Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

Отчёт

по лабораторной работе №5

Дисциплина: Техническое зрение

Тема: Распознавание образов на изображении при помощи контурного анализа

Студент гр. 3331506/70401 Ляпцев И.А. Преподаватель Варлашин В. В. « »_____2021 г.

Санкт-Петербург 2021

Задание

- 1. Откалибровать собственную камеру при помощи шахматной доски.
- 2. Откалибровать собственную камеру при помощи доски Aruco.
- 3. Откалибровать собственную камеру при помощи Calibration Toolbox (Matlab).
- 4. Сгенерировать маркер Aruco из понравившегося словаря
- 5. Написать программу, которая бы детектировала маркер на изображении и рисовать куб с основанием в виде маркера (куб должен быть спроецирован на плоскость изображения и иметь различные цвета ребер).
- 6. Написать программу, которая красила бы видимые стороны куба в произвольный цвет.

1. Калибровка при помощи шахматной доски

Алгоритм работы функции CameraCalib():

- 1) Создание и заполнение вектора изображений.
- 2) Создание вектора из векторов 3D точек для каждого изображения и определение мировых координат 3D точек.
 - 3) Нахождение углов на шахматной доске.
- 4) Калибровка камеры при помощи встроенной функции calibrateCamera().
- 5) Сохранение результатов калибровки в файл cameraMatrixChessBoard.txt.

2. Калибровка при помощи доски aruco

Калибровка при помощи доски Aruco для удобства производится в функции *main()*.

Алгоритм калибровки:

- 1) Создание доски аруко.
- 2) Создание и заполнение вектора изображений.
- 3) Создать экземпляр встроенного класса Board, который хранит известные (так как размеры aruco доски известны) 3D-координаты маркеров.
- 4) Найти 2D-координаты маркеров при помощи встроенной функции detectMarkers().
- 5) Откалибровать камеру при помощи встроенной функции calibrateCameraAruco().
 - 6) Сохранение результатов калибровки в файл *cameraMatrixAruco.txt*.

3. Калибровка при помощи Calibration Toolbox (Matlab)

Для калибровки в Calibration Toolbox (Matlab) необходимо загрузить калибровочные сэмплы с шахматной доской, настроить необходимые параметры, провести калибровку.

На рисунке 1 изображен калибровочный сэмпл с отмеченными внутренними углами шахматной доски.

Рисунок 1 – Калибровка в Calibration Toolbox (Matlab)

В данной программе имеется возможность просмотра ошибки перепроекции каждого калибровочного сэмпла и положений камеры в пространстве (см. рисунок 2).

Рисунок 2 – Ошибки проекции и положения камеры

4. Сравнение результатов калибровки разными методами

Количество калибровочных сэмплов равно 20. Для калибровки при помощи шахматной доски использовались одни и те же изображения. В таблицу 1 представлены результаты калибровок, где f_x , f_y — фокусные расстояния в пикселях по оси x и y соответственно, c_x , c_y — координаты оптического центра в пикселях, k_1 , k_2 — коэффициенты радиальной дисторсии, p_1 , p_2 — коэффициенты тангенциальной дисторсии.

Параметр	Chess OpenCV	Chess Matlab	Aruco OpenCV
f_x	486	486	488
$f_{\mathcal{Y}}$	485	485	486
C_X	318	319	312
c_y	230	231	230
k_1	0,1303	0,1212	0,0757
k_2	-0,2958	-0,1885	-0,2887
k_3	0,0001	0	0,0037
<i>p</i> ₁	-0,0006	0	0,0074
p_2	0,2979	0	0,1613
средняя ошибка	0,7514	0,1379	4,9906
перепроекции			

Судя по средней ошибке перепроекции, наиболее точным методом калибровки является калибровка при помощи шахматной доски в Calibration Toolbox (Matlab).

5. Дополненная реальность

Алгоритм метода, рисующего куб на Aruco-маркере:

- 1) Загрузить параметры камеры из файла.
- 2) Задать параметры детекции маркеров.
- 3) Загрузить кадр с камеры.
- 4) Обнаружить маркер при помощи встроенной функции detectMarkers().
- 5) Вычислить положение маркеров относительно камеры при помощи встроенной функции estimatePoseSingleMarkers().
- 6) Задать 3D-координаты куба, учитывая, что система координат маркера находится в его центре.
- 7) Спроецировать 3D-координаты в 2D-координаты на изображении при помощи встроенной функции projectPoints().
 - 8) Нарисовать куб при помощи функции Aruco::drawCube().

Также для выделения видимых граней на кубе перед п. 8 определяется положение куба на изображении и, в зависимости от ориентации, окрашиваются те или иные грани куба.

Пример результата выполнения функции представлен на рисунке 3.

Рисунок 3 – Визуализация куба в зависимости от положения маркера

Вывод

Реализованы и выполнены методы калибровки камеры: при помощи шахматной доски, при помощи доски Aruco. Выполнена калибровка при помощи шахматной доски в Calibration Toolbox (Matlab). Наиболее точным методом оказался Calibration Toolbox (Matlab). Реализован метод генерации Aruco-маркера. Реализован метод дополненной реальности, который рисует куб с основанием в виде маркера, а также окрашивает видимые грани в белый цвет.