1 Don't Reuse that One-Time Pad

Here are five 4-letter (upperase) messages in ASCII each XORed using the same key $k \in \{0, 1\}^{32}$. Recover all the messages and then encrypt the word MATH using the same key:

- $E(k, m_1) = 100111111 01110001 01100001 11001101$
- \bullet $E(k, m_2) = 10001110 01100010 01110111 11001011$
- $E(k, m_3) = 10000000 01110001 01101011 11001010$
- $E(k, m_4) = 10001110 01100010 01110111 11010111$
- $E(k, m_5) = 10000110 01110001 01110111 11001101$

Here's a table of ASCII values for the uppercase letters:

A	65	01000001	N	78	01001110
В	66	01000010	0	79	01001111
C	67	01000011	P	80	01010000
D	68	01000100	$\mid Q \mid$	81	01010001
$\mid E \mid$	69	01000101	$\mid R \mid$	82	01010010
F	70	01000110	\mid S \mid	83	01010011
G	71	01000111	$\mid T \mid$	84	01010100
Н	72	01001000	U	85	01010101
I	73	01001001	$\mid V \mid$	86	01010110
J	74	01001010	$\mid W \mid$	87	01010111
K	75	01001011	X	88	01011000
$\mid L \mid$	76	01001100	Y	89	01011001
M	77	01001101		90	01011010

Proof. [SOLUTION: Hint: E is the most common letter of the alphabet.

Key k: 11001011 00110100 00110010 10011001 Words: TEST, EVER, KEYS, EVEN, MEET

$$E(k, "MATH") = 10000110 01110101 01100110 11010001$$

2 One-Time Pad Overkill

2.1

Suppose we use a double-key for OTP:

$$\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 = \{0, 1\}^n \times \{0, 1\}^n$$
$$\mathcal{M} = \{0, 1\}^n$$
$$\mathcal{C} = \{0, 1\}^n$$

- $E((k_1, k_2), m) = k_1 \oplus k_2 \oplus m$
- $D((k_1, k_2), c) = k_1 \oplus k_2 \oplus c$

Prove that this cipher has perfect secrecy. (Make sure to use the definition of perfect secrecy.)

Proof. [SOLUTION: For any $m \in \mathcal{M}, c \in \mathcal{C}$:

$$Pr[E(k \stackrel{R}{\longleftarrow} \mathcal{K}, m) = c] = \frac{2^n}{2^n \cdot 2^n}$$

Thus, the definition of perfect secrecy holds if we compare any two messages.] $\hfill\Box$

2.2

Do the same for:

- $\mathcal{K} = \{0,1\}^n \times \{0,1\}$
- $E((k_1,b),m) = k_1 \oplus \underbrace{bb...b}_n \oplus m$

(The bit string $\underline{bb...b}$ is n copies of b.)

Proof. [SOLUTION: For any $m \in \mathcal{M}, c \in \mathcal{C}$:

$$Pr[E(k \stackrel{R}{\longleftarrow} \mathcal{K}, m) = c] = \frac{2}{2^n \cdot 2}$$

3 Caesar Cipher's Shaky Secrecy (Say that ten times.)

Consider the Caesar Cipher:

$$\mathcal{M} = \mathcal{C} = \{0, ..., 25\}^n$$

 $\mathcal{K} = \{0, ..., 25\}$

- $E(k,m) = [(m[0] + k \mod 26), ..., (m[n-1] + k \mod 26)]$
- $D(k,c) = [(c[0] k \mod 26), ..., (c[n-1] + k \mod 26)]$

Prove that it does not have perfect secrecy.

Proof. [SOLUTION: Consider $m_0 = [0, 0]$ and $m_1 = [0, 1]$ and c = [0, 0] Now:

$$Pr[E(k \stackrel{R}{\longleftarrow} \mathcal{K}, m_0) = c] = 1/26$$

 $Pr[E(k \stackrel{R}{\longleftarrow} \mathcal{K}, m) = c] = 0$

Thus, the Caesar Cipher does not have perfect secrecy.

4 Analyze that Cipher!TM

Suppose we have a cipher

- $E: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$
- $D: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$

that has perfect secrecy. Consider the following ciphers that are built on it. Which ones have perfect secrecy? Prove/disprove it.

4.1

- $\mathcal{K}' = \mathcal{K}$
- $\mathcal{M}' = \mathcal{M}$
- $\mathcal{C}' = \mathcal{C} \times \{0, 1\}^8$
- E'(k,m) := (E(k,m), 01101100)
- $D'(k,(c_1,c_2)) = D(k,c_1)$

Proof. [SOLUTION: Consider $c \in \mathcal{C}$. Then:

$$Pr[E(k,m) = c] = Pr[(E(k,m), 01101100) = (c, 01101100)]$$

= $Pr[E'(k,m) = (c, 01101100)]$

Thus, we have perfect secrecy.

4.2

- $\mathcal{K}' = \mathcal{K}$
- $\mathcal{M}' = \mathcal{M}$
- $C' = C \times K$
- $\bullet \ E'(k,m) = (E(k,m),k)$
- $D'(k,(c_1,c_2)=D(k,c_1)$

Proof. [SOLUTION: This does not have perfect secrecy.

Consider an encryption $c = (c_1, c_2) = E(k \stackrel{R}{\longleftarrow} \mathcal{K}, m)$ of a message m. This means that $k = c_2$.

Suppose another message m' can encrypt to the same ciphertext. Since

$$E(k',m')=c=(c_1,c_2)$$

this means that $k' = c_2 = k$.

However, we also know that D(k,c)=m. Thus, two messages cannot encrypt to the same ciphertext, and we definitely don't have perfect secrecy.

4.3

- $\mathcal{K}' = \mathcal{K} \times \mathcal{K}$
- $\mathcal{M}' = \mathcal{M}$
- $C' = C \times K$
- $E'((k_1, k_2), m) = (E(k_2 \oplus k_1, m), k_1)$
- $D'((k_1, k_2), (c_1, c_2)) = D(k_2 \oplus k_1, c_1)$

5 Bonus binary boolean function of the day: NOR

5.1

Consider the NOR binary function

a	b	NOR(a,b)
0	0	1
0	1	0
1	0	0
1	1	0

Show how to write $a\oplus b$ using only (nested) NOR functions with a and b.

Proof. [SOLUTION:

$$NOR(NOR(a,b), NOR(NOR(a,a), NOR(b,b)))$$

5.2

Try the same for NAND:

a	b	NAND(a,b)
0	0	1
0	1	1
1	0	1
1	1	0

Proof. [SOLUTION:

$$NAND(NAND(a, NAND(a, b)), NAND(b, NAND(a, b)))$$

6 More RSA

Suppose someone knows $\varphi(N)$ for a public RSA modulus N. Show how they can factor N without additional information.

Proof. [SOLUTION:

- $N = p \cdot q$
- $\varphi(N) = (p-1) \cdot (q-1)$
- $N = 1 \varphi(N) = p + q$

We know $p \cdot q$ and p + q, so we can solve for p and q using standard quadratic techniques:

$$p = \frac{1}{2} \left(-\sqrt{(N - \varphi(N) + 1)^2 - 4N} + N - \varphi(N) + 1 \right)$$
$$q = \frac{1}{2} \left(\sqrt{(N - \varphi(N) + 1)^2 - 4N} + N - \varphi(N) + 1 \right)$$

7 More ElGamal Encryption

Suppose Eve listens in on an ElGamal encryption from Alice to Bob. That is, she sees Bob publishing

$$(p, g, h = g^x)$$

and sees Alice sending

$$(c_1 = g^y, c_2 = m \cdot h^y)$$

Show that if Eve can find out m without any additional information, she has broken an instance of the Computational Diffie-Hellman Problem (show the exact givens for the problem instance, and how she finds the secret value in the CDH Problem).

Proof. [SOLUTION: Suppose Alice has m.

The instance is

$$(g, g^x, g^y)$$

and Eve finds

$$q^{xy}$$

by calculating

$$c_2 \cdot m^{-1} \pmod{p} = h^y = g^{xy}$$

_