Architettura

R0, R1: registri operandi

A: registro accumulatore

IX: registro indice
SP: stack-pointer
PC: program-counter
IR: registro istruzioni
MDR: memory-data-register*
MAR: memory-address-register*
ALU: arithmetic-logic-unit

 $^{^{*}}$ presenti solo nella grafica: la memoria RAM è un array che può contenere istruzioni o numeri

Ciclo fetch-execute

 $IR \leftarrow RAM[PC]$ si evidenzia: 1) reg. PC + bus indirizzi + reg. MAR 2) RAM[PC] 3) reg. MDR + bus dati + reg. IR

 $PC \leftarrow PC + 1$ si evidenzia reg. PC

execute(IR) si evidenzia: 1) reg. IR + decoder 2, ...) vedi tabella istruzioni

Set istruzioni

0	NOP		-
1	HLT		-
2	ADD	A ← R0 + R1	2) reg. R0 + reg. R1 3) ALU 4) reg. A
3	SUB	A ← R0 − R1	2) reg. R0 + reg. R1 3) ALU 4) reg. A
4	MUL	A ← R0 * R1	2) reg. R0 + reg. R1 3) ALU 4) reg. A
5	DIV	A ← R0 / R1	2) reg. R0 + reg. R1 3) ALU 4) reg. A
6	MOV R0	R0 ← A	2) reg. A + bus dati 3) bus dati + reg. RO
7	MOV R1	R1 ← A	2) reg. A + bus dati 3) bus dati + reg. R1
8	MOV IX	IX ← A	2) reg. A + bus dati 3) bus dati + reg. IX
9	SET R0 #n	R0 ← n	2) decoder + bus dati 3) bus dati + reg. R0
10	SET R1 #n	R1 ← n	2) decoder + bus dati 3) bus dati + reg. R1
11	SET IX #n	IX ← n	2) decoder + bus dati 3) bus dati + reg. IX
12	SET SP #n	SP ← n	2) decoder + bus dati 3) bus dati + reg. SP
13	LOD R0 ind	R0 ← RAM[ind]	2) decoder+ bus indirizzi + reg. MAR 3) cella RAM[ind]
			4) reg. MDR + bus dati + reg. R0
14	LOD R1 ind	$R1 \leftarrow RAM[ind]$	2) decoder + bus indirizzi + reg. MAR 3) cella RAM[ind]
15	I OD IV in d	IV (DAM[ind]	4) reg. MDR + bus dati + reg. R1 2) decoder + bus indirizzi + reg. MAR 3) cella RAM[ind]
15	LOD IX ind	IX ← RAM[ind]	4) reg. MDR + bus dati + reg. IX
16	LOD SP ind	SP ← RAM[ind]	2) decoder + bus indirizzi + reg. MAR 3) cella RAM[ind]
			4) reg. MDR + bus dati + reg. SP
17	LOD R0 @ind	$R0 \leftarrow RAM[IX + ind]$	2) decoder + bus indirizzi + reg. IX + adder
			3) bus indirizzi + reg. MAR 4) cella RAM[IX+ind] 5) reg. MDR + bus dati + reg. R0
18	LOD R1 @ind	R1 ← RAM[IX + ind]	2) decoder + bus indirizzi + reg. IX + adder
10	LOD KI @ilia	NI V NAMINIA	3) bus indirizzi + reg. MAR 4) cella RAM[IX+ind]
			5) reg. MDR + bus dati + reg. R1
19	LOD R0 \$ind	$R0 \leftarrow RAM[SP + ind]$	2) decoder + bus indirizzi + reg. SP + adder
			3) bus indirizzi + reg. MAR 4) cella RAM[SP+ind] 5) reg. MDR + bus dati + reg. R0
20	LOD R1 \$ind	R1 ← RAM[SP + ind]	2) decoder + bus indirizzi + reg. SP + adder
20	LOD KI Şilid	INI V INAMIJI I IIIUJ	3) bus indirizzi + reg. MAR 4) cella RAM[SP+ind]
			5) reg. MDR + bus dati + reg. R1
21	STO ind	$RAM[ind] \leftarrow A$	2) decoder + bus indirizzi + MAR + reg.A + bus dati + reg.
			MDR
22	STO @ind	RAM[IX + ind] ← A	3) cella RAM[ind] 2) decoder + bus indirizzi + reg. IX + adder
	310 @IIId	MANULIA I IIIUJ V A	3) bus indirizzi + MAR + reg. A + bus dati + reg. MDR
			4) cella RAM[IX+ind]
23	STO \$ind	$RAM[SP + ind] \leftarrow A$	2) decoder + bus indirizzi + reg. SP + adder
			3) bus indirizzi + MAR + reg. A + bus dati + reg. MDR
			4) cella RAM[SP+ind]

24	JMP ind	PC ← ind	2) decoder + bus indirizzi + reg. PC
25	JMZ ind	if A=0 then PC ← ind	2) reg. A 3) [decoder + bus indirizzi + reg. PC]/[reg. PC]
26	JML ind	if A<0 then PC ← ind	2) reg. A 3) [decoder + bus indirizzi + reg. PC]/[reg. PC]
27	JMG ind	if A>0 then PC ← ind	2) reg. A 3) [decoder + bus indirizzi + reg. PC]/[reg. PC]
28	PSH	$RAM[SP] \leftarrow A$ $SP \leftarrow SP - 1$	2) reg. SP + bus indirizzi + MAR + reg. A + bus dati + reg. MDR 3) cella RAM[SP] 4) reg. SP
29	POP	$SP \leftarrow SP + 1$ $A \leftarrow RAM[SP]$	3) reg. SP 4) reg. SP + bus indirizzi + reg. MAR 5) cella RAM[SP] 6) reg. MDR + bus dati + reg. A
30	CAL ind	$\begin{array}{c} RAM[SP] \leftarrow PC \\ SP \leftarrow SP - 1 \\ PC \leftarrow ind \end{array}$	2) reg. SP + bus indirizzi + MAR + reg. PC + bus dati + reg. MDR 3) cella RAM[SP] 4) reg. SP 5) decoder + bus indirizzi + reg. PC
31	RET	$SP \leftarrow SP + 1$ $PC \leftarrow RAM[SP]$	2) reg. SP 3) reg. SP + bus indirizzi + reg. MAR 4) cella RAM[SP] 5) reg. MDR + bus dati + reg. PC