

VARIABLES LATENTES: NNMF, FA LSA Y LDA

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 16) 07.MARZO.2022

La Factoración de Matrices No-Negativas (NNMF) es otra estrategia para obtener variables lantentes.

Sea $\mathbb{X} \in \mathbb{R}^{n \times d}$ una matriz de datos. El objetivo es descomponer \mathbb{X} como el producto de dos matrices con entradas no-negativas $W \in \mathbb{R}^{n \times r}$ y $H \in \mathbb{R}^{r \times d}$

$$\mathbb{X} = WH$$
,

EL producto de las matrices matrices W y H se implementa de modo que cada columna de \mathbb{X} es una combinación lineal de las columnas en W, poderadas por los coeficientes proporcionados por las columnas de H. Esto es, cada columna de \mathbb{X} es

$$X_i = \mathbb{X}_i = W\mathbf{h}_i, \quad i = 1, 2, \ldots, d.$$

donde X_i es el vector de la i—ésima columna de \mathbb{X} y \mathbf{h}_i la i—ésima columna de H.

Lo que se pretende es que las dimensiones de las matrices factores W y H sea baja. Esto es, definimos y valor $1 \le r \le d$, típicamente r << d de modo que las matrices factores W y H cumplan

$$W \in \mathbb{R}^{n \times r}, \ H \in \mathbb{R}^{r \times d}, \ y \ rank(H) = rank(W) = r.$$

El problema de encontrar estas matrices de bajo rango W y H se resuelve mediente el problema de optimización

$$\min_{W,H} ||\mathbb{X} - WH||_F^2, \quad \text{sujeto a } W \ge 0, \ H \ge 0. \tag{1}$$

Se requieren técnicas de optimización tipo gradiente proyectado, métodos de punto interior, u otras técnicas avanzadas para tratar este problema.

pause En la práctica, se utilizan esquemas de gradiente proyectado alternado, esto es, resolvemos el problema (1) en dos pasos:

- 1. Fijar W_k , y resolver $H_k = \operatorname{argmin}_{H \geq 0} ||X W_k H||_F^2$.
- 2. Fijar H_k , y resolver $W_{k+1} = \operatorname{argmin}_{W>0} ||X WH_k||_F^2$.

Observaciones:

- NNMF tiene una estructura de clustering inherente: agrupa las columnas de X en función de las componentes que encuentra en la factoración aproximada WH.
- Las columnas de *W* forman atributos o segmentos. Los coeficientes de *H* miden el grado de pertenencia a estos segmentos.
- Si además imponemos una restricción de ortogonalidad en H, es decir $HH^T = I$, la minimización (1) es equivalente al método de agrupamiento k-means.
- Cuando la restricción de ortogonalidad $HH^T = I$ no se impone, la ortogonalidad se mantiene en gran medida, y la propiedad de agrupamiento también.
- Existen otras técnicas similares, cuya base es factorar la matriz X, como el análisis de factores (FA), o el análisis semántico latente (LSA).
- Si la función de error es la divergencia Kullback-Leibler, NNMF es idéntico al análisis semántico latente probabilístico LSA o LDA.

Ejemplo 1: Recomendaciones en compras.

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

Number of purchases in category

Ejemplo 1: Recomendaciones en compras.

W matrix — segment perspective

W matrix — category perspective

Ejemplo 1: Recomendaciones en compras.

Pregunta: con esta información ¿Cómo hacer recomendaciones?

Ejemplo 1: Recomendaciones en compras.

Reconstructed X matrix — person perspective

Rankeamos la columna correspondiente a un usuario(columna \mathbf{h}_i). Las recomendaciones se hacen en función de este *score* indicado en los

coeficientes de la columna h

Ejemplo 1: Recomendaciones en compras.

Pregunta: con esta información ¿Cómo hacer recomendaciones?

Ejemplo 1: Compras en supermercado.

	Anahí	Babá	Cadú	Didí	Edú	Fabi
Vegetales	0	1	0	1	2	2
Frutas	2	3	0	1	2	2
Dulces	1	1	0	0	1	1
Pan	0	2	3	4	1	1
Café	0	0	0	0	1	2
Carne	0	0	2	1	2	0
Lácteos	2	1	0	2	0	1
Pastas	0	3	3	1	1	0
Salsas	0	3	2	2	1	0

Ejemplo 2: Opiniones sobre películas.

	John	Alice	Mary	Greg	Peter	Jennifer
Game of Thrones	5.0	NaN	1.0	NaN	NaN	NaN
House of Cards	NaN	NaN	NaN	7.0	NaN	6.0
Friends	6.0	4.0	NaN	3.0	5.0	3.0
Band of Brothers	2.0	9.0	NaN	NaN	NaN	9.0
Breaking Bad	NaN	NaN	NaN	9.0	NaN	2.0

Imdb ratings (NaN — not rated)

Análisis Semántico latente (LSA)

Ejemplo: Clasificación de textos.

Alocación latente de Dirichlet (LDA)

Ejemplo: Opiniones sobre películas.

Análisis de Factores (FA)

Ejemplo:

