Protonation-Induced Chirality Drives Separations by Differential Mobility Spectrometry

Christian Ieritano, Justine Bissonnette, Alexander Haack, Yves Le Blanc, Bradley Schneider, W. Scott Hopkins

2023 Symposium on Chemical Physics

October 3, 2023

What is Differential Mobility Spectrometry (DMS)?

Differential mobility spectrometry (DMS) harnesses the non-linear dependence of an ion's mobility to separate analytes

At high electric field strengths, an ion's mobility changes non-linearly with the applied field

$$\alpha(E) = \frac{K(E)}{K(0)} - 1$$

Scanning CV at a fixed SV gives an ionogram

For a specific SV, every analyte will elute from the DMS cell at a characteristic CV related to its alpha function

The SV/CV pair is an intrinsic ion property

The CV in which an analyte elutes from the DMS cell is analyte specific, and orthogonal to LC

~ 15 years ago, SCIEX was looking at performing drug metabolite quantitation without LC

Why does Verapamil have two peaks?

This isn't the first time we've seen strange DMS behaviour...

More than one feature in an ionogram **usually** indicates the presence of prototropic isomers

4-aminobenzoic acid

Phys. Chem. Chem. Phys. 2021, 23, 20607

100% H₂O

В

C

0.8 D

-15

MeCN/H₂O

-10

-5 CV / V

Normalised intensity / arb.

N-prot.

O-prot.

Dr. Neville Coughlan

N-Prot

5 kJ mol⁻¹

Dr. Weiqiang Fu

O-Prot

o kJ mol⁻¹

Are we seeing a prototropic isomer of Verapamil?

Amino-protonated

o kJ mol⁻¹

Methoxy-protonated

Cyano-protonated

110 kJ mol⁻¹

130 kJ mol⁻¹

...not likely

Verapamil is sold as a **racemate**, so perhaps **chirality** has something to do with it?

(R)-Verapamil

(S)-Verapamil

Enantiomers (non-superimposable mirror images)

Enantiomers exhibit the opposite stereochemistry at **all** chiral centers

Enantiomers cannot be resolved by DMS without chiral derivatization

Perhaps looking at the DMS behaviour of Verapamil derivatives will provide some insight...

(R)-Norverapamil

The **amino** moiety is the key

Verapamil exists as a **desolvated**, **protonated** ion in the gas-phase

Solution phase equilibration should yield a 1:1 ratio S:R quaternary amine configuration

Diastereomers differ in the configuration of **at least one**, **but not all** stereocenters

What happens with a **racemic** mixture of Verapamil?

(R)-Verapamil

(S)-Verapamil

(R,R) and (S,R) Verapamil diastereomers

(S,S) and (R,S) Verapamil diastereomers

Of the 4 possible stereoisomers, 2 pairs are enantiomeric

OMe

Protonation-induced chirality drives the separation

In short, chiral derivatization of an analyte is achieved solely by protonation during ESI

Is protonation-induced chirality a general phenomenon?

12 commercially available compounds were tested for their susceptibility to protonation-induced chirality

Why are there intensity differences between the peaks corresponding to the protonation-induced diastereomers?

1) Energy differences between the protonation induced diastereomers

[N-methyl proline + H]⁺ No IMHB 20 kJ mol⁻¹

- 2) Does steric hindrance impede nitrogen inversion in the solution phase?
- 3) Does a more stable solution-phase diastereomer get kinetically trapped during the droplet evaporation portion of ESI?

Where can we go with this?

Three criteria need to be met to observe protonation-induced chirality:

- 1. The molecule must possess a **stereogenic precursor** susceptible to protonation (e.g., tertiary amine)
- 2. Once protonated, the diastereomers must not interconvert and must preserve structural differences
- 3. The molecule must possess a **permanent stereocenter ...or does it?**

Chirality induced solely by protonation

Separation of pseudo-asymmetric centers

Screening for epimerization during chemical synthesis

Acknowledgements

PhD Advisory Committee and Examiners

Prof. W. Scott **Hopkins**

Prof. Terry B. McMahon

Adj. Prof. J. Larry Campbell

Prof. Richard A. Marta

Coauthors

Dr. Alexander Haack

External Collaborators

Justine **Bissonnette**

Hopkins Lab

Dr. Neville Coughlan Dr. Nour Mashmoushi Dr. Joshua Featherstone Dr. Jeff Crouse Dr. Steve Walker Dr. Pat Carr Dr. Mike Lecours **Zack Bowman** Dan Rickert **Patrick Thomas** Arthur Lee Chris Ryan & many others!

SCIEX Gurus

Dr. J. C. Yves Le Blanc

Dr. Brad Schneider

Dr. Mircea Guna

Dr. Freya J. Margaret

Dr. Francis J. Keats and Dr. Elizabeth J. Keats

How else can we justify the hypothesis?

Experimentally

Protonation-induced diastereomers exhibit different DMS behaviour, implying that their low-field mobility is also different

Experimentally measure the low-field ion mobility by linear IMS (Synapt G2-Si)

TRAVELLING WAVE IMS

Figure courtesy of Owlstone Medical.

$$K(0) = \frac{\sqrt{18\pi}}{16} \frac{ze}{\sqrt{\mu k_b T}} \frac{1}{\Omega} \frac{1}{N}$$

 Ω – Collision Cross Section

Computationally

Map the PES of *N*-protonated verapamil

Refine low-energy structures from PES search with high-level DFT calculations

ωB97X-D3/def2-TZVPP

Use DFT structures and partial charges to calculate CCSs via MobCal-MPI 2.0 (Chapter 6)

Verapamil "separates" by linear IMS

TWIMS suggests that verapamil's ATD consists of more than one configuration (based on peak FWHM)

(±)-Norverapamil

Protonation does not affect chirality. ATD is "1 compound"

(±)-Verapamil

Protonation-induced diastereomers form upon protonation

