STOR 455 STATISTICAL METHODS I

Jan Hannig

Fundamental Concepts (Section 1.2)

- Population: the entire group of individuals that we want information about.
- Sample: a part of the population that we actually examine in order to gather information.
- Sample size: number of observations/individuals in a sample.
- Statistical inference: to make an inference about a population based on the information contained in a sample.

Fundamental Concepts

- A model is mathematical description of the quantities of interest
 - Gaussian with unknown mean and variance
- A *parameter* is a value that describes the population. It's fixed but unknown in practice.
 - the mean and variance of the SAT score of all the students, who are about to take it.
- A statistic is a value that describes a sample. It's known once a sample is obtained.
 - The mean and variance SAT score of all the students, who are selected into the study.
 - A sample analogy of the parameter.
- Statistics is a course about lots of statistics!!! ©

Models (Section 1.4)

- There are many possible model distributions
 - Gaussian distribution
 - Binomial distribution
 - Poisson distribution
 - Gamma distribution

— ...

 In this class we will almost exclusively use Gaussian Distribution

Density Curve

- Define a probability density function f(x).
- The curve that plots f(x) is called the corresponding density curve.
- f(x) satisfies:
 - -f(x)>=0;
 - The total area under the curve representing f(x) equals 1.
- Areas under the curve represent relative frequencies of observations

Normal Distribution (Section 1.4)

 Pictorially speaking, a <u>Normal Distribution</u> is a distribution that has a <u>symmetric</u>, <u>unimodal</u> and <u>bell-shaped</u> density curve.

 The mean and standard deviation completely specify the curve.

The mean, median, and mode are the same.

The height of a normal density curve at any point *x* is given by

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$\mu \text{ is the mean}$$

$$\sigma \text{ is the standard deviation}$$

8/26/10

Example: The normal distribution is the most important distribution in Statistics. Typical normal curves with different sigma (standard deviation) values are shown below.

The 68-95-99.7 Rule for General Normal Dist.

8/26/10

Examples with approximate Normal distributions

- Heights
- Weights
- IQ scores
- Standardized test scores
- Body temperatures
- Repeated measurements of the same quantity

• ...

Standardizing and z-Scores

- An observation x comes from a distribution with mean μ and standard deviation σ
- The standardized value of x is defined as

$$z=\frac{x-\mu}{\sigma}$$

which is also called a **z-score**.

- A z-score indicates how many standard deviations the original observation is away from the mean, and in which direction.
- Mean and S.D. of the distribution of z?

Effects of Standardizing

- Standardizing is a linear transformation. What are a and b?
- Effects on shape, center and spread.
- The standardized values for any distribution always have mean 0 and standard deviation 1.
- Linear transformation: normal into normal.

The standard normal distribution

- The <u>standard normal distribution</u> is the normal dist.
 with mean 0 and standard deviation 1, denoted as N(0,1).
- N(0,1) can be treated as a baseline.
- Any normal distribution can be related to N(0,1) by a linear transformation.
- Z: N(0,1), what is the distribution for X=a+bZ?

Table: The Standard Normal Table

 Table A is a table of areas under the standard normal density curve. The table entry for each value z is the area under the curve to the left of z.

8/26/10

Table: The Standard Normal Table

 Table A can be used to find the proportion of observations of a variable which fall to the left of a specific value z if the variable follows a normal distribution.

8/26/10

Example

- According to well-documented norms, the distribution of gestation time is approximately normal with mean 266 days and SD 16 days.
- What percent of babies have a gestation time greater or equal to 310 days (10 months and 5 days)?
- What about within a week of the due date?

Inverse problem

 Scores on the SAT verbal test in recent years follow approximately the N(505, 110) distribution.

 How high must a student score in order to be placed in the top 10% of all students taking the SAT?

Parameters (Section 1.5)

- In general parameters are numerical summaries of the population.
- They are usually denoted by Greek letters, e.g., μ , σ , ρ , ξ , θ , η .
- Describe both univariate and multivariate populations

Parameters

Mean

- If the population consists of equally likely numbers $(y_1,...,y_N)$ then $\mu = \frac{1}{N} \sum_{i=1}^N Y_i$ [Notice the upper case]
- If not equally likely $\mu = \sum_{i=1}^{N} Y_i p_i$ where $\mathbf{p_i}$ is the probability. (Explain on a picture)

Parameters

- Standard Deviation
 - If the population consists of equally likely numbers $(Y_1,...,Y_N)$ then

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2}$$

If not equally likely

$$\sigma = \sqrt{\sum_{i=1}^{N} (Y_i - \mu)^2 p_i}$$

Variance = (standard deviation)²

Multivariate Distributions

Schematic representation

Items	k Measurements on Each Item			
	1	2	•••	k
1 2	X_{11} X_{21}	X ₁₂ X ₂₂		X_{1k} X_{2k}
; <i>I</i>	: X ₁₁	: X ₁₂	:	: X _{Ik}
: N	X _{N1}	: X _{N2}	:	: X _{Nk}
Mean	μ_1	μ_2		μ_k
Standard deviation	σ_1	σ_2	•••	σ_k

- Each measurement has its own mean and s.d.
- Each pair of measurements has a correlation

Multivariate Distributions

- Linear relationship between measurements are described by correlations.
 - If items are equally likely

$$\rho_{Y,X} = \frac{\sum_{I=1}^{N} (Y_I - \mu_Y)(X_I - \mu_X)}{\sqrt{\left[\sum_{I=1}^{N} (Y_I - \mu_Y)^2\right] \left[\sum_{I=1}^{N} (X_I - \mu_X)^2\right]}}$$

- Items are not equally likely

$$\rho_{Y,X} = \frac{\sum_{i=1}^{N} (Y_i - \mu_Y)(X_i - \mu_X)p_i}{\sigma_X \sigma_Y}$$

- Meaning
 - Always -1≤ρ≤1, if independent ρ =0

Meaning of correlation

Samples (Section 1.6)

- Populations are often unavailable to study directly.
- Solution:
 - Select a subsets of items (y₁,...,y_n) [Notice the lower case]
 - If the selection is done through a well defined random procedure, a measure of uncertainty can be calculated.
- Possible selection procedures
 - Simple random sampling
 - Other methods: stratified sampling, probability proportional to size sampling, ...

Simple random sampling (SRS)

- In SRS, all the samples with the same size are equally likely to be chosen.
 - Eliminate bias in a sample.
- To conduct a SRS
 - give each unit a number
 - randomly select the sample numbers. Use a random digits table, or a software package.
- Suppose we have 100 students, need to choose 4 to answer a set of questions.
 - randomly select four number between 00 and 99
- If there are N units in the population and we want to select n we have possible samples $H = \binom{N}{n} = \frac{N \times (N-1) \times \cdots \times (N-n+1)}{1 \times 2 \times \cdots \times n}$

10/15/09 Lecture 15

Inferential Procedures

- Once the sample is selected, inference about the sample is performed
- Types of inference
 - Point Estimation
 - Confidence Intervals
 - Hypothesis Testing