Домашнее Задание по ТРЯПу №9

Павливский Сергей Алексеевич, 873

13.11.2019

Задание 1.

Верно ли, что язык L является КС-языком? В случае положительного ответа построить КС-грамматику или МП-автомат для данного языка.

1. L =
$$\{a^n b^m b^n c^m | n, m > 0\}, \Sigma = \{a, b\}.$$

2. L =
$$\{w : |w|_a > |w|_b > |w|_c\}, \Sigma = \{a, b, c\}.$$

Решение

1.

Слово $a^nb^mb^nc^m$ очевидно равно слову $a^nb^nb^mc^m$, котрое в свою очередь равно конкатенации слов a^nb^n и b^mc^m . Тогда язык L является конкатенацией языков $\{a^nb^n|n>0\}$ над алфавитом a, b, и $\{b^mc^m|m>0\}$ над алфавитом b, c, которые являются КС языками (доказывалось на семинаре), а т.к. КС языки замкнуты относительно операции конкатенации (доказывалось на семинаре), то и L ялвяется КС .

2.

Разобьем задачу на подзадачи:

Докажем , что язык $L_1=\{w:|w|_a>|w|_b\}$ - КС язык . Это так , т.к. для него можно построить МП автомат :

Если $|w|_a>|w|_b$, то найдется такая позиция в слове i, что $\forall \ j:j\geqslant i\to w_j=a$ (буква на j-й позиции в слове w). Собственно, первое состояние обрабатывает все символы до данной позиции i, соответствующей обрабатываемому слову (т.к. количество a и b до i одинаково, то к моменту обработки позиции i стек будет пуст), а по букве, стоящей на позиции i и равной a, осуществляется переход во второе состояние, в котором обрабатываются оставшиеся позиции слова и в конце очищается стек, принимая слово w. Значит, т.к. для L_1 существует МП автомат, то L_1 КС язык.

Аналогичный строится автомат для языка $L_2=\{w:|w|_b>|w|_c\}$, что так же означает, что он КС язык. Но тогда требуемый язык $\mathbf{L}=L_1\bigcap L_2$, а т.к. КС языки замкнуты относительно операции пересечения, то L КС язык.

Задание 2.

Докажите, что язык $\{wtw^R||w|=|t|\}\in\{a,b\}^*$ не является КС-языком.

Решение

Возьмем такое слово, что $|\mathbf{w}|=\mathbf{p}$, и при этом удовлетворяющие следующему условию : \mathbf{t} не содержит пары подслов вида w_1 и w_1^R , расположенных второе через некоторое количество

символов после первого; ни одно из подслов не вляется обращением ни для одного подслова слова w_R , а также ни для одного подслова слова w (данные ограничения очевидно выполнимы , так как условие построения языка накладывает ограничение лишь на длину t, на его символы мы можем выбирать сами но при этом данные ограничения позволяют исключить случай перераспределения символов между словами w , \mathbf{t} и w^R при накачке, то есть слова должны будут сохранять свою структуру , и не смогут попасть в язык L за счет обмена символами между соседними подсловами) . Тогда и $|w^R|$ и $|{
m t}|={
m p}$. Но тогда все будет по аналогии с доказательством нерегулярности языка $a^nb^nc^n$: так как $|\mathrm{uyv}|\leqslant\mathrm{p}$, то uyv либо целиком принадлежит w , либо целиком w^R , либо целиком ${
m t}$ (но в этих случаях при накачке длина одной из трех компонент меняется, а она должна оставаться равной длине остальных двух компонент, длина которых не меняется), либо цуу лежит на границе двух составляющих слова, но не может пересекаться сразу со всеми тремя , так как длина одной составляющей уже р, а для пересечения 3 составляющих цуу должно содержать в себе хотя бы одну составляющую, и |uyv|, опять таки, ≤ р. Но в таком случае принадлежности только двум составляющим также выполняется отрицание леммы о накачки для КС языков, в точности по тем же причинам, что и для пересечения одной составляющей . Тогда для языка выполняется отрицание леммы о накачке для КС языков, т.е. язык не КС.

Задание 3.

Верно ли, что если язык L^* является КС-языком, то и язык L является КС-языком?

Определим операцию подстановки языков $L_1, L_2, ..., L_k$ над алфавитом Σ в язык M над алфавитом Δ k = $\{1, 2, ..., k\}$. В результате подстановки получается язык σ (M) =

$$\bigcup_{w_1} L_{w_1} \cdot L_{w_2} \cdot \dots \cdot L_{w_{|w|}} \\
 w \in M \tag{1}$$

то есть вместо букв каждого слова из M мы подставляем соответствующие языки и получаем язык L_w . Объединение по всем $w \in M$ языков L_w является языком $\sigma(M)$.

Решение

Это , очевидно , верно , так как для задача распознавания итерации языка эквивалентна задаче многократного распознавания самого языка . Тогда если существует МП автомат для L^* , то достаточно просто заканчивать обработку слова после первой обработки слова из языка . Тогда из состояния , которое является связующим в склеенных автоматах L и L делаем прием по пустому стеку , а все дальнейшие переходы убираем .

Задание 4.

Докажите, что КС-языки замкнуты относительно операции подстановки. То есть при подстановки КС-языков $L_1, L_2, ..., L_k$ в КС язык М получается КС-язык $\sigma(M)$.

Определим операцию Pref, которая ставит слову w в соответствие множество его префиксов $\operatorname{Pref}(w) = \{x | \exists y : xy = w\}$, а языку ставит в соответствие множество префиксов слов из языка: $\operatorname{Pref}(L) = \{x | \exists y : xy \in L\}$.

Решение

Рассмотрим грамматику $G = (V_N, \{a_1, a_2, \dots, a_n\}, P, S)$. Пусть $G_i = (V_{N_i}, V_{T_i}, P_i, S_i)$ — грамматика, порождающая множество $f(a_i)$ для каждого $i, 1 \le i \le n$. Без потери общности предполагаем, что все нетерминальные словари попарно не пересекаются. Построим новую грамматику: $G' = (V'_N, V_T', P', S)$, где $V_N' = V_N$

 $\bigcup_{i=1}^n V_{N_i}$, $V_T' = \bigcup_{i=1}^n V_{T_i}$. Пусть h — подстановка $h(a_i) = \{S_i\}$ для $1 \le i \le n$ и $h(A) = \{A\}$ для любого $A \in V_N$; $P' = \bigcup_{i=1}^{i=1} P_i \cup \{A \to h(a) \mid A \to a \in P\}$. Ясно, что грамматика G' является контекстно-свободной, возможно, с правилами вида $A \to \varepsilon$. Очевидно, что f(L(G)) = L(G') ч.т.д.

Задание 5.

Докажите, что КС-языки префиксно замкнуты, т. е. для любого КС-языка L справедливо $\operatorname{Pref}(L) \in \operatorname{CFL}$.

Решение

Для МП автомата, распознающего КС язык L уберем все переходы, которые не могут давать слова из языка (сделаем автомат не всюду определенным, что, очевидно, можно сделать не нарушая его корректности) . Не теряя общности , пусть исходный автомат принимал по пустому стеку. Тогда из всех состояний сделаем ε - переходы в новое состояние , прежний переход, который обнулял стек уберем, и сделаем переходы, очищающие стек и зануляющие его из нового состояния в само себя. Тогда можно будет получить все возможные префиксы, так как если мы оказываемся в некотором состоянии, то часть слова, которую мы обработали является преффиксом некоторого слова из языка, так как в самом начале мы оставили только переходы, которые реализуют некоторое слово из языка. Но тогда для любого префикса любого слова из языка мы окажемся с некотором состоянии МП автомата, а тогда можно сделать ε переход в конечное состояние, обнулить стек и , соответственно, принять данный префикс. Так как новое состояние умеет только очищать стек, то оно не может породить новый префикс, а значит приниматься будут только суффиксы , порождаемые исходным МП автоматом , т.е. язык $\operatorname{Pref}(L)$. Доказано включение в обе стороны, то есть МП автомат, конструкция которого описана , распознает язык $\operatorname{Pref}(L)$, а значит для языка $\operatorname{Pref}(L)$ существует распознающий его МП автомат , т.е. $\operatorname{Pref}(L)$ КС язык . Значит если L КС язык , то и $\operatorname{Pref}(L)$ также КС язык , т.е. КС языки префиксно замкнуты ч.т.д.