Usando R para la evaluación espacio-temporal de productos globales de precipitación con estaciones meteorológicas en Costa Rica

Nelson Venegas¹, Juan Diego Giraldo-Osorio², Ana María Duran-Quesada³ y Christian Birkel¹

- 1. Escuela de Geografía y Observatorio del Agua y Cambio Global (OACG), UCR
- 2. Grupo de Investigación Ciencia e Ingeniería del Agua y el Ambiente, Departamento de Ingeniería Civil, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá, Colombia
- 3. Departamento de Física Atmosférica, Oceánica y Planetaria, Escuela de Física y Centro de Investigaciones Geofísicas, Universidad de Costa Rica.

Introducción

Costa Rica se caracteriza por una alta variabilidad hidroclimática.

Limitacion de datos disponibles, que dificulta el análisis para estudios

hidrológicos.

Las cuencas de los ríos
Tempisque-Bebedero se ubican en una
de las regiones más propensas
al cambio climático en el país
(Hidalgo & Alfaro, 2012).

Motivación

- Los sensores remotos son un instrumento disponible para la población y una alternativa real, ante situaciones de escasez de datos, en áreas con problemáticas hidrometeorológicas.
- Se exponen la recopilación de datos, basados exclusivamente en satélites, como una gran oportunidad para aplicaciones hidrológicas.
- Manejo efectivo de datos de productos globales de precipitación (sensores remotos) en R.

Las herramientas tecnológicas de fácil acceso y adaptables a las dinámicas del cambio climático, deben ser percibidas como una oportunidad del manejo hídrico a corto, mediano y largo plazo.

> ¿Fiabilidad de productos globales que se basan en sensores remotos de precipitación?

```
xx = as.vector(lonmat) %*% t(as.vector(rep(1,length(latmat))))
yy = as.vector(latmat) %*% t(as.vector(rep(1,length(lonmat))))
yy = t(yy)
xlim = c( -87 , -82 )
ylim = c( 7 , 12 )
gridlimites = data.frame( x=xlim , y=ylim )
coordinates(gridlimites)=~x+y
proj4string(gridlimites) = CRS("+proj=longlat +datum=wGS84 +ellps=wGS84")
gridded(gridlimites) = TRUE
```

Objetivos

- Valorar cuál es el sensor más adecuado a partir de la Eficiencia de Kling-Gupta (KGE) para obtener una evaluación espacio-temporal de productos globales.
- Realizar una comparación exhaustiva de datos de estaciones meteorológicas (observados) y productos globales de precipitación (simulados), para conocer su similitud a la realidad climática del país.
- Utilizar el lenguaje estadístico R que facilita la manipulación de grandes cantidades de datos espacio-temporales (datos georreferenciados con "x, y" y una variable temporal z).

Área de Estudio

Metodología

> Se realiza una evaluación de cuatro productos globales, los

cuales son:

•	CH	IRPS	v2	$\mathbf{\Omega}$
		ハアン	VZ.	U

- MSWEPv2.1
- PGFv3
- TRMM-3B42v7

<u>Sensor</u>	Resolución Espacial	Resolución Temporal	Cobertura Temporal	<u>Sitio Web</u>
CHIRPS v2.0	0,05°	Diaria	1981-2017	http://chg.geog.ucsb.edu/data/index.html
MSWEPv2.1	0,10°	Diaria	1979-2015	http://www.gloh2o.org
PGFv3	0,25°	Diaria	1979-2010	http://stream.princeton.edu/LAFDM/WEBPAGE/
TRMM- 3B42v7	0,25°	Diaria	1998-2017	https://giovanni.gsfc.nasa.gov/giovanni/#ser vice=MpAn&starttime=&endtime=&data=TRM M_3B42_Daily_7_precipitation

Se implementa la *Eficiencia de Kling-Gupta (KGE), donde se* requiere que las estimaciones de precipitación se puedan reproducir temporalmente, pero siempre preservando su volumen y su distribución, donde los valores idóneos serán de 1,0 (Zambrano et al. 2017).

$$KGE' = 1 - \sqrt{(r-1)^2 + (\beta - 1)^2 + (\gamma - 1)^2}$$

$$r = \frac{\sum_{i=1}^{n} (0i - 0)(Si - S)}{\sqrt{\sum_{i=1}^{n} (0i - 0)^2} \sqrt{\sum_{i=1}^{n} (Si - S)^2}}$$

$$\beta = \frac{\mu_S}{\mu_O}$$

$$\gamma = \frac{CV_S}{CV_O} = \frac{\delta_S/\mu_S}{\delta_O/\mu_S}$$

Flujo de Trabajo en R


```
### Abrir archivo NetCDF
 file = nc_open("chirps-v2.0.19812015.days_p05.CostaRica.nc")
 variable = ncvar_get( nc=file , varid="precip" , start=c(1,1,1) )
 # Extraer Tiempo
 tiempo_diario= ncvar_get( nc=file , varid="time" )
 tiempo_diario = as.Date( tiempo_diario , origin = "1980-01-01")
 #Extraer Variables de Longitude y Latitude
  lonmat = ncvar_qet( nc=file , varid="longitude" );
  lonmat[which(lonmat>180)] = lonmat[which(lonmat>180)]-360
 latmat = ncvar_qet( nc=file , varid="latitude" )
                                             valorkge = data.frame( pixx=vector( mode="numeric" , length=length(numero_estaciones) ) ,
                                                                  pixy=vector( mode="numeric" , length=length(numero_estaciones) ) ,
                                                                  kge=vector( mode="numeric" , length=length(numero_estaciones) ) )
                                             for(p in 1:length(numero_estaciones) ) {
   600
           Sensor
                                               if( is.null(numero_estaciones[[p]]) == FALSE ) {
Precipitación (mm/mes)
           Estación 1
          Estación 2
                                                 x = unlist( numero_estaciones[[p]][1] )
          Estación 3
   400
                                                 y = unlist( numero_estaciones[[p]][2] )
                                                 nestaciones = length( unlist(numero_estaciones[[p]][3]) )
                                                 plot( tiempo_mensual , mapas_mensuales[x,y,] ,
                                                      main=paste("Pixel x = ", x, "Pixel y = ", y, sep=""),
                                                       xlab="Time", ylab="P" , type="l" , lwd=2 )
                                                 for( nnn in 1:nestaciones ) {
                                                   queestacion = unlist( numero_estaciones[[p]][3] )[nnn]
                                                   lines( tiempo_mensual , datos_recortados[,queestacion] , col= nnn+1 )
         1994
                       1998
                              2000
                                     2002
                                           2004
                1996
                                                 if( nestaciones > 1) promestaciones = as.vector( apply(datos_recortados[,unlist(numero,
                                                 if( nestaciones == 1) promestaciones = datos_recortados[.queestacion]
                        Tiempo
                                                 lines( tiempo_mensual , promestaciones , lw=2 , col="gray" )
```

valorkqe[p,] = c(x,y,temp)

temp = KGE(mapas_mensuales[x,y,] , promestaciones)

Principales Resultados

CHIRPS

CHIRPS Tempisque-Bebedero

MSWEP

MSWEP Tempisque-Bebedero

TRMM

TRMM Tempisque-Bebedero

PGF Tempisque-Bebedero

Estaciones Tempisque-Bebedero

Estaciones Costa Rica

Conclusiones

- R permite analizar eficientemente y de manera automática una gran cantidad de datos y se caracteriza por su versatilidad en conexión con GIS.
- El producto que presenta mayor similitud con el valor observado en campo según KGE, es el sensor CHIRPS, continua TRMM, PGF y por último MSWEP.
- El conjunto de herramientas permite una visualización de los resultados comparativos para la selección del mejor producto a usar en estudios hidrometeorológicos.
- La resolución espacial de cada sensor hace que varíe en la similitud con los datos en In Situ.

Conclusiones

- Como trabajo futuro se plantea realizar el análisis espaciotemporal utilizando series de eventos extremos.
- Se permitirá tener una cuantificación de la capacidad de los productos globales para este tipo de eventos para zonas de interés.

¡Muchas gracias por su atencion!