Clase 18 - Análisis Matemático 1 - LC: Análisis de funciones

Eugenia Díaz-Giménez

eugenia.diaz@unc.edu.ar

20 de Mayo de 2020

Índice

- 1 Repaso
 - Información a partir de f(x)
 - Información a partir de f'(x)
 - Información a partir de f''(x)
- 2 Análisis completo de $f(x) = -x^4 + 2x^2 + 3$
 - Análisis
 - Gráfico
- 3 Análisis completo de $f(x) = \frac{x^2+1}{x^2-1}$
 - Análisis
 - Gráfico

Repaso

Función f(x)

Dominio de f: el conjunto de valores x en los que la función está bien definida

$$Dom f = \{x \in \mathbb{R} / \exists f\}$$

Simetrías - Paridad de f:

$$\operatorname{si} f(-x) = f(x) \Rightarrow \operatorname{f par} \qquad \operatorname{si} f(-x) = -f(x) \Rightarrow \operatorname{f impar}$$

- Cruce del gráfico con los ejes coordenados (0, f(0)) cruce con el eje de las y; $(x_0, 0)$ cruce con el eje de las y (raíces)
- Asíntotas Verticales (en un punto x = a que NO pertenece al Dom f)

$$\lim_{x \to a+} f(x) = \pm \infty \qquad \qquad \text{o} \qquad \lim_{x \to a-} f(x) = \pm \infty$$

5 Asíntotas horizontales (comportamiento lejos) en y = L

$$\lim_{x \to +\infty} f(x) = L \qquad \text{o} \qquad \lim_{x \to -\infty} f(x) = L$$

Derivada primera de la función: f'(x)

Puntos críticos: Puntos del dominio de f en los que f'(x) = 0 o que la función no es derivable

$$P.C. = \{x \in Dom f / f'(x) = 0 \lor \nexists f'(x)\}$$

Crecimiento/Decrecimiento de la funión

$$\operatorname{si} f'(x) > 0 \operatorname{en} \mathbb{I} \Rightarrow f \operatorname{crece} \operatorname{en} \mathbb{I}$$

$$\operatorname{si} f'(x) < 0 \text{ en } \mathbb{I} \Rightarrow f \text{ decrece en } \mathbb{I}$$

- Máximos y mínimos locales
 - Si f crece a la izquierda de un punto crítico, y f decrece a la derecha del punto crítico, entonces es un punto de máximo local
 - Si f decrece a la izquierda de un punto crítico, y f crece a la derecha del punto crítico, entonces es un punto de mínimo local

Derivada segunda de la función: f''(x)

Concavidad hacia arriba y hacia abajo

si
$$f''(x) > 0$$
 en $\mathbb{I} \Rightarrow f$ concava hacia arriba en \mathbb{I}
si $f''(x) < 0$ en $\mathbb{I} \Rightarrow f$ concava hacia abajo en \mathbb{I}

Puntos de inflexión: son puntos en el dominio de f en los que cambia la concavidad de la función, pasa de cóncava a convexa, o viceversa.

$$P.I. = \{x_i \in Dom f \mid f \text{ es } \bigcup x_i \cap \forall f \text{ es } \bigcap x_i \bigcup \}$$

In Máximo y mínimo local con $f''(x_c)$ Si x_c es un P.C. y $f''(x_c) > 0 \Rightarrow x_c$ es mínimo local Si x_c es un P.C. y $f''(x_c) < 0 \Rightarrow x_c$ es máximo local

Resumen

Repaso

$$f(x) \begin{cases} Dom f \\ simetria \rightarrow opcional (Por impor) \\ cruce con los ejes $(0, f(0)) (x_0, 0) \rightarrow opcional \\ A.V.(\lim_{x \rightarrow a^{\pm}} = \pm \infty) \\ A.H.(\lim_{x \rightarrow \pm \infty} = L) \end{cases}$

$$f'(x) \begin{cases} P.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) \not\equiv) \end{cases}$$

$$f''(x) \begin{cases} F.C. (x_c \in Dom f / f'(x_c) = 0 \lor f'(x_c) =$$$$

Análisis completo de una función. Graficar.

$$f(x) = -x^4 + 2x^2 + 3$$

$$f'(x) = -4x^3 + 4x = -4x(x^2 - 1)$$

$$f''(x) = -12x^2 + 4$$

Info a partir de f

$$f(x) = -x^4 + 2x^2 + 3$$
 $f'(x) = -4x^3 + 4x$ $f''(x) = -12x^2 + 4$

- Dominio: El dominio son todos los reales porque es un polinomio
- Paridad: $f(-x) = -(-x)^4 + 2(-x)^2 + 3 = -x^4 + 2x^2 + 3 = f(x)$ f es par (simétrica con respecto al eie y)
- 3 Cruce con los ejes coordenados cruce con eje y: $f(0) = 3 \rightarrow (0,3)$

cruce con eje x (raíces):
$$0 = -x^4 + 2x^2 + 3$$
 $x^2 = z \rightarrow 0 = -z^2 + 2z + 3$

Baskhara:
$$z_{1,2} = \frac{-2 \pm 4}{-2}$$
 $z_1 = -1$ $z_2 = 3$ $x^2 = 3 \rightarrow x_1 = \sqrt{3}, x_2 = -\sqrt{3}$

$$\left[(-\sqrt{3},0)y(\sqrt{3},0) \right]$$

- $\overline{\mathsf{A}}.\mathsf{V}.:$ No posee porque tiene dominio $\mathbb R$
- 5 A.H:

$$\lim_{x \to +\infty} -x^4 + 2x^2 + 12 = \lim_{x \to +\infty} \underbrace{x^4}_{\to \infty} \underbrace{\left(-1 + \frac{2}{x^2} + \frac{12}{x^4}\right)}_{\to -1} = -\infty$$

$$\lim_{x \to -\infty} -x^4 + 2x^2 + 12 = \lim_{x \to -\infty} \underbrace{x^4}_{\to \infty} \underbrace{\left(-1 + \frac{2}{x^2} + \frac{12}{x^4}\right)}_{= -\infty} = -\infty$$

$$f(x) = -x^4 + 2x^2 + 3$$
 $f'(x) = -4x^3 + 4x$ $f''(x) = -12x^2 + 4$

Dom $f \mathbb{R}$		
f es par		
cruce con eje x $A = (-\sqrt{3}, 0)$ y $B = (\sqrt{3}, 0)$		
cruce con eje y $C = (0,3)$		
No tiene A.V		
No tiene A.H		
$lim(x \to \infty) = -\infty = lim(x \to -\infty)$		

Info a partir de f'

$$f(x) = -x^4 + 2x^2 + 3$$
 $f'(x) = -4x^3 + 4x$ $f''(x) = -12x^2 + 4$

■ P.C.:
$$x_c \in Dom f / f'(x_c) = 0$$
 o $f'(x_c) \nexists$
 $Dom f' = \mathbb{R}$ f es derivable en todo su dominio
 $f'(x) = 0 = -4x(x^2 - 1) = -4x(x - 1)(x + 1) \Rightarrow x_c = 0, x_c = 1, x_c = -1$

2 Crecimiento/decrecimiento: signos de la derivada 1ra $-4x(x-1)(x+1) > 0 \lor -4x(x-1)(x+1) < 0$

\ /\				
x_c ; $x \notin Dom$	$(-\infty, -1)$	(-1,0)	(0, 1)	$(1, +\infty)$ x=1000
	x=-1000	x=-0.5	x=0.5	x=1000
-4x	+	+	_	_
(x-1)	_	_	_	+
(x + 1)	_	+	+	+
f'(x)	+	_	+	_
f(x)	7	>	7	×

Máximos y mínimos locales (veo comportamiento de f a derecha e izq de P.C.) Máximos locales en $x_c = -1$, $f(x_c) = 4$ y en $x_c = 1$, $f(x_c) = 4$ (es una función par!) Mínimo local en $x_c = 0$, $f(x_c) = 3$

$$f(x) = -x^4 + 2x^2 + 3$$
 $f'(x) = -4x^3 + 4x$ $f''(x) = -12x^2 + 4$

$Domf\ \mathbb{R}$			
f es par			
No tiene A.V			
No tiene A.H			
$lim(x \to \infty) = -\infty = lim(x \to -\infty)$			
cruce con eje x: $A = (-\sqrt{3}, 0)$ y $B = (\sqrt{3}, 0)$			
cruce con eje y: $C = (0,3)$			

f crece
$$(-\infty, -1) \cup (0, 1)$$

f decrece $(-1, 0) \cup (1, +\infty)$
máx local: $P = (-1, 4)$ y $Q = (1, 4)$
mín local: $R = (0, 3)$

Info a partir de f"

$$f(x) = -x^4 + 2x^2 + 3$$
 $f'(x) = -4x^3 + 4x$ $f''(x) = -12x^2 + 4$

Buscamos las raíces de f" para definir intervalos

$$f''(x) = 0 = -12x^2 + 4 = -12\left(x^2 - \frac{4}{12}\right) = -12\left(x^2 - \frac{1}{3}\right) = -12\left(x - \sqrt{\frac{1}{3}}\right) \cdot \left(x + \sqrt{\frac{1}{3}}\right) \Rightarrow x_1 = -\sqrt{\frac{1}{3}}, x_2 = \sqrt{\frac{1}{3}}$$

Concavidad hacia arriba/abajo: signos de la derivada 2da

$$-12\left(x-\sqrt{\frac{1}{3}}\right)\cdot\left(x+\sqrt{\frac{1}{3}}\right)>0 \vee -12\left(x-\sqrt{\frac{1}{3}}\right)\cdot\left(x+\sqrt{\frac{1}{3}}\right)<0$$

$x_r; x \not\in Dom$	$\begin{pmatrix} -\infty, -\frac{\sqrt{3}}{3} \\ x=-1000 \end{pmatrix}$	$\begin{pmatrix} -\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \end{pmatrix}$ $x=0$	$\left(\frac{\sqrt{3}}{3}, +\infty\right)$ $x=1000$
$-12.\left(x+\frac{\sqrt{3}}{3}\right)$	+	_	_
$\left(x-\frac{\sqrt{3}}{3}\right)$	_	_	+
$f^{\prime\prime}(x)$	_	+	_
f(x)	\cap	U	\cap

3 Puntos de inflexión (puntos del dominio en que cambia la concavidad)

$$x_i = -\frac{\sqrt{3}}{3}, f(x_i) = -\left(-\frac{\sqrt{3}}{3}\right)^4 + 2\left(-\frac{\sqrt{3}}{3}\right)^2 + 3 = \frac{5}{9} + 3 = \frac{32}{9}$$
$$x_i = \frac{\sqrt{3}}{3}, f(x_i) = -\left(\frac{\sqrt{3}}{3}\right)^4 + 2\left(\frac{\sqrt{3}}{3}\right)^2 + 3 = \frac{5}{9} + 3 = \frac{32}{9}$$

$$f(x) = -x^4 + 2x^2 + 3$$
 $f'(x) = -4x^3 + 4x$ $f''(x) = -12x^2 + 4$

Dom $f \mathbb{R}$		
fooner		
f es par		
No tiene A.V		
Ni. C A II		
No tiene A.H		
$lim(x \to \infty) = -\infty = lim(x \to -\infty)$		
cruce con eje x: $A = (-\sqrt{3}, 0)$ y $B = (\sqrt{3}, 0)$		
cruce con eje y: $C = (0,3)$		

f crece
$$(-\infty, -1) \cup (0, 1)$$

f decrece $(-1, 0) \cup (1, +\infty)$
máx local: $P = (-1, 4)$ y $Q = (1, 4)$
mín local: $R = (0, 3)$

f cóncava abajo
$$(-\infty, -\frac{\sqrt{3}}{3}) \cup (\frac{\sqrt{3}}{3}, +\infty)$$

f cóncava arriba $(-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3})$
P.I.: $S = (-\frac{\sqrt{3}}{3}, \frac{32}{9})$ y $T = (\frac{\sqrt{3}}{3}, \frac{32}{9})$

Análisis completo de una función. Graficar.

$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$

$$f'(x) = \frac{2x \cdot (x^2 - 1) - (x^2 + 1) \cdot 2x}{(x^2 - 1)^2} = \frac{2x \cdot (x^2 - 1 - x^2 - 1)}{(x^2 - 1)^2} = \frac{-4x}{(x^2 - 1)^2}$$

$$f''(x) = \frac{-4 \cdot (x^2 - 1)^2 - (-4x) \cdot 2(x^2 - 1) \cdot 2x}{(x^2 - 1)^4} = \frac{-4(x^2 - 1) \cdot (x^2 - 1 - 4x^2)}{(x^2 - 1)^4}$$

$$=\frac{-4(-3x^2-1)}{(x^2-1)^3}=\frac{12x^2+4}{(x^2-1)^3}$$

Info a partir de f

$$f(x) = \frac{x^2+1}{x^2-1}$$
 $f'(x) = \frac{-4x}{(x^2-1)^2}$ $f''(x) = \frac{12x^2+4}{(x^2-1)^3}$

- Dominio: $Dom f = \{x \in \mathbb{R} \mid x^2 1 \neq 0\}$ $x^2 - 1 = (x - 1)(x + 1) = 0 \Rightarrow x_1 = -1, x_2 = 1$ $Dom f = \mathbb{R} - \{-1, 1\}$
 - $-1 (\lambda 1)(\lambda + 1) 0 \rightarrow \lambda_1 -1, \lambda_2 1$ 2
 2
- 2 Paridad: $f(-x) = \frac{(-x)^2 + 1}{(-x)^2 1} = \frac{x^2 + 1}{x^2 1} = f(x)$ f es par (simétrica con respecto al eje y)
- Cruce con los ejes coordenados: cruce con eje y: $f(0) = -1 \rightarrow (0, -1)$

cruce con eje x (raíces): $0 = x^2 + 1$ No tiene raices reales

4 A.V.:
$$\lim_{\substack{x \to -1^- \\ x < -1 \to x + 1 < 0}} \frac{x^2 + 1}{(x - 1)(x + 1)} = +\infty \qquad \lim_{\substack{x \to -1^+ \\ x > -1 \to x + 1 > 0}} \frac{x^2 + 1}{(x - 1)(x + 1)} = -\infty$$

$$\lim_{\substack{x \to 1^{-} \\ (x \to 1 \to x - 1 < 0)}} \frac{x^{2} + 1}{(x - 1)(x + 1)} = -\infty \qquad \lim_{\substack{x \to 1^{+} \\ (x \to 1 \to x - 1 > 0)}} \frac{x^{2} + 1}{(x - 1)(x + 1)} = +\infty$$

$$x = -1 \operatorname{es} A.V. y x = 1 \operatorname{es} A.V.$$

5 A.H:
$$\lim_{x \to +\infty} \frac{x^2 + 1}{x^2 - 1} = \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{1}{x^2}\right)}{x^2 \left(1 - \frac{1}{x^2}\right)} = 1$$
 $\lim_{x \to -\infty} \frac{x^2 \left(1 + \frac{1}{x^2}\right)}{x^2 \left(1 - \frac{1}{x^2}\right)} = 1$

$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 $f'(x) = \frac{-4x}{(x^2 - 1)^2}$ $f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3}$

$Dom f = \mathbb{R} - \{-1, 1\}$
f es par
No tiene cruce con eje x
cruce con eje y $A = (0, -1)$
A.V en x=-1 y en x=1
$\lim(-1^{-}) = +\infty \text{ y } \lim(-1^{+}) = -\infty$
$lim(1^-) = -\infty$ y $lim(1^+) = +\infty$
A.H en y=1 (en $+\infty$ y $-\infty$)

$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 $f'(x) = \frac{-4x}{(x^2 - 1)^2}$ $f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3}$

- $\blacksquare P.C.: x_c \in Dom f / f'(x_c) = 0 \text{ o } f'(x_c) \not\exists$ Dom f' = Dom f; f es derivable en el dominio de f $f'(x) = 0 = -4x \Rightarrow x_c = 0$
- Crecimiento/decrecimiento: signos de la derivada 1ra

$$\frac{-4x}{(x^2-1)^2} > 0 \lor \frac{-4x}{(x^2-1)^2} < 0$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (0, 1) \quad (1, +\infty)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (-1, 0) \quad (-1, 0)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (-1, 0)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-1, 0) \quad (-\infty, -1)$$

$$x_c; x \notin Dom \quad (-\infty, -1) \quad (-\infty, -1) \quad (-\infty, -1)$$

Máximos y mínimos locales (veo comportamiento de f a derecha e izq de P.C.) Máximo local en $x_c = 0$

$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 $f'(x) = \frac{-4x}{(x^2 - 1)^2}$ $f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3}$

$$Dom f = \mathbb{R} - \{-1, 1\}$$

$$f \text{ es par}$$
No tiene cruce con eje x
$$\text{cruce con eje y } A = (0, -1)$$

$$A.V \text{ en } x=-1 \text{ y en } x=1$$

$$lim(-1^-) = +\infty \text{ y } lim(-1^+) = -\infty$$

$$lim(1^-) = -\infty \text{ y } lim(1^+) = +\infty$$

$$A.H \text{ en } y=1 \text{ (en } +\infty \text{ y } -\infty)$$

f crece
$$(-\infty, -1) \cup (-1, 0)$$

f decrece $(0, 1) \cup (1, +\infty)$
máx local: $P = (0, -1)$

$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 $f'(x) = \frac{-4x}{(x^2 - 1)^2}$ $f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3}$

- Buscamos las raíces de f'' para definir intervalos $f''(x) = 0 = 12x^2 + 4 \Rightarrow x^2 = -\frac{4}{12} \Rightarrow NO$ tiene raíces
- Concavidad hacia arriba/abajo: signos de la derivada 2da

$$\begin{aligned} \frac{12x^2+4}{(x^2-1)^3} &> 0 \lor \frac{12x^2+4}{(x^2-1)^3} < 0 \\ \frac{12x^2+4}{(x^2-1)^2} \cdot \frac{1}{(x^2-1)} &= \boxed{\frac{12x^2+4}{(x^2-1)^2}} \cdot \frac{1}{(x-1)(x+1)} \end{aligned}$$

$$x_r; x \notin Dom$$
 $(-\infty, -1)$ $(-1, 1)$ $(1, +\infty)$ $(-1, 1)$

	X=-1000	X=U	X=1000
$\frac{12x^2+4}{(x^2-1)^2}$	+	+	+
x + 1	_	+	+
<i>x</i> − 1	_	_	+
$f^{\prime\prime}(x)$	+	_	+
f(x)	U	\cap	U

Puntos de inflexión (puntos del dominio en que cambia la concavidad) NO existen

$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 $f'(x) = \frac{-4x}{(x^2 - 1)^2}$ $f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3}$

$$Dom f = \mathbb{R} - \{-1, 1\}$$

$$f \text{ es par}$$
No tiene cruce con eje x
$$cruce \text{ con eje y } A = (0, -1)$$

$$A.V \text{ en } x=-1 \text{ y en } x=1$$

$$lim(-1^-) = +\infty \text{ y } lim(-1^+) = -\infty$$

$$lim(1^-) = -\infty \text{ y } lim(1^+) = +\infty$$

$$A.H \text{ en } v=1 \text{ (en } +\infty \text{ y } -\infty)$$

f crece
$$(-\infty, -1) \cup (-1, 0)$$

f decrece $(0, 1) \cup (1, +\infty)$
máx local: $P = (0, -1)$

f cóncava abajo (-1,1)f cóncava arriba $(-\infty,-1)\cup(1,+\infty)$ P.I.: No hay

