Secure Service Discovery in open Networks

Author:
Markus Alexander Kuppe

Vitali Amann

http://github.com/lemmy/SecuredSLP

- Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - Thread analysis SLPv2
- Secure SLP
 - Trust scenarios in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Use Case

- Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - Thread analysis SLPv2
- Secure SLP
 - Trust in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Motivation

- Create a secure network
- Mechanism for
 - providing services
 - sharing services
 - discovering services
- Prevent or complicate exploitation
 - tracking user agents
 - manipulate service information
 - replaying attacks

- ✓ Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - Thread analysis SLPv2
- Secure SLP
 - Trust in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Open Network

- A network for everyone (even for bad guys)
- Networking everywhere
- Not necessarily based on IP (but here)
- Contains several devices
 - Notebooks
 - Mobile phones
 - PDAs
 - Printer
 - and other portable or stationary devices
- Share services

[P2PFound]

- ✓ Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - Thread analysis SLPv2
- Secure SLP
 - Trust in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Discovery architectures

- Three main architectures
 - Directory-based architecture
 - Directory-less architecture
 - Hybrid architecture
- Three possible actors
 - Service agent (SA)
 - User agent (UA)
 - Directory agent (DA)

Hybrid architecture: Case 1

Hybrid architecture: Case 2

- ✓ Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - Thread analysis SLPv2
- Secure SLP
 - Trust in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Service Location Protocol (SLPv2), RFC 2608

- Multicast discovery
- Unicast answers (UDP & TCP)
- Seamless transformation from
 - Multicast convergence to
 - Directory Agent (DA)
 - DA discovery still multicast
- Partitioning via application layer
 - Scopes
- Trust with pre-established asymmetric keys
 - no support for "dynamic" trust

Thread analysis for traditional SLPv2

Confidentiality	no
Integrity	yes
Authentication	yes
Authorization	no
Replay prevention	no
Availability	no
Non-repudiation	no

- Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - ✓ Thread analysis SLPv2
- Secure SLP
 - Trust in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Trust in open networks

- Web of trust
- Public Key Infrastructure (PKI)
- (Reputation based identity)

Web of trust

- If you trust A then you trust everyone trusted by A
- Decentralized structure
 - no extra server needed
- Based on public-key cryptography
- Sign keys which you trust

Public key infrastructure (PKI)

- Requires several instances
 - Registration authority
 - Certificate authority
 - Validation authority
- Based on public-key cryptography
- Better with internet access
- Centralized structure
 - Requires a server

- ✓ Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - ✓ Thread analysis SLPv2
- Secure SLP
 - ✓ Trust in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Security Groups (SG)

 SGs create a confidential channel among trusted peers (trust is pre-requisite)

Security Groups (SG)

 SGs create a confidential channel among trusted peers (trust is pre-requisite)

Security Groups (SG)

- Requirements
 - unsecure channel
 - decentralized architecture (?)
 - peers do not know each other (?)
 - dynamic group membership
 - all participants agree on the same key
 - key independence
 - no past/future data is allowed to be decrypt-able by future/past group members
 - Can be relaxed due to without SA joining, SG's data is stale
- SGs boil down to Group Key Agreement protocol (GKA) like Group Diffie-Hellman

- Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - ✓ Thread analysis SLPv2
- Secure SLP
 - ✓ Trust in open networks
 - Security Groups
 - Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Diffie-Hellman RFC2631 recap

Asymmetric Group Diffie-Hellman (AGDH)

Asymmetric Group Diffie-Hellman (AGDH) cont.

- Key is composed of each peers contribution
 - contrary to GKE where one peers sends the key to all participants
- Join/Leave demands re-keying
 - peers contribution is added/removed from the group key
- One affects all
 - compromise of a single group member affects the security of the whole group
- (Perfect) Forward Secrecy (PFS)
 - Compromise of long-term keys cannot result in the compromise of past session keys

- Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - ✓ Thread analysis SLPv2
- Secure SLP
 - ✓ Trust in open networks
 - Security Groups
 - ☑ Group Diffie-Hellman
 - Thread analysis SecureSLP
- Conclusion & Future Work

Thread analysis SecureSLP

	SLP	SecureSLP
Confidentiality	no	yes
Integrity	yes	yes
Authentication	yes	yes
Authorization	no	?
Replay prevention	no	yes
Availability	no	no
Non-repudiation	no	no

- Motivation
- Open network
- Discovery architectures
- Service Location Protocol (SLPv2)
 - ✓ Thread analysis SLPv2
- Secure SLP
 - ✓ Trust in open networks
 - Security Groups
 - ☑ Group Diffie-Hellman
 - ✓ Thread analysis SecureSLP
- Conclusion & Future Work

Conclusion & Future Work

- (SLP's architecture qualifies it for use in open networks)
 - hybrid architecture
- SLP's security features are not up to speed with open networks
 - trust model is static
 - no confidentiality
- SecureSLP adds missing security features while staying protocol compatible to SLPv2
- Group Diffie-Hellman a good candidate for security groups
 - all peers knowing of each other might be too expensive

- What about authorization, non-repudiation, availability?
- Proof-of-concept implementation
 - Asymmetric Group Diffie-Hellman & additions to SLP

Questions

References

[NetIP, Inc.] - http://www.netip.com/articles/keith/diffie-helman.htm

[P2PFound] - http://p2pfoundation.net/Free and Open Network Definition