Análisis Descriptivo PD-L1

Para este analisis la varible de interes es PD-L1 y su relacion con otras variables.

Table 1: Frecuencia de la variable PD-L1

PD-L1	n
0	121
1	18
NA	191

Donde:

- 0 (Negativo): No se detecto PD-L1 en las celulas cancerosas.
- 1 (Positivo): Se detecto PD-L1 en las celulas cancerosas.
- NA : Sin resultado valido.

De acuerdo Table 1 la variable **PDL1** encontramos 191 varoles faltantes, por tanto al eliminar esos valores faltantes nos quedamos con 139 observaciones.

table(datos\$ciudad, datos\$pd_l1)

```
0 1
0 43 9
1 27 4
2 51 5
```

CramerV(datos\$ciudad, datos\$pd_11)

[1] 0.1099184

```
CramerV(datos$afiliacion, datos$pd_l1)
[1] 0.1250153
CramerV(datos$afr_cat, datos$pd_l1)
[1] 0.09435642
chisq.test(datos$pd_l1, datos$edad)
    Pearson's Chi-squared test
data: datos$pd_11 and datos$edad
X-squared = 50.068, df = 47, p-value = 0.3526
fisher.test(datos$pd_11, datos$edad)
    Fisher's Exact Test for Count Data
data: datos$pd_11 and datos$edad
p-value = 0.2128
alternative hypothesis: two.sided
datos %>% ggplot(aes(x=factor(pd_l1), y=edad))+
  geom_boxplot()
```


PD-L1	Frecuencia	Col3
0 (Negativo)	121	
1 (Positivo)	18	

```
datos %>% ggplot(aes(x=factor(pd_l1), fill = factor(ciudad)))+
  geom_bar()
```

