In [1]:

```
#step1
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [2]:
```

```
#step2
k=pd.read_csv(r"C:\Users\shaik\Downloads\bottle.csv.zip")
k
```

```
C:\Users\shaik\AppData\Local\Temp\ipykernel_20820\84675588.py:2: DtypeWarn ing: Columns (47,73) have mixed types. Specify dtype option on import or s et low_memory=False.
```

k=pd.read_csv(r"C:\Users\shaik\Downloads\bottle.csv.zip")

Out[2]:

	Cs	st_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
0		1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900
1		1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600
k=k[['S	t Sal	nty',	'T_degC']]	19- 4903CR- HY-060- aset 0930- 05400560-	10	10.460	33.4370	NaN	25.65400
	ns 10	=['sa]	attribu L','Temp 4		0010A-7 19- 4903CR- HY-060- 0930-	19	10.450	33.4200	NaN	25.64300
	al	Temp		000.0	05400560- 0019A-3					
 0 33.4⁴ 1 33.4⁴ 2 33.43 	10	10.50 10.46 10.46	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300
3 33.42	20	10.45								
4 33.42 5 33.44 864858 6 33.44 7 33.42	31 40	10.45 10.45 34404 10.45 10.24	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
8 33.42 86483 \$	20	10.06	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
864860		34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
864861		34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

In [4]: Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Sainty O2ml_L STheta

```
#step3
#exploring the data scatter-plotti20 the data
sns.lmplot(x="sal",y="Temp",dat61486 rder=2,ci=None)
864862 34404 864863 026.4 026.4 026.4 026.4 026.4 026.4 09340264-
```

<seaborn.axisgrid.FacetGrid at 0x24b656fc880>

In [5]:

k.describe()

Out[5]:

	sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

In [6]:

```
k.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
     Column Non-Null Count
                              Dtype
0
     sal
             817509 non-null float64
 1
     Temp
             853900 non-null float64
dtypes: float64(2)
memory usage: 13.2 MB
In [7]:
#step4
#data cleaning-elinimating
k.fillna(method='ffill',inplace=True)
```

C:\Users\shaik\AppData\Local\Temp\ipykernel_20820\463270389.py:3: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

k.fillna(method='ffill',inplace=True)

Out[7]:

	sal	Temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

864863 rows × 2 columns

In [8]:

```
#step5
#traing our model
x=np.array(k['sal']).reshape(-1,1)
y=np.array(k['Temp']).reshape(-1,1)
```

In [9]:

```
k.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

C:\Users\shaik\AppData\Local\Temp\ipykernel_20820\53174099.py:1: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

k.dropna(inplace=True)

In [13]:

```
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.20341540626628107

In [16]:

```
#step6
#exploring our results
#data scatter of predicted values
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [18]:

```
#selectin first 500 rows
k500=k[:][:500]
sns.lmplot(x="sal",y="Temp",data=k500,order=1,ci=None)
k500.fillna(method='ffill',inplace=True)
x=np.array(k500['sal']).reshape(-1,1)
y=np.array(k500['Temp']).reshape(-1,1)
k500.dropna(inplace=True)
```


In [19]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("regression:",regr.score(x_test,y_test))
```

regression: 0.805140331004344

In [20]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show
```

Out[20]:

<function matplotlib.pyplot.show(close=None, block=None)>

In [30]:

```
#step8
#evalution of model
#train the model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
#evaluate the model on test data
model =LinearRegression()
model.fit(x_train,y_train)
```

Out[30]:

LinearRegression()

In [31]:

#step9:

'''dataset we have taken is poor for linear model but with smaller data works well'''

Out[31]:

'dataset we have taken is poor for linear model but with smaller data work s well'

In []: