Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II Tutorial Sheet 5

- 1. Find the matrix of the following inner products relative to given ordered basis \mathcal{B}
 - (i) $V = P_2(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$, $\mathcal{B} = \{1, x, x^2\}$ Let M the matrix of inner product, then $M_{ij} = \langle \alpha_j, \alpha_i \rangle$, where $\{\alpha_1, \alpha_2, \alpha_3\}$ is the given ordered basis of $P_2(\mathbb{R})$. This results into the following matrix

$$M = \left[\begin{array}{ccc} 1 & 1/2 & 1/2 \\ 1/2 & 1/3 & 1/4 \\ 1/2 & 1/4 & 1/5 \end{array} \right]$$

- (ii) $V = \mathbb{C}^3(\mathbb{C})$ with $\langle \alpha, \beta \rangle = \sum_{j=1}^3 \alpha_j \bar{\beta}_j$, with any ordered basis \mathcal{B} of V. (You can choose any ordered basis of your choice)
- 2. Apply Gram-Schmidt process to the following subsets S of inner product space V to get an orthonormal basis for span of S.
 - (i) $V = \mathbb{R}^3$ with standard inner product, $S = \{(1,0,1), (0,1,1), (1,3,3)\}$ The Gram-Schmidt formula helps to construct, from any given linearly independent set $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$, an orthogonal set $\{\beta_1 = \alpha_1, \beta_2, \dots, \beta_n\}$ (spanning the same set as spanned by $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$) in the following way

$$\beta_k = \alpha_k - \sum_{j=1}^{k-1} \frac{\langle \alpha_k, \beta_j \rangle}{\|\beta_j\|^2} \beta_j, \quad k = 2, 3, \dots n$$

Applying the above formula, we get a required basis for span of S as $\{(1,0,1), \frac{1}{2}(-1,2,1), \frac{1}{3}(1,1,-1)\}.$

- (ii) $V = P_2(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$, $S = \{1, x, x^2\}$.
- (iii) $V = \mathbb{C}^4(\mathbb{C})$, with standard inner product, $S = \{(1, i, 2 i, -1), (2 + 3i, 3i, 1 i, 2i), (-1 + 7i, 6 + 10i, 11 4i, 3 + 4i)\}.$
- (iv) $V = M_{2\times 2}(\mathbb{R})$ with inner product defined as $\langle A, B \rangle = \sum_{i,j=1}^{2} A_{ij} B_{ij}$,

$$S = \left\{ \begin{bmatrix} 3 & 5 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 9 \\ 5 & -1 \end{bmatrix}, \begin{bmatrix} 7 & -17 \\ 2 & -6 \end{bmatrix} \right\}$$

3. Prove the following

(i) Let $\{\alpha_1, \alpha_2, \dots \alpha_n\}$ be an orthonormal basis for an inner product space V. Prove that for any $\alpha, \beta \in V$

$$<\alpha,\beta>=\sum_{i=1}^n<\alpha,\alpha_i>\overline{<\beta,\alpha_i>}$$

Observe that any vector α can be expressed uniquely as $\alpha = \sum_{i=1}^{n} < \alpha, \alpha_i > \alpha_i$ and similarly $\beta = \sum_{i=1}^{n} < \beta, \alpha_i > \alpha_i$ relative to given orthonormal basis. Now

$$<\alpha,\beta>=<\sum_{i=1}^n<\alpha,\alpha_i>\alpha_i,\sum_{j=1}^n<\beta,\alpha_j>\alpha_j>=\sum_{i=1}^n<\alpha,\alpha_i>\overline{<\beta,\alpha_i>},$$

using orthonormality of the given ordered basis.

(ii) Let $\{\alpha_1, \alpha_2, \dots \alpha_n\}$ be an orthonormal subset of an inner product space V. Prove that for any $\alpha \in V$

$$\|\alpha\|^2 \ge \sum_{i=1}^n |<\alpha, \alpha_i>|^2$$

Done in the class

4. Compute S^{\perp} for $S = \{(1, 0, i), (1, 2, 1)\}$ in \mathbb{C}^3 . Any vector $c = (c_1, c_2, c_3) \in S^{\perp}$ if c solves the following system of equations

$$c_1 - ic_3 = 0$$
$$c_1 + 2c_2 + c_3 = 0.$$

The solution set (S^{\perp}) is the span of $(i, -\frac{1+i}{2}, 1)$.

- 5. Find the orthogonal projections of the following vectors on the given subspace of the specified inner product space
 - (i) $V=\mathbb{R}^3$ with standard inner product, $\alpha=(2,1,3)$, and $W=\{(x,y,z):x+3y-2z=0\}$. If $\mathcal{B}=\{v_1,v_2,\cdots,v_k\}$ be an orthonormal basis for W then orthogonal projection of α on W is given by $u=\sum_{i=1}^k<\alpha,v_i>v_i$. To find an orthonormal basis, we first need to find a basis for W, which is easy to see as $\{(2,0,1),(-3,1,0)\}$ spans W and is linearly independent. Now we use Gram-Schmidt process to find an orthogonal basis, which is $\{(2,0,1),(-3/5,1,6/5)\}$. An orthonormal basis for W is $\mathcal{B}=\{\frac{1}{\sqrt{5}}(2,0,1),\frac{1}{\sqrt{70}}(-3,1,0)\}$. Therefore $u=\frac{1}{14}(29,17,40)$.
 - (ii) $V = P(\mathbb{R})$ with the inner product $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$, $h(x) = 4 + 3x 2x^2$, $W = P_1(\mathbb{R})$.
- 6. Let V be an inner product space, S and S_0 are the subsets of V and W is a finite dumensional subspace of V. Prove the following results

- (i) $S_0 \subseteq S$ implies that $S^{\perp} \subseteq S_0^{\perp}$. For any $x \in S^{\perp}$, $\langle x, y \rangle = 0$ for all $y \in S$. As $S_0 \subseteq S$, $\langle x, y \rangle = 0$ for all $y \in S_0$. Therefore $x \in S_0^{\perp}$.
- (ii) $S \subseteq (S^{\perp})^{\perp}$ implies span $(S) \subseteq (S^{\perp})^{\perp}$ Take $x \in S$ and $y \in S^{\perp}$, then $\langle x, y \rangle = 0$ for all $y \in S^{\perp}$ which implies $x \in (S^{\perp})^{\perp}$ or $S \subseteq (S^{\perp})^{\perp}$. As $(S^{\perp})^{\perp}$ is a subspace and hence span $(S) \subseteq (S^{\perp})^{\perp}$
- (iii) $W = (W^{\perp})^{\perp}$ From part (ii), $W \subseteq (W^{\perp})^{\perp}$. For the converse, take $x \in (W^{\perp})^{\perp}$ such that $x \notin W$, then from Problem 7 below, we get $y \in W^{\perp}$ such that $\langle x, y \rangle \neq 0$ but this is a contradiction (as $x \in (W^{\perp})^{\perp}$ and $\langle x, y \rangle = 0$ for all $y \in W^{\perp}$). Thus $(W^{\perp})^{\perp} \subseteq W$ which implies $W = (W^{\perp})^{\perp}$.
- (iv) $V = W \oplus W^{\perp}$ We know that any $y \in V$ can be expressed uniquely as y = u + v, where $u \in W$ and $v \in W^{\perp}$. Moreover $W \cap W^{\perp} = \{0\}$ (if $x \in W \cap W^{\perp}$ implies $\langle x, x \rangle = 0$ or x = 0). Therefore $V = W \oplus W^{\perp}$.
- 7. Let V be an inner product space, and let W be a finite-dimensional subspace of V. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$. As $V = W \oplus W^{\perp}$, there exists unique vectors u and v such that x = u + v. Observe that $v \neq 0$, otherwise $x \in W$. Now choose y = v, to get $\langle x, y \rangle = \langle u, v \rangle + \langle v, v \rangle = 0 + ||v||^2 \neq 0$.
- 8. Let $V = C([-1,1];\mathbb{R})$ be an inner product space with inner product defined as

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

Suppose that W_e and W_o denote the subspaces of V consisting of the even and odd functions, respectively. Then prove that $W_e^{\perp} = W_0$.

As product of even and odd function is odd function, we have for $g \in W_0$ and for every $f \in W_e$, $\langle f, g \rangle = 0$. Thus $W_0 \subset W_e^{\perp}$. Now assume, if possible, some $h \in W_e^{\perp}$ but $h \notin W_0$. As every h can be written as sum of even and odd functions, say $h = \psi + \phi$, where ψ is even and ϕ is odd, $\langle h, \psi \rangle = \langle \psi, \psi \rangle + \langle \phi, \psi \rangle \implies \psi = 0$. Hence $h \in W_0$. Thus $W_e^{\perp} = W_0$