ESPECIFICAÇÃO DO SISTEMA

1 REQUISITOS DE ALTO NÍVEL

A especificação do sistema será feita pela técnica de especificação de requisitos use case (UC). Será escrito um documento de UC onde serão descritos todas as formas que o usuário poderá usar cada funcionalidade existente na ferramenta. Na Figura 1, a seguir, é mostrado o diagrama de UC do **Aprenda QEE** para que haja um melhor entendimento da ferramenta como um todo.

Figura 1: Diagrama de UC

1.1 UC I: SIMULAR

1.1.1 Descrição

Este caso de uso descreve o comportamento de simulação do software presente em todos os casos de uso que o estendem.

1.1.2 Fluxo principal

- FP1. O caso de uso se inicia quando o usuário inicializa o programa e visualiza todas as opções de simulação do Software;
- FP2. O usuário seleciona a simulação desejada;
- FP3. O UC referente a opção selecionada é iniciado; [FS1]
- FP4. O caso de uso se encerra.

1.1.3 Fluxo Secundário

FS1. Usuário não seleciona nenhuma simulação e sai do programa.

1.2 UC II: SIMULAR FLUXO DE POTÊNCIA FUNDAMENTAL

1.2.1 Descrição

O programa deve mostrar a forma de onda da tensão, da corrente, da potência instantânea, o valor da potência ativa, reativa e aparente, o fator de potência e o triângulo de potências.

1.2.2 Fluxo principal

- FP1. O caso de uso se inicia quando o usuário seleciona a funcionalidade UC I: Simular
- FP2. Descrição
- FP3. Este caso de uso descreve o comportamento de simulação do software presente em todos os casos de uso que o estendem.

1.2.3 Fluxo principal

- FP5. O caso de uso se inicia quando o usuário inicializa o programa e visualiza todas as opções de simulação do Software;
- FP6. O usuário seleciona a simulação desejada;
- FP7. O UC referente a opção selecionada é iniciado; [FS1]
- FP8. O caso de uso se encerra.

1.2.4 Fluxo Secundário

- FS2. Usuário não seleciona nenhuma simulação e sai do programa.
- FP4. **UC II: simular fluxo de potência fundamental**; [FS1]
- FP5. O usuário informa a amplitude (REQ. 02) e ângulo de fase da tensão e corrente (REQ. 03); [FS2]
- FP6. O sistema apresenta a forma de onda da tensão (REQ. 07), corrente (REQ. 08) e da potência instantânea (REQ. 09). Também, os valores da potência ativa (REQ. 10), reativa (REQ. 11) e aparente (REQ. 12), o fator de potência (REQ. 13) e o triângulo de potências (REQ. 14). [FS3]
- FP7. O usuário poderá alterar, a qualquer momento, as entradas sem necessidade de abrir novamente a funcionalidade e retorna-se ao FP3.
- FP8. Fim do caso de uso.

1.2.5 Fluxo Secundário

- FS1. Usuário retorna para o menu principal.
- FS2. Usuário informa entradas com valores inválidos. Uma mensagem de operação inválida deve ser apresentada pelo sistema.
- FS3. Caso o sistema não consiga processar os dados inseridos, uma mensagem de erro deve ser apresentada.

1.3 UC III: SIMULAR DISTORÇÃO HARMÔNICA

1.3.1 Descrição

A ferramenta deve ser capaz de apresentar a forma de onda da componente fundamental, os harmônicos causadores das distorções e a forma de onda distorcida resultante.

1.3.2 Fluxo principal

- FP1. O caso de uso inicia-se quando o usuário seleciona a funcionalidade UC III: simular distorção harmônica; [FS1]
- FP2. O usuário informa se irá trabalhar com ordens harmônicas pares ou ímpares. Em seguida, o usuário também informa o número de harmônicos e a ordem de cada um e, a amplitude e o ângulo de fase de cada forma de onda. O sistema deve ser capaz de organizar as informações de acordo com o número de harmônicos informados. [FS2]

- FP3. O sistema apresenta a forma de onda das ordens harmônicas criadas pelo usuário (REQ. 16), a forma de onda fundamental (REQ. 15), a distorcida resultante (REQ. 17) e a série de Fourier da resultante (REQ. 17); [FS3]
- FP4. O usuário poderá alterar a qualquer momento as entradas inseridas sem a necessidade de abrir novamente a funcionalidade. Assim, retorna-se ao FP3. [FS2] [FS3]
- FP5. Fim do caso de uso.

1.3.3 Fluxo secundário

- FS1. Usuário retorna para o menu principal.
- FS2. Usuário informa entradas com valores inválidos. Uma mensagem de operação inválida deve ser apresentada pelo sistema.
- FS3. Caso o sistema não consiga processar os dados inseridos, uma mensagem de erro deve ser apresentada.

1.4 UC IV: SIMULAR FLUXO DE POTÊNCIA HARMÔNICO

1.4.1 Descrição

Nesta simulação deve-se mostrar a forma de onda tensão fundamental, do harmônico de corrente e da potência harmônica instantânea, o valor da potência líquida, o valor da potência de distorção e o valor do FP.

1.4.2 Fluxo principal

- FP1. O caso de uso se inicia quando o usuário seleciona a funcionalidade UC IV: simular fluxo de potência harmônico; [FS1]
- FP2. O usuário informa a ordem harmônica da corrente (REQ. 05). Informará, também, a amplitude (REQ. 02) e o ângulo de fase da tensão fundamental e do harmônico de corrente (REQ. 03). [FS2]
- FP3. O sistema apresenta a forma de onda da tensão fundamental (REQ. 18), da corrente harmônica (REQ. 19), da potência harmônica instantânea (REQ. 20), o valor da potência líquida (REQ. 20), o valor da potência de distorção (REQ. 22) e o fator de potência verdadeiro (*True Power Factor* TPF) (REQ. 22). [FS3]

- FP4. O usuário a qualquer momento poderá alterar os valores da entrada sem a necessidade de abrir novamente a funcionalidade. Assim, retorna-se ao FP3. [FS2] [FS3]
- FP5. Fim do caso de uso.

1.4.3 Fluxo secundário

- FS1. Usuário retorna para o menu principal.
- FS2. Usuário informa entradas com valores inválidos. Uma mensagem de operação inválida deve ser apresentada pelo sistema.
- FS3. Caso o sistema não consiga processar os dados inseridos, uma mensagem de erro deve ser apresentada

2 REQUISITOS DE BAIXO NÍVEL

Para as funcionalidades descritas pelos casos de uso serão especificadas as equações necessárias para implementação, as variáveis e os limites das entradas.

2.1 VARIÁVEIS E LIMITES DAS ENTRADAS

Como descrito no fluxo alternativo, caso o usuário insira valores de entrada não contidos nos limites definidos, o sistema deverá gerar mensagem de erro. O Quadro 1, a seguir, especifica os limites e as variáveis descritas nos casos de uso.

Quadro 1: variáveis e limites definidos para as entradas.

Identificação	Entradas/Variáveis	Limites/valor	
REQ. 01	Frequência angular (ω)	ω=2π60 rad/s	
REQ. 02	Amplitude	Tensão: $0 \le V_{RMS} \le 220$ Corrente: $0 \le I_{RMS} \le 100$	
REQ. 03	Ângulo de fase da senoide	-180°≤ θ ≤ 180°	
REQ. 04	Número de harmônicos (n)	$0 \le n \le 6$	
REQ. 05	Ordem harmônica (h)	$0 \le h \le 15$	
REQ. 06	Harmônicos pares ou ímpares	Par/ímpar	

2.2 REQUISITOS DE BAIXO NÍVEL UC II

As equações necessárias para implementação da funcionalidade fluxo de potência fundamental estão dispostas no Quadro 2 , a seguir:

Quadro 2: Equações necessárias para a implementação da funcionalidade fluxo de potência fundamental.

Identificação Requisito		Equações	
REQ. 07	Forma de onda da tensão	$v(t) = V_{RMS}\cos(\omega t + \theta_v)$	
REQ. 08	Forma de onda da corrente	$i(t) = I_{RMS}\cos(\omega t + \theta_i)$	
REQ. 09	Forma de onda da potência instantânea	$p(t) = v(t) \times i(t)$	
REQ. 10	Valor da potência ativa	$P = V_{RMS}I_{RMS}\cos(\theta_v - \theta_i)$	
REQ. 11	Valor da potência reativa	$P = V_{RMS}I_{RMS}\mathrm{sen}(\theta_v - \theta_i)$	
REQ. 12	Valor da potência aparente	$S = V_{RMS}I_{RMS}$	
REQ. 13	Valor do fator de potência (fp)	$fp = \cos(\theta_v - \theta_i)$ Obs.: Se o ângulo $\theta_v - \theta_i < 0$ o FP é dito adiantado, se $0 < \theta_v - \theta_i$ o fator de potência é atrasado e $\theta_v = \theta_i$ o FP=1.	
REQ. 14	Triângulo de potências	Representação no plano complexo das potências ativa (<i>P</i>), reativa (<i>Q</i>) e aparente (<i>S</i>). Sendo que P corresponde a parte real e <i>Q</i> a parte imaginaria.	

2.3 REQUISITOS DE BAIXO NÍVEL UC III

As equações necessárias para implementação da funcionalidade distorção harmônica estão dispostas no Quadro 3, a seguir:

Quadro 3: Equações necessárias para a implementação da funcionalidade distorção harmônica.

Identificação	Requisito	Equações	
REQ. 15	Forma de onda da fundamental	$v_f(t) = V_{RMS}\cos(\omega t + \theta_v)$	
REQ. 16	Forma de onda da ordem harmônica h	$v_h(t) = V_{RMS_h} \cos(h\omega t + \theta_h)$	

		Forma de onda representada pela série de
REQ. 17	Forma de onda distorcida	Fourrier:
KLQ. 17	resultante	$v_R(t) = v_f(t) + \sum_{n=1}^{n} v_h(t)$

2.4 REQUISITOS DE BAIXO NÍVEL UC IV

As equações necessárias para implementação da funcionalidade distorção harmônica estão dispostas no Quadro 3, a seguir:

Quadro 4: Equações necessárias para a implementação da funcionalidade fluxo de potência harmônico.

Identificação	Requisito	Equações	
REQ. 18 Forma de onda da fundamental		$v_f(t) = V_{RMS}\cos(\omega t + \theta_v)$	
REQ. 19	Forma de onda da corrente ordem harmônica h	$i_h(t) = I_{RMS_h} \cos(h\omega t + \theta_h)$	
REQ. 20	Forma de onda da potência harmônica instantânea	$p_h(t) = v(t) \times i_h(t)$	
REQ. 21	Valor da potência líquida	$P_L = \int_0^T p_h(t)dt = 0$	
REQ. 22	Valor da potência de distorção (<i>D</i>)	$S = V_{RMS}I_{RMS} = \sqrt{P^2 + Q^2 + D^2}$ $D = \sqrt{S^2 - P^2 - Q^2}$ Sendo: $V_{RMS} = \sqrt{\sum_{h=1}^{h_{max}} (V_{RMS_h})^2} =$ $= \sqrt{V_{RMS_1}^2 + V_{RMS_2}^2 + \dots + V_{RMS_{h_{max}}}^2}$	

		$I_{RMS} = \sqrt{\sum_{h=1}^{h_{max}} (I_{RMS_h})^2} =$ $= \sqrt{I_{RMS_1}^2 + I_{RMS_2}^2 + \dots + I_{RMS_{h_{max}}}^2}$ E,
		$P = \sum_{h=1}^{\infty} V_{RMS_h} I_{RMS_h} \cos(\theta_{v_h} + \theta_{i_h})$ $Q = \sum_{h=1}^{\infty} V_{RMS_h} I_{RMS_h} \sin(\theta_{v_h} + \theta_{i_h})$
REQ. 23	Fator de potência verdadeiro (TPF)	$TPF = \frac{P}{S}$

3 PLANO DE VERIFICAÇÃO DO SISTEMA

3.1 PLANO DE VERIFICAÇÃO E PROTÓTIPO NÃO FUNCIONAL DO UC II

Conforme mencionado no FP2 o usuário irá inserir o valor RMS da amplitude e o ângulo de fase da tensão e corrente. Conforme previsto no FP3 o sistema irá apresentar as formas de onda de tensão e corrente e, também a forma de onda da potência instantânea, o triângulo de potências e os valores de potência ativa, reativa, aparente e o FP.

Será mostrado como exemplo no Quadro 5, a seguir, o cenário de teste com os valores de entrada e as saídas que devem ser obtidas.

Quadro 5: Relação de entradas, saídas e resultados do UC I: Simular Descrição

Este caso de uso descreve o comportamento de simulação do software presente em todos os casos de uso que o estendem.

3.1.1 Fluxo principal

- FP9. O caso de uso se inicia quando o usuário inicializa o programa e visualiza todas as opções de simulação do Software;
- FP10. O usuário seleciona a simulação desejada;
- FP11. O UC referente a opção selecionada é iniciado; [FS1]
- FP12. O caso de uso se encerra.

3.1.2 Fluxo Secundário

FS3. Usuário não seleciona nenhuma simulação e sai do programa.

UC II: simular fluxo de potência fundamental. Fonte: Autora.

	Entradas	Saídas	Resultado
Sinal de Tensão	- Amplitude: 220 V_{RMS} - Ângulo de fase: 0°	Forma de onda do sinal de tensão: $v(t) = 220 \cos(\omega t) V_{RMS}$	 Forma de onda da potência instantânea. Valor da Potência ativa P = 7028 W
Sinal de Corrente	- Amplitude do sinal: 39 A _{RMS} ; -Ângulo de defasagem: 35°	Forma de onda do sinal de corrente: $i(t) = 39 \cos(\omega t + 35^{\circ}) I_{RMS}$	 Valor da potência reativa Q = 4921 VAR Valor do FP. fp = 0,82 Triângulo de potências.

Do cenário de teste, fez-se o protótipo não funcional mostrado na Figura 2, o qual propõe uma interface para a simulação do fluxo de potência fundamental. Com as visualizações mostrados no protótipo, forma de onda da tensão, corrente e potência instantânea, o triângulo de potências e os valores das potências, será alcançado o objetivo de aprendizado desejado que é a revisão de conceitos sobre fluxo de potência.

Figura 2: Protótipo não funcional do caso de uso I. Fonte: Autora.

Como visto, o protótipo atenderá as necessidades pois permitirá ao usuário a interatividade com o sistema que ocorre na alteração das entradas e visualização dos resultados de saída, como previsto no FP4. Por meio desta interação ocorrerá a fixação e revisão dos conceitos.

3.2 PLANO DE VERIFICAÇÃO E PROTÓTIPO NÃO FUNCIONAL DO UC III

Do fluxo principal do UC III percebe-se que o usuário terá que fornecer as informações de amplitude e ângulo de fase para cada forma de onda e, adicionalmente, o número harmônicas causadoras da distorção e a ordem de cada uma delas. Além disso, definirá se os harmônicos serão pares ou ímpares. Como resultado, a simulação mostrará a forma de onda da fundamental, dos harmônicos, da onda distorcida resultante e a série de Fourier desta onda.

Como exemplo, o Quadro 6 mostra um cenário de teste com as entradas e as respectivas saídas. Estas foram usadas para construção do protótipo não funcional da Figura 3.

Quadro 6: Exemplo das entradas e saídas do UC III: simular distorção harmônica. Fonte: Autora.

Entradas	Definição dos harmônicos	Ímpares

	Número de Harmônicas	Duas ordens
	Ordens harmônicas causadoras das distorções	Ordens: 3° e 5°
	Amplitude V_{RMS} das formas de onda	Fundamental: 220 3°: 20 5°: 15
	Ângulo de defasagem θ de cada sinal	Fundamental: 0° 3°: 30° 5°: -90°
Saídas	Série de Fourier da onda resultante	$f(t) = 220\cos(\omega t + 0^{\circ}) + 20\cos(3\omega t + 30^{\circ}) + 15\cos(5\omega t - 90^{\circ})$
Saidas		Formas de onda da fundamental, harmônicos e distorcida

Como mostrado no Quadro 6 de entradas e saídas, será proposto um protótipo não funcional do UC III: simular distorção harmônica que atenda as necessidades que foram especificadas. O protótipo é mostrado na Figura 3, a seguir:

Figura 3: Protótipo não funcional do caso de uso III. Fonte: Autora.

Esse protótipo atende as necessidades pois atinge o objetivo de aprendizado que é a visualização das distorções harmônicas permitindo a interação do usuário na alteração das entradas e visualização das saídas.

3.3 PLANO DE VERIFICAÇÃO E PROTÓTIPO NÃO FUNCIONAL DO UC IV

Do fluxo principal do UC IV o usuário deve inserir a amplitude e o ângulo de fase da tensão e do harmônico de corrente, bem como definir a ordem harmônica da corrente. Como resultado o sistema deve fornecer a forma de onda da tensão, da corrente harmônica, da potência harmônica instantânea, o valor da potência líquida, da potência de distorção e o FP.

A seguir, o Quadro 7: resume as entradas que foram definidas no protótipo e as saída que se deseja obter:

Quadro 7: Exemplo das entradas e saídas do UC IV: simular **fluxo de potência harmônico**. Fonte: Autora.

	Entradas	Saídas	Resultado
Sinal de Tensão	- Amplitude: 220 V _{RMS} - Ângulo de fase: 0°	Forma de onda do sinal de tensão: $v(t) = 220 \cos(\omega t) V_{RMS}$	 Forma de onda da potência instantânea. Valor da potência líquida: P_L = 0W
Sinal de Corrente	- Ordem harmônica do sinal de corrente: 3 - Amplitude do sinal: 39 A _{RMS} ; -Ângulo de defasagem:0°	Forma de onda do sinal harmônico de corrente: $i_3(t) = 39\cos(3\omega t) A_{RMS}$	 Valor da potência de distorção D = 8.580 voltAmpere Fator de potência verdadeiro (TPF) TPF = 0

O protótipo não funcional do UC IV: simular fluxo de potência **harmônico** que atende as necessidades especificadas é mostrado na Figura 4, a seguir:

Figura 4: Protótipo não funcional do caso de uso III. Fonte: Autora.

O protótipo apresentado atende as necessidades pois atinge o objetivo de aprendizado que é mostrar que, sendo a tensão perfeitamente senoidal, as correntes harmônicas não transportam potência líquida, apenas circulam entre a fonte e a carga. Também, permitirá interação com o usuário na alteração dos parâmetros.