Dashboarding & A/B Testing

Oliver Keyes and Mikhail Popov

Analysis Team formerly known as The Swifties

Dashboards

These contain everything from API usage to direct user interactions, and provide data for internal and external use to see how well we're doing.

- Search Metrics (http://discovery.wmflabs.org/metrics/)
- Portal Metrics (http://discovery.wmflabs.org/portal/)
- WDQS Metrics (http://discovery.wmflabs.org/wdqs/)
- Maps Metrics (http://discovery.wmflabs.org/maps/)
- External Traffic Referals (http://discovery.wmflabs.org/external/)

Live demonstration!

(Because those always work when you need them to, right?)

Data Acquisition & Aggregation

- Scripts on stat1002 (written in any language you'd like!) launched on a schedule.
- Gives us access to EventLogging data, MediaWiki data, search and requests data.
- Can be as computationally intensive as you want (unless you break Erik Z's scripts).
- Can operate on any schedule.

Our Dashboards

- Built on the "Shiny" web application framework in R so you can compute and rework values in the dashboard = familiar to analysts.
- Reads data over http from datasets.wikimedia.org, computes on them, generates pretty (interactive) visualisations in JavaScript and HTML.
- Markdown documentation

Features

- Reactive contexts (e.g. options to smooth data)
- Easy from an Ops perspective
- Annotations
- Built-in color schemes and themes
- Support for custom CSS/JS (e.g. linking to individual visualizations)
- Support for advanced data manipulation, data tables, CSV export, search

Ten Dash Commandments

- When writing your collection scripts, never export percentages.
- Remember that public means public, so store summary statistics.
- You need a beta version of the dashboards. The darndest things happen.
- Not everything needs to be dashboarded.
- Documentation/descriptions can be written in Markdown.
- Maintenance is a thing.

A/B Testing

- Data-approach to making changes and adding features (vs "gut feeling")
- Compare change to status quo
- Measure potential impact:
 - Click-through rate ("conversion rate")
 - % of searches where 0 results were returned
 - Time spent

Here are some new features we're considering for Wikipedia. Please try them out and give us your thoughts, so we can improve them based on your feedback.

Completion suggester

information

2,887 users are trying this feature.

New algorithm for search as you type. Once enabled the search box at the top right corner will use the Completion Suggester.

From the analysis:

- Zero results rate in test group's searches goes down by 7.8% (6.4%-9.1%).
- Test group were 1.1-1.2 times more likely to get search results than the control group.

Lessons learned from our first few A/B tests

- It was an AB/CD test rather than A/B/C/D test.
- We used a traditional hypothesis testing method with sample size of 13.4 million.
 - These tests are usually used in studies with sample sizes of 20-600.
- p-value was < 0.001 which is "HIGHLY significant."
 - p<0.05 is usually "statistically significant."
- Cohen's w (a measure of effect size) was 0.001
 - o 0.1 is considered small in stats literature.

Traditional statistics vs. Bayesian statistics

- Invented for use with paper and pencil.
- Large enough sample size will make tiniest effects "statistically significant"
- Primarily concerned with "p-value"

Confidence intervals are hard:

"If we repeat this experiment 100 times, 95 of the 100 intervals we compute will contain the true value. This 4%-6% interval may be one of those 95, or maybe not."

- Often computationally intensive.
- Can even deal with tiny sample sizes
- Allows for prior knowledge

Credible intervals are easy:

"There is a 95% probability the difference between group A and group B is between 4% and 6%."

U

Questions?

