# **Twitter Sentiment and Modeling**

# **Overview**

This project utilizes a dataset from CrowdFlower, analyzing and rating the sentiment of Twitter users regarding Apple and Google products by building an NLP model. Human raters rated the sentiment in over 9,000 Tweets as positive, negative, or neither.

# **Business Problem**

Apple and Google want to gather information on the consensus of their products. They are looking at Twitter as a medium to gather that information. The task is to build a model that can rate the sentiment of a Tweet based on its content.

# **Data Understanding**

The dataset used for this project is a csv file ("data.csv"), containing over 9,000 Tweets about Apple and Google products. Human raters rated the sentiment as positive, negative, or neither. The target column is the sentiment column.

# **Methods**

This project uses descriptive analysis, exploratory data analysis, data visualization, natural language processing, and machine building. This provides key insights to optimizing the predictive ability of customers' satisfaction with brands and products.

# **Import Libraries**

First thing we did was import the necessary libraries for analysis, visualization, preprocessing data, and building models, as well as ignore warnings.

```
In [1]: #import necessary libraries
   import pandas as pd
   import matplotlib.pyplot as plt
   from matplotlib.ticker import MaxNLocator
   import numpy as np
   import math
```

```
import seaborn as sns
import nltk
from nltk import FreqDist, ngrams, TweetTokenizer
from nltk.corpus import stopwords
from nltk.tokenize import RegexpTokenizer, word tokenize
from nltk.stem import PorterStemmer
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
import string
from wordcloud import WordCloud
from collections import Counter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import train test split, GridSearchCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, precision_score, recall_sd
from sklearn.pipeline import Pipeline
import imblearn
from imblearn.pipeline import Pipeline
from imblearn.under sampling import RandomUnderSampler
import warnings
from pandas.core.common import SettingWithCopyWarning
#Ignore feature warnings
warnings.filterwarnings("ignore", category=FutureWarning)
#Ignore copy warnings
warnings.filterwarnings("ignore", category=SettingWithCopyWarning)
[nltk_data] Downloading package punkt to /Users/Chris/nltk_data...
[nltk data]
              Package punkt is already up-to-date!
[nltk data] Downloading package averaged perceptron tagger to
[nltk_data]
                /Users/Chris/nltk_data...
[nltk_data]
              Package averaged_perceptron_tagger is already up-to-
[nltk_data]
                  date!
[nltk_data] Downloading package wordnet to /Users/Chris/nltk_data...
[nltk_data]
              Package wordnet is already up-to-date!
```

# **Data Inspection**

We proceeded to load the csv dataset, then look at the shape, size, column names and data types, as well as check for missing or duplicate entries.

```
In [2]: #load the dataset, ensure the proper encoding is read
df = pd.read_csv('data.csv', encoding='latin1')
df.head()
```

# Out[2]:

| tweet_text | emotion_in_tweet_is_directed_at | is_tnere_an_emotion_directed_at_a_brand_or_pro |
|------------|---------------------------------|------------------------------------------------|
|            |                                 |                                                |

| 0 | .@wesley83<br>I have a 3G<br>iPhone.<br>After 3 hrs<br>twe | iPhone             | Negative emo |
|---|------------------------------------------------------------|--------------------|--------------|
| 1 | @jessedee<br>Know about<br>@fludapp ?<br>Awesome<br>iPad/i | iPad or iPhone App | Positive emo |
| 2 | @swonderlin<br>Can not wait<br>for #iPad 2<br>also. The    | iPad               | Positive ema |
| 3 | @sxsw I<br>hope this<br>year's<br>festival isn't<br>as cra | iPad or iPhone App | Negative emo |
| 4 | @sxtxstate<br>great stuff<br>on Fri<br>#SXSW:<br>Marissa M | Google             | Positive ema |

In [3]: #change the name of the tweet, product, and sentiment columns
df = df.rename(columns={'tweet\_text': 'tweet', 'emotion\_in\_tweet\_is\_di
df.head()

# Out[3]:

| t | sentimen        | brand_or_product   | tweet                                          |   |
|---|-----------------|--------------------|------------------------------------------------|---|
| า | Negative emotio | iPhone             | .@wesley83 I have a 3G iPhone. After 3 hrs twe | 0 |
| 1 | Positive emotio | iPad or iPhone App | @jessedee Know about @fludapp ? Awesome iPad/i | 1 |
| 1 | Positive emotio | iPad               | @swonderlin Can not wait for #iPad 2 also. The | 2 |
| 1 | Negative emotio | iPad or iPhone App | @sxsw I hope this year's festival isn't as cra | 3 |
| 1 | Positive emotio | Google             | @sxtxstate great stuff on Fri #SXSW: Marissa M | 4 |

```
In [4]: #look at the different values for sentiment column
df['sentiment'].value_counts()
```

```
Out[4]: No emotion toward brand or product 5389
Positive emotion 2978
Negative emotion 570
I can't tell 156
```

Name: sentiment, dtype: int64

```
In [5]: #look at the 'I can't tell' rows
df.loc[df['sentiment'] == "I can't tell"].head()
```

# Out [5]:

|     | tweet                                          | brand_or_product | sentiment    |
|-----|------------------------------------------------|------------------|--------------|
| 90  | Thanks to @mention for publishing the news of  | NaN              | I can't tell |
| 102 | □Ûï@mention "Apple has opened a pop-up st      | NaN              | I can't tell |
| 237 | Just what America needs. RT @mention Google to | NaN              | I can't tell |
| 341 | The queue at the Apple Store in Austin is FOUR | NaN              | I can't tell |
| 368 | Hope it's better than wave RT @mention Buzz is | NaN              | I can't tell |

### Drop the "I can't tell" rows

We decided to drop the rows labeled "I can't tell", as they would only serve to confuse the dataset, and didn't make up a significant portion of the dataset anyway.

```
In [6]: #drop the I can't tell rows
mask = df['sentiment'] == "I can't tell"
df.drop(df[mask].index, inplace=True)
print(df['sentiment'].value_counts())
```

No emotion toward brand or product 5389
Positive emotion 2978
Negative emotion 570

Name: sentiment, dtype: int64

### **Change Sentiment Values**

We decided to combine 'I can't tell' and 'No emotion toward brand or product' into the value 'Neutral', and change 'Positive emotion' and 'Negative emotion' to just 'Positive' and 'Negative'.

Neutral 5389 Positive 2978 Negative 570

Name: sentiment, dtype: int64

```
In [8]: #look at the different values for brand_or_product column
df['brand_or_product'].value_counts()
```

```
Out[8]: iPad
                                              942
        Apple
                                              659
        iPad or iPhone App
                                              470
        Google
                                              429
        i Phone
                                              296
        Other Google product or service
                                              292
        Android App
                                               81
        Android
                                               78
        Other Apple product or service
                                               35
        Name: brand_or_product, dtype: int64
```

# In [9]: #check information on each column df.info()

Int64Index: 8937 entries, 0 to 9092 Data columns (total 3 columns): Non-Null Count Column Dtype \_\_\_\_\_ 0 8936 non-null object tweet brand\_or\_product 3282 non-null 1 object 2 sentiment 8937 non-null object

<class 'pandas.core.frame.DataFrame'>

dtypes: object(3)
memory usage: 279.3+ KB

# **Duplicates**

We checked for and found duplicate records, then proceeded to drop them.

# In [10]: #check for duplicates df[df.duplicated()]

Out[10]:

|      | tweet                                                                              | brand_or_product   | sentiment |
|------|------------------------------------------------------------------------------------|--------------------|-----------|
| 468  | Before It Even Begins, Apple Wins #SXSW {link}                                     | Apple              | Positive  |
| 776  | Google to Launch Major New Social Network Call                                     | NaN                | Neutral   |
| 2232 | Marissa Mayer: Google Will Connect the Digital                                     | NaN                | Neutral   |
| 2559 | Counting down the days to #sxsw plus strong Ca                                     | Apple              | Positive  |
| 3950 | Really enjoying the changes in Gowalla 3.0 for                                     | Android App        | Positive  |
| 3962 | #SXSW is just starting, #CTIA is around the co                                     | Android            | Positive  |
| 4897 | Oh. My. God. The #SXSW app for iPad is pure, u                                     | iPad or iPhone App | Positive  |
| 5338 | RT @mention $\square \div 1/4$ GO BEYOND BORDERS! $\square \div \_ \{link\} \dots$ | NaN                | Neutral   |
| 5341 | RT @mention □÷1/4 Happy Woman's Day! Make love,                                    | NaN                | Neutral   |
| 5881 | RT @mention Google to Launch Major New Social                                      | NaN                | Neutral   |
| 5882 | RT @mention Google to Launch Major New Social                                      | NaN                | Neutral   |
| 5883 | RT @mention Google to Launch Major New Social                                      | NaN                | Neutral   |
| 5884 | RT @mention Google to Launch Major New Social                                      | NaN                | Neutral   |
| 5885 | RT @mention Google to Launch Major New Social                                      | NaN                | Neutral   |
| 6296 | RT @mention Marissa Mayer: Google Will Connect                                     | Google             | Positive  |
| 6297 | RT @mention Marissa Mayer: Google Will Connect                                     | NaN                | Neutral   |
| 6298 | RT @mention Marissa Mayer: Google Will Connect                                     | Google             | Positive  |
| 6299 | RT @mention Marissa Mayer: Google Will Connect                                     | NaN                | Neutral   |
| 6300 | RT @mention Marissa Mayer: Google Will Connect                                     | NaN                | Neutral   |
| 6546 | RT @mention RT @mention Google to Launch Major                                     | NaN                | Neutral   |
| 8483 | I just noticed DST is coming this weekend. How                                     | iPhone             | Negative  |
| 8747 | Need to buy an iPad2 while I'm in Austin at #s                                     | iPad               | Positive  |
|      |                                                                                    |                    |           |

```
In [11]: #check the number of duplicates
print(len(df[df.duplicated()]))
```

22

```
In [12]: #drop duplicates
    df.drop_duplicates(inplace=True)
    df[df.duplicated()]
```

# Out[12]:

tweet brand\_or\_product sentiment

# **Missing Values**

We checked for missing values and were missing 1 value for the tweet column and almost 6,000 values for the brand\_or\_product column.

```
In [13]: #look at the row with the missing value for the 'tweet' column
df.loc[df['tweet'].isnull()]
```

# Out[13]:

|   | tweet | brand_or_product | sentiment |  |
|---|-------|------------------|-----------|--|
| 6 | NaN   | NaN              | Neutral   |  |

### **Drop Missing Tweet**

Since there is nothing useful provided in the entire row that's the sole missing tweet, we just dropped the row.

```
In [14]: #drop missing tweet row
         df.dropna(subset=['tweet'], inplace=True)
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 8914 entries, 0 to 9092
         Data columns (total 3 columns):
          #
              Column
                                 Non-Null Count
                                                 Dtype
          0
              tweet
                                 8914 non-null
                                                 object
              brand_or_product 3273 non-null
          1
                                                 object
          2
              sentiment
                                 8914 non-null
                                                 object
         dtypes: object(3)
```

Now we took a look at the missing brand/product rows.

memory usage: 278.6+ KB

In [15]: #look at 20 rows of missing brand/product values
df.loc[df['brand\_or\_product'].isnull()].head(20)

Out[15]:

|    | tweet                                                                                                                                    | brand_or_product | sentiment |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 5  | @teachntech00 New iPad Apps For #SpeechTherapy                                                                                           | NaN              | Neutral   |
| 16 | Holler Gram for iPad on the iTunes App Store                                                                                             | NaN              | Neutral   |
| 32 | Attn: All #SXSW frineds, @mention Register fo                                                                                            | NaN              | Neutral   |
| 33 | Anyone at #sxsw want to sell their old iPad?                                                                                             | NaN              | Neutral   |
| 34 | Anyone at #SXSW who bought the new iPad want                                                                                             | NaN              | Neutral   |
| 35 | At #sxsw. Oooh. RT @mention Google to Launch                                                                                             | NaN              | Neutral   |
| 37 | SPIN Play - a new concept in music discovery f                                                                                           | NaN              | Neutral   |
| 39 | VatorNews - Google And Apple Force Print Media                                                                                           | NaN              | Neutral   |
| 41 | HootSuite - HootSuite Mobile for #SXSW ~ Updat                                                                                           | NaN              | Neutral   |
| 42 | Hey #SXSW - How long do you think it takes us                                                                                            | NaN              | Neutral   |
| 43 | Mashable! - The iPad 2 Takes Over SXSW [VIDEO]                                                                                           | NaN              | Neutral   |
| 44 | For I-Pad ?RT @mention New #UberSocial for #iP                                                                                           | NaN              | Neutral   |
| 46 | Hand-Held □Û÷Hobo□Ûª: Drafthouse launches □Û÷H                                                                                           | NaN              | Positive  |
| 48 | Orly? 🛮 ÛÏ@mention Google set to launch new                                                                                              | NaN              | Neutral   |
| 50 | Khoi Vinh (@mention says Conde Nast's headlong                                                                                           | NaN              | Neutral   |
| 51 | □ÛÏ@mention {link} < HELP ME FORWARD THIS                                                                                                | NaN              | Neutral   |
| 52 | $\square \div 1/\!\!4 \text{ WHAT? } \square \div \_ \{ \text{link} \} \ \square \tilde{\textbf{a}}\_ \ \text{\#edchat \#musedchat \#s}$ | NaN              | Neutral   |
| 53 | .@mention @mention on the location-based 'fast                                                                                           | NaN              | Neutral   |
| 54 | □ÛÏ@mention @mention #Google Will Connect the                                                                                            | NaN              | Neutral   |
| 56 | {link} RT @mention "Google before you twe                                                                                                | NaN              | Neutral   |

We looked for any correlation or pattern between missing brands and the sentiment.

7/11/24, 5:49 PM notebook - Jupyter Notebook

In [16]: #check missing brand/product rows that have a sentiment other than Neu df.loc[(df['brand\_or\_product'].isnull()) & (df['sentiment'] != 'Neutra

### Out[16]:

|      | tweet                                          | brand_or_product | sentiment |
|------|------------------------------------------------|------------------|-----------|
| 46   | Hand-Held □Û÷Hobo□Ûª: Drafthouse launches □Û÷H | NaN              | Positive  |
| 64   | Again? RT @mention Line at the Apple store is  | NaN              | Negative  |
| 68   | Boooo! RT @mention Flipboard is developing an  | NaN              | Negative  |
| 103  | Know that "dataviz" translates to &q           | NaN              | Negative  |
| 112  | Spark for #android is up for a #teamandroid aw | NaN              | Positive  |
|      |                                                |                  |           |
| 9011 | apparently the line to get an iPad at the #sxs | NaN              | Positive  |
| 9043 | Hey is anyone doing #sxsw signing up for the g | NaN              | Negative  |
| 9049 | @mention you can buy my used iPad and I'll pic | NaN              | Positive  |
| 9052 | @mention You could buy a new iPad 2 tmrw at th | NaN              | Positive  |
| 9054 | Guys, if you ever plan on attending #SXSW, you | NaN              | Positive  |
|      |                                                |                  |           |

357 rows × 3 columns

In [17]: #print the number of missing brand/product rows that have a sentiment print("Number of rows with a sentiment other than Neutral: ", len(df.l print("Number of rows with Neutral as the sentiment: ", len(df.loc[(df

> Number of rows with a sentiment other than Neutral: Number of rows with Neutral as the sentiment:

# **Modify Null Brand/Product Rows**

With so many entries missing a value for the brand/product, and having a non-neutral sentiment, we proceed to write a function to fill in the brand/product if it contained one of our brand/product values in the tweet, then applied this function to the dataset.

```
In [18]: #function to change the brand/product column based on inclusion of one
         def get_brand_or_product(tweet):
             tweet = tweet.lower()
             keywords = ['apple', 'google', 'iphone', 'ipad', 'android']
             count = 0
             brand product = None
             for keyword in keywords:
                 if keyword in tweet:
                     count += 1
                     brand_product = keyword
             #leave the column blank if more than one of the brand/product valu
             if count > 1:
                 brand_product = None
             return brand_product
In [19]: #apply the function to the null rows in the dataset
         mask = df['brand_or_product'].isnull()
         df.loc[mask, 'brand_or_product'] = df.loc[mask, 'tweet'].apply(get_bra
         print(len(df.loc[df['brand_or_product'].isnull()]))
         1492
In [20]: #check the info on each column again
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 8914 entries, 0 to 9092
         Data columns (total 3 columns):
          #
                                Non-Null Count Dtvpe
              Column
              _____
          0
                                8914 non-null
              tweet
                                                 object
          1
              brand_or_product 7422 non-null
                                                 object
          2
              sentiment
                                8914 non-null
                                                 object
         dtypes: object(3)
```

memory usage: 278.6+ KB

In [21]: #look at 20 null rows again
df.loc[df['brand\_or\_product'].isnull()].head(20)

# Out[21]:

|    | tweet                                             | brand_or_product | sentiment |
|----|---------------------------------------------------|------------------|-----------|
| 39 | VatorNews - Google And Apple Force Print Media    | None             | Neutral   |
| 41 | HootSuite - HootSuite Mobile for #SXSW ~ Updat    | None             | Neutral   |
| 51 | □ÛÏ@mention {link} < HELP ME FORWARD THIS         | None             | Neutral   |
| 52 | □÷¼ WHAT? □÷_ {link} □ã_ #edchat #musedchat #s    | None             | Neutral   |
| 53 | .@mention @mention on the location-based 'fast    | None             | Neutral   |
| 66 | At #sxsw? @mention / @mention wanna buy you a     | None             | Neutral   |
| 68 | Boooo! RT @mention Flipboard is developing an     | None             | Negative  |
| 71 | Chilcott: @mention #SXSW stand talking with Bl    | None             | Neutral   |
| 73 | Gowalla's @mention promises to launch Foursqua    | None             | Neutral   |
| 77 | I worship @mention {link} #SXSW                   | None             | Neutral   |
| 79 | Launching @mention #SxSW? RT @mention @mention    | None             | Neutral   |
| 82 | Nice! RT @mention Apple opening popup store f     | None             | Neutral   |
| 85 | Stay tune @mention showcase #H4ckers {link} #SXSW | None             | Neutral   |
| 86 | Thank you @mention @mention for the #touchings    | None             | Neutral   |
| 87 | Thank you @mention for an awesome #sxsw party!    | None             | Neutral   |
| 88 | Thanks RT @mention If you're trying to contact    | None             | Neutral   |
| 91 | Thanks to @mention for publishing the news of     | None             | Neutral   |
| 93 | Wonder if @mention & amp; @mention will be in t   | None             | Neutral   |
| 94 | Wonder if @mention is putting tips from the @m    | None             | Neutral   |
| 97 | Yes!!! RT @mention hey @mention, i've got ano     | None             | Neutral   |

# **Placeholder**

We decided to put a placeholder of 'Unknown' for the rest of the null rows.

```
In [22]: #fill missing rows with 'Unknown'
         df['brand_or_product'].fillna('Unknown', inplace=True)
         print(df.info())
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 8914 entries, 0 to 9092
         Data columns (total 3 columns):
          #
              Column
                                 Non-Null Count
                                                  Dtype
          0
                                 8914 non-null
              tweet
                                                  obiect
          1
                                                  object
              brand or product 8914 non-null
              sentiment
                                 8914 non-null
                                                  object
         dtypes: object(3)
         memory usage: 278.6+ KB
         None
In [23]: #check values for brand_or_product again
         df['brand_or_product'].value_counts()
Out[23]: google
                                              1639
         Unknown
                                              1492
         ipad
                                               946
         i Pad
                                               941
                                               684
         iphone
         apple
                                               671
         Apple
                                               657
         iPad or iPhone App
                                               469
         Google
                                               427
         iPhone
                                               295
         Other Google product or service
                                               292
         android
                                               209
         Android App
                                                80
         Android
                                                77
         Other Apple product or service
                                                35
         Name: brand_or_product, dtype: int64
```

After our work with the brand\_or\_product column, we proceeded to limit the values in that column for consistency with capitalization.

| Google                              | 2066 |
|-------------------------------------|------|
| iPad                                | 1887 |
| Unknown                             | 1492 |
| Apple                               | 1328 |
| iPhone                              | 979  |
| iPad or iPhone App                  | 469  |
| Other Google product or service     | 292  |
| Android                             | 286  |
| Android App                         | 80   |
| Other Apple product or service      | 35   |
| Name: brand_or_product, dtype: into | 54   |

# **Data Cleaning**

We performed standard actions such as standardizing and tokenizing the data.

# **Standardizing Case**

We explored some tweets and decided to lowercase all text.

```
In [25]: #look at examples of tweets to inspect for spelling
print(df["tweet"].to_list()[:10])
```

['.@wesley83 I have a 3G iPhone. After 3 hrs tweeting at #RISE Austi n, it was dead! I need to upgrade. Plugin stations at #SXSW.', "@jes sedee Know about @fludapp ? Awesome iPad/iPhone app that you'll likel y appreciate for its design. Also, they're giving free Ts at #SXSW", '@swonderlin Can not wait for #iPad 2 also. They should sale them dow n at #SXSW.', "@sxsw I hope this year's festival isn't as crashy as t his year's iPhone app. #sxsw", "@sxtxstate great stuff on Fri #SXSW: Marissa Mayer (Google), Tim O'Reilly (tech books/conferences) & amp; M att Mullenweg (Wordpress)", '@teachntech00 New iPad Apps For #SpeechT herapy And Communication Are Showcased At The #SXSW Conference htt p://ht.ly/49n4M (http://ht.ly/49n4M) #iear #edchat #asd', '#SXSW is j ust starting, #CTIA is around the corner and #googleio is only a hop skip and a jump from there, good time to be an #android fan', 'Beauti fully smart and simple idea RT @madebymany @thenextweb wrote about ou r #hollergram iPad app for #sxsw! http://bit.ly/ieaVOB', (http://bit. ly/ieaVOB',) 'Counting down the days to #sxsw plus strong Canadian do llar means stock up on Apple gear', 'Excited to meet the @samsungmobi leus at #sxsw so I can show them my Sprint Galaxy S still running And #fail'l roid 2.1.

Given that we have instances of SXSW and sxsw that we want to treat as the same, and there presumably may be instances of different capitalizations of terms like "Apple" and "iPhone", we proceed to lowercase all tweets in our dataset.

```
In [26]: # Transform tweets to lowercase
df["tweet"] = df["tweet"].str.lower()

#print example
print(df.iloc[50]["tweet"])
```

□ûï@mention {link} <-- help me forward this doc to all anonymous a ccounts, techies,& ppl who can help us jam #libya #sxsw

### **Tokenize the Full Dataset**

We proceeded to create a tokenizer pattern and test it on a sample of rows

In [27]: #create a tokenizer pattern to avoid unnecessary separate treatment of basic token pattern =  $r''(?u)\b\w\w+\b''$ 

tokenizer = RegexpTokenizer(basic token pattern)

tweets = df.loc[:5, "tweet"].tolist() # Convert the slice to a list d tokenized\_tweets = [tokenizer.tokenize(tweet) for tweet in tweets[:10] print(tokenized tweets)

[['wesley83', 'have', '3g', 'iphone', 'after', 'hrs', 'tweeting', 'a t', 'rise\_austin', 'it', 'was', 'dead', 'need', 'to', 'upgrade', 'plu gin', 'stations', 'at', 'sxsw'], ['jessedee', 'know', 'about', 'fluda pp', 'awesome', 'ipad', 'iphone', 'app', 'that', 'you', 'll', 'likel y', 'appreciate', 'for', 'its', 'design', 'also', 'they', 're', 'giving', 'free', 'ts', 'at', 'sxsw'], ['swonderlin', 'can', 'not', 'wai 'for', 'ipad', 'also', 'they', 'should', 'sale', 'them', 'down', 'at', 'sxsw'], ['sxsw', 'hope', 'this', 'year', 'festival', 'isn', 'a s', 'crashy', 'as', 'this', 'year', 'iphone', 'app', 'sxsw'], ['sxtxs tate', 'great', 'stuff', 'on', 'fri', 'sxsw', 'marissa', 'mayer', 'go ogle', 'tim', 'reilly', 'tech', 'books', 'conferences', 'amp', 'mat t', 'mullenweg', 'wordpress'], ['teachntech00', 'new', 'ipad', 'app s', 'for', 'speechtherapy', 'and', 'communication', 'are', 'showcase d', 'at', 'the', 'sxsw', 'conference', 'http', 'ht', 'ly', '49n4m', ' iear', 'edchat', 'asd']]

We then applied the pattern to the entire dataframe, creating a new column to display the results.

```
In [28]: # Create new column with tokenized data
    df["tweet_tokenized"] = df["tweet"].apply(tokenizer.tokenize)
    # Display full text
    df.head().style.set_properties(**{'text-align': 'left'})
```

Out [28]:

|   | tweet                                                                                                                                               | brand_or_product      | sentiment | tweet_tokenized                                                                                                                                                                                               |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | .@wesley83 i have a 3g iphone. after 3 hrs tweeting at #rise_austin, it was dead! i need to upgrade. plugin stations at #sxsw.                      | iPhone                | Negative  | ['wesley83', 'have', '3g', 'iphone', 'after', 'hrs', 'tweeting', 'at', 'rise_austin', 'it', 'was', 'dead', 'need', 'to', 'upgrade', 'plugin', 'stations', 'at', 'sxsw']                                       |
| 1 | @jessedee know about @fludapp?<br>awesome ipad/iphone app that you'll<br>likely appreciate for its design. also,<br>they're giving free ts at #sxsw | iPad or iPhone<br>App | Positive  | ['jessedee', 'know', 'about', 'fludapp', 'awesome', 'ipad', 'iphone', 'app', 'that', 'you', 'll', 'likely', 'appreciate', 'for', 'its', 'design', 'also', 'they', 're', 'giving', 'free', 'ts', 'at', 'sxsw'] |
| 2 | @swonderlin can not wait for #ipad 2 also. they should sale them down at #sxsw.                                                                     | iPad                  | Positive  | ['swonderlin', 'can', 'not', 'wait', 'for', 'ipad', 'also', 'they', 'should', 'sale', 'them', 'down', 'at', 'sxsw']                                                                                           |
| 3 | @sxsw i hope this year's festival isn't as crashy as this year's iphone app. #sxsw                                                                  | iPad or iPhone<br>App | Negative  | ['sxsw', 'hope', 'this', 'year', 'festival', 'isn', 'as', 'crashy', 'as', 'this', 'year', 'iphone', 'app', 'sxsw']                                                                                            |
| 4 | @sxtxstate great stuff on fri #sxsw:<br>marissa mayer (google), tim o'reilly<br>(tech books/conferences) & matt<br>mullenweg (wordpress)            | Google                | Positive  | ['sxtxstate', 'great', 'stuff', 'on', 'fri', 'sxsw', 'marissa', 'mayer', 'google', 'tim', 'reilly', 'tech', 'books', 'conferences', 'amp', 'matt', 'mullenweg', 'wordpress']                                  |

# **Stop Word Removal**

First we got all the english stop words and stored them in a variable.

```
In [29]: #create a stop words list and add all english words, plus punctuation
    stopwords_list = stopwords.words('english')
    stopwords_list += list(string.punctuation)
    stopwords_list += ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
    stopwords_list += ['"', '...', "''", "''", ''']

#store stop words in variable
    tweet_words_stopped = [word for row in df['tweet_tokenized'] for word
```

Then we created a frequency distribution to see if removing stop words helped.

```
In [30]: #create a frequency distribution of the stop words list
tweet_stopped_freqdist = FreqDist(tweet_words_stopped)

#display the 50 most common
print(tweet_stopped_freqdist.most_common(50))
```

[('sxsw', 9444), ('mention', 7006), ('link', 4249), ('rt', 2919), ('g oogle', 2602), ('ipad', 2472), ('apple', 2294), ('quot', 1657), ('iph one', 1551), ('store', 1463), ('new', 1075), ('austin', 955), ('amp', 827), ('app', 819), ('circles', 649), ('social', 648), ('launch', 640), ('android', 590), ('pop', 586), ('today', 569), ('ipad2', 459), ('network', 452), ('via', 428), ('line', 401), ('get', 392), ('free', 390), ('party', 349), ('called', 347), ('mobile', 345), ('sxswi', 338), ('one', 309), ('major', 296), ('like', 284), ('time', 270), ('tem porary', 264), ('opening', 256), ('check', 254), ('possibly', 233), ('day', 230), ('people', 226), ('downtown', 225), ('apps', 222), ('great', 221), ('see', 221), ('maps', 217), ('open', 214), ('going', 213), ('mayer', 212), ('popup', 210), ('go', 205)]

Next we created a function to remove the stop words from our tokenized tweets.

```
In [31]: # Function to remove stopwords and additional words

def remove_stopwords(row):
    tokens = row['tweet_tokenized']
    filtered_tokens = [word for word in tokens if word not in stopword
    return filtered_tokens

# Apply the function to remove stopwords and additional words
df['stop_tweet_tokenized'] = df.apply(lambda row: remove_stopwords(row

# Display
df.head().style.set_properties(**{'text-align': 'left'})
```

tweet brand\_or\_product sentiment tweet\_tokenized stop\_tweet\_tokenized

Out[31]:

| 0 | .@wesley83 i have a<br>3g iphone. after 3 hrs<br>tweeting at<br>#rise_austin, it was<br>dead! i need to<br>upgrade. plugin<br>stations at #sxsw.              | iPhone                | Negative | 'have', '3g', 'iphone', 'after', 'hrs', 'tweeting', 'at', 'rise_austin', 'it', 'was', 'dead', 'need', 'to', 'upgrade', 'plugin', 'stations', 'at', 'sxsw']                                                    | ['wesley83', '3g', 'iphone', 'hrs', 'tweeting', 'rise_austin', 'dead', 'need', 'upgrade', 'plugin', 'stations', 'sxsw']                                                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | @jessedee know<br>about @fludapp ?<br>awesome ipad/iphone<br>app that you'll likely<br>appreciate for its<br>design. also, they're<br>giving free ts at #sxsw | iPad or iPhone<br>App | Positive | ['jessedee', 'know', 'about', 'fludapp', 'awesome', 'ipad', 'iphone', 'app', 'that', 'you', 'll', 'likely', 'appreciate', 'for', 'its', 'design', 'also', 'they', 're', 'giving', 'free', 'ts', 'at', 'sxsw'] | ['jessedee', 'know', 'fludapp', 'awesome', 'ipad', 'iphone', 'app', 'likely', 'appreciate', 'design', 'also', 'giving', 'free', 'ts', 'sxsw']                          |
| 2 | @swonderlin can not wait for #ipad 2 also. they should sale them down at #sxsw.                                                                               | iPad                  | Positive | ['swonderlin', 'can', 'not', 'wait', 'for', 'ipad', 'also', 'they', 'should', 'sale', 'them', 'down', 'at', 'sxsw']                                                                                           | ['swonderlin', 'wait', 'ipad', 'also', 'sale', 'sxsw']                                                                                                                 |
| 3 | @sxsw i hope this<br>year's festival isn't as<br>crashy as this year's<br>iphone app. #sxsw                                                                   | iPad or iPhone<br>App | Negative | ['sxsw', 'hope', 'this', 'year', 'festival', 'isn', 'as', 'crashy', 'as', 'this', 'year', 'iphone', 'app', 'sxsw']                                                                                            | ['sxsw', 'hope', 'year', 'festival', 'crashy', 'year', 'iphone', 'app', 'sxsw']                                                                                        |
| 4 | @sxtxstate great stuff<br>on fri #sxsw: marissa<br>mayer (google), tim<br>o'reilly (tech<br>books/conferences) &<br>matt mullenweg<br>(wordpress)             | Google                | Positive | ['sxtxstate', 'great', 'stuff', 'on', 'fri', 'sxsw', 'marissa', 'mayer', 'google', 'tim', 'reilly', 'tech', 'books', 'conferences', 'amp', 'matt', 'mullenweg', 'wordpress']                                  | ['sxtxstate', 'great', 'stuff', 'fri', 'sxsw', 'marissa', 'mayer', 'google', 'tim', 'reilly', 'tech', 'books', 'conferences', 'amp', 'matt', 'mullenweg', 'wordpress'] |

# **Stemming The Tokenized Text**

Next thing we did was create a stemming function to ensure we don't lose important text when we remove stop words.

# In [32]: #instantiate a PorterStemmer function

```
stemmer = PorterStemmer()

#apply the function to the stop_tweet_tokenized column
df['stop_tweet_stemmed'] = df['stop_tweet_tokenized'].apply(lambda x:

# Display full text
df.head().style.set_properties(**{'text-align': 'left'})
```

# Out[32]:

|   | tweet                                                                                                                                                              | brand_or_product      | sentiment | tweet_tokenized                                                                                                                                                                                               | stop_tweet_tokenized                                                                                                                          | sto                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0 | .@wesley83 i have<br>a 3g iphone. after 3<br>hrs tweeting at<br>#rise_austin, it was<br>dead! i need to<br>upgrade. plugin<br>stations at #sxsw.                   | iPhone                | Negative  | ['wesley83', 'have', '3g', 'iphone', 'after', 'hrs', 'tweeting', 'at', 'rise_austin', 'it', 'was', 'dead', 'need', 'to', 'upgrade', 'plugin', 'stations', 'at', 'sxsw']                                       | ['wesley83', '3g', 'iphone', 'hrs', 'tweeting', 'rise_austin', 'dead', 'need', 'upgrade', 'plugin', 'stations', 'sxsw']                       | ['we<br>'iph<br>'rise<br>'nee<br>'plu<br>'sxe    |
| 1 | @jessedee know<br>about @fludapp?<br>awesome<br>ipad/iphone app<br>that you'll likely<br>appreciate for its<br>design. also,<br>they're giving free<br>ts at #sxsw | iPad or iPhone<br>App | Positive  | ['jessedee', 'know', 'about', 'fludapp', 'awesome', 'ipad', 'iphone', 'app', 'that', 'you', 'll', 'likely', 'appreciate', 'for', 'its', 'design', 'also', 'they', 're', 'giving', 'free', 'ts', 'at', 'sxsw'] | ['jessedee', 'know', 'fludapp', 'awesome', 'ipad', 'iphone', 'app', 'likely', 'appreciate', 'design', 'also', 'giving', 'free', 'ts', 'sxsw'] | ['jes<br>'fluc<br>'ipa<br>'like<br>'des<br>'free |
| 2 | @swonderlin can<br>not wait for #ipad 2<br>also. they should<br>sale them down at<br>#sxsw.                                                                        | iPad                  | Positive  | ['swonderlin', 'can', 'not', 'wait', 'for', 'ipad', 'also', 'they', 'should', 'sale', 'them', 'down', 'at', 'sxsw']                                                                                           | ['swonderlin', 'wait', 'ipad', 'also', 'sale', 'sxsw']                                                                                        | ['sw<br>'ipa<br>'sxs                             |
| 3 | @sxsw i hope this<br>year's festival isn't<br>as crashy as this<br>year's iphone app.<br>#sxsw                                                                     | iPad or iPhone<br>App | Negative  | ['sxsw', 'hope', 'this', 'year', 'festival', 'isn', 'as', 'crashy', 'as', 'this', 'year', 'iphone', 'app', 'sxsw']                                                                                            | ['sxsw', 'hope', 'year', 'festival', 'crashy', 'year', 'iphone', 'app', 'sxsw']                                                               | ['sx<br>'fes<br>'iph                             |
| 4 | @sxtxstate great<br>stuff on fri #sxsw:<br>marissa mayer<br>(google), tim o'reilly<br>(tech                                                                        | Google                | Positive  | ['sxtxstate', 'great', 'stuff', 'on', 'fri', 'sxsw', 'marissa', 'mayer', 'google', 'tim', 'reilly',                                                                                                           | ['sxtxstate', 'great', 'stuff', 'fri', 'sxsw', 'marissa', 'mayer', 'google', 'tim', 'reilly', 'tech', 'books',                                | ['sx<br>'stu<br>'ma<br>'god<br>'tec              |

books/conferences) & matt mullenweg (wordpress) 'tech', 'books', 'conferences', 'amp', 'matt', 'mullenweg', 'wordpress'] 'conferences', 'amp',
'matt', 'mullenweg',
'wordpress']

'am

'mu

'wo

# **Exploratory Data Analysis: Frequency Distributions**

In this section, we looked at the frequency of words from the tweets in our dataset.

```
In [33]: #write a function for visualizing the top 10 most frequent words
def visualize_top_10(freq_dist, title):

    # Extract data for plotting
    top_10 = list(zip(*freq_dist.most_common(10)))
    tokens = top_10[0]
    counts = top_10[1]

# Set up plot and plot data
    fig, ax = plt.subplots()
    ax.bar(tokens, counts)

# Customize plot appearance
    ax.set_title(title)
    ax.set_ylabel("Count")
    ax.yaxis.set_major_locator(MaxNLocator(integer=True))
    ax.tick_params(axis="x", rotation=90)
```

```
In [34]: # Create a frequency distribution for X_train
df_freq_dist = FreqDist(df["stop_tweet_stemmed"].explode())

# Plot the top 10 tokens
visualize_top_10(df_freq_dist, "Top 10 Word Frequency")
```



We saw that there continues to be stop words in our top 10 frequency distribution that need to be removed.

### More Word Inspection and Removal

We continue to look at the top frequent words and inspect their context, such as mention and link, to see if they don't serve us much purpose and need to be removed.

```
In [35]: # Filter rows that contain 'sxsw' in 'stop_tweet_stemmed' column
         sxsw filtered df = df[df['stop tweet stemmed'].apply(lambda x: 'sxsw'
         # Set the column width option to display the full content
         pd.set_option('display.max_colwidth', None)
         # Print a sample of rows from the filtered dataframe
         sxsw sample rows = sxsw filtered df['stop tweet stemmed'].sample(n=10)
         print(sxsw sample rows)
         2097
                                                                            [go,
         bar, get, free, drink, iphon, doesdroid, sxsw]
         3923
                                                                          [amp,
         bing, amp, googl, let, game, begin, gagb, sxsw]
         8271
         [googl, hot, pot, whattt, pot, sxsw]
                                [hehe, rt, ûï, mention, march, 11, austin, tx,
         4324
         peopl, line, sxsw, registr, appl, store, mobil]
                                             [ipad2, deliveri, pop, mention, st
         4177
         ore, mention, quit, possibl, sxsw, sxswi, link]
         4415
                                            [mike, tyson, come, phone, near, li
         nk, iphon, sxsw, videogam, tyson, art, cartoon]
         564
                                                                  [attend, goog
         l, keynot, see, googl, map, mobil, featur, sxsw]
         2310
                 [awkward, jc, penney, question, ask, marissa, mayer, appar, j
         c, penney, locat, rout, maci, googl, map, sxsw]
                            [rt, mention, sxsw, get, soundcloud, iphon, app, li
         5515
         nk, start, record, use, 4sq, geotag, map, link]
         2839
         [pick, ipad, back, sxsw, link]
         Name: stop_tweet_stemmed, dtype: object
In [36]: #add sxsw to stop words
         stopwords_list.append('sxsw')
```

```
stopwords list.append('#sxsw')
```

In [37]: # Filter rows that contain 'mention' in 'tweet\_stemmed' column
mention\_filtered\_df = df[df['stop\_tweet\_stemmed'].apply(lambda x: 'men

# Print a sample of rows from the filtered dataframe
mention\_sample\_rows = mention\_filtered\_df['stop\_tweet\_stemmed'].sample
print(mention\_sample\_rows)

1567 [mention, ment ion, appl, gotta, take, advantag, hipster, head, sxsw, somehow] [rt, mention, fli, sx 6929 sw, want, mention, free, mile, dm, shoot, code, current, iphon] 2546 [hope, jinx, mention, nice, ment ion, iphon, app, behav, today, crash, yesterday, ridicul, sxsw] 5167 [rt, mention, quot, appl, come, cool, tech nolog, one, ever, heard, go, confer, quot, sxsw, pseudoretweet] [rt, mention, appl, open, p 5209 opup, shop, downtown, austin, sxsw, link, rt, mention, mention] [excit, part, mention, twit 4837 ter, famili, stop, pepsico, playground, sxsw, learn, win, ipad] [rt, mention, rt, mention, rt, mention, googl, launch, major, 6603 new, social, network, call, circl, possibl, today, link, sxsw] [rt, mention, hmm, sxsw, com, inter 6023 act, live, stream, ipad, mobil, compat, mayb, next, year, sxsw] [mention, amp, finish, mad, 1659 dash, complet, ipad, format, web, app, client, show, sxsw, fun] 4719 [wanna, know, rt, mention, one, produc, go, sxsw, hope, free, iphon, app, dl] Name: stop\_tweet\_stemmed, dtype: object

# In [38]: #add mention to stop words stopwords\_list.append('mention')

```
In [39]: # Filter rows that contain 'link' in 'tweet_stemmed' column
link_filtered_df = df[df['stop_tweet_stemmed'].apply(lambda x: 'link'

# Print a sample of rows from the filtered dataframe
link_sample_rows = link_filtered_df['stop_tweet_stemmed'].sample(n=10)
print(link_sample_rows)
```

[rt, mention, cameron, sinclair, mention, spearhead, japan, d 5591 isast, relief, sxsw, via, twitter, amp, iphon, link, retweet] [googl, launch, secre 8668 t, new, social, network, call, quot, circl, quot, link, sxsw] 4983 [team, android, parti, 13, 10, show, us, mention, app, mobil, enter, win, free, nexu, link, sxsw] 4376 [nope, seem, googl, circl, launch, today, link, sxsw] 2066 [sxs w, apptast, link, android, app, develop, io, iphon, smartphon] [mention, amp, mention, vs, mention, amp, quot, groupo n, live, social, type, quot, reward, link, battl, sxsw, begin] 4381 [quot, commun, place, web, friend, app, quot, link, sxsw, grauniad] [rt, mention, quot, appl, like, pay, appl, like, 5169 quot, barri, diller, sxsw, mention, acc, ballroom, pic, link] [rt, mention, ye, updat, iphon, app, song, info, menti on, 24, stream, other, also, live, video, stream, sxsw, link] [mention, bigger, ipho 731 n, smaller, pc, good, big, event, like, sxsw, meet, day, link] Name: stop\_tweet\_stemmed, dtype: object

# In [40]: #add link to stop words stopwords\_list.append('link')

```
In [41]: |# Filter rows that contain 'rt' in 'tweet_stemmed' column
         rt filtered df = df[df['stop tweet stemmed'].apply(lambda x: 'rt' in x
         # Print a sample of rows from the filtered dataframe
         rt_sample_rows = rt_filtered_df['stop_tweet_stemmed'].sample(n=10)
         print(rt sample rows)
         6344
                                                                        [rt, men
         tion, new, sxsw, rule, oo, ahe, new, ipad, get, big, deal, everybodi,
         onel
         5713
                                 [rt, mention, fedex, truck, keep, arriv, tv, c
         rew, interview, peopl, line, first, ipad2, sxsw, popup, appl, store,
         link]
         5365
         rt, mention, browserwar, panel, without, appl, like, sxsw, without, p
         artil
         3965
                                                          [great, link, gt, gt,
         rt, mention, link, ã_, edchat, musedchat, sxsw, sxswi, classic, newtw
         ittl
         5596
         [rt, mention, sxsw, download, free, music, mix, itun, link, cc, menti
         on]
         6305
                                                     [rt, mention, mayer, make,
         clear, googl, go, straight, foursquar, amp, gowalla, googl, hotpot, s
         xswl
         5968
                                                           [rt, mention, head,
         link, 1pm, cst, today, win, vip, access, acoust, solo, set, sxsw, ton
         ight]
         4194
                                                   [suck, rt, mention, rt, ment
         ion, googl, preview, major, new, social, servic, circl, sxsw, today,
         linkl
         7914
                                                  [tweet, regist, exclus, pass,
         event, parti, ipad, sxsw, quot, give, liberti, free, sxswpass, pleas,
         rt]
                 [rt, mention, rt, mention, googl, launch, major, new, social,
         6552
         network, call, circl, possibl, today, mention, sxsw, link, via, menti
         onwl
         Name: stop_tweet_stemmed, dtype: object
```

```
In [42]: #add rt to stop words
stopwords_list.append('rt')
```

```
In [43]: |# Filter rows that contain 'quot' in 'tweet_stemmed' column
         quot_filtered_df = df[df['stop_tweet_stemmed'].apply(lambda x: 'quot'
         # Print a sample of rows from the filtered dataframe
         quot_sample_rows = quot_filtered_df['stop_tweet_stemmed'].sample(n=10)
         print(quot sample rows)
         6279
                                                                         [rt, me
         ntion, love, mention, sxsw, quot, appl, come, cool, technolog, one, e
         ver, heard, link]
                 [rt, mention, quot, googl, quot, product, gatekeep, quot, mar
         5175
         issa, mayer, locat, base, quot, fast, fun, futur, quot, link, ht, men
         tion, sxsw, quot]
         3457
         [hear, quot, design, ipad, interfac, new, navig, schema, quot, sxsw,
         link, uxd]
         4777
                                                          [quot, mention, hoot,
         new, blog, post, hootsuit, mobil, sxsw, updat, iphon, bberri, androi
         d, link, mention]
         8102
         [quot, stay, aliv, indi, iphon, game, develop, surviv, quot, sxsw]
                                  [rt, mention, woman, lobbi, quot, websit, cal
         6962
         l, like, stupid, iphon, speller, ppl, take, pic, funni, autocorrect,
         word, quot, sxsw]
         7134
                                                        [nyt, app, ipad, quot,
         amaz, way, serv, readership, quot, quot, market, opportun, ignor, quo
         t, sxsw, newsapp]
         4257
                                                                            [kin
         gdom, way, filter, tweet, includ, word, quot, unlock, quot, twitter,
         iphon, app, sxsw]
         2905
                                                        [sxsw, attende, trade,
         quot, happi, hour, quot, appi, hour, wait, line, ipad2, video, link,
         sheer, mad, love]
         3217
                                                 [best, thing, abt, mention, sx
         sw, bad, ass, brunch, patio, amp, plenti, free, park, 10, min, quot,
         mess, quot, link]
         Name: stop_tweet_stemmed, dtype: object
In [44]: | #add quot to stop words
```

Next we added a column to the dataframe that removes the additional stop words.

stopwords\_list.append('quot')

```
In [45]: # Define a function to remove stopwords from text
def remove_extra_stopwords(text):
    filtered_words = [word for word in text if word not in stopwords_l
    return filtered_words
```

# Apply the remove\_stopwords function to the 'stop\_tweet\_stemmed' colu
df['stop\_tweet\_stemmed'] = df['stop\_tweet\_stemmed'].apply(lambda x: re
# Display the updated DataFrame
df.head()

# Out [45]:

|   | tweet                                                                                                                                                              | brand_or_product      | sentiment | tweet_tokenized                                                                                                                                               | stop_tweet_tokenized                                                                                                                 | 8 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|
| 0 | .@wesley83 i have<br>a 3g iphone. after 3<br>hrs tweeting at<br>#rise_austin, it was<br>dead! i need to<br>upgrade. plugin<br>stations at #sxsw.                   | iPhone                | Negative  | [wesley83, have, 3g, iphone, after, hrs, tweeting, at, rise_austin, it, was, dead, need, to, upgrade, plugin, stations, at, sxsw]                             | [wesley83, 3g, iphone,<br>hrs, tweeting,<br>rise_austin, dead,<br>need, upgrade, plugin,<br>stations, sxsw]                          |   |
| 1 | @jessedee know<br>about @fludapp?<br>awesome<br>ipad/iphone app<br>that you'll likely<br>appreciate for its<br>design. also,<br>they're giving free<br>ts at #sxsw | iPad or iPhone<br>App | Positive  | [jessedee, know, about, fludapp, awesome, ipad, iphone, app, that, you, II, likely, appreciate, for, its, design, also, they, re, giving, free, ts, at, sxsw] | [jessedee, know,<br>fludapp, awesome,<br>ipad, iphone, app,<br>likely, appreciate,<br>design, also, giving,<br>free, ts, sxsw]       |   |
| 2 | @swonderlin can<br>not wait for #ipad 2<br>also. they should<br>sale them down at<br>#sxsw.                                                                        | iPad                  | Positive  | [swonderlin, can,<br>not, wait, for,<br>ipad, also, they,<br>should, sale,<br>them, down, at,<br>sxsw]                                                        | [swonderlin, wait, ipad, also, sale, sxsw]                                                                                           |   |
| 3 | @sxsw i hope this<br>year's festival isn't<br>as crashy as this<br>year's iphone app.<br>#sxsw                                                                     | iPad or iPhone<br>App | Negative  | [sxsw, hope, this, year, festival, isn, as, crashy, as, this, year, iphone, app, sxsw]                                                                        | [sxsw, hope, year,<br>festival, crashy, year,<br>iphone, app, sxsw]                                                                  |   |
| 4 | @sxtxstate great stuff on fri #sxsw: marissa mayer (google), tim o'reilly (tech books/conferences) & matt mullenweg (wordpress)                                    | Google                | Positive  | [sxtxstate, great, stuff, on, fri, sxsw, marissa, mayer, google, tim, reilly, tech, books, conferences, amp, matt, mullenweg, wordpress]                      | [sxtxstate, great, stuff, fri, sxsw, marissa, mayer, google, tim, reilly, tech, books, conferences, amp, matt, mullenweg, wordpress] |   |

In [46]: #update variable of cleaned text
 tweet\_words\_stopped = [word for row in df['stop\_tweet\_stemmed'] for wc
#create a frequency distribution of the updated stopped words list
 tweet\_stopped\_freqdist = FreqDist(tweet\_words\_stopped)

# Plot the top 10 updated tokens
 visualize top 10(tweet stopped fregdist, "Top 10 Word Frequency")



Now that the most frequent words seem to better apply to the text of tweets that provide context, the next thing we do is visually inspect these words categorized by sentiment.

```
In [47]: #list of cleaned words from positive sentiment rows
    positive_tweet_words = [word for index, row in df.iterrows() if row['s

#create a frequency distribution of the positive words list
    positive_tweet_freqdist = FreqDist(positive_tweet_words)

#list of cleaned words from negative sentiment rows
    negative_tweet_words = [word for index, row in df.iterrows() if row['s

#create a frequency distribution of the negative words list
    negative_tweet_freqdist = FreqDist(negative_tweet_words)

#list of cleaned words from neutral sentiment rows
    neutral_tweet_words = [word for index, row in df.iterrows() if row['se

#create a frequency distribution of the neutral words list
    neutral_tweet_freqdist = FreqDist(neutral_tweet_words)
```

```
In [48]: # Create subplots for the three graphs
         fig, ax = plt.subplots(1, 3, figsize=(18, 5))
         # Plot the top 10 word frequency for positive sentiment
         ax[0].bar(*zip(*positive_tweet_freqdist.most_common(10)))
         ax[0].set_title('Positive Sentiment')
         # Plot the top 10 word frequency for negative sentiment
         ax[1].bar(*zip(*negative_tweet_freqdist.most_common(10)))
         ax[1].set_title('Negative Sentiment')
         # Plot the top 10 word frequency for neutral sentiment
         ax[2].bar(*zip(*neutral_tweet_freqdist.most_common(10)))
         ax[2].set_title('Neutral Sentiment')
         # Set common x-label and y-label for all subplots
         fig.text(0.5, 0.00, 'Word', ha='center')
         fig.text(0.00, 0.5, 'Frequency', va='center', rotation='vertical')
         # Adjust spacing between subplots
         plt.tight layout()
         # Show the plot
         plt.show()
```



### **Remove Company Labels**

As we can see in the graphs, there is a lot of crossover between the three different sentiments for 10 most frequent words, and most of them are of course the names of the brands and products. While the ipad2 seems to only appear in the positive sentiment as a member of the 10 most frequent, which could bet telling about that product, more inspection needs to be done. Next we removed names of the companies and broad products to see which new words would take their place in the graphs and if we would learn anything new.

```
In [49]: #create a list of brand names
brands_list = ['ipad', 'appl', 'googl', 'iphon', 'app']

#remove them from the existing lists
brandless_positive_tweet_words = [word for word in positive_tweet_word
brandless_negative_tweet_words = [word for word in negative_tweet_word
brandless_neutral_tweet_words = [word for word in neutral_tweet_words

#update the FreqDist action
brandless_positive_tweet_freqdist = FreqDist(brandless_positive_tweet_brandless_negative_tweet_freqdist = FreqDist(brandless_negative_tweet_brandless_neutral_tweet_freqdist = FreqDist(brandless_neutral_tweet_wc
```

```
In [50]: # Create subplots for the three graphs
         fig, ax = plt.subplots(1, 3, figsize=(18, 5))
         # Plot the top 10 word frequency for positive sentiment
         ax[0].bar(*zip(*brandless positive tweet fregdist.most common(10)))
         ax[0].set_title('Positive Sentiment')
         # Plot the top 10 word frequency for negative sentiment
         ax[1].bar(*zip(*brandless_negative_tweet_freqdist.most_common(10)))
         ax[1].set_title('Negative Sentiment')
         # Plot the top 10 word frequency for neutral sentiment
         ax[2].bar(*zip(*brandless_neutral_tweet_freqdist.most_common(10)))
         ax[2].set title('Neutral Sentiment')
         # Set common x-label and y-label for all subplots
         fig.text(0.5, 0.00, 'Word', ha='center')
         fig.text(0.00, 0.5, 'Frequency', va='center', rotation='vertical')
         # Adjust spacing between subplots
         plt.tight_layout()
         # Show the plot
         plt.show()
```



We're starting to see a little bit more information. For instance, ipad2 remains a likely indicator of a positive sentiment, while the word "need" seems to indicate the tweet is more likely to be negative. Interestingly, mention of the android also seems to more likely indicate a positive tweet.

### **Add Column Without Brand Names**

# In [51]: # Define a function to remove brands from text def remove\_brands(text): filtered\_words = [word for word in text if word not in brands\_list return filtered\_words # Apply the remove\_brands function to the 'tweet\_without\_stopwords' co df['brandless\_stop\_tweet\_stemmed'] = df['stop\_tweet\_stemmed'].apply(la # Display the updated DataFrame df.head()

### Out [51]:

|   | tweet                                                                                                                                                              | brand_or_product      | sentiment | tweet_tokenized                                                                                                                                               | stop_tweet_tokenized                                                                                                           | sto           |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|
| 0 | .@wesley83 i have<br>a 3g iphone. after 3<br>hrs tweeting at<br>#rise_austin, it was<br>dead! i need to<br>upgrade. plugin<br>stations at #sxsw.                   | iPhone                | Negative  | [wesley83, have, 3g, iphone, after, hrs, tweeting, at, rise_austin, it, was, dead, need, to, upgrade, plugin, stations, at, sxsw]                             | [wesley83, 3g, iphone,<br>hrs, tweeting,<br>rise_austin, dead,<br>need, upgrade, plugin,<br>stations, sxsw]                    | [w<br>hr<br>C |
| 1 | @jessedee know<br>about @fludapp?<br>awesome<br>ipad/iphone app<br>that you'll likely<br>appreciate for its<br>design. also,<br>they're giving free<br>ts at #sxsw | iPad or iPhone<br>App | Positive  | [jessedee, know, about, fludapp, awesome, ipad, iphone, app, that, you, II, likely, appreciate, for, its, design, also, they, re, giving, free, ts, at, sxsw] | [jessedee, know,<br>fludapp, awesome,<br>ipad, iphone, app,<br>likely, appreciate,<br>design, also, giving,<br>free, ts, sxsw] | ip;<br>aţ     |
| 2 | @swonderlin can<br>not wait for #ipad 2<br>also. they should<br>sale them down at<br>#sxsw.                                                                        | iPad                  | Positive  | [swonderlin, can,<br>not, wait, for,<br>ipad, also, they,<br>should, sale,<br>them, down, at,<br>sxsw]                                                        | [swonderlin, wait, ipad, also, sale, sxsw]                                                                                     |               |
| 3 | @sxsw i hope this<br>year's festival isn't<br>as crashy as this<br>year's iphone app.                                                                              | iPad or iPhone<br>App | Negative  | [sxsw, hope, this,<br>year, festival, isn,<br>as, crashy, as,<br>this, year,                                                                                  | [sxsw, hope, year,<br>festival, crashy, year,<br>iphone, app, sxsw]                                                            |               |

| #sxsw                                                                                                                              |        |          | iphone, app,<br>sxsw]                                                                                                                    |                                                                                                                                      |     |
|------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| @sxtxstate great stuff on fri #sxsw: marissa mayer (google), tim o'reilly  4 (tech books/conferences) & matt mullenweg (wordpress) | Google | Positive | [sxtxstate, great, stuff, on, fri, sxsw, marissa, mayer, google, tim, reilly, tech, books, conferences, amp, matt, mullenweg, wordpress] | [sxtxstate, great, stuff, fri, sxsw, marissa, mayer, google, tim, reilly, tech, books, conferences, amp, matt, mullenweg, wordpress] | [sx |

wordpress]

# **Word Cloud**

We created a word cloud for each of the 3 sentiment categories, a common display of words and their frequency.

```
In [52]: # Count the frequency of each word for each sentiment
         positive word counts = Counter(brandless positive tweet words)
         negative word counts = Counter(brandless negative tweet words)
         neutral word counts = Counter(brandless neutral tweet words)
         # Generate the word cloud
         positive_wordcloud = WordCloud(width=800, height=400).generate_from_fr
         negative wordcloud = WordCloud(width=800, height=400).generate from fr
         neutral_wordcloud = WordCloud(width=800, height=400).generate_from_fre
         # Create a figure and axes
         fig, axes = plt.subplots(1, 3, figsize=(15, 5))
         # Display the word clouds with titles
         axes[0].imshow(positive_wordcloud, interpolation='bilinear')
         axes[0].set_title('Word Cloud - Positive Tweets')
         axes[0].axis('off')
         axes[1].imshow(negative wordcloud, interpolation='bilinear')
         axes[1].set_title('Word Cloud - Negative Tweets')
         axes[1].axis('off')
         axes[2].imshow(neutral_wordcloud, interpolation='bilinear')
         axes[2].set_title('Word Cloud - Neutral Tweets')
         axes[2].axis('off')
         # Adjust spacing between subplots
         plt.tight layout()
         # Show the plot
         plt.show()
```



We are seeing more information now. The words "new" and "store" seem to be common across the board, but "launch" is much more common in neutral tweets, "austin" is most common in positive tweets, and "like" is very common in negative tweets, which is difficult to interpret without more context, but you can also see some more indicative words like "headach", which is clearly our stemmed version of the word "headache". The presence of this word is a strong indicator that the tweet is negative.

# **Bigrams**

Next we created bigrams to get a bit more context of the top words for each sentiment.

```
In [53]: #create bigrams for each sentiment
         positive_bigrams = list(ngrams(positive_tweet_words, 2))
         negative_bigrams = list(ngrams(negative_tweet_words, 2))
         neutral bigrams = list(ngrams(neutral tweet words, 2))
         #measure the frequency
         positive_bigram_freq = Counter(positive bigrams)
         negative_bigram_freq = Counter(negative_bigrams)
         neutral_bigram_freq = Counter(neutral_bigrams)
         #order them in frequency
         most_common_positive_bigrams = positive_bigram_freq.most_common()
         most common negative bigrams = negative bigram freq.most common()
         most_common_neutral_bigrams = neutral_bigram_freq.most_common()
         #get the sum and normalize the frequency
         total positive bigrams = sum(positive bigram freg.values())
         total_negative_bigrams = sum(negative_bigram_freq.values())
         total neutral bigrams = sum(neutral bigram freq.values())
         normalized_positive_bigrams = [(bigram, freq / total_positive_bigrams
         normalized_negative_bigrams = [(bigram, freq / total_negative_bigrams
         normalized_neutral_bigrams = [(bigram, freq / total_neutral_bigrams *
         #print first 15 rows of each
         print("Top 15 Bigrams With a Positive Sentiment: ", normalized_positiv
         print("Top 15 Bigrams With a Negative Sentiment: ", normalized_negativ
         print("Top 15 Bigrams With a Neutral Sentiment: ", normalized_neutral_
```

```
Top 15 Bigrams With a Positive Sentiment: [(('appl', 'store'), 0.786 9609317617432), (('iphon', 'app'), 0.5526214543038019), (('pop', 'store'), 0.4826693714805358), (('appl', 'open'), 0.3917316638102899), (('social', 'network'), 0.30079395614004406), (('googl', 'map'), 0.30079395614004406), (('appl', 'pop'), 0.29729635199888077), (('ipad', 'app'), 0.2937987478577175), (('new', 'social'), 0.26931551886957433), (('downtown', 'austin'), 0.2518274981637578), (('store', 'downtown'), 0.24483228988143121), (('googl', 'launch'), 0.24483228988143121), (('topogl', 'launch'), 0.2448328898143121), (('topogl', 'launch'), 0.244832888143121), (('topogl', 'launch'), 0.244832888143121), (('topogl', 'launch'), 0.244832888143121), (('topogl', 'launch'), 0.244881888143121), (('topogl', 'launch'), 0.244881888143121), (('topogl', 'launch'), 0.244881888143121), (('topogl', 'launch'), 0.2448818
```

Top 15 Bigrams With a Negative Sentiment: [(('iphon', 'app'), 0.4423 213021939137), (('appl', 'store'), 0.4423213021939137), (('ipad', 'de

```
sign'), 0.3538570417551309), (('design', 'headach'), 0.30077848549186
126), (('googl', 'circl'), 0.28308563340410475), (('new', 'social'),
0.28308563340410475), (('googl', 'launch'), 0.2653927813163482), (('s
ocial', 'network'), 0.2653927813163482), (('news', 'app'), 0.24769992
922859166), (('compani', 'america'), 0.23000707714083513), (('ipad',
'news'), 0.21231422505307856), (('major', 'new'), 0.2123142250530785
6), (('fascist', 'compani'), 0.21231422505307856), (('iphon', 'batter
i'), 0.194621372965322), (('network', 'call'), 0.194621372965322)]
```

Top 15 Bigrams With a Neutral Sentiment: [(('social', 'network'), 0.6987021259654431), (('appl', 'store'), 0.680786686838124), (('new', 'social'), 0.6210685564137273), (('googl', 'launch'), 0.5593598216418505), (('call', 'circl'), 0.49566048252249384), (('network', 'call'), 0.4876980651325743), (('major', 'new'), 0.4379329564455769), (('pop', 'store'), 0.4379329564455769), (('launch', 'major'), 0.4259893303606975), (('appl', 'open'), 0.4259893303606975), (('possibl', 'today'), 0.36428059558882075), (('circl', 'possibl'), 0.36228999124134087), (('googl', 'circl'), 0.31053427820686363), (('iphon', 'app'), 0.2866470260371049), (('store', 'austin'), 0.2667409825623059)]

Some of the distinct pairings include tweets about downtown Austin where the convention took place in the positive sentiment camp, while tweets about ipad designs are in the negative sentiment camp.

### **Visualize Sentiment by Brand/Product**

In this sub-section, we plotted graphs to inspect the breakdown of tweets' sentiment by each value in our brand\_or\_product column.

```
In [55]: #create a df that groups by brand values
brand_df = brand_or_product_df.groupby(['brand', 'sentiment'])
```

```
In [56]: #create a df that groups by product values
product_df = brand_or_product_df.groupby(['brand_or_product', 'sentime
```

```
In [57]: #calculate the count of each sentiment value
    count_df = brand_df.size().unstack()
    count_df
```

## Out [57]:

| sentiment |         | Negative | Neutral | Positive |
|-----------|---------|----------|---------|----------|
|           | brand   |          |         |          |
|           | Apple   | 413      | 2200    | 2085     |
|           | Google  | 151      | 1747    | 826      |
|           | Unknown | 5        | 1428    | 59       |

```
In [58]: #convert to percentages
percentage_df = count_df.div(count_df.sum(axis=1), axis=0) * 100
percentage_df
```

## Out [58]:

| sentiment |         | Negative | Neutral   | Positive  |  |
|-----------|---------|----------|-----------|-----------|--|
|           | brand   |          |           |           |  |
|           | Apple   | 8.790975 | 46.828438 | 44.380587 |  |
|           | Google  | 5.543319 | 64.133627 | 30.323054 |  |
|           | Unknown | 0.335121 | 95.710456 | 3.954424  |  |

In [59]: #calculate the count of each sentiment value
 product\_count\_df = product\_df.size().unstack()
 product\_count\_df

Out [59]:

| sentiment                       | Negative | Neutral | Positive |
|---------------------------------|----------|---------|----------|
| brand_or_product                |          |         |          |
| Android                         | 10       | 193     | 83       |
| Android App                     | 8        | 1       | 71       |
| Apple                           | 99       | 662     | 567      |
| Google                          | 86       | 1544    | 436      |
| Other Apple product or service  | 2        | 1       | 32       |
| Other Google product or service | 47       | 9       | 236      |
| Unknown                         | 5        | 1428    | 59       |
| iPad                            | 136      | 895     | 856      |
| iPad or iPhone App              | 63       | 10      | 396      |
| iPhone                          | 113      | 632     | 234      |

In [60]: #convert to percentages
percentage\_count\_df = product\_count\_df.div(product\_count\_df.sum(axis=1
percentage\_count\_df

Out [60]:

| sentiment                       | Negative  | Neutral   | Positive  |
|---------------------------------|-----------|-----------|-----------|
| brand_or_product                |           |           |           |
| Android                         | 3.496503  | 67.482517 | 29.020979 |
| Android App                     | 10.000000 | 1.250000  | 88.750000 |
| Apple                           | 7.454819  | 49.849398 | 42.695783 |
| Google                          | 4.162633  | 74.733785 | 21.103582 |
| Other Apple product or service  | 5.714286  | 2.857143  | 91.428571 |
| Other Google product or service | 16.095890 | 3.082192  | 80.821918 |
| Unknown                         | 0.335121  | 95.710456 | 3.954424  |
| iPad                            | 7.207207  | 47.429783 | 45.363010 |
| iPad or iPhone App              | 13.432836 | 2.132196  | 84.434968 |
| iPhone                          | 11.542390 | 64.555669 | 23.901941 |

```
In [61]: # Calculate the number of rows and columns for the subplots
         nrows = (len(percentage df) + 1) // 2
         ncols = 2
         # Define colors for each sentiment value
         colors = {'Positive': 'green', 'Negative': 'red', 'Neutral': 'blue'}
         # Create a grid of subplots with adjusted size
         fig, axes = plt.subplots(nrows, ncols, figsize=(12, 18))
         # Flatten the axes array to iterate over it
         axes = axes.flatten()
         # Loop over each brand and plot the bar graph on a separate subplot
         for i, brand in enumerate(percentage df.index):
             percentages = percentage_df.loc[brand]
             percentages.plot.bar(ax=axes[i], color=[colors.get(sentiment, 'gra
             axes[i].set_title(f"Sentiment Distribution for {brand}")
             axes[i].set xlabel("Sentiment")
             axes[i].set_ylabel("Percentage")
         # Remove any extra subplots
         if len(percentage df) < nrows * ncols:</pre>
             for j in range(len(percentage df), nrows * ncols):
                 fig.delaxes(axes[j])
         # Adjust the spacing between subplots
         plt.tight_layout()
         # Show the plot
         plt.show()
```





Upon inspecting these graphs, while it's less likely to come across a negative tweet than a positive/neutral tweet for all brands and products, it would appear that tweets directed at the iPhone are the most contentious. Tweets about Google in general and the Android are not overwhelmingly positive either.

## In [62]: df.head()

## Out[62]:

|   | tweet                                                                                                                                                              | brand_or_product      | sentiment | tweet_tokenized                                                                                                                                                                          | stop_tweet_tokenized                                                                                                                 | sto           |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 0 | .@wesley83 i have<br>a 3g iphone. after 3<br>hrs tweeting at<br>#rise_austin, it was<br>dead! i need to<br>upgrade. plugin<br>stations at #sxsw.                   | iPhone                | Negative  | [wesley83, have, 3g, iphone, after, hrs, tweeting, at, rise_austin, it, was, dead, need, to, upgrade, plugin, stations, at, sxsw]                                                        | [wesley83, 3g, iphone,<br>hrs, tweeting,<br>rise_austin, dead,<br>need, upgrade, plugin,<br>stations, sxsw]                          | [w<br>hr<br>c |
| 1 | @jessedee know<br>about @fludapp?<br>awesome<br>ipad/iphone app<br>that you'll likely<br>appreciate for its<br>design. also,<br>they're giving free<br>ts at #sxsw | iPad or iPhone<br>App | Positive  | [jessedee, know,<br>about, fludapp,<br>awesome, ipad,<br>iphone, app,<br>that, you, II,<br>likely, appreciate,<br>for, its, design,<br>also, they, re,<br>giving, free, ts,<br>at, sxsw] | [jessedee, know,<br>fludapp, awesome,<br>ipad, iphone, app,<br>likely, appreciate,<br>design, also, giving,<br>free, ts, sxsw]       | ip;<br>ar     |
| 2 | @swonderlin can<br>not wait for #ipad 2<br>also. they should<br>sale them down at<br>#sxsw.                                                                        | iPad                  | Positive  | [swonderlin, can,<br>not, wait, for,<br>ipad, also, they,<br>should, sale,<br>them, down, at,<br>sxsw]                                                                                   | [swonderlin, wait, ipad, also, sale, sxsw]                                                                                           |               |
| 3 | @sxsw i hope this<br>year's festival isn't<br>as crashy as this<br>year's iphone app.<br>#sxsw                                                                     | iPad or iPhone<br>App | Negative  | [sxsw, hope, this, year, festival, isn, as, crashy, as, this, year, iphone, app, sxsw]                                                                                                   | [sxsw, hope, year,<br>festival, crashy, year,<br>iphone, app, sxsw]                                                                  |               |
| 4 | @sxtxstate great<br>stuff on fri #sxsw:<br>marissa mayer<br>(google), tim o'reilly<br>(tech<br>books/conferences)<br>& matt<br>mullenweg<br>(wordpress)            | Google                | Positive  | [sxtxstate, great, stuff, on, fri, sxsw, marissa, mayer, google, tim, reilly, tech, books, conferences, amp, matt, mullenweg, wordpress]                                                 | [sxtxstate, great, stuff, fri, sxsw, marissa, mayer, google, tim, reilly, tech, books, conferences, amp, matt, mullenweg, wordpress] | gc<br>gc      |

```
# Loop over each brand and sentiment
for i, brand in enumerate(percentage_df.index):
    for j, sentiment in enumerate(percentage_df.columns):
        # Filter the data for the specific brand and sentiment
        filtered data = df[(df['brand or product'] == brand) & (df['se
        # Concatenate all the text data
        text = ' '.join(filtered_data['brandless_stop_tweet_stemmed'].
        # Generate the word cloud
       wordcloud = WordCloud().generate(text)
       # Plot the word cloud on the corresponding subplot
        axes[i, j].imshow(wordcloud, interpolation='bilinear')
       axes[i, j].set_title(f"{sentiment} Sentiment - {brand}")
        axes[i, j].axis('off')
# Remove any extra subplots
if len(percentage_df) < nrows * ncols:</pre>
    for i in range(len(percentage df), nrows):
        for j in range(ncols):
            fig.delaxes(axes[i, j])
# Adjust the spacing between subplots
plt.tight_layout()
# Show the plot
plt.show()
```

Negative Sentiment - Apple

austin savipadi ine.

compani america

popi store

noth longe days

flascistic compani

















This provides a lot more insight into keywords that arise for each product by sentiment.

## Model

This next section focuses on developing a classification model that can predict the sentiment of a tweet based on its text.

## **Binary Classification**

First thing we do is extract the 'Positive' and 'Negative' rows to create a simple binary classification model.

```
In [64]: #extract 'Positive' and 'Negative' rows into a new df
binary_df = df[df['sentiment'] != 'Neutral']

In [65]: #convert 'sentiment' values to binary code
binary_df['sentiment'] = binary_df['sentiment'].replace({'Negative': 0 'Positive': 1})

#split the data into a train test split
X = binary_df['tweet']
y = binary_df['sentiment']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
```

```
In [66]: #instantiate tokenizer function
tokenizer = TweetTokenizer(preserve_case=False, strip_handles=True)
```

```
In [67]: # Create the Pipeline Naive Bayes model
         clf_pipe = Pipeline([
                 ('vectorizer', TfidfVectorizer(tokenizer=tokenizer.tokenize,
                                                stop words=stopwords list)),
                 ('clf', MultinomialNB(alpha=1.0))])
         #Fit Model
         clf_pipe.fit(X_train, y_train)
         # Make predictions on the test set
         y_pred = clf_pipe.predict(X_test)
         # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         f1 = f1_score(y_test, y_pred)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1-Score:", f1)
```

Accuracy: 0.8601694915254238 Precision: 0.8587731811697575

Recall: 1.0

F1-Score: 0.9240214888718342

The classification report scores seem pretty good! Next we plotted a confusion matrix of our model's results.

In [68]: # Calculate the confusion matrix
cm = confusion\_matrix(y\_test, y\_pred)

# Visualize the confusion matrix
plot\_confusion\_matrix(clf\_pipe, X\_test, y\_test, display\_labels=['Negat plt.show()



In [69]: #check the 'sentiment' values for imbalance inspection
binary\_df['sentiment'].value\_counts(normalize=True)

Out[69]: 1 0.83922

0.16078

Name: sentiment, dtype: float64

Upon further review, the model is predicting nearly every tweet as having a positive sentiment. Due to a class imbalance that overwhelmingly favors the 'Positive' value for the 'sentiment' column, our metrics are misleading. We need to address the class imbalance.

```
In [70]: # Create the Pipeline Naive Bayes model with undersampler added
         clf_pipe = Pipeline([
                 ('vectorizer', TfidfVectorizer(tokenizer=tokenizer.tokenize,
                                                stop words=stopwords list)),
                 ('undersampler', RandomUnderSampler(random_state=42)),
                 ('clf', MultinomialNB(alpha=1.0))])
         #Fit Model
         clf_pipe.fit(X_train, y_train)
         # Make predictions on the test set
         y_pred = clf_pipe.predict(X_test)
         # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         f1 = f1_score(y_test, y_pred)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1-Score:", f1)
```

Accuracy: 0.769774011299435 Precision: 0.9544513457556936 Recall: 0.7657807308970099 F1-Score: 0.8497695852534562

Accuracy and Recall have dropped, but Precision has risen and F1 only experience a slight dip. Let's see how our confusion matrix looks now, as well as a classification report.

In [71]: # Calculate the confusion matrix
cm = confusion\_matrix(y\_test, y\_pred)

# Visualize the confusion matrix
plot\_confusion\_matrix(clf\_pipe, X\_test, y\_test, display\_labels=['Negat plt.show()



In [72]: #create classification report
report = classification\_report(y\_test, y\_pred)

#print classification report
print(report)

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.37<br>0.95 | 0.79<br>0.77 | 0.51<br>0.85         | 106<br>602        |
| accuracy<br>macro avg<br>weighted avg | 0.66<br>0.87 | 0.78<br>0.77 | 0.77<br>0.68<br>0.80 | 708<br>708<br>708 |

It still has a tough time with negative sentiment, but these are much better results!

## **HyperParameter Tuning**

Next we tuned our model with GridSearchCV.

```
In [73]: |#define parameter grid
         param_grid = {
             'clf__alpha': [0.01, 0.05, 0.1, 0.5, 1],
             'clf fit prior': [True, False]
         }
         #Create a GridSearchCV object
         grid search = GridSearchCV(estimator=clf pipe, param grid=param grid,
         #Fit the GridSearchCV object to data
         grid search.fit(X train, y train)
         #Print the best hyperparameters and best score
         print("Best Hyperparameters: ", grid_search.best_params_)
         print("Best Score: ", grid_search.best_score_)
         #Print the best model trained on the entire dataset
         best_model = grid_search.best_estimator_
         print("Best Model: ", best_model)
         Best Hyperparameters: {'clf_alpha': 1, 'clf_fit_prior': True}
         Best Score: 0.7414474545216594
         Best Model: Pipeline(steps=[('vectorizer',
                          TfidfVectorizer(stop words=['i', 'me', 'my', 'mysel
         f', 'we',
                                                       'our', 'ours', 'ourselve
         s', 'you',
                                                       "you're", "you've", "yo
         u'll",
                                                       "you'd", 'your', 'your
         s',
                                                       'yourself', 'yourselve
         s', 'he',
                                                       'him', 'his', 'himself',
         'she',
                                                       "she's", 'her', 'hers',
         'herself',
                                                       'it', "it's", 'its', 'it
         self', ...].
                                           tokenizer=<bound method TweetTokeniz
         er.tokenize of <nltk.tokenize.casual.TweetTokenizer object at 0x7face
         f139f70>>)),
                          ('undersampler', RandomUnderSampler(random state=4
         2)),
                         ('clf', MultinomialNB(alpha=1))])
```

Our gridsearch resulted in default parameters, so no need for hypertuning. Let's try a more complex model for comparison.

## **Random Forest**

Our next model for comparison is a Random Forest model.

```
In [74]: #create random forest pipeline model
         forest_pipe = Pipeline([
                 ('vectorizer', TfidfVectorizer(stop words=stopwords list,
                                                 tokenizer=tokenizer.tokenize)),
                 ('clf', RandomForestClassifier(class weight='balanced', random
         #fit model onto data
         forest_pipe.fit(X_train, y_train)
         #predict results
         y_pred = forest_pipe.predict(X_test)
         # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         f1 = f1_score(y_test, y_pred)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1-Score:", f1)
```

Accuracy: 0.8940677966101694 Precision: 0.8926974664679582 Recall: 0.9950166112956811 F1-Score: 0.9410840534171248

In [75]: # Calculate the confusion matrix
cm = confusion\_matrix(y\_test, y\_pred)

# Visualize the confusion matrix
plot\_confusion\_matrix(forest\_pipe, X\_test, y\_test, display\_labels=['Neplt.show()



In [76]: #create classification report
 report = classification\_report(y\_test, y\_pred)

#print classification report
 print(report)

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.92<br>0.89 | 0.32<br>1.00 | 0.48<br>0.94         | 106<br>602        |
| accuracy<br>macro avg<br>weighted avg | 0.91<br>0.90 | 0.66<br>0.89 | 0.89<br>0.71<br>0.87 | 708<br>708<br>708 |

Similar to our Naive Bayes model, our baseline Random Forest model is doing a good job of predicting positive sentiment, but struggling with negative predictions. Now we'll proceed to getting the best tuning, as well as add in our undersampler.

```
In [77]: |#define parameter grid
         forest_param_grid = {
             'clf__n_estimators': [100, 200, 300],
             'clf__criterion': ['gini', 'entropy'],
             'clf max depth': [None, 5, 10]
         }
         #Create a GridSearchCV object
         grid_search = GridSearchCV(estimator=forest_pipe, param_grid=forest_pa
         #Fit the GridSearchCV object to data
         grid search.fit(X train, y train)
         #Print the best hyperparameters and best score
         print("Best Hyperparameters: ", grid_search.best_params_)
         print("Best Score: ", grid_search.best_score_)
         #Print the best model trained on the entire dataset
         best model = grid search.best estimator
         print("Best Model: ", best_model)
         Best Hyperparameters: {'clf__criterion': 'gini', 'clf__max_depth': N
         one, 'clf__n_estimators': 300}
         Best Score: 0.8675366599983796
         Best Model: Pipeline(steps=[('vectorizer',
                          TfidfVectorizer(stop words=['i', 'me', 'my', 'mysel
         f', 'we',
                                                       'our', 'ours', 'ourselve
         s', 'you',
                                                       "you're", "you've", "yo
         u'll",
                                                       "you'd", 'your', 'your
         s',
                                                       'yourself', 'yourselve
         s', 'he',
                                                       'him', 'his', 'himself',
         'she',
                                                       "she's", 'her', 'hers',
         'herself'.
                                                       'it', "it's", 'its', 'it
         self'. ...l.
                                           tokenizer=<bound method TweetTokeniz
         er.tokenize of <nltk.tokenize.casual.TweetTokenizer object at 0x7facf
         0ea8fd0>>)).
                          ('clf',
                          RandomForestClassifier(class weight='balanced',
                                                  n estimators=300, random stat
         e=42)))))
```

Hypertuning the random forest model results in default settings, so there's no need for tuning the model but we'll add in our sampler.

```
In [78]: #create random forest pipeline model
         forest_pipe = Pipeline([
                 ('vectorizer', TfidfVectorizer(stop words=stopwords list,
                                                 tokenizer=tokenizer.tokenize)).
                 ('undersampler', RandomUnderSampler(random_state=42)),
                 ('clf', RandomForestClassifier(class_weight='balanced', random
         #fit model onto data
         forest pipe.fit(X train, y train)
         #predict results
         y_pred = forest_pipe.predict(X_test)
         # Evaluate the model
         accuracy = accuracy score(y test, y pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         f1 = f1_score(y_test, y_pred)
         print("Accuracy:", accuracy)
         print("Precision:", precision)
         print("Recall:", recall)
         print("F1-Score:", f1)
```

In [79]: # Calculate the confusion matrix
cm = confusion\_matrix(y\_test, y\_pred)

# Visualize the confusion matrix
plot\_confusion\_matrix(forest\_pipe, X\_test, y\_test, display\_labels=['Neplt.show()



In [80]: #create classification report
report = classification\_report(y\_test, y\_pred)

#print classification report
print(report)

| support           | f1-score             | recall       | precision    |                                       |
|-------------------|----------------------|--------------|--------------|---------------------------------------|
| 106<br>602        | 0.43<br>0.79         | 0.77<br>0.68 | 0.30<br>0.94 | 0<br>1                                |
| 708<br>708<br>708 | 0.69<br>0.61<br>0.74 | 0.73<br>0.69 | 0.62<br>0.85 | accuracy<br>macro avg<br>weighted avg |

## **Final Model**

After comparing the two models, both baseline and tuned, it appears that our hypertuned Naive Bayes model performs the strongest for our task of binary classification.

- Higher correct number of negative and positive predictions.
- Higher macro precision, recall, and f1 scores, as well as accuracy.
- Higher precision and recall scores for both negative and positive predictions.

## **Multiclass Classification**

Our final section of machine learning will deal with building a model that can not only predict 'Positive' and 'Negative' sentiment, but 'Neutral' as well.

```
In [81]: #create a copy of the original dataframe
         model_df = df_copy()
         #check our three values are present
         print(model_df['sentiment'].unique())
         ['Negative' 'Positive' 'Neutral']
In [82]: #numerize sentiment values
         model_df['sentiment'] = model_df['sentiment'].replace({
                                                                   'Negative': 0,
                                                                   'Positive': 1,
                                                                   'Neutral': 2})
         #check for imbalance
         print(model_df['sentiment'].value_counts(normalize=True))
         2
              0.602984
         1
              0.333184
              0.063832
         Name: sentiment, dtype: float64
```

Now we're already aware that we will have an imbalance problem with our modeling that we'll need to address.

```
In [83]: #train test split
X = model_df['tweet']
y = model_df['sentiment']

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state
```

## **Multinomial Model**

```
In [85]: #create classification report
report = classification_report(y_test, y_pred)

#print classification report
print(report)
```

|                                       | precision            | recall               | fl-score             | support              |
|---------------------------------------|----------------------|----------------------|----------------------|----------------------|
| 0<br>1<br>2                           | 0.23<br>0.47<br>0.75 | 0.67<br>0.56<br>0.50 | 0.34<br>0.51<br>0.60 | 155<br>739<br>1335   |
| accuracy<br>macro avg<br>weighted avg | 0.48<br>0.62         | 0.58<br>0.53         | 0.53<br>0.48<br>0.55 | 2229<br>2229<br>2229 |

In [86]: # Calculate the confusion matrix cm = confusion\_matrix(y\_test, y\_pred)

# Visualize the confusion matrix

plot\_confusion\_matrix(multi\_clf\_pipe, X\_test, y\_test, display\_labels=[ plt.show()



```
In [87]: |#define parameter grid
         param_grid = {
             'clf__alpha': [0.01, 0.05, 0.1, 0.5, 1],
             'clf fit prior': [True, False]
         }
         #Create a GridSearchCV object
         grid search = GridSearchCV(estimator=multi clf pipe, param grid=param
         #Fit the GridSearchCV object to data
         grid search.fit(X train, y train)
         #Print the best hyperparameters and best score
         print("Best Hyperparameters: ", grid_search.best_params_)
         print("Best Score: ", grid_search.best_score_)
         #Print the best model trained on the entire dataset
         best_model = grid_search.best_estimator_
         print("Best Model: ", best_model)
         Best Hyperparameters: {'clf_alpha': 1, 'clf_fit_prior': True}
         Best Score: 0.4978309648466716
         Best Model: Pipeline(steps=[('vectorizer',
                          TfidfVectorizer(stop words=['i', 'me', 'my', 'mysel
         f', 'we',
                                                       'our', 'ours', 'ourselve
         s', 'you',
                                                       "you're", "you've", "yo
         u'll",
                                                       "you'd", 'your', 'your
         s',
                                                       'yourself', 'yourselve
         s', 'he',
                                                       'him', 'his', 'himself',
         'she',
                                                       "she's", 'her', 'hers',
         'herself',
                                                       'it', "it's", 'its', 'it
         self', ...],
                                           tokenizer=<bound method TweetTokeniz
         er.tokenize of <nltk.tokenize.casual.TweetTokenizer object at 0x7face
         e6808b0>>)),
                         ('undersampler', RandomUnderSampler(random state=4
         2)),
                         ('clf', MultinomialNB(alpha=1))])
```

It appears our MultinomialNB does pretty well across the board, and our gridsearch results in default parameters, so there is no need for hypertuning. The model's biggest struggle is differentiating between positive and neutral sentiment in tweets.

## **Multiclass Random Forest**

```
In [88]: #create random forest pipeline model
         multi_forest_pipe = Pipeline([
                  ('vectorizer', TfidfVectorizer(stop_words=stopwords_list,
                                                  tokenizer=tokenizer.tokenize)).
                  ('clf', RandomForestClassifier(class_weight='balanced', random
         #fit model onto data
         multi_forest_pipe.fit(X_train, y_train)
         #predict results
         y_pred = multi_forest_pipe.predict(X_test)
In [89]: |#create classification report
         report = classification report(y test, y pred)
         #print classification report
         print(report)
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.66
                                       0.20
                                                  0.31
                                                             155
                     1
                             0.59
                                       0.49
                                                  0.54
                                                             739
                     2
                             0.70
                                       0.83
                                                  0.76
                                                            1335
                                                  0.67
                                                            2229
             accuracy
                                       0.51
                                                  0.53
                                                            2229
            macro avg
                             0.65
         weighted avg
                             0.66
                                       0.67
                                                  0.66
                                                            2229
```

# In [90]: # Calculate the confusion matrix cm = confusion\_matrix(y\_test, y\_pred) # Visualize the confusion matrix plot\_confusion\_matrix(multi\_forest\_pipe, X\_test, y\_test, display\_label plt.show()



Our Random Forest baseline performs much worse than our Naive Bayes. Let's tune it.

```
In [91]: |#define parameter grid
         forest_param_grid = {
             'clf__n_estimators': [100, 200, 300],
             'clf__criterion': ['gini', 'entropy'],
             'clf max depth': [None, 5, 10]
         }
         #Create a GridSearchCV object
         grid_search = GridSearchCV(estimator=multi_forest_pipe, param_grid=for
         #Fit the GridSearchCV object to data
         grid_search.fit(X_train, y_train)
         #Print the best hyperparameters and best score
         print("Best Hyperparameters: ", grid_search.best_params_)
         print("Best Score: ", grid_search.best_score_)
         #Print the best model trained on the entire dataset
         best model = grid search.best estimator
         print("Best Model: ", best_model)
         Best Hyperparameters: {'clf__criterion': 'entropy', 'clf__max_dept
         h': None, 'clf n estimators': 300}
         Best Score: 0.6768885564697082
         Best Model: Pipeline(steps=[('vectorizer',
                          TfidfVectorizer(stop words=['i', 'me', 'my', 'mysel
         f', 'we',
                                                       'our', 'ours', 'ourselve
         s', 'you',
                                                       "you're", "you've", "yo
         u'll",
                                                       "you'd", 'your', 'your
         s',
                                                       'yourself', 'yourselve
         s', 'he',
                                                       'him', 'his', 'himself',
         'she',
                                                       "she's", 'her', 'hers',
         'herself'.
                                                       'it', "it's", 'its', 'it
         self', ...],
                                           tokenizer=<bound method TweetTokeniz
         er.tokenize of <nltk.tokenize.casual.TweetTokenizer object at 0x7facf
         0eba370>>)),
                          ('clf',
                          RandomForestClassifier(class weight='balanced',
                                                  criterion='entropy', n estima
         tors=300,
                                                  random state=42))])
```

Now we run the tuned model and add in the undersampler.

```
In [93]: #create classification report
report = classification_report(y_test, y_pred)

#print classification report
print(report)
```

|                       | precision            | recall               | f1-score             | support            |
|-----------------------|----------------------|----------------------|----------------------|--------------------|
| 0<br>1<br>2           | 0.23<br>0.53<br>0.73 | 0.63<br>0.46<br>0.63 | 0.34<br>0.49<br>0.67 | 155<br>739<br>1335 |
| accuracy<br>macro avg | <b>0.</b> 49         | 0.57                 | 0.57<br>0.50         | 2229<br>2229       |
| eighted avg           | 0.62                 | 0.57                 | 0.59                 | 2229               |

7/11/24, 5:49 PM notebook - Jupyter Notebook

```
In [94]: # Calculate the confusion matrix
         cm = confusion_matrix(y_test, y_pred)
         # Visualize the confusion matrix
         plot_confusion_matrix(tuned_forest_pipe, X_test, y_test, display_label
         plt.show()
```



## **Final Model**

It appears that once again, our Naive Bayes model does the best performance for multiclass prediction as well.

- Higher number of correct predictions of positive and negative sentiment.
- · Higher macro recall score.
- Significantly higher recall score on negative predictions, while all scores are in line or higher than our Random Forest model.

# Interpretation

Our next section deals with interpreting our results.

```
In [95]: #create function to plot feature importance
         def plot_importance(clf_pipe, n_features, title):
             # Extract feature names
             vectorizer = clf pipe['vectorizer']
             feature_names = vectorizer.get_feature_names()
             # Get the MultinomialNB classifier from the pipeline
             clf = clf_pipe['clf']
             # Get the coefficients
             coefs = clf.coef_[0]
             #Get the Importance
             importance = math.e**(abs(coefs))
             # Create a dataframe
             feature_df = pd.DataFrame({'Word': feature_names, 'Coefficient': d
             # Sort feature importance
             feature_importance = feature_df.sort_values(by='Coefficient', asce
             # Plot the feature importance
             plt.figure(figsize=(10, 6))
             sns.barplot(x='Coefficient', y='Word', data=feature_importance)
             plt.xlabel('Coefficient')
             plt.ylabel('Word')
             plt.title(f'Top {n features} Feature Coefficients for {title}')
             plt.show()
```

In [96]: plot\_importance(clf\_pipe, 20, 'Binary Undersampled Naive Bayes Model')



As one might expect, certain words like "great" and "party" pushed the model towards a positive prediction. As witnessed earlier, the ipad2 continues to have a positive sentiment attached to it, as well as mentions of the pop-up store.

In [97]: plot\_importance(multi\_clf\_pipe, 20, 'Multiclass Undersampled Naive Bay

/Users/Chris/anaconda3/envs/learn-env/lib/python3.8/site-packages/mat plotlib/backends/backend\_agg.py:238: RuntimeWarning: Glyph 137 missin g from current font.

font.set\_text(s, 0.0, flags=flags)

/Users/Chris/anaconda3/envs/learn-env/lib/python3.8/site-packages/mat plotlib/backends/backend\_agg.py:201: RuntimeWarning: Glyph 137 missin g from current font.

font.set\_text(s, 0, flags=flags)



In our multiclass model, the more impactful words include "fascist", "headaches", and "circles", words that the company should be on the lookout for in tweets as they may suggest person behind those tweets is more passionately opinionated.

# **Conclusions & Recommendations**

# **Conclusions**

## 1. Apple vs Google

• Apple has more negative tweets than Google (8.8% to 5.5%), but also has significantly more positive tweets (44% to 30%).

- Apps are very popular for both companies: 89% positive tweets about Android apps, 84% positive tweets about iPhone/iPad apps
- The iPhone has more negative tweets than the Android: 12% to 3%
- General services related to Apple are significantly more popular than Google: 91% to 80%

# 2. Apple Positive vs Negative Tweets

- There was a lot of enthusiasm for the pop-up store in downtown Austin.
- There was a lot of enthusiasm about the launch of the iPad2, that seems to have been very successful.
- The battery of the iPhone and the design of the iPad are frequently mentioned in negative tweets.
- The term "fascist" is used in reference to Apple in some obviously negative tweets.

# 3. Google Positive vs Negative Tweets

- Marissa Mayer is referenced in a positive light in tweets.
- Google's "Circle" is mentioned frequently, there's seemingly a lot of energy surrounding this from each direction.
- Some users are critical of the cost of Google products, such as Google TV.

# Recommendations

# 1. Apple

- Improve upon the design of the iPad.
- The pop-up store was very successful, look into more strategies similar to this.

# 2. Google

 Marissa Mayer is a respected individual in majority of social media activity, she should be regarded as such.

• Look at ways to cut down on the prices of higher end tech products.

# **Next Steps**

- Gather more data. We only had about 9,000 tweets in total, with a large chunk of them being marked neutral and making for a smaller sample size for our binary classifier.
- Harness more negative tweets. The imbalance in which there are thousands more neutral tweets than negative tweets really don't help us with making assessments.
- Continue to tweak the models and explore different types of models not used here.