

Outline

- Choosing Parameters θ to Minimize MSE (or <u>other</u> error functions).
 - Cost / Objective / Loss Function.
 - Machine Learning by *Gradient Descent* to Minimize MSE.

• The Impact of Learning Rate α .

■ The Impact of Feature Scaling.

How to Choose Parameters θ s for LR?

- LR basic concept: data $\rightarrow h_{\theta}(x)$ hypothesis \rightarrow estimates θ .
 - $h_{\theta}(x) = \hat{y} = \theta^{T}X = \theta_{0} \times x_{0} + \theta_{1} \times x_{1} + \dots + \theta_{n} \times x_{n}$
 - Measure *square sum of error* (SS_E) or **Residuals** as $SS_E = \sum_i (y_i \hat{y}_i)^2$.
 - Purposes of squaring in the cost function: To make cost all positive.
 - How much difference between LR model and training data.
- How to choose θ parameters (i.e. *hypothesis*) to minimize MSE?

Choosing Parameters θ s to Minimize MSE

$$h_{\theta}(x) = \hat{y} = \theta^{T}X = \theta_{0} \times x_{0} + \theta_{1} \times x_{1} + \dots + \theta_{n} \times x_{n}$$

- Define a <u>cost function</u> (<u>objective</u> function, <u>loss</u> function, <u>penalty</u>)
 - Assume we have *m* records (instances), each record has *p* attributes.
 - θ is a $(p \times 1)$ vector,

X is a $(p \times m)$ matrix of all m input records.

- Y is a $(1 \times m)$ vector, containing values for target **responses**.
- $SSE = \sum_{j=1}^{m} (y_j \widehat{y}_j)^2 = \sum_{j=1}^{m} (y_j \sum_{i=1}^{p} \theta_i x_{ij})^2 = (Y X\theta)^T (Y X\theta).$
- MSE (<u>cost function</u>) $J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j \hat{y}_j)^2$
 - Outliers may have great impact on linear regression.
- How does the cost function look like for 1 predictor?
- To find MSE = minimize the cost function

Visualizing Cost Function

- MSE (<u>cost function</u>) = $J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j \widehat{y}_j)^2$
 - Minimization based on **slope** or **gradient** of $J(\theta)$
 - Why not moving θ " \leftarrow " that direction?

Machine Learning to Minimize Cost Function

- Minimize MSE (cost function) = $J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j \hat{y}_j)^2$ by...
 - Set partial derivatives (slope, gradient) of $J(\theta) = 0$ to find parameters θ .
- Machine Learning Steps:
 - 1. Randomly set θ , and then
 - **2.** Repeatedly adjust θ based on gradient.

$$\theta_{j} = \theta_{j} - G = \theta_{j} - \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

$$\theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{j=1}^{m} (y_{j} - h_{\theta}(x_{j})) \times x_{1}$$

Summary- Gradient Descent in Reducing Cost Function

- 1) Define some cost function $J(\theta_0, \theta_1) = J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j \widehat{y}_j)^2$ or *other* functions
- 2) Randomly begin with some θ_0 , θ_1 .
- 3) Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until reaching a "good" minimum.
 - For slope, θ_1 will move right. For + slope, θ_1 will move left.
 - Closer to minimum, gradient descent will slow down automatically. Learning rate decay
 - Slope becomes smaller...

$$\theta_j = \theta_j - \mathbf{G} = \theta_j - \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$

Gradient in Plain English

- Compute a gradient for each weight θ_i and bias θ_0 .
 - A gradient is just a number like -0.83.
- Magnitude of the gradient gives you a hint about how much θ should change.
- The sign of the gradient tells us to increase or decrease θ
 - So that \hat{y} will get closer to the target output y to minimize MSE.

Other Cost Function Example

- Gradient Descent on θ_1 and θ_0 .
- How to plot a surface in Matlab?
 - With **contour** on the bottom.
 - **NOT** just make it fancier.

syms x y figure ezsurf(x^2 + y^2, [-1, 1])

figure ezmeshc($x^2 + y^2$, [-1, 1])

figure **ezmeshc**(x^2 + y^2, [-1, 1, -0.5, 1.5])

figure **ezcontour**(x^2 + y^2, [-1, 1])

figure ezcontourf($x^2 + y^2$, [-1, 1])

See detail Matlab functions for plotting in **Appendix**

Local Minimum

- Gradient descent may find local minimum, NOT GLOBAL minimum.
 - **IF** your cost function is **non-convex**.

https://en.wikipedia.org/wiki/Saddle_point

[X,Y] = meshgrid(-3:.125:3); Z = peaks(X,Y);meshc(Z) 40

30

Outline

- Choosing Parameters θ to Minimize MSE (or <u>other</u> error functions).
 - Cost / Objective / Loss Function.
 - Machine Learning by *Gradient Descent* to Minimize MSE.

• The Impact of Learning Rate α .

■ The Impact of Feature Scaling.

Learning Rate *α*

- Minimize $J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j \widehat{y}_j)^2$
 - Set partial derivatives (slope, gradient) of $J(\theta) = 0$.
- α is the learning rate = how big each downhill step.
 - $\alpha > 0$ must always hold.

repeat until convergence for j = 0 and j = 1:

$$\{ \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \}$$

repeat until convergence for j = 0 and j = 1:

derivative result
$$\begin{cases} \theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{j=1}^m (y_j - h_{\theta}(x_j)) \times x_0 \text{ NOTE: } x_0 = 1 \\ \theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{j=1}^m (y_j - h_{\theta}(x_j)) \times x_1 \end{cases}$$
 (see Appendix for details)

Impact of Learning Rate α

- If α too small, gradient descent takes long time to converge to find best θ .
 - Unable to learn or stop learning.
- If too big, gradient descent *overshoot* local minimum & may fail to converge.
 - **Unstable** learning.

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \theta_{j} - \alpha \times G$$

$$J(\theta_{1})$$

$$\theta_{1}$$

$$\theta_{1}$$

$$https://en.wikipedia.org/wiki/Saddle_point$$

Gradient Descent, Learning Rate $\alpha = 0.1$, Converged

Gradient Descent, Learning Rate $\alpha = 0.3$, Converged

But, notice the convolution at the first few iterations.

Gradient Descent $\alpha = 0.4$ **Diverge** Learning

Iterations

© Copyright 2018 by Dr. Chih Lai

Page: 16

Stochastic Gradient Descent

Begin with a random α , then **gradually** modify α .

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \theta_j - \alpha \times G$$

$$new \alpha = \frac{current \alpha}{\Sigma(past gradientssss)}$$

Interpretation of A Contour Plot over θ_1 and θ_0

Each eclipse/circle line shows the contour curve with the same cost value.

syms x y
figure
ezcontour(x^2 + y^2, [-1, 1])

figure ezcontourf($x^2 + y^2$, [-1, 1])

Animation of Gradient Descent on A Contour Plot over θ_1 and θ_0

-0.4

-0.6

-0.8

-0.8

-0.6

-0.4

-0.2

 θ_1^{x}

0.2

0.4

0.6

better & better

until minimum

 $\hat{\mathbf{y}}$

 $\hat{\mathbf{y}}$

 $x^2 + y^2$

8.0

Matlab File Exchange Gradient Descent Tool

Good animation 1

• http://www.mathworks.com/matlabcentral/fileexchange/35535-simplified-gradient-descent-optimization

Good animation 2

http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/

Different gradient descent algorithms:

http://ruder.io/optimizing-gradient-descent/

 $\underline{https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529factors. In the property of the property$

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/

Outline

- Choosing Parameters θ to Minimize MSE (or <u>other</u> error functions).
 - Cost / Objective / Loss Function.
 - Machine Learning by *Gradient Descent* to Minimize MSE.

• The Impact of Learning Rate α .

■ The Impact of Feature Scaling.

Speedup Gradient Descent

- Feature scaling—
 - If features are on the similar scale, gradient descent will converge faster.
 - Scale every numeric feature.
 - i.e. scale these two features $\rightarrow 0 \le x_1 \le 15 \text{ (\# rooms)} -50,000 \le x_2 \le 800,000 \text{ (\$\$)}.$
- The effect of standardization for machine learning algorithms
 - http://sebastianraschka.com/Articles/2014_about_feature_scaling.html

Feature Scaling

- Mean normalization (with feature scaling)—
 - Replace all features x_i with $x_i \mu_i$ so all features have 0-mean, not including $x_0 = 1$.
- - After **Z-score**, $\mu \approx 0$ **AND** $\sigma = 1$.
- $\chi_i = \frac{x_i \mu_i}{\max(x_i) \min(x_i)}$

Normalization.

• After, $\mu \approx 0$.

$$\chi_i = \frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)} = [0 .. 1].$$

$$\chi_i = \frac{x_i - \tilde{x}}{Q3(x_i) - Q1(x_i)} \qquad \tilde{x} = \text{median of } x.$$

https://en.wikipedia.org/wiki/Interquartile range

Appendix

Easy Way to Visualize Hypothesis in Matlab

Visualizing LR Results in Matlab

$$h_{\theta}(x) = \hat{y} = \theta^{T}X = \theta_{0} \times x_{0} + \theta_{1} \times x_{1} + \dots + \theta_{n} \times x_{n}$$

• with
$$\theta_0 = 350$$
, $\theta_1 = 5$, $\theta_2 = -2$.

with $\theta_0 = 0$, $\theta_1 = 1$, $\theta_2 = 1$.

Learning Cost Function with 2 Predictors

- Gradient Descent on θ_1 and θ_0 .
- How to plot a surface in Matlab?
 - With contour on the bottom.
 - **NOT** just make it fancier.

Representing Data as a Surface in Matlab

- Representing Data as a Surface
 - http://www.mathworks.com/help/matlab/visualize/representing-a-matrix-as-a-surface.html

Function	Used to Create
mesh, surf	Surface plot
meshc, surfc	Surface plot with contour plot beneath it
meshz	Surface plot with curtain plot (reference plane)
pcolor	Flat surface plot (value is proportional only to color)
surfl	Surface plot illuminated from specified direction
surface	Low-level function (on which high-level functions are based) for creating surface graphics objects

Function	Used to Create
meshgrid	Rectangular grid in 2-D and 3-D space
griddata	Interpolate scattered data
griddedInterpolant	Interpolant for gridded data
scatteredInterpolant	Interpolate scattered data

Gradient Descent on Your Own Cost Function

- Define your cost function first.
 - Cost function = $J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j h_{\theta}(x_j))^2$.
- Pass **your cost function** to a Matlab **fminunc()** to automate the GD process.
 - Find minimum of unconstrained multivariable function using BFGS Quasi-Newton method
 - See next slide.

R package - "trust"

https://cran.r-project.org/web/packages/trust/index.html https://cran.r-project.org/web/views/Optimization.html

function [Cost_J gradient] = **Your_Cost_Func**(X, y, alpha, lambda, theta) [n m] = size(X);

theta_ $T_X = \text{theta'} * X$; % hypothesis of "theta0 + theta1 * x"

Err = theta_T_X - y; % residual

 $Cost_J = (1 / (2 * m)) * sum(Err.^2);$ % Cost from MSE

% next, compute partial derivate

```
gradient(1) = (alpha * (1 / m) * sum(Err)); gradient(2) = (alpha * (1 / m) * sum(Err * X')); end
```

repeat until convergence for j = 0 and j = 1:

$$\{ \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \}$$

repeat until convergence for j = 0 and j = 1:

derivative
$$\theta_0 = \theta_0 - \frac{\alpha}{\alpha} \frac{1}{m} \sum_{j=1}^m (y_j - h_{\theta}(x_j)) \times x_0$$
$$\theta_1 = \theta_1 - \frac{\alpha}{\alpha} \frac{1}{m} \sum_{j=1}^m (y_j - h_{\theta}(x_j)) \times x_1$$

Gradient Descent using Default Matlab Function

- Pass your cost function to a Matlab fminunc() to automate the GD process.
 - Find minimum of unconstrained multivariable function using BFGS Quasi-Newton method.
 - http://www.mathworks.com/help/optim/ug/fminunc.html

```
First-order
                                                                             Norm of
X = [1 \ 2 \ 3];
                                                                            Iteration
                                                                                         f(x)
                                                                                                            optimality CG-iterations
                                                                                                   step
x0 = ones(1, size(X, 2)); % # of records (data points)
                                                                                      37.3333
                                                                               0
                                                                                                            1.43
                                                                                      4.70129
                                                                                                    10
X=[x0; [1 2 3]]
                                                                                      3.12966
                                                                                                           0.166
                                                                                      2.35436
                                                                                                           0.203
                                                                               3
Y = [4 \ 8 \ 12];
                                                                                      1.66409
                                                                                                           0.201
[n, m] = size(X); % n = \# features, m = \# of data points
                                                                               5
                                                                                      1.09206
                                                                                                            0.19
                                                                                                            0.18
                                                                                      0.641035
                                                                                      0.311171
                                                                                                            0.169
% set optimization options
                                                                                     0.102481
                                                                                                            0.158
                                                                                                            0.147
                                                                               9
                                                                                     0.0149657
options = optimset('GradObj', 'on', 'MaxIter', 10000, ...
                                                                              10
                                                                                     0.0149657
                                                                                                  0.892161
                                                                                                                0.147
     'TolFun', 1e-10, 'Display', 'iter');
                                                                                                                0.0336
                                                                              11
                                                                                     0.000698877
                                                                                                    0.22304
                                                                              12
                                                                                     0.000698877
                                                                                                   0.0859564
                                                                                                                 0.0336
theta0 = zeros(n, 1);
                                                                              13
                                                                                     0.00015845
                                                                                                  0.0214891
                                                                                                                 0.0028
                                                                                                                            0
alpha = 0.3;
                           lambda = 0:
                                                                              14
                                                                                     2.75879e-05
                                                                                                  0.0429782
                                                                                                                0.00624
                                                                              15
                                                                                     2.75879e-05
                                                                                                  0.0386887
                                                                                                                0.00624
                                                                                                                            0
                                                                              16
                                                                                      1.276e-06
                                                                                                 0.00967219
                                                                                                                0.00146
```

% http://www.mathworks.com/help/optim/ug/fminunc.html

```
[optTheta, functionVal, exitflag, output, grad] = ...
```

fminunc(@(t) **LR_fminunc**(X, Y, alpha, lambda, t), theta0, options)

Pass your cost function here.

optTheta = 0.0000 4.0000

functionVal =1.3281e-12

Partial Differential (of 2 variables) in Mathematica $J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j - h_{\theta}(x_j))^2$

$$J(\theta) = \frac{1}{2m} \sum_{j=1}^{m} (y_j - h_{\theta}(x_j))^2$$

$$ln[5] = D[(1/(2 m)) * ((T0 * x0 + T1 * x1) - y) ^2, T0]$$

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{j=1}^m (y_j - h_\theta(x_j)) \times x_0$$

$$(1/(2m)) * ((T0*x0 + T1*x1) - y)^2,T1]$$

$$ln[10] = D[(1/(2 m)) * ((T0 * x0 + T1 * x1) - y)^2, T1]$$

Out[10]=
$$\frac{x1 (T0 x0 + T1 x1 - y)}{m}$$

$$\theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{j=1}^m (y_j - h_{\theta}(x_j)) \times x_1$$

https://reference.wolfram.com/language/tutorial/Differentiation.html

Gradient Descent (derivative on multiple attributes)

Derivative on 2 attributes.

$$\ln[5] = D[(1/(2 m)) * ((T0 * x0 + T1 * x1) - y)^2, T0]$$

$$\frac{x0 (T0 x0 + T1 x1 - y)}{m}$$

$$\ln[10] = D[(1/(2 m)) * ((T0 * x0 + T1 * x1) - y)^2, T1]$$

$$Out[10] = \frac{x1 (T0 x0 + T1 x1 - y)}{m}$$

repeat until convergence for all \boldsymbol{j} s: $\{ \boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} - \boldsymbol{\alpha} | \frac{\partial}{\partial \boldsymbol{\theta}_{j}} \boldsymbol{J}(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}) | \}$ repeat until convergence for $\boldsymbol{j} = 0$ and $\boldsymbol{j} = 1$: $\{ \boldsymbol{\theta}_{0} = \boldsymbol{\theta}_{0} - \boldsymbol{\alpha} \frac{1}{m} \sum_{j=1}^{m} (y_{j} - h_{\boldsymbol{\theta}}(x_{j})) \times x_{0}$ derivative $\boldsymbol{\theta}_{1} = \boldsymbol{\theta}_{1} - \boldsymbol{\alpha} \frac{1}{m} \sum_{j=1}^{m} (y_{j} - h_{\boldsymbol{\theta}}(x_{j})) \times x_{1}$ $\}$

Derivative on 3 attributes.

Gradient Descent Illustration

https://reference.wolfram.com/language/tutorial/Differentiation.html

$$\frac{\partial}{\partial \theta_1} \boldsymbol{J}(\theta) = 2(\theta_1 - 5)$$

$$\frac{\partial}{\partial \theta_2} \boldsymbol{J}(\theta) = 2(\theta_2 - 5)$$

D[(x-5)^2+(y-5)^2, x]
$$\frac{\partial}{\partial \theta_1} J(\theta)$$

D[(x-5)^2+(y-5)^2, y]
$$\frac{\partial}{\partial \theta_2} \boldsymbol{J}(\theta)$$

$$Plot[2 (-5+y), \{y,-10.,10.\}]$$

Other Optimization Algorithms

- Gradient descent is one optimization method to minimize cost function $J(\theta)$.
- Other more complex methods for much larger machine learning problem:
 - Conjugate gradient.
 - BFGS.
 - L-BFGS.

- Matlab Optimization Toolbox functions:
 - fminsearch()
 - Find minimum of unconstrained multivariable function using derivative-free method.
 - fminunc()
 - Find minimum of unconstrained multivariable function using BFGS Quasi-Newton method.

Another Method– Normal Equation $\theta = (X^T X)^{-1} X^T y$

- Gradient descent works well on large dataset.
- Normal equation $(X^TX)^{-1}X^Ty$
 - NO need to do feature scaling.
 - No need to choose α , no need for iteration, slow for large dataset.
- Normal equation works for regression, but <u>NOT</u> work for classification.
 - Need to use gradient descent for LR w/ large features, and for classification.

Normal Equation

Given a matrix equation

http://mathworld.wolfram.com/NormalEquation.html

$$Ax = b$$
,

the normal equation is that which minimizes the sum of the square differences between the left and right sides:

$$A^T A x = A^T b$$
.

It is called a normal equation because $\mathbf{b} - \mathbf{A} \mathbf{x}$ is normal to the range of \mathbf{A} .

Here, \mathbf{A}^{T} \mathbf{A} is a normal matrix.

For Gradient Descent Only? Also for Polynomial Regression

- Model y as an nth degree polynomial, yielding the polynomial regression model.
- Feature scaling becomes more important when using polynomial regression.
 - New features (i.e. x^3) grow fast from the original features.

 $http:/\!/en.wikipedia.org/wiki/Polynomial_regression$

$$y = a_0 + a_1 x + \varepsilon$$

$$y = a_0 + a_1 x + a_2 x^2 + \varepsilon$$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \varepsilon$$
LR
polynomial regression

http://en.wikipedia.org/wiki/Polynomial_regression

Gradient Descent on Both θ_1 and θ_0

For our healthcare cost example.

repeat until convergence for j = 0 and j = 1:

$$\{ \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \}$$

repeat until convergence for j = 0 and j = 1:

derivative
$$\begin{cases} \theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{j=1}^m (y_j - h_\theta(x_j)) \times x_0 & \text{NOTE: } X_0 = 1 \\ \theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{j=1}^m (y_j - h_\theta(x_j)) \times x_1 \end{cases}$$

Gradient Descent on θ_1 Only

```
X = [1 \ 2 \ 3];
x0 = ones(1, size(X, 2)); % size(X, 2) = # of records (data points)
X=[x0; [1 2 3]]
Y = [4 \ 8 \ 12];
[n, m] = size(X); % n = \# features, m = \# of data points
theta_Vec = [0; 0];
loops = 0;
theta Collect = [];
Cost J = [];
for theta_change = 0:0.1:8
                                 % change \theta from 0 to 8
  theta Vec(2) = theta change;
  theta_Collect(end + 1) = theta_change; % record all \thetas for plot
  loops = loops + 1;
  theta_T_X = theta_Vec' * X; % loop of "theta0 + theta1 * x"
  Err = theta_T_X - Y;
                                 % compute Residual
  Cost J(end + 1) = (1 / 2 * m) * sum(Err.^2); % compute COST
  if Err > 10^6
                                 % check converge or diverge
    disp(['Looks like it is diverging at loop 'num2str(loops) '.'])
    break
  end
end
figure,
                                 % plot cost over \thetas
plot(theta_Collect, Cost_J)
xlabel('\bf value for theta1')
ylabel('\bf Cost J(theta1)'), grid on
title('\bf Cost vs theta1 (theta0 = 0)')
```


