See resignaphie Projection
$$S^2 \to \mathbb{R}^2 \qquad \mathbb{R}^2 \to S^2$$

Def
$$T: S^2 = \{co, 0, 1\}^2 \rightarrow \mathbb{R}^2$$

let $p = (x, y, z) \in S^2 = \mathbb{N}$.

In \mathbb{R}^3

Draw a line from $\mathbb{N} \rightarrow \mathbb{P}$

The let $p = (x, y, z) \in \mathbb{S}^2 = \mathbb{N}$.

Then \mathbb{R}^3

the unique \mathbb{R}^2

where \mathbb{R}^2 Cross the \mathbb{R}^2 the \mathbb{R}^2 prane.

To is a bijection: $TL^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{S}^2 - \mathbb{N}$ Take $(U,V) \in \mathbb{R}^2$, draw a line from (V,V) to \mathbb{N} . Then $TL^{-1}(U,V) = place where$ $<math>\ell$ parallel \mathbb{S}^2 .

$$S^{2} \longrightarrow \mathbb{R}^{2}$$

$$(x,y,z) \longrightarrow \left(\frac{x}{1-z},\frac{y}{1-z}\right).$$

Note: the equator $\{\chi^2 + \gamma^2 = 1\}$ in S^2 is fixed by π .

N (0,0) -> TE (p) -> P

Clocer to origin

Clocer

Area(Os)= 2T1 , but Area(T1 103))=II.

The does not presence area

X presence distance.

Mote: iso preserve area

dseP,Q)=Ti dr2(TTCP), Tila) = 2 = drep, (2)

d@(R,Q)=== dr2(T(R),T(Q))=) dr2(R/Q)=12.

 $\pi(0_{N}) = \{(x_1y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1\}$

Take small disk starting at S, vuring up.

Times in S2 -> R2

- · lines that X intersect North Pule -> cives in R2
- · l'ue that v interseit N lives in R2

What about &2 -> 52?

Do circles in R² gues to lines in S²

Small D disjointed, under Ti-1

their Ti-1 are

rot Isnes

{ circles }

{ circles }