

NOVEL MODIFIED MSP-1 NUCLEIC ACID SEQUENCES AND
METHODS FOR INCREASING mRNA LEVELS AND PROTEIN
EXPRESSION IN CELL SYSTEMS

1 gcCgtCaTccCtccgtCatCgataacatCctGtcCAAgtCgAGAAcgAGtaCg
1►Al aVal Thr Pro Ser Val IleAspAsnIleLeuSer Lys IleGluAsnGluTyr G
56 AGGTGCTGtaCCtGAAgocGCTGGCAGGgtCtA(CCgGAGCTGAAgAGCAG
19►IuVal LeuTyr LeuLys ProLeuAlaGlyVal Tyr ArgSer L uLysLysGln
109 CtGgAGAAcaACgtGatGacCttCAAgtGAAcgtGAAGGATATCCtGaaCAGC
37►LeuGluAsnAsnValMetThr PheAsnValAsnValLysAspIleLeuAsnSer
163 CGGTTCAAcaaGCGGAAgAACTCAAgtGCTGGAAGCCGATCtGATCcc
55►ArgPheAsnLysArgGluAsnPhelysAsnValLeuGluSerAspLeuIlePr
216 CtACAAggatCtGacCAGCAGCAACtACgtGgtCAAAGGATCCtACAAgtCC
72►oTyr LysAspLeuThr SerSerAsnTyrValValLysAspProTyrLysPheL
269 tGAAcaaGgaGaaGAGAGATAAGttCtGAGCAGTTAACtACatCAAGGATAG
90►euAsnLysGluLysArgAspLysPheLeuSerSerTyrAsnTyrIleLysAspSe
324 CatTgatacCgatatCAAActCgcCAAACgtgtCctGGGATACTCAAgtCC
108►rIleAspThrAspIleAsnPheAlaAsnAspValLeuGlyTyrTyrLysIleLe
378 GtccGAgaGtaCAAAGAGCgtCtGgtTCATCAAgtGtaCATCAACGA TAA
126►uSerGluLysTyrLysSerAspLeuAspSerIleLysLysTyrIleAsnAspLy
432 GcaGggAgAGAAcgAGAAgtACtGcccTTCCtGAAcAAcatCgAGACCtGta
144►sGlnGlyGluAsnGluLysTyrLeuProPheLeuAsnAsnIleGluThrLeuTy
486 CAAACACgtCAAgtAAATTGATCtGttCgtGatCcaCCtGGAAGCcaAGgt
162►rLysThrValAsnAspLysIleAspLeuPheValIleHisLeuGluAlaLysVa
Ndel
540 CctGAACTACACATATGAGAA GAGCAGACgtGgtCAAgtCAAgtCAAgtGAA
180►I LeuAsnTyrThr TyrGluLysSerAsnValGluValLysIleLysGluLeuAs
594 TTACCTGAAgacCatCcaGgaTAA GCTGGCAGATTTCAAgtGAAgAAcaAACTT
198►nTyrLeuLysThrIleGlnAspLysLeuAlaAspPheLysLysAsnAsnAsnPh
648 cgTCggGatCgcCgatCtGAGCacCgattaCaaACCAcaaCaaACtCCtGacCAA
216►eValGlyIleAlaAspLeuSerThrAspTyrAsnHisAsnAsnLeuLeuThrLy
702 GTTCCCTGAGCACCGGTATGGTCTTGAAAACTGGCCAAAGACCGTCCtGAGCAA
234►sPheLeuSerThrGlyMetValPheGluAsnLeuAlaLysThrValLeuSerAs
756 CCtGctGgatggGaacCtgcaGggGatGtGaaCATCAGCcaGcaccaGtgTgt
252►nLeuLeuAspGlyAsnLeuGlnGlyMetLeuAsnIleSerGlnHisGlnCysVa
810 GAAgAAgaaGtgtccCcaGaaCAGCggGtgTTTCAGACA CCtGGATGAAGAGA
270►I LysLysGlnCysProGlnAsnSerGlyCysPheArgHisLeuAspGluArgGly
864 GGAgtgtAAgtgtCtCCtGAACTACAAgcaGGAAGGTGATAAGtggtgtGaaaaC
288►uGluCysLysCysLeuLeuAsnTyrLysGlnGluGlyAspLysCysValGluAsn
919 CCCAATCCTACTTGTAAACGA GAA CAATGGTGGATGTGATGC CGATGCCAGtgtaCCG
307►ProAsnProThrCysAsnGluAsnAsnGlyGlyCysAspAlaAspAlaLysCysThrG
977 AGGAAGATTCAAGGAGCAACGGGAAGAAgtcacCtGtGAgtgtacCAA GcctGATT
326►IuGluAspSerGlySerAsnGlyLysLysIleThrCysGluCysThrLysProAspS
1034 CTTATCCACTGttGATGGTATCtGtGTagt
345►er TyrProLeuPheAspGlyIlePheCysSer

FIG. 1

1 GCAGTAACCTCCGTATTGATAACATACTTTCTAAAATTGAAAATGAATA
1►AlaValThrProSerValIleAspAsnIleLeuSerLysIleGluAsnGluTyrG

EcoNI (73)

56 AGGTTTTATATTAAAACCTTAGCAGGTGTTATAGAAGTTAAAAAACAAATT
19►IuValLeuTyrLeuLysProLeuAlaGlyValTyrArgSerLeuLysGlnLe
111 AGAAAATAACGTTATGACATTAAATGTTAATGTTAAGGGATATTAAATTCAACGA
37►uGluAsnAsnValMetThrPheAsnValAsnValLysAspIleLeuAsnSerArg
166 TTTAATAAACGTGAAAATTCAAAAATGTTAGAATCAGATTAAATTCCATATA
56►PheAsnLysArgGluAsnPheLysAsnValLeuGluSerAspLeuIleProTyrL
221 AAGATTAAACATCAAGTAATTATGTTGTCAAAGATCCATATAAAATTCTTAATAA
74►ysAspLeuThrSerSerAsnTyrValValLysAspProTyrLysPheLeuAsnLy
276 AGAAAAAAAGAGATAAAATTCTAACAGTTATAATTATAAGGATTCAATAGAT
92►sGluLysArgAspLysPheLeuSerSerTyrAsnTyrIleLysAspSerIleAsp
331 ACGGATATAAATTTCGAAATGATGTTCTGGATATTATAAAATTATCCGAAA
111►ThrAspIleAsnPheAlaAsnAspValLeuGlyTyrTyrLysIleLeuSerGluL
386 AATATAAAATCAGATTAGATTCAATTAAAAAATATATCAACGACAAACAAGGTGA
129►ysTyrLysSerAspLeuAspSerIleLysLysTyrIleAsnAspLysGlnGlyG
441 AAATGAGAAATACCTCCCTTTAAACAATATTGAGACCTTATATAAAACAGTT
147►uAsnGluLysTyrLeuProPheLeuAsnAsnIleGluThrLeuTyrLysThrVal
496 AATGATAAAATTGATTATTGTAATTCAATTAGAAGCAAAGTTCTAAATTATA
166►AsnAspLysIleAspLeuPheValIleHisLeuGluAlaLysValLeuAsnTyrT
551 CATATGAGAAATCAAACGTAGAAGTTAAAATAAAAGAACTTAATTACTTAAAC
184►hrTyrGluLysSerAsnValGluValLysIleLysGluLeuAsnTyrLeuLysTh
606 AATTCAAGACAAATTGGCAGATTAAAAAAATAACAATTCTGTTGAAATTGCT
202►rIleGluAspLysLeuAlaAspPheLysLysAsnAsnAsnPheValGlyIleAla
661 GATTTATCAACAGATTATAACCATAATAACTTATTGACAAAGTTCTTAGTACAG
221►AspLeuSerThrAspTyrAsnHisAsnAsnLeuLeuThrLysPheLeuSerThrG
716 GTATGGTTTGAAATCTTGCTAAAACCGTTTATCTAATTACTTGATGGAAA
239►IyMetValPheGluAsnLeuAlaLysThrValLeuSerAsnLeuAspGlyAs
771 CTTGCAAGGTATGTTAACATTTACAACACCAATGCGTAAAAAACATGTCCA
257►nLeuGlnGlyMetLeuAsnIleSerGlnHisGlnCysValLysLysGlnCysPro
826 CAAAATTCTGGATGTTAGACATTAGATGAAAGAGAAGAATGTAATGTTTAT
276►GlnAsnSerGlyCysPheArgHisLeuAspGluArgGluGluCysLysCysLeuL
881 TAAATTACAAACAAGAAGGTGATAATGTGTTGAAAATCCAAATCCTACTTGTAA
294►euAsnTyrLysGlnGluGlyAspLysCysValGluAsnProAsnProThrCysAs
936 CGAAAATAATGGTGGATGTGATGCAGATGCCAATGTACCGAAGAAGATTCAAGGT
312►nGluAsnAsnGlyCysAspAlaAspAlaLysCysThrGluGlyAspSerGly
991 AGCAACGGAAAGAAAATCACATGTGAATGTACTAACCTGATTCTTATCCACTTT
331►SerAsnGlyLysLysIleThrCysGluCysThrLysProAspSerTyrProLeuP

PstI (1059)

1046 TCGATGGTATTTCTGCAGTCACCACCACCACTAACT

349►heAspGlyIlePheCysSerHisHisHisHisHisHis•••

FIG. 2

Applicant(s): Chen et al.
 NOVEL MODIFIED MSP-1 NUCLEIC ACID SEQUENCES AND
 METHODS FOR INCREASING mRNA LEVELS AND PROTEIN
 EXPRESSION IN CELL SYSTEMS

Codon	AA	goat b-casein	goat K-casein	MSP wt	Edited MSP	mouse b-casein	mouse a-casein	mouse g-casein	mouse e-casein
TTT	Phe	5	4	8	0	4	8	3	4
TTC	Phe	4	3	7	15	4	6	7	1
TTA	Leu	0	2	25	0	0	0	0	0
TTG	Leu	0	2	3	0	0	0	0	1
TCT	Ser	5	1	4	1	13	5	7	5
TCC	Ser	2	2	2	3	6	14	8	2
TCA	Ser	1	4	10	1	1	3	2	0
TCG	Ser	0	1	0	0	0	0	0	0
TAT	Tyr	2	7	17	2	1	3	2	1
TAC	Tyr	1	2	3	18	2	6	6	7
TAA	***	1	2	0	0	1	0	1	0
TAG	***	0	0	0	0	0	0	0	0
TGT	Cys	1	1	10	12	0	0	1	0
TGC	Cys	0	2	2	0	2	2	2	1
TGA	***	0	0	0	0	0	1	0	1
TGG	Trp	1	1	0	0	0	2	2	2
CTT	Leu	9	1	9	0	16	9	3	3
CTC	Leu	5	2	0	0	7	8	0	1
CTA	Leu	1	2	1	0	1	2	1	0
CTG	Leu	11	5	0	38	10	17	4	1
CCT	Pro	17	6	4	2	8	6	3	0
CCC	Pro	12	0	1	6	8	6	6	4
CCA	Pro	3	13	5	1	5	6	2	2
CCG	Pro	1	1	0	1	0	0	0	1
CAT	His	0	1	3	0	2	6	2	1
CAC	His	5	3	1	4	4	0	3	0
CAA	Gln	5	9	9	0	9	21	9	7
CAG	Gln	16	6	0	9	21	32	12	8
CGT	Arg	0	1	1	0	0	0	0	0
CGC	Arg	0	0	0	0	1	0	0	0
CGA	Arg	0	0	1	0	0	0	0	1
CGG	Arg	1	0	0	3	0	0	0	0
ATT	Ile	4	5	13	0	3	4	3	4
ATC	Ile	6	3	2	20	7	5	8	5
ATA	Ile	1	3	5	0	1	0	2	0
ATG	Met	7	3	3	3	4	12	2	13
ACT	Thr	7	6	3	2	6	5	1	4
ACC	Thr	2	7	3	13	4	4	4	4
ACA	Thr	2	4	9	1	1	1	2	0
ACG	Thr	0	0	1	0	0	0	2	0
AAT	Asn	2	6	29	3	4	6	3	1
AAC	Asn	2	3	12	38	4	9	4	6
AAA	Lys	7	6	38	0	6	7	3	5
AAG	Lys	6	4	4	42	3	6	13	7
AGT	Ser	2	6	5	2	3	6	6	5
AGC	Ser	5	0	2	16	2	6	6	3
AGA	Arg	2	2	4	3	1	8	1	1
AGG	Arg	0	2	0	0	0	0	0	1
GTT	Val	5	6	15	0	7	4	2	3
GTC	Val	8	2	1	11	7	3	3	0
GTA	Val	2	2	5	0	2	4	1	3
GTG	Val	8	4	0	10	6	3	5	3
GCT	Ala	1	3	2	0	8	17	4	2
GCC	Ala	4	7	1	8	6	3	3	3
GCA	Ala	3	7	6	1	4	13	1	1
GCG	Ala	0	1	0	0	0	0	0	0
GAT	Asp	4	5	25	27	3	6	4	2
GAC	Asp	0	2	2	0	1	2	1	3
GAA	Glu	10	6	21	3	6	12	9	6
GAG	Glu	9	5	4	22	5	5	5	5
GGT	Gly	2	1	8	4	0	0	0	0
GGC	Gly	0	0	0	0	0	0	0	0
GGA	Gly	2	1	6	3	1	0	1	0
GGG	Gly	1	0	0	7	1	0	0	0

FIG. 3A

NOVEL MODIFIED MSP-1 NUCLEIC ACID SEQUENCES
METHODS FOR INCREASING mRNA LEVELS AND PROTEIN
EXPRESSION IN CELL SYSTEMS

Codon	AA	MSP wt	Edited MSP	MSP wt	Edited MSP	E.coli	Human
TTT	Phe	8	0	0.53	0	0.5	0.35
TTC	Phe	7	15	0.47	1	0.5	0.65
TTA	Leu	25	0	0.66	0	0.11	0.05
TTG	Leu	3	0	0.08	0	0.11	0.09
TCT	Ser	4	1	0.17	0.04	0.27	0.17
TCC	Ser	2	3	0.09	0.13	0.21	0.26
TCA	Ser	10	1	0.43	0.04	0.13	0.11
TCG	Ser	0	0	0	0	0.14	0.07
TAT	Tyr	17	2	0.85	0.1	0.54	0.47
TAC	Tyr	3	18	0.15	0.9	0.46	0.53
TAA	---	0	0				
TAG	---	0	0				
TGT	Cys	10	12	0.83	1	0.45	0.3
TGC	Cys	2	0	0.17	0	0.55	0.7
TGA	---	0	0				
TGG	Trp	0	0	0	0	1	1
CTT	Leu	9	0	0.24	0	0.12	0.11
CTC	Leu	0	0	0	0	0.12	0.22
CTA	Leu	1	0	0.02	0	0.03	0.07
CTG	Leu	0	38	0	1	0.72	0.46
CCT	Pro	4	2	0.4	0.2	0.14	0.24
CCC	Pro	1	6	0.1	0.6	0.11	0.41
CCA	Pro	5	1	0.5	0.1	0.2	0.24
CCG	Pro	0	1	0	0.1	0.54	0.11
CAT	His	3	0	0.75	0	0.64	0.42
CAC	His	1	4	0.25	1	0.36	0.58
CAA	Gln	9	0	1	0	0.31	0.26
CAG	Gln	0	9	0	1	0.69	0.74
CGT	Arg	1	0	0.17	0	0.46	0.09
CGC	Arg	0	0	0	0	0.32	0.19
CGA	Arg	1	0	0.17	0	0.05	0.1
CGG	Arg	0	3	0	0.5	0.06	0.15
ATT	Ile	13	0	0.65	0	0.39	0.23
ATC	Ile	2	20	0.1	1	0.52	0.64
ATA	Ile	5	0	0.25	0	0.08	0.13
ATG	Met	3	3	1	1	1	1
ACT	Thr	3	2	0.19	0.13	0.36	0.2
ACC	Thr	3	13	0.19	0.81	0.38	0.47
ACA	Thr	9	1	0.56	0.06	0.09	0.21
ACG	Thr	1	0	0.06	0	0.17	0.12
AAT	Asn	29	3	0.71	0.07	0.29	0.34
AAC	Asn	12	38	0.29	0.93	0.71	0.66
AAA	Lys	38	0	0.9	0	0.72	0.45
AAG	Lys	4	42	0.1	1	0.28	0.55
AGT	Ser	5	2	0.21	0.09	0.11	0.11
AGC	Ser	2	16	0.09	0.7	0.14	0.29
AGA	Arg	4	3	0.67	0.5	0.08	0.24
AGG	Arg	0	0	0	0	0.03	0.23
GTT	Val	15	0	0.71	0	0.37	0.13
GTC	Val	1	11	0.05	0.52	0.12	0.27
GTA	Val	5	0	0.24	0	0.28	0.09
GTG	Val	0	10	0	0.48	0.23	0.5
GCT	Ala	2	0	0.22	0	0.33	0.31
GCC	Ala	1	8	0.11	0.89	0.18	0.4
GCA	Ala	6	1	0.67	0.11	0.28	0.17
GCG	Ala	0	0	0	0	0.21	0.12
GAT	Asp	25	27	0.93	1	0.48	0.38
GAC	Asp	2	0	0.07	0	0.52	0.62
GAA	Glu	21	3	0.84	0.12	0.67	0.4
GAG	Glu	4	22	0.16	0.88	0.33	0.6
GGT	Gly	8	4	0.57	0.29	0.46	0.15
GCG	Gly	0	0	0	0	0.4	0.44
GGA	Gly	6	3	0.43	0.21	0.06	0.17
GGG	Gly	0	7	0	0.5	0.08	0.24

FIG. 3B

MODIFIED MSP-1 NUCLEIC ACID SEQUENCES AND
METHODS FOR INCREASING mRNA LEVELS AND PROTEIN
EXPRESSION IN CELL SYSTEMS

FIG. 4A

FIG. 4B

FIG. 4C

Oligos used:

OT1:

TCG ACG AGA GCC ATG AAG GTC CTC ATC CTT GCC TGT CTG GTG GCT
CTG GCC ATT GCA AGA GAG CAG GAA GAA CTC AAT GTA GTC GGT A,

OT2:

GAT CTA CCG ACT ACA TTG AGT TCT TCC TGC TCT CTT GCA ATG GCC
AGA GCC ACC AGA CAG GCA AGG ATG AGG ACC TTC ATG GCT CTC G,

MSP1:

AATAGATCTGCAGTAACCTCCTCCGTAAATTG,

MSP2:

AATTCTCGAGTTAGTGGTGGTGGTGGTGGTACTGCAGAAATACCATC

MSP8:

TAACTCGAGCGAACCATGAAGGTCCATCCTGCCTGTCTGGTGGCTCTGG
CCATTGCA

FIG. 6

Applicant(s): Chen et al.
NOVEL MODIFIED MSP-1 NUCLEIC ACID SEQUENCES AND
METHODS FOR INCREASING mRNA LEVELS AND PROTEIN
EXPRESSION IN CELL SYSTEMS

PANEL A

PANEL B

FIG. 5

FIG. 10

FIG. 13

FIG. 7

FIG. 8

Diagram of BC620

FIG. 9

LEVEL MODIFIED MSP-1 NUCLEIC ACID SEQUENCES AND
METHODS FOR INCREASING mRNA LEVELS AND PROTEIN
EXPRESSION IN CELL SYSTEMS

26 ATGAAGGTCTCATATAATTGCCCTGTCGGTGGCTCTGGCCATTGCAGCCGTCACTCCCTCCGTCAATCGATAAC
1> M K V L I I A C L V A L A I A A V T P S V I D N
98 ATCCCTGTCCTAAGATCGAGAACCGACTACGAGGTGCTGTACCTGAAGCCCCCTGGCAGGAGTCTACAGGAGCCT
25> I L S K I E N E Y E V L Y L K P L A G V Y R S L
169 GAAGAAGCAGCTGGAGAACAACTGATGACCTCAACGTGAACGTGAAGGATATCCTGAACAGCAGGTCCTA
48> K K Q L E N N V M T F N V N V K D I L N S R F N
241 CAAGAGGGAGAACCTCAAGAACGTGCTGGAGAGCGATCTGATCCCTACAAGGATCTGACCCAGCAGCAACTA
72> K R E N F K N V L E S D L I P Y K D L T S S N Y
313 CGTGGTCAAAGATCCCTACAAGTTCTGAACAAGGAGAGATAAGTTCTGAGGAGTTACAATTACAT
EcoNI (337) →
96> V V K D P Y K F L N K E K R D K F L S S Y N Y I
385 CAAGGATAGCATTGACACCGATATCAACTTGGCAACGATGTCTGGATACTACAAGATCTGTCGGAGAA
120> K D S I D T D I N F A N D V L G Y Y K I L S E K
457 GTACAAGAGCGATCTGGATAGCATCAAGAAGTACATCAACGATAAGCAGGGAGAGAACGAGAACGAGTAACCTGCC
144> Y K S D L D S I K K Y I N D K Q G E N E K Y L P
529 CTTCTGAAACAACATCGAGACCTCTGACAAAGACCGTCAACGATAAGATTGATCTGTCGGATCCACCTGGAA
168> F L N N I E T L Y K T V N D K I D L F V I H L E
601 GGCGAAGGTCTGCAGTACACATATGAGAGAGAGCAACGTTGGAGGTCAAGATCAAGGAGCTGAATTACCTGAA
NdeI (821) ←
192> A K V L Q Y T Y E K S N V E V K I K E L N Y L K
673 GACCATCCAGGATAAGCTGGCGATTTCAGAAGAACAAACATTCTCGQAATCGCGATCTGAGCACCGA
216> T I Q D K L A D F K K N N N F V G I A D L S T D
745 TTACAACCACAACAACTGCTGACCAAGTTCTGAGCACCGQAATGGCTTCGAAAACCTGGCCAAGACCGT
240> Y N H N N L L T K F L S T G M V F E N L A K T V
817 CCTGAGCAACCTGCTGGATGAAACCTGCAGGQAATGCTGCAQATCAGCCAGCACCAGTGTTGAAGAACG
BamI (849) →
264> L S N L L D G N L Q G M L Q I S Q H Q C V K K
888 AGTGTCCCCAGAACAGCGGATGCTCAGACACCTGGATGAGAGGGAGGTQCAAGTGCCTGCTGAACCA
288> Q C P Q N S G C F R H L D E R E E E C K G C L L N Y
958 CAAGCAGGAAGGAGATAAGTGTGTGAAAACCCAATCTACTTGTAAAGAGAACATGGAGGATGCGATG
311> K Q E G D K C V E N P N P T C N E N N N G G C D
1029 CGATGCCAAGTGTACCGAGGAGGATTCAAGGAAGCAACGQAAGAACATCACTGGACTGCTGCTGAACCT
335> A D A K C T E E D S G S N G K K I T C E C T K P
1100 GATTCTTATCCACTGTCGATGATTTCTGCAGTCACCACCAACCACCAACTCGAGGAT
XbaI (1157) ←
359> D S Y P L F D G I F C S H H H H H H L E D

FIG. 11

Applicant(s): Chen et al.
LEVEL MODIFIED MSP-1 NUCLEIC ACID SEQUENCES AND
METHODS FOR INCREASING mRNA LEVELS AND PROTEIN
EXPRESSION IN CELL SYSTEMS

FIG. 12