${\rm EITF75:}$ Systems and Signals - Reference Sheet

Karl Hallsby

Last Edited: September 3, 2019

Contents

T	Sini	usoids
	1.1	Continuous-Time Signals
		1.1.1 Frequency in Continuous-Time Signals
		1.1.2 Properties of Continuous-Time Sinusoidal Signals
	1.2	Discrete-Time Signals
	1.2	1.2.1 Frequency in Discrete-Time Signals
		1.2.2 Properties of Discrete-Time Sinusoidal Signals
A	Trig	gonometry
		Trigonometric Formulas
		Euler Equivalents of Trigonometric Functions
		Angle Sum and Difference Identities
		Double-Angle Formulae
	A.5	
	A.6	
		Product-to-Sum Identities
	A.8	
		Pythagorean Theorem for Trig
	A.10	Rectangular to Polar
	A.11	l Polar to Rectangular
В	Cal	culus
	B.1	Fundamental Theorems of Calculus
		Rules of Calculus
	₽.2	B 2.1 Chain Rule

1 Sinusoids

There are several ways to characterize Sinusoids. The first is by dimension:

- 1. Multidimensional/Multichannel Signals
- 2. Monodimensional/Monochannel Signals

You can also classify sinusoids by their independent variable (usually time) and the values they take.

- 1. Continuous-Time Signals or Analog Signals
- 2. Discrete-Time Signals

Defn 1 (Continuous-Time Signals). Continuous-time signals or Analog signals are defined for every value of time and they take on values in the continuous interval (a,b), where a can be $-\infty$ and b can be ∞ . Mathematically, these signals can be described by functions of a continuous variable.

For example,

$$x_1(t) = \cos \pi t, \ x_2(t) = e^{-|t|}, \ -\infty < t < \infty$$

Defn 2 (Discrete-Time Signals). *Discrete-time signals* are defined only at certain specified values of time. These time instants *need not* be equidistant, but in practice, they are usually taken at equally speced intervals for computation convenience and mathematical tractability.

For example,

$$x(t_n) = e^{-|t_n|}, n = 0, \pm 1, \pm 2, \dots$$

A Discrete-Time Signals can be represented mathematically by a sequence of real or complex numbers.

Remark 2.1. To emphasize the discrete-time nature of the signal, we shall denote the signal as x(n), rather than x(t).

Remark 2.2. If the time instants t_n are equally spaced (i.e., $t_n = nT$), the notation x(nT) is also used.

1.1 Continuous-Time Signals

1.1.1 Frequency in Continuous-Time Signals

A simple harmonic oscillation is mathematically described by Equation (1).

$$x_a(t) = A\cos(\Omega t + \theta), -\infty < t < \infty$$
 (1)

Remark. The subscript a is used with x(t) to denote an analog signal.

This signal is completely characterized by three parameters:

- 1. A, the amplitude of the sinusoid
- 2. Ω , the frequency in radians per second (rad/s)
- 3. θ , the *phase* in radians.

Instead of Ω , the frequency F in cycles per second or hertz (Hz) is used.

$$\Omega = 2\pi F \tag{2}$$

Plugging (2) into (1), yields

$$x_a(t) = A\cos(2\pi F t + \theta), \quad -\infty < t < \infty \tag{3}$$

1.1.2 Properties of Continuous-Time Sinusoidal Signals

The analog sinusoidal signal in equation (3) is characterized by the following properties:

(i) For every fixed value of the frequency F, $x_a(t)$ is periodic.

$$x_a(t+T_p) = x_a(t)$$

where $T_p = \frac{1}{F}$ is the fundamental period.

- (ii) Continuous-time sinusoidal signals with distinct (different) frequencies are themselves distinct.
- (iii) Increasing the frequency F results in an increase in the rate of oscillation of the signal, in the sense that more periods are included in the given time interval.

1.2 Discrete-Time Signals

1.2.1 Frequency in Discrete-Time Signals

A discrete-time sinusoidal signal may be expressed as

$$x(n) = A\cos(\omega n + \theta), n \in \mathbb{Z}, -\infty < n < \infty$$
(4)

The signal is characterized by these parameters:

- 1. n, the sample number. MUST be an integer.
- 2. A, the amplitude of the sinusoid
- 3. ω , the angular frequency in radians per sample
- 4. θ , is the *phase*, in radians.

Instead of ω , we use the frequency variable f defined by

$$\omega \equiv 2\pi f \tag{5}$$

Using (4) and (5) yields

$$x(n) = A\cos(2\pi f n + \theta), \ n \in \mathbb{Z}, \ -\infty < n < \infty$$
(6)

1.2.2 Properties of Discrete-Time Sinusoidal Signals

- (i) A discrete-time sinusoid is periodic *ONLY* if its frequency is a rational number.
- (ii) Discrete-time sinusoids whose frequencies are separated by an integer multiple of 2π are identical.
- (iii) The highest rate of oscillation in a discrete-time sinusoid is attained when $\omega = \pm \pi$ or, equivalently, $f = \pm \frac{1}{2}$.

A Trigonometry

A.1 Trigonometric Formulas

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
 (A.1)

$$\cos(\theta)\sin(\theta) = \frac{1}{2}\sin(2\theta) \tag{A.2}$$

A.2 Euler Equivalents of Trigonometric Functions

$$e^{\pm i\alpha} = \cos(\alpha) \pm i\sin(\alpha)$$
 (A.3)

$$\sin\left(x\right) = \frac{e^{ix} + e^{-ix}}{2} \tag{A.4}$$

$$\cos\left(x\right) = \frac{e^{ix} - e^{-ix}}{2i} \tag{A.5}$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 (A.6)

$$\cosh\left(x\right) = \frac{e^x + e^{-x}}{2} \tag{A.7}$$

A.3 Angle Sum and Difference Identities

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \tag{A.8}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) \tag{A.9}$$

A.4 Double-Angle Formulae

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) \tag{A.10}$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) \tag{A.11}$$

A.5 Half-Angle Formulae

$$\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos\left(\alpha\right)}{2}}\tag{A.12}$$

$$\cos\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 + \cos\left(\alpha\right)}{2}}\tag{A.13}$$

A.6 Exponent Reduction Formulae

$$\sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2} \tag{A.14}$$

$$\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2} \tag{A.15}$$

A.7 Product-to-Sum Identities

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta) \tag{A.16}$$

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta) \tag{A.17}$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha + \beta) + \sin(\alpha - \beta) \tag{A.18}$$

$$2\cos(\alpha)\sin(\beta) = \sin(\alpha + \beta) - \sin(\alpha - \beta) \tag{A.19}$$

A.8 Sum-to-Product Identities

$$\sin(\alpha) \pm \sin(\beta) = 2\sin\left(\frac{\alpha \pm \beta}{2}\right)\cos\left(\frac{\alpha \mp \beta}{2}\right)$$
 (A.20)

$$\cos(\alpha) + \cos(\alpha) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) \tag{A.21}$$

$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
(A.22)

A.9 Pythagorean Theorem for Trig

$$\cos^2(\alpha) + \sin^2(\alpha) = 1^2 \tag{A.23}$$

A.10 Rectangular to Polar

$$a + ib = \sqrt{a^2 + b^2}e^{i\theta} = re^{i\theta} \tag{A.24}$$

$$\theta = \begin{cases} \arctan\left(\frac{b}{a}\right) & a > 0\\ \pi - \arctan\left(\frac{b}{a}\right) & a < 0 \end{cases}$$
(A.25)

A.11 Polar to Rectangular

$$re^{i\theta} = r\cos(\theta) + ir\sin(\theta) \tag{A.26}$$

B Calculus

B.1 Fundamental Theorems of Calculus

Defn B.1.1 (First Fundamental Theorem of Calculus). The first fundamental theorem of calculus states that, if f is continuous on the closed interval [a, b] and F is the indefinite integral of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
(B.1)

Defn B.1.2 (Second Fundamental Theorem of Calculus). The second fundamental theorem of calculus holds for f a continuous function on an open interval I and a any point in I, and states that if F is defined by

 $F(x) = \int_{a}^{x} f(t) dt,$

then

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

$$F'(x) = f(x)$$
(B.2)

Defn B.1.3 (argmax). The arguments to the *argmax* function are to be maximized by using their derivatives. You must take the derivative of the function, find critical points, then determine if that critical point is a global maxima. This is denoted as

 $\operatorname*{argmax}_{r}$

B.2 Rules of Calculus

B.2.1 Chain Rule

Defn B.2.1 (Chain Rule). The *chain rule* is a way to differentiate a function that has 2 functions multiplied together.

 $f(x) = g(x) \cdot h(x)$

then,

$$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

$$\frac{df(x)}{dx} = \frac{dg(x)}{dx} \cdot g(x) + g(x) \cdot \frac{dh(x)}{dx}$$
(B.3)