EXERCICE 1

On note $E = \mathbb{R}^2$, que l'on identifiera au plan muni de la base orthonormée (e_1, e_2) (canonique)

1. On considère les vecteurs $X_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $Y_0 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, et on note $F = \text{Vect}(X_0)$ et $G = \text{Vect}(Y_0)$. Montrer que $E = F \oplus G$.

Pour $X = \begin{pmatrix} x \\ y \end{pmatrix}$, donner l'expression des composantes X_F et X_G de X sur F et G.

2. Soit f l'endomorphisme de E de matrice $A=\left(\begin{array}{cc} -1 & 2 \\ 2 & 2 \end{array}\right)$.

Vérifier que f est bijective et donner l'expression de f^{-1} .

- 3. On pose $g = f 3 \operatorname{id}_E$ et $h = f + 2 \operatorname{id}_E$.
 - a) Calculer $\ker g$ et $\ker h$.
 - b) Que peut-on dire de g(X) si $X \in F$? de h(X') si $X' \in G$?
- **4.** Soit $X \in E$. On décompose X sous la forme $X = X_F + X_G$ où $(X_F, X_G) \in F \times G$.
 - a) Calculer f(X) en fonction de X_F et X_G .
 - b) En déduire une construction graphique de f(X) lorsque X est donné.

EXERCICE 2

Soit a un réel non nul. On veut montrer (sans résoudre de système de quatre équations à quatre inconnues) que pour tout quadruplet de réels $(\alpha, \beta, \gamma, \delta)$, il existe un unique polynôme de degré inférieur ou égal à 3 tel que

$$P(-a) = \alpha$$
, $P'(-a) = \beta$, $P(a) = \gamma etP'(a) = \delta$

et donner une construction effective de P.

A cet effet, on considère l'application $\varphi: \mathbb{R}_3[X] \to \mathbb{R}^4$ définie par

$$\forall P \in \mathbb{R}_3 [X], \quad \varphi(P) = (P(-a), P'(-a), P(a), P'(a))$$

On note

$$e_1 = (1,0,0,0), e_2 = (0,1,0,0), e_3 = (0,0,1,0), e_4 = (0,0,0,1)$$

la base canonique de \mathbb{R}^4 .

- 1. Montrer que φ est est linéaire et injective.
- **2.** a) Soit P un antécédent de e_1 par φ : montrer que R(X) = P(-X) est antécédent de e_3 par φ .
 - b) Soit Q un antécédent de e_2 par φ : montrer que S(X) = -Q(-X) est antécédent de e_4 par φ .
- **3.** a) Déterminer un antécédent P_1 de e_1 par φ (on pourra exploiter les racines de la dérivée).
 - b) Déterminer un antécédent P_2 de e_2 par φ .
 - c) En déduire des antécédents P_3 et P_4 de e_3 et e_4 .
- **4.** En déduire un antécédent de $Y=(\alpha,\beta,\gamma,\delta)\in\mathbb{R}^4$ par φ que l'on exprimera à l'aide de P_1,P_2,P_3,P_4 .
- 5. Conclure sur la bijectivité de φ
- **6.** Application : on prend a=2. Montrer qu'il existe un unique polynôme P de $\mathbb{R}_3[X]$ vérifiant :

$$P(-2) = 4$$
 $P'(-2) = 2$ $P(2) = -4$ $P'(2) = 10$

et le déterminer à l'aide des questions précédentes (on donnera le résultat sous forme développée et ordonnée).

PCSI 1 2019/2020

EXERCICE 3

On considère l'application $\Delta : \mathbb{K}[X] \to \mathbb{K}[X]$ définie par

$$\Delta(P) = P(X+1) - P(X)$$

On définit les polynôme de Newton définis par $N_0 = 1$ et pour tout $k \in \mathbb{N}^*$,

$$N_k = \frac{X(X-1)\cdots(X-k+1)}{k!}$$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, (N_0, \dots, N_n) est une base de $\mathbb{K}_n[X]$.
- 2. Montrer que Δ est linéaire et calculer son noyau.
- **3.** Pour $P \in \mathbb{K}[X]$, calculer $\deg \Delta(P)$. En déduire que Δ induit une application linéaire $\widetilde{\Delta}$ de $\mathbb{K}_n[X]$ dans $\mathbb{K}_{n-1}[X]$
- **4.** Calculer $\Delta(N_k)$ pour $k \in \mathbb{N}$.
- 5. En déduire que Δ est surjective.
- **6.** Calculer $\Delta^{p}\left(N_{k}\right)$ pour $(p,k)\in\left[\left[0,n\right]\right]$ et en déduire que $\forall P\in\mathbb{K}_{n}\left[X\right]$,

$$P = \sum_{k=0}^{n} \Delta^{k} (P) (0) N_{k}$$

- 7. Soit $P \in \mathbb{K}[X]$. Exprimer à l'aide des polynômes de Newton l'ensemble des antécédents de P par Δ .
- **8.** Application:
 - a) Trouver à l'aide de la méthode précédente l'unique polynôme P vérifiant

$$P(0) = 0$$
 et $P(X+1) - P(X) = X^3$

- b) En déduire sous forme factorisée l'expression de $S_n = \sum_{k=0}^n k^3$ pour tout $n \in \mathbb{N}$.
- **9.** On considère l'application $T: \mathbb{K}[X] \to \mathbb{K}[X]$ définie par T(P) = P(X+1)
 - a) Montrer que T est linéaire et exprimer Δ à l'aide de T.
 - b) Calculer T^k pour tout $k \in \mathbb{N}$.
 - c) En déduire la formule $\forall P \in \mathbb{K} [X], \ \forall n \in \mathbb{N},$

$$\Delta^{n}\left(P\right) = \sum_{k=0}^{n} \left(-1\right)^{n-k} \binom{n}{k} P\left(X+k\right)$$

10. Décomposer X^4 sur la base $(N_0, N_1, N_2, N_3, N_4)$ à l'aide de la formule précédente.