Telerobotics Experiment

Statement of the Research Problem:

We want to find the minimum frame rate required for humans to effectively explore an unfamiliar environment using low-latency surface telerobotics.

Background of the Problem:

Telerobotics is a useful tool for scientific exploration of our solar system because it combines the deployability of robotics with human ingenuity to create a cheaper method for scientific exploration in space that produces rapid meaningful results. The main benefactor from low-latency surface telerobotics will be future manned missions to Mars. This is the case because the large latency due to the distance between Earth and Mars makes low-latency surface telerobotics impossible to achieve when controlling from stations on Earth. Low-latency surface telerobotics can also be used on the lunar surface in the upcoming missions in cislunar space.

It is critical to investigate the limitations of this method on Earth before low-latency surface telerobotics can be applied in our solar system. Considering that the available bandwidth will vary depending on the line-of-sight from Orion to the teleoperated vehicle, we chose to investigate how variable bandwidth (in the form of frame rate) affects the ability to explore using telerobotics.

Experimental Design Layout: (Complete all necessary items)

Dependent Variable:	Explorability
Criteria Measures:	Time to Discovery
	Number of times stuck
Nature of the Underlying Distribution (C/O/N):	TTD - Continuous
	NTS - Ordinal
Nature of the Data as Measured (C/O/N):	TTD - Continuous
	NTS - Ordinal
Treatment Variable:	Frame Rate
Method (I or N):	Incorporated (I)
Classification (QL, QN):	Quantitative (QN)
Type (F, R):	Fixed
# Levels:	4
Nature of the Underlying Distribution (C/O/N):	Continuous
Nature of the Data as Measured (C/O/N):	Nominal
Blocked Variable (if any):	Driver
# Levels:	3
Limited Variables (if any):	None
Sample Size	72
Alpha	0.05
Beta	0.10

Research Question:

What is the minimum frame rate in which humans can successfully explore an unfamiliar environment with Telerobotics?

Time to Discovery

Descriptive Statistics:

Descriptive Statistics for data as a group:

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Time (seconds)	274	.00	819.00	175.3102	151.93203

Histogram of data as a group:

Descriptive Statistics for each level:

Report

Time (seconds)

Frame Rate	Mean	N	Std. Deviation	Minimum	Maximum
6 fps	124.5208	48	114.37192	2.00	554.00
5 fps	151.3137	51	117.52676	7.00	410.00
4 fps	239.5370	54	205.34046	17.00	819.00
Total	174.0458	153	160.50612	2.00	819.00

Histograms for each level:

Inferential Statistics:

1) Test for Normality (Shape)

1) State the Null (H₀) and Research (H₁) Hypotheses

 $H_0: \gamma_3 = 0$

 $H_1: \gamma_3 \neq 0$ Note: These Statistical Hypotheses are Tested for All Levels, Individually

 $H_0: \gamma_4 = 0$

 $H_1: \gamma_4 \neq 0$

2) State the Type I Error Level

 $\alpha = 0.05$

3) State the Associated Test Statistic

Since n > 25, use the moment tests

Skewness: Approximate t

Kurtosis: g4

4) State the RSD of the Test Statistic When H₀ Is True

The RSDs of the statistics vary based on sample size. Skewness: $t \sim t$ (calculated) df if H_0 is true

Kurtosis: Critical table using sample size to determine q4 critical value

5) State the Rejection Rule for H₀ as A Critical Value or p-Value

Reject H_0 if p < 0.05 (α) for all statistics generated

6) Present the Value of the Test Statistic Calculated

Normality Tests

Frame_Rate	Skewness	p-value	Kurtosis	p-value
(All)	1.268	0.000*	1.552	<.02*
2	1.545	0.000*	3.113	<.02*
3	0.540	0.103	-0.805	>.10
4	0.816	0.016*	-0.256	>.10

Frame rate legend: 2 = 6 fps, 3 = 5 fps, 4 = 4 fps

- 7) State Your Conclusion Related to the Statistical Hypotheses that is being tested in this Set:
 - a) Accept OR Reject H₀: Reject H₀

- b) p = See within cell normality results in table above.
- c) We Have Sufficient Statistical Evidence to Infer that: for the populations represented by the data sets: $\gamma_3 \neq 0.00 \ \gamma_4 \neq 0.00$

2) Variance/Dispersion Analysis

1) State the Null (H_0) and Research (H_1) Hypotheses Frame rate legend: 2 = 6 fps, 3 = 5 fps, 4 = 4 fps

$$H_0: \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$

$$H_1$$
: Not H_0

2) State the Type I Error Level

$$\alpha = 0.05$$

3) State the Associated Test Statistic

$$F = MS_B / MS_W$$

4) State the RSD of the Test Statistic When H₀ Is True

$$F \sim F (J-1, J(n-1)) df$$
 When H_0 is True or $F \sim F (2, 148) df$ When H_0 is True

- 5) State the Rejection Rule for H_0 as A Critical Value or p-Value Reject H_0 if p < 0.05 (α)
- 6) Present the Value of the Test Statistic Calculated

Ran Levene's Test for Homogeneity of Variance on the ADM's (using Fisher's ANOVA since normality was rejected.

Tests of Between-Subjects Effects

Dependent Varia	ble: Time_ADM				
	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Frame_Rate	233943.548	2	116971.774	12.962	.000
Driver	8087.573	2	4043.786		
Error	1335605.908	148	9024.364		
Total	1576018.993	152			

- 7) State Your Conclusion Related to the Statistical Hypotheses that is being tested in this Set:
 - a) Accept OR Reject H₀: Reject H₀

c) We Have Sufficient Statistical Evidence to infer that: *all of the population variances are not equal*

Post-Hoc Analysis d) Illustration

Means plot of ADM

Frame Rate	n	Mean ADM	Std Dev	Low	High
6 fps	48	80.063	73.736	0	405
5 fps	51	96.745	63.592	0	265
4 fps	54	168.982	129.291	6.5	602.5

e) Importance Calculation

 $\omega^2 = 13.6 \%$

f) Post-Hoc Analysis (if Appropriate)

Will do all pairwise comparisons. Performed Tukey's HSD Test for the ADM's.

Time_ADM

Tukey HSD ^{a,b,c}			
		Su	bset
Frame Rate	N	1	2
6 fps	48	80.0625	
5 fps	51	96.7451	
4 fps	54		168.9815

Variance Point Estimates

Frame Rate	N	Sample Variances		Point Estimate	Point Estimate #
		S1	S2		
6 fps (2)	48	13080.936		12446 74	1
5 fps (3)	51	13812.540		13446.74	1
4 fps (4)	54		42164.71	42164.71	2

Conclude: $\sigma_2^2 = \sigma_3^2 < \sigma_4^2$

3) Means Analysis (Location)

1) State the Null (H_0) and Research (H_1) Hypotheses Frame rate legend: 2 = 6 fps, 3 = 5 fps, 4 = 4 fps

 H_0 : $\mu_2 = \mu_3 = \mu_4$

H₁: Not H₀

2) State the Type I Error Level

 $\alpha = 0.05$

3) State the Associated Test Statistic

 $F = MS_B / MS_W$

4) State the RSD of the Test Statistic When H₀ Is True

 $F \sim F (J - 1, J(n - 1)) df$ When Ho is True or

F ~ F (2, 148) *df* When Ho is True

- 5) State the Rejection Rule for H_0 as A Critical Value or p-Value Reject H_0 if p < 0.05 (α)
- 6) Present the Value of the Test Statistic Calculated

Tests of Between-Subjects Effects

Dependent Variable: Time (seconds)

	·				
	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Frame_Rate	378553.635	2	189276.818	7.945	.001
Driver	14356.893	2	7178.446		
Error	3525803.493	148	23822.997		
Total	3915856.680	152			

- 7) State Your Conclusion Related to the Statistical Hypotheses that is being tested in this Set:
 - a) Accept OR Reject H₀: Reject H₀

b) p = .000

c) We Have Sufficient Statistical Evidence to infer that: all of the population means represented by these four groups (levels) are not equal

Post-Hoc Analysis

d) Importance $\omega^2 = 8.4\%$

e) Illustration

Means Plots

Frame Rate	n	Mean	Std Dev	Low	High
6 fps	48	124.5208	114.37192	2.00	554.00
5 fps	51	151.3137	117.52676	7.00	410.00
4 fps	54	239.5370	205.34046	17.00	819.00

f) Post-Hoc Analysis (if Appropriate)

Chose to do all pairwise comparisons based on means plots. When there are unequal variances, use the Games-Howell test for the means.

Results of hypothesis tests:

		(Cmd/Ctr	Post Hoc II-C and Cmd/CtrI-V to copy/paste)			
Тур	pe I Error (Alpha): .05	O Bonfe	erroni-Dunn With Sidak App		Bonferroni-Dunn With Sidak Procedure Tukey/Games-Howell		
Mean Squares AET: 23822.997		7 Schef	ffe/Brown-Forsythe Approa		-Forsythe Procedure		
Degrees	of Freedom AET: 148						
	Variance Mirror Table ual Variance Mirror Table						
Run Post	Hoc!		Input Table		Add Contrast		
Remove	Name	Mean	Variance	Sample Size	Weight		
X	6 fps	124.5208	13080.936	48	0		
X	5 fps	151.3137	13812.540	51			
X	4 fps	239.537	42164.71	54			

Output Table Alpha Per Contrast = .05

Contrast	Equal Varianc	Degrees of Fr	Equal Varianc	Decision	UnEqual Varia	S-W Degrees	UnEqual Varia	Decision
6 fps vs 5 fps	-0.86319642	148	0.66430660	Accept	-1.14941918	96.8876949	0.48627313	Accept
6 fps vs 4 fps	-3.75645533	148	0.00073322	Reject	-3.54383251	84.8028108	0.00185795	Reject
5 fps vs 4 fps	-2.92733495	148	0.01098968	Reject	-2.72047783	85.2689002	0.02135499	Reject

Point Estimates for the Means:

		Sample Means			
Frame Rate	Ν	S1 S2		Point	Point
				Estimate	Estimate #
6 fps (2)	48	124.5208		127.017	1
5 fps (3)	51	151.3137		137.917	1
4 fps (4)	54		239.5370	239.537	2

Conclude: $\mu_2 = \mu_3 < \mu_4$

Stuck (Count - # of times stuck per run)

Histogram: Number of times stuck by frame rate:

1) State the Null (H_0) and Research (H_1) Hypotheses Frame rate legend: 2 = 6 fps, 3 = 5 fps, 4 = 4 fps

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$

H₁: Not H₀

2) State the Type I Error Level

 $\alpha = 0.05$

3) State the Associated Test Statistic $F = MS_B / MS_W$

- 4) State the RSD of the Test Statistic When H_0 Is True $F \sim F (J-1, J(n-1)) df$ When Ho is True or $F \sim F (2, 148) df$ When Ho is True
- State the Rejection Rule for H_0 as A Critical Value or p-Value Reject H_0 if p < 0.05 (α)

6) Present the Value of the Test Statistic Calculated

Note: Converted data to mean ranks to run the ANOVA.

Tests of Between-Subjects Effects

Dependent Variable: Rank of Stuck						
	Type III Sum of					
Source	Squares	df	Mean Square	F	Sig.	
Frame_Rate	49218.214	2	24609.107	6.612	.002	
Driver	8874.744	2	4437.372	1.192	.306	
Error	550873.249	148	3722.117			
Total	608151.013	152				

- 7) State Your Conclusion Related to the Statistical Hypotheses that is being tested in this Set:
 - a) Accept OR Reject H₀: Reject H₀
 - b) p = .002
 - c) We Have Sufficient Statistical Evidence to infer that: all of the population means represented by these four groups (levels) are not equal

Post-Hoc Analysis

d) Importance $\omega^2 = 6.8\%$

A	Omega-Squar	ed Calculation	_
File Edit View	Help		
→ 🔒 ≜	🕦 🚉 🗂 🔒	? ji	
SS(<u>E</u> ffect):	49,218.214	df(Effect):	2
SS(Total):	608,151.013	MSE:	3,722.117
SS (Effect df (Effect SS (Total	ared - Importance t) = 49,218.214 t) = 2 1) = 608,151.013 SE = 3,722.117 w ² = 6.8%		✓ <u>A</u> ction

e) Illustration *Means Plots*

Frame Rate	n	Mean of Mean Ranks
6 fps	48	113.54
5 fps	51	130.37
4 fps	54	156.59

f) Post-Hoc Analysis (if Appropriate)

Results of hypothesis tests:

Rank of Stuck

Tukey HSD^{a,b,c}

		Subset		
Frame Rate	N	1	2	
6 fps	48	113.54167		
5 fps	51	130.13725	130.13725	
4 fps	54		156.59259	

Point Estimates for the Means of Times Stuck:

		# Times Stuck per Run				
Frame Rate	N	S1 S2		Point	Point	
				Estimate	Estimate #	
6 fps (2)	48	0.271		0.271	1	
5 fps (3)	51	0.353	0.353	0.353	2	
4 fps (4)	54		0.907	0.907	3	

Conclude: $\mu_2 < \mu_3 < \mu_4$

Summary, Results & Conclusions

Briefly describe what you found in your analysis above, and make a recommendation.

This experiment was designed to answer the research question, "What is the minimum frame rate in which humans can successfully explore an unfamiliar environment with Telerobotics??" Four frame rates were incorporated into the experiment, driver was included as a blocked variable, and time to discovery was evaluated using a stopwatch.

Results are summarized as follows:

- We can infer that each of the individual groups (levels) associated with frame rate are not distributed normally.
- We can infer that the variance of the frame rate levels are not equivalent. When the frame rate is set to 4 frames per second (fps), there is more variation with respect to time to discovery.
- We can infer that the means of each of the frame rate levels with respect to time to discovery are not equivalent. The mean level of the frame rate of 4 fps is significantly different from 6 fps and 5 fps.
- We can infer that the mean level of each of the frame rate settings with respect to number of times stuck are not equivalent. The mean level of the frame rate of 4 fps is significantly different from 6 fps and 12 fps. The mean level of 5 fps was not significantly different than 12 or 6 fps, and could also not be discerned from the mean level of 4 fps.
- Overall, it appears that the settings of 6 and 5 fps yield better results with respect to time to discovery than the setting of 4 fps. Additionally, the setting of 6 fps yields best performance with respect to number of times the rover was stuck during a run.

Frame Rate	Ро			
	μ σ²		σ	Stuck
2 – 6 fps	137.92	13446.74	115.96	0.271
3 – 5 fps	137.92	13446.74	115.96	0.353
4 – 4 fps	239.54	42164.71	205.34	0.907