Solutions Problem Set 1

Tatiana Rosá Alejo Eyzaguirre

1st September 2021

Outline

- 1 Pregunta 1: Mixtura de Normales
 - Pregunta 1.A
 - Pregunta 1.B
 - Pregunta 1.C
- 2 Pregunta 2: Probabilidades, CDF's y PDF's
 - Pregunta 2.A
 - Pregunta 2.B
 - Pregunta 2.C
 - Pregunta 2.D
- 3 Pregunta 3: Media y Varianza
 - Pregunta 3.B

Pregunta 1: Mixtura de Normales

La familia de mixtura de normales (normal mixtures) con 2 componentes tiene CDF:

$$F(x) = p_1 \Phi(\frac{x - \mu_1}{\sigma_1}) + p_2 \Phi(\frac{x - \mu_2}{\sigma_2})$$
 (1)

Donde $p_1 \in [0,1]$, $p_1+p_2=1,\sigma_1,\sigma_2<0$ y μ_1 y μ_2 son escalares. La función Φ es la CDF de una normal estándar. Se le pide:

Pregunta 1.A

Compute la PDF de una V.A X que tiene como distribución una mixtura de normales de 2 componentes.

Solución: Derivamos la CDF y así obtenemos la PDF. Clave usar Regla de la Cadena.

$$\frac{\partial F(x)}{\partial x} = f(x) = \frac{p_1}{\sigma_1} \cdot \phi(\frac{x - \mu_1}{\sigma_1}) + \frac{p_2}{\sigma_2} \cdot \phi(\frac{x - \mu_2}{\sigma_2})$$

Pregunta 1.B

Compute la Esperanza y Varianza de X.

Solución: Usando la definición de Esperanza:

$$E(x) = \int_{-\infty}^{+\infty} x \cdot \left(\frac{p_1}{\sigma_1} \phi(\frac{x - \mu_1}{\sigma_1}) + \frac{p_2}{\sigma_2} \phi(\frac{x - \mu_2}{\sigma_2}) \right) dx$$
$$= p_1 \int_{-\infty}^{+\infty} \left(\frac{x}{\sigma_1} \phi(\frac{x - \mu_1}{\sigma_1}) \right) dx + p_2 \int_{-\infty}^{+\infty} \left(\frac{x}{\sigma_2} \phi(\frac{x - \mu_2}{\sigma_2}) \right) dx$$

La primera integral es la esperanza de una V.A que distribuye $N(\mu_1, \sigma_1^2)$ por lo tanto, es igual a μ_1 . La segunda integral es entonces μ_2 .

$$E(x) = p_1 \mu_1 + p_2 \mu_2$$

Pregunta 1.B

Seguimos con la Varianza, la cual calcularemos con la fórmula $V(x) = E(x^2) - E^2[x]$.

$$\begin{split} E(x^2) &= \int_{-\infty}^{+\infty} x^2 \cdot \left(\frac{p_1}{\sigma_1} \phi(\frac{x - \mu_1}{\sigma_1}) + \frac{p_2}{\sigma_2} \phi(\frac{x - \mu_2}{\sigma_2}) \right) dx \\ &= p_1 \int_{-\infty}^{+\infty} \left(\frac{x^2}{\sigma_1} \phi(\frac{x - \mu_1}{\sigma_1}) \right) dx + p_2 \int_{-\infty}^{+\infty} \left(\frac{x^2}{\sigma_2} \phi(\frac{x - \mu_2}{\sigma_2}) \right) dx \end{split}$$

El primer término es $E[Y^2]$ si Y es una V.A que distribuye $N(\mu_1, \sigma_1)$ por lo tanto, como sabemos que $E(Y^2) = V(Y) + E^2[Y]$, esta primera integral es equivalente a $\sigma_1^2 + \mu_1^2$. Análogamente, el segundo término es entonces $\sigma_2^2 + \mu_2^2$.

$$\begin{split} E(x^2) &= p_1 \cdot (\mu_1^2 + \sigma_1^2) + p_2 \cdot (\mu_2^2 + \sigma_2^2) \\ Var(x) &= p_1 \cdot (\mu_1^2 + \sigma_1^2) + p_2 \cdot (\mu_2^2 + \sigma_2^2) - (p_1 \mu_1 + p_2 \mu_2)^2 \end{split}$$

Pregunta 1.C

En el resto del ejercicio imponemos $\sigma_1=\sigma_2=1$, $p_1+p_2=1$ y $\mu_1+\mu_2=0$. ¿Es la densidad simétrica? Grafique la PDF para $\mu_1=0.5, \mu_1=1, \mu_1=1.5$. Comente:

Solución: La densidad será simétrica si el coeficiente de asimetría (*skewness*) es cero. Es decir si $E[(\frac{x-\mu}{\sigma})^3]=0$, o también si $E(x^3)-3\mu\sigma^2-\mu^3=0$. Para nuestro caso particular, $\mu=0,5\mu_1+0,5\mu_2=0$ (ver solución 1.A). Entonces simetría se da si y solo sí $E(x^3)=0$. Revisemos:

$$E(x^3) = p_1 \int_{-\infty}^{+\infty} x^3 \cdot \left(\frac{1}{\sigma_1} \phi(\frac{x - \mu_1}{\sigma_1}) \right) dx + p_2 \int_{-\infty}^{+\infty} x^3 \cdot \left(\frac{1}{\sigma_2} \phi(\frac{x - \mu_2}{\sigma_2}) \right) dx$$

Donde el primer término es $E[Y^3]$ si Y es una V.A. que distribuye $N(\mu_1,\sigma_1^2)$. Como la densidad de la distribución de Y es normal, sabemos que el tercer momento es cero (densidad simétrica). Entonces, tenemos que la integral es equivalente a: $E(Y^3) = 3\mu_1\sigma_1^2 + \mu_1^3$ (ídem para la 2^a Integral).

Pregunta 1.C

Dicho lo anterior si reemplazamos con lo que tenemos hasta el momento:

$$\begin{split} E(x^3) &= p_1 \cdot (3\mu_1\sigma_1^2 + \mu_1^3) + p_2 \cdot (3\mu_2\sigma_2^2 + \mu_2^3) \\ &= 1.5\mu_1 + 0.5\mu_1^3 + 1.5\mu_2 + 0.5\mu_2^3 \\ &= 1.5\mu_1 + 0.5\mu_1^3 + 1.5(-\mu_1) + 0.5(-\mu_1)^3 \\ &= 0 \end{split}$$

Por lo tanto, la densidad es efectivamente simétrica.

Las gráficas se podían hacer a mano o vía Matlab.

Pregunta 2.A

Sea $X \sim N(0; 9)$. Compute p(4 < X < 4) de forma exacta (función) y de forma aproximada, usando la desigualdad de Chebychev.

Solución: Acá la clave es normalizar en la desigualdad así luego podemos revisar la tabla de la acumulada de la normal estándar.

$$Pr(-4 < X < 4) = Pr(\frac{-4 - 0}{\sqrt{9}} < \frac{X - 0}{\sqrt{9}} < \frac{4 - 0}{\sqrt{9}})$$
$$= \Phi(\frac{4}{3}) - \Phi(\frac{-4}{3})$$
$$\approx 0.82$$

Ahora usando la Aproximación de Chebychev. Sabemos que:

$$-4 < X < 4 \Leftrightarrow |X| < 4$$
 $Prob(-4 < X < 4) = Prob(|X| < 4) = 1 - Prob(|X - \mu_X| > 4)$

Y lo último es posible dado que por enunciado $\mu_x = 0$.

Pregunta 2.A

Ahora podemos usar Chebychev:

$$Prob(|x - \mu| > 4) = Prob((x - \mu)^{2} > 16)$$

 $\leq \frac{Var(X)}{4^{2}} = \frac{9}{4^{2}}$

Entonces, reordenando un poco:

$$Prob(-4 < X < 4) = 1 - Prob(|x - \mu| > 4)$$

 $\geq \frac{7}{16} \approx 0.4375$

En este caso, la Desigualdad de Chebychev no nos aporta una gran aproximación.

Pregunta 2.B

Obtenga la función de distribución de $Y = X^2 - 7X + 10$ donde X es el resultado de tirar un dado. **Solución:** Calculemos el "recorrido" de Y.

Prob(X=x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
X	1	2	3	4	5	6
Y	4	0	-2	-2	0	4

Entonces la función de distribución acumulada de Y sería:

$$F_{y}(y) = \begin{cases} 0 & \text{si } Y < -2\\ \frac{1}{3} & \text{si } -2 \le Y \le 0\\ \frac{2}{3} & \text{si } 0 \le Y \le 4\\ 1 & \text{si } Y \ge 4 \end{cases}$$

Pregunta 2.C

Aplicando lo visto en clases (Slide 20 del PPT), tenemos que:

$$F_Y(Y) = F_x(g^{-1}(y))$$
 , $\forall y \in \mathcal{Y}$

Hallamos entonces la inversa de la función g(x).

$$Y = \frac{X}{1+X}$$
, cambiamos las X por Y.

$$X = \frac{Y}{1+Y}$$
, despejamos las Y.

$$Y = \frac{X}{1 - X}$$

Entonces,

$$F_Y(Y) = F_X(\frac{y}{1-y})$$

Pregunta 2.D

Sea X una variable aleatoria con CDF F(x) continua y estrictamente monotónica. Sea Y la variable aleatoria definida por Y=F(X) (i.e., la función que mapea X en Y es la CDF de X). Cual es la CDF de Y? Y la PDF? Grafique.

Solución: Primero obtenemos la CDF:

$$F_Y(y) = Prob(Y \le y)$$

= $Prob(F(x) \le y)$, aplico F^{-1} que se que es monótona.
= $Prob(F^{-1}(F(x)) \le F^{-1}(y))$
= $Prob(X \le F^{-1}(y))$
= $F(F^{-1}(y))$
= y

Note que la única forma de que esto se cumpla, es que $y \sim U(0,1)$. Si transformamos una variable aleatoria por su propia CDF, obtenemos una uniforme (0,1), que corresponde a la PDF.

Pregunta 3.B

Sea X una variable aleatoria con distribución U(-1,4). Obtenga la media y varianza de: $Y = X^2$.

Solución: Necesito $F_y(y)$. Sin embargo, acá la función no es monótona (para valores menores que cero es decreciente y para mayores es creciente). Note que es imposible que Y sea algo menor que cero $\forall X \in \mathbb{R}$, entonces $F_y(y) = Prob(x^2 \le y) = 0$ para este caso. Para $y \ge 0$, tenemos en cambio que:

$$F_y(y) = Prob(x^2 \le y) = Prob(-\sqrt{y} \le x \le \sqrt{y}) = F_x(\sqrt{y}) - F_x(-\sqrt{y})$$

Como sabemos que $X \sim U(-1,4)$ entonces $F_x(x) = \frac{x+1}{4+1} = \frac{x+1}{5}$. Luego reemplazando en la expresión encontrada para $F_y(y)$, tendríamos que:

$$F_{y}(y) = \begin{cases} 0 & \text{si } y < 0\\ \frac{2\sqrt{y}}{5} & \text{si } 0 \le y \le 16\\ 1 & \text{si } y \ge 16 \end{cases}$$

Pregunta 3.B

Derivando la expresión obtenida en la expresión encontrada para $F_y(y)$ que es una CDF, obtendríamos entonces nuestra PDF, que nos permite encontrar la Esperanza y la Varianza solicitadas.

$$f_{y}(y) = \begin{cases} 0 & \text{si } y < 0\\ \frac{1}{5\sqrt{y}} & \text{si } 0 \le y \le 16\\ 0 & \text{si } y \ge 16 \end{cases}$$

Usando integrales y encontrando la E(y) y la $E(y^2)$, se podían encontrar ambos momentos.

Gracias!

jeeyzaguirre@uc.cl