实验一: SPSS 的基本操作,描述性统计分析,统计图表

实验目的: 熟悉 SPSS 的基本数据操作, 掌握用 SPSS 做描述性统计分析的基本步骤, 掌握统计图表的制作。

1. SPSS 窗口:

- 1) 数据编辑器窗口(Data Editor):用来编辑和显示数据;在此窗口中的文件名称为*.
- 2) 输出结果窗口 (Viewer): 显示统计运算结果; 在此窗口中的文件名称为*.spo。
- 3) 语法编辑器窗口(Syntax Editor):用来编写各种程序;在此窗口中的文件名称为*. sps。
- 4) 脚本编辑器窗口(Basic Script Editor):编写 SPSS 内嵌的 Sax Basic 语言以形成自动 化处理数据的程序。
- 5) 对象编辑窗口(Object Editor): 在对象编辑窗口中我们可以对表格、图表等对象进行相应的编辑操作。
- 2. 数据编辑窗口的基本操作 1。打开文件 1.10Frequency.sav(对应书本 1.10 习题) 1.10 检测菌肥的功效,在施有菌肥的土壤中种植小麦,成苗后测量苗高,共 100 株,数 据如下:

MANH I .									
10	9.3	7.2	9.1	8.5	8	10.5	10.6	9.6	10.1
7	6.7	9.5	7.8	10.5	7.9	8.1	9.6	7.6	9.4
10	7.5	7.2	5	7.3	8.7	7.1	6.1	5.2	6.8
10	9.9	7.5	4.5	7.6	7	9.7	6.2	8	6.9
8.3	8.6	10	4.8	4.9	7	8.3	8.4	7.8	7.5
6.6	10	6.5	9.5	8.5	11	9.7	6.6	10	5
6.5	8	8.4	8.3	7.4	7.4	8.1	7.7	7.5	7.1
7.8	7.6	8.6	6	7	6.4	6.7	6.3	6.4	11
10.5	7.8	5	8	7	7.4	5.2	6.7	9	8.6
4.6	6.9	3.5	6.2	9.7	6.4	5.8	6.4	9.3	6.4

- 1) 变量与个案
- 2) 修改变量名称为 Height
- 3) 修改小数点位数为1
- 4) 对变量值进行排序(数据→排序个案)
- 3. 统计最大值、最小值、算数平均数、标准差、方差、标准误等 操作步骤:分析→描述统计→描述→选择变量为"Height",在"选项"中勾选相应的统计量 →继续,确定→输出窗口查看结果 (请附上结果图/表)

描述统计										
	N 统计	最小值 统计	最大值 统计	合计 统计	技统计	値 标准 错误	标准 偏差 统计	方差 统计		
Height1	100	3.5	11.0	774.8	7.748	.1644	1.6437	2.702		
有效个案数 (成列)	100									

- 4. 语法编辑: 从"粘贴"或输出窗口获取 该命令的语法编辑
- 5. 对象编辑器:对输出对象进行版式编辑
- 6. 四分位点, 百分位点及频率的获取

操作步骤: 分析→描述统计→频率→在"statistics"中勾选"四分位数", (请附上结果图/表)

统计 菌肥土壤小麦株高

个案数	有效	100
	缺失	0
中位数		7.6000
百分位数	25	6.6250
	50	7.6000
	75	9.0750

7. 频数分布表/图的制作

- 1) 根据最大值 (11.0) 和最小值 (3.5) 确定组数 (8组)、组距 (d=1), 起始界值 (3.5)
- 2) 数据转换

转换→重新编码为不同变量→输出变量名称"group", 标签为"频数分布统计"→点击 "更改"→点击"旧值和新值"→ 根据 7.1 设置新值,例如从 3.5 到 4.4 为 1,从 4.5 到 5.4 为 2······

- 3) 在变量视图添加"值": 值"1"的标签为"3.5~", 值"2"的标签为"4.5~", 值"3"的标签为"5.5~"······
- 4)** 值与标签的显示切换 **非必须步骤
- 5) 分析→描述统计→频率→变量选择"group", 勾选"显示频率表格", 在"图表"中勾选条 形图 →确定, 得频数分布统计图表 (请附上结果图/表)

8. 将课本中 1.15 黄胸鼠体重的频数分布表输入 SPSS, 并计算体重的平均值和标准偏差。 (提示: 数据→加权个案) (请附上结果图/表)

_	组界/g		频	数
	0 ~ 15	986.0	10	ELT
	15 ~ 30		26	
	30 ~ 45		30	
	45 ~ 60		22	
	60 ~ 75		22	
	75 ~ 90		17	
	90 ~ 105		16	
	105 ~ 120		14	
	120 ~ 135		6	
	135 ~ 150		4	
	150 ~ 165		2	
	总数		169	

加权:

描述统计									
	N 统计	最小值 统计	最大值 统计	均值 统计 标准错误		标准 偏差 统计	方差 统计		
mean	169	7.50	157.50	62.7959	2.80717	36.49325	1331.757		
有效个案数(成列)	169								

不加权:

描述统计										
	N 统计	最小值 统计	最大值 统计	均值 统计 标准 错误		标准 偏差 统计	方差 统计			
mean	11	7.50	157.50	82.5000	15.00000	49.74937	2475.000			
有效个案数(成列)	11									

9. 新建一数据窗口,建立新变量1, 生成一组 μ =0, σ =1 的正态分布数值(n=50),再建立新变量2, 生成一组 μ =0, σ =1 的正态分布数值(n=100),建立新变量3, 生成一组 μ =0, σ =1 的正态分布数值(n=200),做三个变量的描述性统计分析 (请附上结果图/表),查看各统计量受n值的影响。

随机数值的生成路径: 转换→计算变量: 函数组: 随机数字

描述统计

	N	最小值	最大值	均	值	标准 偏差	方差	
	统计	统计	统计	统计	标准 错误	统计	统计	
newvar50	50	-1.86	1.63	1109	.12676	.89631	.803	
newvar100	100	-3.06	2.35	1472	.10743	1.07427	1.154	
newvar200	200	-2.45	2.36	.1050	.06585	.93125	.867	
有效个案数 (成列)	50							

10. 对步骤9中的三个变量做图。(1) 箱图,(2) 条形图加标准误 (请附上结果图/表),比较这两种相似图形的区别。

图形→旧对话框

个案处理摘要

个案 缺失 有效 总计 Ν 百分比 Ν 百分比 Ν 百分比 newvar50 50 25.0% 150 75.0% 200 100.0% newvar100 50.0% 50.0% 100.0% 100 100 200 newvar200 200 100.0% 0 0.0% 200 100.0%

11. 对步骤9中的数据进行重组。

数据 → 重组 → 将选定变量重组为个案 → 您希望重组几个变量: 1个 → 个案组标识: 无; 要转换的变量: 3个变量 → 创建一个索引变量, 变量值是变量名 → 处理未选定的变量: 从新数据文件中去除; 缺失值和空白值: 废弃数据 → 完成***** 数据格式: 变量组结构(横向结构)和 观测组结构(纵向结构)

12. 对重组后变量作图: (1) 箱图 (2) 误差条形图 (请附上结果图/表) 图形→图表构建器

