## Uczenie maszynowe

ZADANIE KLASYFIKACJI CZ. 1

#### Typy uczenia

Supervised learning



Uczenie z nadzorem

Unsupervised learning



Uczenie bez nadzoru

#### Uczenie z nadzorem – zadanie klasyfikacji

Przykład: klasyfikacja kosaćców







Iris setosa (kosaciec szczecinkowy)

Iris virginica

Iris versicolor (kosaciec różnobarwny)

#### Zbiór - IRIS

#### **Atrybuty Etykiety**

| SL  | sw  | PL  | PW  | Klasa           |  |
|-----|-----|-----|-----|-----------------|--|
| 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa     |  |
| 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa     |  |
| 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa     |  |
| 7.7 | 3.8 | 6.7 | 2.2 | Iris-virginica  |  |
| 7.7 | 2.6 | 6.9 | 2.3 | Iris-virginica  |  |
| 6.0 | 2.2 | 5.0 | 1.5 | Iris-virginica  |  |
| 6.1 | 2.9 | 4.7 | 1.4 | Iris-versicolor |  |
| 5.6 | 2.9 | 3.6 | 1.3 | Iris-versicolor |  |
| 6.7 | 3.1 | 4.4 | 1.4 | Iris-versicolor |  |
| _   |     |     |     |                 |  |



**SL** (sepal length) - długość działki kielicha kwiatu (w cm); SW (sepal width) - szerokość działki kielicha (cm);

PL (petal length) - długość płatka (w cm);

PW (petal width) - szerokość płatka (w cm)

## Histogramy dla zbioru Iris 1/2





## Histogramy dla zbioru Iris 2/2





#### Wizualizacja tSNE dla zbioru Iris



Legenda: 1 – setosa, 2 – versicolor, 3 - virginica



# Klasyfikator kNN (*k*–*nearest neighbour classifier*)

kNN- klasyfikator k-najbliższych sąsiadów

**Pochodzenie nazwy metody:** poszukiwanie przez algorytm *k* przypadków w najbliższym sąsiedztwie nowego punktu.

**Zadanie klasyfikacji:** przypisanie etykiety do rozpatrywanego przypadku, znając jego k-najbliższych sąsiadów w przestrzeni.

**Dobór liczby** *k***:** na tyle duże, by minimalizować prawdopodobieństwo błędnych klasyfikacji i na tyle małe, aby odnaleźć dostatecznie bliskich sąsiadów nowego punktu.

kNN – leniwy klasyfikator....

#### Zasada działania kNN

#### 1-Nearest Neighbor



#### 3-Nearest Neighbor



## Miary odległości między punktami x i y

Miara euklidesowa

$$d_e(\mathbf{x},\mathbf{y}) = \sqrt{(y_1-x_1)^2+\cdots+(y_n-x_n)^2}$$

Miara Manhattan (znana również jako miejska, taksówkowa)

$$d_m(\mathbf{x},\mathbf{y}) = \sum_{k=1}^n |x_k - y_k|$$



Porównanie metryki Manhattan z euklidesową

## Głosowanie - klasyfikacja nowego przypadku

- Większościowe równoprawne punkt przypisywany jest do klasy o największej liczności
- •Ważone odległością wartości wag obliczane są jako odwrotność odległości między szukanym punktem a najbliższymi sąsiadami:

 $w(x,p_i)=\frac{1}{d_{xp_i}},$ 

gdzie:  $d_{xpi}$  - odległość między punktem x a i-tym punktem przykładowym. Dla każdej z klas sumuje się wagi i klasyfikowanemu przykładowi przypisuje się klasę z najwyższą sumą.

•Ważone kwadratem odległości - wartości wag obliczane są jako odwrotność kwadratu odległości między szukanym punktem a najbliższymi sąsiadami:

$$w(x,p_i)=\frac{1}{d_{xp_i}^2},$$

gdzie:  $d_{xpi}$  - odległość między punktem x a i-tym punktem przykładowym. Dla każdej z klas sumuje się wagi i klasyfikowanemu przykładowi przypisuje się klasę z najwyższą sumą.

### Problem: parzysta liczba sąsiadów ....

- Losowe przyporządkowanie do klasy
- Zmniejszanie/zwiększanie liczby k aż do ustalenia "zwycięzcy"
- Ważenie odległości

•..

## Problem: czułość na strukturę danych

Rozwiązanie - standaryzacja atrybutów (zmienna uzyskuje średnią wartość oczekiwaną zero i odchylenie standardowe jeden)

Standaryzacja Z (najczęstsza):

$$z = \frac{x - \mu}{\sigma}$$

gdzie: x – zmienna niestandaryzowana,  $\mu$  – średnia z populacji,  $\sigma$  – odchylenie standardowe populacji.

## Miary jakości klasyfikacji

## Macierz pomyłek (confusion matrix)

W zależności od działania klasyfikatora wyróżnia się cztery przypadki:

- o liczba prawdziwie rozpoznanych przypadków pozytywnych (ang. True Positive
- TP),
- · liczba nieprawdziwie rozpoznanych przypadków pozytywnych (ang. False Positive
- FP),
- o liczba nieprawdziwie rozpoznanych przypadków negatywnych (ang. False Negative
- FN),
- o liczba prawdziwie rozpoznanych przypadków negatywnych (ang. True Negative
- TN).

#### Prawdziwa klasyfikacja

| wynik kiasynkacj | Wynik | klasyfikacji | i |
|------------------|-------|--------------|---|
|------------------|-------|--------------|---|

|                 | Klasa pozytywna | Klasa negatywna |
|-----------------|-----------------|-----------------|
| Klasa pozytywna | TP              | FP              |
| Klasa negatywna | FN              | TN              |



#### Macierz pomyłek - przykład

#### Klasyfikacja wiadomości e-mail - SPAM i dobre wiadomości

Klasa pozytywna: SPAM

Dane wejściowe: 37 SPAM, 63 dobrych

Wynik klasyfikacji: 33 wiadomości uznanych za SPAM (w tym 27 to rzeczywisty SPAM), 67 wiadomości uznanych za dobre (w tym 57 rzeczywiście dobrych)

#### SPAM Prawdziwa klasyfikacja Dobre

#### Wynik klasyfikacji

| SPAM            | Klasa pozytywna | Klasa negatywna |  |
|-----------------|-----------------|-----------------|--|
| Klasa pozytywna | TP = 27         | FP = 6          |  |
| Klasa negatywna | FN = 10         | TN = 57         |  |

#### **Dobre**

### Miary jakości klasyfikacji

Dokładność klasyfikacji (ang. accuracy - ACC) określa procent poprawnie sklasyfikowanych przypadków: TD + TN

$$ACC\% = \frac{TP + TN}{TP + TN + FP + FN} \cdot 100\%$$

Specyficzność (ang. True Negative Rate - TNR lub specificity) określa stosunek poprawnie rozpoznanych przypadków negatywnych do liczby wszystkich przypadków negatywnych:

$$TNR = 1 - FPR = 1 - \frac{FP}{FP + TN} = \frac{TN}{TN + FP}$$

Czułość (ang. True Positive Rate - TPR lub sensitivity), definiowana również jako miara recall określa stosunek poprawnie rozpoznanych przypadków pozytywnych do liczby wszystkich przypadków pozytywnych:

$$TPR = \frac{TP}{TP + FN}$$

### Miary jakości klasyfikacji SPAM

$$ACC\% = \frac{TP + TN}{TP + TN + FP + FN} \cdot 100\%$$
 ACC = 84/100 = 0,84

$$ACC = 84/100 = 0.84$$

$$TNR = \frac{TN}{TN + FP}.$$

$$TNR = 57/(57+6) \approx 0.90$$

$$TPR = \frac{TP}{TP + FN}$$

$$TPR = 27/(27+10) \approx 0.73$$

#### SPAM Prawdziwa klasyfikacja Dobre

Wynik klasyfikacji

| SPAM            | Klasa pozytywna | Klasa negatywna |  |
|-----------------|-----------------|-----------------|--|
| Klasa pozytywna | TP = 27         | FP = 6          |  |
| Klasa negatywna | FN = 10         | TN = 57         |  |

Dobre

#### Nakładanie się rozkładów dwóch klas

Nakładanie się rozkładów dwóch klas

Rozwiązanie: wybór progu/punktu odcięcia (cutpoint)



Krzywa ROC (Receiver Operating Characteristic)

- Odróżnienie sygnału będącego informacją (np. sygnały z maszyn, organizmów żywych) od wzorców przypadkowych nie zawierających informacji (szum, tło, aktywność losowa)
- Statystyka: "Krzywa ROC jest graficzną reprezentacją efektywności modelu predykcyjnego poprzez wykreślenie charakterystyki jakościowej klasyfikatorów binarnych powstałych z modelu przy zastosowaniu wielu różnych punktów odcięcia."



FPR = False Positive Rate = P(1|0) = 1-P(0|0) = 1-TNR

1-specyficzność

## Krzywa ROC



#### AUROC (Area Under the ROC)

- Całość pola powierzchni pod krzywą ROC w odniesieniu do pola idealnego modelu (pola kwadratu o boku 1)
- Interpretacja: "prawdopodobieństwo, że badany model predykcyjny oceni wyżej losowy element klasy pozytywnej od losowego elementu klasy negatywnej."



FPR = False Positive Rate = P(1|0) = 1-P(0|0) = 1-TNR 1-specyficzność

## ROC przykład – choroby tarczycy



#### Próg odcięcia T4 = 5

| T4 value  | Hypothyroid | Euthyroid |
|-----------|-------------|-----------|
| 5 or less | 18          | 1         |
| > 5       | 14          | 92        |
| Totals:   | 32          | 93        |

$$TNR = \frac{TN}{TN + FP}$$

$$TNR = 92/(92+1) \approx 0.99$$

$$TPR = \frac{TP}{TP + FN}$$

$$TPR = 18/(18+14) \approx 0.56$$

$$TNR = \frac{TN}{TN + FP}$$

$$TPR = \frac{TP}{TP + FN}$$

### ROC przykład – choroby tarczycy

#### Próg odcięcia T4 = 7

| T4 value  | Hypothyroid | Euthyroid |
|-----------|-------------|-----------|
| 7 or less | 25          | 18        |
| > 7       | 7           | 75        |
| Totals:   | 32          | 93        |

#### Próg odcięcia T4 = 9

| T4 value  | Hypothyroid | Euthyroid |
|-----------|-------------|-----------|
| < 9       | 29          | 54        |
| 9 or more | 3           | 39        |
| Totals:   | 32          | 93        |

$$TNR = 75/(75+18) \approx 0.81$$

$$TPR = 25/(25+7) \approx 0.78$$

$$TNR = 39/(39+54) \approx 0.42$$

$$TPR = 29/(29+3) \approx 0.91$$

## ROC przykład

| Odcięcie | TPR  | TNR  | 1-TNR |
|----------|------|------|-------|
| 5        | 0,56 | 0,99 | 0,01  |
| 7        | 0,78 | 0,81 | 0,19  |
| 9        | 0,91 | 0,42 | 0,58  |

