Binary Operation

Let S be a non-empty set. If $f: S \times S \to S$ is a mapping

Then f is called a binary operation or binary composition in s.

The Symbols +, ., *, Detc are used to denote binary operations on a set.

 \rightarrow for $a,b \in S \Rightarrow a+b \in S \Rightarrow +$ is a binary operation in S. \rightarrow for $a,b \in S \Rightarrow a.b \in S \Rightarrow \cdot$ is a binary operation in S.

-) for a, b ∈ S =) a * b ∈ S =) * is a binary operation in S.

→ JOL a, b ∈ S =) a o b ∈ S =) o is a binary operation in S.

This is said to the Closure property of binary operation and the set S is said to be closed with respect to binary operation.

Ex 'o' is operation defined on Z such that a ob = a+b-ab for a, b \in Z. Is the operation 'o' a binary operation in Z? If so, is it associative and commutative in Z?

Sof? If a, b e Z, we have at b ∈ Z, ab ∈ Z and at b-ab ∈ Z

→aob=a+b-ab∈Z

... 'o' is a binary operation in Z

⇒ aob=boa

.'.'o' is commutative in Z

Now, (aob)·c = (a·b)+c-(a·b)c = a+b-ab+c-(a+b-ab)c= a+b-ab+c - ac-bc +ab and $a_0(b \cdot c) = a + (b \cdot c) - a (b \cdot c)$ = a + b + 6 - bc - a (b + c - bc) = a + b + c - bc - ab - ac + abc $\Rightarrow (a \cdot b) \cdot c = a \cdot (b \cdot c)$ $\vdots \cdot o' \cdot u \quad \text{associative in } Z.$

I fill in the blanks in the following composition table so that 'o' is associative in S= {a,b,c,d}

0	a	6	C	d
a	9	b	C	d.
b	6	q	C	d
C	C	d	C	d
d				

(ii)
$$d \circ b = (c \cdot b) \circ b = c \circ (b \circ b) = c \circ a = c$$

(iii) $d \circ c = (c \cdot b) \circ b = c \circ (b \cdot c) = c \circ c = c$

(iv) $d \circ d = (c \cdot b) \cdot (c \cdot b) = c \cdot (b \cdot c) \circ b$

= $c \cdot c \cdot c \cdot b$

= $c \cdot c \cdot c \cdot b$

= $c \cdot c \cdot d$

= $c \cdot d$

Hence, the regimed comparition table is

•	a	b	c	d
q	9	b	C	d
b	Ь	9	C	d
C	C.	d		0
d	d	C	C	d

Theorem - The identity elements of a binary operation to in a set A, if it exists and is unique.

Proof - If possible, let e'and e" be two identity element in A with respect to binary operation * e' is an identity element in A

⇒ e'*e" = e"*e' = e"

and e" is an identity element in A

⇒ e'*e" = e'e' = e'

Which together show that e' = e"

Theorem If * is an associative binary operation in A, Then the inverse of every invertible element is unique.

proof - Let a $\in A$, be an invertible element with respect to *, If possible let b and c be two distinct inverses of the element a in A.

Let e be identity elements in A with respect to *
Then we have

b*a= a*b=e

and , C*a=a*c=e

now (bxa)xc = bx(axc) (:: * is associative in A)

=) eac = b *e

c = b

This completes the proof of the theorem.