STA1333 Pengantar Model Linear

ALJABAR MATRIKS

STK333 Pengantar Model Linear

Minggu ke	Uraian	Sumber	Dosen
1	Review Aljabar Matriks	1.1-1.5	AHW
2	Bentuk Kuadratik dan Sebarannya	2.1-2.2	AHW
3	Multivariate Normal	2.3-2.4	AHW
4	Model Linear Penuh	3.1-3.2	AHW
5	Penduga Ragam Model Penuh dan Selang Kepercayaan	3.3-3.6	AHW
6	Selang Kepercayaan Fungsi Linear dan Selang Regional	3.7-3.8	AHW
7	Pengujian Hipotesis untuk Model Penuh	4.1-4.2	AHW
8	Pengujian Hipotesis Subvektor	4.3-4.4	IMS
9	Pengujian Hipotesis bebereapa Subvektor	4.6-4.8	IMS
10	Model Linear Tak Penuh	5.1-5.3	IMS
11	Fungsi Terduga	5.4-5.5	IMS
12	Penduga Ragam Model Tak Penuh	5.6-5.7	IMS
13	Pengujian Hipotesis untuk Model Tak Penuh	6.1-6.3	IMS
14	Model Rancangan Percobaan	6.4-6.6	IMS

- Pendahuluan
- Definisi
- Operasi dasar matriks
- Putaran (*transpose*) matriks
- Matriks identitas
- Kebalikan (inverse) matriks
- Matriks ortogonal
- Akar ciri (eigen values)
- Pangkat (rank) matriks
- Matriks idempoten (idempotent)
- Teras (trace)

Pendahuluan

Model Regresi:

Pendahuluan

Model Regresi:

$$y = X\beta + \varepsilon$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{21} & x_{31} \\ 1 & x_{12} & x_{22} & x_{32} \\ 1 & x_{13} & x_{23} & x_{33} \\ 1 & x_{14} & x_{24} & x_{34} \\ 1 & x_{15} & x_{25} & x_{35} \\ 1 & x_{16} & x_{26} & x_{36} \end{pmatrix} \qquad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = ?$$

Pen	dal	huł	y ua	n
	uai	HYT	ua	

×1

×2

x3

1	1.8	130	4	1
2 .	2.0	110	2	0
3	2.5	100	0	0
4	1.7	120	1	0
5	3.0	90	1	. 1
6	2.3	100	0	0

$$1.8 = \beta_0 + \beta_1(130) + \beta_2(4) + \beta_3(1) + \varepsilon_1$$

$$2.0 = \beta_0 + \beta_1(110) + \beta_2(2) + \beta_3(0) + \varepsilon_2$$

$$2.5 = \beta_0 + \beta_1(100) + \beta_2(0) + \beta_3(0) + \varepsilon_3$$

$$1.7 = \beta_0 + \beta_1(120) + \beta_2(1) + \beta_3(0) + \varepsilon_4$$

$$3.0 = \beta_0 + \beta_1(90) + \beta_2(1) + \beta_3(1) + \varepsilon_5$$

$$2.3 = \beta_0 + \beta_1(100) + \beta_2(0) + \beta_3(0) + \varepsilon_6$$

Pendahuluan

Model Regresi:

$$y = X\beta + \varepsilon$$

$$\mathbf{y} = \begin{pmatrix} 1.8 \\ 2.0 \\ 2.5 \\ 1.7 \\ 3.0 \\ 2.3 \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} 1 & 130 & 4 & 1 \\ 1 & 110 & 2 & 0 \\ 1 & 100 & 0 & 0 \\ 1 & 120 & 1 & 0 \\ 1 & 90 & 1 & 1 \\ 1 & 100 & 0 & 0 \end{pmatrix} \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{y}$$

Definisi

Notasi:
$$X_{nxk} = (x_{ij})_{nxk}, Y_{nxk} = (y_{ij})_{nxk}$$

$$X_{nxk} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \dots & \dots & \dots & \dots \\ x_{nxk} & \vdots & \vdots & \vdots \\ x_{nxk} & \vdots & \vdots & \vdots$$

Definisi

$$X = \begin{bmatrix} 2 & 7 & 8 \\ 1 & 1 & 0 \\ 0 & 4 & -5 \end{bmatrix}; \quad Y = \begin{bmatrix} 2 & 3 & 7 & 8 \end{bmatrix}; \quad Z = \begin{bmatrix} 1 \\ 6 \\ 5 \end{bmatrix}$$

Operasi Dasar Matriks

$$\begin{split} X_{nxk}, Y_{nxk}, X + Y &= C, c_{ij} = x_{ij} + y_{ij}, \\ X - Y &= C, c_{ij} = x_{ij} - y_{ij} \\ kX &= C, c_{ij} = kx_{ij} \\ X_{nxk}Y_{kxm} &= C_{nxm}, c_{ij} = \sum_{s=1}^{k} x_{is}y_{sj} \end{split}$$

Operasi Dasar Matriks

Properties:

$$X + Y = Y + X$$

$$X + (Y + Z) = (X + Y) + Z$$

$$X(YZ) = (XY)Z$$

$$(Y + X)Z = YZ + XZ$$

$$X(kY) = k(XY)$$

$$(a + b)X = aX + bX$$

$$a(X + Y) = aX + aY$$

$$X + 0 = 0 + X = X, 0 \text{ matriks nol}$$

$$Y + X = 0, X \text{ negatif matriks } Y$$

$$Umumnya XY \neq YX$$

$$Matrikstersekat : X = \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \end{bmatrix}$$

Operasi Dasar Matriks

$$X = \begin{bmatrix} 2 & 3 & 1 \\ 8 & 0 & 4 \end{bmatrix}, \qquad Y = \begin{bmatrix} -1 & 0 & 6 \\ 7 & 2 & -3 \end{bmatrix}$$

$$X + Y = \begin{bmatrix} 2 & 3 & 1 \\ 8 & 0 & 4 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 6 \\ 7 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 7 \\ 15 & 2 & 1 \end{bmatrix}$$

$$X - Y = \begin{bmatrix} 2 & 3 & 1 \\ 8 & 0 & 4 \end{bmatrix} - \begin{bmatrix} -1 & 0 & 6 \\ 7 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -5 \\ 1 & -2 & 7 \end{bmatrix}$$

$$cX = 3 \begin{bmatrix} 2 & 3 & 1 \\ 8 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 9 & 3 \\ 24 & 0 & 12 \end{bmatrix}$$

Putaran (*Transpose*) Matriks

$$X_{nxk}, X'_{kxn} \Leftrightarrow X' = (x_{ji})_{kxn}, X = (x_{ij})_{nxk}$$

Properties:
$$(cX)' = cX'$$
 $(X + Y)' = X' + Y'$
 $(X - Y)' = X' - Y'$
 $(X')' = X$
 $(XY)' = Y'X'$

Putaran Matriks

Teorema:

$$X_{nxk} \Rightarrow (X'X)_{kxk} = (X'X)'_{kxk}$$
, unsur diag JK lainnya JHK

$$\underline{\mathbf{x}}_{\mathbf{k}\mathbf{x}\mathbf{1}} \Rightarrow (\underline{\mathbf{x}}'\underline{\mathbf{x}})_{\mathbf{l}\mathbf{x}\mathbf{1}} = \mathbf{c}$$
, konstanta

$$\underline{\mathbf{x}}_{kx1} \Rightarrow (\underline{\mathbf{x}}\underline{\mathbf{x}}')_{kxk} = (\underline{\mathbf{x}}\underline{\mathbf{x}}')_{kxk}$$

Definisi Simetrik:

bila X'= X, matrix X disebut matrik simetrik

Putaran Matriks

$$X = \begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 7 & 2 \end{bmatrix} \longrightarrow X' = \begin{bmatrix} 2 & 1 & 7 \\ 0 & 1 & 2 \end{bmatrix}$$

Matriks Simetrik

Matriks A disebut simetrik, jika A' = A atau $(a_{ij} = a_{ji})$ Semua matriks simetrik berbentuk segi (square)

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 6 \\ 2 & 10 & -7 \\ 6 & -7 & 9 \end{pmatrix} \qquad \text{diag}(\mathbf{A}) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

Matriks Identitas

$$AI = IA = A$$

Kebalikan Matriks

Y kebalikan dari X, bila
$$XY = YX = I$$
, $Y = X^{-1}$

Bila Y ada $\rightarrow X$ non - singular

Y tidak ada $\rightarrow X$ singular

Properties:

X non - singular
$$\Rightarrow$$
 X⁻¹non - singular, $(X^{-1})^{-1} = X$
X non - singular \Rightarrow $(X')^{-1} = (X^{-1})'$
X dan Y non - singular, kompatibel \Rightarrow $(XY)^{-1} = Y^{-1}X^{-1}$

Kebalikan Matriks

$$X = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \longrightarrow X^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 0 \\ 4 & -1 \end{bmatrix} \longrightarrow X^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 2 & -1 \end{bmatrix}$$

Matriks Ortogonal

 $\underline{\mathbf{x}}_{n\mathbf{x}1}$ dan $\underline{\mathbf{y}}_{n\mathbf{x}1}$ orthogonal bila $\underline{\mathbf{x}}'\underline{\mathbf{y}} = 0$

$$X_{kxk}, X'X = I \Rightarrow X \text{ orthogonal}$$

$$\mathbf{x}_2 = (-1, 2)$$

$$\mathbf{x}_1 = (4,2)$$

Matriks Ortogonal

panjang vektor
$$\underline{\mathbf{x}}_{kx1}$$
 atau $|\underline{\mathbf{x}}| = \sqrt{\underline{\mathbf{x}}'\underline{\mathbf{x}}} = \sqrt{\sum_{i=1}^{k} \mathbf{x}_{i}^{2}}$

 $\{\underline{x}_1, \underline{x}_2, \dots, \underline{x}_k\}$ adalah satu set vektor orthogonal ukuran nx1.

bila $\underline{x}_i'\underline{x}_i = 1, \forall i \Rightarrow \{\underline{x}_1, \underline{x}_2, \dots, \underline{x}_k\}$ orthonormal

Matriks Ortogonal

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 1 & -1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \end{pmatrix}$$

$$X = \begin{pmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{pmatrix} \qquad X = \begin{pmatrix} \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$

 $A_{kxk}, \underline{x} \neq \underline{0}$, akar ciri A adalah λ

bila $A\underline{x} = \lambda \underline{x}$ dan \underline{x} adalah vektor ciri

atau
$$(A - \lambda I)\underline{x} = \underline{0} \Rightarrow |A - \lambda I| = 0$$
 karena $\underline{x} \neq \underline{0}$

Ingat!!!!:

- 1. X adalah determinant X
- 2. |X| = |X'|
- 3. Bila X dan Y conformable | XY = X Y

Properties:

$$A'_{kxk} = A_{kxk} \Rightarrow \lambda_i \text{ real/nyata } \forall i$$

 A_{kxk} , C_{kxk} orthogonal C'C = I \Rightarrow akar ciri A = akar ciri C'AC

$$A'_{kxk} = A_{kxk}, \lambda_i \neq \lambda_i \implies \underline{X}_i \perp \underline{X}_i$$

Teorema:

$$A' = A_{kxk} \exists P, P'P = I \ni P'AP = D(\lambda_i), i = 1,2...k$$

$$A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \qquad |A - \lambda I| = 0$$

$$A - \lambda I = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{bmatrix}$$

$$|A - \lambda I| = (1 - \lambda)(4 - \lambda) - (-2)$$

$$= \lambda^2 - 5\lambda + 6$$

$$\lambda_1 = 2$$
 and $\lambda_2 = 3$

Pangkat (Rank) Matriks

Definisi:

$$\{\underline{x}_1, \underline{x}_2, \dots, \underline{x}_k\}, \exists |a_i \neq 0, i = 1, 2, \dots, k \ni \sum_{i=1}^{k} a_i \underline{x}_i = \underline{0} \Rightarrow \{\underline{x}_1, \underline{x}_2, \dots, \underline{x}_k\}$$

tidak bebas linear (linearly dependent)

Bila tidak ada a, tsb, $\{\underline{x}_1, \underline{x}_2, \dots, \underline{x}_k\}$ bebas linear (linearly independent)

Pangkat (Rank) Matriks

Properties:

$$X_{nxk}$$
, $n \ge k$, $r(X) = k \Rightarrow r(X) = r(X') = r(X'X) = k$

$$X_{kxk}, \Rightarrow X^{-1} \text{ ada } \text{ jjk } r(X) = k$$

$$X_{nxk}, \left| P_{nxn} \right| \ne 0, \left| Q_{kxk} \right| \ne 0 \Rightarrow r(X) = r(PX) = r(XQ)$$

$$r(D) \text{ adalah } \text{ banyaknya elemen } \text{ diagonal } \text{ non - zero}$$

$$r(XY) \le r(X), r(XY) \le r(Y)$$

Pangkat (Rank) Matriks

$$X = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$$

$$x_3 = \frac{1}{2}x_1 + \frac{1}{2}x_2$$

$$r(X)=2.$$

Matriks Idempoten

Definisi:

$$A_{kxk}$$
 idempoten bila $AA = A^2 = A$

$$X_{nxk}$$
, $n \ge k$, $r(X) = k \implies H = X(X'X)^{-1}X'$ idempoten

Teras (Trace) Matriks

Definisi:

$$X_{kxk}$$
 maka teras X adalah $tr(X) = \sum_{i=1}^{k} x_{ii}$

Properties:

$$X_{kxk}$$
, c konstanta \Rightarrow tr(cX) = c tr(X)
 X_{kxk} , Y_{kxk} \Rightarrow tr(X + Y) = tr(X) + tr(Y),
tr(X - Y) = tr(X) - tr(Y)
 X_{nxp} , Y_{pxn} \Rightarrow tr(XY) = tr(YX)

Teras (*Trace*) Matriks

$$X = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 3 & 2 & -1 \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} -1 & 1 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$tr(X) = 2 + 1 + (-1) = 2$$

$$tr(Y) = (-1) + 4 + 3 = 6$$