THEORETICAL PART:

CAUTION:

When using the notation $\sin^{-1}(x)$, remember that

$$\sin^{-1}(x) \neq \frac{1}{\sin(x)}$$

Definition (Arcsine)

Given $x \in [-1, 1]$, **arcsine** is defined by either of the following:

$$\arcsin(x) = y \Leftrightarrow x = \sin y$$

or

$$\sin^{-1}(x) = y \Leftrightarrow x = \sin y$$

In words, x is the angle whose sine is x; that is, $\sin(\arcsin x) = x$. Since the restricted domain of sine is $[-\pi/2, \pi/2]$ and its range is [-1, 1], the domain of arcsine is [-1, 1] and its range is $[-\pi/2, \pi/2]$.

S.No.	Inverse Cir. Fn.	Domain	Range	Graph
1.	$\sin^{-1} x = \theta \text{ iff}$ $\sin \theta = x, -\pi/2 \le \theta \le \pi/2$	[-1, 1]	[-π/2,π/2]	7/2 0 1 - π/2
2.	$\cos^{-1} x = \theta \text{ iff}$ $\cos \theta = x, 0 \le \theta \le \pi$	[-1, 1]	[0, π]	$\begin{array}{c} \pi \\ \hline 0 \end{array}$
3.	$\tan^{-1} x = \theta$ $\inf_{\text{iff }} \tan \theta = x, \ \frac{\pi}{2} < \theta < \frac{\pi}{2}$	$(-\infty, \infty)$	(-π/2, π/2)	0 -7/2
4.	$\cot^{-1} x = \theta$ iff $\cot \theta = x$, $0 \le \theta \le \pi$	(-∞, ∞)	(0, π)	π π/2
5.		$(-\infty, -1]$ $\cup [1, \infty)$	$\begin{bmatrix} 0, \pi \\ \theta \neq \frac{\pi}{2} \end{bmatrix}$	π -1 π/2 0
6.	$cosec^{-1} x = \theta$ $iff cosec \theta = x$ $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \ \theta \ne 0$	$(-\infty, -1]$ $\cup [1, \infty)$	$[-\pi/2, \pi/2]$ $\theta \neq 0$	-1 o l

PRACTICAL PART:

- 1. Evaluate the following expressions:
 - a. arctan(-1)
 - b. $\csc^{-1} 2$
 - c. $\sin^{-1}(2.3)$

- 2. Evaluate the following expressions is possible.
 - a. $\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right)$
 - b. $\cos(\cos^{-1}(-0.2))$
 - c. $\arctan\left(\tan\left(\frac{7\pi}{6}\right)\right)$

- 3. Evaluate the following expressions:
 - a. $\tan\left(\arcsin\left(-\frac{4}{5}\right)\right)$
 - b. cos(arctan(0.4))

4. Express $\sin(\cos^{-1}(2x))$ as an algebraic function of x, assuming that $-1/2 \le x \le 1/2$.