Lista 4

Kamil Matuszewski

4 listopada 2015

1	2	3	4	5	6	7
\checkmark	\	~	✓	✓	✓	\

UWAGA

Nie wstawiam gotowych programów, przedstawię ideę, niech każdy napisze sobie te proste programy w ulubionym języku. Nie wstawiam też analizy wyników, niech każdy się pobawi sam.

Zadanie 1

a) Trywialne

b)

$$|b_n - a_n| = \left| \frac{b_{n-1} - a_{n-1}}{2} \right| = \dots = \left| \frac{b_{n-k} - a_{n-k}}{2^k} \right| = \dots = \left| \frac{b_0 - a_0}{2^n} \right|$$

c) Tu będzie trochę machania, można to sformalizować ale jestem leniwy i mi się nie chce, przedstawię ideę.

$$|\epsilon_n| = |\alpha - m_n|$$

Gdzie α to szukany pierwiastek a m_n to środek n-tego przedziału. Zastanówmy się, czym może być m_n . To może być albo początek, albo koniec n+1-ego przedziału. No to rozpatrzmy dwa przypadki. Jeśli to początek przedziału, to znaczy, że $\alpha \geqslant m_n$. Żeby zmaksymalizować $|\alpha - m_n|$ musimy zmaksymalizować α , bo wtedy różnica będzie największa. W takim razie możemy napisać, że $|\alpha - m_n| \leqslant |b_{n+1} - a_{n+1}|$. Z drugiej strony, jeśli m_n to koniec nowego przedziału, to znaczy, że $\alpha \leqslant m_n$. Żeby zmaksymalizować różnicę, tym razem musimy zminimalizować α , mamy więc, że $|\alpha - m_n| \leqslant |a_{n+1} - b_{n+1}| = |b_{n+1} - a_{n+1}|$. Skoro tak, to

$$|\alpha - m_n| \le |b_{n+1} - a_{n+1}| = \left|\frac{b_0 - a_0}{2^{n+1}}\right| = |2^{-n-1}(b_0 - a_0)|$$

Musimy tylko opuścić moduł.

Jeśli $a_0 > 0$ i $b_0 > 0$ to wiedząc, że $a_0 < b_0$ to $b_0 - a_0 > 0$ więc możemy opuścić moduł.

Jeśli $a_0 < 0$ i $b_0 > 0$ to oczywiście $(b_0 - a_0) > 0$ więc też możemy opuścić moduł.

Jeśli $a_0 < 0$ i $b_0 < 0$. $a_0 < b_0$ czyli $b_0 - a_0 > 0$ więc też możemy opuścić moduł.

Sytuacja, że $a_0 > 0$ a $b_0 < 0$ jest niemożliwa.

Czyli $2^{-n-1}(b_0-a_0)$ jest zawsze dodatnie, możemy więc opuścić moduł i napisać, że $|\epsilon_n| \le 2^{-n-1}(b_0-a_0)$

d) Tak, jeśli α jest bardzo blisko b_0 .

Zadanie 2

Z zadania 1 wiemy, że $|\epsilon_n| \le 2^{-n-1}(b_0-a_0)$. Szukamy takiego n, żeby $|\epsilon| \ge 2^{-n-1}(b_0-a_0)$ Pomnóżmy stronami przez $\frac{2^n}{\epsilon}$. Otrzymujemy:

$$2^n \geqslant \frac{b_0 - a_0}{2\epsilon}$$

$$n \geqslant \log \frac{b_0 - a_0}{2\epsilon}$$

Zatem, szukanym n jest $\lceil \log \frac{b_0 - a_0}{2\epsilon} \rceil$.

Zadanie 3

Piszemy program który korzystając z zadania 1 wyliczy nam błąd oszacowania (podpunkt c) i porównujemy to z błędem rzeczywistym (czyli środkiem n'tego przedziału), wyciągamy wnioski, machamy.

Zadanie 4

Wyznaczamy przedziały patrząc na wykres naszej funkcji z podpowiedzi (miejsca przecięcia wykresu = miejsca zerowe). Najlepiej, żeby przedziały miały tą samą długość (pewnie jakieś π). Piszemy metodę bisekcji, używamy zadania 2 żeby wiedzieć, ile razy ziterować (podstawiamy pod wzór). Odpalamy program i analizujemy jego działanie.

Zadanie 5,6,7,8

Wszystko robi się tak samo. Piszemy funkcję z miejscem zerowym w naszej szukanej wartości (np. $f(x) = x - \sqrt{a}$). Stosujemy metodę newtona, czyli $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ - liczymy pochodną, rozpisujemy wzór. Piszemy jeden program z czterema funkcjami f(x). Porównujemy z wynikiem np. z wolframa i gadamy o tym że fajnie działa.