AGRÉGATION INTERNE DE MATHÉMATIQUES Session 2010, épreuve 2

NOTATIONS ET PRÉLIMINAIRES

La lettre \mathbf{C} désigne le corps des nombres complexes; les espaces vectoriels considérés seront toujours des espaces vectoriels sur ce corps \mathbf{C} , et les symboles $\mathbf{N}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}$ ont leur signification habituelle. On note \mathbf{N}^* (resp. \mathbf{C}^*) l'ensemble des entiers ≥ 1 (resp. l'ensemble des complexes non-nuls).

La lettre \mathscr{P} désigne l'espace vectoriel des polynômes à coefficients complexes (« polynômes » et « fonctions polynômes » seront toujours confondus, puisqu'on travaille sur le corps \mathbf{C} , infini). La partie réelle (resp. la partie imaginaire) du nombre complexe z sera notée $\mathrm{Re}(z)$ (resp. $\mathrm{Im}(z)$) en un endroit du problème.

On rappelle que le symbole de Kronecker δ_{ij} vaut 1 et i=j et 0 sinon (i et j étant deux entiers).

Enfin, pour une partie A d'un espace vectoriel normé $\mathscr E$ on note $\overset{\circ}{A}$ l'intérieur de A.

L'objectif du problème est l'étude de l'équation de Guichard :

$$(G) \quad f(z+1) - f(z) = g(z)$$

dans un certain espace $\mathscr E$ de fonctions définies sur $\mathbf C$, qui contient $\mathscr P$. Dans cette équation, $g \in \mathscr E$ est la donnée, $f \in \mathscr E$ l'inconnue.

La partie I étudie l'équation (G) sur \mathscr{P} , et donne une application.

La partie II définit l'espace $\mathscr E$ et établit quelques-unes de ses propriétés qui seront utiles par la suite. La partie III étudie l'équation (G) sur $\mathscr E$.

La partie IV, enfin, étudie une variante multiplicative de (G), à savoir l'équation (sur \mathscr{E}):

$$(H) \quad f(qz) - f(z) = g(z)$$

dans laquelle q est un nombre complexe non nul $(q \in \mathbf{C}^*)$. Cette partie fait intervenir des considérations « diophantiennes », en ce sens que la vitesse d'approximation d'un irrationnel par des rationnels doit être prise en compte.

- Partie I : L'équation (G) sur $\mathscr P$ et les opérateurs nilpotents -

Soit $\Delta: \mathscr{P} \to \mathscr{P}$ l'opérateur de différence première défini par :

$$\forall z \in \mathbf{C}, \quad (\Delta P)(z) = P(z+1) - P(z), \text{ où } \Delta P = \Delta(P)$$
 (1)

1. (a) Démontrer que $\Delta: \mathscr{P} \to \mathscr{P}$ est une application linéaire localement nilpotente, c'est-à-dire (en notant $\Delta^n = \Delta \circ \ldots \circ \Delta$ (n fois) et $\Delta^0 = \mathrm{id}$):

$$\forall P \in \mathscr{P}, \exists n \in \mathbb{N} \text{ tel que } \Delta^n P = 0.$$

- (b) Existe-t-il un entier $p \in \mathbf{N}$ tel que $\Delta^p = 0$?
- 2. Démontrer que $\Delta: \mathscr{P} \to \mathscr{P}$ n'est pas injective et décrire son noyau.
- **3.** On définit la suite $(H_n)_{n\geqslant 0}$ des polynômes de Hilbert sur **C** par :

$$H_0(z) = 1; \ \forall n \in \mathbf{N}^*, \ H_n(z) = \frac{z(z-1)(z-n+1)}{n!}.$$

- (a) Démontrer que $\Delta H_0 = 0$, $\Delta H_n = H_{n-1}$ si $n \ge 1$, et $(\Delta^k H_n)(0) = \delta_{n,k}$.
- (b) Démontrer que $(H_n)_{n\geqslant 0}$ est une base de $\mathscr P$ et que, plus précisément :

$$\forall P \in \mathscr{P}, \ P = \sum_{n=0}^{\infty} (\Delta^n P)(0) H_n \tag{2}$$

Expliciter les coefficients du polynôme $z \to z^3$ sur la base (H_n) .

- (c) Démontrer que $\Delta: \mathscr{P} \to \mathscr{P}$ est surjective. Comment conciliez-vous cela avec la question 2)?
- **4.** (a) Soit p un entier fixé; on écrit $z^p = f(z+1) f(z)$, avec $f \in \mathscr{P}$ et f(0) = 0. Démontrer que

$$\forall N \in \mathbf{N}, \quad \sum_{n=0}^{N} n^p = f(N+1) \tag{3}$$

- (b) Donner une formule simple pour calculer $\sum_{n=0}^{N} n^3$ en fonction de N.
- 5. (a) Pour $P \in \mathscr{P}$, on pose $||P|| = \sup_{x \in [0,1]} |P(x)|$. Démontrer que l'on définit ainsi une norme sur \mathscr{P} .
 - (b) L'application linéaire $\Delta: \mathscr{P} \to \mathscr{P}$ est-elle continue pour la norme précédente?
 - (c) Montrer qu'il existe une norme sur \mathscr{P} pour laquelle Δ est continue. Indication : on pourra utiliser le caractère localement nilpotent de Δ pour définir à partir de la formule (2) une norme faisant de Δ une application linéaire de norme 1.
- 6. On rappelle le lemme de Baire pour les espaces vectoriels normés complets ou « espaces de Banach » (admis ici) : Si $(F_n)_{n\geqslant 0}$ est une suite de fermés d'un espace de Banach dont la réunion est tout l'espace, alors l'un au moins de ces fermés, F_p , est d'intérieur non-vide $(\mathring{F}_p \neq \emptyset)$. On se donne X un tel espace de Banach (ici sur \mathbb{C}).
 - (a) Soit Y un sous-espace vectoriel de X; montrer que $\overset{\circ}{Y} \neq \emptyset \Longrightarrow Y = X$.
 - (b) Soit $T: X \to X$ une application linéaire continue localement nilpotente :

$$\forall x \in X, \ \exists n \in \mathbf{N} : T^n(x) = 0 \ .$$

Démontrer que T est nilpotente : il existe $n \in \mathbb{N}$ tel que $T^n = 0$.

- 7. (a) L'espace vectoriel \mathscr{P} est-il complet pour la norme construite au 5)c)?
 - (b) L'espace vectoriel \mathscr{P} est-il complet pour au moins une norme?

− Partie II : L'espace ℰ des fonctions entières −

Soit \mathscr{E} l'espace vectoriel des fonctions entières, c'est-à-dire des fonctions $f: \mathbf{C} \to \mathbf{C}$ qui s'écrivent

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

où la série entière figurant au second membre a un rayon de convergence infini. On a immédiatement $\mathscr{P}\subset\mathscr{E}.$

1. (a) Démontrer que les a_n sont déterminés de façon unique par f et que l'on a plus précisément :

$$\forall r > 0, \ \forall n \in \mathbf{N}, \quad a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{it}) e^{-int} \, \mathrm{d}t \ .$$
 (4)

(b) On pose $M(f,r) = \sup_{|z|=r} |f(z)|$. Démontrer que :

$$\forall r > 0, \ \forall n \in \mathbf{N}, \quad |a_n| \leqslant \frac{M(f, r)}{r^n} \ .$$
 (5)

- (c) Démontrer que \mathscr{P} n'est pas égal à \mathscr{E} (il suffira de donner un exemple d'une fonction $f \in \mathscr{E}$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, qui n'est pas un polynôme; on justifiera la réponse).
- (d) Démontrer que les seules fonctions de & qui sont bornées sont les constantes.
- (e) Démontrer que

$$f \in \mathscr{P} \Longleftrightarrow \sum_{n=0}^{\infty} a_n z^n$$
 converge uniformément sur **C** tout entier.

- 2. Cette question a pour but de mettre en place quelques propriétés importantes de l'espace $\mathscr{E}.$
 - (a) Soit (f_k) une suite de fonctions de \mathscr{E} , $f_k(z) = \sum_{n=0}^{\infty} a_n^{(k)} z^n$. On suppose que (f_k) converge uniformément vers f sur tout compact de \mathbf{C} . Démontrer que f appartient à \mathscr{E} . Indication: on pourra commencer par démontrer que:

$$\forall R > 0, \exists M > 0 \quad / \quad \forall (n,k) \in \mathbf{N}^2, |a_n^{(k)}| \leqslant \frac{M}{R^n}.$$

- (b) Démontrer qu'une fonction f de \mathbf{C} dans \mathbf{C} appartient à \mathscr{E} si et seulement s'il existe une suite de polynômes (P_n) convergeant uniformément vers f sur tout compact de \mathbf{C} .
- (c) Démontrer que $\mathscr E$ est stable par produit, c'est-à-dire que $f,g\in\mathscr E\Longrightarrow fg\in\mathscr E.$
- (d) Soit $f \in \mathcal{E}$, $a \in \mathbf{C}$ et $g : \mathbf{C} \to \mathbf{C}$ définie par g(z) = f(z+a). Montrer que $g \in \mathcal{E}$. Ainsi, \mathcal{E} est stable par translation.
- 3. Une suite $(\lambda_n)_{n\geqslant 0}$ de complexes est dite un multiplicateur de $\mathscr E$ si, pour toute fonction

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathscr{E} ,$$

la série entière $\sum_{n=0}^{\infty} \lambda_n a_n z^n$ définit un élément de \mathscr{E} , c'est-à-dire a un rayon de convergence infini. On se propose de montrer qu'on a équivalence entre :

- i) (λ_n) est un multiplicateur de \mathscr{E} ;
- ii) il existe des constantes A, B > 0 telles que : $\forall n \in \mathbb{N}, |\lambda_n| \leq AB^n$.
- (a) Démontrer que ii) implique i).
- (b) On suppose que ii) n'est pas réalisée. Montrer qu'il existe une suite strictement croissante $(n_j)_{j\geqslant 1}$ d'entiers $\geqslant 1$ avec : $\forall j\geqslant 1, \ |\lambda_{n_j}|>j^{n_j}$. Puis montrer qu'il existe une fonction $f\in\mathscr{E}$, de la forme $f(z)=\sum_{j=1}^\infty a_{n_j}z^{n_j}$, telle que le rayon de convergence de la série entière $\sum a_{n_j}\lambda_{n_j}z^{n_j}$ ne soit pas infini. En déduire que ii) implique i).
- 4. (a) Démontrer que Δ , défini par $(\Delta f)(z) = f(z+1) f(z)$, envoie $\mathscr E$ dans $\mathscr E$.
 - (b) Décrire le noyau $\ker \Delta$ de $\Delta : \mathscr{E} \to \mathscr{E}$, et montrer que ce noyau est de dimension infinie. Ainsi, $\Delta : \mathscr{E} \to \mathscr{E}$ est très loin d'être injective. On verra dans la partie III qu'elle est cependant surjective.
- 5. On rappelle que pour $\rho > 0$ et f définie et continue sur le cercle de centre 0 et de rayon ρ $(|w| = \rho)$, à valeurs complexes, l'intégrale curviligne

$$I = \int_{|w| = \rho} f(w) \, \mathrm{d}w$$

est par définition:

$$I = \int_0^{2\pi} f(\rho e^{it}) i\rho e^{it} \, \mathrm{d}t \,. \tag{6}$$

- (a) Démontrer que $|I| \leq 2\pi\rho M(f, \rho)$.
- (b) Montrer que si f appartient à \mathscr{E} alors I=0.
- (c) Soit un élément h de \mathscr{E} et un entier $k \in \mathbf{Z}$. On pose :

$$J_k(h,\rho) = \frac{1}{2i\pi} \int_{|w|=\rho} w^k h(w) \, \mathrm{d}w .$$

Démontrer que $J_{-1}(h,\rho) = h(0)$ et $J_k(h,\rho) = 0$ pour tout $k \ge 0$.

6. (a) Montrer qu'il existe une fonction g de $\mathscr E$ telle que

$$w \in \mathbf{C} \Longrightarrow e^w = 1 + w + w^2 g(w)$$
 avec de plus $|g(w)| \le e - 2$ si $|w| = 1$.

(b) Soit $k \in \mathbf{Z}$, et

$$I_k = \frac{1}{2i\pi} \int_{|w|=1} \frac{w^k}{e^w - 1} \, \mathrm{d}w \; .$$

- i) Démontrer que I_k est bien définie.
- ii) Démontrer que $I_0 = 1$ et que $I_k = 0$ si $k \ge 1$.

Indication: on pourra par exemple faire intervenir une série géométrique.

Partie III : L'équation de Guichard dans ℰ

A) Les polynômes de Bernoulli et une application :

Pour $n \in \mathbf{N}$ et $z \in \mathbf{C}$, on pose :

$$B_n(z) = \frac{n!}{2i\pi} \int_{|w|=1} \frac{e^{zw}}{(e^w - 1)} \frac{\mathrm{d}w}{w^n} . \tag{7}$$

1. Démontrer que

$$B_n(z) = n! \sum_{k=0}^{\infty} \frac{I_{k-n}}{k!} z^k$$

puis que B_n est un polynôme de degré inférieur ou égal à n. Calculer B_0 .

2. (a) Démontrer que

$$\forall x \in \mathbf{R}, \ \forall n \in \mathbf{N}^*, \ B'_n(x) = nB_{n-1}(x) \ . \tag{8}$$

(b) Démontrer que

$$\forall z \in \mathbf{C}, \quad \forall n \in \mathbf{N}^*, \ B_n(z+1) - B_n(z) = nz^{n-1}, \tag{9}$$

et que $B_n(1) = B_n(0)$ pour tout entier $n \ge 2$.

3. (a) Démontrer que

$$\forall n \geqslant 1, \ \int_0^1 B_n(x) \, \mathrm{d}x = 0 \ . \tag{10}$$

(b) Calculer B_1, B_2, B_3 .

Les deux questions suivantes proposent une application (à l'ordre 2) des polynômes B_n .

- **4.** Soit $h:[0,1]\to \mathbb{C}$, de classe \mathscr{C}^2 .
 - (a) Démontrer que

$$\int_0^1 h(t) dt = \frac{h(0) + h(1)}{2} - \int_0^1 h'(t)B_1(t) dt.$$

(b) Montrer ensuite que

$$\int_0^1 h(t) dt = \frac{h(0) + h(1)}{2} + \frac{h'(0) - h'(1)}{12} + \frac{1}{2} \int_0^1 h''(t) B_2(t) dt.$$

5. Soit $\varphi:[1,\infty]\to \mathbb{C}$ une fonction de classe C^1 , et N un entier non nul. On pose :

$$S_N = \sum_{n=1}^N \varphi(n)$$
 et $I_N = \int_1^N \varphi(t) dt$.

On désigne par π_2 la fonction 1-périodique valant $\frac{B_2}{2}$ sur [0,1[.

(a) Montrer qu'on a, pour $n \in \mathbf{N}^*$:

$$\int_{n}^{n+1} \varphi(t) dt = \frac{\varphi(n) + \varphi(n+1)}{2} + \frac{\varphi'(n) - \varphi'(n+1)}{12} + \int_{n}^{n+1} \varphi''(t) \pi_{2}(t) dt.$$

(b) Démontrer que

$$S_N = I_N + \frac{1}{2} \Big(\varphi(1) + \varphi(N) \Big) + \frac{1}{12} \Big(\varphi'(N) - \varphi'(1) \Big) - \int_1^N \varphi''(t) \pi_2(t) dt.$$

- (c) On suppose que $|\varphi''|$ est intégrable sur $[1, \infty[$ et que $\varphi(t)$ tend vers 0 quand t tend vers $+\infty$. Démontrer que la série $\sum_{n\geqslant 1}\varphi(n)$ et l'intégrale généralisée (impropre) $\int_1^\infty \varphi(t)\,\mathrm{d}t$ sont de même nature.
- (d) Quelle est la nature de la série de terme général $\frac{e^{i\sqrt{n}}}{\sqrt{n}}$?

B) Solution de l'équation (G) de Guichard

1. (Question préliminaire) : Soit $g(z) = \sum_{n=0}^{\infty} b_n z^n$, $g \in \mathscr{E}$. On veut résoudre l'équation $\Delta f = g$, avec $f \in \mathscr{E}$. Pourquoi est-il plausible de prendre

$$f = \sum_{n=0}^{\infty} b_n \frac{B_{n+1}}{n+1}$$
 ?

Qu'est-ce qui pourrait empêcher ce choix?

La suite de cette partie est consacrée à une modification des polynômes de Bernoulli destinée à contourner cet obstacle.

2. On se propose d'abord de montrer par l'absurde le fait suivant :

Il existe
$$c > 0$$
 tel que : $\forall n \in \mathbf{N}, |w| = (2n+1)\pi \Longrightarrow |e^w - 1| \geqslant c$. (11)

On suppose donc qu'une telle constante c n'existe pas.

i) Montrer qu'on peut trouver des suites $(n_j)_{j\geqslant 1}$ d'entiers positifs et $(w_j)_{j\geqslant 1}$ de complexes telles que $|w_j|=(2n_j+1)\pi$ et $\lim_{j\to\infty}e^{w_j}=1$.

ii) Démontrer que l'on a :
$$\lim_{j\to\infty} \operatorname{Re}(w_j) = 0$$
 et $\lim_{j\to\infty} \left(|\operatorname{Im}(w_j)| - (2n_j + 1)\pi \right) = 0$.

- iii) Montrer qu'il existe une suite (ε_j) , à valeurs dans $\{+1,-1\}$ et telle que la quantité $\delta_j = w_j i\varepsilon_j(2n_j+1)\pi$ tende vers 0 quand j tend vers $+\infty$.
- iv) Conclure que (11) est vrai.

Dans ce qui suit, on pose, pour $n \in \mathbb{N}$ et $z \in \mathbb{C}$:

$$\rho_n = (2n+1)\pi; \ A_n(z) = \frac{n!}{2i\pi} \int_{|w|=\rho_n} \frac{e^{zw}}{(e^w - 1)} \frac{\mathrm{d}w}{w^n} \ . \tag{12}$$

3. Démontrer que A_n est dans $\mathscr E$, et que

$$\forall n \in \mathbf{N}^*, \ \forall z \in \mathbf{C}, \quad (\Delta A_n)(z) = nz^{n-1}.$$

4. Montrer qu'il existe des constantes a et b strictement positives telles que :

$$\forall n \in \mathbf{N}^*, \ \forall z \in \mathbf{C}, \ |A_n(z)| \leqslant ae^{nb|z|}. \tag{13}$$

5. Soit $g \in \mathscr{E}$. Démontrer que l'équation de Guichard (G): f(z+1) - f(z) = g(z) possède au moins une solution dans \mathscr{E} . Décrire toutes les solutions de (G).

- Partie IV : La version multiplicative (H) de l'équation de Guichard

Soit $q \in \mathbb{C}^*$. On considère dans cette partie l'équation « aux q-différences »

$$(H)$$
 $f(qz) - f(z) = g(z)$, avec $g \in \mathscr{E}$.

1. On suppose $|q| \neq 1$. Démontrer que (H) possède une solution $f \in \mathcal{E}$ si et seulement si g(0) = 0. Décrire alors l'ensemble de toutes les solutions.

Dans la suite, on suppose |q| = 1 et plus précisément $q = e^{2i\pi\theta}$, où $\theta \notin \mathbf{Q}$.

2. (Question préliminaire) : Pour $x \in \mathbf{R}$, on note ||x|| la distance de x à l'entier le plus proche :

$$||x|| = d(x, \mathbf{Z}) = \inf_{m \in \mathbf{Z}} |x - m| = \min_{m \in \mathbf{Z}} |x - m|.$$

Démontrer que $\|x\|\leqslant\frac{1}{2},$ et qu'on a la double inégalité :

$$\forall x \in \mathbf{R}, \quad 4\|x\| \leqslant |e^{2i\pi x} - 1| \leqslant 2\pi \|x\|.$$

Indication: on rappelle que $0 \le u \le \frac{\pi}{2} \Longrightarrow \sin u \ge \frac{2}{\pi}u$.

3. On dit que θ est lentement approchable (par des rationnels) s'il existe a > 0 et b > 1 tels que

$$\forall n \in \mathbf{N}^*, \ \|n\theta\| \geqslant ab^{-n} \ . \tag{14}$$

On dit que θ est vite approchable si $\theta \notin \mathbf{Q}$ et si θ n'est pas lentement approchable. On note A l'ensemble des irrationnels lentement approchables, et B l'ensemble des irrationnels vite approchables.

- (a) Démontrer que $\sqrt{2} \in A$.
- (b) Montrer qu'il existe une suite croissante d'entiers positifs $(p_k)_{k \ge 1}$ telle que l'on ait :

$$\theta = \sum_{k=1}^{\infty} \frac{1}{2^{p_k}} \in B .$$

Indication : on pourra définir les p_k de proche en proche afin d'avoir une croissance suffisamment rapide.

- 4. Soit θ un irrationnel, et $q = e^{2i\pi\theta}$.
 - (a) Montrer la double inégalité :

$$\forall n \in \mathbf{N}^*, \quad 4||n\theta|| \leqslant |q^n - 1| \leqslant 2\pi ||n\theta||.$$

- (b) Montrer qu'on a équivalence entre :
 - i) θ est lentement approchable, autrement dit $\theta \in A$;
 - ii) pour toute $g \in \mathcal{E}$ avec g(0) = 0, l'équation (H) possède une solution $f \in \mathcal{E}$.

Indication: on pourra utiliser la question 3) de la partie II sur les multiplicateurs de \mathscr{E} .

