Teorema de Cook-Levin

Adrián Rodríguez Bazaga, Eleazar Díaz Delgado

Rudolf Cicko

Complejidad Computacional, Grado en Ingeniería Informática Universidad de La Laguna Curso 2016-2017

Contenidos

- Introducción
- 2 Problema de la satisfactibilidad (SAT)
- 3 Demostración de la NP-completitud para SAT
- 4 Conclusiones
- Referencias

Preámbulo

Teorema de Cook: ¿Qué es?

En la teoría de la complejidad computacional, el teorema de Cook-Levin, también conocido como teorema de Cook, indica que el problema de la satisfactibilidad booleana (SAT) es NP-completo.

P = NP ?

Figura: Jerarquía de clases de problemas

Problema de la satisfactibilidad (SAT)

SATISFACTIBILIDAD (SAT)

ENTRADA: Un conjunto de cláusulas $C = \{c_1, c_2, \dots, c_m\}$ sobre un conjunto finito U de variables.

PREGUNTA: ¿Existe una asignación booleana para U, tal que satisfaga todas las cláusulas de C?

SAT es \mathcal{NP} -completo I

Primero se demuestra que SAT está en \mathcal{NP} . Para ello se puede generar una máquina de Turing no determinista(NDTM), que resuelva SAT en tiempo polinomial. Es decir, que dada una fórmula booleana ϕ se hallen los valores de entrada, tal que se satisfaga ϕ usando dicha NDTM.

SAT es \mathcal{NP} -completo II

Debemos demostrar que para todo lenguaje $L \in \mathcal{NP}$, $L \leq L_{SAT}$.

Los lenguajes de la clase \mathcal{NP} son bastante diversos, se trata de una clase infinitamente grande, por lo que no esperemos presentar una demostración para cada uno de los lenguajes por separado.

SAT es \mathcal{NP} -completo III

Denotemos por M un programa arbitrario en tiempo polinomial para una Máquina de Turing No Determinista (NDTM), especificado por Γ , Σ , b, Q, q_0 , q_Y , q_N , y δ . Que decide un lenguaje A en un tiempo polinómico n^k .

Se representará la ${\cal M}$ sobre un tablero, en el cual cada fila es representa una configuración:

- La primera fila representa la configuración inicial de la máquina.
- Se acepta el lenguaje si alguna fila del tablero es verdadera.

SAT es \mathcal{NP} -completo: tabla

Figura: Tabla de configuraciones

SAT es \mathcal{NP} -completo IV

Generación de la fórmula ϕ

$$\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$$

SAT es \mathcal{NP} -completo V

Generación de la fórmula ϕ_{cell}

$$\phi_{cell} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigwedge_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{s,t \in C \land s \ne t} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right]$$

SAT es \mathcal{NP} -completo VI

Generación de la fórmula ϕ_{start}

$$\phi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge x_{1,n+3,\square} \wedge \dots \wedge x_{1,n^k-1,\square} \wedge x_{1,n^k,\#}$$

$$(1)$$

SAT es \mathcal{NP} -completo VII

Generación de la fórmula ϕ_{accept}

$$\phi_{accept} = \bigvee_{1 \le i, j \le n^k} x_{i, j, q_{accept}}$$

SAT es \mathcal{NP} -completo VIII

Generación de la fórmula ϕ_{move}

$$\phi_{move} = \bigwedge_{1 \le i, j \le n^k} (ventana \ en \ i, j \ que \ es \ legal)$$

SAT es \mathcal{NP} -completo IX

Generación de la fórmula de la ventana

$$\bigvee_{a_1, a_6} x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6}$$

SAT es \mathcal{NP} -completo X

(b) $\begin{array}{c|cccc} a & q_1 & b \\ \hline a & a & q_2 \end{array}$

(e) $\begin{array}{c|cccc} a & b & a \\ \hline a & b & q_2 \end{array}$

(f) b b b c b

Figura: Ventanas legales

SAT es \mathcal{NP} -completo XI

(a)	a	Ъ	a
	a	a	a

(b)	a	q_1	b
	q_2	a	a

(c)
$$\begin{array}{c|ccc} b & q_1 & b \\ \hline q_2 & b & q_2 \end{array}$$

Figura: Ventanas ilegales

Conclusión: SAT es \mathcal{NP} -completo

• Para todo problema $L \in NP$, existe un f_L que es una transformación polinomial de L al SAT

Referencias I

Michael Sipser

Introduction to the Theory of Computation.

Third edition, Cengage Learning, 2013

Michael R. Garey, David S. Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, ISBN 0-7167-1045-5.

Cook, Stephen

The complexity of theorem proving procedures.

Proceedings of t he Third Annual ACM Symposium on Theory of Computing. pp. 151-158 (1971)

Karp, Richard M.

Reducibility Among Combinatorial Problems.

Complexity of Computer Computations. New York: Plenum, pp. 85-103. ISBN 0-306-30707-3 (1972)

Referencias II

T. P. Baker, J. Grill, R. Solovay

Relativizations of the P=NP question.

SIAM Journal on Computing. 4 (4): 431-442 (1975)

On the impossibility of eliminating exhaustive search in computing a function relative to its graph.

Proceedings of the USSR Academy of Science. 14: 1146-1148.

Levin, Leonid

Universal search problems.

Problems of Information Transmission. 9 (3): 115-116 (1973)

Design and Analysis of Algorithms

Lecture, School of Information and Computer Sciences, University of California, Irvine

https://www.ics.uci.edu/~eppstein/161/960312.html

Referencias III

NP-complete problems

Lecture, Electrical Engineering and Computer Sciences, Berkeley

https:

//people.eecs.berkeley.edu/~vazirani/algorithms/chap8.pdf