Plan du cours

I.	Vocabulaire	1			
11.	. Définition de cosinus, sinus et tangente				
III.	Quelques propriétés	2			
IV.	Applications	3			
	1. Calcul d'une longueur	3			
	2. Calcul d'un angle	3			

I. Vocabulaire

Soit ABC un triangle rectangle en A. **L'hypoténuse** est [BC].

- Si on regarde l'angle \widehat{ABC} :

Le **côté opposé** à l'angle \widehat{ABC} est [AC]. Le **côté adjacent** à l'ange \widehat{ABC} est [AB].

- Si on regarde l'angle \widehat{ACB} :

Le **côté opposé** à l'angle \widehat{ACB} est [AB]. Le **côté adjacent** à l'ange \widehat{ACB} est [AC].

Dans un triangle ABC rectangle en A : $\widehat{ACB} + \widehat{ABC} = 90^{\circ}$

II. Définition de cosinus, sinus et tangente

Définition

Soit ABC un triangle rectangle en A.

•
$$cos\widehat{ABC} = \frac{\text{côt\'e adjacent}}{\text{hypot\'enuse}} = \frac{AB}{BC}$$

•
$$sin\widehat{ABC} = \frac{\text{côt\'e oppos\'e}}{\text{hypot\'enuse}} = \frac{AC}{BC}$$

•
$$tan\widehat{ABC} = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}} = \frac{AC}{AB}$$

i

Moyen mnémotechnique de se souvenir de ces formules :

SOH CAH TOA

III. Quelques propriétés

x (en degré)	5	30	45	60	90
COSX					

x (en degré)	5	30	45	60	90
sinx					

Propriété

Dans un triangle rectangle, pour tout angle x, le cosinus et le sinus sont toujours compris entre 0 et 1.

$$0 < cos x < 1$$
 et $0 < sin x < 1$

x (en degré)	5	30	45	60	90
$(cosx)^2$					

x (en degré)	5	30	45	60	90
(sinx) ²					

Propriété

Dans un triangle rectangle, pour tout angle aigu de mesure x,

$$(\cos x)^2 + (\sin x)^2 = 1$$

<u>Démonstration:</u>

Propriété

Dans un triangle rectangle, pour tout angle aigu de mesure x,

$$tanx = \frac{sinx}{cosx}$$

Démonstration:

IV. Applications

1. Calcul d'une longueur

(a) Soit IJK un triangle rectangle en K tel que IJ = 8 cm et \widehat{KIJ} = 50°. Calculer KJ.

Le triangle EJK est rectangle en K.

Je connais l'angle \widehat{KIJ} et l'hypoténuse du triangle [IJ] et je cherche la longueur du côté opposé([KJ])

J'utilise donc la formule du sinus :

$$sin\widehat{KIJ} = \frac{\text{côté opposé}}{\text{hypoténuse}}$$

$$sin\widehat{KIJ} = \frac{KJ}{IJ}$$

$$sin50^{\circ} = \frac{KJ}{8}$$

D'après le produit en croix : $KJ = 8 \times sin50^{\circ}$

$$KJ \approx 6,1cm$$

(b) Soit DFE un triangle rectangle en E tel que DE = 7 cm et \widehat{DFE} = 56°. Calculer FE.

Le triangle DFE est rectangle en E.

Je connais l'angle \widehat{DFE} et son côté opposé [DE] et je cherche la longueur du côté adjacent([FE])

J'utilise donc la formule de la tangente :

$$tan\widehat{DFE} = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}}$$

$$tan\widehat{DFE} = \frac{DE}{FE}$$

$$tan56^{\circ} = \frac{7}{FE}$$

D'après le produit en croix : $FE = \frac{7 \times 1}{tan56}$

$$FE \approx 4.7cm$$

2. Calcul d'un angle

(a) Soit LMN rectangle en N tel que LN = 6,5 cm et NM = 3 cm. Calculer \widehat{LMN} puis en déduire la mesure de l'angle \widehat{MLN} .

Calcul de l'angle \widehat{LMN} :

Le triangle LMN est rectangle en N.

Je connais [MN] le côté adjacent de \widehat{LMN} et [NL] le côté opposé de \widehat{LMN} et je cherche l'angle \widehat{LMN} .

J'utilise donc la formule de la tangente :

$$tan\widehat{LMN} = \frac{\text{côt\'e oppos\'e}}{\text{côt\'e adjacent}}$$

$$tan\widehat{LMN} = \frac{NL}{MN}$$

$$tan\widehat{LMN} = \frac{6.5}{3}$$

A l'aide de la calculatrice, je trouve :

$$\widehat{LMN} = \arctan(\frac{6,5}{3})$$

Donc
$$\widehat{LMN} \approx 65, 2^{\circ}$$

Calcul de l'angle \widehat{MLN} :

On sait que le triangle MLN est rectangle en N, donc la somme de ses angles aigus vaut 90°.

Donc
$$\widehat{MLN} = 90 - \widehat{LMN}$$

$$\widehat{MLN} = 90 - 65,2$$

$$\widehat{MLN}$$
 = 24,8 °

(b) Soit OPQ un triangle rectangle en O tel que OP = 5 cm et QP = 7 cm. Calculer \widehat{OQP} .

Le triangle OPQ est rectangle en O. Je connais [OP] le côté opposé de \widehat{OQP} et [QP] l'hypoténuse et je cherche l'angle \widehat{OQP} .

J'utilise donc la formule du sinus :

$$sin\widehat{OQP} = \frac{\text{côt\'e oppos\'e}}{\text{hypot\'enuse}}$$

$$sin\widehat{OQP} = \frac{OP}{QP}$$

$$\sin\widehat{OQP} = \frac{5}{7}$$

A l'aide de la calculatrice, je trouve :

$$\widehat{OQP} = \arcsin(\frac{5}{7})$$

Donc
$$\widehat{OQP} \approx 45,6^{\circ}$$