Семинары 6 – 7

Задание 1. Дана бинарная случайная величина X, у которой P(X = 1) = 0.9. Рассмотрим 8 независимых измерений этой случайной величины. Какие из следующих выборок можно считать правдоподобными для этой случайной величины:

- 1, 1, 1, 1, 1, 1, 1
- 1, 0, 0, 0, 1, 1, 0, 1
- 0, 0, 0, 1, 0, 0, 0, 1
- 0, 1, 1, 1, 1, 1, 1, 0

Задание 2. Решите из предыдущего семинара

- Задание 4
- Задание 5
- Задание 6

Задание 3. Дана случайная выборка, состоящая из n наблюдений, из распределения с функцией плотности: $f(x) = p(1-p)^{k-1}$ при 0 . Найдите оценку параметра <math>p методом максимального правдоподобия (\hat{p}^{MLE}) .

Задание 4. Дана случайная выборка, состоящая из n наблюдений, из распределения со следующей функцией плотности:

$$f(x) = \begin{cases} \frac{x}{\beta^2} \exp{(\frac{-x}{\beta})}, & \text{если } x > 0 \\ 0, & \text{в противном случае} \end{cases}$$

Найдите оценку параметра β методом максимального правдоподобия $(\hat{\beta}^{MLE})$.

Задание 5. Дана случайная выборка, состоящая из n наблюдений, из распределения с функцией плотности:

$$f(x) = \frac{1}{\theta} x^{(1-\theta)/\theta}$$

при $0 < x < 1; \theta > 0$. Найдите оценку параметра θ методом максимального правдоподобия $(\hat{\theta}^{MLE})$.

Задание 6. Время ожидания клиента банка в очереди представляет сл.в., имеющую экспоненциальное распределение. Ниже в таблице приведены значения длительности ожидания клиентов (в минутах), собранные за день. Найдите оценку математического ожидания методом максимального правдоподобия.

Время ожидания	Количество клиентов
[0; 5)	10
[5; 10)	2
[10; 15)	6
[15; 20)	1
$[20; \infty)$	1

Бонусные задания

Задание 7. Дана случайная выборка, состоящая из n наблюдений, из распределения со следующей функцией плотности: $f(x) = \frac{1}{2\beta^3} x^2 exp(\frac{-x}{\beta})$ при $x>0,\ \beta>0$. Найдите оценку параметра β методом максимального правдоподобия $(\hat{\beta}^{MLE})$.

Задание 8. Дана случайная выборка, состоящая из n наблюдений, из равномерного распределения:

$$f(x) = \begin{cases} \frac{1}{\theta}, & \text{если } 0 \le x \le \theta \\ 0, & \text{в противном случае} \end{cases}$$

Найдите оценку параметра θ методом максимального правдоподобия $(\hat{\theta}^{MLE})$.

Задание 9. Выведите в общем виде 95%-ый доверительный интервал для MLEоценки математического ожидания в распределении Пуассона, если известно, что оценка дисперсии MLE-оценки (не только для распределения Пуассона, а в целом) рассчитывается следующим образом:

$$\hat{Var}(\hat{\theta}) = \frac{1}{-(likelihood(\hat{\theta}))''}$$

Задание 10. Выведите в общем виде 95%-ый доверительный интервал для MLEоценки параметра rate экспоненциального распределения.