## Epreuve écrite

| Examen de fin d'études secondaires 2003                                                                                                                                                                          | Nom et prénom du candidat                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Section: B, C                                                                                                                                                                                                    | <u> </u>                                                                                                          |
| Branche: CHIMIE                                                                                                                                                                                                  | 0 3 JUIN 2003                                                                                                     |
|                                                                                                                                                                                                                  |                                                                                                                   |
| QC = question de cours(20 p.) QT = question de transfert                                                                                                                                                         | (20 p.); AN = application numérique(20 p.)                                                                        |
| I. Oxydation d'un alcool                                                                                                                                                                                         | (12 points)                                                                                                       |
| On réalise l'oxydation catalytique de 35 cm <sup>3</sup> d'éth<br>réaction l'alcool est transformé en aldéhyde et ur<br>carboxylique.                                                                            |                                                                                                                   |
| 1) Ecrire les équations correspondant aux réacti                                                                                                                                                                 |                                                                                                                   |
| <ol> <li>Sur la moitié du mélange d'aldéhyde et d'acid<br/>chaud.</li> </ol>                                                                                                                                     | e obtenu on fait réagir la liqueur de Fehling à                                                                   |
| <ul> <li>a) Dresser le système rédox qui traduit la réa</li> <li>b) On constate que le précipité formé présen</li> </ul>                                                                                         | ite, après lavage et séchage, une masse de 28,6g.<br>ivait dans le mélange liquide fourni par l'oxydation<br>AN 1 |
| II. Estérification et hydrolyse                                                                                                                                                                                  | (14 points)                                                                                                       |
| une solution d'hydroxyde de sodium à 2 m                                                                                                                                                                         | R et R' étant des radicaux alkyles<br>nol <sup>-1</sup> .                                                         |
|                                                                                                                                                                                                                  | On oxydation conduit à un composé D qui donne                                                                     |
| avec la D.N.P.H un précipité jaune, mais di la brima la formule semi-développée et li li Ecrire la formule semi-développée de les deux énantiomères et appliquer la c) Ecrire la formule semi-développée de l'es | e nom de D. QT 1 C. La molécule est-elle chirale? SI oui, représenter nomenclature CIP. QT 3                      |

## Epreuve écrite

| E    | xamen de fin d'études secondaires 20                                                                                                                                                                                                                                                                                                                                                                                                                                                | 003                                                                                                                                                                  | N                                                                                                                                        | om et prénom du candidat                                                                                                                                                                                                                   |                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| s    | ection: B, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                            |                           |
| В    | ranche: CHIMIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                            |                           |
| III. | Composés azotés                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                          | (19 po                                                                                                                                                                                                                                     | ints)                     |
|      | composé                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M (g · mol <sup>-1</sup> )                                                                                                                                           | téb (°C)                                                                                                                                 | 1                                                                                                                                                                                                                                          |                           |
|      | propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59                                                                                                                                                                   | 48,7                                                                                                                                     | 1                                                                                                                                                                                                                                          |                           |
|      | N-méthyléthylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59                                                                                                                                                                   | 37                                                                                                                                       | ]                                                                                                                                                                                                                                          |                           |
|      | triméthylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59                                                                                                                                                                   | 3,5                                                                                                                                      | ]                                                                                                                                                                                                                                          |                           |
|      | n-butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58                                                                                                                                                                   | -1                                                                                                                                       |                                                                                                                                                                                                                                            |                           |
| ц    | propan-1-ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                   | 97                                                                                                                                       |                                                                                                                                                                                                                                            |                           |
| 3)   | On fait réagir la triéthylamine sur l' a) Ecrire l'équation de la réaction. b) Quelle propriété des amines a- On dispose d'une solution 0,1M d'a a) A partir de ces données calcule b) Le pH d'une solution d'ammonione Quelle est la base la plus forte, raisonnement par une interprét à sa mésomérie. Structure des acides aminés: a) Sachant que pour l'alanine le re l'alanine naturelle en projection b) Ecrire la formule de structure s c) Pour la valine le résidu R est u | et en donner u t-on mis en évic aniline (aminobe er le degré de d ac de même co , l'aniline ou l'an ation électroniq ésidu acide ami n de Fischer. patiale de la L-a | ne interpré<br>lence?<br>enzène). Le<br>issociation<br>ncentration<br>nmoniac? du<br>ue de la ba<br>né R est un<br>alanine et a<br>pyle. | etation.  e pH de cette solution est 8,8.  de l'aniline dans la solution.  n 0,1 mol.L-1 a un pH de 11,1.  Justifier la réponse. Confirmer asicité de l'aniline en faisant a  n radical méthyle représenter  appliquer la nomenclature CIF | AN 2 r le appel QT 4 QT 1 |
|      | Montrer la formation du tripepti  IV. Acide ascorbique  L'acide ascorbique ou vitamine C                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                          | (15 p                                                                                                                                                                                                                                      |                           |
| 1)   | formule brute $C_6H_8O_6$ .<br>Dans la suite de l'exercice on pou                                                                                                                                                                                                                                                                                                                                                                                                                   | rra représenter                                                                                                                                                      | l'acide asc                                                                                                                              | corbique par la formule AH.<br>cm³ d'eau distillée et on dose                                                                                                                                                                              | ecette                    |

## Epreuve écrite

Examen de fin d'études secondaires 2003

Section: B, C

**Branche: CHIMIE** 

Nom et prénom du candidat



|    | L'allure de la courbe de dosage est celle d'un acide faible. Justifier cette affirmation. Ecrire l'équation de la réaction de l'acide ascorbique avec l'eau. | QT 1<br>QT 1 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | A l'aide de la courbe déterminer:                                                                                                                            | QII          |
|    | i) le pK <sub>a</sub> du couple acide-base étudié                                                                                                            | AN 1         |
|    | ii) la concentration molaire de l'acide dans la solution S                                                                                                   | AN 1         |
| d) | Calculer la masse d'acide ascorbique dissoute dans les100 cm <sup>3</sup> .                                                                                  | AN 1         |
| e) | Déterminer par calcul le pK <sub>a</sub> du couple acide-base étudié.                                                                                        | AN 2         |
| f) | Lequel des indicateurs suivants faut-il choisir pour effectuer ce dosage?                                                                                    | QT 1         |

| indicateur          | zone de virage |
|---------------------|----------------|
| méthylorange        | pH 3,1 - 4,4   |
| bleu de bromothymol | pH 5,5 - 7,5   |
| rouge de phénol     | pH 6,4 - 8,2   |

- 2) On remplace le comprimé précédent par un comprimé Vitascorbol 500 tamponné contenant 250 mg d'acide ascorbique et 281,2 mg d'ascorbate de sodium.
  - a) Quel est le pH de la solution aqueuse S' de volume 100 cm³ obtenue en dissolvant ce comprimé? AN 2
  - b) A quelle partie de la courbe précédente la solution S' correspond-elle? Justifier la réponse. QT 2
  - c) Quel volume de la solution d'hydroxyde de sodium à 0,300 mol.L<sup>-1</sup> doit-on ajouter à 10 cm<sup>3</sup> de la solution S' pour amener son pH à 6? AN 3

3/3

```
I. On dation des alcools
 1) wir p. 53
                                                          QC
  2) a) vois p.65
                                                          QC
    b) MCH3CHO = Marzo = 28,6 = 0,2 mal
                                                          AN
      MCH3CHO dans le mélange: 2.0,2=0,4 mol
  3)2 CH3 COOH + Mg - (CH3 COO)2 Mg + H2
    MCZHSOH = 35.079 = 27,65g =>M = 27,65 = 96 mol
     Macide = Malcool
    Macide obtem for ox.cat: 0,6-0,4=0,2 med
     Macide qui réorgissent avec Mg: 0,2:2-0, 1 hust
      MHz = 0,1:2 = 0,05 med => VHz=0,05.22,4=1,120 Hz
  II. Estérification et hydrolyse
   1) voir p. 56-57
                                                            QC 6
   2/0/Macidi = Mbasi = 2. 0,0125 =0,0250 mil
                                                           AN 2
    i) H = 1,5 = 60 g wed -1 Menhennecoon = 60
2=> New = 142=> n=1
   ii) = CH2-c"-OH acide é'Heauroi'que
                                                           aT 1
    b) i) D = a'houe: CM3 - 44z - C - CH3 berhausere
                                                           aT 1
     1) CH3-CHOH-CH2-CH3

C2H5

H3C-C-CH3

OH

OH

R
                                                           QT 3
     -047-62457-CH37-H
c) CH3-C-0-CH-CH2-CH3
EH3
                                                           QT 1
```

II. Composés azolés

- 1) vou p. 80
- 2) voui p. 83

3) a) 
$$poh = 14 - 8, 8 = 5, 2 = 7 \quad EOH^{-1} = 6, 31.10^{-6} \text{ well } e^{-1}$$

$$\alpha = \frac{[OH^{-}]}{Co} < = 7 \quad \alpha = \frac{6, 31.10^{-6}}{10^{-4}} < = 7 \quad \alpha = 6, 31.10^{-5}$$

b) pH HH3ap pH GHS NH2ap TOH Jds. NH3ap [OH ] els Cons NH2 ap => Co HS NH2 mains d'ssociée que NH3

-NH2 = douveur de doublit (H+)

change D sur N dans 3 formules contributives => firation de H+ difficile => basicile +

QC 4

QC 3

AN 2

at 4

QT 1 QT 2

Q7 2

119

```
IV. Acide as consique
1) a) pH au P.F. 77 ( augmentation considérable at 1
      du fH au début du titrage)
  b) AH + 420 = A- + 430+
                                                            QT 1
  c) i) pka = pHan p.E. 14
                                                            AN 1
    (i) COAH = 9.5. 10-3.3.10-1 = 2,25.10-2 mol. 1-1
                                                           AN 1
  d) M = 2,85.102.176 = 5,0169
                                                           AN 1
 1) pHinitial = 2,8 => CH30 +J= 1,58.10-3 well.1-1
         x^2 + \kappa \alpha \times - \kappa \alpha \cdot c_0 = 0 avec x = \overline{\iota} H_3 O^{\dagger} J
                                                            AN 2
       (1,58 103)2+ Ka. 1,18.10-3 - Ka. 2,85.10-2 =0
     (=> Ka = 9,32 10-5 => / Ka = 4,03
   f) rouge de phénol, car sa zone de virage
                                                            at 1
      comprend light on P.E.
2) Q) MAH = 9250 (=) MAH = 1,42 10 3 mal
                                                            AN 2
     MA- = 0,2812 <=> MA- = 1,42. 10-3 mul
     pH= pka + log 1,42,10-3 <=> pH=4,03
   b) fartie avant le P.E. => solution fampon
mélange ande et base conj.
                                                           QT 2
   c) AH + OH- - A- + 420
(1,42.10-3-x) mil (1,42.10-3+x) und
        6 = 4 + log 1/42.10-3+x
                                                            AN 3
    <=> 1,42.10 3+x = 100 (1,42.10-3-x)
         <=> x = 1,39. 10-3 mil
       V = 1,39.10-3 = 4,64.10-3 2 = 4,6 ml
```

15