几何光学基础仿真实验 实验报告

实验者姓名: 李昭阳 学号: 2021013445 实验日期: 2022/12/06 实验台号: 线上

实验目的

- 1、认识简单光路并学习绘制、分析光路
- 2、了解影响透镜焦距的因素
- 3、学习透镜成像规律并掌握透镜焦距的基本测量方法

实验工具

(1) 科罗拉多大学波德分校创建的数学和科学互动程序(PhET)中的"几何光学(geometric-optics)"程序

数据处理及结果

研究透镜焦距决定因素

研究透镜焦距f与其曲率半径n的关系

透镜焦距f与其曲率半径n关系记录表

曲率半径R	50	55	60	65	70	75	80	85
前后焦点间距 2f	83	92	100	109	116	125	134	142
焦距f	42	46	50	54	58	63	67	71

f-R关系曲线

透镜焦距f与其曲率半径n关系记录图

由拟合曲线可见, 焦距和曲率半径成正相关。

透镜焦距f与其制作材料的折射率n关系记录表

材料折射率n	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80
前后焦点间距 2f	201	180	164	151	139	129	121	113
焦距f	100	90	82	76	69	64	60	56

透镜焦距f与其制作材料的折射率n关系记录图 由拟合曲线可见,焦距和制作材料折射率成反相关关系。

透镜成像及其焦距测量

凸透镜成像的规律特点

记物距为p, 像距为q, 焦距为f。

p < f

总结得,当 p>2f 时,成倒立缩小的实像; 当 p=2f 时,成倒立等大的实像; 当 f< p<2f 时,成倒立放大的实像; 当 p=f 时,不成像; 当 p=f 时,成正立放大的虚像。

凹透镜成像的规律特点

记物距为p, 像距为q, 焦距为f。

p > f

总结得, 凹透镜始终成倒立缩小的虚像。

凸透镜焦距的计算

由透镜前后焦点间距求得 $f_1=\frac{2f}{2}=75.5cm$,与理论值 $f=\frac{R}{2(n-1)}=\frac{90}{2\times(1.6-1)}=75.0cm$ 的相对偏差为 0.5cm 。

移动箭头位于 p=2f 位置处,测得箭头高度 y=60cm,像的高度 y'=-58cm,计算线放大率得,

$$\beta = \frac{y'}{y} = \frac{58}{60} = 0.967 \approx 1 = -\frac{2f}{2f} = -\frac{q}{p}$$

可认为测量结果与理论预期结果一致。

用物距像距法求焦距,先测量曲率半径 R=90cm、透镜折射率 n=1.60 条件下,凸透镜成像时的物距和像距。再根据 $\frac{1}{f}=\frac{1}{p}+\frac{1}{q}$ 计算出焦距,得到如下表格。

HAZ DU MALI MALALIM E MANA							
透镜曲率半径 $R = 90$ cm 透镜折射率 $n = 1.60$							
前后焦点间距2f = 151cm							
物距p(cm)	像距q(cm)	焦距f (cm)	像特征				
40	-88	73.3333333	正立放大虚像				
60	60 -308		正立放大虚像				
100	252	71.5909091	倒立放大实像				
120	200	75	倒立放大实像				
130	130 174		倒立放大实像				
140	161	74.8837209	倒立等大实像				
160	142	75.2317881	倒立缩小实像				
170	170 134		倒立缩小实像				
180	180 128		倒立缩小实像				
190 123		74.6645367	倒立缩小实像				

凸透镜物距、像距距测量记录表

求平均值 $\bar{f}=74.337cm$,计算不确定度得,

$$\Delta_f = rac{t_{0.95}(v)}{\sqrt{n}} S_f = rac{2.23}{\sqrt{10}} imes 1.096 = 0.773 cm$$

则当前透镜参数下凸透镜的焦距为,

$$f=ar{f}\pm\Delta_f=74.337\pm0.773cm$$

与理论值 f = 75.0cm 的相对偏差为 $0.663 \pm 0.773cm$ 。

移动箭头位于 p=2f 位置处,测得箭头高度 y=60cm,像的高度 y'=-59cm,计算线放大率得,

$$\beta = \frac{y'}{y} = \frac{59}{60} = 0.983 \approx 1 = -\frac{2f}{2f} = -\frac{q}{p}$$

可认为测量结果与理论预期结果一致。

凹透镜焦距的计算

由透镜前后焦点间距求得 $f=-\frac{2f}{2}=-75.5cm$,与理论值 $f=-\frac{R}{2(n-1)}=-\frac{90}{2\times(1.6-1)}=-75.0cm$ 的相对偏差为 0.5cm。

用物距像距法求焦距,先测量曲率半径 R=90cm、透镜折射率 n=1.60 条件下,凹透镜成像时的物距和像距。再根据 $\frac{1}{f}=\frac{1}{p}+\frac{1}{q}$ 计算出焦距,得到如下表格,

透镜曲率半		透镜折射率 $n = 1.60$				
前后焦点间距2f = 151cm						
物距p(cm)	像距q(cm)	焦距f (cm)	像特征			
40	-26	-74.285714	正立缩小虚像			
50	-30	-75	正立缩小虚像			
60	-33	-73.333333	正立缩小虚像			
75	-37	-73.026316	正立缩小虚像			
90	90 -41		正立缩小虚像			
100	-44	-78.571429	正立缩小虚像			
110	-45	-76.153846	正立缩小虚像			
120	-4 6	-74.594595	正立缩小虚像			
130	130 -47		正立缩小虚像			
140	-48	-73 043478	正立缩小虚像			

凹透镜物距、像距距测量记录表

求平均值 $\bar{f}=-74.693cm$, 计算不确定度得,

$$\Delta_f = rac{t_{0.95}(v)}{\sqrt{n}} S_f = rac{2.23}{\sqrt{10}} imes 1.711 = 1.207 cm$$

则当前透镜参数下凹透镜的焦距为,

$$f=ar{f}\,\pm\Delta_f=-74.693\pm1.207cm$$

与理论值 f = -75.0cm 的相对偏差为 $0.307 \pm 1.207cm$ 。