К3-свойства языков. Проверка и вывод простейших полиморфных типов

Теория формальных языков 2021 г.

Возникновение понятия типа

Изначально возник в трудах Б.Рассела, который заметил, что в наивной теории множеств существует парадокс:

Парадокс Рассела

$$\Omega = \{A \mid A \notin A\} \Rightarrow (\Omega \in \Omega \Leftrightarrow \Omega \notin \Omega)$$

Понятие типа ограничивает возможные операции над его сущностями \Rightarrow исключает парадоксы (неожиданное/неприемлемое поведение программ).

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Описание утверждения о типах — логическая спецификация.

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Описание утверждения о типах — логическая спецификация.

Записывается: $\Gamma \vdash M$: σ , где Γ — это перечисление x_i : τ_i — aka контекст.

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Описание утверждения о типах — логическая спецификация.

Записывается: $\Gamma \vdash M : \sigma$, где Γ — это перечисление

 $x_i : \tau_i$ — aka контекст.

Читается: «в контексте Γ терм M имеет тип σ ».

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Описание утверждения о типах — логическая спецификация.

Записывается: $\Gamma \vdash M : \sigma$, где Γ — это перечисление

 $x_i : \tau_i$ — aka контекст.

Читается: «в контексте Γ терм M имеет тип σ ».

Понимается: «если придать переменным χ_i типы τ_i , тогда можно установить, что тип выражения M есть σ ».

Системы типов (неформально)

- Простые типы (сорта);
- Функциональные типы данных;
- Алгебраические типы данных (сигнатуры + операции);
- Упорядоченные сорта (решётки) типов данных ООП.

Таблица связывания

КЗ-свойства имён вынуждают использовать таблицы связывания (имён и функций) с двумя базовыми операциями:

- bind :: ([таблица], [имя], [тип]) → [таблица];
- lookup :: ([таблица], [имя]) o [тип].

Сорта (простые типы): Bool, Int.
Операторы: =, +, условный, вызов функции.
Синтаксис:
 [Prog] ::= [Fs] [Fs] ::= [F] | [Fs]
 [F] ::= [Typeld] ([Tlds]) = [Exp]
 [Exps] ::= [Exp] | [Exp], [Exps]
 [Typeld] ::= (Bool | Int) id [Tlds] ::= [Typeld], [Tlds] | [Typeld]
 [Exp] ::= num | id | [Exp]+[Exp] | [Exp] = [Exp] | id ([Exps])

| if [Exp] then [Exp] else [Exp] | let id = [Exp] in [Exp]


```
[Prog] ::= [Fs] [Fs] ::= [F] | [Fs] [Fs] [Fs] ::= [Typeld] ([Tlds]) = [Exp] [Exps] ::= [Exp] | [Exp], [Exps] [Typeld] ::= (Bool | Int) id [Tlds] ::= [Typeld], [Tlds] | [Typeld] [Exp] ::= num | id | [Exp]+[Exp] | [Exp] = [Exp] | id ([Exps]) | if [Exp] then [Exp] else [Exp] | let id = [Exp] in [Exp]
```


tchExp(Exp, vtable, ftable) = case Exp of

num	int
id	t == undef = err; int
	otherwise = t
	where $t = lookup(vtable, id)$
Exp ₁ +Exp ₂	$\mid t_1 \neq \text{int} \mid \mid t_2 \neq \text{int} = \text{err; int}$
	otherwise = int
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)

tchExp(Exp, vtable, ftable) = case Exp of

num	int
id	t == undef = err; int
	otherwise = t
	where $t = lookup(vtable, id)$
Exp ₁ +Exp ₂	$\mid t_1 \neq \text{int} \mid \mid t_2 \neq \text{int} = \text{err; int}$
	otherwise = int
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)
$Exp_1=Exp_2$	$\mid t_1 == t_2 = bool$
	otherwise = err; bool
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)

Правила типизации в форме вывода

$$\begin{split} \frac{\Gamma \vdash t_1 : \text{int}, \Gamma \vdash t_2 : \text{int}}{\Gamma \vdash \textbf{num} : \text{int}} & \frac{\Gamma \vdash t_1 : \text{int}, \Gamma \vdash t_2 : \text{int}}{\Gamma \vdash t_1 + t_2 : \text{int}} \\ \frac{\Gamma \vdash t_1 : \sigma, \Gamma \vdash t_2 : \sigma}{\Gamma \vdash t_1 = t_2 : \text{bool}} & \frac{\Gamma \vdash t_1 : \text{bool}, \Gamma \vdash t_2 : \sigma, \Gamma \vdash t_3 : \sigma}{\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : \sigma} \\ & \frac{\Gamma, \textbf{f_id} : (\tau_1, \dots, \tau_n) \to \tau_0 \vdash t_i : \tau_i}{\Gamma, \textbf{f_id} : (\tau_1, \dots, \tau_n) \to \tau_0 \vdash \textbf{f_id}(t_1, \dots, t_n) : \tau_0} \\ & \frac{\Gamma, \textbf{id} : \tau \vdash s : \sigma, \Gamma \vdash t : \tau}{\Gamma \vdash M, \text{let } \textbf{id} = t \text{ in } s : \sigma} \end{split}$$

Параметрический полиморфизм

Параметрический полиморфизм — возможность определять функции равномерно для возможных типов аргументов. Альтернатива — ad hoc полиморфизм — функции перегружены, но определяются отдельно для каждого набора типов.

Параметрический полиморфизм

Параметрический полиморфизм — возможность определять функции равномерно для возможных типов аргументов. Альтернатива — ad hoc полиморфизм — функции перегружены, но определяются отдельно для каждого набора типов.

• Полиморфные типы — переменные, пробегающие все возможные сорта (простые типы)...

Параметрический полиморфизм

Параметрический полиморфизм — возможность определять функции равномерно для возможных типов аргументов. Альтернатива — ad hoc полиморфизм — функции перегружены, но определяются отдельно для каждого набора типов.

- Полиморфные типы переменные, пробегающие все возможные сорта (простые типы)...
- ...если разрешены функции высших порядков (НОF)
 тогда все возможные функциональные типы.

Как проверять типы полиморфных функций, если их алгебра бесконечнозначна?

Неформально о \(\lambda \)-исчислении

- Формальная модель вычислений, позволяет компактно описывать семантику ЯП с НОГ.
- Бестиповая версия А. Черч, 1930-е (и много типизированных).
- Базисные операции применение (функция o данные) и абстракция (данные o функция).

Неформально о \(\lambda \)-исчислении

Пусть F, X — термы. F X — операция применения терма F (функции) к терму X (данным).

Пусть $M \equiv M[x]$ — терм, возможно содержащий x. Тогда абстракция $\lambda x.M$ обозначает анонимную (неименованную) функцию от $x: x \to M[x]$.

Неформально о \(\lambda \)-исчислении

Пусть F, X — термы. F X — операция применения терма F (функции) к терму X (данным).

Scheme

```
; Первый элемент пары — функция, применяемая ; ко второму элементу. (Fun1 Fun2)
```

Пусть $M \equiv M[x]$ — терм, возможно содержащий x. Тогда абстракция $\lambda x.M$ обозначает анонимную (неименованную) функцию от $x: x \to M[x]$.

Scheme

```
(lambda (x) M)
```


β -редукция и β -эквивалентность

Применение анонимной функции к аргументу: $(\lambda x. M[x]) \ N \to_{\beta} M[x:=N]$ назовём β -редукцией.

Если $T_1 \to_{\beta}^+ T_2$ или $T_2 \to_{\beta}^+ T_1$, скажем, что термы T_1 и T_2 β -эквивалентны.

Считаем, что все связанные λ -абстракциями переменные имеют разные имена (как в исходном терме, так и в результатном).

Полуформально о типизации НОГ

- \bullet Если M[x] имеет тип σ в контексте $x:\tau$, тогда естественно, что $\lambda x.M$ имеет тип $\tau \to \sigma$;
- **2** Если $(M\ N)$ имеет тип σ , а N имеет тип τ , тогда естественно, что M имеет тип $\sigma \to \tau$.

Полуформально о типизации НОГ

- Если M[x] имеет тип σ в контексте $x:\tau$, тогда естественно, что $\lambda x.M$ имеет тип $\tau \to \sigma$;
- ② Если $(M\ N)$ имеет тип σ , а N имеет тип τ , тогда естественно, что M имеет тип $\sigma \to \tau$.

Логическая спецификация

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x . M : \tau \to \sigma}$$
$$\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau$$

$$\frac{M:\tau\to\sigma,\Gamma\vdash N:\tau}{\Gamma\vdash (M\;N):\sigma}$$

Рассмотрим терм $\lambda x.(x \ x)$. Какой у него тип?

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть $(x\ x)$) — это σ . Тогда $\tau= au o\sigma$.

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть $(x \ x)$) — это σ . Тогда $\tau = \tau \to \sigma$.

Уравнение $\tau = \tau \to \sigma$ не имеет неподвижной точки, отличной от \bot (унификация зацикливается).

Рассмотрим терм $\lambda x.(x \ x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть $(x \ x)$) — это σ . Тогда $\tau = \tau \to \sigma$.

Уравнение $au = au o \sigma$ не имеет неподвижной точки, отличной от \bot (унификация зацикливается).

Зацикливается не только унификация: см. $(\lambda x.(x\ x))\ (\lambda x.(x\ x)).$ Однако в некоторых случаях всё успешно вычисляется: напр. $(\lambda x.(x\ x))\ (\lambda x.(\lambda y.(y\ x))).$

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть $(x \ x)$) — это σ . Тогда $\tau = \tau \to \sigma$.

Уравнение $au = au o \sigma$ не имеет неподвижной точки, отличной от \bot (унификация зацикливается).

Зацикливается не только унификация: см. $(\lambda x.(x\ x))\ (\lambda x.(x\ x))$. Однако в некоторых случаях всё успешно вычисляется: напр. $(\lambda x.(x\ x))\ (\lambda x.(\lambda y.(y\ x)))$.

 $\lambda x.(x \ x)$ — частичная функция и не может быть конечным образом определена на всех полиморфных типах.

13 / 25

Нормальная форма НОГ

Редекс — это подтерм вида $((\lambda x.M)\ N)$. Нормальная форма λ -терма T — это λ -терм, β -эквивалентный исходному, не содержащий редексов.

Просто типизированное λ -исчисление

Ограничим множество λ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau \rightarrow \sigma} \quad \frac{\Gamma \vdash M : \tau \rightarrow \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$

Просто типизированное λ -исчисление

Ограничим множество λ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x . M : \tau \to \sigma} \quad \frac{\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \; N) : \sigma}$$

...а теперь забудем про термы и посмотрим только на типы. Что получилось?

$$\dfrac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \to \sigma}$$
 (правило введения импликации)
$$\dfrac{\Gamma \vdash \tau \to \sigma, \Gamma \vdash \tau}{\Gamma \vdash \sigma}$$
 (правило удаления импликации aka *modus ponens*)

Связь логики и HOF: соответствие Карри-Ховарда

- Существует взаимно-однозначное соответствие между типами замкнутных термов в просто типизированном λ-исчислении и тавтологиями в минимальной импликативной логике.
- (теорема о нормализации) Все термы просто типизированного λ-исчисления имеют нормальную форму.
- Доказательствам в минимальной логике соответствуют всюду определенные полиморфные функции высшего порядка.

Древесная форма естественного вывода

Правила вывода для ⇒ в minLOG

Применению и абстракции соответствуют следующие правила вывода (modus ponens и правило дедукции):

$$(\): \ \frac{A \quad A \Rightarrow B}{B} \qquad \qquad \lambda : \ \frac{*A}{A \Rightarrow B}$$

Каждое применение правила вывода в доказательстве minLOG соответствует использованию в терме из λ_{\to} конструкции с именем этого правила вывода.

В контексте соответствия Карри-Ховарда стрелочный тип далее обозначаем и как $\alpha \to \beta$ (в программировании), и как $\alpha \Rightarrow \beta$ (в логике).

17 / 25

Унификация

Алгоритм построения $mgu(E_1, ..., E_k)$

$$\frac{t=x}{x=t} \quad \frac{t=t}{x=t} \quad \frac{f t_1 \dots t_n = f s_1 \dots s_n}{t_1 = s_1 \dots t_n = s_n}$$

$$\frac{x=t \quad x=s}{x=t \quad t=s} \quad \frac{x=t \quad r=s}{x=t \quad r[x:=t] = s[x:=t]}$$

Условия завершения унификации

- 1. Существует уравнение $f t_1 \dots t_n = g s_1 \dots s_m$, где $f \neq g$.
- 2. Существует уравнение $x = f t_1 \dots t_n$, где x входит в некоторое t_i .
- 3. Все уравнения имеют вид $x_i = t_i$, причем x_i не имеет вхождений в t_i успех.

неудача

Алгоритм Хиндли для $\lambda_{ ightarrow}$

Пусть дан терм Т. В изначально пустом контексте Γ параллельно строятся приближение Φ типа терма Т и система уравнений E на переменные типа Φ обратным применением следующих правил.

Правила вывода (Ү — свежий тип)

$$\begin{array}{ll} \frac{\Gamma, \ x: X \vdash P: \Psi, \ E}{\Gamma \vdash \lambda x. P: Y, E \cup \{Y = X \rightarrow \Psi\}} & \frac{\Gamma, \ x: X \vdash x: X, \ E}{\Gamma, \ x: X \vdash x: Y, \ E \cup \{X = Y\}} \\ \\ \frac{\Gamma \vdash P: \Phi, \ E_1 \quad \Gamma \vdash Q: \Psi, \ E_2}{\Gamma \vdash (P \ O): Y, E_1 \cup E_2 \cup \{\Phi = \Psi \rightarrow Y\}} \end{array}$$

Пусть построено \vdash $T:\Phi$, E. Из этого приближения строится \vdash $T:\Phi[mgu(E)]$ — окончательный тип терма T.

Пример на типизацию в $\lambda_{ ightarrow}$

Вывести тип терма $(\lambda k.k.(\lambda x.y.x))$

Соглашения об обозначениях:

- 🗆 символ конца ветки подвывода.
- $\Phi = \Psi_1 \to \Psi_2$ уравнение абстракции.
- \bullet $\Psi_1 = \Psi_2 \to \Phi$ уравнение применения.
- $\bullet \ X_i = X_i$ уравнение извлечения из контекста.
- Шаг извлечения из контекста в дереве вывода приближения типа не выписываем, только выписываем уравнение.

Пример вывода типа

Уравнения применения: $T_3 = T_4 \to T_2$, $T_9 = T_{10} \to T_8$.

Уравнения абстракции: $T_0 = T_1 \to T_2, \ T_4 = T_5 \to T_6, \ T_6 = T_7 \to T_8.$

Подставляем уравнения извлечения из контекста в систему и строим mgu системы $\{T_1=T_4\to T_2,\ T_7=T_5\to T_8,\ T_0=T_1\to T_2,\ T_4=T_5\to T_6,\ T_6=T_7\to T_8\}.$

Ответ: искомый тип терма есть

$$T_0 = ((T_5 \rightarrow ((T_5 \rightarrow T_8) \rightarrow T_8)) \rightarrow T_2) \rightarrow T_2.$$

Покажем, что тип $((A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C)\Rightarrow C$ корректен. Поскольку это — функциональный тип, то внешним конструктором его терма будет абстракция (соответствует правилу дедукции).

$$*(A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C$$
 (тип терма x)

(Тут нужно придумать, как построить терм типа C , имея только x)

 C
 $((A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C)\Rightarrow C$ (тип терма $\lambda x....$)

Поскольку x — это функциональный терм, принимающий аргументом функцию типа $\tau = A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$, нужно попробовать построить терм, имеющий тип τ . Для этого опять понадобится абстракция (даже две).


```
 *(A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C \text{ (тип терма }x\text{)} \\ *A \text{ (тип терма }y\text{)} \\ | *A\Rightarrow B \text{ (тип терма }z\text{)} \\ | B \text{ (тип терма }z\text{ y}) \\ | (A\Rightarrow B)\Rightarrow B \text{ (тип терма }\lambda z.(z\text{ y})\text{)} \\ | A\Rightarrow ((A\Rightarrow B)\Rightarrow B) \text{ (тип терма }\lambda y.(\lambda z.(z\text{ y}))\text{)} \\ | C \text{ (тип терма }x \text{ }(\lambda y.(\lambda z.(z\text{ y})))\text{)} \\ | ((A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C)\Rightarrow C \text{ (тип терма }\lambda x.x \text{ }(\lambda y.\lambda z.(z\text{ y}))\text{)} )
```

Мы не только построили доказательство тавтологии $((A\Rightarrow ((A\Rightarrow B)\Rightarrow B))\Rightarrow C)\Rightarrow C$ в minLOG, но ещё и предъявили всюду определённую функцию высшего порядка, которая реализует это доказательство.

Теория полиморфных типов

- Добавление других конструкций (пары, объединения по ключу) расширение логики типов дополнительными операциями (&, \lor).
- Добавление контейнерных типов (списки, обработка исключений) — расширение логики типов модальностями.
- Результат алгоритмизации проверки типов theorems for free: семантические свойства полиморфных функций выполняются вследствие корректности их типизации.

Теория полиморфных типов

- Добавление других конструкций (пары, объединения по ключу) расширение логики типов дополнительными операциями (&, \lor).
- Добавление контейнерных типов (списки, обработка исключений) — расширение логики типов модальностями.
- Результат алгоритмизации проверки типов theorems for free: семантические свойства полиморфных функций выполняются вследствие корректности их типизации.

Логические системы, описывающие полиморфные типы, отличаются от классической! У их алгебр нет конечного носителя. Некоторые классические тавтологии (например, $A \lor (A \Rightarrow B)$) не являются конструктивными.