From this lecture on, we turn to the geometric side of the localization theory. The main player will be (algebraic) D-modules on the flag variety G/B. In this lecture, we define D-modules. There are many good references for this theory. For example, [HTT] is a thorough textbook, while [B] is a short notes.

1. Recollection: (co)tangent sheaves

Recall the following definitions in algebraic geometry.

Definition 1.1. Let A be a k-algebra and M be an A-module. A k-derivation of A into M is a k-linear map $D: A \to M$ satisfying the **Lebniz rule**

$$D(f \cdot g) = f \cdot D(g) + g \cdot D(f).$$

Let Der(A, M) be the set of such k-derivations. This is naturally an A-module.

Definition 1.2. Let (X, \mathcal{O}_X) be any k-ringed space and \mathcal{M} be an \mathcal{O}_X -module. A k-derivation of \mathcal{O}_X into \mathcal{M} is a k-linear morphism $D: \mathcal{O}_X \to \mathcal{M}$ such that for any open subscheme $U \subset X$, $D(U): \mathcal{O}(U) \to \mathcal{M}(U)$ is a k-derivation. Let $\mathsf{Der}(\mathcal{O}_X, \mathcal{M})$ be the space of k-derivations.

Proposition-Definition 1.3. Let X be a k-scheme. The functor \mathcal{O}_X -mod \rightarrow Vect, $\mathcal{M} \mapsto \mathsf{Der}(\mathcal{O}_X, \mathcal{M})$ is represented by a quasi-coherent \mathcal{O}_X -module Ω^1_X , i.e.

$$\mathsf{Hom}_{\mathcal{O}_X}(\Omega_X^1,\mathcal{M}) \simeq \mathsf{Der}(\mathcal{O}_X,\mathcal{M}).$$

We call Ω^1_X the sheaf of differentials, or the cotangent sheaf, of X over k.

The identity map on Ω^1_X corresponds to a k-derivation

$$d: \mathcal{O}_X \to \Omega^1_X$$

which is called the universal k-derivation of \mathcal{O}_X .

When $X = \operatorname{Spec}(A)$ is affine, let $\Omega^1_A \in A$ -mod be such that $\Omega^1_X \simeq \widetilde{\Omega^1_A}$. We call Ω^1_A the **module** of differentials of A over k.

Example 1.4. If $A = \mathsf{Sym}(V)$ for a k-vector space $V \in \mathsf{Vect}$, then $\Omega^1_A \simeq A \otimes_k V$ and $d : A \to \Omega^1_A$ sends $v \in V \subset \mathsf{Sym}(V)$ to $dv = 1 \otimes v \in A \otimes_k V$.

Construction 1.5. Let $f: X \to Y$ be a morphism between k-schemes. For any \mathcal{O}_X -module \mathcal{M} , consider the composition

$$Der(\mathcal{O}_X, \mathcal{M}) \to Der(f_*\mathcal{O}_X, f_*\mathcal{M}) \to Der(\mathcal{O}_Y, f_*\mathcal{M})$$

that sends a k-derivation $D: \mathcal{O}_X \to \mathcal{M}$ to $\mathcal{O}_Y \to f_*\mathcal{O}_X \xrightarrow{f_*(D)} f_*\mathcal{M}$. By definition, we obtain maps

$$\operatorname{Hom}_{\mathcal{O}_X}(\Omega^1_X,\mathcal{M}) \to \operatorname{Hom}_{\mathcal{O}_Y}(\Omega^1_Y,f_*\mathcal{M}) \simeq \operatorname{Hom}_{\mathcal{O}_X}(f^*\Omega^1_Y,\mathcal{M})$$

that are functorial in \mathcal{M} . This gives an \mathcal{O}_X -linear morphism

$$(1.1) f^*\Omega^1_Y \to \Omega^1_X.$$

 $Date \colon \mathrm{Apr}\ 29,\ 2024.$

Lemma 1.6. If $f: X \to Y$ is an open embedding, or more generally an étale morphism, then $f^*\Omega^1_Y \to \Omega^1_X$ is an isomorphism.

Lemma 1.7. Let $f: X \to Y$ be a closed embedding corresponding to the ideal sheaf $\mathcal{I} \subset \mathcal{O}_Y$. Then we have

$$\mathcal{I}/\mathcal{I}^2 \xrightarrow{d} f^*\Omega_Y^1 \to \Omega_X^1 \to 0,$$

where the map $\mathcal{I}/\mathcal{I}^2 \to f^*\Omega^1_Y \simeq \Omega^1_Y/\mathcal{I}\Omega^1_Y$ is induced by $\mathcal{I} \hookrightarrow \mathcal{O}_Y \stackrel{d}{\to} \Omega^1_Y$.

Remark 1.8. Since any affine scheme is a closed subscheme of Spec(Sym(V)) for some $V \in Vect$, the above lemmas, together with Example 1.4, allow us to calculate Ω_X^1 for any k-scheme X.

Corollary 1.9. If X is (locally) of finite type over k, then Ω^1_X is (locally) coherent.

Corollary 1.10. If X is a smooth k-scheme of dimension n, then Ω_X^1 is locally free of rank n.

From now on, we always assume X is a smooth k-scheme.

Construction 1.11. Let X be a smooth k-scheme. Define $\Omega_X^n := \bigwedge_{\mathcal{O}_X}^n (\Omega_X^1)$, i.e., the anti-symmetric quotient of $\Omega_X^1 \otimes_{\mathcal{O}_X} \cdots \otimes_{\mathcal{O}_X} \Omega_X^1$. As in the study of differential geometry, there is a unique complex

$$\mathcal{O}_X \xrightarrow{d} \Omega_X^1 \xrightarrow{d} \Omega_X^2 \xrightarrow{d} \cdots$$

such that $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^m (\alpha \wedge d\beta)$, where $\alpha \in \Omega_X^m(U)$ is a m-form. This is the **de Rham complex** of X.

Construction 1.12. Let X be a smooth k-scheme. We define the tangent sheaf \mathcal{T}_X of X over k to be the dual of Ω^1_X , i.e.,

$$\mathcal{T}_X \coloneqq \mathcal{H}om_{\mathcal{O}_X}(\Omega_X^1, \mathcal{O}_X).$$

Note that \mathcal{T}_X is quasi-coherent, and for any open subset U, we have

$$\mathcal{T}(U) \coloneqq \mathsf{Der}(\mathcal{O}_U, \mathcal{O}_U).$$

By definition, for $\partial \in \mathcal{T}(U)$ and $f \in \mathcal{O}(U)$, we have $\partial(f) = \langle \partial, df \rangle$.

Corollary 1.13. We have equivalences between functors \mathcal{O}_X -mod \rightarrow Vect:

$$\mathsf{Der}_k(\mathcal{O}_X, -) \simeq \Gamma(X, \mathcal{T}_X \underset{\mathcal{O}_X}{\otimes} -).$$

Remark 1.14. The **tangent space** $T_{X,x}$ introduced in [Section 3, Lecture 3] can be identified with the stalk of \mathcal{T}_X at x.

Corollary 1.15. If X is a smooth k-scheme of dimension n, then \mathcal{T}_X is locally free of rank n.

Construction 1.16. Let $f: X \to Y$ be a morphism between smooth k-schemes. The morphism (1.1) induces an \mathcal{O}_X -linear morphism

$$df: \mathcal{T}_X \to f^*\mathcal{T}_Y.$$

Lemma 1.17. Let $X = X_1 \times X_2$ be a smooth k-scheme. Then the \mathcal{O}_X -linear morphism

$$(d\mathsf{pr}_1, d\mathsf{pr}_2): \mathcal{T}_X \to \mathsf{pr}_1^* \mathcal{T}_{X_1} \oplus \mathsf{pr}_2^* \mathcal{T}_{X_2}$$

is an isomorphism.

Construction 1.18. Let X be a smooth k-scheme. For any open subset U of X, $[D_1, D_2] := D_1 \circ D_2 - D_2 \circ D_1$ defines a Lie bracket on $Der(\mathcal{O}_U, \mathcal{O}_U)$. By defition, \mathcal{O}_U is a representation of the obtained Lie algebra.

It follows that \mathcal{T}_X is a sheaf of Lie algebras on X, and \mathcal{O}_X is a \mathcal{T}_X -module.

Warning 1.19. The category \mathcal{O}_X -mod has a natural symmetric monoidal structure but \mathcal{T}_X is not a Lie algebra object in this symmetric monoidal category. In other words, the Lie bracket $[-,-]:\mathcal{T}_X\otimes_k\mathcal{T}_X\to\mathcal{T}_X$ does not factor through $\mathcal{T}_X\otimes_{\mathcal{O}_X}\mathcal{T}_X$.

Construction 1.20. As in the study of differential geometry, for any local section $\partial \in \mathcal{T}(U)$, we can define the **contraction** operator

$$i_{\partial}: \Omega_X^{n+1}(U) \to \Omega_X^n(U)$$

and the Lie derivative

$$\mathcal{L}_{\partial}: \Omega_X^n(U) \to \Omega_X^n(U).$$

They satisfy all the identities in differential geometry. In particular, we have the Cartan's magic formula:

$$\mathcal{L}_{\partial}(\omega) = i_{\partial}(d\omega) + d(i_{\partial}\omega).$$

We have the following useful result, which allows us to apply the techniques in differential geometry to the study of \mathcal{T}_X and Ω_X . For a proof, see [HTT, Theorem A.5.1].

Proposition-Definition 1.21. Let X be any n-dimensional smooth k-scheme and $p \in X$ be a closed point. Then there exists an affine open neighborhood U of p and functions $x_i \in \mathcal{O}(U)$, $i = 1, \dots, n$, such that

- (i) $\{dx_i\}$ is a free basis of $\Omega^1(U)$ as an $\mathcal{O}(U)$ -module;
- (ii) Let $\{\partial_i\}$ be the dual basis of $\mathcal{T}(U)$, then $[\partial_i, \partial_j] = 0$ and $\partial_i(x_j) = \delta_{ij}$.
- (iii) The images of x_i in the local ring $\mathcal{O}_{X,p}$ generate the maximal ideal $\mathfrak{m}_{X,p}$.

We call such a system $\{x_i\}$ an étale coordinate system of X near p.

Remark 1.22. (ii) actually follows from (i).

Remark 1.23. The functions x_i define an étale map $X \to \mathbb{A}^n$ sending $p \in X$ to the origin $0 \in \mathbb{A}^n$.

2. Tangent sheaf vs. Lie algebra

Construction 2.1. Let X be a finite type k-scheme equipped with a right action of an algebraic group G. Let $\mathfrak{g} := \text{Lie}(G)$ be the Lie algebra of G. We construct a Lie algebra homomorphism

$$a:\mathfrak{g}\to\mathcal{T}(X)$$

as follows. Consider the action map $\operatorname{act}: X \times G \to X$ and the $\mathcal{O}_{X \times G}$ -linear morphisms

$$\mathcal{O}_X \otimes \mathcal{T}_G \simeq \operatorname{pr}_2^* \mathcal{T}_G \hookrightarrow \mathcal{T}_{X \times G} \xrightarrow{d\operatorname{act}} \operatorname{act}^* \mathcal{T}_X.$$

By restricting along $X \xrightarrow{\mathsf{Id} \times e} X \times G$, we otain \mathcal{O}_X -linear morphisms

$$\mathcal{O}_X \otimes \mathfrak{q} \to \mathcal{T}_X$$

which induces the desired k-linear map $a: \mathfrak{g} \to \mathcal{T}(X)$.

Remark 2.2. Using the language of differential geometry, for $x \in \mathfrak{g}$, a(x) is the vector field of the flow $\operatorname{\mathsf{act}}(\neg, \exp(tx)) : X \to X$.

Lemma 2.3. The above map $a: \mathfrak{g} \to \mathcal{T}(X)$ is a Lie algebra homomorphism.

Proof. Unwinding the definitions, the corresponding map $\mathsf{Der}(\mathcal{O}_G, k_e) \to \mathsf{Der}(\mathcal{O}_X, \mathcal{O}_X)$ sends a k-derivation $\partial : \mathcal{O}_G \to k_e$ to the composition¹

$$a(\partial_1): \mathcal{O}_X \to \mathcal{O}_X \otimes \mathcal{O}_G \xrightarrow{\mathsf{Id} \otimes \partial} \mathcal{O}_X \otimes k_e \simeq \mathcal{O}_X.$$

¹For non-affine G, we use the morphism between \mathcal{O}_X -modules: $\mathcal{O}_X \to \mathsf{act}_*(\mathcal{O}_G \otimes \mathcal{O}_X) \xrightarrow{\partial \otimes \mathsf{Id}} \mathsf{act}_*(k_e \otimes \mathcal{O}_X) \simeq \mathcal{O}_X$.

Using the axioms of group actions, we can identify $a(\partial_1) \circ a(\partial_2)$ with

$$\mathcal{O}_X \to \mathcal{O}_X \otimes \mathcal{O}_G \xrightarrow{\operatorname{Id} \otimes \Delta} \mathcal{O}_X \otimes \mathcal{O}_G \otimes \mathcal{O}_G \xrightarrow{\operatorname{Id} \otimes \partial_1 \otimes \partial_2} \mathcal{O}_X \otimes k_e \otimes k_e \simeq \mathcal{O}_X.$$

This implies

$$[a(\partial_1), a(\partial_2)] = a(\partial_1) \circ a(\partial_2) - a(\partial_2) \circ a(\partial_1) = a([\partial_1, \partial_2]),$$

where the last equation is due to [Remark 4.5, Lecture 3].

Remark 2.4. Let X be a finite type k-scheme equipped with a left action of an algebraic group G. We can obtain a right G-action by precomposing with $g \mapsto g^{-1}$. It follows that we also have a Lie algebra homomorphism $a : \mathfrak{g} \to \mathcal{T}(X)$. Using the language of differential geometry, for $x \in \mathfrak{g}$, a(x) is the vector field of the flow $\operatorname{act}(\exp(-tx), -) : X \to X$.

Example 2.5. Consider the left and right multiplication actions of G on itself. We obtain Lie algebra homomorphisms

$$\mathfrak{g} \xrightarrow{a_l} \mathcal{T}(G) \xleftarrow{a_r} \mathfrak{g}.$$

By construction, the image of a_r consists of *left* invariant vector fields on G, while the image of a_l consists of *right* invariant ones.

It is easy to see that the images of $a_l : \mathfrak{g} \to \mathcal{T}(G)$ and $a_r : \mathfrak{g} \to \mathcal{T}(G)$ commute with respect to the Lie bracket, i.e., $[a_l(x), a_r(y)] = 0$ for $x, y \in \mathfrak{g}$. Indeed, this follows by considering the $(G \times G)$ -action on G given by $(g_1, g_2) \cdot x := g_1^{-1} x g_2$.

It is easy to show the obtained \mathcal{O}_G -linear maps, which we denote by the same symbols,

$$\mathcal{O}_G \otimes \mathfrak{g} \xrightarrow{a_l} \mathcal{T}_G \xleftarrow{a_r} \mathcal{O}_G \otimes \mathfrak{g}$$

are isomorphisms. Note that the stalks of the above maps at $e \in G$ are given by

$$\mathfrak{g} \stackrel{-\mathsf{Id}}{\longrightarrow} \mathfrak{g} \stackrel{\mathsf{Id}}{\longleftarrow} \mathfrak{g}.$$

Definition 2.6. Let X be a smooth k-scheme. A quasi-coherent $\widetilde{\mathcal{T}}_X$ -module is a quasi-coherent \mathcal{O}_X -module \mathcal{M} equipped with a \mathcal{T}_X -module structure such that

- (i) The map $\mathcal{T}_X \otimes_k \mathcal{M} \to \mathcal{M}$ is \mathcal{O}_X -linear, where $\mathcal{T}_X \otimes_k \mathcal{M}$ is viewed as an \mathcal{O}_X -module via the first factor.
- (ii) The map $\mathcal{O}_X \otimes_k \mathcal{M} \to \mathcal{M}$ is \mathcal{T}_X -linear, where $\mathcal{O}_X \otimes_k \mathcal{M}$ is viewed as an \mathcal{T}_X -module via the diagonal action.

Let $\widetilde{\mathcal{T}}_X$ -mod_{qc} be the category of quasi-coherent $\widetilde{\mathcal{T}}_X$ -module, where morphisms are defined in the obvious way.

Remark 2.7. Unwinding the definitions, (ii) means the action of \mathcal{T}_X on \mathcal{M} satisfies the **Lebniz** rule: for any local sections $\partial \in \mathcal{T}(U)$, $m \in \mathcal{M}(U)$ and $f \in \mathcal{O}(U)$, we have

$$\partial(f \cdot m) = f \cdot \partial(m) + \partial(f) \cdot m.$$

Remark 2.8. The notation stands $\widetilde{\mathcal{T}}_X$ stands for $\mathcal{O}_X \oplus \mathcal{T}_X$, viewed as a *Picard algebroid* on X in the sense of $[BB]^2$.

Example 2.9. The structure sheaf \mathcal{O}_X , equipped with the standard \mathcal{T}_X -action, is a quasi-coherent $\widetilde{\mathcal{T}}_X$ -module.

²A Picard algebroid \mathcal{P} on X is a sheaf of Lie algebras equipped with a short exact sequence $0 \to \mathcal{O}_X \to \mathcal{P} \to \mathcal{T}_X \to 0$, where \mathcal{O}_X is viewed as a sheaf of Lie algebras, such that the action of \mathcal{P} on its (Lie) ideal sheaf \mathcal{O}_X factors through the canonical action of \mathcal{T}_X on \mathcal{O}_X .

Remark 2.10. It is easy to show $\widetilde{\mathcal{T}}_X$ -mod_{qc} is an abelian category and the forgetful functor $\widetilde{\mathcal{T}}_X$ -mod_{qc} $\to \mathcal{O}_X$ -mod_{qc} is exact.

Construction 2.11. Let X be a finite type k-scheme equipped with an action of an algebraic group G. We have a functor

$$\Gamma: \widetilde{\mathcal{T}}_X\operatorname{-mod}_{\operatorname{qc}} \to \mathfrak{g}\operatorname{-mod}, \ \mathcal{M} \mapsto \mathcal{M}(X),$$

where $\mathcal{M}(X)$ is viewed as a \mathfrak{g} -module via the Lie algebra homomorphism $a:\mathfrak{g}\to\mathcal{T}(X)$.

Remark 2.12. One version of the localization theory says for X = G/B, the above functor induces an equivalence

$$\Gamma : \widetilde{\mathcal{T}}_X \operatorname{\mathsf{-mod}}_{\mathsf{qc}} \xrightarrow{\cong} \mathfrak{g} \operatorname{\mathsf{-mod}}_{\chi_0},$$

where $\chi_0 = \varpi(0)$ is the central character of M_0 .

3. Differential operators

Just like the associative algebra $U(\mathfrak{g})$ plays a significant role in the study of \mathfrak{g} -modules, there is a sheaf of associative algebras, known as the sheaf of differential operators \mathcal{D}_X , that plays a similar role in the study of \mathcal{T}_X -modules³.

Definition 3.1. Let X be an affine smooth k-scheme. We define the notion of differential operator on X inductively.

A k-linear map $D: \mathcal{O}(X) \to \mathcal{O}(X)$ is a differential operator of order -n (n > 0) iff D = 0.

A k-linear map $D: \mathcal{O}(X) \to \mathcal{O}(X)$ is a **differential operator of order** $n \ (n \ge 0)$ if for any function $f \in \mathcal{O}(X)$, the k-linear map $[D, f] := D \circ f - f \circ D$, i.e.,

$$q \mapsto D(fq) - fD(q)$$

is a differential operator of order n-1.

Let $\mathsf{F}^{\leq n}\mathcal{D}(X)$ be the space of differential operators of order n on X, and $\mathcal{D}(X) := \cup_n \mathsf{F}^{\leq n}\mathcal{D}(X)$ be the space of all differential operators on X.

Example 3.2. Multiplication by any $f \in \mathcal{O}(X)$ is a differential operator of order 0 and the map $\mathcal{O}(X) \to \mathsf{F}^{\leq 0}\mathcal{D}(X) \simeq \mathsf{gr}^0\mathcal{D}(X)$ is an isomorphism.

Exercise 3.3. This is Homework 5, Problem 1. Let X be an affine smooth k-scheme. Prove: any k-derivation $\mathcal{O}(X) \to \mathcal{O}(X)$ is a differential operator of order 1, and the obtained map $\mathcal{O}(X) \oplus \mathcal{T}(X) \to \mathsf{F}^{\leq 1} \mathcal{D}(X)$ is an isomorphism.

Lemma 3.4. Let X be an affine smooth k-scheme, and $D_1 \in \mathsf{F}^{\leq m}\mathcal{D}(X)$, $D_2 \in \mathsf{F}^{\leq n}\mathcal{D}(X)$ be differential operators. Prove:

- (1) The composition $D_1 \circ D_2$ is a differential operator of order m + n.
- (2) The commutator $[D_1, D_2] := D_1 \circ D_2 D_2 \circ D_1$ is a differential operator of order m+n-1. In other words, $\mathsf{F}^{\bullet}\mathcal{D}(X)$ is a filtered associative algebra such that $\mathsf{gr}^{\bullet}\mathcal{D}(X)$ is commutative.

Proof. Follow from the above exercise and induction.

Remark 3.5. For any k-linear map $D: \mathcal{O}(X) \to \mathcal{O}(X)$ and functions $u, v \in \mathcal{O}(X)$, we have (3.1) [D, uv] = [D, u]v + u[D, v].

³The sheaf \mathcal{D}_X is so useful that \mathcal{D}_X -modules were introduced much earlier than \mathcal{T}_X -modules. The latter point of view was ignored until the study of general Lie algebroids.

It follows that in Definition 3.1, we can replace "for any function $f \in \mathcal{O}(X)$ " by "for generators f of $\mathcal{O}(X)$ ".

Note that we also have

(3.2)
$$D(uv) = [D, u](v) + uD(v).$$

Remark 3.6. For a disjoint union $V_1 \sqcup V_2$ of affine smooth k-schemes, we have $\mathsf{F}^{\bullet}\mathcal{D}(V_1 \sqcup V_2) \simeq \mathsf{F}^{\bullet}\mathcal{D}(V_1) \oplus \mathsf{F}^{\bullet}\mathcal{D}(V_2)$.

Warning 3.7. Definition 3.1 makes sense even when X is singular, but the obtained algebra $\mathcal{D}(X)$ is ill-behaved and is not the correct algebra to consider. In modern point of view, for singular X, the "correct" $\mathcal{D}(X)$ should be a DG algebra.

4. Sheaf of differential operators

In this section, for any smooth k-scheme, we construct a sheaf \mathcal{D}_X of filtered associative algebras such that for any affine open subscheme U, we have $\mathcal{D}_X(U) \simeq \mathcal{D}(U)$. The proofs in this section are technical and can be treated as blackboxes.

Throughout this section, let V be a connected affine smooth k-scheme and $f \in \mathcal{O}(V)$ be a nonzero function. Let $U \subset V$ be the affine open subscheme where $f \neq 0$, i.e. $\mathcal{O}(U) \simeq \mathcal{O}(V)_f$. Note that U is also connected. We identify $\mathcal{O}(V)$ as a subalgebra of $\mathcal{O}(U)$.

Lemma 4.1. Any differential operator $D \in \mathcal{D}(U)$ is determined by its restriction $D|_{\mathcal{O}(V)} : \mathcal{O}(V) \to \mathcal{O}(U)$.

Proof. Let $D \in \mathsf{F}^{\leq n}\mathcal{D}(U)$. We prove by induction in n. When n < 0, there is nothing to prove. For $n \geq 0$, for any $g \in \mathcal{O}(V)$ and $m \geq 0$, we have

(4.1)
$$D(g) = D(f^m \cdot \frac{g}{f^m}) = f^m \cdot D(\frac{g}{f^m}) + [D, f^m](\frac{g}{f^m}).$$

It follows that

(4.2)
$$D\left(\frac{g}{f^m}\right) = \frac{D(g)}{f^m} - \frac{[D, f^m]\left(\frac{g}{f^m}\right)}{f^m}.$$

Note that $[D, f^m] \in \mathsf{F}^{\leq n-1}\mathcal{D}(U)$ hence it is determined by $[D, f^m]|_{\mathcal{O}(V)} = [D|_{\mathcal{O}(V)}, f^m]$, which is determined by $D|_{\mathcal{O}(V)}$. Now (4.2) implies D is also determined by $D|_{\mathcal{O}(V)}$.

Lemma 4.2. For any differential operator $D_0 \in \mathsf{F}^{\leq n}\mathcal{D}(V)$, there is a unique differential operator $D \in \mathsf{F}^{\leq n}\mathcal{D}(U)$ making the following diagram commute:

$$\mathcal{O}(V) \xrightarrow{D_0} \mathcal{O}(V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}(U) \xrightarrow{D} \mathcal{O}(U).$$

Proof. The uniqueness follows from Lemma 4.1. It remains to show the existence. We prove by induction in n. When n < 0, there is nothing to prove. For $n \ge 0$ and any $m \ge 0$, by induction hypothesis, there is a unique differential operator $[D_0, f^m]^{\sharp} \in \mathsf{F}^{\le n-1}\mathcal{D}(U)$ that extends $[D_0, f^m] \in \mathsf{F}^{\le n-1}\mathcal{D}(V)$. Motivated by (4.2), for any $g \in \mathcal{O}(V)$, we define

$$D(\frac{g}{f^m}) \coloneqq \frac{D_0(g)}{f^m} - \frac{\left[D_0, f^m\right]^\sharp \left(\frac{g}{f^m}\right)}{f^m}.$$

We need to show the map D is well-defined, i.e., $D(\frac{g}{f^m}) = D(\frac{f^l g}{f^{l+m}})$ for any $l \ge 0$. Note that

$$D_0(f^l g) = f^l D_0(g) + [D_0, f^l](g).$$

We also have $[D_0, f^{l+m}] = [D_0, f^l]f^m + f^m[D_0, f^l]$. This implies

$$[D_0, f^{l+m}]^{\sharp} = [D_0, f^l]^{\sharp} f^m + f^m [D_0, f^l]^{\sharp}.$$

Combining the above two equations, a direct calculation shows $D(\frac{g}{f^m}) = D(\frac{f^l g}{f^{l+m}})$ as desired. It remains to show D is a differential operator of order n. By Remark 3.5, we only need to show $[D, f^{-1}]$ and [D, h], $h \in \mathcal{O}(V)$ are differential operators of order n-1. By (3.1), we have $0 = [D, ff^{-1}] = f[D, f^{-1}] + [D, f]f^{-1}$. Hence $[D, f^{-1}] = -f^{-1}[D, f]f^{-1}$. Therefore we only need to show $D' := [D, h] \in \mathsf{F}^{\leq n-1}\mathcal{D}(U)$. Write $D'_0 := [D_0, h] \in \mathsf{F}^{\leq n-1}\mathcal{D}(V)$. A direct calculations shows D' can be obtained from D'_0 using the same formula that defines D from D_0 , i.e.,

$$D'(\frac{g}{f^m}) \coloneqq \frac{D'_0(g)}{f^m} - \frac{[D'_0, f^m]^{\sharp}(\frac{g}{f^m})}{f^m}.$$

Hence we win by induction in n (again).

Lemma 4.3. For any differential operator $D \in \mathsf{F}^{\leq n}\mathcal{D}(U)$, there exists an integer $N \geq 0$ such that $f^N D$ and $D f^N$ send $\mathcal{O}(V)$ into $\mathcal{O}(V)$.

Proof. We prove by induction in n. When n < 0, there is nothing to prove. For $n \ge 0$, let $q_i \in \mathcal{O}(V), i \in I$ be a finite set of generators. By induction hypothesis, there exists an integer $N \ge 0$ such that $f^N[D, g_i]$ and $[D, g_i]f^N$ preserve $\mathcal{O}(V)$ for any $i \in I$. By (3.1), $f^N[D, g]$ and $[D, g]f^N$ preserve $\mathcal{O}(V)$ for any $g \in \mathcal{O}(V)$. By enlarging N, we can assume $f^ND(1) \in \mathcal{O}(V)$. Hence by (3.2), $f^ND(g) = f^N[D, g](1) + f^NgD(1) \in \mathcal{O}(V)$ and $D(f^{2N}g) = [D, f^N](f^Ng) + [D, g](g) = f^N[D, g](g)$ $f^N D(f^N g) \in \mathcal{O}(V)$.

Construction 4.4. Let $F^{\bullet}\mathcal{D}(V) \to F^{\bullet}\mathcal{D}(U)$ be the map defined by Lemma 4.2. Recall $\mathcal{D}(U)$ is an $\mathcal{O}(U)$ -bimodule and $\mathcal{D}(V)$ is an $\mathcal{O}(V)$ -bimodule. It is easy to see the above map is compatible with the homomorphism $\mathcal{O}(V) \to \mathcal{O}(U)$. It follows that we have maps

$$(4.3) \mathcal{O}(U) \underset{\mathcal{O}(V)}{\otimes} \mathsf{F}^{\bullet} \mathcal{D}(V) \to \mathsf{F}^{\bullet} \mathcal{D}(U) \leftarrow \mathsf{F}^{\bullet} \mathcal{D}(V) \underset{\mathcal{O}(V)}{\otimes} \mathcal{O}(U),$$

such that the rightward map is left $\mathcal{O}(U)$ -linear while the leftward map is right $\mathcal{O}(U)$ -linear.

Lemma 4.5. The maps (4.3) are isomorphisms.

Proof. We first show the maps are injective. Note that any element in $\mathcal{O}(U) \otimes_{\mathcal{O}(V)} \mathsf{F}^{\bullet} \mathcal{D}(V)$ is a pure tensor $f^{-m} \otimes D_0$ for some $m \geq 0$ and $D_0 \in \mathsf{F}^n \mathcal{D}(V)$. The rightward map sends it to $f^{-m}D_0 \in \mathsf{F}^n\mathcal{D}(U)$. If $f^{-m}D_0 = 0$, then $D_0 = 0$ because $\mathcal{O}(V)$ is integral. This proves the rightward map is injective. A similar argument shows the leftward map is injective.

To prove the maps are surjective, let $D \in \mathsf{F}^{\leq n}\mathcal{D}(U)$. By Lemma 4.3, there exists $N \geq 0$ such that $D_0 := f^N D$ and $D_0' := D f^N$ preserve $\mathcal{O}(V)$. We view D_0 and D_0' as elements in $\mathsf{F}^{\leq n} \mathcal{D}(V)$. By Lemma 4.1, the rightward (resp. leftward) map sends $f^{-N} \otimes D_0$ (resp. $D_0' \otimes f^{-N}$) to D.

Construction 4.6. Let X be a smooth k-scheme. By Lemma 4.5 and Remark 3.6, for any n, there exists a unique sheaf $F^{\leq n}\mathcal{D}_X$ such that:

• For any affine open subscheme $U \subset X$.

$$\mathsf{F}^{\leq n}\mathcal{D}_X(U) \coloneqq \mathsf{F}^{\leq n}\mathcal{D}(U)$$
;

• For $U \subset V \subset X$ as before, the connecting map $\mathsf{F}^{\leq n}\mathcal{D}_X(V) \to \mathsf{F}^{\leq n}\mathcal{D}_X(U)$ is given by the map $\mathsf{F}^{\leq n}\mathcal{D}(U) \to \mathsf{F}^{\leq n}\mathcal{D}(V)$ in Construction 4.4.

We call $F^{\leq n}\mathcal{D}_X$ the sheaf of differential operators of order n on X.

Define the **sheaf of differential operators** on X to be

$$\mathcal{D}_X \coloneqq \cup_n \mathsf{F}^{\leq n} \mathcal{D}_X.$$

Note that $F^{\bullet}\mathcal{D}_X$ is naturally a sheaf of filtered associtive k-algebras such that $gr^{\bullet}\mathcal{D}_X$ is commutative.

Remark 4.7. Unwinding the definitions, for any open subscheme $V \subset X$, $\mathcal{D}_X(V)$ can be identified with the algebra of k-linear morphisms $\mathcal{O}_V \to \mathcal{O}_V$ such that for any affine open subscheme $U \subset V$, the obtained map $\mathcal{O}(U) \to \mathcal{O}(U)$ is a differential operator.

Corollary 4.8. Let X be a smooth k-scheme. We have natural isomorphisms $\mathcal{O}_X \simeq \mathsf{F}^{\leq 0}\mathcal{D}_X$ and $\mathcal{O}_X \oplus \mathcal{T}_X \simeq \mathsf{F}^{\leq 1}\mathcal{D}_X$.

Corollary 4.9. Let X be a smooth k-scheme. Then \mathcal{D}_X is naturally an \mathcal{O}_X -bimodule, and it is quasi-coherent for both the left and right \mathcal{O}_X -module structures.

5. The PBW theorem for
$$\mathcal{D}_X$$

Construction 5.1. Let X be a smooth k-scheme. By Corollary 4.8, we have a homomorphism $\mathcal{O}_X \to \operatorname{\mathsf{gr}}^0\mathcal{D}_X$ and a morphism $\mathcal{T}_X \to \operatorname{\mathsf{gr}}^1\mathcal{D}_X$ between their modules. By the universal property of symmetric algebras, we obtain a graded homomorphism

$$\operatorname{Sym}_{\mathcal{O}_{X}}^{\bullet}(\mathcal{T}_{X}) \to \operatorname{gr}^{\bullet}\mathcal{D}_{X}.$$

The proof of the following theorem can be treated as a blackbox⁴.

Theorem 5.2 (PBW for \mathcal{D}_X). The above graded homomorphism is an isomorphism.

Proof. We can assume X is affine and connected. Hence we only need to show

$$\operatorname{Sym}_{\mathcal{O}(X)}^n(\mathcal{T}(X)) \to \operatorname{gr}^n\mathcal{D}(X)$$

is an isomorphism. We prove by induction in n. For n < 0, there is nothing to prove. For $n \ge 0$ and $D \in \mathsf{F}^{\le n}\mathcal{D}(X)$, consider the composition

$$\mathcal{O}(X) \xrightarrow{[D,-]} \mathsf{F}^{\leq n-1} \mathcal{D}(X) \twoheadrightarrow \mathsf{gr}^{n-1} \mathcal{D}(X).$$

By (3.1), this is a k-derivation of $\mathcal{O}(X)$ into $\operatorname{\mathsf{gr}}^{n-1}\mathcal{D}(X)$, where the latter is viewed as an $\mathcal{O}(X)$ module via the homomorphism $\mathcal{O}(X) \to \operatorname{\mathsf{gr}}^0\mathcal{D}(X)$. Moreover, this k-derivation only depends
on the image of D in $\operatorname{\mathsf{gr}}^n\mathcal{D}(X)$. In other words, we have a k-linear map

$$\operatorname{gr}^n \mathcal{D}(X) \to \operatorname{Der}_k(\mathcal{O}(X), \operatorname{gr}^{n-1} \mathcal{D}(X)), \ D \mapsto [D, -].$$

Note that [gD, f] = g[D, f] for any $f, g \in \mathcal{O}(X)$. It follows that the above map is $\mathcal{O}(X)$ -linear. By induction hypothesis and Corollary 1.13, we have

$$\mathsf{Der}_k(\mathcal{O}(X),\mathsf{gr}^{n-1}\mathcal{D}(X)) \simeq \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \mathsf{gr}^{n-1}\mathcal{D}(X) \simeq \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \mathsf{Sym}_{\mathcal{O}(X)}^{n-1}(\mathcal{T}(X)).$$

Composing with the multiplication map

$$\mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{Sym}_{\mathcal{O}(X)}^{n-1}(\mathcal{T}(X)) \to \operatorname{Sym}_{\mathcal{O}(X)}^{n}(\mathcal{T}(X)),$$

⁴In fact, for the purpose of *this* course, we can define \mathcal{D}_X to be the subsheaf of $\mathcal{H}om_k(\mathcal{O}_X, \mathcal{O}_X)$ generated by the images \mathcal{O}_X and \mathcal{T}_X under compositions. Then the PBW theorem becomes obvious. However, it is not obvious to show this definition coincides with ours.

we obtain an $\mathcal{O}(X)$ -linear map

$$\operatorname{gr}^n \mathcal{D}(X) \to \operatorname{Sym}_{\mathcal{O}(X)}^n (\mathcal{T}(X)).$$

By considering affine open subschemes, we obtain an \mathcal{O}_X -linear morphism

$$\operatorname{gr}^n \mathcal{D}_X \to \operatorname{Sym}_{\mathcal{O}_X}^m (\mathcal{T}_X).$$

We claim it is inverse to (5.1) up to multiplication by n.

A direct calculation shows

$$\operatorname{Sym}_{\mathcal{O}(X)}^n(\mathcal{T}(X)) \to \operatorname{gr}^n\mathcal{D}(X) \to \operatorname{Sym}_{\mathcal{O}(X)}^n(\mathcal{T}(X))$$

is given by multiplication by n. Indeed, for $\partial_1, \dots, \partial_n \in \mathcal{T}(X)$, we have

$$[\partial_1 \cdots \partial_n, f] \equiv \sum_{i=1}^n \partial_i(f) \partial_1 \cdots \widehat{\partial_i} \cdots \partial_n \in \operatorname{gr}^{\leq n-1} \mathcal{D}(X).$$

Hence $\partial_1 \cdots \partial_n$ is sent to the element

$$\sum_{i=1}^{n} \partial_{i} \otimes \partial_{1} \cdots \widehat{\partial_{i}} \cdots \partial_{n} \in \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{Sym}_{\mathcal{O}(X)}^{n-1}(\mathcal{T}(X)),$$

which is sent to $n\partial_1 \cdots \partial_n \in \operatorname{Sym}_{\mathcal{O}(X)}^n(\mathcal{T}(X))$ as desired.

It remains to show

$$\operatorname{gr}^n \mathcal{D}_X \to \operatorname{Sym}_{\mathcal{O}_X}^m (\mathcal{T}_X) \to \operatorname{gr}^n \mathcal{D}_X$$

is given by multplication by n. Note that the problem is Zariski local in X, hence we can assume X admits an étale coordinate system x_1, \dots, x_d . Now let $D \in \mathsf{F}^{\leq n}\mathcal{D}_X$ and

$$\sum_{i=1}^{d} \partial_{i} \otimes D_{i} \in \mathcal{T}(X) \underset{\mathcal{O}(X)}{\otimes} \operatorname{gr}^{n-1} \mathcal{D}(X)$$

be its image. By definition, for any function $f \in \mathcal{O}(X)$, we have

$$[D, f] \equiv \sum_{i=1}^{d} \partial_i(f) D_i \in \operatorname{gr}^{n-1} \mathcal{D}(X)$$

Taking $f = x_i$, we obtain $D_i \equiv [D, x_i]$. Therefore for any $f \in \mathcal{O}(X)$,

$$[D, f] \equiv \sum_{i=1}^{d} \partial_i(f)[D, x_i] \in \operatorname{gr}^{n-1} \mathcal{D}(X)$$

and the composition (5.2) sends D to $\sum_{i=1}^{d} \partial_i[D, x_i]$. It remains to show

$$nD \equiv \sum_{i=1}^{d} \partial_{i} [D, x_{i}] \in \operatorname{gr}^{n} \mathcal{D}(X)$$

To prove this, we use induction in n (again). For $n \le 0$, the claim is obvious. For n > 0, we only need to show

(5.4)
$$n[D,f] \equiv \sum_{i=1}^{d} [\partial_i[D,x_i],f] \in \operatorname{gr}^{n-1}\mathcal{D}(X)$$

for any $f \in \mathcal{O}(X)$.

A direct calculation shows

(5.5)
$$[\partial_i[D, x_i], f] = \partial_i[[D, f], x_i] + \partial_i(f)[D, x_i].$$

By induction hypothesis, we have

(5.6)
$$(n-1)[D,f] \equiv \sum_{i=1}^{d} \partial_{i}[[D,f],x_{i}] \in \operatorname{gr}^{n-1}\mathcal{D}(X).$$

Now (5.3)+(5.6) implies (5.4) by (5.5).

Corollary 5.3. Let X be a affine smooth k-scheme, then the associative algebra $\mathcal{D}(X)$ is generated by the images of $\mathcal{O}(X)$ and $\mathcal{T}(X)$ subject to the following relations:

$$f_1 \star f_2 = f_1 f_2$$
, $\partial_1 \star \partial_2 - \partial_2 \star \partial_1 = [\partial_1, \partial_2]$, $f \star \partial = f \partial$, $\partial \star f - f \star \partial = \partial(f)$

for $f, f_1, f_2 \in \mathcal{O}(X)$ and $\partial, \partial_1, \partial_2 \in \mathcal{T}(X)$. Here \star (temporarily) denotes the multiplication in $\mathcal{D}(X)$.

Remark 5.4. Equivalently, we can say \mathcal{D}_X is the universal enveloping (associative) algebra of the Picard algebroid $\widetilde{\mathcal{T}}_X \coloneqq \mathcal{O}_X \oplus \mathcal{T}_X$.

Example 5.5. For $X = \mathbb{A}^d$, we have $\mathcal{D}(X) = k[x_1, \dots, x_d, \partial_1, \dots, \partial_d]$ such that $[x_i, x_j] = [\partial_i, \partial_j] = 0$ and $[\partial_i, x_j] = \delta_{i,j}$. This is known as the **Weyl algebra**.

6. Definition of D-modules

Definition 6.1. Let X be a smooth k-scheme. A **left (resp. right)** \mathcal{D}_X -module is a sheaf \mathcal{M} of k-vector spaces equipped with a left (resp. right) action by \mathcal{D}_X .

Let \mathcal{D}_X -mod^l (resp. \mathcal{D}_X -mod^r) be the category of left (resp. right) \mathcal{D}_X -modules, where morphisms are defined in the obvious way.

Construction 6.2. Let X be a smooth k-scheme. Restricting along the homomorphism $\mathcal{O}_X \to \mathcal{D}_X$, we obtain forgetful functors

$$\mathsf{oblv}^l : \mathcal{D}_X \mathsf{-mod}^l \to \mathcal{O}_X \mathsf{-mod}, \ \mathsf{oblv}^r : \mathcal{D}_X \mathsf{-mod}^r \to \mathcal{O}_X \mathsf{-mod}.$$

Definition 6.3. We say a left (resp. right) \mathcal{D}_X -module \mathcal{M} is **quasi-coherent** if the underlying \mathcal{O}_X -module is quasi-coherent.

When X is quasi-compact, we say a quasi-coherent left (resp. right) \mathcal{D}_X -module \mathcal{M} is **coherent** if it is locally finitely generated.

Let \mathcal{D}_X -mod $^l_{(q)c}$ (resp. \mathcal{D}_X -mod $^r_{(q)c}$) be the category of left (resp. right) (quasi-)coherent \mathcal{D}_X -modules.

Remark 6.4. It is easy to see the above categories are abelian categories and the forgetful functors are exact.

Warning 6.5. In general, a coherent \mathcal{D}_X -module is not coherent as an \mathcal{O}_X -module. When there is danger of ambiguity, we use the terminologies " \mathcal{D}_X -coherent" vs " \mathcal{O}_X -coherent".

The following result follows from the PBW theorem:

Proposition 6.6. Restricting along $\mathcal{O}_X \oplus \mathcal{T}_X \to \mathcal{D}_X$ defines an equivalence

$$\mathcal{D}_X \text{-}\mathsf{mod}^l_{\mathsf{qc}} \cong \widetilde{\mathcal{T}}_X \text{-}\mathsf{mod}_{\mathsf{qc}}.$$

Remark 6.7. In fact, we could have defined a notion of quasi-coherent right $\widetilde{\mathcal{T}}_X$ -modules such that they form an abelian category equivalent to \mathcal{D}_X -mod $_{\mathsf{qc}}^r$.

7. Examples of D-modules

Example 7.1. The sheaf \mathcal{D}_X itself is a left and a right \mathcal{D}_X -module.

Example 7.2. The sheaf \mathcal{O}_X is a left \mathcal{D}_X -module with the action given by $D \cdot f := D(f)$.

Exercise 7.3. This is Homework 5, Problem 2. Let X be a smooth k-scheme of dimension n. Prove: there is a unique right \mathcal{D}_X -module structure on Ω_X^n such that for local sections $f \in \mathcal{O}(U)$, $\partial \in \mathcal{T}(U)$ and $\omega \in \Omega^n(U)$, the right action is given by

$$\omega \cdot f = f\omega, \ \omega \cdot \partial = -\mathcal{L}_{\partial}(\omega)$$

Example 7.4. For $X = \mathbb{A}^1 = \operatorname{Spec}(k[x])$, we define a left D-module \mathcal{M}_{e^x} whose underlying \mathcal{O}_X -module is isomorphic to \mathcal{O}_X , with a generator denoted by " e^x ". The \mathcal{T}_X -action is determined by the formular $\partial_x \cdot e^x = e^x$. It is easy to see $\mathcal{M}_{e^x} \simeq \mathcal{D}_X/\mathcal{D}_X \cdot (\partial_x - 1)$, where $\mathcal{D}_X \cdot (\partial_x - 1)$ is the left ideal of \mathcal{D}_X generated by the section $\partial_x - 1$.

Example 7.5. For $X = \mathbb{A}^1 - 0 = \operatorname{Spec}(k[x^{\pm}])$ and $\lambda \in k$, we define a left D-module $\mathcal{M}_{x^{\lambda}}$ whose underlying \mathcal{O}_X -module is isomorphic to \mathcal{O}_X , with a generator denoted by " x^{λ} ". The \mathcal{T}_X -action is determined by the formular $\partial_x \cdot x^{\lambda} = \lambda x^{-1} \cdot x^{\lambda}$. It is easy to see $\mathcal{M}_{x^{\lambda}} \simeq \mathcal{D}_X/\mathcal{D}_X \cdot (\partial_x - \lambda x^{-1})$, where $\mathcal{D}_X \cdot (\partial_x - \lambda x^{-1})$ is the left ideal of \mathcal{D}_X generated by the section $\partial_x - \lambda x^{-1}$.

Exercise 7.6. This is Homework 5, Problem 3. In Example 7.5, prove $\mathcal{M}_{x^{\lambda}}$ is isomorphic to \mathcal{O}_X as left \mathcal{D}_X -modules iff $\lambda \in \mathbb{Z}$.

8.
$$\mathcal{D}_X$$
 vs. $U(\mathfrak{g})$

Construction 8.1. Let X be a smooth k-scheme equipped with an action by an algebraic group G. Consider the Lie algebra homomorphisms

$$\mathfrak{g} \xrightarrow{a} \mathcal{T}(X) \to \mathcal{D}(X)$$

where $\mathcal{D}(X)$ is viewed as a Lie algebra via the forgetful functor $\mathsf{Alg} \to \mathsf{Lie}$. By the universal property of $U(\mathfrak{g})$, we obtain a homomorphism

$$U(\mathfrak{g}) \xrightarrow{a} \mathcal{D}(X).$$

By construction, this homomorphism is compatible with the PBW filtrations on both sides. This induces a functor

$$\Gamma: \mathcal{D}_X \operatorname{-mod}_{\operatorname{qc}}^l \to U(\mathfrak{g})\operatorname{-mod}, \ \mathcal{M} \mapsto \mathcal{M}(X).$$

By construction, the following diagram commutes:

$$\mathcal{D}_X \operatorname{-mod}_{\operatorname{qc}}^l \xrightarrow{\simeq} \widetilde{\mathcal{T}}_X \operatorname{-mod}_{\operatorname{qc}}$$

$$\downarrow^{\Gamma} \qquad \qquad \downarrow^{\Gamma}$$

$$U(\mathfrak{g})\operatorname{-mod} \xrightarrow{\simeq} \mathfrak{g}\operatorname{-mod}.$$

Remark 8.2. The localization theory says for X = G/B, the homomorphism $U(\mathfrak{g}) \stackrel{a}{\to} \mathcal{D}(X)$ induces an isomorphism

$$a: U(\mathfrak{g})_{\chi_0} := U(\mathfrak{g}) \underset{Z(\mathfrak{g})}{\otimes} k_{\chi_0} \xrightarrow{\simeq} \mathcal{D}(X).$$

and the functor Γ induces an equivalence

$$\Gamma: \mathcal{D}_X\operatorname{-mod}_{\operatorname{ac}}^l \xrightarrow{\cong} U(\mathfrak{g})_{\chi_0}\operatorname{-mod}.$$

References

- [B] Bernstein, Joseph. Algebraic theory of D-modules, 1984, abailable at https://gauss.math.yale.edu/~il282/Bernstein_D_mod.pdf.
- [BB] Beilinson, Alexander, and Joseph Bernstein. "A proof of Jantzen conjectures." ADVSOV (1993): 1-50.
- [G] Gaitsgory, Dennis. Course Notes for Geometric Representation Theory, 2005, available at https://people.mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf.
- [H] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.
- [HTT] Hotta, Ryoshi, and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory. Vol. 236. Springer Science & Business Media, 2007.