GERMAN UNIVERSITY IN CAIRO

Lectures 18

Math301

Fall 2020

Contents

1	Laplace Transform of Basic Functions	2
	1.1 Linearity	2
	1.2 s- Shifiting Property	2
	1.3 Laplace Table	3
2	Transforms of Dervatives and Integrals	3
	2.1 Laplace Transform of Dervatives	3

1 Laplace Transform of Basic Functions

The Laplace Transform of f is the Functions F(S) where F is denoted $\mathcal{L}\{f\}$ is

$$F(s) = \mathcal{L}\{f\} = \int_0^\infty e^{-st} f(t)dt \tag{1}$$

The **Laplace Transform** is \mathcal{L} . that accepts fountions f(t) as input and outputs functions F(s) in return, It changes the function from space x to space S

Let
$$f(t) = 1$$
 when $t \ge 0$ Find $\mathcal{L}{f}$

$$\mathcal{L}{f} = \mathcal{L}{1} = \int_0^\infty e^{-st} dt$$

$$= -\frac{1}{s} e^{-st}|_0^\infty$$

$$= \frac{1}{s} (s > 0)$$
(2)

Remark (Laplace). Laplace Transforms have properties that makes it powerful to solve initial value problems

Remark (Laplace). if $F(s) = \mathcal{L}\{f\}$ then f(t) is called the inverse Laplace Transform of F(s) and the notation is $f = \mathcal{L}^{-1}(F)$ Thus,

$$\mathcal{L}^{-1}(\mathcal{L}(f)) = f \text{ and } \mathcal{L}(\mathcal{L}^{-1}(F)) = F$$
(3)

1.1 Linearity

For any constants a and b

$$\mathcal{L}[af(x) + bg(t)] = a\mathcal{L}(f) + b\mathcal{L}(g) \tag{4}$$

A similar property holds for \mathcal{L}^{-1} . Namely,

$$\mathcal{L}^{-1}[aF(s) + bG(s)] = a\mathcal{L}^{-1}(F) + b\mathcal{L}^{-1}(G)$$
(5)

1.2 s- Shifiting Property

For any constant a, if $F(s) = \mathcal{L}(f)$ then

$$\mathcal{L}(e^{at}f(t)) = F(s-a)$$

(6)

or equivalently

$$e^{at}f(t) = \mathcal{L}^{-1}(F(s-a)) \tag{7}$$

Find
$$\mathcal{L}(e^{at}coswt)$$
 and $\mathcal{L}(e^{at}sinwt)$

$$\mathcal{L}(e^{at}coswt) = \mathcal{L}(coswt)(s-a) = \frac{s-a}{(s-a)^2 + \omega^2}$$

$$\mathcal{L}(e^{at}\sin\omega t) = \mathcal{L}(\sin\omega t)(s-a) = \frac{\omega}{(s-a)^2 + \omega^2}$$
(8)

1.3 Laplace Table

	f(t)	$\mathcal{L}(f)$		f(t)	$\mathcal{L}(f)$
1	1	1/s	7	cos ωt	$\frac{s}{s^2 + \omega^2}$
2	t	1/s ²	8	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
3	t^2	2!/s ³	9	cosh at	$\frac{s}{s^2 - a^2}$
4	$(n=0,1,\cdot\cdot\cdot)$	$\frac{n!}{s^{n+1}}$	10	sinh at	$\frac{a}{s^2 - a^2}$
5	t ^a (a positive)	$\frac{\Gamma(a+1)}{s^{a+1}}$	11	$e^{at}\cos \omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
6	e^{at}	$\frac{1}{s-a}$	12	$e^{at} \sin \omega t$	$\frac{\omega}{(s-a)^2+\omega^2}$

2 Transforms of Dervatives and Integrals

2.1 Laplace Transform of Dervatives

$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$$

$$\mathcal{L}(f'') = s^2 \mathcal{L}(f) - sf(0) - f'(0)$$
(9)

More Generally, for all $n \geq 1$:

$$\mathcal{L}(f^{(n)}) = s^{n} \mathcal{L}(f) - s^{(n-1)} f(0) - s^{(n-2)} f'(0) - \dots - f^{(n-1)}(0)$$