Mathematical analysis 2

Chapter 4 : Sequences and Series of functions

Part 2: Series of functions

R. KECHKAR

2023/2024

- Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

Generalities

Definition

Let \underline{E} be a non-empty subset of \mathbb{R} . Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions defined on \underline{E} .

1 We call a series of functions with general term f_n the expression:

$$\sum_{n\geq 0} f_n = f_0 + f_1 + f_2 + \dots + f_n + \dots$$

2 The sequence of functions $(S_n)_{n\in\mathbb{N}}$ where

$$S_n(x) = \sum_{k=0}^{\infty} f_k = f_0 + f_1 + f_2 + \dots + f_n$$

is called the sequence of partial sums associated with f_n .

Definition

We call the domain of convergence of the series of functions $\sum f_n$ the set denoted by D, given by:

$$D = \{x \in E \mid \sum f_n(x) \ converges\}.$$

- 1 Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

- Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

Definition (Pointwise Convergence)

Let (f_n) be a sequence of functions defined on E.

- We say that the series of functions $\sum f_n$ is pointwise convergent at the point x_0 in E if the sequence $(S_n(x_0))$ is convergent.
- 2 We say that the series of functions $\sum f_n$ is pointwise convergent on $I \subseteq E$ if its sequence of partial sums (S_n) is pointwise convergent on I.

In other words:

- ① The series of functions $\sum f_n$ is pointwise convergent at the point x_0 in E if the numerical series $\sum f_n(x_0)$ is convergent.
- 2 The series of functions $\sum f_n$ is pointwise convergent on $I \subseteq E$ if for every fixed $x \in I$, the numerical series $\sum f_n(x)$ is convergent. In this case, we denote:

$$\forall x \in I, \quad F(x) = \sum_{n=0}^{\infty} f_n(x).$$

Example.

Study the pointwise convergence of $\sum f_n$ where for all $x \in [0,1]$

$$f_n(x) = \frac{nx}{1 + n^3 x^3}.$$

- If x = 0, then $\sum f_n(0) = 0$ converges.
- If $x \in]0,1]$, then $\frac{nx}{1+n^3x^3} \sim \frac{1}{n^2x^2} > 0$. However, $\sum \frac{1}{n^2x^2}$ is a convergent Riemann series.

Therefore, by the comparison test, $\sum f_n$ converges pointwise on [0,1].

Conclusion: $\sum f_n$ converges pointwise on [0,1].

Definition (Absolute Convergence)

We say that the series of functions $\sum f_n$ converges absolutely on I if the series of functions $\sum |f_n|$ converges pointwise on I.

Example.

Study the pointwise convergence of $\sum f_n$ where $f_n(x) = \frac{(-1)^n x^n}{n}$, $\forall x \in [0, 1]$.

- If x = 0, then $\sum f_n(0) = 0$ converges.
- For $x \in]0,1]$, let's study the absolute convergence. That is to say the convergence of the series $\sum |f_n(x)|$. Apply the ratio test (D'Alembert's test):

$$\lim_{n \to +\infty} \left| \frac{f_{n+1}(x)}{f_n(x)} \right| = \lim_{n \to +\infty} \frac{x^{n+1}}{n+1} \cdot \frac{n}{x^n} = x.$$

Then for $x \in]0,1[, \sum |f_n|]$ converges. For x = 1, the ratio test is inconclusive.

• When x = 1, $f_n(1) = (-1)^n \frac{1}{n}$. Now, $\sum (-1)^n \frac{1}{n}$ is an alternating series convergent via Leibniz's theorem.

Conclusion: $\sum f_n$ converges pointwise on [0, 1].

Definition

The series $\sum f_n$ is said to be **conditionally convergent** on I if it is pointwise convergent without being absolutely convergent on I.

Proposition

- If $\sum f_n$ is absolutely convergent on I, then it is pointwise convergent on I.
- ② If $\sum f_n$ is pointwise convergent on I, then the sequence of functions (f_n) converges pointwise to 0 on I.

- 1 Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

Definition

Let (f_n) be a sequence of functions defined on E. We say that the series of functions $\sum f_n$ converges uniformly on $I \subseteq E$ if and only if its sequence of partial sums (S_n) converges uniformly on I.

Example.

Consider $\sum f_n$ where $f_n(x) = e^{-nx}$ for all $x \in \mathbb{R}_+^*$.

- ① Show that this series of functions converges pointwise on \mathbb{R}_+^* .
- 2 Does the series $\sum f_n$ converge uniformly on \mathbb{R}_+^* ?
- **1** Provide the domains where there is uniform convergence.
- **Operation** Pointwise Convergence: Let (S_n) be the sequence of partial sums related to

$$\sum f_n, \qquad S_n(x) = \sum_{k=0}^n f_k = \sum_{k=0}^n e^{-xk} = \frac{1 - e^{-x(n+1)}}{1 - e^{-x}}.$$

The limit as $n \to +\infty$ of $S_n(x)$ equals $\frac{1}{1-e^{-x}}$. Therefore, $S_n \xrightarrow{\text{Pointwise}} S$ on \mathbb{R}_+^* , where $S(x) = \frac{1}{1-e^{-x}}$. Hence, $\sum f_n$ converges pointwise on \mathbb{R}_+^* .

2 Uniform Convergence: To verify if $\lim_{n \to +\infty} ||S_n - S|| = 0$: Let $g_n(x) = |S_n(x) - S(x)| = \left| \frac{e^{-x(n+1)}}{1 - e^{-x}} \right| = \frac{e^{-x(n+1)}}{1 - e^{-x}}$. Notice that the function $g_n(x)$ is not bounded on \mathbb{R}_+^* . Indeed,

$$\sup_{x \in \mathbb{R}_+^*} |S_n(x) - S(x)| \ge \lim_{x \to 0^+} \frac{e^{-x(n+1)}}{1 - e^{-x}} = +\infty \Rightarrow \lim_{n \to +\infty} ||S_n - S|| \ne 0.$$

Hence, $S_n \rightarrow S$ uniformly on \mathbb{R}_+^* .

3 We observe that there is no uniform convergence in any interval containing the neighborhood of 0. Let's consider intervals of the form $[\alpha, +\infty[$, $\alpha > 0$:

For all
$$x \in [\alpha, +\infty[$$
, $g_n(x) = \frac{e^{-x(n+1)}}{1 - e^{-x}} \le \frac{e^{-\alpha(n+1)}}{1 - e^{-\alpha}}$ and

 $\lim_{\substack{n \to +\infty \\ \text{form } [\alpha, +\infty[, \alpha > 0.]}} \frac{e^{-\alpha(n+1)}}{1 - e^{-\alpha}} = 0. \text{ Therefore, } S_n \xrightarrow{\text{Unif}} S \text{ over any interval of the}$

Remark

- The previous example demonstrates that uniform convergence is highly dependent on the considered interval. It's essential to specify on which interval the uniform convergence occurs.
- If $\sum f_n$ converges uniformly on I, then $\sum f_n$ converges uniformly on any subset interval $A \subseteq I$.

Definition

We call the *nth* remainder of a series of functions $\sum f_n$ pointwise convergent on $I \subseteq E$, the sequence of functions R_n defined as:

$$\forall x \in I, \forall n \in \mathbb{N}, \quad R_n(x) = \sum_{k=n+1}^{\infty} f_k.$$

Proposition (Necessary and sufficient condition)

Let (f_n) be a sequence of functions defined on E. Let (R_n) be the nth remainder of the series of functions $\sum f_n$. We say that the series of functions $\sum f_n$ converges uniformly on $I \subseteq E$ if and only if $R_n \stackrel{Unif}{\longrightarrow} 0$ on I.

Proposition (Necessary condition)

Let (f_n) be a sequence of functions defined on E. If $\sum f_n$ converges uniformly on $I \subseteq E$, then $f_n \xrightarrow{Unif} 0$ on I.

Theorem (Uniform Leibniz test)

Let $\sum f_n$ be a series of functions where the general term is of the form $f_n(x) = (-1)^n u_n(x)$, where (u_n) is a sequence of functions defined on I. If:

- For each $x \in I$, the numerical sequence $(u_n(x))$ is positive and decreasing sequence.
- ② The sequence of functions (u_n) converges uniformly on I to 0, i.e., $\lim_{n\to\infty}||u_n||=0$,

then the series $\sum f_n$ converges uniformly on I.

Example.

Study the uniform convergence of $\sum f_n$ where $f_n(x) = (-1)^n \frac{1}{x^2 + n}$ for all $x \in \mathbb{R}$.

Solution: Let's use the Uniform Leibniz test. Set $u_n(x) = \frac{1}{x^2 + n}$.

- ② For all $x \in \mathbb{R}$, $\frac{u_{n+1}}{u_n} = \frac{x^2 + n}{x^2 + n + 1} < 1$ thus the sequence (u_n) is decreasing.
- **3** Is $\lim_{n \to \infty} ||u_n|| = 0$?

For all $x \in \mathbb{R}$ and $n \in \mathbb{N}^*$, $|u_n(x)| = \frac{1}{x^2 + n} \le \frac{1}{n}$ and $\lim_{n \to \infty} \frac{1}{n} = 0$.

Therefore, $u_n \xrightarrow{\text{Unif}} 0$ on \mathbb{R} . Thus, $\sum f_n$ converges uniformly on \mathbb{R} .

Theorem (Uniform Abel test)

Let $\sum f_n$ be a series of functions where the general term is of the form $f_n(x) = u_n(x)v_n(x)$, where (u_n) and (v_n) are two sequences of functions defined on I. If:

- **①** For each $x \in I$, the numerical sequence $(u_n(x))$ is decreasing,
- ② The sequence of functions (u_n) converges uniformly on I to 0, i.e., $\lim_{n\to\infty}||u_n||=0$,
- There exists a real number M > 0 (independent of n and x) such that $|S_n(x)| = \left| \sum_{k=0}^n v_k \right| \le M$,

then the series $\sum f_n$ converges uniformly on I.

Example.

Show that the series $\sum \frac{\cos(nx)}{n}$ converges uniformly on every interval of the form $[\alpha, 2\pi - \alpha]$, where $0 < \alpha < \pi$.

Solution: Let's apply the Uniform Abel criterion: set $u_n(x) = \frac{1}{n}$ and $v_n(x) = \cos(nx)$.

- The sequence (u_n) is decreasing, and $\lim_{n\to\infty} u_n = 0$.
- $|S_n(x)| = \left| \sum_{k=0}^n \cos(kx) \right| \le \left| \frac{1}{\sin(\frac{\alpha}{2})} \right|$ for $\alpha \le x \le 2\pi \alpha$.

Thus, $\frac{1}{\sin(\frac{\alpha}{2})}$ is independent of n and x, denoted as M.

Therefore, for all $x \in [\alpha, 2\pi - \alpha]$, where $0 < \alpha < \pi$, $|S_n(x)| \le M$, independent of n and x.

Hence, $\sum \frac{\cos(nx)}{n}$ converges uniformly on every interval of the form $[\alpha, 2\pi - \alpha]$, where $0 < \alpha < \pi$.

- 1 Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

Normal convergence

Definition (Normal Convergence)

 $\sum f_n$ is said to converge normally on $I \subseteq E$ if and only if

- 2 and the numerical series $\sum_{x \in I} \sup |f_n(x)|$ converges.

Theorem (Dominated Convergence or Weierstrass test)

 $\sum f_n$ converges normally on $I \subseteq E$ if there exists a numerical sequence (u_n) such that:

- 2 and $\sum u_n$ converges.

Theorem

If the series of functions $\sum f_n$ converges normally on $I \subseteq E$, then it converges uniformly on I.

Normal convergence

Example.

Show that $\sum f_n$ with general term $f_n(x) = ne^{-nx}$ converges normally on every $[\alpha, +\infty[$, where $\alpha > 0$, but does not converge normally on $[0, +\infty[$.

Solution:

• For any $n \in \mathbb{N}$ and $x \in [\alpha, +\infty[$ where $\alpha > 0$:

$$|f_n(x)| = ne^{-nx} \le ne^{-n\alpha}$$

Since $\sum ne^{-n\alpha}$ converges (reference), we deduce from the dominated convergence criterion that $\sum f_n$ converges normally, and hence uniformly, on $[\alpha, +\infty[$, where $\alpha > 0$.

② On $[0, +\infty[$:

$$\sup_{x \in [0, +\infty[} |f_n(x)| = \sup_{x \in [0, +\infty[} ne^{-nx} = n$$

As $\sum n$ diverges, $\sum f_n$ does not converge normally on $[0, +\infty[$.

- Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

- Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

Continuity of the sum

Theorem

Let $\sum f_n$ be a series of functions and I an interval in \mathbb{R} . If:

- **1** All functions f_n are continuous at a ∈ I,
- 2 The series of functions $\sum f_n$ converges uniformly on I,

then the sum function F of the series, defined as $F(x) = \sum_{n=0}^{\infty} f_n(x)$, is continuous at a.

In other words,

$$\lim_{x \to a} F(x) = \lim_{x \to a} \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \lim_{x \to a} f_n(x) = \sum_{n=0}^{\infty} f_n(a) = F(a).$$

Corollary

Let $\sum f_n$ be a series of functions and I an interval in \mathbb{R} . If:

- 1 All functions f_n are continuous on I,
- 2 The series of functions $\sum f_n$ converges uniformly on I,

then the sum function F of the series $F(x) = \sum_{n=0}^{\infty} f_n(x)$ is continuous on I.

Continuity of the sum

Remark

As continuity is a pointwise property, the above result remains valid if we replace the uniform convergence on I by uniform convergence on any segment $[\alpha, \beta] \subseteq I$.

Example.

Consider the series of functions $\sum f_n$ where $f_n(x) = ne^{-nx}$, $x \in [1, +\infty[$. Show that the sum function F of the series $\sum f_n$ is continuous on $[1, +\infty[$.

Solution: We have:

- All f_n functions are continuous on $[1, +\infty[$ as they are compositions of two continuous functions.
- ② $\sum f_n$ converges uniformly on $[1, +\infty[$ (already proven).

Hence, the sum function F is continuous on $[1, +\infty[$.

- Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

Integrability of the sum

Theorem

Let $\sum f_n$ be a series of functions and [a,b] an interval in \mathbb{R} . If:

- **1** All f_n functions are integrable on [a,b],
- **2** The series of functions $\sum f_n$ is uniformly convergent on [a,b],

then the sum function F of the series, defined as $F(x) = \sum_{n=0}^{\infty} f_n(x)$, is integrable on [a,b], and we have

$$\int_{a}^{b} F(x) dx = \int_{a}^{b} \sum_{n=0}^{\infty} f_{n}(x) dx = \sum_{n=0}^{\infty} \int_{a}^{b} f_{n}(x) dx.$$

- Generalities
- 2 Types of convergence for functions series
 - Pointwise convergence
 - Uniform convergence
 - Normal convergence
- 3 Properties of the sum of series of functions
 - Continuity of the sum
 - Integrability of the sum
 - Differentiability of the sum

Theorem

Let $\sum f_n$ be a series of functions and I an interval not reduced to a point. If:

- All f_n functions are of class C^1 on I.
- 2 There exists $x_0 \in I$ such that the numerical series $\sum f_n(x_0)$ converges.
- **1** The series of derivative functions $\sum f'_n$ converges uniformly on I.

Then:

- **1** The series of functions $\sum f_n$ converges uniformly on I.
- **2** The sum function **F** of the series, defined as $F(x) = \sum_{n=0}^{\infty} f_n(x)$, is of

class
$$C^1$$
 on I , and we have $F'(x) = \left(\sum_{n=0}^{\infty} f_n(x)\right)' = \sum_{n=0}^{\infty} f'_n(x)$.

Example.

Let $\sum f_n$ series of functions with $f_n(x) = \frac{1}{n^2} e^{-nx}$ for $x \in \mathbb{R}$.

- **1** Determine the domain of convergence **D** of this series.
- ② Show that the sum function F of the series $\sum f_n$ is continuous on D.
- Show that F is differentiable on $[a, +\infty)$ with a > 0.

Solution:

1 The domain of convergence D of $\sum f_n$ is given by:

$$D = \{x \in \mathbb{R} \mid \sum f_n(x) \text{ converges}\}.$$

- If x < 0, $\lim_{n \to +\infty} f_n(x) = +\infty$. Hence, $\sum f_n(x)$ diverges.
- If $x \ge 0$, for all $x \in \mathbb{R}^+$ and $n \in \mathbb{N}^*$, $|f_n(x)| = \frac{1}{n^2}e^{-nx} \le \frac{1}{n^2}$. As $\sum \frac{1}{n^2}$ converges, by the dominated convergence, $\sum f_n$ converges normally, and thus uniformly and pointwise on \mathbb{R}^+ .

Therefore, $D = \mathbb{R}^+$.

- **②** Continuity of the sum: we have
 - All f_n functions are continuous on \mathbb{R}^+ as compositions of two continuous functions.
 - $\sum f_n$ converges uniformly on \mathbb{R}^+ (already demonstrated).

Hence, the sum function F is continuous on \mathbb{R}^+ .

1 The differentiability of the sum

- All f_n functions are of class C^1 on \mathbb{R}^+ .
- $\sum f_n$ converges pointwise on \mathbb{R}^+ , so $\exists x_0 \in \mathbb{R}^+$ such that the numerical series $\sum f_n(x_0)$ converges.
- Study of the uniform convergence of $\sum f'_n$: Consider intervals of the form $[a, +\infty[, a > 0:$ For all $x \in [a, +\infty[$ and $n \in \mathbb{N}^*,$ $|f'_n(x)| = \left|\frac{1}{n}e^{-nx}\right| \le \frac{1}{n}e^{-n\alpha}.$ As $\sum \frac{1}{n}e^{-n\alpha}$ converges, $\sum f'_n$ converges normally, and thus uniformly, on $[a, +\infty[, a > 0.$

Therefore, the sum function F of the series $\sum f_n$ is C^1 on $[a, +\infty[$, a > 0. Thus, F is C^1 on $]0, +\infty[$ by continuity.