BASIC COMPUTER ORGANIZATION AND DESIGN

- Instruction Codes
- Computer Registers
- Computer Instructions
- Timing and Control
- Instruction Cycle
- Register Reference Instructions
- Memory Reference Instructions

- Program:
 - A set of instructions that specify the *operations*, *operands*, and the *sequence* by which processing has to occur.
- Instruction Code:

A group of bits that tell the computer to *perform*a specific operation (a sequence of micro-operation)

- -->macro-operation
- usually divided into operation code, operand address, addressing mode, etc.
- basic addressing modes Immediate, Direct, Indirect
- Simplest stored program organization

Memory 4096x16 Instructions (program) Operands (data)

Processor register (Accumulator, AC)

Mano's Basic Computer

- Memory unit with 4096 l6-bit words
- Registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, SC
- Flip-flops: I, S, E, R, IEN, FGI, FGO
- 3 x 8 op decoder and 4 x 16 timing decoder
- 16-bit common bus
- Control logic gates
- Adder and logic circuit connected to input of AC

Effective Address(EA)

The address, that can be directly used without modification to access an operand for a computation-type instruction, or as the target address for a branch-type instruction

- Holds memory address of next instruction to be executed.
- Next instruction is fetched after current instruction. completes execution cycle.
- PC is incremented right after instruction is fetched from memory.
- PC value can be replaced by new address when executing a branch instruction

Common Bus

- Connects registers and memory
- Specific output selected by S2, S1 and S0.
- When register has length < 16 bits, high-order bus bits are set to 0.
- Register with LD enabled reads data from bus.
- When S2SIS0 = 111
 - Memory with Write enabled reads bus.
 - Memory with Read enabled puts data on bus.

Address Register (AR)

- Always used to specify address within memory unit.
- Dedicated register eliminates need for separate address bus.
- Content of any register output connected to the bus can be written to memory.
- Any register input connected to bus can be target of memory read.
- As long as its LD is enabled.

Accumulator (AC)

- Input comes from adder and logic circuit
- Adder and logic circuit
- Input
- 16-bit output of AC
- 16-bit data register (DR)
- 8-bit input register (INPR)
- Output
- 16-bit input of AC
- E flip-flop (extended AC bit. aka overflow)
- DR and AC input used for arithmetic and logic microoperations

A computer uses a memory unit with 256K words of 32 bits each. A binary instruction code is stored in one word of memory. The instruction has four parts: an indirect bit, an operation code, a register code part to specify one of 64 registers, and an address part.

- a. How many bits are there in the operation code, the register code part, and the address part?
- b. Draw the instruction word format and indicate the number of bits in each part.
 - c. How many bits are there in the data and address inputs of the memory?

The following control inputs are active in the bus system shown in Fig. 5-4. For each case, specify the register transfer that will be executed during the next clock transition.

	S_2	S_1	S_0	LD of register	Memory	Adder
a.	1	1	1	IR	Read	
b.	1	1	0	PC		-
c.	1	0	0	DR	Write	-100-000
d.	0	0	0	AC	-	Add

The following register transfers are to be executed in the system of Fig. 5-4. For each transfer, specify: (1) the binary value that must be applied to bus select inputs S_2 , S_1 , and S_0 ; (2) the register whose LD control input must be active (if any); (3) a memory read or write operation (if needed); and (4) the operation in the adder and logic circuit (if any).

- a. $AR \leftarrow PC$
- b. $IR \leftarrow M[AR]$
- c. $M[AR] \leftarrow TR$
- d. $AC \leftarrow DR$, $DR \leftarrow AC$ (done simultaneously)

(OP-code = 111, I = 1)

Register operation

12 11 I/O operation

Input-Output Instructions

Instructions

BASIC COMPUTER INSTRUCTIONS

	Нех	Code	
Symbol	I = 0	<i>I</i> = 1	Description
AND	0xxx	8xxx	AND memory word to AC
ADD	1xxx	9xxx	Add memory word to AC
LDA	2xxx	Axxx	Load AC from memory
STA	3xxx	Bxxx	Store content of AC into memory
BUN	4xxx	Cxxx	Branch unconditionally
BSA	5xxx		Branch and save return address
ISZ	6xxx	Exxx	Increment and skip if zero
CLA	78		Clear AC
CLE	76 74		Clear E
CMA	72		Complement AC
CME	71		Complement E
CIR	70		Circulate right AC and E
CIL	70		Circulate left AC and E
INC	70		Increment AC
SPA	70		Skip next instr. if AC is positive
SNA	70	08	Skip next instr. if AC is negative
SZA	70		Skip next instr. if AC is zero
SZE	70	02	Skip next instr. if E is zero
HLT	70	01	Halt computer
INP	F8	00	Input character to AC
OUT	го F4		Output character from AC
001		00	Output character from AC

Consider the instruction formats of the basic computer shown in Fig. 5-5 and the list of instructions given in Table 5-2. For each of the following 16-bit instructions, give the equivalent four-digit hexadecimal code and explain in your own words what it is that the instruction is going to perform. a. 0001 0000 0010 0100

- b. 1011 0010 0100 0001 0000 c. 0111 0010 0000

INSTRUCTION SET COMPLETENESS

A computer should have a set of instructions so that the user can construct machine language programs to evaluate any function that is known to be computable.

Instruction Types

Functional Instructions

- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions

- Data transfers between the main memory and the processor registers
- LDA, STA

Control Instructions

- Program sequencing and control
- BUN, BSA, ISZ

Input/Output Instructions

- Input and output
- INP, OUT

TIMING AND CONTROL

Control unit of basic computer

Control unit implementation

Hardwired Implementation Microprogrammed Implementation

- Fetch instruction from memory
- Decode the instruction
- Read effective address from memory if indirect address

20

Execute the instruction

Common bus

Fetch And Decode

- se cleared to 0, generating timing signal To
- After each clock pulse, se is incremented
- Fetch and decode microoperations
 - T_0 : $AR \leftarrow PC$
 - $T_1: IR \leftarrow M[AR],$ $PC \leftarrow PC + 1$
 - T_2 : $D_0,...D_7 \leftarrow$ decode IR(12-14), $AR \leftarrow IR(0-11)$, $I \leftarrow IR(15)$

DETERMINE THE TYPE OF INSTRUCTION

D'7lT3: AR ← M[AR] D'7l'T3: Nothing

D7l'T3: Execute a register-reference instr.

D7IT3: Execute an input-output instr.

REGISTER REFERENCE INSTRUCTIONS

23

Register Reference Instructions are identified when

- $D_7 = 1$, I = 0
- Register Ref. Instr. is specified in b₀ ~ b₁₁ of IR
- Execution starts with timing signal T₃

$$r = D_7 I' T_3 => Register Reference Instruction Bi = IR(i), i=0,1,2,...,11$$

CLA CLE CMA CME CIR CIL INC SPA SNA SZA SZE HLT	r: rB ₁₁ : rB ₁₀ : rB ₉ : rB ₇ : rB ₆ : rB ₅ : rB ₄ : rB ₃ : rB ₁ : rB ₁ : rB ₀ :	$SC \leftarrow 0$ $AC \leftarrow 0$ $E \leftarrow 0$ $AC \leftarrow AC'$ $E \leftarrow E'$ $AC \leftarrow shr AC, AC(15) \leftarrow E, E \leftarrow AC(0)$ $AC \leftarrow shl AC, AC(0) \leftarrow E, E \leftarrow AC(15)$ $AC \leftarrow AC + 1$ if $(AC(15) = 0)$ then $(PC \leftarrow PC+1)$ if $(AC(15) = 1)$ then $(PC \leftarrow PC+1)$ if $(AC = 0)$ then $(PC \leftarrow PC+1)$ if $(E = 0)$ then $(PC \leftarrow PC+1)$ $S \leftarrow 0$ $(S = 0)$ is a start-stop flip-flop)
---	--	--

MEMORY REFERENCE INSTRUCTIONS

Symbol	Operation Decoder	Symbolic Description
AND	D_0	$AC \leftarrow AC \land M[AR]$
ADD	D_1^{c}	$AC \leftarrow AC + M[AR], E \leftarrow C_{out}$
LDA	D_2	AC ← M[AR]
STA	D_3^{T}	M[AR] ← AC
BUN	D_4	PC ← AR
BSA	D_{5}^{T}	$M[AR] \leftarrow PC, PC \leftarrow AR + 1$
ISZ	D_6	M[AR] ← M[AR] + 1, if M[AR] + 1 = 0 then PC ← PC+1

- The effective address of the instruction is in AR and was placed there during timing signal T₂ when I = 0, or during timing signal T3 when I = 1
- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR Instruction starts with T₄

AND to AC

 D_0T_4 : DR \leftarrow M[AR] Read operand

 D_0T_5 : AC \leftarrow AC \land DR, SC \leftarrow 0 AND with AC

ADD to AC

 D_1T_4 : DR \leftarrow M[AR] Read operand

 D_1T_5 : AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0 Add to AC and store carry in E

MEMORY REFERENCE INSTRUCTIONS

LDA: Load to AC

 D_2T_4 : DR \leftarrow M[AR]

 D_2T_5 : AC \leftarrow DR, SC \leftarrow 0

STA: Store AC

 D_3T_4 : M[AR] \leftarrow AC, SC \leftarrow 0

BUN: Branch Unconditionally D_4T_4 : $PC \leftarrow AR$, $SC \leftarrow 0$

BSA: Branch and Save Return Address

 $M[AR] \leftarrow PC, PC \leftarrow AR + 1$

MEMORY REFERENCE INSTRUCTIONS

BSA:

 D_5T_4 : M[AR] \leftarrow PC, AR \leftarrow AR + 1 D_5T_5 : PC \leftarrow AR, SC \leftarrow 0

ISZ: Increment and Skip-if-Zero

 D_6T_4 : DR \leftarrow M[AR] D_6T_5 : DR \leftarrow DR + 1

 $D_6^{\circ}T_4^{\circ}$: M[AR] \leftarrow DR, if (DR = 0) then (PC \leftarrow PC + 1), SC \leftarrow 0

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS

The content of AC in the basic computer is hexadecimal A937 and the initial value of E is 1. Determine the contents of AC, E, PC, AR, and IR in hexadecimal after the execution of the CLA instruction. Repeat 11 more times, starting from each one of the register-reference instructions. The initial value of PC is hexadecimal 021.

An instruction at address 021 in the basic computer has I = 0, an operation code of the AND instruction, and an address part equal to 083 (all numbers are in hexadecimal). The memory word at address 083 contains the operand B8F2 and the content of AC is A937. Go over the instruction cycle and determine the contents of the following registers at the end of the execute phase: PC, AR, DR, AC, and IR. Repeat the problem six more times starting with an operation code of another memory-reference instruction.

The content of PC in the basic computer is 3AF (all numbers are in hexadecimal). The content of AC is 7EC3. The content of memory at address 3AF is 932E. The content of memory at address 32E is 09AC. The content of memory at address 9AC is 8B9F.

- a. What is the instruction that will be fetched and executed next?
- b. Show the binary operation that will be performed in the AC when the c. Give the contents of registers PC, AR, DR, AC, and IR in hexadecimal and the values of E, I, and the sequence counter SC in binary at the end of the instruction cycle.