Multiobjective Scatter Search TSUFLP

BITHO Sullivan CALLICO Adrien

Université de Nantes

15 décembre 2022

Sommaire

- Introduction
- Scatter Search

Objectif: pull

$$\min f^2(x) = \max\{ d_{ij}x_{ij} \mid i \in I, j \in J \}$$

Résultats numériques

Contrainte : Capacitated concentrators

$$\sum_{i\in I} x_{ij} \le Q \ \forall j \in J$$

- - 1 Introduction
 - 2 Scatter Search
 - Résultats numériques
 - 4 Conclusion

Diversification (GRASP)

- GRASP : $\alpha = 0.4$
- lead selon 5 combinaisons linéaires des objectifs
- Construction de la solution : Tri des terminaux selon distance/coûts par concentrateur. Tant qu'il reste des terminaux non affectés :

- CLVL1.terms $\leftarrow \{Q \text{ meilleurs terminaux}\}\$
- CLVL1.clvl2 ← {CLVL2 moins coûteux}

GRASP

Intensification (Tabu)

• Taille : $[0.1 \times nJ]$ (petite pour minimiser les cycles)

- Critère d'arrêt : $k \times nJ$, $k \in [0,1]$
- Mouvements considérés : Shift et Swap

Tabu

- Taille $\beta = 10$
- Distance (s_1, s_2) : nombre de concentrateurs de niveau 1 et de niveau 2 de s1 qui n'apparaissent pas dans s_2 (et vice-versa).

• Réajustement des concentrateurs de niveau 1 puis 2 (swaps)

Résultats numériques

• Réaffectation des terminaux puis des concentrateurs de niveau

- Manque de diversité ("blocs" de terminaux)
- Imiter le crossover
- Repasser Tabu Search derrière?

Archive: Skip List

- Filtre les solutions non dominées
- Utilisation de pointeurs additionnelles pour les opérations de mise à jour (suppression)

Sommaire

- Introduction
- Scatter Search
- Résultats numériques

Construction des instances

- instances de Sanchez
- séparation 4/5 1/5 des concentrateurs
- les b_{ik} = distance
- les cii sont tirés au hasard
- tous les coûts et distances sont arrondis à l'inférieur

- (a) Concentrateurs de niveau 1
- (b) Concentrateurs de niveau 2

Figure - Concentrateurs instance "Angers"

vOpt

Linéarisation du modèle :

- ajout d'une variable réelle $Z \geq 0$;
- remplacement de f^2 par $f_L^2 = \min Z$
- ajout des contraintes $Z \ge x_{ii}d_{ii}, \ \forall i \in I, \ \forall j \in J$
- temps moyen sur les instances small : 219.39 secondes
- temps moyen sur les instances medium : 1881.35 secondes

Introduction

k	taille instance	temps resolution (s)
0.1	small	2.895
	medium	76.445
0.5	small	7.310
	medium	113.371
0.9	small	11.807
	medium	189.643

Table – Influence du paramètre k sur les temps de résolution

Etude du paramètre k

taille instance	k1	k2	k1 domine k2 sur (%) de solution
	0.9	0.5	41.734
small	0.9	0.1	46.561
	0.5	0.1	38.658
	0.9	0.5	37.039
medium	0.9	0.1	30.501
	0.5	0.1	40.031

Table – Influence du paramètre k sur la mesure de couverture

Introduction

intérêt du "crossover"

Intérêt du "crossover"

Stratégie	taille instance	temps résolution	
Scatter	small	7.31	
Search	medium	113.370	
"crossover"	small	7.542	
	medium	133.335	
"crossover"	small	8.164	
+ tabu	medium	148.132	

Table – Temps de résolution pour les différentes stratégies (k = 0.5)

Intérêt du crossover

Taille instance	Stratégie 1	Stratégie 2	1 ≤ 2 (%)
	crossover + tabu	crossover	34.988
small	crossover + tabu	SS	24.925
	crossover	SS	34.083
	crossover + tabu	crossover	49.548
medium	crossover + tabu	SS	45.792
	crossover	SS	30.816

Table – Influence du paramètre k sur la mesure de couverture

Intérêt du "crossover"

Stratégie	taille instance	distance moyenne à Y_N (×10 ¹¹)
Scatter	small	0.671
Search	medium	2.691
"crossover"	small	0.846
	medium	3.138
"crossover"	small	0.748
+ tabu	medium	2.479

Table – Distances moyennes aux Y_N pour les différentes stratégies

Sommaire

- Introduction
- 2 Scatter Search
- Résultats numériques
- 4 Conclusion

Conclusion

- Intérêt limité du crossover mais piste intéressante selon nous.
- Pistes d'amélioration
 - D'autres voisinages pour Tabu?
 - Perturber davantage les solutions obtenues après chaque itération.
 - Adapter notre implémentation pour une plus grande échelle d'instance.