WS14/15, Dr. Schilling

Spacecraft System Design

Tafelanschriebe

Andre Löffler

9. Dezember 2014

Inhaltsverzeichnis

1	13.10.2014	3
	17.10.2014 2.3 Mission Analysis	7
3	20.10.2014	10
-	14.11.2014 4.1 Onboard Data Handling (OBDH)	

1 13.10.2014

$$m \cdot \ddot{\vec{r}} = F = -G \cdot \frac{m_1 m_2}{r^2}$$

G ist die universal gravity constant: $6.674 \cdot 10^{-11} \frac{Nm^2}{kq^2}$

$$\ddot{\vec{r}} = \frac{\mu}{\|r\|^2}$$

Die Lösungen dieser Gleichung sind Kegelschnitte. Außerdem gilt: $\mu_E = G \cdot m_E$

$$r = \frac{p}{1 + \varepsilon \cdot \cos \varphi}$$

r | radius towards focal point

 ε | eccentricity of the orbit

p | parameters (spartial extensions of orbit)

 φ true anomaly

Interrelationships between parameters:

 r_a apocenter, r_p pericenter

$$a = \frac{p}{1 - \varepsilon^2} \Rightarrow p = a(1 - \varepsilon^2) = r_p(1 + \varepsilon) = r_a(1 - \varepsilon)$$
$$a = \frac{r_a + r_p}{2}, \ r_a = a(1 + \varepsilon), \ r_p = a(1 - \varepsilon)$$
$$\varepsilon = \frac{r_a - r_p}{r_a + r_p}$$

For the specific case of circular orbits:

- gravitational acceleration in distance a to gravitational center: $\frac{\mu}{a^2}$
- centrifugal acceleration: $\omega^2 \cdot r$ with $\omega = \frac{2\pi}{T}$ angular velocity and T the orbital period

$$\left(\frac{2\pi}{T}\right)^2 \cdot a \Rightarrow \frac{\mu}{a^2} = \left(\frac{2\pi}{T}\right)^2 \cdot a \Rightarrow T = 2\pi\sqrt{\frac{a^3}{\mu}}$$

which also holds for general ellipses

$$v_{\rm circle} = \frac{2\pi a}{T} = \sqrt{\frac{a^3}{\mu}}$$

Potential energy: $E_{\text{pot}} = \frac{-\mu m}{r} + C$ Kinetic energy: $E_{\text{kin}} = \frac{mv^2}{2}$

$$E = E_{\text{kin}} + E_{\text{pot}} = \frac{mv^2}{2} - \frac{\mu m}{r} \stackrel{\substack{\varepsilon \to 1, \\ v_a \to 0, \\ r_a \to 2a}}{\stackrel{\varepsilon \to 1, \\ v_a \to 0, \\ r_a \to 2a}} - \frac{\mu m}{2a} \text{(constant)}$$

 v_a velocity at apocenter

Binet's equation, Vis-Viva equation:

$$v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}$$

For circles: r = a, $v = \sqrt{\frac{\mu}{a}}$ v first cosmic velocity: needed to bring a satellite on closed orbit(without perturbing forces, just gravity considered). In case of earth: r = 6378km, $\mu_E = 398600 \frac{km^3}{s^2}$

 \Rightarrow 7.905 $\frac{km}{s}$ required as minimum velocity from the rocket launch to insert into an earth orbit.

A rocket launch in equatorial direction and in rotation direction of earth, we recieve a velocity component $0.463\frac{km}{s}$ for free earth rotation rate.

For parabola: $a \to \infty$, $v = \sqrt{\frac{2\mu}{r}} v$ second cosmic velocity (escape velocity): is the minimum velocity applied to leave the gravitational field of the home planet. For earth: $11.179 \frac{km}{s}$

Derive position of the satellite in the orbit plane, e.g. we want the true anomaly φ as the function of time $\varphi = f(t)$. There is no explicit solution but only an algorithm using the support variable eccentric anomaly E can be derived.

Keplers equation:

$$E - \varepsilon \cdot \sin(E) = \frac{2\pi}{T}(t - t_{\text{perigee}}) = M(t)$$

M(t) average anomaly at time t, can be solved by numerical methods. From E, you can calculate r and φ as follows:

$$r \sin \varphi = a \sin E \cdot \sqrt{1 - \varepsilon^2}$$

$$r \cos \varphi = a(\cos E - \varepsilon)$$

$$\Rightarrow \tan \frac{\varphi}{2} = \sqrt{\frac{1 + \varepsilon}{1 - \varepsilon}} \cdot \tan \frac{E}{2}$$

$$r = a(1 - \varepsilon \cos E)$$

Satellite Ground Tracks:

Analyse the triangle KFB in spherical coordinates.

$$\begin{array}{c|ccc} \theta & latitude: & \sin \theta = \sin i \sin(\omega + \varphi) \\ \lambda & longitude: & \cos \lambda_1 = \frac{\cos(\omega + \varphi)}{\cos \theta} \end{array}$$

$$\lambda = \lambda_1 + \Omega + \lambda_G$$

 $\lambda_G = \lambda_{G0} - 0.25068448^{\circ} / \text{min} \cdot t$ (Greenwich position versus γ) Draw the line from the satellite to earth center, the intersection with surface is specified by θ and λ (subsatellite point).

Perturbations:

gravitational potential of earth

$$u(r, \phi, \Lambda)$$

u gravitational at distance r and latitude ϕ and longitude Λ of the position.

$$u(r,\phi,\Lambda) = \frac{\mu}{r} \left(1 + \sum_{n=2}^{\infty} \left[\left(\frac{R_E}{r} \right)^n \cdot J_2 \cdot P_{n0} \cos \phi + \sum_{m=1}^n \left(\frac{R_e}{r} \right)^n \cdot \left(C_{nm} \cos(m\Lambda) + S_{nm} \sin(m\Lambda) \right) \cdot P_{nm}(\cos \phi) \right] \right)$$

spherical harmonic expansion with:

r distance from the earth center $\begin{array}{c|c} P_{nm} & \text{Legendre polynomials} \\ R_E & \text{radius of earth} \end{array}$

 J_n, C_{nm}, S_{nm} are constants of body reflecting the mass distribution: J_n zonal harmonic coefficient (mass distribution independent from longitude) C_{nm} , S_{nm} earth's tesseral harminic coefficients (for $n \neq m$) or earth's sectoral harmonic coefficients (for n=m)

By far, the largest coefficient is J_n (related to equatorial bulge) by 3 orders of magnitude. Example: Molniya orbits of 63, 4° have minimum change in position of perigee and apogee.

Additional gravitational fields:

by other bodies in the solar system

$$a_d = \mu_d \sqrt{\vec{R} \cdot \vec{R}}$$

with $\vec{R} = \frac{\vec{r}_{sd}}{\|\vec{r}_d\|}$

$$\frac{a_d}{a_c} = \frac{M_d}{M_c} \left(\frac{\left\|\vec{r}_s\right\|}{\left\|\vec{r}_{sd}\right\|}\right)^3 \sqrt{1 + 3\cos^2\beta} = 2\frac{M_d}{M_c} \left(\frac{\left\|\vec{r}_s\right\|}{\left\|\vec{r}_d\right\|}\right)^3$$

 a_c | actual acceleration |

atmospheric drag: Drag:
$$\vec{F}_0 = -\frac{1}{2} \rho S c_D ||\vec{v}_R||^2 \frac{\vec{v}_r}{||\vec{v}_r||}$$

velocity vector of the spacecraft relative to the atmosphere

atmospheric density

reference area of the spacecraft

drag coefficient of the spacecraft (determined in wind channel) default: $c_d \approx 2.5$

Main effect of altitude changes and changes of orbital period.

solar pressure:

from impulse conservation law:

$$p = \frac{1372W}{c \cdot m^2} = \frac{1372W \ s}{299793km \ m^2} = 0.46 \cdot 10^{-5} \frac{N}{m^2}$$

solar pressure is increased by reflection

$$p_{\text{eff}} = (1+r)p$$

$$\begin{array}{c|c} p_{\mathrm{eff}} & \mathrm{effective\ pressure} \\ r & \mathrm{reflectivity\ factor} \end{array}$$

At equatorial orbits the solar pressure affects a change of eccentricity ε .

orbit change manouvers:

Based on impule conservation law.

Propulsion systems:

 $\begin{array}{ccc} \text{Hydrazin} & 2.2\frac{km}{2} & \text{particle velocity} \\ \text{2-component} & 3\frac{km}{2} & \text{particle velocity} \\ \text{ion thrusters} & 30\frac{km}{2} & \text{particle velocity} \end{array}$

$$\Delta v_s m_s = -\Delta m_s v_p$$

 $\begin{array}{c|c} \Delta m_s & \text{reduction of satellite mass due to ejected propellant} \\ v_p & \text{velocity of propellant ejection} \end{array}$

$$\Delta v_s = -\frac{\Delta m_s}{m_s} v_p$$

$$\int_{v_0}^v dv = -v_p \int_{m_s}^{m_s - m_p} \frac{dm}{m}$$

$$\Delta v_s = v_p (\log_2 m_s - \log_2 (m_s - m_p))$$

 $Rocket\ equation,\ Ziolkowski\ equation:$

$$m_{\mathrm{after}} = m_{\mathrm{before}} \cdot e^{\frac{-\Delta v_s}{v_p}}$$

2 17.10.2014

Keplerian Orbit Transfer

Calculate a transfer between two circular orbits with radius r_A to r_B . The velocity at pericenter of the transfer ellipse:

$$v_p^2 = 2\mu \left(\frac{1}{r_A} - \frac{1}{r_A + r_B}\right) = 2\mu \frac{r_B}{r_A(r_A + r_B)}$$

The required Δv_A to inject from the transfer orbit:

$$\Delta v_A = v_P - v_A = \sqrt{\frac{\mu}{r_A}} \left(\sqrt{\frac{2r_B}{r_A + r_B}} - 1 \right)$$

The required Δv to inject from the transfer orbit into orbit with r_B :

$$\Delta v_B = v_B - v_{\text{apo}} = \sqrt{\frac{\mu}{r_B}} \left(1 - \sqrt{\frac{2r_A}{r_A + r_B}} \right)$$

where v_B is the circular velocity at r_B .

The Hohmann transfer is the most energy-efficient transfer between two circular orbits.

$$\Delta v_{\text{total}} = \Delta v_A + \Delta v_B = \sqrt{\mu} \left[\sqrt{\left(\frac{2}{r_A} - \frac{2}{r_A + r_B}\right)} - \sqrt{\frac{1}{r_A}} + \sqrt{\frac{2}{r_B} - \frac{2}{r_A + r_B}} - \sqrt{\frac{1}{r_B}} \right]$$

2.3 Mission Analysis

Selection of orbit parameters for most appropriate orbits for the given task.

Earth synchronous orbits: after a given period of time the subsatellite's ground track repeats. Rotation of Earth: τ_E sidereal day (= 86161.10555 + 0.015C[s] where C is the number of centuries after 2000). As Earth rotation is in eastward direction, the satellite orbit with respect to Earch seems to have west direction.

$$\Delta \Phi_R = \frac{\tau}{\tau_E} - 2\pi \quad [\text{rad/rev}]$$

 τ | satellite orbit period |

 J_2 theory taking into account Earth oblateness, we can calculate the satellite orbit plane rotation:

$$\Delta\Omega = \frac{3\pi J_2 R_E^2 \cos i}{a^2 (1 - \varepsilon^2)^2} \quad [\text{rad/rev}]$$

total displacement at equator: $\Delta \Phi = \Delta \Phi_R - \Delta \Omega$.

For Earth synchronous orbits, the following property needs to be satisfied:

$$n\Delta\Phi = m2\pi$$

n | number of orbits before identical ground track repeats

m | number of Earth revolutions (day) before identical ground track repeats

Sun synchronous orbits:

the sunlight incidents repats

take into account the motion of Earth around Sun. Due to the Earth's orbit around Sun, the Earth/Sun-line intersect at points P moving westward.

$$\theta = \frac{360^{\circ}}{365.25 \text{ days}} \approx 1 \quad [^{\circ}/\text{day}]$$

orbital period of Earth around Sun τ_{ES} : $3.155815 \cdot 10^7~s \approx 365.25$ days. angular velocity $\theta = 2\pi \frac{\tau_E}{\tau_{ES}}$ [rad/day] $= 2\pi \frac{\tau_E}{\tau_{ES}} \cdot \frac{\tau}{\tau_E}$ [rad/rev] and for Sun synchronous orbits $\Leftrightarrow \Delta\Omega = \theta$. Sun and Earth synchronous orbit:

$$n(\Delta\Phi_R - \Delta\Omega) = m2\pi \Rightarrow n\tau \left(1 - \frac{\tau_E}{\tau_{ES}}\right) = m\tau_E$$

displacement between subsequent orbits (\rightarrow gap in observation areas):

$$\Delta \Phi = 2\pi \tau \left(\frac{1}{\tau_E} - \frac{1}{\tau_{ES}}\right) = 7.27 \cdot 10^{-5} \cdot \tau \quad [\text{rad/rev}]$$

typical Earth observation orbits: 550-750~km above surface $\Rightarrow \Delta\Phi \approx 4.3\cdot 10^{-1}$ rads and offset $\approx 2875~km$.

Sun and earth synchronous satellites :

m n corresponding altitude

1 14 894km

1 13 567km

1 12 275km

2 22

minimum drift orbits: $\frac{n\pm 1}{m}=k,\,k\in\mathbb{N},$ integer. orbits of successive days to fill the displacements between two successive orbits.

k orbits of successive days to fill the displacements between two successive orbits

Example: Landsat 1/2

18 day repeat period minimum drift orbit

 $\tau \approx 103.3 \mathrm{min}, i = 99^{\circ}, \varepsilon = 0.002, \mathrm{apogee} = 920 \mathrm{km}, \mathrm{descending node: } 9:38 \mathrm{local time}$

 \Rightarrow orbit seperation between successive orbits $\approx 2875 km.$

 $m = 18 \Rightarrow$ distance between adjacent ground tracks = 160km.

Eclipse calculation:

Angle between earth-sun direction \vec{s} and the orbit plane = β .

$$\beta = \sin^{-1}(\vec{s}\vec{n})$$

 \vec{n} | normal to orbit plane

$$\sin \beta^* = \frac{r_E}{r_E + h} \Rightarrow \beta^* = \sin^{-1} \left(\frac{r_E}{r_E + h} \right)$$

 $E_1E_2=2\Delta v$ eclipse orbital arc

$$\Delta v = \cos^{-1}\left(\frac{\cos\beta^*}{\cos\beta}\right)$$
 in triangle ACE_1

eclipse fraction of a circular orbit:

$$F_e = \frac{2\Delta v}{2\pi} = \frac{1}{\pi} \frac{\sqrt{h^2 + 2r_E h}}{(r_E + h)\cos\beta} \text{ [rad]}$$

$$egin{array}{c|c} h & \text{altitude} \\ \beta & \text{angle sun-orbit-plane} \\ r_E & \text{earth radius} \\ \end{array}$$

launch energy: $\varepsilon = \cos^{-1}(\cos^2 i + \sin^2 i - \cos \Delta\Omega)$

change angle related to plane (proportional):

 $\Delta\Omega$: longitudal seperation launch window: $2\frac{\Delta\Omega}{w_c} \Rightarrow \Delta\Omega = w_c t \quad w_c$ | earth rotation rate |

ground contact and coverage analysis

$$\sin \rho = \cos \lambda_0 = \frac{r_E}{r_E + h}$$

from known λ (from $\Lambda_t, \theta_t/\Lambda_s, \theta_s$) we derive η .

$$\tan \eta = \frac{\sin \rho \sin \lambda}{1 - \sin \rho \sin \lambda}$$

$$\cos \varepsilon = \frac{\sin \eta}{\sin \rho} \Rightarrow \sin \eta = \cos \varepsilon \sin \rho$$

$$\eta + \varepsilon + \lambda = 90^{\circ}$$

$$D = r_E \frac{\sin \lambda}{\sin \eta}$$

- 1) angular Radius of Earth φ : $\sin \varphi = \frac{R_E}{R_E + h}$
- 2) compute spacecraft viewing angles from subsatellite point (Λ_s, θ_s) and target point (Λ_t, θ_t) :

$$\cos \lambda = \sin \theta_s \sin \theta_t + \cos \theta_s \cos \theta_t \cos |\Lambda_s - \Lambda_t|$$

$$\cos A_z = \frac{\sin \theta_t - \cos \lambda \sin \theta_s}{\sin \lambda \cos \theta_s} \quad Azimuth$$

$$\tan \eta = \frac{\sin \varphi \sin \lambda}{1 - \sin \varphi \cos \lambda}$$

3) compute coordinates on Earth:

$$\cos \varepsilon = \frac{\sin \eta}{\sin \varphi}$$

$$\lambda + \eta + \varepsilon = 90^{\circ}$$

3 20.10.2014

ground station contacts

typically a minimum elevation angle is specified for each ground station $\varepsilon_{\rm min}$ below contacts are limited. ($\varepsilon_{\rm min} \approx 5^{\circ} - 10^{\circ}$)

given a ε_{\min} , derive the maximum Earth control angle λ_{\max} and the max. nadir angle η_{\max} , and maximum range D_{\max} at which the satellite is still in the FOV of ground station.

$$\sin \eta_{\rm max} = \sin \varphi \cos \varepsilon_{\rm min}$$

$$\lambda_{\rm max} = 90^{\circ} - \varepsilon_{\rm min} - \eta_{\rm max}$$

$$D_{\rm max} = R_E \frac{\sin \lambda_{\rm max}}{\sin \eta_{\rm max}}$$

to calculate the timing of a lfyover, we need λ_{\min} minimum Earth central angle between the satellite's ground track and the ground station.

$$\sin \lambda_{\min} = \sin(90^{\circ} - i)\sin \sigma_{\rm gs} + \cos(90^{\circ} - i)\cos \sigma_{\rm gs}\cos \Delta \log i$$

where Δ long is the longitude difference between ground station and the orbit pole $(\sigma_{\text{pole}} = 90^{\circ} - i, \Lambda_{\text{pole}} = \Lambda_{\text{node}} - 90^{\circ}).$

$$\tan \eta_{\min} = \frac{\sin \varphi \sin \lambda_{\min}}{1 - \sin \varphi \cos \lambda_{\min}}$$

$$\varepsilon_{\max} = 90^{\circ} - \lambda_{\min} - \eta_{\min}$$

$$D_{\min} = R_E \frac{\sin \lambda_{\min}}{\sin \eta_{\min}}$$

parameters at the satellites closest approach to ground station.

the maximum angular rate of the satellite, seen from the ground station

$$\sigma_{\rm max} = \frac{v_{\rm sat}}{D_{\rm min}} = \frac{2\pi(R_E + h)}{TD_{\rm min}}$$

where T is the orbital period

$$AT = \frac{T}{180^{\circ}} \arccos\left(\frac{\cos \lambda_{\max}}{\cos \lambda_{\min}}\right)$$

4 14.11.2014

4.1 Onboard Data Handling (OBDH)

OBDH functions:

- to receive, validate, decode and distribute commands
- to gather, process and format the data onboard, spacecraft housekeeping and mission data
- spacecraft time synchronisation, health monitoring of computer itself (watchdogs), security interfaces
- autonomous reaction capabilities, redundancy

standards for command message formats CCSDS:

- synchronisation code
- \bullet adress bit
- command message bits
- error check bits

Output: discrete commands (fixed amplitude, fixed pulse derration)

Data handling combines telemetry from multiple sources and provides it for downlink to earth.

• analog telemetry data (conversion needed)

4.2 Command & Data Handling System Sizing

Command processing

- number of command output channels
- requirements for stored commands
- requirements for computer commands of ACS functions

Telemetry processing

• spacecraft housekeeping data

- $\bullet\,$ feedback for onboard control of spacecraft functions
- routing of onboard and subsystem data
 - to and from receivers and transmitters
 - to storage systems
 - to affected system controllers

Timing

- time granularity
- stability requirement
- acceptable uncertainty

Computer watchdog **constraints:**Spacecraft Bus constraints

- $\bullet\,$ single unit systems
- multiple units, distributing system
- integrated systems

Reliability (\rightarrow redundancy/parts quality) Radiation

Budgets (Size, Weight, Power)

 \Rightarrow OBDH is a tool to configure, control or program the payload and the spacecraft subsystems.

Index

```
atmospheric drag, 5
Azimuth, 9
Binet's equation, 4
distance earth-sun, 5
Earth synchronous orbits, 7
Eclipse calculation, 8
first cosmic velocity, 4
gravity constant of earth, 3
Hohmann transfer, 7
Keplers equation, 4
Kinetic energy, 4
latitude, 4
launch energy, 9
longitude, 4
mass of earth, 3
Perturbations, 5
Potential energy, 4
Rocket equation, 6
Rotation of Earth, 7
second cosmic velocity (escape velocity), 4
sidereal day, 7
solar pressure, 5
spherical harmonic expansion, 5
subsatellite point, 5
Sun synchronous orbits, 8
sun-synchronous orbits, 8
universal gravity constant, 3
Vis-Viva equation, 4
Ziolkowski equation, 6
```