Contents

1 Stable Maching problema						
	1.1	1.1 Algoritmo Gale-Shapley				
	1.2	2 Alternativas				
		1.2.1	Diferentes cantidades de oferentes que requeridos	3		
		1.2.2	Preferencias incompletas	5		
		1.2.3	Preferencias con empates	6		
		1.2.4	Agrupacion de 1 a muchos	8		
		1.2.5	Agrupacion de muchos a 1	9		
		1.2.6	Agrupacion de y a x	10		
		1.2.7	Conjuntos no bipartios - Stable Roommate Problem	11		
2	Ana	nalisis amortizado				
		2.0.1	Metodo de agregacion	11		
		2.0.1	Metodo de agregacion	11		
		2.0.1	Metodo de agregacion	11 11		
3	Alg	2.0.1 2.0.2 2.0.3 2.0.4	Metodo de agregacion	11 11 11		
3	Alg 3.1	2.0.1 2.0.2 2.0.3 2.0.4	Metodo de agregacion	11 11 11 11		
3	J	2.0.1 2.0.2 2.0.3 2.0.4 oritmo	Metodo de agregacion	11 11 11 11		
3	3.1	2.0.1 2.0.2 2.0.3 2.0.4 oritmo Mochi Camb	Metodo de agregacion	111 111 111 111 111		

	3.5	Caminimos Minimos - TODO	16		
	3.6	Compresión de datos - TODO	16		
4 División y conquista			17		
	4.1	Teorema mestro - TODO	17		
	4.2	Mediana con datos separadas	17		
5	Programación dinamica				
	5.1	Cambio de monedas	17		
	5.2	Publicidad en la carretera	18		
	5.3	Programación de intervalos ponderados	19		
	5.4	Problema de Subset Sum y Knapsack (mochila)	20		
	5.5	Problema de Subset Sum	21		
	5.6	Bellman Ford	22		
	5.7	Problema de Maximo subarreglo	24		
	5.8	Problema de cuadrados minimos	25		
	5.9	Problema del viajante	27		
6 Redes de flujo		les de flujo	29		
	6.1	Algoritmo Ford-Fulkerson	29		
	6.2	Variante: Circulación con demanda	32		
	6.3	Bipartite Matching Problem	33		
	6.4	Diseño de encuentas	34		
	6.5	Selección de proyectos	36		

1 Stable Maching problema

1.1 Algoritmo Gale-Shapley

Este algoritmo al terminar de ejecutarse se encuentra un matching prefecto si:

- \bullet Si existen n solicitantes con diferentes preferencias.
- \bullet Si existen n requeridos con diferentes preferencias.

Eligiendo las estructuras correctamente se puede plantear en O(n).

```
Inicialmente M=Vacio
      Mientras existe un solicitante sin pareja que no aun se haya
      postulado a todas las parejas
          Sea s un solicitante sin pareja
          Sea r el requerido de su mayor preferencia al que no le
                       solicito previamente
          if r esta desocupado
              M = M U (s,r)
10
              s esta ocupado
              Sea s' tal que (s', r) pertenece a M
13
              si r prefiere a s sobres s'
                  M = M - \{(s', r)\} U (s,r)
16
                  s esta ocupado
                  s' esta libre
18
      Retornar M
```

Listing 1: Algoritmo de Gale-Shapley

1.2 Alternativas

1.2.1 Diferentes cantidades de oferentes que requeridos

Dado n oferentes y m requeridos, con m <> n, no se puede encontrar un matching stable.

Entonces, tenemos que redefinir el concepto de estable. Una pareja (s,r) es **estable** si:

- No existe requerido r' sin pareja al que s prefiera a su actual pareja.
- No existe un requerido r' en pareja, tal que s y r' se prefieran sobre sus respectivas parejas.
- No existe solicitante s' sin pareja al que r prefiera a su actual pareja.
- No existe un solicitante s' en pareja tal que r y s' se prefieran sobre sus respectivas parejas.

Por lo tanto un matching es estable si:

- No tienen parejas inestables bajo la condicion anterior.
- Que no queden requeridos y solicitantes sin pareja.

Soluciones para ajustar al modelo de Gale-Shapley:

- 1. Inventar |n-m| elementos ficticios
 - Los elementos ficticios se pondran en las listas de preferencias con menos elementos.
 - Estos elementos ficticios se agregan al final y deben ser los menos preferidos.
 - Luego ejecutar Gale-Shapley
 - Por ultimo, eliminar las parejas con elementos ficticios. Estos seran los requeridos que quedan sin pareja.
- 2. Adecuar el Algoritmo

- Si hay mas solicitantes que requeridos, quitar de la lista de solicitantes sin parejas a aquellos que agotaron sus propuestas.
- Si hay mas **requeridos** que solicitantes, quitar de la *lista de parejas* a aquellas donde el requerido quedo sin pareja.

1.2.2 Preferencias incompletas

Las listas de preferencias de los oferentes y los requeridos son un subset de las contrapartes.

Son parejas **aceptables** de un elemento a aquellas contrapartes que figuran en su lista de preferencias.

Una pareja (s,r) es **estable** si:

- Son aceptables entre ellos.
- No existe requerido *aceptable* r' sin pareja al que s prefiera a su actual pareja.
- No existe un requerido *aceptable* r' en pareja, tal que s y r' se prefieran sobre sus respectivas parejas.
- No existe solicitante *aceptable* s' sin pareja al que r prefiera a su actual pareja.
- No existe un solicitante *aceptable* s' en pareja tal que r y s' se prefieran sobre sus respectivas parejas.

Un matching es estable si no tiene parejas inestables bajo la condicion anterios.

```
1 Inicialmente M=Vacio
3 #Iterea mientras no haya acotado su sublista de preferencias
4 Mientras existe un solicitante sin pareja
                  'que no aun se haya postulado a todas las parejas'
6
      Sea s un solicitante sin pareja
      Sea r el requerido de su mayor preferencia al que no le
                  solicito previamente
      # se condiera si es aceptable
11
      if r considera 'aceptable' a s
12
13
          if r esta desocupado
              M = M U (s,r)
              s esta ocupado
16
```

```
17 else

18 Sea s' tal que (s', r) pertenece a M

19 si r prefiere a s sobres s'

20 M = M - {(s', r)} U (s,r)

21 s esta ocupado

22 s' esta libre

23

24 # Retornar solo parejas aceptables

25 Retornar M
```

Listing 2: Algoritmo para parejas incompletas

1.2.3 Preferencias con empates

INDIFERENCIA Y PREFERENCIA ESTRICTA

- 1. X es **indiferente** a "y" y a "z" si en su lista de preferencias estan el la misma posicion.
- 2. X es **prefefiere estrictamente** a "y" sobre "z" si en su lista de preferencias no le son indiferentes y "y" se encuentra antes que "z" en la misma.

ESTABILIDAD DEBIL

Una pareja (s,r) es debilmente estable si no existe una pareja (s' y r') talque:

- s prefiere estrictamente a r' sobre r (pareja actual de s)
- r' prefiere estrictamente a s sobre s' (pareja actual de r')

```
Inicialmente M=Vacio

#Iterea mientras no haya acotado su sublista de preferencias

Mientras existe un solicitante sin pareja

'que no aun se haya postulado a todas las
parejas'

Sea s un solicitante sin pareja

Sea r el requerido de su mayor preferencia al que no le
solicito previamente

if r esta desocupado

M = M U (s,r)
```

```
s esta ocupado
13
           else
14
               Sea s' tal que (s', r) pertenece a M
16
               # prefiere estrictamente
               si r prefiere estrictamente a s sobres s'
                   M = M - \{(s', r)\} U (s,r)
19
                   s esta ocupado
20
                   s' esta libre
21
      Retornar M
23
```

Listing 3: Algoritmo para parejas incompletas

En caso de que sea empate, se mantendra con su pareja actual.

ESTABILIDAD FUERTE

Una pareja (s,r) es debilmente estable si no existe una pareja (s' y r') talque:

- s prefiere estrictamente o le es indiferente a r' sobre r (pareja actual de s)
- \bullet r' prefiere estrictamente o le es indiferente a s
 sobre s' (pareja actual de r')

Puede no existir un matching perfecto.

```
Inicialmente M=Vacio
      Mientras existe un solicitante sin pareja y no exista
3
      solicitante que agoto sus parejas
          Sea s un solicitante sin pareja
          Sea r el requerido de su mayor preferencia al que pueda
      proponer
          Por cada sucesor s' a s en la lista de preferencias de r
              if (s',r) pertence a M
                  M = M - \{(s',r)\}
9
                  s' esta libre
              quitar s' de la lista de preferencias de r
              quitar r de la lista de preferncias de s'
          Por cada requerido r' que tiene multiples parejas
14
              Por cada pareja s' en pareja con r'
                  M = M - \{(s',r')\}
```

```
quitar s' de la lista de preferencias de r'
quitar r' de la lista de preferencias de s'

if estan todos en pareja
Retornar M
else
No existe ningun matching super estable
```

Listing 4: Algoritmo para parejas super estables

En caso de que sea empate, se mantendra con su pareja actual.

1.2.4 Agrupacion de 1 a muchos

El solicitante puede tener varios cupos por lo tanto:

- \bullet Exiten m requeridos, donde un requerido puede estar unicamente con 1 pareja.
- \bullet Exiten n solicitantes, donde cada solicitante puede tener c cupos para armar parejas.

Existe un matching estable si la cantidad de requeridos es igual a la cantidad de solicitantes por la cantidad de cupos.

$$m = n * c \tag{1}$$

No cambia la definición de Gale Shampey para matching estable

```
Inicialmente M=Vacio
      Mientras exista un solicitante con cupo disponible
3
          Sea s un solicitante sin pareja
          Sea r el requerido de su mayor preferencia al que no le
                       solicito previamente
          if r esta desocupado
              M = M U (s,r)
10
              s decremente su disponibilidad de parejas
              Sea s' tal que (s', r) pertenece a M
13
               si r prefiere a s sobres s'
                  M = M - \{(s', r)\} U (s,r)
16
                  s decremente su disponibilidad de parejas
                   s' incrementa su disponibilidad de parejas
18
      Retornar M
19
```

Listing 5: Algoritmo de solicitantes con cupos

La complejidad algoritmica no se modifica porque solo se agrega un contador.

1.2.5 Agrupacion de muchos a 1

El requerido puede tener varios cupos por lo tanto:

- ullet Exiten m requeridos, donde cada solicitante puede tener z cupos para armar parejas.
- \bullet Exiten n solicitantes, donde un requerido puede estar unicamente con 1 pareja.

Existe un matching estable si la cantidad de solicitantes es igual a la cantidad de requeridos por la cantidad de cupos.

$$n = m * z \tag{2}$$

No cambia la definición de Gale Shampey para matching estable

```
Inicialmente M=Vacio
2
      Mientras exista un solicitante con cupo disponible
3
          Sea s un solicitante sin pareja
          Sea r el requerido de su mayor preferencia al que no le
                       solicito previamente
          if r tiene cupo
9
              M = M U (s,r)
10
              s esta ocupado
              r decrementa su disponibilidad de parejas
          else
13
              Sea s' tal que (s', r) pertenece a M y
                       s' es el menos preferidos de las parejas r
16
               si r prefiere a s sobres s'
17
                   M = M - \{(s', r)\} U (s,r)
18
                   s esta ocupado
19
                   s' esta libre
20
      Retornar M
```

Listing 6: Algoritmo de requeridos con cupos

La complejidad algoritmica si se modifica.

Para conocer el solicitante de menor preferencia podemos utilizar un heap de minimos. Como el cupo es de z, la complejidad algoritmica para actualizar el heap es log(z).

1.2.6 Agrupacion de y a x

- \bullet Exiten n solicitantes, donde cada solicitante puede tener c cupos para armar parejas.
- ullet Exiten m requeridos, donde cada requerido puede tener z cupos para armar parejas.

Existe un matching estable si:

$$n * c = m * z \tag{3}$$

No cambia la definición de Gale Shampey para **matching estable** Para implementar se requieren las siguientes estructuras:

- Un heap de minimos para los requeridos.
- Un contador de cupos para los solicitantes.

La complejidad algoritmica es igual a la de los requeridos con cupos

1.2.7 Conjuntos no bipartios - Stable Roommate Problem

Pendiente

2 Analisis amortizado

- 2.0.1 Metodo de agregacion
- 2.0.2 Metodo del banquero
- 2.0.3 Metodo del potencial

2.0.4 Heap binomial y fibonacci

Revisar capitulo 19 del Corven.

Para el **heap binomial** se utilizan bosques de arboles binarios. Existe un proceso donde se van ordenando los arboles.

Al insertar, se parece al ejemplo de contador binario y la amortizacion es ${\rm O}(1)$

Decrementar en un log binomial, es log(n) porque no es posible amortizar Eliminar el minimo, es el el peor caso es log(n)

Para el heap fibonacci ...

3 Algoritmos Greedy

Utiliza heurisica de seleccion para encontrar una solución global optima despues de muchos pasos.

3.1 Mochila fraccionaria

Dado un contener de capacidad W, y un conjunto de elementos
n fraccionables de valor v_i y peso w_i

El objetivo es seleccionar un subconjunto de elemento o fracciones de ellos de modo de maximizar el valor almacenado y sin superar la capacidad de la mochila.

La complejidad es O(nlog(n))

3.2 Cambio de moneda

Es una solución es conocido como solución de cajero. Contamos con un conjunto de diferentes monedas de diferentes denominación sin restricción de cantidad.

$$\$ = (C_1, C_2, C_3, \cdots, C_n)$$

El objetivo es entregar la menor cantidad posible de monedas como cambio.

Tiene una complejidad de O(n).

El sistema \$ se conoce como **canonico** a aquel en el que para todo x, greedy(\$, x) = optimo(\$, x).

Para saber si una base es canonica:

- 1. Basta con buscar un contraejemplo. Estaria entre la 3ra denomininacion y la suma de las ultimas dos doniminaciones.
- 2. Utilizar un algoritmo Polinimico para determinar si es un sistema canonico.

Si el problema no es greddy, se puede construir un algoritmo utilizando programación dinamica.

3.3 Interval Scheduling: Algoritmo de Greedy Stay Ahead

Tenemos un conjunto de requests $\{1, 2, ..., n\}$; el request i^{th} corresponde a un intervalo de tiempo que comienza al instante s(i) y finaliza al instante f(i). Diremos que un subconjunto de requests es compatible si no hay dos de ellos que al mismo tiempo se superponen, y nuestro objetivo es aceptar un subconjunto compatible tan grande como sea posible. El conjunto compatible con mayor tamaño sera el **óptimo**.

La idea básica en un algoritmo greedy para interval scheduling es usar una simple regla para seleccionar el primer request i_1 . Una vez que el request i_1 aceptado, rechazamos todos los request que no son compatibles con i_1 . Luego seleccionamos el siguiente request i_2 , y volvemos a rechazar todos lo request que no son compatibles con i_2 . Continuamos de esta manera hasta que nos quedemos sin requests. El desafio en diseñar un buen algoritmo greedy esta en decidir que regla usar para la selección.

Pueden probar con varias reglas, pero las mas optimo es la siguiente idea: Aceptaremos el request que termina primero, o sea el request para el cual tiene el menor f(i) posible. Asi nos aseguramos que nuestros recursos se liberen tan pronto como sea posible mientras satisfacemos un request. De esta manera podemos maximizar el tiempo restante para satisfacer otro request.

Para escribir el pseudo código, utilizaremos R para denotar al conjunto de request que aún no estan aceptados ni rechazados, y usaremos A para denotar al conjunto de los request aceptados.

```
Inicialmente R contiene todos los requests, y A es un conjunto vacio.

Mientras R no esta vacio

Seleccionar un request i de R que tenga el instante de finalizacion mas chico.
Agregar el registro i a A
Eliminar todos los request de R que no sean compatibles con el request i

Fin mientras

Retornar el conjunto A como el conjunto de los request aceptados.
```

Listing 7: Algoritmo de greedy para Interval Scheduling

Figure 4.2 Sample run of the Interval Scheduling Algorithm. At each step the selected intervals are darker lines, and the intervals deleted at the corresponding step are indicated with dashed lines.

De forma inmediata podemos decir que el conjunto retornado tiene request compatibles.

Lo que necesitamos es demostrar que la solución es optima. Definimos a O, un conjunto de intervalos optimos. Luego, vamos a mostrar que |A| = |O|, o sea que el conjunto A tiene la misma cantidad de intervalos que O, y por lo tanto, A tambien es una solución optima.

Para la prueba introduciremos la siguiente notación:

- Dado $\{i_1, ..., i_k\}$ el conjunto de request en A en orden que fueron agregados a A. Notar que |A| = k.
- Dado $\{j_1,...,j_m\}$ el conjunto de request en O ordenos de izquierda a derecha. Notar que |O|=m.

El objetivo es probar que k=m.

La manera en que el algoritmo de greedy se mantenga adelante(**stays ahead**) es que cada uno de sus intervalos finalice al menos tan pronto como lo haga el

correspondiente intervalo en el conjunto O.

(3.1) Para todos los indices r < k tenemos que $f(i_r) \le f(j_r)$

Demostración: Probaremos la sentencia anterior mediante el método inductivo. Para r=1 la sentencia anterior es cierta, el algoritmo empieza seleccionando el request i_1 con el menor tiempo de finalización.

Para el caso inductivo, o sea r > 1 asumiremos como nuestra hipotesis inductiva que la sentencia es verdadera para r - 1, y queremos probar que es tambien es lo es para r. La hipotesis inductiva nos dice que asumamos verdadero que $f(i_{r-1}) \leq f(j_{r-1})$. Queremos demostrar que $f(i_r) \leq f(j_r)$.

Dado que O consiste en intervalos compatibles, sabemos que $f(j_{r-1}) \leq s(j_r)$. Combinando esto último con la hipotesis inductiva $f(i_{r-1}) \leq f(j_{r-1})$, obtenemos $f(i_{r-1}) \leq s(j_r)$. Asi el intervalo j_r esta en conjunto R de los intervalos disponibles al mismo tiempo cuando el algoritmo de greedy selecciona i_r . El algoritmo de greedy selecciona el intervalo con el tiempo final mas chico (i_r) ; y dado que intervalo j_r es uno de estos intervalos, tenemos que $f(i_r) \leq f(j_r)$, completando asi el paso inductivo.

De esta forma demostramos que nuestro algoritmo se mantiene adelante del conjunto optimo O. Ahora veremos porque esto implica optimalidad del conjunto A de algoritmo de greedy.

El algoritmo de greedy retorna un conjunto A óptimo.

Demostración: Para demostrarlo utilizaremos la contradicción. Si A no es optimo, entonces el conjunto O debe tener mas requests, o sea que tenemos m > k y aplicando 3.1, cuando r=k, obtenemos que $f(i_k) \leq f(j_k)$. Dado que

m>k, existe un request j_{k+1} en O. Este request empieza despues que el request j_k termina y por consiguiente despues de que el request i_k termine. Entonces, despues de eliminar todos los requests que no son compatibles con los request $i_1, ..., i_k$, el conjunto de posibles requests R aún contiene el requests j_{k+1} . Pero el algoritmo de greedy se detiene con el request i_k y este supuestamente se detiene porque R esta vacio, lo cual es una contradicción.

3.4 Seam Carving - TODO

Es un algoritmo para adecuar imagenes. Analiza imagenes recortando pixeles de menor importancia. Retira tantas vetas como sea necesario para llegar a un tamaño optimo.

3.5 Caminimos Minimos - TODO

Dado dos nodos, uno inicial s y otro final t el algoritmo encuentra el camino minimo que los une, tambien entre s y el resto de los nodos.

3.6 Compresión de datos - TODO

El algoritmo de greedy arma un arbol de "hufman" para armar un arbol optimo de prefijos.

4 División y conquista

4.1 Teorema mestro - TODO

4.2 Mediana con datos separadas

5 Programación dinamica

5.1 Cambio de monedas

Contamos con un conjunto de monedas de diferente denominación sin restricción de cantidad. Representamos de esta manera $\$ = (c_1, c_2,, c_n)$ y tenemos un importe x a dar. Concluimos que no existe un algoritmo satisfactorio de greedy para resolver este problema.

Si buscamos la solución por **fuerza bruta**, se puede armar un arbol de decisión. Por cada moneda posible, se genera un subproblema. Entonces el camino a la hoja con menor profundidad es la menor cantidad de monedas a dar. Esto hace que la complejidad sea $O(x^n)$.

Analizando el problema anterios se pueden obtener algunas mejoras. Parte de los caminos del arbol son iguales. Hay distintas ramas con nodos que tienen el mismo resto, y por lo tanto se puede calcular solo una vez. Este caso de resto igual en varios nodos, lo llamaremos subproblemas.

Subproblema: Calcular el óptimo(OPT) del cambio x debe usar el mínimo entre los subproblemas $X-C_j$ para j=1...n.

Cada vez que paso por un subproblema se E incremente en el 1 que es la cantidad de monedas a dar. Que seria: $1 + min\{subprolemas\}$.

Para la solución **recurrente**, podemos plantear:

$$\left\{ \begin{array}{ll} OPT(x)=0 & si \quad x=0 \\ \\ OPT(x)=1+min\{OPT(x-C_i)\} & si \quad x>0 \end{array} \right.$$

El resultado con el minimo cambio sera $\mathrm{OPT}(\mathbf{x})$ y para poder carcularlo, necesito calcular lo x-1 óptimos anterios. Para evitar el recalculo, si calculo el optimo de algun resto, lo almaceno para no volver a calcularlo de nuevo. Ademas en cada subproblema debo analizar n comparaciones, lo cual impacta en la complejidad.

Para la solución **iterativa**: TODO

5.2 Publicidad en la carretera

5.3 Programación de intervalos ponderados

5.4 Problema de Subset Sum y Knapsack (mochila)

5.5 Problema de Subset Sum

Sea un conjunto de n elementos $E=\{e_1,e_2,...,e_n\}$ donde cada elemento e_i cuenta con un peso asociado w_i .

Queremos seleccionar un subset de elementos de E con el mayor peso posible que no supere un valor W de peso máximo.

Para plantear una solución por **fuerza bruta**, un elemento puede estar o no. O sea que si tengo n elementos pueden existir 2^n combinaciones. Entonces la complejidad total esta acotado por $O(2^n)$.

5.6 Bellman Ford

Se extiendo el problema de hallar caminos minimos utilizando **aristas pon- deras negativas**. Se puede hayar un camino global que pase por aristas ponderadas negativamente y que sea el optimo, en vez de utilizar un algotimo de reedy de *Dijkstra* que para este caso no seria óptimo.

Una solución por **fuerza bruta** seria, calcular para un grafo poderado **sin** ciclos negativos:

- Todos los costos de los caminos posibles de s a t de longitud 1.
- \bullet Todos los costos de los caminos posibles de s a t de longitud 2.
- ...
- Todos los costos de los caminos posibles de s a t de longitud n-1.

El camino mínimo tendra longitud n-1 como máximo sin ciclos negativos.

El algoritmo de **Bellman-Ford** halla el camino mínimo con aristas negativos utilizando programación dinámica.

ANÁLISIS

Para llegar desde "s" a un nodo n_i puede haber utilizado diferntes caminino y longitudes. Lo puede hacer a travez de sus nodos predecesores $pre[n_i]$.

Para poder llegar a n_i en j pasos, tengo que haber llegado a sus predeceroes en j-1 pasos. Asi sucesivamente hasta "s" se puede ir resolviendo $sub\ casos$.

Definimos minPath(n, j) al camino mínimo hasta el nodo n_i con longitud máxima j.

SOLUCIÓN RECURRENTE

$$\begin{split} \min & Path('s',j) = 0 \\ \min & Path(n_i,0) = +\infty \\ \min & Path(n_i,j) = \min \left\{ \begin{array}{l} \min & Path(n_i,j-1) \\ \min & Path(n_x,j-1) + w(n_x,n_i) \end{array} \right. \\ n_x \in & pred(n_i) \end{split}$$

- El camino mínimo a 's' para cualquier longitud es siempre 0.
- El camino mínimo a n_i al comienzo es infinito.
- TODO

SOLUCIÓN ITERATIVA

Definimos a OPT[l][v] como el camino mínimo de "s" al nodo n con longitudl

El nodo "s" se encuentra en v=0 El nodo "t" se encuentra en v=n

Listing 8: Algoritmo de requeridos con cupos

La complejidad del primer loop esta acotado por n. La segunda parte se ejecuta m
 veces por cada predecesor. O sea es $O(m\ast n)$

La complejidad espacial es m*n porque la matriz ocupa n*m

RECONSTRUIR LAS ELECCIONES

Agregar un nodo predecesor y almacenar en la posición i cual fue el predecesor del nodo.

¿Que pasa si hay un ciclo negativo?

Si en una iteración despues de haber llegado a la longitud maxima, cambia el minimo de al menos un nodo, entonces el grafo tiene ciclos negativos.

5.7 Problema de Maximo subarreglo

Se necesita calcular un subconjunto $contiguo\ de\ elementos\ S$ tal que la suma de los valores sea la máxima posible.

El maximo subvector que termina en el elemento i, esta relacionado con el máximo subvector que termina en el elemento i-1.

SOLUCIÓN RECURRENTE

$$MAX(1) = v[1]$$

 $MAX(i) = max\{MAX(i-1), 0\} + v[i]$

SOLUCIÓN ITERATIVA

```
MaximoGlobal = v[1]

MaximoLocal = v[1]

IdxFinMaximo = 1

Desde i=2 a n

MaximoLocal = max(MaximoLocal, 0) + v[i]

si MaximoLocal > MaximoGlobal

MaximoGlobal = MaximoLocal

IdxFinMaximo = i

Retornar MaximoGlobal
```

Listing 9: Solución iterativa

5.8 Problema de cuadrados minimos

Dado un conjunto de puntos $P = (x_1, y_1), (x_2, y_2), ..., (x_n, y_n), \text{ con } x_1 < x_2 < \cdots < x_n$. Usamos p_i para indicar un punto (x_i, y_i) .

Queremos aproximimar mediante segmentos los puntos de P minimizando el error comentido. Los sementos se forman mediante rectas de aproximación hallando a y b. El calculo del error cometido se obtiene sumando las distancias de los puntos a las rectas.

Se agrega un parametro de penalización ${\cal C}>0$ por cada segmento que se agrega.

- A mayor "C" entonces: menos segmentos
- A menor "C" entonces: menos error

Al analizar una solución por **fuerza bruta** se obtiene una complejidad de $O(2^{n*n})$.

SOLUCIÓN RECURRENTE

Como no conocemos cual es el ultimo segmento, se elige el último segmento como aquel que **minimice el error general**. O sea que queremos minimizar el error del segmento, mas la constante c mas el error conocido en el subproblema que contiene los puntos de segmentemos anteriores sea el minimo entre todos los posibles.

$$OPT(i) = min_{1 \le x \le i} (e_{x,i} + C + OPT(x - 1))$$
$$OPT(0) = 0$$

SOLUCIÓN ITERATIVA

```
1    OPT[0] = 0
2
3    Para todo para i,j con i <= j
4         Calcular e[i][j]
5
6    Desde j=1 a n
7    OPTIMO[j] = +infinito</pre>
```

Listing 10: Solución iterativa

Analizando la **complejidad temporal**, el calculo del optimo es O(n), pero se calculan n óptimos, Por lo tanto esta partes es $O(n^2)$.

Pero como en la primer se itera sobre todos los pares posibles es O(n). Y como el calculo del error es O(n), la primer interación termina siendo $O(n^3)$, y este le gana a $O(n^2)$.

La complejidad total es $O(n^3)$.

Para el calculo de la **complejidad espacial**, los errores se almacenan en $O(n^2)$, mientras que los óptimos en O(n). Por lo tanto la complejidad espacial total es de $O(n^2)$.

5.9 Problema del viajante

Sea un conjunto de n ciudades "C", un conjunto de rutas de costo de tránsito, existe una ruta que une cada par de ciudades.

Queremos obtener el circuito de menor costo que inicie y finalice en una ciudad y que pase por el resto de las ciudades una y solo una vez

Mediante **fuerza bruta** tenemos que calcular todos los ciclos posibles, y por lo tanto existen (n-1)! ciclos de longitud n-1. Luego por cada ciclo calculamos su costo y nos quedamos con el mínimo. Por lo tanto la complejidad total es O(n!).

Mediante el **algoritmo Belman-Held-Karp** lo resuelvo utilizando programación dinamica. Se puede decomponer como el mínimo entre los subproblemas menores con (n-1)! hojas.

SOLUCIÓN RECURRENTE

Dado S un subconjunto de ciudades e i la ciudad donde estoy parado. **start** es la ciudad de partida. La siguiente es la ecución de recurrencia:

$$\begin{aligned} OPT(i,\{S\}) &= min_{j \in \{S\}}(w(i,j) + OPT(j,\{S-j\})) \\ OPT(i,\emptyset) &= w(i,start) \end{aligned}$$

- El optimo i con el subconjuto s va a ser igual al minimo de los subproblemas que son elegir alguna de las ciudades que estan en s. Sumando el peso de i a j mas el optimo de partir de j hacia el resto de las ciudades (s-j).
- En el caso base, ya no quedan ciudades para visitas, entonces solo queda sumar el peso de ir de *i* a la ciudad de inicio *Start*.

SOLUCIÓN ITERATIVA Llamamos a C al conjunto de todas las ciudades, 1 es la ciudad inicial, y el resto de las ciudades estan numeradas de 2 a n.

```
Desde i=2 a n

OPT[i][0] = W[i][1]
```

```
Desde k=1 a n-2
           Para todo subset S de C-\{1\} de tamanio k
               Para cada elemento i de S
                   OPT[i, S-{i}] = +infinito
                   Por cada elemento j de S - {i}
10
11
                        r=OPT[j, S-\{i,j\}] + w[j][i]
                        si (r<OPT[i, S-{i}])
13
                            OPT[i, S-\{i\}] = r
15
16
      CamininoMinimo = + infinito
17
      Desde j=2 a n
           ciclo = OPT[i, S-\{1, i\}] + w[1, i]
19
          Si (CamininoMinimo > ciclo)
               CamininoMinimo = ciclo
22
      Retornar CamininoMinimo
23
```

Listing 11: Solución iterativa

- \bullet La primer iteración se cargan los casos bases para las n ciudades.
- Despues desarrollamos los subproblemas, primero iteramos las ciudades que quedan por visitar
- Luego generamos las variantes de subset y por cada uno calculo el minimo y utilizo los subproblemas de tamaño menor, ver cual de todos es el minimo.

La complejidad total es $O(n^22^n)$

6 Redes de flujo

Se trata de problemas de flujos de trafico en redes. Por ejemplo, tubos de gas, autopistas, rutas de aviones, redes electricas.

Definiciones:

- Los ejes transportan algun tipo de flujo
- Los vértices actúan como conmutador de tráfico entre los diferentes ejes.
- Capacidad: cantidada máxima que un eje puede transportar.
- Fuente: Vértices que generan tráfico saliente.
- Sumidero: Vértice que absorbe tráfico entrante.
- Flujo: Cantidad transportada por eje.

Definimos corte de grafo como:

Dos cortes diferentes, tienen capacidades de transporte maxima diferentes.

6.1 Algoritmo Ford-Fulkerson

Calcula el maximo flujo a travez de una red.

Grafo residual

Dado un red de flujo G y un flujo f en G, definimos el grafo residual G_f (de G con respecto a f) a:

- Los mismos vértices de G,
- Ejes hacia adelante: Para cada $e = (u, v) \in E$ en el que $f(e) < C_e$. Lo incluimos en G_f con capacidad $C_e f(e)$ [capacidad residual de flujo].
- Ejes hacia atras: Para casa $e = (u, v) \in E$ en el que f(e) > 0. Incluimos e' = (v, u) con capacidad f(e).

Cuello de botella

Sea P un camino simple s-t en G_f , o sea que P no visita más de una vez el mismo vértice.

Difinimos bottleneck(P,f) a la <u>capacidad residual mínima</u> de cualquier eje de P con repecto al flujo f.

Lo máximo que se puede transportar es 20, para que no deje cumplir la condición de capacidad.

Con el grafo residual, podemos redireccionar el flujo en el caminio original para aumentar el flujo total de la red.

Llamamos P al caminio de aumento (augmenting path):

- P es una caminio simple que va de s a t en G_f .
- ullet P no visita el mismo nodo mas de una vez.

Ahora definimos la operación $\mathbf{augment(f,\!P)}$ el cual cede un nuevo flujo f' en eG

```
augment(f, p)

Sea b = bottleneck(P, f)

Para cada eje e=(u, v) perteneciente a P

Si e=(u,v) eje hacia adelante

f(e) += b en G

sino si es eje para atras

e' = (v,u)

f(e') -=b en G

Retornar f
```

Listing 12: Operación de augment

¿Es valido el nuevo flujo?PENDIENTE

Con el grafo residual y el camino de aumento definimos el $pseudoc\'odigo\ de$ Ford-Fulkerson.

```
9 Actualizar f para ser f'
10 Actualizar Gf para ser Gf'
11
12
13 Retornar f
```

Listing 13: Operación de augment

La **complejidad** es O(|E| * C) donde |E| es la cantidad de ejes y C es la suma de todas las C_e de los ejes que salen de la fuente.

```
¿Es óptimo?PENDIENTE
```

El flujo retornado por el algoritmo Ford-Fulkerson es el flujo máximo

Ademas podemos mediante BFS en G_f construir el corte mínimo s-t (A,B) obteniendo A y por diferencia B.

Consideraciones si las capacidades no son enteras:

- Si son racionales, multiplicar por minimo comun multiplo
- Si son irracionales, no esta asegurado que el algoritmo termine.

6.2 Variante: Circulación con demanda

Cada nodo pueder ser productor o consumir de flujo. O un nodo que no es consumidor ni productor de flujo.

6.3 Bipartite Matching Problem

Llamamos un grafo bipartito a G=(V,E) un grafo no dirigido, puede particionarse en como $V=X\cup Y$, con la propiedad de que cada eje $e\in E$ se conecta en una punta con un nodo en X y la otra punta un nodo en Y. Un $matching\ M$ en G es un subconjunto de ejes $M\subseteq E$ tal que cada nodo aparece en al menos un eje en M. Se necesita encontrar el set M de mayor tamaño posible. O sea la mayor cantidad de parejas.

Resolvemos el matching utilizando el problema de flujo máximo. Construimos una red de flujo G' como la siguiente imagen. Pasamos todos los ejes a ejes dirigidos de X a Y. Luego agregamos el nodo s y un eje (s,x) desde s a cada nodo en X. Tambien agregamos el nodo t y un eje (y,t) desde cada nodo en Y a t. Finalmente, le damos una capacidad de 1 a cada eje en G'

Resolvemos el problema de red de flujo máximo con G'. Obtenemos el flujo máximo s-t. Entonces El valor del flujo total es igual al tamaño del matiching máximo.

Analisis Pendiente

6.4 Diseño de encuentas

Considere el problema de una compañia que vende k productos y que tiene una base de datos con el historias de las compras de todos sus clientes. La compañia desea enviar encuestas con preguntas personalizadas a un grupo particular de n clientes, para determinar que productos la gente prefiere sobre el total.

Lineamientos para la encuesta:

- Cada cliente recibira preguntas acerca de cierto subconjunto de productos.
- Un cliente solo puede contestar sobre los productos que él o ella haya comprado.
- Cada cliente sera preguntado sobre un número de productos entre c_i y c'_i
- Cada producto debe tener entre p_j y p'_j preguntas de clientes distintos.

El problema de diseño de encuentas toma como input un grafo bipartito G cuyos nodos son clientes y productos, y hay un eje entre un cliente i y un producto j si el cliente compro el producto j. Mas aún, por cada cliente i=1,2,...,n tenemos la limitante de $c_i \leq c_i'$ en el numero de productos en el que un cliente puede constestar; por cada producto j=1,...,k, tenemos la limitante $p_j \leq p_j'$ en el número de cliente distintos que se pueden consultar por cada producto.

El problema se resuelve reduciendo este a un problema de red de flujo en G^\prime con demanda y un limite inferior.

Para obtener un grafo G' de G, necesitamos:

- \bullet Orientar los ejes de G desde los clientes a los productos.
- Agregar un nodo ficticio s con los ejes (s,i) por cada cliente i=1,...,n.
- Agragar un nodo ficticio t con los ejes (j,t) por cada producto j=1,...,k.

La circulacion en la red, corresponde con la manera en la que se tienen que realizar las preguntas.

Se debe pasar de un problema de circulación con demanda y limite inferior a un problema de circulación con demanda y luego a un problema de flujo máximo. Finalmente se resuelve con Ford-Fulkerson.

Una vez obtenido el flujo máximo:

- ullet El flujo que va de (t,s) corresponde al número total de preguntas a realizar.
- El flujo en los ejes (s, i) es el número de productos que deben contener el cuestionario para cada cliente i.
- El flujo en los ejes (j, t) corresponde con él numero de clientes que deben ser preguntados para el producto j.
- Por ultimo, aquellos ejes (i, j) con flujo 1, corresponden a preguntar al cliente i sobre el producto j.

6.5 Selección de proyectos