

SEM 1 - 3 (RC 16-17)

F.E. (Semester – I/II) (Revised in 2016-2017) Examination, May/June 2017 APPLIED SCIENCE (CHEMISTRY)

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any two questions each from Part – A and Part – B.

Answer any one question from Part – C.

2) Draw diagrams wherever necessary.

3) Assume additional data, if required.

PART-A

Answer any two questions:

		3 VV	erany two questions:	
	1.	a)	Sketch the electrochemical cell, write the cell reactions and representation if Mg and Zn electrodes are used along with their salt solutions of 0.01 M and 0.001 M respectively. Also calculate the cell potential. (Data: E° Zn = -0.76 v; E° Mg = 2.37 v).	6
		b)	Discuss the effect of the following factors on the rate of corrosion:	6
			i) Position of the metal in the EMF series.	
			ii) Nature of corrosion product.	
		c)	Define the terms :	4
			i) Gross calorific value	
	•		ii) Net calorific value	
			iii) Octane number	
			iv) Cetane number.	
		d)	Explain the term Atom Economy by taking a suitable example.	4
6	2.	a)	A galvanic cell to be operated at 25°C is set up using elements Mg and Cu. Write the cell representation and chemical reactions involved, also find the EMF of the cell assuming that $MgSO_4$ (0.01 M) and $CuSO_4$ (0.1 M) were used as electrolytes. (Data: E°Cu = 0.34 v; E°Mg = -2.37 v)	6
		b)	Discuss the wet electrochemical theory of corrosion with a suitable example.	6
			What are the different stages involved in purification of crude oil.	4
			Discuss any two applications of Green Chemistry for achieving sustainable development.	4

3.	a)	Calculate the EMF and write the cell representation of the cell consisting of silver electrodes immersed in silver salt solutions of strength 0.01 M and 0.1 M. Explain the working principle of the cell.	6
	b)	State and explain measures for corrosion control by modification of environment.	6
	c)	Explain the construction and working of photovoltaic cell.	4
	d)	Describe the use of Dimethyl Carbonate (DMC) as an alternate reagent to achieve the goals of Green Chemistry.	4
		PART-B	
An	SW	er any two questions:	
4.	a)	Explain the process of degradation of polymers due to oxidation and exposure to high temperature.	6
	b)	A water sample was analyzed for : i) DO ii) Hardness.	6
		The test analysis as per standard protocols gave the following data:	
		i) 10 ml of the water sample upon titration with 0.01 M Na ₂ S ₂ O ₃ required 1.0 ml of the titrant.	
		ii) The sample showed the presence of CaCO ₃ (10 ppm) and MgCl ₂ (20 ppm). Find the DO (in ppm) and Hardness (in ppm CaCO ₃ eq.) (data given At. Wt. Ca = 40; C = 12; O =16; Mg = 24; S = 32; Cl = 35.5)	
· .	c)	State the basic principle involved in working of UV-visible spectroscopy and Gas Chromatography.	4
	d)	Briefly describe the layered and particulate type of composite materials.	4
5.	a)	Outline the structure properties relationship in polymers with regard to mechanic and chemical properties.	cal 6
	b)	Define the term BOD of water. A 100 ml of the sample tested using the standard procedures gave the following observations:	6
		 i) 2.0 ml of 0.01 M Na₂S₂O₃ required to achieve the end point on Day 1 and 1.5 ml of 0.01 M Na₂S₂O₃ required to achieve the end point on Day 5. Calculate the BOD of the sample in ppm. 	
	c)	Draw the block diagram for UV-Vis spectrophotometer and differential scanning calorimeter.	4
	d)	Discuss briefly fibre reinforced composites.	4

6.	a)	Compare the bulk and suspension methods of polymerization.	6
	b)	Explain the experimental procedures for determining dissolved solids, Hardness and alkalinity in water.	6
	C)	With the help of a neat labeled diagram explain the flash evaporation method for desalination of water.	4
	d)	Discuss the role of particulates as dispersed phase in composites.	4
		PART-C	
Ar	ารพ	erany one question:	
7.	a)	Write the Nernst equation for the following electrode system Cu^{2+} (0.01M)/Cu and determine its electrode potential at 25°C. (E°Cu = 0.34 v).	5
	b)	Describe 'Pitting Corrosion' with the help of a suitable example.	5
	c)	Explain the process of achieving electrical conductivity in polyacetylene. Draw a flow diagram illustrating the various stages involved in the municipal	5
8.		treatment of water for producing potable water.	5
0.	<i>a)</i>	Outline the construction and working of hydrogen-oxygen fuel cell.	. 5
	b)	State and explain the role of different ingredients involved in compounding of polymers to yield plastic material.	5
	c)	What is differential aeration corrosion? Illustrate with an example.	5
	d)	Explain the electro dialysis process for desalination of water.	5