напряженности электрического поля E и температуры T, причем зависимость эта достаточно сложная, но в интересующем нас диапазоне напряженностей и температур её можно аппроксимировать следующим образом

$$j(T) = \begin{cases} a, & T < b \\ a + k(T - b), T \ge b \end{cases}$$

причем сами коэффициенты а,b,k зависят от напряженности электрического поля

$$a = a_1 \exp(a_2 E)$$
$$b = b_1 - b_2 E$$
$$k = k_1 \exp(k_2 E)$$

| $a_1 = 2,60 \cdot 10^5 \frac{A}{M^2}$   | $b_1 = 1983K$                             | $k_1 = 319 \frac{A}{M^2 K}$             |
|-----------------------------------------|-------------------------------------------|-----------------------------------------|
| $a_2 = 1,01 \cdot 10^{-9}  \frac{M}{B}$ | $b_2 = 1,67 \cdot 10^{-8}  K \cdot M / B$ | $k_2 = 9.39 \cdot 10^{-10}  \text{M/B}$ |

- **4.1.** Изобразите примерный график зависимости плотности тока от температуры j(T) при отсутствии электрического поля. Как изменится этот график, при наличии электрического поля?
- **4.2.** К катоду приложили отрицательный потенциал по абсолютной величине равный  $50\kappa B$ . Определите установившуюся температуру  $T_i$  острия платиновой иголочки. Основание иголочки поддерживается при температуре  $T_0 = 300 K$ , вся остальная иголочка теплоизолирована (потерями на излучение можно пренебречь). Считайте, что эмиссия электронов происходит только с полусферического острия иголки.
- **4.3.** Если температура острия достигает температуры плавления, то происходит его разрушение быстрое испарение в вакуум. Определите критический потенциал  $\varphi_{\kappa p}$ , т.е. максимальный потенциал, который можно приложить к катоду, чтобы ещё не произошло разрушение острия иголочки.
- **4.4.** К катоду приложили отрицательный потенциал, по величине равный  $\varphi = 130 \kappa B$ . Чему равна плотность тока сразу после включения? Найдите время после включения, через которое произойдет взрыв иголочки.

## Задача 2 «Динамик»

В данной задаче Вам предстоит рассмотреть работу простейшего динамического громкоговорителя (проще говоря, динамика).

представляет собой Динамик тонкую круглую упругую мембрану  $r_d = 10,0cM$ , которой радиусом края жестко закреплены круглой металлической рамке. К центру мембраны приклеена маленькая круглая проволочная катушка радиусом r = 10,0 MMчислом витков N = 100, индуктивностью L=1,0мк $\Gamma$ н R = 4.0OM. сопротивлением Macca



катушки m=50,0г (масса мембраны гораздо меньше массы катушки). Катушка может совершать вместе с мембраной колебания в вертикальной плоскости, причем собственная частота колебаний (т.е. частота колебаний в вакууме) равна  $f_0=30\Gamma \mu$ . При колебаниях в

воздухе мембрана создает звуковые волны, при этом на нее действует сила сопротивления, пропорциональная мгновенной скорости движения катушки  $F_{conp}=-\beta v$ , Коэффициент  $\beta=\frac{2\gamma P_0 S}{c}$ , где  $\gamma=\frac{7}{5}$  - показатель адиабаты,  $P_0=1,0\cdot 10^5\,\Pi a$  - атмосферное давление,  $c=333\,\text{M}/c$  - скорость звука в воздухе, S - площадь мембраны. Силы вязкого

Проволочная катушка находится в магнитном поле постоянного магнита, при этом ось катушки и ось симметрии магнитного поля совпадают. Вертикальная составляющая индукции магнитного поля вблизи катушки равна  $B_z = B_0(1-\alpha z)$ , причем коэффициенты  $B_0 = 1,0T\pi$ ,  $\alpha = 100 \, \text{M}^{-1}$ , а координата z отсчитывается от положения равновесия катушки.

- **1.** Через катушку протекает постоянный ток I. Найдите силу  $F_A$ , действующую на катушку со стороны магнитного поля.
- **2.** К катушке приложили ЭДС, изменяющуюся по закону  $\varepsilon(t) = \varepsilon_0 \cos \omega t$ . Найдите амплитуду установившихся колебаний катушки A. Изобразите примерный график зависимости  $A(\omega)$ . Определите амплитуду колебаний при частоте переменного напряжения  $f = 30 \Gamma u$  и амплитуде  $\varepsilon_0 = 1B$ .
- **3.** К катушке приложили ЭДС, изменяющуюся по закону  $\varepsilon(t) = \varepsilon_0 \cos \omega t$ . Найдите среднюю звуковую мощность  $P_{36}$ , излучаемую динамиком. Определите максимальную звуковую мощность  $P_{36\,\text{max}}$ , если амплитуда напряжения  $\varepsilon_0 = 1B$ . На какой частоте она достигается? Оцените максимальный КПД  $\eta_{\text{max}}$  динамика. Определите рабочий диапазон динамика. Изобразите примерный график зависимости звуковой мощности от частоты переменного напряжения  $P_{36}(\omega)$  (или  $P_{36}(f)$ ).

## Примечания.

трения считайте пренебрежимо малыми.

1. В данной задаче приняты следующие обозначения для частот:

f - циклическая частота (измеряется в  $\Gamma$ и),

 $\omega$  - угловая частота (измеряется в  $c^{-1}$ ).

$$\omega = 2\pi f$$

- 2. КПД динамика отношение излучаемой звуковой мощности к потребляемой электрической мощности.
- 3. Рабочий диапазон динамика интервал частот, на границах которого мощность в 2 раза меньше максимальной мощности.
  - 4. Человеческое ухо способно воспринимать звук частотой от 20Гц до 20000Гц.