Analisi Matematica 2 – 30 gennaio 2023 – Ing. Informatica Proff. Garrione - Gazzola - Noris - Piovano

Cognome:	Nome:	Matricola:
Parte A Es.1 Es.2 Es.3 Totale		

Per superare l'esame devono essere raggiunte le seguenti soglie: parte $A \ge 4$, parte $B \ge 12$, totale ≥ 18 . Tempo di svolgimento complessivo delle parti A+B=100 minuti.

PARTE A. Domanda aperta (4 punti). Enunciare e dimostrare la formula risolutiva per le equazioni differenziali ordinarie del primo ordine lineari.

Domande a risposta multipla $(4 \times 1 = 4 \text{ punti})$: una sola è corretta.

- (1) Siano $A \subseteq \mathbb{R}^2$ aperto e $f: A \to \mathbb{R}$ derivabile in A. Il teorema di Fermat afferma che:
- (a) se $\underline{x}_0 \in A$ è punto critico di f, allora $\nabla f(\underline{x}_0) = \underline{0}$
- (b) se $\underline{x}_0 \in A$ è punto critico di f, allora \underline{x}_0 è punto di estremo per f
- (c) se $\underline{x}_0 \in A$ è punto di estremo per f, allora \underline{x}_0 è punto critico di f
- (d) $\underline{x}_0 \in A$ è punto di estremo per f se e solo se $\nabla f(\underline{x}_0) = \underline{0}$
- (2) Le soluzioni del sistema differenziale lineare y'(t) = Ay(t), con $A \in M_{2,2}(\mathbb{R})$ simmetrica:
- (a) sono periodiche (b) sono esponenziali (c) non sono definite per t < 0 (d) non possono essere costanti
- (3) La serie di funzioni $\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2}$
- (a) converge semplicemente ma non totalmente in \mathbb{R}
- (b) converge totalmente in \mathbb{R}
- (c) è derivabile termine a termine in \mathbb{R}
- (d) converge totalmente in (-1,1), ma non in [-1,1]
- (4) Il versore tangente alla curva piana $\underline{r}(t) = (t, 2\sqrt{t})$ in t = 2 è
- (a) non ben definito (b) $(1, \sqrt{1/2})$ (c) $(\sqrt{1/2}, \sqrt{1/2})$ (d) $(\sqrt{2/3}, \sqrt{1/3})$

PARTE B. Esercizi $(3 \times 8 = 24 \text{ punti})$

Esercizio 1 Si consideri l'equazione differenziale

$$y''(t) + 9y(t) = f(t),$$

dove f è una funzione reale di variabile reale, ovvero $f: \mathbb{R} \to \mathbb{R}$.

- a) (2 punti) Determinare l'integrale generale dell'equazione differenziale nel caso f sia identicamente nulla.
- b) (4 punti) Determinare l'integrale generale dell'equazione differenziale nel caso $f(t) = \sin(3t)$ e determinare, fra di esse, la famiglia di tutte le soluzioni limitate su \mathbb{R} .
- c) (2 punti) Per quali valori del parametro $\alpha \in \mathbb{N}$ le soluzioni dell'equazione differenziale per f definita da $f(t) := \sin(\alpha t)$ sono tutte periodiche su \mathbb{R} ?

Esercizio 2 Si consideri la funzione:

$$f(x,y) = x + \frac{y^2}{x-2} - 4\log(y+1).$$

Determinare e rappresentare in \mathbb{R}^2 il suo insieme di definizione \mathbb{D} . Trovare gli eventuali punti di estremo relativo di f in \mathbb{D} e mostrare che f non ammette punti di estremo assoluto in \mathbb{D} .

Esercizio 3 Sia

$$E = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} - 3 < z < 3 - (x^2 + y^2)\}$$

Calcolare $\iiint_E z \, dx \, dy \, dz$.