Question Number	Answer		Mark
12	Two pairs of p , V readings from graph	(1)	
	Additional pair(s) of p, V readings from graph	(1)	
	$pV = 0.66 \ (\times 10^3 \text{ Pa m}^3)$ [calculated for at least one pair of p , V readings]	(1)	
	Comment that value of pV is constant and so the student's claim is valid [dependent upon pV calculated for at least two pairs of p , V readings]	(1)	4
	Example of calculation		
	p = 110 kPa, V = 0.006 m $pV = 110 \times 10^3 \text{ Pa} \times 0.006 \text{ m}^3 = 660 \text{ Pa m}^3$		
	$p = 60 \text{ kPa}, V = 0.011 \text{ m}^3$ $pV = 60 \times 10^3 \text{ Pa} \times 0.011 \text{ m}^3 = 660 \text{ Pa m}^3$		
	$p = 51 \text{ kPa}, V = 0.013 \text{ m}^3$ $pV = 51 \times 10^3 \text{ Pa} \times 0.013 \text{ m}^3 = 663 \text{ Pa m}^3$		

Total for question 12