Análisis Matemático II - Lic. en Computación - Examen - 07/12/16

Apellido:					Nombre:					Condición
	1	2	3	4	5	6	7	. 8	Total	Nota

- Los alumnos libres deben resolver correctamente los ejercicios A) y B) para aprobar el examen.
- 1) (1,25 ptos.)
 - a) Dar la definición de serie convergente y absolutamente convergente.
 - b) Determinar si $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2+1}$ es convergente y/o absolutamente convergente. Justificar.
- 2) (1,25 ptos.) Determinar si las siguientes afirmaciones son verdaderas o falsas y justificar.
 - a) Sean A y B dos planos en \mathbb{R}^3 tales que sus vectores normales son ortogonales, entonces A y B son paralelos.
 - b) Si $f: \mathbb{R} \to \mathbb{R}$ es una función periódica de período 2 entonces $\int_a^b f(x)dx = 0$ para todo $a, b \in \mathbb{R}$ tales que b-a>2.
- 3) (1,25 ptos.) Calcular la derivada de la función definida en a) y determinar si la integral impropia dada en b) es o no convergente. Justificar.

a)
$$f(x) = \int_0^{x^3} \frac{\sqrt{t^2 + 1}}{\cos(t) + 2} dt$$
 b) $\int_3^{+\infty} \frac{x}{x^2 - \cos(x)} dx$

- 4) (1 pto.) Calcular la siguiente integral: $\int \frac{e^x}{4e^x + e^{2x} + 5} dx.$
- 5) (1 pto.) Dar una cota superior del error que se comete al estimar \sqrt{e} usando el polinomio de Taylor de orden 6 de $f(x) = e^x$ centrado en 0.
- 6) (1,5 ptos.) Sea $f(x,y) = e^{x^2+y^2}$.
- a) Dar la ecuación del plano tangente al gráfico de f en el punto (0, 1, e) y la ecuación de la recta normal a dicho plano por ese punto.
- b) Graficar las curvas de nivel de f y dar la ecuación de la recta normal a la curva de nivel que pasa por (-1,1).
- 7) (1,25 ptos.) Sea $f(x,y)=x \ln(x+y^2)$. Hallar los puntos críticos de f y determinar si $(e^{-1},0)$ es un máximo local, mínimo local o punto de silla.
- 8) (1,5 ptos.)
 - a) Calcular $\iint_D (2x+1) dx dy$ donde $D = \{(x,y) | y \le x \le e^y \land 1 \le y \le 2\}.$
- b) Calcular, usando coordenadas polares, $\iint_R \sin(x^2 + y^2) dA$ donde R es la región en el primer cuadrante comprendida entre las circunferencias con centro en el origen y radios 1 y 3.

Ejercicios para Libres

- A) ¿Verdadero o falso? Justificar: Si la serie $\sum_{n=1}^{\infty} a_n$ converge entonces $\sum_{n=1}^{\infty} \frac{a_n}{2^n}$ converge.
- B) Hallar la serie de Taylor, centrada en 0, de $f(x) = \frac{1}{3+x}$.