

Univerzitet u Novom Sadu

Fakultet tehničkih nauka

Odsek za računarsku tehniku i računarske komunikacije

Osnovi projektovanja kombinacionih mreža

Matematički aparat i osnovne definicije

Matematički aparat

- Bulova algebra (matematički) je matematički sistem definisan nad skupom S i dve operacije nad njegovim elementima
- Bulova algebra (inžinjerski) je matematički sistem definisan nad skupom S i dve binarne i jednom unarnom operacijom, i to:
 - $S=\{0,1\}$
 - "-" negacije
 - "\/ " disjunkcije
 - "\" konjukcije

	0	1
V	U	-
0	0	1
		_
1	1	1
		-
1 1 1		

Bulove (prekidačke) funkcije

- Bulova ili **prekidačka funkcija** od n-promenljivih $f(x_1, x_2, ..., x_n)$, predstavlja preslikavanje skupa $B^n \to B$, gde je B = (0,1), a B^n označava skup od 2^n binarnih n-torki ili slogova.
- ♦ Slog je $(x_1, x_2, ..., x_n), x_i = (0,1)$
- * Indeks sloga je $i = \sum_{j=1}^{n} x_j 2^{n-j}$
- Indeks sloga predstavlja numeričku vrednost pridruženu datom slogu ako koordinate sloga težinski ponderišemo
- Svaka prekidačka funkcija od n argumenata je definisana na 2ⁿ slogova
 LPRS I - PDS

Broj bulovih funkcija

Broj različitih prekidačkih funkcija je 2²ⁿ jer je svaka prekidačka funkcija definisana na 2ⁿ slogova a nad svakim slogom može dobiti vrednost (0,1)

$$n = 0$$
 $N_{BF} = 2$ $N_{BF} = 4$ $N_{BF} = 16$ $N_{BF} = 16$ $N_{BF} = 256$ $N_{BF} = 65.536$ $N_{BF} = 5$ $N_{BF} = 4.294.967.296$

Zadavanje bulovih funkcija

Kombinaciona tablica (tablica istinitosti)

i	X.	X ₂	 X _{n-1}	X _n	f(i)
0	0	0	 0	0	f(0)
1	0	0	 0	1	f(1)
2 ⁿ -1	1	1	 1	1	f(2 ⁿ -1)

Indeksom slogova

f¹ za skupove indeksa slogova na kojima f(i) ima vrednost 1 f⁰ za skupove indeksa slogova na kojima f(i) ima vrednost 0 f^X za skupove indeksa slogova na kojima f(i) nije definisana

$$f^1 \vee f^0 \vee f^* = (0, 1, ..., 2^{n-1})$$

Karakteristične bulove funkcije

*** KONSTANTA NULA:**
$$f(x_1, x_2, ..., x_n) = 0$$

*** KONSTANTA JEDINICA:**
$$f(x_1, x_2, ..., x_n) = 1$$

Primer funkcija jedne promenljive:

i	\overline{x}	x	f(i)	naziv funkcije
0	0	0	0	konstanta nula
1	0	1	X	promenljiva x
2	1	0	\overline{x}	negacija x
3	1	1	1	konstanta 1

Bulove funkcije dva argumenta

	X_1	0011	naziv funkcije	na mara las	1'4' Y1.: '	osobina				
	X_2	naziv funkcije oznaka analitički izraz		analitički izraz	a	b	c	d	e	
	f_0	0000	konstanta 0	0	$\mathbf{f}_0 = 0$		×	×		
	f_1	0001	konjukcija	$x_1 \cdot x_2$	$f_1 = x_1 x_2$			×	9	×
	\mathbf{f}_2	0010	zabrana po x ₂	$x_1 \diamond x_2$	$\mathbf{f}_2 = \mathbf{x}_1 \overline{\mathbf{x}}_2$		×	×	×	×
	f_3	0011	promenljiva x ₁	X ₁	$\mathbf{f}_3 = \mathbf{x}_1$					
	f_4	0100	zabrana po x ₁	$x_2 \diamond x_1$	$\mathbf{f_4} = \overline{\mathbf{x}}_1 \mathbf{x}_2$		×	×	×	×
	f_5	0101	promenljiva x ₂	X ₂	$\mathbf{f}_5 = \mathbf{x}_2$				9	
	f_6	0110	suma po modulu 2 logička nejednakost	$x_1 \oplus x_2$	$\mathbf{f}_6 = \overline{\mathbf{x}}_1 \mathbf{x}_2 + \mathbf{x}_1 \overline{\mathbf{x}}_2$		×	×	×	
	f_7	0111	disjunkcija	$x_1 + x_2$	$f_7 = x_1 + x_2$			×		×
	f_8	1000	Pirsova operacija	$x_1 \downarrow x_2$	$\mathbf{f}_8 = \overline{\mathbf{x}_1 + \mathbf{x}_2}$	×	×	×	×	×
	f ₉	1001	logička jed.	$\overline{x_1 \oplus x_2}$	$\mathbf{f}_9 = \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2 + \mathbf{x}_1 \mathbf{x}_2$	×		×	×	
	f ₁₀	1010	negacija x ₂	X_2	$f_{10} = \overline{x}_2$	×	×		×	
	f ₁₁	1011	implikacija x2 ka x1	$x_2 \rightarrow x_1$	$f_{11} = x_1 + \overline{x}_2$	×		×	×	×
	f ₁₂	1100	negacija x ₁	X_1	$\mathbf{f}_{12} = \overline{\mathbf{x}}_1$	×	×		×	
	f ₁₃	1101	implikacija x ₁ ka x ₂	$x_1 \rightarrow x_2$	$\mathbf{f}_{13} = \overline{\mathbf{x}}_1 + \mathbf{x}_2$	×		×	×	×
	f ₁₄	1110	Šeferova operacija	x_1/x_2	$f_{14} = \overline{x_1} \overline{x_2}$	×	×	×	×	×
13.10.20	f ₁₅	1111	konstanta 1	1	$f_{15} = 1$	×		×		

Konstituente jedinice

Prekidačka funkcija od n argumenata koja dobija vrednost jedan samo na jednom slogu argumenta naziva se KONSTITUENTA JEDINICE.

Primer:

$$\begin{array}{lll} f_8 = \overline{x_1 + x_2} = K_0^1(x_1, x_2) & \text{NILI funkcija;} & \text{za } x_1 = x_2 = 0 \\ f_4 = \overline{x_1} x_2 & = K_1^1(x_1, x_2) & \text{zabrana po } x_1; & \text{za } x_1 = 0, x_2 = 1 \\ f_2 = \overline{x_1} \overline{x_2} & = K_2^1(x_1, x_2) & \text{zabrana po } x_2; & \text{za } x_1 = 1, x_2 = 0 \\ f_1 = \overline{x_1} x_2 & = K_3^1(x_1, x_2) & \text{konjukcija;} & \text{za } x_1 = x_2 = 1 \\ \end{array}$$

 X_2

 X_1

Konstituente nule

Prekidačka funkcija od n argumenata koja dobija vrednost jednaku nuli samo na jednom slogu argumenata naziva se KONSTITUENTA NULA.

Primer:

$$\begin{array}{lll} f_7 = x_1 + x_2 &= K_0^0(x_1, x_2) & \mbox{disjunkcij a;} & \mbox{za } x_1 = x_2 = 0 \\ f_{11} = x_1 + \overline{x_2} &= K_1^0(x_1, x_2) & \mbox{implikacij a od } x_2 \mbox{ ka } x_1; & \mbox{za } x_1 = 0, x_2 = 1 \\ f_{13} = \overline{x_1} + x_2 &= K_2^0(x_1, x_2) & \mbox{implikacij a od } x_1 \mbox{ ka } x_2; & \mbox{za } x_1 = 1, x_2 = 0 \\ f_{14} = \overline{x_1} \overline{x_2} &= K_3^0(x_1, x_2) & \mbox{NI funkcija;} & \mbox{za } x_1 = 1, x_2 = 1 \\ \end{array}$$

X

 X_2

Implikante i implicente

- Prekidačka funkcija od n argumenata y(x₁, x₂,..., x_n) predstavlja "implikantu" prekidačke funkcije f(x₁, x₂,...,x_n) ako y(x₁, x₂,..., x_n) ima vrednost nulu na svim slogovima na kojima vrednost nulu ima i funkcija f(x₁, x₂,..., x_n). Za funkciju y se kaže da je uključena u f.
- Primer: g = xyz je implikanta f = xy, jer $xy = xyz + xy\overline{z}$
- Prekidačka funkcija y(x₁, x₂,..., x_n), naziva se "implicentom" prekidačke funkcije f(x₁, x₂,..., x_n) ako y(x₁, x₂,..., x_n) ima vrednost jedan na svim slogovima na kojima vrednost jedan ima i funkcija f(x₁, x₂,..., x_n).

Proste implikante i implicente

Prosta implikanta funkcije f(x₁, x₂,..., x_n) predstavlja elementarni proizvod promenljivih

$$j_1, j_2 ... j_k = (1, 2, ..., n)$$

takav da predstavlja implikantu funkcija $f(x_1, x_2, ..., x_n)$ uz uslov da ako se iz njega udalji jedna promenljiva x_{ji} preostali proizvod promenljivih prestaje biti implikanta funkcije f.

Primer:
$$g = xy$$
 prosta implikanta od $f = xy + xyz$

Prosta implicenta funkcije $f(x_1, x_2, ..., x_n)$ predstavlja elementarnu sumu promenljivih $j1, j2,..., jk \in (1, 2,..., n)$

takvu da predstavlja implicentu funkcije $f(x_1, x_2, ..., x_n)$, uz uslov da, ako se iz sume izostavi proizvoljna promenljiva x_{ji} , preostala suma promenljivih prestaje biti implicenta funkcija f.

13.10.2011. LPRS I - PDS

Složene bulove funkcije

- Dobijaju se od elementarnih funkcija matematičkim operacijama superpozicije, odnosno, operacijom zamene jednog argumenta funkcije drugom funkcijom.
- Elementarne Bulove funkcije realizuju elementarni fizički elementi koji se nazivaju logičkim elementima.
- Sistem prekidačkih funkcija se naziva funkcionalno potpunim, ako se pomoću funkcija, koje ulaze u njega, primenom operacija superpozicije može dobiti bilo koja složena Bulova funkcija.

Proizvod i suma

elementarni proizvod (konjukcija) promenljivih,

$$\hat{x}_{k1}\hat{x}_{k2}...\hat{x}_{kp}$$

elementarna suma (disjunkcija) promenljivih

$$\hat{x}_{k1} + \hat{x}_{k2} + \dots + \hat{x}_{kp}$$

- \diamond U elementarnom proizvodu (sumi) promenljiva se pojavljuje samo jednom, bilo u obliku x_i ili \bar{x}_i
- Elementarni proizvod u koji ulaze sve promenljive, naziva se potpunim proizvodom (minterm).
- Elementarna suma u koju ulaze svih n-promenljivih Bulove funkcije naziva se potpunom sumom (maxterm)

Savršene normalne forme

Savršena Disjunktivna Normalna Forma (SDNF) jeste suma potpunih proizvoda slogova nad kojima funkcija ima vrednost 1

$$f(x_1, x_2, ..., x_n) = \sum_{i=0}^{2^n+1} f_i K_i^1 = f_0 K_0^1 + f_1 K_1^1 + ... + f_{2^n-1} K_{2^n-1}^1$$

Savršena Konjuktivna Normalna Forma (SKNF) jeste proizvod potpunih suma onih slogova nad kojima funkcija ima vrednost 0

$$f(x_1, x_2, ..., x_n) = \Pi_{i=0}^{2^n-1}(f_i + K_i^0) = (f_o + K_o^0)(f_1 + K_1^0)...(f_{2^n-1} + K_{2^n-1}^0)$$