LAPLACE TRANSFORM

f(t)	$F(s) = \mathcal{L}\{f(t)\}\$	Conditions on s
1	$\frac{1}{s}$	s > 0
t	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$	s > 0
$t^n (n=1,2,\ldots)$	$\frac{n!}{s^{n+1}}$	s > 0
$t^a(a > -1)$	$\frac{\frac{s^{n+1}}{s^{n+1}}}{s^{a+1}}$	s > a
e^{at}	$\frac{1}{(s-a)}$	s > a
$t^n e^{at} (n = 1, 2, \ldots)$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$\sin at$	$\frac{a'}{(s^2+a^2)}$	s > 0
$\cos at$	$\frac{s}{(s^2 + a^2)}$ $2as$	s > 0
$t \sin at$	$\frac{2as}{(s^2+a^2)^2}$	s > 0
$t\cos at$	$\frac{(s^2 + a^2)^2}{(s^2 - a^2)}$ $\frac{(s^2 + a^2)^2}{b}$	s > 0
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}$	s > a
$e^{at}\cos bt$	$\frac{(s-a)^2 + b^2}{(s-a)}$ $\frac{(s-a)^2 + b^2}{(s-a)^2 + b^2}$	s > a
$\frac{1}{2a^3}\sin at - \frac{1}{2a^2}t\cos at$	$\frac{1}{(s^2 + a^2)^2}$ $\frac{1}{s^2}$	s > 0
$\frac{1}{2a}\sin at + \frac{1}{2}t\cos at$	$\frac{s^2}{(s^2+a^2)^2}$	s > 0
$1-\cos at$	$\frac{(s^2 + a^2)^2}{a^2}$ $\frac{a^2}{s(s^2 + a^2)}$ a^3	s > 0
$at - \sin at$	$\frac{a^3}{s^2(s^2+a^2)}$	s > 0
$\sinh at$	$\frac{a}{(s^2-a^2)}$	s > a
$\cosh at$	$\frac{s}{(s^2 - a^2)}$	s > a
$\frac{1}{2a}\sinh at + \frac{1}{2}t\cosh at$	$\frac{s^2}{(s^2 - a^2)^2}$	s > a
$\frac{1}{2a^3}\sinh at + \frac{1}{2a^2}t\cosh at$	$\frac{1}{(s^2-a^2)^2}$	s > a
$\frac{1}{2a}t\sinh at$	$ \frac{s}{(s^2 - a^2)^2} \\ \frac{2a^3}{(s^4 - a^4)} \\ \frac{2a^2s}{(s^4 - a^4)} $	s > a
$\sinh at - \sin at$	$\frac{2a^{3}}{(s^{4}-a^{4})}$	s > a
$\cosh at - \cos at$	$2a^2s$	s > a