Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

Claim 1 (currently amended): A system for measuring strain experienced by a

structure, said system comprising:

a) a sensor including:

i) a body having an electromagnetic cavity, said electromagnetic cavity

adapted to produce a response signal in response to an interrogation signal, the

interrogation signal wirelessly received by the sensor, said body being coupled to

said structure to allow said strain to alter the resonance properties of said

electromagnetic cavity thereby altering said response signal; and,

ii) a coupler coupled to said body, said coupler adapted to transfer said

interrogation signal into said electromagnetic cavity and transfer said response

signal out of said electromagnetic cavity; and,

b) an interrogator being adapted to generate and wirelessly transmit said

interrogation signal to said sensor, said interrogator being further adapted to wirelessly

receive said response signal, the interrogator having an antenna for transmitting said

interrogation signal and receiving said response signal, and a signal generator coupled

to said antenna, said signal generator being adapted to generate said interrogation

signal.

Claim 2 (previously presented): The system of claim 1, wherein said electromagnetic

cavity contains a dielectric.

Claim 3 (previously presented): The system of claim 1, wherein said body is a dielectric

body.

Amdt. dated October 15, 2007

Reply to Office Action of June 13, 2007

Claim 4 (previously presented): The system of claim 1, wherein said electromagnetic

cavity is rectangular.

Claim 5 (previously presented): The system of claim 1, wherein said electromagnetic

cavity is cubic.

Claim 6 (previously presented): The system of claim 1, wherein said electromagnetic

cavity is cylindrical.

Claim 7 (previously presented): The system of claim 1, wherein said sensor further

comprises a mechanical amplifier coupled to said electromagnetic cavity, said

mechanical amplifier being adapted to amplify the magnitude of said strain on said

electromagnetic cavity.

Claim 8 (original): The system of claim 7, wherein said mechanical amplifier comprises

a first member having a first region with a first length and a second member having a

second region with a second length, said second region being coupled to said first

region, wherein said first region is exposed to said strain and said second region is

coupled to said electromagnetic cavity, wherein the magnitude of said strain

experienced by said electromagnetic cavity is amplified by a factor equal to the ratio of

said second length to said first length.

Claim 9 (canceled)

Claim 10 (currently amended): The system of claim [[9]] 1, wherein said interrogator

further comprises a detection module coupled to said antenna, said detection module

being adapted to process said response signal to determine a value indicative of said

strain.

Appl. No. 10/517,769 Amdt. dated October 15, 2007 Reply to Office Action of June 13, 2007

Claim 11 (original): The system of claim 10, wherein said interrogator further comprises:

- a) an output module coupled to said control module, said output module being adapted to provide an output indicative of said strain; and,
- b) a control module coupled to said signal generator, said detection module and said output module for controlling the operation thereof.

Claim 12 (original): The system of claim 11, wherein said interrogator further comprises:

- a) a memory module in communication with said signal generator, said detection module and said control module, said memory module being adapted to store information related to previously determined strains; and,
- b) an input module in communication with said control module, said input module being adapted to allow a user to operate said interrogator.

Claim 13 (previously presented): The system of claim 10, wherein said interrogation signal is a continuous narrowband signal having a center frequency that is varied in a sweep range that includes a resonant frequency of said electromagnetic cavity and said detection module is adapted to detect a minimum in said response signal at a frequency within said sweep range, wherein said minimum occurs at said resonant frequency.

Claim 14 (previously presented): The system of claim 10, wherein said interrogation signal is a broadband signal having a frequency content that includes a resonant frequency of said electromagnetic cavity, and said detection module is adapted to detect a minimum in said response signal wherein said minimum occurs at said resonant frequency.

Claim 15 (previously presented): The system of claim 10, wherein said interrogation signal is a modulated narrowband signal having a center frequency that is varied in a sweep range that includes a resonant frequency of said electromagnetic cavity and said

Amdt. dated October 15, 2007

Reply to Office Action of June 13, 2007

detection module is adapted to detect a peak in said response signal at a frequency

within said sweep range, wherein said peak occurs at said resonant frequency.

Claim 16 (previously presented): The system of claim 10, wherein said interrogation

signal is a modulated broadband signal having a frequency content that includes a

resonant frequency of said electromagnetic cavity, and said detection module is

adapted to detect a peak in said response signal wherein said peak occurs at said

resonant frequency.

Claim 17 (currently amended): A sensor for measuring strain experienced by a

structure, said sensor comprising:

a) a body having an electromagnetic cavity for producing a response signal in

response to an interrogation signal, the interrogation signal wirelessly received by the

sensor, said body being coupled to said structure to allow said strain to alter the

resonance properties of said electromagnetic cavity thereby altering said response

signal; and, the electromagnetic cavity contains a dielectric; and

b) a coupler coupled to said sensor, said coupler adapted to transfer said

interrogation signal into said electromagnetic cavity and transfer said response signal

out of said electromagnetic cavity so that the response signal can be wirelessly received

by an interrogator.

Claim 18 (canceled)

Claim 19 (previously presented): The sensor of claim 17, wherein said said body is a

dielectric body.

Claim 20 (previously presented): The sensor of claim 17, wherein said electromagnetic

cavity is rectangular.

Amdt. dated October 15, 2007

Reply to Office Action of June 13, 2007

Claim 21 (previously presented): The sensor of claim 17, wherein said electromagnetic

cavity is cubic.

Claim 22 (previously presented): The sensor of claim 17, wherein said electromagnetic

cavity is a cylindrical cavity.

Claim 23 (canceled)

Claim 24 (canceled)

Claim 25 (currently amended): A method for measuring strain experienced by a

structure, said method comprising:

a) coupling a sensor to the structure, the sensor having an electromagnetic

cavity;

b) transferring through a coupler an interrogation signal into said

electromagnetic cavity to evoke a response signal, the interrogation signal wirelessly

received by the sensor, the interrogation signal provided as a continuous narrowband

signal and the center frequency of said narrowband signal is swept in a sweep range

that includes a resonant frequency of said electromagnetic cavity; and,

c) transferring through the same or a different coupler said response signal out

of said electromagnetic cavity, so that the response signal can be wirelessly received by

an interrogator.

Claim 26 (original): The method of claim 25, wherein said method further comprises

processing said response signal to determine said strain.

Claim 27 (previously presented): The method of claim 25, said method further

comprising:

d) amplifying said strain in a mechanical fashion to amplify the magnitude of said

strain experienced by said electromagnetic cavity.

Amdt. dated October 15, 2007

Reply to Office Action of June 13, 2007

Claim 28 (canceled)

Claim 29 (currently amended): The method of claim [[28]] 25, wherein step c)

comprises processing said response signal to detect a minimum at a frequency within

said sweep range indicative of the resonant frequency of said electromagnetic cavity.

Claim 30 (canceled)

Claim 31 (currently amended): The method of claim [[30]] 37, wherein step c)

comprises processing said response signal to detect a notch at a frequency indicative of

the resonant frequency of said electromagnetic cavity.

Claim 32 (canceled)

Claim 33 (currently amended): The method of claim [[32]] 38, wherein step c)

comprises processing said response signal to detect a peak at a frequency within said

sweep range indicative of the resonant frequency of said electromagnetic cavity.

Claim 34 (canceled)

Claim 35 (currently amended): The method of claim [[34]] 39, wherein step c)

comprises processing said response signal to detect a peak at a frequency indicative of

the resonant frequency of said electromagnetic cavity.

Claim 36 (new) A sensor for measuring strain experienced by a structure, said sensor

comprising:

a) a body having an electromagnetic cavity for producing a response signal in

response to an interrogation signal, the interrogation signal wirelessly received by the

sensor, said body being coupled to said structure to allow said strain to alter the

Amdt. dated October 15, 2007

Reply to Office Action of June 13, 2007

resonance properties of said electromagnetic cavity thereby altering said response signal;

b) a coupler coupled to said sensor, said coupler adapted to transfer said interrogation signal into said electromagnetic cavity and transfer said response signal out of said electromagnetic cavity so that the response signal can be wirelessly received by an interrogator; and

by an interrogator, and

c) a mechanical amplifier coupled to said electromagnetic cavity, said mechanical amplifier being adapted to amplify the magnitude of said strain on said electromagnetic cavity, the mechanical amplifier comprises a first member having a first region with a first length and a second member having a second region with a second length, said second region being coupled to said first region, said first region is exposed to said strain and said second region is coupled to said electromagnetic cavity, and the magnitude of said strain experienced by said electromagnetic cavity is amplified by a factor equal to the ratio of said second length to said first length.

Claim 37 (new) A method for measuring strain experienced by a structure, said method comprising:

a) coupling a sensor to the structure, the sensor having an electromagnetic cavity;

b) transferring through a coupler an interrogation signal into said electromagnetic cavity to evoke a response signal, the interrogation signal wirelessly received by the sensor, the response signal is provided as a continuous broadband signal having a frequency content that includes a resonant frequency of said electromagnetic cavity; and

c) transferring through the same or a different coupler said response signal out of said electromagnetic cavity, so that the response signal can be wirelessly received by an interrogator.

Claim 38 (new) A method for measuring strain experienced by a structure, said method comprising:

Appl. No. 10/517,769 Amdt. dated October 15, 2007

Reply to Office Action of June 13, 2007

a) coupling a sensor to the structure, the sensor having an electromagnetic cavity;

b) transferring through a coupler an interrogation signal into said electromagnetic cavity to evoke a response signal, the interrogation signal wirelessly received by the sensor, the interrogation signal is modulated to provide an intermittent narrowband signal, and the frequency of said intermittent narrowband signal is swept in a sweep range that includes a resonant frequency of said electromagnetic cavity; and

c) transferring through the same or a different coupler said response signal out of said electromagnetic cavity, so that the response signal can be wirelessly received by an interrogator.

Claim 39 (new) A method for measuring strain experienced by a structure, said method comprising:

- a) coupling a sensor to the structure, the sensor having an electromagnetic cavity;
- b) transferring through a coupler an interrogation signal into said electromagnetic cavity to evoke a response signal, the interrogation signal wirelessly received by the sensor, the interrogation signal is modulated to provide an intermittent broadband signal having a frequency content that includes a resonant frequency of said electromagnetic cavity; and
- c) transferring through the same or a different coupler said response signal out of said electromagnetic cavity, so that the response signal can be wirelessly received by an interrogator.