Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Институт микроприборов и систем управления

Отчет по лабораторной работе № <u>1</u>		
Моделирование интегра:	пьного тензомоста	
(название лаборатор	ной работы)	
•	•	
Преобразователи информации и да	атчики физических вел	ичин
(название дисц		
	Выполнили сту	денты группы <u>ИВТ-32</u>
		Голев Андрей Дмитриевич
	(подпись)	(Ф.И.О.)
		Жигалов Даниил Владиславович
	(подпись)	(Ф.И.О.)
		Лазарева Мария Викторовна
	(подпись)	(Ф.И.О.)
		Проверил преподаватель
		Страчилов Максим Васильевич
	(подпись)	(Ф.И.О.)

I. Теория

Для измерения каких-либо величин можно использовать схему полного моста:

Рисунок 1. Схема полного моста

Пусть температура действует синфазно на резисторы моста:

$$R_1 = R_0(1 + \varepsilon_x + \varepsilon_T);$$
 $R_2 = R_0(1 - \varepsilon_x + \varepsilon_T);$

$$R_3 = R_0(1 - \varepsilon_x + \varepsilon_T);$$
 $R_4 = R_0(1 + \varepsilon_x + \varepsilon_T);$

где

- $\varepsilon_T = \Delta T/T_0$
- $\varepsilon_T = \gamma \cdot \Delta T$
- $\gamma = \frac{\Delta R}{\Delta T \cdot R_0}$ температурный коэффициент сопротивления (ТКС) величина, показывающая относительное изменение сопротивления при нагреве или охлаждении материала на 1°.

Найдём выходное напряжение:

$$\begin{split} U_{\text{\tiny Bbix}} &= \varphi_A - \varphi_B \\ \varphi_A &= E \frac{R_2}{R_1 + R_2} = E \frac{R_0 (1 - \varepsilon_x + \varepsilon_T)}{R_0 (1 + \varepsilon_x + \varepsilon_T) + R_0 (1 - \varepsilon_x + \varepsilon_T)} = E \frac{1 - \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} \\ \varphi_B &= E \frac{R_4}{R_3 + R_4} = E \frac{R_0 (1 + \varepsilon_x + \varepsilon_T)}{R_0 (1 - \varepsilon_x + \varepsilon_T) + R_0 (1 + \varepsilon_x + \varepsilon_T)} = E \frac{1 + \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} \\ U_{\text{\tiny Bbix}} &= E \frac{1 - \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} - E \frac{1 + \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T} = E \frac{-2 \cdot \varepsilon_x}{2 + 2 \cdot \varepsilon_T} = -E \cdot \varepsilon_x \frac{1}{1 + \varepsilon_T} \end{split}$$

Определим температурный коэффициент чувствительности:

$$\frac{\partial U_{\text{вых}}}{\partial \varepsilon_{x}} = -E \frac{1}{1 + \gamma \cdot \Delta T}$$

На крутизну передаточной характеристики (зависимость выходного напряжения от входного воздействия в виде давления, силы и так далее) влияет такой дестабилизирующий фактор, как изменение температуры (каждый материал по-своему отвечает на это, что и определяет коэффициент у).

II. Расчёт параметров принципиальной схемы модели

Таблица 1. Исходные данные для моделирования

Вариант	$\gamma(\%C^{-1})$	$\alpha(\%C^{-1})$	$\pm \Delta T$ (°C)	R ₀ (кОм)	$\pm x_{max}$ (%)	$g(\frac{\kappa O M}{B})$	E (B)	R_k
6	0,21	-0,92	±45	1,0	0,32	0,82	9	1,1

Таблица 2. Что-то

a_1	a_2	a_3	a_4	a_5
1	1	1	1	0,25

1. Устанавливаем номинальные сопротивления плеч моста R_0 :

$$U_0 = -\frac{R_0}{g \cdot a_1} = -\frac{10^3}{0.82 \cdot 10^3 \cdot 1} \approx -1.22 \text{ B}$$

2. Вычисляем амплитуду входного воздействия $U_{\rm д}$ по рассчитанному U_0 и выбранным значениям a_1 и a_2 :

$$U_{\rm A}=\pm x_{max}\cdot U_0\cdot \frac{a_2}{a_1}=\mp 0.32\cdot 10^{-2}\cdot 1.22\cdot \frac{1}{1}=\mp 3.9~{
m MB}$$

3. Вычисляем синфазную (температурную) составляющую в сигнале управления:

$$E_c = \frac{\gamma \cdot R_0 \cdot \Delta T}{a_4 \cdot g} = \frac{0.21 \cdot 10^{-2} \cdot 10^3 \cdot (\pm 45)}{1 \cdot 0.82 \cdot 10^3} = \pm 0.115 \text{ B}$$

4. Вычисляем номинальное сопротивление терморезистора при заданном α :

$$R_{T_0} = -rac{\gamma \cdot R_0}{lpha} = -rac{0.21 \cdot 10^{-2} \cdot 10^3}{-0.92 \, \cdot 10^{-2}} pprox 228 \; \mathrm{Om}$$

5. Устанавливаем номинальное сопротивление терморезистора R_{T_0} :

$$U_{\text{\tiny CM}} = \frac{R_{T_0}}{g \cdot a_5} = \frac{228}{0.82 \cdot 10^3 \cdot 0.25} \approx 1.11 \text{ B}$$

Таблица 3. Расчётные параметры модели

U_0 , B	$U_{\mathrm{д}}(x)$, мВ	$U_{\scriptscriptstyle exttt{CM}}$, B	E_c , B
-1,22	∓3,9	1,11	±0,115

III. Корректировка параметров базовой схемы тензомоста

Рисунок 2. Схема моделирования тензомоста с изменёнными параметрами

Рисунок 2. Что-то

IV. Моделирование тензомоста при разных температурных условиях

1. При 0 мВ:

Рисунок 3. Моделирование при 0 мВ и без компенсации

Рисунок 3. Моделирование при 0 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 4. Моделирование при 0 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 5. Моделирование при 0 мВ и с компенсацией $R_{T_0} = 228~{\rm Om}$

2. При -115 мВ:

Рисунок 6. Моделирование при -115 мВ и без компенсации

Рисунок 7. Моделирование при -115 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 8. Моделирование при -115 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 9. Моделирование при -115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

3. При 115 мВ:

Рисунок 10. Моделирование при 115 мВ и без компенсации

Рисунок 11. Моделирование при 115 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 12. Моделирование при 115 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 13. Моделирование при 115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

Таблица 4. Результаты моделирования тензомоста

Вариа	ариант Результаты моделирования Оценка резу						ка резулі	езультатов моделирования				
(6		,	$T = T_1$ (T_{\min})			$T = T_2$		C	ит _(C-1) .	ит кВС ⁻¹).	Moc- 3/%)
			мВ)			(T_{\max})		$U_{\mathtt{Bbix}}$	$U_{ m BbIX}($			(M
				(Ec(T)=-11		(Ec(T)=+11		3bIX1-	bix1-	'вств (мкЕ	BCTB	T-Tb. $\vec{r} = T_{\theta}$
		$U_{ m BbIX0}$ (MB)	$U_{\mathrm{T}}\left(\mathrm{MB}\right)$	$U_{ m Bbix1}$ (MB)	$U_{ m T} \left({}_{ m MB} ight)$	U _{BBIX2} (MB)	$U_{\mathrm{T}}\left(\mathrm{_{M}B}\right)$	$\Delta U_1 = U_{ m Bbix}$ 1 - $U_{ m Bbix}$ 0 (MB)	$\Delta U_2 = U_{\rm BLIX2} - U_{\rm BLIX0}$	Термочувствит средняя (мкВС ⁻¹).	Термочувствит расчетная (мкВС ⁻¹).	Чувствит-ть. моста при $T=T_0$ (мВ/%)
	%	285,3		315,4		260,7		30,1	-24,6	60,8		89,2
сации	x= 0,32%											
мпен	2%	-285,4		-316,0		-260,8		-30,6	24,6	-61,3		-89,2
Без компенсации	x=- 0,32%											
В	x=0,32%	136,0		142,5		130,2		6,5	-5,8	13,7		42,5
ісация «Ом	%	-136,1		-142,6		-130,2			5,9	-13,8		-42,5
Компенсация R _K =1,1кОм	x=- 0,32%		278		393		163	-6,5				
	%	89,3		92,0		86,7		-2,6		5,9		27,9
RI	x = 0,32%							2,7				
нсаци Ом	5%	-89,4		-92,1		-86,8			2,6	-5,9		-27,9
Компенсация R _K =2кОм	x=- 0,32%							-2,7				
J.F.	%	232,6		232,8		232,5			-0,1	0,3		72,7
Компенс ация	x= 0,32%							0,2				

%	-232,6	-232,8	-232,5	-0,2	-0,1	60,8	71,9
0,329							
×							