

Propositional Logic

A statement is a declarative sentence that can be True (1) or False (0)

Examples

- 4 Milk is white T
- 4 | \$ | = 0 T
- 4 Humans are just fish with legs F

Questions and imperatives cannot be statements

Syntax

Propositions are denoted with capital letters P.Q.R.

P = I cheated

Q = I wrote an exam

Lowercase letters p.q., r, are used for general propositions that have no meaning These are used for general proofs

Connectives

P 15 a well-formed formula (Wff)

 $\neg P \Rightarrow not P$

PAQ > p and q

pvq ⇒ porq

 $p \rightarrow q \Rightarrow if p, then q$

Truth Tables

Negation (\neg, \sim)

Conjunction (1, 2, .)

Р	٦P	neg P=1-P	P	9	P19	PAq = min & p, q }
)	0	J	1	1		
0	1		١	0	0	$\#$ of rows = $2^{\#}$ of statements
			0	[0	
			0	0	O	

Disjunction (v, +)

Conditionals (→,)

_P	9	PV9	prq = max \{ p,q, \}	P	9	P > 9	p->q= iff psq.
-1	1	1		_	1	1	
1	0	(1	0	0	
0	1	l		0		1	
0	0	O		0	0		

Biconditional (↔ =)

Exclusive Or (B, V)

P	9	P +> 9	P=9,	then p +> q=1	P	9	P#9	P+q, then p+q=1
- [1	1			-	1	0	
-1	0	0			1	0	t	
0		0			0	1	l	
0	0	(0	0	0	

Proofs Using Truth Tables

Formulas p and q are logically equivalent iff the truth conditions of p are the same as the truth conditions of q

Examples

| Is (p^q) ⇔¬(pvq)?

P	9	P19	PVQ	7(pvq)	Truth table for $p \wedge q$ and $\tau(p \vee q)$
l	- [1		0	does not equal Thus (pag) is not
1	0	0		0	⇒ ¬(p∨q)
0	1	0		D	(Logically equivalent
0	0	0	0	1	, , ,

2 Show that (PV7P) is always true a tautology

		PV7P	
	0	1	The truth table shows that (pv7p) is always true
0		1	

Р	٦P	PN7P	
1	0	0 0	The truth table Shows that (PATP) is always false
D	1	0	

Working with Connectives

The following are all equivalent

Order of precedence for connectives 7, 1, 1, 1

S₀

$$\neg P V Q \Lambda T \rightarrow S \Lambda R V \neg Q$$
IS
$$(\neg P V (Q \Lambda T)) \rightarrow ((S \Lambda R) V \neg Q)$$

Gradescope Pre-Exercise 7

1 Determine the value of PA7(qAr)

P	9	r	91r	7(q/r)	P17(91r)	
T	T	\dashv	7	Γ	F _	
T	T	F	F	T	Ť	
T	F	T	F	Т	T	True
T	F	F	F	Ť	\top	
F	T	T	Ţ	F	F	
F	T	F	F	T	Ė	
F	F	T	F	Τ	F	
F	F	F	F	T	F	

2 Determine the value of (pag) V(pag)

ρ	9	r	79	٦r	PA79	PATr	(P179)V(P17r)
T	T	Τ	F	F	П	Т	F
Τ	T	F	F	Ť	F	T	Т
T	F	T	Т	F	T	F	T True
T	F	F	T	T	Τ	T	T
F	T	T	F	F	F	F	F
F	T	F	F	T	F	F	F
F	F	T	T	F	F	F	F
F	F	F	T	T	F	F	F

3 What do you notice about QI and Q2

They are the same, so equivalent