Chapter 22 Matrices inversibles

Exercice 1 (22.1)

Trouver l'inverse éventuel des matrices suivantes

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ -1 & 1 & 0 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & 3 \\ -1 & 1 & 0 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -3 & 1 \\ 3 & 0 & -1 \end{pmatrix} \qquad G = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Solution 1 (22.1)

$$A^{-1} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \qquad B^{-1} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix}$$

$$C^{-1} = \begin{pmatrix} 1/2 & 1/2 & -1/6 \\ 1/2 & -1/2 & 1/2 \\ 0 & 0 & 1/3 \end{pmatrix} \qquad D^{-1} = \begin{pmatrix} -4 & 3 & -2 \\ -4 & 3 & -1 \\ 3 & -2 & 1 \end{pmatrix}$$

Dans la réduction, on obtient

$$(E|I_3) \sim \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 3 & * & * & * \\ 0 & 2 & 3 & * & * & * \\ 0 & 0 & 0 & * & * & * \end{pmatrix}$$

Donc E n'est pas inversible.

$$F^{-1} = \begin{pmatrix} 1/2 & 1/3 & 1/6 \\ -1/2 & -2/3 & 1/6 \\ -3/2 & -1 & 1/2 \end{pmatrix} \qquad G^{-1} = \begin{pmatrix} -2/3 & 1/3 & 1/3 & 1/3 \\ 1/3 & -2/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & -2/3 & 1/3 \\ 1/3 & 1/3 & 1/3 & -2/3 \end{pmatrix}$$

Exercice 2 (22.1)

En utilisant les opérations élémentaires sur les lignes, déterminer si possible l'inverse des matrices

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 3 & 8 & 1 \end{pmatrix}$$
 et
$$B = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 4 \end{pmatrix}$$

Soit $b = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$. Déterminer les solutions du système Ax = b. Déterminer les solutions du système Bx = b

Existe-t-il un vecteur $d \in \mathbb{R}^3$ tel que le système Ax = d soit incompatible ? Existe-t-il un vecteur $d \in \mathbb{R}^3$ tel que le système Bx = d soit incompatible ? Dans chaque cas, justifier votre réponse et déterminer un tel vecteur d si il existe.

Solution 2 (22.1)

A n'est pas inversible. B est inversible et

$$B^{-1} = \frac{1}{7} \begin{pmatrix} 2 & -7 & 3 \\ 6 & -7 & 2 \\ -3 & 7 & -1 \end{pmatrix}.$$

Puisque B est inversible, l'unique solution de Bx = b est

$$x = B^{-1}b = \begin{pmatrix} 2 & -7 & 3 \\ 6 & -7 & 2 \\ -3 & 7 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} 10/7 \\ 9/7 \\ -1/7 \end{pmatrix}$$

De même, puisque B est inversible, le système Bx = d est compatible pour tout $d \in \mathbb{R}^3$ (et a pour unique solution $x = B^{-1}d$).

Pour résoudre Ax = b, on peut appliquer l'algorithme du pivot de Gauß. On a

$$(A|b) \underset{L}{\sim} \cdots \underset{L}{\sim} \begin{pmatrix} 1 & 0 & -5 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

On en déduit que le système Ax = b est compatible et admet une infinités de solutions, paramétrées par

$$x = \begin{pmatrix} -1+5t \\ 1-2t \\ t \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

De plus, il existe des vecteurs d tel que le système Ax = d soit incompatible. Par exemple, en changeant la troisième composante de b afin de ne pas avoir à refaire trop de calcul pour la réduction, on peut choisir $d = (1, 1, 0)^T$. On a alors,

$$(A|d) \sim \cdots \sim \begin{pmatrix} 1 & 0 & -5 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -5 \end{pmatrix}.$$

Exercice 3 (22.1)

En utilisant les opérations élémentaires sur les lignes, montrer que

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 1 & 4 & -1 \end{pmatrix}$$

est équivalente par lignes à la matrice unité I_3 . Écrire A comme un produit de matrices élémentaires.

Solution 3 (22.1)

$$A \xrightarrow{L_3 \leftarrow L_3 - L_1} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 4 & -3 \end{pmatrix} \xrightarrow{L_3 \leftarrow L_3 - 4L_2} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_1 \leftarrow L_1 - 2L_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3.$$

On peut alors renverser les opérations afin d'obtenir A à partir de I_3

$$I_{3} \xrightarrow{L_{1} \leftarrow L_{1} + 2L_{3}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_{2} \leftarrow L_{2} - L_{3}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_{3} \leftarrow L_{3} + 4L_{2}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 4 & -3 \end{pmatrix} \xrightarrow{L_{3} \leftarrow L_{3} + L_{1}} A$$

Or, effectuer une opération élémentaire sur les lignes revient à multiplier à gauche par une matrice élémentaire. On en déduit donc

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 4 (22.1)

À l'aide d'opérations élémentaires, déterminer, si possible, les inverses des matrice suivantes.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 6 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

La matrice *C* est-elle une matrice élémentaire? Si «oui», quelle est l'opération élémentaire correspondante? Si «non», l'écrire comme un produit de matrices élémentaires.

Solution 4 (22.1)

$$A^{-1} = \begin{pmatrix} 3/2 & -1/4 & -9/4 \\ -1 & 1/2 & 3/2 \\ 1/2 & -1/4 & -1/4 \end{pmatrix} \qquad B \text{ n'est pas inversible} \qquad C^{-1} = \begin{pmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Pour C on peut également remarquer qu'elle s'obtient à partir de la matrice I_4 par les opérations élémentaires $L_1 \leftarrow L_1 + 4L_3$ puis $L_3 \leftrightarrow L_4$ (ou $L_3 \leftrightarrow L_4$ puis $L_1 \leftarrow L_1 + 4L_4$), d'où

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

On aurait pu également se servir de cette décomposition pour déterminer C^{-1} .

Exercice 5 (22.1)

Étant donné un système d'équations Ax = b avec différente valeurs de b, il est souvent plus rapide de déterminer A^{-1} , si elle existe, afin de déterminer les solutions avec la relation $x = A^{-1}b$.

Utiliser cette méthode pour résoudre $Ax = b_r$ pour la matrice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

et chacun de vecteurs b_r , r = 1, 2, 3:

$$b_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \qquad \qquad b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad b_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Vérifier vos solutions.

Solution 5 (22.1)

$$A^{-1} = \begin{pmatrix} 3/2 & -1/4 & -9/4 \\ -1 & 1/2 & 3/2 \\ 1/2 & -1/4 & -1/4 \end{pmatrix}$$

Puisque A est inversible, on a

$$Ax = b_{1} \iff x = A^{-1}b_{1} = \frac{1}{4} \begin{pmatrix} -21\\14\\-1 \end{pmatrix}$$

$$Ax = b_{2} \iff x = A^{-1}b_{2} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

$$Ax = b_{3} \iff x = A^{-1}b_{3} = \frac{1}{4} \begin{pmatrix} -1\\2\\-1 \end{pmatrix}.$$

On vérifie les solutions en calculant $\frac{1}{4}A\begin{pmatrix} -21\\14\\-1\end{pmatrix} = \begin{pmatrix} 1\\0\\3 \end{pmatrix}$, etc...

Exercice 6 (22.1)

Inverser les matrices suivantes.

1.
$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & -1
\end{pmatrix}$$
2.
$$\begin{pmatrix}
1 & a & a^2 & a^3 \\
0 & 1 & a & a^2 \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{pmatrix}$$
3.
$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Exercice 7 (22.1)

Soient
$$n \in \mathbb{N}^{\star}$$
, $A = (\min(i, j))_{1 \le i, j \le n} = \begin{pmatrix} 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 2 & 2 & \cdots & \cdots & 2 \\ 1 & 2 & 3 & \cdots & \cdots & 3 \\ \vdots & \vdots & \vdots & & & 4 \\ \vdots & \vdots & \vdots & & & \vdots \\ 1 & 2 & 3 & 4 & \cdots & n \end{pmatrix}$

Montrer que A est inversible et calculer A^{-1} .

Solution 7 (22.1)

On peut appliquer l'alogorthme du pivot de Gauss à la matrice $(A|I_n)$. Il est ici plus rapide d'utiler un autre enchainnement d'opérations élémentaires. La succéssion d'opérations $L_n \leftarrow L_n - L_{n-1}$, puis $L_{n-1} \leftarrow L_{n-1} - L_{n-2}$, ... puis $L_2 \leftarrow L_2 - L_1$ permet d'écrire

On effectue ensuite l'enchainnement d'opération élémentaires $L_1 \leftarrow L_1 - L_2$, puis $L_2 \leftarrow L_2 - L_3$... puis $L_{n-1} \leftarrow L_{n-1} - L_n$, et on obtient

La matrice A est donc inversible et son inverse est la matrice

$$B = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & (0) & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & & -1 & 2 & -1 \\ & & & & & -1 & 1 \end{pmatrix}$$

Exercice 8 (22.1)

Soit A et B deux matrices (n, n).

Montrer que si AB est inversible, alors A et B sont inversibles.

Solution 8 (22.1)

La matrice B est carrée, elle est donc inversible si, et seulement si

$$\forall x \in \mathbb{R}^n, Bx = 0 \implies x = 0.$$

Soit $x \in \mathbb{R}^n$ tel que Bx = 0. Alors

$$(AB)x = A(Bx) = A0 = 0.$$

Or la matrice AB est inversible, donc x = 0. Ce qui prouve que la matrice B est inversible. Puisque AB et B^{-1} sont inversible, la matrice $(AB)(B^{-1}) = A$ est également inversible en tant que produit de matrice inversibles.

Variante Avec le déterminant, on obtient rapidement le résulat. Si AB est inversible, alors $\det(AB) = \det(A)\det(B) \neq 0$. Ainsi, $\det(A) \neq 0$ et $\det(B) \neq 0$, ce qui montre que A et B sont inversibles.

Exercice 9 (22.1)

Soit $(a_1, \dots, a_n) \in (\mathbb{R}_+^*)^n$. Soit la matrice

$$A = \begin{pmatrix} 1 + a_1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 + a_2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 1 \\ 1 & \cdots & \cdots & 1 & 1 + a_n \end{pmatrix}$$

- **1.** Soit $(x_1, \dots, x_n) \in \mathbb{R}^n$. Posons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. En écrivant la matrice A comme somme d'une matrice diagonale et d'une matrice simple, calculer $X^T A X$.
- 2. En déduire que la matrice A est inversible.

Solution 9 (22.1)

1. Considèrons la matrice diagonale $D = \operatorname{diag}(a_1, \dots, a_n)$ et la matrice $J = (1)_{1 \le i, j \le n}$ la matrice dont tous les coefficients sont égaux à 1. Alors A = D + J. Or

$$DX = \begin{pmatrix} a_1 x_1 \\ a_2 x_2 \\ \vdots \\ a_n x_n \end{pmatrix} \qquad \text{et} \qquad JX = \begin{pmatrix} x_1 + x_2 + \dots + x_n \\ x_1 + x_2 + \dots + x_n \\ \vdots \\ x_1 + x_2 + \dots + x_n \end{pmatrix} = (x_1 + x_2 + \dots + x_n) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

D'où

$$X^T D X = a_1 x_1^2 + a_2 x_2^2 + \dots + a_n x_n^2$$
 et $X^T J X = (x_1 + x_2 + \dots + x_n)^2$.

Finalement

$$X^{T}AX = X^{T}(D+J)X = X^{T}DX + X^{T}JX$$

$$= a_{1}x_{1}^{2} + a_{2}x_{2}^{2} + \dots + a_{n}x_{n}^{2} + (x_{1} + x_{2} + \dots + x_{n})^{2}.$$

2. La matrice A est une matrice carrée. Pour montrer que A est inversible, nous allons montrer

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), AX = \mathbf{0} \implies X = \mathbf{0}.$$

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $AX = \mathbf{0}$. Alors, $X^TAX = X^T\mathbf{0} = 0$, et d'après le calcul précédent

$$a_1x_1^2 + a_2x_2^2 + \dots + a_nx_n^2 + (x_1 + x_2 + \dots + x_n)^2 = 0.$$

Or, les a_i et x_i^2 sont des réels positifs. Un somme de termes positifs est nulle si, et seulement si chaque terme est nul, on a donc

Or, pour tout $i \in [1, n]$, $a_i \neq 0$, donc

$$x_1 = x_2 = \dots = x_n = 0$$

c'est-à-dire $X = \mathbf{0}$.

Conclusion

La matrice A est inversible.

Exercice 10 (22.1)

Soient
$$n \in \mathbb{N}$$
 et $A = \begin{pmatrix} -1 & -2 & -2 & 2 \\ 0 & 5/2 & 1/2 & 0 \\ 0 & 1/2 & 5/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. L'objectif de cet exercice est de calculer A^n .

1. Soit
$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & -1/2 & 1/2 & 0 \\ 1 & 1/2 & 1/2 & -1 \\ 0 & -1/2 & -1/2 & 0 \end{pmatrix}$$
. Calculer P^{-1} , puis PAP^{-1} .

2. En déduire A^n .

Solution 10 (22.1)

1. On trouve

$$P^{-1} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad PAP^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

2. Notons $D = PAP^{-1} = diag(1, 2, -1, 3)$. Commençons par remarquer que

$$A = P^{-1}PAP^{-1}P = P^{-1}DP.$$

Pour $n \in \mathbb{N}$, on pose R(n): « $A^n = P^{-1}D^nP$ ».

On a
$$P^{-1}D^0P = P^{-1}I_4P = P^{-1}P = I_4 = A^0$$
, d'où $R(0)$.

Précédement, nous avons montré $A = P^{-1}DP$, c'est-à-dire R(1).

Soit $n \in \mathbb{N}$. On suppose R(n). Alors

$$A^{n+1} = A^n A$$

$$= (P^{-1}D^n P) (P^{-1}DP)$$

$$= P^{-1}D^n (PP^{-1})DP$$

$$= P^{-1}D^n DP$$

$$= P^{-1}D^{n+1}P$$

$$= P^{-1}D^{n+1}P$$
::R(n) et R(1)

D'où R(n+1).

Conclusion

Par récurrence,

$$\forall n \in \mathbb{N}, A^n = P^{-1}D^nP.$$

Remarquons enfin que

$$D^{n} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^{n} & 0 & 0 \\ 0 & 0 & (-1)^{n} & 0 \\ 0 & 0 & 0 & 3^{n} \end{pmatrix}.$$

On a donc

$$A^{n} = P^{-1}DP = \begin{pmatrix} (-1)^{n} & \frac{(-1)^{n} - 3^{n}}{2} & \frac{(-1)^{n} - 3^{n}}{2} & 1 - (-1)^{n} \\ 0 & \frac{3^{n} + 2^{n}}{2} & \frac{3^{n} - 2^{n}}{2} & 0 \\ 0 & \frac{3^{n} - 2^{n}}{2} & \frac{3^{n} + 2^{n}}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Exercice 11 (22.1) Matrice à diagonale strictement dominante, lemme d'Hadamart

Soit $A=(a_{i,j})_{1\leq i,j\leq n}\in\mathcal{M}_n(\mathbb{C}),$ telle que

$$\forall i \in \{1, 2, ..., n\}, |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}|.$$

Montrer que A est inversible.

Solution 11 (22.1)

Pour établir que A est inversible, nous allons vérifier

$$\forall x \in \mathbb{C}^n, Ax = 0 \implies x = 0.$$

Raisonnons par l'absurde: supposons donc qu'il existe $(x_1, \dots, x_n) \in \mathbb{C}^n$ tel que Ax = 0, c'est-à-dire

$$\forall i \in [[1, n]], \sum_{i=1}^{n} a_{ij} x_j = 0.$$

Soit alors i un indice quelconque tel que $x_i \neq 0$, nous pouvons pour cette valeur de l'indice écrire

$$a_{ii} = -\frac{1}{x_i} \sum_{\substack{j=1 \ j \neq x}}^{n} a_{ij} x_j = \sum_{\substack{j=1 \ j \neq x}}^{n} \left(-\frac{x_j}{x_i}\right) a_{ij}.$$

puis

$$|a_{ii}| = \left| \sum_{\substack{j=1 \ j \neq x}}^{n} \left(-\frac{x_j}{x_i} \right) a_{ij} \right| \le \sum_{\substack{j=1 \ j \neq x}}^{n} \frac{|x_j|}{|x_j|} |a_{ij}|.$$

Considérons alors que l'indice i choisi jusqu'ici tel que $x_i \neq 0$ est plus précisément celui vérifiant

$$|x_i| = \max \{ |x_1|, |x_2|, \dots, |x_n| \}.$$

Nous avons alors

$$\forall j \in [[1, n]] \setminus \{i\}, \frac{|x_j|}{|x_i|} \le 1$$

puis

$$|a_{ii}| \le \sum_{\substack{j=1\\i \ne y}}^{n} |a_{ij}|,$$

ce qui contredit l'hypothèse.

Problème 12 (22.1)

On considère les deux matrices

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 4 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- 1. Justifier l'inversibilité de la matrice P et calculer son inverse par la méthode du pivot.
- **2.** Soit *a* un réel. Former la matrice A aI où $I = I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ et déterminer, sans calcul, les valeurs de *a* telles que A = aI require

les valeurs de a telles que A - aI ne soit pas inversible

La matrice A est-elle inversible?

- 3. Vérifier que $P^{-1}AP = D$ où D est une matrice diagonale. Que remarquez vous?
- **4.** Montrer par récurrence que $A^n = PD^nP^{-1}$ pour tout entier $n \ge 1$.

Écrire la matrice A^n sous forme de tableau.

5. Exprimer A^{-1} , puis A^{-n} pour tout entier $n \ge 1$, à l'aide de P, P^{-1} et D^{-1} . Écrire la matrice A^{-1} sous forme de tableau.

Solution 12 (22.1)

Voilà un bon exercice d'entrainnement à rendre de devoirs maison.

Rang, image et équations linéaires

Exercice 13 (22.2)

Résoudre le système d'équation Ax = b suivant en effectuant la réduction de sa matrice augmentée.

(E):
$$\begin{cases} x_1 +5x_2 +3x_3 +7x_4 +x_5 = 2\\ 2x_1 +10x_2 +3x_3 +8x_4 +5x_5 = -5\\ x_1 +5x_2 +x_3 +3x_4 +3x_5 = -4. \end{cases}$$

On note r = rg(A) et n le nombre de colonne de A. Montrer que les solutions de (E) peuvent s'écrire

$$x = p + \alpha_1 v_1 + \dots + \alpha_{n-r} v_{n-r}$$
 avec $\alpha_i \in \mathbb{R}$.

Montrer également que Ap = b et que $Av_i = 0$ pour i = 1, ..., n - r.

Exprimer le vecteur b comme une combinaison linéaire des colonnes de la matrice A. Faire de même pour le vecteur $\mathbf{0}$.

Solution 13 (22.2)

On a

$$(A|b) = \begin{pmatrix} 1 & 5 & 3 & 7 & 1 & 2 \\ 2 & 10 & 3 & 8 & 5 & -5 \\ 1 & 5 & 1 & 3 & 3 & -4 \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & 5 & 3 & 7 & 1 & 2 \\ 0 & 0 & -3 & -6 & 3 & -9 \\ 0 & 0 & -2 & -4 & 2 & -6 \end{pmatrix} \quad L_2 \leftarrow L_2 - 2L_1$$

$$\approx \begin{pmatrix} 1 & 5 & 3 & 7 & 1 & 2 \\ 0 & 0 & 1 & 2 & -1 & 3 \\ 0 & 0 & -2 & -4 & 2 & -6 \end{pmatrix} \quad L_2 \leftarrow -\frac{1}{3}L_2$$

$$\approx \begin{pmatrix} 1 & 5 & 3 & 7 & 1 & 2 \\ 0 & 0 & 1 & 2 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad L_3 \leftarrow L_3 + 2L_2$$

$$\approx \begin{pmatrix} 1 & 5 & 3 & 7 & 1 & 2 \\ 0 & 0 & 1 & 2 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad L_3 \leftarrow L_3 + 2L_2$$

$$\approx \begin{pmatrix} 1 & 5 & 0 & 1 & 4 & -7 \\ 0 & 0 & 1 & 2 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Le rang de A est donc r = rg(A) = 2. De plus,

$$(E) \iff \begin{cases} x_1 +5x_2 +x_4 +4x_5 = -7 \\ x_3 +2x_4 -x_5 = 3 \end{cases}$$

Nous pouvons donc paramétrer les solutions de (E) à partir des variables libres, disons $x_2 = s$, $x_4 = t$ et $x_5 = u$. Ainsi, les solutions de (E) sont de la forme

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -7 - 5s - t - 4u \\ s \\ 3 - 2t + u \\ t \\ u \end{pmatrix}, \quad s, t, u \in \mathbb{R}.$$

Solution que l'on peut écrire sous forme vectorielle

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -7 \\ 0 \\ 3 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -5 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} -4 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
$$= p + sv_1 + tv_2 + uv_3.$$

Ce qui est bien de la forme demandée avec n = 5, le nombre d'inconnue et donc n - r = 5 - 2 = 3 vecteurs v_i . Un calcul direct montre

$$A \begin{pmatrix} -7 \\ 0 \\ 3 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ -4 \end{pmatrix} \qquad A \begin{pmatrix} -5 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad A \begin{pmatrix} -1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad A \begin{pmatrix} -4 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

En notant c_1, c_2, \dots, c_5 les colonnes de A, on peut réécrire les relation Ap = b et $Av_1 = 0$ ainsi

$$-7c_1 + 3c_3 = b$$
 et $-5c_1 + c_2 = 0$.

Il y a bien d'autre combinaisons possibles!

Exercice 14 (22.2)

Déterminer le rang de la matrice

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 2 \\ 2 & 1 & 1 & 1 & 3 \\ 1 & 3 & -1 & 2 & 2 \\ 0 & 3 & -2 & 2 & 0 \end{pmatrix}.$$

Déterminer ker(A), le noyau de A, et Im(A), l'image de A (donner une équation).

Solution 14 (22.2)

En appliquant l'algorithme de Gauß jusqu'à obtenir une forme échelonnée, on obtient

$$A \underset{L}{\sim} \cdots \underset{L}{\sim} \begin{pmatrix} 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Cette dernière matrice est échelonnée et a trois ligne non nulles, ainsi rg(A) = 3.

Le noyau de A est l'ensemble des solutions de Ax = 0. En continuant la réduction de A, on obtient

$$A \sim \cdots \sim \begin{bmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Deux matrices équivalentes par lignes ont même noyau, on a ici

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \in \ker(A) \iff \begin{cases} x_1 + x_4 - x_5 &= 0 \\ x_2 + x_5 &= 0 \\ x_3 - x_4 + 3x_5 &= 0 \end{cases}$$

Les variables principales sont x_1 , x_2 et x_3 . En paramètrant les solutions de Ax = 0 avec $x_4 = s$ et $x_5 = t$, on obtient la forme des solutions de Ax = 0:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s+t \\ -2t \\ s-3t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ -3 \\ 0 \\ 1 \end{pmatrix}, \quad s, t \in \mathbb{R}.$$

Ainsi

$$\ker(A) = \left\{ s(-1, 0, 1, 1, 0)^T + t(1, -2, -3, 0, 1)^T \mid s, t \in \mathbb{R} \right\}.$$

L'image de A est l'ensemble des combinaisons linéaires des colonnes de A

$$\operatorname{Im}(A) = \left\{ \alpha_1 c_1 + \alpha_2 c_2 + \alpha_3 c_3 + \alpha_4 c_4 + \alpha_5 c_5 \mid \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \in \mathbb{R} \right\}.$$

où

$$c_{1} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} \qquad c_{2} = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 3 \end{pmatrix} \qquad c_{3} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -2 \end{pmatrix} \qquad c_{4} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 2 \end{pmatrix} \qquad c_{5} = \begin{pmatrix} 2 \\ 3 \\ 2 \\ 0 \end{pmatrix}$$

L'image de A est également l'ensemble des vecteurs $b=(b_1,b_2,b_3,b_4)^T$ tel que le système Ax=b est compatible. Or

$$(A|b) \overset{\sim}{\sim} \cdots \overset{\sim}{\sim} \begin{pmatrix} 1 & 0 & 1 & 0 & 2 & b_1 \\ 0 & 1 & -1 & 1 & -1 & b_2 - 2b_1 \\ 0 & 0 & 1 & -1 & 3 & 5b_1 - 3b_2 + b_3 \\ 0 & 0 & 0 & 0 & b_1 - b_3 + b_4 \end{pmatrix}$$

Le système Ax = b est donc compatible si, et seulement si $b_1 - b_3 + b_4 = 0$. On a donc

$$\operatorname{Im}(A) = \left\{ (b_1, b_2, b_3, b_4)^T \in \mathbb{R}^4 \mid b_1 - b_3 + b_4 = 0 \right\}.$$

Exercice 15 (22.2)

Déterminer le rang des matrices suivantes.

$$\begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 0 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 1 & 3 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 1 & 3 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix}$$

Exercice 16 (22.2)

Soit $\lambda, \mu \in \mathbb{R}$. On considère le système d'équations Ax = b où

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 5 & 1 & \lambda \\ 1 & -1 & 1 \end{pmatrix}, \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 7 \\ \mu \end{pmatrix}.$$

Déterminer pour quelle valeurs de λ et μ

- le système a une unique solution,
- le système est incompatible,
- le système a une infinité de solutions.

Lorsqu'elle existe, donner les solutions du système Ax = b.

Solution 16 (22.2)

$$(A|b) = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 5 & 1 & \lambda & 7 \\ 1 & -1 & 1 & \mu \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & -9 & \lambda & -3 \\ 0 & -3 & 1 & \mu - 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & -3 & 1 & \mu - 2 \\ 0 & -9 & \lambda & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & -3 & 1 & \mu - 2 \\ 0 & 0 & \lambda - 3 & 3 - 3\mu \end{pmatrix}$$

Ainsi,

• Le système a une unique solution si, et seulement si $\lambda \neq 3$ (et on a bien rg(A) = 3). Dans ce cas, on obtient par substitution

$$Ax = b \iff \begin{cases} x_1 + 2x_2 = 2 \\ -3x_2 + x_3 = \mu - 2 \\ (\lambda - 3)x_3 = 3 - 3\mu \end{cases} \iff \begin{cases} x_1 = \frac{4\lambda + \lambda \mu - 15}{3(\lambda - 3)} \\ x_2 = \frac{2\lambda - \lambda \mu - 3}{3(\lambda - 3)} \\ x_3 = \frac{3 - 3\mu}{\lambda - 3} \end{cases}$$

- Le système est incompatible si, et seulement si $\lambda = 3$ et $\mu \neq 1$. Le système est alors de rang 2.
- Le système admet une infinité de solution si, et seulement si $\lambda = 3$ et $\mu = 1$. Le système est alors de rang 2. On a alors

$$(A|b) \underset{L}{\sim} \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & -3 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \underset{L}{\sim} \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \underset{L}{\sim} \begin{pmatrix} 1 & 0 & 2/3 & 4/3 \\ 0 & 1 & -1/3 & 1/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Les solutions du système Ax = b sont alors paramètrée par

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} - \frac{2}{3}t \\ \frac{1}{3} + \frac{1}{3}t \\ t \end{pmatrix} = \begin{pmatrix} 4/3 \\ 1/3 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2/3 \\ 1/3 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Exercice 17 (22.2)

Le système Bx = d admet pour solution générale

$$x = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + s \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \quad s, t \in \mathbb{R}.$$

Sachant que $c_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ est la première colonne de B et $d = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}$, déterminer la matrice B.

Solution 17 (22.2)

Puisque les solutions sont des élément de \mathbb{R}^4 , la matrice B a quatre colonnes que l'on note c_1, c_2, c_3, c_4 . Le vecteur $(1,0,2,0)^T$ est une solution de Bx=d, donc

$$c_1 + 2c_3 = d$$

d'où $c_3 = \frac{1}{2}(d - c_1) = (1, 2, -2)^T$. Deplus, $(-3, 1, 0, 0)^T$ et $(1, 0, -1, 1)^T$ sont solutions du système homogène Bx = 0, c'est-à-dire

$$-3c_1 + c_2 = 0$$
 et $c_1 - c_3 + c_4 = 0$

d'où $c_2 = 3c_1 = (3, 3, 6)^T$ et $c_4 = c_3 - c_1 = (0, 1, -4)^T$. Finalement,

$$B = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 1 & 3 & 2 & 1 \\ 2 & 6 & -2 & -4 \end{pmatrix}$$

Exercice 18 (22.2)

On considère la matrice

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 3 & 5 & 1 \end{pmatrix}$$

Déterminer une condition nécessaire et suffisante sur les coefficients du vecteur $b = (u, v, w)^T$ pour que le système Ax = b soit compatible. En déduire que Im(A) est un plan de \mathbb{R}^3 et en donner une équation cartésienne.

Montrer que $d = (1,5,6)^T$ appartient à Im(A). Exprimer d comme une combinaison linéaire des colonnes de A. Est-il possible de le faire de deux manières différentes? Si «oui», faites le! Si «non», justifier pourquoi.

Solution 18 (22.2)

$$(A|b) = \begin{pmatrix} 1 & 2 & 1 & u \\ 2 & 3 & 0 & v \\ 3 & 5 & 1 & w \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & u \\ 0 & -1 & -2 & v - 2u \\ 0 & -1 & -2 & w - 3u \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & u \\ 0 & -1 & -2 & v - 2u \\ 0 & 0 & 0 & w - u - v \end{pmatrix}$$

Le système Ax = b est donc compatible si, et seulement si w - u - v = 0

On a donc

$$Im(A) = \left\{ (u, v, w)^T \in \mathbb{R}^3 \mid u + v - w = 0 \right\} = \left\{ (x, y, z)^T \in \mathbb{R}^3 \mid x + y - z = 0 \right\}$$

On reconnait l'équation cartésienne d'un plan de \mathbb{R}^3 passant par l'origine.

Le vecteur $d = (1, 5, 6)^T$ appartient à Im(A) puisque 1 + 5 - 6 = 0. D'après le calcul ci dessus, on a d'ailleurs

$$(A|d) \sim \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 & 7 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ainsi, pour $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$,

$$Ax = d \iff \begin{cases} x_1 - 3x_3 = 7 \\ x_2 + 2x_3 = -3 \end{cases} \iff \begin{cases} x_1 = 7 + 3x_3 \\ x_2 = -3 - 2x_3 \end{cases}$$

Les solutions du système Ax = d sont donc paramétrée par

$$x = \begin{pmatrix} 7 \\ -3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Chacune des solutions du sytème Ax = d permet d'écrire d comme combinaison linéaire des colonnes de A. Par exemple, avec t = 0 et t = -1, on a

$$d = 7c_1 - 3c_2$$
 et $d = 4c_1 - c_2 - c_3$.

Exercice 19 (22.2)

On considère les matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 2 & -1 & 8 \\ 3 & 1 & 7 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 3 & -2 & 5 \\ 3 & -6 & 9 & -6 \\ -2 & 9 & -1 & 9 \\ 5 & -6 & 9 & -4 \end{pmatrix} \qquad b = \begin{pmatrix} 4 \\ 1 \\ u \\ v \end{pmatrix}$$

1. Déterminer le rang de A et le noyau de A.

Écrire le vecteur nul **0** comme une combinaison linéaire (non triviale) des colonnes de *A*, ou justifier pourquoi c'est impossible.

Déterminer tous les réel u et v tels que $b \in \text{Im}(A)$. Écrire la solution générale du système Ax = b.

2. En utilisant les opérations élémentaires, ou autrement, déterminer det(*B*). Quel est le rang de *B*? Écrire le vecteur nul 0 comme une combinaison linéaire (non triviale) des colonnes de *B*, ou justifier pourquoi c'est impossible.

Déterminer tous les réel u et v tels que $b \in \text{Im}(B)$.

Solution 19 (22.2)

Réponses non rédigées!

1. On trouve que A est de rang 2. Les soltuions de Ax = 0 sont de la forme

$$x = t \begin{pmatrix} -3\\2\\1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Ce qui permet d'écrire le vecteur nul comme combinaison linéaire des colonnes de A.

$$-3c_1 + 2c_2 + c_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Le système Ax = b est compatible si, et seulement si a = 5 et b = 10. Dans ce cas, les solutions de Ax = b sont de la forme

$$x = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

2. On trouve det(B) = 450. Puisque $det(B) \neq 0$, le rang de B est 4. Les différents critère d'inversibilité d'une matrices nous permettent d'affirmer que l'équation Bx = 0 a donc pour unique solution le vecteur nul. Ainsi, il est impossible d'écrire le vecteur nul comme une combinaison linéaire non triviale des colonnes de A.

284

Également, le système Bx = b a une unique solution pour tout $b \in \mathbb{R}^4$, ainsi $\mathrm{Im}(A) = \mathbb{R}^4$.

Exercice 20 (22.2)

Un système linéaires Ax = d a pour solutions les vecteurs de la forme

$$x = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \quad s, t \in \mathbb{R}.$$

On suppose que A est une matrice de type (m, n). On note c_1, c_2, \ldots, c_n les colonnes de A. Répondre à chacune des questions ci dessous ou dire si il n'y a pas assez d'informations pour y répondre.

- **1.** Que vaut *n*?
- **2.** Que vaut *m*?
- **3.** Quel est le rang de A?
- **4.** Décrire le noyau de *A*.
- **5.** Écrire le vecteur *d* comme une combinaison linéaire des colonnes de *A*.
- **6.** Écrire une combinaison linéaire (non triviale) des colonnes c_i qui est égale au vecteur nul 0.

Solution 20 (22.2)

Exercice 21 (22.2)

Soit

$$A = \begin{pmatrix} 3 & 1 & 5 & 9 & -1 \\ 1 & 0 & 1 & 2 & -1 \\ -2 & 1 & 0 & -1 & 2 \\ 1 & 1 & 3 & 5 & 0 \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} 11 \\ 5 \\ -8 \\ 4 \end{pmatrix}.$$

Résoudre le système Ax = b en utilisant le procédé d'élimination de Gauß. Exprimer les solutions sous la forme $x = p + \alpha_1 v_1 + \dots + \alpha_k v_k$, et vérifier que k = n - r où r est le rang de A. Que vaut n? Si possible, exprimer de deux manières différente le vecteur b comme une combinaison linéaire des colonnes de A.

Solution 21 (22.2)