[4]

	111.	1. Describe the construction, operation and V-I characteristics of		
OR	iv.	P-N diode. What do you mean by cut-in voltage? Draw and explain output characteristic of transistor in CE	5	
OK	14.	configuration.	J	
Q.6	i.	Explain De-Morgan's Theorem.	2	
	ii.	What are universal gates and why they are called so?		
	iii.	Draw and explain half adder and full adder for binary addition. 5		
OR	iv.	Convert the following numbers into the respective index given:		
		(a) $(1011.101101)_2 = ()_{10}$ (b) $(374.37)_{10} = ()_{16}$		
		(c) $(3AB)_{16} = ()_2$ (d) $(36.125)_8 = ()_{10}$		
		(e) $(324.987)_{10} = ()_8$		

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2018 EN3ES04 Basic Electrical and Electronics Engineering

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

CQ3)	should be written in run instead of only a, b, c of a.		
i.	represented by a current source of (a) A current source of 20A with a resistance of 5Ω in parallel (b) A current source of 40A with a resistance of 2.5Ω in parallel (c) A current source of 500A with a resistance of 5Ω in parallel		
ii		1	
11.	•	•	
iii.	A current wave represented by $i=I_{max} \sin\theta$, has its 50% of	1	
	(a) $\theta = 45^{\circ}$ (b) $\theta = 30^{\circ}$ (c) $\theta = -210^{\circ}$ (d) $\theta = 30^{\circ}$ and $\theta = 150^{\circ}$		
iv.	The unit of flux density is,	1	
	(a) tesla (b) A/m^2 (c) wb/mm^2 (d) wb/cm^2		
v.	Copper losses at full load operation are 1600W. If the load on the transformer is reduced to 75% of full load, the copper loss will be, (a) 1600W (b) 1200W (c) 900W (d) 800W	1	
	(a) Always lagging (b) Leading		
vii.	A zener diode is always connected.	1	
	(a) Reverse (b) Forward		
	(c) Either reverse or forward (d) None of these		
	i. ii. iii. v. vi.	represented by a current source of (a) A current source of 20 A with a resistance of 5Ω in parallel (b) A current source of 40 A with a resistance of 2.5Ω in parallel (c) A current source of 500 A with a resistance of 5Ω in parallel (d) A current source of 20 A with a resistance of 5Ω in series ii. The efficiency at maximum power transfer is (a) 100% (b) 80% (c) 50% (d) 40% iii. A current wave represented by $i=I_{max}$ $\sin\theta$, has its 50% of maximum value at, (a) $\theta=45^{\circ}$ (b) $\theta=30^{\circ}$ (c) $\theta=-210^{\circ}$ (d) $\theta=30^{\circ}$ and $\theta=150^{\circ}$ iv. The unit of flux density is, (a) tesla (b) A/m^2 (c) wb/mm² (d) wb/cm² v. Copper losses at full load operation are 1600% . If the load on the transformer is reduced to 75% of full load, the copper loss will be, (a) 1600% (b) 1200% (c) 900% (d) 800% vi. The nature of operating p.f. of 3-phase induction motor is, (a) Always lagging (b) Leading (c) May be leading or lagging(d) Unity vii. A zener diode is always connected. (a) Reverse (b) Forward	

P.T.O.

- viii. The voltage gain of a transistor connected in common collector 1 arrangement is
 - (a) Equal to 1

- (b) More than 10
- (c) More than 100
- (d) Less than 1
- The 2's complement of 1000₂ is
 - (a) 0111
- (b) 0101
- (c) 1000
 - (d) 0001

1

1

2

3

2

- Χ. The number 100101₂ is equivalent to octal
 - (a) 54

ii.

- (b) 45
- (c) 37
- (d) 25
- Explain Kirchhoff's current and voltage law. i. Q.2
 - State and explain maximum power transfer theorem.
 - Use Nodal analysis to determine the voltage across BC and the current in the 12V source.

OR State and explain superposition theorem. Use superposition 5 iv. theorem to determine currents in all the branches in given network.

What are similarities in magnetic and electric circuits? Q.3

- Drive the condition for resonance in a series circuit. Explain Q 3 factor of series resonant circuit.
- A coil of resistance 10Ω and inductance 0.1H is connected in 5 series with a capacitor of 150mF across a 230V, 50Hz supply. Determine:
 - (a) Impedance
- (b) Current drawn from supply
- (c) Voltage drop across coil (d) Power factor of circuit
- (e) Power factor of the coil.
- OR A 60Hz sinusoidal voltage v=100sinot is supplied to a series R-L 5 circuit. Assuming $R=10\Omega$, L=0.001H. Find the steady state current and relative phase angle. Also compute the effective magnitude and phase of voltage drop across each circuit elements.
- Explain the principle of operation of a DC motor. Q.4
 - Show that $\frac{V_2}{V_1} = \frac{E_2}{E_1} = \frac{N_2}{N_1} = \frac{I_1}{I_2} = K$ in a single phase transformer. ii.
 - Draw and explain the phasor diagram of transformer when it is operating lagging power factor.
- A 10kVA, 200/400V, 50Hz. Single phase transformer gave the 5 OR iv. following test results:

Open circuit test-200V, 1.25A, 120W, on low voltage side Short circuit test- 20V, 25A, 200W, on high voltage side.

- Calculate:
- (a) OCT circuit parameters
- (b) SCT circuit parameters
- (c) Full load efficiency at unity p.f.
- (d) Half load efficiency at 0.8 lagging p.f.
- (e) Iron loss and copper loss
- Justify that full wave rectifier is more efficient that half wave 2 Q.5 i. rectifier.
 - Explain how a Zener diode maintains constant voltage across the 3 load.

2

3

Marking Scheme

EN3ES04 Basic Electrical and Electronics Engineering

Q.1	i.	A voltage source of 100V with internal resistant represented by a current source of	ce 5Ω may be	1
		(a) A current source of 20A with a resistance of 5	Ω in series	
	ii.	The efficiency at maximum power transfer is		1
		(c) 50%		
	iii.	A current wave represented by $i=I_{max} \sin\theta$, h	nas its 50% of	1
		maximum value at,		
		(d) θ =30° and θ =150°		
	iv.	The unit of flux density is,		1
		(a) tesla		
	v.	Copper losses at full load operation are 600W. If	the load on the	1
		transformer is reduced to 75% of full load, the cop	per loss will be,	
		(c) 900W		
	vi.	The nature of operating p.f. of 3-phase induction n	notor is,	1
		(a) always lagging		
	vii.	A zener diode is always connected.		1
		(a) reverse		
	viii.	iii. The voltage gain of a transistor connected in common colle		1
		arrangement is		
		(d) less than 1		
	ix.	The 2's complement of 1000 ₂ is		1
		(c) 1000		
	х.	The number 100101 ₂ is equivalent to octal		1
		(b) 45		
Q.2	i.	Explain Kirchhoff's current	1 mark	2
		Voltage law.	1 mark	
	ii.	State	1 mark	3
		and explain maximum power transfer theorem.	2 marks	
	iii. Use Nodal analysis to determine the voltage across BC		s BC	5
			2 marks	
		The current in the 12V source.	3 marks	

OR iv. State and explain superposition theorem.

2 marks

5

2

Use superposition theorem to determine branch current in given network

1 mark in each branch current (1 mark *3) 3 marks

Q.3 i. Similarities in magnetic and electric circuits

0.5 mark in each similarities (0.5 mark *4)

ii. Drive the condition for resonance in a series circuit 2 marks

Q factor of series resonant circuit. 1 mark

iii. A coil of resistance 10Ω and inductance 0.1H is connected in series with a capacitor of 150mF across a 230V, 50Hz supply. Determine 1 mark for each (1 mark *5)

- (a) impedance
- (b) current drawn from supply
- (c) voltage drop across coil
- (d) power factor of circuit
- (e) power factor of the coil.
- OR iv. A 60Hz sinusoidal voltage v=100sin ω t is supplied to a series RL 5 circuit. Assuming R=10 Ω , L=0.001H.

Find the steady state current and relative phase angle.

2 marks

		Complete the effective magnitude and phase across each circuit elements.	of voltage drop 3 marks			
Q.4	i.	Principle of operation of a DC motor	2 marks	2		
	ii.	Show that $\frac{V_2}{V_1} = \frac{E_2}{E_1} = \frac{N_2}{N_1} = \frac{I_1}{I_2} = K$ in a single phase	(in a single phase transformer.			
			3 marks			
	iii.	Daigram	3 marks	5		
		Phasor diagram of transformer when it is operating	ng lagging power			
		factor.	2 marks			
OR	iv.	. A 10kVA, 200/400V, 50Hz. Single phase transformer gave the				
		following test results:				
		Open circuit test200V, 1.25A, 120W, on low voltage side				
	Short circuit test 20V, 25A, 200W, on high voltage side.					
		Calculate: 1 mark for each	(1 mark *5)			
		(a) OCT circuit parameters				
		(b) SCT circuit parameters				
		(c) Full load efficiency at unity p.f.				
		(d) Half load efficiency at 0.8 lagging p.f.				
		(e) Iron loss and copper loss				
Q.5	i.	Full wave rectifier is more efficient that half wave rectifier. 2				
Q.3	ii.	Zener diode maintains constant voltage across the load.				
	111	Circuit diagram	1 mark			
		Waveform	1 mark			
		Explanation	1 mark			
	iii.	Construction,	2 marks	5		
		Operation and VI characteristics of a PN diode.	2 marks			
		What do you mean by cutin voltage	1 mark			
OR	iv.	Diagram	2 marks	5		
		Output characteristic of transistor in CE configura	ation.			
			3 marks			
Q.6	i.	DeMorgan's Theorem		2		
	ii.	Universal gates	2 marks	3		
		Why they are called so?	1 mark			

	iii.	Half adder and diagram	2 marks	5
		Full adder for binary addition.	3 marks	
OR	iv.	Convert the following numbers into the respective index given:		5
		1 mark for each conversion	(1 mark * 5)	
		(a) $(1011.101101)2 = ()10$	(b) $(374.37)10 = ()16$	
		(c) $(3AB)_{16} = ()_2$	(d) $(36.125)8 = ()10$	
		(e) $(324.987)10 = ()8$		