Practical No. 2

PROGRAM:

```
#Create a simulator object
set ns [new Simulator]
#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf
#Define a 'finish' procedure
proc finish {} {
  global ns nf
  $ns flush-trace
  #Close the trace file
  close $nf
  #Executenam on the trace file
  exec nam out.nam &
  exit0
}
#Create five nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
#Create links between the nodes
$ns duplex-link $n0 $n1 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms DropTail
```

\$ns duplex-link \$n2 \$n3 1Mb 10ms DropTail \$ns duplex-link \$n3 \$n4 1Mb 10ms DropTail \$ns duplex-link \$n4 \$n5 1Mb 10ms DropTail \$ns duplex-link \$n5 \$n0 1Mb 10ms DropTail

#Create a TCP agent and attach it to node n0
set tcp0 [new Agent/TCP]
\$tcp0 set class_ 1
\$ns attach-agent \$n1 \$tcp0
#Create a TCP Sink agent (a traffic sink) for TCP and attach it to node n3
set sink0 [new Agent/TCPSink]
\$ns attach-agent \$n3 \$sink0
#Connect the traffic sources with the traffic sink
\$ns connect \$tcp0 \$sink0

Create a CBR traffic source and attach it to tcp0 set cbr0 [new Application/Traffic/CBR] \$cbr0 set packetSize 500 \$cbr0 set interval_ 0.01 \$cbr0 attach-agent \$tcp0

#Schedule events for the CBR agents \$ns at 0.5 "\$cbr0 start" \$ns at 4.5 "\$cbr0 stop"

#Call the finish procedure after 5 seconds of simulation time \$ns at 5.0 "finish"

#Run the simulation \$ns run

Practical No. 7

Filename: test5.tcl

#create links between the nodes

\$ns duplex-link \$n0 \$n2 2Mb 10ms DropTail

\$ns duplex-link \$n1 \$n2 2Mb 10ms DropTail

\$ns simplex-link \$n2 \$n3 0.3Mb 100ms DropTail

\$ns simplex-link \$n3 \$n2 0.3Mb 100ms DropTail

\$ns duplex-link \$n3 \$n4 0.5Mb 40ms DropTail

\$ns duplex-link \$n3 \$n5 0.5Mb 30ms DropTail

#Set Queue Size of link (n2-n3) to 10

\$ns queue-limit \$n2 \$n3 20

#Setup a TCP connection

set tcp [new Agent/TCP/Newreno]

\$ns attach-agent \$n0 \$tcp

set sink [new Agent/TCPSink/DelAck]

\$ns attach-agent \$n4 \$sink

\$ns connect \$tcp \$sink

\$tcp set fid_ 1

\$tcp set window_ 8000

\$tcp set packetSize_ 552

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

\$ftp attach-agent \$tcp

\$ftp set type_FTP

```
#Setup a UDP connection
set udp [new Agent/UDP]
$ns attach-agent $n1 $udp
set null [new Agent/Null]
$ns attach-agent $n5 $null
$ns connect $udp $null
$udp set fid_ 2
#Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp
$cbr set type_ CBR
$cbr set packet_size_ 1000
$cbr set rate_ 0.01mb
$cbr set random_ false
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 10.0 "$ftp stop"
$ns at 10.5 "$cbr stop"
# ------#
proc finish {
        global ns nf nt
        $ns flush-trace
        close $nf
        puts "running nam..."
        exec nam Tcpred3.nam &
        exit 0
       }
#Calling finish procedure
$ns at 15.0 "finish"
$ns run
```

Practical No. 8

Aim: To create scenario and study the performance of CSMA / CD protocol through simulation.

CSMA/CD

```
set ns [new Simulator]
#Define different colors for data flows (for NAM)
$ns color 1 Blue
$ns color 2 Red
#Open the Trace files
set file1 [open out.tr w]
set winfile [open WinFile w]
$ns trace-all $file1
#Open the NAM trace file
set file2 [open out.nam w]
$ns namtrace-all $file2
#Define a 'finish' procedure
proc finish {} {
global ns file1 file2
$ns flush-trace
close $file1
close $file2
exec nam out.nam &
exit 0
#Create six nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
$n1 color red
$n1 shape box
```

#Create links between the nodes

\$ns duplex-link \$n0 \$n2 2Mb 10ms DropTail

\$ns duplex-link \$n1 \$n2 2Mb 10ms DropTail

\$ns simplex-link \$n2 \$n3 0.3Mb 100ms DropTail

\$ns simplex-link \$n3 \$n2 0.3Mb 100ms DropTail

set lan [\$ns newLan "\$n3 \$n4 \$n5" 0.5Mb 40ms LL Queue/DropTail MAC/Csma/Cd Channel]

Setup a TCP connection

set tcp [new Agent/TCP/Newreno]

\$ns attach-agent \$n0 \$tcp

set sink [new Agent/TCPSink/DelAck]

\$ns attach-agent \$n4 \$sink

\$ns connect \$tcp \$sink

\$tcp set fid 1

\$tcp set window 8000

\$tcp set packetSize 552

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

\$ftp attach-agent \$tcp

\$ftp set type_FTP

#Setup a UDP connection

set udp [new Agent/UDP]

\$ns attach-agent \$n1 \$udp

set null [new Agent/Null]

\$ns attach-agent \$n5 \$null

\$ns connect \$udp \$null

\$udp set fid_ 2

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

\$cbr attach-agent \$udp

\$cbr set type_ CBR

\$cbr set packet_size_ 1000

```
$cbr set rate 0.01mb
$cbr set random false
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 124.0 "$ftp stop"
$ns at 124.5 "$cbr stop"
# next procedure gets two arguments: the name of the
# tcp source node, will be called here "tcp",
# and the name of output file.
proc plotWindow {tcpSource file} {
global ns
set time 0.1
set now [$ns now]
set cwnd [$tcpSource set cwnd ]
set wnd [$tcpSource set window ]
puts $file "$now $cwnd"
$ns at [expr $now+$time] "plotWindow $tcpSource $file" }
$ns at 0.1 "plotWindow $tcp $winfile"
$ns at 5 "$ns trace-annotate \"packet drop\""
# PPP
$ns at 125.0 "finish"
$ns run
```