2022-05-25 Wednesday

NAME: Ravi Moelchand - 7463332

Topics covered in this tutorial:

- Shattering and VC Dimension (Lecture 6)
- The VC Generalization Bound (Lecture 7)

If you write your answers directly into the notebook, it is preferred that you generate a .pdf file for submission

This tutorial contains 9 problems. Please submit one solution per person.

Shattering and VC Dimension

1. Given is a hypothesis set \mathcal{H} and a particular data set \mathcal{D} with N points. Given is that \mathcal{H} cannot shatter \mathcal{D} . Is the following statement true or false? Explain.

It is certain that for N, the growth function is less than 2^N . In other words: $m_{\mathcal{H}}(N) < 2^N$

answer

True, the number of dichotomies is at most 2^N . If \mathcal{H} cannot shatter \mathcal{D} , then the maximum number of dichotomies that you can get will be smaller than 2^N . So, the growth function will be smaller than 2^N .

2. Suppose that hypothesis set \mathcal{H} can shatter a dataset \mathcal{D} with N points. Is the following statement true or false? Explain.

It is possible that for some values M < N, the growth-function has a value that is less than 2^M . In other words: it is possible that there is an M < N such that $m_{\mathcal{H}}(M) < 2^M$.

answer

True, for a certain set of M datapoints $\mathcal H$ shatters $\mathcal D$, but this does not mean that there cannot be another set of M points for which $\mathcal H$ does not shatter \mathcal{D} .

Given is the following hypothesis set \mathcal{H}_{disk} , with a two-dimensional input space, so $\mathcal{X}=\mathbb{R}^2$. Each $h\in\mathcal{H}_{disk}$ is a region in the form of a closed disk (closed means that the region includes the circle boundary of the disk). Also see https://en.wikipedia.org/wiki/Disk_(mathematics). A disk-region may have any diameter. Everything in the disk-region is classified as +1, the rest as -1.

3. Show that there is a data set with N=3 that can be shattered by \mathcal{H}_{disk} . Show this visually in a graph, by strategically choosing a data set and drawing in that same graph $2^3=8$ strategically chosen circles that represent the disk-regions, which each produce another dichotomy. If the graph becomes too crowded, instead, create multiple graphs with the same data set, and in each draw a few of the circles. Also, for large circles, you can suffice with drawing a part of the circle, if it is clear to the viewer how to extend it to a full circle (also see https://en.wikipedia.org/wiki/Circular_arc).

answer: If the point is inside the circle it is considered '+', otherwise '-'.

4. What is the value of the growth function for N=3? So, what is $m_{\mathcal{H}_{disk}}(3)$?

answer

Since it can be shattered by \mathcal{H}_{disk} , $m_{\mathcal{H}_{disk}}(3)=2^3=8$.

5. Determine the highest lower boundary of the value of the growth-function in N=4 you can come up with. In other words, what is the maximal amount of dichotomies you are able to create for a strategically chosen data set with N=4? Do this in the same way as one of the above questions, and show your graphs.

answer: If the point is inside the circle it is considered '+', otherwise '-'. Using this dataset I could create 15 dichotomies, which is the most I could find. I could not think of a dataset that could generate all 16 possibilities.

6. What is the VC-dimension of a hypothesis set \mathcal{H} with growth function $m_{\mathcal{H}}(1)=2, m_{\mathcal{H}}(2)=4, m_{\mathcal{H}}(3)=8, m_{\mathcal{H}}(4)=16$, and $m_{\mathcal{H}}(N) = N^2 + 7$ for N > 4?

answer

The VC-dimension is the largest amount of points N such that the growth function is 2^N , which in this case is N=4 since $m_{\mathcal{H}}(4)=16$ and $2^4 = 16$.

Which of the following functions cannot be a growth-function of some hypothesis set? Which of them could be a growth-function? Explain. Tip: use the properties from Learning From Data (Abu-Mostafa et al, 2012), Section 2.1.3.

7.
$$f(N) = N + 1$$
.

8. $f(N) = N + \lfloor (1\frac{1}{2})^N \rfloor$. (The symbols indicate the floor.) answer

7 cannot be a growth function, because N+1 would only be possible if $m_{\mathcal{H}}(N) \leq N^{d_{VC}} + 1$. That would only be true if d_{VC} would be 1 for which N should be 0. But for N=0 the VC dimension is infinite, which means that the rule, $m_{\mathcal{H}}(N) \leq N^{d_{VC}} + 1$, cannot be applied. Therefore, 7 is not a growth function.

8 can be a growth function with a value $\leq 2^N + N$.

The VC Generalization Bound

9. For a hypothesis set with $d_{\rm VC}=12$, what sample size do you need (as prescribed by the generalisation bound) to have a 90%

confidence that your generalization error is at most 0.03? (A variant on Problem 2.12 from Learning From Data (Abu-Mostafa et al, 2012)).

answer