A Brief Introduction to Universal Dependencies & Endangered Languages

Büşra Marşan

busra.marsan@boun.edu.tr

What is parsing? Why do we need it?

• We need to put structures over sentences to understand/make computers understand how the words in the sentence relate to one another.

The girl killed the bear. -vs- The bear killed the girl.

- So, parsing is practically determining the grammar structure of an input/ sentence.
- A fancier definition: "Analysing a text, made of a sequence of tokens (for example, words), to determine its grammatical structure within the framework of a (formal) grammar."

What is parsing? Why do we need it?

 Parsing is not a very easy task for computers since human languages can be VERY ambiguous. As a result computer scientists, computational linguists and scholars working in related fields came up with various frameworks and strategies.

What is parsing? Why do we need it?

"I love cats."

I, love, cats, .

Theoretical background on dependency grammars

Phrase structure grammar

- Chomsky
- Based on the notion of constituency relations.
 - Dates back to Aristotle & term logic.
 - Subject predicate division.
- Binary branching and binary division. (X' Theory)

Theoretical background on dependency grammars

Dependency grammar

- Tesnière
- Based on the notion of dependency relations.
 - Defined using notions of head & dependent.
 - Linguistic units are connected to one another w/ links.

Flatter. (no bar levels, no phrase levels etc.)

What is dependency parsing?

- Dependency parsing is based on dependency grammar.
- It illustrates relation between heads and their dependents using a set of predefined tags.

Arrow implies head & its dependent, tag shows the relation.

POS Tags & Dependency Tags

Open class words	Closed class words	Other
<u>ADJ</u>	ADP	PUNCT
<u>ADV</u>	AUX	SYM
INTJ	CONJ	<u>X</u>
<u>NOUN</u>	<u>DET</u>	
PROPN	<u>NUM</u>	
<u>VERB</u>	PART	
	PRON	
	SCONJ	

	Nominals	Clauses	Modifier words	Function Words
Core arguments	<u>nsubj</u> <u>obj</u> <u>iobj</u>	csubj ccomp xcomp		
Non-core dependents	obl vocative expl dislocated	<u>advcl</u>	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	<u>list</u> <u>parataxis</u>	orphan goeswith reparandum	<u>punct</u> <u>root</u> <u>dep</u>

Basic features of a dependency tree

- Each lemma has only one incoming arrow. Not zero, not two.
- Lemmas can have zero or multiple outgoing arrows.
- The predicate is the root. ("Lexical verb")
- Function words cannot be heads. (Prepositions, articles, auxiliaries...)
- There must be a unique path between the root and each lemma.

Some terminology

- ROOT: The root of the dependency tree.
- LEMMA: Lemma or stem of word form.
- UPOSTAG: Universal part-of-speech tag.
- XPOSTAG: Language-specific part-of-speech tag.

Some terminology

Projective parse tree:

An actual dependency annotation

```
Case=Nom | Number=Sing | Person=1
                   PRON
                            PRP
                                                                                             nsubj
haven't
                                   Negative=Neg | Number=Sing | Person=1 | Tense=Pres
                   VERB
                                                                                             root
                                   Definite=Ind | PronType=Art
                                                                                             det
                   \mathtt{DET}
                                   Number=Sing
                                                                                             dobj
clue
           clue
                   NOUN
                   PUNCT
                                                                                             punct
```


Different visual representations of dependency trees

C

e. The conventions can vary.

f. [[The] conventions] can [vary].

g. can conventions the vary

Dependency vs. Constituency trees

- Constituency trees were more popular in the past.
- Challenges for constituency trees: Projectivity, morphologically rich languages, free word order languages etc.
- Dependency trees are able to handle such challenges better. Famously, dependency models fit free word order languages much better.
- For a thorough discussion of dependency & constituency parsing in terms of parser performance: https://www.aclweb.org/anthology/P04-1061.pdf

Dependency vs. Constituency trees

"Kitabı yarın ben okuyacağım."

To derive this, we need tons of movement & operations. The end result will be extremely complex even if we stick to the very reduced & simple trees from Ling101.

Dependency vs. Constituency trees

"Kitabı yarın ben okuyacağım."

Yet this is not a challenge for dependency trees:

Annotations

- Interfaces:
 - UD Annotatrix https://github.com/jonorthwash/ud-annotatrix
 - Arborator https://arborator.ilpga.fr/q.cgi
 - WebAnno https://webanno.github.io/webanno/
 - Conllu Editor https://github.com/Orange-OpenSource/conllueditor

Parsers

- Tools:
- Stanza https://github.com/stanfordnlp/stanza
- NLTK https://www.nltk.org
- SpaCy https://github.com/explosion/spaCy

Making Our Own Parser

- Shift reduce parsing
- Graph-based parsing
- Maximum spanning tree

•

Shift reduce parsing

• The most straightforward one. Uses 3 transition operations.

Shift reduce parsing

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]		LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]		LEFTARC	$(the \leftarrow flight)$
8	[root, book, flight]		RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	[]	RIGHTARC	$(root \rightarrow book)$
10	[root]	[]	Done	

The Universal Dependencies framework

- There are various dependency grammar frameworks. Two most popular ones are Stanford Dependencies and Universal Dependencies (see references for related work).
- UD is <u>open source</u> and focuses on morpho-syntax. It also supports multilingual corpora.
- Currently the UD database is much larger: Over 100 languages, more than 200 treebanks.
 - Turkish has 12th largest database in UD which encompasses more than 700,000 tokens!

The Universal Dependencies framework

Use cases of UD style treebanks: NLP applications

 Parsing is a building block for downstream tasks, thus a wide range of NLP applications use dependency parsing for many purposes including disambiguation:

```
"Kötü bir ürün değil." =/= "Kötü bir ürün." 
"X değil Y olsa muhteşem." =/= "Muhteşem."
```

 Sentiment analysis, classification of customer feedback, named entity recognition (NER), question answering, dialogue systems...

Use cases of UD style treebanks: Theoretical linguistics

- UD style treebanks can be (and are) used in theoretical and/or experimental linguistics and quantificational research as well!
- It offers:
 - Structured data
 - Syntactic analysis
 - Coherent and detailed representations
 - Ability to do cross-linguistic research
 - Can be used for data generation (experimental items etc.)

```
# sent_id = 0003.dev
                    # text = show me round trip flights from chicago to detroit leaving next tuesday and returning the day after
                42
                                           VERB
                                                          VerbForm=Inf
                            show
                                   show
                                                                                 root
                                                                                 iobj
                                   Ι
                                           PRON
                                                          PronType=Prs
                43
                            me
               44
                                   round
                                           NOUN
                                                          Number=Sing
                                                                                 compound
                            round
                                   trip
                                           NOUN
                                                          Number=Sing
                45
                            trip
                                                                                 compound
                            flights flight
                                          NOUN
                                                          Number=Plur
                46
                                                                                 obj
                                                                         1
                                  from
                                           ADP
                47
                    6
                            from
                                                                         case
                           chicago chicago PROPN
                                                          Number=Sing
                48
                                                                         5
                                                                                 nmod
                                           ADP
                49
                    8
                                   to
                                                                         case
                            detroit detroit PROPN
                                                          Number=Sing
                50
                    9
                                                                         5
                                                                                 nmod
                                                          Tense=Pres|VerbForm=Part
                            leaving leave
               51 10
                                           VERB
                                                                                                acl:relcl
                  11
                                           ADJ
                                                                         12
                52
                            next
                                   next
                                                          Degree=Pos
                                                                                 amod
                   12
                            tuesday tuesday PROPN
                53
                                                          Number=Sing
                                                                         10
                                                                                 obl
                                           CCONJ
               54 13
                            and
                                   and
                                                                 14
                                                                         CC
               55 14
                                           return VERB
                            returning
                                                                 Tense=Pres|VerbForm=Part
                                                                                                        conj
                                                                                                 10
               56 15
                            the
                                   the
                                           DET
                                                          PronType=Art
                                                                                 det
                                   day
               57 16
                                           NOUN
                            day
                                                          Number=Sing
                                                                                 obl
                                                                         14
                  17
                58
                                   after
                                           ADP
                                                                 16
                            after
                                                                          amod
                59
   # sent_id = 0003.dev
    # text = Bana gelecek salı kalkan ve ertesi gün dönen Chicago'dan Detroit'e gidiş dönüş uçuşlarını gösterin
                                            PronType=Prs
                            PRON
            Bana
                    ben
                                                            14
                                                                    obl
            gelecek gel
                            ADJ
                                                            amod
                                            Case=Nom|Number=Sing|Person=3
            salı
                    salı
                            NOUN
                                                                                    obl
            kalkan kalk
                            ADJ
                                                    13
                                                            acl
                    ve
                            CCONJ
            ve
                                                            CC
            ertesi ertesi
                            ADJ
                                                             amod
                    gün
                                            Case=Nom|Number=Sing|Person=3
                            NOUN
            gün
                                                                                    obl
                                                                            8
                   dön
                            ADJ
            dönen
                                                            conj
                            chicago PROPN
            Chicago'dan
                                                    Case=Abl|Number=Sing
                                                                            10
                                                                                    nmod
42 10
                                                    Case=Dat|Number=Sing
            Detroit'e
                            detroit PROPN
                                                                            13
                                                                                    nmod
                                            Case=Nom|Number=Sing|Person=3 13
            gidiş git
                            NOUN
                                                                                     nmod
            dönüş dön
44 12
                                            Case=Nom|Number=Sing|Person=3 11
                                                                                    compound
                            NOUN
            uçuşlarını
                                                    Case=Acc|Number=Plur|Number[psor]=Sing|Person=3|Person[psor]=3 14
45 13
                                    NOUN
                                                                                                                            obj
                            uç
46 14
                            göster VERB
                                                    Mood=Imp|Number=Plur|Person=2|Polarity=Pos|Tense=Pres|VerbForm=Fin
            gösterin
                                                                                                                                     root
```

33

34

35

36

37

38

39

40

41

47

2

3

5

6

7

8

9

43 11

Use cases of UD style treebanks: Preserving endangered languages

- Language documentation is one of the biggest concerns regarding endangered languages. UD style treebanks allow this in a sophisticated and functional way:
 - Annotated data (syntactic, morphological, extra linguistic...)
 - Accessible: open-source
 - Can be read by computers
 - Allows quantificational work
 - Treebanks can be updated, re-annotated, extended

```
sent_id = AMGiC_007
# Dialect = Silliot
# Sub Dialect = NONE
# Sociodem_tags = PopCoex, VicUrb, GrEduc, Encl, KarLit, RegTr, ConstDiasp, GrStInter
# Source = Kostakis 1968: 122
# Text Greek = ...κουπανά του χότζα, ποίκι ψέματα λημόρι dəγί...
# Text_transcr = ...kupaná tu xódza, píki psémata limóri dəyí...
# English_translation = "he hits hoca for he made a fake tomb"
1 kupaná kupanó VERB VERB Aspect=Imp|Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin|Voice=Act 0 root
2 tu (o) DET DET Case=Acc|Definite=Def|Gender=Masc|Number=Sing|PronType=Art 3 det _ _#article_paradigm_defective
3 xódza xódzas NOUN NOUN Case=Acc|Gender=Masc|Number=Sing 1 obj _ SpaceAfter=No|TLW=YES
 , , PUNCT PUNCT _ 1 punct _ _
5 píki ftšánu VERB VERB Aspect=Perf|Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin|Voice=Act 1 advcl _ _
6 psémata pséma NOUN NOUN _ 5 advmod _ #Noun_used_in_adverbial_sense_as_in_MG_(το_κάνει_ψέματα)
7 limóri limóri NOUN NOUN Case=Acc|Gender=Neut|Number=Sing 5 obj _ _
8 dəyí deyí SCONJ _ _ 5 mark _ LC=YES|MorphSynC=FrGrEl|MorphSynSC=ConjSub|#Variation_in_phonetic_transcription
```

How to contribute

- We have a constant need of more contributors! You can:
 - Join UD mailing list*
 - Do annotations
 - Provide data
 - Find issues

^{*}https://cl.lingfil.uu.se/mailman/listinfo/ud

Trivia: Dependency grammar can also be used in music theory!

Harmonic Analysis

- Chords classified as functioning as: dominant, subdominant or tonic
- Dominant-tonic resolution
- Subdominant-tonic resolution
- Recursion
- Substitution
- Delayed resolution: coordination

http://mark.granroth-wilding.co.uk/files/mml2012 article.pdf

Dependency Treebanks

- UD Treebank https://github.com/UniversalDependencies
- UD Turkish BOUN https://github.com/boun-tabi/UD Turkish-BOUN
- UD Penn Turkish https://github.com/UniversalDependencies/UD Turkish-Penn

Queries

- You can query UD treebanks online:
 - SETS treebank search maintained by the University of Turku
 - PML Tree Query maintained by the Charles University in Prague
 - Kontext maintained by the Charles University in Prague
 - Grew-match maintained by Inria in Nancy
 - INESS maintained by the University of Bergen

Resources

- More on DP and conversions b/w constituency & dependency: https://web.stanford.edu/~jurafsky/slp3/14.pdf
- Detailed explanations of dependency tags: https://universaldependencies.org/u/dep/
- Stanford Dependencies: https://nlp.stanford.edu/software/stanford-dependencies.shtml
- Universal Dependencies: https://universaldependencies.org
- CoNNL format guide: https://universaldependencies.org/docs/format.html
- UD Tools https://universaldependencies.org/tools.html#arborator

Literature

- Literature on UD: <u>https://direct.mit.edu/coli/article/47/2/255/98516/Universal-Dependencies</u> <u>https://arxiv.org/abs/2004.10643</u> <u>https://universaldependencies.org/introduction.html</u>
- Literature on Stanford Dependencies: <u>http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062 Paper.pdf</u>
 <u>https://aclanthology.org/W13-3721.pdf</u>
- Endangered languages & Dependency Treebanks: https://aclanthology.org/2020.udw-1.21/ https://aclanthology.org/2021.tlt-1.8.pdf

Contact Info & Materials

- Büşra Marşan busra.marsan@boun.edu.tr
- Scan the QR code to access the materials I used in this workshop —including this presentation.

