Combinatorics

October 9, 2018

C	ONTENTS	2
C	Contents	
0	Introduction	3
1	Set Systems	4

3

0 Introduction

In this course we'll discuss three main aspects:

- Set systems;
- \bullet Isoperimetric Inequalities;
- Projections (combinatorics in continuous settings).

References:

Combinatorics, Bocabas, Cambridge University Press, 1986 (chapter 1,2); Combinatorics and finite sets, Anderson, Oxford University Press, 1987 (chapter 1).

1 SET SYSTEMS 4

1 Set Systems

Let X be a set. A set system on X (or family of subsets of X) is a family

For example, we define $X^{(r)} = \{A \subset X : |A| = r\}.$

Unless otherwise stated, $X = [n] = \{1, 2, ..., n\}$. For example, $|X^{(r)}| = \binom{n}{r}$ (assume finiteness). So $[4]^{(2)} = \{12, 13, 14, 23, 24, 34\}.$

We often make $\mathbb{P}(x)$ into a graph, called Q_n , by joining A to B if $|A \triangle B| = 1$ (symmetric difference).

(examples of Q_3, Q_n)

If we identify a set $A \subset X$ with a 0-1 sequence of length n via $A \leftrightarrow 1_A$ (characteristic function), then Q_3 acn be thought of as a cube. In general, Q_n is an n-dimensional cube (hypercube/discretecube/n-cube/...).

1.1Chains and antichains

A family $\mathcal{A} \subset \mathbb{P}(X)$ is a *chain* if $\forall A, B \in \mathcal{A}, A \subset B$ or $B \subset A$. It is an antichain if $\forall A \neq B \in \mathcal{A}, A \notin B$.

Obviously the maximum size of a chain in X is n+1.

For antichains, we can take $X^{\lfloor \frac{n}{2} \rfloor}$, which has size $\binom{n}{\lfloor n/2 \rfloor}$. The result is that wee can't beat this, but the proof is not trivial.

—Lecture 2—

No lecture this thursday (11 Oct 2018)!

Idea: inspired by each chain meets each level $X^{(r)}$ in at most one place – try to decompose Q_n into chains.

Theorem. (Sperner's Lemma) Let $A \subset \mathbb{P}(X)$ be an antichain. Then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

Proof. It's sufficient to partition $\mathbb{P}(X)$ into that many chains (since an anti-chain and a chain can have at most one common vertex).

For this, it's sufficient to show:

- $\forall r < n/2$, there exists a matching (set of disjoint edges) from $X^{(r)}$ to $X^{(r+1)}$; $\forall r > n/2$, there exists a matching from $X^{(r)}$ to $X^{(r-1)}$.

(Then put these matchings together to form chains, each passing through $X^{(\lfloor n/2 \rfloor)}$), so the result.

By taking complements it's sufficient to prove (i).

Consider subgraph of Q_n spanned by $X^{(r)} \cup X^{(r+1)}$ which is bipartite. For any $B \subset X^{(r)}$, we have:

• number of $B - \mathbb{P}(B)$ edges = |B|(n-r); (each point in $X^{(r)}$ has degree (n-r))

1 SET SYSTEMS

5

• number of $B - \mathbb{P}(B)$ edges $\leq |\mathbb{P}(B)|(r+1)$. (each point in $X^{(r+1)}$) has degree r+1

Thus $|\mathbb{P}(B)| \ge |B| \frac{n-r}{r+1} \ge |B|$, as r < n/2.

Hence by Hall's theorem there exists a matching.

Remark. • 1. $\binom{n}{\lfloor n/2 \rfloor}$ is achievable by just taking $X^{(\lfloor n/2 \rfloor)}$. • 2. This proof says nothing about extremal cases: which antichains have size

Aim: For \mathcal{A} an antichain, $\sum_{r=0}^{n} \frac{|\mathcal{A} \cap X^{(r)}|}{\binom{n}{r}} \leq 1$. Note that this trivally implies Sperner's lemma.

Let $\mathcal{A} \subset X^{(r)}$ for some $1 \leq r \leq n$. The shadow or lower shadow of \mathcal{A} is

$$\partial A = \partial^- A = \{A - \{i\} : A \in \mathcal{A}, i \in A\}$$

So $\partial A \subset X^{(r-1)}$.

For example, if $\mathcal{A} = \{123, 124, 134, 135\} \subset X^{(3)}$, then $\partial A = \{12, 13, 23, 14, 24, 34, 15, 35\} \subset X^{(3)}$

Lemma. (Local LYM)

Let $\mathcal{A} \subset X^{(r)}$, $1 \leq r \leq n$. Then

$$\frac{|\partial \mathcal{A}|}{\binom{n}{r-1}} \ge \frac{|\mathcal{A}|}{\binom{n}{r}}$$

(the fraction of the layer occupied increases when we take the shadow.)

Proof. • Number of $A - \partial A$ edges (in Q_n) = r|A| (counting from above);

• Number of $\mathcal{A} - \partial \mathcal{A}$ edges $\leq (n - r + 1)|\partial \mathcal{A}|$ (counting from below). So

$$\frac{|\partial \mathcal{A}|}{|\mathcal{A}|} \ge \frac{r}{n-r+1}$$

However RHS is the ratio of size between the two layers.

Let's consider when is equality achieved in local LYM. we need $A - \{i\} \cup \{j\} \in \mathcal{A}$ $\forall a \in \mathcal{A}, i \in A, j \notin A.$

Hence $\mathcal{A} = X^{(r)}$ or ϕ .

Theorem. (Lubell-Yamamoto-Meshalkin inequality)

Let $\mathcal{A} \subset \mathbb{P}(X)$ be an antichain. Then $\sum_{r=0}^{n} \frac{|\widehat{\mathcal{A}} \cap X^{(r)}|^{r}}{\binom{n}{r}} \leq 1$.

Proof. (1, Bubble down with local LYM)

Let's start with $X^{(r)}$. Write \mathcal{A}_r for $\mathcal{A} \cap X^{(r)}$.

We have $\frac{|\mathcal{A}_n|}{\binom{n}{n}} \leq 1$ (trivially).

Also, ∂A_n and A_{n-1} are disjoint (as A is an antichain). So

$$\frac{|\partial \mathcal{A}_n|}{\binom{n}{n-1}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} = \frac{|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1$$

1 SET SYSTEMS 6

So

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1$$

by local LYM. Note that we have successfully expanded LHS to two terms. Also, $\partial(\partial A_n \cup A_{n-1})$ is disjoint from A_{n-2} again since A is an antichain. So

$$\frac{\left|\partial(\partial\mathcal{A}_n\cup\mathcal{A}_{n-1})\right|}{\binom{n}{n-2}} + \frac{\left|\mathcal{A}_{n-2}\right|}{\binom{n}{n-2}} \le 1$$

So

$$\frac{|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}|}{\binom{n}{n-1}} + \frac{|\mathcal{A}_{n-2}|}{\binom{n}{n-2}} \le 1$$

So

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} + \frac{|\mathcal{A}_{n-2}|}{\binom{n}{n-2}} \le 1$$

Keep going and we obtain the desired result.

When is equality achieved in LYM? We must have equality in each use of local LYM, so the first r with $A_r \neq \phi$ must have $A_r = X^{(r)}$, i.e. $A = X^{(r)}$.

Hence equality in Sperner's lemma is only achieved when $\mathcal{A}=X^{\lfloor n/2\rfloor}$ for n even, or also $X^{\lceil n/2\rceil}$ when n is odd.