

Lecture 8. Introduction to

<u>Course</u> > <u>Unit 3 Neural networks (2.5 weeks)</u> > <u>Feedforward Neural Networks</u>

4. Neural Network Units

Audit Access Expires May 11, 2020

You lose all access to this course, including your progress, on May 11, 2020. Upgrade by Mar 25, 2020 to get unlimited access to the course as long as it exists on the site. **Upgrade now**

4. Neural Network Units Neural Network Units

A **neural network unit** is a primitive neural network that consists of only the "input layer", and an output layer with only one output. It is represented pictorially as follows:

A neural network unit computes a non-linear weighted combination of its input:

$$\hat{y} = f(z) \quad ext{where } z = w_0 + \sum_{i=1}^d x_i w_i$$

where w_i are numbers called **weights** , z is a number and is the weighted sum of the inputs x_i , and f is generally a non-linear function called the **activation** function .

The above equation in vector form is:

$$\hat{y} = f(z) \quad ext{where } z = w_0 + x \cdot w,$$

where
$$x = \left[x_1, \ldots, x_d
ight]$$
 and $w = \left[w_1, \ldots, w_d
ight]^T$.

Numerical Example - Neural Network Unit

2/2 points (graded)

In this problem, you will compute the output $\hat{y}=f(z)$ in the following neural network unit with 2 inputs x_1 and x_2 .

Let

$$egin{array}{lll} x&=&\left[1,0\,
ight] \ w_0&=&-3 \ w&=&\left[egin{array}{c} 1\ -1 \end{array}
ight] \end{array}$$

First, compute z.

$$z=$$
 -2 \checkmark Answer: -2

The rectified linear function (ReLU) is defined as:

$$f(z) = \max\{0, z\}.$$

Using the ReLU function as the activiation function $f\left(z\right)$, compute \hat{y} :

$$\hat{y} = \begin{bmatrix} 0 \end{bmatrix}$$
 Answer: 0

Solution:

$$egin{array}{lll} x &=& [\,1,0\,] \ w_0 &=& [\,-3\,] \end{array}$$

$$egin{aligned} w &= egin{bmatrix} 1 \ -1 \end{bmatrix} \ x \cdot w &= egin{bmatrix} 1 \ -1 \end{bmatrix} \ x \cdot w &= 1 \ x \cdot w + w_0 &= 1 - 3 \ x \cdot w + w_0 &= -2 \
m{ReLU} \left(x \cdot w + w_0
ight) &=
m{ReLU} \left(-2
ight) \
m{ReLU} \left(x \cdot w + w_0
ight) &= max \left(0, -2
ight) \
m{ReLU} \left(x \cdot w + w_0
ight) &= 0 \end{aligned}$$

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

Hyperbolic Tangent Activation Function

2.0/2.0 points (graded)

In this problem, we will recall and refamiliarize ourselves with hyperbolic tangent function, which is commonly used as an activation function in a neural network.

Recall the **hyperbolic tangent function** is defined as

$$anh\left(z
ight) \ = \ rac{e^{z}-e^{-z}}{e^{z}+e^{-z}} = 1 - rac{2}{e^{2z}+1}.$$

What is the domain of anh(z), i.e. for what values of z is anh(z) defined?

igcap The set of two numbers $\{-1,1\}$

 \bigcirc the interval (-1,1)

All real numbers

~

Find anh(0). (Enter e for e.)

anh(0) = 0 Answer: 0

Is tanh odd, even, or neither?

odd

even

neither

~

What is the range of \tanh ? Answer by giving the tightest lower bound, and a tightest upper bound of the set of all possible values of $\tanh{(z)}$.

Lower bound: -1 ✓ Answer: -1

Upper bound: 1 ✓ Answer: 1

Solution:

Observe that \tanh is an odd function since $\tanh{(-z)}=-\tanh{(z)}$. Hence $\tanh{(0)}=0$. Since \tanh is a strictly increasing function:

$$rac{d anh\left(z
ight)}{dz}\;=\;rac{d}{dz}igg(1-rac{2}{e^{2z}+1}igg)=rac{4e^{2z}}{\left(e^{2z}+1
ight)^2}>0,$$

the greatest lower bound (or infimum), and the lower upper bound (or supremum) are given by the limits

$$egin{array}{ll} \lim_{z o -\infty} anh\left(z
ight) \ = \ 1-rac{2}{\left(\lim_{z o -\infty}e^{2z}
ight)+1} \ = \ -1 \ \ \lim_{z o +\infty} anh\left(z
ight) \ = \ 1-0 \ = \ 1 \end{array}$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 3 Neural networks (2.5 weeks):Lecture 8. Introduction to Feedforward Neural Networks / 4. Neural Network Units

Add a Post

1

Show all posts

by recent activity

missing w d

in the presented pictorially representation, I think there is missing an orange w_d in the pictu...

Learn About Verified Certificates

© All Rights Reserved