Introduction

第三章 分组密码与高级数据加密标准

Linear Cryptanalysis

杨礼珍

课件下载Email: yanglizhen_course@163.com, 密码: tongjics

同济大学计算机科学与技术系, 2018

Outline

Introduction

- Introduction
- Subtitution-permutation network
- 3 Linear Cryptanalysis
- difference cryptanalysis
- **5** DES
- 6 AES
- work mode

本章作业

本章作业以这里列出的为准。

第三章习题3.1(注意,SPN(·)只表示为SPN网络结构,不是数学函数),3.2,3.3,3.7

作业b3:如果AES算法没有列混合运算,请给出一个比穷举搜索更有效的攻击算法。

第三章思考题:课本习题3.4、3.5(需提交代码)、3.8

现代密码的加密方式

Introduction

- **对称加密体制**-容易从加密密钥计算出解密密钥,一般加密 密钥和解密密钥一致,加密密钥和解密密钥<mark>都需要保密</mark>,因 此也称为<mark>私钥密码体制</mark>。
 - **流密码**: 由种子密钥产生密钥流,密钥流与明文流作用产生密文流,在第1.1.7节简单介绍过。
 - **分组密码**:明文以分组为单位进行加密,当今绝大部分分组 密码都是乘积密码(见上一节),本章内容。
- **非对称密码体制**一从加密密钥计算出解密密钥<mark>是困难的</mark>,加密密钥是<mark>公开的</mark>,而解密密钥是<mark>保密的</mark>,因此也称为<mark>公钥密码体制</mark>,将在第五、六章介绍。

Introduction

现代密码的加密方式

- **对称加密体制**一<mark>容易</mark>从加密密钥计算出解密密钥,一般加密 密钥和解密密钥一致,加密密钥和解密密钥<mark>都需要保密</mark>,因 此也称为<mark>私钥密码体制</mark>。
 - **流密码**: 由种子密钥产生密钥流,密钥流与明文流作用产生 密文流,在第1.1.7节简单介绍过。
 - **分组密码**:明文以分组为单位进行加密,当今绝大部分分组 密码都是乘积密码(见上一节),本章内容。
- **非对称密码体制**一从加密密钥计算出解密密钥<mark>是困难的</mark>,加密密钥是<mark>公开的</mark>,而解密密钥是<mark>保密的</mark>,因此也称为<mark>公钥密码体制</mark>,将在第五、六章介绍。

现代密码的加密方式

Introduction

- 对称加密体制-容易从加密密钥计算出解密密钥,一般加密 密钥和解密密钥一致,加密密钥和解密密钥都需要保密, 此也称为私钥密码体制。
 - 流密码:由种子密钥产生密钥流,密钥流与明文流作用产生 密文流,在第1.1.7节简单介绍过。
 - 分组密码: 明文以分组为单位进行加密, 当今绝大部分分组 密码都是乘积密码(见上一节),本章内容。
- 非对称密码体制—从加密密钥计算出解密密钥是困难的,加 密密钥是公开的,而解密密钥是保密的,因此也称为公钥密 码体制,将在第五、六章介绍。

现代密码的加密方式

Introduction

- **对称加密体制**一<mark>容易</mark>从加密密钥计算出解密密钥,一般加密 密钥和解密密钥一致,加密密钥和解密密钥<mark>都需要保密</mark>,因 此也称为<mark>私钥密码体制</mark>。
 - **流密码**:由种子密钥产生密钥流,密钥流与明文流作用产生密文流,在第1.1.7节简单介绍过。
 - **分组密码**:明文以分组为单位进行加密,当今绝大部分分组 密码都是乘积密码(见上一节),本章内容。
- **非对称密码体制**一从加密密钥计算出解密密钥<mark>是困难的</mark>,加密密钥是<mark>公开的</mark>,而解密密钥是<mark>保密的</mark>,因此也称为<mark>公钥密码体制</mark>,将在第五、六章介绍。

分组密码的基本术语

Introduction

分组长度 明文分组长度(长度=比特数),和密文分组长度 一样

种子密钥 分组密码的密钥也称为种子密钥,以区别于轮密钥。

密钥长度 种子密钥的长度,不一定等于分组长度 **轮函数**

轮密钥 轮密钥的长度不一定等于密钥长度

密钥编排算法(方案),或密码扩展算法(方案) 种子密钥由密钥编排方案扩展成若干个轮密钥,作为轮函数的输入。

迭代次数

分组密码的一般形式

分组密码的一般形式

解密函数:加密函数的逆函数,因此解密函数的运算过程和加密 函数相反,轮函数是加密函数的轮函数的逆,轮密钥与加密函数 的轮密钥顺序相反。

分组密码的一般形式

备注:以上给出的是分组密码的一般形式,不是每个分组加密都 严格遵循以上一般形式。

本章内容

Introduction

- 3.2节 代换-置换网络
- 3.3节 线性密码分析(简要了解)
- 3.4节 差分密码分析(简要了解)
- 3.5节 数据加密标准 (DES) (不需要记忆算法细节)
- 3.6节 高级数据加密标准 (AES) (不需要记忆算法细节)
- 3.7节 分组密码的工作模式

迭代密码的两种类型

Introduction

根据轮函数的形式,分为两种类型:

- Feistel型密码:代表密码是DES(将在第3.5节介绍)
- 代换-置换网络(SPN): 代表密码是AES(将在第3.6节介绍)

迭代密码的两种类型

Introduction

根据轮函数的形式,分为两种类型:

- Feistel型密码:代表密码是DES(将在第3.5节介绍)
- **代换-置换网络(SPN)**: 代表密码是**AES**(将在第**3**.6节介绍)

Introduction

代换-置换网络来自Shannon的扩散-混淆的设计思想:

- 扩散:将明文中一个比特的影响扩散到密文中很多比特,从.而将明文的统计结构隐藏起来。πρ起到扩散作用。
- 混淆:采用数据变换,使密文的统计特性和明文的统计特性 之间的关系更为复杂。π_S起到混淆作用。

代换-置换网络的一般形式

 π_S : $\{0,1\}'$ 自身上的双射,非线性运算,代换层,S盒。 π_P : $\{1,2,\ldots,Im\}$ 上的置换,线性运算,置换层。

明文 $x = x_1 x_2 \cdots x_{lm}$ 密钥K $x_{(2)}$ $x_{(m)} = x_{l(m-1)+1}, \dots, x_{lm}$ $x_{(1)}$ $\pi_S \mid \bullet \bullet \bullet \mid \overline{\pi_S} \mid \pi_S : \{0,1\}^t \to \{0,1\}^t$ π_s 置換 π_P : $\{1,2,\cdots,lm\} \rightarrow \{1,2,\cdots,lm\}$ 钥 ••• π_s π π_s 置换 π_P : $\{1,2,\cdots,lm\} \rightarrow \{1,2,\cdots,lm\}$ π_s $K^{N_{\Gamma+1}}$ 密文

代换-置换网络的一般形式

解密函数: 轮函数顺序与加密函数相反,过程相反,S盒是 π_S 的逆函数,置换是 π_P 的逆函数。思考练习3.1。

参数定义: $I = m = 4 = N_r = 4$

S盒 π_S 定义: 输入Z和输出 $\pi_S(Z)$ 都以十六进制表示,即

$$\begin{split} 0 &\leftrightarrow \{0,0,0,0\}, 1 \leftrightarrow \{0,0,0,1\}, \cdots, 9 \leftrightarrow \{1,0,0,1\} \\ \mathcal{A} &\leftrightarrow \{1,0,1,0\}, \cdots \mathcal{F} \leftrightarrow \{1,1,1,1\} \end{split}$$

Z	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
$\pi_{\mathcal{S}}(z)$	Е	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

置换 π_P 定义:

$$\pi_P(i+4j) = 4i+j-3$$
 $\pi_P(16) = 16$, $0 \le j \le 3$

Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\pi_P(z)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

密钥编排算法定义:

32比特密钥
$$K = K_1||K_2||K_3||K_4||K_5||K_6||K_7||K_8$$

$$\begin{array}{lll} K^1 = K_1 || K_2 || K_3 || K_4 & K^2 = K_2 || K_3 || K_4 || K_5 & K^3 = K_3 || K_4 || K_5 || K_6 \\ K^4 = K_4 || K_5 || K_6 || K_7 & K^5 = K_5 || K_6 || K_7 || K_8 \end{array}$$

参数定义: $I = m = 4 = N_r = 4$

S盒 π_S 定义: 输入Z和输出 $\pi_S(Z)$ 都以十六进制表示,即

$$\begin{aligned} 0 &\leftrightarrow \{0,0,0,0\}, 1 &\leftrightarrow \{0,0,0,1\}, \cdots, 9 &\leftrightarrow \{1,0,0,1\} \\ A &\leftrightarrow \{1,0,1,0\}, \cdots F &\leftrightarrow \{1,1,1,1\} \end{aligned}$$

$\pi_S(z)$ E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7	Z	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	$\pi_{\mathcal{S}}(z)$	Е	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

置换 π_P 定义:

$$\pi_P(i+4j) = 4i+j-3$$
 $\pi_P(16) = 16$, $0 \le j \le 3$

z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 πρ(z) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16																	
$\pi_{P}(z)$ 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16	Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\mid \pi_P(z) \mid 1 \mid 5 \mid 9 \mid 13 \mid 2 \mid 6 \mid 10 \mid 14 \mid 3 \mid 7 \mid 11 \mid 15 \mid 4 \mid 8 \mid 12 \mid 16 \mid$						_	-										
	$\pi_P(z)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

密钥编排算法定义:

32比特密钥
$$K = K_1||K_2||K_3||K_4||K_5||K_6||K_7||K_8$$

$$\begin{array}{lll} K^1 = K_1 || K_2 || K_3 || K_4 & K^2 = K_2 || K_3 || K_4 || K_5 & K^3 = K_3 || K_4 || K_5 || K_6 \\ K^4 = K_4 || K_5 || K_6 || K_7 & K^5 = K_5 || K_6 || K_7 || K_8 \end{array}$$

参数定义: $I = m = 4 = N_r = 4$

S盒 π_S 定义: 输入Z和输出 $\pi_S(Z)$ 都以十六进制表示,即

$$\begin{split} 0 &\leftrightarrow \{0,0,0,0\}, 1 \leftrightarrow \{0,0,0,1\}, \cdots, 9 \leftrightarrow \{1,0,0,1\} \\ \mathcal{A} &\leftrightarrow \{1,0,1,0\}, \cdots \mathcal{F} \leftrightarrow \{1,1,1,1\} \end{split}$$

π _S (z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0	Z	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	$\pi_{\mathcal{S}}(z)$	Е	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

置换 π_P 定义:

$$\pi_P(i+4j) = 4i+j-3$$
 $\pi_P(16) = 16$, $0 \le j \le 3$

Z	1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15	16
$\pi_P(z)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

密钥编排算法定义:

32比特密钥
$$K = K_1 || K_2 || K_3 || K_4 || K_5 || K_6 || K_7 || K_8$$

$$\begin{array}{lll} K^1 = K_1 || K_2 || K_3 || K_4 & K^2 = K_2 || K_3 || K_4 || K_5 & K^3 = K_3 || K_4 || K_5 || K_6 \\ K^4 = K_4 || K_5 || K_6 || K_7 & K^5 = K_5 || K_6 || K_7 || K_8 \end{array}$$

参数定义: $I = m = 4 = N_r = 4$

S盒 π_S 定义: 输入Z和输出 $\pi_S(Z)$ 都以十六进制表示,即

$$\begin{split} 0 &\leftrightarrow \{0,0,0,0\}, 1 \leftrightarrow \{0,0,0,1\}, \cdots, 9 \leftrightarrow \{1,0,0,1\} \\ \mathcal{A} &\leftrightarrow \{1,0,1,0\}, \cdots \mathcal{F} \leftrightarrow \{1,1,1,1\} \end{split}$$

$\pi_{S}(z)$ E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7	Z	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	$\pi_{\mathcal{S}}(z)$	E	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

置换 π_P 定义:

$$\pi_P(i+4j) = 4i+j-3$$
 $\pi_P(16) = 16$, $0 \le j \le 3$

ſ	Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ì	$\pi_P(z)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

密钥编排算法定义:

32比特密钥
$$K = K_1 || K_2 || K_3 || K_4 || K_5 || K_6 || K_7 || K_8$$

$$K^1 = K_1 || K_2 || K_3 || K_4$$
 $K^2 = K_2 || K_3 || K_4 || K_5$ $K^3 = K_3 || K_4 || K_5 || K_6$
 $K^4 = K_4 || K_5 || K_6 || K_7$ $K^5 = K_5 || K_6 || K_7 || K_8$

输入:明文: x = 0010 0110 1011 0111

密钥: K = 0011 1010 1001 0100 1101 0110 0011 1111

```
密钥: K = 0011 1010 1001 0100 1101 0110 0011 1111
加密过程:
                   = 0010 0110 1011 0111
 X
 K^1
                   = 0011 1010 1001 0100
u^1
        x \oplus K^1 = 0001 \ 1100 \ 0010 \ 0011 = 1 \ C \ 2 \ 3
   = \pi_{S}(u^{1}) = 0100 \ 0101 \ 1101 \ 0001 = 45 \ D \ 1
 v^1
     = \pi_P(v^1) = 0010 1110 0000 0111
 w^3
                     1110 0100 0110 1110
 K^4
                   = 0100 1101 0110 0011
     = W^3 \oplus K^4 = 1010\ 1001\ 0000\ 1101 = A90B
     = \pi_S(u^4) = 0110\ 1010\ 1110\ 1001 = 6\ A\ E\ C
 K^5
         = 1101 0110 0011 1111
     = v^4 \oplus K^5
                   = 1011 1100 1101 0110
```

输入: 明文: *x* = 0010 0110 1011 0111

```
输入: 明文: x = 0010 0110 1011 0111
密钥: K = 0011 1010 1001 0100 1101 0110 0011 1111
加密过程:
                  = 0010 0110 1011 0111
 X
K^1
                  = 0011 1010 1001 0100
        x \oplus K^1 = 0001 1100 0010 0011 = 1 C 2 3
u^1
 v^1 = \pi_S(u^1) = 0100\ 0101\ 1101\ 0001 = 45\ D\ 1
     = \pi_P(v^1) = 0010 1110 0000 0111
 w^3
                    1110 0100 0110 1110
 K^4
                  = 0100 1101 0110 0011
     = W^3 \oplus K^4 = 1010\ 1001\ 0000\ 1101 = A90B
     = \pi_S(u^4) = 0110 \ 1010 \ 1110 \ 1001 = 6 \ A E C
 K^5
        = 1101 0110 0011 1111
```

= 1011 1100 1101 0110

 $= v^4 \oplus K^5$

```
输入:明文: x = 0010 0110 1011 0111
```

密钥: K = 0011 1010 1001 0100 1101 0110 0011 1111

加密过程:

```
= 0010 0110 1011 0111
X
K^1
                 = 0011 1010 1001 0100
       x \oplus K^1 = 0001 1100 0010 0011 = 1 C 2 3
u^1
  = \pi_{S}(u^{1}) = 0100 \ 0101 \ 1101 \ 0001 = 45 \ D \ 1
    = \pi_P(v^1) = 0010 1110 0000 0111
w^3
                    1110 0100 0110 1110
K^4
                 = 0100 1101 0110 0011
    = W^3 \oplus K^4 = 1010\ 1001\ 0000\ 1101 = A90B
    = \pi_S(u^4) = 0110\ 1010\ 1110\ 1001 = 6\ A\ E\ C
K^5
        = 1101 0110 0011 1111
    = v^4 \oplus K^5
                  = 1011 1100 1101 0110
```

```
密钥: K = 0011 1010 1001 0100 1101 0110 0011 1111
加密过程:
                   = 0010 0110 1011 0111
 X
K^1
                   = 0011 1010 1001 0100
u^1
        x \oplus K^1 = 0001 \ 1100 \ 0010 \ 0011 = 1 \ C \ 2 \ 3
   = \pi_S(u^1) = 0100 \ 0101 \ 1101 \ 0001 = 45 \ D \ 1
 v^1
     = \pi_P(v^1) = 0010 1110 0000 0111
w^3
                     1110 0100 0110 1110
K^4
                   = 0100 1101 0110 0011
     = w^3 \oplus K^4 = 1010\ 1001\ 0000\ 1101 = A 9 0 B
     = \pi_S(u^4) = 0110\ 1010\ 1110\ 1001 = 6\ A\ E\ C
 K^5
         = 1101 0110 0011 1111
     = v^4 \oplus K^5
                   = 1011 1100 1101 0110
```

输入: 明文: *x* = 0010 0110 1011 0111

```
输入:明文: x = 0010 0110 1011 0111
```

密钥: K = 0011 1010 1001 0100 1101 0110 0011 1111

加密过程:

```
= 0010 0110 1011 0111
X
K^1
                  = 0011 1010 1001 0100
u^1
        x \oplus K^1 = 0001 \ 1100 \ 0010 \ 0011 = 1 \ C \ 2 \ 3
  = \pi_S(u^1) = 0100 \ 0101 \ 1101 \ 0001 = 45 \ D \ 1
v^1
    = \pi_P(v^1) = 0010 1110 0000 0111
w^3
                    1110 0100 0110 1110
K^4
                  = 0100 1101 0110 0011
     = w^3 \oplus K^4 = 1010\ 1001\ 0000\ 1101 = A90\ B
    = \pi_S(u^4) = 0110\ 1010\ 1110\ 1001 = 6\ A\ E\ C
K^5
        = 1101 0110 0011 1111
    = v^4 \oplus K^5
                  = 1011 1100 1101 0110
```

```
输入:明文:x = 0010 0110 1011 0111
密钥:K = 0011 1010 1001 0100 1101 0110 0011 1111
加密过程:
```

```
= 0010 0110 1011 0111
X
K^1
                  = 0011 1010 1001 0100
       x \oplus K^1 = 0001 1100 0010 0011 = 1 C 2 3
u^1
  = \pi_S(u^1) = 0100 \ 0101 \ 1101 \ 0001 = 45 \ D \ 1
v^1
    = \pi_P(v^1) = 0010 1110 0000 0111
w^3
                    1110 0100 0110 1110
K^4
                  = 0100 1101 0110 0011
    = W^3 \oplus K^4 = 1010\ 1001\ 0000\ 1101 = A90B
    = \pi_S(u^4) = 0110 \ 1010 \ 1110 \ 1001 = 6 \ A E C
K^5
        = 1101 0110 0011 1111
    = v^4 \oplus K^5 = 1011 \ 1100 \ 1101 \ 0110
```

Introduction

SPN的特点是简单有效:

- S盒 π_S 可以以查表方式实现, $\pi_S: \{0,1\}^I \to \{0,1\}^I$ 所需的存 储空间是121。
- S盒 π_S 的作用是把明文和密钥局部混淆,是非线性运 算, πρ起全局扩散作用, 是线性运算。

Introduction

SPN的特点是简单有效:

- S盒 π_S 可以以查表方式实现, $\pi_S: \{0,1\}^I \to \{0,1\}^I$ 所需的存 储空间是121。
- S盒 π_S 的作用是把明文和密钥局部混淆,是非线性运 算,πρ起全局扩散作用,是线性运算。

Introduction

SPN的特点是简单有效:

- S盒 π_S 可以以查表方式实现, $\pi_S: \{0,1\}^I \to \{0,1\}^I$ 所需的存储空间是 $I2^I$ 。
- S盒 π_S 的作用是把明文和密钥局部混淆,是非线性运算, π_P 起全局扩散作用,是线性运算。

SPN的变体:

- 使用多个S盒 π_S ,如AES中使用了8个不同的S盒。
- 每一轮中包含一个可逆的线性运算,该线性变换要么代替置 换 π_P ,要么作为 π_P 的补充。

Introduction

SPN的特点是简单有效:

- S盒 π_S 可以以查表方式实现, $\pi_S: \{0,1\}^I \to \{0,1\}^I$ 所需的存 储空间是/2/。
- S盒 π_S 的作用是把明文和密钥局部混淆,是非线性运 算, πρ起全局扩散作用, 是线性运算。

SPN的变体:

- 使用多个S盒 π_S ,如AES中使用了8个不同的S盒。
- 每一轮中包含一个可逆的线性运算, 该线性变换要么代替置 换 π P,要么作为 π P的补充。

3.2节的作业

练习3.1

线性密码分析原理

符号说明:

• $X[i_1, i_2, \ldots, i_d]$ 表示比特向量X的第 i_1, i_2, \ldots, i_d 比特的异或,即

$$X[i_1,i_2,\ldots,i_d] = X[i_1] \oplus X[i_2] \oplus \ldots X[i_d]$$

• X表示分组密码的明文输入, $W^i(i=1,...,N'+1)$ 表示第i轮输出,或第i+1轮输入,那么密文 $Y=W^{N'+1}$ 。

线性密码分析原理

线性密码分析是已知明文分析。

线性密码分析原理

线性密码分析是已知明文分析。原理: β (持, β) β , β

 $X[i_1, i_2, \dots, i_a] \oplus W^{N_f}[z_1, z_2, \dots, z_f] = 0$

成立概率p ≠ 1/2

线性密码分析是已知明文分析。原理: 符号说明: $X[h, i_2, \ldots, i_a]$ 表示X的第 h, i_2, \ldots, i_a 比特的异或,其它依此类推。

$$X[i_1, i_2, \dots, i_a] \oplus W^{N_r}[z_1, z_2, \dots, z_f] = 0$$

成立概率p ≠ 1/2

 $X[i_1, i_2, \dots, i_a] \oplus W^{N_f}[z_1, z_2, \dots, z_f] = 0$

成立概率p ≠ 1/2

线性密码分析是已知明文分析。原理:

符号说明: $X[i_1,i_2,\ldots,i_a]$ 表示X的第 i_1,i_2,\ldots,i_a 比特的异或,其它依此类推。

$$X[i_1,i_2,\ldots,i_a] \oplus W^{N_r}[z_1,z_2,\ldots,z_f] = 0$$
 成立概率 $p \neq 1/2$
 $\pi_S(y \oplus K^{N_r+1}[n_1,n_2,\ldots,n_m])$ \Leftarrow 精測 $K^{N_r+1}[n_1,n_2,\ldots,n_m]$

线性密码分析是已知明文分析。原理:

符号说明: $X[i_1,i_2,\ldots,i_a]$ 表示X的第 i_1,i_2,\ldots,i_a 比特的异或,其它依此类推。

$$X[i_1,i_2,\ldots,i_a] \oplus W^1[j_1,j_2,\ldots,j_b] = K^1[s_1,s_2,\ldots,s_u]$$
 第一轮线性逼近概率 p_1 $W^1[j_1,j_2,\ldots,j_b] \oplus W^2[i_1,i_2,\ldots,i_c] = K^2[i_1,i_2,\ldots,i_v]$ 第二轮线性逼近概率 p_2 $W^2[i_1,i_2,\ldots,i_c] \oplus W^3[k_1,k_2,\ldots,k_d] = K^3[g_1,g_2,\ldots,g_w]$ 第三轮线性逼近概率 p_3 \vdots \vdots $W^{N_r-1}[r_1,r_2,\ldots,r_e] \oplus W^{N_r}[z_1,z_2,\ldots,z_f] = K^{N_r}[i_1,i_2,\ldots,i_h]$ 第 N_r-1 轮逼近概率 p_{N_r-1} $X[i_1,i_2,\ldots,i_a] \oplus W^{N_r}[z_1,z_2,\ldots,z_f] = 0$ 成立概率 $p \neq 1/2$ $f_1 \otimes f_2 \otimes f_3 \otimes f_4 \otimes f_4 \otimes f_5 \otimes f_5 \otimes f_6 \otimes f$

$X[i_1, i_2, \dots, i_a] \oplus W^1[j_1, j_2, \dots, j_b]$ $W^1[j_1, j_2, \dots, j_b] \oplus W^2[i_1, i_2, \dots, i_c]$ $W^2[i_1, i_2, \dots, i_c] \oplus W^3[k_1, k_2, \dots, k_d]$	=	$K^{1}[s_{1}, s_{2}, \dots, s_{U}]$ $K^{2}[t_{1}, t_{2}, \dots, t_{V}]$ $K^{3}[g_{1}, g_{2}, \dots, g_{W}]$	第一轮线性逼近概率 p ₁ 第二轮线性逼近概率 p ₂
	= ⊕ : ⊕	0.02	第三轮线性逼近概率 p 3
$W^{N_{r}-1}[r_{1}, r_{2}, \dots, r_{e}] \oplus W^{N_{r}}[z_{1}, z_{2}, \dots, z_{f}]$ $X[i_{1}, i_{2}, \dots, i_{a}] \oplus W^{N_{r}}[z_{1}, z_{2}, \dots, z_{f}]$ $\uparrow \qquad \qquad$	₩.	$K^{N_r}[f_1, f_2, \dots, f_h]$ $K^1[s_1 \dots s_u] \dots K^{N_r}[f_1 \dots f_h]$	第 N_r-1 轮逼近概率 ρ_{N_r-1} 猜测 $K^{N_r+1}[n_1,n_2,\ldots,n_n]$

线性密码分析是已知明文分析。原理:

符号说明: $X[i_1,i_2,\ldots,i_a]$ 表示X的第 i_1,i_2,\ldots,i_a 比特的异或,其它依此类推。

线性密码分析是已知明文分析。原理:

符号说明: $X[i_1, i_2, \ldots, i_a]$ 表示X的第 i_1, i_2, \ldots, i_a 比特的异或,其它依此类推。

单轮的线性逼近概率由非线性的S盒决定,因此线性分析的关键是求S盒的线性逼近。

Introduction

偏差:设随机变量X取值为 $\{0,1\}$,而且Pr[X=0]=p,则随机 变量X的偏差定义为 $\varepsilon = p - 1/2$ 。

Lemma

Subtitution-permutation network

(堆积引理)设 X_1, X_2, \ldots, X_k 是k个独立的随机变量,而 且 $P[X_i = 0] = p_i$, $P[X_i = 1] = 1 - p_i$,则

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_k = 0] = 1/2 + 2^{k-1} \prod_{i=1}^{k} (p_i - 1/2)$$

$$\varepsilon = 2^{k-1} \prod_{i=1}^{k} \varepsilon_i$$

堆积引理

偏差:设随机变量X取值为 $\{0,1\}$,而且Pr[X=0]=p,则随机 变量X的偏差定义为 $\varepsilon = p - 1/2$ 。

Lemma

Subtitution-permutation network

(堆积引理)设 X_1, X_2, \ldots, X_k 是k个独立的随机变量,而 $\mathbb{E}[P[X_i = 0] = p_i, P[X_i = 1] = 1 - p_i, \mathbb{Q}]$

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_k = 0] = 1/2 + 2^{k-1} \prod_{i=1}^{n} (p_i - 1/2)$$

$$\varepsilon = 2^{k-1} \prod_{i=1}^{k} \varepsilon_i$$

堆积引理

偏差:设随机变量X取值为 $\{0,1\}$,而且Pr[X=0]=p,则随机 变量X的偏差定义为 $\varepsilon = p - 1/2$ 。

Lemma

Subtitution-permutation network

(堆积引理)设 X_1, X_2, \ldots, X_k 是k个独立的随机变量,而 且 $P[X_i = 0] = p_i$, $P[X_i = 1] = 1 - p_i$,则

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_k = 0] = 1/2 + 2^{k-1} \prod_{i=1}^{n} (p_i - 1/2)$$

$$\varepsilon = 2^{k-1} \prod_{i=1}^{k} \varepsilon_i$$

堆积引理

偏差:设随机变量X取值为 $\{0,1\}$,而且Pr[X=0]=p,则随机 变量X的偏差定义为 $\varepsilon = p - 1/2$ 。

Lemma

Subtitution-permutation network

(堆积引理)设 X_1, X_2, \ldots, X_k 是k个独立的随机变量,而 且 $P[X_i = 0] = p_i$, $P[X_i = 1] = 1 - p_i$,则

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_k = 0] = 1/2 + 2^{k-1} \prod_{i=1}^{n} (p_i - 1/2)$$

$$\varepsilon = 2^{k-1} \prod_{i=1}^k \varepsilon_i$$

对k应用数学归纳法。

对k应用数学归纳法。 (1)k = 1是显然成立。

对k应用数学归纳法。

- (1)k = 1是显然成立。
- (2)假设k = I时成立,即有

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_l = 0] = 1/2 + 2^{l-1} \prod_{i=1}^{l} (p_i - 1/2)$$

Introduction

对k应用数学归纳法。

- (1)k = 1是显然成立。
- (2)假设k = I时成立,即有

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_l = 0] = 1/2 + 2^{l-1} \prod_{i=1}^{l} (p_i - 1/2)$$

当k = l + 1时有

$$P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l+1} = 0] = P[X_{l+1} = 0]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0|X_{l+1} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 1|X_{l+1} = 1]$$

$$= P[X_{l+1} = 0]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 1]$$

Introduction

对k应用数学归纳法。

- (1)k = 1是显然成立。
- (2)假设k = I时成立,即有

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_l = 0] = 1/2 + 2^{l-1} \prod_{i=1}^{l} (p_i - 1/2)$$

当k = l + 1时有

$$P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l+1} = 0] = P[X_{l+1} = 0]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0|X_{l+1} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 1|X_{l+1} = 1]$$

$$= P[X_{l+1} = 0]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 1]$$

$$= p_{l+1} \left(1/2 + 2^{l-1} \prod_{i=1}^{l} (p_{i} - 1/2)\right) + (1 - p_{l+1}) \left(2^{l-1} \prod_{i=1}^{l} (p_{i} - 1/2) - 1/2\right)$$

Introduction

对k应用数学归纳法。

- (1)k = 1是显然成立。
- (2)假设k = I时成立,即有

Subtitution-permutation network

$$P[X_1 \oplus X_2 \oplus \ldots \oplus X_l = 0] = 1/2 + 2^{l-1} \prod_{i=1}^{l} (p_i - 1/2)$$

当
$$k = l + 1$$
时有

$$P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l+1} = 0] = P[X_{l+1} = 0]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0|X_{l+1} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 1|X_{l+1} = 1]$$

$$= P[X_{l+1} = 0]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 0] + P[X_{l+1} = 1]P[X_{1} \oplus X_{2} \oplus \ldots \oplus X_{l} = 1]$$

$$= p_{l+1} \left(1/2 + 2^{l-1} \prod_{i=1}^{l} (p_{i} - 1/2)\right) + \left(1 - p_{l+1}\right) \left(2^{l-1} \prod_{i=1}^{l} (p_{i} - 1/2) - 1/2\right)$$

$$= 1/2 + 2^{l} \prod_{i=1}^{l+1} (p_{i} - 1/2)$$

堆积引理的推论

Corollary

设 X_1, X_2, \ldots, X_k 是k个独立的随机变量,<mark>若对某个j, X_j 的偏差 $\varepsilon_j = 0$,则随机变量 $X_1 \oplus X_2 \oplus \ldots \oplus X_k$ 的偏差 $\varepsilon = 0$ 。</mark>

堆积引理的推论

Corollary

设 X_1, X_2, \ldots, X_k 是k个独立的随机变量,若对某个j, X_j 的偏差 $\varepsilon_j = 0$,则随机变量 $X_1 \oplus X_2 \oplus \ldots \oplus X_k$ 的偏差 $\varepsilon = 0$ 。

堆积引理只在 X_1, X_2, \ldots, X_k 统计独立情况下才成立,否则不一定成立。

Example

设 X_1, X_2, X_3 的偏差分别为 $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$,由堆积引理得到 $\varepsilon_{1,2} = \varepsilon_{1,3} = \varepsilon_{2,3} = 1/8$ 。

$$X_1 \oplus X_3 = (X_1 \oplus X_2) \oplus (X_2 \oplus X_3)$$

如果随机变量 $(X_1 \oplus X_2)$ 和 $X_2 \oplus X_3$ 统计独立,根据堆积引理计算得到

$$\varepsilon_{1,3} = 2(1/8)^2 = 1/32 \neq 1/8$$

因此 $X_1 \oplus X_2$ 和 $X_2 \oplus X_3$ 统计不独立,不能由堆积引理给出正确答案。

堆积引理只在 X_1, X_2, \ldots, X_k 统计独立情况下才成立,否则不一定成立。

Example

设 X_1, X_2, X_3 的偏差分别为 $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$,由堆积引理得到 $\varepsilon_{1,2} = \varepsilon_{1,3} = \varepsilon_{2,3} = 1/8$ 。

$$X_1 \oplus X_3 = (X_1 \oplus X_2) \oplus (X_2 \oplus X_3)$$

如果随机变量 $(X_1 \oplus X_2)$ 和 $X_2 \oplus X_3$ 统计独立,根据堆积引理计算得到

$$\varepsilon_{1,3} = 2(1/8)^2 = 1/32 \neq 1/8$$

因此 $X_1 \oplus X_2$ 和 $X_2 \oplus X_3$ 统计不独立,不能由堆积引理给出正确答案。

堆积引理只在 X_1, X_2, \ldots, X_k 统计独立情况下才成立,否则不一定成立。

Example

设 X_1, X_2, X_3 的偏差分别为 $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$,由堆积引理得到 $\varepsilon_{1,2} = \varepsilon_{1,3} = \varepsilon_{2,3} = 1/8$ 。

$$X_1 \oplus X_3 = (X_1 \oplus X_2) \oplus (X_2 \oplus X_3)$$

如果随机变量 $(X_1 \oplus X_2)$ 和 $X_2 \oplus X_3$ 统计独立,根据堆积引理计算得到

$$\varepsilon_{1,3} = 2(1/8)^2 = 1/32 \neq 1/8$$

因此 $X_1 \oplus X_2$ 和 $X_2 \oplus X_3$ 统计不独立,不能由堆积引理给出正确答案。

堆积引理只在 X_1, X_2, \ldots, X_k 统计独立情况下才成立,否则不一定成立。

Example

设 X_1, X_2, X_3 的偏差分别为 $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$,由堆积引理得到 $\varepsilon_{1,2} = \varepsilon_{1,3} = \varepsilon_{2,3} = 1/8$ 。

$$X_1 \oplus X_3 = (X_1 \oplus X_2) \oplus (X_2 \oplus X_3)$$

如果随机变量 $(X_1 \oplus X_2)$ 和 $X_2 \oplus X_3$ 统计独立,根据堆积引理计算得到

$$\varepsilon_{1,3} = 2(1/8)^2 = 1/32 \neq 1/8$$

因此 $X_1 \oplus X_2$ 和 $X_2 \oplus X_3$ 统计不独立,不能由堆积引理给出正确答案。

堆积引理只在 X_1, X_2, \ldots, X_k 统计独立情况下才成立,否则不一定成立。

Example

设 X_1, X_2, X_3 的偏差分别为 $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$,由堆积引理得到 $\varepsilon_{1,2} = \varepsilon_{1,3} = \varepsilon_{2,3} = 1/8$ 。

$$X_1 \oplus X_3 = (X_1 \oplus X_2) \oplus (X_2 \oplus X_3)$$

如果随机变量 $(X_1 \oplus X_2)$ 和 $X_2 \oplus X_3$ 统计独立,根据堆积引理计算得到

$$\varepsilon_{1,3} = 2(1/8)^2 = 1/32 \neq 1/8$$

因此 $X_1 \oplus X_2$ 和 $X_2 \oplus X_3$ 统计不独立,不能由堆积引理给出正确答案。

堆积引理只在 X_1, X_2, \ldots, X_k 统计独立情况下才成立,否则不一定成立。

Example

设 X_1, X_2, X_3 的偏差分别为 $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$,由堆积引理得到 $\varepsilon_{1,2} = \varepsilon_{1,3} = \varepsilon_{2,3} = 1/8$ 。

$$X_1 \oplus X_3 = (X_1 \oplus X_2) \oplus (X_2 \oplus X_3)$$

如果随机变量 $(X_1 \oplus X_2)$ 和 $X_2 \oplus X_3$ 统计独立,根据堆积引理计算得到

$$\varepsilon_{1,3} = 2(1/8)^2 = 1/32 \neq 1/8$$

因此 $X_1 \oplus X_2$ 和 $X_2 \oplus X_3$ 统计不独立,不能由堆积引理给出正确答案。

考虑S盒 $\pi_S: \{0,1\}^m \to \{0,1\}^n$ 。

定义:随机变量 $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_m)$ 表示m重输入,

随机变量 $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_n)$ 表示n重输出。

假定: X_i (1 $\leq i \leq m$), Y_j (1 $\leq j \leq n$)独立同分布,均取值

于{0,1},而且偏差为0。

计算: 随机变量 $a_1 \mathbf{X}_1 \oplus \ldots \oplus a_m \mathbf{X}_m \oplus b_1 \mathbf{Y}_1 \oplus \ldots \oplus b_n \mathbf{Y}_n$ 的偏差

值。

Introduction

考虑S盒 π_S : $\{0,1\}^m \to \{0,1\}^n$ 。

定义: 随机变量 $X = (X_1, X_2, ..., X_m)$ 表示m重输入,

随机变量 $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_n)$ 表示n重输出。

假定: X_i (1 $\leq i \leq m$), Y_i (1 $\leq j \leq n$)独立同分布,均取值

于{0,1},而且偏差为0。

计算: 随机变量 $a_1X_1 \oplus \ldots \oplus a_mX_m \oplus b_1Y_1 \oplus \ldots \oplus b_nY_n$ 的偏差

值。

考虑S盒 π_S : $\{0,1\}^m \to \{0,1\}^n$ 。

定义: 随机变量 $X = (X_1, X_2, ..., X_m)$ 表示m重输入,

随机变量 $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_n)$ 表示n重输出。

假定: $X_i(1 \le i \le m), Y_i(1 \le j \le n)$ 独立同分布,均取值

于{0,1},而且偏差为0。

计算: 随机变量 $a_1 X_1 \oplus ... \oplus a_m X_m \oplus b_1 Y_1 \oplus ... \oplus b_n Y_n$ 的偏差

值。

首先求概率

$$P((\bigoplus_{i=m}^{n} a_i \mathbf{X}_i) \oplus (\bigoplus_{j=1}^{n} b_j \mathbf{Y}_j) = 0)$$

首先求概率 根据全概率公式:

$$P((\bigoplus_{i=m}^{n} a_i \mathbf{X}_i) \oplus (\bigoplus_{j=1}^{n} b_j \mathbf{Y}_j) = 0)$$

$$= \sum_{(\bigoplus_{i=1}^{m} a_i x_i) \oplus (\bigoplus_{j=1}^{n} b_j y_j) = 0} P(\mathbf{Y}_j = y_j, 1 \le j \le n | \mathbf{X}_i = x_i, 1 \le i \le m) \cdot P(\mathbf{Y}_j = y_j, 1 \le j \le n, \mathbf{X}_i = x_i, 1 \le i \le m)$$

Introduction

计算概率
$$P(\mathbf{Y}_j = y_j, 1 \le j \le n, \mathbf{X}_i = x_i, 1 \le i \le m)$$

 $P(\mathbf{Y}_j = y_j, 1 \le j \le n | \mathbf{X}_i = x_i, 1 \le i \le m)$

Introduction

计算概率
$$P(\mathbf{Y}_j = y_j, 1 \le j \le n, \mathbf{X}_i = x_i, 1 \le i \le m)$$
 $P(\mathbf{Y}_j = y_j, 1 \le j \le n | \mathbf{X}_i = x_i, 1 \le i \le m)$ 分两种情况讨论:

Introduction

计算概率
$$P(\mathbf{Y}_j = y_j, 1 \le j \le n, \mathbf{X}_i = x_i, 1 \le i \le m)$$

$$P(\mathbf{Y}_j = y_j, 1 \le j \le n | \mathbf{X}_i = x_i, 1 \le i \le m)$$

分两种情况讨论:

情况一:
$$(y_1,\ldots,y_n)\neq\pi_S(x_1,\ldots,x_m)$$
,

情况二:
$$(y_1,\ldots,y_n)=\pi_S(x_1,\ldots,x_m)$$
,

Introduction

计算概率
$$P(\mathbf{Y}_j = y_j, 1 \le j \le n, \mathbf{X}_i = x_i, 1 \le i \le m)$$

 $P(\mathbf{Y}_j = y_j, 1 \le j \le n | \mathbf{X}_i = x_i, 1 \le i \le m)$

分两种情况讨论:

情况一:
$$(y_1,...,y_n) \neq \pi_S(x_1,...,x_m)$$
,有

$$P(\mathbf{X}_1 = x_1, \dots, \mathbf{X}_m = x_m, \mathbf{Y}_1 = y_1, \dots, \mathbf{Y}_n = y_n) = 0$$

情况二:
$$(y_1,\ldots,y_n)=\pi_S(x_1,\ldots,x_m)$$
,

Introduction

计算概率
$$P(\mathbf{Y}_j = y_j, 1 \le j \le n, \mathbf{X}_i = x_i, 1 \le i \le m)$$

$$P(\mathbf{Y}_j = y_j, 1 \le j \le n | \mathbf{X}_i = x_i, 1 \le i \le m)$$

分两种情况讨论:

Subtitution-permutation network

情况一:
$$(y_1, \ldots, y_n) \neq \pi_S(x_1, \ldots, x_m)$$
,有

$$P(\mathbf{X}_1 = x_1, \dots, \mathbf{X}_m = x_m, \mathbf{Y}_1 = y_1, \dots, \mathbf{Y}_n = y_n) = 0$$

情况二:
$$(y_1, \ldots, y_n) = \pi_S(x_1, \ldots, x_m)$$
,有

$$P(\mathbf{X}_1 = x_1, ..., \mathbf{X}_m = x_m, \mathbf{Y}_1 = y_1, ..., \mathbf{Y}_n = y_n)$$

= $P(\mathbf{X}_1 = x_1, ..., \mathbf{X}_m = x_m) = 2^{-m}$

并且

$$P(\mathbf{Y}_1 = y_1, \dots, \mathbf{Y}_n = y_n | \mathbf{X}_1 = x_1, \dots, \mathbf{X}_m = x_m) = 1$$

Introduction

继续刚才的计算

$$\begin{split} &P((\bigoplus_{i=m}^{n}a_{i}\mathbf{X}_{i})\oplus(\bigoplus_{j=1}^{n}b_{j}\mathbf{Y}_{j})=0)\\ &=\sum_{(\bigoplus_{i=1}^{m}a_{i}x_{i})\oplus(\bigoplus_{j=1}^{n}b_{j}y_{j})=0}P(\mathbf{Y}_{j}=y_{j},1\leq j\leq n|\mathbf{X}_{i}=x_{i},1\leq i\leq m)\cdot\\ &P(\mathbf{Y}_{j}=y_{j},1\leq j\leq n,\mathbf{X}_{i}=x_{i},1\leq i\leq m) \end{split}$$

Introduction

继续刚才的计算

$$\begin{split} &P((\bigoplus_{i=m} a_i\mathbf{X}_i) \oplus (\bigoplus_{j=1}^n b_j\mathbf{Y}_j) = 0) \\ &= \sum_{(\bigoplus_{j=1}^m a_ix_j) \oplus (\bigoplus_{j=1}^n b_jy_j) = 0} &P(\mathbf{Y}_j = y_j, 1 \leq j \leq n | \mathbf{X}_i = x_i, 1 \leq i \leq m) \\ &P(\mathbf{Y}_j = y_j, 1 \leq j \leq n, \mathbf{X}_i = x_i, 1 \leq i \leq m) \end{split}$$

Introduction

继续刚才的计算

$$\begin{split} P((\bigoplus_{i=m}^{n} a_{i}\mathbf{X}_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}\mathbf{Y}_{j}) &= 0) \\ &= \sum_{(\bigoplus_{i=1}^{m} a_{i}x_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}y_{j}) = 0} P(\mathbf{Y}_{j} = y_{j}, 1 \leq j \leq n | \mathbf{X}_{i} = x_{i}, 1 \leq i \leq m) \\ &\qquad \qquad P(\mathbf{Y}_{j} = y_{j}, 1 \leq j \leq n, \mathbf{X}_{i} = x_{i}, 1 \leq i \leq m) \\ &= \frac{|\{x_{1}, \dots, x_{m}, y_{1}, \dots, y_{m} : (y_{1}, \dots, y_{m}) = \pi_{S}(x_{1}, \dots, x_{m}), (\bigoplus_{i=1}^{m} a_{i}x_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}y_{j}) = 0\}|}{2^{m}} \end{split}$$

Introduction

继续刚才的计算

$$P((\bigoplus_{i=m}^{m} a_{i}\mathbf{X}_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}\mathbf{Y}_{j}) = 0)$$

$$= \sum_{(\bigoplus_{i=1}^{m} a_{i}x_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}y_{j}) = 0} P(\mathbf{Y}_{j} = y_{j}, 1 \leq j \leq n | \mathbf{X}_{i} = x_{i}, 1 \leq i \leq m) \cdot P(\mathbf{Y}_{j} = y_{j}, 1 \leq j \leq n, \mathbf{X}_{i} = x_{i}, 1 \leq i \leq m)$$

$$= \frac{|\{x_{1}, \dots, x_{m}, y_{1}, \dots, y_{m} : (y_{1}, \dots, y_{m}) = \pi_{S}(x_{1}, \dots, x_{m}), (\bigoplus_{i=1}^{m} a_{i}x_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}y_{j}) = 0\}|}{2^{m}}$$

记

$$N_{L} = |\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} : (y_{1}, \ldots, y_{m}) = \pi_{S}(x_{1}, \ldots, x_{m}), (\bigoplus_{i=1}^{m} a_{i}x_{i}) \oplus (\bigoplus_{i=1}^{n} b_{j}y_{j}) = 0\}|$$

Introduction

继续刚才的计算

$$P((\bigoplus_{i=m} a_{i}\mathbf{X}_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}\mathbf{Y}_{j}) = 0)$$

$$= \sum_{(\bigoplus_{i=1}^{m} a_{i}x_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}y_{j}) = 0} P(\mathbf{Y}_{j} = y_{j}, 1 \leq j \leq n | \mathbf{X}_{i} = x_{i}, 1 \leq i \leq m) \cdot P(\mathbf{Y}_{j} = y_{j}, 1 \leq j \leq n, \mathbf{X}_{i} = x_{i}, 1 \leq i \leq m)$$

$$= \frac{|\{x_{1}, \dots, x_{m}, y_{1}, \dots, y_{m} : (y_{1}, \dots, y_{m}) = \pi_{S}(x_{1}, \dots, x_{m}), (\bigoplus_{j=1}^{m} a_{i}x_{i}) \oplus (\bigoplus_{j=1}^{n} b_{j}y_{j}) = 0\}|}{2^{m}}$$

记

$$N_L = |\{x_1,\ldots,x_m,y_1,\ldots,y_m: (y_1,\ldots,y_m) = \pi_S(x_1,\ldots,x_m), (\bigoplus_{i=1}^m a_ix_i) \oplus (\bigoplus_{j=1}^n b_jy_j) = 0\}|$$

问题:考虑例3.1中的S盒, π_S : $\{0,1\}^4 \rightarrow \{0,1\}^4$ 如右图所示。 求 $X_3 \oplus X_4 \oplus Y_1 \oplus$

Y₄的偏差。

问题:考虑例3.1中的S盒, π_S : $\{0,1\}^4 \rightarrow \{0,1\}^4$ 如右图所示。

 Y_4 的偏差。 $N_L = 满足 x_3 \oplus x_4 \oplus y_1 \oplus y_4 = 0$ 的输入

求 $X_3 \oplus X_4 \oplus Y_1 \oplus$

 $y_1 \oplus y_4 = 0$ 的特输出对的数量

X_1	X ₂	X ₃	X_4	Y ₁	Y ₂	Y ₃	Y ₄
0	0	0	0	1	1	1	0
0	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	0	0	1
0	1	0	0	0	0	1	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1
0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	1
1	0	0	1	1	0	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	0	0
1	1	0	0	0	1	0	1
1	1	0	1	1	0	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	1	1	1

问题:考虑例3.1中的S盒, π_S : $\{0,1\}^4 \rightarrow \{0,1\}^4$ 如右图所示。 求 $X_3 \oplus X_4 \oplus Y_1 \oplus$

 \mathbf{Y}_4 的偏差。 $N_L = 满足 x_3 \oplus x_4 \oplus y_1 \oplus y_4 = 0$ 的输入

 $y_1 \oplus y_4 = 0$ 的。 输出对的数量

X_1	X ₂	X ₃	X ₄	Y ₁	Y ₂	Y ₃	Y ₄
0	0	0	0	1	1	1	0
0	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	0	0	1
0	1	0	0	0	0	1	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1
0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	1
1	0	0	1	1	0	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	0	0
1	1	0	0	0	1	0	1
1	1	0	1	1	0	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	1	1	1

问题:考虑例3.1中的S盒, π_S : $\{0,1\}^4 \rightarrow \{0,1\}^4$ 如右图所示。

 Y_4 的偏差。 $N_L = 满足 x_3 \oplus x_4 \oplus y_1 \oplus y_4 = 0$ 的输入输出对的数量=2

求 $X_3 \oplus X_4 \oplus Y_1 \oplus$

X_1	X ₂	X ₃	X ₄	Y ₁	Y ₂	Y ₃	Y ₄
0	0	0	0	1	1	1	0
0	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	0	0	1
0	1	0	0	0	0	1	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1
0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	1
1	0	0	1	1	0	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	0	0
1	1	0	0	0	1	0	1
1	1	0	1	1	0	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	1	1	1

问题:考虑例3.1中 的S盒, π_S : $\{0,1\}^4 \to$ {0,1}4如右图所 示。 求 $X_3 \oplus X_4 \oplus Y_1 \oplus$ Y_4 的偏差。 $N_1 =$ 满足 $x_3 \oplus x_4 \oplus$ $y_1 \oplus y_4 = 0$ 的输入 输出对的数量=2 因此偏 $差=N_I/16-1/2=$

2/16-1/2=-3/8

X ₁	X ₂	X ₃	X ₄	Y ₁	Y ₂	Y ₃	Y ₄
0	0	0	0	1	1	1	0
0	0	0	1	0	1	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	0	0	1
0	1	0	0	0	0	1	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1
0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	1
1	0	0	1	1	0	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	0	0
1	1	0	0	0	1	0	1
1	1	0	1	1	0	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	1	1	1

Introduction

包含所有 N_L 的值表称为线性逼近表。例3.1的S盒的线性逼近表见课本图3.2,由所有 N_L 值能求出所有输入输出的线性组合的偏差。

3.3.2节习题: 练习3.12*, 3.14(a)。

<i>S</i> 盒	随机变量	偏差
S_2^1	$\mathbf{T}_1 = \mathbf{U}_5^1 \oplus \mathbf{U}_7^1 \oplus \mathbf{U}_8^1 \oplus \mathbf{V}_6^1$	1/4
S_2^2	$T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$	-1/4
S_2^3	$T_3 = U_6^3 \oplus V_6^3 \oplus V_8^3$	-1/4
S_4^3	$T_4 = U_{14}^3 \oplus V_{14}^3 \oplus V_{16}^3$	-1/4

S 盒	随机变量	偏差
S_2^1	$\mathbf{T}_1 = \mathbf{U}_5^1 \oplus \mathbf{U}_7^1 \oplus \mathbf{U}_8^1 \oplus \mathbf{V}_6^1$	1/4
S_2^2	$T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$	-1/4
S_2^3	$T_3 = U_6^3 \oplus V_6^3 \oplus V_8^3$	-1/4
S_4^3	$T_4 = U^3_{14} \oplus V^3_{14} \oplus V^3_{16}$	-1/4

<i>S</i> 盒	随机变量	偏差
S_2^1	$\mathbf{T}_1 = \mathbf{U}_5^1 \oplus \mathbf{U}_7^1 \oplus \mathbf{U}_8^1 \oplus \mathbf{V}_6^1$	1/4
S_2^2	$T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$	-1/4
S_2^3	$T_3 = U_6^3 \oplus V_6^3 \oplus V_8^3$	-1/4
S_4^3	$T_4 = U_{14}^3 \oplus V_{14}^3 \oplus V_{16}^3$	-1/4

S 盒	随机变量	偏差
S_2^1	$\mathbf{T}_1 = \mathbf{U}_5^1 \oplus \mathbf{U}_7^1 \oplus \mathbf{U}_8^1 \oplus \mathbf{V}_6^1$	1/4
S_2^2	$T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$	-1/4
S_2^3	$T_3 = U_6^3 \oplus V_6^3 \oplus V_8^3$	-1/4
S_4^3	$T_4 = U_{14}^3 \oplus V_{14}^3 \oplus V_{16}^3$	-1/4

S 盒	随机变量	偏差
S_2^1	$\mathbf{T}_1 = \mathbf{U}_5^1 \oplus \mathbf{U}_7^1 \oplus \mathbf{U}_8^1 \oplus \mathbf{V}_6^1$	1/4
S_2^2	$T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$	-1/4
S_2^3	$T_3 = U_6^3 \oplus V_6^3 \oplus V_8^3$	-1/4
S_4^3	$T_4 = U_{14}^3 \oplus V_{14}^3 \oplus V_{16}^3$	-1/4

 $T_1 \oplus T_2 \oplus T_3 \oplus T_4$ 的偏 $\not\equiv = 2^3 (1/4)(-1/4)^3 = -1/32$

已知: *T* ≈ 8000对明-密文

输出: $\mathbf{K}_5^5, \mathbf{K}_6^5, \mathbf{K}_7^5, \mathbf{K}_8^5$ $\mathbf{K}_{13}^5, \mathbf{K}_{14}^5, \mathbf{K}_{15}^5, \mathbf{K}_{16}^5$

已知: $T \approx 8000$ 对明-密文 穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{8}^{5} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{15}^{5} , \mathbf{K}_{16}^{5} 的所有可能值 $\{0,1\}^{8}$, 对每个可能 值 $\{L_{1},L_{2}\}$ 如下计算:

输出: $\mathbf{K}_5^5, \mathbf{K}_6^5, \mathbf{K}_7^5, \mathbf{K}_8^5$ $\mathbf{K}_{13}^5, \mathbf{K}_{14}^5, \mathbf{K}_{15}^5, \mathbf{K}_{16}^5$

已知: $T \approx 8000$ 对明-密文 穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{5}^{8} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{16}^{5} , 的所有可能值 $\{0,1\}^{8}$, 对每个可能值 $\{L_{1},L_{2}\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$

已知: *T* ≈ 8000对明-密文

穷搜索 K_5^5 , K_6^5 , K_7^5 , K_8^5 , K_{13}^5 , K_{14}^5 , K_{16}^5 , K_{16}^5 的所有可能值 $\{0,1\}^8$,对每个可能值 $\{L_1,L_2\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$ Step 2.每一对明-密文(x, y),计算:

Step 2.1(
$$\pi_P$$
) $v_2^4 \leftarrow L_1 \oplus y_2$, $v_4^4 \leftarrow L_1 \oplus y_4$.

Step 2.2(
$$\pi_S^{-1}$$
) $u_2^4 \leftarrow \pi_S^{-1}(v_{(2)^4}),$
 $u_4^4 \leftarrow \pi_S^{-1}(v_{(4)^4}).$

Step 2.3
$$z \leftarrow x_5 \oplus x_7 \oplus x_8 \oplus u_6^4 \oplus u_8^4 \oplus u_{14}^4 \oplus u_{16}^4$$

Step 2.4(计数) 如果
$$z = 0$$
 则 $Count[L_1, L_2] + +$

已知: *T* ≈ 8000对明-密文

穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{8}^{5} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{16}^{5} , 的所有可能值 $\{0,1\}^{8}$, 对每个可能值 $\{L_{1},L_{2}\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$ Step 2.每一对明-密文(x, y),计算:

Step 2.1(
$$\pi_P$$
) $v_2^4 \leftarrow L_1 \oplus y_2$, $v_4^4 \leftarrow L_1 \oplus y_4$.

Step 2.2(
$$\pi_S^{-1}$$
) $u_2^4 \leftarrow \pi_S^{-1}(v_{(2)^4}),$
 $u_4^4 \leftarrow \pi_S^{-1}(v_{(4)^4}).$

Step 2.3
$$z \leftarrow x_5 \oplus x_7 \oplus x_8 \oplus u_6^4 \oplus u_8^4 \oplus u_{14}^4 \oplus u_{16}^4$$

Step 2.4(计数) 如果
$$z = 0$$
 则 $Count[L_1, L_2] + +$

已知: T≈8000对明-密文

穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{8}^{5} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{15}^{5} , \mathbf{K}_{16}^{5} 的所有可能值 $\{0,1\}^{8}$,对每个可能 值 $\{L_{1},L_{2}\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$ Step 2.每一对明-密文(x, y),计算:

Step 2.1(
$$\pi_P$$
) $v_2^4 \leftarrow L_1 \oplus y_2$, $v_4^4 \leftarrow L_1 \oplus y_4$.

Step 2.2(
$$\pi_S^{-1}$$
) $u_2^4 \leftarrow \pi_S^{-1}(v_{(2)^4}),$
 $u_4^4 \leftarrow \pi_S^{-1}(v_{(4)^4}).$

Step 2.3
$$z \leftarrow x_5 \oplus x_7 \oplus x_8 \oplus u_6^4 \oplus u_8^4 \oplus u_{14}^4 \oplus u_{16}^4$$

已知: *T* ≈ 8000对明-密文

穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{8}^{5} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{15}^{5} , \mathbf{K}_{16}^{5} 的所有可能值 $\{0,1\}^{8}$, 对每个可能值 $\{L_{1},L_{2}\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$ Step 2.每一对明-密文(x, y),计算:

Step 2.1(
$$\pi_P$$
) $v_2^4 \leftarrow L_1 \oplus y_2$, $v_4^4 \leftarrow L_1 \oplus y_4$.

Step 2.2(
$$\pi_S^{-1}$$
) $u_2^4 \leftarrow \pi_S^{-1}(v_{(2)^4}),$
 $u_4^4 \leftarrow \pi_S^{-1}(v_{(4)^4}).$

Step 2.3 $z \leftarrow x_5 \oplus x_7 \oplus x_8 \oplus u_6^4 \oplus u_8^4 \oplus u_{14}^4 \oplus u_{16}^4$

Step 2.4(计数) 如果z = 0 则 $Count[L_1, L_2] + +$

已知: T≈8000对明-密文

穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{8}^{5} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{16}^{5} , \mathbf{K}_{16}^{5} 的所有可能值 $\{0,1\}^{8}$, 对每个可能值 $\{L_{1},L_{2}\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$ Step 2.每一对明-密文(x, y),计算:

Step 2.1(
$$\pi_P$$
) $v_2^4 \leftarrow L_1 \oplus y_2$, $v_4^4 \leftarrow L_1 \oplus y_4$.

Step 2.2(
$$\pi_S^{-1}$$
) $u_2^4 \leftarrow \pi_S^{-1}(v_{(2)^4}),$
 $u_4^4 \leftarrow \pi_S^{-1}(v_{(4)^4}).$

Step 2.3
$$z \leftarrow x_5 \oplus x_7 \oplus x_8 \oplus u_6^4 \oplus u_8^4 \oplus u_{14}^4 \oplus u_{16}^4$$

Step 2.4(计数) 如果
$$z = 0$$
 则 $Count[L_1, L_2] + +$

已知: $T \approx 8000$ 对明-密文

穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{8}^{5} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{15}^{5} , \mathbf{K}_{16}^{5} 的所有可能值 $\{0,1\}^{8}$, 对每个可能值 $\{L_{1},L_{2}\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$ Step 2.每一对明-密文(x, y),计算:

Step 2.1(
$$\pi_P$$
) $v_2^4 \leftarrow L_1 \oplus y_2$,

$$v_4^4 \leftarrow L_1 \oplus y_4.$$

Step 2.2(π_S^{-1}) $u_2^4 \leftarrow \pi_S^{-1}(v_{(2)^4}),$

Step 2.2(
$$\pi_S$$
) $u_2 \leftarrow \pi_S$ ($v_{(2)^4}$),
 $u_4^4 \leftarrow \pi_S^{-1}(v_{(4)^4})$.

Step 2.3
$$z \leftarrow x_5 \oplus x_7 \oplus x_8 \oplus u_6^4 \oplus u_8^4 \oplus u_{14}^4 \oplus u_{16}^4$$

Step 2.4(计数) 如果
$$z = 0$$
 则 $Count[L_1, L_2] + +$

计算 (I_1, I_2) ,满足 $Count[I_1, I_2] = \max |Count[L_1, L_2]/2^4 - 1/2|$ 输出: $K_5^5, K_6^5, K_7^5, K_8^5$ $K_{13}^5, K_{14}^5, K_{15}^5, K_{16}^5$

已知: T≈8000对明-密文

穷搜索 \mathbf{K}_{5}^{5} , \mathbf{K}_{6}^{5} , \mathbf{K}_{7}^{5} , \mathbf{K}_{8}^{5} , \mathbf{K}_{13}^{5} , \mathbf{K}_{14}^{5} , \mathbf{K}_{15}^{5} , \mathbf{K}_{16}^{5} 的所有可能值 $\{0,1\}^{8}$, 对每个可能值 $\{L_{1},L_{2}\}$ 如下计算:

Step 1.(清零)计数器 $Count[L_1, L_2] = 0$ Step 2.每一对明-密文(x, y),计算:

Step 2.1(
$$\pi_P$$
) $v_2^4 \leftarrow L_1 \oplus y_2$, $v_4^4 \leftarrow L_1 \oplus y_4$.

Step 2.2(
$$\pi_S^{-1}$$
) $u_2^4 \leftarrow \pi_S^{-1}(v_{(2)^4}),$
 $u_4^4 \leftarrow \pi_S^{-1}(v_{(4)^4}).$

Step 2.3
$$Z \leftarrow X_5 \oplus X_7 \oplus X_8 \oplus U_6^4 \oplus U_8^4 \oplus U_{14}^4 \oplus U_{16}^4$$

Step 2.4(计数) 如果
$$z = 0$$
 则 $Count[L_1, L_2] + +$

计算(
$$I_1, I_2$$
),满足
$$Count[I_1, I_2] = max | $Count[L_1, L_2]/2^4 - 1/2$ |
输出: $K_5^5, K_5^6, K_7^5, K_8^5 = I_1$
 $K_{13}^5, K_{15}^5, K_{15}^5, K_{16}^5 = I_2$$$

对例3.1的线性密码分析 所需明-密文数据量

Introduction

如果线性分析基于的线性逼近的偏差为 ε ,则线性分析要获得成功需要的明密文对数量为:

$$c\varepsilon^{-2}$$

其中c为某个"小"的常数。 在例3.1中, $c\approx8$, $\varepsilon^{-2}=1024$,因此大约需要8000对明密文。

3.3节作业

练习3.9, 3.12*, 3.14(a)(b)(c)

差分密码分析

差分密码分析是选择明文分析

差分密码分析

差分密码分析是选择明文分析

定义:对两个比特串 x, x^* ,用(')表示它们异或,即 $x' = x \oplus x^*$ 。

差分密码分析

差分密码分析是选择明文分析

定义:对两个比特串 x, x^* ,用(')表示它们异或,即 $x' = x \oplus x^*$ 。 差分密码分析原理:

$$x' \stackrel{p}{-} -- \longrightarrow w'_{r-1}, \quad p > \frac{1}{2^n}, n$$
为明文分组长

差分密码分析

Introduction

差分密码分析是选择明文分析 定义:对两个比特串 x, x^* ,用(')表示它们异或,即 $x' = x \oplus x^*$ 。 差分密码分析原理:

差分密码分析

Introduction

差分密码分析是选择明文分析

定义:对两个比特串 x, x^* ,用(')表示它们异或,即 $x' = x \oplus x^*$ 。 差分密码分析原理:

$$x' \xrightarrow{q_1} w'_1, w'_1 \xrightarrow{q_2} w'_2, \dots, w'_{r-2} \xrightarrow{q_{r-1}} w'_{r-1}$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$

S盒的输出异或分布

定义3.1: 设 π_S : $\{0,1\}^m \to \{0,1\}^n$ 为一个S盒。考虑长为m的有序比特串对 (x,x^*) ,我们称S盒的输入异或为 $x \oplus x^*$,输出异或为 $\pi_S(x) \oplus \pi_S(x^*)$ 。

对任何 $x' \in \{0,1\}^m$,定义集合 $\Delta(x')$ 为包含所有具有输入异或值x'的有序对 (x,x^*) ,显然

$$\Delta(x') = \{(x, x \oplus x') : x \in \{0, 1\}^m\}$$

S盒在输入异或为x'的情况下,我们可以计算输出异或的分布情况,如果输出异或分布不均匀,就有可能导致差分攻击。

例3.3:计算S盒的输出异或分布

Introduction

考虑例3.1中的S盒。设输入异或x' = 1011,则

 $\Delta(1011) = \{(0000, 1011), (0001, 1010), \dots, (1111, 0100)\}$

у′	0000	0001	0010	0011
个数	0	0	8	0
<i>y'</i>	0100	0101	0110	0111
个数	0	2	0	2
<i>y'</i>	1000	1001	1010	1011
个数	0	0	0	0
<i>y'</i>	1100	1101	1110	1111
个数	0	2	0	2

X	<i>x</i> *	<i>y</i> =	<i>y</i> * =	y'
		$\pi_{\mathcal{S}}(x)$	$\pi_{\mathcal{S}}(\mathbf{X}^*)$	
0000	1011	1110	1100	0010
0001	1010	0100	0110	0010
0010	1001	1101	1010	0111
0011	1000	0001	0011	0010
0100	1111	0010	0111	0101
0101	1110	1111	0000	1111
0110	1101	1011	1001	0010
0111	1100	1000	0101	1101
1000	0011	0011	0001	0010
1001	0010	1010	1101	0111
1010	0001	0110	0100	0010
1011	0000	1100	1110	0010
1100	0111	0101	1000	1101
1101	0110	1001	1011	0010
1110	0101	0000	1111	1111
1111	0100	0111	0010	0101

例3.3:计算S盒的输出异或分布

Introduction

考虑例3.1中的S盒。设输入异或x' = 1011,则

 $\Delta(1011) = \{(0000, 1011), (0001, 1010), \ldots, (1111, 0100)\}$

V'	0000	0001	0010	0011
个数	0	0	8	0
<i>y'</i>	0100	0101	0110	0111
个数	0	2	0	2
У'	1000	1001	1010	1011
个数	0	0	0	0
<i>y'</i>	1100	1101	1110	1111
个数	0	2	0	2

Χ	<i>X</i> *	<i>y</i> =	<i>y</i> * =	y'
		$\pi_{\mathcal{S}}(x)$	$\pi_{\mathcal{S}}(\mathbf{X}^*)$	
0000	1011	1110	1100	0010
0001	1010	0100	0110	0010
0010	1001	1101	1010	0111
0011	1000	0001	0011	0010
0100	1111	0010	0111	0101
0101	1110	1111	0000	1111
0110	1101	1011	1001	0010
0111	1100	1000	0101	1101
1000	0011	0011	0001	0010
1001	0010	1010	1101	0111
1010	0001	0110	0100	0010
1011	0000	1100	1110	0010
1100	0111	0101	1000	1101
1101	0110	1001	1011	0010
1110	0101	0000	1111	1111
1111	0100	0111	0010	0101

差分分布表

Introduction

更加一般的,对S盒 $\pi_S: \{0,1\}^m \to \{0,1\}^n$,设d表示输入异 或, b'表示输出异或。则(a', b')称为一个差分。 S 盒的输入输出差分分布定义为:

Linear Cryptanalysis

$$N_D(x', y') = |\{(x, x^*) \in \Delta(x') : \pi_S(x) \oplus \pi_S(x^*) = y'\}|$$

图 3.4给出了例3.1的S盒的所有输入输出差分分布。 对应于差分(a', b')的扩散率 $R_p(a', b')$ 定义为:

$$R_p(a',b') = \frac{N_D(a',b')}{2^m} = Pr(输出异或 = b'|输入异或 = a')$$

差分分布表

Introduction

更加一般的,对S盒 $\pi_S: \{0,1\}^m \rightarrow \{0,1\}^n$,设d表示输入异 或, b'表示输出异或。则(a',b')称为一个差分。 S 盒的输入输出差分分布定义为:

$$N_D(x', y') = |\{(x, x^*) \in \Delta(x') : \pi_S(x) \oplus \pi_S(x^*) = y'\}|$$

图 3.4给出了例3.1的S盒的所有输入输出差分分布。 对应于差分(a', b')的扩散率 $R_p(a', b')$ 定义为:

$$R_p(a',b') = \frac{N_D(a',b')}{2^m} = Pr(输出异或 = b'|输入异或 = a')$$

Introduction

更加一般的,对S盒 $\pi_S: \{0,1\}^m \rightarrow \{0,1\}^n$,设d表示输入异 或, b'表示输出异或。则(a',b')称为一个差分。 S 盒的输入输出差分分布定义为:

$$N_D(x', y') = |\{(x, x^*) \in \Delta(x') : \pi_S(x) \oplus \pi_S(x^*) = y'\}|$$

图 3.4给出了例3.1的S盒的所有输入输出差分分布。 对应于差分(a', b')的扩散率 $R_p(a', b')$ 定义为:

$$R_p(a',b') = \frac{N_D(a',b')}{2^m} = Pr(输出异或 = b'|输入异或 = a')$$

差分链:
$$x' \stackrel{\dot{T}$$
 散率 $q_1}{\longrightarrow} w'_1, w'_1 \stackrel{q_2}{\longrightarrow} w'_2, \dots, w'_{r-2} \stackrel{q_{r-1}}{\longrightarrow} w'_{r-1}$

差分链:
$$x'$$
 扩散率 q_1 w'_1, w'_1 $\xrightarrow{q_2}$ w'_2, \dots, w'_{r-2} $\xrightarrow{q_{r-1}}$ w'_{r-1} \downarrow (若每一轮的扩散率独立)
$$(x, x^* = x \oplus x') \Rightarrow x' \xrightarrow{p=q_1q_2\dots q_{r-1}} w'_{r-1}, \quad p > \frac{1}{2^n}, n$$
为明文分组长
$$(w_{r-1}, w^*_{r-1})$$

$$\uparrow$$

$$\uparrow$$

$$(y, y^*)$$

对例3.1的差分分析

- $S_2^1:R_p(1011,0010)=1/2$
- $S_3^2:R_p(0100,0110)=3/8$
- $S_2^3:R_p(0010,0101)=3/8$
- $S_3^3:R_p(0010,0101)=3/8$

注意到:

$$w^{r-1} \oplus (w^{r-1})^*$$

= $(w^{r-1} \oplus K^r) \oplus ((w^{r-1})^* \oplus K^r)$
= $u^r \oplus (u^r)^*$

由以上**S**盒的差分能够组合成一个差分链,最终获得前三轮的差分链的靠扩散率:

$$R_p(0000\ 1011\ 0000\ 0000,\ 0000\ 0101\ 0101\ 0000)$$

$$= \frac{1}{2} \times (\frac{3}{8})^3 = \frac{27}{1024}$$

即

$$x' = 0000\,1011\,0000\,0000 \stackrel{p = \frac{27}{1024}}{\stackrel{?}{=}} (v^3)' = 0000\,0101\,0101\,0000$$

对例3.1的差分分析

$$x'$$
 = 0000 1011 0000 0000 $p = \frac{27}{1024}$ $(v^3)' = 0000 0101 0101 0000 \frac{p=1}{1000}$ $(u^4)' = 0000 0110 0000 0110$

那么

$$x' = 0000 \ 1011 \ 0000 \ 0000$$
 $\xrightarrow{p = \frac{27}{1024}} (u^4)' = 0000 \ 0110 \ 0000 \ 0110$

使得差分成立的4重组 (x, x^*, y, y^*) 称为一个正确对。注意到,一个正确对满足:

$$(u_{(1)}^4)' = (u_{(3)}^4)' = 0000$$

因此

$$y_{(1)} = (y_{(1)}^*), \ y_{(3)} = (y_{(3)}^*)$$

由此可以过滤到一些不正确的密钥比特

对例3.1的差分分析算法

算法3.3:

输入:约50~100对选择明-密文

对: $(x,y),(x^*,y^*)$,而

 $\exists x \oplus x^* = 0000\ 1011\ 0000\ 0000$

算法: 对所有 $K_{(2)}^5, K_{(4)}^5$ 的可能 值 $L_1, L_2 \in \{0, 1\}^4$ 做如下计算:

(1) 计数器 $Count[L_1, L_2] = 0$

(2)对每一对选择明密文对 $(x,y),(x^*,y^*)$ 做 如下计算:

如果 $y_{(1)} = (y_{(1)}^*), y_{(3)} = (y_{(3)}^*)$ 那么计算

 $u_{(4)}^4 \leftarrow \pi_S^{-1}(L_1 \oplus y_{(4)})$

$$(u_{(2)}^4)^* \leftarrow \pi_S^{-1}(L_1 \oplus (y_{(2)})^*),$$

- $(u_{(4)}^4)^* \leftarrow \pi_S^{-1}(L_1 \oplus (y_{(4)})^*)$
- $(u_{(4)}^4)' \leftarrow u_{(2)}^4 \oplus (u_{(4)}^4)^*$
- 4 如果 $(u_{(2)}^4)' = 0110, (u_{(4)}^4)' = 0110,$ 则 $Count[L_1, L_2] + +$

找出使得Count[L₁, L₂]最大

的 $h, h \in \{0, 1\}^{\bar{4}}$ 输出: $K_{(2)}^{5} = I_1, K_{(4)}^{5} = I_2$

Introduction

差分分析成功需要的选择明文对个数

差分分析成功需要的选择明-密文四重组 (x, x^*, y, y^*) 数 量 $T \simeq c\varepsilon^{-1}$,这里 ε 是所用的差分链的扩散率,c是一个小的常数。

在例3.1中, $\varepsilon^{-1} = 1024/27 \approx 38$,T在50 ~ 100 之间。

3.4节练习

练习3.15(a)(只需要计算一个 N_D 的值就可以), $(b)^*$ (选作题)

数据加密标准DES DES的历史

- 1973年5月15日美国国家技术标准局(NIST)公开征集密码体制。
- ② 1977年2月15日由IBM开发的DES被选择为标准,用在"非密级"应用中,DES是对早期版本Lucifer的改进。
- ⑤ 每隔5年对DES进行一次评审。
- 在1999年1日对DES最后一次评审。
- 2001年11月26日DES最终被AES代替。

DES算法结构图:

DES的Feistel轮函数结构:

Feistel网络

Feistel网络的 逆过程

*F*函数:

8个8盒:

S_1															
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S_2															
5	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
S_3															
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
S_4															
7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
S_5															
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
S_6															
12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
S_7		_			_	_		_		_	_			_	_
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
S_8	_	_	_	_		_	_		_	_		_	_		_
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

*S*盒计算例子:

$$S_1$$
的输入: $b_1b_2b_3b_4b_5b_6 = (11001)_2$

所在行:
$$b_1b_6 = (11)_2 = 3$$

所在列:
$$b_2b_3b_4b_5 = (1100)_2 = 12$$

输出: 10

	0行	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0
1	0 4	15	7	4	14	2	13	1	10	6	12	11	9	5	3
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6

Introduction

初始置换IP、末置换 IP^{-1} 、扩展置换E、置换P、密钥编排算法中的置换PC-1和压缩置换PC-2的运算和古典密码的置换密码一样。

数据加密标准DES

初始置换IP

			4 VH 10	47 4			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

末置换*IP*-1

			/ 10 .				
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Table: 初始置换IP和末置换IP-1

	E										
32	1	2	3	4	5						
4	5	6	7	8	9						
8	9	10	11	12	13						
12	13	14	15	16	17						
16	17	18	19	20	21						
20	21	22	23	24	25						
24	25	26	27	28	29						
28	29	30	31	32	1						

	F)	
16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Table: F函数中的扩展置换E和置换P

给定32比特串输入
$$A=(a_1,a_2,\ldots,a_{32}),$$

$$E(A)=(a_{32},a_1,a_2,a_3,a_4,a_5,a_4,\ldots,a_{31},a_{32},a_1)$$

$$P(A)=(a_{16},a_7,a_{20},a_{21},a_{29},\ldots,a_{11},a_4,a_{25})$$

密钥编排算法:

数据加密标准DES

			PC-1					PC	C-2			
57	49	41	33	25	17	9	14	17	11	24	1	5
1	58	50	42	34	26	18	3	28	15	6	21	10
10	2	59	51	43	35	27	23	19	12	4	26	8
19	11	3	60	52	44	36	16	7	27	20	13	2
63	55	47	39	31	23	15	41	52	31	37	47	55
7	62	54	46	38	30	22	30	40	51	45	33	48
14	6	61	53	45	37	29	44	49	39	56	34	53
21	13	5	28	20	12	4	46	42	50	36	29	32

Table: 密钥扩展中的置换PC-1和压缩置换PC-2

数据加密标准DES DES的分析

Introduction

对DES的*S*盒的"陷门"争议:

- S-盒是整个DES算法的关键部件,DES靠它实现非线性变 换。关于S-盒的设计准则还没有完全公开。
- 许多密码学家怀疑NSA设计S-盒时隐藏了"陷门", 这样只 有他们才可以破译算法, 但没有证据能标明这点。
- 在1976年, NSA披露了S-盒的几条设计准则。直 到1990年,Eli Biham和Adi Shamir提出对DES的差分密码 分析后,IBM公布了S-盒和P置换的设计准则。

数据加密标准DES DES的分析

Introduction

经过20多年的分析,DES基本上发现没有重大安全缺陷,下表给出了对DES的攻击结果,其中百分比表示成功概率。

分析方法	数据复	夏杂度	存储	处理
	已知明文	选择明文	复杂度	复杂度
预处理的穷搜索	_	1	2 ⁵⁶	1(查表)
穷搜索	1	_	可忽略	2 ⁵⁵
线性攻击	2 ⁴³ (85%)	_	明-密文对量	2 ⁴³
	2 ³⁸ (10%)	_	明-密文对量	2 ⁵⁰
差分攻击	_	2 ⁴⁷	明-密文对量	2 ⁴⁷
	2 ⁵⁵	_	明-密文对量	2 ⁵⁵

Table: DES的密码分析结果

数据加密标准DES DES的分析

- 对DES最有效的攻击还是强力攻击,因为无论对差分密码分析,还是线性密码分析,所需要的海量选择明文-密文对是不现实的,而且单是存贮明文-密文对就至少需要140.000GB。
- 事实上,对DES的穷搜索攻击是威胁DES安全的重要因素。例如:
 - 美国克罗多州的程序员Verser从1997年3月13日起,用了96天的时间,在Internet上数万名志愿者的协同工作下,于6月17日成功地找到了美国RSA公司悬赏一万美金破译的密钥长度为56比特的DES的密钥。
 - ② 1998年电子边境基金会(EFF)使用一台25万美元的电脑 在56小时内再次破解了56比特的DES。
 - 3 1999年1月RSA数据安全会议期间,EFF用22小时15分钟就宣告成功破解DES。但如果DES的密钥长度为128比特,那么它可以在1018年内攻破。(http://www.rsa.com/rsalabs/node.asp?id=2108)

3.5节练习

练习3.2, 3.3

高级数据加密标准AES AES的遴选:

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日,NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 5 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- 2000年4月召开了第三次AES会议(AES3)。
- ▼ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- ⑨ 每隔5年重新进行一次正式评估。

高级数据加密标准AES AES的遴选:

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日, NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 5 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- 2000年4月召开了第三次AES会议(AES3)。
- ▼ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- ⑨ 每隔5年重新进行一次正式评估。

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数 据加密标准(AES)进行研究,并成立了AES标准工作室。
- 2 1997年9月12日, NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 1999年3月开始的第二次候选人会议,选出了五个决赛算 法: MARS, RC6, Rijndael, Serpent和Twofish。
- 6 2000年4月召开了第三次AES会议(AES3)。
- ◆ 于2000年10月2日美国商业部长Norman Y.Mineta宣 布Riindeal最终获胜。
- 2001年11月26日, NIST发布了联邦信息处理标准, 即FIPS-197,正式公告了高级数据加密标 准(AES),2002年5月26日公告正式生效。
- 每隔5年重新进行一次正式评估。

高级数据加密标准AES AES的遴选:

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日,NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- **2000年4**月召开了第三次AES会议(AES3)。
- ▼ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- ⑨ 每隔5年重新进行一次正式评估。

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日, NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 5 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- 2000年4月召开了第三次AES会议(AES3)。
- ▼ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- ⑨ 每隔5年重新进行一次正式评估。

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日,NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 5 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- **2000年4**月召开了第三次AES会议(AES3)。
- ◆ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- ⑨ 每隔5年重新进行一次正式评估。

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日, NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- 2000年4月召开了第三次AES会议(AES3)。
- ▼ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- ⑨ 每隔5年重新进行一次正式评估。

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日,NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 5 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- 2000年4月召开了第三次AES会议(AES3)。
- ▼ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- 9 每隔5年重新进行一次正式评估。

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数据加密标准(AES)进行研究,并成立了AES标准工作室。
- ② 1997年9月12日,NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 5 1999年3月开始的第二次候选人会议,选出了五个决赛算法: MARS, RC6, Rijndael, Serpent和Twofish。
- 2000年4月召开了第三次AES会议(AES3)。
- ▼ 于2000年10月2日美国商业部长Norman Y.Mineta宣布Rijndeal最终获胜。
- 2001年11月26日,NIST发布了联邦信息处理标准,即FIPS-197,正式公告了高级数据加密标准(AES),2002年5月26日公告正式生效。
- 每隔5年重新进行一次正式评估。

- 1997年1月,美国国家标准技术研究所(NIST)开始对高级数 据加密标准(AES)进行研究,并成立了AES标准工作室。
- 2 1997年9月12日, NIST发布征集算法的正式公告。
- 至1998年6月15日提交了21个侯选算法。
- 于1998年8月20日召开了第一次AES候选人会议 (AES1),宣布了来自全世界的15个候选算法。
- 1999年3月开始的第二次候选人会议,选出了五个决赛算 法: MARS, RC6, Rijndael, Serpent和Twofish。
- 6 2000年4月召开了第三次AES会议(AES3)。
- ◆ 于2000年10月2日美国商业部长Norman Y.Mineta宣 布Riindeal最终获胜。
- 2001年11月26日, NIST发布了联邦信息处理标准, 即FIPS-197,正式公告了高级数据加密标 准(AES),2002年5月26日公告正式生效。
- 每隔5年重新进行一次正式评估。

AES的遴选标准

- AES是公开:
- AES是分组加密单钥体制,支持128比特长分组 和128-, 192-和256比特长密钥:
- ③ AES的密钥长度可变,可以根据需要增加;
- AES可以用软件和硬件实现:
- AES可以自由使用,或依据符合美国国家标准技术研究所 (NIST) 策略的条件使用:

AES的遴选标准

Introduction

满足以上要求的AES,需要依据以下特性判断优劣:

- 安全性,至少考虑到以下因素:
 - 与其他侯选算法的实际安全性的比较:
 - 算法对输入分组的输出与随机置换对输入分组的输出的差异 程度:
 - 算法安全性所依赖的数学基础是否坚固;
 - 在评估过程中由公众提出的其他安全因素,包括那些证明算 法的安全强度比提交者所声明的要弱的任何攻击。
- 计算效率(从运行速度及存储空间方面考虑):
- ③ 灵活性:
- ❷ 使用简单性:
- 其它在活动中提出的意见。

- Rijndeal为比利时密码学家Joan Daemen和Vincent Rijmen所设计(Rijndeal就由两位作者名字的组合而 成: Rijmen+Daemen)
- Rijndeal的前身是Square,于1997年在快速软件加密会 议(FSE'97)上公布,1998年6月,在对Square作修改、重新 命名为Rijndeal后作为AES候选算法。
- Rijndeal胜出的原因:
 - 其软件和硬件实现对计算环境的适应性强,性能稳定、优 良。
 - 密钥建立时间短,密钥灵活性好。
 - 而对存储量要求低使它适合资源紧缺的环境,且保持优秀的 性能。
 - Rijndeal的运算是所有提交算法中最易于抵抗能量和计时攻 击。
 - Rijndeal可灵活组合不同的分组长和密钥长,对算法所作的 改动仅是增加它的轮数。

AES的描述

Introduction

分组长	128	128	128
密钥长	128	192	256
轮数Nr	10	12	14

AES的算法结构:观看128比特密钥的AES的Flash演示。 AES的四个运算:

- S盒运算: SubByte
- 行移位: ShiftRow
- 列混合: MixColumn
- 轮密钥异或: AddRoundKey

AES加密过程

S盒运算: SubByte

Figure: SubByte()作用在状态的单个字节上

S盒运算: SubByte

Subtitution-permutation network

- Subbytes的数学结构: 见p.82 算法3.4
- Subbytes可以用查表方式实现: 见p.81 表3.8所示的S盒。 查表方法:

输入 XY, 其中X, Y都是4比特 **输出** S 盒的第X 行第Y 列的项。

例:

● Subbytes在软件实现中用1维表格实现比2维快速(印刷版 使用2维表格是出于方便表示),一次查表操作1维表格只 需1次操作,2维表格则需要额外计算行和列。1维表格 的XY位置的值对应S盒中X行Y列值。从1维表格可以很方 便计算出其逆置换(方法请参考代换密码)。

行移位: ShiftRow

Figure: ShiftRow()作用在状态的行上

Figure: MixColumn()在状态的列上运算

列混合: MixColumn

• MixColumn的数学结构:将状态的列视为系数在有限域 $GF(2^8)$ 上的多项式a(x),输出为a(x)c(x) mod x^4+1 ; 其中c(x)为

$$c(x) = '03'x^3 + '01'x^2 + '01'x + '02'$$

c(x)与 $x^4 + 1$ 互素,因此是模 $x^4 + 1$ 可逆的。

● MixColumn运算可以表示成GF(2⁸)上的可逆线性变换

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

p.83 算法3.5表示了以上的矩阵运算。

列混合: MixColumn

MixColumn(c)的快速软件实现(对第c列的字节 $s_{0,c}, s_{1,c}, s_{2,c}, s_{3,c}$ 操作)

外部算法: FieldMult(2,x)

1 for $i \leftarrow 0$ to 3 do $x_i \leftarrow s_{i,c}$

2

$$s_{0,c} = x_1 \oplus x_2 \oplus x_3, \quad s_{1,c} = x_0 \oplus x_2 \oplus x_3$$

 $s_{2,c} = x_0 \oplus x_1 \oplus x_3, \quad s_{3,c} = x_0 \oplus x_1 \oplus x_2$

3

$$x_0 = FieldMult(2, x_0), \quad x_1 = FieldMult(2, x_1)$$

 $x_2 = FieldMult(2, x_2), \quad x_3 = FieldMult(2, x_3)$

4

$$egin{array}{lll} s_{0,c} & = & s_{0,c} \oplus x_0 \oplus x_1, & s_{1,c} = s_{1,c} \oplus x_1 \oplus x_2 \ s_{2,c} & = & s_{2,c} \oplus x_2 \oplus x_3, & s_{3,c} = s_{3,c} \oplus x_3 \oplus x_0 \ \end{array}$$

列混合: MixColumn

Introduction

FieldMult(2, x):

输入
$$x = a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0$$
,是8比特字节

1
$$t = a_7$$

$$2 y = a_6 a_5 a_4 a_3 a_2 a_1 a_0 0$$

3 if
$$t = 1$$
 $y = y \oplus 00011011$

输出 y

Introduction

MixColumn(c)的逆操作的快速软件实现算法:

1 for
$$i \leftarrow 0$$
 to 3 do $x_i \leftarrow s_{i,c}$

$$s_{0,c} = x_1 \oplus x_2 \oplus x_3, \quad s_{1,c} = x_0 \oplus x_2 \oplus x_3$$

 $s_{2,c} = x_0 \oplus x_1 \oplus x_3, \quad s_{3,c} = x_0 \oplus x_1 \oplus x_2$

3

$$x_0 = FieldMult(2, x_0), \quad x_1 = FieldMult(2, x_1)$$

 $x_2 = FieldMult(2, x_2), \quad x_3 = FieldMult(2, x_3)$

4

$$egin{array}{lll} s_{0,c} &=& s_{0,c} \oplus x_0 \oplus x_1, & s_{1,c} = s_{1,c} \oplus x_1 \oplus x_2 \ s_{2,c} &=& s_{2,c} \oplus x_2 \oplus x_3, & s_{3,c} = s_{3,c} \oplus x_3 \oplus x_0 \end{array}$$

Introduction

MixColumn(c)的逆操作算法(续):

5

$$x_0 = FieldMult(2, x_0 \oplus x_2), \quad x_1 = FieldMult(2, x_1 \oplus x_3)$$

6

$$egin{array}{lll} s_{0,c} &=& s_{0,c} \oplus x_0, & s_{1,c} = s_{1,c} \oplus x_1 \ s_{2,c} &=& s_{2,c} \oplus x_0, & s_{3,c} = s_{3,c} \oplus x_1 \ \end{array}$$

7
$$x_0 = FieldMult(2, x_0 \oplus x_1)$$

8

$$s_{0,c} = s_{0,c} \oplus s_0, \quad s_{1,c} = s_{1,c} \oplus s_0,$$

 $s_{2,c} = s_{2,c} \oplus s_0, \quad s_{3,c} = s_{3,c} \oplus s_0,$

密钥异或: AddRoundKey

• AddRoundKey: 轮密钥和输入逐比特异或。

S _{0,0}	<i>S</i> _{0,1}	S _{0,2}	S _{0,3}
S 1,0	S _{1,1}	S 1,2	S 1,3
s _{2,0}	S _{2,1}	S _{2,2}	s _{2,3}
S 3,0	<i>S</i> _{3,1}	S 3,2	S 3,3

	$k_{0,0}$	<i>k</i> _{0,1}	<i>k</i> _{0,2}	<i>k</i> _{0,3}
Д	<i>k</i> _{1,0}	<i>k</i> _{1,1}	<i>k</i> _{1,2}	<i>k</i> _{1,3}
D	$k_{2,0}$	$k_{2,1}$	<i>k</i> _{2,2}	$k_{2,3}$
	<i>k</i> _{3,0}	<i>k</i> _{3,1}	<i>k</i> _{3,2}	<i>k</i> _{3,3}

$s'_{0,0}$	<i>s</i> _{0,1}	$s'_{0,2}$	$s'_{0,3}$
$s'_{1,0}$	<i>s</i> _{1,1}	<i>s</i> _{1,2}	$s'_{1,3}$
<i>s</i> _{2,0}	<i>s</i> _{2,1}	<i>s</i> _{2,2}	$s'_{2,3}$
S 2 n	S _{2 1}	S2 2	S2 2

密钥编排方案

```
算法3.6 KeyExpansion(Key)
external RotWord(字节循环左移)
         SubWord(对字节进行AES的S盒替换)(详见p.83)
常数RCon[1],...,RCon[10](常数见p.84)
for i \leftarrow 0 to 3
 do w[i] \leftarrow (key[4i], key[4i + 1], key[4i + 2], key[4i + 3])
for i \leftarrow 4 to 43
\mathbf{do} \left\{ \begin{array}{l} temp \leftarrow w[i-1] \\ \text{if } i \equiv 0 (\text{mod}4) \\ \text{then } temp \leftarrow \text{SubWord}(\text{RotWord}(temp)) \oplus Rcon[i/4] \\ w[i] \leftarrow w[i-4] \oplus temp \end{array} \right.
return w[0], ..., w[43]
第i轮密钥= w[4i]||w[4i+1]||w[4i+2]||w[4i+3], i=0,1...,10
```

AES的解密函数

- 所有操作逆序进行
- ② 密钥编排算法不变,但轮密钥顺序与加密函数的轮密钥相反
- 所有操作均为加密函数的逆操作(SubBytes、ShiftRows和AddRoundKey的逆操作容易给出,MixColumn的逆操作已提供)

AES的分析

Introduction

- AES的设计能抵抗线性和差分分析
 - S盒使得的线性逼近和差分分布表趋于均匀;
 - 列混合使用了宽轨道策略,使得找到包含较少活动S盒的差 分和线性分析成为不可能。
- 目前对AES的最好的分析方法是相关密钥分析:

分组长度	256	192	128
攻击复杂度	2 ^{99.5}	2 ¹⁷⁶	不比穷搜索快

相关密钥分析: 假设攻击者能够获得一系列密钥加密的明文 和密文对, 虽然他不知道密钥值, 但是知道这些密钥间的数 学关系。

3.6节练习

练习3.5

3.7节: 工作模式

工作模式: 在分组密码中, 使用同一密钥多次加密的方法。

- 一般先对明文进行数据填充, 使之长度为分组长度的倍数。
- ② 对明文分块,按照某一工作模式加密。

3.7节:工作模式

DES的四种工作模式(1981年加入标准):

- 电码本模式 (ECB模式)
- 密码分组链接模式(CBC模式)
- 输出反馈模式(OFB模式)
- 密码反馈模式(CFB模式)

AES的推荐工作模式:

- 电码本模式 (ECB模式)
- 密码分组链接模式(CBC模式)
- 输出反馈模式(OFB模式)
- 密码反馈模式(CFB模式)
- 计数模式 (CTR) (2001年加入标准)
- XTS模式(2010年加入标准)

以上工作模式均用于机密性,另有用于消息认证码的工作模式:

• 计数密码分组链接模式(CCM模式): 将于第4章的4.4.2节介绍

电码本模式(ECB模式)

明文分组序列 x₁, x₂,...

加密
$$y_1 = e_K(x_1), y_2 = e_K(x_2), \dots$$

解密 $x_1 = d_K(y_1), x_2 = d_K(y_1), \dots$

- 缺点:同一明文分组加密成同一密文分组,无法完全掩盖明 文的统计特性。
 - 例:下图中,以每一像素为分组进行ECB加密,我们看到加密后仍能看出图案的形状,而其它工作模式是看不来的。

原始图片

ECB加密模式

其它加密模式

密码分组链接模式(CBC模式)

初始向量: IV 加密:

Introduction

$$y_0 = IV$$

 $y_1 = e_K(y_0 \oplus x_1)$
 $y_2 = e_K(y_1 \oplus x_2)$
...

密文: *y*₁, *y*₂,...

解密:

$$y_0 = IV$$

$$x_1 = d_K(y_1) \oplus y_0$$

$$x_2 = d_K(y_2) \oplus y_1$$

输出反馈模式(OFB模式)

初始向量: *IV* 加密:

$$z_0 = IV$$

 $z_i = e_K(z_{i-1})$
 $y_i = x_i \oplus z_i, i = 1, 2, ...$

解密:

$$z_0 = IV$$

 $z_i = e_K(z_{i-1})$
 $x_i = y_i \oplus z_i, i = 1, 2, ...$

Linear Cryptanalysis

密码反馈模式 (CFB模式)

初始向量: IV 加密:

Introduction

$$y_0 = IV$$

$$z_i = e_K(y_{i-1})$$

$$y_i = x_i \oplus z_i$$

$$i = 1, 2, ...$$

解密:

$$y_0 = IV$$

$$z_i = e_K(y_{i-1})$$

$$x_i = y_i \oplus z_i$$

$$i = 1, 2, ...$$

计数模式类似于OFB模式,差别是密钥流产生机制不同。 计数模式的工作方式:

- ② 由*ctr*递归构造*m*长比特串:

$$T_i = ctr + i - 1 \mod 2^m$$

③ 对所有的 $i \ge 1$,如下加密明文分组 $x_1, x_2, ...$

$$y_i = x_i \oplus e_k(T_i)$$

四种工作模式的优缺点

ECB的缺点:相同的明文分组产生相同的密文分组改变一个明文分组,对四种模式的影响:

- ECB: 只影响当前分组
- CBC: 当前分组和后续分组都受影响(该特点可用做认证码)
- OFB: 只影响当前分组(该特点可用在卫星通信中)
- CFB: 当前分组和后续分组都受影响(该特点可用做认证码)

Figure: 一个明文分组的错误对密文的影响

3.7节作业

练习: 3.7 (讨论一个密文分组出错对解密得到的明文的影响)