

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R USN: 1SI19CS143 Batch No: B4 Date: 23							
Evaluation:							
Clarity in	Execution and	Maintain of observation	Total				
concepts	Results (10 Marks)	Records (05 Marks) (10 M			(10 Marks) (1		
(10 Marks)							
Sl.No	N	ame of the Faculty In-Cha	rge			Signature	
1.	Dr. K Bhargavi						
2.	Dr. M B Nirmala						

Question No: 1

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

Algorithm:

- Start with the most specific hypothesis. $h = \{\phi, \phi, \phi, \phi, \phi, \phi\}$
- Take the next example and if it is negative, then no changes occur to the hypothesis.
- If the example is positive and we find that our initial hypothesis is too specific then we update our current hypothesis to a general condition, i.e each attribute in the example is checked equal to the hypothesis value
 - 1. If the value matches, then no changes are made
 - 2. If the value does not match, the value is changed to '?'
- Keep repeating the above steps till all the training examples are complete.
- After all the training examples are completed, the final hypothesis is produced which can be used to classify the new examples.

```
import pandas as pd
file = pd.read_csv('weather.csv')
print(file)
target=file['Target'].values
attributes=file.drop("Target",axis=1).columns
num_of_attributes = len(attributes)
print(target)
hypothesis = ['0']*num_of_attributes
for i in range(len(target)):
  if target[i] == 'Yes':
    for x in range(num_of_attributes):
       if(hypothesis[x] == '0'):
         hypothesis[x] = file.iloc[i,x]
       if(hypothesis[x]!=file.iloc[i,x]):
         hypothesis[x] = '?'
  print(i+1, "hypothesis", hypothesis)
print("final hypothesis", hypothesis)
```


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R USN: 1SI19CS143 Batch No: B4 Date: 3						e: 30-11-2022
Evaluation:						
Clarity in	Execution and	Maintain of observation	Total			
concepts	Results (10 Marks)	Records (05 Marks) (10 Marks)				(35 Marks)
(10 Marks)					-	
Sl.No	N	ame of the Faculty In-Char	ge			Signature
1.	Dr. K Bhargavi					
2.	Dr. M B Nirmala					

Question No: 2

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Algorithm:

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific hypotheses in H For each training example d, do

- · If d is a positive example
 - · Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - · Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S
- · If d is a negative example
 - · Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - · Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and some member of S is more specific than h
 - · Remove from G any hypothesis that is less general than another hypothesis in G

```
import pandas as pd
import numpy as np
file = pd.read_csv('weather.csv')
concept = np.array(file.iloc[:,0:-1])
print(concept)
target = np.array(file.iloc[:,-1])
print(target)
def learn(concept, target):
  print("specific and general h")
  specific = concept[0].copy()
  print(specific)
  general = [['?' for i in range(len(specific))] for i in range(len(specific))]
  print(specific)
  for i,h in enumerate(concept):
     if target[i] == 'Yes':
       for x in range(len(specific)):
          if h[x]!= specific[x]:
            specific[x] = '?'
            general[x][x] = '?'
     if target[i] == 'No':
       for x in range(len(specific)):
         if h[x]!=specific[x]:
            general[x][x] = specific[x]
          else:
```

```
general[x][x] = '?'
     print("hypothesis,", i+1)
     print(specific)
     print(general)
  indices = [i for i,val in enumerate(general) if val == ['?','?','?','?','?','?']]
  for i in indices:
     general.remove(['?','?','?','?','?'])
  return (general, specific)
f_g, f_s = learn(concept,target)
print("\n")
print("Final specific :", f_s)
print("Final general : ", f_g)
```


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R		USN: 1SI19CS143	Batch No: B4		Date: 04-01-20	
Evaluation:						
Clarity in	Execution and	Maintain of observation	on	Viva		Total
concepts	Results (10 Marks)	book & Records (05 Mar	(10 Marks)		(35 Marks)	
(10 Marks)						
Sl.No	Name of the Faculty In-Charge					Signature
1.	Dr. K Bhargavi					
2.	Dr. M B Nirmala					

Question No: 3

Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.

Algorithm:

- Inputs X, arrive through the preconnected path.
- The input is modeled using true weights W. Weights are usually chosen randomly.
- Calculate the output of each neuron from the input layer to the hidden layer to the output layer.
- Calculate the error in the outputs

Backpropagation Error= Actual Output – Desired Output

- From the output layer, go back to the hidden layer to adjust the weights to reduce the error.
- Step 6: Repeat the process until the desired output is achieved.

```
from sklearn.datasets import load_iris
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
data = load_iris()
x = data.data
y = data.target
sc = StandardScaler()
x = sc.fit_transform(x)
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
n = 1000
loss cur = 999
model = MLPClassifier(hidden_layer_sizes=(4,3),activation = "logistic", solver =
"sgd",learning rate init = 0.5, warm start = True, max iter = 1, verbose = True, random state = 1)
for _ in range(n):
  model.fit(x_train, y_train)
  loss_prev = loss_cur
  loss_cur = model.loss_
  for i in model.coefs_:
    print(i, sep=" ")
  if loss_prev - loss_cur <= 0.0001:
    break
print("The accuracy of the model is: ",model.score(x_test, y_test))
print("The final weights are: ")
for i in model.coefs:
  print(i, sep = " ")
```


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R		USN: 1SI19CS143	Batch No: B4		o: B4 Date: 21-12-2				
Evaluation:	Evaluation:								
Clarity in	Execution and	Maintain of observation	book &	Viva	ı	Total			
concepts	Results (10 Marks)	Records (05 Mark	(10 Marks)		(35 Marks)				
(10 Marks)									
Sl.No	N	ame of the Faculty In-Cha	rge			Signature			
1.	Dr. K Bhargavi								
2.	Dr. M B Nirmala								

Question No: 4

Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Algorithm:

- Convert the given dataset into frequency tables.
- Generate Likelihood table by finding the probabilities of given features.
- Now, use Bayes theorem to calculate the posterior probability.

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
dataset = pd.read_csv("naive.csv")
dataset df = pd.DataFrame(dataset)
en = preprocessing.LabelEncoder()
dataset_df_encoded = dataset_df.apply(en.fit_transform)
data = dataset_df_encoded.drop(['play'], axis=1)
target = dataset_df_encoded['play']
print(data)
print("target:-")
print(target)
X_train,X_test,Y_train,Y_test = train_test_split(data,target,test_size = 0.25)
model = GaussianNB()
learntModel = model.fit(X_train,Y_train)
prediction = learntModel.predict(X_test)
print(list(prediction))
print(list(Y_test))
print("Accuracy : ", metrics.accuracy_score(prediction,Y_test))
```


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R		USN: 1SI19CS143	Batch	No: B4 Date		ate: 18-01-2023				
Evaluation:	Evaluation:									
Clarity in	Execution and	Maintain of observation bo	ok &	Viva		Total				
Concepts	Results (10 Marks)	Records (05 Marks)		(10 Marks)		(35 Marks)				
(10 Marks)										
			L							
Sl.No	Na	ame of the Faculty In-Char	ge			Signature				
1.	Dr. K Bhargavi									
2.	Dr. M B Nirmala									

Question No: 5

Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

Algorithm:

- Define the structure of the Bayesian Belief Network (BBN) in terms of a directed acyclic graph (DAG) with nodes representing variables and edges representing dependencies between variables.
- Define the conditional probability tables (CPTs) for each variable, which give the probability of the variable taking on a certain value given the values of its parent variables in the graph.
- Initialize the network by setting the initial belief state of each variable to a prior probability distribution.
- Perform probabilistic inference using the network by computing the marginal probability distributions of the variables of interest given the evidence.
 - a. Use the CPTs to compute the likelihood of the evidence given the current belief state of the network.
 - b. Use Bayes' theorem to update the belief state of each variable based on the new evidence.
 - c. Repeat steps a and b until the belief state of the network converges or a stopping criterion is met.
- Use the final belief state of the network to make decisions or predictions.

```
pip install pgmpy
from pgmpy.models import BayesianNetwork
from\ pgmpy. estimators\ import\ Maximum Likelihood Estimator
from pgmpy.inference import VariableElimination
import pandas as pd
import networkx as nx
data = pd.read_csv("BayesianNetwork.csv")
model = BayesianNetwork([('age','target'),('sex','target'), ('trestbps', 'target'),])
nx.draw(model, with_labels = True)
model.fit(data, estimator = MaximumLikelihoodEstimator)
infer = VariableElimination(model
q = infer.query(variables = ['target'], evidence= {
  "age": 29,
  "sex":0
})
print(q)
```


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R			USN: 1SI19CS143	USN: 1SI19CS143 Batch No: B4		34 Date: 18-01-2023		
Evaluation:								
Clarity in	Execution and	M	laintain of observati	ion book &		Viva	Total	
concepts	Results (10 Marks)		Records (05 Marks)			0 Marks)	(35 Marks)	
(10 Marks)								
Sl.No	Na	am	e of the Faculty In-C	Charge			Signature	
1.	Dr. K Bhargavi							
2.	Dr. M B Nirmala							

Question No: 6

Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Algorithm:

The algorithm for Gaussian Mixture Model (GMM) involves the following steps:

- 1. Initialize the parameters of the Gaussian distributions (mean, covariance, and mixing coefficients)
- 2. Expectation step: Compute the probability of each data point belonging to each of the Gaussian distri-butions
- 3. Maximization step: Re-estimate the parameters of the Gaussian distributions using the probabilities computed in step 2
- 4. Repeat steps 2 and 3 until the parameters converge to a stable solution
- 5. Final step: Assign each data point to the Gaussian distribution with the highest probability of member-ship

The algorithm for K-Means involves the following steps:

- 1. Select the number K to decide the number of clusters.
- 2. Select random K points or centroids. (It can be other from the input dataset).
- 3. Assign each data point to their closest centroid, which will form the predefined K clusters.
- 4. Calculate the variance and place a new centroid of each cluster.
- 5. Repeat the third steps, which means reassign each data-point to the new closest centroid of each cluster.
- 6. If any reassignment occurs, then go to step-4 else go to FINISH

```
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.metrics import completeness_score
import matplotlib.pyplot as plt
import numpy as np
data = load_iris()
x = data.data
y = data.target
wcss = []
for i in range(2,11):
 model = KMeans(n_clusters = i)
 model.fit(x)
 wcss.append(model.inertia_)
plt.figure()
plt.plot(range(2,11), wcss)
model = KMeans(n_clusters = 3)
model.fit(x)
print("The completeness score of KMeans is: ",completeness_score(y,model.labels_))
gmm = GaussianMixture(n_components = 3, random_state = 1)
gmm.fit(x)
                                              2022-23
```

```
y_pred = gmm.predict(x)
print("The completeness score of Gaussian Mixture is: ",completeness_score(y,y_pred))
plt.figure(figsize=(21,7))
colorMap = np.array(["lime","red","black"])
plt.subplot(1,3,1)
plt.scatter(x[:,2],x[:,3],c = colorMap[y])
plt.title("Real Classification")
plt.xlabel("Petal Length")
plt.ylabel("Petal Width")
plt.subplot(1,3,2)
plt.scatter(x[:,2],x[:,3],c = colorMap[model.labels_])
plt.title("KMeans Classification")
plt.xlabel("Petal Length")
plt.ylabel("Petal Width")
plt.subplot(1,3,3)
plt.scatter(x[:,2],x[:,3],c = colorMap[gmm.predict(x)],s=40)
plt.title("GaussianMixture Classification")
plt.xlabel("Petal Length")
plt.ylabel("Petal Width")
```


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R USN: 1SI19CS143 Batch No: B4 Date: 1									
Evaluation:									
Clarity in	Execution and	Maintain of observation	book &	Viva	1	Total			
concepts	Results (10 Marks)	Records (05 Marks	(10 Marks)		(35 Marks)				
(10 Marks)									
Sl.No	N	Signature							

Sl.No	Name of the Faculty In-Charge	Signature
1.	Dr. K Bhargavi	
2.	Dr. M B Nirmala	

Question No: 7

Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

Algorithm:

- Select the number K of the neighbors
- Calculate the Euclidean distance of K number of neighbors

- Take the K nearest neighbors as per the calculated Euclidean distance.
- Among these k neighbors, count the number of the data points in each category.
- Assign the new data points to that category for which the number of the neighbor is maximum

```
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

data =load_iris()

x_train,x_test,y_train,y_test=train_test_split(data.data,data.target,test_size=0.3,random_state=5)
model=KNeighborsClassifier(n_neighbors=5)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
mismatch = y_pred - y_test
print("Total missclassified,: ", sum(abs(mismatch)))
print("Acuraccy of KNN\t\t\t\t\t\t",accuracy_score(y_pred,y_test))
pd.DataFrame({'actual':y_test,'predction':y_pred,'correct_classification':{y_test==y_pred})})
```


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MACHINE LEARNING TECHNIQUES LABORATORY (7RCSL02)

Student Name: YASHASWINI G R USN: 1SI19CS143 Batch No: B4 Date							e: 28-12-2022	
Evaluation:								
Clarity in	Execution and	Mai	ntain of observation	book &	Viva	ì	Total	
concepts	Results (10 Marks)		Records (05 Marks)			rks)	(35 Marks)	
(10 Marks)								
		L						
Sl.No	N	ame (of the Faculty In-Char	ge			Signature	
1.	Dr. K Bhargavi							
2.	Dr. M B Nirmala							

Question No: 8

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Algorithm:

- Read the given data sample to X and add the curve to Y.
- Set the value for smoothening parameter or free parameter.
- Set the bias/point of interest X_0 which is a subset of X.
- Determine the weight matrix using

$$w_i = e^{-\left(\frac{\left(x_i - x\right)^2}{2\tau^2}\right)}$$

Determine the value of model term parameter
$$\Theta$$
 using
$$\Theta = (X^T W X)^{-1} X^T W Y$$

Prediction: X₀ * Θ

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv("tips.csv")
bill = data.total_bill
tip = data.tip
mBill = np.mat(bill)
mTip = np.mat(tip)
m = mBill.shape[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T, mBill.T))
def kernel(point,xmat,k):
  m,n = xmat.shape
  weights = np.mat(np.eye(m))
  for j in range(m):
    diff = point - xmat[j]
    weights[j,j] = np.exp(diff*diff.T/(-2*k**2))
  return weights
def Beta(x_value,x,y,k):
  weight = kernel(x_value,x,k)
  W = (X.T * (weight * X)).I*(X.T * (weight * y.T))
  return W
def localWeightRegression(x,y,k):
  m,n = x.shape
  ypred = np.zeros(m)
  for i in range(m):
```

```
ypred[i] = x[i] * Beta(x[i],x,y,k)
return ypred

ypred = localWeightRegression(X,mTip,2)

SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(bill,tip, color='blue')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=1)
plt.xlabel('Total bill')
plt.ylabel('Tip')
```

