MILP-Based Algorithm for the Global Solution of Dynamic Economic Dispatch with Valve-Point Effects

Loïc Van Hoorebeeck, Anthony Papavasiliou, P.-A. Absil

August 28, 2020

Economic Dispatch

[The Grid 2025 Challenge – University of Glasgow]

Economic Dispatch

Objective Taking into account the valve point effect which occurs in large multi-valves gas power plant.

[The Grid 2025 Challenge – University of Glasgow]

On the place of gas energy in tomorrow's power mix

European targets for 2030 and 2050

"Natural gas will continue to play a key role in the EU's energy mix in the coming years and gas can gain importance as the *back-up fuel* for variable electricity generation." (European Commission's Communication Energy 2020)

Source: Energy roadmap 2050

- 1. Introduction.
- 2. Problem statement Economic Dispatch with Valve Point Effect.
- 3. **Description of the algorithm** An Adaptive Piecewise-Linear Approximation.
- 4. **Study case** A 10-units dispatch over 24 hours.
- 5. Extension and further work.

2. Problem statement

Data

```
Load demand: D_t t \in T
Spinning reserve: S_t t \in T
Set of producers with cost function f_i i \in I
```

Decision variables

Production: p_{it} $i \in I, t \in T$ Reserve: s_{it} $i \in I, t \in T$

Problem

How to optimally dispatch the power between producers ?

$$\min_{p_{it},\,s_{it}}\sum_{i=1,\,t=1}^{n,\,T}f_i(p_{it}) \qquad \text{Fuel cost minimization}$$
 subject to
$$\sum_{i=1}^n p_{it} = D_t\,,$$

$$\sum_{i=1}^n s_{it} \geq S_t\,,$$

$$s_{it} \leq R_i^U\,,$$

$$p_{it} + s_{it} \leq P_i^{\max}\,,$$

$$P_i^{\min} \leq p_{it}\,,$$

$$-R_i^D \leq p_{it} - p_{i(t-1)} \leq R_i^U\,.$$

$$\min_{p_{it}, \, s_{it}} \sum_{i=1, \, t=1}^{n, \, T} f_i(p_{it})$$
 subject to
$$\sum_{i=1}^n p_{it} = D_t \,, \qquad \text{Demand is met}$$

$$\sum_{i=1}^n s_{it} \geq S_t \,, \qquad \text{Enough (up) spinning reserve}$$

$$s_{it} \leq R_i^U \,, \qquad \qquad p_{it} + s_{it} \leq P_i^{\max} \,, \qquad \qquad P_i^{\min} \leq p_{it} \,, \qquad \qquad -R_i^D \leq p_{it} - p_{i(t-1)} \leq R_i^U \,.$$

$$\begin{aligned} \min_{p_{it},\,s_{it}} & \sum_{i=1,\,t=1}^{n,\,T} f_i(p_{it}) \\ \text{subject to} & \sum_{i=1}^n p_{it} = D_t \,, \\ & \sum_{i=1}^n s_{it} \geq S_t \,, \\ & S_{it} \leq R_i^U \,, & \text{Reserve cannot exceed} \\ & \text{the ramp constraint} \\ & p_{it} + s_{it} \leq P_i^{\max} \,, \\ & P_i^{\min} \leq p_{it} \,, \\ & - R_i^D \leq p_{it} - p_{i(t-1)} \leq R_i^U \,. \end{aligned}$$

$$egin{aligned} \min_{p_{it},\,s_{it}} \sum_{i=1,\,t=1}^{n,\,T} f_i(p_{it}) \ & ext{subject to} & \sum_{i=1}^n p_{it} = D_t \,, \ & \sum_{i=1}^n s_{it} \geq S_t \,, \ & s_{it} \leq R_i^U \,, \end{aligned}$$

Restricted power range

$$-R_i^D \leq p_{it} - p_{i(t-1)} \leq R_i^U.$$

$$\min_{p_{it}, \, s_{it}} \sum_{i=1, \, t=1}^{n, \, T} f_i(p_{it})$$
subject to
$$\sum_{i=1}^n p_{it} = D_t \,,$$

$$\sum_{i=1}^n s_{it} \geq S_t \,,$$

$$s_{it} \leq R_i^U \,,$$

$$p_{it} + s_{it} \leq P_i^{\max} \,,$$

$$P_i^{\min} \leq p_{it} \,,$$

$$-R_i^D \leq p_{it} - p_{i(t-1)} \leq R_i^U \,.$$

Ramp constraints

$$\min_{p_{it}, \, s_{it}} \sum_{i=1, \, t=1}^{n, \, T} f_i(p_{it})$$
subject to
$$\sum_{i=1}^n p_{it} = D_t \,,$$

$$\sum_{i=1}^n s_{it} \geq S_t \,,$$

$$s_{it} \leq R_i^U \,,$$

$$p_{it} + s_{it} \leq P_i^{\max} \,,$$

$$P_i^{\min} \leq p_{it} \,,$$

$$-R_i^D \leq p_{it} - p_{i(t-1)} \leq R_i^U \,.$$

Valve-Point Effect

The VPE is a natural characteristic of a gas turbine. Operating off a valve point increases the throttling losses, and therefore rises the heat rate.

Adaptive Piecewise-Linear Under-Approximation

♀ Idea: a sequence of piecewise approximations.

We could use a uniform grid...

... but there are too many integer variables!

Adaptive Piecewise-Linear Under-Approximation

 $\mathbf{\hat{V}}$ Idea: a sequence of piecewise approximations.

We could use a uniform grid...

Fuel cost,

... but there are too many integer variables!

Power Output, MW

Fuel cost,

Power Output, MW

Fuel cost,

Power Output, MW

Fuel cost,

Power Output, MW

First model: binary variables

$$g(p, \boldsymbol{\xi}, \boldsymbol{\eta}) := \sum_{j} \alpha_{j} |\xi_{j}| + \beta_{j} |\eta_{j}|$$

First model: binary variables

$$\sum_{j} \xi_{j} = p$$
 (continuous) $\sum_{j} \eta_{j} = 1$ (binary)
$$g(p, \boldsymbol{\xi}, \boldsymbol{\eta}) := \sum_{j} \alpha_{j} \xi_{j} + \beta_{j} \eta_{j}$$
 X_{2} and s.t. $X_{j} \eta_{j} \leq \xi_{j} \leq X_{j+1} \eta_{j}$

Exactly one η_j and associated ξ_j selected.

Optimality gap

Solver tolerance errorOver-approximation error

What about the convergence?

- $ightharpoonup \gamma^k$ is bounded below by $\gamma f(\mathbf{p}^*)$;
- ϵ^k is virtually negligible since the "convex zones" are smaller than 0.1% of the domain ;
- \triangleright δ^k converges to zero.

A practical example

Van Hoorebeeck et. al., 2019. (Preprint)

What about the convergence?

- γ^k is bounded below by $\gamma f(\mathbf{p}^*)$;
- ϵ^k is virtually negligible since the "convex zones" are smaller than 0.1% of the domain ;
- $ightharpoonup \delta^k$ converges to zero.

A practical example

In general

Theorem 1

For L-continuous piecewise-concave cost functions,

$$\lim_{k\to\infty}\delta^k=0.$$

4. Study case - A 10-units dispatch over 24 hours

Spinning reserves set at 5% of the demand. 10 units with valve-point loading effect.

Previous results

Method	Total	S-time(min)		
Metrod	Minimum	Average	Maximum	S-time(min)
SQP [3]	1051163	NA	NA	0.42
EP [3]	1048638	NA	NA	15.05
CDE [16]	1036756	1040586	1452558	0.20
TVAC-IPSO 19	1018217	1018965	1020418	2.72
HBPSO 31	1018159	1019850	1021813	3.09
CSO [25]	1017660	1018120	1019286	0.90
EBSO [21]	1017147	1017526	1017891	0.15
MILP	1016316			0.94
MILP-IPM	1016311			1.02

And our approach?

Previous results

Method	Total	C time(min)		
Metriou	Minimum	Average	Maximum	S-time(min)
SQP [3]	1051163	NA	NA	0.42
EP [3]	1048638	NA	NA	15.05
CDE [16]	1036756	1040586	1452558	0.20
TVAC-IPSO 19	1018217	1018965	1020418	2.72
HBPSO 31	1018159	1019850	1021813	3.09
CSO [25]	1017660	1018120	1019286	0.90
EBSO [21]	1017147	1017526	1017891	0.15
MILP	1016316			0.94
MILP-IPM	1016311			1.02

And our approach?

Previous results

Method	Total	S-time(min)		
Meulou	Minimum	Average	Maximum	S-time(iiiii)
SQP [3]	1051163	NA	NA	0.42
EP [3]	1048638	NA	NA	15.05
CDE [16]	1036756	1040586	1452558	0.20
TVAC-IPSO 19	1018217	1018965	1020418	2.72
HBPSO 31	1018159	1019850	1021813	3.09
CSO [25]	1017660	1018120	1019286	0.90
EBSO [21]	1017147	1017526	1017891	0.15
MILP	1016316			0.94
MILP-IPM	1016311			1.02

And our approach?

Previous results

Method	Total	S-time(min)		
Metrod	Minimum	Average	Maximum	S-time(mm)
SQP 3	1051163	NA	NA	0.42
EP [3]	1048638	NA	NA	15.05
CDE [16]	1036756	1040586	1452558	0.20
TVAC-IPSO 19	1018217	1018965	1020418	2.72
HBPSO 31	1018159	1019850	1021813	3.09
CSO [25]	1017660	1018120	1019286	0.90
EBSO [21]	1017147	1017526	1017891	0.15
MILP	1016316			0.94
MILP-IPM	1016311			1.02

And our approach?

APLUA	1016276\$	(1013410)	15(min)
APLUA + Lo- cal Heuristic	1016207\$	(1014719)	1.5(min)
Carricanstic			

Pan *et. al.*, 2018.

5. Extension and further work

Important characteristic of the method: Under-approximation

 \Rightarrow The method is not valid for convex functions (e.g. without valve point effect)

5. Extension and further work

Important characteristic of the method: Under-approximation

 \Rightarrow The method is not valid for convex functions (e.g. without valve point effect)

Assume f_1 convex and f_2 piecewise concave

- Feed the solver with the full convex functions;(L)
- Under-approximate the convex functions.(R)

- ▶ Possible to prove that $g^{k+1} \ge g^k$ and that we cannot do better with that number of points
- Number of integer variables rises linearly (\sim factor 2)

Power losses and network constraints

(Revisited) demand constraints

$$\sum_{i=1}^n p_{it} = D_t + \rho^L(\mathbf{p}_t)$$

 $p^L(\mathbf{p}_t)$ models the transmission losses computed as

$$p^{L}(\mathbf{p}_{t}) = \mathbf{p}_{t}^{T} \mathbf{B} \mathbf{p}_{t} + \mathbf{B}_{0} \mathbf{p}_{t} + \mathbf{B}_{00}$$

with **B** symmetric matrix.

Network constraints

Conclusion

- APLUA manages to find a good candidate ...
- ... but it takes more time ...
- ... and we are limited by the solver tolerance gap ...
- ... however we provide a lower bound.
- How to take the quadratic transmission losses into account?

Conclusion

- APLUA manages to find a good candidate ...
- but it takes more time ...
- ... and we are limited by the solver tolerance gap ...
- ▶ ... however we provide a lower bound.
- ? How to take the quadratic transmission losses into account?

Contact

- https://perso.uclouvain.be/loic.vanhoorebeeck

Conclusion

- APLUA manages to find a good candidate ...
- but it takes more time ...
- ... and we are limited by the solver tolerance gap ...
- ▶ ... however we provide a lower bound.
- ? How to take the quadratic transmission losses into account?

Contact

- Loic.vanhoorebeeck@uclouvain.be
- bttps://perso.uclouvain.be/loic.vanhoorebeeck

Acknowledgment

This work was supported by the Fonds de la Recherche Scientifique - FNRS under Grant no. PDR T.0025.18.