פונקציות ממשיות - חורף תשס"א - גליון תרגילים מס' 1

להגשה: עד יום א', 12.11.00. שאלה עם * היא שאלת רשות.

- 1. הוכיחו שאין σ -אלגברה אינסופית שהיא בת-מנייה (רמז: בהנתן σ -אלגברה אינסופית מיצאו בה סדרה של קבוצות זרות.).
 - ביכו: או הפריכו או הוכיחו אל X ומשפחה $\{\mathcal{M}_i\}_{i\in I}$ של σ -אלגבראות של X. הוכיחו או הפריכו:
 - \cap אלגברה. $\cap_{i\in I}\mathcal{M}_i$ א.
 - ב. $\bigcup_{i\in I}\mathcal{M}_i$ היא $\bigcup_{i\in I}\mathcal{M}_i$
- וכל שקולות הבאות שהטענות הוכיחו . $lpha\in\mathbb{R}$ ו- $\{a_n\}_{n=1}^\infty\subset[-\infty,\infty]$.lpha . $lpha=\limsup_{n\to\infty}a_n$ לשמש כהגדרה ל- אחת מהן יכולה לשמש כהגדרה ל
 - $n=1,2,3,\ldots\;;\;b_n=\sup\{a_n,a_{n+1},\ldots\}\;$ כאשר $lpha=\lim_{n o\infty}b_n\;$ א.
 - ב. $\{b_n\}_{n=1}^\infty$ כאשר $\{b_n\}_{n=1}^\infty$ כנ"ל.
 - $\left\{a_{n}
 ight\}_{n=1}^{\infty}$ הוא סופרמום הגבולות החלקיים של מ
 - $\{a_n\}_{n=1}^\infty$ הוא הגבול התלקי הגדול ביותר של lpha ד. מ
 - $lpha=\inf\ \{x\in{
 m I\!R}:$ ים - $a_n\geq x\}$ ה.
 - . הוכיחו: $\{a_n\}_{n=1}^\infty$, $\{b_n\}_{n=1}^\infty\subset[-\infty,\infty]$ הוכיחו הסדרות הסדרות .4
 - $\lim \sup_{n\to\infty} (-a_n) = -\lim \inf_{n\to\infty} a_n$.
 - . $\limsup_{n\to\infty}(a_n+b_n)\leq \limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n$ ב. ב. $(a_n+b_n)\leq \lim\sup_{n\to\infty}a_n+\lim\sup_{n\to\infty}b_n$ ב. (בתנאי שהסכומים אינם מהצורה
- מרחב מדיד ו- Y,Z מרחב מדיד הפונקציות איז הפונקציות הפונקציות הפונקציות הפונקציות הפונקציות הפונקציות הפונקציות הפולח הבידה ו- $g\circ f$ מדידה בורל איז $g\circ f$ מדידה הוכיחו שאם הוכיחו שהוביחו שהוב
 - הפריכו: או הפריכו או הפונקציה $f:X o \mathbb{R}$ כאשר X מרחב מדיד. הוכיחו או הפריכו:
 - $f^2\iff \pi$ מדידה f
 - ב. f מדידה $f^3 \iff f$ מדידה.
 - . נתונה פונקציה $f:\mathbb{R} o \mathbb{R}$ מונוטונית.
 - א. הוכיחו של-f יש מספר בן-מנייה, לכל היותר, של נקודות אי-רציפות.
 - ב. הוכיתו ש- f מדידה בורל.
- (הדרכה: $\mathbb R$ -אלגברה של בורל ב- $\mathbb R$ (או ב- $\mathbb R$) היא עצמת הרצף. אונית - σ -אלגברה של בורל ב- $\mathbb R$ (או ב- σ -אלגברה שלב 161 בספר של לינדנשטראוס).

בהצלחה