Esercizio facoltativo* sulla FFT

B. Tomelleri (*)

15 maggio 2020

Riassunto: — Si è studiato il comportamento di un diodo in silicio PN, ricostruendone sperimentalmente la curva caratteristica V-I, al fine di mettere in risalto la sua componente resistiva. A questo scopo è stata esplorata un'ampia zona della curva, in particolar modo per alti valori di I, dove questa caratteristica è maggiormente apprezzabile. Proponiamo dunque un'estensione della legge di Shockley, tramite l'aggiunta di un termine resistivo, in grado di descrivere l'elemento ohmico- della giunzione. La nuova curva caratteristica prevede un andamento sempre più lineare di I al crescere di V e questo risulta in accordo con l'andamento dei dati sperimentali.

PACS 01.40.-d - Education.

1 INTRODUZIONE

Si è rivisitato nel dominio delle frequenze lo studio di sistemi elettronici e meccanici, finora analizzati solamente nel dominio del tempo, attraverso l'uso di due strumenti fondamentali: la trasformata di Fourier Discreta (DFT) e la detezione sincrona o Lock In Detection/Amplification (LIA).

1.1 Cenni Teorici

La Trasformata di Fourier Discreta (o DFT) estende la trasformata di Fourier analitica a sistemi con variabile dinamica discreta. In particolare approfitteremo della velocità dell'algoritmo Cooley-Tukey [1] o FFT per la nostra analisi.

1.1.1 Circuiti forzati e smorzati RLC

In un circuito costituito da almeno una resistenza, un induttore ed un condensatore (nel nostro caso collegati in serie) è possibile individuare una frequenza caratteristica $f_0 = \frac{\omega_0}{2\pi}$, detta propria o di risonanza, per cui il sistema è percorso da una corrente elettrica oscillante nel tempo. Infatti, quando il sistema è perturbato da una tensione alla frequenza $f_0 := \frac{1}{2\pi\sqrt{LC}}$ le impedenze del condensatore e dell'induttore si annullano a vicenda, dunque l'impedenza del circuito si trova al proprio valor minimo, cioè la sola componente resistiva R rimasta. Possiamo quindi descrivere il trasporto di carica nel circuito con l'equazione di un oscillatore smorzato:

$$\frac{\partial^2 Q}{\partial t^2} + \frac{R}{L} \frac{\partial Q}{\partial t} + \omega_0^2 Q = 0 \tag{1}$$

La cui soluzione, in termini della frequenza di oscillazione smorzata o pseudo-frequenza angolare ω , dello pseudo periodo T e del tempo caratteristico di smorzamento τ :

$$\omega = \sqrt{\omega_0^2 - \frac{1}{\tau^2}} = \sqrt{\frac{1}{LC} - \frac{1}{\tau^2}}$$

$$T = \frac{2\pi}{\omega}$$

$$\tau = \frac{2L}{R}$$

^{*}Dipartimento di Fisica E. Fermi, Università di Pisa - Pisa, Italy.

si può scrivere come:

$$Q(t) = Ae^{-t/\tau}\cos(\omega t + \varphi) \tag{2}$$

$$A = \sqrt{c_1 c_2} \tag{3}$$

$$\tan \varphi = j \frac{c_1 + c_2}{c_1 - c_2} \tag{4}$$

dove i coefficienti c_1 e c_2 dipendono dalle condizioni iniziali del sistema. Secondo il nostro modello, la d.d.p. sulle armature del condensatore è determinata dalla relazione costitutiva di C e le condizioni iniziali sono fissate dalla carica presente sulle armature Q_0 e dall'intensità di corrente I_0 che circola nel circuito all'inizio dell'oscillazione:

$$V_C(t) = \frac{Q(t)}{C} = \frac{A}{C}e^{-\frac{t}{\tau}}\cos(\omega t + \varphi)$$
 (5)

$$Q(t=0) = A\cos\varphi := Q_0 \implies A = Q_0\sqrt{1 + \tan^2\varphi}$$
(6)

$$I(t) = \frac{\partial Q}{\partial t} = Ae^{-t/\tau} \left[\frac{\cos(\omega t + \varphi)}{\tau} + \omega \sin(\omega t + \varphi) \right]$$
 (7)

$$I(t=0) = A \left[\frac{\cos \varphi}{\tau} + \omega \sin \varphi \right] \implies \varphi = \arctan \left(\frac{1}{\omega} \left[\frac{I_0}{Q_0} - \frac{1}{\tau} \right] \right)$$
 (8)

1.1.2 Quality Factor

Per descrivere la dissipazione media di energia da parte di sistemi oscillanti nel tempo si è introdotta la quantità adimensionale *Quality factor*:

$$Q_f := 2\pi \frac{E_{\text{stored}}}{E_{\text{lost/cycle}}} \tag{9}$$

Per un circuito RLC il trasferimento reciproco di energia elettrica e magnetica, immagazzinate nel condensatore e nell'induttore rispettivamente, è massimo sotto l'effetto di una forzante alla stessa f_0 di risonanza. Supponendo che il circuito sia perturbato da un segnale sinusoidale monocromatico, il metodo simbolico ci permette di legare la larghezza di riga della risposta in frequenza del circuito al tempo caratteristico di smorzamento, dunque al fattore di qualità dell'oscillazione. La larghezza (di riga) a metà altezza

$$\Delta\omega_{\text{FWHM}}$$
 (10)

2 METODO E APPARATO SPERIMENTALE

Non si è monitorata la temperatura dei componenti dei circuiti studiati, tutti i collegamenti tra i componenti sono stati realizzati con cavi terminanti in connettori a banana. L'uso di Arduino[2] come sistema di acquisizione dati non permette di apprezzare le perturbazioni dovute alla temperatura o ai collegamenti dei componenti nelle nostre condizioni di lavoro.

2.1 Apparato

L'apparato sperimentale consiste di diversi circuiti elettrici, realizzati con componenti pre-assemblati in laboratorio. Per monitorare la risposta dei circuiti si utilizzano i canali di un oscilloscopio analogico (50 MHz) e uno digitale (200 MHz), mentre per l'acquisizione dei segnali di d.d.p. compresi tra 0 e 5 V si fa uso del convertitore ADC del MCU Arduino UNO.

2.1.1 Circuiti RLC

Nel nostro caso l'induttore è costituito da due avvolgimenti concentrici e coassiali, ciascuno dotato di 1500 spire, che montati in serie hanno un fattore di auto-induzione $L \sim 0.5$ H e i condensatori hanno capacità dai valori nominali: $C = \{0.1, 0.22, 0.47\} \pm 10\%$ µF. La componente resistiva R del circuito è data dalle resistenze interne del generatore di tensione ($r_G = 50~\Omega$ nominali) e dell'induttore, che

indichiamo con: $r \approx 40~\Omega$. Le 3000 spire totali di filo di rame negli avvolgimenti infatti influiscono apprezzabilmente e in maniera non banale sul trasferimento di energia all'interno del circuito.

$R1$ nom. $[\Omega]$	R1 mis. [Ω]
$0.22 \pm 3\%$	0.226 ± 0.008
$2.2 \pm 5\%$	2.212 ± 0.008
$22 \pm 5\%$	21.86 ± 0.010
$220 \pm 5\%$	216.22 ± 0.07
$2.2~k\pm5\%$	2202.1 ± 0.4
$22~k\pm5\%$	$(21.7 \pm 0.3)10^3$
$0.22~\mathrm{M} \pm 5\%$	$(217 \pm 3)10^3$

Tabella 1: I valori delle resistenze poste in serie al diodo, riportate in valore nominale e misurate con multimetro digitale.

3 ANALISI DATI E RISULTATI

Per poter condurre un'analisi sui dati raccolti è stato innanzitutto necessario convertire le letture digitalizzate nelle corrispondenti grandezze fisiche, le coppie tensione-corrente relative al diodo. Inizialmente si sono convertite le acquisizioni e le incertezze associate in d.d.p. tramite i fattori di conversione per entrambi gli ADC, determinati come descritto nel paragrafo ??. Dunque, dalla caduta di tensione ai capi della resistenza R1 possiamo determinare la corrente di lavoro del diodo grazie alla legge di Ohm. Si è quindi effettuato un filtraggio volto all'eliminazione degli outliers e dei punti meno significativi, assumendoli quali variabili indipendenti e di natura gaussiana. Per una discussione dettagliata si rimanda all'Appendice A: Filtraggio Dati. E' opportuno sottolineare che, all'interno della stessa appendice, σ_x^2 rappresenta la varianza delle letture e non le incertezze ad esse associate.

3.1 Oscillatore a reazione con BJT

Si riportano i valori ottimali dei parametri stimati dal fit e le relative covarianze:

$R_{\mathrm{diodo}} = 46.112 \pm 0.007 \; \mathrm{m}\Omega$	$\sigma_{I_0,\eta V_T} = 0.97$
$\eta V_T = 47.579 \pm 0.003 \text{ mV}$	$\sigma_{I_0,R_d} = -0.62$
$I_0 = 4.518 \pm 0.004 \text{ nA}$	$\sigma_{I_0, \mathrm{ofst}} = -0.49$
$offset = \ -2.204 \pm 0.007 \ \mu A$	$\sigma_{\eta V_T,R_d} = -0.70$
χ^2 /ndof = 72207/251066	$\sigma_{\eta V_T, \mathrm{ofst}} = -0.43$
abs_sigma = False	$\sigma_{R_d, \text{ofst}} = 0.22$

Infine si mostrano i dati acquisiti con sovrapposta la funzione di best-fit nei grafici 1, in scala lineare, e 2 in scala semilogaritmica.

Per gli script si rimanda alla cartella, dove run.py esegue la corretta sequenza e config.py definisce i parametri fondamentali.

Si noti come, alla fine del segnale oscillante¹ si riesce ad apprezzare un picco positivo di circa 100 digit ≈ 97 mV, questo coincide esattamente con il fronte di salita dell'onda quadra in ingresso al circuito RLC. Questo si deve alla somma di due effetti: Quando l'onda passa da LOW a HIGH, la corrente che scorre nella maglia RLC passa da circa -100 a 100μ A. Dunque la bobina da $L=0.5\mathcal{H}$ fornisce una tensione $DV(t)=L\frac{dI}{dt}$ secondo la legge degli induttori. Un secondo possibile contributo al picco di tensione alla fine del segnale oscillante è dovuto all'accoppiamento capacitivo/capacità parassita del diodo, che possiamo modellare come Cjo=1-4pF in parallelo al diodo. Quando il fronte d'onda sale rapidamente, parte dell'onda quadra viene lasciata passare dal condensatore, aggiungendo qualche nV al picco finale.

¹ alla fine del semiperiodo positivo dell'onda quadra in uscita dal generatore di funzioni

Figura 1: Dati acquisiti e funzione di best-fit (??). E' stato rappresentato un punto ogni 100 per comodità di visualizzazione.

Figura 2: Dati acquisiti e funzione di best fit (??) in scala semilogaritmica. A scopo illustrativo sono stati rappresentati anche i dati della serie $220k\Omega$. E' stato disegnato un punto ogni 10 per comodità di visualizzazione.

4 CONCLUSIONI

5 APPENDICE A: FILTRAGGIO DATI

5.1 Introduzione

All'interno dell'acquisizione è stata raccolta un'ingente quantità di dati, suddivisibili in base alla resistenza scelta e dunque facenti riferimento a zone differenti della curva. A seguito della calibrazione, ci si è quindi posto il problema di effettuare l'eliminazione degli outliers in modo indipendente dalla scelta del modello per il fit. Le serie effettuate variando la resistenza, inoltre, si sovrappongono in alcune zone del grafico. Dunque è stato necessario eliminare i dati che, non aggiungendo informazioni utili, andavano a "sporcare" il grafico. Il sistema di filtraggio di dati implementato nell'eseguibile si compone di 2 fasi: la prima consiste nell'eliminazione degli outliers, la seconda dei dati non significativi.

5.2 Procedimento

Supponiamo di avere una serie di dati (x,y) e assumiamo che siano indipendenti tra loro. Quest'ipotesi non è vera in generale, ma è tanto più lecita quanto più la correlazione tra le varianze delle misure su x e y è indipendente dai valori assunti dalle x e y stesse e quanto più sono numerosi i dati racchiusi entro una deviazione standard lungo x per ciascun elemento: in questo caso, infatti, la correlazione viene inclusa nella varianza lungo y. Supponiamo inoltre che siano note a priori le $\sigma_x^2 := \text{Var}(x)$ e che la loro distribuzione di probabilità sia normale (le distribuzioni delle componenti sono approssimativamente gaussiane per il convertitore di Teensy, perlomeno utilizzando la risoluzione a 12 bit) secondo una matrice di covarianza diagonale nella base $\{x,y\}$. In ogni modo, i nostri dati x e y risultano indipendenti e approssimativamente normali. Dunque le assunzioni risultano giustificate. Conseguentemente la

densità di probabilità che un punto misurato in x si trovi a tale ascissa x_i , si ricava integrando lungo y a x fissata:

$$dP = \frac{1}{\sigma_{x_i}\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(x-x_i)^2}{\sigma_{x_i}^2}}dx.$$

Dunque, ripetendo più volte la stessa misura, si otterrà la probabilità:

$$P\left(\mid x-x_i\mid\leq\frac{\varepsilon}{2}\right)=\varepsilon G_{x_i}.$$

dove

$$G_{x_i} := \frac{1}{\sigma_{x_i} \sqrt{2\pi}} e^{-\frac{1}{2} \frac{(x - x_i)^2}{\sigma_{x_i}^2}}.$$

e $\varepsilon > 0$ e $\varepsilon \longrightarrow 0$. Scegliendo allora solo quelle misure x per cui vale $|x - x_i| \le \frac{\varepsilon}{2}$, queste saranno in numero tendente a:

$$N_i \coloneqq N_{\text{tot}} \frac{G_{x_i}}{\sum_j G_{x_j}} = N_{\text{tot}} w_i.$$

che definisce implicitamente i pesi w_i con cui si mediano le distribuzioni di probabilità gaussiane G_{x_i} . Allora, posto:

$$G_{y_i} := \frac{1}{\sigma_{y_i} \sqrt{2\pi}} e^{-\frac{1}{2} \frac{(\mu_y - y_i)^2}{\sigma_{y_i}^2}}.$$

Per il principio di massima verosimiglianza siamo quindi interessati a massimizzare la quantità:

$$\mathcal{L} = \prod_{i=1}^{n} \prod_{i=1}^{N_i} G_{y_i} = \prod_{i=1}^{n} G_{y_i}^{N_i}.$$

Per la monotonia del logaritmo il problema equivale a massimizzare:

$$\ln \mathcal{L} = \sum_{i=1}^n \ln G_{y_i}^{N_{\text{tot}}w_i} = \frac{N_{\text{tot}}}{\sum_{j=1}^n G_{x_j}} \sum_{i=1}^n G_{x_i} \ln G_{y_i}.$$

Per cui, a meno di costanti risulta:

$$\ln \mathcal{L} - \text{const.} \propto \sum_{i=1}^{n} -G_{x_i} \ln \sigma_y - \frac{1}{2} G_{x_i} \left(\frac{y_i - \mu_y}{\sigma_y} \right)^2$$
 (11)

Imponendo la condizione di stazionarietà rispetto a μ_y si ottiene dunque:

$$\mu_{\mathcal{Y}} = \sum_{i=1}^{n} y_i w_i \tag{12}$$

Una volta sostituito in (11) quanto appena trovato per μ_y e imponendo la stessa condizione di stazionarietà rispetto a σ_y si ha:

$$\sigma_y^2 = \sum_{i=1}^n (y_i - \mu_y)^2 w_i \tag{13}$$

Infine è possibile ricavare la varianza di μ_y dalla definizione di valore di aspettazione, riconducendola più volte a integrali di gaussiane di altezze e ampiezze diverse:

$$\operatorname{Var}(\mu_{y}) = \sum_{i=1}^{n} w_{i}^{2} \sigma_{y}^{2} + \left(\frac{y_{i}}{\sum_{j=1}^{n} G_{x_{j}}}\right)^{2} \frac{e^{-\frac{(x-x_{i})^{2}}{3\sigma_{x_{i}}^{2}}} + \sqrt{3}\left(e^{-\frac{(x-x_{i})^{2}}{\sigma_{x_{i}}^{2}}} - \sqrt{2}e^{-3\frac{(x-x_{i})^{2}}{4\sigma_{x_{i}}^{2}}}\right)}{2\sqrt{3}\pi\sigma_{x_{i}}^{2}}$$

$$(14)$$

Riassumendo:

Nella (12) prendiamo una media dei campionamenti intorno ad un' ascissa x in esame, pesata sulla distanza che gli x_i hanno da questa; intuitivamente lo interpretiamo come se stessimo applicando un blur a kernel gaussiano ai punti acquisiti. Effettivamente quello che stiamo facendo non è molto diverso da KDE monovariante, dove però scaliamo secondo il valore delle y. Lo stesso ragionamento vale per σ_y^2 , si ha una stima della varianza dei dati la variare di y, pesata sulla distanza dai valori studiati. Dunque $\mu_y \pm \sigma_y$ ci dà una descrizione della distribuzione dei nostri dati.

5.3 $Var(\mu_y)$

Mentre σ_y rappresenta la distribuzione dei dati intorno al valor medio μ_y , $\mathrm{Var}\left(\mu_y\right)$ ci indica l'incertezza sulla miglior stima di y. Questo è utile per determinare la convergenza della stima in funzione dei dati acquisiti. Infatti tanto più è elevata la densità dei dati, rispetto alla deviazione standard σ_x , tanto più la stima del valore centrale risulta precisa. Graficamente la banda di confidenza è più ristretta dove si concentrano i dati. Viceversa, la stessa tende ad allargarsi dove i dati sono sparsi, i.e. a distanze paragonabili a σ_x . Numericamente, si vede dalla seconda somma nell'espressione (14) che la stima del valore centrale è statisticamente significativa solo quando si media su un intervallo campionato con almeno qualche punto ogni deviazione σ_x : altrimenti $\sigma_y \to 0$ indicando così assenza di dati, mentre $\mathrm{Var}\left(\mu_y\right)$ tende a $+\infty$ come $\sim e^{x^2}$, indice della stessa insufficienza di dati al fine di stabilire con precisione significativa il valore di μ_y . Nel caso opposto, in cui i dati sono "densi" (in confronto

Figura 3: La media μ_y è rappresentata dalla linea blu, mentre l'area in rosso indica il valore di Var (μ_y) al variare dei dati (in nero) lungo x.

alle σ_x) la seconda somma, per quanto computazionalmente intensiva, numericamente sembrerebbe piccola in confronto alla prima: in realtà non lo è, ma soprattutto questa non può essere trascurata, poiché è proprio la quantità che descrive la dipendenza dalla densità stessa e dunque la caratteristica convergenza/divergenza della precisione sulla stima centrale fornita.

5.4 Filtro outliers

La parte più semplice nel filtraggio dati consiste nello scartare tutti quei punti che distano da μ_y più di una soglia arbitraria k di deviazioni standard σ_y (nel nostro caso è stato scelto k=2, non critico, trovato dopo una serie di prove). A differenza del classico metodo basato sulla distanza dalla curva/modello di best fit, per il nostro criterio essa è ininfluente. Questo risulta particolarmente utile in simili situazioni di verifica del modello in quanto una selezione basata su un preliminare fit risulterebbe influenzata dalla scelta della funzione in questione e eliminerebbe tutti i dati che non risultano compatibili con essa.

5.5 Filtro dati non significativi

Supponiamo di avere 2 set di dati fatti con diverse resistenze, il primo (A) con una resistenza bassa, il secondo (B) con una alta: Il primo set esplorerà la regione ad alta corrente, mentre il secondo la regione di basse correnti. In generale i dati del primo si sovrapporranno anche nelle zone basse esplorate dal secondo, però senza aggiungere sostanziali informazioni rispetto a quanto farebbe il secondo.

Esponiamo dunque il criterio sviluppato per ridurre l'influenza di questi punti meno significativi sulla ricerca dei parametri di best-fit e sulla rappresentazione finale dei dati.

Per capire se in un certo punto i dati di A sono significativi, calcoliamo la misura di significatività che abbiamo sviluppato in (14): Var (μ_y) di A e di B. Perciò se Var (μ_y) di A è maggiore di qVar (μ_y) di B, con q arbitrario (nell'esperienza è stato scelto q=3), questo indica che i dati di A ci stanno dando "poca" informazione rispetto a quelli di B. A questo punto è sufficiente controllare tutti i punti scorrendo su tutte le combinazioni di set per eliminare i dati non significativi, che rendono meno immediata l'interpretazione del grafico. Questo è ben visibile in scala logaritmica sulle y, dove i punti con grandi incertezze o varianze tendono a disperdersi rapidamente. L'algoritmo è computazionalmente intensivo e richiede una corretta gestione della memoria per evitare bolle di allocazione. Dunque è stato implementato in C++ per praticità e richiamato all'interno degli script (per dettagli si rimanda ai sorgenti). Nelle figure di esempio sono mostrati i dati selezionati dall'algoritmo (in nero) ed i dati scartati (in arancio).

Figura 4: Grafici in scala semilogaritmica prima (4a) e dopo (4b) del filtraggio dati. I dati scartati sono stati evidenziati in arancio. Per praticità è stato rappresentato un centesimo dei dati raccolti

È infine mostrato il confronto dei grafici delle Var (μ_y) tra due set successivi.

Figura 5: Confronto dei grafici delle Var (μ_y) su due set di dati consecutivi.

5.6 Nota sull'implementazione

Per determinare i parametri ottimali e le rispettive covarianze si è implementato in Python un algoritmo di fit basato sui minimi quadrati mediante la funzione *curve_fit* della libreria Scipy[3] Per tutti i fit su campionamenti digitali di Teensy si è imposto abs_sigma = False, in quanto la sorgente principale d'incertezza sulle misure risulta non statistica/non determinata.

RIFERIMENTI BIBLIOGRAFICI

- [1] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex fourier series," *Mathematics of Computation*, vol. 19, no. 90, pp. 297–301, 1965. [Online]. Available: http://www.jstor.org/stable/2003354
- [2] I. D. I. Ivrea *et al.* Arduino: Open-source electronic prototyping platform. Ivrea, Italy. [Online]. Available: https://www.arduino.cc/
- [3] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, "SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python," arXiv e-prints, p. arXiv:1907.10121, Jul 2019.