Exercice 1: (8 pts) (Les parties A et B sont indépendantes) A/ Soit $f \in End(\mathbb{R}^3)$, défini par :

$$f(x, y, z) = \left(\frac{3}{2}x - \frac{1}{2}y, -\frac{1}{2}x + \frac{3}{2}y, z\right)$$

1/ Déterminer $A = M(f, B_c)$, où $B_c = (e_1, e_2, e_3)$ est la base canonique de \mathbb{R}^3 .

2/ Déterminer $P_f(X)$ le polynôme caractéristique de f.

3/i-f est-il diagonalisable?. Justifier.

ii- Si f est diagonalisable, déterminer une matrice P telle que $P^{-1}AP$ soit diagonale. B/ Soit $g \in End(\mathbb{R}^3)$, $B_c = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $M = M(g, B_c)$ telle que :

$$M = \left(\begin{array}{rrr} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 1 & 1 \end{array}\right)$$

1/ Déterminer ker g.

2/ i- M est-elle inversible?. Justifier.

ii- Si M est inversible, déterminer M^{-1} .

Exercice 2: (8 pts) Répondre par Vrai ou Faux en justifiant.

1- $\{(1,1);(0,1)\}$ est une base de \mathbb{R}^2 .

2- $\{(1,0);(0,1)\}$ est une base de \mathbb{C}^2 en tant que \mathbb{C} - e. v..

3- Tout vecteur de \mathbb{R}^3 est combinaison linéaire de $\{(1,0,1)\,;(1,2,1)\,;(0,1,2)\}$.

4- Si G et H sont deux s.e.v. d'un \mathbb{K} - e.v. E tels que : $\dim G + \dim H = \dim E$, alors : $E = G \oplus H$.

5- Soient E un \mathbb{K} - e.v., F et G deux s.e.v. de E, B_1 une base de F et B_2 une base de G. Alors $B_1 \cup B_2$ est une base de F + G.

6- $\{P \in \mathbb{R}[X] \text{ tel que deg } P = 3\}$ admet un s.e.v. supplémentaire dans $\mathbb{R}_4[X]$.

7- Soit $f \in End(E)$ où E un est \mathbb{K} - e.v.. Alors, on a : $[0 \in spec(f) \Leftrightarrow \ker f \neq \{0\}]$.

8- Soit $f \in End(E)$ où E un est \mathbb{K} - e.v., $\lambda \in spec(g)$ et u un vecteur propre de g associé à λ . Si $g \circ f = f \circ g$, alors f(u) est aussi vecteur propre de g associé à λ .

$$\begin{vmatrix} 1 & -1 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & -4 \end{vmatrix} = 0, \quad \begin{vmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{vmatrix} = 0, \quad \begin{vmatrix} 4 & 6 & 2 \\ 2 & 4 & 2 \\ -2 & 8 & 4 \end{vmatrix} = 8k, \text{ où } k \in \mathbb{Z}.$$

Exercice 3: (4 pts)

Soit l'ensemble : $E = \left\{1 - \frac{1}{x^2}, \frac{n-1}{n+4}; \ n \in \mathbb{N}, x \ge 1\right\}.$

1/ Montrer que l'ensemble E est borné.

2/ Déterminer, quand s'ils existent, sup E, inf E, max E, min E. Justifier.