Index

A Action recognition, 38, 41	Bag-of-words (BoW), 305 Baseline, 259, 335, 344, 359, 360, 362, 364,
Activations, 9, 13, 29, 31, 33, 45, 59, 226,	370, 373
253, 308, 327	Baseline markers, 361, 362, 370
Active shape model (ASM), 56, 63, 216, 219	Batch normalization (BN), 21, 22, 31
ADNI (Alzheimer's Disease Neuroimaging	Binary masks, 187, 189
Initiative), 260, 360, 372, 377	Biomedical image analysis tasks, 157, 165
ADNI dataset, 248, 259, 262	Blocks, 354–359
Agent, 65–70, 75, 77	Body sections, 85, 91
AlexNet, 26, 30, 32, 33, 36, 41, 96, 126, 330	Body-part recognition, 84, 86, 87, 91, 92, 95
AlexNet model, 27, 32	Boundaries, 64, 115, 187, 232
Algorithmic strategies, 274, 286, 290, 292,	BoVW model, 305
293	Brain images, 371
Alzheimer's disease (AD), 342, 360, 368,	Brain MR images, 252, 255, 265
370, 372	Brain MRI images, 238, 240
Anatomical structures, 57, 64, 199, 224, 249,	Brain regions, 230, 354
414	Breast cancer, 139, 322
Anatomies, 57, 71, 83, 223, 233, 237, 382	histology images, 157, 166
Anatomy detection, 56, 71, 100	
Answer, 43	C
APOE (Apolipoprotein E), 360, 362, 367,	C++, 22, 45, 169, 285
372, 374	Cancer, 301, 322
Architecture of randomized deep network,	Cardiac histopathology, 180, 182, 184, 191
356	Cardiac histopathology images, 180, 182,
Artificial agent, 57, 64–66, 78	186, 191
Atlas images, 199, 206	Cardiovascular disease (CVD), 106
Atlas patches, 208	Carotid artery, 107, 112, 114, 125
Attributes, 43	common, 108, 109, 113, 124
Auto-encoder (AE), 12, 201, 250, 348	Carotid bulb, 108, 112–115, 121, 124
basic, 202	Carotid intima–media thickness (CIMT),
single, 252 stacked, 12, 200, 247, 250, 252	106, 124
Automated system, 301, 315	Cell detection, 166
Automatic segmentation, 238	Cells
Auxiliary tasks, 43, 140	complex, 28, 110 simple, 28
_	Central processing units (CPU), 11, 72, 109
В	Centroid distances, 228, 230, 233, 239
Background, 92, 139, 143, 147, 164, 197,	Centroids, 112, 115, 140, 229, 230, 287
199, 205, 206, 281, 330, 344, 350	Cerebral microbleed detection, 143
voxels, 205	Cerebral microbleeds (CMBs), 134, 135,
Backpropagation algorithm, 6, 11, 14, 30,	143–147, 149
161	Cerebral-spinal fluid (CSF), 259, 342, 343
Bag-of-visual-words (BoVW), 302, 305, 310	Chest radiograph, 300, 302

CDATE + 107 122 120	C
CIMT measurements, 106, 123, 128 CIMT video interpretation, 106, 127	Computer vision, 26, 37, 86, 106, 109, 180, 200, 226, 248, 253, 273, 302, 324,
CIMT videos, 108–110, 117, 127	343, 352
Class membership, 160, 187, 188, 343	Computer vision problems, 26, 230, 239
Classes	Computer vision tasks, 30, 191, 273
body section, 92	Computer-aided diagnosis, 134, 149, 322
non-informative, 91	Concatenation deep network (CDN), 389
	Conditional random field (CRF), 37, 325
Classification accuracies, 33, 93, 331, 343,	Confidence maps, 113, 116
370	Connection weights, 5, 8, 11, 14, 21, 203
Classification of breast lesions	Constrained ROI localization, 113, 118
benign, 323, 324, 326, 330–332, 334	Convolution kernel, 74, 137, 144, 158, 226,
malignant, 323, 324, 326, 330–332, 334	227
Classification performance, 33, 205, 317	Convolution layer, 8, 27, 109
Classifier, 56, 58, 61, 64, 86, 87, 90, 91, 97,	Convolutional filters, 28, 87, 100
148, 158, 166, 185, 188, 191, 310,	Convolutional layers, 8, 29, 33, 86, 109, 110
315	117, 126, 137, 158, 163, 167, 226,
main, 63, 71, 73	227, 307, 326
Clinical dementia rating sum of boxes	Convolutional networks, 33, 248
(CDR-SB), 361, 364, 366, 367, 372,	Convolutional neural network architecture,
373	226
Clinical trials, 344, 368, 373	Convolutional neural network (CNN), 8, 26,
CMBs	27, 34, 35, 40, 85, 109, 137, 157,
detection, 135, 143, 146	166, 273, 280, 411
true, 144, 148	Convolutional SAE, 247, 256, 257, 259, 263
CNN	264
2D, 143, 148, 150	Convolutional SAE network (CSAE), 253,
3D, 135, 144, 226	263
CNN flavors, 34	Convolutions, 8, 27, 28, 36, 37, 138, 226,
CNN model, 38, 165, 280, 293, 307, 327	254, 281
CNN regression model, 286, 292	Coupled sparse representation (CSR), 382,
CNN structure, 88, 92, 157	389, 396
CNN-based methods, 234, 238-240	Cranio-caudal (CC), 322
CNNs	Cross-correlation (CC), 289, 290, 329, 331,
local patch-based, 94	332
standard, 86, 93, 99	Cross-modal medical image synthesis, 393,
trained, 113	401
Co-occurrence of local anisotropic gradient	Cross-modal nearest neighbor search, 382,
orientations (CoLlAGe), 186	384, 392, 396
Coarse retrieval model, 136	
Comparison of deep learning, 186	D
Computational complexity, 110, 226, 305	Data augmentation, 31, 113, 125, 331
Computational limitations, 78	Dataset, 71, 74, 95, 140, 146, 219, 228, 286,
Computed tomography (CT), 84, 106, 272,	309, 326, 328–330, 388
382, 409	DDSM, 324, 329–332, 334
Computer aided diagnosis (CAD), 83, 134,	InBreast, 324, 329–334
272, 322	large, 146, 353, 407
,	<i>3-1</i> -11 -1

Decliners	Detection accuracy, 34, 76, 117, 142, 165
strong, 370, 371	Detection network, 86
weak, 342, 363, 367, 372	Detection of emphysema, 302, 417
Deconvolution, 37	Detection time, 136, 142
Deep architecture, 12, 74, 126, 166, 205,	Dice ratios, 212, 260
250, 343, 344, 353	Dice scores, 230, 233
Deep belief network (DBN), 15, 17	Diffeomorphic demons, 257, 259, 264, 265
Deep Boltzmann machine (DBM), 15, 18	Digitally reconstructed radiograph (DRR),
Deep cascaded networks, 136	272
Deep convolutional neural networks, 69,	Disease, 181, 310, 311, 345, 351–353, 359,
135, 180, 181	361, 368, 410, 415, 417, 419
Deep learning, 8, 57, 65, 85, 86, 134, 157,	Disease markers, 342, 358, 362, 363, 370,
180–182, 184, 191, 200, 248, 250,	373
262, 324, 325, 346, 347	Disease progression, 345, 358, 368, 370
approach, 182, 185, 191, 224, 248, 302,	Dropout, 20, 31, 347, 358
315	-
architecture, 109, 209, 265	Dropout networks, 349, 353, 354
for medical image, 87, 157, 223, 239, 240	DSC (direct splatting correlation), 293
for segmentation, 188, 191, 225	DV-1 (deep voting with no stride), 163–165
methods, 22, 84, 200, 207, 223, 240, 303,	DV-3 (deep voting with stride 3), 163–165
325, 353, 406	DxConv, 361, 364, 365, 367, 370, 372, 373
models, 26, 180, 182, 185, 186, 188, 250,	_
252, 324, 334, 350, 419	E
network, 187, 253, 255	Edge-hypersampling, 183, 187
software for, 45	Edges, 28, 185–187, 189, 190, 279, 286,
tools for, 22	300, 305, 312
unsupervised, 247, 250	Effect size, 345, 361, 367
Deep learning features, 200, 207, 211, 248,	Effectiveness, 121, 135, 143, 199–201, 207,
324	212, 216, 398
Deep models, 11, 20, 22, 247, 250	Efficacy, 141, 142, 147, 150, 343, 344, 372,
Deep networks, 11, 14, 20, 27, 29, 35, 73,	373
88, 203, 227, 306, 344, 352, 358	End-diastolic ultrasonographic frames
location-sensitive, 382, 383, 385, 401	(EUFs), 106, 108, 110–113, 117,
very, 30, 31, 33	118, 123–125, 127
Deep neural networks, 11, 12, 18, 20, 67, 70,	Enrichment, 343, 359, 364, 373
135, 224–226, 303	Ensemble learning, 224, 239, 351, 352
Deep Q network (DQN), 69	Errors, 75, 228, 231, 233, 237
Deep voting, 156, 163, 164	boundary, 232, 237, 239
Deep voting model, 157, 159, 163, 165	labeling, 237
Deep-learned features, 199, 206, 212	localization, 12, 120, 202, 348
Deformable model, 209, 210, 216	segmentation, 74, 231, 233, 237
Descriptor, 273, 304	Evaluation, 71, 74, 75, 77, 212, 216
Detection, 33, 34, 57, 58, 84, 86, 100, 300	Experience replay, 70
accurate, 134, 143	Experimental results, 134, 135, 150, 164,
computer-aided, 106	169, 259, 260, 263, 310, 330
lymph node, 325	Experiments, 71, 73, 117, 163, 186–188,
microbleed, 134, 240	211, 228, 258, 260, 283, 285, 287,
negation, 409	309, 360, 388
•	

Experts, 122	GLCM (gray-level co-occurrence matrix),
Extracting the image information, 409	303, 304, 310
F. Folso possitivo (ENN) 141-142-170-215	Gradient correlation (GC), 284, 289 Graphics processing units (GPUs), 11, 22, 27, 106, 110, 230, 285, 324
False negative (FN), 141, 142, 170, 315 False positive (FP), 93, 135, 137, 140–142,	Gray matter (GM), 259
147, 150, 163, 170, 237, 315, 325	Ground truth, 59, 77, 117, 140, 141, 146,
Fast scanning, 164	159, 211, 234, 246, 247, 274, 284,
Feature extraction, 56, 277	287, 397 Ground-truth regions, 163
Feature maps, 9, 227 Feature representations, 200, 214, 225, 248,	Ground train regions, roc
262, 305, 411	Н
abstract, 224	HAMMER, 259, 263–265
intrinsic, 248–250, 255	Handcrafted features, 137, 139, 140, 143,
latent, 251, 253, 255, 260, 265 low-dimensional, 249, 256, 259	157, 182, 191, 199–201, 207, 209, 214, 246, 248, 256, 273, 323, 324
Feature selection, 246, 247, 258, 265, 309,	Heart failure, 181, 191, 300
313, 317	Hidden layers, 5, 6, 12, 28, 92, 94, 202, 227,
Feed-forward neural networks, 4, 6, 412	250, 286, 385
Feldman, 191 FH (family history), 360, 361, 370, 372, 374	dimension of, 203 first, 14, 207, 385
Fine discrimination model, 134, 136, 139	second, 14, 205, 387
Fine-tuning, 14, 32, 331	Hidden nodes, 87, 96, 203, 251, 259, 264
Fine-tuning process, 328, 331	High-power fields (HPFs), 140, 142
Frame selection, 108, 110, 118, 126, 128	Hippocampal volume, 361, 362, 364, 368, 370, 373
Fully connected hidden layers, 109 Fully connected neural networks, 9, 59	Hippocampus, 224, 260, 263, 265
Fully convolutional network (FCN), 35–37,	Histogram of oriented gradients (HOG), 26,
44, 127, 136, 137	33, 85, 199–201, 214, 219, 303
2D, 145	Histology images, 139, 141
3D, 144, 145, 147, 148, 150 Fully-connected layers, 29, 33, 168, 229,	Hyperparameters, 358
280, 286	1
Function	ICPR MITOSIS dataset, 140
activation, 4, 10, 59, 158, 168, 227, 346	Image analysis, 106, 180, 227
network response, 59 optimal action-value, 66, 69	Image classification, 22, 26, 32, 34, 87, 93, 95, 135, 334, 419
Fundamentals of natural language	Image classification tasks, 32, 35, 85, 90, 93,
processing, 407	99, 100
Fusion process, 169	Image patches, 34, 35, 45, 93, 113, 115, 156, 166, 169, 186, 202, 227, 246, 247
G	Image registration, 239, 246, 249, 256, 259,
Gaussian mixture model (GMM), 248, 249	265
Gaussian smoothing, 119, 125 Generative models	methods, 246, 257 Image representation, 42, 157, 303, 305, 306
deep, 14	Image representation, schemes, 303
GIST, 310, 311	Image segmentation, 180

Image-based tool for counting nuclei (ITCN), 171 ImageNet, 27, 303, 307, 331, 332, 334, 406 ImageNet classification, 26, 307 ImageNet data, 303, 307 Images fluoroscopic, 272, 275, 283 hematoxylin or eosin grayscale, 186 original, 88, 138, 188 radiology, 406, 407, 412, 414, 419 Implementation, 73, 93, 163, 182, 183, 305,	Label fusion, 93 Labels assigned, 415 correct, 88, 315, 415 true, 59, 230, 239 Landmark detection, 57, 67, 71, 74, 78 accurate, 43, 74 anatomical, 83 robust, 75 Landmarks, 68, 74, 77, 206, 288, 289, 386
324, 368, 374 Improvement, 34, 72, 94, 100, 140, 260, 312, 313, 332, 334, 344, 373 Inclusion criteria, 359	Language, 42, 183, 411, 413 Latent Dirichlet allocation (LDA), 410 Layer-wise learning, 14, 252 Layers, 5, 6, 8, 13, 15, 17, 18, 27, 31–34, 36,
Information contextual, 143, 184, 249, 323 topological, 166, 172 Input channels, 280	37, 45, 117, 118, 158, 160, 161, 202, 253, 312, 313 connections between, 13 final, 42, 227, 306, 327
Input data, 13, 84, 202, 249, 251, 324, 348, 352 Input feature maps, 8, 158	first, 17, 28, 158 last, 158, 166, 170, 347 neighboring, 5, 18, 202 penultimate, 158, 312
Input features, 13, 19, 229, 277 Input image, 9, 36, 42, 84, 109, 137, 158, 182, 226, 304, 307, 330, 334 Input layer, 5, 11, 158, 202, 229, 250, 358	second, 17, 229 single, 4, 38, 41, 247, 313 sub-sampling, 96, 326 Learned feature representations, 86, 203,
Input patches, 10, 118, 228, 251, 386 Input training patches, 202, 253 Input vector, 13, 19, 158, 202	205, 248, 256, 257, 259, 262–264 Learned features, 36, 38, 148, 214, 219, 247, 255
Intelligence, 65 Intensity, 143, 144, 147, 148, 185, 207, 209, 214, 216, 219, 225, 272, 279, 391 Intensity features, 186, 216, 384	Learning models, 26, 71, 249, 250, 343, 354, 355 Learning problems, 38, 56, 344, 352, 354 Leave-1-patient-out cross-validation,
Intensity patch, 199, 208, 219 Intensity transformation, 382 Intensity values, 94, 125, 246, 383, 389, 392, 393, 397	Left cuneus, 234, 237 Left pleural effusion (LPE), 310, 315
Intensity-based methods, 272, 285, 288 Intervention, 342, 344 Invariant, 85, 203, 254, 346 Iterations, 8, 258, 286, 292, 396 Iterative radial voting (IRV), 171	Lesions, 143, 321–325, 332, 334 classification, 305, 322, 325 detection, 322, 323, 325 segmentation, 322, 323, 325 Likelihood map, 209, 210 Likelihood ratios, 311
K K-nearest neighbor for pose estimation, 273 Krizhevsky network, 307	Local binary patterns (LBP), 186, 199–201, 214, 219, 302 Local image residual (LIRs), 286–288, 290, 292, 293

Local information, 86, 88, 100	Maximally stable extremal region (MSER),
Local maxima, 112, 272, 290, 293	156
Local patches, 86, 88, 95, 207	Media-adventitia interface, 115, 116, 122
discriminative, 88, 94	Medical image analysis (MIA), 16, 74, 83,
extracted, 95	85, 106, 157, 180, 181, 200, 226,
Local regions, 29, 85, 100	239, 315, 324, 325, 419
discriminative, 85, 86, 95, 100	Medical image applications, 87, 246, 248
non-informative, 87	Medical images, 83, 84, 86, 87, 134, 144,
Localization, 34, 44, 106, 125, 157, 302, 317	149, 224, 239, 246, 250, 253, 299,
Locations, 34, 56, 58, 111–115, 125, 145,	335, 387, 406, 419
239, 277, 323, 417	Medio-lateral oblique (MLO), 322, 331
Logistic regression (LR), 85, 87, 225	Methodology, 58, 87, 158, 166, 324, 326
Logistic sigmoid function, 4, 6, 20, 251	MHD (modified Hausdorff distance), 188
Longitudinal change, 359	Micro-calcifications, 322, 324–326,
LONI dataset, 248, 262	330–332, 334
Loss function, 30, 87–90, 110, 157, 161,	Microscopy images, 156, 166, 172
168, 389	Mild cognitively impaired subjects (MCIs),
LSDN (location-sensitive deep network),	342, 360–362, 364, 370–372
382–385, 400	late, 359–362, 370, 371
LSDN-1, 389	Mimics, 137, 139, 140, 143–145
LSDN-2, 389	Mini mental state examination (MMSE),
LSDN-small, 389	359, 361, 364, 367, 372, 373
LSTM (long short term memory), 41–43	Mini-batches, 21, 30, 69, 110, 230
Lumen-intima and media-adventitia	Minimum variance unbiased (MVUB), 351,
interfaces, 107, 115–117, 123	355, 358, 359
Lung diseases, 301, 302	Mitoses, 134, 139, 157
	Mitosis detection, 134–137, 139, 140, 166,
M	182, 225, 325
Machine learning, 4, 56, 58, 64, 200, 248,	automated, 141
273, 324, 343, 406	MKL (multi-kernel support vector machine),
Machine learning methods, 180, 342, 343,	361
409	MKLm (MKL markers), 361, 362, 368, 370,
Madabhushi, 191	373
Mammograms, 226, 321, 323, 325, 328, 330,	Modalities, 38, 43, 272, 284, 323, 342, 355,
334	360, 362, 371, 382, 388, 392, 393,
Mammography view, 322, 324, 330	403
Manual ground truth annotations, 183	Modality propagation (MP), 383, 389, 400
Marginal space, 62, 63, 276	Model selection and training parameters, 71
Marginal space deep learning (MSDL), 56,	Model's outputs, 161, 162, 169, 358
61, 77	Montreal cognitive assessment (MOCA),
Marginal space learning (MSL), 56, 61, 67	361, 362, 364, 373
Marginal space regression (MSR), 277,	Morphological signature, 249, 250, 256, 263
286–288, 292	MR brain images, 248, 255
Markov decision process (MDP), 65, 67	MR images, 74, 197, 198, 211, 214, 247,
Mass, 325, 330–332, 334	259, 263
Matlab, 165, 169	MR (magnetic resonance), 84, 135, 197, 409
Max pooling, 182, 229, 254, 259, 264, 330,	MR prostate images, 200, 207, 219
331	MR volumes, 135, 143, 144

MRI images, 305, 360, 370 MRI (magnetic resonance images), 224, 228, 272, 353, 355, 360, 371, 382, 409 MRI scans, 388, 397 MSDL framework, 71 MSER (maximally stable extremal region), 156 MTREproj (mean target registration error in the projection direction), 285, 290, 292 Multi-atlas, 199–201, 206, 207, 224, 228 Multi-instance learning (MIL), 86, 93–95,	deep max-pooling convolutional, 137 feed-forward, 6, 411 multi-layer, 5, 8, 14, 87, 346 single-layer, 4, 346 sparse adaptive deep, 59 two-layer, 11 Neurons, 4, 11, 30, 139, 182, 227 Non-informative patches, 92 Nonlinear transformation, 12, 158, 224, 225, 250 Nonlinearities, 29 Number of hidden units, 5, 11–13
97–99 Multi-layer perceptron (MLP), 5, 33, 227, 273, 385 Multi-modal baseline rDAm, 361, 363–365 Multi-task learning, 43 Mutual information maximization, 384, 393, 401 Mutual information (MI), 231, 272, 289, 382, 384, 392, 393, 397 Myocytes, 180–183, 185–187 N Natural language processing (NLP), 84, 343, 352, 406, 407, 411, 417, 419 Neighbors, 93, 166, 169, 391, 392 NERS (non-overlapping extremal regions selection), 163, 164, 166, 171 Network, 9, 13, 20, 26, 28, 32, 35, 43, 44, 57, 59, 84, 140, 144, 286, 354, 355 cascaded, 144	Object detection, 26, 34, 35, 38, 39, 43, 71, 73, 134, 155, 157, 200 Object recognition, 84, 140, 302, 353, 371 Optimal enrichment criterion, 345, 350 Optimization, 93, 230, 290, 395 Optimization problem, 161, 167, 387, 394, 396 Optimizer, 272, 289, 290 Orientations, 56, 58, 61, 72, 124, 277, 278, 283, 304, 312 Outcome measure, 344, 361 Output layer, 5, 12, 14, 91, 144, 160, 202, 204, 205, 227, 229, 250, 280, 286, 346, 386, 387 Outputs, 9, 13, 30, 36, 41, 44, 87, 92, 123, 136, 158, 161, 167, 168, 226, 357, 358 Overfitting, 9, 20, 21, 59, 61, 94, 97, 230
decoder, 247, 248, 250 deep belief, 26 simplified, 388 smaller, 349, 350, 390 Network architecture, 21, 76, 138, 146, 148, 163, 183, 230, 307 learning, 6 Network parameters learning, 6 Network representation, 308 Network structure, 253, 280, 347 Neural language models, 411 Neural network model, 45 deep convolutional, 415 Neural networks, 4, 12, 22, 29, 30, 34, 59, 67, 70, 76, 148, 160, 225–227, 285, 345, 384	P Paired t-test, 122, 214, 219, 262 Parameter space, 56, 61, 276, 286, 347 Parameter space partitioning (PSP), 276, 286–288, 292 Parameters, 140, 161, 211, 231, 277 large number of, 29, 31, 33, 148 learned, 349, 350 model's, 30, 159, 161, 162, 168 out-of-plane rotation, 277 out-of-plane translation, 277 tuned, 118 Patch binarization, 125, 128 Patch representation, 182, 187

Patches, 35, 58, 69, 91, 97, 107, 112, 113,	Probability signals, 112, 118, 125, 128
115, 121, 122, 125, 140, 144, 156,	Problem formulation, 58, 67
187, 229	Prostate, 199, 206, 211, 219
local image, 35, 166	Prostate boundary, 197, 198, 200, 201, 210,
sampled image, 255	211, 214, 219
selected image, 164, 255	Prostate likelihood map, 206, 207, 209, 210,
training image, 159, 252	219
Pathologies, 182, 301–303, 310, 313–315,	Prostate region, 198, 206, 209
317, 342	Prostate segmentation, 199, 216, 217
digital, 180, 187	MR, 199, 219
examined, 310	Proximity mask, 166, 169
Pattern matching, 407, 409	Proximity patch, 166
PCNN, 94, 97	PsyEF (summary score for executive
Perceptron, 4	
Performance, 31–33, 43, 44, 70–74, 77, 78,	function), 361, 362, 364, 372
107, 125, 126, 134, 135, 140–143,	PsyMEM (neuropsychological summary
147, 148, 156, 157, 165, 166, 171,	score for memory), 361, 372
172, 233, 238, 239, 286, 287	PWC (pixel-wise classification), 137, 170
	Python, 45, 93
Performance speedup, 127	Theano, 22, 45, 149, 230
Perturbations, 284	
PHOG (pyramid histogram of oriented gradients), 303, 310	Q
	Question, 43
Picture archiving and communication	
systems (PACS), 406, 408 Pivel wise elegification (PWC), 137, 170	R
Pixel-wise classification (PWC), 137, 170	Radiology text, 410, 412, 417
Placebos, 343, 344	RadLex, 414
Pneumonia, 300, 301, 415	Random forest (RF), 148, 156, 182, 185,
Pooling layers, 8, 9, 37, 110, 158, 226, 227, 306	186, 188, 189, 191, 382
Population, 344, 345, 350, 359, 362, 372	Randomized deep networks, 344, 350, 352,
	353, 356, 360
Pose estimation via hierarchical learning	Randomized denoising autoencoder marker
(PEHL), 274, 285–290, 292, 293	(rDAm), 358, 359, 361–364, 367,
Positive predictive value (PPV), 188	368, 370–373
Pre-trained CNN, 88, 307	Randomized dropout network marker
model, 95, 306, 307	(rDrm), 358–368, 370–373
Pre-trained models, 22, 26, 32, 45, 332–335	RAVLT (Rey auditory verbal learning test),
Precision, 93, 147, 165, 170, 171, 212, 214,	361, 372, 373
287	RBM (restricted Boltzmann machines), 15,
Predictive power, 181, 362, 364, 369, 370	26, 347
Preprocessing, 84, 95, 106, 140, 146, 159,	RCasNN (randomly initialized model), 141
211, 315, 360	
Pretraining, 12, 14	RCN (right consolidation), 310
layer-wise, 14, 347	RDA (randomized denoising autoencoders),
Principle component analysis (PCA), 203,	355, 356, 359, 362, 364, 370, 371,
247–250, 259, 260, 305	373
Probability, 5, 112, 114, 116, 126, 136, 138,	Recall, 93, 141, 147, 163, 165, 170, 171, 262
144, 160, 187, 255, 304, 310, 311,	Receptive fields, 9
343, 416	Recognition, 57, 371

Reconstructions, 203, 205, 252, 349	Segmentation, 22, 58, 71, 72, 84, 86, 100,
Recover, 10, 248, 250, 273, 274, 290	180, 181, 199, 200, 212, 224, 225,
Rectified linear unit (ReLu), 20, 29, 40, 59,	227, 228, 231–234, 237–240, 302,
93, 144, 158, 160, 227, 280	315
Recurrent neural network (RNN), 37, 40–42,	ground-truth, 212, 216
413	registration-based, 228, 231
Registration, 206, 224, 231, 238, 255, 258,	semantic, 35, 135
324, 334, 386, 388	stroma, 180, 182, 185
2-D/3-D, 272–275, 283, 284, 288, 289,	Segmentation accuracy, 107, 128, 214, 219
292, 293	Segmentation maps, 328, 331, 334
real-time, 287, 290, 292, 293	Shallow models, 247, 250
Registration accuracy, 259, 265, 272, 285	Shapes, 64, 107, 125, 140, 156, 170, 210,
Registration methods, 263, 287	304
2-D/3-D, 272, 288, 293	ShrinkConnect, 388–390, 401
baseline HAMMER, 260, 262, 263	SIFT, 26, 33, 85, 199, 248, 256, 303, 304
conventional, 248	Signal-to-noise ratio (SNR), 246, 263, 322,
Registration problems, 273–275, 292, 293	388
Registration-based methods, 223, 224, 228,	Similarity maps, 201
231, 233, 234, 238, 239	Similarity measures, 231, 272, 273, 285,
Regressors, 157, 275, 282, 289, 384	289, 292, 392
Reinforcement learning, 65, 67, 69	Small sample regime, 344, 350, 353
Representations, 12, 14, 17, 26, 35, 42, 55,	Sonographer, 106, 109, 117, 127
59, 84, 148, 184, 225, 226, 254, 275,	Source and target modalities, 382, 384, 390,
311–313	396
Responses, 59, 88, 91, 203	Sparse adaptive deep neural networks (SADNN), 57, 59, 61, 62, 64, 74
Restored wavelets, 111, 112, 125	(SADNN), 57, 59, 61, 62, 64, 74 Sparse auto-encoder (SAE), 13, 14, 17, 203,
Reward, 68	204, 247, 248, 252–254, 265
Right pleural effusion, 301, 310	Sparse histogramming MI (SHMI), 293
Right pleural effusion (RPE), 301, 310, 315	Sparse patch matching, 206, 214
RMSDproj (root mean squared distance in	Sparse representation, 207, 210, 248, 396
the projection direction), 287, 288	coupled, 382, 389, 396, 400
Robust approach, 156	Sparsely distributed objects, 134, 150
Robust cell detection, 155, 165, 171	Spatial information, 143, 144, 149, 227, 239,
Robust cell detection using convolutional	305, 382, 383, 401
neural network, 165	Spatial locations, 28, 225, 385, 386, 389
ROI localization, 108, 115, 121, 126, 128	Spatial resolution, 36, 37, 71
ROI (region of interest), 106, 112–115, 121,	Stacked sparse auto-encoder (SSAE), 201,
125, 136, 183, 259, 260, 278, 285	203–206, 208, 211, 213, 214, 216,
Root mean squared error (RMSE), 289	219
c	networks, 205
\$	Stages
Sample enrichment, 344, 370	boosting, 88, 91, 96
Sample sizes, 361, 365, 367, 373	Standard deviation, 16, 117, 122, 163, 171,
Scales, 21, 56, 58, 143, 226, 304, 360	186, 260, 265, 284, 292, 304, 310,
Screening stage, 144	331, 345, 350
SDA (stacked DA), 348–350, 354, 356, 357,	State-of-the-art image classification method,
371	305

States, 67, 68	Training regressors, 274
Stochastic gradient descent (SGD), 8, 30, 32,	Training samples, 8, 11, 13, 59, 93, 137,
37, 69, 76, 283	139–141, 161, 167, 168, 247, 283,
Stride, 28, 36, 138	347, 387
Stroma, 180–183, 186, 190, 191	artificial, 332
Stromal tissue, 180, 187	Training set, 13, 63, 64, 71, 88, 93, 112, 115,
Structured regression model, 166–168, 171	117, 145, 147, 182, 185, 203, 228,
Success rate, 274, 285	230
Superior performance, 128, 164, 165, 172,	stratified, 113, 115
214, 219, 265	Training time, 20–22, 74, 332
Supervised SSAE, 201, 205, 206, 213, 214,	Transfer learning, 140, 299, 307, 324
216, 217, 219	Transformation parameters, 56, 61, 273, 278,
Synthetic data, 93, 294	289, 290, 293, 349
	Transformations, 56, 139, 210, 274, 276,
T	294, 345, 357, 383, 386
Target image, 88, 201, 206, 210, 219	Translation, 9, 10, 35, 36, 42, 61, 62, 90, 93,
Target information, 159	95, 112, 113, 115, 137, 140, 145,
Target modalities, 384	226, 227, 254, 276–278
Target modality images, 389, 391	Treatment, 143, 182, 197, 342–345, 350
Target objects, 138, 199, 272, 277, 284, 285	Trial, 200, 342, 350, 368, 371
Template image, 255, 258, 264	Tricks, 31, 33
Tensorflow, 22, 45	True negative rate (TNR), 188
Test patients, 117, 118, 120–123, 125	True negative (TN), 315
Test set, 71, 117, 230, 331, 363	True positive rate (TPR), 188
Testing images, 162	True positive (TP), 141, 142, 315, 323
Texture, 140, 185, 224, 325	True targets, 136
Tissue, 180, 259	Tuberculosis, 301
Tissue segmentation, 182	
Topic modeling, 410	U
Total knee arthroplasty (TKA), 283–286, 290	Ultrasound images, 56, 71, 124
Toy example, 40, 89, 90	UMLS Metathesaurus, 414
Training, 31, 45, 60, 64, 74, 185, 230, 253,	Unified medical language system (UMLS),
326, 382, 386, 388, 389	414
two-stage, 331	Unsupervised SSAE, 201, 205, 213, 214,
Training annotations, 182, 187, 190, 191	216, 217
Training data, 14, 27, 31, 32, 84, 140, 141,	210, 217
156, 159, 166, 168, 183, 184, 187,	V
188, 203, 225, 239, 240, 250	_
paired, 384, 390, 391, 397, 401	Validation set, 76, 230 Vanilla deep network (VDN), 389
synthetic, 289	*
Training dataset, 139–141, 230, 238	Vanishing gradient problem, 11, 20, 41 Ventricle, 210, 234, 237, 255, 259
Training dataset, 139–141, 230, 238 Training images, 32, 87, 110, 141, 239, 246,	
	VGG network, 313
255, 259, 260, 264, 331, 389 Training patches, 113, 115, 118, 121, 160	VGG-L4, 311
Training patches, 113, 115, 118, 121, 160,	VGG-L5, 308, 313
183, 184, 186, 202, 203	Videos, 38, 106, 108, 112, 117, 123
Training patients, 117–119, 121	fluoroscopic, 283
Training PEHL, 286, 289, 294	Virtual implant planning system (VIPS),
Training phase, 145, 229	283, 285, 286, 290

Visible layer, 4, 15, 17, 18 Volumes, 39, 145, 147, 224 Volumetric data, 143	Word embedding, 411 Word-to-vector models, 411
Voting confidence, 159 Voting offsets, 159 Voting units, 160 Voxels, 8, 57, 201, 208, 212, 227, 229, 234, 255, 272, 353, 354, 371, 384, 391, 392, 397 center, 385, 386, 392	X X-ray attenuation map, 272 X-ray echo fusion (XEF), 284, 289 X-ray images, 272, 273, 275, 277, 279, 283, 284, 287, 289 real, 281, 294 synthetic, 275, 279, 281
W Weak learners, 352 Weight units, 160	X-ray imaging model, 274 XEF dataset, 287
White matter (WM), 259 Whole-slide imaging (WSI), 180, 187	Z Zone, 277