Weighing Time

By Kedar Krishnan

Team: The Certainty Principle

Problem Statement

It is commonly known that an hourglass changes its weight (as measured by a scale) while flowing. Investigate this phenomenon.

Interpretation

To find the factors influencing the change in Weight of an hourglass and to approximate how the weight changes

Equipment

- Different Sized Funnels
- Clamps
- Beaker
- Weighing Scale
- Stands
- Structure to hold funnel
- Sand
- Mechanism to stop flow of sand

Experimental

Assumptions

- Gravity is the only Force acting on the sand
- The sand does not spray when it impacts at the bottom

Constants and Independent Variable

w = initial weight

L = Height from opening

t = time

Q = Flow rate

 r_2 = radius of bottom container r_1 = radius of opening

V₁ = Initial Velocity

V₂ = Final Velocity

Governing Equations

Stage 1: Freefall

- From start to first impact
- Weight constantly decreasing

Stage 2: Impact + Freefall

 From first impact to when all particles have left top compartment

Stage 3: Impact + Decreasing Freefall

- From when all particles have left top compartment to all sand at bottom
- Weight is increasing

Time Frames

Stage 1: Freefall

When first particle hits bottom

$$d = v_1 t + \frac{1}{2}gt^2$$

$$0 < t < \sqrt{\frac{L}{\left(\frac{g}{(2)}\right)}}$$

Stage 2: Impact + Freefall

When the last particle passes through the opening

$$\sqrt{\frac{L}{\left(\frac{g}{(2)}\right)}} < t < \frac{w}{Q}$$

w = initial weight

t = time

 r_2 = radius of bottom container r_1 = radius of opening

 V_1 = Initial Velocity

 V_2 = Final Velocity

Q = Flow rate

L = Height from opening

Stage 3: Impact + Decreasing Freefall

$$d = v_1 t + \frac{1}{2} g t^2$$

$$L - H(t) = V_1\left(t - \frac{w}{Q}\right) + \left(\frac{1}{2}\right)(g)t^2$$

$$\frac{w}{Q}$$
 < "InterSection"

Stage 1: Freefall

$$W(t) = w - (Q * t)$$

w = initial weight L = Height from opening

t = time Q = Flow rate

 r_2 = radius of bottom container r_1 = radius of opening

 V_1 = Initial Velocity V_2 = Final Velocity

w = initial weight

L = Height from opening

Stage 2: Height of pile

$$Q \cdot \left(t - \sqrt{\frac{L}{\left(\frac{g}{2}\right)}}\right) = Volume \cdot \rho$$

Volume =
$$\frac{1}{3}\pi r_2^2 h$$

Volume =
$$\frac{1}{3}\pi r_2^2 \left(\frac{r}{\tan\left(\frac{\alpha}{2}\right)}\right) + \pi r_2^2 h$$

$$H(t) = \frac{3Q\left(t - \sqrt{\frac{L}{490}}\right)}{\pi\left(r_2^2\right)d}$$

$$\frac{Q\left(t-\sqrt{\frac{L}{490}}\right)}{\pi r_2^2 d} + \frac{2\left(\frac{r_2}{\tan\left(\frac{\alpha}{2}\right)}\right)}{3}$$

 r_2 = radius of bottom container r_1 = radius of opening

$$V_1$$
 = Initial Velocity

$$V_2$$
 = Final Velocity

$$tan (\alpha/2) = r/h$$

$$h = r/(\tan (\alpha/2))$$

Stage 2: Impact

$$F = m * a$$

Impact mass = $Q * v_2/g$

$$V_2^2 = V_1^2 + 2gd$$

$$Q \cdot \frac{\sqrt{(V_1)^2 + 2(g)(L - H(t))}}{g}$$

w = initial weight

L = Height from opening

t = time

Q = Flow rate

 r_2 = radius of bottom container r_1 = radius of opening

 V_1 = Initial Velocity

Stage 2: Freefall

Amount in Freefall = Q * time for sand to travel

$$d = v_1 t + \frac{1}{2}gt^2$$

$$Q \cdot \frac{\left(-V_1 + \sqrt{V_1^2 + 2g(L - H(t))}\right)}{g}$$

w = initial weight

L = Height from opening

t = time

Q = Flow rate

 r_2 = radius of bottom container r_1 = radius of opening

 V_1 = Initial Velocity

 V_2 = Final Velocity

Stage 2: Impact + Freefall

$$W(t) = W + Q \cdot \frac{\sqrt{(V_1)^2 + 2(g)(L - H(t))}}{g} - Q \cdot \frac{\left(-V_1 + \sqrt{V_1^2 + 2g(L - H(t))}\right)}{g}$$

W(t) =
$$w + \frac{Q \cdot V_1}{g}$$

Flow rate > 0
Initial Velocity > 0
g ≥ 0

Stage 3: Impact + Decreasing Freefall

The highest point of weight is when the final particle hits the bottom

$$\mathit{F} = \mathit{m} \cdot \mathit{a} = \mathit{Q} \cdot \mathit{V}_2$$

$$V_2^2 = V_1^2 + 2gd$$

$$F = \frac{\left(\sqrt{V_1^2 + 2g(L - H("Final\ time"))} \cdot Q\right)}{980} + w$$

Comparison

- Offset in Data
- Fluctuation during start
- Initial Weight
- Difference in Stage 3

Summary

The results can be split into 3 sections based on factors influencing the weight.

The total weight of the system does indeed vary from its original weight

Crucial factors that influence how much it varies are: Density of Sand, Radius of opening and base, height of column, and the Flow Rate

Bibliography

Sack, Achim, and Thorsten Pöschel. "Weight of an Hourglass—Theory and Experiment in Quantitative Comparison Featured." *American Journal of Physics*, Jan. 2017. *American Journal of Physics*, doi:10.1119/1.4973527.

Solid Chechen Wood Hourglass With Smooth Spindles. Just Hourglasses, www.justhourglasses.com/products/solid-chechen-wood-hourglass-with-smooth-spindles?variant=22334476483.

Thank You for your attention