ADVANCED MATHEMATICS Functions (Adv), F2 Graphing (Adv) **Non-Calculus Graphing (Y12)**

Transformations (Y12)

Teacher: Cathyanne Horvat

Exam Equivalent Time: 60 minutes (based on allocation of 1.5 minutes per mark)

F2 Graphing

HISTORICAL CONTRIBUTION

• F2 Graphing Techniques has contributed an average of 4.0% per Adv exam since the new syllabus was introduced in 2020.

Advanced Maths exams since 2020.

- We have split the topic into 2 categories for analysis purposes: 1-Transformations (2.7%) and 2-Non-Calculus Graphing (1.3%).
- This analysis looks at Transformations.

HSC ANALYSIS - What to expect and common pitfalls

- Transformations represents new syllabus content that explicitly looks at translations and dilations of several function types, including the introduction of the aforementioned terminology.
- The 2022 Adv exam required students to calculate translations and dilations in three separate steps. producing a mean mark of 51%. This question is on the back of 2021 Q21 which combined vertical and horizontal dilations and similarly caused problems with a 48% state mean mark. Revision attention here goes without saying.
- The NESA sample HSC exam, released in March 2020, has been instructive in developing this challenging database area. Pay careful attention to F2 EQ-Bank questions.
- There have been some examples in past HSC exams that looked at similar content. Please review of F2 2013 HSC 15c which proved very challenging for a majority of students.
- We note that Trig transformations, which we regard as an extremely important transformation sub-topic, are covered separately under T3 Trig Graphs.
- This topic area provides scope for examiners to ask both low and high difficulty questions, with a variety of underlying functions.

Questions

1. Functions, 2ADV F2 SM-Bank 9 MC

The graph of the function $f(x) = \frac{3x+2}{5-x}$, has asymptotes at

A.
$$x = -5, y = \frac{3}{2}$$

B.
$$x = \frac{2}{3}, y = -3$$

C.
$$x = 5, y = 3$$

D.
$$x = 5, y = -3$$

2. Functions, 2ADV' F2 2019 HSC 4 MC

The diagram shows the graph of y = f(x)

Which equation best describes the graph?

$$\mathsf{A.} \quad y = \frac{x}{x^2 - 1}$$

$$B. \quad y = \frac{x^2}{x^2 - 1}$$

$$\text{C.} \quad y = \frac{x}{1 - x^2}$$

D.
$$y=rac{x^2}{1-x^2}$$

3. Functions, 2ADV' F2 2015 HSC 5 MC

What are the asymptotes of $y=rac{3x}{(x+1)(x+2)}$

(A)
$$y = 0, \quad x = -1, \quad x = -2$$

(B)
$$y = 0, x = 1, x = 2$$

(C)
$$y = 3, \quad x = -1, \quad x = -2$$

(D)
$$y = 3, x = 1, x = 2$$

4. Functions, 2ADV F2 SM-Bank 8 MC

The transformation that maps the graph of $y=\sqrt{8x^3+1}$ onto the graph of $y=\sqrt{x^3+1}$ is a

- **A.** dilation by a factor of **2** from the y-axis.
- **B.** dilation by a factor of **2** from the x-axis.
- **C.** dilation by a factor of $\frac{1}{2}$ from the \boldsymbol{x} -axis.
- **D.** dilation by a factor of $\frac{1}{2}$ from the \boldsymbol{y} -axis.

	Draw the graph $y=\ln\!x$. (1 mark)
ii.	Explain how the above graph can be transformed to produce the graph $y = 3 \mathrm{ln}(x+2)$
	and sketch the graph, clearly identifying all intercepts. (3 marks)

5. Functions, 2ADV F2 SM-Bank 1

	$y=-rac{(x+2)^4}{3}$ has been produced by three successive transformations: a translation, a dilation and
	then a reflection. i. Describe each transformation and state the equation of the graph after each transformation. (2 marks)
Functions, 2ADV F1 SM-Bank 35	
i. Sketch the function $y=f(x)$ where $f(x)=\left(x-1 ight)^3$ on a number plane, labelling all intercepts. (1 mark)	
	ii. Sketch the graph. (1 mark)
ii. On the same graph, sketch $ extit{ } y = - extit{ } f(extit{ } - extit{ } x)$. Label all intercepts. (2 marks)	

7. Functions, 2ADV F2 EQ-Bank 16

8.	Functions, 2ADV' F2 2012 HSC 13b	
	i. Find the horizontal asymptote of the graph $y=rac{2x^2}{x^2+9}$. (1 mark)	
	ii. Without the use of calculus, sketch the graph $y=rac{2x^2}{x^2+9}$, showing the asymptote found in part (i). marks)	(2

9.	Functions, 2ADV F2 EQ-Bank 14	
		_

List a set of transformations that, when applied in order, would transform $y=x^2$ to the graph with equation $y=1-6x-x^2$. (3 marks)

10	Eupotione	2ADV F2 SM-Bank 16	
TU.	Functions.	ZADV FZ SIVI-Bank To	

Let
$$f(x)=x^2-4$$

Let the graph of g(x) be a transformation of the graph of f(x) where the transformations have been applied in the following order:

• dilation by a factor of $\frac{1}{2}$ from the vertical axis (parallel to the horizontal axis)

• translation by two units to the right (in the direction of the positive horizontal axis

Find $oldsymbol{g(x)}$	and the	e coordi	nates of	the hor	rizontal	axis int	ercepts	of the g	raph of	f $g(x)$.	(3 marks)

11. Functions, 2ADV F2 EQ-Bank 13

The curve $y = kx^2 + c$ is subject to the following transformations

- Translated 2 units in the positive ${\pmb x}$ -direction
- Dilated in the positive y-direction by a factor of 4
- Reflected in the ${\it y}$ -axis

	The final equation of the curve is $y = 8x^2 + 32x - 8$.
	i. Find the equation of the graph after the dilation. (1 mark)
i	i. Find the values of $m{k}$ and $m{c}$. (2 marks)
	(

12. Functions, 2ADV F2 SM-Bank 20

a. Sketch the graph of $y=1-\frac{2}{x-2}$ on the axes below. Label asymptotes with their equations and axis intercepts with their coordinates. (3 marks)

b. Find the values of x for which $1-\frac{2}{x-2}\geq 3$. (1 mark)

13. Functions, 2ADV F2 2021 HSC 21

Consider the graph of y = f(x) as shown.

Sketch the graph of y=4f(2x) showing the x-intercepts and the coordinates of the turning points. (2

14. Functions, 2ADV F2 2023 HSC 27

The graph of y = f(x), where f(x) = a|x-b| + c, passes through the points (3, -5), (6, 7) and (9, -5) as shown in the diagram.

a. Find the values of $\boldsymbol{a},\boldsymbol{b}$ and \boldsymbol{c} . (3 marks)

b	. The line $ extbf{ extit{y}} = extbf{ extit{mx}}$ cuts the graph of $ extbf{ extit{y}} = extbf{ extit{f}}(extbf{ extit{x}})$ in two distinct places.
	Find all possible values of m . (2 marks)

15. Functions, 2ADV F2 2013 HSC 15c
i. Sketch the graph $ ext{ } y = ext{ } 2x - 3 ext{ } $. (1 mark)
ii. Using the graph from part (i), or otherwise, find all values of m for which the equation $ 2x-3 =mx+1$ has exactly one solution. (2 marks)

1. Functions, 2ADV F2 SM-Bank 9 MC

$$f(x) = \frac{3x + 2}{5 - x}$$

$$= \frac{-(15 - 3x) + 17}{5 - x}$$

$$= -3 + \frac{17}{5 - x}$$

 $\begin{array}{ll} \mbox{Vertical asymptote:} \;\; x=5 \\ \mbox{Horizontal asymptote:} \;\; y=-3 \\ \Rightarrow D \end{array}$

2. Functions, 2ADV' F2 2019 HSC 4 MC

By elimination:

Graph is an even function

$$\Rightarrow f(x) = f(-x)$$

: Eliminate A and C

When
$$-1 < x < 1, y \le 0$$

$$\therefore$$
 Eliminate D

$$\Rightarrow B$$

3. Functions, 2ADV' F2 2015 HSC 5 MC

$$y=\frac{3x}{(x+1)(x+2)}$$

Asymptotes at x = -1 and x = -2

As
$$x \to \infty, y \to 0^+$$

As
$$x o -\infty, y o 0^-$$

$$\therefore$$
 Horizontal asymptote at $y=0$

$$\Rightarrow A$$

4. Functions, 2ADV F2 SM-Bank 8 MC

Let
$$f(x) = \sqrt{8x^3 + 1}$$

$$f\left(\frac{1}{2}x\right) = \sqrt{8\left(\frac{1}{2}x\right)^3 + 1}$$

$$= \sqrt{x^3 + 1}$$

- ... Transformation correct when x is swapped for $\frac{x}{2}$ i.e. graph is dilated by factor of 2 from y-axis $\Rightarrow A$
- 5. Functions, 2ADV F2 SM-Bank 1

i.

ii. Transforming $y = \ln x \Rightarrow y = \ln(x+2)$ $y = \ln x \Rightarrow \text{ shift 2 units to left.}$

Transforming $y = \ln(x+2)$ to $y = 3\ln(x+2)$ \Rightarrow increase each y value by a factor of 3

- 6. Functions, 2ADV F1 SM-Bank 35
- i. $y = (x-1)^3 \Rightarrow y = x^3$ shifted 1 unit to the right.

ii. $y = -f(x) \Rightarrow \text{reflect } y = (x-1)^3 \text{ in } x\text{-axis.}$ $y = -f(-x) \Rightarrow \text{reflect } y = -f(x) \text{ in } y\text{-axis.}$

7. Functions, 2ADV F2 EQ-Bank 16

i. Transformation 1:

Translate $y = x^4$ 2 units to the left.

$$y = x^4 \Rightarrow y = (x+2)^4$$

Transformation 2:

Dilate $y = (x+2)^4$ by a factor of $\frac{1}{3}$ from the x-axis

$$y = (x+2)^4 \Rightarrow y = \frac{(x+2)^4}{3}$$

Transformation 3:

Reflect $y = \frac{(x+2)^4}{3}$ in the x-axis.

$$y = \frac{(x+2)^4}{3} \Rightarrow y = -\frac{(x+2)^4}{3}$$

ii.

8. Functions, 2ADV' F2 2012 HSC 13b

i.
$$y = \frac{2x^2}{x^2 + 9}$$

$$= \frac{2}{1 + \frac{9}{x^2}}$$

As
$$x \to \infty$$
, $y \to 2$

As
$$x \to -\infty$$
, $y \to 2$

 \therefore Horizontal asymptote at y=2

ii. At
$$x = 0, y = 0$$

$$f(x)=rac{2x^2}{x^2+9}\geq 0 ext{ for all } x$$

$$f(-x) = rac{2(-x)^2}{\left(-x
ight)^2 + 9} = rac{2x^2}{x^2 + 9} = f(x)$$

Since $f(x) = f(-x) \Rightarrow \text{EVEN function}$

9. Functions, 2ADV F2 EQ-Bank 14

$$y = x^2$$

Transformation 1:

Translate 3 units in negative x-direction

$$y=(x+3)^2$$

$$y = x^2 + 6x + 9$$

Transformation 2:

Translate 10 units in negative y-direction

$$y = x^2 + 6x - 1$$

Transformation 3:

Reflect in the x-axis

$$y = - \left(x^2 + 6x - 1\right)$$

$$= 1 - 6x - x^2$$

10. Functions, 2ADV F2 SM-Bank 16

1st transformation

Dilation by a factor of $\frac{1}{2}$ from the y-axis:

$$x^2-4 \Rightarrow \left(\frac{x}{\frac{1}{2}}\right)^2-4=4x^2-4$$

2nd transformation

Translation by 2 units to the right:

$$4x^2-4 \Rightarrow g(x) = 4(x-2)^2-4$$

x-axis intercept of g(x):

$$4(x-2)^2 - 4 = 0$$

$$(x-2)^2=1$$

$$x-2=\pm 1$$

$$x-2=1 \Rightarrow x=3$$

$$x-2=-1 \Rightarrow x=1$$

 \therefore Horizontal axis intercepts occur at (1,0) and (3,0).

11. Functions, 2ADV F2 EQ-Bank 13

i.
$$y = kx^2 + c$$

Translate 2 units in positive x-direction.

$$y = kx^2 + c \implies y = k(x-2)^2 + c$$

Dilate in the positive y-direction by a factor of 4.

$$y = k(x-2)^2 + c \implies y = 4k(x-2)^2 + 4c$$

ii.
$$y = 4k(x^2-4x+4) + 4c$$

= $4kx^2-16kx+16k+4c$

Reflect in the y-axis.

$$\Rightarrow$$
 Swap: $x \rightarrow -x$

$$y = 4k(-x)^2 - 16k(-x) + 16k + 4c$$

= $4kx^2 + 16kx + 16k + 4c$

Equating co-efficients:

$$4k = 8$$

$$\therefore k=2$$

$$16k + 4c = -8$$

$$4c = -40$$

$$\therefore c = -10$$

COMMENT: Using "swap" terminology for reflections in the y-axis is simpler and more intelligible for students in our view.

12. Functions, 2ADV F2 SM-Bank 20

a. Asymptotes:

$$x = 2$$

As
$$x \to \pm \infty$$
, $y \to 1 \Rightarrow$ Asymptote at $y = 1$

y-intercept at (0,2)

x-intercept at (4,0)

b. By inspection of the graph:

$$1-rac{2}{x-2}\geq 3 \ \ ext{for} \ \ x\in [1,2)$$

13. Functions, 2ADV F2 2021 HSC 21

♦ Mean mark 48%.

14. Functions, 2ADV F2 2023 HSC 27

a. Consider the transformation of y = -|x|

Translate 6 units to the right

$$y = -|x| \rightarrow y = -|x-6|$$
$$\therefore b = 6$$

Translate 7 units vertically up

$$y = -|x-6| \rightarrow y = -|x-6| + 7$$

$$\therefore c = 7$$

$$f(x) = a |x - 6| + 7$$
 passes through $(3, -5)$:

$$-5 = a |3 - 6| + 7$$

$$-5 = 3a + 7$$

$$3a = -12$$

$$\therefore a = -4$$

11 (0.0)

♦♦♦ Mean mark (b) 23%.

b. y = mx passes through (0,0)

One solution when y = mx passes through (0, 0) and (6, 7)

$$m = \frac{7-0}{6-0} = \frac{7}{6}$$

As graph gets flatter and turns negative \Rightarrow 2 solutions

2 solutions continue until y = mx is parallel to

the line joining (6,7) to (9,-5), where:

$$m = \frac{7 - (-5)}{6 - 9} = -\frac{12}{3} = -4$$

 \therefore 2 solutions when -4 < m < 7/6

15. Functions, 2ADV F2 2013 HSC 15c

♦ Mean mark 49%

MARKER'S COMMENT: Many students drew diagrams that were "too small", didn't use rulers or didn't use a consistent scale on the axes! Copyright © 2016-2024 M2 Mathematics Pty Ltd (SmarterMaths.com.au)

II.

Line of intersection y = mx + 1 passes through (0,1)If it also passes through $(1.5,0) \Rightarrow 1$ solution

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{1 - 0}{0 - \frac{3}{2}}$$
$$= -\frac{2}{2}$$

Gradients of y = |2x-3| are 2 or -2

Considering a line through (0,1):

If $m \geq 2$, only intersects once.

Similarly,

If m < -2, only intersects once.

$$\therefore$$
 Only one solution when $m=-\frac{2}{3}, m\geq 2$ or $m<-2$

♦♦ Mean mark 25%.

COMMENT: Students need a clear graphical understanding of what they are finding to solve this very challenging, Band 6 question.