X \to \Gamma(T)$ given by $S^{-1}(x) = (x, Tx)$. Thus the inverse mapping theorem gives that S^{-1} is also bounded. Hence for any $x \in X$,

$$||Tx|| \le ||(x, Tx)||_1 = ||S^{-1}x|| \le ||x|| ||S^{-1}||$$

so that *T* is in fact bounded.

5.8 Theorem. (Closed graph test) Given normed spaces and $T \in \mathcal{L}(X,Y)$, we have that $\Gamma(T)$ is closed in $X \oplus_1 Y$ if and only if whenever $x_n \to 0$ for which we may assume that Tx_n converges in Y, say $y = \lim Tx_n$, then y = 0 too.

PROOF We have $(x_n, Tx_n) \to (x, z) \in \overline{\Gamma(T)}$ if and only if $(x_n - x, T(x_n - x)) \to (x, z) - (x, Tx) = (0, z - Tx)$. Set y = z - Tx. We have $(x, z) \in \Gamma(T)$ if and only if z = Tx if and only if y = 0.

5.1 Testing hypothesis of OMT

(i) Let $1 \le p < r < \infty$. We have that $\ell_p \subseteq \ell_r$, with $||x||_r \le ||x||_p$ for $x \in \ell_p$. First, suppose $x \in B(\ell_p)$, so for each k, $|x_k| \le ||x||_p \le 1$ so $|x_k|^{r/p} \le |x_k|$. Hence

$$||x||_r = \left(\sum_{k=1}^{\infty} |x_k|^r\right)^{1/r} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/r} = ||x||_p^{p/r} \le 1$$

so if $x \in \ell_p \setminus \{0\}$, then the result follows.

Let $S: (\ell_p, \|\cdot\|_p) \to (\ell_p, \|\cdot\|_r)$ be the identity map. Then $\|S\| \le 1$, and furthermore S is bijective. If S were open, then by the proof of inverse mapping theorem, we would see that $\|S^{-1}\| < \infty$. Define $x^{(n)} \in \ell_p$ by

$$x_k^{(n)} = \begin{cases} \frac{1}{ck^{1/p}} & k \le n \\ 0 & k > n \end{cases}, c = \sum_{k=1}^{\infty} \frac{1}{k^{r/p}}$$

We compute that $\|x^{(n)}\|_r < 1$ while $\|x^{(n)}\|_p = \frac{1}{c} \left(\sum_{k=1}^n \frac{1}{k}\right)^{1/p}$. In other words, $\|S^{-1}x^{(n)}\|_p$ goes to infinity, while $\|x^{(n)}\|_r < 1$, contradicting $\|S^{-1}\| < \infty$. The moral of this is that if the range space is not complete, then OMT may not hold.

(ii) Take $X = C_b(0,1)$, $X_0 = \{f \in X : f \text{ is differentiable on } (0,1), f' \in C_b(0,1)\}$. We have $X_0 \subseteq X$, and we put the uniform norm $\|\cdot\|_{\infty}$ on both spaces. We let $D: X_0 \to X$, Df = f'. If $h_n(t) = t^n$, then $\|h_n\|_{\infty} = 1$ while $\|Dh_n\|_{\infty} = n$, so D is not bounded. Despite this, we have that $\Gamma(D) = \{(f, f') : f \in X_0\}$ is closed in $X_0 \oplus_1 X$. We apply

the closed graph test: let $(f_n, f'_n) \to (0, g)$ in $X_0 \oplus_1 X$. Notice that $||f'_n||_{\infty} < \infty$, so f_n is Libschitz on (0,1), so f_n is uniformly continuous on (0,1), so $f_n(0^+) = \lim_{t \to 0^+} f(t)$ exists. Thus by the fundamental theorem of calculus, $f_n(t) = f_n(0^+) + \int_0^t f_n'$ for $t \in (0,1)$. In particular,

- $f_n \to 0$ uniformly, so $f_n(0^+) \to 9$
- $f'_n \rightarrow g$ uniformly, so for each $t \in (0,1)$,

$$\int_{0}^{t} g = \lim_{n \to \infty} \int_{0}^{t} f_{n}' = \lim_{n \to \infty} [f_{n}(t) - f_{n}(0^{+})] = 0$$

and again, by the FT of C, g(t) = 0. Thus g = 0, so $\Gamma(D)$ is closed. We say that $D: X_0 \to X$ is a **closed** operator. The moral here is that if the domain is not complete, then closedness of the graph does not imply boundedness of the operator.

Now, let $J: X \to X_0$ have $Jg(t) = \int_0^t g$ for $t \in (0,1)$. By the FT of C, $D \circ J(G) = g$, in other words that $D \circ J = I$. We have for $g \in X$,

$$||Jg||_{\infty} = \sup_{t \in (0,1)} |\int_{0}^{t} g| \le \sup_{t \in (0,1)} t ||g||_{\infty} \le ||g||_{\infty}$$

so $||I|| \le 1$. Hence $I(D(X)) \subseteq D(X_0)$, and we apply D to see $D(X) \subseteq D(D(X_0))$, in other words, that *D* is open. As an exercise, show that $C_h(0,1) = X$ is not separable, while X_0 is separable.

Let $X \subseteq Y$ be \mathbb{F} –vector spaces. We can always find a subspace $Z \subset Y$ so X + Z = Y and $X \cap Z = \{0\}$. Indeed, let B be a basis for X, and $B' = B \cup B'$ is a basis for Y, and take $Z = \operatorname{span} B'$.

5.9 Theorem. Let Y be a Banach space and $X \subseteq Y$ a closed subspace. Then X admis a closed complement Z if and only if there is some $P \in \mathcal{B}(Y)$ such that $P \circ P = P$ and im P = P(Y) = X.

Remark. We say that $X \subseteq Y$ is **boundedly complemented** if either of the above conditions hold.

PROOF (\Leftarrow) Let $Z = \ker P$, which is closed. If $y \in Y$, then y = Py + (I - Py) where $Py \in X$ and P(I-P)y = 0 so $(I-P)y \in \ker P$. If $z \in Z \cap X$, then z = Py for some $y \in Y$ so $Pz = P^2y = Py = z$, but $z \in \ker P$, so z = Pz = 0.

(⇒) Let $S: X \oplus_1 Z \to Y$ be given by S(x,z) = x+z. Then S is surjective and if $(x,z) \in \ker S$, then x + z = 0 so $x = -z \in X \cap Z = \{0\}$, hence S is injective. Furthermore,

$$||S(x+z)|| = ||x+z|| \le ||(x,z)||_1$$

so $||S|| \le 1$. Hence S is a bounded bijection between Banach space and hence S^{-1} is bounded by the inverse mapping theorem. Let $P_1: X \oplus_1 Z \to X$ be given by $P_1(x, z) = x$; and $J: X \to Y$ by Jx = x. Notice that $||P_1|| = 1$ and ||J|| = 1. Define $P: Y \to Y$ by $Py = JP_1S^{-1}y$. Then

- im J = X, and each of P_1 , S^{-1} are surjective, so im P = X
- If $y \in Y$, $||Py|| = ||JP_1S^{-1}y|| \le ||S^{-1}|| ||y||$ so $||P|| \le ||S^{-1}||$ Clearly $P^2 = JP_1S^{-1}JP_1S^{-1} = P$

5.10 Theorem. c_0 is not boundedly complemented in ℓ_{∞} .

PROOF Let us assume otherwise; hence, there is $P = P^2 \in \mathcal{B}(\ell_{\infty})$ such that im $P = c_0$. Note that $c_0 = \ker(I - P)$. As in A2, we let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be a family of infinite subsets such that for $E \neq F$ in \mathcal{F} , $|E \cap F| < \infty$ and $|\mathcal{F}| = \mathfrak{c}$. For each $F \in \mathcal{F}$, we let $y_F = (I_P)\chi_F \neq 0$. If $\alpha_1, \ldots, \alpha_n \in F$ are pairwise distinct, $F_1, \ldots, F_m \in \mathcal{F}$, then

$$\sum_{i=1}^{n} \alpha_{i} \chi_{F_{i}} = \underbrace{\sum_{i=1}^{m} \alpha_{i} \chi_{F_{i} \setminus \bigcup_{j \in [m] \setminus \{i\}} F_{j}}}_{:=z} + \underbrace{\sum_{k=2}^{m} \sum_{1 \leq i < \dots < i_{k} \leq m} (\alpha_{i_{1}} + \dots + \alpha_{i_{k}}) \chi_{F_{i_{1}} \cap \dots \cap F_{i_{k}}}}_{\in c_{0}}$$

where $||z||_{\infty} = \max_{k=1,...,m} |\alpha_k|$. Hence

$$\left\| \sum_{i=1}^{m} \alpha_i y_{F_i} \right\| = \|(I - P)z\| \le \|I - P\| \|z\| = \|I - P\| \max_{k=1,\dots,m} |\alpha_k|$$
 (5.1)

Now, let for $n, k \in \mathbb{N}$, $\mathcal{F}_{n,k} = \{F \in \mathcal{F} : |\delta_k(y_F)| \ge \frac{1}{n}\}$ m where $\delta_k(x_i)_{i=1}^{\infty} = x_k$, so $\delta_k \in \ell_{\infty}^*$ with $\|\delta_k\| \le 1$. Let F_1, \ldots, F_m be pairwise disjoint in $\mathcal{F}_{n,k}$, and $\alpha_i = \overline{\operatorname{sgn} \delta_k(y_{F_i})}$. Then we have each $|\alpha_i| = 1$, so by (5.1), we find

$$||I - P|| \ge \left\| \sum_{i=1}^{\infty} \alpha_i y_{F_i} \right\|_{\infty} \ge |\delta_k \sum_{i=1}^n \alpha_i y_{F_i}| = \sum_{i=1}^m |\delta_k (y_{F_i})| \ge \frac{m}{n}$$

so $m \le n ||I - P||$ and it follows that $\mathcal{F}_{n,k}$ is finite. Since each $y_F \ne 0$ for $F \in \mathcal{F}$, we see that $\mathcal{F} = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty}$, which contradicts that $|\mathcal{F}| = \mathfrak{c}$. Hence such a P must not exist.

5.11 Theorem. If X is a finite dimensional vector space over \mathbb{F} , then any two norms are equivalent.

PROOF Let $\|\cdot\|$ be a norm on X. Fix a basis (e_1, \dots, e_n) for X, and let $x = \sum_{k=1}^n x_k e_k$, $x_i \in \mathbb{F}$, $\|x_k\|_{\infty} = \max_{k=1,\dots,n} |x_k|$. This is easily checked to be a norm. Moreover, $B_{\infty} = \{x \in X : \|x\|_{\infty} \le 1\}$ admits a homeomorphic identification

$$B_{\infty} = \begin{cases} [-1, 1]^n & \mathbb{F} = \mathbb{R} \\ \overline{D}^n & \mathbb{F} = \mathbb{C} \end{cases}$$

and hence is compact. Thus $S_{\infty} = \{x \in X : ||x||_{\infty} = 1\}$ is compact as well. Hence, for $x = \sum_{k=1}^{\infty} x_k e_k$, we have

$$||x|| \le \sum_{k=1}^{n} |x_k| ||e_k|| \le ||x||_{\infty} \underbrace{\sum_{k=1}^{n} ||e_k||}_{:=M}$$

Now for $x,y\in X$, we have $|\|x\|-\|y\|\|\leq \|x-y\|\leq M\|x-y\|_{\infty}$ so $\|\cdot\|$ is Lipschitz with respect to $\|\cdot\|_{\infty}$, and hence $\tau_{\|\cdot\|_{\infty}}$ -continuous. Thus the extreme value theorem tells us that $m=\inf_{x\in S_{\infty}}\|x\|>0$. Hence for $x\in X\setminus\{0\}$, $\|x\|=\|x\|_{\infty}\cdot\left\|\frac{1}{\|x\|_{\infty}}x\right\|\geq \|x\|_{\infty}m$. In general, $m\|x\|_{\infty}\leq \|x\|\leq M\|x\|_{\infty}$. We thus have that $\|\cdot\|\sim\|\cdot\|_{\infty}$, so any norms are equivalent.

5.12 Corollary. Let $(X, \|\cdot\|)$ be a finite dimensional normed space. Then

- (i) $K \subseteq X$ is compact if an only if K is closed and bounded.
- (ii) $(X, \|\cdot\|)$ is a Banach space
- (iii) For any normed space Y, we have $\mathcal{L}(X,Y) = \mathcal{B}(X,Y)$
- (iv) We have $X' = X^*$.

PROOF (i) The forward direction is immediate. If K is closed and bounded, is contained in some scaled copy of B_{∞} , which is compact.

- (ii) Cauchy sequences are bounded, and thus contained in some scaled copy of B_{∞} , which is compact.
- (iii) Let $T \in \mathcal{L}(X, Y)$, and let $||x||_0 = ||x|| + ||Tx||$. Then the result follows by equivalence of norms.
- (iv) Immediate.

5.13 Proposition. A finite dimensional subspace of normed space is always closed and boundedly complemented.

PROOF Let $Y \subseteq X$ be so Y is finite dimensional and X a normed space. We can find a basis $(e_1, ..., e_n)$ for Y. We may assume that each $||e_k|| = 1$. We define $f_1, ..., f_n \in Y' = Y^*$ by

$$f_k \left(\sum_{j=1}^n \alpha_j e_j \right) = \alpha_k$$

By Hahn-Banach, get $F_1, ..., F_n \in X^*$ such that $F_k|_Y = f_k$ and $||F_k|| = ||f_k||$. Define $P: X \to X$ by $Px = \sum_{k=1}^n F_k(x)e_k$. Notice that im $P \subseteq Y$ and by choice of $F_k|_Y = f_k$, we have $P|_Y = I_Y$. Thus $P^2 = P$. Finally, for $x \in X$, $||Px|| \le \sum_{k=1}^n ||f_k|| ||x||$ so $||P|| \le \sum ||f_k|| < \infty$, i.e. P is bounded. Closedness of Y thus follows from the last corollary. Alternatively, $Y = \ker(I - P)$.

6 On Compactness of the Unit Ball

6.1 Lemma. Let X be a normed space and $Y \subseteq X$ a closed subspace. Then given $\epsilon \in (0,1)$ there is $x_0 \in D(X) \subseteq B(X)$ such that $d(x_0, Y) > 1 - \epsilon$.

PROOF Let $x \in X \setminus Y$ and let $f : Y + \mathbb{F} x \to \mathbb{F}$ be given by $f(y + \alpha x) = \alpha$, $y \in Y$, $\alpha \in \mathbb{F}$. Then f is linear and $\ker f = Y$ is closed, $Y \subsetneq Y + \mathbb{F} x$, so f is bounded. Let $F \in X^*$ be any Hahn-Banach extension of f with ||F|| = ||f||.

Now, we find $x_0 \in D(X)$ such that $|F(x_0)| > (1 - \epsilon) ||F||$. Since $Y \subseteq \ker F$, we have for $y \in Y$ that $||F|| ||x_0 - y|| \ge |f(x_0 - y)| = |F(x_0)| > (1 - \epsilon) ||F||$, so $||x_0 - y|| > 1 - \epsilon$. Hence $d(x_0, Y) = \inf_{y \in Y} ||x_0 - y|| \ge 1 - \epsilon$.

6.2 Theorem. Let X be a normed space. Then B(X) is compact if and only if X is finite dimensional.

PROOF The reverse implication is standard. Thus suppose X is not finite dimensional. Let $\epsilon \in (0,1)$ and let $x_1 \in B(X) \setminus \{0\}$. Inductively,

- Find $x_2 \in B(X)$ such that $dist(x_2, \mathbb{F} x_1) \ge 1 \epsilon$
- Find $x_3 \in B(X)$ such that $dist(x_3, span\{x_1, x_2\}) \ge 1 \epsilon$
- Find $x_{n+1} \in B(X)$ such that $dist(x_{n+1}, span\{x_1, ..., x_n\}) \ge 1 \epsilon$

Hence we have $\{x_n\}_{n=1}^{\infty} \subset B(X)$ such that for m < n,

$$||x_n - x_m|| \ge d(x_n, \text{span}\{x_1, \dots, x_{n-1}\}) \ge 1 - \epsilon$$

so the sequence admis no converging subsequence and B(X) is not compact.

7 More Topology

Definition. Let (X, τ) be a topological space. A **base** for τ is any family $\beta \subseteq \tau$ such that for any $U \in \tau$ and $x \in U$, there is $B \in \beta$ such that $x \in B \subseteq U$. A **subbase** for τ is any family $\alpha \subseteq \tau$ such that $\{\bigcap_{k=1}^n U_k : n \in \mathbb{N}, U_1, \dots, U_n \in \alpha\}$ is a base for τ .

Note that if $\emptyset \neq X$ and $\beta \subseteq \mathcal{P}(X)$ for which $\bigcup_{B \in \beta} B = X$ and β is closed under finite intersections, then

$$\tau_{\beta} = \{ \bigcup_{i \in I} B_i : \{B_i\}_{i \in I} \subset B, I \text{ any index set with } |I| \le |\beta| \}$$

is a topology.

Definition. Let $X \neq \emptyset$. Suppose we are given

- a family $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ of topological spaces, and
- for each $\alpha \in A$, a function $f_{\alpha}: X \to X_{\alpha}$

Then the **initial topology** on X given this data is denoted

$$\sigma = \sigma(X, (f_{\alpha})_{\alpha \in A}) = \sigma(X, (f_{\alpha}, \tau_{\alpha})_{\alpha \in A})$$

and is the topology with base

$$\bigcap_{k=1}^{n} f_{\alpha_k}^{-1}(U_{\alpha_k}), n \in \mathbb{N}, \alpha_1, \dots, \alpha_n \in A, \text{ each } U_{\alpha_k} \in \tau_{\alpha_k}$$

In particular, $\{f_{\alpha}^{-1}(U_{\alpha}): U_{\alpha} \in \tau_{\alpha}, \alpha \in A\}$ is a subbase for σ .

Remark. The topology is chosen so that each $f_{\alpha}: X \to X_{\alpha}$ is $\sigma - \tau_{\alpha}$ -continuous. Furthermore, if $\tau \subseteq \mathcal{P}(X)$ is any topology for which every f_{α} is $\sigma - \tau_{\alpha}$ -continuous, then $\sigma \subseteq \tau$. We say that σ is the **coarsest** topology so that all the f_{α} are continuous.

Example. (i) *Metric topology:* If (X,d) is a metric space, for each $x \in X$, let d_x be given by $d_x(x') = d(x,x')$. Then $\sigma(X,(d_x)_{x \in X}) = \tau_d$.

- (ii) *Relative topology:* If (Y, τ) -topological space, $\emptyset \neq X \subseteq Y$, and $i: X \to Y$ is the inclusion map. Then $\tau|_X = \sigma(X, \{i\})$.
- (iii) *Product topology:* Let $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ be a family of topological spaces. Let $X = \prod_{\alpha \in A} X_{\alpha}$. Let for $\alpha \in A$, $p_{\alpha} : X \to X_{\alpha}$ denote the projection map onto the component α . Then the product topology $\pi = \sigma(X, \{p_{\alpha}\}_{\alpha \in A})$. Hence, $V \in \mathcal{P}(X)$, then $V \in \pi$ if and only if for any $x \in V$, there is $\alpha_1, \ldots, \alpha_n \in A$ and $U_{\alpha_k} \in \tau_{\alpha_k}$ such that $x_{\alpha_k} = p_{\alpha_k(x)} \in U_{\alpha_k}$ and $x \in \bigcap_{k=1}^n p_{\alpha_k}^{-1}(U_{\alpha_i}) \subseteq V$.

Note that if $X = \prod_{n=1}^{\infty} X_n$, each (X_n, τ_n) is a topological space, then the basic open sets look like $U_1 \times U_2 \times \cdots \times U_m \times X_{m+1} \times X_{m+2} \times \cdots$.

(iv) *Linear topology:* Let X be a vector space and $Z \subseteq X'$ a subspace. Then $\sigma(X, Z)$ is the coarsest topology allowing each $f \in Z$ to be continuous, $f : X \to \mathbb{F}$. The basic open sets are given as follows: let $x_0 \in X$, $\epsilon > 0$, and $D = D(\mathbb{F})$, and we consider for $f \in Z$

$$f^{-1}(f(x_0) + \epsilon D) = \underbrace{\{x \in X : |f(x) - f(x_0)| < \epsilon\}}_{\text{"affine hypertube"}} = \{x \in X : |\frac{1}{\epsilon}f(x) - \frac{1}{\epsilon}f(x_0)| < 1\}$$

so that

$$\left\{ \bigcap_{k=1}^{n} \{ x \in X : |f_k(x) - f_k(x_0)| < 1 \} : f_1, \dots, f_n \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

is a base for $\sigma(X, Z)$.

(v) Now let X be a normed space. Then the **weak topology** on X is $\omega = \sigma(X, X^*)$. Certainly $\omega \subseteq \tau_{\|\cdot\|}$. Similarly, the **weak*-topology** on X^* is $\omega^* = \sigma(X^*, \hat{X})$ (recall for $x \in X$, $\hat{x}(f) = f(x)$). Since $\hat{X} \subseteq X^{**}$, we have $\omega^* \subseteq \omega = \sigma(X^*, X^{**}) \subseteq \tau_{\|\cdot\|}$.

Let (X, τ) be a topological space.

Definition. A subset $K \subseteq X$ is called **compact** if for any collection $\{U_{\alpha}\}_{{\alpha}\in A}\subseteq \tau$ with $\bigcup_{{\alpha}\in A}U_{\alpha}\supseteq K$, there exists some finite U_1,\ldots,U_n covering K. If X itself is τ -compact, we call (X,τ) a compact space.

Definition. A set $F \subseteq X$ is **closed** if $X \setminus F \in \tau$. If $S \subseteq X$, then the **closure** of S is $\overline{S} = \cap \{F \subseteq X : S \subseteq F, X \setminus F \in \tau\}$.

Note that $\overline{S} = \{x \in X : \text{for any } U \in \tau \text{ with } x \in U, U \cap S \neq \emptyset\}.$

Definition. A family $\mathcal{F} \subseteq \mathcal{P}(X)$ has the **finite intersection property** if for any $F_1, \ldots, F_n \in \mathcal{F}$, $\bigcap_{l=1}^n F_k \neq \emptyset$.

7.1 Proposition. Let (X,τ) be a topological space. Then (X,τ) is compact if and only if any $\mathcal{F} \subseteq \mathcal{P}(X)$ with the finite intersection property has $\bigcap_{F \in \mathcal{F}} \overline{F} \neq \emptyset$.

PROOF Suppose X is compact and $\mathcal{F} \subset \mathcal{P}(X)$ has the finite intersection property but with $\bigcap_{F \in \mathcal{F}} \overline{F}$, then $\{X \setminus \overline{F}\}_{F \in \mathcal{F}}$ is an open cover of X with no finite subcover.

Conversely, if $\mathcal{O} \subseteq \tau$ is an open cover of X, then $\mathcal{F} = \{X \setminus U\}_{U \in \mathcal{O}}$ satisfies $\bigcap_{F \in \mathcal{F}} = \emptyset$, so there is $F_1, \dots, F_n \in \mathcal{F}$ with $\bigcap_{k=1}^n F_k = \emptyset$. Then $\{X \setminus F_i\}_{i=1}^k$ is a finite subcover.

Definition. Let X be a non-empty set. An **ultrafilter** is a family $\mathcal{U} \subset \mathcal{P}(X)$ such that

- *U* has the finite intersection property
- If $A \in \mathcal{P}(X)$, then either $A \in \mathcal{U}$ or $X \setminus A \in \mathcal{U}$.

Example. (i) Principal / trivial ultrafilter: If $x_0 \in X$, let $U_{x_0} = \{U \subseteq X : x_0 \in U\}$.

7.2 Lemma. (Ultrafilter) If $\mathcal{F} \subseteq \mathcal{P}(X)$ is any set with the finite intersection property, then there is an ultrafilter \mathcal{U} with $\mathcal{F} \subset \mathcal{U}$.

PROOF Let $\Phi = \{\mathcal{G} \subseteq \mathcal{P}(X) : \mathcal{F} \subseteq \mathcal{G}, \mathcal{G} \text{ has f.i.p.}\}$. Then Φ is partially ordered by inclusion. If $\Gamma \subseteq \Phi$ is a chain, then $\mathcal{G}_{\Phi} = \bigcup_{\mathcal{G} \in \Gamma} \mathcal{G}$ contains \mathcal{F} and has the finite intersection property. Hence Φ admits a maximal element \mathcal{U} . Let $A \in \mathcal{P}(X) \setminus \mathcal{U}$. Then $U \cup \{A\} \supseteq \mathcal{U}$, so $\mathcal{U} \cup \{A\}$ fails the finite intersection property. Hence get U_1, \ldots, U_n so $A \cap \bigcap_{k=1}^n U_k = \emptyset$. Now if $V_1, \ldots, V_m \in \mathcal{U}$, then $\bigcap_{j=1}^n V_j \cap \bigcap_{k=1}^n U_j \subseteq \bigcap_{k=1}^n U_k \subseteq X \setminus A$, so $(X \setminus A) \cap \bigcap_{j=1}^m V_j$. Thus $\mathcal{U} \cup \{X \setminus A\}$ has finite intersection property, so $X \setminus A \in \mathcal{U}$ by maximality.

- **7.3 Corollary.** If $U \subseteq \mathcal{P}(X)$ is an ultrafilter, then
 - (i) If $A \in \mathcal{P}(X)$, $A \in \mathcal{U}$ if and only if $A \cap U \neq \emptyset$ for each $U \in \mathcal{U}$
 - (ii) If $A, B \in \mathcal{P}(X)$, then $A \cup B \in \mathcal{U}$ implies at least one of A or B is in \mathcal{U}
- (iii) If $A \in \mathcal{U}$ and $A \subseteq V$ implies $V \in \mathcal{U}$

Proof The forward implication of (i) follows since \mathcal{U} has finite intersection. Conversely, $X \setminus A \notin \mathcal{U}$, so $A \in \mathcal{U}$. (ii) and (iii) follow consequently.

7.4 Corollary. If X is an infinite set, it admits a non-principle ultrafilter.

PROOF Let $\mathcal{F} = \{F \in \mathcal{P}(X) : X \setminus F \text{ is finite}\}$. Then \mathcal{F} has the finite intersection property. Apply the lemma.

7.5 Proposition. There are at least \mathfrak{c} many ultrafilters in $\mathcal{P}(\mathbb{N})$.

PROOF We let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be a collection of infinite sets such that $E \neq F$ in \mathcal{F} implies $|E \cap F| < \infty$, and $|\mathcal{F}| = \mathfrak{c}$. For each $F \in \mathcal{F}$, we let $\mathcal{F}_F = \mathcal{F}_0 \cup \{F\}$, which has the finite intersection property. Moreover, if $E \in \mathcal{F} \setminus \{F\}$, then $\mathcal{F}_F \cup \{E\}$ would fail f.i.p. Hence, for $F \in \mathcal{F}$, let \mathcal{U}_F be any ultrafilter containing \mathcal{F}_F , giving \mathfrak{c} many ultrafilters.

Remark. It can be shown (with a lot more work) that IN admits 2^c ultrafilters.

Let $\mathcal{U} \subset \mathcal{P}(\mathbb{N})$ be a non-principal ultrafilter. Define $\delta_{\mathcal{U}} : \mathcal{P}(\mathbb{N}) \to \{0,1\} \subset \mathbb{R}$ by $\delta_{\mathcal{U}}(A) = 1$ if $A \in \mathcal{U}$, and 0 if $X \setminus A \in \mathcal{U}$. Since $\mathbb{N} \in \mathcal{U}$, we see that $\delta_{\mathcal{U}}(\emptyset) = 0$. If $\emptyset \neq A, B \in \mathcal{P}(\mathbb{N})$ with $A \cap B = \emptyset$, then if $A \cup B \in \mathcal{U}$, then exactly one of A or B is in \mathcal{U} . Thus $\delta_U(A \cup B) = \delta_U(A) + \delta_U(B)$. If $E_1, ..., E_n \subseteq \mathbb{N}$ with $E_j \cap E_k = \emptyset$ for $j \neq k$, then $\sum_{k=1}^n |\delta_{\mathcal{U}}(E_k)| \leq 1$ so $||\delta_{\mathcal{U}}||_{\text{var}} \leq 1$. Since $\delta_{\mathcal{U}}(\mathbb{N}) = 1$, we have $\|\delta_{\mathcal{U}}\|_{\text{var}} = 1$. Let $L_{\mathcal{U}} \in \ell_{\infty}^*$ be the linear functional associated to $\delta_{\mathcal{U}}$. We then have (with some verification possibly needed)

- (i) $L_{\mathcal{U}}(1) = 1$, $||L_{\mathcal{U}}|| = 1$
- (ii) $L_{\mathcal{U}}|_{\mathbf{c_0}} = 0$, so if $x \in \ell_{\infty}^{\mathbb{R}}$, then $\liminf_{n \to \infty} x_n \le L_{\mathcal{U}} \le \limsup_{n \to \infty} x_n$ (iii) Exactly one of $2\mathbb{N}$ and $2\mathbb{N} 1$ is in \mathcal{U} , so $L(\chi_{2\mathbb{N}}) \ne L_{\mathcal{U}}(\chi_{2\mathbb{N} 1})$, so $L_{\mathcal{U}}$ is not translation invariant.
- (iv) Let $S \in \mathcal{B}(\ell_{\infty})$ be given by $Sx = \left(\frac{x_1 + \dots + x_n}{n}\right)_{n=1}^{\infty}$. Then $L_{\mathcal{U}} \circ S$ is a Banach limit.

Definition. If (X, τ) is a topological space, \mathcal{U} an ultrafilter on X, we say that $x_0 \in X$ is a $(\tau$ -)limit point for \mathcal{U} if for each $U \in \tau$ with $x_0 \in U$, we have $U \in \mathcal{U}$.

7.6 Proposition. Let (X,τ) be a topological space. Then (X,τ) is compact if and only if any ultrafilter on X admits a τ -limit point.

Proof Let us begin with an observation: if $x \in X$ and \mathcal{U} is an ultrafilter on X, then

$$x \in \bigcap_{V \in \mathcal{U}} \overline{V} \Leftrightarrow \text{for any } U \in \tau \text{ with } x \in U, U \cap V \neq \emptyset \text{ for each } V \in \mathcal{U}$$
 $\Leftrightarrow x \text{ is a } \tau\text{-limit point of } \mathcal{U}$

If (X,τ) is compact, then $\bigcap_{V\in\mathcal{U}}\overline{V}\neq\emptyset$. If $\mathcal{F}\subseteq\mathcal{P}(X)$ has the finite intersection property, then there exists an ultrafilter $\mathcal{U}\supseteq\mathcal{F}$, so $\bigcap_{F\in\mathcal{F}}\overline{F}\supseteq\bigcap_{V\in\mathcal{U}}\overline{V}\neq\emptyset$.

7.7 Theorem. (Tychonoff) Let $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ be a family of compact spaces, and $X = \prod_{\alpha \in A} X_{\alpha}$ with the product topology π . Then (X, π) is compact.

PROOF Let \mathcal{U} be an ultrafilter on X; we will show that it admits a π -limit point. Fix $\alpha \in A$ and let $\mathcal{U}_{\alpha} = \{p_{\alpha}(V) : V \in \mathcal{U}\}$, where p_{α} is the coordinate projection onto α . If $\emptyset \neq S_{\alpha} \subseteq X_{\alpha}$, then $S_{\alpha} = p_{\alpha}^{-1}(p_{\alpha}^{-1}(S_{\alpha}))$, so $S_{\alpha} \in \mathcal{U}_{\alpha}$ if and only if $p^{-1}(S_{\alpha}) \in \mathcal{U}$, and since p^{-1} commutes with complementation, \mathcal{U}_{α} is an ultrafilter. The last proposition provides a τ_{α} -limit point x_{α} for \mathcal{U}_{α} . Now let $x = (x_{\alpha})_{\alpha \in A}$, where x_{α} is found as above. If $W \in \pi$ with $x \in W$, then there are $\alpha_1, \ldots, \alpha_n$ in A, $U_{\alpha_i} \in \tau_{\alpha_i}$ with $x \in \bigcap_{k=1}^n p_{\alpha_k}^{-1}(U_{\alpha_k}) \subseteq W$. Since each x_{α_k} is a τ_{α_k} -limit point of \mathcal{U}_{α_k} , we see that each $U_{\alpha_k} \in \mathcal{U}_{\alpha_k}$, so $p_{\alpha_k}^{-1}(U_{\alpha_k}) \in \mathcal{U}$. Thus we see that $W \in \mathcal{U}$, so x is a π -limit point of \mathcal{U} .

- Remark. (i) Tychonoff's theorem implies the axiom of choice. Given $\{X_{\alpha}\}_{\alpha \in A}$ be a family of non-empty sets. Find y which is not a member of any X_{α} , and let $Y_{\alpha} = X_{\alpha} \cup \{y\}$ and $\tau_{\alpha} = \{\emptyset, \{y\}, X_{\alpha}, Y_{\alpha}\}$, and $(Y_{\alpha}.\tau_{\alpha})$ is compact. The constant element y is an element of Y, so by Tychonoff, (Y,π) is compact. Given $\alpha_1, \ldots, \alpha_n \in A$, then $\bigcup_{k=1}^n p_{\alpha_k}^{-1}(\{y\})$. Since $\prod_{k=1}^n X_{\alpha_k} \neq 0$, we see that $Y \subsetneq \bigcup_{k=1}^n p_{\alpha_k}^{-1}(\{y\})$. Hence by compactness, $Y \not\subseteq \bigcup_{\alpha \in A} p_{\alpha}^{-1}(\{y\})$. Hence $\prod_{x \in A} X_{\alpha} = Y \setminus \bigcup_{\alpha \in A} p_{\alpha}^{-1}(\{y\}) \neq 0$.
 - (ii) If we are given $(X_{\alpha}, \tau_{\alpha})_{\alpha \in A}$ a family of topological spaces, $X = \prod_{\alpha \in A} X_{\alpha}$, we can define the **box topology**, i.e. the topology with base $\{\prod_{\alpha \in A} U_{\alpha} : U_{\alpha} \in \tau_{\alpha} \setminus \{\emptyset\} \text{ for each } \alpha\}$ Of course, $\pi \subseteq \tau$, and the inclusion is proper on infinite products.
 - **7.8 Proposition.** Let (X, τ) be a compact space.
 - (i) If $K \subseteq X$ is closed, then K is compact.
 - (ii) If (Y, σ) is a topological space and $f: X \to Y$ is continuous, then f(X) is compact.

Proof Immediate.

Remark. If *X* is a normed space, $w^* = \sigma(X^*, \hat{X})$, if $x \in X$, $\hat{x} \in X^{**}$, $\hat{x}(f) = f(x)$, $\hat{X} = \{\hat{x} : x \in X\}$. If *A*, *B* are non-empty sets, $A^B \cong \{f : B \to A\}$.

7.9 Theorem. (Alaoglu) Let X be a normed space. Then $B(X^*)$ is $w^* = \sigma(X^*, \hat{X})$ -compact

PROOF Let $\Gamma: X^* \to \mathbb{F}^X$ be given by $\Gamma(f) = (f(x))_{x \in X}$, so Γ is injective. Let $\pi = \sigma(\mathbb{F}^X, \{p_x\}_{x \in X})$ be the product topology. If $U_1, \ldots, U_n \subseteq \mathbb{F}$ are open and $x_1, \ldots, x_n \in X$, then

$$\Gamma\left(\bigcap_{k=1}^{n} \hat{x}_{n}^{-1}(U_{k})\right) = \bigcap_{k=1}^{n} \Gamma\left(\hat{x}_{n}^{-1}(U_{k})\right) = \bigcap_{k=1}^{n} \hat{x}_{n}^{-1}(U_{k}) \cap \Gamma(X^{*})$$

so Γ is an open map onto its image in \mathbb{F}^X . Similarly, it is easy to show that Γ^{-1} is also an open map, so in fact Γ is a homeomorphism onto its image.

We now consider $\overline{\Gamma(B(X^*))} \subset \mathbb{F}^X$. Let $g \in \overline{\Gamma(B(X^*))}$ and let $D = D(\mathbb{F})$. Given $x, y \in X$ and $\alpha \in \mathbb{F}$, and then given $\epsilon > 0$, we find $f \in B(X^*)$ such that

$$\Gamma(f) \in p_x^{-1}\left(g(x) + \frac{\epsilon}{3}D\right) \cap p_y^{-1}\left(g(y) + \frac{\epsilon}{3(|\alpha| + 1)}D\right) \cap p_{x + \alpha y}^{-1}\left(g(x + \alpha y) + \frac{\epsilon}{3}D\right)$$

We have that f is linear with $\Gamma(f)(x) = f(x)$, etc. so we have

$$|g(x) + \alpha g(y) - g(x + \alpha y)| \le |g(x) - f(x)| + |\alpha||g(y) - f(y)| + |g(x + \alpha y) - f(x + \alpha y)| < \epsilon$$

and since $||f|| \le 1$, we have $|g(x)| \le |g(x) - f(x)| + |f(x)| < \epsilon/3 + ||x||$. Then since $\epsilon > 0$ is arbitrary, get $g \in X'$ and $|g(x)| \ge ||x||$, i.e. $g \in B(X^*)$. Hence we have that $g = \Gamma(g)$.

Thus $\Gamma(B(X^*)) \subseteq \prod_{x \in X} ||x|| \overline{D} \subseteq \mathbb{F}^X$ is a closed subset of a compact subset of \mathbb{F}^X . Thus $B(X^*)$ is the continuous image of a compact set and hence compact.

Remark. If r > 0, then we may replace $B(X^*)$ with $rB(X^*)$ in the proof above, with trivial modifications. Thus any ball is w^* -compact. Hence bounded w^* -closed sets in X^* are automatically w^* -compact.

Definition. A topological space (X, τ) is Hausdorff if given $x \neq y$ in X, there are $U_x, V_y \in \tau$ such that $x \in U_x$ and $y \in V_y$ and $U_x \cap U_y = \emptyset$.

Example. (i) A metric space is Hausdorff.

- (ii) X a normed space, $w = \sigma(X, X^*)$ is Hausdorff (by Hahn-Banach and A2Q1).
- (iii) If *X* is a normed space, then $w^* = \sigma(X^*, \hat{X})$ on X^* is Hausdorff.
- (iv) $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ family of topological spaces, $X = \prod_{\alpha \in A} X_{\alpha}$ with π the product topology. Then (X, π) is Hausdorff if and only if all $(X_{\alpha}, \tau_{\alpha})$ are Hausdorff. (Straightfoward exercise).
 - **7.10 Proposition.** Let (X, τ) be a Hausdorff space, $K \subseteq X$ τ -compact. Then K is τ -closed.

PROOF Straightforward exercise.

- **7.11 Proposition.** Let (X, τ) be a compact space.
 - (i) If (Y, σ) is a Hausdorff space and $\phi : X \to Y$ is continuous and bijective, then $\phi^{-1} : Y \to X$ is continuous.
 - (ii) If $\tau' \subseteq \tau$ is a Hausdorff topology on X, so $\tau' = \tau$.

PROOF (i) If $F \subseteq X$ is τ -closed, then it is τ -compact. Hence $(\phi^{-1})^{-1}(F) = \phi(F)$ is σ -closed, so by A1Q1, ϕ^{-1} is continuous.

- (ii) id : $X \to X$ is continuous, so if $U \in \tau'$, then id⁻¹(U) = $U \in \tau$, so id is continuous. Hence by (1) id⁻¹ is continuous so $\tau \subseteq \tau'$.
 - **7.12 Theorem.** (Metrization) If X is a separable normed space, then $B(X^*)$ is w^* -metrizable, i.e. there exists a metric ρ on $B(X^*)$ such that $w^*|_{B(X^*)} = \tau_{\rho}$.

PROOF Let $\{x_n\}_{n=1}^{\infty} \subset B(X)$ be any set which is separating for X^* , i.e. if $f \in X^* \setminus \{0\}$, then $f(x_n) \neq 0$ for some n (for example, take any dense subset of $D(X) \setminus \{0\}$). Let ρ be given by

$$\rho(f,g) = \sum_{k=1}^{\infty} \frac{|(f-g)(x_k)|}{2^k} \le 2$$

It is easy to see that this is a metric.

Given $f_0 \in B(X^*)$, take $\epsilon > 0$ and let

• n be so $\sum_{k=n+1}^{\infty} \frac{2}{2^k} < \frac{\epsilon}{2}$, and

• $V = \bigcap_{k=1}^n \{f \in B(X^*) : |\hat{x}_k(f) - \hat{x}_k(f_0)| < \epsilon/2\} \in w^*|_{B(X^*)}, f_0 \in V.$ Then if $f \in V$,

$$g(f, f_0) = \sum_{k=1}^{n} \frac{|f(x_k) - f_0(x_k)|}{2^k} + \sum_{k=n+1}^{\infty} \frac{|f(x_k) - f_0(x_k)|}{2^k} < \epsilon$$

so $f_0 \in V \subset B_{\rho,\epsilon}^{\circ}(f_0)$. Since f_0 is arbitrary, we have $\tau_{\rho} \subseteq w^*|_{B(X^*)}$, but since w^* is compact and τ_{ρ} is Hausdorff, these must be equal.

- (i) Note that different separating families from B(X) may produce different metrics, but always the same topology.
- (ii) The definition of ρ above extends to all of $X^* \times X^*$. However, X^* with the weak* topology is not in metrizable if X is infinite dimensional.
- (iii) $X^* = \bigcup_{i=1}^{\infty} nB(X^*)$, so each $nB(X^*)$ is metrizable and compact, and thus w^* -separable. Thus if X is separable, then X^* is itself separable.

8 Nets

Definition. A pair (N, \leq) is a **preorder** on N if

- $v \le v$ for $v \in N$
- $v_1 \le v_2$ and $v_2 \le v_3$ implies $v_1 \le v_3$.

This pair is **cofinal** if for any $v_1, v_2 \in N$, there is $v_3 \in N$ so $v_1 \le v_3$ and $v_2 \le v_3$. Then (N, \le) is a **directed set** if \le is a cofinal preorder. Given a non-empty set X, a **net** is a function $x : N \to X$.

Definition. If $(x_0)_{v \in \mathbb{N}}$ is a net in X, $A \subseteq X$, we say that $(x_0)_{n \in \mathbb{N}}$ is

- **eventually** in *A* if there is $v_A \in N$ so $x_v \in A$ whenever $v \ge v_A$
- **frequently** in *A* if for any $v \in N$, there is $v' \in N$ with $v' \ge g$ so $x_{v'} \in A$.

Definition. Now, let (M, \leq) be anther directed set A map $\phi : M \to N$ is **eventually cofinal** if for any $v \in N$, there is $\mu_v \in N$ s $\phi(u) \geq v$ whenever $\mu \geq \mu_0$. Given a net $(x_v)_{v \in N}$ and an eventually cofinal $\phi : M \to N$, we call $(x_{\phi(\mu)})_{\mu \in M}$ a **subnet**.

Definition. We call $\phi: M \to N$ a directed map if

- (i) $\mu \le \mu'$ in M implies $\phi(\mu) \le \phi(\mu')$ in N
- (ii) For any $v \in N$, there is $\mu \in M$ s $v \le \phi(\mu)$.

Directed maps are always cofinal. Different sources use directed maps over eventually cofinal maps.

Example. (i) (\mathbb{N}, \leq) is directed, and subsequences are special types of subnets.

- (ii) (\mathbb{R}, \leq) is directed
- (iii) (*Riemann sums*) Let a < b in \mathbb{R} . We let

$$N = \{(P, P^*): P = \{a = t_0 < t_1 < \dots < t_n = b\}, P^* = \{t_1^*, \dots, t_n^*\}, t_k^* \in [t_{k-1}, t_k]\}$$

and say $(P, P^*) \le (Q, Q^*)$ if $P \subseteq Q$. One can verify that this is a net (the Riemann sum net).

(iv) (Nets from filtering families). We say that $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$ is a **filtering family** if for each $F_1, F_2 \in \mathcal{F}$, there is $F_3 \in \mathcal{F}$ such that $F_3 \subseteq F_1 \cap F_2$. For example, an ultrafilter is a filtering family. Let

$$N_{\mathcal{F}} = \{(x, F) : x \in F, F \in \mathcal{F}\}$$

equipped with the pre-order $(x, F) \le (x', F')$ if and only if $F \supseteq F'$. Since \mathcal{F} is a filtering family, $(N_{\mathcal{F}}, \le)$ is directed. Let $x_{(x,F)} = x$, so $(x)_{(x,F) \in N_{\mathcal{F}}}$ is the net built from \mathcal{F} . Note that if $F \in \mathcal{F}$, then $(x)_{(x,F) \in \mathcal{F}}$ is eventually in F.

An **ultranet** $(x_v)_{v \in N} \subset X$ is a net for which any $A \in \mathcal{P}(X)$, $(x_v)_{v \in N}$ is either eventually in A or eventually in $X \setminus A$. If \mathcal{F} is an ultrafilter, then $(x)_{(x,F)\in N_F}$ is an **ultranet**.

8.1 Nets and Topology

Now, suppose (X, τ) is a topological space.

Definition. We say that $x_0 \in X$ is

- Some $x_0 \in X$ is a **limit point** if for any $U \in \tau$ with $x_0 \in U$, $(x_v)_{v \in N}$ is eventually in U. That is, there is v_U such that $x_v \in U$ whenever $v \ge v_U$. We write $x_0 = \lim_{v \in N} x_v$, the τ -limit of $(x_v)_{v \in N}$. Note that this is an abuse of notation, since limit points need not be unique (when (X, τ) is not Hausdorff).
- Some $x_0 \in X$ is a **cluster point** of $(x_v)_{v \in N}$ if for any $U \in \tau$ with $x_0 \in U$, $(x_v)_{v \in N}$ is frequently in U.
- **8.1 Proposition.** If $(x_v)_{v \in N}$ is a net in (X, τ) and $x_0 \in X$, then x_0 is a cluster point for $(x_v)_{v \in N}$ if and only if x_0 is a τ -limit point of x_v for some subnet $(x_v)_{u \in M}$ of $(x_v)_{v \in N}$.

PROOF (\Longrightarrow) Suppose x_0 is a cluster point for $(x_v)_{v \in N}$. Then for each $v \in N$ and $U \in \tau$ containing x_0 , define

$$F_{\nu,U} = \{ \nu' \in N : \nu' \ge \nu, x_{\nu'} \in U \}$$

which is non-empty since x_0 is a cluster point. Then set

$$\mathcal{F} = \{F_{\nu,U} : \nu \in N, U \in \tau, x_0 \in U\} \subset \mathcal{P}(N)$$

Let's see that \mathcal{F} is filtering: suppose $F_{\nu,U}$ and $F_{\nu',U'}$ are in \mathcal{F} . Get $\mu \geq \nu$ and $\mu \geq \nu'$ by definition of a net and set $V = U \cap U'$, which is open and contains x_0 . Then since x_0 is a cluster point, get some $\mu' \geq \mu$ such that $x_{\mu'} \in V$, so $F_{\mu',V} \subseteq F_{\nu,U} \cap F_{\nu',U'}$ We then let $M = N_{\mathcal{F}}$ be the net construction from the filtering family and set $v_{(\nu,F)} = V$.

Now set $N_{\mathcal{F}} = \{(v, F) : v \in F, F \in \mathcal{F}\}$ with the standard preorder and $v_{(v,F)} = v$. Then the map $(v,F) \mapsto v$ from $N_{\mathcal{F}} \to N$ is eventually cofinal: if $v_0 \in N$ is arbitrary, take any $F_0 = F_{v_0,U} \in \mathcal{F}$. Then $F_0 = \{v \in N : v \geq v_0, x_v \in U\}$, so if $F_{\mu,V} \in \mathcal{F}$ with $F_{\mu,V} \subseteq W$ let $M = N_{\mathcal{F}}$ as in (iv) above, and $v_{v,\mathcal{F}} = v$. Check that $(x_v)_{(v,F) \in N_{\mathcal{F}}}$ is eventually in U for any $U \in \tau$ with $x_0 \in U$. [Check: $(v,F) \mapsto v : N_{\mathcal{F}} \to N$ is cofinal, but is not evidently directed]

 (\Leftarrow) If for some subnet $(x_{\nu_{\mu}})_{\mu \in M}$ is eventually in U for any $U \in \tau$ with $x_0 \in U$, then $(x_{\nu})_{\nu \in N}$ is frequently in U for such U by definition of a subnet.

8.2 Proposition. If (Y, σ) is another topological space, then $f: X \to Y$ is continuous if and only if for any $x_0 \in X$ and net $(x_v)_{v \in N}$ with having x_0 as a limit, $f(x_0) = \lim_{v \in N} f(x_v)$.

PROOF If $V \in \sigma$ with $f(x_0) \in V$, then $f^{-1}(V) \in \tau$ with $x_0 \in f^{-1}(V)$. Since $(x_v)_{v \in N}$ is eventually in $f^{-1}(V)$, so $(f(x_v))_{v \in N}$ is eventually in V.

Conversely, let $\tau_{x_0} = \{U \in \tau : x_0 \in U\}$, which is filtering on X. Let $N_{\tau_{x_0}} = \{(x,U) : x \in U, U \in \tau_{x_0}\}$ be directed by $(x,U) \leq (x',U')$ if and only if $U \supseteq U'$ as in (iv) above. Then $x_0 = \lim_{(x,U) \in N_{\tau_{x_0}}} x$. Now, let $V \in \sigma$ with $f(x_0)$. The assumptions on f tell us there is $v - V \in N_{\tau_{x_0}}$ such that for $v \geq v_V$, we have $f(x_0) \in V$ We have $v_V = (x,U)$ for some

 $U \in \tau_{x_0}$ and $x \in U$, so for any $x' \in U$, $(x', U) \ge (x, U)$ and $f(x') = f(x_{x', U}) \in V$, so that $x_0 \in U = \bigcup_{x' \in U} \{x'\} \subseteq f^{-1}(V)$, so f is continuous at x_0 . But $x_0 \in X$ was arbitrary.

Remark. We get the following consequences of this result:

- (i) Given topologies τ, τ' on X, $\tau' \subseteq \tau$ if and only if $\tau' \lim_{v \in N} x_v = x_0$ whenever $\tau \lim_{v \in N} x_v = x_0$ for any $x_0 \in X$.
- (ii) (limits in product topology) $\{(x_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ be topological space and $X = \prod_{\alpha \in A} X_{\alpha}$ equipped with the product topology π . If $(x^{(v)})_{v \in N}$ is a net in X and $x^{(0)} \in X$, then $\pi \lim_{v \in N} x^{(v)} = x^{(0)}$ if and only if for every $\alpha \in A$, $\tau_{\alpha} \lim_{v \in N} x^{(v)}_{\alpha} = x^{(0)}_{\alpha}$. Recall that π is the coarsest topology making each μ_{α} continuous.
- (iii) If X is a normed space and $(f_v)_{v \in N} \subset X^*$, $f_0 \in X^*$, then $w^* \lim_{v \in N} f_v = f_0$ if and only if $\lim_{v \in N} f_v(x) = f_0(x)$ for each $x \in X$.

8.2 Roles of weak and weak* topologies in convexity

8.3 Theorem. (w^* -Separation) Let X be a normed space, $A, B \subset X^*$ each be non-empty and convex, with $A \cap B = \emptyset$ and B w^* -open. Then there is $x \in X$ and $\alpha \in \mathbb{R}$ such that

$$\operatorname{Re} f(x) \le \alpha < \operatorname{Re} g(x)$$

for $f \in A$ and $g \in B$.

PROOF The separation theorem and the fact that B is $\|\cdot\|$ —open (i.e. $w^* \subseteq \tau_{\|\cdot\|}$) provides $F \in X^{**}$ and $\alpha \in \mathbb{R}$ such that $\operatorname{Re} F(f) \leq \alpha \operatorname{Re} F(g)$ for $f \in A$, $g \in B$. Since $B \in w^* = \sigma(X^*, \hat{X})$, if $f_0 \in B$, then there are x_1, \ldots, x_n in X such that

$$f_0 \in U = \bigcap_{i=1}^n \hat{x}_i^{-1} (f_0(x_i) + \mathbb{D}) \subseteq B$$

Let $Y = \bigcap_{i=1}^n \ker \hat{x}_i \subseteq X^*$. Then for i = 1, ..., n, $\hat{x}_i(f_0 + Y) = \{f_0(x_i)\} \subset f_0(x_i) + \mathbb{D}$, so that $f_0 + Y \subseteq U \subseteq B$. Thus if $f \in Y$, then $\operatorname{Re} F(f_0 + f) > \alpha$ and hence $\operatorname{Re} F(f) > \alpha - \operatorname{Re} F(f_0)$ which implies that $f \in \ker F$, so $f \in \ker F$. That is, $Y \subseteq \ker F$. The next lemma shows that $F \in \operatorname{span}\{\hat{x}_1, ..., \hat{x}_n\} \subseteq \hat{X}$, i.e. $F = \hat{x}$ for some $x \in X$.

8.4 Lemma. In an \mathbb{F} -vector space, if $f_0, f_1, \ldots, f_{\in}X'$ with $\ker f_0 \supseteq \bigcap_{i=1}^n \ker f_i$, then $f \in \operatorname{span}\{f_1, \ldots, f_n\}$.

PROOF Define $T: X \to \mathbb{F}^n$ by $Tx = (f_1(x), \ldots, f_n(x))$. Then $\ker T = \bigcap_{i=1}^n \ker f_i$. Let $\mathcal{R} = \operatorname{im} T \subseteq \mathbb{F}$ and $g_0 \in \mathcal{R}'$ by $g_0(Tx) = f_0(x)$. Then g_0 is well-defined: if Tx = Ty, then $x - y \in \ker T \subseteq \ker f_0$, so $f_0(x - y) = 0$ so $f_0(x) = f_0(y)$. Also g_0 is linear. Let $g \in (\mathbb{F}^n)'$ such that $g|_{\mathcal{R}} = g_0$. Hence there are $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ such that $g(y_1, \ldots, y_n) = \sum_{j=1}^n \alpha_j y_j$. Hence for $x \in X$,

$$f_0(x) = g_0(Tx) = g(Tx) = g(f_1(x), \dots, f_n(x)) = \sum_{j=1}^n \alpha_j f_j(x)$$

so that $f_0 = \sum_{j=1}^n \alpha_j f_j$.

8.5 Theorem. (w^* -Closed Convex Hull) If $S \subset X^*$, then

$$\overline{\operatorname{co}}^{w^*} S = \bigcap \{ \{ f \in X^* : \operatorname{Re} f(x) \le \alpha \} \supseteq S : x \in X, \alpha \in \mathbb{R} \}$$

PROOF The set on the right is w^* -closed and convex being the intersection of such. Conversely, if $f \in X^* \setminus \overline{\operatorname{co}}^{w^*} S$, which is open, then there is a basic w^* -open neighbourhood

$$B = \bigcap_{j=1}^{n} \hat{x}_{j}^{-1}(f(x_{j}) + \mathbb{D}) \subseteq X^{*} \setminus \overline{\operatorname{co}}^{w^{*}} S$$

so that $B \cap \overline{\operatorname{co}}^{w^*} S = \emptyset$. Also, *B* is convex.

Remark. If X is a normed space, a closed half space $H = \{x \in X : \operatorname{Re} f(x) \leq \alpha\}$ for some f in X^* , $\alpha \in \mathbb{R}$. Hence, H is weakly closed $(\operatorname{Re} f)^{-1}([\alpha, \infty)) = f^{-1}(\{z \in \mathbb{C} : \operatorname{Re} z \geq \alpha\})$ is w–closed. Thus if $S \subset X$, we have $\overline{\operatorname{co}} S \in w = \sigma(X, X^*) \subseteq \tau_{\|\cdot\|}$, so $\overline{\operatorname{co}} S$ is automatically weakly closed. Hence if $C \subseteq X$ is convex, then C is norm closed if and only if C is w–closed.

Definition. Let X be a normed space. If $E \subseteq X$ (non-empty), the **polar** of E is given by

$$E^{\circ} = \{ f \in X^* : \operatorname{Re} f(x) \le 1 \text{ for all } x \text{ in } E \} \subseteq X^*$$
$$= \bigcap_{x \in E} \{ f \in X^* : \operatorname{Re} \hat{x}(f) \le 1 \}$$

so E° is convex and w^* -closed in X^* , and $0 \in E^{\circ}$.

If $F \subseteq X^*$ (non-empty), let the **pre-polar** of F be given by

$$F_{\circ} = \{x \in X : \operatorname{Re} f(x) \le 1 \text{ for all } f \text{ in } F\}$$

so, like above, F_0 is convex, (w-)closed, and $0 \in F_0$.

8.6 Theorem. (Bipolar) (i) If
$$\emptyset \neq E \subseteq X$$
, then $(E^{\circ})_{\circ} = \overline{\operatorname{co}}(E \cup \{0\})$. (ii) If $\emptyset \neq F \subseteq X^{*}$, then $(F_{\circ})^{\circ} = \overline{\operatorname{co}}^{w^{*}}(F \cup \{0\})$.

PROOF (i) Note that $E \cup \{0\} \subseteq (E^{\circ})_{\circ}$, so $\overline{\operatorname{co}}(E \cup \{0\}) \subseteq (E^{\circ})_{\circ}$. If $x_0 \in X \setminus \overline{\operatorname{co}}(E \cup \{0\})$, then the separation theorem provides $f \in X^*$, $\alpha \in \mathbb{R}$ so $\operatorname{Re} f(x_0) > \alpha \geq \operatorname{Re} f(x)$ for $x \in E \cup \{0\}$. Notice that $\alpha \geq \operatorname{Re} f(0) = 0$, and we let $\beta = \frac{1}{2}[\operatorname{Re} f(x_0) + \alpha] > 0$, so $\operatorname{Re} f(x_0) > \beta \geq \operatorname{Re} f(x)$ for $x \in E \cup \{0\}$, $\beta > 0$. Let $g = \frac{1}{\beta}f$ and we see that $g \in E^{\circ}$ and as $\operatorname{Re} g(x_0) > 1$, $x_0 \notin (E^{\circ})_{\circ}$.

(ii) Similar, use
$$w^*$$
-separation.

Remark. Let $Y \subseteq X$ be a subspace. If $f \in Y^0$, then $\operatorname{Re} f(y) \le 1$ for $y \in Y$ implies that f(y) = 0 for all $y \in Y$. We write $Y^a = Y^0$, and $Y^a = \{f \in X^* : f|_Y = 0\}$ is called the **annhilator** of Y. Likewise, if $Z \subseteq X^*$ is a subspace, then $Z_a = Z_0$ where $Z_a = \{x \in X : f(x) = 0 \text{ for each } f \in Z\}$ is called the **pre-annhilator**. Notice that Y^a and Z_a are subspaces.

8.7 Corollary. (i) If
$$Y \subseteq is$$
 a subspace, then $(X^a)_a = \overline{X}$. (ii) If $Z \subseteq X^*$ is a subspace, then $(Z_a)^a = \overline{Z}^{w^*}$.

8.8 Lemma. If X is a normed space, then $B(X)^0 = B(X^*)$ and $B(X^*)_0 = B(X)$.

PROOF If $f \in B(X^0)$, then $\operatorname{Re} f(x) \le 1$ for $x \in B(X)$. Thus for $x \in B(X)$, $|f(x)| = \overline{\operatorname{sgn} f(x)} f(x) = f(\overline{\operatorname{sgn} f(x)} x) \le 1$, so $||f|| \le 1$ and $f \in B(X^*)$. Conversely, if $f \in B(X^*)$, $x \in B(X)$, then $\operatorname{Re} f(x) \le |f(x)| \le 1$ so $f \in B(X)^\circ$. Then use the Bipolar theorem.

8.9 Theorem. (Goldstine) If X is a normed space, then $\overline{B(\hat{X})}^{w^*} = B(X^{**})$. Note that $w^* = \sigma(X^{**}, \hat{X}^*)$.

Proof The Bipolar theorem provides $\overline{B(\hat{X})}^{w^*} = \overline{\operatorname{co}}^{w^*} B(\hat{X}) = (B(\hat{X})_\circ)^\circ$. But, in X^* ,

$$B(X)^{\circ} = \{ f \in X^* : \text{Re } f(x) \le 1 \text{ for } x \text{ in } B(X) \}$$

= $\{ f \in \hat{X}^* : \text{Re } \hat{x}(f) \le 1 \text{ for } x \text{ in } B(X) \}$
= $B(\hat{X})_{\circ}$

Hence we have, using the lemma,

$$\overline{B(\hat{X})}^{w^*} = (B(\hat{X})_{\circ})^{\circ} = (B(X)^{\circ})^{\circ} = B(X^*)^{\circ} = B(X^{**})$$

- Example. (i) Recall that $c_0^* \cong \ell_1$ and $\ell_1^* \cong \ell_\infty$, wheren $c_0 \subseteq \ell_\infty$. Thus by Goldstine, $\overline{B(c_0)}^{w^*} = B(\ell_\infty)$, so $w^* = \sigma(\ell_\infty, \ell_1)$. Since ℓ_1 is separable, we have that $(B(\ell_\infty), w^*)$ is metrizable. In fact, if $x \in \ell_\infty$, then if $x^{(n)} = (x_1, \dots, x_n, 0, 0, \dots) \in c_0$, we have $x = w^* \lim_{n \to \infty} x^{(n)}$.
- (ii) $\ell_{\infty}^* \cong FA(\mathbb{N})$. But $B(FA(\mathbb{N}), w^*)$ is not metrizable. Since $\ell_1^* \cong \ell_{\infty}$, there is a natural isometric embedding $\ell_1 \hookrightarrow FA(\mathbb{N})$. Then $y^{(n)} = \frac{1}{n}(1, 1, ...) \in B(\ell_1)$, and w^* -cluster point of $(y^{(n)})_{n=1}^{\infty} \subset B(FA(\mathbb{N}))$ is a Banach limit.
 - **8.10 Corollary.** If $F \in X^{**}$, there always exists a net $(x_v)_{v \in N} \subset X$ such that

$$F = w^* - \lim_{v \in N} \hat{x}_v \text{ and } ||x_v|| \le ||F||$$

PROOF If $F \neq 0$, $\frac{1}{\|F\|}F \in B(X^{**}) = \overline{B(\hat{X})}^{w^*}$, and we may find $(y_{\nu})_{\nu \in N} \subset B(X)$ such that $(\hat{y}_{\nu})_{\nu \in N} \subset B(\hat{X})$ and $\frac{1}{\|F\|}F = w^* - \lim_{\nu \in N} \hat{y}_{\nu}$. Let $x_{\nu} = \|F\|y_{\nu}$.

Consider $\mathcal{F} = w^*_{\frac{1}{\|F\|}F} = \{U \in w^*|_{B(X^{**})} : F \in U\}$ is a filtering family. Each $U \in w^*_{\frac{1}{\|F\|}F}$ has $U \cap B(\hat{X}) \neq \emptyset$ by Goldstine. Let $N_{\mathcal{F}} = \{(x, U) : x \in B(X), \hat{x} \in U, U \in \mathcal{F}\}$. Then $(x_{\nu})_{\nu \in N_{\mathcal{F}}} = (x)_{(x,U) \in N_{\mathcal{F}}}$ works.

Definition. A normed space X is **reflexive** if $\hat{X} = X^{**}$.

Notice that $X^{**} = (X^*)^*$ is complete, and $x \mapsto \hat{x}$ is an isometry, so a reflexive space is always complete.

- **8.11 Theorem.** Let X be a Banach space. The following are equivalent:
 - (i) X is reflexive
 - (ii) B(X) is w-compact
- (iii) $w^* = w$ on X^*
- (iv) X^* is reflexive.

PROOF The map $\iota: x \mapsto \hat{x}$ is a $w - w^*|_{\hat{X}}$ -homeomorphism. Recall $w^* = \sigma(X^{**}, \hat{X}^*)$, and $w^*|_{\hat{X}} = \sigma(\hat{X}, (\hat{X})^*|_{\hat{X}})$ and we have for $x_0 \in X$, net $(x_\nu)_{\nu \in N}$ in X,

$$\begin{split} w - \lim_{\nu \in N} x_{\nu} &= x_{0} \iff \lim_{\nu \in N} f(x_{\nu}) = f(x_{0}) \forall f \in X^{*} \\ &\iff \lim_{\nu \in N} \hat{x}_{\nu}(f) = \hat{x}_{0}(f) \forall f \in X^{*} \\ &\iff \lim_{\nu \in N} \hat{f}(\hat{x}_{\nu}) = \hat{f}(\hat{x}_{0}) \end{split}$$

and having the same convergent nets means that the topologies are the same.

- $(i \Rightarrow ii)$ By assumption, $\widehat{B}(\widehat{X}) = B(\widehat{X}) = B(X^{**})$. Since $B(X^{**})$ is w^* -compact, and hence $\iota^{-1}(B(X^{**})) = B(X)$ is w-compact
- $(ii \Rightarrow i)$ If B(X) is w-compact, then since $x \mapsto \hat{x} : X \to X^{**}$ is continuous, we see that $B(\hat{X}) = \widehat{B(X)}$ is w^* -compact.
 - $(i \Rightarrow iii)$ We have $\hat{X} = X^{**}$ so on X^* , we have $w = \sigma(X^*, X^{**}) = \sigma(X^*, \hat{X}) = w^*$.
- $(iii \Rightarrow iv)$ $B(X^*)$ is compact, hence w-compct, so by (ii) implies (i) applied to X^* , we have that X^* is reflexive.
- $(iv \Rightarrow i)$ We assume $\widehat{X^*} = X^{***}$. Thus on X^{***} , we have $w = \sigma(X^{**}, X^{***}) = \sigma(X^{**}, \widehat{X^*}) = w^*$. Now $B(\hat{X}) = B(X^{**}) \cap \hat{X}$ is norm-closed and convex, hence w-closed, by Closed Convex Hull theorem. Thus from above, $B(\hat{X})$ is w^* -closed, so $B(\hat{X}) = \overline{B(\hat{X})}^{w^*} = B(X^{**})$ by Goldstine, so $\hat{X} = X^{**}$.
 - **8.12 Corollary.** (i) Any finite dimensional normed space is reflexive.
 - (ii) Any closed subspace Y of a normed space X is reflexive.
 - PROOF (i) A finite dimensional normed space is complete, and its closed ball is compact, and thus w-compact as $\tau_{\|\cdot\|} \supseteq w$.
 - (ii) By Hahn-Banach, $Y^* = X^*|_Y$, so $\sigma(Y, Y^*) = \sigma(Y, X^*|_Y) = \sigma(X, X^*)|_Y$. Now $B(Y) = B(X) \cap Y$ is norm-closed and convex, hence w-closed in B(X). But B(X) is w-compact, so B(Y) is a w-closed subset of a w-compact space and thus w-compact.

8.3 Extreme Points and the Krein-Milman Theorem

Definition. Let X be a vector space and $C \subset X$ convex. A **face** F of C is any non-empty subset such that if $x \in F$, x = (1 - t)y + tz, $t \in (0, 1)$, $y, z \in C$ implies that $y, z \in F$. A **extreme point** of C is a singleton face, i.e. $\operatorname{ext} C = \{x \in C : \{x\} \text{ is a face of } C\}$. Hence $x \in \operatorname{ext} C$ if for any $t \in (0, 1)$ and $y, z \in C$, if x = (1 - t)y + tz then x = y = z.

Remark. (i) Faces of *C* are not necessarily convex.

- (ii) A face F' of a convex face F of C is itself a face of C.
- (iii) $\operatorname{ext} F \subseteq \operatorname{ext} C$.
- (iv) If $f \in X'$ and $\operatorname{Re} f(C) = [a, b]$, then $(\operatorname{Re} f)^{-1}(\{b\})$ is itself a face of C.

8.13 Theorem. (Krein-Milman) Let X be a normed space and $C \subset X^*$ convex and w^* -compact. Then $C = \overline{co}^{w^*} \operatorname{ext} C$.

PROOF We first verify that any w^* -closed face of C admits an extreme point. We let $\mathcal{F} = \{F : F \text{ is a convex } w^*$ -closed face of $C\}$, which is partially ordered by reverse inclusion.

If \mathcal{C} is a chain in \mathcal{F} with $F_1, \ldots, F_n \in \mathcal{C}$, we may assume $F_1 \supseteq \cdots \supseteq F_n$ so that \mathcal{C} has the finite intersection property. Thus $\emptyset \neq F_0 = \bigcap_{F \in \mathcal{C}} F$. If $x \in F_0$, $t \in (0,1)$, $y,z \in \mathcal{C}$ and x = (1-t)y + tz, then $x \in F$ for any $F \in \mathcal{C}$ so $y,z \in F$ for any $f \in \mathcal{C}$. Thus $y,z \in \bigcap_{F \in \mathcal{C}} F = F_0$. Also F_0 is closed, so $F_0 \in \mathcal{F}$. Thus F_0 is an upper bound in \mathcal{F} for \mathcal{C} , so by Zorn, get some maximal element M.

Let M be a minimal w^* -closed convex face of F. Then given $x \in X$, $\operatorname{Re} \hat{x} : X^* \to \mathbb{R}$ is w^* -continuous, and hence $\operatorname{Re} \hat{x}(M) = [a_x, b_x]$ since the only compact convex subsets of \mathbb{R} are compact intervals. But then $F_x = (\operatorname{Re} \hat{x})^{-1}(\{b_x\}) \cap M$ is a w^* -closed convex face in M, so that $F_x = M$. If $f, g \in M$, then $\operatorname{Re} f(x) = \operatorname{Re} \hat{x}(f) = b_x = \operatorname{Re} \hat{x}(g) = \operatorname{Re} g(x)$, so f = g and hence $M = \{f\}$ and $f \in \operatorname{ext} F$.

Now let $f_0 \in X^* \setminus \overline{\operatorname{co}}^{w^*}$ ext C. Since C is w^* -compact and convex, $\operatorname{Re} \hat{x}(C) = [a_x, b_x]$, so $C_x = (\operatorname{Re} \hat{x})^{-1}(\{b_x\}) \cap C$ is a w^* -closed convex face of C. Hence by above, there is $f \in \operatorname{ext} C_x \subseteq \operatorname{ext} C$ with $\operatorname{Re} \hat{x}(f) = b_x$. But then $\operatorname{Re} \hat{x}(f_0) > \alpha \geq \operatorname{Re} \hat{x}(f) = b_x$, so $\operatorname{Re} \hat{x}(f_0) \notin [a_x, b_x] = \operatorname{Re} \hat{x}(C)$, so $f_0 \notin C$. Thus $C \subseteq \overline{\operatorname{co}}^{w^*}$ ext C, where the converse inclusion is obvious.

8.14 Corollary. (i) If $C \subset X$ is a w-compact convex set, then $C = \overline{\operatorname{co}} \operatorname{ext} C$. (ii) If $C \subset X$ is a norm-compact convex set, then $C = \overline{\operatorname{co}} \operatorname{ext} C$.

PROOF (i) We have that $x \mapsto \hat{x}: X \to \hat{X} \subseteq X^{**}$ is continuous. Hence \hat{C} is w^* -compact in X^{**} , so $x \mapsto \hat{x}: C \to \hat{C}$ is a homeomorphism. In \hat{C} , we have

$$\overline{\operatorname{co}} \, \widehat{w} \, \operatorname{ext} C = \overline{\operatorname{co}}^{w^*} \, \operatorname{ext} \, \widehat{C} = \widehat{C}$$

so that $C = \overline{co}^w \operatorname{ext} C = \overline{co} \operatorname{ext} C$ by the closed convex hull theorem.

(ii) Since $w \subseteq \tau_{\|\cdot\|}$, any norm-compact is w-compact.

Remark. Let *X* be a normed space. Then ext $B(X) \subseteq S(X)$.

8.15 Proposition. Let $1 . Then <math>\operatorname{ext} B(\ell_p) = S(\ell_p)$.

PROOF Let $x \in S(\ell_p)$, so x = (1 - t)y + tz. Then

$$1 = ||x||_p \le (1 - t) ||y||_p + t ||z||_p \le 1$$

so that $||y||_p = ||z||_p = 1$ and $||x||_p = (1-t)||y||_p + t||z||_p$. Thus by the equality case for Minkowski, there is $s \ge 0$ so s(1-t)y = tz. Taking norms, we have y = z.

8.16 Proposition. We have $\operatorname{ext} B(c_0) = \emptyset$.

PROOF Let $x = (x_1, x_2,...) \in B(C_0)$. Since $\lim x_n = 0$, get n_0 so $|x_{n_0}| \le 1/2$. If $x_{n_0} \ne 0$, let $y = (x_1,...,x_{n_0-1},2x_{n_0},x_{n_0+1},...)$ and $z = (x_1,...,x_{n_0-1},0,x_{n_0+1},...)$, and similarly for $x_{n_0} = 0$. Thus we have in each case that $y,z \in B(c_0)$ and x = y/2 + z/2.

8.17 Corollary. There exists no normed space X for which $c_0 \cong X^*$.

PROOF If there were such X, then $B(c_0)$ would be w^* -compact, and hence Krein-Milman would imply $\operatorname{ext} B(c_0) \neq \emptyset$.

Definition. Let (X, τ) be a compact Hausdorff space, and let

$$P(X) = \{ \mu \in B(C^{\mathbb{R}}(X, \tau)^*) : \mu(1) = 1 \}$$

8.18 Theorem. $\operatorname{ext} P(X) = \{\hat{x} : x \in X\}$, where $\hat{x}(f) = f(x)$. Furthermore, $\overline{\operatorname{co}}^{w^*} \operatorname{ext} P(X) = P(X)$.

PROOF Write $C = C^{\mathbb{R}}(X, \tau)$. Note that $P(X) = B(C^*) \cap \hat{\mathbf{1}}^{-1}(\{1\})$ is w^* -compact and convex. Hence by Krein-Milman, we have that $\overline{\operatorname{co}}^{w^*} \operatorname{ext} P(X) = P(X)$. It remains to describe $\operatorname{ext} P(X)$.

(I) Some inequalities. Fix $\mu \in P(X)$. If $0 \le f \le 1$ in C, then $0 \le 1 - f \le 1$ so $||f||_{\infty}$, $||\mathbf{1} - f||_{\infty} \le 1$. Thus $|\mu(f)| \le 1$ and $|\mathbf{1} - \mu(f)| = |\mu(\mathbf{1} - f)| \le 1$. Thus $0 \le \mu(f) \le 1$. Then if $g \ne 0$ and $g \ge 0$ in C, then we have $\mu(g/||g||_{\infty}) \ge 0$, so $\mu(g) > 0$; if $g \le h$ in C, then $h - g \ge 0$ and $\mu(h) \ge \mu(g)$.

If $g \in C$, $g^+ = \max\{g, 0\}$, $g^- = \max\{-g, 0\} \in C$, and $g = g^+ - g^-$ while $|g| = g^+ + g^-$. Hence if $0 \le f \le 1$ in C and let $\mu_f(g) = \mu(fg)$ for $g \in C$, we have

$$|\mu_f(g)| = |\mu_f(g^+ - g^-)| = |\mu(fg^+) + \mu(fg^-)| \le \mu(fg^+) + \mu(fg^-) = \mu(f(g))$$

$$\le \mu(f||g||_{\infty}) = \mu(f)||g||_{\infty}$$
(8.1)

and, with f = 1, we have

$$|\mu(g)| \le \mu(|g|) \tag{8.2}$$

(II) Let $\delta \in \operatorname{ext} P(X)$. We first show for h, g in C that $\delta(hg) = \delta(h)\delta(g)$. To see this, since $\delta \neq 0$, we may find $0 \leq f \leq 1$ such that $0 < \delta(f) < 1$. Now let $\mu = \frac{1}{\delta(f)}\delta_f$ so, for $g \in C$, (8.1) provides

$$|\mu(g)| = \frac{1}{\delta(f)} |\delta_f(g)| \le \frac{1}{\delta(f)} \delta(f) \|y\|_{\infty} = \|y\|_{\infty}$$

so that $\mu \in B(C^*)$. We also know that $\mu(\mathbf{1}) = 1$. Hence $\mu \in P(X)$. Likewise, $\nu = \frac{1}{1 - \delta(f)} \delta_{1-f} \in P(X)$. We have that

$$\delta(f)\mu + (1 - \delta(f))\nu = \delta$$

so by assumption on δ , $\mu = \delta$. Thus $\frac{1}{\delta(f)}\delta(fg) = \mu(g) = \delta(g)$, so that $\delta(fg) = \delta(f)\delta(g)$. Note that $C = \text{span}\{f \in C : 0 \le f \le 1\}$, so we get multiplicativity of δ .

Suppose now for each $x \in X$, there exists some $f_x \in \ker \delta$ so that $f_x(x) \neq 0$. Let $U_x = f_x^{-1}(\mathbb{R}\setminus\{0\})$, so $X = \bigcup_{x \in X} \{x\} = \bigcup_{x \in X} U_x$ so there are x_1, \dots, x_n in X so $X = \bigcup_{j=1}^n U_{x_j}$. Then $f = \sum_{j=1}^n f_{x_j}^2 > 0$ on X (by definition of each U_{x_j}), so $1/f \in C$. Then

$$1 = \delta(\mathbf{1}) = \delta\left(\frac{1}{f}\right)\delta(f) = \delta\left(\frac{1}{f}\right)\sum_{i=1}^{n}\delta(f_{x_i})^2 = 0$$

since each $f_{x_i} \in \ker \delta$, which is absurd. Hence there is $x \in X$ so f(x) = 0 whenever $f \in \ker \delta$, so $\ker \delta \supseteq \ker \hat{x}$, so $\delta \in \mathbb{R} \hat{x}$ and since $\delta(\mathbf{1}) = 1 = \hat{x}(\mathbf{1})$, so $\delta = \hat{x}$.

(III) If $\hat{x} = (1 - t)\mu + tv$ and $t \in (0, 1)$, $\mu, \nu \in P(X)$, then by (8.2),

$$t|v(f)| \le tv(|f|) \le \hat{x}(|f|) = |f(x)|$$

so ker $\nu \supseteq \ker \hat{x}$ and as above, $\nu = \hat{x}$. Then $\mu = \hat{x}$.

Remark. For $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, it is similar to show that $\text{ext} B(C^{\mathbb{F}}(X, \tau)^*) = \{z\hat{x} : z \in \mathbb{F}, |z| = 1, x \in X^*\}.$

Let $PA(\mathbb{N}) = \{ \mu \in FA(\mathbb{N}) : \|\mu\|_{var} \le 1, \mu(\mathbb{N}) = 1 \}$ so, as above, $PA(\mathbb{N})$ is a $w^* = \sigma(FA(\mathbb{N}), \ell_{\infty})$ – compact set.

8.19 Proposition. ext $PA(\mathbb{N}) = \{\delta_{\mathcal{U}} : \mathcal{U} \text{ is an ultrafilter on } \mathbb{N}\}$

PROOF If $\delta \in \text{ext}\,PA(\mathbb{N})$, let $f_{\delta} \in \ell_{\infty}^*$ be as in A1. As above, we compute that $f_{\delta}(\chi_E\chi_F) = f_{\delta}(\chi_E)f_{\delta}(\chi_F)$, and we have $\chi_E\chi_F = \chi_{E\cap F}$ and hence $\delta(E\cap F) = \delta(E)\delta(F)$. Hence

$$\mathcal{U} = \{ E \subseteq \mathbb{N} : \delta(E) \neq 0 \} = \{ E \subseteq \mathbb{N} : \delta(E) = 1 \}$$

is an ultrafilter. The converse is easy.

9 EUCLIDEAN AND HILBERT SPACES

Definition. Let X be a vector space over \mathbb{F} (\mathbb{R} or \mathbb{C}). A form $[\cdot,\cdot]:X\to\mathbb{F}$ is called **Hermitian** if for x,x',y in $X,\alpha\in\mathbb{F}$, we have

- (i) $[x + \alpha x', y] = [x, y] + \alpha [x', y]$
- (ii) $\overline{[y,x]} = [x,y]$

and furthermore positive if

3. $[x, x] \ge 0$ for all $x \in X$

and non-degenerate if

- 4. [x, y] = 0 for all $y \in X$ implies x = 0.
- **9.1 Proposition.** Let $[\cdot, \cdot]$ be a positive Hermitian form. Let $p(x) = [x, x]^{1/2}$, so $p : X \to [0, \infty)$. Then for $x, y \in X$ and $\alpha \in \mathbb{F}$, we have
 - (i) $p(\alpha x) = |\alpha| p(x)$
 - (ii) $[x,y] | \leq p(x)p(y)$
- (iii) $p(x+y) \le p(x) + p(y)$
- (iv) $[\cdot,\cdot]$ is non-degenerate if and only if [x,x] > 0 for $x \in X \setminus \{0\}$.

Furthermore, in this case, we have

- Equality in (ii) if and only if x, y are linearly dependent
- [x,y] = p(x)p(y) if and only if there is $s \ge 0$ such that x = sy or y = sx if and only if equality holds in (iii).

PROOF (i) $p(\alpha x) = (\alpha \overline{\alpha} [x, x])^{1,2} = |\alpha| p(x)$

(ii) If $\alpha \in F$, then

$$0 \le [x - \alpha y, x - \alpha y] = [x, x] - \overline{\alpha} [x, y] - \overline{\overline{\alpha} [x, y]} + |\alpha|^2 [y, y]$$
$$= p(x)^2 - 2 \operatorname{Re} \overline{\alpha} [x, y] + |\alpha| p(y)^2$$

Set $\alpha = \operatorname{sgn}[x, y]$ so that $\overline{\alpha}[x, y] = |[x, y]|$ so

$$|[x,y]| \le \frac{1}{2} (p(x)^2 + p(y)^2)$$

Then if t > 0, by (i),

$$|[x,y]| = |[tx, \frac{1}{t}y]| \le \frac{1}{2}(t^2p(x)^2 + \frac{1}{t^2}p(y)^2)$$

If p(x) = 0, we let $t \to \infty$ so that [x, y] = 0; if p(y) = 0, we let $t \to 0^+$ and again that [x, y] = 0. If $[x, y] \neq 0$, set t = p(y)/p(x) and we are done.

(iii)

$$p(x+y)^{2} = [x+y,x+y] = p(x)^{2} + 2\operatorname{Re}[x,y] + p(y)^{2}$$

$$\leq p(x)^{2} + 2|[x,y]| + p(y)^{2}$$

$$\leq p(x)^{2} + 2p(x)p(y) + p(y)^{2} = (p(x) + p(y))^{2}$$

(iv) We see, by (iii), if $p(x)^2 = [x, x] = 0$, then [x, y] = 0 for all y. Hence $[\cdot, \cdot]$ is non-degenerate if and only if [x, x] > 0 for $x \in X \setminus \{0\}$. If x, y are linearly dependant, then equality holds in (ii) by direct computation. If x, y are not linearly dependent, then the choice of $\alpha = \operatorname{sgn}[x, y]$ in (ii) gives strict inequality. The condition [x, y] = p(x)p(y) requires non-negativity of [x, y], showing one is a $R_{\geq 0}$ multiple of the other. This is equivalent to having equality in (iii).

Definition. A non-degenerate positive Hermitian form on a vector space \mathcal{E} is called an **inner product**. The pair $(\mathcal{E}, (\cdot, \cdot))$ is called a Euclidean space. If, further, \mathcal{E} is complete with respect to the induced norm $||x|| = (x, x)^{1/2}$, then we call $(\mathcal{E}, (\cdot, \cdot))$ a **Hilbert space**.

Example. (i) (Euclidean Space) $(C[0,1], \langle \cdot, \cdot \rangle)$ given by $(f,g) = \int_0^1 f\overline{g}$

- (ii) (Euclidean Space) Recall $\ell = \{x \in \mathbb{F}^{\mathbb{N}} : x_n = 0 \text{ for all but finitely many } n\}$, and $(\ell, \langle \cdot, \cdot \rangle)$ with $\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \overline{y}_j$
- (iii) (Hilbert Space) $(L_2[0,1],(\cdot,\cdot)), (f,g) = \int_{[0,1]} f\overline{g}.$
- (iv) (Hilbert Space) $(\ell_2, (\cdot, \cdot)), (x, y) = \sum_{j=1}^{\infty} x_j \overline{y}_j$ (convergence by Hölder's inequality)
- (v) (Non-separable Hilbert Space) Let Γ be an uncountable set. If $a=(a_{\gamma})_{\gamma\in\Gamma}\in[0,\infty)^{\Gamma}$, we let $\mathcal{F}=\{F\subset\Gamma:|F|<\infty\}$. We define $\sum_{\gamma\in\Gamma}a_{\gamma}=\sup_{F\in\mathcal{F}}\sum_{\gamma\in F}a_{\gamma}=\lim_{F\in\mathcal{F}}\sum_{\gamma\in F}a_{\gamma}$ where \mathcal{F} is pre-ordered by inclusion. Suppose that $\sum_{\gamma\in\Gamma}a_{\gamma}<\infty$. Let $\Gamma_n=\{\gamma\in\Gamma:a_{\gamma}\geq 1/n\}$ and we have

$$\infty > \sum_{\gamma \in \Gamma} a_{\gamma} \ge \sup_{F \in \mathcal{F}} \sum_{\gamma \in F \cap \Gamma_n} a_{\gamma} \ge \sum_{F \in \mathcal{F}} \frac{F \cap \Gamma_n}{n}$$

so that $|\Gamma_n| < \infty$. Thus $\Gamma_a = {\gamma \in \Gamma : a_{\gamma} > 0} = \bigcup_{n=1}^{\infty} \Gamma_n$ is countable.

Now, define $\ell_2(\Gamma) = \{x = (x_\gamma) \in \mathbb{F}^{\Gamma} : \sum_{\gamma \in \Gamma} |x_\gamma|^2 < \infty \}$. If $x, y \in \ell_2(\Gamma)$, then we may let $\Gamma_{|x|^2} \cup \Gamma_{|y|^2} \subseteq \{\gamma_k\}_{k=1}^{\infty}$ so Hölder's inequality for ℓ_2 says that

$$\sum_{k=1}^\infty |x_{\gamma_k}\overline{y}_{\gamma_k}| \leq \left(\sum_{k=1}^\infty |x_{\gamma_k}|^2\right)^{1/2} \left(\sum_{k=1}^\infty |y_{\gamma_k}|^2\right)^{1/2} < \infty.$$

Thus, $\sum_{k=1}^{\infty} x_{\gamma_k} \overline{y_{\gamma_k}}$ is absolutely converging. Write $(x,y) = \sum_{\gamma \in \Gamma} x_{\gamma} \overline{y_{\gamma}} = \sum_{k=1}^{\infty} x_{\gamma_k} \overline{y_{\gamma_k}}$. Now if $(x^{(n)})_{n=1}^{\infty} \subset \ell_2(\Gamma)$ is $\|\cdot\|_2$ —Cauchy, then $\Gamma' = \bigcup_{n=1}^{\infty} \Gamma_{|x^{(n)}|^2}$ is countable. Then since $\ell_2(\Gamma') \cong \ell_2$ (up to counting Γ'), so the Cauchy sequence has a limit. Thus $\ell_2(\Gamma)$ is a Hilbert space. It is immediate that $(\ell_2(\Gamma), \|\cdot\|_2)$ is non-separable.

(vi) Let $w : \mathbb{N} \to (0, \infty)$. Let $\ell_2^w = \{x \in \mathbb{F}^{\mathbb{N}} : \sum_{k=1}^{\infty} |x_k|^2 w(k) < \infty \}$. Notice that if $x, y \in \ell_2^w$, then $(x_k w(k)^{1/2})_{k=1}^{\infty}$, $(y_k w(k)^{1/2})_{k=1}^{\infty} \in \ell_2$, so it follows that

$$(x,y)_w = \sum_{k=1}^{\infty} x_k \overline{y_k} w(k)$$

defines an inner product, and $W: \ell_2^2 \to \ell_2$ by $W(x_k)_{k=1}^\infty = (x_k w(k)^{1/2})_{k=1}^\infty$ is a surjective linear isometry, so ℓ_2^w is a hilbert space.

9.1 Various Identities

Let $[\cdot,\cdot]$ be a Hermitian form on X. Then we have the *polarization identitiy*: then over \mathbb{R} , 4[x,y] = [x+y,x+y] - [x-y,x-y], and over \mathbb{C} , $4[x,y] = \sum_{k=0}^{3} i^k [x+i^k y,x+i^k y]$.

Now suppose $(\mathcal{E}, (\cdot, \cdot))$ is a Euclidean space. We say that $x, y \in \mathcal{E}$ are **orthogonal** if (x, y) = 0 and write $x \perp y$. We call a subset $E \subset \mathcal{E}$ **orthogonal** if $x \neq y \in E$ implies $x \perp y$. We write $x \perp E$ if $x \perp y$ for each $y \in E$. We have

- Pythagoreans' identity: if $\{x_1, \dots, x_n\} \subset \mathcal{E}$ orthogonal, then $\left\|\sum_{j=1}^n x_j\right\|^2 = \sum_{j=1}^n \left\|x_j\right\|^2$.
- Parallelogram law: $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$.

Note that if $\mathbb{F} = \mathbb{C}$, $(x,y) = \frac{1}{4} \sum_{k=0}^{3} i^k ||x + i^k y||^2$ defines an inner product, for any norm satisfying the parallelogram law.

9.2 Proposition. If $y \in \mathcal{E}$ with $(\mathcal{E}, (\cdot, \cdot))$ a Euclidean space, then $f_y : \mathcal{E} \to \mathbb{F}$ by $f_y(x) = (x, y)$ is linear with $||f_y|| = ||y||$. Furthermore, $|f_y(x)| = ||y||$ for $y \neq 0$, $x \in B(\mathcal{E})$ if and only if $x = \frac{\zeta}{||y||} y$ where $|\zeta| = 1$.

Proof Linearity is from an assumption on (\cdot,\cdot) . Furthermore, Cauchy-Schwarz tells us that

$$|f_y(x)| = |(x,y)| \le ||x|| ||y|| \Rightarrow ||f_y|| \le ||y||$$

so the equality case for Cauchy-Schwarz provides the last statement of the proposition, and supplies $||f_v|| \ge ||y||$.

Definition. In a Euclidean space $(\mathcal{E}, (\cdot, \cdot))$, a set $E \subset \mathcal{E}$ is called **orthonormal** provided that for $e, e' \in E$,

$$(e,e') = \begin{cases} 1 & : e = e' \\ 0 & : e \neq e' \end{cases}$$

9.3 Lemma. (Closest Approximation to Finite) Let $\{e_1, \ldots, e_n\}$ be orthonormal in a Euclidean space $(\mathcal{E}, (\cdot, \cdot))$ and $\mathcal{M} = \text{span}\{e_1, \ldots, e_n\}$. Then for $x \in \mathcal{E}$ we have that

(i)
$$P_{\mathcal{M}}x = \sum_{j=1}^{n} (x, e_j)e_j$$
 satisfies that $x - P_{\mathcal{M}}x \perp \mathcal{M}$ and hence $||x||^2 = ||P_{\mathcal{M}}||^2 + ||x - P_{\mathcal{M}}x||^2$

(ii)
$$d(x, \mathcal{M}) = \left\| x - \sum_{j=1}^{n} (x, e_j) e_j \right\|^{1/2}$$

PROOF (i) If $1 \le k \le n$, we have

$$(x - P_{\mathcal{M}}x, e_k) = (x, e_k) - \sum_{j=1}^{n} (e, e_j)(e_j, e_k) = (x, e_k) - (x, e_k) = 0$$

and it follows that $x - P_{\mathcal{M}}x \perp \mathcal{M}$. Pythagoras' law provides the second formula.

(ii) Endow \mathbb{F}^n with the usual inner product $\|\cdot\|_2$. By Cauchy-Schwarz, for $x \in \mathcal{E}$ and $\alpha \in \mathbb{F}^n$,

$$\left| \left(((x, e_j))_{j=1}^n, \alpha \right) \right| = \left| \sum_{j=1}^n (x, e_j) \overline{\alpha}_j \right| \le \left(\sum_{j=1}^n |(x, e_j)|^2 \right)^{1/2} = ||P_{\mathcal{M}}x|| \, ||\alpha||_2$$

so that

$$\left\| x - \sum_{j=1}^{n} \alpha_{j} e_{j} \right\|^{2} = \|x\|^{2} - 2 \operatorname{Re} \sum_{i=1}^{n} (x, e_{j}) \overline{\alpha}_{j} + \sum_{j=1}^{n} |\alpha_{j}|^{2}$$

$$\geq \|x\|^{2} - 2 \left| \left(\left((x, e_{j}) \right)_{j=1}^{n}, \alpha \right) \right| + \|\alpha\|_{2}^{2}$$

$$\geq \|x\|^{2} - 2 \|P_{\mathcal{M}}x\| \|\alpha\|_{2} + \|\alpha\|_{2}^{2}$$

$$= \|x - P_{\mathcal{M}}x\|^{2} + (\|P_{\mathcal{M}}x\| - \|\alpha\|_{2})$$

We get equality above if $x \perp \mathcal{M}$ or otherwise there is some $s \geq 0$ so $\alpha_j = s(x, e_j)$ for j = 1, ..., n. Hence, in this case,

$$\left\| x - \sum_{j=1}^{n} s(x, e_j) e_j \right\|^2 = \left\| x - P_{\mathcal{M}} x \right\|^2 + \left\| P_{\mathcal{M}} x \right\|^2 (1 - s)^2$$

which is minimized when s = 1.

Remark. (i) The proof above shows that $P_{\mathcal{M}}x$ is the unique elemet of \mathcal{M} satisfying $\operatorname{dist}(x,\mathcal{M}) = \|x - P_{\mathcal{M}}x\|$.

(ii) It may be shown that $P_{\mathcal{M}}: \mathcal{E} \to \mathcal{E}$ is linear with im $P_{\mathcal{M}} = \mathcal{M}$, $P_{\mathcal{M}}^2 = P_{\mathcal{M}}$, and $||P_{\mathcal{M}}|| = 1$ (in other words, this map is actually a projection operator)

9.4 Theorem. (Orthonormal Basis)

let $(\mathcal{E}, (\cdot, \cdot))$ be a Euclidean space, $E \subset \mathcal{E}$ an orthonormal set. Then the following are equivalent:

- (i) $\overline{\text{span}}E = \mathcal{E}$
- (ii) for $x \in \mathcal{E} = x = \sum_{e \in E} (x, e) e = \lim_{F \in \mathcal{F}} \sum_{e \in F} (x, e) e$, where $\mathcal{F} = \{F \subseteq E : |f| < \infty\}$, directed by inclusion (Bessel's identity)
- (iii) For $x, y \in \mathcal{E}$, $(x, y) = \sum_{e \in E} (x, e)(e, y)$ (Parseval's identity).

PROOF $(i \Rightarrow ii)$ For $F \in \mathcal{F}$, let $\mathcal{E}_F = \operatorname{span} F$, so that $\mathcal{E}_F \subseteq \mathcal{E}_{F'}$ if $F \subseteq F'$ in \mathcal{F} and $\operatorname{span} E = \bigcup_{F \in \mathcal{F}} \mathcal{E}_F$. Hence for $x \in \mathcal{E}$, we have

$$0 = \operatorname{dist}(x, \operatorname{span} E) = \operatorname{dist}\left(x, \bigcup_{F \in \mathcal{F}} \mathcal{E}_F\right) = \inf_{F \in \mathcal{F}} \operatorname{dist}(x, \mathcal{E}_F) = \lim_{F \in \mathcal{F}} \operatorname{dist}(x, \mathcal{E}_F)$$

Thus by the f.d. approximation lemma, we have

$$0 = \lim_{F \in \mathcal{F}} \operatorname{dist}(x, \mathcal{E}_F) = \lim_{F \in \mathcal{F}} \left\| x - \sum_{e \in F} (x, e) e \right\|$$

 $(ii \Leftrightarrow iii)$ We have

$$0 = \lim_{F \in \mathcal{F}} \left\| x - \sum_{e \in F} (x, e) e \right\|^{2}$$

$$= \lim_{F \in \mathcal{F}} \left(\|x\|^{2} - 2 \operatorname{Re} \sum_{e \in F} \overline{(x, e)} (x, e) + \sum_{e \in F} \|(x, e)\|^{2} \right)$$

$$= \lim_{F \in \mathcal{F}} \left(\|x\|^{2} - \sum_{e \in F} |(x, e)|^{2} \right)$$

$$= \|x\|^{2} - \sum_{e \in F} |(x, e)|^{2}$$

 $(ii \Rightarrow iv)$ Recall that $f_v = (\cdot, y) \in \mathcal{E}^*$ so that

$$(x,y) = f_y \left(\lim_{F \in \mathcal{F}} \sum_{e \in F} (x,e) e \right) = \lim_{F \in \mathcal{F}} \sum_{e \in F} (x,e) f_y(e) = \sum_{e \in E} (x,e) (e,y)$$

 $(iv \Rightarrow ii)$ Take x = y.

$$(iii \Rightarrow i)$$
 Obvious; $x = \lim_{F \in \mathcal{F}} \sum_{e \in F} (x, e) e \in \overline{\operatorname{span} E}$, i.e. $\mathcal{E} \subseteq \overline{\operatorname{span} E} \subseteq \mathcal{E}$.

Definition. Any set $E \subset \mathcal{E}$ satisfying the above conditions is called a **orthonormal basis** for \mathcal{E} .

9.5 Theorem. (Gram-Schmidt) Let $(x_1, x_2,...)$ be a linearly independent sequence in a euclidean space $(\mathcal{E}, (\cdot, \cdot))$. There exists an orthogonal sequence $(z_1, z_2,...)$ which satisfies $\operatorname{span}\{z_1,...,z_n\} = \operatorname{span}\{x_1,...,x_n\}$ for n = 1, 2,... so that $\operatorname{span}\{z_1, z_2,...\} = \operatorname{span}\{x_1, x_2,...\}$.

Proof Let $\mathcal{E}_n = \operatorname{span}\{x_1, \dots, x_n\}$. We set

where $P_{\mathcal{E}_n}x = \sum_{j=1}^n (x,e_j)e_j$. Inductively, $z_n \in \mathcal{E}_n$ and $z_n \perp \mathcal{E}_k$ for $k=1,\ldots,n-1$. Hence each set $\{z_1,\ldots,z_n\}$ is orthonormal and span $\{z_1,\ldots,z_n\}\subseteq \operatorname{span}\{x_1,\ldots,x_n\}$ is of full dimension and hence equal.

9.6 Corollary. Any separable Euclidean space admits an orthonormal basis.

PROOF Let $\{x_n\}_{n=1}^{\infty}$ be dense in \mathcal{E} . Let $n_1 = \min\{n : x_n \neq 0\}$, and $n_{k+1} = \min\{n : x_n \neq 0\}$ span $\{x_{n_1}, \ldots, x_{n_k}\}$. Then $\{x_{n_1}, x_{n_2}, \ldots\}$ and normalize to get an orthonormal set $E = \{e_1, e_2, \ldots\}$ which satisfies $\overline{\text{span}}E = \overline{\text{span}}\{x_n\}_{n=1}^{\infty} = \mathcal{E}$.

9.7 Theorem. (Riesz Fischer) Let $(\mathcal{E}, (\cdot, \cdot))$ be a Euclidean space. Then \mathcal{E} is a Hilbert space if and only if for any orthonormal set E and an $\alpha = (\alpha_e)_{e \in E} \in \ell_2(E)$, we have that $\sum_{e \in E} \alpha_e e \in \mathcal{E}$.

PROOF (\Longrightarrow) If $\alpha \in \ell_2(E)$ then $E_\alpha = \{e \in E : \alpha_e \neq 0\}$ is countable, and write $E_\alpha = (e_1, e_2,...)$. If m < n, we have

$$\left\| \sum_{k=1}^{n} \alpha_{e_k} e_k - \sum_{k=1}^{m} \alpha_{e_k} e_k \right\|^2 = \sum_{k=m+1}^{n} |\alpha_{e_k}|^2 \le \sum_{k=n+1}^{\infty} |\alpha_{e_k}|^2 \to 0$$

so $x_{\alpha} = \sum_{k=1}^{\infty} \alpha_{e_k} e_k = \lim_{n \to \infty} \sum_{k=1}^{n} \alpha_{e_k} e_k$ converges. If $F \in \mathcal{F}$, $F \supseteq \{e_1, \dots, e_n\}$, then

$$\left\| x_{\alpha} - \sum_{e \in F} \alpha_{e} e \right\|^{2} = \sum_{e = \{e_{1}, e_{2}, \dots\} \setminus F} |\alpha_{e}|^{2} \le \sum_{k=n+1}^{\infty} |\alpha_{e_{k}}|^{2} \to 0$$

so $x_{\alpha} = \sum_{e \in E} \alpha_e e = \lim_{F \in \mathcal{F}} \sum_{e \in F} (x, e) e$.

(\iff) Let $(x^{(n)})_{n=1}^{\infty}$ be Cauchy in \mathcal{E} . Let $\mathcal{M}=\overline{\operatorname{span}\{x^{(n)}\}_{n=1}^{\infty}}\subset \mathcal{E}$ so \mathcal{M} is separable and admits a countable orthonormal basis $E=(e_1,e_2,\ldots)$. Then we appeal to orthonormal basis to see that for any $x\in \mathcal{M}$, $\sum_{k=1}^{\infty}|(x,e_k)|^2=\|x\|^2<\infty$ and $x=\sum_{k=1}^{\infty}(x,e_k)e_k$. Our present assumption show that $U:\ell_2(E)\to \mathcal{M}$ given by $U_{\alpha}=\sum_{k=1}^{\infty}\alpha_ke_k$ always

Our present assumption show that $U: \ell_2(E) \to \mathcal{M}$ given by $U_\alpha = \sum_{k=1}^\infty \alpha_k e_k$ always converges in $\mathcal{M} \subseteq \mathcal{E}$. Then orthonormal basis theorem gives $\|U_\alpha\| = \|\alpha\|_2$ so U is a surjective isometry. We let $\alpha^{(n)} = ((x^{(n)}, e_k))_{k=1}^\infty \in \ell_2(E)$, then $\|\alpha^{(n)} - \alpha^{(m)}\|_2 = \|U_\alpha^{(n)} - U_\alpha^{(m)}\| = \|x^{(n)} - x^{(m)}\|$ so $(\alpha^{(n)})_{n=1}^\infty$ is Cauchy and in $\ell_2(E)$ and hence admits a limit α . Furthermore,

$$\left\| \sum_{k=1}^{\infty} \alpha_k e_k - x^{(n)} \right\| = \left\| U_{\alpha} - U_{\alpha}^{(n)} \right\| = \left\| \alpha - \alpha^{(n)} \right\| \to 0$$

as required.

Definition. If $\emptyset \neq S \subset \mathcal{E}$, $(\mathcal{E}, (\cdot, \cdot))$ a Euclidean space, we define its **perpindicular** by $S^{\perp} = \{y \in \mathcal{E} : ((x, y)) = 0 \text{ for any } x \in S\}$.

Remark. (i) $S \subseteq T$ implies $T^{\perp} \subseteq S^{\perp}$

- (ii) $S^{\perp} = \bigcap_{x \in S} \ker f_x$ and is thus closed.
- (iii) $\overline{S}^{\perp} = S^{\perp}$, since $\overline{S}^{\perp} \subseteq \overline{S}^{\perp}$, and if $y \in S^{\perp}$ and $x \in \overline{S}$, then $x = \lim x_n$ with $x_n \in S$ so $(x,y) = f_y(x) = f_y \lim x_n = \lim f_y(x_n) = \lim (x_n,y) = 0$.
- (iv) $(\overline{\operatorname{span}}S)^{\perp} = S^{\perp}$. Notice that $(\operatorname{span}S)^{\perp} = S^{\perp}$ (easy test) and use (iii)
- (v) $\overline{\operatorname{span}}S \cap S^{\perp} = \{0\}.$
 - **9.8 Theorem.** (Existence of Orthonormal Basis) Let $(H, (\cdot, \cdot))$ be a Hilbert space.
 - (i) Given an orthonormal set $E \subset H$, $P_E : H \to H$, $P_E x = \sum_{e \in E} (x, e) e$ satisfies

$$\operatorname{im} P_E \subseteq \overline{\operatorname{span} E} \text{ for } x \in H, x - P_E x \in E^{\perp}$$

(ii) H admits an orthonormal basis, i.e. an orthonormal set M such that span M = H.

PROOF (i) Let $\mathcal{F} = \{F \subseteq E : |F| < \infty\}$ be directed by inclusion, and for $F \in \mathcal{F}$, $\mathcal{E}_F = \operatorname{span} F$. Then as in the proof of OMBT, we have for $x \in H$

$$0 \le \operatorname{dist}(x, \operatorname{span} E)^2 = \lim_{F \in \mathcal{F}} \operatorname{dist}(x, \mathcal{E}_F)^2 = ||x||^2 - \sum_{e \in E} |(x, e)|^2$$

so $\sum_{e \in E} |(x,e)|^2 \le ||x||^2 < \infty$. Thus appealing to Riesz-Fischer, $P_E x = \sum_{e \in E} (x,e)e$ converges in H. Since $P_E x = \lim_{F \in \mathcal{F}} \sum_{e \in F} (x,e),e$, we see that $P_E x \in \overline{\text{span}}E$, so im $P_E \subseteq \overline{\text{span}}E$. Moreover, if $e' \in E$, $f_{e'} = (\cdot,e') \in H^*$ so

$$(x - P_E x, e') = (x, e') - f_{e'} \left(\sum_{e \in E} (x, e) e \right) = (x, e') - \sum_{e \in E} (x, e) f_{e'}(e) = -$$

so $x - P_E x \in E^{\perp}$.

(ii) Let $\mathcal{O} = \{E \subseteq H : E \text{ is orthonormal}\}$, which is partially ordered by inclusion. Note that $\emptyset \in \mathcal{O}$ vacuously. If $\mathcal{C} \subseteq \mathcal{O}$ is a chain, then $\bigcup_{E \in \mathcal{C}} \in \mathcal{O}$ is an upper bound for \mathcal{C} . By Zorn' get a maximal element M.

Suppose $\overline{\operatorname{span}}M \subsetneq H$, and get $x \in H \setminus \overline{\operatorname{span}}M$ and $y = x - P_M x \in (\overline{\operatorname{span}}M)^{\perp} \setminus \{0\}$. But then $M \subsetneq M \cup \{\frac{1}{\|y\|}y\}$, violating maximality.

9.9 Corollary. If H is a Hilber space with orthonormal basis E, then the map

$$U: H \rightarrow \ell_2(E), Ux = ((x, e))_{e \in E}$$

is a surjective isometry which respects inner products.

PROOF We know $||x||^2 = \sum_{e \in E} |(x, e)|^2 = ||Ux||_2$ from ONBT. It is evident that U is linear and im U is dense in $\ell_2(E)$ so that U is surjective. Finally, if $x, y \in H$, then

$$(x,y)_H = \sum_{e \in E} (x,e) (e,y) = \sum_{e \in E} (x,e) \overline{(y,e)} = (Ux,Uy)_{\ell_2(E)}$$

as required.

Remark. If each of E, E' is an orthonormal basis for a Euclidean space $(\mathcal{E}, (\cdot, \cdot))$, then |E| = |E'|. We let k be any countable dense subfield of \mathbb{F} . Then $D = \operatorname{span}_k$, so $|D| = \aleph_0 |E| = |E|$ when |E| is infinite. Since for e', e'' in E', $||e' - e''|| = \sqrt{2}$, we have that any ball $e' + \frac{1}{\sqrt{2}}D(\mathcal{E})$ contains at least one element of D, and $d_{e'} \neq d_{e''}$ if $e' \neq e''$ in E'. This shows that $|E| \geq |E'|$. Likewise $|E'| \leq |E|$.

- **9.10 Corollary. (Orthogonal complementation)** Let $(\mathcal{E}, ||\cdot, \cdot||)$ be a Euclidean space and $\mathcal{M} \subseteq \mathcal{E}$ a subspace which is complete with respect to the norm induced from (\cdot, \cdot) , i.e. $(\mathcal{M}, (\cdot, \cdot))$ is a Hilbert space. Then there is a unique operator $P_{\mathcal{M}} = P : \mathcal{E} \to \mathcal{E}$ such that $\operatorname{im} P = \mathcal{M}$ and $\operatorname{im}(I P) = \mathcal{M}^{\perp}$. Moreover,
 - P is linear
 - $||P|| \le 1$, ||P|| = 1 if $\mathcal{M} \ne \{0\}$
 - $P^2 = P$

• for $x, y \in \mathcal{E}$, (Px, y) = (Px, Py) = (x, Py). Such an operator is called the **orthogonal projection**.

PROOF The theorem above prvides an orthonormal basis E for \mathcal{M} . Then P_E , as defined above, satisfies im $P = \mathcal{M}$ and im $(I - P) = \mathcal{M}^{\perp}$. Moreover, if P satisfies those conditions, then for $x \in \mathcal{E}$,

$$Px + x - Px = x = P_E x + x - P_e X$$

so that

$$Px - P_e X = [x - P_E x] - [x - Px] \in \mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$$

so $Px = P_e x$. Then if $x, y \in \mathcal{E}$ and $\alpha \in \mathbb{F}$,

$$P(x + \alpha y) + x + \alpha y - P(x + \alpha y) = x + \alpha y = Px + x - Px + \alpha [Py + y - Py]$$

so

$$P(x + \alpha y) - [Px + \alpha py] = x - Px + \alpha [y - Py] - [x + \alpha y - P(x + \alpha y)] \in \mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$$

and we have linearity.

If $x \in \mathcal{E}$, Pythagoras tells us that $||x||^2 = ||Px||^2 + ||x - Px||^2$ so $||Px|| \le ||x||$, i.e. $||P|| \le 1$. If $e' \in E$, $Pe' = P_E e' = \sum_{e \in E} (e', e) e = e'$, so $P|_{\text{span }E} = \text{id}$ and by uniqueness of extension of bounded linear functionals (uniformly continuous), we see that $P|_{\mathcal{M}} = \text{id}_{\mathcal{M}}$. This shows that if $\mathcal{M} \ne \{0\}$, ||P|| = 1 and $P = P^2$. Furthermore, this also shows that im $P = \mathcal{M}$. Finally,

$$(Px,y) = (Px, Py + y - Py) = (Px, Py)$$

and likewise (x, Py) = (Px, Py).

- **9.11 Corollary.** Let H be a Hilbert space.
 - (i) If \mathcal{M} is a closed subspace, then $(\mathcal{M}^{\perp})^{\perp} = \mathcal{M}$.
 - (ii) If $\emptyset \neq S \subset H$, then $(S^{\perp})^{\perp} = \overline{\operatorname{span}} S$.

PROOF (i) We have $\mathcal{M} \subseteq \mathcal{M}^{\perp \perp}$ and \mathcal{M} is complete and thus admis an orthogonal projection $P_{\mathcal{M}}H \to H$ with $\operatorname{im} P_{\mathcal{M}} = \mathcal{M}$ and $\operatorname{im}(I - P_{\mathcal{M}}) = M^{\perp}$. Now if $x \in \mathcal{M}^{\perp \perp}$, $P_{\mathcal{M}}x \in \mathcal{M}$ so that $x - P_{\mathcal{M}}x \in \mathcal{M}^{\perp} + \mathcal{M} = \mathcal{M}^{\perp \perp}$ so that $x - P_{\mathcal{M}}x \in \mathcal{M}^{\perp}$. Thus

$$x - P_{\mathcal{M}} x \in \mathcal{M}^{\perp \perp} \cap \mathcal{M}^{\perp} = \{0\}$$

so that $x \in P_{\mathcal{M}}x \in \mathcal{M}$. Hence $\mathcal{M}^{\perp \perp} \subseteq \mathcal{M}$.

- (ii) We have $(\overline{\operatorname{span}} S)^{\perp} = S^{\perp}$ and apply (i).
 - **9.12 Theorem.** (Riesz-Fréchet) If H is a Hilbert space and $f \in H^*$, then there is a unique $x_0 \in H$ such that $f = f_{x_0}$; i.e. $f(x) = (x, x_0)$ for all $x \in H$.

PROOF If f = 0, let $x_0 = 0$. If $f \neq 0$, $\ker f \subseteq H$ so $(\ker f)^{\perp \perp} = f$, so $(\ker f)^{\perp} \neq \{0\}$. If $x_1, x_2 \in (\ker f)^{\perp}$, then $f(x_2)x_1 - f(x_1)x_2 \in (\ker f)^{\perp} \cap \ker f = \{0\}$, so that $\dim(\ker f)^{\perp} = 1$ and $(\ker f)^{\perp} = \mathbb{F} x_1$. But then $f_{x_1} = (\cdot, x_1)$ has $\ker f_{x_1} = (\mathbb{F} x_1)^{\perp} = (\ker f)^{\perp \perp} = \ker f$, so there is $\alpha \in \mathbb{F}$ so $f = \alpha f_{x_1} = f_{\overline{\alpha}x_1}$. Set $x_0 = \overline{\alpha}x_1$.

Uniqueness holds since $x \mapsto f_x : H \to H^*$ is an isometry and thus injective.

- *Remark.* (i) Many results above may fail in a non-complete Euclidean space. Consider $(\ell, (\cdot, \cdot))$ where ℓ is the space of finitely supported sequences. Define $f: \ell \to \mathbb{F}$ by $f(x) = \sum_{k=1}^{\infty} \frac{1}{k} x_k$. By Hölder, $|f(x)| \leq \left(\sum_{k=1}^{\infty} \frac{1}{k^2}\right) ||x||_2$ so that $f \in \ell^*$. If there were $x^{(0)} \in \ell$ so that $f = f_{x^{(0)}}$ for some $x^{(0)} \in (\ker f)^{\perp} \setminus \{0\}$, we would then have $x_k^{(0)} = (e_k, x^{(0)}) = \frac{1}{k}$, which is non-zero for infinitely many k, giving a contradiction. In fact, $(\ker f)^{\perp} = \{0\}$ so that $(\ker f)^{\perp \perp} = \ell$.
 - (ii) Let $(\mathcal{E}, (\cdot, \cdot))$ be a Euclidean space. Let $H = \overline{\mathcal{E}}$ be the metrical completion with respect to $||x||_2$. If $x, y \in H$, then $x = \lim x_n = \lim x_n'$ with $x_n, x_n' \in \mathcal{E}$, and $y = \lim y_n = \lim y_n'$ similarly. Then

$$|(x_n, y_n) - (x_n, y_n)| \le |(x_n, y_n) - (x_n, y_m)| + |(x_n, y_m) - (x_n, y_n)|$$

$$\le ||x_n|| ||y_n - y_m|| + ||x_n - x_m|| ||y_m||$$

so that $((x_n, y_n))_{n=1}^{\infty} \subset \mathbb{F}$ is Cauchy, and thus admits a limit. Moreover, $|(x_n, y_n) - (x_n', y_n')| \le ||x_n|| ||y_n - y_n'|| + ||x_n - x_n'|| ||y_n'||$. Thus, $(x, y) = \lim_{n \to \infty} (x_n, y_n) = \lim_{n \to \infty} (x_n', y_n')$ is well-defined on $H \times H$. It is straightforward to verify that this is an inner product, and $||x|| = \lim_{n \to \infty} ||x_n|| = (x, x)^{1/2}$. Thus the completion of a Euclidean space is a Hilber space.

- (iii) As a consequence of (ii), we have $\mathcal{E}^* = \{f_x : x \in H\}$ where $H = \overline{\mathcal{E}}$, as above. Furthermore, $\overline{\mathcal{E}} \cong H^{**}$.
- (iv) If *H* is a Hilbert space, the map $f \mapsto f_x$ from $H \to H^*$ is
 - a conjugate linear map: $f_{x+\alpha y} = f_x + \overline{\alpha} f_y$
 - an isometry: $||f_x|| = ||x||$

10 Adjoint Operators

Definition. Let X, Y be vector spaces over \mathbb{F} , and $T \in \mathcal{L}(X, Y)$. Define the **adjoint** of T, $T^*: Y' \to X'$ by $T^*f = f \circ T$.

Notice that $T^* \in \mathcal{L}(Y', X')$.

10.1 Proposition. Let X, Y, Z be normed spaces, $T \in \mathcal{B}(X,Y)$ and $S \in \mathcal{B}(Y,Z)$. Then

- (i) $T^* \in \mathcal{B}(Y^*, X^*)$ with $||T^*|| = ||T||$
- (ii) $T \mapsto T^* : \mathcal{B}(X,Y) \to \mathcal{B}(Y^*,X^*)$ is linear
- (iii) $T^{**} := (T^*)^*$ satisfies $T^{**} \in \mathcal{B}(X^{**}, Y^{**})$ and $T^{**}\hat{x} = \widehat{Tx}$.
- (iv) $(S \circ T)^* = T^* \circ S^* \in \mathcal{B}(Z^*, X^*).$

Proof(i),(iii) If $f \in Y^*$, then

$$||T^*f|| = \sup\{|T^*f(x)| : x \in B(X)\} \le \sup\{||f|| ||Tx|| : x \in B(X)\} \le ||f|| ||T||$$

so $||T^*|| \le ||T||$. If $x \in X$ and $f \in Y^*$, then

$$T^{**}\hat{x}(f) = \hat{x}(T^*f) = T^*f(x) = f(Tx) = \widehat{Tx}(f)$$

so that $||T|| = ||T^{**}|_{\hat{X}}|| \le ||T^{**}|| \le ||T^*||.$

- (ii) Immediate.
- (iv) Immediate.

Remark. If H, K are Hilbert spaces and $T \in \mathcal{B}(H, K)$, then we define for $x \in K$, T^*x by $f_{T^*x} = T^*f_x$. Notice that (i) and (iv) hold in this setting. However, (ii) is replaced by $T \mapsto T^*$ is conjugate linear. Notice that T^* satisfies $(Tx, y) = (x, T^*y)$ for $x, y \in H$.

10.2 Theorem. (Kernel-Annhilator) If X and Y are Banach spaces, T|inB(X,Y), then $\ker T = [im(T^*)]_a$ and $\ker(T^*) = (imT)^a$.

Proof We have

$$\ker T = \{x \in X : Tx = 0\} = \{x \in X : T^*g(x) = g(Tx) = 0 \text{ for all } x \in X\} = [\operatorname{im}(T^*)]_a$$

and

$$\ker(T^*) = \{g \in Y^* : T^*g = 0\} = \{g \in Y^* : g(Tx) = T^*g(x) = 0 \text{ for all } x \in X\} = [\operatorname{im}(T)]^a$$

Remark. If $T \in \mathcal{B}(H,K)$ where H,K are Hilbert spaces, then $\ker T = (\operatorname{im} T^*)^{\perp}$, identifying $T^{**} = T$ since Hilbert spaces are reflexive.

10.3 Theorem. (Characterization of Invertibility) Let X, Y be Banach spaces, $T \in B(X, Y)$. Then TFAE:

- (i) T is invertible
- (ii) T* is invertible
- (iii) $\overline{\operatorname{im} T} = Y$ and $\inf\{||Tx|| : x \in S(X)\} > 0$, we say that T is **bounded below**, and
- (iv) both T and T^* are bounded below.

PROOF $(i \Rightarrow ii)$ Let $T^{-1} \in \mathcal{B}(Y,X)$, so $I_Y = TT^{-1}$, $I_X = T^{-1}T$. Then $(T^{-1})^*T^* = (TT^{-1})^* = I_Y^* = I_{Y^*}$ and likewise for the reverse.

 $(ii \Rightarrow iii)$ By the kernel-annhilator theorem, we have $(\operatorname{im} T)^a = \ker(T^*) = \{0\}$ in Y^* , so by annhilator-preannhilator, $\overline{\operatorname{im} T} = (\operatorname{im} T)^a_a = \{0\}_a = Y$. Now if $x \in S(X)$, find $f \in X^*$ so f(x) = ||x|| = 1 = ||f|| (by Hahn-Banach). Then

$$1 = f(x) = [T^*(T^* - 1)f](x) = [(T^*)^{-1}f](Tx) \le \left\| (T^*)^{-1}f \right\| \|Tx\| \le \left\| (T^*)^{-1} \right\| \|Tx\|$$

so that $||Tx|| \ge \frac{1}{||(T^*)^{-1}||} > 0$ and *T* is bounded below.

 $(iii \Rightarrow i)$ Let T be bounded below, and set $c = \inf\{\|Tx\|x : x \in S(X)\} > 0$, then for $x \in X \setminus \{0\}$, $\|Tx\| = \|x\| \left\| T\left(\frac{1}{\|x\|}x\right) \right\| \ge c \|x\|$. If $y \in \overline{\operatorname{im} T}$, then $y = \lim y_n$, each $y_n = Tx_n \in \operatorname{im} T$. Then

$$||x_n - x_m|| \le \frac{1}{c} ||Tx_n - Tx_m||$$

so $(x_n)_{n=1}^{\infty}$ is Cauchy as $(Tx_n)_{n=1}^{\infty}$ converges. Then $x = \lim x_n \in X$ and by continuity of T, $y = Tx \in \operatorname{im} T$. Notive as well that bounded below implies $\ker T = \{0\}$.

We assume that T is bounded below and $\operatorname{im} T = \overline{\operatorname{im} T} = Y$, so T is bijective, hence invertible.

 $(i, ii \Rightarrow iv)$ Use (iii)

 $(iv \Rightarrow iii)$ We suppose that T is bounded below, and so is T^* . Then $\{0\} = \ker(T^*)$ in Y^* , so $Y = \{0\}_a = \ker(T^*)_a = \overline{\operatorname{im} T}$ and T is bounded below provides $\operatorname{im} T = \overline{\operatorname{im} T} = Y$, so $\ker T = \{0\}$.

Remark. Reasons why $T \in \mathcal{B}(X, Y)$ is not intervible: $\ker T \supseteq \{0\}$, $\operatorname{im} T \subseteq Y$, T is not bounded below.

Example. Let $T: \ell_p \to \ell_p$ be given by $T(x_n)_{n=1}^{\infty} = \left(\frac{1}{n}x_n\right)_{n=1}^{\infty}$, so ||T|| - 1. Notice that $\ker T = \{0\}$ and $\overline{\operatorname{im} T} = \ell_p$. However, *T* is not bounded below.

11 SPECTRAL THEORY FOR BOUNDED OPERATORS

Let *X* be a \mathbb{C} -Banach space, and $\mathcal{B}(X) = \mathcal{B}(X, X)$.

Definition. If $T \in \mathcal{V}(X)$, we define the **resolvent** of T by $\rho(T) = \{\lambda \in \mathbb{C} : \lambda I - T \text{ is invertible}\}$. Then the **spectrum** of T, $\sigma(T)$, is given by $\sigma(T) = \mathbb{C} \setminus \rho(T)$. We define the **point spectrum** $\sigma_n(T) = {\lambda \in \mathbb{C} : \ker(\lambda I - T) \supseteq {0}}, \text{ so } \sigma_n(T) \subseteq \sigma(T).$

Example. (i) If *X* is finite dimensional, then $\sigma(T) = \sigma_p(T)$.

(ii) Let $1 \le p < \infty$ and define $S: \ell_p \to \ell_p$ by $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Notive that Sis linear and $||Sx||_p = ||x||_p$, so ||S|| = 1. Also, $\ker S = \{0\}$. Suppose $\lambda \in \sigma_p$, so there is $x \in \ker(\lambda I - S) \setminus \{0\}$. We let $k = \min\{n \in \mathbb{N} : x_n \neq 0\}$, we see $0 = (S_x)_k = \lambda_{x_k}$, but $|S\rangle = \{0\}$, so $0 \notin \sigma_p(T)$, but hence no λ as above exists, so $\sigma_p(X) = \emptyset$.

For any $T \in \mathcal{B}(X)$, is $\sigma(T) \neq \emptyset$? Let

$$\mathcal{G}(X) = \{T \in \mathcal{B}(X) : T \text{ is invertible}\}\$$

Notive that if $S, T \in \mathcal{G}(X)$, then $(ST)^{-1} = T^{-1}S^{-1}$, so $\mathcal{G}(X)$ is a group in $\mathcal{B}(X)$ with identity I. Note that $\mathcal{B}(X)$ is compelte, and if $S, T \in \mathcal{B}(X)$, then $||ST|| \le ||S|| ||T||$, so that $S \mapsto ST$ and $S \mapsto TS$ for some $T \in \mathcal{B}(X)$ are continuous.

- (i) If $T \in D(X)$, then $\sum_{k=0}^{\infty} T_k$ converges in $\mathcal{B}(X)$, and 11.1 Theorem. (Inversion)
 - $\sum_{k=0}^{\infty} T^k = (I T)^{-1}$ (ii) If $S, T \in \mathcal{B}(X)$ such that $S \in \mathcal{G}(X)$ and $||T S|| < \frac{1}{||S^{-1}||}$, then $T \in \mathcal{G}(X)$ with $T^{-1} = 1$ $S^{-1} + \sum_{k=1}^{\infty} [S^{-1}(S-T)]^k S.$

Thus, we find that $\mathcal{G}(X)$ is open in $\mathcal{B}(X)$ and $T \mapsto T^{-1}$ on $\mathcal{G}(X)$ is continuous.

(i) Let $S_n = \sum_{k=0}^{\infty} T^k$, so for m < n, we have **Proof**

$$||S_n - S_m|| \le \sum_{k=m+1}^{\infty} ||T^k|| \le \sum_{k=m+1}^n ||T||^k = \frac{||T||^{m+1}}{1 - ||T||} \to 0$$

since ||T|| < 1, so $(S_n)_{n=1}^{\infty}$ is Cauchy, and thus convergent in $\mathcal{B}(X)$. Also,

$$(I-T)S_n = I - T^{n+1} \rightarrow U \text{ as } T^{n+1} \rightarrow 0$$

since ||T|| < 1. Similarly, $S_n(I - T) \to I$, so that $S = \sum_{k=0}^{\infty} T^k$ has S(I - T) = I = (I - T)S. (ii) We have $||S^{-1}S - T|| \le ||S^{-1}|| ||S - T|| < 1$ so by (i)

$$T = S - (S - T) = S[I - S^{-1}(S - T)] \in \mathcal{G}(X)$$

Furthermore,

$$T^{-1} = [I - S^{-1}(S - T)]^{-1}S^{-1} = \sum_{k=0}^{\infty} [S^{-1}(S - T)]^k S^{-1}$$

In particular, we see that for $S \in \mathcal{G}(X)$, $S + \frac{1}{\|S^{-1}\|}D(X) \subseteq \mathcal{G}(X)$, so (a) holds. From (ii), we see that

$$\left\|T^{-1} - S^{-1}\right\| \leq \sum_{k=1}^{\infty} \left\| \left[S^{-1}(T-S)\right]^k S \right\| \leq \sum_{k=1}^{\infty} \left\|S^{-1}\right\|^k \left\|T - S\right\|^k \left\|S^{-1}\right\| = \frac{\left\|S^{-1}\right\|^2 \left\|T - S\right\|}{1 - \left\|S^{-1}\right\| \left\|T - S\right\|}$$

so that $\lim_{TS} ||T^{-1} - S^{-1}|| = 0$.

Definition. Suppose \mathcal{B} is a \mathbb{C} -Banach space, $U \subseteq \mathbb{C}$ and $F: U \to \mathcal{B}$. We say that F is **holomorphic** if for any $z_0 \in U$,

$$F'(z_0) = \lim_{z \to z_0} \frac{1}{z - z_0} [F(z) - F(z_0)]$$

Remark. Just as in calculus, a holomorphic funtion is continuous on its domain.

- **11.2 Proposition.** Let $T \in \mathcal{B}(X)$. Then
 - (i) $\rho(T)$ is open in \mathbb{C}
 - (ii) $R(z) = R_T(z) = (zI T)^{-1}$ defines a holomorphic function on $\rho(T)$, called the **resolvent** function, and
- (iii) $\sigma(T) \subseteq ||T|| \overline{\mathbb{D}}$, and for |z| > ||T||, $R(z) \le \frac{1}{|z| ||T||}$

PROOF (i) Define $F : \mathbb{C} \to \mathcal{B}(X)$ by F(z) = zI - T. Then F is continuous and $\rho(T) = F^{-1}(\mathcal{G}(X))$.

(ii) If $z, z_0 \in \rho(T)$, then

$$R(z) - R(z_0) = (zI - T)^{-1} - (z_0I - T)^{-1} = (zI - T)^{-1}[(z_0I - T) - (zI - T)](z_0I - T)^{-1}$$
$$= (z_0 - z)(zI - T)^{-1}(z_0I - T)^{-1}$$

Hence

$$\frac{1}{z - z_0} [R(z) - R(z_0)] = -(zI - T)^{-1} (z_0 I - T)^{-1} \to -(z_0 I - T)^{-2}$$

by continuity of inversion.

(iii) If |z| > ||T||, then $\left\|\frac{1}{z}T\right\| < 1$ so $zI - T = z(I - \frac{1}{z}T) \in \mathcal{G}(X)$, so $\sigma(T) \subseteq ||T|| \overline{\mathbb{D}}$. Furthermore, for |z| > ||T||, we have

$$R(z) = (zI - T)^{-1} = 1z(I - \frac{1}{z}T)^{-1} = \frac{1}{z}\sum_{k=0}^{\infty} \frac{1}{z^k}T^k$$

11.3 Theorem. (*Liouville*) If $f: \mathbb{C} \to \mathbb{C}$ is holomorphic and bounded, then f is constant.

PROOF Apply Cauchy integral formula.

11.4 Theorem. (Liouville for Banach Spaces) If $F : \mathbb{C} \to \mathcal{B}$ is holomorphic and bounded, then F is constant.

Proof Let $f \in \mathcal{B}^*$ and let $F_f = f \circ F : \mathbb{C} \to \mathbb{C}$. Notice that for $z, z_0 \in \mathbb{C}$,

$$\frac{F_f(z) - F_f(z_0)}{z - z_0} = f\left(\frac{1}{z - z_0} [F(z) - F(z_0)]\right) \to f(F^1(z_0))$$

by linearity and continuity of f, and hence $F'_f = f \circ F'$. Also, if F is bounded, then for $z \in \mathbb{C}$, $|F_f(z)| = |f(F(z))| \le ||f|| ||F(z)||$ shows that F_f is bounded, so by Liouville's theorem, is constant. In particular, if $z, z' \in \mathbb{C}$, $f(F(z) - F(z')) = F_f(z) - F_f(z') = 0$. Thus by Hahn-Banach, we have F(z) = F(z') for any $z, z' \in \mathbb{C}$, so F is constant.

11.5 Theorem. If $T \in \mathcal{B}(X)$, then $\sigma(T) \neq \emptyset$ and compact.

PROOF If $\sigma(T) = \emptyset$, then $R : \mathbb{C} \to \mathcal{B}(X)$ is holomorphic. Hence, as $||T|| \overline{\mathbb{D}}$ is compact in \mathbb{C} , R is bounded on $||T||\overline{\mathbb{D}}$; and if |z| > ||T||, we have

$$||R(z)|| \le \frac{1}{|z| - ||T||} \to 0$$

It follows that R is bounded on $\mathcal{B}(X)$, and hence constant, and thus R = 0. But R(z)(zI - T) =I, a contradiction.

Moreover, $\rho(T) = \mathbb{C} \setminus \sigma(T)$ is open, and $\sigma(T) \subseteq ||T|| \overline{\mathbb{D}} \subset \mathbb{C}$. Thus $\sigma(T)$ is a non-empty compact set.

11.6 Corollary. (Joke) \mathbb{C} is algebraically closed.

PROOF Let $p(x) \in \mathbb{C}[x]$ be an arbitrary irreducible polynomial with $p(x) = (x - r_1) \cdots (x - r_n) \cdots (x - r_n)$ r_n) for some $r_i \in \overline{\mathbb{C}}$. Consider the operator $T: \mathbb{C}^n \to \mathbb{C}^n$ with diagonal r_1, \ldots, r_n and hence characteristic polynomial p(x). Then $\emptyset \neq \sigma(T) = \sigma_p(T) = \{x \in \mathbb{C} : p(x) = 0\}$, so p has some root in \mathbb{C} , so that $\deg p = 1$.

- 11.7 Proposition. (i) If X is a (non-Hilbert) Banach space, then $\sigma(T^*) = \sigma(T)$. (ii) If H is a Hilbert space, $T \in \mathcal{B}(H)$, then $\sigma(T^*) = {\overline{\lambda} : \lambda \in \sigma(T)}$.
- (i) $(\lambda I_X T)^* = \lambda I_{X^*} T^*$ and is invertible if and only if $\lambda I_X T$ is invertible Proof (ii) Same.

Definition. We define the **point spectrum** $\sigma_p(T) = \{\lambda \in \mathbb{C} : \ker(\lambda I - T) \neq \{0\}\}$, the **approximate point spectrum** $\sigma_{ap}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not bounded below}\}$, and the **compres**sion spectrum $\sigma_{com}(T) = \{\lambda \in \mathbb{C} : \overline{\mathrm{im}}(\lambda I - T) \subsetneq X\}.$

(i) $\sigma_p(T) \subseteq \sigma_{ap}(T)$. Remark.

- (ii) We have $[(\lambda I T)]^a = \ker(\lambda I T^*)$ by kernel-annhilator so $\overline{\operatorname{im}}(\lambda I T) = \ker(\lambda I T^*)$ by annhilator-preannhilator, so that $\sigma_{com}(T) = \sigma_p(T^*)$.
 - **11.8 Lemma.** If $(T_n)_{n=1}^{\infty} \subset \mathcal{G}(X)$ satisfies that

 - $T = \lim_{n \to \infty} T_n$ $M = \sup_{n \in \mathbb{N}} ||T_n^{-1}|| < \infty$

then $T \in \mathcal{G}(X)$.

PROOF Since M > 0, for sufficiently large n, we have $||T - T_n|| \le \frac{1}{M} \le \frac{1}{||T_n^{-1}||}$, so $T \in \mathcal{G}(X)$ by inversion theorem.

11.9 Proposition. (i) $\partial \sigma(T) \subseteq \sigma_{ap}(T)$

(ii) $\sigma_{ap}(T)$ is closed

Hence $\sigma_{ap}(T)$ is always a non-empty closed subset of \mathbb{C} .

PROOF (i) Let $\lambda \in \partial \sigma(T)$, so there is $(\lambda_n)_{n=1}^{\infty} \subset \rho(T) = \mathbb{C} \setminus \sigma(T)$ such that $\lambda = \lim_{n \to \infty} \lambda_n$. Then $\|(\lambda_n I - T) - (\lambda I - T)\| = |\lambda_n - \lambda| \to 0$, but $\lambda I - T \notin \mathcal{G}(X)$, so by the lemma, $\sup_{n \in \mathbb{N}} \|(\lambda_n I - T)^{-1}\| = \infty$. Passing to a subsequence if necessary, we may suppose $\lim_{n \to \infty} \|(\lambda_n I - T)^{-1}\| = \infty$.

For each index n, let $x_n \in S(X)$ so $\alpha_n = \|(\lambda_n I - T)^{-1} x_n\| > \|(\lambda n - T)^{-1}\| - \frac{1}{n}$ so $\lim_{n \to \infty} \alpha_n = \infty$. Then $y_n = \frac{1}{\alpha_n} (\lambda_n I - T)^{-1} x_n$, so $y_n \in S(X)$ and

$$(\lambda I - T)y_n = (\lambda_n I - T)y_n + (\lambda - \lambda_n)y_n$$
$$= \frac{1}{\alpha_n} x_n + (\lambda - \lambda_n)y_n \to 0$$

so $\lambda I - T$ is not bounded below.

(ii) If $\lambda = \lim_{n \to \infty} \lambda_n$, each $\lambda_n \in \sigma_{ap}(T)$, for each n find $x_n \in S(X)$ so $\|(\lambda_n I - T)x_n\| < \frac{1}{n}$. Then

$$||(\lambda I - T)x_n|| \le ||(\lambda_n I - T)x_n|| + ||(\lambda - \lambda_n)x_n|| < \frac{1}{n} + |\lambda - \lambda_n| \to 0$$

so $\lambda I - T$ is not bounded below.

Example. Let $S \in B(\ell_p)$, $1 , where <math>S(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$, the unilateral shift map. It is immediate that $\|Sx\|_p = \|x\|_p$ for $x \in \ell_p$, so $\|S\| = 1$. Recall that $\ell_p^* \cong \ell_q$ where p,q are conjugate. Define a bilinear form on $\ell_p \times \ell_q$ by $\langle x,y \rangle = \sum_{k=1}^{\infty} x_k y_k$. We compute $\langle x, S^*y \rangle = \langle Sx,y \rangle = \sum_{k=1}^{\infty} x_k y_{k+1} = \langle x, (y_2, y_3, \ldots) \rangle$ so $S^*(y_1, y_2, \ldots) = (y_2, y_3, \ldots)$. Recall that $\sigma_p(S) = \emptyset$. However, if $\lambda \in \mathbb{D}$, let $y_{\lambda} = (1, \lambda, \lambda^2, \ldots) \in \ell_q$. Then $S^*(y_{\lambda}) = \lambda \cdot y_{\lambda}$. Hence $\sigma_p(S^*) \supseteq \mathbb{D}$. Furthermore, if $\lambda \in \sigma_p(S^*)$ and $y \in \ker(\lambda I - S^*)$, then $\lambda^n y = (S^*)^n \to 0$ so $\lambda^n \to 0$, forcing $|\lambda| < 1$. Thus

$$\mathbb{D} = \sigma_p(S^*) \subseteq \sigma(S^*) = \sigma(S) \subseteq \overline{D}$$

since ||S|| = 1, and since $\sigma(S)$ is compact, $\sigma(S) = \overline{D}$.

We know that $\sigma_{ap}(S) \supseteq \partial \sigma(S) = \mathbb{S}$. If $\lambda \in \mathbb{D}$, then for $x \in \ell_p$, $\|(S - \lambda I)x\|_p \ge \|Sx\|_p - \|\lambda x\|_p = (1 - |\lambda|)\|x\|_p$, so $S - \lambda I$ is bounded below. Thus $\sigma_{ap}(S) \cap \mathbb{S} = \emptyset$, so $\sigma_{ap}(S) = \mathbb{S}$. In conclusion,

$$\sigma(S) = \mathbb{D} \qquad \qquad \sigma_p(S) = \emptyset$$

$$\sigma_{ap}(S) = \mathbb{S} = \partial \sigma(S) \qquad \qquad \sigma_{com}(S) = \sigma_p(S^*) = \mathbb{D}$$

$$\sigma(S^*) = \overline{\mathbb{D}} \qquad \qquad \sigma_p(S^*) = \mathbb{D}$$

$$\sigma_{ap}(S^*) = \partial \sigma(S^*) \cup \sigma_p(S^*) = \overline{\mathbb{D}} \qquad \qquad \sigma_{com}(S^*) = \emptyset$$

Remark. Let $\sigma_p(T)$, $\sigma_{com}(T)$ may be empty, and if non-empty need not be closed.

Remark. If p = 1 and $S \in B(\ell_1)$ is the unilateral shift, as above, and $L \in \ell_{\infty}^*$ be a Banach limit. Then

$$S^{**}L = L \circ S^L$$

so $\sigma_p(S^{**}) \ni 1$. Thus $\sigma_{com}(S^*) = \sigma_p(S^{**}) \neq \emptyset$.

11.10 Theorem. (Spectral Mapping) Let $T \in \mathcal{B}(X)$, $p \in \mathbb{C}[x]$, then $\sigma(p(T)) = p(\sigma(T))$.

PROOF We may assume that $p \neq 0$. Let $\lambda_0 \in \mathbb{C}$ and write $p(t) - \lambda_0 = \alpha \prod_{k=1}^n (t - \lambda_k)$. Then

$$p(T) - \lambda_0 = \alpha \prod_{k=1}^{n} (T - \lambda_k I)$$

Thus $p(T) - \lambda_0 I \notin \mathcal{G}(X)$ if and only some $T - \lambda_I \notin \mathcal{G}(X)$, so $\lambda_0 \in \sigma(p(T))$ if and only if at least one $\lambda_k \in \sigma(T)$ if and only if $p(\lambda) - \lambda_0 = 0$ for some $\lambda \in \sigma(T)$, i.e. $\lambda_0 = p(\lambda) \in p(\sigma(T))$.

11.11 Theorem. (Spectral Radius Formula) If $T \in \mathcal{B}(X)$, let $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$. Then $r(T) = \lim_{n \to \infty} ||T^n||^{1/n}$.

PROOF By the spectral mapping theorem, $r(T^n) = r(T)^n$. Moreover, $r(T^n) \le ||T^n||$ since $\sigma(T_\subseteq^n ||T^n|| \overline{\mathbb{D}})$. Thus $r(T) = r(T^n)^{1/n} \le ||T^n||^{1/n}$ so that $r(T) \le \liminf_{n \to \infty} ||T^n||^{1/n}$. Now, let $f \in \mathcal{B}(X)^*$. We recall that for |z| > ||T||,

$$R(z) = (zI - T)^{-1} = \frac{1}{z}(I - \frac{1}{z}T)^{-1} = \frac{1}{z}\sum_{k=0}^{\infty} \frac{1}{z^k}T^k$$
$$= \sum_{k=1}^{\infty} \frac{1}{z^k}T^{k-1}.$$

Thus the Holomorphic function $F_f = f \circ R : \rho(T) = \mathbb{C} \setminus \sigma(T) \to \mathbb{C}$ satisfies $F_f(z) = \sum_{k=1}^\infty f(T^{k-1}) \frac{1}{z^k}$. From \mathbb{C} -analysis, the holomorphic function admits a Laurent series for all z with |z| > r(T), and by uniqueness of Laurent series, $F_f(z) = \sum_{n=1}^\infty f(T^{k-1}) \frac{1}{z^k}$ for |z| > r(T). Hence if $|z_0| > r(T)$, we have that $\left\{ f\left(\frac{1}{z_0^k}T^k\right) \right\}_{k=1}^\infty$ is bounded in \mathbb{C} . Doing this for any $f \in \mathcal{B}(X)^*$, we may apply Banach-Steinhaus to see that $\left\{ \frac{1}{z_0} T^k \right\}_{k=1}^\infty$ is bounded in $\mathcal{B}(X)$, so

$$\sup_{n\in\mathbb{N}}\left\|\frac{1}{z_0^n}T^n\right\| \le M < \infty$$

Then $||T^n|| \le M|z_0|^n$ so $||T^n||^{1/n} \le M^{1/n}|z_0|$, so that

$$\limsup_{n\to\infty} ||T^n||^{1/n} \le |z_0|.$$

This applies for any $|z_0| > r(T)$, so the result follows.

12 Compact Operators

Definition. Let X, Y be Banach spaces over \mathbb{F} . A linear opeartor $K: X \to Y$ is called **compact** if $\overline{K(B(X))}$ is compact in Y. We let

$$\mathcal{K}(X,Y) = \{K \in \mathcal{L}(X,Y) : K \text{ is compact}\}.$$

Since compact sets in *Y* are bounded, we immediately see that $K(X,Y) \subseteq \mathcal{B}(X,Y)$.

- **12.1 Proposition.** Let X, Y be Banach spaces. Then
 - (i) K(X,Y) is a closed subspace of B(X,Y), and
 - (ii) If W, Z are also Banach spaces, $S \in \mathcal{B}(Y, Z)$, $T \in \mathcal{B}(W, X)$, $K \in \mathcal{K}(X, Y)$, then $SKT \in \mathcal{K}(W, Z)$.

PROOF (i) Let $K, L \in \mathcal{K}(X, Y)$, $\alpha \in \mathbb{F}$, and $(x_n)_{n=1}^{\infty} \subset B(X)$. Then $\overline{K(B(X))} \times \overline{L(B(X))}$ is compact in $Y \times Y \cong Y \oplus_1 Y$, so we have converging

$$((Kx_{n_j}, Lx_{n_j}))_{j=1}^{\infty} \subset \overline{K(B(X))} \times \overline{L(B(X))}$$

Now, $(K + \alpha L)(x_{n_j}) = Kx_{n_j} + \alpha Lx_{n_j} \rightarrow y + \alpha y'$, so $((K + \alpha L)x_n)_{n=1}^{\infty}$ admits a converging subsequence in Y.

Now let $K \in \overline{\mathcal{K}(X,Y)} \subseteq \mathcal{B}(X,Y)$, so $K = \lim_{n \to \infty} K_n$ with each $K_n \in \mathcal{K}(X,Y)$. Let $\epsilon > 0$. Let $n_0 \in \mathbb{N}$ be so $n \ge n_0$ implies $||K - K_n|| < \epsilon/3$. Since K_{n_0} is compact, there are $\{x_1, \dots, x_m\} \subset \mathcal{B}(X)$ such that

$$K_{n_0}(B(X)) \subseteq \bigcup_{j=1}^m (K_{n_0}x_j + \frac{\epsilon}{3}B(Y))$$

Then for $x \in B(X)$, find x_i so $K_{n_0}x \in K_{n_0}x_i + \frac{\epsilon}{3}B(X)$ and hence

$$\begin{aligned} \left\| Kx - Kx_{j} \right\| &\leq \left\| Kx - K_{n_{0}}x \right\| + \left\| K_{n_{0}}x - K_{n_{0}}x_{j} \right\| + \left\| K_{n_{0}}x_{j} - Kx_{j} \right\| \\ &\leq \left\| K - K_{0} \right\| \left\| x \right\| + \frac{\epsilon}{3} + \left\| K - K_{n_{0}} \right\| \left\| x_{j} \right\| < \end{aligned}$$

and we see that $K(B(X)) \subseteq \bigcup_{i=1}^{m} (Kx + \epsilon B(Y))$, and hence is totally bounded.

(ii) We have

$$\overline{SKT(B(W))} \subseteq \overline{SK(\|T\|B(X))} = \|T\| \overline{SK(B(X))}$$

$$= \|T\| \overline{S(K(B(X)))} \subseteq \|T\| \overline{S(\overline{K(B(X))})} = \|T\| S(\overline{K(B(X))})$$

is a continuous image of a compact set and hence compact.

- *Example.* (i) Given Banach spaces X, Y, let $\mathcal{F}(X, Y) = \{F \in \mathcal{B}(X, Y) : \operatorname{rank} F < \infty\}$. Note that $\operatorname{rank} F = \dim(\operatorname{im} F)$. If $F \in \mathcal{F}(X, Y)$, then $F(B(X)) \subseteq ||F||B(\operatorname{im} F)$ is subset of a compact set, so F is compact. Thus $\overline{\mathcal{F}(X, Y)} \subseteq \mathcal{K}(X, Y)$.
 - (ii) Also W,Z Banach spaces, $S \in \mathcal{B}(Y,Z)$, $T \in \mathcal{B}(W,Z)$, then $SFT \in \mathcal{F}(W,Z)$ for $F \in \mathcal{F}(X,Y)$.
- (iii) Let I = [0,1] and $k \in C(I^2)$. Then for $f \in C(I)$, $x \in I$, define

$$Kf(x) = \int_0^1 k(x, y) f(y) dy$$

This defines a compact operator in $\mathcal{K}(C(I), C(I))$.