Revisão: Álgebra linear, probabilidade, estatística e otimização

Álgebra linear

- Sistemas lineares
- Autovalores e autovetores
- Matrizes positivas definidas
- ► Decomposições: espectral, SVD, QR

Sistemas lineares

▶ A equação $\mathbf{A}\mathbf{x} = \mathbf{b}$, com $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^{n \times 1}$ e $\mathbf{b} \in \mathbb{R}^{m \times 1}$, encapsula o sistema linear

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$\vdots + \vdots + \dots + \vdots = \vdots$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

- ► Trabalhar com vetores e matrizes é a base do Numpy, e simplifica demais a notação
- O sistema pode ter infinitas soluções, nenhuma solução ou exatamente uma solução
- Quando m = n e as colunas são linearmente independentes, existe inversa \mathbf{A}^{-1} e solução única
- Mas resolver $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ é numericamente instável e lento: decomposições ajudam

Autovalores e autovetores

▶ Um autovetor de uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ é um vetor $\mathbf{v} \neq 0$ tal que existe $\lambda \in \mathbb{R}$ para o qual

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
.

O valor λ é o autovalor associado ao autovetor \mathbf{v}

- Se \mathbf{v} é autovetor, então $c\mathbf{v}$ também é; assumiremos normalização: $\|\mathbf{v}\|_2 = (\sum_{i=1}^n v_i^2)^{1/2} = 1$
- ▶ Se **A** tem *n* autovetores ortogonais $\mathbf{v}_1, \ldots, \mathbf{v}_n$ associados a $\lambda_1, \ldots, \lambda_n$, então

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i \Longrightarrow \mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} - & \mathbf{v}_1' & - \\ - & \vdots & - \\ - & \mathbf{v}_n^T & - \end{bmatrix}$$

- Essa é a decomposição espectral; note que \mathbf{Q} é ortogonal $(\mathbf{Q}^T\mathbf{Q} = \mathbf{I})$ e $\boldsymbol{\Lambda}$ é diagonal
- Em geral, vamos assumir que os autovalores estão dispostos em ordem decrescente
- ightharpoonup Toda matriz real e simétrica ($\mathbf{A} = \mathbf{A}^{T}$) admite essa decomposição

Matrizes positivas definidas

- ▶ Uma matriz real e simétrica com todos seus autovalores sendo positivos é dita positiva definida
- Matrizes positiva definidas são equivalentes a

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$
 para todo $\mathbf{x} \neq 0$

Isso segue da decomposição espectral:

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x} = \mathbf{x}^{T}\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{T}\mathbf{x} = (\mathbf{\Lambda}^{1/2}\mathbf{Q}^{T}\mathbf{x})^{T}(\mathbf{\Lambda}^{1/2}\mathbf{Q}^{T}\mathbf{x}) = \mathbf{w}^{T}\mathbf{w} = \sum_{i=1}^{n} w_{i}^{2} > 0$$

- Se autovalores são não-negativos, a matriz é positiva semi-definida e desigualdades não são estritas
- ► Toda matriz $\mathbf{A}^T \mathbf{A}$ é positiva semi-definida (pois $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = \|\mathbf{A}\mathbf{x}\|^2 \ge 0$)

5 / 25

Decomposições: SVD

▶ Toda matriz real $A \in \mathbb{R}^{m \times n}$ admite uma decomposição SVD:

$$A = UDV^T$$
,

onde $\mathbf{U} \in \mathbb{R}^{m \times m}$ e $\mathbf{V} \in \mathbb{R}^{n \times n}$ são matrizes ortogonais, e $\mathbf{D} \in \mathbb{R}^{m \times n}$ é uma matriz diagonal

- \triangleright Os elementos da diagonal de **D**, chamados de valores singulares e usualmente denotados por $\sigma_1, \ldots, \sigma_n$, são sempre não-negativos (e assumidos decrescentes)
- lacktriangle As colunas de f U são os vetores singulares esquerdos e as de f V os vetores singulares direitos
- A decomposição SVD diz muito sobre a matriz A
 - Vale que posto(\mathbf{A}) = $\#\{i : \sigma_i > 0\}$
 - Se $r = \text{posto}(\mathbf{A})$, então $\mathbf{A} = \mathbf{UDV}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
 - $\mathbf{u}_1, \dots, \mathbf{u}_r$ é uma base ortonormal para espaço coluna de \mathbf{A}
 - $\mathbf{v}_{r+1}, \dots, \mathbf{v}_n$ é uma base ortonormal para espaço nulo de \mathbf{A}

Decomposições: SVD

A decomposição SVD é consequência da decomposição espectral: seja vi autovetor de ATA:

$$\mathbf{A}^{T}\mathbf{A}\mathbf{v}_{i} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{T}\mathbf{v}_{i} = \sum_{j=1}^{n} \lambda_{i}\mathbf{v}_{j}\mathbf{v}_{j}^{T}\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}$$

Supondo $\lambda_i > 0$ (depois lidamos com $\lambda_i = 0$), defina

$$\mathbf{u}_i = \frac{\mathbf{A}\mathbf{v}_i}{\sqrt{\lambda_i}} \Longrightarrow \mathbf{U} = \mathbf{A}\mathbf{V}\mathbf{D}^{-1} \Longrightarrow \mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{T}$$

- Por construção, $\mathbf{D} = \operatorname{diag}(\sqrt{\lambda_i})$ é diagonal, e $\mathbf{V} = \mathbf{Q}$ é ortogonal
- \triangleright A matriz **U** também é ortogonal pois são os autovetores de $\mathbf{A}\mathbf{A}^T$:

$$\mathbf{A}\mathbf{A}^{T}\mathbf{u}_{i} = \lambda_{i}^{-1/2}\mathbf{A}\mathbf{A}^{T}\mathbf{A}\mathbf{v}_{i} = \sqrt{\lambda_{i}}\mathbf{A}\mathbf{v}_{i} = \lambda_{i}\mathbf{u}_{i}$$
$$\mathbf{u}_{i}^{T}\mathbf{u}_{i} = \lambda_{i}^{-1}\mathbf{v}_{i}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{v}_{i} = \mathbf{v}_{i}^{T}\mathbf{v}_{i} = 1$$

 \triangleright Se $\lambda_i = 0$, basta ignorá-lo na construcão de **U** e **V** e depois completar cada base

Decomposições: QR

▶ Toda matriz $\mathbf{A} \in \mathbb{R}^{m \times n}$ admite uma decomposição QR:

$$A = QR$$

onde Q é ortogonal e R é triangular superior

► Intuição: ortogonalização das colunas de A (via Gram-Schmidt):

$$ilde{\mathbf{q}}_1 = \mathbf{a}_1, \mathbf{q}_1 = ilde{\mathbf{q}}_1/\| ilde{\mathbf{q}}_1\|$$

$$\tilde{\mathbf{q}}_2 = \mathbf{a}_2 - (\mathbf{q}_1^T \mathbf{a}_2) \mathbf{q}_1, \mathbf{q}_2 = \tilde{\mathbf{q}}_2 / \|\tilde{\mathbf{q}}_2\|$$

$$\tilde{\mathbf{q}}_3 = \mathbf{a}_3 - (\mathbf{q}_1^T \mathbf{a}_3) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{a}_3) \mathbf{q}_2, \mathbf{q}_3 = \tilde{\mathbf{q}}_3 / \|\tilde{\mathbf{q}}_3\|$$

. . . .

ightharpoonup Chamando $r_{ki} = \mathbf{q}_k^T \mathbf{a}_i$, obtemos

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{bmatrix}$$

Probabilidade e estatística

- ► Variáveis aleatórias, médias e variância
- Distribuições conjuntas e condicionais
- Distribuições importantes
- Estimação: método da máxima verossimilhança
- ► Inferência: teste de hipótese

Variáveis aleatórias

- A nossa modelagem sobre o mundo pressupõe incertezas (e.g., medidas, amostras finitas)
- ▶ Uma variável aleatória X é uma função resultado de algum processo aleatório
- Por isso, ela tem uma função de distribuição associada, $F(x) = \mathbb{P}[X \le x]$
- ▶ Se a variável for contínua, tem densidade f(x) = F'(x); se for discreta tem massa $p(x) = \mathbb{P}[X = x]$
- Frequentemente, estamos interessados em dois números associados à variável aleatória
 - Média: $\mu = \mathbb{E}[X] = \int x f(x) dx$ $(= \sum x p(x))$
 - Variância: $\sigma^2 = \mathbb{E}[(X \mathbb{E}[X])^2] = \int (x \mu)^2 f(x) dx \quad (= \sum (x \mu)^2 p(x))$
- ▶ Propriedades: $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$, e $\mathbb{V}[aX + b] = a^2\mathbb{V}[X]$
- ▶ Um vetor aleatório é uma coleção de variáveis aleatórias $\mathbf{X} = (X_1, X_2, \dots, X_n)$

Distribuições conjuntas e condicionais

- Duas variáveis aleatórias têm distribuições conjunta $F(x, y) = \mathbb{P}[X \le x, Y \le y]$
- ► Elas podem ter densidade $f(x, y) = \partial^2 F(x, y)/\partial x \partial y$ ou massa $p(x, y) = \mathbb{P}[X = x, Y = y]$
- lacktriangle Além de média e variância, elas podem ter covariância: $\mathrm{Cov}(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$
 - Se $\mathbf{X} = (X_1, X_2)$, e $\operatorname{Cov}(\mathbf{X}) = \mathbf{\Sigma}$, então $\operatorname{Cov}(\mathbf{A}\mathbf{X}) = \mathbf{A}\operatorname{Cov}(\mathbf{X})\mathbf{A}^T = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T$
- ightharpoonup Se as variáveis são independentes, $f(x,y)=f_X(x)f_Y(y)$ ou $\mathbb{P}[X=x,Y=y]=\mathbb{P}[X=x]\mathbb{P}[Y=y]$
 - Se X e Y são independentes, $Cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])]\mathbb{E}[(Y \mathbb{E}[Y])] = 0$
- Podemos falar na distribuição condicional: $f_{Y|X}(y|x) = f(x,y)/f(x)$ ou $p_{Y|X}(y|x) = p(x,y)/p(x)$
- ▶ Esperança condicional: $\mathbb{E}[Y|X] = \int y f_{y|x} dy$ ou $\mathbb{E}[Y|X] = \sum y p(y|x)$
- ▶ Lei da esperança total: $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$
 - Segue da lei da probabilidade total: $\mathbb{P}[A] = \mathbb{P}[A|B]\mathbb{P}[B] + \mathbb{P}[A|B^c]\mathbb{P}[B^c]$

Distribuições importantes: discretas

- ▶ Bernoulli: $X \sim \text{Bern}(p)$ se $X \in \{0, 1\}$ e $\mathbb{P}[X = x] = p^x (1 p)^{1-x}$
 - Exemplo: jogar de uma moeda com probabilidade p de dar caras
 - $\blacksquare \mathbb{E}[X] = p, \ \mathbb{V}[X] = p(1-p)$
- ▶ Binomial: $X \sim \text{Bin}(n, p)$ se $X \in \{0, ..., n\}$ e $\mathbb{P}[X = x] = \binom{n}{r} p^x (1-p)^{n-x}$
 - Exemplo: $X = \sum_{i=1}^{n} X_i \text{ com } X_i \stackrel{\text{iid}}{\sim} \text{Bern}(p)$, número de jogos ganhos em n jogos
 - $\blacksquare \mathbb{E}[X] = np, \ \mathbb{V}[X] = np(1-p)$
- Multinomial: $\mathbf{X} \sim \text{Mult}(p_1, p_2, \dots, p_k)$ se $\mathbf{X} = (X_1, \dots, X_k)$ com $X_i \in \{0, \dots, n\}$ e $\sum_{i=1}^n X_i = n$; a função de distribuição é $\mathbb{P}[\mathbf{X} = (x_1, \dots, x_k)] = \frac{n!}{x_1 \dots x_k} p_1^{x_1} \dots p_k^{x_k}$
 - **E**xemplo: número de jogos com 0, 1, 2, ..., k gols em n jogos
 - $\mathbb{E}[X] = n\mathbf{p}, \ \mathbb{V}[X] = n(\operatorname{diag}(\mathbf{p}) \mathbf{p}\mathbf{p}^{T})$

Distribuições importantes: contínuas

Normal: $X \sim N(\mu, \sigma^2)$ se $X \in (-\infty, \infty)$ e

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Exemplo: alturas, mensurações com erros
- Por definição, $\mathbb{E}[X] = \mu$ e $\mathbb{V}[X] = \sigma^2$
- ► CLT: se Y_1, \ldots, Y_n são iid com média μ_Y e variância σ_Y^2 , então $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i \to N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$

13 / 25

Distribuições importantes: contínuas

▶ Normal multivariada: se **X** ~ $N(\mu, \Sigma)$ com **X** ∈ \mathbb{R}^d , $\mu \in \mathbb{R}^d$ e **Σ** ∈ $\mathbb{R}^{d \times d}$, e

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \det(\mathbf{\Sigma})^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

- ► Generalização natural da Normal para mais dimensões: altura e peso, por exemplo
- Por definição, $\mathbb{E}[X] = \mu$ e $\mathbb{V}[X] = \Sigma$
- ▶ A matriz Σ é simétrica (Cov(X_i, X_j) = Cov(X_j, X_i)) e positiva semidefinida ($\mathbb{E}[(\mathbf{X} \boldsymbol{\mu})(\mathbf{X} \boldsymbol{\mu})^T]$)

Estimação: máxima verossimilhança

- ▶ Suponha que $X_1, X_2, ..., X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, mas μ e σ^2 são desconhecidos. Como estimá-los?
- Método da máxima verossimilhança: a probabilidade de observar os dados x_1, \ldots, x_n é

$$f(x_1,\ldots,x_n) = \prod_{i=1}^n f(x_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}}$$

 \blacktriangleright Vamos encontrar os valores de μ e σ^2 que maximizam a probabilidade de observar a amostra:

$$(\hat{\mu}, \hat{\sigma}^2) = \operatorname*{argmax}_{\tilde{\mu}, \tilde{\sigma}^2} \log f(x_1, \dots, x_n) = \operatorname*{argmax}_{\tilde{\mu}, \tilde{\sigma}^2} - \frac{n}{2} \log(2\pi \tilde{\sigma}^2) - \sum_{i=1}^n \frac{(x_i - \tilde{\mu})^2}{2\tilde{\sigma}^2}$$

ightharpoonup Tomando a derivada em $\tilde{\mu}$ e $\tilde{\sigma}^2$ e colocando-as igual a zero, obtemos

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

lsso sugere estimadores para os parâmetros μ e σ^2 ; note que eles são bastante razoáveis

15 / 25

Exemplo: viés e variância de estimador

- ▶ Vamos considerar um exemplo em que $Y = f(X) + \varepsilon = \mu + \varepsilon$, onde $\varepsilon \sim N(0, \sigma^2)$, ou seja, não temos covariadas X, só Y observado. Queremos estimar o valor de um novo Y_* não-observado
- Pela hipótese acima, $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ e queremos estimar o novo Y_* via $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$
- Em primeiro lugar, por definição, $\mathbb{E}[Y_1] = \mu$ (então bias $(Y_1) = 0$) e $\mathbb{V}[Y_1] = \sigma^2$. Daí,

$$MSE(Y_1, Y_*) = \mathbb{E}[(Y_1 - Y_*)^2] = \mathbb{E}[(Y_1 - (\mu + \varepsilon_*))^2] = \mathbb{E}[(Y_1 - \mu)^2] + \mathbb{E}[\varepsilon_*^2] = \mathbb{V}[Y_1] + \mathbb{V}[\varepsilon_*] = 2\sigma^2$$

▶ Mas em algum sentido o estimador \overline{Y} deve ser melhor. De fato, $\mathbb{E}[\overline{Y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[Y_i] = \mu$ e $\mathbb{V}[\overline{Y}] = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{V}[Y_i] = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n^2}$. Daí

$$\mathrm{MSE}(\overline{Y}, Y_*) = \mathbb{E}[(\overline{Y} - Y_*)^2] = \mathbb{E}[(\overline{Y} - \mu)^2] + \mathbb{E}[\varepsilon_*^2] = \mathbb{V}[\overline{Y}] + \mathbb{V}[\varepsilon_*] = \frac{\sigma^2}{n} + \sigma^2 = \frac{n+1}{n}\sigma^2.$$

e para n > 1, \overline{Y} tem erro médio quadrático menor

Inferência: teste de hipótese

- ▶ Se observamos uma amostra $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ e $\overline{y} = 0.02$, é possível dizer que $\mu = 0$?
- Aqui, vamos assumir que σ^2 é um valor conhecido, e desconhecemos apenas μ
- ▶ Duas hipóteses, $H_0: \mu = 0$ e $H_1: \mu \neq 0$. Se H_0 vale, qual é a probabilidade de observar $\overline{y} = 0.02$?
- ▶ Vamos usar o estimador de antes, $\overline{Y} \sim N(\mu, \sigma^2/n)$. Daí, temos

$$rac{\overline{Y} - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1) \stackrel{H_0}{\Longrightarrow} T = rac{\overline{Y}}{\sqrt{\sigma^2/n}} \sim N(0,1)$$

► Se $n = 10^4$, $\sigma^2 = 1$, $t = \sqrt{10^4} \cdot 0.02 = 2$, e P[|Z| > t] = 0.045, então a nível 95% rejeitamos H_0

Paulo Orenstein Machine Learning 2025 (IMPA) 17 / 25

Otimização

- Convexidade
- ► Métodos de primeira ordem
 - descida de gradiente
 - descida de gradiente estocástico
- Otimização com restrições

Convexidade

- Estamos interessados em encontrar o melhor fit para os dados; "melhor" sugere otimização
- Problema: é raro conseguirmos encontrar um mínimo global, mas não mínimo local
- Existe uma classe de funções onde mínimo local implica em mínimo global: funções convexas
- ▶ Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é convexa se, dados dois pontos θ_1 e θ_2 e $\alpha \in [0, 1]$,

$$f(\alpha \theta_1 + (1-\alpha)\theta_2) \leq \alpha f(\theta_1) + (1-\alpha)f(\theta_2)$$

- ▶ Se $f \in C^2$, ela é convexa se e somente se a Hessiana $\nabla^2 f(\theta)$ é positiva semi-definida
- Exemplos: $e^{a\theta}$, θ^a ($a \ge 1$ ou $a \le 0$), $\theta \log \theta$, $-\log \theta$, $\mathbf{a}^T \boldsymbol{\theta} + b$, $\|\boldsymbol{\theta}\|^p$ ($p \ge 1$), $\boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta} + \mathbf{b}^T \boldsymbol{\theta} + c$ ($\mathbf{C} \succeq 0$)
- Funções convexas podem ser compostas: (i) se f é convexa, $c \cdot f$ também é, onde $c \ge 0$; (ii) se f_1 e f_2 são convexas, $f_1 + f_2$ também; (iii) se f_1, \ldots, f_p são convexas, $\max\{f_1(\theta), \ldots, f_p(\theta)\}$ também

Métodos de primeira ordem: descida de gradiente

▶ Se f é diferenciável, um método iterativo para mínimos locais é caminhar na direção do gradiente:

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \rho_t \nabla f(\boldsymbol{\theta}^t)$$

- Credit: Kevin Murphy
- ightharpoonup Aqui, $ho_t \in \mathbb{R}$ é chamado de taxa de aprendizado (ou tamanho de passo), e pode variar com t
- Esse método é chamado de descida de gradiente

Métodos de primeira ordem: descida de gradiente estocástico

- Como estamos lidando com dados aleatórios, em geral queremos minimizar $f(\theta) = \mathbb{E}[L(\theta, \mathbf{x})]$, onde $\mathbf{x} \sim p(\mathbf{x})$ é uma variável aleatória representando os dados e θ representa um parâmetro
- ▶ Descida de gradiente: aproximamos $\mathbb{E}[L(\theta, \mathbf{x})] \approx \frac{1}{n} \sum_{i=1}^{n} L(\theta, \mathbf{x}_i)$ com $\{\mathbf{x}_i\}_{i=1}^{n}$ amostra de treino
- \blacktriangleright Mas isso é muito custoso; vamos usar uma sub-amostra (ou batch \mathcal{B}_t) apenas:

$$oldsymbol{ heta}^{t+1} = oldsymbol{ heta}^t -
ho_t \left(rac{1}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t}
abla L(oldsymbol{ heta}^t, \mathbf{x}_i)
ight),$$

- Esse método é chamado de descida de gradiente estocástico; é fundamental em machine learning
- ▶ A escolha de learning rate é fundamental para garantir convergência; e.g., $\rho_t = \rho_0 e^{-\lambda t}$
- ▶ Na teoria, a convergência de SGD é mais lenta, mas na prática é mais rápido porque cada passo toma menos tempo. SGD tem outras vantagens, mas ainda não são totalmente entendidas

Otimização com restrições: igualdade

Às vezes queremos minimizar uma função sujeita a restrições de igualdade:

$$\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$
 tal que $h_i(\boldsymbol{\theta}) = 0, i \in \mathcal{E}$

- ▶ Repare que num ótimo pode não valer $\nabla L(\theta^*) = 0$
- Mas: (i) $\nabla h_i(\theta)$ é perpendicular à curva de nível, pois $h_i(\theta + \varepsilon) \approx h_i(\theta) + \varepsilon^T \nabla h_i(\theta)$; (ii) $\nabla L(\theta^*)$ também é perpendicular, senão poderíamos diminuir a função objetivo ao longo da curva. Daí:

$$\nabla L(\boldsymbol{\theta}^*) = \lambda_i \nabla h_i(\boldsymbol{\theta}^*)$$

Para encapsular essa condição, e a restrição $h_i(\theta^*) = 0$, basta derivar e igual a zero o Lagrangeano

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\lambda}} L(\boldsymbol{\theta}) + \sum_{i \in \mathcal{E}} \lambda_i h_i(\boldsymbol{\theta})$$

► Se *L* é convexa e *h_i* também, o mínimo local é global

Otimização com restrições: exemplo

Resolva o seguinte problema, assumindo A simétrica positiva semi-definida:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T \mathbf{A} \mathbf{x}$$
 tal que $\|\mathbf{x}\|_2^2 = 1$

Este é um problema convexo com restrição de igualdade. O Lagrangeano é

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \lambda(\mathbf{x}^{\mathsf{T}}\mathbf{x} - 1)$$

► A condição de primeira ordem é

$$2\mathbf{A}\mathbf{x} + 2\lambda\mathbf{x} = 0$$
.

ou seja,
$$\mathbf{A}\mathbf{x} = -\lambda\mathbf{x}$$

- \blacktriangleright Isto é, o valor mínimo é um autovalor λ ; naturalmente, deve ser o menor deles, λ_1
- ightharpoonup O mínimo é atingido pelo autovetor associado ao autovalor λ_1

Otimização com restrições: desigualdade

Às vezes queremos minimizar uma função sujeita a restrições de desigualdade:

$$\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$
 tal que $g_j(\boldsymbol{\theta}) \leq 0, j \in \mathcal{I}$

ightharpoons Para simplificar, vamos considerar o caso de uma desigualdade apenas. Se $\mu \geq 0$, defina

$$\tilde{L}(m{ heta}) = \max_{\mu \geq 0} L(m{ heta}) + \mu g(m{ heta}) = egin{cases} \infty & ext{se } g(m{ heta}) > 0 \\ L(m{ heta}) & ext{case contrário} \end{cases}$$

e note que resolver esse problema é equivalente ao original

- ▶ Ou seja, reformulamos o problema como $\min_{\theta} \max_{\mu>0} L(\theta) + \mu g(\theta)$
- ▶ Se tivermos várias restrições $g_i(\theta) \le 0$, $j \in \mathcal{I}$, o problema se torna

$$\min_{oldsymbol{ heta}} \max_{oldsymbol{\mu} \geq \mathbf{0}} L(oldsymbol{ heta}) + \sum_{j \in \mathcal{I}} \mu_j g_j(oldsymbol{ heta})$$

Otimização com restrições: condições de KKT

ightharpoonup Colocando tudo junto, para resolver um problema convexo (*i.e.*, L, g_j convexas e C^1 , h_i afim)

$$\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$
 tal que $h_i(\boldsymbol{\theta}) = 0$, $g_j(\boldsymbol{\theta}) \leq 0$, $i \in \mathcal{E}$, $j \in \mathcal{I}$,

olhamos para

$$\min_{oldsymbol{ heta}} \max_{oldsymbol{\mu} \geq \mathbf{0}, oldsymbol{\lambda}} L(oldsymbol{ heta}) + \sum_{i \in \mathcal{E}} \lambda_i h_i(oldsymbol{ heta}) + \sum_{j \in \mathcal{I}} \mu_j g_j(oldsymbol{ heta})$$

- ► Condições de KKT: suficiência (e necessidade*) para resolver o problema acima:
 - (Estacionariedade) Ótimo é estacionário: $\nabla L(\theta^*) + \sum_{i \in \mathcal{E}} \lambda_i \nabla h_i(\theta^*) + \sum_{j \in \mathcal{I}} \mu_j \nabla g_j(\theta^*) = \mathbf{0}$
 - (Viabilidade) As restrições precisam ser satisfeitas: $g_j(\theta^*) \leq 0$, $h_i(\theta^*) = 0$ para $i \in \mathcal{E}, j \in \mathcal{I}$
 - ullet (Viabilidade dual) A penalidade das desigualdades é positiva: $oldsymbol{\mu} \geq oldsymbol{0}$
 - (Folga complementar) Restrições inativas zeram o multiplicador: $\mu_j g_j(\pmb{\theta}^*) = 0$ para $j \in \mathcal{I}$

lo Orenstein Machine Learning 2025 (IMPA) 25 / 25

^{*}Sob condições de regularidade, e.g., Slater: existe x tal que $h_i(x)=0$ e $g_j(x)<0$