

Assigning Semantic Labels to Data Sources

Authors:

S.K. Ramnandan¹, Amol Mittal², Craig Knoblock³, Pedro Szekely³

[1] Indian Institute of Technology - Madras[2] Indian Institute of Technology - Delhi[3] University of Southern California

Introduction

Motivation:

- To automatically construct a semantic model of a set of data sources using domain ontologies selected by user

Applications:

- Provides support to automate many tasks
 - Data integration
 - Source discovery
 - Service composition
 - Building knowledge graphs
- Manual description
 - tedious & time-consuming

What is a semantic model?

Description of the source in terms of the concepts and relationships defined by the **domain ontology**

Data Source

Column 1	Column 2	Column 3	Column 4	Column 5
Bill Gates	Oct 1955	Microsoft	Seattle	WA
Mark Zuckerberg	May 1984	Facebook	White Plains	NY
Larry Page	Mar 1973	Google	East Lansing	MI

Example semantic model

Column 1	Column 2	Column 3	Column 4	Column 5
Bill Gates	Oct 1955	Microsoft	Seattle	WA
Mark Zuckerberg	May 1984	Facebook	White Plains	NY
Larry Page	Mar 1973	Google	East Lansing	MI

Semantic Labeling Step

Assigning a class or data property (semantic type) from the ontology to each attribute in the source

Overall approach - semantic modeling

- > Taheriyan et al., ISWC 2013, ICSC 2014
- Problems with model-based machine learning techniques (like CRF):
 - Low prediction accuracy for numeric data
 - Training time scales poorly as no. of ontology data properties increases

Overall Approach (SemTyper)

- Holistic view of data values to capture characteristic property of semantic type
- Textual Data : TF-IDF Cosine Similarity
- Numeric Data: Kolmogorov-Smirnov Test
- Top-k suggestions returned to the user based on the confidence scores

Approach to Textual Data

Approach to Numeric Data

Candidate Statistical Hypothesis tests:

- Welch's t-test
- Mann-Whitney U-test
- Kolmogorov-Smirnov Test

Handling noisy datasets

- ♦ How to infer if data is textual or numeric in a noisy source?
 - Training time: fraction of numeric values
 - < 60% trained as purely textual</p>
 - > 80% trained as purely numeric
 - else trained as both textual and numeric
 - Prediction time: fraction of numeric values
 - > 70% tested as numeric data
 - else tested as textual data
- ♦ Thresholds empirically chosen using coarse grid search
 - Measuring label prediction accuracy on held out set

Datasets (Evaluation)

- Purely textual data
 - Museum domain: 29 museum data sources (Taheriyan et al.)
- Purely numeric data
 - City domain:
 - 30 numeric data properties from City class in Dbpedia
 - Partitioned into 10 data sources
- Mixture of textual & numeric data
 - City domain:
 - 52 data properties from City class in DBpedia
 - Weather, phone directory and flight status domains (Ambite et al.)

Metrics (Evaluation)

- Mean Reciprocal Rank
 - Interested in rank at which correct semantic label is predicted
- Average Training Time

Evaluation (Textual data- Museum domain)

Evaluation (Numeric data- City domain)

Evaluation (Mixture data- City domain)

Evaluation (Mixture data- other domains)

Domain	No.of	No.of textual	No.of numeric	Max. MRR		
	sources	labels/source	labels/source	CRF	TF-IDF	SemTyper
Weather	4	7	4	0.875	0.943	0.955
Flight Status	2	6	3	0.421	0.590	0.646
Phone Directory	3	8	1	0.704	0.831	0.831

Related Work

- Using model-based machine learning techniques
 - Goel et al. (ICAI 2012), Limaye et al. (PVLDB 2010), Mulwad et al. (ISWC 2013)
 - ✓ Extract features from individual data values and build graphical model
 - ✓ Do not extract characteristic properties of column data as a whole
 - ✓ Training graphical models not scalable explosion of search space
- Using external knowledge
 - Venetis et al. (VLDB 2011), Syed et al. (SWSC 2010)
 - ✓ Leverage knowledge on Web to label individual data values
 - Restricted to domains and ontologies huge amount of extracted data
 - ✓ Highly ontology specific models generated from specific ontologies
- > Stonebraker et al. (CIDR 2013)
 - ✓ Address problem of schema matching
 - ✓ Draw inspiration in combining collection of experts

Conclusion

- Label Prediction Accuracy
 - Our approach improves on accuracy of competing approaches on wide variety of domains
- ☐ Efficiency & Scalability
 - About 250 times faster than Conditional Random Fields based semantic labeling technique
- ☐ Capable of handling noisy datasets
- Ontology agnostic
 - Learns semantic labeling function with respect to ontologies selected by users for their application

Thank You

Questions?