МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ по лабораторной работе 'A', вариант - 24 *Теория автоматического управления*

по теме: ЛИНЕЙНО-КВАДРАТИЧНЫЕ РАДОСТИ

Студент:

Группа R3336 Поляков А.А.

Предподаватель:

 κ .т.н., доцент Π ашенко A.B.

Санкт-Петербург 2025

СОДЕРЖАНИЕ

1	ИССЛЕДОВАНИЕ LQR			3
	1.1	Условие задачи		
	1.2	Решение задачи		4
		1.2.1	Исследование управляемости системы	4
		1.2.2	Первый набор	4
		1.2.3	Второй набор	7
		1.2.4	Третий набор	9
		1.2.5	Четвертый набор	11
		1.2.6	Общее сравнение	13
		1.2.7	Вывод	14
2	ИССЛЕДОВАНИЕ LQE/ФИЛЬТРА КАЛМАНА			15
	2.1	Условие задачи		15
	2.2 Решение задачи		ие задачи	16
		2.2.1	Исследование наблюдаемости	16
		2.2.2	Первый набор	17
		2.2.3	Второй набор	21
		2.2.4	Третий набор	23
		2.2.5	Четвертый набор	26
		2.2.6	Вывод	28
3	СИНТЕЗ LQG			29
	3.1	Условие задачи		29
	3.2	Решение задачи		29
		3.2.1	Исследование управляемости системы	30
		3.2.2	Синтез LQD	31
		3.2.3	Вывод	34
4	ОБШИЕ ВЫВОЛЫ			

1 ИССЛЕДОВАНИЕ LQR

1.1 Условие задачи

Рассмотреть систему:

$$\dot{x} = Ax + Bu, \qquad x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

и выполнить следующие шаги:

- Проверить систему на стабилизируемость.
- Построить схему моделирования системы, замкнутой регулятором u = Kx.
- Задаться подходящими значениями матриц $Q^{\square}\succeq 0$ и $R^{\square}\succ 0$ и значением параметра $\alpha>0$ и сформировать четыре набора пар матриц (Q,R):
 - (Q,R);
 - $-(\alpha Q,R);$
 - $-(Q,\alpha R);$
 - $(\alpha Q, \alpha R)$;
- Для каждой из пар значений матриц (Q,R) синтезировать регулятор, минимизирующий функционал качества путём решения матричного уравнения Риккати для $\nu=1$:
 - Найти соответствующую матрицу регулятора K, обеспечивающую миниминацию функционала качества.
 - Вычислить соответствующее минимизированное значение функционала качества

$$J_{min} = x_0^T P x_0$$

- Выполнить компьютерное моделирование замкнутой системы.
- Сравнить полученные результаты для различных пар (Q,R), сделать выводы.

1.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} 12 & -1 & 14 \\ 6 & 0 & 6 \\ -6 & -2 & -8 \end{bmatrix} \qquad B = \begin{bmatrix} 11 \\ 7 \\ -7 \end{bmatrix}$$

Зададимся значениями матриц и параметра, на основе их сформируем четыре набора пар матриц (Q,R):

$$\alpha = 20,$$
 $Q = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix},$ $R = 2$

1.2.1 Исследование управляемости системы

Найдём собственные числа матрицы A:

$$\lambda_{1,2} = 3 \pm 3i, \qquad \lambda_3 = -2$$

Воспользуемся результатами из прошлой работы. Система будет не полностью управляемой, но стабилизируемой, всю малину портит неуправляемое собственное число $\lambda_3=-2$, но оно устойчивое.

1.2.2 Первый набор

$$Q = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \qquad R = 2$$

Синтезируем регулятор, минимизирующий функционал качества:

$$J = \int_0^\infty (x^T(t)Qx(t) + u^T(t)Ru(t))dt$$

путем решения матричного уравнения Риккати при $\nu=1$:

$$A^{T}P + PA + Q - \nu PBR^{-1}B^{T}P = 0, \qquad K = -R^{-1}B^{T}P$$

Положительно определённую матрицу P мы сможем получить при выполнении следующих условий:

$$-Q \succeq 0, R \succ 0$$

- -(A,B) стабилизируемая пара
- $-\;(Q,A)$ наблюдаемая пара

Получим следующую матрицу регулятора K, обеспечивающую минимизацию функционала качества:

$$K = \begin{bmatrix} 10.42 & -10.13 & 10.12 \end{bmatrix}$$

Получим следующее минимизированное значение функционала качества:

$$J_{min} = x_0^T P x_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}^T \begin{bmatrix} 48.61 & -37.22 & 42.14 \\ -37.22 & 29.40 & -31.98 \\ 42.14 & -31.98 & 37.13 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 61.02$$

Рисунок 1 — Сигнал управления, LQR-регулятор (Q, R)

Рисунок 2 — Состояние системы, LQR-регулятор (Q,R)

Рисунок 3 — Экспериментальное значение функционала качества, LQR-регулятор (Q,R)

1.2.3 Второй набор

$$\alpha Q = \begin{bmatrix} 60 & 0 & 0 \\ 0 & 60 & 0 \\ 0 & 0 & 60 \end{bmatrix}, \qquad R = 2$$

По аналогии с первым пунктом, получим следующую матрицу регулятора K, обеспечивающую минимизацию функционала качества:

$$K = \begin{bmatrix} 22.24 & -20.51 & 21.12 \end{bmatrix}$$

Получим следующее минимизированное значение функционала качества:

$$J_{min} = x_0^T P x_0 = 929$$

Рисунок 4 — Сигнал управления, LQR-регулятор $(\alpha Q, R)$

Рисунок 5 — Состояние системы, LQR-регулятор $(\alpha Q,R)$

Рисунок 6 — Экспериментальное значение функционала качества, LQR-регулятор $(\alpha Q,R)$

1.2.4 Третий набор

$$Q = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \qquad \alpha R = 40$$

По аналогии с первым пунктом, получим следующую матрицу регулятора K, обеспечивающую минимизацию функционала качества:

$$K = \begin{bmatrix} 5.39 & -5.66 & 5.28 \end{bmatrix}$$

Получим следующее минимизированное значение функционала качества:

$$J_{min} = x_0^T P x_0 = 233$$

Рисунок 7 — Сигнал управления, LQR-регулятор $(\alpha Q, R)$

Рисунок 8 — Состояние системы, LQR-регулятор $(\alpha Q,R)$

Рисунок 9 — Экспериментальное значение функционала качества, LQR-регулятор $(\alpha Q,R)$

1.2.5 Четвертый набор

$$\alpha Q = \begin{bmatrix} 60 & 0 & 0 \\ 0 & 60 & 0 \\ 0 & 0 & 60 \end{bmatrix}, \qquad \alpha R = 40$$

По аналогии с первым пунктом, получим следующую матрицу регулятора K, обеспечивающую минимизацию функционала качества:

$$K = \begin{bmatrix} 10.42 & -10.13 & 10.12 \end{bmatrix}$$

Получим следующее минимизированное значение функционала качества:

$$J_{min} = x_0^T P x_0 = 1220$$

Рисунок 10 — Сигнал управления, LQR-регулятор ($\alpha Q, R$)

Рисунок 11 — Состояние системы, LQR-регулятор $(\alpha Q,R)$

Рисунок 12 — Экспериментальное значение функционала качества, LQR-регулятор $(\alpha Q,R)$

1.2.6 Общее сравнение

Рисунок 13 — Сравнение функционалов качества, LQR-регуляторы

Рисунок 14 — Сравнение управлений, LQR-регулятор

Можно заметить, что при бОльших требованиях к функционалу качества - когда мы требуем скорость побольше, или ставим штраф на управление больше, то в таких случаях он будет увеличиваться, что и прослеживается при обзоре. В случае обзора графиков управления - при выставлении большого штрафа мы действительно уменьшаем управление по норме. Отдельного внимания заслуживает то, что коэффициенты регулятора совпали в 1-м и 4-м случае, хотя начальные параметры матриц отличаются на заметный коэффициент α .

1.2.7 Вывод

В этом задании мы синтезировали LQR-регулятор, минимизировав функционал качества, который мы потребовали у регулятора. Данный регулятор является лучшим в смысле требований по критериям качества (скорость/затраты). Регулятор отработал как и ожидалось.

2 ИССЛЕДОВАНИЕ LQE/ФИЛЬТРА КАЛМАНА

2.1 Условие задачи

Рассмотреть систему:

$$\begin{cases} \dot{x} = Ax + Bu + f \\ y = Cx + \xi \end{cases}$$

и в нашем случае (f,ξ) - гауссовский белый шум, выполнить следующие шаги:

- Проверить систему на обнаруживаемость.
- Построить схему моделирования системы с наблюдателем состояния $\dot{\hat{x}} = A\hat{x} + L(C\hat{x} y)$
- Задаться подходящими значениями матриц $Q^* \succeq 0$ и $R^* \succ 0$ и значением параметра $\alpha > 0$ и сформировать четыре набора пар матриц (Q,R):
 - -(Q,R);
 - $-(\alpha Q,R);$
 - $-(Q, \alpha R);$
 - $-(\alpha Q, \alpha R);$
- Для каждой из пар значений матриц (Q,R) синтезировать наблюдатель, минимизирующий «критерий доверия».
 - Найти соответствующую матрицу наблюдателя L, обеспечивающую минимизацию функционала качества.
 - Выполнить компьютерное моделирование.
- Сравнить полученные результаты для различных пар (Q,R), сделать выводы.

2.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} -35 & 11 & 6 & 11 \\ -56 & 17 & 10 & 18 \\ -22 & 7 & 5 & 6 \\ -42 & 12 & 10 & 13 \end{bmatrix} \qquad C = \begin{bmatrix} -1 & 0 & 0 & 1 \end{bmatrix}$$

2.2.1 Исследование наблюдаемости

Найдём собственные числа матрицы A:

$$\sigma(A) = \{\pm 3i, \pm 1i\}$$

Воспользуемся критерием Калмана, система окажется полностью наблюдаемой:

$$rank(V) = rank\begin{pmatrix} -1 & 0 & 0 & 1 \\ -7 & 1 & 4 & 2 \\ 17 & -8 & 8 & -9 \\ 55 & -1 & -28 & -26 \end{pmatrix}) = 4 = n$$

Построим схему:

Рисунок 15 — Модель с фильтром калмана

В качестве случайных сигналов $f(t), \xi(t)$ возьмём диспресии у шумов:

$$\sigma(f) = 4, \qquad \sigma(\xi) = 7$$

Зададимся значениями матриц и параметра, на основе их сформируем четыре набора пар матриц (Q,R):

$$\alpha = 15,$$
 $Q = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix},$ $R = 4$

2.2.2 Первый набор

$$Q = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \qquad R = 4$$

Синтезируем регулятор, минимизирующий функционал критерий доверия:

$$J = \int_0^\infty (f^T(t)Q^{-1}f(t) + \xi^T(t)R^{-1}\xi(t))dt$$

путем решения матричного уравнения Риккати при $\nu=1$:

$$AP + PA^{T} + Q - \nu PC^{T}R^{-1}CP = 0, \qquad L = -PC^{T}R^{-1}$$

Положительно определённую матрицу P мы сможем получить при выполнении следующих условий:

- $Q \succeq 0, R \succ 0$
- -(C,A) обнаруживаемая пара
- $-\ (A,Q)$ управляемая пара

Получим следующую матрицу коррекции L, обеспечивающую минимизацию функционала качества:

$$L = \begin{bmatrix} -9.28 \\ -14.98 \\ -7.54 \\ -12.86 \end{bmatrix}$$

Рисунок 16 — Состояние системы и фильтр Калмана

Рисунок 17 — Состояние системы и фильтр Калмана

Рисунок 18 — Состояние системы и фильтр Калмана

Рисунок 19 — Состояние системы и фильтр Калмана

2.2.3 Второй набор

$$Q = \begin{bmatrix} 30 & 0 & 0 & 0 \\ 0 & 30 & 0 & 0 \\ 0 & 0 & 30 & 0 \\ 0 & 0 & 0 & 30 \end{bmatrix}, \qquad R = 4$$

Аналогично прошлым пунктам, получим следующую матрицу коррекции L, обеспечивающую минимизацию функционала качества:

$$L = \begin{bmatrix} -16.53 \\ -27.11 \\ -17.35 \\ -25.37 \end{bmatrix}$$

Рисунок 20 — Состояние системы и фильтр Калмана

Рисунок 21 — Состояние системы и фильтр Калмана

Рисунок 22 — Состояние системы и фильтр Калмана

Рисунок 23 — Состояние системы и фильтр Калмана

2.2.4 Третий набор

$$Q = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \qquad R = 60$$

Аналогично прошлым пунктам, получим следующую матрицу коррекции L, обеспечивающую минимизацию функционала качества:

$$L = \begin{bmatrix} -3.49 \\ -5.57 \\ -2.56 \\ -4.6 \end{bmatrix}$$

Рисунок 24 — Состояние системы и фильтр Калмана

Рисунок 25 — Состояние системы и фильтр Калмана

Рисунок 26 — Состояние системы и фильтр Калмана

Рисунок 27 — Состояние системы и фильтр Калмана

2.2.5 Четвертый набор

$$Q = \begin{bmatrix} 30 & 0 & 0 & 0 \\ 0 & 30 & 0 & 0 \\ 0 & 0 & 30 & 0 \\ 0 & 0 & 0 & 30 \end{bmatrix}, \qquad R = 60$$

Аналогично прошлым пунктам, получим следующую матрицу коррекции L, обеспечивающую минимизацию функционала качества:

$$L = \begin{bmatrix} -9.28 \\ -14.98 \\ -7.54 \\ -12.86 \end{bmatrix}$$

Рисунок 28 — Состояние системы и фильтр Калмана

Рисунок 29 — Состояние системы и фильтр Калмана

Рисунок 30 — Состояние системы и фильтр Калмана

Рисунок 31 — Состояние системы и фильтр Калмана

Как можно заметить - 1, 2, 4 подобранная пара параметров не позволяют качественно отфильтровать наблюдателю сигнал, поэтому на выходе мы получили некоторую шумную ошибку около нуля. Но при большом недоверии к "шумных датчикам фильтр калмана уже качественно подавляет шум у ошибки.

2.2.6 Вывод

В этом задании мы синтезировали фильтр Калмана для задачи наблюдения за системой, устойчивой по Ляпунову, с добавлением внешних возмущений и шума на выходе в виде белого шума. С ними мы боролись при помощи фильтра, которому мы задавали

3 CUHTE3 LQG

3.1 Условие задачи

Рассмотреть систему:

$$\begin{cases} \dot{x} = Ax + Bu + f \\ y = Cx + Du + \xi \end{cases}, \quad x(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$$

и в нашем случае (f,ξ) - детерминированные гармонические сигналы, выполнить следующие шаги:

- Проверить систему на стабилизируемость и обнаруживаемость
- Построить схему моделирования системы, замкнутой регулятором, состоящем из наблюдателя состояния и закона управления и u=Kx.
- Задаться значениями пар матриц (Q_K, R_K) для регулятора и (Q_L, R_L) для наблюдателя.
- Синтезировать матрицу регулятора K используя решение соответствующего матричного уравнения Рикатти.
- Синтезировать матрицу коррекции наблюдателя L используя решение соответствующего матричного уравнения Рикатти.
- Выполнить моделирование замкнутой системы.

3.2 Решение задачи

Параметры для объекта:

$$A = \begin{bmatrix} 5 & -7 & -5 & 1 \\ -7 & 5 & -1 & 5 \\ -5 & -1 & 5 & 7 \\ 1 & 5 & 7 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 5 & 0 \\ 7 & 0 \\ 1 & 0 \\ 9 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 2 & -1 \\ 2 & -1 \end{bmatrix}^{T}, \qquad D = \begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$$

В качестве детерминированных сигналов $f(t), \xi(t)$ возьмём следующие гармоники:

$$f(t) = 2\sin(10t + \frac{\pi}{6}), \qquad \xi(t) = 3\cos(5t)$$

Рисунок 32 — Модель с LQD-регулятором-наблюдателем

3.2.1 Исследование управляемости системы

Найдём собственные числа матрицы A:

$$\sigma(A) = \{-8, 4, 8, 16\}$$

Воспользуемся прошлыми результатами - система будет полностью управляемой и наблюдаемой.

3.2.2 Синтез LQD

Зададимся следующими парами матриц для регулятора (Q_K,R_K) и наблюдателя (Q_L,R_L) :

$$Q_{K} = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \qquad R_{K} = \begin{bmatrix} 20 & 0 \\ 0 & 20 \end{bmatrix}$$

$$Q_{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad R_{L} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

Теперь синтезируем регулятор и наблюдатель, используя решения матричных уравнений Риккати, которые упоминались в прошлых заданиях, здесь просто рамзерность повысится:

$$K = \begin{bmatrix} 34.5 & -39.81 & 9.51 & 4.2 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \rightarrow \sigma(A + BK) = \{-16.31, -8.5, -8, -6\}$$

$$L = \begin{bmatrix} 26.01 & -21.91 \\ -29.19 & 13.58 \\ -8.28 & 8.3 \\ -11.46 & -0.03 \end{bmatrix}, \rightarrow \sigma(A + LC) = \{-16.01, -8.03, -8, -4\}$$

Рисунок 33 — Сигнал управления

Рисунок 34 — Состояние системы и наблюдатель

Рисунок 35 — Состояние системы и наблюдатель

Рисунок 36 — Состояние системы инаблюдатель

Рисунок 37 — Состояние системы и наблюдатель

Можно заметить, что во всех случаях нам не удалось с помощью обозначенных параметров свести ошибку в ноль, это связано в том числе и с гармонической природой мешающих нам сигналов, мы не сможем свести их в ноль силами только П-регулятора, только лишь попробовать сделать амплитуду ошибки незначительно маленькой.

3.2.3 Вывод

В этом задании мы синтезировали LQG = Linear Quadratic Gaussian пару - регулятор и наблюдатель с использованием функционалов качества, они в целом отработали также, как и предполагалось: П-регулятора недостаточно для стабилизации гармонического типа сигнала, также повёл себя и наблюдатель, в курсе ЛСАУ для этого случая мы синтезировали специфичный регулятор.

4 ОБЩИЕ ВЫВОДЫ

В ходе выполнения лабораторной работы мы рассмотрели синтез LQRрегулятора и наблюдателя в виде LQE/Фильтра Калмана, которые двойственны и выбор зависит от характера внешних воздействий / шума (детерминированность/случайность).

Синтезированные компоненты системы проверялись при помощи компьютерного моделирования, наблюдатели успешно сходились к истинной системе только в том случае, когда мы точно знали характер распределения внешних воздействий / шумов, в противном случае наблюдатель мог ложно сойтись или не сойтись до нулевой ошибки в целом, колебаясь в некоторых пределах.

В случае регулятора успешно приводил в положение равновесия во всех случаях с разной степенью энергозатрат и оптимальности в виде сочетания перерегулирования между временем переходного процесса.

В случае связки регулятора + наблюдателя = LQG мы не смогли получить качественную сходимость и устойчивость, потому что не смогли в должной степени понять влияние внешних f, ξ , в итоге не добились правильной настройки и регулятора и наблюдателя.

Использовал связку Live-script + Matlab, все исходные материалы, использованные в работе можно найти в репозитории.