KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

INTELEKTIKOS PAGRINDAI (P176B101)

Trečio laboratorinio darbo ataskaita

Atliko:

IFF-8/3 gr. studentas

Dovydas Zamas

2021 m. gegužės 23 d.

Priėmė:

Doc. Paulauskaitė-Tarasevičienė Agnė

KAUNAS 2021

Turinys

L.	Pirm	na dalis	3
		Darbo aprašas	
		Pradiniai duomenys	
	1.3.	Neurono įvesties matrica ir išvesties vektorius	
	1.4.	Neurono sukūrimas ir apmokymas naudojant dalinį duomenų rinkinį	
	1.5.	Modelio verifikacija	
	1.6.	Rankinis neurono apmokymo parametrų pasirinkimas	
	1.7.	Išvados	
		Matlab kodas	

1. Pirma dalis

1.1. Darbo aprašas

Darbo metu bus panaudotas paprasčiausios struktūros dirbtinis neuroninis tinklas – vienetinis neuronas su tiesine aktyvavimo funkcija (purelin(n)=purelin(Wp+b)=Wp+b). Neurono užduotimi bus laiko eilutės k-osios reikšmės a(k) prognozavimas panaudojant n ankstesnes reikšmes a(k-1), a(k-2), ..., a(k-n). Modelį, kurį realizuojame esant prielaidai, kad priklausomybė tarp prognozuojamos reikšmės ir prieš tai esančių eilės elementų gali būti aprašyta naudojant tiesinę funkciją, vadiname autoregresiniu tiesiniu modeliu n-tosios eilės.

Pav 1 Tiesinio neurono schema su n=4

1.2. Pradiniai duomenys

Pirmiausia nupiešiamas aktyvumo priklausymo nuo metų grafikas

Figure 1 Saulės dėmių aktyvumo grafikas

Tada atvaizduojama 3D diagrama, parodanti, kaip aktyvumas priklauso nuo dviejų prieš tai buvusių metų aktyvumo verčių

Figure 2 Saulės dėmių aktyvumo 3D grafikas

1.3. Neurono įvesties matrica ir išvesties vektorius

Sudarius P (įvesties) ir T (išvesties) matricas, patikrinamas jų dydis ir peržiūrimas turinys.

[P ×]								
2x313 double								
	1	2	3	4	5	6	7	8
1	5	11	16	23	36	58	29	20
2	11	16	23	36	58	29	20	10
2								

Figure 3 Įvesties matrica

	T ×							
	1x313 double							
	1	2	3	4	5	6		
1	16	23	36	58	29	20		
2								

Figure 4 Išvesties vektorius

1.4. Neurono sukūrimas ir apmokymas naudojant dalinį duomenų rinkinį

Pirmiausia atskiriama 200 eilučių, skirtų neurono apmokymui. Tuomet neuronas sukuriamas naudojant *newlind()*, kuri priima šiuos dalinius duomenis ir gražina neuroną, kuris buvo apmokytas naudojant duotus duomenis. Šio neurono svoriai:

```
Weight coefficients and bias:
-0.6761 1.3715
13.4037
```

1.5. Modelio verifikacija

Modelis verifikuojamas palyginant realias reikšmes su modelio prognozuojamomis reikšmėmis. Palyginama tiek su daliniais duomenimis, kurie buvo naudojami modelio apmokymui, tiek su pilnais duomenimis

Figure 5 Prognozės ir realių duomenų palyginimas apmokymo duomenims

Figure 6 Prognozės ir realių duomenų palyginimas visiems duomenims

Norint patikrinti modelio prognozės tikslumą, apskaičiuojamas klaidų vektorius:

Figure 7 Klaidų vektorius

Jis taip pat atvaizduojamas histograma:

Figure 8 Klaidų vektoriaus histograma

Naudingesni klaidoms įvertinti yra MSE ir MAD įverčiai:

MSE įvertis yra žymiai jautresnis nukrypimams negu MAD, ir būtent jis naudojamas apmokyti neuroną.

1.6. Rankinis neurono apmokymo parametrų pasirinkimas

Iš naujo sukuriamas neuronas, šį kartą naudojant *newlin()* komandą. Ši komanda nevykdo automatinio apmokymo. Kuriant neuroną reikia nurodyti, kiek bus išvesčių ir koks bus apmokymo greitis.

Apmokymo greičiui apskaičiuoti naudojama funkcija *maxlinlr()*, kurį šį greitį apskaičiuoja pagal tai, kokiais duomenimis neuronas bus apmokomas.

Toliau nurodomi tinklo apmokymo limitai – apmokymas bus stabdomas, kai klaidos vektoriaus MSE pasieks nurodytą *qoal* reikšmę, arba bus pasiekta *epochs* iteracijų skaičius.

Taip pat pakeičiama, kiek praeitų metų duomenų neuronas gauna kaip įvestis.

Su pakeistais parametrais neuronas apmokomas naudojant *train()* komandą. Ši komanda pateikia apmokymo langą, kuriama atvaizduojama neurono struktūra, apmokymui ir tikslumo įvertinimui naudojami algoritmai, dabartinės apmokymo reikšmės bei galimybė nubraižyti tikslumo kitimo grafiką.

Pav 2 Neurono apmokymo langas

1.7. Išvados

N	Goal	Epochs	Performance	MSE	MAD	Bias	Weights
2	100	1000	274	349.6507	9.5992	0.7731	-0.5851 1.4638
2	100	2500	265	338.812	9.1239	1.8416	-0.5928 1.456
2	100	5000	253	324.3785	8.6097	3.4252	-0.6042 1.4444
2	100	10000	237	305.2582	8.4244	5.9715	-0.6225 1.4258
6	100	1000	235	295.3619	9.3827	0.1503	0.2776 -0.2790 0.1704 -0.0251 -0.6586 1.4679
6	100	2500	234	295.5579	9.5202	0.3398	0.2808 -0.2874 0.1641 0.0036 -0.6905 1.4793
6	100	5000	233	294.3347	9.4713	0.6484	0.2774 -0.2856 0.1622 0.0038 -0.6900 1.4763
6	100	10000	231	292.0255	9.3544	1.2423	0.2712 -0.2833 0.1604 0.0021 -0.6877 1.4701
							-0.0440 0.1717 -0.1051 0.1436 0.0753 -0.0065
12	100	1000	195	237.7483	8.881	0.0391	0.0239 -0.0755 0.1606 -0.1324 -0.4702 1.2420
							-0.0806 0.2477 -0.1839 0.1854 0.0661 -0.0388
12	100	2500	193	241.9755	8.8394	0.0892	0.0947 -0.1501 0.1768 -0.0506 -0.5861 1.3019
							-0.0889 0.2664 -0.2058 0.1983 0.0668 -0.0543
12	100	5000	193	243.2175	8.6972	0.1715	0.1164 -0.1658 0.1768 -0.0348 -0.6048 1.3106
							-0.0901 0.2680 -0.2077 0.1990 0.0668 -0.0562
12	100	10000	192	243.0799	8.729	0.3337	0.1181 -0.1675 0.1766 -0.0340 -0.6059 1.3105

Lentelė 1 Įvairių parametrų keitimo resultatai apmokyme

 Visais atvejais apmokymas iš pradžių vyksta labai greitai, tačiau didėjant iteracijų skaičiui MSE mažėjimo greitis stipriai sumažėja.

Figure 9 Apmokymo įverčio kitimas didėjant iteracijų kiekiui

- Tikslinis MSE niekada nepasiekiamas taip yra todėl, kad neįmanoma vien iš šių duomenų tiksliai atspėti rezultato. Visada bus paklaida.
- Pateikiant 12 praeitų metų, tinklas apsimokino greitai ir jo MSE apmokinimo duomenims buvo geresnis nei pateikus 6 ar 2. Tačiau patikrinant MSE su visais duomenimis neurono rezultatas didėjant iteracijų skaičiui nekonvergavo – tinklas ,persimokė' ant mokomųjų duomenų.

1.8. Matlab kodas

Pirma dalis:

```
%#ok<*NOPTS>
% praejusios programos isvalymas
clc
clear
close all
% duomenu uzkrovimas
load 'sunspot.txt'
% duomenu grafikas
figure(1)
plot(sunspot(:,1), sunspot(:,2), 'b-*')
title ('Sun Spot amounts throughout the years')
xlabel('years')
ylabel('sunspot activity')
% matricu sukurimas
                                % data size
L = length(sunspot);
P = [ sunspot(1:L-2,2)'; % input data
       sunspot(2:L-1,2)'];
T = sunspot(3:L,2)';
                              % output data
% trimate diagrama
figure(2)
plot3(P(1,:),P(2,:),T, 'bo')
title('Sun Spots')
xlabel('P1')
ylabel('P2')
zlabel('T')
% isskirti apmokymo duomenu matricas
Pu = P(:, 1:200);
Tu = T(:,1:200);
disp('Pu array size:')
disp(size(Pu))
disp('Tu array size:')
disp(size(Tu))
% sukurti neuronu tinkla
net = newlind(Pu,Tu);
% pavaizduojami neurono koefficientai
disp('Weight coefficients and bias:')
disp( net.IW{1})
disp(net.b{1})
% modelio verifikacija
```

```
Tsu = sim(net, Pu);
% modelio rezultato ir tikru duomenu palyginimas 200 stulpeliu
figure(3)
plot(Tsu, 'g-*')
hold on
plot(Tu, 'b-*')
xlabel('Years');
ylabel('Sun spot activity');
title('Sun spot activity during 1700 - 1900');
legend('Prediction', 'Real data')
% modelio rezultato ir tikru duomenu palyginimas visiems stulpeliams
Ts = sim(net, P);
figure (4)
plot(Ts, 'g-*')
hold on
plot(T, 'b-*')
xlabel('Years');
ylabel('Sun spot activity');
title('Sun spot activity during 1700 - 2014');
legend('Prediction','Real data')
% klaidu apskaiciavimas
E = T-Ts;
% klaidu grafikas
figure(5);
plot(E);
title('Prediction error vector');
xlabel('Year');
ylabel('Error');
% klaidu histogramos
figure(6);
hist(E);
title('Prediction error histogram');
xlabel('Error');
ylabel('Times');
% klaidos apskaiciavimas
mse = mse(E)
mad = median(abs(E))
```

Antra dalis:

```
%#ok<*NOPTS>
% praejusios programos isvalymas
clc
clear
close all
% keiciamos reiksmes
inputCount = 2
trainingDataCount = 200
trainingGoal = 100
trainingEpochs = 10000
% duomenu uzkrovimas
load 'sunspot.txt'
% duomenu grafikas
figure(1)
plot(sunspot(:,1), sunspot(:,2), 'b-*')
title('Sun Spot amounts throughout the years')
xlabel('years')
ylabel('sunspot activity')
% matricu sukurimas
                          % data size
L = length(sunspot);
                              % input count
N = inputCount;
U = trainingDataCount; % training dataset size
P=[];
for n = 1:N
                          % generate input matrix
  n2 = N-n+1;
   P = [P; sunspot(n:L-n2,2)'];
T = sunspot(N+1:L,2)'; % output data
% trimate diagrama
figure(2)
plot3(P(1,:),P(2,:),T, 'bo')
title('Sun Spots')
xlabel('P1')
ylabel('P2')
zlabel('T')
% isskirti apmokymo duomenu matricas
Pu = P(:, 1:U);
Tu = T(:, 1:U);
disp('Pu array size:')
disp(size(Pu))
disp('Tu array size:')
disp(size(Tu))
```

```
% sukurti neuronu tinkla
S = 1
net = newlin(Pu,S,0, maxlinlr(Pu, 'bias'));
% isdresuoti neuronu tinkla
net.trainParam.goal = trainingGoal;
                                           % goal std
net.trainParam.epochs = trainingEpochs;
                                           % training steps
net = train(net, Pu, Tu);
                                             % train the network
% pavaizduojami neurono koefficientai
disp('Weight coefs:')
disp( net.IW{1})
disp(net.b{1})
% modelio verifikacija
Tsu = sim(net, Pu);
% modelio rezultato ir tikru duomenu palyginimas 200 stulpeliu
figure (3)
plot(Tsu, 'g-*')
hold on
plot(Tu, 'b-*')
xlabel('Years');
ylabel('Sun spot activity');
title(['Sun spot activity during 1700 - ' num2str(1700 + U)]);
legend('Prediction','Real data')
% modelio rezultato ir tikru duomenu palyginimas visiems stulpeliams
Ts = sim(net, P);
figure (4)
plot(Ts, 'g-*')
hold on
plot(T, 'b-*')
xlabel('Years');
ylabel('Sun spot activity');
title('Sun spot activity during 1700 - 2014');
legend('Prediction','Real data')
% klaidu apskaiciavimas
E = T-Ts;
% klaidu grafikas
figure(5);
plot(E);
title('Prediction error vector');
xlabel('Year');
ylabel('Error');
% klaidu histogramos
figure(6);
```

```
hist(E);
title('Prediction error histogram');
xlabel('Error');
ylabel('Times');
% klaidos apskaiciavimas
mse = mse(E)
mad = median(abs(E))
```