Machine Learning: Big Picture

Scott Sanner U. of Toronto, MIE

Machine Learning

- You have a data set D = {(x_i,y_i)}
 - x_i is a feature vector, y_i are labels
 - Data may be partially specified
- You want to learn y = f(x) from D
 - More precisely, you want to minimize some error E(f,w,D)

Function parameters

- · Majority of problems are either
 - Classification: y is discrete
 - Regression: y is continuous

Supervised vs. Unsupervised

- D = $\{(x_i, y_i)\}$
- Supervised: y_i observed
 - Classification for discrete yi
 - Regression for continuous y_i

- Learning method has to assign yi
- E.g., clustering via K-means

Inductive Bias

- Let's avoid making assumptions about f
 - Assume for simplicity that $D = \{(x_i, y_i)\}$ is noise free
 - xi's in D only cover small subset of input space x
- What's the best we can do?

 - If we've seen x=x_i report y=y_i
 If we have not seen x=x_i, can't say anything (no assumptions)
- This is called rote learning... boring, eh?
 - Key idea: you can't generalize to unseen data w/o assumptions!
- · Thus, key to ML is generalization
 - To generalize, ML algorithm must have some inductive bias
 - Bias usually in the form of a restricted hypothesis space
 - Important to understand restrictions (and whether appropriate)

Parametric vs. Non-parametric

Parametric: has parameters

- Most Probabilistic Approaches
 - Gaussians
 - Bernoulli / Binomial / Multinomial
 - · Graphical Models
- Linear Regression / Classifiers
- SVM with linear kernel

Non/semi-parametric:

data oriented

- Neighbor-based approaches

 (K-)nearest Neighbor · Parzen Windows - SVM with RBF kernel

What assumptions?

What assumptions?

Data is generated by

given distribution.

Linearly separable, error assumptions (e.g., Gaussian), etc.

Encoded in distance function & K / width.

Smoothness... no abrupt changes!

Linear vs. Non-linear

- y = f(x,w)
 - x is your input vector
 - w is your parameter vector (weights)

· Which f is linear in w?

i.e.,
$$f(x,w) = \langle w,x \rangle$$
 (assume $x_0 = 1$)

Any transformation

 $-f_3(x) = w_1 x_1 + w_2 w_3 x_2 + w_3^2 x_3$

Your Linear Fun. Approx. Toolbox

- Classification
 - Naïve Bayes (simple)
 - Logistic Regression (better than NB for dependent features)
 - Perceptron (didactic, rarely used in practice)
 - SVM and Kernel Methods (very powerful)
- Regression
 - Linear Regression (closed-form solution)
 - SVR and Kernel Methods (very powerful)
- Key Advantage
 - All of above lead to convex optimization problems
 global optima will be found.

This is Worth Investigating...

- · Seems counterintuitive...
 - Fit crazy non-linear functions & find global optimum?
 - WTF? Why's that fine?
- Think about abstracted problem...
 - E(w)=E(f,w,D) (b/c f,D fixed)
 - We change the weights w, we get different E(w).
 - Which setting of weights optimizes **E(w)**?
- Question: how does E(w) look w.r.t. weights?
 - Linear regression: linear f & SSE, E(w) looks quadratic
 - In general, can show Hessian (2nd derivative matrix) is positive semidefinite ⇒ convex...

Empirical Risk Minimization (ERM)

- · A general framework for function approximation
- Minimize E'(w) = Loss(w) + C*Regularizer(w) overfitting
- Loss functions penalize errors in different ways, e.g.,
 - Sum of squared error (SSE) Linear Regression
 - Hinge loss Why useful?
 ε-insensitive loss
 - Why useful?
- Regularizer expresses preference on w, e.g.,
- ||w||₂: assumes Gaussian prior (prefers small weights)
- ||w||₁: can encourage sparsity
- w · log w: maximizes entropy for prob. interpretation of w
- Many E'(w) possibilities are convex for linear f!

The Joy of Convex(ity)

All of these losses are convex for linear f:

Table 1: Scalar loss functions and their derivatives, depending on $f := \langle w, x \rangle$, and y.

	Loss $l(f, y)$	Derivative $l'(f, y)$
Hinge [20]	max(0, -yf)	0 if $yf \ge 0$ and $-y$ otherwise
Squared Hinge [26]	$\frac{1}{2} \max(0, -yf)^2$	0 if $yf \ge 0$ and f otherwise
Soft Margin [4]	$\max(0, 1 - yf)$	0 if $yf \ge 1$ and $-y$ otherwise
Squared Soft Margin [10]	$\frac{1}{2} \max(0, 1 - yf)^2$	0 if $yf \ge 1$ and $f - y$ otherwise
Exponential [14]	$\exp(-yf)$	$-y \exp(-yf)$
Logistic [13]	log(1 + exp(-yf))	$-y/(1 + \exp(yf))$
Novelty [32]	$\max(0, 1 - f)$	0 if $f \ge 0$ and -1 otherwise
Least mean squares [43]	½(f - y)2 ← linear regression	f - y
Least absolute deviation	f - y	sgn(f - y)
Quantile regression [27]	$\max(\tau(f - y), (1 - \tau)(y - f))$	τ if $f > y$ and $\tau - 1$ otherwise
ϵ -insensitive [41]	$\max(0, f - y - \epsilon)$	0 if $ f - y \le \epsilon$ and $sgn(f - y)$ otherwise
Huber's robust loss [31]	$\frac{1}{2}(f - y)^2$ if $ f - y < 1$, else $ f - y - \frac{1}{2}$	$ f - y \le 1$, else $sgn(f - y)$
Poisson regression [16]	$\exp(f) - yf$	$\exp(f) - y$

	Loss	Derivative
Soft Margin [38]	$\max_{y'} (f_{y'} - f_y + \Delta(y, y'))$	$e_{y^*} - e_y$, where y^* is the argmax of the loss
Scaled Soft Margin [40]	$\max_{y'} \Delta^{\beta}(y, y')(f_{y'} - f_y + \Delta(y, y'))$	$\Delta^{\beta}(y, y')(e_{y^*} - e_y)$, where y^* is the argmax of the loss
Softmax [14]	$\log \sum_{y'} \exp(f_{y'}) - f_y$	$\left[\sum_{y'} e_{y'} \exp(f'_y)\right] / \sum_{y'} \exp(f'_y) - e_y$
Multivariate Regression	$\frac{1}{2}(f - y)^{\top}M(f - y)$ where $M \succeq 0$	M(f - y)

Non-convexity

- · Convexity was the rage from 2000-2010
- · Non-convex approaches like neural networks could not guarantee optimal learning
 - Therefore no one used them
 - No one bothered to compare to them
 - Reviewers rejected papers on the topic
 - Until some folks recently tried using them in combination with Big Data + Many Layers + GPUs
- · And they led to massive improvements!

Artificial Neural Networks

- **Neural Net:** non-linear weighted combination of shared sub-functions
- Backpropagation: to minimize SSE, train weights using gradient descent and chain rule
- Deep nets: have more than one hidden layer

- have weight w_{i,i} all edges

Being Bayesian

- · Many (philosophical) interpretations of what it means to be Bayesian
 - All share a common characteristic
- Bayesian = maintaining a distribution over the most likely values of a (random) variable
 - Variable can be any quantity of interest
 - · A location (x,y) for tracking
 - · Parameters w of a linear classifier

Why be Bayesian? Risk!

- Robot has Bayesian belief P(x|D) over position x
 - D consists of noisy range finder readings

Associate Risk(x) with position x (e.g., stairs!)

- MAP Risk = Risk(x*) = 0
- Full Bayesian Risk = $\int_x Risk(x)p(x|D) > 0$
- Which risk estimate would you use?

Overfitting

- In brief: fitting characteristics of training data that do not generalize to future test data
- · Central problem in machine learning
 - Particularly problematic if #data << #parameters
 - ... don't have enough data to "identify" parameters

Overfitting in Classification

- Example: try to classify technology web pages {true, false}
 - Crawl Microsoft website as positive examples
 - Highly weighted features:
 - Bill Gates
 - · support@microsoft.com
 - But do they generalize?

No, we've overfit to sampled-biased training data. Can we combat this?

previous slide?

Overfitting in Regression • Green: Generate data (blue) plus noise • Red: Fit a polynomial of degree M to the data We can fit all points perfectly with a 9th degree polynomial... will it's predictions generalize?

Combatting Overfitting

- Careful "unbiased" selection of training data helps
 - Test data should be from same distribution as train data
- · But unbiased data is not easy, nor enough
 - There are always spurious correlations to overfit
 - Best way to fight overfitting is by restricting the hypothesis space
 - For linear classifiers, do feature selection
 - Tune "hyperparameters" to avoid overfitting
 - Naïve Bayes has smoothing hyperparameter
 - SVMs and Logistic Regression have "C"
 - · Cross-validation is important for tuning

Repeated Random Sub-sampling Validation

- If have 1000 samples and need k=100
 - Then test case only has 10 samples
 - Too small!
- Instead, choose an X% train/test split k times:
 - For X = 90, randomly split data into 90% for train data and 10% test data
 - Take k=100 splits with test data containing 100 samples
 - Caveat: testing data overlaps, introduce correlations
 - Make sure to use a proper random permutation
 - numpy.random.shuffle or numpy.random.permutation

Nested Cross-Validation (NCV)

tune to fight overfitting, but

cannot tune on the test set!

This is cheating... why?

Can't tune on train data -

need tuning to generalize

to unseen data.

So separate out validation

from train in a CV sub-level

to tune hyperparameters.

- · Two levels of cross-validation
- 1st (Top) level CV
- For average performance
 - Split data into {train, test}
- 2nd (Bottom) level CV
 - For hyperparameter tuning
 - Split train into {train', validation}
 - Choose hyperparameters that maximize avg performance on validation set, use in 1st level

If takes too long, tune on single train/val split at 2nd level, but less robust.

Aside: CI Common Mistake

- When I ask for avq ± CIs
 - I want confidence interval (CIs) on the avg
 - 67% CIs are roughly avg ± σ/√n How confident are
 - you for n=∞?
 - 95% CIs are roughly avg ± 2₀/√n
 - σ/√n is standard error of the mean
 - 95% CIs: intervals for avg that should hold 95 out of 100 times if I rerun the randomized experiment
 - Students often give me $avg \pm \sigma$ (std deviation)
 - Sample deviation, not confidence in sample mean

Model and Feature Selection

- Data set D = {(x_i,y_i)}
- Learn y = f(x) by minimizing E(f,w,D)
- Model Selection:
- Which f to use
 - · Linear / Non-linear
 - Parametric / Non- / Semi-parametric
 Parameters within each model
- Feature Selection
 - Which x to use
 - · Subset, transformed?
- How to choose between different models or feature sets
 - Can choose model / feature set with lowest CV error

Introductory Books to Consider

Chapters 1-6 in both books are useful.