

Machine Learning

# Problem formulation

### **Example: Predicting movie ratings**

User rates movies using one to five stars





Machine Learning

Content-based recommendations

**Content-based recommender systems** 

Movie

Alice (1)

Bob (2)

Carol (3)

Dave (4)

Love at last

Romance forever

5

?

Cute puppies of loves

Nonstop car chases

0

0

5

Swords vs. karate

0

Carol (3)

Dave (4)

?

?

?

?

?

?

Prodict usor incomparament or 
$$\theta(i) \in \mathbb{R}^3$$

Drodict usor incomparament or  $\theta(i) \in \mathbb{R}^3$ 

 $\Rightarrow$  For each user j, learn a parameter  $\underline{\theta^{(j)}} \in \mathbb{R}^3$ . Predict user j as rating ratio  $\widehat{h}$  ovie  $\widehat{h}$   $\widehat{h}$   $\widehat{h}$   $\widehat{h}$  stars.  $\widehat{h}$   $\widehat{h$ 

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longleftrightarrow \begin{array}{c} O \\ 1 \end{bmatrix} \longleftrightarrow \begin{array}{c} O \\ 5 \\ \hline 0 \end{array} \end{array} \begin{pmatrix} O \\ 0 \end{pmatrix}^T \chi^{(3)} = 54.95$$

#### **Problem formulation**

- $\rightarrow r(i,j) = 1$  if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\rightarrow \theta^{(j)}$  = parameter vector for user j
- $\rightarrow$   $x^{(i)}$  = feature vector for movie i
- $\Rightarrow$  x = reacure vector for movie i $\Rightarrow$  For user j, movie i, predicted rating:  $(\theta^{(j)})^T(x^{(i)})$
- $\rightarrow m^{(j)}$  = no. of movies rated by user j

To learn  $\underline{\theta}^{(j)}$ :

$$\min_{Q(i)} \frac{1}{2 \sum_{i \in \Gamma(i,j)=1}^{N} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{k=1}^{N} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{k=1}^{N} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{k=1}^{N} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{k=1}^{N} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{k=1}^{N} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{k=1}^{N} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{k=1}^{N} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2} \left( (Q(i))^T (\chi(i)) - y^{(i,j)} \right)^2 + \frac{\lambda}{2 \sum_{i \in \Gamma} (Q(i))^2$$

Summing over all movies that user (j) has rated

n ==> number of features

ninimization process

Andrew Ng

No. of features per

#### **Optimization objective:**

To learn  $\theta^{(j)}$  (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left( (\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn 
$$heta^{(1)}, heta^{(2)}, \dots, heta^{(n_u)}$$
: For all users

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left( (\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$



#### **Optimization algorithm:**

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left( (\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

### Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left( \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

2(0(1) (Na))



Machine Learning

# Collaborative filtering

## **Problem motivation**





| Movie                | Alice (1) | Bob (2) | Carol (3) | Dave (4) | $x_1$ (romance) | $x_2$ (action) |
|----------------------|-----------|---------|-----------|----------|-----------------|----------------|
| Love at last         | 5         | 5       | 0         | 0        | 0.9             | 0              |
| Romance forever      | 5         | ?       | ?         | 0        | 1.0             | 0.01           |
| Cute puppies of love | ,         | 4       | 0         | ?        | 0.99            | 0              |
| Nonstop car chases   | 0         | 0       | 5         | 4        | 0.1             | 1.0            |
| Swords vs. karate    | 0         | 0       | 5         | ?        | 0               | 0.9            |

| Problem n                      | 1              | T                                                                        | X*=[                                                            |                  |                                               |                |                                           |
|--------------------------------|----------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|-----------------------------------------------|----------------|-------------------------------------------|
| Movie                          | Alice (1)      | Bob (2)                                                                  | Carol (3)                                                       | Dave (4)         | $x_1$ (romance)                               | $x_2$ (action) |                                           |
| X Love at last                 | <b>7</b> 5     | <i>→</i> 5                                                               | <b>"</b> <u>0</u>                                               | <b>7</b> 0       | 11.0                                          | \$ O-          | 0                                         |
| Romance forever                | 5              | ?                                                                        | ?                                                               | 0                | [?                                            | ?              | x0= [10]                                  |
| Cute puppies of love           | ?              | 4                                                                        | 0                                                               | ?                | ?                                             | ?              | (0-0)                                     |
| Nonstop car<br>chases          | 0              | 0                                                                        | 5                                                               | 4                | ?                                             | ?              | <u>~(1)</u>                               |
| Swords vs. karate              | 0              | 0                                                                        | 5                                                               | ?                | ?                                             | ?              | ~T (A)                                    |
| $\Rightarrow$ $\theta^{(1)} =$ | $\theta^{(2)}$ | $\mathbf{a}^{(2)} = \begin{bmatrix} 0 \\ \mathbf{b} \\ 0 \end{bmatrix},$ | $\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$ | $\theta^{(4)} =$ | $= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$ | •              | 2 % (%) (%) (%) (%) (%) (%) (%) (%) (%) ( |

## **Optimization algorithm**

Movie i

Given  $\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$ , to learn  $\underline{x^{(i)}}$ :

Given  $\theta^{(1)}, \dots, \theta^{(n_u)}$ , to learn  $x^{(1)}, \dots, x^{(n_m)}$ :

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

## **Collaborative filtering**

Given 
$$\underline{x^{(1)},\dots,x^{(n_m)}}$$
 (and movie ratings), can estimate  $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$ 

Given 
$$\theta^{(1)},\ldots,\theta^{(n_u)}$$
, can estimate  $x^{(1)},\ldots,x^{(n_m)}$ 



Machine Learning

Collaborative filtering algorithm

## **Collaborative filtering optimization objective**

Tives 
$$x^{(1)}$$
 as times to  $\theta^{(1)}$ 

$$\Rightarrow \text{Given } x^{(1)}, \dots, x^{(n_m)}, \text{ estimate } \theta^{(1)}, \dots, \theta^{(n_u)}; \\ \Rightarrow \left[ \min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \underbrace{\frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1}^{n_u} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2}_{i: r(i,j)=1} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta^{(j)}_k)^2}_{j=1} \right]$$

$$\Rightarrow$$
 Given  $\theta^{(1)}, \dots, \theta^{(n_u)}$ , estimate  $x^{(1)}, \dots, x^{(n_m)}$ :

$$= \lim_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^{((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2} + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2$$

$$= \lim_{x^{(1)},...,x^{(n_m)}} \sum_{j:r(i,j)=1}^{n_m} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n_m} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^{$$

Minimizing  $x^{(1)}, \dots, x^{(n_m)}$  and  $\theta^{(1)}, \dots, \theta^{(n_u)}$  simultaneously:

$$x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (x_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n (x_k^{(i)}$$

### **Collaborative filtering algorithm**

- $\rightarrow$  1. Initialize  $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$  to small random values.
- ⇒ 2. Minimize  $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$  using gradient descent (or an advanced optimization algorithm). E.g. for every  $j = 1, \ldots, n_u, i = 1, \ldots, n_m$ :

every 
$$j = 1, \dots, n_u, i = 1, \dots, n_m$$
:
$$x_k^{(i)} := x_k^{(i)} - \alpha \left( \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left( \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters  $\underline{\theta}$  and a movie with (learned) features  $\underline{x}$ , predict a star rating of  $\underline{\theta}^T \underline{x}$ .

$$\left( \bigcirc^{(i)} \right)^{\mathsf{T}} \left( \times^{(i)} \right)$$

XOCI XER, OER



Machine Learning

Vectorization:
Low rank matrix
factorization

#### **Collaborative filtering**

| Movie                | Alice (1) | Bob (2) | Carol (3) | Dave (4) |  |
|----------------------|-----------|---------|-----------|----------|--|
| Love at last         | 5         | 5       | 0         | 0        |  |
| Romance forever      | 5         | ?       | ?         | 0        |  |
| Cute puppies of love | ?         | 4       | 0         | ?        |  |
| Nonstop car chases   | 0         | 0       | 5         | 4        |  |
| Swords vs. karate    | 0         | 0       | 5         | ?        |  |
|                      | <b>^</b>  | 1       | 1         | 1        |  |

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ 2 & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

## Collaborative filtering / X (ii) ' <

$$(Q_{\partial J})_{\underline{A}}(x_{(U)})$$

ings: 
$$(\theta^{(2)})^T(x^{(1)})$$
 ...  $(\theta^{(n_u)})^T(x^{(1)})$   $(\theta^{(2)})^T(x^{(2)})$  ...  $(\theta^{(n_u)})^T(x^{(2)})$ 

$$\begin{bmatrix} 1 & 4 & 0 & 1 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} \\ -(x^{(2)})^{T} \end{bmatrix}$$

$$\Box = \begin{bmatrix} -(\phi^{(1)})^{T} - (\phi^{(2)})^{T} - (\phi^{($$

#### **Finding related movies**

For each product i, we learn a feature vector  $x^{(i)} \in \mathbb{R}^n$ .

How to find 
$$\underline{\text{movies } j}$$
 related to  $\underline{\text{movie } i}$ ?

Small  $\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \rightarrow \mathbf{movie} \ i$  and  $i$  are "similar"

5 most similar movies to movie i: Find the 5 movies j with the smallest  $||x^{(i)} - x^{(j)}||$ .



Machine Learning

Implementational detail: Mean normalization

#### Users who have not rated any movies

| Movie                | Alice (1) | Bob (2) | Carol (3) | Dave (4) | Eve (5) 🎺  | ı   | - <u>.</u> .                                                   | - 0        | 0      |        |
|----------------------|-----------|---------|-----------|----------|------------|-----|----------------------------------------------------------------|------------|--------|--------|
| → Love at last       | _5        | 5       | 0         | 0        | 3 0        |     | 5 6                                                            | 0          | 0      | ?      |
| Romance forever      | 5         | ?       | ?         | 0        | 5 😧        | V   | 5                                                              | ? ?<br>4 0 | 0      | 3      |
| Cute puppies of love | ?         | 4       | 0         | ?        | 3 <b>D</b> | Y = | $\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$ | 4 0        | ;<br>1 |        |
| Nonstop car chases   | 0         | 0       | 5         | 4        | . □        |     | 0 (                                                            | 0 5        | 4      | ;<br>2 |
| Swords vs. karate    | 0         | 0       | 5         | ?        | <b>∑</b>   | l   | _0 (                                                           | 5 5        | U      |        |

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ \text{off}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum$$

Average rating of each movie according to all users that rated

#### **Mean Normalization:**

$$Y = \begin{cases} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ \hline 0 & 0 & 5 & 0 \\ \end{cases}$$

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix}$$

$$= \begin{bmatrix} 2.5 & 2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

Adding back the mean that subtracted

For user j, on movie i predict:

$$\Rightarrow (O^{(i)})^{T}(x^{(i)}) + \mu_{i}$$

Pretending these are the actual data got from the users to learn my parameters theta(j) & x(i)



User 5 (Eve):