Aufgabe1

```
Es sei:
```

$$A := \{1, 17, 53\}$$

 $B := \{2, 17, 23\}$

\mathbf{a}

Berechne die Vereinigung (\cup) von A und B $A \cup B = \{1, 17, 53\} \cup \{2, 17, 23\} = \{1, 2, 17, 23, 53\}$

b)

```
Berechne den Schnitt (\cap) von A und B A \cap B = \{1, 17, 53\} \cap \{2, 17, 23\} = \{17\}
```

 $\mathbf{c})$

Berechne das kartesische Produkt (×) von A und B $A \times B = \{1, 17, 53\} \times \{2, 17, 23\} = \{(1, 2), (1, 17), (1, 23), (17, 2), (17, 17), (17, 23), (53, 2), (53, 17), (53, 23)\}$

\mathbf{d})

```
Berechne die Differenz (\) von A und B A \setminus B = \{1, 17, 53\} \setminus \{2, 17, 23\} = \{1, 53\}
```

Aufgabe2

\mathbf{a}

 $\mathcal{P}(\emptyset) = \{\emptyset\}$

Die Potenzmenge der leeren Menge ist eine Menge welche die leere Menge als Element besitzt.

$$\Longrightarrow |\mathcal{P}(\emptyset)| = 1$$

b)

 $\mathcal{P}(\mathcal{P}(\emptyset))$

Wir ersetzen die innere Potenzmenge nun mit der vorherig berechneten Potenzmenge

In Worten bestimmen wir die Potenzmenge der Ein-elementigen Menge mit der leeren Menge als Element.

$$\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$$

$$\Longrightarrow |\mathcal{P}(\mathcal{P}(\emptyset))| = |\mathcal{P}(\{\emptyset\})| = 2$$

Es gilt im allg.: Die Potenzmenge einer einelementigen Mengen hat zwei Elemente. Einmal die leere Menge und die ganze Menge.

Reihen 1 18. Dezember 2018

 \mathbf{c}

 $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$

Auch hier ersetzt man die inneren Potenzmengen durch die vorher berechnete Potenzmenge

$$\mathcal{P}(\{\emptyset, \{\emptyset\}\}) = \{ \\ \emptyset, \\ \{\emptyset\}, \{\{\emptyset\}\}, \\ \{\emptyset, \{\emptyset\}\} \} \}$$

$$\Longrightarrow |\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))| = |\mathcal{P}(\{\emptyset, \{\emptyset\}\})| = 4$$

Bemerkung

Es lohnt sich nicht die Potenzmengenfunktion von außen nach innen aufzulösen. Es gilt im allgemeinen **nicht**: $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \mathcal{P}(\mathcal{P}(\emptyset))\}$

Hier liegt eine verstecke Annahme drin, dass $\mathcal{P}(\mathcal{P}(\emptyset))$ eine einelementige Menge ist.

Eine gültige Aussage lautet:

 $\begin{array}{l} \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \mathcal{P}(\mathcal{P}(\emptyset))\} \cup \{\text{alle echten Teilmengen von } \mathcal{P}(\mathcal{P}(\emptyset)) \setminus \emptyset\} \\ \text{Wenn wir dies weiterauflösen wird das ganze sehr lang und kompliziert} \\ \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset, \mathcal{P}(\emptyset)\} \cup \{\text{alle echten Teilmengen von } \mathcal{P}(\emptyset) \setminus \emptyset\}\} \cup \{\text{alle echten Teilmengen von } \mathcal{P}(\mathcal{P}(\emptyset)) \setminus \emptyset\} \\ \end{array}$

Aufgabe 3

 \mathbf{a}

Bestimme die Kardinalität des Schnitts (\cappa) von $\{x,y,z\}$ und $\{x,\{y,z\},\{a\}\}$ $|\{x,y,z\}\cap\{x,\{y,z\},\{a\}\}|=|\{x\}|=1$

 \mathbf{b}

Bestimme die Kardinalität des kartesischen Produktes von $\mathbb{N} \cap [3,6)$ und $\{5\}$ $\mathbb{N} \cap [3,6) = \{3,4,5\}$ $\{3,4,5\} \times \{5\} = \{(3,5),(4,5),(5,5)\}$ $|\{(3,5),(4,5),(5,5)\}| = 3$

Die Menge besteht aus 3 2-Tupeln

Aufgabe 4

$$M := \{1, 2, 3, 4, 5\}$$

$$R := \{(1, 2), (1, 4), (2, 4), (3, 2), (3, 4), (3, 5), (5, 2), (5, 3), (5, 4)\}$$

reflexiv/irreflexiv

Die Relation ist irreflexiv, da für alle Elemente m in M (m, m) nicht in der Relation R ist und somit kann diese nicht reflexiv sein. Reflexiv und irreflexiv schließen sich gegenseitig aus. Eine Relation ist entweder reflexiv oder irreflexiv, bzw keines der beide.

Es gilt: $\forall m \in M : (m, m) \notin R$

symetrisch

Die Relation ist nicht symetrisch da $(2,4) \in R$ gilt, aber $(4,2) \notin R$ ist, was von der Symetrie gefordert ist.

antisymetrisch

Die Relation ist nicht antisymetrisch da $\{(3,5),(5,3)\}\subset R$ gilt. Antisymetrie fordert, dass maximal nur eines der beiden 2-Tupel in R liegt.

transitiv

Die Relation ist nicht transitiv da $\{(3,5),(5,3)\}\subset R$ gilt aber $(3,3)\notin R$

total

Die Relation ist nicht total, da Totalität Reflexivität fordert und die Relation wie oben beschrieben irreflexiv ist.

Reihen 3 18. Dezember 2018

Aufgabe 5

$$R := \{(x, y) \in \mathbb{N} \times \mathbb{N} | \exists z \in \mathbb{N} : y = z \cdot x \}$$

Halbordnug

Reflexiv

Die Relation ist reflexiv da für z=1 gilt $(x, x) \in R \quad \forall x \in \mathbb{N}$

Antisymetrie

Seien $(m_1, m_2), (m_2, m_1) \in R$ Dadurch folgt dass zwei ganze Zahlen mit denen gilt:

$$m_2 = z_1 \cdot m_1 \quad m_1 = z_2 \cdot m_2$$

Setzt man nun die rechte Gleichung in die linke ein erhält man folgenden Ausdruck:

$$m_2 = z_1 \cdot z_2 \cdot m_2 \quad |: m_2$$
$$1 = z_1 \cdot z_2$$

Da aber z_1 und z_2 ganze Zahlen sind, muss $1=z_1=z_2$ gelten und daher $m_2=m_1$. Was der Definition der Antisymetrie entspricht.

Transitivität

Seien $(m_1, m_2), (m_2, m_3) \in R$ Daraus folgen folgende Aussagen:

$$m_2 = z_1 \cdot m_1$$
$$m_3 = z_2 \cdot m_2$$

Setzt man nun die obere Gleichung in die untere ein erhält man

$$m_3 = z_2 \cdot z_1 \cdot m_1$$

Wenn man zwei ganze Zahlen miteinander multipliziert ergibt dies eine weitere ganze Zahl (förmlich ausgedrückt: Die ganzen Zahlen sind unter Multiplikation geschlossen) und somit ist die Transitivität erfüllt.

Die Relation ist somit eine Halbordnung.

Totalordnung

Die Halbordnung wurde schon bewiesen. Es fehlt nur noch die Totalität.

Totalität.

Die Relation ist nicht total, da weder (5,3) noch (3,5) Element von R ist. Somit ist die Relation keine Totalordnung

Reihen 4 18. Dezember 2018