Discrete uniform distribution

Definition

The r.v. X has the discrete uniform distribution on the set of real numers $\{x_1, \dots, x_n\}$ if \mathbb{P}_X is the equiprobability on this set i.e.: $X \in X(\Omega) = \{x_1, \dots, x_n\}$ and $\forall k \in \Omega, \mathbb{P}(X = k) = \frac{1}{n}$

We note $X \rightsquigarrow \mathcal{U}(n)$.

$$\mathbb{E}(X) = \frac{n+1}{2}; Var(X) = \frac{n^2-1}{12}.$$

Example

When we throw a dice, the number obtained follow the uniforme distribution on $\{1, \dots, 6\}$ with $\mathbb{P}_X(x) = \frac{1}{6}, \forall x \in \{1, \dots, 6\}$.

Bernoulli distribution

Definition

The r.v. X follow the Bernoulli distribution of parameter $p, (p \in [0,1])$ if it takes only two values 0 and 1 with $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p=q$ (with: p+q=1). We note $X \rightsquigarrow \mathcal{B}(p)$.

we note $\wedge \rightsquigarrow \mathcal{B}(p)$. $\mathbb{E}(Y) = p_1 \operatorname{Var}(Y) = p(1)$

$$\mathbb{E}(X) = p; Var(X) = p(1-p) = pq.$$

Example

In the toss of an unbalanced coin, the probability of getting "heads" is $p \neq \frac{1}{2}$. X the r.v. defined by X=1 if we get "heads" and X=0 if we get "tails". $X \rightsquigarrow \mathcal{B}(p)$ with the probability distribution

$$\mathbb{P}(X = x) = \begin{cases} p, & \text{if } x = 1\\ q, & \text{if } x = 0 \end{cases}$$

Binomiale distribution

Let be an urn containing:

- white balls W in proportion p;
- red balls R in proportion q = 1 p.

One carries out n successive draws of a ball with delivery. We define the r.v. X as the number of white balls obtained during the n draws (It can take the values: $0, 1, \dots, n$).

Remark

The r.v. X can be defined as a sum of n independent Bernoulli r.v. X_1, X_2, \cdots, X_n $(X = X_1 + X_2 + \cdots + X_n)$. Such that $\mathbb{P}(X_i = 1) = p$.

Binomiale distribution

Definition

A r.v. X follows a binomial distribution of parameters (n,p) where $n \geq 0$ and $(p \in [0,1])$ if $X(\Omega) = \{0,1,\cdots,n\}$ and $\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k}$, $\forall k=0,1,\cdots$, n (with: p+q=1).

We note $X \rightsquigarrow \mathcal{B}(n, p)$.

$$\mathbb{E}(X) = np; Var(X) = np(1-p).$$

Example

Let $X \rightsquigarrow \mathcal{B}(n, p)$.

- 1. Determine *n* such that $\mathbb{P}(X=0) \leq 0,01$;
- 2. Determine *n* such that $\mathbb{P}(X \ge 1) \ge 0,90$.

Hypergeometric distribution

One carries out n successive drawings of a ball, without handing-over, which is the same as when one takes a sample of n balls in only one blow, in an urn containing N balls of two categories:

- N_p white balls W in proportion p;
- N_q red balls R in proportion q = 1 p.

Let be the r.v. X, representing the number of balls W obtained.

Remark

The possible values of X are $\max(0, n - N_q) \le k \le \min(n, N_p)$

Hypergeometric distribution

Definition

The r.v. X follows the hypergeometric distribution of parameters N, n, p, where $n \leq N$, if $X(\Omega) = \{0, 1, \cdots, n\}$ we have

$$orall k \in X(\Omega)$$
, $\mathbb{P}(X=k) = rac{C_{N_p}^k C_{N_q}^{n-k}}{C_N^n}$

We note $X \rightsquigarrow \mathcal{H}(N, n, p)$, with $p = \frac{N_p}{N}$, p + q = 1. The a.v. X follows the hypergeometric law of parameters

$$\mathbb{E}(X) = np; Var(X) = npq \frac{N-n}{N-1}.$$

Geometric distribution

The geometric distribution is the law of expectation of the first success of a sequence of independent trials each of which has a probability p of success, i.e. $\mathbb{P}(X=k)$ is the probability that the k^{th} trial is the first success.

Definition

A r.v. X follows a geometric distribution of parameter p, where $0 \le p \le 1$ if

-
$$X(\Omega)=\mathbb{N}^*;$$

- $\mathbb{P}(X=k)=pq^{k-1}$ with $p+q=1.$

We note
$$X \rightsquigarrow \mathcal{G}(p)$$
.
 $\mathbb{E}(X) = \frac{1}{p}$; $Var(X) = \frac{q}{p^2}$.

Example

We play heads or tails with a rigged coin such that the probability of getting tails is $\frac{1}{3}$. Let X be the r.v. representing the number of

Pascal (Negative Binomial or Polya) distribution

If a r.v. represents the number of fails before the r^{th} success of a sequence of independent Bernoulli trials each of which has a probability p of success.

Definition

A r.v. X follows a Pascal distribution of parameters r and p, where $0 \le p \le 1$ if

-
$$X(\Omega) = \mathbb{N}$$
;
- $\mathbb{P}(X = k) = C_{k+r-1}^k p^r (1-p)^k$ with $p+q=1$.

$$= \mathbb{I}(X - K) = \mathbb{C}_{k+r-1} p \quad (1-p) \quad \text{with } p+q=1$$

We note
$$X \rightsquigarrow \mathcal{BN}(r, p)$$
. $\mathbb{E}(X) = \frac{rq}{p}$; $Var(X) = \frac{rq}{p^2}$.

Poisson Distribution

We observe the realization of random events in time and space obeying the following conditions:

- The probability of realization in a small period Δt is proportional to Δt .
- It is independent of what has happened previously.

Definition

X follows a Poisson Distribution of parameter $\lambda(\lambda>0)$, noted $\mathcal{P}(\lambda)$ if its values are in $\mathbb N$ and if:

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

We note
$$X \rightsquigarrow \mathcal{P}(\lambda)$$
.
 $\mathbb{E}(X) = \lambda$; $Var(X) = \lambda$.

Uniforme distribution

Definition

X follows a continuous uniform distribution on [a, b] if it has the following density

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a, b] \\ 0 & \text{elswhere} \end{cases}.$$

We note $X \rightsquigarrow \mathcal{U}([a, b])$.

The cumulative distribution function:

$$F(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a}, & x \in [a, b] \\ 1 & \text{if } x > b \end{cases}.$$

$$\mathbb{E}(X) = \frac{a+b}{2}; \quad Var(X) = \frac{(b-a)^2}{12}.$$

Exponential distribution

Definition

X follows an exponential distribution of parameter $\lambda>0$ if it has the following density

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{elswhere} \end{cases}.$$

We set $X \rightsquigarrow \mathcal{E}(\lambda)$.

The cumulative distribution function:

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{elswhere} \end{cases}.$$

$$\mathbb{E}(X) = rac{1}{\lambda}; \quad extit{Var}(X) = rac{1}{\lambda^2}.$$

Gamma distribution

Definition

X follows a Gamma distribution of parameters $\alpha>0$ and $\beta>0$ if it has the following density

$$f\left(x
ight) = \left\{ egin{array}{ll} rac{eta^{lpha}e^{-eta x}x^{lpha-1}}{\Gamma(lpha)} & ext{if } x \geq 0 \ 0 & ext{elswhere} \end{array}
ight..$$

Where $\Gamma\left(\alpha\right)=\int_{0}^{\infty}e^{-t}t^{\alpha-1}dt$.

We set $X \rightsquigarrow \mathcal{G}amma(\alpha, \beta)$.

The cumulative distribution function:

$$F(x) = \frac{\beta^{\alpha} \int_{0}^{x} t^{\alpha-1} e^{-\beta t} dt}{\Gamma(\alpha)}.$$

$$\mathbb{E}(X) = rac{lpha}{eta}; \quad \mathit{Var}(X) = rac{lpha}{eta^2}.$$

Gamma distribution

Remark: If $\alpha=1$ we find the exponential distribution with parameter $\lambda=1$.

Properties of the function $\Gamma(\alpha)$

a.
$$\Gamma\left(\alpha\right)=\left(\alpha-1\right)\Gamma\left(\alpha-1\right)$$
 .

b.
$$\Gamma(1) = 1$$
.

c.
$$\Gamma(n) = (n-1)!$$
.

Normal distribution

Definition

X follows the Gaussian (Normal) distribution of parameters μ and σ if it has the following density

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

We note $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$.

$$\mathbb{E}(X) = \mu$$
; $Var(X) = \sigma^2$.

The standard normal distribution

The random variable $U=rac{X-\mu}{\sigma}$ follows the normal distributuion $\mathcal{N}(0,1)$.

Any problem concerning X is reduced to U and we have several tables concerning the standard normal distribution.

Approximations

Approximation of the hypergeometric distribution by a binomial distribution

The hypergeometric distribution can be approximated by the binomial distribution as soon as the size N of the population is large compared with the size n of the sample.

Approximation of the binomial distribution by a Poisson

distribution

If n is large and p small enough (in practice if $n \geq 30$ and $p \leq 0, 1$ with $np \leq 10$) we can replace the binomial distribution $\mathcal{B}(n,p)$ with the Poisson distribution $\mathcal{P}(np)$, $(\lambda = np)$.

Approximation of the binomial distribution by a normal distribution

If n is large and p not too close to 0 and 1 (in practice if $n \geq 30$, $np \geq 5$ and $nq \geq 5$) we can replace the binomial distribution $\mathcal{B}(n,p)$ with the normal distribution $\mathcal{N}(np,\sqrt{npq})$.