# Pandemic and Employment: Evidence from COVID-19 in South Korea

Jongkwan Lee  $^1$  Hee-Seung Yang  $^2$ 

<sup>1</sup>Ewha Womans University

<sup>2</sup>Yonsei University

April 16, 2021

#### Motivation

- Deterioration of the labor market since the outbreak of COVID-19
  - ► Still ongoing, but certainly worse than the financial crisis during 2008-2009



But we do NOT know much about the nature of the current crisis

#### Motivation

- Year-on-year changes in employed persons:
  - ► Large decrease in service sectors
  - Small negative effects in manufacuring



- Is that all? What is different?
- What is the causal impact of this unprecedented crisis?

### This Paper

- Provides the consequences of the COVID-19 pandemic in South Korea
- Data: Economically Active Population Survey (EAPS)

#### Two complement approaches:

- The synthetic control method (Abadie and Gardeazabal 2003)
  - ▶ Reproduces the counterfactuals in the absence of the COVID-19
  - ► Estimates the "nationwide" labor market impact of the COVID-19
- 2 Exploiting the regional variation in the COVID-19 intensity
  - Measures the "direct" effect of COVID-19
  - ▶ The direct risk of infections due to more confirmed cases

### Background: COVID-19

- The first case in South Korea: January 20, 2020
- Outbreak in Daegu-Gyeongbuk after the 31st patient: February 17, 2020
- 2nd wave: August September
- 3rd wave: November ?
- 4th wave?



#### Data

- Economically Active Population Survey (EAPS)
  - ► A **monthly** survey of 35,000 households
  - ▶ Information: employment by industry, worker status, region, and etc.
  - ▶ Reference period is one week which includes the **15th** of the month

We focus on the period Feb 2020 - Dec 2020

### **Estimating Overall Effects**

- The synthetic control method: counterfactual in the absence of the event
  - ▶ A systematic way to analyze a case that only one unit is affected by an event
  - ► Constructing a weighted average of the controls in the donor pool
  - Comapring the actual changes with the counterfactuals (DID)
- We include the historical series (of South Korea) in the donor pool
  - ► The year-on-year changes in employment during 2005-2019
  - 24-months window: Jan 2005-Dec 2006, Jan 2006-Dec 2007,...
  - Instead of other regions or countries
- Matching Variables
  - ▶ Employment by industry, educational attainment, and worker status

## **Estimating Overall Effects**

#### • Composition in the synthetic control

| Outcome Variable   | Years used in making the synthetic control (%) |  |  |
|--------------------|------------------------------------------------|--|--|
|                    | 2009-2010: 33.5                                |  |  |
| Nonfarm Employment | 2010-2011: 42.2                                |  |  |
|                    | 2013-2014: 24.3                                |  |  |
| Working Hours      | 2005-2006: 2.2                                 |  |  |
|                    | 2006-2007: 14.0                                |  |  |
|                    | 2008-2009: 12.8                                |  |  |
|                    | 2010-2011: 17.0                                |  |  |
|                    | 2016-2017: 54.0                                |  |  |
|                    | 2010-2011: 32.9                                |  |  |
| Service Employment | 2011-2012: 39.6                                |  |  |
|                    | 2013-2014: 9.5                                 |  |  |
|                    | 2016-2017: 18.0                                |  |  |

#### Overall Effects

- Decrease in **employed** persons = 1.1 million (4.2% of nonfarm employment)
- Decrease in weekly **hours** worked = 5.7 hours



#### Overall Effects

- ullet Increase in **temporarily laid-offs** = 1.1 million
  - included in the employed persons
  - ▶ employed  $\downarrow$  + temporarily laid-offs  $\uparrow$  = 8.4% shock
- Increase in "economically **inactive** population" = 827,000



#### **Overall Effects**

- Service = 990,000 decrease
- Manufacturing = 78,000 decrease



## Overall Effects: Sub-groups



### Overall Effects: Sub-groups



### Overall Effects: Sub-groups

- Temporarily laid-offs & economically inactive population:
  Directly follows the waves
- The effect on service employment seems 1-month lagged after each wave
- The effect on manufacturing seems **not very correlated** with the waves, except for the 1st wave

## **Exploiting Regional Variation**

# **Exploiting Regional Variation**

April 16, 2021

## **Exploiting Regional Variation**

|           | Mar 2019 – Mar 2020 |                    | Aug 2019 –      | Aug 2020           | Dec 2019 – Dec 2020 |                       |  |
|-----------|---------------------|--------------------|-----------------|--------------------|---------------------|-----------------------|--|
| City      | Employment (%Δ)     | COVID-19 intensity | Employment (%∆) | COVID-19 intensity | Employment (%Δ)     | COVID-19<br>intensity |  |
| Daegu     | -7.4%               | 0.247              | -2.2%           | 0.285              | -0.7%               | 0.303                 |  |
| Gyeongbuk | -1.6%               | 0.043              | -0.6%           | 0.053              | -2.3%               | 0.070                 |  |
| Sejong    | 6.6%                | 0.011              | 7.9%            | 0.015              | 4.1%                | 0.038                 |  |
| Chungnam  | -3.8%               | 0.005              | 0.2%            | 0.010              | -3.1%               | 0.054                 |  |
| Busan     | -1.0%               | 0.003              | -2.5%           | 0.006              | -2.9%               | 0.038                 |  |
| Seoul     | 0.7%                | 0.003              | -1.0%           | 0.019              | -2.0%               | 0.130                 |  |
| Gyeongnam | -1.7%               | 0.003              | -0.7%           | 0.005              | -3.8%               | 0.026                 |  |
| Ulsan     | -1.1%               | 0.002              | -2.0%           | 0.005              | -3.7%               | 0.042                 |  |
| Chungbuk  | 1.7 %               | 0.002              | 0.1%            | 0.005              | 0.6%                | 0.036                 |  |
| Gangwon   | -0.3%               | 0.002              | -3.7%           | 0.005              | -4.2%               | 0.054                 |  |
| Gyeonggi  | 0.0%                | 0.002              | -1.6%           | 0.014              | -2.8%               | 0.077                 |  |
| Daejeon   | 0.9%                | 0.001              | 0.0%            | 0.011              | 0.2%                | 0.045                 |  |
| Gwangju   | -1.2%               | 0.001              | -0.8%           | 0.015              | -0.3%               | 0.057                 |  |
| Incheon   | -1.9%               | 0.001              | -0.4%           | 0.013              | -3.3%               | 0.065                 |  |
| Jeju      | -1.3%               | 0.001              | -1.3%           | 0.004              | -2.8%               | 0.019                 |  |
| Jeonbuk   | -0.4%               | 0.000              | 1.7%            | 0.002              | -1.1%               | 0.029                 |  |
|           | 0.70/               | 0.000              | 0.40/           | 0.002              | 2 10/               | 0.026                 |  |

### **Exploiting Regional Variation**

ullet DID with the term  $\frac{COVID19_r}{Pop_{r,2019}}$  being treatment **intensity** 

$$\frac{\Delta \textit{Emp}_r}{\textit{Pop}_r, 2019} = \alpha + \beta \frac{\textit{COVID19}_r}{\textit{Pop}_{r, 2019}} + \gamma \textit{X}_r + \varepsilon_r$$

- $ightharpoonup \Delta Emp_r$ : Change in employment of region r
- ▶  $COVID19_r$ : # of confirmed cases (cumulative) of region r
- ▶  $Pop_{r,2019}$ : total population of region r
- $\triangleright$   $X_r$ : Log of population, Seoul capital area dummy, share manufacturing
- Weighted by regional population
- $\beta = \#$  of jobs lost as a result of one more confirmed case
- Assumption: the occurrence of cases is random across regions

#### **Direct Effects**

|                       | (1)<br>Nonfarm | (2)<br>Working hours | (3)<br>Service | (4)<br>Manufacturing | (5)<br>High school | (6)<br>Daily/        | (7)<br>Youth  |
|-----------------------|----------------|----------------------|----------------|----------------------|--------------------|----------------------|---------------|
|                       | employment     |                      | employment     | employment           | graduates          | Temporary<br>workers | (Age 15 - 29) |
|                       |                |                      |                | Panel A: March 20    | )20                |                      |               |
| COVID19 <sub>r</sub>  | -13.681***     | -0.739***            | -9.924***      | -3.489**             | -16.192***         | -9.530***            | -2.479**      |
| Pop <sub>r,2019</sub> | (1.970)        | (0.085)              | (1.761)        | (1.563)              | (2.183)            | (1.485)              | (0.960)       |
|                       |                |                      |                | Panel B: April 20    | 20                 |                      |               |
| COVID19 <sub>r</sub>  | -9.303***      | -0.332**             | -6.362***      | -2.983*              | -13.279***         | -7.328***            | -1.889**      |
| Pop <sub>r,2019</sub> | (1.644)        | (0.132)              | (1.164)        | (1.533)              | (1.890)            | (1.286)              | (0.670)       |
|                       |                |                      |                | Panel C: May 202     | 20                 |                      |               |
| COVID19 <sub>r</sub>  | -5.574**       | -0.303**             | -2.842**       | -2.877**             | -12.489***         | -4.468***            | -0.497        |
| Pop <sub>r,2019</sub> | (1.836)        | (0.120)              | (1.236)        | (1.274)              | (2.061)            | (1.461)              | (0.756)       |
|                       |                |                      |                | Panel D: August 20   | 020                |                      |               |
| COVID19 <sub>r</sub>  | -2.982**       | -0.115               | -0.401         | -2.979*              | -10.687***         | -3.527**             | 0.836         |
| Pop <sub>r,2019</sub> | (1.228)        | (0.108)              | (1.275)        | (1.505)              | (1.873)            | (1.239)              | (0.609)       |
|                       |                |                      | Pa             | anel E: September    | 2020               |                      |               |
| COVID19 <sub>r</sub>  | -2.448         | -0.158               | 0.352          | -2.929*              | -10.961***         | -3.799*              | 0.132         |
| Pop <sub>r,2019</sub> | (1.418)        | (0.103)              | (1.633)        | (1.477)              | (1.962)            | (1.829)              | (0.658)       |
|                       |                |                      | P              | anel F: December     | 2020               |                      |               |
| COVID19 <sub>r</sub>  | -1.832         | 0.085                | 0.457          | -2.300               | -8.964***          | -4.466*              | -0.289        |
| Pop <sub>r,2019</sub> | (2.406)        | (0.062)              | (2.172)        | (1.400)              | (2.486)            | (2.484)              | (0.884)       |

- March 15: -13.681 \* 8,162 cases = -111,664
- April 15: -9.303 \* 10,198 cases = -94,871

## **Putting Together**

#### Direct Effect:

- Estimated using regional distribution of confirmed cases
- The size of the direct effect is proportional to the intensity of the virus (only in the beginning)

#### **Indirect Effect:**

- The overall domestic and global factors that are likely to affect most regions
- Fear of infection
- Nationwide policies such as social distancing
- Decrease in global demand

### **Putting Together**

Only 7% of nationwide job losses are explained by regional variation



# Why?

- Nature of the current crisis: Pandemic
  - Contagious disease travels between geographical regions
  - Outbreak in one region affects the other regions significantly
- Fear of infection itself has refrained many citizens from going outside
- Studies using regional variation may underestimate the true effects
  - e.g., Correia et al. (2020)

### Policy Implications

- Using regional variation may not be appropriate
  - ▶ In understanding the overall impact of the pandemic
  - Both the direct and indirect factors should be considered together
- Policies targeting specific regions with lots of cases may NOT be effective
  - Such as designating Daegu as a "special disaster area"
  - ► The key is nationwide **preventive** measures to reduce the **fear**
- Retrospectively, was employment retention policy effective?
  - What should have done differently?