Infinitesimal G equivalence implies G-equivalence:

$$\frac{d}{dt}\phi e^{tX} = \phi X e^{tX} = X \phi e^{tX}$$
$$\frac{d}{dt}e^{tX}\phi = X e^{tX}\phi$$

satisfy same ODE and initial value.

Finite-dimensional subspace is \mathfrak{g} stable iff it is G stable: $e^{tX}v = \sum X^n/n!v$

1.a. Assume G is a connected Lie group. Show $I \subset \mathbb{C}[\mathfrak{g}^*]$ is Poisson ideal iff I is G-stable under the adjoint action.

(The Poisson structure is defined to be $\{f,g\} = \sum_{i,j,k} c_{ij}^k x_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$ where $c_{i,j}^k$ are the structure constants.)

Proof.

$$\frac{d}{dt}\bigg|_{t=0} f \circ Ad^*(e^{tX_j}) = \sum_i \frac{\partial f}{\partial x_i} (ad^*X_j)_i = \sum_{i,k} \frac{\partial f}{\partial x_i} c_{ij}^k x_k$$

To see that $(ad^*X_j)_i = \sum_k c_{ij}^k x_k$: $\langle X_k^*, [X_\alpha, X_j] \rangle = c_{\alpha,j}^k \Rightarrow ad^*X_j(X_k^*) = \sum_k c_{\alpha,j}^k X_\alpha^*$.

Hence $f \circ Ad^*g \in I, \forall f \in I \Rightarrow \{I, x_j\} \subset I, \forall j$. Since $\{,\}$ observes Leibniz rule, it follows that $\{I, \mathbb{C}[\mathfrak{g}^*]\} \subset I$.

On the other hand, $f \circ Ad^*(e^{tX}) = f(\sum ad(X)^n/n!) \in I$ when $X = X_j$ if $\{I, \mathbb{C}[\mathfrak{g}^*]\} \in I$. Since G is connected, it is generated by the image of exponential map as a group.

b.
$$f \in \mathbb{C}[\mathfrak{g}^*]$$
 is fixed by G iff $\{f, h\} = 0, \forall h \in \mathbb{C}[\mathfrak{g}^*]$.

Proof. Same. □

c. The natrual Poisson sturcure in $\mathbb{C}[T^*G]$ is invariant under left and right translation by G. Thus, it gives a Poisson bracket on $\mathbb{C}[T^*G]^{G\text{-left invariant}} = \mathbb{C}[\mathfrak{g}^*]$, which agrees with the one considered in (a).

Proof. Invariance under left and right translation means the invariance of the canonical symplectic form on cotangent bundles.

Let $f,g\in\mathbb{C}[\mathfrak{g}^*]=\mathbb{C}[T^*G]^{G\text{-left invariant}}\subset\mathbb{C}[T^*G]$ (defined by $f(g,X^*)=f(e,L_{g^{-1}}X^*)$). Let ω be the canonical symplectic form on T^*G . Then there exists $\tilde{X}_f\in\mathfrak{X}$ such that $i_{\tilde{X}_f}\omega=-df$.

What we need to show is that $\omega(\tilde{X}_f, \tilde{X}_g) = \{f, g\}$ (defined in (a)).

By definition, at $(e, X_k^*) \in T^*G$, LHS= $\tilde{X}_f((X_k^L)^*(\pi_*\tilde{X}_g)) - \tilde{X}_g((X_k^L)^*(\pi_*\tilde{X}_f)) - X_k^*(\pi_*[\tilde{X}_f, \tilde{X}_g])$ where $\pi: T(T^*G) \to TG$ and X_k^L is the left invariant vector field valued X_k at e.

Given the Leibniz rule, it suffices to show that when $f = x_i$, $g = x_j$, LHS= c_{ij}^k .

But then we have $\pi_* \tilde{X}_{x_i} = X_i^L$ and $\pi_* \tilde{X}_{x_j} = X_j^L$. Given that $[X^R, Y^R] = -[X, Y]^R$, probably we need to replace L by R above.

d. Assume G has a transitive Hamiltonian action on symplectic manifold X with moment map $\mu: X \to \mathfrak{g}^*$. Show the image is a coadjoint orbit and μ is a covering map.

Proof. First claim follows from that μ is G-equivariant.

content...

Remark 0.1. Ad B acts by $B \otimes id + id \otimes (B^{-1})T$ on $M_d(\mathbb{C}) = \mathbb{C}^{d^2}$. By the definition of adjoint operator, Ad* B acts by $(B \otimes id + id \otimes (B^{-1})^T)^T = B^T \otimes id + id \otimes B^{-1}$, i.e acting by Ad B^T on $M_n(\mathbb{C}^d)^{\vee} \cong M_n(\mathbb{C}^d)$.

Proof. First of all, id corresponds to tr under trace form. Let $V = \text{End}(\mathbb{C}^d) \times \text{Hom}(\mathbb{C}, \mathbb{C}^d)$. $B \in GL_d$ acts on $(f, i, g^*, j^*) \in T^*V$ by $B(f, i, g^*, j^*) = (AdB(f), Ai, Ad^*B(g^*), j^*A^{-1})$

We have

$$\mu: T^*(V) \to \mathfrak{g}^*$$
$$(f, i, g^*, j^*) \mapsto -g^* \circ ad(f) + j^*R_i$$

where R_i means right multiplication. Then

$$\begin{split} \mu(B(f,i,g^*,j^*))(X) = & g^*(AdB^{-1}[X,AdB(f)]) + j^*B^{-1}XBi \\ = & g^*([AdB^{-1}X,f]) + j^*B^{-1}XBi \\ = & tr(B^{-1}XB) = tr(X) \end{split}$$

Hence $\mu^{-1}(id)$ is stable under the action of GL_d .

Suppose $B \in GL_d$ fixes some $(f, i, g^*, j^*) \in T^*V$, i.e Bf = fB, Ai = i, $Ad^*B(g^*) = g^*$, $j^*A = j^*$.

Then
$$tr(B^n) = g^*([B^n, f]) + j^*B^ni = j^*i = tr(id) = d$$
 for all $n \in \mathbb{N}$.

Notice that T^*V gives a representation of GL_d . Look at the linear expansion of the orbit of (f, i, g^*, j^*) , which is irreducible of dimension larger than 1. Since B acts trivially, it has to be scalar. As a result, B = id.

b. dim $M_d = 2d$.

Proof. By (a), dim $M_d = 2d \Leftrightarrow \dim M = d^2 + 2d(M \text{ is a submanifold}) \Rightarrow \text{tr is a regular value} \Leftrightarrow d\mu_p \text{ is surjective for any } p \in \mu^{-1}(tr), \text{ which follows from the following two (generally true)claims:}$

$$\ker d\mu_p = (T_p \mathcal{O}_p)^{\omega_p}.$$

$$\operatorname{Im} d\mu_p = (\mathfrak{g}_p)^{\perp}$$

where $(T_p\mathcal{O}_p)^{\omega}$ means the complement wrt ω and $\mathfrak{g}_p = Lie(Stab_p)$.

To see them, notice that $T_p\mathcal{O}_p=\{X_p^\#,X\in\mathfrak{g}\}$ where $X^\#$ is the vector field induced by the infinitesimal action of \mathfrak{g} and $\omega_p(X^\#,v)=\langle d\mu_p(v),X\rangle$. Hence $\ker d\mu^p=(T_p\mathcal{O}_p)^{\omega_p}$ and $\operatorname{Im} d\mu_p\supset (\mathfrak{g}_p)^\perp$

Also we know some about the dimensions: $\dim(T_p\mathcal{O}_p)^{\omega_p} = \dim(T^*V) - \dim T_p\mathcal{O}_p$, $\dim(\mathfrak{g}_p)^{\perp} = \dim \mathfrak{g} - \dim \mathfrak{g}_p = \dim T_p\mathcal{O}_p$ and $\dim \ker d\mu^p + \dim \operatorname{Im} d\mu_p = \dim T^*V$. Thus the second claim follows.

There are finitely many symplectic leaves in V/Γ where (V,ω) is a finitely dimensional vector space and $\Gamma \subset Sp(V,\omega)$.

Proof. Let $V_H = \{v \in V, \operatorname{stab}_v = H\}$. Claim that $V/\Gamma = \sqcup V_H/\Gamma$ where H runs over the conjugacy classes of subgroups of Γ (where we notice that $V_{gHg^{-1}}/\Gamma = gV/\Gamma = V_H/\Gamma$ for any $g \in \Gamma$).

We need to show that TV_H is a poisson ideal inside TV and ω is nondegenerated restricted to V_H (which is a finite covering of V_H/Γ , hence can descended to the quotient).

Notice that V_H is not necessarily a subspace of V. But it is an open subset of the subspace $V'_H = \{v \in V, \operatorname{stab}_v \geq H\}$. Notice that $V'_H/\Gamma = \overline{V_H/\Gamma}$. The original spaces?

Say $x \in V_H$ lies in the radical of $\omega|_{V_H}$. Then for any $y \in V$,

$$\omega(x,y) = 1/|H| \sum_{h \in H} \omega(hx,hy) = \omega(x,1/|H| \sum_{h \in H} hy) = 0.$$

Hence x = 0.

 TV_H is generated by $i_{\pi}df$ where f runs over \mathcal{O}_{V_H} . We know that $\{i_{\pi}df, i_{\pi}dg\} = i_{\pi}d\{f,g\}$. So it remains to prove that $\mathcal{O}_{V'_H/\Gamma} = \mathcal{O}_{V'_H} \cap \mathcal{O}_{V/\Gamma}$ is a Poisson ideal inside $\mathcal{O}_{V/\Gamma}$.

Indeed,
$$\mathcal{O}_{V'_H/\Gamma}=(Ad^*hf-f,f\in\mathcal{O}_H,h\in H)\cap\mathcal{O}_{V/\Gamma}.$$
 Let $(Ad^*hf-f)f'\in\mathcal{O}_{V'_H/\Gamma},g\in\mathcal{O}_{V/\Gamma}.$ Then $\{(Ad^*hf-f)f',g\}=\{Ad^*hf-f,g\}f'+(Ad^*hf-f)\{f',g\}$ $=Ad^*h\{f,g\}f'+(Ad^*hf-f)\{f',g\}\in\mathcal{O}_{V'_H/\Gamma}.$

 $\alpha = i_{\Pi} \text{vol.} [\Pi, \Pi] = 0 \text{ iff } \alpha \wedge d\alpha = 0.$

Proof. Claim: $vol([\Pi, \Pi])vol = \pm \alpha \wedge d\alpha$. We may assume that $\Pi = \xi \wedge \eta$. Then $[\Pi, \Pi] = [\xi, \eta] \wedge \xi \wedge \eta$.

$$0=i_{\Pi}^2(\mathrm{vol}\wedge d\mathrm{vol})=i_{\Pi}(i_{\Pi}\mathrm{vol}\wedge d\mathrm{vol}-\mathrm{vol}\wedge i_{\Pi}d\mathrm{vol})=2i_{\Pi}\mathrm{vol}\wedge i_{\Pi}d\mathrm{vol}=2i_{\Pi}\mathrm{vol}\wedge (L_{\Pi}-di_{\Pi})\mathrm{vol}$$

Hence $\alpha \wedge d\alpha = i_{\Pi} \text{vol} \wedge L_{\Pi} \text{vol} = -(L_{\xi} i_{\eta} - i_{\xi} L_{\eta}) \text{vol} \wedge i_{\xi} i_{\eta} \text{vol} = -L_{\xi} i_{\eta} \text{vol} \wedge i_{\xi} i_{\eta} \text{vol}$

 $=i_{[\xi,\eta]}\mathrm{vol}\wedge i_{\xi}i_{\eta}\mathrm{vol} \text{ where we use that } L_{\xi\wedge\eta}=[L_{\xi},i_{\eta}], i_{\xi}L_{\eta}\mathrm{vol}\wedge i_{\xi}i_{\eta}\mathrm{vol}=-i_{\xi}^2(L_{\eta}\mathrm{vol}\wedge i_{\eta}\mathrm{vol})=0$ and $[i_{\xi},i_{\eta}]=0.$

Finally, notice that $i_{[\xi,\eta]} \text{vol} \wedge i_{\xi} i_{\eta} \text{vol} = \pm \text{vol}([\xi,\eta] \wedge \xi \wedge \eta) \text{vol}$.

 $\{-,-\}: \mathbb{C}[x,y,z] \times \mathbb{C}[x,y,z] \to \mathbb{C}[x,y,z], \{f,g\}_{\alpha} = \frac{\alpha \wedge gf \wedge dg}{dx \wedge dy \wedge dz}.$ When $\alpha = d\phi$, Poisson center is $\{f \in \mathbb{C}[x,y,z], \text{algebraic over } \mathbb{C}(\phi)\}.$

Let $\Gamma = \mathbb{Z}/n\mathbb{Z} \hookrightarrow Sp_2 = SL_2$ by $\eta \mapsto diag(\eta, \eta^{-1})$. SL_2 action preserves the standard symplectic form $du \wedge dv$ in \mathbb{C}^2 hence $\mathbb{C}[u, v]^{\Gamma}$ is a Poisson subalgebra of $\mathbb{C}[u, v]$. Construct a Poisson algebra isomorphism between $\mathbb{C}[u, v]^{\Gamma}$ and $\mathbb{C}[x, y, z]/(\phi)$.

Proof. Any f lying in the center has gradient parallel to ϕ .

Then the first statement comes from some fact in Galois theory: let K/k be an infinite field extension. Then there exists $D \in Der_{\mathbb{Z}}(K)$ restricted to k being zero.

For the second statement, notice that $\mathbb{C}[u,v]^{\Gamma} = \mathbb{C}[u^n,v^n,uv]$. Define the map to be

$$u^n \to -\sqrt{\frac{ni}{2}}(x+iy), v^n \to \sqrt{\frac{ni}{2}}(-x+iy), uv \to \sqrt{\frac{ni}{2}}z$$

Let T act on V with weight vectors v_1, \ldots, v_n and weight $\mu_1, \ldots, \mu_n \in X^*(T)$. Let $x = v_1 + \cdots + v_n$ and $\sigma(V) = \sum \mathbb{R}_{\geq 0} \mu_i$. Then $\sigma(V) = \mathfrak{t}_{\mathbb{R}}^* := \mathbb{R} \otimes_{\mathbb{Z}} X^*(T)$ iff Tx is closed.

Proof. Let $v = \dim T$. Clearly, $\sigma(V) = \mathfrak{t}_{\mathbb{R}}^*$ iff $n \geq v$ and for any μ_i , $-\mu_i \in \sum \mathbb{R}_{\geq 0} \mu_j$ for some j's.

Also, Tx is not closed iff there exists some sequence z_k inside T such that $\mu_i(\gamma(z_k))$ goes to zero for $i \in I \subset [1,n]$ (because $\frac{\mu_i(\gamma(z_k))}{|\mu_i(\gamma(z_k))|}$ is always convergent) and $\mu_i(\gamma(z_k))$ converges to nonzero limit for $i \in [1,n] \setminus I$.

If Tx is not closed, and let $i \in I \subset [1, n]$ such that $\mu_i(\gamma(z_k))$ goes to zero. Suppose $\sigma(V) = \mathfrak{t}_{\mathbb{R}}^*$. Then there exists some $\sum a_j \mu_j$ with $a_j \in \mathbb{R}_{\geq 0}$ such that $\sum a_j \mu_j(\gamma(z_k)) \to \infty$ so there is some $\mu_i(\gamma(z_k)) \to \infty$. A contradiction.

On the other hand, suppose $\sigma(V) \neq \mathfrak{t}_{\mathbb{R}}^*$. We may assume μ_i are distinct from each other. Firstly, we may assume $\mu_1 = -\mu_2, \ldots, \mu_{2k-1} = -\mu_{2k}$ and $-\mu_j \notin \sum \mathbb{R}_{\geq 0} \mu_i, 2k+1 \leq j \leq n$. Claim that any μ_i lies in the linear expansion of the other weights. Otherwise we may take (a_1,\ldots,a_v) such that $\sum a_\ell m_\ell^{(j)} = 0$ (where $\mu_j = (m_\ell^{(j)})$) for all $j \neq i$ but $\sum a_\ell m_\ell^{(i)} \neq 0$. Then $\{(z^{a_1},z^{a_2},\ldots,z^{a_v})x,z\in\mathbb{C}^*\}$ is not closed. Then we do induction on n-2k. n-2k can not be 1 because otherwise $-\mu_n$ as a linear combination of the rest weights lies in $\sum \mathbb{R}_{\geq 0}\mu_i$.

When (n-2k) = 2, not hard.

When (n-2k)>2, we write $\mu_n=a_1\mu_1+\cdots+a_{n-1}\mu_{n-1}$ with the least a_i being nonzero. Then at least one of a_{2k+1},\ldots,a_{n-1} being positive. We may assume it is a_{n-1} . Then there exists (b_1,\ldots,b_v) such that $\sum b_\ell m_\ell^{(j)}=0$, $j=1,\ldots,2k$ but $\sum b_\ell m_\ell^{(n)}\neq 0$. For $\{\mu_1,\ldots,\mu_{n-1}\}$, by induction hypothesis, we have $z_i\in\mathbb{C}^*$ such that

If for any μ_i , $-\mu_i \in \sum \mathbb{R}_{\geq 0} \mu_i$ for some j's, then n < v. WLOG, we may assume that

$$(\mu_1, \dots, \mu_{n/2}) = \begin{bmatrix} 1 & 0 & \dots & 0 & * & \dots & * \\ 0 & 1 & \dots & 0 & * & \dots & * \\ & & & & \dots & * \\ 0 & 0 & \dots & 1 & * & \dots & * \end{bmatrix} \text{ and } \mu_{n/2+i} = -\mu_i. \text{ It seems to be fine. Take}$$

 $T=(S^1)^2$ acting on \mathbb{C}^2 by $(x,y)\to (z_1x,y/z_1)$. Then it is closed but $\sigma(V)\neq\mathfrak{t}_{\mathbb{R}}^*$.

Let $\sigma^{\vee}(V) = \{ \gamma \in \mathfrak{t}_{\mathbb{R}}, \langle \gamma, \mu \rangle \geq 0, \forall \mu \in \sigma(V) \}$, Claim that $\sigma(V) \neq \mathfrak{t}_{\mathbb{R}}^*$ then $\sigma^{\vee}(V) \neq 0$. If not, then any $(a_1, \ldots, a_v) \in \mathfrak{t}$, there exists $(x_i)^+, (x_i)^- \in \sigma(V)$ such that $\langle x^+, a \rangle > 0$ and $\langle x^-, a \rangle < 0$. As a result $\sigma(V) = \mathfrak{t}_{\mathbb{R}}^*$

Let G be a semisimple group with (e, f, g) an \mathfrak{sl}_2 triple. The ad(h) action on \mathfrak{g} gives a \mathbb{Z} -grading $\mathfrak{g} = \oplus \mathfrak{g}_i$. Let P be the subgroup corresponding to $\mathfrak{p} := \mathfrak{g}_{\geq 0}$. Set $X := G \times_P \mathfrak{g}_{\geq 2}$ with map $x \to \mathfrak{g}$, $(g, X) \to Ad(g)x$ which is G equivariant under the action g(h, x) = (gh(x)) on X.

This map is proper with image $\overline{Ad(G)e}$ and $\pi:\pi^{-1}(Ad(G)e)\to Ad(G)e$ is injective. Furthermore, let ω be the canonical symplectic form on AdG(e). Then $\pi^*\omega$ can be extended to the whole X.

Proof. First of all, denote $\mathcal{P} = Ad(G)\mathfrak{p} \cong G/P$? $X \cong \tilde{\mathfrak{g}}_p := \{(x,\mathfrak{p}) \in \mathfrak{g} \times \mathcal{P}, x \in \mathfrak{p}\}$ with map given by $(g,x) \mapsto (Adg(x), gP/P)$, which is G-equivariant. Hence the projection is the same as the projection $\tilde{\mathfrak{g}}_p \to \mathfrak{g}$ which is clearly a projective map hence proper.

To show that $Im(\pi) = \overline{Ad(G)e}$, first we claim that if G is connected, then for any G representation V, if $\mathfrak{g} \cdot v = V$ then $G \cdot v$ is open dense in V. Notice that the image of

 $G \to V: g \to g \cdot v$ is locally closed (i.e, open inside some closed subvariety of V) and connected. Since the differential surjective, the image contains some open neighborhood in usual topology. Hence $G \cdot v$ cannot be contained in any proper closed subvariety of V. Hence $G \cdot v$ is open inside V which is irreducible thus dense.

Then recall that $[\mathfrak{g}_i,\mathfrak{g}_j]=\mathfrak{g}_{i+j}$ and any grading can be written as direct sum $Im(e)\oplus Ker(f)$ (and symmetrically, $Im(f)\oplus Ker(e)$) (hence $[\mathfrak{g}_0,e]=\mathfrak{g}_2$. So $Ad(Z_G(h))e$ is open dense in \mathfrak{g}_2 .) hence $[\mathfrak{p},e]=\mathfrak{g}_{\geq 2}$ so Ad(P)e is open dense in $\mathfrak{g}_{\geq 2}$ hence Ad(G)e is open dense in $\pi(X)$.

To show that $\pi: \pi^{-1}(Ad(G)e) \to Ad(G)e$ is injective: it suffices to show that if $\mathfrak{g}_{\geq 2} \ni e' = Ad(h)e$ then $h \in P$. Actually, $Stab_{\mathfrak{g}}(\mathfrak{g}_{\geq 2}) = \mathfrak{p}$ implies that $Stab_{G}(\mathfrak{g}_{\geq 2}) = P$.

Notice that $T_{(id,e)}X=(\mathfrak{g}\oplus\mathfrak{g}_{\geq 2})/\mathfrak{p}$ where \mathfrak{p} imbeds by (-Z,[e,Z]). Set ω' on X by $\omega'((X,Y),(X',Y'))=\kappa(Y',X)-\kappa(Y,X')+\kappa(e,[X,X'])$. Then it is a well-defined nondegenerate 2-form on X and equals to $\pi^*\omega$ when restricted to $\pi^{-1}Ad(G)e$.