Single-sample hypothesis testing

 H_0 = null hypothesis

 H_A = alternative hypothesis

p-value = probability of sample at least as extreme as observed, **given** H_0

 α = significance level

- Calculate the p-value.
 - "at least as extreme" can mean "as large or larger", "as small or smaller", or "as far from expected in either direction".
- If *p*-value is small enough, we reject the null hypothesis. (This logic is similar to *reductio ad absurdum*.)

If p-value $< \alpha$ then reject H_0 If p-value $\ge \alpha$ then do not reject H_0

Single-sample proportion testing

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Right tail (one tail)

- H_0 claims $p = p_0$
- H_A claims $p > p_0$
- *p*-value = $P(Z > z_0)$

Left tail (one tail)

- H_0 claims $p = p_0$
- H_A claims $p < p_0$
- p-value = $P(Z < z_0)$

Two tail

- H_0 claims $p = p_0$
- H_A claims $p \neq p_0$
- p-value = $P(|Z| > |z_0|)$

Single-sample mean testing, σ known

$$z_0 = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Right tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu > \mu_0$
- p-value = $P(Z > z_0)$

Left tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu < \mu_0$
- p-value = $P(Z < z_0)$

Two tail

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu \neq \mu_0$
- p-value = $P(|Z| > |z_0|)$

Single-sample mean testing, σ unknown

$$t_0 = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

Right tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu > \mu_0$
- p-value = $P(T > t_0)$

Left tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu < \mu_0$
- p-value = $P(T < t_0)$

Two tail

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu \neq \mu_0$
- p-value = $P(|T| > |t_0|)$