Algebra II - Quiz 2 - 30 Marks

February 3, 2024: Time: One hour

1	Air Che a	Gnite grow	Show	that	the follo	owing are	equivalent:	(10)	marks)
---	-----------	------------	------	------	-----------	-----------	-------------	------	--------

- (a) |G| is prime.
- (b) $G \neq < 1_G >$ and G has no proper subgroups.
- (c) $G \cong \mathbb{Z}/p\mathbb{Z}$ for some prime p.

Let H and K be subgroups of G. Show that there is a bijection

 $\phi: H/(H\cap K) \to (HK)/K.$

TIMES

HOK is mark to H Kis servel to MK

(5 marks)

Whet $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{Z}/p^2\mathbb{Z} & a \cong 1 \pmod{p} \right\}$. Is G a group. If no justify. If yes determine the order of the group. (5 marks)

- 4. Let $n \geq 3$, $G = S_n$ be the symmetric group and A_n be the alternating group.
 - (a) Let $\tau = (i_1 \ i_2 \ \cdots \ i_{\tau})$ be a cycle and σ any permutation. Suppose $\sigma(i_r) = j_r$. Show that $\sigma \tau \sigma^{-1} = (j_1 \cdots j_r)$ (2 marks)

Prove or disprove: Let $G = A_4$. There exists proper subgroups H and Ksuch that $A_4 = H \times K$. [Hint: Consider $\phi: H \times K \to G$] (8 marks)

123) 2319 31241 (C(2)(34)