Beer Data Set Analysis

About the data source

- For this exercise, you will be working with beer data which can be downloaded from here https://drive.google.com/open?id=1e-kyoB97a5tnE7X4T4Es4FHi4g6Trefq
- Unzip the file and you should see a CSV file, called "BeerDataScienceProject.csv"
- The columns are
 - beer_ABV
 - 2. beer_beerId
 - 3. beer_brewerld
 - 4. beer name
 - 5. beer_style
 - 6. review_appearance
 - 7. review_palette
 - 8. review overall
 - 9. review taste
 - 10. review_profileName
 - 11. review_aroma
 - 12. review_text
 - 13. review time

Questions

Rank top 3 Breweries which produce the strongest beers?

Which year did beers enjoy the highest ratings?

Based on the user's ratings which factors are important among taste, aroma, appearance, and palette?

If you were to recommend 3 beers to your friends based on this data which ones will you recommend?

Which Beer style seems to be the favorite based on reviews written by users?

How does written review compare to overall review score for the beer styles?

How do find similar beer drinkers by using written reviews only?

Data Profile

beer_ABV	Measure of how much alcohol is contained in a given volume of an alcoholic beverage			
beer_beerId	Unique identifier of the beer			
beer_brewerId	Unique identifier of the brewery			
beer_name	Name of the beer			
beer_style	• Style of the beer			
review_appearance	• Rating indicating impact of visual appearance of the beer by the consumer on the scale of 0-5			
review_palette	Palate refers to mouthfeel (i.e. the way an item of food or drink feels in the mouth)			
review_overall	Overall rating of the beer by the consumer on the scale of 0-5			
review_taste	• Rates taste of the beer by the consumer on the scale of 0-5			
review_profileName	Reviewer name			
review_aroma	• Rates on scale of 0-5 and aroma of the beer often has the most varied sensory response			
review_text	Describes textual feedback by reviewer on that particular beer			
review_time	• Indicates time of the review registered			

EDA – Handling Null Data

beer_data_df.dropna()

Null Values per column in data set

beer_ABV	20280
beer_beerId	0
beer_brewerId	0
beer_name	0
beer_style	0
review_appearance	0
review_palette	0
review_overall	0
review_taste	0
review_profileName	115
review_aroma	0
review_text	119
review_time	0

No Null Values per column in data set

beer_ABV					
beer_beerId					
beer_brewerId	0				
beer_name	0				
beer_style	0				
review_appearance	0				
review_palette	0				
review_overall	0				
review_taste	0				
review_profileName	0				
review_aroma	0				
review_text	0				
review_time	0				

Questions and Solution

Q1 Rank top 3 Breweries which produce the strongest beers?

Columns to consider

- beer_ABV
- beer_brewerld

- step 1 Group by beer_brewerld and compute average beer_ABV
- step 2 Create DataFrame on the resulted series
- step 3 Sort DataFrame by beer_abv_mean in descending order and get top 3 records

Q2 Which year did beers enjoy the highest ratings?

Columns to consider

- 'review_year' dervied from 'review_time'
- 'avg review' dervied from 'review_appearance', 'review_palette','review_taste','review_aroma','review_overall'

- step 1 Derive review year from review time
- step 2 Add a column say 'avg review' in existing dataframe indicating average rating per review with mean of ('review_appearance', 'review_palette','review_taste','review_aroma','review_overall')
- step 3 Group by review_year and compute average 'avg review' rating
- step 4 Create DataFrame on the resulted series
- step 5 Sort DataFrame by 'avg review' in descending order and get top 1 record
- step 6 Convert result set to string

Q3 Based on the user's ratings which factors are important among taste, aroma, appearance, and palette?

Columns to consider

- 'review overall'
- 'review appearance'

- 'review aroma'
- 'review overall'

- 'review_palette'
- 'review_taste'

Logic Approach 1 : Corelation

- step 1 Compute co-relation between
 'review_overall' and
 ['review_palette','review_taste','review_aroma','re
 view_appearance']
- step 2 Create DataFrame on the resulted series
- step 3 Sort DataFrame by 'review_overall' in descending order and get top 1 record
- step 4 Convert result set to string

Logic Approach 2 : Permutation Feature Importance

- step 1 Split features in two variables
- step 2 X Dependent Variables
 ['review_palette','review_taste','review_aroma','review_appearance']
- step 3 y Independent Variable ('review overall)
- step 4 Initiate RandomForestRegressor
- step 5 Fit the model
- step 6 Compute rf.feature_importances_

Permutation Feature Importance method over co-relation

- These feature importance's are based on the mean decrease in criterion, like gini impurity for random forests
- Importance's are based on measuring the increase of the prediction error when you permute the feature's values.
- So you compute the prediction error two times, before and after permutation of the feature.
- The higher the difference between the prediction errors, the more important the feature.

Q3 Based on the user's ratings which factors are important among taste, aroma, appearance, and palette?

	review_overall review_palette review_taste review_aroma review_appearance							
review_overall	1.000000	0.598048	0.689276	0.780310	0.483091			
review_palette	0.598048	1.000000	0.600842	0.703428	0.544724			
review_taste	0.689276	0.600842	1.000000	0.722737	0.551979			
review_aroma	0.780310	0.703428	0.722737	1.000000	0.531204			
review_appearance	0.483091	0.544724	0.551979	0.531204	1.000000			

Co-relation

Q4 If you were to recommend 3 beers to your friends based on this data which ones will you recommend?

Columns to consider

- beer name
- review_overall

- step 1 Group by beer_name and compute average review_overall
- step 2 Create DataFrame on the resulted series
- step 3 Sort DataFrame by review_overall_mean in descending order and get top 3 records

Q5 Which Beer style seems to be the favorite based on reviews written by users?

Columns to consider

- beer style
- review text
- review_overall

Logic

- Filter records based on review overall > 4
- Cleansing text
 - Uniform casing lower()
 - Stopwords
 - Normalization
 - Pos tagging
 - Compute polarity score of review_text
- Computing polarity score using TextBlob
 Calculate the polarity score for each review
- Group by the 'beer_style' and calculate mean of polarity score
- Create DataFrame on the resulted series
- Sort DataFrame by polarity score mean in descending order and get top 1 record

Textblob vs Vader

- Textblob sentiment analyzer returns two properties for a given input sentence:
 - Polarity is a float that lies between [-1,1], -1 indicates negative sentiment and +1 indicates positive sentiments.
 - Subjectivity is also a float that lies in the range of [0,1]. Subjective sentences generally refer to opinion, emotion, or judgment.
- VADER (Valence Aware Dictionary and sEntiment Reasoner)
 - It uses a list of lexical features (e.g. word) which are labeled as positive or negative according to their semantic orientation to calculate the text sentiment.
 - Vader sentiment returns the probability of a given input sentence to be positive, negative, and neutral
- For this data and requirement Textblob's polarity score was more suitable

Q6 How does written review compare to overall review score for the beer styles?

Columns to consider

- beer_style
- polarity_score Generated during previous question
- review_overall

Logic

- step 1 Group by beer_style and compute average of 'polarity_score' and 'review_overall'
- step 2 Create DataFrame on the resulted series
- step 3 Sort DataFrame by 'polarity_score' and 'review_overall' in descending order
- step 4 Analyse association of 'polarity_score' and 'review_overall'

Q7 How do find similar beer drinkers by using written reviews only?

Columns to consider

- review text
- review profileName

- Considering review text only where the reviewer has reviewed at least 500 beers
- Merge text review and group by each reviewer name
- Perform cross join on the same data frame so that each review text can be compared by every other text in same data frame
- Initialize TfidfVectorizer to convert a review text to vector
- Normalize text using lemmatization
- Remove punctuation
- Compute cosine_similarity score between two cleansed texts
- Sort records by cosine_similarity

Thank You!