Weak PRF Protocol: Pseudocode

Vivek Sharma

Jan 11, 2020

1 Fully Distributive Evaluation Protocol

The key is structured as a vector in \mathbb{Z}_2

The protocol is divided into three phases:

1.1 Phase 1:

Each server S_i holds replicated additive shares of key $k_i \in \mathbb{Z}_n^2$ and $x_i \in \mathbb{Z}_n^2$ and computes h, which is the multiplication of key and input over \mathbb{Z}_2 . This computation is performed locally.

1.2 Phase 2:

- 1. Each server, at this point have locally computed their shares, which was the multiplication of two vectors.
- 2. Server 1 randomly chooses a value $c \in \mathbb{Z}_3^m$ and each bit of value is converted to it's 2-bit representation to form $c_0 and c_1$ respectively.
- 3. Meanwhile, Server 1, 2 and 3 runs sub-protocol for m instances(m is the length of additive share and also the value of c, which is with server 1.

For
$$1 \le j \le m$$
:

Each server $s_i, i \in {1, 2, 3}$ share their input $h_{i,j}$ [Note: $h_{i,j}$ is the input of server s_i in j^{th} iteration]

Compute combined XOR of their input: $comb := h_1 \oplus h_2 \oplus h_{13}$

Multiply one part of c, (c_0) , with comb and other part (c_1) with $\neg comb$ and XOR both the result, this forms d_0 .

To compute d_1 , XOR the c_0 and $\neg c_1$, and multiply the result with the XOR of secret share of the servers.

The final result $d = d_0, d_1 \in \{0, 1\}^2$ is converted back into \mathbb{Z}_3

At the end of this phase, Server 1 has $c \in \{0,1\}^m$ and Server 2 has received the output $d \in \mathbb{Z}_3$

1.3 Phase 3:

Explanation: