Introduction to Enumerative Geometry

Jan. 11 - Jan. 22, 2021

Lecture 6: Porteous's formula

- Porteous's formula for the vanishing of a section
- Grassmann bundle and reduction to the top Chern class
- General case
- Applications

Correction to the statement about resultants

Let a(t), b(t) be polynomials with coefficients in a commutative ring. Suppose a(0) = b(0) = 1.

Write

$$a(t) = \prod_{i=1}^{e} (1 + \alpha_i t)$$
 $b(t) = \prod_{i=1}^{f} (1 + \beta_i t).$

Then

$$a(t) = \prod_{1}^{e} (1 + \alpha_i t) \qquad b(t) = \prod_{1}^{f} (1 + \beta_i t).$$

$$\prod_{\substack{i=1,\dots,e\\j=1,\dots,f}} (\beta_j - \alpha_i) = \Delta_f^e \left(\underbrace{\frac{b(t)}{a(t)}} \right) = det \begin{pmatrix} c \\ c \\ f \\ c \end{pmatrix}$$

Reference: Arbarello-Cornalba-Griffiths-Harris: pp.88-89

Setting

- X is a smooth algebraic variety;
- \mathcal{E}, \mathcal{F} are vector bundles on X of rank e, f;
- $\varphi: \mathcal{E} \to \mathcal{F}$ is a morphism of vector bundles; we assume φ is generically injective; (if it is not, just pass + the quotient over the Ker φ)

Setting

- X is a smooth algebraic variety;
- \mathcal{E}, \mathcal{F} are vector bundles on X of rank e, f;
- $\varphi:\mathcal{E}\to\mathcal{F}$ is a morphism of vector bundles; we assume φ is generically injective;
- $D_r^{\varphi} = \{x \in X : \operatorname{rank}(\varphi_x : \mathcal{E}_x \to \mathcal{F}_x) \leq r\}$ is the r-th determinantal variety defined by φ . We assume: $(\deg_{\varphi} \deg_{\varphi} \deg_{\varphi})$
 - D_r^φ is reduced;
 - ullet D_r^arphi has the expected codimension

$$\operatorname{codim}_X(D_r^\varphi) = \underbrace{(e-r)(f-r)}_{;}$$
• D_{r-1}^φ is strictly smaller than D_r^φ . Perery supt. of D_r^φ

Goal:

Compute
$$[D_r^{\varphi}] \in CH^{(e-r)(f-r)}(X)$$
.

$$\left\{ \widetilde{\left[D_r^{arphi}
ight]} = \Delta_{f-r}^{e-r} \left(rac{c_{[t]}(\mathcal{F})}{c_{[t]}(\mathcal{E})}
ight).
ight\}$$

How general should sections defining Chern classes be?

Recall: if \mathcal{E} has rank e and is globally generated, then

$$c_p(\mathcal{E}) = [Y(s_0,\ldots,s_{e-p})]$$

$$c_{p}(\mathcal{E}) = [Y(s_{0}, \ldots, s_{e-p})]$$
 for generic sections $s_{j} \in H^{0}(\mathcal{E})$.
$$\{z \in X : S_{0}(x), \ldots, S_{e-p}(x) \text{ are lm. } \}$$
 dependent

How general should sections defining Chern classes be?

Recall: if \mathcal{E} has rank e and is globally generated, then

$$c_p(\mathcal{E}) = [Y(s_0, \ldots, s_{e-p})]$$

for generic sections $s_j \in H^0(\mathcal{E})$.

Claim:

It is enough that $Y(s_0, \ldots, s_{e-p})$ is reduced and of codimension p.

In this case

In this case
$$D_0^{\varphi} = \{x \in X : \varphi_x = 0\} \qquad \varphi : \mathcal{E} \to \mathcal{F}$$
has codimension ef. = $(e-0)(f-0)$
We define $(D_0^{\varphi}) \in CH^{ef}(X)$
legard $\varphi \in H^{\varphi}(Hom(\mathcal{E},\mathcal{F}))$ vector bundle of rank ef
$$D_0^{\varphi} = \{x \in X : \varphi_x = 0\} \qquad \varphi : \mathcal{E} \to \mathcal{F}$$

$$\text{be define accel}$$

$$\text{be define } P \in H^{\varphi}(Hom(\mathcal{E},\mathcal{F})) \qquad \text{vector bundle of rank ef}$$

$$\text{con } P = Y(S_0, ..., S_{ef-p}) \qquad \text{for } P = ef \implies \varphi$$

$$\text{of } P = Y(S_0, ..., S_{ef-p}) \qquad \text{for } P = ef \implies \varphi$$

$$\text{of } P = Y(S_0, ..., S_{ef-p}) \qquad \text{for } P = ef \implies \varphi$$

Splitting principle:
$$\mathcal{E} = \bigoplus_{i=1}^{n} \mathcal{L}_{i}$$
 $\mathcal{E}_{i}(\mathcal{E}) = \mathcal{E}_{i}(\mathcal{E})$.

Splitting principle: $\mathcal{E} = \bigoplus_{i=1}^{n} \mathcal{L}_{i}$ $\mathcal{E}_{i}(\mathcal{E}) = \mathcal{E}_{i}(\mathcal{E})$

$$\mathcal{E} = \bigoplus_{i=1}^{n} \mathcal{L}_{i} \qquad \mathcal{E}_{i}(\mathcal{E}) = \mathcal{E}$$

$$\begin{array}{ccc}
& & & & & & \\
& & & & & \\
\downarrow^{2} & &$$

$$C_{(t)}(\mathcal{E}) = \sum_{i=1\dots e} (1 + \alpha_i t)$$

$$C_{(t)}(\mathcal{F}) = \sum_{i=f} (1 + \beta_i t)$$

Deduce:

$$\begin{array}{ccc}
c_{ef}(\mathcal{E}^{V} \otimes \hat{f}) &=& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

Which is Portons's formule for res

Idea of general case: Realize Dr as push forward of some Dy in some other The cope res, will tell us [D]. Then we put it forward

Grassmann bundle

Let $\mathcal E$ be a vector bundle of rank e on X. The Grassmann bundle of k-planes in the fibers of $\mathcal E$ is

$$\rho: \mathcal{G}(k, \widehat{\Sigma}) \to X$$

the fiber bundle whose fiber at x is $\rho^{-1}(x) = G(k, \mathcal{C}_x)$.

· locally on
$$U$$
 it look like $p'(U) = U \times G(k, E)$

Points in
$$g(K, E)$$
 are (locally)
$$(x, L_{x}) \text{ where } L_{x} \in G(k, E_{x})$$

Grassmann bundle – cont'd

Grassmann bundle – cont'd

Scippe for
$$f$$
 \mathcal{E} for f \mathcal{E} \mathcal{F} \mathcal{F}

· ◆**御** ▶ ◆ **恵** ▶ ◆ **恵** ・ **り** 9 ○ ○

Porteous's formula: Reduction to the top Chern class

Idea:

Realize $D_r^{\varphi} \subseteq X$ as the push-forward of $D_0^{\widetilde{\varphi}}$ for some map bundle map $\widetilde{\varphi}$.

Want to show
$$g^{\dagger}$$
: $CH(G(e-r, E)) \longrightarrow CH(X)$ sends $[D_r^{\dagger}]$ to $[D_r^{\dagger}]$.

Prop:
$$(D^{\beta}) = D^{\beta}$$
.

(3) $p'(D^{\beta}) = D^{\beta}$.

(3) $p'(D^{\beta}) = D^{\beta}$.

(3) $p'(D^{\beta}) = D^{\beta}$.

(4) $p'(D^{\beta}) = D^{\beta}$.

Porteous's formula: Reduction to the top Chern class – cont'd

Porteous's formula: Reduction to the top Chern class - cont'd

It remains to show that PIDE is generically one-to-oue. This follows from the fact that $\left(\begin{array}{c} P_{r,i} \neq P_{r} \\ P_{r,i} \neq P_{r} \end{array} \right)$ because for $x \in D_{r}^{p}$ generic, $-rk(\varphi_{n}) = r$ so $f'(x) = (x, k_{x})$ with $k_{x} = ker \varphi_{x}$. $p^{*}: CH(g(e-r, E)) \longrightarrow CH(X)$

$$\beta': CH(g(e-r, E)) \longrightarrow CH(X)$$

sends [2] to o if β_{12} is NoT finite-t-ore
to $m[p(2)]$ if it is $m:1$.

Porteous's formula: Reduction to the top Chern class - cont'd

So we obtain:
$$[D_r^{\gamma}] = p^{\gamma}([D_r^{\gamma}]).$$
By assumption: $Cdm(D_r^{\gamma}) = (e^{-\frac{1}{2}})$

By assumption:
$$\operatorname{Sdru}_{X}(D_{r}^{q}) = (e-r)(f-r)$$
.

 $\operatorname{dun}(D_{r}^{q}) = \operatorname{dim} X - (e-r)(f-r)$.

$$\int_{-\infty}^{\infty} d\sin \beta (e-r, \xi) =$$

$$= d\cos x + d\cos \beta(e-r, \xi_{n}) =$$

$$= d\omega x + r(e-r),$$

Porteous's formula: Reduction to the top Chern class – cont'd

coding
$$D_{ij}^{F} = \dim g(e^{-r}, E) - \dim D_{ij}^{F} = g(e^{-r}, E)^{\circ} = \dim X + r(e^{-r}) - [\dim X - (e^{-r})(f^{-r})] = e^{r} - r^{r} + e^{f} - r^{r} - r^{f} + r^{r} = f(e^{-r})$$

This is exactly the vank of Hom $(S_{ij})^{*}f$ of which er f is a section.

We conclude: D_{ij}^{F} hos the expected codimension as a degeneracy because of a section of $S_{ij}^{F}f$.

Porteous's formula: Reduction to the top Chern class – cont'd

From the case
$$r=0$$
 we get
$$\left[\underbrace{D_{0}^{\varphi}}_{3} \right] \stackrel{?}{=} \underbrace{\Delta_{f}^{e-r} \left(\frac{C_{(t)}(p^{t}\hat{p})}{C_{(t)}(S)} \right)}_{f}.$$

Therefore

$$\left[\underline{D}_{\underline{r}}^{p}\right] = \underbrace{\beta}_{\underline{r}}\left(\underbrace{\Delta}_{\underline{r},\underline{r}}^{e-r}\left(\frac{\underline{c}_{n}(\underline{r}^{n}\underline{f})}{\underline{c}_{\underline{n}}(\underline{s})}\right).$$

From the Grassmann bundle to X

We obtained

$$[D_r^{\varphi}] = \rho_{\mathcal{A}}^{\mathscr{A}} \Delta_f^{e-r} \left[\frac{c_{[t]}(\rho^* \mathcal{F})}{c_{[t]}(\mathcal{S})} \right].$$

We have to resolve the pull-back and the push-forward to obtain an expression only involving elements of CH(X).

By whitney's formula:
$$0 \rightarrow S \rightarrow p^* \mathcal{E} \rightarrow Q \rightarrow 0$$

Get $(S) = \frac{F_0(p^* \mathcal{E})}{C_0(Q)}$
 $[D_r] = p_* \int_{\mathcal{E}} \frac{e^{-r}}{C_0(\mathcal{E})} \frac{f(Q)}{C_0(\mathcal{E})} \frac{f(Q)}{C_0(Q)}$

Consider the Sylvester meta:

The determinant is sum of terms pt(2) depends $p^*(2). W$ on $c_{(f)}(E)$ and W is the product of ahern chesses When we girth-forward, by push-gull formule we P*(P*(2).W)=2.P*(W)

What is
$$p_{\kappa}(N)$$
?

 $f_{\kappa}([Y]) = 0$ if p_{γ} is not finite to acc.

The fibers of p have due $r(e-r)$.

So if $Y \subseteq G(e-r, E)$ has codin $\subseteq r(e-r)$.

Then p_{γ} counct be finite to one.

Therefore $p_{\kappa}(CH(G(e-r, E)) \longrightarrow CH(X)$

maps to everything of dogree $\subseteq r(e-r)$.

Now: Q has rank p_{κ} so its top Chern class is

Hultiplying e-r Chern closses we always get an et of degree
$$< r(e-r)$$
 but for $c_r(Q)$.

Now: $p_*(c_r(Q)) = m[X]$

Fact: m=1 Reeson: Our calculation of the Chern closes of the gustient bundle of the Grassmannian.

Recall:
$$S_p = \sum_{j=0}^p \int_{j=0}^{\infty} \int_{j$$

From the Grassmann bundle to X - cont'd

$$\widetilde{S}_{p} = \frac{1}{C_{(t)}(f)}$$

$$C_{(t)}(\Sigma)$$

$$\int_{f-r}^{e-r} \left(\frac{C_{(t)}(f)}{C_{(t)}(\Sigma)}\right)$$
and M_{S} proves the formule.

From the Grassmann bundle to X - cont'd

The general determinantal variety

Let $X_r \subseteq \mathbb{P}\mathrm{Mat}_{\sigma \not\in F}$ be the general determinantal variety of matrices. So $X_r = D_r^\varphi$ for f : C

•
$$\mathcal{E} = \underline{E}_X$$
;

•
$$\mathcal{F} = \underline{F}_X \otimes \mathcal{O}(1); \quad 2 \quad \bigcirc (1)$$

• $\varphi: \mathcal{E} \to \mathcal{F}$ defined by $\varphi_M: E \to F$.

$$c_{(t)}(\xi) = 1$$

$$c_{(t)}(f) = (1 + c_1(\theta(1)) - t) =$$

$$= (1 + 3t)^f = \sum_{j=0}^{t} (f_j) 3^j t^j$$

3 hyperplane dess in PHat

$$\frac{\left(X_{r}\right)^{2}}{\int_{r}^{r}} \left(\frac{C_{(+)}(f)}{c_{(+)}(E)}\right)^{2} = \int_{r}^{r} \left(\frac{f}{f-r}\right) \frac{f^{2}}{f-r} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} = \int_{r-r}^{r} \left(\frac{f}{f-r}\right)^{2} \frac{f^{2}}{f-r} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} = \int_{r-r}^{r} \frac{f^{2}}{f-r} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-r}\right)^{2} = \int_{r-r}^{r} \frac{f^{2}}{f-r} \left(\frac{f}{f-r}\right)^{2} \left(\frac{f}{f-$$

deg / r

Two observations:

• Compute
$$TC_{M} \times_{r}^{(f*r)}$$
 for M with $rkM = s < r$

$$TC_{M} \times_{r}^{exf} = \times_{r-s}^{(e-s)x(f-s)}$$
So the formule above gives
$$mult_{M} \times_{r}^{f*r} = dg TC_{M} \times_{r}^{exf}.$$

esf

$$esf$$
 esf
 esf
 esf

Secant varieties of the rational normal curve

Let $C_d = \nu_d(\mathbb{P}^1) \subseteq \mathbb{P}S^dV$ be the rational normal curve of degree \underline{d} .

For r < d/2, the secant variety $\sigma_r(C_d)$ is determinantal, defined by the $(r+1) \times (r+1)$ minors of

$$cat_r \xrightarrow{S^r V} \to S^{d-r} V. \qquad f \in S^4 V.$$

We interpret this as a degeneracy locus of a vector bundle map on $X = \mathbb{P}S^dV$

Secant varieties of the rational normal curve

$$\begin{bmatrix} \sigma_r \left(C_d \right) \end{bmatrix} = \begin{pmatrix} d - r - 1 \\ r \end{pmatrix} \begin{bmatrix} \sigma \ln 2r - 1 & in P^d \\ S^{d - 2r - 1} \end{bmatrix}$$

We conclude.

$$\deg \left(\sigma_{r}\left(C\right)\right) = \begin{pmatrix} d-r+1 \\ r \end{pmatrix}.$$

Secant varieties of the rational normal curve

