Card T46

Задача: Точки A_1, B_1, C_1 на сторонах остроугольного треугольника ABC выбраны так, что отрезки AA_1, BB_1, CC_1 пересеклись в точке O, а углы AA_1C, BB_1A, CC_1B оказываютсяались равными. Докажите, что эти отрезки являются высотами треугольника $\triangle ABC$.

Подсказка:

Доказательство: Нетрудно доказать, что около четырехугольников AC_1OB_1 и CA_1OB_1 можно описать окружности. По теореме о секущей и касательной имеем равенство: $BB_1 \cdot BO = BC \cdot BA_1 = BA \cdot BC_1$ или $BC : BA = BC_1 : BA_1$.

Из последнего равенства следует, что $\triangle BCC_1 \sim \triangle BAA_1$, т.е., $\angle BA_1A = \angle BC_1C = \angle AA_1C = 90^\circ$, т.к. углы BA_1A и $\angle AA_1C$ являются смежными.

Card T47

1. $\operatorname{tg} \alpha = -\frac{5}{12}$ Найти $\sin \alpha$ и $\cos \alpha$.

<u>Подсказка:</u> $\sin \alpha = \pm \frac{5}{13}$, $\cos \alpha = \pm \frac{12}{13}$.

2. $\operatorname{tg} \alpha = -\frac{1}{2}$ Найти $\sin \alpha$ и $\cos \alpha$.

<u>Подсказка:</u> $\sin \alpha = \pm \frac{1}{\sqrt{5}}, \quad \cos \alpha = \pm \frac{2}{\sqrt{5}}.$

3. $\operatorname{tg} \alpha = -\frac{7}{4}$ Найти $\sin \alpha$ и $\cos \alpha$.

 $\underline{\text{Подсказка:}}\,\sin\alpha=\pm\tfrac{7}{5},\quad\cos\alpha=\pm\tfrac{4}{5}.$

4. tg $\alpha = -\frac{2}{3}$ Найти $\sin \alpha$ и $\cos \alpha$.

<u>Подсказка:</u> $\sin \alpha = \pm \frac{2}{\sqrt{13}}, \quad \cos \alpha = \pm \frac{3}{\sqrt{13}}.$

Card T48

 ${\bf 3aдача:}$ Найти $\cos(\vec{a}\cdot\vec{b}),$ если \vec{a} и \vec{b} заданы векторами:

1. $\vec{a} = (1, 2), \vec{b} = (-2, 1)$

Подсказка: $\cos(\vec{a} \cdot \vec{b}) = 0$.

2. $\vec{a} = (-3, 2), \vec{b} = (2, 3)$

 $\underline{\text{Подсказка:}}\cos(\vec{a}\cdot\vec{b})=0.$

3.
$$\vec{a} = (4,4), \vec{b} = (-4, -4)$$

Подсказка:
$$\cos(\vec{a} \cdot \vec{b}) = -1$$
.

4.
$$\vec{a} = (-5, -5), \vec{b} = (5, 5)$$

Подсказка:
$$\cos(\vec{a} \cdot \vec{b}) = -1$$
.

Card T53

1.
$$|x+2| = 2(3-x)$$
;

2.
$$|3x - 2| + x = 10$$
;

3.
$$|5x - 4| = 4 - 5x$$
;

4.
$$|2x - 3| = 3 - 2x$$
;

Подсказка:

$$\begin{array}{ll}
8, & \frac{4}{3}; \\
-4, & 3; \\
\frac{4}{5}, & 0.8; \\
\frac{3}{2}, & 1.5
\end{array}$$

Card T55

Найдите все натуральные числа в десятичной записи, которые уменьшаются до 1996 при вычитании из них этого числа без последней цифры.

Подсказка:

Пусть число имеет вид $\overline{abc \dots mn}$, тогда:

$$\overline{abc\dots mn} - \overline{abc\dots m} = 1996 \implies 10x + n - x = 1996 \implies 9x + n = 1996 \implies$$

$$\implies x = \frac{1996 - n}{9}, \text{ где } n \in \{0, 1, \dots, 9\} \implies \begin{cases} n = 7 \\ x = 221 \end{cases}$$

Otbet: $\overline{abc \dots mn} = 2217$.

Card T59

Докажите неравенство:

$$(1 + a + a^2 + a^3)^2 \le 4(1 + a^2 + a^4 + a^6)$$

Подсказка:

$$\implies 3a^6 - 2a^5 + a^4 - 4a^3 + a^2 - 2a + 3 \ge 0 \implies a^4(a^2 - 2a + 1) + (a^2 - 2a + 1) + 2(a^6 - 2a^3 + 1) = (a^4 + 1)(a - 1)^2 + 2(a^3 - 1)^2 \ge 0.$$

Card TD 04 (Demidova)

Ученики Петя, Коля, Вася, Иван, Миша по очереди выполнили по одному примеру из таблицы умножения. При этом, у каждого последующего получился результат в полтора раза больший, чем у предыдущего. Какие числа перемножил Иван?

Подсказка:

$$x, \frac{3x}{2}, \frac{9x}{4}, \frac{27x}{8}, \frac{81x}{16} \implies x = 16$$
 $16, 24, 36, 54, 81$

Card TD 20 (Demidova)

Два брата продали n цыплят по n лей. Деньги делили так. 10 лей взял старший брат, 10 лей младший, опять 10 лей старший и т.д. В конце меньшему брату не хватило денег до 10 лей. Он взял остаток и ножик старшего брата, после чего они согласились, что деление было правильным. Сколько стоит ножик?

Подсказка:

Ясно, что выручка была n^2 , причем, $n^2 > 30$. Пусть n = 10a+b. Тогда $n^2 = 100a^2 + 20ab + b^2 = 20a(5a+b) + b^2$. Но число десяток в n^2 должно быть нечетным. Это возможно тогда и только тогда, когда $b^2 = 16$ или 36. Значит, остаток равен 6. Значит, ножик стоит 2 лея. (???4 - ред.)

Card T Fig 01

Окружность, описанная около треугольника ABC, пересекает продолжение медианы BM в точке D. Докажите, что $AB \cdot AD = CB \cdot CD$.

Подсказка:

Card T Fig 06

Все квадраты, вписанные в треугольник (вершины на сторонах треугольника), оказались равными. Найдите углы треугольника.

Решение:

У каждого треугольниа ABC по крайней мере два острых угла. По-кажем, что если угол A острый, то в условиях задачи AB = AC. Действительно, пусть PQML и HDNK – равные квадраты. Тогда $\triangle ADH = \triangle AQP$ и следовательно $\triangle ADN = \triangle AQM$ и $\angle NDC = \angle MQB$.

С другой стороны $\angle QMC = \angle DNB$, и значит $\angle DNC = \angle QM?$. Так как и DN = MQ, то $\triangle DNC = \triangle QMB$ и AB = AC. Если у треугольника ABC еще и угол C острый, то AC = ???, т.е., треугольник равносторонний и все углы у него равны 60° .

Card T Fig 07

Подсказка: Да.

Можно ли на плоскости нарисовать 12 окружностей так, чтобы каждая касалась ровно 5 окружностей?

Card T Fig 08

Через произвольную точку P медианы AD треугольника $\triangle ABC$ проведена прямая BP, пересекающая сторону AC в точке E.

Докажите, что $AP:PD=2\cdot AE:EC$.

Подсказка:

Проведем
$$CP$$
. Тогда $S_{ABP}=S_{ACP}$ и $AE:EC=\frac{S_{ABP}}{S_{BCP}}=\frac{S_{ACP}}{S_{BCP}}=\frac{S_{ACP}}{2S_{DPC}}==\frac{1}{2}\cdot\frac{AP}{PD}$ ч. и т.д.

Card T Fig 10

Через вершины треугольника проведены касательные к описанной около него окружности. Расстояния от произвольной точки окружности до прямых, содержащих стороны треугольника, обозначены через a, b, c, а до касательных -x, y, z. Докажите, что $a^2 + b^2 + c^2 = xy + yz + zx$.

Подсказка:

Пусть M — точка на описанной окружности: $MK \perp BA_2$, $ML \perp CA_2$, $MA_1 \perp BC$ и MK = x, ML = y, $MA_1 = a$. Покажем, что $a^2 = xy$. Действительно, $\triangle BMA_1 \sim \triangle CML \Rightarrow \frac{a}{y} = \frac{BM}{MC}$. Из $\triangle CMA_1 \sim \triangle BMK \Rightarrow \frac{x}{a} = \frac{BM}{MC}$. Поэтому, $\frac{a}{y} = \frac{x}{a} \Rightarrow a^2 = xy$. Аналогично $b^2 = yz$ и $c^2 = zx$ и $a^2 + b^2 + c^2 = xy + yz + zx$ ч. и т.д.