In [1]:

import numpy as np
import pandas as pd

In [2]:

data = pd.read_csv(r"C:\Users\ABHISHEK\Desktop\Salary_Data.csv")

In [3]:

data

Out[3]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

In [4]:

data.head()

Out[4]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0

In [5]:

data.describe()

Out[5]:

	YearsExperience	Salary
count	30.000000	30.000000
mean	5.313333	76003.000000
std	2.837888	27414.429785
min	1.100000	37731.000000
25%	3.200000	56720.750000
50%	4.700000	65237.000000
75%	7.700000	100544.750000
max	10.500000	122391.000000

In [6]:

to find missing values data.isnull().any()

Out[6]:

YearsExperience False Salary False dtype: bool

71

In [7]:

```
data.dtypes
```

Out[7]:

```
YearsExperience float64
Salary float64
dtype: object
```

In [8]:

```
# Converting dataframe into numpy array
x = data.iloc[:, 0:1].values
y = data.iloc[:, 1:2].values
```

In [9]:

×

Out[9]:

```
array([[ 1.1],
    [ 1.3],
    [1.5],
    [2.],
    [2.2],
    [2.9],
    [3.],
    [3.2],
     [3.2],
    [3.7],
    [3.9],
    [4.],
    [4.],
     [4.1],
     [4.5],
     [4.9],
     [5.1],
     [5.3],
    [5.9],
     [ 6. ],
     [6.8],
     [7.1],
    [7.9],
    [8.2],
     [8.7],
    [ 9. ],
     [ 9.5],
     [9.6],
```

[10.3], [10.5]])

```
In [10]:
```

```
У
```

Out[10]:

```
array([[ 39343.],
    [46205.],
    [ 37731.],
    [43525.],
    [ 39891.],
    [56642.],
    [60150.],
    [54445.],
    [ 64445.],
    [ 57189.],
    [63218.],
    [55794.],
    [56957.],
    [57081.],
    [ 61111.],
    [67938.],
    [66029.],
    [83088.],
    [81363.],
    [ 93940.],
    [ 91738.],
    [ 98273.],
    [101302.],
    [113812.],
    [109431.],
    [105582.],
    [116969.],
    [112635.],
```

[122391.], [121872.]])

In [11]:

```
x[0:5], y[0:5]
```

Out[11]:

```
(array([[1.1],

[1.3],

[1.5],

[2. ],

[2.2]]), array([[39343.],

[46205.],

[37731.],

[43525.],

[39891.]]))
```

In [14]:

```
# Lets plot and check whether the x and y data is linear or not
import matplotlib.pyplot as plt
plt.scatter(x, y, label = 'Emp Data', color='g')
plt.title("Experience vs Salary")
plt.xlabel("Experience")
plt.ylabel("Salary")
plt.legend()
plt.show()
```


In [15]:

```
# now split the data into train and test sets

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```

In [16]:

```
x.shape, y.shape
```

Out[16]:

((30, 1), (30, 1))

In [17]:

```
#Automatically x_train,y_train rows will be 24 ie 80% x_train.shape, y_train.shape
```

Out[17]:

((24, 1), (24, 1))

In [18]:

```
#Lets x_test and y_test has 6 rows ie 20% of 30 x_test.shape, y_test.shape
```

Out[18]:

```
((6,1),(6,1))
```

In [19]:

```
# Now train your model with train_data
from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(x_train, y_train)
```

Out[19]:

```
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

In [20]:

```
#as model got trained now we need to test the model
y_pred = regressor.predict(x_test)
```

In [21]:

```
y_pred
```

Out[21]:

In [22]:

```
y_test
```

Out[22]:

In [23]:

```
plt.scatter(y_pred, y_pred-y_test, c='g', s=200)
plt.hlines(y=0, xmin=40000, xmax=125000)
plt.title('Residual plot')
plt.ylabel('Residual')
```

Out[23]:

Text(0, 0.5, 'Residual')

In [24]:

```
y_pred-y_test
```

Out[24]:

In [25]:

```
# Now check the accuracy
from sklearn.metrics import r2_score
accuracy = r2_score(y_test, y_pred)
```

In [26]:

accuracy

Out[26]:

0.988169515729126

In [27]:

```
# Let's start with the code for plotting the training set:

# We'll plot the actual values (from the dataset) in red, and our model's predictions in blue.

# This way, we'll be able to easily differentiate the two.

plt.scatter(x_train, y_train, color = 'red')

plt.plot(x_train, regressor.predict(x_train), color = 'blue')

plt.title('Salary vs Experience (Training set)')

plt.xlabel('Years of Experience')

plt.ylabel('Salary')

plt.show()
```


In [28]:

```
# Now let's look at the plot for the test set:

plt.scatter(x_test, y_test, color = 'red')

plt.plot(x_train, regressor.predict(x_train), color = 'blue')

plt.title('Salary vs Experience (Test set)')

plt.xlabel('Years of Experience')

plt.ylabel('Salary')

plt.show()
```


In [29]:

```
# To visualize distribution of data
# Regression line is drawn over the points
import seaborn as sns
sns.jointplot(x=data['YearsExperience'], y=data['Salary'], data=data, kind='reg')
```

Out[29]:

<seaborn.axisgrid.JointGrid at 0x1e19d88c7f0>

In[]: