# Direct Millicharged Dark Matter Cannot Explain the Anomalous EDGES Signal

Cyril Creque-Sarbinowski Bowdoin 2019



## Enter the Dark Ages

Main Players:



A  $\longrightarrow$  B = "A scatters off B"  $\neq$  "B scatters off A"



## Temperature Evolution during Dark Ages





# Temperature Evolution during Dark Ages



 $rac{n_{\uparrow \uparrow}}{n_{\uparrow \downarrow}}$ 





# Temperature Evolution during Dark Ages





#### What do we observe?

$$T_{21} \stackrel{?}{=} T_S$$





# An Anomalous Temperature Signal from EDGES





## Proposed Solution to Anomalous Signal





#### Current Bounds on Direct Millicharge DM





#### Abundance Constraint







#### Effective # of Relativistic d.o.f Constraint

 $N_{eff} \sim \#particle \ d. \ o. \ f \times (T_{particle}/T_{\gamma})$   $t = 1 \ sec$   $T_{\gamma} = T_{\nu}$  3.5  $T_{\gamma} = T_{\nu}$   $T_{\gamma} = T_{\nu}$  3.5  $T_{\gamma} = T_{\nu}$   $T_{\nu} = 3.046, \ DF = N_{\nu} = 3.046, \ DF = N_{\nu} = 5.046, \ DF = N_{\nu} =$ 









#### Effective # of Relativistic d.o.f Constraint





## Back up slide



