

Ţ <u>Help</u>

sandipan_dey ~

Next >

<u>Syllabus</u> laff routines **Discussion** <u>Outline</u> <u>Community</u> <u>Course</u> **Progress** <u>Dates</u>

☆ Course / Week 1: Vectors in Linear Algebra / 1.4 Advanced Vector Operations

(

1.4.1 Scaled Vector Addition (AXPY)

□ Bookmark this page

Previous

■ Calculator

Week 1 due Oct 5, 2023 03:12 IST Completed

1.4.1 Scaled Vector Addition (AXPY)

The equation of axpy is a slope of a line. Conceptualizing this I will say it can be use to construct a diagonal line which is vector addition, horizo... ? <u>Linear algebra for Computer Science</u> 2 Hi, I find the LAFF is more CS based. Learning the algorithm and cost is fun, and I am fine with these temporarily. I am wondering if I have no CS ... ? MATLAB 3 I want to make sure I am not missing anything. At what point in the course will we use MATLAB? Should I be following up in MATLAB? ? mempos 4 regarding the mempos of axpy, why is this 3n + 1, not 4n + 1? I assumed that reading x and y (2n), then the operation α*x stores one tempora... ✓ Unit 1.4.1 Video 1 at 3:05 -4

How to count flops and memops

So, the number of memory operations we have to do is then 3 n plus 1.

And the number of floating point operations that we need to perform is 2 times n.

Now, often we will sort of say: well, this plus one, if n is large enough, is insignificant

and therefore we would say it is approximately 3 n memory operations.

And that is really all there is to it.

Transcripts

- **▲** Download Text (.txt) file

Homework 1.4.1.1

2/2 points (graded)

What is the cost of axpy operation?

How many memops?

(a)
$$3n+1$$
 (b) $3n^2+n$ (c) $2n^3+n$ (d) $3n^2-2n-1$

а Answer: a

How many flops?

(a)
$$2n-2$$
 (b) $2n^2+n$ (c) $2n+3$ (d) $2n$

d Answer: d

Answer:

The AXPY operation requires 3n+1 memops and 2n flops. The reason is that α is only brought in from memory once and kept in a register for reuse. To fully understand this, you need to know a little bit about computer architecture. (Perhaps a video on this?)

• By combining the scaling and vector addition into one operation, there is the opportunity to reduce the number of memons that are incurred senarately by the SCAL and ADD operations

- "Among friends" we will say that the cost is 3n memops since the one extra memory operation (for bring α in from memory) is negligible.
- For those who understand "Big-O" notation, the cost of the AXPY operation is O(n). However, we tend to want to be more exact than just saying O(n). To us, the coefficient in front of n is important.

Submit

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

