Математические основы защиты информации Лабораторная работа №6 Криптосистема RSA

БГУ, ММФ, Каф. ДУиСА, доцент Чергинец Д.Н.

Односторонние функции

В 1976 г. американские математики У.Диффи и М.Э.Хеллман ввели новый тип криптосистем — криптосистемы с *открытым ключом*. В ее основе лежит идея использования для шифрования односторонних функций.

Определение. Отображение **f**:**X** \rightarrow **Y** называется *односторонней* (*однонаправленной*) функцией, если существует полиномиальный алгоритм вычисления **f**(**x**) для любых **x** \in **X**, но не существует полиномиального алгоритма вычисления $f^{-1}(y)$ для большинства случайно выбранных **y** из области значений **Y**.

Для криптографии представляют интерес специальные односторонние функции — односторонние функции с лазейкой (или секретом) (one-way trap-door function). Эти функции являются односторонними, если некоторая информация о функции f остается в секрете.

Точнее, функция с лазейкой $f_k: X \to Y$ зависит от параметра k (секретный ключ), $f_k(x)$ вычисляется за полиномиальное время, независимо от того, знаем мы k или нет;

если **k** известно, то $f^{-1}_{k}(y)$ вычисляется за полиномиальное время; если же **k** неизвестно, то не существует (на данное время) полиномиального алгоритма, вычисляющего $f^{-1}_{k}(y)$.

В криптографии множество **X** — это множество открытых сообщений, **Y** — множество шифрованных текстов,

 $f_k(\mathbf{x})$ - алгоритм шифрования, $f^{-1}{}_k(\mathbf{y})$ - алгоритм дешифрования. Условия на функцию с лазейкой f_K означают, что любой пользователь **A** может послать по открытому каналу связи сообщение $y = f_K(x)$ любому пользователю **В**. Способ шифрования содержится в доступном для всех справочнике.

Пользователь **B**, используя свой секретный ключ \mathbf{k} , легко дешифрует сообщение $y = f_K(x)$, т.е. найдет $x = f^{-1}_K(y)$ за полиномиальное время. Однако, никто другой без знания ${\bf k}$ не сможет за полиномиальное время восстановить ${\bf x}$.

Так как существование односторонних функций до настоящего времени не доказано (их существование эквивалентно тому, что $P \neq NP$), то в качестве функций с лазейкой f_{K} берутся функции, для которых вычисление $f^{-1}_{K}(y)$ без знания дополнительной информации **k** является трудной математической задачей на данный момент времени.

Криптосистема RSA

Рассмотрим функцию $f(x) = x^e \pmod{n}$, е и n -некоторые натуральные числа.

Какими бы не были числа x, e, n, значение функции f в точке x,

как мы видели в предыдущих лабораторных работах,

считается за полиномиальное время. В Mathematica это делает

функция PowerMod. Рассмотрим обратную задачу, найти такое x, что

 $x^e = y \pmod{n}$. Алгоритма, который решал бы данную

задачу за полиномиальное время, еще не найдено,

но и не доказано, что его не существует (что наиболее вероятно).

Воспользуемся теоремой

Эйлера. Пусть мы знаем φ (n). Тогда мы можем найти

$$d = e^{-1} \pmod{\varphi(n)}$$
и вычислить x
 $y^d = x^{e d} = x^{1+a \varphi(n)} = x \pmod{n}$

Таким образом, если мы знаем **d** (секретный ключ),

то мы можем дешифровать шифротекст у. На этой идее основан алгоритм RSA.

Алгоритм шифрования RSA имеет вид:

Генерация ключей G[L]

- **1.** Случайным образом выбираем простые числа p и q длины L бит, $p \neq q$.
- **2.** Находим число n := p q.
- **3.** Вычисляем функцию Эйлера $\varphi(n) := (p-1)(q-1)$.
- **4.** Выбираем случайное число e, удовлетворяющее условиям $1 < e < \varphi(n)$, $HOД(e, \varphi(n)) = 1$.
- **5.** При помощи расширенного алгоритма Евклида находим число $d = e^{-1} \pmod{\varphi(n)}$.

প্রিয়েয়েয়েয়েয়েয়েয়ে য়েয়েয়েয়েয়েয়ে (который не скрывают от злоумышленников и используют при шифровании сообщения) являются числа e и n. PublicKey = $\{e,n\}$. Закрытым (секретным) ключом является число d. PrivateKey = $\{d\}$.

Отметим, что числа \mathbf{p} , \mathbf{q} , $\boldsymbol{\varphi}$ (\mathbf{n}) при дальнейших расчетах не нужны, но являются секретными, так как с их помощью можно определить секретный ключ **d**.

Шифрование

Для того чтобы зашифровать число \mathbf{m} , $1 < \mathbf{m} < \mathbf{n}$, необходимо вычислить шифртекст по формуле $c = m^e \pmod{n}$

Дешифрование

Для того чтобы получить открытое сообщение, необходимо воспользоваться секретным ключом **d** $m = c^d \pmod{n}$.

Обоснование

Почему же $c^d = m \pmod{n}$?

Если **HOД(m,n)=1**, то равенство следует из теоремы Эйлера: $c^d = m^{e d} = m^{1+a \varphi(n)} = m \pmod{n}$.

Теперь покажем, что $m = c^d \pmod{n}$ и для m, не взаимно простых с n, т.е. m = p s или m = q s. Пусть, для определенности, m=p s ((m,q)=1).

Тогда

 $c^d = p^{ed} s^{ed} = 0 = m \pmod{p}$ $c^d = m^{e d} = m^{1+b \varphi(q)} = m \pmod{q}$ Следовательно, $c^d = m \pmod{n}$.

Задание 1.

Написать функцию генерации ключей GenerationKey[L], которая возвращает ключи **PublicKey**, **PrinateKey** криптосистемы RSA, где $\mathbf{n} = \mathbf{p} \mathbf{q}$, простые числа \mathbf{p} и ${\bf q}$ длины L бит генерируются при помощи изученного нами ранее алгоритма Миллера-Рабина или теоремы Диемитко.

Задание 2.

Задать функцию EnRSA[m_Integer, PublicKey_], которая шифрует число m, 0 < m < n, при помощи открытого ключа PublicKey = $\{e,n\}$.

Задание 3.

Определить дешифрующую функцию DeRSA[c_Integer, PublicKey_, PrivateKey_], возвращающую число **m**.

Криптоанализ RSA

Алгоритм. Разложение модуля на множители по известным показателям RSA.

Вход: $n, e, d \in \mathbb{N}$

Выход: *p*, *q*.

- 1. При помощи последовательного деления на 2 представляем число $e\,d$ 1 в виде $2^s t$, где t нечетное.
- 2. Выбираем случайное $a ∈ \mathbb{N}$, 1 < a < n 1.
- 3. Если НОД (a,n) > 1, то $p := \text{HОД}(a,n), q := \frac{n}{p}$, конец алгоритма.
- 4. Вычисляем $u := a^t \pmod{n}$, $v := u^2 \pmod{n}$.
- 5. Если u = 1, то переходим к шагу 2.
- 6. Пока $v \neq 1$ вычисляем $u := v, \ v := u^2 \pmod{n}$.
- 7. Если $u \equiv -1 \pmod{n}$, то переходим к шагу 2, иначе вычисляем p := HOД(u+1,n), q := HOД(u-1,n), конец алгоритма.

Задание 4.

По известным открытому **PublicKey** = $\{e,n\}$ и секретному **PrivateKey** = d ключу найти разложение на множители числа n. Представить число e в

двоичной системе счисления. Почему в криптосистеме RSA зачастую берут именно такое число e = 65537? Является ли описанный выше алгоритм, вычисляющий p, q по e, d, n,

- полиномиальным?
- вероятностным?
- всегда ли выдает правильный ответ?
- Вариант 1.
- Вариант 2.
- Вариант 3.
- Вариант 4.
- Вариант 5.
- Вариант 6.
- Вариант 7.
- Вариант 8.
- Вариант 9.
- Вариант 10.
- Вариант 11.
- Вариант 12.
- Вариант 13.
- Вариант 14.
- Вариант 15.
- Вариант 16.
- Вариант 17.
- Вариант 18.
- Вариант 19.
- Вариант 20.
- Вариант 21.

- Вариант 22.
- Вариант 23.
- Вариант 24.
- Вариант 25.
- Вариант 26.
- Вариант 27.
- Вариант 28.
- Вариант 29.
- Вариант 30.

Задание 5.

Ознакомиться со встроенной функцией GenerateAsymmetricKeyPair[]. Из скольких простых чисел состоит модуль n в открытом ключе PublicKey криптосистемы RSA? Делители модуля состоят из одинакового количества бит или могут иметь различную длину в битах?