Applied Algorithms Lecture 7: Sudoku, Exact Cover, Dancing Links

Matti Karppa

IT-Universitetet i København

2022-10-11 12:15

Sudoku

- ► SUDOKU is a combinatorial puzzle.
- ▶ We are given a partially filled $n^2 \times n^2$ grid of cells.
- ▶ We say that the filled cells of the **partial solution** are **clues**.
- We are asked if we can fill the remaining cells with numbers from 1 to n^2 such that
 - (i) Each number from 1 to n^2 occurs on each row exactly once,
 - (ii) Each number from 1 to n^2 occurs on each column exactly once,
 - (iii) Each number from 1 to n^2 occurs in each $n \times n$ subgrid exactly once.
- ▶ The standard SUDOKU corresponds to n = 3.
- Note our formulation: what *n* means, and that we ask if there exists at least one solution.
- ► Formulated like this, SUDOKU is known to be **NP**-complete.

SUDOKU example

1	2	
		4
2		

SUDOKU example

4	1	2	3
2	3	1	4
1	4	3	2
3	2	4	1

Backtracking algorithm

- ▶ Idea: go through empty cells (in any order) and try all possible numbers that do not break constraints, then mover to next cell.
- ➤ We maintain the following **invariant**: upon entering any new cell, all number-placements thus far have been valid (not breaking any constraints).
- ▶ If at any point we find a cell with no feasible numbers, backtrack.
- ▶ If we manage to fill all cells, we're done.
- We must check initially that the partial solution is feasible (why?)

Backtracking algorithm pseudocode

```
1: procedure BacktrackingSudokuSolver(M, i, j)
       if i, j is outside the grid then
2:
           return true
3:
       for k \leftarrow 1, 2, \dots, n^2 do
4:
           if CanPlace(M, i, j, k) then
5:
               M_{i,i} \leftarrow k
6:
               Let (i', j') be the next cell.
7:
               if BacktrackingSudokuSolver(M, i', i') then
8:
                   return true
9:
               Set M_{i,i} empty.
10:
       return false
11:
```

Backtracking algorithm example

4	2	6	3	5	1	7	9	8
1	3	49	2	7	8	5X	6X	X
	7	8			9	1		
2	1	3	4		6			
			8	9	7		1	
				2			5	
3		1					7	5
		7		1				2
	4	5				6		

Backtracking algorithm example

6	9	2	5	4	1	7	3	8
1	3	4	2	7	8	5	6	9
5	7	8	3	6	9	1	2	4
2	1	3	4	5	6	8	9	7
4	5	6	8	9	7	2	1	3
7	8	9	1	2	3	4	5	6
3	2	1	6	8	4	9	7	5
8	6	7	9	1	5	3	4	2
9	4	5	7	3	2	6	8	1

EXACT COVER

- ▶ Let $\mathcal{F} \subseteq \mathcal{P}(U)$ be a **family of sets** over some **universe**.
- ▶ For a $S \subseteq U$, we say that S covers the elements $u \in U$ that satisfy $u \in S$.
- ▶ Problem: does there exists a $S = \{S_1, S_2, \dots, S_m\} \subseteq \mathcal{F}$ such that
 - $lackbox{} \cup_{i=1}^m S_1 \cup \cdots \cup S_m = U$ (every element of the universe is covered), and
 - ▶ $S_i \cap S_j = \emptyset$ for $i \neq j$ (the sets are disjoint, so every element is covered exactly once)

EXACT COVER example

- ► Let
 - $V = \{a, b, c, d, e, f, g\}.$
 - $\qquad \mathcal{F} = \{\{c, e, f\}, \{a, d, g\}, \{b, c, f\}, \{a, d\}, \{b, g\}, \{d, e, g\}\}.$
- ► Choose $S = \{\{c, e, f\}, \{a, d\}, \{b, g\}\} \subseteq \mathcal{F}$.
- Then, $\bigcup_{S \in S} = \{c, e, f\} \cup \{a, d\} \cup \{b, g\} = \{a, b, c, d, e, f, g\} = U.$
- ▶ Furthermore, $\{c, e, f\} \cap \{a, d\} = \emptyset$, $\{c, e, f\} \cap \{b, g\} = \emptyset$, and $\{a, d\} \cap \{b, g\} = \emptyset$.
- \triangleright Therefore, \mathcal{S} is an exact cover.

EXACT COVER as a matrix

- ► We can represent the EXACT COVER problem in matrix form as follows.
- ▶ Denote $U = \{u_1, u_2, ..., u_n\}$.
- ▶ Denote $\mathcal{F} = \{S_1, S_2, \dots, S_m\}$.
- Let M be an $m \times n$ matrix whose columns correspond to elements in U and rows to elements in \mathcal{F} .
- ▶ Let $M_{ij} = 1$ iff $u_j \in S_i$.
- ▶ Then S is an exact cover iff the rows corresponding to the elements of S sum up to a vector of all ones.

EXACT COVER matrix example

- ► As before, let
 - $V = \{a, b, c, d, e, f, g\}.$
 - $\mathcal{F} = \{ \{c, e, f\}, \{a, d, g\}, \{b, c, f\}, \{a, d\}, \{b, g\}, \{d, e, g\} \}.$
- ► The corresponding matrix would be

	а	b	С	d	е	f	g
$\{c,e,f\}$	ΓO	0	1	0	1	1	0
$\{a,d,g\}$	1	0	0	1	0	0	1
$\{b,c,f\}$	0	1	1	0	0	1	0
$\{a,d\}$	1	0	0	1	0	0	0
{b,g}	0	1	0	0	0	0	1
{c,e,f} {a,d,g} {b,c,f} {a,d} {b,g} {d,e,g}	L0	0	0	1	1	0	1.

EXACT COVER matrix example

► Now, choosing the proper rows

► And summing them up

$$\begin{bmatrix} a & b & c & d & e & f & g \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Knuth's Algorithm X

- ▶ Abstract algorithm that solves EXACT COVER.
- ldea: choose column (element in U) one by one to cover.
- ightharpoonup For the chosen column, choose a row that covers it (a set in \mathcal{F}).
- ▶ Remove all columns that are covered by the row, and all rows that have a one in any of the covered columns.
- ▶ Recurse. If all columns are covered, we are done. Otherwise, backtrack and choose another row.

Knuth's Algorithm X pseudocode

```
1: procedure AlgorithmX(M, S)
      if M has no columns then
          Terminate
3:
      Choose the next column i.
4:
      for all rows i such that M_{ii} = 1 do
5:
          Add i to S.
6:
          for all columns j' such that M_{ii'} = 1 do
7:
              Cover the column i'.
8:
              for all rows i' such that M_{i'i'} = 1 do
9:
                  Cover the row i'.
10:
          AlgorithmX(M, S)
11:
          Remove i from S
12:
```

Knuth's Algorithm X example

All columns have been covered!

Dancing Links

- ➤ A data structure that makes the basic operations (deleting a row/column, and restoring it afterwards) very efficient for implementing Algorithm X.
- ▶ Basic idea: assuming the matrix is sparse (few ones), represent each one as a **node**.
- Nodes are connected as doubly-linked lists horizontally along a row in a torus structure, and likewise vertically along a column.
- In addition, each column contains a **column header** that is a special node that allows access to any other column.
- ▶ The entry point into the data structure is a **root** *h* that is a special column header without any ones.

Nodes

All nodes *x* support the following operations:

- \blacktriangleright L[x]: return the left neighbor of x,
- \triangleright R[x]: return the right neighbor of x,
- \triangleright U[x]: return the up neighbor of x,
- \triangleright D[x]: return the down neighbor of x, and
- \triangleright C[x]: return the column node associated with x.

Column headers

Column headers are nodes and support all node operations. In addition, each column header \boldsymbol{c} also supports the following operations:

- \triangleright N[c]: return the *name* of the column, and
- \triangleright S[c]: return the size of the column.

Connecting nodes

- ▶ Upon initial creation, each node is connected only to itself.
- New nodes can be **hooked** into the torus.
- ► For example, the following sequence hooks the node *y* to the right side of *x*:

$$R[y] \leftarrow R[x]; \quad L[R[y]] \leftarrow y; \quad L[y] \leftarrow x; \quad R[x] \leftarrow y;$$

ightharpoonup Example: Hook first y to the right of x, then z to the right of y:

Other directions are analoguous.

Constructing a Dancing Links matrix

Given as input an $n \times m$ binary matrix M,

- Construct h.
- For each column j = 1, 2, ..., m, construct the column header c_j and hook it left to h (or the right of the last column header added). It will be useful to store references to the columns in an array for construction of other rows.
- For each row $i = 1, 2, \dots, n$:
 - Construct node x, add column reference, connect it to up of C[x], hook it to the left of D[C[x]] (or the right of the last node added).

Example matrix

The same matrix as in previous slides, but as a Dancing Links DS:

Linking/Unlinking nodes

- Nodes can be unlinked from the torus and relinked.
- ► The node will remember where it was.
- ► Unlink left/right (up/down is analoguous):

$$R[L[x]] \leftarrow R[x]; \quad L[R[x]] \leftarrow L[x];$$

Link simply undoes the operation:

$$L[R[x]] \leftarrow x; \quad R[L[x]] \leftarrow x;$$

Example: before and after unlinking x:

Covering and uncovering a column

- A column can be covered as follows:
- ▶ Unlink the column header (left/right) from the header torus.
- For each row that has a one on the column,
 - For each node that has a one on the horizontal torus, unlink the node (up/down) from the vertical torus.
 - In addition, decrement the size of the column in question by one.
- ▶ This effectively removes any row that has a one in the column being covered from being accessible from other columns.
- Uncovering simply does the same operations in reverse.

Covering a column pseudocode

```
1: procedure Cover(c)

2: UnlinkLeftRight(c).

3: for i \leftarrow D[c], D[D[c]], \dots, while i \neq c do

4: for j \leftarrow R[i], R[R[i]], \dots, while j \neq i do

5: UnlinkUpDown(j).

6: S[C[j]] \leftarrow S[C[j]] - 1.
```

Uncovering a column pseudocode

```
1: procedure Uncover(c)
2: for i \leftarrow U[c], U[U[c]], \ldots, while i \neq c do
3: for j \leftarrow L[i], L[L[i]], \ldots, while j \neq i do
4: S[C[j]] \leftarrow S[C[j]] + 1.
5: LinkUpDown(j).
6: LinkLeftRight(c).
```

Dancing Links X (DLX)

- ► Given an EXACT COVER binary matrix, find a subset of rows that sum up to all ones.
- ▶ Main routine Search implements Knuth's Algorithm X, but uses the cover/uncover functions to remove the columns or rows.
- ➤ Column size information can be used to infer the choice of next column that minimizes **branch factor**: choose the column with minimum size (number of uncovered ones).
- ▶ We need to maintain the solution in, for example, a stack.
- ▶ Upon termination, we **print** the solution (in an abstract sense; we recover the identity of columns in question per row in solution).

Branch-factor minimizing choice of column

```
1: function Choose(h) 
ightharpoonup Choose the next column to cover

2: s \leftarrow \infty.

3: for j \leftarrow R[h], R[R[h]], \ldots, while j \neq h do

4: if S[j] < s then

5: c \leftarrow j. 
ightharpoonup Select the minimum-sized column.

6: s \leftarrow S[j].

7: return c.
```

Printing

```
1: procedure Print(S)
       while S is non-empty do
2:
           Pop n from S.
3:
          i \leftarrow n.
4:
           do
5:
               Print N[C[j]].
6:
               j \leftarrow R[j].
7:
           while j \neq n
8:
```

DLX search procedure

```
1: procedure Search(h, S)
      if R[h] = h then Print(S) and terminate.
2:
      Choose the next column c, then Cover(c).
3:
      for r \leftarrow D[c], D[D[c]], \ldots, while r \neq c do
4:
           Push r into S.
5:
          for j \leftarrow R[r], R[R[r]], \ldots, while j \neq r do
6:
              Cover(i).
7:
          Search(h, S).
8:
```

9: Pop r from S and let $c \leftarrow C[r]$.
10: **for** $j \leftarrow L[r], L[L[r]], \ldots$, **while** $j \neq r$ **do**11: Uncover(j).

Reducing SUDOKU to EXACT COVER

- There will be n^6 rows, one for each (i, j, k) (place number k into cell (i, j)).
- There will be $4n^4$ columns: four different kinds of constraints, n^4 constraints each.
- ► Each row will contain exactly four or zero ones.
- Constraints:
 - (i) For each $i, k \in [n^2]$, the number k must be present on row i,
 - (ii) For each $j, k \in [n^2]$, the number k must be present on column j,
 - (iii) For each $i_0, j_0 \in [n]$ and each $k \in [n^2]$, the number k must be present in the $n \times n$ subgrid (i_0, j_0) , and
 - (iv) For each $i, j \in [n^2]$, there must be a number in cell (i, j).
- Clues are handled by zeroing the conflicting rows; for example, if we have k in (i,j), we would zero-out any rows that correspond to $k' \neq k$ for (i,j).

Reducing SUDOKU to SAT

- There will be n^6 variables x_{ijk} (place number k into cell (i,j)), and there will be $4n^4 + (n^8 n^6)/2$ clauses.
- Clauses:
 - (i) For each $(i, k) \in [n^2]^2$: $(x_{i,1,k} \lor x_{i,2,k} \lor \cdots \lor x_{i,n^2,k})$, so each number k must occur on each row i,
 - (ii) For each $(j, k) \in [n^2]^2$: $(x_{1,j,k} \lor x_{2,j,k} \lor \cdots \lor x_{n^2,j,k})$, so each number k must occur on each column j,
 - (iii) For each $(i_0, j_0) \in [n]^2$, $k \in [n^2]$: $(x_{(i_0-1)n+1,(j_0-1)n+1,k} \lor \cdots \lor x_{i_0n,j_0n,k})$, so each number k must occur in each subgrid,
 - (iv) For each $(i,j) \in [n^2]^2$: $(x_{i,j,1} \lor x_{i,j,2} \lor \cdots \lor x_{i,j,n^2})$, so each cell must contain a number, and
 - (v) For each $(i,j) \in [n^2]^2$ and each unordered pair $(k,k') \in {n^2 \choose 2}$: $(\neg x_{i,j,k} \lor \neg x_{i,j,k'})$, so no two numbers can occupy the same cell.
- \triangleright Clues are handled by adding clauses that contain only the literal x_{ijk} corresponding to the clue.

Mandatory Assignment 3

Mandatory Assignment 3 is on LearnIT. Topic will be solving SUDOKU in three different ways:

- (i) Backtracking algorithm,
- (ii) Reduction to SAT, and
- (iii) Reduction to EXACT COVER and DLX.

Due: 2022-11-08.

There are also some simple exercises on LearnIT that might be useful (especially regarding the reductions)