Praktikum Atome, Moleküle, kondensierte Materie Versuch 401: Elektronische Übergänge in Atomen

Carlos Pascua*1 and Michael Vog
t†1

¹Uni Bonn

5. November 2024

Inhaltsverzeichnis

1	Zeeman-Effekt	1	
	1.1 Beobachtung des Zeeman-Effekts	1	
	1.1.1 transversale Konfiguration	1	
	1.2 Auflösungsvermögen	2)
	1.3 Dopplerverbreiterung	2	
	1.3.1 longitudinale Konfiguration	2	1
	1.4 Messung des Zeeman-Effekts	3)
	1.4.1 Magnetfeldkalibrierung	3	,
	1.4.2 Messungen mit CCD-Kamera	4	į
2	Franck-Hertz-Versuch	5	į
	2.1 Aufbau	5)
	2.2 Durchführung und Auswertung	5)
	2.3 Einfluss der Temperatur T und der Gegenspannung U_2	7	,
3	Fazit	8	
4	Anhang	10	

^{*}s87cpasc@uni-bonn.de

 $^{^\}dagger s65 mvogt@uni-bonn.de$

Einleitung

In diesem Versuch wird die Energieaufspaltung von Energie-Niveaus in Cadmium durch den Zeeman-Effekt untersucht. Daraus wird das Bohrsche Magneton bestimmt sowie Eigenschaften des verwendeten Fabry-Perot-Etalons errechnet.

Anschließend wird das Franck-Hertz-Experiment durchgeführt, um die Energiedifferenz zwischen dem 6S- und 6P-Zustand von Quecksilber zu bestimmen.

1 Zeeman-Effekt

Im ersten Versuchsteil wird anhand einer Cadmiumlampe in einem Magnetfeld der Zeeman-Effekt auf die Zustände 1D_2 und 1P_1 untersucht. Der verwendete Aufbau ist in Abb. 1 zu sehen.

Abbildung 1: Versuchsaufbau Zeeman-Effekt [2]

Folgende wichtige Bestandteile sind zu sehen [1]:

- a. Cadmium-Lampe
- b. Klammern
- c. Polschuhe
- d. Kondensorlinse
- e. Polarisationsfilter
- f. Fabry-Perot-Etalon
- g. Abbildungslinse
- h. Interferenzfilter ($\lambda = 643.8 \, \mathrm{nm}$)
- i. Okular mit Strichskala

Außerdem werden Stromquellen (oben links im Bild; links normal, rechts Hochstrom) zur Versorgung der Cadmiumlampe und der Elektromagneten eingesetzt.

Das Fabry-Perot-Etalon in Kombination mit den Linsen erzeugt ein Interferenzmuster mit Ringen, deren Position von der Wellenlänge des Lichts abhängt. Der Interferenzfilter wird eingesetzt, um ausschließlich das Licht vom Übergang $^1D_2 \rightarrow \ ^1P_1$ betrachten zu können.

Zur Justage des Aufbaus wird am Okular die Strichskala scharfgestellt und die Abbildungslinse verschoben, bis das Interferenzmuster der Lampe durch das Etalon scharf zu sehen ist. Das Etalon wird so gedreht, dass das Zentrum des Musters am Nullpunkt der Strichskala ist und die Kondensorlinse verschoben, um eine gleichmäßige Ausleuchtung zu erhalten.

1.1 Beobachtung des Zeeman-Effekts

1.1.1 transversale Konfiguration

Zunächst wird in transversaler Konfiguration ohne eingesetzten Polarisationsfilter beobachtet, d.h. die optische Achse steht senkrecht zum Magnetfeld, wie in Abb. 1 gezeigt. Nach Abb. 2 sollte hier sowohl Strahlung vom $\Delta M_J = 0$ -Übergang (π -Übergang), als auch den $\Delta M_J = \pm 1$ -Übergängen (σ^{\pm} -Übergänge), zu sehen sein. Hierbei ist die Strahlung der beiden verschiedenen σ -Übergänge gleich Polarisiert; die Polarisation vom π -Übergang steht senkrecht dazu.

Abbildung 2: Polarisationsverteilung und Abstrahlungscharakteristik elektrischer Dipolübergänge [1] [2].

Das am Okular enstehende Bild ist in Abb. 3 gezeigt.

Abbildung 3: Interferenzmuster bei transversaler Beobachtung ohne Magnetfeld, ohne Polarisationsfilter.

Es sind die verschiedenen Interferenzringe zu erkennen, die hier alle von der gleichen Wellenlänge stammen.

Nun wird das Magnetfeld eingeschaltet und erhöht, bis man eine Aufspaltung der Ringe sieht, siehe Abb. 4

Abbildung 4: Interferenzmuster bei transversaler Beobachtung mit Magnetfeld, ohne Polarisationsfilter.

Durch den Zeeman-Effekt gibt es eine Energieaufspaltung $\Delta E \propto B_z M_J$ der Niveaus. Dadurch sind die π -Übergänge unbeeinflusst, während die σ^+ - bzw. σ^- -Übergänge eine etwas geringere bzw. höhere Wellenlänge produzieren. Was zuvor ein Ring war, spaltet sich daher in drei Ringe auf.

Die verschiedenen Komponenten können durch Einsatz des Polarisationsfilters herausgefiltert werden (Abb. 5, 6).

Abbildung 5: Interferenzmuster bei transversaler Beobachtung mit Magnetfeld, mit Polarisationsfilter auf $90^{\circ}.$

Abbildung 6: Interferenzmuster bei transversaler Beobachtung mit Magnetfeld, mit Polarisationsfilter auf 0° .

Wenn der Filter auf 90° steht, sind wieder nur einzelne Ringe zu sehen, die dem π -Übergang entsprechen, welche Licht mit Polarisation parallel zum Magnetfeld produziert. Steht der Filter auf 0°, gibt es jeweils zwei Ringe, die σ^+ bzw. σ^- entsprechen.

1.2 Auflösungsvermögen

Nach dem Praktikumskript ist Dicke von Fabry-Perot-Etalon $d=4\,\mathrm{mm}$ und die Mittelwellenlänge $\lambda=643.8\,\mathrm{nm}$. Damit lässt sich das theoretische Auflösungsvermögen bestimmen, es gilt dann:

$$A_{\rm theo} = \frac{2\pi nd}{\lambda (1-r)} = (3.79) \cdot 10^5$$

Wie im Protokoll beschrieben wird, wird der Strom so eingestellt, sodass die Aufspaltung Spektralinien sich unterscheiden können.

$$I_{\text{long}} = (1.2 \pm 0.1) \,\text{A}, \quad I_{\text{trans}} = (2.4 \pm 0.2) \,\text{A}$$

Noch dazu ist der Wert des Magnetfeldes nach der Kalibrierung das Folgende:

$$B_{\text{trans}} = (\pm) \,\text{mT}, \quad B_{\text{long}} = (21\pm) \,\text{mT}$$

Die Frequenzdifferenz berechnet sich gemäß:

$$\nu = \frac{\Delta M \, \mu_B B}{h}$$

Dabei ist zu beachten, dass $\Delta M=2$ in transversaler Richtung. Unter Verwendung der Literaturwerte für h und μ_B folgt:

$$\nu_{\rm trans} = (0.97 \pm 0.35) \, \text{GHz}, \quad \nu_{\rm long} = (6.40 \pm 0.31) \, \text{GHz}$$

Mit $\nu_0 = \frac{c}{\lambda_0} = 456\,\mathrm{THz}$ ergeben sich die entsprechenden Auflösungsvermögen:

$$A_{\text{trans}} = (4.7 \pm 1.7) \cdot 10^5, \quad A_{\text{long}} = (0.73 \pm 0.035) \cdot 10^5$$

Der transversale Wert ist signifikant höher als erwartet, liegt jedoch innerhalb der Fehlergrenzen. Der Fehler ist hierbei sehr groß. Der longitudinale Wert ist dagegen zu niedrig ausgefallen. Insgesamt ist die Messgenauigkeit begrenzt, da der Unterschied zwischen den einzelnen Ringen im Okular schwer erkennbar war.

1.3 Dopplerverbreiterung

Nach [?] gilt für die Dopplerverbreiterung:

$$\Delta\nu_D = \frac{1}{\lambda_0} \pi \sqrt{\frac{8k_B T \ln 2}{m}}$$

Für Caesium mit einer Masse von $m=1.86 \cdot 10^{-25} \,\mathrm{kg}$ und einer angenommenen Temperatur von $T=1000 \,\mathrm{K}$ (nach [?]) erhalten wir eine Dopplerverbreiterung von:

$$\Delta \nu \approx 1 \, \mathrm{GHz}$$

Dies entspricht etwa 25.7 % der Halbwertsbreite.

1.3.1 longitudinale Konfiguration

Die Magneten mitsamt der Cadmiumlampe werden um 90° gedreht, um die Beobachtungen in longitudinaler Konfiguration (Magnetfeld parallel zur optischen Achse bzw. der Beobachtungsrichtung) zu wiederholen.

Ohne Magnetfeld ergibt sich das Muster in Abb. 7, was mit der entsprechenden Beobachtung bei transversaler Konfiguration übereinstimmt.

Abbildung 7: Interferenzmuster bei longitudinaler Beobachtung ohne Magnetfeld, ohne Polarisationsfilter.

Wird das Magnetfeld angeschaltet (Abb. 8), ist eine Aufspaltung in jeweils zwei Ringe zu beobachten. Diese entsprechen den beiden σ -Übergängen, während

der π -Übergang aufgrund seiner Abstrahlungscharakteristik in longitudinaler Konfiguration nicht zu sehen ist.

Abbildung 8: Interferenzmuster bei longitudinaler Beobachtung mit Magnetfeld, ohne Polarisationsfilter.

Als nächstes wird zusätzlich eine $\lambda/4$ -Platte in 0°-Stellung in den Strahlengang vor dem Polarisationsfilter eingesetzt. Diese dient dazu, das rechts-bzw. linkspolarisierte Licht der σ -Übergänge (siehe Abb. 2) zu verschiedenen linearen Polarisationsrichtungen umzuwandeln, welche dann mit dem Polarisationsfilter ausgewählt werden können.

Mit dem Polarisationsfilter auf -45° ist nur noch jeweils ein Ring stark zu sehen (Abb. 9)

Abbildung 9: Interferenzmuster bei longitudinaler Beobachtung mit Magnetfeld, mit Polarisationsfilter.

Mit dem Polarisationsfilter in 45°-Stellung ist nur der jeweils andere Ring stark zu sehen (Abb. 10).

Abbildung 10: Interferenzmuster bei longitudinaler Beobachtung mit Magnetfeld, mit Polarisationsfilter.

1.4 Messung des Zeeman-Effekts

Es soll nun quantitativ die Stärke der Aufspaltung in Abhängigkeit des anliegenden Magnetfelds gemessen werden. Hierzu wird die transversale Konfiguration verwendet.

1.4.1 Magnetfeldkalibrierung

Es wird die Abhängigkeit der Magnetfeldstärke vom fließenden Strom durchmessen, um daraus eine Kalibrierungskurve zu erstellen. Hierzu wird anstatt der Cadmiumlampe eine Hall-Sonde genau mittig zwischen den Polschuhen eingeführt. In Reihe zu den Magneten wird ein "Cassy-Modul" eingeschaltet, wodurch am Computer mithilfe einer speziellen Software die Abhängigkeit automatisch aufgezeichnet werden kann. Die Messung wird gestartet und der Strom allmählich bis zum maximal erreichbaren Wert hochgefahren. Dann wird die Messung gestoppt und der Strom wieder ausgeschaltet.

Eine solche Kalibrierung wurde zweimal durchgeführt, einmal vor und einmal nach den Messungen aus 1.4.2. In Abb. 12 sind die Messdaten zusammen

mit einem χ^2 -Fit der Form

$$B(I) = a + bI + cI^2 + dI^3$$

dargestellt. Als Fehlerwerte auf I und B wurden dabei 2% des jeweiligen Werts angesetzt, wobei Fehlerwerte von $0.002\,\mathrm{A}$ und $0.2\,\mathrm{mT}$ nicht unterschritten werden dürfen.

Abbildung 11: Magnetfeldkalibierung vor der Messung mit CCD-Kamera

Abbildung 12: Magnetfeldkalibierung nach der Messung mit CCD-Kamera

$$\begin{split} a_1 &= (-0.548 \pm 0.025) \, \mathrm{mT}, \ b_1 = (65.44 \pm 0.16) \, \mathrm{mT} \, \mathrm{A}^{-1}, \\ c_1 &= (3.960 \pm 0.065) \, \mathrm{mT} \, \mathrm{A}^{-2}, \ d_1 = (-0.5213 \pm 0.0059) \, \mathrm{mT} \, \mathrm{A}^{-3} \\ a_1 &= (-0.104 \pm 0.027) \, \mathrm{mT}, \ b_1 = (66.20 \pm 0.53) \, \mathrm{mT} \, \mathrm{A}^{-1}, \\ c_1 &= (3.970 \pm 0.186) \, \mathrm{mT} \, \mathrm{A}^{-2}, \ d_1 = (-0.5361 \pm 0.0152) \, \mathrm{mT} \, \mathrm{A}^{-3} \end{split}$$

Diese Werte sind in relativ guter Übereinstimmung miteinander; alle Parameter haben Überschneidungen in ihren Fehlerbereichen. Leichte Abweichungen, z.B. beim Parameter a lassen sich unter anderem dadurch erklären, dass die zweite Messung durchgeführt wurde, als die Magnetspulen noch heiß vom vorigen Betrieb waren. Dies kann die Ergebnisse verändern.

Um eine einzelne Kalibrationskurve zu haben, verwenden wir im Folgenden die Mittelwerte der Parameter:

$$\begin{split} i &= \frac{i_1 + i_2}{2}, \;\; i = a, \, b, \, c, \, d \\ a &= (-0.326 \pm 0.019) \, \mathrm{mT}, \; b = (65.82 \pm 0.28) \, \mathrm{mT} \, \mathrm{A}^{-1}, \\ c &= (3.960 \pm 0.099) \, \mathrm{mT} \, \mathrm{A}^{-2}, \; d = (-0.5288 \pm 0.0082) \, \mathrm{mT} \, \mathrm{A}^{-3} \end{split}$$

Der Fehler wird dabei mithilfe von Gauß'scher Fehlerfortpflanzung bestimmt.

1.4.2 Messungen mit CCD-Kamera

2 Franck-Hertz-Versuch

Im folgenden Abschnitt wird das Franck-Hertz-Experiment durchgeführt und anschließend detailliert diskutiert. Anhand der durch das Cassy-Modul gemessenen Anodenstromkurven I_A wird die Energiedifferenz ΔE zwischen den Energieniveaus des Quecksilbers Hg, 6S und 6P, präzise bestimmt.

2.1 Aufbau

In einer Franck-Hertz-Röhre, die mit Quecksilbers gefüllt ist, befindet sich eine glühende Kathode mit einer Heisspannung U_H , die die Elektronen durch thermische Emmission freisetzt und in der Richtung einer positiv geladenen Anode beschleunigt. Die Beschleunigungsspannung U_B zwischen Kathode und Anode bestimmt die kinetische Energie der Elektronen, bevor sie auf die Quecksilberatome treffen.

Zwischen der Kathode und der Anode befindet sich ein Gitter, das in einigen Konstruktionen mit einem kleinen Gegenfeld ausgestattet ist, um Elektronen, die nach elastische nd inelastische Stößen ihre kinetische Energie verloren haben, daran zu hindern, die Anode zu erreichen. Der Anodenstrom I_A wird dann in Abhängigkeit von der Spannung U_B gemessen. Bei bestimmten Spannungswerten zeigt der Anodenstrom charakteristische Einbrüche, die auftreten, wenn die Elektronen genau die Energie erreichen, die nötig ist, um ein Quecksilberatom vom Grundzustand (6S) in einen angeregten Zustand (6P) zu heben. Durch diesen inelastischen Stoß verlieren die Elektronen ihre kinetische Energie und tragen dadurch nicht mehr zum Stromfluss bei.

Die Spannungsdifferenz zwischen aufeinanderfolgenden Strommaxima liefert die Energie ΔE , die den Übergang zwischen den 6S- und 6P-Niveaus beschreibt.

2.2 Durchführung und Auswertung

Zunächst wird die Energiedifferenz ΔE zwischen die Energieniveaus des Hg bestimmt. Dabei sollen die Breiten der Kurven bzw. die Peaks bestimmt werden. Dazu werden Gaußkurven an die Daten angepasst, die mithilfe des Programms Fityk gemacht werden.

Es ist zu beachten, dass bei den verschiedenen Messungen nicht dieselbe Anzahl an Peaks erfasst wurde. Daher wurden nur die erkennbaren Peaks analysiert und in die Tabellen aufgenommen.

Fityk Version 1.3.1

In Fityk werden Gauß-Fits durch Auswahl eines Datenbereichs und Anwendung einer Gaußfunktion als Mo-

dell durchgeführt. Die Gaußfunktion hat die Form

$$f(x) = a \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

wobei a die Amplitude, μ der Mittelwert (Zentrum des Peaks) und σ die Standardabweichung ist. Das Programm optimiert die Parameter a, μ und σ , sodass die Abweichung zwischen dem Modell und den Datenpunkten minimiert wird. Die Methode der kleinsten Quadrate wird oft verwendet, um den Fehlerausdruck

$$\sum_{i=1}^{N} (y_i - f(x_i))^2$$

zu minimieren, wobei y_i die gemessenen Datenpunkte und $f(x_i)$ die entsprechenden Werte der Gaußfunktion sind. Dadurch entsteht eine Gaußkurve, die die Daten im ausgewählten Bereich bestmöglich beschreibt.

Diskussion der Daten

Wie bereits erwähnt, wurde während des Experiments nicht dieselbe Anzahl von Peaks erfasst. Dies stellt jedoch kein Problem dar, da eine ausreichende Anzahl an Messwerten vorliegt. Zudem wurde in Fityk eine Hintergrundfunktion zu den Gauß-Fits hinzugefügt, sodass die Gesamtsumme der Gauß-Peaks eine bessere Übereinstimmung mit den im Experiment beobachteten Peaks aufweist. Unter Berücksichtigung der oben genannten Anpassungen und Messmethoden folgen nun die entsprechenden Graphen.

Abbildung 13: Die gemessene Beschleunigungsspannung U_B gegen Anodenspannung U_A bei verschiedene Gegenspannung T und fester Temperatur U_G

Abbildung 14: Die gemessene Beschleunigungsspannung U_B gegen Anodenspannung U_A verschiedenen Temperaturen T und Gegenspannung U_G

Bestimmung der Δ Energiedifferenz

Um die Eindeutigkeit zu gewährleisten, bezeichnen wir die Peaks bzw. die Erwartungswerte mit U_B^i und fassen alle relevanten Informationen in einer Tabelle zusammen. Der Fehler des Mittelwerts wird durch die folgende Formel und in der Tabelle dargestellt:

$$\Delta(U_B^i) = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(\delta U_{i,n}^B\right)^2}$$

Dabei ist N die Anzahl der Werte, die zur Berechnung des Mittelwerts beitragen.

Im Folgenden sind die Mittelwerte der Beschleunigungsspannung sowie die entsprechenden Fehler dargestellt.

	Mittelwert [V]
U_B^1	36.3
U_B^2	31.2
U_B^3	26.3
U_B^4	21.6
U_B^5	16.6
U_B^6	11.8

Tabelle 1: Mittelwerte zu U_B^i

	Mittelwert [V]
δU_B^1	± 0.0504
δU_B^2	± 0.133
δU_B^3	± 0.0112
δU_B^4	± 0.0161
δU_B^5	± 0.0307
δU_B^6	± 0.131

Tabelle 2: Mittelwerte zu δU_B^i

Nun kann man aus den Diferenzen der benachbaren Peaks der Energiedifferenz ΔE bestimmt werden.

$$\Delta E = (4.9 \pm 0.0803)eV$$

Das Ergebnis unserer experimentellen Messungen ist äußerst erfreulich und stimmt vollständig mit dem erwarteten theoretischen Wert der Übergang zwischen $6^1S_o \rightarrow 6^3P_1$ überein. Wie man in der Abbildung sich anschauen kann.

Abbildung 15: Termschema des Quecksilbers

2.3 Einfluss der Temperatur T und der Gegenspannung U_2

Untersucht man den Zusammenhang zwischen Energiedifferenz und Wirkungsquerschnitt, so stellt man fest, dass die Wechselwirkung ihr Maximum bei $\Delta E=4.9\,\mathrm{eV}$ erreicht. Dennoch weist der Peak eine Breite auf, was auf die Natur des Triplet-Zustands 6^3P zurückzuführen ist, da einige Elektronen mit etwas geringerer oder höherer Energie wechselwirken können.(siehe Abbildung 16)

Zudem erkennt man mithilfe des Anhangs im Praktikumskript, dass der Dampfdruck von Quecksilber stark von der Temperatur abhängt (siehe untenstehende Formel).

$$log(p) = 10.55 - \frac{3333}{T} - 0.85log(T)$$

Daraus folgt, dass bei steigender Temperatur vermehrt thermische Stöße zwischen den H g-Atomen stattfinden können, was dazu führt, dass weniger Elektronen die notwendige Energie besitzen, um die Anode zu erreichen. Andererseits treten bei niedrigeren Temperaturen weniger Stöße auf, was zur Folge hat, dass nur geringe oder gar keine Peaks beobachtet werden können.

Abbildung 16: Totaler Wirkungsquerschnitt $Q(\pi a_0^2)$ von Hg für Elektronenstoßanregung

3 FAZIT 8

3 Fazit

Im zweiten Versuchsteil wird der Franck-Hertz-Versuch aufgebaut und untersucht. Dabei wird die Beschleunigungsspannung in Abhängigkeit von der Anodenspannung bei verschiedenen Temperaturen und Gegenspannungen aufgezeichnet, wodurch die erwarteten Peaks entstehen. Mithilfe der Berechnung des Erwartungswerts μ_i und der Standardabweichung σ_i wird nach der Datenanalyse festgestellt, dass die Energiedifferenz für den Übergang im Hg-Atom zwischen den Zuständen 6^1S_0 und 6^3P_1 den Wert $\Delta E = (4.9 \pm 0.0803)\,\mathrm{eV}$ annimmt, was erstaunlich gut mit dem theoretischen Wert übereinstimmt. Zudem fällt auf, dass bei erhöhter Temperatur T und Gegenspannung U_G die Anodenspannung U_A abnimmt.

LITERATUR 9

Literatur

[1] Physikalisches Praktikum Teil IV – Versuchsbeschreibungen, Universität Bonn, Abruf 29.10.2024

[2] Beobachtung des normalen Zeeman-Effekts in transversaler und longitudinaler Konfiguration, Leybold Didactic, Abruf 30.10.2024 ANHANG 10

Anhang

Parameter	Wert	Fehler Δ
μ_1	31.1	± 0.0183
σ_1	1.26	± 0.0358
μ_2	26.1	± 0.0162
σ_2	1.08	± 0.0249
μ_3	21.2	± 0.024
σ_3	0.91	± 0.0298
μ_4	16.4	± 0.0365
σ_4	0.843	± 0.0522
μ_5	11.7	± 0.237
σ_5	0.669	± 0.306

Tabelle 3: Parameter bei $U_G=2.0V$ und $T=165^{\circ}C$

Parameter	Wert	Fehler Δ
μ_1	31.3	± 0.00925
σ_1	1.04	± 0.0129
μ_2	26.3	± 0.00979
σ_2	0.967	± 0.0151
μ_3	21.4	± 0.0133
σ_3	0.914	± 0.019
μ_4	16.6	± 0.0242
σ_4	0.885	± 0.0321
μ_5	11.9	± 0.0715
σ_5	0.884	± 0.0916

Tabelle 4: Parameter bei $U_G=2.7V$ und $T=165^{\circ}C$

Parameter	Wert	Fehler Δ
μ_1	36.7	± 0.00818
σ_1	1.19	± 0.00971
μ_2	31.6	± 0.0125
σ_2	1.02	± 0.0153
μ_3	26.5	± 0.0121
σ_3	0.95	± 0.0143
μ_4	21.6	± 0.0181
σ_4	0.871	± 0.0215
	40 -	1 0 0000

 0.846 ± 0.0423

Parameter	Wert	Fehler Δ
μ_1	36.8	± 0.00835
σ_1	1.0	± 0.0123
μ_2	31.7	± 0.00744
σ_2	0.944	± 0.00934
μ_3	26.7	± 0.00927
σ_3	0.837	± 0.0111
μ_4	21.7	± 0.0151
σ_4	0.769	± 0.0178
μ_5	16.8	± 0.0313
σ_5	0.712	± 0.0371

Tabelle 6: Parameter bei $U_G=4.0V$ und $T=165^{\circ}C$

Parameter	Wert	Fehler Δ
μ_1	36.3	± 0.00915
σ_1	1.11	± 0.0139
μ_2	31.2	± 0.00858
σ_2	1.02	± 0.0136
μ_3	26.3	± 0.0105
σ_3	0.966	± 0.0152
μ_4	21.4	± 0.0148
σ_4	0.92	± 0.0205
μ_5	16.6	± 0.0277
σ_5	0.889	± 0.0364
μ_6	11.9	± 0.0832
σ_6	0.893	± 0.106

Tabelle 7: Parameter bei $U_G=2.7V$ und $T=170^{\circ}C$

Parameter	Wert	Fehler
μ_1	36.3	± 0.128
σ_1	1.67	± 0.212
μ_2	30.8	± 0.734
σ_2	1.08	± 0.26
μ_3	26.3	± 0.0108
σ_3	0.929	± 0.0138
μ_4	21.5	± 0.0112
σ_4	0.981	± 0.0135
μ_5	16.8	± 0.0232
σ_5	1.00	± 0.0275

Tabelle 5: Parameter bei $U_G=3.4V$ und $T=165^{\circ}C$ Tabelle 8: Parameter bei $U_G=2.7V$ und $T=175^{\circ}C$

4 ANHANG 11

Parameter	Wert	Fehler
μ_1	36.1	± 0.00659
σ_1	0.952	± 0.0118
μ_2	31.2	± 0.00694
σ_2	0.968	± 0.0108
μ_3	26.3	± 0.0095
σ_3	0.921	± 0.0152
μ_4	21.6	± 0.016
σ_4	0.893	± 0.0233
μ_5	16.8	± 0.0351
σ_5	0.911	± 0.0544

Tabelle 9: Parameter bei $U_G=2.7V$ und $T=180^{\circ}C$

$U_B^1[V]$	$U_B^2[V]$	$U_B^3[V]$	$U_B^4[V]$	$U_B^5[V]$	$U_B^6[V]$
36.7	31.1	26.1	21.2	16.4	11.7
36.8	31.3	26.3	21.4	16.6	11.9
36.3	31.6	26.5	21.6	16.7	11.9
36.3	31.7	26.7	21.7	16.6	-
36.1	31.2	26.3	21.4	16.8	-
-	30.8	26.3	21.5	16.8	-
-	31.2	26.3	21.6	16.8	-

Tabelle 10: zugeordnete ${\cal U}_B^i$

$\delta U_B^1[{ m V}]$	$\delta U_B^2[{ m V}]$	$\delta U_B^3[{ m V}]$	$\delta U_B^4[{ m V}]$	$\delta U_B^5[{ m V}]$	$U_B^6[V]$
± 0.00818	± 0.0183	± 0.0162	± 0.024	± 0.0365	± 0.237
± 0.00835	± 0.00925	± 0.00979	± 0.0133	± 0.0242	± 0.0715
± 0.00915	± 0.0125	± 0.0121	± 0.0181	± 0.0362	± 0.0832
± 0.128	± 0.00744	± 0.00927	± 0.0151	± 0.0313	-
± 0.00659	± 0.00858	± 0.0105	± 0.0148	± 0.0277	-
-	± 0.734	± 0.0108	± 0.0112	± 0.0232	-
-	± 0.00694	± 0.0095	± 0.016	± 0.0351	-

Tabelle 11: zugeordnete δU_B^i