11 Dec. 2014, LJLL, Paris

FreeFem++ workshop

A dissection solver with kernel detection for unsymmetric matrices in FreeFem++

Atsushi Suzuki[†]

Atsushi.Suzuki@ann.jussieu.fr

Joint work with

François-Xavier Roux^{†,§}

LJLL-UPMC†, ONERA§,

Sparse direct solvers

Software	parallel environment	elimination strategy	data management and pivoting	kernel detection
SuperLU_MT	shared	super-nodal	dynamic data + pivoting	no
Pardiso	shared	super-nodal	dynamic data + $\sqrt{\varepsilon}$ -perturbation + pivoting	n no
SuperLU_DIST	distributed	super-nodal	static data + $\sqrt{\varepsilon}$ -perturbation	none
MUMPS	distributed	multi-frontal	dynamic data + pivoting	yes

- J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu. A supernodal approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, 20 (1999), 720–755.
- O. Schenk, K. Gärtner. Solving unsymmetric sparse systems of liner equations with PARDISO, Future Generation of Computer Systems, 20 (2004), 475–487.
- X. S. Li, J. W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Transactions on Mathematical Software, 29 (2003), 110–140.
- P. R. Amestoy, I. S. Duff, J.-Y. L'Execellent. Mutlifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering, 184 (2000) 501-520.

Sparse direct solvers

Software	parallel environment	elimination strategy	data management and pivoting	kernel detection
SuperLU_MT	shared	super-nodal	dynamic data + pivoting	no
Pardiso	shared	super-nodal	dynamic data + $\sqrt{\varepsilon}$ -perturbation + pivoting	n no
SuperLU_DIST	distributed	super-nodal	static data + $\sqrt{arepsilon}$ -perturbation	none
MUMPS	distributed	multi-frontal	dynamic data + pivoting	yes
Dissection	shared	multi-frontal	static data + pivoting	yes

- J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu. A supernodal approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, 20 (1999), 720–755.
- O. Schenk, K. Gärtner. Solving unsymmetric sparse systems of liner equations with PARDISO, Future Generation of Computer Systems, 20 (2004), 475–487.
- X. S. Li, J. W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, *ACM Transactions on Mathematical Software*, 29 (2003), 110–140.
- P. R. Amestoy, I. S. Duff, J.-Y. L'Execellent. Mutlifrontal parallel distributed symmetric and unsymmetric solvers, *Computer Methods in Applied Mechanics and Engineering*, 184 (2000) 501-520.
- A. Suzuki, F.-X. Roux, A dissection solver with kernel detection for symmetric finite element matrices on shared memory computers, *International Journal for Numerical Methods in Engineering*, 100 (2014) 136-164.

Overview of Dissection solver

Dissection based on graph decomposition of sparse matrix

sparse solver (tridiag) is written with Fortran90 by F.-X. Roux

- ⇒ each leaf can be computed in parallel
- ? load unbalance ? \Leftarrow different sizes of subdomains
- ? parallel computation of higher levels : smaller subdomains with many cores/processors ?

Overview: recursive generation of Schur complement

there is no 63 block in sparse matrix. 63 in Schur complement has values as result of fill-in. This is analyzed in "symbolic phase".

Overview: graph decomposition by METIS/SCOTCH

matrix size = 206,763, bisection level = 8, sub-blocks = 255

METIS	SCOTCF

number	of nonzeros in o	dense blocks
	METIS	SCOTCH
diag	82,659,783	66,956,787
off-diag	183,097,704	156,858,381
total	265,739,487	223,815,168

Block factorization and block pivot strategy

block pivot strategy is employed for parallel efficiency

When null-pivots appear in a block, they are sent to the last, and corresponding rows and columns are nullified for rank (n - k) update.

Dissection solver: parallelization of dense blocks

LDL^T factorization

daemm

$$\alpha^{(1)}$$
: factorization $L_{11}D_{11}L_{11}^T = A_{11}^{(1)}$

$$\beta_k^{(1)}$$
: DTRSM + scaling $D_{11}^{-1}(L_{11}^{-1}A_{1k}^{(1)})$

$$\gamma_{k,\,l}^{(1)}$$
: DGEMM $A_{k,\,l} = (L_{11}^{-1}A_{1\,k})^T D_{11}^{-1}(L_{11}^{-1}A_{1\,l}^{(1)})$

$$\alpha^{(2)}$$
: factorization $L_{22}D_{22}L_{22}^T = A_{22}^{(2)}$

$$\alpha^{(1)} \leftarrow \{\beta_2^{(1)}, \beta_3^{(1)}, \beta_4^{(1)}\} \leftarrow \{\gamma_{2,2}^{(1)}, \gamma_{2,3}^{(1)}, \gamma_{3,3}^{(1)}, \cdots, \gamma_{4,4}^{(1)}\} \leftarrow \alpha^{(2)} \leftarrow \{\beta_3^{(2)}, \beta_4^{(2)}\} \leftarrow \{\gamma_{3,3}^{(2)}, \gamma_{3,4}^{(2)}, \gamma_{4,4}^{(2)}\} \leftarrow \{\gamma_{3,3}^{(1)}, \gamma_{3,4}^{(1)}, \gamma_{4,4}^{(1)}\} \leftarrow \{\gamma_{3,3}^{(1)}, \gamma_{4,4}^{(1)}, \gamma_{4,4}^{(1)}\} \leftarrow \{\gamma_{3,4}^{(1)}, \gamma_{4,4}^{(1)}, \gamma_{4,4}^{(1)}\} \leftarrow \{\gamma_{3,4}^{(1)}, \gamma_{4,4}^{$$

- updating of Schur complement depends on factorization ⇒ sequential among levels

$$\alpha^{(1)} \leftarrow \{\beta_2^{(1)} - \gamma_{2,2}^{(1)} - \alpha^{(2)}, \beta_3^{(1)}, \beta_4^{(1)}\} \leftarrow \{\gamma_{2,3}^{(1)}, \gamma_{3,3}^{(1)}, \cdots, \gamma_{4,4}^{(1)}\} \leftarrow \{\beta_3^{(2)} - \gamma_{3,3}^{(2)} - \alpha^{(3)}, \beta_4^{(2)}\} \leftarrow \{\gamma_{3,4}^{(2)}, \gamma_{4,4}^{(2)}\} \leftarrow \{\gamma_{4,4}^{(2)}, \gamma_{4,4}^{(2)}\} \leftarrow \{\gamma_{4,4}^{(2)}, \gamma_{4,4}^{(2)}\} \leftarrow \{\gamma_{4,4}^{(2)}, \gamma_{4,4$$

+ factorization of diagonal block // updating of rest of Schur complement

Task scheduling in Dissection solver

computation of Schur complement in level 3, factorization in level 2 : scheduled together.

tasks on critical path: scheduled statically

other tasks: executed in greedy way with large group using predicted complexity + fine greedy

Performance comparison

N=1,004,784 symmetric real matrix : Xeon7550 @ 2.0GHz

	Di	ssection	n	Int	el Pardi	so	MUMPS	+ paraBLA	AS
core	CPU	elapsed	/	CPU	elapsed	/	CPU	elapsed	/
1	5,607.5	5,607.7		5,430.6	5,431.1		5,894.4	5,894.9	
2	5,634.7	2,827.5	1.98	5,676.6	2,838.7	1.92	6,547.5	3,369.3 1	1.75
4	5,668.4	1,437.9	3.90	6,403.9	1,601.1	3.39	7,457.8	2,003.4	2.94
8	5,784.7	746.7	7.51	6,817.3	852.4	6.37	10,925.2	1,533.5	3.84
12	5,880.5	525.7	10.67	7,049.4	587.9	9.24	14,108.5	1,351.5 4	4.36
16	5,996.6	406.0	13.81	7,364.2	460.7	11.79	18,388.7	1,375.4	4.28

⁻ automatic parallelization of BLAS by OpenMP is not efficient

⁺ Dissection uses coarse grain parallelization by Pthreads

# core	GFlop/s	time for	parallel tasks	time for the num	erical factorization
		elapsed time	idle time of cores	elapsed time	CPU time
1	11.207	76.982	0.000	77.776	77.505
2	22.214	38.840	0.049	39.651	78.133
4	42.473	20.252	1.122	21.089	80.261
6	59.138	14.545	2.368	15.397	85.241
8	75.217	11.414	1.667	12.302	89.434
10	87.651	9.795	2.794	10.681	94.482
12	96.187	8.925	3.622	9.845	102.246

96.187GFlops /159.84GFlops = 60% : running on NUMA is another challenge

Task scheduling and performance of Dissection solver

Westmere Xeon 5680@3.3GHz, 6core x2, POSIX threads

Detection of the kernel of matrix in Dissection solver

kernel of stiffness matrix → coarse space for domain decomposition

"theoretically" the last block is singular for semi-positive definite matrices "numerically" all blocks may be nearly singular

 $\tilde{\varepsilon}>0$: given threshold for null pivot $|a_{i\,i}|/|a_{i-1\,i-1}|<\tilde{\varepsilon} \Rightarrow |a_{i\,i}|$ is null pivot.

Schur complement matrix from suspicious null pivots and additional nodes the algorithm to compute dimension of the kernel

How to determine dimension of the kernel?

$$\begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix} = \begin{bmatrix} \tilde{A}_{11} & 0 \\ \tilde{A}_{21} & \tilde{S}_{22} \end{bmatrix} \begin{bmatrix} I_1 & \tilde{A}_{11}^{-1} \tilde{A}_{12} \\ 0 & I_2 \end{bmatrix} \qquad \tilde{S}_{22} = 0 \ \Rightarrow \ \mathsf{Ker} \tilde{A} = \begin{bmatrix} \tilde{A}_{11}^{-1} \tilde{A}_{12} \\ -I_2 \end{bmatrix}$$

numerical example:

symmetric semi-positive definite, m + k = 4 + 6 = 10

by Householder-QR factorization: Matrix Computation; Golub, Van Loan, 1996

how to set threshold to distinguish non-zero (1.28e-02) and zero (1.23e-11) values?

⇒ an algorithm by measuring dimension of a projection onto the image space and detecting existence of inverse of the matrix using higher precision arithmetic

Detection of the kernel of matrix (1/4)

 $A \in \mathbb{R}^{N \times N}$, dim $\operatorname{Ker} A = k \geq 1$, dim $\operatorname{Im} A \geq m$.

two parameters: l, n, which define factorization,

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & S_{22} \end{bmatrix} \begin{bmatrix} I_1 & A_{11}^{-1} A_{12} \\ 0 & I_2 \end{bmatrix} A_{11} \in \mathbb{R}^{(N-l) \times (N-l)} \text{ or } \mathbb{R}^{(N-n) \times (N-n)}.$$

$$\text{projection}: P_n^\perp: \mathbb{R}^N \to \text{span} \begin{bmatrix} \bar{A}_{11}^{-1} A_{12} \\ -I_{22} \end{bmatrix}^\perp, \, A_{11} \in \mathbb{R}^{(N-n)\times (N-n)}$$

$$\begin{bmatrix} \bar{A}_{11}^{-1} b_1 \end{bmatrix}$$

solution in subspace,
$$\bar{A}_{N-l}^{\dagger}b=\begin{bmatrix} \bar{A}_{11}^{-1}b_1\\0 \end{bmatrix}$$
, $A_{11}\in\mathbb{R}^{(N-l)\times(N-l)}$, $b=\begin{bmatrix} b_1\\b_2 \end{bmatrix}=\begin{bmatrix} b_{N-l}\\b_l \end{bmatrix}$

 \bar{A}_{11}^{-1} : in quadruple-precision with perturbation to simulate double-precision round-off error.

n: candidate of dimension of the kernel

compute for l = n - 1, n, n + 1

$$\begin{split} \operatorname{err}_{l}^{(n)} &:= \max \big\{ \max_{x = [0 \ x_{l}] \neq 0} \frac{||P_{n}^{\perp}(\bar{A}_{N-l}^{\dagger}A \, x - x)||}{||x||}, \max_{x = [x_{N-l} \ 0] \neq 0} \frac{||\bar{A}_{N-l}^{\dagger}A \, x - x||}{||x||} \big\} \\ & n = k+1 \quad \Leftrightarrow \quad \operatorname{err}_{n-1} \approx 0 \quad \wedge \quad \operatorname{err}_{n} \approx 0 \quad \wedge \quad \operatorname{err}_{n+1} \sim 1 \\ & n = k \quad \Leftrightarrow \quad \operatorname{err}_{n-1} \gg 0 \quad \wedge \quad \operatorname{err}_{n} \approx 0 \quad \wedge \quad \operatorname{err}_{n+1} \sim 1 \\ & n = k-1 \quad \Leftrightarrow \quad \operatorname{err}_{n-1} \gg 0 \quad \wedge \quad \operatorname{err}_{n} \gg 0 \quad \wedge \quad \operatorname{err}_{n+1} \sim 1 \end{split}$$

 A_{N-k+1}^{-1} does not exist. $\operatorname{err}_{k-1}^{(k)}$ is computable and is similar order of $||\bar{A}_N^{-1}A_N - I_N||$.

Detection of the kernel of matrix (2/4)

 \bar{A}^{-1} : in quadruple-precision with perturbation to simulate double-precision round-off error with decomposition of A into regular part $A_{1\,1} \in \mathbb{R}^{m \times m}$ and others

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \sim \begin{bmatrix} I_{11} & 0 \\ A_{21} \widehat{A_{11}^{-1}} & I_{22} \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S_{22} \end{bmatrix} \begin{bmatrix} I_{11} & \widehat{A_{11}^{-1}} A_{12} \\ 0 & I_{22} \end{bmatrix}$$

 $\widehat{A_{11}^{-1}} = U_{11}^{-1} D_{11}^{-1} L_{11}^{-1} + \text{artificial perturbation with } \varepsilon_0 \sim 10^{-16}.$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} \sim \begin{bmatrix} I_{11} & -\widehat{A_{11}^{-1}}A_{12} \\ 0 & I_{22} \end{bmatrix} \begin{bmatrix} \check{A}_{11}^{-1} & 0 \\ 0 & \check{S}_{22}^{-1} \end{bmatrix} \begin{bmatrix} I_{11} & 0 \\ -A_{21}\widehat{A_{11}^{-1}} & I_{22} \end{bmatrix}$$

 $\check{A}_{11}^{-1} = U_{11}^{-1} D_{11}^{-1} L_{11}^{-1}$ within quadruple-precision $\sim 10^{-33}$.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} - \begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix}$$

$$= \begin{bmatrix} (\check{A}_{11}^{-1}A_{11} - I_1) - \widehat{A}_{11}^{-1}A_{12}\check{S}_{22}^{-1}A_{21}(I_1 - \widehat{A}_{11}^{-1}A_{11}) & \check{A}_{11}^{-1}A_{12} - \widehat{A}_{11}^{-1}A_{12}\check{S}_{22}^{-1}\hat{S}_{22} \\ \check{S}_{22}^{-1}A_{21}(I_1 - \widehat{A}_{11}^{-1}A_{11}) & \check{S}_{22}^{-1}\hat{S}_{22} - I_2 \end{bmatrix}$$

$$\hat{S}_{22} := A_{22} - A_{21} \widehat{A_{11}^{-1}} A_{12}$$

$$||\widehat{A_{11}^{-1}} A_{11} - I_1|| \sim 10^{-16}, \quad ||\widecheck{A}_{11}^{-1} A_{11} - I_1|| \sim 10^{-33}, \quad ||\widecheck{S}_{22}^{-1} S_{22} - I_2|| \sim 10^{-33}.$$

$$S_{22} = 0 \Rightarrow \hat{S}_{22} \sim 10^{-16} \Rightarrow ||\bar{A}^{-1} A - I|| \gg 0$$

$$S_{22} \neq 0 \Rightarrow \qquad ||\bar{A}^{-1} A - I|| \sim 10^{-16}$$

Detection of the kernel of matrix (3/4)

Stokes equations with	full-Neumann bc., N :	$= 199,808, m = 4, \tau =$	10^{-2} , $4+6+1$
eigenvalues by	Householder- QR	$[D]_i$: diagonal entry	$[D]_i^{-1}$
$\begin{array}{c} 6.99777789 \cdot 10^{-1} \\ 6.27846114 \cdot 10^{-1} \\ 4.80884945 \cdot 10^{-1} \\ 4.28888921 \cdot 10^{-1} \\ -7.02489700 \cdot 10^{-11} \\ -2.38674355 \cdot 10^{-12} \\ -1.01390905 \cdot 10^{-12} \\ -3.51767982 \cdot 10^{-13} \\ -1.17581650 \cdot 10^{-13} \\ -2.47928308 \cdot 10^{-14} \\ \end{array}$	$4.98029566 \cdot 10^{-1} 4.05027660 \cdot 10^{-1} 3.69900258 \cdot 10^{-1} 3.57246555 \cdot 10^{-1} 6.73940728 \cdot 10^{-11} 2.05913788 \cdot 10^{-12} 7.59609792 \cdot 10^{-13} 3.51718483 \cdot 10^{-13} 1.46890460 \cdot 10^{-13} 3.32364425 \cdot 10^{-14} 15$	$3.70161579 \cdot 10^{-1}$ $3.06310487 \cdot 10^{-1}$ $2.79365437 \cdot 10^{-1}$ $2.47548177 \cdot 10^{-1}$ $-6.48523283 \cdot 10^{-11}$ $-1.84634192 \cdot 10^{-12}$ $-6.04168305 \cdot 10^{-13}$ $-4.62451857 \cdot 10^{-13}$ $-1.31687059 \cdot 10^{-13}$ $-4.66889871 \cdot 10^{-14}$	$2.70152295 \cdot 10^{0}$ $3.26466132 \cdot 10^{0}$ $3.57954087 \cdot 10^{0}$ $4.03961772 \cdot 10^{0}$ $-1.54196469 \cdot 10^{10}$ $-5.41611492 \cdot 10^{11}$ $-1.65516792 \cdot 10^{12}$ $-2.16238725 \cdot 10^{12}$ $-7.59376061 \cdot 10^{12}$ $-2.14183271 \cdot 10^{13}$
	$\frac{-2.92545721 \cdot 10^{-15}}{(k)}$	$-9.02986463 \cdot 10^{-15}$	$-1.10743631 \cdot 10^{14}$
$k \operatorname{err}_{k-1}^{(k)}$	$err_k^{(k)}$	$err_{k+1}^{(k)}$	
$7 1.61887124 \cdot 10^{-6} $ $6.94434753 \cdot 10^{-6}$		$ \begin{array}{rrr} -16 & 6.92933699 \cdot 10^{-1} \\ -6 & 9.62285632 \cdot 10^{-1} \end{array} $	
dim. of kernel = 5	dim. of kernel = 6	dim. of kernel = 7	_
$8.29092462 \cdot 10^{-13}$ $2.59219292 \cdot 10^{-12}$ $8.98148568 \cdot 10^{-13}$ $7.39122100 \cdot 10^{-13}$ $2.56624545 \cdot 10^{-12}$	$1.39724349 \cdot 10^{-12} 5.55912542 \cdot 10^{-11} 3.16306840 \cdot 10^{-12} 8.25295635 \cdot 10^{-11} 3.37097407 \cdot 10^{-11} 2.58069883 \cdot 10^{-12}$	$2.68009592 \cdot 10^{-1}$ $1.20505842 \cdot 10^{-12}$ $1.44192677 \cdot 10^{-1}$ $3.61845561 \cdot 10^{-1}$ $2.01071952 \cdot 10^{-1}$ $6.50183658 \cdot 10^{-2}$ $1.07433781 \cdot 10^{-1}$	

Detection of the kernel of matrix (4/4)

stationary Navier-Stokes equations, $Re=12,800,\,N=47,886,\,m=4,\,\tau=10^{-2},\,4+1+1$ 5×5 matrix by Householder QR factorization

```
1.123921e+0 3.461973e-1
                         2.459499e-1
                                       3.507836e-1
                                                    2.188173e-13
                                                                    1.809903e-1
             4.178588e-1 -1.530839e-1
                                       -9.949687e-2 -3.980236e-15
                                                                   -1.652780e-1
                          3.408454e-1
                                       -1.846635e-1
                                                    -8.625896e-15
                                                                   -1.561819e-1
                                       2.801338e-1 -5.087587e-15
                                                                   -2.801338e-1
                                                     2.588860e-13
                                                                   -2.587682e-13
                                                                   9.055738e-16
```

k	$err_{k-1}^{(k)}$	$err_k^{(k)}$	$err_{k+1}^{(k)}$
$\overline{2}$	$3.66949509 \cdot 10^{-4}$	$2.79183050 \cdot 10^{-16}$	$7.22887622 \cdot 10^{-1}$

dim. of kernel = 1	dim. of kernel = $\frac{2}{}$
$2.36255459 \cdot 10^{-13}$	$3.55789626 \cdot 10^{-1}$
	$2.36642083 \cdot 10^{-13}$

dependency of kernel detection on a parameter in ${\tt MUMPS}$

		Threshold	for null pivo	ts by C	!NTL(3)		
	10^{-3}	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}	automatic
elstct2	2						1.3095e-14
kernel	6	6	3	3	3	0	0
error	4.3817e-11		1.3878e+0	\leftarrow		4.4009e+0	\leftarrow
residual	7.1626e-14	\leftarrow	1.0608e-15	\leftarrow	\leftarrow	1.2845e-15	
stokes1	L						5.0793e-21
kernel	$NA^{(*)}$	6	6	6	5	5	0
error		5.1755e-8	<	\leftarrow	2.6086e-1	6.9426e-3	2.7784e+1
residual		6.6675e-10	\leftarrow	\leftarrow	4.5757e-12	5.6831e-12	6.1865e-12
elstct3	3						2.8685e-16
kernel	6	6	3	3	1	0	0
error	1.4278e-10		2.4022e+0	\leftarrow	3.1384e+0	3.4278e+0	\leftarrow
residual	1.8237e-12	\leftarrow	2.2366e-14	\leftarrow	1.6868e-15	1.3948e-15	\leftarrow
Koutsov	asilis/F2						5.7237e-14
kernel	6	4	3	3	0	0	0
error	1.8309e-11	7.0498e-2	1.6832e-1	\leftarrow	1.7918e+0		
residual	1.3557e-13	1.6633e-14	7.4403e-16	\leftarrow	6.1438e-16	\leftarrow	\leftarrow

^(*) stokes1 with CNTL(3)= -10^{-3} exceeds the memory limitation.

memory consumption: Dissection and Intel Pardiso

real 206,763	sym		Dissecti	on	Int	el Pard	liso
	•	min	max	avg	min	max	avg
1 thread	fact	3.105	4.202 (+32%)	3.977 (+25%)	1.234	3.184	3.184
	fw/bw	4.008	4.008	4.007 (+25%)	3.189	3.193	3.193
4 threads	fact	3.315	4.356 (+23%)	4.151 (+17%)	1.551	3.540	3.540
	fw/bw	4.096	4.096	4.096 (+16%)	3.540	3.540	3.540
8 threads	fact	3.315	4.356 (+12%)	4.151 (+7%)	1.849	3.876	3.875
	fw/bw	4.096	4.096	4.096 (+6%)	3.876	3.876	3.876
12 threads	fact	3.816	4.953 (+17%)	4.412 (+5%)	2.140	4.223	4.223
	fw/bw	4.228	4.228	4.228 (+0%)	4.223	4.223	4.223
real 206,763 unsym			Dissection				
real 206,763	unsym		Dissection	on	Int	el Pard	liso
real 206,763	unsym	min	Dissection max	on avg	Int min	el Pard max	liso avg
real 206,763	unsym fact	min 5.604			_		
			max	avg	min	max	avg
	fact	5.604	max 6.821 (+17%)	avg 6.426 (+10%)	min 2.019	max 5.838	avg 5.838
1 thread	fact fw/bw	5.604 6.401	max 6.821 (+17%) 6.401	avg 6.426 (+10%) 6.401 (+9%)	min 2.019 5.842	max 5.838 5.847	avg 5.838 5.847
1 thread	fact fw/bw fact	5.604 6.401 5.815	max 6.821 (+17%) 6.401 6.970 (+13%)	avg 6.426 (+10%) 6.401 (+9%) 6.657 (+8%)	min 2.019 5.842 2.303	5.838 5.847 6.150	5.838 5.847 6.150
1 thread 4 threads	fact fw/bw fact fw/bw	5.604 6.401 5.815 6.612	max 6.821 (+17%) 6.401 6.970 (+13%) 6.612	avg 6.426 (+10%) 6.401 (+9%) 6.657 (+8%) 6.612 (+7%)	min 2.019 5.842 2.303 6.155	5.838 5.847 6.150 6.160	5.838 5.847 6.150 6.160
1 thread 4 threads	fact fw/bw fact fw/bw fact	5.604 6.401 5.815 6.612 6.065	max 6.821 (+17%) 6.401 6.970 (+13%) 6.612 7.189 (+11%)	avg 6.426 (+10%) 6.401 (+9%) 6.657 (+8%) 6.612 (+7%) 6.751 (+4%)	min 2.019 5.842 2.303 6.155 2.600	5.838 5.847 6.150 6.160 6.462	5.838 5.847 6.150 6.160 6.462

FreeFem++ example

stationary Navier-Stokes equations by Newton-Raphson iteration: cavityNewtow.edp


```
load "Dissection"
defaulttoDissection();
XXMh [up1,up2,pp];
varf vDNS ([u1,u2,p],[v1,v2,q])=
   int2d(Th)(nu*(dx(u1)*dx(v1)+dy(u1)*dy(v1))
            + dx(u2)*dx(v2)+dy(u2)*dy(v2))
  //
            + p*q*1.e-6
            + p*dx(v1)+p*dy(v2)
            - dx(u1)*q-dy(u2)*q
            + Ugrad(u1,u2,up1,up2)'*[v1,v2]
            + Ugrad(up1,up2,u1,u2)'*[v1,v2])
     + on(1,2,3,4,u1=0,u2=0);
//...
    up1[]=u1[];
    matrix Ans=vDNS(XXMh,XXMh,tqv=-1);
             set(Ans, solver=sparsesolver, tgv=-1,
                 numthreads=4, tolpivot=1.0e-2);
     real[int] b=vNS(0,XXMh,tqv=-1);
     real[int] w=Ans^-1*b;
    u1[]-=w;
```

summary

```
diss_int(pointer dslv, real_or_complex, numthreads)
diss_s_fact(pointer dslv, dim, CSR_symboic_data, sym, decomposer, level)
diss_n_fact(pointer dslv, matrix_coef, scaling, tolpivot)
diss_get_kern_dim(pointer dslv, kern_dim)
diss_get_kern_vecs(pointer dslv, vectors)
diss_fee(pointer dslv)
written in Dissection.cpp for FreeFem++ load module.
```

sparse matrix is stored in CSR format with structurally symmetric pattern. symmetric matrix is stored in either upper or lower. real symmetric/unsymmetric with kernel detection. complex general matrix without kernel detection.

symbolic factorization contains scheduling of parallel tasks in addition to ordering by SCOTCH/METIS and fill-in analysis.

SCOTCH/METIS sometimes does not produce aligned bisection tree.

→ symbolic factorization phase is slower than one of UMFPACK

double-double quadruple precision arithmetic library will replace Fortran90 REAL(16) usage.