Evolutionary Algorithms Q&A

Oana Cocarascu & Helen Yannakoudakis

Department of Informatics King's College London

Genetic Algorithms (GAs)

- Hypothesise a population of candidate solutions to a particular problem.
- Evaluate each member of the population to decide how good that candidate is at solving the problem.
- Select those members of the population that are the best.
- Reproduce to obtain new members of the population.
- Repeat, hypothesising with this new set of candidate solutions.

GAs: The Basic Algorithm

 $GA(Fitness, Fitness_threshold, p, r, m)$

Fitness: A function that assigns an evaluation score, given a hypothesis.

Fitness_threshold: A threshold specifying the termination criterion.

p: The number of hypotheses to be included in the population.

r: The fraction of the population to be replaced by Crossover at each step.

m: The mutation rate.

- Initialize: P ← p random hypotheses
- Evaluate: for each h in P, compute Fitness(h)
- While [max_h Fitness(h)] < Fitness_threshold
 - Select
 - 2. Crossover
 - Mutate
 - 4. Update
 - Evaluate
- Return the hypothesis from P that has the highest fitness.

GAs: The Basic Algorithm

 $GA(Fitness, Fitness_threshold, p, r, m)$

- Initialize: P ← p random hypotheses
- Evaluate: for each h in P, compute Fitness(h)
- While [max_h Fitness(h)] < Fitness_threshold
 - 1. *Select:* Probabilistically select (1 r)p members of P to add to P_S .

$$Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{p} Fitness(h_j)}$$

- 2. *Crossover:* Probabilistically select $\frac{r \cdot p}{2}$ pairs of hypotheses from P. For each pair, $\langle h_1, h_2 \rangle$, produce two offspring by applying the Crossover operator. Add all offspring to P_s .
- 3. *Mutate:* Choose m percent of the members of P_s , with uniform probability. For each, invert one randomly selected bit in its representation.
- 4. Update: $P \leftarrow P_s$.
- 5. *Evaluate:* for each *h* in *P*, compute *Fitness*(*h*).
- Return the hypothesis from P that has the highest fitness.

GAs

- In classic algorithm, where population size = N
 - Crossover rate = r, where $0 \le r \le 1$
 - Mutation rate = m, where $0 \le m \le 1$
- New population is generated with two steps:

first
$$\rightarrow$$
 $(r \cdot N)$ $+$ $((1 - r) \cdot N)$ selected as is

second \rightarrow $(m \cdot N)$ $+$ $((1 - m) \cdot N)$ selected as is

Domain dependent vs domain independent

- Representation is domain . . .
- Fitness is domain . . .
- Selection methods are domain . . .
- Fixed threshold value is domain . . .

Domain dependent vs domain independent

- Representation is domain dependent.
- Fitness is domain dependent.
- Selection methods are domain independent.
- Fixed threshold value is domain dependent.

• Fitness proportionate selection (roulette wheel selection):

$$Pr(h_i) = \frac{Fitness(h_i)}{\sum_{i=1}^{N} Fitness(h_i)}$$

• Fitness proportionate selection (roulette wheel selection):

$$Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{N} Fitness(h_j)}$$

• Example:

$$Fitness(h_1) = 3$$

$$Fitness(h_2) = 2$$

$$Fitness(h_3) = 1$$

$$Fitness(h_4) = 4$$

• Fitness proportionate selection (roulette wheel selection):

$$Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{N} Fitness(h_j)}$$

• Example:

Fitness
$$(h_1) = 3 \Rightarrow Pr(h_1) = 0.3$$

Fitness $(h_2) = 2 \Rightarrow Pr(h_2) = 0.2$
Fitness $(h_3) = 1 \Rightarrow Pr(h_3) = 0.1$
Fitness $(h_4) = 4 \Rightarrow Pr(h_4) = 0.4$

- $Pr(h_1) = 0.3, Pr(h_2) = 0.2, Pr(h_3) = 0.1, Pr(h_4) = 0.4$
- Individuals with a high fitness will have a larger proportion of the circle.

GAs: Tournament selection

- Randomly select two candidates from the population.
- Keep the candidate with the higher fitness.

GAs: Tournament selection

- Randomly select two candidates from the population.
- Keep the candidate with the higher fitness.

GAs: Rank selection

- Sort candidates and rank them according to their fitness.
- The probability that a hypothesis will be selected is proportional to its rank in the sorted list.

GAs: Rank selection

- Sort candidates and rank them according to their fitness.
- The probability that a hypothesis will be selected is proportional to its rank in the sorted list.
- Example:

```
Fitness(h_1) = 7.5
```

$$Fitness(h_2) = 6.2$$

$$Fitness(h_3) = 9.4$$

$$Fitness(h_4) = 5.1$$

GAs: Rank selection

- Sort candidates and rank them according to their fitness.
- The probability that a hypothesis will be selected is proportional to its rank in the sorted list.
- Example:

Fitness
$$(h_1) = 7.5 \Rightarrow Rank(h_1) = 3$$

Fitness $(h_2) = 6.2 \Rightarrow Rank(h_2) = 2$
Fitness $(h_3) = 9.4 \Rightarrow Rank(h_3) = 4$
Fitness $(h_4) = 5.1 \Rightarrow Rank(h_4) = 1$

GAs: Crossover and mutation

Initial strings	Crossover mask	Offspring
1-point crossover: 111101100110100 0101011011011011	[1]1111100000000	1111011011011011
2-point crossover: 111101100110000 0000011011011011	[0]0]1]1]1]1]1]0]0]0]0	11100110111000 00011011000011011
Uniform crossover: 111101100110100 0101011011011011	[1]0]0]1]1]0]1]0]1]1]	10001000100
Point mutation:		

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

How can we represent this?

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

How can we represent this?

Representation: 5 bits $(11111 \rightarrow 31)$

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

How can we represent this?

Representation: 5 bits $(11111 \rightarrow 31)$

What is the fitness function?

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

How can we represent this?

Representation: 5 bits $(11111 \rightarrow 31)$

What is the fitness function?

Fitness function: f(x)

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

- Representation: 5 bits (11111 \rightarrow 31).
- Fitness function: f(x)
- Example of initial population where the population size is 4:

X	
13	
24	
8	
19	

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

Representation: 5 bits (11111 → 31)

• Fitness function: f(x)

Example of initial population where the population size is 4:

Х	Individual h
13	01101
24	11000
8	01000
19	10011

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

Representation: 5 bits (11111 → 31)

Fitness function: f(x)

Example of initial population where the population size is 4:

Χ	Individual h	f(x)
13	01101	169
24	11000	576
8	01000	64
19	10011	361
	sum	1170

Maximise
$$f(x) = x^2, 0 \le x \le 31$$

Representation: 5 bits (11111 → 31)

• Fitness function: f(x)

Example of initial population where the population size is 4:

Χ	Individual h	f(x)	Pr(h)
13	01101	169	0.14
24	11000	576	0.49
8	01000	64	0.06
19	10011	361	0.31
	sum	1170	

Selection

Roulette wheel which gives: #1, #2, #4

#	Initial	X	f(x)	
1	01101	13	169	
2	11000	24	576	ĺ
3	01000	8	64	Ì
4	10011	19	361	Ì
	sum	1170		Ì

1	01101
]	11000
	11000
1	10011
]	

- Selection
 - Roulette wheel which gives: #1, #2, #2, #4
- Reproduction operators

Crossover

Mutation

#	Initial	X	f(x)	
1	01101	13	169	01
2	11000	24	576	11
3	01000	8	64	11
4	10011	19	361	10
	sum	1170		

10|1 00|0 |000

- Selection
 - Roulette wheel which gives: #1, #2, #2, #4
- Reproduction operators

Crossover

Mutation

#	Initial	X	<i>f</i> (<i>x</i>)
1	01101	13	169
2	11000	24	576
3	01000	8	64
4	10011	19	361
	sum	1170	

	Crossover
0110 1	01100
1100 0	11001
11 000	11011
10 011	10000

- Selection
 - Roulette wheel which gives: #1, #2, #2, #4
- Reproduction operators

Crossover

Mutation

#	Initial	X	f(x)
1	01101	13	169
2	11000	24	576
3	01000	8	64
4	10011	19	361
	sum	1170	

	Crossover	Mutation
0110 1	01100	01100
1100 0	11001	11001
11 000	11011	11011
10 011	10000	10010

Selection

Roulette wheel which gives: #1, #2, #2, #4

Reproduction operators

Crossover

Mutation

X	I(X)
13	169
24	576
8	64
19	361
sum	1170

		Crossover	Mutation	Х	f(x)
	0110 1	01100	01100	12	144
1	1100 0	11001	11001	25	625
	11 000	11011	11011	27	729
1	10 011	10000	10010	18	324
1				sum	1822

Selection

Roulette wheel which gives: #1, #2, #2, #4

Reproduction operators

Crossover

Mutation

X	I(X)
13	169
24	576
8	64
19	361
sum	1170

£(,,)

_					
		Crossover	Mutation	X	f(x)
	0110 1	01100	01100	12	144
	1100 0	11001	11001	25	625
1	11 000	11011	11011	27	729
	10 011	10000	10010	18	324
				sum	1822

- The total fitness is now 1822 which is higher than the fitness of the initial population.
- The population has improved.

- With traditional evolutionary algorithms, we have one evolving population.
- The success of candidate solutions in the population is measured against a fixed fitness function and a fitness threshold. You evaluate each individual in the population and you want to obtain a better population.

- In several situations when you want to obtain solutions, what is best depends on what the others are doing.
- When there is no easy way to define a fixed fitness function or one simply does not exist, we can use co-evolution (still need a way to compare two solutions and determine which one is better between them).
- With co-evolution, there are two evolving populations. The fitness of a candidate solution is measured by comparing members of opposing populations.

Co-evolutionary Learning

 Game playing is a classic example, where two candidate solutions play games against each other and the candidate that wins more games is declared the fittest.

- Remember that in traditional evolutionary algorithms, the success of candidate solutions in the population is measured against a fixed fitness function and a fitness threshold.
- Difficult (for a new player) to learn to play well if you're not playing against a reasonably competent player.
- The score you obtain on your own is not necessary a good measure of fitness but playing against an opponent (and beating them) is a good measure of fitness.

- In co-evolution, there are two populations.
- The first/second population tries to adapt to the environment consisting of the second/first population.
- We test the performance of each individual in the first/second population against each individual from the second/first population.
- The relative fitness of an individual in co-evolution is not an absolute measure of fitness against an optimal opponent, but a relative measure when the individual is tested against the current opposing population.
- Some individuals in each population are better at dealing with the current opposing population.

Wall-following robot

 Build the program up from four actions (North, East, South, West) and four primitive functions:

```
AND(x, y) = 0 if x = 0; else y

OR(x, y) = 1 if x = 1; else y

NOT(x) = 0 if x = 1; else 1

IF(x, y, z) = y if x = 1; else z
```

As input we have the robot's current sensory data (value 0
if the corresponding cell is free, otherwise value 1).

Wall-following robot

 Build the program up from four actions (North, East, South, West) and four primitive functions:

```
AND(x, y) = 0 if x = 0; else y

OR(x, y) = 1 if x = 1; else y

NOT(x) = 0 if x = 1; else 1

IF(x, y, z) = y if x = 1; else z
```

- Example programs:
 - (AND (sw) (ne)) evaluates the first argument (sw), terminates if result is 0, otherwise it evaluates the second argument and terminates.
 - If the program (OR (e) (w)) evaluates west, then it moves west and terminates.

Wall-following robot


```
IF(x, y, z) = y if x = 1; else z
```

- ne=0 then move north; ...
- ne=1 then evaluate (IF (se) (south) (east))
- se=0 then move east; ...
- se=1 then move south; ...

