

Práctica Calificada 3

Tema: Operadores autoadjuntos

Curso: Álgebra lineal 2 Ciclo: 2016.1

A lo largo de esta práctica, E denotará un e.p.i. real de dimensión finita, $\operatorname{End}(E) := \mathcal{L}(E, E)$, y un operador $A \in \operatorname{End}(E)$ será llamado de **normal** si A y A^* conmutan, **diagonalizable** si E posee una base formada por autovectores de A e **involución** si $A^2 = I$.

- 1. [5 pts.] Sea $A \in \text{End}(E)$ un operador normal. Demuestre que
 - (a) $\forall v \in E : |Av| = |A^*v|$.
 - (b) Todo autovector de A es también autovector de A^* , con el mismo autovalor (Sugerencia: pruebe que $A \lambda I$ es también normal.)
- 2. [5 pts.] Sean $P, Q \in \text{End}(E)$ proyectiones. Pruebe que
 - (a) P = Q sii tienen los mismos autovectores con los mismos autovalores. (Sugerencia: toda proyección es diagonalizable.)
 - (b) P es autoadjunta sii P es normal. (Sugerencia: utilice el ítem (b) del ejercicio anterior.)
- 3. [5 pts.] Sean $A, B \in \text{End}(E)$ involuciones autoadjuntas. Pruebe que AB es una involución autoadjunta sii AB = BA.
- 4. [5 pts.] Sea $A \in \text{End}(E)$. Si A es diagonalizable, pruebe que es posible definir en E un producto interno en relación al cual A es autoadjunto.