

OptiMOS™3 Power-Transistor

Features

- Ideal for high frequency switching and sync. rec.
- · Optimized technology for motor drive applications
- Excellent gate charge x R DS(on) product (FOM)
- · Very low on-resistance R_{DS(on)}
- · Superior thermal resistance
- · N-channel, normal level
- 100% avalanche tested
- · Pb-free plating; RoHS compliant
- Qualified according to JEDEC¹⁾ for target applications
- · Halogen-free according to IEC61249-2-21

Туре	IPB019N08N3 G
	1 tab
Package	PG-TO263-7
Marking	019N08N

Product Summary

V _{DS}	80	٧
R _{DS(on),max}	1.9	mΩ
I _D	180	Α

previous engineering code: IPB022N08N3 G

Maximum ratings, at T_i =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	T _C =25 °C ²⁾	180	А
		T _C =100 °C	180	
Pulsed drain current ²⁾	/ _{D,pulse}	T _C =25 °C	720	
Avalanche energy, single pulse ³⁾	E _{AS}	$I_{\rm D}$ =100 A, $R_{\rm GS}$ =25 Ω	1430	mJ
Gate source voltage	V _{GS}		±20	v
Power dissipation	P _{tot}	T _C =25 °C	300	w
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 175	°C
IEC climatic category; DIN IEC 68-1			55/175/56	

¹⁾J-STD20 and JESD22

²⁾ See figure 3 for more detailed information

³⁾ See figure 13 for more detailed information

Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - case	R _{thJC}		-	-	0.5	K/W
Thermal resistance,	R _{thJA}	minimal footprint	-	-	62	1
junction - ambient		6 cm ² cooling area ⁴⁾	-	-	40	1

Electrical characteristics, at T_j =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =0 V, I _D =1 mA	80	-	-	V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =270 μA	2	2.8	3.5	
Zero gate voltage drain current	I _{DSS}	V _{DS} =80 V, V _{GS} =0 V, T _j =25 °C	-	0.1	1	μA
		V _{DS} =80 V, V _{GS} =0 V, T _j =125 °C	-	10	100	
Gate-source leakage current	I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	1	100	nA
Drain-source on-state resistance	R DS(on)	V _{GS} =10 V, I _D =100 A	-	1.6	1.9	mΩ
		V _{GS} =6 V, I _D =50 A	-	2.0	3.3	
Gate resistance	R _G		-	2.7	-	Ω
Transconductance	$g_{ ext{fs}}$	V _{DS} >2 I _D R _{DS(on)max} , I _D =100 A	103	206	-	s

 $^{^{4)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical in still air.

Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.]
Dynamic characteristics						
Input capacitance	C iss		-	10700	14200	pF
Output capacitance	C oss	V _{GS} =0 V, V _{DS} =40 V, f=1 MHz	-	2890	3840	
Reverse transfer capacitance	C _{rss}		-	100	-	
Turn-on delay time	t _{d(on)}		-	28	-	ns
Rise time	t _r	V _{DD} =40 V, V _{GS} =10 V,	-	73	-	
Turn-off delay time	t _{d(off)}	I_D =100 A, R_G =1.6 Ω	-	86	-	nc v
Fall time	t _f		-	33	-	
Gate Charge Characteristics ⁵⁾						
Gate to source charge	Q _{gs}		-	50	-	nC
Gate to drain charge	Q _{gd}	1, 40,4,4,00,4	-	30	-	
Switching charge	Q sw	V _{DD} =40 V, I _D =100 A, V _{GS} =0 to 10 V	-	50	-	
Gate charge total	Q _g		-	155	206	
Gate plateau voltage	V _{plateau}		-	4.6	-	V
Output charge	Q oss	V _{DD} =40 V, V _{GS} =0 V	-	210	279	nC
Reverse Diode						
Diode continous forward current	/s	.7 _C =25 °C	-	-	180	Α
Diode pulse current	/ _{S,pulse}	/ c-25 G	-	-	720	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =100 A, T _j =25 °C	-	1.0	1.2	v
Reverse recovery time	t _{rr}	V _R =40 V, I _F =100A	-	113	-	ns
Reverse recovery charge	Q _{rr}	d <i>i</i> _F /d <i>t</i> =100 A/μs	-	317	-	nC

⁵⁾ See figure 16 for gate charge parameter definition

1 Power dissipation

$P_{tot} = f(T_C)$

2 Drain current

3 Safe operating area

$$I_D=f(V_{DS}); T_C=25 \text{ °C}; D=0$$

parameter: t_p

4 Max. transient thermal impedance

$$Z_{thJC}$$
=f(t_p)

parameter: $D = t_p/T$

5 Typ. output characteristics

 $I_{\rm D}$ =f($V_{\rm DS}$); $T_{\rm j}$ =25 °C parameter: $V_{\rm GS}$

6 Typ. drain-source on resistance

 $R_{DS(on)}$ =f(I_D); T_j =25 °C

parameter: V_{GS}

7 Typ. transfer characteristics

 I_{D} =f(V_{GS}); $|V_{DS}|$ >2 $|I_{D}|R_{DS(on)max}$

parameter: T_j

8 Typ. forward transconductance

 $g_{fs} = f(I_D); T_j = 25 \text{ °C}$

9 Drain-source on-state resistance

 $R_{DS(on)} = f(T_i); I_D = 100 \text{ A}; V_{GS} = 10 \text{ V}$

T_j [°C]

10 Typ. gate threshold voltage

 $V_{\text{GS(th)}}$ =f(T_{j}); V_{GS} = V_{DS} parameter: I_{D}

11 Typ. capacitances

 $C = f(V_{DS}); V_{GS} = 0 V; f = 1 MHz$

 $I_F = f(V_{SD})$ parameter: T_j

13 Avalanche characteristics

 I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: T_{j(start)}

1000

14 Typ. gate charge

V_{GS}=f(Q_{gate}); I_D=100 A pulsed

parameter: V_{DD}

100 25 °C 100 °C 150 °C 100 °C 150 °C 100 °C 150 °C

15 Drain-source breakdown voltage

 $V_{BR(DSS)}=f(T_j); I_D=1 \text{ mA}$

16 Gate charge waveforms

PG-TO263-7 (D2-Pak)

DIM	MILLIM	METERS	INC	HES
ЫМ	MIN	MAX	MIN	MAX
Α	4.30	4.57	0.169	0.180
A1	0.00	0.25	0.000	0.010
b	0.50	0.70	0.020	0.028
b2	0.50	1.00	0.020	0.039
С	0.33	0.65	0.013	0.026
c2	1.17	1.40	0.046	0.055
D	8.51	9.45	0.335	0.372
D1	6.90	7.90	0.272	0.311
E	9.80	10.31	0.386	0.406
E1	6.50	8.60	0.256	0.339
е	1.27		0.0	050
N		6		6
Н	14.61	15.88	0.575	0.625
L	2.29	3.00	0.090	0.118
L1	0.70	1.60	0.028	0.063
L2	1.00	1.78	0.039	0.070
F1	16.05	16.25	0.632	0.640
F2	9.30	9.50	0.366	0.374
F3	4.50	4.70	0.177	0.185
F4	10.70	10.90	0.421	0.429
F5	0.37	0.57	0.015	0.022
F6	0.70	0.90	0.028	0.035

