MATH 60604 Modélisation statistique § 6e - Pente aléatoire

Léo Belzile

HEC Montréal Département de sciences de la décision

Formulation du modèle

On considère un modèle linéaire mixte avec ordonnée à l'origine et pente aléatoire pour les données vengeance,

$$egin{aligned} oldsymbol{Y}_i \mid oldsymbol{\mathcal{B}}_i = oldsymbol{b}_i \sim \mathsf{No}_5 \left(oldsymbol{\mathsf{X}}_i oldsymbol{eta} + oldsymbol{\mathsf{Z}}_i oldsymbol{b}_i, \sigma^2 oldsymbol{\mathsf{I}}_5
ight) \ oldsymbol{\mathcal{B}}_i \sim \mathsf{No}_2 (oldsymbol{0}_2, oldsymbol{\Omega}) \end{aligned}$$

où $\mathbf{Z}_i = [\mathbf{1}_5, \mathbf{t}_i]$ est une matrice 5×2 pour les effets aléatoires et $\mathbf{\Omega} = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{12} & \omega_{22} \end{pmatrix}$.

Les colonnes de Z_i incluent d'ordinaire les variables suivantes:

- temps
- indicateurs de variables binaires/catégorielles (effet de groupe).

Effet aléatoire sur une variable explicative

Soit la matrice $\mathbf{Z}_i = [\mathbf{1}_{n_i}, \mathbf{X}_{1i}].$

$$Y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i})X_{ij1} + \beta_2X_{ij2} + \cdots + \beta_pX_{ijp} + \varepsilon_{ij}.$$

- ullet L'effet conditionel de la variable X_1 pour le groupe i est eta_1+b_{1i}
- Le paramètre β_1 est la « pente » X_1 moyenne pour la population.
- $\beta_1 + b_{1i}$ est l'effet de X_1 spécifique au groupe i.

Covariance de la réponse

- La matrice de covariance de Y_i dépend des variables explicatives de Z_i qui induisent un effet aléatoire.
- Par exemple, si $\mathbf{Z}_i = [\mathbf{1}_{n_i}, \mathbf{X}_{1i}]$, la variance marginale de Y_{ij} est

$$\mathsf{Var}\left(\mathsf{\textit{Y}}_{\mathit{ij}}\mid \mathbf{X}_{\mathit{i}}\right) = \omega_{11} + \mathsf{\textit{X}}_{\mathit{ij}1}^{2}\omega_{22} + 2\mathsf{\textit{X}}_{\mathit{ij}1}\omega_{12} + \sigma_{\varepsilon}^{2}.$$

 Si les aléas sont indépendants, la covariance entre deux observations d'un même groupe est

Cov
$$(Y_{ij}, Y_{ik} | \mathbf{X}_i) = \omega_{11} + X_{ij1}X_{1ik}\omega_{22} + (X_{ij1} + X_{1ik})\omega_{12}.$$

 Il peut être difficile d'estimer les paramètres si la structure de covariance de Y_i est complexe (en plus des coûts computationnels).

Code SAS pour ajuste un modèle avec pente aléatoire

```
proc mixed data=modstat.vengeance;
model vengeance = sexe age vc wom t
    / ddfm=kenwardroger solution;
random intercept t / subject=id type=un v=1 vcorr=1;
run;
```

La sortie inclut des information sur le nombre de paramètres de covariance, le nombre d'effets aléatoires, etc.

Dimensions				
Paramètres de covariance	4			
Colonnes dans X	6			
Colonnes dans Z par sujet	2			
Sujets	80			
Max. obs. par sujet	5			

Matrice de covariance de la réponse

Valeur estimée du paramètre de covariance					
Param. de cov.	Sujet	Estimation			
UN(1,1)	id	0.3064			
UN(2,1)	id	-0.05268			
UN(2,2)	id	0.01730			
Residual		0.2055			

Matrice V estimée pour Subject 1							
Ligne	Col1	Col2	Col3	Col4	Col5		
1	0.4239	0.1830	0.1476	0.1122	0.07682		
2	0.1830	0.3704	0.1468	0.1287	0.1106		
3	0.1476	0.1468	0.3515	0.1452	0.1444		
4	0.1122	0.1287	0.1452	0.3672	0.1782		
5	0.07682	0.1106	0.1444	0.1782	0.4175		

- La variance de l'effet aléatoire sur l'ordonnée à l'origine est $\omega_{11}=0{,}306$
- La variance de l'effet aléatoire sur la pente est $\omega_{22}=0{,}017$
- La corrélation entre les deux effets aléatoires est -0.72.

Tester la corrélation entre effets aléatoires

- On peut tester si \mathcal{H}_0 : $\omega_{12}=0$ versus \mathcal{H}_a : $\omega_{12}\neq 0$ en ajustant un modèle avec matrice de covariance de \boldsymbol{b}_i diagonale et en faisant un test de rapport de vraisemblance (REML, car les effets fixes sont les même)
 - dans SAS, le modèle de covariance type=vc (option par défaut pour effets aléatoires).
 - la statistique de test est R = 8,98
 - sa loi nulle asymptotique est χ^2_1 (problème régulier, la covariance peut être négative)
 - la valeur-*p* est 0,002:
 - la corrélation entre effets aléatoires est fortement significative.

Comparaison de modèles

- On pourrait comparer avec le modèle qui inclut uniquement un effet aléatoire pour l'ordonnée à l'origine aléatoire
 - ce qui revient à tester \mathcal{H}_0 : $\omega_{22} = \omega_{12} = 0$.
 - La loi nulle asymptotique est $\frac{1}{2}\chi_1^2 + \frac{1}{2}\chi_2^2$,
 - mais l'approximation est mauvaise en échantillon fini...mieux vaut utiliser un critère d'information.