01. Bioquímica

A água e os sais minerais são substâncias inorgânicas fundamentais para a manutenção da vida e para diversas reações metabólicas. Seu papel no organismo, assim como o das moléculas orgânicas, é determinado por suas propriedades químicas e estruturais.

Sobre a composição molecular e a função da água e dos sais minerais no contexto biológico, assinale a alternativa **CORRETA**.

- a) O fosfato (PO₄³⁻) é um sal mineral essencial para a estrutura da hemoglobina, garantindo o transporte eficiente de oxigênio pelo sangue, enquanto o íon cálcio é crucial para a transmissão de impulsos nervosos e a contração muscular.
- b) A água, por ser uma molécula apolar, possui alto calor específico, característica que permite que ela atue como um eficiente isolante térmico, ajudando a estabilizar a temperatura corporal em mamíferos.
- c) O ferro, um oligoelemento, é componente essencial do citocromo, atuando na cadeia respiratória, e sua deficiência pode levar à anemia, que, por sua vez, está associada à baixa produção de ATP.
- d) O sódio e o potássio, sendo eletrólitos, controlam o equilíbrio osmótico apenas dentro das células, enquanto o cloro é o principal íon responsável pela manutenção da pressão osmótica no meio extracelular.
- e) O iodo é um componente orgânico essencial para a síntese dos hormônios tireoidianos, cuja deficiência (avitaminose) pode resultar em bócio, uma vez que a glândula tireoide é forçada a aumentar de tamanho.

02. Aspectos Sociais da Biologia - Drogas

Um estudo recente, publicado no "Journal of Public Health", alertou sobre os riscos do uso recreativo de cannabis na adolescência, destacando que o THC (tetraidrocanabinol), seu principal componente psicoativo, pode interferir no desenvolvimento do sistema nervoso central, ainda em maturação nessa fase. A exposição crônica pode afetar a formação de sinapses e a mielinização dos neurônios, comprometendo as funções cognitivas de memória e aprendizado.

Com base nas informações apresentadas e nos conhecimentos sobre o Tecido Nervoso, assinale a alternativa CORRETA.

- a) A maturação incompleta do sistema nervoso na adolescência torna os jovens menos suscetíveis a danos neurológicos, pois a baixa taxa de sinaptogênese protege o cérebro contra toxinas externas.
- b) O THC, por ser uma substância lipossolúvel, não tem capacidade de atravessar a barreira hematoencefálica, o que limita seu potencial de causar danos permanentes no cérebro em desenvolvimento.
- c) Os neurônios são células que, na fase adulta, perdem a capacidade de divisão por mitose, o que torna qualquer dano estrutural, como a perda sináptica, de difícil ou nula recuperação, especialmente em áreas cerebrais vitais.
- d) A mielinização, processo de formação da bainha de mielina pelas células de Schwann no SNC, é essencial para o isolamento elétrico e o aumento da velocidade de condução do impulso nervoso.
- e) O impulso nervoso é um fenômeno elétrico que se propaga ao longo do axônio graças à abertura dos canais de potássio, resultando na despolarização da membrana plasmática.

03. Citologia – Membranas e Envoltórios

Observe a tirinha a seguir:

O diálogo entre os personagens e o desenho da
"porta" que filtra a passagem são análogos a um
processo fundamental realizado por todas as células.
Com base na representação e nos conceitos de
Citologia, assinale a alternativa CORRETA.

- a) A "porta" ilustrada é análoga ao envelope nuclear em células eucarióticas, cuja principal função é selecionar e regular o fluxo de água e íons, através de canais específicos.
- b) O processo representado remete à endocitose (fagocitose ou pinocitose), mecanismo que garante a manutenção do gradiente de concentração por meio do transporte ativo, com gasto de ATP.

- c) A estrutura ilustrada é a membrana plasmática, que apresenta permeabilidade seletiva, regulando a entrada e saída de substâncias, sendo seu modelo estrutural o mosaico fluido.
- d) A membrana plasmática é composta
 majoritariamente por carboidratos e proteínas, sendo
 o componente lipídico responsável pela sustentação
 mecânica da célula.
- e) O transporte passivo, como a difusão simples, exige o gasto de energia (ATP) para mover solutos contra o gradientes de concentração, caracterizando a seletividade da membrana.

04. Metodologia Científica e Variáveis

Um pesquisador deseja determinar se a presença de determinado antibiótico (Substância K) inibe o crescimento de uma cultura de bactérias E. coli em meio de cultura líquido. Ele montou o seguinte experimento:

- 1. Grupo A (Controle): Meio de cultura estéril + E. coli + água destilada.
- 2. Grupo B (Experimental): Meio de cultura estéril + E. coli + 10mg de Substância K.
- 3. Grupo C (Controle Adicional): Meio de cultura estéril+ apenas 10mg de Substância K.

Após 24 horas, foi medida a densidade populacional bacteriana em todos os grupos.

Sobre a metodologia científica utilizada neste experimento, assinale a alternativa **CORRETA**.

- a) A variável dependente é a densidade populacional bacteriana, ou seja, o fator que é manipulado diretamente pelo pesquisador (a causa do fenômeno).
- b) A hipótese testada é que a E. coli não consegue se desenvolver em culturas líquidas, independentemente da presenca de antibióticos.

- c) O Grupo C é um controle negativo, crucial para garantir que a própria Substância K (variável independente) não seja a causa da turbidez ou de um aumento na densidade populacional por si só.
 d) Para que o experimento fosse válido, o pesquisador deveria ter adicionado a Substância K também no Grupo A, e utilizado apenas o Grupo B como referência.
- e) O Grupo A (Controle) serve para demonstrar que o resultado (inibição) não foi causado pela injeção de água destilada, mas sim pela variação de pH que o antibiótico provocou.

05. Bioquímica - Vitaminas e Carências

As vitaminas são moléculas orgânicas essenciais, geralmente não sintetizadas pelo organismo humano, que atuam como cofatores enzimáticos ou em processos fisiológicos vitais. Sua carência (avitaminose) está associada a doenças específicas. Associe a Vitamina (Coluna I) com sua função primária e o distúrbio de carência correspondente (Coluna II) e assinale a alternativa que apresenta a correspondência **CORRETA**.

COLUNAI	COLUNA II (Função e Carência)
(Vitamina)	
1. Vitamina A	I. Essencial para a absorção de cálcio e
(Retinol)	fósforo no intestino, atuando na
	mineralização óssea. Sua carência
	causa Raquitismo em crianças.
2. Vitamina	II. Atua na síntese de protrombina
B1 (Tiamina)	(coagulação sanguínea). A deficiência
	leva a hemorragias.
3. Vitamina D	III. Participa na formação de colágeno e
(Calciferol)	é um antioxidante. Sua carência está
	associada ao Escorbuto.

4. Vitamina K	IV. Essencial para o metabolismo de
(Filoquinona)	carboidratos e a função nervosa. Sua
	carência causa a doença Beribéri.
5. Vitamina C	V. Componente dos pigmentos visuais
(Ácido	(rodopsina). Sua carência causa a
Ascórbico)	cegueira noturna (nictalopia)

- a) 1-V, 2-I, 3-III, 4-II, 5-IV
- b) 1-V, 2-IV, 3-I, 4-II, 5-III
- c) 1-IV, 2-V, 3-II, 4-III, 5-I
- d) 1-I, 2-II, 3-V, 4-IV, 5-III
- e) 1-V, 2-III, 3-I, 4-IV, 5-II

06. Citologia – Divisão Celular

O processo de divisão celular é crucial para o crescimento, a reparação e a reprodução dos organismos. A imagem abaixo ilustra a etapa final da divisão celular em uma célula somática animal: (Imagine uma figura esquemática que mostra uma célula animal em telófase: dois núcleos reformandose nas extremidades e a membrana plasmática invaginando (formando um sulco de clivagem) ao centro.)

Com base na imagem, que representa a citocinese, e nos processos celulares relacionados, assinale a alternativa **CORRETA**.

- a) O processo ilustrado (citocinese) é exclusivo de células vegetais, pois estas possuem parede celular, que força a divisão do citoplasma por meio de um anel contrátil.
- b) A divisão representada é a meiose, pois a separação do citoplasma ocorre simultaneamente à separação dos cromossomos homólogos, produzindo duas células haploides.
- c) O sulco de clivagem observado é formado pela ação de microfilamentos de actina e miosina, que se contraem, dividindo o citoplasma e resultando na formação de duas novas células geneticamente idênticas à célula mãe.
- d) A mitose, processo do qual a citocinese faz parte, é responsável pela redução do número de cromossomos pela metade, o que é fundamental para a formação de gametas.
- e) A invaginação da membrana plasmática (citocinese centrífuga) ocorre no final da prófase, garantindo que o conteúdo citoplasmático seja distribuído desigualmente entre as células filhas.

07. Histologia e Bioquímica

O tecido conjuntivo, em suas diversas formas, é fundamental para o suporte e a conexão de outros tecidos. O tecido cartilaginoso, por exemplo, é caracterizado por uma matriz extracelular rica em fibras de ______, cuja síntese é auxiliada pela vitamina _____. Suas células, os condrócitos, localizam-se em cavidades chamadas _____ e dependem da difusão de nutrientes a partir do pericôndrio, já que a cartilagem é _____.

Assinale a alternativa cujos termos completam, CORRETA e respectivamente, as lacunas do texto.

- a) elastina / D / canais de Havers / vascularizada.
- b) colágeno / C / lacunas / avascular.
- c) glicogênio / B12 / osteônios / vascularizada.
- d) actina / K / lamelas / avascular.
- e) colágeno / A / lacunas / vascularizada.

08. Ecologia – Cadeias Tróficas

Um importante rio que atravessa uma área de intensa atividade agrícola sofreu um grave vazamento de pesticidas organoclorados. Esses compostos não são facilmente metabolizados pelos organismos aquáticos e tendem a se acumular ao longo da cadeia alimentar. Nesse cenário de contaminação, a consequência mais provável para os organismos que ocupam os níveis tróficos mais altos é:

- a) A diminuição da concentração de pesticidas, devido à diluição progressiva do poluente ao longo da cadeia alimentar, garantindo a proteção dos consumidores terciários.
- b) O aumento da biomagnificação, levando a concentrações extremamente altas do pesticida nos predadores de topo (consumidores terciários ou quaternários), causando toxicidade e falha reprodutiva.
- c) A bioacumulação (acumulação no indivíduo) será alta apenas nos produtores (fitoplâncton), sendo o pesticida rapidamente eliminado pelos consumidores primários (zooplâncton).
- d) O desequilíbrio na teia alimentar, resultando no aumento descontrolado da população de predadores de topo, pois eles são mais resistentes aos poluentes do que os produtores.

e) A redução da taxa de fotossíntese nos produtores, o que causará o aumento da biodiversidade, já que a presença do pesticida estimula a formação de novas espécies mais tolerantes ao estresse químico.

09. Citologia - Metabolismo Energético

O metabolismo energético celular garante a sobrevivência de procariotos e eucariotos. A produção de ATP, essencial para as atividades vitais, é realizada por diferentes vias metabólicas, dependendo da disponibilidade de oxigênio e da complexidade celular.

Sobre os processos de respiração celular, fermentação e fotossíntese, assinale a alternativa CORRETA.

- a) A fermentação, processo anaeróbico, é mais eficiente na produção de ATP que a respiração celular, pois utiliza toda a energia contida na glicose e ocorre exclusivamente no citoplasma de células procarióticas.
- b) A fotossíntese e a respiração celular possuem etapas que liberam gás carbônico. Na fotossíntese, isso ocorre na fase clara; na respiração, o ${\rm CO_2}$ é liberado na matriz mitocondrial durante o Ciclo de Krebs.

- c) A glicólise, etapa inicial comum tanto à respiração quanto à fermentação, é um processo anaeróbico que converte a glicose em duas moléculas de ácido láctico ou piruvato, com baixo rendimento energético.
- d) As mitocôndrias, presentes apenas em células animais, são as organelas responsáveis pela respiração celular aeróbica, enquanto os cloroplastos, em células vegetais, utilizam o ${\rm CO_2}$ e a água como reagentes para a produção de glicose.
- e) O aceptor final de elétrons na respiração celular é o oxigênio, formando água; na ausência de O_2 , ocorre a fermentação, onde moléculas orgânicas (como o piruvato ou o acetaldeído) atuam como aceptores finais.

10. Ecologia – Saneamento e Saúde

O relatório anual do Sistema Nacional de Informações sobre Saneamento (SNIS) de 2023 revelou que milhões de brasileiros ainda não têm acesso à coleta e tratamento de esgoto. A ausência de saneamento básico está diretamente ligada à alta incidência de doenças de veiculação hídrica, como a cólera, febre tifoide e parasitoses, sobrecarregando o sistema de saúde público.

Com base na relação entre saneamento básico, meio ambiente e saúde pública, assinale a alternativa CORRETA.

- a) As parasitoses, como a ascaridíase, são transmitidas exclusivamente por meio do ar e da inalação de esporos, não tendo relação direta com a qualidade da água ou o tratamento de esgoto.
- b) A falta de tratamento de esgoto promove a eutrofização dos corpos d'água, um processo caracterizado pela proliferação descontrolada de algas

(produtores), causada pelo excesso de nutrientes (fosfatos e nitratos).

- c) O tratamento de água e esgoto é um tema estritamente social e não biológico, pois a biota aquática não é afetada pela introdução de resíduos humanos e químicos no ecossistema.
- d) A cólera é uma doença viral transmitida por mosquitos em água parada, e seu controle depende unicamente da erradicação dos vetores nas áreas urbanas e rurais.
- e) O aumento do tratamento de esgoto contribuiria para a redução da bioacumulação, pois os organismos aquáticos seriam capazes de metabolizar mais rapidamente os resíduos orgânicos presentes na água poluída.

11. Origem da Vida

Em 1953, Stanley Miller e Harold Urey conduziram um experimento clássico para testar a hipótese de Oparin e Haldane sobre a formação dos primeiros compostos orgânicos na Terra primitiva. O experimento consistiu em simular as condições da Terra jovem, utilizando um aparato fechado contendo

metano (CH₄), amônia (NH₃), hidrogênio (H₂) e vapor d'água, aplicando descargas elétricas para simular raios. Ao final do processo, a análise do "caldo" revelou a formação de aminoácidos.

Sobre a metodologia científica e a interpretação deste experimento, assinale a alternativa **CORRETA**.

- a) A variável dependente do experimento de Miller-Urey era a temperatura do sistema, pois variações de calor controlavam a formação dos aminoácidos.
- b) A principal crítica metodológica é que a atmosfera utilizada (rica em H₂, NH₃ e CH₄) não era fielmente representativa da atmosfera primitiva, que continha muito oxigênio livre.
- c) O uso de descargas elétricas simulava a irradiação UV e a energia geotérmica, sendo a energia a variável independente, o fator que era manipulado para provocar a reação química.
- d) O experimento provou definitivamente a abiogênese, demonstrando que a vida pode surgir espontaneamente a partir da matéria inorgânica, sem a necessidade de um ancestral comum.
- e) O controle negativo (ausência de descargas elétricas) não era necessário, pois a simples mistura dos gases já garantiria a formação dos aminoácidos em qualquer condição.

12. Reprodução e Embriologia

A reprodução e o desenvolvimento embrionário envolvem etapas e estruturas altamente especializadas, desde a produção dos gametas até a formação dos folhetos germinativos.

Associe o termo ou processo (Coluna I) com sua descrição e contexto (Coluna II) e assinale a alternativa que apresenta a correspondência CORRETA.

COLUNAI	COLUNA II (Descrição e Contexto)
(Termo/Proce	
sso)	
1.	I. Fase do desenvolvimento
Reprodução	embrionário caracterizada pela
Assexuada	intensa divisão mitótica do zigoto,
	resultando em células (blastômeros)
	com pouco ou nenhum crescimento.
2.	II. Tipo de reprodução que envolve a
Segmentação	fusão de gametas e a variabilidade
	genética, sendo o padrão mais comum
	em animais.
3.	III. Tipo de reprodução que não envolve
Mesoderma	a fusão de gametas, gerando
	indivíduos geneticamente idênticos
	(clones) em ambientes estáveis.
4. Ectoderma	IV. Folheto germinativo que dará
	origem, futuramente, ao sistema
	nervoso, à epiderme e a seus anexos.
5.	V. Folheto germinativo intermediário
Reprodução	que dará origem aos músculos, ossos,
Sexuada	sistema circulatório e excretor.

- a) 1-III, 2-I, 3-V, 4-IV, 5-II
- b) 1-I, 2-V, 3-III, 4-II, 5-IV
- c) 1-III, 2-V, 3-I, 4-IV, 5-II
- d) 1-II, 2-I, 3-IV, 4-V, 5-III
- e) 1-IV, 2-III, 3-II, 4-V, 5-I

13. Citologia – Membrana e Transporte

A homeostase celular depende do controle rigoroso da passagem de substâncias através da membrana plasmática. Observe o esquema abaixo, que ilustra três tipos de transporte de moléculas A, B e C.

Considerando a estrutura da membrana celular e os tipos de transporte, assinale a alternativa **CORRETA**.

a) O transporte de C é um exemplo de transporte passivo, pois utiliza uma proteína de membrana para a passagem e não envolve gasto de energia metabólica (ATP).

- b) A molécula A, devido à sua natureza lipossolúvel ou pequeno tamanho, move-se a favor do gradiente de concentração, por difusão facilitada, sem intervenção de proteínas.
- c) O esquema B representa a difusão facilitada, que é um transporte passivo mediado por proteínas carregadoras ou canais, e ocorre sempre a favor do gradiente de concentração.
- d) O transporte ativo, representado por C, é o único mecanismo que permite a entrada de água na célula (osmose), sendo crucial para evitar a lise celular.
- e) As moléculas A, B e C, independentemente do tipo de transporte, necessitam ser transportadas por proteínas integrais, pois a bicamada lipídica é totalmente impermeável a qualquer substância.

14. Bioquímica e Genética

O fluxo de informação genética na célula segue o dogma central da Biologia, envolvendo a síntese de ácidos nucleicos e proteínas. A molécula de DNA, um tipo de ______, armazena a informação genética na forma de uma sequência de _____, sendo o processo de síntese de RNA (Transição de DNA para RNA) chamado de _____.

Assinale a alternativa cujos termos completam, CORRETA e respectivamente, as lacunas do texto.

- a) carboidrato / aminoácidos / replicação.
- b) lipídio / nucleotídeos / tradução.
- c) ácido nucleico / nucleotídeos / transcrição.
- d) proteína / bases nitrogenadas / replicação.
- e) polissacarídeo / desoxirriboses / tradução.

15. Fisiologia – Histologia Muscular

O sistema muscular esquelético é fundamental para a locomoção. A unidade funcional básica desse tecido é o sarcômero, cuja contração depende da liberação de íons cálcio e do gasto de ATP. A falha no suprimento de oxigênio ou na remoção de resíduos pode levar à fadiga muscular.

Em um indivíduo que realiza um exercício físico de alta intensidade e curta duração (anaeróbico), a cadeia causal mais provável que leva à sensação de fadiga é:

- a) A baixa de oxigênio induz a respiração celular intensa, levando ao acúmulo de etanol e, consequentemente, à acidose muscular.
- b) O uso de lipídios como fonte primária de energia satura as mitocôndrias, paralisando a respiração celular e impedindo o fornecimento de ATP.
- c) A demanda energética supera o suprimento de O₂, forçando o metabolismo à fermentação lática,

resultando no acúmulo de ácido lático e na consequente redução do pH muscular (acidose).

d) O retículo sarcoplasmático esgota suas reservas de sódio e potássio, o que impede a repolarização da membrana celular e leva ao relaxamento permanente

e) A intensa síntese proteica (actina e miosina) consome todo o glicogênio celular, causando uma diminuição imediata e permanente na produção de ácido acético, que é vital para a contração.

da fibra.