Quantitative Cellular and Molecular Biology Laboratory Computational Biology Department Comp Bio 02-261 Spring 2019

Lab 2 – Molecular Biology Computational Lab January 25, 2019

Gel Electrophoresis

- Experimental method to determine distribution of DNA strand sizes in DNA sample.
- More details in the next lecture...

DNA Notation (primary and secondary structure)

Shows pairing

Polymerase Chain Reaction

Polymerase Chain Reaction

```
ACTGACGATACGATACGAGCTCAGCGACTCATA
                                              DNA Sequence
                             GCTGAGTA
                                              Reverse Primer
                                              Forward Primer
   GACGATAC 3'
                                              Reverse Compliment
TGACTGCTATCCGATGCTCGAGTCGCTGAGTATGC
                   PCR
   GACGATACGATACGAGCTCAGCGACTCAT
                                               Millions of copies!
   CTGCTATGCTATCCGATGCTCGAGTCGCTGAGTA
```


Video URL

https://www.youtube.com/watch?v=YJKYSIJREIc

Polymerase Chain Reaction

```
ACTGACGATACGATACGAGCTCAGCGACTCATA
                                              DNA Sequence
                             GCTGAGTA
                                              Reverse Primer
                                              Forward Primer
   GACGATAC 3'
                                              Reverse Compliment
TGACTGCTATCCGATGCTCGAGTCGCTGAGTATGC
                   PCR
   GACGATACGATACGAGCTCAGCGACTCAT
                                               Millions of copies!
   CTGCTATGCTATCCGATGCTCGAGTCGCTGAGTA
```


1 in 5 sausages tested across Canada contained different meat than labelled, study finds

Scientist calls degree of off-label ingredients alarming

The Canadian Press Posted: Aug 03, 2017 5:22 PM ET | Last Updated: Aug 04, 2017 11:07 PM ET

Canadian researchers found that typically beef sausages predominantly contain beef, but some of them also contain pork. (Tom Lynn/Associated Press)

We can design PCR reactions to help us identify organisms in a DNA sample.

How might we do that?

1 in 5 sausages tested across Canada contained different meat than labelled, study finds

Scientist calls degree of off-label ingredients alarming

The Canadian Press Posted: Aug 03, 2017 5:22 PM ET | Last Updated: Aug 04, 2017 11:07 PM ET

Canadian researchers found that typically beef sausages predominantly contain beef, but some of them also contain pork. (Tom Lynn/Associated Press)

We can design PCR reactions to help us identify organisms in a DNA sample.

How might we do that?

Design primers to yield unique sizes of products for each organism.

Primer Design Example

		Sample DNA						
		Beef	Chicken	Pork				
	Beef Fwd + Beef Rev	100 bp	None	None				
Primers	Chicken Fwd + Chicken Rev	None	200 bp	None				
	Pork Fwd + Pork Rev	None	None	300 bp				

Primer Design Example

		Sample DNA				
		Beef	Chicken	Pork		
	Beef Fwd + Beef Rev	100 bp	None	None		
Primers	Chicken Fwd + Chicken Rev	None	200 bp	None		
	Pork Fwd + Pork Rev	None	None	300 bp		

One or both pork primers have no binding sites on **Beef** DNA.

One or both pork primers have no binding sites on **Chicken** DNA.

One or both pork primers have a single binding site on **Pork** DNA.

Tasks for Computational Lab

- 1. Generate features to allow prediction of primer melting points
- 2. Implement function for predicting PCR products
- 3. Design primers for PCR reaction to identify three types of DNA

Task 1 – Primer Melting Point Prediction

Features: Numerical descriptors of an object

Design *features* to help predict the melting point for a primer. Implement your feature calculation methods.

Assess with N-fold cross-validation using a RandomForest regressor model for generating predictions.

Regressor/regression – predict continuous value

Classifier – predict discrete class

How to design features for predicting melting point?

http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

Assessing Accuracy of Predicitons

- Given a sequence and a pair of primers, predict whether or not there will be a product. If so, predict the resulting product.
- Important Primer Pair Characteristics:
 - Reverse Primer
 - Binds to upper strand
 - Reverse compliment of binding site on upper strand
 - $T_m \sim 60^{\circ}C$
 - 18-25 bases long
 - Forward Primer
 - Binds to lower strand within 1000 bases upstream of the reverse primer binding location
 - Reverse compliment of binding site on lower strand
 - T_m ~ 60°C (within 5°C of reverse primer melting point)
 - 18-25 bases long

- Given a sequence and a pair of primers, predict whether or not there will be a product. If so, predict the resulting product.
- Important Primer Pair Characteristics:
 - Reverse Primer
 - Binds to upper strand
 - Reverse compliment of binding site on upper strand
 - $T_m \sim 60^{\circ}C$
 - 18-25 bases long
 - Forward Primer
 - Binds to lower strand within 1000 bases upstream of the rever
 - Reverse compliment of binding site on lower strand
 - T_m ~ 60°C (within 5°C of reverse primer melting point)
 - 18-25 bases long

Use Task 1!

- Given a sequence and a pair of primers, predict whether or not there will be a product. If so, predict the resulting product.
- Important Primer Pair Characteristics:
 - Reverse Primer
 - Binds to upper strand
 - · Reverse compliment of binding site on upper strand
 - $T_m \sim 60^{\circ}C$
 - 18-25 bases long
 - Forward Primer
 - Binds to lower strand within 1000 bases upstream of the reverse pr
 - Reverse compliment of binding site on lower strand
 - $T_m \sim 60^{\circ}$ C (within 5°C of reverse primer melting point)
 - 18-25 bases long

Reverse Complement: ACTG -> CAGT

Complementary Base Pairs:

A <-> T

G <-> C

- Given a sequence and a pair of primers, predict whether or not there will be a product. If so, predict the resulting product.
- Important Primer Pair Characteristics:
 - Reverse Primer
 - Binds to upper strand
 - Reverse compliment of binding site on upper strand
 - $T_{\rm m} \sim 60^{\rm o} {\rm C}$
 - 18-25 bases long
 - Forward Primer
 - Binds to lower strand within 1000 bases upstream of the reverse primer binding location
 - Reverse compliment of binding site on lower strand
 - $T_m \sim 60^{\circ}$ C (within 5°C of reverse primer melting point)
 - 18-25 bases long

How do we determine binding?

- Given a sequence and a pair of primers, predict whether or not there will be a product. If so, predict the resulting product.
- Important Primer Pair Characteristics:
 - Reverse Primer
 - Binds to upper strand
 - Reverse compliment of binding site on upper strand
 - $T_{\rm m} \sim 60^{\rm o} {\rm C}$
 - 18-25 bases long
 - Forward Primer
 - Binds to lower strand within 1000 bases upstream of the reverse primer binding location
 - Reverse compliment of binding site on lower strand
 - T_m ~ 60°C (within 5°C of reverse primer melting point)
 - 18-25 bases long

How do we determine binding?

(Local) Sequence Alignment!

Task 2 – Predict PCR Products (Alignment)

```
> alignment.local_align("ACTG", "ACTG", print_output = True)
Scoring: match = 10; mismatch = -5; gap_start = 0; gap_extend = -7
A matrix =
```

```
* A C T G

* 0 0 0 0 0 0

A 0 10 3 0 0

C 0 3 20 13 6

T 0 0 13 30 23

G 0 0 6 23 40
```

Optimal Score = 40

Max location in matrix = (4, 4)

Best Alignment:
ACTG
ACTG

Task 2 – Predict PCR Products (Alignment)

```
> alignment.local_align("ACTGACTGACTG", "ACTG", print_output = True)
```

Scoring: match = 10; mismatch = -5; gap_start = 0; gap_extend = -7

A matrix =

	*	А	С	Т	G	A	С	Т	G	A	С	Т	G
*	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	10	3	0	0	10	3	0	0	10	3	0	0
С	0	3	20	13	6	3	20	13	6	3	20	13	6
Т	0	0	13	30	23	16	13	30	23	16	13	30	23
G	0	0	6	23	40	33	26	23	40	33	26	23	4 0

Optimal Score = 40

Max location in matrix = (12, 4)

Multiple Best Alignments

Task 2 – Predict PCR Products (Alignment)

> alignment.local_align("AGTCACTGGCTT", "ACTG", print_output = True)

Scoring: match = 10; mismatch = -5; gap start = 0; gap extend = -7

A matrix =

	*	А	G	Т	С	А	С	Т	G	G	С	Т	Т
*	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	10	3	0	0	10	3	0	0	0	0	0	0
С	0	3	5	0	10	3	20	13	6	0	10	3	0
T	0	0	0	15	8	5	13	30	23	16	9	20	13
G	0	0	10	8	10	3	6	23	40	33	26	19	15

Optimal Score = 40

Max location in matrix = (8, 4)

Position in String 1 of the last character in optimal alignment

Position in String 2 of the last character in optimal alignment

Best Alignment:
----ACTG---ACTG

Best Score:
40/40
Best score possible
for alignment of 4
characters.

Binding defined by 90%+ alignment.

Local Alignment Function

```
def local align(x, y, score=ScoreParam(10, -5, -7), print output = False):
      x = sequence 1
      y = sequence 2
      score = Score Parameter (match = +10, mismatch = -5, gap = -7)
             (optional)
      print output = binary indicating whether or not you want pretty
            output printed from alignment
            (optional)
```

- Given a sequence and a pair of primers, predict whether or not there will be a product. If so, predict the resulting product.
- Important Primer Pair Characteristics:
 - Reverse Primer
 - Binds to upper strand (90%+ alignment)
 - Reverse compliment of binding site on upper strand
 - $T_{\rm m} \sim 60^{\rm o} {\rm C}$
 - 18-25 bases long
 - Forward Primer
 - Binds to lower strand within 1000 bases upstream of the reverse primer binding location (90%+ alignment)
 - Reverse compliment of binding site on lower strand
 - $T_m \sim 60^{\circ}$ C (within 5°C of reverse primer melting point)
 - 18-25 bases long

How do we determine binding?

(Local) Sequence Alignment!

Task 3

- Given sequences of genes from beef, chicken, and pork, design primers to identify each of them in a DNA sample.
- How do we do this?
 - Each primer pair must only generate a product in one source DNA sample.
 - Products from each source DNA sample must be of different lengths (50+bp different)

What to turn in?

```
As a group:

Code:

Your modified version of tm_prediction2.py

(renamed usefully)

Documentation:

Describe your approaches for Task 1 and Task 3 only.
```