Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Devoir surveillé

Cours autorisé; durée: 1h30

Exercice 1. On considère, sur $E = \mathbf{R}_2[X]$, l'application $\varphi \colon P \mapsto \int_{-1}^1 P(t) dt$.

- 1. Montrer que $\varphi \in E^*$ et calculer $\varphi(aX^2 + bX + c)$.
- 2. Montrer que, pour tout $x \in \mathbf{R}$, l'application $ev_x \colon P \mapsto P(x)$ est une forme linéaire sur E.
- 3. Montrer que, si $ev_{-1}(P) = ev_0(P) = ev_1(P) = 0$, alors P = 0. En déduire que (ev_{-1}, ev_0, ev_1) est une base de E^* .
- 4. Exprimer φ dans cette base. (Indication : on peut commencer par calculer $ev_i(aX^2 + bX + c)$ pour $i \in \{-1, 0, 1\}$.)

Exercice 2. Sur \mathbb{R}^3 , on considère les applications f_1 , f_2 , f_3 définies par $f_1(x) = x_1 - x_2 + x_3$, $f_2(x) = x_2 + 2x_3$, $f_3(x) = x_2 + 3x_3$.

- 1. Jutifier brièvement que ce sont des applications linéaires.
- 2. Montrer que la famille (f_1, f_2, f_3) forme une base de $(\mathbf{R}^3)^*$.
- 3. Calculer sa base préduale, qu'on notera (e_1, e_2, e_3) .

On défini maintenant une forme quadratique q par $q(x) = f_1(x)^2 - 4f_2(x)^2 + f_3(x)^2$.

- 4. Cette écriture est-elle une forme de Gauss? Justifier soigneusement.
- 5. Trouver un vecteur y tel que q(y) < 0.
- 6. En utilisant le fait que (e_1, e_2, e_3) est la base préduale de (f_1, f_2, f_3) , donner la valeur de $q(\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3)$ en faisant le moins de calculs possible. (Indication : inutile d'utiliser les valeurs de e_1 , e_2 et e_3 .)
- 7. En déduire un vecteur $z \neq 0$ tel que q(z) = 0.

Plus généralement, on considère (f_1, \ldots, f_n) une base de $(\mathbf{R}^n)^*$ et (e_1, \ldots, e_n) sa base préduale. On pose $q(x) = \alpha_1 f_1(x)^2 + \cdots + \alpha_n f_n(x)^2$ où $\alpha_i \in \mathbf{R} \setminus \{0\}$ pour tout i.

- 8. En s'inspirant des deux questions précédentes, montrer que s'il existe i et j tels que $\alpha_i > 0$ et $\alpha_j < 0$, alors il existe $z \in \mathbf{R}^n \setminus \{0\}$ tel que q(z) = 0. (Indication : on pourra exprimer z en fonction de e_i , e_j , α_i et α_j .)
- 9. Déduire de la question précédente et du cours que q est définie si et seulement si tous les α_i sont de même signe.

Exercice 3. Mettre sous forme de Gauss les formes quadratiques suivantes.

$$q_1(x) = x_1^2 + 5x_2^2 + 5x_3^2 - 4x_1x_2 - 2x_2x_3 \qquad q_2(x) = x_1^2 + 4x_2^2 - 4x_1x_2 - 2x_2x_3$$

$$q_3(x) = x_1^2 + 4x_2^2 - 4x_1x_2 - 4x_1x_3 \qquad q_4(x) = x_1x_2 + 2x_2x_3$$

Lesquelles sont définies, positives?