

数码相机性能评测课程实验报告 实验一 视觉分辨率测试

姓 名:廖汉龙

学号:1120151880

学 院:计算机学院

班 级:07111507

邮 箱: liamliaohl@gmail.com

2018年4月14日 星期六

报告链接:

https://github.com/HanlongLiao/Course/tree/master/%E6%95%B0%E7%A0%81%E7%9B%B8%E6%9C%BA%E8%AF%84%E6%B5%8B

目录

一、	实验目的	3
=,	实验要求	3
三、	实验内容	3
	3.1 照片选取	3
	3.2 测量视觉分辨率(读数单位为 100(lw/pH))	5
四、	相机镜头配置与环境	5
Ŧī,	实验感想	6

一、实验目的

- 1、 理解数码相机视觉分辨率的定义及其度量单位。
- 2、了解数码相机分辨率测试标准 ISO12233 以及 GB/T 19953-2005《数码相机分辨率的测量》,熟悉测试标板构成,掌握其使用方法。
- 3、 掌握数码相机视觉分辨率测试方法, 能够通过目视判别数码相机的分辨率特性。

二、实验要求

- 1、使用数码相机拍摄 ISO12233 标准分辨率靶板,要求连续拍摄三幅图。
- 2、 目视判别数码相机的视觉分辨率。需分别判别水平、垂直、和斜 45 度方向的视觉分辨率(注意: 若拍摄的靶板有效区域高度仅占据相机幅面高度的一部分,需将目视判别结果乘以修正系数以得到真实的测量结果。修正系数 = 以像素为单位的相机幅面高度/以像素为单位的靶板有效区域高度)。
- 3、 独立完成实验报告, 需明确相机型号、相机基本设置、并包含所拍摄图案 以及判别结果和相应说明。

三、实验内容

3.1 照片选取

图1第一幅图

由于拍摄时没有将靶板占满屏幕, 所以计算视觉分辨率时, 需要做一定的修

正。 靶板约占画面大小的 34, 所以最终结果应该乘以修正系数 $\frac{3}{4}$ 。

图 2 第二幅图

由于垂直方向靶板没有占满屏幕,所以计算视觉分辨率时,需要做一定的修正。在垂直方向,靶板约占画面大小的 $\frac{4}{5}$,所以垂直方向的最终结果应该乘以修正系数 $\frac{4}{5}$ 。

图 3 第三幅图

由于垂直方向靶板和水平方向的靶板都没有占满屏幕,所以计算视觉分辨率时,需要做一定的修正。在垂直方向方向占有画面大小的 $\frac{2}{3}$,水平方向占有画面的 $\frac{4}{5}$,所以垂直方向的最终结果应该乘以修正系数 $\frac{3}{2}$,水平方向的最终的结果应该乘以修正系数 $\frac{5}{4}$ 。

3.2 **测量视觉分辨率(读数单位为** 100(lw/pH))

	水平方向	垂直方向	第三幅图
第一幅图	一 12 — 14 读数在 12 左右 1200 x ⁴ ₃ = 1600(1w/pH)		已经达到最大值 >900(1w/pH)
第二幅图	— 12 — 14 读数在 12 左右 1200x ⁵ / ₄ =1500 (1w/pH)		已经达到最大值 >900 (1w/pH)
第三幅图	一 8 — 10 — 12 — 14 读数在 11 左右 1100x ³ =1650(1w/pH)	读数在 11 左右 $1100x\frac{3}{2} = 1650(lw/pH)$	已经达到最大值 >900 (1w/pH)
平均数	1583.33(1w/pH)	1483.33(1w/pH)	>900 (1w/pH)

四、相机镜头配置与环境

镜头型号	华为 honor 后置镜头
模式	简易拍摄
光源	室内光源
像素	1200万/1200万
对焦系统	Dual PD 全像双核对焦
模式	连拍全景模式
光圈	f/1.9 超大光圈 f/2.0 大光圈
镜头	6 片定制镜头 5 片定制镜头

图像处理器	双 ISP 图象信号处理器
闪光灯	4-LED 流水式闪光灯,补光自然柔和

五、实验感想

这是第一次接触类似的测量相机的分辨率的实验,非常有趣,同时也学到了一些关于光学的知识

在做实验的过程中也出现了一点问题,比如在拍照的时候因为相机的分辨率 太大,自动对焦等因素的干扰,可以都到测量表的最后一个读数等, 后面对相 应的情况做出了调整,才拍出了可以用于测量数据的照片!