```
In [1]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: df = pd.read_csv('IRIS (1).csv')
In [3]: df.head()
Out[3]:
           sepal_length sepal_width petal_length petal_width
                                                             species
         0
                    5.1
                               3.5
                                           1.4
                                                       0.2 Iris-setosa
                               3.0
                                           1.4
                    4.9
                                                       0.2 Iris-setosa
         1
                    4.7
                               3.2
                                           1.3
         2
                                                       0.2 Iris-setosa
         3
                    4.6
                               3.1
                                           1.5
                                                       0.2 Iris-setosa
         4
                    5.0
                               3.6
                                           1.4
                                                       0.2 Iris-setosa
In [5]: df1_copy = df
```

In [6]: df1_copy

Out[6]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	•••	***	•••	•••	•••	•••
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

plt.scatter(x['sepal_length'], x['sepal_width'], c = colors[i] , label = species[i])

Out[14]: <matplotlib.legend.Legend at 0x221c58c0910>

plt.legend()

x = df[df['species']== species[i]]

In [15]: df.corr()

C:\Users\DELL\AppData\Local\Temp\ipykernel_7416\1134722465.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df.corr()

Out[15]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.109369	0.871754	0.817954
sepal_width	-0.109369	1.000000	-0.420516	-0.356544
petal_length	0.871754	-0.420516	1.000000	0.962757
petal_width	0.817954	-0.356544	0.962757	1.000000

```
In [16]: g = sns.pairplot(df)
```



```
In [20]: corr = df.corr()
sns.heatmap(corr,annot = True , cmap= 'coolwarm', linewidths = 1)
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_7416\230482482.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is depre
cated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warnin
g.
 corr = df.corr()

Out[20]: <AxesSubplot: >


```
In [29]: sns.countplot(x='species', data= df)
```

Out[29]: <AxesSubplot: xlabel='species', ylabel='count'>


```
In [30]: sns.boxplot(x="sepal_length", data=df)
```

Out[30]: <AxesSubplot: xlabel='sepal_length'>


```
In [31]: sns.boxplot(x="sepal_length",y="sepal_width", data=df)
```

Out[31]: <AxesSubplot: xlabel='sepal_length', ylabel='sepal_width'>

In [32]: sns.displot(df['sepal_length'], bins = 25, kde=True)

Out[32]: <seaborn.axisgrid.FacetGrid at 0x221c68ecd60>


```
In [33]: sns.jointplot(x='sepal_length', y='sepal_width', data = df, kind = 'scatter')
```

Out[33]: <seaborn.axisgrid.JointGrid at 0x221c63e9f90>

In [34]: grids = sns.PairGrid(df)
 grids.map(plt.scatter)

Out[34]: <seaborn.axisgrid.PairGrid at 0x221c6b30f70>

In []: