Introduction to Algorithms

Divide and Conquer Multiplication

Integer Multiplication

Integer Arithmetic

Add: Given two n-bit integers a and b, compute a + b.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

O(n) bit operations.

Multiply: Given two n-bit integers a and b, compute a × b. The "grade school" method:

 $O(n^2)$ bit operations.

How to use Divide and Conquer?

Suppose we want to multiply two 2-digit integers (32,45). We can do this by multiplying four 1-digit integers Then, use add/shift to obtain the result:

$$x = 10x_1 + x_0$$

$$y = 10y_1 + y_0$$

$$xy = (10x_1 + x_0)(10y_1 + y_0)$$

$$= 100 x_1y_1 + 10(x_1y_0 + x_0y_1) + x_0y_0$$

Same idea works when multiplying n-digit integers:

- Divide into 4 n/2-digit integers.
- Recursively multiply
- Then merge solutions

A Divide and Conquer for Integer Multiplication

Let x, y be two n-bit integers

Write
$$x = 2^{n/2}x_1 + x_0$$
 and $y = 2^{n/2}y_1 + y_0$
where x_0, x_1, y_0, y_1 are all n/2-bit integers.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

Therefore,

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

We only need 3 values $T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$ $x_1y_1, x_0y_0, x_1y_0 + x_0y_1$ Can we find all 3 by only 3 multiplication?

So,

$$T(n) = \Theta(n^2).$$

$$T(n) = a T\left(\frac{n}{b}\right) + cn^k$$
 If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$

Key Trick: 4 multiplies at the price of 3

```
x = 2^{n/2} \cdot x_1 + x_0
y = 2^{n/2} \cdot y_1 + y_0
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)
= 2^n \cdot x_1 y_1 + 2^{n/2} ((x_1 y_0 + x_0 y_1) + x_0 y_0)
```

$$\alpha = x_1 + x_0$$

$$\beta = y_1 + y_0$$

$$\alpha\beta = (x_1 + x_0)(y_1 + y_0)$$

$$= x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0$$

$$(x_1y_0 + x_0y_1) = \alpha\beta - x_1y_1 - x_0y_0$$

Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in O(n^{1.585...}) bit operations.

$$x = 2^{n/2} \cdot x_1 + x_0 \Rightarrow \alpha = x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0 \Rightarrow \beta = y_1 + y_0$$

$$xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$A \qquad \alpha \beta - A - B \qquad B$$

To multiply two n-bit integers:

Add two n/2 bit integers.

Multiply three n/2-bit integers.

Add, subtract, and shift n/2-bit integers to obtain result.

$$T(n) = 3T(\frac{n}{2}) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585...})$$

Integer Multiplication (Summary)

- Naïve: $\Theta(n^2)$
- Karatsuba: $\Theta(n^{1.585...})$
- Amusing exercise: generalize Karatsuba to do 5 size n/3 subproblems

This gives $\Theta(n^{1.46...})$ time algorithm

• Best known algorithm runs in $\Theta(n \log n)$ using fast Fourier transform

but mostly unused in practice (unless you need really big numbers - a billion digits of π , say)

• Best lower bound O(n): A fundamental open problem

D&C Summary

Idea:

"Two halves are better than a whole"

- if the base algorithm has super-linear complexity.
- "If a little's good, then more's better"
 - repeat above, recursively
- Applications: Many.
 - Binary Search, Merge Sort, (Quicksort),
 - Root of a Function
 - Closest points,
 - Integer multiplication
 - Median
 - Matrix Multiplication