The Floor is Lava: Halving Natural Genomes with Viaducts, Piers and Pontoons RECOMB-CG 2023

Leonard Bohnenkämper

Bielefeld University

April, 2023

Natural

Leonard Bohnenkämper

Bielefeld University

Leonard Bohnenkämper

Leonard Bohnenkämper

Bielefeld University

Natural

Natural

The Classic DCJ Halving Problem (Mixtacki, 2008)

The Classic DCJ Halving Problem (Mixtacki, 2008)

Losses/Gains

Ambiguous Markers

Structurally Doubled

Insertions and Deletions

Insertions and Deletions

Insertions and Deletions

Supernatural Graph: Cycles

Supernatural Graph: Paths

Supernatural Graph: Paths

Lava vertices

Supernatural Graph: Paths

Supernatural Graph: All Components

DCJ halving (Mixtacki 2008)

SNG for Structurally Doubled genomes

DCJ halving (Mixtacki 2008)

SNG for Structurally Doubled genomes

Only 2-cycles and 1-viaducts!

DCJ halving formula (Mixtacki 2008)

$$h_{DCJ}(\mathbb{G}) = n - c_{\circ} - \left\lfloor \frac{p_{G|G}}{2} \right\rfloor$$

DCJ halving formula (Mixtacki 2008)

$$\sim 00$$
 ~ 00 ~ 00

$$h_{DCJ}(\mathbb{G}) = n - c_{\circ} - \left\lfloor \frac{p_{G|G}}{2} \right\rfloor$$

DCJ halving formula (Mixtacki 2008)

$$h_{DCJ}(\mathbb{G}) = n - c_{\circ} - \left\lfloor \frac{p_{G|G}}{2} \right\rfloor$$

$$h_{DCJ}^{id}(\mathbb{G}) \geq n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G\circ g}) - p_{G|G}}{2} \right\rceil$$

$$h_{DCJ}^{id}(\mathbb{G}) \ge n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G \circ g}) - p_{G|G}}{2} \right\rceil$$

$$\stackrel{\mathbb{G}}{=} n - c_{\circ} - \left\lfloor \frac{p_{G|G}}{2} \right\rfloor$$

$$h_{DCJ}^{id}(\mathbb{G}) \geq n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G \circ g}) - p_{G|G}}{2}
ight
ceil$$

$$\sim 00$$
 ~ 00 ~ 00 ~ 00

$$h_{DCJ}^{id}(\mathbb{G}) \geq n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G\circ g}) - p_{G|G}}{2} \right\rceil$$

$$h_{DCJ}^{id}(\mathbb{G}) \geq n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G \circ g}) - p_{G|G}}{2} \right\rceil$$

$$h_{DCJ}^{id}(\mathbb{G}) \geq n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G \circ g}) - p_{G|G}}{2} \right\rceil$$

$$h_{DCJ}^{id}(\mathbb{G}) \geq n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G \circ g}) - p_{G|G}}{2} \right\rceil$$

$$h_{DCJ}^{id}(\mathbb{G}) \geq n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G \circ g}) - p_{G|G}}{2}
ight
ceil$$

$$h_{DCJ}^{id}(\mathbb{G}) = n - c_{\circ} + \left\lceil \frac{p_{g|g} + \max(p_{G|g}, p_{G\circ g}) - p_{G|G} + \delta}{2} \right\rceil$$

Conclusion and Future Work

DCJ-indel halving can be solved in linear time without ambiguous markers.

Conclusion and Future Work

- DCJ-indel halving can be solved in linear time without ambiguous markers.
- Under other conditions it can be NP-hard.

Conclusion and Future Work

- DCJ-indel halving can be solved in linear time without ambiguous markers.
- Under other conditions it can be NP-hard.
- ► The view on the DCJ-indel model described here links the Braga-Willing-Stoye and Compeau conceptualizations!

