UBND TỈNH HÒA BÌNH SỞ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI CHÍNH THỨC (Đề thi gồm có 01 trang)

KỲ THI CHỌN HỌC SINH GIỚI CẤP TỈNH THPT NĂM HỌC 2017 – 2018 Môn thi: TOÁN

Ngày thi: 15/12/2017. Thời gian làm bài 180 phút.

Họ tên thí sinh:	
Số báo danh:	Phòng thi:

Câu 1: (3,0 điểm):

- a) Tìm các điểm cực trị của đồ thị hàm số $f(x) = 1 + 3x^2 2x^3$.
- b) Tìm điều kiện của tham số m để đồ thị hàm số $y = \frac{2x \sqrt{mx^2 + 1}}{(x 1)^2}$ có đường tiệm cận đứng.

Câu 2 (5,0 điểm):

- a) Tính tổng các nghiệm $x \in [-\pi; \pi]$ của phương trình: $2(\cos x + \sqrt{3}\sin x)\cos x = \cos x \sqrt{3}\sin x + 1$.
- b) Giải phương trình $\left(3+\sqrt{5}\right)^x + \left(3-\sqrt{5}\right)^x 7.2^x = 0.$
- c) Giải hệ phương trình $\begin{cases} x^3 y^3 + 3x^2 + 6x 3y + 4 = 0\\ (x+1)\sqrt{y+1} + (x+6)\sqrt{y+6} = x^2 5x + 12y \end{cases} (x, y \in \mathbb{R}).$

Câu 3 (4,0 điểm):

Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với $AB = a\sqrt{2}$, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của điểm B trên AC và H là hình chiếu vuông góc của K trên SA.

- a) Tính thể tích khối chóp S.ABCD theo a.
- b) Tính diện tích xung quanh của hình nón được tạo thành khi quay tam giác ADC quanh AD theo a.
- c) Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH).

Câu 4 (4,0 điểm):

- a) Tìm hệ số của x^7 trong khai triển nhị thức Newton của $\left(x^2 \frac{2}{x}\right)^n$, $x \ne 0$, biết rằng n là số nguyên dương thỏa mãn $4C_{n+1}^3 + 2C_n^2 = A_n^3$.
- b) Cho đa giác lồi có 14 đỉnh. Gọi X là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên trong X một tam giác. Tính xác suất để tam giác được chọn không có cạnh nào là cạnh của đa giác đã cho.

Câu 5 (2,0 điểm):

Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm K(-2;-5) và đường tròn (C) có phương trình $(x-1)^2+(y-1)^2=10$. Đường tròn (C_2) tâm K cắt đường tròn (C) tại hai điểm A, B sao cho dây cung $AB=2\sqrt{5}$. Viết phương trình đường thẳng AB.

Câu 6 (2,0 điểm):

- a) Cho a và b là hai số thực dương. Chứng minh rằng $(a+b)^2(a^2+b^2) \ge 8a^2b^2$.
- b) Cho x, y, z là các số thực thỏa mãn x > y > z > 0 và x + y + z = 1.

Tìm giá trị nhỏ nhất của biểu thức
$$P = \frac{1}{\left(x-y\right)^2} + \frac{1}{\left(y-z\right)^2} + \frac{8}{xz} + \frac{2}{y^3}$$
.

KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH THPT NĂM HỌC 2017 – 2018 Môn thi: TOÁN.

Ngày thi: 15/12/2017

Câu	Nội dung	Điểm	
	Tập xác định của hàm số $D = \mathbb{R}$. $f'(x) = 6x(1-x)$	0,5	
1a	f'(x) = 0 khi $x = 0, x = 1$	1.0	
(2đ)	Xét dấu $f'(x)$.	1,0	
	Kết luận đồ thị hàm số có một điểm cực đại có tọa độ $(1;2)$ và một cực tiểu $(0;1)$.	0,5	
	Đồ thị hàm số có đường tiệm cận đứng khi và chỉ khi có một trong các giới hạn: $\lim_{x\to 1^+} y = \pm \infty$ hoặc $\lim_{x\to 1^-} y = \pm \infty$		
	Ta có: $\lim_{x \to 1} \left(2x - \sqrt{mx^2 + 1} \right) = 2 - \sqrt{m + 1}$ với $m \ge -1$.	0,5	
	Do đó với $m < -1$ thì hàm số không có giới hạn khi $x \to 1$ nên đồ thị hàm số không có tiệm cận đứng.		
11	Với $m \ge -1$ và $m \ne 3$ thì $\lim_{x \to 1} \left(2x - \sqrt{mx^2 + 1} \right) = 2 - \sqrt{m + 1} \text{ khác 0 và } \lim_{x \to 1} (x - 1)^2 = 0$		
1b (1đ)	Khi đó $\lim_{x\to 1} y = \pm \infty$ nên đường thẳng $x=1$ là đường tiệm cận đứng của đồ thị hàm số.		
	Khi $m = 3$, ta có $\lim_{x \to 1} y = \lim_{x \to 1} \frac{2x - \sqrt{3x^2 + 1}}{(x - 1)^2} = \lim_{x \to 1} \frac{x^2 - 1}{(2x + \sqrt{3x^2 + 1})(x - 1)^2}$	0,5	
	$= \lim_{x \to 1} \frac{x+1}{(2x+\sqrt{3x^2+1})(x-1)} = \pm \infty$		
	Nên đường thẳng $x=1$ là đường tiệm cận đứng của đồ thị hàm số. Tóm lại, giá trị m cần tìm là $m \ge -1$		
	Pt đã cho $\Leftrightarrow \cos 2x + \sqrt{3} \sin 2x = \cos x - \sqrt{3} \sin x$	0,5	
2a	$\Leftrightarrow \cos\left(2x - \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3} + x\right) \Leftrightarrow x = \frac{k2\pi}{3}, k \in \mathbb{Z}$	0,5	
(1,5đ)	Vì $x \in [-\pi; \pi]$ nên $x_1 = 0; x_2 = \frac{2\pi}{3}; x_3 = \frac{-2\pi}{3}$ thỏa mãn	0.5	
	Vậy tổng các nghiệm $x \in [-\pi, \pi]$ của phương trình đã cho là $S = 0$.	0,5	
2b (1,5đ)	Đưa PT về dạng $\left(\frac{3+\sqrt{5}}{2}\right)^x + \left(\frac{3-\sqrt{5}}{2}\right)^x = 7$. Đặt $\left(\frac{3+\sqrt{5}}{2}\right)^x = t$ với $t > 0$.	0,5	
	Ta có PT $t + \frac{1}{t} = 7 \Leftrightarrow t^2 - 7t + 1 = 0 \Leftrightarrow t = \frac{7 \pm 3\sqrt{5}}{2} = \left(\frac{3 \pm \sqrt{5}}{2}\right)^2$	0,5	
	Từ đó suy ra PT có 2 nghiệm $x=\pm 2$.	0,5	
2c (2đ)	DK: $y \ge -1$ Phương trình (1) tương đương: $(x+1)^3 + 3(x+1) = y^3 + 3y \Leftrightarrow y = x+1$	0,5	
		1,0	

	$(x+1)\sqrt{x+2} + (x+6)\sqrt{x+7} = x^2 + 7x + 12$	
	$\Leftrightarrow (x+1)\left(\sqrt{x+2}-2\right) + (x+6)\left(\sqrt{x+7}-3\right) = x^2 + 2x - 8$ $\Leftrightarrow (x-2)\left[\frac{x+1}{\sqrt{x+2}+2} + \frac{x+6}{\sqrt{x+7}+3} - x - 4\right] = 0$ $\Leftrightarrow \left[\frac{x+2}{\sqrt{x+2+2}} + \frac{x+6}{\sqrt{x+7}+3} - x - 4 = 0\right]$ Chứng minh phương trình (*) vô nghiệm	
	$\left(\frac{x+2}{\sqrt{x+2}+2} - \frac{x+2}{2}\right) + \left(\frac{x+6}{\sqrt{x+7}+3} - \frac{x+6}{2}\right) - \frac{1}{\sqrt{x+2}+2} < 0 \ \forall x \ge -2$ Kết luận hệ phương trình có nghiệm $(x; y) = (2; 3)$	0,5
3a (2đ)	S A A A C C $Goi \ O = AC \cap BD \ . \ Ta \ coo \ SO \perp (ABCD) \ .$	0,5
	$OA = \frac{AC}{2} = \frac{a\sqrt{3}}{2}$. $SO^2 = SA^2 - OA^2 = 4a^2 - \frac{3a^2}{4} = \frac{13a^2}{4} \Rightarrow SO = \frac{a\sqrt{13}}{2}$.	0,5
	$V_{S.ABCD} = \frac{1}{3} \cdot \frac{a\sqrt{13}}{2} \cdot a\sqrt{2} \cdot a = \frac{a^3 \cdot \sqrt{26}}{6}$	1,0
3b (1đ)	$S_{xq} = \pi .DC.AC = \pi a^2 \sqrt{6}.$	1,0
	Chỉ ra được K là trọng tâm tam giác BCD , $KA = 2KC$. Chứng minh được $SA \perp (BKH)$. Do đó góc giữa SB và (BKH) là góc \widehat{SBH} .	0,5
3c (1đ)	Tính được $BK = \frac{a\sqrt{6}}{3}$, $KH = \frac{2}{3} \frac{SO.AC}{SA} = \frac{a\sqrt{39}}{6}$ Tam giác BKH vuông ở K . Từ đó suy ra $BH^2 = \frac{2a^2}{3} + \frac{39a^2}{36} = \frac{7a^2}{4} \Rightarrow BH = \frac{a\sqrt{7}}{2}$ và $\cos \widehat{SBH} = \frac{BH}{SB} = \frac{\sqrt{7}}{4}$.	0,5

4a Từ $4C_{n+1}^3 + 2C_n^2 = A_n^3$. Điều kiện $n \in \mathbb{N}^*$, $n \ge 3$. Tìm được n = 11.

(2đ)	Khai triển $\left(x^2 - \frac{2}{x}\right)^{11} = \sum_{k=0}^{11} C_{11}^k \left(x^2\right)^{11-k} \left(-2\right)^k \frac{1}{x^k} = \sum_{k=0}^{11} C_{11}^k \left(-2\right)^k x^{22-3k}$	0,5
	Hệ số x^7 tương ứng với $22 - 3k = 7 \Rightarrow k = 5$.	
	Vậy hệ số x^7 là $C_{11}^5 (-2)^5 = -14784$	0,5
	Tính số phần tử của không gian mẫu: $n(\Omega) = C_{14}^3 = 364$.	0,5
	Gọi A là biến cố: "Tam giác được chọn trong X không có cạnh nào là cạnh của đa giác	
	Suy ra \overline{A} là biến cố : "Tam giác được chọn trong X có ít nhất một cạnh là cạnh của đa giác "	0,5
4b	TH 1: Nếu tam giác được chọn có 2 cạnh là 2 cạnh của đa giác thì có 14 tam giác thỏa	
(2đ)	mãn. TH 2: Nếu tam giác được chọn có đúng một cạnh là cạnh của đa giác thì có 14.10=140	0,5
	tam giác thỏa mãn. Suy ra $n(\overline{A}) = 14 + 140 = 154$	
	Vậy số phần tử của biến cố A là: $n(A) = n(\Omega) - n(\overline{A}) = 210$	
		0,5
	Suy ra $P(A) = \frac{n(A)}{n(\Omega)} = \frac{15}{26}$	
	Gọi H là giao điểm IK và AB.	0.5
	Tính được $IH = \sqrt{5}$	0,5
5	Viết PT đường thẳng $IK: -2x + y + 1 = 0$. $H \in IK \Rightarrow H(t; 2t - 1)$	0,5
(2đ)	$IH = \sqrt{5} \Rightarrow H(0;-1) \text{ hoặc } H(2;3)$	0,5
	Đường thẳng AB đi qua H và vuông góc với IK nên có phương trình: $x+2y+2=0$ hoặc $x+2y-8=0$.	0,5
6a	$(a+b)^2 \ge 4ab > 0; (a^2+b^2) \ge 2ab > 0$	0,5
(0,5đ)	Nhân các vế tương ứng hai bđt trên, suy ra điều phải chứng minh.	
6b (1,5đ)	Theo phần a) ta có $\frac{1}{a^2} + \frac{1}{b^2} \ge \frac{8}{(a+b)^2}$ với $a, b > 0$ nên $\frac{1}{(x-y)^2} + \frac{1}{(y-z)^2} \ge \frac{8}{(x-z)^2}$.	
	Suy ra $P = \frac{1}{(x-y)^2} + \frac{1}{(y-z)^2} + \frac{8}{xz} + \frac{2}{y^3} \ge \frac{8}{(x-z)^2} + \frac{8}{xz} + \frac{2}{y^3}$	
	Ta chứng minh được bất đẳng thức : $\frac{m^2}{a} + \frac{n^2}{b} \ge \frac{(m+n)^2}{a+b}$ với $a, b, m, n > 0$	0,5
	đẳng thức xảy ra khi $\frac{a}{m} = \frac{b}{n}$. Ta có: $\frac{1}{(x-z)^2} + \frac{4}{4xz} \ge \frac{(1+2)^2}{(x-z)^2 + 4xz} = \frac{9}{(x+z)^2}$.	
	Vì vậy $P \ge 8 \left(\frac{1}{(x-z)^2} + \frac{4}{4xz} \right) + \frac{2}{y^3} \ge \frac{72}{(x+z)^2} + \frac{2}{y^3} = \frac{72}{(1-y)^2} + \frac{2}{y^3}$.	
	Xét hàm số $f(t) = \frac{36}{(1-t)^2} + \frac{1}{t^3}$ với $0 < t < 1$. Ta được $\min_{(0;1)} f(t) = f(\frac{1}{3}) = 216$	0,5
	Vậy P nhỏ nhất bằng 216 khi $y = \frac{1}{3}$, và $x + z = \frac{2}{3}$, $(x - z)^2 = 2xz$	
	Hay $x + z = \frac{2}{3}$, $xz = \frac{2}{27}$. Tức là $x = \frac{1}{3} + \frac{1}{3\sqrt{3}}$; $y = \frac{1}{3}$; $z = \frac{1}{3} - \frac{1}{3\sqrt{3}}$	0,5

--- Hết ---