Complex Networks percolation

2019.1.31(Thu)

Goal

metrics	algorithms
models	processes

contents of this chapter

- Percolation : one of the simplest processes taking place on networks
 - When vertices are removed from a network, how long its giant component still remains?
 - Similar to the phase transition of a random graph (when a giant component appears?)

Processes on networks

- To make the connection between network structure and function
 - Network failure and resilience
 - Dynamic systems on networks
 - Epidemic and spreading processes

percolation

- failure of routers on the Internet
- vaccination / immunization against the $\phi = 0.7$ spread of disease
- "knock-on" effect
 - vaccination of small fraction of the population can effectively prevent the spread of disease
 - "herd immunity"
- Percolation theory: to understand how the knock-on effects of vertex removal affect the network as a whole

vertex / edge removal

- site percolation : vertex removal <
- bond percolation : edge removal

random removal

- removal from highest degrees
- removal of highest betweenness

Uniform random removal of vertices

- ϕ : probability that a vertex is present (occupation probability)
 - $-\phi = 1$: no vertices have been removed connected
 - $-\phi = 0$: all vertices have been removed
- Percolation transition : formation / dissolution of a giant component $\phi=0.3$
- Percolation threshold: the point at which the transition occurs

disconnected

configuration model

- Degree distribution of a naïve random graph is Poisson distribution
- Configuration model: a method for generating networks of arbitrary degree distribution

3

Uniform removal in the configuration model (1)

- Site percolation process on networks generated using the configuration model
- Configuration model network with degree distribution : p_k
- Occupation probability : ϕ
- Size of the giant cluster S
 - − *k*: degree

- removed (1ϕ) or present but not connected to GC via its neighbors
- -u: average probability that the vertex is <u>not</u> connected to the giant cluster via a particular neighbor
- $-u^k$: probability of its <u>not</u> belonging to the giant cluster
- $-\sum_k p_k u^k (=g_0(u))$: average probability of <u>not</u> being in the giant cluster
- $-1-g_0(u)$: average probability of being in the giant cluster
- $-S = \phi[1-g_0(u)]$: total fraction of the giant cluster (because ϕ is the probability of remaining nodes

$$g_0(z) = \sum_{k=0}^{n} p_k z^k$$
 : generating function for degree distribution

Uniform removal of the configuration

model (2) All neighbors of vertex A are not connected to GC

- Total probability of not connecting to the giant component via vertex A is $1 - \phi + \phi u^k$
- Excess degree distribution
 vertex A is removed
 - Probability of an edge reaches to a vertex of degree k (other than the edge we arrived along)

$$-q_k = \frac{(k+1)p_{k+1}}{\langle k \rangle}$$

 Average probability that a vertex is not connected to the giant component:

$$u = \sum_{k=0}^{\infty} q_k (1 - \phi + \phi u^k) = 1 - \phi + \phi \sum_{k=0}^{\infty} q_k u^k$$

• = $1 - \phi + \phi g_1(u)$

$$g_1(z) = \sum_{k=0}^{\infty} q_k z^k$$
 : generating function for the excess degree distribution

Excess degree distribution

- Configuration model with degree distribution p_k when vertices are chosen randomly
- If we take a vertex and follow one of its edges to the vertex at the other end, what is the probability that this vertex will have degree k?
 - It is not p_k (because a vertex of degree zero will not be reached)
 - Probability of selecting an edge ending at any particular vertex of degree $k: k/(2m-1) \approx k/2m$
 - There are np_k such vertices \rightarrow probability of an edge attaching to any vertex with degree k is $\frac{k}{2m} \times np_k = \frac{kp_k}{\langle k \rangle}$
 - The probability is proportional not to p_k but to kp_k

high degree is more likely

2m edges 2m

Your friends have more friends than you do

- Average degree of a neighbor : $\sum_{k} k \frac{k p_k}{\langle k \rangle} = \frac{\langle k^2 \rangle}{\langle k \rangle}$
- Average degree : $\langle k \rangle = \frac{2m}{n}$

•
$$\frac{\langle k^2 \rangle}{\langle k \rangle} - \langle k \rangle = \frac{1}{\langle k \rangle} (\langle k^2 \rangle - \langle k \rangle^2) = \frac{\sigma_k^2}{\langle k \rangle} > 0$$

Network	n	Average degree	Average neighbor degree	$\frac{\left\langle k^2 \right\rangle}{\left\langle k \right\rangle}$
Biologists	1520252	15.5	68.4	130.2
Mathematicians	253339	3.9	9.5	13.2
Internet	22963	4.2	224.3	261.5

a vertex of degree k appears as one of the neighbors of exactly k other vertices -> overrepresented

Excess degree

- The number of edges attached to a vertex other than the edge we arrived along
- One less than the total degree
- $q_k = \frac{(k+1)p_{k+1}}{\langle k \rangle}$: excess degree distribution

denominator is still just $\langle k \rangle$ ($\sum_{k=0}^{\infty} q_k = 1$)

Generating functions for degree distributions

•
$$g_0(z) = \sum_{k=0}^{\infty} p_k z^{k}$$

•
$$g_1(z) = \sum_{k=0}^{\infty} q_k z^k$$

These are not independent

•
$$q_k = \frac{(k+1)p_{k+1}}{\langle k \rangle}$$

•
$$g_1(z) = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} (k+1) p_{k+1} z^k = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} k p_k z^{k-1} = \frac{1}{\langle k \rangle} \frac{dg_0}{dz}$$

•
$$\langle k \rangle = g_0'(1)$$

•
$$g_1(z) = \frac{g_0'(z)}{g_0'(1)}$$

Graphical solution of function u

size of giant component

•
$$S = \phi[1 - g_0(u)]$$

generating function for degree distribution

•
$$g_0(z) = \sum_{k=0}^{\infty} p_k z^k$$

•
$$u = 1 - \phi + \phi g_1(u)$$

•
$$g_1(u) = \sum_{k=0}^{\infty} q_k u^k$$

total probability of not connecting to the giant component via vertex A

•
$$q_k = \frac{(k+1)p_{k+1}}{\langle k \rangle}$$

generating function for excess degree distribution

excess degree distribution

Graphical solution of function w

Compressed and shifted upward

nontrivial solution $-\phi + \phi g_1(u)$ graphically

• Solving u=1

$$\begin{cases} y = 1 - \phi + \phi g_1(u) \\ y = u \end{cases}$$

Trivial solution at u=1

$$-g_1(1) = 1 \rightarrow S_{\text{tre}} = 0$$

• When there is non there can be a giant cl

Critical occupation probability

Percolation threshold

•
$$\left[\frac{d}{du}\left(1-\phi+\phi g_{1}(u)\right)\right]_{u=1}^{\phi=\phi_{c}}$$

$$-\phi_{c} = \frac{1}{g'_{1}(1)}$$

$$-g'_{1}(1) = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} k(k+1) p_{k+1} = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} k(k-1) p_{k}$$

$$= \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle}$$

• $\phi_c = \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$: minimum fraction of vertices that must be present in the configuration model network for a giant component to exist

if $\langle k^2 \rangle \gg \langle k \rangle$, then ϕ_c is low and the network will have a giant cluster

Giant cluster of Poisson/power-law distribution

•
$$\phi_c = \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$$

- Poisson distribution : $p_k = e^{-c} \frac{c^k}{k!} \to \phi_c = \frac{1}{c}$
 - ¾ of the vertices have to be removed before the giant cluster is destroyed
- Power-law distribution : $\langle k^2 \rangle$ diverges for large networks $\rightarrow \phi_c = 0$
 - No matter how many vertices are removed, there will always be a giant cluster

disease spread out of control

Size of the giant cluster

- As well as percolation threshold, the size of the giant cluster also plays a role for assessing robustness of a network
- We can solve for u for some special cases
- A network with an exponential degree distribution

$$- p_{k} = (1 - e^{-\lambda})e^{-\lambda k}, \lambda > 0$$

$$- g_{0}(z) = \frac{e^{\lambda - 1}}{e^{\lambda - z}}, g_{1}(z) = \left(\frac{e^{\lambda - 1}}{e^{\lambda - z}}\right)^{2} \text{(p.468)}$$

$$- u = 1 - \phi + \phi g_{1}(u)$$

$$- u = 1 - \phi + \phi \left(\frac{e^{\lambda - 1}}{e^{\lambda - u}}\right)^{2}$$

$$- u(e^{\lambda} - u)^{2} - (1 - \phi)(e^{\lambda} - u)^{2} - \phi(e^{\lambda} - 1)^{2} = 0$$

Size of giant cluster (exponential degree distribution)

•
$$u(e^{\lambda} - u)^2 - (1 - \phi)(e^{\lambda} - u)^2 - \phi(e^{\lambda} - 1)^2 = 0$$

• u=1 is always a solution \rightarrow it must contain a factor of u-1

•
$$(u-1)[u^2 + (\phi - 2e^{\lambda})u + \phi - 2\phi e^{\lambda} + e^{2\lambda}] = 0$$

• $(u-1)[u^2+(\phi-2e^{\lambda})u+\phi-2\phi e^{\lambda}+e^{2\lambda}]=0$ This can became greater • $u=e^{\lambda}-\frac{1}{2}\phi-\sqrt{\frac{1}{4}\phi^2+\phi(e^{\lambda}-1)}$ than 1 for small ϕ

the other solution is greater than one so it cannot be probability u

•
$$S = \phi[1 - g_0(u)] = \phi \left[1 - \frac{2(e^{\lambda} - 1)}{\phi + \sqrt{\phi^2 + 4\phi(e^{\lambda} - 1)}}\right]$$

 $= \phi \left[1 - 2(e^{\lambda} - 1) \frac{\phi - \sqrt{\phi^2 + 4\phi(e^{\lambda} - 1)}}{\phi^2 - (\phi^2 + 4\phi(e^{\lambda} - 1))}\right] = \frac{3}{2}\phi - \sqrt{\frac{1}{4}\phi^2 + \phi(e^{\lambda} - 1)}$

Size of giant cluster (exponential degree distribution)

degree distribution)
 • When
$$u=1, u=e^{\lambda}-\frac{1}{2}\phi-\sqrt{\frac{1}{4}}\phi^2+\phi(e^{\lambda}-1)=1$$

•
$$e^{\lambda} - 1 - \frac{1}{2}\phi = \sqrt{\frac{1}{4}\phi^2 + \phi(e^{\lambda} - 1)}$$

•
$$\phi_c = \frac{1}{2}(e^{\lambda} - 1)$$
 percolation threshold

• If λ becomes large, ϕ_c can become greater than one

$$-\frac{1}{2}(e^{\lambda}-1)=1\rightarrow\lambda=\ln 3$$

- When $\lambda = 1/2$, $\phi_c = 0.324$...
 - Phase transition
 - Sharp transition is true in an infinite networks

When $\lambda > l\vec{n}\vec{3}$, the network has no giant component

Non uniform removal of vertices

- Vertices are removed randomly (previous discussion)
- High-degree vertices are removed → percolation will be quite different