| কন্সেপ্ট নোট |            |                  |  |  |
|--------------|------------|------------------|--|--|
| বুসায়ৰ      | ৫ম অধ্যায় | বাুসায়নিক বন্ধন |  |  |

Prepared by: SAJJAD HOSSAIN

#### যোজ্যতা ইলেকট্ৰন (Valence Electron)

- काला भৌलत रेलकप्रेन विन्যाप प्रवंश्य कक्षप्रथ (य रेलकप्रेन वा रेलकप्रेनप्रमूर थाक जात प्रःथााक याजाजा रेलकप्रेन प्रःथा वना रंग।
  - বেমন- পটাশিয়াম ও অক্সিজেনের ইলেকট্রন বিন্যাসে সর্বশেষ কক্ষপথে যথাক্রমে 1টি ও 6টি করে ইলেকট্রন বিদ্যমান। সুতরাং তাদের যোজ্যতা ইলেকট্রন যথাক্রমে 1 ও 6।
  - ০ অনুরূপভাবে, আরো কিছু মৌলের যোজ্যতা ইলেকট্রন সংখ্যা নিম্নরূপঃ

| N(7)   | 5 |
|--------|---|
| F(9)   | 7 |
| P(15)  | 5 |
| CI(17) | 7 |
| Ca(20) | 2 |

| C(6)   | A 100      |
|--------|------------|
| Ne(10) | A 10       |
| S(16)  | বাড়ির কাজ |
| As(33) |            |
| Rb(27) | - A 1 M    |

#### যোজনী বা যোজ্যতা (Valency)

- অণু গঠনকালে কোনো মৌলের একটি পরমাণুর সাথে অপর একটি মৌলের পরমাণু যুক্ত হওয়ার য়য়তাকে যোজনী
  বা যোজ্যতা বলা হয়। [বিভিল্প মৌলের পরমাণুসমূহ একে অপরের সাথে সর্বশেষ কয়পথের ইলেকয়ন বর্জন, গ্রহণ
  অথবা ভাগাভাগির মাধ্যমে অণু গঠন করে।]
- সাধারণত সব সময় হাইড়্রোজেনের যোজনী এক (1) ধরা হয়। কোনো মৌলের একটি পরমাণু যতগুলো H
  পরমাণু বা Cl পরমাণুর সাথে যুক্ত হতে পারে সেই সংখ্যাই হলো ঐ মৌলের যোজনী বা যোজ্যতা ।

|                       | • | হাইড্রোজেনের একটি পরমাণু ক্লোরিনের একটি <mark>পরমাণুর সাথে যুক্ত হয়ে HC</mark> I অণু                                |
|-----------------------|---|----------------------------------------------------------------------------------------------------------------------|
|                       |   | গঠিত হয়, তাই ক্লোরিনের যোজনীও 1 (এক)। <mark>আ</mark> বার অক্সিজেনের একটি                                            |
| হাইড্ৰোজেন বা ক্লোবিন |   | পরমাণু হাইড়োজেনের দুটি পরমাণুর <mark>সাখে যুক্ত হয়ে H₂O</mark> তৈরি করে, এজন্য                                     |
| (শ্বেল                |   | অক্সিজেনের যোজনী 2 (দুই)।                                                                                            |
|                       | • | একটি Na পরমাণু একটি C৷ পরমাণুর সাথে যুক্ত হয়ে NaC৷ গঠিত হয়। সুতরাং                                                 |
|                       | 1 | Na এর যোজনী 1 (এক)।                                                                                                  |
| 1/2                   | • | একটি পরমাণুর সাথে যত <mark>টি অ</mark> ক্সিজে <mark>ন প</mark> রমাণু <mark>যু</mark> ক্ত হয় তার সেই সংখ্যার দ্বিগুণ |
|                       |   | করলে ঐ পরমাণুর যোজনী বা যোজ্যতা হয়। যেমন- ক্যালসিয়াম (Ca) এর                                                       |
| অক্সিজেন স্কেল        |   | একটি পরমাণু একটি অক্সিজেন (O) পরমাণুর সাথে যুক্ত হয়ে ক্যালসিয়াম                                                    |
|                       |   | অক্সাইড (CaO) তৈরি করে। এথানে অক্সিজেন পরমাণুর সংখ্যা 1 এই সংখ্যাকে                                                  |
|                       |   | 2 দ্বারা গুণ করলে হয় 2। কাজেই ক্যালসিয়ামের যোজনী 2।                                                                |

| সক্রিয় যোজনী  | • | হাইড্ৰোজেন | বা | আক্সজেন স্কেল | মতে | কোনো | মোলের | প্রাপ্ত | যোজনাকে | সাক্রয় |
|----------------|---|------------|----|---------------|-----|------|-------|---------|---------|---------|
| সাক্রম (যাতাৰা |   | যোজনী বৰে  | न। |               |     |      |       |         |         |         |

| ক্সেপ্ট লোট |            |                             |  |  |
|-------------|------------|-----------------------------|--|--|
| বসায়ৰ      | ৫ম অধ্যায় | বাসায়নিক বন্ধন             |  |  |
|             |            | Prepared by: SAJJAD HOSSAIN |  |  |

|                   | • কোনো  | भৌलत्र এकाधिक (याजनी              | थाकल (प्रहे भৌलत (याजनीक পतिवर्जनमीन                   |
|-------------------|---------|-----------------------------------|--------------------------------------------------------|
|                   | যোজনী   | वला इय़।                          |                                                        |
|                   | • যেমল- |                                   |                                                        |
|                   | С       | 2, 4                              |                                                        |
| পবিবৰ্তনশীল যোজনী | N       | 3, 5 (ভুল তথ্য)                   |                                                        |
| ମାୟସଭବମାମ (ସାରାବା | Р       | 3, 5                              |                                                        |
|                   | S       | 2, 4, 6                           |                                                        |
|                   | Fe      | 2, 3                              |                                                        |
|                   | Pb      | 2, 4                              |                                                        |
|                   | Cu      | 1, 2                              |                                                        |
|                   | • কোনো  | (मोलत पर्ताष्ठ (याजनी এ           | नः प्रक्रिय (याजनीत भार्थकारक                          |
|                   | যোজনী   | वला इय़।                          |                                                        |
|                   | • যেমন: |                                   |                                                        |
| সুপ্ত যোজনী       | 0       | FeCl₂ যৌগে Fe এর সরি              | केंग (याजनी 2 किन्क Fe এর সর্বোচ্চ याजनी               |
|                   | J A     | 3। অ <mark>ত</mark> এব FeCl₂ যৌগে | Fe <mark>এর সুপ্ত যোজনী </mark> 3−2 = 1।               |
|                   | 0       | আবার FeCl₃ যৌগে Fe                | এর সক্রি <mark>য় যোজনী 3</mark> কিন্তু Fe এর সর্বোচ্চ |
|                   | 14      | <mark>যোজনী 3</mark> , অতএব FeCl  | <sub>3</sub> যৌগে Fe এর সুপ্ত যোজনী 3-3 = 0।           |

# যৌগমূলক ও তাদের যোজনী (Radicals and Their Valencies)

- যৌগমূলক ধনাত্মক কিংবা ঋণাত্মক আধানবিশিষ্ট হতে পারে। এদের আধান সংখ্যাই মূলত এদের যোজনী নির্দেশ
  করে। আধান বা চার্জ ধনাত্মক বা ঋণাত্মক হতে পারে কিন্তু যোজনী শুধু একটি সংখ্যা এর কোনো ধনাত্মক
  চিচ্ন বা ঋণাত্মক চিচ্ন নেই। কিছু উদাহরণ দেখে নেয়া যাকঃ

| যৌগমূলকের নাম             | সংকেত                         | আধান | যোজনী  |
|---------------------------|-------------------------------|------|--------|
| অ্যামোনিয়াম              | NH <sub>4</sub> <sup>+</sup>  | +1   | J / DY |
| ফসফোনিয়াম                | PH₄⁺                          | +1   | 1      |
| কার্বনেট                  | CO <sub>3</sub> <sup>2-</sup> | -2   | 2      |
| হাইড্রোজেন (বাই) কার্বনেট | HCO <sub>3</sub> -            | -1   | 1      |
| সালফেট                    | SO <sub>4</sub> <sup>2-</sup> | -2   | 2      |
| হাইড্রোজেন (বাই) সালফেট   | HSO <sub>4</sub> -            | -1   | 1      |
| সালফাইট                   | SO <sub>3</sub> <sup>2-</sup> | -2   | 2      |
| নাইট্রেট                  | NO <sub>3</sub> -             | -1   | 1      |
| নাইট্রাইট                 | NO <sub>2</sub> -             | -1   | 1      |
| ফস <b>ফে</b> ট            | PO <sub>4</sub> <sup>3-</sup> | -3   | 3      |

| ক্সেপ্ট লোট |            |                             |  |  |
|-------------|------------|-----------------------------|--|--|
| বসায়ৰ      | ৫ম অধ্যায় | বাসায়নিক বন্ধন             |  |  |
|             |            | Prepared by: SAJJAD HOSSAIN |  |  |

| হাইড়োক্সাইড | OH- | -1 | 1 |
|--------------|-----|----|---|
|--------------|-----|----|---|

#### যৌগের রাসায়নিক সংকেত

- যৌগের একটি অণুতে যেসব পরমাণু থাকে তাদের প্রতীক ও সংখ্যার মাধ্যমে অণুটিকে প্রকাশ করা হয়। যেমন– দুটি হাইড্রোজেন (H) পরমাণু ও একটি অক্সিজেন (O) পরমাণু মিলে পানির ( $H_2O$ ) একটি অণু গঠিত হয়। এখানে,  $H_2O$  হলো পানির অণুর রাসায়নিক সংকেত।
- সুতরাং মৌল বা যৌগমূলকের প্রতীক বা সংকেত ও তাদের সংখ্যার মাধ্যমে কোনো যৌগ অণুকে প্রকাশ করাই হলো উক্ত যৌগের রাসায়নিক সংকেত (Chemical Formula)। এক্ষেত্রে অণুর মধ্যে অবস্থিত মৌলের বা যৌগমূলকের সংখ্যাকে সংকেতের নিচে ডান পাশে ছোট করে (Subscript) লেখা হয়।

#### বাসামূলিক সংকেত লেখাব লিমুম

- কোনো মৌলের একটি অণুতে যতগুলো পরমাণু খাকে তার সংখ্যাটি ইংরেজি হরফে মৌলটির প্রতীকের ডান পাশে
  নিচে ছোট করে লিখতে হবে।
  - $\circ$  যেমন: নাইট্রোজেন অণুতে দুটি পরমাণু <mark>খা</mark>কে তাই নাইট্রোজেন অণু<mark>র সংকেত N $_2$ ।</mark>
  - ০ ওজোন এর একটি অণুতে <mark>তিনটি অক্সিজেন</mark> পরমাণু থাকে– তাই ওজো<mark>ন অণুর সংকে</mark>ত O₃।
- কিছু মৌল অণু গঠন করে না তাই তাদেরকে শুধু প্রতীক দিয়ে বোঝানো হয়।
  - যেমন: সকল ধাতু। কাজেই আররনকে বোঝাতে শুধু Fe লিখতে হবে।
  - ০ আবার, নিষ্ক্রিয় গ্যাসগুলোও অণু গঠন <mark>করে</mark> না, তাই হিলিয়ামকে বোঝাতেও শুধু He লিখতে হবে।
- কখলো কখলো কোলো যৌগের অণু দুটি ভিল্প মৌলের পরমাণু দিয়ে গঠিত হয়। তাদের যোজনী যদি কোনো
  সাধারণ সংখ্যা দ্বারা বিভাজ্য না হয় তাহলে দুটি মৌলের প্রতীক পাশাপাশি লিখে একটি মৌলের প্রতীকের পাশে
  অন্যটির যোজনী লিখতে হয়।
  - ০ যেমন: অ্যালুমিনিয়ামের যোজনী 3 এবং অক্সিজেন এর যোজনী 2। যোজনী দুটি কোনো সাধারণ সংখ্যা দারা বিভাজ্য নয়। যদি অ্যালুমিনিয়াম এবং অক্সিজেন দ্বারা গঠিত কোনো যৌগের সংকেত লিখতে হয় তবে অ্যালুমিনিয়ামের প্রতীক AI এর নিচের দিকে ভান পাশে অক্সিজেনের যোজনী ছোট করে লিখতে হবে এবং অক্সিজেনের প্রতীক O এর নিচের দিকে ভান পাশে অ্যালুমিনিয়ামের যোজনী ছোট করে লিখতে হবে অর্থাৎ এর সংকেত হবে AI₂O₃।
  - ত অনুরূপভাবে ক্যালিসিয়ামের যোজনী 2 এবং ক্লোরিনের যোজনী 1। সুতরাং ক্যালিসিয়াম ক্লোরাইডের সংকেত  $Ca_1Cl_2$  হওয়ার কথা, 1টি লিখতে হয় না বলে আমরা লিখি  $CaCl_2$  ।
- কোনো যৌগমূলক একাধিক সংখ্যক থাকলে যৌগমূলকটিকে প্রথম বন্ধনীর মধ্যে রেখে তারপর সংখ্যা লিখতে হয়।
  - ০ যেমন: ম্যাগনেসিয়ামের যোজনী 2 এবং কসকেটের যোজনী 31 সুত্তরাং ম্যাগনেসিয়াম কসকেটের সংকেত  $Mg_3(PO_4)_2$ । অ্যামোনিয়াম কসকেট  $(NH_4)_3(PO_4)_1$  বা  $(NH_4)_3PO_4$ , অ্যালুমিনিয়াম সালকেট  $AI_2(SO_4)_3$  ইত্যাদি।

|         | কন্সেপ্ট নোট |                 |
|---------|--------------|-----------------|
| বুসায়ৰ | ৫ম অধ্যায়   | বাসায়নিক বন্ধন |

Prepared by: SAJJAD HOSSAIN

- যদি দুটি মৌলের যোজনী কোনো সাধারণ সংখ্যা দিয়ে বিভাজ্য হয় তাহলে যোজনীগুলো সেই সাধারণ সংখ্যা দিয়ে
  ভাগ দিয়ে মৌলের পাশে পূর্বের নিয়মে ভাগফলটি লিখতে হয়।
  - যেমন: কার্বন ও অক্সিজেন দিয়ে গঠিত যৌগ কার্বন ডাই-অক্সাইড। কার্বনের যোজনী 4 এবং অক্সিজেনের যোজনী 2। কার্বনের যোজনীকে 2 দিয়ে ভাগ করলে 2 পাওয়া য়য় আবার অক্সিজেনের যোজনীকে 2 দিয়ে ভাগ করলে 1 পাওয়া য়য়। এখন নিয়ম অনুয়য়ী কার্বনের সংকেত C এর নিচে ডান পাশে 1 এবং অক্সিজেনের নিচে 2 লিখতে হবে। কিল্ফ সংকেত লেখার সময় যেহেতু 1 সংখ্যাটি লেখার প্রয়োজন নেই তাই কার্বন ডাই-অক্সাইডের সংকেত হবে CO₂। ফেরাস সালফেট য়ৌগে আয়রনের য়োজনী 2 সালফেট আয়নের য়োজনী 2। এই সংখ্যাদুটিকে 2 দিয়ে ভাগ করে 1 ও 1 পাওয়া য়য়। মুতরাং ফেরাস সালফেটের সংকেত FeSO₄। বোরন ও নাইট্রোজেনের য়োজনী 3। এদের 3 দিয়ে ভাগ করলে 1 ও 1 পাওয়া য়য় মুতরাং বোরন নাইট্রাইডের সংকেত B₁N₁ = BN।

| M ATTERNATION OF THE PARTY OF T |                                                                  |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|
| আণবিক সংকেত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  | গাঠনিক সংকেত                                 |
| <ul> <li>এकि स्मोन वा स्पोशत अनुस्</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ७ (य (य ध <mark>्र</mark> त्नत्र • এकि जेपूर्र                   | <mark>७ भৌलत পরমাণুগুলো যেভাবে সাজানো</mark> |
| মৌলের পরমাণু থাকে তাদের প্রত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  | <u> </u>                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | मः <i>थ्या पित्य प्र<mark>का</mark>यि</i> ण <i>गार्ठनिक प</i> ः। | কেত বলে।                                     |
| <b>मः(कं</b> णक आंगविक मः(कंण वा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                              |
| वल।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                              |
| • উদাহরণ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                                              |
| যৌগের নাম                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | আণবিক সংকেত                                                      | গাঠিৰিক সংকেত                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | ннн                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 0.10                                         |
| প্রোপেন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>3</sub> H <sub>8</sub>                                    | H-C-C-H                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | I I I I                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | ннн                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 0                                            |
| পাৰি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>2</sub> O                                                 | A /                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | нн                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | Н                                            |
| মি(খন                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH <sub>4</sub>                                                  | H-C-H                                        |
| Aug.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0114                                                             | 1                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | Н                                            |

#### অষ্টক ও দুই-এব নিমুম (Octet and Duet Rules)

• जिंदू पर्श्वकाल काला स्मिन रेलक्र्रेन গ্রহণ, বর্জন जथवा ভাগাভাগির মাধ্যমে তার সর্বশেষ শক্তিস্তরে ৪টি করে ইলেক্স্রেন ধারণের মাধ্যমে নিষ্ক্রিয় গ্যামের ইলেক্স্রেন বিন্যাস লাভ করে। একেই 'অষ্ট্রক' নিয়ম বলা হয়। [প্রতিটি মৌলই তার সর্বশেষ শক্তিস্তরে নিষ্ক্রিয় গ্যামের ইলেক্স্রেন বিন্যামের প্রবণতা দেখায়। হিলিয়াম ছাড়া সকল নিষ্ক্রিয় গ্যামের ইলেক্স্রেন বিন্যামান।]

# কন্সেপ্ট লোট

## বুসায়ৰ ৫ম অধ্যায়

## বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

- বেমন CH₄ অণুতে কেন্দ্রীয় পরমাণু কার্বনের সর্বশেষ
  শক্তিয়রে ৪টি ইলেকয়ন বিদ্যমান। যেখানে এটি ইলেকয়ন
  কার্বনের নিজয় আর বাকি এটি ইলেকয়ন চারটি হাইড়োজেন
  পরমাণু থেকে আসে। পাশের চিত্রে তা দেখানো হলো।
- অন্তক নিয়্মের কিছু সীমাবদ্ধতার কারণে বিজ্ঞানীরা নতুন একটি
  নিয়্মের উপস্থাপন করেন। যাকে 'দুই'-এর নিয়্ম বলা হয়।
- অণু গঠনে কোনো পরমাণুর সর্বশেষ শক্তিস্তরে এক বা একাধিক জোড়া ইলেকট্রন বিদ্যমান থাকবে, এটিই হচ্ছে 'দুই' এর নিয়ম। অর্থাৎ অণুতে যেকোনো পরমাণুর সর্বশেষ শক্তিস্তরে এক বা একাধিক জোড়া ইলেকট্রন অবস্থান করবে।



চিত্ৰ 5.02: মিখেন অপুতে অউক নিয়ম।

• যেমন-

| 11 10             | • | BeCl₂ অণুর কেন্দ্রীয় পরমাণু Be এর সর্বশেষ শক্তিস্ <mark>তরে 2 জোড়া অর্থা</mark> ৎ 4িট ইলেকট্রন       |
|-------------------|---|--------------------------------------------------------------------------------------------------------|
| BeCl <sub>2</sub> |   | বিদ্যমান।                                                                                              |
|                   | • | অনুরূপভাবে, CI এর সর্বশেষ <mark>শ</mark> ক্তিস্তরে 4 জোড়া অর্থাৎ ৪টি ইলেকট্রন বিদ্যমান।               |
| BF <sub>3</sub>   | • | BF <sub>3</sub> অণুর কেন্দ্রীয় পরমাণু B এর সর্বশেষ শক্তিস্তরে ও জোড়া অর্থাৎ 6িট ইলেকট্রন বিদ্যমান।   |
|                   | • | অনুরূপভাবে, F <mark>সর্বশেষ শক্তিস্তরে</mark> 4 জোড়া অর্থাৎ ৪টি ইলে <mark>কট্রন বিদ্যমান</mark> ।     |
| CII               | • | CH4 অণুর কেন্দ্রী <mark>য় পরমাণু C এর সর্বশেষ শক্তিস্তরে 4 জোড়া অর্খাৎ ৪টি ইলেকট্রন বিদ্যমান।</mark> |
| CH <sub>4</sub>   | • | অনুরূপভাবে, H এর সর্বশেষ শক্তিস্তরে 1 জোড়া অর্থাৎ 2টি <mark>ইলেকট্রন বিদ্যমান।</mark>                 |

[উল্লেখ্য, পর্যায় সারণির 1-20 পর্যন্ত মৌলসমূহ মূলত 'অষ্টক' ও 'দুই' এর নিয়ম ভালোভাবে অনুসরণ করে।]

#### নিষ্ক্রিয় গ্যাস এবং এর স্থিতিশীলতা

পর্যায় সারণিতে গ্রুপ-18 এর মৌলসমূহ তথা নিষ্ক্রিয় গ্যাসগুলোর ইলেকট্রল বিন্যাসের দিকে থেয়াল করিঃ

| He (2)  | 1s <sup>2</sup>                                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ne (10) | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup>                                                                                                                                   |
| Ar (18) | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup>                                                                                                   |
| Kr (36) | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>10</sup> 4s <sup>2</sup> 4p <sup>6</sup>                                                  |
| Xe (54) | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>10</sup> 4s <sup>2</sup> 4p <sup>6</sup> 4d <sup>10</sup> 5s <sup>2</sup> 5p <sup>6</sup> |
| Rn (86) | $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^6 \ 4d^{10} \ 4f^{14} \ 5s^2 \ 5p^6 \ 5d^{10} \ 6s^2 \ 6p^6$                                                              |

ইলেকট্রন বিন্যাসে দেখা যায় যে, হিলিয়ামের সর্বশেষ শক্তিস্তরে 2টি ইলেকট্রন রয়েছে। হিলিয়ামের বেলায় তার সর্বশেষ শক্তিস্তর পূর্ণ করতে 2টি ইলেকট্রনই প্রয়োজন, কাজেই এই ইলেকট্রন বিন্যাস স্থিতিশীল। অন্যান্য নিষ্ক্রিয় গ্যাসের বেলায় তাদের সর্বশেষ শক্তিস্তরে ৪টি (ns² np6) করে ইলেকট্রন বিদ্যমান। সর্বশেষ শক্তিস্তরে দ্বিত্ব ও অষ্টক পূর্ণ থাকার কারণে নিষ্ক্রিয় গ্যাসগুলো অধিকত্র স্থিতিশীল হয়।

# কন্সেপ্ট লোট ৫ম অধ্যায়

#### বসায়ন

## বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

- অধিকতর স্থিতিশীলতার কারণে নিষ্ক্রিয় গ্যাসগুলো অন্য কোনো মৌলকে ইলেকট্রন প্রদান করে না। এমনকি অপর কোনো মৌলের কাছ খেকে কোনো ইলেকট্রন গ্রহণও করে না। এরা রাসায়নিকভাবে আসক্তিহীন হয়ে পড়ে বা এরা নিষ্ক্রিয় হয়ে পড়ে।
- নিষ্ক্রিয় গ্যাস ছাড়া বাকি কোনো মৌলেরই সর্বশেষ শক্তিস্তরে এরপ দ্বিত্ব বা অষ্টক পূর্ণ থাকে না। ফলে তারা
  শ্বিতিশীল হয় না। অন্যান্য মৌল শ্বিতিশীলতা অর্জনের জন্য সর্বশেষ শক্তিস্তরে দ্বিত্ব বা অষ্টক পূরণ করতে চায়।
  এজন্য তারা সর্বশেষ শক্তিস্তরে ইলেকট্রন গ্রহণ, প্রদান অথবা ভাগাভাগি করে পরস্পরের সাথে বন্ধন গঠন করে।

#### বাসায়নিক বন্ধন ও বাসায়নিক বন্ধন গঠনের কারণ

- जनुर्व्व भत्रमानुममुर (य जाकर्सान्त माधारम अर्क जभरतत माथ युक्क थाक जाकर तामायिनक वन्नन वल।
- পরমাণুসমূহ কেন আলাদাভাবে থাকেনি? কেন তারা পরস্পরের সাথে যুক্ত হয়ে অণু তৈরি করল? প্রত্যেক মৌলই তার সর্বশেষ শক্তিস্তরে নিষ্ক্রিয় গ্যাসের স্থিতিশীল ইলেকট্রন বিন্যাস অর্জনের চেষ্টা করে। একই মৌলের বা ভিন্ন মৌলের দুটি পরমাণু যখন কাছাকাছি অবস্থান করে তখন তারা তাদের সর্বশেষ শক্তিস্তরে ইলেকট্রন গ্রহণ, বর্জন বা ভাগাভাগির মাধ্যমে নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করে। এর মাধ্যমে তাদের মধ্যে এক ধরনের আকর্ষণের সৃষ্টি হয়, যে আকর্ষণকে আমরা রাসায়নিক বন্ধন বলি। কাজেই বলা যেতে পারে রাসায়নিক বন্ধন গঠনের মূল কারণ হলো পরমাণুগুলোর সর্বশেষ শক্তিস্তরের ইলেকট্রনগুলো নিষ্ক্রিয় গ্যাসের স্থিতিশীল ইলেকট্রন বিন্যাস (দ্বিত্ব বা অষ্টক) লাভের প্রবণতা।

#### ক্যাটায়ন ও অ্যানায়ন (Cations and Anions)

- আমরা জানি, সাধারণ অবস্থায় পরমাণুর নিউক্লিয়াসে যতটি ধনাত্মক আধান বা পজিটিভ চার্জবিশিষ্ট প্রোটন থাকে
  এবং নিউক্লিয়াসের বাইরে বিভিন্ন শক্তিস্তরে ঠিক ততটি ঋণাত্মক আধান বা নেগেটিভ চার্জবিশিষ্ট ইলেকট্রন থাকে।
  এর ফলে পরমাণুটি সামগ্রিকভাবে আধান বা চার্জ নিরপেক্ষ হয়।
- এরকম একটি আধান নিরপেক্ষ পরমাণুর বাইরের শক্তিস্তর থেকে এক বা একাধিক ইলেকট্রনকে সরিয়ে নিলে পরমাণুটি আর আধান নিরপেক্ষ থাকবে না। এটি সামগ্রিকভাবে ধনাত্মক আধানবিশিষ্ট আয়নে পরিণত হবে। ধনাত্মক আধান বা পজিটিভ চার্জ বিশিষ্ট আয়নকে ক্যাটায়ন বলে।
- সাধারণত পর্যায় সারণির বামের মৌল বা ধাতুগুলো তাদের সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রন ত্যাগ
  করে নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাম লাভের মাধ্যমে ক্যাটায়নের সৃষ্টি করে। যেমন-
- লিথিয়াম পরমাণু তার সর্বশেষ শক্তিস্তরের একটি ইলেকট্রন ছেড়ে
  দিয়ে নিঞ্জিয় গ্যাস হিলিয়ামের ইলেকট্রন বিন্যাস অর্জনের মাধ্যমে
  লিথিয়াম ক্যাটায়ন (Li<sup>+</sup>) তৈরি করে।



## বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

অনুরূপে, Na পরমাণু তার সর্বশেষ শক্তিস্তরের একটি ইলেকট্রন ত্যাগ করে নিষ্ক্রিয় গ্যাস No এর ইলেকট্রন বিন্যাস লাভের মাধ্যমে সোডিয়াম ক্যাটায়ন (Na<sup>+</sup>) তৈরি করে।



- ধাতুসমূহ কেন তাদের সর্বশেষ শক্তিস্তরের ইলেকট্রন ছেডে দিয়ে ক্যাটায়ন তৈরি করে? আমরা জানি, পর্যায় সারণির যেকোনো একটি পর্যায়ে বাম খেকে ডানে গেলে মৌলসমূহের ধাতব ধর্ম ধীরে ধীরে হ্রাস পায় এবং অধাতব ধর্ম বৃদ্ধি পায়। অর্থাৎ যেকোনো পর্যায়ের বামের মৌলসমূহ হলো ধাতু এবং ডানের মৌলসমূহ হলো অধাতৃ। আবার একই পর্যায়ে বাম খেকে ডানে গেলে মৌলসমূহ আকারও ধীরে ধীরে হ্রাস পায়। এই কারণে একই পর্যায়ে অবস্থিত অন্য মৌলসমূহের চেয়ে ধাতুগুলো<mark>র</mark> আকার বড হয়ে থাকে। আবার ধাতুগুলোর সর্বশেষ শক্তিস্তরে সাধারণত 1, 2 বা 3টি ইলেকট্রন থাকে। আকার <mark>ব</mark>ড় হওয়ার কারণে ধা<mark>তুগুলোর সর্বশেষ শ</mark>ক্তিস্তরের ইলেকট্রনগুলোর নিউক্লিয়াস থেকে দুরে থাকে এবং নিউক্লিয়াসের সাথে আকর্ষণ কম হয় <mark>অর্থাৎ দুর্বলভা</mark>বে আবদ্ধ থাকে। ফলে এদের **আয়নিক্রণ শক্তির মান অনেক কম** হয়। অর্থাৎ সামান্য পরিমাণ শক্তি প্র<u>য়োগ</u> করলেই ধাতুগুলো তার সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রন ত্যাগ করে কাছাকাছি নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস অর্জন করে ক্যাটায়নে পরিণত হতে পারে। এই কারণেই ধাতুগুলোই মূলত ক্যাটায়নে পরিণত হয়।
- অন্যদিকে অধাতৃগুলো ক্যাটায়ন তৈরি করে না। অধাতৃগুলো পর্যায় সারণির ডালে অবস্থান করে। এদের সর্বশেষ শক্তিস্তরে সাধারণত 5, 6 বা 7ট<mark>ি ইলেকট্রন বি</mark>দ্যমান থাকে। এদের আকার এক**ই পর্যা**মের ধাতুসমূহের চেয়ে অনেক ছোট হয়। ছোট আকারের কারণে সর্বশেষ শক্তিস্তর নিউক্লিয়াসের কাছাকাছি থাকে এবং এদের সর্বশেষ শক্তিস্তরের ইলেকট্রনের প্রতি নিউক্লিয়াসের আকর্ষণ অনেক বেশি হয়, অর্থাৎ এদের আয়ুনিকরণ শক্তির মান অনেক বেশি হয়। এরূপ কোনো মৌলের সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রনকে সরিয়ে নিতে অনেক বেশি শক্তির প্রয়োজন হয়, যা সাধারণ অবস্থায় কোনো রাসায়নিক বিক্রিয়া থেকে সহজে পাওয়া যায় না। এ কারণে অধাতৃগুলো সাধারণত ধনাত্মক আধান তথা ক্যাটায়ন তৈরি করে না।
- যেহেতু এদের সর্বশেষ শক্তিস্তরে অষ্টক অপেক্ষা সাধারণত 1, 2 কিংবা 3টি ইলেকট্রন কম থাকে সেহেতু এরা সেই সংখ্যক ইলেকট্রন গ্রহণ করে সহজেই নিষ্ক্রিয় গ্যাসের श्विणिशील रेलकद्वेन विन्याप्र लाख करत। जन्यखाद वला याय, এদের **ইলেকট্রন আসক্তির মান বেশি।** ইলেকট্রন গ্রহণের ফলে এদের নিউক্লিয়াসে অবস্থিত ধনাত্মক প্রোটন সংখ্যার চেয়ে ঋণাত্মক আধানবিশিষ্ট ইলেকট্রনের সংখ্যা বেশি হয়। সামগ্রিকভাবে অধাতব পরমাণুসমূহ আধানবিশিষ্ট হয়। এভাবে ঋণাত্মক আধানবিশিষ্ট পরমাণুকে



চিত্র 5.05: ঝণাত্মক Cl আয়ন গঠন।

### ক্সেপ্ট লোট ৫ম ত্রধ্যমে ব্যামানিক ব

৫ম অধ্যায় বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

*অ্যানায়ন বলে।* যেমন ক্লোরিন (CI) পরমাণু একটি ইলেকট্রন গ্রহণ করে নিষ্ক্রিয় গ্যাস আর্গনের (Ar) ইলেকট্রন বিন্যাস লাভের মাধ্যমে ক্লোরাইড (CI<sup>-</sup>) আয়ন ভৈরি করে।

#### আ্মনিক বন্ধন বা ভড়িৎযোজী বন্ধন (Ionic Bond or Electrovalent Bond)

- ধাতুগুলোর আয়নিকরণ শক্তির মান অনেক কম হওয়ায় এরা অতি সহজেই সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রন ত্যাগ করে ধনায়্মক আধানবিশিষ্ট আয়ন বা ক্যাটায়নে পরিণত হয়। আবার অধাতুগুলোর ইলেকট্রন আসক্তির মান বেশি হওয়ায় এরা সহজেই সর্বশেষ শক্তিস্তরে এক বা একাধিক ইলেকট্রন গ্রহণ করে ঋণায়্মক আধানবিশিষ্ট আয়ন বা অ্যানায়নে পরিণত হয়। এভাবে সৃষ্ট বিপরীত আধানের ক্যাটায়ন ও অ্যানায়নের মধ্যে শির বৈদ্যুতিক আকর্ষণ বল বা ইলেকট্রোস্ট্যাটিক বল কাজ করে। এই ইলেকট্রোস্ট্যাটিক বল বা কুলম্ব আকর্ষণ বলের ফলে তারা একে অপরের সাথে যুক্ত থাকে। যে আকর্ষণের ফলে ক্যাটায়ন ও অ্যানায়ন পরস্পরের সাথে যুক্ত থাকে সেটিই আয়নিক বা তিডিৎযোজী বন্ধন।
- অর্থাৎ ধাতর ও অধাতর পরমাণুর রাসায়নিক সংযোগের সময় ধাতর পরমাণু তার সর্বশেষ শক্তিস্তরের এক বা
   একাধিক ইলেকট্রনকে অধাতর পরমাণুর সর্বশেষ শক্তিস্তরে স্থানান্তর করে ধনাত্মক ঋণাত্মক আয়ন সৃষ্টির মাধ্যমে
   যে বন্ধন গঠিত হয় তাকে আয়নিক বা তড়িৎযোজী বন্ধন বলে। যে যৌগে আয়নিক বন্ধন থাকে তাকে আয়নিক
   যৌগ বলে।
- যেমন-
- Na পরমাণু তার সর্বশেষ শক্তিস্তরের একটি ইলেকট্রন ত্যাগ করে নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে ৪টি ইলেকট্রন গঠন করে Na<sup>+</sup> ক্যাটায়নে পরিণত হয়।

বসায়ন

#### Na → Na<sup>+</sup> + e<sup>-</sup>

অপরদিকে CI পরমাণু তার সর্বশেষ শক্তিস্তরে
Na এর ত্যাগকৃত ইলেকট্রনটিকে গ্রহণ করে
নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন
করে অর্থাৎ সর্বশেষ শক্তিস্তরে ৪টি ইলেকট্রন
গঠন করে CI⁻ অ্যানায়নে পরিণত হয়।

 এভাবে সৃষ্ট ধনাত্মক আধান Na<sup>+</sup> ও ঋণাত্মক আধান Cl<sup>-</sup> পরস্পরের সাথে স্থির বৈদ্যুতিক আকর্ষণে আবদ্ধ হয়। এ আকর্ষণ বলই আয়নিক বন্ধন।



# কন্সেপ্ট লোট

### বুসায়ৰ ৫ম অধ্যায়

## বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$

আবার O পরমাণু ঐ 2টি ইলেকট্রন গ্রহণ করে
নিষ্ক্রিয় গ্যাস Ne এর মতো ইলেকট্রন বিন্যাস
অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে ৪টি
ইলেকট্রন গঠন করে 0²- এ পরিণত হয়।

$$O + 2e^- \rightarrow O^{2-}$$

- এবার  $Mg^{2+}$  এবং  $O^{2-}$  কাছাকাছি এসে আয়নিক বন্ধন তৈরি করে।
- NaH অণুতে Na পরমাণু ইলেকট্রন দান করে
   নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন
   করে অর্থাৎ সর্বশেষ শক্তিস্তরে ৪টি ইলেকট্রন
   গঠন করে Na+ এ পরিণত হয়

$$Na \rightarrow Na^{+} + e^{-}$$

এবং H পরমাণু ঐ ইলেকট্রন গ্রহণ করে নিষ্ক্রিয়
গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে
অর্থাৎ সর্বশেষ শক্তিস্তরে 2টি ইলেকট্রন গঠন
করে H-এ পরিণত হয়। অতঃপর এদের মধ্যে
আয়নিক বন্ধন গঠিত হয়।

$$H + e^- \rightarrow H^-$$

 CaO অণুতে Ca পরমাণু 2টি ইলেকট্রন ত্যাগ করে নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে ৪টি ইলেকট্রন গঠন করে Ca<sup>2+</sup> তে পরিণত হয়।

$$Ca \rightarrow Ca^{2+} + 2e^{-}$$

 পরমাণু সেই 2টি ইলেকট্রন গ্রহণ করে নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে ৪টি ইলেকট্রন গঠন করে O<sup>2-</sup> এ পরিণত হয়

$$O + 2e^- \rightarrow O^{2-}$$

 অতএব Ca<sup>2+</sup> এবং O<sup>2−</sup> এর মধ্যে আয়নিক বন্ধন গঠিত হয়।



উল্লেখ্য, পর্যায় সারণির 1 ও 2 নম্বর গ্রুপের ধাতব মৌলসমূহ এবং 16 ও 17 নম্বর গ্রুপের অধাতব মৌলসমূহ
সাধারণত আয়নিক বন্ধন তৈরি করে।

# কন্সেপ্ট নোট

## বুসামূল ৫ম অধ্যাম

## বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

প্রত্যেকটি নিয়মের কিছু না কিছু ব্যতিক্রম থাকে। যেমন এখানে 13 নম্বর গ্রুপের AI মৌলটি 1 ও 2 নম্বর
গ্রুপের মৌল না হওয়া সত্ত্বেও আয়নিক বন্ধন তৈরি করে। অন্য মৌলসমূহ তাদের সর্বশেষ শক্তিস্তরে অনেক বেশি
ইলেকট্রন ধারণ করার কারণে তারা ইলেকট্রন বর্জন বা গ্রহণ করার প্রবণতা দেখায় না। ফলে তারা আয়নিক
বন্ধনও তৈরি করে না। আয়নিক বন্ধন স্থির বৈদ্যুতিক আকর্ষণের মাধ্যমে ঘটে বলে এ বন্ধন খুবই শক্তিশালী
হয়।

#### সমযোজী বন্ধন (Covalent Bond)

- দুটি অধাতব পরমাণুর রাসায়নিক সংযোগের সময় অধাতব পরমাণুদ্বয় তাদের সর্বশেষ শক্তিস্তরের একটি করে
  মোট এক জোডা ইলেকট্রন শেয়ারের মাধ্যমে যে বন্ধন গঠিত হয় তাকে সমযোজী বন্ধন বলে।
- যে ইলেকট্রন-জোড় বন্ধন গঠন করে তাদের বন্ধনজোড় (bond pair) ইলেকট্রন বলে এবং যে ইলেকট্রন-জোড়
  বন্ধন গঠন করে না তাদের মুক্তজোড (lone pair) ইলেকট্রন বলে।
- সম্যোজী বন্ধনকে একটি রেখার (-) মাধ্যমে প্রকাশ করা হয় এবং ইলেকট্রনসমূহকে ৬ট (.) চিহ্ন বা ক্রস
   (X) চিহ্ন দ্বারা প্রকাশ করা হয়।
- যে যৌগে সমযোজী বন্ধন থাকে তাকে সমযোজী যৌগ বলে।
   যেমন-

#### H<sub>2</sub> অণুতে সমযোজী বন্ধন:

- হাইভ্রোজেন পরমাণুর ইলেকট্রন বিন্যাস হলো, H(1)=1s¹। দুটি হাইভ্রোজেন পরমাণু যথন কাছাকাছি আসে তখন উভ্য় পরমাণুই একটি করে ইলেকট্রন শেয়ার করে নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে 2টি ইলেকট্রন গঠন করে।
- এর ফলে (H − H) সম্যোজী বন্ধনের সৃষ্টি হয়।

# হাইড্রোজেন পরমাণু হাইড্রোজেন অণু

চিত্র 5.08: হাইড্রোজেন অণুতে সমযোজী বন্ধন গঠন।

#### O2 অণুতে সমযোজী বন্ধন:

- অক্সিজেন পরমাণুর ইলেকট্রন বিন্যাস হলো,
   O(8)=1s² 2s² 2p⁴। অক্সিজেন পরমাণুর
   সর্বশেষ শক্তিস্তরে নিষ্ক্রিয় গ্যাসের ইলেকট্রন
   বিন্যাস (অষ্টক) অপেক্ষা দুটি ইলেকট্রন কম
   আছে।
- এরূপ দুটি অক্সিজেন পরমাণু কাছাকাছি এলে তাদের উভয় পরমাণুই নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিস্তরে ৪টি ইলেকট্রন গঠন করে।
- ফলে তাদের মধ্যে (O=O) সমযোজী বন্ধন গঠিত হয়। এক্ষেত্রে উভয় পরমাণু দুটি করে



**চিত্র 5.09** : অক্সিজেন অণুতে সমযোজী বন্ধন গঠন।

| কন্সেপ্ট লোট |                 |
|--------------|-----------------|
| ৫ম অধ্যায    | বাসায়নিক বন্ধন |

Prepared by: SAJJAD HOSSAIN

মোট চারটি ইলেকট্রন শেয়ার করায় সমযোজী বন্ধনের সংখ্যা হয় 2 (দুই)।

#### Cl2 অণুতে সমযোজী বন্ধন:

বসায়ৰ

- ক্লোরিনের ইলেকট্রন বিন্যাস হলো: CI (17) = 1s² 2s² 2p⁶ 3s² 3p⁵। CI পরমাণুর সর্বশেষ শক্তিস্তরে নিষ্ক্রিয় গ্যাসের ইলেকট্রন বিন্যাস (অন্তক) অপেক্ষা একটি করে ইলেকট্রন কম আছে।
- এরূপ দুটি ক্লোরিল পরমাণু কাছাকাছি এলে তাদের উভয় পরমাণুই নিষ্ক্রিয় গ্যাসের মতো ইলেকট্রন বিন্যাস অর্জন করে অর্থাৎ সর্বশেষ শক্তিয়রে ৪টি ইলেকট্রন গঠন করে।
- ফলে তাদের মধ্যে (CI–CI) সমযোজী বন্ধন গঠিত হয়।
- মৌলিক অণু ছাড়াও একাধিক ভিন্ন অধাতব পরমাণু দ্বারা গঠিত যৌগিক অণুতেও সমযোজী বন্ধন দেখতে পাওয়া যায়।
- যেমল- পালির অণুতে অক্সিজেল পরমাণু তার সর্বশেষ শক্তিস্তরের একটি করে ইলেকট্রন প্রত্যেক হাইড্রোজেল পরমাণুর একটি করে ইলেকট্রনের সাথে শেয়ার করে। এভাবে দুটি (O-H) সমযোজী বন্ধন গঠনের মাধ্যমে পালির অণু গঠিত হয়।

Try it yourself



[ ममर्याजी वन्ननिष्टि (मोनिक भर्नार्थत जनूक (यमन:  $H_2$ ,  $F_2$ ,  $S_8$ ,  $P_4$ ,  $N_2$ ,  $O_2$ ,  $Cl_2$ ,  $Br_2$ ,  $I_2$ ) ममर्याजी जनू  $\mathcal{L}$   $\mathcal{L}$ 

- অনেক সমযোজী অণু স্বাভাবিক তাপমাত্রা ও চাপে গ্যাসীয় অবস্থায় থাকে। যেমল: CO2, NH3, O2, N2, Cl2
  ইত্যাদি।
- আবার কিছু সমযোজী অণু স্বাভাবিক তাপমাত্রা ও চাপে তরল অবস্থায় বিরাজ করে। যেমন:  $H_2O$  (পানি),  $C_2H_5OH$  (ইথানল) ইত্যাদি এবং
- কিছু <mark>কঠিন</mark> অবস্থায় থাকে, যেমন- ন্যাপথালিন ( $C_{10}H_8$ ), সালফার ( $S_8$ ), আয়োডিন ( $I_2$ ) ইত্যাদি।
- দুটি সমযোজী অণু যখন খুবই নিকটবর্তী হয় তখন তাদের মধ্যে এক ধরনের দুর্বল আকর্ষণ বল কাজ করে, এই আকর্ষণ বলকেই ভ্যান্ডারওয়ালস আকর্ষণ বল বলে। সমযোজী অণুগুলো পরস্পরের সাথে এই দুর্বল ভ্যান্ডারওয়ালস আকর্ষণের মাধ্যমে যুক্ত থাকে। তাই এদেরকে বিচ্ছিল্প করতে সামান্য শক্তির প্রয়োজন হয়। ফলে এদের গলনাঙ্ক ও স্ফুটনাঙ্ক অনেক কম হয়। আবার গ্যাসীয় সমযোজী অণুর মধ্যে (য়েমন: CO₂, NH₃, O₂ ইত্যাদি) ভ্যান্ডারওয়ালস আকর্ষণ বল নেই বললেই চলে, যার কারণে এরা একক অণু হিসেবে গ্যাসীয় অবস্থায় থাকে।

| ক্সেপ্ট  | লোট |
|----------|-----|
| 4.TI -TE | -   |

বসায়ৰ **৫भ जद्या**न

## বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

#### আমূলিক ও সমযোজী যৌগের বৈশিষ্ট্য

#### আয়নিক যৌগের গলনাঙ্ক ও স্ফুটনাঙ্ক অনেক বেশি হয় কিন্তু সমযোজী যৌগের গলনাঙ্ক ও স্ফুটনাঙ্ক আয়নিক যৌগ অপেক্ষা কম হয়। কিন্তু কেন? আয়নিক যৌগের অসংখ্য ধনাত্মক ও ঋণাত্মক আধান পরস্পরের কাছাকাছি থেকে ত্রিমাত্রিকভাবে সুবিন্যস্ত হয়ে একটি স্ফটিক তৈরি করে। এতে তাদের আন্তঃআণবিক আকর্ষণ বল অনেক বেশি হয়। ফলে এদেরকে একে অপরের কাছ থেকে দ্রে সরিয়ে (a) গলনাম্ব ও স্ফুটনাম্ব নিতে বা গলিয়ে ফেলতে অনেক বেশি তাপ শক্তির প্রয়োজন হয়। কাজেই এদের (Melting Point and গলনাঙ্ক ও স্ফুটনাঙ্ক অনেক বেশি হয়। **Boiling Point)** অপর দিকে সমযোজী <mark>অণুসমূহের ম</mark>ধ্যে আন্তঃআণবিক আকর্ষণ মূলত দুর্বল ভ্যান্ডারওয়ালস বলের কারণে হয়ে থাকে। কাজেই সমযোজী যৌগে আন্তঃআণবিক আকর্ষণ বল অনেক কম হয়। এ<mark>জন্য এদেরকে</mark> সামান্য তাপ প্রদান করলে এরা পরস্পরের কাছ থেকে দূরে সরে যায়। <mark>অর্থাৎ এ</mark>দের গলনাঙ্ক ও স্কুটনাঙ্ক কম হয়। সকল আয়নিক যৌগ পানিতে দ্ৰবীভূত হয় কিন্তু কিছু কিছু আয়নিক যৌগ আছে, যেমন– সিলভার ক্লোরাইড (AgCI) পানিতে দ্রবীভূত হ<u>য় না।</u> অপরদিকে, সমযোজী যৌগ, যেমল– ন্যাপখালিন, সরিষার তেল, কেরোসিন এদের কেউই পানিতে দ্রবী<mark>ভূত</mark> হ্মনি। সমযোজী যৌগ সাধারণত পানিতে দ্রবীভূত হ্ম না তবে কিছু কিছু সমযোজী যৌগ আছে যেমন- চিনি, ফ্লকোজ, অ্যালকোহল এগুলো পানিতে দ্ৰবীভূত হয়। সুতরাং সামগ্রিকভাবে বলা যায় কিছু ব্যতিক্রম ছাড়া প্রায় সকল আয়নিক যৌগ পানিতে দ্রবীভূত হয় এবং কিছু ব্যতিক্রম ছাড়া প্রায় সকল সমযোজী যৌগ পানিতে দ্ৰবীভূত হয় না। অধিকাংশ সমযোজী যৌগ পানিতে দ্রবীভূত হয় না–তবে কিছু কিছু সমযোজী যৌগ পানিতে দ্রবীভূত হয়, এর কারণ কী? এর কা<mark>রণ জানতে হল</mark>ে প্রথমে পানির বন্ধন গঠন সম্পর্কে জানতে হবে। (b) দ্রাব্যতা/দ্রবণীয়তা পানি একটি সমযোজী যৌগ অর্থাৎ পানির অণুতে একটি অক্সিজেন পরমাণুর সাথে দুটি হাইড্রোজেন পরমাণু ইলেকট্রন (Solubility) শেয়ারের মাধ্যমে সমযোজী বন্ধনে আবদ্ধ থাকে। কিন্ত অক্সিজেন পরমাণু হাইড্রোজেন পরমাণু থেকে অধিক তডিৎ ঋণাত্মক হওয়ায় পানির অণু<mark>র সমযোজী বন্ধনীতে ব্যবহৃত</mark> ইলেকট্রন দৃটি অক্সিজেনের দিকে সামান্য পরিমাণ সরে যায়। যে কারণে অক্সিজেন পরমাণু আংশিক ঋণাত্মক আধান ও शरेएारजन भत्रमान् जाः मिक धनान्नक जाधान श्राप्त रस। অর্থাৎ পানির অণুতে আংশিক ধনাত্মক এবং আংশিক ঋণাত্মক প্রান্তের সৃষ্টি হয়। এরকম ধনাত্মক ও ঋণাত্মক আধানপ্রাপ্ত সমযোজী যৌগকে পোলার সমযোজী যৌগ বলে। সুতরাং পালি একটি পোলার সমযোজী যৌগ এবং দ্রাবক হিসেবে পানি একটি পোলার দ্রাবক। পোলার দ্রাবক পানিতে আয়নিক যৌগ যোগ করলে পানির অণুগুলোর ধনাত্মক প্রান্ত

আয়নিক যৌগের ঋণাত্মক প্রান্ত বা অ্যানায়নকে আকর্ষণ করে। একইভাবে পানির

| Prepared by: SAJJAD HOSS  অণুর ঋণাত্মক প্রান্ত আমনিক যৌগের ধনাত্মক প্রান্ত বা ক্যাটামনকে আকর্ষণ করে  এই আকর্ষণ বলের মান যখন আমনিক যৌগের অ্যানামন ও ক্যাটামনের মধ্যব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| এই আকর্ষণ বলের মান যথন আয়নিক যৌগের অ্যানায়ন ও ক্যাটায়নের মধ্যব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| আকর্ষণ বল খেকে বেশি হয় তথন অ্যানায়ন ও ক্যাটায়ন পরস্পর খেকে বিটি হয়ে পানির অবু দিয়ে পরিবেষ্টিভ হয়। এতাবে আমনিক মৌগ পানিতে দ্রবীভূত হ  • NaCl আমনিক মৌগ তাই NaCl পোলার দ্রাবক H2O তে দ্রবীভূত হয়। মিখেন (CH3OH) পোলার মৌগ তাই CH3OH পোলার দ্রাবক H2O তে দ্রবীভূত হয়। মিখেন (CH4) আমনিক মৌগ তাই CH3OH পোলার দ্রাবক H2O তে দ্রবীভূত হ মিখেন (CH4) আমনিক মৌগ ভাই CH3OH পোলার মৌগও নয়, কারে CH4 পানিতে দ্রবিষ্ট্র হ্যান লা।  • অপরদিকে, সমমোজী মৌগে সাধারণত আমনিক মৌগের মতো ধনায়ক ও ঋণায় প্রান্ত থাকে লা। তাই পানির অপুর ধনায়ক ও ঋণায়ক প্রান্তর সাথে সমমে মৌগের কোনো আকর্ষণ বা বিকর্ষণ ঘটে না। ফুলম্বরুস সমমোজী মৌগটি পানি আমন আকারে তেন্তে মাম না অর্থাৎ সমমোজী মৌগাটি পানিতে দ্রবীভূত হয় না  • তবে কিছু কিছু সমমোজী মৌগ মোগ মামো মোমা মেমন ইখানল (C2H5OI পোলার মৌগ তাই ইখানল পানিতে দ্রবীভূত হয়।  • আমনিক মৌগ তাই ইখানল পানিতে দ্রবীভূত হয়।  • আমনিক মৌগ তালীয় দ্রবণে বিদ্যুৎ পরিবহণ করে কিন্তু সমমোজী মৌগ তালীয় দ্রবণে বিদ্যুৎ পরিবহণ করে না। মেমন, মাদ্য লবণর বা NaCl-এর জলীয় দ্রবণ বিদ্যুৎ পরিবহণ করে না। কিন্তু এই কারণ কী?  • বিদ্যুৎ পরিবহণের জন্য প্রয়োজন বিচ্ছিন্ন ধনায়ক আমন হিসেবে Cl- বিদ্যুৎ পরিবহণ করে।  • মোহারুক আমন হিসেবে Na+ ও ঋণায়ক আমন হিসেবে অবস্থান করে কাজেই সকল আমনিক মৌগ জলীয় দ্রবণে বিদ্যুৎ পরিবহণ করে।  • অপরাদিক জলীয় দ্রবণে আমনিক মৌগ বিদ্যুৎ পরিবহণ করে।  • অপরাদিক জলীয় দ্রবণে সমমোজী মৌগ বিদ্যুৎ পরিবহণ করে।  • অপরাদিক জলীয় দ্রবণে সমমোজী মৌগ বিদ্যুৎ পরিবহণ করে।  • তাপরাদিক জলীয় দ্রবণে সম্বোজী মৌগ বিদ্যুৎ পরিবহণ করে।  • তাপরাদিক জলীয় দ্রবণে সম্বোজী মৌগ বিদ্যুৎ পরিবহণ করে না। আর দ্রবণে আমুন না খাকলে কথানাই বিদ্যুৎ পরিবহণ করতে। পারবে না।  • CaCl2 দ্ববণে Ca'* ও Cl* খাকে। HCl দ্রবণে H' ও Cl* খাকে। কাজেই এরা দ্রব |

কন্সেপ্ট নোট

# কন্সেপ্ট নোট

বুসামূল ৫ম অধ্যাম

## বাসায়নিক বন্ধন

Prepared by: SAJJAD HOSSAIN

#### ধাতব বন্ধন

• দুটি ধাতব পরমাণু কাছাকাছি এলে তাদের মধ্যে যে বন্ধন গঠিত হয় সেটাকে ধাতব বন্ধন বলে। অর্থাৎ এক থন্ড ধাতুর মধ্যে পরমাণুসমূহ যে আকর্ষণের মাধ্যমে যুক্ত থাকে তাকেই ধাতব বন্ধন বলে।



100

• ধাতব বন্ধন কীভাবে তৈরি হয়? প্রত্যেক ধাতব পরমাণুর ইলেকট্রন বিন্যাসে সর্বশেষ শক্তিস্তরে সাধারণত 1টি, 2টি কিংবা 3টি ইলেকট্রন থাকে এবং এদের আকার একই পর্যায়ের অধাতব পরমাণুর চেয়ে বড় হওয়ায় ধাতব পরমাণুর সর্বশেষ শক্তিস্তরের ইলেকট্রনের প্রতি নিউক্লিয়াসের আকর্ষণ অনেক কম হয়। ফলে ধাতুতে পরমাণুসমূহ তার সর্বশেষ শক্তিস্তরের এক বা একাধিক ইলেকট্রনকে ত্যাগ করে ধনাত্মক আয়নে পরিণত হয়। এই ধনাত্মক আয়নকে পার্মাণবিক শাঁস (Atomic core) বলা হয়। ধাতব ক্ষটিকে পারমাণবিক শাঁসগুলো সুনির্দিষ্ট ত্রিমাত্রিকভাবে বিন্যস্ত থাকে। আর ধাতব পরমাণু কর্তৃক

ত্যাগকৃত <mark>ইলেকট্রনগুলো উক্ত পারমাণ</mark>বিক শাঁসের মধ্যবর্তী স্থানে মুক্তভাবে ঘোরাফেরা করে। এই ধরনের ইলেকট্রনকে মঞ্চবদশীল **ইলেকট্রন** (Delocalized Electron) বলে। [*এই ইলেকট্রনগুলো কোনো নির্দিষ্ট পরমাণুর অধীনে থাকে* না পুরো ধাতব খণ্ডের সবগুলো ধাতব আয়নের ইলেকট্রন হয়ে যায়।]

ধাতব স্ফটিকে দুটো ধাতব আয়নের মধ্যবর্তী স্থানে যথন একটি সঞ্চরণশীল ইলেকট্রন অবস্থান করে তথন
ইলেকট্রনের প্রতি উভয় ধাতব আয়নই স্থির বৈদ্যুতিক আকর্ষণে আকর্ষিত হয়। এ কারণে ধাতব আয়ন দুটি
পরস্পর থেকে বিচ্ছিল্প হতে পারে না। এটিই মূলত ধাতব বন্ধনের মূল কারণ। ধাতুর মধ্যে সঞ্চরণশীল
ইলেকট্রনগুলোই তাপ এবং বিদ্যুৎ পরিবহনের জন্য দায়ী। অনুরূপে ধাতুর নমনীয়তা, ঘাতসহতা, ধাতব ঔজ্জ্বল্য
ইত্যাদি ধর্ম সঞ্চরণশীল এই ইলেকট্রনের কারণেই ঘটে থাকে।

#### ধাতুর বিদ্যুৎ পরিবাহিতা

সকল ধাতুই বিদ্যুৎ সুপরিবাহী। ধাতুর স্ফটিকে মুক্তভাবে বিচরণশীল ইলেকউনগুলো বিদ্যুৎ পরিবহণের কাজটি করে থাকে। একটি ধাতব থণ্ডের দুই প্রান্তের সাথে ব্যাটারির ধনাত্মক (+) ও ঋণাত্মক (-) প্রান্ত সংযুক্ত করলে ইলেকউনগুলো ঋণাত্মক প্রান্ত থেকে ধনাত্মক প্রান্তের দিকে প্রবাহিত হবে। অর্থাৎ ধনাত্মক প্রান্ত থেকে ঋণাত্মক প্রান্তের



চিত্র 5.15: থাড়ুর বিদ্যুৎ পরিবহণের কৌশল

সঞ্চরণশীল ইলেকট্রনের প্রবাহই বিদ্যুৎ প্রবাহ সৃষ্টি করে। সঞ্চরণশীল ইলেকট্রন না থাকলে ধাতুর মধ্যে বিদ্যুৎ প্রবাহিত হতো না।

আবার, এক থণ্ড ধাতব পাতের এক প্রান্তকে আগুলের উপর রেখে উত্তম্ভ করলে দেখতে পাবে অপর প্রান্তটি বেশ
তাড়াতাড়ি গরম হতে শুরু করেছে। এর অর্থ ধাতুগুলো তাপ পরিবাহিতাও প্রদর্শন করে। এর কারণও সঞ্চরণশীল
ইলেকট্রন। তাপ প্রদানের সাথে সাথে সঞ্চরণশীল ইলেকট্রনগুলো শক্তি গ্রহণ করে, তাদের গতিবেগ বেড়ে যায় এবং
ইলেকট্রনগুলো অধিক তাপমাত্রার প্রান্ত থেকে কম তাপমাত্রার প্রান্তের দিকে স্থানান্তরিত হয়। এর ফলে ধাতুতে এক
প্রান্ত থেকে অপর প্রান্তে তাপের পরিবহণ ঘটে।