

If $\tan \theta = \frac{4}{3}$. Find the value of $\sin \theta$

(1)
$$\frac{3}{5}$$

(2)
$$\frac{4}{3}$$

$$(3)/\frac{4}{5}$$

(4)
$$\frac{5}{4}$$

Find the value of P

(1)
$$\frac{\sqrt{3}}{8}$$
 (2) 8

(3)
$$\frac{8}{\sqrt{3}}$$
 (4) 0

$$tam 30 = \frac{P}{8}$$
 $\frac{1}{\sqrt{3}} = \frac{P}{8}$
 $\frac{1}{\sqrt{3}}$
 $\frac{1}{\sqrt{8}}$
 $\frac{1}{\sqrt{3}}$

If θ is very small then find H.

$$(1) 3 \qquad (2) \frac{3}{3}$$

(3)
$$\frac{4}{5}$$
 X (4) 5

$$\sin\theta \approx \tan \theta$$

$$\frac{P}{H} \approx \frac{P}{3}$$

If
$$y = \frac{\tan \theta}{\theta}$$
, then find the value of y at $\theta = 10^{\circ}$.

 $(1) 10^{\circ}$

(2) 0

(3) 1

 $(4) \sqrt{3}$

Find the value of sin 105° = Sin (60 + 45) = 80,60 60 45 + Con 60 hin 45

(1)
$$\frac{\sqrt{3}}{2}$$

$$(2) \quad \frac{\sqrt{3}}{2\sqrt{2}}$$

$$(3) \quad \frac{2\sqrt{2}}{\sqrt{3}+1}$$

$$(4) \frac{\sqrt{3}+1}{2\sqrt{2}}$$

Find the value of
$$\cos 75^\circ = \cos (45+30) = \cos 45 \cos 45 \cos 30 - \sin 46 \sin 30$$

$$(1) \frac{\sqrt{3}-1}{2\sqrt{2}}$$

(2)
$$\frac{2\sqrt{2}}{\sqrt{3}-1}$$

$$(3) \quad \frac{\sqrt{3}}{\sqrt{2}}$$

(4)
$$\sqrt{2}$$

Find the value of $\sin 75^{\circ} + \sin 15^{\circ}$

(2)
$$\frac{2}{\sqrt{3}}$$

(3)
$$\sqrt{3}$$

$$\sqrt{\frac{3}{2}}$$

$$= \sin(45+30) + \sin(45-30)$$

$$= \sin(45+30) + \sin(45-30)$$

$$= \sin(45+30) + \sin(45-30) + \sin(45-30) + \sin(45-30) - \cos(45-30)$$

$$= \sin(45+30) + \cos(45-30)$$

If $\tan \theta = \frac{\sqrt{5}}{2}$ then; value of $\cos \theta$ is

(1)
$$\frac{2}{3}$$

(2)
$$\frac{3}{2}$$

(3)
$$\frac{\sqrt{5}}{3}$$

$$(4)$$
 5

$$\cos c = \frac{2}{x} = \frac{2}{3}$$

$$(5)^{2} + (2)^{2} = x^{2}$$

$$5 + 4 = x^{2}$$

$$x = 3$$

Which of the following is correct for $\sin(2\theta) = 2\sin\theta$ (20)

- (1) $2 \sin \theta \cdot \cos \theta$
- (2) $\sin^2 \theta$
- (3) $\sin^2 \theta \cos^2 \theta$
- (4) $2 \sin \theta$

A circular arc of length π cm. Find angle subtended by it at the centre in radian and degree.

$$O = \frac{anc}{Ralim} = \frac{\pi}{6}$$
 val = 30

Convert 135° into radians.

$$135 \times \frac{1}{180} = \frac{3}{4}$$

Ans:
$$\frac{3\pi}{4}$$
 radians

The two shorter sides of right angled triangle are 5 cm and 12 cm. Let θ denote the angle opposite to the 5 cm side. Find $\sin\theta$, $\cos\theta$ and $\tan\theta$.

$$5^{2} + (12)^{2} = 25 + 144$$

$$= 169 = 13^{2}$$

Ans:
$$\sin \theta = \frac{5}{13}$$
, $\cos \theta = \frac{12}{13}$, $\tan \theta = \frac{5}{12}$

Find x, y and perimeter of the triangle shown 5 cm

$$Cos 53^\circ = \frac{x}{5}$$

Find the value of:

- (i) $\sin 30^{\circ} + \cos 60^{\circ}$
- (ii) $\sin 0^{\circ} \cos 0^{\circ}$
- (iii) tan 45°-tan 37°

$$\frac{3}{4} = \frac{1}{4}$$

Change degree into radian:

Ans:
$$(1) \frac{8\pi}{9}$$
, $(2) \frac{3\pi}{4}$, $(3) \frac{5\pi}{12}$, $(4) \frac{13\pi}{36}$

Change radian into degree:

(1)
$$\frac{\pi}{4}$$
, (2) $\frac{7\pi}{2}$, (3) $\frac{3\pi}{5}$, (4) $\frac{2\pi}{3}$, (5) $\frac{3\pi}{4}$

Ans: (1) 45°, (2) 630°, (3) 108°, (4) 120°, (5) 135°

Change radian into degree:

(1)
$$\frac{\pi}{4}$$
, (2) $\frac{7\pi}{2}$, (3) $\frac{3\pi}{5}$, (4) $\frac{2\pi}{3}$, (5) $\frac{3\pi}{4}$

$$\frac{3 \times 18^{\circ}}{5} = 3 \times 3^{\circ}$$

Evaluate:

Evaluate:
(1)
$$\cos 15^\circ = (3)(45-3) = \sqrt{2} + \sqrt{2} \times \frac{1}{2}$$

- $(2) \cos 53^\circ = 3/5$
- (3) $\tan 37^{\circ} 3/4$
- $(4) \sin 53^{\circ} \cos 37^{\circ}$

Ans: (1)
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$
, (2) 3/5, (3) 3/4, (4) 0

cos 2A is equal to:

- (1) $1 2\sin^2 A$ (2) $2\cos^2 A 1$
- (3) $\cos^2 A \sin^2 A$ (4) All

$$\sin^2 4\theta + \cos^2 4\theta$$
 is equal to:

$$(1)$$
 4

$$(3) -1$$

$$Sin^{2}(\pi G_{S}) + cos^{2}(\pi G_{S}) = 1$$

 $Sin^{2}(\log e^{\alpha^{2} + \gamma_{X} + 3}) + cos^{2}(\log e^{\alpha^{2} + \gamma_{X} + 3}) = 1$

 $\cos (A + B)$ is equal to:

- (1) $\cos A \cos B + \sin A \cos B$
- (2) $\cos A \sin B \sin A \sin B$
- (3) $\cos A \cos B + \sin A \sin B$
- (4) $\cos A \cos B \sin A \sin B$

 $1 + \tan^2 \theta$ is equal to:

(1) $\sec \theta$

(2) sec 2θ

(3) $\sec^2 \theta$

(4) $2 \sec \theta$

Match List-I with List-II.

List-I		List-II	
(A)	sin 30°	(I)	$\sqrt{3}$
(B)	tan 30°	(II)	$\frac{\sqrt{3}}{2}$
(C)	cos 30°√3 ii) z	(III)	$\frac{1}{2}$
(D)	cot 30° 53	(IV)	$\frac{1}{\sqrt{3}}$

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-IV, D-II
- (2) A-IV, B-II, C-III, D-I
- (3) A-II, B-I, C-IV, D-III
- (4) A-III, B-IV, C-II, D-I

$$\cot 30 = \frac{\cos 0}{\sin 0} = \frac{\cos 30}{\sin 30} = \frac{13|2}{1/2} = \sqrt{3}$$

$$\cot 30 = \frac{1}{\tan 30} = \frac{1}{(15)} = \sqrt{3}$$

Evaluate

$$4 \tan^2 45^\circ + 4 \cos^2 30^\circ - 8 \sin^2 60^\circ$$

(1) 1

(2) 0

(3) 2

(4) 4

$$4(1)^{2} + 4(\sqrt{3})^{2} - 8(\sqrt{3})^{2}$$

$$\frac{4 + 4 \times \frac{3}{4} - 8 \times \frac{3}{4}}{4}$$

$$Sin_3 o = (Sin_8)$$

$$\sin 37 = \frac{3}{5}$$

In $\triangle ABC$, right angled at B and $\sin C = \frac{3}{5}$, then

ratio of sin A and cos A is:

$$(1)$$
 4:3

$$(2)$$
 3:4

$$(4)$$
 7:4

Value of sin(37°) cos(53°) is:

$$(2)$$
 12/25

If $\sin \theta = \cos \theta$, then the value of θ will be:

- (1) 0° (2) 45°
- $(3) 30^{\circ}$ $(4) 90^{\circ}$

Value of sin (37°) cos (53°) is:

$$(1)$$
 $\frac{9}{25}$ $\frac{3}{5} \times \frac{3}{5}$ (2) $\frac{12}{25}$

(3)
$$\frac{16}{25}$$
 (4) $\frac{3}{5}$

If $\sin \theta = \frac{1}{3}$, then $\cos \theta$ will be:

(1)
$$\frac{8}{9}$$

(2)
$$\frac{4}{3}$$

$$(3) \frac{2\sqrt{2}}{3}$$

(4)
$$\frac{3}{4}$$

$$coso = \frac{x}{3} = \frac{2\sqrt{2}}{3}$$

$$= \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$$

$$2 + x^{2} = 3^{2}$$
 $1 + x^{2} = 9$
 $x^{2} = 8$
 $x = 2\sqrt{2}$

Find the approximate value of $\tan 2^{\circ}$

$$(1) \frac{\pi}{90}$$

(2)
$$\frac{\pi}{180}$$

2 180

$$(3) \quad \frac{\pi}{60}$$

(4)
$$\frac{\pi}{30}$$

Find value of $\sin (2^{\circ} + 3^{\circ})$

$$\sin 5^{\circ} = \frac{5\pi}{180} = \frac{\pi}{36}$$

$$0 = 2 \cdot \frac{\pi}{180} = \frac{\pi}{90}$$

$$R = \frac{u^2 \sin 2\theta}{g} = \frac{u^2 (2\theta)}{10}$$

$$= \frac{(90)^2 \times 0^2}{2 \times 10}$$

$$= \frac{96\times96\times2\times\sqrt{5}}{19}$$

$$= \frac{96 \times 86 \times \pi}{30 \times 90} = \frac{10}{20}$$

$$= \frac{1}{2}$$

Find value of
$$\sin 2^\circ + \sin 3^\circ$$

$$\frac{3\pi}{180} = \frac{5\pi}{180} = \frac{\pi}{36}$$

Suppose

a particle is projected with velocity v = 90 m/s. at angle of θ with horizontal, than max height attain by particle H_{max} and range R of the particle is

given by relation
$$H = \frac{u^2 \sin^2 \theta}{2g}$$
, $R = \frac{u^2 \sin 2\theta}{g}$

Find the approximation value of H and R in a hypothetic condition if $\theta = 2^{\circ}$.

(take
$$\pi^2 = 10$$
, $g = 10 \text{ m/s}^2$)

