DIMENSIONANDO SISTEMA FOTOVOLTAICO

Sumário

1.	Efic	ciência	1
2.	Tip	oos de Módulos	2
2	.1.	Silício (Si)	2
	2.1	.1. Módulo Fotovoltaico de Silício Monocristalino	2
	2.1	.2. Módulo Fotovoltaico de Silício Policristalino	3
2	.2.	Módulos Solares de Filme Fino	3
2	.2.1.	. Módulo Solar De Silício Amorfo (A-Si)	4
2.	.2.2.	. Módulo Solar De Telureto De Cádmio (CdTe)	4
2.	.2.3.	. Módulos Solares de Seleneto de Cobre, Índio e Gálio (Cis/Cigs)	4
2	2.4.	. Células Fotovoltaicas Orgânicas (Opv)	4
2.	.3.	Módulo Solar Híbrido - Hjt	5
3.	Pre	eços	5
3.	.1.	Simulando módulo Monocristalino	6
3.	.2.	Simulando o módulo Policristalino	7
3.	.3.	Comparação	8
4.	Det	terminando o Inversor	8
4.	.1.	Fronius Symo BR 12.0-3 208/204	9
4.	.2.	Fronius Symo 12.5-3-M	0
5.	Sin	nulação final1	1
	.1.	20 módulos em série: 1	
5.	.2.	2 agrupamentos (de 20 em série) em paralelo: 1	3
6.	Áre	ea e investimento1	
		Tempo de retorno1	
		· ·	

1. Eficiência

Porcentagem de energia do sol que atinge a superfície do módulo fotovoltaico e é transformada em energia elétrica para consumo. STC (Standard Testing Conditions):

- Temperatura da Célula = 25°C
- Irradiação solar = 1000 W/m²
- Massa de Ar = 1,5

Coeficiente de temperatura ideal de um módulo fotovoltaico: 0,35% a 0,47%

2. Tipos de Módulos

2.1. Silício (Si)

- Quase 80% dos painéis fotovoltaicos no mundo
- Processos utilizados para melhorar a pureza do silício são caros (45% do custo de um módulo solar convencional de tecnologia de silício cristalino é o silício bruto purificado e tratado).

2.1.1. Módulo Fotovoltaico de Silício Monocristalino

Tecnologia monocristalina: mais antiga, das mais caras, e com eficiência mais alta.

- Eficiência média do módulo monocristalino: 14% 21%
- Tamanho padrão das células fotovoltaicas: 10x10cm;
 12,5x12,5cm; 15x15.

Vantagens	Desvantagens
Eficiência mais alta (14% - 21%)	Mais caros.
Menos espaço	
Vida útil maior que 30 anos	Quantidade significativa do silício não é
Tendem a funcionar melhor do	aproveitada e precisa ser reciclado.
que policristalinos em pouca luz.	

A eficiência das células individualmente é maior que a do módulo (encapsulamento filtra a luz que atinge a célula).

2.1.2. Módulo Fotovoltaico de Silício Policristalino

- Eficiência média: 13% 16.5%
- Técnica: Fundição de polisilício, aquecimento em forma.
- Semelhantes aos monocristalinos no desempenho e na degradação
- Normalmente, menos eficientes

Vantagens	Desvantagens		
Menor quantidade de silício residual	Eficiência típica: 13% – 16,5%		
Tendem a ser mais baratos	Normalmente necessita área maior		
Vida útil maior que 30 anos	Tromamone necessita area maior		

2.2. Módulos Solares de Filme Fino

(Módulo Solar de Película Fina – Thin-film - TFSC) (Células fotovoltaicas de película fina – TFPV)

Tipos:

- Silício amorfo (a-Si)
- Telureto de cádmio (CdTe)
- Cobre, índio e gálio seleneto (CIS / CIGS)
- Células solares fotovoltaicas orgânicas (OPV)

Eficiências médias entre 7% – 13%, alguns chegando a 16% Aproximadamente 20% do mercado mundial.

Vantagens	Desvantagens
Produção em massa simples (baratos)	Exigem grande espaço
Aparência homogênea esteticamente	Menos eficiência por m²
bonita	Custo com instalação aumenta
Pode ser feito flexível	Tendem a degradar mais
Altas temperaturas e sombreamento tem	rapidamente (garantia mais
menos impacto sobre o desempenho	curta)

2.2.1. Módulo Solar De Silício Amorfo (A-Si)

Usados em pequena escala (baixa produção de energia elétrica).

Taxa média de eficiência: 6% a 9%).

Apenas 1% do silício utilizado em células solares de silício cristalino é necessário nas células solares de silício amorfo.

2.2.2. Módulo Solar De Telureto De Cádmio (CdTe)

Eficiência na faixa de 9% – 11%.

As instalações com os painéis de CdTe PV são tipicamente grandes campos solares (grandes usinas de energia solar).

2.2.3. Módulos Solares de Seleneto de Cobre, Índio e Gálio (Cis/Cigs)

Contêm menos quantidades do cádmio (material tóxico)

A produção de módulos CIGS flexíveis foi iniciado na Alemanha em 2011.

Eficiência na faixa de 10% – 12% e já existem alguns vendidos no Brasil passando dos 13%.

2.2.4. Células Fotovoltaicas Orgânicas (Opv)

Produção de eletricidade a partir da luz solar pelo efeito fotovoltaico.

As eficiências variam.

Tecnologia flexível, de baixo custo, feita utilizando processos de impressão, máquinas simples e materiais abundantes.

2.3. Módulo Solar Híbrido - Hjt

Nova tecnologia no mercado: Heterojunção (eficiência dos módulos é de 20%).

Produz mais energia por metro quadrado e funciona muito bem com temperaturas mais altas (não está disponível no mercado).

• Eficiência aproximada: 23%

3. Preços

O preço do módulo solar no mundo todo é negociado em dólares (U\$) por Watt. 65% do custo do painel solar é a célula fotovoltaica.

Silício – 72 células				
Monocristalino	Policristalino			
SunEdison - F330EZD 325W	Canadian Centrium Energy Cs6u			
R\$ 2.000,00	R\$ 836,42			
P _{max} = 325W	P _{max} = 325W			
V _{nom} = 37,4 V	V _{mp} = 37 V			
I _{nom} = 8,69 V	I _{mp} = 8,78 A			
V _{oc} = 46 V	V _{oc} = 45,5 V			
I _{sc} = 9,14 A	I _{sc} = 9,34 A			
Eficiência: 16,7%	Eficiência: 16,72%			
Temp. Operacional: -40°C ~ +85°C	Temp. Operacional: -40°C ~ +85°C			
V _{maxima} = 1000 V	V _{maxima} = 1000V			
	Desempenho do módulo Tipo 1 (UI			
Limite de corrente reversa: 9,1 A	1703) ou contra incêndio Classe C			
Classificação máx. de fusíveis:15 A	(lec 61730)			
Tolerância de Potência:0 ~ +5	Classificação máx. de fusíveis: 15 A			
Tolerancia de l'otericia.o ~ +3	Classificação da aplicação: Classe A			
	Tolerância de potência: 0 ~ + 5 W			
Coeficientes de Temperatura:	Coeficientes de Temperatura:			
P _{max} : -0,45% / °C	P _{max} : -0,41% / °C			
V _{oc} : -0,34% / °C	V _{oc} : -0,31% / °C			
I _{sc} : 0,05% / °C	I _{sc} : 0,053% / °C			

Temperatura nominal da célula:	Temperatura nominal da célula:
46 ± 2°C	45 ± 2°C
	Tipo de célula: Policristalino, 6'
	Tampa dianteira em Vidro temperado
Dimensões (mm): 1,976 x 990 x 50	de 3,2 mm
Peso (kg): 22	Material da estrutura: Liga de
Tipo de célula: Solaicx CCz	alumínio adonisado
Monocristalina	Caixa de derivação: IP67 com 3
Frame Material: Anodized Aluminum	diodos
Vidro (mm): 3.2 Tempered ARC glass	Cabo: 4 mm 2 (lec) ou 4 mm 2 e 12
	Awg
	Conectores T4 (lec/UI)
Minhacasasolar	<u>Americanas</u>
<u>Datasheet</u>	<u>Datasheet</u>

3.1. Simulando módulo Monocristalino

Tempo:	Corrente:	Potência:	Tensão:
6ms	8,4720469 A	309,09711 W	36,461995 V

Temperatura:	Potência:	Tensão:	
0°C	339,12189 W	37,922303 V	
80°C	241,48661 W	31,249133 V	

3.2. Simulando o módulo Policristalino

Tempo:	Corrente:	Potência:	Tensão:
6ms	8,7285255 A	310,84215 W	35,612384 V

Temperatura:	Potência:	Tensão:	
0°C	341,64423 W	36,894156 V	
80°C	241,38541 W	30,515892 V	

3.3. Comparação

Vmax*X1 >= MPPmin

Vmin*X1 >= MPPmin

(Icurto*X2)*(Vmax*X1)

(Icurto*X2)*(Vmax*X1)

	Monocristalino	Policristalino		
P _{MAX}	309,09711 W	310,84215 W		
V _{MAX}	36,461995 V	35,612384 V		
Імах	8,4720469 A	8,7285255 A		

Determina-se o uso do módulo **Policristalino:** Canadian Centrium Energy Cs6u 325W

4. Determinando o Inversor

Sem considerar o inversor, utilizando-se o Excel, obtém-se os seguintes valores para suprimento de 10kW:

Dados do módulo:		Ipmax [A]	Vpmax [V]	Pmax [W]	Vmin
		1,459	35,612	310,842	30,516
X1	Agrupamento	de módulos er	n série		
X2	Agrupamento	de módulos er	n paralelo		
Variáveis:	X1	X2			
	20	10			
F.Objetiva (Potência):	10.394,610	Te	ensão de saída	a do sistema	: 712,2477
Número de módulos: 200		Cor	rente de saída	a do sistema	: 14,5941
Máximizar: (Icurto*X2)*(Vmax*X1)*eficiencia(modulo e inversor)					
Restrições	Var	iável	Equação		
Icurto*X2 <= Imax	1,459	10	14,59	<=	0,00
Vmax*X1 <= MPPmax	35,612	20	712,25	<=	0,00

Onde: V_{PMÁX} = V * (eficiência do inversor = 100%)

20

20

Pot

Pot

712,25

610,32

10.394,61

10.394,61

0,00

0,00

0,00

>=

<=

10.000,00

Busca-se então um inversor que se enquadre nos parâmetros desejados.

35,612

30,516

Fronius Symo BR 12.0-3 208/204	Fronius Symo 12.5-3-M
R\$ 19.959,51	R\$ 15.943,70
<u>Americanas</u>	<u>Americanas</u>

4.1. Fronius Symo BR 12.0-3 208/204

DADOS DE ENTRADA

Potência PV recomendada (kWp)	9.5 - 15.5
Máx. corrente de entrada (Idc)	25.0 A / 16.5 A
Máx. corrente de entrada (MPPT1)	41.5 A
Máx. corrente do conjunto curto circuito (1.5*Idcmax) MPPT 1	37.5 A / 24.8 A
Faixa de tensão da operação	200 - 600 V
Máx. tensão de entrada	600 V
Tensão nominal de entrada 208/240	350 V / 370 V
MPP- Alcance de voltagem	300 - 500 V
Número de MPPT	2
DADOS DE SAÍDA	
Máx. potência de saída	11.995 VA
Máx. corrente de saída 208	33.3 A
Máx. corrente de saída 240	28.9 A
Máx. eficiência	97.0 %

Datasheet

Utilizando este inversor na planilha:

		Imax-curto [A]	Faixa de ten:	são MPP [V]	Vmax [V]	Pmax [Wp]	Vmin [V]	Pmin [Wp]
Dados do inver	sor:	25	300	500	600	15.500,00	200	9.500,00
		23	300	300	000	13.300,00	200	9.500,00
Dedee de oréd	Lea	Ipmax [A]	Vpmax [V]	Pmax [W]	Vmin			
Dados do módo	lio:	8,729	34,544	310,842	30,516			
X1	Agrupamento	de módulos em	série			1		
X2	Agrupamento	de módulos em	paralelo					
Variáveis:	X1	X2						
	14	3						
F.Objetiva (Potência):	12.663,768	Te	ensão de saída	a do sistema:	483,6162			
Número de módulos:	42	Cor	rente de saída	do sistema:	26,1856			
Máximizar: (Icurto*X2)*(V	/max*X1)*efici	encia(modulo e	inversor)					
Restrições	Var	riável	Equação					
Icurto*X2 <= Imax	8,729	3	26,19	<=	25,00			
Vmax*X1 <= MPPmax	34,544	14	483,62	<=	500,00			
Vmax*X1 >= MPPmin	34,544	14	483,62	>=	300,00			
Vmin*X1 >= MPPmin	30,516	14	427,22	>=	300,00			
(Ipmax*X2)*(Vpmax*X1)		Pot	12.663,77	>=	10.000,00			
(Ipmax*X2)*(Vpmax*X1)		Pot	12.663,77	<=	15.500,00			

Pode-se colocar 2 strings em um MPPT (corrente de 17,46 A) e uma em outro (corrente de 8,73 A)

14 módulos em série Total de módulos usados: 42

3 agrupamentos em **paralelo** Potência ideal de saída: 12,663 kW

4.2. Fronius Symo 12.5-3-M

DADOS DE ENTRADA

Max. corrente de entrada (Idc max1 / Idc max2) Max. conjunto corrente curto-circuito(MPP1 / MPP2) Min. tensão de entrada (Udc min) Feed-in tensão de entrada (Udc start) Tensão nominal de entrada (Udc,r) Max. tensão de entrada	27.0 A / 16.5 A 40.5 A / 24.8 A 200 V 200 V 600 V 1000 V
(Udc max)	
Faixa de tensão MPP	320 - 800 V
(Umpp min - Umpp max)	
Numeros de rastreadores MPP	2
Número de conexões CC	3 + 3
DADOS DE SAÍDA	
Tensão nominal de saída (Pac,r)	12.500 W
Max. potência de saida	12.500 VA
Max. corrente de saída (Iac max)	19,9 A
Max. eficiência	98.0 %

Datasheet

Utilizando este inversor na planilha:

Dados do inversor:	Imax-curto [A]	Faixa de ten	são MPP [V]	Vmax [V]	Pmax [Wp]	Vmin [V]
Dados do Iliversor.	27	320	800	1000	12.500,00	200
Dodos do mádulo.	Ipmax [A]	Vpmax [V]	Pmax [W]	Vmin		
Dados do módulo:	8,729	34,900	310,842	30,516		
374 1					•	

X1 Agrupamento de módulos em série

X2 Agrupamento de módulos em paralelo

 Variáveis:
 X1
 X2

 20
 2

F.Objetiva (Potência): 12.185,069 Tensão de saída do sistema: 698,0027 Número de módulos: 40 Corrente de saída do sistema: 17,4571

Máximizar: (Icurto*X2)*(Vmax*X1)*eficiencia(modulo e inversor)

Restrições	Varia	ável	Equação		
Icurto*X2 <= Imax	8,729	2	17,46	<=	27,00
Vmax*X1 <= MPPmax	34,900	20	698,00	<=	800,00
Vmax*X1 >= MPPmin	34,900	20	698,00	>=	320,00
Vmin*X1 >= MPPmin	30,516	20	610,32	>=	320,00
(Ipmax*X2)*(Vpmax*X1)		Pot	12.185,07	>=	10.000,00
(Ipmax*X2)*(Vpmax*X1)		Pot	12.185,07	<=	12.500,00

20 módulos em **série** Total de módulos usados: **40**

2 agrupamentos em paralelo Potência (ideal) de saída: 12,185 kW

Comparando inversores

Inversor	Fronius Symo BR 12.0-3 208/204	Fronius Symo 12.5-3-M
Total de módulos	42	40
Potência	12,663 kW	12,185 kW
Preço	R\$ 19.959,51	R\$ 15.943,70

A potência que se deseja suprir é 10kW, portanto o inversor **Fronius Symo 12.5-3-M** é a melhor opção.

5. Simulação final

Módulo e inversor selecionados:

Módulo Policristalino Canadian Centrium Energy Cs6u	Fronius Symo 12.5-3-M	
R\$ 836,42	R\$ 15.943,70	
P _{max} = 325W	DADOS DE ENTRADA	
V _{mp} = 37 V	Max. corrente entrada: 27.0 A / 16.5 A	
I _{mp} = 8,78 A	Max. conjunto corrente curto: 40.5 A / 24.8 A	
V _{oc} = 45,5 V	Min. tensão de entrada: 200 V	
$I_{sc} = 9,34 \text{ A}$	Feed-in tensão de entrada (Udc start): 200 V	
Eficiência: 16,72%	Tensão nominal de entrada (Udc,r): 600 V	
Temp. Operacional: -40°C ~ +85°C	Max. tensão de entrada: 1000 V	
V _{maxima} = 1000V	Faixa de tensão MPP: 320 - 800 V	
	Número de MPP: 2	
Coeficientes de	Nº de conexões CC: 3 + 3	
Temperatura: P _{max} : -0,41% / °C	DADOS DE SAÍDA	
V _{oc} : -0,31% / °C	Tensão nominal de saída: 12.500 W	
I _{sc} : 0,053% / °C	Max. potência de saída: 12.500 VA	
	Max. corrente de saída (Iac max): 19,9 A	
Temperatura nominal da célula: 45 ± 2°C	Max. Eficiência: 98.0 %	
<u>Americanas</u>	<u>Americanas</u>	

Configuração:

20 módulos em série

Total de módulos usados: 40

2 agrupamentos em paralelo

Potência (ideal) de saída: 12,185 kW

5.1. 20 módulos em série:

20*Número de células | 1440 20*Máxima Potência | 6500 20*Vpotência máxima | 740 20*Voc | 910

Tempo:	Corrente:	Potência:	Tensão:
6ms	8,7294332 A	6216,8430 W	712,17378 V

5.2. 2 agrupamentos (de 20 em série) em paralelo:

 2*Máxima Potência
 13000

 2*Ipotência máxima
 17,56

 2*Isc
 18,68

 dv/di (slope) Voc / 2
 -6,8

Tempo:	Corrente:	Potência:	Tensão:
6ms	17,451816 A	12.408,901 W	711,03935 V

Considerando a eficiência de 98% do inversor:

 $P_{FINAL} = 12.408,901 \times 98\%$

PFINAL = 12.160,723

Potência idealizada: 12,185 kW

6. Área e investimento

Dimensões de um módulo:

Comprimento	Largura	Altura
196 cm	99,2 cm	4 cm

Dimensão do sistema (20 módulos em série, 2 cadeias em paralelo):

Altura	Largura	Área
2 x 196 cm ≈ 3,92 m	20 x 99,2 cm ≈ 19,84 m	≈ 80 m ²

Preço de um módulo: R\$ 836,42

40 módulos: R\$ 33.456,80

Preço do inversor: R\$ 15.943,70

Investimento total: R\$ 49.400,50

6.1. Tempo de retorno

Taxa da CEMIG sobre o kWh: R\$ 0,77

10 kW * 7h (10h a 17h) * 30 (mês) * 12 (ano) :. 25200 kWh → R\$ 19404,00

Prazo para retorno: 49.400,50 / 19404,00 = 2,54

Aproximadamente 2 anos e um semestre.

Referências

https://www.portalsolar.com.br/tipos-de-painel-solar-fotovoltaico.html">https://www.portalsolar.com.br/tipos-de-painel-solar-fotovoltaico.html

https://www.portalsolar.com.br/placa-solar-preco.html