# Cryptography

Algorithms and Attacks

Samuel Kim September 17, 2014

The magic words are squeamish ossifrage.

## 1 Introduction

Many cryptosystems rely on number theory, and the difficulty of solving certain problems, such as the discrete-log problem and the problem of factoring large integers efficiently. Here's a small sampler of algorithms in cryptography that use number theory.

## 2 Diffie-Hellman Key Exchange

## 2.1 Description



Alice and Bob agree on a prime modulus p and an integer  $g \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ , preferably with an order of a multiple of a large prime (for security). They each choose a random integer (a and b), and send g to the power of that integer modulo p (A and B) to each other. To calculate the shared key, they raise the integer they receive to the power of their integer.

#### 2.2 Attacks

#### 2.2.1 Man-In-The-Middle



If Mallory is able to intercept the messages, she can initiate two different key exchanges, and decrypt and modify messages.

Countermeasure There are variants of Diffie-Hellman that use an asymmetric key pair to digitally sign messages, ensuring that they are not modified in transit.

## 3 RSA

### 3.1 Description



Alice calculates two large primes, p and q, and computes n=pq. She then picks a public exponent e relatively prime to  $\varphi(n)$ , and calculates the private exponent d by finding the inverse of e modulo  $\varphi(n)=(p-1)(q-1)$ . She sends her public key (n,e) to Bob. If Bob wants to send a message to Alice, he turns the message into an integer m, and sends  $c=m^e\pmod n$  to Alice. Alice then decrypts e by raising it to the power of her private exponent e modulo e.

#### 3.2 Attacks

#### 3.2.1 Low Public Exponent

If e and m are sufficiently small enough,  $m^e < n$ , so c can simply be decrypted by finding the  $e^{th}$  root.

**Håstad's Broadcast Attack** If m is transmitted to at least e people with the same public exponent e, then we can use CRT to find  $m^e \pmod{n_1 n_2 \cdots n_e}$ . Since  $m < n_i$ ,  $m^e < n_1 n_2 \cdots n_e$ , and we can take the  $e^{\text{th}}$  root. There is a stronger version of this attack that works even when the message is linearly padded.

**Countermeasure** To prevent this, there are various schemes for padding the message with random data. In addition, the public exponent should be large  $(2^{16} + 1 = 65537)$  in practice.

#### 3.2.2 Low Private Exponent

Wiener's Attack If  $d < \frac{1}{3}n^{1/4}$  and q , d can be efficiently recovered.

**Countermeasure** The private exponent should be calculated from the chosen public exponent.

## 4 Elliptic Curves

## 4.1 Description

#### **4.1.1** Groups

A group is a set and a binary operation  $\langle G, * \rangle$  that satisfies the group axioms:

Closure For all  $a, b \in G$ ,  $a * b \in G$ .

**Associativity** For all  $a, b, c \in G$ , (a \* b) \* c = a \* (b \* c).

**Identity** There exists  $e \in G$  such that for all  $a \in G$ , a \* e = e \* a = a.

**Inverse** For all  $a \in G$  there exists  $b \in G$  such that a \* b = b \* a = e.

#### 4.1.2 Elliptic Curves

An elliptic curve (for our purposes) is a curve of the equation  $y^3 = x^3 + ax + b$ . If we add a "point at infinity," and set the condition that 3 points on a line (counting a point twice if tangent) sum to the point at infinity, we get an abelian (commutative) group, with the point at infinity being the identity element, and addition being the operation.

#### 4.1.3 Fields

A *field* is a set F that satisfies the field axioms:

Closure under + and  $\cdot$  For all  $a, b \in F$ ,  $a + b \in F$  and  $a \cdot b \in F$ .

**Associativity of** + and · For all  $a, b, c \in F$ , (a + b) + c = a + (b + c) and  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ .

Commutativity of + and  $\cdot$  For all  $a, b \in F$ , a + b = b + a and  $a \cdot b = b \cdot a$ .

Additive and Multiplicative Identities There exists a  $0 \in F$  such that for all  $a \in F$ , a + 0 = a. There exists a  $1 \in F$  such that for all  $a \in F$ ,  $a \cdot 1 = a$ .

**Additive and Multiplicative Inverses** For all  $a \in F$ , there exists  $b \in F$  such that a + b = 0. For all  $a \in F$  ( $a \neq 0$ ), there exists  $b \in F$  such that  $a \cdot b = 1$ .

Distributivity of Muliplication over Addition For all  $a, b, c \in F$ ,  $a \cdot (b + c) = a \cdot b + a \cdot c$ .

A finite field is a field with a finite number of elements, and is denoted  $\mathbb{F}_n$  (with n elements).

$$\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$$
  
 $\mathbb{F}_{2^n} \cong (\mathbb{Z}/2\mathbb{Z})[x]/p(x)$  for irreducible  $p$  of degree  $n$ 

#### 4.1.4 Elliptic Curves over Finite Fields

Since precision is an issue with real numbers, we instead look at elliptic curves over finite fields like  $\mathbb{F}_p$  and  $\mathbb{F}_{2^n}$  (which can be represented in binary).

### 4.1.5 Elliptic Curve Discrete Log

Given a point A on an elliptic curve and a positive integer n, we can compute nA efficiently by repeated doubling. In addition, given nA and A, it's hard to find n without resorting to brute-force. Thus, we can use elliptic curves in algorithms that rely on the discrete log problem, like Diffie-Hellman.

## 4.2 Attacks

Some curves are weak, and make the discrete log problem easier to crack. For example, certain curves over  $\mathbb{F}_p$  are anomalous, with only p points.

# 5 Problems/Stuff to Ponder

- 1. Can you extend Diffie-Hellman to 3 people? 4 people? n people? Can you do it efficiently (in  $O(\log n)$  exponentiations)?
- 2. How can you find the third point on a line passing through an elliptic curve, given 2 points on that line? What about a tangent?