사물인터넷 기반 스마트그리드 관리 시스템

CONTENTS

우리나라의 1인 전력 소비량은 1인당 소득 대비하여 현저히 높습니다.

하지만 전기 사용자들은 어느 정도의 전력 낭비가 발생하는지 알 지 못합니다.

01. 개발배경 - 태양사용편성부족

태양열이용가구	설비사용상 편리성에 대한 만족도	매달 내는 연료 요금에 대한 만족도	정부사후관리에 대한 만족도	설치비감안시, 연료 요금에 대한 만족도	평균
추천하고 싶지 않다	5.12	4.64	4.52	4.11	4.60
추천하고 싶다	8.37	7.99	6.29	6.76	7.35

출처 : 스마트홈 이용실태 및 만족도 설문조사

또한, 충전한 태양광을 효율적으로 사용하지 못해 <mark>편리성</mark>에 대한 만족도가 낮은 편입니다.

충전한 태양광을 효율적으로 사용하지 못한다.

01. 개발배경

스마트그리드: SMART + GRID (전력량)

=> 지능형 전력망

에너지 사용량 예측과에너지 생산의 탄력적인 운용

전력 공급자와 소비자간의 양방향 실시간 정보 교환 02

개발 내용

02. 개발내용-특징

특징 1. **사용**자의 편리한 전력관리

특징 2. △마트홈 자체적인 전력관리

특징 1. 사용자의 편리한 전력 관리

- 1) 그래프로 전력 사용량 파악이 가능하다.
 - 2) 전력요금 파악이 가능하다.
 - 3) 스위치 제어가 가능하다.

특징 2. 스마트홈 자체적인 전력관리

- 1) 태양광 에너지를 충전한다.
- 2) 정전이 발생시 태양광 에너지로 전력 공급
- 3) 전력요금이 상승시 태양광 에너지로 전력 공급한다.

02. 개발내용 - 핵심기능

전력량 요금 절감

늘 곁에 Ҟ

에너지 저장 시스템(ESS) 을 적용하여 전력량 대비 요금 절감

02. 개발내용-기능

기기 확장 및 스위치 제어

SWITCH ON/OFF

@SMARTGRID SMARTHOME

기기 확장이 가능하고 각 기기를 어플로 제어 가능

02. 개발내용-기능

전력사용량 및 태양광 충전량 확인

전력 사용량

태양광 발전량

시간대별 전력 사용량을 그래프와 계측량으로 실시간 확인 가능

02. 개발내용-기능

전원 공급원 확인

전력 요금 확인

현재 전력 공급원 확인이 가능하고 일반 전원을 사용할 때의 전력 요금을 실시간 확인 가능

02. 개발내용 - 기능

어플리케이션을 이용한 편리한 전력 관리

03

시스템 구성도

03. 시스템 구성도

MQTT Protocol

- Publish/Subscribe 구조를 가지는 메시징 프로토콜
- 경량 프로토콜로 저전력 장비에서 운용
- 비정상적인 연결 종료에 대한 자체 보정 기능

시스템 구성도

03.

- 전력값 측정
- 태양광패널에서 얻은 전력으로 전원 충전 (완충 시 충전 중단)
- 통신 프로토콜: MQTT
- 작성 언어: Python

- 하이브리드 앱
- 스위치 on/off 등의 제어신호 중앙 서버와의 통신
- 웹, 안드로이드 모두 가능한 통합 플랫폼 구성

어플리케이션

시스템 구성도 03.

웹 서버

- MQTT로 얻은 <u>센싱</u> 값 가공
- 어플리케이션에서 받은 제어 신호 내부 서버로 전송
- php를 이용한 실시간 소켓 통신 어플리케이션을 위한 WAS(Web Application Server) 구축

- 전력 요금을 누진세, 태양광 충전량 고려하여 예측
- 파일을 일정 시간 간격으로 압축

04

기존 시스템과의 비교

04. 기존 시스템과의 비교

VS

- 제한된 플랫폼
- 기기 확장의 제한
- 어플리케이션 기능의 한정

- 앱과 웹의 통합된 플랫폼
 - 기기 확장의 유연성
- 어플리케이션 기능의 다양성

05

기대 효과

05. 기대 효과

- MQTT 프로토콜을 이용한 빠른 통신 및 신뢰성 보장
- 에너지 저장 시스템(ESS)을 이용하여 전력 사용량 대비 전력 요금 절감
- 전력 사용량 파악이 용이하여 사용자의 편리성 향상

06. 시연 동영상

라사합니다.