Master ACSI Architectures pour le Traitement Numérique

Cours Habib MEHREZ

Laboratoire d'Informatique de Paris 6, Université Pierre et Marie Curie 4, place Jussieu, 75252 Paris cedex 5

DIVISION

Division restaurante

$$D-(2^{n-1}q_{n-1} + \dots + 2q_1d+q_0d)=r$$

Pour tout i, on considère les q_i=1.

On commence par $q_{n-1} = 1$

Si D-2ⁿ⁻¹
$$q_{n-1} d >= 0$$
 alors $q_{n-1} = 1$
sinon $q_{n-1} = 0$

Et on réitère..

Division restaurante

Exemple: 7/3

1 1 1 0 1 1 0 0 0 0 1 0 Divident Diviseur

111

Reste

Quotient

Retenue sortante

Restauration

 $0 \leftarrow \frac{\begin{array}{c} - & 110 \\ 11110 \\ + & 110 \\ \hline 00100 \\ \end{array}$

Restauration

Reste

Temps $O(n^2)$ Surface $O(n^2)$

Division non restaurante

Exemple: 7/3

Au lieu de restaurer, la fois d'après faire + à la place de -

$$(D-2^{n-1} d)_{+} 2^{n-1} d - 2^{n-2} d = (D-2^{n-1} d) + 2^{n-2} d$$

$$A = 2^{n-2}$$
, $2A = 2^{n-1} \rightarrow (D-2A.d) + 2A.d - A d = (D-2A d) + A d$

Retenue sortante

Reste

Division NON restaurante: implémentation

Division de NEWTON-RAPHSON

Principe

La division de Newton-Raphson est une division itérative utilisant le principe suivant:

$$C = A/B = A * 1/B$$

Méthode de Newton-Raphson

La méthode de Newton-Raphson permet de résoudre les équations de type:

$$F(x)=0$$

en effectuant l'itération de l'équation suivante:

$$X_{i+1} = X_i - F(X_i) / F'(X_i)$$

On démontre que si la valeur initiale X_0 est proche de la racine simple de F, alors X_n converge quadratiquement vers cette racine.

Division de NEWTON-RAPHSON

Application

Nous considérons l'équation suivante:

$$F(x) = (1/X) - B$$

L'inverse de B peut donc être trouvé par la méthode de Newton-Raphson en calculant le résultat de l'équation F(x)=0.

$$X_{i+1} = X_i - F(X_i) / F'(X_i)$$

= $X_i - (1/X_i - B) / -(X_i)^{-2}$
= $X_i (2 - B*X_i)$

Afin que le résultat de l'équation converge vers l'inverse de B, la valeur initiale **X**₀ doit être comprise entre:

$$0 < X_i < 2/B \text{ si B} > 0$$

 $2/B < X_i < 0 \text{ si B} < 0$

Division de NEWTON-RAPHSON

Exemple (1/7.25)

Pour le calcul de l'inverse de 7.25 la valeur initiale X_0 doit être comprise entre:

$$0 < X_0 < 2/7.25$$

 $0 < X_0 < 0.275862$

Nous prendrons donc comme valeur initiale $X_0 = 0.1$

Itétation 1:
$$X_1 = X_0 - (2 - B^*X_0)$$

 $= 0.1(2 - 7.25^*0.1)$
 $= 0.1275$
Itétation 2: $X_2 = X_1 - (2 - B^*X_1)$
 $= 0.1275(2 - 7.25^*0.1275)$
 $= 0.1371421875$
Itétation 3: $X_3 = X_2 - (2 - B^*X_2)$
 $= 0.1371421875(2 - 7.25^*1371421875)$
 $= 0.1379265230$

La valeur exacte de 1/7.25 est égale à: 0.1379310345

Division de NEWTON-RAPHSON: implémentation

En pratique et pour une convergence rapide, on construit une table des inverses de tous les nombres codés sur un nombre réduit de bits (soient p bits).

Cette table sera inscrite à l'intérieur d'une ROM. La méthode de Newton-Raphson permet donc de calculer l'inverse d'un nombre de façon quadratique avec une précision de plus en plus importante selon le nombre d'itérations effectuées. (2ⁱ p bits avec i nombre d'itération).

Division de NEWTON-RAPHSON: implémentation

Conclusions

Division	Temps	Surface
Division restaurante	O(n²)	O(n²)
Division non restaurante	O(n²)	O(n²)
Division Hamacher et Williams	O(n)	O(n²)

La méthode de Newton-Raphson nécessite un certain nombre d'intération dépendant de la précision à atteindre.

Elle peut utiliser les ressources existances plus une ROM spécifique. Elle reste néanmoins très pénalisante en terms de performances par rapport à une solution cablée.

RACINE CARREE

Racine carrée non restaurante

Exemple: racine carrée de 25 : 011001

$$\mathbf{Q0=1} \leftarrow \frac{\begin{array}{c} 0 & 1 \\ - & 0 & 1 \\ \hline 0 & 0 \end{array}$$

Temps	O(n ²)
Surface	O(n ²)

Racine carrée non restaurante : implémentation

Temps	O(n ²)
Surface	O(n ²)

Racine carrée de NEWTON-RAPHSON

Principe

La racine carrée de Newton-Raphson est une racine carrée itérative utilisant le principe suivant:

$$C=Sqrt(A) => C=A*(1/Sqart(A))$$

Méthode de Newton-Raphson

La méthode de Newton-Raphson permet de résoudre les équations de type:

$$F(x)=0$$

en effectuant l'itération de l'équation suivante:

$$X_{i+1} = X_i - F(X_i) / F'(X_i)$$

On démontre que si la valeur initiale X_0 est proche de la racine simple de F, alors X_n converge quadratiquement vers cette racine.

Racine carrée de NEWTON-RAPHSON

Application

Nous considérons l'équation suivante:

$$F(x) = (1/X^2) - A$$

L'inverse de la racine carrée de A peut donc être trouvé par la méthode de Newton-Raphson en calculant le résultat de l'équation F(x)=0.

$$X_{i+1} = X_i - F(X_i) / F'(X_i)$$

= $X_i - (1/X_i^2 - A) / (-2X_i^3)$
= $X_i (3 - A*X_i^2) / 2$

Afin que le résultat de l'équation converge vers l'inverse de A, la valeur initiale X_0 doit être comprise entre:

$$0 < X_i < Sqrt (3/A) si A>0$$

Racine carrée de NEWTON-RAPHSON: implémentation

En pratique et pour une convergence rapide, on construit une table des inverse de la racine carrée de tous les nombre codés sur un nombre réduit de bits (soient p bits).

Cette table sera inscrite à l'intérieur d'une ROM. La méthode de Newton-Raphson permet donc de calculer l'inverse de la racine carrée d'un nombre de façon quadratique avec une précision de plus en plus importante selon le nombre d'itérations effectuées. (2ⁱ p bits avec i nombre d'itération).

Racine carrée de NEWTON-RAPHSON: implémentation

