Gegeben sind die beiden Funktionsscharen g_a und w_a mit $g_a(x)=2\cdot a\cdot \mathrm{e}^{-\frac{x^2}{4\cdot a^2}}$ und $w_a(x)=\frac{8\cdot a^3}{x^2+4\cdot a^2},\quad x\in\mathbb{R},\quad a\in\mathbb{R}^+.$

Die Graphen beider Scharen verlaufen für jeden Parameter sehr ähnlich.

- 1. Zeigen Sie: (11BE)
 - Jeder Graph der Funktionsschar g_a besitzt den relativen Hochpunkt $H(0 \mid 2a)$.
 - Jeder Graph der Funktionsschar g_a und w_a ist achsensymmetrisch zur y-Achse.
 - Für jedes *a* hat die Gleichung $w_a''(x) = 0$ zwei Lösungen.
- 2.1 In Material 1 ist der Graph von g_2 im Intervall [-4,4] gezeichnet. Für die Funktionen der Funktionenschar g_a existieren keine elementaren Stammfunktionen. Erläutern sie deshalb ohne Rechnung ein Verfahren zur näherungsweisen Bestimmung von $\int_{-4}^{4} g_2(x) \, dx$.
- 2.2 Für die Funktionen der Schar w_a existieren jedoch Stammfunktionen. Zeigen Sie, dass W_a mit $W_a(x) = 4 \cdot a^2 \cdot \arctan\left(\frac{x}{2a}\right) = 4 \cdot a^2 \cdot \tan^{-1}\left(\frac{x}{2a}\right)$ eine Stammfunktionsschar zu w_a ist. Beachten Sie dazu: $(\arctan(x))' = \frac{1}{1+x^2}$
- 3. Durch die Gerade $y=\frac{1}{10}$ und den Graphen von $w_{0,5}$ wird der Querschnitt des Inneren einer Glocke definiert. Durch die Gerade $y=\frac{1}{10}$ und den Graphen von $g(x)=w_{0,5}(x)+0,05$ wird der Querschnitt des Äußeren der gleichen Glocke definiert (siehe Material 2). Ermitteln Sie das für die Glocke notwendige Materialvolumen. Erläutern Sie Ihr Vorgehen.

Material 1

Material 2

