Subjectul 1 (3 puncte)

Se dă un graf neorientat cu n>3 vârfuri și m muchii care nu este bipartit.

- a) Să se determine un ciclu elementar impar în graf (cu număr impar de muchii). Se vor afișa muchiile unui astfel de ciclu. **Complexitate O(n+m)**
- b) Să se determine dacă în grad mai există în graf un alt ciclu în afară de cel afișat la punctul
- a) (nu neapărat impar) și, în caz afirmativ, să se afișeze un astfel de ciclu (diferit de cel de la
- a)); altfel se va afișa un mesaj corespunzător. Complexitate O(n+m)

Informațiile despre graf se citesc din fișierul *graf.in* cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

graf.in	lesire pe ecran
5 6	a)
12	2 4
23	45
2 4	5 2
4 5	b)
25	12
15	2 4
	4 5
	5 1

Subjectul 2 (3 puncte)

Se citesc informații despre un graf **neorientat** ponderat conex G din fișierul graf.in. Fișierul are următoarea structură:

- pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de muchii m ale grafului, **m>n**
- pe următoarele m linii sunt câte 3 numere pozitive reprezentând extremitatea inițială, extremitatea finală și costul unei muchii din graf
- a) Să se afișeze costul unui arbore parțial de cost minim în G. Complexitate O(mlog(n)).
- b) Se citesc de la tastatură două muchii **noi** date tot prin extremitatea inițială, extremitatea finală și cost. Știind că **doar una** dintre aceste muchii se va adăuga la graful G, decideți pe care o adăugați astfel încât noul graf să aibă un arbore parțial de cost minim cu cost cât mai mic și afișați muchiile unui arbore parțial de cost minim în acest graf. **Complexitate O(n)**

Exemplu

graf.in	Iesire pe ecran (nu conteaza
	ordinea în care sunt afisate
	muchiile)
5 5	a)
121	13
1 4 2	b)
2 3 4	adaugam 3 5
3 4 8	12
4 5 6	14
	2 3
Intrare de la tastatura	3 5
3 5 5	
135	

Subjectul 3 (3 puncte)

Propuneți un algoritm bazat pe algoritmul Ford-Fulkerson / Edmonds Karp pentru rezolvarea următoarei probleme.

Într-un restaurant sunt n mese numerotate 1,...,n sunt și m ospătari numerotați 1,..., m (m≥n). Proprietarul restaurantului urmează să aibă un eveniment în restaurant și dorește să repartizeze fiecărui ospătar mesele de care trebuie să se ocupe. El întreabă pe fiecare ospătar la câte mese ar vrea să servească maxim și notează cu o₁,...,o_m răspunsurile acestora.

Proprietarul ar vrea ca la fiecare masa i să **fie exact k**i **ospătari** și ar vrea ca numărul de mese la care repartizează un ospătar i **să nu depășească** opțiunea acestuia o_i.

Scrieți un program care, dacă este posibilă o distribuție a ospătarilor la mese care să respecte dorințele proprietarului, să afișeze o astfel de distribuție sub forma prezentată în exemplul de mai jos. Altfel se va afișa mesajul "imposibil"

Datele despre restaurant și opțiunile ospătarilor se vor citi dintr-un fișier cu următoarea structură:

- pe prima linie sunt numerele naturale n, m
- pe următoarea linie n numere naturale $k_1, ..., k_n$ reprezentând câți ospătari trebuie să fie la fiecare masă
- pe următoarea linie m numere naturale o₁...o_m reprezentând opțiunile ospătarilor.

Complexitate $O(n^2m^2)$

restaurant.in	lesire pe ecran (solutia nu este unica)
3 3	Masa 1: ospătari 1
121	Masa 2: ospătari 2 3
122	Masa 3: ospătari 3
restaurant.in	lesire pe ecran
4 4	Imposibil
1144	•
1144	