```
course = "Improving your statistical inferences through simulation studies in R"
```

```
lesson_iteration = 1
lesson_title = "orientation + foundational concepts"
```

```
auth = "Ian Hussey"
dept = "Psychology of Digitalisation"
```

Why am I here?

- I'm a user of stats, not a statistician or mathematician.
- I'm a user of code. I'm self taught, not a Computer Science graduate or trained coder.
- I use simulations to teach myself, and others, about quantitative methods to use them in research.

Why simulate?

- It gives you access to ground truth

-Take no-one's word, not even R's

- Helps you avoid unintentional p hacking
 - Learn how to use a method before applying it to your real data.
 - Significant results no longer function as a stop signal for you to consider the analysis correct/complete.

What we will cover

- Data simulation from scratch, with a focus on:
 - Visibility of intermediate steps and data
 - Maximising code reusability
- Sometimes using dedicated data simulation packages
 - Easier to use, but often harder to understand
- Very little math
 - Often the point of simulation is to avoid math
- Lots of code
 - tidyverse wherever possible

Requirements & assessment

- Requirements
 - Weekly attendance
 - NO MEETING NEXT WEEK (28-02-2024)
 - At home exercises and assignments (GitHub commits)
- Assessment
 - End of course assignment:
 - Choose, design, implement, and report a simulation study
 - Scope to be determined in class

rourse anni

Duzen

Call me lan

Assessment

Weekly assignments (not graded) Final assignment (graded)

Attendance

Weekly meetings in B202 You can miss max 2 sessions

Communication

Slack wherever possible Email if necessary: ian.hussey@unibe.ch

What is a Monte Carlo simulation?

- There is no consensus on how Monte Carlo should be defined!
 - Monte Carlo methods for quantitative (social) science methods research
 - This course
 - Monte Carlo methods as part of data analysis (e.g., MCMC in Bayesian data analysis)
 - Monte Carlo methods for the solution of general numerical problems (e.g., Monte Carlo integration)
 - Not this course

Core components of a simulation

- 1. Generate pseudo-random data set with known properties
- 2. Analyse data with a statistical method
- 3. Repeat 1 & 2 many times ('iterations')
- 4. Collect and aggregate results across iterations
- 5. Make it an experiment
 - Systematically vary parameters in Step 1 (between factor)
 - Compare different ways to do Step 2 (within factor)

Foundational

Core components of a simulation

What is the distribution of *p* values under the null hypothesis?

Distribution of p values under the null hypothesis

No meeting next week! Meet in two weeks: 06-03-2024

- Self-study
 - 1_foundational_concepts__lesson.Rmd
 - 2_general_structure_of_a_simulation__lesson.Rmd
- Read
 - Lakens (2015) Always use Welch's t-test instead of Student's t-test. Blog post: https://daniellakens.blogspot.com/2015/01/always-use-welchs-t-test-instead-of.html
 - Relevant to the assignment, but uses the for-loop workflow we want to avoid.
- Assignment
 - 2_general_structure_of_a_simulation__assignment.Rmd
- Solution will be made available [when?]
 - 2_general_structure_of_a_simulation__solution.Rmd