CS151B/EE116C – Solutions to Homework #1

1.5

a. instructions / sec = frequency / CPI

P1's instructions/sec = $3 \times 10^9 / 1.5 = 2 \times 10^9$

P2's instructions/sec = $2.5 \times 10^9 / 1.0 = 2.5 \times 10^9$

P3's instructions/sec = $4 \times 10^9 / 2.2 = 1.8 \times 10^9$

b. The number of cycles in 10 seconds = frequency \times 10

cycles (P1) =
$$10 \times 3 \times 10^9 = 3 \times 10^{10}$$

cycles (P2) =
$$10 \times 2.5 \times 10^9 = 2.5 \times 10^{10}$$

cycles (P3) =
$$10 \times 4 \times 10^9 = 4 \times 10^{10}$$

The number of instructions in 10 seconds = instructions/second (answer of 1.5.a) \times 10

c. From the problem, $CPI_{new} = CPI_{old} \times 1.2$, $T_{new} = T_{old} \times 0.7$, and $(IC_{new} = IC_{old})$

$$0.7 \times (IC_{old} \times CPI_{old} \times 1 / F_{old}) = IC_{old} \times CPI_{old} \times 1.2 \times 1 / F_{new}$$

$$F_{new} = 1.2 / 0.7 \times F_{old} = 1.714 \times F_{old}$$

So, $F_{new}(P1, P2, P3) = (5.14GHz, 4.29GHz, 6.86GHz)$

1.6

a. CPI (P1) =
$$1 \times 0.1 + 2 \times 0.2 + 3 \times 0.5 + 3 \times 0.2 = 2.6$$

$$CPI(P2) = 2$$

b. cycles (P1) = CPI
$$\times$$
 IC = 2.6 \times 10⁶

cycles (P2) =
$$2 \times 10^6$$

T (P1)=
$$10^6 \times 2.6 \times 1 / (2.5 \times 10^9) = 1.04 \times 10^{-3} \text{ s}$$

T (P2)=
$$10^6 \times 2 \times 1 / (3 \times 10^9) = 0.66 \times 10^{-3} \text{ s.}$$

Thus, P2 is faster than P1.

1.7

a. $CPI = T / IC \times cycle time$

$$CPI_A = 1.1 / 10^9 \times 10^{-9} = 1.1$$
, $CPI_B = 1.5 / 1.2 \times 10^9 \times 10^{-9} = 1.25$

b.
$$F_B$$
 / F_A = IC_B × CPI_B / IC_A × CPI_A = 1.2 × 10^9 × 1.25 / 10^9 × 1.1 = 1.37

c.
$$T_A / T_{NEW} = 10^9 \times 1.1 / 6 \times 10^8 \times 1.1 = 1.67$$
,

$$T_B / T_{NEW} = 1.2 \times 10^9 \times 1.25 / 6 \times 10^8 \times 1.1 = 2.27$$

1.13

- 1. The reduction of T_{FP} = 70 70 ×0.8 = 14 s. The reduction time is 14 / 250 = 5.6%
- 2. T_{NEW} = 250 ×0.8 = 200 = 70 + 85 + 40 + T_{INT} . T_{INT} = 5

The reduction time of INT is (55-5)/55 = 90.9%

3. No, since $T_{FP} + T_{INT} + T_{L/S} = 210s$