Matemática Condensada

John MacQuarrie

June 24, 2022

Matemática Consensada é um jeito novo de resolver problemas fundamentais que aparecem quando tentar fazer álgebra com objetos topológicos. Em álgebra normal temos:

Theorem 0.1. (10 teorema de isomorfismo) Seja $\rho: G \to H$ um homomorfismo de grupos abelianos (ou espaços vetoriais ou módulos ou que seja). Então

$$G/\text{Ker}(\rho) \cong \text{Im}(\rho)$$
.

Quando nossos grupos tem topologias, todos os mapas têm que ser contínuos, e isso gera problemas:

Example 0.2. \mathbb{R} como a topologia normal é um grupo topológico. Considere também $\mathbb{R}^{\mathrm{dis}}$, isto é, \mathbb{R} , mas agora com a topologia discreta, então TODO subconjunto de $\mathbb{R}^{\mathrm{dis}}$ é aberto. Como *grupos*, $\mathbb{R} \cong \mathbb{R}^{\mathrm{dis}}$. Mas o mapa contínuo

$$\rho: \mathbb{R}^{\mathrm{dis}} \to \mathbb{R}$$
$$x \mapsto x$$

não é iso, pois seu inverso não é contínuo. Como grupos *topológicos*, não são iso. Mais precisamente $\mathbb{R}^{\mathrm{dis}}/\mathrm{Ker}(\rho) = \mathbb{R}^{\mathrm{dis}} \not\equiv \mathrm{Im}(\rho)$ – o 1o Teorema de Iso falhou!

Example 0.3. Seja *k* um corpo com a topologia discreta. Um *k*-espaço vetorial é uma *soma direta* de cópias de *k*:

$$V = \bigoplus_{i \in I} k = \{(\lambda_i)_{i \in I} \mid \lambda_i = 0 \text{ para quase todos os } i \in I\}.$$

O dual de V é

$$V^* = \text{Hom}_k(V, k) = \prod_{i \in I} k = \{(\lambda_i)_{i \in I}\}.$$

 V^* , sendo um produto, deve receber a *topologia do produto* (que não será discreto quando $|I| = \infty$). Queremos uma categoria que contém espaços vetoriais discretos $V = \bigoplus_I k$ e os seus duais $\prod_I k$. Chegamos no mesmo problema: esquecendo da topologia,

$$W = \prod_{\mathbb{N}} k$$

é um espaço vetorial discreto, então $W^{\mathrm{dis}} = \bigoplus_{\mathbb{IR}^l} k$. O mapa

$$\rho: W^{\mathrm{dis}} \to W$$
$$x \mapsto x$$

é contínua e bijetiva, mas não é iso.

Seja

$$C = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\} \cup \{0\}$$

uma "sequência convergente", um subespaço de \mathbb{R} . Os pontos $\frac{1}{n}$ são isolados: $\{\frac{1}{n}\}$ é aberto. Mas os abertos que contém 0 são *cofinitos*.

Obtemos C como o limite da sequência de conjuntos finitos

...
$$\xrightarrow{\rho_3} \{0, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\} \xrightarrow{\rho_2} \{0, \frac{1}{2}, \frac{1}{4}\} \xrightarrow{\rho_1} \{0, \frac{1}{2}\}$$

onde ρ_n manda elementos da imagem para eles mesmo, e elementos fora para 0. Diremos que C é um *conjunto profinito*: um limite (inverso) de conjuntos finitos.

O (primeiro) truque da Matemática Condensada é trocar nossos grupos topológicos *G* pelo conjunto

$$CMap(C, G) = \{mapas contínuos de C a G\}.$$

Para que? Primeiramente CMap(C, –) é um *funtor*: dado um hom contínuo de grupos ρ : $G \rightarrow H$, obtemos um mapa

$$CMap(C, G) \rightarrow CMap(C, H)$$

$$\gamma \mapsto \rho \gamma$$

Example 0.4. • CMap(C, \mathbb{R}): podemos mandar C continuamente para qualquer sequência convergente de \mathbb{R} : CMap(C, \mathbb{R}) é muito grande!

• CMap(C, $\mathbb{R}^{\mathrm{dis}}$): sendo γ dentro, considere $a=\gamma(0)$. Já que γ é contínuo, $\gamma^{-1}(a)$ é aberto e contém 0. Assim $\gamma^{-1}(a)$ contém QUASE TODOS os elementos de C. Assim podemos mandar C somente para sequências eventualmente constantes: CMap(C, $\mathbb{R}^{\mathrm{dis}}$) é bem menor!

O mapa

$$\operatorname{CMap}(C,\mathbb{R}^{\operatorname{dis}}) \to \operatorname{CMap}(C,\mathbb{R})$$

é a inclusão das sequências eventualmente constantes no conjunto das sequências convergentes. É injetivo, mas longe de ser sobrejetivo.

Mágica: Fazendo essa troca, o 1o Teorema de Iso vale novamente!

Mas: não basta considerar C. Temos que considerar os conjuntos CMap(X, G) para TODOS os conjuntos profinitos X de uma vez: assim entram *feixes*.