Video capture optimization with latency estimation on TV Workstation

Student:

Xuan-Quang Le

Supervisors:

Tifenn RAULT

Mathieu DELALANDRE

Polytech Tours, University of Tours, France

May 31th, 2024

Outline

1 TV Workstation

2 The runtime for dynamic video capture

3 The algorithm to optimize the scheduling

4 Conclusions and perspectives

TV Workstation (1/4)

> DELL 5820 computer processes 9 disks and 120 TB of capacity for external storage (HD, 30 FPS, 24h/day), with real-time audio / video encoding, control of tuners with IR sensors

The architecture of the TV Workstation for video capture

TV Workstation (2/4)

> Avermedia:

- Support Dual-Channel
- Full-HD capture(1920 x 1080 30fps)
- Hardware H.264 encoding
- Standard HDMI connector

TV Workstation (3/4)

> DELL 5820 computer performance for video storage

Res	olution	Audio/ video	Video Mbps	TB/ month	Audio Kbps	GB/ month
HD	1280x720		3	7.23	256	621
SD	720x576	asyn	1.6	3.89	160	384
Low	320x240		0.56	1.36	128	308

TV Workstation (4/4)

> we capture along in multiple channels with two modes.

Modes	Details	Pro	Cons
Static and continue capture	 Each input of card is assigned to a single channel with a static assignment (no switch between the channels during the capture). The capture cannot be made idle. 	Easy to setup	 No break, require long captures and a huge storage Cannot filter the duplicate data (twice daily shows) Can capture only 8 different channels.
Dynamic capture	Each input of card can be controlled to switch between channels, even made idle for a time between two captures.	 Require short captures with a limited storage Can capture many different channels at one time (>8) Can filter the duplicate data 	More difficult to handle

Our solutions:

- A runtime for dynamic capture
- An algorithm to optimize the scheduling

The runtime for dynamic video capture(1/4)

- We read TV schedule (csv file)
- > We have developed a program tunning TV channels and Set channel switching time (T)
- > Send the channel transmit code from the sensor to the Tuner at that time
- > Switch TV channels automatically

The runtime for dynamic video capture(2/4)

- Phidgets sensor
 - Sensor (phidget IR 1055) : transmit signals

- > Hardware mounting kit: fixed position
 - 4x M3 Bolts (2cm Length)
 - 4x Plastic spacers (5mm Length)
 - 4x M3 Nuts
- USB Mini-B: Connect the computer to the sensor

Phidget sensor

The runtime for dynamic video capture (3/4)

- ➤ Control phidgets sensor :
 - Every Phidget channel in any program will follow the same life cycle
 - Create channels
 - Set some basic parameters to indicate which Phidget to connect
 - Main loop: Switch channels ...
 - End program

The runtime for dynamic video capture (4/4)

> A demo for single recording

- Input: A list of TV programs (illustrated in Tab 1)
- Output: A list of actions (sending a signal to the sensor, starting / stopping the record) correspond to a given timestamp. (shown in Fig. 1)

> Supplement steps

- Sorting the TV program list
- Defining the switching time as Equation

> Set channel switching time:

$$T = t1 + \frac{(t2-t1)}{2}$$

- T: Switch time
- t1 is the stop_time of the current channel
- t2 is the start_time of the next channel
- Exception: The first channel, the channel switch time will be 1 minute before the start time

The table follow the structure :

ch1; t0; t1 ch2; t2; t3 ch3; t4; t5

••••

where t0 < t1 < t2 < t7 and ch1 * ch2 *ch4 (in a simple way, ch2 = ch1 +1)

index	channel_name	start_time	stop_time
0	Channel 2	18:58:00	18:59:00
1	Channel 3	19:01:00	19:02:30
2	Channel 5	19:04:45	19:05:00

Starting
Total rows: 3
Time: 18:58:00

Switching to channel 2 at switch time 2024-05-23 18:57:00

Transmitted code 106F42BD for channel 2

Time: 19:00:00

Currently capturing channel: 3 at switch_time 2024-05-23 19:00:00

Transmitted code 106F827D for channel 3

Time: 19:03:30

Currently capturing channel: 5 at switch_time 2024-05-23 19:03:30

Transmitted code 106F629D for channel 5

The algorithm to optimize the scheduling (1/4)

> Kleinberg algorithm

- > Input: A set of time intervals, each with a value (also called weight).
- > Output: Subset of non-overlapping intervals with the largest total value.

Index

An instance of weighted interval scheduling with the functions p(j) defined for each interval j.

The algorithm to optimize the scheduling (2/4)

- Kleinberg algorithm
 - > Sort intervals by stop_time:
 - the intervals are sorted by their end_time using the quicksort algorithm.
 - Compute P value(P[j])
 - > Compute the value M:
 - M[j] as the maximum value of the weighted sum of non-overlapping time periods when considering interval j.
 - Calculation formula:

$$M[j] = \max\{v[j] + M[P[j]], M[j-1]\}$$

- v[j] is the value (weight) of interval j.
- M[j-1] is the maximum weighted sum for intervals from 0 to j-1
- M[P[j]] is the maximum weighted sum for non-overlapping intervals up to P[j].
- > Find solution:
 - Based on the M and P values, we can trace back to find the subset of time intervals that make up the optimal solution.

The algorithm to optimize the scheduling (3/4)

- We need to "correct" the algorithm.
 - Save the list of beginning(O)
 - Save the list of interval selected (S)
 - Save the list of remaining intervals(R)

$$R = O - S$$

- ➤ In fact, we have to run the algorithm once .Then we have to remove the selected intervals
- after that then we re-run the algorithm a second time. And so forth, until we execute it a total of 8 times.

Number of cards	Number of reruns	Number of selected programs	Total weight after selection
4	1		95
	2	14	81
	3	10	71
	4	8	63
	total	51	310
	1	19	95
6	2	14	81
	3	10	71
	4	8	63
	5	9	54
	6	7	47
	total	67	411
	1	19	95
	2		81
8	3	10	71
	4	8	63
	5	9	54
	6	7	47
	7	7	40
	8	6	34
	total	80	485

Results of the Kleinberg Algorithm with Different Number of Cards

The algorithm to optimize the scheduling (4/4)

- > we created a checker (check overlap)
 - The function can open the output_*. csv file, read them and check that an interval does not appears twice times.
- > Through this iterative approach,
 - we ensure efficient utilization of all available resources
 - optimize the recording process across multiple machines

Results of checking overlap in the output

Conclusions and perspectives

Conclusions:

- We have developed a program auto switch channel
- We have applied Kleinberg algorithm to optimize the interest of the recorded videos.

> Further Work

- Improve the Kleinberg Algorithm Performance
- Develop a stable video capturing program with automatic channel switching

THANK FOR YOUR ATTENTIONS!

