Вопрос №1.13

Понятие аппроксимации, устойчивости и сходимости численного решения ДУЧП. Основные методы анализа устойчивости разностных схем (модельное уравнение, дифференциальное приближение, метод фон Неймана).

1 Понятие аппроксимации, устойчивости и сходимости численного решения ДУЧП

Пусть имеется область $G \subset \mathbb{R}^p$ с границей Γ и поставлена корректная задача для дифференциального уравнения с граничными условиями:

$$Au(x) - f(x) = 0,$$
 $x \in G,$
 $Ru(x) - \mu(x) = 0,$ $x \in \Gamma.$

Введем в области $G \cup \Gamma$ сетку с шагом h, состоящую из множества внутренних (регулярных) узлов ω_h и множества граничных (нерегулярных) узлов γ_h . Заменим исходную задачу разностным аналогом:

$$A_h u_h(x) - f_h(x) = 0, x \in \omega_h,$$

$$R_h u_h(x) - \mu_h(x) = 0, x \in \gamma_h.$$

Близость разностной схемы к исходной задаче будем определять по величине невязки:

$$\psi_h(x) = (Au - f) - (A_h u - f_h), \qquad x \in \omega_h,$$

 $\nu_h(x) = (Ru - \mu) - (R_h u - \mu_h), \qquad x \in \gamma_h.$

Разностное решение u_h сходится к точному решению u, если $||u_h - u|| \to 0$ при $h \to 0$; разностное решение имеет порядок точности p, если $||u_h - u|| = O(h^p)$ при $h \to 0$.

Разностная схема аппроксимирует задачу, если $||\psi_h|| \to 0$, $||\nu_h|| \to 0$, при $h \to 0$; аппроксимация имеет порядок p, если $||\psi_h|| = O(h^p)$, $||\nu_h|| = O(h^p)$, при $h \to 0$.

Разностная схема устойчива, если решение системы разностных уравнений непрерывно зависит от входных параметров f и μ , причем равномерно по h.

Разностная схема корректна, если она устойчива и ее решение существует и единств енно при любых f и μ из некоторого класса функций.

Теорема. Если решение задачи существует, разностная схема корректна и аппроксимирует задачу на данном решении, то разностное решение сходится к точному.

2 Основные методы анализа устойчивости разностных схем

2.1Модельное уравнение

Разностные схемы удобно исследовать на простых уравнениях, точные решения которых известны: $u'=0 \Rightarrow u=C, u'=\lambda u \Rightarrow u=u_0e^{\lambda x}$

2.2Дифференциальное приближение

Переходя от точного уравнения Au-f=0 к приближенному $A_hu_h-f_h=0$ 0, мы вносим ошибку, поскольку на самом деле $A_h u_h - f_h = O(h)$. Оценив O(h), можно получить истинное приближаемое уравнение.

Пример:
$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} = 0$$

Разностный аналог: $\frac{T_i^{n+1} - T_i^n}{\Delta t} - u \frac{T_i^{n} - T_{i-1}^n}{\Delta x} = 0$ Разложим T_i^{n+1} и T_{i-1}^n в ряд Тейлора и подставим. Получилось: $(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x})_i^n + 0.5 (\frac{\partial^2 T}{\partial t^2})_i^n \Delta t - 0.5 u (\frac{\partial^2 T}{\partial x^2})_i^n \Delta x + o(\Delta x, \Delta t) = 0$ Это и есть наиболее точно приближаемое уравнение.

2.3Метод фон Неймана

(Он же спектральный признак устойчивости.)

В разностной схеме $A_h u_h - f_h = 0$ рассматривается однородное уравнение $A_h u_h = 0$, и каждое вхождения значения функции в узле сетки $u_{x=x_n}^{t=t_m}$ заменяется на $\lambda^m e^{in\alpha}$. Из полученного уравнения находится λ . Если $|\lambda| \leq 1$, то схема считается устойчивой.

 λ — множитель перехода гармоники с одного временного слоя на другой. Условие $|\lambda| < 1$ обеспечивает невозрастание накопленной ошибки.