Prof. Eloy Alvarado Narváez

[20] Tenemos los siguientes datos de ingresos (miles de pesos) de una muestra de 50 personas.

647	1891	770	901	657
1341	1411	1429	651	3501
417	338	1167	862	1216
1893	1322	1076	1159	1096
1333	510	5512	698	844
1858	1323	699	1819	851
578	943	1689	492	1203
322	1656	1649	726	326
1287	876	1809	857	885
1950	8958	447	912	666

- (a) (3 puntos) Identifique y clasifique la variable en estudio.
- (b) (9 puntos) Estime los estadísticos de tendencia central (media y mediana) y de dispersión (varianza y desviación estándar)
- (c) (3 puntos) ¿Cuál es el estadístico de tendencia central apropiado para este caso? Justifique su respuesta.
- (d) (5 puntos) Construya una tabla de datos agrupados considerando los quintiles como clase. Considerar marca de clase, frecuencia absoluta, frecuencia absoluta acumulada, frecuencia relativa, frecuencia relativa acumulada.

Solución: X: {Ingresos en miles de pesos}; Variable de tipo cuantitativa y contínua.

Usando los datos de la tabla, podemos obtener los siguientes estadísticos:

Media: $\overline{x} = 1348,46$ Mediana: Me = 1009,5

Mediana: Ne = 1000,5Varianza: $S^2 = \sum_{i=1}^{50} \frac{x_i - \overline{x}}{49} = 1926014$

Desviación Estándar: $S = \sqrt{S^2} = 1387,809$

La tabla presenta datos que son atípicos que podemos considerar como datos extremos, por lo tanto el estadístico de tendencia central más apropiado corresponde a la mediana la cual es menos sensible a este tipo de datos en comparación con la media.

La tabla de datos agrupados se muestra a continuación:

Clase	m_i	n_i	N_i	f_i	F_{i}
[322 - 657[489.5	10	10	0.2	0.2
[657 - 876[766.5	10	20	0.2	0.4
[876 - 1216[1046	10	30	0.2	0.6
[1216 - 1689[1452.5	10	40	0.2	0.8
[1689 - 8958[5323.5	10	50	0.2	100