El complejo de Rips y el complejo de Cech

Rafael Villarroel

2021-02-02 16:00 -0500

Definición

Sea $S \subseteq \mathbb{R}^n$ finito. Sea $\epsilon > 0$. Sea $\mathcal{C} = \{B_{\frac{\epsilon}{2}}(x) \mid x \in S\}$. El complejo de Rips $\Delta_{\epsilon}(S)$ es el complejo de completas de la gráfica de intersección de la colección \mathcal{C} (es decir, $\Delta(\mathcal{C})$).

• Un conjunto $\{x_0, x_1, \ldots, x_k\} \subseteq S$ define un k-simplejo si y solo si $d(x_i, x_i) < \epsilon$ para todos i, $j = 0, 1, \ldots, k$.

- Un conjunto $\{x_0, x_1, \ldots, x_k\} \subseteq S$ define un k-simplejo si y solo si $d(x_i, x_j) < \epsilon$ para todos i, $j = 0, 1, \ldots, k$.
- Si $\epsilon_1 < \epsilon_2$, entonces $\Delta_{\epsilon_1}(S)$ es un subcomplejo de $\Delta_{\epsilon_2}(S)$.

Sea $S \subseteq \mathbb{R}^n$ finito. Sea $\epsilon > 0$. Sea $\mathcal{C} = \{B_{\frac{\epsilon}{2}}(x) \mid x \in S\}$. El complejo de Cech $\mathcal{N}_{\epsilon}(S)$ es el nervio de la colección \mathcal{C} .

• Un conjunto $\{x_0, x_1, \ldots, x_k\} \subseteq S$ define un k-simplejo si y solo si existe $z \in \mathbb{R}^n$ tal que $d(x_i, z) < \frac{\epsilon}{2}$ para todos $i = 0, 1, \ldots, k$.

- Un conjunto $\{x_0, x_1, \ldots, x_k\} \subseteq S$ define un k-simplejo si y solo si existe $z \in \mathbb{R}^n$ tal que $d(x_i, z) < \frac{\epsilon}{2}$ para todos $i = 0, 1, \ldots, k$.
- Si $\epsilon_1 < \epsilon_2$, entonces $\mathcal{N}_{\epsilon_1}(S)$ es un subcomplejo de $\mathcal{N}_{\epsilon_2}(S)$.