

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Complejidad Computacional

Complejidad Computacional						
Clave:	Semestre:	Eje tem	ático:	No. Créditos:		
	7	Comput	ación Teórica	10		
Carácte	r: Obligatoria		Но	oras	Horas por semana	Total de Horas
Tipo: Teórico- Práctica			Teoría:	Práctica:		
			4	2		96
Modalidad: Curso			Duración del programa: Semestral			

Asignatura con seriación obligatoria antecedente: Probabilidad I; Autómatas y Lenguajes

Formales; Lógica Computacional

Asignatura con seriación obligatoria subsecuente: Ninguna

Asignatura con seriación indicativa antecedente: Análisis de Algoritmos

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivo general:

Comprender y aplicar la Complejidad Computacional, desde la teoría básica de NP-Completez, hasta temas más avanzados, contribuyendo así a profundizar la formación del alumno en computación teórica y dotándolo de herramientas y conocimientos que le serán de utilidad tanto para otras materias teóricas como para el resto de su formación.

Índice te	mático			
Unidad	Tomas	Horas		
	Temas	Teóricas	Prácticas	
I	Introducción y conceptos básicos	8	3	
II	La teoría de NP-Completez	16	9	
III	Demostraciones de problemas NP-Completos	24	12	
IV	Temas selectos	16	8	
	Total de horas:	64	32	
	Suma total de horas:	Suma total de horas: 96		

Contenido temático					
Unidad	Tema				
I Introduce	ión y conceptos básicos				
I.1	Motivación para estudiar complejidad computacional.				
1.2	Problemas, algoritmos y complejidad.				
1.3	Notación asintótica, codificación y modelos de cómputo.				
II La teoría	de NP-Completez				
II.1	Máquinas de Turing y la clase P.				
II.2	La clase NP.				
II.3	Relación P-NP y transformaciones polinomiales.				
11.4	Definición de NP-Completez.				
II.5	Teorema de Cook.				
II.6	Jerarquía de complejidad.				
III Demost	raciones de problemas NP-completos				
III.1	Problemas básicos: 3SAT, apareamientos, cubierta de vértices, circuito hamiltoniano, clan y partición.				
III.2	Técnicas: restricción, remplazo local y diseño de componentes.				
IV Temas	selectos				
IV.1	Problemas no computables y máquinas de Turing universales.				
IV.2	Utilizando NP-Completez para analizar problemas.				
IV.3	Enfrentando problemas NP-Completos: aproximación, heurísticas, etc.				
IV.4	Otras clases de complejidad.				
IV.5	Otros modelos de cómputo: DNA, paralelos, distribuidos, cuánticos, etc.				

Bibliografía básica:

- 1. Michael Garey y David Johnson, *Computers and Intractability a guide to the theory of NP-Completeness*. PWS Publishing Company, 1997, 2nd Ed. 1995.
- 2. Michael Sipser, *Introduction to the Theory of Computation*. PWS Publishing Company, 1997. 2nd Ed 2005.
- 3. Sanjeev Arora y Boaz Barak, *Computational Complexity: A Modern Approach*. Cambridge University Press, 2009.
- 4. Dexter C. Kozen, *Theory of Computation*. Springer, 2006.

Bibliografía complementaria:

- 1. John E. Hopcroft, Rajeev Motwani y Jeffrey D. Ullman, *Introduction to Automata Theory, Languages, and Computation*. Addison Wesley, 2006 (3rd edition).
- 2. Christos H. Papadimitriou, Computational Complexity. Addison Wesley, 1993.
- 3. Oded Goldreich, *Computational Complexity: A Conceptual Perspective*. Cambridge University Press, 2008.
- 4. Dexter C. Kozen, Automata and Computability. Springer, 1997.

Sugerencias didácticas:		Métodos de evaluación:		
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Lecturas obligatorias Trabajo de investigación Prácticas de taller o laboratorio	(X) (X) () () () ()	Exámenes parciales Examen final escrito Trabajos y tareas fuera del aula Exposición de seminarios por los alumnos Participación en clase Asistencia Seminario	(X) () (X) () (X) ()	
Prácticas de campo	()	Otras: Proyectos de programación.		
Otras:				

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o Matemático con especialidad en Computación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.