a)
$$\frac{k}{0} \frac{1}{a = 2^{1}} = 2^{2k}$$
 $n = 2^{2k}$
 $\frac{1}{2} \frac{1}{16} = 2^{2^{2}}$ $\log n = 2^{k}$
 $\frac{3}{256} = 2^{2^{4}}$ $\log(\log n) = k$

runtime $\Theta(log(logn))$

b)
$$\frac{1}{1}$$
 $\frac{n=10}{1}$ $\sqrt{10} = 3$
 $\frac{2}{3}$ \times if executes \sqrt{n} times

 $\frac{1}{3}$ \times $\frac{1}{$

c)
$$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \theta(i) \right) \right) = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} (\log n) \right) = n^{2} \log n$$
 $m \mid k$ runtime: $\theta(n^{2} \log n)$

$$d \int_{j=0}^{n-1} \Theta(j) + \sum_{i=0}^{n-1} \left(\sum_{j=0}^{3/2} \Theta(i) \right) = \sum_{j=0}^{n-1} \frac{3}{2} = \frac{3/2^{n+1} - 1}{3/2 - 1} = \frac{3/2^{n} + \frac{3}2}{3/2 - 1} = \frac{3/2^{n} + \frac{3}2}{3/2 - 1} = \frac{3/2^{n} + \frac{3}2}{1/2}$$

$$\frac{\sin z}{10}$$
= $(2(31z)^{n} + 1/z)$
 $\frac{31z}{15}$
= $(2(31z)^{n} + 1/z)$

a) in 1 is returned

b) in 2 is returned