Ingegneria del Software

UML

Diagramma delle Classi e di Interazione

Antonino Staiano

e-mail: antonino.staiano@uniparthenope.it

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Convenzioni UML per classi ed oggetti

- I nomi degli oggetti sono sottolineati per indicare che sono istanze
- I nomi delle classi iniziano con lettere maiuscole
- Agli oggetti, nei diagrammi degli oggetti, possono essere assegnati dei nomi (seguiti dalla loro classe) per semplificarne il riferimento
 - □ In questo caso, i nomi iniziano con lettere minuscole

Diagrammi delle classi

- Classi ed oggetti
 - I diagrammi delle classi descrivono la struttura del sistema in termini di classi ed oggetti
 - Le classi sono astrazioni che specificano gli attributi ed il comportamento di un insieme di oggetti
 - Una classe è una collezione di oggetti che condividono un insieme di attributi che contraddistinguono gli oggetti come membri della collezione
 - □ Gli **oggetti** sono entità che incapsulano lo stato ed il comportamento
 - Ogni oggetto ha un'identità mediante la quale ci si riferisce ad esso individualmente e che lo distingue dagli altri oggetti
 - In UML, classi ed oggetti sono rappresentati da riquadri composti da tre compartimenti
 - Parte alta: nome della classe o dell'oggetto
 - Centro: attributi
 - Parte bassa: operazioni
 - Le parti relative agli attributi e alle operazioni possono essere omesse per chiarezza

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Esempio di diagramma delle classi: classi partecipanti nel caso d'uso ReportEmergency

Esempio di diagramma degli oggetti: oggetti partecipanti nello scenario warehouse0nFire

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Associazioni simmetriche e asimmetriche

- Le associazioni possono essere bidirezionali (simmetriche) o unidirezionali (asimmetriche)
 - □ Nei diagrammi precedenti sono tutte simmetriche
- Una associazione asimmetrica è, ad esempio, quella tra le classi Poligono e Punto
 - □ La freccia di navigazione indica che il sistema supporta solo il verso da poligono a punto
 - Dato un poligono specifico, è possbile individuare tutti i punti che costituiscono il poligono. Dato un punto specifico, non è possibile individuare il poligono di cui il punto fa parte. Per convenzione, le associazioni senza frecce sono simmetriche

Associazioni e link

- Un link rappresenta una connessione tre due oggetti
- Le associazioni sono relazioni tra classi e rappresentano gruppi di link
- Nell'esempio FRIEND, ogni oggetto FieldOfficer ha anche una lista di EmergencyReport che sono stati scritti dal FieldOfficer
 - □ Nell'esempio del diagramma delle classi, la linea tra la classe FieldOfficer e la classe EmergencyReport è un'associazione
 - □ Nell'esempio del diagramma degli oggetti, la linea tra l'oggetto alice:FieldOfficer e l'oggetto report_1291:EmergencyReport è un link
 - Rappresenta uno stato del sistema per cui *alice:FieldOfficer* ha generato report_1291:EmergencyReport

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Classe di associazione

- Le associazioni sono simili alle classi poiché possono avere attributi ed operazioni
- Una tale associazione è chiamata classe di associazione
 - Disegnata con un simbolo di classe che contiene attributi e operazioni ed è connessa al simbolo di associazione con una linea tratteggiata
 - □ Ad esempio, l'allocazione dei *FieldOfficer* ad un Incidente è modellata come una classe di associazione con attributi ruolo (*role*) e ora di notifica (*notificationTime*)

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Esempio di classe di associazione

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Ruoli

- Ciascuna estremità di un'associazione può essere etichettata con una stringa chiamata ruolo
- I ruoli dell'associazione tra le classi *EmergencyReport* e *FieldOfficer* sono autore (*author*) e rapporto generato (*reportGenerated*)
 - Etichettare le estremità delle associazioni con i ruoli consente di distinguere tra le multiple associazioni che si originano da una classe. Inoltre, i ruoli chiariscono lo scopo dell'associazione

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Modello alternativo per Allocation

Qualsiasi classe di associazione può essere trasformata in una classe e associazioni semplici

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Aggregazione

- Le associazioni sono usate per rappresentare un'ampia gamma di connessioni tra un insieme di oggetti
- Un tipo speciale di associazione si presenta frequentemente: le aggregazioni (denotate con una linea con testa di diamante)
 - □ Esempi:
 - uno stato contiene molti paesi che a loro volta contengono molte città
 - una stazione di polizia è costituita di un certo numero di poliziotti
 - una directory contiene un certo numero di file
 - Tali relazioni possono essere modellate con associazioni uno-amolti
 - UML, invece, fornisce il concetto di aggregazione che consente di denotare aspetti gerarchici della relazione che può avere molteplicità sia uno-a-molti che molti-a-molti

Esempi di aggregazioni

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Esempio molteplicità

- L'estremità dell'associazione author ha una molteplicità pari ad 1
 - □ Significa che tutti gli *EmergencyReport* sono scritti esattamente da un *FieldOfficer* vale a dire, ogni oggetto *EmergencyReport* ha esattamente un link ad un oggetto della classe *FieldOfficer*
 - □ La molteplicità dell'estremità dell'associazione *reportsGenerated* è "molti" ed indicata con un asterisco (*) che indica 0..n

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Molteplicità

- Ogni estremità di un'associazione può essere etichettata con un insieme di interi che indicano il numero di link che si originano da un'istanza della classe connessa all'estremità dell'associazione
- Questo insieme di interi è chiamato molteplicità dell'estremità dell'associazione

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Tipi di molteplicità

- Le associazioni solitamente usate nei diagrammi sono di tre tipi:
 - □ Associazione uno-a-uno
 - Ha molteplicità 1 su entrambe le estremità: esiste esattamente un link tra le istanze di ogni classe
 - □ Associazione uno-a-molti
 - Ha molteplicità 1 su di una estremità e 0..n o 1..n dall'altra estremità: denota il rapporto di composizione tre due classi
 - □ Associazione molti-a-molti
 - Ha molteplicità 0..n o 1..n su ambo i lati: indica che un numero arbitrario di link posso esserci tra le istanze di due classi

Esempi di molteplicità

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Esempio: le associazioni qualificate riducono la molteplicità

Qualifica

- E' una tecnica per ridurre le molteplicità
 - Le associazioni con una molteplicità 0..1 o 1 sono più semplici da capire rispetto alle associazioni con molteplicità 0..n o 1..n
 - □ Spesso con le associazioni uno-a-molti, gli oggetti sul lato "molti" possono essere distinti l'un l'altro usando un nome
 - Esempio: in un file system gerarchico ogni file appartiene ad esattamente una directory. Ogni file è identificato univocamente da un nome nel contesto della directory. Molti file possono avere lo stesso nome nel contesto del file system; tuttavia due file non possono condividere lo stesso nome nella stessa directory

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Qualificatori

- Senza qualifica l'associazione tra Directory e File ha una molteplicità 1 sul lato Directory e una molteplicità 0-a-molti sul lato File
- Possiamo ridurre la molteplicità sul lato File usando l'attributo filename come chiave, chiamata anche qualificatore. La relazione tra Directory e File è chiamata associazione qualificata
- E' sempre preferibile ridurre la molteplicità poiché il modello è reso più chiaro e devono essere presi in considerazioni meno casi
 - Gli sviluppatori dovrebbero esaminare ogni associazione che ha molteplicità uno-a-molti o molti-a-molti per verificare se aggiungere un qualificatore

Ereditarietà

- L'ereditarietà è la relazione tra una classe generale ed una o più classi specializzate
- L'ereditarietà consente di descrivere tutti gli attributi e le operazioni che sono comuni ad un insieme di classi
 - Esempio: FieldOfficer e Dispatcher hanno entrambi gli attributi name e badgeNumber. Tuttavia, FieldOfficer ha un'associazione con EmergencyReport, mentre Dispatcher ha un'associazione con Incident. Gli attributi comuni di FieldOfficer e Dispatcher possono essere modellati introducendo una classe PoliceOfficer che è specializzata da FieldOfficer e Dispatcher
 - PoliceOfficer è chiamata la superclasse; FieldOfficer e Dispatcher sono chiamate sottoclassi
 - □ Le sottoclassi ereditano gli attributi e le operazioni della loro superclasse

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Classi astratte

- La classe *PoliceOfficer* è una classe astratta. Per distinguerla dalle classi concrete si scrive il nome in corsivo
 - Le classi astratte sono utilizzate nella modellazione orientata agli oggetti per classificare concetti collegati riducendo, quindi, la complessità totale del modello
 - Eliminano la ridondanza

Esempio di generalizzazione

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Oggetti e operazioni

- Il comportamento di un oggetto è specificato dalle **operazioni**
- Un oggetto richiede l'esecuzione di un'operazione ad un altro oggetto inviandogli un messaggio
- Il messaggio è confrontato con il metodo definito dalla classe a cui l'oggetto ricevente appartiene o da una qualsiasi sua superclasse
- I metodi di una classe in un linguaggio di programmazione orientato agli oggetti sono le implementazioni di queste operazioni

Esempio di operazioni della classe Incident

Incident

assignResource(r)
close()

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Diagrammi di Interazione

- Descrivono le modalità di comunicazione tra un insieme di oggetti interagenti
- Un oggetto interagisce con un altro oggetto inviando messaggi
 - □ La ricezione di un messaggio da un oggetto aziona l'esecuzione di un metodo che a sua volta può inviare messaggi ad altri oggetti
 - □ Possono essere inviati degli argomenti insieme al messaggio compatibilmente con i parametri del metodo di cui si richiede l'esecuzione

Applicazione dei diagrammi delle classi

- Usati per descrivere la struttura del sistema
- Durante la fase di analisi gli ingegneri costruiscono diagrammi delle classi per formalizzare la conoscenza del dominio dell'applicazione
- Le classi rappresentano gli oggetti partecipanti individuati nei diagrammi dei casi d'uso e di interazione
 - Descrivono i loro attributi e le operazioni
- Lo scopo dei modelli di analisi è di descrivere il proposito del sistema e scoprire i suoi confini
 - □ Ad esempio, un analista può esaminare la molteplicità dell'associazione tra FieldOfficer e EmergencyReport e chiedere all'utente se ciò è corretto
 - E' possibile avere più di un autore per l'*EmergencyReport*?
 - Sono previsti rapporti anonimi?
- La fase di analisi tiene fuori concetti implementativi
 - I diagrammi di classe sono rifiniti durante la fase di progettazione del sistema e degli oggetti

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Diagrammi delle sequenze

- I diagrammi delle sequenze rappresentano orizzontalmente gli oggetti partecipanti nell'interazione e verticalmente il tempo
- Esempio
 - Un orologio con due pulsanti (2Bwatch)

Esempio diagramma di sequenze: impostazione ora sul 2Bwatch

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Condizioni ed Iterazioni

- I diagrammi delle sequenze possono essere usati per descrivere una sequenza astratta (tutte le possibili interazioni) o sequenze concrete (una possibile interazione)
- Sono disponibili anche notazioni per esprimere condizioni o iterazioni (quando si descrivono tutte le possibili interazioni)
 - □ Una **condizione** su un messaggio è rappresentata da una espressione tra parentesi quadre prima del nome del messaggio. Se la condizione è vera il messaggio è inviato
 - □ Una invocazione **ripetitiva** di un messaggio è denotata da un '*' prima del nome del messaggio

Notazioni

- Le colonne rappresentano gli oggetti che partecipano nell'interazione
- Le frecce rappresentano i messaggi
 - □ Le etichette rappresentano i nomi che possono contenere argomenti
- I rettangoli verticali rappresentano le attivazioni (esecuzione dei metodi)
- L'attore che inizia l'interazione è rappresentato nella prima colonna a sinistra
- I messaggi provenienti dall'attore rappresentano le interazioni descritte nei diagrammi dei casi d'uso
 - □ Se altri attori comunicano con il sistema durante il caso d'uso, questi attori sono rappresentati sul lato destro e possono ricevere messaggi

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Esempi di condizioni e iterazioni

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Messaggi nidificati

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Diagrammi delle collaborazioni

- Descrivono le stesse informazioni dei diagrammi delle sequenze
 - □ Rappresentano le sequenza dei messaggi numerando le interazioni
 - □ Ciò elimina la necessità di vincoli geometrici sugli oggetti con il risultato di diagrammi più compatti
 - □ Tuttavia, la sequenza dei messaggi diventa più difficile da seguire

Iterazioni e Condizoni

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Esempio: diagramma collaborazioni per 2Bwatch

Applicazione dei diagrammi di interazione

- Descrivono le interazioni tra diversi oggetti
- Portano alla luce le responsabilità delle classi nei diagrammi delle classi e scoprono, eventualmente, nuove classi
 - □ Aiutano gli sviluppatori nel decidere quali oggetti richiedono metodi particolari
 - □ Tipicamente c'è un diagramma di interazione per ogni caso d'uso focalizzandosi sul flusso di eventi
 - Lo sviluppatore identifica gli oggetti che partecipano al caso d'uso ed assegnano pezzi del comportamento del caso d'suo agli oggetti sotto forma di operazioni
 - Diagrammi delle classi e il corrispondente diagramma delle interazioni sono costruiti in tandem dopo che è stato definito un diagramma delle classi iniziale
 - Questo processo porta spesso a raffinamenti dei casi d'uso

Ingegneria del Software, a.a. 2009/2010 - A. Staiano

Esercizi

- Disegnare un diagramma delle classi per i riferimenti bibliografici
- Disegnare un diagramma delle sequenze per lo scenario warehouseOnFire. Includere gli oggetti bob, alice, john, FRIEND, e istanze di altre classi di cui si ha bisogno. Disegnare solo i primi invii di messaggi