第5课练习

谢文进

2023年5月14日

1. KZG 多项式承诺方案在 Setup 阶段涉及到计算对秘密评估点 τ 的幂的承诺,这被称为"可信设置",通常在被称为"Powers of Tau"的仪式中利用多方计算生成。假如说有一天,你在一张纸条上找到了 τ 的值。你怎么能用它来制作一个假的 KZG 证明呢?

答: 我们知道在 Setup 阶段的 τ 值,原来的三个步骤:

- $Setup(1^{\lambda}, d) \to srs, srs = (ck, vk) = (\{[\tau^i]_1\}_{i=0}^{d-1}, [\tau]_2).$
- $Commit(ck; f(X)) \to C, f(X) = \sum_{i=0}^{n-1} f_i X^i, C = \sum_{i=0}^{n-1} [f_i][\tau^i]_1 = [f(\tau)]_1$
- $Open(srs, C, x, y; f(X)) \rightarrow \{0, 1\}$:
 - a) Prover 计算 $q(X) = \frac{f(X) y}{X x}$, 发送证明 $\pi = [q(\tau)]_1$;
 - b) Verifier $\implies e(C [y]_1, H) \stackrel{?}{=} e(\pi, [\tau]_2 [x]_2)$

如今,伪造者并不知道多项式 f(X),因此不能计算出 y,对于一个伪造的 y'(也就是 $f(x) \neq y'$),想要通过发送证明 π_{Fake} 通过验证。现在伪造者想要验证者通过验证

$$e(\pi_{Fake}, [\tau]_2 - [x]_2) = e(C - [y']_1, H)$$

$$\Rightarrow e(\pi_{Fake}, H)^{\tau - x} = e(C - [y']_1, H)$$

$$\Rightarrow e(\pi_{Fake}, H) = e(C - [y']_1, H)^{\frac{1}{\tau - x}}$$

$$\Rightarrow \pi_{Fake} = (C - [y']_1)^{\frac{1}{\tau - x}}$$

由此伪造出证明 π_{Fake} .

2. 从 KZG 多项式承诺方案构造一个**向量承诺方案**。(提示: 对于向量 $m = (m_1, ..., m_q)$,是否存在一个 "插值多项式"I(X) 使得 $I(x_i) = y_i$?)

有趣的事实: Verkle 树 [1] 是一种使用向量承诺而不是哈希函数的 Merkle 树。使用 KZG 向量承诺方案,您能看出为什么 Verkle 树更高效吗?

答: 现在要对向量 $m = (m_1, m_2, \dots, m_q)$ 进行承诺,也就是允许证明任意位置 i 对应 m_i 。首先通过拉格朗日插值,使得一个多项式 f(X) 对任意 i 都有 $f(i) = m_i$,根据插值公式,得到

$$f(X) = \sum_{i=0}^{n-1} m_i \prod_{j=0, j \neq i}^{n-1} \frac{X-j}{i-j}.$$

接着, KZG 对该多项式 f(X) 进行承诺就可以了。

如果证明一个元素,Merkle 树需要 $O(\log_2 n)$ 大小来证明,而这里可以看到只需要 O(1) 就可以。论文 [1] 中给出了与 Merkle 树证明大小的比较:

Scheme/Op.	Construct	Update File	Proof Size
Merkle Tree	O(n)	$O(\log_2 n)$	$O(\log_2 n)$
k-ary Merkle Tree	O(n)	$O(k \log_k n)$	$O(k \log_k n)$
Vector Commitment	$O(n^2)$	O(n)	O(1)
k-ary Verkle Tree	O(kn)	$O(k \log_k n)$	$O(\log_k n)$

Figure 5: Time Complexities

3. KZG 多项式承诺方案对关系 p(x) = y 进行披露证明 π 。你能扩展这个方案来产生一个多重证明 π ,让我们相信 $p(x_i) = y_i$ 对于点列表和评估 (x_i, y_i) ? (提示: 假设您有一个插值多项式 I(X) 使得 $I(x_i) = y_i$)。答:先构造一个拉格朗日插值多项式 I(X) 使得 $I(x_i) = y_i (i = 0, \dots, k-1)$,根据插值公式得

$$I(X) = \sum_{i=0}^{k-1} y_i \prod_{j=0, j \neq i}^{k-1} \frac{X - x_j}{x_i - x_j}$$

则 I(X) 的因子有 $(X-x_1), \cdots, (X-x_{k-1})$,将它们相乘得到零多项式 $g(X) = (X-x_1)\cdot (X-x_2)\cdots (X-x_{k-1})$ 。构造商多项式

$$q(X) = \frac{p(X) - I(X)}{g(X)}$$

由于 p(X) 也能整除 g(X), 因此 q(X) 能整除 g(X). 具体承诺方案如下:

- $Setup(1^{\lambda}, d) \to srs, srs = (ck, vk) = (\{[\tau^i]_1\}_{i=0}^{d-1}, [\tau]_2).$
- $Commit(ck; f(X)) \to C, p(X) = \sum_{i=0}^{n-1} p_i X^i, C = \sum_{i=0}^{n-1} [p_i][\tau^i]_1 = [p(\tau)]_1$
- $Open(srs, C, (x_i, y_i); p(X)) \to \{0, 1\}:$
 - a) Prover 根据 (x_i,y_i) 计算出 I(X) 与 g(X),接着计算 $q(X)=\frac{p(X)-I(X)}{g(X)}$,发送证明 $\pi=[q(\tau)]_1$;
 - b) Verifier $\text{with } e(C [I(\tau)]_1, H) \stackrel{?}{=} e(\pi, [g(\tau)]_2).$

英文原文

- 1. The Setup phase of the KZG polynomial commitment scheme involves computing commitments to powers of a secret evaluation point τ . This is called the "trusted setup" and is often generated in a multi-party computation known as the "Powers of Tau" ceremony. One day, you find the value of τ on a slip of paper. How can you use it to make a fake KZG opening proof?
- 2. Construct a **vector commitment scheme** from the KZG polynomial commitment scheme. (Hint: For a vector $m = (m_1, \ldots, m_q)$, is there an "interpolation polynomial" I(X) such that I(i) = m[i]?)

Fun fact: The Verkle tree [1] is a Merkle tree that uses a vector commitment instead of a hash function. Using the KZG vector commitment scheme, can you see why a Verkle tree is more efficient?

3. The KZG polynomial commitment scheme makes an opening proof π for the relation p(x) = y. Can you extend the scheme to produce a multiproof π , that convinces us of $p(x_i) = y_i$ for a list of points and evaluations (x_i, y_i) ? (Hint: assume that you have an interpolation polynomial I(X) such that $I(x_i) = y_i$).

参考文献 3

参考文献

 $[1] \ J. \ Kuszmaul, \ https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf, \ 2019.$

[2] Dankrad Feist, KZG 多项式承诺, 2020.