Al6122 Text Data Management & Analysis

Topic: TFIDF and Vector Space Model

Topics to be covered

- Ranked retrieval
- Scoring documents
- Weighting schemes
- Vector space scoring

Why ranked retrieval

- Boolean query: documents either match or don't.
 - Often result in either **too few** (=0) or **too many** (1000s) results.
 - Query 1: "standard user dlink 650" → 200,000 hits
 - Query 2: "standard user dlink 650 no card found": 0 hits
 - Good for expert users with precise understanding of their needs and the collection.
 - Good for computer programs: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users are incapable of writing Boolean queries
 - Most users don't want to wade through 1000s of results.

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- If the query is a one-term query
 - If the query term does not occur in the document: score (should be) 0
 - Not considering the complicated case: e.g., laptop vs computer
 - The more frequent the query term in the document, the higher the score (should be)
- How about multi-term queries?

"Bag of words" model

- Vector representation doesn't consider the ordering of words in a document
 - "John is quicker than Mary"
 - "Mary is quicker than John"
 - The above two sentences have the same vectors
- This is called the <u>bag of words</u> model.
 - In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later.
 - For now: bag of words model
 - Bag of words of a sentence/paragraph/document/collection reflects to its meaning to some extent.

Bag of words model

Bag-of-word model is an orderless document representation likes movies too", the bag-of-words representation will not re gram model can be used to store this spatial information with store the term frequency of each unit as before.

Source: https://www.datacamp.com/community/tutorials/lda2vec-topic-model

How to represent a document: Term frequency

- The term frequency $tf_{t,d}$ of term t in document d is the **number of times** that t occurs in d.
- Term frequency in raw may not be what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But probably not 10 times more of relevance
 - Relevance does not increase proportionally with term frequency.

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} \operatorname{tf}_{t,d}, & \text{if } \operatorname{tf}_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- The above is one possible definition. Example values:
 - TF: $0 \rightarrow$ weight: 0,
 - TF: 1 → weight: 1,
 - TF: 2 \rightarrow weight: 1.3,
 - TF: 10 →weight: 2,
 - TF: 1000 → weight: 4

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
 - A document containing this term is very likely to be relevant to the query arachnocentric
 - We want a high weight for rare terms like arachnocentric.

Document frequency

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in a collection
 - Example terms: high, increase, line
 - A document containing such a term is more likely to be relevant than a document that doesn't, but it's not a very good indicator of relevance.
- We will use document frequency (df) to measure informativeness of a term
 - Weights for words like high, increase, and line shall be higher than stop words, but lower than rare terms.

idf weight

- *df_t* is the <u>document frequency</u> of term *t* in a collection:
 - The <u>number of documents</u> that contain *t* in the collection
 - $df_t \le N$, the total number of documents in the collection
- We define the idf (inverse document frequency) of t by

$$idf_t = \log_{10} (N/df_t)$$

- We use log (N/df_t) instead of N/df_t to smooth the effect of idf.
- There is <u>one</u> idf value for each term t in a collection.

Effect of idf on ranking

- IDF has NO effect on ranking for one-term queries
 - Example query: iPhone
- IDF does affect document ranking for queries with two or more terms
 - Example query "capricious person",
 - idf weighting makes occurrences of "capricious" much more effective in document ranking than occurrences of "person".
 - How about query "Nanyang Technological University"?

Collection Frequency vs. Document frequency

• The collection frequency of *t* is the **number of occurrences** of *t* in the collection, counting multiple occurrences.

Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

– Which word is a better search term (and should get a higher weight)?

tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.
 - Increases with the number of occurrences within a document
 - Increases with the rarity of the term in the collection

$$\mathbf{w}_{t,d} = (1 + \log_{10} tf_{t,d}) \times \log_{10} (N/df_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf

Score for a document given a query

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - **—** ...
- Simple scoring for matching documents (for now)

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

Binary → **count** → **weight** matrix

• Each document is now represented by a real-valued vector of tf-idf weights $\in R^{|V|}$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Documents as vectors

- Given a vocabulary of V terms, we have a |V|-dimensional vector space
 - Terms are axes of the space
 - Documents are points or vectors in this space
- This vector space is very high-dimensional
 - tens of millions of dimensions when you apply this to a web search engine
 - These are very sparse vectors most entries are zero.

Document ranking by their relevance to a query

- Key idea 1: Do the same for the query:
 - Consider a query is a short document
 - represent the query as a vector in the space
- Key idea 2: Rank documents by their proximity to the query
 - more relevant documents are ranked higher than less relevant documents
 - proximity = similarity of vectors
 - proximity ≈ inverse of distance
- Next question: how do we measure the similarity between two vectors

Euclidean distance is NOT a good choice

 Euclidean distance is large for vectors of different lengths.

Example

- Assuming the vocabulary is 2: Gossip, Jealous
- The Euclidean distance between q and d2 is large, compared with d1 and d3
- However, the distribution of terms in the query q and the distribution of terms in document d2 are very similar.

- take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large

From angles to cosines

- Instead of Euclidean distance, use "angle" of vectors
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - The same as: Rank documents in <u>increasing</u> order of cosine(query, document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

- q_i is the tf-idf weight of term i in the query
- d_i is the tf-idf weight of term i in the document

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L2 norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L2 norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide:
 - they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Cosine for length-normalized vectors

• For <u>length-normalized</u> vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

RICH

Cosine similarity amongst 3 documents

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

- How similar are the novels
 - SaS: Sense and Sensibility
 - PaP: Pride and Prejudice, and
 - WH: Wuthering Heights?

3 documents example contd.

Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

After length normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

$$cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$$

 $cos(SaS,WH) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

Note: To simplify this example, we don't do idf weighting.

tf-idf weighting has many variants

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq,
- A very standard weighting scheme is: Inc.ltc for document.query

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
 - SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
 - Document: (Inc)
 - logarithmic tf (I as first character), no idf and cosine normalization
 - Leaving off idf weighting on documents is good for both efficiency and system effectiveness reasons.
 - Query: (Itc)
 - logarithmic tf (I in leftmost column), idf (t in second column), cosine normalization ...

Summary – vector space ranking

Document ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

TFIDF and Cosine similarity

- Widely used to compute similarity between two sentences, or two documents
- Example:
 - Construct a graph of sentences in a document
 - Find similar documents from a document collection
 - Event detection from document streams, e.g. social media