

Université 1bn Zohr

Faculté des Sciences Appliquées

Ait Melloul

Module 27 (Semestre 5)

Planches du Cours

Physiologie Animale II

Pr. My Abdelmonaim EL HIDAN

Année universitaire : 2019-2020

Différents types de fibres nerveuses

Différents types de fibres nerveuses

Type de fibre nerveuse	Information véhiculée	Gaine de myéline	Diamètre (en micro-mètres)	Vitesse de conduction (en m/s)	
A-alpha	Proprioception	myélinisée	13 - 20	80 - 120	
A-beta	Toucher	myélinisée	6 - 12	35 – 90	
A-delta	Douleur (mécanique et thermique)	myélinisée	1 - 5	5 – 40	
С	Douleur (mécanique, thermique et chimique)	non- myélinisée	0.2 - 1.5	0.5 - 2	

Types de récepteurs sensoriels et rapport avec les neurones sensoriels

Récepteur sensoriel situé sur le neurone afférent

Potentiel récepteur dans une terminaison afférente spécialisée

Récepteur sensoriel situé à côté du neurone afférent

Potentiel récepteur dans une cellule réceptrice séparée

Signaux électriques issus des récepteurs sensoriels

Fonctionnement

Relation intensité de stimulation/potentiel récepteur

Relation amplitude du potentiel de récepteur/ fréquence des PA

Adaptation du potentiel récepteur

Ex: Disques de Merkel et Corpuscules de Ruffini

champ recepteur

- Terminaisons des récepteurs des neurones afférents
- Deux champs récepteurs stimulés par les deux points de stimulation: Deux points ressentis

- A) Un seul champ récepteur stimulé par les deux points de stimulation
- Même distance que dans (a): un seul point ressenti
 - (b) Région à grand champ récepteur

cnamp recepteur

sensibilité de l'extrémité des doigts est beaucoup plus élevée que celle du reste du corps.

Inhibition latérale

ininibilion laterale

Transmission continues

Stimuli du système somatosensoriel

• Le système sensoriel somatique répond en

fait à plusieurs typ

- le sens du toucher
- la perception
- la température
- la position du corp dans l'espace –

les propriocepteurs

la douleur

LES RECEPTEURS DE LA SENSIBILITE **EXTEROCEPTIVE**

- Récepteurs non encapsulés
 - Terminaisons libres

 Récepteur de la racine des poils

 Récepteur de Merkel

LES RECEPTEURS DE LA SENSIBILITE PROPRIOCEPTI\

- Les récepteurs musculaires
 - éléments spécifiques (organes tendineux, fuseaux neuro-musculaires)
 - éléments non spécifiques (terminaisons libres, terminaisons encapsulées)
- Les récepteurs de l'équilibration (labyrinthes des oreilles internes) -> ils sont exclus de la somesthésie mais participent à l'intégration des informations somesthésiques

Les principales catégories de récepteurs somestnesiques

Type de récepteur	Caractéristiques anatomiques	Fibres ^a associées	Emplacement	Fonction	Vitesse d'adaptation
Terminaisons nerveuses libres	Terminaison nerveuses faiblement spécialisées	C, Aδ	Toute la peau	Douleur, tempé- rature, tact grossier	Lente
Corpuscules de Meissner	Encapsulés ; entre les papilles dermiques	Αβ	Surtout peau glabre	Tact, pression (dynamique)	Rapide
Corpuscules de Pacini	Encapsulés ; en lamelles d'oignon	Αβ	Tissu sous-cutané, membranes interosseuses viscères	Pression profonde, vibration (dynamique)	Rapide
Disques de Merkel	Encapsulés ; associés à des cellules libérant des peptides	Αβ	Toute la peau, follicules pileux	Tact, pression (statique)	Lente
Corpuscules de Ruffini	Encapsulés ; orientés dans le sens des lignes d'étirement	Αβ	Toute la peau	Étirement de la peau	Lente
Fuseaux neuro- musculaires	Hautement spécialisés (voir Figure 8.5 et Chapitre 15)	la et II	Muscles	Longueur du muscle	Lente et rapide
Organes tendineux de Golgi	Hautement spécialisés (voir Chapitre 15)	Ib	Tendons	Tension du muscle	Lente
Récepteurs articulaires	Très faiblement spécialisés	-	Articulations	Position des articulations	Rapide

Voie des colonne dorsales- Voie Lemniscale

Voie des colonnes dorsales

Cortex Somatosensoriel

ventro-postéro-latéral 👊 (VPL) du thalamus

Voie spinothalamique

Voie spinothalamique

Noyaux médio-dorsal et intralaminaire du thalamus

Noyau ventro-postéro-latéral (VPL) du thalamus

Organisation des centres sensitifs

Sillon Cortex cérébral central Cortex somatosensoriel Noyaux thalamiques relais Formation réticulée Tractus spinothalamique ventral Moelle épinière Ganglions rachidiiens dorsaux Fibre afférentes de la peau

Organisation des centres sensitifs

Divisions fonctionnelles du cortex:

Aires motrices

Organisation des centres sensitifs

Représentation disproportionnée non continue (gap)

La Vision

Rétine: Aspect macroscopique

La rétine : Aspect microscopique

photorécepteur

La rétine

La rétine : mécanisme de transduction

Les voies nerveuses de la perception visuelle.

Naissance et transmission des messages visueis

- La vision en profondeur (3D) est rendue possible grâce au recoupement des informations visuelles qui proviennent du champ visuel binoculaire et qui sont donc traitées à la fois par le cortex visuel droit et le cortex visuel gauche.
- La perception visuelle c'est-à-dire l'élaboration de la sensation visuelle est assurée par différentes aires cérébrales dont les aires visuelles primaires situées dans le lobe occipital, ellesmêmes subdivisées en plusieurs zones :

- V1 est la zone primaire située à l'arrière du cerveau. Elle reçoit les images directement issues des rétines des deux yeux
- V2 correspond à l'analyse des formes
- V4 aux couleurs, c'est-à-dire les longueurs d'ondes.
- V5 ou aire MT spécifiques aux mouvements et aux directions.

Les voies de la perception visuelle

Le cortex visuel

L'audition

Les ondes sonores sont des variations de pression qui alternent des pics de compression de l'air et des vallées, où les molécules s'éloignent les unes des autres.

Caractéristiques du son

Caractéristiques du son

Anatomie de l'oreille

la mécanotransduction de la cellule ciliée Interne

- 1. La déflexion dans le sens de dépolarisation de la cellule induit l'ouverture des canaux de transduction potassique et la genèse d'un courant de mécanotransduction
- 2. Le courant de mécanotransduction provoque la dépolarisation cellulaire qui ouvre les canaux calciques voltagedépendants.
- 3. L'augmentation du calcium cytosolique induit la fusion des vésicules synaptiques à la membrane et le relargage de glutamate dans la synapse.
- 4. Le récepteur au glutamate postsynaptique est activé et ouvre les canaux sodiques voltage-dépendants.
- 5. L'entrée de sodium dans la fibre nerveuse génère le potentiel d'action (PA).

Les voies auditives

Grâce **aux CCI**, le **glutamate** va transmettre l'information au **nerf cochléaire** puis au

- noyau cochléaire (1er relais) au niveau du TC, croisement (décussation) puis
- complexe olivaire supérieur (2ème relais) puis
- colliculus inférieur (3ème relais) puis
- thalamus cognitif (=corps genouillé médian) (4ème relais), mais avec projection bilatérale.

Une oreille projette de chaque côté au niveau du cortex auditif primaire

Propagation des ondes sonores

Le labyrinthe

Le système vestibulaire

Les canaux semi-circulaires

Les canaux semi-circulaires

L'ampoule des CSC

Traitement sensoriel

Codage de l'information sensorielle au niveau des CSC

Codage de l'information sensorielle au niveau des CSC

L'utricule et la macula

Traitement sensoriel

Traitement sensoriel

Voies vestibulaires

Les noyaux vestibulaires, véritables centres d'intégration motrice Afférences Afférences Afférences cérébelleuses corticales réticulaires Afférences commissurales Noyaux vestibulaires (du complexe (dont neurones vestibulaires vestibulaire secondaires) contralatéral) Afférences visuelles Copie efférente de la commande motrice Afférences Afférences de l'oeil proprioceptives vestibulaires spinales 62