

Machine Learning Methods for the Electricity Market

Federico Minutoli - Gianvito Losapio

90498 - Machine Learning Final project

MSc in Computer Science a.y. 2019 - 2020

Outline

Mix project of types 1 and 2: same problem proposed by the IREN company during C1A0 Hackathon.

Type 1

- Problem description
- Data processing
 Type 2
- Random Forests (by Gianvito Losapio)
- Gradient Boosting (by Federico Minutoli)
- Experiments and results
- Conclusions and future works

Problem description

- The Day-Ahead Market (MGP = Mercato Giorno Prima), is the market for the trading of electricity supply offers and demand bids for each hour of the next day in Italy. All electricity operators may participate in the MGP.
- Participants submit offers (bids) where they specify the quantity and the minimum (maximum) price they are willing to sell (purchase). The **accepted offers** are those with a submitted price not larger than the marginal clearing price (obtained by Gestore Mercati Energetici from the intersection of the demand and supply curves). The accepted bids are those with a submitted price not lower than the PUN (Prezzo Unico Nazionale national single price, agreed daily)

Our **goal** is to forecast 28 different time series: the number of daily accepted offers for the week 22-28th February 2019 for a specific list of participants, identified by IREN itself

Data processing

 We are given some hourly data referred to the previous 14 months widespread across several tables

Number of accepted offers		Predi	ction
Accepted prices in the market			
Forecasted Temperature (Northern Italy)			
Amount of Produced Renewable Energy			
Energy Production Cost for thermal plant	S		
Accepted amount of energy in the marke	t		
01/01/2018	22/02	/ 2019	28/02/20

Data processing

Data cleaning (keep only useful data) and format conversion (homogeneous dates, measure units)

Daily statistics of each feature (mean)

Time-series analysis: almost all the time series present spikes in the ACF (Autocorrelation function) plot over a 7-day span. It may be a strong indicator of a weekly seasonality → lag feature with rolling windows of 3,7 days (mean)

Output shifting of 7 days to give the idea of future

CART models

Basic building block of both algorithms

- Growing procedure?
- Local model?

• Tree size?

Random Forest (by Gianvito Losapio)

ERM
$$\Theta^* = \arg\min_{\Theta} \sum_{i=1}^n \ell(y_i, T(x; \Theta))$$

 $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

$$\Theta = \{\mathcal{D}_m, \gamma_m\}_{m=1}^M$$

$$\mathcal{D}_L(j,t) = \{(x_i, y_i) \mid x_{ij} \le t\} \text{ and } \mathcal{D}_R(j,t) = \{(x_i, y_i) \mid x_{ij} > t\}$$

Greedy solution:
$$\min_{j,t} \left[\min_{\gamma_L} \frac{1}{|\mathcal{D}_L(j,t)|} \sum_{y_i \in \mathcal{D}_L(j,t)} (y_i - \gamma_L)^2 + \min_{\gamma_R} \frac{1}{|\mathcal{D}_R(j,t)|} \sum_{y_i \in \mathcal{D}_R(j,t)} (y_i - \gamma_R)^2 \right]$$

$$= \underbrace{\cos t(\mathcal{D}_L)}$$

Best split:

$$(j^*, t^*) = \arg\min_{j=1,...,d} \min_{t \in \mathcal{T}_j} \frac{|\mathcal{D}_L|}{|\mathcal{D}|} \operatorname{cost}(\mathcal{D}_L) + \frac{|\mathcal{D}_R|}{|\mathcal{D}|} \operatorname{cost}(\mathcal{D}_R)$$

- Bootstrap aggregating
- Feature bagging

Random forest (by Gianvito Losapio)


```
class RandomForestRegressor():
    params: dict
        Set of building options
         max depth: int, default=None
        The maximum depth of the tree. If None, then nodes are expanded
        until all leaves are pure or until all leaves contain less than
        min_samples_split samples.
CV
         n_estimators: int, default=10
         The number of trees in the forest.
         max features: int, default=None
        The number of features to consider when looking for
         the best split
        min samples split: int, default=2
         The minimum number of samples required to split an internal node.
        min samples leaf: int, default=1
        The minimum number of samples required to be at a leaf node.
         A split point at any depth will only be considered if it produces
         at least min samples leaf training samples in each of the left
         and right branches.
        min_impurity_decrease: float, default=0.0
         A node will be split if this split induces a decrease of the
         objective function greater than or equal to this value.
    0.00
```

```
class Tree():
       Decision tree class for regression.
class Node:
    """Node class for the regression tree model
def build(self, X instances, Y instances, depth, params, file=None):
   """Greedy algorithm to build the node and create its
  Best split strategy implemented here
```


$$f(x) = \sum_{m=0}^{M} \beta_m h_m(\mathbf{x})$$
 Adaptive basis-function model

- 1. Start with an initial guess $F_0(x)$
- 2. for m = 1 to M: $(\beta_m, a_m) = \operatorname*{arg\,min}_{\beta, a} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta h(x_i; a)$

Learning rate

OF
$$\phi = \sum_{i} L(y_i, f_m(x_i)) + \sum_{k} \Omega(f_k)$$
, $\Omega(f) = \gamma T + \frac{1}{2} \lambda ||w||^2$

$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n$$

$$w_j^* = \underset{w_j}{\operatorname{arg\,min}} \sum_{i \in I_j} g_i w_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) w_j^2 = -\frac{\sum_{i \in I_j} g_i}{\sum_{i \in I_j} h_i + \lambda} \qquad \tilde{\phi_m} = \sum_{j=1}^T \left[\left(\sum_{i \in I_j} g_i \right) w_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) w_j^2 \right] + \gamma T$$

Greedy optimal value:

$$\tilde{\phi_m}(q) = -\frac{1}{2} \sum_{j=1}^{T} \frac{(\sum_{i \in I_j} g_i)^2}{\sum_{i \in I_j} h_i + \lambda} + \lambda T$$

 $I_j = \{i \mid q(x_i) = j\}$ $I = I_L \cup I_R$

$$\mathcal{L}_{split} = \frac{1}{2} \left[\frac{\left(\sum_{i \in I_L} g_i\right)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{\left(\sum_{i \in I_R} g_i\right)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{\left(\sum_{i \in I} g_i\right)^2}{\sum_{i \in I} h_i + \lambda} \right] - \gamma$$

Feature subsampling


```
class Node:
    """Node class for the GBDT
    Attributes
    _____
    leaf: bool
        True if the node is a leaf
    child left: Node
        Left child node
    child right: Node
        Right child node
    split feature id: int
        ID of the feature that led to the
        best split from this node
    split val: int
        Instance of the node associated to the
        feature whose ID is split feature id
    weight: int
        Weight associated to each leaf node when
        its depth exceeds the tree's max depth
    .....
class Tree():
   """Regression tree for Ensemble learning"""
```

```
class GBDT():
    """Gradient boosting class for regression built upon
    CART trees that descend following an L2-gradient.
  Algorithm 1: Exact Greedy Algorithm for Split Finding
    Input: I, instance set of current node
    Input: d, feature dimension
    qain \leftarrow 0
   G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i
    for k = 1 to m do
         G_L \leftarrow 0, \ H_L \leftarrow 0
         for j in sorted(I, by \mathbf{x}_{jk}) do
              G_L \leftarrow G_L + g_j, \ H_L \leftarrow H_L + h_j
             G_R \leftarrow G - G_L, \ H_R \leftarrow H - H_L

score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})
         end
    end
    Output: Split with max score
```

Experiments and results

• Divide and Conquer strategy, 5-Fold Cross validation

Table 1: Root Mean Squared Error (RMSE)

Table 1: Root Mean Squared Effor (RMSE)						
Time series		Test set performance				
participant	technology	Random Forest	GBDT	LightGBM		
participant_116	ccgt	0.0	0.0	1.0		
participant_116	ccgt400	0.654	1.647	0.0		
participant_116	ccgt800	0.755	0.654	0.755		
participant_116	pump	0.0	1.0	0.0		
participant_116	reservoir	0.0	2.0	0.0		
participant_120	ccgt800	0.0	0.0	0.0		
participant_146	pump	0.534	0.534	0.377		
participant_146	reservoir	0.925	0.925	1.0		
participant_158	ccgt400	0.0	1.0	0.0		
participant_158	ccgt800	0.755	0.925	0.845		
participant_158	pump	0.534	0.845	0.845		
participant_158	reservoir	0.0	1.0	0.0		
participant_176	ccgt800	0.0	0.845	0.377		
participant_21	reservoir	0.0	0.0	0.0		
participant_60	ccgt400	0.0	1.0	0.0		
participant_75	ccgt400	0.925	0.845	0.534		
participant_75	ccgt800	0.845	0.845	0.0		
participant_87	ccgt	0.377	0.925	0.377		
participant_87	ccgt400	0.0	2.329	0.534		
participant_89	ccgt400	1.133	0.654	1.133		
participant_89	ccgt800	0.377	0.845	0.534		
participant_89	coal	0.0	1.0	0.0		
participant_89	reservoir	0.0	1.0	0.0		
participant_96	ccgt400	0.377	0.925	0.534		
participant_96	ccgt800	0.925	0.0	0.654		
participant_96	coal	0.654	2.171	0.534		
participant_96	pump	0.925	1.463	0.925		
participant_96	reservoir	1.309	1.253	0.654		

Global RMSE	Random Forest	GBDT	LightGBM
Validation	0.774	1.338	0.583
Test	0.601	1.113	0.562

Conclusions

- Time-series analysis is key in the early stages
- Lag features design
- Random forests and Gradient boosting
 - Pros:
 - o Powerful methods to tackle both regression and classification problems
 - Easy to implement and available as off-the-shelf modules
 - Cons:
 - High number of parameters has to be cross-validated. This is a really costly procedure and hinders the interpretability of the model
 - Broadly used with a black-box approach