Queue Theory

- 1. M/M/1 queue
 - 1.1. Model
 - 1.2. Idea and Key questions
 - 1.3. Steady state probility of #jobs
 - 1.4. #requests in the system
 - 1.5. response time
 - Properties:
 - 1.6. Main results of M/M/1 queue
- 2. First glance at M/M/2 (M/M/c) queue
 - 2.1. Markov Model
 - 2.2. Steady state probility of #jobs
 - Main Results of M/M/2 queue
- 3. Examples
 - 3.1. Student Waiting Bus example
 - 3.2. Toilet Example

1. M/M/1 queue

1.1. Model

what does M/M/1 stand for?

- The **first letter** is a short hand for the **arrival process**. M stands for **exponential interarrival time**, which is another way of saying the arrival process is a Poisson process.
- The **second letter** is a short hand for the **service time distribution**. The second M therefore means that the service time is **expenentially distributed**.
- The **third number**, 1, is the **number of servers** in the system.
- The default value for the **buffer capacity is infinity**

1.2. Idea and Key questions

• M/M/1 Queue is **Memoryless**

So, we can connect it to the Markov Chain, especially CTMC and try to analyze the steady state.

 λ : arriving rate μ : completing rate

Key Questions:

- How to find the steady state probability of the number of jobs in the queue (Pi) given only λ and μ
- Based on Pi, how to find:
 - the number of requests in the system (N)
 - the (average) response time

1.3. Steady state probility of #jobs

In Queue Theory, we always assume flows is in equilibrium, so:

$$\lambda P_0 = \mu P_1$$

$$\lambda P_0 = \mu P_2$$

$$\vdots$$

$$\lambda P_{n-1} = \mu P_n$$

so:

$$P_1 = \rho P_0$$

$$P_2 = \rho^2 P_0$$

$$\vdots$$

$$P_n = \rho^n P_0$$

where
$$ho=rac{\lambda}{\mu}$$

and we have: $\sum P_i = 1$

so, we have:

$$P_0 = 1 -
ho \ P_n =
ho^n (1 -
ho)$$

1.4. #requests in the system

$$N=\sum_{n=0}^{\infty}nP_n=rac{\lambda}{\mu-\lambda}$$

Proof:

$$\sum_{n=0}^{\infty} nP_n = \sum_{n=0}^{\infty} n\rho^n (1-\rho) = (1-\rho)\rho \sum_{n=1}^{\infty} n\rho^{n-1}$$

$$(1-\rho)\rho \left(\sum_{n=0}^{\infty} \rho^n\right) = (1-\rho)\rho \frac{d}{d\rho} \left(\sum_{n=0}^{\infty} \rho^n\right) = (1-\rho)\rho \frac{d}{d\rho} \left(\frac{1}{1-\rho}\right)$$

$$(1-\rho)\rho \left(\frac{1}{(1-\rho)^2}\right) = \frac{\rho}{(1-\rho)} = \frac{\lambda}{\mu-\lambda}$$

1.5. response time

Use Littles's Law N=XR

$$R = \frac{N}{X} = \frac{1}{\mu - \lambda}$$

Properties:

• increase rapidly when ρ close to 1, when arrival speed close to service speed

• Stable Region (linear region)

can be used to judge how to adjust service speed to influence the response time

1.6. Main results of M/M/1 queue

Utilization	$U = X S = \lambda/\mu = \rho$
Prob. of n clients in the system	$P_n = \rho^n (1 - \rho)$
Mean #clients in the system	$N = \rho / (1-\rho) = \lambda / (\mu-\lambda)$
Mean #clients in the queue	$N_Q = N - (1 - P_0) = N - \rho$
Mean response time	$R = N/\lambda = 1/(\mu-\lambda) = S/(1-\rho)$
Mean waiting time	$W = R - S = \rho/(\mu - \lambda)$

2. First glance at M/M/2 (M/M/c) queue

Considering a M/M/2 queue

2.1. Markov Model

Two keypoints:

- for N>1 , the transation from high to low is 2μ
- for N=1 , the transition is still μ

The 2μ can be considered as:

- initially, we need average $1/\lambda$ to finish one, but now in $1/\lambda$ we can finish two, the new average is $1/2\lambda$

2.2. Steady state probility of #jobs

$$egin{aligned} \lambda P_0 &= \mu P_1 \ \lambda P_1 &= 2 \mu P_2 \ &dots \ \lambda P_{n-1} &= 2 \mu P_n \end{aligned}$$

if we set $ho=rac{\lambda}{2\mu}$

$$P_{1} = 2 \rho P_{0} \ P_{2} = 2 \rho^{2} P_{0} \ dots \ P_{n} = 2
ho^{n} P_{0}$$

and we have:

$$\sum_{n=0}^{\infty}P_n=1\Rightarrow 2P_0\sum_{n=0}^{\infty}
ho^n-P_0=1\Rightarrow rac{1+
ho}{1-
ho}P_0=1$$

so, we have:

$$P_0 = rac{1-
ho}{1+
ho} \ P_n = 2
ho^nrac{1-
ho}{1+
ho}$$

SO

$$\mathrm{N} = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} 2 \mathrm{n}
ho^\mathrm{n} rac{1-
ho}{1+
ho} = \cdots = rac{2
ho}{(1-
ho^2)}$$

Main Results of M/M/2 queue

Utilization	$U = 1 - P_0 = 2\rho / (1 + \rho)$
Prob. of n clients in the system	$P_n = 2\rho^n (1 - \rho) / (1 + \rho)$
Mean #clients in the system	$N = 2\rho / (1-\rho^2)$
Mean #clients in the queue	$N_Q = 2\rho^3 / (1-\rho^2)$
Mean response time	$R = N/\lambda = 2 / (\mu (1-\rho^2))$
Mean waiting time	$W = R - 1/\mu = \rho^2 / (\mu (1-\rho^2))$

3. Examples

3.1. Student Waiting Bus example

3.2. Toilet Example

1> Analysis Strugton Varietion 2 m, = h(1-6,) w, now is M/M/2 Model: 2/2 (4,44) W(1-6) 2M2(1-12) >(2h->) 2x(2h-x) 2x(2h-x)
4h2-x2 (2h+x)(2h-x) : p = p H(1- 12) And : on steady answe. Less worthy thre. Longer dealing thre 3 3 WIN - WIN ^ ンニケ