RMN de proteínas de cobre de transferencia electrónica: procesos redox y reconocimiento molecular

Alejandro J. Vila IBR - University of Rosario Argentina

¿Como hacemos RMN de proteínas?

Alejandro J. Vila IBR - University of Rosario Argentina

Biomolecular NMR

FROM ASSIGNMENT TO STRUCTURE

Sequential resonance assignment strategies

NMR data for structure determination

Structure calculations

Properties of NMR structures

¹H NMR Spectrum of a Small Protein

Proteins are polymers of known covalent structure

Each amino acid gives rise to an independent sub-spectrum (SPIN SYSTEM)

COSY: ¹H, ¹H Scalar Couplings (Governed by the chemical structure)

Proteins are polymers of known covalent structure

Each amino acid gives rise to an independent sub-spectrum (SPIN SYSTEM)

TOCSY: ¹H Spin Systems = Amino acid side chains

NOESY: ¹H, ¹H Dipolar couplings (All types of signals may be coupled)

HETERONUCLEI ALLOW MORE RESOLUTION!!

¹H- ¹⁵N HSQC: ¹J couplings

2D 15N / 1H correlation (J = 90 Hz) 15N-1H, one per residue

Is my protein folded?

A 10 kDa all a-helical protein

A disordered 6 kDa polypeptide

Experimentos 3D heteronuclear

- Extensión del HSQC a otra dimensión
- ▶ Cada señal HN-N "ve" las resonancias de 1H acoplados

TOCSY-HSQC

¹⁵N Dispersed ¹H-¹H TOCSY

Add a 3rd dimension separating out H^N overlaps by their ¹⁵N frequency

¹⁵N Dispersed ¹H-¹H TOCSY

Experimentos 3D, triple resonancia

▶ Se transfiere magnetización entre IH, I5N y I3C

Large Scalar Couplings \rightarrow Less Sensitive to the Protein size

- > Superior to ¹H homonuclear NMR: H-H couplings <20 Hz
- > Mixing is faster so less time for signal to relax
- > These couplings are uniform throughout peptides/proteins
- > These couplings are virtually conformation independent

Heteronuclear Assignments: HNCO Experiment

HSQC

(a)

Visualising 3D Spectra in Strips

Backbone and CB assignment

In principle, it can be done ONLY with two experiments:

CBCA(CO)NH CBCANH

Correlates:

- H_i in one dimension
- Ni in other dimension
- CB_{i-1} , $CB_{i,}$ CA_{i-1} and CA_{i} in the third dimension

$$CBCA(CO)NH \underset{|_{N}}{H_{2N}} \xrightarrow{CH_3} \underset{|_{N}}{H_{2N}} \xrightarrow{OH} OH$$

$$\downarrow O \qquad H \qquad O \qquad H \qquad O$$

$$\downarrow CA \qquad C \qquad N \qquad CA \qquad C$$

$$\downarrow CB \qquad CB \qquad CB$$

Correlates:

- H_i in one dimension
- Ni in other dimension
- CB_{i-1} , and CA_{i-1} in the third dimension

Looking at the HC or NC planes

Ej: Ala-Gly

Alternation between CBCANH and CBCA(CO)NH spectra ($C\alpha s$ in dark blue, $C\beta s$ in light blue)

1. Backbone Assignment

NOEs are needed to solve a protein structure

ATNOS: automated NOESY peak picking

Family of NMR-based Structures

Family of structures

Sausage representation

Is NMR useful only for determining Protein 3D Structures?

The structure is important, but...

"The picture of a horse does not tell you how the horse runs"

(Jeremy Knowles)

Relaxation occurs mostly by dipolar coupling

¹⁵N as the dynamic probe:

$$\begin{split} &\frac{1}{T_{1}} = d^{2} \frac{1}{10} \left[J(\omega_{\mathrm{H}} - \omega_{\mathrm{N}}) + 3J(\omega_{\mathrm{N}}) + 6J(\omega_{\mathrm{H}} + \omega_{\mathrm{N}}) \right] + \frac{2}{15} \omega_{\mathrm{N}}^{2} \Delta \sigma^{2} J(\omega_{\mathrm{N}}) \\ &\frac{1}{T_{2}} = \frac{1}{20} d^{2} \left[4J(0) + J(\omega_{\mathrm{H}} - \omega_{\mathrm{N}}) + 3J(\omega_{\mathrm{N}}) + 6J(\omega_{\mathrm{H}}) + 6J(\omega_{\mathrm{H}} + \omega_{\mathrm{N}}) \right] + \frac{1}{45} \omega_{\mathrm{N}}^{2} \Delta \sigma^{2} \left[3J(\omega_{\mathrm{N}}) + 4J(0) \right] + R_{\mathrm{ex}} \\ &NOE = 1 + T_{1} (\gamma_{H} / \gamma_{\mathrm{N}}) d^{2} \frac{1}{10} \left[6J(\omega_{\mathrm{H}} + \omega_{\mathrm{N}}) + 4J(\omega_{\mathrm{H}} - \omega_{\mathrm{N}}) \right] \end{split}$$

$$J(\omega) = \frac{2\tau_c}{1+\omega^2\tau_c^2} \qquad d^2 = (\hbar^2\gamma_I^2\gamma_S^2/r^6)$$

NMR seems to be an expensive technique for determining molecular tumbling rates

But...if the protein presents internal motions, τc will not be uniform

Relaxation occurs mostly by dipolar coupling

Oscillating magnetic fields arise from molecular tumbling Relaxation efficiency depends on molecular mass

Protein Dynamics by NMR

NMR can sample dynamics from 2 regimes: fast and slow

How protein motions affect NMR parameters depend on whether they are faster or slower than the rotational correlation time

- Fast Timescale dynamics (ps-ns)
- limited by rotational correlation time of protein
- parameters describe distribution of states
- Slower Timescale dynamics (µs-ms)
- require chemical shift difference
- measured more directly

Copper in the cell

Copper is essential but toxic at the same time

Copper levels should be regulated within the cell

Robinson N.J., Winge D.R. Annu. Rev. Biochem. (2010)

Copper in the cell

There's no free copper in the cell!
(O'Halloran)

Robinson N.J., Winge D.R. Annu. Rev. Biochem. (2010)

Copper in the cell

Metallochaperones:
Involved in the transport
and devlivery of copper ions
to their target proteins

Robinson N.J., Winge D.R. Annu. Rev. Biochem. (2010)

Cytochrome c Oxidase: paradigm for LRET

The Cu_A Site

· How are the metal ions inserted in vivo in the protein?

Cu_A and Sco proteins

Yeast

Cox17 and Sco are involved in CuA assembly
Glerum et al. (1996) JBC

B. subtilis

Sco is essential for Cu_A uptake in COX Mattatall et al. (2000) JBC

Humans

Mutations in Sco1 and Sco2 result in severe COX defficiencies related to copper availability Winge, Leary

Which is the role of Sco?

Thioredoxin fold - CXXXCP motif

Additional loop: His residue

Sco proteins bind Cu(I)

Which is the role of Sco?

A simple system to test copper transfer in vitro

Soluble Sco and COX II domains

NMR

Why NMR?

- Identify the copper transfer process with atomic resolution
- Assess copper binding to the native binding sites
- Monitor protein folding-unfolding and order-disorder events
- Selective labeling: Look one protein at the time in complex mixtures
- · We do NMR!

Copper Transfer followed by NMR

We can exploit NMR to follow the copper uptake or release for a specific protein at a residue level

We need to assign the resonances of the apo and metallated forms

Sco1 from T. thermophilus

Abriata et al., Nature Chem. Biol., 4, 599-601 (2008).

ApoSco1 + Cu(I)

ApoSco1 + Cu(I)

Titration with Cu(I) monitored by HSQC

Tt-Sco1

Copper transfer followed by NMR

Arnesano F, Banci L, Bertini I, Martinelli M., J Proteome Res.;4, 63 (2005)

(TTHA1943)

Scol (TTHA1942)

Thermus thermophilus HB6_2

TTHA1948

TTHA1940

TTHA1938

Does Tt-Hyp1 bind Cu(I)?

Cu(I) binding to Tt Hyp1

Apo-Hyp1 Hyp1 + Cu(I)

apoCuA + Cu(I)-Hyp1

- · Hyp1 is able to transfer two Cu(I) ions to apo-CuA
- · Cu(I) transfer is sequential

Hyp1: Periplasmic CuA Chaperone (PCuAC)

Abriata et al. Nature Chem. Biol., 4, 599-601 (2008).

CuA assembly of human COX II

Morgada et al. (2014) Angew. Chemie Morgada et al (2016) PNAS USA

How does copper binding occur?

Cupredoxin Fold (rigid)

Copper site occluded from solvent

Malmstrom, RJP Williams, HB Gray

Cupredoxin Fold (rigid)

Copper site occluded from solvent

Malmstrom, RJP Williams, HB Gray

Preorganized chelating site (X-ray)

holoCu_A

Zaballa et al. *Proc.Natl.Acad.Sci USA*, **109**, 9254-9 (2012).

Protein dynamics by NMR

µs to ms dynamics in the metal binding site

These loops may provide the chaperone recognition site

Zaballa et al. Proc.Natl.Acad.Sci USA, 109, 9254-9 (2012).

Conclusions

- ·NMR is not only a technique useful to solve protein structure
- · NMR can be used to assess protein dynamics and interaction even when crystal structures are available
- · NMR allows to design experiment to annotate protein function