ÁLGEBRA LINEAL - Clase 19/05

Para hacer en clase (y después) (y antes)

Ejercicio 1. Este ejercicio es una posible guía para resolver el Ejercicio 7 de la Práctica 2. Sea $A \in \mathbb{K}^{n \times n}$.

- i) ¿Qué se obtiene al hacer el producto $A.e_i$ para $1 \le i \le n$? ¿Y al hacer el producto $e_i^t.A$ para $1 \le i \le n$? (Recordar que pensamos a los vectores como columnas, por eso trasponemos para hacer el segundo producto).
- ii) Probar que A=0 si y solo si $A.e_i=0$ para todo $1 \le i \le n$. (**Bonus**: Probar que esto mismo es cierto si cambiamos la base canónica por cualquier base $\{v_1,\ldots,v_n\}$ de \mathbb{K}^n). Deducir que A=0 si y solo si A.x=0 para todo $x \in \mathbb{K}^n$.
- iii) Supongamos ahora que A es estrictamente triangular superior (es decir, $A_{ij} = 0$ si $i \ge j$).
 - a) Probar que $A.e_1 = 0$.
 - b) Probar que $A^2 \cdot e_1 = A^2 \cdot e_2 = 0$.
 - c) Probar inductivamente que $A^k \cdot e_j = 0$ para todo $1 \le j \le k$.
 - d) Deducir de lo hecho anteriormente que $A^n = 0$.

Nota: este ejercicio también puede resolverse haciendo inducción directamente. Un posible camino es probar inductivamente que $(A^k)_{ij} = 0$ si $i+k \geq j+1$. Para esto, podemos escribir $A^k = (A^{k-1}).A$ y usar la fórmula para el producto de matrices. Notar que, si k = n, esto diría que $(A^n)_{ij} = 0$ si $i+n \geq j+1$, y como $i \geq 1$ y $n \geq j$, esta desigualdad se cumple para todo $1 \leq i, j \leq n$; por lo tanto, la matriz A^n es nula.

Es una buena idea sumergirse en este mar de índices y resolver el ejercicio de esta manera.

Ejercicio 2. Este ejercicio es una posible guía para resolver el Ejercicio 3 de la Práctica 2.

- i) Probar que una matriz $A \in \mathbb{K}^{n \times n}$ conmuta con toda matriz $B \in \mathbb{K}^{n \times n}$ si y solo si conmuta con toda matriz de una base de $\mathbb{K}^{n \times n}$. En particular, obtenemos la igualdad de conjuntos $\{A \in \mathbb{K}^{n \times n}/A.B = B.A \quad \forall B \in \mathbb{K}^{n \times n}\} = \{A \in \mathbb{K}^{n \times n}/A.E^{ij} = E^{ij}.A \quad \forall 1 \leq i,j \leq n\}.$ (Notar la idea recurrente de aprovechar la linealidad y deducir que una propiedad vale para todo vector de un espacio si vale para todo vector de una base de dicho espacio).
- ii) Dados $1 \leq i, j \leq n$, ¿qué se obtiene al hacer el producto $A.E^{ij}$? ¿Y al hacer el producto $E^{ij}.A$? Caracterizar el conjunto $Z = \{A \in \mathbb{K}^{n \times n} / A.B = B.A \ \forall B \in \mathbb{K}^{n \times n}\}$ igualando estas expresiones para todo $1 \leq i, j \leq n$.
- iii) Probar que Z es un subespacio de $\mathbb{K}^{n\times n}$. Calcular su dimensión.

Bonus: En el ítem iv) de este ejercicio se pide probar que el conjunto de potencias de A desde $A^0 = I$ hasta A^{n^2-1} es linealmente dependiente. En realidad, este resultado se puede mejorar: la potencia mínima de A que puede tomarse para que este conjunto sea linealmente dependiente es mucho menor. Intente darse una idea de cuál será esta potencia para n=2 y n=3. Más adelante, veremos el caso general.

Ejercicios de la guía relacionados: probablemente 3 y 7.