Versuchsbericht zu

O1 – Geometrische Optik

Gruppe Mi 11

Alex Oster(a_oste16@uni-muenster.de)

Jonathan Sigrist(j_sigr01@uni-muenster.de)

durchgeführt am 30.05.2018 betreut von Johannes Feldmann

Inhaltsverzeichnis

1	Kur	zfassung	1
2	Α		1
	2.1	Methoden	1
		2.1.1 Aufbau	1
		2.1.2 Funktionsweise	1
	2.2	Durchführung	1
	2.3	Datenanalyse	1
	2.4	Diskussion	1
3	В		2
	3.1	Methoden	2
		3.1.1 Aufbau	2
		3.1.2 Funktionsweise	2
	3.2	Durchführung	2
	3.3	Datenanalyse	2
	3.4	Diskussion	2
4	Schl	lussfolgerung	3
5	Anh	ang	4
	5.1	Unsicherheiten	4
Lit	Literatur		

1 Kurzfassung

Dieser Bericht beschäftigt sich mit der Untersuchung von

2 A

2.1 Methoden

Dieser Abschnitt beschäftigt sich mit dem

2.1.1 Aufbau

Der Versuchsaufbau ist in Abbildung?? graphisch dargestellt.

2.1.2 Funktionsweise

- 2.2 Durchführung
- 2.3 Datenanalyse
- 2.4 Diskussion

3 B

3.1 Methoden

Dieser Abschnitt beschäftigt sich mit

3.1.1 Aufbau

Abbildung ?? stellt den Aufbau graphisch dar.

3.1.2 Funktionsweise

3.2 Durchführung

3.3 Datenanalyse

3.4 Diskussion

Auch hier stellt sich nun die Frage, ob die Ziele der Untersuchung erreicht wurden.

4 Schlussfolgerung

5 Anhang

5.1 Unsicherheiten

Jegliche Unsicherheiten werden nach GUM bestimmt und berechnet. Die Gleichungen dazu finden sich in 1 und 2. Für die Unsicherheitsrechnungen wurde die Python Bibliothek "uncertainties" herangezogen, welche den Richtlinien des GUM folgt. Alle konkreten Unsicherheitsformeln stehen weiter unten. Für Unsicherheiten in graphischen Fits wurden die y-Unsicherheiten beachtet und die Methode der kleinsten Quadrate angewandt. Dafür steht in der Bibliothek die Methode "scipy.optimize.curve_fit()" zur Verfügung.

Für digitale Messungen wird eine Unsicherheit von $u(X) = \frac{\Delta X}{2\sqrt{3}}$ angenommen, bei analogen eine von $u(X) = \frac{\Delta X}{2\sqrt{6}}$.

TODO

$$x = \sum_{i=1}^{N} x_i; \quad u(x) = \sqrt{\sum_{i=1}^{N} u(x_i)^2}$$

Abbildung 1: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad u(f) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$

Abbildung 2: Formel für sich fortpflanzende Unsicherheiten nach GUM.

Literatur

[1] WWU Münster. W2 - Adiabatenexponent von Gasen. URL: https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=28561§ion=27 (besucht am 29.05.2018).