Lecture 1

Chapter 2 of Deconinch's Noted

Frist order PDEs.

Origin: Usually from conservation laws.

Consider the section ax and cross-sectional area A:

Amount of "stuff" in this section:

UÃAX

where u is the concentration per unit valued.

Time rate of increase in "stuff" in the section

= flux in at x - flux out at x+xx

= Ag(x,t) - Ag(x+xx,t)

where q is flux per unit area.

$$\Rightarrow \text{ Diffusion equation:}$$

$$\int_{\partial t} u = \frac{\partial}{\partial x} \left(\alpha^2 \frac{\partial}{\partial x} u \right).$$

Example: Advection of tracers:

$$g(x,t) = c u(x,t)$$

$$\frac{\partial}{\partial t}u + c\frac{\partial x}{\partial t}u = 0$$

Another example: If the quantity being advected is momentum, and the velocity of advection is momentum/mass, then it is notinear advection:

Mone generally,

$$\int_{1}^{2} \frac{1}{1} du + C(u) \frac{1}{1} du = 0$$
where $C(u) = \frac{dq}{du}$.

Method of characteristics for solving first order poles, linear or nonlinear.

Along curve C: x = x(t) defined by $\frac{dx}{dt} = C(u)$ $\frac{dx}{dt} = C(u)$ $\frac{dx}{dt} = \frac{\partial}{\partial x}u + \frac{\partial}{\partial x} = \frac{\partial}{\partial t}u + C(u)\frac{\partial}{\partial x}u$ So $\frac{\partial}{\partial t}u + C(u)\frac{\partial}{\partial x}u = 0$ "Lagrangian riew" u = u(t, x(t))

is the same as $\frac{du}{dt} = 0 \text{ along } \frac{dx}{dt} = ccu).$

A few examples

(1)
$$c = a constant$$
 $\frac{\partial u}{\partial t} + c \frac{1}{x^2} u = 0$
 $\frac{\partial u}{\partial t} = 0$ along $\frac{\partial u}{\partial t} = c$, or $x = \frac{1}{5} + ct$
 $\frac{\partial u}{\partial t} = 0$ along $\frac{\partial u}{\partial t} = c$, or $x = \frac{1}{5} + ct$
 $\frac{\partial u}{\partial t} = 0$ along $\frac{\partial u}{\partial t} = c$, or $\frac{\partial u}{\partial t} = c$ along $\frac{\partial u}{\partial t} = c$

$$5 = x(0) = 0, 1, 2, \cdots etc.$$

slope:

wave steepens at the leading edge Eventually forms a "shock"