```
In [ ]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In []: # read csv into dataframe, categorical data already in encoded labels
        df = pd.read csv('data.csv')
        df.head(5)
Out[]:
           Purchase SUS Duration Gender ASR_Error Intent_Error
                 1
                     84
                             254
                                      0
                                                3
                                                           2
        0
        1
                 0
                     58
                             247
                                      0
                                                6
                                                           9
        2
                 0
                     56
                             125
                                      1
                                                6
                                                           8
        3
                              22
                                                            7
                     55
                                      0
                                                11
                                                2
        4
                 1
                     95
                             262
                                      0
                                                           3
In []: # checking for missing values
        df.isna().sum()
Out[]: Purchase
                         0
        SUS
                         0
        Duration
                         0
        Gender
        ASR Error
                         0
        Intent_Error
                         0
        dtype: int64
In [ ]: # pearson: standard correlation coefficient
        df.corr(method='pearson')['SUS'].sort_values()
Out[]: Intent_Error
                       -0.693675
        ASR_Error
                        -0.662405
        Duration
                       -0.006631
        Gender
                        0.111523
        Purchase
                        0.661931
        SUS
                         1.000000
        Name: SUS, dtype: float64
In [ ]: # looking at SUS distribution
        sns.histplot(data=df['SUS'])
        plt.show()
```


In []: # plot distribution of SUS for purchasers and non-purchasers

fig = plt.figure(figsize=(16,9))

ax1 = fig.add_subplot(121)
sns.distplot(df.loc[df['Purchase'] == 1]['SUS'], color='c')
ax1.set_title('Distribution of SUS for purchasers')

ax2 = fig.add_subplot(122)
sns.distplot(df.loc[df['Purchase'] == 0]['SUS'], color='b')
ax2.set_title('Distribution of SUS for non-purchasers')

plt.show()

/opt/anaconda3/envs/env/lib/python3.11/site-packages/seaborn/distributions. py:2619: FutureWarning: `distplot` is a deprecated function and will be rem oved in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-leve l function for histograms).

warnings.warn(msg, FutureWarning)

/opt/anaconda3/envs/env/lib/python3.11/site-packages/seaborn/distributions. py:2619: FutureWarning: `distplot` is a deprecated function and will be rem oved in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-leve l function for histograms).

warnings.warn(msg, FutureWarning)

In []: # compare SUS between genders of purchases
sns.boxplot(x="Gender", y="SUS", hue="Purchase", data=df, palette='bright')
plt.show() # 0-Female, 1-Male

In []: # use Ordinary Least Squares (OLS) Regression to find significant variables
import statsmodels.api as sm

```
y = df['SUS'] # dependent variable
x = df.drop(columns='SUS') # predictor variables
#add constant to predictor variables
x = sm.add_constant(x)

model = sm.OLS(y, x).fit()
print(model.summary());
```

OLS Regression Results

=======================================		========	=======			=====
=== Dep. Variable:		SIIS	R-squared:			0.
593		303	K-Squareu:			0.
Model: 571		0LS	Adj. R-squared:		0.	
Method: Le		east Squares F—statistic:		stic:		2
-17			Prob (F-statistic):		5.25e	
No. Observations:		100	AIC:			73
<pre>6.8 Df Residuals:</pre>		94	BIC:			75
2.4 Df Model:		5				
Covariance Type:						
=======================================	=======	========	=======	:=======	=======	=====
0.0751	coef	std err	t	P> t	[0.025	
0.975]						
 const	03 0282	5.541	16 788	0.000	82.026	10
4.031	93.0202	3.341	10.700	0.000	02.020	10
Purchase 8.641	1.3412	3.676	0.365	0.716	-5.958	
Duration	-0.0002	0.010	-0.025	0.980	-0.020	
0.019 Gender	0.8367	1.971	0.425	0.672	-3.076	
4.749						
ASR_Error 0.629	-1.4254	0.401	-3.553	0.001	-2.222	_
Intent_Error 1.137	-2.0092	0.439	-4.572	0.000	-2.882	-
=======================================		========				=====
Omnibus:		6.969	.969 Durbin-Watson:			2.
<pre>023 Prob(Omnibus):</pre>		0.031		Jarque-Bera (JB):		8.
115 Skew:		a 270		Prob(JB):		0.0
173		-0.378				0.0
Kurtosis: +03		4.173	Cond. No.			1.27e
=======================================	=======	========	=======	========	======	=====

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.27e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

```
In [ ]: # Regression Analysis
        from sklearn.linear model import LinearRegression
        from sklearn.model selection import train test split
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.metrics import r2_score,mean_squared_error
In []: x = df.drop(columns='SUS')
        y = df['SUS']
        x_train, x_test, y_train, y_test = train_test_split(x, y)
In [ ]: # Lines, linear model prediction
        lr = LinearRegression().fit(x_train,y_train)
        y_train_pred = lr.predict(x_train)
        y_test_pred = lr.predict(x_test)
        print("The R squared score of linear regression model is: ", lr.score(x_test
        The R squared score of linear regression model is: 0.37048508817295345
In [ ]: # Ouadratic
        quad = PolynomialFeatures (degree = 2)
        x_quad = quad.fit_transform(x)
        X_train,X_test,Y_train,Y_test = train_test_split(x_quad,y, random_state = 0)
        plr = LinearRegression().fit(X train,Y train)
        Y_train_pred = plr.predict(X_train)
        Y_test_pred = plr.predict(X_test)
        print("The R square score of 2-order polynomial regression model is: ", plr.
        The R square score of 2-order polynomial regression model is: 0.5220498503
        429807
```