Basic Logistic Regression Classifier

Natalie Parde UIC CS 421

In general, supervised machine learning systems for text classification have four main components.

- Feature representation of the input
 - Typically, a **vector** of features $[x_1^{(j)}, x_2^{(j)}, ..., x_n^{(j)}]$ for a given instance $x^{(j)}$
- Classification function that computes the estimated class, \hat{y}
 - Sigmoid
 - Softmax
 - Etc.
- Objective function or loss function that computes error values on training instances
 - Cross-entropy loss function
- Optimization function that seeks to minimize the loss function
 - Stochastic gradient descent

To build a logistic regression classifier....

- Train weights w and a bias b using stochastic gradient descent and cross-entropy loss
- Use a sigmoid classification function
- Test performance by computing P(y|x) and returning the **highest-probability label**

Binary Logistic Regression

- Goal:
 - Train a classifier that can decide whether a new input observation belongs to class a or class b
- To do this, the classifier learns a vector of weights (one associated with each input feature) and a bias term
- A given weight indicates how important its corresponding feature is to the overall classification decision
 - Can be positive or negative
- The bias term is a real number that is added to the weighted inputs

Binary Logistic Regression

- To make a classification decision, the classifier:
 - Multiplies each feature for an input instance *x* by its corresponding weight (learned from the training data)
 - Sums the weighted features
 - Adds the bias term b
- This results in a weighted sum of evidence for the class:

X Vector Notation

 Letting w be the weight vector and x be the input feature vector, we can also represent the weighted sum z using vector notation:

Multiplying feature values by their weights means that z is a linear function of x

- What we really want is a probability ranging from 0 to 1
- To do this, we pass z through the sigmoid function, $\sigma(z)$
 - Also called the logistic function, hence the name logistic regression

Sigmoid Function

Figure 5.1 The sigmoid function $y = \frac{1}{1+e^{-z}}$ takes a real value and maps it to the range [0, 1]. It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

Source: https://web.stanford.edu/~jurafsky/slp3/5.pdf

• Sigmoid Function:

$$\bullet \quad \sigma(x) = \frac{1}{1 + e^{-x}}$$

- Given its name because when plotted, it looks like an s
- Results in a value y ranging from 0 to 1

•
$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-w \cdot x + b}}$$

There are many useful properties of the sigmoid function!

- Maps a real-valued number to a 0 to 1 range
 - Just what we need for a probability....
- Squashes outlier values towards 0 or 1
- Differentiable
 - Necessary for learning....

In binary logistic regression, to make the probability for all classes sum to one....

- $P(y=1) = \sigma(z)$
- $P(y = 0) = 1 \sigma(z)$

How do we make a classification decision?

- Choose a decision boundary
 - For binary classification, often 0.5
- For a test instance x, assign a label c if P(y=c|x) is greater than the decision boundary
 - If performing binary classification, assign the other label if P(y=c|x) is lower than or equal to the decision boundary

I'm just thrilled that I have five final exams on the same day. Contact the same day.

I'm just thrilled that I have five final exams on the same day.

←----- Sarcastic or not sarcastic?

Feature

Contains 😳

Contains ©

Contains "I'm"

Feature	Weight
Contains ©	2.5
Contains ©	-3.0
Contains "I'm"	0.5

Feature	Weig	ht	
Contains 😊	2.5	4	Positively associated with sarcasm
Contains 😊	-3.0	←	
Contains "I'm"	0.5	4	Negatively associated with sarcasm

Feature	Weight	Value
Contains ©	2.5	1
Contains ©	-3.0	0
Contains "I'm"	0.5	1

I'm just thrilled that I have five final exams on the same day.

←---- Sarcastic or not sarcastic?

Feature	Weight	Value
Contains 🙂	2.5	1
Contains 😊	-3.0	0
Contains "I'm"	0.5	1

Bias = 0.1

I'm just thrilled that I have five final exams on the same day.

← − − − − − − Sarcastic or not sarcastic?

Feature	Weight	Value
Contains ©	2.5	1
Contains 😊	-3.0	0
Contains "I'm"	0.5	1

Bias
$$= 0.1$$

$$z = b + \sum_{i} w_i x_i$$

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

I'm just thrilled that I have five final exams on the same day.

Feature	Weight	Value
Contains ©	2.5	1
Contains 😊	-3.0	0
Contains "I'm"	0.5	1

$$z = b + \sum_{i} w_i x_i$$

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$P(\operatorname{sarcasm}|x) = \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = \sigma(0.1 + 3.0) = \sigma(3.1) = \frac{1}{1 + e^{-3.1}} = 0.96$$

I'm just thrilled that I have five final exams on the same day.

Feature	Weight	Value
Contains ©	2.5	1
Contains ©	-3.0	0
Contains "I'm"	0.5	1

Bias
$$= 0.1$$

$$z = b + \sum_{i} w_i x_i$$

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$P(\operatorname{sarcasm}|x) = \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = \sigma(0.1 + 3.0) = \sigma(3.1) = \frac{1}{1 + e^{-3.1}} = 0.96$$

$$P(\text{not sarcasm}|x) = 1 - \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = 1 - \sigma(0.1 + 3.0) = 1 - \sigma(3.1) = 1 - \frac{1}{1 + e^{-3.1}} = 1 - 0.96 = 0.04$$

I'm just thrilled that I have five final exams on the same day.

Feature	Weight	Value
Contains ©	2.5	1
Contains ©	-3.0	0
Contains "I'm"	0.5	1

Bias
$$= 0.1$$

$$z = b + \sum_{i} w_i x_i$$

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$P(\operatorname{sarcasm}|x) = \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = \sigma(0.1 + 3.0) = \sigma(3.1) = \frac{1}{1 + e^{-3.1}} = 0.96$$

$$P(\text{not sarcasm}|x) = 1 - \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = 1 - \sigma(0.1 + 3.0) = 1 - \sigma(3.1) = 1 - \frac{1}{1 + e^{-3.1}} = 1 - 0.96 = 0.04$$

A little bit about features....

- Anything can be a feature!
 - Specific words or n-grams
 - Information from external lexicons
 - Grammatical elements
 - Part-of-speech tags
- In neural classification models, the feature vector often includes word embeddings
 - More about these soon!

Learning in Logistic Regression

- How are the parameters of a logistic regression model, w and b, learned?
 - Loss function
 - Optimization function
- Goal: Learn parameters that make \hat{y} for each training observation as close as possible to the true y