

Maqueta de convertidores DC/DC controlados por microcontrolador

Héctor Bohé Navarrete

Tutor: Carlos Ortega

Departament d'Electrónica

Grado en Ingeniería Electrónica Industrial y Automática

Escola Universitària Salesiana de Sarrià

7 de julio de 2022

Contenido

- Introducción
- Buck
- Boost
- Control
- Resultados
- Conclusiones

Introducción

Diseñar una maqueta de convertidores DC/DC controlados por microcontrolador para la asignatura de Electrónica de potencia.

Estudio y diseño de los convertidore buck, boost y etapa de control Simulación de los convertidores Medidas experimentales

Convertidor BUCK

 V_d

Vo<Vd

Modos de funcionamiento CCM

Modo de conducción continua

• IL > 0

DCM

Modo de conducción discontinua

IL<0

Caso limite

Diseño BUCK

Vd = 30V

Vo = 5V

Po=10W

fr = 31250 Hz

D = 0.16

L = 68 uH

C = 100 uF

Convertidor DC/DC

Vo > Vd

Modos de funcionamiento CCM

Modo de conducción continua

• IL > 0

DCM

Modo de conducción discontinua

• IL<0

Caso limite

Vd = 5V

Vo = 10V

Po=10W

fr = 31250 Hz

D = 0.5

L = 22 uH

C = 100 uF

Driver Buck

G

IR2301SPBF

Controlador Doble Lado Alto Lado Bajo 5V-20V SOIC-8

Selección de modo

BUCK

CCM	2Ω
DCM	10Ω
Limite	5Ω

BOOST

CCM	8Ω
DCM	20Ω
Limite	10Ω

Sensor de corriente

Medir tensión

Divisor de tensión

Vout =
$$5V$$

14

Resultados Simulación buck

TFG EUSS 2021-2022

Buck: tensión en bornes de la bobina CCM

Simulación simulink

Medición

Buck: corriente por la bobina CCM

Simulación simulink

Medición 100mV/A

07/07/2022 TFG EUSS 2021-2022 16

Simulación boost

Resultados

Boost: tensión en bornes de la bobina Caso límite

Simulación simulink

Medición

Resultados

Boost: corriente por la bobina Caso límite

Simulación simulink

Medición 100mV/A

07/07/2022 TFG EUSS 2021-2022 19

Conclusiones

- Realizar maqueta de convertidores DC/DC controlados por microcontrolador
- Estudio y diseño de los convertidores buck y boost
- Modelo de simulación de los dos convertidores
- Diseño etapa de control
- Medidas experimentales

+ Control y adquisición de datos mediante un PC