Entropie d'intrication dans un cristal antiferromagnétique bidimensionnel

Nicolas Macé
Responsable de stage : Anuradha Jagannathan

Stage du 23 mai au 4 juillet 2012 au

Laboratoire de Physique des Solides

Cadre de l'étude

Hamiltonien de Heisenberg

$$\hat{H} = J \sum_{\langle i,j \rangle} \mathbf{\hat{S}}_{i} \cdot \mathbf{\hat{S}}_{j}$$

On étudiera un hamiltonien de Heisenberg antiferromagnétique pour une structure en nid d'abeilles bidimensionnelle.

A T=0 des effets d'origine quantique mal connus apparaissent. Ils se manifestent par la propriété d'*intrication quantique*.

Plan

- Description classique
- Description quantique
 - Développement en ondes de spins
 - Transformation de Bogoliubov
 - Ondes de spins et fluctuations quantiques
- Entropie d'intrication
 - Entropie d'intrication pour la structure antiferromagnétique en nid d'abeilles
 - Résultats et interprétation

Description classique

$$\hat{S_i} \to S_i$$

Spins : *vecteurs* colinéaires au moment magnétique de leur atome.

$$\hat{H} \rightarrow E$$

L'état fondamental classique est l'état « spins antiparallèles ».

L'état classique n'est pas un état propre de \hat{H} !

Description quantique : Développement en ondes de spins

Les spins sont maintenant des opérateurs. On veut trouver l'état fondament $|\Psi_0\rangle$, état propre de \hat{H} . Ce problème n'a pas de solution analytique connue.

Transformation de Holstein-Primakoff

$$S_i^z = S - \hat{a}_i^{\dagger} \hat{a}_i \quad S_i^+ = \sqrt{2S} \sqrt{1 - \frac{\hat{a}_i^{\dagger} \hat{a}_i}{2S}} \hat{a}_i \quad S_i^- = \sqrt{2S} \hat{a}_i^{\dagger} \sqrt{1 - \frac{\hat{a}_i^{\dagger} \hat{a}_i}{2S}} \quad (1)$$

$$S_i^z = -S + \hat{b}_i^{\dagger} \hat{b}_i \quad S_i^+ = \sqrt{2S} \hat{b}_i^{\dagger} \sqrt{1 - \frac{\hat{b}_i^{\dagger} \hat{b}_i}{2S}} \quad S_i^- = \sqrt{2S} \sqrt{1 - \frac{\hat{b}_i^{\dagger} \hat{b}_i}{2S}} \hat{b}_i \quad (2)$$

Approximation $<\hat{a}_i^\dagger\hat{a}_i>\ll S$, $<\hat{b}_i^\dagger\hat{b}_i>\ll S$: Développement en ondes de spins

$$\hat{\mathcal{H}}_{\text{ondes de spins}} = \mathcal{E}_{cl} + JS \sum_{\langle i, i \rangle} \hat{a}_i^{\dagger} \hat{a}_i + \hat{b}_j^{\dagger} \hat{b}_j + \hat{a}_i \hat{b}_j + \hat{a}_i^{\dagger} \hat{b}_j^{\dagger}$$
(3)

Description quantique : transformation de Bogoliubov

Hamiltonien du développement en ondes de spins dans l'espace réciproque

$$\hat{H} = E_{cl} + JSz \sum_{\mathbf{k}} \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} + \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} + \gamma(\mathbf{k})^* \hat{a}_{\mathbf{k}} \hat{b}_{\mathbf{k}} + \gamma(\mathbf{k}) \hat{a}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}^{\dagger}$$
(4)

Modes propres d'excitation de cet ensemble d'oscillateurs : *ondes de spins*.

Transformation de Bogoliubov : $\hat{a}_{\mathbf{k}}$, $\hat{a}_{\mathbf{k}}^{\dagger}$ et $\hat{b}_{\mathbf{k}}$, $\hat{b}_{\mathbf{k}}^{\dagger} \rightarrow \hat{\alpha}_{\mathbf{k}}$, $\hat{\alpha}_{\mathbf{k}}^{\dagger}$ et $\hat{\beta}_{\mathbf{k}}$, $\hat{\beta}_{\mathbf{k}}^{\dagger}$.

Hamiltonien découplé après transformation de Bogoliubov

$$\hat{H} = E_{cl} - \frac{JSzN}{2} + JSz \sum_{\mathbf{k}} E_{\mathbf{k}} + JSz \sum_{\mathbf{k}} E_{\mathbf{k}} (\hat{\alpha}_{\mathbf{k}}^{\dagger} \hat{\alpha}_{\mathbf{k}} + \hat{\beta}_{\mathbf{k}}^{\dagger} \hat{\beta}_{\mathbf{k}})$$
 (5)

Etat fondamental : $\hat{\alpha}_{\mathbf{k}}^{\dagger}\hat{\alpha}_{\mathbf{k}}|\Psi_{0}\rangle = \hat{\beta}_{\mathbf{k}}^{\dagger}\hat{\beta}_{\mathbf{k}}|\Psi_{0}\rangle = 0.$

Les ondes de spins et les fluctuations quantiques

$$\hat{H} = E_{cl} - \frac{JSzN}{2} + JSz \sum_{\mathbf{k}} E_{\mathbf{k}} + JSz \sum_{\mathbf{k}} E_{\mathbf{k}} (\hat{\alpha}_{\mathbf{k}}^{\dagger} \hat{\alpha}_{\mathbf{k}} + \hat{\beta}_{\mathbf{k}}^{\dagger} \hat{\beta}_{\mathbf{k}})$$

- $E_{\mathbf{k}} = \sqrt{1 |\gamma(\mathbf{k})|^2}$ est l'énergie de l'onde de spin de vecteur d'onde \mathbf{k} .
- La relation de dispersion est linéaire au voisinage de k = 0 : les ondes de spin sont alors de ondes planes qui se propagent dans tout le cristal.

Les ondes de spins et les fluctuations quantiques

Énergie dans du système dans l'état fondamental :

$$E_{T=0} = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle = E_{cl} - \frac{JSzN}{2} + JSz \sum_{\mathbf{k}} E_{\mathbf{k}}.$$

Type de structure	Énergie par liaison dans l'état fondamental
cristal classique	-0,25
réseau carré	-0,33
structure en nid d'abeilles	-0,53

 \rightarrow fluctuations à T=0 autour de l'état classique « spins antiparallèles ». Ces fluctuations sont d'origine quantique.

Entropie d'intrication pour la structure antiferromagnétique en nid d'abeilles

On n'a accès qu'à la partie gauche du réseau.

$$S = \sum_{q} \left(\nu_q + \frac{1}{2} \right) \ln \left(\nu_q + \frac{1}{2} \right) - \left(\nu_q - \frac{1}{2} \right) \ln \left(\nu_q - \frac{1}{2} \right) \tag{6}$$

 u_q : dépend non trivialement de la géométrie du réseau.

→ calculs numériques

Résultats et interprétation

On a calculé l'entropie d'intrication pour des cristaux de taille L croissante.

Fonction d'ajustement : $S(L) = a \ln L + bL + c$ La valeur $a \simeq 0.9$ coïncide avec celle trouvée par la même méthode pour le réseau carré antiferromagnétique \rightarrow universalité?