Appendix A

Table 1: Comparison of Machine Learning Models

Models	Advantages	Disadvantages
k-nearest neighbor (k-NN)	 Nonparametric Zero cost in learning process Intuitive approach Robust to outliers 	 Expensive computation for large datasets Hard to interpret results Performance depends on number of dimensions Lack of explicit model training
Support vector machine (SVM)	 Utilizes predictive power of linear combi- nations Good prediction in var- ious situations Low generalization er- ror 	 Weak handling of mixed data types Sensitive to tuning parameters and kernel choice Slow training for large datasets
Decision Trees	 Tolerance to correlated inputs Highly interpretable (single tree) Handles missing values Works with numerical and categorical data 	 Cannot work on combinations of features Relatively less predictive in many situations Prone to overfitting
Logistic regression	 Provides logistic probability model Easy to interpret Provides confidence interval 	 Doesn't handle missing continuous variable values Suffers multicollinearity Sensitive to extreme continuous variable values
Naïve Bayes	 Suitable for small training sets Easily obtain probability for prediction Simple and straightforward to use 	 Prone to bias with more training data Assumes all features are independent and equally important Sensitive to data preparation
Neural networks	 Generally good prediction Tolerance to correlated inputs Incorporates predictive power of different input combinations 	 Not robust to outliers Susceptible to irrelevant features Difficult with big data and complex models

Table 2: Hyperparameter Grid Definition

Models	Hyperparameter Grid	
KNN	'n_neighbors': [3,5,7], 'weights': ['uniform', 'distance'], 'metric': ['euclidean', 'manhattan', 'minkowski']	
MLP	'hidden_layer_sizes': [(50,), (100,), (150,)], 'activation': ['relu', 'tanh'], 'solver':['adam'], 'learning_rate':['constant'], 'power_t':[0.5], 'alpha':[0.0001], 'max_iter':[10000], 'early_stopping':[False], 'warm_start':[False]	
RF	'n_estimators': [10, 50, 100], 'max_depth': [5, 10]	
CART	'max_depth': [5, 10], 'min_samples_split':[2,3]	
NB	'var_smoothing': [1e-11, 1e-10, 1e-9]	
LDA	'solver': ["svd","lsqr"]	
QDA	$'reg_param':[0.1,0.2,0.3,0.4,0.5]$	
LR	'C': [0.001, 0.01, 0.1, 1.0]	
Aboost	'n_estimators': [50, 100, 200], 'learning_rate': [0.01, 0.1, 1.0]	