ALGEBRA Chapter 15

2th
Sessión II

FACTORIZACIÓN II

MOTIVATING STRATEGY

Indicar cuántos factores primos hay luego de factorizar en **15 segundos**?

factorizar en 15 segundos?
$$-4 = (3x - 2)(3x + 2)$$

Rpta: 2 factores primos

"NUNCA he encontrado una persona tan ignorante que no se pueda aprender algo de ella"

Galileo Galilei

FACTORIZACIÓN

Es el proceso transformar un polinomio en una multiplicación indicada de dos o más factores primos o irreductibles.

Ejemplo:

$$P(x) = x^2 - 25 = (x+5)(x-5)$$
factorización

Factores primos: x + 5 y x - 5

HELICO | THEORY

<u> ITERIO DE LAS IDENTIDADES:</u> <u>Trinomio cuadrado perfecto</u> (TCP):

$$A^{2m} \pm 2A^m B^n + B^{2n} = (A^m \pm B^n)^2$$

Ejemplo:

Factorice

$$P(x,y) = 4x^2 + 12xy + 9y^2$$

Resolución:

$$P(x,y) = (2x+3y)^2$$

HELICO | THEORY

b) <u>Diferencia de cuadrados:</u>

$$x^2 - y^2 = (x + y)(x - y)$$

c) Suma de cubos:

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

d) <u>Diferencia de cubos</u>:

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

CHAPTHER 15

¿Cuántos factores primos lineales se obtiene alfactorizar

$$P(x,y) = 625x^4 - 16y^4$$
?

RECUERDA

Resolución:

$$x^2 - y^2 = (x+y)(x-y)$$

$$P(x,y) = 625x^{4} - 16y^{4} = (-)(+)$$

$$\sqrt{625x^{4}} \sqrt{46y^{4}} \sqrt{25x^{2}} \sqrt{24y^{3}} (25x^{2} + 4y^{2})$$

Rpta: : 2 factores primos lineales

2

Factorice e indique un factor primo de $R(x, y) = 27x^3 - 125y^3$

Resolución:

RECUERDA

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

$$R(x,y) = 27x^{3} - 125y^{3} = (----)((---)^{2} + (3x)(5y) + (---)^{2})$$

$$= \sqrt[3]{27x^{3}} \sqrt[3]{R(x,y)} = (3x - 5y)(9x^{2} + 15xy + 25y^{2})$$

Rpta:

 \therefore factores primos: 3x - 5y; $9x^2 + 15xy + 25y^2$

RECUERDA

Factorice y señale un factor primo. $P(x,y) = 4x^2 - 28xy + 49y^2$

 $= \sqrt{2x^2(2)}$

$$x^2 - 2xy + y^2 = (x - y)^2$$

Rpta:
$$\therefore 2x - 7y$$

RECUERDA

Factorice y calcule el número de factores $primos Q(x) = x^{16} - 1$

$$x^2 - y^2 = (x+y)(x-y)$$

Resolución:

$$Q(x) = x^{16} - 1 = (-)(+)$$

$$= \sqrt{x^{185}} \qquad (\sqrt{1} = \sqrt{x^{2}} + \sqrt{1})(x^{8} + 1)$$

$$(-)(x^{2} + \sqrt{1})(x^{4} + 1)(x^{8} + 1)$$

$$(x - 1)(x + 1)(x^{2} + 1)(x^{4} + 1)(x^{8} + 1)$$

Rpta:

5

Factorice y señale el factor primo de mayor suma de coeficientes $P(m,n)=m^2-6m+9-16n^2$

Rpta: : 2

6

Luego de factorizar

$$P(x) = (5x+3)^2 - (3x+5)^2$$

la mayor suma de coeficientes de uno de los factores primos representará en metros el largo de la tela que Omar necesita comprar, si el ancho mide 3/4 del largo y el metro cuadrado de tela cuesta 15 soles, ¿cuánto gastará por la compra?

6

Resolución:

- ∴ 2m. largo y 3/2m de ancho
- ∴ Área=(2)(3/2)=3 metros cuadrados Rpta:
- ∴ Gastará
 45 soles

Si M indica el número de factores primos de $G(x) = x^6 - 64$; además (5M+9) señala la edad del profesor Luis, y la de su hijo la suma de los dígitos de su edad. ¿Qué edad tenía su hijo hace 5 años?

Resolución:

$$Q(x) = x^{6} - 64 = (-)(+)$$

$$= \sqrt{x^{3}} \sqrt{84} = (\sqrt[3]{x^{3}} - \sqrt[3]{2})(()^{2} + (2)(x) + ()^{2})(x^{3} + 8)$$

$$(x - 2)(x^{2} + 2x + 4)(()^{2} - (2)(x) + ()^{2})\sqrt[3]{x^{3}} + \sqrt[3]{2})$$

$$(x - 2)(x^{2} + 2x + 4)(x^{2} - 2x + 4)(x + 2)$$

$$(x - 2)(x^{2} + 2x + 4)(x^{2} - 2x + 4)(x + 2)$$
Rpta:

high chace 5 años tenia 6 años tenia 6 años