Problemes de Diagonalització de matrius. Treball de classe.

- 1) Donada la matriu $A = \begin{pmatrix} -5 & -5 & -9 \\ 8 & 9 & 18 \\ -2 & -3 & -7 \end{pmatrix}$, comprovau que $\lambda = -1$ és un valor propi de A i (3, -6, 2) és un vector propi associat a λ . És el vector (1, 2, -1), un vector propi associat a $\lambda = -1$?
- 2) Justificau si són o no diagonalitzables les següents matrius:

a)
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}$$
 b) $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

3) Provau si són o no diagonalitzables les següents matrius de $M_3(\mathbb{R})$ i, en cas de que ho siguin, trobau una matriu P de vectors propis i la matriu diagonal.

a)
$$A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ c) $C = \begin{pmatrix} 1 & 1 & 0 & 5 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end{pmatrix}$

4) Discutiu, segons els valors del paràmetre real a, la diagonalització de les següents matrius. Quan sigui possible, donau una matriu P de vectors propis i la matriu diagonal.

a)
$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$
 b) $\begin{pmatrix} a & 0 & a \\ 1 & a+1 & -2 \\ -1 & -1 & 2 \end{pmatrix}$ c) $\begin{pmatrix} a & 1 & a-1 \\ 1 & 2a & -1 \\ 2a+1 & 1 & -2 \end{pmatrix}$

5) Estudiau, segons els valors dels paràmetres reals $\alpha, \beta,$ la diagonalització de la matriu

$$A = \begin{pmatrix} \alpha + 1 & \alpha + \beta & \beta \\ -\alpha & -\alpha & -1 \\ \alpha & \alpha - 1 & 0 \end{pmatrix}$$

- $\bf 6)$ Sigui A la matriu real, quadrada d'ordre p, amb tots els coeficients iguals a $\bf 1.$
 - a) Demostrau que $A^n = p^{n-1}A$, per a tot enter $n \ge 1$.
 - b) Calculau els valors propis de ${\cal A}$.
 - c) Trobau, si és possible, una matriu P tal que $P^{-1}AP$ sigui diagonal i calculau P^{-1} .

1

- 7) Donada la matriu $A = \begin{pmatrix} -1 & 0 & -3 \\ 3 & 2 & 3 \\ -3 & 0 & -1 \end{pmatrix}$
 - 1. Provau que A és diagonalitzable.

- 2. Calculau A^n per a tot $n \ge 1$.
- 3. Provau que $p_A(A) = 0$, on $p_A(x)$ és el polinomi característic de la matriu A.
- 8) Donades les matrius:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$$

calculau, utilitzant el teorema de Cayley-Hamilton, A^{-1} , B^4 , i B^5 .

9) Donat $a \in \mathbb{R}$, considerau la matriu

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & a \end{pmatrix}$$

- a) Demostrau que $A^3 aA^2 + 2A I_3 = 0$.
- b) Demostrau que A és invertible i calculau A^{-1} .
- c) Trobau el valor de $A^5 aA^4 + A^3 (1-a)A^2 A + I_3$.
- **10)** Sigui $A \in M_n(\mathbb{R})$ una matriu quadrada d'ordre n. Demostrau que els valors propis de A i de A^t coincideixen.
- 11) Calculau A^n per a tot $n \in \mathbb{N}$, si A és la matriu:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

12) Trobau el terme general de la successió a_n/b_n definida per

$$a_1 = b_1 = 1$$
, $a_{n+1} = a_n + 2b_n$, $b_{n+1} = a_n + b_n$ per a tot $n \in \mathbb{N}$

13) Considerau les successions definides recurrentment per a tot $n \geq 1$ per:

$$u_n = -4u_{n-1} - 6v_{n-1}$$
 $v_n = 3u_{n-1} + 5v_{n-1}$ $w_n = 3u_{n-1} + 6v_{n-1} + 5w_{n-1}$

Calculau u_n, v_n, w_n en funció de u_0, v_0, w_0 .