SimCSE:

Simple Contrastive Learning of Sentence Embeddings

Tianyu Gao, Xingcheng Yao, Danqi Chen (2021.04.)

김선행, 김한길, 옥창원

2021. 08. 08.

SimCSE is...

A simple contrastive sentence embedding framework

→ Sentence embedding을 위해 contrastive learning을 아주 쉽게 이용할 수 있는 프레임워크

의의

- Text에 contrastive learning를 간단히 적용할 수 있는 프레임워크 제시
 Standard semantic textual similarity (STS) tasks에 대해 기존 best result를 훨씬 상회하는 결과를 보여줌
 - Unsupervised: Dropout이라는 아주 일반적이고 간단한 방식 -> PLM 등에 확장 가능성
 - Supervised: NLI Datasets 이용
- 다양한 실험을 통해 왜 성능이 좋게 나오는지를 설명하고자 노력

SimCSE is...

SimCSE: Simple Contrastive Learning of Sentence Embeddings

Tianyu Gao†* Xingcheng Yao‡* Danqi Chen†

†Department of Computer Science, Princeton University ‡Institute for Interdisciplinary Information Sciences, Tsinghua University {tianyug, danqic}@cs.princeton.edu yxc18@mails.tsinghua.edu.cn

Abstract

This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts *itself* in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well performing

	$BERT_{\mathtt{base}}$
Unsupervised	
Avg. embeddings	56.7
IS-BERT (prev. SoTA)	66.6
SimCSE	74.5 (+7.9%)
Supervised	
SBERT	74.9
SBERT-whitening (prev. SoTA)	77.0
SimCSE	81.6 (+4.6%)

Contrastive Learning

Contrastive Learning

- Self-supervised learning의 일종
- Positive pair(유사한 데이터)의 representation은 거리가 가까워 지도록 학습하고,
 Negative pair(다른 데이터)의 representation은 거리가 멀어지도록 학습을 시킨다.

Key question

- 1. How to construct good positive pair?
- 2. How to construct good negative pair?

Contrastive Learning(image): SimCLR

기 접근: Memory Bank

- 관측치 전체 embedding을 계속 저장하고 있어야 한다
- 랜덤 샘플링을 통해 negative example을 구성
 → 데이터 샘플별로 학습에 기여하는 정도가 다르다

SimCLR

하나의 배치 안에서 negative sample을 계산하자

https://velog.io/@tobigs-gm1/Self-Supervised-Learning

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR

Contrastive representation Metric: Alignment and uniformity

둘 다 수치가 작을수록 좋음

Alignment: Similar samples have similar features.

"Expected distance between embeddings of the paired instances"

Uniformity: Preserve maximal information.

"How well the embeddings are uniformly distributed on each dimension"

SimCSE

Clear(2020) / Coco-lm(2021)

Apply augmentation techniques such as word deletion, reordering, and substitution

SimCSE

Apply random mask for dropout

- Paired(semantically related) example: $x_i^+ = x_i$.
- Representations: $\mathbf{h}_{i}^{z} = f_{\theta}(x_{i}, \mathbf{z})$
 - Z: random mask for dropout (standard dropout mask in Transformers)
 - f: pre-trained language model such as BERT or RoBERTa
- Training objective for (x_i, x_i^+) $\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_i^{z_i'})/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_j^{z_j'})/\tau}}, \qquad (4)$
 - sim =
 - mini-baccosine similarity $\frac{\mathbf{h}_1^{\mathsf{T}}\mathbf{h}_2}{\|\mathbf{h}_1\|.\|\mathbf{h}_2\|}$
 - Temperature τ= 0.05

- 1.Data augmentation 관점에서의 비교 실험 결과
- •트레이닝은 English Wikipedia, 테스트는 STS-B development set 이용

Data augmentation			STS-B
None			79.1
Crop	10%	20%	30%
	75.4	70.1	63.7
Word deletion	10%	20%	30%
	74.7	71.2	70.2
Delete one word			74.8
w/o dropout			71.4
MLM 15%	66.8		
Crop 10% + MLM 15	%		70.8

Table 2: Comparison of different data augmentations on STS-B development set (Spearman's correlation). Crop k%: randomly crop and keep a continuous span with 100-k% of the length; word deletion k%: randomly delete k% words; delete one word: randomly delete one word; MLM k%: use BERT_{base} to replace k% of words. All of them include the standard 10% dropout (except "w/o dropout").

각종 data augmentation 기법들을 적용하는 것이 적용하지 않고 10% dropout만 하는 경우(None)보다 두 문장의 유사도를 더 떨어뜨림

→ Text의 discrete nature에 따라 해당 data augmentation 기법들이 discrete한 augmentation이기 때문

• 정말 dropout 때문일까?

p	0.0	0.01		0.1
STS-B	64.9	69.5		79.1
p	0.15	<i>0.2</i> 78.2	0.5	Fixed 0.1
STS-B	78.6		67.4	45.2

Table 4: Effects of different dropout probabilities p on the STS-B development set (Spearman's correlation, BERT_{base}). Fixed 0.1: use the default 0.1 dropout rate but apply the same dropout mask on both x_i and x_i^+ .

No dropout 또는 fixed 0.1일 때 급격한 performance 감소 → Dropout이 중요하게 역할함을 알 수 있음

Figure 2: $\ell_{\rm align}$ - $\ell_{\rm uniform}$ plot for unsupervised SimCSE, "no dropout", "fixed 0.1" (same dropout mask for x_i and x_i^+ with p=0.1), and "delete one word". We visualize checkpoints every 10 training steps and the arrows indicate the training direction. For both $\ell_{\rm align}$ and $\ell_{\rm uniform}$, lower numbers are better.

Supervised SimCSE

STS dataset에서 기준 문장 & entailment 문장 → Positive pair로 이용

(b) Supervised SimCSE

$$\ell_i = -\log \frac{e^{\operatorname{sim}(\mathbf{h}_i^{z_i}, \mathbf{h}_i^{z_i'})/\tau}}{\sum_{j=1}^N e^{\operatorname{sim}(\mathbf{h}_i^{z_i}, \mathbf{h}_j^{z_j'})/\tau}}, \qquad (4)$$

Supervised SimCSE

Dataset	sample	full
Unsup. SimCSE (1m)	G -	79.1
QQP (134k) Flickr30k (318k) ParaNMT (5m)	81.8 81.5 79.7	81.8 81.4 78.7
SNLI+MNLI entailment (314k)	84.1	84.9
neutral (314k) ³ contradiction (314k)	82.6 77.5	82.9 77.6
SNLI+MNLI entailment + hard neg. + ANLI (52k)	-	86.2 85.0

- Supervised가 대부분의 경우 unsupervised 보다 뛰어남.
- NLI (SNLI + MNLI) 데이터셋에 대해 학습한 모델이 가장
 좋은 성능을 보임
 - 데이터 퀄리티 우수 & lexical overlap 낮음
 - * F1 measured between two bags of words)
 - for the entailment pairs (SNLI + MNLI) is 39%,
 - while they are 60% and 55% for QQP and ParaNMT.
- contradiction 문장을 활용하여 hard negatives를 이용하는 경우 성능 증가(84.9→86.2)
- 이전 연구에서 흔히 쓰는 dual-encoder는 오히려 성능을 저하시킴 (86.2→84.2)

Experiment

- Sentence embeddings의 주요 목적은 결국 semantically similar sentences를 잘 군집화 하는 것
 - → STS results를 살펴보자!

- 모델 구조 Pre-trained BERT/RoBERTa의 [CLS] 토큰 위에 다층 퍼셉트론(MLP) 레이어를 추가하여 학습
- 평가 Spearman's correlation (순위를 고려하는 것이 값 그 자체를 따지는 것 보다 본 실험에 더 적합)

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
		Unsup	ervised mo	odels				
GloVe embeddings (avg.)♣	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT _{base} -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} ♡	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
* SimCSE-BERT _{base}	66.68	81.43	71.38	78.43	78.47	75.49	69.92	74.54
RoBERTa _{base} (first-last avg.)	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTa _{base} -whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
* SimCSE-RoBERTa _{base}	68.68	82.62	73.56	81.49	80.82	80.48	67.87	76.50
* SimCSE-RoBERTa _{large}	69.87	82.97	74.25	83.01	79.52	81.23	71.47	77.47
3		Supe	rvised mod	lels				
InferSent-GloVe.	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder*	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT _{base} *	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
SBERT _{base} -flow	69.78	77.27	74.35	82.01	77.46	79.12	76.21	76.60
SBERT _{base} -whitening	69.65	77.57	74.66	82.27	78.39	79.52	76.91	77.00
* SimCSE-BERT _{base}	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.57
SRoBERTa _{base} ♣	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa _{base} -whitening	70.46	77.07	74.46	81.64	76.43	79.49	76.65	76.60
* SimCSE-RoBERTa _{base}	76.53	85.21	80.95	86.03	82.57	85.83	80.50	82.52
* SimCSE-RoBERTa _{large}	77.46	87.27	82.36	86.66	83.93	86.70	81.95	83.76

BERT-flow / BERT-whitening

IS-BERT (Info-Sentence BERT)

Figure 3: $\ell_{\rm align}$ - $\ell_{\rm uniform}$ plot of models based on BERT_{base}. Color of points and numbers in brackets represent average STS performance (Spearman's correlation). *Next3Sent*: "next 3 sentences" from Table 3.

Pre-trained embedding는
 alignment는 좋으나, uniformity가 좋지 않음

Post-processing method(BERT-flow, BERT-whitening)는
 uniformit를 크게 증가시키나, alignment를 안좋게 만듦

• 그에 반해 SimCSE는 alignment와 uniformity 둘다 증가

Exp2: Transfer tasks

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	Avg.
Unsupervised models								
GloVe embeddings (avg.)♣	77.25	78.30	91.17	87.85	80.18	83.00	72.87	81.52
Skip-thought $^{\heartsuit}$	76.50	80.10	93.60	87.10	82.00	92.20	73.00	83.50
Avg. BERT embeddings.	78.66	86.25	94.37	88.66	84.40	92.80	69.54	84.94
BERT-[CLS]embedding.	78.68	84.85	94.21	88.23	84.13	91.40	71.13	84.66
IS-BERT _{base} ♡	81.09	87.18	94.96	88.75	85.96	88.64	74.24	85.83
* SimCSE-BERT _{base}	80.41	85.30	94.46	88.43	85.39	87.60	71.13	84.67
w/ MLM	80.74	85.67	94.68	87.21	84.95	89.40	74.38	85.29
* SimCSE-RoBERTa _{base}	79.67	84.61	91.68	85.96	84.73	84.20	64.93	82.25
w/ MLM	82.02	87.52	94.13	86.24	88.58	90.20	74.55	86.18
* SimCSE-RoBERTa _{large}	80.83	85.30	91.68	86.10	85.06	89.20	75.65	84.83
w/ MLM	83.30	87.50	95.27	86.82	87.86	94.00	75.36	87.16
		Supe	rvised mo	dels				
InferSent-GloVe.	81.57	86.54	92.50	90.38	84.18	88.20	75.77	85.59
Universal Sentence Encoder.	80.09	85.19	93.98	86.70	86.38	93.20	70.14	85.10
SBERT _{base} .	83.64	89.43	94.39	89.86	88.96	89.60	76.00	87.41
* SimCSE-BERT _{base}	82.69	89.25	94.81	89.59	87.31	88.40	73.51	86.51
w/ MLM	82.68	88.88	94.52	89.82	88.41	87.60	76.12	86.86
SRoBERTa _{base}	84.91	90.83	92.56	88.75	90.50	88.60	78.14	87.76
* SimCSE-RoBERTa _{base}	84.92	92.00	94.11	89.82	91.27	88.80	75.65	88.08
w/ MLM	85.08	91.76	94.02	89.72	92.31	91.20	76.52	88.66
* SimCSE-RoBERTa _{large}	88.12	92.37	95.11	90.49	92.75	91.80	76.64	89.61
w/ MLM	88.45	92.53	95.19	90.58	93.30	93.80	77.74	90.23

Supervised model 의 경우
 이전 접근 방식과 유사 또는
 더 나은 성능을 보임

반면 unsupervised는 확실한 성능 우위를 보여주지 못함

• MLM 방식을 objective func에 추가하는 것이 SimCSE가 token-level knowledge를 잊지 않게 하는데 도움을 줌 $\ell + \lambda \cdot \ell^{\mathrm{mlm}}$

Exp3: Ablation Study

Batch size	32	64	128	256	512	1024
STS-B	84.6	₃ 85.6	86.0	86.2	86.2	86.0

Table 8: Effect of different batch sizes (STS-B development set, Spearman's correlation, BERT_{base}).

Model	STS-B	Avg. transfer
[CLS]	86.2	85.8
First-last avg.	86.1	86.1
w/o MLM	86.2	85.8
w/ MLM		
$\lambda = 0.01$	85.7	86.1
$\lambda = 0.1$	85.7	86.2
$\lambda = 1$	85.1	85.8

B

Table 9: Ablation studies of different pooling methods and incorporating the MLM objective. The results are based on the development sets using BERT_{base}.

Thanks!

Figure 4: Density plots of cosine similarities between sentence pairs in full STS-B. Pairs are divided into 5 groups based on ground truth ratings (higher means more similar) along the y-axis, and x-axis is the cosine similarity.

SBERT _{base}	Supervised SimCSE-BERT _{base}
Query: A man riding a small boat in a harbor.	
#1 A group of men traveling over the ocean in a small boat. #2 Two men sit on the bow of a colorful boat. #3 A man wearing a life jacket is in a small boat on a lake.	A man on a moored blue and white boat. A man is riding in a boat on the water. A man in a blue boat on the water.
Query: A dog runs on the green grass near a wooden fence.	
#1 A dog runs on the green grass near a grove of trees. #2 A brown and white dog runs through the green grass. #3 The dogs run in the green field.	The dog by the fence is running on the grass. Dog running through grass in fenced area. A dog runs on the green grass near a grove of trees.

Table 10: Retrieved top-3 examples by SBERT and supervised SimCSE from Flickr30k (150k sentences).

| 참고: Exp2: Transfer tasks

- MR: 영화 리뷰로 긍부정으로 이루어진 데이터 세트
- SST : 감성 분석을 다루는 이진 분류 데이터셋
- CR: 크롤링으로 수집한 전자제품 리뷰 데이터셋
- TREC: train/dev/test 분할에 대한 1,229/65/68 질문과 53,417/1,117/1,442 질문-답변 쌍
- SUBJ : 전체 감정 극성(긍정 또는 부정) 또는 주관적 평가(예: "별 2개 반")와 관련하여 레이블이 지정된 영화 리뷰 문서 모음과 주관적 상태(주관 또는 객관적)
- MPQA: Multi-Perspective Question Answering 의견 및 기타 개인 상태(신념, 감정, 감정, 상상력
 등)
- MRPC: Microsoft Research Paraphrase Corpus는 뉴스와이어 기사에서 수집된 5,801개의 문장 쌍으로 구성된 말뭉치입니다. 각 쌍은 의역인지 여부에 따라 사람 주석에 의해 레이블이 지정됩니다. 전체 세트는 훈련 부분 집합(4,076개 문장 쌍 중 2,753개가 의역)과 테스트 부분 집합(1,725개 쌍이 의역임)으로 나뉨.