

TO THE PERSON OF THE PERSON OF

Study of Vibrational Energy Transfer at a Liquid Tin Surface

W. B. Nilsson and B. S. Rabinovitch

Department of Chemistry BG-10 University of Washington Seattle, Washington 98195

Technical Report No. NR092-549-TR30 Contract N00014-75-C-0690, NR-092-549

August 15, 1984

Prepared for Publication in Langmuir

OFFICE OF NAVAL RESEARCH
Department of the Navy, Code 432
800 N. Quincy
Arlington, VA 22217

Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release; its distribution is unlimited.

84

09 19

009

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NR092-549-TR30 2. A143	SSION NO 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Substitio) Study of Vibrational Energy Transfer at a Liquid Tin Surface	5. TYPE OF REPORT & PERIOD COVERED Technical
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) W.B. Nilsson and B.S. Rabinovitch	8. CONTRACT OR GRANT NUMBER(*) NO0014-75-C-0690 NR092-549
9. PERFORMING ORGANIZATION NAME AND ADDRESS Professor B. S. Rabinovitch Department of Chemistry BG-10 University of Washington, Seattle, WA 98	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research, Code 432	12. REPORT DATE August 15, 1984
Department of the Navy 800 N. Quincy, Arlington, VA 22217	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II dillerent trom Controlling	Unclassified
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
This document has been approved for public its distribution is unlimited.	release;
	:
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 o	(illerent from Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse elde if necessary and identify by bit Accommodation coefficient Suri	ock number) Faces
Cyclobutene Tin	
21101 33 11 11101 101	nolecular Reaction
Liquids	rational Relaxation
Single collision vibrational energy transfor cyclobutene molecules at a liquid tin s	fer for a canonical ensemble (T=300K)

from 500K to 775K. Transport above the reaction threshold for isomerization to butadiene $(E_0 = 32.4 \text{ kcal mole}^{-1})$ was used as the criterion for efficiency of vibrational energy accommodation. The surface was found to function as a strong collider below 550K. Experiments both above and below the freezing point revealed no discontinuity in the vibrational accommodation efficiency.

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102 LF 014 6601

ANALYTICAL PROPERTY CANADASSA CONTRACT CONTRACT

UNCLASSIFIED

Study of Vibrational Energy Transfer at a Liquid Tin Surface

W.B. Nilsson and B.S. Rabinovitch Department of Chemistry BG-10 University of Washington Seattle, WA 98195

Abstract

Single collision vibrational energy transfer for a canonical ensemble (T = 300 K) of cyclobutene molecules at a liquid tin surface was studied at temperatures from 500 K to 775 K. Transport above the reaction threshold for isomerization to butadiene ($E_0 = 32.4 \text{ kcal mole}^{-1}$) was used as the criterion for efficiency of vibrational energy accommodation. The surface was found to function as a strong collider below 550 K. Experiments both above and below the freezing point revealed no discontinuity in the vibrational accommodation efficiency.

> Availability Codes Avail and/or Dist COPT

Judicification

Distribution/

Special

Introduction

Thermal energy accommodation of molecular gases with solid surfaces has been an area of both experimental and theoretical interest for some time. Much attention has been focused on translational, and to a lesser extent, rotational energy accommodation at well characterized surfaces and, sometimes, in specific initial states 1-4. More recently, however, there has been an effort toward the measurement of internal energy accommodation by ensembles of gas molecules at a particular temperature that interact with less well-defined solid surfaces (polycrystalline materials in the low vacuum region). Rosenblatt and coworkers^{5,6} used a vibrating surface method to obtain translational and internal energy accommodation coefficients for a series of paraffins measured at relatively high pressures on a number of polycrystalline metal substrates. The lower limits of the room temperature vibrational accommodation coefficients (α_v) on Fe for CH₄, \underline{n} -C₄H₁₀, and \underline{n} -C₈H₁₈ were estimated to be 0.36, 0.72, and 0.90, respectively. Foner and Hudson', using a molecular beam sampling method, estimated a much lower value, $\alpha_{\rm u}$ = 0.05, for $\underline{\mathsf{n}}\text{-}\mathsf{C}_4\mathsf{H}_{10}$ on a Pt filament at 1273 K. A recent report that utilized a technique similar to that applied in the present work, gave $\alpha_v = 0.66$ for <u>n</u>-octane at 350 K on silica surfaces⁸.

Experiments in this laboratory using the single collision version of the variable encounter method (VEM) 9 reveal a decrease of $\alpha_{_{\rm V}}$ with rise in temperature. The probability of excitation of gaseous molecules to energy levels above their reaction threshold by collision with a surface was measured. Some of these studies 10,11 dealt with energy relaxation by cyclobutene at pyrex and quartz surfaces seasoned by reactant gas under low vacuum conditions, i.e. surfaces covered by a graphitic polymeric layer that gives

rise to reproducible behavior. Strong collider behavior was reported at temperatures below ~450 K. Polycrystalline gold surfaces appear to be even more efficient colliders; Yuan and Rabinovitch reported very recently that strong collider behavior on gas-seasoned plane gold and wire surfaces was observed for cyclobutene up to 550-600 K. This led to speculation that metal surfaces may function as stronger colliders than pyrex and silica surfaces due to phonon and other relaxation mechanisms unique to metals. In any case, seasoning of the surface by the gaseous reactant evidently does not suffice to obscure all effects contributed by the underlying solid substrate.

In the present paper we report the results of a study of vibrational relaxation of cyclobutene at a liquid tin surface. Thermal accommodation studies of gases at liquid metal surfaces, besides being of intrinsic interest, have an interesting feature. In principle (but not achieved here), by rapid stirring of the metal at not-too-high pressures of gas, a "clean" surface may be continually generated and, ideally, one may obtain information concerning energy transfer on a clean liquid metal surface. In addition, it is possible, in principle, to determine the dependence of vibrational energy transfer efficiency upon phase. This can be investigated by measurements just above and just below the metal melting point.

東京部分 一人以此行行的

Very little work appears to have been done on even conventional gas accommodation coefficients at liquid surfaces. The earliest work we have found concerned accommodation coefficients for several covalent liquids and their own vapors, as well as mercury and its vapor; only for water vapor was reflection, as opposed to penetration and absorption into the liquid, proposed 13,14. In all cases the values were unity. Translational accommodation coefficients for He on a tungsten filament coated with potassium metal just above and below its melting point (335 K) have been described by

Thomas and Petersen¹⁵. This study reportedly gave $\alpha_{\rm t}(338~{\rm K})=0.095$ and $\alpha_{\rm t}(328~{\rm K})=0.089~{\rm K}$. These workers observed no discontinuity at the melting point.

For studies at higher temperatures where reaction takes place, reactive metals must be avoided. Tin was chosen as the trial liquid metal in the present work because of its convenient melting point (505 K) and its low vapor pressure, reported to be less than 10^{-6} mm Hg up to $1000 \, \mathrm{K}^{16}$. Cyclobutene is convenient as the collider molecule because of its low critical threshold (E_{O} *32 kcal mole⁻¹ 17) for isomerization to 1,3-butadiene, a reaction which is close to the low-pressure fall-off region at the reactant pressures in this study. An added advantage of the use of cyclobutene is that previous studies that utilized pyrex, silica, and crystalline gold surfaces revealed no catalytic behavior for cyclobutene isomerization. We emphasize that the present technique is a more stringent test of vibrational transfer at high energy levels (above E_{O}) than are conventional bulk energy accommodation studies.

Experimental

Cyclobutene was synthesized according to the procedure of Fadel, et al. 18

Gas-liquid chromatographic and GCMS analysis showed that it contained less than 0.05% methylcyclobutene and butadiene as impurities. The sample was used without further purification. Tin metal (>99.8%) was obtained from Aldrich.

Two arrangements were used. In the studies above 520 K (Sets 1 and 2), the liquid tin sample was contained in a series 304 stainless steel well, 4 cm i.d. and 1.5 cm in depth. At the top of the well, which corresponded to the liquid surface, the stainless steel was flared for a 5 cm length and sealed

seal. In order to maintain the stainless steel flare beyond the liquid surface at, or near, room temperature, the perimeter of the well just above the liquid surface was internally water cooled. Even at the highest surface temperature in this work, (775 K), the exposed surface temperature of the stainless steel flare never exceeded 320 K.

でを対象はし、現代の語のこれはなべた。

The liquid tin was stirred magnetically at a rate of ~120 rpm in most cases. The steel stirrer was constructed such that an 0.5 mm wide strip 2.2 cm in length, which was welded to the stirrer base, just broke the liquid surface. The base was designed such that, on rotation, liquid tin near the bottom of the well was driven towards the surface while surface tin was driven downward. This facilitated both temperature uniformity and also constant regeneration of a fresh metal surface.

The tin was heated by four cartridge heaters encased in the heavy bottom wall of the well. Temperature measurement was made by means of a chromelalumel thermocouple in a thin-wall quartz well tube sealed into the top of the pyrex bulb that extended downward into the liquid metal; unfortunately the thermocouple well tube was positioned very close to the wall, which led to a correction described below.

For experiments below 520 K (Set 3), the vessel consisted of a 5-L quartz bulb, the lower part of which was sealed to a 4 cm i.d. flat bottom quartz well containing the solid sample. In these experiments, the volume of tin was only that necessary to cover the bottom of the well. Therefore, it was not stirred. The wall directly above the tin surface was wrapped with plastic tubing and water cooled. Temperature measurement was made with a 40 gauge

chromel-alumel thermocouple sealed into the vessel and immersed directly into the metal.

In a typical run, the reactor was pumped to $2x10^{-6}$ torr prior to introduction of the substrate. The typical substrate pressure was $3x10^{-4}$ torr although sample pressures in the range $(0.8-5)x10^{-4}$ torr were employed. The reaction gas was transferred for analysis after a predetermined run time. Product analysis was performed using gas liquid chromatography on a squalane SCOT column at 0 C. The detector was FID.

Results and Discussion

The reaction probability per collision, P_c , (i.e. the probability of transport of bulk molecules above E_o in one collision with the surface) was obtained from the observed first order rate constant k, with use of the relation $P_c = 4kV/S\bar{c}$; where V is the reaction vessel volume, S is the surface area of the liquid tin, and \bar{c} is the average translational velocity of the reactant molecules which have equilibrated with the cold wall prior to collision with the hot surface.

Initial data (Set 1) obtained between 525 K and 600 K gave values of $P_{\rm C}$ greater than those predicted by the theoretical strong collider curve for $E_{\rm O}$ = 32.4 kcal, although lying parallel to that curve. This observation, coupled with good reproducibility of the data at these temperatures, suggested that the origin of this deviation from strong collider values was not surface catalysis. The extent of deviation of the low temperature experimental $P_{\rm C}$ values from the theoretical curve indicated that the measured temperature was in error by ~20 K. To leave sufficient room for the stirrer, it had been chosen to locate the thermocouple well next to the wall, the top of which was

FARKE

The state of the

in the state of th

The second second

· Lake Sept Lake Sept - Lake S

internally water cooled. Therefore, the occurrence of a systematic error of this kind was not unreasonable. Moreover, in a later series of runs (Set 2) in the same apparatus between 600 K and 700 K, faster stirring and lower cooling water flow rate were used which resulted in more accurate temperature measurements. The apparent temperature discrepancy was then essentially eliminated. Substantial evidence that the correction as made was justified also was obtained in the final set of experiments (Set 3) at 505 K, using the quartz well reactor. In this case the thermocouple was in direct contact with the liquid, eliminating the temperature measurement error of the aforementioned type and P values in agreement with the theoretical strong collider curve were obtained. On the basis of this evidence, a correction was added to all observed temperatures for the first set of runs between 525 K and 775 K. In fact, if ascribed to an error in E for the strong collider curve, this discrepancy would have simply led to the value 31 kcal mole 1 rather than the literature value of ~32 kcal mole⁻¹ itself a not-extreme possible error; neither possibility has any further substantive effect on the significance of the data.

The condition of the liquid metal surface proved to be a rather vexatious problem. When the solid was melted, the surface had a light coating of dross which could be effectively removed by skimming to give a clean, mirror-like surface. However, the surface was observed to develop a hazy, gray appearance with time. This was most likely due to the formation of tin (II) oxide 19 . Contamination of the surface by this material, which was accelerated at higher temperatures, necessitated frequent replacement of the metal sample. Somewhat surprisingly, however, no dependence of $P_{\rm C}$ upon surface quality was ever observed. This shows that despite the presence of particulate matter on the surface, which introduces roughness, the colliding molecules effectively still suffer only a single collision in an encounter with the hot surface.

Experiments on surface cleaning by doubling of the stirring rate were made. This had no observed effect on surface clarity. In addition, P_c values demonstrated no dependence on this experimental variable, nor did initial seasoning of the unstirred liquid have any apparent effect. Neither result is particularly surprising. Simple calculations of the kinetic theory collision rate, assuming a sticking coefficient of unity and a monolayer coverage of 10^{15} molecules cm⁻², indicates the formation of a monolayer in about 0.03 s.

CHARLES MANAGER CONTRACTOR

STATE OF STA

A plot of P_c vs. temperature is given in Figure 1 along with the theoretical strong collider curve for a reaction threshold of 32.4 kcal mole $^{-1}$ (solid curve). The dashed curve represents a summary of all of the experimental data. The experimental scatter is somewhat disappointing and most likely due to residual temperature errors of the kind discussed above. However, this does not detract from the significant result that the surface behaves as a strong collider up to about 550 K. This is in agreement with the findings of Yuan and Rabinovitch for cyclobutene vibrational accommodation on seasoned gold wire and on plane gold surfaces 12. In fact, the behavior of the liquid metal surface, which is likely that of tin (II) oxide floating on liquid tin 19, is most reminiscent of the oxygen-processed gold surfaces investigated in their work. Analogous to some published results of Somorjai and coworkers 20,21, Yuan and Rabinovitch found that preadsorbed oxygen enhances the rate of energy transfer. An equally important result of this study is that points just above and below the freezing point of tin show that there is no discontinuity in the vibrational accommodation coefficient. This finding conforms with a related observation by Thomas and Petersen for translational accommodation of He on liquid and solid potassium surfaces 15.

It is useful to note that measurement of the extent of thermal accommodation by determination of transport to energy levels above the critical threshold, E_0 , is a more severe test than measurement of the average energy of the final distribution as a whole as in conventional accommodation coefficient measurements. In the latter case, relatively large deviations from the strong collider behavior for transitions at higher energy may not greatly alter the average energy of the distribution 22. However, the same behavior can significantly alter the population above E and thus lead to more sensitive determinations of the collisional efficiency 10 . After a single collision the new population vector N^1 , is given by $N^1 = PN^0$, where N^0 is the Boltzman population vector corresponding to the original temperature and P is the transition probability matrix. Strong collider behavior, observed in this work below $\sim\!550$ K, corresponds to complete vibrational accommodation. N^1 is therefore simply a Boltzman distribution characteristic of the surface temperature. The value of α_{vih} deduced above ~550 K depends on the form of P, which is presently uncertain. Several studies in this laboratory have sought the correct analytical form of P using both the m=1 and m>1 variants of the VEM method 22,23 . If P is partitioned at E_o, one can describe four submatrices.

$$P = \begin{pmatrix} P_{I} & P_{II} \\ P_{III} & P_{IV} \end{pmatrix}$$

 P_{I} contains the elements for transition probabilities between levels below E_{o} . Such transitions are the important contributors to N^{1} , and thus to the average energy change ΔE_{av} . Knowledge of P_{I} is most helpful in deducing values of α_{vib} . The m > 1 variant of the VEM method yields this information, but not directly. The form of P_{II} , which describes transition probabilities from levels below E_{o} to levels above E_{o} , is deduced from m = 1 studies. Once P_{II} is characterized, P_{III} is given by detailed balance. The two variants of the VEM method are complementary in determining the correct analytical form of $P^{22,23}$.

Our results indicate that the liquid surface behaves much like the solid metal surface with respect to energy transfer by polyatomic gas molecules. The structure of liquid tin has been studied by x-ray diffraction by Furukawa, et al. 19 . The liquid tin was reduced in the presence of hydrogen at 775 K to provide an oxide-free surface. Intensity patterns were found to exhibit more structure than is found for "simple" liquids such as potassium and sodium, where atomic packing is observed. Their analysis of the liquid at 232 C indicated that there are at least two distinct internuclear separations present, in a ratio of about 19:1. The predominant of these, at 3.27 Å, does not greatly differ from those found in β -tin. This view is supported by NMR²⁴ and optical reflectivity 25 studies which indicate that the electronic states of the liquid do not greatly differ from those of β -tin.

It is of interest to extend the present work to include other appropriate liquid metals. These include Ga (m.p. = 29.8 C), currently under investigation, and In (m.p. = 157 C), both of which have conveniently low vapor pressures up to at least 900 $\rm K^{16}$. The technique used in this work could be useful in future studies of this type with some modifications. The stirring rate used here was not rapid enough to clean the surface. However, in principle, sufficiently clean surfaces might be attainable by rapid stirring at relatively high pressures ($\sim 10^{-6} \rm torr$), thus obviating the need for ultrahigh vacuum techniques.

Control of the contro

<u>Acknowledgment</u>: We thank Donna Oswald for her assistance in the latter part of the work.

References

- Work supported by the Office of Naval Research
- Goodman, F.O. and Wachman, H.Y., Dynamics of Gas Surface Scattering (Academic Press, New York, 1976); Ceyer, S.T. and Somorjai, G.A., Ann. Rev. Phys. Chem. 28, 477 (1977); Cardillo, M.J., Ann. Rev. Phys. Chem. 32, 331 (1981).
- 2. Thomas, L.B., Rarified Gas Dynamics 74, 83 (1981).
- Mantell, D.A., Ryali, S.B., Haller, G.L., and Fenn, J.B., J. Chem. Phys. 78, 4250 (1983).
- 4. For a recent summary of references on rotational energy transfer see Kubiak, K.B., Hurst, J.E., Rennagel, H.G., McClelland, G.M., and Zare, R.N., J. Chem. Phys. 79, 5141 (1983).
- 5. Draper, C.W. and Rosenblatt, G.M., J. Chem. Phys. 69, 1465 (1978).
- 6. Rosenblatt, G.M., Acc. Chem. Res. 14, 42 (1981).
- 7. Foner, S.N. and Hudson, R.L., J. Chem. Phys. 75, 4727 (1981).
- 8. Amorebleta, V.T. and Colussi, A.J., J. Phys. Chem. 86, 3058 (1982).
- Kelley, D.F., Barton, B.D., Zalotaí, L. and Rabinovitch, B.S., J. Chem. Phys. 71, 538 (1979); Kelley, D.F., Zalotai, L. and Rabinovitch, B.S., Chem. Phys. 46, 379 (1980).
- 10. Kelley, D.F., Kasai, T. and Rabinovitch, B.S., J. Phys. Chem. 85, 1100 (1981).
- 11. Arakawa, R. and Rabinovitch, B.S., J. Phys. Chem. 86, 4772 (1982).
- 12. Yuan, W. and Rabinovitch, B.S., J. Phys. Chem. 87, 2167 (1983).
- Alty, T., Sci. Progr. 31, 436 (1937).

The second of th

- 14. Alty, T. and C.A. McKay, Proc. Roy. Soc. London A149, 104 (1935).
- 15. Petersen, H.L., Ph.D. Thesis, University of Missouri, 1958.
- 16. Nesmeyanov, An.N., Vapor Pressure of the Elements (Academic Press, New York, 1963).
- 17. Elliott, C.S. and Frey, H.M., Trans. Faraday Soc. 62, 895 (1966).
- 18. Fadel, A., Salaiin, J. and Conia, J.M., Tet., 39, 1567 (1983).
- 19. Furakawa, K., Orton, B.R., Hamor, J. and Williams, G.I., Phil. Mag. 8, 141 (1963).

- 20. Salmeron, M. and Somorjai, G.A., J. Phys. Chem. 85, 3835 (1981).
- 21. Somorjai, G.A. and Zaera, F., J. Phys. Chem. 86, 3070 (1982).
- 22. Arakawa, R., Kelley, D.F. and Rabinovitch, B.S., J. Chem. Phys., 76, 2384 (1982).
- 23. Yuan, W. and Rabinovitch, B.W., J. Chem. Phys., 80, 1687 (1984).
- 24. Knight, W.D., Berger, A.G. and Heine, V., Ann. Phys. 8, 173 (1959).
- 25. Hodgson, J.N., Phil. Mag. 6, 509 (1961).

Figure Captions

Figure 1. Plot of Experimental Values of P_c vs T;

0 and prepresent values from data sets 1 and 2, respectively, see text). A and V are values from set 3, below and above the freezing point of tin (505 K), respectively; --- is a fit of the experimental data; --- is the theoretical strong collider curve (E_o = 32.4 kcal mole⁻¹).

July 31, 1983

No.	Copies	No. Copies
Dr. L.V. Schmidt Assistant Secretary of the Navy (R,E, and S) Room 5E 731 Pentagon	1	Dr. F. Roberto 1 Code AFRPL MKPA Edwards AFB, CA 93523
Washington, D.C. 20350		Dr. L.H. Caveny Air Force Office of Scientific
Dr. A.L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1	Research Directorate of Aerospace Sciences Bolling Air Force Base Washington, D.C. 20332
Dr. Richard S. Miller Office of Naval Research Code 432 Arlington, VA 22217	10	Mr. Donald L. Ball Air Force Office of Scientific Research Directorate of Chemical Sciences Bolling Air Force Base
Mr. David Siegel	1	Washington, D.C. 20332
Office of Naval Research Code 260 Arlington, VA 22217		Dr. John S. Wilkes, Jr. 1 FJSRL/NC USAF Academy, CO 80840
Dr. R.J. Marcus Office of Naval Research Western Office 1030 East Green Street Pasadena, CA 91106	1	Dr. R.L. Lou l Aerojet Strategic Propulsion Co. P.O. Box 15699C Sacramento, CA 95813
Dr. Larry Peebles Office of Naval Research East Central Regional Office 666 Summer Street, Bldg. 114-D	1	Dr. V.J. Keenan 1 Anal-Syn Lab Inc. P.O. Box 547 Paoli, PA 19301
Boston, MA 02210	_	Dr. Philip Howe 1 Army Ballistic Research Labs
Dr. Phillip A. Miller Office of Naval Research Naval Station, Treasure Island Bldg. 7. Rm. 81	1	ARRADCOM Code DRDAR-BLT Aberdeen Proving Ground, MD 21005
San Francisco, CA 94130	1	Mr. L.A. Watermeier 1 Army Ballistic Research Labs
Mr. Otto K. Heiney AFATL - DLDL Eglin AFB, FL 32542	1	ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, MD 21005
Mr. R. Geisler ATTN: MKP/MS24 AFRPL Edwards AFB, CA 93523		Dr. W.W. Wharton 1 Attn: DRSMI-RKL Commander U.S. Army Missile Command Redstone Arsenal, AL 35898

INIT

DISTRIBUTION LIST

No.	Copies	No.	Copies
Mr. J. Murrin Naval Sea Systems Command Code 62R2 Washington, D.C. 20362	1	Dr. A. Nielsen Naval Weapons Center Code 385	1 i
wasnington, D.C. 20302		China Lake, CA 93555	
Dr. P.J. Pastine Naval Surface Weapons Center Code RO4 White Oak Silver Spring, MD 20910	1	Dr. R. Reed, Jr. Naval Weapons Center Code 388 China Lake, CA 93555	1
Mr. L. Roslund Naval Surface Weapons Center Code R122 White Oak	1	Dr. L. Smith Naval Weapons Center Code 3205 China Lake, CA 93555	1
Silver Spring, MD 20910 Mr. M. Stosz	1	Dr. B. Douda Naval Weapons Support Cente	l r
Naval Surface Weapons Center Code R121	•	Code 5042 Crane, IN 47522	
White Oak Silver Spring, MD 20910		Dr. A. Faulstich Chief of Naval Technology MAT Code 0716	ī
Dr. E. Zimmet Naval Surface Weapons Center Code R13	1	Washington, D.C. 20360 LCDR J. Walker	1
White Oak Silver Spring, MD 20910		Chief of Naval Material Office of Naval Technology MAT, Code 0712	•
Dr. D.R. Derr Naval Weapons Center	1	Washington, D.C. 20360	_
Code 388 China Lake, CA 93555		Mr. Joe McCartney Naval Ocean Systems Center San Diego, CA 92152	1
Mr. Lee N. Gilbert Naval Weapons Center Code 3205	1	Dr. S. Yamamoto Marine Sciences Division	1
China Lake, CA 93555 Dr. E. Martin	1	Naval Ocean Systems Center San Diego, CA 91232	
Naval Weapons Center Code 3858 China Lake, CA 93555	•	Dr. G. Bosmajian Applied Chemistry Division Naval Ship Research & Devel Center	l opment
Mr. R. McCarten Naval Weapons Center	1	Annapolis, MD 21401	
Code 3272 China Lake, CA 93555		Dr. H. Shuey Rohm and Haas Company Huntsville, AL 35801	1

	No. Copies	No. Copies
Mr. R. Brown	1	
Naval Air Systems Command	,	Dr. J. Schnur
Code 330		Naval Research Lab.
Washington, D.C. 20361		Code 6510
		Washington, D.C. 20375
Dr. H. Rosenwasser	3	Mm D D.
Naval Air Systems Command	•	Mr. R. Beauregard
WTK-210C		Naval Sea Systems Command
Washington, D.C. 20360		SEA 64E
		Washington, D.C. 20362
Mr. B. Sobers	1	
Naval Air Systems Command	•	Mr. G. Edwards
Code 03P25		Naval Sea Systems Command
Washington, D.C. 20360		Code 62R3
2000		Washington, D.C. 20362
Dr. L.R. Rothstein	•	
Assistant Director	Ţ	Mr. John Boyle
Naval Explandure D		Materials Branch
Naval Explosives Dev.		Naval Ship Engineers
Engineering Dept.		Naval Ship Engineering Center
Naval Weapons Station		Philadelphia, PA 19112
Yorktown, VA 23691		Don to C. August
0		Dr. H.G. Adolph
Dr. Lionel Dickinson	1	Naval Surface Weapons Center
Naval Explosive Ordnance	•	code Kij
uisposal lech. Center		White Oak
roge N	-	Silver Spring, MD 20910
Indian Head, MD 20640		•
		Dr. T.D. Austin
1r. C.L. Adams	3	Naval Surface Weapons Center
laval Ordnance Station	1	code K19
ode PM4		Indian Head, MD 20640
indian Head, MD 20640		
III EU04U		Dr. T. Hall
lr. S. Mitchell	•	Code R-11
aval Ordnance Station	1	Naval Surface Weapons Center
ode 5253		White Oak Laboratory
ndian Head, MD 20640		Silver Spring, MD 20910
r. William Tolles	•	Mr. G.L. Mackenzie
ean of Research	1	Naval Surface Weapons Center
aval Postgraduate School		Code R101
onterey, CA 93940		Indian Head, MD 20640
aval Research Lab.	•	Dr. K.F. Mueller
ode 6100	1	Naval Surface Weapons Center
ashington, D.C. 20375		Code RII
g ton, D.C. 203/5		White Oak
		Silver Spring, MD 20910
		20910

6/81

DISTRIBUTION LIST

No.	Copies	No. (Copies	
Dr. R.G. Rhoades Commander Army Missile Command DRSMI-R Redstone Arsenal, AL 35898	ī	Dr. E.H. Debutts Hercules Inc. Baccus Works P.O. Box 98 Magna, UT 84044	1	•
Dr. W.D. Stephens Atlantic Research Corp. Pine Ridge Plant 7511 Wellington Rd. Gainesville, VA 22065	1	Dr. James H. Thacher Hercules Inc. Magna Baccus Works P.O. Box 98 Magna, UT 84044	1	
Dr. A.W. Barrows Ballistic Research Laboratory USA ARRADCOM DRDAR-BLP Aberdeen Proving Ground, MD 21005	1	Mr. Theodore M. Gilliland Johns Hopkins University APL Chemical Propulsion Info. Ager Johns Hopkins Road Laurel, MD 20810	l ncy	
Dr. C.M. Frey Chemical Systems Division P.O. Box 358 Sunnyvale, CA 94086	1	Dr. R. McGuire Lawrence Livermore Laboratory University of California Code L-324 Livermore, CA 94550	1	
Professor F. Rodriguez Cornell University School of Chemical Engineering Olin Hall Ithaca, NY 14853	1	Dr. Jack Linsk Lockheed Missiles & Space Co. P.O. Box 504 Code Org. 83-10, Bldg. 154 Sunnyvale, CA 94088	1	
Defense Technical Information Center DTIC-DDA-2 Cameron Station Alexandria, VA 22314	12	Dr. B.G. Craig Los Alamos National Lab P.O. Box 1663 NSP/DOD, MS-245 Los Alamos, NM 87545	1	•
		Dr. R.L. Rabie WX-2, MS-952 Los Alamos National Lab. P.O. Box 1663 Los Alamos, NM 37545	1	(·
Dr. Ronald L. Simmons Hercules Inc. Eglin AFATL/DLDL Eglin AFB, FL 32542	1	Dr. R. Rogers Los Alamos Scientific Lab. WX-2 P.O. Box 1663 Los Alamos, NM 87545	1	

THE PROPERTY OF THE PARTY OF TH

	No.	Copies	No. Copies	-
	Dr. J.F. Kincaid Strategic Systems Project Office Department of the Navy	1	Dr. C.W. Vriesen 1 Thiokol Elkton Division P.O. Box 241 Elkton, MD 21921	
	Room 901 Washington, D.C. 20376 Strategic Systems Project Office	1	Dr. J.C. Hinshaw 1 Thiokol Wasatch Division P.O. Box 524	
	Propulsion Unit Code SP2731	•	Brigham City, UT 83402	
	Department of the Navy Washington, D.C. 20376		U.S. Army Research Office 1 Chemical & Biological Sciences Division	
	Mr. E.L. Throckmorton Strategic Systems Project Office Department of the Navy	1	P.O. Box 12211 Research Triangle Park, NC 27709	
	Room 1048 Washington, D.C. 20376		Dr. R.F. Walker 1 USA ARRADCOM DRDAR-LCE	
	Dr. D.A. Flanigan Thiokol Huntsville Division	1	Dover, NJ 07801	•
	Mr. G.F. Mangum Thiokol Corporation Huntsville Division Huntsville, AL 35807	1	Dr. T. Sinden Munitions Directorate Propellants and Explosives Defense Equipment Staff British Embassy 3100 Massachusetts Ave.	
	Mr. E.S. Sutton Thiokol Corporation Elkton Division P.O. Box 241 Elkton, MD 21921	1	Washington, D.C. 20008	
	Dr. G. Thompson Thiokol Wasatch Division	1 .	Mr. J.M. Frankle 1 Army Ballistic Research Labs ARRADCOM Code DRDAR-BLI	
\	MS 240 P.O. Box 524 Brigham City, UT 84302		Aberdeen Proving Ground, MD 21005	
•	Dr. T.F. Davidson Technical Director Thiokol Corporation Government Systems Group P.O. Box 9258 Ogden, UT 84409	1		

No. Copies

110.	COPTES		
E. J. Palm Commander Army Missile Command DRSMI-RK Redstone Arsenal, AL 35898	1	Dr. Kenneth O. Hartman Hercules Aerospace Division Hercules Incorporated Allegany Ballistics Lab P.O. Box 210	1
Dr. Merrill K. King Atlantic Research Corp. 5390 Cherokee Avenue Alexandria, VA 22314	1	Cumberland, MD 21502 Dr. Joyce J. Kaufman The Johns Hopkins University Department of Chemistry Baltimore, MD 21218	1
Dr. R.J. Bartlett Batelle Columbus Laboratories 505 King Avenue Columbus, OH 43201 Dr. P. Rentzepis	1	Dr. John K. Dienes T-3, MS-216 Los Alamos National Lab P.O. Box 1663 Los Alamos, NM 87544	1
Bell Laboratories Murray Hill, NJ 07971 Professor Y.T. Lee Department of Chemistry University of California	1	Dr. H.P. Marshall Dept. 52-35, Bldg. 204.2 Lockheed Missile & Space Co. 3251 Hanover Street Palo Alto, CA 94304	1
Professor M. Nicol Department of Chemistry 405 Hilgard Avenue University of California Los Angeles, CA 90024	1	Professor John Deutsch MIT Department of Chemistry Cambridge, MA 02139 Professor Barry Kunz	1
Professor S.S. Penner University of California Energy Center Mail Code B-010 La Jolla, CA 92093	1	College of Sciences & Arts Department of Physics Michigan Technological Univ. Houghton, MI 49931 Dr. R. Bernecker	1
Professor Curt Wittig University of Southern CA Dept. of Electrical Engineering University Park	1	Code R13 Naval Surface Weapons Center White Oak Silver Spring, MD 20910	
Los Angeles, CA 90007		Dr. C.S. Coffey Naval Surface Weapons Center Code R13 White Oak Silver Spring, MD 20910	1

ዸቜጜቔጜቔጜቔጜቔጜቔጜቔጜ፟ቔጜቚጜቚጜቚጜቚጜቚጜዹጜዹጜዹጜቚጜቚጜዹጜጜጚዺዀጜዀኯዀዀዄጚኯዄጚኯዄጚኯፙጚኯኯጚኯፙፙፙቔቔዀዹጚጜቔጚኯጜጚዺጜጚዺቜኯዄዹ**ዄ**ጚ

	No. Copies
Dr. W. L. Elban Code R13 Naval Surface Weapons Center	1
White Oak Silver Spring, MD 20910	
Mr. K.J. Graham Naval Weapons Center Code 3835 China Lake, CA 93555	1
Dr. B. Junker Office of Naval Research Code 421 Arlington, VA 22217	1
Prof. H.A. Rabitz Department of Chemistry Princeton University Princeton, NH 08540	1
Dr. M. Farber Space Sciences, Inc. 135 West Maple Avenue Monrovia, CA 91016	1
Mr. M. Hill SRI International 333 Ravenswood Avenue Menlo Park, CA 94025	1
U.S. Army Research Office Engineering Division Box 12211 Research Triangle Park, NC 2	1 27709
U.S. Army Research Office Metallurgy & Materials Sci. I Box 12211 Research Triangle Park, NC 2	
Professor G.D. Duvall Washington State University Department of Physics Pullman, WA 99163	1

• }

FILMED

10-84

DTIC