Demonstration of basic RibOxi-seq concept

Position correspond to site of 2'-OMe

RNA structure after 3' and 5' linker ligations

```
5'-/Biosg/ACACUCUUUCCCUACACGACGCUCUUCCGAUCUNNNN-----insert-----ATCACGCTGTAGGCACCATCAATGACAG/SpC3/- 3'
```

cDNA library structure

Randomer for deduplication

3'-linker sequence

3'-TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGANNNN----insert----TAGTGCGACATCCGTGGTAGTTACTGTCTAGCCTTCTCGTGTGCAGACTTGAGGTCAGTG-5

Complementary to partial Illumina i5 PCR primer

In-line barcode for filtering out RT mis-priming

Identical to partial Illumina i7 PCR primer

dsDNA library structure

Forward	5'-Illumina_i5_adapterNNNNinsertATCACGCTGTAGGCACCATCAATGACIllumina_i7_adapter-3	3 '
Reverse	3'-Illumina_i5_adapterNNNNinsertTAGTGCGACATCCGTGGTAGTTACTGIllumina_i7_adapter-	5'

Sequencing Output (example using 1*150 single-end sequencing)

Read:

1. cutadapt used to remove partial linker sequence and read-through adapters, discarding reads without match: Read output:

```
@ Sequence_identifier+i7_index+i5_index
NNNN----INSERT----ATCACG
+
_QUALITY_OF_THE_READ____
```

2. *move_umi.py* moves randomer sequence from read to read-identifier:

```
@ Sequence_identifier_NNNN+i7_index+i5_index
INSERT----ATCACG
+
_OF_THE_READ____
```

3. *cutadapt* used to remove the barcode portion of linker and discard any read without a perfect match:

```
@ Sequence_identifier_NNNN+i7_index+i5_index
INSERT
+
_OF_TH
```

4. STAR alignment to genome of interest

5. *samtools* indexing the bam output

6. umi_tools deduplication:

Example aligned read #1:

UMI: AATC

Sequence: GGTTACG

Example aligned read #2:

UMI:CGTA

Sequence: GGTTACG

Example aligned read #1:

UMI: AATC

Sequence: GGTTACG

Example aligned read #2:

UMI: AATC

Sequence: GGTTACG

Duplicates, keep only 1 copy

7. bedtools converts deduplicated bam to bed file format

Not duplicates

8. genomecov generates genome coverage track of 3'-end only to visualize Nm sites on genome browser

9. riboxi_bed_parsing.py counts all 3'-end alignments and generates a tab delimited file listing chromosome number, base position, gene name and counts from the bed file:

chr	base	gene	WT5_R	DK03	DK03_R	WT5
chr1	13236	DDX11L1	Θ	1	Θ	Θ
chr1	13238	DDX11L1	Θ	Θ	Θ	1
chr1	14405	WASH7P	Θ	5	Θ	1
chr1	14406	WASH7P	Θ	3	Θ	Θ
chr1	14408	WASH7P	Θ	1	Θ	1
chr1	14409	WASH7P	Θ	1	Θ	Θ
chr1	14413	WASH7P	Θ	1	Θ	1
						-

10. The shinyapp allows more interactive interrogation of data such as filtering and visualization on the fly:

