

Covering number: counts the number of E-balls needed to cover the hypothesis class.

Goal: try to have shattering wefficients for real-valued functions.

[Definition 12] metric space

- A metric space (X, f): set $X \supseteq F$ and f is a metric.
- $\beta: X \times X \to |R|$, hon-negative, symmetric, satisfy the triangle inequality and evaluate to 0 iff its arguments are equal.
- If f(f,f')=0 is possible, the we say f is pseudometric.

[Definition 13] ball

Let (X, P) be a metric space, Define ξ -ball as $B_{\xi}(f) := \xi f' \in X : P(f, f') \leq \xi$

[Definition 14] covering number

- (i) An ϵ -cover of a set $F \subseteq X$ w.r.t. p is a finite subset $C = \{f_1, \dots, f_m\} \subseteq X$ s.t. $F \subseteq \bigcup_{j=1}^m B_{\epsilon}(f_j)$.
- (ii) Define the ϵ -covering number of F w.r.t. P to be: $N(\epsilon, F, P) := \min_{n=1}^{\infty} \{f_1, \dots, f_n\} \subseteq X, F \subseteq \bigcup_{j=1}^{\infty} \{B_{\epsilon}(f_j)\}$
- (iii) The metric entropy of Fis log N(E, F, P)

As & I, N(E, F, P) T. What is the tradeoff?

[Example 7] all functions

- Let F = X be all functions from IR to [0,1]

- R - 1 (D) ... P 3

In order to cover F. fix any $f \in F$.

For each 3i, For a segmentation of $[0,1]: Y = \{22,42,...,15\}$.

For $f(3i) \in [0,1]$, we can pick $g(3i) \in Y$ 5,4. $|f(3i) - g(3i)| \in E$. g(3) for $3 \neq 3i$ can be chosen arbitrarily. Averaging over all 2i, we get $p(f,g) \in E$. We just need to calculate the possible permutation of Y.

 $N(\epsilon, F, L_2(P_n)) \leq \left(\frac{1}{2\epsilon}\right)^n$

the metric entropy is $O(n \log(1/\epsilon))$, which is too large. To see this, by Massart's finite lemma, $\hat{R}_h(F) \sim O(\sqrt{\frac{n \log(1/\epsilon)}{N}}) = O(1/\epsilon)$, not going to zero.

[Example 8] non-decreasing function

- Let F = 8 f: IR → [0,1], f is non-decreasing?
- Let 31, ..., 3n be n fixed points (in an increasing order)
- $Y = \{2, 22, ..., 1\}$. Fix any function $f \in F$. For each $y \in Y$, consider $g \in Y$, consider $g \in Y$ for which $g \in Y$. Set $g \in Y$ for these points. Note: $g \in Y$ is non-decreasing across $g \in Y$. Satisfies $g \in Y$.
- Count the number of possible g. key observation: each g is non-decreasing, we can associate each level $y \in Y$ with leftmost point z; for $g(z_i) = y$; the choice of leftmost points for each level unique defines g. Thus:

 $N(\varepsilon,F,L_z(P_n))=O(n^{1/\varepsilon})$

and the metric entropy is O(telogh), better than example 7.

[Theorem 14] Simple discretization

Let F be a family of functions mapping $Z \rightarrow [-1,1]$ $\hat{R}_n(F)$ is bounded by: $\hat{R}_n(F) \leq \inf_{\xi \neq 0} \left(\sqrt{\frac{2\log N(\xi, F, L_2(P_n))}{n}} + \xi \right)$

Preparation:

- (i) We will also assume $Z_{1:n}$ are constant, and write E[A] instead of E[A] $Z_{1:n}$]
- (ii) To simplify notation, we write IIfII for IIfII $_{L2(P_n)}$ and $< f, g > for <math>< f, g > L_2(P_n)$
 - (iii) Overload notation, let $\sigma: Z \to f-1,+1$ be defined as a function : $\sigma: = \sigma(z_i)$ and we can write $\hat{R}_n(F) = E[\sup_{f \in F} \frac{1}{h} \sum_{i=1}^n \sigma_i f(z_i)]$ $= E[\sup_{f \in F} \langle \sigma, f \rangle]$
 - (iv) Note that 11011=1
 - (v) think about feF as 玩[f(zi), ..., f(zn)]

 o as 玩[tri, ..., tri]

Pf of Theorem 14:

Fix
$$\varepsilon > 0$$
 and let C be an ε -cover of F, then

$$\hat{R}_n(F) = E[\sup_{f \in F} \langle \sigma, f \rangle] \\
= E[\sup_{g \in C} \sup_{f \in F(IB_{\varepsilon}(g))} \langle \sigma, g \rangle + \langle \sigma, f - g \rangle] \\
\leq E[\sup_{g \in C} \frac{1}{n} \langle \sigma, g \rangle + \varepsilon] \qquad \langle \sigma, f - g \rangle \triangleq ||\sigma||_{L^{\infty}(F)} ||\sigma||_{L^{\infty}(F)} \leq \varepsilon \\
= \hat{R}_n(C) + \varepsilon \\
\leq \sqrt{\frac{2\log N(\varepsilon, F, L_2(P_n))}{n}} + \varepsilon \qquad \text{Massart's finite lemma } \Gamma$$

[Example 9] non-decreasing functions (with simple discretization) Let F be all non-decreasing functions from Z=IR to [0,17.

Plugging the covering number of F into Theorem 14: $\hat{R}_{n}(F) \leq \inf_{s \neq 0} \left(\sqrt{\frac{20(\frac{\log n}{s})}{n}} + \epsilon \right)$

Solving for minimal: $\widehat{R}_{N}(F) = O\left(\left(\frac{\log n}{2}\right)^{\frac{1}{3}}\right)$

[Theorem 15] chaining (Dudley's theorem)

Let F be a family of functions mapping Z to IR. The empirical Rademacher complexity can be upper bounded by: $\hat{R}n(F) \leq 12 \int_0^\infty \sqrt{\frac{\log N(\epsilon,F,L_2(P_n))}{N}} \, d\epsilon.$

Pf: Let eo = sup lifil be the maximum norm of a function fef, which will serve the coarsest resolution.

Let $\Sigma_j = 2^{-j} e_0$ for j = 1, ..., m be successively finer resolutions.

For each j=0,..., m, let Ci be an &j-cover of F

Fix any fe F

Let 9, € Cj be s.t. IIf-9, II € Ej; take 90=0.

Let's decompose f:

$$f = f - g_{w} + g_{0} + \frac{m}{2} (g_{j-1} - g_{j-1})$$

By Massart's finite lemma:

$$\hat{R}_{n}(B) \leq \left(\sup_{b \in B} ||b||\right) \sqrt{\frac{2\log |B|}{n}}$$
 (1)

Let's bound some norms:

11f-9m11 = 2m

 $\|g_{j} - g_{j-1}\| \leq \|g_{j} - f\| + \|f - g_{j-1}\| \leq \varepsilon_{j} + \varepsilon_{j-1} = 3\varepsilon_{j}$ Nau comonto É. (F):

inom combute unil.

$$\begin{array}{lll}
\hat{R}_{n}(F) &= E \left[\sup_{f \in F} \langle \sigma, f \rangle \right] \\
&= E \left[\sup_{f \in F} \langle \sigma, f - g_{m} \rangle + \sum_{j=1}^{m} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + E \left[\sup_{f \in F} \sum_{j=1}^{m} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&\leq e_{m} + \sum_{j=1}^{m} E \left[\sup_{f \in F} \langle \sigma, g_{j} - g_{j-1} \rangle \right] \\
&$$

[Example 10] non-decreasing functions (with chaining)

Let F be all non-decreasing functions from Z to [0,1].

Note that $\|f\| \le \|f\|$ for all $f \in F$, so the coarest resolution is $\mathcal{E}_0 = \|f\| \le \|$

Remark: (i) compare with $O((\frac{\log n}{n})^{\frac{1}{3}})$ in example 9 $O((\frac{\log n}{n}))$ is better.

(ii) Chaining is better than simple discretization because Chaining use Massart's finite lemma on Cj-Cj-1, bounded by 363, while SD use INFL on C, bounded by suplifil.