A Type Theory for Strictly Unital ∞-Categories

Eric Finster David Reutter <u>Alex Rice</u> Jamie Vicary

LICS 2022

Infinity categories contain:

Infinity categories contain:

• Objects x, y, z

Infinity categories contain:

- Objects x, y, z
- 1-arrows:

$$x \stackrel{f}{\longrightarrow} y$$

Infinity categories contain:

- Objects x, y, z
- 1-arrows:

$$x \stackrel{f}{\longrightarrow} y$$

• 2-arrows:

Infinity categories contain:

- Objects x, y, z
- 1-arrows:

$$x \stackrel{f}{\longrightarrow} y$$

• 2-arrows:

• . . .

Infinity categories contain:

- Objects x, y, z
- 1-arrows:

$$x \stackrel{f}{\longrightarrow} y$$

• 2-arrows:

• . . .

Our arrows are Globular.

Infinity categories contain:

- Objects x, y, z
- 1-arrows:

$$x \stackrel{f}{\longrightarrow} y$$

• 2-arrows:

• . . .

Our arrows are Globular.

Compositions:

Infinity categories contain:

- Objects x, y, z
- 1-arrows:

$$x \stackrel{f}{\longrightarrow} y$$

• 2-arrows:

• . . .

Our arrows are Globular.

Compositions:

Identities:

$$x \xrightarrow{\operatorname{id}_x} x$$

Strict Infinity Categories

Associativity

$$w \xrightarrow{w \xrightarrow{f} x \xrightarrow{g} y} y \xrightarrow{h} z = w \xrightarrow{f} x \xrightarrow{x \xrightarrow{g} y \xrightarrow{h} z} z$$

Unitality

Strict Infinity Categories

Example: Eckmann-Hilton

Weakness

We have only so far talked about strict ∞ -categories.

Weakness

We have only so far talked about strict ∞ -categories.

In higher categories, non-equal arrows can be isomorphic.

In a weak higher category, the laws are only required to hold up to isomorphism.

Weakness

We have only so far talked about strict ∞ -categories.

In higher categories, non-equal arrows can be isomorphic.

In a weak higher category, the laws are only required to hold up to isomorphism.

Many examples of higher categories are weak:

- Homotopy groupoids of topological spaces.
- Equality types in HoTT.
- Bicategory of categories and profunctors.

Example: Eckmann-Hilton

Example: Eckmann-Hilton

 $\mathsf{Weak} \longleftarrow \mathsf{Strict}$

 $\mathsf{Weak} \; \longleftarrow \; \mathsf{Strict}$

Harder to use

Easier to use

Catt_{su}

- Catt [1] is a type theory for weak ∞ -categories.
- Its terms are the possible operations in an ∞ -category.
- By adding a definitional equality to Catt, we can unify certain operations.
- Catt_{su} is a new type theory based on Catt with strict units.

Example: Eckmann-Hilton

Eckmann-Hilton in Catt_{su}

```
coh id C(x) : x \Rightarrow x
coh id2 C (x(f)y) : f \Rightarrow f
coh comp C (x(f)y(g)z) : x \Rightarrow z
coh vert C(x(f(a)g(b)h)y) : f \Rightarrow h
coh horiz C(x(f(a)g)y(h(b)k)z): comp f h => comp g k
coh swap3 C (x(f(a)g)y(h(b)k)z)
  : vert (horiz a (id2 h)) (horiz (id2 g) b) =>
    vert (horiz (id2 f) b) (horiz a (id2 k))
let eh \{C : Cat\} \{x :: C\} (a :: id x => id x) (b :: id x => id x)
  : [ vert a b => vert b a ]
  = swap3 a b
```

Properties of Catt_{su}

- Equality in Catt_{su} preserves typing.
- Equality is generated by a strongly-terminating, confluent reduction relation.
- Equality and type checking are decidable.
- All terms (of the same dimension) in a disc context are identified.
- Eckmann-Hilton and the Syllepsis have been formalised in Catt_{su}.

References

[1] Eric Finster and Samuel Mimram. "A Type-Theoretical Definition of Weak ω Categories". In: *Proceedings of LICS 2017.* arXiv:1706.02866. 2017.