Assigned: Page 54, Exercise 2, 4, 23, 25, 33

Exercise 2

Which of the following binary operations are associative?

- a. subtraction of integers No
- b. division of nonzero rationals No
- c. function composition of polynomials with real coefficients Yes
- d. multiplication of 2 x 2 matrices with integer entries No
- e. exponentiation of integers Yes

Exercise 4

Which of the following sets are closed under the given operation?

- a. 0, 4, 8, 12 addition mod 16 Yes
- b. 0, 4, 8, 12 addition mod 15 **No**
- c. 1, 4, 7, 13 multiplication mod 15 Yes
- d. 1, 4, 5, 7 multiplication mod 9 No

Exercise 23

(Law of Exponents for Abelian Groups)

Let a and b be elements of an Abelian group and let n be any integer.

Show that $(ab)^n = a^n b^n$.

Let a, b \in G, an Abelian group, and let $n \in \mathbb{Z}$

$$(ab)^n = ab \times ab \times ab \times ... \times ab$$
 (n times)
= $a \times a \times a \times ... \times a \times b \times b \times b \times ... \times b$ (by commutativity)
= $(a)^n (b)^n$

Is this also true for non-Abelian groups?

No. Since this requires commutativity to prove.

Exercise 25

Prove that a group G is Abelian iff $(ab)^{-1} = a^{-1}b^{-1}$, $\forall a, b \in G$.

Let G be an Abelian group, and let a, b
$$\in$$
 G. $(ab)^{-1} = \frac{1}{ab} = \frac{1}{a} \frac{1}{b}$ (by commutativity) $= a^{-1}b^{-1}$

Let $a, b \in G$ and assume that $(ab)^{-1} = a^{-1}b^{-1}, \forall a, b \in G$.

Notice that since $(ab)^{-1} = \frac{1}{ab}$ and $a^{-1}b^{-1} = \frac{1}{a}\frac{1}{b}$, this implies that $\frac{1}{(ab)} = (\frac{1}{a})(\frac{1}{b})$, \forall a, b \in G

Since the sequence of division and multiplication does not matter, G is commutative, and therefore Abelian.

Exercise 33

Suppose the table below is a group table. Fill in the blank entries.

	e	a	b	\mathbf{c}	d			e	a	b	\mathbf{c}	d
е	е	-	-	-	-	\longrightarrow	е	е	a	b	c	d
\mathbf{a}	-	b	-	-	\mathbf{e}		a	a	b	\mathbf{c}	d	e
b	-	\mathbf{c}	d	e	-		b	b	\mathbf{c}	d	e	a
\mathbf{c}	-	d	-	a	b		\mathbf{c}	c	d	e	a	b
d	-	-	-	-	-						b	