Self-Balancing Bike

Philip Salmony, Wolfson College

November 22, 2018

Background and Context

- Bicycle stability and equations of motion studied for well over 100 years.
 - e.g., Whipple (1899), Papadopoulos (1980s), Astrom (2005)
- Still misconceptions about why a bike is self-stable.
- "Inverted pendulum"
- Under-actuated system

"Everybody knows how to ride a bike, but no one knows how we ride bikes."

Aims and Significance

- How does a human stabilise a bicycle?
- What makes a bicycle more or less stable?
- Can we design a control algorithm that stabilises a bicycle in all situations?

Generally, an interesting but rather difficult control problem!

Honda Self-Balancing Bike

 $Source:\ https://motorbikewriter.com/honda-self-balancing-bike-electric/$

October 2017 - not very long ago!

Progress - Modelling

- Linear and non-linear bicycle models for simulation
 - Many, very complex and coupled non-linear, differential equations.
 - Fourth-order linearised model, dependent on forward speed:

$$\mathbf{M} \cdot \underline{\ddot{q}} + \mathbf{C}_1 \cdot \mathbf{v} \cdot \underline{\dot{q}} + (\mathbf{K}_0 + \mathbf{K}_2 \mathbf{v}^2) \cdot \underline{q} = \begin{bmatrix} 0 \\ \tau \end{bmatrix}$$

- Stability investigation
- Developed simulations in Unity and MatLAB/Simulink

Progress - Simulations (Unity)

Progress - Controller Design

- Investigated linear PD and LQR controller design
 - Limitation: need several controllers to cope with varying speeds!
- Developed **LEGO Mindstorms prototype** Video
- Looked into non-linear control
 - Desire a **single** controller that works across **all** speeds.
 - Virtual Model Control
 - Energy-Balancing Control: Putting Energy Back in Control, R. Ortega et al.

Progress - Controller Design (PD)

Findings So Far I

- Modelling and Simulation
 - Non-linear model too hard to interpret intuitively.
 - Stability *strongly* dependent on forward speed.
 - Difficult system: RHP poles and zeros
- Linear Control
 - In theory, PD and LQR controllers can stabilise a rider-less bicycle.

Findings So Far II

- Non-linear Control
 - Virtual Model Control: need little knowledge about system, works in theory.
 - Energy-Balancing Control: finding re-shaping controller gets more and more difficult as system complexity increases.
- Key Problems
 - Model identification
 - Real-world implementation
- Full-scale Bike
 - A lot of work...
 - Sourcing components, mechanical design
 - Scaling-up of controller design

Plans

Michaelmas

- Improve LEGO prototype.
- Further investigate non-linear control.

Lent

- H_{∞} loop shaping for robust control.
- Trajectory tracking.
- Move on to full scale bike!

Thanks for listening!

Any questions?