CSCI B609: "Foundations of Data Science"

Lecture 6: Best-Fit Subspaces and SVD

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev

http://grigory.us

Singular Value Decomposition: Intro

- $n \times d$ data matrix A (n rows and d columns)
- Each row is a **d**-dimensional vector
- Find best-fit k-dim. subspace S_k for rows of A?
- Minimize sum of squared distances from A_i to S_k

SVD: Greedy Strategy

- Find best fit 1-dimensional line
- Repeat k times
- When k = r = rank(A) we get the SVD: $A = UDV^T$

$A = UDV^T$: Basic Properties

- D = Diagonal matrix (positive real entries d_{ii})
- *U*, *V*: orthonormal columns:
 - $-v_1,...,v_r \in \mathbb{R}^d$ (best fitting lines)
 - $-u_1$, ..., $u_r \in \mathbb{R}^n$ (~projections of rows of A on $v_i's$)
 - $-\langle \boldsymbol{u}_i, \boldsymbol{u}_j \rangle = \delta_{ij}, \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = \delta_{ij}$
- $A = \sum_i d_{ii} \boldsymbol{u}_i \boldsymbol{v}_i^T$

Singular Values vs. Eigenvalues

- If A is a square matrix:
 - Vector \boldsymbol{v} such that $A\boldsymbol{v} = \lambda \boldsymbol{v}$ is an eigenvector
 - $-\lambda$ = eigenvalue
 - For symmetric real matrices v's are orthonormal $A = VDV^T$
 - -V's columns are eigenvectors of A
 - Diagonal entries of D are eigenvalues $\lambda_1, \dots, \lambda_n$
- SVD is defined for all matrices (not just square)
 - Orthogonality of singular vectors is automatic $A \boldsymbol{v}_i = d_{ii} \boldsymbol{u}_i \text{ and } A^T \boldsymbol{u}_i = d_{ii} \boldsymbol{v}_i \text{ (will show)}$ $A^T A \boldsymbol{v}_i = d_{ii}^2 \boldsymbol{v}_i \Rightarrow \boldsymbol{v}_i' s \text{ are eigenvectors of } A^T A$

Projections and Distances

• Minimizing distance = maximizing projection $||x||_2^2 = (projection)^2 + (distance\ to\ line)^2$

SVD: First Singular Vector

- Find best fit 1-dimensional line
- v = v = unit vector along the best fit line
- a_i = i-th row of A, length of its projection: $|\langle a_i, v \rangle|$
- Sum of squared projection lengths: $||Av||_2^2$
- First singular vector:

$$\boldsymbol{v}_1 = \arg\max_{||\boldsymbol{v}||_2=1} ||A\boldsymbol{v}||_2$$

- If there are ties, break arbitrarily
- $\sigma_1(A) = ||Av_1||_2$ is the first singular value

SVD: Greedy Construction

- Find best fit 1-dimensional line, repeat r times (until projection is 0)
- Second singular vector and value:

$$\mathbf{v}_2 = \arg \max_{\mathbf{v} \perp \mathbf{v}_1, ||\mathbf{v}||_2 = 1} ||A\mathbf{v}||_2$$

 $\sigma_2(A) = ||A\mathbf{v}_2||_2$

k-th singular vector and value:

$$\boldsymbol{v}_{k} = \arg \max_{\boldsymbol{v} \perp \boldsymbol{v}_{1}, \dots \boldsymbol{v}_{k-1}, ||\boldsymbol{v}||_{2}=1} ||\boldsymbol{A}\boldsymbol{v}||_{2}$$
$$\sigma_{k}(\boldsymbol{A}) = ||\boldsymbol{A}\boldsymbol{v}_{k}||_{2}$$

• Will show: $(v_1, v_2, ..., v_k)$ is best-fit subspace

Best-Fit Subspace Proof: k = 2

- W = best-fit 2-dimensional subspace
- Orthonormal basis $(w_1, w_2) : ||Aw_1||_2^2 + ||Aw_2||_2^2$
- Key observation: choose $w_2 \perp v_1$
 - If $W \perp v_1$ then any vector in W works
 - Otherwise $oldsymbol{v}_1 = oldsymbol{v}_1^{||} + oldsymbol{v}_1^{\perp}$ for $oldsymbol{v}_1^{||} =$ projection on W
 - Choose $w_2 \perp v_1^{||}$:

$$\langle \boldsymbol{w}_2, \boldsymbol{v}_1 \rangle = \langle \boldsymbol{w}_2, \boldsymbol{v}_1^{||} + \boldsymbol{v}_1^{\perp} \rangle = \langle \boldsymbol{w}_2, \boldsymbol{v}_1^{||} \rangle + \langle \boldsymbol{w}_2, \boldsymbol{v}_1^{\perp} \rangle = 0$$

•
$$||Aw_1||_2^2 \le ||Av_1||_2^2$$
 and $||Aw_2||_2^2 \le ||Av_2||_2^2$
 $||Aw_1||_2^2 + ||Aw_2||_2^2 \le ||Av_1||_2^2 + ||Av_2||_2^2$

Best-Fit Subspace Proof: General k

- W = best-fit k -dimensional subspace
- $V_{k-1} = span(v_1, ..., v_{k-1})$ best fit (k-1)dimensional subspace
- Orthonormal basis w_1, \dots, w_k , where $w_k \perp V_{k-1}$

$$\sum_{i=1}^{k-1} ||Aw_i||_2^2 \le \sum_{i=1}^{k-1} ||Av_i||_2^2$$

• $w_k \perp V_{k-1} \Rightarrow \text{by def. of } v_k \left| |Aw_k| \right|_2^2 \leq \left| |Av_k| \right|_2^2$

$$\sum_{i=1}^{K} ||Aw_i||_2^2 \le \sum_{i=1}^{K} ||Av_i||_2^2$$

Singular Values and Frobenius Norm

- $v_1, ..., v_r$ span the space of all rows of A
- $\langle \pmb{a}_i, \pmb{v} \rangle = 0$ for all $\pmb{v} \perp \pmb{v}_1, \dots, \pmb{v}_r \Rightarrow$

$$\left|\left|a_{j}\right|\right|_{2}^{2}=\sum_{i=1}^{r}\langle a_{j},v_{i}\rangle^{2}$$

$$\sum_{j=1}^{n} \sum_{k=1}^{d} a_{jk}^{2} = \sum_{j=1}^{n} \left| \left| \mathbf{a}_{j} \right| \right|_{2}^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} \langle \mathbf{a}_{j}, \mathbf{v}_{i} \rangle^{2} =$$

$$\sum_{i=1}^{r} \sum_{j=1}^{n} \langle a_j, v_i \rangle^2 = \sum_{i=1}^{r} ||Av_i||_2^2 = \sum_{i=1}^{r} \sigma_i^2(A)$$

•
$$\sqrt{\sum_{j=1}^{n} \sum_{k=1}^{d} a_{jk}^2} = ||\mathbf{A}||_{\mathbf{F}}$$
 (Frobenius norm) = $\sqrt{\sum_{i=1}^{r} \sigma_i^2(A)}$