Pontificia Universidad Católica de Chile Facultad de Matemáticas <u>Departamento de Matemática</u> TAV 2014

MAT 1610 - Cálculo I

Interrogación 2

1. (a) Cada arista de un cubo se dilata a razón de 1 centímetro por segundo. ¿Cuál es la razón de variación del volumen cuando la longitud de cada arista es 10 cm.?

Solución: Sea $\ell(t)$ la longitud en centímetros de una arista del cubo en el tiempo t. Se tiene que el volumen del cubo es $V(t) = \ell(t)^3$, y entonces la razón de variación del volumen es precisamente

$$V'(t) = 3\ell(t)^2 \ell'(t).$$

Como cada arista se dilata a razón de 1 centímetro por segundo, tenemos que $\ell'(t) = 1$, y luego $V'(t) = 3\ell(t)$. Cuando la longitud de cada arista es 10cm, se tiene que $\ell(t) = 10$. Esto dice que la razón de variación del volumen es $V'(t) = 3 \cdot 10 = 30$, es decir, $30 \text{cm}^3/\text{s}$.

(b) ¿Cuáles son las dimensiones del rectángulo de área máxima que tenga su base sobre el eje x y cuyos otros dos vértices pertenecen a la parábola $y = 8 - x^2$, de forma que quede encerrado por el eje x y la parábola?

Solución: Sea (x_0, y_0) un punto de la parábola con $x_0 \ge 0$. Como la parábola es simétrica con respecto a 0, vemos que alcanza su máximo en x = 0. Por lo tanto si (x_0, y_0) es el vértice de un rectángulo que tenga su base sobre el eje x, los otros vértices del rectángulo son $(-x_0, y_0)$, $(x_0, 0)$ y $(-x_0, 0)$. Luego el área de este rectángulo es $A = 2x_0y_0$. Como $y_0 = 8 - x_0^2$, tenemos que $A = 2x_0(8 - x_0^2)$. Por lo tanto, queremos maximizar la función $A(x) = 2x(8 - x^2)$. Derivando, obtenemos que

$$A'(x) = 16 - 6x^2,$$

y es igual a 0 cuando $x^2 = \frac{16}{6}$; es decir, cuando $x = \pm \frac{4}{\sqrt{6}}$. Como estamos suponiendo que $x \ge 0$, obtenemos el punto crítico $x = \frac{4}{\sqrt{6}}$. Analizando el signo de la derivada, vemos que este punto representa un máximo local de A. Reemplazando en A, obtenemos que

$$A(\frac{4}{\sqrt{6}}) = \frac{8}{\sqrt{6}}(8 - \frac{16}{6}) = \frac{64}{6} - \frac{128}{36}.$$

Evaluando en los extremos (notamos que necesariamente $0 \le x \le 2\sqrt{2}$), obtenemos que el cuadrado es de área máxima precisamente en $x_0 = \frac{4}{\sqrt{6}}$ y los lados del rectángulo son $2x_0 = \frac{8}{\sqrt{6}}$ y $2y_0 = 2(8 - \frac{16}{6}) = \frac{32}{3}$.

2. (a) Si c es un número real cualquiera, usando el TVM, pruebe que $f(x) = x^4 + 4x - c$ tiene a lo más 2 raíces reales.

Solución: Notemos que f es un polinomio de grado 4, así es una función continua y derivable en todo \mathbb{R} . Además, si a < b satisfacen f(a) = f(b), entonces por el TVM (o de Rolle) existe $x_0 \in (a,b)$ tal que $f'(x_0) = 0$. Es decir, entre 2 raíces hay un punto crítico. Por lo tanto, si hubieran 3 raíces reales, digamos $x_1 < x_2 < x_3$ con $f(x_1) = f(x_2) = f(x_3) = 0$, entonces existirián $x' \in (x_1, x_2)$ y $x'' \in (x_2, x_3)$ tales que f'(x') = f'(x'') = 0, es decir, existirían dos puntos críticos. Por otro lado, es claro que $f'(x) = 4x^3 + 4 = 4(x^3 + 1) = 4(x + 1)(x^2 - x + 1)$. Como $x^2 - x + 1 = (x - \frac{1}{2}) + \frac{3}{4} > 0$ para todo $x \in \mathbb{R}$, se tiene que

$$f'(x) = 0 \iff x = -1.$$

Por lo tanto, f tiene sólo un punto crítico, por lo que no podría tener más de dos raíces reales. Así, concluimos que f tiene a lo más 2 raíces reales.

(b) Sin calcular el valor de la integral, muestre que

$$2 \le \int_{-1}^{1} \sqrt{1 + x^2} \, dx \le 2\sqrt{2}.$$

Solución: Recordemos la siguiente propiedad de las integrales definidas, si f es continua en [a,b] y $m \le f(x) \le M$ para todo $x \in [a,b]$ entonces

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Ahora, para $-1 \le x \le 1$ se tiene que $0 \le x^2 \le 1$, o sea, $1 \le 1 + x^2 \le 2$. Así, para todo $x \in [-1,1]$ se tiene que

$$1 \le \sqrt{1 + x^2} \le \sqrt{2},$$

lo que implica la desigualdad

$$2 = 1[1 - (-1)] \le \int_{-1}^{1} \sqrt{1 + x^2} \, dx \le \sqrt{2}[1 - (-1)] = 2\sqrt{2}$$

y concluimos lo pedido.

3. Trace la gráfica de

$$f(x) = \begin{cases} \frac{x+2}{x-2}, & \text{si } x > 0, \\ \frac{x-1}{x^2+1}, & \text{si } x \le 0, \end{cases}$$

indicando dominio, intervalos de crecimiento y decrecimiento, extremos locales, concavidad, puntos de inflexión y asíntotas.

Solución: El dominio de la función es $\mathbb{R} \setminus \{2\}$. Calculamos f'(x)

$$f'(x) = \begin{cases} -\frac{4}{(x-2)^2}, & \text{si } x > 0, \\ \\ \frac{-x^2 + 2x + 1}{(x^2 + 1)^2}, & \text{si } x < 0, \end{cases}$$

f no es derivable en x=0 ya que las derivadas laterales no son iguales

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\frac{x - 1}{x^{2} + 1} - (-1)}{x} = \lim_{x \to 0^{-}} \frac{x^{2} + x}{x(x^{2} + 1)} = 1$$

У

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{\frac{x+2}{x-2} + 1}{x} = -1.$$

Por tanto x = 0 es un punto crítico. También

$$f'(x) > 0$$
 para $-\delta < x < 0$

У

$$f'(x) < 0$$
 para $\delta > x > 0$

Así, en x = 0 hay un máximo local de la función.

Para $x \neq 0$, resolvemos f'(x) = 0. Si x < 0

$$f'(x) = 0 \leftrightarrow -x^2 + 2x + 1 = 0 \leftrightarrow x = 1 - \sqrt{2}$$

Ahora bien,

$$f'(x) = \frac{(x - (1 - \sqrt{2}))(x - (1 + \sqrt{2}))}{(x^2 + 1)^2}$$

por tanto

$$f'(x) < 0 \text{ para } x < 1 - \sqrt{2}$$

у

$$f'(x) > 0 \text{ para } x > 1 - \sqrt{2}$$

en $x = 1 - \sqrt{2}$ hay un mínimo local de la función. Si x > 0 f'(x) < 0 luego no tiene puntos críticos en ese subdominio.

Dado el análisis previo de signos de la derivada, tenemos que f es creciente en $(1-\sqrt{2},0)$ y decreciente en $(-\infty,1-\sqrt{2})\cup(0,2)\cup(2,\infty)$

Concavidad:

Para x < 0

$$f''(x) = \frac{(-2x+2)(x^2+1)^2 - (4x)(x^2+1)(-x+2x+1)}{(x^2+1)^4} = \frac{(-2x+2)(x^2+1) - 4x(-x^2+2x+1)}{(x^2+1)^3}$$
$$= \frac{-2x^3 - 2x + 2x^2 + 2x + 4x^3 - 8x^2 - 4x}{(x^2+1)^3} = \frac{2(x^3 - 3x^2 - 3x + 1)}{(x^2+1)^3} = \frac{2(x+1)(x^2 - 4x + 1)}{(x^2+1)^3}$$

f''(x) = 0 para x = -1. Así, para x < -1 f es cóncava hacia abajo y para -1 < x < 0 f es cóncava hacia arriba. Mismo análisis para x > 0

$$f''(x) = 8(x-2)^{-3}.$$

Por tanto f es cóncava hacia abajo en (0,2) y cóncava hacia arriba en $(2,\infty)$

Como

- $\lim_{x\to 2^+} f(x) = +\infty$ entonces x=2 es una asíntota vertical.
- $\lim_{x\to+\infty} f(x) = 1$. Por tanto y=1 es asíntota horizontal.
- lím $_{x \to -\infty} f(x) = 0$. Por tanto y = 0 es asíntota horizontal .

4. (a) Sea f la función dada por

$$f(x) = \int_0^x \left(\int_0^{y^2} (t-1)dt \right) dy.$$

Indique el dominio de la función f, dónde es cóncava hacia arriba y dónde es cóncava hacia abajo.

Solución: Por el Teorema Fundamental de Cálculo, la función $\int_0^{y^2} (t-1)dt$ es derivable y por lo tanto continua en todo \mathbb{R} , y entonces el dominio de f es \mathbb{R} .

Para ver la concavidad, encontramos la segunda derivada. Nuevamente por el TFC, tenemos que

$$f'(x) = \int_0^{x^2} (t-1)dt$$

$$f''(x) = 2x(x^2 - 1).$$

Luego $f''(x) \ge 0$ si y solamente si $x(x-1)(x+1) \ge 0$, es decir, si $-1 \le x \le 0$ o $x \ge 1$. Por lo tanto, f es cóncava hacia arriba en [-1,0] y $[1,\infty)$ y cóncava hacia abajo en $(-\infty,-1]$ y [0,1].

(b) Calcule el siguiente límite. Justifique su respuesta.

$$\lim_{x \to 0} \left[1 - \frac{1}{x} \int_0^x \cos t \, dt \right].$$

Solución: Sabemos que la función cos es una función continua en \mathbb{R} . Luego, por el teorema fundamental del cálculo la función dada por

$$g(x) = \int_0^x \cos t \, dt$$

es continua y derivable en \mathbb{R} con

$$g'(x) = \cos x$$
, para todo $x \in \mathbb{R}$.

Primera forma: Por definición de derivada y el TFC se tiene que

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{1}{x} \int_0^x \cos t \, dt = \cos 0 = 1.$$

Por lo tanto, se sigue que

$$\lim_{x \to 0} \left[1 - \frac{1}{x} \int_0^x \cos t \, dt \right] = 1 - \lim_{x \to 0} \frac{1}{x} \int_0^x \cos t \, dt = 0.$$

Segunda forma: Como

$$1 - \frac{1}{x} \int_0^x \cos t \, dt = \frac{x - \int_0^x \cos t \, dt}{x}$$

y por el TFC

$$\lim_{x \to 0} \left[x - \int_0^x \cos t \, dt \right] = 0,$$

tenemos una forma indeterminada del tipo 0/0, por lo que podemos usar la regla de l'Hôpital. Para ello, calculamos el límite del cociente de derivadas y nuevamente por el TFC tenemos que

$$\lim_{x \to 0} \frac{(x - \int_0^x \cos t \, dt)'}{(x)'} = \lim_{x \to 0} \frac{1 - \cos x}{1} = \lim_{x \to 0} [1 - \cos x] = 0.$$

Así, concluimos que

$$\lim_{x \to 0} \left[1 - \frac{1}{x} \int_0^x \cos t \, dt \right] = \lim_{x \to 0} \frac{x - \int_0^x \cos t \, dt}{x} = \lim_{x \to 0} [1 - \cos x] = 0.$$