Optimality conditions. Optimization with equality / inequality conditions. KKT.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

∌ ດ ⊘

Optimality Conditions. Important notions recap

$$f(x) \to \min_{x \in S}$$

A set S is usually called a budget set.

- A point x^* is a global minimizer if $f(x^*) \leq f(x)$ for all x.
- A point x^* is a local minimizer if there exists a neighborhood N of x^* such that $f(x^*) \leq f(x)$ for all $x \in N$.
- ullet A point x^* is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood N of x^* such that $f(x^*) < f(x)$ for all $x \in N$ with $x \neq x^*$.
- We call x^* a stationary point (or critical) if $\nabla f(x^*) = 0$. Any local minimizer must be a stationary point.

Figure 1: Illustration of different stationary (critical) points

Unconstrained optimization recap

First-Order Necessary Conditions

If x^{st} is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$\nabla f(x^*) = 0$$

Second-Order Sufficient Conditions

Suppose that $abla^2 f$ is continuous in an open neighborhood of x^* and that

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Then x^* is a strict local minimizer of f.

(1)

(2)

Optimization with equality conditions

Consider simple yet practical case of equality constraints:

$$f(x) o \min_{x \in \mathbb{R}^n}$$
 s.t. $h_i(x) = 0, i = 1, \dots, p$

Lagrange multipliers recap

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$L(x, \nu) = f(x) + \sum_{i=1}^{p} \nu_i h_i(x) = f(x) + \nu^T h(x) \to \min_{x \in \mathbb{R}^n, \nu \in \mathbb{R}^p}$$

Lagrange multipliers recap

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$L(x, \nu) = f(x) + \sum_{i=1}^{p} \nu_i h_i(x) = f(x) + \nu^T h(x) \to \min_{x \in \mathbb{R}^n, \nu \in \mathbb{R}^p}$$

Necessery conditions:

$$\nabla_x L(x^*, \nu^*) = 0$$

$$\nabla_{\nu} L(x^*, \nu^*) = 0$$

Sufficient conditions:
$$\langle y,\nabla^2_{xx}L(x^*,\nu^*)y\rangle>0,$$

$$\forall y\neq 0\in\mathbb{R}^n:\nabla h_i(x^*)^Ty=0$$

$$\forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^T y = 0$$

Optimization with inequality conditions

Consider simple yet practical case of inequality constraints:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

Optimization with inequality conditions

Consider simple yet practical case of inequality constraints:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t. $g(x) \le 0$

$$g(x) \leq 0$$
 is inactive. $g(x^*) < 0$:
$$g(x^*) < 0$$

$$\nabla f(x^*) = 0$$

$$\nabla^2 f(x^*) > 0$$

$$g(x) \leq 0$$
 is active.

$$g(x^*) = 0$$

$$-\nabla f(x^*) = \lambda \nabla g(x^*), \lambda > 0$$

$$\langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0,$$

$$\langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0,$$

 $\forall y \neq 0 \in \mathbb{R}^n : \nabla g(x^*)^\top y = 0$

General formulation

General problem of mathematical programming:

$$f_0(x)
ightarrow \min_{x \in \mathbb{R}^n}$$
 s.t. $f_i(x) \leq 0, \ i=1,\ldots,m$ $h_i(x) = 0, \ i=1,\ldots,p$

General formulation

General problem of mathematical programming:

$$f_0(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $f_i(x) \leq 0, \ i=1,\ldots,m$
 $h_i(x) = 0, \ i=1,\ldots,p$

The solution involves constructing a Lagrange function:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

എ റ ഉ

KKT Necessary conditions

Let x^* , (λ^*, ν^*) be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem p^* is equal to the optimal value for the dual problem d^*). Let also the functions f_0, f_i, h_i be differentiable.

Karush-Kuhn-Tucker conditions

KKT Necessary conditions

Let x^* , (λ^*, ν^*) be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem p^* is equal to the optimal value for the dual problem d^*). Let also the functions f_0, f_i, h_i be differentiable.

$$(1)\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

$$(2)\nabla_\nu L(x^*, \lambda^*, \nu^*) = 0$$

$$(3)\lambda_i^* \ge 0, i = 1, \dots, m$$

$$(4)\lambda_i^* f_i(x^*) = 0, i = 1, \dots, m$$

$$(5) f_i(x^*) \le 0, i = 1, \dots, m$$

KKT Some regularity conditions

These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient. For example, Slater's condition:

∌ ດ **ຍ**

KKT Some regularity conditions

These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient. For example, Slater's condition:

If for a convex problem (i.e., assuming minimization, f_0, f_i are convex and h_i are affine), there exists a point x such that h(x)=0 and $f_i(x)<0$ (existance of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and sufficient.

େଡ଼େଉ

KKT Sufficient conditions

For smooth, non-linear optimization problems, a second order sufficient condition is given as follows. The solution x^*, λ^*, ν^* , which satisfies the KKT conditions (above) is a constrained local minimum if for the Lagrangian,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

the following conditions hold:

$$\langle y, \nabla_{xx}^2 L(x^*, \lambda^*, \nu^*) y \rangle > 0$$

 $\forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^\top y = 0, \nabla f_0(x^*)^\top y \leq 0, \nabla f_j(x^*)^\top y \leq 0$
 $i = 1, \dots, p \quad \forall j : f_j(x^*) = 0$

Question

Function $f:E\to\mathbb{R}$ is defined as

$$f(x) = \ln\left(-Q(x)\right)$$

where $E = \{x \in \mathbb{R}^n : Q(x) < 0\}$ and

$$Q(x) = \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$$

with $A \in \mathbb{S}_{++}^n$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$.

Find the maximizer x^* of the function f.

Question

Give an explicit solution of the following task.

$$f(x,y) = x + y \to \min$$
 s.t. $x^2 + y^2 = 1$

where $x, y \in \mathbb{R}$.

Question

Give an explicit solution of the following task.

$$\langle c, x \rangle + \sum_{i=1}^{n} x_i \log x_i \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } \sum_{i=1}^n x_i = 1,$$

where $x \in \mathbb{R}^n_{++}, c \neq 0$.

Question

Give an explicit solution of the following task.

$$f(x,y) = (x-2)^2 + 2(y-1)^2 \to \min$$

$$\mathsf{s.t.}\ x + 4y \leq 3$$

$$x + 4y \le 3$$
$$x \ge y$$

where $x, y \in \mathbb{R}$.

Question

Given $y \in \{-1, 1\}$, and $X \in \mathbb{R}^{n \times p}$, the Support Vector Machine problem is:

$$\frac{1}{2}||w||_2^2 + C\sum_{i=1}^n \xi_i \to \min_{w, w_0, \xi_i}$$

s.t.
$$\xi_i > 0, i = 1, \dots, n$$

$$y_i(x_i^T w + w_0) > 1 - \xi_i, i = 1, \dots, n$$

find the KKT stationarity condition.