

(19) SU (11) 841 264 (13) A1 (51) Int. Cl. 6 C 07 D 209/12, A 61 K 31/405

STATE COMMITTEE FOR INVENTIONS AND DISCOVERIES

(12) ABSTRACT OF INVENTION

(21), (22) Application: 2885346/04, 20.02.1980

(46) Date of publication: 10.11.1995

(71) Applicant: Nauchno-issledovatel'skij institut farmakologii AMN SSSR

(72) Inventor: Morozov I.S., Novikova N.N., Silenko I.D., Nerobkova L.N., Zagorevskij V.A.

(54) AMIDE-2-OXO-1-INDOLINEACETIC ACID POSSESSING ANTICONVULSIVE ACTIVITY

4

 ∞

(19) SU (11) 841 264 (13) A1

(51) MTIK⁶ C 07 D 209/12, A 61 K 31/405

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

$^{(12)}$ ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ СССР

- (21), (22) Заявка: 2885346/04, 20.02.1980
- (46) Дата публикации: 10.11.1995
- (56) Ссылки: Машковский М.Д. Лекарственные средства. -1977, т. I, с. 144.
- (71) Заявитель: Научно-исследовательский институт фармакологии АМН СССР
- (72) Изобретатель: Морозов И.С., Новикова Н.Н., Силенко И.Д., Неробкова Л.Н., Загоревский В.А.

(54) АМИД-2-ОКСО-1-ИНДОЛИНУКСУСНОЙ КИСЛОТЫ, ОБЛАДАЮЩИЙ ПРОТИВОСУДОРОЖНОЙ АКТИВНОСТЬЮ

Предлагается новое химическое соединение амид 2-оксо-1-индолинуксусной кислоты формулы

обладающее

противосудорожным действием.

Известно использование в качестве противосудорожных препаратов 3-метил-1-морфолинометил-3-фенилпирроли дин-2,5-диона (морфолеп).

Целью изобретения является расширение арсенала средств воздействия на живой организм.

Поставленная цель достигается соединением указанной формулы, которое может быть получено взаимодействием этилового эфира 2-оксо-1-индолинуксусной кислоты с аммиаком.

П р и м е р. Амид 2-оксо-1-индолинуксусной кислоты (I).

Суспензию 7,3 г (0,033 моль) этилового эфира 2-оксо-1-индолинуксусной кислоты в 112 мл 25%-ного водного раствора аммиака перемешивают при комнатной температуре (при этом реакционная масса изменяет свой внешний вид, но твердая фаза остается) в течение 3,5 ч. Реакционную смесь фильтруют, осадок с фильтра отделяют и кристаллизуют из воды. Получают 5 г (79%) амида 2-оксо-1-индолинуксусной кислоты, т.пл. 237-238.5 °C.

Найдено, С 63,08; Н 5,29; N 14,73. С₁₀H₁₀N₂O₂ (мол.м. 190,2 (190 масс-спектрометрически).

Вычислено, С 62,90; Н 5,27; N 14,83. R 0,14 (ТСХ, нейтральная $AI_{2}O_{3}$, IV степень активности, элюент-хлороформ).

Биологическую активность амида 2-оксо-1-индолинуксусной кислоты исследовали на белых беспородных мышах по тестам антагонизма с действием максимального электрошока, судорожного действия коразола, пикротоксина и никотина, подавления вызванной агрессивности ("драка" мышей при электростимуляции через электродный пол), тесту "вращающегося стержня", "залезания на сетку" (влияние на

00

моторную координацию) и ориентировочное поведение, кроме того, исследовали острую суточную активность общепринятыми способами. Расчет средних эффективных доз велся по Личфильду и Вилкоксону. Эффекты нового соединения сравнивали с эффективностью известного противосудорожного средства морфолепа как прототипа.

Полученные результаты представлены в табл. 1. Из данных таблицы следует, что соединение І обладает выраженным противосудорожным действием по тесту антагонизма с максимальным электрошоком, превосходя по активности морфолеп. В то же время соединение І обладает низкой токсичностью проявляет нейродепримирующее действие значительно больших дозах, чем морфолеп. В табл. 2 представлена сравнительная активность исследуемого соединения по тесту максимального электрошока с эффектом известных противосудорожных средств и их токсичность по литературным данным. Представленные данные свидетельствуют о преимуществах нового соединения перед известными противосудорожными средствами. Для более полной оценки фармакологического действия амида 2-оксо-1-индолинуксусной кислоты исследование его действие на развитие электрофизиологических проявлений кобальтовой эпилепсии при имплантации кобальта в моторную кору крыс и отведении биоэлектрической активности от коры и гиппокампа. Исследуемое соединение в дозе 20 мг/кг внутрибрюшинно через 15 мин после введения вызывало угнетение эпилептиформных разрядов в коре гиппокампа.

Формула изобретения:

Амид 2-оксо-1-индолинуксусной кислоты формулы

обладающий противосудорожной активностью.

50

40

55

60

Сравнительная эффективность амида 2-оксо-1-индолинуксусной кислоты и морфолепа (Е \mathcal{L}_{50} с доверительным интервалом при P = 0,01)

Тест	Амид 2-оксо-1-индолин- уксусной кислоты	Морфолеп
Максимальный электрошок	14,8 (11,4-19,2)	55 (48-63)
Антагонизм с коразолом	99 (73,5-120)	65 (42-88)
Антагонизм с пикротоксином	152 (94-271)	100 (78-122)
Антагонизм с никотином	198 (69-575)	82 (73-91)
Подавление вызванной агрессии	300 (136-660)	120 (97-143)
Залезание на сетку	820 (780-860)	50 (20-80)
Вращающийся стержень	1540 (1100-2156)	270 (263-287)
Острая суточная токсичность	7900 (6430-9600)	480 (472-488)

Таблица 2

Литературные данные по ряду противосудорожных препаратов

Препарат	ЕД ₅₀ по тесту максимального элект- рошока, мг/кг	ЛД ₅₀ , мг/кг
Гексамидин	13(8,4-20,2) (мыши, внутрь)	1120 (950-1320) (мыши, внутрь)
Дифенин	15 (мыши, вн/брюшинно)	960 (мыши, вн/брюшинно)
Фенобарбитал	15,5 (12,8-18,8) (мыши, вн/брюшинно)	240 (мыши, вн/брюшинно)
Хлоракон	100-150 (крысы, внутрь)	765 (мыши, вн/брюшинно)
Хлордиазепоксид	95 (мыши, вн/брюшинно)	205 (мыши, вн/брющинно)
Мепробамат	205 (186-255) (мыши, вн/брюшинно)	880 (793-885) (мыши, вн/брюшинно)
Фенакон	282 (мыши, вн/брюшинно)	765 (мыши, вн/брюшинно)

S

 ∞

N