线性规划

1. 定义

标准型线性规划

普通形式

- 已知
 - \circ n 个实数 $c_1, c_2, \cdots c_n$
 - \circ m 个实数 $b_1, b_2, \cdots b_m$,
 - 。 mn 个实数 a_{ij} 其中 $i=1,2,\cdots,m, j=1,2,\cdots,n,$
- 希望找到 n 个实数 $x_1, x_2, \dots x_n$, 最大化

$$\sum_{j=1}^{\infty} c_j x_j$$

满足约束条件:

$$\sum_{j=1}^n a_{ij}x, \leqslant b_i, i=1,2,\cdots,m$$
 $x_j\geqslant 0, j=1,2,\cdots,n$

矩阵形式

线性规划问题(A, b. c)

最大化:
$$c^{\mathrm{T}}x$$

满足约束: $Ax\leqslant b$

松弛型线性约束

- 定义 (N, B, A, b, c, v) 为松弛型
 - 。 基本变量: 等式左边的变量 B 基本变量的下标集合
 - **非基本变量**: 等式右边的变量 N 非基本变量的下标集合
 - 可选常数项: v
- 目标函数: z

$$z=v+\sum_{j\in N}c_jx_j \ x_i=b_i-\sum_{j\in N}a_{ij}x, \quad ,i\in B$$

• 例子

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

中, 我们有 $B=\{1, 2, 4\}$, $N=\{3, 5, 6\}$,

$$A = \begin{bmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{bmatrix} = \begin{bmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_4 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 18 \end{bmatrix}$$

$$c = (c_3 c_5 c_6)^T = (-1/6 - 1/6 - 2/3)^T$$
,以及 $v = 28$ 。

2. 非标准型转为标准型

标准 型约 束	转换过 程	转换方法	例子
目标 函数 是必	最小化 =>最大 化	目标函数取负	最小化 $-2x_1+3x_2$ 转为 最大化 $2x_1-3x_2$
所有 变都必有 非负 非实	无非负 约束=> 非负约 束	将无约束 x_j 替换为 $x_j^1-x_j^2$ 增加非负约束 $x_j^1\geq 0$ $x_j^2\geq 0$	最大化 領廷的家 $z_1 + z_2 = 7$ $z_1 + z_2 < 4$ $z_2 + z_3 = 2 < 5$ $z_3 - 2 < 4$ $z_4 - 2 < 4$
不能 有等 式约 束	等式约 束=>不 等式约 束	用一对不等式约束 $f(x_1,x_2,\ldots x_n) \geq b$ 和 $f(x_1,x_2,\ldots x_n) \leq b$ 替换 $f(x_1,x_2,\ldots x_n) = b$	最大化 関及的版 $x_1 + x_1^2 - x_2^2 = 7$ $x_1 - 2x_1^2 + 2x_1^2 \le 4$ $x_2 + x_1^2 + 2x_1^2 \le 4$ $x_3 + x_1^2 + 2x_1^2 \le 4$ $x_4 + x_1^2 + 2x_1^2 \le 7$ $x_1 + x_1^2 - x_1^2 \ge 7$
不能 有大 于等 于约 束	大于等 于约束 =>小于 等于约 束	大于等于约束乘以-1	最大化 限定的度 $z_{1}-1z_{1}^{2}+3z_{1}^{2}$ 取定的度 $z_{1}+z_{1}^{2}-z_{1}^{2}\leq 7$ $z_{1}+z_{1}^{2}-z_{1}^{2}\geq 7$ $z_{1}-2z_{1}^{2}+2z_{1}^{2}\leq 0$ 超大化 現在的版 $z_{2}-3z_{1}+3z_{2}$ $z_{1}+z_{1}^{2}\leq 0$ $z_{2}-3z_{1}+3z_{2}$ $z_{3}+z_{3}-z_{3}\leq 0$

3. 图解法

$$\max \quad z = 5x_1 + 4x_2$$
 s.t. $6x_1 + 4x_2 \leq 24$ 例: $x_1 + 2x_2 \leq 6$ $-x_1 + x_2 \leq 1$ $x_2 \leq 2$ $x_1, x_2 \geq 0$

1. 画出可行域

2. 列出梯度向量 求解最大值

- 梯度向量: 向量(5,4)是目标函数 $z=5x_1+4x_2$ 的梯度向量,指向 z 增加得最快的方向
- **最优值**: 垂直于 直线族 $z=5x_1+4x_2$ 的任一条直线; 最优解在 ${\bf C(3,1.5)}$,相应的目标函数最大值为 z=21

4. 单纯型算法

- 1. 标准型转为松弛型
 - 。 标准型
 - 最大化 $3x_1 + x_2 + 2x_3$
 - 约束

$$egin{aligned} x_1+x_2+3x_3&\leq 30\ 2x_1+2x_2+5x_3&\leq 24\ 4x_1+x_2+2x_3&\leq 36\ x_1,x_2,x_3&\geq 0 \end{aligned}$$

。 松弛型

$$z = 3x_1 + x_2 + 2x_3 \ x_4 = 30 - x_1 - x_2 - 3x_3 \ x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \ x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- 基本解形式: $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_6) = (0, 0, 0, 30, 24, 36)$
- 目标函数形式: $z = (3 \cdot 0) + (1 \cdot 0) + (2 \cdot 0) = 0$
- **目标函数最大化方法**: 增大 x_1, x_2, x_3 都可以增大值

2. 增加X1

- 。 受限于
 - *x*₄ *x*₁最大值为30
 - x_5 x_1 最大值为12
 - x₆ x₁最大值为9 最紧凑
- 。 改写第三个约束 x1都被式子替代

$$z=27+rac{x_2}{4}+rac{x_3}{2}-rac{3x_6}{4} \ x_4=21-rac{3x_2}{4}-rac{5x_3}{2}+rac{x_6}{4} \ x_5=6-rac{3x_2}{2}-4x_3+rac{x_6}{2} \ x_1=9-rac{x_2}{4}-rac{x_3}{2}-rac{x_6}{4}$$

- 基本解形式: (9,0,0,21,6,0)
- 目标函数值: 27
- 目标函数最大化方法: 增大x2,x3

3. 增大 X₃

- 。 第二个约束最紧凑
- 。 改写第二个约束 替换X3

$$z = rac{111}{4} + rac{x_2}{16} - rac{x_5}{8} - rac{11x_6}{16}$$
 $x_1 = rac{33}{4} - rac{x_2}{16} + rac{x_5}{8} - rac{5x_6}{16}$
 $x_3 = rac{3}{2} - rac{3x_2}{8} - rac{x_5}{4} + rac{x_6}{8}$
 $x_4 = rac{69}{4} + rac{3x_2}{16} + rac{5x_5}{8} - rac{x_6}{16}4$

- 基本解形式: (33/4,0,3/2,69/4,0,0)
- 目标函数值: 111/4
- **目标函数最大化方法**: 增大x₂

4. 增大 X2

- 。 第二个约束最紧凑
- 。 改写第二个约束 替换X2

$$z=28-rac{x_3}{6}-rac{x_5}{6}-rac{2x_6}{3} \ x_1=8+rac{x_3}{6}+rac{x_5}{6}-rac{x_6}{3} \ x_2=4-rac{8x_3}{3}-rac{2x_5}{3}+rac{x_6}{3} \ x_4=18-rac{x_3}{2}+rac{x_5}{2}$$

- 基本解形式: (8,4,0,18,0,0)
- 目标函数值: 28
- 得到最优值

5. 单纯型表

6. 对偶

定义

$$\max z = CX$$

s.t. $AX \le B$
 $X \ge 0$

对偶问题

$$\begin{aligned} \min w &= B^T Y \\ \text{s.t. } A^T Y &\geq C^T \\ Y &\geq 0 \end{aligned}$$

例子

$$\min egin{array}{l} w = 12y_1 + 16y_2 + 15y_3 \ \mathrm{s.t.} egin{cases} 2y_1 + 4y_2 \geq 2 \ 2y_1 + 5y_3 \geq 3 \ y_1, y_2, y_3 \geq 0 \end{cases}$$

对偶问题

$$egin{array}{ll} \max & z = 2x_1 + 3x_2 \ 2x_1 + 2x_2 \leq 12 \ 4x_1 \leq 16 \ 5x_2 \leq 15 \ x_1, x_2 \geq 0 \end{array}$$