Exercice 1 (Questions de cours.)

Donner l'énoncé complet ainsi que la démonstration des résultats suivants.

- 1. Règle de d'Alembert.
- 2. Convergence absolue d'une série exponentielle.
- 3. Critère des séries alternées.

Exercice 2 (Exercice préparé.)

Donner un équivalent losque $n \to +\infty$ de

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

Exercice 3

Étudier la convergence des séries $\sum u_n$ suivantes :

1)
$$u_n = \frac{n}{n^3 + 1}$$

$$2) u_n = \frac{1}{n!}$$

1)
$$u_n = \frac{n}{n^3 + 1}$$
 2) $u_n = \frac{1}{n!}$ 3) $u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$

4)
$$u_n = n \sin\left(\frac{1}{n}\right)$$
 5) $u_n = \frac{n!}{n^{an}}, a \in \mathbb{R}$ 6) $u_n = \frac{\ln(n^n)}{n!}$

$$5) u_n = \frac{n!}{n^{an}}, a \in \mathbb{F}$$

$$6) u_n = \frac{\ln(n^n)}{n!}$$

Exercice 4

Soit, pour $n \ge 1$ et a > 0, la suite $u_n = \frac{a^n n!}{n^n}$.

- 1. Étudier la convergence de la série $\sum u_n$ lorsque $a \neq e$.
- 2. Lorsque a=e, prouver que, pour n assez grand, $\frac{u_{n+1}}{u_n} \geq 1$. Que dire de la nature de la série $\sum u_n$?

Exercice 5

Étudier la nature des séries $\sum u_n$ suivantes

1)
$$u_n = \frac{\sin(n^2)}{n^2}$$
 2) $u_n = \frac{(-1)^n \ln(n)}{n}$ 3) $u_n = \frac{\cos(n^2 \pi)}{n \ln(n)}$

$$2) u_n = \frac{(-1)^n \ln(n)}{n}$$

$$u_n = \frac{\cos(n^2 \pi)}{n \ln(n)}$$

Exercice 6

Soit $f:[0,1]\mapsto\mathbb{R}$ une fonction continue. Montrer que la série de terme général

$$u_n = \frac{1}{n} \int_0^1 t^n f(t) dt$$

est convergente.

Exercice 7

Soit a > 0 et $f: x \mapsto \frac{a}{a^2 + r^2}$.

- 1. Prouver que f est décroissante et donner une primitive de f.
- 2. En déduire

$$\lim_{a \to \infty} \sum_{k=1}^{+\infty} \frac{a}{a^2 + k^2}.$$

Exercice 8

Soit $(x,y) \in \mathbb{R}^2$ un point du plan. En fonction de la position de (x,y), étudier la nature de la série de terme général

$$u_n = \frac{x^n}{y^n + n}.$$

Exercice 9

Calculer les sommes suivantes :

$$1) \sum_{n=0}^{+\infty} \frac{n+1}{n!}$$

1)
$$\sum_{n=0}^{+\infty} \frac{n+1}{n!}$$
 2) $\sum_{n=0}^{+\infty} \frac{n^2-2}{n!}$ 3) $\sum_{n=0}^{+\infty} \frac{n^3}{n!}$

3)
$$\sum_{n=0}^{+\infty} \frac{n^3}{n!}$$

Exercice 10

Soit $\sum_n u_n$ une série à termes positifs et $\alpha > 0$ un réel.

- 1. On suppose que $\sum_n u_n$ converge.
 - (a) On suppose que $\alpha > 1$, prouver que $\sum_n u_n^{\alpha}$ converge.
 - (b) Est-ce vrai si $\alpha < 1$?
- 2. On suppose que $\sum_{n} u_n$ diverge.
 - (a) On suppose que $\alpha < 1$, prouver que $\sum_n u_n^{\alpha}$ diverge.
 - (b) Est-ce vrai si $\alpha > 1$?

Exercice 11

Soit (u_n) une suite à terme positifs et décroissante. Si la série $\sum_n u_n$ converge, montrer que $u_n = o\left(\frac{1}{n}\right)$ lorsque $n \to +\infty$.

Exercice 12

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+^*$ une fonction de classe \mathcal{C}^1 vérifiant $\lim_{x \to +\infty} \frac{f'(x)}{f(x)} = -\infty$. Montrer que $\sum_{n} f(n)$ converge et donner un équivalent lorsque $n \to +\infty$, de

$$R_n = \sum_{k=n+1}^{+\infty} f(k).$$