Privacy Attributes-aware Message Passing Neural Network for Visual Privacy Attributes Classification

Hanbin Hong¹, Wentao Bao¹, Yuan Hong² and Yu Kong¹

¹Rochester Institute of Technology ²Illinois Institute of Technology

Task: Visual Privacy Attributes Classification

Challenges:

Tasks	Input	Output (10 classes)	Output Space
Single-label Classification	Image	[0,0,0,0,0, 1 ,0,0,0,0]	10
Multi-label Classification	Image	[1 , 0, 1 , 0, 0, 1 , 0, 0, 1 , 1]	2 ¹⁰

Solutions: Reduce the output space

$$[1,0,1,0,0,1,0,0,1,1] \longrightarrow 2^{10}$$

$$[1,0,1,0,0,1,0,0,1,1] \longrightarrow 2^{6}$$

Related Works:

- Combining a set of labels ^[5]
- Class hierarchy [6]
- Embedding high dimension label vector to low dimension label vector [7]

Dependencies between privacy attributes

Group Dependency

Structural Dependency

How to capture the structural dependency?

Message Passing Neural Network [8] **(MPNN):**

Main Idea: Privacy Attributes → Nodes on Graph

MPNN: Use adjacent node features to update node features.

- Message Passing $\mathbf{m}_v^t = \sum_{u \in N(v)} M_t(\mathbf{x}_v^t, \mathbf{x}_u^t, \mathbf{e}_{vu})$
- Feature Updating $x_v^{t+1} = U_t(x_v^t, m_v^t)$

 x_{v}^{t} : Feature of node v in layer t

 e_{vu} : Feature between node v and u

 m_v^t : Hidden State of node v in layer t

Graph

MPNN Mechanism

Privacy Attributes-aware Message Passing Neural Network (PA-MPNN):

Experiments:

• Dataset:

Privacy Attributes Dataset^[1] with **22,167** images and **68** visual privacy attributes

• Comparison Results:

Methods	CaffeNet [1]	GoogleNet [1]	ResNet-50 [1]	ours
mAP	42.99	43.29	47.45	49.93

• Prediction Examples:

Full Name, Email Content, Email Address

Full Name, Email Content

Full Name, Email Content, Email Address

Race, Skin Color, Age, Occupation, Gender, Professional Circle, Hair Color, Complete Face, Partial Face, Weight, Height, Eye Color

Race, Skin Color, Age, Occupation, Gender, Professional Circle, Hair Color, Complete Face, Partial Face, Weight

Race, Skin Color, Age, Occupation, Gender, Professional Circle, Hair Color, Complete Face, Partial Face, Weight, **Height**, **Eye Color**

Passport, Nationality

Passport

Passport, Nationality

Ablation Study:

CED	Att.	MCM	mAP	miF1	maF1
	\checkmark	\checkmark	49.83	0.7725	0.4428
\checkmark		\checkmark	49.78	0.7645	0.4384
\checkmark	\checkmark		49.78	0.7683	0.4284
	\checkmark	\checkmark	49.93	0.7751	0.4456

With CED

Comparison of our methods

t-SNE visualization

Reference:

- [1] Gao J, Sun L, Cai M. Quantifying privacy vulnerability of individual mobility traces: A case study of license plate recognition data[J]. Transportation research part C: emerging technologies, 2019, 104: 78-94.
- [2] Chen S, Zhang C, Dong M, et al. Using ranking-cnn for age estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5183-5192.
- [3] Hu P, Ning H, Qiu T, et al. Security and privacy preservation scheme of face identification and resolution framework using fog computing in internet of things[J]. IEEE Internet of Things Journal, 2017, 4(5): 1143-1155.
- [4] Orekondy T, Schiele B, Fritz M. Towards a visual privacy advisor: Understanding and predicting privacy risks in images[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3686-3695.
- [5] Read J, Pfahringer B, Holmes G. Multi-label classification using ensembles of pruned sets[C]//2008 eighth IEEE international conference on data mining. IEEE, 2008: 995-1000.
- [6] Barros R C, Cerri R, Freitas A A, et al. Probabilistic clustering for hierarchical multi-label classification of protein functions[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2013: 385-400.
- [7] Bhatia K, Jain H, Kar P, et al. Sparse local embeddings for extreme multi-label classification[C]//Advances in neural information processing systems. 2015: 730-738.
- [8] Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry[J]. arXiv preprint arXiv:1704.01212, 2017.

Thank you

&

Please email me if you have any questions.

Contact: Hanbin Hong (hhong4@hawk.iit.edu)