Table des matières

Présentation	
Découpage en sous ensembles	
Sous ensemble robot	
Sous ensemble BlocMaître	
Sous ensemble BlocProg	
Diagramme des exigences	
Tâches	
Tâche 1 : BlocMaître	
Tâche 2 : BlocProg	
Tâche 3 : Robot → déplacement	
Tâche 4 : Robot → crayon	

Présentation

Depuis la réforme du collège, la programmation est entrée dans les programmes du <u>cycle 3 et cycle 4</u>, et permet d'initier les enfants à l'algorithmie, surtout en mathématiques pour leur faire créer des **figures géométriques** 2D simples. Le besoin est de pouvoir faire comprendre des notions de programmation en visualisant physiquement des déplacements grâce à un robot traceur, plus facilement appréhendables que des déplacements virtuels 'à la Scratch'.

Nous proposons un système physique de 'boîtes' utilisables par des enfants de 6~7 ans, qui vont s'enficher les unes aux autres en une suite d'instructions pour programmer les déplacements du robot.

Découpage en sous ensembles

Sous ensemble robot

Il s'agit de créer un robot pour représenter des figures géométriques créées par programmation. Celui-ci doit pouvoir faire son tracé **sur une table** et être suffisamment **précis** pour que, par exemple, un carré, un triangle se referme bien.

Il devra pouvoir tenir un crayon/feutre/stylo classique, et le **lever ou le descendre en position d'écriture** à la demande. Il en existe déjà dans le monde du DIY mais la précision n'est pas suffisante pour répondre à des exigences d'analyse géométrique et le stylo est fixe.

Sous ensemble BlocMaître

Un boîtier permettra de communiquer sans fil avec le robot, le détecter automatiquement et lui envoyer l'algorithme graphique (suite d'instructions suffisamment simples) préparé par les enfants.

Afin de recevoir le programme, il devra pouvoir recevoir en connectique un BlocProg et à travers une chaîne scanner la suite d'instructions qui deviendra le programme à téléverser.

Sous ensemble BlocProg

Chaque bloc devra se déclarer, s'enficher, être **ergonomique et compréhensible immédiatement pour des enfants de 6~7 ans**, sans nécessité de lecture. De plus il devra aussi posséder l'instruction en braille sur le boîtier pour un maximum d'accessibilité.

La solidité dans le respect des normes et la facilité d'utilisation sont primordiaux !

Diagramme des exigences

Tâches

Tâche 1 : BlocMaître

Analyser le diagramme des exigences	SIN + ITEC
Reformuler des conditions d'utilisation	SIN + ITEC
Utiliser une méthode de créativité	SIN ITEC
Tracer le diagramme des cas d'utilisations	SIN + ITEC
Communiquer avec le robot	SIN
Communiquer avec le BlocProg	SIN
Connecter avec le BlocProg	SIN + ITEC
Conception du programme de déplacement du robot	SIN
Alimenter les BlocProgs	SIN
Réaliser des croquis et schémas normalisés	ITEC
Choisir les matériaux et le mode d'obtention des pièces	ITEC
Concevoir les pièces et les assemblages	ITEC
Déterminer par simulation les sollicitations et la résistance des matériaux	ITEC
Dimensionner/modifier les pièces en tenant compte des simulations	ITEC
Fabriquer le prototype	ITEC
Réaliser une procédure de mise en service	SIN
Évaluer les coûts	SIN + ITEC

Tâche 2 : BlocProg

Analyser le diagramme des exigences	SIN + ITEC
Reformuler des conditions d'utilisation	SIN + ITEC
Utiliser une méthode de créativité	SIN + ITEC
Tracer le diagramme des cas d'utilisations	SIN + ITEC
Communiquer avec le BlocMaître ou le BlocProg	SIN
Connecter avec le BlocMaître ou le BlocProg	SIN + ITEC
Définir l'action du BlocProg	SIN + ITEC
Signaler	SIN + ITEC
Réaliser des croquis et schémas normalisés	ITEC
Choisir les matériaux et le mode d'obtention des pièces	ITEC
Concevoir les pièces et les assemblages	ITEC
Déterminer par simulation les sollicitations et la résistance des matériaux	ITEC
Dimensionner/modifier les pièces en tenant compte des simulations	ITEC
Fabriquer le prototype	ITEC
Réaliser une procédure de mise en service	SIN
Évaluer les coûts	SIN + ITEC

Tâche 3 : Robot → **déplacement**

Analyser le diagramme des exigences	SIN + ITEC
Reformuler des conditions d'utilisation	SIN + ITEC
Utiliser une méthode de créativité	SIN + ITEC
Tracer le diagramme des cas d'utilisations	SIN + ITEC
Réaliser des croquis et schémas normalisés	ITEC
Choisir les matériaux et le mode d'obtention des pièces	ITEC
Concevoir les pièces et les assemblages	ITEC
Déterminer par simulation les sollicitations et la résistance des matériaux	ITEC
Dimensionner/modifier les pièces en tenant compte des simulations	ITEC
Fabriquer le prototype	ITEC
Déplacer le robot	SIN + ITEC
Mesurer le déplacement	SIN + ITEC
Comparer et critiquer le déplacement	SIN + ITEC
Identifier les causes éventuelles et améliorer la conception	SIN + ITEC
Alimenter	SIN + ITEC
Évaluer les coûts	SIN + ITEC

Tâche 4 : Robot → **crayon**

Analyser le diagramme des exigences	SIN + ITEC
Reformuler des conditions d'utilisation	SIN + ITEC
Utiliser une méthode de créativité	SIN + ITEC
Tracer le diagramme des cas d'utilisations	SIN + ITEC
Réaliser des croquis et schémas normalisés	ITEC
Choisir les matériaux et le mode d'obtention des pièces	ITEC
Concevoir les pièces et les assemblages	ITEC
Déterminer par simulation les sollicitations et la résistance des matériaux	ITEC
Dimensionner/modifier les pièces en tenant compte des simulations	ITEC
Fabriquer le prototype	ITEC
Communiquer avec le bloc maître	SIN
Tenir tout type de crayon	ITEC
Déplacer le crayon verticalement	SIN + ITEC
Mesurer la fiabilité du déplacement	SIN + ITEC
Identifier les problèmes éventuels et améliorer la conception	SIN + ITEC
Évaluer les coûts	SIN + ITEC