# Indexing big colored image bank: Texture 3.0

# Etienne CAILLAUD, Thomas LE BRIS, Ibrahima GUEYE, Gaetan ADIER

XLIM-SIC Laboratory UMR CNRS 7252, Poitiers, France







### **Outline**



### Project context (1/3)

### Objective

Test a solution for content based image indexing flaw: standard descriptors (SIFT, SURF, etc) lacking real color and texture information.



### Project context 2/3

### What is a descriptor?

Algorithm applied to an image which output is a short vector of numbers which is invariant to common image transformations and can be compared with other descriptors in a database.



FIGURE: Densegrid



FIGURE: Interest points

### Project context 3/3

### What is a CLEF?

International contest organized every year since 2011 which purpose is to benchmark the progress in the area of plant identification from images.



## Team presentation



## User requirement

- Design software programs : indexation of images database, calculate descriptor according to nature images
- Adapt the last up to date designed color and texture attributes to the current image classification
- Compare our results (using CLEF challenge metrics)
- Provide an abstract of the comparisons and a technical report

### **Outline**



## SIFT(1/2)

Key-points detection  $(x,y,\sigma)$ 

- Scale-space extrema detection
- Key-point location
- Orientation assignment
- key-point descriptor

# SIFT(2/2)



FIGURE: SIFT test1



FIGURE: SIFT test2

## What about nature images?

#### SIFT

- Description using orientation of shapes
- Natively used on grayscale images
- Only marginal methods for color images
- Unable to get the texture information from image

#### $C_2O$

- Description using color difference
- Natively conceived for color images
- Color difference gives an image of the texture information

## $C_2O(1/2)$

The C<sub>2</sub>O matrix for a poorly textured image :



FIGURE: Image to characterize



FIGURE: Signature

### $C_2O(1/2)$

- The C<sub>2</sub>O matrix for a poorly textured image :
- The C<sub>2</sub>O matrix for a more textured image :



FIGURE: Image to characterize



FIGURE: Signature

## $C_2O(1/2)$

- The C<sub>2</sub>O matrix for a poorly textured image :
- The C<sub>2</sub>O matrix for a more textured image :
- The C<sub>2</sub>O matrix for a more textured and colored image :



FIGURE: Image to characterize



FIGURE: Signature

# C<sub>2</sub>O (2/2)



The C<sub>2</sub>O signature for a poorly textured image .



# C<sub>2</sub>O (2/2)



- The C<sub>2</sub>O signature for a poorly textured image .
- The C<sub>2</sub>O signature for a more textured image :



# C<sub>2</sub>O (2/2)



- The C<sub>2</sub>O signature for a poorly textured image :
- The C<sub>2</sub>O signature for a more textured image :
- The C<sub>2</sub>O signature for a more textured and colored image :



### Bag of word (1/2)

Reducing the number of points (100 in our case).

- K-means
  - Attribute the vectors to centroid vectors.



FIGURE: K-means

# Bag of word (2/2)

- Signature
  - Design histogram in function of assignment of the vectors.



FIGURE: Signature 100 words -



FIGURE: Signature 100 words - 2

# K-nn(1/2)

- The k nearest neighbor method
  - Comparison to the dictionary.



## K-nn(1/2)

- The k nearest neighbor method
  - Comparison to the dictionary.



- 4 Occurrences of the 'red' class , 1 occurrence of the 'blue' class
- The new point is attributed to the 'red' class

### K-nn(2/2)

- Application for image classification
  - More complex data.
  - Distances on signature vectors extracted from the K-mean method.
  - One most adapted distance type for each descriptor.

### Results (1/2)

 Reduce data-base of 100 images composed of only 4 species.



FIGURE: First specie



FIGURE: Second specie



FIGURE: Third specie



FIGURE: Fourth specie

## Results (2/2)

Compare the two descriptors SIFT and C<sub>2</sub>O.

TABLE: SIFT result

| ID    | Training Base | Test Base | Correct | Accuracy |
|-------|---------------|-----------|---------|----------|
| 173   | 17            | 8         | 4       | 50%      |
| 1102  | 22            | 3         | 100     | 33%      |
| 1889  | 16            | 9         | 1       | 11%      |
| 2717  | 15            | 10        | 7       | 70%      |
| Total | 70            | 30        | 9       | 1        |

TABLE: C2O result

| ID    | Training Base | Test Base | Correct | Accuracy |
|-------|---------------|-----------|---------|----------|
| 173   | 17            | 8         | 1       | 12.5%    |
| 1102  | 22            | 3         | 1       | 33%      |
| 1889  | 16            | 9         | 0       | 0%       |
| 2717  | 15            | 10        | 7       | 70%      |
| Total | 70            | 30        | 9       | 1        |

### Discussion

- Classification
  - To much reducing on the K-means (100 words).
  - Euclidean distance not the most efficient or adapt.
- C20
  - The concatenation way is not optimal.
  - Parameters D, alpha, and beta has to be discussed regarding to the images.

### **Outline**



# Scheduling (1/2)

The forecast Gantt chart :

| ID | Task Name                            | П        | mai 2015 juin 20 |      |      |      | 2015 |     |  |
|----|--------------------------------------|----------|------------------|------|------|------|------|-----|--|
|    | rask Name                            |          | 3/5              | 10/5 | 17/5 | 24/5 | 31/5 | 7/6 |  |
| 1  | Writing the state of the art         | <b>3</b> |                  |      |      |      |      |     |  |
| 2  | Preparing the database               |          |                  |      |      |      |      |     |  |
| 3  | Programming                          | •        |                  |      |      |      |      |     |  |
| 14 | Writing of the report                |          |                  |      |      |      |      |     |  |
| 5  | Preparation of the oral presentation |          |                  |      |      |      |      |     |  |

- All time affectation done before the beginning of the project
- Rarely respected in important project

# Scheduling (2/2)

The project backlog:

|         | The second second |                         |                                             |              |              |                                                    |          |         |  |
|---------|-------------------|-------------------------|---------------------------------------------|--------------|--------------|----------------------------------------------------|----------|---------|--|
| Sprin → | Catégorie =       | Sous catégorie 🛨        | Nom / Description -                         | Importance 📲 | Estimation ~ | Critères de Vérification                           | Acteur = | Status  |  |
| 5       | Dev Logiciel      | Redaction documentation | CLEF metrics - doc                          | 65           | 0,5          | presentation équipe scientifique                   | Thomas   | A faire |  |
| 5       | Dev Logiciel      |                         | documentation sur le<br>processus "complet" | 60           |              | présentation à l'ensemble des<br>acteurs du projet |          | A faire |  |

- Allow to change the affectation of a task
- Weekly time affectation : could be adapted to unforeseen

## Our experience

- Minimal lack of time
- The possibility of changing task affectation is really useful
- An adaptation of the initial schedule has been realised

### **Outline**



## Sum-up of the situation

### Starting objectives

- SIFT tests
- C2O programming
- classification programming
- Code optimizing for speed
- parallelization

### **Ending situation**

- SIFT tests
- C2O programming
- classification programming

#### Issues

- C2O concatenation order
- distance calculation

# Personal gains

New way to organize teamworkTechnical knowledge

27/28

