Topological Data Analysis

2022-2023

Lecture 12

Statistical Inference Using Landscapes

19 December 2022

Landscape Sample Mean

For a point cloud X, let

$$\Lambda(X) = \{\lambda_k(X)\}_{k \ge 1}$$

denote the sequence of **persistence landscapes** associated to the Vietoris–Rips barcode of *X*.

Thus, $\lambda_k(X) \colon \mathbb{R} \to \mathbb{R}$ is a piecewise linear function with compact support for each $k \in \mathbb{N}$, and $\Lambda(X)$ may be viewed as an element of the **Banach space** $L^p(\mathbb{N} \times \mathbb{R})$ for every $p \ge 1$.

Landscape Sample Mean

Now suppose that we treat X as a **random variable** (for example, a random point cloud on a sphere or a torus). Then $\Lambda(X)$ is a random variable with values in $L^p(\mathbb{N} \times \mathbb{R})$.

If X_1, \ldots, X_n are independent, identically distributed copies of X, we may consider the **sample mean** $\overline{\Lambda(X)}_n \in L^p(\mathbb{N} \times \mathbb{R})$:

$$\overline{\Lambda(X)}_n(k,t) = \frac{1}{n} \sum_{i=1}^n \lambda_k(X_i)(t).$$

The **Central Limit Theorem** implies that, for $p \ge 2$, if the expected values $E\|\Lambda(X)\|_p$ and $E\|\Lambda(X)\|_p^2$ are finite, then

$$\sqrt{n} \left[\overline{\Lambda(X)}_n - E(\Lambda(X)) \right]$$

converges weakly to a Gaussian random variable.

Landscape Sample Mean

As a consequence of this fact, if we define

$$Y = \|\Lambda(X)\|_1 = \int_{\mathbb{N} \times \mathbb{R}} \Lambda(X) = \sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \lambda_k(X)(t) dt,$$

then Y has the property that $\sqrt{n} [\bar{Y}_n - E(Y)]$ converges to a normal distribution with zero mean.

Confidence Intervals

This allows us to use \bar{Y}_n as an estimator for confidence intervals.

Namely, if $(S_n^Y)^2$ is the **sample variance** of Y, then

$$ar{Y}_n \pm z_0 \, rac{S_n^{\gamma}}{\sqrt{n}}$$

is a $(1 - \alpha)$ confidence interval for E(Y), where z_0 is the upper $\alpha/2$ critical value for a N(0, 1) distribution.

Confidence Intervals

Assuming that $\sqrt{n} [\bar{Y}_n - E(Y)]$ has approximately a normal distribution with zero mean, our choice of z_0 ensures that

$$P\left(-z_0 \leq \frac{\bar{Y}_n - E(Y)}{S_n^Y/\sqrt{n}} \leq z_0\right) = 1 - \alpha.$$

This expression can be rewritten as

$$P\left(\bar{Y}_n-z_0\frac{S_n^Y}{\sqrt{n}}\leq E(Y)\leq \bar{Y}_n+z_0\frac{S_n^Y}{\sqrt{n}}\right)=1-\alpha,$$

which is the meaning of a confidence interval for E(Y).

Hypothesis Testing

Let X_1, \ldots, X_n and X'_1, \ldots, X'_m be samples of two random variables X and X'. Consider

$$Y = \|\Lambda(X)\|_1$$
 and $Y' = \|\Lambda(X')\|_1$.

If we denote $\mu = E(Y)$ and $\mu' = E(Y')$, then the null hypothesis that $\mu = \mu'$ can be tested by means of the estimator

$$z = \frac{\bar{Y}_n - \bar{Y}'_m}{\sqrt{\frac{(S_n^Y)^2}{n} + \frac{(S_m^{Y'})^2}{m}}}$$

where S^2 stands for the sample variance. This yields hypothesis testing for point clouds by means of persistence landscapes.

Confidence Bands

Let ξ_1, \ldots, ξ_n be Gaussian random variables with mean 0 and variance 1. For each k, consider the multiplier bootstrap

$$\mathbb{G}_n(k,t) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i \Big(\lambda_k(X_i)(t) - \overline{\lambda_k(X)}_n(t) \Big)$$

and determine Z_{α} (by Monte Carlo simulation) so that, for a fixed k,

$$P(\sup_{t} |\mathbb{G}_{n}(k,t)| > Z_{\alpha}) = \alpha.$$

Then a $(1 - \alpha)$ confidence band for $E(\lambda_k(X))$ is given by

$$\overline{\lambda_k(X)}_n \pm \frac{Z_{\alpha}}{\sqrt{n}}$$
.

Confidence Bands

From a sample of 4000 points from two circles, 10 subsamples of size 80 have been extracted and the first landscape λ_1 for homological dimension 1 has been averaged and depicted with a 95% confidence band.

Confidence Bands

Figure 7: The plot on the left shows 8000 epicenters of earthquakes in the latitude/longitude rectangle $[-75, 75] \times [-170, 10]$ of magnitude greater than 5.0 recorded between 1970 and 2009 (USGS data). We randomly sampled m = 400 epicenters and computed the approximated persistence diagram of the distance function (Betti 1). We repeated this procedure n = 30 times and computed the empirical average landscape $\overline{\lambda}_n$. Using the multiplier bootstrap described in Chazal et al. (2013b), we obtained a uniform 95% confidence band for the average landscape $\mu(t)$ (right).

Source: F. Lezzi, PhD thesis proposal, Carnegie Mellon University (2014)

References

- ► Landscapes were introduced in [P. Bubenik, Statistical topological data analysis using persistence, J. Machine Learning Res. 16 (2015), 77–102], arXiv:1207.6437 (2015).
- Confidence bands for average landscapes were described in [F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, Stochastic convergence of persistence landscapes and silhouettes, *J. Comput. Geom.* 6 (2015), 140–161], arXiv:1312.0308 (2013).
- ▶ Other estimators can be found in [F. Chazal et al., Robust topological inference: distance to a measure and kernel distance, J. Machine Learning Res. 18 (2018), 1–40], arXiv:1412.7197 (2014).