3.4.2.1 Bulk properties of solids

- Density
 - Mass per unit volume
 - $\rho = \frac{m}{V}$
- · Hooke's law
 - The extension of the material is directly proportional to the load applied up to the limit of proportionality
 - $F = k\Delta L = \text{spring constant (stiffness)} \times \text{extension}$
- Springs combined together
 - · Springs in parallel

$$\circ \quad k = k_1 + k_2 + \dots + k_n$$

• Springs in series

$$\circ \ \frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$$

- Energy transfer in springs
 - Hung vertically and stretched: KE → elastic strain energy
 - Force removed: elastic strain energy → KE → GPE
- Force-extension graph

- Limit of proportionality: the point beyond which Hooke's Law is no longer true
- Elastic limit: the point beyond which the material will be permanently deformed, right after limit of proportionality
- Brittle materials: extend very little before it breaks / fractures at a low extension
- Plastic materials: experience a large amount of extension as the load is increased, especially after the elastic limit
- Types of stretches
 - Elastic
 - o Material returns to original shape once force is removed
 - All the work done is stored as elastic strain energy
 - Plastic
 - Material does not return to original shape once force is removed
 - Work is done to move atoms apart so energy is not stored as elastic strain energy but dissipated as heat
- · Types of deformation
 - Tensile deformation
 - o Deformation that stretches an object

- Compressive deformation
 - Deformation that compresses an object
- Strain energy
 - The area under the force-extension graph = work done to stretch the energy = strain energy
- Elastic strain energy in springs
 - $E_p = \frac{1}{2}F\Delta L = \frac{1}{2}k(\Delta L)^2$ = area under force-extension graph
- Loading & unloading materials
 - Area between loading and unloading lines = work done to permanently deform the material
 - Plastic deformation
 - When a material is stretched beyond its elastic limit it will not return to its original length after the load is removed (permanent extension / deformation)
 - Metal wire
 - o Loading (the proportional part) + unloading curves are the same straight line
 - Gradient of the unloading line remains the same because the stiffness only changes with material

- Extension of elastic materials graph e.g. seatbelts
 - Loading and unloading curves are not linear & not the same
 - o During unloading the change in length is greater for a given change in tension
 - o Returns to the original length when unloaded

- Extension of plastic materials graph
 - o The loading curve is not linear
 - o During unloading the change in length is greater for a given change in tension
 - o Does not return to its original strength

Stress-strain curves

- Before limit of proportionality (P)
 - Gradient = Young modulus of the material
 - o Tensile stress ∝ tensile strain
 - o The material obeys Hooke's law
- Elastic Limit (E)
 - Up to this point the material returns to its original length when the load acting on it is completely removed
 - Beyond this limit the material doesn't return to its original position and a plastic deformation starts to appear in it
- Yield point (Y₁ and Y₂)
 - o The stress at which the material starts to deform plastically
 - o After the yield point is passed, plastic deformation occurs
 - \circ 2 yield points: upper (Y_1) + lower yield point (Y_2)
 - At the upper yield point the wire weakens temporarily
 - At the lower yield point a small increase in stress causes a large increase in strain and the wire undergoes plastic flow
- Ultimate tensile stress (UTS)
 - The maximum stress a material can withstand
 - After UTS the wire loses its strength, extends and becomes narrower at its weakest point
 - Plastic deformation stops
- Fracture / breaking point (B)
 - The point in the stress-strain curve at which the material breaks / fractures
- Stress / strain curve for different materials

• Brittle materials (e.g. glass) snap without noticeable yield

• Ductile materials can be drawn into a wire (e.g. copper)

3.4.2.2 The Young modulus

- Tensile strain
 - · Extension per unit length

•
$$\sigma = \frac{F}{A}$$

- Tensile stress
 - The force per unit cross-sectional area

•
$$\varepsilon = \frac{\Delta L}{L}$$

- Young modulus
 - $E = \frac{\text{tensile stress}}{\text{tensile strain}} = \frac{FL}{A\Delta L}$
 - Unit = Pascal (Pa)
 - Measures the **stiffness of the material** (higher Young modulus = stiffer material)
 - * Young modulus is specific to the material and doesn't change
 - * Young modulus = gradient of the straight line part of the stress strain graph

Required practical 4 - determining the Young modulus

- Method
 - Measure the initial length of wire with a ruler
 - Measure the initial diameter of wire with a micrometer
 - Measure in several places and take mean
 - o Diameter is very small so it cannot be measured by a ruler but only with a micrometer
 - Mark a cross onto the wire with a tape
 - Align the travelling microscope with the cross
 - Extension can be very small so a microscope is needed
 - Add load and align the travelling microscope with the cross again
 - Read off the extension of the wire
 - Repeat for a range of loads
 - Repeat up to the limit of proportionality / elastic limit
 - Repeat the experiment 2 more times for each value of load and calculate mean extension
 - Calculate tensile stress and strain for each load value
 - Plot a graph of stress against strain
 - Young modulus = gradient of the linear part of the graph

- Measurements
 - Length of the wire between clamp and mark (metre rule)
 - Diameter of the wire (micrometer, measure several positions + mean taken)
 - Extension of wire for a known mass (by moving travelling microscope and checking the scale)
 - Repeat readings for increasing load