Athreya Lahiri Chapter 3 Solutions

Arthur Chen

June 25, 2025

Problem 3.3

Prove the following.

Part a

Let $a_1
ldots a_k$ be real and $p_1
ldots p_k$ be positive numbers such that $\sum_{i=1}^k p_i = 1$. Then

$$\sum_{i=1}^{k} p_i \exp(a_i) \ge exp\left(\sum_{i=1}^{k} p_i a_i\right)$$

Let P be the probability measure on \mathbb{R} that assigns probability p_i to point a_i and apply Jensen's inequality with $\phi(x) = e^x$.

Part b

Let $b_1
dots b_k$ be nonnegative numbers and $p_1
dots p_k$ be as in Part a. Then

$$\sum_{i=1}^k p_i b_i \ge \prod_{i=1}^k b_i^{p_i}$$

Furthermore, equality holds iff $b_1 = b_2 = \cdots = b_k$.

Let $a_i = \log b_i$ and apply Part a. For the iff, since the exponential function is strictly convex, inequality holds iff $f(\omega)$ is a constant, which in this context means that all the b_i s are equal.

Part c

For any $a, b \in \mathbb{R}$ and $1 \le p < \infty$,

$$|a+b|^p \le 2^{p-1}(|a|^p + |b|^p)$$

Let f(x) = x, $\phi(x) = |x|^p$, which is convex on the range of p, and let P be the probability measure with 1/2 probability on $\{a,b\}$. Thus by Jensen's inequality,

$$\phi\left(\int x dP\right) = \frac{1}{2^p} |a+b|^p \le \int |x|^p dP = \frac{1}{2} (|a|^p + |b|^p)$$

which implies the desired result.