Samuel Ameen Joseph Chanuth Adesh

MTE 481 - Mechatronics Engineering Design Project Capstone Group 52

October 20, 2025

- Problem & Need Identification
- Design Objectives & Specifications
- Alternate Design Concepts
- Patent Landscape Review
- Technical Details & Components
- Project Timeline

The Problem

Wheelchair sports players need BOTH hands for:

- Wheelchair propulsion pushing wheels to move and steer
- Equipment handling dribbling, passing, shooting, racquet sports

By the Numbers

- 73% shoulder pain
- 60-80% arm fatigue
- 15-20 interruptions/game
- 30-40% lower scoring

User Story

"I have to stop dribbling just to reposition my chair — which interrupts gameplay and reduces my reaction speed."

Adrit Batra
Laurier University

Sports Impact

Tennis, badminton, hockey currently limited for wheelchair users

Research Data

- Biomechanical Impact: 73% injury rate
- Performance Gap: 30-40% lower scoring
- Accessibility: 25-40% participation increase potential

The Vision

Revolutionize wheelchair sports through hands-free mobility technology

Core Innovation

- Body-shift control natural, intuitive movement
- **Sports-optimized** designed for competitive play
- **Equipment-friendly** no interference with gear

Breaking Barriers

"I have to stop dribbling just to reposition my chair — which interrupts gameplay and reduces my reaction speed."

> - Adrit Batra Laurier University

Target Impac

- 25-40% increase in sports participation
- 73% reduction in shoulder injuries
- New sports access tennis, badminton, hockey
- Enhanced performance competitive advantage

The Solution

Hands-free wheelchair that responds to body weight shifts, enabling simultaneous movement and equipment handling

Performance

- Speed: **5 mph**
- Response: ¡100ms
- Movement: 3 DOF
- Battery: **2+ hours**

Safety & Physical

- Collision: 40N resistance
- Load: 200 lbs
- Emergency stop
- Stability factor: > 1.5

Contro

- Method: Body-shift
- 100% hands-free
- Intuitive operation

Constraints

- Budget: < \$300
- Timeline: May 2026
- Environmental: 5% contamination

Critical Requirements

- C1: Hands-Free Control 100% movement without hand input
- C2: Safety Withstand 30-50N collision forces
- C3: Equipment Compatibility No interference with sports gear
- C4: Environmental Handle 5% surface contamination
- C5: Response Time < 100ms system lag
- **C6**: Budget < \$300 total project cost
- C7: Timeline Prototype by May 2026 symposium

1. Ball Drive

3. Mecanum Wheels

2. Segway-Style

4. Track System

- True 360° movement
- Intuitive control
- Minimal protrusions
- Equipment compatible

- Complex mechanics
- Higher cost
- Maintenance needs

- Proven technology
- Excellent stability
- Responsive control
- Established manufacturing

- Only 2 DOF
- Poor sports compatibility
- Complex electronics

- Precise control
- Proven in robotics
- Good load distribution
- Modular design

- Complex wheels
- High maintenance
- Smooth surfaces only
- High cost

- Excellent traction
- Simple control
- Robust design
- Low maintenance

- Only 2 DOF
- Limited turning
- High friction
- Poor surface compatibility

Criteria (Weight)	Ball	Segway	Mecanum	Track
Hands-Free (25%)	9	8	9	7
Non-Interfering (20%)	9	8	8	7
Responsive (20%)	9	7	9	6
Equipment Compat. (15%)	8	9	7	8
Safety (10%)	7	9	8	9
Intuitive (5%)	9	8	7	8
Full Mobility (5%)	10	6	10	6
WEIGHTED SCORE	8.6	7.7	8.3	7.1

Selected: Ball Drive System (8.6/10)

Omni-Directional Ball Drive System

Score: 8.6/10

US20220062075A1 Omni-Dir Ball

CN112071160A Single Wheel

US20180022197A1 Multi-Dir Device

Clear Path Forward

Our innovation:

Key Differentiators

- Multi-point ball contact system
- Sports-specific features
- Equipment compatibility focus
- Modular architecture
- Enhanced collision resistance

Assessment: Clear Path Forward

Control System

- Arduino Mega 2560
- BNO085 IMU (9-axis)
- VESC-6 Controllers (x2)
- I2C/SPI interfaces

Mechanical

- 8" Ball Drive (2-drive layout)
- Aluminum Frame
- BLDC Motors (149 KV)
- 3:1 gear reduction

Power & Safety

- **10S2P Li-ion** (36V, 6Ah)
- 216 Wh capacity
- Current limits: 25A cont, 60A peak
- Emergency stop
- Torque ramping

Performance

- 5 N·m torque per motor
- 100W average power
- Max speed: 1 m/s
- Real-time balance control

Engineering Specifications Summary

Parameter	Target
Maximum Speed	1 m/s (2.2 mph)
Response Time	< 100ms
Battery Life	> 2 hours (216 Wh)
Load Capacity	80 kg (176 lbs)
Motor Torque	5 N⋅m per motor
Motor Power	100W average
Degrees of Freedom	3 DOF (omni-dir)
Tipping Resistance	40N
Operating Temperature	0-40°C

Quantified targets based on user needs and engineering analysis

8-Month Development Schedule

Phase/Activity	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Idea Generation								
Preliminary Design								
PDP Presentation		•						
Design Refinement								
Detailed Design								
Design Verification								
Final Presentation				•				
Assembly & Testing								
Fabrication								
Testing & Optimization								
Symposium Prep								
Symposium								•

Project Highlights

- Addresses critical need in wheelchair sports
- Research-backed problem identification (73% injury rate)
- Comprehensive design evaluation (4 concepts)
- Clear technical specifications (30+ parameters)
- Within budget (\$230-320 vs \$300 limit)
- Feasible 8-month timeline

Expected Impact: 25-40% increase in wheelchair sports participation

Thank you very much!

Open for Questions!!

Capstone Group 52 MTE 481 - Fall 2025

Samuel — Ameen — Joseph — Chanuth — Adesh

Category	Specification	Value	Justification
Mobility	Max Speed	5 mph	Safe for indoor sports
	Acceleration	0-5mph in 2s	Natural feel
	DOF	3 DOF	Full mobility
Control	Response	¡100ms	Real-time control
	IMU Rate	100 Hz	Body tracking
Stability	CoG Height	¡18 in	Tipping prevention
	Wheelbase	24" × 24"	Stability polygon
Power	Battery	7Ah @ 12V	2+ hour runtime
	Motors	25W each	Sufficient torque

Control System

- Arduino Mega 2560 (\$25-30)
- MPU-6050 IMU (\$5-8)
- L298N Driver (\$8-12)

Mechanica

- 12V Motors x2 (\$15-20 ea)
- 8" Ball Mech (\$50-80)
- Al Frame (\$30-50)

Power & Safety

- 12V 7Ah Battery (\$25-35)
- Protection Board (\$8-12)
- E-Stop Button (\$10-15)
- Speed Control (\$3-5)

Total: \$230-320

- C1: Hands-Free 100% movement without hand contact
- C2: Safety 30-50N collision resistance, no tipping
- C3: Equipment No interference with sports gear
- C4: Environmental 5% surface contamination tolerance
- C5: Response ¡100ms sensor-to-motor lag
- C6: Budget < \$300 total cost
- C7: Timeline May 2026 deadline