CLAIMS:

- 1. An optical coherence tomography system comprising
- an optical source to emit an optical beam
- a sample space
- a photodetector

10

15

25

- 5 an interferometer set-up including
 - a reference reflector and
 - a beam splitter-combination arrangement to
 - split the optical beam into a reference beam to the reference reflector and a sample beam to the sample space and to
 - combine a reflected beam from the reference reflector with a returning beam from the sample space on the photodetector, wherein
 - the optical source has an emission wavelength in the range of 1.6μm to 2.0μm, in particular having an infrared emission predominantly at a wavelength of 1.8μm associated with a transition between an upper energy level and a lower energy level and
 - the optical source comprises an excitation system which generates stimulated emission from a pump level to the upper energy level.
- An optical coherence tomography system as claimed in Claim 1, wherein the
 optical source includes a Tm-doped fibre placed in an optical cavity of cavity reflectors facing one another.
 - 3. An optical coherence tomography system as claimed in Claim 2, wherein the cavity reflectors are anti-reflex coated for a wavelength range of 760nm to 810nm.
 - 4. An optical coherence tomography system as claimed in Claim 2 or 3, wherein the cavity reflectors have a high-reflectivity (coating) for the wavelength range 2.2μm to 2.4μm.

- 5. An optical coherence tomography system as claimed in Claim 2,3 or 4 wherein the cavity reflectors have a high-reflectivity (coating) for the wavelength range $2.2\mu m$ to $2.4\mu m$ and/or for the wavelength range $1.40\mu m$ to $1.5\mu m$.
- 5 6. An optical coherence tomography system as claimed in Claim 2, wherein the optical cavity has reflectivities less than 0.04 for the wavelength range of 1.6-2.0μm.
 - 7. An optical coherence tomography system as claimed in Claim 6, wherein
- an input cavity reflector has a high reflectivity (coating) for the wavelength range 1.6μm
 to 2.0μm and
 - an output cavity reflector has a low-reflectivity (coating) for the wavelength range 1.6μm to 2.0μm.
 - 8. An optical amplifier comprising
- 15 a Tm-doped fibre in an optical cavity of cavity reflectors facing one another, wherein
 - the cavity reflectors have an antireflex coating for the wavelength range of 1.6μm
 to2.0μm, and in particular are anti-reflex coated for a wavelength of 1.8μm.
- 9. A Tm-doped fibre having a fibre core extending along a longitudinal axis of the fibre and having a double cladding surrounding the fibre core.