Resuleva los siguientes ejercicios sin usar tablas de verdad:

Ejercicio 1: Demuestre que $p \wedge (p \rightarrow \neg p)$ es insatisfacible.

Ejercicio 2: Demuestre que $p \to (\neg p \to q)$ es válida.

Ejercicio 3: Demuestre que $p \land (q \rightarrow \neg p)$ es contingente.

En los siguientes ejercicios, asuma que A y B son fórmulas arbitrarias y que $U = \{A_1, \ldots, A_n\}$ es un conjunto finito de fórmulas.

Ejercicio 4: Demuestre que si A no es válida, entonces A es falseable.

Ejercicio 5: Demuestre o refute: Si A es falseable, entonces A es insatisfacible.

Ejercicio 6: Sea A una fórmula. Demuestre que A es válida sii $\neg A$ es insatisfacible.

EJERCICIO 7: Demuestre que $U = \{p \to (r \lor t), r \to (s \land \neg s), t \lor s, t \to r\}$ es satisfacible.

Ejercicio 8: Demuestre que $U = \{p, \neg p\}$ es insatisfacible.

Ejercicio 9: Demuestre o refute las siguientes proposiciones:

- a. Si U es satisfacible, entonces $U \{A_i\}$ es satisfacible, para cualquier $i = 1, \ldots, n$.
- b. Si U es satisfacible y B es válida, entonces $U \cup \{B\}$ es satisfacible.
- c. Si U es insatisfacible, entonces $U \cup \{B\}$ es insatisfacible para cualquier fórmula B.

