Examen 2 - Operaciones matemáticas básicas

Cálculo de raíces - Solución

M. en C. Gustavo Contreras Mayén

3 de octubre de 2013

Problema 1

- Problema 1
- Problema 2

- Problema 1
- Problema 2
- Problema 3

- Problema 1
- Problema 2
- 3 Problema 3
- Problema 4

- Problema 1
- Problema 2
- Problema 3
- Problema 4
- Problema 5

- Problema 1
- Problema 2
- Problema 3
- Problema 4
- Problema 5
- 6 Problema 6

- Problema 1
- Problema 2
- Problema 3
- Problema 4
- Problema 5
- Problema 6
- Problema 7

Dados los puntos

Calcula y en x=0 usando: a) el método de Neville y b) el método de Lagrange.

Dados los puntos

Calcula y en x = 0 usando: a) el método de Neville y b) el método de Lagrange.

La raíz en ambos métodos, vale 6.0

Encontrar la raíz de y(x) a partir de los siguientes datos:

X	0	0.5	1	1.5	2	2.5
у	1.8421	2.4694	2.4921	1.9047	0.8509	-0.4112

Usando la interpolación de Lagrange sobre a) tres puntos, y b) sobre cuatro puntos vecinos más cercanos.

Encontrar la raíz de y(x) a partir de los siguientes datos:

X	0	0.5	1	1.5	2	2.5
у	1.8421	2.4694	2.4921	1.9047	0.8509	-0.4112

Usando la interpolación de Lagrange sobre a) tres puntos, y b) sobre cuatro puntos vecinos más cercanos. El valor de la raíz es: 2.3397

Usaremos la interpolación de Lagrange para hallar una raíz

Dado que el punto de la raíz está entre los puntos 5 y 6, es decir, entre (2,0.8509) y (2.5,-0.4112), escogemos los puntos más cercanos a ellos, para interpolar:

- Usando 3 puntos (3 al 5): x(y = 0) = 2.4037 lagrange(yDatos[3:5],xDatos[3:5],0)
- ② Usando 3 puntos (4 al 6): x(y = 0) = 2.3371 lagrange(yDatos[4:6],xDatos[4:6],0)

- Usando 4 puntos vecinos (3 al 6): x(y = 0) = 2.3397lagrange(yDatos[3:7],xDatos[3:7],0)
- Usando los 7 puntos: x(y = 0) = 70.0027lagrange(yDatos,xDatos,0)

Resultado

La función y(x) del problema anterior, tiene un máximo en x=0.7679. Calcular el valor máximo con el método de interpolación de Neville usando cuatro puntos vecinos.

La función y(x) del problema anterior, tiene un máximo en x=0.7679. Calcular el valor máximo con el método de interpolación de Neville usando cuatro puntos vecinos.

El valor máximo de la función es: 2.5568

Usemos de nuevo la gráfica y ubiquemos la zona de interés

Dado que el punto de la raíz debe estar entre los puntos 1 y 2, es decir, entre (0.5, 2.4694) y (1, 2.4921), escogeremos los 4 puntos más cercanos a ellos (puntos del 0 al 3):

neville(xDatos[0:3],yDatos[0:3],0.7679)

Dado que el punto de la raíz debe estar entre los puntos 1 y 2, es decir, entre (0.5, 2.4694) y (1, 2.4921), escogeremos los 4 puntos más cercanos a ellos (puntos del 0 al 3):

neville(xDatos[0:3],yDatos[0:3],0.7679)

Por tanto y(0.7679) = 2.5568

Resultado

La viscosidad cinemática μ_k del agua varía con la temperatura T de la siguiente manera:

$$T(^{\circ}C)$$
 0
 21.1
 37.8
 54.4
 71.1
 87.8
 100

 $\mu_k(10^{-3}m^2/s)$
 1.79
 1.13
 0.696
 0.519
 0.338
 0.321
 0.296

Interpolar μ_k para $T=10^\circ, 30^\circ, 60^\circ$ y 90° .

Gráfica de datos experimentales

Solución Problema 4

Definimos un arreglo con los puntos que deseamos interpolar x0 = [10, 30, 60, 90] y un arreglo vacío y = [] para guardar los resultados y luego graficarlos.

```
for i in range(4):
y0.append(newton(xDatos,yDatos,x0[i]))
print "mu(",x0[i],")=%1.3f" %y0[i]
plt.plot(x0[i],y0[i],"bo")
```

Resultados

Los datos interpolados para T = [10, 30, 60, 90] son:

Temperatura (T°)	Densidad (μ_k)		
10°	1.621		
30°	0.842		
60°	0.457		
90°	0.333		

Resultados en la gráfica

La siguiente tabla muesta como la densidad relativa ρ del aire varía con la altitud h. Calcula la densidad relativa del aire en 10.5 km.

h(km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

La siguiente tabla muesta como la densidad relativa ρ del aire varía con la altitud h. Calcula la densidad relativa del aire en 10.5 km.

h(km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

La densidad del aire en 10.5 km es de 0.3178

Gráfica de datos experimentales

Usamos el método de Neville: y0=neville(xDatos,yDatos,x0)

para luego, ocupar el resultado y0 = 0.3178 y graficarlo.

Gráfica de datos experimentales

Encuentra todas las raíces positivas de las siguientes ecuaciones mediante el método de bisección, con una tolerancia de 0.001.

•
$$tan(x) - x + 1 = 0;$$
 $0 < x < 3\pi$

$$\sin(x) - 0.3 \exp(x) = 0; x > 0$$

$$-x^3 + x + 1 = 0$$

$$16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$$

Inciso a) tan(x) - x + 1 = 0; $0 < x < 3\pi$

Hay que considerar el manejo de las singularidades.

Inciso c) $-x^3 + x + 1 = 0$

Inciso c) $-x^3 + x + 1 = 0$

Inciso d) $16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$

Inciso d) $16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$

Problema 7

Determina las raíces de las siguientes ecuaciones mediante el método de la falsa posición modificada:

•
$$f(x) = 0.5 \exp(\frac{x}{3}) - \sin(x);$$
 $x > 0$

$$f(x) = \log(1+x) - x^2$$

$$f(x) = \exp(x) - 5x^2$$

$$(x) = x^3 + 2x - 1 = 0$$

•
$$f(x) = \sqrt{x+2}$$

$\overline{\mathsf{Inciso b)}\ f(x)} = \overline{\mathsf{log}(1+x)} - x^2$

Inciso b) $f(x) = \log(1 + x) - x^2$

$\overline{\text{Inciso c)} \ f(x) = \exp(x) - 5x^2}$

$\overline{\text{Inciso c)} \ f(x) = \exp(x) - 5x^2}$

Inciso d) $f(x) = x^3 + 2x - 1 = 0$

Inciso d) $f(x) = x^3 + 2x - 1 = 0$

Inciso e)

Inciso e)

Problema 8

Dado que ya conocen las raíces de las funciones, esperaríamos que reportaran un valor casi idéntico, y hasta con un error relativo.

Problema 9

Identifica el intervalo para las raíces de las siguientes ecuaciones y calcula despúes las raíces mediante el método de la secante, con una tolerancia de 0.001:

$$0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$$

$$\ln(x) - 0.2x^2 + 1 = 0$$

$$x + \frac{1}{(x+3)x} = 0$$

Inciso a) $0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$

Inciso a) $0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$

Inciso b)

Inciso c)

