CRYPTOGRAPHY

PHONG NGUYEN

http://www.di.ens.fr/~pnguyen

CRYPTO EVERYWHERE

Cards

Games and DVDs

Phones and Keys

Passports

Internet

CRYPTO EVERYWHERE

Private
Document

Printers

Cameras

Stamps

WHY CRYPTO?

To defend against enemies

- More and more data
 - Which data?
 - ➤ Who knows your data?
 - ➤ How secure is data?
 95% of web traffic is encrypted.

Security problems

SO WHAT?

Many security problems

Crypto helps, but does not solve everything

Trend: more and more crypto, but many problems remain.

THE TWO WORLDS OF CRYPTOGRAPHY

Symmetric Cryptography

- Efficient and widely used
- But management/storage of secret keys is tricky

Asymmetric (or Public-Key) Cryptography

- No need to share secret keys
- But much less efficient and requires larger keys
- ➤ Public keys must be certified

Uses algebra and number theory

IN PRACTICE

- Public-key cryptography is only used when really necessary.
 - ➤ Key exchange or asymmetric encryption

Signatures, certification of public keys

X.509 CERTIFICATES

TWO TYPES OF CRYPTOGRAPHY

Cheap Cryptography

- ➤ Goal: efficiency
- Target: Software (8-bit, 32-bit, 64-bit) or Hardware (LFSR, circuits)
- ➤ Drawback: specialized for an architecture

Mathematical Cryptography

- ➤ Goal: Functionalities
- ➤ Rely on mathematical objects
- Drawback: difficult to implement

CRYPTOGRAPHIC TRENDS AND CHALLENGES

Efficiency

REQUIREMENTS

- You need to ask questions
- * If there's something you don't understand, please raise your hands
- How much mathematics do you know?
 - > Permutations
 - ➤ Modular arithmetic
 - ➤ Groups
 - Polynomials
 - > Finite fields

SOFTWARE

- Install
 - > Python3 with various libraries: hashlib
 - ➤ SageMath

➤ Openssl

SUMMARY

- Symmetric Cryptography
 - Keyless cryptography: hash functions and pseudo-random number generators
 - > Symmetric encryption: stream ciphers and block ciphers
- Public-Key Cryptography
 - Main algorithms: RSA and DL/ECC
 - Real-world attacks
- Advanced Public-Key Cryptography
 - Post-Quantum Cryptography (to be deployed soon)
 - ➤ Homomorphic encryption (ongoing standardization)
 - Zero-Knowledge Proofs

WHAT IS PKC?

PUBLIC-KEY CRYPTOGRAPHY

• Invented by Diffie and Hellman in 1976.

- « We stand today on the brink of a revolution in cryptography. »
- * whowever, it currently necessary for the communicating parties to share a key which is known to no one else. This is done by sending the key in advance over some secure channel such a private courier or registered mail. (...) The cost and delay imposed by this key distribution problem is a major barrier to the transfer of business communications to large teleprocessing networks. »

PUBLIC-KEY CRYPTOGRAPHY

- All the keys do not necessarily have to be secret: some keys can be public!
 - The encryption key becomes public: the decryption key remains secret.
 - The verification key for signatures is **public**: the signature-generation key remains secret.

ENCRYPTION

ENCRYPTION IN PRACTICE

• Every (video/game) DVD is encrypted.

• The boot codes and operating systems of every modern gaming console are encrypted.

- Most wireless networks are encrypted.
- Credit card numbers are encrypted.
- Mobile phone Antenna communications are encrypted.
- 95% of web traffic is encrypted.

SYMMETRIC ENCRYPTION

• Encryption and decryption depend on the same (secret) key.

Plaintext m

010001100100101

Ciphertext

 $c=E_k(m)$

• Decryption: $m=D_k(c)$

ASYMMETRIC ENCRYPTION [DH76]

• Encryption and decryption use two different keys: only the decryption key is secret. Both keys are related.

• Decryption: $m=D_{k'}(c)$ where $k' \neq k$. Nobody should be able to compute k' from k.

EXAMPLE: HARD-DISK ENCRYPTION

- Symmetric or asymmetric encryption?
- Who knows the secret key?
- Where is the secret key?

- Encrypt all user files with a certain extension.
- Asks for a ransom to decrypt, maybe using bitcoins.

- If **gpcode** only used symmetric crypto, the cure would be easy: just retrieve all secret keys by reverse-engineering.
- But with public-key encryption, the program has no secret: where is the secret?

• A public key pk is embedded in the malware.

- The malware:
 - > selects a random session key **k** for symmetric encryption.
 - **k**-encrypts target files, and destroy the original files.
 - > stores $c=E_{pk}(\mathbf{k})$ and destroy \mathbf{k} .
 - > asks for a ransom to disclose **k** from c and recover the files.

- To decrypt, pay the ransom and email the challenge **c** to the malware author, who will email back **k**. Only the author knows the secret key.
- This idea appeared in [YoYu96] and was used in the 2000s in late versions of the **gpcode** ransomware.
- Note: this combination of symmetric and asymmetric encryption is well-known. It is called hybrid encryption.

AUTHENTICATION

DIGITAL SIGNATURES [DH76]

• Two different keys: a secret key k' to sign messages, and a public key k to verify messages.

• Verification: check V(m,k,s).

AUTHENTICATION OF VIDEO GAMES

• 1983: The Crash of the Video Game Industry

ATARI 2600

AUTHENTICATION OF VIDEO GAMES

• 1985: Nintendo Entertainment System (NES)

ightharpoonup Check that c=MAC_k(m)

AUTHENTICATION OF VIDEO GAMES

• 1986: Atari 7800

> Check that s is a valid signature of m, before running m.

EXAMPLE: BITCOIN

- The blockchain:
 - Blocks are chained together by hashing.
 - Each block contains the hash of the previous block.

- A bitcoin block contains statements of the form:
 - « My name is XYZ, and I certify that I give xxx bitcoins to the person ABC » together with
 a digital signature.

TAKE AWAY

- Public-key cryptography has no unconditional security.
- It requires to make computational assumptions: it is impossible to recover the secret key (or an equivalent key) from the public key.
- But then what is <u>impossible</u>?

WHATISTHE LARGEST COMPUTATION EWER?

THE LARGEST (PUBLIC) COMPUTATION EVER

- Duration: 4 years, from 1998 to 2002.
- 2^{64} RC5 encryptions $\approx 2^{74}$ clock cycles.
- Up to 300,000 PCs used on the Internet.
- But this is much less than Bitcoin computations.

MORE RECENTLY

- In Feb. 2017, an international team (Stevens et al.) found the first SHA-1 collision using approximately 263 hash computations.
- It took 6500 CPU years and 100 GPU years.

BITCOIN POWER

- If D is the current Bitcoin difficulty, mining requires to calculate D x $2^{32}/600$ hashes per second.
 - ► In Nov 2023, D≈62,4*10¹² so #hash/sec≈2⁶⁸ and #hash/year≈2⁹³
- D is updated so that mining takes about 10 minutes.

 $^{\circ}$ Any large organization can perform 2^{64} cryptographic operations secretly:

- ➤ Bitcoin does it every 0.0625 second.
- ➤ 20 years ago, it was a record computation.
- That is an order of magnitude.

COMPARISONS

- Number of milliseconds in 100 years = $100x365x24x60x60x1000 \approx 2^{42}$
- World population ≈ 7 billions = $7 \times 10^9 \approx 2^{33}$
- Earth-Sun distance = $150 \times 10^6 \text{ km} \approx 2^{47} \text{ mm}$
- Age of earth = $4.5 \times 10^9 \text{ years} \approx 2^{57} \text{ seconds}$

WHAT IS « IMPOSSIBLE »?

- The PC computing power sold per year is roughly 286 clock cycles.
 - ightharpoonup 2-GHz core = $2x10^9 = 2^{31}$ clock cycles/sec.
 - ➤ In 2022, a typical CPU has 4 cores.
 - ightharpoonup 1 year = $60x60x24x365 = 2^{25}$ seconds.
 - ➤ About 2²⁸ PCs sold per year.
- Total number of computers ever sold: $4x10^9 \approx 2^{32}$?
- Total number of cycles per year: about 290
- ➤ Impossible := 2^{128} operations

MOORE'S LAW

- Computing power doubles roughly every 18 months.
- 2011's QuadCore has 2200 times more cycles/s than 1981's IBM PC.

MOORE'S LAW LIMITS

Frequency stalls

Number of cores increases

GPU

MASSIVE COMPUTATIONAL POWER

• In 2023:

- The top supercomputer (Frontier, cost 600 million \$) performs $1,000 \text{ PetaFlop/s} = 2^{84} \text{ floating-point operations/year.}$
- ➤ BitCoin performs 2⁹³ hash/year.
 - The hardware cost is ≤ 400 million \$.

SECURITY LEVELS

• Weak: 40 bits.

• Average: 64-80 bits.

• Strong: 128 bits

• High: 256 bits

- No precise definition of operation: it is an order of magnitude.
- ➤ For instance, AES has 3 key-lengths: 128, 192 and 256 bits.

COMPARISON WITH PASSWORDS

Number of Lower + Upper + Digits (62) Lower + Digits (36) Lower case (26) Keyboard (95) characters 223.5 225.9 232.9 229.8 241.4 252.6 237.6 247.6

STORAGE POWER

• A typical PC hard-disk has $1\text{Tb} = 8x10^{12}$ bits

- $\approx 2^{43}$ bits.
- The number of HDD shipped per year is roughly 560 millions, i.e. 2⁷² bits in total.
- The NSA Utah data center: rumors of 3-12 exabytes (10^{18} bytes) = about 2^{62} bits.
- Internet traffic in 2023: 4.1 zettabyte $\approx 10^{23}$ bytes = 2^{75} bits

