PROYECTO EA1

Amplificador de 1 Watt para guitarra

Presentado por: Magni Genre, Exequiel Juan

Universidad Tecnológica Nacional Facultad Regional Mendoza

Estructura de la presentación

¿Por qué para guitarra?

- 2. Tercera etapa
- 3. Segunda etapa
- 4. Primera etapa
- 5. Resultado final
- 6. Anexo: Fuente regulada

¿Por qué para guitarra?

Amplificador de tensión

- $Z_i \gg R_s$
- $Z_o \ll R_L$ donde $R_L = 8\Omega \rightarrow V_o = 4.05V_p$
- $V_s? \rightarrow A_v?$
- $R_s? \rightarrow \overline{Z_i?}$

Condiciones por el instrumento

- Señal de entrada V_s = 100~200 m V_p ; frecuencia inf. 82,4069Hz y frecuencia sup. 3,5kHz (armónica)
- Impedancia de entrada Z_i >> 5~15kΩ
- $A_v = 4,05/0,1 = 40,5$

Tercera Etapa

<u>Etapa adaptadora de carga</u>

Potencia de transistores:

 $P_{Q1} = 102,2 \text{ mW}$

 $P_{Q2} = 7,344 \text{ W}$

 $P_L = 1W$

 $P_{DC} = 22,4W$

 $\eta_{(\%)} = 4,46\%$

Etapa adaptadora de carga

$$V_i = 4,15V_p$$

 $V_o = 4,05V_p$
 $A_{v3} = 0,98$
 $A_{v1} \cdot A_{v2} = 41,33$
 $|A_{v2}| = 4,2$
 $|A_{v1}| = 10$

Segunda Etapa

Etapa amplificadora

Potencia del transistor:

 $P_{Q1} = 56,69 \text{ mW}$

Etapa amplificadora

$$V_i = 1V_p$$
 $V_o = 4,25V_p$ $A_{v2} = -4,25$

Primera Etapa

Etapa de entrada

Potencia de transistores:

 $P_{Q1} = 106 \text{ mW}$

 $P_{02} = 19,42 \text{ mW}$

 $P_{Q3} = 14,65 \text{ mW}$

Etapa de entrada

$$V_i = 100 \text{mV}_p$$

$$V_o = 950 \text{mV}_p$$

$$A_{v1} = -9,5$$

Resultado final

Amplificador diseñado

Amplificador diseñado

$$V_i = 100 \text{mV}_p$$

 $V_o = 4,05 \text{mV}_p$

$$P_L = 1W_{rms}$$

$$A_{\rm v} = 40,5$$

$$f_{inf} = 92Hz$$

$$f_{sup} = 1,14MHz$$

Anexo: Fuente de DC

Fuente de salida fija regulada

Potencia de cada regulador: P = 4,356W

Muchas gracias por su atención