

Lycée BILLES Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Devoir de mathématiques N°5/TS1/Durée 4h

22 Janvier 2029

Exercice 1 (3,5 points)

- 1. a. Résoudre dans \mathbb{C} l'équation (E) : $z^3 = \frac{-i}{8}$. On donnera les solutions sous forme exponentielle et sous forme algébrique. (1,5 pt)
 - b. Dans le plan complexe muni d'un repère orthonormal direct $(0, \vec{u}, \vec{v})$, d'unité 4 cm, représenter les points images des solutions de (E). (0,75 pt)
- 2. Résoudre dans \mathbb{C} l'équation : $(iz + 1)^3 + \frac{i(z-2i)^3}{8} = 0$. (1,25 pt)

Exercice 2 (2 points)

- 1. Résoudre dans IR l'équation : $\sqrt{3}\cos 2x + \sin 2x = -\sqrt{3}$. (0,75 pt)
- 2. Résoudre dans \mathbb{C} l'équation : $z^4 (1-2i)^4 = 0$ (1,25 pt)

Exercice 3 (2,5 points

- 1. Résoudre dans \mathbb{C} l'équation 1+ z+ z²+ z⁴ + z⁵+ z⁶ = 0. (1,25 pt)
- 2. Calculer $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$. (1,25 pt)

Exercice 4 (2,5 points)

Soit les fonctions f et g définies par f(x) = $\frac{6x-1}{(3x+1)^2}$ et g(x) = $\frac{1}{3x+1}$.

- 1. Déterminer les dérivées successives de la fonction g. (1,25 pt)
- 2. Déterminer les réels a et b tels que pour tout x de l'ensemble de définition de f :

$$f(x) = \frac{a}{3x+1} + \frac{b}{(3x+1)^2}.$$
 (0,5 pt)

3. En déduire les dérivées successives de f. (0,75 pt)

Exercice 5 (1,75 point)

Soit f la fonction définie par $f(x) = \ln(1+\lambda x)$, λ étant un réel strictement positif.

On considère deux nombres réels a et b tels que $\frac{-1}{\lambda} < a < b$.

- 1. Montrer qu'il existe un nombre réel α unique tel que : f(b) –f (a) = f'(α)(b-a). (1 pt)
- 2. Déterminer α . (0,75 pt)

Exercice 6 (7,75 points)

Soit f la fonction définie par $f(x) = \frac{x^2 - 1}{4} - 2\ln x$.

1. a. Etudier les variations de f.

(1,5 pt)

b. Dresser son tableau de variation.

(0,75 pt)

- c. Montrer que l'équation f(x) = 0 admet deux solutions dont l'une α appartient à]3; 4[. (0,75 pt)
- d. Montrer que $\alpha = \sqrt{1 + 8 \ln \alpha}$.

(0,25 pt)

Lycée BILLES Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

(0,5 pt)

- 2. Soit g la fonction définie sur $[3; +\infty[$ par $g(x) = \sqrt{1+8\ln x}$.
 - a. Montrer que $\forall x \in [3; +\infty[g(x) \ge 3.$
 - b. Montrer que $\forall x \in [3; +\infty[|g'(x)| \le \frac{4}{9}]$. (0,75 pt)
- 3. Soit (u_n) la suite définie par u_0 = 3 et u_{n+1} = g (u_n) , $n \in IN$.
 - a. Montrer pour tout $n \in IN \ u_n \ge 3$. (0,5 pt)
 - b. Montrer pour tout $n \in IN |u_{n+1} \alpha| \le \frac{4}{9} |u_n \alpha|$. (0,75 pt)
 - c. Montrer pour tout $n \in IN |u_n \alpha| \le \left(\frac{4}{9}\right)^n$. (0,75 pt)
 - d. En déduire que la suite (u_n) est convergente et préciser sa limite. (0,5 pt+0,25 pt)
 - e. Trouver un entier naturel n tel que $|u_n \alpha| \le 10^{-2}$. (0,25 pt)
 - f. Calculer une valeur approchée de α à 10^{-2} près. (0,25 pt)