Question 1

1)

```
No
Because: D + = \{D\}
Hence D \rightarrow A not \in F+
2)
X = \{A, B, C, D, I, J\} if the left-hand side of F is a super key.
A can be removed because BCDIJ+ = ABCDEGHIJ = R
B cannot be removed because CDIJ+ = ACDEGHIJ ≠ R
C can be removed because BDIJ+ = ABCDEGHIJ = R
D can be removed because BIJ+ = ABCDEGHIJ = R
I cannot be removed because BJ+ = BDGHJ \neq R
J cannot be removed because BI + = BI \neq R
Because C \rightarrow IJ
Hence BC+ = ABCDEGHIJ = R
AB/BC/BDI/BIJ are the candidate keys for R
3)
64
ABC
ABD
ABI
ABG
ABIJ
4)
Fm = \{AB \rightarrow C, C \rightarrow I, C \rightarrow J, J \rightarrow D, J \rightarrow H, J \rightarrow G, DI \rightarrow A, DI \rightarrow E\}
5)
2NF.
Because non-prime attribute E, G, H is fully functionally determined by prime attribute.
6)
Not dependency-preserving
Because R1 = \{ACE\}, R2 = \{BCDE\}, R3 = \{DJGHI\}, their FD set F1, F2, F3. (F1 U F2 U F3)<sup>+</sup> not
= F^{+}
```

7)

Not lossless-join

decomposition	Α	В	С	D	Е	G	Н	1	J
$R1 = \{ACE\}$	а		а		а				
$R2 = \{BCDE\}$		а	а	а	а				
$R_3 = \{DJGHI\}$				а		а	а	а	а

decomposition	А	В	С	D	Е	G	Н		J
$R1 = \{ACE\}$	а		а	b	а	а	а	b	р
$R2 = \{BCDE\}$	а	а	а	а	а	а	а	b	b
$R_3 = \{DJGHI\}$	b			а	b	а	а	а	а

8)

Step 1:

 $\mathsf{Fm} = \{\mathsf{AB} {\rightarrow} \mathsf{C}, \, \mathsf{C} {\rightarrow} \mathsf{I}, \, \mathsf{C} {\rightarrow} \mathsf{J}, \, \mathsf{J} {\rightarrow} \mathsf{D}, \, \mathsf{J} {\rightarrow} \mathsf{H}, \, \mathsf{J} {\rightarrow} \mathsf{G}, \, \mathsf{DI} {\rightarrow} \mathsf{A}, \, \mathsf{DI} {\rightarrow} \mathsf{E} \}$

Step 2:

because AB/BC/BDI/BIJ is candidate key, hence AB→C can be subset {ABC}

then because the left-hand of J \rightarrow D, J \rightarrow H, J \rightarrow G, DI \rightarrow A, DI \rightarrow E, C \rightarrow I, C \rightarrow J contains no A/B/C,

hence they can be subset {JD}, {JH}, {JG}, {DIA}, {DIE}

So the BCNF relations is {ABC}, {JD}, {JH}, {JG}, {DIA}, {DIE}, {CI}, {CJ}

Question 2

1)

T1 undo T2 redo

T3, T4 do nothing

2)

time	T1	T2	Т3	T4
1	R(B)			
2	R(A)			
3	W(B)			
4	W(A)			
5		R(B)		
6		R(A)		
7		W(B)		
8		R(A)		
9		W(A)		
10				R(A)
11				W(A)
12				R(B)
13				W(B)
14		R(B)		
15		W(B)		

4)

There is no way to construct a schedule whose wait-for graph contains cycles.

We have T1 and T2 read and write on B, we have potential to make T2 wait-for T1. We have T1 and T2 read and write on A, we have potential to make T1 wait-for T2. we cannot make both T2 wait-for T1 and T1 wait-for T2.

Question 3

1)

80

Because (5 * 5 * 4) - 20 = 80

2)

3)

