MSDM5004 Numerical Methods and Modeling in Science Spring 2024

Lecture 1

Prof Yang Xiang
Hong Kong University of Science and Technology

Introduction

Numerical solutions

Purpose:

To understand and design numerical algorithms

Chapter 1

Computer Representation of Numbers

Reference: Numerical Computing with IEEE Floating Point Arithmetic, M. L. Overton, SIAM, 2001.

1. Decimal and binary numbers

Decimal:

$$4271.325 = 4 \times 10^{3} + 2 \times 10^{2} + 7 \times 10^{1} + 1 \times 10^{0} + 3 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3}$$

base: 10

digit (bit): 0, 1,2, ..., β-1

where β is the base

Binary:

$$\frac{11}{2} = (101.1)_2 = 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times \frac{1}{2}$$

base: 2

2. Floating point representation

Floating point representation is based on exponential notation

Decimal:

$$x = \pm d_1.d_2d_3\cdots d_k \times 10^n$$

$$1 \le d_1 \le 9, \ 0 \le d_i \le 9, \ i = 2, \dots, k, \ n \text{ integer.}$$

$$4271.325 = 4.271325 \times 10^3$$

Binary:

$$x = (\pm 1.b_1b_2 \cdots b_{p-1} \times 2^E)_2$$
 — base 2

$$b_i = 0 \text{ or } 1, i = 1, 2, \dots, p - 1, E \text{ integer}$$

$$\frac{11}{2} = (1.011)_2 \times 2^2$$

$$\frac{11}{2} = (1.011)_2 \times 2^2$$

$$\frac{11}{2} = (101.1)_2 = 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times \frac{1}{2}$$

3. Machine numbers

Base 2

IEEE floating point representation

Single format

32 bits

$$x = \pm (1.b_1b_2 \dots b_{p-2}b_{p-1})_2 \times 2^E$$

1 bit for 8 bit for the the sign exponent E

23 bit for the fraction

$$b_1b_2\cdots b_{p-1}$$

$$-126 \le E \le 127$$

from 00000001 to 111111110

The example is for $\frac{11}{2} = (1.011)_2 \times 2^2$

6

Double format 64 bits

$$x = \pm (1.b_1b_2 \dots b_{p-2}b_{p-1})_2 \times 2^E$$

Exponent $-1022 \le E \le 1023$

Range of machine numbers

Format	$E_{ m min}$	$E_{ m max}$	$N_{ m min}$	$N_{ m max}$
Single	-126	127	$2^{-126} \approx 1.2 \times 10^{-38}$	$\approx 2^{128} \approx 3.4 \times 10^{38}$
Double	-1022	1023	$2^{-1022} \approx 2.2 \times 10^{-308}$	$\approx 2^{1024} \approx 1.8 \times 10^{308}$

Machine numbers are discrete on the real axis

Special machine numbers

$$+0, -0, +\infty, -\infty, NaN$$

not a number, e.g. 0/0

Machine epsilon

The gap between 1 and the next larger floating point number.

Format	Precision	Machine Epsilon
Single	p = 24	$\epsilon = 2^{-23} \approx 1.2 \times 10^{-7}$
Double	p = 53	$\epsilon = 2^{-52} \approx 2.2 \times 10^{-16}$

$$x = \pm (1.b_1b_2 \dots b_{p-2}b_{p-1})_2 \times 2^E$$

4. Rounding and significant digits

Only finite digits can be kept (p=53 in double precision) in the computer.

$$x = (1.b_1b_2...b_{p-1}b_pb_{p+1}...)_2 \times 2^E$$

Rounding to x_{-} or x_{+} (usually round to the nearest).

$$x_{-} = (1.b_1b_2 \dots b_{p-1})_2 \times 2^E$$

$$x_{+} = ((1.b_1b_2...b_{p-1})_2 + (0.00...01)_2) \times 2^{E}$$

i.e.
$$f(x)=x_-$$
 or x_+

i.e. $f(x)=x_-$ or x_+ floating point

Significant digits

The single precision p = 24 corresponds to approximately

7 significant decimal digits.

$$2^{-24} \approx 10^{-7}$$

$$\pi = 3.141592653...$$

The double precision p = 53 corresponds to approximately 16 significant decimal digits.

5. Absolute and relative errors

Suppose that p^* is an approximation to p.

The absolute error is $|p - p^*|$

the **relative error** is $\frac{|p-p^*|}{|p|}$, provided that $p \neq 0$.

6. Rounding errors

absolute error
$$|fl(y) - y|$$

relative error
$$\left| \frac{fl(y) - y}{y} \right|$$

7. Loss of significance

$$fl(x) = 0.d_1d_2...d_p\alpha_{p+1}\alpha_{p+2}...\alpha_k \times 10^n$$
 k digits

$$fl(y) = 0.d_1d_2...d_p\beta_{p+1}\beta_{p+2}...\beta_k \times 10^n$$
. k digits

$$fl(fl(x) - fl(y)) = 0.\sigma_{p+1}\sigma_{p+2}\dots\sigma_k \times 10^{n-p}$$

k-p digits

where

$$0.\sigma_{p+1}\sigma_{p+2}\ldots\sigma_k=0.\alpha_{p+1}\alpha_{p+2}\ldots\alpha_k-0.\beta_{p+1}\beta_{p+2}\ldots\beta_k$$

MATLAB Tutorial

Command window

Evaluating variables and functions

Matrices and operations

Sovling matrix equation ax=b

1

>>

Access elements in a matrix or vector

10

Matrices and operations

For-loop

```
e.g. Compute \sum_{n=1}^{\infty} \frac{1}{n^3}
```

```
s=0;
Nt=20;
for i=1:Nt
s=s+1/i^3;
End
>> s
  1.2009
>>
```

while-loop

```
s=0;
Nt=20;
i=1;
while i<=Nt
s=s+1/i^3;
i=i+1;
end;
>> s
s =
  1.2009
```

Default display form: format short

```
>> pi
ans =
3.1416
```

format long

```
>> pi
ans =
3.141592653589793
```

Remark: It is only for display. Double precision is always used in calculations.

A simple plot

MATLAB desktop keyboard shortcuts, such as Ctrl+S, are now customizable. In addition, many keyboard shortcuts have changed for improved consistency across the desktop.

To customize keyboard shortcuts, use <u>Preferences</u>. From there, you can also restore previous default settings by selecting "R2009a Windows Default Set" from the active settings drop-down list. For more information, see <u>Help</u>.

Click here if you do not want to see this message again.

```
>> x=linspace(0,2*pi,100);
>> y=cos(x);
>> plot(x,y)
>>
```

MATLAB doc

MATLAB provides a command called doc to show the documentation and help for search unknown commands. Please check out the following commands:

```
doc sum
doc sin
doc diag
doc size
doc eye
doc ones
doc linspace
doc plot
help sum
help sin
```

You are also suggested to search your questions with keyword MATLAB on the internet and try the examples you find.

Software

To use MATLAB, you need to login to Virtual Barn with <u>VMware Horizon Client</u>. The client can be found on the computer in Computer Barns. Alternatively, you may install the client on your own devices. When programing on Virtual Barn, remember to connect to <u>Academic Software</u> as MATLAB is only installed there. Please refer to Installation Guide and User Guide for details.

ITSC webpage

https://itsc.ust.hk/services/general-it-services/procurement-licensing/common-software-list

https://itsc.hkust.edu.hk/services/academic-teaching-support/facilities/virtual-barn

Chapter 2
Finding Roots

1. Introduction

2. General iterative algorithm

- 1. Specify some initial guess of the solution x_0
- 2. For n=0, 1, ...
 - (i) If x_n is optimal, stop.
 - (ii) Determine x_{n+1} , a new estimate of the solution.

3. Newton's method

From x_n to x_{n+1}

- Approximate f(x) near x_n by the tangent line I(x) at x_n
- Solve for I(x)=0, the solution is defined as x_{n+1}

31

Near x_n ,

$$f(x) \approx l(x) = f(x_n) + f'(x_n)(x - x_n).$$

Solve for l(x) = 0,

$$l(x) = f(x_n) + f'(x_n)(x - x_n).$$

$$x = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Therefore x_{n+1} is defined as

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

The iteration starts from an initial guess x_0 .

Stopping criterion

For a prespecified small $\varepsilon > 0$,

(1)
$$|x_{n+1} - x_n| < \varepsilon$$
, or

(2)
$$\frac{|x_{n+1} - x_n|}{|x_n|} < \varepsilon, \quad x_n \neq 0, \quad \text{or}$$

(3)
$$|f(x_{n+1})| < \varepsilon$$
.

An example

Solve for $f(x) = \cos x - x = 0$. The initial guess is $x_0 = \frac{\pi}{4}$.

The required accuracy is $\varepsilon = 10^{-10}$.

Solution We compute

$$f'(x) = -\sin x - 1.$$

The Newton's method is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\cos x_n - x_n}{-\sin x_n - 1}.$$

$$n = 0,$$

$$x_1 = x_0 - \frac{\cos x_0 - x_0}{-\sin x_0 - 1} = \frac{\pi}{4} - \frac{\cos \frac{\pi}{4} - \frac{\pi}{4}}{-\sin \frac{\pi}{4} - 1} = 0.7395361337.$$

$$n = 1,$$

$$x_2 = x_1 - \frac{\cos x_1 - x_1}{-\sin x_1 - 1} = 0.7390851781.$$

$$n = 2,$$

$$x_3 = x_2 - \frac{\cos x_2 - x_2}{-\sin x_2 - 1} = 0.7390851332.$$

$$n = 3,$$

$$x_4 = x_3 - \frac{\cos x_3 - x_3}{-\sin x_3 - 1} = 0.7390851332.$$

 $|x_4 - x_3| < 10^{-10}$.

The solution of f(x) = 0 is approximately $x_4 = 0.7390851332$.

Convergence of the Newton's method

Let x_* be the solution of f(x) = 0.

Assume that $f \in C^2[a, b]$, and $f'(x_*) \neq 0$.

By Taylor expansion at x_n , we have

$$0 = f(x_*) = f(x_n) + f'(x_n)(x_* - x_n) + \frac{1}{2}f''(\xi)(x_* - x_n)^2, \quad (1)$$

where ξ is between x_* and x_n .

Denote the error $e_n = x_n - x_*$.

By Newton's method, we have

$$e_{n+1} = x_{n+1} - x_* = x_n - \frac{f(x_n)}{f'(x_n)} - x_* = e_n - \frac{f(x_n)}{f'(x_n)}.$$
 (2)

Using Eq. (1), we have

$$f(x_n) = -f'(x_n)(x_* - x_n) - \frac{1}{2}f''(\xi)(x_* - x_n)^2.$$

$$\frac{f(x_n)}{f'(x_n)} = -(x_* - x_n) - \frac{f''(\xi)}{2f'(x_n)}(x_* - x_n)^2 = e_n - \frac{f''(\xi)}{2f'(x_n)}e_n^2.$$

Therefore, from Eq. (2),

$$e_{n+1} = \frac{f''(\xi)}{2f'(x_n)}e_n^2.$$

Since $f \in C^2[a, b]$ and $f'(x_*) \neq 0$, $\left| \frac{f''(\xi)}{2f'(x_n)} \right| < C$ for some constant C in $[x_* - \delta, x_* + \delta]$, for some small $\delta > 0$.

When the initial guess x_0 is very close to x_* in the sense that $x_0 \in [x_* - \delta, x_* + \delta]$ with a small $\delta > 0$, such that

$$C|e_0| \le \frac{1}{2}.$$

We have

$$|e_1| \le Ce_0^2 \le \frac{1}{2}|e_0|,$$

and accordingly,

$$|e_1| \le |e_0| \le \delta,$$

i.e.
$$x_1 \in [x_* - \delta, x_* + \delta]$$
.

Similarly, by mathematical induction, we can show that

$$|e_{n+1}| \le \frac{1}{2}|e_n|,$$

and $x_{n+1} \in [x_* - \delta, x_* + \delta]$ for all n.

It can be calculated that

$$|e_1| \le \frac{1}{2} |e_0|$$

 $|e_2| \le \frac{1}{2} |e_1| \le \left(\frac{1}{2}\right)^2 |e_0|$

. . .

$$|e_n| \le \left(\frac{1}{2}\right)^n |e_0|.$$

Therefore, we have

$$\lim_{n\to\infty} e_n = 0.$$

Theorem. Let $f \in C^2[a, b]$. If $x_* \in (a, b)$ is such that $f(x_*) = 0$ and $f'(x_*) \neq 0$, then there exists a $\delta > 0$ such that Newton's method generates a sequence $\{x_n\}_{n=1}^{\infty}$ converges to x_* for any initial approximation $x_0 \in [x_* - \delta, x_* + \delta]$.

Denote the error $e_n = x_n - x_*$.

Newton's method gives $e_{n+1} = \frac{f''(\xi)}{2f'(x_n)}e_n^2$.