Lab 7

Kasper Høj Lorenzen

University of Southern Denmark kalor@mmmi.sdu.dk

October 27, 2022

Overview

General Comments

 ϵ

Conclusion

Programming exercise 7

General Comments

Why does the robot make a big circle in all paths?

General Comments

- Why does the robot make a big circle in all paths?
 - ► The base joint needs to turn 180° to reach the place position.

ϵ - Statistical Analysis

- Relevant parameters to look at:
 - Path length
 - Path size
 - Planning time
- Summary statistics
 - Mean, min, max, median, quantiles
 - Standard deviation or variance
- Visualization
 - Plots better than tables
 - Box plots, scatter plots, mean line with error bars

1

¹Image borrowed from: https://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/

epsilon - Range

 $\bullet \ \, \text{from 0.1 to 4.0 in steps of } \\ 0.1$

Conclusion

- ϵ
- Trade-off between time and precision
- ightharpoonup Small ϵ
 - Long planning time
 - Many nodes in path
 - Shorter path
- ightharpoonup Large ϵ
 - Short planning time
 - ► Few nodes
 - ► Longer path
 - Might jump through obstacles

- Choice of ε is workcell specific
- ightharpoonup Choose ϵ based on task

Programming exercise 7 - Path Pruning

Algorithm (Path Pruning)

```
Input: Node path N.
Output: Node path N_{DI}.
Procedure:
 1: N_{pr} \leftarrow N, i \leftarrow 0
 2: while i < |N_{pr}| - 2 do
          if \mathit{LP}[v_i, v_{i+2}] \in \mathcal{C}_{\mathsf{free}} then
               N_{\text{pr}} \leftarrow N_{\text{pr}} \setminus \{v_{i+1}\}
               if i > 0 then
 6:
                    i \leftarrow i - 1
               end if
          else
 9:
              i \leftarrow i + 1
10:
           end if
11: end while
```

return N_{pr}

$$N_{\text{pr}} = \{v_0, v_1, v_2, v_3, v_4, v_5\}, |N_{\text{pr}}| = 6$$

 $i = 0$

Programming exercise 7 - Path Pruning

- ▶ Tips for programming exercise 7:
 - ▶ Use the path that was generated in lab 6
 - ► Use the workcell from lab 6 (Kr16WallWorkCell)
 - Implement the path pruning algorithm:
 - Load the workcell
 - Loop through the Q configurations and check for collisions between the current node Q_i and Q_{i+2}
 - ▶ Delete node Q_{i+1} if there exist a collision-free path
 - Check the distance of the old path compared to the new one