Data Types & Operations

'22H2

송 인 식

Outline

- Integers
- Floating points

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary			
x	15213	3B 6D	00111011 01101101			
У	-15213	C4 93	11000100 10010011			

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement: Simple Example

$$-16$$
 8 4 2 1
 $10 = 0$ 1 0 1 0 8+2 = 10

$$-16$$
 8 4 2 1
 -10 = 1 0 1 1 0 $-16+4+2 = -10$

Mapping Between Signed & Unsigned

Maintain Same Bit Pattern

 Mappings between unsigned and two's complement numbers:

Keep bit representations and reinterpret

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

Conversion Visualized

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 - 0U, 4294967259U

Casting

- Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=
 - Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U Data Types & Operations	>	signed 9

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:

Truncation

Task:

- Given k+ w-bit signed or unsigned integer X
- Convert it to w-bit integer X' with same value for "small enough" X

• Rule:

– Drop top k bits:

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_{w}(u, v) = u + v \mod 2^{w}$$

D

E

F

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

TAdd Overflow

Functionality

- True sum requiresw+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \end{cases}$$

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2 w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for (TMin_w)²
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{\nu}(u, \nu) = u \cdot \nu \mod 2^{\nu}$$

Signed Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication

Lower bits are	Lower bits are the same			1001		E 9		-23
	*		1101	0101	*	D5	*	-43
	0000	0011	1101	1101	0	3DD		989
			1101	1101		DD		-35

Power-of-2 Multiply with Shift

- Operation
 - $-\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * 2^k$
 - Both signed and unsigned

Operands: w bits

Discard k bits: w bits

True Product: w+k bits

$$UMult_{w}(u, 2^{k})$$

 $TMult_{w}(u, 2^{k})$

u

Examples

$$- u << 3 == u * 8$$

$$- (u << 5) - (u << 3) == u * 24$$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $-\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary			
x	15213	15213	3B 6D 00111011 0110				
x >> 1	7606.5	7606	1D B6	00011101 10110110			
x >> 4	950.8125	950	03 B6	00000011 10110110			
x >> 8	59.4257813	59	00 3B	00000000 00111011			

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k \text{ gives } \lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary			
У	-15213	-15213	C4 93	11000100 10010011			
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001			
y >> 4	-950.8125	-951	FC 49	11111100 01001001			
y >> 8	-59.4257813	-60	FF C4	1111111 11000100			

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil x \mid 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Negation: Complement & Increment

Negate through complement and increase
 ~x + 1 == -x

Example

- Observation:
$$\sim x + x == 1111...111 == -1$$
 $\begin{array}{rcl} & \times & 100111101 \\ & + & \sim \times & 01100010 \\ \hline & & -1 & 111111111 \end{array}$

$$x = 15213$$

	Decimal	Hex	Binary			
x	15213	3B 6D	00111011 01101101			
~x	-15214	C4 92	11000100 10010010			
~x+1	-15213	C4 93	11000100 10010011			
У	-15213	C4 93	11000100 10010011			

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

- Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension
- Do Use In System Programming
 - Bit masks, device commands,...

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Big Endian		0x100	0x101	0x102	0x103		
			01	23	45	67	
Little Endian		0x100	0x101	0x102	0x103		
			67	45	23	01	

Representing Pointers

int
$$B = -15213;$$

int *P = &B

Different compilers & machines assign different locations to objects Even get different results each time run program

Representing Strings

• Strings in C

- char S[6] = "18213";
- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue

Summary

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, string

Outline

- Integers
- Floating points

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Fractional Binary Numbers: Examples

Value

5 3/4 = 23/4

Representation

$$5 \ 3/4 = 23/4$$
 $101.11_2 = 4 + 1 + 1/2 + 1/4$
 $2 \ 7/8 = 23/8$ $10.111_2 = 2 + 1/2 + 1/4 + 1/8$
 $1 \ 7/16 = 23/16$ $1.0111_2 = 1 + 1/4 + 1/8 + 1/16$

- Observations
 - Divide by 2 by shifting right (unsigned)
 - Multiply by 2 by shifting left
 - Numbers of form 0.1111111..., are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{1} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.01010101[01]...₂
 - 1/5 **0.00110011[0011]**...2
 - 1/10 0.0001100110011[0011]...₂
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - Some CPUs don't implement IEEE 754 in full e.g., early GPUs, Cell BE processor
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

This is important!

- Ariane 5 explodes on maiden voyage: \$500 MILLION dollars lost
 - 64-bit floating point number assigned to 16-bit integer
 - Causes rocket to get incorrect value of horizontal velocity and crash
 - https://www.youtube.com/watch?v=5tJPXYA0Nec
- Patriot Missile defense system misses scud 28 people die
 - System tracks time in tenths of second
 - Converted from integer to floating point number.
 - Accumulated rounding error causes drift. 20% drift over 8 hours.
 - Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-estimation sufficiently large to miss incoming missiles.

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Example:
$$15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$$

- Encoding
 - MSB s is sign bit s
 - exp field encodes *E* (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s	ехр	frac
---	-----	------

Precision options

Single precision: 32 bits
 ≈ 7 decimal digits, 10^{±38}

s	ехр	frac
1	8-bits	23-bits

• Double precision: 64 bits \approx 16 decimal digits, $10^{\pm 308}$

s	ехр	frac
1	11-bits	52-bits

Other formats: half precision, quad precision

Three "kinds" of floating point numbers

"Normalized" Values

• When: $exp \neq 000...0$ and $exp \neq 111...1$

$$v = (-1)^s M 2^E$$

- Exponent coded as a **biased** value: $E = \exp Bias$
 - exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (**exp**: 1...254, E: -126...127)
 - Double precision: 1023 (**exp**: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when **frac**=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
• Value: float F = 15213.0;

- 15213_{10} = 11101101101101_2

= 1.1101101101101_2 \times 2^{13}
```

```
v = (-1)^s M 2^E
E = exp - Bias
```

Significand

```
M = 1.1101101101_2
frac= 1101101101101_0000000000_2
```

Exponent

```
E = 13
Bias = 127
exp = 140 = 10001100_{2}
```

Result:

0 10001100 1101101101101000000000 s exp frac

Denormalized Values

• Condition: exp = 000...0

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- Exponent value: E = 1 Bias (instead of $\exp \text{Bias}$) (why?)
- Significand coded with implied leading 0: $\mathbf{M} = 0.xxx...x_2$
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - $exp = 000...0, frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: **exp** = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac \neq 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

^{*}Round to nearest, but if half-way in-between then round to nearest even

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - C99 has support for rounding mode management
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is o
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.0 <mark>0</mark> 2	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.1 <mark>0</mark> 2	(1/2—down)	2 1/2

Rounding

1.BBGRXXX

Guard bit: LSB of result -

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

- Round up conditions
 - Round = 1, Sticky = 1 \rightarrow > 0.5
 - Guard = 1, Round = 1, Sticky = 0 → Round to even

Fraction	GRS	Incr?	Rounded
1.0000000	000	N	1.000
1.1010000	100	N	1.101
1.0001000	010	N	1.000
1.0011000	11 0	Y	1.010
1.0001010	011	Y	1.001
1.111 <mark>1</mark> 100	1 <mark>1</mark> 1	Y	10.000

FP Multiplication

- $(-1)^{s1}$ **M1** 2^{E1} \times $(-1)^{s2}$ **M2** 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

```
4 bit significand: 1.010*2^2 \times 1.110*2^3 = 10.0011*2^5
= 1.00011*2^6 = 1.001*2^6
```

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - -Assume *E1* > *E2*
- Exact Result: (-1)^s M 2^E
 - –Sign s, significand M:
 - Result of signed align & add
 - -Exponent E: E1
- Fixing
 - -If M ≥ 2, shift M right, increment E
 - -if M < 1, shift M left k positions, decrement E by k
 - –Overflow if *E* out of range
 - -Round *M* to fit **frac** precision

```
1.010*2^{2} + 1.110*2^{3} = (0.1010 + 1.1100)*2^{3}
= 10.0110 * 2^{3} = 1.00110 * 2^{4} = 1.010 * 2^{4}
```


Get binary points lined up

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 Yes
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - 0 is additive identity?
 Yes
 - Every element has additive inverse?
 Almost
 - Yes, except for infinities & NaNs
- Monotonicity
 - $-a \ge b \Rightarrow a+c \ge b+c?$ Almost
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?
 - · Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $-a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c?$
 - Except for infinities & NaNs

Almost

Yes

Yes

No

Yes

No

Floating Point in C

- C guarantees two levels
 - float single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int \rightarrow float
 - Will round according to rounding mode

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical

applications programmers

Questions?