Copying	DEFINITION
Flash Cards for the Book: "Representations and Characters of Groups" by Gordon James and Martin Liebeck	group
Representation Theory	Representation Theory
DEFINITION	DEFINITION
subgroup	dihedral group D_{2n}
Representation Theory	Representation Theory
DEFINITION	DEFINITION
cyclic group C_n	quaternion group Q_8
Representation Theory	Representation Theory
DEFINITION	DEFINITION
alternating group A_n	direct product
Representation Theory	Representation Theory
DEFINITION	DEFINITION
$homomorphism \ / \ isomorphism$	coset
Representation Theory	Representation Theory

A **group** consists of a set G, together with a rule for combining any two elements $g, h \in G$ to form another element of G satisfying:

- 1. $\forall g, h, k \in G, (gh)k = g(hk)$
- 2. $\exists e \in G$ such that $\forall g \in G, eg = ge = g$
- 3. $\forall g \in G, \exists g^{-1} \in G \text{ such that } gg^{-1} = g^{-1}g = e$

© 2017 Jason Underdown

These flash cards are licensed under the:

Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0/

$$D_{2n} = \langle a, b : a^n = 1, b^2 = 1, b^{-1}ab = a^{-1} \rangle$$

Let G be a group. A subset H of G is a **subgroup** if H is itself a group under the operation inherited from G.

$$H \leqslant G$$

$$Q_8 = \langle a, b : a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} \rangle$$

$$C_n = \left\{1, a, a^2, \dots, a^{n-1}\right\}$$
$$C_n = \langle a : a^n = 1 \rangle$$

Let G and H be groups, consider

$$G \times H = \{(g, h) : g \in G \text{ and } h \in H\}.$$

Define a product operation on $G \times H$ by

$$(g,h)(g',h') = (gg',hh').$$

The group $G \times H$ is called the **direct product** of G and H.

 $A_n = \{g \in S_n : g \text{ is an even permutation}\}$

Recall that every permutation $g \in S_n$ can be expressed as a product of transpositions. An **even** permutation has an even number of transpositions, and an **odd** permutation has an odd number of transpositions.

Let G be a group and H a subgroup of G. For $x \in G$, the subset

$$Hx = \{hx : h \in H\}$$

of G is called a **right coset** of H in G. The distinct right cosets of G partition G.

If G and H are groups, then a **homomorphism** from G to H is a map $\vartheta: G \to H$, which for all $g_1, g_2 \in G$ satisfies:

$$(g_1g_2)\vartheta = (g_1\vartheta)(g_2\vartheta).$$

If ϑ is also invertible, then ϑ is called an **isomorphism**.

THEOREM	DEFINITION
Lagrange's $theorem$	index
Representation Theory	Representation Theory
Definition	DEFINITION
normal subgroup	factor group
Representation Theory	Representation Theory
Definition	DEFINITION
simple group	kernel / image
Representation Theory	Representation Theory
Тнеопем	DEFINITION
first isomorphism theorem	vector space
Representation Theory	Representation Theory
Definition	DEFINITION
linear dependence / linear independence	$linear\ combination\ /\ span$
Representation Theory	Representation Theory

Suppose H is a subgroup of G. The number of distinct right cosets of H in G is written as |G:H|. If G is finite, then

$$|G:H| = |G|/|H|$$

by Lagrange's theorem.

If G is a finite group and H is a subgroup of G, then |H| divides |G|.

If $N \lhd G$, then define G/N to be the set of right cosets of N in G. This set is made into a group via the multiplication operation:

$$(Ng)(Nh) = Ngh \quad \forall g, h \in G.$$

This operation makes G/N into a group called the **factor group** of G by N.

A subgroup N of a group G is said to be a **normal** subgroup of G if $g^{-1}Ng = N$ for all $g \in G$, where

$$g^{-1}Ng = \{g^{-1}ng : n \in N\}.$$

We indicate that N is a normal subgroup of G by writing:

$$N \triangleleft G$$
.

Let G and H be groups. Suppose that

$$\vartheta:G\to H$$

is a homomorphism then the **kernel** of ϑ and **image** of ϑ are defined to be:

$$\operatorname{Ker} \vartheta = \{ g \in G : g\vartheta = 1 \} \quad \operatorname{Ker} \vartheta \lhd G$$
$$\operatorname{Im} \vartheta = \{ g\vartheta : g \in G \} \quad \operatorname{Im} \vartheta \leqslant H$$

A group G is said to be **simple** if $G \neq \{1\}$ and the only normal subgroups of G are $\{1\}$ and G.

A **vector space** over a field F is a set V, equipped with addition and scalar multiplication satisfying:

- 1. V is an abelian group under addition;
- 2. $\forall u, v \in V \text{ and } \forall \lambda, \mu \in F$,
 - (a) $\lambda(u+v) = \lambda u + \lambda v$
 - (b) $(\lambda + \mu)v = \lambda v + \mu v$
 - (c) $(\lambda \mu)v = \lambda(\mu v)$
 - (d) 1v = v

Suppose that G and H are groups and let $\vartheta:G\to H$ be a homomorphism. Then

$$G/\operatorname{Ker}\vartheta\cong\operatorname{Im}\vartheta.$$

An isomorphism is given by the function

$$Kg \to g\vartheta \quad (g \in G)$$

where $K = \operatorname{Ker} \vartheta$.

Let v_1, \ldots, v_n be vectors in a vector space V over F. A vector v in V is a **linear combination** of v_1, \ldots, v_n if

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n$$

for some $\lambda_1, \ldots, \lambda_n \in F$.

The vectors v_1, \ldots, v_n span V if every vector in V is a linear combination of v_1, \ldots, v_n .

We say that v_1, \ldots, v_n are linearly dependent if

$$\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$$

for some $\lambda_1, \ldots, \lambda_n \in F$ not all zero, otherwise the vectors v_1, \ldots, v_n are **linearly independent**.

Definition	Definition/Theorem
basis	subspace / conditions for a subspace
Representation Theory	Representation Theory
Definition	Theorem
sum / direct sum	conditions for a direct sum
Representation Theory	Representation Theory
Theorem	DEFINITION
direct sum of direct sums	external direct sum
Representation Theory	Representation Theory
Definition	Theorem
linear transformation	rank-nullity theorem
Representation Theory	Representation Theory
Theorem	DEFINITION
invertibility of linear transformations	endomorphism
Representation Theory	Representation Theory

A **subspace** of a vector space V over F is a subset of V which is itself a vector space under the operations inherited from V.

A subset U of a vector space V is a subspace iff

- 1. $0 \in U$;
- 2. if $u, v \in U$ then $u + v \in U$;
- 3. if $\lambda \in F$ and $u \in U$ then $\lambda u \in U$.

The vectors $v_1, \ldots, v_n \in V$ form a basis of V if they

- 1. span V, and are
- 2. linearly independent.

Suppose that V = U + W, with u_1, \ldots, u_r a basis of U and w_1, \ldots, w_s a basis of W, then the following three conditions are equivalent:

- 1. $V = U \oplus W$,
- 2. $u_1, \ldots, u_r, w_1, \ldots, w_s$ is a basis of V,
- 3. $U \cap W = \{0\}.$

If U_1, \ldots, U_r are subspaces of a vector space V, then define the **sum of subspaces** to be

$$U_1 + \dots + U_r = \{u_1 + \dots + u_r : u_i \in U_i \text{ for } 1 \leqslant i \leqslant r\}.$$

If every element in $U_1 + \cdots + U_r$ can be written in a unique way as $u_1 + \cdots + u_r$ with $u_i \in U_i$ for $1 \le i \le r$, then the sum is called a **direct sum** and is denoted:

$$U_1 \oplus \cdots \oplus U_r$$

Let U_1, \ldots, U_r be vector spaces over F, and let

$$V = \{(u_1, \dots, u_r) : u_i \in U_i \text{ for } 1 \le i \le r\},$$

$$U'_i = \{(0, \dots, u_i, \dots, 0) : u_i \in U_i\}.$$

Then $V = U'_1 \oplus \cdots \oplus U'_r$ is a vector space. Abusing notation slightly, we write

$$V = U_1 \oplus \cdots \oplus U_r$$

and call it the **external direct sum** of U_1, \ldots, U_r .

Suppose $U, W, U_1, \ldots, U_a, W_1, \ldots, W_b$ are subspaces of the vector space V. If $V = U \oplus W$ and also

$$U = U_1 \oplus \cdots \oplus U_a$$
$$W = W_1 \oplus \cdots \oplus W_b$$

then

$$V = U_1 \oplus \cdots \oplus U_a \oplus W_1 \oplus \cdots \oplus W_b$$
.

Suppose V and W are vector spaces and

$$\vartheta:V\to W$$

is a linear transformation, then

$$\dim V = \dim(\operatorname{Ker} \vartheta) + \dim(\operatorname{Im} \vartheta)$$

Let V and W be vector spaces over F. A linear transformation from V to W is a function

$$\vartheta:V\to W$$

which satisfies

- 1. $(u+v)\vartheta = u\vartheta + v\vartheta$ for all $u,v \in V$, and
- 2. $(\lambda u)\vartheta = \lambda(v\vartheta)$ for all $\lambda \in F$ and $v \in V$.

A linear transformation from a vector space V to itself is called an **endomorphism** of V.

Let ϑ be a linear transformation from V to itself, then the following conditions are equivalent:

- 1. ϑ is invertible,
- 2. Ker $\vartheta = \{0\}$,
- 3. Im $\vartheta = V$.

DEFINITION	DEFINITION
$\begin{array}{c} matrix \ of \ an \ endomorphism \\ [\vartheta]_{\mathfrak{B}} \end{array}$	$endomorphism\ algebra$ $End(V)$
Representation Theory	Representation Theory
Theorem	DEFINITION
$artheta ightarrow [artheta]_{\mathbb{B}}$ is an algebra homomorphism	change of basis matrix
Representation Theory	Representation Theory
Theorem	Proposition
change of basis	direct sums induce projections
Representation Theory	Representation Theory
DEFINITION	Proposition
projection	projections induce direct sum decomposition
Representation Theory	Representation Theory
DEFINITION	DEFINITION
representation of a group / degree	equivalent representations
Representation Theory	Representation Theory

If V is a vector space over F, then the set of endomorphisms of V denoted $\operatorname{End}(V)$ form an algebra. Suppose $\vartheta, \phi \in \operatorname{End}(V)$ and $\lambda \in F$, then we define the functions $\vartheta + \phi$, $\vartheta \phi$ and $\lambda \vartheta$ from V to V by

$$v(\vartheta + \phi) = v\vartheta + v\phi,$$

$$v(\vartheta\phi) = (v\vartheta)\phi,$$

$$v(\lambda\vartheta) = \lambda(v\vartheta),$$

for all $v \in V$. Then $\vartheta + \phi$, $\vartheta \phi$ and $\lambda \vartheta$ are endomorphisms of V.

Let V be a vector space over F, and let ϑ be an endomorphism of V. Once a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ for V is chosen, then there are n^2 scalars $a_{ij} \in F$ $(1 \leq i, j \leq n)$ such that for all i:

$$v_i\vartheta = a_{i1}v_1 + \dots + a_{in}v_n.$$

The $n \times n$ matrix (a_{ij}) is called the **matrix of** ϑ **relative to the basis** \mathcal{B} , and is denoted by $[\vartheta]_{\mathcal{B}}$.

Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis of the vector space V, and let $\mathcal{B}' = \{v_1', \dots, v_n'\}$ be another basis of V. Then for $1 \leq i \leq n$,

$$v_i' = t_{i1}v_1 + \dots + t_{in}v_n$$

for certain scalars t_{ij} . The $n \times n$ matrix $T = (t_{ij})$ is invertible and is called the **change of basis matrix** from \mathcal{B} to \mathcal{B}' .

Suppose that \mathcal{B} is a basis of the vector space V, and ϑ and ϕ are endomorphisms of V, then

$$[\vartheta + \phi]_{\mathcal{B}} = [\vartheta]_{\mathcal{B}} + [\phi]_{\mathcal{B}}$$
$$[\vartheta \phi]_{\mathcal{B}} = [\vartheta]_{\mathcal{B}} [\phi]_{\mathcal{B}}$$
$$[\lambda \vartheta]_{\mathcal{B}} = \lambda [\vartheta]_{\mathcal{B}}$$

Suppose that $V = U \oplus W$. Define $\pi : V \to V$ by

$$(u+w)\pi = u$$
 for all $u \in U, w \in W$.

Then π is an endomorphism of V. Further

Im
$$\pi = U$$
, Ker $\pi = W$, and $\pi^2 = \pi$.

If \mathcal{B} and \mathcal{B}' are bases of V and ϑ is an endomorphism of V, then

$$[\vartheta]_{\mathcal{B}} = T^{-1}[\vartheta]_{\mathcal{B}'}T,$$

where T is the change of basis matrix from \mathcal{B} to \mathcal{B}' .

Suppose that π is a projection of a vector space V. Then

$$V = \operatorname{Im} \pi \oplus \operatorname{Ker} \pi$$

An endomorphism π of a vector space V satisfying $\pi^2 = \pi$ is called a **projection** of V.

Let $\rho: G \to GL(m,F)$ and $\sigma: G \to GL(n,F)$ be representations of G over F. We say that ρ is **equivalent** to σ if n=m and there exists an invertible $n\times n$ matrix T such that for all $g\in G$,

$$g\sigma = T^{-1}(g\rho)T.$$

Equivalence of representations is an equivalence relation.

A **representation** of G over F is a homomorphism

$$\rho: G \to GL(n, F)$$
 for some n .

The **degree** of ρ is the integer n.

DEFINITION	DEFINITION
trivial representation	faithful representation
Representation Theory	Representation Theory
Proposition	DEFINITION
ρ faithful \Leftrightarrow $\operatorname{Im} \rho \cong G$	$FG ext{-module}$
Representation Theory	Representation Theory
Definition	Theorem 4.4
matrix of an endomorphism	representations induce FG -modules and vice versa
Representation Theory	Representation Theory
Proposition 4.6	DEFINITION
defining the action of G on a basis of V induces an FG -module	the trivial FG -module
Representation Theory	Representation Theory
Definition	DEFINITION
$faithful\ FG$ - $module$	permutation module
Representation Theory	Representation Theory

A representation $\rho: G \to \operatorname{GL}(n, F)$ is said to be faithful if $\operatorname{Ker} \rho = \{1\}$; that is, if the identity element of G is the only element g for which $g\rho = I_n$.	The representation $\rho:G\to \mathrm{GL}(1,F)$ defined by $g\rho=(1)$ for all $g\in G,$ is called the trivial representation of $G.$
Let V be a vector space over F and G a group. Then V is an FG -module if a multiplication vg is defined and satisfies, for all $u, v \in V, \lambda \in F$ and $g, h \in G$: 1. $vg \in V$ 2. $v(gh) = (vg)h$ 3. $v1 = v$ 4. $(\lambda v)g = \lambda(vg)$ 5. $(u+v)g = ug + vg$	A representation ρ of a finite group is faithful if and only if $\operatorname{Im} \rho$ is isomorphic to G .
 If ρ: G → GL(n, F) is a representation of G over F, V = Fⁿ, then V becomes an FG-module by defining the multiplication to be vg = v(gρ). Moreover there exists a basis B of V such that gρ = [g]_B. If V is an FG-module and B a basis of V, then ρ: g ↦ [g]_B is a representation of G over F. 	Let V be an FG -module, and let $\mathcal B$ be a basis of V . For each $g\in G$, let $[g]_{\mathcal B}$ denote the matrix of the endomorphism $v\mapsto vg$ of V , relative to the basis $\mathcal B$.
The trivial FG -module is the 1-dimensional vector space V over F with $vg=v \text{for all} v \in V, \ g \in G.$	Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for a vector space V over F . If v_ig is defined for all $v_i \in \mathcal{B}$ and for all $g \in G$ and satisfies $\forall g, h \in G$, and $\forall \lambda_1, \dots, \lambda_n \in F$: 1. $v_ig \in V$ 2. $v_i(gh) = (v_ig)h$ 3. $v_i1 = v_i$ 4. $(\lambda_1v_1 + \dots + \lambda_nv_n)g = \lambda_1(v_1g) + \dots + \lambda_n(v_ng)$ Then V is an FG -module.
Let G be a subgroup of S_n . The FG -module V with basis v_1, \ldots, v_n such that $v_i g = v_{ig} \text{for all } i, \text{ and all } g \in G,$ is called the permutation module for G over F . We call v_1, \ldots, v_n the natural basis of V .	An FG -module V is faithful if the identity element of G is the only element of G for which $vg = v \text{for all} v \in V.$

DEFINITION	Theorem 4.12
permutation matrix	FG-modules and equivalent representations
Representation Theory	Representation Theory
DEFINITION	IRREDUCIBLE FG -MODULE
FG-submodule	
Representation Theory	Representation Theory
DEFINITION	DEFINITION
the vector space FG	group algebra multiplication
Representation Theory	Representation Theory
DEFINITION	
group algebra	
Representation Theory	

Suppose that V is an FG-module with basis $\mathcal B$ and $\rho: g \mapsto [g]_{\mathcal{B}}$ is a representation of G over F. A **permutation matrix** is any square matrix which 1. If \mathcal{B}' is a basis of V, then the representation has precisely one nonzero entry in each row and each $\phi: g \mapsto [g]_{\mathcal{B}'}$ is equivalent to ρ . column and that entry is 1. 2. If σ is a representation of G, equivalent to ρ , then there is a basis, \mathcal{B}'' of V such that: $\sigma: g \mapsto [g]_{\mathcal{B}''}$. An FG-module V is said to be **irreducible** if it is non-zero and it has no FG-submodules apart from Let V be an FG-module. A subset W of V is said to $\{0\}$ and V. be an FG-submodule of V if W is a subspace and $wg \in W$ for all $w \in W$ and for all $g \in G$. If V has an FG-submodule W with W not equal to $\{0\}$ or V, then V is **reducible**. FG carries more structure than just that of a vector Let G be a finite group whose elements are g_1, \ldots, g_n space—we can use the product of G to define multiand let F be \mathbb{R} or \mathbb{C} . We define the **vector space** FGplication in FG: over F with basis, $\{g_1, \ldots, g_n\}$. The elements of FG $\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh)$ are all expressions of the form: $\lambda_1 g_1 + \dots + \lambda_n g_n$ $(\lambda_i \in F)$ $= \sum_{g \in G} \sum_{h \in G} (\lambda_g \mu_{h^{-1}g}) g$ The rules for addition and scalar multiplication are the natural ones. The vector space FG, with multiplication defined by $\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh)$ $(\lambda_g, \mu_h \in F)$, is called the **group algebra** of G over