## **Stochastic Process**

## Def: A stochastic process is a family of random variables X(t)

X: state space

X( ), **a** can be discrete (countable) or continuous (uncountable)

t: time index, can be discrete or continuous

 $X : \{ X(t), t \in T \}$  is called a stochastic process

## Four types of stochastic process

- (1) discrete state, discrete time
  - ex: number of mails received on the nth day of the year

X(t):第 t 天收到的 mail 數

- (2) discrete state, continuous time
  - ex: number of WWW access during (0, t)

X(t):(0,t) 時間內有多少 access request

- (3) continuous state, discrete time
  - ex: period of time you played BBS on the nth day of the year

X(t): 第 t 天用 BBS 的時間

- (4) continuous state, continuous time
  - ex : periods of time that a WWW server is busy during (0, t)

X(t):(0,t) 時間內 server busy 的時間

## Relations of X(t) and X(t)

X(t): stochastic process



Define  $F_x(\overline{x,t}) = P(X(t_1) \le x_1, X(t_2) \le x_2, ..., X(t_i) \le x_i), \overline{x} = (x_1, x_2, ...), \overline{t} = (t_1, t_2, ...)$ 

- if X is stationary:  $F_x(\bar{x}, t) = F_x(\bar{x}, t + \bar{t}), \ \bar{x} = (x_1, x_2, ...), \bar{t} = (t_1 + \bar{t}, t_2 + \bar{t}, ...)$
- if X is independent:  $f_x(x, t) = f_x(x_1, t_1) * f_x(x_2, t_2) * ...$

#### **Markov Process**

future evolution of stochastic process depends only on current state

**Def**: A discrete state Markov Process forms a Markov Chain (MC) if the probability of the next state depends only on current state

$$X = \{ X(t_1), X(t_2), \dots \} = \{ x_1, x_2, \dots \}$$

$$P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_1 = x_1) = P(X_{n+1} = x_{n+1} | X_n = x_n)$$



## Modeling using MC (Markov Chain)

- State : notation of a system state with transitions among states ex : number of jobs queued, number of available resources

All relevant past history of system (for predicting future) must be contained in current state descriptor

time: discrete time v.s continuous time
 discrete time: transitions between states occur only at discrete time
 continuous time: transitions between states occur at any time

#### Discrete time MC

- a discrete state, discrete time random process
- system has a possible set of countable states  $\{x_1, x_2, ...\}$
- all past history summarized in current state
- transistions between states take place only at discrete time  $(t_1, t_2, ...)$
- given MC is at state I, the probability the next state will be j is  $P[X_{n+1} = j | X_n = i] = P_{ij}$ ,  $P = [P_{ij}]$  is called transition probability matrix

#### Example1: weather

suppose tomorrow's weather only depends on today's weather

State = (sunny, cloudy, rainy)

$$P = \begin{bmatrix} S & C & R \\ 0.9 & 0.09 & 0.01 \\ 0.95 & 0.04 & 0.01 \\ 0.5 & 0.4 & 0.1 \end{bmatrix}, \text{ if } \sum_{allj} P_{ij} = 1, P \text{ is called a "stochastic" matrix}$$



**Example2**: slotted concentrator with buffer (ATM)



- Model output port1, N inout ports, each port has an arrival with destination port1 with probability p during a slot time
- All cells transmitted at an output port during each slot if there is any queued cells

Question: what is the expected delay?

- time: discrete
- state descriptor : queue length (number of cells in output buffer),  $R_{\scriptscriptstyle X} = \big\{0,\!1,\!2,\!\ldots\!\big\}$



$$P_{ij} = P(i + (\# \text{ of attival}) - (\# \text{ of transition}) = j \mid i \text{ cells in buffer })$$
  
ex:  $P_{01} = \binom{N}{1} P(1 - P)^{N-1}$ 

## **Def**: m-setp transition probability

$$\begin{split} P_{ij}^{(m)} &= p\big(X_{n+m} = j \mid X_n = i\big) \\ P_{ij}^{(1)} &= p_{ij} \\ P_{ij}^{(m)} &= \sum_{k} P_{ik}^{(m-1)} P_{kj} \text{ (forward chapman - kolmogov)} \\ &= \sum_{k} P_{ik} P_{kj}^{(m-1)} \text{ (backward chapman - kolmogov))} \\ P_{ij}^{(m+n)} &= \sum_{k} P_{ik}^{(m)} P_{ij}^{(n)} \\ P &= [P_{ij}] \text{ implies } P^{(m)} = \text{m - step transition probability} = [P_{ij}^{(m)}] \end{split}$$

#### Def: Irreducible MC

A Markov Chain is irreducible if every state is reachable from any other state i.e  $P_{ij}^{(m)}>0$  for some m,i,j  $\in$  I

#### Recurrence

 $f_j$  = prob [ever returning to state j, given the system is in state j now]  $f_i^{(n)}$  = prob [first return to state j after n steps]

$$ex: f_{ii}^1 = P_{ii}$$

$$f_j = \sum_{i=1}^{\infty} f_j^i$$

- if  $f_j = 1$ , state j is recurrent, state j will be visited infinitely often if system runs forever
- if  $f_j < 1$ , state j is transient, each time we visite j, never return with probability 1-  $f_j$
- probability of return exactly n times =  $f_j^{n-1}(1-f_j)$
- E[ # of returns to j ] =  $1/1-f_j$
- A MC is recurrent iff all states are recurrent

$$M_j = \sum_{n=1}^{\infty} n * f_j^{(n)}$$

- if  $M_j <$  , state j is non null recurrent
- if  $M_{i} =$ , state j is null recurrent

### **Periodicty**

If we can only return to state j after r,2r,3r,... transitions ( r>1 ), state j is periodic





# Def: Ergodic

A irreducible MC with all states are periodic, non - null recurrent is ergodic