

TABLE OF CONTENTS

Executive Summary

Data Science Use Case Life Cycle

The Data Scientist's Dream

The Data Scientist's Dream Deferred: Missing data

Missing Value Imputation

missForest package

Classification using randomForest package

Business Classification Problems

EXECUTIVE SUMMARY

Problem Statement:

- How does R fit into the life of a data scientist?
- How does it make the execution of their daily tasks, accomplishable?

Focus of the presentation:

- Unpacking the principles of the Data Science Use Case Lifecycle
 - Data wrangling and transformation
 - Model build and evaluation
- Provide an example of missing value imputation and classification

Benefits:

- Assisting students of Applied Statistics by providing them with a real-world example of how they can use R.
- Knowledge-share with Data Scientists and other professionals

DATA SCIENCE USE CASE LIFECYCLE

Problem Definition

Data **Collection &** Ingestion

Data Wrangling **Exploratory Analysis**

Model **Building & Evaluation**

Data Visualization & Communication

- Problem statement
- Staged data sources

 Data set for analysis

Missing Value Imputation

Preliminary views

- Machine learning model
- Enriched dataset

Classification

- Visualization dashboard
- Presentation

THE DATA SCIENTIST'S DREAM

THE DATA SCIENTIST'S DREAM (PART 2)

current_ratio_log Ů	number_of_subsidiaries_log	number_of_employees_log	working_capital_effects_log
0.42022255	0.9987220	2.723370	10.81952
0.31722782	1.6901961	4.260494	10.81877
0.14295147	0.6989700	2.880663	10.81980
0.55594505	1.0791812	1.986878	10.81968
0.51245436	1.2552725	2.522902	10.81922
0.41206643	1.0000000	2.813581	10.81960
0.46637203	1.2041200	3.370328	10.81808
0.40459802	1.8692317	4.933958	10.81872
0.62818286	0.6020600	1.689837	10.81944
0.36158682	0.4771213	1.882528	10.81961
0.09939805	1.6434527	3.840232	10.81941
0.43470513	1.8260748	3.813114	10.81728
0.76606275	0.0000000	1.966854	10.82001
0.66436188	0.3010300	2.476714	10.81955
0.38882594	1.3617278	2.576634	10.81950

THE DATA SCIENTIST'S DREAM DEFERRED: MISSING DATA

_	number_of_subsidiaries	number_of_employees	working_capital_effects	total_revenue	gross_profit	cash	_and_cash_equivalents	total_current_assets	cost_of_sales		nt_liabilities
NA		NA	NA	NA	NA	NA		NA	NA	NA	
NA	48	NA	NA	54144477390	NA	NA		NA	NA	NA	
0.389797314	4	NA	NA	1368612799	NA		86173197.36	727745349.6	NA		186698400
2.597038192	11	NA	4760068.609	318007153.4	141445837.6	5	199444.2155	132909625.2	176561315.8		51177385.69
2.254275817	17	NA	NA	671648340	NA		240662686.6	276895052.5	NA		122831044.2
1.582655196	9	670	NA	1011461394	628821018.8	3	99801885.41	362031139.9	382640375.5		228749218.
1.926658395	15	2365	-238123097	6163344812	2508170565	NA		3386004335	3655174248		175744924
1.538621887	73	85912	NA	17553404513	2628342353	3	407743754.1	3169979657	14925048864		2060272042
3.247983871	3	NA	NA	31179779.02	NA		7233176.88	21420308.74	NA		6594955.393
1.299253303	2	NA	-5278623.569	315972822.4	158345410.8	3	41205174.91	90228563.07	157627411.6		69446475.82
0.257181705	43	6941	-36644550.52	4405390312	NA	NA		492933026.6	396681248.3		1916672207
1.720853312	66	6522	-358959699	19922323126	6703652488	3	1467058464	9276669016	13218670638		5390737811
4.835294118	0	NA	NA	NA	NA		53530827.43	54647715.03	NA		11301838.88
3.617021277	1	NA	-15835870.71	553736919.8	338217500.6	5	61016633.65	174048318.7	215532715.5		48119241.05
NA	22	NA	NA	NA	NA	NA		NA	NA	NA	
2.999432118	42	858	-22869603.37	1088287306	445744525.3	3	635522344.4	983193500.8	642542780.8		327793216.2
NA	9	NA	NA	NA	NA	NA		NA	NA	NA	
2.585813347	38	2211	-75456394.85	6136659176	1907936550)	1495087024	3654190323	4228722626		1413168637
NA	8	NA	NA	240330279.6	NA	NA		NA	NA	NA	
NA	1	NA	NA	NA	NA	NA		NA	NA	NA	
1.730252948	19	24106	-1781488172	10898614000	2187461718	3	1551035279	5793217570	8711152283		3516066980
2.372415723	34	2451	-71329024.8	1465698693	689220901.7	7	75312241.92	466493750.2	776484439.1		435683394.6
2.060497466	13	4479	NA	3852451169	3000744592	2	640747782.8	1162041777	851706577.7		563961759.9
0.923076923	1	NA	-5424882.66	169939767.8	62213298.94	ı	119666.5293	40048398.46	107726468.9		43385765
1.430498634	7	116	-6820992.168	233057213.9	146764350)	66242072.09	111382946.2	86292863.89		77863021.71
NA	6	NA	NA	NA	NA	NA		NA	NA	NA	
NA	43	NA	NA	NA	NA	NA		NA	NA	NA	
1.060308641	13	8072	NA	20007618769	5784680025	5	869058224.4	6505498012	14222938744		6135475807
1.712268664	41	NA	380313526.3	13044609023	2317235969)	396734433.4	3736055525	10727359758		2181933013
1.9	2	NA	41298000	1099623000	NA		96140000	413094000	921612000		217417894.7
0.92	1	NA	-62477000	2390155000	2390155000)	21253000	256882000	0	NA	
1.25	1	NA	0	50300328	12275974	ı	1874821	17133794	38024354		13707035.2
1.600149198	37	NA	NA	513396003.1	NA		100971958.1	570410456.2	NA		356473294.4

MISSING VALUE IMPUTATION

In statistics imputation is the process of replacing missing data with substituted values.

Type of imputation	Method	Pros	Cons
Hot deck	Randomly select similar record from the same dataset (e.g. last observation carried forward)	Useful if recent	Can be very inaccurate (e.g. as in financials)
Cold deck	Randomly select similar record from another dataset	None that I know of	Can be very inaccurate (e.g. as in financials)
Mean substitution	Substitute with the mean of that variable for all other available cases	Does not change the sample mean for that variable	Reduces the effect of any correlations involving the variable(s) that are imputed
Regression	A regression model is estimated to predict observed values of a variable based on other variables, and that model is then used to impute values in cases where that variable is missing.	Imputation often doesn't alter the distribution of the variable(s).	Imputed data do not have an error term, Relationships are over identified and suggest greater precision in the imputed values than is warranted

missFOREST PACKAGE

Using missForest package in R for missing value imputation

Package 'missForest'

Title Nonparametric Missing Value Imputation using Random Forest

Description The function 'missForest' in this package is used to <u>impute missing values</u> particularly in the case of <u>mixed-type data</u>. It uses a <u>random forest</u> trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation.

DATA INGESTION & TRANSFORMATION

###Missing Value Imputation with missForest and Classification with randomForest###

```
#Read in the packages you'll need
library("missForest", lib.loc="/mnt/nfs/anaconda2/envs/rserver/lib/R/library")
library(dplyr)
library("randomForest", lib.loc="/mnt/nfs/anaconda2/envs/rserver/lib/R/library")
library(data.table)
#Read in data
mf rf <- read.csv(file="R User group preso/mf rf.csv", header=TRUE, sep=",")</pre>
#Summarise the data
summary(mf rf)
#Replace some of the figures with NA
mf_rf$days_inventory_outstanding[mf_rf$days_inventory_outstanding=='Inf']<- NA
mf rf$days sales outstanding[mf rf$days sales outstanding=='Inf']<-NA
mf rf$days payables outstanding[mf rf$days payables outstanding=='Inf']<-NA
mf rf$target variable[mf rf$target variable=='']<-NA
#Subset for the variables which will be imputed, as well as the target variable
df<-mf rf[c(3:23)]
#Log-transform var.s
df$current ratio log <- log10(df$current ratio - min(df$current ratio,na.rm=TRUE) + 1)</pre>
df$total revenue log<-log10(df$total revenue -min(df$total revenue,na.rm=TRUE) +1)</pre>
df$gross profit log<-log10(df$gross profit -min(df$gross profit,na.rm=TRUE) + 1 )</pre>
```

RUNNING missFOREST

```
> dim(na.omit(df2)) #I only remain with 33 observations if I drop rows with na units. Not viable. Should impute.
[1] 33 20
> df2miss <- missForest(df2[-c(1)], maxiter = 20, ntree = 100,
                        variablewise = TRUE,
                        decreasing = FALSE,
                        #verbose = FALSE,
                        mtry = floor(sqrt(ncol(df2))),
                        replace = TRUE,
                        #classwt = NULL, cutoff = NULL, strata = NULL,
                        sampsize = NULL,
                        nodesize = c(1,5),
                        #maxnodes = NULL.
                        #xtrue = NA,
                        parallelize = 'no')
 missForest iteration 1 in progress...done!
 missForest iteration 2 in progress...done!
 missForest iteration 3 in progress...done!
 missForest iteration 4 in progress...done!
 missForest iteration 5 in progress...done!
 missForest iteration 6 in progress...done!
> df2 imputed <- data.frame(df2miss$ximp)</pre>
> dim(na.omit(df2 imputed)) #407 full observationss
[1] 407 19
```

RESULTS OF IMPUTATION

Enriched dataset

current_ratio_log	number_of_subsidiaries_log	number_of_employees_log	working_capital_effects_log
0.42022255	0.9987220	2.723370	10.81952
0.31722782	1.6901961	4.260494	10.81877
0.14295147	0.6989700	2.880663	10.81980
0.55594505	1.0791812	1.986878	10.81968
0.51245436	1.2552725	2.522902	10.81922
0.41206643	1.0000000	2.813581	10.81960
0.46637203	1.2041200	3.370328	10.81808
0.40459802	1.8692317	4.933958	10.81872
0.62818286	0.6020600	1.689837	10.81944
0.36158682	0.4771213	1.882528	10.81961
0.09939805	1.6434527	3.840232	10.81941
0.43470513	1.8260748	3.813114	10.81728
0.76606275	0.0000000	1.966854	10.82001
0.66436188	0.3010300	2.476714	10.81955
0.38882594	1.3617278	2.576634	10.81950

Minimal error

colnames.df2miss.ximp.	df2miss.OOBerror
current_ratio_log	0.05290043
number_of_subsidiaries_log	0.16487103
number_of_employees_log	0.28577578
working_capital_effects_log	0.56907004
total_revenue_log	0.25406204
gross_profit_log	0.41154996
cash_and_cash_equivalents_log	0.54324166
total_current_assets_log	0.30296306

Unchanged distribution of variables

randomForest PACKAGE

Using randomForest package in R for classification

Classification : the problem of <u>identifying to which of a set of categories a new observation belongs</u>

Package 'randomForest'

Description Classification and regression based on a forest of trees using random inputs

Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct for decision trees' habit of overfitting to their training set.

RUNNING randomFOREST

```
> forest high <-randomForest( high~.,
                            model set high,
                            vtest=model set high$high, ntree=10000,
                            mtry=floor(sqrt(ncol(model set high))), keep.forest = T, importance = T,nPerm =10,
                            corr.bias=T.
                            replace=TRUE,
                            classwt=c(0.7045455,0.2954545),
                            cutoff=c(0.75,0.25),
                            #strata,
                            type='classification' )
> forest high
> forest high
Call:
 randomForest(formula = high ~ ., data = model set high, ytest = model_set_high$high,
                                                                                     ntree = 10000, mtry =
 floor(sqrt(ncol(model set high))),
                                      keep.forest = T, importance = T, nPerm = 10, corr.bias = T,
                                                                                                    replace
 = TRUE, classwt = c(0.7045455, 0.2954545), cutoff = c(0.75, 0.25), type = "classification")
              Type of random forest: classification
                   Number of trees: 10000
No. of variables tried at each split: 4
       OOB estimate of error rate: 59.09%
Confusion matrix:
  0 1 class.error
0 3 48 0.9411765
1 4 33 0.1081081
> #Predict
> forest_pred_high <- predict(forest_high, newdata = pred_set_high, type = "prob")</pre>
> Predicted low med high <- cbind(Predicted low med, forest pred high)
```

RESULTS OF CLASSIFICATION

Company [‡] Name	Sector	target_variable
aa	OTHER SERVICES	Low
ab	BANKS	Low
ac	OTHER SERVICES	Medium
ad	CHEMICALS, RUBBER, PLASTICS, NON-METALLIC PRODUC	High
ae	OTHER SERVICES	Low
af	OTHER SERVICES	Medium
ag	CHEMICALS, RUBBER, PLASTICS, NON-METALLIC PRODUC	High
ah	OTHER SERVICES	Low
ai	OTHER SERVICES	Low

BUSINESS CLASSIFICATION PROBLEMS

Common business use cases involving classification:

- Cross-sell and up-sell
- New Business
- Default & financial distress signaling
- Fraud detection
- Churn

