1-4-5-4
1. 14 and 10
2. 8 and 6
3. 8 and 8
4. 9 and 8
(2) is the correct answer. The maximum indepedent set are the vertices with weights 4 and 4. The greedy algorithm would select the largest weight vertex and from there select any maximum weight vertex that is still valid. This would result in a total weight of 6. This shows that a greedy approach the problem will not be optimal
2. How many different independent sets does a complete graph with 5 vertices have? How about a cycle with 5 vertices?
1. 1 and 2
2. 5 and 10
3. 6 and 11
4. 6 and 16
3. What is the total weight of the output of the greedy algorithm when the input graph is the four-vertex path? Is this the maximum possible?
1. 6;no
2. 6;yes
3. 8;no
4. 8;yes
4. What is the asymptotic running time of the recursive WIS algorithm, as a function of the number n of vertices? 1. $O(n)$
1. $O(n)$ 2. $O(n \cdot log n)$
3. $O(n^2)$
4. none of the above

1

1. In the following example, what is the value of the max-weight independent set, and that of the output of our greedy algorithm

- **5.** Each of the recursive calls of the recursive WIS algorithm is responsible for computing an MWIS of a specified input graph. Ranging over all of the calls, how many *distinct* input graphs are ever considered?
 - 1. $\Theta(1)$
 - 2. $\Theta(n)$
 - 3. $\Theta(n^2)$
 - 4. $2^{\Theta(n)}$