CS4495/6495 Introduction to Computer Vision

6B-L3 Hierarchical LK

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not much larger than one pixel
 - How might we solve this problem?

Garden image sequence #1

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not much larger than one pixel
 - How might we solve this problem?

Garden image sequence #2

Optical Flow: Aliasing

To overcome aliasing: coarse-to-fine estimation

Reduce the resolution!

Gaussian pyramid of image 1 Gaussian pyramid of image 2

Gaussian pyramid of image 1

Gaussian pyramid of image 2

Optical Flow Results

^{*}From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Optical Flow Results

^{*}From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Detour: Multi-scale analysis, image pyramids

S. Seitz

Throw away every other row and column to create a 1/2 size image: *image sub-sampling*

Bad image sub-sampling

Aliasing! What do we do?

Solution: Filter the image, then subsample

S. Seitz

Subsampling with Gaussian pre-filtering

Image Pyramids

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

"Band-pass" filtering

Gaussian Pyramid (low-pass images)

Laplacian Pyramid (subband images)

These are "bandpass" images (almost).

Laplacian Pyramid

How can we reconstruct (collapse) this pyramid into the original image?

Laplacian Pyramid

How can we reconstruct (collapse) this pyramid into the original image?

Reduce and Expand

Reduce

Apply "5-tap" (1 4 6 4 1)/16 separable filter to make reduced image.

Reduce and Expand

Reduce

Apply "5-tap" (1 4 6 4 1)/16 separable filter to make reduced image.

Expand

Apply different "3-tap" separable filters for even and odd pixels to make expanded image...

Apply different "3-tap" separable filters for even and odd pixels to make expanded image.

Applying pyramids to LK

Hierarchical LK

- 1. Compute Iterative LK at level K
- 2. Initialize u_{K+1} , $v_{K+1} = 0$ at size of level K+1

3. For Each Level i from K to 0

- Upsample (EXPAND) u_{i+1} , v_{i+1} to create u_i^p , v_i^p flow fields of now twice resolution as level $i\!+\!1$
- Multiply u_i^p , v_i^p by 2 to get predicted flow
- Warp level i Gaussian version of I_2 according to predicted flow to create ${I_2}^\prime$

3. For Each Level i from K to 0

• Apply LK between ${I_2}'$ and level i Gaussian version of I_1 to get u_i^δ , v_i^δ (the correction in flow)

Add corrections to obtain the flow u_i , v_i at i^{th} level, i.e.,

$$u_i = u_i^p + u_i^\delta$$
$$v_i = v_i^p + v_i^\delta$$

Optical Flow Results

^{*}From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Optical Flow Results

^{*}From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Sparse LK

- The Lucas-Kanade algorithm described gives a dense field, (u, v) everywhere.
- But we said that we only want to solve LK where the eigenvalues are well behaved.

Sparse LK

- "Sparse LK" is basically just that: hierarchical applied to good feature locaitons.
- OpenCV LK used to be dense then became sparse!

Start with something similar to Lucas-Kanade

- + gradient constancy + region matching
- + energy minimization with smoothing term
- + keypoint matching (longrange)

