The group G is isomorphic to the group labelled by [36, 9] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3) : C4$:

ļ,	3a	3b	2a	4a	4b
	1	1	1	1	1
	1	1	1	-1	-1
	1	1	-1	E(4)	-E(4)
	1	1	-1	-E(4)	E(4)
	1	-2	0	0	0
	-2	1	0	0	0

Trivial source character table of $G \cong (C3 \times C3) : C4$ at p = 3:

Normalisers N_i N_1

p-subgroups of G up to conjugacy in G		P_1			P_2		P_3		P_4		
Representatives $n_j \in N_i$	1a	4a	2a	4b	1 <i>a</i>	2a	1a	2a	1a	4a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	1	1	1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	-1	1	-1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	E(4)	-1	-E(4)	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	-E(4)	-1	E(4)	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	6	0	2	0	3	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	6	0	-2	0	3	-1	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	6	0	2	0	0	0	3	1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	6	0	-2	0	0	0	3	-1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	1	-1	1	1	1	1	1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	E(4)	-1	-E(4)	1	-1	1	-1	1	E(4)	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-E(4)	-1	E(4)	1	-1	1	-1	1	-E(4)	-1

 $P_{1} = Group([(1,22,23)(2,27,28)(3,29,30)(4,5,31)(6,32,33)(7,8,34)(9,10,35)(11,12,13)(14,15,36)(16,17,18)(19,20,21)(24,25,26)]) \cong C3$ $P_{3} = Group([(1,12,31)(2,17,34)(3,20,35)(4,22,13)(5,23,11)(6,25,36)(7,27,18)(8,28,16)(9,29,21)(10,30,19)(14,32,26)(15,33,24)]) \cong C3$ $P_{4} = Group([(1,22,23)(2,27,28)(3,29,30)(4,5,31)(6,32,33)(7,8,34)(9,10,35)(11,12,13)(14,15,36)(16,17,18)(19,20,21)(24,25,26), (1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,24,14)(8,27,17)(10,29,20)(13,31,23)(15,32,25)(18,34,28)(21,35,30)(26,36,33)]) \cong C3 \times C3$

 $N_1 = Group([(1,2,3,6)(4,28,19,32)(5,34,21,25)(7,30,24,22)(8,35,26,12)(9,33,11,27)(10,36,13,17)(14,23,16,29)(15,31,18,20), (1,3)(2,6)(4,19)(5,21)(7,24)(8,26)(9,11)(10,13)(12,35)(14,16)(15,18)(17,36)(20,31)(22,30)(23,29)(25,34)(27,33)(28,32), (1,4,11)(2,7,16)(3,9,19)(5,12,22)(6,14,24)(8,17,27)(10,20,29)(13,23,31)(15,25,32)(18,28,34)(21,30,35)(26,33,36), (1,5,13)(2,8,18)(3,10,21)(4,12,23)(6,15,26)(7,17,28)(9,20,30)(11,22,31)(14,25,36)(16,27,34)(19,29,35)(24,32,36)] \\ = (C_3 \times C_3) : C_4 \\ N_2 = Group([(1,2,23)(2,27,28)(3,29,23)(27,28)(3,29,32)(27,28)(3,29,21)(10,30)(23,29)(25,34)(27,33)(28,32), (1,4,11)(2,7,16)(3,9,19)(5,12,22)(6,14,24)(8,17,27)(10,20,29)(13,23,31)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_3 = Group([(1,12,31)(2,17,34)(3,20,35)(4,21,31)(3,23,31)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_4 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,14,24)(8,17,27)(10,20,29)(13,23,31)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_4 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,14,24)(8,17,27)(10,20,29)(13,23,31)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_4 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,14,24)(8,17,27)(10,20,29)(13,31,23)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_4 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,14,24)(8,17,27)(10,20,29)(13,31,23)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_4 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,14,24)(8,17,27)(10,20,29)(13,31,23)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_4 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,14,24)(8,17,27)(10,20,29)(13,31,23)(15,25,32)(18,28,34)(21,30,35)(26,33,36)]) \\ = (C_3 \times C_3) : C_4 \\ N_4 = Group([(1,11,4)(2,16,7)(3,19,12)(2,13)(2,$