How to Define the Homophily Ratio on Hypergraph

Homophily on Hypergraphs

Definition 1 (Homophily on Hypergraphs).

where $\mathbb{1}(\cdot)$ is the indicator function (i.e., $\mathbb{1}(\cdot) = 1$ if the condition holds, otherwise $\mathbb{1}(\cdot) = 0$), and e_j (j = 1, 2, ..., m) is the hyper edge, n_j represents the number of nodes within e_j .

🔵 : Class I

: Class II

: Class III

 e_i (i = 1,2,3) denotes the hyper edge ρ is the homophily ratio

Fig. 1. Example showing three different cases for hypergraphs with different homophily ratios.

As far as I know, there is **no existing work** studying the topic "Beyond
Homophily in Hypergraph Neural
Networks (HGNN)" or "Hypergraph
Neural Networks (HGNN) with
Heterophily"

Initial Empirical Study on HyperSBM Model

1.2. **Hypergraph stochastic block models.** The *hypergraph stochastic block model*, first introduced in [26], is a generalization of the SBM for hypergraphs. We define the hypergraph stochastic block model (HSBM) as follows for *d*-uniform hypergraphs.

Definition 1.1 (Hypergraph). A d-uniform hypergraph H is a pair H = (V, E) where V is a set of vertices and $E \subset \binom{V}{d}$ is a set of subsets with size d of V, called hyperedges. when d = 2, it is the same as an ordinary graph.

Definition 1.2 (Hypergraph stochastic block model (HSBM)). Let $C = \{C_1, \ldots, C_k\}$ be a partition of the set [n] into k sets of size s = n/k (assume n is divisible by k), each C_i , $1 \le i \le k$ is called a cluster. For constants $0 \le q , we define the <math>d$ -uniform hypergraph SBM as follows:

For any set of d distinct vertices $i_1, \ldots i_d$, generate a hyperedge $\{i_1, \ldots i_d\}$ with probability p if the vertices $i_1, \ldots i_d$ are in the same cluster in C. Otherwise, generate the hyperedge $\{i_1, \ldots i_d\}$ with probability q. We denote this distribution of random hypergraphs as H(n, d, C, p, q). When d = 2, it is the same as the stochastic block models for random graphs.

Initial Empirical Study on HyperSBM Model

HSBM: n, d, k, p, q = 100, 3, 2, [, 0.01, 0.6, 0.9, 0.99], [, 0.99, 0.5, 0.2, 0.01]						
hom. ratio	0.3354	0.5182	0.7262	0.9795		
HGNN [1]	53.33%	56.00%	100%	100%		
UniGCN [2]	44.44%	65.28%	100%	100%		
UniSAGE [2]	51.39%	79.17%	100%	100%		
UniGCNII [2]	48.61%	62.50%	100%	100%		
	'bad' results Homoph		The state of the s	results due to omophily ratio		

^[1] Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019). Hypergraph neural networks. AAAI, pp. 3558-3565.

^[2] Huang, J., & Yang, J. (2021). UniGNN: a unified framework for graph and hypergraph neural networks. IJCAI, pp. 2563-2569.

Further Empirical Study on Benchmark Hypergraphs

Motivation: Researchers have used frequently these five benchmark datasets to evaluate newly-designed HGNNs, but paid less attention to their **Homophily Ratios**.

Statitics	DBLP (co-authorship)	Pubmed (co-citation)	Cora (co-authorship)	Cora (co-citation)	Citeseer (co-citation)
# hypernodes, V	43, 413	19, 717	2, 708	2, 708	3, 312
# hyperedges, $ E $	22, 535	7, 963	1, 072	1, 579	1, 079
avg. hyperedge size	4.7 ± 6.1	4.3 ± 5.7	4.2 ± 4.1	3.0 ± 1.1	3.2 ± 2.0
# features, d	1, 425	500	1, 433	1, 433	3, 703
# classes, q	6	3	7	7	6
label rate, $ V_L / V $	0.040	0.008	0.052	0.052	0.042
hom. ratio	0.8656	0.7765	0.7797	0.7462	0.6814

Our finding: these five datasets are all Homophily Hypergraphs, rather than Heterophily Hypergraphs

Further Empirical Study on Benchmark Hypergraphs

	Co-author	rship Data	Co-citation Data			
Method	DBLP	Cora	Pubmed	Citeseer	Cora	
MLP+HLR	$\overline{63.6 \pm 4.7}$	$\overline{59.8 \pm 4.7}$	64.7 ± 3.1	$\overline{56.1 \pm 2.6}$	$\overline{61.0 \pm 4.1}$	
HGNN	69.2 ± 5.1	63.2 ± 3.1	66.8 ± 3.7	56.7 ± 3.8	70.0 ± 2.9	
FastHyperGCN	68.1 ± 9.6	61.1 ± 8.2	65.7 ± 11.1	56.2 ± 8.1	61.3 ± 10.3	
HyperGCN	70.9 ± 8.3	63.9 ± 7.3	68.3 ± 9.5	57.3 ± 7.3	62.5 ± 9.7	
HyperSAGE	77.4 ± 3.8	72.4 ± 1.6	72.9 ± 1.3	61.8 ± 2.3	69.3 ± 2.7	
UniGAT	88.7 ± 0.2	75.0 ± 1.1	74.7 ± 1.2	63.8 ± 1.6	69.2 ± 2.9	
UniGCN	88.8 ± 0.2	75.3 ± 1.2	74.4 ± 1.0	63.6 ± 1.3	70.1 ± 1.4	
UniGIN	88.6 ± 0.3	74.8 ± 1.3	74.4 ± 1.1	63.3 ± 1.2	69.2 ± 1.5	
UniSAGE	88.5 ± 0.2	75.1 ± 1.2	74.3 ± 1.0	63.8 ± 1.3	70.2 ± 1.5	

Table 1: Testing accuracy (%) of UniGNNs and other hypergraph models on co-authorship and co-citation datasets for *Semi-supervised Hypernode Classification*. The best or competitive results are highlighted for each dataset.

Screenshot from [2] Huang, J., & Yang, J. (2021). UniGNN: a unified framework for graph and hypergraph neural networks. IJCAI, pp. 2563-2569.

We built four new benchmark datasets: Hypergraphs with Heterophily

Datasets	homo. ratio, $\mathcal H$	MLP	HGNN	HyperGCN	UniSAGE	UniGAT	UniGCNII
Actor (co-occurence)	0.4675	79.82 ± 4.14	64.02 ± 0.03	52.64 ± 8.68	47.57 ± 3.60	48.58 ± 6.46	54.23 ± 8.23
Amazon-ratings(co- purchasing)	0.3549	24.16 ± 0.01	17.66 ± 0.01	18.16 ± 3.03	21.86 ± 1.83	21.91 ± 0.46	<u>24.11 ± 1.59</u>
Pokec(co-friendship)	0.4529	58.00 ± 0.55	49.16 ± 0.08	52.27 ± 1.77	53.20 ± 0.74	49.13 ± 0.25	52.87 ± 0.44
Twitch-gamers(co-create)	0.4857	53.67 ± 1.27	50.00 ± 0.00	51.07 ± 0.83	51.96 ± 0.27	51.19 ± 0.30	51.61 ± 0.25

Subsequent Works….

- 1. Generate and build Benchmark Heterophily Hypergraphs; (Five datasets are ready!)
- Develop advanced <u>Hypergraph neural networks</u> (HGNN) with Heterophily. Then, evaluate and compare its performance on the generated benchmark Heterophily Hypergraphs (I think, all the existing HGNNs may fail in these <u>Benchmark Heterophily Hypergraphs</u>);
- 3. (If possible) Theoretical studies on why and how the **Homophily Ratio** affect the ability of HGNN?