HOMEWORK 2

COMPUTATIONAL METHODS FOR DATA SCIENCE FALL SEMESTER 2023

- 1. Generating Random Variables for Common Distributions. (24 points) Assume we can generate a random variable U that follows Uniform(0,1). Suggest a method of generating random variables that follow each of the following distributions:
 - (a) Normal(μ , σ^2).
 - (b) Exponential(λ).
 - (c) Poisson(λ).
 - (d) Chi-Square(df=k).
 - (e) $F_{k,m}$.
 - (f) Binomial(n,p).
 - (g) Negative Binomial(r, p).
 - (h) Dirichlet($\alpha_1, \ldots, \alpha_k$).
- 2. **Sampling Problem.** (10 points) Consider finding $\sigma^2 = E(X^2)$ where X has the density that is proportional to $q(x) = e^{-|x|^3/3}$.
 - (a) Estimate σ^2 using importance sampling with standardized weights.
 - (b) Repeat the estimation using rejection sampling.
- 3. π Estimation (26 points) Consider a disk D of radius 1 inscribed within a square of perimeter 8 centered at the origin. Then the ratio of the area of the disk to that of the square is $\pi/4$. Let f represent the uniform distribution on the square. Then for a sample of points $(X_i, Y_i) \sim f(x, y)$ for $i = 1, \ldots, n$, $\hat{\pi} = (4/n)\sum_{i=1}^n 1_{(X_i, Y_i) \in D}$ is an estimator of π , where 1_A is 1 if A is true, and 0 otherwise.
 - Consider the strategy for estimating π . We start with $(x^{(0)}, y^{(0)}) = (0, 0)$. Thereafter, generate candidates as follows: First, generate both $\epsilon_x^{(0)}$ and $\epsilon_y^{(0)}$ follow Uniform(-h, h). If $(x^{(i)} + \epsilon_x^{(i)}, y^{(i)} + \epsilon_y^{(i)})$ falls outside the square, regenerate $\epsilon_x^{(0)}$ and $\epsilon_y^{(0)}$ until the step taken remains within the square. Let $(X^{i+1}, Y^{i+1}) = (x^{(i)} + \epsilon_x^{(i)}, y^{(i)} + \epsilon_y^{(i)})$. Increment t. This generates a sample of points over the square. When t = n, stop and calculate $\hat{\pi}$ as given above.
 - (a) Implement this method for h = 1 and n = 20000. Compute $\hat{\pi}$. What is the effect of increasing n? What is the effect of increasing and decreasing h?
 - (b) Explain why this method is flawed. Using the same method to generate candidates, develop the correct approach by referring to the Metropolis-Hastings ratio. Prove that your sampling appraach has a stationary distribution that is uniform on the square.
 - (c) Implement your approach from Part (b) and caluclate $\hat{\pi}$. Experiment again with π and h. Comment on your result.
- 4. Coal-Mining Disaster Analysis (40 points) In this problem, we consider a famous coalmining disaster annual data between 1851 and 1962. The rate of accidents per year appears to decrease around 1900, so we consider a change-point model for these data. Let j = 1 in 1851,

and index each year therafter, so j = 112 in 1962. Let X_j be the number of accidents in year j, with X_1, \ldots, X_{θ} follows i.i.d. Poisson (λ_1) and $X_{\theta+1}, \ldots, X_{112}$ follows i.i.d. Poisson (λ_2) . Thus the change-point occurs after the θ th year in the series, where $\theta \in \{1, \ldots, 111\}$. This model has parameters θ , λ_1 , and λ_2 . For the standard setup, we assume a discrete uniform prior for θ on $\{1, 2, \ldots, 111\}$, and priors $\lambda_i | a_i \sim \text{Gamma}(3, a_i)$, and $a_i \sim \text{Gamma}(10, 10)$ independently for i = 1, 2.

- (a) Estimate the posterior mean and provide a histogram each for θ , λ_1 and λ_2 .
- (b) Consider a modification that $\lambda_2 = \alpha \lambda_1$. Assume the same discrete uniform prior for θ and the same prior $\lambda_1|a \sim \text{Gamma}(3,a)$, $a \sim \text{Gamma}(10,10)$. In addition, assume $log\alpha \sim \text{Uniform}(log1/8, log2)$. Estimate the posterior mean and provide a histogram each for θ , λ_1 and λ_2 .
- (c) Consider a modification that priors $\lambda_i|a_i \sim \text{Gamma}(3, a_i)$, and $a_i \sim \text{Uniform}(0, 100)$ independently for i = 1, 2 instead. Assume the same discrete uniform prior for θ . Estimate the posterior mean and provide a histogram each for θ , λ_1 and λ_2 .
- (d) Using the standard setup, derive the conditional distributions necessary to carry out Gibbs sampling for the change-point model.
- (e) Implement the Gibbs sampler. Use a suite of convergence diagnostics to evaluate the convergence and mixing of your sampler.
- (f) Construct density histogram and a table of summary statistics for the approximate posterior distributions of θ , λ_1 and λ_2 .
- B. Bootstrapping Practice (Bonus 10 points) Suppose $\theta = g(\mu)$, where g is a smooth function and μ is the mean of the distribution from which the data arise. Consider bootstrapping $R(X,F) = g(\bar{X}) g(\mu)$.
 - (a) Show that $E^*(X^*) = \bar{x}$ and $var^*(X^*) = \hat{\mu}^2/n$, where $\hat{m}u_k$, where $\hat{\mu}_k = \sum_{i=1}^n (x_i \bar{x})^k$.
 - (b) By Taylor Series Expansion, find $E^*(R(X^*, \hat{F}))$ and $var^*(R(X^*, \hat{F}))$. You can show the first two terms only of the expansion only.