

Experiment 3.2

Student Name: Kanishk Soni

Branch: BE-CSE Semester: 6th

Subject Code: 20CSP-376

UID: 20BCS9398

Section/Group: 20BCS-DM_708B Subject Name: Data Mining Lab

1. Aim:

To study of Regression Analysis using R Programming

2. Objective:

To create a curve based on prediction using the regression model.

3. Code and Output:

PROGRAM

```
# Generate random IQ values with mean = 30 and sd =2
```

IQ <- rnorm(40, 30, 2)

Sorting IQ level in ascending order

IQ <- sort(IQ)

IQ

Generate vector with pass and fail values of 40 students

result \leftarrow c(0, 0, 0, 1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 1, 1, 0, 0, 1, 0,

0, 0, 1, 0, 0, 1, 1, 0, 1, 1,

1, 1, 1, 0, 1, 1, 1, 1, 0, 1)

Data Frame

df <- as.data.frame(cbind(IQ, result))

Print data frame

```
print(df)
# Plotting IQ on x-axis and result on y-axis
plot(IQ, result, xlab = "IQ Level", ylab = "Probability of Passing")
#Linear regression
Irm <- Im(result ~ IQ)
summary(Irm)
#find the result of a person with IQ 35
a<-data.frame(IQ=35)
predRes<-predict(Irm,a)
print(predRes)
# Create a logistic model
Igm = glm(result~IQ, family=binomial, df)
# Summary of the regression model
summary(Igm)
# Create a curve based on prediction using the regression model
curve(predict(lgm, data.frame(IQ=x), type="resp"), add=TRUE)
```

CONSOLE

- > # Generate random IQ values with mean = 30 and sd =2
- > IQ <- rnorm(40, 30, 2)
- > # Sorting IQ level in ascending order
- > IQ <- sort(IQ)

> IQ

- [1] 25.71663 26.91365 27.01924 27.57227 27.89350 27.91015 28.34477
- [8] 28.36160 28.48058 28.55516 28.55747 28.59613 28.66078 29.01703
- [15] 29.36088 29.37515 29.44792 29.67874 29.68006 29.77399 29.83156
- [22] 29.90915 29.96073 30.49449 30.52550 30.69951 30.85703 30.98425
- [29] 31.02837 31.10218 31.34112 31.37475 31.50119 31.56083 31.73027
- [36] 32.45873 33.23908 34.05884 34.53273 36.13736
- > # Generate vector with pass and fail values of 40 students
- > result < -c(0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
- + 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
- + 0, 0, 1, 0, 0, 1, 1, 0, 1, 1,
- + 1, 1, 1, 0, 1, 1, 1, 1, 0, 1)
- > # Data Frame
- > df <- as.data.frame(cbind(IQ, result))
- > # Print data frame
- > print(df)

IQ result

- 1 25.71663 0
- 2 26.91365 0
- 3 27.01924 0
- 4 27.57227 1
- 5 27.89350 0
- 6 27.91015 0
- 7 28.34477 0
- 8 28.36160 0
- 9 28.48058 0
- 10 28.55516 1

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

11 28.55747	1
-------------	---

1

38 34.05884 1

39 34.53273 0

40 36.13736 1

- > # Plotting IQ on x-axis and result on y-axis
- > plot(IQ, result, xlab = "IQ Level", ylab = "Probability of Passing")
- > #Linear regression
- > Irm <- Im(result ~ IQ)
- > summary(Irm)

Call:

Im(formula = result ~ IQ)

Residuals:

Min 1Q Median 3Q Max -0.9184 -0.3828 -0.1205 0.4232 0.7710

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.50178 1.05471 -2.372 0.02286 *

IQ 0.09904 0.03501 2.829 0.00741 **

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4656 on 38 degrees of freedom

Multiple R-squared: 0.174, Adjusted R-squared: 0.1523

F-statistic: 8.005 on 1 and 38 DF, p-value: 0.007411

- > #find the result of a person with IQ 35
- > a<-data.frame(IQ=35)
- > predRes<-predict(lrm,a)
- > print(predRes)

1

0.9646496

- > # Create a logistic model
- > lgm = glm(result~IQ, family=binomial, df)
- > # Summary of the regression model
- > summary(Igm)

Call:

glm(formula = result ~ IQ, family = binomial, data = df)

Deviance Residuals:

Min 1Q Median 3Q Max -2.1296 -0.9546 -0.5183 1.0008 1.7682

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -15.1398 6.3381 -2.389 0.0169 *

IQ 0.5009 0.2112 2.372 0.0177 *

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 55.352 on 39 degrees of freedom Residual deviance: 47.584 on 38 degrees of freedom

AIC: 51.584

Number of Fisher Scoring iterations: 4

- > # Create a curve based on prediction using the regression model
- > curve(predict(Igm, data.frame(IQ=x), type="resp"), add=TRUE)

>

4. Output:

Curve based on prediction using the regression model:

Learning Outcomes:

- Linear Regression is a commonly used type of predictive analysis. It is a statistical approach for modelling the relationship between a dependent variable and a given set of independent variables.
- It is a statistical method that allows us to summarize and study relationships between two continuous (quantitative) variables. One variable denoted x is regarded as an independent variable and the other one denoted y is regarded as a dependent variable.
- It is assumed that the two variables are linearly related. Hence, we try to find a linear function that predicts the response values as accurately as possible as a function of the feature or independent variable(x).