ANNIVERSARY REVIEW

Hans-Georg Rammensee · Th mas Friede · Stefan Stevan vić

MHC ligands and peptide motifs: first listing

Received: 13 December 1994

introduction

The purpose of this article is to provide a compendium of major histocompatibility complex (MHC) peptide motifs and MHC ligands known to date, together with a discussion of the methods used to gain this information. A problem here is the exponential growth of information in this field over the recent years. The number of known MHC ligands was zero in 1989 and three in 1990. This article, written in 1994, lists a couple of hundred such ligands, plus a large number of likely ligands. By the time this work is published, we expect a lot more ligands to be known. On the other hand, the peptide motifs of many of the more important MHC class I molecules are known already, so that this article will still be useful as a source of information. For class II, the situation is a bit different. Only a few allele-specific motifs have been reported, and the data from different authors are partially conflicting. The principles of allele-specific ligand motifs, however, have emerged recently by the combination of information on MHC class II structure, ligand sequencing, and peptide binding assays. Thus, these principles can be applied to further ligands to be identified.

Overview of MHC function

MHC molecules are peptide receptors. Their function is to collect peptides inside the cell and to transport them to the cell surface, where the complex of peptide and MHC molecule may be recognized by the T-cell receptor (TCR) for antigen of T lymphocytes (Rammensee et al. 1993). In normal cells, MHC-associated peptides are derived from normal, that is, self proteins. During their differentiation,

H.-G. Rammensee (☑) · T. Friede · S. Stevanović Abteilung Tumorvirus-Immunologie (0620), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany T cells become tolerant to complexes of self peptides and self MHC molecules (Von Boehmer 1992). Thus, if any new peptides, e.g., derived from an infectious agent, occur later, they can be recognized by T cells. Since the specific immune system is regulated by T cells, the trimolecular complex of TCR, MHC molecule, and peptide can be considered a control switch for the immune system. Thus, a study of the molecular interactions between the three parts is essential for our understanding of the immune system.

Two classes of MHC molecules are distinguished, class I and class II. Class I molecules consist of a membraneinserted heavy chain of about 45000 Mr, and a noncovalently attached light chain of 12000 Mr (Klein 1986). The latter is also known as β_2 -microglobulin ($\beta_2 m$). The structure of class I molecules has been resolved by X-ray crystallography (Stern and Wiley 1994). It has some resemblance to a moose's head, whereby the antlers would form a groove that is recognized as a peptide-binding device. HLA-A, B, and C are the "classical" class I molecules of humans, and H-2K, H-2D, and H-2L those of the mouse. Class II molecules are heterodimers consisting of two chains α and β , of similar size (about 30000 M_r), both of which are membrane inserted. HLA-DR, DQ, and DP are the human class II molecules, H-2A and E those of the mouse. Their structure is surprisingly similar to that of class I molecules (Stern and Wiley 1994; Stern et al. 1994; Brown et al. 1993).

All HLA molecules, including the numerous "non-classical", are encoded on chromosome 6, with the exception of β_{2m} which is on chromosome 15. H2 genes are on chromosome 17 of the mouse, and the mouse β_{2m} gene is on chromosome 2.

A peculiarity of MHC genes is their extensive polymorphism, characterized by the presence of dozens or hundreds of alleles in a species. H2 alleles are designated $H2K^b$, $H2K^d$, $H2K^k$ and so on for class I, and $H2Aa^b$, $H2Aa^k$, $H2Bb^d$ and so on for class II, whereby different alleles may differ in as many as 40 amino acids (Klein 1986). The present nomenclature (Bodmer et al. 1994) of HLA genes and products (which has been changed several times) is outlined as follows: class I heavy chain

loci: HLA-A, B, and C; class II α chain loci: e.g., HLA-DRA, DQA1, DPA1, class II \(\beta \) chain loci: e.g., HLA-DRB1, DRB3, DQB1, DPB1. Alleles are designated, for example, HLA-A*0201, or HLA-DRB1*0101. This nomenclature can only be applied if the respective sequences are known. Since this is not the case in many situations, the old designations, e.g., HLA-A2 or HLA-DR3, based on serology, are still being used, and describe collections of alleles with shared serologic determinants (e.g., HLA-A2 for A*0201 through A*02012). Both class I light chains and HLA-DRα chains are not very polymorphic (Klein 1986). The high (HLA-B) or at least moderate polymorphism of the other genes results in the expression of a large number of combinations of alleles at the different loci per chromosome (haplotype), and in a high degree of heterozygosity. Thus each individual has his or her particular combination of HLA molecules, namely up to six different class I and about six different class II molecules (if the non-classical HLA molecules, whose function is not known, are not considered), making it unlikely to find two unrelated individuals with exactly the same combination of HLA

A simplified outline of MHC function is given in the diagram in Figure 1. Class I molecules, both heavy and light chains, are synthesized into the ER (reviewed in Jackson and Peterson 1993). The peptides to be loaded on class I molecules are, in many cases, derived from cytosolic

Fig. 1 A simplified and partially hypothetical overview of antigen processing. For explanation see text

proteins. The details of peptide generation are not known definitely. A widely held view, however, is that cytosolic proteins are partially degraded by an endopeptidase activity of the proteasome, a multiunit structure with several activities located in the cytosol (Rock et al. 1994). It is not clear, however, how the products of such endopeptidase activity are related to the final class I ligands (Dick et al. 1994). One possibility is that the proteasomes directly produce the correct ligands. Alternatively, proteasomes could cut out larger peptides requiring further processing. The endopeptidase specificity of the proteasome is such that a protein is cut after hydrophobic or charged residues, in principle. The fine specificity of endopeptidase activity is influenced by two proteasome subunits, LMP2 and LMP7, which are encoded in the MHC region and regulated by IFN. However, the exact kind of LMP influence on specificity is controversial (Howard and Seelig 1993). In any case, such peptides must be transported into the ER lumen by the TAP molecule ((transporter associated with processing) (Neefjes and Momburg 1993)]. According to one hypothesis, these peptides are bound and protected from complete degradation by a chaperone, HSP70, before reaching TAP (Srivastava et al. 1994). Peptide transport by TAP molecules has

been directly demonstrated recently (reviewed in Momburg et al. 1994). Transport has specificity especially regarding the C-termini of peptides, and selectivity for peptide lengths. Peptides of 7 to 23 amino acids have been shown to be transported, whereby optima of 10 to 15 amino acids are seen. Human TAPs do not discriminate much between the C-termini of peptides. In contrast, the mouse TAP has a preference for peptides with hydrophobic C-termini and dislikes peptides with charged termini. This pattern of specificities fits well with the peptide specificities of human and mouse MHC class I molecules, since all mouse class I molecules require peptides with hydrophobic C-termini, whereas some human class I molecules require peptides with basic C-termini. On the other hand, mouse cells transfected with the HLA-A3 gene, requiring peptide ligands with basic C-termini, can be loaded with the fitting peptides (Maier et al. 1994). This indicates that MHC peptide specificity need not be strictly dependent on TAP specificity. That TAP specificity indeed can influence MHC peptide loading is evident from two different TAP forms in the rat, TAPa and TAPu. Dependent on co-expressions of the respective TAP, the peptide spectrum of rat MHC class I molecules, RT1^u, is different, as indicated by different HPLC behavior of RT12-associated peptides. When measured in a peptide transporter assay, TAPa has the same specificity as human TAP, that is, it does not discriminate between hydrophobic and basic C-termini, whereas TAPu is more like the mouse transporter, with a preference for peptides with hydrophobic C-termini.

Once they are inside the ER lumen, the further fate of transported peptides is not exactly known. The recently reported physical association of TAP molecules and class I molecules suggested that peptides are directly loaded onto class I molecules immediately after discharge from the transporter (Ortmann et al. 1994; Suh et al. 1994). However, this would require that either the incoming peptides are already of the right size for loading to class I molecules, or that they bind as longer peptides (Falk et al. 1990) and are trimmed while somehow bound to MHC. An alternative hypothesis is that peptides are first bound by a chaperone, gp96, which shuttles the peptides to class I molecules, perhaps with some trimming of peptides underway. The main reason for assuming that gp96 plays a role in antigen processing stems from an impressive series of experiments by Srivastava and co-workers (1994), showing that gp96 molecules are associated with a large array of peptides and are able to immunize mice against antigens presented by MHC class I molecules.

In any event, the peptide somehow reaches the class I molecule and binds into the groove, perhaps after a final trimming step while already in touch with MHC. Unusually long peptides found associated with MHC class I molecules might have escaped such a final trimming (Urban et al. 1994). The assembly sequence of class I heavy chain, β_2m and peptide is not quite clear. A recent report indicates that another chaperone, calnexin, is bound to assembled complexes of heavy chain and β_2m , and thus retains empty class I molecules in the ER (Jackson et al. 1994). It is only upon peptide loading that the fully assembled heavy chain/

 β_{2m} /peptide complex is released by calnex in for transportation to the cell surface.

Class II molecules also start their existence in the ER. The two chains, α and β , assemble and are bound by a chaperone-like molecule, the invariant chain [(Ii) (Cresswell 1994)]. This molecule has two functions; one is to direct the α,β -heterodimer to the class II loading compartment, which appears to be a specialized vesicle characterized by the presence of class II molecules. The second function of Ii is the prevention of premature peptide loading to class II molecules. The molecular interactions between Ii and the α,β -heterodimer preventing peptide binding are not completely sorted out; one possibility is an allosteric effect of Ii on the dimer such that the peptide binding groove is closed due to conformational change. The other possibility is that a particular stretch of the invariant chain binds into the groove and thereby competitively prevents the binding of peptides. This latter view is derived from the observation that Ii peptides, called CLIPs (class II-associated invariant chain peptides) are frequently found associated with immunoprecipitated class II molecules, and that CLIPs are especially abundant in cells with a defect in antigen processing. In any case, Ii is removed from the a, \betaheterodimer in the class II loading compartment, or shortly before. The peptides loaded onto class II molecules can be derived not only from endocytosed protein but also from protein endogenous to the cells, especially membranebound proteins which have a chance to co-localize in the class II loading compartment. Finally, the peptide-loaded α,β -heterodimers are translocated to the cell surface.

The simplified view shown in Figure 1 suggests a strict separation of the processing pathways for class I and class II, respectively. There is strong evidence, however, for considerable cross-talk between the two pathways. Peptides derived from cytosolic proteins, for example, can be loaded onto class II molecules (Pinet et al. 1994). On the other hand, peptides derived from phagocytosed proteins can be loaded onto class I molecules, especially if the phagocytosed protein is aggregated (Pfeifer et al. 1993; Rock et al. 1993). Such side-lines of processing pathways deserve interest because they could be exploited for new strategies of immune intervention.

Methods of characterizing MHC/peptide Interactions

The most seminal approach to gain information on the function of MHC molecules as peptide receptors is the X-ray analysis of MHC crystals (Stern and Wiley 1994). The two other principle methods are: 1) Biochemical isolation and study of naturally MHC-associated peptides, and 2) Binding studies with synthetic peptides. The latter two approaches are discussed below:

1) Analysis of natural MHC ligands

The diagram in Figure 2 gives an overview on the approaches used for isolation and analysis of MHC-associated peptides.

The major technical challenge is the small copy number of individual peptides. It is estimated that a cell presents well over 1000 different peptides on its 100 000 or so copies of a given MHC allelic product. A few of these peptides are present in high copy number, that is, up to 10 000 or more. By far the most ligands, however, occur in a much lower copy number, maybe even down to as low as one copy per cell

The most sensitive means of detecting isolated peptides is the T-cell assay, which is able to detect peptides in the sub-picomolar range, at least as far as cytotoxic T cells are concerned (Rötzschke et al. 1990). Typically, a peptidecontaining sample (e.g., a few µl of an HPLC fraction) is incubated in a total volume of 100 µl together with MHCexpressing, 51Cr-labeled target cells. After some incubation time, e.g., 90 min, CTL are added, the supernatant is harvested 4 to 6 h later, and the relative radioactivity measured indicates the degree of target cell lysis. If the 100 µl volume used for target cell incubation has a concentration of 1 pM, the absolute amount of peptide is 100 attomol, a sensitivity not reached by any other method. The use of the CTL assay, of course, is limited to the detection of T-cell epitopes for which T cells are on hand: Viral antigens, minor H antigens, tumor-associated antigens, transfected model antigens, or antigens recognized by alloreactive T cells. On the other hand, peptide detection assays for class-II-restricted T cells appear to be less sensitive than for class I-restricted T cells.

The major shortcoming of the T-cell assay for peptide detection is that it does not give sequence information. However, the location of a T-cell epitope among HPLCseparated MHC ligands of an infected cell can allow identification of the peptide in combination with biochemical analysis such as Edman degradation or mass spectrometry. The first naturally processed viral T-cell epitopes indeed were identified by the combination of T-cell assay with mass spectrometry, comparison of the HPLC behavior of synthetic and natural peptides, or partially direct sequencing, using radiolabeled amino acids incorporated by virus-infected cells (Rötzschke et al. 1990; van Bleek and Nathenson 1990). A combination of these methods for identification of T-cell epitopes is only possible if the proteins of origin are known. Direct sequencing of HPLC fractions containing a T-cell epitope is rarely successful, namely, only in cases where the T-cell epitope happens to be a peptide highly abundant in that fraction. A marked improvement of sensitivity was brought about by an ingenious combination of HPLC, CTL assay, and mass spectrometry by Cox and co-workers (1994).

By far the most ligands known to date are not T-cell epitopes and these ligands were determined by direct sequencing, either by Edman degradation, or by mass spectrometry, or by a combination of the two methods. Detection limit of Edman degradation is about 1 pmol, that

Source of MHC-expressing cells

(tumor cells, transformed cells, cells transfected to express a specific MHC molecule, or fresh or frozen tissue).

Detergent extract

Precipitation of MHC molecules with solid-phase bound antibodies

Dissociation of peptides from MHC molecules with acid (0.1 % TFA or 10 % acetic acid)

Ultrafiltration

Separation of peptides by reversed phase HPLC

T cell assay Edman degradation Mass spectrometry

Fig. 2 Methods for analysis of MHC ligands

is, the equivalent of 6×10^9 cells for a peptide occurring in 100 copies per cell. Sequencing by tandem mass spectroscopy has been reported to be more sensitive – down to 30 fmol or less. It is, however, challenging to achieve this degree of sensitivity, so that, apart from the pioneering group of Hunt and co-workers (1992), not many other laboratories have come up with similar results.

A special application of Edman degradation is pool sequencing, that is, altogether-sequencing of the complex mixture of peptides eluted from a given MHC species (Falk et al. 1991b). Although disliked by purists, this approach allows one to determine the common characteristics of all peptides associated with a given MHC molecule, with relatively little effort. Pool sequencing of MHC class I ligands led to the discovery of the principle of allelespecific motifs, and allowed a large number of such motifs to be determined. The clear information that can be obtained from pool sequencing of class I ligands is made possible by their uniform length, e.g., 9 amino acids. But even for class II ligands, which can range in length from about 12 to 25 amino acids, pool sequencing is a valuable tool for gaining detailed information on motifs (Falk et al. 1994b).

It appears that the number of amino acids between the N-terminus of class II ligands and the first anchor varies by about three amino acids for the majority of ligands. For DR1, for example, the distance from the N-terminus to the first anchor of the majority of ligands is 5 ± 1 (Falk et al. 1994b). Thus, pool sequencing indicates a cluster at position 4, 5, and 6 for the anchor residues used, aromatic and aliphatic. Again for DR1, the next cluster stretches over

positions 7, 8, and 9, indicating the next anchor for aliphatic residues. The rough motif obtained by such interpretations – absolute position 5 set as relative position 1 to mark the first anchor – can then be complemented and worked out in depth by applying 1) alignment of natural ligands, 2) consideration of the pockets, as revealed recently by crystallography of a monopeptidic DR1 molecule (Stern et al. 1994), and 3) considerations of peptide binding assays. If all four sources of information are considered, a detailed picture of the degenerate (as compared with class I) peptide specificities of class II molecules can be obtained that should be useful for epitope predictions (Friede and coworkers, submitted).

2) Peptide binding assays

MHC/peptide binding assays have a history of leading to obsolete results. On the other hand, with our increasing knowledge of MHC structure and MHC/peptide interaction and specificity, it is possible to design straightforward peptide binding experiments to answer specific questions. A number of approaches can be used to measure peptide binding to MHC. The oldest method is as follows (Buus et al. 1987): MHC molecules are purified and incubated with radioactively labeled peptides. Then the mixture is subjected to a gel filtration column. MHC molecules with the radioactive peptide bound will elute in the exclusion volume, whereas free peptides will elute later. Thus, the amount of radioactivity in the exclusion volume is a measure for peptides bound to MHC. The binding behavior of other, unlabeled peptides can be tested via their capacity to inhibit binding of the radioactive peptide. A number of variations of this method have been used. For example, the radioactive label can be replaced by a fluorescent marker. Furthermore, MHC/peptide complexes can be separated from free peptides by gel electrophoresis, or upon binding of the MHC/peptide complex to solid phase with the help of antibodies. In the latter case, however, two different antibodies reactive with different sites of the MHC molecule are required, one for purification of the MHC molecule, the other for capturing the MHC/peptide complex from the reaction mixture.

Depending on the conditions, these kinds of peptide binding assays can be made very sensitive to detect even low-affinity peptide binding. This may result in problems of interpretations, since low-affinity binding might not be relevant for physiological MHC/peptide interactions.

A second type of binding assay depends on the stabilization of MHC class I molecules by bound peptides. Cells with a defect in antigen processing, for example, TAP-defective RMA-S cells, express only a low density of antibody-detectable MHC class I molecules on their surface, if cultured under normal conditions (37 °C). If such cells are incubated with peptides binding to the expressed class I molecules with high affinity, the latter are stabilized, and their surface density increases (Townsend et al. 1989). Since determination of class I surface density can be easily done by FACS analysis, this approach has been widely

used. Since only few cell lines with transporter defects are known, the assay can only be used for MHC molecules expressed by such cells, e.g., H-2Kb or Db for RMA-S cells. To study peptide binding for additional MHC-molecules, the desired MHC molecule can be expressed in RMA-S or other TAP-defective cells upon gene transfection. The advantage of this MHC-stabilization assay is that it is rather insensitive and thus detects only peptides binding with high affinity that are likely to be physiologically relevant. Stabilization of MHC molecules by peptides can also be measured with purified MHC molecules.

For class II molecules, the binding of high-affinity peptides leads to a compact form of the MHC/peptide complex, as seen by SDS gel electrophoresis, whereas a peptide of lower affinity leads to a "floppy" form of class II molecules.

A very elegant approach for studying the peptide specificity of class II molecules has been developed by Hammer and co-workers (Sinigaglia and Hammer 1994). A peptide library is expressed by bacteriophages. From the peptide-expressing phages only those are selected which are able to bind to a given class II molecule. The peptide sequences expressed by the selected phages are then determined. With this approach, a peptide binding motif of HLA-DR1 has been established that is well reflected among the natural ligands, and can be well explained by the crystal structure of HLA-DR1.

MHC class I ligands and motifs

The main purposes for which this information will be useful are the prediction of T-cell epitopes within proteins of known sequences and the detailed analysis of peptide/MHC interaction. For epitope prediction it is important not to consider just the basic motif of a given MHC molecule, since the non-anchor positions of peptides could also contribute considerably to the interaction with MHC. This is evident from the preferences seen for certain residues at non-anchor-positions in pool sequencing data, from the interaction of such residues with MHC sites as seen in crystals (Madden et al. 1993; Zhang et al. 1992; Fremont et al. 1992), and from detailed binding studies showing that certain residues at a given peptide position can be detrimental for binding (Ruppert et al. 1993; Kast et al. 1994; Parker et al. 1994).

The basic approach to search a protein sequence for an epitope fitting to a given class I molecule is as follows. First, the sequence is screened for stretches fitting to the basic anchor motif (2 anchors in most cases), whereby allowance should be made for some variation in peptide length as well as in anchor occupancy. If a motif, for example, calls for 9mers with I or L at the end, 10mers with a fitting C-terminus should be considered as well, and other aliphatic residues at the C-terminus, like Val or Met, should also be considered. In this way, a list of candidates will be obtained. These are now inspected for having as many non-anchor residues as possible in common with

ligands already known, or with the residues listed among the "preferred residues" or "others" on top of each motif Table. If possible, a binding assay can be performed at this stage to exclude weak binders which occur frequently among peptides conforming to a basic motif. If a detailed study on peptide binding requirements is available, the candidates can also be screened for non-anchor residues detrimental or optimal for binding (Ruppert et al. 1993; Kast et al. 1994; Romero et al. 1991; Ebert et al. 1993). One should keep in mind, however, that pure peptide binding motifs can be misleading in the search for natural ligands, since other constraints, such as enzyme specificity during antigen processing and specificity of transporters or chaperones, are likely to contribute to ligand identity in addition to the MHC binding specificity.

A careful consideration of the pocket structure of the MHC molecule of interest can also be useful for epitope prediction (Falk and Rötzschke 1993). For the P1 residue, for example, preferences can be explained by the residues contributing to the P1 contact site (Falk et al. 1995 a, c). Since the MHC residues contributing to the different contact sites can differ among MHC molecules, such considerations should be held with caution, however (Guo et al. 1993). Computer modeling of the MHC molecule in question can be of help here.

The use of allele-specific peptide motifs is limited to a certain extent by exceptional ligands not fitting to a motif, e.g., Frumento and co-workers (1993) and Mandelboim and co-workers (1994). Such ligands will be missed by epitope predictions based on allele-specific motifs. It is not clear as yet how frequently this happens. In most cases, natural ligands will fit to the motifs, whereby substitutions of anchor residues with residues of similar chemistry (e.g., one aliphatic residue for another) and length variations are not infrequent and should be considered. A special case is the mouse H-2M3 molecule. A complete motif is not known, except that this molecule is specialized to present N-formylated peptides of bacterial or mitochondrial origin (Fischer-Lindahl 1991; Shawar et al. 1991).

MHC class II ligands and motifs

The long-awaited X-ray analysis of class II molecules has given us invaluable insight into peptide/class II interactions (Brown et al. 1993; Stern et al. 1994). Especially the detailed information on the 5 DR1-pockets accommodating anchoring side chains of one particular ligand, influenza haemagglutinin 306-318, provided a structural basis for the previously worked out peptide ligand motif of DR1 molecules (Rötzschke and Falk 1994; Sinigaglia and Hammer 1994). Moreover, pocket spacing and structure, as found for this one particular DR1/peptide complex, can be used to deduce the putative interaction for other DR1-peptide complexes and even for some other class II molecules. We found it particularly useful to evaluate pool sequencing data under the aspect of the expected pocket structure (Friede and co-workers, submitted; Schild and co-workers,

submitted). Combined with the alignment of individual class II ligands, this approach is a powerful tool to determine allele-specific class II peptide motifs, as we have exercised recently for several closely related DR4 subtypes (Friede and co-workers, submitted).

The general picture for allele-specific class II motifs emerging is as follows. A stretch of nine amino acids, on average starting at absolute positions 3 to 5 of natural ligands, is determined by the respective allele-specific motif, corresponding to the peptide portion embedded in the MHC groove. The first position of this nonamer stretch, P1, represents a hydrophobic anchor for all class II ligand motifs known so far. Anchoring of the hydrophobic P1 side chain in the respective class II pocket appears to be particularly intensive, as impressively illustrated by the deep pocket seen in the monopeptidic DR1 crystal. The importance of P1 side chains is also indicated by the striking influence of P1 on peptide binding, and by the significant clustering of hydrophobic residues at cycles 3 to 5 of self-peptide pools. In addition to P1, several other anchors follow up to P9. For DR1, these are at P4, P6, P7, and P9, as indicated by structural data, whereby the specificity of P7 is somewhat degenerate and escapes detection in binding assays or natural ligand analysis. For several other class II molecules, the same anchor spacing -P1, P4, P6, P7, P9 - is compatible with ligand motif data. DR2, DR3, and DR4 motifs as well as H-2E motifs fall into this category. Other molecules, like DR5, DPw4, and DQ7 appear to have slightly different anchor spacing, e.g., the second anchor at P3, or an anchor at P5. Allele-specific differences can occur at each of the anchor positions, although differences of P1 specificity in HLA-DR molecules are limited by the \(\beta 86Gly/Val \) polymorphism. More pronounced allele-specific differences are found for P4, P6, and P9, respectively. Charge differences are particularly evident; P4 of DR17, for example, requires Asp, whereas P4 of DR4Dw10 does not tolerate Asp or Glu but prefers basic or hydrophobic residues. P9, on the other hand, prefers hydrophobic residues for DR1 but negative charges for DR4Dw15 and positive charges for H-2Ek. Interestingly, charge differences in polymorphic stretches of class II molecules (probably reflecting counter charges for charged anchors) have been found to be associated with autoimmune diseases (Gregersen et al. 1987; Khalil et al. 1990; Todd et al. 1987).

Epitope prediction of class II ligands within a protein is not as easy as with class I, because the anchors, or interaction sites, are more degenerate in their specificity. The first step should be to pick out the most allele-specific anchor beyond P1, for example, P4 of DR17, P6 of DR1, or P9 of H-2Ek or DR4Dw15. The selection of nonamer sequences fitting to P1 and the other anchor of the respective motif is then further examined for adherence to the additional anchors. The resulting collection of nonamer stretches might then be inspected for adherence to the putative processing motif XPXX in the flanking regions (Rötzschke and Falk 1994). A quantitative ranking of the contribution of each amino acid residue at almost every position has been determined in an elegant approach by

Hammer and co-workers (1994) for DR4, which led to highly accurate predictions of good DR4 binders.

Technical notes

We have tried to put together all the motifs and natural ligands we were aware of. Due to the flood of data emerging in the past years, however, we anticipate that some information has been overlooked. We apologize in advance to those authors whose work was inadvertently not adequately covered.

In case of those class II ligands occurring as nested sets, we included only one or a few members of the set in many cases.

An X in peptide sequences stands for an undetermined amino acid. However, if the peptide sequence has been determined by mass spectometry, as is the case for the peptides reported by Hunt and co-workers (1992 a, b), X stands for either Leu or Ile (which have the same mass). Lowercase letters in peptide sequences indicate residue determination of lower confidence.

As far as T-cell epitopes are concerned, only those have been selected which are likely to be naturally processed; criteria for judgement are to be found in Stevanović and Rammensee (1995). From the numerous class II motifs that have been published, we selected the more convincing ones, that is, those compatible with the class II structure. Due to the variable number of amino acids between the N-terminus and the first anchor of peptides, alignment of ligands or T-cell epitopes to class II motifs is always arbitrary, unless a structural analysis has been performed. For the class II molecules without reasonable motifs, a list of the published ligands is provided, without any attempt at alignment.

If you wish to have your motifs or ligands included in forthcoming listings, please send us reprints (no preprints) of the work describing them. We would also appreciate any comments on errors and omissions, as well as suggestions for improvements.

Acknowledgments The authors gratefully acknowledge the tremendous contributions of Kirsten Falk and Olaf Rötzschke to the original work covered. The original work from our laboratory was supported by grants from the Bundesminister für Forschung und Technologie, the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 120) and the Leibnizprogramm, and by Hoffman-La Roche Inc., Nutley, N.J. We thank Birgit Stiller and Anne Jordan for preparing the manuscript. The authors wish to thank all those who contributed unpublished and published information.

Table 1 Mouse class I motifs A H-2K4

	Positio	n						Source	Ref.
	1 2	3 4	5 6	7	8	9			
Anchor residues	Y F		-		·	I L V			a
Preferred residues		N P I L	M K						
Others	K A R S V T	A A E S D S D H F N E Q K M T	V H N I D M I Y L V S R T L G	H D E Q S	H E K V F R		:		
Examples for ligands	T Y S Y K Y G Y G Y S F	Q R F P Q A K D G V L G V D	T R E I V T G N S V Q V T R	T T E Q T	L H T Y D X L	V* I L* I* I L		Influenza A NP 147-154 Tyrosine kinase JAK1 355-363 Tum-P198 14-22 Lysteriolysin O 91-99 L. monocytogenes p60 217-225 Unknown Collagen 1 \(\alpha \) 2 4-12	b, c a, d a. e. g h u
T-cell epitopes	L Y T Y V Y I Y T Y R Y R Y S Y S Y L Y F Y N Y K Y	Q V Q A V S L L I V I A R K D I D L L	V V L V V V N N S S S L F T F S A K I K	TIGTSKKEENVGQKSTK	YSYSSSEEKQNGNLVSNNL	A L T I I I I I I I I I I I I I I I I I I	L L L R A L L	Influenza JAP HA 204-212 Influenza JAP HA 210-219 Influenza JAP HA 523-531 Influenza JAP HA 529-537 Influenza JAP HA 529-537 Influenza A HA 210-219 Influenza A HA 518-526 HLA-A24 170-179 P. berghei CSP 252-260 P. yoelii CSP 281-289 RSV M2 82-90 HSV-1 ICP27 448-456 HSV-1 ICP27 448-456 HSV-1 ICP27 322-332 Polio VP1 111-118 Polio VP1 208-217 Human Ig VH 49-58 P. falciparum CSP 39-47 P. falciparum CSP 333-342 APC frameshift	i l i k, l k a, m o p q r r i s s

^{*} Also a T-cell epitope

References:

a: Falk et al. 1991 b; b: Rötzschke et al. 1990; c: Falk et al. 1991 a; d: Harpur et al. 1993; e: Sibille et al. 1990; f: Wallny et al. 1992; g: Pamer et al. 1991; h: Pamer 1994; i: Braciale et al. 1987; k: Kuwano et al. 1988; l: Cao et al. 1994; m: Maryanski et al. 1986; n: Romero et al. 1989; o: Weiss et al. 1990; p: Kulkarni et al. 1993; q: Banks et al. 1993; r: Kutubuddin et al. 1992; s: Blum-Tirouvanziam et al. 1994; t: Townsend et al. 1994; u: Reich et al. 1994

Table 1 (Continued) B H-2D⁴

	Po	sitio	n									Source	Ref.
	1	2	3	• 4	<u>5</u>	6	7	8	9			_	
Anchor or auxiliary anchor residues		G	P		R K				I L F				a, b
Other preferred residues				D E Q		N I L	D E						
Examples for ligands	KVSAKI DKS DNSISVF FAFS	000000 000 0000000 000E	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	I QRDDE VEE VQVNESY LDYD	TKIKIRIKIRI RIRIRI RIRIARIRIGKI KIRIRILI	VNXTGG EXG GILALKL FFFN	QEIENH HNE IYVFLYN NIYF	INXKEN NGK SNNNSFR VXV	LLXFL LLL ILFFXIL LXL	I Y L T M T		Unknown Homol. mRNA CD40 mouse Unknown Homol. metalloproteinase 2 inhibitor Homol. hypoxanthine phosphoribosyl- transferase Homol. urease canavalia ensiformis Unknown Homol. proliferating cell nucleolar antigen P40 Homol. ribosomal protein S17 rat Unknown Unknown Unknown Homol. heterog. nucl. RNP complex K Unknown Homol. feline leukemia virus envelope polyprotein Unknown Unknown Unknown Unknown Unknown	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	S S	X	Ĥ P	K K	E T	Q	P X	A Q	T T	L		Homol. transforming protein spi-1 human Homol. insulin receptor precursor	_
T-cell epitopes	R L	G G M	P P G	P G Y	H <u>R</u> I	S A P	N F L	N V V	F T G	G I A	Y	Tum-P35B 4-13 HTV gp160 318-327 HCV core 133-142	c d, f e

References: a: Falk and co-workers, unpublished; b: Corr et al. 1993; c: Szikora et al. 1993; d: Takahashi et al. 1988; e: Shirai et al. 1994; f: Bergmann et al. 1993 b

Table 1 (Continued)

C H-2Ld

		Po	sitio	n								Source	Ref.
		· 1	2	3	4	5	6	7	8	9			
Anchor residues			P S	-					-	F L M			a, b, c
Other preferred residues		,		G Q M L	T	T	I K F	F	Q N		:		
Examples for ligands		Y	P	Н	F	M	P	T	N	L*		MCMV pp 89 168-176	d
	_	L	S	P	F	P	F	D	L*			OGDH 105-112	e
VAITRI	E Q		S	P	F	P	F	D	L*		_	OGDH 97-112	c
		X	P	L	E	A	N	Y	Q	X	F	Unknown	С
		A	P	Q	P	G	M	Ε	N	F		Unknown	c
		Q X	P	Q	R	G	R	E	N	F		Unknown	С
		X	P	Q	P	G	R	Ε	Q			Unknown	С
•		X	P	Q	P	N	L	Y	Q	L		Unknown	С
		X	P	A	X	A	Y	P	Y	_		Unknown	c
		Y	P	N	٧	N	ı	Н	N F	F		Unknown	С
		X	P _.	Q	K	Α	G	G	r	L	M	Phosphoglycerate kinase 180-189	С
T-cell epitopes		R	P	ĺQ.	Α	S	G	V	Y	M		LCMV NP 118-126	f, g
• •		I	S	Ť	Q	N	Н	R	Α	L		Tumor antigen P91A 12-20	h
		L	P	Y	Ĺ	G	W	L	٧	F		Tumor antigen P815 35-43	i
		Α	P	T	Α	G	Α	F	F	F		JHMV Nucleocapsid 318-326	k
:		Y	P	Α	L	G	L	Н	Ε	F		Measles NP 281-289	1
·		T	P	Н	P	Α	R	I	G	L		E. coli β-gal. 876-884	m
		D	P	V	I	D	R	L	Y	L		Measles HA 343-351	n
•		S	P	G	R	S	F	S	Y	F		Measles HA 544-552	'n

^{*} Also a T-cell epitope

References:
a: Falk et al. 1991 b; b: Falk and co-workers, unpublished; c: Corr et al. 1992; d: Reddehase et al. 1989; e: Udaka et al. 1992; Udaka et al. 1993; f: Whitton et al. 1989; g: Schulz et al. 1991; h: Lurquin et al. 1989; i: Lethé et al. 1992; k: Bergmann et al. 1993 a; l: Beauverger et al. 1993; m: Gavin et al. 1994; n: Beauverger et al. 1994

Table 1 (Continued) D H-2Kb

	Po	sitio	n							-	Source	Ref.
	_	ı	2	3	4	5	6	7	8		_	
Anchor or auxiliary anchor residues				Y		F Y			L M I V			a
Other preferred residues		R I L S A	N	P	R D E K T		T I E S	N Q K				
Examples for ligands		R S H	G I I	<u>Y</u> I <u>Y</u>	V N E	Y F F	Q E P	G K Q	L* L* L		VSV NP·52-59 Ovalbumin 258-276 Unknown	b a, c, c n
T-cell epitopes	F	I S A K V S F F	I S P S G G E E	YI G P P Y Q Q	RENWVINN	F F F F T	L A P T P R A	L R A T P D Q Q	I L L G L A+ P+	М	Rotavirus VP7 33-40 HSV glycoprotein B 498-505 Sendai virus NP 324-332 MuLV p15E 574-581 Rotavirus VP6 376-384 Rotavirus VP3 585-593 MUT 2 tumor antigen MUT 1 tumor antigen	e f g, h i, k l m m

References:
a: Falk et al. 1991b; b: van Bleek and Nathenson 1990; c: Rötzschke et al. 1991; d: Carbone et al. 1988; e: Franco et al. 1993; f: Bonneau et al. 1993; g: Kast et al. 1991; h: Schumacher et al. 1991; i: Sijts et al. 1994; k: White et al. 1994; l: Franco et al. 1994; m: Mandelboim et al. 1994; n: Wallny 1992

^{*} Also a T-cell epitope

• One of these peptides was found in a total cell extract of Kb-expressing tumor cells

Table 1 (Continued)

E H-2Db

	Po	sitio	n								Source	Ref.
_	1	2	3	4	5	6	7	8	9		_	
Anchor residues					N				M			a
Preferred residues		M	I L P V	K E Q V		L F			•			·
Others ,	A N I F P S T V	A Q D	G	D T		AYTVMEQHIKPS	D E Q V T Y	F H K S Y				
Examples for ligands	A I	S Q	N V	E G	N N	M T	E R	T T	M* [*		Influenza A34 NP 366-374 Yersinia YOP 51 249-257	a, b, c n
T-cell epitopes	ASCQSFSKRN	S A K G G Q G A A N	N I G I P P V V H L	ENVNSQEYYD	22222222	M Y K L T G P F I L	D A E D P Q G A V R	A Q Y N P F G T T D	M K L L E I Y C F Y	L I C L G (L)	Influenza A68 NP 366-374 SV 40 T 206-215 SV 40 T 223-231 SV 40 T 489-497 Adenovirus 5 E1A 234-243 LCMV NP 396-404 LCMV GP 276-286 LCMV GP 33-42 HPV16 E7 49-57 SV 40 T 492-500 (501)	d e, o e, o f g h i, k l m

^{*} Also a T-cell epitope

References:

a: Falk et al. 1991 b; b: Rötzschke et al. 1990; c: Townsend et al. 1986; d: Cerundolo et al. 1991; e: Deckhut et al. 1992; f: Kast et al. 1989; g: Yanagi et al. 1992; h: Oldstone et al. 1988; i: Oldstone et al. 1993; k: Klavinskis et al. 1990; l: Feltkamp et al. 1993; m: Alsheikly 1994; n: Stambach and Bevan 1994; o: Tevethia et al. 1990

Table 1 (Continued) F H-2Kk

	Po	sitio	n							Comments	Ref.
	1	2	3	4	5	6	7	8	9		•
Anchor residues		E						I	I	C-terminus at P8 or P9	a, b, c
Preferred residues	V F	D	KNYMQILFPHT	L	A G P T V F S	N K H	Т				
										Source	
Examples for natural ligands	H D Y E S S D E E	E D E E E E E A	THDME I GRDY	T R T K P V G T P L	F A G A V G S V V G	N K K K K H R K K	S K T V K R T K K K	I I I I I I V V		B Actin 275-282 S24 ribosomal protein 53-60 Unknown Homol. T cell transcript. factor 1 Hn RNP C protein 84-91 S7/S8 ribos. protein 137-144 H-2D* 112-119 Unknown CArG bind. factor A 209-216 BiP 158-165	k k k k k k k k
T-cell epitopes .	F S F S Y D T V E	E D E E E E E E	A G Y S F N L M A G	N G E T L D D E E A	GW GGL IYK I	NT RNEEEEAV	LGLLKKNGHG	I M I I R K D K Q E	I I I I I I	Influenza A HA 259-266 Influenza A HA 10-18 Influenza A NP 50-57 Influenza JAP HA 255-262 SV 40 T 560-568 P. falciparum CSP 375-383 P. falciparum CSP 371-379 HIV-1 RT 206-214 Rabies NS 197-205 Influenza A NSI 152-160	c, i c, i d, l e f g g h i a

a: Cossins et al. 1993; b: Norda et al. 1993; c: Gould et al. 1991; d: Bastin et al. 1987; e: Sweetser et al. 1989; f: Rawie et al. 1988; g: Kumar et al. 1988; h: Hosmalin et al. 1990; i: Larson et al. 1991; Gould et al. 1987; k: Brown et al. 1994; l: Gould et al. 1989

G H-2Kkmi

	Po	sitio	n						Source	Ref.
	1	2	3	4	5	6	7	8		
Anchor or auxiliary anchor residues		E			•			I		a
Other preferred residues		Q G P	K N Q G M P Y	P	A R K		R Y	·		

References: a: Norda et al. 1993

Table 1 (Continued)

H Qa-2

	Po	sitio	n							Source	Ref
	1	2	3	4	5	6	7	8	9	-	
Anchor or auxiliary anchor residues	•	M L Q	N I L		V	K M I	Н		L I F		a, b
Other preferred residues	K A E Q	•		P E A G K S D	L T E H M F Y	L F N Y	R	E Q N D K S T R			
Examples for ligands	K A K A K V R K A G I A S K K S Y	어디어이 디어 시트에 어디어니 떨어가 된	김《지내니지지머니니지 지나니니니이	P E P L K X G G A X E P K P I D P	ニシュ ロストラン コートン・コーク アー・コー	APVMYMVKYX ILIVETLIM	H H H H H H H H H Y R H Y A X	QEHSSPMEKKKQENHLIF	LLLGLILLLLIMLLLL	Unknown Unknown Unknown Unknown Unknown Unknown Unknown Cofilin 127-135 Unknown Unknown Unknown Unknown Unknown Ribosomal protein L19 137-14 Unknown Unknown Unknown Unknown Unknown Unknown Unknown	b b b b b b b b b

References: a: Rötzschke et al. 1993; b: Joyce et al. 1994

I Selected other T-cell epitopes

MHC	Sequen	ce											Comments	Ref.
H-2D* H-2M3	R fM fM	R F F	K F F	G I I	K N N	Y I A	T L L	G T T	L L L	L L	v v	P P	T cell epitope of LEC-A ND1α 1-17 ND1β 1-17	a b b

References: a: de Bergeyck et al. 1994; b: Fischer Lindahl 1991

Table 2 HLA-A motifs A HLA-A1

	Po	sitio	1											Source	Ref
	1	2	3	4	5	6	7	8	9					- 	
Anchor or auxiliary anchor residues		T S	D E	P			L		Y						a, b, c f, i
Other preferred residues		L		G	G N Y	G V I									
Examples for ligands	AIMYLVYQYSDGVVYYEFSSGSSFKAFYAIE	TA L TITISITISILITISITISIA TITITISITIT TILITIF V G X X TITI	D D E S D D D E D D D D D D A N X D E E D E E E D D S E I E D	FMPIDPI-YDDHGEPIKVPIXVQPIPIPIPIVPIPIOPIPIDX	KGRYGVGGPISXYVVQPNTVGPQSVGAQAMX	FHTFVGGSDPFRNHPFDSFNVMRINGRFFGX	A LILIT LIP LIH LIT F N X X LIN W X M I LILIT R LIM D LIT H D	M K Q S D D I T K L L X K M V V S X Y L I N Q K V Y X T N L R	YYYYGFIYYYYYYYYYYYYYYYYYYXYYXX	L N Q Y E	VSI	Y Y M	Y	Cyclin-like protein 135-143 Proliferation cell nuclear antigen 241-249 Ribosomal protein \$16 40-48 Ets-1 154-162 Unknown Fibrillarin 177-188 Cytochrome C oxidase II HLA class I a chain 111-123 Cytosine methyl transferase 238-246 Fructose-6-amino transferase 217-225 IgG4 279-287 Unknown	a. i,
T-cell epitopes	E V C E	A S T V	D D E D	P G L P	T G K I	G P L G	H N S H	S L D L	Y Y Y Y					MAGE-1 161-169 Influenza A PB1 591-599 Influenza A NP 44-52 MAGE-3	e, k b, f f g, h

References: a: Falk et al. 1994c; b: Di Brino et al. 1993b; c: Sette et al. 1994; d: Engelhard 1994; e: Traversari et al. 1992; f: DiBrino et al. 1994; g: Gaugler et al. 1994; h: Celis et al. 1994; i: Kubo et al. 1994; k: Van der Bruggen et al. 1991

Table 2 (Continued) B HLA-A*0201

		Po	sitio	n											Source	Ref.
		1	2	3	4	5	6	7	8	9		-				
Anchor or auxiliar anchor residues	y		L M				V			V L						a
Preferred residues					E K				K							
Other residues		I L F K M Y		A Y F P M S R	G P D T	I K Y N G F V H	I L T	A Y H	E S							
Examples for ligands	L L L	S Y T S G S K A L L L L V M Y M S A T A H I A G	LLLXXXXLLLLLLLVMLLLLLLLLLL	LLW P V X N W D D D D F D N L L L I I I A F L	PPVSPVEGVVVVRGGSGPKVDPPG	A A D G F R P F P P P G T T V L P I G Y P Q F	I I P G X A VIF TITITITIG LIM P LI LI QX LIVILIVI	V V Y X V X X P A A A A P L S L V N H N V V V F	E H E G S E X V A A A A R L Q L E I T D T K I T	LIVVVVXX*VVVVGLV*L**D**S*!L**L*	Q Q L G	A L	V	A	Protein phosphatase 2A 389-397 ATP-dependent RNA Helicase 148- B-cell transloc. gene 1 protein 103- Unknown Unknown Unknown Unknown Unknown wose protein IP-30 signal sequence 27-35 IP-30 signal sequence 26-37 IP-30 signal sequence 26-37 IP-30 signal sequence 12-25 HLA-E signal sequence 12-25 HLA-E signal sequence 1-9 Tyrosinase 369-377 Calreticulin signal sequence 1-10 Unknown	
T-cell epitopes		I I LGW F C F K K D R M A Y I		KGFSSPGAGVMVLGED	E F G P L S G G E A G T A I P G	PVYTLDLNFLYLLGGT	VIFP VIVIFLISY GI, KLIPA	HTVWPFTANIPDYLVT	GLYLFPMYQNLICTTL	V T V S V S V E M A V V L V A R	v v v Y M v	v			HIV-1 RT 476-484 Influenza matrix protein 59-68 HTLV-1 tax 11-19 Hepatitis B sAg 348-357 Hepatitis B sNg 335-343 Hepatitis B Nucleocapsid 18-27 EBV LMP2 426-434 HCMV glycoprotein B 618-628 Influenza B NP 85-94 HCV-1 1406-1415 HCV core 132-140 HPV 11 E7 4-12 Tyrosinase I-9 Melan A/Mart 1 pmel 17/gp 100 pmel 17/gp 100	a, c, j a, k o m m n p m q r s t f, g w, x u

^{*} Class I ligands allocated to A2 by motif. * Also a T-cell epitope

a: Falk et al. 1991 b; b: Hunt et al. 1992; c: Henderson et al. 1992; d: Wei and Cresswell 1992; e: Henderson et al. 1993; f: Wölfel et al. 1994; g: Robbins et al. 1994; h: Brichard et al. 1993; i: Engelhard et al. 1993; j: Walker et al. 1989; k: Gotch et al. 1988; l: Harris et al. 1993; m: Nayersina et al. 1993; n: Bertoletti et al. 1993, 1994; o: Utz et al. 1992; p: Lee et al. 1993; q: Robbins et al. 1989; r: Chisari and co-workers, personal comm.; s: Shirai et al. 1994; t: Tarpey et al. 1994; u: Cox et al. 1994; v: Kawakami et al. 1994 b; w: Coulie et al. 1994; x: Kawakami et al. 1994 a, c; y: Falk et al. 1994 a; z: Bednarek et al. 1991

Table 2 (Continued) C HLA-A*0205

	Pos	ition	ı							Source		Re
	1	2	3	4	5	6	7	8	9			
Anchor or auxiliary anchor residues		V L I M				I V L A			L			a
Other preferred residues		Q	Y P F I	G E D K N	Y V L I	Т	Q	K			-	

References:

a. Rötzschke et al. 1992

	Po	sitior	1								Source	Ref.
	1	2	3	4	5	<u>6</u>	2	8	9	10		
Anchor or auxiliary anchor residues		L V M	· F Y			I M F V L	I L M F		K Y F	K		a, b, g
Other preferred residues	I				I P V K	T		Q S T K				
Examples for ligands	KKYKSKSTGTSKKKKKGSSSKKK	X L L L X L L L L L L L L L L L L L L L	FIFIX H FIFIFIA FIFIFIFIY FIFIFIFIX H FIFIV	KKVKKVNN AVDKENEKPEEKNVR	MNRQQKTDXKHVKIKVXLKYIKK	I I X R V X H X X X I V V M V T Q V T X T V P	LLIAAVLILIVXLILIXYVIYEIFIFIFIFIVYG	RYXKTXXVVXXNTTNSAXD eTNM	K K i S K Y K Y K Y Y Y Y Y Y Y Y Y Y Y Y Y Y	V A H K	Unknown	a a a a a a a a a a a a a a a a a a a
T-cell epitopes	R Q T R I	L V V L L	R P Y R	D L Y P G	L R G S	LIP VG V	L M P K A	I T V K H	V Y W K	T K K	HIV-1 env gp41 768-778 HIV-1 nef 73-82 HIV-1 env gp 120 36-45 HIV-1 gag p17 20-29 Influenza NP 265-273	c d e e f

References: a: DiBrino et al. 1993 a; b: Maier et al. 1994; c: Takahashi et al. 1991; d: Koenig et al. 1990; e: Venet and Walker 1993; f: DiBrino et al. 1993 b; g: Kubo et al. 1994

Table 2 (Continued) E HLA-A*1101

	Po	sitio	1									Source	Ref.
	1	2	3	4	5	6	7	8	9	10	11		
Anchor or auxiliary anchor residues		V I F Y	M L F Y I A				L I Y V F		K	K	K		a, b, c
Other preferred residues	A	Τ	N D E Q	P G D E K	P I F V M	I V M		R K N E Q	R D	R	Ŕ	: 	
Examples for ligands	A A G G	VIVIS QV	MIFYMD	K L D G P	P P K N S	E P A P H	A LIK LIFIG	E S L N S	K P K K	R Y K	K F	Unknown K HSB 66 EST 18-29 Thymosin β-10 11-20 Cattle metalloproteinase 19-27 Ribosomal protein S19 93-101	b b b b
	Y A S S K R G A A R	QVIFITITIVIVITITIS A VI	D AIYLIV Q MFIME	PGYNNNTDXQ	A D G L P V T K D A	N G S V L L S A T V	G LIFI FG XIK VE	KIVVEEYLVS	F E T K K K K K K F M	S L R	K R	Elongation factor 2 265-275 K Prohibitin (rat) 229-240 Unknown (also presented by A33) Ribosomal protein S6 107-115 Ribosomal protein L7A 25-33 Ribosomal protein S3 54-62 Unknown Thymosin β-10 11-19 Unknown Unknown	b, c a, b c c c c c
T-cell epitope	I	<u>v</u>	T	D	F	S	Ā	I	K			EBNA 4 416-424	a, d

References: a: Zhang et al. 1993; b: Falk et al. 1994c; c: Kubo et al. 1994; d: Gavioli et al. 1993

F HLA-A24

	Pos	sition	1							Source	Ref.
	1	2	3	4	5	6	7	8	9		
Anchor or auxiliary anchor residues		Y			I V	F			I L F		a
Other preferred residues			N E L M P G	D P			Q	E K			·
Examples for ligands	K Y A V	Y Y Y	P E V X	E H K	N Q M H	F H V P	F P T V	L E H S	L L F X	Protein phosphatase 1 113-121 NK/T-cell activation protein 107-115 Unknown Unknown	ծ b b
T-cell epitope	R	Y	L	K	D	Q	Q	Ĺ	L	HIV gp 41 583-591	С

References: a: Maier et al. 1994; b: Kubo et al. 1994; c: Dai et al. 1992

Table 2 (Continued) G HLA-A*3101

	Po	sitio	מ									Comments	Ref
	1	2	3	4	5	6	7	8	9		•		
Anchor or auxiliary anchor residues		L V Y F	F L Y			L F V I			R				a
Other preferred residues	K R	T Q	K N	P D E G S V T	P I V F L Y W	T N D E R	N V R F T H L Y	L R N Q				P1 deduced from individual ligands	
												Source	
Examples for ligands	L Q R K K R	QQG YIY	FLYFM M	P Y R G K D	V W P P W A	G S R I N W	R H F H Y N	V P R E E T	H R R R R Y	R S	R	Ribosomal protein S29 (rat) 3-11 CCAAT-binding transcription factor 240-248 [GlcNac]-P-transferase 371-379 Unknown	a a a a a a
T-cell epitope	S	<u>T</u>	L	P	Ε	T	T	v	V	R	R	Hepatitis B cAg 141-151	b

References: a: Falk et al. 1994c; b: Missale et al. 1993

H HLA-A*3302

	Po	sition)		٠.								Comments	Ref.
·	1	2	3	4	5	6	7	8	9		•			
Anchor or auxiliary anchor residues		A I L F Y							R					a
Preferred residues	D E	Т	L K	P	P	I L F							P1 deduced from individual ligands	
Other possible residues	M		Q W E N	R D E G S H P	R I F P V L W	R D H Y	H Y V T S	Q N E M				·		٠
													Source	
Examples for ligands	D E T D E T	M S Y Y I I	A G Y I M	A P G H K P	Q S S I W K	I I F R N D	T V V I R I	Q H T Q E Q	R R R Q R L	R A	R	R	HLA class I α-chain 161-169 Actin 364-372 Unknown Human cDNA HSB15F102 65-74 Unknown Histon 3.1/3.3 118-129	a a a a a a
T-cell epitope	I	<u>v</u>	G	L	N	K	I	v	R				HIV p24 gag 267-275	b, c

References:

a: Falk et al. 1994c; b: Buseyne et al. 1993; c: Buseyne and Riviere 1993

Table 2 (Continued) I HLA-A68.1

	Po	sition)									Source	Ref.
	1	2	3	4	5	6	7	8	9				
Anchor residues		V							R K				a
Examples for ligands	A E E D K E T X P E T D	V V V V V V V S T T	A A A F G I F L K G X T	A P P R G L D K Q P T P	V P P D P I A X V S T T	A E E P I D K I V I T X	A Y Y A Y P R A Y V N X	RHHLKFLKHHAR*	R R R K H I R* R*	К К G	R	Unknown Unknown Unknown Homologous ribosomal 60 S Influenza NP 91 – 99 Unknown HSP 70 B / HSC 70 66 – 76 Unknown Unknown β-Actin 364 – 373 Unknown Unknown	a a a, b a d d d d
T-cell epitopes	s	T	L	P	E	T	T	v	٧	R	R .	Hepatitis B cAg 141-151	С

^{*} Class I ligands allocated to A68.1 by motif *Also a T-cell epitope

References:

a: Guo et al. 1992; b: Silver et al. 1992; c: Missale et al. 1993; d: Harris et al. 1993

Table 3 HLA-B motifs A HLA-B7

	Po	sitio	1									Source	Ref.
	1	2	3	4	5	6	7	8	9		•		
Anchor or auxiliary anchor residues		P	R						L F				a, b
Other, preferred residues				D G	D P	F T	L						-
Also detected	A H S		D E Q K Y F M N A	E H L K S T P	I V	R L I	v	-				· · · · · · · · · · · · · · · · · · ·	
Examples for ligands	A A A A A A A A A A A A A A A	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	RIRIRIRIRIRIA S M M RIS RIRIA Y	T T A X A T G Y P G A A A K S Q P G	VVXPSLVITPPPFENPPG	A A X X R V V F V G R R X R G G P P	LLXTPLVTAPTAPSMXKX	T T X G S L T M V E V X X G V M P A	A A X X X L X L X X L X P V X A M X	L V S	L	HLA-DP signal sequence 9-17 HLA-DP signal sequence 9-18 Unknown Unknown Unknown HLA-A2.1 signal sequence 5-13 Unknown Topoisomerase II 801-809 Unknown Unknown HLA-B7 signal sequence 2-10 Unknown Unknown Histone H1 49-59 Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown	a a a a a a a a a c c c
T-cell epitope	Т	P	G	P	G	v	R	Y	P	L		HIV-1 nef 128-137	d

References:

a: Huczko et al. 1993; b: Maier et al. 1994; c: Engelhard 1994; d: Culmann et al. 1991

Table 3 (Continued)
B HLA-B8

	Po	sitio	n							. Source	Ref.
	1	2	3	4	5	6	7	8	9		
Anchor residues			K		K R				L		a, b,
Other preferred residues	G		R	E		N	E	Е	F		
•	L			Q		Q	Н	Q	M		
	Ĩ			H L S T R G K		H I L Y V E M S T	M N D Q S T Y	H S L V D T			
Examples for ligands	H	P	K	Y	K	F T	E	L		Tristetraproline 148-155	ď
	I	L	K	Q V	K	I	Α	d	1	IL-6 precursor 161-169	d
	Е	L	K	V	K	N	I	e	1	Restin 1273-1281	d
•	E	P	K	Y	K	T	Q	L		Yeast PRAI-SCS 95-102	ď
	V	P	K	L	K	٧	X	Α	L	Rat ribosomal prot. L18, 94-102	d
	F	Α	K	P	R	V	G	G		Unknown	d
	· S	P	K	L	K	Y	M	Q		Unknown	d
•	Е	L	K	K	K	T	N	1	•	Unknown	d
	S	P	K	Ε	K	I	Х	Y		Unknown	d
	X	Α	K	Е	K	L	Α	D		Unknown	d
	S	P	K	Ε	K	Y	Ε	Х		Unknown	d
	Ε	L	K	Ε	K	T	Q	L		Unknown	d
	L	P	K	٧	K	L	Α	L		Unknown	·d
	Н	р	K	Y	K	T	Ε	L		Unknown	d
	V	L.	D	L	K	l	ν	A	F	Unknown	d
	G	P	K	E	K	X	Α	M	_	Unknown	d
	G	L	K	V	K	G	N	E	F	Unknown	· d
	F	L	K	P	K	F	V	A	L	Unknown	đ
	Е	L	K	Ī	K	V	Y	X	ı	Unknown	d
•	S	L	K	E	K	V	Х	L		Unknown	đ
	E	L	K	E	K	X	у	e	ł	Unknown	d
	I	P	K	L	K	N	V	K	r	Unknown	d
	S	Ļ	K	I	K	X	Ļ	_		Unknown	đ
	D	L	K	Q	K	N	Е	L		Unknown	d
r-cell epitopes	E	L	R	S	R	Y	W	Α	1	Influenza NP 380-388	ъ
	F	L	R	G	R	Α	Y	G	L	EBNA 3 339-347	c
•	E	I	Y	K	R	W	I	I	L	HIV gag p24, 262-270	ď, e
	G	E	I	Y	K	R	W	I	I	HIV gag p24, 261-269	d, e
	Е	I	K	D	Ť	K	Ε	Α	L	HIV gag p17, 93-101	d, f

References:

a: Malcherek et al. 1993; b: Sutton et al. 1993; c: Burrows et al. 1990; d: DiBrino et al. 1994; e: Phillips et al. 1989; f: Achour et al. 1990

Table 3 (Continued) C HLA-B*2702

	Po	sitio	1								Source	Ref.
	1	2	3	4	5	6	7	8	9			
Anchor residues		R							F Y I L			a
Other preferred residues	K		F L X	G P K D E Q T S	I K E V M T	I V Y R D H E Q	Y L V T F	K V D E R				
Examples for ligands	S R K K K G G		D F Y K G F F	K T V K K I G K	T K N S A L V L	I H V I Y T G I	I T V V A L N V	M K P K D K R L	W F T Y F Y Y	F '	HGNBPβ-subunit 35-43 Rat ribosomal protein L36 36-44 Human fau protein 114-123 HFPS 191-199 Cytochrome C oxidase 42-50 Actin 63-71 Unknown Unknown	a a a a a a

References: a: Rötzschke et al. 1994

Table 3 (Continued)
D HLA-B*2705

	P	ositic	n										Source	Ref.
	1	2	3	4	5	6	7	8	9		•			
Anchor residues		R							L F					a, b
Other preferred residues	A C K R	; :	L I F	K Q E G	I V L P G	I A N Q D V K	I T Y M L W N V P	K N R E Q	Y M I R H K				•	
Examples for ligands	G A R R G G T r K A R R	R R R R R R R R	L L F v	T F G G F X P s S Q P M	K G X D I i I g F T I q	H I Q K I f L V K A F Y	T R Y L K X A D K L S Y	KARNE rGRSLRV	F R F f H Y F	G	Y	н	Cytochrome P450 20-28 Unknown Cattle MARCKS 155-163 Rat core histone 188-196 TIS 11B protein 325-333 (X = L) Homologous to proteasome subunit C5	b
	R R R R R R R R R R K X	R R R R R R R R R R	I M I S F V Y Y W I F Y	K G K D K E K N Q L S T Q Q	E P E K E G K P G R K DSSI	I P I L V L S A V P S LVE	V V I T T V I T G D E T	KGKLVQKHE dRHE	K G K K R R k R L a Y	H	R		127-135 HSP 86 200-209 Ribonucleoprotein L 312-322 HSP 89 a 200-208 Ribosomal protein L8 173-181 ATP-dependent RNA helicase 77-85 Unknown HSP 89 B 195-203 60 S ribosomal protein L28 37-45 Histon H3.3 52-60 Elongation factor 2 341-349 Unknown Unknown Unknown Draft-1 protooncogene 1-16	b b a a a a a a a c
B*270x-restricted T-cell epitopes	S R R R K G R	R R R R R	Y R Y I W A K	W W P Y I F	A R D D I V M	I R A L T F	R L V I G I E	T T Y E L G	R V ^x L L N K	K			Influenza NP 383-391 EBNA LMP2 236-244 Measles F protein 438-446 EBNA 3C 258-266 HIV-1 gag p24 265-274 HIV-1 gp120 314-322 HSP 60 284-292	d c f e d, g d h

^{*} B*2704-restricted

References: a: Jardetzky et al. 1991; b: Rötzschke et al. 1994; c: Shepherd et al. 1993; d: Huet et al. 1990; e: Brooks et al. 1993; f: van Binnendijk et al. 1993; g: Buseyne et al. 1993; h: Cerrone et al. 1991; i: Frumento et al. 1993

Table 3 (Continued) E HLA-B*3501

	Pos	sitior)						-		Source	Ref.
	1	2	3	4	5	6	7	8	9	10		
Anchor or auxiliary anchor residues	· · · · ·	P .							Y F M L	Y		a, b
Other preferred residues	М	A V Y R D	I F V M E T Y N	K D E G P	D I V T E G L M	I Q K V L M	V N E Q T K	E Q V T				
T-cell epitopes	K K K A	P S P S	K K N R	D D D	E E K W	L L S V	D D L A	Y Y Y M		•	P. falciparum CSP 368-375 P. falciparum CSP 368-375 P. falciparum LS 1850-1857 HCV E1 235-242	a a a c

References: a: Hill et al. 1992; b: Falk et al. 1993b; c: Koziel et al. 1992

F HLA-B*3701

	Pos	sitior	ו							Source	Ref.
	1	2	3	4	5	6	7	8	9		
Anchor or auxiliary anchor residues		D E			V			F M L	i L		а
Other preferred residues	K Q	H P G S L			T R A D G H M		Q K Y L	TENDQGH			
T-cell epitope	E	D	L	R	<u>v</u>	L	s	F	I	Influenza NP 339-347	b

References: a: Falk et al. 1993b; b: Townsend et al. 1986

G HLA-B*3801

	Po	sitior	1							Source	Ref.
	1	2	3	4	5	6	7	8	9	•	
Anchor or auxiliary anchor residues		Н	D E						F L		a
Other preferred residues	I	F P W Y	I A S N M V	G E P L V	M T V A E G L K S	V I T K R N H	Y V N	K Y N R T	I		
Examples for ligands	E T Q Y S Y T	<u>Н</u> Н Р Н Н Е	A DIDIDI I EIDI	G E E P G D V	V L A A D I A	I E V N A H P	S D A G V T S	V K Q K V Y R	L F F L	Unknown Unknown Histone binding protein 627-635 Elongation factor 2 265-273 Cyclin 152-159 Cyclin A 178-186 Pm5 protein 270-278	a a a a a

References: a: Falk et al. 1995b

H HLA-B*39011

•	Po	sition	1							Source	Ref
	i	2	3	4	5	6	7	8	9		
Anchor or auxiliary anchor residues		R H				I V L			L		a
Other preferred residues	. •		A D I L F V M S T Y	D E G P K	V Y I L F T G K N P	N	N Y F	S K R E T	V I M		
Examples for ligands	S I S	H H R	I E D	G P K	D E T	A P I	V H I	V I M		Cyclin 152-159 CKShs1 protein 59-66 GBLP 35-42	a a a

References: a: Falk et al. 1995 b

Table 3 (Continued) I HLA-B*3902

,	Po	sition	ì												
	ı	2	3	4	5	6	7	8	9						
Anchor or auxiliary anchor residues		K Q			I L F V				L						
Other preferred residues	K A		A I F V N L T Y E H S	G P	N E G P Q S T	V Y T H F I M P R	V L T Y N D H	T S R	F M	:					

References: a: Falk et al. 1995b

K HLA-B40*

	Pos	sitior	1										Source	Ref
	1	2	3	4	5	6	7	8	9	10	11			
Anchor or auxiliary anchor residues		E	F I V						L W M					a
Examples for ligands	T	E	F	P	K	E	R	Н	L	R	L		Unknown	a
;	G	E	다 다 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하 하	P	N	K	N	Х	L				Unknown	a
	G	E	F	P	N	K	N	X	L	Y	A		Unknown	а
	G	Ē	Ē	P	G	K	I	F	L	Y	A		Unknown	a
	w	E	Ē	L	Q	P	I	L	L		•		Unknown	а
	G	E	F	I	P	G	N	D	L	Н	R		Unknown	a
	G	E	Ē	P	P	X	D	Ν	W				Unknown	, a
	G E	E	Ē	Y	V	D	L	Ε	R				HLA-DQ α 33-41	a
	N	E	Ē	P	D	I	D	Ī	R				Unknown	a
•	Α	E	Ē	P	K	Х	Ε	Α	R				Unknown	a
	Α	E	<u>i</u>	G	E	٧	I	, V	L	W	X	W	Unknown	· a
	Α	E	Ī	P	G	Е	I	Α	L				Unknown	a
	G	E	Ī	L	D	V	F	D	A				IRE-BP 695-703	a
	F	E	Ĩ	P	X	L	D	٧	A				Unknown	a
	D	E	<u>v</u>	Т	P	Q	P	Q	L	V			Unknown	a
	K	E	<u>v</u> <u>v</u> s	G	V	D	V	Α	L	Y	A		Unknown	a
	K	E	S	T	L	Н	L	٧	L				Ubiquitin 63-71	a
	G	E	¥ E	D	V	Ε	Q	Н	T				Cyclin B 313-321	a
	Н	E	Ε	T	P	P	T	T	S				c-myc 241-249	а

^{*} Motif and ligands deduced by exclusion: Class I ligands from a c-myc transfected B-cell line expressing A2, A68, and B40 were sequenced. Those not containing an A2 or A68 motif were thought to contain B40 ligands.

References: a: Harris et al. 1993

Table 3 (Continued) L HLA-B*4402

	Po	sition	1								Ref.
	1	2	3	4	5	6	7	8	9	10	
Anchor or auxiliary anchor residues		E			-				F Y	F Y	a
Preferred residues	A S		M I L D		I	V	Y				
Others	D		N	P R K							

References: a: Fleischhauer et al. 1994

M HLA-B*4403

	Po	sitio	נ								Source	Ref
	1	2	3	4	5	6	7	8	9	10		
Anchor or auxiliary anchor residues		E							Y F	Y F		а
Preferred residues	A S		M I L V D				•					
Others			N	P R K	I V K		Y F				•	
Examples for ligands	A A	E E	D M	K G	E K	N G	Y S	K F	K K	F Y	HSP 90 427-436 Elongation factor 2 48-57	a a
B*440x-restricted T-cell epitope	· E	E	N	L	L	D	F	v	R	F	EBNA 6 130-139	b

References: a: Fleischhauer et al. 1994; b: Khanna et al. 1992

Table 3 (Continued) N HLA-B*5101

	Po	sition	ı							Source	Ref.
	1	2	3	4	5	6	7	8	9	_	
Anchor or auxiliary anchor residues		A P G							F I		a
Other preferred residues	I L V Y D	W F	I LM F W Y V E H D R N	G V I K E D	V T G A I S	N I L K Q	K Q R E	т.	W M V L		
Examples for ligands	Y D T d	P A G A P	F H Y Y	K I L A E	P Y N L V	P L T N	K N V H R	V H T T Q	I V L L	UBC5, yeast 61-68 Thymidylate synthase 253-261 GBLP 192-200 Unknown Unknown	a a a a

References: a: Falk et al. 1995a

O HLA-B*5102

	Po	sitio	n							Source	Ref
	1	2	3	4	5	6	. 7	8	9	_	
Anchor or auxiliary anchor residues		P A G	Y		•				Į V	-	а
Other preferred residues			F V L I	GEKLT QRNH	V Q N G T	I N Q T	R E Q K	T R Y			
Examples for ligands	YYLLTF	A P P G A P	YEP FYYS W	D K G T L D E F	G P R V N G I K	K P I I T K V G	D K I L V D G w	Y V K V T Y K	I X V I R V	MHC I α chain 140-148 UBC5, yeast 61-68 Unknown CDC25 homol. 560-567 GBLP 192-200 MHC I α chain 140-148 Ribosomal protein S7/S8A Elongation factor I a 208-	

References: a: Falk et al. 1995a

Table 3 (Continued)
P HLA-B*5103

	Po	sitio	1							Comments	Ref.
<u>. </u>	ī	2	3	4	5	6	7	8	9		
Anchor or auxiliary anchor residues		A P G	Y						V I F	Anchor at 9 deduced from individual ligands	a
Other preferred residues	T V D	F W	F D L	E L N R G Q T V	G A V N Q M R	I K T	V M				
										Source	
Examples for ligands	T D Y	G A F	Y H D	L I d	N Y t	T L L	V N E	T H D	V I F	GBLP 192-199 Thymidilate synthase 253-261 Unknown	a a a

References: a: Falk et al. 1995 a

Q HLA-B*5201

	Po	sitio	n							Comments	Ref
	1.	2	3	4	<u>5</u>	6	7	8	9		
Anchor or auxiliary anchor residues		Q	F Y W		L I V			I V	I V	C-terminal anchor at 8 or 9	a
Other preferred residues	V L I	M F P	I L P D K	L I V P K E A	M F A T G	K N L T S	K E Q Y	M F	M F		
										Source	
Examples for ligands	T G H G V Y L H	G QS FIQPIQM	YFTYI DFY	L K I P F P	N HMGIGIAINE	T Y P S N N G L	V A R I K G R H	T I L E M K I T	v v F v	GBLP 192-200 Ribos. prot. S21 60-67 P1-CDC21 259-266 MHC II β chain 150-158 RBAP-2 266-273 Elongation factor 2 265-273 Histone 2a Z 25-32 Unknown	a a a a a a a a

References: a: Falk et al. 1995 a

Table 3 (Continued) R HLA-B53

	Pos	sition	1							Source	Ref
	1	2	3	4	5	6	7	8	9		
Anchor residues		P									a
T-cell epitope	K	P	I	V	Q	Y	D	N	F	P. falciparum LSA-1 1786-1794	a

S HLA-B*5801

	Po	sitior	1								Source	Ref.
	ı	2	3	4	<u>5</u>	6	7	8	9			
Anchor or auxiliary anchor residues		A S T		P E K	V I L M F				F W	,		a
Other preferred residues	K R I	G	G T I L V F Y N Q	D Q R	A D N T Y W Q	I V L F	L Y M N	N R K T	Y			
Examples for ligands .	K A I R I I K V	AG t T T S t T A	G D T D S D D S V	QR KIG QS eIPIN	YT AKDNYLIY	V F I V P V T V	T Q S F L F T V M	I K R Q H L L E T	W W F F S T F W f	w Q	Lamin C 490-498 MHC class I 260-268 Unknown Ribosomal protein L30 23-31 Cytochrome C oxidase 154-163 Unknown Unknown MHC class II B 209-217 Glucose transporter 5 322-330	a a a a a a a

References: a: Falk et al. 1995c

Table 3 (Continued) T HLA-B60 (B*40012)

	Po	sitior	1									Source	Ref.
	ī	2	3	4	5	6	7	8	9		•		
Anchor or auxiliary anchor residues		E					I V		L				а
Other preferred residues			A V I L M F S D N	P K D G N Q T	L I V D T N P G K Q	K N P V I D R Q	L Y M	K R Q				•	
Examples for ligands	K H Y S I	E E E E	S A I S V	T T H P D	L L D I	H R G V D	<u>L</u> c <u>M</u> V T	V W N V K	L A L E	L m	L	Ubiquitin 63-71 MHC class I 221-230 HSHMO2C05 Signal peptidase 45-54 Ribosomal protein S17 95-105	a a a a a

References: a: Falk et al. 1995 c

U HLA-B61 (B*4006)

	Po	sitior	1							Comments	Ref.
	1	2	3	4	5	6	7	8	9	•	
Anchor or auxiliary anchor residues		E	F I L V Y			Ī			v		a
Other preferred residues	G R	P	MT	E G P S N D K A R N Q	V I L M D G V F N S K	N	Y V L W I T R D Q G	К S	A P	P1 deduced from individual li	gands
										Source	
Examples for ligands	GE GR RGGR	E E E E E E E	FIFIER LIFIH M	G Q V R I S G	G F D D I I L P	F I L N N T i F	G K Y Y A Y I	S K V V K R D	v A	IEF (mRNA) 9306 127-135 Associated-microfibril. protein Ribosomal protein S21 6-13 Ribosomal protein S17 77-84 Ribonucl. reductase 290-297 Ribosomal protein S15 116-1 Unknown Unknown	a l a a

References: a: Falk et al. 1995 c

Table 3 (Continued) V HLA-B62 (B*1501)

	Po	sition	,							_	Source	Ref.
	1	2	3	4	<u>5</u>	6	7	8	9			
Anchor or auxiliary anchor residues		Q L			I V				F Y			а
Other preferred residues .	i	M V	K A N F P Y H R	P E G D	G L F T	V T G I	V T L I	Y V T			:	
Examples for ligands	V Y G K I S G V	L L Q I Q Q Q Q	K G R K P F R G	P E K S G G K P	CIFICIFIR CIP VI	M S A V G G A G	V I G K F S T L	V T S V V Q S	T Y V Y L Y	F Y	Elongation factor 1 \(\alpha 271 - 280 \) Ribosomal protein S15 114 - 122 Ribosomal protein L8 (rat) 7 - 15 Ribosomal protein L27 66 - 74 Unknown Unknown Ribosomal protein L28 (rat) 68 - 76 Collagen \(\alpha 1 1106 - 1112 \)	a a a a a a
T-cell epitopes	. I	L	G	N	K	I	V	R	М	Y	HIV gag 267-276	b

References:
a: Falk et al. 1995c; b: Buseyne et al. 1993

W HLA-B*7801

	Pos	sition	ı						Comments	Ref
	ı	2	3	4	5	<u>6</u>	7	8		
Anchor or auxiliary anchor residúes		P A G			0	I L F V		A	This motif is only partial; the C-terminal anchor has not been determined	a
Other preferred residues			Y D W	F D G L V S Q R N	D G V N R Q S T		A V N K Q E	K S		

References: a: Falk et al. 1995 a

Table 4 HLA-C motifs A HLA-Cw*0301

	1	Posi	tion											Source	Ref.
	1	l	2	3	4	5	<u>6</u>	7	8	9		•			
Anchor or auxiliary anchor residues				V I Y L M	Р		F Y			L F M I		-			a
Other preferred residues				E Ņ	E R	N	М	Q K S M	T .					·	
T-cell epitopes	or C		Q M	А <u>У</u>	I H		P A		T S	L P	R	T	L	HIV gag 144-152 HIV gag 141-152	b

References: a: Falk et al. 1993 a; b: Littaua et al. 1991

B HLA-Cw*0401

	Po	sitio	n				-			Source	Ref.
	1	2	3	4	5	6	7	8	9		
Anchor or auxiliary anchor residues		Y P				V		-	L F		a
		F				L			M		
Other preferred residues			D	D	Α		Α	K			
			Н	E P	H M			S H			
				•	T			••			
					R					•	
T-cell epitope	S	F	N	c	G	G	Е	F	F	HIV-1 gp 120 380-388	ь

References: a: Falk et al. 1993 a; b: Johnson et al. 1993

C HLA-Cw*0602

	Po	sitior	1									Source	Ref.
•	1	2	3	4	5	6	7	8	9				
Anchor or auxiliary anchor residues					I L F M	V I L		-	L i V Y	·			a
Other preferred residues	I F K Y	P R	P I G F Y K N A	P E D Q L	K	A T S	R K Q N	Y E Q N R G T S K					
Examples for ligands	Y V F X	Q R A Q	F H F	T D P T	G G I P	I G <u>I</u> k	K N q A	K V R g	Y L V l'	Y	Y	Unknown Unknown Unknown Unknown	a a a a

References: a: Falk et al. 1993 a

Table 4 (Continued)
D HLA-Cw*0702

	Po	sitior	1										Source	Ref.
	1	2	3	4	5	6	7	8	9		•			
Anchor or auxiliary anchor residues		Y P			Y I L F M	V I L M			Y F L					a
Other preferred residues		R D	P G A	D E V Q P S G	T	A R	Y M N R V F E	E A F D K			:			
Examples for ligands	K R N I I	<u>Y</u>	F R A P K G	D P D Q P G	E G Y n Y G	H T <u>I</u> V N	Y V L i w Y	E A K L E G	Y L Y Y Y S	G	s	Y	CKS-2 11-19 Histone H3.3 40-48 Protein synthesis factor eIF-4C 87-95 Unknown Glutamyl-tRNA synthetase 343-351 Homologous hnRNP A2 or B1 (S11 = N) 277-288	a a a a a
	F X	$\frac{\mathbf{Y}}{\mathbf{M}}$	P P	P P	у <u>f</u>	! <u>L</u>	Y d	G					Unknown Unknown	a a

References:

a: Falk et al. 1993 a

Table 5 Processing motif for all MHC class II ligands

	Ab	solu	te p	ositio	on																Ref.
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	_	_		
· ·		P										р	р	P	P	P					a, b, c

References:

a: Falk et al. 1994b; b: Kropshofer et al. 1993; c: Malcherek et al. 1993

Table 6 Human MHC class II motifs A HLA-DRB1*0101

		Rela	tive po	osition								Source	Ref.
•		1	2	3	4	5	6	7	8	9	ı		
Anchor residues	· · · · · ·	Y,V, L,F, I,A M,W	,		L,A I,V M,N Q		A,G S,T P			L,A I,V N,F Y			a, b, e
Examples	VGSD	w	R	F	L	R	G	Y	Н	Q	YA	HLA-A2 103-117	с
for ligands	VGSD	W	R	F	L ·	R	G	Y	Н	Q	YAYDG	HLA-A2 103-120	С
•	VGSD	W	R	F	L	R	G	Y	н	Q	Y	HLA-A2 103-116	c
	GSD	W	R	F	L	R	G	Y	Н	Q	YA	HLA-A2 104-117	С
LPK	PPKPVSK	M	R	M	A	Т	P	L	L	M	QALPM	Invariant chain 97 - 120	с
	IPAD	·L	R	I	I	S	A	N	G	C	Ř	Na+-K+-ATPase 199-216	С
	RVE	Y	Н	F	L	S	P	Y	V	S	PKESP	Transferrin receptor 680-696	С
	YKHT	L	N	Q	I	D	S	٧	K	V	WPRRPT	Cattle fetuin 56-74	c
	AILE	F	R	À	M	A	Q	F	S	R	KTD	Unknown	d
	PK	Ÿ	v	ĸ	Q	N	Ť	L	K	L	AT*	Influenza HA 306-318	. е

* Alignment determined by structural analysis

References:

a: Hammer et al. 1992; b: Falk et al. 1994b; c: Chicz et al. 1992; d: Kropshofer et al. 1992; e: Stern et al. 1994

Table 6 (Continued)
B HLA-DRB1*0301 (DR17)

		Rela	tive p	osition								Source	Ref.
		1	2	3	4	5	6	7	8	9	_		
Anchor or auxiliary anchor residues		L,I F,M V			D		K,R E,Q N			Y,L F			a, b, 0
Examples	ISNQ	L	T	L	D	S	N	Т	K	Y	FHKLN	Apolipoprotein B 2877 - 2894	а
for ligands	ISNQ	L	T	L	D	S	N	T	K	Y	FHKL	Apolipoprotein B 2877 - 2893	a
•	ISNO	L	Т	L	D	S	N	T	K	Y	FHK	Apolipoprotein B 2877 – 2892	a
	VDŤ	F	L	Е	Ď	V	K	N	Ĺ	Ÿ	HSEA	al-Antitrypsin 149–164	a
	KPRA	I	V	V	D	P	v	Н	Ğ	F	MY	LDL-Receptor 518-532	a
	KQT	I	S	P	D	Υ	R	N	M	Ī		IgG2a, Membrane domain	a
	YPD	F	Ī	M	D	P	ĸ	Ε	K	Ď	ΚV	Unknown	a
	NIQ	L	Ī	N	D	Q	Ē	v	Ā	Ř	FD	Unknown	a 2
	LLŜ	F	V	R	Ď	Ĺ	N	Q	Ÿ	R	ADI	Transferrin receptor 618-632	a
LPKP	PKPVSK	M	R	M	Ā	Ť	P	Ĺ	•			Invariant chain 97-113	d, e, f
LPKP	PKPVSK	M	R	M	A	Ť	P	ĩ	L	M	OALP	Invariant chain 97-119	
	PKPVSK	M	R	M	A	Ť	P	ĩ	ĩ.	M	OALPM	Invariant chain 97-119	d, e, f
PKP	PKPVSK	M	R	M	A	Ť	P	Ĺ	_	•••	Q. LLI	Invariant chain 98-113	d, e, f
	PKPVSK	M	R	M	A	Ť	P	Ĺ	L	М	QA	Invariant chain 98-117	d, e, f
KP	PKPVSK	M	R	M	A	Ť	P	Ľ	ũ	M	ŏ"	Invariant chain 99-116	d, e, f
	PKPVSK	M	R	M	A	Ť	P	ĩ	Ĺ	M	ŎALPM	Invariant chain 99-119	d, e, f
	VDDTOF	v	R	F	D	Ś	Ď	Ā	Ā	S	Ô	HLA-A30 28-?	d, e, f
	ATKYGN	M	Ť	Ē	D	H	v	M	Ĥ	Ĺ	LONA	Invariant chain 131–149	е
•	VFLL	L	i	Ā	Ď	ĸ	v	P	Ë	Ť	SLS	ACh receptor 289-304	e
	LNK	ĩ	Ĺ	î	Ď	Ē	ġ	À	õ	ŵ	K	ICAM-2 64-76	е
	GPPKLD	i	Ř	ĸ	Ĕ	Ē	ĸ	Q	ĭ	M	IDIFH		e
	GPPKLD	i	R	ĸ	Ĕ	Ē	ĸ	ŏ	i	M	IDIFHP	IFN-y receptor 128-147	e
	GKFA	i	R	P	Ď	ĸ	ĸ	š	N	P	IIRTV	IFN-γ receptor 128-148 Cyt-b5 155-172	e
	YAN	i	Ĺ	i.	Ď	R	R	v	P	ģ	TDMTF		е
	NLF	Ĺ	ĸ	Š	Ď	Ğ	R	ĭ	ĸ	Ÿ	TLNKNSLK	Apolipoprotein B 1207 – 1224	е
	IPDNLF	ĩ	ĸ	Š	Ď	Ğ	R	i	ĸ	Ŷ	TLNKN		е
	IPDNLF	Ľ	ĸ	Š	D	Ğ	R	i	ĸ	Ŷ	TLNK	Apolipoprotein B 1273 – 1292	е
	IPDNLF	Ľ	ĸ	Š	Ď	Ğ	R	i	ĸ	Ÿ	TLN	Apolipoprotein B 1273 – 1291	е
	IPDNLF	ĩ	ĸ	Š	D	Ğ	R	i	K	Ŷ	TL /	Apolipoprotein B 1273 – 1290	a, e
	NLF	Ĺ	ĸ	S	D	G	R	Ī	K	Ϋ́	TLNK	Apolipoprotein B 1273 – 1289	е
	NLF	Ľ	ĸ	S	Ď	G	R	i	K	Ϋ́	TLN	Apolipoprotein B 1276 – 1291	е
	VTT	Ľ	N	S	Ď	L	ĸ	Ϋ́	N	Å	LDLTN	Apolipoprotein B 1276–1290	е
	* 1 1	v	G	S	D	W	Ŕ	F	I.	R		Apolipoprotein B 1294-1810	е
		. •	-	3	υ	**	T.	Г	L	K	GYHQYA	HLA-A2 103-117	е

References:
a: Malcherek et al. 1993; b: Geluk et al. 1994; c: Geluk et al. 1992; d: Riberdy et al. 1992; e: Chicz et al. 1993; f: Sette et al. 1992

Table 6 (Continued) C HLA-DRB1*0401 (DR4Dw4)

	-	Relat	tive po	sition								Source	Ref.
		1	2	3	4	5	6	7	8	9			
Anchor or preferred residues		F,Y W,I L,V M			F,W I,L V,A D,E no R,K		N,S T,Q H,R	pol.* chg.* ali.*		pol.* ali.* K			a, b, c, d
Examples		F	V	R	F	D	S	D	Α :	A	SQRMEP	HLA-A2 33-47	а
for ligands	VDDTQ	F	V	R	F	D	S	D	Α	A	ŜQRM	HLA-A2 28-45	a
	•	F	V	R	F	D	S	D	Α	A	SORM	HLA-A2 33-45	a
	VDDTQ	F	V	R	F	D	S	D	Α	A	SPRGEP	HLA-C 28-?	a
	DGKD	Y	I	Α	L	N	Е	D	L	S	S	HLA-B44 143-156	a
	LSS	w	T	Α	A	D	T	A	Α	Q	ITO	HLA-B44 154-168	a
	LSS	w	T	Α	A	D	T	A	Α	Q	IT T	HLA-B44 154-167	a
	IY	F	R	N	Q	K	G	S	Н	Š	GLOPTGFL	HLA-DR4B 252-270	a
	DVA	F	V	K	Ď	Q	T	V	I	Q	NTD	Cattle transferin 68-82	a
	YDHN	F	V	K	A	ì	N	A	1	Q	KSW	Cathepsin C 170-185	a
	KHKV	Y	Α	С	E	٧	T	H	Q	Ğ		Igk chain C region 80-?	a
	HKV	Y	Α	С	E	٧	T	Н	Q	G	L	Igk chain C region 81-?	a
	DGP	F	R	I	1	T	V	P	À	A	LDY	Unknown	a
	TGN	Y	R	I	E	S	V	L	S	S		Sphingolipid activator protein 3 165-176	a
	GERA	M	T	K	D	N	N	L	L	G		HSC 70 445-?	а
	XXX	Y	Е	X.	Α	Ļ	S	L	P	S	K	Unknown	a
	GSLF	v	Y	N	I	T	T	N	K	Y	KAFLKQ	VLA-4 229-247	e
•	SPEDF	v	Y	Q	F	K	G	M	С	Y	F	HLA-DQB 3.2 chain 24-38	е
	AAPYEKEVP	L	S	À	L	T	N	I	L	S	AQL	PAI-1 261-281	e
	GVYF	Ÿ	L	Q	w	G	R	S	T	Ĺ	vsvs	Ig heavy chain 121-?	е
	AEALERM	F	L	Š	F	Р	T	T	K	T		Cattle hemoglobin 26-41	e
	LRS	w	T	Ā	A	D	T	A	A	Q	ITQRKWEAA	HLA-Cw9 130-150	е
•	DLSS	w	Ť	A	Ā	Ď	T	A	A	Q	ITQRKWEAA	HLA-Bw62 129-150	e
•	APSP	L	P	Ε	T	T	E	N	٧	v	CALG	HLA-DRα chain 182-198	е

^{*} pol.: Polar; chg.: charged; ali.: aliphatic References:

D HLA-DRB1*0402 (DR4Dw10)

,		Relative position										Source	
		1	2	. 3	4	5	6	7	8	9			
Anchor or preferred residues		V,I L,M			Y,F W,I L,M R,N no D,E		N,Q S,T K	R,K H,N Q,P; rare D,E		pol.* ali.* H			а
Examples	GPDGR	L	L	R.	G	н	N	Q	F	A	YDGKD	HLA-B38 128-146	a
for ligands	GR	L	L	R	G	H	N	Q Q S	F	A	YDGK	HLA-B38 131-145	а
	Ī	Ī	K	G	Ÿ	R	K	Š	Ν	A	AERRG	HLA-DRα 238-252	а
	-	Ī	Ÿ	F	R	N	Q	K	G	Н	SGLQPTGFLS	DR4β 248-266	a
				F	R	N	Q	K	G	H	SGLQP	DR4β 250-261	а
	F	I	Y	F	R	N	Q	K	G	Н	SGLQPTGFLS	DR4B 249-266	a
	_	Ÿ	v	R	F	D	Š	D	٧	G	EY	DR4Dw10β 37-47	а
	LPKPPKPVSK	M	R	M	A	T	P	L	L	Q		Invariant chain 97-?	а
	FDQK	I	v	E	w	D	S	R	K	Q S	KYFE	BLAST-1 62-78	a
	DQK	Ī	v	E E	W	D	S	R	K E	S	KYF	BLAST-1 63-77	а
	· iki	Ī	S	ĸ	I		N	H	Ε	G	VRR	Pyruvate kinase 264-278	a
	IKI	Ī	S	K	I	E E V	N	H	E	G	VR	Pyruvate-kinase 264-277	а
	FGR	1	Ğ	R	L	V	T	R	Α	A	FNSG	GAPDH 11-25	а
	FGR	Ĭ	Ğ	R	Ĺ	· v	T	R	Α	A	FN	GAPDH 11-23	а
	GFGR	Ī	Ğ	R	Ĺ	V	T	R	Α	A	FNSG •	GAPDH 10-25	a
	CNE	Ī	ĺ	N	w	Ĺ	D	K	N	Q		HSC 70 574-585	а
	QPD	Ĺ	R	Ÿ	Ĺ	F	Ĺ	N	G	Q N		Leucine-rich α2-glyco- protein 200-211	а

a: Friede and co-workers, submitted; b: Sette et al. 1993; c: Hammer et al. 1993; d: Hill et al. 1994; e: Chicz et al. 1993

a: Friede and co-workers, submitted

Table 6 (Continued) E HLA-DRB1*0404 (DR4Dw14)

		Relat	ive po	sition								Source	Ref.
		1	2	3	4	5	6	7	8	9	•	•	
Anchor or preferred residues		V,I L,M			F,Y W,I L,V M,A D,E no R,K		N,T S,Q R	pol.* chg.* ali.*		pol.* ali.* K			a
Examples for ligands	GSHS SHS YDNS	M M L	R R K	Y Y I	F F I	H H S	T T N	A A A	M M S	S S C	RPGRGE RPGRGE TTN	HLA-B60 1-? HLA-B60 2-? GAPDH 139-154	a a a

^{*} pol.: Polar; chg.: charged; ali.: aliphatic References: a: Friede and co-workers, submitted

F HLA-DRB1*0405 (DR4Dw15)

		Relat	ive po	sition								Source	Ref
		1	2	3	4	5	6	7	8	. 9			
Anchor or preferred residues		F,Y W,V I,L M		_	V,I L,M D,E		N,S T,Q K,D	pol.* chg.* ali.*		D,E Q			a
Examples	YPTQRAR	Y	Q ·	w	V	R	C	N	P	D	SNS	PGSG 1-19	a
for ligands	QRAR	Y	Q	W	V	R	C	N	P	D	SNS	PGSG 4-19	a
	RAR	. Y	Q	W	V	R	С	N	P	D	SNS	PGSG 5-19	a
	KPPQ	Y	I	Α	V	Н	V	V	Ρ	D	Q	MIF 32-45	a
	FRE	F	K	L	- S	K	V	W	R	D	QH	Transferrin receptor 173-186	a
	FRE	F	K	L	S	K	٧	W	R	D	Q ′	Transferrin receptor 173-185	a
	RE	F	K	L	S	K	V	W	R	D	QН	Transferrin receptor 174-186	а
	RE	F	K	L	S	K	V	W	R	D	Q .	Transferrin receptor 174-185	a
	VEPDH	Y	V	V	V	G	Α	Q	R	D	- A	Transferrin receptor 397-411	а
	EPDH	Y٠	V	٧	V	G	Α	Q	R	D	Α	Transferrin receptor 398-411	a
	THY	Y	Α	V	Α ΄	V	V	K	K	D	TDFK	Transferrin 92 - 107	а
	KELK	1	D	Ī	I	P	N	P	Q	E	R	Hsp 90-beta 68-81	a
	YLL	Y	Y	T	E	F	T	P	T	E	KD	β ₂ -microglobulin 83 – 96	a
	LL	Y	Y	T	E	F	T.	P	T	E	KDEY	β ₂ -microglobulin 84-98	a
	CAIHAKR	V	T	I	M	P	K	D	I	Q	LA	Histone H3 110-?	a
	APNT	F	K	T	L	D	S	W	R	D		ras-related protein RAB-7 (rat) 86-98	a
	VADK	Ι.	Q	L	I	N	N	M	L	D		Phosphoglycerate kinase 216-228	а
	GSTV	F	D	N	L	P	N	P	Е	1	DGDYYGW	Unknown	ь
	XXXQ	Y	I	Α	V	Н	V	V	P	D	QT	Homol. MIF 32-46	ь
	SDPIL	Y	R	P	v	Α	V	A	L	D		PKM2 99-112	b
		V	P	I	Q L	R	Α	V	Y	Q	NVVVNNPXĎ	Unknown	ь
	SPGTGA	Y	Y	V	L	L	N			-		Unknown	ь
	KPPQ	Y	I	Α	V	н	V	V	P	D	QLM	MIF 32-47	С
	KPPQ	Y	I	Α	V	H	V	V	P	D	QL	MIF 32-46	С
	KPPQ	Y	I	Α	V	Н	V	V	P	D	Q	MIF 32-45	С
	DPIL	Y	R	P	V	Α	V	A	L	D	TKGPE	PKM2 101-118	С
	DPIL	Y	R	P	V	Α	V	A	L	D	TKGP	PKM2 101-117	С
	DNPQTHY	Y	Α	V	Α	V	V	K	K	D	TDFKL	Transferrin 88-108	c
	DNPQTHY	Y	Α	V	Α	V	V	K	K	D	TDFK	Transferrin 88-107	С
	NPQTHY	Y	Α	V	Α	V	٧	K	K	D	TDFKL	Transferrin 89-108	С
	NPQTHY	Y	Α	٧	Α	٧	V	K	K	D	TDFK	Transferrin 89-107	C
	DNPQTHY	Y	Α	V	Α	V	V	K	K	D		Transferrin 88-103	c
	THY	Y	Α	V	Α	V	٧	K	K	D	TDF	Transferrin 92-106	С
	LL	Y	Y	T	E	F	T	P	T	E	KDEY	β ₂ m 84-98	С
	L	Y	Y	T	. E	F	T	P	T	E	KD	β ₂ m 85-26	С
	XXXXKK	V	V	V	Y	L	Q	K	L	D	T	Cathepsin C 58-73	С
	KK	V	V	V	Y	L	Q	K	L	D	TAYD	Cathepsin C 62-76	С
	K	V	V	V	Y	L	Q	K	L	D	TAYD	Cathepsin C 63-76	С
	KP	Y	N	Е	Α	K	T	X	F	D.	KY	Apolipoprotein B-100 3218-3230	c

^{*} pol.: Polar; chg.: charged; ali.: aliphatic References: a: Friede and co-workers, submitted; b: Matsushita et al. 1994; c: Kinouchi et al. 1994

Table 6 (Continued) G HLA-DRB1*1101

		Rela	ative po	sition								Source	Ref.
		1	2	3	4	5	6	7	8	9	-		
Anchor residues		W,Y F	′		M,L V,I		R,K						a, b
Examples for ligands	IDF CPAG	Y	T	S	I N	T	Ř K	, А А	R R	F	EE CEK	HSC 70 291 – 305 Granulin D 41 – 56	b
Tor figatios	VNH	F	i I	A A	E	F	K K	R R	K K	H H	KKD K	Homol. HSC 70 238 – 252 Homol. HSC 70 238 – 250	b h
	MR KHKV	Y Y	F A	H C	Ť E	s V	V T	S H	R Q	· P G	GRGEP LS	HLA-Bw61 5-20 Homol. Ig κ-chain 190-204	ь

References: a: Hammer et al. 1993; b: Newcomb and Cresswell 1993

H HLA-DRB1*1201

		Relat	tive po	osition								Source	Ref.
		1	2	3	4	5	6	7	8	9	-		
Anchor	-	I,L		L,M	_		V,Y		-	Y,F			a
residues		F,Y V		N,V A			F,I N,A			N,I V			•
Examples	GPDGRL	L	R	G	Y	D	Q.	F	Α	Y	DGK	HLA-B38 104-121	a
for ligands	GPDGRL	L	R	G	. H	N	Q	Y	Α	Y	D	HLA class I 104-119	a
. , 5	TGT	I	K	L	L	N	È	N	S	Y	VP	Transferrin receptor 142-155	а
	Т	I	K	L	L	N	Ε	Ν	S	Y	VPR	Transferrin receptor 144-156	a
	FTGT	I	K	L	L	N	Ε	N	S	Y	VPR	Transferrin receptor 141-156	a
	DFTGT	I	K	L	L	N	Е	N	S	Y	VPR	Transferrin receptor 140-156	a
	SDEK	I	R	M	N	R	V	V	R	N	NLR	Valosin-cont. protein p97 78-93	a
	SSV	I	T	L	N	T	N	V	G	L	YXQT	Homol, to apolipoprotein	a
•	EAL	I	Н	Q	L	K	Ī ·	N	P	Y	VLS	Unknown	a
•	AHL	F	K	Q	N	K	V	V	Н	V	NG	Dihydrolipoamide dehydrogenase 138-152	ь

References: a: Falk et al. 1994b; b: Falk and co-workers, unpublished

I HLA-DRB1*1501 (DR2b)

		Rela	itive po	sition								Source	Ref.
		1	2	3	4	5	6	7	8	9	_		
Anchor residues		L,V I			F,Y I			I,L V,M F					a, b
Examples for ligands	EAEQ D	L L V	R E G	A E V	Y F Y	L G R	D R A	G F V	T A T	G S P	VE FEAQG QGRPDA	HLA-A3 152-166 HLA-DRα 45-58 HLA-DQw6 43-58	а а а
T-cell epitope	PV	v	Н	F	F	K	N	I	v	T		MBP 85-95	b

References:

a: Vogt et al. 1994; b: Wucherpfennig et al. 1994

Table 6 (Continued) K HLA-DRB5*0101 (DR2a)

		Rela	tive po	osition				_				Source ·	Ref.
_		1	2	3	4	5	6	7	8	9	•	•	
Anchor or preferred residu	es	F,Y L,M			Q,V I,M					R,K			a, b
Examples for ligands	DVGV DVGV	Y Y	R R	A A	v v	T	P	Q	G G	R R	P	HLA-DQw6 43-56	a
tor nganus	DSDVGV	Ÿ	R	A	v	T	P	Q Q	G	R	PDA PD	HLA-DQw6 43-58 HLA-DQw6 41-57	a
	DSDVGV	Y	R	Α	V	T	P	Q	G	R	PDA	HLA-DQw6 41 - 58	a
	DSDVGV AAD	Y M	R A	A A	V Q	T	P T	Q K	G R	R K	PDAEY WEAAH	HLA-DQw6 41 - 60 HLA-A3 135 - 151	a
	TAAD	M	A	Α	Q	i	T	K	R	ĸ	WEA	HLA-A3 134-149	a
	DVGE	F	Α	Α	V	T	E	K	R	R	PDAEYW	HLA-DR2b 43-61	a
T-cell epitopes	PK	Y	V	K	Q	N	T	L	K	L	AT	HA 307-319	С
		L	Q	Α	Α	P	Α	L	D	K	L	HSP65 418-427	a, d
	VHF	F	K	N	I	V	T	P	R	T	P	MBP 87-99	е
	ASD	Y	K	S	Α	Н	K	G	F	K	GVD	MBP 131-145	a
	KG	F	K	G	V	D	Α	Q	G	T	LSKI	MBP 139-153	a

References:

L HLA-DQA1*0501/DQB1*0301

		Relat	ive po	sition								Source	Ref.
		1	2	3	4	5	6	7	8	9	-		
Anchor residues		F,Y I,M L,V				V,L I,M Y		Y,F M,L V,I					a
Preferred residues	Α		A	A	Α						•		
Examples	TPL	L	M	Q	<u>A</u>	L	P	M	G	Α	LPQG	Invariant chain 111-126	а
for ligands	TPL	L	M	Q	A P	L	P	M	G	Α	LPQ	Invariant chain 111-125	a
	KPPKPVSKMR	M	Α	Ţ	P	L	L	M	Q	Α	•	Invariant chain 99-117	a
	LPKPPKPVSKMR	M	Ā	T	P	L	L	M	-			Invariant chain 97-115	a
	IPE	L	A A N	K	V	Α	R	Α	A	Α		Transferrin receptor 579-597	a
	DVEV	Y	R	<u>A</u>	V	T	P	L	G	P	EVAGQF	DQβ chain 43-55	а

References:

M HLA-DPA1*0201/DPB1*0401

		Relat	ive po	sition				•					Source	Ref
		1	2	3	4	5	6	7	8	9	10	•		
Anchor residues		F,L Y,M I,V A						F,L Y,M V,I A			V,Y I,A L	*		a
Examples for ligands	EKK KK EKK GPG	Y Y Y A	F F P	A A A	A A A D	T T T V	Q Q Q Q	F F Y	E E D	P P P L	L L L Y	AARL AARL LNVANRR	Unknown Unknown Unknown IL-3 Receptor α-chain 127-146	a a a a

References:

a: Vogt et al. 1994; b: Wucherpfennig et al. 1994; c: O'Sullivan et al. 1991; d: Anderson et al. 1988; e: Martin et al. 1991

a: Falk et al. 1994 b

a: Falk et al. 1994 b

Table 6 (Continued) N HLA-DPA1*0102/DPB1*0201

		Relati	ive po	osition								Source	Ref.	
		1	2	3	4	5	6	7	8	9	-			
Anchor residues		F,L M,V W,Y				F,L M,Y			I,A M,V				a	
Examples for ligands	ADEKKF GEP LPSQA	W L F	G S E	K Y Y	Y T I	L R L	Y F Y	E S N	I L K	A A G	RRHP RQVDG	Cattle serum albumin 152-170 Transferrin receptor 15-31 Cathepsin H 185-198	a a a	

Table 7 Other human class II ligands

MHC molecule	Peptide sequence	Source		Ref.
HLA-DR2 (DRB5*0101	NIVIKRSNSTAATNEVPEVTVFS	HLA-DQα	97- 119	a
or DRB1*1501)	NIVIKRSNSTAATNEV	HLA-DQα	97- 112	а
,	SDVGVYRAVTPOGRPDAE	HLA-DQβ	42 – 59	a
	DVGVYRAVTPOĞRPDAE	HLA-DQβ	43 – 59	
	DVGVYRAVTPÕGRPD	HLA-DQB	43 - 57	
	RVOPKVTVYPŠKTQPLQH	HLA-DRB1*1501	94 - 111	а
	RVÕPKVTVYPSKTÕP	HLA-DRB1*1501	94 - 108	a
	LSPIHIALNFSLDPQAPVDSHGLRPALHYQ	Fibronectin receptor α	586- 616	a
	DGILYYYOSGGRLRRPVN	K+ channel protein	173 - 190	a
	IONLIKEEAFLGITDEKTEG	Mannose binding protein	174- 193	a
	EHHIFLGATNYIYVLNEEDLQKV	MET protooncogene	59 - 81	a
	QELKNKYYQVPRKGIQA	Guanylate binding protein 2	434 - 450	а
	FPKSLHTYÄNILLDRÄVPQTD	Apolipoprotein B100	1200 - 1220	a
	FPKSLHTYANILLDRRVPÕ	Apolipoprotein B100	1200 - 1218	a
	LWDYGMSSSPHVLRNR	Factor VIII	1775 - 1790	a
IV A DDD1+0701	RPAGDGTFOKWASVVVPSGQ	HILA-A29	234 - 253	a
HLA-DRB1*0701		ILLA-ALS	234 - 249	a
	RPAGDGTFOKWASVVV		237 - 258	a
	GDGTFÕKWASVVVPSGQEQRYT		237 - 254	a
	GDGTFÖKWASVVVPSGQE		239 - 252	a
	GTFOKWASVVVPSG		239 - 253	a
	GTFOKWASVVVPSGO		239 - 261	
	GTFÖKWASVVVPSGQEQRYTCHV	TH 4 D44		a
	RETQISKTNTQTYRENL	HLA-B44	83 - 99	a
	RETQISKTNTQTYREN		83 - 98	а
	RETQISKTNTQTYRE		83 - 97	а
•	RSNŸTPITNPPEVTVLTNSPVELREP	HLA-DR α chain	101 - 126	а
	GALANIAVDKANLEIMTKRSN		58- 78	a
	SLQSPITVEWRAQSESAQSKMLSGIGGFVL	HLA-DQ α chain	179-?	а
	VTÕYLNATGNRWCSWSLSQAR	4F2	318 - 338	а
•	VTÕYLNATGNRWCSWSL		318 - 334	а
	TSĨLCYRKREWIK	LIF receptor	854- 866	a
	PAFRFTREAAODCEV	Thromboxane-A synthase	406- 420	а
	GDMYPKTWSGMLVGALCALAGVLTI	K+ channel protein	492- 516	а
	TPSYVAFTDTERLIGDA	Hsp 70	38- 54	a
	TPSYVAFTDTERLIG	•	38- 52	а
	VPGLYSPCRAFFNKEELL	EBV MCP	1264-1282	a
	VPGLYSPCRAFFNK		1264 – 1277	a
	KVDLTFSKQHALLCSDYQADYES	Apolipoprotein B 100	1586-1608	a
	KVDLTFSKÕHALLCS		1586-1600	a
	FSHDYRGSTSHRL		1942-1954	a
	LPKYFEKKRNTII		2077-2089	a
		Complement C9	465- 483	a
	APVLISOKLSPIYNLVPVK	HLA-A2	103- 120	a
70"	VGSDWRFLRGYHQYAYDG	Invariant chain	98- 119	а
	PKPPKPVSKMRMÄTPLLMQALP	HLA-DRα chain	182 - 200	a
	APSPLPETTENVVCALGLTV	Ig kappa chain	188 - 201	a
	KHKVYACEVTHQGL	ig rapha cuam	100 - 201	

References: a: Rötzschke and Falk 1994

Table 7 (Continued)

MHC molecule	Peptide sequence	Source		Ref.
HLA-DRB1*0801	APSPLPETTENVVCALG	HLA-DRα chain	182 - 198	a
	SETVFLPREDHLFRKFHYLPFLP	HLA-DR α chain	158 - 180	a
	RHNYELDEAVTLQ	HLA-DP β chain	80- 92	а
	DPQSGALYISKVQKEDNSTYI	LAM Blast-1	88 - 108	а
	GALYISKVOKEDNSTYI		92 - 108	a
	DPVPKPVIKIEKIEDMDD		129- 146	a
	DPVPKPVIKIEKIED		129- 143	a
	FTFTISRLEPEDFAVYYC	Ig κ chain	63 - 80	а
	FTFTISRLEPEDFAV		63 – 77	a
	DPVEMRRLNYQTPG	LAR	1302-1316	a
	YQLLRSMIGYIEELAPIV	LIF receptor	709 - 726	a
	GNHLYKWKQIPDCENVK	IFN-α receptor	271 - 287	a
	LPFFLFRQAYHPNNSSPVCY	IL-8 receptor	169- 188	а
	RPSMLQHLLR	Ca2+ release channel	2614-2623	a
	DDFMGQLLNGRVLFPVNLQLGA	CD35	359 - 380	а
	IPRLQKIWKNYLSMNKY	CD75	106- 122	a
	EPFLYILGKSRVLEAQ	Calcitonin receptor	38 – 53	a
	NRSEEFLIAGKLQDGLLH	TIMP-1	101 – 118	а
	RSEEFLIAGKLQDGLL		102 - 117	a
	SEEFLIAGKLQDGLL		103 - 117	a
	NRSEEFLIAGKL		101 - 112	a
	QAKFFACIKRSDGSCAWYRGAAPPKQEF	TIMP-2	187- 214	а
	QAKFFACIKRSDGSCAWYR		187- 205	a
	DRPFLFVVRHNPTGTVLFM	PAI-I	378 - 396	a
	MPHFFRLFRSTVKQVD		133 148	a
	QNFTVIFDTGSSNLWVPSVYCTSP	Cathepsin E	89- 112	а
	QNFTVIFDTGSSNLWV		89 - 104	a
	TAFQYIIDNKGIDSDAS	Cathepsin S	189- 205	a
	DEYYRRLLRVLRAREQIV	Cystatin SN	41 - 58	а
	EAIYDICRRNLDIERPT	Tubulin α-1 chain	207 - 223	a
	EAIYDICRRNLDI		207 - 219	a
	HELEKIKKQVEQEKCEIQAAL	Myosin B heavy chain	1027 – 1047	a
	AEVYHDVAASEFF	α -enolase	23-?	a
	KRSFFALRDQIPDL	c-myc ,	371 – 385	a
	ROYRLKKISKEEKTPGC	K-ras	164 – 180	a
	KNIFHFKVNQEGLKLSNDMM	Apolipoprotein B-100	1724 – 1743	a
	KNIFHFKVNQEGLKLS		1724 – 1739	а
	YKQTVSLDIQPYSLVTTLNS		1780 – 1799	a
	STPEFTILNTLHIPSFT		2646 – 2662	а
	TPEFTILNTLHIPSFTID		2647 – 2664	а
	TPEFTILNTLHIPSFT		2647 – 2662	а
	SNTKYFHKLNIPOLDF		2885 - 2900	a
	LPFFKFLPKYFEKKRNT		2072 – 2088	a
	LPFFKFLPKYFEKKR		2072 – 2086	а
	WNFYYSPOSSPDKKL		4022 – 4036	а
	DVIWELLNHAQEHFGKDKSKE	Cattle transferrin	261 - 281	а
	DVIWELLNHAQEHFG		261 - 275	а
	DVIWELLNHAQEH		261 - 273	а
	IALLLMASQEPQRMSRNFVR	von Willebrand factor	617 - 636	a
	IALLLMASQEPQRM		617- 630	а
HLA-DR11 or Dw52	SXVITLNTNVGLYXQS	Homol. Apolipoprotein	3345 - 3360	b
	DPXODELOKLNAXDP	Unknown		b
	XPEĽNKVÁRAAAEVAG	Homol. Transferrin receptor	580 - 595	ь
N	· ·			-
OR17 or DRw 52	TFDEIASGFRQGGASQ	Glucose transporter	459- 474	а
	YGYTSYDTFSWAFL	Na+ channel protein	384 - 397	а
	GOVKKNNHQEDKIE	CD45	1071 – 1084	a
	TGHGARTSTEPTTDY	EBV gp220	592- 606	a
	KELKROYEKKLRO	EBV tegument p140	1395 – 1407	а
	SPLQALDFFGNGPPVNYKTGNL	IP 30	38- 59	a

References: a: Chicz et al. 1993; b: Newcomb and Cresswell 1993

Table 8 Mouse class II moulfs A H-2Ek

		Rela	tive po	sition								Source	Ref.
		1	2	3	4	5	6	7	8 .	9	-		
Anchor or preferred residues		I,L V,F Y,W			I,L V,F S		Q,N A		·	K,R			a, b, c
Examples	HPPHIE	1	Q	М	L	K	N	G	K	ĸ		β ₂ m 42 – 56	С
for ligands	DNRM	V	Ĥ	F	I	Α	Ε	F	K	R	K	HSC70 234-248	С
J	TPTL	V .	Ε	Α	Α	R	N	L	G	R	VG	Serum albumin 347-361	С
	VNKE	I	Q	N	Α	V	Q	G	V	K	HI	C cyt inhib. 41-55	С
	GFPT	I	Ŷ	F	S	P	Ā	N	K	K	L	ER60 448-461	а
	IP	L	I	M	L	i	N	K	Α	R	NKAE	Unknown	a
	YDRN	Т	K	S	P	L	F	V	G	K	V	α1-antitryp. 397-410	a
	•	F	Α	Ε	F	G	T	L	K	K	AAVHYDRSG	Unknown	a
	LH	L	G	Y	L	P	N	Q	L	F	R	(human) dead box protein	a
	IPGGP	V	R	L	С	P	G	R	I	R		Cattle fetuin 342-	a
T-cell	RADL	I	Α	Y	L	K	Q	Α	• т	Ř		MCC 91-103	ь
epitopes	RADL	I	Α	Y	L	K	Q	Α	Т	Α	K	PCC 91 - 104	ь
• •	LEDARR	L	K	Α	I	Y	Ē	K	K	K		λrep 12-26	е
	QD	I	L	I	R	L	F	K	S	H	PETL	SWMb 26-40	е
	VTV	L	T	Α	L.	G	A	1	L	K	K	SWMb 66-78	d
		L	T	Α	L	G	G	I	L	K		EqMb 69-77	ь
		L	T	Α	L	G	T	I	L	K		MoMb 69-77	ь
•		i	T	Α	F	N	E	G	L	K		MoHb 68-76	ь
	KVFGR	С	Ε	L	Α	Α	A	M	K	R	HGLD	HEL 1-18	e
	SALLSSD	I	T	Α	S	V	N	С	Α	K		HEL 81-96	d
		W	V	Α	W	R	N	R	С	K	GTD	HEL 108-119	d
	VEK	Y	G	P	Ε	Α	S	A D	F	T	KKMVENAK	SNase 51 - 70	e
	RTDKYGRG	L	Α	Y	I	Y	A		G	K	MVN	SNase 81 - 100	е
	HEHQ	L	R	K	S	Ε	A	Q	Α	K	KEKLNIW	SNase 121-140	f
		I	Α	K	F	G	Т	Α	F	K		LLO 218-226	b

References:
a: Schild and co-workers, submitted; b: Reay et al. 1994; c: Marrack et al. 1993; d: Spouge et al. 1987; e: Altuvia et al. 1994; F: Sette et al. 1989

B H-2Ed

		Relat	ive po	sition		Source	Ref.						
		1	2	3	4	5	6	7	8	9	•	•	
Anchor or preferred residues		W,Y F,I, L,V			K,R I		I,L V,G			K,R			a
Examples	SQLELR	w	K	S	R	Н	1	K	Е	R		IL-2R. γ chain 168-182	a
for ligands	LELR	W	K	S	R	Н	I	K	Е	R		IL-2R. y chain 170-182	a
	ERAEA	w	R	Q	K	L	Н	G	R	L		Apo-E prec. 222-236	a
	RAEA	W	R	Q Q W	K	<u>L</u> <u>L</u> I	Н	G	R	L		Apo-E prec. 223-236	a
	AQ	F	M	W	I	Ī	R	K	R	I	QLP	Unknown	а
	SLDEH	Y	Н	I	R	V	Н	L	V	K		Similar Apolipoprotein B 2211-2224	a
	GQFY	F	L	I	R	K	R	I	Н	L	R	C. elegans cDNA homol. 74-87	a
	LV	V	D	N	G	S	G	M	С	K	AGF	Actin B 8-21	a
T-celi	ALWFRNH	F	v	F	G	G	G	T	K	v	TV	lg lambda 91 - 108	b
epitopes	KYLEFISEA	I	ī	Н	V	L	Н	S	R			SWM 102-118	С
	NKALE.	L	F	R	K	D	I	Α	Α	Ŕ	Y	SWM 132-146	d
	W	v	Α	w	R	N	R	C	K	G	TD	HEL 108-119	С
	Α	Y	٧	Y	K	P	N	N	T	H	EQHLRKSE	SNase 112-129	e
	SS	F	E	R	F	E	I	F	P	K	-	FLU PR/8 HA 109-119	c
	LEDARR	L	K	A	I	Y	E	K	K	K		λrep 12-26	С
	EK	1	R	L	R	P	G	G	K	K	K	HIV-1 gag p17 17-28	f

References:
a: Schild and co-workers, submitted; b: Bogen et al. 1986; c: Spouge et al. 1987; d: O'Sullivan et al. 1991; e: Chicz et al. 1992; f: Sette et al. 1989

Table 8 (Continued) C H-2Es

		Relative position									Comments	Ref.	
		1	2	3	4	5	6	7	8	9	•	·	
Anchor or preferred residues		I,V L			L,I V		Q,N		-	K,R		This motif has been predicted based on prediction of pocket structure and comparison with H-2E ^k and H-2E ^d motifs	a
												Source	
Examples for ligands	HPPHIE EGEC MQKEITA CT EGSLI	L I V L F	Y Q E A A E	V M W P I K	L L S C	K K H T W M	I N R M L Q	G G Y K P S	K K L I F	K K K H S	DG NG II VFFL E	Carboxypeptidase A 44-54 β ₂ 42-56 H-2L ⁴ 160-174 β-actin 286-303 Substance P receptor 255-269 HSP60 478-492	- b b b b
T-cell epitope	DL	1	A	Y	L	K	Q	Α	T	K		MCC 93-103	c, d

D H-2Eb

	•.	Relat	ive po	osition						Comments			
		1	2	3	4	5	6	7	8	9	•		
Anchor or preferred residues	W-1-1-	W,F Y			L,I F,V		Q,N,			K,R		This motif has been predicted based on prediction of pocket structure and comparison with H-2E ^k and H-2E ^b motifs	a
							-					Source	
Examples	SPSYV	Y	Н	Q	F	E	R	R	Α	K	YK	MuLV env protein 454-469	ь
for ligands	SPSYV	Y	Н	Q	F	E E E	R	R	Α	K	YKREPVSL	MuLV env protein 454-475	ь
	SPSYV	Y	Н	Q	F	Е	R	R	Α	K		MuLV env protein 454-467	b
	GK	Y	L	Ŷ	Ε	I	A	R	R	H	PYFY	BSA 141 – 155	h
	XPQS	Y	L	I	Н	Ε	X	X	X	i	S	Unknown	ь
T-cell	RTDKYGRG	L	Α	Y	I	Y	A	D	G	K	MVN	SNase 81 - 100	c, d
epitop e s	DL	I	Α	Y	L	K	Q	Α	T	K		MCC 93-103	c, d

References:

References: a: Schild and wo-workers, submitted; b: Marrack et al. 1993; c: Altuvia et al. 1994; d: Reay et al. 1994

a: Schild and co-workers, submitted; b: Rudensky et al. 1991; c: Altuvia et al. 1994; d: Reay et al. 1994

Table 9 Other mouse class II ligands

MHC Molecule	Peptide sequence	Source		Ref.
H-2Ab	HNEGFYVCPGPHRP	MuLV env	145 – 158	a
	ASFEAQGALANIAVDKA	H-2Ea	52 - 68	a
	KPVSQMRMATPLLMR	Invariant chain	86 – 100	а
	NYNAŸNATPATLAVD	Unknown		a, b
	RPDAEYWNSOPE	Н-2АВ	55 - 66	b
•	XNADFKTPAŤLTVDKP	IgG V _μ	59 - 74	b
H-2As	IRLKITDSGPRVPIGPN	MuLV env	255 - 269	ь
	IRLKITDSGPRVPIG	MuLV env	255 - 267	ь
	WQSQSITCNVAHPASST	IgG2a	194-210	Ъ
		: IgG2a	281 - 296	ь
	KPTEVSGŘLŸHANFGT	Transferrin receptor	203 – 218	b
	XPYMFADKVVHLPGSQ	Unknown	203 210	b
H-2Ad	WANLMEKIQASVATNPI	Аро-Е	268-284	с
	WANLMEKIÕASVATNP	Apo-E	268 - 283	c
	DAYHSRAIÕVVRARKO	Cys-C	40- 55	c
	ASFEAOGALANIAVDKA	H-2I-Ead	52 - 68	c
	ASFEAÕGALANIAVDK	H-2I-Ea °d	52 - 67	c
		Apo-E	236-252	
	EEOTOOIRLOAEIFOAR	<u>-</u>	237 - 252	c
•	EOTOOIRLOAEIFOAR	Apo-E		C
	KPVSQMRMATPLLMRPM	Li Tr	85-101	c
	VPQLNQMVRTAAEVAGQX	Tf recp.	442 – 459	С
	ISQAVHAAHAEINE	Ovalbumin	323 – 336	c
	LEDARRLKAIYEKKK	λ repressor	12- 26	С
H-2Ak	DGSTDYGILQINSR	Hen egg lysozyme	48 - 61	d
	DGSTDYGILQINS		48 - 60	d
	DGSTDYGILQINSRW		48- 62	d
	DYGILQINSRWW (C)		52 - 63 (64)	d
	IIANDQGNRTTPSY	hsp70	28-41	ď
	TPRRGEVYTCHVEHP	H-2I-Ak β chain	165 – 179	d
	KVHGSLARAGKVRGQTPKVAKQ	S30 ribosomal protein	75 - 96	d
	AGKVRGOTPKVAKQĒKKKKKT~	•	83 – 103	d
	EPLVPLÕNHIPENÃQPG	Ryudocan	84-100	đ
•	XOLGAONEMLXPL	Unknown		e
	XXKKGTDFOLNOLE	Transferrin	100-113	e
	KGTDFÕLNÕLEGKKG	Transferrin	103-117	ė
	YVRFDSFVĞEYRAVT	H-2AB	37 - 51	ė
	XPLALOFAELPVNKG	Unknown	31 - 31	ė
	XNLRFDSDVGEFRAV	H-2EBk	33- 47	ė
		MBI	177 – 194	e
	EDENLYEGLNLDDXSMYE		77 - 92	ė
	XXLYNKGIMGEdSYPY	Cathepsin H		-
	SYLDAXVXEQLAT	Fce-Receptor II	298-310	c
	XXXHFVHQFQPFcyF	H-2Aβ*	3- 17	c
	QFQPFXYFTNT	Н-2Аβ≭	10- 20	c
H-2A87	KPKATAEQLKTVMDD	Serum albumin	560-574	· f
	GHNYVTAÏRNQQEG	Transferrin	55- 68	f
	ETTEESLRNYŸĒQ	hnRNP B1 & A2	31- 43	f
	VVMRDPASKRSRĜFGF	hnRNP A2 & B1	51- 66	f
,	VVMRDPOTKRSRGFGF	hnRNP A1	44- 59	f
	PKEPEQLRKLFIGGL	hnRNP A1	7- 21	f
	VVYPWŤQRYFDSF	β Globin major	33 45	f

References: a: Rudensky et al. 1991; b: Rudensky et al. 1992; c: Hunt et al. 1992b; d: Nelson et al. 1992; e: Marrack et al. 1993; f: Reich et al. 1994

References

Achour, A., Picard, O., Zagury, D., Sarin, P. S., Gallo, R. C., Nagler, P. H., and Goldstein, A. L. HGP-30, a synthetic analog of human immunodeficiency virus (HIV) (p17), is a target for cytotoxic T lymphocytes in HIV-infected individuals. Proc Natl Acad Sci USA 87: 7045-7049, 1990

Alsheikhly, A. R. Interaction of in vitro- and in vivo-generated cytotoxic T Cells with SV40 T antigen - analysis with synthetic peptides. Scand J Immunol 39: 467-479, 1994

Altuvia, Y., Berzofsky, J. A., Rosenfeld, R., and Margalit, H. Sequence features that correlate with MHC restriction. Mol Immunol 31: 1 - 19, 1994

Anderson, D. C., van Schoten, W. C. A., Barry, M. E., Janson, A. A. M., Buchanan, T. M., and De Vries, R. R. P. A Mycobacterium lepraespecific human T cell epitope cross-reactive with an HLA-DR2 peptide. Science 242: 259, 1988

Banks, T. A., Nair, S., and Rouse, B. T. Recognition by and in vitro induction of cytotoxic T-lymphocytes against predicted epitopes of the immediate-early protein-ICP27 of Herpes-Simplex virus. J Virol 67: 613-616, 1993

Bastin, J., Rothbard, J., Davey, J., Jones, I., and Townsend, A. Use of synthetic peptides of influenza nucleoprotein to define epitopes recognized by class I-restricted cytotoxic T lymphocytes. J Exp Med 165: 1508-1523, 1987

Beauverger, P., Buckland, R., and Wild, T. F. Measles-virus antigens induce both type-specific and canine-distemper virus cross-reactive cytotoxic T-lymphocytes in mice: localization of a common Ldrestricted nucleoprotein epitope. J Gen Virol 74: 2357-2363, 1993

Beauverger, P., Buckland, R., and Wild, F. Measles hemagglutinin induces an L4-restricted CD8+ cytotoxic T lymphocyte response to

two specific epitopes. Virology 200: 281-283, 1994

Bednarek, M. A., Sauma, S. Y., Gammon, M. C., Porter, G., Tamhankar, S., Williamson, A. R., and Zweerink, H. J. The minimum peptide epitope from the influenza matrix protein. Extra and intracellular loading of HLA-A2. J Immunol 147: 4047-4053,

Bergmann, C., McMillan, M., and Stohlman, S. Characterization of the Ld-restricted cytotoxic T-lymphocyte epitope in the mouse hepatitis-virus nucleocapsid protein. J Virol 67: 7041-7049, 1993 a

Bergmann, C., Stohlmann, S. A., and McMillan, M. An endogenously synthesized decamer peptide efficiently primes cytotoxic T-cells specific for the HIV-1 envelope glycoprotein. Eur J Immunol 23: 2777 – 2781, 1993 Б

Bertoletti, A., Chisari, F. V., Penna, A., Guilhot, S., Galati, L., Missale, G., Fowler, P., Schlicht, H. J., Vitiello, A., Chesnut, R. C., Fiaccadori, F., and Ferrari, C. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis-B virus nucleocapsid protein. J Virol 67: 2376-2380, 1993

Bertoletti, A., Costanzo, A., Chisari, F. V., Levrero, M., Artini, M., Sette, A., Penna, A., Giuberti, T., Fiaccadori, F., and Ferrari, C. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 180: 933-943, 1994

Blum-Tirouvanziam, U., Beghdadi-Rais, C., Roggero, M. A., Valmori, D., Bertholet, S., Bron, C., Fasel, N., and Corradin, G. Elicitation of specific cytotoxic T cells by immunization with malaria soluble synthetic polypeptides. J Immunol 153: 4134-4141, 1994

Bodmer, J. G., Marsh, S. G. E., Albert, E. D., Bodmer, W. F., Dupont, B., Erlich, H. A., Mach, B., Mayr, W. R., Parham, P., Sasazuki, T., Schreuder, G. M. T., Strominger, J. L., Svejgaard, A., and Terasaki, P. I. Nomenclature for factors of the HLA system, 1994. Tissue Antigens 44: 1-18, 1994

Bogen, B., Snodgrass, R., Briand, J. P., and Hannestad, K. Synthetic peptides and beta-chain gene rearrangements reveal a diversified T cell repertoire for a lambda light chain third hypervariable region.

Eur J Immunol 16: 1379-1384, 1986

Bonneau, R. H., Salvucci, L. A., Johnson, D. C., and Tevethia, S. S. Epitope specificity of H-2Kb-restricted, HSV-1-cross-reactive, and HSV-2-cross-reactive cytotoxic T-lymphocyte clones. Virology *195*: 62-70, 1993

Braciale, T. J., Braciale, V. L., Winkler, M., Stroynowski, I., Hood, L., Sambrook, J., and Gething, M.-J. On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC-restricted, hemagglutinin-specific cytolytic T lymphocytes. J Exp Med 166: 678-692, 1987

Brichard, V., Van Pel, A., Wölfel, T., Wölfel, C., De Plaen, E., Lethe, B., Coulie, P., and Boon, T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T-lymphocytes on

HLA-A2 melanomas. J Exp Med 178: 489-495, 1993

Brooks, J. M., Murray, R. J., Thomas, W. A., Kurilla, M. G., and Rickinson, A. B. Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide. J Exp Med 178: 879-887, 1993

Brown, E. L., Wooters, J. L., Ferenz, C. R., O'Brien, C. M., Hewick, R. M., and Herrmann, S. H. Characterization of peptide binding to the murine MHC class I H-2Kk molecule - sequencing of the bound peptides and direct binding of synthetic peptides to isolated class I molecules. J Immunol 153: 3079-3092, 1994

Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature

364: 33-39, 1993

Burrows, S. R., Sculley, T. B., Misko, I. S., Schmidt, C., and Moss, D. J. An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3). J Exp Med 171: 345-349, 1990

Buseyne, F., McChesney, M., Porrot, F., Kovarik, S., Guy, B., and Riviere, Y. Gag-specific cytotoxic T-lymphocytes from humanimmunodeficiency-virus type-1-infected individuals: Gag epitopes are clustered in three regions of the p24gag protein. J Virol 67: 694-702, 1993

Buseyne, F. and Riviere, Y. HIV-specific CD8+ T-cell immune responses and viral replication. Aids 7: S81-S85, 1993

Buus, S., Sette, A., Colon, S. M., Miles, C., and Grey, H. M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 235: 1353-1358, 1987

Cao, W. X., Myers-Powell, B. A., and Braciale, T. J. Recognition of an immunoglobulin Vh epitope by influenza virus-specific class I histocompatibility complex-restricted T lymphocytes. J Exp Med 179: 195-202, 1994

Carbone, F. R., Moore, M. W., Sheil, J. M., and Bevan, M. J. Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 167: 1767-1779, 1988

Celis, E., Tsai, V., Crimi, C., DeMars, R., Wentworth, P. A., Chesnut, R. W., Grey, H. M., Sette, A., and Serra, H. M. Induction of antitumor cytotoxic T-lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA 91: 2105-2109, 1994

Cerrone, M. C., Ma, J. J., and Stephens, R. S. Cloning and sequence of the gene for heat-shock protein-60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun 59: 79-90, 1991

Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.-G., and Townsend, A. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur J Immunol 21: 2069-2075, 1991

Chicz, R. M., Urban, R. G., Lane, W. S., Gorga, J. C., Stern, L. J., Vignali, D. A. A., and Strominger, J. L. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHCrelated molecules and are heterogeneous in size. Nature 358: 764-768, 1992

Chicz, R. M., Urban, R. G., Gorga, J. C., Vignali, D. A. A., Lane, W. S., and Strominger, J. L. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178: 27-47, 1993

Corr, M., Boyd, L. F., Frankel, S. R., Kozlowski, S., Padlan, E. A., and Margulies, D. H. Endogenous peptides of a soluble major histocompatibility complex class-I molecule, H-2Lds-sequence motif, quantitative binding, and molecular modeling of the complex. J Exp Med 176: 1681-1692, 1992

Corr, M., Boyd, L. F., Padlan, E. A., and Margulies, D. H. H-2Dd exploits a 4 residue peptide binding motif. J Exp Med 178: 1877-1892, 1993.

Cossins, J., Gould, K. G., Smith, M., Driscoll, P., and Brownlee, G. G. Precise prediction of a Kt-restricted cytotoxic T-cell epitope in the NS1 protein of influenza-virus using an MHC allele-specific motif. Virology 193: 289-295, 1993

Coulie, P. G., Brichard, V., Van Pel, A., Wölfel, T., Schneider, J., Traversari, C., Mattei, S., De Plaen, E., Lurquin, C., Szikora, J. P., Renauld, J. C., and Boon, T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T-lymphocytes on HLA-A2 melanomas. J Exp Med 180: 35-42, 1994

Cox, A. L., Skipper, J., Chen, Y., Henderson, R. A., Darrow, T. L., Shabanowitz, J., Engelhard, V. H., Hunt, D. F., and Slingluff, C. L. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264: 716-719, 1994

Cresswell, P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 12: 259-293, 1994

Culmann, B., Gomard, E., Kieny, M. P., Guy, B., Dreyfus, F., Saimot, A. G., Sereni, D., Sicard, D., and Levy, J. P. 6 epitopes reacting with human cytotoxic CD8+ T-cells in the central region of the HIV-1 nef protein. J Immunol 146: 1560-1565, 1991

Dai, L. C., West, K., Littaua, R., Takahashi, K., and Ennis, F. A. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J Virol 66: 3151-3154, 1992

De Bergeyck, V., De Plaen, E., Chomez, P., Boon, T., and Van Pel, A. An intracisternal A-particle sequence codes for an antigen recognized by syngeneic cytolytic T lymphocytes on a mouse spontaneous leukemia. Eur J Immunol 24: 2203-2212, 1994

Deckhut, A. M., Lippolis, J. D., and Tevethia, S. S. Comparative analysis of core amino-acid-residues of H-2Db-restricted cytotoxic T-lymphocyte recognition epitopes in Simian virus 40 T antigen. J Virol 66: 440-447, 1992

DiBrino, M., Parker, K. C., Shiloach, J., Knierman, M., Lukszo, J., Turner, R. V., Biddison, W. E., and Coligan, J. E. Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. *Proc Natl Acad Sci USA 90*: 1508-1512, 1993 a

DiBrino, M., Tsuchida, T., Turner, R. V., Parker, K. C., Coligan, J. E., and Biddison, W. E. HLA-A1 and HLA-A3 T-cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 151: 5930-5935, 1993b

DiBrino, M., Parker, K. C., Shiloach, J., Turner, R. V., Tsuchida, T., Garfield, M., Biddison, W. E., and Coligan, J. E. Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. *J Immunol* 152: 620-631, 1994

Dick, L. R., Aldrich, C., Jameson, S. C., Moomaw, C. R., Pramanik, B. C., Doyle, C. K., Demartino, G. N., Bevan, M. J., Forman, J. M., and Slaughter, C. A. Proteolytic processing of ovalbumin and beta-galactosidase by the proteasome to yield antigenic peptides. J Immunol 152: 3884-3894, 1994

Eberl, G., Sabbatini, A., Servis, C., Romero, P., Maryanski, J. L., and Corradin, G. MHC class I H-2K4-restricted antigenic peptides: additional constraints for the binding motif. *Int Immunol* 5: 1489-1492, 1993

Engelhard, V. H., Appella, E., Benjamin, D. C., Bodnar, W. M., Cox, A. L., Chen, Y., Henderson, R. A., Huczko, E. L., Michel, H., Sakaguichi, K., Shabanowitz, J., Sevilir, N., Slingluff, C. L., and Hunt, D. F. Mass spectrometric analysis of peptides associated with the human class-I MHC molecules HLA-A2.1 and HLA-B7 and identification of structural features that determine binding. In A. Sette (ed.): Naturally Processed Peptides, Karger, pp. 39-62, 1993

Engelhard, V. H. Structure of peptides associated with MHC class I molecules. Curr Opin Immunol 6: 13-23, 1994

Falk, K., Rötzschke, O., and Rammensee, H.-G. Cellular peptide composition governed by major histocompatibility complex class I molecules. *Nature* 348: 248-251, 1990

Falk, K., Rötzschke, O., Deres, K., Metzger, J., Jung, G., and Rammensee, H.-G. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 174: 425-434, 1991 a

Falk, K., Rötzschke, O., Stevanović, S., Jung, G., and Rammensee, H.-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. *Nature* 351: 290-296, 1991 b

Falk, K., Rötzschke, O., Grahovac, B., Schendel, D., Stevanović, S., Gnau, V., Jung, G., Strominger, J. L., and Rammensee, H.-G. Allele-specific peptide ligand motifs of HLA-C molecules. Proc Natl Acad Sci USA 90: 12005-12009, 1993a

Falk, K., Rötzschke, O., Grahovac, B., Schendel, D., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B35 and HLA-B37 molecules. *Immunogenetics* 38: 161-162, 1993b

Falk, K., Rötzschke, O., Stevanović, S., Gnau, V., Sparbier, K., Jung, G., Rammensee, H.-G., and Walden, P. Analysis of a naturally occurring HLA class I-restricted viral epitope. *Immunology* 82: 337-342, 1994a

Falk, K., Rötzschke, O., Stevanović, S., Jung, G., and Rammensee, H.-G. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. *Immunogenetics* 39: 230-242, 1994b

Falk, K., Rötzschke, O., Takiguchi, M., Grahovac, B., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-A1, -A11, -A31, and -A33 molecules. *Immunogenetics* 40: '238-241, 1994c

Falk, K., Rötzschke, O., Takiguchi, M., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B51, -B52, and -B78 molecules and implications for Behcet's disease. *Int Immunol* 7: 223-228, 1995a

Falk, K., Rötzschke, O., Takiguchi, M., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B38 and B39 molecules. *Immunogenetics* 41: 162-164, 1995 b

Falk, K., Rötzschke, O., Takiguchi, M., Gnau, V., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of HLA-B58, B60, B61, and B62 molecules. *Immunogenetics* 41: 165-168, 1995 c

Falk, K. and Rötzschke, O. Consensus motifs and peptide ligands of MHC class I molecules. Sem Immunol 5: 81-94, 1993

Feltkamp, M. C. W., Smits, H. L., Vierboom, M. P. M., Minnaar, R. P., Dejongh, B. M., Drijfhout, J. W., Terschegget, J., Melief, C. J. M., and Kast, W. M. Vaccination with cytotoxic T-lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type-16-transformed cells. Eur J Immunol 23: 2242-2249, 1993

Fischer Lindahl, K. F., Hermel, E., Loveland, B. E., and Wang, C. R. Maternally transmitted antigen of mice – a model transplantation antigen. Annu Rev Immunol 9: 351-372, 1991

Fleischhauer, K., Wallny, H.-J., Avila, D., Vilbois, F., Traversari, C., and Bordignon, C. Characterization of natural peptide ligands for HLA-B44. Tissue Antigens, in press

Franco, M. A., Prieto, I., Labbe, M., Poncet, D., Borras-Cuesta, F., and Cohen, J. An immunodominant cytotoxic T cell epitope on the VP7 rotavirus protein overlaps the H2 signal peptide. *J Gen Virol* 74: 2579-2586, 1993

Franco, M. A., Lefevre, P., Willems, P., Lintermanns, P., Tosser, G., and Cohen, J. Identification of cytotoxic T cell epitopes on the Vp3 and Vp6 rotavirus proteins. *J Gen Virol* 75: 589-596, 1994

Fremont, D. H., Matsamura, M., Stura, E. A., Peterson, P. A., and Wilson, I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257: 919-927, 1992

Frumento, G., Harris, P. E., Gawinowicz, M. A., Suciu-Foca, N., and Pernis, B. Sequence of a prominent 16-residue self-peptide bound to HLA-B27 in a lymphoblastoid cell line. *Cell Immunol* 152: 623-626, 1993

Gaugler, B., Van den Eynde, B., Van der Bruggen, P., Romero, P., Gaforio, J. J., De Plaen, E., Lethe, B., Brasseur, F., and Boon, T. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T-lymphocytes. J Exp Med 179: 921-930, 1994

Gavin, M. A., Gilbert, M. J., Riddell, S. R., Greenberg, P. D., and Bevan, M. J. Alkali hydrolysis of recombinant proteins allows for the rapid identification of class-I MHC-restricted CTL epitopes. J Immunol 151: 3971-3980, 1993 Gavioli, R., Kurilla, M. G., De Campos-Lima, P. O., Wallace, L. E., Dolcetti, R., Murray, R. J., Rickinson, A. B., and Masucci, M. G. Multiple HLA All-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nu-

clear antigen 4. J Virol 67: 1572-1578, 1993

Geluk, A., Van Meijgaarden, K. E., Janson, A. A. M., Drijfhout, J. W., Meloen, R. H., De Vries, R. R. P., and Ottenhoff, T. H. M. Functional analysis of DR17(DR3)-restricted mycobacterial T-cell epitopes reveals DR17-binding mouf and enables the design of allele-specific competitor peptides. J Immunol 149: 2864-2871,

Geluk, A., Van Meijgaarden, K. E., Southwood, S., Oseroff, C., Drijfhout, J. W., De Vries, R. R. P., Ottenhoff, T. H. M., and Sette, A. HLA-DR3 molecules can bind peptides carrying two alternative specific submotifs. J Immunol 152: 5742-5748, 1994

Gotch, F., McMichael, A., and Rothbard, J. Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site. J Exp Med 168: 2045-2057, 1988

Gould, K., Cossins, J., Bastin, J., Brownlee, G. G., and Townsend, A. A. 15 amino acid fragment of influenza nucleoprotein synthesized in the cytoplasm is presented to class 1-restricted cytotoxic T lymphocytes. J Exp Med 170: 1051-1056, 1989

Gould, K. G., Scotney, H., Townsend, A. R., Bastin, J., and Brownlee, G. G. Mouse H-21-restricted cytotoxic T cells recognize antigenic determinants in both the HA1 and HA2 subunits of the influenza A/PR/8/34 hemagglutinin. J Exp Med 166: 693-701, 1987

Gould, K. G., Scotney, H., and Brownlee, G. G. Characterization of two distinct major histocompatibility complex class I Kk-restricted T-cell epitopes within the Influenza hemagglutinin. J Virol 65: 5401-5409, 1991 A/PR/8/34

Gregersen, P. K., Silver, J., and Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30: 1205-1213, 1987

Guo, H. C., Jardetzky, T. S., Garrett, T. P. J., Lane, W. S., Strominger, J. L., and Wiley, D. C. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 360:

Guo, H. C., Madden, D. R., Silver, M. L., Jardetzky, T. S., Gorga, J. C., Strominger, J. L., and Wiley, D. C. Comparison of the P2 specificity pocket in three human histocompatibility antigens - HLA-A*6801, HLA-A*0201, and HLA-B*2705. Proc Natl Acad Sci USA 90: 8053-8057, 1993

Hammer, J., Takacs, B., and Sinigaglia, F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. J Exp Med 176: 1007-1013, 1992

Hammer, J., Valsasnini, P., Tolba, K., Bolin, D., Higelin, J., Takacs, B., and Sinigaglia, F. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 74: 197-203, 1993

Hammer, J., Bono, E., Gallazzi, F., Belunis, C., Nagy, Z., and Sinigaglia, F. Precise prediction of MHC class II-peptide interaction based on peptide side chain scanning. J Exp Med 180: 2353-2358, 1994

Harpur, A. G., Ziemiecki, A., Wilks, A. F., Falk, K., Rötzschke, O., and Rammensee, H.-G. A prominent natural H-2Kd ligand is derived from protein-tyrosine kinase JAK1. Immunol Lett 35: 235-238, 1993

Harris, P. E., Colovai, A., Liu, Z., Favera, R. D., and Suciu-Foca, N. Naturally processed HLA class I bound peptides from c-myctransfected cells reveal allele-specific motifs. J Immunol 151: 5966-5974, 1993

Henderson, R. A., Michel, H., Sakaguchi, K., Shabanowitz, J., Appella, E., Hunt, D. F., and Engelhard, V. H. HLA-A2.1-associated peptides from a mutant cell line - a 2nd pathway of antigen presentation. Science 255: 1264-1266, 1992

Henderson, R. A., Cox, A. L., Sakaguchi, K., Appella, E., Shabanowitz, J., Hunt, D. F., and Engelhard, V. H. Direct identification of an endogenous peptide recognized by multiple HLA-A2.1-specific cytotoxic T cells. Proc Natl Acad Sci USA 90: 10275-10279, 1993

Hill, A. V. S., Elvin, J., Willis, A. C., Aidoo, M., Allsopp, C. E. M., Gotch, F. M., Gao, X. M., Takiguchi, M., Greenwood, B. M.,

Townsend, A. R. M., McMichael, A. J., and Whittle, H. C. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360: 434-439, 1992

Hill, C. M., Liu, A., Marshall, K. W., Mayer, J., Jorgensen, B., Yuan, B., Cubbon, R. M., Nichols, E. A., Wicker, L. S., and Rothbard. J. B. Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. J Immunol 152: 2890-2898, 1994

Hosmalin, A., Clerici, M., Houghten, R., Pendleton, C. D., Felxner, C., Lucey, D. R., Moss, B., Germain, R. N., Shearer, G. M., and Berzofsky, J. A. An epitope in human immunodeficiency virus 1 reverse transcriptase recognized by both mouse and human cytotoxic T lymphocytes. Proc Natl Acad Sci USA 87: 2344-2348, 1990

Howard, J. C. and Seelig, A. Antigen-processing - peptides and the proteasome. Nature 365: 211-212, 1993

Huczko, E. L., Bodnar, W. M., Benjamin, D., Sakaguchi, K., Zhu, N. Z., Shabanowitz, J., Henderson, R. A., Appella, E., Hunt, D. F., and Engelhard, V. H. Characteristics of endogenous peptides eluted from the class-I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 151: 2572-2587, 1993

Huet, S., Nixon, D. F., Rothbard, J. B., Townsend, A., Ellis, S. A., and McMichael, A. J. Structural homologies between two HLA B27restricted peptides suggest residues important for interaction with

HLA B27. Int Immunol 2: 311-316, 1990

Hunt, D. F., Henderson, R. A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A. L., Appella, E., and Engelhard, V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255: 1261-1263, 1992 a

Hunt, D. F., Michel, H., Dickinson, T. A., Shabanowitz, J., Cox, A. L., Sakaguchi, K., Appella, E., Grey, H. M., and Sette, A. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-A4. Science 1817-1820, 1992 в

Jackson, M. R., Cohendoyle, M. F., Peterson, P. A., and Williams, D. B. Regulation of MHC class-I transport by the molecular chaperone,

calnexin (P88, IP90). Science 263: 384-387, 1994

Jackson, M. R. and Peterson, P. A. Assembly and intracellular transport of MHC class-I molecules. Annu Rev Cell Biol 9: 207-235, 1993 Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R., and Wiley, D. C. Identification of self peptides bound to purified HLA-

B27. Nature 353: 326-329, 1991

Johnson, R. P., Trocha, A., Buchanan, T. M., and Walker, B. D. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp 120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 67: 438-445, 1993

Joyce, S., Tabaczewski, P., Angeletti, R. H., Nathenson, S. G., and Stroynowski, I. A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides.

J Exp Med 179: 579-588, 1994

Kast, W. M., Offringa, R., Peters, P. J., Voordouw, A. C., Meloen, R. H., Van der Eb, A. J., and Melief, C. J. M. Eradication of adenovirus E1-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59: 603-614, 1989

Kast, W. M., Roux, L., Curren, L., Blom, H. J. J., Voordouw, A. C., Meloen, R. H., Kolakofsky, D., and Melief, C. J. M. Protection against lethal Sendai virus infection by in vivo priming of virusspecific cytotoxic T lymphocytes with a free synthetic peptide Proc Natl Acad Sci USA 88: 2283-2287, 1991

Kast, W. M., Brandt, R. M. P., Sidney, J., Drijfhout, J. W., Kubo, R. T., Grey, H. M., Melief, C. J. M., and Sette, A. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 152: 3904-3912, 1994

Kawakami, Y., Eliyahu, S., Delgado, C. H., Robbins, P. F., Rivoltini, L., Topalian, S. L., Miki, T., and Rosenberg, S. A. Cloning of the gene coding for a shared human-melanoma antigen recognized by autologous T-cells infiltrating into tumor. Proc Natl Acad Sci USA 91: 3515-3519, 1994a

Kawakami, Y., Eliyahu, S., Delgado, C. H., Robbins, P. F., Sakaguchi, K., Appella, E., Yannelli, J. R., Adema, G. J., Miki, T., and Rosenberg, S. A. Identification of a human-melanoma antigen

recognized by tumor-infiltrating lymphocytes associated with invivo tumor rejection. Proc Natl Acad Sci USA 91: 6458-6462, 1994 в

Kawakami, Y., Eliyahu, S., Sakaguchi, K., Robbins, P. F., Rivoltini, L. Yannelli, J. R., Appella, E., and Rosenberg, S. A. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 180: 347-352, 1994c

Khalil, I., D'Auriol, L., Gobet, M., Morin, L., Lepage, V., Deschamps, I., Park, M. S., Degos, L., Galibert, F., and Hors, J. A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus.

J Clin Invest 85: 1315-1319, 1990

Khanna, R., Burrows, S. R., Kurilla, M. G., Jacob, C. A., Misko, I. S., Sculley, T. B., Kieff, E., and Moss, D. J. Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176: 169-176, 1992

Kinouchi, R., Kobayashi, H., Sato, K., Kimura, S., and Katagiri, M. Peptide motifs of HLA-DR4/DR53 (DRB1*0405/DRB4*0101)

molecules. Immunogenetics 40: 376-378, 1994

Klavinskis, L. S., Whitton, J. L., Joly, E., and Oldstone, M. B. A. Vaccination and protection from a lethal viral infection: identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virology 178: 393-400, 1990

Klein, J. Natural History of the Major Histocompatibility Complex,

J. Wiley & Sons, New York, 1986

Koenig, S., Fuerst, T. R., Wood, L. V., Woods, R. M., Suzich, J. A., Jones, G. M., De la Cruz, V. F., Davey, R. T., Jr., Venkatesan, S., Moss, B., Biddison, W. E., and Fauci, A. S. Mapping the fine specificity of a cytolytic T cell response to HIV-1 nef protein. J Immunol 145: 127-135, 1990

Koziel, M. J., Dudley, D., Wong, J. T., Dienstag, J., Houghton, M., Ralston, R., and Walker, B. D. Intrahepatic cytotoxic T-lymphocytes specific for hepatitis-C virus in persons with chronic hepatitis. J Immunol 149: 3339-3344, 1992

Kropshofer, H., Max, H., Müller, C. A., Hesse, F., Stevanović, S., Jung G., and Kalbacher, H. Self-peptide released from class II HLA-DR1 exhibits a hydrophobic two-residue contact motif. J Exp Med 175: 1799-1803, 1992

Kropshofer, H., Max, H., Halder, T., Kalbus, M., Müller, C. A., and Kalbacher, H. Self-peptides from four HLA-DR alleles share hydrophobic anchor residues near the NH2-terminal including proline as a stop signal for trimming. J Immunol 151: 4732-4742, 1993

Kubo, R. T., Sette, A., Grey, H. M., Appella, E., Sakaguchi, K., Zhu, N. Z., Arnott, D., Sherman, N., Shabanowitz, J., Michel, H., Bodnar, W. M., Davis, T. A., and Hunt, D. F. Definition of specific peptide motifs for four major HLA-A alleles. J Immunol 152: 3913-3924, 1994

Kulkarni, A. B., Morse, III, H. C., Bennink, J. R., Yewdell, J. W., and Murphy, B. R. Immunization of mice with vaccinia virus-M2 recombinant induces epitope-specific and cross-reactive Kd-restricted CD8+ cytotoxic-T cells. J Virol 67: 4086-4092, 1993

Kumar, S., Miller, L. H., Quakyi, I. A., Keister, D. B., Houghten, R. A., Maloy, W. L., Moss, B., Berzofsky, J. A., and Good, M. F. Cytotoxic T cells specific for the circumsporozoite protein of Plasmodium falciparum. Nature 334: 258-260, 1988

Kutubuddin, M., Simons, J., and Chow, M. Poliovirus-specific major histocompatibility complex class-I-restricted cytolytic T-cell epitopes in mice localize to neutralizing antigenic regions. J Virol 66: 5967-5974, 1992

Kuwano, K., Braciale, T. J., and Ennis, F. A. Localization of a crossreactive CTL epitope to the transmembrane region on the hemagglutinin of influenza H1 and H2 viruses. FASEB J 2: 2221, 1988

Larson, J. K., Wunner, W. H., Otvos Jr., L., and Ertl, H. C. Identification of an immunodominant epitope within the phosphoprotein of rabies virus that is recognized by both class I- and class II-restricted T cells. J Virol 65: 5673-5679, 1991

Lee, S. P., Thomas, W. A., Murray, R. J., Khanim, F., Faur, S., Young, L. S., Rowe, M., Kurilla, M., and Rickinson, A. B. HLA A2.1restricted cytotoxic T-cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 67: 7428-7435, 1993

Lethé, B., Van den Eynde, B., Van Pel, A., Corradin, G., and Boon, T. Mouse tumor rejection antigens P815A and antigen P815B: 2 epitopes carried by a single peptide. Eur J Immunol 22: 2283-2288, 1992

Littaua, R. A., Oldstone, M. B. A., Takeda, A., Debouck, C., Wong, J. T., Tuazon, C. U., Moss, B., Kievits, F., and Ennis, F. A. An HLA-C restricted CD8+ cytotoxic T lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag. J Virol 65: 4051-4056, 1991

Lurquin, C., Van Pel, A., Mariamé, B., De Plaen, E., Szikora, J.-P., Janssens, C., Reddehase, M. J., Lejeune, J., and Boon, T. Structure of the gene of tum-transplantation antigen P91A: the mutated exon encodes a peptide recognized with L4 by cytolytic T cells. Cell 58:

293-303, 1989

Madden, D. R., Garboczi, D. N., and Wiley, D. C. The antigenic identity of peptide-MHC complexes - a comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75: 693-708, 1993

Maier, R., Falk, K., Rötzschke, O., Maier, B., Gnau, V., Stevanović, S., Jung, G., Rammensee, H.-G., and Meyerhans, A. Peptide motifs of HLA-A3, -A24, and -B7 molecules as determined by pool sequencing. Immunogenetics 40: 306-308, 1994

Malcherek, G., Falk, K., Rötzschke, O., Rammensee, H.-G., Stevanović, S., Gnau, V., Jung, G., and Melms, A. Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis.

Int Immunol 5: 1229-1237, 1993

Mandelboim, O., Berke, G., Fridkin, M., Feldman, M., Eisenstein, M., and Eisenbach, L. CTL induction by a tumor-associated antigen octapeptide derived from a murine lung-carcinoma. Nature 369: 67-71, 1994

Marrack, P., Ignatowicz, L., Kappler, J. W., Boymel, J., and Freed, J. H. Comparison of peptides bound to spleen and thymus class-II. J Exp

Med 178: 2173-2183, 1993

Martin, R., Howell, M. D., Jaraquemada, D., Flerlage, M., Richert, J., Brostoff, S., Long, E. O., McFarlin, D. E., and McFarland, H. F. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173: 19-24, 1991

Maryanski, J. L., Pala, P., Corradin, G., Jordan, B. R., and Cerottini, J.-C. H-2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide. Nature 324: 578-579, 1986

- Matsushita, S., Takahashi, K., Motoki, M., Komoriya, K., Ikagawa, S., and Nishimura, Y. Allele specificity of structural requirement for peptides bound to HLA-DRB1*0405 and -DRB1*0406 complexes: implication for the HLA-associated susceptibility to methimazoleinduced insulin autoimmune syndrome. J Exp Med 180: 873-883,
- Missale, G., Redeker, A., Person, J., Fowler, P., Guilhot, S., Schlicht, H. J., Ferrari, C., and Chisari, F. V. HLA-A31- and HLA-Aw68restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J Exp Med 177: 751-762, 1993

Momburg, F., Neefjes, J. J., and Hämmerling, G. J. Peptide selection by MHC-encoded Tap transporters. Curr Opin Immunol 6: 32-37,

Nayersina, R., Fowler, P., Guilhot, S., Missale, G., Cerny, A., Schlicht, H. J., Vitiello, A., Chesnut, R., Person, J. L., Redeker, A. G., and Chisari, F. V. HLA-A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. J Immunol 150: 4659-4671, 1993

Neefjes, J. J. and Momburg, F. Cell biology of antigen presentation.

Curr Opin Immunol 5: 27-34, 1993

Nelson, C. A., Roof, R. W., McCourt, D. W., and Unanue, E. R. Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-At. Proc Natl Acad Sci USA 89: 7380-7383;

Newcomb, J. R. and Cresswell, P. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated alpha-beta-dimers. J Immunol 150: 499-507, 1993

Norda, M., Falk, K., Rötzschke, O., Stevanović, S., Jung, G., and Rammensee, H.-G. Comparison of the H-2K^k and H-2K^{kml} restricted peptide motifs. *J Immunother 14*: 144-149, 1993

O'Sullivan, D., Arrhenius, T., Sidney, J., Del Guercio, M.-F., Albertson, M., Wall, M., Oseroff, C., Southwood, S., Colon, S. M., Gaeta, F. C. A., and Sette, A. On the interaction of promiscuous antigenic peptides with different *DR* alleles. Identification of common structural motifs. *J Immunol* 147: 2663-2669, 1991

Med 168: 559-570, 1988

Oldstone, M. B. A., Tishon, A., Eddleston, M., De La Torre, J. C., McKee, T., and Whitton, J. L. Vaccination to prevent persistent viral infection. J Virol 67: 4372-4378, 1993

Ortmann, B., Androlewicz, M. J., and Cresswell, P. MHC class I beta2-microglobulin complexes associate with Tap transporters before peptide binding. *Nature* 368: 864-867, 1994

Pamer, E. G., Harty, J. T., and Bevan, M. J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353: 852-855, 1991

Pamer, E. G. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 152: 686-694, 1994

Parker, K. C., Bednarek, M. A., and Coligan, J. E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152: 163-175, 1994

Pfeifer, J. D., Wick, M. J., Roberts, R. L., Findlay, K., Normark, S. J., and Harding, C. V. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. *Nature* 361: 359-362, 1993

Phillips, R. E., Rowland-Jones, S., Huet, S., Hill, A., Sutton, J., Murray, R., Brooks, J., and McMichael, A. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. *Nature* 354: 453-459, 1991

Pinet, V., Malnati, M. S., and Long, E. O. Two processing pathways for the MHC class II-restricted presentation of exogenous influenza virus antigen. *J Immunol* 152: 4852-4860, 1994

Rammensee, H.-G., Falk, K., and Rötzschke, O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11: 213-244, 1993

Rawle, F. C., O'Connell, K. A., Geib, R. W., Roberts, B., and Gooding, L. R. Fine mapping of an H-2K^k restricted cytotoxic T lymphocyte epitope in SV 40 T antigen by using in-frame deletion mutants and a synthetic peptide. *J Immunol* 141: 2734-2739, 1988

Reay, P. A., Kantor, R. M., and Davis, M. M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome C (93-103). *J Immunol* 152: 3946-3957, 1994

Reddehase, M. J., Rothbard, J. B., and Koszinowski, U. H. A pentapeptide as minimal antigenic determinant for MHC class Irestricted T lymphocytes. *Nature* 337: 651-653, 1989

Reich, E. P., Von Grafenstein, H., Barlow, A., Swenson, K. E., Williams, K., and Janeway, C. A. Self peptides isolated from MHC glycoproteins of non-obese diabetic mice. *J Immunol* 152: 2279-2288, 1994

Riberdy, J. M., Newcomb, J. R., Surman, M. J., Barbosa, J. A., and Cresswell, P. HLA-DR molecules from an antigen-processing mutant-cell line are associated with invariant chain peptides. *Nature* 360: 474-477, 1992

Robbins, P. A., Lettice, L. A., Rota, P., Santos-Aguado, J., Rothbard, J., McMichael, A. J., and Strominger, J. L. Comparison between two peptide epitopes presented to cytotoxic T lymphocytes by HLA-A2. Evidence for discrete locations within HLA-A2. J Immunol 143: 4098-4103, 1989

Robbins, P. F., Elgamil, M., Kawakami, Y., and Rosenberg, S. A. Recognition of tyrosinase by tumor-infiltrating lymphocytes from a patient responding to immunotherapy. *Cancer Res* 54: 3124-3126, 1994 Rock, K. L., Rothstein, L., Gamble, S., and Fleischacker, C. Characterization of antigen-presenting cells that present exogenous antigens in association with class I MHC molecules. *J Immunol* 150: 438-446, 1993

Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761-771, 1994

Romero, P., Maryanski, J. L., Corradin, G., Nussenzweig, R. S., Nussenzweig, V., and Zavala, F. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. *Nature 341*: 323-326, 1989

Romero, P., Corradin, G., Luescher, I. F., and Maryanski, J. L. H-2Kdrestricted antigenic peptides share a simple binding motif. J Exp

Med 174: 603-612, 1991

Rötzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G., and Rammensee, H.-G. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. *Nature* 348: 252-254, 1990

Rötzschke, O., Falk, K., Stevanović, S., Jung, G., Walden, P., and Rammensee, H.-G. Exact prediction of a natural T cell epitope. Eur

J Immunol 21: 2891-2894, 1991

Rötzschke, O., Falk, K., Stevanović, S., Jung, G., and Rammensee, H.-G. Peptide motifs of closely related HLA class I molecules encompass substantial differences. Eur J Immunol 22: 2453-2456, 1992

Rötzschke, O., Falk, K., Stevanović, S., Grahovac, B., Soloski, M. J., Jung, G., and Rammensee, H.-G. Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. *Nature* 361: 642-644, 1993

Rötzschke, O., Falk, K., Stevanović, S., Gnau, V., Jung, C., and Rammensee, H.-G. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. *Immunogenetics* 39: 74-77, 1994

Rötzschke, O. and Falk, K. Origin, structure and motifs of naturally processed MHC class II ligands. Curr Opin Immunol 6: 45-51, 1994

Rudensky, A. Y., Preston-Hurlburt, P., Hong, S.-C., Barlow, A., and Janeway, C. A. Sequence analysis of peptides bound to MHC class II molecules. *Nature* 353: 622-627, 1991

Rudensky, A. Y., Preston-Hurlburt, P., Al-Ramadi, B. K., Rothbard, J., and Janeway, C. A. Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs. *Nature* 359: 429-431, 1992

Ruppert, J., Sidney, J., Celis, E., Kubo, R. T., Grey, H. M., and Sette, A. Prominent role of secondary anchor residues in peptide binding to

HLA-A2.1 molecules. Cell 74: 929-937, 1993

Schulz, M., Aichele, P., Schneider, R., Hansen, T. H., Zinkernagel, R. M., and Hengartner, H. Major histocompatibility complex binding and T-cell recognition of a viral nonapeptide containing a minimal tetrapeptide. Eur J Immunol 21: 1181-1185, 1991

Schumacher, T. N., De Bruijn, M. L., Vernie, L. N., Kast, W. M., Melief, C. J. M., Neefjes, J. J., and Ploegh, H. L. Peptide selection by MHC class I molecules. *Nature* 350: 703-706, 1991

Sette, A., Buus, S., Appella, E., Smith, J. A., Chesnut, R., Miles, C., Colon, S. M., and Grey, H. M. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci USA 86: 3296-3300, 1989

Sette, A., Ceman, S., Kubo, R. T., Sakaguchi, K., Appella, E., Hunt, D. F., Davis, T. A., Michel, H., Shabanowitz, J., Rudersdorf, R., Grey, H. M., and DeMars, R. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science 258: 1801-1804, 1992

Sette, A., Sidney, J., Oseroff, C., Del Guercio, M. F., Southwood, S., Arrhenius, T., Powell, M. F., Colon, S. M., Gaeta, F. C. A., and Grey, H. M. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J Immunol 151: 3163-3170, 1993

Sette, A., Sidney, J., Del Guercio, M. F., Southwood, S., Ruppert, J., Dahlberg, C., Grey, H. M., and Kubo, R. T. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. *Mol Immunol* 31: 813-822, 1994

27 42 1

Shawar, S. M., Vyas, J. M., Rodgers, J. R., Cook, R. G., and Rich, R. R. Specialized functions of major histocompatibility class I molecules. II. Hmt binds N-formylated peptides of mitochondrial and procaryotic origin. J Exp Med 174: 941-944, 1991

Shepherd, J. C., Schumacher, T. N. M., Ashton-Rickardt, P. G., Imaeda, S., Ploegh, H. L., Janeway, C. A., and Tonegawa, S. TAP1dependent peptide translocation in vitro is ATP-dependent and peptide selective. Cell 74: 577-584, 1993

Shirai, M., Okada, H., Nishioka, M., Akatsuka, T., Wychowski, C., Houghten, R., Pendleton, C. D., Feinstone, S. M., and Berzofsky, J. A. An epitope in hepatitis C virus core region recognized by cytotoxic T cells in mice and humans. J Virol 68: 3334-3342, 1994

Sibille, C., Chomez, P., Wildmann, C., Van Pel, A., De Plaen, E., Maryanski, J. L., De Bergeyck, V., and Boon, T. Structure of the gene of tum- transplantation antigen P198: A point mutation generates a new antigenic peptide. J Exp Med 172: 35-45, 1990

Sijts, A. J. A. M., Ossendorp, F., Mengede, E. A. M., Van den Elsen, P. J., and Melief, C. J. M. Immunodominant mink cell focus inducing murine leukemia virus (MuLV)-encoded CTL epitope, identified by its MHC class I binding motif, explains MuLV-type specificity of MCF-directed cytotoxic T lymphocytes. J Immunol 152: 106-116, 1994

Silver, M. L., Guo, H. C., Strominger, J. L., and Wiley, D. C. Atomic structure of a human MHC molecule presenting an influenza-virus peptide. Nature 360: 367-369, 1992

Sinigaglia, F. and Hammer, J. Defining rules for the peptide-MHC class II interaction. Curr Opin Immunol 6: 52-56, 1994

Spouge, J. L., Guy, H. R., Cornette, J. L., Margalit, H., Cease, K., Berzofsky, J. A., and DeLisi, C. Strong conformational propensities enhance T cell antigenicity. J Immunol 138: 204-212, 1987

Srivastava, P. K., Udono, H., Blachere, N. E., and Li, Z. H. Heat-shock proteins transfer peptides during antigen-processing and CTL priming. Immunogenetics 39: 93-98, 1994

Starnbach, M. N. and Bevan, M. J. Cells infected with Yersinia present an epitope to class I MHC-restricted CTL. J Immunol 153: 1603-1612, 1994

Stern, L. J., Brown, J. H., Jardetzky, T. S., Gorga, J. C., Urban, R. G., Strominger, J. L., and Wiley, D. C. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368: 215-221, 1994

Stern, L. J. and Wiley, D. C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2: 245-251, 1994

Stevanović, S. and Rammensee, H.-G. The structure of T cell epitopes. In M. H. V. Van Regenmortel (ed). Structure of Antigens, in press Suh, W. K., Cohendoyle, M. F., Früh, K., Wang, K., Peterson, P. A., and Williams, D. B. Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 264:

1322 - 1326, 1994 Sutton, J., Rowland-Jones, S., Rosenberg, W., Nixon, D., Gotch, F., Gao, X.-M., Murray, N., Spoonas, A., Driscoll, P., Smith, M., Willis, A., and McMichael, A. A sequence pattern for peptides presented to cytotoxic T-lymphocytes by HLA-B8 revealed by analysis of epitopes and eluted peptides. Eur J Immunol 23:

447-453, 1993 Sweetser, M. T., Morrison, L. A., Braciale, V. L., and Braciale, T. J. Recognition of pre-processed endogenous antigen by class I but not

class II MHC-restricted T cells. Nature 342: 180-182, 1989 Szikora, J. P., Van Pel, A., and Boon, T. Turn-mutation P35b generates the MHC-binding site of a new antigenic peptide. Immunogenetics 37: 135-138, 1993

Takahashi, H., Cohen, J., Hosmalin, A., Cease, K. B., Houghton, R., Cornette, J. L., DeLisi, C., Moss, B., Germain, R. N., and Berzofsky, J. A. An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci USA 85: 3105, 1988

Takahashi, K., Dai, L. C., Fuerst, T., Biddison, W. E., Earl, P., Moss, B., and Ennis, F. A. Specific lysis of human immunodeficiency virus type 1-infected cells by a HLA-A3.1-restricted CD8 cytotoxic T- lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein. Proc Natl Acad Sci USA 88: 10277-10281, 1991

Tarpey, I., Stacey, S., Hickling, J., Birley, H. D. L., Renton, A., Mcindoe, A., and Davies, D. H. Human cytotoxic T lymphocytes stimulated by endogenously processed human papillomavirus type 11 E7 recognize a peptide containing a HLA-A2 (A*0201) motif. Immunology 81: 222-227, 1994
Tevethia, S. S., Lewis, M., Tanaka, Y., Milici, J., Knowles, B., Maloy,

W. L., and Anderson, R. Dissection of H-2Db-restricted cytotoxic T-lymphocyte epitopes on Simian virus 40 T antigen by the use of synthetic peptides and H-2Dbm mutants. J Virol 64: 1192-1200,

Todd, J. A., Bell J. I., and McDevitt, H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599-604, 1987

Townsend, A., Öhlén, C., Bastin, J., Ljunggren, H.-G., Foster, L., and Kärre, K. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443-448, 1989 Townsend, A., Öhlen, C., Rogers, M., Edwards, J., Mukherjee, S., and

Bastin, J. Source of unique turnour antigens, Nature 371: 662, 1994 Townsend, A. R., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D.,

and McMichael, A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44: 959-968, 1986

Traversari, C., Van der Bruggen, P., Luescher, I. F., Lurquin, C., Chomez, P., Van Pel, A., De Plaen, E., Arnar-Costesec, A., and Boon, T. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176: 1453-1457, 1992

Udaka, K., Tsomides, T. J., and Eisen, H. N. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I protein. Cell 69: 989-998, 1992

Udaka, K., Tsomides, T. J., Walden, P., Fukusen, N., and Eisen, H. N. A ubiquitous protein is the source of naturally occurring peptides that are recognized by a CD8+ T-cell clone. Proc Natl Acad Sci USA 90: 11272-11276, 1993

Urban, R. G., Chicz, R. M., Lane, W. S., Strominger, J. L., Rehm, A., Kenter, M. J. H., Uytdehaag, F. G. C. M., Ploegh, H., Uchanska-Ziegler, B., and Ziegler, A. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci USA 91: 1534-1538, 1994

Utz, U., Koenig, S., Coligan, J. E., and Biddison, W. E. Presentation of three different viral peptides, HTLV-1 Tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. J Immunol 149: 214-221, 1992

Van Binnendijk, R. S., Versteeg van Oosten, J. P., Poelen, M. C., Brugghe, H. F., Hoogerhout, P., Osterhaus, A. D., and Uytdehaag, F. G. Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein. J Virol 67: 2276-2284, 1993

Van Bleek, G. M. and Nathenson, S. G. Isolation of an immunodominant viral peptide from the class I H-2Kb molecule. Nature 348: 213-216, 1990

Van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., and Boon, T. A gene encoding an antigen recognized by cytolytic T-lymphocytes on a human melanoma. Science 254: 1643-1647, 1991

Venet, A. and Walker, B. D. Cytotoxic T-cell epitopes in HIV SIV Infection. Aids 7: S117-S126, 1993

Vogt, A. B., Kropshofer, H., Kalbacher, H., Kalbus, M., Rammensee, H.-G., Coligan, J. E., and Martin, R. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from selfpeptides. J Immunol 153: 1665-1673, 1994

Von Boehmer, H. Thymic selection - a matter of life and death.

Immunol Today 13: 454-458, 1992 Walker, B. D., Flexner, C., Birch-Limberger, K., Fisher, L., Paradis, T. J., Aldovini, A., Young, R., Moss, B., and Schooley, R. T. Longterm culture and fine specificity of human cytotoxic T-lymphocyte clones reactive with human immunodeficiency virus type. Proc Natl Acad Sci USA 86: 9514-9518, 1989

Wallny, H.-J. Untersuchungen zur Rolle der MHC-Klasse-I-Moleküle bei der Prozessierung von Nebenhistokompatibilitätsantigenen,

Dissertation; Universität Tübingen, 1992

Wallny, H.-J., Deres, K., Faath, S., Jung, G., Van Pel, A., Boon, T., and Rammensee, H.-G. Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant. Int Immunol 4: 1085-1090, 1992

Wei, M. L. and Cresswell, P. HLA-A2 molecules in an antigen processing mutant cell contain signal sequence derived peptides.

Nature 356: 443-446, 1992

Weiss, W. R., Mellouk, S., Houghten, R. A., Sedegah, M., Kumar, S., Good, M. F., Berzofsky, J. A., Miller, L. H., and Hoffmann, S. L. Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 171: 763-773,

White, H. D., Roeder, D. A., and Green, W. R. An immunodominant Kb-restricted peptide from the P15E transmembrane protein of endogenous ecotropic murine leukemia-virus (Mulv) Akr623 that restores susceptibility of a tumor line to anti-AKR Gross MULV cytotoxic T-lymphocytes. J Virol 68: 897-904, 1994

Whitton, J. L., Tishon, A., Lewicki, H., Gebhard, J., Cook, T., Salvato, M., Joly, E., and Oldstone, M. B. A. Molecular analyses of a fiveamino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. J Virol 63: 4303-4310, 1989

Wölfel, T., Van Pel, A., Brichard, V., Schneider, J., Seliger, B., Zum Büschenfelde, K. H. M., and Boon, T. 2 tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T-Lymphocytes. Eur J Immunol 24: 759-764, 1994

Wucherpfennig, K. W., Sette, A., Southwood, S., Oseroff, C., Matsui, M., Strominger, J. L., and Hafler, D. A. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp

Med 179: 279-290, 1994

Yanagi, Y., Tishon, A., Lewicki, H., Cubitt, B. A., and Oldstone, M. B. A. Diversity of T cell receptors in virus specific cytotoxic T lymphocytes recognizing 3 distinct viral epitopes restricted by a single major histocompatibility complex molecule. J Virol 66: 2527-2531, 1992

Zhang, Q. J., Gavioli, R., Klein, G., and Masucci, M. G. An HLA-Allspecific motif in nonamer peptides derived from viral and cellular proteins. Proc Natl Acad Sci USA 90: 2217-2221, 1993

Zhang, W., Young, A. C. M., Imarai, M., Nathenson, S. G., and Sacchettini, J. C. Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition. Proc Natl Acad Sci USA 89: 8403-8407, 1992

Volume 41 Number 4 1995

In memoriam

175 C. S. David: D. Shreitler (1943) 1992 A brief journey anto-the life of Opinald Shrettle

Anniversary Review

M3. Ikesikuuussa terisia. Sessuovikimientymiksiithyjänkkinnissiinatisiing

Ougust bases

- 200 elektrikario donom, il sancilatio, kilektrikarinalistenochismomogarbane, complex Lights diskigane colymomism in the strikario biss co
- **E9. NeA: Allenison**, M. C. Stimiter Association of **W**eb with reasoness to callagen mane at a configuration of several analysis of the comparison of several appropriately allegated associated assoc

Brian dominionications

- **Als S. D. S. Shi**lling, C. A. Hashing, S. Le**ders, S. W**. G. A. Dultend, A. G. Alleirand, C. D. Sponder, J. L. Villlems, G. G. Russalle Transferrion, expression, and their equation game specific a fed A. A. L. antique.
- 251 (2 Antally 7 Acts if Otto, 11 & Strate, 2 S. Daylik Consult consequences in a masse may be a property of the consequences of the consequences

Springer International