Matroids for solving Optimisation Problems The Greedy algorithm as a solution

Owen McDonnell

NUI Galway

2018

The Problem

The Setup

- ▶ Let *G* be a connected graph, where each vertex is a town.
- A cost is assigned to each edge
- cost of providing a rail link between the towns.

The Problem

The Setup

- ▶ Let *G* be a connected graph, where each vertex is a town.
- A cost is assigned to each edge
- cost of providing a rail link between the towns.

The Statement

Our problem corresponds to finding the minimum cost of providing a railway that will link all n towns. Which in this case corresponds to finding a minimal weighted spanning tree of G.

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted Graph.

Algorithm

1) Create a graph F containing just the vertices of G.

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted Graph.

Algorithm

- 1) Create a graph F containing just the vertices of G.
- 2) Create a set S = E(G); the edge set of G.

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted Graph.

Algorithm

- 1) Create a graph F containing just the vertices of G.
- 2) Create a set S = E(G); the edge set of G.
- 3) While S is non-empty and F is not yet spanning

Kruskal's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted Graph.

Algorithm

- 1) Create a graph F containing just the vertices of G.
- 2) Create a set S = E(G); the edge set of G.
- 3) While S is non-empty and F is not yet spanning
 - 3(a) Remove an edge with minimum weight from S.
 - 3(b) If the removed edge introduces no cycles to F
 - then add the edge to F

Why Greedy works?

Let B_G be a spanning tree created through the greedy algorithm.

Lemma

If (E, \mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Why Greedy works?

Let B_G be a spanning tree created through the greedy algorithm.

Lemma

If (E, \mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Question

But what is a matroid?

Independence Systems and Matroids

Definition

An independence system is a pair (E, S), where E is a set and S is a non-empty, hereditary subset of the power set of E. The elements of S are called the independent sets.

Independence Systems and Matroids

Definition

An independence system is a pair (E, S), where E is a set and S is a non-empty, hereditary subset of the power set of E. The elements of S are called the independent sets.

Definition

A matroid is a pair (E,\mathcal{I}) with finite ground set E and \mathcal{I} being a collection of independent subsets of E satisfying the conditions of an independence system with the following extra condition:

Independence Systems and Matroids

Definition

An independence system is a pair (E, S), where E is a set and S is a non-empty, hereditary subset of the power set of E. The elements of S are called the independent sets.

Definition

A matroid is a pair (E, \mathcal{I}) with finite ground set E and \mathcal{I} being a collection of independent subsets of E satisfying the conditions of an independence system with the following extra condition:

(I3): If A and B are two independent sets in \mathcal{I} and |A| = |B| + 1, then there exists $x \in A \setminus B$ such that $B \cup \{x\}$ is in \mathcal{I}

◆□ → ◆□ → ◆ □ → ○ ● ・ ○ ○ ○

Bases of a Matroid

Definition

A base is a maximally independent subset of \mathcal{I} .

All the maximally independent sets have the same cardinality, this is the *rank* of the matroid.

Definition

Let $\mathcal B$ be a set of subsets of a finite set E. Then $\mathcal B$ is the collection of bases of a matroid on E if and only if $\mathcal B$ satisfies the following conditions:

- (B1) \mathcal{B} is non-empty.
- (B2) If B_1 and B_2 are members of \mathcal{B} and $x \in B_1 \setminus B_2$, then there is an element y of $B_1 \setminus B_2$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

4□ → 4□ → 4 = → 4 = → 9 Q P

Spanning trees are Bases

Definition

A spanning tree T of an undirected graph G is a subgraph that is a *tree* which includes all of the vertices of G.

We see that \mathcal{B} (the collection of maximal elements of \mathcal{I}) corresponds to the set of spanning trees of the graph.

◆ロト ◆部 ▶ ◆ き ト ◆ き り へ ○

Weight Function

The optimization problem associated with (E, S) is the following: for a given weight function $\omega : E \to \mathbb{R}^+$, we want to find an independent set A whose weight is maximal, where

$$\omega(A) := \sum_{e \in A} \omega(e) \tag{1}$$

Demonstration of Kruskal's algorithm

```
owen@owen-ThinkPad-X201 ~/Matroids $ perl
SVAR1 = {
};
This Graph is Acyclic
owen@owen-ThinkPad-X201 ~/Matroids $
```


Let B_G be a base of a matroid generated by the greedy algorithm.

Lemma

If (E, \mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Let B_G be a base of a matroid generated by the greedy algorithm.

Lemma

If (E, \mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Proof.

If r(M) = r, then $B_G = \{e_1, e_2, ..., e_r\}$ is a basis of M.

Let B_G be a base of a matroid generated by the greedy algorithm.

Lemma

If (E,\mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Proof.

If r(M) = r, then $B_G = \{e_1, e_2, ..., e_r\}$ is a basis of M. Let B be another basis of M, $B = \{f_1, f_2, ..., f_r\}$

Let B_G be a base of a matroid generated by the greedy algorithm.

Lemma

If (E,\mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Proof.

If r(M)=r, then $B_G=\{e_1,e_2,...,e_r\}$ is a basis of M. Let B be another basis of M, $B=\{f_1,f_2,...,f_r\}$ where $\omega(f_1)\geq \omega(f_2)\geq ... \geq \omega(f_r)$.

Let B_G be a base of a matroid generated by the greedy algorithm.

Lemma

If (E, \mathcal{I}) is a matroid M, then B_G is a solution to the optimization problem.

Proof.

If r(M)=r, then $B_G=\{e_1,e_2,...,e_r\}$ is a basis of M. Let B be another basis of M, $B=\{f_1,f_2,...,f_r\}$ where $\omega(f_1)\geq \omega(f_2)\geq ...\geq \omega(f_r)$. We claim that $\omega(e_j)\geq \omega(f_f) \ \forall j$, then it follows that $\omega(B_G)\geq \omega(B)$ for any other basis in \mathcal{B} .

(ロ) (団) (団) (団) (団) (ロ)

Lemma

if $1 \le j \le r$, then $\omega(e_j) \ge \omega(f_j)$.

Proof.

Suppose(seeking a contradiction) that k is the least integer for which $\omega(e_k) \leq \omega(f_k)$.

Lemma

if
$$1 \le j \le r$$
, then $\omega(e_j) \ge \omega(f_j)$.

Proof.

Suppose(seeking a contradiction) that k is the least integer for which $\omega(e_k) \leq \omega(f_k)$. Take $I_1 = \{e_1, e_2, ..., e_{k-1}\}$ and $I_2 = \{f_1, f_2, ..., f_k\}$.

Lemma

if $1 \le j \le r$, then $\omega(e_j) \ge \omega(f_j)$.

Proof.

Suppose(seeking a contradiction) that k is the least integer for which $\omega(e_k) \leq \omega(f_k)$. Take $I_1 = \{e_1, e_2, ..., e_{k-1}\}$ and $I_2 = \{f_1, f_2, ..., f_k\}$. Since $|I_2| = |I_1| + 1$ (I3) implies $I_1 \cup \{f_t\} \in \mathcal{I}$ for some $f_t \in I_2 \setminus I_1$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕久 ◎

Lemma

if $1 \le j \le r$, then $\omega(e_j) \ge \omega(f_j)$.

Proof.

Suppose(seeking a contradiction) that k is the least integer for which $\omega(e_k) \leq \omega(f_k)$. Take $I_1 = \{e_1, e_2, ..., e_{k-1}\}$ and $I_2 = \{f_1, f_2, ..., f_k\}$. Since $|I_2| = |I_1| + 1$ (I3) implies $I_1 \cup \{f_t\} \in \mathcal{I}$ for some $f_t \in I_2 \setminus I_1$. But this means that $\omega(f_t) \geq \omega(f_k) > \omega(e_k)$.

<ロ > ← □

Lemma

if
$$1 \le j \le r$$
, then $\omega(e_j) \ge \omega(f_j)$.

Proof.

Suppose(seeking a contradiction) that k is the least integer for which $\omega(e_k) \leq \omega(f_k)$. Take $I_1 = \{e_1, e_2, ..., e_{k-1}\}$ and $I_2 = \{f_1, f_2, ..., f_k\}$. Since $|I_2| = |I_1| + 1$ (I_3) implies $I_1 \cup \{f_t\} \in \mathcal{I}$ for some $f_t \in I_2 \setminus I_1$. But this means that $\omega(f_t) \geq \omega(f_k) > \omega(e_k)$. Hence the Greedy algorithm would have chosen f_t over e_k , which gives us our contradiction.

4日 → 4日 → 4 目 → 4目 → 990

Wrap Up

The combination of the previous lemma and our use of the greedy algorithm to find a maximal member B of \mathcal{I} of maximum weight allows us to deduce that Kruskal's algorithm does generate a minimum weight spanning tree of a graph.

Wrap Up

The combination of the previous lemma and our use of the greedy algorithm to find a maximal member B of $\mathcal I$ of maximum weight allows us to deduce that Kruskal's algorithm does generate a minimum weight spanning tree of a graph.

We have seen that the greedy algorithm gives us a solution to our optimisation problem as long as we have a matroid.

Wrap Up

The combination of the previous lemma and our use of the greedy algorithm to find a maximal member B of $\mathcal I$ of maximum weight allows us to deduce that Kruskal's algorithm does generate a minimum weight spanning tree of a graph.

We have seen that the greedy algorithm gives us a solution to our optimisation problem as long as we have a matroid.

Furthermore, the greedy does not provide a solution if the data does not form a matroid.

<ロ > ← □