Solutions Exercises 2nd Semester

Exercise 3.1 (Authentication Bypass)

#	Username	Password	Created SQL Query	Query Result
1	horst	n0Rd4kAD3m!E	SELECT id FROM users WHERE name = 'horst' AND password = 'n0Rd4kAD3m!E'	42
2	1	qwertz	SELECT id FROM users WHERE name = ''' AND password = 'qwertz'	Error
3	'	abc123	SELECT id FROM users WHERE name = '' AND password = 'abc123'	null

#	Username	Password	Created SQL Query	Query Result
4	horst'	qwertz	SELECT id FROM users WHERE name = 'horst' AND password = 'abc123'	42
5	admin'	<anything></anything>	SELECT id FROM users WHERE name = 'admin'	1
6	' OR 1=1	<anything></anything>	SELECT id FROM users	1, 2,

Exercise 4.2 (Session ID Generator)

The IDs are short (15 chars), have low entropy (a-z, 0-9) and contain **predictable patterns** indicating at least partial non-randomness.

#	Session ID	#	Session ID
1	h5kek4z 9ha1 rtrf	7	po953ld 7hg2 awi9
2	gj75l3k 7hb1 5rtr	8	t6zhj2n 5hh2 7bn0
3	18165k4 5hc1 rw7i	9	iu345r5 3hi2 aw34
4	p05jrj5 3hd1 i039	10	o0z4341 1hj2 njkl
5	5urltda 1he1 bn46	11	9por42o 9hk3 dfrz
6	j5le97h 9hf2 yq3h	•••	•••

Exercise 6.1 (Info. Classification)

Practice	Public	Internal	Confidential	Secret
Publish on Internet	✓	X	X	X
Publish on Intranet	✓	✓	X	X
Print on 🖶 🗸		√ if picked up immediately	✓ on personal or otherwise secured printer	

Practice	Public	Internal	Confidential	Secret
Share with third parties	✓	✓ with NDA	✓ with NDA + permission	✓ with NDA + permission
Copy to USB key	✓	✓	✓ with encryption + permission	✓ with encryption + permission

• Many organizations do not allow the use of USB keys in general. This kind of restriction would obviously overrule any of the above "Copy to USB" assessments with X.

Exercise 6.2 (Data Lifecycle Phases)

Phase	Internal	Confidential	Secret
Permanent storage	Access Control (against external access)	AccessControlOAccess logs,Encryption	Access Control,Access logs,Encryption
Transfer (internal network)	No restrictions	O Encryption (e.g. TLS)	Encryption (e.g.TLS)O/ End-to-endencryption (e.g. PGP,Signal)

Phase	Internal	Confidential	Secret
Transfer (public network)	O Encryption (e.g. VPN)	O Encryption (e.g. VPN, TLS)	Encryption (e.g. VPN,TLS)O/ End-to-endencryption (e.g. PGP,Signal)
Disposal	No restrictions	Shredding, secure deletion, data wipe	● Shredding, secure deletion, data wipe ○/● Destroy medium physically (≦, ♣)

i For "Public" data no restrictions for any lifecycle phases apply.

Exercise 8.2 (ArrayList Deserialization)

```
/**
 * The maximum size of array to allocate.
 * Some VMs reserve some header words in an array.
 * Attempts to allocate larger arrays may result in
 * OutOfMemoryError: Requested array size exceeds VM limit
 */
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
```

Whenever an OutOfMemoryError occurs, the affected JVM crashes.

Exercise 8.3 (HashSet Deserialization)

```
i=0, root=[[], [foo]]
i=1, root=[[[], [foo]], [[], foo, [foo]]]
i=2, root=[[[], [foo]], [[], foo, [foo]]], [[[], [foo]], foo, [[], foo, [foo]
i=3, root=[[[[], [foo]], [[], foo, [foo]]], [[[], [foo]], foo, [[], foo, [foo]
i=4, root=[[[[]], [foo]], [[], foo, [foo]]], [[[], [foo]], foo, [[], foo, [foo]]], [[], [foo]], foo, [[], foo, [foo]]], [[], [foo]], foo, [[], foo, [foo]]], [[], [foo]], foo, [[], foo, [i=7, root=[[[[[[[]], [foo]], [[], foo, [foo]]], [[]], [foo]], foo, [[], foo, [i=8, root=[[[[[[[[]], [foo]], [[], foo, [foo]]], [[[], [foo]], foo, [[], foo, []]])
```

With its members recursively linked to each other, when deserializing root, the JVM will begin creating a recursive object graph. It will never complete, and consume CPU indefinitely.

Exercise 9.1 (Protection Req. Calc.)

Aspect / Application	Website	VCS	Webshop	B2B API
Business criticality	2 🔷	1 •	5	2 🔷
Information classification	0	2 🔷	2 🔷	2 🔷
Compliance requirements	0	0 🖤	2 🔷	1 •
Exposure to threats	5	1 •	5	5
Authentication mechanism	0 •	-2	-1 🔷	-1 🔷
Total Score	7	2	13	9
Rating	Medium	Low	High	Medium