DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE-ETC F/8 13/10 PROPELLER-DISK WAKE SURVEY DATA FOR MODEL 4989 REPRESENTING THE--ETC(U) DEC 80 W 8 DAY, B HURWITZ DINSRDC/SPD-0011-21 NL AD-A094 378 UNCLASSIFIED 1 : 2 4094379

DTNSRDC/SPD-0011-21

IDE FILE COPY

PROPELLER-DISK WAKE SURVEY DATA FOR MODEL 4989 REPRESENTING THE FF 1052-CLASS SHIP IN A TURN AND WITH A BASS DYNAMOMETER BOAT

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

LEVET

PROPELLER-DISK WAKE SURVEY DATA FOR MODEL 4989
REPRESENTING THE FF 1052-CLASS SHIP IN A TURN AND WITH
A BASS DYNAMOMETER BOAT

BY

WILLIAM G. DAY, JR. RAE B. HURWITZ

UNLIMITED DISTRIBUTION: APPROVED FOR PUBLIC RELEASE

SHIP PERFORMANCE DEPARTMENT REPORT

DECEMBER 1980

DTNSRDC/SPD-0011-21

DW-DTNSRDC 5602/30 (2-60)

81 2 2 00%

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

SECURITY CLASSIFICATION OF THIS PAGE (M. on Data Entered)

	REPO	ORT DOCUMENT	ATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
\	RDC/SPD-00	11-21	2. GOVT	ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER 2 H 0
	E (and Subtitle)			-7017	5. TYPE OF REPORT & PERIOD COVERED
Prope Repre	ller-Disk	Wake Survey Da FF 1052 Class Dynamometer I	ss Ship In a	el 4989 a Turn	5. PERFORMING ORG. REPORT NUMBER
	ich a bass	E Synamometer 1	≽ ►		DTNSRDC/SPD-0011-21
7. AUTH	10R(e)		20- 10-		8. CONTRACT OR GRANT NUMBER(#)
	am G./Day,	Jr.			
David Ship	W. Taylor	Naval Ship Re Department 0084		16	Task Area S4622 Work Unit No. 1524-657,154
11. CON	TROLLING OFFI	CE NAME AND ADDRE	55		12. REPORT DATE
	. Sea System .ngton, D.C	ms Command (NA . 20362	AVSEA 05R)	(11)	DECEMBER 1980 17 HUMBER OF PASES 149 + xvii (12) 266
14. MON	ITORING AGENC	Y NAME & ADDRESS	i dillerent from Co	ntrolling Office)	15. SECURITY CLASS. (of this report)
					Unclassified
					15a. DECLASSIFICATION/DOWNGRADING
		EMENT (of this Report		lic Releas	e
Unlim	ited Distr		oved for Pub		e
Unlim	ited Distr	ibution: Appro	oved for Pub		e
Unlim	RIBUTION STAT	ibution: Appro	eved for Pub	20, il dillerent fra	e m Report)
Unlim 17. DIST 18. SUPE	RIBUTION STAT PLEMENTARY NO WORDS (Continue Wake Surve	ibution: Appro	eved for Pub	20, il dillerent fra	e m Report)
Unlim 17. DIST 18. SUPF 19. KEY Model FF 10.	PLEMENTARY NO WORDS (Continue Wake Surve 52 Wake in	ibution: Appro	eved for Pub	20, il dillerent fra	e m Report)
17. DIST 18. SUPE 19. KEY Model FF 10. Bass	PLEMENTARY NO WORDS (Continue Wake Surve 52 Wake in Dynamometer	ibution: Appro	eved for Pub	20, il dillerent fra	e m Report)
17. DIST 18. SUPE 19. KEY Model FF 10. Bass	PLEMENTARY NO WORDS (Continue Wake Surve 52 Wake in	ibution: Appro	eved for Pub	20, il dillerent fra	e m Report)
19. KEY Model FF 10. Bass CP Pro	WORDS (Continue Wake Surve 52 Wake in Dynamometer opeller Pro FRACT (Continue Experiments etermined in	ibution: Appro	event for Pub t entered in Block: eventy and identify d in which nditions on ion to dete	by block number; by block number; the wake i a model o	n way of the propeller disk f the FF 1052 Class ship in e loadings on a controllable
19. KEY Model FF 10. Bass CP Pro was deconnected	WORDS (Continue Wake Surve 52 Wake in Dynamometer opeller Pro FRACT (Continue Experiments etermined in ction with propeller.	EMENT (of the ebatrace on reverse elde if nece eys a Turn r Boat ogram on reverse elde if nece s are describe for several co an investigat The wake su	event for Pub t entered in Block: eventy and identify d in which nditions on ion to dete rveys were	by block number) by block number) the wake i a model o	n way of the propeller disk f the FF 1052 Class ship in e loadings on a controllable with and without a dynamomete
19. KEY Model FF 10. Bass CP Pro was deconnection pitch boat dyname	WORDS (Continue Wake Surve 52 Wake in Dynamometer opeller Pro FRACT (Continue Experiments etermined ic ction with propeller, behind the ometer boat	EMENT (of the ebatrace on reverse elde if nece eys a Turn r Boat ogram on reverse elde if nece s are describe for several co an investigat . The wake su hull model to	entered in Block: t entered in Block:	by block number; by block number; the wake i a model o rmine blad conducted the effect propeller	n way of the propeller disk f the FF 1052 Class ship in e loadings on a controllable with and without a dynamometes of the presence of the disk of the model. Next,
19. KEY Model FF 10. Bass CP Pro was deconnection pitch boat dyname wake of	WORDS (Continue Wake Surve 52 Wake in Dynamometer opeller Pro FRACT (Continue Experiments etermined in ction with propeller, behind the ometer boat data were of	EMENT (of the abstract on reverse elde if neces eys a Turn r Boat ogram on reverse elde if neces s are describe for several co an investigat . The wake su hull model to t on the flow obtained for t	essery and identify d in which nditions on ion to dete rveys were determine through the he model in	by block number; the wake i a model ormine blad conducted the effect propeller several c	n way of the propeller disk f the FF 1052 Class ship in e loadings on a controllable with and without a dynamometes of the presence of the

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S'N 0102-LF-014-6601

UNCLASSIFIED 389694 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. with a yaw angle corresponding to that used in the turning experiments to assess the differences in results for these two techniques.

The results show that the major change in the experiments with and without the dynamometer boat is that the longitudinal velocity component ratio (V_x/V) with the boat is about 12 percent lower than without throughout the circumference of the propeller disk. The higher harmonics (7-10) of the circumferential distribution of both the longitudinal and tangential velocity component ratios are greater for the experiments with the dynamometer boat. As anticipated, there are major changes in the tangential and radial velocity component ratios in turns as compared to straight and ahead operation. The longitudinal component is also affected to some degree. The results of the yawed experiments are not in good agreement with those from the turning experiments.

UNCLASSIFIED

TABLE OF CONTENTS

rage
LIST OF FIGURES iv
LIST OF TABLES is
NOTATIONxii
ABSTRACT 1
ADMINISTRATIVE INFORMATION
INTRODUCTION 1
EXPERIMENTAL PROCEDURE
WAKE SURVEYS WITH AND WITHOUT A DYNAMOMETER BOAT 4
WAKE SURVEYS IN TURNS
WAKE SURVEYS ON A YAWED MODEL TOWED IN A STRAIGHT LINE 7
DISCUSSION OF RESULTS 8
SUMMARY AND CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES 14
APPENDIX A - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR EXPERIMENTS WITH AND WITHOUT THE BASS DYNAMOMETER BOAT - EXPERIMENTS 178 AND 179
APPENDIX B - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR ROTATING ARM WAKE SURVEYS - EXPERIMENTS 180, 181, 182, AND 183
APPENDIX C - VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS FOR YAWED MODEL STRAIGHT WAKE SURVEYS - EXPERIMENTS 184 AND 185

Accession For
NTIC CRAMI
DTIC TAB III
Unannaranad []
Just of costs on
Ру
Pistribution/
Availability Codes
Avnil and/or
Dist Special
10

iii

LIST OF FIGURES

		P	age
1	-	Ship and Model Particulars for FF 1088 Represented by Model 4989	15
2	-	Rake Arrangement Showing Spherical Head Pitot Tubes	16
3	-	Experimental Arrangement of Model 4989 and the Bass Dynamometer Boat	17
4	-	Composite Plot of Velocity Component Ratios from Experiments With and Without the Bass Dynamometer Boat for the 0.512 Radius	18
5	-	Composite Plot of Velocity Component Ratios from Experiments With and Without the Bass Dynamometer Boat for the 0.711 Radius	19
6	-	Composite Plot of Velocity Component Ratios from Experiments With and Without the Bass Dynamometer Boat for the 0.910 Radius	20
7	-	Composite Plot of Velocity Component Ratios from Experiments With and Without the Bass Dynamometer Boat for the 1.082 Radius	21
8	-	Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake from Experiments With and Without the Bass Dynamometer Boat	22
9	-	Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle from Experiments With and Without the Bass Dynamometer Boat	23
.0	-	DTNSRDC Model 4989 Attached to the Rotating Arm	24
1	-	Velocity Vector Diagram of the Flow in the Propeller Plane for Experiment 180	25
12	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 180	26
L3	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 180	27
L 4	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 180	28
۱5	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 180	29

LIST OF FIGURES (CONTINUED)

		Page
	Radial Distribution of the Mean Velocity Component Ratios for Experiment 180	30
	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 180	31
	Velocity Vector Diagram of the Flow in the Propeller Plane for Experiment 181	32
19 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 181	33
	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 181	34
	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 181	35
	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 181	36
23 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 181	37
24 -	Radial Distribution of the Mean Velocity Component Ratios for Experiment 181	38
25 -	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 181	39
26 -	Velocity Vector Diagram of the Flow in the Propeller Plane for Experiment 182	40
27 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 182	41
28 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 182	42
29 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 182	
	TOT EXPERIMENT 10/	43

٠,

LIST OF FIGURES (CONTINUED)

			Page
30	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 182	44
31	_	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 182	45
32	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 182	46
33	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 182	47
34	_	Velocity Vector Diagram of the Flow in the Propeller Plane for Experiment 183	48
35	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 183	49
36	_	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 183	50
37	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 183	51
38	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 183	52
39	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 183	53
40	-	Radial Distribution of the Mean Velocity Component Ratios for Experiment 183	54
41	-	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 183	55
42	-	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 184	56

LIST OF FIGURES (CONTINUED)

		Page
43 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 184	57
44 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 184	58
45 ~	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.910 for Experiment 184	59
46 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082	
47	for Experiment 184	60
	for Experiment 184	61
48 –	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 184	62
49 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 185	63
50 ~	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 185	64
51 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 185	65
52 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.910 for Experiment 185	66
53 -	Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 185	67
54 -	Radial Distribution of the Mean Velocity Component Ratios for Experiment 185	68
	Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 185	69

		LIST OF FIGURES (CONTINUED)	Page
56	-	Composite Plot of Velocity Component Ratios for Experiments 178, 180, and 184 for the 0.512 Radius	70
57	-	Composite Plot of Velocity Component Ratios for Experiments 178, 180, and 184 for the 0.711 Radius	71
58	-	Composite Plot of Velocity Component Ratios for Experiments 178, 180, and 184 for the 0.910 Radius	72
59	-	Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake of Experiments 178, 180, and 184	73
60	-	Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle of Experiments 178, 180 and 184	

LIST OF TABLES

1	-	List of Wake Survey Experiments with Model 4989	Page 75
2a		Conditions for Wake Surveys in a Turn	76
2ъ	-	Conditions for Yawed Wake Surveys	76
3	-	Comparison of Conventional Tow Tank Wake Survey Data with Data from Rotating Arm Wake Survey and with Data from Yawed Model Wake Survey	77
A-1	-	Input Data for Harmonic Analysis for FF 1088, Model 4989, Experiment 178	80
A-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 178	82
A-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 178	83
A-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 178	84
A-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 178	
A-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 178	86
A-7	-	Input Data for Harmonic Analysis for FF 1088, Model 4989, Experiment 179	87
A-8	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 179	89
A-9	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 179	90
A-1	0 -	- Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 179	91
A-1	1 -	- Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 179	92
A-1	2 -	- Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 179	93
B-1	-	Input Data for Harmonic Analysis for FF 1088, Model 4989, Experiment 180	96

LIST OF TABLES (CONTINUED)

		r	age
B-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 180	98
B-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 180	99
B-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 180	100
₿-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 180	102
8-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 180	103
a7	-	Input Data for Harmonic Analysis for FF 1088, Model 4989, Experiment 181	105
B-8	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 181	108
B-9	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 181	109
B-10	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 181	110
B-11	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 181	112
B-12	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 181	113
B-13	-	Input Data for Harmonic Analysis for FF 1088, Model 4989, Experiment 182	115
B-14	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 182	118
B-15	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 182	119
B-16	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 182	120

LIST OF TABLES (CONTINUED)

			Page
B-17	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 182	122
B-18	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 182	123
B-19	-	Input Data for Harmonic Analysis for FF 1088, Model 4989, Experiment 183	125
B-20	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 183	128
B-21	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 183	129
B-22	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 183	130
B-23	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 183	132
B-24	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 183	133
C-1	-	Input Data for Harmonic Analysis for FF 1088, Model 4989, Experiment 184	136
C-2	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 184	138
C-3	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 184	139
C-4	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 184	140
C-5	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 184	141
C-6	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 184	142
C-7	-	Input Data for Harmonic Analysis for FF 1088, Model 4989,	143

LIST OF TABLES (CONTINUED)

			rage
C-8	-	Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and Other Derived Quantities at the Experimental and Interpolated Radii for Experiment 185	145
C-9	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii for Experiment 185	146
C-10	-	Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii for Experiment 185	147
C-11	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii for Experiment 185	148
C-12	-	Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii for Experiment 185	149

NOTATION

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
A _N	COS COEF	The cosine coefficient of the Nth harmonic*
B _N	SIN COEF	The sine coefficient of the N th harmonic*
C	C	Pressure reading at center hole of 5-hole pitot tube
D		Propeller diameter
$J_{\mathbf{V}}$	$^{\mathtt{J}}\mathbf{v}$	Apparent advance coefficient $J_V = \frac{V}{nD}$
N	N	Harmonic number
n		Propeller revolutions
P .	P	Pressure
r/R or x	Radius or RAD.	Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R)
R _n	R _n	Reynolds number
R1, R2	R1, R2	Pressure reading at radial holes of 5-hole pitot tube
T1, T2	T1, T2	Pressure reading at tangential holes of 5-hole pitot tube
บ/บ	บ/บ _∞	Non-dimensional longitudinal velocity measured by means of boundary layer pitot tubes
▼ .	V	Actual model or ship velocity
V _b (x ,θ)		Resultant inflow velocity to blade for a given point
v _b (x)		Mean resultant inflow velocity to blade for a given radius
V _r (x,θ) (*see footnote on p	VR age xv)	Radial component of the fluid velocity for a given point (positive toward the shaft centerline)

NOTATION (CONTINUED)

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
$\widetilde{V}_{\mathbf{r}}(\mathbf{x})$		Mean radial velocity component for a given radius
V _r (x,θ)/V	vr/v	Radial velocity component ratio for a given point
v _r (x)/v	VRBAR	Mean radial velocity component ratio for a given radius
V _t (x,θ)	VT	Tangential component of the fluid velocity for a given point (positive in a counterclockwise direction looking forward)
$\overline{v}_{t}(x)$		Mean tangential velocity component for a given radius
V _t (x,θ)/V	VT/V	Tangential velocity component ratio for a given point
<u>v</u> _t (x)/v	VTBAR	Mean tangential velocity component ratio for a given radius
(v _t (x)/V) _N	AMPLITUDE	Amplitude (B _N for single screw symmetric; C _N otherwise) of Nth harmonic of the tangential velocity component ratio for a given radius*
V _χ (x,θ)	vx	Longitudinal (normal to the plane of survey) component of the fluid velocity for a given point (positive in the astern direction)
$\overline{V}_{x}(x)$		Mean longitudinal velocity component for a given radius
V _x (x,θ)/V	vx/v	Longitudinal velocity component ratio for a given point
V _x (x)/V	VXBAR	Mean longitudinal velocity component ratio for a given radius
(v _x (x)/v) _N	AMPLITUDE	Amplitude (A _N for single screw symmetric; C _N otherwise) of Nth harmonic of the longitudinal velocity component ratio for a given radius*

NOTATION CONTINUED)

CONVENTIONAL SYMBOL	SYMBOL APPEARING ON PLOTS	DEFINITION
x/L _{WL}	×/L _{WL}	Non-dimensional longitudinal location of boundary layer pitot tubes
Φ _N	PHASE ANGLE	Phase angle of Nth harmonic*

The harmonic amplitudes of any circumferential velocity distribution f (0) are the coefficients of the Fourier Series:

$$f(\theta) = A_0 + \sum_{N=1}^{M} A_N \cos (N\theta) + \sum_{N=1}^{M} B_N \sin(N\theta)$$

$$= A_0 + \sum_{N=1}^{M} C_N \sin(N\theta + \phi_N)$$

NOTATION (CONTINUED)

CONVENTIONAL SYMBOL

SYMBOL APPEARING ON PLOTS

DEFINITION

1-v(x)

1-WX

Volumetric mean velocity ratio from the hub to a given radius

$$1-w(r/R) = \begin{bmatrix} 2 \cdot \int_{-\infty}^{r/R} (\overline{v}_{x_c}(x)/v) \cdot x \cdot dx \\ \frac{r_{hub}/R}{(r/R)^2 - (r_{hub}/R)^2} \end{bmatrix}$$

where
$$\overline{V}_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x})/V = \int_{0}^{2\pi} \left[\frac{\mathbf{v}_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)}{2\pi V} \right] d\theta$$
and $V_{\mathbf{x}_{\mathbf{c}}}(\mathbf{x},\theta)/V = (V_{\mathbf{x}}(\mathbf{x},\theta)/V)$
 $-(V_{\mathbf{c}}(\mathbf{x},\theta)/V) \tan (\beta(\mathbf{x},\theta))$

1-w_v(x)

1-WVX

Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction)

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \int (\overline{V}_{x}(x)/V) \cdot x \cdot dx \\ r_{hub}/R \\ \hline (r/R)^{2} - (r_{hub}/R)^{2} \end{bmatrix}$$

β(**x**,θ)

Advance angle in degrees for a given point

B(x)

BBAR

Mean advance angle in degrees for a given radius

+Δβ

BPOS

Variation of the maximum advance angle from the mean for a given radius

NOTATION (CONTINUED)

VELOCITY DIAGRAM OF BETA ANGLES

ENGLISH/SI EQUIVALENTS

ENGLISH	SI
1 inch	25.400 millimetres [0.0254 m (metres]
1 foot	0.3048 m (metres)
1 foot per second	0.3048 m/sec (metres per second)
1 knot	0.5144 m/sec (metres per second)
1 degree (angle)	0.01745 rad (radians)
1 inch Water (60°F)	248.8 pa (pascals)

ABSTRACT

Experiments are described in which the wake in way of the propeller disk was determined for several conditions on a model of the FF 1052 Class ship in connection with an investigation to determine blade loadings on a controllable pitch propeller. The wake surveys were conducted with and without a dynamometer boat behind the hull model to determine the effects of the presence of the dynamometer boat on the flow through the propeller disk of the model. Next, wake data were obtained for the model in several conditions while turning in the Rotating Arm Facility. Finally, the model was towed in a straight line with a yaw angle corresponding to that used in the turning experiments to assess the differences in results for these two techniques.

The results show that the major change in the experimets with and without the dynamometer boat is that the longitudinal velocity component ratio $(\nabla_{\mathbf{x}}/\mathbf{V})$ with the boat is about 12 percent lower than without throughout the circumference of the propeller disk. The higher harmonics (7-10) of the circumferential distribution of both the longitudinal and tangential velocity component ratios are greater for the experiments with the dynamometer boat. As anticipated, there are major changes in the tangential and radial velocity component ratios in turns as compared to straight and ahead operation. The longitudinal component is also affected to some degree. The results of the yawed experiments are not in good agreement with those from the turning experiments.

ADMINISTRATIVE INFORMATION

The work reported herein was funded by the Naval Sea Systems Command (NAVSEA 05R) Task Area SSL 24001, Task 19977. The work was performed by the David W. Taylor Naval Ship R&D Center (DTNSRDC), Work Units 1-1524-567 and 1-1544-296.

The International System (SI) of units is used in addition to the equivalent English Units in this report.

INTRODUCTION

There has been a major trend in recent designs of combatant ships for the U.S. Navy to use marine gas turbines as prime movers for the main propulsion system. Currently there is no marine reverse gear available within the powering, space and other constraints imposed by this type of design. The solution to the reversing problem for unidirectional propulsion machinery for a number of years has been the use of the controllable pitch (CP) propeller. The U.S. Navy has had experience in the past in the design of CP propellers for comparatively low powered ships. Structural problems were encountered in the development of CP propellers for a ship of the FF 1052 Class which indicated that insufficient information was available on which to base a design for the power installed in the ships of this class. The work presented in this report has been performed as part of the research and development effort to obtain technical data on which to base more rational designs. More specifically, it is part of a project to investigate the blade loadings to be developed by CP propellers in normal operation.

The catastrophic failure of all the propeller blades on USS BARBEY (FF 1088)¹, which was fitted with a prototype controllable pitch (CP) propeller system, has revealed the need for further extensive investigation into the problems peculiar to high power CP propeller installations. There have also been reports that another ship fitted with a CP propeller similar in type to that on BARBEY encountered a high level of vibrations during manuevers. Therefore, a series of experiments to investigate change in blade loading is imperative as further installations of CP propellers, including the propellers on the DD 963 Class, are continuing.

It is known that the levels of propeller thrust and torque are significantly higher during turns than in straight ahead operation at a given speed of advance. During a turning maneuver, the wake distribution immediately ahead of the propeller becomes less uniform as the yaw angle of the ship increases. This nonuniformity may cause severe blade loads on a propeller. Since these blade loads may cause several structural problems and consequent material failures, it was considered important to investigate the character and level of these forces on a propulsive system during the turn. The wake survey data presented in this report are part of the experimental effort to determine variations in blade loading for CP propellers.

References are listed on page 14.

The objective of this phase of the work was to provide wake measurements on a model of the FF 1052 Class ship while in a turn in order to predict blade loads on the CP propeller. In addition, wake measurements with the model of FF 1052 Class were to be made with and without a dynamometer boat attached to the model to assess the effect of the dynamometer boat in experiments performed to actually measure the loads on a blade of a model controllable pitch propeller. 2

The planned approach for this part of the project was to tow Model 4989, representing the FF 1052 Class, in a straight line and measure wake in way of the propeller disk both with and without the dynamometer boat. Then the model was to be towed in the Rotating Arm Tank to permit measurement of the wake in a turn. Finally, the model was to be towed with a yaw angle in a straight line in the Deep Water Basin to determine if the wake in the propeller disk in a turn can be approximated by the wake of a yawed model, thereby saving the extra cost of the Rotating Arm Facility if wake in turns were to be determined for other models.

EXPERIMENTAL PROCEDURE

All velocity surveys for this project were conducted using DTNSRDC Model 4989 which represents the FF 1052 Class ship. The model was fitted with bow sonar dome, bilge keels, roll-stabilizer fins, shaft and struts for all experiments. The particulars of size and loading for the ship and model are presented in Figure 1.

A pitot tube rake, DTNSRDC No. 7, and four differential pressure gages were used to measure the velocities in the plane of the propeller disk at each of five radial locations. The pitot tube rake consisted of 5-hole spherical pitot tubes mounted in a common housing. Figure 2 shows the arrangement of the rake and pitot tubes.

The full-scale propeller disk was 15.0 feet (4.572 m) in diameter. The radii at which the measurements were made, expressed as ratios of the propeller radius (r/R), were 0.330, 0.512, 0.711, 0.911, and 1.082. The propeller plane in which the velocity measurements were taken was 0.5 feet (0.15 m) forward of Station 19. To ensure the proper trim throughout the experiments the model was ballasted to a displacement corresponding to

4000 tons (4064 metric tons) and the trim corresponding to the sinkage and trim for the particular speed of interest. The model was locked at this condition of loading for all experiments.

In conducting an experiment, the runs are made at a constant speed, the input signals from the pitot tubes are integrated over a 5-second period and recorded digitally. Velocity component ratios are computed for each pitot tube and recorded. The rake is rotated to a new angle and the procedure is repeated until data are available throughout the entire propeller disk.

The circumferential distributions of the longitudinal, tangential, and radial velocity component ratios are plotted for each radial location then checked for random errors and conformity to values predicted from past experience. The mean longitudinal, tangential and radial component ratios of the velocity vectors, volumetric mean wake velocity ratio, mean and variations of values of the advance angle are also computed and plotted. Finally, analyses are performed to determine the harmonics of the circumferential distributions of the longitudinal and tangential velocity component ratios at both the experimental and interpolated radii. The amplitudes and phase angles for the first 10 harmonics of the longitudinal and tangential velocities are computed and preserted in this report.

Table 1 presents a complete list of all experiments reported herein.

WAKE SURVEYS WITH AND WITHOUT A DYNAMOMETER BOATEXPERIMENTS 178 AND 179

A part of the overall project to determine blade loadings on CP propellers required the mounting of a dynamometer boat in close proximity to the stern of Model 4989 as shown in Figure 3. This photograph and the vast majority of the data and graphs presented in this report have been previously published in a report by Boswell, et al². This material is republished in this report primarily for purposes of comparison with data from the other phases of the overall wake survey project.

Wake surveys were conducted with and without the dynamometer boat attached to Model 4989 at the standard conditions of displacement and trim previously specified in this report. The model speed for these experiments corresponded to 28.6 knots (14.7 m/sec) for the full-scale ship.

The experimental data in the form of velocity component ratios are listed in Appendix A. The circumferential distributions of the longitudinal, tangential, and radial velocity component ratios are presented as composite plots in Figures 4 through 7. The radial distributions of the mean velocity component ratios and of the mean advance angle are shown in Figures 8 and 9, respectively. The harmonics of the velocity component ratios for each experiment are presented in Appendix A.

The major difference between the velocity component ratios in the propeller plane with and without the dynamometer boat appears to be the change in the level of the longitudinal velocity component ratio (V_X/V) . The value of V_X/V with the dynamometer boat is reduced by approximately 12 percent throughout the cirumference of the propeller disk. There is a tendency for the longitudinal harmonics with propeller boat to be larger, particularly for the higher (seventh to tenth) harmonics. The trend of these results is as anticipated.

WAKE SURVEYS IN TURNS-EXPERIMENTS 180, 181, 182, AND 183

Experimental Conditions

The experimental conditions for the wake surveys in the rotating arm tank were derived primarily from full-scale tactical data measured during trials of the USS MEYERCORD (FF 1058). The standard displacement and trim conditions for the model experiments are the same as listed previously. It was known prior to starting these experiments that the steady turn would by the only part of a typical turning maneuver which could be simulated within the limitations imposed by the Rotating Arm Carriage and the wake survey instrumentation. It was decided, therefore, to determine the steady (final) turning diameter, speed, and drift angle at midships for this part of the turn from full-scale data for several typical combinations of approach speed and rudder angles. The approach speeds and rudder angles chosen are listed in Table 2.

Experiments 180 and 181 correspond to the maximum loading expected on the propeller in a turn for this class ship, full power with 35 and 20 degree rudder angles, respectively. Experiments 182 and 183 correspond to trial conditions of the BARBEY during instrumented propeller trials. The first set of conditions, then, will provide a design extreme, and the second set will permit a correlation between values predicted from model data and those measured during full-scale trials.

Model 4989 was fitted for these experiments with DTNSRDC Pitot Tube Rake No. 7 in the usual manner, as described in the Introduction. Prior to conducting these experiments, the model was ballasted to the specified displacement (4000 tons (4064 metric tons)) and trim conditions and thereafter locked in place at the desired yaw angle at midships. Photographs of Model 4989 on the Rotating Arm Carriage during the conduct of Experiment 180 are presented in Figure 10.

The model was accelerated to a speed corresponding to the steady turning speed for the full-scale ship and measurements were taken to determine velocities at a number of angles in the plane of the propeller disk. Periodically measurements were repeated to be sure that no significant drifting of the data occurred. The data have been analyzed as described in the Introduction.

At the end of the Experiment 180 the preliminary data analysis indicated that the velocity component ratios determined for Tube 5 (r/R = 1.082) were not reasonable when compared to those for the other radial locations. The problem proved to be a blocked tube which was cleared in time to secure a full set of data for experiments 181 through 183. The data from Tube 5 have not been used in the analysis of data for Experiment 180 as they are obviously incorrect.

Individual data points from each of the four rotating arm wake surveys have been plotted as a function of circumferential position. From these data, the tangential and radial components have been combined to give a vector diagram of the in-plane velocities for each survey. This diagram shows clearly the significant cross-flow in the propeller plane and the resulting confused wake of the shaft and shaft struts.

The in-plane velocity vectors for Experiment 180 are plotted in Figure 11. Figures 12 through 15 present the circumferential distributions of

longitudinal, tangential, and radial velocity component ratios from Experiment 180. The radial distributions of circumferential mean velocities and advance angles are plotted in Figures 16 and 17 respectively.

Velocity data from Experiment 181 are presented in Figures 18 through 25 (arranged in a similar manner). Velocity data from Experiment 182 are presented in Figures 26 through 33. Velocity data from Experiment 183 are presented in Figures 34 through 41.

Appendix B presents the velocity component ratios for Experiments 180, 181, 182, and 183. Harmonic analysis have been performed on the longitudinal and tangential velocity component ratios for these experiments. Tables of the individual harmonic amplitudes and phase angles are also presented in Appendix B. The complete set of sixteen harmonics calculated for each experiment are presented for the four experimental radii and eight interpolated radii.

The calculated mean values of the advance angle (BBAR), and the maximum variations thereof (BPOS) and (BNEG) are shown in tables in Appendix B. The advance angles were calculated using an advance coefficient, $J_{\rm V}$, of 0.800. A diagram showing the relationship between the longitudinal and tangential velocity vectors, the advance coefficient, and the advance angles is described on page xvii.

WAKE SURVEYS ON A YAWED MODEL TOWED IN A STRAIGHT LINE EXPERIMENTS 184 AND 185

Experimental Conditions

The purpose of these experiments was to determine whether the results from a model towed in a straight line with a drift (yaw) angle could be substituted for those in a turn as determined from the Rotating Arm Tests. The cost of running a model wake experiment in the Deep Water Basin is substantially less than the cost of the same experiment run in the Rotating Arm Facility. There is also the advantage that the model is not operating in its own wake as is the case in the Rotating Arm Facility.

The experimental conditions of yaw, speed in the turn, and rudder angle listed in Table 2 for the wake in turns were repeated as nearly as practicable for these experiments with the yawed model. The model was fitted with Rake No. 7 with the individual pitot tubes located at the same radius ratio as for the other experiments.

The yawed-model wake survey experiments corresponded to the Rotating Arm wake survey experiments as follows: Experiment 184 corresponds to Experiment 180 with respect to yaw angle and speed, Experiment 185 corresponds to Experiment 182 in similar fashion. Due to limitations of time, only the two wake surveys were run. Nevertheless, the similarity of the data from the four Rotating Arm surveys means that the comparison of yawed-model surveys in these two cases should be sufficient to show whether a yawed model survey can represent a model in a turn as simulated on the Rotating Arm.

The circumferential distributions of $\rm V_x/\rm V$, $\rm V_t/\rm V$ and $\rm V_r/\rm V$ are presented in graphical form for the wake experiments with the yawed model in Figures 42 through 55. Figures 42 through 46 present the circumferential distributions of longitudinal, tangential, and radial velocity component ratios from Experiment 184. The radial distributions of circumferential mean velocities and advance angles are plotted in Figures 47 and 48, respectively. Velocity data from Experiment 185 are presented in Figures 49 through 55 in a similar manner. Tabulations of the experimental data for values of r/R are listed in Appendix C. The results of harmonic analyses of the circumferential distributions of longitudinal and tangential velocity component ratios are also presented in Appendix C.

DISCUSSION OF RESULTS

The Bass Dynamometer Boat located behind the propeller plane of the model had a significant effect on the velocity component ratios in the propeller plane. The largest effect was shown in the longitudinal velocity component ratios. The restriction of flow caused by the dynamometer boat resulted in mean longitudinal velocity component ratios which were 0.147 to 0.101 lower than those without the boat. The differences in mean tangential velocity component ratios were very small, between 0.011 and 0.006, with no trend higher or lower.

The circumferential distribution of the velocity component ratios was not affected by the dynamometer boat. Figures 4 through 7 show that at every radius the effects of shaft wake, strut wake, and in the case of tangential and radial components the effects of flow upward from the

bottom of the hull, are the same with or without the dynamometer boat.

Hence, it may be stated that from these results the major effect of the Bass Dynamometer Boat on the wake in the propeller plane is a reduction in the longitudinal velocity component ratios due to the blockage caused by such a large bluff body behind the model.

The velocity component ratios from Experiment 180, which are considered typical of those from all the turning experiments, are compared with those from the usual type of wake experiment (in a straight line without dynamometer boat) and with those from the yawed model wake experiments in Figures 56 through 58 for the radius ratios of 0.512, 0.711, and 0.910. It may be noted from these figures that the changes in longitudinal velocity component ratio (V_X/V) are significant in that there is greater asymmetry for the model in a turn (ideally there should be none for the model towed in a straight line). There is also a greater wake defect behind the shaft and struts in the turn. The differences in tangential and radial velocity component ratios are much more significant than for V_X/V . Both circumferential distribution and amplitude of V_t/V and V_r/V have changed substantially for the turn compared to straight line operation.

As stated previously, there is a major limitation in conducting this type of experiment in the Rotating Arm Tank. By the time the model has been accelerated to the desired steady turning speed and data samples are integrated over a 5 second period, the model has turned more than 360 degrees, and is operating in its own wake. An attempt was made during these experiments to alter the sampling time to 1 second. The results from this attempt varied so much they were of little use. Evidently the transients in the flow are of sufficient duration that the full 5 second integration time is necessary. Data from specific points in the propeller disk were checked on several occasions to determine how well they repeated. In every case measurements were repeated within ± 1 percent which is the normal repeatability of the instrumentation based on calibration and past experience. Based on observations throughout the experiments, it would appear that, although the model is being towed in its own wake, that particular flow is quite constant. The error

in determining the wake in way of the propeller disk due to this effect is most probably constant from one experiment to another at the same speed. The change in level is also likely to be small compared to the rather sizeable changes in velocity component ratios noted from operating in a turn compared to operation straight ahead.

Some additional observations have been made in comparing the data from the wake survey experiments in a turn and in a straight ahead motion. The composite plots of velocity component ratios show that in a large portion of the propeller plane, the longitudinal velocity component ratio was not affected by the turn. In the area of the shafting and struts, however, a much greater effect is shown on the longitudinal velocity component ratios from the turning wake survey. This is probably due to the angle of flow into the appendages causing a much more significant variation in wake.

The largest changes in the velocity component ratios due to the turn are seen in the tangential and radial velocity component ratios. The high angularity of the flow leads to much greater peaks in the circumferential distribution of these components. This effect is shown clearly in Figures 56 through 58. Because circumferential distributions of tangential and radial components were so radically different they were plotted as "in-plane" vectors in Figures 11, 18, 26, and 34. Looking at Figure 11 for example, the cross-flow caused by the combination of drift angle and turning clearly stands out. In addition, the confused flow in the wake of the appendages is seen in the vectors along the 270-degree and 300-degree radial lines in Figure 11.

The conclusion to be drawn from these data is that when the model is towed in a straight-ahead condition the major effect on the variation of the in-plane velocity components (tangential and radial) is due to the upward flow from the bottom of the hull. In the turning condition, however, the major effect on in-plane velocities is due to the cross-flow caused by the drift angle and the turning path. The maximum tangential or radial velocity component ratios in a turn can be as high as three times that of the same model in straight-ahead motion. In fat, the amplitude of the first harmonic of the tangential velocity component ratios at the 0.7 radius is 2.5 times higher for the turning condition.

Although the changes in velocity component ratios are quite dramatic the effect on β angles is small. For example, the circumferential mean β angle for the turning wake survey is less than that for the straightahead survey but by less than one degree. The total variation in β ($|+\Delta\beta|+|-\Delta\beta|$) angle is 1.3 degrees greater for the turning wake survey than for the straightahead survey. These comparisons are shown in Table 3 in which the data from the wake survey on the rotating arm is presented along with data from the straightahead (conventional) wake survey and the yawed-model wake survey.

The attempt to represent the wake of a model which is in a turn on the rotating arm by running a model in the straight towing tank with a drift angle was unsuccessful. As may be seen from the velocity component ratios plotted in Figures 56 through 58, the magnitude and the distribution of velocity component ratios are completely different for the yawed model. In fact, the longitudinal velocity component ratio was actually lower in the case of the yawed model towed in a straight line than for either the straight wake survey or for the turning wake survey. Presumably the wake of the hull had a much larger effect on the velocities in the propeller plane in this case. The wake variations due to the shaft and struts are greater than for the conventional straight wake survey but not nearly as dramatic as those of the turning wake. In short, it may be noted that the yawed condition gives a result that is neither like that of the turning condition nor of the straight-ahead condition. Perhaps such data may be used to analyze the initial portion of a turn, before the hull takes on an angular path or to analyze a pure drifting motion where the hull has some steady drift angle. If the conditions during a steady turn are to be studied, however, the wake data must be obtained from a survey performed on the rotating arm.

At this point, it should be pointed out that there are some limitations on the usefulness of the five-hole pitot tube and associated instrumentation in performing a velocity survey in the propeller plane. As Hadler and Cheng have shown, the velocities to be measured must be large enough to obtain significant pressure differences. In all cases, this condition is met by the data reported herein. However, it is known that the five-hole

pitot tube cannot distinguish between a shear flow and a flow from an angle. Since the formation of a shear flow usually involves a boundary layer on a hull surface and since the surveys reported herein are performed in a more open flow behind shaft and struts, there appears to be very little effect on the pitot tube measurement. The large in-plane velocities are in fact due to angularity of the in-flow velocity.

The major limitation on the data reported herein is the fact that these data represent a steady condition. Because the pressure-measuring system is unable to respond to instantaneous changes, as mentioned in the discussion of the rotating arm wake surveys, all data obtained in these experiments are for a steady-state condition. Therefore, the results do not represent any transient conditions which may arise during the execution of a turn. Finally, the data reported herein have been calculated using the calibrations of the five-hole pitot tubes performed in the straight When the pitot tubes were recalibrated on the rotating arm for another experiment, it was found that the calibrations were similar to within a small percentage. Recalculation of a sample set of data using the two different calibrations showed differences in the order of 0.01 to 0.02 on the velocity component ratios. Since these differences were of the order of the experimental accuracy, the rotating arm data were not recalculated. The data are considered valid to within plus or minus 0.2 in all cases.

SUMMARY AND CONCLUSIONS

Three sets of wake survey experiments have been performed on a model of the FF 1052 Class ship. Experiments were performed to measure the effect on propeller disk wake of a Bass Dynamometer Boat mounted downstream of the model, the effect of a steady turn, and the effect of a model towed in a straight line with a drift angle. Data from the first two series were required for calculation of propeller forces and data from the third were obtained to determine if the turning condition could be simulated without the use of a rotating arm.

The Bass Dynamometer Boat significantly lowered the longitudinal velocity component ratios due to blockage of the flow. The circumferential distribution of velocity component ratios was not altered by the presence of the dynamometer boat downstream.

The turning wake surveys performed on the Rotating Arm Facility showed very large changes in the tangential and radial velocity component ratios due to the large cross-flow in the propeller plane. The wake due to the shaft and the struts was more extreme in the case of the turning wake surveys. The first harmonic of tangential velocity component ratios was increased 2.5 times that of a straight-ahead condition.

The results of the yawed-model wake surveys in the straight tank did not reproduce the results of the rotating arm turning wake surveys. The peak values of tangential and radial velocity component ratios are approximately midway between the peak values of the turning wake survey and the conventional straight ahead survey. The longitudinal velocity component ratio for the yawed model towed straight ahead showed a larger value than the other two surveys due presumably to the wake of the hull.

These data may be used in calculations of propeller forces for a controllable pitch propeller in steady motion. The data from the survey with the dynamometer boat may be used for calculation of propeller forces which then may be compared with the results of measurements. The calculation of propeller forces and the measurements have been reported separately.

ACKNOWLEDGEMENTS

The authors are indebted to personnel of the Ship Performance Department of DTNSRDC. Special appreciation is extended to Mr. Robert Roddy for conducting the wake surveys with and without a bass dynamometer boat, and Mr. Alan C. M. Lin for performing the wake surveys on a yawed model in a straight line. The authors also wish to thank Mr. Charles J. Wilson of Operations Research Incorporated for his assistance in the preparation of this report.

REFERENCES

- 1. Noonan, C., et al, "The BARBEY Report An Investigation into Controllable Pitch Propeller Failures from the Standpoint of Full-Scale Underway Propeller Measurements," DTNSRDC Report 77-0080 (Aug 1977).
- 2. Boswell, R. J., et al, "Experimental Unsteady and Mean Loads on a CP Propeller Blade on a Model of the FF-1088 for Simulated Modes of Operation," DTNSRDC Report 76-0125 (Oct 1976).
- 3. Hadler, J. B. and H. M. Cheng, "Analysis of Experimental Wake Data in Way of Propeller Plane of Single- and Twin-Screw Ship Models," Transactions of Society of Naval Architects and Marine Engineers, Vol. 73, (1963).

	ts	Shtp	Model	
Length at Waterline	126.6 m	415.3 ft	п 984-9	21.28 ft
Веат	14.17 m	46.5 ft	0.727 m	2.385 ft
Draft	4.57 m	15.0 ft	0.234 m	0.769 ft
Displacement	4.064×10 ⁶ Kg(S.W.)	4000 tons (S.W.)	532.4 Kg(F.W.)	0.524 tons (F.W.)

Figure 1 - Ship and Model Particulars for FF1088 Represented by Model 4989

Figure 2 - Rake Arrangement Showing Spherical Head Pitot Tubes

TOWING CARRIAGE

FIXED VARIABLE HET CHT

HEIGHT

5 MM GAP BETWEEN

DOWN STREAM

PSD 343455

PROPELLER AND

UP STREAM SHAFTING

HOUSTING DRIVE

Figure 3 - Experimental Arrangement of Model 4989 and the Bass Dynamometer Boat

- m WAKE SURVEY OF MODEL 4999 WITHOUT BASS DYN BOAT-EXP 179
- A MODE! 4993 WITH THE BASS DYNAMOMETER BOAT EXP 173

Figure 4 - Composite Plot of Velocity Component Ratios from Experiments With and Without the Bass Dynamometer Boat for the 0.512 Radius

- WHKE SURVEY OF MODEL 4999 WITHOUT BASS DYN BOAT-EXP 178
 MOSEL 4999 WITH THE BASS DYNAMOMETER BOAT EXP 173
- Figure 5 Composite Plot of Velocity Component Ratios from Experiments
 With and Without the Bass Dynamometer Boat for the 0.711 Radius

WAKE SURVEY OF MODEL 4999 WITHOUT BASS DYN BOAT-EXP 178 MODEL 4999 WITH THE BASS DYNAMOMETER BOAT EXP 179

Figure 6 - Composite Plot of Velocity Component Ratios from Experiments
With and Without the Bass Dynamometer Boat for the 0.910 Radius

■ WAKE SURVEY OF MODEL 4989 WITHOUT BASS DYN BOAT-EXP 178
 MODEL 4989 WITH THE BASS DYNAMOMETER BOAT EXP 179

Figure 7 - Composite Plot of Velocity Component Ratios from Experiments
With and Without the Bass Dynamometer Boat for the 1.082 Radius

Figure 8 - Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake from Experiments With and Without the Bass Dynamometer Boat

Figure 9 - Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle from Experiments With and Without the Bass Dynamometer Boat

PSD 344219

PSD 344220

Figure 10 - DTNSRDC Model 4989 Attached to the Rotating Arm

Figure 11 - Velocity Vector Diagram of the Flow In the Propeller Plane for Experiment 180

Figure 12 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = .330 for Experiment 180

Figure 13 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = .512 for Experiment 180

Figure 14 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 180

Figure 15 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 180

Figure 16 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 180

Figure 17 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 180

Figure 18 - Velocity Vector Diagram of the Flow In the Propeller Plane for Experiment 181

Figure 19 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 181

Figure 20 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 181

Figure 21 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 181

Figure 22 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 181

Figure 23 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 181

Figure 24 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 181

Figure 25 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 181

Figure 26 - Velocity Vector Diagram of the Flow In the Propeller Plane for Experiment 182

Figure 27 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratio - Radius Ratio = 0.330 for Experiment 182

Figure 28 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 182

Figure 29 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 182

Figure 30 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 182

Figure 31 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 182

Figure 32 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 182

Figure 33 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 182

Figure 34 - Velocity Vector Diagram of the Flow In the Propeller Plane for Experiment 183

Figure 35 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio - 0.330 for Experiment 183

Figure 36 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 183

Figure 37 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio - 0.711 for Experiment 183

Figure 38 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.911 for Experiment 183

Figure 39 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 183

Figure 40 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 183

Figure 41 - Radial Distribution for the Mean Advance Angle and Advance Angle Variations for Experiment 183

Figure 42 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 184

Figure 43 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 184

Figure 44 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 184

Figure 45 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.910 for Experiment 184

Figure 46 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 1.082 for Experiment 184

Figure 47 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 184

Figure 48 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 184

Figure 49 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.330 for Experiment 185

Figure 50 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.512 for Experiment 185

Figure 51 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.711 for Experiment 185

Figure 52 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity Component Ratios - Radius Ratio = 0.910 for Experiment 185

Figure 53 - Circumferential Distribution of the Longitudinal, Tangential, and Radial Velocity component Ratios - Radius Ratio = 1.082 for Experiment 185

Figure 54 - Radial Distribution of the Mean Velocity Component Ratios for Experiment 185

Figure 55 - Radial Distribution of the Mean Advance Angle and Advance Angle Variations for Experiment 185

- WAKE SURVEY OF MODE! 4080 WITHOUT BASS DYN BOAT-EXP 178
 WAKE SURVEY OF MODEL 4080 IN A TURN EXP 180
 AKE SURVEY OF MODE. 4080 WITH YAW ANGLI OF 8.5 TEGREES EXP 194

J.512 RAD.

Figure 56 - Composite Plot of Velocity Component Ratios for Experiments 178, 180, and 184 for the 0.512 Radius

* WAKE SURVEY OF MODEL 4099 WITHOUT BASS DYN BOAT-EXP 178

0 711 RAD -

Figure 57 - Composite Plot of Velocity Component Ratios for Experiments 178, 180, and 184 for the 0.711 Radius

B WAKE SURVEY OF MODEL 4089 IN A TURN - EXP 180

WAKE GURVEY OF MODEL 4080 WITH YAW ANGL OF 8.5 DEGREES - EXP 184

- x WAKE SURVEY OF MODEL 4080 WITHOUT BASS DYN BOAT-EXP 178
- E WAKE SURVEY OF MODEL 4989 IN A TURN EXP 180
- * WAKE SURVEY OF MODEL 4989 WITH YAW ANGL OF MIS DEGREES EXP 194

.

Figure 58 - Composite Plot of Velocity Component Ratios for Experiments 178, 180, and 184 for the 0.910 Radius

Figure 59 ~ Composite Plot of Mean Longitudinal, Tangential, and Volumetric Mean Wake of Experiments, 178, 180, and 184

Figure 60 - Composite Plot of Mean Advance Angle (Beta) and Maximum Variations of Advance Angle of Experiments 178, 180, and 184

TABLE 1 - LIST OF WAKE SURVEY EXPERIMENTS WITH MODEL 4989

Experiment Number	Description	Facility
178	Conventional Wake Survey - Model Speed Corresponding to 28.6 knots	Carriage 1 Tow Basin
179	Wake Survey with Bass Dynamometer Boat at Speed Corresponding to 28.6 knots	Carriage l Tow Basin
180	High Speed Approach, Maximum Rudder Angle Turning Wake Survey	Rotating Arm Basin
181	High Speed Approach, Moderate Rudder Angle Turning Wake Survey	Rotating Arm Basin
182	Low Speed Approach, Maximum Rudder Angle Turning Wake Survey	Rotating Arm Basin
183	Low Speed Approach, Moderate Rudder Angle Turning Wake Survey	Rotating Arm Basin
184	Yawed Model, Straight Motion Wake Survey corresponding to Experiment 180 (High Speed Approach, Maximum Rudder Angle)	Carriage 1 Tow Basin
185	hawed Model, Straight Motion Wake Survey corresponding to Experiment 182 (Low Speed Approach, Maximum Rudder Angle)	Carriage 1 Tow Basin

TABLE 2a - CONDITIONS FOR WAKE SURVEYS IN A TURN

Experiment Number		180	181	182	183
Ship Speed Approaching the Turn	knots m/s	- · ·	28.6 14.7	20.0 10.3	20.0 10.3
Ship Speed in the Steady Portion of the Turn		18.9 9.72	24.5 1.2-6	12.3 6.33	15.8 8.13
Rudder Angle in Degrees		35	20	35	20
Yaw Angle in Degrees		8.6	2.9	9.0	8.0
Steady Turning Radius of Ship	feet m	759 231	1185 361	702 214	1095 334

TABLE 2b - CONDITIONS FOR YAWED WAKE SURVEYS

Experiment Number		184	185
Simulated Ship Speed in Steady Portion of the Turn	knots m/s	18.9 9.72	12.3 6.33
Rudder Angle in Degrees		35	35
Yaw Angle in Degrees		8.6	9.0

TABLE 3

Comparison of Conventional Tow Tank Wake Survey Data with Data from Rotating Arm Wake Survey and with Data from Yawed Model Wake Survey

Parameter (Values taken at $r/R = 0.7$)	Expt. 178 Conventional Wake Survey	Expt. 180 Rotating Arm Wake Survey	Expt. 184 Yawed Model Wake Survey
Mean Longitudinal Velocity Geoparison $\overline{V}_{\mathbf{x}}/V$	1.006	1.005	0.916
Mean Tangential Velocity Comparison \overline{V}_{+}/V_{-}	0.004	0.050	0.055
Mean Radial Velocity Comparison V _R /V	0.019	0.030	0.064
Mean Hydrodynamic Pitch Angle :	20.17 ⁰	19.74°	18.17°
Maximum Positive Variation of a 4 %	1.66	3.42°	2.50°
Maximum Negative Variation of	-2.95°	-2.48°	-1.90°
First Harmonic of Longitudina	1 = G. Arist (0.0100	01.75 (5)
First Harmonic of Amgential	-0.1595	1.3953	B. J. Oak
econd karmoni or angestal	=0.059	0.4054	0.6408
1-14	1.020	0.936	0.936

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 13/10 PROPELLER-DISK WAKE SURVEY DATA FOR MODEL 4989 REPRESENTING THE--ETC(U) DEC 80 W 6 DAY, R B HURWITZ DINSRDC/SPD-0011-21 NL AD-A094 378 UNCLASSIFIED 2 ns 2 40 4044579 END DATE 2-81 DTIC

APPENDIX A

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS
FOR EXPERIMENTS WITH AND WITHOUT THE
BASS DYNAMOMETER BOAT EXPERIMENTS 178 AND 179

TABLE A-1
INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088,
MODEL 4989, EXPERIMENT 178

INPUT DATA

	INFO	D A 1 A					
	RADIUS =	.512			RADIUS =	.711	VR/V
ANGLE	yx/V	VT/V	VR/V	ANGLE	7X/V	VT/V	098
-12.6	.935	006	021	-15.9	.962	.033	
-10.4	.945	.012	019	-14.0	.960	.032	087
-6.2	.932	.018	016	- 1.9	.972	023	064
1.0	.926	.011	013	-1.2	.968	020	063
4.8	.925	008	023	5.9	. 988	040	088
6.8	.924	012	033	10.6	.992	051	098
14.8	.921	054	071	17.8	1.007	.017	121
16.9	.924	054	077	18.5	1.006	.015	122
18.8	.936	043	079	21.9	. 851	018	107
20.8	.939	029	077	23.8	.872	179	122
22.8	.913	033	071	25.8	. 986	167	138
24.8	.811	-,101	090	27.8	1.021	127	129
26.6	.857	202	124	28.4	1.022	126	128
28.8	.963	198	131	30.0	1.022	106	125
31.0	1.040	- .155	119	38.3	1.025	110	110
32.5	1.039	135	112	48.2	1.028	130	087
42.7	1.034	126	085	58.2	1.031	143	060
54. ö	1.045	145	062	ម2.1	1.032	155	.008
66.9	1.041	163	035	94.2	1.030	150	.040
78. 7	1.053	170	008	106.2	1.024	140	.069
90.7	1.048	171	.015	130.4	1.016	104	.116
102.8	1.041	166	. 040	142.4	1.018	078	. 133
114.8	1.040	154	. 061	. 178.0	1.007	.017	. 156
126.9	1.033	137	. 081	190.1	.999	.048	. 154
138.8	1.028	115	.097	202.0	.995	.075	. 145
166.8	1.022	045	.118	226.0	.993	.123	.115
174.9	1.026	021	.119	237.9	1.000	. 140	.092
191.0	1.020	.030	. 118	249.9	1.008	. 153	. 065
199.0	1.022	.052	. 113	5° 273.9	1.015	.162	003
207.0	1.025	.074	. 106	235.9	1.011	. 157	-,029
214.9	1.026	.094	. 098	2 .8.0	1.011	. 145	060
230.9	1.033	.128	. 076	3.12.0	1.010	.102	-,111
239.1	1.041	.142	. 062	3.:0.0	.933	. 135	129
247.0	1.051	. 152	.047	332. 3	. 991	. 155	-,134
255.0	1.040	.163	.032	333.9	.931	.184	113
263.1	1.053	.166	.017	334.0	.905	. 184	-,113
271.1	1.064	.168	.001	33€.0	.864	.022	082
279.2	1.063	.166	015	338. 0	.930	039	101
295.4	1.054	. 154	047	340.2	.979	.001	-,111
303.5	1.051	.143	061	342.0	.973	.026	110
311.5	1.048	. 128	075	344.1	.962	.033	098 037
321.6	1.041	.107	091	3·16.0	. 960	.032	. 064
323.7	1.044	.103	094	358.1	.972	023	063
325.6	1.045	.100	097	356. 8	.968	020	088
329.5	1.040	.097	101	365.9	.988	040	098
331.6	1.042	.100	101	370.6	.992	051	121
333.5	1.043	.110	103	377.8	1.007	.017	-,122
337.5	1.040	.149	112	378.5	1.005	.015	105
339.5	.975	.178	124	381.9	.953	016	-,143
341.5	.845	.107	090		0401115	0.0	
343.7	.844	002	050		RADIUS :		VR/V
345.5	.893	021	030	ANGLE	VX/V	VT/V	106
347.4	. 935	006	021	-12.8	1.023	.065	091
349.6	.945	.012	019	-4.7	1.005	.042	091
353.8	.932	.018	016	9	.976	.020	090
361.0	.926	.011	013	- .7	.998	.027	094
•		008	023	2.5	.982	004	092
364.8	.925		023 033	3.3	.990	004	-, 532
366.8	. 924	012	, 55				

			=1	4			
			TABLE A-	-1 CONTINUED	RADIUS	1.082	
				ANGLE	YX/V	VT/V	VR/V
				-16.3	1.008	. 043	131
				-12.3	. 999	.040	131
				-4.3	.980	.029	124
				3	. 96 1	.004	119
				7.9	.987	045	128
6.5	. 988	021	099	12.0	1.000	050	~.129
7.5	. 988	024	101	19.7	.993	052	119
10.6	.999	033	109	20.0	1.000	050	118
13.5	1.001	037	112	21.7	1.012	019	118
20.5	1.026	026	114	23.6	.960	.050	111
22.5	1.029	.026	-,112	24.0	.916	.066	-,113
24.7	.887	.048	115	25.5	.875	123	116
26.4	.812	128	110	25.9	.807	185	125
28.5	.914	155	140	28.0	. 983	 136	143
30.4	.985	096	125	29.9	.983	097	139
32.7	.990	083	124	31.9	.980	~.089	135
38.4	.997	089	111	39.9	. 969	104	114
42.4	.995	098	100	45.9	.967	117	093
58.5	1.000	127	054 038	53.8	. 971	133	068
66.4	1.011	134	028	53.8	.969	131	070
74.4	1.023	136	004 .016	61.9	.988	142	044
82.5	1.021	~.137	.035	69.8	1.008	•148	018
90.4	1.012	132		77.8	. sa o	~.152	. 007
98.5	1.007	127	.054	77.9	1.024	149	. 007
106.5	1.005	121	.072 .092	· 85.7	. 993	149	.027
114.7	.986	113 101	.105	93.9	. 995	145	. 046
122.6	.996 .996	088	. 120	101.9	. 996	139	. 065
130.6	.997	074	.131	118.3	. 994	121	.101
138.6 154.5	.997	042	. 151	126.2	.993	110	. 117
162.6	1.003	025	.156	134.4	. 999	098	. 129
170.7	1.003	005	.160	142.5	.987	082	. 145
178.6	1.010	.015	.163	158.4	1.005	050	. 160
186.6	1.008	.034	.160	166.3	1.011	033	. 165
194.7	1.007	.052	.156	174.5	1.010	014	. 170
202.7	1.003	.071	.150	182.5	1.006	.004	. 169
210.9	.995	.089	.142	190.6	1.002	.023	. 166
218.6	.999	.104	. 131	198.4	1.002	.039	. 161
226.7	1.001	.118	.119	214.5	. 995	.069	.146
234.8	1.002	.130	.105	222.5	.935	.082	. 135
250.9	1.005	.150	.070	230.6	1.001	.091	. 120
258.9	1.013	. 157	.051	238.9 246.7	1.001	.106	. 105
266.9	1.019	.161	.031		1.003	.114	.090
274.9	1.024	. 165	,010	254.8 263.0	1.009	.120	.072
283.1	1.031	. 163	010	271.3	1.010	.126	.051
291.1	1.031	.159	030	271.3	.997 1.009	.134	. 027
307.3	1.023	. 142	073	279.2	1.011	.132	. 027
315.3	1.022	.128	093	287.3	1.034	.133	.00A
323.3	1.024	.108	110	295.4	1.016	.131	016 040
327.2	1.022	.097	117	303.5	1.020	.128	
329.3	1.024	.094	118	311.6		.121	062 062
331.3	1.030	. 098	121	319.7	1.017	.109 ,093	0e7 110
333.5	1.026	.121	132	323.7	.997	.084	121
335.2	1.024	. 183	152	325.6	.998	.080	126
337.2	.837	.116	-,115	329.7	.989	.069	135
339.2	.878	077	113	331.6	1.001	.075	135 138
341.5	1.036	.005	116	333.6	1.015	.113	135
343.2	1.031	.049	117	335.6	.844	.194	100
345.2	1.024	.064	112	337.8	.887	109	082
347.2	1.023	.065	106	339.6	.983	011	130
355.3	1.005	.042	091	341.6	1.004	•	
359.1	.976	.020	091	343.7		.036	130
359.3	.998	.027	090	347.7	1.008	.043	131
362.5	.982	004	094	355.7		.040	131
363.3	.990	004	092	355.7 359.7	.980	.029	124
366.5	.988	021	099	367.9	. 96 1	.004	119
367.5	. 988	024	101	372.0	.987 1.000	045 050	128 128
370. 6	. 999	033	10 9	J. 2. V	,	050	129

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED ALDIA FOR EXPERIMENT 178 TABLE A-2

RADIUS	RADIUS = .512	.711	.910	1.082	. 289	.300	.400	. 500	.600	.700	one.	006.	1.000
VXBAR	- 1.022	1.006	1.004	966.	1,055	1.053	1.036	1.023	1.013	1.00€	1.096	1.005	1.001
VIBAR	003	.005	210.	006	600	600	006	003	000.	.004	410.	.015	.007
VRBAR	.013	610.	.019 .022 .023	.023	.00	.002	.008	.012	.016	.019	. 021	.022	.023
1-WVX	= 1.034	1.022	1.014	1.010	0.000	1.054	1.045	1.037	1.029	1.023	1.018	1.015	1.013
1-WX	= 1.046	1.028	1.028 1.017 1.011	1.011	0.000	1.079	1.061	1.048	1.037	1.029	1.022	1.018	1.014
BBAR	= 27.08	19.87	15.71	13.27	43.29	42.15	33.65	27.67	23.36	20.17	17.77	15.88	14.34
BPOS THETA	# 2.83 # 80.00	1.61 .95 .61 9.87 8.82 4.03 2.94 2.19 1.66 1.28 .98 .74 77.50 77.50 77.50 20.00 20.00 80.00 80.00 80.00 77.50 77.50 77.50 75.00	.95	.61	9.87	8.82	4.03	2.94	2.19	1.66	1.28	.98	.74
BNEG	= -5.05 =342.50	-2.92 335.00	-2.85 337.50	-1.84 335.00	-26.45 25.00	-24.58 25.00	-11.64	-5.46 342.50	-2.72 22.50	-2.95 335.00	337.50	-2.88 337.50	-2.29 337.50

VXBAR VTBAR VRBAR 1-WX

1-WX

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS WOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ARGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. BBAR BPOS BNEG THETA

TABLE A-3 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS
AT THE EXPERIMENTAL RADII FOR EXPERIMENT 178

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V)

HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .512 AMPLITUDE =	0247	0409	0246	0136	0089	0031	.0006	.0060
RADIUS = .711 AMPLITUDE =	0087	0189	0118	0030	0011	.0027	.0066	.0069
RADIUS = .910 AMPLITUDE =	0012	0095	0091	.0056	.0044	.0036	.0020	.0049
RADIUS = 1.082 AMPLITUDE =	0096	0082	0068	.0043	.0033	.0055	.0011	. 0001
HARMONIC =	9	10	11	12	13	14	15	16
RADIUS = .512 AMPLITUDE =	.0081	.0067	.0045	.0051	.0025	0005	0019	0023
RADIUS = .711 AMPLITUDE =	.0059	.0040	.0014	0010	0036	0054	0063	0062
RADIUS = .910 AMPLITUDE =	.0032	.0013	0007	0052	0059	0059	0062	0054
RADIUS = 1.082								

TABLE A-4 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 178

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V)

			_						
HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	. 2 8 9	0527	0805	0509	0279	0205	0153	0187	.0015
RADIUS = AMPLITUDE	. 300	0511	0781	0493	0271	0199	0145	0174	.0018
RADIUS = AMPLITUDE	. 400	0375	0588	0362	0205	0144	0084	0074	.0042
RADIUS = AMPLITUDE	.500	0259	0426	0257	0143	0094	0036	0001	.0058
RADIUS = AMPLITUDE	. 600 =	0166	0296	0177	0087	0051	.0001	.0046	.0067
RADIUS = AMPLITUDE	.700 =	0094	0198	0122	0035	0014	.0025	.0065	.0069
RADIUS = AMPLITUDE	.800	0030	0137	0105	.0022	.0023	.0029	.0041	. 1065
RADIUS = AMPLITUDE	. 900	0011	0098	0092	. 0054	.0043	.0035	.0022	.0051
RADIUS = 1 AMPLITUDE	.000	0039	0080	0079	.0059	.0045	.0044	.0012	.0028
HARMONIC	=	9	10	11	12	13	14	15	16
RADIUS = AMPLITUDE	. 289	.0099	.0097	.0092	.0144	.0139	.0103	.0083	.0076
RADIUS = AMPLITUDE	.300	.0098	.0095	.0090	.0139	.0132	.0096	.0077	.0070
RADIUS = AMPLITUDE	. 400	.0091	.0082	.0067	.0095	.0076	.0042	.0025	.0019
RADIUS = AMPLITUDE	.500	.0082	.0068	.0047	.0056	.0030	0001	0015	0019
RADIUS = AMPLITUDE	.600	.0072	.0055	.0030	. 0022	0007	0033	0044	0046
RADIUS = AMPLITUDE	.700	.0061	.0042	.0015	0008	0034	0053	0062	0061
RADIUS = AMPLITUDE	. 800	.0045	.0025	.0001	0034	0049	0059	0064	0059
RADIUS = AMPLITUDE	. 900	.0033	.0014	0067	0051	0059	0059	0062	0055
RADIUS = 1 AMPLITUDE	.000	.0024	.0010	0007	0060	0063	0055	0057	0050

TABLE A-5 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 178

HAR	MONIC	ANALYSES	OF TANG	ENTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC		1	2	3	4	5	6	7	8
RADIUS = AMPLITUDE	.512	1739	0071	0073	0044	0036	0003	.0022	.0049
RADIUS = AMPLITUDE	.711	1588	0060	0017	.0000	.0008	.0020	.0043	.0059
RADIUS = AMPLITUDE	.910	1502	0097	0018	.0011	.0004	.0002	.0001	.0003
RADIUS = 1 AMPLITUDE	.082	1409	0099	0017	.0010	0003	0008	0009	0006
HARMONIC	=	9	10	11	12	13	14	15	16
RADIUS = AMPLITUDE	.512	.0066	.0071	.0056	.0038	.0013	0010	0030	0039
RADIUS = AMPLITUDE	.711	.0059	.0043	.0013	0019	0049	0069	0077	0074
RADIUS = AMPLITUDE	.910	0000	0010	0019	0030	0044	0053	0052	0045
RADIUS = 1	.082	0011	0013	0018	0027	0038	0044	0043	0038

TABLE A-6 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS
AT THE INTERPOLATED RADII FOR EXPERIMENT 178

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) HARMONIC 2 3 5 8 . 289 RADIUS = AMPLITUDE -.1984 -.0141 -.0203 -.0132 -.0140 -.0080 -.0077 -.0038 RADIUS = .300 AMPLITUDE -.1970 -.0136 -.0195 -.0127 -.0134 -.0075 -.0070 RADIUS = AMPLITUDE -.1852 -.0099 -.0129 -.0083 -.0081 -.0035 -.0018 .0016 RADIUS = .500 AMPLITUDE -.1750 -.0073 -.007B -.0047 -.0040 -.0006 .0019 .0047 RADIUS = .600 AMPLITUDE -.0060 -.0041 -.0020 -.1664 -.0011 .0012 .0039 .0062 RADIUS = .700 AMPLITUDE -.1595 -.0059 -.0018 -.0001 .0007 .0020 .0044 .0060 RADIUS = .800 AMPLITUDE -.1553 -.0081 +.0017 .0007 .0007 .0011 .0020 .0027 RADIUS = .900 AMPLITUDE -.1507 -.0096 -.0018 .0011 .0005 .0003 .0002 .0004 **RADIUS = 1.000** AMPLITUDE -.1455 -.0101 -.0017 .0001 -.0004 .0012 ~.0007 -.0006 HARMONIC 9 10 11 12 13 14 15 16 . 289 RADIUS = AMPLITUDE .0011 .0071 .0117 .0158 .0165 .0147 .0109 .0077 RADIUS = .300 AMPLITUDE .0016 .0072 .0114 .0150 .0156 .0137 .0100 .0069 RADIUS = .400 AMPLITUDE .0047 .0075 .0085 .0091 .0079 .0057 .0028 .0009 RADIUS = . 500 AMPLITUDE .0064 .0072 .0059 .0043 .0019 -.0004 -.0025 -.0035 RADIUS = AMPLITUDE .0069 .0062 .0036 .0007 -.0023 -.0046 -.0060 -.0062 RADIUS = . 700 AMPLITUDE .0061 .0046 .0015 -.0017 -.0048 -.0068 -.0077 .800 RADIUS = AMPLITUDE .0026 -.0006 -.0026 -.0047 -.0061 -.0064 -.0058 . 900 RADIUS = AMPLITUDE .0002 -.0008 -.0018 -.0030 -.0044 -.0054 -.0053 -.0046 **RADIUS = 1.000** AMPLITUDE -.0011 -.0016 -.0022 -.0030 -.0041 -.0048 -.0046 -.0039

TABLE A-7 INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088, MODEL 4989, EXPERIMENT 179

	* * 1 * 1 * 1		MODEL 4707,	EXPERIMENT 1/3			
	INPUT	DATA			RADIUS	= .711	
				ANGLE	VX/V	VT/V	VR/V
	RADIUS =	.512		-17.5	.841	.014	113
ANGLE	VX/V	VT/V	VR/V	-13.6	.839		
-14.0	.772	0.000	036			.014	094
			035	-9.5	.842	0.000	077
-12.2	. 784	.017		-5.5	. 848	016	069
-10.2	.788	.024	034	.5	.849	037	076
-6.1	.782	.030	028	1.8	.853	036	078
-1,9	.772	.023	028	2.6			
.3	.769	.013	032		.858	041	077
			044	3.8	.856	045	088
4.2	.778	.006		6.6	.862	045	091
8.3	.769	011	059	7.8	.861	052	103
12.2	.768	027	080	10.0	.868	052	113
16.3	.766	007	084	10.5			
18.2	.765	.003	083		.875	055	112
	.730		087	12.0	.876	060	121
20.4		~.016		13.9	.883	052	131
22.3	. 655	105	100	16.0	.903	025	~.130
24.2	. 701	214	136	18.1	.885	.014	126
26.3	.826	184	153	20.0	.799		
28.3	. 888	138	142	22.0		.031	123
32.3	.896	102	126		.737	046	124
			119	24.0	.797	183	148
36.2	.899	098		26. 0	.902	144	152
40.3	.897	105	112	28.0	.911	113	-,149
44.3	.898	112	107	30.0	.916	101	145
56.5	.892	135	086				
68.5	.904	149	062	32.0	.913	098	140
				42.1	.910	120	125
B0.5	.907	156	036	48.0	.909	131	112
92.5	.909	157	013	60.1	.907	151	084
104.6	.834	153	. 009	66.0	.908	157	
116.5	.893	138	.028	72.1	.908		069
128.5	.886	120	.046			160	054
			.060	78.1	.907	163	037
140.6	.877	096		84.0	.908	162	022
160.8	.865	045	. 077	96. 0	.904	158	.008
164.7	.866	034	.078	102.2	.907	153	
168.8	.869	022	.079	122.4			.022
180.8	.868	.013	. 081		.892	128	.063
			.080	130.4	.892	113	.075
186.7	.865	.031		138.3	.877	098	. 088
192.7	.867	.049	. 077	146.3	.879	079	.096
204.6	. 861	.085	. 070	154.2	.884	058	.102
216.4	.880	.113	. 057	162.2	.875		
228.1	.893	.137	. 041			039	. 107
	.905	.156	.022	170.2	.878	015	. 109
240.0				178.3	.877	.007	.108
252.1	.908	. 172	. 001	194.3	.864	.047	.105
263.8	.920	.175	020	202.4	.867	.066	.098
275.9	.919	.173	043	218.3	.868		
283.0	.918	. 165	066			.098	. 091
312.0	.915	.127	105	226.4	.874	.111	. 069
				234.3	.870	.125	. 056
324.0	.920	.103	119	242.3	. 88 1	.133	.039
332.0	.905	.123	121	258. 0	.878	.148	.003
333.9	.902	.149	125	268.1	.888		
335.8	.887	.177	134	278.0		.148	021
335.9	.857	.180	136		.892	.146	047
			-,147	288.1	.892	.139	071
338.1	.655	.179		306.1	.890	.114	112
339.8	.645	.074	101	314.1	.892	.097	126
341.8	.686	010	060	322.2	.899	.082	136
343.8	.736	017	042	330.2			
346.0	.772	0.000	036	330.2	. 903	.101	-,152
			035	332.3	.888	.142	158
347.8	.784	.017		334.3	.760	. 139	135
349.8	.788	.024	034	336.2	.737	010	
353.9	.782	.030	028	338.2			112
358.1	.772	.023	028		.797	047	112
				340.3	.844	011	118
360.3	.769	.013	032	342.5	.841	.014	113
364.2	.778	.006	044	346.4	.839	.014	094
368.3	.769	011	059	350.5	.842	0.000	
				354.5			077
					. 848	016	069
				360.5	.849	037	076
				361.8	. 853	036	078
				362.6	.858	041	077
				363.8	.856	045	
				87		045	088
				·,			

			TABLE A-	-7 CONTINUED			
	RADIUS =	.910			RADIUS		
ANGLE	VX/V	VT/V	VR/V	ANGLE		. VT/V	VR/V
-7.8	.890	.046	104	-10.0	.879	.026	127
-3.8	.890	.032	102	0.0 10.0	.866	0.000	124
2	.892	.010	103 103	17.8	.879 .898	026 042	127 124
1 4.3	.900 .892	.017 007	103 109	21.2	.835	.047	-, 124
8.2	.897	016	120	23.1	.696	~.181	150
12.3	.904	024	127	25.1	.766	137	176
16.0	.911	026	133	27.0	.882	089	156
17.8	.917	022	133	29.1	.885	084	154
20.2	.939	.007	~.133	29.4	. 881	083	151
20.3	.939	.008	136	31.1	. 88 1	087	149
21.8	.898	.066	~.134	32.9	.879	092	147
24.4	.742	.027	~.132	44.9 50.8	.873 .876	121 135	119 103
28.4 32.3	.905 .901	091 058	~,158 ~,153	56.9	.881	143	- .085
36.3	.904	067	~,146	62.6	.886	152	069
40.3	.906	076	138	92.4	.898	152	.012
44.1	.905	087	131	104.8	.897	142	.038
48.4	.899	096	~.120	116.4	. 894	128	.061
52. 2	.906	104	109	128.6	.896	108	.080
56.3	.907	111	~.099	160.5	.893	047	. 115
60.3	.907	116	~.085	172.6	.902	019	.118
66.1	.908	123	069 035	184.6 187.4	.897 .902	.009 .019	.117 .118
78.0 84.3	.921 .915	126 126	~.035 ~.020	199.5	.893	.047	,115
90.1	.926	124	~.007	231.4	.896	.108	.080
96.2	.926	120	.006	243.6	.894	.128	,061
102.1	.918	115	.016	255.2	.897	.142	, 038
108.2	.909	110	.030	267.6	.898	. 152	.012
114.3	.897	104	.043	297.4	.886	. 152	069
120.2	. 900	094	.052	303.1	.881	.143	085
126.1	.895	086	.064 .074	· 309.2 315.1	.876 .873	.135 .121	103 119
132.6 138.2	.883 .894	076 065	.080	327.1	.879	.092	-,147
144.4	.887	053	.088	328.9	.881	.087	149
156.4	.888	028	.098	330.6	.881	.083	151
168.5	.894	0.000	. 104	330.9	.885	.084	154
180.6	.879	.031	. 107	333.0	.882	.089	156
192.5	.884	.060	. 103	334.9	.766	.137	176
204.4	.890	.086	.093 .080	336.9	. 696	.161	150
216.1 239.9	.89 2 .906	.109 .148	.040	338.8	.835	047	123
239.9	.909	.156	.027	342.2	.898	.042	124
251.7	.919	.161	.015	350.0 360.0	.879 .866	.026 0.000	127 124
257.9	.936	. 165	.003	370.0	.879	026	127
263.6	.930	.167	009		, 0, 0	.020	
269. 9	.934	. 169	024				
282.3	.923	.168	058				
287.8	. 923 . 928	.164	071				
294. 2 299.9	.928	.157 .150	086 101				
306.2	.928	.140	114				
311.9	.931	.129	127				
316.4	.926	.118	135				
320.0	.932	.107	140				
324.0	.935	.096	143				
328.2	930	.094	148				
332.0	.923	.174	180 - 121	•			
335.6 337.5	.884 .655	056 033	-,121 -,122				
340.0	.884	.048	134				
343.7	.910	.063	119				
348.1	. 891	.057	105				
352.2	.890	.046	104				
356.2	.890	.032	102				
359.8	.892	.010	103 - 103				
359.9 364.3	.900 .892	.017 007	103 109				
368.2	.892 .897	007 016	120				
372.3	.904	024	127				
376.0	.911	026	133				
				00			

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 179 TABLE A-8

1.000	668.	.016	015	.888	.885	12.90	.76 92.50	337.50
006.	. 903	.022	020	.885	.881	14.32	.96	-3.65
. 800	.897	. 014	020	. 880	.877	15.94	1.19	-3.20
.700	.881	006	014	.877	.872	17.89	.74 1.49 .94 .59 11.15 10.41 4.17 2.86 2.08 1.54 1.19 .96 .7 .50 82.50 92.50 87.50 335.00 335.00 92.50 90.00 85.00 82.50 92.50 92.50	-3.21
.600	.876	003	015	.876	.867	20.52	2.08	-3.28
.500	.875	. 010	019	.877	.861	24.01	2.86	-6.71 340.00
. 400	.877	.034	024	879	.852	28.76	4.17	-13.49 340.00
.300	.882	690.	032	.883	.840	35.42	10.41	-24.72 340.00
. 289	.883	.073	033	0.000	0.000	36.30	11.15	-26.32 340.00
1.082	.886	000	007	.888	.885	11.84	.59	-2.32 337.50
.910	.903	.022	020	.884	.881	14.17	.94	-3.64 337.50
.711	.882	006	014	.877	.873	17.65	1.49	-3.14
RADIUS = .512	875	= .008	=018	7.	7.	= 23.53	= 2.74 = 87.50	= -6.12 =340.00
RADIUS	VXBAR	VTBAR	VRBAR	1-WVX =	1 - W.X	BBAR	BPOS THETA	BNEG

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS NOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VTBAR VRBAR 1-¥VX

1-WX BBAR BPOS BNEG THETA

TABLE A-9 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 179

HARMONIC	ANALYSES	OF LONGI	TUDINAL	VELOCITY	COMPONEN	T RATIOS	(VX/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .512 AMPLITUDE =	0231	0499	0274	0192	0120	0026	.0019	.0125
RADIUS = .711 AMPLITUDE =	0016	0199	0115	0058	0041	.0012	.0038	.0063
RADIUS = .910 AMPLITUDE =	.0054	0193	0051	.0021	0008	.0003	.0068	.0060
RADIUS = 1.082 AMPLITUDE =	0156	0081	0011	.0052	.0034	.0045	.0035	.0050
HARMONIC =	9	10	11	12	13	1 4	15	16
RADIUS = .512 AMPLITUDE =	.0137	.0128	.0112	.0079	.0023	0030	0046	0060
RADIUS = .711 AMPLITUDE =	.0076	.0065	.0033	.0012	0027	0046	0076	006€
RADIUS = .910 AMPLITUDE =	.0041	.0023	.0024	0022	0045	0061	0058	0069
RADIUS = 1.082 AMPLITUDE =	.0034	.0017	.0002	0039	~.0055	0083	0093	0087

TABLE A-10 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 179

HARMONIC	ANALYSES	OF LONGI	TUDINAL	VELOCITY	COMPONER	NT RATIOS	(VX/V))
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .289 AMPLITUDE =	0644	+.1185	0563	0410	0263	0124	.0012	.0263
RADIUS = .300 AMPLITUDE =	0619	1142	0546	0398	0255	0118	.0012	.0254
RADIUS = .400 AMPLITUDE =	0416	0797	0404	0293	0185	0068	.0014	.0185
RADIUS = .500 AMPLITUDE =	0249	0526	0286	0202	0126	0030	.0019	.0131
RADIUS = .600 AMPLITUDE =	0118	0330	0192	0126	0080	0003	.0026	.0091
RADIUS = .700 AMPLITUDE =	0024	0208	0121	0063	0044	.0011	.0037	.0065
RADIUS = .800 AMPLITUDE =	.0057	0213	0084	0017	0028	.0000	.0060	.0063
RADIUS = .900 AMPLITUDE =	.0058	0196	0054	.0018	0010	.0002	.0068	.0060
RADIUS = 1.000 AMPLITUDE =	0025	0147	0028	.0042	.0013	.0019	.0057	.0056
HARMONIC =	: 9	10	11	12	13	14	15	16
RADIUS = .289	_	,,,	, .				_	
AMPLITUDE :		.0225	.0283	.0194	.0118	0011	.0044	0116
RADIUS = .300 AMPLITUDE =		.0219	.0273	.0187	.0112	0012	.0038	0114
RADIUS = .400 AMPLITUDE =		.0173	.0187	.0131	.0065	0020	0008	0096
RADIUS = .500 AMPLITUDE :	.0141	.0133	.0119	.0084	.0027	0029	0043	0082
RADIUS = .600 AMPLITUDE		.0097	.0068	.0045	0003	0037	0065	0072
PADIUS = .700 AMPLITUDE	.0078	.0068	.0036	.0014	0025	0045	0075	0067
RADIUS = .800 AMPLITUDE	0 = .0057	.0041	.0031	0005	0036	0051	0061	0065
RADIUS = .900 AMPLITUDE	.0042	.0024	.0024	0021	0044	0060	0057	0068
RADIUS = 1.00	.003	.0017	.0014	0032	0051	0071	0066	~.0076

TABLE A-11 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 179

HARMON	IC ANALYSES	OF TANG	ENTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC	= 1	2	3	4	5	6	7	8
RADIUS = .51 AMPLITUDE	2 =1698	0033	~.0060	0046	0032	.0002	.0031	.0059
RADIUS = .71 AMPLITUDE	1 =1549	0023	.0005	.0017	.0017	.0024	.0030	.0036
RADIUS = .91 AMPLITUDE	0 = J 447	0016	.0046	.0055	.0031	.0019	.0000	0006
RADIUS = 1.08 AMPLITUDE	2 =1558	0129	0005	.0025	.0002	.0005	0001	0016
HARMONIC	= 9	10	11	12	13	14	15	16
RADIUS = .51 AMPLITUDE	2 = .0087	.0090	.007 7	.0052	.0020	0021	0054	0076
RADIUS = .71 AMPLITUDE	1 .0038	.0028	.0011	0012	0032	0052	0063	0063
RADIUS = .91 AMPLITUDE	0 =0021	0035	0047	0054	0058	0054	0038	0018
RADIUS = 1.08 AMPLITUDE	2 = .0017	.0014	.0008	.0003	0007	0018	0027	0033

TABLE A-12 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 179

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V) HARMONIC 7 8 RADIUS = -.0048 -.0163 -.0145 -.0127 -.0054 -.0003 AMPLITUDE -.1921 .0061 RADIUS = .300 AMPLITUDE -.1909 -.0047 -.0157 -.0139 -.0121 -.0051 -.0000 .0062 RADIUS = . 400 -.0108 -.0092 AMPLITUDE -.1803 -.0040 -.0074 -.0022 .0019 .0063 RADIUS = .500 -.1708 -.0034 -.0065 -.0036 .0000 .0030 .0060 AMPLITUDE -.0050 RADIUS = .600 AMPLITUDE -.1626 -.0028 -.0028 -.0015 -.0006 .0015 .0034 .0051 RADIUS = ,700 -.1556 -.0024 .0002 .0024 .0038 AMPLITUDE .0014 .0015 .0031 RADIUS = .800 AMPLITUDE -.1473 -.0002 .0036 .0044 .0030 .0023 .0013 .0008 RADIUS = .900 AMPLITUDE -.1446 -.0013 .0046 .0055 .0032 .0019 .0001 -.0006 **RADIUS = 1.000** AMPLITUDE -.1482 -.0061 .0029 .0047 .0021 .0012 -.0003 -.0002 HARMONIC 9 10 11 12 13 14 15 16 RADIUS = .289 AMPLITUDE .0133 .0157 .0160 .0150 .0110 .0048 -.0004 -.0051 RADIUS = AMPLITUDE .0131 .0153 .0156 .0105 .0144 .0043 -.0008 -.0053 . 400 RADIUS = AMPLITUDE .0112 .0124 ' .0117 .0098 .0061 .0009 -.0034 -.0069 RADIUS = .500 AMPLITUDE .0090 .0093 .0081 .0057 .0024 -.0018 -.0052 -.0076 RADIUS = ..600 AMPLITUDE .0066 .0003 .0047 .0021 -.0007 -.0038 -.0062 -.0075 .700 RADIUS = AMPLITUDE .0041 .0032 .0014 -.0009 -.0030 -.0051 -.0063 -.0065 .800 RADIUS = AMPLITUDE -.0002 -.0016 -.0031 -.0045 -.0055 -.0059 -.0050 RADIUS = .900 AMPLITUDE -.0020 -.0035 -.0048 -.0054 -.0059 -.0055 -.0039 -.0019 **RADIUS = 1.000**

AMPLITUDE

-.0011 -.0021 -.0031 -.0035 -.0040 -.0039 -.0031 -.0020

APPENDIX B

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS
FOR ROTATING ARM WAKE SURVEYS EXPERIMENTS 180, 181, 182, AND 183

TABLE B-1

INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088, MODEL 4989, EXPERIMENT 180

INPUT DATA

	RADIUS =	. 330			RADIUS	.512	
ANGLE	VX/V	VT/V	VR/V	ANGLE	VX/V	VT/V	VR/V
-4.3	. 735	469	004	-8.3	.910	195	. 074
0.0	. 839	567	028	-4.4	. 829	227	.078
3.6	. 965	501	034	4	. 757	310	. 044
7.6	1.036	487	045	3.7	. 770	395	025
11.6	1.075	464	056	7.6	. B60	431	060
19.7	1.035	450	072	11.6	. 955	415	032
29.5	1.020	416	059	15.5	1.009	378	.016
39.6	1.024	379	040	19.4	1.031	348	. 047
49.6	1.010	318	029	29.4	1.021	312	. 104
59.7	. 989	245	019	39.3	1.008	280	. 147
69.7	. 970	155	007 004	49.4	1.003	240	. 193 . 227
79. 8	. 950	054 .051	002	59.5 69.6	. 996 . 994	190 127	. 252
89.7 89.7	. 954 . 931	.051	003	79.5	1.002	057	.270
99. 8	. 956	. 152	0.000	89.6	1.002	.024	. 282
110.1	1.021	. 254	. 004	99.5	. 985	.107	. 293
120.0	1.064	. 351	001	109.6	. 979	. 190	. 290
130.2	1.104	. 451	003	119.8	. 982	. 274	. 276
140.1	1,118	.531	012	130.0	1.001	. 352	. 245
150.2	1.126	. 582	024	139.9	1.015	. 406	. 203
160.1	1.135	.617	036	149.8	1.024	. 454	. 157
170 2	1.150	. 632	048	159.9	1.039	. 492	. 100
183.0	1.119	.619	060	169.7	1.055	.512	. 044
189.8	1.105	.6 09	073	179.6	1.057	. 520	010
199.8	1.116	. 5 85	080	180.0	1.052	. 527	007
209.8	1.158	.554	044	189.7	1.026	. 529	068
219.6	1.058	. 500	. 059	199.7	1.011	. 522	135
229.7	.979	. 356	.087	209.8	1.003	. 489	-, 196
239.7	. 85 0	. 124	.031	219.7	. 995	.448	258
239.7	. 849	.132	.034	229.8 239.8	. 995 1.007	. 388 . 312	318 349
249.9	. 930 . 979	. 110	.017	249.8	.966	. 146	277
259.7 263.8	. 975	.104	.009	259.7	. 991	011	124
267.8	. 920	. 142	.013	263.7	1.019	- 044	075
271.B	.870	174	.004	267.8	1.024	025	032
275.8	. 832	. 183	.024	269.8	1.038	013	027
279.8	.727	. 190	.024	271.7	1.031	.020	020
283.8	.619	. 190	.025	275.7	1.011	.040	013
187.8	.53 2	. 186	.037	279.8	. 953	.068	.014
291.9	, 446	. 175	. 010	283.8	. 861	.092	. 030
295.9	. 345	. 166	.016	287.9	. 780	. 106	.041
209. 9	. 275	.132	. 006	291.9	.639	.088	026
303.9	. 199	. 121	.008	295.9	. 544	.026	. 071
30H.0	.174	.040	009 0.000	296.1 299.9	. 424	021	.111
312.0	0.000	0.000	0.000	302.1	. 376	081	. 128
315.1 320.0	0.000 0.000	0.000 0.000	0.000	302.1	. 388 . 363	216 286	.170
324.0	.461	456	. 034	306.1	. 390	304	. 215
327.9	.609	295	. 036	308.1	. 369	358	. 222
331.9	.648	276	. 051	510.0	. 300	296	. 223
335.8	.619	282	. 068	311.8	0.000	0.000	0.000
340.0	. 624	279	. 069	312.0	0.000	0.000	0.000
343.9	. 629	296	. 058	316.0	. 333	168	.081
347.9	. 643	326	. 047	320.0	. 845	453	029
351.7	. 695	361	.018	323.9	. 933	417	096
355. 7	. 735	469	004	327.8	1.010	361	116
360.0	.839	567	028	331.8	1.042	312	107
363.6	. 965	501	034	J35.8	1.058	287	085
367.6	1.036	487	045	339.8	1.069	256	045
				343.9	1.062	221	004
				347.7	1.005	198	.034
				351.7	. 910	195	. 074

			TABLE	B-1 CON	T NUED			
355.6	.829	227	.078	J 1 0011		006	- 018	. 001
359.6	.757	310	.044		355. 9 359.7	. 98 6 . 937	219 209	. 032
363.7	.770	395	025		361.5	. 887	207	. 056
367.6	. 860	431	060		363.9	. 80 1	225	. 075
371.6	. 955	415	032		367.9	. 761	323	. 070
375.5 379.4	1.009 1.031	378 348	.016 .047		369.5	. 790	339	. 063
3/9.4	7.031	. 540				RADIUS =	.911	
	RADIUS =	.711			ANGLE	VX/V	VT/V	VR/V
ANGLE	VX/V	VT/V	VR/V		-8.2	1.054	228	050
-4.1 3	. 986 . 937	219 209	. 001 . 032		-4.2	1.054	208	030 .009
1.5	.887	207	. 056		2 3.9	1.000 .889	186 163	.041
3.9	. 801	225	. 075		7.9	.780	230	.084
7.9	. 761	323	. 070		11.8	.784	336	. 095
9.5	. 790	339	. 063 . 040		15.6	.914	372	. 083
11.8 15.9	.858 .976	406 402	. 054		19.7 29.6	1.016 1.021	344 292	. 100 . 158
21.4	1.013	370	.089		39.6	1.002	250	.217
29.9	1.018	325	. 152		49.6	1.009	206	. 266
39.8	1.005	291	. 208		59. 6	1.007	159	. 316
49.8 59.8	1.008 1.017	248 196	. 253 . 288		69.7	1.004	097	. 341 . 358
69.B	1.033	- .133	.314		79.7 89.8	1.032 1.046	033 .038	.372
79.7	1.047	064	. 327		99. B	1.042	.113	. 369
8 9. 9	1.048	.015	. 336		109.8	1.018	. 187	. 362
99.8	1.022	.085	. 341 . 342		119.9	1.006	. 254	. 349
110. 0 114.9	1.009 1.001	. 157 . 222	.312		130. 0 1 3 9.9	1.001	. 316 . 363	.311
130.2	1.000	. 281	. 283		149.8	1.000	. 404	. 224
140.1	. 997	. 331	. 237		159.8	. 996	. 434	. 170
150.0	. 998	.373	. 184		163.7	1.011	. 445	. 144
159.9 169.8	1.007	. 40 4 . 42 4	124 . 060		167.7 171 7	1.022	. 456 . 463	.119 .092
179.7	1.029	. 434	~.013		175.7	1.032	. 466	.068
189.7	1.017	.439	081		179.7	1.032	.472	.042
194.7	1.005	. 428	153		189.5	1.034	. 474	033
209.7 219.5	. 994 . 985	. 407 . 371	223 288		199.5 209.5	1.018	. 473 . 452	105 176
220.6	. 991	.326	346		210.4	1.005	.452	÷. 235
230.6	. 479	. 281	- .391		229.6	1.007	. 375	290
240.6	, 414	. 262	379		239.7	1.024	.314	331
259.5 2 63.5	1.002	.221	274 218		249.7	1.025	. 259	350 324
267.5	1.045	. 126	223		259.8 269.9	1.050 1.038	. 204 . 078	324
201.6	1.061	.086	223		279.9	1.048	076	304
271.6	1.071	.076	227		289.9	1.066	135	196
275.5 279. 7	1.079 1.105	.033 026	239 247		230.1 293.9	1.043	129 131	228 154
283.6	1.105	071	239		297.9	1.070	121	116
287.7	1,101	065	208		300.1	1.042	119	115
291.8	1.085	081	~. 161		302.1	1.063	108	080
295.8 299.8	1.071	086 095	088 019		306.2	1.069	084	053
303.9	1.046	100	.046		310.2	1.074 1.048	059	022
309.0	. 984	106	. 086		310.3 314.1	1.048	+.060 014	020 .034
310.2	.837	197	. 109		318.2	. 976	.002	.077
312.0	. 824	195	. 109		320.3	. 925	. 001	. 090
316.0	. 843	341	. 076		322.2	. 909	059	. 006
319.9	. 959 1. 044	363 308	.033 014		326 . 1 330 . 2	1.028 1.057	~.150 ~.132	029 071
324.1 328.1	1.053	298 269	014		330.2	1.030	137	080
331.9	1.041	265	063		340.0	1.046	186	089
335.8	1.048	266	073		344.1	1.049	214	073
340.0	1.051 1.052	278 278	078 072		347.9 350.0	1.055 1.057	225 230	069 067
344.0 347.9	1.052	276	056		351.8	1.054	228	050
351.8	1.033	- 255	-, 032		355.8	1.054	208	030
			-		359.8	1.000	186	.009
					363.9 367.9	. 889 . 780	163 230	. 041 . 084
					371.8	. 784	336	. 095
				97	375.6	. 914	372	. 083
					379.7	1.016	344	. 100

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 180 TABLE B-2

PADILIC	22.0	5+2	711	1	ORC	9	004	ď	9	002	G		•
			:			?							2
*	868.	.943	1.007	1.016	. 888	.892	.914	.940	.978	1.005	1.018	1.017	1.016
н	. 105	.071	.050	160.	. 117	.112	160.	.073	.055	.050	.061		.091
N	007	.044	.030	.041	032	021	.020	.042	.035	.030	.032	.040	.04
	.893	.917	.950	978	0 · 000	.890	106.	316.	. 932	.951	.967		.987
н	.889	.894	. 933	.962	0.000	.892	.884	.895	.914	.936	. 954	. 965	.971
н	= 32.65	24.36	19.50	15.48	36.12	34.65	28.81	24.76	22.08	19.74	17.63	15.68	
н н	= 19.63 = 10.00	7.46	3 7.46 3.26 2.31 27.91 22.89 13.44 7.90 .5.10 3.42 7.50 325.00 0.00 12.50 17.50 17.50 325.00	2.31	27.91	22.89	13.44	7.90	.5.10 17.50	3.42 325.00	3.42 3.10 325.00 297.50	22.50	1.97
1 6	=-33.67	-24.84 312.50	-2.53	10.00	-51.27	-43.68 320.00	-32.31	-25.89 -11.18 312.50 312.50	-11.18 312.50	-2.48 5.00	-2.89 7.50	7.50	

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. VXBAR VTBAR VRBAR 1-WVX BBAR BPOS

TABLE B-3 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 180

HARMONIC	ANALYSES	OF LONGI	TUDINAL	VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .330 AMPLITUDE = PHASE ANGLE =	.2867 311.5	.1884 21.9	.1346 40.9	.0706 90.1	.0646 164.2	.0445 255.4	.0343 324.1	.0220 292.9
RADIUS = .512 AMPLITUDE = PHASE ANGLE =	.1231 316.3	.0995 20.5	.0717 67.0	.0847 139.6	.0830 198.6	.0893 242.2	.0772 280.4	.0463 318.5
RADIUS = .711 AMPLITUDE = PHASE ANGLE =	.0075 263.7	.0266 252.1	.025 5 2 71.7	.0135 99. 5	.0213 176.3	.0334 212.6	.0349 238.0	.0203 246.8
RADIUS = .911 AMPLITUDE = PHASE ANGLE =	.0150 210.9	.0227 246.7	.0184 241.6	.0057 137.7	.0141 229.2	.0171 197.2	.0248 197.0	.0200 196.5
HARMONIC =	9	10	11	12	13	14	15	
RADIUS = .330 AMPLITUDE = PHASE ANGLE =	.0407 332.1	.0354 8.7	.026 5 33.8	.0156 68.2	.0129 91.2	.0143 146.9	.0177 208.9	
RADIUS = .512 AMPLITUDE = PHASE ANGLE =	.0260 344.9	.0085	.0047 81.1	.0140 156.1	.0186 197.1	.0195 227.4	.0196 252.9	
RADIUS = .711 AMPLITUDE = PHASE ANGLE =	.0118 257.2	.0048 232.9	.007 2 146. 2	.0154 148.6	.0173 167.1	.0159 185.8	.0125 206.5	
RADIUS = .911 AMPLITUDE = PHASE ANGLE =	.0175 215.5	.0130 204.0	.0091 174.8	.0108 145.4	.0122 124.3	.0138 124.9	.0140 127.3	

TABLE B-4 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 180

HARMONIC	ANALYSES	OF LONG!	TUDINAL	VELOCITY	COMPONEN	T RATIOS	{ v'X/V)
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .280								
AMPLITUDE =	.3412	. 2099	.1549	.0806	.0619	.0184	.0313	.0168
PHASE ANGLE =	310.3	21.4	32.8	62.0	138.1	283.5	21.9	235.6
RADIUS = .300								
AMPLITUDE #	.3189	. 2015	.1464	.0743	.0616	.0289	.0287	.0167
PHASE ANGLE *	310.8	21.6	36.0	73.1	149.6	265.5	356.2	264.2
RADIUS = .400								
AMPLITUDE =	.2173	.1562	.1100	.0774	.0767	.0728	.0580	.0373
PHASE ANGLE #	313.3	22.1	51.9	120.0	185.4	247.5	294.7	314.2
RADIUS = .500								
AMPLITUDE =	. 1323	.1059	.0761	.0853	.0837	.0892	.0767	.0464
PHASE ANGLE =	316.0	20.9	65.6	138.5	197.9	242.7	281.5	318.7
RADIUS = .600								
AMPLITUDE #	. 0572	.0360	.0191	.0436	.0486	. 0581	.0527	. 0281
FHASE ANGLE #	314.0	. 5	43.8	131.8	191.0	232.4	265.9	295.0
RADIUS = .700								
AMPLITUDE .	.0100	.0242	.0231	.0153	.0233	.0351	.0360	.0204
PHASE ANGLE .	282.2	257.6	274.5	105.2	177.9	214.9	241.1	251.5
RADIUS = .800								
AMPLITUDE #	.0160	.0378	.0344	.0070	.0103	.0235	.0294	.0213
FHASE ANGLE #	172.5	236.1	260.5	46.2	174.6	195.4	214.6	217.5
RADIUS = .900								
AMPLITUDE =	.0153	.0256	.0212	.0043	.0125	.0175	.0254	.0204
PHASE ANGLE *	201.7	243.0	245.8	124.7	225.9	194.9	198.0	198.3
RADIUS = 1.000								
AMPLITUDE =	.0150	.0227	.0184	.0057	.0141	.0171	.0248	.0200
PHASE ANGLE #	210.9	246.7	241.6	137.7	229.2	197.2	197.0	196.5

TABLE B-4 CONTINUED

HARMONIC	ANALYSES	ΩE	LONGITUDINAL	VELOCITY	COMPONENT	RATIOS	(VX/
HARMONIC	ANALYSES	٦U	LUNGITUDINAL	VELUCIII	COMPONENT	KALIUS	(V A /)

HARMONIC	=	9	10	11	12	13	14	15
RADIUS = .	280							
AMPLITUDE	*	.0444	.0455	.0359	.0234	.0237	.0229	.0207
PHASE ANGLE	=	325 .5	8.6	32.1	53.3	71.3	121.2	185.7
RADIUS = .	300							
AMPLITUDE	I	.0429	.0413	.0319	.0200	.0189	.0188	.0191
PHASE ANGLE		328.2	8.7	32.6	58.1	76.8	129.2	194.7
RADIUS = .	400							
AMPLITUDE	=	.0357	.0232	.0156	.0104	.0095	.0132	.0180
PHASE ANGLE	=	339. 6	8.4	38.9	109.0	162.7	200.3	236.0
RADIUS = .	500							
AMPLITUDE	=	.0272	.0098	.0053	.0135	.0179	.0191	.0196
PHASE ANGLE	=	344.9	4.6	71.5	153.9	196.3	226.7	252.3
RADIUS = .	600		1			0.05		24.54
AMPLITUDE	÷	.0145	.0036	.0054	.0153	.0185	.0179	.0161
PHASE ANGLE	=	318.5	330.8	120.0	151.8	183.0	209.2	235.6
RADIUS = .	700					0.74	0404	
AMPLITUDE	=	.0115	.0043	.0071	.0154	.0174	.0161	.0128
PHASE ANGLE	=	262.5	237.6	144.3	148.8	168.7	188.3	209.9
	800					2450	0440	
AMPLITUDE	=	.0153	.0087	.0084	.0141	.0152	.0142	.0111
PHASE ANGLE	=	230.0	213.8	159.6	146.9	152.6	163.1	172.5
	900				****	0404	0407	0405
AMPLITUDE	3	. 0175	.0126	.0091	.0113	.0124	.0137	.0135
PHASE ANGLE	*	216.6	204.7	173.3	145.5	127.9	129.1	131.1
RADIUS = 1.		.	2.22		0.00	0100	0420	0140
AMPLITUDE	=	.0175	.0130	.0091	.0108	.0122	.0138	.0140
PHASE ANGLE		215.5	204.0	174.8	145.4	124.3	124.9	127.3

TABLE B-5 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 180

HARMON	C ANALYSES	OF TANG	ENTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC :	1	2	3	4	5	6	7	8
RADIUS = .330 AMPLITUDE : PHASE ANGLE :	.4975	.1084 180.5	.0723 261.8	.0506 341.3	.0328 88.6	.0209 207.5	.0024 263.7	.0168 170,4
RADIUS = .512 AMPLITUDE = PHASE ANGLE =	. 4365	.0335	.0112 201.0	.0193 358.5	.0383 99.5	.0470 159.7	.0371 212.5	.0125 261.6
RADIUS = .71: AMPLITUDE : PHASE ANGLE :	. 3935	.0053 102.1	.0225 93. 2	.0193 121.8	.0115 135.9	.0152 106.2	.0236 132.6	.0171 175.2
RADIUS = .919 AMPLITUDE = PHASE ANGLE =	. 3735	.0362 118.8	.0413 151.3	.0291 207.1	.0169 263.7	.0161	.0222 69.9	.0189 107.8
Oldomarh	= 9	10	1 1	12	13	14	15	
PHASE ANGLE	.0207 232.5	.0131 256.4	.0134 249.0		.0110 327.8	.0060 326.6	.0064 343 .9	
	2 = .0105 = 130.8	.0197 178.2	.0171 209.8		.0078 282.5	·0075	.0119 65.8	
RADIUS = .71 AMPLITUDE PHASE ANGLE	.0045	.0076 26.8	.0107 56.1	.0133 63.7	.0147 83.7	.0114 114.3	.0055 144.7	
RADIUS = .91 AMPLITUDE : PHASE ANGLE :	.0103	.0067 91.2	.0070 81.8	.0031 70.4	.0058 13.3	.0088 26.6	.0093 37.8	

TABLE B-6 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 180

HARM	DNIC	ANALYSES	OF TANG	ENTIAL Y	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = .: AMPLITUDE PHASE ANGLE	280 = =	.5189 261.4	.1500 187.3	.0978 2 64.8	.0598 339.9	.0263 82.1	.0214 266.8	.0193 35.0	.0280 155.5
RADIUS = .: AMPLITUDE PHASE ANGLE	300 = =	.5101 262.3	.1324 184.9	.0872 2 63.8	.0561 340.4	.0292 85.2	.0186 242.2	.0104 30.2	.0231 160.1
RADIUS = .4 AMPLITUDE PHASE ANGLE	400 = =	.4712 265.7	.0645 164.2	.0422 2 54.5	.0381 344.6	.0384 93.8	.0355 174.5	.0229 220.9	.0098 218.8
RADIUS = .! AMPLITUDE PHASE ANGLE	500 = =	.4398 267.6	.0347 118.6	.0129 214.0		.0389 98.9	.0468 160.8	.0367 213.6	.0123 260.9
RADIUS = .0 AMPLITUDE PHASE ANGLE	500 = =	.4145 265.9	.0138 107.7	.0113 94.9	.0135 70.2	.0254 108.9	.0293 145.1	.0255 178.4	.0135 209.1
RADIUS = .º AMPLITUDE PHASE ANGLE	700 = =	.3953 264.4	.0054 101.1	.0218 91.6	.0189 118.1	.0127 131.3	.0161 111.7	.0235 136.5	.0169 177.9
RADIUS = .0 AMPLITUDE PHASE ANGLE	300 = =	.3818 263.7	.0116 115.0	.0274 114.5	.0209 154.6	.0074 209.4	.0128 56.0	.0240 105.6	.0175 151.1
RADIUS = .9 AMPLITUDE PHASE ANGLE	900 = =	.3740 263.9	.0329 118.7	.0391 148.0	.0275 202.3	.0157 261.2	.0157	.0224 74.1	.0184 112.6
RADIUS = 1.0 AMPLITUDE FHASE ANGLE	000 = *	.3735 264.0	.0362 118.8	.0413 151.3	.0291 207.1	.0169 263.7	.0161	.0222 69.9	.0189 107.8

TABLE B-6 CONTINUED

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VT/V)

HARMONIC	=	9	10	1 1	12	13	14	15
RADIUS = .28 AMPLITUDE PHASE ANGLE	30 = =	.0323 243.7	.0200 294.5	.0119 2 83.8	.0189 301.5	.0128 352.4	.0040 301.7	.0101
RADIUS = .30 AMPLITUDE PHASE ANGLE	00 = =	.0273 240.0	.0163 282.0	.0121 267.8	.0181 294.1	.011B 342.5	.0048 314.8	.0081
RADIUS = .40 AMPLITUDE PHASE ANGLE	00 = =	.0107 196.5	.0154 204.4	.0171 225.8	.0162 264.0	.0106 301.5	.0079 341.4	.0084
RADIUS = .50 AMPLITUDE PHASE ANGLE	00 # #	.0103	.0198 179.8	.0176 211.2	.0126 245.8	.0084 283.6	.0077 359.6	.0118
RADIUS = .60 AMPLITUDE FHASE ANGLE	00 = =	.0037 186.8	.0043	.0029 147.0	.0036 62.7	.0066 80.1	.0069 97.9	.0065 106.6
RADIUS = .70 AMPLITUDE PHASE ANGLE	00 = =	.0045 244.3	.0070 27.8	.0101 56.9	.0128 63.7	.0143 84.0	.0113	.0056 143.5
RADIUS = .80 AMPLITUDE PHASE ANGLE	00 = =	.0027 210.9	.0092 31,5	.0126 56.2	.0131	.0134 77.5	.0098 102.8	.0036
RADIUS = .90 AMPLITUDE FHASE ANGLE	00 = =	.0089	.0066 80.3	.0078 75.5	.0045 67.9	.0061 29.2	.0080 35.9	.0081 40.8
RADIUS = 1.00 AMPLITUDE PHASE ANGLE	00 = =	.0103	.0067 91.2	.0070	.0031 70.4	.0058	.0088 26.6	.0093

TABLE B-7

INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088,

	1.			EXPERIMENT 181	rr 1000,	,	
	TNPUT	DATA	JDEL 4303,	EXECUTENT TOT			
	1 0 .			363.3	.793	349	.031
	RADIUS =	.330		367.4	.900	347	.015
ANGLE	VX/V	VT/V	VR/V	369.3	941	355	.002
7	.756	312	.031	371.3	- 974	350	002
7	.748	318	.039	375.2	1.028	330	011
3.3		349	.031 .015				
7.4	.900	347			RADIUS :	512	
9.3	.941	355 350	.002 002	ANGLE	VX/V	VT/V	VR/V
11.3 15.2	.974 1.028	330	011	-16.4	1.042		041
19.2	1.057	313	027	-12.4	1.051	144	021
23.3	1.066	292	034	-8.5	1.040	131	.009
29.2	1.058	265	045	-4.5		101	.042
39.2	1.037	245	045	3	• 95 9	076	.072
49.2	1.014	202	038	3.5	. 845	095	.089
59.2	1.011	158	031	7.5	.786	~.168	.077
69.3	.994 .990	090 025	024	11.4 15.4	.810 .937	291 302	.041 .025
79.4		025	021	19.4	1.019	~.260	.030
89.4	. 988	.051	021	29.4	1.030	202	.070
99.2	.999 1.022	.117	021 018	39.3	1.010	181	- 102
109.3	1.022	.186 .255	013	49.3	1.011	157	.134
119.2 129.1	1.094	.320	011	59.3	.997	124	. 155
139.3	1.116	.394	016	69.2	1.001	083	.183
149.4	1.126	.445	018	79.4	• 999	034	.201
159.4	1.136	. 491		89.4	1.024	•B19	
169.2	1.127	.521	025 032	99.2	. 994	.074	
179.2	1.135	•539	040	109.2 119.3	.994	.128	.223
189.0	1.135	.534	045	119.3	1.002	.184 .240	•213 •197
199.0	1.143	.521	044	129.3 139.3	1.020 1.025	• 295	.175
209.0	1.152	• 490	039	137.3	1.029	.339	
219.0	1.188	.441	008	149.3 159.5	1.058	.364	.103
223.0	1.214	.414 .398	.019 .052	169.4	1.065	.391	
227.0 228.9	1.226 1.215	.394	.065	179.4	1.058	.391 .405	.027
231.0	1.199	.378	.084	179.4 189.2	1.061	-413	017
235.0	1.138	.343	.123	219.0	1.024	.367	155
239.0	1.099	.288	.133	229.1	1.027	. 324	200
243.1	1.062	.248	.114	239.2	1.020	• 269	229
247.0	1.013	.220	.077	249.3	1.016	•219	215
249.1	• 966	.191	.051	259.3 263.4	1.010 1.010	.100 .070	108 079
251.1	. 954	.155	.046	267.4	1.026	.042	070
255.0	.941	.080	.026	269.3	1.010	.035	085
259.1	. 952	.056 .066	•014 •020	271.3	1.006	.024	086
263.0 267.0	.980 .973	•096	.020	275.2	.970	007	107
271.0	.962	.131	.021	279.3	959	023	126
274.9	.942	.161	.032	283.3	. 967	029	128
278.9	. 878	.176	.029	287.2	• 965	019	082
282.9	.812	.176	.029 .035	289.3	•970	.008	073
286.9	.693	.152	• 0 4 0	291.4	. 941	•006	050
290.9	.579	.084	.051	295.3 299.4	• 868 • 812	.088 004	012 .027
295.0	•507		.047	303.4	.812 .761	060	.097
299.1	.471	100	.060 .087	307.5	.778	099	.144
303.0	. 453	169 174	•115	311.6	.778	104	.166
307.0 311.0	• 448 • 466	192	.149	315.5	.768	156	.126
315.1	.498	162	.130	319.6	.830	226	.068
319.2	.546	179	.107	323.6	• 922	229	.021
323.3	.583	228	.099	327.5	1.004	194	026
327.3	.672	247	.089	331.7	1.029	167	048
331.4	.719	238	.096	335.7	1.032	149	055
335.4	. 756	227	.087	339.7	1.039	146	051
339.4	.735	219	.079	343.6 347.6	1.042 1.051	145 144	041 021
343.4	.727	222	.D79	351.5	1.040	131	.009
347.4	.715	232	.072 .062	355.5	1.037	101	.042
351.4	• 694	261 - 202	. 055	359.7	• 959	076	.072
355.4 359.3	.703 .756	292 312	.031	363.5	. 845	095	.089
359.5	.764	313	.029	367.5	.786	168	.077
0,000							

			TARLE R-	-7 CONTI NUED			
371.4	.810	291	•041	OUNTEROLD	RADIUS =	.911	
375.4	•937	302	.025	ANGLE	VXZV	VT/V	VR/V
379.4	1.019	260	.030	-40.3	1.048	028	.149
0.30.	••••			-30-4	1.047	028	038
	RADIUS =	.711		-20.2	. 979	042	065
ANGLE	VX/V	VT/V	VR/V	-10.3	. 994	116	070
-4.8	1.036	164	044	4	1.035	139 061	030 .045
6	1.035	158	027	9.4	.948	247	.076
3.₽	1.036	120	.003	19.3 29.3	. 934 . 994	174	.109
7.0	• 965	079	.040	39.4	1.003	162	.145
9.5	. 884	085	• 05 8	49.4	.995	143	.186
11.1	. 836	129	•061	59.4	. 992	116	. 224
15.0	.822	248	.057	69.4	1.002	080	. 250
19.4 22.9	•952 1•020	267 247	•062 •076	79.4	1.010	039	.278
26.8	1.024	217	.085	89.4	1.035	.005	.289
29.2	1.008	208	•094	99.3	1.030	.048	• 302
39.3	1.003	193	.131	109.3	1.018	.097	.302
49.3	1.005	169	•162	119.4	.994	.153	-297
59.3	1.002	136	.195	129.3	1.000	.200	.286
69.5	1.008	103	.228	139.4	. 993	•249 •287	.250 .216
79.3	1.019	054	• 247	149.5	.999 1.009	.314	.167
89.3	1.025	003	• 261	159.4 169.6	1.017	.339	.121
99.2	1.008	.044	• 263	179.5	1.032	.348	.070
109.3	• 998	.092	• 267	189.3	1.049	.358	.021
119.2	.987	• 140	•263	199.2	1.039	.361	027
129.3	• 982	•189	•251	209.1	1.023	.357	082
139.3 149.4	•988 •993	.233 .268	.219 .181	219.1	1.019	. 344	143
159.3	1.009	.293	.142	229.2	•999	.319	200
169.4	1.012	•312	.092	239.3	. 997	.287	266
179.3	1.029	•325	.043	249.2	• 991	.251	327
199.2	1.019	.330	013	259.3	. 996	.170	317
199.0	1.017	.330	070	269.3	1.001	.049	291
209.1	1.005	.321	126	279.3	.996	115	245
219.0	.988	.302	181	289.4	1.056	192 195	163 009
229.1	• 991	.269	240	299.3 309.4	1.076 1.044	128	-100
239.1	• 990	.221	293	319.7	1.048	028	.149
249.1	• 998	.164	325	329.6	1.047	028	038
255.1	• 977	.105	318	339.8	973	042	065
259.0	1.003	.061	281	349.7	. 994	116	070
263.0	1.016	.014	269	359.6	1.035	139	030
267.0 271.1	1.021 1.022	023 071	-•253 -•255	369.4	. 948	061	.045
274.9	1.019	092	247	379.3	. 934	247	.076
278.9	1.006	112	238	389.3	. 994	174	-109
282.9	. 995	139	205	399.4	1.003	162	.145
287.0	. 995	153	175	409.4	• 995	143	.186
290.9	1.002	168	138		RADIUS :	1.082	
294.9	1.006	167	089	ANGLE	VX/V	VT/V	VP/V
299.0	1.029	162	048	0.0	959	195	088
303.0	1.032	149	.001	1.0	. 982	197	084
307.0	1.038	138	.040	9.1	1.026	149	013
311.0	1.036	116	•071	14.8	.803	165	• 054
315.1	1.042	065	•109	18.8	.831	280	•096
319.2 323.3	.933 .802	010 103	•165 •114	19.2	.838	279	.110
327.3	.933	170	012	19.6	- 895	293	•112
331.3	.968	125	070	24.7	• 985 007	245	-074
335.3	. 985	127	085	29.1 39.1	• 993	220	.089
339.2	1.014	141	086	39.1 49.1	.997 1.001	217 194	•141
343.3	1.016	152	082	59.1	1.008	166	•175 •222
347.2	1.029	155	074	69.2	1.008	132	• 260
351.2	1.035	160	057	79.3	1.020	096	.277
355.2	1.036	164	044	89.1	1.035	051	• 292
359.4	1.035	158	027	98.7	1.027	005	.304
363.0	1.036	120	•003	109.1	1.024	.037	. 304
367.0	. 965	079	.040	119.2	1.017	.088	.309
369.5 371.1	.884	985	.058	119.7	1.006	.106	• 296
371.1 375.0	.836 .822	129 248	.061 .057	129.4	1.013	•129	• 291
31300	• 0 6 6	- • c → 0	• 097	139.4	1.017	.182	. 260

TABLE B-7 CONTINUED

			TUDDE D-1	CONTINUE
149.6	1.021	-214	•229	
159.6	1.029	.245	.186	
169.6	1.038	.260	•136	
179.5	1.052	.276	•079	
189.3	1.053	.276	.029	
199.4	1.056	.288	027	
209.4	1.045	.287	083	
219.3	1.029	.280	145	
229.4	1.016	. 262	208	
238.6	1.001	. 247	275	
249.4	• 999	.211	343	
258.8	. 984	-187	396	
265.0	• 975	.170	412	
269.3	. 971	.082	393	
274.8	1.006	014	393	
278.6	1.004	092	383	
284.7	• 997	149	37 3	
289.2	• 965	-•226	320	
294.8	• 953	309	190	
299.4	1.000	322	060	
304.8	• 996	281	.081	
309.4	1.014	241	.143	
315.0	1.042	169	.188	
319.5	1.048	108	•191	
320.1	1.035	088	•176	
325.0	• 928	.017	.101	
330.0	• 980	059	059	
335.1	• 971	035	113	
340.1	• 936	040	131	
345.0	• 921	066	126	
349.5	• 930	110	127	
355.0	• 935	172	119	
360.0	• 95 9	195	088	
369.5	- 967	141	005	

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 181 TABLE B-8

1.000	1.010	.053	.040	866.	976.		1.68 300.00	17.50
006.	1.011	.071	.045	. 995			2.22	-1.14
. 800	1.007	.064	.039	166.	996.	17.43	297.50	-1.37
. 700	866.	.039	.026	. 987	656.	19.69	2.55	-2.73
.600	366.	.052	.029	.983	.948	22.45	3.70	-2.00 217.50
. 500	666.	.079	.038	.975	. 933	25.92	5.30	302.50
. 400	. 977	.091	.026	. 963		30.44	8.65	-8.87 302.50
.300	.952	860.	.003			36.73	14.55	-16.83 295.00
.280	. 946	660.	003	0.000	0.000	38.30	16.82	-19.62 295.00
1.082	1.004	.021		666.	.981	13.24	2.35	-2.55 17.50
116.	1.011	.070	.045	366.	.974	15.49	2.18 297.50	230.00
. 711	866.	.038	.026	.988	096.	19.43	25.00	-2.68
.512	.994	.078	.038	916.	.934	25.45	5.02	-4.07 302.50
330	196. =	760. =	. 011	954	906. *	= 34.60	= 12.45 = 20.00	=-13.35
RADIUS =	VXBAR	VTBAR =	VRBAR	. XVM-1	1-WX	BBAR	BPOS :	BNEG
								108

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS NOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS.

TABLE B-9 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 181

HARMONIC	ANALYSES	OF LONGI	TUDINAL	VELOCITY	COMPONENT	RATIOS	{ V X / V }	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .330								
AMPLITUDE =	• 2212	.1472	.0746	.0062	.0174	.0435	.0481	.0226
PHASE ANGLE =	299.4	13.6	47.5	153.6	195.1	255.2	304.5	2.6
RADIUS = .512								
AMPLITUDE =	.0569	.0354	.0153	.0324	.0348	.0380	.0319	
PHASE ANGLE =	297.4	28.7	67.1	149.9	197.6	224.0	239.0	·0170 249.3
PADIUS = .711								
AMPLITUDE =	.0097	.0070	.0134	.0112	0072	0436		
PHASE ANGLE =	274.2	284.5	257.8	99.0	.0072 144.0	.0136	.0200	.0204
THISE ANGLE	21 40 6	20413	237.00	99.0	144.0	152.3	158.4	164.9
RADIUS = .911								
AMPLITUDE =	.0120	.0137	.0260	.0069	.0036	.0041	.0103	.0055
PHASE ANGLE =	214.1	196+7	227.5	394.4		137.9	146.5	114.2
RADIUS = 1.082								
AMPLITUDE =	.0351	.0037	.0189	.0044	.0034	.0032	0004	0474
PHASE ANGLE =	284.7	316.6	232.6	329.2	313.6	39.9	.0094 86.5	.0134 85.0
				32,12	31313	3767	00.7	97.4
HARMONIC =	9	10	11	12	13	14	15	16
RADIUS = .330								
AMPLITUDE =	.0052	.0138	.0076	.0049	.0026	.0017	.0024	.0027
PHASE ANGLE =	229.0	284.0	326.4	332.3		133.0	228.9	191.5
					2000	10000	22009	171.7
RADIUS = .512								
AMPLITUDE =	.0054	.0071	•0156	.0156	.0115	.0085	.0106	.0103
PHASE ANGLE =	244.0	183.6	155.0	184.7		157.4	142.3	147.8
RADIUS = .711								
AMPLITUDE #	.0173	.0099	.0005	-0087		.0133	.0129	.0117
PHASE ANGLE =	162.5	209.7	2.8	74.7	74.6	73.3	80.4	90.4
RADIUS = .911								
AMPLITUDE =	.0041	.0082	.0106	.0065	.0043			
PHASE ANGLE =	84.8	77.0	98.7	105.4	138.8	.0006	.0014	.0017
	- 110	,	, o . r	10>14	130.0	80.9	87.5	127.9
RADIUS = 1.082								
AMPLITUDE =	.0129	.0093	.0063	.0123	.0163	0139	.0114	.0122
PHASE ANGLE =	96.2	105.3	57.7	37.1	41.2	41.7	24.4	19.1

TABLE B-10 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 181

HARMONIC	ANALYSES	OF LONGIT	UDINAL	VELOCITY	COMPONENT	RATIOS	(4X/4)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .280								
AMPLITUDE =	. 2864	.1920	.0973	.0093	.0053	.0440	.0610	.0352
PHASE ANGLE =	299.5	11.7	45.1	334.5		267.9	319.3	19.6
RADIUS = .300								
AMPLITUDE =	. 2593	4777						
PHASE ANGLE *	299.5	.1733 12.4	.0879	. 8026		.0437	• 0 55 3	.0297
FRASE ANGLE 4	299.5	12.4	46.0	334.7	189.7	262.6	313.9	14.0
RADIUS = .400								
AMPLITUDE =	. 1444	.0947	.0475	.0219	.0292	.0430	.0375	.0137
PHASE ANGLE =	299.1	17.4	52.1	152.7		241.1	278.8	315.6
RADIUS = .500								
AMPLITUDE =	.0642	.0403	.0181	.0321	.0350	.0388	.0323	.0165
PHASE ANGLE =	297.6	26.9	64.4	150.3		225.7	242.7	253.9
						22701		233.7
RADIUS600								
AMPLITUDE =	.0307	.0166	.0029	.0205	.0188	.0211	.0203	.0164
PHASE ANGLE =	295.2	11.0	349.9	134.0		200.7	201.7	193.7
RADIUS = .700								
AMPLITUDE =	.0111	.0069	.0123	.0118	.0079	.0138		
PHASE ANGLE .	278.9	295.9	259.8	103.4		156.8	.0198 161.3	.0203
	c. 00)	.,,,,,	27700	103.4	14700	170.0	161.3	166.6
RADIUS = .800								
AMPLITUDE =	• 0 0 9 2	.0107	.0212	.0058	.0011	.0088	.0153	.0108
PHASE ANGLE =	204.0	210.0	234.5	90.4		150.5	157.8	159.3
RADIUS = .900								
AMPLITUDE .	.0118	.0138	.0259	.0068	.0033	.0045	.0107	
PHASE ANGLE =	209.9	197.1	227.7	357.4		140.4	148.6	.0055 120.9
	,,,	- /		021.14	31114	4464	740.0	120.4
RADIUS = 1.000								
AMPLITUDE =	.0178	.0087	.0245	.0069	.0045	.0021	.0000	.0084
PHASE ANGLE =	259.2	200.8	227.5	339.1	314.7	87.8	119.0	84.1

TABLE B-10 CONTINUED

HARMONIC	ANALYSES	OF LONGITUDIN	AL VELOCITY	COMPONENT	RATIOS	(AX\A)	
HARMONIC =	9	10 11	12	13	14	15	16
RADIUS = .280							
AMPLITUDE =	.0068	.0212 .02	05 .0165	.0107	.0040	.0054	.0026
PHASE ANGLE =	205.3	291.4 330	.5 344.0	10.5	26.6	303.9	301.1
RADIUS = .300							
AMPLITUDE =	.0060	.0181 .01		.0072	.0022	.0036	.0016
PHASE ANGLE =	214.2	289.1 329	.6 341.6	12.7	44.4	287.0	257.0
RADIUS = .400							••••
AMPLITUDE =	. 0 05 0	.0067 .00		.0059	.0058	.0063	.0068
PHASE ANGLE =	254.3	255.2 160	.9 176.3	171.1	167.5	164.6	164.4
RACIUS = .500							
AMPLITUDE =	.0053			.0113	.0884	.0103	.0101
PHASE ANGLE =	247.9	186.8 155	.1 165.7	169.3	159.7	144.5	149.6
RADIUS = .600							
AMPLITUDE =				.0084	.0101	.0116	.0109
PHASE ANGLE =	193.6	206.2 164	.1 124.8	107.0	94.4	100.7	109.9
RADIUS = .700							
AMPLITUDE =	.0173			.0110	.0133	.0138	.0117
PHASE ANGLE =	183.3	210.0 333	.7 77.2	75.8	74.3	81.6	91.5
RADIUS = .800							***
AMPLITUDE =				.0058	.0044	.0057	.0059
PHASE ANGLE =	174.1	128.8 102	.3 104.7	121.8	89.1	96.6	116.2
RADIUS = .908							
AMPLITUDE =				.0046	.0006	.0016	.0021
PHASE ANGLE #	90.7	77.4 99	.4 107.7	142.1	103.0	97.8	133.2
RADIUS = 1.000				•••			•••
AMPLITUDE =				.0058	.0048	.0043	.0042
PHASE ANGLE =	80.3	83.4 88	.7 68.5	65.5	36.7	21.9	19.1

TABLE B-11 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 181

HARMONIC	ANALYSES	OF TANG	ENTIAL	MELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC =	1	5	3	4	5	6	7	8
RADIUS = .330								
AMPLITUDE =	.4117	.0232	.0213	.0164	.0245	.0328		
PHASE ANGLE =	265.3	130.9	261.4		116.7	193.8	.0269	.0135
		20007	20214	22.4	11007	193.0	255.1	341.0
RADIUS = .512								
AMPLITUDE =	.3095	.0371	.0189	.0038	.0175	.0241	.0244	.0119
PHASE ANGLE =	264.3	85.1	140.0		90.5	123.7	155.7	182.2
				14004	,,,,	16347	19901	102.2
RADIUS = .711								
AMPLITUDE =	.2666	.0516	.0426	.0231	.0097	.0117	.0127	.0113
PHASE ANGLE =	267.0	84.7	141.5		314.2	33.7	74.4	74.4
							, ,,,,	, , , ,
RADIUS = .911								
AMPLITUDE =	.2656	.0592	.0560	. 0445	.0242	.0171	.0132	.0082
PHASE ANGLE =	263.3	72.5	127.0		253.6	332.6	39.4	67.6
							5,14	00
RADIUS = 1.082						-		
AMPLITUDE =	2537	•0501	.0636	.0575	.0404	.0278	.0178	.0097
PHASE ANGLE =	260.0	63.1	113.0	171.6	225.5	285.4	352.3	37.0
u.a.u.a.u.a.								
HARMONIC =	9	10	11	12	13	14	15	16
RADIUS = .330								
AMPLITUDE =	.0114	.0139	.0097					
PHASE ANGLE =	97.9	171.4	226.3		.0038	.0037	.0042	.0051
	7167	1/1.4	22043	258.1	295.6	330.0	26.5	76.5
RADIUS = .512								•
AMPLITUDE =	.0019	.0073	.0089	.0105				
PHASE ANGLE =	148.0	76.7	70.4		.0093	.0064	.0084	.0078
	- 1000	, , , ,	,,,,	49.C	80.7	71.6	57.0	76.9
RADIUS = .711								
AMPLITUDE =	.0102	.0070	.0817	.0064	0004			
PHASE ANGLE =	73.5	88.3	38.0		.0094 351.5	.0100	.0099	.0077
			30.0	34363	321.5	350.5	352.0	.7
RADIUS = .911								
AMPLITUDE =	.0068	.0081	.0071	.0061	-0074			
PHASE ANGLE =	36.2	26.1	19.9		342.0	.0082 330.3	.0073	.0051
-			~ , , ,		J72.U	330.3	337.7	327.6
RADIUS = 1.082								
AMPLITUDE .	.0046	.0047	.0030	.0024	.0090	.0084	0046	0074
PHASE ANGLE #	37.7	20.3	27.6	. 282.3	302.2	316.9	.0045 308.7	.0071
				,	20616	0100 J	300.7	280.3

TABLE B-12 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 181

	HARMONIC	ANALYSES	OF TANG	ENTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMON	IC =	1	2	3	4	5	6	7	8
RADIUS									
AMPLIT		. 4504	•0256	.0335	.0216	.0250	.0428	.0418	.0263
PHASE	ANGLE =	265.9	154.2	268.2	16.2	126.2	211.3	275.1	350.4
RADIUS	= .300								
AMPLIT		. 4344	.0241	.0284	.0195	.0248	.0383	.0351	.0208
PHASE	ANGLE =	265.6	145.1	266.3		122.2	204.9	268.6	347.7
RADIUS	= .400								
AMPLIT		. 3653	•0265	.0091	.0095	.0231	.0262	.0191	.0038
PHASE	ANGLE =	264.6	103.5	221.4	35.8	105.9	163.5	205.8	253.2
RADIUS	= .500								
AMPLIT		.3144	.0360	.8171	.0033	.0183	.0243	.0239	.0115
PHASE	ANGLE =	264.2	86.0	142.2	130.3	92.3	127.2	158.8	184.5
RADIUS									
AMPLIT		. 2853	.0445	.0309	.0115	.0078	.0142	.0145	.0073
PHASE	ANGLE =	266.2	86.8	144.3	212.6	46.4	93.9	126.1	118.5
RADIUS	= .700								
AMPLIT	UDE =	.2679	.0510	.0416	.4550	.0090	.0115	.0125	.0110
PHASE	ANGLE =	267.0	85.1	142.0	211.3	319.9	39.2	78.5	76.3
RADIUS	= .800								
AMPLIT		.2679	.0573	.0494	.0339	.0156	.0141	.0132	.0096
PHASE	ANGLE =	265.4	78.4	135.0	200.7	278.2	4.7	62.1	75.6
RADIUS									
AMPLIT		. 2661	•0593	.0554	. 8436	.0233	.0167	.0132	.0083
PHASE	ANGLE =	263.5	73.0	127.8	191.2	255.7	335.8	42.1	69.0
	= 1.000								
AMPLIT		.2607	•0563	.0602	.0515	.0319	.0211	.0144	.0082
PHASE	ANGLE =	261.6	68.0	120.1	180.9	238.1	306.5	14.7	52.6

TABLE B-12 CONTINUED

HARMONIC	ANALYSES	OF TANGE	NTIAL	VELOCITY	COMPONENT	RATIOS	{VT/V}	
HARMONIC =	9	10	11	12	13	14	15	16
RADIUS = .280								
AMPLITUDE =	.0171	.0208	.0186	.0141	.0110	.0082	.0046	.0032
PHASE ANGLE =	92.9	160.4	233.0	260.8	285.2	306.9	338.8	55.3
RADIUS = .300								
AMPLITUDE =	.0147	.0178	.0148	.0104	.0079	.0051	.0040	.0040
PHASE ANGLE =	94.6	177.4	231.1	260.0	287.1	312.5	358.2	67.2
RADIUS = .400								
AMPLITUDE =	.0056	.0075	.0022			-0034	.0064	.0071
PHASE ANGLE =	111.4	142.3	140.3	83.4	79.1	58.3	55.7	82.9
RADIUS = .500								
AMPLITUDE =	.0021	.0070	.0084	.0102	.0091	.0063	.0083	.0079
PHASE ANGLE =	146.5	60.5	71.5	76.1	81.8	72.8	58.2	78.3
RADIUS = .600								
AMPLITUDE =	.0067	.0074	.0043	.0057	.0070	.0071	.0083	.0066
PHASE ANGLE =	84.7	90.2	71.0	35.7	28.4	16.5	17.2	34.0
RADIUS = .700								
AMPLITUDE =	.0100	.0071	.0018	.0062	.0092	.0096	.0096	.0076
PHASE ANGLE =	74.4	89.5	44.4	348.4	353.4	352.0	353.6	2.9
RADIUS = .800								
AMPLITUDE =	.0081	.0071	.0054	.0070		.0089	.0089	.0062
PHASE ANGLE =	54.7	48.2	21.6	357.8	352.6	341.7	346.6	352.0
RADIUS = .900								
AMPLITUDE =	-0069	.0081	.0071		.0075	.0082	.0074	.0051
PHASE ANGLE =	37.5	27.4	19.9	•6	343.8	331.4	338.8	330.6
RADIUS = 1.000								
AMPLITUDE =	.0058	.0072	.0060		.0075	.0081	.0058	.0055
PHASE ANGLE =	30.7	19.7	21.0	348.8	322.5	322.4	326.5	300.1

TABLE B-13

INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088,
MODEL 4989, EXPERIMENT 182

		MODEL	4,00, mil D				
	INPUT	DATA			RADIUS =		
				ANGLE	VX/V	VT/V	VR/V
	RADIUS =			-8.9	. 846	224	.058
ANGLE	VX/V	VT/V	VR/V	-4.9	.748	290	.069
4	.915	502	034 051	-1.0	• 685	~.349	.017 061
5.0 10.7	. 965 . 999	527 513	065	3.0 7.0	.711 .776	422 459	091
14.8	. 994	492	067	9.4	.891	465	052
24.7	. 992	470	049	14.8	.961	440	005
34.7	.975	440	039	18.9	1.009	399	.036
44.7	.979	360	021	22.9	1.007	~.377	.058
54.8	. 965	305	008	26.8	1.022	~.355	.089
58.9	. 969	273	003	30.9	1.004	346	.113
64.8	. 957	211	-0.000	38.8	- 978	327	.159
75.0	. 948	091	.011	58.9	• 968	212	.247
78.9	. 934	046	.011	69.3	• 986	~.125	.282
84.9	. 944	.031	.006	78.9	•972	059	. 289
94.9	. 958	.139	.008	89.4	.989	.049	.305
99.0 105.0	.979 1.012	.185 .250	.013 .010	98.8 109.3	.966 .958	.130 .237	.310 .312
109.5	1.012	.307	.015	119.1	.958 .968	.310	.290
114.9	1.060	. 347	.012	129.5	.972	.399	.265
119.2	1.077	.392	.014	139.0	. 991	.464	.223
125.2	1.098	. 454	.010	151.5	1.004	.522	.163
135.1	1.115	. 545	.004	158.8	1.025	.540	.118
139.2	1.140	.567	.006	171.3	1.046	.571	.045
145.0	1.128	.612	001	179.4	1 . 145	.582	003
149.5	1.091	.641	004	187.4	1.034	.572	059
154.9	1.154	.650	008	190.9	1.029	.575	076
158.9	1.153	.659	008	198.9	1.020	.561	124
164.8	1.148	.675	020 038	209.4	1.013	.531	166 232
175.0 179.0	1.112 1.108	.696 .693	040	218.7 229.4	.986 .997	.508 .432	287
189.3	1.087	.719	051	238.9	.983	.384	307
198.7	1.064	.693	066	249.4	. 966	.301	239
204.7	1.105	.651	056	255.2	.970	.261	165
209.3	1.107	.608	084	259.0	. 968	.278	109
214.7	1.127	.622	.025	263.0	. 964	.216	046
218.7	• 966	.711	.076	271.1	• 941	.211	051
224.7	.867	. 485	.081	275.0	.883	.203	095
229.2	.843	• 399	.065	279.0	. 852	.181	109
234.8	1.008	.307	005	283.1	.763	.186	114
238.8	1.023	.318	007	267.1	.700	.145	089
244.8	.944	. 256	011 002	291.2 29 5. 1	• 552 • 411	.162 .157	057 047
249.1 254.9	.902 .943	.166 .183	011	299.0	.346	.087	033
258.9	.988	.073	009	299.1	.237	.112	004
264.8	. 969	.121	008	303.1	0.000	0.000	0.800
269.1	.912	.133	001	307.2	0.000	0.000	0.000
274.9	. 907	.182	.004	309.8	8.000	0.000	0.000
278.9	.839	.213	.043	311.2	0.000	0.000	9.000
284.7	.724	.240	.041	315.0	0.000	0.000	0.000
289.3	• 469	.313	.052	317.1	0.000	0.556	0.000
294.9	. 386	. 347	.018	319.2	0.000	8.000	0.000
299.8	. 385	.178 .331	.019 029	319.2 321.3	8.000 9.000	0.000	0.000 8.000
304.9 309.4	.253 0.000	0.000	0.000	323.3	.675	533	132
314.9	0.000	0.000	0.000	327.0	. 884	440	144
319.0	0.000	0.800	0.000	329.6	. 935	401	155
324.9	. 284	.030	002	331.0	. 945	383	139
334.0	. 565	283	. 056	335.0	1.014	321	117
338.8	. 596	295	. 059	339.0	1.013	275	068
344.7	.603	309	.032	343.0	1.005	242	016
349.2	. 668	351	.011	347.0	• 921	216	.023
358.8	.719	792	037	351.1	. 846	224	.058
359.6	. 915	502	034	355.1	.748	290	.069
365.0	. 965	527	051	359.0	. 665	349 422	. 817
370.7 374.8	. 999 . 994	513 492	065 067	363.0 367.0	.711 .776	459	061 091
31400	. 774	476	007	369.4	-891	465	052
				374.6	. 961	441	005

		T	ABLE B-13	CONTI NUED			
	RADIUS =	.711		350.9	.987	283	047
ANGLE	AX\A KADIO2 ~	VTZV	VR/V	351.2	. 977	280	044
-6.6	977	280	044	353.4	. 954	255	Q22 .016
-6.6	954	255	022	357.4	.872	226 231	.034
-2.6	. 872	226	.016	359.4	. 822 . 746	242	.053
6	. 822	231	.034	361.4 365.3	.699	298	.067
1.4	.746	242	.053	369.4	.773	385	.029
5.3	. 699	298	. B67	370.8	. 813	426	.025
9.4	.773	385	.029 .025	0.00	RADIUS :	. 911	
10.8	.813	426 436	.027	ANGLE	VX/V	VT/V	VR/V
13.3	.884 .994	424	.064	-9.3	1.007	266	075
17.3	.995	389	.094	-5.2	. 999	~.252	044
21.3 25.2	. 993	377	.123	-1.2	.983	219	0.000
29.2	. 991	359	.147	7	.908	~.216	.001
31.6	. 990	344	. 154	1.2	.887	212	-024
33.1	. 980	356	.176	2.6	. 874	190	.038
38.8	. 975	341	.198	3.2	. 859	190 220	.046 .068
51.4	.993	261	.271	6.8	.764	337	.088
71.3	1.011	124	.330	10.5	.729 .732	335	.086
78.9	1.005	080	.341 .356	11.2 14.5	.793	407	.076
91.5	1.018	.039 .095	.361	18.6	.930	395	.096
99.0	.994 .971	.193	.355	22.5	.960	346	.107
111.4	.953	.243	.340	26.6	.971	325	.143
118.9 131.6	945	.329	. 296	30.6	. 976	~.316	.177
138.9	. 941	.376	. 258	34.5	. 978	308	- 204
151.4	.950	. 436	.185	41.1	. 964	287	- 251
158.7	. 957	.467	.139	51.2	. 978	239	• 312
171.4	. 972	.490	.048	61.2	. 978	173	•359 •384
178.5	.978	.501	009	71.2	.966	~.105 ~.029	• 30 -
181.2	. 972	.498	028	81.2	1.002 1.005	.052	-409
191.2	. 956	. 495 . 494	105 155	91.2 101.2	.967	,133	.412
198.7	.942	. 444	249	111.5	. 960	.212	-408
211.2	.936 .933	.425	291	121.5	. 974	.280	.383
216.6 231.2	.949	. 324	358	131.5	. 939	.351	• 355
238.6	952	.277	376	141.5	• 951	.405	•302
249.4	.972	.169	371	151.3	• 956	. 452	.236
253.3	. 991	.130	328	161.3	. 974	.485	-170
257.4	1.012	.063	287	171.2	• 992	.504	.094 .024
258.7	1.024	.051	269	179.8	1.022 1.016	.515 .520	069
261.4	1.042	.006	246 227	191.7 201.6	1.007	.498	134
265.3	1.048	047 089	237	211.6	989	.483	218
269.3	1.046 1.031	103	258	221.4	. 984	.438	283
271•1 273•4	1.020	-,112	269	231.4	. 977	• 369	342
277.4	1.019	114	268	241.5	. 966	.287	403
281.6	1.036	122	263	251.5	. 995	.168	394
265.6	.997	104	217	255.2	1.005	.102	364
289.5	. 968	084	141	259.0	1.021	.052	334 326
291.4	. 935	071	106	262.9	1.027	.011 057	320
293.5	.909	059	079	266.8	1.026	087	323
297.5	. 856	085	.020 .077	270.9 274.8	1.009 .988	126	340
301.7	.780 .739	110 138	.128	278.9	1.009	143	304
305.6	.679	259	.150	282.8	1.012	160	285
309.6 313.6	.724	351	.111	286.9	1.005	160	261
317.6	. 866	433	.034	291.7	1.031	160	220
319.0	. 879	427	022	294.8	1.039	145	188
321.8	. 993	398	064	298.8	1.033	133	148
325.7	1.008	345	103	302.9	1.037	117 097	109 076
329.6	1.017	333	114	306.9	1.045	055	022
333.6	1.016	323	120 114	310.9 314.9	1.031 .964	032	•028
337.7	1.023	319	096	319.8	. 873	~.105	.052
341.6	1.026	318 310	079	321.6	.869	210	.024
345.6	1.025	- 310	049	322.9	. 897	215	.001

```
TABLE B-13 CONTINUED
                                   -.064
                       -.211
           1.000
326.9
                                                  337.2
                                   -. 102
                       -.207
           1.008
331.5
                                                  341.2
                                   -.112
                       -.210
           1.006
334.8
                                                  345.3
                                   -.107
           1.015
                       -.237
338.8
                                                  348.8
                                   -.106
                       -.257
           1.009
342.7
                                                  353.1
                                   -.099
            1.015
                       -.267
346.7
                                                  357.0
                                   -.075
                       -.266
            1.007
350.7
                                                  359.6
                                   -.044
             .999
                       -.252
354.8
                                                  363.6
                                   0.000
                       -.219
             .983
358.8
                                                  367.4
                                    .001
                       -.216
             .906
359.3
                                    .024
                       -.212
             . 887
361.2
                                    .038
             .874
                        -.190
362.6
                                     .046
             . 859
                        ~.190
363.2
                                     .068
                        -.220
             .764
366.8
             RADIUS = 1.082
                                      VR/V
                         VT/V
              VX/V
  ANGLE
                                     -.081
                         -.318
-.296
              . 965
   -3.0
                                     -.046
              . 942
    -.4
                                      .005
                         -.274
              .860
    3.6
                                      .065
                         -.342
               .762
    7.4
                         -.391
                                      .119
               .733
   11.5
                                      .132
               .795
                         -.426
   13.5
                                      .115
                         -.451
               . 908
   17.3
                                      .118
               . 958
                         -.415
   21.5
                                      .148
               . 986
                         -.384
   25.4
                                       . 205
                         -.369
               .966
   33.3
                                       .236
               .961
                         -.363
   38.6
                                       .304
                         -.324
               . 964
   48.7
                                       . 347
               .970
                          -.266
   58.8
                                       .383
                          -.166
               .999
    69.3
                                       .397
              1.003
                          -.122
    78.8
                                       . 408
                          -.015
              1.038
    89.3
                                       .406
              1.031
                           .038
    98.7
                                       . 393
              1.031
                           .134
   109.5
               .991
                           .183
                                       .408
  118.9
                                       .360
                .991
                           .266
   129.7
                                       .330
                           .316
               .987
   139.0
                                       . 251
              1.008
                           . 362
   149.5
                                       .203
              1.006
                           .396
   158.9
                                       -107
              1.017
                           .419
   169.6
                            .439
                                       .028
              1.024
   179.6
                                      -.053
                            .446
   189.3
               1.021
                            . 436
                                      -.129
   198.6
                . 996
                            .416
.377
.320
                                      -.223
   209.3
                .990
                                      -.285
               1.004
   218.5
                                      -.374
   229.3
                . 968
                            .267
                                      -. 424
                . 964
   238.7
                                      -.465
                            . 141
   249.3
                . 955
                            .102
                                      -.457
   253.3
                .973
                                       -.437
                            .038
   258.7
                .991
                                       -.415
                           -.018
               1.027
   261.2
                                       -.403
                           -.068
               1.021
   265.3
                           -.128
                                       -.422
                . 985
   269.2
                                       -.402
                           -.169
   273.2
                 . 962
                           -.218
-.243
                                       -.368
   277.3
                .962
                                       -. 327
    281.3
                . 933
                                       -.265
                           -.267
                . 935
    285.4
                           -.267
                                       -.197
    289.4
                 .956
                           -.242
                                       -.143
    293.4
                 . 969
                           -.227
                                       -.180
    298.9
                 .970
                           -.199
                                       -.060
    301.6
                 . 969
                           -.163
                                       -.053
    305.5
                 . 936
                           -.132
                                       -.042
    309.5
                 . 949
                           -.096
                                       -.040
    313.4
                 .967
                                       -.053
                . 925
                           -.064
    317.5
                           -.034
                                       -.034
    321.6
                 .930
```

-.110

-.203

. 908

.972

325.3

328.9

-.075

-.183

-.216

-.252

-.282

-.310

-.322

-.324

-.318

-.296

-.274

-.342

. 966 . 957

. 942

. 963

. 973

. 976

.965

.942

.660

.762

-.21D

-.202

-.179

-.154

-.138

-.112

-.081

-.046

.005

.065

TABLE B-14 - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 182

1.000	626.	.053	.035	. 942	. 926	13.82	1.53	10.00
. 900	.977	.075	. 041	. 933	.915	15.14		10.00
. 800	.968	690.	.040	.921	. 902	16.79	2.94	-2.33 7.50
. 700	. 953	.040	.033	906.	. 882	18.86	4.36	310.00
.600	.923	.071	.034			20.83	6.68	310.00
.500	.885	.125	.036	.883	.848	22.97	9.81	-24.79 320.00
. 400	.879	. 144	.016	.885	.855	27.16	14.94	-30.82
.300	168.	.148	016			33,91	25.07 357.50	-32.13 312.50
. 280	. 896	.147	024	0.000	0.000	35.70	30.84	-33.80
1.082	.976	.013	.025	.947	. 932	12.90	1.40	10.00
116.	716.	.074	.041	.933	.915	14.98	2.05 347.50	10.00
.711	.956	.039	.033	.905	.878	18.65	4.14	-3.58
.512	.887	. 122	.037	.884	.846	22.59	9.38	-23.71
. 330	886	= .148	/RBAR =005	068. =	6.8. =	= 31.53	± 20.44 = 10.00	=-32.40
RADIUS =	VXBAR	VTBAR	VRBAR	1-WVX =	1-WX	BBAR	BPOS THETA	BNEG THETA

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS WOUNDETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BEIWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES.

TABLE B-15 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMELT 182

HARMONIC	ANAL YSES	OF LONGI	TUDINAL	VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .330 AMPLITUDE =				•0910		.0287	.0157	.0265
PHASE ANGLE =	309.3	14.2	36.9	86.9	153.8	227.0	295.0	289.8
RADIUS = .512 AMPLITUDE =	.1981		.1111	.1092		.1011	.0919	.0670
P ASE ANGLE =	314.0	15.8	64.3	128.3	187.7	232.4	267.4	295.8
RADIUS = .711 AMPLITUDE =	.0240	.0349	.0064	.0386	.0441	.0485	.0393	.0219
PHASE ANGLE =	325.0	310.0	357.9	142.3	207.8	237.4	265.9	282.9
RADIUS = .911 AMPLITUDE =	.0259	.0193	.0299	.0065	.0184	.0177	.0249	.0250
PHASE ANGLE =	220.6		244.6	142.3	209.6	195.7	193.8	193.2
RADIUS = 1.082 AMPLITUDE =	.0421	.0170	.0181	.0083	.0144	.0174	.0119	.0177
PHASE ANGLE =			228.4	145.2	237.4	223.1	187.1	182.6
HARMONIC =	9	10	11	1?	1 3	1 4	15	16
RADIUS = .330								
AMPLITUDE = PHASE ANGLE =	.0256 353.2		.0314	•0306 67•1	.0139 141.4	.0087	.0202	.0184
	393.2	334+1	• 1	67.1	141.4	66.9	170.9	278.3
RADIUS = .512 AMPLITUDE =	.0468	.0262	.0156	.0106	.0079	.0115	.0148	.0133
PHASE ANGLE =	324.0	351.0	40.0	106.2		187.7	202.6	230.1
PADIUS = .711								
AMPLITUDE =	.0116		.0164	.0207		.0125	.0094	.0048
PHASE ANGLE =	283.3	163.7	171.1	188.5	214.0	221.2	222.2	228.6
RADIUS = .911								
AMPLITUDE =	.0174		.0089	.0121		.0123	.0120	.0082
PHASE ANGLE =	219.2	242.6	169.8	125.4	107.3	123.6	138.5	154.3
RADIUS = 1.082		0066	0444	0405	2425			
AMPLITUDE = PHASE ANGLE =	.0190 211.3	.0066 169.0	.0116	.0128 145.1		.0068 122.3	.0104	.0095
THE MINUTE T	211.3	107.0	14400	14761	19310	16603	117.2	131.5

TABLE B-16 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 182

HARMONIC	ANALYSES	OF LONGIT	UDINAL	VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARNONIC =	1	2	3	4	5	6	7	8
RADIUS = .280								
AMPLITUDE =	. 3094	.1472	.1675	.0939	.0558	.0120	.0304	.0050
PHASE ANGLE =	307.7	11.3	26.2	62.9	124.8	67.9	67.5	222.9
								,
RADIUS = .300								
AMPLITUDE =	.3036	•1562	.1617	.0909	.0579	.0063	.0138	.0128
PHASE ANGLE =	308.4	12.7	30.6	72.9	138.2	203.9	46.5	278.1
RADIUS = .400								
AMPLITUDE =	. 2639	•1797	.1398	.1010	.0838	.0702	.0583	.0513
PHASE ANGLE =	311.3	16.1	49.7	110.3	174.2	230.9	271.2	294.8
RADIUS = .500								
AMPLITUDE =	.2063	·1660	.1150	.1097	.0977	.0999	.0904	.0668
PHASE ANGLE =	313.7	16.0	63.0	127.1		232.3	267.6	295.9
RADIUS = .600								
AMPLITUDE =	.1027	-0637	.0539	.0728	.0696	.0756	.0662	.0445
PHASE ANGLE =	317.5	2.1	60.0	133.2		235.6	269.3	295.4
RADIUS = .700								
AMPLITUDE =	• 0 298	.0367	.0088	.0414	.0461	.0509	.0417	.0238
PHASE ANGLE =	324.1	317.4	22.5	141.2		237.4	266.8	285.6
RADIUS = .800								
AMPLITUDE =	.0150	.0237	.0185	.0198	.0301	.0286	.0268	.0184
PHASE ANGLE =	234.3	287.6	254.9	142.1		221.2	230.4	225.1
RADIUS = .900								
AMPLITUDE =	• 0 255	.0195	.0295	.0073	.0192	.0183	.0250	.0246
PHASE ANGLE =	219.0	260.5	245.3	142.2		197.6	196.2	194.8
RADIUS = 1.000								
AMPLITUDE =	.0274	-0184	.0282	.0041	.0138	.0150	.0213	.0246
PHASE ANGLE =	251.3	249.2	239.3	144.7		196.0	182.3	185.1

TABLE B-16 CONTINUED

HARMONIC	ANALYSES	OF LONGITUE	DINAL	VELOCITY	COMPONENT	RATIOS	(VX/V)	
HARMONIC =	9	10	11	12	13	14	15	16
RADIUS = .280								
AMPLITUDE =	.0180	.0051	.0360	.0376	.0164	.0152	.0228	.0224
PHASE ANGLE =	33.8	233.6	352.0	65.1	145.5	47.4	162.1	292.1
RADIUS = .300								
AMPLITUDE =	.0200	.0048	.0341	.0347	.0153	.0123	.0217	.0206
PHASE ANGLE =	12.8	298.2	355.4	65.8	143.7	53.2	165.5	286.9
RADIUS = .400								
AMPLITUDE =	.0387	.0213	.0254	.0215	.0110	.0058	.0175	.0153
PHASE ANGLE =	334.5	347.3	13.6	73.0	139.9	136.7	183.8	256.9
RADIUS = .500								
AMPLITUDE =	.0452	.0264	0167	.0114	.0081	.0110	.0150	.0135
PHASE ANGLE =	324.8	350.8	36.4	99.9	155.0	185.3	200.8	232.2
RADIUS = .600								
AMPLITUDE =	.0268		.0077	.0145	.0144	.0130	.0124	.0089
PHASE ANGLE =	317.2	350.9	129.5	175.5	207.5	215.6	219.0	235.8
RADIUS = .700								
AMPLITUDE =	.0125	.0052	0159	.0205	.0176	.0128	.0097	.0052
PHASE ANGLE =	289.2	183.6	169.8	188.4	214.2	221.8	223.2	231.0
RADIUS = .800								
AMPLITUDE =	.0129	.0069	.0118	.0130	.0072	.0090	.0089	.0058
PHASE ANGLE =	241.1	232.6	174.3	198.4	161.6	159.3	168.9	180.2
RADIUS = .900								
AMPLITUDE =	.0170		.0090	.0120	.0099	.0122	.0118	.0080
PHASE ANGLE =	220.4	243.1	170.9	127.1	108.5	125.2	140.3	156.1
RADIUS = 1.000								
AMPLITUDE =	.0193	•0062	0090	.0123	.0106	.0115	.0124	.0093
PHASE ANGLE =	213.0	223.2	156.8	125.1	115.1	117.3	127.1	142.2

TABLE B-17 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 182

HARMONIC	ANALYSES	OF TANGE	ENTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .330								
AMPLITUDE =	• 5 392	.1321	.0944	. 0649	.0276	.0155	.0168	.0113
PHASE ANGLE =	260.3	182.2	243.0		57.5	201.0	249.9	286.6
							2 () ()	
RADIUS = .512								
AMPLITUDE =	. 4754	.0515	.0208		.0214	.0225	.0240	.0244
PHASE ANGLE =	259.7	204.7	286.2	356.8	84.2	129.5	155.0	170.6
RADIUS = .711								
AMPLITUDE =	. 4393	.0408	.0249	.0058	0206	0.74.6		
PHASE ANGLE =	270.2	98.7	148.6		.0286 78.5	.0348 122.3	.0267 161.1	.0162
		,,,,,	14000	71.,	7000	166.3	101.1	219.6
RADIUS = .911								
AMPLITUDE =	. 4131	.0621	.0531	.0269	.0179	.0199	.0181	.0128
PHASE ANGLE =	268.9	109.6	165.2	245.2	356.5	65.1	102.0	114.5
040700 - 4 000								
RADIUS = 1.082 AMPLITUDE =	.3975	04.57						
PHASE ANGLE #	267.5	.0657 114.1	.0676 165.5		.0266	.0218	.0151	.0126
THE RIVER -	207.5	11401	103.3	232.1	307.4	10.4	63.9	85.9
HARMONIC =	9	10	11	12	13	14	15	
					13	. •	15	16
RADIUS = .330								
AMPLITUDE =	.0122	.0083	.0056		.0158	.0216	.0114	.0089
PHASE ANGLE =	313.4	37.9	192.4	36.2	176.2	256.0	328.6	253.1
RADIUS = .512								
AMPLITUDE #	.0252	•0232	.0201			_		
PHASE ANGLE =	189.7	197.5	223.9		.0129 300.1	.0118	.0120	.0131
	20,0,	. ,, . ,	22349	290.2	300.1	342.7	33.6	76.6
RADIUS = .711								
AMPLITUDE =	.0069	.0083	.0129	.0135	.0131	.0087	.0045	.0017
PHASE ANGLE =	298.8	51.2	79.2	86.0	99.8	128.5	137.7	132.5
RADIUS = .911						• • •	20.00	136.7
RADIUS = .911 AMPLITUDE =								
PHASE ANGLE =	.0098 119.5	.0071 120.7	.0025		.0100	.0117	.0107	.0074
THISE MITTEL S	117.5	160.1	64.6	24.8	38.1	37.9	54.6	70.7
RADIUS = 1.082								
AMPLITUDE =	.0118	.0109	.0077	.0037	.0026	.0058	. 0 0 6 7	
PHASE ANGLE =	105.8	113.9	106.4	91.7	8.1	5.3	.0043 14.6	.0073
						7.5 G	14.0	26.7

TABLE B-18 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 182

HARMONIC	ANALYSES	OF TANGE	NTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .280								
AMPLITUDE =	.5610	.1639	•1274		.0328	.0205	.0274	.0260
PHASE ANGLE =	261.7	176.0	237.5	319.2	50.1	222.4	270.9	311.1
RADIUS = .300								
AMPLITUDE =	.5520	.1505	.1135		•0305	.0181	.0226	.0194
PHASE ANGLE =	261.1	178.4	239.5	320.6	52.9	215.1	264.5	305.3
RADIUS = .400								
AMPLITUDE =	.5119	.0959	.0579		.0231	.0147	.0135	.0117
PHASE ANGLE =	259.1	191.8	254.1	330.8	69.3	161.7	192.0	189.6
RADIUS = .500								
AMPLITUDE =	. 4789	.0558	.0237	.0209	.0213	.0216	.0230	.0237
PHASE ANGLE =	259.5	203.9	281.6	352.9	83.2	131.3	156.3	170.7
RADIUS = .600								
AMPLITUDE =	. 4562	.0248	.0060		.0288	.0325	•0290	.0196
PHASE ANGLE =	265.6	153.0	193.7	25.0	84.7	128.1	162.6	200.2
RADIUS = .700								
AMPLITUDE =	. 4408	.0387	.0231	.1068	.0291	.0351	.0291	.0167
PHASE ANGLE =	269.9	100.4	148.6	49.4	79.5	123.2	161.7	218.9
RADIUS = .800								
AMPLITUDE =	. 4266	.0524	.0386		.0193	.0255	.0212	.0095
PHASE ANGLE =	269.7	105.2	160.6	255.5	47.8	101.4	135.9	166.6
RADIUS = .900								
AMPLITUDE =	.4144	.0613	.0518		.0176	.0201	.0182	.0124
PHASE ANGLE =	269.0	109.3	165.0	246.0	1.1	69.0	105.1	117.4
RADIUS = 1.000								
AMPLITUDE =	.4042	.0657	.0618		.0220	.0198	.0171	.0143
PHASE ANGLE =	268.2	112.1	166.0	238.9	326.6	34.4	80.7	98.3

TABLE B-18 CONTINUED

HARP	ONIC	ANALYSES	OF TANG	ENTIAL	AEFOCITA	COMPONENT	RATIOS	(VT/V)	
HARMONIC	*	9	10	11	12	13	14	15	16
RADIUS = .	280								
AMPLITUDE	3	.0296	•8265	.0085	.0120	.0287	.0310	.0142	.0205
PHASE ANGLE	=	337.7	28.0	83.0	76.8	159.4	240.8	302.2	253.8
RADIUS = .	300								
AMPLITUDE	=	.0218	.0187	.0046	.0069	.0230	.0268	.0127	.0156
PHASE ANGLE	=	332.0	29.9	112.6	76.2	164.4	246.1	312.1	253.6
	400				•				
AMPLITUDE	=	.0127	.0108	.0156	.0110	.0084	.0141	.0113	.0033
PHASE ANGLE	=	210.1	192.3	221.3	257.9	243.3	289.5	3.5	79.0
RADIUS .	500								
AMPLITUDE	2	.0247	.0229	*0503			.0120	.0121	.0127
PHASE ANGLE	=	190.1	197.5	554.5	256.5	297.4	338.3	31.2	76.6
	600								
AMPLITUDE	=	.0106					.0023	.0041	.0056
PHASE ANGLE	=	221.6	173.5	153.3	135.5	84.5	87.9	71.2	87.6
	700								
AMPLITUDE	=	.0069	.0076				.0083	.0043	.0018
PHASE ANGLE		293.0	52.7	50.8	67.3	100.2	129.2	136.8	127.8
	600								
AMPLITUDE	=	.0026	.0057	.0062			.0088	.0079	.0052
PHASE ANGLE	=	130.1	88.0	69.9	51.5	65.9	65.9	71.3	86.6
	900								
AMPLITUDE	=	.0093	.0069	.0026			.0116	.0107	.0073
PHASE ANGLE	=	120.1	119.4	65.8	26.1	40.1	39.6	55.7	72.3
RADIUS = 1.	-			_	_				
AMPLITUDE	=	.0122	.0091	.0033		.0074	.0103	.0088	.0076
PHASE ANGLE	=	114.2	122.2	96.7	26.9	25.1	26.1	44.5	53.7

TABLE B-19

INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088,
MODEL 4989, EXPERIMENT 183

			MODEL 4303,	EXPERIMENT TOO			
	INPUT	DATA			RADIUS	* .512	
				ANGLE	VX/V	VT/V	VR/V
	RADIUS =	. 330		-10.6	.982	183	0.000
ANGLE	VX / V	VT/V	VR/V		. 947	140	.039
-			•	-5.6			
-14.5	.698	190	. 118	9	.826	140	.062
-10.9	.728	191	. 095	4.5	. 767	217	. 052
-4.4	.710	250	. 057	9.2	.769	323	. 003
-1.0	.715	317	.021	14.5	. 90 1	331	026
3.7	. 863	374	0.000	18.5	. 989	307	.012
5.3	. 891	393	002			270	.057
			011	24.5	.991		.074
8.7	. 944	414		29.1	1.010	245	
15.3	1.045	365	024	34.4	1.001	236	. 094
18.7	1.028	360	033	38.4	. 986	231	.108
25.3	1.033	331	041	58.6	.971	158	. 173
29.6	1.025	309	039	68.9	. 976	103	. 207
35.2	1.007	306	038	78.6	.984	053	.218
38.5	. 995	299	034				.234
				89.0	. 997	.019	
44.9	.986	278	030	98.5	. 977	.079	. 235
58.6	.973	202	019	109.1	. 976	. 15 5	. 241
69.3	. 988	- .109	009	118.7	.979	.213	.229
75.4	.974	057	005	129.4	. 980	.278	.212
89.3	.966	.056	008	138.9	. 995	.328	.183
95.4	.968	.103	010			.375	.149
				149.3	1.007		
96.5	. 957	. 124	009	158.8	1.036	. 405	. 107
109.2	1.019	. 217	006	169.2	1.044	. 426	.064
115.5	1.020	. 266	003	169.2	1.043	. 427	. 065
118.6	1.044	. 281	003	178.7	1.055	.446	.020
129.4	1.054	. 364	010	179.3	1.052	. 448	.018
138.7	1.089	. 420	010	179.6	1.051	.444	.015
149.3	1.071	.500	019		1.046		020
				188.6		. 450	
158.6	1.117	.521	020	199.0	1.041	.441	072
169.3	1.098	. 557	032	209.5	1.020	.415	125
178.7	1.112	.561	041	218.8	1.014	. 391	167
189.1	1.115	.559	050	229.3	1.009	. 332	205
198.5	1.094	.544	059	238.7	. 997	. 292	233
209.1	1.101	.502	066	249.2	.983	. 221	209
	1.132	.485	011				
218.4				258.7	.973	.162	100
225.3	1.144	. 438	021	269.3	.948	.091	050
229.0	1.142	.420	.013	271.2	.924	.075	062
235. 3	1.056	. 394	.081	275.2	.912	.055	109
238.5	. 997	. 342	.121	278.5	.909	.019	129
245.3	.948	.256	. 085	279.2	.899	.040	-,131
248.9	.899	.202	.044		.897	.017	131
				283.2			
255.3	.897	.080	.010	287.1	.861	.022	102
258. 5	.959	.008	005	289.2	.822	.025	077
765. 2	-, 929	.040	007	291.2	.810	.025	045
269.0	. 887	.090	008	294.6	.790	.032	040
275.3	.822	. 148	.018	295.2	.745	.024	005
285.3	.648	. 203	. 054	299.2	.673	.020	.013
289.1	.522	. 195	.053				.093
				303.3	.599	090	
295.4	.432	.062	.071	307.3	.611	175	.171
305.4	. 342	063	. 116	309.4	.650	179	.161
315.6	.425	137	.108	311.3	.666	222	. 180
325.6	.628	271	.087	314.7	. 691	252	.156
329.4	.684	291	.094	318.7	.785	298	,119
335.6	.769	256	, 122	319.0	. 790	321	.116
	.707	235	. 136				
338.8				324.8	. 933	283	.022
345.5	698	190	.118	3 29.3	.992	236	036
355. 6	.710	250	. 057	334.6	. 983	216	054
358. 7	.719	314	.031	338. 7	.987	206	057
359.0	.715	317	. 021	349.4	. 982	183	0.000
363.7	.853	374	0.000	354.4	. 947	140	.039
365.3	.891	393	002	359.1	.826	140	. 062
368.7	. 944	414	011	364.5	. 767	217	.052
375.3	1.045	- .36 5	024	369. 2	. 769	323	.003
378.7	1.028	360	033	374.5	. 90 1	331	026
	=	= *		378.5	. 989	307	.012
							, •

TUDDE DATA CONTINUE	TABLE	B-19	CONTINUE
---------------------	-------	------	----------

				T) CONTINUED		•	
	RADIUS =				RADIUS	= .911	
ANGLE	VX/V	VT/V	VR/V	ANGLE	VX/V	VT/V	VR/V
-1.2	.996	183	032	-15.5	. 989	143	106
4.8	.930	145	.017				
				-10.8	. 995	161	087
5. 5	. 866	145	.015	-5.6	1.003	- .177	074
8.7	. 792	185	. 051	-2.9	1.003	175	061
9.5	.807	191	.060	-1.4	1.000	172	061
14.9	. 863	316	.044	1.0			040
					. 98 1	164	
18.8	. 964	309	.036	5.2	. 927	137	006
29.4	1.003	254	.098	9.2	.847	129	. 055
34.7	.990	251	.123	12.6	.786	186	.075
38.8	. 983	243	. 139	16.5	.810	- 289	
	.993	203	,179				.093
49.3				18.5	.903	292	.089
58. 8	.983	176	.214	20.6	.924	279	.086
69.3	1.000	120	. 242	24.5	.973	246	.097
78.7	1.003	076	. 258	29.2	.980	220	
			.273				
89.2	1.015	002		34.4	. 971	208	. 140
98.7	.999	.044	. 275	38.5	.962	204	.156
109.2	.981	.111	. 276	44.4	.966	189	. 185
118.7	. 977	.153	. 268	49.0	.978	170	. 204
	.966	.214	.247				
129.3				58.5	. 959	141	. 235
138.8	.970	.249	.219	68.9	. 977	094	.272
149.3	. 967	. 296	. 176	78.5	.987	052	. 291
158.7	. 9 71	.319	. 135	88.9	1.016	.009	.310
169.2	. 981	.346	.079	98.5			
					.997	.059	.315
178.6	. 994	. 357	.027	109.2	.983	.123	.317
189.2	. 978	.361	037	118.8	.970	.173	. 304
198.5	.979	.360	086	129.4	. 988	.232	. 282
209.1	.964	.345	- .155	138.9	.967	.276	. 258
	.957	.319	203				
218.4				149.3	.973	.319	. 214
229.1	.962	. 271	256	158.8	. 977	. 344	. 167
238.6	.971	.222	297	169.3	. 989	.370	.108
248.9	.990	.139	299	178.9	1.005	.387	.059
255.3	1.000	.091	277				
				189.5	1.026	.392	. 001
259. 2	1.016	.041	259	198.8	1.008	. 396	052
265.0	1.036	021	258	209.3	. 977	. 385	123
268.9	1.045	067	251	218.7	.970	.369	186
274.9	1.035	109	259				
				229.3	. 963	. 325	247
278. 6	1.040	126	251	238.7	. 96 0	.279	- .296
284.8	1.023	151	~.241	249.3	.972	. 191	329
289.1	1.000	157	202	254.8	.978	.130	-,319
294.9	, 99 9	151	154	258.7	.987		
			052			.115	310
304.9	. 98 1	129		264.7	.997	.010	-,309
309.4	.967	122	003	269.3	.973	050	304
312.9	.970	065	.019	274.6	.943	097	-,287
315.0	. 944	043	.046	278.6	.961	141	256
	.878	021	.062		• 50 1	41	-,250
317.0				284.7	.976	192	205
318.9	.824	040	.073	289.2	1.005	204	138
319.0	.763	051	. 102				
321.1	.736	118	. 086	294.6	. 999	196	076
	.730	176	.087	304.7	.993	138	.029
323.0				309.4	.977	110	.070
325.1	.842	235	.029	312.6	. 964	088	.079
327.0	. 928	245	025				
329.1	.973	214	064	316.7	. 950	- 058	.094
				318.7	. 931	044	.112
334.9	1.004	172	090	320.7	.924	028	.129
337.1	1.010	179	088	324.6	.859	.018	,111
338. 8	1.003	179	091	328.7	.870		
341.0	1.008	~.189	086			122	062
			081	332.7	. 911	096	128
344.9	1.009	198		336.5	.960	108	-,130
344.9	1.013	199	081	340.6	.977	126	~.119
354.9	1.028	208	048	344.5	. 989	143	
358.8	.996	183	032				106
364.8	.930	145	.017	349.2	.995	161	087
				354.4	1.003	~.177	074
365.5	. 866	145	.015	357.1	1.003	175	061
368.7	.792	185	. 051	358.6	1.000	172	061
369.5	.807	191	.060	361.0			
374.9	.863	316	,044		. 98 1	164	040
.,, .,	.003	.310	. • • • •	365.2	. 927	137	006
				369.2	. 847	129	. 055

TABLE B-19 CONTINUED

			111000
	RADIUS =	1.082	
ANGLE	V X / V	VT/V	VR/V
-1.3	. 969	221	105
1.6	.970	218	088
5. წ	.953	201	053
9.6	.898	197	005
13.5	.834	230	. 061
17.6	.892	318	. 126
18.9	. 901	335	.130
21.6	. 950	308	. 135
25.5	.968	268	. 125
			.129
2 9.5	.962	253	.123
49.3	. 972	223	. 207
58.8	. 951	197	. 246
69.2	.979	142	. 275
70.7	.97 7	101	.300
80.2	1.019	039	.310
96.6	1.002	.012	. 324
			.312
101.1	1.002	.071	
116.7	. 984	.117	.314
12:1.4	.997	. 169	. 277
138.8	.988	.209	. 270
144.3	. બેવને	. 249	.214
-58.7	. 994	.276	. 181
169.2	1.004	.297	. 111
	1.018	.307	.053
179.2			
189.1	1.038	.317	005
198.5	1.00 ម	.322	058
209.1	. 998	.311	134
218.4	. पम्बप	.297	187
229.0	. 984	. 266	262
238.5	.973	.232	316
			382
.348.9	. 967	. 17 2	
252.8	. 942	.143	390
256.9	.925	.104	387
258.6	.942	.097	333
265.0	. 95 3	012	386
268.9	. 940	090	389
273.0	.947	151	390
277.0			372
217.0	. 936	208	3/2
281.0	.929	276	337
285.1	. 935	324	272
_			
289.1	.956	344	180
293.2	.945	341	087
298.7	1.008	294	.020
		271	.062
301.4	1.006		
305.3	1.008	225	.102
513.3	1.003	135	. 130
317.5	. 969	100	.126
			.131
321.4	.933	071	
325. 3	.873	.006	. 102
329.3	. 804	104	076
	.856	068	139
333,3			
337.2	.867	083	157
33н.8	.874	099	170
341.3	.880	118	171
			172
345.2	. 90 1	153	
351.3	. 936	201	-,151
355.2	. 942	217	125
358.7	.969	221	105
			088
361.6	. 970	218	
365. 6	. 953	201	053
369.6	.898	197	005
373.5	.834	230	, 061
377.6	. 892	318	.126

TABLE B-20 - LISTING OF THE MEAN VELOCITY COMPONENET RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 183

1.000	.970	. 042	. 035	. 965	. 948	13.73	1.47	12.50
006.	1.76.	.062	.037	. 963	.945	15.11	1.69	12.50
. 800	.974	.057	.030	096	. 941	16.94	1.67 1.47 20.49 18.12 9.96 5.96 4.05 2.90 2.16 1.69 1.47 290.00 297.50 10.00 12.50 17.50 20.00 22.50 25.00 352.50 290.00 292.50	-2.04
. 700	876.	.031	.016	. 954	. 931	19.38	25.00	-3.70
.600	696.	.046	.025	.945	.915	21.97	4.05	-2.57 320.00
.500	.953	.078	042	.935	.897	25.02	5.96	-7.79 302.50
. 400	. 935	960.	.029	. 924	. 882	29.30	9.96	-13.14 302.50
.300	.915	.112	000.	.913	.874	35.35	18.12	4 -20.10 - 307.50 3
. 280	016.	.114	007	0.000	0.000	36.87	20.49	310.00
1.082	046.	900.	.026	996.	1951	12.84	1.47	330.00
116.	126.				.946	14.94	1.67	12.50
.711	626.	.031	.016	.954	. 929	19.12	25.00	-3.73
.512	. 955	.076	.042	. 936	868.	24.59	5.63	-7.20
. 330	. 921	* .107	. 011	916. =	876 =	= 33.23	= 15.03 = 15.00	=-17.78 ±305.00
RADIUS =	VXBAR	VIBAR	VRBAR	1 - W < X	1 - K	BBAR	BPOS THETA	BNEG
								128

1-WX

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAKE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAKE VELOCITY WITH TANGENTIAL CORRECTION.

IS NEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ARGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR BNEG OCCURS. BBAR BPOS BNEG THETA

TABLE B-21 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 183

HARMONIC	ANALYSES	OF LONG!	TUDINAL	VELOCITY	COMPONENT	RATICS	(VX/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .330 AMPLITUDE = FHASE ANGLE =	. 2284 306.3	.1519 20.9	.0787 56.0	.0207 125.5		.0420 264.8	.0522 314.8	.0204
RADIUS = .512 AMPLITUDE = FHASE ANGLE =	.0859 302.3	.0559 25.4	.0220 90.0	.0398 154.8		.0466 239.4	.0370 262.3	.0191 279.2
RADIUS = .711 AMPLITUDE = FHASE ANGLE =	.0065 279.5	.0225 286.4	.0113 325.4	.0213		.020B 187.6	.0235 194.8	.0209 195.3
#ADIUS = .911 AMPLITUDE = FHASE ANGLE =	.02 20 277.9	.0101 270.7	.0159 244.2	.0116 83.4		.0128 150.5	.0258 165.4	.0191 170.7
RADIUS = 1.082 AMPLITUDE = PHASE ANGLE =	.0415 290.0	.0077 284.6	.0165 2 57.0	.0151 352.8	.0128 7.9	.0131 83.0	.0181 136.7	.0161
HARMONIC =	9	10	1 1	12	13	14	15	
RADIUS = .330 AMPLITUDE = PHASE ANGLE =	.0071 292.6	.0164 336.4	.0070 37.7	.0027 300.7	.0027 335.3	.0019	.0067 196,2	
RADIUS = .512 AMPLITUDE = PHASE ANGLE =	.003a 303.4	.0068 156,6	.0150 .165.6	.0161 187.3		.0064 210.3	.0057	
RADIUS = .711 AMPLITUDE = PHASE ANGLE =	.0172 213.8	.0107 228.4	.0008 2 75.8	.0088 88.5		.0159 109.2	.0152 119.4	
RADIUS = .911 AMPLITUDE = PHASE ANGLE =	.0138 188.2	.0058 172.2	.0097 147.2	.0056 136.8	.0053 76.7	0088 58.3	.0110	
RADIUS = 1.082 AMPLITUDE = PHASE ANGLE =	.0129 164.7	.0060 174.9	.0039 152.7	.0041 89.3	.0024 124.8	0039	.0075	

TABLE B-22 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 183

HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V) HARMONIC 1 2 3 4 5 6 7 8 AMPLITUDE -2792 .1858 .1031 .0177 .0147 .0373 .0618 .0269 PHASE ANGLE = 307.0 19.0 51.0 78.7 169.0 278.4 328.3 24.1 RADIUS = .300 AMPLITUDE = . 2583 .1718 .0929 .0174 .0182 .0392 . 0576 .0238 PHASE ANGLE = 306.7 19.7 52.8 100.5 186.3 272.3 323.1 15.8 RADIUS = .400 AMPLITUDE = .1657 .1101 .0512 .0367 .0319 .0470 .0439 .0177 PHASE ANGLE = 305.2 23.5 65.6 148.8 211.0 252.6 294.1 323.3 RADIUS = .500 AMPLITUDE = .0933 .0610 .0244 .0398 .0434 .0472 .0376 .0190 FHASE ANGLE = 302.7 25.6 86.8 154.9 213.5 240.7 265.5 283.2 RADIUS = .600 AMPLITUDE = 0390 .0265 .0100 .0276 .0279 .0307 .0255 .0161 PHASE ANGLE 301.4 353.1 43.8 132.6 195.7 221.0 234.8 230.4 RADIUS = .700 AMPLITUDE = .0083 .0220 .0108 .0187 .0217 .0214 .0233 .0205 FHASE ANGLE 286.4 290.B 330.4 103.9 169.4 191.0 198.0 197.5 RADIUS = .800 AMPLITUDE = .0126 .0156 .0107 .0178 .0149 .0172 .0258 .0208 FHASE ANGLE . 272.1 279.1 266.9 100.1 172.6 175.2 179.3 185.4 RADIUS = .900 AMPLITUDE = .0210 .0105 .0155 .0259 .0122 .0084 .0132 .0193 244.9 HASE ANGLE 277.1 271.2 86.6 175.5 153.7 166.8 172.4 RADIUS = 1.000 AMPLITUDE .0312 .0079 .0174 .0019 .0090 .0111 .0228 .0172 PHASE ANGLE 284.3 271.7 245.5 34.7 22.5 116.9 153.6 153.9

TABLE B-22 CONTINUED

HARMUNIC	ANALYSES	OF LONG!	TUDINAL	VELOCITY	COMPONENT	RATIOS	(VX/V)
HARMONIC =	9	10	1 1	12	13	14	15
RADIUS = .280 AMPLITUDE = PHASE ANGLE =	.0091 273.3	.0273 333.2	.0171	.0116 355.9	.0091 18.9	.0073 46.4	.0070 182.2
RADIUS = .300 AMPLITUDE = PHASE ANGLE =	.0081 280.9	.0227 334.3	.0126 18.7		.0061 10.8	.0049	.0068 188.5
RADIUS = .400 AMPLITUDE = FHASE ANGLE =	.0059 314.3		.0075 143.2			.0037 238.6	.0064 204.8
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.0040 309.3		.0147 164.8			.0064 214.1	.0057 190.7
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0106 226.7		.005 3 175.4	.0078 143.4		.0104 129.4	.0110 136.7
RADIUS = .700 AMPLITUDE = FHASE ANGLE =	.0168 214.7		.0008 2 60.7	.0086 90.8		.0157 110.5	.0150 120.8
RADIUS = .800 = SCUTILGUA = ANGLE =		.0069 204 .8	.0063 149.0	.0066 116.4	.009 0 83.9	.0116 87.0	.0124 96.4
000. = 20104A - GOTTIFEA - BARE SAME	.0139 189.7		.0096 147.2		.0056 77.0	.0090 60.9	.0111 73.9
OOO.1 = 1.000 = AUDTIJGWA = ADDNA BEAHR	.0131	.0059 164.7	.0084 147.8	.0045 129.3	.0031 84.0	.0067 39.7	.0097 58.9

TABLE B-23 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 183

HARMONI	ANALYSES	OF TANG	ENTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC =	1	2	3	4	5	6	7	8
RADIUS = .330 AMPLITUDE = FHASE ANGLE =	.4375 263.7	.0451 161.0	.0269 2 37.7		.0371 82.8	.0407 164.0	.0318	.0077
RADIUS = .512 AMPLITUDE = FHASE ANGLE =	.3607	.0192	.0129	.0163	.0245	.0268	.0238	.0155
RADIUS = .711	264.3	88.5	81.1	82.6	114.4	143.9	172.4	203.9
AMPLITUDE = FHASE ANGLE =	.3042 267.5	.0486 97.6	.0401 154.1	.0169 229.1	.0110 346.4	.0148 57.3	.0162 92.7	.0118 106.9
RADIUS = .911 AMPLITUDE = PHASE ANGLE =	.3013 267.0	.0624 86.1	.0564 147.8		.0182	.0136	.0131	.0107
RADIUS = 1.082 AMPLITUDE =				215.3	285.1	4.5	56.2	73.8
PHASE ANGLE =	.2849 267.8	.0685 81.8	.0733 138.1	.0549 203.0	.0374 266.1	.0228 329.0	.0140 43.8	.0072 89.2
HARMONIC =	9	10	1 1	12	13	14	15	
RADIUS = .330 AMPLITUDE =	.0152	0400						
PHASE ANGLE =	137.1	.0188 182.3	.0148 230.5	.0058 257.3	.0024 258.7	.0031 265.3	.0026 35.8	
RADIUS = .512 AMPLITUDE =	.0048	0000						
PHASE ANGLE =	246.7	.0062 58.2	.0118 82.3	.0127 107.3	.0087 122.0	.0043 130.0	.0042 86.2	
RADIUS = .711 AMPLITUDE = EHASE ANGLE =	.0082 105.6	.0051 118.9	.0003	.0056 343.6	.0101 3 59.4	.0114	.0106 29.8	
RADIUS = .911 AMPLITUDE =	.0077	.0068	.0046					
PHASE ANGLE = RADIUS = 1.082	71.4	70.1	56.5	.0033 29.7		.0059 336.3	.0069 330.8	
AMPLITUDE # PHASE ANGLE #	.0035 69.9	.0057 32.7	.0063 34.9	.0048		.0039 333.7	.0042 315.2	

TABLE B-24 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 183

HARMON	10	ANALYSES	OF TANG	ENTIAL	VELOCITY	COMPONENT	RATIOS	(VT/V)	
HARMONIC	=	1	2	3	4	5	6	7	8
RADIUS = .28									
	=	.4628 263.7	.0651 164.8	.0466 234.0		.0419 70.1	.043 2 168.4	.0367 2 39.0	.0128 337.4
RADIUS = .30	0								
A C. 1. O.D. L.	=	. 4525	.0566	.0382		.0398	.0423	.0345	.0100
PHASE ANGLE	=	263.7	163.7	235.3	345.1	75. 2	166.7	233.2	323.1
RADIUS = .40	0	•							
	=	.4052	.0247	.0060		.0325	.0362	.0278	.0110
PHASE ANGLE	=	263.7	145.8	247.6	38.5	98.6	157.6	203.2	231.6
RADIUS = .50	0								
AMPLITUDE	=	.3650	.0182	.0116	.0167	.0256	.0279	.0242	.0154
PHASE ANGLE	=	264.2	92.7	78.0	78.9	113.3	145.8	175.6	206.2
RADIUS = .60	٥								
AMPLITUDE	Ŧ	.3289	.0341	.0228	.0031	.0103	.0163	.0162	.0097
FHASE ANGLE	=	266.0	98.0	142.4	163.1	76.8	110.1	136.2	157.0
RADIUS = .70	0								
	=	.3059	.0474	.0386	.0155	.0103	.0146	.0160	.0115
THASE ANGLE	=	267.4	97.9	153.8	228.9	351.9	61.5	95.9	109.9
RADIU5 = .80	0								
	=	. 3051	.0555	.0471		.0117	.0129	.0137	.0112
PHASE ANGLE	=	267.1	91.2	152.4	223.0	315.8	37.4	7 5 .5	86.3
ADIUS = .90	o								
	=	. 3020	.0619	.0555		.0173	.0134	.0131	.0108
HASE ANGLE	=	267.0	86.5	148.4	216.1	287.3	7.7	57.8	74.4
	0								
	=	.2944	0664	.0647		.0271	.0174	.0135	.0092
FHASE ANGLE	=	267.3	83.5	143.0	208.9	272.6	342.4	47.0	74.7

TABLE B-24 CONTINUED

HARMONIC	ANALYSES	OF TANGE	ENTIAL V	ELOCITY	COMPONENT	RATIOS	(VT/V)
HARMONIC =	9	10	11	12	13	14	15
RADIUS = ,280 AMPLITUDE = PHASE ANGLE =	.0242 129.1	.0296 186.9	.0276 238.3	.0157 274.5		.0066 296.6	.0043 6.7
RADIUS = ,300 AMPLITUDE = FHASE ANGLE =		.0250 185.5				.0050 288.1	.0034 15.5
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.0067 165. 2	.0076 162 0	.0040 161.9			.0029 178.1	
RADIUS = ,500 AMPLITUDE = PHASE ANGLE =	.0048 242.1	.0057 62.7	.0112 83.8			.0043 134.8	.0040 88.6
PADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0037	.0046 96.8				.0069 36.2	.0082 45.6
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0079 107.0	.0051 118.6	.0005 52.5	.0053 346.2	. 0099 8.	.0112	.0106
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0082 85.2	.0061 90.9	.0026 62.7	.0036 6.0	.0069 353.6	.0080 359.7	.0078
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0078	.0068 71.9		.0032 28.7		.0061 338.3	.0069 333.2
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0061 66.8	.0065 54.0	.0057 47.0	.0037 26.1	.0041 346.8	.0049 326.8	.0060 317.8

APPENDIX C

VELOCITY COMPONENT RATIOS AND HARMONIC ANALYSIS
FOR YAWED MODEL STRAIGHT WAKE SURVEYS EXPERIMENTS 184 AND 185

TABLE C-1

INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088, MODEL 4989 EXPERIMENT 184

			MODEL 4989	EXPERIMENT 184			
	INPUT	DATA		74.2	1.015	060	. 136
	• • • • •	27,77		92.0	1.016	012	. 174
	RADIUS =	.330	;	101.0	1.016	.012	. 12,4
ANGLE	VX V	VT, V	VR/V	110.0	1.000	.049	.192
0.0	.802	042	,082	119.0	.939	.075	.191
1.3	.806	047	.079	137.9	.990	138	. 18.1
3.3	.811	059	.074	146.9	.990	.167	.171
8.5	.621	085		161.0	1.018	.216	.1.55
			. 0 12	179.3	1.043	.238	. 0 - 2
10.4	.827	100	.027	190.1	1.050	.251	
13.9	. 844	130	.0.7	200.0			
17.0	.860	158	. 0 2-4		1.056	.26?	0
21.1	.823	173	.019	214. 4	1.043	.257	0.19
24.5	. 2011	183	.013	226.0	1.035	.224	087
28.1	.970	194	.014	25.4.1	1.031	.167	1.15
პ1.ნ	1.006	133	.011	264.9	1.022	.141	
35.1	1.034	181	.007	271.9	.954	.121	1:3
44.1	1.000	164	0:5	282.7	.926	.044	- . 056
52.9	. 995	156	016	300.0	. 942	019	.010
61.9	. 981	144	008	307.8	. 959	009	.024
75.8	.982	124	001	318.0	.976	.015	.023
~9.9	. 989	~.094	.008	325.5	.967	.037	. О. В
106.9	.984	.028	.030	332.0	.919	. 105	.0ა3
115.9	. 986	.077	.031	306,5	.853	.079	. 020
124.7	.999	.109	.029	341.0	1.006	052	032
133.8	1.006			343.9	1.042	022	070
		.173	. 327	354.9	1.045	.014	065
1:7	1.026	.207	. 0.24				
1.1.0	1.046	-236	.019	360.0	1.040	.014	069
160.9	1.059	. 269	.015		RADIUS	= .711	
160,9	1.078	. 301	. O 1	ANGLE	VXV	/!! VT/V	VR. V
179.0	1.085	.324	. טטי		.939	038	093
197.5	1.096	. 332	004	0.0			
215.3	1.008	.322	010	4.0	. 925	040	083
220.2	1.102	.306	0:1	8.0	. 901	043	063
233.3	1.103	. 219	026	8.8	.885	042	003
242.3	1.124	. 249	.004	12.1	. 866	037	043
251.2	1,123	.210	. 0.48	17.6	.817	071	.005
200.0	1.047	. 155	.074	19.3	.801	078	. 0 1 - 3
200.4	.915	.133	.012	22.8	. 782	107	. 0.25
274.0	.837	. : 45	. 0.25	26.4	.803	168	. Cis
25(2) 9	.847	. 0.13	076	35.2	.845	149	.018
1:40	.652	. 043	,017	4.1.1	.880	154	.064
2 1.7	.849	.073	. 37.1	52.0	.889	148	. 11.3
300.3	. 1 10			61.9	.915	133	, 15-1
505.0		.082	. ១១	70.9	.432	119	. 1 19
	. 8-4-1	.080	.063	ាខា.ន	. 941	005	.203
3 to . €	.835	.033	.103	₽8.8	.946	064	. 2.24
20	. 857	.023	. 120	97.0	.937	028	. 235
ડેડ⊉.ધ	. 8045	. 0.17	. 095	106.9	. 941	.006	. 2.48
359.3	. 846	.025	.045	115.9	.935	.037	.250
343.7	. 835	021	. 056	124.8	.928	.067	.247
346.9	. ხაპ	024	. 07-1	133.6	.914		
350.0	. 892	008	.079	142.6	.917	. 100	. 240
354.3	. 893	002	. 040			.126	.229
3500 e	.828	012	, 0н4	151.7	.923	.152	.212
350.0	. 801	039	. 084	150.8	. 928	. 177	. 192
360.0	.602	042	.062	169.0	. 926	.138	. 164
- '				179.1	.936	.208	.139
	RADIUS =	.512	1.72.114	188.0	. 941	. 220	.109
INGLE	VXV	\	VR/V	197.5	.953	. 224	.075
0.0	1.040	.014	069	206.5	.960	.234	.035
2.3	1.032	.014	047	215.0	.966	. 227	001
4.1	1.024	.011	027	224.2	.958	.218	034
13.0	.932	011	.012	233.3	. 943		
15.2	.892	026	.018	2.12.3	. 946	. 211	079
20.5	.910	068	.022			. 188	113
25.8	.956	130	009	251.3	. 945	. 163	137
38.5	1.006	096	.006	260.3	.955	.129	157
47.5	1.005	092	.038	269.4	.939	. 120	167
56.3	1.018	088	.038	278.0	.861	.067	130
30. 3	1.010	088	. 0 / /	287.5	.829	.038	005

			TABLE C-	-1 CONTINUED			
2	.857	5	. 076		RADIUS =	1.682	
305.8	.842		. o∍a'	ANGLE	$VX \cdot V$	VT/V	VK v
314.9	.910	. € 5-4	. 0114	C 1 O	.835	028	+,110
3.2	.8 49	.053	. Ou8	3.4	.836	041	115
0	. 896	. 051	. 090	7.0	.858	047	110
3.77. C	. 901	.054	.005	10.5	.887	049	0'
331.2		.043	.067	14.0	.903	058	-, Otis
333,0	. H . C	.107	. 036	17.6	.911	057	064
34 0	. **. **	5 . 0	0 ± 2	21.1	. 8⊶8	054	0…
9.0	. S. 18	(20)	103	25	.846	027	-,017
0	. 4.10	029	100	27.0	. 804	137	−.1 00
	144	÷.,,,,,,,	0 ··3	31.7	. E07	159	091
	RASIDS	. *10		75 . 2	.807	166	.015
While E	V 4 V	. * 😺	VR V	. € . 7	.827	- ,136	.000
0.0	, 978	23	113	45.9	.845	- 🤚 13	, 1 5 3
0.0	. 44.14	025	-,108	53.C	. 659	155	َد !
v. 8	.958	000	100	UA.7	.897	149	. • • 7
10.5	, 946	26	069	76.8	. ५७८ . ५५६	132 138	. 1 · · · · · · · · · · · · · · · · · ·
17.5	. 879	026	042	81.5 91.3	.924	ਜ.ਜਹੂਰ + ਘ 7ਜ਼	
144.8	. et 1	028	- 0. :	97.0	.927	=,657	2 1
•1-4 . C	.811	066	.0.0	106.8	.932	018	.2 +
26.0	. 4 4.5	= . 143	037	110.9	.938	.008	273
32.76	. : 5	133	046	124.3	.953	.029	.271
15.5	, ¹ 11) ⁽¹ 2	135	0:5	151.4	.232	.051	2 4
an . 0	.876	138	. 0 : .	133.2	.932	. 85%	2
	.871	131	. 075	138.4	.937	68	.2:01
5-7-1	- 25-1-3	122	.117	145.5	.935	.089	2 + 5
100 . 1	.010	106	. 152	152.7	.927	.100	.232
[0	6	0 % -	. 176 . 179	167.3	. 338	.145	. 1.42
eloc. 1	. 451 . 430	066 040		174.6	. 949	. 160	. 170
13.3 10.1	.9.6	013	.2	181.5	.949	.173	.140
110.0	.952	.018	.2 11	150 .55	. 957	.168	, O 100
120.0	.041	. 355	240	203 C	.973	- 138	. ე
139.0	. u33	.037	.2.2	211.	.€7€	.100	.020
* 33.0	.9.7	.117	2.52	276.7	, ुन्धेन	.103	0.0
147.6	. 435	. 1 - 3	.216	253.3	.683	. 175	Sec
161.0	. 0. 9	. 195	, 172	240.6	.982	. 166	+.04€
11.1.6	.931	.219	1 6	252.8	.963	. 15!	105
1.0.0	.945	35	. 0 . 4	159.0	.939	. 144	131
199.5	. 957	.234	.04.3		.913	.137	:HO
208.0	.972	. 241	.010	.4.9.5	.886	.097	- 1 . 2
216.0	.034	. 240	017	271.0 276.6	,884 .906	.063	-,165 -,0∂2
2.9.0	.977	.232	+.052	203.9	.937	.013 .010	023
2711.8	. 96.4	. 220	050	283.2	.539	.040	. 034
. 3.8	. 971	. 204	- 125	134.0	.947	.002	.034
	. 971	. 180	160	298.0	.943	.071	.003
- 54.9	.663	. 167	- 192	3.7.7	.944	.076	.0/ +
770.7	.960	.120	-,190	3.6.0	.939	,063	.6.3
179.8	.003	, Cu4	007	320.4	.942	.063	.010
. 58,8	. 8 +1	. 677	003	:.27.6	.947	.057	-,307
+ 77.9	.954	. 090	. 0.1 '	3 11 . 13	. 936	031	068
·00.6	. 96-1	.100	.0	. 15.6	.919	.032	101
31 5.5	. 970 . 968	.089	.033 .027	352.8	.886	.008	C·
10.1		.085	.027	357.0	.854	015	103
529.3 529.9	, 953 , 554	. 074 . 081	.019	·60.0	.835	028	110
333.5	.965	, 131	013				
337,1	. 563 . 589	033	047				
740.0	.410	.023	111				
244.0	. 925	.023	- 11				
(4), 1	.428	.037	112				
25.5	. 435	016	-,114				
359.2	. 936	021	110				
360.0	. 9.38	023	110				

TABLE C-2 - LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 184

1.000	.932	633.	.051	. 946	. 922	13.22	332.50	25.00
006.	. 933	.072	.045	.950	.923	14.58	7.50	-1.26 25.00
.800	.927	.070	.050	. 955	.927	16.17	1.39	22.50
. 700	916	.055	. 064	696.	. 936	18.17	48 9.85 9.15 4.81 2.42 2.47 2.50 00 37.50 357.50 357.50 357.50 357.50 357.50 357.50 357.50 357.50 357.50	-1.99 335.00
.600	о ч	.062	.055	788.	.948	21.52	2.47	-2.85 335.00
3 3	1.002	7:0.	750.	6.9	9,10	26.26	2.42 35.00	-3.45 335.00
. 400	876.	. 382	1031	386.	. 932	31.24	35.00	-3.51
3.6.	٠. ن	.084	63 0 .	₹36.	806·	37.52	9.15	-5.30 305.00
.269	. 959	.084	. 029	0.000	0.000	38.33	9.85 37.50	-5.90
3.000	. 924	. 638	. 263	a.	.921	3 12.23 3	.48	-1.12 27.50
010.	.934	.672	.045	096.	.924	14.43	7.50	-1.25 25.00
<u></u>	.914	.055	.064	.974	.940	17.88	2.45	-1.89
.512	1.001	.076	860.	. 992	. 947	25.72	2.30	-3.40 335.00
RADIUS = .330	. 978	= .084	029	696. ≖	916	= 35.45	= 7.53 = 35.00	= -3.88
RADIUS	VXBAR	VTBAR	VRBAR	1-W/X	XXII	BBAR	BPCS THETA	BNEG THETA

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL MEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN WAVE VELOCITY WITHOUT TANGENTIAL CORRECTION.

IS NOLUMETRIC MEAN WAVE VELOCITY WITH TANGENTIAL CORRECTION.

IS NEAN ANGLE OF ASVANCE.

IS WARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA PLUS).

IS VARIATION BETAEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETAEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS). VXBAR VRBAR 1-WVX 1-WX 1-WX 1-WX THETA

TABLE	C-3 -	- HARMONI AT THE	ONIC A	NALYSE: ERIMEN'	S OF LONG	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 184	, VELOCI PERIMENT	TY COM 184	PONENT	RATIOS	
HARMON I C	AAAC	ISES CF	10,01	41.100	VELCCITY	HARMONIC ANALYSES OF LONGITUGINAL VELCOITY COMPOSENT RATIOS	T RATIES	(+ 'x /)			
TAPUDNIC .		-	7	'n	,1	'n	ú	7	00	ጥ	10
# 2010 # 340 # 340 # 4 # 340 #		.1135 278.9	8090. 8	1935. \$.55	2.02.03 2.15.88	. 0269 275 3.5 3.5	.0006 205.8	.0168	.0145	0 7 0 7 0 8 0 8	.0008 93.5
RADIUS = .512 ARPLITUDE = . PHASE ANGLE =		.0297 282.8	.0269	165.0	.0166 149.4	.0070 189.5	.0113	.0193	.0176	5030	.0089
RADIUS = .711 AMPLITUSE = FHASE ANGLE =		.0349 270.6	.0078 320.5	15:16	.0200 149.0	.0378	.0094	.0201	.0163	.0085 153.5	.0031 63.9
RADIUS = .910 AMPLITUDE = EFHASE ANGLE =		.0302	.0164	0.4 0.4 0.0 0.0	.0061	.0036	.0099	.0153 63.5	.0072 96.8	.0021 84.4	.6367
RADIUS = 1.082 AMPLITUDE = FHASE ANGLE =		.0457	.0116	7020.	.0692 234.4	. 6075 21.3	.0054	. čč53 294.8	.0108	.0139 312.8	.0029 286.0

TABLE	C-4 -	MONIC ANALYSES OF THE INTERPOLATED	NALYSES ERPOLATI	OF LONGI ED RADII	TUDI	NAL VELOCITY C EXPERIMENT 184	TY COM 1. 184	PONENT F	RATIOS	
HARMONIC	ANALYSES	OF LONGIT	V . A.: 100	LCNGITUDINAL VELOCITY	COMPONENT	T RAT10S	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
HARMONIC =	←	6	e,	7	ហ	છ	7	80	ŋ	0
RADIUS = ,289 AMPLITUDE = = PHASE ANGLE =	278.2	357.1	. 0101	.0387	.0359	.6048 274.4	.0258	220.3	.0021	.0076 .68.5
GADIUS = .300 AMPLITUDE = PHASE ANGLE =	.1356 278.4	.0738 357.9	.0088 45.1	.0361	.0374	.0035	.0202	.0167	.0011 323.6	. 0069 75.5
FADIUS = .400 AVPLITUDE = = PHASE ANGLE =		0.40 0.0	.0082 141.3	.0196	.6147	.0060	.0180	.0136	.0039 146.4	.0031
RADIUS = .5C0 AMPLITUDE = * PHASE ANCLE =	. 0326	.0288 16.2	.0168 153.6	.0164	.0069 198.8	97.1	.0196 115.8	135.0	. 6099 144.5	. 0050
AADIUS = .600 AMPLITUDE = = PHASE ANGLE =	.0345 .0345	.0164	000 000 000 000	.0204	.0082	.0101	.0200	.0180	.0100	.0050
RADIUS = .700 ATPLITUDE = = FHASE ANGLE =	.0351 - 271.9	.0083 326.8	.0282 :51.8	. 0203 2. 84.7	.0080	.0094	.0201	.0166	.0087	.0030
AADIUS = .800 AMPLITUDE = = #HASE ANGLE =	0 = .0270 = 243.E	.0059	.0263 .47.4	. 5123 154. e	.0038	.0099	.0200	.0136	.0063 122.8	.0060
RADIUS = .900 AMPLITUDE = = EHASE ANGLE = =	0 ± .0296 = 224.5	218.1	. 625.9 44.2	2600 t 2600 t 3 t	.0034 51.5	.0100	.0160	98.86	.0025	.0068
RADIUS = 1.000 ANDLITUDE PHASE ANGLE	0.0368 = 226.0	210.3	.0248 153.8	.0065 223.5	.0058	.0084	.0077	.0023	327.0	.0345

TABLE C-5 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 184

	٠ 0	39.8 8.8	3.1	.0066 330.1	.0056	.0038 311.8
	. - ,	10 (A) (1) (1) (1) (2) (1) (2)	89 CO.	. Cùèé 342.5	.0059 303.3	.0057 260.3
	æ	2800. 28.48.	.0.0 .0.08 .0.08	.0073	.0021 320.6	.0060
•	1.	.0093	9110.	.3087 6.1	.0071	.0096
Constitution of the consti	ပ	. C.C.15 87.8	3.00.8 0.00.8	. 0058 340.2	.0113	.0129
(i) (i) (i)	d)	#### 	.0069 182.1	. 0046 3. 5.3.	339.7	.0104
	••	(4 ST (4 ST (7 ST (7 ST)	15107	.0095 182.4	.0057 212.5	.0039 4.0.5
	.)		7 N	0 v 0 v 0 v	0 0 0 0	3.05. 3.00.
	~	្ត ភូមា ភូមា	0 m 4 k	0 0	. 6304 4902	.0394 114.7
- 10 - 11 - 11 - 11		1 V 1 V		9 + 3 + 4 40 5 - 5	23623	.1470
	17 17 17 17 17 17	3 6 0 3 1 2 2 10 0 10 0 10 0 10 0 10 0 10 0 10	(N 0 0 1 1 1 1 1 1 1 1	1	PACTURE CORE BACTURE ANGLE	42010S = 1.082 42PLIJUDE = = 7445E 4NOLE =

TABLE C-6 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS

IABLE C-6	ı	HAKMONI AT THE	C ANALYSES OF INTERPOLATED	SES OF LATED R	TANGENTIA RADII FOR	HAKMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS AT THE INTERPOLATED RADII FOR EXPERIMENT 184	CITY COM	TPONENT	KATIOS		
HARMONIC		ANALYSES	CF TANGE	TANGENTIAL VE	00177 (VELOCITY COMPONENT	RATIOS	(V1,V)			
HARMONIC	,,	-	8	٣	4	ß	Φ	7	80	ת	10
RADIUS = .20 AMPLITUDE PHASE ANGLE	289	.2522	.0606 124.3	.0277	.0128	.0026 29.4	.0144	.0145	.0090 162.9	0.009 0.10	00°.
RADIUS = .3. AMPLITUDE FHASE ANGLE	300	.2452	.0583	.0271	211.4	.0019	.0130 90.6	.0128	.0078	. 0058 86.05 4.68	. co5.
RADIUS = .41 AMPLITUDE PHASE ANGLE	. 400 	.1935	.0452	.0284	.0142	.0048	.0032 ē2.5	.0069	.0058	.004 4	12.6
RADIUS = .50 AMPLITUDE FHASE ANGLE	.500 = =	.1625	.0404	.0283 121.8	.0166	.0069	.0043	.0115	.0104	.0081	.007
RADIUS = .68 AMPLITUDE FHASE ANGLE	.600 = E =	.1638	.0392	.0273	.0128	.0342	.0050	.0103 8.4	.3093	.0071	348.0
RADIUS = .70 AMPLITUDE PHASE ANGLE	.700 = E =	.1662 235.5	.0408	.0257	.0097	.0045	.0057	.0088	3.9	9900 9900 947	331.4
RADIUS ≈ .80 ATPLITUDE PHASE ANGLE	. 800 E =	.1663	.0394 120.8	.0216	.0073	.0059	.0087	.0083	.0053	.0062	325.6
RADIUS = .98 AMPLITUDE PHASE ANGLE	. 900 	.1628 231.3	.0384	.0195	.0058	.0083	.0111	.0073	.0024	. 805 9.805	. 6057
RADIUS = 1.000 AMPLITUDE = FHASE ANGLE =	0 " "	.1557	.0385	.0195	.3047	335.0	21.5	.0070	.0021	.0063	316.5

TABLE C-7

INPUT DATA FOR HARMONIC ANALYSIS FOR FF 1088,
MODEL 4989, EXPERIMENT 185

			MODEL 4909,	EXECUTIVENT TO			
	INPUT	DATA		108.0	. 976	.048	. 193
				127.0	.964	.113	.193
	RADIUS =			144.0	. 975	. 183	.169
ANGLE	VX/V	VT/V	VR/V	163.0	1.010		
0.0	.709	100	.075	180.0		. 224	.101
3.9	.704	118	.060	188.0	1.021	. 258	. 069
6.2	.712	143	.057		1.038	.263	.00"
11.5	.763	164	.040	198.6	1.049	, 271	.051
16.8	.809	196	.025	216.3	1.040	. 265	028
22.1	.870	220	.026	234.2	1.017	. 235	0 34
27.5	. 969	219	.018	252. 2	1.002	. 185	-,141
	1.007		.009	287.0	.931	007	.001
32.7		199 137		296.1	.934	033	.040
37.0	1.005		002	∂05 .9	.932	011	.057
43.4	. 997	174	008	314.5	.929	.001	.047
48.8	. 997	173	007	323.7	.917	.026	. 0 3
54.1	. 933	163	012	332.5	.848	.091	.030
68.4	. 981	130	.004	337.0	.777	.003	012
77.0	.972	090	.014	341.7	. 888	057	04:
86.2	.957	051	.025	350.6	.924	004	10:
104.2	.972	.042	. 035	355.0	. 921		
113.0	.977	.092	. 036			010	080
121.0	.984	. 141	.033	360.0	.907	014	050
131.1	.9∍8	. 181	.028		RADIUS	= ,711	
139.0	1.016	.212	.029	ANGLE	VX/V	VT/V	VR/V
148.0	1.037	.250	.026	0.0	.873	057	115
166.0	1.062	.315	.018	5.0	.866	076	103
175.9	1.073			15.0	.852	087	
	_	.334	.011	18.0	.791		.015
183.4	1.077	.350	.005			122	.149
203.5	1.075	.358	005	23.9	.727	182	.104
212.6	1.084	.346	013	32.8	.798	159	.054
221.7	1.084	.322	010	36.0	.830	153	.066
230.7	1.104	.268	.005	41.0	.862	- . 5	.091
239.9	1.107	.247	.042	71.0	.907	Já	. 191
245.2	1.048	.233	.051	89.0	.925	046	.229
250.7	1.088	.206	.0₺7	107.0	.923	.026	.246
257.9	.840	.180	. 0 & 1	126.1	.921	.086	.241
261.5	.871	. 141	.004	143.8	. 904	.145	.224
260.7	.854	.075	.050	161.7	. 923	.186	. 185
277.0	.570	005	.0-8	179. 9	.928	.218	.131
282.0	. 884	.014	. 042	198.3	. 951	.238	.060
283.6	.867	.034	.046	216.6	.948	.236	620
293.9	. 848	.049	.045	252.8	. 950	.167	163
299.3	. c . F	.053	0.13	261.9	.933	.144	185
304.7	.685	.069	.039	270.8	.917	.114	160
310.0	.849	.090	.037	279.9	.821	.054	116
	.830		.074	290.8			
315.6	.721	.083	.014	294.0	.828	.005	.016
320.9		.072		301.6	.830	001	.058
326.0	.732	.037	.097		.865	004	.096
331.7	.634	.020	. 68.7	312.0	.886	.041	.078
337.2	.638	015	.057	324.0	.871	.039	.082
947.9	. 7.13	030	. 091	330.4	.822	.081	.097
353.2	.753	036	. 050	334.0	.784	.083	.023
358.6	.711	087	.078	339.4	.853	028	092
360.0	.709	100	.075	248.4	.853	016	111
				357.0	.875	036	114
	RADIUS =			36C.0	.873	057	115
ANGLE	VX. V	VT/V	VŘ/\				
C.O	.907	014	050				
4.6	.854	052	.027				
10.9	.821	088	.116				
18.4	.7€7	126	, OE 1				
25.8	. 839	145	.031				
36.0	.939	117	.0:5				
47.4	.970	107	.066				
58.σ	.977	093	.107				
79.0	.997	051	.163				
90.7	.999	015	,175				

TABLE C-7 CONTINUED

	RADIUS =	.910			RADIUS =	1.082	
ANGLE	VX/V	VT/V	VR/V	ANGLE	VX/V	VT/V	VR/V
0.0	.900	011	117	0.0	.843	013	119
1.6	.894	012	112	2.4	.843	021	110
7.0	. 8ê 2	008	103	7.8	.886	028	093
12.6	.843	015	072	14.9	.877	045	049
23.7	.816	030	. 066	21.0	.875	066	.002
29.1	.841	121	.012	29.2	.873	136	.014
34.0	. 851	116	.012	36.3	. 846	112	. 044
39.0	.859	106	.061	43.4	.878	148	.084
51.0	.898	125	.164	61.3	.894	149	.170
59.8	.902	112	. 134	79.2	.918	110	. 236
70.7	.911	095	.167	97.1	.934	051	.272
90.5	.925	040	. 220	115.1	. 928	.019	. 284
99.0	.936	014	.201	132.0	.914	.073	. 267
110.4	. 933	.024	. 237	150.8	.906	.131	. 2 40
110.5	. 924	. 959	. 24#	169,0	. 935	. 165	.194
130.0	,916	.099	.258	187.1	.941	.194	. 1 1 7
139.0	.916	.133	.224	205.7	.957	.200	.042
150.1	.927	.167	.207	223.6	.975	. 195	036
160.9	.934	. 193	. 180	241.7	. 961	.171	118
169.8	. 934	.214	. 152	259.8	.938	.137	192
180.0	.930	.239	.108	265.3	.934	.110	169
198.7	.936	.253	.041	276.1	.868	.069	132
216.0	. 956	.250	025	281.5	.893	.040	027
234.2	.947	. 231	105	287.1	.905	.047	.019
252.0	.956	.188	169	292.4	. 904	.071	.040
270.0	.950	. 146	212	297.9	.914	.077	.047
275.0	.912	.120	177	303.3	.932	.073	. 052
280.7	. 864	.086	103	308.7	.923	. c70	. 040
291.7	.853	.069	.010	314.0	,919	.069	.025
302.2	. 921	.089	.042	319.0	.910	.065	.016
307. 7	.940	.097	.027	324.8	.889	.054	.011
313.4	. 949	.085	.025	330.0	.821	.050	.015
323.0	.941	.072	.024	335.7	.802	014	031
328.0	.936	.076	.002	341.0	.824	.019	117
334.4	,844	. 129	010	346.0	. 839	.022	108
339.8	.911	.014	112	351.8	.843	.004	115
350. 0	.922	.009	!24	357.1	.844	004	122
354.0	.915	002	- .122	360.0	.843	013	119
300.0	. 950	011	117				

- LISTING OF THE MEAN VELOCITY COMPONENT RATIOS, THE MEAN ADVANCE ANGLES AND OTHER DERIVED QUANTITIES AT THE EXPERIMENTAL AND INTERPOLATED RADII FOR EXPERIMENT 185 TABLE C-8

1.000	316.	. 0	, 0)	9 (N ()	8538	12.56	97.50	-1.11 335.00
006.	319.	.082	440.	328.	668.	14.27	69. 97.50	-1.19 22.50
308.	ன் ப ச	a.co.	. 350	:D :: :D	00.	± 8 ⋅ 0	68. 99. 69. 69. 69. 69. 69. 69. 69. 69. 69	74.64 22.50
1-	ည်	ö	5	σ	Ği,	! -		2.65
		0		ġ.	j	203	60.00	-2.67 335.00
:	1	ڹ			ż	11 10 14	7) 34 74 74 111	9.8 9.35 0.35
1	(v	5	Ġ		3	(n)	0 10.00 4.75 0 32.50 32.50	-5.23 330.00
	1	x F		vin	 b		 	332.50
i e	'; Ti		• •		٠ ن	(f) (-	00 00 00 00	18.50.000
•	,					 	(17) (1) (1)	30.00
			!		.*	19 11 11	ம் ப மு ந	20.00 20.00
;	1)	ທ ທ ວ	•	9 3 3	÷ ;	.7.59	10 (5) (5) (6) (7) (6) (8)	
. 512	<u>.</u>	0		100	in Th	24.94	90.00	-3.66 335.00
. 330	746. =	€ 63. =	= . c32	0,5	688°	= 34.59	8 8.13	= -6.67
(i)	5 x 8 x 3	₹ .BA3 =	. A8A	× > 3	4 4 - 1	5 4 8 E	3. E 0. M 0. M 0. M 0. M 0. M	4 0 = 0 = 2 = 0

IS CIRCUMFERENTIAL DEAN LONGITUDINA LECCUITY.

IS CIRCUMFERENTIAL WEAN TANCENTIAL LECCUITY.

IS CIRCUMFERENTIAL WEAN TANCENTIAL LECCUITY.

IS VOLUMETRIC MEAN WAVE VELOCITY WITHOUT TANCENTIAL CORRECTION.

IS VOLUMETRIC MEAN WAVE LECCUITY WITH TANCENTIAL CORRECTION.

IS VEN ANGLE OF ADJANCE

IS VARIATION BETWEEN THE TYNINGM AND VERN ADVANCE ANGLES YOULTA BETA BLUSS).

IS VARIATION BETWEEN THE VININGM AND VERN ADVANCE ANGLES YOUR BETA BINGS).

IS ANGLE IN DECREES AT WHICH CORRESPONDING BROSS OR RMES DOCURS.

TABLE	6-0 1	TABLE C-9 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 185	NIC AN! E EXPE	ALYSES RIMENTA	OF LONG) L RADII	HARMONIC ANALYSES OF LONGITUDINAL VELOCITY C AT THE EXPERIMENTAL RADII FOR EXPERIMENT 185	VELOCIT	7 COMP(185	NENT R	ATIOS	
HAPNON	IC AS	HAPNONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS (VX/V)	10001	านอานุมย	VELCCITY	CORPONENT	r RATICS	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
HARMONIC	n	-	7	ري	4	'n	9	7	90	ħ	10
SE. = SUIDVE = ACLITIONE	30	८ वटा.	57.50			6000	0.118	.0196	0	.0115	. C:172
PHASE ANGLE	u		345.9	2007	271.6	323.9	125.4	190.2	225. 4	130.1	155.4
512 = .512 = .512	2 "		7600.	.0246		.0049	6200.	.0166	.0148	ક્ષ. કે. : ગે.	.0106
PHASE ANGLE	16	271.7	321.9	228.3	201.9	183.4	144.3	129.6	137.6	129.9	136.7
AADIUS = 711	- "		၁ ၁	52.17	.0167	6000·		. 0213	.0137		.0056
PHASE ANGLE	11	270.1	3:0.7	150.9	172.3	186.6	63.5	78.5	94.2	77.7	322.8
RADIUS = .910	0 "		.0105	9010.		. 6077	.0044	.0177	.0133	. 6078	.0028
HASE ANGLE	11	247.5	248.8	163.6	182.5	247.5	29.0	75.1	126.1	175.4	210.9
# 1.032	32		8000	<u>ر</u> 1				0 0 0	0.500	0617	.0016
THASE ANDLE	11	25.00	307.9	159.2	327.1	351.4	47.6	58.7	119.2	7 7 7	237.0

TABLE C-10 - HARMONIC ANALYSES OF LONGITUDINAL VELOCITY COMPONENT RATIOS

יייי דייייי	AT THE		INTERPOLATED	RADII F	FOR EXPE	EXPERIMENT 1	185			
4 01100141	ূল ওয়াল স্থে					. PATICS				
		•		•		æ	٠.	30	20	10
7 11 11 11 11 11 11 11 11 11 11 11 11 11		• .		•		12 (19) 10 (4) 20 (20) 10 (2) 10 (2)	. 62.23 2.2.2	.0161 251.5	\$0.00 \$0.00	173.8
3 a a a 3 a 3 a 3 a 3 a 3 a 3 a 3 a 3 a	· ·			* 15 2 - 2 2 - 2 3 - 4 3 - 4	* ** * * * * * * * * *	. 9 . 9 . 9	. 32:4 44:0	.0089 254.0	. 0 . 8 . 0 . 0	.0181
0 F # # 0 F # # 0 F # # 1 F #			******	.6214		. 5 4.2 8.3	.01534 0.734	. 0092 106. 9	(~ 5. (8) · (3) (1) (3) ·	.0.15 152.8
SOUTH TAKEN . BEONE BLOCKER . BEONE TAKEN .	212.5	.0314		. 64 	4400. 4400.	.0082	.0165	.0144	.0140	.0112
00 m m	. 6622 272.3	.6252		179.2		.0114 82.6	.0140	.0132	.0086 103.8	90.9
00 4 1 1 0 0 4 1 1 0 0 4 1 1 0 0 4 1 1 0 0 4 1 1 0 0 4 1 1 0 0 4 1 1 0 0 4 1 1 0 0 4 1 1 0 0 1 1	ئارىنى قارىنى	. 6123		.0165	. 600 9. 583.	6.153 5.45	.0211	.0137	აიაფ. 18.8	.0053 323.9
ANDLITUDE = .800	.0364 258.2	.0106	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$.0209 176.8	.0079 219.4	.0076	.0207	.0143	.3361 150.0	.0022
0000. = 0010044 410017.000 = 0007.10044 = 0007.4 = 00074	6.745 5.400 5.405	.0105 248.1		.0181 161.7	.0079 243.6	.0044	.0181	.0135	.0079	. 6027
00000000000000000000000000000000000000	0.03 9.5.5 9.5	. 0121 273.4	. 0.152 17.0.53	.0077	.0074 304.2	35	.0135	.0097	.0054 188.2	.0027

HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS

TABLE	TABLE C-11 - HARMONIC ANALYSES OF TANGENTIAL VELUCITY CUMPUNENT MALLUS AT THE EXPERIMENTAL RADII FOR EXPERIMENT 185	HARMONIC AT THE EX	ANALYSE PERIMEN	S OF TAI	C ANALYSES OF TANGENTIAL VELUCITY EXPERIMENTAL RADII FOR EXPERIMENT	VELOCI XPERIME	IY COMP NT 185		20114	
HARMONI	HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS (VI,V)	S OF TANGE	מא העונאי	GC117 (COMPONENT	RATICS	(VT, V)			
HARMONIC	-	7	(*)	ব	ıs	9	7	æ	O)	10
RADIUS = .330 AMPLITUDE = = PHASE ANGLE =	.2441	.0578	.0399 172.5	.0218	.0386	.0106	.0134	.0086 166.7	.0022 46.1	.0050
RADIUS = .512 AMPLITUDE = PHASE ANGLE =	. 1795	.0376	.0299	.0226	.0056	.6034	. 5057	.0069	.0063 49.8	.0077
RADIUS = .711 AMPLITUDE = PHASE ANGLE =	.1750	.0333	.0292 138.6	.0161	.0093	.005g	.0086	.0074 43.8	.0039 41.3	.0042
AADIUS = .910 AMPLITUDE = PHASE ANGLE =	.1626	. 5404	.0173	.0038 196.6	314.4	.0113 342.8	357.5	.0041	.0050	.0064 320.3
RADIUS = 1.082 AMPLITUDE = PHASE ANGLE =	229.3	.0427	.3200	.0011	.0078 340.6	.0083	.0056	.0028	.0013	.0024

TABLE C-12 - HARMONIC ANALYSES OF TANGENTIAL VELOCITY COMPONENT RATIOS

		?	.0035	. 0039 58. 3	.0068	. 66.2	.0057	.0043	.0056	.0064	. 00.47 1.47 1.43
0011		-75		0.4 0.4 0.0	. 0045	9000. 9000.	.0056 51.5	. CC 41	. 0037 328.5	5+00 5+00 7-00 7-00 7-00 7-00 7-00 7-00 7-00 7	. 0534 285.5
comPostal Kallos 185		υ	0	.0113	.0040	. 0066 26.94	.0677	.0075	.0061	.0644 5.5	.0013 8.8
		t~	O + 	. 0.160 1.8.0	33 5 33 5 33 5 34 5 35 5 36 5 37 5 37 5 37 5 37 5 37 5 37 5 37 5 37	.6057 36.6	37.5	.0086 27.3	ລະ ວິສ ວິ	307.0	. 600. 54.15
L VELOCIII EXPERIMENT	11 11 11 11 11	w	0 0 1 1 1 1	67.5	.0054 49.2	.0032 332.5	.0043	.0058	. 0098 330.1	.0113	. 0101 358.3
FOR EX		$t_{i,i}$	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	₩ Φ Φ · O O • Φ	2007 2047 2047		.0:06 222.8	.0046 225.9	2 · 6 2 · 6 2 · 6 2 · 6 3 · 6	3.15 8.15 8.15 8.15	ω q Θ ο Θ ο • Θ
OF IANGED RADII	• • • • • • • • • • • • • • • • • • • •	¢ •	m in or in or in or in	. 64 64 64 64 64 64	2.52 2.53 2.53	. 622. 62. 69.	. 6 20 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.0156 178.5	1 0 0 0 0 2	N 9	60:17
HARMONIC ANALISES OF TANGENTIAL VELOCITY AT THE INTERPOLATED RADII FOR EXPERIMENT			4 - 7 9 7 - 3 3 - 3	0.0 1.0 2.0	(n m	5 0 1 2 2 2 2 2	• • • • • • • • • • • • • • • • • • •	φ. :- 	77 • • • • • • • • • • • • • • • • • •	 	N .
MONIC A		()	(a) (3) (b) (b) (c) (d) (c) (d)	(5 (a) (7 (- (2) (a) (3) (b) (7 (-) (7 (-)	6 d 7 d 9 e	ა თ.დ თ.ა თ.ა	. 0332 110.5	.033:	0.4 0.4 0.4 0.0	,6462	0 + 4 + 0 + 0 + 0 =
ı			2.5	ला पाँ () () () () () () () ()	(3) + (3) - (3) (4) (1) (4) (1) (4) (8)	000 000 000 000 000	15017	407	* # \$1.00 * \$2 * \$2	232.0	• (3) t- • (4) fb • (%
TABLE C-12		(r +t	2: 0 a b b c c c c c c c c c c c c c c c c c	0 8 8 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #	O B B B B B B B B B B B B B B B B B B B	0 " " " " " " " " " " " " " " " " " " "	0	0 H H O O O O O O O O O O O O O O O O O	0 H H 00 0 H 00	940000 = 1.000 4401100 = 1.000 4406 450.6

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMURANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

DATE FILMEI