Exemplo 2: (Distância entre cidades)

A matriz abaixo mostra a distância entre as cidades de Guarapuava, Curitiba, Cascavel e Foz do Iguaçu (distâncias em Km).

	Guarapuava	Curitiba	Cascavel	Foz do Iguaçu
	Γ			٦
Guarapuava	0	259	250	389
Curitiba	259	0	498	637
Cascavel	250	498	0	143
Foz do Iguaçu	389	637	143	0 _

- 1) Indique explicitamente os elementos da matriz $A = (a_{ij})_{3x3}$ tal que $a_{ij} = i j$.
- 2) Construa as seguintes matrizes:

$$A = (a_{ij})_{3x3} \text{ tal que } a_{ij} = \begin{cases} 1, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{cases}$$

$$B = (b_{ij})_{3x3}$$
 tal que $b_{ij} = \begin{cases} 1, & \text{se } i+j=4\\ 0, & \text{se } i+j\neq 4 \end{cases}$

- 3) Construa a matriz A de ordem 3 por 2 definida pela lei $a_{ij} = \begin{cases} 1 \, se \, i = j \, e \\ i^2 \, se \, i \neq j \end{cases}$.
- 4) Dada uma matriz A mxn e as operações:
 - a. +/A, que transforma a matriz A numa outra matriz A' $_{
 m m\,\times\,1}$ em que cada elemento da única coluna de A' é obtido somando-se os elementos da linha correspondente de A.
 - b. + ł A, que transforma a matriz A_{mxn} numa outra matriz A"_{1xn} em que cada elemento da única linha de A" é obtido somando-se os elementos da coluna correspondente de A.

Nessas condições, se A for a matriz identidade de ordem p, calcule a expressão +/(+ ł A).

- 5) Seja $A = \begin{bmatrix} 1 & 3 & 6 \\ 2 & -5 & 8 \\ 4 & -2 & 7 \end{bmatrix}$, determinar o traço de A.
- 6) Escreva a transposta da matriz $A = \begin{pmatrix} 3 & -1 \\ 2 & 4 \\ 5 & 0 \end{pmatrix}$.
- 7) Determine o traço da matriz A de ordem 3 definida por $a_{ij} = i + j + 2$.

Álgebra Matricial

Igualdade de Matrizes: Duas matrizes $A_{m \times n} = \left[a_{ij}\right]_{m \times n}$ e $B_{r \times s} = \left[b_{ij}\right]_{r \times s}$ são iguais, ou seja, A = B, se elas têm o mesmo número de linhas (m = r) e colunas (n = s) e todos os seus elementos correspondentes são iguais ($a_{ij} = b_{ij}$).

Exemplo:
$$\begin{bmatrix} 2^2 & \ln 1 & sen 90^{\circ} \\ 3 & 0 & \sqrt{9} \\ \cos 90^{\circ} & -1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 1 \\ 3 & 0 & 3 \\ 0 & -1 & 3 \end{bmatrix}$$

Adição de Matrizes: A soma de duas matrizes m x n, A = $\begin{bmatrix} a_{ij} \end{bmatrix}$ e B = $\begin{bmatrix} b_{ij} \end{bmatrix}$, é uma matriz C = $\begin{bmatrix} c_{ij} \end{bmatrix}$ também m x n, tal que: $c_{ij} = a_{ij} + b_{ij}$. Em outras palavras, C é obtida somando-se os elementos correspondentes de A e de B.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} \\ a_{21} & a_{22} & \cdots & a_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} \\ b_{21} & b_{22} & \cdots & b_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{ij} \end{bmatrix} = \\ \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1j} + b_{1j} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2j} + b_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{ij} + b_{ij} \end{bmatrix}$$

OBS: 1) A soma de duas matrizes A e B está definida apenas quando A e B são do mesmo tamanho.

2) A **diferença A - B** de duas matrizes de ordem m x n, é uma matriz C tal que: $c_{ij}=a_{ij}-b_{ij}$.

Exemplo (Produção): Um fabricante de determinado produto produz três modelos, A, B e C. Cada modelo é manufaturado parcialmente na fábrica ${\sf F}_1$ em Formosa e depois terminado na fábrica ${\sf F}_2$ em São Paulo. O custo total de cada produto é a soma do custo de produção com o custo de transporte. Então, os custos em cada fábrica (em reais) podem ser descritos pelas matrizes 3 x 2 ${\sf F}_1$ e ${\sf F}_2$:

A matriz $F_1 + F_2$ fornece os custos totais de produção e de transporte para cada produto. Os custos totais de produção e de transporte para o modelo C do produto são, respectivamente, R\$ 200,00 e R\$ 40.00.

Propriedades da Adição: Dadas as matrizes A, B, C e D de mesma ordem m x n, temos:

- (i) A + B = B + A (comutativa)
- (ii) A + (B + C) = (A + B) + C (associativa)
- (iii) A + 0 = A, onde 0 é a matriz nula m x n ou elemento neutro para a soma de matrizes.
- (iv) Para cada matriz A, existe uma única matriz D tal que A + D = 0. Denota-se D por -A, assim: A + (-A) = 0. A matriz -A é chamada de matriz inversa aditiva ou negativa de A.

Multiplicação por escalar: Dado um número real k (escalar) e uma matriz $A = [a_{ij}]_{mxn}$, chama-se **produto k.A** a matriz k. $A = [ka_{ij}]_{mxn}$. Isto significa que multiplicar um matriz A por um escalar k é construir uma matriz kA formada pelos elementos de A todos multiplicados por k.

$$\lambda \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} \\ a_{21} & a_{22} & \cdots & a_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} \end{bmatrix} = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1j} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} & \lambda a_{i2} & \cdots & \lambda a_{ij} \end{bmatrix}$$

$$Exemplo: 7.\begin{bmatrix} 0 & -3 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 0 & -21 \\ 28 & 35 \end{bmatrix}$$

$$\lambda \in \Re$$

Propriedades da multiplicação por escalar : Dadas matrizes A e B de mesma ordem m x n e números reais r e s , temos:

- (i) r(A+B) = rA + rB
- (ii) (r + s)A = rA + sA
- (iii) r(sA) = (rs)A
- (iv) A(rB) = r(AB) = (rA)B
- (v) 0.A = 0
- (vi) -1.A = -A
- (vii) 1.A = A.1 = A

Multiplicação de Matrizes: Seja a matriz $A = [a_{ij}]_{mxn}$ e a matriz $B = [b_{jk}]_{nxp}$. Definimos o produto das matrizes A e B como uma outra matriz C = A. B, definida por:

$$C = [c_{ik}]_{mxp} = a_{i1}.b_{1k} + a_{i2}.b_{2k} + a_{i3}.b_{3k} + \dots + a_{in}.b_{nk} = \sum_{j=1}^{n} a_{ij}.b_{jk}$$

para todo $i \in \{1, 2, ..., m\}$ e todo $k \in \{1, 2, ..., p\}$.

Observe que na expressão $c_{ik}=a_{i1}b_{1k}+a_{i2}b_{2k}+\cdots+a_{in}b_{nk}$, os "subscritos externos" em cada termo ab da soma são sempre i e j, enquanto os "subscritos internos" são sempre iguais e variam de 1 a n.

Observações:

- (i) somente podemos multiplicar duas matrizes se o número de colunas da primeira for igual ao número de linhas da segunda.
- (ii) o elemento c_{ij} é obtido multiplicando os elementos da linha i da primeira matriz pelos elementos da coluna j da segunda matriz, e somando esses produtos.

Exemplos:

1)
$$\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} (3)(-1) + (5)(4) & (3)(0) + (5)(7) \\ (4)(-1) + (6)(4) & (4)(0) + (6)(7) \end{bmatrix} = \begin{bmatrix} 17 & 35 \\ 20 & 42 \end{bmatrix}$$

$$2) \quad \begin{bmatrix} 1 & 3 \\ 2 & 8 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 9 \end{bmatrix} = \begin{bmatrix} (1)(5) + (3)(9) \\ (2)(5) + (8)(9) \\ (4)(5) + (0)(9) \end{bmatrix} = \begin{bmatrix} 32 \\ 82 \\ 20 \end{bmatrix}$$

Propriedades do Produto de Matrizes: Se A, B, C e I têm os tamanhos apropriados, então:

(i) Em geral, $AB \neq BA$.

Exemplo: Se A =
$$\begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -1 \\ -2 & 1 & 0 \end{bmatrix}$$
 e B = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$, então:

$$AB = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e \quad BA = \begin{bmatrix} -11 & 6 & -1 \\ -22 & 12 & -2 \\ -11 & 6 & -1 \end{bmatrix}$$

(ii)
$$AI = IA = A$$

(iii)
$$A(B+C) = AB + AC$$
 (distributividade à esquerda)

(iv)
$$(A + B)C = AC + BC$$
 (distributividade à direita)

(v)
$$(AB)C = A(BC)$$
 (associatividade)

(vi)
$$(AB)^T = B^T A^T$$

(vii) 0.A = 0 e A.0 = 0, onde 0 é matriz nula.

Observações Importantes:

- A multiplicação de matrizes não é comutativa, isto é, existem matrizes A e B tais que AB ≠ BA.
- 2) Na multiplicação de matrizes **não vale a lei do anulamento** do produto, isto é, podemos ter A.B = 0 mesmo com A ≠ 0 e B ≠ 0.

<u>Lembrete</u>: **lei do anulamento**: dados dois números reais a e b, se o produto deles é igual a zero, isto é, se a. b = 0, então se conclui que pelo menos um deles é zero, ou seja, tem-se a = 0 ou b = 0.

Exemplo: Considerem-se as matrizes não nulas

$$A = \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} e B = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix},$$

tem-se:

$$AB = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot \begin{pmatrix} -1 \\ 1 \cdot 0 + 1 \cdot 0 & 1 \cdot 1 + 1 \cdot \begin{pmatrix} -1 \\ -1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Essa é uma característica da nulidade do produto de matrizes, que pode ser posta de duas formas equivalentes:

- se AB = 0, isso não implica que A = 0 ou B = 0;
- mesmo que $A \neq 0$ e $B \neq 0$, pode ocorrer que AB = 0.
- 3) Não vale também a simplificação ou não vale a lei do cancelamento do produto, isto é, podemos ter AB = AC, mesmo com A ≠ 0 e B ≠ C.

Na multiplicação de matrizes não vale a lei do cancelamento do produto. Considerando-se dois números reais a e b, se $2 \cdot a = 2 \cdot b$, então se pode dividir ambos os membros da igualdade por 2 e conclui-se que a = b. De modo mais geral, se $c \cdot a = c \cdot b$ e se $c \neq 0$, então se pode dividir ambos os membros por c e conclui-se que a = b. Essa é a chamada <u>lei do</u> cancelamento.

Para o produto de matrizes, não vale a lei do cancelamento, isto é:

se AC = BC, nem sempre se tem A = B.

Exemplo: considerando-se as matrizes quadradas de ordem 2

$$A = \begin{pmatrix} -2 & 3 \\ 5 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 \\ 2 & 7 \end{pmatrix}$ e $C = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$, tem-se:

$$AC = \begin{pmatrix} -2 & 3 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 22 & 11 \end{pmatrix} \ e \quad BC = \begin{pmatrix} -1 & 1 \\ 2 & 7 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 22 & 11 \end{pmatrix}.$$

O exemplo mostra que AC = BC não implica que A = B. Posto de outra forma: tem-se

AC = BC, com $C \neq 0_{2\times 2}$, e, no entanto, tem-se que $A \neq B$.

Conclui-se, assim, que na multiplicação de matrizes, não vale a lei do cancelamento.

Matrizes em blocos

Uma matriz pode ser **particionada** ou **subdividida** em blocos de matrizes menores inserindo cortes horizontais e verticais entre linhas e colunas selecionadas. Por exemplo, as seguintes são três partições possíveis de uma matriz 3×4 arbitrária A: a primeira é uma partição de A em quatro **submatrizes** A_{11} , A_{12} , A_{21} e A_{22} ; a segunda é uma partição de A em seus vetores r_1 , r_2 e r_3 ; a terceira é uma partição de A em seus vetores coluna c_1 , c_2 , c_3 e c_4 .

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix}$$

Outras formas de multiplicar matrizes

Multiplicação matricial por colunas e linhas: a partição de matrizes em blocos tem muitas utilidades, uma das quais sendo encontrar uma linha ou coluna específica de um produto matricial AB sem calcular todo o produto. Mais especificamente, as fórmulas seguintes, mostram como vetores coluna individuais de AB podem ser obtidos particionando B em vetores colunas e como vetores linhas individuais de AB podem ser obtidos particionando A em vetores linha.

$$AB = A[b_1 \ b_2 \ \dots \ b_n] = [Ab_1 \ Ab_2 \ \dots \ Ab_n]$$
 (AB calculado coluna a coluna)

$$AB = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} B = \begin{bmatrix} a_1 B \\ a_2 B \\ \vdots \\ a_m B \end{bmatrix}$$

(AB calculado linha a linha)

Exemplo: Considere as matrizes

Em palavras, essas fórmulas afirmam que:

- *j-ésimo* vetor coluna de AB = A.[*j-ésimo* vetor coluna de B]
- i-ésimo vetor linha de AB = [i-ésimo vetor linha de A].B

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}, \text{ assim:}$$

- a) o produto AB obtido entrada por entrada é $AB = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$;
- b) o segundo vetor coluna de AB pode ser obtido calculando

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 7 \end{bmatrix} = \begin{bmatrix} 27 \\ -4 \end{bmatrix}$$

c) o primeiro vetor linha de AB pode ser obtido calculando

$$\begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 27 & 30 & 13 \end{bmatrix}$$

Produto matricial como combinação linear

Definição: Se a_1 , a_2 , ..., a_n são vetores em \mathcal{R}^n e c_1 , c_2 , ..., c_n são escalares, então uma soma da forma c_1 , a_1 , a_2 , ..., a_n é dita uma **combinação linear** dos vetores a_1 , a_2 , ..., a_n .

Para ver como o produto de matrizes pode ser visto como uma combinação linear, sejam A uma matriz m x n e x um vetor coluna n x 1, digamos,

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{e} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Então:

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Isso prova o teorema seguinte:

Teorema: Sejam A uma matriz $m \times n$ e x um vetor coluna $n \times 1$. Então o produto Ax pode ser expresso como uma combinação linear dos vetores coluna de A em que os coeficientes são as entradas de x.

Exemplo: A matriz produto
$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}$$

pode ser escrita como a combinação linear dos vetores coluna

$$2 \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} - 1 \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}$$

Outro exemplo: colunas de um produto matricial como combinações lineares

$$AB = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

Pelo teorema acima, o *j-ésimo* vetor coluna de AB pode ser expresso como uma combinação linear dos vetores coluna de A em que os coeficientes da combinação linear são as entradas da *j-ésima* coluna de B. As contas são as seguintes:

$$\begin{bmatrix} 12 \\ 8 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 27 \\ -4 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 7 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 30\\26 \end{bmatrix} = 4\begin{bmatrix} 1\\2 \end{bmatrix} + 3\begin{bmatrix} 2\\6 \end{bmatrix} + 5\begin{bmatrix} 4\\0 \end{bmatrix}$$

$$\begin{bmatrix} 13 \\ 12 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Potências de Matriz: Quando A e B forem duas matrizes n x n, o produto delas também será uma matriz n x n. Um caso especial ocorre quando A = B. Faz sentido definir $A^2 = A$. A e, em geral, definir A^k como

$$A^k = \underbrace{A.A....A}_{k \ fatores}$$
 sendo k um inteiro positivo.

Assim, $A^1 = A$, e é conveniente definir $A^0 = I_n$.

Exemplos:

Se
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

a)
$$A^2 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 8 \\ 16 & 17 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 8 \\ 16 & 17 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 41 & 42 \\ 84 & 83 \end{bmatrix}$$

Com base nesse exemplo podem também definir A^k , como $A^k = A^{k-1}$. A.

Propriedades da Potência de Matrizes: Sejam A e B matrizes quadradas com o mesmo tamanho, r e s números inteiros não negativos. Então:,

- (i) $A^r.A^s = A^{r+s}$
- (ii) $(A^r)^s = A^{rs}$
- (iii) Se AB = BA, então $(AB)^r = A^r . B^r$.

Matriz Periódica: Dada uma matriz quadrada A, diz-se que A é uma **matriz periódica** se $A^n = A$, sendo $n \ge 2$. Se n é o menor inteiro para o qual $A^n = A$, diz-se que o período de A é n - 1.

Matriz Idempotente: Dada uma matriz periódica A, tal que $A^2 = A$, diz-se que A é uma **matriz idempotente.** O período da matriz idempotente é 2 - 1 = 1.

Se
$$A^2 = A$$
, então $A^3 = A^4 = A^5 = \cdots = A^n = A$.

Matriz Nihilpotente: Uma matriz quadrada de ordem n diz-se uma **matriz nihilpotente (ou nilpotente)** se existir um número p, inteiro e positivo, tal que $A^p=0$, onde 0 representa a matriz nula. O menor número inteiro positivo que verifica a igualdade $A^p=0$ designa-se por índice de nihilpotência da matriz A.

Se
$$A^2 = 0$$
, então $A^3 = A^4 = A^5 = \cdots = A^n = 0$.
Se $A^3 = 0$, então $A^4 = A^5 = A^6 \dots = A^n = 0$.

Exemplos:

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -3 & 4 & -3 \\ -5 & 5 & -4 \end{bmatrix}$$
 é idempotente, uma vez que $A^2 = A$.

$$B = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 é nihilpotente, uma vez que $B^3 = 0$ (índice 3).

1) Determine x e y de modo que se tenha $\begin{bmatrix} 2x & 3y \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} x+1 & 2y \\ 3 & y+4 \end{bmatrix}$.

R: x = 1 e y = 0

2) Determine x, y, z e t de modo que se tenha

$$\begin{bmatrix} x^2 & 2x & y \\ 4 & 5 & t^2 \end{bmatrix} = \begin{bmatrix} x & x & 3 \\ z & 5t & t \end{bmatrix}$$

R:
$$x = 0$$
; $y = 3$; $z = 4$; $t = 1$

3) Se a
$$\begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$$
 + b $\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$ + c $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ = $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, determine os valores de a, b e c.

R:
$$a = b = c = 0$$

4) Se A =
$$\begin{bmatrix} 1 & 7 \\ 2 & 6 \end{bmatrix}$$
, B = $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ e C = $\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$, determine X em cada uma das equações abaixo:

a)
$$2X + A = 3B + C$$

c)
$$3X + A = B - X$$

b)
$$X + A = \frac{1}{2}(B - C)$$

d)
$$\frac{1}{2}$$
 (X – A – B) = $\frac{1}{3}$ (X – C)

R: a)
$$X = \begin{bmatrix} \frac{5}{2} & -1 \\ \\ 6 & \frac{3}{2} \end{bmatrix}$$
 b) $X = \begin{bmatrix} 0 & -\frac{15}{2} \\ \\ -1 & -\frac{9}{2} \end{bmatrix}$ c) $X = \begin{bmatrix} \frac{1}{4} & -\frac{3}{2} \\ \\ \frac{1}{2} & -\frac{3}{4} \end{bmatrix}$ d) $X = \begin{bmatrix} 9 & 20 \\ 14 & 27 \end{bmatrix}$

5) Dadas A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 e B = $\begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$, calcular AB. R: AB = $\begin{bmatrix} 50 \\ 122 \end{bmatrix}$

6) Dadas A =
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 e B = $\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, calcular AB.

$$\mathbf{R: AB} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

7) Resolva a equação matricial X – A – B = C, sendo dadas:

$$A = \begin{bmatrix} 1 & 0 \\ 7 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix} \quad \mathbf{e} \quad C = \begin{bmatrix} -1 & -2 \\ 3 & 5 \end{bmatrix}$$

R:
$$X = \begin{bmatrix} 1 & 3 \\ 12 & 11 \end{bmatrix}$$

8) Obtenha X tal que:
$$X + \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$
.

$$R: X = \begin{bmatrix} 5 \\ 2 \\ -7 \end{bmatrix}$$

9) Define-se **distância entre duas matrizes** $A = (a_{ij})$ e $B = (b_{ij})$ quadradas e de mesma ordem n pela fórmula: $d(A;B) = m\acute{a}x \left| a_{ij} - b_{ij} \right| i$, j = 1,2,...,n.

Calcule a distância entre as matrizes
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 e $\begin{bmatrix} 5 & 7 \\ 6 & 8 \end{bmatrix}$.

R:
$$d(A; B) = 5$$

10) Determine os valores de a e b para que a matriz $M = \begin{bmatrix} 3 & 8 & x \\ a^3 & 1 & b^2 \\ x & 121 & 0 \end{bmatrix}$ seja simétrica.

R:
$$a = 2$$
 e $b = \pm 11$.

- 11) A matriz A = $\begin{bmatrix} 1 & 2 & 3 \\ x & y & z \\ 2 & 1 & z \end{bmatrix}$ admite a transposta $A^T = \begin{bmatrix} 1 & x & 2 \\ x-2 & y & 1 \\ 3y & 6-y & z \end{bmatrix}$. Nestas condições, calcule $x, y \in z$.
- 12) Seja A = $\left(a_{ij}\right)_{2x2}$, tal que $a_{ij}=i+j$. Determine x,y,z e t para que se tenha

$$\begin{pmatrix} x+y & x+z \\ 3x-t & t+z \end{pmatrix} = A.$$

R:
$$x = 2$$
; $y = 0$; $z = 1$; $t = 3$

- 13) Sabendo que $A = \begin{pmatrix} 4 & 2 \\ 0 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, obtenha as matrizes M e N, tais que $\begin{cases} 2M + N = A B \\ M + 3N = 2A + B \end{cases}$ R: $\mathbf{M} = \begin{pmatrix} \mathbf{0} & 2/\mathbf{5} \\ \mathbf{0} & -3/\mathbf{5} \end{pmatrix}$ e $\mathbf{N} = \begin{pmatrix} 3 & 6/\mathbf{5} \\ \mathbf{0} & 6/\mathbf{5} \end{pmatrix}$
- Determine x, com $x \in \mathbb{R}$, de modo que a matriz $A = \begin{bmatrix} x^2 7x + 13 & 0 \\ x^2 3x 4 & 1 \end{bmatrix}$ seja igual a matriz identidade de ordem 2.