HOME CREDIT DEFAULT RISK

Prepared by: Ravi Shankar

OBJECTIVE

Home Credit strives to broaden its horizon of providing credit to those people who are currently unbanked and find difficulty in getting credits. Though they might be capable of repaying their credits. To point out those peoples and their economic capabilities, Home Credit is currently using various machine learning methods to make these predictions and analysis.

DATA SETS

1. sample_application_train.csv Dataset

This contains details related to current application. Every applicant has unique SK_ID_CURR and all previous history of applicants is attached to this unique Id. Actual data set consist of 30 k observation, but it is sampled down to 10k observations. One row belongs to one loan application /SK_CURR_ID.

Number of positive Target	850
Number of Negative Target	9150

Number of observations	10000
Number of Variables	122
Unique Key	SK ID CURR
Non-risky application (TARGET = 0)	9150
Risky application (TARGET = 1)	850

2. previous application.csv Dataset

This contains details of every previous loan application applied by the person and represented by SK_PREV_ID. Every previous application has linked to unique current SK_ID_CURR belong to that person. All details of the previous application are mentioned in this data set. One row belongs to each previously applied loan application. 9480 People from our sample data has previous credit history.

Number of observations	45799
Number of Variables	37
Unique application id	SK ID PREV
Unique application id belongs to	SK_ID_CURR
People have Previous history	9480

3. POS CASH balance.csv Dataset

This contains monthly balance snapshots of all previous point of sales and cash loans that the applicant had with Home Credit. This table has one row for each month of history of every previous credit with Home Credit.

Number of observations	283156
Number of Variables	8
Row reference to	SK_ID_PRE
Unique SK ID PRE	26351
Unique SK ID CURR	9422

4. installments payments.csv Dataset

This contains instalment history for the previous credits in Home. There is one row for every payment and missed payment

Number of observations	387473
Number of variables	7
Row reference to	SK_ID_PRE
Unique SK_ID_CURR	9513

5. credit card balance.csv Dataset

This contains monthly balance of previous credit cards and all transactions that the applicant had. One row for every credit card transaction.

Number of observations	108550
Number of variables	23
Row reference to	SK_ID_PRE
Unique SK_ID_PREV	2879
Unique SK ID CURR	2861

6. bureau.csv Dataset

This contains all client's previous credits history with Credit Bureau. 8617 applicants have previous history with other credit banks out of 10000 sample applicants.

Number of observations	48368
Number of Variables	17
Unique SK_ID_Bureau	48368
Unique SK_ID_CURR	8617

7. bureau balance.csv Dataset

This contains monthly balances of previous credits with Credit Bureau. One row for each month of history of every previous credit with Credit Bureau. Every balance data is attached with its respective SK_ID_Bureau.

Number of observations	479014

Number of Variables	3
Row reference to	SK ID Bureau
Unique SK ID Bureau	17013

DATA PREPARATION AND VARIABLE CREATION

All data preparation is done individually at table level and then merged according the requirement. Baseline for data preparation is shown in figure below.

CHARACTER VARIABLE MANIPULATION

- 1. Revalue all the values of character variables
 - To easily detect source of the variables
 - To Avoid clash between variables of other datasets
 - To counter long and special characters part of the values of the character variables
- 2. Converting all character variables into dummy variables
 - Package used is fastdummies

NUMERICAL VARIABLES / VARIABLE CREATION

Our main table must contain SK_CURR_ID per row . All related tables have multiple row of SK_CURR_ID attached with its respective SK_PRE_ID and SK_BUREAU_ID. So, we have

to summarise every table in the group by SK_CURR_ID . Summarization function used are maximum, minimum, mean, sum, standard deviation and distinct count.

Few other variables are also created. All relevant variables informations are mentioned in variables dictionary respectively.

FEATURE SELECTION

Fisher score is used as feature selection method. After arranging variables in decreasing fisher score and then subsetting top N variables which are giving good results. In this case, I got N = 40. All required information about the variables are mentioned in Variables dictionary.

The broad category of selected variables are

- 1. Good price against which loan was granted
- 2. Rejection of previous applications
- 3. Days difference between application to the bureau credit and home credits.
- 4. Updates from bureau about credit end dates
- 5. Information provided by an external party
- 6. The education level of applicants
- 7. The way of obtaining the applicant

BASE TABLE

Base table is exported as basetable.csv file and submitted. All NAs are replaced by mean of the respective columns.

Number of observations	10000
Number of Variables	40
Number of character variables	None
Number of factor variables	None
Target variable	TARGET
Number of positive targets (1)	850
Number of negative target(0)	9150

MODELLS AND RESULTS

Resampling method: Cross-Validation 5 fold

MODELS	AUC
Logistic Regression	0.6763
Random Forest	0.5562
Gradient Boosting	0.7403
SVM	0.8 Unstable

BUSINESS MODEL

The best model is Gradient Boosting. Top 20 Features according to the importance are:

Analysis of top features

1. External Source 2

Normalize information about applicant from external source 2. After Analysis of number of applicants in the provided bin and number of defaulters in the respective bin. If external information is low, chances of default is high. With increase in value chances of defaults becoming low. There is kind of inversely proportional relationship between external information 2 and defaulters.

2. External Source 3

Normalize information about applicant from external source 3. After Analysis of number of applicants in the provided bin and number of defaulters in the respective bin. If external information is low, chances of default is high. With increase in value chances of defaults becoming low. There is kind of inversely proportional relationship between external information 3 and defaulters.

3. Date of Birth

Age of applicants is quite good predictor for defaulters. With increasing age number of defaulters get decreased.

4. DAYS INSTALLMENT MINIMUM

How recently the applicants have paid the instalment for his last credit has shown pattern with defaulters' nature. If the applicants have not recent history of paying instalments, then his chances of defaulting the credit is low.

