Formale Systeme Automaten und Prozesse

Abgabe 7 Abgabe: 19.06.2017

Georg C. Dorndorf Matr. Nr. 366511 Adrian C. Hinrichs Matr. Nr. 367129 Jan Bordihn Matr. Nr. 364705

# 19	# 20	# 21	Σ

Aufgabe 19

Sei die Grammatik G gegeben durch:

$$S \rightarrow |ABC| \ a, \ A \rightarrow Sa, \ B \rightarrow Sb, \ C \rightarrow cS$$

1)

Wir überführen die Grammatik nun in die Chomsky Normalform (CNF) indem wir zunächst die ϵ -Produktionen entfernen.

Die Grammatik enthält keine ϵ -Produktionen. Wir fahren fort indem wir:

- 1. Neues Nonterminal R_a für jedes $a \in T$
- 2. Ersetze die Terminale a durch R_a für alle $a \in T$
- 3. Führe eine neue Regel $R_a \to a$ für jedes $a \in T$

Wir erhalten folgende Produktionsregeln

$$S \rightarrow ABC \mid R_a$$

$$A \rightarrow SR_a$$

$$B \rightarrow SR_b$$

$$C \rightarrow R_cS$$

$$R_b \rightarrow b$$

$$R_a \rightarrow a$$

$$R_c \rightarrow c$$

Nun müssen Produktionen der Form $A\to B_1B_2B_3\cdots B_k$ durch $A\to B_1B_{23...k}$ rekursiv ersetzt werden. Wir erhalten

$$S \to AD_{BC}$$

$$S \to R_a$$

$$D_{BC} \to BC$$

$$A \to SR_a$$

$$B \to SR_b$$

$$C \to R_cS$$

$$R_b \to b$$

$$R_a \to a$$

$$R_c \to c$$

Nun eliminieren wir die Kettenregeln

$$S \to AD_{BC} \mid a$$

$$D_{BC} \to BC$$

$$A \to SR_a$$

$$B \to SR_b$$

$$C \to R_cS$$

$$R_a \to a$$

$$R_b \to b$$

$$R_c \to c$$

Die obige Produktion ist nun in der Chomsky Normalform.

2)

Wir überführen die Produktionen nun weiter in die Greibach Normalform. Als erstes eliminieren wir verkleinernde Regeln.

$$S \rightarrow AD_{BC} \mid a$$

$$D_{BC} \rightarrow BC$$

$$A \rightarrow SR_a$$

$$B \rightarrow SR_b$$

$$C \rightarrow R_cS$$

$$R_a \rightarrow a$$

$$R_b \rightarrow b$$

$$R_c \rightarrow c$$

$$S \to AD_{BC} \mid a$$

$$D_{BC} \to BC$$

$$A \to AD_{BC}R_a \mid aR_a$$

$$B \to AD_{BC}R_b \mid aR_b$$

$$C \to R_cS$$

$$R_a \to a$$

$$R_b \to b$$

$$R_c \to c$$

$$S \to AD_{BC} \mid a$$

$$D_{BC} \to BC$$

$$A \to ABCR_a \mid aR_a$$

$$B \to ABCR_b \mid aR_b$$

$$C \to R_cS$$

$$R_a \to a$$

$$R_b \to b$$

$$R_c \to c$$

Als nächstes beheben wir die Linksrekusion der Ableitung $A \to A\alpha$.

$$S \to AD_{BC} \mid a$$

$$D_{BC} \to BC$$

$$A \to aR_a \mid aR_aZ_1$$

$$B \to ABCR_b \mid aR_b$$

$$C \to R_cS$$

$$R_a \to a$$

$$R_b \to b$$

$$R_c \to c$$

$$Z_1 \to ABCR_a \mid ABCR_aZ_1$$

Nun Beheben wir die Ableitung $B \to A\alpha$.

$$S \rightarrow AD_{BC} \mid a$$

$$D_{BC} \rightarrow BC$$

$$A \rightarrow aR_a \mid aR_aZ_1$$

$$B \rightarrow aR_aBCR_b \mid aR_aZ_1BCR_b \mid aR_b$$

$$C \rightarrow R_cS$$

$$R_a \rightarrow a$$

$$R_b \rightarrow b$$

$$R_c \rightarrow c$$

$$Z_1 \rightarrow ABCR_a \mid ABCR_aZ_1$$

Als nächstes beheben wir die Regel $Z_1 \to A\alpha$.

$$S \rightarrow AD_{BC} \mid a$$

$$D_{BC} \rightarrow BC$$

$$A \rightarrow aR_a \mid aR_aZ_1$$

$$B \rightarrow aR_aBCR_b \mid aR_aZ_1BCR_b \mid aR_b$$

$$C \rightarrow R_cS$$

$$R_a \rightarrow a$$

$$R_b \rightarrow b$$

$$R_c \rightarrow c$$

$$Z_1 \rightarrow aR_aBCR_a \mid aR_aZ_1BCR_a \mid$$

$$aR_aBCR_aZ_1 \mid aR_aZ_1BCR_aZ_1$$

Weiter wir die Regel $D_{BC} \to B\alpha$ behoben.

$$S \rightarrow AD_{BC} \mid a$$

$$D_{BC} \rightarrow aR_aBCR_bC \mid aR_aZ_1BCR_bC \mid aR_bC$$

$$A \rightarrow aR_a \mid aR_aZ_1$$

$$B \rightarrow aR_aBCR_b \mid aR_aZ_1BCR_b \mid aR_b$$

$$C \rightarrow R_cS$$

$$R_a \rightarrow a$$

$$R_b \rightarrow b$$

$$R_c \rightarrow c$$

$$Z_1 \rightarrow aR_aBCR_a \mid aR_aZ_1BCR_a \mid$$

$$aR_aBCR_aZ_1 \mid aR_aZ_1BCR_aZ_1$$

Als nächsten Schritt beheben wir nun die Regeln $N \to N\alpha$, damit ist die Greibach Normalform vollständig umgeformt.

$$S \rightarrow aR_aD_{BC} \mid aR_aZ_1D_{BC} \mid a$$

$$D_{BC} \rightarrow aR_aBCR_bC \mid aR_aZ_1BCR_bC \mid aR_bC$$

$$A \rightarrow aR_a \mid aR_aZ_1$$

$$B \rightarrow aR_aBCR_b \mid aR_aZ_1BCR_b \mid aR_b$$

$$C \rightarrow cS$$

$$R_a \rightarrow a$$

$$R_b \rightarrow b$$

$$R_c \rightarrow c$$

$$Z_1 \rightarrow aR_aBCR_a \mid aR_aZ_1BCR_a \mid$$

$$aR_aBCR_aZ_1 \mid aR_aZ_1BCR_aZ_1$$

Aufgabe 20

1)

Die Sprache $L_1 = \{a^{i_L}b^jc^k \mid i_L + j = k\}$ ist nicht kontextfrei.

Beweis per Widerspruch.

Anngenommen, dass L_1 kontextfrei sei. Dann gäbe es nach dem PUMPING-LEMMA für jede Zahl n und jedes Wort $z \in L_1$ mit |z| > n eine Zerlegung z = uvwxy so dass $|vwx| \le n \land |vx| \ge 0 \land uv^iwx^iy \in L \ \forall i \in \mathbb{N}_0$. Wähle n = 1. Nun ist entweder v aus $\{a,b,c\}$ und $w = \varepsilon$, oder w ist aus $\{a,b,c\}$ und $v = \varepsilon$. Dadurch ist genau einer der drei Wortteile (a^{i_L},b^j,c^k) um mindestens 1 Symbol länger, so dass die Bedingung $i_L + j = k$ der Sprache nicht mehr erfüllt ist $\Rightarrow uv^iwx^iy \ne L_1 \ \forall i > 1$.

Insgesammt gilt also das Pumping Lemma für Kontextfreie Sprachen nicht für L_1 , daher kann L_1 keine kontextfreie Sprache sein.

QED

2)

Die Sprache $L_2 = \{a^{i_L}b^jc^k \mid i_Lj = k\}$ ist nicht kontextfrei

Beweis per Widerspruch.

Anngenommen, dass L_2 kontextfrei sei. Dann gäbe es nach dem Pumping-Lemma für jede Zahl n und jedes Wort $z \in L_2$ mit |z| > n eine Zerlegung z = uvwxy so dass $|vwx| \le n \land |vx| \ge 0 \land uv^iwx^iy \in L \, \forall \, i \in \mathbb{N}_0$. Wähle n=1 Wir dürfen Œ annehmen, dass z tatsächlich alle Buchstaben aus $\{a,b,c\}$ mindestens einmal enthält. Nun ist entweder v aus $\{a,b,c\}$ und $w=\varepsilon$, oder w ist aus $\{a,b,c\}$ und $v=\varepsilon$. Dadurch ist genau einer der drei Wortteile (a^{iL},b^j,c^k) um mindestens 1 Symbol länger, so dass die Bedingung $i_Lj=k$ der Sprache nicht mehr erfüllt ist $\Rightarrow uv^iwx^iy \neq L_2 \, \forall \, i > 1 \, f$.

Insgesammt gilt also das Pumping Lemma für Kontextfreie Sprachen nicht für L_1 , daher kann L_1 keine kontextfreie Sprache sein.

QED

3)

Die Sprache $L_3 = \{pp \mid p \in \{a,b\}^*\}$ ist regulär, und somit kontextfrei, da sie sich durch den regulären Ausdruck $(a+b)^*(a+b)^* = (a+b)^*$ darstellen lässt.

4)

Die sprache $L_4 = \{pqp^R \mid |p| = |q|, p, q \in \{a, b\}^*\}$ ist nicht kontextfrei.

Beweis per Widerspruch .

Anngenommen, dass L_4 kontextfrei sei. Dann gäbe es nach dem PUMPING-LEMMA für jede Zahl n und jedes Wort $z \in L_4$ mit |z| > n eine Zerlegung z = uvwxy so dass $|vwx| \le n \land |vx| \ge 0 \land uv^iwx^iy \in L \, \forall \, i \in \mathbb{N}_0$. Wähle n = |q| = |p|. Nun ist entweder |vwx| ein Teilwort von q, wodurch $uv^iwx^iy \, \forall \, i > 1$ nicht mehr in L wäre i , oder wir können (E annehmen, dass v mit dem Ende von p beginnt (Die einzige ander möglichkeit wäre dass x mit dem Anfang von p^R endet, was auf diesen Fall zurückführbar ist). Dann endet x irgendwo p in q Ergo ist p is p in p 1 nicht mehr in p in p 2.

Insgesammt gilt also das Pumping Lemma für Kontextfreie Sprachen nicht für L_3 , daher kann L_3 keine kontextfreie Sprache sein.

QED

Aufgabe 21