Mesure des défauts de l'œil

Objectifs

Opérations laser : besoin de précision

⇒ Mesures des défauts de l'œil

Source: cliniquelamartine.fr

Plan

- o. Introduction
- Mise en évidence de la déformation d'un front d'onde de manière simple
 - a) Expérience
 - b) Simulation
- Mesure de la déformation d'un front d'onde type Shack-Hartmann
 - a) Expérience
 - b) Résultats obtenus
- III. Traitement informatique du front d'onde reçu
 - a) Détermination du front d'onde aux points d'échantillonnage
 - b) Interpolation de Lagrange
 - c) Utilisation des Polynômes de Zernike comme base pour représenter le front d'onde

0. Introductiona) Présentation générale

L'œil

b) Modélisation de l'œil

c) Différents défauts de l'œil

Défauts classiques	Défauts de haut degré
MyopieHypermétropieAstigmatismePresbytie	 Inhomogénéités dans les humeurs Défauts du cristallin (Cornée déformée)

I. Mise en évidence de la déformation d'un front d'onde par les inhomogénéités

a) Expérience

Montage

Deux phénomènes entrent en jeu ici :

- La réfraction
- La différence de temps de parcours

I. Mise en évidence de la déformation d'un front d'onde par les inhomogénéités

a) Expérience

Variation de y dûe à la réfraction :

$$\frac{\partial y}{\partial x} = \tan(i(x)) = \frac{n_0 \sin(i_0)}{\sqrt{n(x)^2 - n_0^2 \sin^2(i_0)}}$$

b) Simulation: estimation du temps de parcours

Lumière en phase

Simulation des inhomogénéités

Front d'onde après traversé de la cuve (décalage en fonction du temps) Rectangle rouge pour ce qui nous intéresse

II. Mesure de la déformation d'un front d'onde type Shack-Hartmann

a) Expérience

Observation : Le Rayon est dévié par le plastique par

rapport à une trajectoire idéale

Montage:

- •Laser rouge
- •Lentille convergente
- •Plastique déformable

b) Résultats de l'expérience

Rayon arrivant sur la lentille

Rayon arrivant dans le plan focal image

Modélisation de la déviation du faisceau

On assimile localement le pochon à deux sphères concentriques de rayon différent

III. Traitement informatique du front d'onde reçu

a) Détermination du front d'onde aux points d'échantillonnage

$$\frac{\partial z}{\partial x} = \frac{-X(M)}{f'}$$
 $\frac{\partial z}{\partial y} = \frac{-Y(M)}{f'}$

$$z(i,j) = \frac{1}{2} \left[z(i-1,j) + \frac{\partial z}{\partial x}(i-1,j)\delta x + z(i,j-1) + \frac{\partial z}{\partial y}(i,j-1)\delta y \right] \quad ij \neq 0$$

b) Interpolation de Lagrange

$$Z(X,Y) = \sum_{i=0}^{n} \sum_{j=0}^{m} z_{i,j} L_i^x(X) L_j^y(Y)$$

$$L_i^x(X) = \prod_{\substack{k=1\\k \neq i}}^n \frac{X - x_k}{x_i - x_k} \qquad L_j^y(Y) = \prod_{\substack{k=1\\k \neq j}}^n \frac{Y - y_k}{y_j - y_k}$$

Interpolateur selon x

Interpolateur selon y

Par le théorème de Stone-Weierstrass, on peut approcher notre surface par des polynômes.

Reconstitution du front d'onde

Sur chaque point de notre maillage, on a la normale en ce point. On a donc fait une moyenne pour retrouver les autres points à partir d'un seul.

c) Utilisation des Polynômes de Zernike comme base pour représenter le front d'onde

Base du cercle unité

Polynômes de Zernike d'ordre n

$$Z_n^m(\rho,\theta) = \begin{cases} R_n^m(\rho) \times \cos(m\theta) & m \ge 0 \\ R_n^m(\rho) \times \sin(m\theta) & m < 0 \end{cases}$$

$$R_n^m(\rho) = \sum_{k=0}^{\frac{n-m}{2}} \frac{(-1)^k (n-k)!}{k! (\frac{n+m}{2} - k)! (\frac{n-m}{2} - k)!} \rho^{n-2k}$$

m = nombre de méridiens affectés n = ordre du polynôme

Polynômes de Zernike

Projection sur la base des Polynômes de Zernike

$$\frac{1}{\pi} \iint_D f_1(x,y) f_2(x,y) dx dy$$

Produit scalaire

Résultat obtenu après projection

Conclusion

Mesure précise des défauts :

 \Rightarrow Elaboration d'une correction OU changement de la position du rayon

