SENTIMENT ANALYSIS OF TWITTER DATA

With Natural Language Programming

A comparison of Naïve Bayes & Neural Networks for Tweet Sentiment Analysis

Project Overview

- Introduction
- Data Understanding
- Modelling
- Results
- Recommendations and Conclusions

Data Understanding 1. Data Cleaning

	tweet_text	emotion_in_tweet_is_directed_at	is_there_an_emotion_directed_at_a_brand_or_product
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion

The tweet sentiment data is contained in a dataframe of 9093 rows x 3 columns,. I started off with cleaning and then visualizing the data to have a better sense of the method to approach the project.

Data Cleaning

- 1. Dropping null values
- 2. Removing characters that don't make sense
- 3. Simplifying the data by introducing a new column "Brand"
- 4. Renaming the columns and rephrasing some of the sentiments

The cleaned dataframe had 9068 rows x 4 columns

	Tweet	Product	Sentiment	Brand			
	Iweet	Product	Sentiment	Brand			
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	0	Apple			
1	@swonderlin Can not wait for #iPad 2 also. The	iPad	1	Apple			
2	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	0	Apple			
3	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	1	Google			
4	@teachntech00 New iPad Apps For #SpeechTherapy	Unspecified	0	Apple			
9063	@mention Yup, but I don't have a third app yet	Unspecified	0	Google			
9064	lpad everywhere. #SXSW {link}	iPad	1	Apple			
9065	Wave, buzz RT @mention We interrupt your re	Unspecified	0	Google			
9066	Google's Zeiger, a physician never reported po	Unspecified	0	Google			
9067	Some Verizon iPhone customers complained their	Unspecified	0	Apple			
9068 ro	068 rows × 4 columns						

Data Understanding

2. Data Visualization

Based on the visualizations above, the best approach would be to make the Tweets my Independent variable, and the sentiments my target variable. I also made the sentiments binary – non-positive and positive sentiments

Data Modelling

1. Naïve Bayes Model

Mean train accuracy: 0.7232843137254902 Mean test accuracy: 0.7050653594771242 Training set accuracy: 0.7197712418300654 Validation set accuracy: 0.6903478686918177

The accuracy of the model is not better with training and validation data set accuracy, but there is a smaller margin of difference between the training and validation accuracy.

I decided to attempt using a neural network model next

Data Modelling

2. Neural Network Model

Final Training Loss: 0.6637628674507141 Final Training Accuracy: 0.7580065131187439 Final Validation Loss: 0.7270645499229431 Final

Validation Accuracy: 0.7172954678535461

Results Comparison

Naïve Bayes Results:

- Training set accuracy: 0.72 or 72%
- Validation set accuracy: 0.69 or 69%

Neural Network Results:

- Final Training Accuracy: 0.76 or 76%
- Final Validation Accuracy: 0.72 or 72%
- The Neural Network outperforms Naive Bayes, showing better performance on both training and validation sets.
- However, the validation accuracy is still lower than training accuracy, suggesting some overfitting.

Recommendations & Conclusion

The Neural Network Model would be the best for Twitter Sentiment Analysis

Neural Network performs better than Naïve Bayes in linking sentiment to brands (Apple & Google) but may need hyperparameter tuning for optimal results. It will also benefit from more training data from Apple and Google

How Apple and Google can use the Neural Network Model

- **Brand Monitoring** To track real-time sentiment on products for proactive issue resolution.
- Customer Feedback Analysis To identify strengths and areas for improvement.
- Marketing Strategy To leverage sentiment insights to refine campaigns.
- Trend Analysis To detect shifts in perception to anticipate crises early.

Thank You

Brian Amani

https://github.com/papyrusleaf

https://www.linkedin.com/in/brian-amani-63a64987/

