Equivariant Subgraph Aggregation Networks

Beatrice Bevilacqua Fabrizio Frasca Derek Lim Balasubramaniam Srinivasan Chen Cai Gopinath Balamurugan Michael M. Bronstein Haggai Maron **presenter**: Shen Yuan

》中國人民大學 高瓴人工智能学院 RENMIN UNIVERSITY OF CHINA Gaoling School of Artificial Intelligence Gaoling School of Artificial Intelligence

- ► Introduction
- ► Equivariant Subgraph Aggregation Networks(ESAN)
- ► A WL Analogue for ESAN
- **▶** Experiments
- ► Summary

Graph Isomorphism Two graphs are considered isomorphic if there is a mapping between the nodes of the graphs that preserves node adjacencies.

1-dimensional Weisfeiler-Leman (1-WL) test It's a simple iterative algorithm to distinguish two graphs, which can produce for each graph a canonical form.

1-dimensional Weisfeiler-Leman (1-WL) test It's a simple iterative algorithm to distinguish two graphs, which can produce for each graph a canonical form.

► If the canonical forms of two graphs are **not equivalent**, then the graphs are definitively not isomorphic.

1-dimensional Weisfeiler-Leman (1-WL) test It's a simple iterative algorithm to distinguish two graphs, which can produce for each graph a canonical form.

- ► If the canonical forms of two graphs are **not equivalent**, then the graphs are definitively not isomorphic.
- ▶ If the canonical forms of two graphs are **equivalent**, the graphs may be isomorphic.

Test!

Are these two graphs isomorphic?

Test!

Are these two graphs isomorphic? YES!

1-dimensional Weisfeiler-Leman (1-WL) Test

$$c_v^{t+1} \leftarrow \text{HASH}(c_v^t, N_v^t)$$

Motivation

While two graphs may not be distinguishable by 1-WL test, they often contain distinguishable subgraphs.

Motivation

While two graphs may not be distinguishable by 1-WL test, they often contain distinguishable subgraphs.

Figure 1: We present a provably expressive graph learning framework based on representing graphs as bags of subgraphs and processing them with an equivariant architecture, composed of GNNs and set networks. **Left panel:** A pair of graphs not distinguishable by the WL test. **Right panel:** The corresponding bags (multisets) of all edge-deleted subgraphs, which can be distinguished by our framework.

Contribution

- ► This paper proposed a framework called **Equivariant Subgraph**Aggregation Networks(ESAN) to improve expressive power of MPNNs.
- ► It developed variants **DS(S)-WL** of **the 1-dimensional Weisfeiler-Leman (1-WL) test** for graph isomorphism.

- ► Introduction
- ► Equivariant Subgraph Aggregation Networks(ESAN)
- ► A WL Analogue for ESAN
- **▶** Experiments
- ► Summary

Equivariant Subgraph Aggregation Networks(ESAN)

The ESAN framework consists of

► Neural network architectures for processing bags of subgraphs (**DSS-GNN** and **DS-GNN**)

Equivariant Subgraph Aggregation Networks(ESAN)

The ESAN framework consists of

- ► Neural network architectures for processing bags of subgraphs (**DSS-GNN** and **DS-GNN**)
- Subgraph selection policies

DSS-GNN

Figure 3: DSS-GNN layers and architecture. **Left panel**: the DSS- GNN architecture is composed of three blocks: a Feature Encoder, a Readout Layer and a Set Encoder. **Right panel**: a DSS-GNN layer is constructed from a Siamese part (orange) and an information-sharing part (yellow).

▶ The bag(multiset) $S_G = \{G_1, \dots, G_m\}$ of subgraphs of G can be represented as tensor $(A, \mathcal{X}) \in \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d \times m}$

Figure 2: The symmetry structure of a bag of subgraphs, in this case the set of all m=3 edge-deleted subgraphs. This set of subgraphs is represented as an $m \times n \times n$ tensor \mathcal{A} (and additional node features that are not illustrated here). $(\tau,\sigma) \in S_m \times S_n$ acts on the tensor \mathcal{A} by permuting the subgraphs (τ) and the nodes in the subgraphs (σ) , which are assumed to be ordered consistently.

- ► The bag(multiset) $S_G = \{G_1, \dots, G_m\}$ of subgraphs of G can be represented as tensor $(A, \mathcal{X}) \in \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d \times m}$
- n denotes the number of nodes and m the number of subgraphs

Figure 2: The symmetry structure of a bag of subgraphs, in this case the set of all m=3 edge-deleted subgraphs. This set of subgraphs is represented as an $m \times n \times n$ tensor \mathcal{A} (and additional node features that are not illustrated here). $(\tau, \sigma) \in S_m \times S_n$ acts on the tensor \mathcal{A} by permuting the subgraphs (τ) and the nodes in the subgraphs (σ) , which are assumed to be ordered consistently.

- ► The bag(multiset) $S_G = \{G_1, \dots, G_m\}$ of subgraphs of G can be represented as tensor $(A, \mathcal{X}) \in \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d \times m}$
- ► *n* denotes the number of nodes and *m* the number of subgraphs
- $A \in \mathbb{R}^{n \times n \times m}$ represents a set of m adjacency matrices, and $\mathcal{X} \in \mathbb{R}^{n \times d \times m}$ represents a set of m node feature matrices.

Figure 2: The symmetry structure of a bag of subgraphs, in this case the set of all m=3 edge-deleted subgraphs. This set of subgraphs is represented as an $m \times n \times n$ tensor \mathcal{A} (and additional node features that are not illustrated here). $(\tau,\sigma) \in S_m \times S_n$ acts on the tensor \mathcal{A} by permuting the subgraphs (τ) and the nodes in the subgraphs (σ) , which are assumed to be ordered consistently.

- ▶ The bag(multiset) $S_G = \{G_1, \dots, G_m\}$ of subgraphs of G can be represented as tensor $(A, \mathcal{X}) \in \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d \times m}$
- ► *n* denotes the number of nodes and *m* the number of subgraphs
- ▶ $\mathcal{A} \in \mathbb{R}^{n \times n \times m}$ represents a set of m adjacency matrices, and $\mathcal{X} \in \mathbb{R}^{n \times d \times m}$ represents a set of m node feature matrices.
- $\begin{array}{l} \blacktriangleright \ \, \sigma \in S_n \text{ means node permutations,} \\ (\sigma \cdot A)_{ij} = A_{\sigma^{-1}(i)\sigma^{-1}(j)}, \ (\sigma \cdot X)_{il} = X_{\sigma^{-1}(i)l} \\ \tau \in S_m \text{ means subgraph permutations,} \\ (\tau \cdot \mathcal{A})_{ijk} = \mathcal{A}_{ij\tau^{-1}(k)}, \ (\tau \cdot \mathcal{X})_{ilk} = \mathcal{X}_{il\tau^{-1}(k)} \end{array}$

Figure 2: The symmetry structure of a bag of subgraphs, in this case the set of all m=3 edge-deleted subgraphs. This set of subgraphs is represented as an $m \times n \times n$ tensor \mathcal{A} (and additional node features that are not illustrated here). $(\tau, \sigma) \in S_m \times S_n$ acts on the tensor \mathcal{A} by permuting the subgraphs (τ) and the nodes in the subgraphs (σ) , which are assumed to be ordered consistently.

H-equivariant layers

► $L: \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d \times m} \rightarrow \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d' \times m}$ map bags of subgraphs to bags of subgraphs:

H-equivariant layers

► $L: \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d \times m} \rightarrow \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d' \times m}$ map bags of subgraphs to bags of subgraphs:

$$(L(\mathcal{A},\mathcal{X}))_i = L^1(\mathcal{A}_i,\mathcal{X}_i) + L^2(\sum_{j=1}^m A_j,\sum_{j=1}^m X_j)$$

H-equivariant layers

- ► $L: \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d \times m} \rightarrow \mathbb{R}^{n \times n \times m} \times \mathbb{R}^{n \times d' \times m}$ map bags of subgraphs to bags of subgraphs:

$$(L(\mathcal{A},\mathcal{X}))_i = L^1(\mathcal{A}_i,\mathcal{X}_i) + L^2(\sum_{j=1}^m A_j,\sum_{j=1}^m X_j)$$

▶ $L^1, L^2 : \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times d'}$ represent two graph encoders and can be any type of GNN layer.

This paper explores four simple subgraph selection policies:

▶ The **node-deleted policy(ND)**, a graph is mapped to the set containing all subgraphs that can be obtained from the original graph by removing a single node

This paper explores four simple subgraph selection policies:

- ▶ The **node-deleted policy(ND)**, a graph is mapped to the set containing all subgraphs that can be obtained from the original graph by removing a single node
- ► The **edge-deleted policy(ED)** is defined by removing a single edge

This paper explores four simple subgraph selection policies:

- ► The **node-deleted policy(ND)**, a graph is mapped to the set containing all subgraphs that can be obtained from the original graph by removing a single node
- ► The **edge-deleted policy(ED)** is defined by removing a single edge
- ► The **ego-networks policy(EGO)** maps each graph to a set of ego-networks of some specified depth, one for each node in the graph (a k-Ego-network of a node is its k-hop neighbourhood with the induced connectivity).

This paper explores four simple subgraph selection policies:

- ► The **node-deleted policy(ND)**, a graph is mapped to the set containing all subgraphs that can be obtained from the original graph by removing a single node
- ► The **edge-deleted policy(ED)** is defined by removing a single edge
- ► The **ego-networks policy(EGO)** maps each graph to a set of ego-networks of some specified depth, one for each node in the graph (a k-Ego-network of a node is its k-hop neighbourhood with the induced connectivity).
- ► The **EGO**+ is a variant of the **EGO** where the root node holds an identifying feature

- ► Introduction
- ► Equivariant Subgraph Aggregation Networks(ESAN)
- ► A WL Analogue for ESAN
- **▶** Experiments
- ► Summary

DSS-WL and DS-WL

This paper proposed DSS-WL and DS-WL that are variants of 1-WL test. The only difference is **refinement** step.

$$c_{v,S}^{t+1} \leftarrow \text{HASH}(c_{v,S}^t, N_{v,S}^t, C_v^t, M_v^t)$$

- $ightharpoonup N_{v,S}^t$ denotes the multiset of colors in v's neighborhood over subgraph S
- $ightharpoonup C_v^t$ represents the multiset of v's colors across subgraphs
- $lackbox{m{\triangleright}} M_v^t$ denotes the multiset of colors in v's neighborhood over original graph G

DSS-WL and DS-WL

This paper proposed DSS-WL and DS-WL that are variants of 1-WL test. The only difference is **refinement** step.

$$c_{v,S}^{t+1} \leftarrow \text{HASH}(c_{v,S}^t, N_{v,S}^t, C_v^t, M_v^t)$$

- $ightharpoonup N_{v,S}^t$ denotes the multiset of colors in v's neighborhood over subgraph S
- $ightharpoonup C_v^t$ represents the multiset of v's colors across subgraphs
- \blacktriangleright M_v^t denotes the multiset of colors in v's neighborhood over original graph G

Is DS(S)-WL strictly more powerful than 1-WL?

Circulant Skip Link(CSL)

CSL(n, 2) can be distinguished from any CSL(n, k) with $k \in [3, n/2 - 1]$ by DS-WL and DSS-WL with either the ND, EGO, or EGO+ policy.

Figure 4: Graphs CSL(8,2) and CSL(8,3) (left) and their node-deleted subgraphs (right).

- ► Introduction
- ► Equivariant Subgraph Aggregation Networks(ESAN)
- ► A WL Analogue for ESAN
- Experiments
- ► Summary

Experiments

Table 1: TUDatasets. The top three are highlighted by **First**, Second, **Third**. Gray background indicates that ESAN outperforms the base encoder.

Dataset	MUTAG	PTC	PROTEINS	NCII	NCI109	IMDB-B	IMDB-M
DCNN (Atwood & Towsley, 2016)	N/A	N/A	61.3 ± 1.6	56.6 ± 1.0	N/A	49.1±1.4	33.5 ± 1.4
DGCNN (Zhang et al., 2018)	85.8 ± 1.8	58.6 ± 2.5	75.5 ± 0.9	74.4 ± 0.5	N/A	70.0 ± 0.9	47.8 ± 0.9
IGN (Maron et al., 2019b)	83.9 ± 13.0	58.5 ± 6.9	76.6 ± 5.5	74.3 ± 2.7	72.8 ± 1.5	72.0±5.5	48.7 ± 3.4
PPGNs (Maron et al., 2019a)	90.6 ± 8.7	66.2 ± 6.6	77.2 ± 4.7	83.2 ± 1.1	82.2 ± 1.4	73.0±5.8	50.5 ± 3.6
NATURAL GN (de Haan et al., 2020)	89.4 ± 1.6	66.8 ± 1.7	71.7 ± 1.0	82.4 ± 1.3	N/A	73.5±2.0	51.3 ± 1.5
GSN (Bouritsas et al., 2020)	92.2 ± 7.5	68.2 ± 7.2	76.6 ± 5.0	83.5 ± 2.0	N/A	77.8±3.3	54.3 ± 3.3
SIN (Bodnar et al., 2021b)	N/A	N/A	76.4 ± 3.3	82.7 ± 2.1	N/A	75.6±3.2	52.4 ± 2.9
CIN (Bodnar et al., 2021a)	92.7 ± 6.1	68.2 ± 5.6	77.0 ± 4.3	83.6 ± 1.4	84.0 ± 1.6	75.6±3.7	52.7 ± 3.1
GIN (Xu et al., 2019)	89.4±5.6	64.6±7.0	76.2±2.8	82.7±1.7	82.2±1.6	75.1±5.1	52.3±2.8
GIN + ID-GNN (You et al., 2021)	90.4±5.4	67.2±4.3	75.4±2.7	82.6±1.6	82.1±1.5	76.0±2.7	52.7±4.2
DROPEDGE (Rong et al. (2019))	91.0±5.7	64.5±2.6	73.5±4.5	82.0±2.6	82.2±1.4	76.5± 3.3	52.8± 2.8
DS-GNN (GIN) (ED)	89.9±3.7	66.0±7.2	76.8±4.6	83.3±2.5	83.0±1.7	76.1±2.6	52.9±2.4
DS-GNN (GIN) (ND)	89.4±4.8	66.3 ± 7.0	77.1 ± 4.6	83.8 ± 2.4	82.4 ± 1.3	75.4±2.9	52.7 ± 2.0
DS-GNN (GIN) (EGO)	89.9±6.5	68.6±5.8	76.7 ± 5.8	81.4±0.7	79.5 ± 1.0	76.1±2.8	52.6±2.8
DS-GNN (GIN) (EGO+)	91.0±4.8	68.7±7.0	76.7 ± 4.4	82.0 ± 1.4	80.3 ± 0.9	77.1 ± 2.6	53.2±2.8
DSS-GNN (GIN) (ED)	91.0±4.8	66.6±7.3	75.8±4.5	83.4±2.5	82.8±0.9	76.8±4.3	53.5±3.4
DSS-GNN (GIN) (ND)	91.0±3.5	66.3±5.9	76.1 ± 3.4	83.6±1.5	83.1 ± 0.8	76.1±2.9	53.3±1.9
DSS-GNN (GIN) (EGO)	91.0±4.7	68.2±5.8	76.7 ± 4.1	83.6±1.8	82.5±1.6	76.5±2.8	53.3 ± 3.1
DSS-GNN (GIN) (EGO+)	91.1±7.0	69.2 ± 6.5	75.9±4.3	83.7 ± 1.8	82.8 ± 1.2	77.1±3.0	53.2±2.4
GRAPHCONV (Morris et al., 2019)	90.5±4.6	64.9±10.4	73.9±6.1	82.4±2.7	81.7±1.0	76.1±3.9	53.1±2.9
GRAPHCONV + ID-GNN (You et al., 2021)	89.4±4.1	65.4±7.1	71.9±4.6	83.4±2.4	82.9 ± 1.2	76.1±2.5	53.7±3.3
RNI (Abboud et al., 2020)	91.0±4.9	64.3±6.1	73.3±3.3	82.1 ± 1.7	81.7±1.0	75.5±3.3	53.1 ±1.9
DS-GNN (GRAPHCONV) (ED)	90.4±4.1	65.7±5.2	76.3±5.2	82.7±1.9	82.4±1.5	75.3±2.3	53.5±2.3
DS-GNN (GRAPHCONV) (ND)	88.3 ± 5.1	66.6 ± 7.8	76.8 ± 3.9	82.9 ± 2.5	82.7 ± 1.3	75.7±2.9	53.5 ± 2.1
DS-GNN (GRAPHCONV) (EGO)	89.4±5.4	66.6 ± 6.5	76.7 ± 5.4	81.3 ± 1.9	79.6 ± 2.0	76.6±4.0	53.1 ± 1.5
DS-GNN (GRAPHCONV) (EGO+)	90.4±5.8	67.4±4.7	76.8 ± 4.3	82.8 ± 2.5	80.6 ± 1.3	76.0±1.6	53.3±2.4
DSS-GNN (GRAPHCONV) (ED)	91.0±5.8	66.3±7.7	75.7±3.6	83.1±2.3	82.9±1.0	75.8±2.8	53.7±2.8
DSS-GNN (GRAPHCONV) (ND)	90.6±5.2	65.4 ± 5.8	76.2 ± 5.0	83.7 ± 1.7	82.4 ± 1.3	75.1±3.2	53.3 ± 2.6
DSS-GNN (GRAPHCONV) (EGO)	91.5±4.9	68.0 ± 6.1	76.6 ± 4.6	83.5 ± 1.1	82.5 ± 1.6	76.3±3.6	53.1 ± 2.8
DSS-GNN (GRAPHCONV) (EGO+)	92.0±5.0	67.7±5.7	77.0±5.4	83.4 ± 1.8	82.6 ± 1.5	76.6±2.8	53.6±2.8

Experiments

Table 2: Test results for OGB datasets. Gray background indicates that ESAN outperforms the base encoder.

Method	OGBG-MOLHIV ROC-AUC (%)	ROC-AUC (%)
GCN (Kipf & Welling, 2017)	76.06±0.97	75.29±0.69
DS-GNN (GCN) (ED)	74.70±1.94	74.86±0.92
DS-GNN (GCN) (ND)	74.40 ± 2.48	75.79 ± 0.30
DS-GNN (GCN) (EGO)	74.00 ± 2.38	75.41 ± 0.72
DS-GNN (GCN) (EGO+)	73.84 ± 2.58	74.74 ± 0.96
DSS-GNN (GCN) (ED)	76.00 ± 1.41	75.34±0.69
DSS-GNN (GCN) (ND)	75.17 ± 1.35	75.56 ± 0.59
DSS-GNN (GCN) (EGO)	76.16 ± 1.02	76.14 ± 0.53
DSS-GNN (GCN) (EGO+)	76.50 ± 1.38	76.29 ± 0.78
GIN (Xu et al., 2019)	75.58±1.40	74.91±0.51
DS-GNN (GIN) (ED)	76.43±2.12	75.12±0.50
DS-GNN (GIN) (ND)	76.19 ± 0.96	75.34±1.21
DS-GNN (GIN) (EGO)	78.00 ± 1.42	76.22 ± 0.62
DS-GNN (GIN) (EGO+)	77.40 ± 2.19	76.39 ± 1.18
DSS-GNN (GIN) (ED)	77.03±1.81	76.71±0.67
DSS-GNN (GIN) (ND)	76.63 ± 1.52	77.21 ± 0.70
DSS-GNN (GIN) (EGO)	77.19 ± 1.27	77.45 ± 0.41
DSS-GNN (GIN) (EGO+)	76.78 ± 1.66	77.95±0.40

- ► Introduction
- ► Equivariant Subgraph Aggregation Networks(ESAN)
- ► A WL Analogue for ESAN
- **▶** Experiments
- Summary

Summary

▶ The core idea is to learn the subgraphs set instead of original graph.

Summary

- ▶ The core idea is to learn the subgraphs set instead of original graph.
- ► The DSS-GNN framework take 3x the time of the corresponding base graph encoder to obtain a little promotion.