НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Лекция 1

1. Понятие неопределенного интеграла

Дифференциальное исчисление решает задачу нахождения для данной функции F(X) ее производной F'(x) или дифференциала F'(x)dx.

Интегральное исчисление решает обратную задачу: найти функцию F(x), зная ее производную F'(x) = f(x) (или дифференциал).

Определение. Функция F(x) называется **первообразной** для функции f(x) на некотором промежутке X, если для всех значений x из этого промежутка выполняется равенство F'(x) = f(x) (или dF(x) = f(x)dx).

Пример 1.

Функция $F(x) = \frac{x^3}{3}$ является первообразной для функции $f(x) = x^2$ на всей

числовой прямой, так как при любом значении $x F'(x) = \left(\frac{x^3}{3}\right)' = x^2 = f(x)$.

Пример 2.

Функция $F(x) = \sin 5x$ является первообразной для функции $f(x) = 5\cos 5x$ на всей числовой прямой, так как при любом значении x $F'(x) = (\sin 5x)' = 5\cos 5x = f(x)$.

Теорема. Всякая непрерывная функция имеет бесчисленное множество первообразных, причем любые две из них отличаются друг от друга только постоянным слагаемым.

Доказательство.

Любая непрерывная функция f(x) имеет первообразную F(x). Но тогда функция F(x)+c при всякой постоянной c будет также первообразной, так как (F(x)+c)'=F'(x)+c'=f(x).

Итак, функция f(x) имеет бесчисленное множество первообразных.

Пусть F(x) и $\Phi(x)$ – две первообразные от f(x), тождественно не равные между собой.

Имеем F'(x) = f(x), $\Phi'(x) = f(x)$.

Рассмотрим функцию $\varphi(x) = \Phi(x) - F(x)$. Вычисляя ее производную, получаем $\varphi'(x) = \Phi'(x) - F'(x) = f(x) - f(x) = 0$, т.е. $\varphi'(x) = 0$,

следовательно $\varphi(x) = c \ (c - \text{произвольная постоянная}).$

Тогда
$$\Phi(x) - F(x) = c$$
, отсюда
$$\Phi(x) = F(x) + c$$
,

что и требовалось доказать.

Определение. Если функция F(x) – первообразная для функции f(x) на промежутке X, то множество функций F(x)+c, где c – произвольная постоянная, называется **неопределенным интегралом** от функции f(x) на этом промежутке и обозначается символом

$$\int f(x)dx = F(x) + c,$$

где f(x) – подынтегральная функция, f(x)dx – подынтегральное выражение, x– переменная интегрирования.

Восстановление функции ee производной, ПО T.e. неопределенного интеграла по данной подынтегральной функции называется интегрированием этой функции.

График первообразной от функции f(x) называется **интегральной** кривой функции y = f(x).

Геометрически неопределенный интеграл представляет собой семейство Bce интегральных кривых. кривые семейства получаются при непрерывном параллельном движении одной из них по направлению оси ОҮ. Касательные к этим кривым в точках с одной и той же абсциссой х будут параллельны между собой, так как угловые коэффициенты этих касательных одни и те же

асательных одни и те ж
$$K = F'(x) = f(x)$$
.

1.1. Свойства неопределенного интеграла.

1. Дифференциал от неопределенного интеграла равен подынтегральному выражению, производная неопределенного интеграла равна подынтегральной функции, т.е.

$$d(\int f(x)dx) = f(x)dx, \quad (\int f(x)dx)' = f(x).$$

Действительно,

$$d(\int f(x)dx) = d(F(x) + c) = dF(x) + d(c) = F'(x)dx = f(x)dx$$

$$\mathsf{H}\left(\int f(x)dx\right)' = \left(F(x) + c\right)' = F'(x) + 0 = f(x).$$

Благодаря этому свойству правильность интегрирования проверяется дифференцированием результата.

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.

$$\int dF(x) = F(x) + c.$$

Действительно, $\int dF(x) = \int F'(x) dx = \int f(x) dx = F(x) + c$.

3. Постоянный множитель можно выносить за знак интеграла, т.е. если $a \neq 0$ постоянная, то

$$\int a f(x) dx = a \int f(x) dx.$$

4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от слагаемых функций, т.е.

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$$

5. Всякая формула интегрирования сохраняет свой вид при подстановке вместо независимой переменной любой дифференцируемой функции от нее, т.е. если

$$\int f(x)dx = F(x) + c, \text{ To } \int f(u)du = F(u) + c,$$

где u = u(x) – любая дифференцируемая функция от x.

Итак, если u = u(x), то du = u'(x)dx и $\int f(u)du = \int f(u) \cdot u'dx = F(u) + c$.

1.2. Таблица интегралов.

1.
$$\int u^{\alpha} \cdot u' dx = \frac{u^{\alpha+1}}{\alpha+1} + c \quad (\alpha \neq -1) \quad (\int du = u + c);$$

2.
$$\int \frac{u'}{u^2} dx = -\frac{1}{u} + c$$
;

3.
$$\int a^{u} \cdot u' dx = \frac{a^{u}}{\ln a} + c;$$

$$4. \int e^u \cdot u' dx = e^u + c;$$

5.
$$\int \sin u \cdot u' dx = -\cos u + c; \qquad \left(\int \sin u \cdot u' dx = \cot u + c \right);$$

6.
$$\int \cos u \cdot u' dx = \sin u + c; \qquad \left(\int \operatorname{ch} u \cdot u' dx = \operatorname{sh} u + c \right);$$

7.
$$\int \operatorname{tg} u \cdot u' dx = -\ln |\cos u| + c;$$

8.
$$\int \operatorname{ctg} u \cdot u' dx = \ln |\sin u| + c;$$

9.
$$\int \frac{u'}{\sin^2 u} dx = -\operatorname{ctg} u + c; \qquad \left(\int \frac{u'}{\sinh^2 u} dx = -\operatorname{cth} u + c \right);$$

10.
$$\int \frac{u'}{\cos^2 u} dx = \operatorname{tg} u + c; \qquad \left(\int \frac{u'}{\operatorname{ch}^2 u} = \operatorname{th} u + c \right);$$

11.
$$\int \frac{u'}{\sin u} dx = \ln \left| \lg \frac{u}{2} \right| + c;$$

12.
$$\int \frac{u'}{\cos u} dx = \ln \left| \lg \left(\frac{u}{2} + \frac{\pi}{4} \right) \right| + c;$$

13.
$$\int \frac{u'}{u} dx = \ln |u| + c;$$

14.
$$\int \frac{u'}{u^2 + a^2} dx = \frac{1}{a} \arctan \frac{u}{a} + c = -\frac{1}{a} \arctan \frac{u}{a} + c;$$

15.
$$\int \frac{u'}{u^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + c;$$

16.
$$\int \frac{u'}{\sqrt{u}} dx = 2\sqrt{u} + c$$
;

$$17. \int \frac{u'}{\sqrt{a^2 - u^2}} dx = \arcsin \frac{u}{a} + c = -\arccos \frac{u}{a} + c;$$

18.
$$\int \frac{u'}{\sqrt{u^2 + a^2}} dx = \ln \left| u + \sqrt{u^2 \pm a^2} \right| + c;$$

19.
$$\int \sqrt{a^2 - u^2} \cdot u' dx = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \arcsin \frac{u}{a} + c;$$

20.
$$\int \sqrt{u^2 \pm a^2} \cdot u' dx = \frac{u}{2} \sqrt{u^2 \pm a^2} \pm \frac{a^2}{2} \ln \left| u + \sqrt{u^2 \pm a^2} \right| + c;$$

$$21. \int \ln x \, dx = x \ln x - x + c;$$

22.
$$\int e^{ax} \cdot \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx) + c;$$

23.
$$\int e^{ax} \cdot \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c$$
.

В приведенной таблице буква u может обозначать независимую переменную или непрерывно дифференцируемую функцию u = u(x) аргумента x.

2. Основные методы интегрирования

2.1. Непосредственное интегрирование.

Этот метод состоит в том, чтобы с помощью тождественных преобразований разложить подынтегральную функцию на сумму таких функций, интегралы от которых являются табличными.

Пример 1.

$$\int \left(5x^4 - \frac{3}{x^4} + 2\right) dx = 5\int x^4 dx - 3\int x^{-4} dx + 2\int dx = \{\text{cm. 1.3, (1)}\} = 5\frac{x^5}{5} - 3\frac{x^{-3}}{-3} + 2x + c = x^5 + \frac{1}{x^3} + 2x + c.$$

Пример 2.

$$\int e^{x} \left(4 + \frac{e^{-x}}{\sin^{2} x} \right) dx = \int \left(4e^{x} + \frac{e^{x} \cdot e^{-x}}{\sin^{2} x} \right) dx = 4 \int e^{x} dx + \int \frac{1}{\sin^{2} x} dx =$$

$$= \left\{ \text{cm. 1.3, (4) u (9)} \right\} = 4e^{x} - \text{ctg } x + c.$$

Пример 3.

$$\int \frac{(1+x)^2}{x(1+x^2)} dx = \int \frac{1+2x+x^2}{x(1+x^2)} dx = \int \left(\frac{1+x^2}{x(1+x^2)} + \frac{2x}{x(1+x^2)}\right) dx =$$

$$= \int \frac{1}{x} dx + 2\int \frac{1}{1+x^2} dx = \left\{\text{cm. 1.3, (13) u (14)}\right\} = \ln |x| + 2 \arctan x + c.$$

2.2. Метод подстановки.

Замена переменной интегрирования является эффективным приемом сведения неопределенного интеграла к табличному. Такой прием называется методом подстановки или методом замены переменной. Он основан на теореме.

Теорема. Пусть функция $x = \varphi(t)$ определена и дифференцируема на некотором промежутке T, а X – множество значений этой функции, на котором определена функция f(x).

Тогда, если функция f(x) имеет первообразную на множестве X, то на множестве T справедлива формула

$$\int f(x) dx = \int f(\varphi(t)) \cdot \varphi'(t) dt.$$
 (1)

После интегрирования возвращаются к старой переменной x. Для этого уравнение подстановки $x = \varphi(t)$ разрешают относительно t: $t = \varphi^{-1}(x) = \psi(x)$. Замечание. Иногда целесообразно подбирать подстановку в виде $u = \psi(x)$, тогда

$$\int f(\psi(x)) \cdot \psi'(x) \, dx = \int f(u) \cdot u' dx = \int f(u) \, du \, .$$

Новой переменной u следует обозначать ту функцию, производная которой, хотя бы с точностью до постоянного множителя, присутствует под знаком интеграла.

Пример 1.

$$\int x\sqrt{x+3} \, dx = \begin{cases} x+3=t^2, \\ x=t^2-3, \\ dx=2t \, dt. \end{cases} = \int (t^2-3) \cdot \sqrt{t^2} \cdot 2t \, dt = 2\int (t^2-3) \cdot t^2 dt = 0$$

$$=2\int t^4 dt - 6\int t^2 dt = 2\frac{t^5}{5} - 6\frac{t^3}{3} + c = \begin{cases} t^2 = x+3, \\ t = \sqrt{x+3}. \end{cases} = \frac{2}{5}\sqrt{(x+3)^5} - 2\sqrt{(x+3)^3} + c.$$

Пример 2.

$$\int \cos 7x \, dx = (1.3, (6)) = \begin{cases} u = 7x, \\ u' = 7. \end{cases} = \frac{1}{7} \int \cos 7x \cdot 7 dx = \frac{1}{7} \sin 7x + c.$$

Недостающий у дифференциала множитель u'=7 ввели под знак интеграла, перед знаком интеграла записали компенсирующий множитель $\frac{1}{7}$, получили табличный интеграл

$$\frac{1}{7}\int\cos u\cdot u'dx = \frac{1}{7}\sin u + c.$$

Пример 3.

$$\int e^{1-5x^2} x \, dx = (1.3, (4)) = \begin{cases} u = 1 - 5x^2, \\ u' = -10x. \end{cases} = -\frac{1}{10} \int e^{1-5x^2} (-10x) \, dx = -\frac{1}{10} e^{1-5x^2} + c.$$

Пример 4.

$$\int \frac{e^{2x}}{e^{2x} + 9} dx = (1.3, (13)) = \begin{cases} u = e^{2x} + 9, \\ u' = e^{2x} \cdot 2. \end{cases} = \frac{1}{2} \int \frac{e^{2x} \cdot 2}{e^{2x} + 9} dx = \frac{1}{2} \ln |e^{2x} + 9| + c.$$

Пример 5.

$$\int \frac{e^x}{e^{2x} + 9} dx = (1.3, (14)) = \begin{cases} u = e^x, \\ u' = e^x. \end{cases} = \int \frac{e^x}{(e^x)^2 + 3^2} dx = \frac{1}{3} \arctan \frac{e^x}{3} + c.$$

Лекция 2

2.3. Метод интегрирования по частям.

Теорема. Пусть функции u(x) и v(x) определены и дифференцируемы на промежутке X и функция $u'(x) \cdot v(x)$ имеет первообразную на этом промежутке. Тогда функция $u(x) \cdot v'(x)$ также имеет первообразную на промежутке X и при этом справедлива формула

$$\int u(x) \cdot v'(x) \, dx = u(x) \cdot v(x) - \int v(x) \cdot u'(x) \, dx. \tag{2}$$

Так как v'(x) dx = dv, u'(x) dx = du, то формулу интегрирования по частям (2) можно записать в виде

$$\int u \, dv = u \cdot v - \int v \, du \,. \tag{3}$$

Доказательство. Из формулы дифференцирования произведения двух функций имеем

$$d(u \cdot v) = u dv + v du$$
, откуда $u dv = d(u \cdot v) - v du$.

Интегрируя обе части последнего равенства, получим

$$\int u \, dv = \int d(u \cdot v) - \int v \, du$$

или

$$\int u \, dv = u \cdot v - \int v \, du \, .$$

Интегрирование по частям состоит в том, что подынтегральное выражение f(x) dx представляется каким-либо образом в виде произведения двух сомножителей u и dv, затем, после нахождения v и du, используется формула (3). Иногда формулу (3) приходится применять несколько раз.

Некоторые типы интегралов, которые вычисляют методом интегрирования по частям:

1. $\int P(x) \cdot e^{ax} dx$, $\int P(x) \cdot \sin ax dx$, $\int P(x) \cdot \cos ax dx$, где P(x) – многочлен, a – число.

Полагают u = P(x), а за dv обозначают все остальные сомножители.

2. $\int P(x) \cdot \arcsin x \, dx$, $\int P(x) \cdot \arccos x \, dx$, $\int P(x) \ln x \, dx$, $\int P(x) \cdot \arctan x \, dx$, $\int P(x) \cdot \arctan x \, dx$,

Полагают dv = P(x) dx, а за u принимают все остальные сомножители.

3. $\int e^{ax} \cdot \sin bx \, dx$, $\int e^{ax} \cdot \cos bx \, dx$, где a и b – числа. Можно положить $u = e^{ax}$.

Пример 1.

$$\int (2x-1) \cdot e^{3x} dx = \begin{cases} u = 2x-1, & dv = e^{3x} dx, \\ du = 2dx, & v = \int e^{3x} dx = \frac{1}{3} e^{3x}. \end{cases} = (2x-1) \cdot \frac{1}{3} e^{3x} - \int \frac{1}{3} e^{3x} \cdot 2dx = \frac{1}{3} (2x-1) \cdot e^{3x} - \frac{2}{3} \int e^{3x} dx = \frac{1}{3} (2x-1) \cdot e^{3x} - \frac{2}{3} \cdot \frac{1}{3} e^{3x} + c = \frac{1}{3} e^{3x} \cdot \left(2x - \frac{5}{3}\right) + c.$$

Пример 2.

$$\int \ln^2 x dx = \begin{cases} u = \ln^2 x, \\ du = 2 \ln x \cdot \frac{1}{x} dx, \\ v = \int dx = x. \end{cases} =$$

$$\ln^2 x \cdot x - \int x \cdot 2 \ln x \cdot \frac{1}{x} dx = x \ln^2 x - 2 \int \ln x dx =$$

$$\left(\kappa \int \ln x dx \text{ применим формулу (3)} \right)$$

$$= \begin{cases} u = \ln x, \\ du = \frac{1}{x} dx, \\ v = x. \end{cases} = x \ln^2 x - 2 \left(\ln x \cdot x - \int x \cdot \frac{1}{x} dx \right) =$$

$$= x \cdot \ln^2 x - 2 (x \ln x - x) + c = x \cdot \left(\ln^2 x - 2 \ln x + 2 \right) + c.$$

Пример 3.

$$\int e^{x} \cdot \sin x dx = \begin{cases} u = e^{x}, & dv = \sin x dx, \\ du = e^{x} dx, & v = \int \sin x dx = -\cos x. \end{cases} =$$

$$= e^{x} \cdot (-\cos x) - \int (-\cos x) \cdot e^{x} dx = -e^{x} \cdot \cos x + \int e^{x} \cdot \cos x dx =$$

$$\left(\kappa \int e^{x} \cdot \cos x dx \text{ применим формулу (3)} \right)$$

$$= \begin{cases} u = e^{x}, & dv = \cos x dx, \\ du = e^{x} dx, & v = \int \cos x dx = \sin x. \end{cases} = -e^{x} \cdot \cos x + \left(e^{x} \cdot \sin x - \int \sin x \cdot e^{x} dx \right) =$$

$$= -e^{x} \cdot \cos x + e^{x} \cdot \sin x - \int e^{x} \cdot \sin x dx.$$

Применяя формулу (3) интегрирования по частям два раза мы вернулись к исходному интегралу. Решим полученное уравнение относительно интеграла $\int e^x \cdot \sin x dx$. Обозначим $\int e^x \cdot \sin x dx = I$, $e^x \cdot \sin x - e^x \cdot \cos x = f(x)$.

Уравнение принимает вид:

$$I = f(x) - I \Rightarrow 2I = f(x) \Rightarrow I = \frac{1}{2} f(x), \text{ r.e.}$$
$$\int e^x \cdot \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) + c.$$

С помощью интегрирования по частям выводится рекуррентная формула для вычисления интеграла

$$I_{n} = \int \frac{dx}{\left(x^{2} + a^{2}\right)^{n}}.$$

$$I_{n} = \frac{1}{a^{2}} \left(\frac{x}{2(n-1) \cdot \left(x^{2} + a^{2}\right)^{n-1}} + \frac{2n-3}{2n-2} \cdot I_{n-1}\right). \tag{4}$$

Пример. Вычислить $I_3 = \int \frac{dx}{(x^2+1)^3}$.

Здесь a = 1, n = 3.

$$\begin{split} I_3 &= \frac{x}{2 \cdot 2 \left(x^2 + 1\right)^2} + \frac{2 \cdot 3 - 3}{2 \cdot 3 - 2} \cdot I_2 = \frac{x}{4 \left(x^2 + 1\right)^2} + \frac{3}{4} \left(\frac{x}{2 \cdot 1 \left(x^2 + 1\right)} + \frac{2 \cdot 2 - 3}{2 \cdot 2 - 2} \cdot I_1\right) = \\ &= \frac{x}{4 \left(x^2 + 1\right)^2} + \frac{3}{4} \left(\frac{x}{2 \left(x^2 + 1\right)} + \frac{1}{2} \int \frac{dx}{x^2 + 1}\right) = \frac{x}{4 \left(x^2 + 1\right)^2} + \frac{3}{4} \left(\frac{x}{2 \left(x^2 + 1\right)} + \frac{1}{2} \operatorname{arctg} x\right) + c \;. \end{split}$$

Лекция 3

3. Интегрирование рациональных функций

Интегрирование целой рациональной функции

 $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ выполняется путем разбиения интеграла на слагаемые, в результате интегрирования получится многочлен степени (n+1).

Определение. Дробно-рациональной функцией (или рациональной дробью) называется функция, равная отношению двух многочленов, т.е. $f(x) = \frac{P_m(x)}{Q_n(x)}$,

где

 $P_m(x)$ – многочлен степени m,

 $Q_n(x)$ – многочлен степени n.

Определение. Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, т.е. m < n, и неправильной, если $m \ge n$. 3.1. Интегрирование неправильных дробей. Всякую неправильную рациональную дробь $\frac{P_m(x)}{Q_n(x)}$ можно, путем деления числителя на знаменатель, представить в виде суммы многочлена L(x) и правильной рациональной дроби $\frac{R(x)}{Q_n(x)}$, т.е.

$$\frac{P_{m}(x)}{Q_{n}(x)} = L(x) + \frac{R(x)}{Q_{n}(x)}.$$

Определение. Правильные рациональные дроби вида

(I)
$$\frac{A}{x-a}$$
; (II) $\frac{A}{(x-a)^k}$ $(k \ge 2, k \in N)$;

(III)
$$\frac{Mx+N}{x^2+px+q}; \qquad (IV) \frac{Mx+N}{\left(x^2+px+q\right)^k} \quad (k \ge 2),$$

где знаменатель $x^2 + px + q$ имеет комплексные корни и A, a, M, N, p, q — действительные числа, называются простейшими рациональными дробями.

Теорема. Всякую правильную рациональную дробь $\frac{R(x)}{Q_n(x)}$, знаменатель которой разложен на множители

$$Q_n(x) = (x - x_1)^l \cdot (x - x_2)^m \cdot ... \cdot (x^2 + px + q)^s \cdot ...$$

можно представить единственным образом в виде суммы простейших дробей:

$$\frac{R(x)}{Q_n(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_l}{(x - x_1)^l} + \frac{B_1}{x - x_2} + \frac{B_2}{(x - x_2)^2} + \dots + \frac{B_m}{(x - x_2)^m} + \dots + \frac{B_m}{(x - x_2)^m$$

 $+ \dots + \frac{M_1 x + N_1}{x^2 + px + q} + \frac{M_2 x + N_2}{\left(x^2 + px + q\right)^2} + \dots + \frac{M_s x + N_s}{\left(x^2 + px + q\right)^s} + \dots,$

где $A_1, A_2, ..., B_1, B_2, ..., M_1, N_1, ...$ – некоторые действительные числа.

Для нахождения чисел $A_1, A_2, ..., B_1, B_2, ...$ в равенстве (5) применяют метод неопределенных коэффициентов:

1. Правую часть равенства (5) приведем к общему знаменателю $Q_n(x)$; в результате получим тождество $\frac{R(x)}{Q_n(x)} = \frac{S(x)}{Q_n(x)}$, где S(x) – многочлен с

неопределенными коэффициентами.

2. Так как в полученном тождестве знаменатели равны, то тождественно равны и числители, т.е. $R(x) \equiv S(x)$.

3. Приравнивая коэффициенты при одинаковых степенях x в обеих частях полученного тождества, получим систему линейных уравнений относительно искомых коэффициентов $A_1, A_2, ..., B_1, B_2, ...$

Для нахождения неопределенных коэффициентов применяют также **метод частных значений аргумента.** Для этого в тождестве $R(x) \equiv S(x)$ аргументу x придают значения действительных корней многочлена $Q_n(x)$).

Часто бывает полезно комбинировать оба способа вычисления коэффициентов.

3.2. Интегрирование простейших рациональных дробей.

$$1. \int \frac{A}{x-a} dx = A \ln |x-a| + c.$$

2.
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} dx = A \frac{(x-a)^{-k+1}}{-k+1} + c.$$

3. Рассмотрим интеграл $I = \int \frac{Mx + N}{x^2 + px + q} dx$. Если $M \neq 0$, то из числителя можно выделить слагаемое (2x + p), равное производной квадратного трехчлена, стоящего в знаменателе; в результате преобразований получим:

$$\int \frac{Mx+N}{x^2+px+q} dx = \begin{cases} \left(x^2+px+q\right)' = 2x+p, \\ Mx+N = \frac{M}{2}(2x+p) - \frac{Mp}{2} + N. \end{cases} =$$

$$= \int \frac{\frac{M}{2}(2x+p) + \left(N - \frac{Mp}{2}\right)}{x^2+px+q} dx = \frac{M}{2} \int \frac{2x+p}{x^2+px+q} dx + \left(N - \frac{Mp}{2}\right) \int \frac{dx}{x^2+px+q} =$$

$$= \frac{M}{2} \ln \left|x^2+px+q\right| + \left(N - \frac{Mp}{2}\right) \int \frac{dx}{x^2+px+q}.$$

Для вычисления интеграла $I_1 = \int \frac{dx}{x^2 + px + q}$ в квадратном трехчлене выделяем полный квадрат:

$$x^2 + px + q = \left(x^2 + 2 \cdot \frac{p}{2}x + \frac{p^2}{4}\right) - \frac{p^2}{4} + q = \left(x + \frac{p}{2}\right)^2 + q - \frac{p^2}{4}.$$

$$I_1 = \int \frac{dx}{\left(x + \frac{p}{2}\right)^2 + \left(q - \frac{p^2}{4}\right)}$$
 и в зависимости от знака выражения $\left(q - \frac{p^2}{4}\right)$

получаем один из табличных интегралов $\int \frac{u'}{u^2 \pm a^2} dx$.

Пример.

$$\int \frac{3-5x}{4x^2+16x-9} dx = -\frac{1}{4} \int \frac{5x-3}{x^2+4x-\frac{9}{4}} dx =$$

$$\begin{cases}
\left(x^2+4x-\frac{9}{4}\right)' = 2x+4, \\
5x-3 = \frac{5}{2}(2x+4)-\frac{20}{2}-3 = \frac{5}{2}(2x+4)-13.
\end{cases} = -\frac{1}{4} \int \frac{\frac{5}{2}(2x+4)-13}{x^2+4x-\frac{9}{4}} dx =$$

$$= -\frac{1}{4} \cdot \frac{5}{2} \int \frac{2x+4}{x^2+4x-\frac{9}{4}} dx - \frac{1}{4}(-13) \int \frac{dx}{x^2+4x-\frac{9}{4}} =$$

$$= \left\{x^2+4x-\frac{9}{4}=\left(x^2+2\cdot2x+4\right)-4-\frac{9}{4}=\left(x+2\right)^2-\frac{25}{4}\right\} =$$

$$= -\frac{5}{8} \ln \left|x^2+4x-\frac{9}{4}\right| + \frac{13}{4} \int \frac{dx}{\left(x+2\right)^2-\frac{25}{4}} = (1.3,(15)) =$$

$$= -\frac{5}{8} \ln \left|x^2+4x-\frac{9}{4}\right| + \frac{13}{4} \cdot \frac{1}{2\cdot\frac{5}{2}} \ln \left|\frac{\left(x+2\right)-\frac{5}{2}}{\left(x+2\right)+\frac{5}{2}}\right| =$$

$$= -\frac{5}{8} \ln \left|x^2+4x-\frac{9}{4}\right| + \frac{13}{20} \ln \left|\frac{2x-1}{2x+9}\right| + c.$$

4. Интеграл $I=\int \frac{Mx+N}{\left(x^2+px+q\right)^k}dx$, $k\geq 2$, $q-\frac{p^2}{4}>0$ преобразованиями, аналогичными преобразованиям при вычислении интеграла $I=\int \frac{Mx+N}{x^2+px+q}dx$, сводится к сумме двух интегралов

$$I = \frac{M}{2} \int \frac{2x+p}{\left(x^2+px+q\right)^k} dx + \left(N - \frac{Mp}{2}\right) \int \frac{dx}{\left(x^2+px+q\right)^k}.$$

Интеграл $\int \frac{2x+p}{\left(x^2+px+q\right)^k} dx$ является табличным интегралом $\int \frac{u'}{u^k} dx = \frac{u^{-k+1}}{-k+1} + c$.

Интеграл $\int \frac{dx}{\left(x^2 + px + q\right)^k}$ после выделения полного квадрата и введения новой

переменной $t = x + \frac{p}{2}$ вычисляется по рекуррентной формуле (4).

3.3. Интегрирование рациональных дробей.

- 1. Если дробь неправильная, то представить ее в виде суммы многочлена и правильной дроби.
- 2. Разложив знаменатель правильной рациональной дроби на множители, представить ее в виде суммы простейших дробей.
- 3. Проинтегрировать многочлен и полученную сумму простейших дробей.

Пример 1.

$$I = \int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx.$$

Подынтегральная рациональная дробь неправильная, поэтому выделим целую часть:

Таким образом,

$$I = \int \left(x^2 + x + 4 + \frac{4x^2 + 16x - 8}{x^3 - 4x}\right) dx = \frac{x^3}{3} + \frac{x^2}{2} + 4x + 4\int \frac{x^2 + 4x - 2}{x^3 - 4x} dx.$$

В последнем интеграле разлагаем знаменатель дроби на множители:

$$x^3 - 4x = x(x^2 - 4) = x(x + 2)(x - 2).$$

$$I = \frac{x^3}{3} + \frac{x^2}{2} + 4x + 4I_1$$
, где $I_1 = \int \frac{x^2 + 4x - 2}{x(x+2)(x-2)} dx$.

Представим правильную рациональную дробь в виде суммы простейших дробей:

$$\frac{x^2 + 4x - 2}{x(x+2)(x-2)} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{x-2}.$$

Приведем правую часть равенства к общему знаменателю:

$$\frac{x^2 + 4x - 2}{x(x+2)(x-2)} = \frac{A(x+2)(x-2) + Bx(x-2) + Cx(x+2)}{x(x+2)(x-2)}.$$

Приравняем числители

$$x^{2} + 4x - 2 = A(x+2)(x-2) + Bx(x-2) + Cx(x+2)$$
.

Полагая х равным действительным корням знаменателя, получим

1)
$$x = 0$$
,
 $-2 = -4A$,
 $A = \frac{1}{2}$.
2) $x = -2$,
 $-6 = 8B$,
 $B = -\frac{3}{4}$.
3) $x = 2$,
 $10 = 8C$,
 $C = \frac{5}{4}$.

Следовательно,

$$I_{1} = \int \frac{\frac{1}{2}}{x} dx + \int \frac{-\frac{3}{4}}{x+2} dx + \int \frac{\frac{5}{4}}{x-2} dx = \frac{1}{2} \ln|x| - \frac{3}{4} \ln|x+2| + \frac{5}{4} \ln|x-2| + c_{1};$$

$$I = \frac{x^{3}}{3} + \frac{x^{2}}{2} - 4x + 2 \ln|x| - 3 \ln|x+2| + 5 \ln|x-2| + c =$$

$$= \frac{x^{3}}{3} + \frac{x^{2}}{2} - 4x + \ln\left|\frac{x^{2} \cdot (x-2)^{5}}{(x+2)^{3}}\right| + c.$$

Пример 2.

$$I = \int \frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} dx$$

Подынтегральная функция является правильной рациональной дробью, ее разложение на сумму простейших рациональных дробей имеет вид:

$$\frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 - 2x + 5}.$$

Приведем правую часть к общему знаменателю:

$$\frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} = \frac{A(x^2 - 2x + 5) + (Bx + C) \cdot (x - 1)}{(x - 1)(x^2 - 2x + 5)},$$
 следовательно,
$$2x^2 - 3x - 3 = A(x^2 - 2x + 5) + Bx(x - 1) + C(x - 1).$$

Полагая x = 1, имеем: -4 = 4A, A = -1.

Для нахождения B и C приведем подобные и приравняем коэффициенты при одинаковых степенях x в последнем равенстве:

$$2x^{2} - 3x - 3 = Ax^{2} - 2Ax + 5A + Bx^{2} - Bx + Cx - C,$$

$$2x^{2} - 3x - 3 = x^{2}(A + B) + x(-2A - B + C) + (5A - C)$$

$$x^{2} \mid A + B = 2 \qquad \Rightarrow B = 2 - A, \quad B = 2 + 1, \quad B = 3$$

$$x \mid -2A - B + C = -3$$

$$x^{0} \mid 5A - C = -3 \qquad \Rightarrow C = 5A + 3, \quad C = -2$$

$$I = \int \frac{-1}{x - 1} dx + \int \frac{3x - 2}{x^2 - 2x + 5} dx = -\ln|x - 1| + I_1;$$

$$I_{1} = \int \frac{3x - 2}{x^{2} - 2x + 5} dx = \begin{cases} (x^{2} - 2x + 5)' = 2x - 2, \\ 3x - 2 = \frac{3}{2}(2x - 2) + 3 - 2 = \frac{3}{2}(2x - 2) + 1. \end{cases} =$$

$$= \int \frac{\frac{3}{2}(2x - 2) + 1}{x^{2} - 2x + 5} dx = \frac{3}{2} \int \frac{2x - 2}{x^{2} - 2x + 5} dx + \int \frac{dx}{x^{2} - 2x + 5} =$$

$$= \begin{cases} x^{2} - 2x + 5 = (x^{2} - 2x + 1) - 1 + 5 = \\ = (x - 1)^{2} + 4. \end{cases} = \frac{3}{2} \ln |x^{2} - 2x + 5| + \int \frac{dx}{(x - 1)^{2} + 4} =$$

$$= \frac{3}{2} \ln |x^{2} - 2x + 5| + \frac{1}{2} \arctan \frac{x - 1}{2} + c_{1};$$

$$I = -\ln |x - 1| + \frac{3}{2} \ln |x^{2} - 2x + 5| + \frac{1}{2} \arctan \frac{x - 1}{2} + c =$$

$$= \ln \frac{\sqrt{(x^{2} - 2x + 5)^{3}}}{|x - 1|} + \frac{1}{2} \arctan \frac{x - 1}{2} + c.$$

Лекция 4

4. Интегрирование тригонометрических функций

4.1. Универсальная тригонометрическая подстановка.

Интегралы вида $\int R(\sin x; \cos x) dx$, где $R(\sin x; \cos x)$ – рациональная функция своих аргументов $\sin x$ и $\cos x$, приводятся к интегралам от рациональной функции новой переменной t подстановкой $tg\frac{x}{2} = t$, которая называется универсальной тригонометрической подстановкой.

Тогда
$$x = 2 \operatorname{arctg} t$$
, $dx = \frac{2}{1+t^2} dt$;

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1 + t^2}, \quad \cos x = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2} \quad \text{II}$$

$$\int R(\sin x; \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} dt = \int R_1(t) dt,$$

где $R_1(t)$ — рациональная функция от t.

Применение универсальной подстановки $tg\frac{x}{2} = t$ часто связано с громоздкими вычислениями, поэтому, по возможности, применяют более простые подстановки, в зависимости от вида подынтегральной функции.

- 1) Если функция $R(\sin x;\cos x)$ нечетна относительно $\sin x$, т.е. $R(-\sin x;\cos x) = -R(\sin x;\cos x)$, то делают подстановку $\cos x = t$.
- 2) Если функция $R(\sin x;\cos x)$ нечетна относительно $\cos x$, т.е. $R(\sin x;-\cos x)=-R(\sin x;\cos x)$, то полагают $\sin x=t$.
- 3) Если функция $R(\sin x;\cos x)$ четна относительно $\sin x$ и $\cos x$, т.е. $R(-\sin x;-\cos x)=R(\sin x;\cos x)$, то подстановка $\mathbf{tg}x=\mathbf{t}$ рационализирует интеграл. Тогда

$$\sin x = \frac{t}{\sqrt{1+t^2}}, \quad \cos x = \frac{1}{\sqrt{1+t^2}}, \quad dx = \frac{dt}{1+t^2}.$$

Пример 1.

$$\int \frac{1+\sin x}{\sin x \cdot (1+\cos x)} dx = \left\{ \operatorname{tg} \frac{x}{2} = t \right\} = \int \frac{1+\frac{2t}{1+t^2}}{\frac{2t}{1+t^2} \cdot \left(1+\frac{1-t^2}{1+t^2}\right)} \cdot \frac{2}{1+t^2} dt =$$

$$= \int \frac{1+t^2+2t}{\left(1+t^2\right) \cdot \frac{2t}{1+t^2} \cdot \frac{1+t^2+1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2} dt = \int \frac{1+t^2+2t}{2t} dt = \frac{1}{2} \int \left(\frac{1}{t}+t+2\right) dt =$$

$$= \frac{1}{2} \left(\ln|t| + \frac{t^2}{2} + 2t\right) + c = \frac{1}{2} \left(\ln\left|\operatorname{tg} \frac{x}{2}\right| + \frac{1}{2} \operatorname{tg}^2 \frac{x}{2} + 2\operatorname{tg} \frac{x}{2}\right) + c.$$

Пример 2.

$$\int \frac{dx}{\sin^2 x - 2\sin x \cdot \cos x + 3\cos^2 x} = \begin{cases} \operatorname{tg} x = t, \\ dx = \frac{dt}{1 + t^2}. \end{cases} =$$

$$= \int \frac{1}{\left(\frac{t^2}{1 + t^2} - 2\frac{t}{\sqrt{1 + t^2}} \cdot \frac{1}{\sqrt{1 + t^2}} + 3\frac{1}{1 + t^2}\right)} \cdot \frac{dt}{1 + t^2} = \int \frac{1}{t^2 - 2t + 3} \cdot \frac{dt}{1 + t^2} =$$

$$= \int \frac{dt}{t^2 - 2t + 3} = \int \frac{dt}{(t - 1)^2 + 2} = \frac{1}{\sqrt{2}} \arctan \left(\frac{t - 1}{\sqrt{2}}\right) + c = \frac{1}{\sqrt{2}} \arctan \left(\frac{t - 1}{\sqrt{2}}\right) + c.$$

4.2. Интегралы вида $\int \sin^m x \cdot \cos^n x \, dx$.

1. m или n — **нечетное** целое положительное число.

От нечетной степени отделяют один множитель и новой переменной t обозначают ту функцию, дифференциал которой присутствует под знаком интеграла, т.е.

- а) если m нечетное, то подстановка $\cos x = t$ и $\sin x dx = -dt$;
- б) если n нечетное, то подстановка $\sin x = t$ и $\cos x dx = dt$.

Оставшуюся четную степень выражают из формулы $\sin^2 x + \cos^2 x = 1$.

Пример.

$$\int \frac{\sin^3 x}{\sqrt[4]{\cos x}} dx = \int \frac{\sin^2 x}{\sqrt[4]{\cos x}} \cdot \sin x dx = \begin{cases} \cos x = t, \\ -\sin x dx = dt, \\ \sin^2 x = 1 - \cos^2 x = 1 - t^2. \end{cases} =$$

$$= -\int \frac{1 - t^2}{\sqrt[4]{t}} dt = \int \frac{t^2}{t^{1/4}} dt - \int \frac{1}{t^{1/4}} dt = \int t^{7/4} dt - \int t^{-1/4} dt =$$

$$= \frac{t^{11/4}}{11/4} - \frac{t^{3/4}}{3/4} + c = \frac{4}{11} \sqrt[4]{\cos^{11} x} - \frac{4}{3} \sqrt[4]{\cos^3 x} + c.$$

2. m и n — **четные** целые неотрицательные числа.

Степени понижаются переходом к удвоенному аргументу с помощью формул:

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x), \quad \sin^2 x = \frac{1}{2} (1 - \cos 2x), \quad \sin x \cdot \cos x = \frac{1}{2} \sin 2x.$$

Пример.

$$\int \sin^2 x \cdot \cos^4 x dx = \int (\sin x \cdot \cos x)^2 \cdot \cos^2 x dx = \int \frac{1}{4} \sin^2 2x \cdot \frac{1}{2} (1 + \cos 2x) dx = \frac{1}{8} \int \sin^2 2x dx + \frac{1}{8} \int \sin^2 2x \cdot \cos 2x dx = \frac{1}{8} \int \frac{1}{2} (1 - \cos 4x) dx + \frac{1}{8} \cdot \frac{1}{2} \int \sin^2 2x \cdot \cos 2x \cdot 2dx = \frac{1}{16} \left(x - \frac{1}{4} \sin 4x \right) + \frac{1}{16} \cdot \frac{\sin^3 2x}{3} + c = \frac{1}{16} \left(x - \frac{1}{4} \sin 4x + \frac{1}{3} \sin^3 2x \right) + c.$$

3. (m+n) – четное целое отрицательное число.

В этом случае возможны подстановки:

a) **tg**
$$x = t$$
, тогда $x = \arctan t$ и $dx = \frac{dt}{1+t^2}$.

Из формулы $1 + tg^2 x = \frac{1}{\cos^2 x}$ получаем $\cos x = \frac{1}{\sqrt{1 + t^2}}$, а так как $\sin x = tg \ x \cdot \cos x$, то $\sin x = \frac{t}{\sqrt{1 + t^2}}$.

б)
$$\operatorname{ctg} x = t$$
, тогда $x = \operatorname{arcctg} t$ и $dx = -\frac{dt}{1+t^2}$.

Из формулы $1 + \operatorname{ctg}^2 x = \frac{1}{\sin^2 x}$ получаем $\sin x = \frac{1}{\sqrt{1 + t^2}}$, а так как $\cos x = \operatorname{ctg} x \cdot \sin x$, то $\cos x = \frac{t}{\sqrt{1 + t^2}}$.

Пример 1.

$$\int \frac{dx}{\sin^3 x \cdot \cos x} = \begin{cases} \cot x = t, \\ dx = -\frac{dt}{1+t^2}. \end{cases} = \int \frac{1}{\frac{1}{\sqrt{(1+t^2)^3}}} \cdot \frac{t}{\sqrt{1+t^2}} \cdot \left(-\frac{dt}{1+t^2}\right) = -\int \frac{(1+t^2)^2}{t \cdot (1+t^2)} dt = \\ = -\int \frac{1+t^2}{t} dt = -\int \frac{1}{t} dt - \int t dt = -\ln|t| - \frac{t^2}{2} + c = c - \ln|\cot x| - \frac{1}{2} \cot^2 x.$$

Пример 2.

$$\int \frac{\sin^4 x}{\cos^6 x} dx = \int tg^4 x \cdot \frac{1}{\cos^2 x} dx = \begin{cases} tg \ x = t, \\ \frac{1}{\cos^2 x} dx = dt. \end{cases} = \int t^4 dt = \frac{t^5}{5} + c = \frac{1}{5} tg^5 x + c.$$

4.3. Интегралы вида $\int \operatorname{tg}^m x \, dx$, $\int \operatorname{ctg}^m x \, dx$.

Если m — целое положительное число, то интегралы вычисляются с помощью формул: $1 + \operatorname{tg}^2 x = \frac{1}{\cos^2 x}$, т.е. $\operatorname{tg}^2 x = \frac{1}{\cos^2 x} - 1$ и $1 + \operatorname{ctg}^2 x = \frac{1}{\sin^2 x}$, т.е. $\operatorname{ctg}^2 x = \frac{1}{\sin^2 x} - 1$.

Пример.

$$\int tg^4 x \, dx = \int tg^2 x \cdot \left(\frac{1}{\cos^2 x} - 1\right) dx = \int tg^2 x \cdot \frac{1}{\cos^2 x} \, dx - \int tg^2 x \, dx =$$

$$= \frac{tg^3 x}{3} - \int \left(\frac{1}{\cos^2 x} - 1\right) dx = \frac{1}{3} tg^3 x - tg \, x + x + c.$$

4.4. Интегралы вида $\int \cos mx \cdot \cos nx \, dx$, $\int \sin mx \cdot \sin nx \, dx$, $\int \sin mx \cdot \cos nx \, dx$ вычисляются с помощью формул тригонометрии:

$$\cos mx \cdot \cos nx = \frac{1}{2} \left(\cos(m-n)x + \cos(m+n)x \right),$$

$$\sin mx \cdot \sin nx = \frac{1}{2} \left(\cos(m-n)x - \cos(m+n)x \right),$$

$$\sin mx \cdot \cos nx = \frac{1}{2} \left(\sin(m-n)x + \sin(m+n)x \right),$$

$$\sin \left(-\alpha \right) = -\sin \alpha, \qquad \cos(-\alpha) = \cos \alpha.$$

Пример.

$$\int \sin 3x \cdot \cos 5x dx = \int \frac{1}{2} (\sin(-2x) + \sin 8x) dx = -\frac{1}{2} \int \sin 2x dx + \frac{1}{2} \int \sin 8x dx =$$

$$= -\frac{1}{2} \cdot \frac{1}{2} (-\cos 2x) + \frac{1}{2} \cdot \frac{1}{8} (-\cos 8x) + c = \frac{1}{4} \cos 2x - \frac{1}{16} \cos 8x + c.$$

Лекция 5

5. Интегрирование некоторых иррациональных функций

5.1. Интегралы вида
$$\int R \left(x, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_1}{q_1}}, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_2}{q_2}}, \ldots \right) dx$$
, где R – рациональная функция, $p_1, q_1, p_2, q_2, \ldots$ – целые числа, находятся с помощью подстановки

 $\frac{ax+b}{cx+d}=t^m$, где m — наименьшее общее кратное знаменателей дробей $\frac{p_1}{q_1},\frac{p_2}{q_2},...,$ т.е. m — наименьшее общее кратное показателей радикалов $q_1, q_2,....$

В частности, интегралы вида $\int R\left(x,x^{\frac{p_1}{q_1}},x^{\frac{p_2}{q_2}},...\right)dx$ приводятся к интегралу от рациональной функции новой переменной t с помощью подстановки $x=t^m$.

Пример 1.

$$\int \frac{dx}{\sqrt{3x+4}+2\sqrt[3]{3x+4}} = \begin{cases} 3x+4=t^6, \\ x=\frac{1}{3}(t^6-4), \\ dx=2t^5dt. \end{cases} = \int \frac{2t^5dt}{t^3+2t^2} = 2\int \frac{t^5}{t^2(t+2)}dt = \\
= 2\int \frac{t^3}{t+2}dt = 2\int \frac{(t^3+8)-8}{t+2}dt = 2\left(\int \frac{t^3+8}{t+2}dt - 8\int \frac{dt}{t+2}\right) = \\
= 2\left(\int \frac{(t+2)(t^2-2t+4)}{t+2}dt - 8\ln|t+2|\right) = 2\left(\int (t^2-2t+4)dt - 8\ln|t+2|\right) = \\
2\left(\frac{t^3}{3}-2\frac{t^2}{2}+4t-8\ln|t+2|\right) + c = \begin{cases} 3x+4=t^6, \\ t=\sqrt[6]{3x+4}. \end{cases} = \\
= 2\left(\frac{1}{3}\sqrt{3x+4}-\sqrt[3]{3x+4}+4\sqrt[6]{3x+4}-8\ln|\sqrt[6]{3x+4}\right) + c.$$

Пример 2.

$$I = \int \frac{x^{1/2}}{x^{3/4} + 1} dx = \begin{cases} x = t^4, \\ dx = 4t^3 dt. \end{cases} = \int \frac{t^2}{t^3 + 1} \cdot 4t^3 dt = 4\int \frac{t^5}{t^3 + 1} dt.$$

Подстановка привела к интегралу от неправильной рациональной дроби. Выделяя целую часть, получим:

$$-\frac{t^{5}}{t^{5}+t^{2}} \frac{\left| t^{3}+1 \right|}{t^{2}}$$

$$I = \int \left(t^{2} - \frac{t^{2}}{t^{3}+1} \right) dt = 4 \left(\frac{t^{3}}{3} - \frac{1}{3} \ln \left| t^{3}+1 \right| \right) + c = = \begin{cases} x = t^{4}, \\ t = \sqrt[4]{x}. \end{cases} = \frac{4}{3} \left(\sqrt[4]{x^{3}} - \ln \left| \sqrt[4]{x^{3}} + 1 \right| \right) + c.$$
5.2. Интеграл вида $\int \frac{Mx + N}{\sqrt{ax^{2} + bx + c}} dx$

можно разбить на два интеграла, выделив в числителе производную подкоренного выражения; тогда один из интегралов будет табличным, а другой сведется к табличному после выделения полного квадрата под радикалом.

Пример.

$$\int \frac{7-x}{\sqrt{3+2x-x^2}} dx = \begin{cases} \left(-x^2+2x+3\right)' = -2x+2, \\ -x+7 = \frac{1}{2}(-2x+2)-1+7 = \frac{1}{2}(-2x+2)+6. \end{cases} = \\
= \int \frac{\frac{1}{2}(-2x+2)+6}{\sqrt{3+2x-x^2}} dx = \frac{1}{2} \int \frac{-2x+2}{\sqrt{3+2x-x^2}} dx + 6 \int \frac{dx}{\sqrt{3+2x-x^2}} = (1.3, (16)) = \\
= \left\{ -(x^2-2x-3) = \\ = -((x^2-2x+1)-1-3) = 4 - (x-1)^2 \right\} = \frac{1}{2} \cdot 2\sqrt{3+2x-x^2} + 6 \int \frac{dx}{\sqrt{4-(x-1)^2}} = \\
= (1.3, (17)) = \sqrt{3+2x-x^2} + 6 \arcsin \frac{x-1}{2} + c.$$

5.3. Интегралы вида $\int \frac{Mx+N}{(x-\alpha)\sqrt{ax^2+bx+c}}$

вычисляют с помощью подстановки $x-\alpha=\frac{1}{t}$.

Пример.

$$\int \frac{dx}{x\sqrt{2x-x^2}} = \begin{cases} x = \frac{1}{t}, \\ dx = -\frac{1}{t^2} dt. \end{cases} = \int \frac{1}{\frac{1}{t} \cdot \sqrt{\frac{2}{t} - \frac{1}{t^2}}} \cdot \left(-\frac{1}{t^2}\right) dt = -\int \frac{1}{\sqrt{\frac{2t-1}{t^2}}} \cdot \frac{1}{t} dt = \\
= -\int \frac{t}{\sqrt{2t-1}} \cdot \frac{1}{t} dt = -\int \frac{dt}{\sqrt{2t-1}} = (1.3, (16)) = -\frac{1}{2} \int \frac{2dt}{\sqrt{2t-1}} = -\frac{1}{2} \cdot 2\sqrt{2t-1} + c = \\
= \begin{cases} x = \frac{1}{t}, \\ t = \frac{1}{x}. \end{cases} = -\sqrt{2 \cdot \frac{1}{x} - 1} + c = -\sqrt{\frac{2-x}{x}} + c.$$

5.4. Интеграл $\int R(x, \sqrt{a^2 - x^2}) dx$, где R — рациональная функция, находят подстановкой $x = a \sin t$ или $x = a \cos t$, интеграл $\int R(x, \sqrt{a^2 + x^2}) dx$ —

подстановкой $x = a \operatorname{tg} t$ или $x = a \operatorname{ctg} t$, а интеграл $\int R(x, \sqrt{x^2 - a^2}) dx$ — подстановкой $x = \frac{a}{\sin t}$ или $x = \frac{a}{\cos t}$.

Пример.

$$I = \int \frac{dx}{\sqrt{(4-x^2)^3}} = \begin{cases} x = 2\sin t, & \sqrt{4-x^2} = \sqrt{4-4\sin^2 t} = \sqrt{4(1-\sin^2 t)} = \\ dx = 2\cos t \, dt, & = \sqrt{4\cdot\cos^2 t} = 2\cos t. \end{cases}$$
$$= \int \frac{2\cos t \, dt}{2^3 \cdot \cos^3 t} = \frac{1}{4} \int \frac{dt}{\cos^2 t} = \frac{1}{4} \operatorname{tg} t + c =$$

Вернемся к старой переменной:

$$= \begin{cases} x = 2\sin t, & \cos^2 t = 1 - \sin^2 t, & \cos t = \frac{\sqrt{4 - x^2}}{2}, \\ \sin t = \frac{x}{2}, & \cos^2 t = 1 - \frac{x^2}{4} = \frac{4 - x^2}{4}, \end{cases}$$

$$I = \frac{1}{4} \frac{\sin t}{\cos t} + c = \frac{1}{4} \frac{\frac{x}{2}}{\frac{\sqrt{4 - x^2}}{2}} + c = \frac{1}{4} \frac{x}{\sqrt{4 - x^2}} + c.$$