## Math 342W Lecture 15

g(x)=a,(x,)"+ ... + ap(xp)", n ]1

Liaj's are confinuous functions and this g(x) is called a general additive model

Interaction of features

By interacting features we are able to capture differential slopes of the given features.

-> Pretty hard to overfit with a large enough (n)

Validation/ Cross Validation

The goal of these validations is to lower the variance in our metrics, particularly out of sample error metrics.



$$\vec{e}_{cv} = \begin{bmatrix} \vec{e}_{i}^{7} \\ \vec{e}_{i}^{2} \end{bmatrix} = 7005 \cdot SE = \int_{n}^{1} \left\{ \left( \vec{e}_{i}^{7} - \vec{e} \right)^{2} \right\} = 7 \cdot \int_{k-1}^{1} \left\{ \left( SE_{k} - SE \right)^{2} \right\} = 7 \cdot \left( SE_{k} - SE \right)^{2} = 7 \cdot \left( SE_{k} -$$



## Model Selection

How do we pich the best of M models?

91 = bot b, 2 92 = bot b, 2+b2x<sup>2</sup> 93 = bot b, (e(x))

Our goal will be to select the model with the lowest out of sample error

we do a similar process to h-Fold GV in order to find the best model

Sub train train

frain

3

sub train

M

select

gn=

select

sclect

select

test

test

test )

test

Sas final set for nested

1) we build each model (M) on Daubtraine

2) Evaluate model errors on Deeved and pick best model mx

-> The only issue now is that our oos errors will be highly variable for m\*

More on how to fix this variability issue in Lec. 17 notes