Universidade Federal da Paraíba (UFPB)

Curso: Sistemas de Informação

Disciplina: Avaliação de Desempenho de Sistemas Professor: Marcus Williams Aquino de Carvalho

Prática 4: Cadeia de Markov

Nesta atividade é apresentado um problema de rede de filas, envolvendo a análise de desempenho de um site de comércio eletrônico. O modelo de rede de filas e de *Customer Behaviour Model Graph* (CBMG) é dado, com os valores dos parâmetros de entrada informados. Você deve resolver o modelo de filas para solucionar as questões levantadas sobre o desempenho do sistema. Para responder às questões, você deve escrever um relatório com as suas análises.

Deve ser enviado pelo Google Classroom o relatório, de preferência em um arquivo do Google Docs contendo as respostas das questões com as análises. É **fortemente recomendado** o uso de gráficos nos relatórios, para a exibição dos dados coletados e para ajudar na sua análise. Tabelas também devem ser usadas para exibir dados quando necessário.

Problema

O *Customer Behaviour Model Graph* (CBMG) - ou Grafo do Modelo de Comportamento do usuário – de um site de comércio eletrônico é mostrado na figura abaixo:

Como indicado na figura, o site oferece quatro funções de e-commerce: acessar a página inicial $(home - \mathbf{h})$, buscar no catálogo $(search - \mathbf{s})$, adicionar ao carrinho de compras $(add - \mathbf{a})$ e pagar $(pay - \mathbf{p})$. A funcionalidade do site é executada em uma única máquina que consiste em uma CPU e um disco. A tabela abaixo mostra as demandas de serviço da CPU e do disco para cada uma das quatro funções de e-commerce oferecidas pelo site $(\mathbf{h}, \mathbf{s}, \mathbf{a} \in \mathbf{p})$.

	Home (h)	Search (s)	Add to Cart (a)	Pay (p)
CPU	0.02	0.03	0.02	0.04
Disco	0.03	0.05	0.03	0.02

OBS: Todas os modelos e fórmulas usadas para resolver as questões devem ser indicadas. Não serão consideradas respostas que apenas indiquem os resultados. O desenvolvimento da análise e os modelos usados devem ser apresentados!

Assumindo que 5 sessões por segundo são iniciadas no site. Responda:

1. Qual a quantidade média de visitas por sessão para cada uma das quatro funções de e-commerce?

De acordo com o grafo temos as seguintes informações:

	Entry (e)	Home (h)	Search (s)	Add (a)	Pay(p)	Exit (x)	
Entry (e)	0,00	1,00	0,00	0,00	0,00	0,00	1,00
Home (h)	0,00	0,00	0,70	0,20	0,00	0,10	1,00
Search (s)	0,00	0,00	0,60	0,30	0,00	0,10	1,00
Add (a)	0,00	0,00	0,00	0,00	0,40	0,60	1,00
Pay (p)	0,00	0,00	0,00	0,00	0,00	1,00	1,00
Exit (x)	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Ve = 1

Vh = Ve * Peh

Vh = 1 * 1 = 1

Vs = Vh * Phs + Vs * Pss

Vs = 1 * 0.7 + Vs * 0.6

Vs = 1 * 0.7 + Vs * 0.6

Vs - 0.6Vs = 0.7

0.4Vs = 0.7

Vs = 0.7 / 0.4 = 1.75

Va = Vh * Pha + Vs * Psa

Va = 1 * 0.2 + 1.75 * 0.3

Va = 0,725

Vp = Va * Pap

Vp = 0.725 * 0.4

Vp = 0.29

2. Qual a taxa de chegada de requisições para executar cada uma das quatro funções de e-commerce?

Como sabemos que o número de sessões é igual a 5 vamos multiplicar esse valor pelo número de visitas, para poder encontrar a taxa de chegada de requisições, para cada função do e-commerce:

3. Qual é a utilização total da CPU e do disco?

Como sabemos a taxa de chegada de cada função do e-commerce, vamos utilizar a fórmula para encontrar a utilização da cpu e do disco para cada função do e-commerce, e por fim vamos soma as utilizações da cpu de cada função para encontrar a utilização total da cpu, e fazer o mesmo com o disco:

$$U i,r = \lambda * D i,r$$

U(h,cpu) = 5 * 0.02 = 0.1 U(s,cpu) = 8.75 * 0.03 = 0.2625 U(a,cpu) = 3.625 * 0.02 = 0.0725 U(p,cpu) = 1.45 * 0.04 = 0.058 U(h,disco) = 5 * 0.03 = 0.15 U(s,disco) = 8.75 * 0.05 = 0.4375 U(a,disco) = 3.625 * 0.03 = 0.108 U(p,disco) = 1.45 * 0.02 = 0.029

Ucpu = 0.1+ 0.2625 + 0.0725 + 0.058 = 0.493 Udisco = 0.15 + 0.4375 + 0.108 + 0.029 = 0.7245

Utilização do disco para cada função do e-commerce

4. Qual o tempo de residência (distribuição do tempo de resposta em cada dispositivo) na CPU e no disco para cada uma das quatro funções de e-commerce?

Como já sabemos a utilização de cada função do e-commerce, agora podemos calcular o tempo de residência, apenas aplicando na fórmula:

R i,r = D i,r / (1 - Ui)

R(h,cpu) = 0.02 / 1 - 0.1 = 0.02222 s

R(s,cpu) = 0.03 / 1 - 0.2625 = 0.0406 s

R(a,cpu) = 0.02 / 1 - 0.0725 = 0.0215 s

R(p,cpu) = 0.04 / 1 - 0.058 = 0,0424 s

R(h,disco) = 0.03 / 1 - 0.15 = 0.0352 s

R(s,disco) = 0.05 / 1 - 0.4375 = 0.0888 s

R(a,disco) = 0.03 / 1 - 0.108 = 0.0336 s

R(p,disco) = 0.02 / 1 - 0.029 = 0.02059 s

Tempo de residência na CPU para cada função do e-commerce

5. Qual o tempo de resposta para cada uma das quatro funções de e-commerce?

Para calcularmos o tempo de resposta para cada umas das quatro funções, vamos apenas somar o tempo de resposta do disco com o da cpu, que encontramos da questão anterior:

Ri = R i,cpu + R i,disco

Rh = 0.02222 + 0.0352 = 0.05742 s

Rs = 0.0406 + 0.08888 = 0.13148 s

Ra = 0.0215 + 0.0336 = 0.0551 s

Rp = 0.0424 + 0.02059 = 0.06299 s

6. O sistema possui diferentes padrões de sessões iniciadas por segundo dependendo do horário. Se o SLA indica que o tempo de resposta deve ser menor do que 1 segundo para todas as funções do e-commerce, até quantas sessões iniciadas por segundo o sistema aguenta, mantendo o seu SLA? Caso a quantidade de sessões por segundo faça com que o SLA não seja cumprido, o que você faria para cumprir o SLA? Justifique sua resposta desenvolvendo a análise.

Menos de 11, pois com 11 sessões podemos ver que o tempo de resposta da função de search é maior que 1, chegando até 1,404 segundos, acompanhe o cálculo abaixo.

Número de Sessões = 11

Taxa de chegada:

yH = 1 * 11 = 11 req/seg

Vs = 1.75 * 11 = 19,25 req/seg

Va = 0,725 * 11 = 7,975 req/seg

Vp = 0.29 * 11 = 3,19 req/seg

Utilização da CPU e Disco

U(h,cpu) = 11 * 0.02 = 0,22 U(s,cpu) = 19,25 * 0.03 = 0,5775

Tempo de residência

Tempo de resposta para cada função do e commerce

Acompanhe os gráficos para ter um melhor compreendimento:

É nesse gráfico abaixo que podemos observar que o tempo de 1s é ultrapassado:

[EXTRA] Ganha 1 ponto extra o aluno que desenvolver código (Java, R, Python, etc) que implemente as funções do modelo de desempenho e de carga.