MA 322: Scientific Computing

Department of Mathematics Indian Institute of Technology Guwahati

January 12, 2023

CHAPTER 2: ROOT FINDINGS

Secant Method: Convergence Analysis

Theorem

Assume $f(x) \in C^2$, $\forall x \in N_{\delta}(\alpha)$, and assume $f(\alpha) = 0$, $f'(\alpha) \neq 0$. Then if the initial guesses x_0 and x_1 are chosen sufficiently close to α , the iterates x_n

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}, \qquad n \ge 1$$

will converge to α . The order of convergence will be $p = (1 + \sqrt{5})/2$.

Theorem

Assume that $g(x) \in C([a,b])$, that $g([a,b]) \subset [a,b]$ (We say, g sends [a,b] onto [a,b]). Then x = g(x) has at least one solution in [a,b].

Proof.

Apply intermediate value theorem on f(x) = g(x) - x. Note that $f \in C([a, b])$.

Theorem (Contraction Mapping Theorem)

Assume that $g(x) \in C([a,b])$, that $g([a,b]) \subset [a,b]$. Furthermore, assume there is a constant $0 < \lambda < 1$, with

$$|g(x)-g(y)|\lambda|x-y|, \quad \forall x,y \in [a,b].$$

Then x = g(x) has a solution $\alpha \in [a, b]$. Also, the iterates

$$x_n = g(x_{n-1})$$
 $n \ge 1$

will converge to α for any choice of $x_0 \in [a, b]$, and

$$|\alpha - x_n| \le \frac{\lambda^n}{1 - \lambda} |x_1 - x_0|.$$

Theorem

Assume that $g(x) \in C'([a,b])$, that $g([a,b]) \subset [a,b]$, and that

$$\lambda := \max_{a \le x \le b} |g'(x)| < 1.$$

Then

- 1. x = g(x) has a unique solution α in [a, b].
- 2. For any choice of $x_0 \in [a, b]$, with $x_{n+1} = g(x_n)$, $n \ge 0$,

$$\lim_{n\to\infty}x_n=\alpha.$$

3.

$$|\alpha-x_n| \leq \lambda^n |\alpha-x_0| \leq \frac{\lambda^n}{1-\lambda} |x_1-x_0| \quad \text{and} \quad \lim_{n \to \infty} \frac{\alpha-x_{n+1}}{\alpha-x_n} = g'(\alpha).$$

Theorem

Assume α is a root of x=g(x), and suppose that g(x) is continuously differentiable in some neighbouring interval of α with $|g'(\alpha)| < 1$. Then the results of the previous theorem are still true, provided x_0 is chosen sufficiently close to α .

Higher order one-point method

Theorem

Assume α is a root of x = g(x), and that g(x) is p times continuously differentiable for all x near α , for some $p \ge 2$. Furthermore, assume

$$g'(\alpha) = \cdots = g^{(p-1)}(\alpha) = 0.$$

Then if the initial guess x_0 is chosen sufficiently close to α , the iteration

$$x_{n+1} = g(x_n)$$
 $n \neq 0$

will have order of convergence p, and

$$\lim_{n\to\infty}\frac{\alpha-x_{n+1}}{(\alpha-x_n)^p}=(-1)^{p-1}\frac{g^{(p)}(\alpha)}{p!}.$$

