Finding different regimes of Korean stock market and Seoul-si housing market via record statistics with drift

Sejin Lim, Soon-Hyung Yook

Department of Physics, Kyung Hee University

2021 KPS Fall Meeting

2021.10.20-22

Introduction

- Financial market 은 방대한 데이터의 양 덕분에 복잡계의 일부분으로써 통계물리학에서 연구되어 오고 있음
- ▶ 일반적으로 경제 시스템에서의 보편적 특징들을 연구 대상으로 함
 - ▶ 개인이나 기업의 소득이나 주식 거래 시장과 외환시장의 리턴 에 대한 fat-tailed 분포 [V. Plerou et al., Phys. Rev. E 60, 6519 (1999)]
 - ▶ 가격 변화에서의 high-order 상관관계 [Y. Liu et al., Phys. Rev. E **60**, 1390 (1999)]
- ▶ 주식 시장과 주택 시장은 GDP, 인플레이션율, 세금 정책 등 다양한 외부 요인들과 상호작용을 하고 다른 금융 시장들과 공통된 보편적 특성들을 공유함 [J. Aizenman, Y. Jinjarak, H. Zheng, VoxEU. org 24 (2016)]
- ▶ 이런 관점에서 국내의 주식 시장과 주택시장의 record statistics 를 이해하는 것은 글로벌 금융 시스템에 주는 영향을 조사하는 데 중요
- ▶ 이 연구에서는 한국 주식 시장과 서울시 주택 시장 데이터를 record statistics 와 inter-record time distribution 으로 분석하고자 함

Introduction: Record

- ▶ 전체 데이터 개수가 N 개인 시계열 데이터 : {x₁, x₂, ..., x_N}
- \triangleright 특정 시점 m 에서 발생하는 record 의 정의 : $x_m > \max\{x_1, x_2, x_3, ..., x_{m-1}\}$
- Binary record indicator : $\sigma_m = \begin{cases} 1, & \text{record happens at step } m \\ 0, & \text{otherwise} \end{cases}$, $\sigma_1 = 1$ (by convention)
- ightharpoonup Record number (N 시간 동안 record 발생 횟수) : $R_N = \sum_{m=1}^N \sigma_m$
- \triangleright 평균 record 발생 횟수 : $\langle R_N \rangle = \sum_{m=1}^N \langle \sigma_m \rangle$
- \triangleright Record rate (m 시점의 record 발생 비율): $r_m = \langle \sigma_m \rangle$
- \triangleright Random walk variables $\{x_m\}$ 의 예 :
 - ho $x_m = x_{m-1} + \eta_m + c$, η_m 는 대칭적인 분포 $\varphi(\eta)$ 를 따르는 random variable, $c = (constant \ drift)$
 - \blacktriangleright 분포 $\phi(\eta)$ 의 종류 [Satya N. Majumdar and Robert M. Ziff., Phys. Rev. Lett. 101, 505601 (2008), Satya N. Majumdar., Physica A 389, 4299 (2010)]
 - Uniform distribution
 - > Gaussian distribution
 - > Cauchy distribution
 - Lévy alpha-stable distribution

Introduction: Survival prob. and First-passage prob.

- Survival probability : $q(m) = \text{Prob}(x_1 > 0, x_2 > 0, ..., x_m > 0 | x_0 = 0)$
 - $> q(m) = \text{Prob}(x_{m-1} > \max\{x_m\}, ..., x_2 > \max\{x_m, x_{m-1}, ..., x_3\}, x_1 > \max\{x_m, x_{m-1}, ..., x_2\} | x_m = x_m)$
 - 》위의 random walk 의 시간 대칭적 성질에 의해 $q(m) = r_m$ [Satya N Majumdar et al, J. Phys. A: Math. Theor. **54** 315002 (2021)]
- \triangleright First-passage probability : F(x|0,m) : 원점에서 시작하여 x 위치에 m 시점에 처음으로 도달할 확률
 - $F(x|0,m) = -\frac{\partial}{\partial m}q(m)$
 - $ightharpoonup f(m) \equiv F(x|0,m)$
- ➤ First-passage probability 와 inter-record time distribution :
 - > τ : 인접한 record event 가 발생하는 시간 간격 (inter-record time)
 - $\triangleright P(\tau)$: Inter-record time distribution
 - \triangleright Random variable x_m 의 jump length η_m 가 대칭적인 분포 $\varphi(\eta)$ 를 따르면, F(x|0,m) = F(x|x,m) = F(0|0,m)
 - $P(\tau)$ 는 임의의 시점 m 에서 record event가 발생하고 τ 시간 동안 일어나지 않다가 $m+\tau$ 시간에 record event가 발생할 확률과 같음
 - $\triangleright P(\tau) = F(x|x,\tau) = f(\tau)$

Lévy alpha-stable distribution with drift

- $\rightarrow x_m = x_{m-1} + \eta_m + c, \quad c = (constant \ drift)$
- \triangleright jump length η 의 분포 $\varphi(\eta)$ 이 Lévy alpha-stable distribution 인 경우
- $\triangleright \varphi(\eta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(k) e^{-i\eta k} dk$
- $\triangleright \varphi(k; \alpha, \beta, \gamma, \delta) = \exp(ik\delta |\gamma k|^{\alpha} (1 i\beta \operatorname{sgn}(k) \Phi)), \text{ Lévy exponent : } \alpha$

$$\Phi = \begin{cases}
(|\gamma k|^{1-\alpha} - 1) \tan\left(\frac{\pi\alpha}{2}\right) & \alpha \neq 1 \\
-\frac{2}{\pi} \log|\gamma k| & \alpha = 1
\end{cases}$$
Drift regime table

	Regime 1 $0 < \alpha < 1$ c is arbitrary	Regime 2 $\alpha=1$ c is arbitrary	Regime 3 $1 < \alpha < 2$ $c > 0$	$egin{aligned} ext{Regime 4} & & & & & & & & & & & & & & & & & & $	Regime 5 $1 < lpha \le 2$ $c < 0$
q_m	$B_1 m^{-0.5}$	$B_2 m^{-\theta(c)}$	$B_3m^{-\alpha}$	$B_4 m^{-1.5} \exp\left(-\frac{c^2}{2\sigma^2}m\right)$	$k_{\alpha}(c)$
P(au)	$B_1 \tau^{-1.5}$	$B_2 \tau^{-1-\theta(c)}$	$B_3 \tau^{-1-\alpha}$	$B_4 \exp\left(-\frac{c^2}{2\sigma^2}\tau\right) \left(\frac{c^2}{2\sigma^2}\tau^{-1.5} + 1.5\tau^{-2.5}\right)$	uniform
R_m	$A_1 m^{0.5}$	$\frac{A_2}{\Gamma(1+\theta(c))}m^{\theta(c)}$	$k_{\alpha}(c) m$	$k_2(c) m$	$1/k_{lpha}(c)$

Lévy alpha-stable distribution with drift

Table of coefficients for each regime

	Regime 1 $0 c is arbitrary$	Regime 2 $lpha=1$ c is arbitrary	Regime 3 $1 c>0$	$egin{aligned} ext{Regime 4} & & & & & & & & & & & & & & & & & & $	Regime 5 $1 < \alpha \le 2$ $c < 0$		
A_{regime}	$\frac{2}{\sqrt{\pi}} \exp\left[\frac{1}{\pi} \int_0^\infty \frac{dk}{k} \arctan\left(\frac{\hat{f}(k)\sin(kc)}{1 - \hat{f}(k)\cos(kc)}\right)\right]$	$\frac{1}{\Gamma(1-\theta(c))B_2}$	-	-	-		
B_{regime}	$rac{2}{\pi A_1}$	$\frac{e^{-\gamma_0}}{\Gamma(1-\theta(c))}$	$\frac{\alpha - 1}{2\cos\left(\frac{\alpha\pi}{2}\right)\Gamma(2 - \alpha)c^{\alpha}}\exp\left[\sum_{m=1}^{\infty}\frac{1}{m}\int_{c_{m}}^{\infty}P_{m}(x)dx\right]$	$\frac{\sigma}{c\sqrt{2\pi}} \exp\left[\sum_{m=1}^{\infty} \frac{e^{\frac{c^2}{2\sigma^2}m}}{m} \int_{cm}^{\infty} P_m(x) dx\right]$	-		
$k_{\alpha}(c)$	-	-	$\exp\left[-\sum_{m=1}^{\infty}\frac{1}{m}\int_{cm}^{\infty}P_{m}(x)dx\right]$				

[SN Majumdar, J.Phys. A: Math. Theor. 45, 355002 (2012)]

$$\theta(c) = \frac{1}{2} + \frac{1}{\pi} \arctan(c)$$

$$\gamma_0 = \sum_{m=1}^{\infty} \left[1 - \theta(c) - \int_{cm}^{\infty} P_m(x) dx \right], \quad P_m(x) = \operatorname{Prob}[x_m < -cm]$$

KRX and 부동산

- ▶ 한국 주식 시장(KRX) 일별 고가 데이터
 - ▶ 2000년 01월 04일 ~ 2020년 04월 02일 동안 상장되어 있는 주식들의 일별 거래 데이터
- ▶ 서울시 부동산 일별 거래 데이터
 - ▶ 2006년 01월 01일 ~ 2017년 12월 31일 동안의 행정동 별 일별 거래 데이터
- ▶ 해석적 이론과 비교를 위한 수치적 모형
 - $> x_m = x_{m-1} + \eta_m + c$
 - $\triangleright \eta_m$ 는 $\varphi(\eta)$ 를 따르는 random variable, $c = (constant \ drift)$

 - $ho \varphi(k; \alpha, \beta, \gamma, \delta) = \exp(ik\delta |\gamma k|^{\alpha}(1 i\beta \operatorname{sgn}(k) \Phi)), \text{ Levy exponent : } \alpha$
 - $\Phi = \begin{cases}
 (|\gamma k|^{1-\alpha} 1) \tan\left(\frac{\pi\alpha}{2}\right) & \alpha \neq 1 \\
 -\frac{2}{\pi} \log|\gamma k| & \alpha = 1
 \end{cases}$
 - ▶ 샘플 개수 10,000개, 전체 step 수 *N* = 5,000
- ▶ 실제 시계열 데이터와 시뮬레이션 데이터로부터 record number 와 inter-record time distribution 을 계산 및 해석적 이론 값과의 비교를 통해 regime을 알아냄

KRX

Regime 2

- $\bullet \quad \theta(c) = \frac{1}{2} + \frac{1}{\pi} \arctan(c)$
- $\theta(c) \approx 0.4306, c \approx -0.221, \alpha = 1.0$

 $P(\tau) \propto \tau^{\gamma}$, $-\gamma \leq 1.5$ 이므로 regime 3, 4, 5 제외 가능

KRX price data $\equiv \frac{A_2}{\Gamma(1+ heta(c))} m^{ heta(c)}$ 에 Fitting 하여 c 유추

서울시 주택 시장

Regime 4 로 가정

• $k_2(c) \approx 0.03653, c \approx 0.018, \alpha = 2.0$

Regime 3

• $c = 2.250, \ \alpha = 1.10$

- $x_m = x_{m-1} + \eta_m + c$
- $\varphi_0(\eta)$: Lévy α -stable distribution
- p_0 : jump length η 가 0일 확률
- $c = 2.250, \ \alpha = 1.10, \ p_0 = 0.939$

요약 및 결론

- ▶ 한국 주식 시장과 서울시 주택 시장의 drift regime에 차이가 있음을 발견됨
- ightharpoonup 한국 주식 시장은 c = -0.221, $\alpha = 1.0$ 인 Regime 2
- 서울시 주택 시장은 c = 2.250, α = 1.10 Regime 3
 - ▶ Regime 4 로 짐작 했으나 inter-record time distribution 의 exponent 값이regime 4 와 상이함
 - ▶ Regime 3 에서 record number 가 잘 맞지 않는 이유는 서울시 주택 시장의 거래 빈도 수가 적기 때문으로 여겨 짐
 - \triangleright Regime 3 에서 jump length 가 0일 확률 p_0 가 일자 별 거래할 확률 0.939와 같은 경우, record number 가 비슷한 경향성을 보임을 확인함
- ▶ Regime 2 에서는 drift 값이 record statistics에 영향을 크게 미치고 Regime 3 에서는 jump length의 분포에 대한 정보인 α 값이 영향을 크게 미침