

La recta real

Àlex Arenas, Sergio Gómez

Universitat Rovira i Virgili, Tarragona

La recta real

- Conceptes previs
- Definició axiomàtica de la recta real
 - □ Axiomes, fites, màxims i mínims, teorema d'unicitat
- Propietats dels nombres reals
 - □ Positius i negatius, part entera
 - □ Propietats aritmètiques, infinits racionals i irracionals
- Topologia de la recta real
 - Interval, valor absolut, distància, punts d'acumulació i aïllats, oberts
 - □ Teorema de Bolzano-Weierstrass

Conceptes previs

 Necessitem nombres per a representar la realitat (magnituds físiques)

Conceptes previs

 Necessitem nombres per a representar la realitat (magnituds físiques)

■ Naturals \mathbb{N} , Enters \mathbb{Z} i Racionals \mathbb{Q} han de formar part del sistema de mesura

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$$

 Prenent una unitat de mesura (definida pels nombres 0 i 1), cal poder representar tots els valors

- lacksquare No n'hi ha prou amb \mathbb{N} , \mathbb{Z} i \mathbb{Q}
 - □ La diagonal d'un quadrat 1x1 no pertany a ℚ

$$L^2 = 1^2 + 1^2 = 2$$

- lacksquare No n'hi ha prou amb \mathbb{N} , \mathbb{Z} i \mathbb{Q}
 - □ La diagonal d'un quadrat 1x1 no pertany a ℚ

$$egin{aligned} L \in \mathbb{Q} \Rightarrow \exists \, p,q \in \mathbb{N} : L = rac{p}{q} \wedge \operatorname{mcd}(p,q) = 1 \ L^2 = 2 \Rightarrow p^2 = 2q^2 \end{aligned}$$

p parell $\rightarrow p^2$ múltiple de quatre $\rightarrow q$ parell \rightarrow contradicció amb $mcd(p,q) = 1 \rightarrow L \notin \mathbb{Q}$

 Els nombres reals queden determinats per la seva representació decimal Els nombres reals queden determinats per la seva representació decimal

 Els nombres racionals tenen representacions decimals finites o periòdiques

$$\frac{1}{8} = 0.125$$

$$\frac{1}{3} = 0.3333... = 0.\overline{3}$$

$$\frac{1}{7} = 0.142857142857... = 0.\overline{142857}$$

 Els nombres reals han de poder tenir representacions decimals arbitràries

- Els nombres reals han de poder tenir representacions decimals arbitràries
- Els nombres irracionals són els reals que no són racionals
 - □ Tenen representació decimal infinita i no periòdica

$$-\sqrt{3} = -1.732050807568877\dots$$

$$\pi = 3.141592653589793\dots$$

 Cada seqüencia decimal representa un únic nombre real Cada seqüencia decimal representa un únic nombre real

 Cada nombre real té una única representació decimal excepte els racionals amb representació finita

$$1 = 1.00000 \ldots = 1.\overline{0} = 0.99999 \ldots = 0.\overline{9}$$

$$14.126 = 14.12599999999 = 14.125\overline{9}$$

Relació entre nombres naturals, enters, racionals i reals

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

Definició axiomàtica de la recta real

 Necessitem definició dels nombres reals que ens asseguri que compleixen totes les propietats esperades

Definició axiomàtica de la recta real

 Necessitem definició dels nombres reals que ens asseguri que compleixen totes les propietats esperades

Definició axiomàtica

 $(\mathbb{R},+,\cdot,\leqslant,0,1)$ és un cos commutatiu ordenat arquimedià complet que conté els racionals

- Axiomes de la suma
 - (A1) La suma és associativa

$$\forall x, y, z \in \mathbb{R} : (x+y) + z = x + (y+z)$$

(A2) La suma té element neutre

$$\forall x \in \mathbb{R} : x + 0 = 0 + x = x$$

(A3) La suma té element simètric

$$\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x + y = y + x = 0 \qquad (y \equiv -x)$$

(A4) La suma és commutativa

$$\forall x, y \in \mathbb{R} : x + y = y + x$$

- Axiomes del producte
 - (A5) El producte és associatiu

$$\forall x, y, z \in \mathbb{R} : (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

(A6) El producte té element neutre

$$\forall x \in \mathbb{R} : x \cdot 1 = 1 \cdot x = x$$

(A7) El producte té element simètric (excepte el 0)

$$\forall x \in \mathbb{R} \setminus \{0\} \ \exists y \in \mathbb{R} : x \cdot y = y \cdot x = 1 \quad (y \equiv x^{-1})$$

(A8) El producte és commutatiu

$$\forall x, y \in \mathbb{R} : x \cdot y = y \cdot x$$

Axiomes de relació entre suma i producte
 (A9) Propietat distributiva

$$\forall x, y, z \in \mathbb{R} : x \cdot (y+z) = x \cdot y + x \cdot z$$

- Axiomes d'ordenació
 - (A10) L'ordenació és reflexiva

$$\forall x \in \mathbb{R} : x \leqslant x$$

(A11) L'ordenació és antisimètrica

$$\forall x, y \in \mathbb{R} : x \leqslant y \land y \leqslant x \Rightarrow x = y$$

(A12) L'ordenació és transitiva

$$\forall x, y, z \in \mathbb{R} : x \leqslant y \land y \leqslant z \Rightarrow x \leqslant z$$

(A13) L'ordenació és total

$$\forall x, y \in \mathbb{R} : x \leqslant y \lor y \leqslant x$$

- Axiomes de relació entre ordenació, suma i producte
 - (A14) Invariància d'ordenació per suma

$$\forall x, y, z \in \mathbb{R} : x \leqslant y \Rightarrow x + z \leqslant y + z$$

(A15) Producte de positius

$$\forall x, y \in \mathbb{R} : x \geqslant 0 \land y \geqslant 0 \Rightarrow x \cdot y \geqslant 0$$

- Observació
 - □ Les operacions de resta i divisió, i les relacions <, >, ≥ es defineixen a partir de sumes, productes, ≤ i =

Axiomes addicionals

(A16) Propietat arquimediana

$$\forall x, y \in \mathbb{R} : x > 0 \land y > 0 \Rightarrow \exists n \in \mathbb{N} : n \cdot x > y$$

(A17) Inclusió dels racionals

$$(\mathbb{Q},+,\cdot,\leqslant)$$
 és un subcòs ordenat de $(\mathbb{R},+,\cdot,\leqslant)$

(A18) Completesa

$$A \subset \mathbb{R}, A \neq \emptyset$$
 fitat superiorment $\Rightarrow \sup(A) \in \mathbb{R}$

Observació

- □ L'axioma (A18) requereix la definició dels següents conceptes:
 - Fita superior, Fita inferior
 - Conjunt afitat superiorment, Conjunt afitat inferiorment
 - Conjunt afitat
 - Màxim, Mínim
 - Suprem, Ínfim

Definicions

- $lue{}$ Sigui $A\subset \mathbb{R}$
 - lacksquare A és fitat superiorment (amb fita superior lpha) sii

$$\exists \alpha \in \mathbb{R} : \ \forall x \in A \ \Rightarrow \ x \leqslant \alpha$$

lacksquare A és fitat inferiorment (amb fita inferior eta) sii

$$\exists \beta \in \mathbb{R} : \forall x \in A \Rightarrow x \geqslant \beta$$

lacksquare A és fitat si té al mateix temps fita superior i fita inferior

- "sii" = "si, i només si,"
- "iff" = "if, and only if,"

Definicions

- \square Sigui $A\subset\mathbb{R}$
 - $\blacksquare M$ és el màxim de A , $M = \max A$, si $M \in A$ i és una fita superior
 - $\blacksquare \ m$ és el mínim de $\ A, \ m = \min A$, si $m \in A$ i és una fita inferior

 β

Definicions

- \square Sigui $A\subset\mathbb{R}$
 - \bullet α és el suprem de A , $\alpha = \sup A$, si és una fita superior i es compleix que

$$\alpha' < \alpha \implies \exists x \in A : \alpha' < x \leqslant \alpha$$

 $\ \ \,$ $\ \$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\ \ \,$ $\ \ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \ \,$ $\ \,$ $\ \$ $\ \,$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \,$ $\ \$

$$\beta' > \beta \implies \exists x \in A : \beta \leqslant x < \beta'$$

Observacions

- \square A1 A4 \longrightarrow $(\mathbb{R},+)$ grup commutatiu
- \square A5 A8 \longrightarrow $(\mathbb{R} \setminus \{0\}, \cdot)$ grup commutatiu
- \square A1 A6, A9 \longrightarrow $(\mathbb{R},+,\cdot)$ anell
- \square A1 A9 \longrightarrow $(\mathbb{R},+,\cdot)$ cos commutatiu
- \square A10 A13 \Longrightarrow (\mathbb{R}, \leqslant) conjunt totalment ordenat

Teorema

 \square ($\mathbb{R}, +, \cdot, \leqslant$) és l'únic cos commutatiu arquimedià complet que conté els racionals com a subcòs commutatiu arquimedià complet

Propietats dels nombres reals

Definicions

- \square Nombre positiu: x > 0
- □ Nombre negatiu: x < 0
- \square Nombre no positiu: $x \le 0$
- \square Nombre no negatiu: $x \ge 0$

- Si x + y = x, aleshores y = 0
- Si $x \neq 0$ i x y = x, aleshores y = 1
- 0 x = 0, per a tot $x \in \mathbb{R}$
- (-1) x = -x, per a tot $x \in \mathbb{R}$
- Si x y = 0, aleshores x = 0 o bé y = 0
- Si x > 0, aleshores -x < 0
- Si x < y, aleshores -x > -y
- Si x < 0 i y > 0, aleshores x y < 0
- Si x < 0 i y < 0, aleshores x y > 0
- Si $x \le y$ i $z \ge 0$, aleshores $x z \le y z$
- Si $0 \le x < y$ i $n \in \mathbb{N}$, aleshores $x^n < y^n$

- Algunes propietats
 - □ Tot conjunt no buit i finit de reals té màxim i mínim
 - $lue{}$ Part entera d'un real $[x] = \lfloor x \rfloor = n$

$$x \in \mathbb{R} \;\; \Rightarrow \;\; \exists n \in \mathbb{Z}: \; n \leqslant x < n+1$$

Exemples

$$[5] = 5$$
 $[-5] = -5$
 $[3.4] = 3$
 $[-3.4] = -4$
 $[\pi] = 3$
 $[-\pi] = -4$

- □ Teorema
 - Entre dos reals diferents, sempre hi ha almenys un racional

$$x,y \in \mathbb{R} \,,\; x < y \;\; \Rightarrow \;\; \exists q \in \mathbb{Q} : \; x < q < y$$

Entre dos reals diferents, sempre hi ha almenys un irracional

$$x,y \in \mathbb{R} \ , \ x < y \ \Rightarrow \ \exists z \in \mathbb{R} \setminus \mathbb{Q} : \ x < z < y$$

□ Corol-lari

 Hi ha infinits racionals i irracionals entre qualsevol parella de reals diferents

Demostració de l'existència d'un racional

$$x,y \in \mathbb{R} \,,\; x < y \;\; \Rightarrow \;\; \exists q \in \mathbb{Q} : \; x < q < y$$

- lacksquare Per la propietat arquimediana, $\exists n \in \mathbb{N}: n > lacksquare$
- lacksquare Sigui $m=[n\,x]+1$
- Per la definició de part entera, $m-1 \leqslant n \, x < m$
- $y-x>rac{1}{n} \qquad rac{m-1}{n}\leqslant x<rac{m}{n}$ Queda
- Ajuntant-ho tot $y>rac{1}{n}+x\geqslantrac{1}{n}+rac{m-1}{n}=rac{m}{n}>x$
- Per tant $q \equiv rac{m}{} \in \mathbb{Q}: \ x < q < y$

Demostració de l'existència d'un irracional

$$x,y \in \mathbb{R} \,,\; x < y \;\; \Rightarrow \;\; \exists z \in \mathbb{R} \smallsetminus \mathbb{Q} : \; x < z < y$$

Aplicant el procediment anterior

$$\sqrt{2}\,x < \sqrt{2}\,y \;\;\Rightarrow\;\; \exists q \in \mathbb{Q}:\; \sqrt{2}\,x < q < \sqrt{2}\,y$$

Per tant $x < rac{q}{\sqrt{2}} < y$

Queda

$$z \equiv rac{q}{\sqrt{2}} \in \mathbb{R} \smallsetminus \mathbb{Q}: \ x < z < y$$

Mancaria demostrar que z és irracional, però es fa igual que per $\sqrt{2}$

Topologia de la recta real

- L'estudi de la topologia de la recta real es basa en els següents conceptes
 - □ Interval
 - □ Interval fitat, Interval obert, Interval tancat
 - □ Valor absolut
 - □ Distància
 - □ Punt aïllat, Punt d'acumulació
 - Conjunt obert

Definicions

- \square Un interval és un conjunt $I\subset\mathbb{R}$ que satisfà
 - ullet Si $x,y\in I,\;x\leqslant y$ aleshores

$$orall z \in \mathbb{R}, \; x \leqslant z \leqslant y \;\; \Rightarrow \;\; z \in I$$

- Definicions
 - ☐ Tipus d'intervals
 - Interval buit (obert, tancat, fitat)

$$I = \varnothing$$

La recta real (obert, tancat, no fitat)

$$I = \mathbb{R}$$

- □ Tipus d'intervals
 - Intervals I no buits i fitats \implies $\exists a = \inf(I), \; \exists b = \sup(I)$

$$I = [a, b] = \{x \in \mathbb{R} : a \le x \le b\}, a \le b$$

$$I = (a, b) = \{x \in \mathbb{R} : a < x < b\}, a < b$$

$$I = [a, b) = \{x \in \mathbb{R} : a \le x < b\}, a < b$$

$$I = (a, b) = \{x \in \mathbb{R} : a < x \le b\}, a < b$$

El primer és tancat, el segon obert, i els altres no oberts i no tancats

La seva longitud és $\,\ell(I)=b-a\,$

- □ Tipus d'intervals
 - lacktriangle Intervals I no buits i fitats només per un costat

$$I = [a, +\infty) = \{x \in \mathbb{R} : x \ge a\}$$

$$I = (a, +\infty) = \{x \in \mathbb{R} : x > a\}$$

$$I = (-\infty, b] = \{x \in \mathbb{R} : x \le b\}$$

$$I = (-\infty, b) = \{x \in \mathbb{R} : x < b\}$$

Tots són no fitats

Els dos primers són fitats inferiorment i no fitats superiorment Els dos últims són fitats superiorment i no fitats inferiorment El primer i el tercer són no oberts i tancats El segon i el quart són oberts i no tancats

lacksquare El valor absolut |x| d'un número $x\in\mathbb{R}$ és

$$|x| = \left\{egin{array}{ll} x & ext{if } x \geqslant 0 \ -x & ext{if } x < 0 \end{array}
ight.$$

□ Una mètrica o distància d és una aplicació

$$d: E imes E \longrightarrow \mathbb{R}$$

que satisfà les següents propietats

$$ullet d(x,y)=0 \Leftrightarrow x=y$$

$$ullet d(x,y) = d(y,x)$$
 (simetria)

$$ullet d(x,y)\leqslant d(x,z)+d(z,y)$$
 (propietat triangular)

 \square La tupla (E,d) forma un espai mètric

□ Una mètrica o distància d és una aplicació

$$d: E \times E \longrightarrow \mathbb{R}$$

que satisfà les següents propietats

•
$$d(x,y)=0\Leftrightarrow x=y$$
• $d(x,y)=d(y,x)$
• $d(x,y)\leqslant d(x,z)+d(z,y)$

 \square La tupla (E,d) forma un espai mètric

 \square La distància d(x,y) entre dos nombres reals $x,y\in\mathbb{R}$ és defineix com

$$d(x,y) = |x - y|$$

- □ Proposició
 - $lacksquare (\mathbb{R},d)$ és un espai mètric

- \square Sigui $A\subset\mathbb{R}$
 - $ullet x \in A$ és un punt aïllat si

$$\exists \delta > 0: (x-\delta,x+\delta) \cap A = \{x\}$$

 $ullet x \in A$ és un punt d'acumulació si

$$orall \delta > 0: ((x-\delta,x+\delta) \setminus \{x\}) \cap A
eq arnothing$$

□ Observació

 Tot punt de A és punt aïllat o és punt d'acumulació, però mai totes dues coses alhora; són propietats excloents

- Propietats
 - □ Teorema de Bolzano-Weierstrass
 - ullet Sigui $A\subset\mathbb{R}$ un conjunt infinit i fitat de nombres reals. Aleshores, A conté almenys un punt d'acumulació

Propietats

- □ Demostració del teorema de Bolzano-Weierstrass
 - Com A és fitat, té fites inferiors i superiors: $A \subset [a, b]$
 - Sigui $B = \{c \in \mathbb{R}: [c, +\infty) \cap A \text{ conté infinits elements}\}$
 - Com B no buit $(a \in B)$ i fitat superiorment, $\exists \beta = \sup B$
 - lacksquare és un punt d'acumulació de B
 - □ Si no fos punt d'acumulació, $\exists \delta < 0$ tal que $(\beta \delta, \beta + \delta)$ conté com a molt un element d'A
 - □ Com $\beta + \delta \notin B$ ja que $\beta = \sup B$, l'interval $[\beta + \delta, +\infty)$ conté com a molt un nombre finit d'elements del conjunt A
 - □ El mateix passa per tots els intervals $[c, +\infty)$ amb $c \in (\beta \delta, \beta]$
 - □ Per tant, $\beta \delta$ resulta ser una fita superior de B, en contradicció amb $\beta = \sup B$ ■

- $lue{}$ Sigui $A\subset\mathbb{R}$
 - A és un obert si

$$\forall x \in A \ \exists \varepsilon > 0 : \ \forall y \in (x - \varepsilon, x + \varepsilon) \ \Rightarrow \ y \in A$$

Tot punt de l'obert està completament envoltat per punts que també són de l'obert

Propietats

- Els intervals oberts són oberts
- La unió de dos oberts és un obert
- La intersecció de dos oberts és un obert

- Definicions
 - □ Sigui

$$\tau = \{ A \subset \mathbb{R} : A \text{ \'es obert} \}$$

- \Box τ és una topologia del la recta real ja que satisfà les següents propietats
 - lacktriangle El buit arnothing i $\mathbb R$ són oberts
 - Qualsevol unió d'oberts és un obert

$$\{A_i : i \in \mathcal{K}\} \subseteq \tau \implies \bigcup_{i \in \mathcal{K}} A_i \in \tau$$

La intersecció d'un nombre finit d'oberts és un obert

$$A_1, \ldots, A_k \in \tau \implies A_1 \cap \cdots \cap A_k \in \tau$$

 \square La tupla (\mathbb{R}, τ) és un espai topològic