TODO SOBRE EL CONDENSADOR

ELECTRÓNICA ANALÓGICA 4º E.S.O.

Cómo se fabrica un condensador

Dos láminas conductoras Entre ellas, un aislante (dieléctrico)

Utilidades

* Sirven para almacenar carga (electrones) de forma temporal

* Una vez cargado, se descargan al cerrar sus terminales sobre un circuito cerrado

Capacidad del condensador

C depende de:

- ✓ La superficie de las armaduras
- ✓ La distancia que las separa
- ✓ El *material* del diélectrico

Unidad ----

faradio (F)

 $\mu F = \text{microfaradio } (10^{-6} \text{ F})$

 $nF = \text{nanofaradio}(10^{-9} \text{ F})$

 $pF = picofaradio (10^{-12} F)$

Asociación de condensadores

Condensadores ordinarios

Condensadores electrolíticos

Electrolítico de aluminio

Electrolítico de tántalo

SÍMBOLO

Estos condensadores tienen polaridad (+ y -) y deben conectarse adecuadamente.

Condensadores variables

SÍMBOLO

Carga y descarga del condensador

Carga del condensador

Descarga del condensador

Tiempo de carga/descarga

$$\tau = R \cdot C$$
 constante de tiempo

tiempo de carga / descarga

$$t = 5 \cdot \tau = 5 \cdot R \cdot C$$

Circuitos de interés

Retardadores

Circuitos de interés

Temporizadores

