Banach Algebras - Homework 8 Solutions

27) a) Consider $(\mathcal{B}(H), SOT)$ and $\mathcal{B}(H) \times \mathcal{B}(H)$ with the product topology. Suppose $(T_{\alpha})_{\alpha \in I}, (S_{\beta})_{\beta \in J} \subset \mathcal{B}(H)$ are nets with $T_{\alpha} \to T, S_{\beta} \to S$. We then obtain

$$\|((T_{\alpha} + S_{\beta}) - (T + S))x\| \le \|(T_{\alpha} - T)x\| + \|(S_{\beta} - S)x\| \to 0.$$

By exercise 23.b, we see

$$+: \mathcal{B}(H) \times \mathcal{B}(H) \to \mathcal{B}(H), \quad (T,S) \mapsto T + S$$

is SOT-continuous.

Analogously $\mathbb{C} \times \mathcal{B}(H) \to \mathcal{B}(H), (\alpha, T) \mapsto \alpha T$ is SOT-continuous. Using 23.a, we prove the WOT-continuity of these maps analogously.

Claim: $(\mathcal{B}(H), WOT), (\mathcal{B}(H), SOT)$ are locally convex vector spaces.

Reminder: Let (V, τ) be a topological vector space. Then $(V\tau)$ is a locally convex topological vector space iff there is a family of semi-normls \mathcal{P} on V such that (V, \mathcal{P}) is a semi-normed space and $\tau = \tau_{\mathcal{P}}$

SOT is the initial topology on $\mathcal{B}(H)$ with respect to

$$\mathcal{P}_H = \{ p_x \mid x \in H \}, \ p_x(T) = ||Tx||$$

since,

$$p_x(T) = ||Tx|| = 0, \forall x \in H \Leftrightarrow T = 0$$

 \mathcal{P}_H is a family of semi-norms. Hence $(\mathcal{B}(H), SOT)$ is a locally convex vector space.

WOT is the initial topology on $\mathcal{B}(H)$ with respect to

$$\mathcal{P}_H = \{ p_{xy} \mid x, y \in H \}, \ p_{xy}(T) = |\langle Tx, y \rangle|$$

Since

$$p_{xy}(T) = |\langle Tx, y \rangle| = 0 \forall x, y \in H \Leftrightarrow \langle Tx, y \rangle = 0 \forall x, y \in H \Leftrightarrow T = 0$$

we see $(\mathcal{B}(H), WOT)$ is a locally convex vector space. b)For $S \in \mathcal{B}(H)$ and $(T_i)_{i \in I} \subset \mathcal{B}(H)$ with $T_i \to T$, we get

$$|\langle ST_i x, y \rangle - \langle STx, y \rangle| = |\langle S(T - T_i)x, y \rangle| \to 0$$

since $\langle \cdot, \cdot \rangle$ is continuous and $S \in B(H)$ Thus, $\mathcal{B}(H) \to \mathcal{B}(H), T \mapsto ST$ is WOT-continuous. Moreover,

$$|\langle T_i x, y \rangle - \langle T x, y \rangle| = |\langle x, (T^* - T_i^*)y \rangle| = |\langle (T^* - T_i^*)y, x \rangle| \to 0$$

that is, $\mathcal{B}(H) \to \mathcal{B}(H), T \mapsto T^*$ is WOT-continuous. We have

$$||S(T-T_i)x|| \le ||S|| ||(T-T_i)x|| \to 0$$

that is, $\mathcal{B}(H) \to \mathcal{B}(H), T \mapsto ST$ is also SOT-continuous.

c) Let $(T_{\alpha})_{\alpha \in I} \subset \mathcal{B}(H), (S_{\beta})_{\beta_{\beta \in I}} \subset \mathcal{B}(H)_n, T_{\alpha} \to T, S_{\beta} \to S$, Then,

$$||S_{\beta}T_{\alpha}x - STx|| \le ||S_{\beta}|| ||(T_{\alpha} - T)x|| + ||(S_{\beta} - S)Tx|| \le n||(T_{\alpha} - T)x|| + ||(S_{\beta} - S)Tx|| \to 0$$

Hence, $\mathcal{B}(H)_n \times \mathcal{B}(H) \to \mathcal{B}(H)(S,T) \mapsto ST$ is SOT-continuous.

28)Let H be an infinite dimensional Hilbert space, $(y_n)_{n\geq 1}\subset H$ an orthonormal sequence, and

$$V_n: H \to H, \ V_n x = \langle x, y_n \rangle y_1$$

We have for $x, y \in H$,

$$\langle V_n x, y \rangle = \langle \langle x, y_n \rangle y_1, y \rangle = \langle x, y_n \rangle \langle y, y_1 \rangle = \langle x, \langle y, y_1 \rangle y_n \rangle = \langle x, V_n^* y \rangle$$

where $V_n^* y = \langle y, y_1 \rangle y_n$. Further, $||V_n x|| = |\langle x, y_n \rangle| ||y_1|| = |\langle x, y_n \rangle|$. Since $(y_n)_{n \geq 1}$ is an orthonormal sequence, we get by Bessel's inequality,

$$\sum_{n>1} |\langle x, y_n \rangle|^2 \le ||x||^2$$

Hence, $|\langle x, y_n \rangle| \to 0, n \to \infty$. This shows $V_n \to 0$ in SOT. But,

$$||V_n^*x|| = |\langle x, y_1 \rangle|||y_n|| = |\langle x, y_1 \rangle| \rightarrow 0$$

Hence $\mathcal{B}(H) \to \mathcal{B}(H), T \mapsto T^*$ can not be SOT-continuous.

29) Let H be an infinite dimensional Hilbert space such that $\{0\} = F \subset H$ is a subspace with $\dim(F) = n$.

$$A_F = n(I - P_f), \quad V_F x = \frac{1}{n} \sum_{j=1}^{n} \langle x, x_j \rangle y_j$$

with, $\{x_1, ..., x_n, y_1, ..., y_n\}$ orthonormal and $F = span\{x_j \mid j = 1, ..., n\}$

- 1. If $F_1 \leq F_2$, then $F_2^{\perp} \leq F_1^{\perp}$. Hence $\dim(F^{\perp}) \to 0$ as $F \nearrow H$. Since $A_F x = n(I P_F) x \in F^{\perp}$ we get $||A_F x|| \to 0$.
- 2. $||V_F x|| = \frac{1}{n} ||\sum_{j=1}^n \langle x, x_j \rangle y_j|| = \frac{1}{n} \sum_{j=1}^n |\langle x, x_j \rangle|^2 ||y_j||^2 = \frac{1}{n} \sum_{j=1}^n |\langle x, x_j \rangle|^2 \le \frac{1}{n} ||x|| \to 0$
- 3. We have for $x \in H$,

$$A_F V_F x = n(V_F x - P_F V_F x)$$

$$= n \left(\frac{1}{n} \sum_{j=1}^n \langle x, x_j \rangle y_j - \frac{1}{n} \sum_{j=1}^n \langle x, x_j \rangle \underbrace{P_F y_j}_{=0} \right)$$

$$= \sum_{j=1}^n \langle x, x_j \rangle y_j$$

Hence $||A_F V_F x|| \to 0$. This demonstrates that $\mathcal{B}(H) \times \mathcal{B}(H) \to \mathcal{B}(H), (S,T) \to ST$ is not SOT-continuous.

Remark: Denote by $N \subset \mathcal{B}(H)$ the set of normal operators. We have seen that $\mathcal{B}(H) \to \mathcal{B}(H), T \mapsto T^*$ is not SOT-continuous, but this map is SOT-continuous on N. Note that if $T \in N$, then $||Tx|| = ||T^*x||, \forall x \in H$. Indeed,

$$\|Tx\|^2 = \langle Tx, Tx \rangle = \langle x, T^*Tx \rangle = \langle ,TT^*x \rangle = \langle T^*x, T^*x \rangle = \|T^*x\|$$

We easily see the converse is true as well, that is, if $||Tx|| = ||T^*x||, \forall x \in H$ then $T^*T = TT^*$.

Now,

$$||T_i^*x - Tx||^2 = ||T_i^*x||^2 + ||T^*x|| - 2\Re\langle T_i^*x, T_i^*x \rangle$$

$$\vdots$$

$$\leq (||T_ix||^2 - ||Tx||^2)(||Tx||^2 + ||Tx||^2) - 2||x|| ||(T_i - T)T^*x||$$

$$\leq ||(T_i - T)x(||(||T_i - T)x|| + 2||Tx|| + 2||x|| ||(T_i - T)T^*x||)$$

and from this the assertion follows.

30) Let H be a Hilbert space, $P \subset \mathcal{B}(H)$ the set of projections. We have to show that $id : (P, \tau_{SOT}) \to (P, \tau_{WOT})$ is a homeomorphism. Since $\tau_{WOT} \subseteq \tau_{SOT}$ we have the continuity of id. It remains to show that id^{-1} is continuous. Let $E_0 \in P, u \in H, ||u|| = 1$ and $\epsilon > 0$.

Claim: There are $x_1, ..., x_n, y_1, ..., y_n \in H$ such that if $E \in P$ with $||(E - E_0)u|| < \epsilon$, then $\exists \delta > 0, |\langle (E - E_0)x_j, y_j \rangle| < \delta, j = 1, ..., n$.

Proof: Suppose $E \in P$ satisfies

$$|\langle (E - E_0)u, u \rangle| < \frac{\epsilon^2}{4} \text{ and } |\langle (E - E_0)u, E_0u \rangle| < \frac{\epsilon^2}{4}$$

Then,

$$||(E - E_0)u||^2 = \langle Eu, u \rangle + \langle E_0u, u \rangle - 2\Re \langle Eu, E_0u \rangle$$

$$= \langle (E - E_0)u, u \rangle + 2\langle E_0u, E_0u \rangle - 2\Re \langle Eu, E_0u \rangle$$

$$\leq |\langle (E - E_0)u, u \rangle| + 2|\langle (E_0 - E)u, E_0u \rangle|$$

$$< \epsilon^2$$

This shows that id^{-1} is continuous as well. Hence id is a homeomorphism.

31) Let $\mathfrak{U} \subset \mathcal{B}(H)$ be the set of unitary operators. Again, we have to show that $id: (\mathfrak{U}, \tau_{SOT}) \to (\mathfrak{U}, \tau_{WOT})$ is a homeomorphism. It suffices to show that id^{-1} is continuous. Let $U_0 \in \mathfrak{U}, u \in H, ||u|| = 1, \epsilon > 0$. Suppose that $U \in \mathfrak{U}$, then

$$||(U - U_0)u||^2 = 2\langle u, u \rangle - 2\Re \langle Uu, U_0u \rangle$$

$$= 2\Re \langle (U - U_0)u, U_0u \rangle$$

$$\leq 2|\langle (U - U_0)u, U_0u \rangle|$$

$$< \epsilon^2$$

as long as $|\langle (U-U_0)u, U_0u\rangle| < \epsilon^2/2$. With this, the assertion follows.