

Projectes d'Enginyeria Física - 2

Modelling and designing a Paul ion trap

V2024.2

Juan M. Rius
Universitat Politècnica de Catalunya (UPC)
Barcelona, Spain

Contents

- Introduction to the Paul ion trap
- Introduction to Computational Electromagnetics
- Modeling the problem with Integral Equation methods
- Discrete equations with the Method of Moments
- Implementation in 2D: validation with capacitor
- Implementation in 3D: validation with capacitor
- Analyze and design a Paul Trap:
 - Static potential, one ion
 - AC potential, one ion
 - AC potential, multiple ions
 - Design the trap for optimum ion confinement

The Paul ion trap

Pioneers of ion trapping: Hans Dehmelt and Wolfgang Paul (Nobel price 1989)

The Paul ion trap

The force on ions follows the direction of field: $ec{E}=abla V$

It is not possible to have a 3D minimum or maximum of V(r), since

$$\nabla^{2}V\left(\vec{r}\right) = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)V\left(\vec{r}\right) = 0$$

Anyway, it would work only for positive or negative ions

The Paul ion trap (2)

Quadrupole:

The Paul ion trap (3)

Quadrupole with AC potential variation (low freq.)

Now, ions rotate movement direction, following AC changes,
 and become confined at the center of the trap

The Paul ion trap (4)

Objective:

- Develop computer code for computing the potential due to hyperbolic quadrupole.
- Compute ion trajectories within the trap.
- Account for AC variation of potential → ion trajectories
- Design size of the trap, AC frequency, etc... for ion confinement with weights and charge.

Computational electromagnetics

Antenna analysis and design using numerical simulation software:

CEM simulation software fundamentals

$$\hat{n} \times \vec{E^i}(\vec{r}) = \hat{n} \times \iint_S \left[jk\eta G(\vec{r}' - \vec{r}) \vec{J_s}(\vec{r}') + \frac{\eta}{jk} \nabla' G(\vec{r}' - \vec{r}) \nabla' \cdot \vec{J_s}(\vec{r}') \right] ds$$

Diff. or integ. equations

Discretization

 $G = \frac{e^{-jk|\vec{r}-\vec{r}'|}}{4\pi|\vec{r}-\vec{r}'|}$ Singular!

Linear system of equations

Full matrix with millions of unkowns!

Fast Solver

Solution $\vec{J}(\vec{r}')$

Antenna parameters: input impedance, radiation pattern, etc.

Geometry model: triangular mesh

Solution steps

Formulation of (<u>linear</u>) differential or integral equations

- Time or frequency domain
- Examples: Maxwell's or wave equations, EFIE, MFIE,....

Discretization of equations into a linear system

- Method of moments, finite element method, etc..

Discretization of boundary conditions

- Discretize surfaces into triangle meshes....
- Set numerical boundary condition (samples, min sq error, ...)

Set mesh truncation conditions

- Only for differential equations, not necessary for IE
- Finite mesh: a different equation must be set at mesh truncation nodes

Sources of error

Simplifications and approximations in the equations:

- Problem modeling
- Material parameters

Discretization:

- Equations into linear system (projection into finite-dimensional space)
- Numerical integral computation (often with singularities)
- Boundary conditions surfaces into meshes
- Boundary conditions into numbers
- Truncation mesh conditions are always approximate

Linear system solution

- Truncation of real numbers into a finite-legnth word
- Iterative methods
- Fast solvers for huge linear systems: always involve approximations

There are many things than can go wrong!!

Integral equation methods

Transform DE into IE with Green's function:

$$\phi(\vec{r}) = \mathcal{L}f(\vec{r}) \quad \mathcal{L} = \text{linear operator, } \phi(\vec{r}) = \text{field/potential, } f(\vec{r}) = \text{sources (invariant)}$$

$$G(\vec{r}) = \mathcal{L}\delta(\vec{r})$$

 $G(\vec{r}) = \mathcal{L}\delta(\vec{r})$ G is the impulse response or **Green's function**

$$\phi(\vec{r}) = \int_{S} f(\vec{r}') G(\vec{r} - \vec{r}') d\vec{r}'$$

Set boundary condition:

$$|\phi(\vec{r})|_S = \phi_0$$

$$\int_{S} f(\vec{r}')G(\vec{r} - \vec{r}')d\vec{r}' \bigg|_{S} = \phi_{0}$$

Solution domain on S instead of whole volume

 \Rightarrow discretize only on S \Rightarrow much less unknowns

Integral equation for electrostatics (3D)

■ Electrostatic potential (3D):

Poisson's equation:

$$\nabla^2 \phi(\vec{r}) = -\frac{q(\vec{r})}{\varepsilon}$$

Green's function:

$$\nabla^2 G(\vec{r}) = -\delta(\vec{r})$$

$$G = \frac{1}{4\pi\varepsilon|\vec{r}|}$$

$$\phi(\vec{r}) = \int_{S} q(\vec{r}') \frac{1}{4\pi\varepsilon |\vec{r} - \vec{r}'|} d\vec{r}'$$

- Boundary condition:

$$\phi(\vec{r})|_S = V_0$$

– Integral equation:

$$\int_{S} q(\vec{r}') \frac{1}{4\pi\varepsilon |\vec{r} - \vec{r}'|} d\vec{r}' \bigg|_{S} = V_{0}$$

Integral equation for electrostatics (2D)

 $\bullet q(x,y)$

Potential Green's function in 2D:

- Green's function: Potential due to a line of charge
- First we compute E field due to a point source $q_0=1$, *E* must be $\vec{E}(\rho,\phi) = E_{\rho}(\rho)\hat{\rho}$ and according to Gauss' law:

Per unit length:
$$\frac{q_0}{\varepsilon}=\oint \vec{E}\cdot\hat{n}\;dl=2\pi\rho E_{\rho}\quad\Rightarrow\quad \vec{E}=\frac{q_0}{2\pi\varepsilon\rho}\hat{\rho}$$

- The potential is such that

$$\vec{E} = -\nabla \phi = -\frac{\partial}{\partial \rho} \phi(\rho) \hat{\rho} = \frac{q_0}{2\pi\varepsilon\rho} \hat{\rho}$$

so, the potential $\ \phi = \frac{-q_0}{2\pi\varepsilon} \ln \rho \ \$ is the Green's function in 2D $\ (q_0=1)$

$$G = \frac{-1}{2\pi\varepsilon} \ln \rho$$

$$|\phi(\vec{\rho})|_C = V_0$$

$$\frac{-1}{2\pi\varepsilon} \int_C q(\vec{\rho}') \ln(|\vec{\rho} - \vec{\rho}'|) d\ell' \Big|_C = V_0$$

Electrostatics integral equation in 2D

 $\phi(x,y)$

 $\vec{E}(x,y)$

 \dot{x}

Method of Moments (MoM) (1)

- The most commonly used method to discretize electromagnetic integral equations
- Valid for any <u>linear</u> equation (also differential eq.)

$$\mathcal{L}X\left(\vec{r}\right) = Y\left(\vec{r}\right)$$

 \mathcal{L} is a **linear** operator

X is the **unknown** function

 $oldsymbol{Y}$ is a **known** function

it will be discretized as a linear system |Z||a|=|b|

$$\frac{-1}{2\pi\varepsilon} \int_C q(\vec{\rho}') \ln\left(|\vec{\rho} - \vec{\rho}'|\right) d\ell' \bigg|_C = V_0 \bigg| \int_S q(\vec{r}') \frac{1}{4\pi\varepsilon |\vec{r} - \vec{r}'|} d\vec{r}' \bigg|_S = V_0$$

Electrostatics integral equation in 2D

$$\int_{S} q(\vec{r}') \frac{1}{4\pi\varepsilon |\vec{r} - \vec{r}'|} d\vec{r}' \bigg|_{S} = V_{0}$$

Electrostatics integral equation in 3D

Method of Moments (MoM) (2)

The unknown charge is discretized as a linear combination of basis functions:
N

$$q_N\left(\vec{r}\right) = \sum_{n=1}^{N} q_n x_n\left(\vec{r}\right)$$

$$\mathcal{L}q(\vec{r}) = V_0(\vec{r})$$

$$\mathcal{L}q_N(\vec{r}) = \sum_{n=1}^{N} q_n \mathcal{L}x_n(\vec{r}) \approx V_0(\vec{r})$$

The unknowns are now the coefficients q_n

- But the equation is still a functional equation, and we need a linear system to solve with a computer.
- We want a very small (negligible) residual error:

$$R = V_0(\vec{r}) - \sum_{n=1}^{N} q_n \mathcal{L} x_n(\vec{r}) \approx 0$$

Method of Moments (MoM) (3)

We set to zero inner products of the residual error

$$R(\vec{r}) = V_0(\vec{r}) - \sum_{n=1}^{N} q_n \mathcal{L} x_n(\vec{r})$$

with a set of **weighting functions** $w_{m}\left(\vec{r}\right)$

where the inner product is: $\langle w\left(\vec{r}\right), f\left(\vec{r}\right) \rangle = \int w^{*}\left(\vec{r}\right) f\left(\vec{r}\right) d\vec{r}$

$$\langle w_m(\vec{r}), R(\vec{r}) \rangle = \langle w_m(\vec{r}), V_0(\vec{r}) \rangle - \sum_{n=1}^{N} q_n \langle w_m(\vec{r}), \mathcal{L}x_n(\vec{r}) \rangle = 0$$

$$w_m\left(\vec{r}\right) = \delta\left(\vec{\rho} - \vec{\rho}_m\right) \Rightarrow R\left(\vec{r}_m\right) = V_0\left(\vec{r}_m\right) - \sum_{n=1}^{N} q_n \left|\mathcal{L}x_n\left(\vec{r}\right)\right|_{\vec{r} = \vec{r}_m} = 0$$
"Point matching"

Linear system:

$$[Z][q] = [b] Z_{mn} = \mathcal{L}x_n (\vec{r})|_{\vec{r} = \vec{r}_m}$$

$$b_m = V_0 (\vec{r}_m)$$

MoM Electrostatics 2D

Pulse basis functions and point matching:

$$\frac{-1}{2\pi\varepsilon} \int_{S} q(\vec{\rho}') \ln\left(|\vec{\rho} - \vec{\rho}'|\right) d\vec{\rho}' \Big|_{S} = V_{0}$$

$$[Z][q] = [b] Z_{mn} = \mathcal{L}x_n (\vec{\rho})|_{\vec{\rho} = \vec{\rho}_m}$$

$$b_m = V_0 (\vec{\rho}_m)$$

$$\mathcal{L}x_n(\vec{\rho}) = \frac{-1}{2\pi\varepsilon} \int_S \Pi\left(\frac{\vec{\rho}' - \vec{\rho}_n}{h_n}\right) \ln\left(|\vec{\rho} - \vec{\rho}'|\right) d\vec{\rho}'$$

- With 1-point integration: $\mathcal{L}x_n(\vec{\rho}) \approx \frac{-1}{2\pi\varepsilon} h_n \ln(|\vec{\rho} \vec{\rho}_n|)$
- Point matching at $ec{
 ho}_m$: $Z_{mn}=rac{-h_n}{2\pi arepsilon} \ln(|ec{
 ho}_m-ec{
 ho}_n|), \quad b_m=V_0(ec{
 ho}_m)$

MoM Electrostatics 2D (2)

$$Z_{mn} = \frac{-h_n}{2\pi\varepsilon} \ln(|\vec{\rho}_m - \vec{\rho}_n|), \quad b_m = V_0(\vec{\rho}_m)$$

■ Self-interaction (diagonal terms): when $\vec{\rho}_m = \vec{\rho}_n, \ Z_{mm} = \infty$

For m=n we have to do the source integral analytically

$$\begin{array}{c|c}
\vec{\rho_m} & \vec{\rho'} \\
-h/2 & 0 & h/2
\end{array}$$

$$Z_{mm} = \mathcal{L}x_m(\vec{\rho_m}) = \frac{-1}{2\pi\varepsilon} \int_S \Pi\left(\frac{\vec{\rho'} - \vec{\rho_m}}{h_m}\right) \ln\left(|\vec{\rho_m} - \vec{\rho'}|\right) d\vec{\rho'}$$

$$= \frac{-1}{2\pi\varepsilon} \int_{x_m} \ln\left(|\vec{\rho}_m - \vec{\rho}'|\right) d\vec{\rho}' = \frac{-1}{2\pi\varepsilon} \int_{-h_m/2}^{h_m/2} \ln|x| dx$$

$$= \frac{-1}{2\pi\varepsilon} 2 \int_0^{h_m/2} \ln x dx = \frac{-1}{\pi\varepsilon} \left[x(\ln x - 1) \right]_0^{h_m/2} = \frac{-h_m}{2\pi\varepsilon} \left[\ln \left(\frac{h_m}{2} \right) - 1 \right] = Z_{mm}$$

Programming tips in 2D

Discretization of the geometry:

Use complex numbers

$$ec{
ho}$$
: \mathbf{r} = \mathbf{x} + \mathbf{j} y; $ec{
ho}_1 - ec{
ho}_2$: \mathbf{r} 1- \mathbf{r} 2; $|ec{
ho}_1 - ec{
ho}_2|$: $\mathbf{abs}(\mathbf{r}$ 1- \mathbf{r} 2)

 Write a function that returns a vector rn with the center point of the basis functions and another vector hn with the lengths

2D plot:

x = linspace(...), y = linspace(...)

- Use meshgrid: [xx,yy] = meshgrid(x,y); rr = xx + 1j*yy;
- Loop BF: V=zeros(...); for n=1:N, R = abs(rr-rn(n)); V=V+...; end
- Potential and field: use surf(),pcolor(),contour(),gradient(),quiver()

Error check:

- Computation
$$C=rac{Q}{V_0}=rac{1}{V_0}\sum_{1}^{N}h_nq_n= exttt{sum(hn.*qn)/V}$$

Programming tips in 2D (2)

Post-processing:

```
– 2D plots:
   x = linspace(...), y = linspace(...);
    [xx,yy] = meshgrid(x,y); rr = xx + 1j*yy;
   for ..., V = ...; end; % Computation of potential at xx,yy
    [Ex, Ey] = gradient(-V);
   surf(x,y,V);
   pcolor(x,y,V); quiver(xx,yy,Ex,Ey); contour(xx,yy,V):
    colormap jet; shading interp; colorbar
                                                      Potential and gradient
             Potential
                                                                            0.8
                                  0.8
                                                                            0.6
                                  0.6
                                                                            0.4
                                  0.4
0.5
                                                                            0.2
                                  0.2
                                                                            -0.2
                                              -1
-0.5
                                  -0.2
                                                                            -0.4
                                              -2
                                  -0.4
                                                                            -0.6
                                  -0.6
                                              -3
                                                                            -0.8
                                  -0.8
                                                      -2
                                                            0
                                                                        4
       У
            -5
                    Х
```


Work to do (in 2D)

Object geometry:

- Create functions that return rn and hn for planar and circular objects.
- Create an object consisting of two (planar or circular) plates.
- Plot the geometry.

Linear System:

- Compute linear system elements.
- Compute independent term: set one plate to +V/2 and the other to -V/2.
- Solve linear system and compute capacitance. Check with reference.
- Compute potential and field.

■ Plot potential and E field:

Obtain surf(), pcolor(), contour() and quiver() plots of potential and field.

MoM Electrostatics 3D

$$\int_{S} q(\vec{r}') \frac{1}{4\pi\varepsilon |\vec{r} - \vec{r}'|} d\vec{r}' \bigg|_{S} = V_{0}$$

■ Triangular basis functions and point matching:

- Planar triangles mesh
- Constant charge on each triangle

MoM Electrostatics 3D (2)

■ MoM matrix elements:

- The integral of $\mathcal{L}x_n(\vec{r})$ can be computed analytically (see Rao et al., "A simple numerical solution procedure for statics problems involving arbitrarily shaped surfaces" IEEE Trans AP, Vol. 27, No. 5, sept 1979)
- Matlab function by E. Úbeda $\int_{S_{T_n}} \frac{1}{|\vec{r}_m \vec{r}'|} d\vec{r}'$ Computation of integral and point matching Returns **a row** of [Z]: single observation point and all source triangles.

Programming tips in 3D

Discretization of the geometry

Use a vertex matrix and a topology matrix

- Write a function that returns a structure with 'vertex' and 'topol' fields:
 obj.vertex and obj.topol = vertex and topology matrices
 - Create a cloud of surface points, possibly with x = linspace(...),
 y = linspace(...), [xx,yy] = meshgrid(x,y), zz = fun(xx,yy)
 - obj.vertex = [xx(:) yy(:) zz(:)]';
 - Use obj.topol = delaunay(xx(:), yy(:))'; Matlab function
- We also provide a function that reads a FEM triangular mesh from a file created with GiD mesher (www.gidhome.com) and returns the obj struct

Programming tips in 3D (2)

■ **Geometry management:** int_S_1divR() function parameters

– v1, v2, v3 of all triangles:

```
v1 = obj.vertex(:,obj.topol(1,:));
v2 = obj.vertex(:,obj.topol(2,:));
v3 = obj.vertex(:,obj.topol(3,:));
```

– Centroid of all triangles:

```
obj.cent = (v1+v2+v3)/3;
```

– Unit normal and area of triangles:

c = cross(v2-v1, v3-v1);
$$V_2^{-V_1}$$
 V_2 obj.ds = sqrt(sum(c.^2))/2; obj.un = c./repmat(2*obj.ds,3,1); % Normalization

– View geometry:

```
patch('Faces',obj.topol','Vertices',obj.vertex',
'FaceColor','g','EdgeColor','k');
axis equal;
```

– With charge:

```
patch('Faces',obj.topol','Vertices',obj.vertex',
'CData',q,'FaceColor','flat','EdgeColor','none');
axis equal;
```


 $V_3 - V_1$

Programming tips in 3D (3)

Post-processing:

- 3D plots:

```
x = linspace(...), y = linspace(...); z = linspace(...);
[xx,yy,zz] = meshgrid(x,y,z);
for ..., V = ...; end; % Computation of potential at xx,yy,zz
[Ex, Ey, Ez] = gradient(-V);
slice(xx,yy,zz, V, xs,ys,zs);
contourslice(xx,yy,zz, V, xs,ys,zs);
coneplot(xx,yy,zz, Ex,Ey,Ez, cxx,cyy,czz, absE);
colormap jet; shading interp; colorbar
          Potential
                                        Potential
```


Work to do (in 3D)

Object geometry:

- Create function that returns obj.vertex and obj.topol for planar plate.
- Create an object consisting of two planar plates. Plot the geometry.

Linear System:

- Compute the arguments of int_S_1divR() function.
- Compute the linear system elements.
- Compute independent term: set one plate to +V/2 and the other to -V/2.
- Solve linear system and compute capacitance. Check with reference.
- Compute potential and field.

Plot potential and E field:

 Obtain slice(), contourslice() and coneplot() plots of potential and field.

Final work

Methodology:

- Develop computer code for computing the potential due to hyperbolic quadrupole
- Compute ion trajectories within the trap.
- Account for AC variation of potential → ion trajectories
- Design size of the trap, AC frequency, etc... for ion confinement with weights and charge.

Final work (2)

Methodology (cont):

With only one ion in the trap (initially static), we just have to lower the voltage to ensure that it does not escape. For V_0 =0 it just remains static.

Set **two** (or more) equal ions in the trap, at random positions: repulsion will make them escape if V_0 is too low.

- Compute the two ion trajectories accounting for the repulsion force between them. Extend to more than two ions, if possible.
- Determine the range for V₀ and AC frequency that confine the ions.

Schedule

- Week 1: Implementation in 2D: validation with capacitor
- Week 2: Implementation in 3D: validation with capacitor
- Week 3: Paul Trap: Hiperbolic electrodes, static potential
- Week 4: Trajectory of (i) one ion and (ii) two ions with repulsion
- Week 5: AC potential and trajectories of multiple ions
- Week 6: Design the trap for optimum ion confinement
 - − Size of the trap, voltage V₀, AC frequency, etc...