

https://github.com/Phillips-Lab-MTSU/DL-Workshop

EXPLORING DEEP LEARNING FOR SCIENTIFIC DISCOVERY

Joshua L. Phillips

Associate Professor
Department of Computer Science
Program in Data Science
Program in Computational and Data Science
Middle Tennessee State University

ChatGPT 4 (DALL-E 3) Prompt: "Generate an image of a neural network processing multiple short strands of DNA from microbes taken from animal and soil samples." (2023-10-18)

MACHINE LEARNING BASICS

Q: How do we write computer programs that can solve problems which are *very* difficult?

A: We don't. We write computer programs that *learn* to solve problems for which it is very difficult to write computer programs.

Learning Paradigms

- Unsupervised Learning
- Supervised Learning
- Reinforcement Learning
- Adversarial Learning

ML algorithms need three things for learning:

- 1. Task
- 2. Performance Measure
- 3. Experience

Deep Learning uses an architecture built of artificial neurons – if the neurons are wired together correctly, task is solved

Biological Inspirations

- Neurons communicate:
 - electrically via action potentials
 - chemically via neurotransmitters

Action

Potential

Refractory

Artificial Neural Networks

$$net_j = w_0 + \sum_{i=1}^n x_i \, w_{ij}$$

Deep Learning

TRANSFORMER: WHY ATTENTION HELPS

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

TRANSFORMER: SELF-ATTENTION MECHANISM

BERT PRETRAINING METHODOLOGY

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

NLP Examples: **BERT, mBERT, RoBERTa**

GPT (GENERATIVE PRETRAINED TRANSFORMER)

- Vaswani et al., 2017 Transformer architecture
- Radford et al., 2018 and Brown et al., 2020
- Simple generative training and testing procedure, perfectly suited for the transformer architecture.
- Very large model, very large data set

- 1. Cat
- 2. Ran
- 3. Fast
- 4. <STOP>

The [P(duck), P(cat), P(fast), P(no), ...]

The cat [P(duck), P(cat), P(ran), ...]

The cat ran [P(fast), P(quickly), P(slowly, P(no) ...]

GPT-3 (Brown et al. 2020)

[To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:] One day when I was playing tag with my little sister, she got really excited and she started doing these crazy farduddles.

[A "yalubalu" is a type of vegetable that looks like a big pumpkin.

An example of a sentence that uses the word yalubalu is:]
I was on a trip to Africa and I tried this yalubalu vegetable
that was grown in a garden there. It was delicious.

SETBERT: DEEP LEARNING FOR OMICS DOMAINS

- We began studying high-throughput sequencing data (HTS) in 2020
- NSF Award# 1933925 (Collaborative Research: RoL: Impacts of plants and communities on soil microbial composition and function across phylogenetic scales)
- Structured DNA sequences are ordered sequences
- Unstructured HTS FASTQ are unordered sets of sequences

David Ludwig \COMS Ph.D. Student

TACGTAGGGTGCAAGC
AACGTAGGTACCGAGC
TACGAAGGGGGCTAGC
TACAGAGGGTGCAAGC
TACGTAGGTGGCAAGC
GACGTAGGGTGCGAGC

TACGGAGGGGGCTAGC GACGAACCGTCCGAAC CACGGACCGCACGAAC

BERT PRETRAINING METHODOLOGY

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

NLP Examples: **BERT, mBERT, RoBERTa**

Analogously applied to HTS data...

DNABERT: SINGLE SEQUENCE FOUNDATIONS

Map raw DNA sequence to a high-dimensional vector embedding

2112-2120, https://doi.org/10.1093/bioinformatics/btab083

BERT Training Methology Vaswani et al., 2017 - Transformer architecture Devlin et al., 2018 The ran fast The game ended in a cat Better contextualized

SETBERT: DNABERT + SET TRANSFORMER (LEE ET AL., 2019)

- The Set Transformer component integrates single-sequence embeddings in a *permutation-equivariant* manner
- Removal of position encodings is all that is needed to make the MHA module of Transformers perform in this manner
- We construct an HTS sample as a set of embeddings provided by our pretrained DNABERT module
- Pretraining can be performed for sets of sequences using fixed DNABERT embeddings
- Fine-tuning can then be performed for any downstream task
- Changes in attention between pretrained embeddings (or compared to fine -tuned results)
 can be made, and attention attribution is also compatible

TAXONOMIC PREDICTION: GENUS LEVEL

15

INTERPRETING ATTENTION MECHANISMS

Figure 5: Examples of attribution trees. (a) is from MNLI, which is predicted as entailment by BERT. (b) is from SST-2, which is predicted as positive by BERT. The grey words from the inputs do not appear in the attribution trees.

Hao, Yaru, et al. "Self-attention attribution: interpreting information interactions inside transformer." arXiv preprint arXiv:2004.11207 (2020).

(b) Attribution Score

SNAKE FUNGAL DISEASE (PATHOGEN PRESENCE/ABSENCE)

ATTENTION SHIFTS (PRETRAINED TO FINE-TUNED)

Predicted Pathogen Presence	Taxa Category	Phylum	Class	Order	Family	Genus	Score
Positive	Highest Scoring	Actinobacteria	Actinobacteria	Corynebacteriales	Dietziaceae	Dietzia	25,422
		Bacteroidetes	Bacteroidia	Flavobacteriales	Weeksellaceae	Chryseobacterium	25,348
		Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	22,800
		Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus	22,000
		Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Comamonas	21,500
		Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia	21,001
		Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	20,500
		Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonadaceae	Parabacteroides	20,250
		Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Actinomyces	20,001
		Firmicutes	Clostridia	Clostridiales	Ruminococcaceae /	Ruminococcus	19,850
	Lowest Scoring	Actinobacteria	Actinobacteria	Micrococcales	Dermacoccaceae	Flexivirga	-7,073
		Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Enterobacteriaceae_unclassified	-6,149
		Bacteroidetes	Bacteroidia	Cytophagales	Microscillaceae	Siphonobacter	-4,966
		Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceøe	Acinetobacter	-3,918
		Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	-3,339
		Actinobacteria	Actinobacteria	Micrococcales	Dermabacteraceae	Brachybacterium	-2,196
		Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	-2,130
		Firmicutes	Bacilli	Bacillales	Bacillales_unclassified	Bacillales_unclassified	-1,825
		Firmicutes	Erysipelotrichia	Erysipelotrichales	Erysipelotrichaceae	Erysipelothrix	-1,765
		Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus	-1,346

RIJIK SOII VS. RHIZOSPHERE DISTINCTIONS

HIZOSPHE
Actinobacteriota
Acidobacteriota
Planctomycetota
Actinobacteriota
Gemmatimonadota
Proteobacteria
Acidobacteriota
Proteobacteria
Actinobacteriota
Acidobacteriota
Firmicutes
Firmicutes
Firmicutes
Firmicutes
Proteobacteria
Bacteroidota
Verrucomicrobiota
Firmicutes
Bacteroidota

Bacteroidota

ISTINCTIONS	
Thermoleophilia	Solirubrobacterales
Vicinamibacteria	Vicinamibacterales
Planctomycetes	Gemmatales
Thermoleophilia	Solirubrobacterales
Gemmatimonadetes	Gemmatimonadales
Alphaproteobacteria	Rhizobiales
Thermoanaerobaculia	Thermoanaerobaculales
Alphaproteobacteria	Rhizobiales
Thermoleophilia	Gaiellales
Vicinamibacteria	Vicinamibacterales
Bacilli	Bacillales
Bacilli	Bacillales
Bacilli	Bacillales
Bacilli	Bacillales
Alphaproteobacteria	Sphingomonadales
Bacteroidia	Chitinophagales
Verrucomicrobiae	Chthoniobacterales
Bacilli	Bacillales
Bacteroidia	Chitinophagales
Bacteroidia	Chitinophagales

DIFFUSION MODELS

- Ho et al., 2020
- Denoising Diffusion Probabilistic Models (DDPM)
- An elegant solution to the *mode collaspe* issue with generative modeling tasks

CONTRASTIVE EMBEDDING ALIGNMENT ACROSS DOMAINS

- Radford et al., 2021
- Contrastive learning can be done to align the learned information from one domain to another related domain
- Image to text
- Text to image
- Doesn't have to just be these domains...
- Zero-shot prediction still possible, just like with the earlier SimCLR approach

(1) Contrastive pre-training

(2) Create dataset classifier from label text

CONDITIONAL GENERATION WITH CONTRASTIVE EMBEDDINGS: DALL-E

- Ramesh et al., 2022
- Reverse diffusion process can be trained while including a contrastive embedding
- The text encoder can generate a *similar* contrastive embedding
- The diffusion model can use the text's contrastive embedding to extract a *similar* image
- Natural variation in the DDPM model and the large variation in training data allows for creative, generative modeling

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

Conditioned Diffusion

(2) Create dataset classifier from label text

SOME FINAL THOUGHTS AND TAKE-AWAYS

- 1. Language, images, audio (not covered here, but improvements in this domain are steady now as well): *all human* communication and therefore all domains of human knowledge are directly impacted by Generative AI.
- 2. Recent work has shown they often out-perform humans on abstract reasoning tasks (Webb et al., Aug. 2023). "Our results indicate that large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems."
- 3. Entire scientific process pipelines are being assembled using multiple coordinating generative models: hypothesis generation, experimental design, search and execution, and analysis/revision.
- 4. What about Quantum?
 - 1. Some functions of interest rely on quantum phenomena and AI may soon be used to learn these quantum functions instead of relying on human programming.
 - 2. Better optimization and approximation may be possible by integrating quantum algorithms into AI systems and this is an active area of research.

THANK YOU

Joshua L. Phillips

Joshua.Phillips@mtsu.edu

https://phillips-lab.org/