第一节向量及其线形运算

武国宁

https://wuguoning.github.io/teaching/CartesianGeometry

"I think, therefore I am. "Doubt is the origin of wisdom."

勒內·笛卡爾(Rene Descartes,1596-1650),1596年3月31日生於法國安德爾-盧瓦爾省的圖賴訥(現笛卡爾,因笛卡爾得名),1650年2月11日逝於瑞典斯德哥爾摩,法國哲學家、數學家、物理學家。他對現代數學的發展做出了重要的貢獻,因將幾何坐標體系公式化而被認為是解析幾何之父。他還是西方現代哲學思想的奠基人,是近代唯物論的開拓者提出了"普遍懷疑"的主張。他的哲學思想深深影響了之後的幾代歐洲人,開拓了所謂"歐陸理性主義"哲學。

什么是向量?

向量的线性运算

向量的线性运算

空间直角坐标系

	I	I	I	IV	V	VI	VI	V a
\boldsymbol{x}	+		_	+	+	-	1	+
y	+	+	_	_	+	+		-
z	+	+	+	+		_		1

向量的坐标表示

利用坐标作向量的线形运算

利用坐标作向量的线形运算

利用坐标作向量的线形运算

已知两点 $A_i(x_i,y_i,z_i)$, i=1,2,以及实数 $\lambda \neq -1$,求直线 A_2 上的点M,使得 $\overrightarrow{AM}=\lambda \overrightarrow{MB}$

例子 已知两点 $M_1(2,2,\sqrt{2}),M_2(1,3,0)$,计算向量 M_1M_2 的模、方向余弦和方向角。

小结

≥ 第一次作业:

- 1. 已知两点 $M_1(0,1,2)$ 和 $M_2(1,-1,0)$,试用坐标表示向量 $\vec{M_1M_2},-2\vec{M_1M_2}$.
- 2. 求点P(a,b,c)关于(1)各坐标平面;(2)各坐标轴;(3)坐标原点的对称点的坐标。
- 3. 证明以三点A(4,1,9), B(10,-1,6), C(2,4,3)为顶点的三角形是等腰直角三角形。
- 4. 设已知两点 $M_1(4,\sqrt{2},1)$ 和 $M_2(3,0,2)$,计算向量 $\vec{M_1M_2}$ 的模、方向余弦和方向角。