

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Matemática

Lista 01 - REVISÃO

Dados de Identificação	
Professor:	Matheus Pimenta
Disciplina:	Cálculo Diferencial e Integral II - 1MAT180
Aluno:	

Observação: Confirme as respostas, você pode chegar em uma outra forma de apresentação das respostas.

1. Resolva:

(a) Determine o coeficiente angular da reta tangente ao gráfico da função $f(x) = -3x^2 +$ 2x, no ponto P(2, f(2)).

R: -10

(b) Determine o coeficiente angular da reta tangente ao gráfico da função $f(x) = \sqrt{x}$ no ponto P(1,1).

R: $\frac{1}{2}$

(c) Determine a equação da reta tangente ao gráfico da função $f(x) = 3x^2 - 5x + 1$ no ponto P(2,3)

R: y = 7x - 11

- (d) Um ponto em movimento obedece a eugação horária $S = t^2 + 3t$. Determine a velocidade do móvel no instante t = 4s, nas unidades S em metros e t em segundos. **R**: $v(t_0) = S'(t_0) = 11m/s$
- (e) Um móvel se desloca segundo a função horária $S = t^3 + t^2 + t$. Determine a aceleração do móvel no instante t = 1s. As unidades são as mesmas do item anterior.

R: $a(t_0) = 8m/s^2$

- 2. Utilizando as propriedades operatórias e as regras de derivação, calcule as derivadas das função abaixo:
 - (a) $f(x) = 5x^3 2x^2 + x 4$

R: $f'(x) = 15x^2 - 4x + 1$

(b) $f(x) = x^4 - \frac{2}{x^3} - \frac{8}{x} + 2$ $\mathbf{R}: f'(x) = 4x^3 + \frac{6}{x^4} + \frac{8}{x^2}$

(c) $f(x) = (5x - 2)^6 (3x - 1)^3$

R: $f'(x) = (5x - 2)^5(3x - 1)^2(135x - 48)$

(d)
$$f(x) = \sqrt[3]{(3x^2 + 6x - 2)^2}$$

 $\mathbf{R} : f'(x) = \frac{4(x+1)}{\sqrt[3]{3x^2 + 6x - 2}}$

(e)
$$f(x) = \frac{a + \sqrt{x}}{a - \sqrt{x}}$$

$$\mathbf{R} \colon f'(x) = \frac{a}{\sqrt{x}(a - \sqrt{x})^2}$$

(f)
$$f(r) = \sqrt{\frac{1+r}{1-r}}$$

R: $f'(r) = \frac{1}{(1-r)^2 \sqrt{\frac{1+r}{1-r}}}$

(g)
$$f(x) = x^3 \sqrt[4]{x^3}$$

R: $f'(x) = \frac{15}{4} x^2 \sqrt[4]{x^3}$

(h)
$$f(x) = \frac{1 + \cos(x)}{1 - \cos(x)}$$

 $\mathbf{R} : f'(x) = \frac{-2\sin(x)}{(1 - \cos(x))^2}$

(i)
$$f(x) = \frac{2 - \sin(x)}{2 + \cos(x)}$$

R: $f'(x) = \frac{2\sin(x) - 2\cos(x) - 1}{(2 + \cos(x))^2}$

(j)
$$f(x) = \frac{e^x}{\ln(x)}$$

R: $f'(x) = \frac{xe^x \ln(x) - e^x}{x(\ln(x))^2}$

(k)
$$f(x) = \log_e \left(\frac{a+x}{a-x}\right)$$

R: $f'(x) = \frac{2a}{a^2 - x^2}$

(1)
$$f(x) = (x^3 - 2x)^{\ln(x)}$$

 $\mathbf{R}: f'(x) = (x^3 - 2x)^{\ln(x)} \left[\left(\frac{3x^2 - 2}{x^3 - 2x} \right) \ln(x) + \frac{1}{x} \ln(x^3 - 2x) \right]$

(m)
$$f(x) = (\sin(x))^{\cos(x)}$$

R: $f'(x) = (\sin(x))^{\cos(x)} \left(-\sin(x) \ln(\sin(x)) + \frac{\cos^2(x)}{\sin(x)} \right)$

(n)
$$f(x) = e^{\sin^3(x^w)}$$

R: $f'(x) = 6xe^{\sin^3(x^2)}\sin^2(x^2)\cos(x^2)$

(o)
$$f(x) = \sqrt{4 + \csc^2(3x)}$$

$$\mathbf{R} \colon f'(x) = \frac{-3\operatorname{cossec}^2(3x)\operatorname{cotg}(3x)}{\sqrt{4 + \operatorname{cossec}^2(3x)}}$$

(p)
$$f(x) = \ln\left(\sqrt{\frac{1+\sin(x)}{1-\sin(x)}}\right)$$

R: $f'(x) = \sec(x)$

3. Determine a derivada de segunda ordem das seguintes funções:

(a)
$$y = \ln(x + \sqrt{a^2 + x^2})$$

R: $y'' = \frac{-x}{\sqrt{(a^2 + x^2)^3}}$

(b)
$$y = \ln(\sqrt[3]{1+x^2})$$

R: $y'' = \frac{2(1-x^2)}{3(1+x^2)^2}$

(c)
$$y = e^{x^2}$$

R: $y'' = e^{x^2}(4x^2 + 2)$

(d)
$$y = (1 + x^2) \operatorname{arctg}(x)$$

R: $y'' = 2 \operatorname{arctg}(x) + \frac{2x}{1 + x^2}$

(e)
$$y = (\arcsin(x))^2$$

R: $y'' = \frac{2}{1 - x^2} + \frac{2x\arcsin(x)}{(1 - x^2)^{\frac{3}{2}}}$

4. Expresse $\frac{\partial y}{\partial x}$ em termos de x e y, onde y = y(x), é uma função derivável dada implicitamente pela equação:

(a)
$$e^{y} + \ln(y) = x$$

R: $\frac{\partial y}{\partial x} = \frac{1}{e^{y} + \frac{1}{y}}$

(b)
$$xy + x - 2y = 1$$

R: $\frac{\partial y}{\partial x} = -\frac{y+1}{x-2}$

(c)
$$2y + \sin(y) = x$$

R: $\frac{\partial y}{\partial x} = \frac{1}{2 + \cos(y)}$

(d)
$$5y + \cos(y) = xy$$

$$\mathbf{R:} \quad \frac{\partial y}{\partial x} = \frac{y}{5 - \sin(y) - x}$$

5. Determine a derivada de ordem 123 da função $y = \sin(x)$. **R:** $y^{(123)} = -\cos(x)$

6. Demonstre que a função $y = \frac{1}{2}x^2e^x$, satisfaz a equação diferencial $y'' - 2y' + y = e^x$.

7. Um retângulo de dimensões $x \in y$ tem perímetro 2a (a é constante dada). Determinar xe y para que a sua área seja máxima. \mathbf{R} : $x=y=\frac{a}{2}$

R:
$$x = y = \frac{a}{2}$$

8. A prefeitura de um município pretende construir um parque retangular, com área de $3600m^2$ e pretende protegê-lo com uma cerca. Que dimensões devem ter o parque para que o comprimento da cerca seja mínimo?

R: 60m

9. Estima-se que daqui a t anos, a circulação de um jornal será $C(t) = 100t^2 + 400t + 5000$.

(a) Encontre uma expressão para a taxa de variação da circulação com o tempo daqui a t anos.

R:
$$C'(t) = 200t + 400$$

(b) Qual será a taxa de variação da circulação com o tempo daqui a 5 anos? Nessa ocasião a circulação está aumentando ou diminuindo?

R: C'(5) = 1400, aumentando

(c) Qual será a variação da circulação durante o sexto ano?

R: 1500 exemplares

10. Utilizando a regra de L'Hôpital calcule os limites abaixo:

(a)
$$\lim_{\substack{x \to 1 \\ \mathbf{R}: 1}} \frac{\ln(x)}{x - 1}$$

(b)
$$\lim_{\substack{x \to \infty \\ \mathbf{R} \colon 0}} e^x \ln(x)$$

(c)
$$\lim_{\substack{x \to \infty \\ \mathbf{R}: +\infty}} \frac{e^x}{x^2}$$

(d)
$$\lim_{x \to 0} \frac{2x}{e^x - 1}$$
R: 2

(e)
$$\lim_{x \to 0} \frac{\tan(x) - x}{x^3}$$
R:
$$\frac{1}{3}$$

(f)
$$\lim_{x \to 0} \frac{\sin(x) - x}{\tan(x) - x}$$

$$\mathbf{R:} \quad -\frac{1}{2}$$

11. Estude as funções abaixo.

Dica: verifique os pontos de descontinuidade, interseção do gráfico com os eixos, comportamento no infinito, crescimento ou decrescimento, a concavidade, pontos de inflexão, os gráficos e os extremantes.

(a)
$$f(x) = 2x^3 - 6x$$

(b)
$$f(x) = (x-2)^2$$

(c)
$$f(x) = 4x^3 - x^2 - 24x - 1$$

(d)
$$f(x) = \frac{x+1}{x-3}$$

(e)
$$f(x) = 3x^4 + 4x^3 + 6x^2 - 4$$

(f)
$$f(x) = xe^x$$