Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$,
Esercizio 2	Isolo una x, sostrunsco nuovamente e por costructor i vertocre prenaendo coenicienti ne cerco un'altra, calcoliamo il det di una e za caso, se det $\neq 0$ allora $rk(A) \geq 1$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di utte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A) = 2$, tutte le altre $rk(A) = 3$;
Esercizio 3	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertiblie allora de A = 0 Se A è una matrice simmetrica, allora A² è simmetrica > M simmetrica se M = M^T > M^T · M^T = (M · M)^T ⇒ M = M^T, sostituisci M con A² Sia A ∈ M_{3,2}(R) di rango 2, allora il sistema lineare AX = B ammetre soluzioni por Rouché-Capelli (∞²-3) A³ - A = I₂ → A(A² - I) = I + A² - I quindi AA⁻¹ = I quindi AA⁻¹
Esercizio 4	 I vettori v₁,, v_n sono base di R^N se rk(M) = N con M = (v₁ v_n) (M matrice composta dai vettori) Base ortogonale di v,w:
	 Gauss: R_i = R_i + (-a_{ij}/a_j) · R_j Rouché-Capelli: ∞#incognite -rk(A) A invertibile se det A ≠ 0, det(A⁻¹) = 1/det A A non invertibile se A^N = 0 Il prodotto di due matrici diagonale è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica Teorema di Binét: det(AB) = det A · det B Calcolo matrice inversa: scriviamo (M I), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss da la basco verso l'alto), otteniamo (I M⁻¹) (x₁)/(x₂) = x₁x₂ + y₁y₂ + z₁z₂ (x₁)/(x₂)

Qui ci andranno gli esercizi già fatti

 $\begin{array}{c|cccc}
\sqrt{16} = 4 & \sqrt{25} = 5 \\
\sqrt{81} = 9 & \sqrt{100} = 10 \\
\sqrt{196} = 14 & \sqrt{225} = 15 \\
\sqrt{361} = 19 & \sqrt{400} = 20 \\
\sqrt{576} = 24 & \sqrt{625} = 25 \\
\sqrt{841} = 29 & \sqrt{900} = 30
\end{array}$

 $\sqrt{1} = 1 \qquad \sqrt{4} = 2$ $\sqrt{36} = 6 \qquad \sqrt{49} = 7$ $\sqrt{121} = 11 \qquad \sqrt{144} = 12$ $\sqrt{256} = 16 \qquad \sqrt{289} = 17$ $\sqrt{441} = 21 \qquad \sqrt{484} = 22$ $\sqrt{676} = 26 \qquad \sqrt{729} = 27$