

By Souky, Jin, Julie, Cesur, and Emma April 18, 2020

Agenda:

- 1. Tableau Graphics
- 2. Pandas Charts
- 3. Machine Learning Overview and Findings
- 4. Project Conclusions

Tableau & Pandas Storytelling

- How many people Survived and how many people died ?
- Survival Analysis by Gender.
- Survival Analysis by Class.
- Survival Analysis by Port Embarkation.
- Survival rate per each factors
- Passenger with which traits is likely to

Survived passengers

Passengers by Gender

Survived: Analysis by Gender

Survival Rate Passenger by Gender & Class

Age Survival

Survived: Age

Survived by Class and Embarkation

Survived by class

Survived by port of Embarkation

Pandas: Survived rate per factors

PClass vs. Survived Rate

Pclas	S	Sex	Age
Survive%			
100.0	1	female	10~20
100.0	1	female	30~40
100.0	1	female	50~60
100.0	1	female	60~70
100.0	1	male	0~10
100.0	2	female	0~10
100.0	2	female	10~20
100.0	2	male	0~10

The Conclusion of our Story

Our ML Objective

- Determine the best machine learning algorithm for our Titanic dataset by utilizing different feature engineering and data cleaning methods
- 2. Have fun with machine learning
 - a. undergo multiple trial and error tests to experiment with best case scenarios (playing with multiple algorithms and how the code affects accuracy)

ML: Random Forest

x_train : input_variables_values_training_datasets

y_train : target_variables_values_training_datasets

importance

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	feature	
0	0	3	0	22.0	1	0	7.2500	Fare	0.297
1	1	1	1	38.0	1	0	71.2833	Age	0.269
2	1	3	1	26.0	0	0	7.9250	Sex	0.268
3	1	1	1	35.0	1	0	53.1000	Pclass	0.084
4	0	3	0	35.0	0	0	8.0500	SibSp	0.045

ML: Confusion Matrix and Comparing Algorithms (Logistic Regression, Decision Tree, and Random Forest)

[106, 236]])

Estimate Accuracy Scores

Random Forest: 98.2 %

Decision Tree: 98.2 %

Logistic Regression: 79.8 %

Not Survived, Not Survived

INCORRECT CORRECT

Survived, Survived

```
# testing the model using confusion matrix
predictions = cross val predict(random_forest, X_train, Y_train)
confusion matrix(Y train, predictions)
array([[475, 74],
       [ 91, 251]])
                           Mean Score: 81.5%
predictions = cross val predict(decision tree, X train, Y train)
confusion matrix(Y train, predictions)
array([[449, 100],
       [102, 240]])
                           Mean Score: 77.3%
predictions = cross val predict(logreg, X train, Y train)
confusion matrix(Y train, predictions)
array([[463, 86],
```

Mean Score: 78.8%

Passenger Data Analyzing

ML models applied - Decision Tree

 Decision tree uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility.

Root

node

Layer 1

ML models applied - K Nearest Neighbor

 K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure.

• Keyword: Cluster

The process of looking for relevant features

	Total	%
Cabin	687	77.1
Age	177	19.9
Embarked	2	0.2
Fare	0	0.0
Ticket	0	0.0

Score and fun discovery

```
Model ScoreDecision Tree 92.70K Nearest Neighour 86.76
```

```
for dataset in data:
    mean = train_df["Age"].mean()
    std = test_df["Age"].std()
    is_null = dataset["Age"].isnull().sum()
    # compute random numbers between the mean, std and is_null
    rand_age = np.random.randint(mean - std, mean + std, size = is_null)
    # fill NaN values in Age column with random values generated
    age_slice = dataset["Age"].copy()
    age slice[np.isnan(age slice)] = rand age
```

Data Preprocessing in Pandas

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId
           891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
          891 non-null object
Name
             891 non-null object
Sex
             714 non-null float64
Age
             891 non-null int64
SibSp
             891 non-null int64
Parch
Ticket
             891 non-null object
             891 non-null float64
Fare
Cabin
             204 non-null object
Embarked
          889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
```

```
embark=pd.get_dummies(titanic_data["Embarked"],drop_first=True)
embark_test=pd.get_dummies(test_data["Embarked"],drop_first=True)
embark.head()
```

	Q	S
0	0	1
1	0	0
2	0	1
3	0	1
4	0	1

Modelling

titanic_data=pd.concat([titanic_data,sex,embark,Pcl],axis=1)
titanic_data.head(2)

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	male	Q	S	2	3
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S	1	0	1	0	1

test_data.drop(["Sex","Embarked","Name","Ticket","Pclass"],axis=1, inplace=True)
test_data.head(2)

	Survived	Age	SibSp	Parch	Fare	male	Q	S	2	3
0	0	22.0	- 1	0	7.2500	1	0	1	0	1
1	1	38.0	1	0	71.2833	0	0	0	0	0
2	1	26.0	0	0	7.9250	0	0	1	0	1
3	1	35.0	1	0	53.1000	0	0	1	0	0
4	0	35.0	0	0	8.0500	1	0	1	0	1

Score
80.99
79.42
78.29
70.75
70.31

Project Final Conclusions

- 1. How someone manipulates data can produce different machine learning outcomes/accuracy scores
 - a. Dropping null values decreases ML accuracy
 - b. ML does not like non-numeric values either
 - c. A "perfect" ratio of features/variables can have too many or not enough
- Different ML algorithms can produce vastly different predictions and accuracy scores even when running through the same data
- 3. You can guess fairly accurate predictions and make fair hypotheses with Pandas (and other visualization tools) on initial data, even before applying ML
- 4. The more accurate and robust the dataset, the better ML can "learn" from the data to make better, more sound predictions

Thank you, questions?

