Further Issues Using OLS with Time Series Data

Lecture 10/A

- Unfortunately, the usual inference methods t and F statistics, confidence intervals are much more fragile for TS applications than for CS applications.
- In the CS case, with even moderate sample sizes, we can entirely dispense with the normality assumption in the CS case and use t and F statistics as approximately valid.
- We also know how to adjust our statistics for heteroskedasticity of unknown form.
- When we drop normality for TS applications, we must impose assumptions on the underlying time series processes for $\{x_t\}$ and $\{u_t\}$.
- Large-sample analysis is much harder with TS data is that LLN and CLT do not always hold for the usual statistics. More easy with CS data and SRS.

The assumptions used so far seem to be too restricitive

- Strict exogeneity, homoscedasticity, and no serial correlation are very demanding requirements, especially in the time series context
- Statistical inference rests on the validity of the normality assumption
- Much weaker assumptions are needed if the sample size is large
- A key requirement for large sample analysis of time series is that the time series in question are stationary and weakly dependent

Stationary time series

 Loosely speaking, a time series is stationary if its stochastic properties and its temporal dependence structure do not change over time

Stationary stochastic processes

A stochastic process $\{x_t: t=1,2,\dots\}$ is <u>stationary</u>, if for every collection of indices $1 \le t_1 \le t_2 \le \dots \le t_m$ the joint distribution of $(x_{t_1}, x_{t_2}, \dots, x_{t_m})$ is the same as that of $(x_{t_1+h}, x_{t_2+h}, \dots, x_{t_m+h})$ for all integers $h \ge 1$.

Covariance stationary processes

A stochastic process $\{x_t : t = 1, 2, ...\}$ is <u>covariance stationary</u>, if its expected value, its variance, and its covariances are constant over time:

1)
$$E(x_t) = \mu$$
, 2) $Var(x_t) = \sigma^2$, and 3) $Cov(x_t, x_{t+h}) = f(h)$.

Weakly dependent time series

A stochastic process $\{x_t : t = 1, 2, ...\}$ is <u>weakly dependent</u>, if x_t is "almost independent" of x_{t+h} if h grows to infinity (for all t).

Discussion of the weak dependence property

- An implication of weak dependence is that the correlation between x_t and x_{t+h} must converge to zero if h grows to infinity
- For the LLN and the CLT to hold, the individual observations must not be too strongly related to each other; in particular their relation must become weaker (and this fast enough) the farther they are apart
- Note that a series may be nonstationary but weakly dependent

- Examples for weakly dependent time series
- Moving average process of order one (MA(1))

$$x_t = e_t + \alpha_1 e_{t-1}$$
 The process is a short moving average of an i.i.d. series e_t

The process is weakly dependent because observations that are more than one time period apart have nothing in common and are therefore uncorrelated.

Autoregressive process of order one (AR(1))

$$y_t = \rho_1 y_{t-1} + e_t$$
 The process carries over to a certain extent the value of the previous period (plus random shocks from an i.i.d. series e_t)

$$\Rightarrow Corr(y_t, y_{t+h}) = \rho_1^h$$

If the stability condition $|\rho_1| < 1$ holds, the process is weakly dependent because serial correlation converges to zero as the distance between observations grows to infinity.

- Asymptotic properties of OLS
- Assumption TS.1' (Linear in parameters)
 - Same as assumption TS.1 but now the dependent and independent variables are assumed to be <u>stationary</u> and <u>weakly dependent</u>
- Assumption TS.2' (No perfect collinearity)
 - Same as assumption TS.2
- Assumption TS.3' (Zero conditional mean)
 - Now the explanatory variables are assumed to be only contemporaneously exogenous rather than strictly exogenous, i.e.

$$E(u_t|\mathbf{x}_t) = 0$$
 The explanatory variables of the same period are uninformative about the mean of the error term

Theorem 11.1 (Consistency of OLS)

$$TS.1'-TS.3'$$
 \Rightarrow $plim \hat{\beta}_j = \beta_j, \quad j = 0, 1, \dots, k$

<u>Important note</u>: For consistency it would even suffice to assume that the explanatory variables are merely contemporaneously *uncorrelated* with the error term.

Why is it important to relax the strict exogeneity assumption?

- Strict exogeneity is a serious restriction beause it rules out all kinds of dynamic relationships between explanatory variables and the error term
- In particular, it rules out feedback from the dep. var. on future values of the explanat. variables (which is very common in economic contexts)
- Strict exogeneity precludes the use of lagged dep. var. as regressors

Why do lagged dependent variables violate strict exogeneity?

$$y_t = \beta_0 + \beta_1 y_{t-1} + u_t$$
 This is the simplest possible regression model with a lagged dependent variable

Contemporanous exogeneity: $E(u_t|y_{t-1}) = 0$

Strict exogeneity:
$$E(u_t|y_0,y_1,\ldots,y_{n-1})=0$$
 Strict exogeneity would imply

Strict exogeneity would imply that the error term is uncorrelated with all y_t , t=1, ..., n-1

This leads to a contradiction because:

$$Cov(y_t, u_t) = \beta_1 Cov(y_{t-1}, u_t) + Var(u_t) > 0$$

- OLS estimation in the presence of lagged dependent variables
 - Under contemporaneous exogeneity, OLS is consistent but biased

Assumption TS.4' (Homoscedasticity)

$$Var(u_t|\mathbf{x}_t) = Var(u_t) = \sigma^2$$
 The errors are contemporaneously homoscedastic

Assumption TS.5' (No serial correlation)

$$Corr(u_t, u_s | \mathbf{x}_t, \mathbf{x}_s) = 0, \ t \neq s$$
 Conditional on the explanatory variables in periods t and s, the errors are uncorrelated

- Theorem 11.2 (Asymptotic normality of OLS)
 - Under assumptions TS.1′ TS.5′, the OLS estimators are asymptotically normally distributed. Further, the usual OLS standard errors, t-statistics and F-statistics are asymptotically valid.

- Using trend-stationary series in regression analysis
 - Time series with deterministic time trends are nonstationary
 - If they are stationary around the trend and in addition weakly dependent, they are called trend-stationary processes
 - Trend-stationary processes also satisfy assumption TS.1'
- Using highly persistent time series in regression analysis
 - Unfortunately many economic time series violate weak dependence
 - In this case OLS methods are generally invalid (Spurious Regression)
 - In some cases transformations to weak dependence are possible

Random walks

$$y_t = y_{t-1} + e_t$$

The random walk is called random walk because it wanders from the previous position y_{t-1} by an i.i.d. random amount e_t

$$\Rightarrow y_t = (y_{t-2} + e_{t-1}) + e_t = \dots = e_t + e_{t-1} + \dots + e_1 + y_0$$

The value today is the accumulation of all past shocks plus an initial value. This is the reason why the random walk is highly persistent: The effect of a shock will be contained in the series forever.

$$E(y_t) = E(y_0)$$

$$Var(y_t) = \sigma_e^2 t$$

$$Corr(y_t, y_{t+h}) = \sqrt{t/(t+h)}$$

The random walk is <u>not covariance stationary</u> because its variance and its covariance depend on time.

It is also <u>not weakly dependent</u> because the correlation between observations vanishes very slowly and this depends on how large t is.

Examples for random walk realizations

A random walk is a special case of a <u>unit root process</u>.

Unit root processes are defined as the random walk but e_t may be an arbitrary weakly dependent process.

From an economic point of view it is important to know whether a time series is highly persistent. In highly persistent time series, shocks or policy changes have lasting/permanent effects, in weakly dependent processes their effects are transitory.

U.S. Economic Time Series (Examples)

Billions of 1987 U.S. Dollars Quarterly period 1970-1991 (88 obs)

GDP: Gross Domestic Product

PDI: Personal Disposable Income

PCE: Personal Consumption Expenditure

- <u>Transformations on highly persistent time series</u>
- Order of integration
 - Weakly dependent time series are integrated of order zero (= I(0))
 - If a time series has to be differenced one time in order to obtain a weakly dependent series, it is called integrated of order one (= I(1))
- **Examples for I(1) processes**

$$y_t = y_{t-1} + e_t \Rightarrow \Delta y_t = y_t - y_{t-1} = e_t$$
 resulting series are weakly dependent (because e_t is weakly dependent). $\log(y_t) = \log(y_{t-1}) + e_t \Rightarrow \Delta \log(y_t) = e_t$

After differencing, the

Reading

- Chapter 11
- Sections 11.1-11.3