Полусинхронная репликация

1. Поднимаем кластер в докере из репы https://github.com/skalentev/OTUS-SoNet.git, pg1 — мастер, pg2 — асинхронная реплика:

на мастере в конфиге: wal_level = replica на слейве: primary_conninfo = 'host=pg1 port=5432 user=replicator password=pass application_name=pg2'

```
git clone https://github.com/skalentev/OTUS-SoNet.git
cd OTUS-SoNet

sudo docker compose -f ./Cluster/docker-compose.yml up -d pg1
sudo docker cp Cluster/Postgresql1.conf pg1:/var/lib/postgresql/data/postgresql.conf
sudo docker cp Cluster/pg hba.conf pg1:/var/lib/postgresql/data/pg hba.conf
sudo docker compose -f ./Cluster/docker-compose.yml restart pg1

sudo docker exec pg1 mkdir -p /pgslave;
sudo docker exec -e PGPASSWORD='pass' pg1 pg basebackup -h pg1 -D /pgslave -U replicator
-v -P --wal-method=stream
sudo docker cp pg1:/pgslave /tmp/pgslave
sudo cp -r /tmp/pgslave/ /tmp/data pg2/
sudo cp Cluster/Postgresql2.conf /tmp/data_pg2/postgresql.conf
sudo cp Cluster/pg hba.conf /tmp/data pg2/pg hba.conf
sudo cp Cluster/standby.signal /tmp/data pg2/standby.signal
sudo docker compose -f ./Cluster/docker-compose.yml up -d pg2
```

2. Делаем отдельный datasource для user\get и user\search

(cm. https://github.com/skalentev/OTUS-SoNet)

3. Замеряем нагрузку при настройке запросов на мастер pg1 (время на графике 21:54-22:04) и на реплику pg2 (22:08 – 22:18)

Чтение с реплики мастер не нагружает.

Пропускная способность при настройке на мастер:

inponyonian onocconcers have naciponice na macrepi											
Average	Median	90% Line	95% Line	99% Line	Min	Maximum	Throughput	# Samples	Error %	Received KB/sec	
8	6	16	23	54	0	291	9746.3/sec	2924341	100.00%	1275.40	
2452	1926	4272	5787	12455	65	44915	34.0/sec	10269	0.00%	3096.37	
				64	0	44915	4872.6/sec	2934610	99.65%	2189.16	
	Average 8	Average Median 6	Average Median 90% Line 8 6 16	Average Median 90% Line 95% Line 8 6 16 23	Average Median 90% Line 95% Line 99% Line 8 6 16 23 54	Average Median 90% Line 95% Line 99% Line Min 8 6 16 23 54 0	Average Median 90% Line 95% Line 99% Line Min Maximum 8 6 16 23 54 0 291 2452 1926 4272 5787 12455 65 44915	Average Median 90% Line 95% Line 99% Line Min Maximum Throughput 8 6 16 23 54 0 291 9746.3/sec 2452 1926 4272 5767 12455 65 44915 34.0/sec	Average Median 90% Line 95% Line 99% Line Min Maximum Throughput # Samples 8 6 16 23 54 0 291 9746.3/sec 2924341 2452 1926 4272 5787 12455 65 44915 34.0/sec 10269	Average Median 90% Line 95% Line Min Maximum Throughput # Samples Error % 8 6 16 23 54 0 291 9746.3/sec 2921341 100.00% 2452 1926 4272 5767 12455 65 44915 34.0/sec 10269 0.00%	

Пропускная способность при настройке на реплику:

Label	Average	Median	90% Line	95% Line	99% Line	Min	Maximum	Throughput	# Samples	Error %	Received KB/sec
userGetId100	8	6	16	23	54	0	239	9541.3/sec	2862815	100.00%	1248.57
userSearch100	2513	1962	4478	6299	13196	68	26573	33.2/sec	10025	0.00%	3021.50
TOTAL				24	64		26573	4769.0/sec	2872840	99.65%	2138.41

4. Запускаем вторую реплику рд3

```
sudo cp -r /tmp/pgslave/ /tmp/data pg3/
sudo cp Cluster/Postgresql3.conf /tmp/data pg3/postgresql.conf
sudo cp Cluster/pg hba.conf /tmp/data pg3/pg hba.conf
sudo cp Cluster/standby.signal /tmp/data_pg3/standby.signal
sudo docker compose -f ./Cluster/docker-compose.yml up -d pg2 pg3
```

- 5. -
- 6. –
- 7. Добавляем в конфиг мастера pg1 postgresql.conf настройки:

```
synchronous_commit = on
synchronous standby names = 'ANY 1 (pg2, pg3)'
```

Проверяем:

- 8. Выполняем 100 запросов /user/login, которые создают запись в таблицу session
- 9. На 26 итерации выполняем sudo docker stop pg2
- 10. В постмане дожидаемся окончания записи:

```
Source Environment Iterations Duration All tests Avg. Resp. Time

Runner none 100 1m 49s 200 1061 ms
```

На реплике рд3 проверяем количество записей:

```
cluster=# select count(1) from public.session;
count
-----
100
```

11. Промоутим рg3:

В конфиг добавляем

```
synchronous commit = on
synchronous_standby_names = 'ANY 1 (pg1, pg2, pg3)'
```

выполняем:

```
cluster=# select pg promote();
  pg promote
-----
t
(1 row)
```

На pg2 в конфиге меняем адрес мастера на pg3

primary conninfo = 'host=pg3 port=5432 user=replicator password=pass application name=pg2'

Останавливаем pg1 (бывший мастер) и запускаем перенастроенный слейв pg2

```
docker stop pg1 (обівший мастер) и запускаем перенастроенный слейв рg2 docker stop pg1 docker start pg2
```

12. Проверяем число записей на pg2:

```
sudo docker exec -ti pg2 psql -d cluster -U user
cluster=# select count(1) from public.session;
count
-----
100
```

Потерь нет.