

কাজ, শক্তি ৪ ক্ষমতা

Work, Energy and Power

WRITTEN

বিগত সালে BUET-এ আসা প্রশ্নাবলী

1. মানুষের হৃৎপিণ্ড 80~mm পারদ চাপের বিপরীতে প্রতি স্পন্দনে 70~mL রক্ত নিঃসরণ করে। নাড়ির কম্পাঙ্ক প্রতি মিনিটে 90~ হলে হৃৎপিণ্ডের ক্ষমতা কত? [পারদের ঘনতু $13.6~{
m g/cc}$]

[BUET 23-24 প্রশ্নের অনুরূপ, 21-22]

উত্তর: 1.12 W

2. কোভিড-১৯ (COVID-19) অতিমারী সময়ে $4 \times 10^3~{
m kg}$ ভরের একটি পিকআপ ট্রাক এবং $10^3~{
m kg}$ ভরের একটি মাইক্রোবাস অক্সিজেন সিলিভার সরবরাহের জন্য একটি হাসপাতালে যাচ্ছিল। পিকআপ ট্রাকের বেগ ঘণ্টায় $80~{
m km}$ ছিল। একই গতিশক্তি সম্পন্ন হতে হলে মাইক্রোবাসকে কত বেগে চলতে হবে?

উত্তর: 160 kmh⁻¹

- 3. কোনো কুয়া থেকে $30~{\rm m}$ উপরে পানি তোলার জন্য $5~{\rm kW}$ এর একটি পাম্প ব্যবহার করা হয়। পাম্পের কর্মদক্ষতা 90% হলে প্রতি মিনিটে কত লিটার পানি তোলা যাবে? $[{\rm g}=9.8~{\rm ms}^{-2}]$ [BUET 18-19] উত্তর: $918.37~{\rm L}$
- 4. 1 টি ক্রেন প্রতিটি 50 kg ওজনের 12 টি সিমেন্টের ব্যাগ সমদ্রুতিতে 160 m উঁচু একটি নির্মানাধীন ভবনের ছাদে ওঠাতে 1 min 10 sec সময় নেয়। ক্রেনটির ক্ষমতা অশ্বশক্তিতে বের কর। [BUET 17-18] উত্তর: 18.02 HP
- $5.\ 3\ \mathrm{kg}$ ভরের বম্ভর উপর একটি বল ক্রিয়াশীল আছে। বস্তুটির অবস্থানের সমীকরণ $\mathbf{x}=3\mathbf{t}-4\mathbf{t}^2+\mathbf{t}^3$, যেখানে \mathbf{x} এর মান মিটারে এবং \mathbf{t} এর মান সেকেন্ডে। $\mathbf{t}=\mathbf{0}$ হতে $\mathbf{t}=4$ সেকেন্ড সময়ে বলটি দ্বারা বস্তুর উপর কৃতকাজের পরিমাণ নির্ণয় করো। [BUET 16-17] উত্তর: $528\ \mathrm{J}$
- 6. একটি ইঞ্জিন $200~\mathrm{m}$ গভীর কৃপ থেকে প্রতি মিনিটে $500~\mathrm{kg}$ পানি উন্তোলন করে। যদি 20% ক্ষমতার অপচয় হয় তাহলে ইঞ্জিনটির প্রকৃত ক্ষমতা কত?

উত্তর: 20416.67 W

7. 1200 kg ভরের একটি গাড়ীর ইঞ্জিনের ক্ষমতা 134.05 HP ও কর্মদক্ষতা 90%। গাড়িটিকে স্থিরাবস্থা থেকে 30 ${
m ms}^{-1}$ বেগে আনতে ন্যূনতম কত সময় লাগবে? (1 HP = 0.746 kW) [BUET 10-11] উত্তর: $pprox 6~{
m Sec}$

 একটি বুলেট একটি দেয়ালের মধ্যে 0.06 m প্রবেশ করার পর এর আদিবেগের অর্ধেক হারায়। বুলেটটি দেয়ালের মধ্যে আর কতদ্র প্রবেশ করতে পারবে?
 [BUET 08-09]

উত্তর: 0.02 m

9. 2 mm ব্যাসার্ধের একটি বৃষ্টির ফোঁটা 250 m উচ্চতা থেকে মাটির উপর পড়ছে। বৃষ্টির ফোঁটার উপর অভিকর্ষীয় বল কতটা কাজ করবে?

[BUET 07-08]

উত্তর: 0.0821 J

10. 8 kg ভরের একটি বস্তু 10 m উপর হতে পড়ে বালিতে 50 cm প্রবেশ করে থেমে গেল। বস্তুটির উপর বালির গড় বাধা নির্ণয় কর।
[BUET 05-06]

উত্তরঃ 1646.4 N

বিগত সালে CKRUET-এ আসা প্রশ্লাবলী

আনুভূমিক কাঠের উপর একটি পেরেক উল্লম্বভাবে রাখা আছে। 1 kg ভরের একটি হাতুড়ি দ্বারা পেরেকটিকে খাড়া নিচের দিকে 4 ms⁻¹ বেগে আঘাত করা হল। পেরেকটি কাঠের মধ্যে 0.015 m ঢুকে গেলে গড় বাধাদানকারী বল নির্ণয় করো। [CKRUET 20-21; RUET 05-06] উত্তর: 543.2 N

বিগত সালে KUET-এ আসা প্রশ্লাবলী

একটি বস্তুকে নির্দিষ্ট উচ্চতা থেকে ফেলে দেয়া হল। ভূমি হতে 10
মিটার উচ্চতায় গতিশক্তি স্থিতিশক্তির দ্বিগুণ হলে কত উচ্চতা থেকে বস্তুটিকে
ফেলা হয়েছিল?
[KUET 19-20]

উত্তর: 30 m

 একটি পানিপূর্ণ পুকুরের গভীরতা 10 মিটার, দৈর্ঘ্য 10 মিটার এবং প্রস্থ
 মিটার। 30 মিনিটে পুকুরটিকে পানি শূন্য করতে কত অশ্বক্ষমতার পাম্প ব্যবহার করতে হবে? [g = 980 cms⁻²] [KUET 19-20]

উত্তর: 18.25 HP

- 3. 90 ফুট উচ্চতা হতে একটি বস্তুকে পতিত হতে দেয়া হল। কোথায় এর গতিশক্তি স্থির শক্তির অর্ধেক হবে? [KUET 04-05] উত্তর: 60 ft
- 4. $300~{
 m m}$ উঁচু হতে একটি বস্তু অভিকর্মের টানে মুক্তভাবে নিচে পড়লে কোথায় তার গতিশক্তি স্থিতিশক্তির অর্ধেক হবে? [KUET 04-05] উত্তর: $200~{
 m m}$ (ভূমি হতে)

বিগত সালে RUET-এ আসা প্রশ্লাবলী

1. একটি দালানের ছাদের সাথে লাগানো 5 m লম্বা একটি মই আনুভূমিকের সাথে 30° কোণ করে আছে। $60~\mathrm{kg}$ ভরের এক ব্যক্তি $25~\mathrm{kg}$ ভরের ওজনসহ 10 sec এ ছাদে উঠলে তার অশ্বক্ষমতা বের করো। [RUET 19-20]

উত্তর: 0.279 HP

2. এক মিটার দৈর্ঘ্যের একটি সরল দোলকের ববের ভর $200~{
m g}$ । এটাকে 60° কোণে টেনে ছেড়ে দিয়ে মুক্তভাবে দুলতে দেওয়া হলো। ববের গতিশক্তি বের যখন (i) এটা সাম্যাবস্থা দিয়ে অতিক্রম করে (ii) সুতা লম্বের সাথে 30° কোণ উৎপন্ন করে ($g = 10 \text{ ms}^{-2}$)। [RUET 18-19]

সমাধান: Lcosθ m = 0.2 kgL-Lcosθ

উত্তর: 1 J; 0.732 J

- 3. সর্বোচ্চ $1800~{
 m kg}$ ভর বহনে সক্ষম একটি লিফট $2~{
 m ms}^{-1}$ সমবেগে উপরের দিকে উঠছে। গতির বিরুদ্ধে ঘর্ষণ বলের মান $4000~\mathrm{N}$, লিফট এর জন্য সর্বনিম্ন কত HP বিশিষ্ট মটরের প্রয়োজন হবে? [RUET 18-19] উত্তর: 58.02 HP
- 4. একটি জলবিদ্যুৎ পাওয়ার স্টেশন লেকের পানি ব্যবহার করে। টার্বাইন থেকে পানির উচ্চতা $50 \; \mathrm{m}$ । দক্ষতা 50% ধরে $1 \; \mathrm{MW}$ ক্ষমতা পাওয়া জন্য প্রতি সেকেন্ডে টার্বাইন দিয়ে প্রবাহিত পানির ভর নির্ণয় কর।

[RUET 18-19]

উত্তর: 4081.633 kg

5. 1 m কার্যকরী দৈর্ঘ্য বিশিষ্ট একটি সরল দোলকের ববের ভর 300 g, দোলকটিকে সাম্যাবস্থা থেকে 60° কোণে নিয়ে গিয়ে ছেঁড়ে দেওয়া হলো। ববটির গতিশক্তি বের কর যখন এটি সাম্যাবস্থা দিয়ে অতিক্রম করে এবং যখন সুতা সাম্যাবস্থার সাথে 30° কোণ উৎপন্ন করে। $[\mathrm{g}=10~\mathrm{ms}^{-2}]$

[RUET 18-19, 15-16]

উত্তর: 1.5 J: 1.098 J

6. একটি পানি বিদ্যুৎ কেন্দ্রের বাঁধের উচ্চতা 15 m। 5 MW বিদ্যুৎ উৎপাদনের জন্য প্রতি সেকেন্ডে টারবাইনের ব্লেডগুলোর উপর কত কেজি পানি পড়তে হবে? [RUET 17-18; BUET 10-11]

উত্তর: 34.013 × 10³ kg

- 7. 100 m উচ্চতা থেকে 5 kg ভর মুক্তভাবে অভিকর্ষের টানে পড়তে থাকরে. 4 sec পরে ভরটির গতিশক্তি ও স্থিতিশক্তি কত হবে? [RUET 10-11] উত্তর: 1058.4 J; 3841.6 J
- 8. 2 kg ভরের একটি বস্তুকে ভূমি থেকে খাড়া উর্ধেব নিক্ষেপ করা হলো এবং বস্তুটি 8 sec পর পুনরায় ফিলে এল। নিক্ষেপের মুহুর্তে এবং নিক্ষেপের $2 \sec$ পরে বস্তুটির বিভব শক্তি এবং গতি শক্তি কত? ($g = 9.8 \text{ ms}^{-2}$) [RUET 09-10]

উত্তর: 0 J; 1536.64 J; 384.16 J; 1152.48 J

- 9. কোনো কুয়া থেকে 20 m উপরে পানি তোলার জন্য 6 kW ক্ষমতার একটি পাম্প ব্যবহার করা হচ্ছে। পাম্পের দক্ষতা 82.2% হলে প্রতি মিনিটে কত লিটার পানি তোলা যাবে? [RUET 08-09] উত্তর: 1.5 m³
- 10. 25 gm ভরের একটি বুলেট 100 cms⁻¹ বেগে 15 cm পুরু একটি কাঠের দেয়ালে প্রবেশ করে ও দেওয়াল ভেদ করে $75~{
 m cm s}^{-1}$ বেগে বেরিয়ে যায়। বুলেটের গড বল কত? [RUET 08-09, 07-08]

উত্তর: - 0.036 N

 $11. \; 60 \; \mathrm{kg}$ ভরবিশিষ্ট একটি বস্তু স্থির অবস্থায় ছিল। $30 \; \mathrm{N}$ বল প্রয়োগ করায় বস্তুটি গতিপ্রাপ্ত হলো। $10{
m s}$ পরে বস্তুটির গতিশক্তি নির্ণয় করো। [RUET 07-08]

উত্তর: 750 J

- 12. একটি গুলি প্রতি সেকেন্ডে 200 মিটার সরল গতিতে চলে 50 cm পুরু একটি কাঠের গুঁড়িকে কোনো রকমে ছেদ করে। ঐ একই ধরনের গুলি একই কাঠের 40 cm পুরু গুঁড়ি হতে কত বেগ বের হবে? [RUET 06-07] উত্তর: 89.44 ms⁻¹
- 13. একটি পাম্প মিনিটে 1200 gallon পরিমাণ পানি 6 ft উঁচুতে $32~{
 m ft}^{-1}~(9.8~{
 m ms}^{-1})$ গতিবেগে নিক্ষেপ করতে পারে। $1~{
 m gallon}$ পানির ভর 10 lb হলে ইঞ্জিনের অশ্বক্ষমতা নির্ণয় করো। [RUET 06-07, 05-06] উত্তর: 8.02 HP
- 14. 70 kg ভরের এক ব্যক্তি 20 kg ভরের এক বোঝা নিয়ে 6 m দীর্ঘ একটি সিঁড়ি বেয়ে উপরে উঠলো। সিঁড়িটি আনুভূমিক তলের সাথে 30° কোণ করে থাকলে ঐ ব্যক্তি কত কাজ করল নির্ণয় করো। [RUET 04-05]

উত্তর: 2646 N

বিগত সালে CUET-এ আসা প্রশ্নাবলী

1. একটি বন্দুকের গুলি 100 কি.মি./ঘণ্টা বেগে উপরের দিকে ছোড়ায় 15 সে.মি. পুরু ছাদ ভেদ করার পর অর্ধেক বেগ হারায়। গুলিটি পুনরায় উপর হতে নিচে এসে ছাদটিকে আঘাত করার পর আর কতদুর ছাদটি ভেদ করবে?

উত্তরঃ 5 cm

- 2. একটি পানিপূর্ণ কুয়ার দৈর্ঘ্য 3 m, প্রস্থ 2 m ও গভীরতা 20 m। 70% কর্মদক্ষতা বিশিষ্ট একটি পাম্প 20 মিনিটে কুয়াটাকে পানিশূন্য করতে পারে। পাস্পটি অশ্বক্ষমতা নির্ণয় করো। উত্তর: 18.77 HP
- 3. একটি দালানের ছাদের সাথে লাগানো 5 m লম্বা একটি মই আনুভূমিকের সাথে 30° কোণ করে আছে। $60~\mathrm{kg}$ ভরের এক ব্যক্তি $20~\mathrm{kg}$ ভরের বোঝা নিয়ে 10 sec এ ছাদে ওঠেন। তার অশ্বক্ষমতা বের করো।

[CUET 08-09; BUTex 04-05]

উত্তর: 0.263 HP

- 4. একটি মার্বেল পাথর খণ্ডের উচ্চতা 4 ফুট এবং ভর 500 পাউড। 22500 ফুট পাউন্ড কাজ করতে কতটি মার্বেল পাথর খণ্ড একটির উপর একটি রেখে মোট কত ফুট উঁচু একটি স্তম্ভ সাজাতে পারবে? [CUET 05-06] উত্তর: ≈ 5 টি; 20 ft
- $5.~~100~{
 m ms}^{-1}$ বেগে চলম্ভ একটি বুলেট $1~{
 m m}$ পুরু বালির স্তুপ ভেদ করে বেরিয়ে আসার সময় $40~\mathrm{ms}^{-1}$ বেগ প্রাপ্ত হয়। $100~\mathrm{ms}^{-1}$ বেগ সম্পন্ন বুলেটকে সম্পূর্ণ থামাতে কত মিটার পুরু বালুর স্তুপ প্রয়োজন? [CUET 04-05] **উত্তর:** 1.19 m
- $6.~~25~{
 m gm}~$ ভরের একটি গুলি $0.5~{
 m kms}^{-1}$ বেগে বের হয়ে গেল। এটি একটি লক্ষ্যবস্তুকে আঘাত করে তা থেকে $0.4~{
 m kms}^{-1}$ বেগে বের হয়ে যায়। লক্ষ্য বস্তুর ভিতর দিয়ে চলতে গুলিটির কত শক্তি ব্যয় হবে? [CUET 03-04] উত্তর: 1125 J

বিগত সালে BUTex-এ আসা প্রশ্লাবলী

 10 kg ভরের একটি পাথর 5 m উচ্চতা থেকে মাটিতে পোঁতা একটি পেরেকের উপর খাড়াভাবে পড়ল। যদি পেরেকটি মাটির ভেতর আরও 3 cm প্রবেশ করে তবে মাটির গড় প্রতিরোধ বল নির্ণয় কর।

(পেরেকের ভর নগন্য) [BUTex 22-23]

উত্তর: 16431.33 N

উত্তর: $3.24 \times 10^6 \, \mathrm{J}$

2. একটি পানির পাম্প প্রতি মিনিটে 2400 kg পানির সেচ করতে পারে। যদি পানি $3~{
m ms}^{-1}$ বেগে পাস্প থেকে বের হয়ে আসে তাহলে পাস্পের ক্ষমতা কত? পানির পাম্পটি যদি 5 ঘণ্টা চলে তাহলে কৃত কাজের পরিমাণ কত?

[BUTex 22-23]

- মোটরের দক্ষতা 80%, এটা একটি ক্রেনকে চালনা করছে। ক্রেনের দক্ষতা 50%, যদি মোটরের ক্ষমতা 4.73 kW হয় তবে, ক্রেনটি 746 N ওজনের বস্তুকে কত গড় বেগে উপরে উঠাতে পারবে? [BUTex 21-22] উত্তর: 2.536 ms⁻¹
- 4. একটি বল $60~\mathrm{m}$ উঁচু হতে মাটিতে পতিত হলে এটি 75% শক্তি হারিয়ে ফেললে এটি প্রতিফলিত হয়ে কত উচ্চতায় উঠবে? [BUTex 19-20] **উত্তর:** 15 m
- [CUET 09-10, 04-05] 5. 100 ms⁻¹ বেগে গতিশীল একটি বুলেট গাছের ভিতর 0.1 m ঢুকে থেমে যায়। কতটুকু ঢোকার পর এর বেগহাস পেয়ে অর্ধেক হবে? [BUTex 18-19]

উত্তরঃ 0.075 m

6. একটি কুয়া থেকে ইঞ্জিনের সাহায্যে প্রতি মিনিটে $1000~{
m kg}$ পানি 10 m গড় উচ্চতায় উঠানো হয়। যদি ইঞ্জিনটির ক্ষমতা 40% নষ্ট হয় তাহলে এর অশ্বক্ষমতা নির্ণয় করো। [BUTex 18-19]

উত্তর: 3.65 HP

- 7. একটি রাইফেলের গুলি প্রতিটি 5 cm পুরুত্বের দুইটি কাঠের তক্তাকে ভেদ করতে পারে এবং পৃথকভাবে কোনো একটি দেয়ালের মধ্যে 20 cm ভেদ করতে পারে। গুলিটি দেয়ালের মধ্যে কতটুকু ভেদ করতে পারবে যদি উল্লেখিত একটি তক্তা দেয়ালের সামনে সংযুক্ত থাকে? [BUTex 11-12] **উত্তর:** 10 cm
- 8. একটি $50~{
 m g}$ ভরের বুলেট $10~{
 m ms}^{-1}$ বেগে $950~{
 m g}$ ভরের খণ্ডকে (স্থিরাবস্থায়) আঘাত করে এবং আটকে যায়। হারানো গতিশক্তির পরিমাণ কত? [BUTex 09-10]

উত্তর: 2.5 J

- 9. কেন্দ্রমুখী বল দ্বারা কৃতকাজ কী? [BUTex 09-10]
- 10. 50 m/s বেগে ছুঁড়া একটি বুলেট একখণ্ড কাঠে 25 cm প্রবেশ করতে পারে। একই বেগ সম্পন্ন বুলেট 9 cm পুরু অনুরূপ কাঠে লাগলে কত বেগে বেরিয়ে যাবে? [BUTex 06-07] **উত্তর:** 40 ms⁻¹
- 11. একটি পানি পূর্ণ কুয়ার গভীরতা 7.2 মিটার ও ব্যাস 4 মিটার। 31.4 মিনিটে কুয়াটিকে পানি শূন্য করতে পারে এরূপ একটি বৈদ্যুতিক পাম্পের ক্ষমতা নির্ণয় করো। [BUTex 03-04]

উত্তর: 1694.3 W

8				ΛΟ	کا ➤ Physics 1 st P	aper Chapter-5					
	MC	CO	9.	নিচের বস্তুসমূহের মধ্যে কোন	টির গতিশক্তি বেশী?	[BUET 12-13]					
	AVZ	· Y		ক্ত ভর 3M এবং বেগ v	খ ভর 3M এব	ং বেগ 2v					
	বিগত সালে BUET	'-এ আসা প্রশ্নাবলী		গি ভর 2M এবং বেগ 3v	খি ভর M এবং	বেগ 4v					
1.	3 m ব্যাস ও 5 m উচ্চতা বিশিষ্ট একটি সিলিভারকে শোয়ানো অবস্থা				}	[D1/E/F 40 40]					
	থেকে খাড়া করতে কৃতকাজ কত?	[সিলিভারের ভর = 5 kg]	10.	এক জুল কত কিলোওয়াট ঘন		[BUET 12-13]					
		[BUET Preli 22-23]			$@ 0.78 \times 10^{-}$						
	→ 40 J	(1) 49 J		$\mathfrak{I}.78 \times 10^{-7} \text{kWh}$	$ (3) 2.78 \times 10^{-1} $	' kWh					
	⑨ 98 J	₹ 147 J		$3.28 \times 10^{-7} \text{ kWh}$							
2.	10 m উচ্চতা থেকে 10 kg ভরে	র একটি হাতুড়ি পেরেকে আঘাতপ্রাপ্ত	$11. \ 1 \ \mathrm{kg}$ ভর সম্পন্ন একটি বুলেটকে $400 \ \mathrm{ms}^{-1}$ বেগ দিয়ে বন্দুক থেকে								
	হয়ে 5 cm নিচে ঢুকে গেল। মাটি	র গড় বাধাদানকারী বল কত?		ছোঁড়া হলে এর গতিশক্তি কত	[BUET 11-12]						
		[BUET Preli 22-23]		$ 4 \times 10^4 $	•	[DCL1 11 12]					
	→ 19698 N → 1000 100 N → 1000	③ 2000 N		$9.4 \times 10^{3} \text{ J}$ $9.4 \times 10^{3} \text{ J}$	9.8×10^{-3} $9.8 \times 10^{4} \text{ J}$						
	例 19968 N	₹ 19869 N		•	(4) 8 × 10 J						
•				\otimes 4.8 \times 10 ⁴ J							
1. 2. 3. 4. 5. 6.	,	দ্ধি পেলে ভরবেগ কত শতাংশ বৃদ্ধি	12. বল ও সরণের মধ্যবর্তী কোণের মান কত হলে কাজের মান শূন্য হবে:								
	পাবে?		12.	বল ও সরণের মধ্যবতা কোণে	ার মান কত হলে কারে	•					
	③ 200	③ 300			_	[BUET 10-11]					
	19 400	₹ 500		③ 0	<a>♥ 90°						
4	60 m উচঁ থেকে একটি কম্ব	ফলা হলে ভূমি হতে কত উচ্চতায়		গ 180°	ছ 360°						
4.	গতিশক্তি বিভব শক্তির তিন গুণ হ			⊗ 60°							
	⊕ 15 m	(4) 30 m	উত্তৰ	র: ৩ 90°							
		ℚ 16.67 m									
	() 10 m	() 10.07 m	13.	40 N ওজনের বস্তুকে মেঝে (থেকে 3 m উঁচুতে 2 c	সকেন্ড ধরে রাখতে					
5.	50 kmh ⁻¹ বেগে চলমান একটি গা	ড়ি হঠাৎ থেমে গেল। এতে করে গাড়ির		কাজের পরিমাণ হবে–		[BUET 10-11]					
	ভিতরে বসে একজন 50 kg ভরে	ात यांबी 61 cm সামনে ঝুঁকে গেল।		⊕ 0 J	ଏ 40 J						
	যাত্রীর শরীরের উপর অংশে প্রযুক্ত ব	ল কত? [BUET Preli 21-22]		例 120 J	3 240 J						
	● 7905.756 N	③ 7905.788 N									
	¬ 7906.887 N	₹ 7905.787 N	 14. 10 m উপর থেকে 10 kg ভরের একটি মুক্তভাবে পড়ন্ত বস্তুর								
_		<u> </u>		থেকে 5 m উপরে মোট শক্তি	·	[BUET 10-11]					
6.	m ভরের বস্তুকে v বেগে ডপরে	উঠানো হচ্ছে। প্রযুক্ত ক্ষমতা কত?		⊕ 490 J	③ 100 J	[2021 10 11]					
	♠ mv	[BUET Preli 21-22] ③ mgv		⊕ 470 J⊚ 735 J	(F) 980 J						
				(i) 733 3	(d) 360 J						
	$\mathfrak{P} \frac{mg}{v}$	$ \sqrt[a]{\frac{mv^2}{2g}} $									
			15.	25 kg কেজি ভরের কোন	•	,					
7.		L পানি 100 m উঁচু ছাদে তোলে।		বস্তুটির স্থিতি শক্তি কত হবে?		[BUET 10-11]					
	মোটরটির কর্মক্ষমতা 70% হলে,	ক্ষমতা কত? [BUET Preli 21-22]		₹ 98.10 J							
		③ 0.14 kW		গ 9810 ergs	₹ 9810 J						
	၅ 14 MW	₹ 0.14 MW		⊗ 9810 eV							
8.	10 N বল প্রয়োগে একটি গাড়িত	ক 100 m সরাতে কত কাজ করতে			USD DOY						
	হবে? বল ও সরণের মধ্যবর্তী কো	र्ष 60°। [BUET 13-14]		ANSI	NER BOX						
	₱ 100 joule	③ 1000 joule	1		(1) 6 (2) 7 (4) 8	গ 9 গ 10 ছ					
	গ 500 joule	ৰ 50 joule	11	12 13 14 15	^						

বিগত সালে CKRUET-এ আসা প্রশ্নাবলী

- 1 km উচ্চতা থেকে একটি বস্তুকে বিনা বাঁধায় পড়তে দিলে ভূমি হতে কত উচ্চতায় এর স্থিতিশক্তি গতিশক্তির $\frac{3}{4}$ হবে? [CKRUET 23-24]
- ③ 333 m
- 例 420 m
- ₹ 500 m
- (8) 750 m
- 2. এক ব্যক্তি সিঁড়ি দিয়ে তিন তলায় উঠতে এক মিনিট সময় নেয়। সিঁডিতে 40 টি ধাপ রয়েছে এবং প্রতিটি ধাপের উচ্চতা 12 cm। ঐ ব্যক্তির ভর 80 kg হলে তার অশ্বক্ষমতা কত? [CKRUET 23-24]
- ③ 0.480 HP
- 例 0.048 HP
- (च) 0.840 HP
- ® 0.084 HP
- 3. 30 m উচ্চতা থকে একটি বস্তুকে বিনা বাধায় পড়তে দিলে কোথায় উহার গতিশক্তি বিভব শক্তির দিগুণ হবে? [CKRUET 22-23]
 - ₹ 9.5 m
- (4) 10.5 m
- গ) 10 m
- (च) 12 m
- ⊗ 15 m
- 4. একটি পানিপূর্ণ কুয়ার গভীরতা 20 m ও ব্যাস 2 m। কুয়াটিকে পানিশূন্য করার জন্য 5 HP এর একটি পাম্প লাগানো হলো। অর্ধেক পানি তোলার পর পাস্পটি নষ্ট হয়ে গেল। বাকি পানি তোলার জন্য একই ক্ষমতাসম্পন্ন আর একটি পাম্প লাগানো হলো। প্রথম পাম্প দারা সম্পাদিত কাজের পরিমাণ নির্ণয় করো। [CKRUET 22-23]
 - \odot 2.54 × 10⁶ J
- (ब) 1.44 × 10⁶ J
- (1) $2.34 \times 10^6 \, \text{J}$
- $(\bar{y}) 1.54 \times 10^6 \,\mathrm{J}$
- (3) 1.54 × 10⁷ J
- 5. একজন অ্যাথলেট পৃথিবীতে দীর্ঘ লাফ দিয়ে সর্বোচ্চ 4 m দূরত্ব যেতে পারেন। এই অ্যাথলেট চাঁদের পৃষ্ঠে দীর্ঘ লাফ দিয়ে সর্বোচ্চ কত দূর যেতে পারবেন? [পৃথিবীর ভর ও ব্যাসার্ধ চাঁদের ভর ও ব্যাসার্ধের যথাক্রমে 81 গুণ ও 4 গুণ।] [CKRUET 22-23]
 - → 0.79 m
- ∜ 9 m
- 例 20.25 m
- থ 16 m
- ® 32.35 m
- 6. 110 m গভীর একটি কুয়া থেকে ইঞ্জিনের সাহায্যে প্রতি মিনিটে 1200 kg পানি উঠানো হয়। যদি ঐ পানি উঠাতে ইঞ্জিনটির ক্ষমতা 40% কমে যায়, তাহলে এর অশ্বক্ষমতা কত? [CKRUET 22-23]
 - → 37.75 HP
- ③ 38 HP
- 例 48.17 HP
- (1) 49 HP
- ® 50.2 HP

- 7. 8 kg ভরের একটি লোহার বল 10 m উপর থেকে বালিতে পড়ে 50 cm প্রবেশ করে থেমে যায়। লোহার বলটির উপর বালির গড বাধা কত? [CKRUET 21-22]
- (4) 94.08 N
- 例 1489.6 N
- (च) 1568 N
- (8) 1646.4 N
- একজন বালক ও একজন লোক একত্রে দৌড়াচ্ছেন। বালকটির ভর লোকটির ভরের অর্ধেক এবং লোকটির গতিশক্তি বালকটির গতিশক্তির অর্ধেক। লোকটি যদি তার বেগ $1~{
 m ms}^{-1}$ বৃদ্ধি করেন, তবে তার গতিশক্তি বালকটির গতিশক্তির সমান হয়। বালক ও লোকটির আদিবেগ নির্ণয় কর। [CKRUET 21-22]
 - \odot 2.31 ms⁻¹, 4.62 ms⁻¹
- ② 2.20 ms⁻¹, 4.30 ms⁻¹
- ① 2.21 ms⁻¹, 4.82 ms⁻¹
- (\$\overline{3}\$) 2.41 ms⁻¹, 4.62 ms⁻¹
- (8) 2.41 ms⁻¹, 4.82 ms⁻¹
- 900 kg ওজনের একটি লিফট 350 kg ভর নিয়ে 100 sec সময়ে নিচতলা থেকে $18^{
 m th}$ ফ্লোরে $75~{
 m m}$ উচ্চতায় আরোহণ করে। লিফটের প্রয়োগকৃত ক্ষমতা কত? [CKRUET 21-22]
 - ₱ 9.100 kW
- (4) 7.500 kW
- (গ) 9.187 kW
- (10.201 kW)
- ® 9.180 kW
- 10. কোনো কুয়া থেকে 30 m উপরে পানি তোলার জন্য 5 kW এর একটি পাম্প ব্যবহার করা হয়। পাম্পের কর্মদক্ষতা 90% হলে প্রতি মিনিটে কত লিটার পানি তোলা যাবে? [g = 9.8 ms⁻²] [CKRUET 20-21]
- (1) 815 liters
- 例 1200 liters
- থি 918 liters
- (8) 1918 liters
- 11. 100 m গভীর কুয়া থেকে একটি পাম্প ঘন্টায় 7000 kg পানি উত্তোলন করতে পারে। পাস্পটির ক্ষমতা নির্ণয় কর। [দেওয়া আছে, পাম্পটির কর্মদক্ষতা = 72%, $g = 9.8 \text{ ms}^{-2}$] [CKRUET 20-21]
- (ब) 1372 W
- গ) 82320 W
- (च) 1905.6 W
- None of them
- 12. একটি বানর 20 মিটার উঁচু নারিকেল গাছ থেকে নারিকেল ফেলছে। প্রত্যেকটি নারিকেলের ভর 3 kg এবং বানরটি প্রতি সেকেন্ডে 2 টি করে নারিকেল ফেলছে। নারিকেলের সমস্ত স্থিতিশক্তি বিদ্যুৎ শক্তিতে রূপান্তরিত হলে উক্ত বিদ্যুৎ শক্তির সাহায্যে কয়টি 50 ওয়াট এর বৈদ্যুতিক বাতি প্রজ্জ্বলিত করা যাবে? [CKRUET 20-21]

খ 24

গু 13

ছ 1176

§ 25

ANSWER BOX

2 8 3 9 4 9 5 9 6 9 7 8 8 9 9 9 10 9

বিগত সালে KUET-এ আসা প্রশ্লাবলী

- একটি ইঞ্জিন 5 মিনিটে কুয়া থেকে 10000 লিটার পানি 10 m গড় উচ্চতায় তুলতে পারে। ইঞ্জিনটির ক্ষমতা 70% কার্যকর হলে এর অশ্ব ক্ষমতা কোনটি?
 [KUET 18-19]
- (4) 3.07 HP
- ⑨ 3.65 HP
- (च) 4.38 HP
- ® 6.25 HP
- 2. একটি কুয়া থেকে ইঞ্জিনের সাহায্যে প্রতি ঘণ্টায় $25 \times 10^6~{
 m kg}$ পানি $50~{
 m m}$ উচ্চতায় উঠানো হয়। 70% ক্ষমতা ক্ষয় হলে এর অশ্বক্ষমতা নির্ণয় কর। $[{
 m KUET}~17\text{-}18]$
 - $\textcircled{4.8} \times 10^6 \, \text{HP}$
- থ 6516 HP
- (9) $5.7 \times 10^3 \text{ HP}$
- ₹ 3649 HP
- ® 6251 HP
- 3. একটি বন্দুকের গুলি কোন দেয়ালের মধ্যে 0.05 m প্রবেশ করার পর । গুলিটি দেয়ালের মধ্যে আর কত দূর প্রবেশ করতে পারবে? [KUET 17-18; BUET 05-06]
- ៧ 0.02 m
- গু 1.33 cm
- ₹ 0.022 m
- ⊗ 1.52 cm
- 4. 20000 kg ভরের একটি গাড়ীর ইঞ্জিনের ক্ষমতা 560 HP ও কর্মদক্ষতা 80%, গাড়িটিকে স্থির অবস্থা থেকে 25 ms^{-1} বেগে আনতে ন্যূনতম কত সময় লাগবে? [1 HP = 0.746 kW] [KUET 16-17]
- ^③ 6 sec
- 例 18 sec
- (च) 37.4 sec
- ® 374 sec
- 5. পৃথিবী পৃষ্ঠ হতে 5 km উপরে কিছু মেঘ ভেসে আছে। ঐ মেঘ বৃষ্টিরূপে নেমে এসে ভূ-পৃষ্ঠে 100 km² স্থানে 1 mm গভীরতার পানি সৃষ্টি করতে পারে। উক্ত পানিকে আবার মেঘে পরিণত করতে কত কাজের প্রয়োজন?
 [KUET 15-16]
 2.
 - $\ \ \ \mathbf{\bar{\oplus}}\ 49\times10^{11}\ J$
- $\textcircled{4}9\times10^8\,J$
- (1) 4.9×10^{11} ergs
- (\mathfrak{P}) 9.8 × 10¹¹ nN
- ⑤ 10⁸ J
- 6. একটি পাম্প ঘন্টায় $25 \times 10^6 \ \mathrm{kg}$ পানি $50 \ \mathrm{m}$ গভীর কুয়া থেকে তুলতে পারে। পাম্পের ক্ষমতা 70% কার্যকর হলে প্রকৃত ক্ষমতা কত? [KUET 14-15]
 - ₹ 4.06 MW
- ③ 4.86 MW
- **၅** 2.38 MW
- (1) 420 MW
- **3** 238 MW
- 7. পৃথিবীর পৃষ্ঠের $20~{\rm m}$ নিচ থেকে মোটর পাম্পের সাহায্যে পানি টেনে উঠানো হয় এবং প্রতি মিনিটে $600~{\rm kg}$ পানি নির্গত হয়। যদি পানি বাইরে আসার বেগ $5~{\rm ms}^{-1}$ হয়, মোট পাম্পের ক্ষমতা কত? $[{\rm KUET}~12\text{-}13]$
- (4) 2 kW
- গ) 2.085 kW
- থি 125 kW
- ® 2.085 W

ANSWER BOX

1 8 2 * 3 4 9 5 6 7 7

বিগত সালে RUET-এ আসা প্রশ্নাবলী

- 1. 60 kg ভরের একজন লোক প্রতিটি 15 cm উঁচু 50 টি সিঁড়ি 20 s এ উঠতে পারে। লোকটির অশ্বক্ষমতা কত? [RUET 14-15]
- ③ 0.496 HP
- গ 0.596 HP
- (च) 0.296 HP
- (§) None
- . একটি বালক তার খেলনার উপর $\overset{
 ightarrow}{F}=\left(9\overset{\^{i}}{i}-2\overset{\^{j}}{j}+2\overset{\^{k}}{k}\right)$ N বল প্রয়োগ করলে খেলনাটির সরণ $\overset{
 ightarrow}{d}=\left(2\overset{\^{i}}{i}+2\overset{\^{j}}{j}-4\overset{\^{k}}{k}\right)$ হয়। বালকটি দ্বারা সম্পাদিত কাজের পরিমাণ কত?
 - ◆ 18 J
- (₹) 9 J

গ 6 J

- ছ 12 J
- **®** None
- 3. 80 m উচ্চতা থেকে যদি একটি বল মেঝেতে পড়ে এবং বলটির 20% শক্তি মেঝের সাথে প্রতিঘাতে হ্রাস পায়, তবে বলটি মেঝেতে বাড়ি খেয়ে যে উচ্চতায় উঠবে- [RUET 13-14; BUET 11-12]
 - ⊕ 60 m
- ₹ 64 m
- (ब) 68 m
- ₹ 72 m

ANSWER BOX

1 2 9 3 9

বিগত সালে CUET-এ আসা প্রশ্নাবলী

- 1. একটি পানি পূর্ণ কুয়ার দৈর্ঘ্য 5 m, প্রস্থ 3 m ও গভীরতা 10 m। 80% কর্মদক্ষতা বিশিষ্ট একটি পাম্প 20 মিনিটে কুয়াটিকে পানিশূন্য করতে পারে। পাম্পটির অশ্বক্ষমতা কত? [CUET 15-16]
- ₹ 6.6 HP
- গ) 8.21 HP
- (1) None of them
- 50 kg ভরের এক ব্যক্তি 5 sec এ কোন সিড়ি বেয়ে 20 ধাপ উপরে
 উঠল। প্রতি ধাপের উচ্চতা 10 cm। লোকটি কত ক্ষমতা ব্যবহার
 করল?

 [CUET 14-15]
 - \odot 1.9 × 10⁴ watt
- (4) 490 watt
- ৰূ 196 watt
- (1) None of them
- একটি পানিপূর্ণ কুপের গভীরতা ও ব্যাস যথাক্রমে 10 m ও 4 m।
 একটি পাম্প 20 মিনিটে ক্পটিকে পানি শূন্য করতে পারে। এর অশ্ব
 ক্ষমতা নির্ণয় কর।
 [CUET 14-15; BUET 09-10]
 - **③** 5.1 HP
- (4) 51.28 HP
- 例 6.87 HP
- None of them
- . $100~{
 m ms}^{-1}$ বেগে বন্দুকের একটি গুলি $2~{
 m m}$ পুরু দেয়াল ভেদ করে বেরিয়ে আসার সময় $50~{
 m ms}^{-1}$ বেগ প্রাপ্ত হয়। $100~{
 m ms}^{-1}$ বেগ সম্পন্ন গুলিকে সম্পূর্ণ থামাতে কত মিটার পুরু দেয়ালের প্রয়োজন হবে?

[CUET 10-11]

- ^③ 1.33 m
- 1 0.667 m
- None of these

ANSWER BOX

1 1 1 2 1 3 1 4 1

বিগত সালে IUT-এ আসা প্রশ্লাবলী

An engine pumps 1000 kg of water per minute from a well of a depth of 100 m. If 42% efficiency of the engine is lost, find the horsepower of the engine.

[IUT 21-22]

- (ब) 47.75 HP
- গ) 33.75 HP
- (च) 43.75 HP
- 2. An 80 W electric fan is rotating at 300 rpm. How much torque is being produced by the electric motor [IUT 21-22] of the fan? Neglect all losses.
- (4) 2.85 Nm
- গ 2.55 Nm
- (1) 2.98 Nm
- 3. In a construction site, a lifting machine on the ground is used to lift bricks to the 8th floor which is 25 m high. At a time, the machine can lift a 2000 kg load in 1 min. The power supplied to the engine of the lift is 15 HP. What is the efficiency of the lifting machine? (Use $g = 9.81 \text{ ms}^{-2} \text{ and } 1 \text{ HP} = 746 \text{ W}$). [IUT 21-22]
 - **3** 87%
- **(4)** 73%
- গ) 83%
- থি 76%
- 4. A coal-fired power plant that operates at an efficiency of 38% generates 750 MW of electric power. How much heat does the plant discharge to the environment in one day (24 h)? [IUT 21-22]
- (4) $2.570 \times 10^{14} \text{ J/day}$
- গি 1.570 × 10¹⁴ J/day
- (\mathfrak{T}) 2.057 × 10¹⁴ J/day
- 5. A body is allowed to fall freely from a height of 30 m. From the ground, where will its kinetic energy be twice the potential energy?

[IUT 21-22; BUTex 16-17; CUET 10-11, 03-04]

- → 15 m
- (4) 12 m
- 例 8 m
- থি 10 m
- A truck of mass 900 kg moves with a velocity of 60 km/h. The truck is stopped at a distance of 50 m by applying brake. If the frictional force of the ground is 200 N, then calculate the magnitude of force due to brake.

[IUT 21-22]

- ◆ 2100 N
- (4) 2500 N
- গ) 2300 N
- থি 2700 N
- 7. A tennis ball coming with velocity, $v_1 = 16 \text{ ms}^{-1}$ is sent back by a racket in the opposite direction with velocity, $v_2 = 20 \text{ ms}^{-1}$. If the change of kintic energy of the ball is $\Delta E = 9.25$ J, then calculate the change of momentum of the ball.
 - 5.626 kgms⁻¹
- $\textcircled{9} \ 6.626 \ kgms^{-1}$
- ৰ্গ) 7.626 kgms⁻¹
- (1) 4.626 kgms⁻¹

- The muzzle velocity of a 3.30 g bullet fired from a 8. rifle is 965 ms⁻¹ just as it leaves the 45.0 cm barrel. Assume that the barrel is frictionless and a constant horizontal acceleration acts on the bullet in the barrel. What is the force exerted by the rifle on the bullet while it is in the barrel? HUT 19-201
 - (4) 3314.5 N
- (ब) 3514.50 N
- গি 3414.50 N
- (च) 3427.50 N
- A ball of mass 0.2 kg is thrown vertically upwards by hand. If the hand moves 0.2 m which applying the force and the ball goes up to 2 m height further, find the magnitude of the force. Consider $g = 10 \text{ ms}^{-2}$.

[IUT 19-20]

- (4) 22 N
- থ) 4 N
- গ) 16 N
- (ঘ) 20 N
- 10. When a rubber-band is stretched by a distance x, it exerts a restoring force of magnitude $F = ax + bx^2$. Where a and b are constants. The work done in stretching the upstretched rubber band by L is: [IUT 19-20]
- \mathfrak{A} aL² + bL³
- 11. A marathon runner with mass 60.0 kg runs up the stairs to the tallest building of the world Burj Khalifa of height 828 m in 30.0 minutes. What is his average power output in horsepower? [IUT 19-20]
- (1) 0.363 HP
- গি 0.462 HP
- (च) 0.333 HP
- 12. A block of mass 3 kg slides down a frictionless inclined plane of length 6 m and height 4 m. If the block is released from rest at the top of the inclined plane, what is its speed when it reaches the bottom?

[IUT 18-19]

- (₹) 9.78 ms⁻¹
- (₹) 5.42 ms⁻¹
- (গ) 8.85 ms⁻¹
- (₹) 10 ms⁻¹
- 13. Along a straight horizontal road, a truck of mass 1800 kg travels. The truck's engine is working at a constant rate of 30 kW. When the truck's speed is 20 ms⁻¹, its acceleration is 0.4 ms⁻². The magnitude of the resistance of the motion of the truck is R newtons. Find the value of R. [IUT 18-19]
- **(4)** 820

- গ) 780
- **(ঘ)** 960

14. A total of 100 J of energy is supplied to a machine. 20. The third floor of a house is 8.0 m above the street The machine is then capable of displacing a 30 N object to 1.5 m. What is the approximate efficiency of the machine? [IUT 18-19]

45%

(4) 20%

গ) 30%

- থি 15%
- 15. একটি কণার উপর $\overrightarrow{F} = \left(-2 \overrightarrow{i} + 3 \overrightarrow{j} + 4 \overrightarrow{k}\right)$ নিউটন বল প্রয়োগের ফলে কণাটি (3, -4, -2) বিন্দু থেকে (-2, 3, 5) বিন্দুতে স্থানান্তরিত হয়। বল কর্তৃক সম্পাদিত কাজের পরিমাণ নির্ণয় কর।

[IUT 18-19; KUET 15-16]

(季) 7 J

(ब) 59.72 J

গি 49 J

(च) 59 J

- (च) 49 J
- 16. In a spring balance, the length of the spring is 20 cm which can read from 0 to 60 N. Find the potential energy of the spring when it reads 40 N. [IUT 17-18]

(4) 0.267 J

(4) 26.7 J

何 2.67 J

- (च) 267 J
- 17. Two discs A and B are mounted coaxially on a vertical axle. The discs have moments of inertia I and 2I, respectively about the common axis. Disc A is imparted an initial angular velocity 200 using the entire potential energy of a spring compressed by a distance x₁. Disc B is imparted an angular velocity ω by a spring having the same spring constant and compressed by a distance x2. Both the discs rotate in the clockwise

direction. The ratio of $\frac{X_1}{X_2}$ is –

(季) 2

(9) √2

- 18. An electric motor develops 65 kW of power as it lifts a loaded elevator to 17.5 m in 35 s. How much force does the motor exert? **IIUT 16-171**

7 1.75 × 10⁵ N

(4) $1.30 \times 10^5 \,\mathrm{N}$

গি 1.45 × 10⁵ N

- (\overline{v}) 1.95 × 10⁵ N
- 19. It is required to install an electric pump to lift water from an underground tank to a 1000-liter overhead reservoir which has 25 m height. What must be the power of the electric motor to fill the tank in 10 mins? [IUT 14-15]

(4) 0.55 HP

গি 0.50 HP

(च) 0.65 HP

level. How much work is needed to move a 150 kg refrigerator to this third floor? [IUT 14-15]

⊕ 9.5 kJ

(4) 10.8 kJ

গ) 11.8 kJ

(\(\bar{v}\)) 12.8 kJ

উত্তর: গি 11.8 kJ

ব্যাখ্যা: W = mgh

 $= 150 \times 9.8 \times 8$

= 11.76 kJ

 \Rightarrow W \approx 11.8 kJ

21. When the velocity of a moving object is increased by 4 ms⁻¹, its kinetic energy is doubled. What is the initial velocity of the object? [IUT 14-15]

(4) 4.66 ms⁻¹

(श) 9.66 ms⁻¹

(গ) 7.66 ms⁻¹

থি 6.66 ms⁻¹

উত্তর: খি 9.66 ms⁻¹

ব্যাখ্যাঃ
$$rac{E_{k_1}}{E_{k_2}}\!=\!rac{v_1^2}{v_2^2}$$

$$\Rightarrow \frac{K}{2K} = \frac{v_1^2}{(v_1 + 4)^2}$$

- \Rightarrow v₁ = 9.66 ms⁻¹
- 22. A marathon runner of mass 70 kg runs up the stairs to the top of the Sears tower that is 443 m high in 15 minutes. What is the average power output of the runner in horse power (hp)? [IUT 11-12]

(1) 1.5 HP

গি 0.50 HP

- (च) 0.7 HP
- 23. There are some clouds in the sky 1.5 km from the earth surface. The cloud is converted to rain and deposited as water on the surface on earth of area 1×10^6 m² with a depth of 1 cm. Calculate the amount of work required to convert the rain from the cloud.

[IUT 10-11; BUTex 00-01]

(4) $15.7 \times 10^5 \,\mathrm{J}$

(ब) 14.7 × 10¹⁹ J

গ) $14.7 \times 10^{10} \, J$

- থি 50 J
- 24. If the kinetic energy of a body is increased by 300%, its momentum is increased by-[IUT 10-11]

♠ 100%

(a) 150%

গ) 300%

ছি 400%

ANSWER BOX

1									-				_						
11	ৠ	12	1	13	1	14	⊕	15	ঘ	16	ঞ	17	গ্	18	ঞ্চ	19	ৠ	20	গ
21	খ	22	⊕	23	গ	24	⊕												

বিগত সালে BUTex-এ আসা প্রশ্নাবলী

1. একটি গুলি নির্দিষ্ট পুরুত্বের একটি কাঠের তক্তাকে কেবল ভেদ করতে পারে। গুলির বেগ দিগুণ হলে অনুরূপ কয়টি তক্তাকে ভেদ করতে পারবে? [BUTex 15-16]

₹ 6

গ) 2

- (ঘ) 4
- 2. কোন বস্তুর উপর \mathbf{F} বল প্রয়োগ করলে বস্তুটি যদি \mathbf{v} বেগে গতিশীল হয় তাহলে ক্ষমতা-[BUTex 15-16]
 - ♠ Fv

 $\mathfrak{P} \frac{\mathbf{F}\mathbf{v}}{2}$

- 3. ক্রেনের সাহায্যে 200 kg ভরের একটি বোমাকে 0.1 ms^{-1} বেগে উঠানো হলে ক্রেনের ক্ষমতা কত? [BUTex 15-16]
- (4) 98 W
- গ) 196 W
- (1) 200 W
- 4. একটি মোটর একটি 120 m গভীর কৃপ থেকে 5 মিনিট এ 400 kg পানি উত্তোলন করতে সক্ষম। মোটরটির অশ্বক্ষমতা কত?

[BUTex 13-14; BUET 07-08]

- → 3.0 HP
- (4) 2.8 HP
- 例 2.5 HP
- থি 2.1 HP
- 5. একটি জল বিদ্যুৎ কেন্দ্রের বাধের গভীরতা 20 m। প্রতি সেকেন্ডে কত কেজি পানি অবশ্যই টারবাইন ব্লেডের উপর পড়লে এটি 0.5 MW বিদ্যুৎ উৎপন্ন করবে? $[g = 10 \text{ ms}^{-2}]$ [BUTex 13-14; KUET 08-09]
 - \odot 25 × 10² kg
- ③ 25 × 10 kg
- \mathfrak{I} 25 × 10³ kg
- \mathfrak{T} 25 × 10⁴ kg
- 6. উড়োজাহাজ থেকে নিক্ষিপ্ত বোমা মাঝপথে ফেটে গেলে এর-

[BUTex 12-13]

- ক্তি গতিশক্তি বাড়বে
- খ মোট শক্তি বাড়বে
- গি মোট শক্তি কমবে
- খি মোট ভরবেগ কমবে

ANSWER BOX

| 1 | খ | 2 | ক | 3 | গ | 4 | খ | 5 | ক | 6 | ক |

Engineering Standard Practice Problems

PRACTICE (WRITTEN)

1. 200 N এর বল প্রয়োগ করে কোনো বস্তুকে বলের অভিমুখে 300 m সরানো হলে কত কাজ সম্পন্ন হবে বের করো। [Easv]

উত্তর: $6 \times 10^4 \, \mathrm{J}$

 $2. \quad 3 \; \mathrm{kg}$ ভরের একটি বস্তু $30 \; \mathrm{ms}^{-1}$ বেগে গতিশীল আছে। থেমে যাবার পূর্ব মুহূর্ত পর্যন্ত ঘর্ষণ বলের বিরুদ্ধে বস্তুটিকে কী পরিমাণ কাজ করতে হবে? [Easy]

উত্তর: 1350 J

3. একজন রোলার চালক আনুভূমিকের সাথে 45° কোণ করে 20 N বলে রোলার চালায়। রোলারটি সামনের দিকে 75 m চললে সে কত কাজ করবে? [Easy]

উত্তর: 1060.66 J

- 250 N ওজনের একটি বালক খাডা মই বেয়ে শীর্ষে উঠতে 2000 J কাজ সম্পন্ন করে। মইটির দৈর্ঘ্য নির্ণয় করো। [Easy] **উত্তর:** 8 m
- 5. ভূমি থেকে 20 m উঁচু ছাদে ইট তোলার জন্য 10 kW এর একটি ইঞ্জিন ব্যবহার করা হলো। 1 ঘণ্টায় ইঞ্জিনটি কী পরিমাণ ইট ছাদে তুলতে পারবে? [Easy]

উত্তরঃ 1.8 × 10⁵ kg

6. 150 kg ভরের এক ব্যক্তি 50 kg ভরের একটি বোঝা নিয়ে 4 m দীর্ঘ একটি সিড়ি বেয়ে $20~{
m s}$ এ নিচে নামলো। যদি সিড়িটি দেয়ালের সাথে 60° কোণে থাকে তবে লোকটির ক্ষমতা নির্ণয় করো। [Medium]

উত্তর: 196 W

7. কোনো একটি স্থান হতে এক মিনিটে একটি ইঞ্জিন 100 kg ভরের একটি বস্তু 20 m ওপরে তুলতে পারে। যদি ইঞ্জিনটির ক্ষমতা 30% নষ্ট হয়, তবে ইঞ্জিনটির ক্ষমতা নির্ণয় করো। [Easy]

উত্তর: 466.66 W

8. একজন ছুতোর মেঝের ওপর দিয়ে কাঠ বোঝাই একটি ট্রলি দড়ি দিয়ে বেধে $10~\mathrm{m}$ টেনে নিয়ে গেল। দড়ির টান $200~\mathrm{N}$ এবং তা আনুভূমিকের সাথে 37° কোণে ওপরের দিকে। ছুতো কর্তৃক কৃতকাজ নির্ণয় কর। সে যদি আনুভূমিকভাবে বল প্রয়োগ করত তবে কত কাজ হত? [Easy]

উত্তর: 1597.277 J; 2000 J

এর উপর ক্রিয়াশীল বল $4\overrightarrow{\mathbf{i}} - 3\overrightarrow{\mathbf{j}} + 2\overrightarrow{\mathbf{k}}$ । কাজ নির্ণয় করো । [Medium] উত্তর: - 7 একক

10. 10 kg ভরের একটি স্থির বস্তুর ওপর একটি স্থির মানের বল প্রয়োগ করায় সরণ 5 s এ 50 m হলো। কৃতকাজ নির্ণয় করো। [Easy] উত্তর: 2000 J

11. একটি ইটের উচ্চতা 7.5 cm এবং ভর 2.5 kg। 10 টি ইটকে পরপর সাজিয়ে একটি স্তম্ভ তৈরি করতে কত শক্তি ব্যয় হবে? [Medium] উত্তর: 82.69 J

- 12. একটি কাঠের ব্লককে আনুভূমিকের সাথে 30° কোণে 40 N বল প্রয়োগে মেঝের উপর দিয়ে টানা হচ্ছে। ঘর্ষণজনিত বল 8 N। ব্লকটির সরণ 5 m হলে- [Easy]
- (ক) প্রযুক্ত বল দ্বারা কৃতকাজ
- (খ) ঘর্ষণ বল দ্বারা কৃতকাজ
- (গ) নিট কাজ নির্ণয় করো।

সমাধান:

(화) 173.21 J; (학) – 40 J; (학) 133.21 J

13. একটি পাম্প দ্বারা 1000 লিটার পানি 40 m উপরে অবস্থিত একটি ট্যাংকে তুলতে কত শক্তি ব্যয় হবে? এক ঘন সেন্টিমিটার পানির ভর 0.9985 g এবং 1000 ঘন সেন্টিমিটার = এক লিটার। [Medium] উত্তর: 391412 J

14. দুইটি ধ্রুব বল $(\hat{i}+2\hat{j}+3\hat{k})$ N এবং $(4\hat{i}-5\hat{j}-2\hat{k})$ N একটি কণার ওপর একই সাথে কাজ করে এবং কণাটির $7\,{\hat{
m k}}$ অবস্থান হতে $20\hat{i} + 15\hat{j}$ cm অবস্থানে সরণ হয়। কণার ওপর মোট কৃতকাজ নির্ণয় কর। [Medium]

উত্তর: 0.48 J

15. 3 m দীর্ঘ একটি মইয়ের ওজন 200 N এবং মইটির ভারকেন্দ্র এর এক প্রান্ত হতে 120 cm দূরে অবস্থিত। মইয়ের অপর প্রান্তে 50 N ওজন লাগানো থাকা অবস্থায় মইসহ ওজনটিকে আনুভূমিক হতে উলম্ব অবস্থায় তুলতে কৃতকাজ নির্ণয় করো। [Medium] উত্তর: 390 J

16. যদি কোণের মান পূর্বের তুলনায় 15° বৃদ্ধি করা হয় তবে বস্তুটিকে A থেকে B বিন্দুতে আনতে পূর্বের তুলনায় কত বেশি কাজ করতে হবে?

উত্তর: 11.5%

9. একটি বস্তু সরলপথে $(3,\,2,\,-1)$ থেকে $(2,\,1,\,-4)$ বিন্দুতে গেল। $|\,17.\,$ L দৈর্ঘ্যের এবং M ভরের একটি সুষম চেইনের এক-ভৃতীয়াংশ একটি আনুভূমিক টেবিল হতে ঝুলছে এবং বাকি দুই-তৃতীয়াংশ টেবিলের উপর রাখা আছে। ঝুলম্ভ অংশকে টেবিলে তুলে রাখতে কৃতকাজের মান নির্ণয় করো। [Medium]

উত্তর:
$$\frac{MgL}{18}$$

18. একটি 2 kg ভরের বস্তুকে যেকোনো মুহূর্তের একটি বলের ক্রিয়ায় সরানো হলো। বস্তুর যেকোনো মুহুর্তের অবস্থা x কে সময়ের অপেক্ষক রূপে $\mathbf{x} = \frac{\mathbf{t}^3}{3}$ হিসেবে প্রকাশ করা যায়। (এখানে \mathbf{x} মিটারে এবং \mathbf{t} সেকেন্ডে প্রকাশিত) প্রথম দুই সেকেন্ডে বল দ্বারা কৃতকাজ কত হবে? [Medium] উত্তর: 16 J

19. 4 টি ঘনকাকৃতি পাথর খণ্ডের প্রতিটির আয়তন $0.125~\mathrm{m}^3$ ও ভর 250 kg। এদের একটি অপরটির উপর রেখে স্তম্ভ প্রস্তুত করা হল। এক্ষেত্রে কৃতকাজ নির্ণয় কর। [Medium] **উত্তর:** 7350 J

20. একটি বস্তুর উপর ক্রিয়ারত বল, $\mathbf{F}=\mathbf{F}_0\left(rac{\mathbf{x}}{\mathbf{x}_0}-1
ight)$; যেখানে \mathbf{F}_0 ও \mathbf{x}_0 ধ্রুব পদ। $\mathbf{x}=\mathbf{0}$ থেকে $\mathbf{x}=2\mathbf{x}_0$ অবস্থানে যাওয়াকালীন কৃতকাজ হিসাব করো। [Medium] উত্তর: 0 J

21. একটি কণার উপর একই সাথে দুটি ধ্রুব বল $\overrightarrow{F_1} = (4 \hat{i} + \hat{j} - 3 \hat{k})$ N ও $\vec{F}_2 = (3\hat{i} + \hat{j} - \hat{k})$ N কাজ করায় বস্তুটি $\vec{r}_1 = (\hat{i} + 2\hat{j} + 3\hat{k})$ m হতে $\vec{r}_2 = (5\hat{i} + 4\hat{j} + \hat{k})$ m অবস্থানে সরে যায়। বস্তুটির ওপর মোট কাজের পরিমাণ কত? [Easv] উত্তর: 40 J

22. ঘর্ষণহীন তলের উপর রাখা একটি বস্তুর উপর তিনটি $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ বল ক্রিয়া করে ডানদিকে বস্তুটির $3\ m$ সরণ ঘটায়। $F_1=5\ N,\ F_2=9\ N,$ F₃ = 3 N এবং সরণের সময় মোট কৃতকাজ কত? [Medium]

উত্তরঃ 1.5 J

[Medium]

 $23.~\mathrm{xy}$ সমতলে অবস্থিত একটি কণার ওপর kr (যেখানে $\mathrm{r}=\sqrt{\mathrm{x}^2+\mathrm{y}^2}$) মানের বল মূলবিন্দু থেকে r দূরত্বে অবস্থিত কণাটির উপর ক্রিয়াশীল। কণাটিকে ব্যাসার্ধ ভেক্টর বরাবর মূল বিন্দু হতে $\mathbf{x}=1,\ \mathbf{y}=1$ বিন্দুতে আনতে কৃতকাজ কত হবে? [Medium]

উত্তর: k একক

- প্রান্তে একটি বালতি সংযুক্ত রয়েছে। কুপের পানির গভীরতা $10~\mathrm{m}$ হলে বালতি ভর্তি পানি তুলতে কী পরিমাণ কাজ করতে হবে? [চেইনের প্রতি মিটারের ভর 2 kg ও পানি ভর্তি বালতির ভর 20 kg] [Medium] উত্তর: 2940 J
- 25. 1 m ব্যাসের ও 4 m দীর্ঘ একটি সুষম নিরেট সিলিভারকে আনুভূমিক অবস্থা থেকে খাডা করতে কী পরিমাণ কাজ করতে হবে? সিলিভারের ঘনত 1200 kgm⁻³ [Medium]

উত্তর: 55417.7 J

 $26. \ 0.1 \ ext{kg}$ ভরবিশিষ্ট একটি বস্তুর ভরবেগ $0.02 \ ext{kgms}^{-1}$ । এর গতিশক্তি কত? যদি বস্তুটির ঐ ভরবেগ স্থিরাবস্থা হতে $10~{
m s}$ এ অর্জিত হয় তবে কত বল প্রযুক্ত হয়েছিল? [Easy]

উত্তর: 2 × 10⁻³ N

27. একটি খাড়া স্প্রিং-এ 1.2 kg ভরের একটি বস্তু জুড়ে দেয়ায় স্প্রিংটি 0.08 m প্রসারিত হয়। স্প্রিং ধ্রুবক এবং স্প্রিং-এর স্থিতিশক্তি নির্ণয় করো। অতিরিক্ত কত ভর জুড়ে দিলে, স্প্রিংটি আরো অতিরিক্ত 0.16 m প্রসারিত হবে? [Medium]

উত্তর: 147 Nm⁻¹; 2.4 kg

28. একটি বলের প্রভাবে 5 kg ভরের কোনো বস্তুকণার যে কোনো মুহুর্তের অবস্থান ভেক্টর \overrightarrow{r} সময়ের রূপে, $\overrightarrow{r} = (2t^3 + t)\overrightarrow{i} + (3t^4 - t^2 + 8)\overrightarrow{j} - (12t^2)\overrightarrow{k}$ সমীকরণ দ্বারা প্রকাশ করা যায়। কণাটির যে কোনো সময় t এর জন্য (ক) বেগ, (খ) ভরবেগ, (গ) তুরণ ও (ঘ) কণার উপর বল নির্ণয় কর।

[Medium]

সমাধান:

$$(\overline{\Phi}) (6t^2 + 1) \hat{i} + (12t^3 - 2t) \hat{j} - 24t \hat{k} ms^{-1}$$

(
4
) $(30t^{2} + 5)\hat{i} + (60t^{3} - 10t)\hat{j} - 120t\hat{k} \text{ kgms}^{-1}$

$$(\mbox{9} \mbox{1} \mbox{1} \mbox{2} \mbox{\hat{i}} \mbox{1} \mbox{2} \mbox{\hat{i}} \mbox{1} \mbox{2} \mbox{4} \mbox{\hat{k}} \mbox{ms}^{-1} \mbox{3} \mbox{4} \mbox{\hat{k}} \mbox{ms}^{-1} \mbox{3} \mbox{4} \mbox{\hat{k}} \mbox{ms}^{-1} \mbox{3} \mbox{4} \mbox{\hat{k}} \mbox{ms}^{-1} \mbox{3} \mbox{3} \mbox{\hat{k}} \mbox{ms}^{-1} \mbox{3} \mbox{$$

$$(\triangledown) 60t\hat{i} + (180t^2 - 10)\hat{j} - 120\hat{k} N$$

29. 2 একক ভরের কোন বস্তু $\vec{F} = (24t^2)\hat{i} + (36t - 16)\hat{j} - (12t)\hat{k}$ বলের প্রভাবে গতিশীল । t=0 সময়ের বস্তুর অবস্থান, $\overset{
ightarrow}{r_0}=3\overset{\hat{i}}{i}-\overset{\hat{j}}{j}~+4\overset{\hat{k}}{k}$ এবং বেগ $\overrightarrow{v_0}= 6 \hat{i} + 15 \hat{j} - 8 \hat{k}$; (সবগুলো একক S.I এককে প্রদন্ত) $t=2.0~\mathrm{s}$ সময়ে বস্তুটির বেগ ও অবস্থান নির্ণয় কর। [Medium]

উত্তর:
$$102\hat{i} + 71\hat{j} - 32\hat{k}$$
 ; $111\hat{i} + 85\hat{j} - 36\hat{k}$ m

30. 2 kg ভরের একটি হাতুড়ি দেয়ালের সাথে অভিলম্বভাবে স্থাপিত একটি পেরেককে $5~{
m ms}^{-1}$ বেগে আনুভূমিকভাবে আঘাত করার পেরেকটি দেয়ালের মধ্যে 0.0125 m ঢুকে যায়। গড় বাঁধাজনিত বল নির্ণয় করো। [Medium] উত্তর: 2000 N

- 24. একটি কুপের উপর আনুভূমিক দণ্ড হতে ঝুলন্ত একটি চেইনের নিচের | 31. 30 N বল প্রয়োগে একটি গাড়িকে 200 m সরাতে কত কাজ করতে হবে যদি [Easy]
 - (i) উত্তর: 6000 J; (ii) 3000 J
 - 32. $500~\mathrm{g}$ ভরবিশিষ্ট কোনো বস্তু একটি জাহাজের উপর হতে $10~\mathrm{m}$ নিচে পানিতে পড়ল। [Easv]
 - (i) বস্তুটির প্রাথমিক স্থিতিশক্তি নির্ণয় কর। **উত্তর:** 49 J
 - (ii) বস্তুটির সর্বোচ্চ গতিশক্তি নির্ণয় কর। উত্তর: 49 J
 - (iii) পানি হতে 3 m উপরে গতিশক্তি ও স্থিতিশক্তি নির্ণয় কর। উত্তর: 34.3 J
 - (iv) বস্তুটি যে বেগ নিয়ে পানির তলকে স্পর্শ করে তা নির্ণয় কর। উত্তরঃ 14 ms⁻¹
 - 33. একটি স্প্রিংকে স্বাভাবিক অবস্থা থেকে 10 cm প্রসারিত করতে 30 N বল প্রয়োজন হয়। স্প্রিংটিকে 8 cm প্রসারিত করতে কৃতকাজের পরিমাণ কত হবে? [Medium]

উত্তর: 0.96 J

34. চিত্রানুরূপ m ভরের একটি নিরেট গোলককে স্প্রিং এর সাহায্যে হেলানো তলের সর্বোচ্চ বিন্দুতে এমনভাবে পৌছাতে হবে যেন তা কোনোমতে সেখানে পৌঁছে দন্ডায়মান থাকে। তিলের ঘর্ষণ বল পিছলে না পড়ার জন্য যথেষ্ট]। স্প্রিং ধ্রুবক k।

(ক) সর্বোচ্চ বিন্দুতে পৌছানোর জন্য স্প্রিংকে কতটুকু সংকুচিত করা লাগবে? [Medium]

উত্তর:
$$\sqrt{\frac{mgL}{k}}$$

- (খ) সংকুচিত স্প্রিংকে ছেড়ে দেয়ার মুহূর্তে ব্লকের বেগ কত? [Medium]
- 35. একটি বন্দুক থেকে গুলি ছোড়ার সময় বন্দুকে স্প্রিংটি ঠেসে 3 cm সংকুচিত করে তার মধ্যে বিভবশক্তি সঞ্চিত করা হয়। গুলি ছোড়ার পর স্প্রিংটি আবার প্রসারিত হয়ে গুলির বিভবশক্তি গতিশক্তিতে রূপান্তরিত হয়। উক্ত গতিশক্তি নিয়ে গুলিটি অদূরে অবস্থিত 16 cm একটি কাঠের ব্লকে 4 cm প্রবেশ করে থেমে যায়। স্প্রিংটিকে আরো কী পরিমাণ সংকুচিত করলে গুলিটি কাঠের ব্লকটি সম্পূর্ণ ভেদ করতে পারত? [বন্দুকের স্প্রিংটির স্প্রিং ধ্রুবক 260 Nm⁻¹ এবং গুলির ভর 12 gm] [Medium]

উত্তর: 0.03 m

36. 6 kg ভরের একটি স্থির বস্তুর উপর 8 N মানের বল 4 সেকেন্ড ক্রিয়া 43. একখণ্ড বরফের টুকরা ঘর্ষণহীনভাবে 50° কোণে হেলানো তলে নিচে করে. এরপর 6 N মানের অপর একটি বল আনুভূমিকভাবে ১ম বলের সাথে 60° কোণে ক্রিয়া করে।

- (ক) 3 সেকেন্ড পর বস্তুটির কৃতকাজ কত হবে?
- (খ) প্রথম থেকে 5 সেকেন্ড পরে বস্তুটির গতীয় অবস্থা নির্ণয় কর। [Medium] সমাধান:
- (季) 48 J
- (খ) 5 s পর বস্তুটি প্রারম্ভিক অবস্থান হতে 16.92 m দূরে এবং আনুভূমিকের সাথে 6.9° কোণে $7.218~{\rm ms}^{-1}$ বেগ প্রাপ্ত হয়।
- 37. দেখাও যে, m ভরের কোন একটি বস্তু উল্লম্বভাবে স্থাপিত k স্প্রিং ধ্রুবকের স্প্রিংয়ের উপর h উচ্চতা হতে পতিত হলে স্প্রিংটির সর্বোচ্চ সংকোচনের পরিমাণ $y_{max} = \frac{mg}{k} + \frac{1}{k} \sqrt{m^2 g^2 + 2mghk}$ [Medium]

 $38. \ 2200 \ \mathrm{Nm}^{-1}$ স্প্রিং ধ্রুবকের একটি স্প্রিং-এর সাথে সংযুক্ত একটি ব্লক কোন আনুভূমিক তলের উপর দিয়ে চলাচল করতে পারে। ব্লকটির উপর স্প্রিং বল দ্বারা কৃতকাজ হিসাব কর যখন ব্লকটি- [Easy]

- (ক) সাম্যাবস্থান $x_i=0$ থেকে $x_f=0.15$
- (খ) $x_i = 0.15 \text{ m}$ থেকে $x_f = 0.30$ অবস্থানে যায়।

উত্তরঃ (ক) − 24.75 J; (খ) − 74.25 J

 $39.~~1.6~{
m kg}$ ভরের একটি ব্লককে $10^3~{
m Nm}^{-1}$ বল ধ্রুবকের একটি স্প্রিং এর সাথে আটকানো হল। স্প্রিংটিকে 2.0 cm সংকুচিত করা হলো এবং স্থির অবস্থান থেকে ছেড়ে দেয়া হলো। যদি 4.0 N মানের একটি ধ্রুব ঘর্ষণ বল গতিকে বাধাদান করে তাহলে ব্লকটি যখন সাম্যাবস্থান অতিক্রম করে তখন বেগ কত? [Medium]

উত্তর: 0.39 ms⁻¹

40. চিত্রের 20 gm ভরের একটি বব একটি সুতা দিয়ে ঝুলানো আছে। যেখানে OA = 1 m, CM = 20 cm, এবং BN = 10 cm | A, B ও C বিন্দুতে গতিশক্তি কত? [Medium]

উত্তর: 0.196 J; 0.195 J; 0.192 J

41. স্থির অবস্থান থেকে 50 kg ভর বিশিষ্ট কোন বস্তু নির্দিষ্ট প্রক্রিয়ার ফলে $2~\mathrm{s}$ পরে $12~\mathrm{ms}^{-1}$ বেগ অর্জন করে। এর উপর কি পরিমাণ বল কাজ করছে এবং 5 s পরে গতিশক্তি কত হবে?

উত্তর: 2.25 × 10⁴ J

42. 40 kg ভরের একটি ট্রলি 180 J গতিশক্তিসহ একটি মসূণ আনুভূমিক রাস্তায় চলাকালে এর মধ্যে 20 kg ভরের একটি বস্তু খাড়াভাবে নামিয়ে দিলে মোট গতিশক্তি কত হবে? [Medium]

উত্তর: 120 J

পড়ছিল। এসময় এক ব্যক্তি তাকে রশি দিয়ে $\left| \overrightarrow{F}_{n} \right| = 50 \text{ N}$ বলে উপরের দিকে টানতে থাকেন। যখন বরফ $d=0.50~\mathrm{m}$ অতিক্রম করে, তখন এর গতিশক্তি $80~\mathrm{J}$ বৃদ্ধি পায়। যদি তাকে রশি দিয়ে টানা না হতো তাহলে এর

গতিশক্তি 80 J থেকে কত বেশি বৃদ্ধি পেত? [Medium]

উত্তর: 25 J

44. একটি সরল দোলকের ববের ভর 0.2 kg ও কার্যকরী দৈর্ঘ্য 1.2 m। উল্লম্ব রেখা হতে 0.2 m দূরে টেনে ছেড়ে দিলে গতিপথের সর্বনিমু বিন্দু অতিক্রমের সময় ববের গতিশক্তি ও বেগ নির্ণয় করো। [Medium] **উত্তর:** 0.574 ms⁻¹

45. m ভরের একটি বস্তু DA আনত তলে পড়ছে। এখানে m = 50 kg, DE = 6 m এবং AB = BC = CD। আনত তল বেয়ে নামার সময় গতীয় ঘর্ষণ বল দ্বারা কৃতকাজের মান নির্ণয় করো। [Medium]

উত্তর: – 24 J

46. দেখাও যে, অভিকর্ষের টানে মুক্তভাবে পড়স্ত m ভরের একটি বস্তুর t তম সেকেন্ডে হারানো স্থিতিশক্তি বা অর্জিত গতিশক্তি $\frac{1}{2} \, mg^2 \, (2t-1)$ এর সমান। [Medium]

47. কোনো গাছের ডালে একটি আম ঝুলছিল। একজন লোক আমটির দিকে লক্ষ্য করে খাড়া উপরের দিকে একটি পাথর ছুঁড়লেন। আমটিকে আঘাত করার সময় পাথরটির বেগ $9.8~{
m ms}^{-1}$ । যদি ঐ লোক আগের তুলনায় অর্ধেক শক্তি ব্যয় করেন তবে পাথরটি কেবল আমটির উচ্চতায় পৌছে। আমটির উচ্চতা কত? [Medium]

উত্তরঃ 4.9 m

এবং বস্তুটি 8 s পরে পুনরায় ভূমিতে ফিরে এলো। নিক্ষেপের মুহূর্তে এবং নিক্ষেপের $2~{
m s}$ পরে বস্তুটির বিভব শক্তি এবং গতিশক্তি কত? দেওয়া আছে মধ্যাকর্ষণজনিত ত্বরণ, $g = 9.8 \text{ ms}^{-2}$ । [Medium]

উত্তর: গতিশক্তি = 1536.64 J: 384.16 J স্থিতিশক্তি = 0 J; 1152.48 J

 $49. \,\, 10 \,\, \mathrm{kg}$ ভরবিশিষ্ট একটি বন্দুক হতে গুলি ছুড়লে গুলিটি $80 \,\, \mathrm{cms}^{-1}$ বেগে নির্গত হয়। গুলির ভর $40~{
m g}$ হলে গুলি ও বন্দুকের গতিশক্তি নির্ণয় করো। [Easy]

উত্তর: 5.12 × 10⁻⁵ J

50. একজন ছাত্র একটি ঘর্ষণবিহীন চাকতিকে লাথি দেয় যার ফলে এটি \mathbf{v}_0 আদিবেগে অনুভূমিকে সাথে θ কোণ আনত তল বরাবর উপরে উঠে যায়। চাকতিটি তার আদি অবস্থানে ফিরে আসতে কত সময় লাগবে? [Medium]

উত্তর:
$$\frac{2v_0}{g \sin \theta}$$

51. 20 g ভরের একটি গুলি 5 kg ভরবিশিষ্ট একটি বন্দুক থেকে ছুঁড়লে $300~{
m ms}^{-1}$ বেগে নির্গত হয়। রাইফেল থেকে নির্গত গুলিটি একটি তক্তা ভেদ করতে পারে। গুলির বেগ তিনগুণ হলে একই পুরুত্বের কয়টি তক্তা ভেদ করতে পারবে? [Medium]

উত্তর: মোট 9টি তক্তা ভেদ করতে পারবে।

 $52. \ 5$ g ভরের একটি গুলি $200 \ \mathrm{ms}^{-1}$ বেগে ছুটে গিয়ে $2 \ \mathrm{cm}$ পুরু তক্তাকে ঠিক ভেদ করে যায়। 8 cm পুরু অনুরূপ একটি তক্তাকে ভেদ করতে গুলিটি কত গতিশক্তি লাভ করবে? [Medium]

উত্তর: 300 J

53. L দৈর্ঘ্যের একটি সুতার একপ্রান্ত একটি ঘর্ষণহীন বিন্দুতে সংযুক্ত এবং একপ্রান্তে m ভরের একটি বব লাগানো। সুতাটি উলম্বভাবে ঝুলন্ত অবস্থায় বাম দিক হতে বাতাস এসে একটি ধ্রুব বল $\overrightarrow{\mathbf{F}}$ এর উপর ক্রিয়া করে ববটিকে

$$_{H}$$
 উচ্চতায় উঠায়। প্রমাণ করো, $_{H}=\frac{2L}{1+\left(\dfrac{mg}{F}\right)^{2}}$ । [Medium]

 $54. \ 1 \ \mathrm{kg}$ ভরের একটি বস্তু x অক্ষ বরাবর গতিশীল। বস্তুর স্থিতিশক্তি $\mathbf{U}(\mathbf{x}) = \left(\frac{\mathbf{x}^4}{4} - \frac{\mathbf{x}^2}{2}\right)\mathbf{J}$ । বস্তুটির মোট শক্তি 2 \mathbf{J} হলে সর্বোচ্চ গতিবেগ কত?

উত্তর:
$$\frac{3}{\sqrt{2}}$$
 m/s

48. 2 kg ভরের একটি বস্তুকে ভূমি হতে খাড়া উর্ধ্বে নিক্ষেপ করা হলো 55. একটি ব্লক একটি ঘর্ষণহীন তলে অভিকর্ষের প্রভাবে গড়িয়ে চলে। তলটি R ব্যাসার্ধের একটি বৃত্তাকার লুপে শেষ হয়। দেখাও যে, সম্পূর্ণ বৃত্তাকার পথটিকে অতিক্রম করার জন্য ব্লকটিকে সর্বনিমু 2.5 R উচ্চতা থেকে যাত্রা শুরু করতে হবে। [Medium]

> 56. চিত্রানুযায়ী h উচ্চতা হতে একটি ব্লক কে ছেডে দেওয়া হলো। ব্লকটি যখন লুপের সর্বোচ্চ উচ্চতায় পৌছে তখন যে ব্লকটি লুপের উপর যে বল প্রয়োগ করে তা ব্লকের ওজনের এর সমান। R ও h এর মধ্যে সম্পর্ক নির্ণয় কর। [Medium]

উত্তর: 3R

57. 75% দক্ষতার একটি ক্রেন 12 J শক্তি প্রয়োগ করে 1 kg ভরের কোনো একটি বস্তুকে নির্দিষ্ট উচ্চতায় তুলে আবার ছেড়ে দেয়। বস্তুটি কত বেগে ভূমিকে আঘাত করবে? [Medium]

উত্তর: 3√2 ms⁻¹

 $58. \,\, 20 \,\, {
m m}$ উঁচু একটি দালানের ছাদ থেকে ${
m m}$ ভরের একটি টেনিস বল মাটিতে গড়িয়ে পড়ে। বলটি যখন ভূমি স্পর্শ করে তখন এর বেগ $22~\mathrm{ms}^{-1}$ । বলটি ছাদ ত্যাগ করার মুহূর্তে কত আনুভূমিক বেগে গড়াচ্ছিলো? [Medium] **উত্তর:** 9.59 ms⁻¹

59. 0.3 m দৈর্ঘ্য বিশিষ্ট একটি দোলক একটি অর্ধবৃত্তে দোলন দেয়। এর ববের ভর 0.01 kg হলে এর সর্বনিম্ন অবস্থানে বেগ ও গতিশক্তি কত? [Easy] উত্তর: 0.0294 J ; 2.425 ms⁻¹

60. 30° কৌণিক বিস্তারে দোদুল্যমান একটি সরল দোলকের কার্যকরী দৈর্ঘ্য 1 m। সাম্যাবস্থান থেকে অতিক্রমকালে ববের বেগ কত? [Easy] **উত্তরঃ** 1.62 ms⁻¹

61. নিম্নের চিত্রে প্রদর্শিত ববটি প্রাম্ভীয় অবস্থান হতে সাম্যাবস্থানে এসে কত বেগ অর্জন করবে তা শক্তির নিত্যতা সূত্র ব্যবহার করে নির্ণয় করো। [Medium]

উত্তর: 0.219 ms⁻¹

62. একটি দোলক ঘড়ির দোলকের ভর $10^{-2}\,\mathrm{kg}$ । দোলকটিকে একদিকে $5 imes 10^{-2} \; ext{m}$ উচ্চতা পর্যন্ত তুলে ছাড়া হলো। গতির সর্বনিমু বিন্দুতে এটি $10^{-3} {
m ~kg}$ অতিরিক্ত ভরের সাথে যুক্ত হলে বিপরীত দিকে গোলকটি কত উঁচুতে উঠবে? [Medium]

উত্তরঃ 0.0413 m

63. m ভর এবং R ব্যাসার্ধবিশিষ্ট কোনো একটি নিরেট সিলিভার h উচ্চতার একটি ঢালু তলে গড়িয়ে চলে। সিলিভারটি যখন তলের শেষ প্রান্তে পৌছায় তখন ভরকেন্দ্রের বেগ নির্ণয় কর। [Medium]

উত্তর:
$$\sqrt{\frac{4gh}{3}}$$

 $64.~5~{
m kg}$ ভরবিশিষ্ট একটি বস্তুকে স্থিরাবস্থা হতে মুক্তভাবে নিচে পড়তে দিলে $10^{
m th}~{
m s}$ এর অর্জিত গতিশক্তি নির্ণয় করো। ${
m [Easy]}$

উত্তর: 4561.9 J

 $65.\ 150\ \mathrm{kg}$ ভরের এক ব্যক্তি $50\ \mathrm{kg}$ ভরের একটি বোঝা নিয়ে $4\ \mathrm{m}$ দীর্ঘ একটি সিড়ি বেয়ে $20\ \mathrm{s}$ এ নিচে নামলো। যদি সিড়িটি দেয়ালের সাথে 60° কোণে থাকে তবে লোকটির ক্ষমতা নির্ণয় করো। [Medium]

উত্তর: 196 W

66. কোনো একটি স্থান হতে এক মিনিটে একটি ইঞ্জিন $100~{
m kg}$ ভরের একটি বস্তু $20~{
m m}$ ওপরে তুলতে পারে। যদি ইঞ্জিনটির ক্ষমতা 30% নষ্ট হয়, তবে ইঞ্জিনটির ক্ষমতা নির্ণয় করো। $[{
m Easy}]$

উত্তর: 466.66 W

67. একটি পানিপূর্ণ ভূ-গর্ভস্থ জলাধারের গভীরতা 7.5 m এবং চোঙাকৃতি জলাধারের ব্যাস 4 m। যে পাস্প 30 মিনিটে জলাধারকে সম্পূর্ণ খালি করতে পারে তার ক্ষমতা কত HP? [Medium]

উত্তর: 2.58 HP

68. একটি বৈদ্যুতিক পাস্প ভূ-গর্ভস্থ জলাধার থেকে $9.1~m^3$ পানি 1~ ঘণ্টায় ভূমি থেকে 32~m উচ্চতায় অবস্থিত টাংকিতে ভুলে। ভূগর্ভস্থ জলাধারের পানির তল ভূ-পৃষ্ঠ হতে 4~m গভীরতায় অবস্থিত। পাস্পের ক্ষমতার 70% কার্যকরী হলে পাস্পের ক্ষমতা নির্ণয় করো। [Medium]

উত্তর: 1247 W

69. একটি পানিপূর্ণ কুয়ার গভীরতা 12 m এবং ব্যাস 1.8 m। একটি পাম্প কুয়াটিকে 24 min এ পানিশূন্য করতে পারে। উক্ত কাজে 1 HP এর আরও একটি পাম্প যুক্ত করা হল। দ্বিতীয় পাম্প যুক্ত করায় উক্ত কাজে কত সময় সাশ্রয় হবে? [Medium]

উত্তর: 9 min

70. 10 মিটার দৈর্ঘ্য, 5 মিটার প্রস্থ ও 3 মিটার গভীরতা বিশিষ্ট পানি ভর্তি কোনো পুকুরের $\frac{1}{3}$ অংশ পানি শূন্য করতে 1 টি পাম্প 2 ঘণ্টা সময় নেয়। কত ক্ষমতার পাম্প যুক্ত করলে অবশিষ্ট অংশ 2 ঘণ্টায় খালি করা যাবে? [Medium] উত্তর: $238.19~\mathrm{W}$

71. একটি পাম্প দ্বারা ১ম এবং ২য় কুপকে পানি শূন্য করতে সময় লাগে যথাক্রমে \mathbf{t}_1 ও \mathbf{t}_2 । দুটি কুপে একই পরিমাণ পানি ধরে। \mathbf{t}_1 ও \mathbf{t}_2 এর মধ্যে সম্পর্ক স্থাপন করো। $[\mathbf{Easy}]$

উত্তর: $t_1 = 2t_2$

72. রায়হান 950 kg ভরের একটি গাড়ি দিয়ে $\frac{1}{50}$ ঢাল বিশিষ্ট পাহাড় $40~{\rm kmh}^{-1}$ বেগে উঠছে। পাহাড়ের পৃষ্ঠের সাথে গাড়ির চাকার ঘর্ষণ গুণাঙ্ক 0.3, রায়হানের ভর $50~{\rm kg}$ হলে, রায়হানের উপর প্রযুক্ত অভিলম্ব প্রতিক্রিয়া বল এবং গাড়িটির ক্ষমতা HP এককে পরিমাপ কর। [Medium] উত্তর: $489.9~{\rm N}: 46.7~{\rm HP}$

73. $1000~{
m kg}$ ভরের একটি লিফট সর্বোচ্চ $800~{
m kg}$ ওজন বহন করতে পারে। $4000~{
m N}$ মানের একটি ধ্রুব ঘর্ষণ বল এর উর্ধ্বমুখী গতি ব্যহত করে। লিফটিকে $3~{
m ms}^{-1}$ সমদ্রুতিতে ওপরের দিকে ওঠাতে হলে মোটরের সর্বনিম্ন কত ক্ষমতা সরবরাহ করতে হবে? [Medium]

উত্তরঃ 64.92 kW

74. এক ব্যক্তির হুর্থপিন্ড ধমনীর মাধ্যমে মিনিটে 5~L রক্ত পাস্প করে যার চাপ 150~mm পারদক্তম্ভ চাপের সমান। যদি পারদের ঘনতু $13600~kg/m^3$ এবং অভিকর্ষজ তুরণ $10~m/s^2$ হয় তবে হুৎপিন্ডের ক্ষমতা কত?

[Medium]

উত্তর: 1.7 watt

75. দেখাও যে, গতিশীল একটি কণার যে কোনো মুহূর্তের অবস্থান $\overset{
ightarrow}{r}=A\;cos\theta\overset{
ightarrow}{i}+A\;sin\theta\overset{
ightarrow}{j}$ হলে কণাটির উপর প্রযুক্ত বলটি সংরক্ষণশীল। এছাড়া কণার মোট শক্তি নির্ণয় কর। [Medium]

উত্তর:
$$\frac{1}{2} kA^2$$

76. একটি অণুতে উপস্থিত দুইটি পরমাণুর মধ্যে স্থিতিশক্তির পার্থক্য $\mathbf{u}(\mathbf{x}) = \frac{\mathbf{a}}{\mathbf{x}^{12}} - \frac{\mathbf{b}}{\mathbf{x}^6}$ যেখানে \mathbf{a} ও \mathbf{b} ধনাত্মক ধ্রুনক এবং \mathbf{x} হলো পরমাণুদ্বয়ের মধ্যবর্তী দূরত্ব। সাম্যাবস্থায় পরমাণুদ্বয়ের মধ্যবর্তী পারস্পরিক দূরত্ব নির্ণয় কর। [Hard]

উত্তর:
$$\left(\frac{2a}{b}\right)^{\frac{1}{6}}$$

77. ${f m}$ ভরের একটি কণা ${f x}$ অক্ষ বরাবর কোন সংরক্ষণশীল বলের প্রভাবে গতিশীল। যদি কণাটির বিভব শক্তি ${f V}({f x})$ এবং ${f t}_1$ ও ${f t}_2$ সময়ে কণার অবস্থান যথাক্রমে ${f x}_1$ ও ${f x}_2$ হয় তবে প্রমাণ কর যে,

$$t_2-t_1=\sqrt{\frac{m}{2}}\int_{x_1}^{x_2}\frac{dx}{\sqrt{E-V(x)}}~[Medium]$$

- 12. (ক) ক্ষমতার মাত্রা কী?
 - (খ) একটি বস্তুর গতিশক্তি ও ভরবেগের সম্পর্ক কী?
 - (গ) $10~{\rm kW}$ শক্তিসম্পন্ন একটি ইঞ্জিনের $200~{\rm kg}$ ভরের একটি বস্তুকে $40~{\rm m}$ উচ্চতায় তুলতে কত সময় লাগবে (${\rm g}=10~{\rm ms}^{-2}$)?

উত্তর: (a) ক্ষমতার মাত্রা [ML²T⁻³]

- (b) $\frac{p^2}{2m}$
- (c) 8 s