Análise Complexa e Equações Diferenciais

Problemas propostos para as aulas práticas

Semana 4 - 12 a 16 de Outubro de 2020

- 1. Mostre que $f(z) = \sqrt{|xy|}$ possui, na origem, derivadas parciais que verificam as equações de Cauchy-Riemann, mas que f não possui derivada (no sentido complexo) nesse ponto. Porque é que isso não contradiz o Teorema de Cauchy-Riemann?
- 2. Seja $f: \mathbb{C} \to \mathbb{C}$ definida por $f(z) = (|z|^2 2)\overline{z}$.
 - a) Determine o subconjunto de $\mathbb C$ onde f é diferenciável, bem como o seu domínio de analiticidade.
 - b) Mostre que f transforma circunferências centradas na origem e de raio r em circunferências centradas na origem de raio r'. Para que valores de r se tem r = r'?
- 3. Seja $f:\mathbb{C}\to\mathbb{C}$ uma função holomorfa tal que se verifica uma das condições
 - a) $Re(f)(z) \equiv (constante),$
 - b) $f'(z) \equiv 0$,
 - c) $|f(z)| \equiv (constante)$.

Mostre que então $f(z) \equiv (constante)$.

- 4. Mostre que se f e \overline{f} são ambas inteiras (i.e. diferenciáveis em todo o \mathbb{C}), então f é constante.
- 5. Seja $A \subset \mathbb{C}$ um aberto e defina $A^* = \{z \in \mathbb{C} : \overline{z} \in A\}$. Se f é uma função analítica em A mostre que $F(z) = \overline{f(\overline{z})}$ é uma função analítica em A^* .
- 6. Seja $f: A \to B$, com $A, B \subset \mathbb{C}$ abertos, uma função diferenciável, no sentido \mathbb{R}^2 , no ponto $z_0 \in A$. Sabendo que, para z = x + iy, se tem $x = (z + \bar{z})/2$ e $y = (z \bar{z})/2i$, podemos interpretar f(x, y) como uma função de z e \bar{z} . Defina

$$\frac{\partial f}{\partial z} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + \frac{1}{i} \frac{\partial f}{\partial y} \right) \qquad e \qquad \frac{\partial f}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{1}{i} \frac{\partial f}{\partial y} \right),$$

a) Considere caminhos regulares $\alpha(t)$ em A, com $\alpha(0) = z_0$ e os correspondentes caminhos transformados $\beta(t) = f(\alpha(t))$. Prove a fórmula

$$\beta'(0) = \frac{\partial f}{\partial z}(z_0) \,\alpha'(0) + \frac{\partial f}{\partial \bar{z}}(z_0) \,\overline{\alpha'(0)}.$$

1

b) Mostre que f satisfaz as equações de Cauchy-Riemann em z_0 se e só se

$$\frac{\partial f}{\partial \bar{z}}(z_0) = 0.$$

Nota: este exercício mostra que as funções holomorfas são, neste sentido, aquelas que não dependem de \bar{z} .

- c) Conclua que, se f for conforme em z_0 , então são válidas as equações de Cauchy-Riemann e portanto f é diferenciável complexa em z_0 , com $f'(z_0) \neq 0$.
- 7. Determine, pela definição, os valores dos seguintes integrais:
 - a) $\int_C |z|\,dz$ em que C é a semicircunferência centrada na origem, percorrida em sentido directo, unindo -2i a 2i.
 - b) $\int_C \bar{z} dz$ em que C é o segmento de recta unindo 1 a 2 + 3i.
 - c) $\int_C z \cos z^2 dz$ em que C é o segmento de recta unindo 0 a πi .
- 8. Considere o caminho γ_1 que consiste no segmento de recta unindo o ponto inicial 0 ao ponto final $\sqrt{2}e^{i\pi/4}$, e considere também o caminho γ_2 entre esses mesmos pontos dado pela parábola $t\mapsto t+it^2$.
 - a) Calcule, utilizando a definição, $\int_{\gamma_k} e^z dz$, com k = 1, 2.
 - b) Calcule $\int_{\gamma_k} \bar{z}^2 dz$ com k = 1, 2.
 - c) Comente os resultados que obteve nas alíneas anteriores.
- 9. Calcule o integral $\int_{\gamma} \frac{1}{\sqrt{z}} dz$, onde γ é percorrida no sentido positivo e
 - a) $\gamma=\{z\in\mathbb{C}:|z|=1$, ${\rm Im}(z)\geq0\}$, e escolha-se o ramo da função \sqrt{z} que verifica $\sqrt{1}=1$,
 - b) $\gamma=\{z\in C:|z|=1\,,\,\mathrm{Re}(z)\geq0\},$ e escolha-se o ramo da função \sqrt{z} que verifica $\sqrt{-i}=(1-i)/\sqrt{2}.$
- 10. Seja

$$f(z) = z^{-1+i} = \exp[(-1+i)\log z]$$
 , $|z| > 0$ e $0 \le \operatorname{Arg}(z) < 2\pi$

Calcule

$$\oint_{|z|=1} f(z) \, dz$$

onde a curva é percorrida no sentido positivo.

11. Seja $\gamma(t)=Re^{it}$ para $0\leq t\leq \pi.$ Mostre que se R>2, então

$$\left| \int_{\gamma} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} dz \right| \le \pi \frac{R(2R^2 + 1)}{(R^2 - 1)(R^2 - 4)}$$

12. Considere o caminho $z:[0,+\infty[\to\mathbb{C},$ definido por $z(\theta)=e^{-\theta+i\theta},$ que representa parametricamente a curva γ . Considere ainda $\alpha:=\int_{\gamma}z\,dz.$

2

- a) Esboce γ .
- b) Calcule α usando a definição.
- c) Calcule α usando o Teorema Fundamental do Cálculo.
- d) Calcule α usando o Teorema de Cauchy para substituir γ por um segmento de recta.
- 13. Seja γ uma curva fechada simples com orientação positiva. Usando o Teorema de Green, mostre que a área no interior de γ pode ser escrita na forma

$$\frac{1}{2i} \int_{\gamma} \bar{z} \, dz.$$