UNCLASSIFIED AD NUMBER AD815578 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. Document partially illegible. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1967. Other requests shall be referred to Air

Force Technical Application Center, Washington, DC. Document partially illegible. This document contains export-controlled technical data.

AUTHORITY

usaf ltr, 28 feb 1972

LONG RANGE SEISMIC MEASUREMENTS

NASH

19 JANUARY 1967

Prepared for

AIR FORCE TECHNICAL APPLICATIONS CENTER

Washington, D. C.

2 JUNE 1967

By

TELEDYNE INC.

Under
Project VELA UNIFORM

ADVANCED RESEARCH PROJECTS AGENCY
Nuclear Test Detection Office
ARPA Order No. 624

BEST AVAILABLE COPY

LONG RANGE SEISMIC MEASUREMENTS NASH

19 January 1967

SEISMIC DATA LABORATORY REPORT NO.184

AFTAC Project No.:

VELA T/6702

Project Title:

Seismic Data Laboratory

ARPA Order No .:

624

ARPA Program Code No .:

5810

Name of Contractor:

TELEDYNE, INC.

Contract No .:

F 33657-67-C-1313

Date of Contract:

3 March 1967

Amount of Contract:

\$ 1,735,617

Contract Expiration Date:

2 March 1968

William C. Dean

Project Manager:

(703) 836-7644

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign national may be made only with prior approval of Chief, AFTAC.

This research was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, under Project VELA-UNIFORM and accomplished under the technical direction of the Air Force Technical Applications Center under Contract F 33657-67-C-1313.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

TABLE OF CONTENTS

		Fage	No
EVENT 1	DESCRIPTION	1	
INTRODI	UCTION	2	
INSTRU	MENTATION AND PROCEDURE	2	
DATA AN	ND RESULTS	4	
TABLES		•	
1	Station Status Report - NASH		
2	Principal Phases - NASH		
FIGURES	<u> </u>		
1	Recording Stations and Signals Received		
2	Unified Magnitudes		
3	Adjusted Unified Magnitudes		
4	Travel-Time Residuals, T-A/8.1; T-JB		
5	Maximum Amplitudes of Pn and P		
6	Maximum Amplitudes of Pg		
7	Maximum Amplitudes of Lg		
8	Maximum Amplitudes of LQ		
9	Maximum Amplitudes of LR		
LIST OF	APPENDICES		
I(A)	Recording Site Information		
I(B)	Unified Magnitudes from Pn or P Waves		
II(A)	Seismic Analysis Diagram		
II(B)	Instrument Response Curves - LRSM		
II(C)	Instrument Response Curves - LASA		
II(D)	Instrument Response Curves - Other Short Period		

NASH

EVENT DESCRIPTION

DATE:

19 January 1967

TIME OF ORIGIN: 16:45:00.1Z

YIELD:

MAGNITUDE: 5.25 + 0.50

LOCATION:

SITE:

Nevada Test Site, Area U2ce

GEOGRAPHIC COORDINATES:

Lat: 37°08'37.0" N

Long: 116^o08'07.0" W

ENVIRONMENT:

GEOLOGIC MEDIUM:

TUFF

SURFACE ELEVATION:

4764 ft.

SHOT ELEVATION: 3564 ft.

SHOT DEPTH:

1200 ft.

COMPUTED EPICENTER: ALL STATIONS

GEOGRAPHIC COORDINATES:

Lat: 37⁰03'18.0" N

Long: 116⁰14'42.0" W

TIME OF ORIGIN:

16:45:00.6Z

DEPTH CONSTRAINED TO: 0 km

EPICENTER SHIFT: 13.9 km, S 45° W

Code	Station	SPZ	SPR	FAS	LPZ	LPR	LPT	Tape	Timing	
MH-NV	Mina, Nevada	+	+	+	+	+	+	*	Д	
KN-UF	Kanab, Utah	+	+	+	+	+	+	*	Δ	
TPSO	Tonto Forest Observatory, Arizona	+	•	+	•	1	-1	*	Δ	
MO-ID	Mountain Home, Idaho	+	1	-	+	+		*	д	
UBSO	Uinta Basin Jhservatory, Utah	+			+	1	1	*	Д	
FK-CO	Franktown, Colorado	+	•	+	+	+	+	*	ē,	
LAO	Subarray AO-10, Montana	+	Z	Z		Z	2		Д	
MASO	Wichita Mountain Observatory, Oklahoma	•	•	+	+	+	+	*	Ω	
KC-MO	Kansas City, Missouri	X	×	Z	×	E	Z			
PG-BC	Prince George, British Columbia, Canada	+		+	ì	1	1	*	Ω	
RK-OH	Red Lake, Ontario, Canada	+	+	+	ì	ı	ı	*	Δ	
OSao	Cumberland Plateau Observatory, Tennessee	•	+	+	1	1	t	*	Д	
WHZYK	Whitehorse, Yukon Territory, Canada		+	+		ı	1	*	Δ	
HN-ME	Houlton, Maine	+	+	+	ı	ı	I	*	Д	
SV 3QB	Schefferville, Quebec Canada	+	+	+	ı	1	1	*	Ω	
NP-NT	Mould Bay, Northwest Territories, Canada	+	+	+	+	+	1	*	<u>r</u>	

St

Moving
No Instrument
Primary Timing
Magnetic Tape Available
Signal
No Usable Signal

Station Status Report - NASH

TABLE 1

Recording Stations and Signals Received

INTRODUCTION

A long range seismic measurements (LRSM) program and several larger seismographic observatories were established under VELA-UNIFORM to record seismological data resulting from natural seismic activity and a planned series of U. S. underground nuclear tests. The LRSM teams are mobile and occupy locations selected to provide optimum data from events of special interest; the observatories are permanent installations as follows:

Wichita Mountains Seismological Observatory (WMSO) Lawton, Oklahoma

Uinta Basin Seismological Observatory (UBSC) Vernal, Utah

Cumberland Plateau Seismological Observatory (CPSO)
McMinnville, Tennessee

Tonto Forest Seismological Observatory (TFSO)
Payson, Arizona

Large Aperture Seismic Array (LASA)
Billings, Montana

The purpose of this report is to provide an analysis of data resulting from the NASH event recorded by the LRSM teams and the VELA observatories and a preliminary summary of data reported by other permanent and temporary seismographic stations.

INSTRUMENTATION AND PROCEDURE

The instrumentation at each of the LRSM locations consists of three-component short-period and three-component long-period seismographs. In general, data are recorded on 35 millimeter film

portable instrumentation has been incorporated which records only on magnetic tape. The stations are all equipped to record WWV continuously to provide accurate time control. Calibration is accomplished once each day and just prior to each shot at the operational settings. Pertinent information useful for analysis of LRSM data is available to qualified users of this data and is contained in Technical Report 65-43, "Interpretation and Usage of Seismic Data, LRSM Program." General information on LRSM van and portable system equipment and operation is given in Technical Report 66-27, "The LRSM Mobile Seismological Laboratory," and 65-74, "A Portable Seismograph." Copies of these reports may be obtained from DDC. The AD control number of Technical Report 66-27 is 480343. All the observatories have both long-period and short-period, three-component instrumentation, in addition to their other specialized facilities.

Station information is presented in Appendix I. This includes the station name and code; the geographic coordinates; the distances and azimuths involved; the station elevations; and the type of instruments in use at each location. Representative instrumental response curves are shown in Appendix II(B), II(C), and II(D).

The procedures used in measuring amplitudes reported herein is illustrated in Appendix II(A) and the unified magnitude is calculated as shown in Appendix I(B). The distance factors (B) beyond 16° are

from Gutenberg and Richter*. or distance less than 16° values were read from a curve in the Gutenberg and Richter paper back to 10° and then extrapolated to 2° using an inverse cube relationship. An additional magnitude for less than 16° was computed using a method described by Evernden**. (Figure 3).

A standard hypocenter location program for a digital computer is used to determine the location using data from all stations analyzed. Best-fit values of latitude, longitude, depth of focus, and time of origin are determined statistically by a least squares technique. This utilizes a Jeffreys-Bullen travel-time curve as modified by Herrin in 1961 on the basis of Pacific surface-focus recordings. Precision of the computation is limited primarily by the accuracy of arrival times, the validity of the standard travel-time curve, and by local velocity deviations. This method is based on P-wave arrivals with depth constrained to zero.

DATA AND RESULTS (LRSM AND VELA OBSERVATORIES)

The parameters of the NASH event and a summary of the seismic evaluation is shown on the Event Description page. The operational status of the 16 LRSM stations and observatories is given in Table I and illustrated in Figure 1.

- 4 -

^{*}Gutenberg, B. and Richter, C. F., Magnitude and Energy of Earthquakes, Ann. Geofis., 9 (1956), pp. 1-15.

^{**}Evernden, J. F., Magnitude Determination at Regional and Near Regional Distances in the United States, AFTAC/VEAL Seismological Center Technical Report VU-65-4A, (1965), pp. 6, 13.

Table 2 summarizes the measurements made of the principal phases from the NASH event at the LRSM and VELA stations. Included are the Pn and P arrival times, the maximum amplitudes (A/T) of Pn or P motion and other phases as seen on the short-period vertical instruments. Long-period Love and Rayleigh wave motion are also tabulated in (A/T) form. In addition, individual station Rayleigh wave areas (mm²) is indicated as measured on the LPZ only. Although reduced to lK magnification, they have not been normalized to any magnitude. Fifteen stations recorded short-period signals. Long-period signals from this event were recorded by eight stations.

The unified magnitudes determined from the LRSM and VELA observatories is shown in Figure 2. The average magnitude is 5.25 ± 0.50 . The adjusted unified magnitude is 4.94 ± 0.55 and is shown in Figure 3.

The travel-time residuals from the Pn and P phases are shown in Figure 4. Figures 5 through 9 illustrate plots of the amplitude of P, Pg, Lg, LQ and LR.

Attached to the report are illustrated seismograms showing the signals recorded at four stations. The most distant station analyzed that recorded NASH was NP-NT at a distance 4363 kilometers.

Code	Station	Distance (km)	Inat.	Hagnl- fication (k)	Phae	Tr	bserved avel Time	Peri	od Meximu Amplitu		legnitude	Aree (mm²
				Film x 10		(mir	1) (aec) A/T	da	No.	LPS
MH-MV	Hina, Savada	228	878	4.86	Pn		35.5	0.4	2293	5.59	5,19	
			878	.8964	Pg		30.1	0.5	(8484)			
			8PT	2.22	Lg			0.7	10643			
			LPT	45.1	LO			(10.0)	(169)		1	
			LPZ	4.3	2.8			(13.0)	(777)			141.28
IM-UT	Sanab, Utah	294	8P2	10.3	Pn		44.1	0.4	796	5.42	5.05	
			278	2.594	Pg		48.9	0.6	6329		1	
			SPT	2.05*	Lg			0.8	6633			
			LPT	44.1	LQ			11.0	434			
			LPZ	5.55	LR	1		12.0	397			40.00
TPSO	Tonto Forest Observatory, Arisona	543	SPZ-60	33.8	Pn	1	16.1	0.4	124	5.45	5.02	48.20
			8PZ-60	16.6*	Pg	1	30.9	0.8	492		7.02	
			SPN	16.60	Lg			1.2	560			
			SPS	23.0*	Lg			1.2	465			
			LPsr	38.5	LQ			10.0	(130)			
			LPE	37.0	LQ		1	10.0			1	
			LPZ	3.0	Ls			15.0	(142)			
MO-10	Mountain Home, Ideho	659	575	15.8	Pn	1	31.0		799			147.72
			898		Pg	1	(48.9)	0.4	(93.1)	(5.55)	(5.20)	
			SPT			1	(48.9)					
			LPT		Lg LO		1					
		i i	LPZ	7.6	LR		1					1
Je 80	Uinta Saain Observatory	671	SPZ-10	5,3				16.0	58.6			55.26
	Utah		SPS-10	5.3	Pn	1	(33.9)	1.8	363	6.17	5.95	
			SP2-10		•	1	44.5	0.65	159			
			SPN SPN	5.3	Pg	1	52.3	0.9	1113	1		
		1 1		5.3	Lg			1.4	708			
			SPE	5.3	Lg			1.4	1281	1		
			LPE		LΩ			***	* * *			
K-C0	Franktown, Colorado		LPZ	26	LS			(15.0)	(31.2)			29.81
	Fienatown, Colorado	1055	6PZ	133*	₽n	2	(20.9)	U.8	38.7	5.64	4.36	
			89Z	133*	•	2	36.1	0.9	85.4			
			SPS	133*	Pg	2	55.5	0.8	149			
			SPT	142*	Lg			1.8	710			
			LPT	37.4	LO			13.0	203			
10			LPS	6.48	LS			10.0	365			30.09
	Subarrey AO-10 Montana	1340	878	325	Pn	2	(5%.5)	(0.0)	(7.1)	(4.95)	(3.84)	4
7.50			& PZ	325	•	2	-5.5	0.8	37.2			
			8PZ	37.5	(PP)	3	01.9	0.8	58.3			
			8P2	37.5	(PPP)	3	08.2	0.9	80.3			
1		- 11/4	SPS	37.5		3	19.9	0.9	67.9		1	
			LFS	52.5	LR			***	***			
0-7	Wichite Mountain Observatory, Oklahona	1-04	SPT	52.5		3	(27.8)	1.2	29,4	4.94	4.62	
i		1	SPS	52.5	0	3	37.5	1.2	24.1		7.02	
			SPZ	52.5	Pg	4	29.9	1.0	52.4			
			ври	52.5	Lg			1.9	227			
			SPE	47.5	Lg			1.8	146			
			LPN	11.0	LO			14.0	52			
			LPZ	12.3	LS			18.0	35.9			
ac	Princa George, British Columbia, Canada	1938	87Z	158	P 4		06.1	1.0				38.41
	Transfer California		SPS	150			08.1	1.0	(11.9)	(3.98)		
			8P2	158	. 4		11.2	0.9	71.2		7	
			872	158	PP 4		22.1		63.9			
			SPS .	149	Lg			1.0	48.3			TETOY
			PT	169				(2.2)	(92.6)	Prof.		
			PT		Lg			(2.1)	(103)			3717
			PZ		TO		1124	***	***			
			4.6		LR			***	***	7771		

Principal Phases - NASH Table 2 Page J.

Frincipal Phasea MASH 19 January 1967 16:45:00.12

Code	Station	Distance	Inst.	Magni- fication	Phase	Trava	Obsarved Traval Time	Period	Maximum	Magn	Magnitude	Axes (m2)
		(KB)		(k) Pilm x 10		(mim)	(sec)	(sec)	1.7	q		Z47
34K-08F	Red Lake, Ontario	2343	245	57.2*	ů.	4	45.7	8.0	218	5.45		
			245	57.2*	•	4	49.0	6.0	103			
			248	57.2*	•	4	53.6	6.0	6.08			
			245	57.2*	•	'n	16.4	6.0	62.5			
			r.s	250	3			1.6	6.53			
			23		3			×	×			
			247		E			* *	×××			
82-0540	Cumberland Plateau	27.37	8-Z4S	40	A.	8	22.6	8.0	(48.1)	(5.09)		
	ODSELVELOIY, Tennessie		8-Z4S	40	٠	10	42.0	8.0	39.0			
			8-245	390	(PP)	٧,	51.2	6.0	17.0			
			SPZ-8	390	8	6	00.1	(0.7)	(6.8)			
			SPM	430	3			1.4	33.2			
			245	420	3		_	1.4	19.6			
			LPM		3			* *	×××			
			LPZ		23			* *	×××			
WEZTYK	Whitshorsa Yukon	2938	248	195.5	Q.	8	39.4	6.0	25.1	4.84		
			245	196.5	4	9	13.7	6.0	6.4			
			147		3			×	×			
			LPZ		LR			*	×			
20×-100	Boulton, Maina	4070	2.4S	85.6	Δ,	7	08.3	0.95	43.2	5.17		
			248	85.6	8	6	31.1	8.0	6			
			TAS	\$.68	2			1.6	32.6			
			EP.		3			×	×××			
			LPZ		E.			×	×			
8V 30B	Schaffarvilla.Quebec	4190	245	127	Δ,	7	(16.2)	1.2	37.9	5.08		
			247		E.			×	×			
MP-MT	Medid Bay, Northwest Territories Canada	4363	248	240	Δ,	7	30.6	6.0	61.4	5.19		
			248	240	4	7	36.3	8.0	29.0			
Ĭ,			ZäS	240	4	6	12.6	1.5	13.9			
			248	240	å	2	39.7	8.0	10.0			
			ras.	303	3			2.5	91.7			
			LPZ	10.8								

\$0.1 ×

mu/sec
boubtful values or phases
Resurements mede from playouts
Maximum Amplitude clipped on film & tape
Signal, if prasent, obsarved by earthquake

Figure

Figure 4

Figure 6

*MN-NV Mine, Nevada *KN-UT Kanab, Utah TFSO-Z60 Tonto Forest Observatory, Arizona *MO-ID Mountain Home, Idaho UBSO-Z10 Uinta Pasin Observatory, Utah *FK-C0 Franktown, Colorado IAO Subarray AO-10, Montana WMSO-Z6 Wichita Mountain Observatory, Oklahoma KC-MO Kansas City, Missouri PG-BC Whichita Mountain Observatory, Oklahoma *RK-ON Red Lake, Ontario, Canada *RK-ON Red Lake, Ontario, Canada *RK-ON Red Lake, Ontario, Canada *WH2YK Whitehorse, Yukon Territory, Canada *HN-ME Houlton, Maine \$V30B Schefferville, Quebec, *NP-NT Mould Bay, Northwest	Distance	Geographic	Geographic	Elev.	Computed	Computed Azimuth	Installed Azimuth	Azimuth	Large or	I.P
Mina, Nevada Kanab, Utah Z60 Tonto Forest Observatory, Arizona Mountain Home, Idaho Z10 Uinta Easin Observatory, Utah Franktown, Colorado Subarray AO-10, Montana Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	(Km)	Latitude	Longitude	(km)	Epi. Sta.	Sta. Epi.	Radial	Tang.	SP	Inst.
Kanab, Utah Z60 Tonto Forest Observatory, Arizona Mountain Home, Idaho Uinta Easin Observatory, Utah Franktown, Colorado Subarray AO-10, Montana Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	228	38°26'10" N	118°08'53" W	1.52	3100	1280	308	380	ı	×
Tonto Forest Observatory, Arizona Mountain Home, Idaho Uinta Easin Observatory, Utah Franktown, Colorado Subarray AO-10, Montana Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	294	37°01'22" N	112 ⁰ 49'39" W	1.74	950	2740	950	1850	ħ	×
Mountain Home, Idaho "210 Uinta Easin Observatory, Utah Franktown, Colorado Subarray AO-10, Montana Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	543	34°17'12" N	111°16'03" W	1.49	1240	3070	206	00	No.	×
Unita Easin Observatory, Utah Franktown, Colorado Subarray AO-10, Montana Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	629	43°04'19" N	116 ⁰ 15'56" W	0.79	3590	1790	35%	989	ų	×
Franktown, Colorado Subarray Ao-10, Montana Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	671	40°19'18" N	109 ⁰ 34'07" W	1.60	560	2400	06	00	MC	×
Subarray A0-10, Montana Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	1055	39°35'12" N	104°27'42" W	1.80	720	2590	064	1690	n	×
Wichita Mountain Observatory, Oklahoma Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	1340 I340	46°41'19" N	106°13'20" W	06.	350	2210	00	006	HSZ	×
Kansas City, Missouri Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	1604	34°43'05" N	98 ⁰ 35'21" W	.51	940	2850	006	%	JM	×
Prince George, British Columbia, Canada Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada	1891	39°21'21" N	94°40'17" W	.27	760	2690	MOV	¢		
Red Lake, Ontario, Canada Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada Mould Bay, Northwest	1938	N "05'65°ES	122 ⁰ 31'23" W	.91	3470	1630	1100	2000	ı	×
Cumberland Plateau Observatory, Tennessee Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada Mould Bay, Northwest	1da 2343	50°50'20" N	93040'20" W	.37	420	238°	289	1480	Ø	×
Whitehorse, Yukon Territory, Canada Houlton, Maine Schefferville, Quebec, Canada Mould Bay, Northwest	2737	35 ⁰ 35'41" N	85°34'13" W	.57	840	2830	006	° _O	Æ	×
Houlton, Maine Schefferville, Quebec, Canada Mould Bay, Northwest	2938	60 ⁴ 1'41" N	134°58'02" W	.85	3390	1450	325°	55°	ы	×
Schefferville, Quebec, Canada Mould Bay, Northwest	4070	46°09'43" N	M "60'65°79	.21	009	2730	930	1830	Ø	×
Mould Bay, Northwest	4190	54°48'39" N	66 ⁰ 45'00" W	75	460	2630	1390	1290	Ø	×
Territories, Canada	4363	76 ⁰ 15'08" ½	119 ⁰ 22'18" W	90.	3590	1960	3560	0860	SMZ	×

*Seismometers Orientated Toward Nevada Test Site

Recording Site Information - NL.SH Appendix I(A) Unified Magnitude: $m = log_{10} (A/T)$, + B

where

A = zero to peak ground motion in millimicrons = (mm) (1000)

T = signal period in seconds

B = distance factor (see Table below)

mm = record amplitude in millimeters zero to peak

K = magnification in thousands at signal
frequency

Table of Distance Factors (B) for Zero Depth

Dist		Dist		Dist		Dist	
(dec	() B	(deg) B	(deg		(deg	
00	-	27 ⁰	3.5	54.°	3.8	80°	
1	_	28	3.6		3.0		3.7
2	2.2	29	3.6	55	3.8	81	3.8
3	2.7		3.0	56	3.8	82	3.9
4	3.1	30	3.6	57	3.8	83	4.0
		31	3.7	58	3.8	84	4.0
5	3.4	32	3.7	∴ Э	3.8	85	4.0
6	3.6	33	3.7			86	3.9
7	3.8	34	3.7	60	3.8	87	4.0
8	4.0	2.5		61	3.9	88	4.1
9	4.2	35	3.7	62	4.0		
10	4.0	36	3.6	63	3.9	89	4.0
10	4.3	37	3.5	64	4.0	90	4.0
11	4.2	38	3.5	65	4.0	91	4.1
12	4.1	39	3.4		4.0	92	4.1
13	4.0	40	3.4	66	4.0	93	4.2
14	3.6	41		67	4.0	94	4.1
15	3.3		3.5	68	4.0		4.1
16	2.9	42	3.5	69	4.0	95	4.2
17		43	3.5	70	3.9	96	4.3
	2.9	44	3.5	71	3.9	97	4.4
18	2.9	45	3.7	72	3.9	98	4.5
19	3.0	46	3.8	73		99	4.5
20	3.0	47	3.9		3.9		
21	3.1	48	3.9	74	3.8	100	4.4
22	3.2	49		75	3.8	101	4.3
23	3.3	49	3.8	76	3.9	102	4.4
24		50	3.7	77	3.9	103	4.5
~4	3.3	51	3.7	78	3.9	104	4.6
25	3.5	52	3.7	79	3.8	105	4 7
26	3.4	53	3.7		3.0	105	4.7
	OFFICIAL CO.		J				

Unified Magnitudes From P or P Waves
Appendix I(B)

Bottom of line

Bottom of line

Detail Showing Allowance
For Line Width

Pick time of Pn at beginning of "a" half cycle.

Pick amplitude of Pn as maximum "d/2" within 2 or 3 cycles of "c".

Pick amplitudes of Pg and Lg at maximum of corresponding motion.

Seismic Analysis Diagram
APPENDIX II(A)

INSTRUMENT RESPONSE CURVES - LRSM

INSTRUMENT RESPONSE CURVE - LASA

INSTRUMENT RESPONSE CURVES - OTHER SHORT PERIOD

Unclassified
Security Classification

DOCUMENT (CONTROL DATA - RAD		
(Security closeliteation of title, body of abottool and indi- 1. ORIGINATING ACTIVITY (Corporate author) TELEDYNE, INC. ALEXANDRIA, VIRGINIA	8	. REPO	FF SECURITY CLASSIFICATION
LONG RANGE SEISMIC MEASUREMEN	ITS - NASH		
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific S. AUTHOR(S) (Leet name, Bret name, Initial) Clark, Don M.			
6. REPORT DATE 19 January 1967	76- TOTAL NO. OF PAGE	ES	75. NO. OF REFS
60. CONTRACT OR GRANT NO. F 33657-67-C-1313 4 PROJECT NO. VELA T/6702	30. ORIGINATOR'S REPO	DRY NUM	
ARPA Order No. 624 ARPA Program Code No. 5810	St. OTHER REPORT HO	(8) (Any	other numbers that may be seel gred
This document is subject to sy transmittal to foreign government on the system of the	ments or foreign of Chief. AFTA(12. SPONSORING MILITAR	n nat C RYACTN EARCH	vity I PROJECTS AGENCY
13. ABSTRACT	WASHINGTON, I		

An analysis of seismological data from an underground nuclear explosion as a continuing study to provide information to aid in distinguishing between earthquakes and explosions. A table of travel-times and amplitudes of P, Pg, Lg, and surface waves are included along with other unidentified phases.

DD .5884. 1473

Security Classification

Unclassified

Security Classification

KEY WORDS	LIN	KA	LIN	K B	LIN	
	MOLE	WT	ROLE	WT	ROLE	wr
Seismic Magnitude						
Seismic Travel-Time			1 1		1 1	
Seismic Amplitude			1 1			
VELA-UNIFORM			1 1		1 1	
Nuclear Tests						
	1 1	- 1				
	1 1	- 1		- 1		
	1 1	- 1		- 1		
		- 1		- 1	- 1	
		- 1		- 1	- 1	

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) lesuing
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate accusity regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when spplicable, show that optional markings have been used for Group 3 and Group 4 as author-
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, snnuel, or final. Give the inclusive dates when a specific reporting period is
- 5. AUTHOR(S): Enter the name(s) of author(a) as shown on or in the report. Enter test name, first name, middle initial, if military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8s. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the applicable number the report was written
- 86. 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9s. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 96. OTHER REPORT NUMBER(\$): If the rep sesigned any other report numbers (either by the originator or by the aponsor), elso enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such se:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not sutherized."
- "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users
- (5) "All distribution of this report is controlled. Qual-tiled DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indi-cate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summery of the document indicative of the report, even though it may slao appear elsewhere in the body of the technical re-port. If additional space is required, a continuation sheat shell port. If addi

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (G), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are lechnically meaningful terms or short phrases that characterize a report end may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The sasignment of links, rules, and weights in options!

NASH
MN-NV
MINA, NEVADA
19 JANUARY 1967
Δ = 228 km

NASH

PG-BC

PRINCE GEORGE, BRITISH COLUMBIA

19 JANUARY 1967

 $\Delta = 1938 \, \text{km}$

NASH
WH2YK
WHITEHORSE, YUKON TERRITORY
19 JANUARY 1967
Δ = 2938 km

NASH

NP-NT ...

MOULD BAY, NORTHWEST TERRITORIES LPZ-HI

19 JANUARY 1967

 $\Delta = 4363 \text{km}$

