Advanced Algorithms (67824) – Exercise 3

Edan Orzech 322362849, Mike Greenbaum 211747639

November 2021

1. Define ϕ as the maximum concurrent flow. Define m as the sparsity of a sparsest cut. In class we proved that $\phi \leq m$. Define N(S) to be the number of sources and sinks that S separates. Define (X, \overline{X}) to be all the edges in the cut X. Define $\alpha(S, \overline{S})$ to be the sparsity function. Define f_1^* to be a max-flow through $s_1 \to t_1$. Due to the max-flow min-cut theorem, there exists a cut S_1 s.t. $c(S_1, \overline{S_1}) = |f_1^*|$.

Notice that $m \leq \alpha(S_1, \overline{S_1}) = \frac{c(S_1, \overline{S_1})}{N(S_1)} \leq \frac{c(S_1, \overline{S_1})}{1} = c(S_1, \overline{S_1}) = f_1^*$. Therefore, exists a flow f_1 through $s_1 \to t_1$ s.t. $|f_1| = m$.

We use the following result from the literature¹. In the paper, the authors show an algorithm (algorithm TWO-COMMODITY FLOW ALGORITHM in page 3), that finds a flow $s_1 \to t_1$ and then finds a maximal flow through $s_2 \to t_2$ without changing the value of the flow through $s_1 \to t_1$.

The proofs of correctness of the algorithm don't depend on the optimality of the flow from $s_1 \to t_1$ and therefore, we can use the algorithm with a non-optimal flow.

Therefore, instead of choosing the flow $s_1 \to t_1$ to be maximal (i.e. f_1^*), we will choose it to be the f_1 that we defined previously (s.t. $|f_1| = m$).

Denote the output of the algorithm as (F_1, F_2) (where F_i is a flow from $s_i \to t_i$). we know that $|F_1| = m$ by the algorithm's definition.

We will use lemma 2.3 (stated in the end of page 4) that states that there exists a cut S that separates both sources and sinks s.t. $|F_1| + |F_2| = c(S, \overline{S})$. Define the cut X to be the cut induced by the algorithm as stated in lemma 2.3.

The problem with the lemma is that in its proof there exists a case which assumes the optimality of the flow F_1 , therefore, we will tackle this case independently. The only case that assumes the optimal flow for F_1 happens if and only if $\forall (u,v) \in (X,\overline{X}), \ F_1(u,v) = 0$.

(a) If $\forall (u,v) \in (X,\overline{X}), \ F_1(u,v) = 0$. In this case, as stated in the paper, due to the max-flow min cut theorem for s_2,t_2 , it holds that $|F_2| = c(X,\overline{X})$. Therefore

$$m \leq \alpha(X, \overline{X}) = \frac{c(X, \overline{X})}{N(X)} \leq \frac{c(X, \overline{X})}{1} = c(X, \overline{X}) = |F_2|$$

(b) Else, lemma 2.3 holds, in this case exists a cut S that separates both sources and sinks s.t. $F_1 + F_2 = c(S, \overline{S})$. Therefore,

$$m \le \alpha(S, \overline{S}) = \frac{c(S, \overline{S})}{N(S)} = \frac{c(S, \overline{S})}{2} = \frac{|F_1| + |F_2|}{2} = \frac{m + |F_2|}{2}$$

Therefore, $m \le \frac{m + |F_2|}{2} \implies |F_2| \ge m$.

¹Itai, A., 1978. Two-commodity flow. Journal of the ACM (JACM), 25(4), pp.596-611. We use Algorithm TWO-COMMODITY FLOW ALGORITHM and Lemma 2.3.

We showed that in both cases it holds that $|F_2| \ge m$ and we know that $|F_1| = m$.

We showed feasible flows F_1, F_2 from s_1, s_2 to t_1, t_2 s.t. $F_1, F_2 \ge m$, therefore due to the definition of maximum concurrent flow we get that $\phi \ge m$.

We showed $m \leq \phi$ and $\phi \leq m$ and therefore $\phi = m$, as required.

- 2. We use the following claim²: in the same settings, there are a flow f and a cut C where the size of the cut (denote as |C|) is at most twice the flow (|f|). As a result, for a minimum cut C^* and a maximum flow f^* it holds that $|C^*| \le |C| \le 2|f| \le 2|f^*|$, as required. All the flows and cuts here are multi-commodity.
- 3. Let the set of all elements be denoted as U. Denote the value of the optimal set cover solution with OPT (namely the ILP version of the following LP). Denote |U| = n.

Define the following LP problem:

$$\min \sum_{s \in S} x_s$$

$$s.t. \forall u \in U, \sum_{s \in S \land u \in s} x_s \ge 1$$

$$\forall s \in S, x_s > 0$$

Denote the optimal solution to the LP problem as x^* . Given a solution of set cover denoted as C, we can define $x_s = \mathbb{1}_{s \in C}$. Notice that x is a feasible solution to the LP problem, and therefore $\sum_{s \in S} x_s^* = \sum_{s \in S} x_s = |C|$. Therefore, we get that $\sum_{s \in S} x_s^* \leq OPT$.

Due to the optimality of x^* , it holds that $\forall s \in S, \ x_s^* \le 1$ (else we can find a better feasible solution). Therefore, $\forall s \in S, \ 0 \le x_s^* \le 1$, therefore we can sample with probability x_s^* .

We define the following algorithm:

Algorithm 1: approximation set cover

- 1 Solve the LP problem ans store the solution as x^* .
- **2** Define $C = \emptyset$
- 3 for $1 \le i \le \lceil \ln 4n \rceil$ do
- $C_i = \emptyset$
- for each $s \in S$, add s to C_i with probability x_s^*
- 7 end
- **s** output C

Let $u \in U$, denote $S_u = \{s \in S \mid u \in s\}$. Notice that $\sum_{s \in S_u} x_s^* \ge 1$ because x^* is a feasible solution.

$$\mathbb{P}\left(u \notin C_{i}\right) = \prod_{s \in S_{u}} \left(1 - x_{s}^{*}\right)^{1 + x \leq e^{x}} \prod_{s \in S_{u}} e^{-x_{s}^{*}} = e^{\sum_{s \in S_{u}} - x_{s}^{*}} \leq e^{-1} = \frac{1}{e}$$

Therefore,

$$\mathbb{P}\left(u \notin C\right) = \mathbb{P}\left(\forall 1 \leq i \leq \lceil \ln 4n \rceil, u \notin C_i\right) \overset{\text{independent events}}{=} \prod_{i=1}^{\lceil \ln 4n \rceil} \mathbb{P}\left(u \notin C_i\right) \leq \prod_{i=1}^{\lceil \ln 4n \rceil} \frac{1}{e} = e^{-\lceil \ln 4n \rceil} \leq \frac{1}{4n}$$

²Garg, N., Vazirani, V.V. and Yannakakis, M., 1997. Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica, 18(1), pp.3-20. The claim is proved in section 5, using the algorithm in figure 3.

Therefore,

$$\mathbb{P}\left(\exists u \in U \text{ s.t. } u \notin C\right) \overset{\text{union bound}}{\leq} \sum_{u \in U} \mathbb{P}\left(u \notin C\right) \leq \sum_{u \in U} \frac{1}{4n} = \frac{n}{4n} = \frac{1}{4}$$

And notice that

$$\mathbb{E}\left[\left|C\right|\right] = \mathbb{E}\left[\left|\bigcup_{i=1}^{\lceil \ln 4n \rceil} C_i\right|\right] \leq \mathbb{E}\left[\sum_{i=1}^{\lceil \ln 4n \rceil} \left|C_i\right|\right] = \sum_{i=1}^{\lceil \ln 4n \rceil} \mathbb{E}\left[\left|C_i\right|\right] = \sum_{i=1}^{\lceil \ln 4n \rceil} \left(\sum_{s \in S} x_s^*\right) \leq \sum_{i=1}^{\lceil \ln 4n \rceil} OPT = \lceil \ln 4n \rceil \cdot OPT$$

Therefore,

$$\mathbb{P}\left(|C| \geq 4 \left\lceil \ln 4n \right\rceil \cdot OPT \right) \leq \mathbb{P}\left(|C| \geq 4 \cdot \mathbb{E}\left[|C|\right] \right) \overset{\text{Markov inequality}}{\leq} \frac{\mathbb{E}\left[|C|\right]}{4 \cdot \mathbb{E}\left[|C|\right]} = \frac{1}{4}$$

Therefore,

$$\mathbb{P}\left(|C| \geq 4 \lceil \ln 4n \rceil \cdot OPT \vee \exists u \in U \text{ s.t. } u \notin C\right)$$

$$\stackrel{\text{union bound}}{\leq} \mathbb{P}\left(|C| \geq 4 \lceil \ln 4n \rceil \cdot OPT\right) + \mathbb{P}\left(\exists u \in U \text{ s.t. } u \notin C\right) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Notice that the algorithm noted above is polynomial in the input, because LP can be solved in polynomial time and the update takes $O(|U|\cdot|S|)$ time. So, we showed a polynomial probabilistic algorithm that finds a set cover with cardinality less than $4 \lceil \ln 4n \rceil \cdot OPT$ with probability at least $\frac{1}{2}$.

We can repeat the algorithm a constant amount of time and choose the best set cover found and get a polynomial probabilistic algorithm that finds a set cover with value less than $4 \lceil \ln 4n \rceil \cdot OPT$ with probability at least $1 - \frac{1}{a}$.

Therefore, we showed a polynomial probabilistic algorithm that approximates set cover with approximation $4 \lceil \ln 4n \rceil$ with probability $1 - \frac{1}{e}$, as required.

4. Let $S =: \{v \in V \mid d(v) > k\}$, $T := \{v \mid d(v) < k\}$. Then by the given $S \sqcup T = V$. Also, by the push-relabel algorithm $s \in S$, $t \in T$, so (S,T) is an s-t cut. Assume for contradiction that it is not a minimum cut. Let G_f be the residual network at that stage of the algorithm. By the assumption, there is an edge $(u,v) \in E(G_f)$ such that $u \in S$, $v \in T$. By the labeling's definition, $d(u) \leq d(v) + 1$. $d(u) > k \neq d(v)$, so d(v) > k as well, in contradiction to $v \in T$. Hence there are no S-T edges, and equivalently for any S-T edge (u,v) in G, $c_f(u,v) = 0$. By the algorithm's definition, it follows that the residual capacity of these edges will remain 0 until the algorithm stops. Therefore, for the resulting flow g we will still have that there are no S-T edges in G_g , which means that (S,T) is a minimum cut by the min-cut max-flow theorem.

Did you know? There are no Fields medalists with Erdos number of less than 2.