ADC&SERIAL MULH

목차

- 1. ADC(Analog to Digital Converter)
- 2. 단극성 입력
- 3. 차동 입력
- 4. ADC Register
- 5. Serial 통신
- 6. 프로토콜
- 7. 동기/비동기 통신

- 8. Max3232/rs-232
- 9. USART 레지스터
- 10.volatile 변수
- 11.회로도
- 12. 구동영상

ADC(Analog to Digital Converter)

ADC는 아날로그 신호를 디지털 신호로 변환하는 소자이다.

전류, 전압, 온도, 습도, 압력, 속도, 가속도 등과 같은 아날로그 물리량을 측정하여 디지털 값으로 변환하고 컴퓨터로 제어 또는 분석할 수 있다.

ADC(Analog to Digital Converter)

ADC의 특징

- 10-bit 분해능
- 13~260us의 변환시간
- 8개의 단극성 입력 채널
- 22개의 차동입력
- 차동입력에서 10배~200배의 증폭 A/D가능
- 선택 가능한 2.56 내부 기준전압
- 포트F는 아날로그 비교기 기능으로도 사용 가능

ADC(Analog to Digital Converter)

ADC 순서

단극성 입력

- 신호선과 접지선의 전위차를 구하여 신호원의 전압을 측정하는 방법입니다.
- 잡음에 쉽게 영향을 받는 단점이 있습니다.

A/D 변환 결과

$$ADC = \frac{V_{IN} \cdot 1024}{V_{REF}}$$

- V_IN: 멀티플렉서로 선택된 단극성 아 날로그 입력전압
- V_REF: 선택된 기준전압
- 10비트 양의정수:
 0(0x0000)~1023(0x03FF)

차동입력

- 신호 소스의 전압을 측정하기 위해 두개의 신호 와이어와 하나의 접지 와이어를 사용합니다.
- 신호 소스 전위(A-B)는 접지와 지점 A 사이 및 접지와 지점 B 사이의 전위차를 측정합니다
- 잡음에 쉽게 영향을 받지 않는 장점이 있습니다.

A/D 변환 결과

$$ADC = \frac{(V_{POS} - V_{NEG}) \cdot GAIN \cdot 512}{V_{REF}}$$

- V_POS/V_NEG : 멀티플렉서로 선택된 차동 아날로그 입력의 양 극성/음극성 단자 전압
- GAIN: 아날로그 전압의 이득
- 10비트 2의 보수법
 -512(0x0200) ~ 511(0x01FF)

ADC Register

ADMUX(ADC Multiplexer Selection Register)

Bit	7	6	5	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	

Bit 7:6

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal Vref turned off
0	1	AVCC with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin

외부 AREF를 기준전압으로 사용 외부 AVCC를 기준전압으로 사용

내부 2.56V를 기준전압으로 사용

ADC DATA Register = ADCH+ADCL

Bit 5

	15	14	13	12	11	10	9	8		
	-	-	-	-	-	-	ADC9	ADC8	ADCH	ADLAR = 0 우측 정렬
	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL	, 13 E
	7	6	5	4	3	2	1	0		
	15	14	13	12	11	10	9	8	_	
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH	ADLAR = 1 좌측 정렬
	ADC1	ADC0	-	-	-	-	-	-	ADCL	7,00 m 1 - 1 0 E
-	7	6	5	4	3	2	1	0	•	

ADC Register

ADMUX(ADC Multiplexer Selection Register)

Bit	7	6	5	4	3	2	1	0	
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

<Bits 4:0 MUX4:0 단극성 입력 채널, 차동 입력 채널 설정 비트>

Table 98. Input Channel and Gain Selections

MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
00000	ADC0			
00001	ADC1			
00010	ADC2			
00011	ADC3	N/A		
00100	ADC4			
00101	ADC5			
00110	ADC6			
00111	ADC7			
01000(1)		ADC0	ADC0	10x
01001		ADC1	ADC0	10x
01010(1)		ADC0	ADC0	200x
01011		ADC1	ADC0	200x
01100		ADC2	ADC2	10x
01101	N/A	ADC3	ADC2	10x
01110	NA	ADC2	ADC2	200x
01111		ADC3	ADC2	200x
10000		ADC0	ADC1	1x
10001		ADC1	ADC1	1x

11111	0V (GND)			
11110	1.23V (V _{BG})	N/A		
11101	Ţ.	ADC5	ADC2	1x
11100		ADC4	ADC2	1x
11011		ADC3	ADC2	1x
11010		ADC2	ADC2	1x
11001		ADC1	ADC2	1x
11000		ADC0	ADC2	1x
10111	N/A	ADC7	ADC1	1x
10110		ADC6	ADC1	1x
10101		ADC5	ADC1	1x
10100		ADC4	ADC1	1x
10011		ADC3	ADC1	1x
10010		ADC2	ADC1	1x

ADC Register

ADCSRA(ADC Control and Status Register A)

Bit	7	6	5	4	3	2	1	0	_
	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- 비트 7 : ADEN(ADC Enable)는 ADC 활성화 비트
- 비트 6 : ADSC(ADC Start Conversion)는 A/D 변환 시작 비트
- 비트 5 : ADFR(ADC Free Running select)는 연속 모드 A/D 변환
- 비트 4: ADIF(ADC Interrupt Flag)는 A/D 변환이 완료 비트
- 비트 3: ADIE(ADC Interrupt Enable)는 A/D 변환 인터럽트 활성화 비트
- 비트 2~0: ADPS2~0(ADC Prescaler Select 2~0)는 프리스케일러 설정 비트

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Serial 통신

- ▶하나의 신호선을 통하여 데이터를 전달하 는 통신 방법
- ▶USART : 직렬 통신 방법으로 데이터를 전 달하는 장치
- ▶규약에 따라 데이터를 구성하여 전달하고 해석 해야 함 (프로토콜)

USART 연결 방법

프로토콜(Protocol)

컴퓨터나 원거리 통신 장비 사이에서 메시지를 주고 받는 양식과 규칙의 체계


```
St시작비트, 반드시 Low(n)데이터 비트(0~8)P패리티 비트(홀수 or 짝수)Sp정지 비트, 반드시 HighIDLE통신 라인(RxD, TxD)에 데이터가 전송되지 않음, 항상 High[]옵션
```

동기/비동기 통신

동기 통신 비동기 통신

- 동기 모드는 데이터 동기화를 위해 별 도의 클럭 신호를 전송한다.
- 하강엣지에서 데이터를 취하면 되기 때문에 비트 구분이 쉽다.
- 별도의 클럭을 사용하지 않고 데이터를 송수신한다.
- 시작비트와 정지비트로 데이터를 확인한다.

MAX3232/RS-232

- 1. MAX3232는 +3.3V 또는 +5V로 동작하는 RS-232 트랜시버 IC이다.
- 2. RS-232는 시리얼 통신 방식이다.
 - 전 이중 방식의 통신을 지원

- 232통신은 기본적인 통신 레벨이 -15V~+15V의 전위를 가지고 통신을 하 게 된다.
- 하지만 atmega128에서 출력되는 전압 의 레벨은 0V~5V의 전위를 가지기 때 문에 바로 직렬 통신을 할 수 없다.
- 따라서 atmega128에서 출력된 직렬통 신 신호를 MAX3232칩이 전압을 증폭 시켜 통신하고 다시 감소시켜 전송한다.

➤ USARTn 입출력 데이터 레지스터 : UDRn

-UDRn에 데이터를 쓰면 이는 TXBn에 저장 -UDRn을 읽으면 RXBn에 저장된 데이터가 읽힘

➤ USARTn 제어 및 상태 레지스터 A : UCSRnA

RXCn (Receive Complete): 수신 버퍼에 읽히지 않은 수신 문자가 있으면 1, 읽은 경우 0으로 클리어 되고, 1로 세트 되는 경우 수신완료 인터럽트를 요청한다.

TXCn (Transmit Complete) : 송신 버퍼에 아직 새로운 송신문자가 기록되지 않은 경우 1로 세트되고, 이 경우 송신완료인터럽트를 요청한다.

UDREn (Usart Data Register Empty): UDRn의 송신 버퍼가 비어있어 받을 준비가 되어있으면 1로 세트되고, 이 경우에 준비완료 인터럽트를 요청한다.

FEn (Frame Error) : UDR에 있는 문자를 수신하는 동안에 첫번째 스톱 비트가 0으로 검출되는 프레임 에러가 발생함을 나타내며, 플랙 비트이다.

DORn (Data Overrun Error) : 수신동작에서 읽지 않은 문자가 있는데 다음 수신이 이루어지면 알려주는 플랙비트. UPEn (Usart Parity Error) : 수신 버퍼의 패리티에 에러가 있다는 것을 알려주는 플랙비트.

U2Xn (Usart 2 transmission speed): 비동기에서만 유효하며, 1로 세트하면 분주를 반으로 낮춰 2배로 가속한다. MPCMn (Multi-processor Communication Mode): 1로 세트하면 멀티 프로세서 통신모드로 설정한다.

➤ USARTn 제어 및 상태 레지스터 B : UCSRnB

비트	7	6	5	4	3	2	1	0
	RXCIEn	TXCIEn	UDRIEn	RXENn	TXENn	UCSZn2	RXB8n	TXB8n
읽기/쓰기	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
초기값	0	0	0	0	0	0	0	0

RXCIEn (RX Complete Interrupt Enable): 수신완료 인터럽트 허용

TXCIEn (TX Complete Interrupt Enable) : 송신완료 인터럽트 허용

UDRIE (UDR empty Interrupt Enable) : 송신 데이터 레지스터 준비완료 인터럽트 허용

RXENn (RX ENable) : 1로 세트하면 USART용 수신단자를 허용한다.

TXENn (TX ENable) : 1로 세트하면 USART용 송신단자를 허용한다. 클리어 하더라도 완료될때 까지는 송신단자로 동작.

UCSZn2 (Usart Character SiZe) : 전송 문자의 데이터 비트수 설정.

RXB8n (RX data Bit 8): 전송문자가 9비트로 설정된 경우 수신된 문자의 9번째 비트를 저장한다.

TXB8n (TX data Bit 8): 전송문자가 9비트로 설정된 경우 송신할 문자의 9번째 비트를 저장한다.

➤ USARTn 제어 및 상태 레지스터 C : UCSRnC

UMSELn (Usart Mode SELect): 1이면 동기모드, 0이면 비동기모드로 설정.

UPMn1~0 (Usart Parity Mode) : 패리티 모드를 설정한다.

USBSn (Usart Stop Bit Select) : 1로 세트하면 스톱비트 2개, 0이면 한개로 설정한다.

UCSZn1~0 (Usart Character SiZe) : 전송 문자의 데이터 비트수 설정하며, 위의 UCSRnB의 UCSZn2비트와 같이 쓰인다.

UCPOLn (Usart Clock POLarity): 동기 모드의 슬레이브만 유효하며, 1로 설정할 경우 하강에지에서 출력, 상승에지에서 얻어짐 0으로 설정할 경우 - 상승에지에서 출력, 하강에지에서 얻어짐.

➤ UBRRnL, UBRRnH(Usart Baud Rate Register)

0~11 BIT 총 12비트까지 사용가능하다.

동기 / 비동기 모드에서 송수신 속도 공식

Table 74. Equations for Calculating Baud Rate Register Setting

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRR Value
Asynchronous Normal Mode (U2X = 0)	$BAUD = \frac{f_{OSC}}{16(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{16BAUD} - 1$
Asynchronous Double Speed Mode (U2X = 1)	$BAUD = \frac{f_{OSC}}{8(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{8BAUD} - 1$
Synchronous Master Mode	$BAUD = \frac{f_{OSC}}{2(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{2BAUD} - 1$

보레이트는 초당 비트수를 뜻함

	f _{osc} = 7.3728 MHz									
Baud Rate	U2X	= 0	U2X = 1							
(bps)	UBRR	Error	UBRR	Error						
2400	191	0.0%	383	0.0%						
4800	95	0.0%	191	0.0%						
9600	47	0.0%	95	0.0%						
14.4k	31	0.0%	63	0.0%						
19.2k	23	0.0%	47	0.0%						
28.8k	15	0.0%	31	0.0%						
38.4k	11	0.0%	23	0.0%						
57.6k	7	0.0%	15	0.0%						
76.8k	5	0.0%	11	0.0%						
115.2k	3	0.0%	7	0.0%						
230.4k	1	0.0%	3	0.0%						
250k	1	-7.8%	3	-7.8%						
0.5M	0	-7.8%	1	-7.8%						
1M	-		0	-7.8%						
Max. (1)	460.	B kbps	921.	6 kbps						

volatile 변수

volatile

컴파일러가 메모리 접근을 최소화 시키는 최적화를 하지 못하게 막는 예약어이다.

회로도

구동영상

1번	FND에 센서의 전압값 출력(소수점 1자리까지 표시) ex)1.1
2번	시리얼 창에 센서값 출력
3번	키보드로 >(증) <(감)를 각각 누르면 해당 방향으로 FND 카운팅(초기값 0)
4번	키보드 숫자 1 누르면 FND 1 숫자 표시

