ON THE RESTRICTION OF ZUCKERMAN'S DERIVED FUNCTOR MODULES $A_{\mathfrak{q}}(\lambda)$ TO REDUCTIVE SUBGROUPS

YOSHIKI OSHIMA

ABSTRACT. In this paper, we study the restriction of Zuckerman's derived functor (\mathfrak{g},K) -modules $A_{\mathfrak{q}}(\lambda)$ to \mathfrak{g}' for symmetric pairs of reductive Lie algebras $(\mathfrak{g},\mathfrak{g}')$. When the restriction decomposes into irreducible (\mathfrak{g}',K') -modules, we give an upper bound for the branching law. In particular, we prove that each (\mathfrak{g}',K') -module occurring in the restriction is isomorphic to a submodule of $A_{\mathfrak{q}'}(\lambda')$ for a parabolic subalgebra \mathfrak{q}' of \mathfrak{g}' , and determine their associated varieties. For the proof, we construct $A_{\mathfrak{q}}(\lambda)$ -modules on complex partial flag varieties by using \mathcal{D} -modules.

1. Introduction

Our object of study is branching laws of Zuckerman's derived functor modules $A_{\mathfrak{q}}(\lambda)$ with respect to symmetric pairs of real reductive Lie groups.

Let G_0 be a real reductive Lie group with Lie algebra \mathfrak{g}_0 . Fix a Cartan involution θ of G_0 so that the fixed set $K_0 := (G_0)^{\theta}$ is a maximal compact subgroup of G_0 . Write K for the complexification of K_0 and $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ for the Cartan decomposition with respect to θ . The cohomologically induced module $A_{\mathfrak{q}}(\lambda)$ is a (\mathfrak{g}, K) -module defined for a θ -stable parabolic subalgebra \mathfrak{q} of $\mathfrak{g} := \mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C}$ and a character λ . The (\mathfrak{g}, K) -module $A_{\mathfrak{q}}(\lambda)$ is unitarizable under a certain condition on the parameter λ and therefore plays a large part in the study of the unitary dual of real reductive Lie groups.

One of the fundamental problems in the representation theory is to decompose a given representation into irreducible constituents. To begin with, we consider the restriction of (\mathfrak{g}, K) -modules to K, or equivalently, to the compact group K_0 . In this case, any irreducible (\mathfrak{g}, K) -module decomposes as the direct sum of irreducible representations of K and each K-type occurs with finite multiplicity. For $A_{\mathfrak{q}}(\lambda)$ -modules, the following formula gives an upper bound for the multiplicities.

Fact 1.1 ([8, §V.4]). Let \mathfrak{u} be the nilradical of \mathfrak{q} . Take a Cartan subalgebra \mathfrak{t}_0 of \mathfrak{k}_0 such that $\mathfrak{t} \subset \mathfrak{q} \cap \mathfrak{k}$ and choose a positive system $\Delta^+(\mathfrak{k},\mathfrak{t})$ contained in $\Delta(\mathfrak{q} \cap \mathfrak{k},\mathfrak{t})$. For a dominant integral weight $\mu \in \mathfrak{t}^*$ write $F(\mu)$ for the irreducible finite-dimensional representation of K with highest weight μ . Then

(1.1)
$$A_{\mathfrak{q}}(\lambda)|_{K} \leq \bigoplus_{p=0}^{\infty} \bigoplus_{\mu} F(\mu)^{\oplus m(\mu, p)},$$

where $m(\mu, p)$ is the multiplicity of weight μ in $\mathbb{C}_{\lambda+2\rho(\mathfrak{u}\cap\mathfrak{p})}\otimes S^p(\mathfrak{u}\cap\mathfrak{p})$.

Key words and phrases. unitary representation, Zuckerman's derived functor module, branching law, reductive group, D-module, flag variety.

²⁰⁰⁰ MSC: Primary 22E46; Secondary 14F10, 32C38.

There is also an explicit branching formula of $A_{\mathfrak{q}}(\lambda)|_{K}$ for weakly fair λ , known as the generalized Blattner formula (see [1, §II.7], [8, §V.5]).

On the other hand, the restriction to a non-compact subgroup is more complicated. Let σ be an involution of G_0 that commutes with θ and let G'_0 be the identity component of $(G_0)^{\sigma}$. The pair (G_0, G'_0) is called a symmetric pair. Write \mathfrak{g}' for the complexified Lie algebra of G'_0 and write K' for the complexification of the maximal compact group $K'_0 := (G'_0)^{\theta}$ of G'_0 . If G'_0 is non-compact, the restriction $A_{\mathfrak{q}}(\lambda)|_{(\mathfrak{g}',K')}$ does not decompose into irreducible (\mathfrak{g}',K') -modules in general. Indeed, $A_{\mathfrak{q}}(\lambda)|_{(\mathfrak{g}',K')}$ does not have any irreducible submodule in many cases.

Nevertheless, there are classes of (\mathfrak{g}, K) -modules which decompose into irreducible (\mathfrak{g}', K') -modules and explicit branching formulas were obtained for some particular representations [3], [4], [9], [10], [14], [16], [19], [20]. In his series of papers [9], [10], [11], [12], Kobayashi introduced the notion of discretely decomposable (\mathfrak{g}', K') -modules and gave criteria for the discretely decomposable restrictions (see Fact 5.5). By virtue of this result, we can single out $A_{\mathfrak{q}}(\lambda)$ -modules that decompose into irreducible (\mathfrak{g}', K') -modules. See [15] for a classification of the discretely decomposable restrictions $A_{\mathfrak{q}}(\lambda)|_{(\mathfrak{g}',K')}$. Recent developments on these subjects are discussed in [13].

Our aim is to find a branching law of $A_{\mathfrak{q}}(\lambda)|_{(\mathfrak{g}',K')}$ when it is discretely decomposable. The main results of this paper are Theorem 6.3 and its reformulation Theorem 6.4, where we construct an injective (\mathfrak{g}',K') -homomorphism:

(1.2)
$$A_{\mathfrak{q}}(\lambda) \to \bigoplus_{p=0}^{\infty} \bigoplus_{\lambda'} A_{\mathfrak{q}''}(\lambda')^{\oplus m(\lambda',p)}.$$

The parabolic subalgebra \mathfrak{q}'' of \mathfrak{g}' and the multiplicity function $m(\lambda',p)$ are given in (5.1) and (6.6), respectively. Theorem 6.4 is a generalization of Fact 1.1 because if $\theta = \sigma$, then $G_0' = K_0$ and it turns out that the right side of (1.2) is isomorphic to the right side of (1.1) as a K-module.

For the proof of these theorems, we realize $A_{\mathfrak{q}}(\lambda)$ -modules as the global sections of sheaves on complex partial flag varieties in Theorem 4.1, using \mathcal{D} -modules. A relation between cohomologically induced modules and twisted \mathcal{D} -modules on the complete flag variety was constructed by Hecht–Miličić–Schmid–Wolf [5]. See [1], [7], [17] for further developments of this result. Our proof of Theorem 4.1 is based on [5].

This paper is organized as follows. In Section 2, we recall the definitions of cohomological induction and $A_{\mathfrak{q}}(\lambda)$ -modules, following the book by Knapp–Vogan [8]. In this paper, we extend actions of a compact group K_0 to actions of its complexification K, and view (\mathfrak{g}, K_0) -modules as (\mathfrak{g}, K) -modules. In Section 3, we fix notation and prove lemmas concerning homogeneous spaces and differential operators. Lemma 3.4 is used in the proof of Theorem 4.1. Section 4 is devoted to the proof of Theorem 4.1. In Section 5, we construct θ -stable parabolic subalgebras of \mathfrak{g}' that will appear in the branching laws, using a criterion for the discrete decomposability given in [12]. The parabolic subalgebra \mathfrak{q}' is defined in Theorem 5.4 and \mathfrak{q}'' is defined in (5.1). We prove Theorem 6.3 and Theorem 6.4 in Section 6. We study the associated varieties of (\mathfrak{g}, K) -modules in Section 7. As a corollary to Theorem 6.4, we determine the associated variety of the irreducible constituents of $A_{\mathfrak{q}}(\lambda)|_{\mathfrak{g}'}$ in Theorem 7.5.

Acknowledgements. I am deeply grateful to my advisor Professor Toshiyuki Kobayashi for his helpful comments and warm encouragement. I am supported by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

2. Cohomological Induction

In this section, we fix notation concerning cohomological induction and $A_{\mathfrak{q}}(\lambda)$ -modules, following [8].

Let K_0 be a compact Lie group. The complexification K of K_0 has the structure of reductive linear algebraic group. Since any locally finite action of K_0 is uniquely extended to an algebraic action of K, the locally finite K_0 -modules are identified with the algebraic K-modules.

Define the Hecke algebra $R(K_0)$ as the space of K_0 -finite distributions on K_0 . For $S \in R(K_0)$, the pairing with a smooth function $f \in C(K_0)$ on K_0 is written as

$$\int_{K_0} f(k)dS(k).$$

The product of $S, T \in R(K_0)$ is given by

$$S * T : f \mapsto \int_{K_0 \times K_0} f(kk') dS(k) dT(k').$$

The associative algebra $R(K_0)$ does not have the identity, but has an approximate identity (see [8, Chapter I]). The locally finite K_0 -modules are identified with the approximately unital left $R(K_0)$ -modules. The action map $R(K_0) \times V \to V$ is given by

$$(S, v) \mapsto \int_{K_0} kv \, dS(k)$$

for a locally finite K_0 -module V. Here, kv is regarded as a smooth function on K_0 that takes values on V. If dk_0 denotes the Haar measure of K_0 , then $R(K_0)$ is identified with the K-finite smooth functions $C(K_0)_{K_0}$ by $fdk_0 \mapsto f$ and hence with the regular functions $\mathcal{O}(K)$ on K. As a \mathbb{C} -algebra, we have a canonical isomorphism

$$R(K_0) \simeq \bigoplus_{\tau \in \widehat{K}} \operatorname{End}(V_{\tau}),$$

where \widehat{K} is the set of equivalence classes of irreducible K-modules, and V_{τ} is a representation space of $\tau \in \widehat{K}$. Hence $R(K_0)$ depends only on the complexification K, so in what follows, we also denote $R(K_0)$ by R(K).

The Hecke algebra R(K) is generalized to $R(\mathfrak{g}, K)$ for the following pairs (\mathfrak{g}, K) .

Definition 2.1. Let \mathfrak{g} be a finite-dimensional complex Lie algebra and let K be a complex reductive linear algebraic group with Lie algebra \mathfrak{k} . Suppose that \mathfrak{k} is a Lie subalgebra of \mathfrak{g} and that an algebraic group homomorphism $\phi: K \to \operatorname{Aut}(\mathfrak{g})$ is given. We say that (\mathfrak{g}, K) is a *pair* if the following two assumptions hold.

- The restriction $\phi(k)|_{\mathfrak{k}}$ is equal to the adjoint action $\mathrm{Ad}(k)$ for $k \in K$.
- The differential of ϕ is equal to the adjoint action $\mathrm{ad}_{\mathfrak{a}}(\mathfrak{k})$.

Remark 2.2. Let G be a complex algebraic group and K a reductive linear algebraic subgroup. Then the Lie algebra \mathfrak{g} of G and K form a pair with respect to the adjoint action $\phi(k) := \mathrm{Ad}(k)$ for $k \in K$. All the pairs we will consider in the following are given in this way.

Definition 2.3. For a pair (\mathfrak{g}, K) , let V be a complex vector space with a Lie algebra action of \mathfrak{g} and an algebraic action of K. We say that V is a (\mathfrak{g}, K) -module if

- the differential of the action of K coincides with the restriction of the action of \mathfrak{g} to \mathfrak{k} ; and
- $(\phi(k)\xi)v = k(\xi(k^{-1}(v)))$ for $k \in K$, $\xi \in \mathfrak{g}$, and $v \in V$.

We write $\mathcal{C}(\mathfrak{g}, K)$ for the category of (\mathfrak{g}, K) -modules.

Let (\mathfrak{g}, K) be a pair in the sense of Definition 2.1. We extend the representation $\phi: K \to \operatorname{Aut}(\mathfrak{g})$ to a representation on the universal enveloping algebra $\phi: K \to \operatorname{Aut}(U(\mathfrak{g}))$. Define the Hecke algebra $R(\mathfrak{g}, K)$ as

$$R(\mathfrak{g},K) := R(K) \otimes_{U(\mathfrak{k})} U(\mathfrak{g}).$$

The product is given by

$$(S \otimes \xi) \cdot (T \otimes \eta) = \sum_{i} (S * (\langle \xi_{i}^{*}, \phi(\cdot)^{-1} \xi \rangle T) \otimes \xi_{i} \eta)$$

for $S,T \in R(K)$ and $\xi, \eta \in U(\mathfrak{g})$. Here ξ_i is a basis of the linear span of $\phi(K)\xi$ and ξ^i is its dual basis. As in the group case, the (\mathfrak{g},K) -modules are identified with the approximately unital left $R(\mathfrak{g},K)$ -modules. The action map $R(\mathfrak{g},K) \times V \to V$ is given by

$$(S \otimes \xi, v) \mapsto \int_{K_0} k(\xi v) dS(k)$$

for a (\mathfrak{g}, K) -module V.

Let (\mathfrak{g}, K) and (\mathfrak{h}, M) be pairs in the sense of Definition 2.1. Let $i:(\mathfrak{h}, M) \to (\mathfrak{g}, K)$ be a map between pairs, namely, a Lie algebra homomorphism $i_{\text{alg}}: \mathfrak{h} \to \mathfrak{g}$ and an algebraic group homomorphism $i_{\text{gp}}: M \to K$ satisfy the following two assumptions.

- The restriction of i_{alg} to the Lie algebra \mathfrak{m} of M is equal to the differential of i_{gp} .
- $\phi_K(m) \circ i_{\text{alg}} = i_{\text{alg}} \circ \phi_M(m)$ for $m \in M$, where ϕ_K denotes ϕ for (\mathfrak{g}, K) in Definition 2.1 and ϕ_M denotes ϕ for (\mathfrak{h}, M) .

We define covariant functors $P_{\mathfrak{h},M}^{\mathfrak{g},K}: \mathcal{C}(\mathfrak{h},M) \to \mathcal{C}(\mathfrak{g},K)$ and $I_{\mathfrak{h},M}^{\mathfrak{g},K}: \mathcal{C}(\mathfrak{h},M) \to \mathcal{C}(\mathfrak{g},K)$ as

$$P_{\mathfrak{h},M}^{\mathfrak{g},K}: V \mapsto R(\mathfrak{g},K) \otimes_{R(\mathfrak{h},M)} V,$$

$$I_{\mathfrak{h},M}^{\mathfrak{g},K}: V \mapsto (\mathrm{Hom}_{R(\mathfrak{h},M)}(R(\mathfrak{g},K),V))_K,$$

where $(\cdot)_K$ is the subspace of K-finite vectors. Then $P_{\mathfrak{h},M}^{\mathfrak{g},K}$ is right exact and $I_{\mathfrak{h},M}^{\mathfrak{g},K}$ is left exact. Write $(P_{\mathfrak{h},M}^{\mathfrak{g},K})_j$ for the j-th left derived functor of $P_{\mathfrak{h},M}^{\mathfrak{g},K}$ and write $(I_{\mathfrak{h},M}^{\mathfrak{g},K})^j$ for the j-th right derived functor of $I_{\mathfrak{h},M}^{\mathfrak{g},K}$.

In the context of unitary representations of real reductive Lie groups, we are especially interested in the (\mathfrak{g}, K) -modules cohomologically induced from one-dimensional representations of a certain type of parabolic subalgebras, which are called $A_{\mathfrak{q}}(\lambda)$ -modules.

Let G_0 be a connected real linear reductive Lie group with Lie algebra \mathfrak{g}_0 . This means that G_0 is a connected closed subgroup of $GL(n,\mathbb{R})$ and stable under transpose. We fix such an embedding and write G for the connected algebraic subgroup

of $GL(n,\mathbb{C})$ with Lie algebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \sqrt{-1}\mathfrak{g}_0$. In what follows, we embed reductive subgroups of G_0 in $GL(n,\mathbb{C})$ and define their complexifications similarly.

Fix a Cartan involution θ so the θ -fixed point set $K_0 = G_0^{\theta}$ is a maximal compact subgroup of G_0 . Let $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ be the corresponding Cartan decomposition. We let θ also denote the induced involution on \mathfrak{g}_0 and its complex linear extension to \mathfrak{g}_0 .

Let \mathfrak{q} be a parabolic subalgebra of \mathfrak{g} that is stable under θ . The normalizer $N_{G_0}(\mathfrak{q})$ of \mathfrak{q} in G_0 is denoted by L_0 . The complexified Lie algebra \mathfrak{l} of L_0 is a Levi part of \mathfrak{q} . Let bar $x \mapsto \bar{x}$ denote the complex conjugate with respect to the real form \mathfrak{g}_0 . Then we have $\mathfrak{q} \cap \bar{\mathfrak{q}} = \mathfrak{l}$ and $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$ for the nilradical \mathfrak{u} of \mathfrak{q} .

Because $L \cap K$ is connected, one-dimensional $(\mathfrak{l}, L \cap K)$ -modules are determined by the action of the center $\mathfrak{z}(\mathfrak{l})$ of \mathfrak{l} . Let \mathbb{C}_{λ} denote the one-dimensional $(\mathfrak{l}, L \cap K)$ module corresponding to $\lambda \in \mathfrak{z}(\mathfrak{l})^* := \operatorname{Hom}_{\mathbb{C}}(\mathfrak{z}(\mathfrak{l}), \mathbb{C})$. With our normalization, the trivial representation corresponds to \mathbb{C}_0 . The top exterior product $\bigwedge^{\operatorname{top}}(\mathfrak{g}/\bar{\mathfrak{q}})$ regarded as an $(\mathfrak{l}, L \cap K)$ -module by the adjoint action corresponds to $\mathbb{C}_{2\rho(\mathfrak{u})}$ for $2\rho(\mathfrak{u}) := \operatorname{Trace} \operatorname{ad}_{\mathfrak{u}}(\cdot)$.

Definition 2.4. Let \mathbb{C}_{λ} be a one-dimensional $(\mathfrak{l}, L \cap K)$ -module.

We say λ is unitary if λ takes pure imaginary values on the center $\mathfrak{z}(\mathfrak{l}_0)$ of \mathfrak{l}_0 , or equivalently, if \mathbb{C}_{λ} is the underlying $(\mathfrak{l}, L \cap K)$ -module of a unitary character of L_0 .

We say λ is *linear* if \mathbb{C}_{λ} lifts to an algebraic representation of the complexification L of L_0 .

Remark 2.5. If λ is linear, then λ takes real values on $\mathfrak{z}(\mathfrak{l}_0) \cap \mathfrak{p}_0$. In particular, if λ is linear and unitary, then λ is zero on $\mathfrak{z}(\mathfrak{l}) \cap \mathfrak{p}$.

Let \mathbb{C}_{λ} be a one-dimensional $(\mathfrak{l},L\cap K)$ -module. We see $\mathbb{C}_{\lambda+2\rho(\mathfrak{u})}\simeq \mathbb{C}_{\lambda}\otimes \mathbb{C}_{2\rho(\mathfrak{u})}$ as a $(\bar{\mathfrak{q}},L\cap K)$ -module (resp. a $(\mathfrak{q},L\cap K)$ -module) by letting $\bar{\mathfrak{u}}$ (resp. \mathfrak{u}) acts as zero. Then, for inclusion maps of pairs $(\bar{\mathfrak{q}},L\cap K)\to (\mathfrak{g},K)$ and $(\mathfrak{q},L\cap K)\to (\mathfrak{g},K)$, define the cohomologically induced modules $(P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_j(\mathbb{C}_{\lambda+2\rho(\mathfrak{u})})$ and $(I_{\mathfrak{q},L\cap K}^{\mathfrak{g},K})^j(\mathbb{C}_{\lambda+2\rho(\mathfrak{u})})$.

The functor $P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K}$ is called the Bernstein functor and denoted by $\Pi_{L\cap K}^K$. Since $P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K}\simeq \Pi_{L\cap K}^K\circ P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},L\cap K}$ and $P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},L\cap K}$ is exact, it follows that $(P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_j\simeq (\Pi_{L\cap K}^K)_j\circ P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},L\cap K}$ for the j-th left derived functor $(\Pi_{L\cap K}^K)_j$ of $\Pi_{L\cap K}^K$. Therefore, we have

$$(P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{j}(\mathbb{C}_{\lambda+2\rho(\mathfrak{u})})\simeq (\Pi_{L\cap K}^{K})_{j}(U(\mathfrak{g})\otimes_{U(\bar{\mathfrak{q}})}\mathbb{C}_{\lambda+2\rho(\mathfrak{u})}).$$

Similarly, $\Gamma_{L\cap K}^K := I_{\mathfrak{g},L\cap K}^{\mathfrak{g},K}$ is called the Zuckerman functor and we have

$$(I_{\mathfrak{q},L\cap K}^{\mathfrak{g},K})^{j}(\mathbb{C}_{\lambda+2\rho(\mathfrak{u})})\simeq (\Gamma_{L\cap K}^{K})^{j}(\mathrm{Hom}_{U(\mathfrak{q})}(U(\mathfrak{g}),\mathbb{C}_{\lambda+2\rho(\mathfrak{u})})_{L\cap K})$$

for the j-th right derived functor $(\Gamma_{L\cap K}^K)^j$ of $\Gamma_{L\cap K}^K$. Put $s=\dim(\mathfrak{u}\cap\mathfrak{k})$. We define

$$A_{\mathfrak{q}}(\lambda) := (P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_s(\mathbb{C}_{\lambda+2\rho(\mathfrak{u})}) \simeq (\Pi_{L\cap K}^K)_s(U(\mathfrak{g})\otimes_{U(\bar{\mathfrak{q}})}\mathbb{C}_{\lambda+2\rho(\mathfrak{u})}).$$

We now discuss the positivity of the parameter λ . Let \mathfrak{h}_0 be a fundamental Cartan subalgebra of \mathfrak{l}_0 . Choose a positive system $\Delta^+(\mathfrak{g},\mathfrak{h})$ of the root system $\Delta(\mathfrak{g},\mathfrak{h})$ such that $\Delta^+(\mathfrak{g},\mathfrak{h}) \subset \Delta(\mathfrak{q},\mathfrak{h})$ and put

$$\mathfrak{n}=\bigoplus_{\alpha\in\Delta^+(\mathfrak{g},\mathfrak{h})}\mathfrak{g}_\alpha.$$

We fix a non-degenerate invariant form $\langle \cdot, \cdot \rangle$ that is positive definite on the real span of the roots. In the following definition, we extend characters of $\mathfrak{z}(\mathfrak{l})$ to \mathfrak{h} by zero on $[\mathfrak{l},\mathfrak{l}] \cap \mathfrak{h}$.

Definition 2.6. Let \mathbb{C}_{λ} be a one-dimensional $(\mathfrak{l}, L \cap K)$ -module. We say λ is in the good range (resp. weakly good range) if

Re
$$\langle \lambda + \rho(\mathfrak{n}), \alpha \rangle > 0$$
 (resp. ≥ 0) for $\alpha \in \Delta(\mathfrak{u}, \mathfrak{h})$,

and in the fair range (resp. weakly fair range) if

Re
$$\langle \lambda + \rho(\mathfrak{u}), \alpha \rangle > 0$$
 (resp. ≥ 0) for $\alpha \in \Delta(\mathfrak{u}, \mathfrak{h})$.

Definition 2.7. Let V be a (\mathfrak{g}, K) -module. We say V is *unitarizable* if V admits a Hermitian inner product with respect to which \mathfrak{g}_0 acts by skew-Hermitian operators on V.

The (\mathfrak{g}, K) -module $A_{\mathfrak{q}}(\lambda)$ has the following properties.

Fact 2.8 ([8]). Let \mathbb{C}_{λ} be a one-dimensional $(\mathfrak{l}, L \cap K)$ -module.

- (i) $A_{\mathfrak{g}}(\lambda)$ is of finite length as a (\mathfrak{g}, K) -module.
- (ii) If λ is in the weakly good range, $A_{\mathfrak{q}}(\lambda)$ is irreducible or zero.
- (iii) If λ is in the good range, $A_{\mathfrak{q}}(\lambda)$ is nonzero.
- (iv) If λ is unitary and in the weakly fair range, then $A_{\mathfrak{q}}(\lambda)$ is unitarizable.

3. Differential Operators on Homogeneous Spaces

We introduce notation and lemmas concerning homogeneous spaces and differential operators, used in the subsequent sections. Let G be a complex linear algebraic group acting on a smooth variety X. Then the infinitesimal action is defined as a Lie algebra homomorphism from the Lie algebra \mathfrak{g} of G to the space of vector fields $\mathcal{T}(X)$ on X. Denote the image of $\xi \in \mathfrak{g}$ by $\xi_X \in \mathcal{T}(X)$. Then ξ_X gives a first order differential operator on the structure sheaf \mathcal{O}_X .

Suppose that X = G and the action of G on X is the product from left:

$$G \to \operatorname{Aut}(G), \qquad g \mapsto (g' \mapsto gg')$$

In this case we write the vector field ξ_X as ξ_G^L , which is a right invariant vector field on G. Similarly, if the action of G on X = G is the product from right:

$$G \to \operatorname{Aut}(G), \qquad g \mapsto (g' \mapsto g'g^{-1}),$$

we write the vector field ξ_X as ξ_G^R , which is a left invariant vector field on G. Let ξ_1, \dots, ξ_n be a basis of \mathfrak{g} and write $\xi^1, \dots, \xi^n \in \mathfrak{g}^*$ for the dual basis. Define regular functions α_j^i, β_i^j on G for $1 \leq i, j \leq n$ by

(3.1)
$$\alpha_j^i(g) := \langle \xi^i, \operatorname{Ad}(g^{-1})\xi_j \rangle, \quad \beta_i^j(g) := \langle \xi^j, \operatorname{Ad}(g)\xi_i \rangle.$$

Then it follows that

$$(\xi_j)_G^L = -\sum_{i=1}^n \alpha_j^i \cdot (\xi_i)_G^R, \quad (\xi_i)_G^R = -\sum_{j=1}^n \beta_i^j \cdot (\xi_j)_G^L, \quad \sum_{j=1}^n \alpha_j^i \beta_k^j = \delta_k^i.$$

We see $(\xi_j)_G^L$ as a differential operator on G. Then the function $(\xi_j)_G^L(\beta_i^j)$ on G is written as

$$(\xi_j)_G^L(\beta_i^j) = -\langle \xi^j, [\xi_j, \operatorname{Ad}(\cdot)\xi_i] \rangle.$$

Hence

(3.2)
$$\sum_{j=1}^{n} (\xi_j)_G^L(\beta_i^j) = -\sum_{j=1}^{n} \langle \xi^j, [\xi_j, \operatorname{Ad}(\cdot)\xi_i] \rangle = \operatorname{Trace} \operatorname{ad}(\operatorname{Ad}(\cdot)\xi_i).$$

Let H be a complex algebraic subgroup of G. The quotient X := G/H is defined as a smooth algebraic variety (see [2, §II.6]). Denote by $\pi : G \to X$ the quotient map. Let V be a complex vector space with an algebraic action ρ of H. We define the \mathcal{O}_X -module \mathcal{V}_X associated with V as the subsheaf of $\pi_*\mathcal{O}_G \otimes V$ given by

$$\mathcal{V}_X(U) := \{ f \in \mathcal{O}(\pi^{-1}(U)) \otimes V : f(gh) = \rho(h)^{-1}f(g) \}$$

for an open set $U \subset X$. Here, we identify sections of $\mathcal{O}(\pi^{-1}(U)) \otimes V$ with regular V-valued functions on $\pi^{-1}(U)$. Analogous identification will be used for other varieties. The \mathcal{O}_X -module \mathcal{V}_X corresponds to the G-equivariant vector bundle with typical fiber V.

The G-equivariant structure on \mathcal{O}_G by the left translation induces a G-equivariant structure on \mathcal{V}_X . By differentiating it, the infinitesimal action of $\xi \in \mathfrak{g}$ is given by $f \mapsto \mathcal{E}_C^L f$.

We write $\operatorname{Ind}_H^G(V)$ for the space of global sections $\Gamma(X, \mathcal{V}_X)$ regarded as an algebraic G-module. Then by the Frobenius reciprocity,

$$\operatorname{Hom}_G(W, \operatorname{Ind}_H^G(V)) \xrightarrow{\sim} \operatorname{Hom}_H(W, V)$$

for any algebraic G-module W.

Lemma 3.1. If G and H are reductive, then

$$R(G) \otimes_{R(H)} V \simeq \operatorname{Ind}_H^G(V)$$

as G-modules.

Proof. We give the H-action on $\mathcal{O}(G) \otimes_{\mathbb{C}} V$ by $h(f \otimes v) \mapsto f(\cdot h) \otimes hv$. The H-module $\mathcal{O}(G) \otimes_{\mathbb{C}} V$ decomposes as a direct sum of irreducible factors because H is reductive. From the definition of \mathcal{V}_X , the space of global sections $\operatorname{Ind}_H^G(V)$ is equal to the set of H-invariant elements $(\mathcal{O}(G) \otimes_{\mathbb{C}} V)^H$. With the identification $\mathcal{O}(G) \simeq R(G)$, we see that the canonical surjective map $R(G) \otimes_{\mathbb{C}} V \to R(G) \otimes_{R(H)} V$ is the projection onto the H-invariants. Hence we have

$$R(G) \otimes_{R(H)} V \simeq (\mathcal{O}(G) \otimes_{\mathbb{C}} V)^H \simeq \operatorname{Ind}_H^G(V)$$

as G-modules. \Box

Suppose that H' is another algebraic subgroup of G such that $H \subset H'$. Let X' := G/H' and S := H'/H be the quotient varieties and $\varpi : X \to X'$ the canonical map. Write \mathcal{V}_S for the \mathcal{O}_S -module associated with V. Let $W := \operatorname{Ind}_H^{H'}(V)$ and let $\mathcal{W}_{X'}$ be the $\mathcal{O}_{X'}$ -module associated with the H'-module W.

The following lemma is immediate from the definition, which indicates 'induction by stages' in our setting.

Lemma 3.2. In the setting above, there is a canonical G-equivariant isomorphism $\varpi_* \mathcal{V}_X \to \mathcal{W}_{X'}$.

Let K be an algebraic subgroup of G. The inclusion map $i: K \to G$ induces the immersion $i: Y := K/(H \cap K) \to X$ of algebraic variety. Define the ideal \mathcal{I}_Y of \mathcal{O}_X as

$$\mathcal{I}_{Y} := \{ f \in \mathcal{O}_{X} : f(y) = 0 \text{ for } y \in Y \},$$

so \mathcal{I}_Y is the defining ideal of the closure \overline{Y} of Y. We denote by \mathcal{I}_Y^p the p-th power of \mathcal{I}_Y for $p \geq 0$. We use i^{-1} for the inverse image of sheaves of abelian groups. Then $i^{-1}(\mathcal{I}_Y^p/\mathcal{I}_Y^{p+1})$ is isomorphic to the K-equivariant \mathcal{O}_Y -module associated with the dual of the p-th symmetric tensor product $S^p(\mathfrak{g}/(\mathfrak{h}+\mathfrak{k}))^*$ with the coadjoint action of $H \cap K$. Let \mathcal{T}_X be the sheaf of vector fields in X and let $\mathcal{T}_{X/Y}$ be the sheaf of vector fields in X tangent to Y, namely

$$\mathcal{T}_{X/Y} := \{ \xi \in \mathcal{T}_X : \xi(\mathcal{I}_Y) \subset \mathcal{I}_Y \}.$$

Then $\xi \in \mathcal{T}_X$ operates on \mathcal{O}_X and induces an \mathcal{O}_Y -homomorphism

$$\xi: i^{-1}(\mathcal{I}_Y/\mathcal{I}_Y^2) \to i^{-1}(\mathcal{O}_X/\mathcal{I}_Y) \simeq \mathcal{O}_Y.$$

This gives an isomorphism of locally free \mathcal{O}_Y -modules

$$i^{-1}(\mathcal{T}_X/\mathcal{T}_{X/Y}) \simeq \mathcal{H}om_{\mathcal{O}_Y}(i^{-1}(\mathcal{I}_Y/\mathcal{I}_Y^2), \mathcal{O}_Y),$$

which correspond to the normal bundle of Y in X.

We denote by \mathcal{D}_X the ring of differential operators on X. Then \mathcal{D}_X has the filtration given by

$$F_p \mathcal{D}_X := \{ \xi \in \mathcal{D}_X : \xi(\mathcal{I}_Y^{p+1}) \subset \mathcal{I}_Y \},\$$

which is called the filtration by normal degree with respect to i. A section of $F_p\mathcal{D}_X$ is locally written as $\sum \eta_1 \cdots \eta_r \xi_1 \dots \xi_q$, where $q \leq p, \xi_1, \dots, \xi_q \in \mathcal{T}_X$, and $\eta_1, \dots, \eta_r \in \mathcal{T}_{X/Y}$. Let $G_p\mathcal{D}_X(\subset \mathcal{D}_X)$ be the sheaf of differential operators on X with rank equal or less than p. For $D \in G_p\mathcal{D}_X$, the differential operator $D: \mathcal{O}_X \to \mathcal{O}_X$ induces an \mathcal{O}_Y -homomorphism

$$i^{-1}(\mathcal{I}_Y^p/\mathcal{I}_Y^{p+1}) \to i^{-1}(\mathcal{O}_X/\mathcal{I}_Y) \simeq \mathcal{O}_Y,$$

which we denote by $\gamma(D)$. Write

$$i^{-1}(\mathcal{I}^p_Y/\mathcal{I}^{p+1}_Y)^\vee := \mathcal{H}om_{\mathcal{O}_Y}(i^{-1}(\mathcal{I}^p_Y/\mathcal{I}^{p+1}_Y), \mathcal{O}_Y)$$

for the dual of $i^{-1}(\mathcal{I}_Y^p/\mathcal{I}_Y^{p+1})$. The map $D \mapsto \gamma(D)$ gives an isomorphism of \mathcal{O}_Y -modules

(3.3)
$$i^{-1}G_p \mathcal{D}_X / i^{-1}(G_p \mathcal{D}_X \cap F_{p-1} \mathcal{D}_X) \simeq i^{-1}(\mathcal{I}_Y^p / \mathcal{I}_Y^{p+1})^{\vee}.$$

They are also isomorphic to the p-th symmetric tensor of the locally free \mathcal{O}_Y -module $i^{-1}(\mathcal{I}_Y/\mathcal{I}_V^2)^\vee$.

Let \mathcal{M} be a left \mathcal{D}_Y -module. The Lie algebra \mathfrak{k} acts on \mathcal{M} by η_Y for $\eta \in \mathfrak{k}$. Write Ω_X and Ω_Y for the canonical sheaves of X and Y, respectively. The push-forward by i is defined by

$$i_+\mathcal{M} := i_*((\mathcal{M} \otimes_{\mathcal{O}_Y} \Omega_Y) \otimes_{\mathcal{D}_Y} i^*\mathcal{D}_X) \otimes_{\mathcal{O}_X} \Omega_X^{\vee}.$$

Here, we write i_* for the push-forward of \mathcal{O} -modules or \mathbb{C} -modules and i_+ for the push-forward of \mathcal{D} -modules. i^* denotes the pull-back of \mathcal{O} -modules. It follows from the definition that

$$i^{-1}i_{+}\mathcal{M} \simeq (\mathcal{M} \otimes_{\mathcal{O}_{Y}} \Omega_{Y}) \otimes_{\mathcal{D}_{Y}} (\mathcal{O}_{Y} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\mathcal{D}_{X}) \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\Omega_{X}^{\vee}.$$

By using the filtration by normal degree, we define the $(i^{-1}\mathcal{O}_X)$ -module

$$F_p i^{-1} i_+ \mathcal{M} := (\mathcal{M} \otimes_{\mathcal{O}_Y} \Omega_Y) \otimes_{\mathcal{D}_Y} (\mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1} F_p \mathcal{D}_X) \otimes_{i^{-1}\mathcal{O}_X} i^{-1} \Omega_X^{\vee}$$

for $p \geq 0$. This is well-defined because $\mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1}F_p\mathcal{D}_X$ is stable under the left \mathcal{D}_Y -action. We see that $i^{-1}F_p\mathcal{D}_X$ is a flat $(i^{-1}\mathcal{O}_X)$ -module, $\mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1}F_p\mathcal{D}_X$ is a left flat \mathcal{D}_Y -module, and $i^{-1}\Omega_X^\vee$ is a flat $(i^{-1}\mathcal{O}_X)$ -module. Hence the $(i^{-1}\mathcal{O}_X)$ -modules $F_p i^{-1}i_+\mathcal{M}$ form a filtration of $i^{-1}i_+\mathcal{M}$.

Consider the restriction of the \mathfrak{g} -action on $i_+\mathcal{M}$ to \mathfrak{k} . For $\eta \in \mathfrak{k}$, the vector field η_X is tangent to Y. Hence the \mathfrak{k} -action stabilizes each $F_p i^{-1} i_+ \mathcal{M}$ and it induces an action on the quotient $F_p i^{-1} i_+ \mathcal{M} / F_{p-1} i^{-1} i_+ \mathcal{M}$. Moreover, $F_p \mathcal{D}_X \cdot \mathcal{I}_Y \subset F_{p-1} \mathcal{D}_X$ implies that $i^{-1} \mathcal{I}_Y \cdot F_p i^{-1} i_+ \mathcal{M} \subset F_{p-1} i^{-1} i_+ \mathcal{M}$. Therefore $F_p i^{-1} i_+ \mathcal{M} / F_{p-1} i^{-1} i_+ \mathcal{M}$ carries an \mathcal{O}_Y -module structure. Write $\Omega_{X/Y} := \Omega_Y^{\vee} \otimes_{i^{-1} \mathcal{O}_X} i^{-1} \Omega_X$ for the relative canonical sheaf. The K-equivariant structures on the \mathcal{O}_Y -modules $\Omega_{X/Y}^{\vee}$ and $i^{-1}(\mathcal{I}^p/\mathcal{I}^{p+1})$ give \mathfrak{k} -actions on them.

Lemma 3.3. There is an isomorphism of \mathcal{O}_Y -modules

$$F_p i^{-1} i_+ \mathcal{M} / F_{p-1} i^{-1} i_+ \mathcal{M} \simeq \mathcal{M} \otimes_{\mathcal{O}_Y} \Omega_{X/Y}^{\vee} \otimes_{\mathcal{O}_Y} i^{-1} (\mathcal{I}_Y^p / \mathcal{I}_Y^{p+1})^{\vee}$$

that commutes with the actions of \mathfrak{k} . Here, the \mathfrak{k} -action on the right side is given by the tensor product of the action on each factors defined above.

Proof. The inverse image $i^*\mathcal{D}_X := \mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{D}_X$ of \mathcal{D}_X in the category of \mathcal{O} -modules has a left \mathcal{D}_Y -module structure. The action map

$$\mathcal{D}_Y \otimes_{\mathcal{O}_Y} (\mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{D}_X) \to \mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{D}_X$$

induces a morphism of left \mathcal{D}_Y -modules

$$(3.4) \mathcal{D}_{Y} \otimes_{\mathcal{O}_{Y}} (\mathcal{O}_{Y} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}(G_{p}\mathcal{D}_{X}/(G_{p}\mathcal{D}_{X} \cap F_{p-1}\mathcal{D}_{X})))$$

$$\to \mathcal{O}_{Y} \otimes_{i^{-1}\mathcal{O}_{Y}} i^{-1}(F_{p}\mathcal{D}_{X}/F_{p-1}\mathcal{D}_{X}).$$

We give the inverse map of (3.4). Any section of $F_p \mathcal{D}_X / F_{p-1} \mathcal{D}_X$ is represented by a sum of section of the form $\eta_1 \cdots \eta_r \xi_1 \cdots \xi_p$ for $\xi_1, \dots, \xi_p \in \mathcal{T}_X$ and $\eta_1, \dots, \eta_r \in \mathcal{T}_{X/Y}$. The inverse map

$$\mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1}(F_p \mathcal{D}_X / F_{p-1} \mathcal{D}_X)$$

$$\to \mathcal{D}_Y \otimes_{\mathcal{O}_Y} (\mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}_X} i^{-1}(G_p \mathcal{D}_X / (G_p \mathcal{D}_X \cap F_{p-1} \mathcal{D}_X)))$$

is given by

$$f \otimes \eta_1 \cdots \eta_r \xi_1 \cdots \xi_p \mapsto f(\eta_1)|_Y \cdots (\eta_r)|_Y \otimes (1 \otimes \xi_1 \cdots \xi_p).$$

Hence (3.4) is an isomorphism.

By using (3.3) and (3.4), we obtain isomorphisms of \mathcal{O}_Y -modules:

$$(3.5) \quad F_{p}i^{-1}i_{+}\mathcal{M}/F_{p-1}i^{-1}i_{+}\mathcal{M}$$

$$\simeq (\mathcal{M} \otimes_{\mathcal{O}_{Y}} \Omega_{Y}) \otimes_{\mathcal{D}_{Y}} (\mathcal{O}_{Y} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}(F_{p}\mathcal{D}_{X}/F_{p-1}\mathcal{D}_{X})) \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\Omega_{X}^{\vee}$$

$$\simeq (\mathcal{M} \otimes_{\mathcal{O}_{Y}} \Omega_{Y}) \otimes_{\mathcal{D}_{Y}} (\mathcal{D}_{Y} \otimes_{\mathcal{O}_{Y}} (\mathcal{O}_{Y} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}(G_{p}\mathcal{D}_{X}/(G_{p}\mathcal{D}_{X} \cap F_{p-1}\mathcal{D}_{X}))))$$

$$\otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\Omega_{X}^{\vee}$$

$$\simeq (\mathcal{M} \otimes_{\mathcal{O}_{Y}} \Omega_{Y}) \otimes_{\mathcal{O}_{Y}} i^{-1}(G_{p}\mathcal{D}_{X}/(G_{p}\mathcal{D}_{X} \cap F_{p-1}\mathcal{D}_{X})) \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\Omega_{X}^{\vee}$$

$$\simeq \mathcal{M} \otimes_{\mathcal{O}_{Y}} \Omega_{X/Y}^{\vee} \otimes_{\mathcal{O}_{Y}} i^{-1}(\mathcal{I}_{Y}^{p}/\mathcal{I}_{Y}^{p+1})^{\vee}.$$

We now show that this map commutes with the \(\mathbb{E} \)-actions. Take a section

$$(m \otimes \omega) \otimes (1 \otimes D) \otimes \omega' \in (\mathcal{M} \otimes_{\mathcal{O}} \Omega_Y) \otimes_{\mathcal{D}} (\mathcal{O}_Y \otimes_{i^{-1}\mathcal{O}} i^{-1} F_p \mathcal{D}_X) \otimes_{i^{-1}\mathcal{O}} i^{-1} \Omega_X^{\vee}$$

for $m \in \mathcal{M}$, $\omega \in \Omega_Y$, $D \in G_p \mathcal{D}_X$, and $\omega' \in \Omega_X^{\vee}$. Since any section of $F_p i^{-1} i_+ \mathcal{M} / F_{p-1} i^{-1} i_+ \mathcal{M}$ is represented by a sum of sections of this form, it is enough to see the commutativity for this section. Under the isomorphisms (3.5), the section $(m \otimes \omega) \otimes (1 \otimes D) \otimes \omega'$

corresponds to $m \otimes (\omega \otimes \omega') \otimes \gamma(D) \in \mathcal{M} \otimes_{\mathcal{O}} \Omega_{X/Y}^{\vee} \otimes_{\mathcal{O}} i^{-1}(\mathcal{I}^p/\mathcal{I}^{p+1})^{\vee}$. For $\eta \in \mathfrak{k}$, the \mathfrak{k} -action on $i^{-1}i_+\mathcal{M}$ is given by

$$(m \otimes \omega) \otimes (1 \otimes D) \otimes \omega'$$

$$\mapsto (m \otimes \omega) \otimes (1 \otimes D(-\eta_X)) \otimes \omega' + (m \otimes \omega) \otimes (1 \otimes D) \otimes \eta_X \omega'$$

$$= (m \otimes \omega) \otimes (1 \otimes (-\eta_X)D) \otimes \omega' + (m \otimes \omega) \otimes (1 \otimes [\eta_X, D]) \otimes \omega'$$

$$+ (m \otimes \omega) \otimes (1 \otimes D) \otimes \eta_X \omega'.$$

Since $\eta_X|_Y = \eta_Y$, it follows that

$$(m \otimes \omega) \otimes (1 \otimes (-\eta_X)D) \otimes \omega' = (m \otimes \omega)(-\eta_Y) \otimes (1 \otimes D) \otimes \omega'$$
$$= (\eta_Y m \otimes \omega) \otimes (1 \otimes D) \otimes \omega' + (m \otimes \omega(-\eta_Y)) \otimes (1 \otimes D) \otimes \omega'.$$

As a result, the action of η is given by

$$\eta \cdot ((m \otimes \omega) \otimes (1 \otimes D) \otimes \omega')$$

$$= (\eta_Y m \otimes \omega) \otimes (1 \otimes D) \otimes \omega' + (m \otimes \omega(-\eta_Y)) \otimes (1 \otimes D) \otimes \omega'$$

$$+ (m \otimes \omega) \otimes (1 \otimes [\eta_X, D]) \otimes \omega' + (m \otimes \omega) \otimes (1 \otimes D) \otimes \eta_X \omega'.$$

Since $[\eta_X, D] \in G_p \mathcal{D}_X$, the section $\eta \cdot ((m \otimes \omega) \otimes (1 \otimes D) \otimes \omega')$ corresponds to

$$\eta_Y m \otimes (\omega \otimes \omega') \otimes \gamma(D) + m \otimes \eta_Y(\omega \otimes \omega') \otimes \gamma(D) + m \otimes (\omega \otimes \omega') \otimes \gamma([\eta_X, D]).$$

Thus, the commutativity follows from $\gamma([\eta_X, D]) = \eta \cdot \gamma(D)$.

In the rest of this section, we assume that K and $H \cap K$ are complex reductive linear algebraic groups. In particular, $Y := K/(H \cap K)$ is an affine variety by [18, §I.2].

We assume moreover that there exists a K-equivariant isomorphism of \mathcal{O}_Y -modules: $\Omega_Y \simeq \mathcal{O}_Y$, or equivalently, the $(H \cap K)$ -module $\bigwedge^{\text{top}}(\mathfrak{h}/(\mathfrak{h} \cap \mathfrak{k}))$ with the adjoint action is trivial. This assumption automatically holds if $H \cap K$ is connected.

Let V be an H-module. Then V is written as a union of finite-dimensional H-submodules and has a structure of $(\mathfrak{h}, H \cap K)$ -module. Define the (\mathfrak{g}, K) -module $R(\mathfrak{g}, K) \otimes_{R(\mathfrak{h}, H \cap K)} V$ as in Section 2.

Let \mathcal{V}_X be the \mathcal{O}_X -module associated with the H-module V. Then the G-equivariant structures of \mathcal{V}_X and Ω_X induce (\mathfrak{g}, K) -actions on them.

The next lemma relates these two modules.

Lemma 3.4. Under the assumptions above, there is an isomorphism of (\mathfrak{g}, K) -modules

$$R(\mathfrak{g},K)\otimes_{R(\mathfrak{h},H\cap K)}V\stackrel{\sim}{\to}\Gamma(X,i_{+}\mathcal{O}_{Y}\otimes_{\mathcal{O}_{X}}\Omega_{X}\otimes_{\mathcal{O}_{X}}\mathcal{V}_{X}),$$

where the actions of \mathfrak{g} and K on the right side are given by the tensor product of three factors.

Proof. With the identification $\Omega_Y \simeq \mathcal{O}_Y$, we have

$$i_+\mathcal{O}_Y \otimes_{\mathcal{O}_X} \Omega_X \simeq i_*(\mathcal{O}_Y \otimes_{\mathcal{D}_Y} i^*\mathcal{D}_X).$$

Hence

$$i^{-1}(i_+\mathcal{O}_Y \otimes_{\mathcal{O}_X} \Omega_X \otimes_{\mathcal{O}_X} \mathcal{V}_X) \simeq \mathcal{O}_Y \otimes_{\mathcal{D}_Y} (i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{V}_X).$$

Using the right $(i^{-1}\mathcal{D}_X)$ -module structure of $i^*\mathcal{D}_X$, we define a \mathfrak{g} -action ρ on the sheaf $i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{V}_X$ by

$$\rho(\xi)(D\otimes v) := D(-\xi_X)\otimes v + D\otimes \xi v$$

for $\xi \in \mathfrak{g}$, $D \in i^*\mathcal{D}_X$, and $v \in \mathcal{V}_X$. Moreover, the sheaf $i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{V}_X$ is K-equivariant. We denote this K-action and also its infinitesimal \mathfrak{k} -action by ν . Using the $(\mathcal{D}_Y, i^{-1}\mathcal{D}_X)$ -bimodule structure on $i^*\mathcal{D}_X$, the \mathfrak{k} -action ν is given by

$$\nu(\eta)(D \otimes v) = \eta_Y D \otimes v - D\eta_X \otimes v + D \otimes \eta v$$

for $\eta \in \mathfrak{k}$. Then $\Gamma(Y, i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{V}_X)$ is a weak Harish-Chandra module in the sense of [17], namely,

(3.6)
$$\nu(k)\rho(\xi)\nu(k^{-1}) = \rho(\operatorname{Ad}(k)\xi)$$

for $k \in K$ and $\xi \in \mathfrak{g}$. Put $\omega(\eta) := \nu(\eta) - \rho(\eta)$ for $\eta \in \mathfrak{k}$. Then $\omega(\eta)$ is given by

$$\omega(\eta)(D\otimes v)=\eta_Y D\otimes v.$$

Since Y is an affine variety, $\Gamma(Y, \mathcal{D}_Y)$ is generated by $U(\mathfrak{k})$ as an $\mathcal{O}(Y)$ -algebra. Therefore,

$$\Gamma(X, i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{V}_{X})$$

$$\simeq \mathcal{O}(Y) \otimes_{\Gamma(Y, \mathcal{D}_{Y})} \Gamma(Y, i^{*}\mathcal{D}_{X} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\mathcal{V}_{X})$$

$$\simeq \Gamma(Y, i^{*}\mathcal{D}_{X} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\mathcal{V}_{X}) / \omega(\mathfrak{k})\Gamma(Y, i^{*}\mathcal{D}_{X} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\mathcal{V}_{X}).$$

Let $e \in K$ be the identity element. Write $o := e(H \cap K) \in Y$ for the base point and $i_{o,Y} : \{o\} \to Y$ for the immersion. Let \mathcal{I}_o be the maximal ideal of \mathcal{O}_Y corresponding to o. The geometric fiber of $i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{V}_X$ at o is given by

$$W := (i_{o,Y})^* (i^* \mathcal{D}_X \otimes_{i^{-1} \mathcal{O}_X} i^{-1} \mathcal{V}_X)$$

$$\simeq \Gamma(Y, i^* \mathcal{D}_X \otimes_{i^{-1} \mathcal{O}_X} i^{-1} \mathcal{V}_X) / \mathcal{I}_o(Y) \Gamma(Y, i^* \mathcal{D}_X \otimes_{i^{-1} \mathcal{O}_X} i^{-1} \mathcal{V}_X).$$

The actions ρ and ν on $i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_X} i^{-1}\mathcal{V}_X$ induce a \mathfrak{g} -action ρ_o and an $(H \cap K)$ -action ν_o on W. With these actions, W becomes a $(\mathfrak{g}, H \cap K)$ -module. To show this, it is enough to see that ρ_o and ν_o agree on $\mathfrak{h} \cap \mathfrak{k}$. This follows from

$$\omega(\eta)\Gamma(Y, i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_Y} i^{-1}\mathcal{V}_X) \subset \mathcal{I}_o(Y)\Gamma(Y, i^*\mathcal{D}_X \otimes_{i^{-1}\mathcal{O}_Y} i^{-1}\mathcal{V}_X)$$

for $\eta \in \mathfrak{h} \cap \mathfrak{k}$.

We claim that $W \simeq U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} V$ as a $(\mathfrak{g}, H \cap K)$ -module. Put $i_{o,X} := i \circ i_{o,Y}$. Then

$$W \simeq (i_{o,X})^* \mathcal{D}_X \otimes_{(i_{o,X})^{-1} \mathcal{O}_X} (i_{o,X})^{-1} \mathcal{V}_X$$

$$\simeq (i_{o,X})^{-1} ((i_{o,X})_+ \mathcal{O}_{\{o\}} \otimes_{\mathcal{O}_X} \Omega_X) \otimes_{(i_{o,X})^{-1} \mathcal{O}_X} (i_{o,X})^{-1} \mathcal{V}_X.$$

Let $\{F_p\mathcal{D}_X\}$ be the filtration by normal degree with respect to $i_{o,X}$. Define the filtration

$$F_pW := (i_{o,X})^* F_p \mathcal{D}_X \otimes_{(i_{o,X})^{-1} \mathcal{O}_X} (i_{o,X})^{-1} \mathcal{V}_X$$

of W. Then F_pW is $(\mathfrak{h}, H\cap K)$ -stable and there is an isomorphism of $(\mathfrak{h}, H\cap K)$ modules

$$F_p W/F_{p-1} W \simeq (i_{o,X})^{-1} (\mathcal{I}_o^p/\mathcal{I}_o^{p+1})^{\vee} \otimes V$$

by Lemma 3.3. The isomorphism $F_0W \simeq V$ induces a $(\mathfrak{g}, H \cap K)$ -homomorphism $\varphi : U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} V \to W$. Let $U_p(\mathfrak{g})$ be the standard filtration of $U(\mathfrak{g})$. Then

 $(U_p(\mathfrak{g})U(\mathfrak{h}))\otimes_{U(\mathfrak{h})}V$ is a filtration of the $(\mathfrak{h}, H\cap K)$ -module $U(\mathfrak{g})\otimes_{U(\mathfrak{h})}V$ and there is an isomorphism of $(\mathfrak{h}, H\cap K)$ -modules:

$$(U_p(\mathfrak{g})U(\mathfrak{h})) \otimes_{U(\mathfrak{h})} V / (U_{p-1}(\mathfrak{g})U(\mathfrak{h})) \otimes_{U(\mathfrak{h})} V \simeq S^p(\mathfrak{g}/\mathfrak{h}) \otimes V.$$

In view of the proof of Lemma 3.3, we see that the map on the successive quotient

$$\varphi_p: (U_p(\mathfrak{g})U(\mathfrak{h})) \otimes_{U(\mathfrak{h})} V / (U_{p-1}(\mathfrak{g})U(\mathfrak{h})) \otimes_{U(\mathfrak{h})} V \to F_pW/F_{p-1}W$$

induced by φ is an isomorphism. Hence φ is an isomorphism.

As a K-equivariant \mathcal{O}_Y -module, $i^*\mathcal{D}_Y\otimes_{i^{-1}\mathcal{O}_X}i^{-1}\mathcal{V}_X$ is isomorphic to the \mathcal{O}_Y -module \mathcal{W}_Y associated with the $(H\cap K)$ -module W. Hence we can see global sections $\Gamma(Y,i^*\mathcal{D}_Y\otimes_{i^{-1}\mathcal{O}_X}i^{-1}\mathcal{V}_X)$ as W-valued regular functions on K. Let f be a W-valued regular function on K such that $f(kh)=\nu_o(h^{-1})f(k)$ for $k\in K$ and $h\in H\cap K$. The \mathfrak{g} -action ρ at e is given by $(\rho(\xi)f)(e)=\rho_o(\xi)(f(e))$. Hence (3.6) implies that

$$(\rho(\xi)f)(k) = (\nu(k)\rho(\mathrm{Ad}(k^{-1})\xi)\nu(k^{-1})f)(k) = \rho_o(\mathrm{Ad}(k^{-1})\xi)(f(k)).$$

Let ξ_1, \ldots, ξ_n be a basis of $\mathfrak g$ and write $\xi^1, \ldots, \xi^n \in \mathfrak g^*$ for its dual basis. Under the isomorphism $\Gamma(Y, \mathcal W_Y) \simeq R(K) \otimes_{R(H \cap K)} W$ given in Lemma 3.1, the $\mathfrak g$ -action ρ on $R(K) \otimes_{R(H \cap K)} W$ is given by

(3.7)
$$\rho(\xi)(S \otimes w) = \sum_{i=1}^{n} \langle \xi^{i}, \operatorname{Ad}(\cdot)^{-1} \xi \rangle S \otimes \rho_{o}(\xi_{i}) w$$

for $S \in R(K)$ and $w \in W$. If we define ρ on $R(K) \otimes_{\mathbb{C}} W$ by this equation, then ρ commutes with the canonical surjective map

$$p: R(K) \otimes_{\mathbb{C}} W \to R(K) \otimes_{R(H \cap K)} W.$$

The K-action ν is given by the left translation of R(K):

$$\nu(k)(S\otimes w)=(kS)\otimes w.$$

Hence ν also lifts to the action on $R(K) \otimes_{\mathbb{C}} W$ and commutes with p. Let η_1, \dots, η_m be a basis of \mathfrak{k} and write $\eta^1, \dots, \eta^m \in \mathfrak{k}^*$ for its dual basis. Define the regular functions α^i_j and β^j_i on K with respect to η_i as in (3.1). Then the \mathfrak{k} -action ω is given by

$$\omega(\eta_j)(S \otimes w) = \nu(\eta_j)(S \otimes w) - \rho(\eta_j)(S \otimes w)$$
$$= ((\eta_j)_K^L S) \otimes w - \sum_{i=1}^m \alpha_j^i S \otimes \rho_o(\eta_i) w.$$

Here, we identify R(K) with $\mathcal{O}(K)$, and give actions of differential operators on K. We have

$$\Gamma(X, i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{V}_{X})$$

$$\simeq \Gamma(Y, i^{*}\mathcal{D}_{X} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\mathcal{V}_{X})/\omega(\mathfrak{k})\Gamma(Y, i^{*}\mathcal{D}_{X} \otimes_{i^{-1}\mathcal{O}_{X}} i^{-1}\mathcal{V}_{X})$$

$$\simeq (R(K) \otimes_{R(H \cap K)} W)/\omega(\mathfrak{k})(R(K) \otimes_{R(H \cap K)} W).$$

We note that the \mathfrak{k} -actions ρ and ν agree on the quotient $(R(K) \otimes_{R(H \cap K)} W)/\omega(\mathfrak{k})(R(K) \otimes_{R(H \cap K)} W)$ and hence it becomes a (\mathfrak{g}, K) -module.

The equation $\sum_{j=1}^{m} \alpha_j^i \beta_k^j = \delta_k^i$ implies that $\omega(\mathfrak{k})(R(K) \otimes_{\mathbb{C}} W)$ is generated by the elements of the form $\sum_{j=1}^{m} \omega(\eta_j)(\beta_k^j S \otimes w)$ for $S \in R(K)$ and $w \in W$. We observe

from (3.2) that $\sum_{j=1}^{m} (\eta_j)_K^L(\beta_k^j) = 0$ because Trace $\mathrm{ad}(\cdot) = 0$ for the reductive Lie algebra \mathfrak{k} . Therefore,

$$(\eta_k)_K^R = -\sum_{j=1}^m \beta_k^j (\eta_j)_K^L = -\sum_{j=1}^m (\eta_j)_K^j \beta_k^j$$

as differential operators on K. Then

$$\sum_{j=1}^{m} \omega(\eta_j)(\beta_k^j S \otimes w) = \sum_{j=1}^{m} (\eta_j)_K^L \beta_k^j S \otimes w + \sum_{i,j=1}^{m} (\alpha_j^i \beta_k^j S \otimes \rho_o(\eta_i) w)$$
$$= -(\eta_k)_K^R S \otimes w + S \otimes \rho_o(\eta_k) w.$$

Consequently, the kernel of the map

$$R(K) \otimes_{\mathbb{C}} W \to (R(K) \otimes_{R(H \cap K)} W)/\omega(\mathfrak{k})(R(K) \otimes_{R(H \cap K)} W)$$

is generated by Ker p and $-(\eta_k)_K^R S \otimes w + S \otimes \rho_o(\eta_k) w$. Hence

$$(R(K) \otimes_{R(H \cap K)} W)/\omega(\mathfrak{k})(R(K) \otimes_{R(H \cap K)} W)$$

$$\simeq R(K) \otimes_{R(\mathfrak{k}, H \cap K)} W$$

$$\simeq R(\mathfrak{g}, K) \otimes_{R(\mathfrak{g}, H \cap K)} W.$$

From (3.7), we see that the isomorphism

 $(R(K) \otimes_{R(H \cap K)} W)/\omega(\mathfrak{k})(R(K) \otimes_{R(H \cap K)} W) \simeq R(\mathfrak{g}, K) \otimes_{R(\mathfrak{g}, H \cap K)} W$ commutes with the (\mathfrak{g}, K) -actions. Therefore,

$$\Gamma(X, i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{V}_{X}) \simeq R(\mathfrak{g}, K) \otimes_{R(\mathfrak{g}, H \cap K)} W$$
$$\simeq R(\mathfrak{g}, K) \otimes_{R(\mathfrak{g}, H \cap K)} V$$

and the lemma is proved.

4. Localization of the Cohomological Induction

In this section, we construct cohomologically induced modules on flag varieties. Let G_0 be a connected real linear reductive Lie group with Lie algebra \mathfrak{g}_0 and \mathfrak{q} a θ -stable parabolic subalgebra as in Section 2. We define the complexification G of G_0 as a complex reductive linear algebraic group. Write \overline{Q} for the parabolic subgroup of G with Lie algebra $\overline{\mathfrak{q}}$.

Suppose that V is a \overline{Q} -module and use the same letter V for the underlying $(\bar{\mathfrak{q}}, L \cap K)$ -module. In Section 2, we define the cohomologically induced module

$$(\Pi_{L\cap K}^K)_s(U(\mathfrak{g})\otimes_{U(\bar{\mathfrak{g}})}(V\otimes\mathbb{C}_{2\rho(\mathfrak{u})})),$$

where $s = \dim(\mathfrak{u} \cap \mathfrak{k})$.

Let $X := G/\overline{Q}$ and $Y := K/(\overline{Q} \cap K)$, which are the partial flag varieties of G and K, respectively. The inclusion map $i : Y \to X$ is a closed immersion. Let $i_+\mathcal{O}_Y$ be the push-forward of \mathcal{O}_Y in the category of \mathcal{D} -modules. We write \mathcal{V}_X for the G-equivariant \mathcal{O}_X -module associated with the \overline{Q} -module V as in Section 3.

The next theorem relates the cohomologically induced module and the \mathcal{O}_X -module $i_+\mathcal{O}_Y\otimes_{\mathcal{O}_X}\mathcal{V}_X$. This theorem is similar to that in [5], but differs in the following three ways. First, we assume that \mathfrak{q} is a θ -stable parabolic subalgebra and hence Y is a closed subvariety of the partial flag variety X, while in [5], X is a complete flag variety and Y is an arbitrary K-orbit. Second, we assume that V is a \overline{Q} -module and consider the \mathcal{O}_X -module $i_+\mathcal{O}_Y\otimes_{\mathcal{O}_X}\mathcal{V}_X$ with (\mathfrak{g},K) -action. On the

other hand, V is a one-dimensional $(\mathfrak{l}, L \cap K)$ -module and the corresponding twisted \mathcal{D} -module was used in [5]. Third, we adopt the functor $P_{\bar{\mathfrak{q}},L \cap K}^{\mathfrak{g},K}$ for cohomologically induced modules instead of $I_{\mathfrak{q},L \cap K}^{\mathfrak{g},K}$. As a result, the dual in the isomorphism in [5] does not appear in Theorem 4.1.

Theorem 4.1. Let V be a \overline{Q} -module. Then there is an isomorphism

$$(\Pi_{L\cap K}^K)_{s-i}(U(\mathfrak{g})\otimes_{U(\bar{\mathfrak{g}})}(V\otimes\mathbb{C}_{2\varrho(\mathfrak{g})}))\simeq \mathrm{H}^i(X,i_+\mathcal{O}_Y\otimes_{\mathcal{O}_X}\mathcal{V}_X)$$

of (\mathfrak{g}, K) -modules.

Proof. Let $\widetilde{X} := G/L$ and $\widetilde{Y} := K/(L \cap K)$. We have the commutative diagram:

$$\widetilde{Y} \xrightarrow{\widetilde{i}} \widetilde{X} \\
\downarrow \qquad \qquad \downarrow \pi \\
Y \xrightarrow{i} X$$

where the maps are defined canonically. Denote by $\mathcal{T}_{\widetilde{X}/X}$ the sheaf of local vector fields on \widetilde{X} tangent to the fiber of π and denote by $\Omega_{\widetilde{X}/X}$ the top exterior product of its dual $\mathcal{T}_{\widetilde{X}/X}^{\vee}$. Then $\Omega_{\widetilde{X}/X}$ is canonically isomorphic to $\Omega_{\widetilde{X}} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^*(\Omega_X^{\vee})$. Consider the complex of $(\pi^{-1}\mathcal{D}_X)$ -modules

$$\mathcal{C}^{-d} := \tilde{\imath}_{+} \mathcal{O}_{\widetilde{Y}} \otimes_{\mathcal{O}_{\widetilde{X}}} \Omega_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \bigwedge^{d} \mathcal{T}_{\widetilde{X}/X}.$$

The boundary map $\mathcal{C}^{-d} \to \mathcal{C}^{-d+1}$ is given by

$$f \otimes \omega \otimes \xi_{1} \wedge \cdots \wedge \xi_{d}$$

$$\mapsto \sum_{i} (-1)^{i+1} \left(-\xi_{i} f \otimes \omega \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \right.$$

$$+ f \otimes \omega \xi_{i} \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \right)$$

$$+ \sum_{i < j} (-1)^{i+j} \left(f \otimes \omega \otimes [\xi_{i}, \xi_{j}] \wedge \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \widehat{\xi_{j}} \wedge \cdots \wedge \xi_{d} \right),$$

where $f \in \tilde{\imath}_+\mathcal{O}_{\widetilde{Y}}$, $\omega \in \Omega_{\widetilde{X}/X}$ and $\xi_1, \ldots, \xi_d \in \mathcal{T}_{\widetilde{X}/X}$. Since $\Omega_{\widetilde{X}/X}$ and $\mathcal{T}_{\widetilde{X}/X}$ are G-equivariant, \mathfrak{g} acts on them by differential. The action of \mathfrak{g} on \mathcal{C}^d is given by the tensor product of the actions on $\tilde{\imath}_+\mathcal{O}_{\widetilde{Y}}$, $\Omega_{\widetilde{X}/X}$ and $\mathcal{T}_{\widetilde{X}/X}$.

By an argument in [5], we have a quasi-isomorphism of the complexes of \mathcal{D}_X modules $\pi_*\mathcal{C}^{\bullet} \simeq (i_+\mathcal{O}_Y)[s]$, where [s] denotes the shift by s. Then the projection
formula gives a quasi-isomorphism of complexes of \mathcal{O}_X -modules

$$\pi_*(\mathcal{C}^{\bullet} \otimes_{\pi^{-1}\mathcal{O}_X} \pi^{-1}\mathcal{V}_X) \simeq i_+\mathcal{O}_Y \otimes_{\mathcal{O}_X} \mathcal{V}_X[s].$$

The isomorphism $\Omega_{\widetilde{X}/X} \simeq \Omega_{\widetilde{X}} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^*(\Omega_X^{\vee})$ gives

$$\mathcal{C}^{-d} \otimes_{\pi^{-1}\mathcal{O}_X} \pi^{-1}\mathcal{V}_X \simeq \tilde{\imath}_+ \mathcal{O}_{\widetilde{Y}} \otimes_{\mathcal{O}_{\widetilde{X}}} \Omega_{\widetilde{X}} \otimes_{\mathcal{O}_{\widetilde{X}}} \bigwedge^d \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^* (\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee}).$$

The boundary map ∂ on the right side is given by

$$f \otimes \xi_{1} \wedge \cdots \wedge \xi_{d} \otimes v$$

$$\mapsto \sum_{i} (-1)^{i+1} (f\xi_{i} \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \xi_{d} \otimes v)$$

$$- f \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \xi_{d} \otimes \xi_{i} v)$$

$$+ \sum_{i \leq j} (-1)^{i+j} (f \otimes [\xi_{i}, \xi_{j}] \wedge \xi_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \widehat{\xi}_{j} \wedge \cdots \wedge \xi_{d} \otimes v)$$

for $f \in \tilde{\imath}_{+}\mathcal{O}_{\widetilde{Y}} \otimes \Omega_{\widetilde{X}}$, $\xi_{1}, \ldots, \xi_{d} \in \mathcal{T}_{\widetilde{X}/X}$, and $v \in \pi^{*}(\mathcal{V}_{X} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{\vee})$. Here, the action of $\xi_{i} \in \mathcal{T}_{\widetilde{X}/X}$ on $\tilde{\imath}_{+}\mathcal{O}_{\widetilde{Y}} \otimes \Omega_{\widetilde{X}}$ is defined by the right $\mathcal{D}_{\widetilde{X}}$ -module structure of $\tilde{\imath}_{+}\mathcal{O}_{\widetilde{Y}} \otimes \Omega_{\widetilde{X}}$, and the action of ξ_{i} on

$$\pi^*(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee}) := \mathcal{O}_{\widetilde{X}} \otimes_{\pi^{-1}\mathcal{O}_X} \pi^{-1}(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee})$$

is given by the action on the first factor $\mathcal{O}_{\widetilde{X}}$ of the right side. Since \widetilde{X} is affine, we have an isomorphism of (\mathfrak{g}, K) -modules

$$H^{i-s}\Big(\Gamma(\widetilde{X}, \, \widetilde{\imath}_{+}\mathcal{O}_{\widetilde{Y}} \otimes_{\mathcal{O}_{\widetilde{X}}} \Omega_{\widetilde{X}} \otimes_{\mathcal{O}_{\widetilde{X}}} \bigwedge^{\bullet} \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^{*}(\mathcal{V}_{X} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{\vee})\Big)\Big)$$

$$\simeq H^{i}(X, \, i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{V}_{X}).$$

We now compute the cohomologically induced module $(\Pi_{L\cap K}^K)_{s-i}(U(\mathfrak{g})\otimes_{U(\bar{\mathfrak{q}})}(V\otimes\mathbb{C}_{2\rho(\mathfrak{u})}))$. The standard complex of $\bar{\mathfrak{u}}$ is the complex $U(\bar{\mathfrak{u}})\otimes\bigwedge^{\bullet}\bar{\mathfrak{u}}$ with the boundary map

$$D \otimes \xi_1 \wedge \dots \wedge \xi_d \mapsto \sum_{i=1}^d (-1)^{i+1} \left(D\xi_i \otimes \xi_1 \wedge \dots \wedge \widehat{\xi_i} \wedge \dots \wedge \xi_d \right)$$
$$+ \sum_{i < j} (-1)^{i+j} \left(D \otimes [\xi_i, \xi_j] \wedge \xi_1 \wedge \dots \wedge \widehat{\xi_i} \wedge \dots \wedge \widehat{\xi_j} \wedge \dots \wedge \xi_d \right)$$

for $D \in U(\bar{\mathfrak{u}})$ and $\xi_1, \ldots, \xi_d \in \bar{\mathfrak{u}}$. This gives a left resolution of the trivial $\bar{\mathfrak{u}}$ -module:

$$U(\bar{\mathfrak{u}}) \otimes \bigwedge \bar{\mathfrak{u}} \to \mathbb{C}.$$

Since $U(\bar{\mathfrak{q}}) \simeq U(\bar{\mathfrak{q}})/U(\bar{\mathfrak{q}})\mathfrak{l}$, we have an isomorphism

$$U(\bar{\mathfrak{q}}) \otimes_{U(\mathfrak{l})} \bigwedge^d \bar{\mathfrak{u}} \simeq U(\bar{\mathfrak{u}}) \otimes_{\mathbb{C}} \bigwedge^d \bar{\mathfrak{u}}.$$

Hence we have a left resolution of the trivial $(\bar{\mathfrak{q}}, L \cap K)$ -modules:

$$U(\bar{\mathfrak{q}})\otimes_{U(\mathfrak{l})}\bigwedge^d \bar{\mathfrak{u}}\to \mathbb{C}.$$

By taking tensor product with $V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}$, we get a resolution of the $(\bar{\mathfrak{q}}, L \cap K)$ -module $V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}$:

$$U(\bar{\mathfrak{q}}) \otimes_{U(\mathfrak{f})} (\bigwedge^{\bullet} \bar{\mathfrak{u}} \otimes V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}) \simeq (U(\bar{\mathfrak{q}}) \otimes_{U(\mathfrak{f})} \bigwedge^{\bullet} \bar{\mathfrak{u}}) \otimes (V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}) \to V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}.$$

Therefore, we have a resolution of the $(\mathfrak{g}, L \cap K)$ -module $U(\mathfrak{g}) \otimes_{U(\bar{\mathfrak{q}})} (V \otimes \mathbb{C}_{2\rho(\mathfrak{u})})$:

$$U(\mathfrak{g}) \otimes_{U(\mathfrak{f})} (\bigwedge^{\bullet} \bar{\mathfrak{u}} \otimes V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}) \to U(\mathfrak{g}) \otimes_{U(\bar{\mathfrak{q}})} (V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}),$$

where the boundary map ∂' is given by

$$D \otimes \xi_{1} \wedge \cdots \wedge \xi_{d} \otimes v$$

$$\mapsto \sum_{i=1}^{d} (-1)^{i+1} \left(D\xi_{i} \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \otimes v \right.$$

$$\left. - D \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \otimes \xi_{i} v \right)$$

$$+ \sum_{i < j} (-1)^{i+j} \left(D \otimes [\xi_{i}, \xi_{j}] \wedge \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \widehat{\xi_{j}} \wedge \cdots \wedge \xi_{d} \otimes v \right)$$

for $D \in U(\mathfrak{g}), \, \xi_1, \dots, \xi_d \in \bar{\mathfrak{u}}, \, \text{and} \, v \in V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}$.

Lemma 4.2. For any $(\mathfrak{l}, L \cap K)$ -module W, the $(\mathfrak{g}, L \cap K)$ -module $U(\mathfrak{g}) \otimes_{U(\mathfrak{l})} W$ is $\Pi_{L \cap K}^K$ -acyclic.

Proof. By [8, Proposition 2.115], $(P_{\mathfrak{g},L\cap K}^{\mathfrak{g},K})_j(U(\mathfrak{g})\otimes_{U(\mathfrak{l})}W)\simeq (P_{\mathfrak{k},L\cap K}^{\mathfrak{k},K})_j(U(\mathfrak{g})\otimes_{U(\mathfrak{l})}W)$ as a K-module. Hence it is enough to show that $(P_{\mathfrak{k},L\cap K}^{\mathfrak{k},K})_j(U(\mathfrak{g})\otimes_{U(\mathfrak{l})}W)=0$ for j>0. Let $U_p(\mathfrak{g})$ be the standard filtration of $U(\mathfrak{g})$ and let $U_p'(\mathfrak{g}):=U(\mathfrak{k})U_p(\mathfrak{g})U(\mathfrak{l})\subset U(\mathfrak{g})$ for $p\geq 0$. Then $U_p'(\mathfrak{g})\otimes_{U(\mathfrak{l})}W$ is a filtration of the $(\mathfrak{k},L\cap K)$ -module $U(\mathfrak{g})\otimes_{U(\mathfrak{l})}W$ and it follows that

$$U_p'(\mathfrak{g}) \otimes_{U(\mathfrak{l})} W / U_{p-1}'(\mathfrak{g}) \otimes_{U(\mathfrak{l})} W \simeq U(\mathfrak{k}) \otimes_{U(\mathfrak{l} \cap \mathfrak{k})} (S^p(\mathfrak{g}/(\mathfrak{l} + \mathfrak{k})) \otimes W).$$

Since

 $\operatorname{Hom}_{\mathfrak{k},L\cap K}(U(\mathfrak{k})\otimes_{U(\mathfrak{l}\cap\mathfrak{k})}(S^p(\mathfrak{g}/(\mathfrak{l}+\mathfrak{k}))\otimes W),\,\cdot\,)\simeq \operatorname{Hom}_{L\cap K}(S^p(\mathfrak{g}/(\mathfrak{l}+\mathfrak{k}))\otimes W,\,\cdot\,),$ we see that $U_p'(\mathfrak{g})\otimes_{U(\mathfrak{l})}W/U_{p-1}'(\mathfrak{g})\otimes_{U(\mathfrak{l})}W$ is a projective $(\mathfrak{k},L\cap K)$ -module. Then we see inductively that $U_p'(\mathfrak{g})\otimes_{U(\mathfrak{l})}W$ is also a projective $(\mathfrak{k},L\cap K)$ -module and in particular $P_{\mathfrak{k},L\cap K}^{\mathfrak{k},K}$ -acyclic. As a consequence,

$$\begin{split} (P_{\mathfrak{k},L\cap K}^{\mathfrak{k},K})_j(U(\mathfrak{g})\otimes_{U(\mathfrak{l})}W) &= (P_{\mathfrak{k},L\cap K}^{\mathfrak{k},K})_j \varinjlim_{p} (U_p'(\mathfrak{g})\otimes_{U(\mathfrak{l})}W) \\ &= \varinjlim_{p} (P_{\mathfrak{k},L\cap K}^{\mathfrak{k},K})_j (U_p'(\mathfrak{g})\otimes_{U(\mathfrak{l})}W) = 0 \end{split}$$

for
$$j > 0$$
.

From the lemma, we conclude that

$$(\Pi_{L\cap K}^K)_{s-i}(U(\mathfrak{g})\otimes_{U(\bar{\mathfrak{q}})}(V\otimes\mathbb{C}_{2\rho(\mathfrak{u})}))\simeq \mathrm{H}^{i-s}(\Pi_{L\cap K}^K(U(\mathfrak{g})\otimes_{U(\mathfrak{l})}(\bigwedge^{\bullet}\bar{\mathfrak{u}}\otimes V\otimes\mathbb{C}_{2\rho(\mathfrak{u})}))).$$

To complete the proof of Theorem 4.1, it is enough to give an isomorphism of the complexes of (\mathfrak{g}, K) -modules:

$$(4.1) \qquad \Gamma(\widetilde{X}, \ \widetilde{\imath}_{+}\mathcal{O}_{\widetilde{Y}} \otimes_{\mathcal{O}_{\widetilde{X}}} \Omega_{\widetilde{X}} \otimes_{\mathcal{O}_{\widetilde{X}}} \bigwedge^{\bullet} \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^{*}(\mathcal{V}_{X} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{\vee}))$$

$$\stackrel{\sim}{\longrightarrow} R(\mathfrak{g}, K) \otimes_{R(\mathfrak{l}, L \cap K)} (\bigwedge^{\bullet} \overline{\mathfrak{u}} \otimes V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}).$$

Let $o := e(L \cap K) \in \widetilde{Y}$ be the base point and $i_o : \{o\} \to \widetilde{Y}$ the immersion. Define the complex of left $\mathcal{D}_{\widetilde{Y}}$ -modules

$$\tilde{\imath}^* \mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1} \mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} (\bigwedge^{\bullet} \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^* (\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee})),$$

where the boundary map

$$\partial: \tilde{\imath}^* \mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1} \mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} (\bigwedge^{d} \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^* (\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee}))$$

$$\rightarrow \tilde{\imath}^* \mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1} \mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} (\bigwedge^{d} \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^* (\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee}))$$

is given by

$$(4.2) \quad \partial(D \otimes \xi_{1} \wedge \cdots \wedge \xi_{d} \otimes v)$$

$$:= \sum_{i} (-1)^{i+1} \left(D\xi_{i} \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \otimes v \right)$$

$$- D \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \otimes \xi_{i} v$$

$$+ \sum_{i \leq i} (-1)^{i+j} \left(D \otimes [\xi_{i}, \xi_{j}] \wedge \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \widehat{\xi_{j}} \wedge \cdots \wedge \xi_{d} \otimes v \right).$$

for $D \in \tilde{i}^*\mathcal{D}_{\widetilde{X}}$, $\xi, \dots, \xi_d \in \mathcal{T}_{\widetilde{X}/X}$, and $v \in \pi^*(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee})$. In view of the proof of Lemma 3.4, we have only to see that the pull-back $(i_o)^*$ sends the complex

$$\tilde{\imath}^*\mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1}\mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} (\bigwedge^{\bullet} \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^* (\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee}))$$

to $U(\mathfrak{g}) \otimes_{U(\bar{\mathfrak{g}})} (\bigwedge^{\bullet} \bar{\mathfrak{u}} \otimes V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}).$

Write $V^d := \bigwedge^d \bar{\mathfrak{u}} \otimes V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}$ for simplicity. Since $\bigwedge^d \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^*(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee})$ is isomorphic to the $\mathcal{O}_{\widetilde{X}}$ -module $\mathcal{V}_{\widetilde{X}}^d$ associated with the L-module V^d , it follows that

$$(i_o)^* \Big(\tilde{\imath}^* \mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1} \mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} \Big(\bigwedge^d \mathcal{T}_{\widetilde{X}/X} \otimes_{\mathcal{O}_{\widetilde{X}}} \pi^* (\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee}) \Big) \Big)$$

$$\simeq (i_o)^* \big(\tilde{\imath}^* \mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1} \mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} \mathcal{V}_{\widetilde{X}}^d \big)$$

$$\simeq U(\mathfrak{g}) \otimes_{U(0)} V^d$$

as in the proof of Lemma 3.4. Therefore, $\tilde{\imath}^*\mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1}\mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1}\mathcal{V}_{\widetilde{X}}^d$ is isomorphic to the K-equivariant $\mathcal{O}_{\widetilde{Y}}$ -module associated with the $(L \cap K)$ -module $U(\mathfrak{g}) \otimes_{U(\mathfrak{l})} V^d$. Via this isomorphism, we view a section

$$f \in \tilde{\imath}^* \mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1} \mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} \mathcal{V}_{\widetilde{X}}^d$$

as a regular function on an open set of K that takes values in $U(\mathfrak{g}) \otimes_{U(\mathfrak{l})} V^d$. Write $f(e) \in U(\mathfrak{g}) \otimes_{U(\mathfrak{l})} V^d$ for the evaluation at the identity $e \in K$. The boundary map (4.2) is $\mathcal{O}_{\widetilde{V}}$ -linear and hence induces an operator

$$\partial_e: U(\mathfrak{g}) \otimes_{U(\mathfrak{l})} V^d \to U(\mathfrak{g}) \otimes_{U(\mathfrak{l})} V^{d-1}$$

such that $\partial_e(f(e)) = (\partial f)(e)$ for every $f \in \tilde{\imath}^* \mathcal{D}_{\widetilde{X}} \otimes_{\tilde{\imath}^{-1}\mathcal{O}_{\widetilde{X}}} \tilde{\imath}^{-1} \mathcal{V}_{\widetilde{X}}^d$. It is enough to show that $\partial_e = \partial'$ on $U(\mathfrak{g}) \otimes_{U(\mathfrak{l})} V^{\bullet}$.

Put $Z := (\overline{U} \cdot L)/L \subset G/L = \widetilde{X}$ and write $i_Z : Z \to \widetilde{X}$ for the inclusion map so that $i_Z(Z) = \pi^{-1}(\{o\})$. Then under the isomorphism $Z \simeq \overline{U}$, there is a canonical isomorphism of \overline{U} -equivariant \mathcal{O} -modules $\iota : i_Z^* \mathcal{T}_{\widetilde{X}/X} \simeq \mathcal{T}_{\overline{U}}$.

For
$$\xi_1, \ldots, \xi_d \in \bar{\mathfrak{u}}$$
 and $v \in V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}$, put

$$m := \xi_1 \wedge \cdots \wedge \xi_d \otimes v \in V^d$$
.

We will choose sections $\widetilde{\xi}_i \in \mathcal{T}_{\widetilde{X}/X}$ and $\widetilde{v} \in \pi^*(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^\vee)$ on a neighborhood of the base point $o \in \widetilde{X}$ in the following way. Take $\widetilde{\xi}_i \in \mathcal{T}_{\widetilde{X}/X}$ such that $\widetilde{\xi}_i|_Z \in i_Z^*\mathcal{T}_{\widetilde{X}/X}$ corresponds to $(\xi_i)_{\overline{U}}^R$ under ι . The G-equivariant \mathcal{O}_X -module $\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^\vee$ is isomorphic to the \mathcal{O}_X -module associated with the \overline{Q} -module $V \otimes \mathbb{C}_{2\rho(\mathfrak{u})}$. Hence $f \in \pi^*(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^\vee)$ is identified with a $(V \otimes \mathbb{C}_{2\rho(\mathfrak{u})})$ -valued regular function on an open set of \widetilde{X} satisfying $f(gq) = q^{-1} \cdot f(g)$ for $g \in G$ and $q \in \overline{Q}$. With this identification, we take a section $\widetilde{v}' \in \mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^\vee$ on a neighborhood of o such that $\widetilde{v}'(e) = v$. Define the section $\widetilde{v} \in \pi^*(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^\vee)$ as

$$\widetilde{v} := 1 \otimes \widetilde{v}' \in \mathcal{O}_{\widetilde{X}} \otimes_{\pi^{-1}\mathcal{O}_X} \pi^{-1}(\mathcal{V}_X \otimes_{\mathcal{O}_X} \Omega_X^{\vee}).$$

and define the section $\widetilde{m} \in \mathcal{V}_{\widetilde{X}}^d$ in a neighborhood of o as

$$\widetilde{m} := \widetilde{\xi_1} \wedge \cdots \wedge \widetilde{\xi_d} \otimes \widetilde{v} \in \mathcal{V}_{\widetilde{X}}^d.$$

Then

$$1 \otimes \widetilde{m} \in \widetilde{\imath} * \mathcal{D}_{\widetilde{X}} \otimes_{\widetilde{\imath}^{-1}\mathcal{O}_{\widetilde{X}}} \widetilde{\imath}^{-1} \mathcal{V}^d_{\widetilde{X}}$$

satisfies $(1 \otimes \widetilde{m})(e) = 1 \otimes m$.

We have

$$\partial(1 \otimes \widetilde{m})$$

$$= \sum_{i} (-1)^{i+1} \Big((\xi_{i})_{\widetilde{X}} \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{v} \Big)$$

$$-1 \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{\xi}_{i} \widetilde{v} \Big)$$

$$+ \sum_{i < j} (-1)^{i+j} \Big(1 \otimes [\widetilde{\xi}_{i}, \widetilde{\xi}_{j}] \wedge \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \widehat{\xi}_{j} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{v} \Big)$$

and

$$\partial'(1 \otimes m)$$

$$= \sum_{i} (-1)^{i+1} (\xi_{i} \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \otimes v - 1 \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \xi_{d} \otimes \xi_{i} v)$$

$$+ \sum_{i < j} (-1)^{i+j} (1 \otimes [\xi_{i}, \xi_{j}] \wedge \xi_{1} \wedge \cdots \wedge \widehat{\xi_{i}} \wedge \cdots \wedge \widehat{\xi_{j}} \wedge \cdots \wedge \xi_{d} \otimes v).$$

Since $\widetilde{\xi_i}|_Z$ corresponds to $(\xi_i)\frac{R}{\overline{U}}$, the tangent vectors at the base point o of the vector fields $\widetilde{\xi_i}$ and $(\xi_i)_{\widetilde{X}}$ have the relation: $(\widetilde{\xi_i})_o = -((\xi_i)_{\widetilde{X}})_o$. Recall that the g-actions on $\mathcal{T}_{\widetilde{X}/X}$ and $\pi^*(\mathcal{V}_{\widetilde{X}}\otimes\Omega_{\widetilde{X}})$ are defined as the differentials of the G-equivariant structures on them. Our choice implies that $\widetilde{\xi_j}|_Z$ is left \overline{U} -invariant and hence $\xi_i \cdot \widetilde{\xi_j}|_Z = 0$. We therefore have

$$(1 \otimes \xi_i(\widetilde{\xi_1} \wedge \cdots \wedge \widehat{\widetilde{\xi_i}} \wedge \cdots \wedge \widetilde{\xi_d}) \otimes \widetilde{v})(e) = 0.$$

In addition, our choice of \widetilde{v} implies that $\mathcal{T}_{\widetilde{X}/X}\widetilde{v}=0$ and $(\xi_i\widetilde{v})(e)=\xi_iv$. As a result,

$$(\xi_{i})_{\widetilde{X}} \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\widetilde{\xi}_{i}} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{v} - 1 \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\widetilde{\xi}_{i}} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{\xi}_{i} \widetilde{v})(e)$$

$$= (\xi_{i})_{\widetilde{X}} \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\widetilde{\xi}_{i}} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{v})(e)$$

$$= (\xi_{i}(1 \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\widetilde{\xi}_{i}} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{v}))(e) - (1 \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\widetilde{\xi}_{i}} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \xi_{i} \widetilde{v})(e)$$

$$= \xi_{i}((1 \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\widetilde{\xi}_{i}} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \widetilde{v})(e)) - (1 \otimes \widetilde{\xi}_{1} \wedge \cdots \wedge \widehat{\widetilde{\xi}_{i}} \wedge \cdots \wedge \widetilde{\xi}_{d} \otimes \xi_{i} \widetilde{v})(e)$$

$$= \xi_{i} \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \xi_{d} \otimes v - 1 \otimes \xi_{1} \wedge \cdots \wedge \widehat{\xi}_{i} \wedge \cdots \wedge \xi_{d} \otimes \xi_{i} v.$$

Moreover, $[\widetilde{\xi_i}, \widetilde{\xi_j}]|_Z$ corresponds to $[(\xi_i)\frac{R}{U}, (\xi_j)\frac{R}{U}] = ([\xi_i, \xi_j])\frac{R}{U}$. Hence

$$(1 \otimes [\widetilde{\xi}_i, \widetilde{\xi}_j] \wedge \widetilde{\xi}_1 \wedge \dots \wedge \widehat{\widetilde{\xi}}_i \wedge \dots \wedge \widehat{\widetilde{\xi}}_j \wedge \dots \wedge \widetilde{\xi}_d \otimes \widetilde{v})(e)$$

= $1 \otimes [\xi_i, \xi_j] \wedge \xi_1 \wedge \dots \wedge \widehat{\xi}_i \wedge \dots \wedge \widehat{\xi}_j \wedge \dots \wedge \xi_d \otimes v.$

We thus conclude that

$$\partial_e(1\otimes m) = \partial_e((1\otimes \widetilde{m})(e)) = (\partial(1\otimes \widetilde{m}))(e) = \partial'(1\otimes m).$$

Since ∂_e and ∂' commute with \mathfrak{g} -actions, $\partial_e = \partial'$. Therefore, we obtain an isomorphism (4.1) and prove the theorem.

5. Construction of Parabolic Subalgebras

Let G_0 be a connected real linear reductive Lie group with Lie algebra \mathfrak{g}_0 and σ an involution of G_0 . Let G_0' be the identity component of the fixed point set G_0'' . There exists a Cartan involution θ of G_0 that commutes with σ . The corresponding maximal compact subgroups of G_0 and G_0' are written as $K_0 := G_0^{\theta}$ and $K_0' := (G_0')^{\theta}$, respectively. The Cartan decompositions are written as $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ and $\mathfrak{g}_0' = \mathfrak{k}_0' + \mathfrak{p}_0'$. We denote by $\mathfrak{g}, \mathfrak{g}', \mathfrak{k}$, etc. the complexifications of $\mathfrak{g}_0, \mathfrak{g}_0', \mathfrak{k}_0$, etc. Let σ and θ also denote the induced actions on \mathfrak{g}_0 and their complex linear extensions to \mathfrak{g} .

Definition 5.1. Let V be a (\mathfrak{g}',K') -module. We say that V is discretely decomposable if V admits a filtration $\{V_p\}_{p\in\mathbb{N}}$ such that $V=\bigcup_{p\in\mathbb{N}}V_p$ and V_p is of finite length as a (\mathfrak{g}',K') -module for each $p\in\mathbb{N}$.

If V is unitarizable and discretely decomposable, then V is an algebraic direct sum of irreducible (\mathfrak{g}', K') -modules (see [12, Lemma 1.3]).

Definition 5.2. Suppose that \mathfrak{q} is a θ -stable parabolic subalgebra of \mathfrak{g} . We say that \mathfrak{q} is σ -open if $\mathfrak{q} \cap \mathfrak{k} + \mathfrak{k}' = \mathfrak{k}$.

Remark 5.3. If \mathfrak{q} is a θ -stable parabolic subalgebra of \mathfrak{g} , there exists a σ -open θ -stable parabolic subalgebra that is conjugate to \mathfrak{q} under the adjoint action of K_0 .

We write $\mathcal{N}_{\mathfrak{g}}$ and $\mathcal{N}_{\mathfrak{g}'}$ for the nilpotent cones of \mathfrak{g} and \mathfrak{g}' , respectively. Let $\operatorname{pr}_{\mathfrak{g} \to \mathfrak{g}'}$ denote the projection from \mathfrak{g} onto \mathfrak{g}' along $\mathfrak{g}^{-\sigma}$.

Theorem 5.4. Let (G_0, G'_0) be a symmetric pair of connected real linear reductive Lie groups defined by an involution σ . Let \mathfrak{q} be a σ -open θ -stable parabolic subalgebra of \mathfrak{g} . Then the following three conditions are equivalent.

- (i) $A_{\mathfrak{q}}(\lambda)$ is nonzero and discretely decomposable as a (\mathfrak{g}', K') -module for some λ in the weakly fair range.
- (ii) $A_{\mathfrak{q}}(\lambda)$ is discretely decomposable as a (\mathfrak{g}', K') -module for any λ in the weakly fair range.
- (iii) Put $\mathfrak{q}' := N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}') + (\mathfrak{q} \cap \mathfrak{p}')$, where $N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')$ is the normalizer of $\mathfrak{q} \cap \mathfrak{p}'$ in \mathfrak{k}' . Then \mathfrak{q}' is a θ -stable parabolic subalgebra of \mathfrak{g}' .

The proof is based on the following criterion for the discrete decomposability ([12, Theorem 4.2]).

Fact 5.5. In the setting of Theorem 5.4, the following conditions are equivalent.

- (i) $A_{\mathfrak{q}}(\lambda)$ is nonzero and discretely decomposable as a (\mathfrak{g}', K') -module for some λ in the weakly fair range.
- (ii) $A_{\mathfrak{q}}(\lambda)$ is discretely decomposable as a (\mathfrak{g}', K') -module for any λ in the weakly fair range.
- $\mathrm{(iv)}\ \mathrm{pr}_{\mathfrak{g}\to\mathfrak{g}'}(\mathfrak{u}\cap\mathfrak{p})\subset\mathcal{N}_{\mathfrak{g}'}\ \mathit{for\ the\ nilradical}\ \mathfrak{u}\ \mathit{of}\ \mathfrak{q}.$

We use the following lemma for the proof of Theorem 5.4.

Lemma 5.6. Let V be a finite-dimensional vector space with a non-degenerate symmetric bilinear form. For subspaces $V_1 \subset V_2 \subset V$, we denote by $V_1^{\perp V_2}$ the set of all vectors in V_2 that are orthogonal to V_1 .

Suppose that X is a subspace of V such that $V = X \oplus X^{\perp V}$. Let p be the projection onto X along $X^{\perp V}$. Then for any subspace $W \subset V$, it follows that

$$(W\cap X)^{\perp X}=p(W^{\perp V}).$$

Proof. We have

$$(W \cap X)^{\perp X} = (W \cap X)^{\perp V} \cap X = (W^{\perp V} + X^{\perp V}) \cap X = p(W^{\perp V}),$$

so the assertion is verified.

Proof of Theorem 5.4. First of all, \mathfrak{q}' defined in (iii) is a subalgebra of \mathfrak{g} because $[\mathfrak{q} \cap \mathfrak{p}', \mathfrak{q} \cap \mathfrak{p}'] \subset \mathfrak{q} \cap \mathfrak{k}' \subset N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')$.

Choose an invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ on \mathfrak{g} such that the subspaces $\mathfrak{k}', \mathfrak{k}^{-\sigma}, \mathfrak{p}'$, and $\mathfrak{p}^{-\sigma}$ are mutually orthogonal. We use the letter $^{\perp}$ for orthogonal spaces with respect to $\langle \cdot, \cdot \rangle$ as in Lemma 5.6.

It is enough to prove the equivalence of (iii) and (iv) by Fact 5.5.

Assume that (iii) holds. The subspaces $\mathfrak{u} = \mathfrak{q}^{\perp \mathfrak{g}}$ and $\mathfrak{u}' = \mathfrak{q}'^{\perp \mathfrak{g}'}$ are the nilradicals of \mathfrak{q} and \mathfrak{q}' , respectively. Because \mathfrak{q} and \mathfrak{q}' are θ -stable, we have $(\mathfrak{q} \cap \mathfrak{p})^{\perp \mathfrak{p}} = \mathfrak{u} \cap \mathfrak{p}$ and $(\mathfrak{q}' \cap \mathfrak{p}')^{\perp \mathfrak{p}'} = \mathfrak{u}' \cap \mathfrak{p}'$. In view of Lemma 5.6 and $\mathfrak{q} \cap \mathfrak{p}' = \mathfrak{q}' \cap \mathfrak{p}'$, we get

$$\mathrm{pr}_{\mathfrak{g}\to\mathfrak{g}'}(\mathfrak{u}\cap\mathfrak{p})=\mathrm{pr}_{\mathfrak{g}\to\mathfrak{g}'}((\mathfrak{q}\cap\mathfrak{p})^{\perp\mathfrak{p}})=(\mathfrak{q}\cap\mathfrak{p}')^{\perp\mathfrak{p}'}=(\mathfrak{q}'\cap\mathfrak{p}')^{\perp\mathfrak{p}'}=\mathfrak{u}'\cap\mathfrak{p}'.$$

The right side is contained in $\mathcal{N}_{\mathfrak{g}'}$. This shows (iv).

Assume that (iv) holds. As we have seen above,

$$\mathrm{pr}_{\mathfrak{q} \to \mathfrak{q}'}((\mathfrak{q} \cap \mathfrak{p})^{\perp \mathfrak{p}}) = (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}.$$

Since the vector space $(\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}$ is contained in the nilpotent cone of \mathfrak{g}' , the bilinear form $\langle \cdot, \cdot \rangle$ is zero on $(\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}$ and hence $(\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'} \subset \mathfrak{q} \cap \mathfrak{p}'$. Then it follows that

$$\begin{split} N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}') &= [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}]^{\perp \mathfrak{k}'}. \text{ Indeed, for } x \in \mathfrak{k}', \\ x &\in [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}]^{\perp \mathfrak{k}'} \Leftrightarrow \langle x, [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}] \rangle = \{0\} \\ &\Leftrightarrow \langle [x, (\mathfrak{q} \cap \mathfrak{p}')], (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'} \rangle = \{0\} \\ &\Leftrightarrow [x, (\mathfrak{q} \cap \mathfrak{p}')] \in \mathfrak{q} \cap \mathfrak{p}' \\ &\Leftrightarrow x \in N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}'). \end{split}$$

Put $\mathfrak{q}' := N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}') + (\mathfrak{q} \cap \mathfrak{p}')$. Then

$${\mathfrak{q}'}^{\perp\mathfrak{g}'}=N_{\mathfrak{k}'}(\mathfrak{q}\cap\mathfrak{p}')^{\perp\mathfrak{k}'}+(\mathfrak{q}\cap\mathfrak{p}')^{\perp\mathfrak{p}'}=[(\mathfrak{q}\cap\mathfrak{p}'),(\mathfrak{q}\cap\mathfrak{p}')^{\perp\mathfrak{p}'}]+(\mathfrak{q}\cap\mathfrak{p}')^{\perp\mathfrak{p}'}.$$

Since $[(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}] \subset [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')] \subset N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')$, we see that $\mathfrak{q}'^{\perp \mathfrak{g}'} \subset \mathfrak{q}'$. We therefore have $\langle x, y \rangle = 0$ for $x, y \in \mathfrak{q}'^{\perp \mathfrak{g}'}$. Moreover, $\mathfrak{q}'^{\perp \mathfrak{g}'}$ is a subalgebra of \mathfrak{g}' because

$$\langle [{\mathfrak{q}'}^{\perp\mathfrak{g}'},{\mathfrak{q}'}^{\perp\mathfrak{g}'}],{\mathfrak{q}'}\rangle = \langle {\mathfrak{q}'}^{\perp\mathfrak{g}'},[{\mathfrak{q}'}^{\perp\mathfrak{g}'},{\mathfrak{q}'}]\rangle \subset \langle {\mathfrak{q}'}^{\perp\mathfrak{g}'},{\mathfrak{q}'}\rangle = \{0\}.$$

As a consequence, $\mathfrak{q}'^{\perp\mathfrak{g}'}$ is a solvable Lie algebra and hence contained in some Borel subalgebra \mathfrak{b}' of \mathfrak{g}' . Write \mathfrak{n}' for the nilradical of \mathfrak{b}' so $\mathfrak{n}' = \mathfrak{b}'^{\perp\mathfrak{g}'}$. Let $M := N_{K'}(\mathfrak{q} \cap \mathfrak{p}')$ be the normalizer of $\mathfrak{q} \cap \mathfrak{p}'$, which is an algebraic subgroup of K'. Then M has a Levi decomposition with reductive part M_R and unipotent part M_U (see $[6, \S VIII.4]$). If we denote by \mathfrak{m}_R and \mathfrak{m}_U the Lie algebras of M_R and M_U , respectively, then the bilinear form $\langle \cdot, \cdot \rangle$ is non-degenerate on \mathfrak{m}_R and zero on \mathfrak{m}_U . We then conclude that the nilradical of $N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')$ equals the radical of $N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')$ with respect to the bilinear form. As a result, $[(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}] = N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{k}'}$ is the nilradical of $N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')$ and hence $[(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}] \subset \mathfrak{n}'$. Since $(\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'} \subset \mathcal{N}_{\mathfrak{g}'} \cap \mathfrak{b}' = \mathfrak{n}'$, it follows that $\mathfrak{q}'^{\perp \mathfrak{g}'} = [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}] + (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'} \subset \mathfrak{n}'$. Hence we see that $\mathfrak{q}' \supset \mathfrak{n}'^{\perp \mathfrak{g}'} = \mathfrak{b}'$ and \mathfrak{q}' is a parabolic subalgebra of \mathfrak{g}' , showing (iii). \square

Retain the notation and the assumption of Theorem 5.4 and suppose that the equivalent conditions in Theorem 5.4 are satisfied. Let \mathcal{Q} be the set of all θ -stable parabolic subalgebras \mathfrak{q}'_i of \mathfrak{g}' such that $\mathfrak{q}'_i \cap \mathfrak{p}' = \mathfrak{q} \cap \mathfrak{p}'$. Then the parabolic subalgebra $\mathfrak{q}' = N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}') + (\mathfrak{q} \cap \mathfrak{p}')$ given in Theorem 5.4 is a unique maximal element of \mathcal{Q} .

On the other hand, a minimal element \mathfrak{q}'' of \mathcal{Q} is constructed as follows. For the parabolic subalgebra \mathfrak{q}' defined above, put $\mathfrak{l}' = \mathfrak{q}' \cap \overline{\mathfrak{q}'}$, which is a Levi part of \mathfrak{q}' . The θ -stable reductive subalgebra \mathfrak{l}' decomposes as

$$\mathfrak{l}' = \bigoplus_{i \in I} \mathfrak{l}'_i \oplus \mathfrak{z}(\mathfrak{l}'),$$

where \mathfrak{l}'_i are simple Lie algebras and $\mathfrak{z}(\mathfrak{l}')$ is the center of \mathfrak{l}' . Put $I_c := \{i \in I : \mathfrak{l}'_i \subset \mathfrak{k}'\}$ and define

$$\mathfrak{l}'_c := \bigoplus_{i \in I_c} \mathfrak{l}'_i \oplus (\mathfrak{z}(\mathfrak{l}') \cap \mathfrak{k}'), \quad \mathfrak{l}'_n := \bigoplus_{i \not\in I_c} \mathfrak{l}'_i \oplus (\mathfrak{z}(\mathfrak{l}') \cap \mathfrak{p}').$$

Then we have

$$\mathfrak{l}'=\mathfrak{l}'_c\oplus\mathfrak{l}'_n,\quad \mathfrak{l}'_n=[(\mathfrak{l}'\cap\mathfrak{p}'),(\mathfrak{l}'\cap\mathfrak{p}')]+\mathfrak{l}'\cap\mathfrak{p}',\quad \mathfrak{l}'_c\subset\mathfrak{k}'.$$

Take a Borel subalgebra $\mathfrak{b}(\mathfrak{l}'_c)$ of \mathfrak{l}'_c and define

(5.1)
$$\mathfrak{q}'' := \mathfrak{b}(\mathfrak{l}'_c) \oplus \mathfrak{l}'_n \oplus \mathfrak{u}'.$$

We claim that \mathfrak{q}'' is a minimal element of \mathcal{Q} and every minimal element is obtained in this way. Indeed, since any element \mathfrak{q}'_i of \mathcal{Q} is contained in \mathfrak{q}' , the parabolic subalgebra \mathfrak{q}'_i decomposes as $(\mathfrak{q}'_i \cap \mathfrak{l}') \oplus \mathfrak{u}'$. The condition $\mathfrak{q}'_i \cap \mathfrak{p}' = \mathfrak{q} \cap \mathfrak{p}'$ implies that $\mathfrak{q}'_i \supset \mathfrak{l}' \cap \mathfrak{p}'$ and hence $\mathfrak{q}'_i \supset \mathfrak{l}'_n$. As a consequence, the set \mathcal{Q} consists of the Lie algebras $\mathfrak{q}(\mathfrak{l}'_c) \oplus \mathfrak{l}'_n \oplus \mathfrak{u}'$ for parabolic subalgebras $\mathfrak{q}(\mathfrak{l}'_c)$ of \mathfrak{l}'_c . Our claim follows from this. In particular, a minimal element of \mathcal{Q} is unique up to inner automorphisms of \mathfrak{l}'_c .

We note here some observations on Lie algebras for later use.

Lemma 5.7. Retain the notation and the assumption above. Then

$$\mathfrak{q} \cap \mathfrak{g}' = (\mathfrak{q} \cap \mathfrak{l}'_c) \oplus \mathfrak{l}'_n \oplus \mathfrak{u}',$$

and

$$[(\mathfrak{l}'_n + \mathfrak{u}'), \mathfrak{g}] \subset \mathfrak{q} + \mathfrak{g}'.$$

Proof. From $\mathfrak{q} \cap \mathfrak{k}' \subset N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}')$ and $\mathfrak{q} \cap \mathfrak{p}' = \mathfrak{q}' \cap \mathfrak{p}'$, we have $\mathfrak{q} \cap \mathfrak{g}' \subset \mathfrak{q}'$. From the proof of Theorem 5.4, we have

$$\begin{split} \mathfrak{u}' &= \mathfrak{q}'^{\perp \mathfrak{g}'} = [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'}] + (\mathfrak{q} \cap \mathfrak{p}')^{\perp \mathfrak{p}'} \\ &\subset [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')] + (\mathfrak{q} \cap \mathfrak{p}') \subset \mathfrak{q} \cap \mathfrak{g}'. \end{split}$$

Moreover, $\mathfrak{l}'_n = [(\mathfrak{l}' \cap \mathfrak{p}'), (\mathfrak{l}' \cap \mathfrak{p}')] + (\mathfrak{l}' \cap \mathfrak{p}')$ and $\mathfrak{l}' \cap \mathfrak{p}' \subset \mathfrak{q}' \cap \mathfrak{p}' = \mathfrak{q} \cap \mathfrak{p}'$ imply that $\mathfrak{l}'_n \subset \mathfrak{q} \cap \mathfrak{g}'$. Hence $\mathfrak{q} \cap \mathfrak{g}'$ decomposes as $\mathfrak{q} \cap \mathfrak{g}' = (\mathfrak{q} \cap \mathfrak{l}'_c) \oplus \mathfrak{l}'_n \oplus \mathfrak{u}'$.

For the second assertion, we see that $[(\mathfrak{q} \cap \mathfrak{p}'), \mathfrak{g}] \subset \mathfrak{q} + \mathfrak{g}'$. Indeed, the assumption $(\mathfrak{q} \cap \mathfrak{k}) + \mathfrak{k}' = \mathfrak{k}$ implies that

$$[(\mathfrak{q}\cap\mathfrak{p}'),\mathfrak{k}]=[(\mathfrak{q}\cap\mathfrak{p}'),(\mathfrak{q}\cap\mathfrak{k})]+[(\mathfrak{q}\cap\mathfrak{p}'),\mathfrak{k}']\subset\mathfrak{q}+\mathfrak{g}'$$

and $[(\mathfrak{q} \cap \mathfrak{p}'), \mathfrak{p}] \subset \mathfrak{k} \subset \mathfrak{q} + \mathfrak{g}'$. Hence $[(\mathfrak{q} \cap \mathfrak{p}'), \mathfrak{g}] \subset \mathfrak{q} + \mathfrak{g}'$. Then the inclusion $[\mathfrak{u}', \mathfrak{g}] \subset \mathfrak{q} + \mathfrak{g}'$ follows from $\mathfrak{u}' \subset [(\mathfrak{q} \cap \mathfrak{p}'), (\mathfrak{q} \cap \mathfrak{p}')] + (\mathfrak{q} \cap \mathfrak{p}')$, and the inclusion $[\mathfrak{l}'_n, \mathfrak{g}] \subset \mathfrak{q} + \mathfrak{g}'$ follows from $\mathfrak{l}'_n = [(\mathfrak{l}' \cap \mathfrak{p}'), (\mathfrak{l}' \cap \mathfrak{p}')] + (\mathfrak{l}' \cap \mathfrak{p}')$.

6. Upper Bound on Branching Law

We retain the notation of the previous section.

Proposition 6.1. Suppose that the equivalent conditions in Theorem 5.4 hold for a σ -open θ -stable parabolic subalgebra \mathfrak{q} of \mathfrak{g} . Define \mathfrak{q}' as in Theorem 5.4 and define $\overline{Q'}$ as the parabolic subgroup of G' with Lie algebra $\overline{\mathfrak{q}'}$. Then $\overline{Q} \cap G' \subset \overline{Q'}$. Moreover, the following is a Cartesian square.

$$K'/(\overline{Q} \cap K') \xrightarrow{i^o} G'/(\overline{Q} \cap G')$$

$$\downarrow \qquad \qquad \downarrow \pi$$

$$K'/(\overline{Q'} \cap K') \xrightarrow{i'} G'/\overline{Q'}$$

In particular, io is a closed immersion.

Proof. Let $g \in \overline{Q} \cap G'$. To see $g \in \overline{Q'}$, it enough to show that $\operatorname{Ad}(g)$ normalizes $\overline{\mathfrak{q}'}$ because $\overline{Q'}$ is self-normalizing. By Lemma 5.7, $\overline{\mathfrak{u}'} \subset \overline{\mathfrak{q}} \cap \mathfrak{g}' \subset \overline{\mathfrak{q}'}$. Therefore, $\operatorname{Ad}(g)(\overline{\mathfrak{q}} \cap \mathfrak{g}') = \overline{\mathfrak{q}} \cap \mathfrak{g}'$ implies that $\operatorname{Ad}(g)\overline{\mathfrak{u}'} \subset \overline{\mathfrak{q}'}$. Then $\operatorname{Ad}(g)\overline{\mathfrak{q}'} \subset \overline{\mathfrak{q}'}$ follows from the lemma below:

Lemma 6.2. Let \mathfrak{g} be a reductive Lie algebra and \mathfrak{q} a parabolic subalgebra. If $\phi(\mathfrak{u}) \subset \mathfrak{q}$ for the nilradical \mathfrak{u} of \mathfrak{q} and an inner automorphism $\phi \in \operatorname{Int}(\mathfrak{g})$, then $\phi(\mathfrak{q}) = \mathfrak{q}$.

Proof. There exists a Cartan subalgebra \mathfrak{h} of \mathfrak{g} contained in both \mathfrak{q} and $\phi(\mathfrak{q})$. Our assumption amounts to the inclusion of the sets of \mathfrak{h} -roots $\Delta(\phi(\mathfrak{u}),\mathfrak{h}) \subset \Delta(\mathfrak{q},\mathfrak{h})$. Write \mathfrak{l} for the Levi part of \mathfrak{q} containing \mathfrak{h} . Then

$$\Delta(\phi(\mathfrak{q}),\mathfrak{h})\cap\Delta(\mathfrak{q},\mathfrak{h})=\Delta(\phi(\mathfrak{u}),\mathfrak{h})\cup(\Delta(\phi(\mathfrak{l}),\mathfrak{h})\cap\Delta(\mathfrak{q},\mathfrak{h})).$$

As a result, $\phi(\mathfrak{q}) \cap \mathfrak{q}$ is a parabolic subalgebra of \mathfrak{g} . In particular, $\phi(\mathfrak{q})$ and \mathfrak{q} have a common Borel subalgebra. Since ϕ is inner, this implies that $\phi(\mathfrak{q}) = \mathfrak{q}$.

Returning to the proof of Proposition 6.1, we now prove that the diagram is a Cartesian square. This is equivalent to that $\overline{Q'} = (\overline{Q'} \cap K') \cdot (\overline{Q} \cap G')$. The inclusion $\overline{Q'} \supset (\overline{Q'} \cap K') \cdot (\overline{Q} \cap G')$ follows from $\overline{Q'} \supset (\overline{Q} \cap G')$. Since $\overline{Q'}$ is connected and θ -stable, it is generated by $\overline{Q'} \cap K'$ and $\exp(\overline{\mathfrak{q}'} \cap \mathfrak{p}')$ as a group. For $k \in \overline{Q'} \cap K'$ and $x \in \overline{\mathfrak{q}'} \cap \mathfrak{p}'$, we have $\exp(x)k = k \exp(\operatorname{Ad}(k^{-1})x)$ and $\operatorname{Ad}(k^{-1})x \in \overline{\mathfrak{q}'} \cap \mathfrak{p}'$. Using this equation iteratively, we can write any element of $\overline{Q'}$ as $k \exp(x_1) \cdots \exp(x_n)$ for $k \in \overline{Q'} \cap K'$ and $x_1, \ldots, x_n \in \overline{\mathfrak{q}'} \cap \mathfrak{p}'$. Then $\overline{\mathfrak{q}'} \cap \mathfrak{p}' = \overline{\mathfrak{q}} \cap \mathfrak{p}'$ implies that $\exp(x_1) \cdots \exp(x_n) \in \overline{Q} \cap G'$. Hence $\overline{Q'} \subset (\overline{Q'} \cap K') \cdot (\overline{Q} \cap G')$ as required. \square

Now we consider the restriction $A_{\mathfrak{q}}(\lambda)|_{(\mathfrak{g}',K')}$. We assume that λ is linear, so the $(\mathfrak{l},L\cap K)$ -action on \mathbb{C}_{λ} can be uniquely extended to an L-action or a \overline{Q} -action. Define

$$V^p := \bigwedge^{\text{top}} (\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \otimes S^p(\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}'))$$

regarded as a $(\overline{Q} \cap G')$ -module by the adjoint action and define

$$W^p := \operatorname{Ind}_{\overline{Q} \cap G'}^{\overline{Q'}}(\mathbb{C}_{\lambda}|_{\overline{Q} \cap G'} \otimes V^p).$$

By Lemma 5.7, the unipotent radical $\overline{U'}$ of $\overline{Q'}$ is contained in $\overline{Q} \cap G'$ and $\overline{U'}$ acts trivially on $\mathbb{C}_{\lambda}|_{\overline{Q} \cap G'} \otimes V^p$. Therefore, $\overline{U'}$ acts trivially on W^p . Then W^p is written as a direct sum of irreducible finite-dimensional $\overline{Q'}$ -modules and $\overline{U'}$ acts trivially on all the irreducible components. As an L'-module, we have

$$W^p \simeq \operatorname{Ind}_{\overline{Q} \cap L'}^{\underline{L'}}(\mathbb{C}_{\lambda}|_{\overline{Q} \cap L'} \otimes V^p).$$

Theorem 6.3. Let (G_0, G'_0) be a symmetric pair of connected real linear reductive Lie groups defined by an involution σ . Let \mathfrak{q} be a σ -open θ -stable parabolic subalgebra of \mathfrak{g} . Suppose that $A_{\mathfrak{q}}(\lambda)$ is nonzero and discretely decomposable as a (\mathfrak{g}', K') -module with λ linear, unitary, and in the weakly fair range. Define

$$\mathfrak{q}' := N_{\mathfrak{k}'}(\mathfrak{q} \cap \mathfrak{p}') + (\mathfrak{q} \cap \mathfrak{p}'),$$

and

$$W^p := \operatorname{Ind}_{\overline{Q} \cap G'}^{\overline{Q'}} \left(\mathbb{C}_{\lambda}|_{\overline{Q} \cap G'} \otimes \bigwedge^{\operatorname{top}} (\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \otimes S^p(\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \right).$$

Then there exists an injective homomorphism of (\mathfrak{g}', K') -modules

$$(6.1) A_{\mathfrak{q}}(\lambda) \to \bigoplus_{p=0}^{\infty} (\Pi_{L' \cap K'}^{K'})_{s'} (U(\mathfrak{g}') \otimes_{U(\overline{\mathfrak{q}'})} (W^p \otimes \mathbb{C}_{2\rho(\mathfrak{u}')}))$$

for $s' = \dim(\mathfrak{u}' \cap \mathfrak{k}')$.

Proof. Suppose that $A_{\mathfrak{q}}(\lambda)$ is nonzero and discretely decomposable as a (\mathfrak{g}', K') module with λ linear, unitary, and in the weakly fair range. Let \overline{Q} , G', and K' be
the connected subgroups of G with Lie algebras $\overline{\mathfrak{q}}$, \mathfrak{g}' and \mathfrak{k}' , respectively. We set

$$\begin{split} X &= G/\overline{Q}, \quad X^o = G'/(\overline{Q} \cap G'), \\ Y &= K/(\overline{Q} \cap K), \quad Y^o = K'/(\overline{Q} \cap K'), \end{split}$$

$$\begin{array}{ccc}
Y & \xrightarrow{i} & X \\
j_K & & \uparrow & j \\
Y^o & \xrightarrow{i^o} & X^o
\end{array}$$

where the maps i^o, i, j , and j_K are the inclusion maps. The map j_K is an open immersion because \mathfrak{q} is σ -open. By Lemma 6.1, i^o is a closed immersion and hence $i(Y) \cap j(X^o) = i(j_K(Y^o))$.

Let $\mathcal{L}_{\lambda,X}$ be the \mathcal{O}_X -module associated with the \overline{Q} -module \mathbb{C}_{λ} as in Section 3. Then Theorem 4.1 says $\Gamma(X, i_+\mathcal{O}_Y \otimes_{\mathcal{O}_X} \mathcal{L}_{\lambda,X})$ is isomorphic to $A_{\mathfrak{q}}(\lambda)$ as a (\mathfrak{g}, K) -module. We see that

$$j^{-1}i_{+}\mathcal{O}_{Y} \simeq j^{-1}(j \circ i^{o})_{+}\mathcal{O}_{Y^{o}} \simeq j^{-1}j_{+}(i^{o}_{+}\mathcal{O}_{Y^{o}}).$$

Let $\{F_p\mathcal{D}_X\}_{p\geq 0}$ be the filtration by normal degree with respect to j. This induces a filtration $\{F_pj^{-1}i_+\mathcal{O}_Y\}$ on $j^{-1}i_+\mathcal{O}_Y$ and a filtration $\{F_pj^{-1}(i_+\mathcal{O}_Y\otimes_{\mathcal{O}_X}\mathcal{L}_{\lambda,X})\}$ on $j^{-1}(i_+\mathcal{O}_Y\otimes_{\mathcal{O}_X}\mathcal{L}_{\lambda,X})$. Applying Lemma 3.3 for $\mathcal{M}=i_+^o\mathcal{O}_{Y^o}$, we have isomorphisms of \mathcal{O}_{X^o} -modules

$$F_{p}j^{-1}i_{+}\mathcal{O}_{Y}/F_{p-1}j^{-1}i_{+}\mathcal{O}_{Y} \simeq F_{p}j^{-1}j_{+}(i_{+}^{o}\mathcal{O}_{Y^{o}})/F_{p-1}j^{-1}j_{+}(i_{+}^{o}\mathcal{O}_{Y^{o}})$$

$$\simeq (i_{+}^{o}\mathcal{O}_{Y^{o}}) \otimes_{\mathcal{O}_{X^{o}}} \Omega^{\vee}_{X/X^{o}} \otimes_{\mathcal{O}_{X^{o}}} j^{-1}(\mathcal{I}^{p}_{X^{o}}/\mathcal{I}^{p+1}_{X^{o}})^{\vee},$$

which commute with the actions of \mathfrak{g}' and K'. The G'-equivariant \mathcal{O}_{X^o} -module $\Omega^{\vee}_{X/X^o} \otimes_{\mathcal{O}_{X^o}} j^{-1}(\mathcal{I}^p_{X^o}/\mathcal{I}^{p+1}_{X^o})^{\vee}$ is isomorphic to the \mathcal{O}_{X^o} -module $\mathcal{V}^p_{X^o}$ associated with the $(\overline{Q'} \cap G')$ -module

$$V^p := \bigwedge^{\mathrm{top}} (\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \otimes S^p(\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')).$$

We write $\mathcal{L}_{\lambda,X^o}$ for the \mathcal{O}_{X^o} -module associated with $\mathbb{C}_{\lambda}|_{\overline{Q}\cap G'}$. Then $j^*\mathcal{L}_{\lambda,X}\simeq \mathcal{L}_{\lambda,X^o}$. As a result, we get an isomorphism

(6.2)
$$F_{p}j^{-1}(i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda,X})/F_{p-1}j^{-1}(i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda,X})$$
$$\simeq i_{+}^{o}\mathcal{O}_{Y^{o}} \otimes_{\mathcal{O}_{X^{o}}} \mathcal{L}_{\lambda,X^{o}} \otimes_{\mathcal{O}_{X^{o}}} \mathcal{V}_{X^{o}}^{p}.$$

Since any section $m \in \Gamma(X, i_+\mathcal{O}_Y \otimes_{\mathcal{O}_X} \mathcal{L}_{\lambda, X})$ is K-finite, the support of m is Y unless m = 0. Therefore, the restriction map

$$r: \Gamma(X, i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X}) \to \Gamma(X^{o}, j^{-1}(i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X}))$$

is injective. Define the filtration $\{F_pA_{\mathfrak{q}}(\lambda)\}\$ of the (\mathfrak{g}',K') -module $A_{\mathfrak{q}}(\lambda)$ by

$$F_pA_{\mathfrak{q}}(\lambda) := r^{-1}\Gamma(X^o, F_pj^{-1}(i_+\mathcal{O}_Y \otimes_{\mathcal{O}_X} \mathcal{L}_{\lambda,X}))$$

for

$$r: A_{\mathfrak{q}}(\lambda) \simeq \Gamma(X, i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X}) \to \Gamma(X^{o}, j^{-1}(i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X})).$$

The induced map

$$F_{p}A_{\mathfrak{q}}(\lambda)/F_{p-1}A_{\mathfrak{q}}(\lambda)$$

$$\to \Gamma(X^{o}, F_{p}j^{-1}(i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X}))/\Gamma(X^{o}, F_{p-1}j^{-1}(i_{+}\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X})).$$

is injective. The unitarizability and the discrete decomposability of $A_{\mathfrak{q}}(\lambda)$ imply that there exists an isomorphism of the (\mathfrak{g}', K') -modules

$$A_{\mathfrak{q}}(\lambda) \simeq \bigoplus_{p=0}^{\infty} F_p A_{\mathfrak{q}}(\lambda) / F_{p-1} A_{\mathfrak{q}}(\lambda).$$

Consequently, we obtain injective maps of (\mathfrak{g}', K') -modules

$$(6.3) \quad A_{\mathfrak{q}}(\lambda) \simeq \bigoplus_{p=0}^{\infty} F_{p} A_{\mathfrak{q}}(\lambda) / F_{p-1} A_{\mathfrak{q}}(\lambda)$$

$$\rightarrow \bigoplus_{p=0}^{\infty} \Gamma(X^{o}, F_{p} j^{-1} (i_{+} \mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X})) / \Gamma(X^{o}, F_{p-1} j^{-1} (i_{+} \mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X}))$$

$$\rightarrow \bigoplus_{p=0}^{\infty} \Gamma(X^{o}, F_{p} j^{-1} (i_{+} \mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X}) / F_{p-1} j^{-1} (i_{+} \mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} \mathcal{L}_{\lambda, X})).$$

The injectivity of the last map follows from the left exactness of the functor $\Gamma(X^o,\cdot)$.

We set

$$X' = G'/\overline{Q'}, \quad Y' = K'/(\overline{Q'} \cap K'),$$

$$Y^o \xrightarrow{i^o} X^o$$

$$\pi_K \downarrow \qquad \qquad \downarrow \pi$$

$$Y' \xrightarrow{i'} X'$$

where the maps in the commutative diagram are defined canonically. Since the diagram is a Cartesian square by Lemma 6.1 and π , π_K are smooth morphisms, the base change formula gives isomorphisms of \mathcal{D}_{X^o} -modules

$$i_+^o \mathcal{O}_{Y^o} \simeq i_+^o \pi_K^* \mathcal{O}_{Y'} \simeq \pi^* i_+' \mathcal{O}_{Y'}.$$

Then the projection formula gives the following isomorphisms of $\mathcal{O}_{X'}$ -modules

$$\pi_*(i_+^o \mathcal{O}_{Y^o} \otimes_{\mathcal{O}_{X^o}} \mathcal{L}_{\lambda,X^o} \otimes_{\mathcal{O}_{X^o}} \mathcal{V}_{X^o}^p) \simeq \pi_*(\pi^*i_+' \mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X^o}} \mathcal{L}_{\lambda,X^o} \otimes_{\mathcal{O}_{X^o}} \mathcal{V}_{X^o}^p)$$
$$\simeq i_+' \mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X'}} \pi_*(\mathcal{L}_{\lambda,X^o} \otimes_{\mathcal{O}_{X^o}} \mathcal{V}_{X^o}^p),$$

which commute with the actions of \mathfrak{g}' and K'. Put $S:=\overline{Q'}/(\overline{Q}\cap G')$. By Lemma 3.2, $\pi_*(\mathcal{L}_{\lambda,X^o}\otimes_{\mathcal{O}_{X^o}}\mathcal{V}_{X^o}^p)$ is isomorphic to the $\mathcal{O}_{X'}$ -module $\mathcal{W}_{X'}^p$ associated with the $\overline{Q'}$ -module $W^p:=\Gamma(S,\mathcal{V}_S^p)$, or equivalently

$$W^p := \operatorname{Ind}_{\overline{Q} \cap G'}^{\overline{Q'}} \left(\mathbb{C}_{\lambda}|_{\overline{Q} \cap G'} \otimes \bigwedge^{\operatorname{top}} (\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \otimes S^p(\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \right).$$

Therefore,

(6.4)
$$\Gamma(X^{o}, i_{+}^{o}\mathcal{O}_{Y^{o}} \otimes_{\mathcal{O}_{X^{o}}} \mathcal{L}_{\lambda, X^{o}} \otimes_{\mathcal{O}_{X^{o}}} \mathcal{V}_{X^{o}}^{p})$$

$$\simeq \Gamma(X', i_{+}' \mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X'}} \pi_{*}(\mathcal{L}_{\lambda, X^{o}} \otimes_{\mathcal{O}_{X^{o}}} \mathcal{V}_{X^{o}}^{p}))$$

$$\simeq \Gamma(X', i_{+}' \mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X'}} \mathcal{W}_{X'}^{p}).$$

Combining (6.2), (6.3), and (6.4), we obtain an injective (\mathfrak{g}', K') -homomorphism

(6.5)
$$A_{\mathfrak{q}}(\lambda) \to \bigoplus_{p=0}^{\infty} \Gamma(X', i'_{+}\mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X'}} \mathcal{W}_{X'}^{p}).$$

Finally, Theorem 4.1 gives an isomorphism

$$\Gamma(X', i'_{+}\mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X'}} \mathcal{W}_{X'}^{p}) \simeq (\Pi_{L' \cap K'}^{K'})_{s'}(U(\mathfrak{g}') \otimes_{U(\overline{\mathfrak{q}'})} (W^{p} \otimes \mathbb{C}_{2\rho(\mathfrak{u}')})),$$

so we have completed the proof.

Let \mathfrak{q}'' be the θ -stable parabolic subalgebra of \mathfrak{g}' defined by (5.1). In what follows, we show that the right side of (6.1) can be written as the direct sum of (\mathfrak{g}', K') -modules $A_{\mathfrak{q}''}(\lambda')$.

Let $L_0'' := N_{G_0'}(\overline{\mathfrak{q''}})$ be the normalizer of $\overline{\mathfrak{q''}}$ in G_0' . The complexified Lie algebra $\mathfrak{l''}$ decomposes as $\mathfrak{l''} = (\mathfrak{l''} \cap \mathfrak{l'_c}) \oplus \mathfrak{l'_n}$. Then $\mathfrak{h'_c} := \mathfrak{l''} \cap \mathfrak{l'_c}$ is a Cartan subalgebra of $\mathfrak{l'_c}$. The center $\mathfrak{z}(\mathfrak{l''})$ of $\mathfrak{l''}$ decomposes as

$$\mathfrak{z}(\mathfrak{l}'') = \mathfrak{h}'_c \oplus (\mathfrak{z}(\mathfrak{l}'') \cap \mathfrak{l}'_n).$$

Write $\lambda' = \lambda'_c + \lambda'_n$ for the corresponding decomposition of $\lambda' \in \mathfrak{z}(\mathfrak{l}'')^*$. We take $\Delta(\mathfrak{b}(\mathfrak{l}'_c),\mathfrak{h}'_c)$ as a positive root system of $\Delta(\mathfrak{l}'_c,\mathfrak{h}'_c)$. If $\lambda'_c \in (\mathfrak{h}'_c)^*$ is dominant integral for $\Delta(\mathfrak{b}(\mathfrak{l}'_c),\mathfrak{h}'_c)$, write $F(\lambda'_c)$ for the irreducible finite-dimensional representation of \mathfrak{l}'_c with highest weight λ'_c .

Let Λ be the set consisting of $\lambda' = \lambda'_c + \lambda'_n \in \mathfrak{z}(\mathfrak{l''})^*$ such that

- λ' is linear.
- λ'_c is dominant for $\Delta(\mathfrak{b}(\mathfrak{l}'_c),\mathfrak{h}'_c)$, and
- $\lambda'_n = 0$

For $\lambda' \in \Lambda$, define the representation $F(\lambda')$ of $\mathfrak{l}' = \mathfrak{l}'_c \oplus \mathfrak{l}'_n$ by the exterior tensor product of $F(\lambda'_c)$ and the trivial representation of \mathfrak{l}'_n :

$$F(\lambda') := F(\lambda'_c) \boxtimes \mathbb{C}.$$

Since λ' is linear, $F(\lambda')$ lifts to a representation of L'. Define

(6.6)

$$m(\lambda',p) := \dim \operatorname{Hom}_{\overline{Q} \cap L'} \left(F(\lambda'), \, \mathbb{C}_{\lambda}|_{\overline{Q} \cap G'} \otimes \bigwedge^{\operatorname{top}} (\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \otimes S^p(\mathfrak{g}/(\bar{\mathfrak{q}} + \mathfrak{g}')) \right).$$

Theorem 6.4. Let the notation and the assumption be as in Theorem 6.3. Define \mathfrak{q}'' as in (5.1) and define Λ , $m(\lambda',p)$ as above. Then there exists an injective homomorphism of (\mathfrak{g}',K') -modules

(6.7)
$$A_{\mathfrak{q}}(\lambda) \to \bigoplus_{p=0}^{\infty} \bigoplus_{\lambda' \in \Lambda} A_{\mathfrak{q}''}(\lambda')^{\oplus m(\lambda',p)}.$$

Proof. We use the notation of the proof of Theorem 6.3. In light of (6.5), it is enough to show that

(6.8)
$$\Gamma(X', i'_{+}\mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X'}} \mathcal{W}^{p}_{X'}) \simeq \bigoplus_{\lambda' \in \Lambda} A_{\mathfrak{q}''}(\lambda')^{\oplus m(\lambda', p)}.$$

Let us prove that

(6.9)
$$W^p \simeq \bigoplus_{\lambda' \in \Lambda} F(\lambda')^{\oplus m(\lambda', p)}$$

as L'-modules. Let F be an irreducible finite-dimensional L'-module such that $\operatorname{Hom}_{L'}(F,W^p)\neq 0$. Then the Frobenius reciprocity shows $\operatorname{Hom}_{\overline{Q}\cap L'}(F,\mathbb{C}_\lambda\otimes V^p)\neq 0$. Since L' is connected, F is irreducible as an \mathfrak{l}' -module. Hence the \mathfrak{l}' -module F is written as the exterior tensor product $F_c\boxtimes F_n$ for an irreducible \mathfrak{l}'_c -module F_c and an irreducible \mathfrak{l}'_n -module F_n . Since λ is linear and unitary, Remark 2.5 implies that $\overline{\mathfrak{q}}\cap \mathfrak{p}$ acts by zero on \mathbb{C}_λ . Hence \mathfrak{l}'_n also acts by zero on \mathbb{C}_λ . Moreover, Lemma 5.7 implies that \mathfrak{l}'_n acts by zero on $\mathfrak{g}/(\overline{\mathfrak{q}}+\mathfrak{g}')$. Therefore, \mathfrak{l}'_n acts by zero on W^p . As a consequence, F_n must be the trivial representation and $F\simeq F(\lambda')$ for some $\lambda'\in \Lambda$. Then the Frobenius reciprocity gives

$$m(\lambda', p) := \dim \operatorname{Hom}_{\overline{Q} \cap L'}(F(\lambda'), \mathbb{C}_{\lambda} \otimes V^p) = \dim \operatorname{Hom}_{L'}(F(\lambda'), W^p),$$

and hence (6.9) is proved.

We set

$$X'' = G'/\overline{Q''}, \quad Y'' = K'/(\overline{Q''} \cap K'),$$

$$Y'' \xrightarrow{i''} X''$$

$$\downarrow \qquad \qquad \downarrow \pi'$$

$$Y' \xrightarrow{i'} X'$$

where the maps are defined canonically. By the same argument as in the proof of Lemma 6.1, we can prove that this diagram is a Cartesian square. Take $\lambda' \in \Lambda$ and write $\mathcal{L}_{\lambda',X''}$ for the $\mathcal{O}_{X''}$ -module associated with the $\overline{Q''}$ -module $\mathbb{C}_{\lambda'}$. Theorem 4.1 shows that

(6.10)
$$A_{\mathfrak{q}''}(\lambda') \simeq \Gamma(X'', i''_{+}\mathcal{O}_{Y''} \otimes_{\mathcal{O}_{X''}} \mathcal{L}_{\lambda', X''}).$$

As in the proof of Theorem 6.3, we see that

$$\pi'_*(i''_+\mathcal{O}_{Y''}\otimes_{\mathcal{O}_{X''}}\mathcal{L}_{\lambda',X''})\simeq i'_+\mathcal{O}_{Y'}\otimes_{\mathcal{O}_{X'}}\pi'_*(\mathcal{L}_{\lambda',X''}).$$

Put $S' := \overline{Q'}/\overline{Q''}$ and write $\mathcal{L}_{\lambda',S'}$ for the $\mathcal{O}_{S'}$ -module associated with $\mathbb{C}_{\lambda'}$. The decompositions

$$\overline{\mathfrak{q}'} = \mathfrak{l}'_c \oplus \mathfrak{l}'_n \oplus \overline{\mathfrak{u}'}, \quad \overline{\mathfrak{q}''} = \mathfrak{b}(\mathfrak{l}'_c) \oplus \mathfrak{l}'_n \oplus \overline{\mathfrak{u}'}$$

show that S' is isomorphic to the complete flag variety of the reductive Lie algebra \mathfrak{l}'_c . Hence by the Borel–Weil theorem, $\Gamma(S',\mathcal{L}_{\lambda',S'})\simeq F(\lambda')$. Then it follows from Lemma 3.2 that

$$\pi'_{*}(\mathcal{L}_{\lambda',X''}) \simeq \mathcal{F}(\lambda')_{X'},$$

where $\mathcal{F}(\lambda')_{X'}$ is the $\mathcal{O}_{X'}$ -module associated with the $\overline{Q'}$ -module $F(\lambda')$. As a consequence, we have

(6.11)
$$\Gamma(X'', i''_{+}\mathcal{O}_{Y''} \otimes_{\mathcal{O}_{X''}} \mathcal{L}_{\lambda', X''}) \simeq \Gamma(X', \pi'_{*}(i''_{+}\mathcal{O}_{Y''} \otimes_{\mathcal{O}_{X''}} \mathcal{L}_{\lambda', X''}))$$
$$\simeq \Gamma(X', i'_{+}\mathcal{O}_{Y'} \otimes_{\mathcal{O}_{X'}} \mathcal{F}(\lambda')_{X'}).$$

The isomorphism (6.8) follows from (6.9), (6.10), and (6.11).

Remark 6.5. On the right side of (6.7), λ' may not be in the weakly fair range even if $m(\lambda', p) > 0$.

7. Associated Varieties

As a corollary to Theorem 6.4, we determine the associated variety of (\mathfrak{g}', K') -modules that occur in $A_{\mathfrak{q}}(\lambda)|_{(\mathfrak{q}', K')}$.

For a finitely generated \mathfrak{g} -module V, write $\mathrm{Ass}_{\mathfrak{g}}(V)$ for the associated variety of V. We use the following fact on associated varieties.

Fact 7.1 ([12]). Let g be a complex reductive Lie algebra.

- (1) $\operatorname{Ass}_{\mathfrak{g}}(V) = \operatorname{Ass}_{\mathfrak{g}}(V \otimes F)$ for any finitely generated \mathfrak{g} -module V and a nonzero finite-dimensional representation F of \mathfrak{g} .
- (2) If λ is in the weakly fair range and $A_{\mathfrak{q}}(\lambda)$ is nonzero, then $\mathrm{Ass}_{\mathfrak{g}}(A_{\mathfrak{q}}(\lambda)) = \mathrm{Ad}(K)(\bar{\mathfrak{u}} \cap \mathfrak{p})$. Here, we identify \mathfrak{g} with \mathfrak{g}^* by a non-degenerate invariant bilinear form.

Fact 7.1 (2) can be generalized in the following way.

Proposition 7.2. Let \mathfrak{q} be a θ -stable parabolic subalgebra of \mathfrak{g} and \mathbb{C}_{λ} a one-dimensional $(\mathfrak{l}, L \cap K)$ -module. Suppose that V is an irreducible (\mathfrak{g}, K) -submodule of $A_{\mathfrak{q}}(\lambda)$. Then $\mathrm{Ass}_{\mathfrak{g}}(V) = \mathrm{Ad}(K)(\bar{\mathfrak{u}} \cap \mathfrak{p})$.

Proof. If we take sufficiently large integer $N \in \mathbb{N}$, then $\lambda + 2N\rho(\mathfrak{u})$ is in the good range. In view of Fact 7.1 (2), it is enough to show that $\mathrm{Ass}_{\mathfrak{g}}(V) = \mathrm{Ass}_{\mathfrak{g}}(A_{\mathfrak{q}}(\lambda + 2N\rho(\mathfrak{u})))$. Let F be the irreducible finite-dimensional (\mathfrak{g},K) -module with lowest weight $-2N\rho(\mathfrak{u})$. Then there is an injective $(\bar{\mathfrak{q}},L\cap K)$ -homomorphism $\mathbb{C}_{\lambda}\to F\otimes \mathbb{C}_{\lambda+2N\rho(\mathfrak{u})}$, which gives a long exact sequence:

$$\cdots \to (P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s+1}((F\otimes \mathbb{C}_{\lambda+2N\rho(\mathfrak{u})})/\mathbb{C}_{\lambda}) \to (P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s}(\mathbb{C}_{\lambda}) \to (P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s}(F\otimes \mathbb{C}_{\lambda+2N\rho(\mathfrak{u})}) \to \cdots.$$

We claim that $(P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s+1}((F\otimes\mathbb{C}_{\lambda+2N\rho(\mathfrak{u})})/\mathbb{C}_{\lambda})=0$. Indeed, $(F\otimes\mathbb{C}_{\lambda+2N\rho(\mathfrak{u})})/\mathbb{C}_{\lambda}$ admits a finite filtration $\{F_p\}$ of $(\bar{\mathfrak{q}},L\cap K)$ -modules such that $\bar{\mathfrak{u}}$ acts by zero on F_p/F_{p-1} . Then [8, Theorem 5.35] shows that $(P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s+1}(F_p/F_{p-1})=0$. By using the exact sequences

$$(P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s+1}(F_{p-1})\rightarrow (P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s+1}(F_p)\rightarrow (P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s+1}(F_p/F_{p-1})$$

iteratively, we can see that $(P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_{s+1}((F\otimes \mathbb{C}_{\lambda+2N\rho(\mathfrak{u})})/\mathbb{C}_{\lambda})=0$. As a result, we get an injective map

$$V\subset A_{\mathfrak{q}}(\lambda)\to (P_{\bar{\mathfrak{q}},L\cap K}^{\mathfrak{g},K})_s(F\otimes \mathbb{C}_{\lambda+2N\rho(\mathfrak{u})})\simeq F\otimes A_{\mathfrak{q}}(\lambda+2N\rho(\mathfrak{u})),$$

where the last isomorphism is the Mackey isomorphism [8, Theorem 2.103]. Then Fact 7.1 (1) shows that

$$\mathrm{Ass}_{\mathfrak{g}}(V) \subset \mathrm{Ass}_{\mathfrak{g}}\big(F \otimes A_{\mathfrak{q}}(\lambda + 2N\rho(\mathfrak{u}))\big) = \mathrm{Ass}_{\mathfrak{g}}\big(A_{\mathfrak{q}}(\lambda + 2N\rho(\mathfrak{u}))\big).$$

For the opposite inclusion, we see that

$$\operatorname{Hom}_{\mathfrak{q},K}(V\otimes F^*,A_{\mathfrak{q}}(\lambda+2N\rho(\mathfrak{u})))\simeq \operatorname{Hom}_{\mathfrak{q},K}(V,F\otimes A_{\mathfrak{q}}(\lambda+2N\rho(\mathfrak{u})))\neq 0.$$

Since $A_{\mathfrak{q}}(\lambda + 2N\rho(\mathfrak{u}))$ is irreducible, there exists a surjective map $V \otimes F^* \to A_{\mathfrak{q}}(\lambda + 2N\rho(\mathfrak{u}))$. Therefore, Fact 7.1 (1) shows that

$$\mathrm{Ass}_{\mathfrak{g}}(V) = \mathrm{Ass}_{\mathfrak{g}}(V \otimes F^*) \supset \mathrm{Ass}_{\mathfrak{g}}(A_{\mathfrak{g}}(\lambda + 2N\rho(\mathfrak{u}))).$$

Consequently,

$$\mathrm{Ass}_{\mathfrak{g}}(V) = \mathrm{Ass}_{\mathfrak{g}}(A_{\mathfrak{g}}(\lambda + 2N\rho(\mathfrak{u}))) = \mathrm{Ad}(K)(\bar{\mathfrak{u}} \cap \mathfrak{p}).$$

Remark 7.3. In some literature, $A_{\mathfrak{q}}(\lambda)$ is defined by using the derived functor of $I_{\mathfrak{q},L\cap K}^{\mathfrak{g},K}$. If we adopt this definition, we have to replace 'irreducible (\mathfrak{g},K) -submodule' in Proposition 7.2 by 'irreducible quotient (\mathfrak{g},K) -module'. Both definitions agree if λ is unitary and in the weakly fair range.

A connection between branching laws of \mathfrak{g} -modules and their associated varieties was studied in [12].

Fact 7.4 ([12, Theorem 3.1]). Let \mathfrak{h} be a reductive Lie subalgebra of \mathfrak{g} . Write $\operatorname{pr}_{\mathfrak{g} \to \mathfrak{h}} : \mathfrak{g}^* \to \mathfrak{h}^*$ for the restriction map. Suppose that W is an irreducible \mathfrak{g} -module and V is an irreducible \mathfrak{h} -module such that $\operatorname{Hom}_{\mathfrak{h}}(V,W) \neq 0$. Then

$$\operatorname{pr}_{\mathfrak{a}\to\mathfrak{h}}(\operatorname{Ass}_{\mathfrak{a}}(W))\subset \operatorname{Ass}_{\mathfrak{h}}(V).$$

In our setting, we can deduce from Theorem 6.4 that the equality holds.

Theorem 7.5. Let the notation and the assumption be as in Theorem 6.3. Suppose that V is an irreducible (\mathfrak{g}', K') -module such that $\operatorname{Hom}_{\mathfrak{g}'}(V, A_{\mathfrak{g}}(\lambda)) \neq 0$. Then

$$\operatorname{pr}_{\mathfrak{a}\to\mathfrak{a}'}(\operatorname{Ass}_{\mathfrak{a}}(A_{\mathfrak{a}}(\lambda))) = \operatorname{Ass}_{\mathfrak{a}'}(V).$$

Proof. In light of Theorem 6.4, we see that V is isomorphic to an irreducible (\mathfrak{g}', K') -submodule of $A_{\mathfrak{q}''}(\lambda')$ for some character λ' . Then Proposition 7.2 and Fact 7.1 (2) show that

$$\operatorname{Ass}_{\mathfrak{g}'}(V) = \operatorname{Ad}(K')(\overline{\mathfrak{u}''} \cap \mathfrak{p}'), \quad \operatorname{Ass}_{\mathfrak{g}}(A_{\mathfrak{g}}(\lambda)) = \operatorname{Ad}(K)(\overline{\mathfrak{u}} \cap \mathfrak{p}).$$

Therefore, it is enough to prove that

$$\operatorname{pr}_{\mathfrak{a} \to \mathfrak{a}'}(\operatorname{Ad}(K)(\mathfrak{u} \cap \mathfrak{p})) = \operatorname{Ad}(K')(\mathfrak{u}'' \cap \mathfrak{p}').$$

Since \mathfrak{q} is σ -open, $K'/(Q \cap K')$ is open dense in the partial flag variety $K/(Q \cap K)$. As a result, $\mathrm{Ad}(K')(\mathfrak{u} \cap \mathfrak{p})$ is dense in $\mathrm{Ad}(K)(\mathfrak{u} \cap \mathfrak{p})$ and hence $\mathrm{pr}_{\mathfrak{g} \to \mathfrak{g}'}(\mathrm{Ad}(K')(\mathfrak{u} \cap \mathfrak{p}))$ is dense in $\mathrm{pr}_{\mathfrak{g} \to \mathfrak{g}'}(\mathrm{Ad}(K)(\mathfrak{u} \cap \mathfrak{p}))$. From the proof of Proposition 5.4, we have

$$\mathrm{pr}_{\mathfrak{q} \to \mathfrak{q}'}(\mathfrak{u} \cap \mathfrak{p}) = \mathfrak{u}' \cap \mathfrak{p}' = \mathfrak{u}'' \cap \mathfrak{p}'.$$

Consequently, $\operatorname{Ad}(K')(\mathfrak{u}'' \cap \mathfrak{p}')$ is a dense subset of $\operatorname{pr}_{\mathfrak{g} \to \mathfrak{g}'}(\operatorname{Ad}(K)(\mathfrak{u} \cap \mathfrak{p}))$. Since $\operatorname{Ad}(K')(\mathfrak{u}'' \cap \mathfrak{p}')$ is closed, we conclude that

$$\operatorname{pr}_{\mathfrak{a}\to\mathfrak{a}'}(\operatorname{Ad}(K)(\mathfrak{u}\cap\mathfrak{p}))=\operatorname{Ad}(K')(\mathfrak{u}''\cap\mathfrak{p}'),$$

which completes the proof.

References

- [1] F. Bien, "D-Modules and Spherical Representations", Math. Notes 39, Princeton U.P., 1990.
- [2] A. Borel, "Linear Algebraic Groups", Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, 1991.
- [3] M. Duflo, J. Vargas, Branching laws for square integrable representations, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), 49–54.
- [4] B. Gross, N. Wallach, Restriction of small discrete series representations to symmetric subgroups, Proc. Sympos. Pure Math. 68 (2000), 255–272.
- [5] H. Hecht, D. Miličić, W. Schmid, J. A. Wolf, Localization and standard modules for real semisimple Lie groups. I. The duality theorem, Invent. Math. 90 (1987), 297–332.
- [6] G. Hochschild, "Basic Theory of Algebraic Groups and Lie Algebras", Graduate Texts in Mathematics, 75. Springer-Verlag, 1981.
- [7] S. Kitchen, Localization of cohomologically induced modules to partial flag varieties, Ph.D. Thesis, The University of Utah (2010).
- [8] A. W. Knapp, D. Vogan, "Cohomological Induction and Unitary Representations", Princeton U.P., 1995.
- [9] T. Kobayashi, The restriction of $A_{\mathfrak{q}}(\lambda)$ to reductive subgroups, Proc. Japan Acad. Ser. A Math. Sci. **69** (1993), 262–267.
- [10] T. Kobayashi, Discrete decomposability of the restriction of $A_q(\lambda)$ with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), 181–205.
- [11] T. Kobayashi, Discrete decomposability of the restriction of A_q(λ) with respect to reductive subgroups. II. —micro-local analysis and asymptotic K-support, Ann. of Math. 147 (1998), 709–729.
- [12] T. Kobayashi, Discrete decomposability of the restriction of A_q(λ) with respect to reductive subgroups. III. —restriction of Harish-Chandra modules and associated varieties, Invent. Math. 131 (1998), 229–256.
- [13] T. Kobayashi, Branching problems of Zuckerman derived functor modules, to appear in Contemp. Math., In: Representation Theory and Mathematical Physics in honor of Gregg Zuckerman (J. Adams, B. Lian, S. Sahi, eds.), 27pp. arXiv:1104.4399 (2011).
- [14] T. Kobayashi, B. Ørsted, Analysis on the minimal representation of O(p,q). II. Branching laws, Adv. Math. **180** (2003), 513-550.
- [15] T. Kobayashi, Y. Oshima, Classification of discretely decomposable $A_{\mathfrak{q}}(\lambda)$ with respect to reductive symmetric pairs, 31pp. arXiv:1104.4400 (2011).
- [16] H. Y. Loke, Restrictions of quaternionic representations, J. Funct. Anal. 172 (2000), 377–403
- [17] D. Miličić, P. Pandžić, Equivariant derived categories, Zuckerman functors and localization, Geometry and representation theory of real and p-adic groups, (J. Tirao, D. Vogan, J. A. Wolf, eds.), Prog. Math. 158, Birkhäuser (1996), 209–242.
- [18] D. Mumford, "Geometric Invariant Theory", Springer-Verlag, 1965.
- [19] B. Ørsted, B. Speh, Branching laws for some unitary representations of $SL(4,\mathbb{R})$, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), 19pp.
- [20] H. Sekiguchi, Branching rules of Dolbeault cohomology groups over indefinite Grassmannian manifolds, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 31–34.

(Yoshiki Oshima) Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, 153-8914 Tokyo, Japan

 $E ext{-}mail\ address: yoshiki@ms.u-tokyo.ac.jp}$