0302HW_Review-problems [90 marks]

Let
$$f(x)=8x+3$$
 and $g(x)=4x$, for $x\in\mathbb{R}.$

1a. Write down g(2). [1 mark]

Markscheme

$$g(2) = 8$$
 A1 N1 [1 mark]

1b. Find $(f\circ g)(x)$.

Markscheme

attempt to form composite (in any order) (M1)

eg

$$f(4x),\ 4 imes(8x+3)$$

$$(f\circ g)(x)=32x+3 \qquad extbf{A1} \qquad extbf{N2}$$

[2 marks]

1c. Find $f^{-1}(x)$. [2 marks]

Markscheme

interchanging x and y (may be seen at any time) (M1)

 $eg \ x=8y+3$

$$f^{-1}(x) = rac{x-3}{8} \; \left(ext{accept } rac{x-3}{8}, \; y = rac{x-3}{8}
ight)$$
 A1 N2

[2 marks]

In an arithmetic sequence $u_{10}=8,\ u_{11}=6.5.$

2a. Write down the value of the common difference.

Markscheme

$$d=-1.5$$
 A1 N1

[1 mark]

2b. Find the first term. [3 marks]

[1 mark]

METHOD 1

valid approach (M1)

eg
$$u_{10} = u_1 + 9d$$
, $8 = u_1 - 9(-1.5)$

correct working (A1)

eg
$$8 = u_1 + 9d$$
, $6.5 = u_1 + 10d$, $u_1 = 8 - 9(-1.5)$

$$u_1=21.5$$
 A1 N2

METHOD 2

attempt to list 3 or more terms in either direction (M1)

$$eg 9.5, 11, 12.5, \ldots; 5, 3.5, 2, \ldots$$

correct list of 4 or more terms in correct direction (A1)

$$u_1 = 21.5$$
 A1 N2

[3 marks]

2c. Find the sum of the first 50 terms of the sequence.

[2 marks]

Markscheme

correct expression (A1)

$$eg \ \ \tfrac{50}{2}(2(21.5)+49(-1.5)), \ \tfrac{50}{2}(21.5-52), \ \overset{50}{\overset{k=1}{\sum}}21.5+(k-1)(-1.5)$$

$$sum = -762.5$$
 (exact) A1 N2

[2 marks]

Total [6 marks]

Let

 $f(x)=x^3-2x-4$. The following diagram shows part of the curve off .

The curve crosses the x-axis at the point P.

[1 mark]

Write down the gradient of the curve at P.

[2 marks]

Markscheme

evidence of finding gradient of f at

$$x = 2$$
 (M1)

e.g.

f'(2)

the gradient is 10 A1 N2

[2 marks]

Find the equation of the normal to the curve at P, giving your equation in theorm y = ax + b.

[3 marks]

Markscheme

evidence of negative reciprocal of gradient (M1)

e.g.
$$\frac{-1}{f'(x)}$$
, $-\frac{1}{10}$

evidence of correct substitution into equation of a line (A1)

$$y-0 = \frac{-1}{10}(x-2)$$
,
 $0 = -0.1(2) + b$

$$\begin{array}{l} y=-\frac{1}{10}x+\frac{2}{10} \ (\text{accept} \\ a=-0.1 \ , \\ b=0.2 \) \quad \textit{A1} \quad \textit{N2} \end{array}$$

$$a = -0.1$$
,

$$b = 0.2$$
) A1 N2

[3 marks]

The following figures consist of rows and columns of squares. The figures form a continuing pattern.

Figure 1 has two rows and one column. Figure 2 has three rows and two columns.

Figure 1

Figure 3

Figure 4

Figure 5 has p rows and q columns.

$$p=6$$
 A1 N1

[1 mark]

4b. Write down the value of q.

[1 mark]

Markscheme

$$q=5$$
 A1 N1

[1 mark]

Each small square has an area of 1 cm^2 . Let A_n be the total area of Figure n. The following table gives the first five values of A_n .

n	1	2	3	4	5
A_n (cm ²)	2	6	12	20	k

 $_{
m 4c.}$ Find the value of k.

Markscheme

correct approach (A1)

$$\textit{eg } p \times q, \, 5 \times 6$$

$$k=30$$
 A1 N2

[2 marks]

 $_{
m 4d}$. Find an expression for A_n in terms of n.

[2 marks]

[2 marks]

Markscheme

correct approach (A1)

 $\textit{eg} \ \ \mathsf{rows} = n+1, \, \mathsf{columns} = n$

$$A(n) = n(n+1) \; (=n^2+n) \; ({
m cm}^2)$$
 A1 N2

[2 marks]

Consider the following frequency table.

х	Frequency	
2	8	
4	15	
7	21	
10	28	
11	3	

5a. Write down the mode.

 $mode = 10 \quad \textit{A1} \quad \textit{N1}$

[1 mark]

5b. Find the value of the range.

[2 marks]

Markscheme

valid approach (M1)

 $eg \;\; x_{
m max} - x_{
m min}$, interval 2 to 11

 ${\rm range} = 9 \qquad \quad \textbf{A1} \quad \textbf{N2}$

[2 marks]

5c. Find the mean.

[2 marks]

Markscheme

7.14666

 $mean = 7.15 \quad \textit{A2} \quad \textit{N2}$

[2 marks]

5d. Find the variance.

[2 marks]

Markscheme

recognizing that variance is $(sd)^2$ (M1)

eg var = σ^2 , 2.906052, 2.925622

 $\sigma^2=8.44515$

 $\sigma^2 = 8.45$ A1 N2

[2 marks]

Let
$$f(x) = x^2 + x - 6$$
.

6a. Write down the y-intercept of the graph of f.

[1 mark]

Markscheme

y-intercept is -6, (0, -6), y = -6 **A1**

[1 mark]

6b. Solve f(x)=0.

[3 marks]

valid attempt to solve (M1)

$$eg~~(x-2)(x+3)=0,~x=rac{-1\pm\sqrt{1+24}}{2},$$
 one correct answer

$$x = 2, x = -3$$
 A1A1 N3

[3 marks]

Let
$$f(x) = 3\sin(\pi x)$$
.

7a. Write down the amplitude of f.

[1 mark]

Markscheme

amplitude is 3 A1 N1

Let
$$f(x) = 3\sin(\pi x)$$
.

7b. Find the period of f. [2 marks]

Markscheme

valid approach (M1)

eg period =
$$\frac{2\pi}{\pi}$$
, $\frac{360}{\pi}$

period is 2 A1 N2

Let
$$f(x) = 3\sin(\pi x)$$
.

7c. On the following grid, sketch the graph of y=f(x), for $0\leq x\leq 3$.

A1A1A1 N4

Note: Award **A1** for sine curve starting at (0, 0) and correct period.

Only if this *A1* is awarded, award the following for points in circles:

A1 for correct *x*-intercepts;

A1 for correct max and min points;

A1 for correct domain.

Let

 \boldsymbol{A} and

 \boldsymbol{B} be independent events, where

 $\mathrm{P}(A)=0.3$ and

P(B) = 0.6.

8a. Find

[2 marks] $P(A \cap B)$.

Markscheme

correct substitution (A1)

eg

 0.3×0.6

 $P(A \cap B) = 0.18$ A1 N2

[2 marks]

[2 marks] 8b. Find

 $P(A \cup B)$.

Markscheme

correct substitution (A1)

eg

 $P(A \cup B) = 0.3 + 0.6 - 0.18$

 $P(A \cup B) = 0.72$ A1 N2

[2 marks]

 $A \cap B'$.

Markscheme

A1 N1

8d. Find [2 marks]

 $P(A \cap B')$.

Markscheme

appropriate approach (M1)

eg

 $0.3 - 0.18, \ P(A) \times P(B')$

 $P(A \cap B') = 0.12$ (may be seen in Venn diagram) **A1 N2**

[2 marks]

Let $f(x) = e^{6x}$.

9a. Write down $f'(x) \ .$

Markscheme

$$f'(x)=6\mathrm{e}^{6x}$$
 A1 N1

[1 mark]

9b. The tangent to the graph of f at the point P(0,b) has gradient m .

- (i) Show that
- m=6 .
- (ii) Find b.

(i) evidence of valid approach (M1)

e.g. f'(0) , $6\mathrm{e}^{6 imes0}$

correct manipulation A1

e.g. $6\mathrm{e}^0$,

 6×1

 $m=6\,$ AG NO

(ii) evidence of finding

f(0) (M1)

e.g.

 $y = e^{6(0)}$

b=1 A1 N2

[4 marks]

 $_{\mbox{\scriptsize 9c.}}$ Hence, write down the equation of this tangent.

[1 mark]

Markscheme

y = 6x + 1 A1 N1

[1 mark]

The following diagram shows

 ΔPQR , where RQ = 9 cm,

 $P\hat{R}Q=70^{\circ}$ and

 $\hat{PQR}=45^{\circ}$.

diagram not to scale

 $_{10a.}$ Find ${\rm R\hat{P}Q}$.

[1 mark]

Markscheme

 $\hat{RPQ} = 65^{\circ}$ A1 N1

[1 mark]

10b. Find PR .

[3 marks]

evidence of choosing sine rule (M1)

correct substitution A1

$$\frac{\text{e.g.}}{\frac{\text{PR}}{\sin 45^{\circ}}} = \frac{9}{\sin 65^{\circ}}$$

7.021854078

$$PR = 7.02$$
 A1 N2

[3 marks]

10c. Find the area of ΔPQR .

[2 marks]

Markscheme

correct substitution (A1)

$$area = \frac{1}{2} \times 9 \times 7.02 \ldots \times \sin 70^{\circ}$$

29.69273008

$$\mathrm{area} = 29.7$$
 A1 N2

[2 marks]

Events A and B are such that

P(A) = 0.3,

 $\mathrm{P}(B)=0.6$ and

 $P(A \cup B) = 0.7.$

The values q, r, s and t represent probabilities.

 $_{11a.}$ Write down the value of t .

[1 mark]

Markscheme

t=0.3 A1 N1

[1 mark]

Events A and B are such that

P(A) = 0.3,

P(B) = 0.6 and

 $P(A \cup B) = 0.7.$

The values q, r, s and t represent probabilities.

 $\begin{array}{ccc} \text{11b.} & \text{(i)} & \text{Show that} \\ r = 0.2 \ . & \end{array}$

(ii) Write down the value of q and of s.

Markscheme

(i) correct values A1

e.g.

0.3 + 0.6 - 0.7,

0.9 - 0.7

 $r=0.2\,$ AG NO

(ii)

q=0.1,

s=0.4 A1A1 N2

[3 marks]

Events A and B are such that

P(A) = 0.3,

 $\mathrm{P}(B)=0.6$ and

 $P(A \cup B) = 0.7.$

The values q, r, s and t represent probabilities.

11c. (i) Write down $\mathrm{P}(B')$.

[3 marks]

(ii) Find

P(A|B').

$$\mathrm{P}(A|B') = rac{1}{4}$$
 A2 N2

[3 marks]

Let
$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$.

12a. (i) Find \overrightarrow{AB} .

[4 marks]

(ii) Find
$$\overrightarrow{AB}$$

Markscheme

(i) valid approach to find \overrightarrow{AB}

$$eg \overrightarrow{OB} - \overrightarrow{OA}, \begin{pmatrix} 4 - (-1) \\ 1 - 0 \\ 3 - 4 \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$$
 A1 N2

(ii) valid approach to find $|\overrightarrow{AB}|$ (M1)

eg
$$\sqrt{(5)^2+(1)^2+(-1)^2}$$

$$\left|\overrightarrow{\mathrm{AB}}
ight| = \sqrt{27}$$
 A1 N2

[4 marks]

Let
$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$.

The point C is such that $\overrightarrow{AC} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$.

12b. Show that the coordinates of C are (-2, 1, 3).

[1 mark]

Markscheme

correct approach A1

$$eg \ \overrightarrow{OC} = \begin{pmatrix} -1\\1\\-1 \end{pmatrix} + \begin{pmatrix} -1\\0\\4 \end{pmatrix}$$

C has coordinates (-2, 1, 3) $m{AG}$ $m{NO}$

[1 mark]

The following diagram shows triangle ABC. Let D be a point on [BC], with acute angle $ADC=\theta$.

12c. Write down an expression in terms of $\,\theta$ for

[2 marks]

- (i) angle ADB;
- (ii) area of triangle ABD.

Markscheme

(i)
$$\hat{ADB} = \pi - \theta, \hat{D} = 180 - \theta$$
 A1 N1

(ii) any correct expression for the area involving θ $m{A1}$ $m{N1}$

eg area =
$$\frac{1}{2} \times \text{AD} \times \text{BD} \times \sin(180 - \theta), \ \frac{1}{2} ab \sin \theta, \ \frac{1}{2} \left| \overrightarrow{\text{DA}} \right| \left| \overrightarrow{\text{DB}} \right| \sin(\pi - \theta)$$

[2 marks]

The following diagram shows triangle ABC. Let D be a point on [BC], with acute angle $ADC = \theta$.

12d. Given that
$$\frac{\text{area }\Delta ABD}{\text{area }\Delta ACD}=3, \text{ show that } \frac{BD}{BC}=\frac{3}{4}.$$

[5 marks]

METHOD 1 (using sine formula for area)

correct expression for the area of triangle ACD (seen anywhere) (A1)

eg
$$\frac{1}{2}AD \times DC \times \sin \theta$$

correct equation involving areas A1

eg
$$\frac{\frac{1}{2} \text{AD} \times \text{BD} \times \sin(\pi - \theta)}{\frac{1}{2} \text{AD} \times \text{DC} \times \sin \theta} = 3$$

$$rac{\mathrm{BD}}{\mathrm{DC}}=3$$
 (seen anywhere) (A1)

correct approach using ratio A1

$$\textit{eg} \ \ \overrightarrow{3DC} + \overrightarrow{DC} = \overrightarrow{BC}, \ \overrightarrow{BC} = \overrightarrow{4DC}$$

correct ratio
$$\frac{\mathrm{BD}}{\mathrm{BC}} = \frac{3}{4}$$
 AG NO

METHOD 2 (Geometric approach)

recognising ΔABD and ΔACD have same height $\hspace{0.2cm}$ (A1)

eg

use of

$$h$$
 for both triangles, $\frac{\frac{1}{2} \mathrm{BD} \times h}{\frac{1}{2} \mathrm{CD} \times h} = 3$

correct approach A2

eg

$$\mathrm{BD}=3x$$
 and $\mathrm{DC}=x,\,rac{\mathrm{BD}}{\mathrm{DC}}=3$

correct working A2

eg BC =
$$4x$$
, BD + DC = 4 DC, $\frac{\text{BD}}{\text{BC}} = \frac{3x}{4x}$, $\frac{\text{BD}}{\text{BC}} = \frac{3\text{DC}}{4\text{DC}}$

$$rac{
m BD}{
m BC}=rac{3}{4}$$
 AG NO

[5 marks]

The following diagram shows triangle ABC. Let D be a point on [BC], with acute angle $ADC = \theta$.

12e. Hence or otherwise, find the coordinates of point D.

correct working (seen anywhere) (A1)

$$\textit{eg} \;\; \overrightarrow{BD} = \frac{_{3}}{^{4}}\overrightarrow{BC}, \; \overrightarrow{OD} = \overrightarrow{OB} + \frac{_{3}}{^{4}} \begin{pmatrix} -6 \\ 0 \\ 0 \end{pmatrix}, \; \overrightarrow{CD} = \frac{_{1}}{^{4}}\overrightarrow{CB}$$

valid approach (seen anywhere) (M1)

$$\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD}, \overrightarrow{BC} = \begin{pmatrix} -6 \\ 0 \\ 0 \end{pmatrix}$$

correct working to find x-coordinate (A1)

eg
$$\begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} -6 \\ 0 \\ 0 \end{pmatrix}$$
, $x = 4 + \frac{3}{4}(-6)$, $-2 + \frac{1}{4}(6)$

D is
$$\left(-\frac{1}{2}, \, 1, \, 3\right)$$
 A1 N3

[4 marks]

The probability distribution of a discrete random variable X is given by

$$\mathrm{P}(X=x)=rac{x^{2}}{14},x\in\left\{ 1,2,k
ight\} ,\mathrm{where}k>0$$

 $_{
m 13a.}$ Write down ${
m P}(X=2)$.

[1 mark]

Markscheme

$$\mathrm{P}(X=2)=rac{4}{14} \ \left(=rac{2}{7}
ight)$$
 A1 N1

[1 mark]

13b. Show that k=3

[4 marks]

Markscheme

$$P(X = 1) = \frac{1}{14}$$
 (A1)

$$P(X = k) = \frac{k^2}{14}$$
 (A1)

setting the sum of probabilities

$$=1$$
 $M1$

$$rac{1}{14} + rac{4}{14} + rac{k^2}{14} = 1 \; , \ 5 + k^2 = 14$$

$$k^2 = 9$$
 (accept

$$\frac{k^2}{14} = \frac{9}{14}$$
) **A1**

$$k=3$$
 AG NO

correct substitution into
$$\mathrm{E}(X) = \sum x \mathrm{P}(X=x)$$
 A1

e.g.
$$1\left(\frac{1}{14}\right)+2\left(\frac{4}{14}\right)+3\left(\frac{9}{14}\right)$$

$$E(X) = \frac{36}{14}$$

$$\mathrm{E}(X) = rac{36}{14} \ \left(=rac{18}{7}
ight)$$
 A1 N1

[2 marks]

© International Baccalaureate Organization 2018 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for Bronx Early College Academy