Master Plan - Isak Hammer Solving Cahn-Hilliard Equation using CutCIP

Version: February 3, 2023

	Phase 1	Phase 2	Phase 3	Phase 4	Report
Estimated time	2-3 Weeks	4-5 Weeks	2 Weeks	3 Weeks	
Problem	CutDG for $-\Delta u = f$	CutCIP for $\Delta^2 u = f$	CutCIP for $\partial_t u + \Delta^2 u = g$	CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$	
Goals	 Analysis □ Coercivity □ Boundedness □ Constructing g_h based on assumptions. Implementation □ Poisson CutDG □ L² convergence □ H¹ convergence 		 Analysis BDF analysis Implementation □ First plot □ L²L² convergence □ L²H¹ convergence 	• Implementation \Box Fixed point method \Box L^2L^2 convergence \Box L^2H^1 convergence	
Comments	Mostly based on (Gürkan and Massing, 2019)	† Not prioritized			
Digression		2nd order mixed formulation	2nd order mixed formulation	Solve $\partial_t u + \kappa(u)\Delta^2 u = g$	

	January	February	March	April	May	June
Introduction						
Phase 1						
Phase 2			· · · · · · · · · · · · · · · · · · ·			
Phase 3					İ	
Phase 4						
Final						
	0 %	25	%	50~%	75~%	100

What have I done this week?

- Kickstarted on the report. Got quite alot of mathematical background done.
- Getting quite close to check out coercivity, boundedness
- Implementation of Poisson for DG and CutDG.
 - Only convergence for k = 1 for CutPoisson?

What am I planning to do next week?

According to plan Should I be finished with CutDG Poissoin withing the end of next week.

- Implementation of Poisson CutDG.
- Check out all boxes in analysis.
- Finish well-posedness proof.
- Seems like I underestimated the work to prove ghost penalties and how to apply the underlying assumptions. Should I focus on face-based ghost penalties, projection based penalties or both?

Other

1) Easter 5.-10. April

References

Gürkan, Ceren and André Massing (2019). "A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems". In: Computer Methods in Applied Mechanics and Engineering 348, pp. 466–499.