

20/05/2022(A)

The second secon		
Semester: January 2022 Examination: ESE E	– May 2022 xamination	Duration:3 Hrs.
Maximum Marks: 100	Class: FY/SY/ TY/LY	
Programme: B. Teen Constituent College: K. J. Somaiya College	/COMP/ETR	department:
of Engineering Course Code: 116U01C402 Name of the Course Code: 110U01C402 Name of the Course Code: 110U01C402 Name of the Course Code: 110U01C402	Re: Analysis of A	ry

Question	ns: 1)Draw neat diagrams	Max. Marks
No.	Explain the significance of Big-Oh, Big-Theta and Big-Omega notations.	10 M
(a)	Compute Space complexity and time complexity for the Code segment 1: factorial(int n) { if (n=0 n=1) return 1; else return (n* factorial(n-1)); } Code segment 2: int factorial (int n) { int fact=1; for(i=1; i <n;i++) fact="fact*i;</td"><td></td></n;i++)>	
	return fact;	10 M
Q1 (b)	I. Derive Average case complexity of quick sort. II. Solve the recurrence T (n) =T (n/2) +1 using recurrence tree method.	
Q2 (a)	 Differentiate between Greedy approach and Dynamic programming strategies. Also list and explain steps in a dynamic programming solution. Explain Dynamic programming approach to solve knapsack problem. Find optimal solution to knapsack instance n = 4, m = 9 (P1, P2, P3,P4) = (4,5,7,10) and (W1, W2, W3,W4) = (1,3,4,6). OR Given a chain of four matrices A1, A2, A3, A4 with P0=5, P1=7, P2= 8, P3= 4 & P4=3. Find m [1, 4]. 	10 M
Q2 (b)	Define Minimum Spanning Tree. Compute MSTs using Kruskal's and Prim's algorithm.	10 N

Q4 (a)	Solve Traveling Salesperson problem using dynamic programming. Find a minimum cost tour starting and ending at Vertex 1. Also write the cost of the tour.	10 M
	0 10 15 20 5 0 9 10 6 13 0 12 8 8 9 0	
Q4 (b)	Solve the given problem instance of Multistage graphs with forward or backward (either of the methods)	10 M
	Solve 8 -puzzle problem for the given initial and goal state using branch and bound strategy. 1 4 7 2 5 8 3 6 8	
Q5 (a)	Define Longest Common Subsequence Problem. Give Dynamic programming Solution. Solve given example: X - MANTRALAYA Y- MALAYALAM OR Explain the concept of String matching with finite automata with suitable examples. State its complexity.	10 M
Q5 (b)	Explain different complexity classes with suitable examples. Comment relationship among P, NP, NP-Hard and NP-Complete problems.	10 M

	ter: January 2022 - May 2022 amination: ESE Examination	Duration: 3hrs
Programme code: 01&04 Programme: B Tech Comp/IT		Semester: IV (SVU 2020)
Name of the Constituent College: K. J. Somaiya College of Engineering	Name of the dep	
Course Code: 116U01C401 /116U04	C401 Name of the Cou	urse: Probability, Statistics on Techniques

Instructions: 1)Draw neat diagrams 2)Assume suitable data if necessary

Q	No	No	
QI	а	If X_1 has mean 5 and variance 5, X_2 has mean -2 and variance 3, find $E(2X_1 + 3X_2 - 5), V(2X_1 + 3X_2 - 5)$	
	ь	Solve any THREE of the following	21
	(i)	Determine the constant 'a' and find mean, $P(4 \le x \le 7)$ if the distribution function of a continuous random variable is defined as $f(x) = \frac{a}{x^5}, 2 \le x \le 10$	
	(ii)	If the height of 1000 students is normally distributed with mean 69 inches and standard deviation 4 inches. Find the expected number of students having heights: i) greater than 67 inches, ii) less than 68 inches, iii) between 65 & 71 inches	
	(iii)	The number of phone calls coming in to a telephone exchange between 2 & 4 P.M. say X is a random variable has Poisson distribution with parameter 2. Similarly the number of phone calls coming between 4 & 6 P.M. say Y is a random variable has Poisson distribution with parameter 6. If X& Y are independent Poisson random variables find the probability that during 2&6 P.M. there will be i) no phone calls at all ii) more than 3 calls. (iii) at most two calls	
	(iv)	A box to be constructed so that its height is 12 inches and its base is X inches by X inches. If X has a uniform distribution over the interval (2, 10), then what is the expected volume of the box in cubic inches?	
	(v)	The joint probability distribution function of (X,Y) is given by $f(x,y) = e^{-(x+y)} 0 \le x \cdot 0 \le y$ $Compute P(X > 2), P(1 < X + Y < 3)) \qquad .$	

- 1			Flat leaves	Curved leaves	Total	
- 1		White Flowers	99	36	135	
		Red Flowers	20	5	25	
		Total	119	41	160	5
b	Maxim 2x ₁ - x ₁ , x ₂	Fruct the Dual of the mize $z = 5x_1 + 2x_2 + 2x_2 + x_3 \ge 4$ $z \ge 0$, $z \ge 0$ and $z \ge 0$ and $z \ge 0$	$x_2 - 3x_3$ Sul $2x_1 + x_3 \le$ ricted the following	bject to $\leq 8 \qquad x_1 + x_2 + \dots$	$3x_3 = 20$	21
(i)	Usin	ng Simplex method	d solve the fol	lowing LPP		
1	Ma	vimize $z = 3x$,	$+2x_2 + 5x_3$	Subject to	100	
1	14161	$+x_2 + x_3 \le 9$	$2x_1 + 3x_2$	$+5x_3 \le 30$	$2x_1 - x_2 - x_3 \le 8$	
1	- 2					
	X	$x_1, x_2, x_3 \ge 0$				
		sing Big M method	d solve the fo	llowing LPP		
(i	i) U:	sing Big M method	d Solve the te	ect to		
	M	aximize $z = 6x_1$	+ 4x2 Subje	1 3	$x_1, x_2 \ge 0$	
	2	$x_1 + 3x_2 \le 30, 3$	$3x_1 + 2x_2 \le 2$	$4, x_1 + x_2 \ge 5$	A1,~2 -	
				1' and programm	ing problem	
(iii) U	Jsing Duality Solve	e the following	g linear programm	···o r	1
4	N	Minimize $z = 4x$	$_1 + 3x_2 + 6x_3$	Subject to	50	
		$x_1 + x_3 \ge 2, \qquad 2$	$x_2 + x_3 \ge 5,$	x_1, x_2, x_3	20	1
					ear programming problem	
	(iv)	Using Dual simple	x method Solv	ve the following in	near programming problem	A
1	(10)	Minimize $z = 2$:	$x_1 + 2x_2 + 4x$	Subject to	14. 16r. <5	1
1	1	$2x + 3x_2 + 5x_3$	≥ 2 , $3x_1 +$	$x_2 + 7x_3 \le 3,$	$x_1 + 4x_2 + 6x_3 \le 5$	4
		$x_1, x_2, x_3 \ge 0$				
		Solve the following	ng NLPP			-\
	(v)	Solve the following $z = 2$.	$x^{2} - 7x_{2}^{2} +$	$12x_1x_2$		1
		Maximize $z = 2$. Subject to $2x_1 + 2$	5r < 98, 2	$x_1, x_2 \ge 0$		
		Subject to 2 x ₁ +	JA2 = -			
			are cashed a	t a single 'teller' o	counter. Customers arrive	
Q5	a	In a bank cheque at the counter in	a Poisson man	ner at an average rage, a minute and	ate of 30 customers per a half to cash a cheque tly distributed. Calculate	

Maximum Marks: 100

Programme code: 04

Programme: B Tech Information Technology

Name of the Constituent College:

K. J. Somaiya College of Engineering

Course Code: 116U04C403

Name of the Course: Analysis of Algorithms

Instructions: 1)Draw neat diagrams 2)Assume suitable data if necessary

Question No.		Max. Marks
Q1 (a)	Discuss the analysis of the algorithm using Big – O asymptotic notation. Give logarithmic example of run time analysis.	10
Q1 (b)	Solve recurrence relation T (n) = $2T(n/2)+n^2$.	10
Q2 (a)	Explain selection sort algorithm. Discuss the time complexity of selection sort in best case, average case and worst case scenario.	10
Q2 (b)	Explain Divide and conquer technique. Explain merge sort algorithm with example.	10
	Or Prove that the average case complexity of quick sort for sorting n elements is "n log n"	10
Q3 (a)	What is Minimum Cost Spanning Tree? Calculate minimum spanning tree of the below graph using kruskal's algorithm.	10
Q3 (b)	Given two sequences X [1m] and Y [1n]. Find the longest common subsequences to both.	10
	EA B C B D A B	
	y.B D C A B A	1
	Or	
	Differentiate between dynamic programming and greedy method. Explain Travelling sales man problem in Dynamic programming.	10

Page 10f2

Q4 (a)	Explain sum of subset problem. Solve the sum of subset problems backtracking algorithmic strategy for the following data: $n = 4$ problems $W = (w1, w2, w3, w4) = (11, 13, 24, 7)$ and $M = 31$.	1	Explain
Q4 (b)	Explain Hamiltonian Circuit Problem with example	(a)	backtra W=(v
Q5	Write short note:(any two) 1)N queens Problem 2)NP reducibility 3)NP completeness 4)Strassen's matrix multiplication	1(b) 5	Expla Write 1)N 2)N 3)N

Semester: January 2022 - May 2022 (aximum Marks: 100 Examination: ESE Examination rogramme code: 66 rogramme: Honours in Artificial Intelligence **Duration: 3 Hours** name of the Constituent College: Semester: IV (SVU Class: SY 2020) K. J. Somaiya College of Engineering Name of the department: Course Code: 116h66C401 Name of the Course: Fundamentals of Data Science Instructions: 1)Draw neat diagrams 2)Assume suitable data if necessary

	Max. Marks
Discuss the nature of the time series data and spatial data. Give valid example of each.	10
OR What is the nominal data; give examples considering any 5 attributes (with its values) which holds the nominal data.	
Explain any three transformations required to make the data suitable for the data analytics / mining?	10
What is the purpose of finding the similarity or dissimilarity among the data elements? Explain the similarity measures applicable for binary data with suitable example.	10
For the below given data points pairs, calculate the Euclidean and Manhattan distance, i) A(0, 4), B(6, 2) ii) B(6, 2), C(9, 1)	10
OR	
Find edit distance between the following pair of string, consider two operations, Insert and Delete: i) "abcdef" and "bcdesg" ii) "AABBCCDD" and "ABCDD"	
Use the two methods below to normalize the following group of data: 200,300,400,600,1000 (i) Min-max normalization by setting min=0 and max=1 (ii) Z-score normalization.	10
Discuss any four applications of Histogram with suitable example. OR Why to discretize the data? Discuss any three methods for data discretization	10
	What is the nominal data; give examples considering any 5 attributes (with its values) which holds the nominal data. Explain any three transformations required to make the data suitable for the data analytics / mining? What is the purpose of finding the similarity or dissimilarity among the data elements? Explain the similarity measures applicable for binary data with suitable example. For the below given data points pairs, calculate the Euclidean and Manhattan distance, i) A(0, 4), B(6, 2) ii) B(6, 2), C(9, 1) OR Find edit distance between the following pair of string, consider two operations, Insert and Delete: i) "abcdef" and "bcdesg" ii) "AABBCCDD" and "ABCDD" Use the two methods below to normalize the following group of data: 200,300,400,600,1000 (i) Min-max normalization by setting min=0 and max=1 (ii) Z-score normalization.

Q4 (a)	Why there is a need of data reduction in data analytics? Discuss any three techniques for the data reductions with suitable example.	10
Q4 (b)	What is an outlier? With suitable example demonstrate any one of the outlier detection method.	10
Q5 (a)	How does the icon based visualization technique works? Give any two applications where this visualization technique is most suitable.	10
Q5 (b)	Discuss in detail (Any Two). i. Dashboard ii Scoreboard iii Frequency polygon iv. Chart Vs Graph	10

23 | 05 | 2022 (E)

Maximum Warks: 100	Semester: Januar Examination	y 2022 – N n: ESE Ex	May 2022 camination	Duration:3 Hrs
Programme code:03 Programme: B.Tech Electroni Telecommunication Engineeri	cs and		lass: SY	Semester: IV(SVU2020
Name of the Constituent Colle K. J. Somaiya College of Engi	ge: neering		Name of the	he department:
Course Code: 116U03C403	The same of the sa	e Course:	Communic	eation Systems
nstructions: 1)Draw neat dia	grams 2)Assume	suitable d	ata if neces	sarv

Question No.		Max. Marks
Q1 (a)(i)	A 400 W carrier is modulated to a depth of 75%. Find: 1) The total power in the amplitude - modulated wave 2) Power in lower and upper side bands OR	05
	Derive amount of power wasted in DSBFC considering 100% modulation.	
Q1 (a)(ii)	One input to a conventional AM modulator is 500 KHz carrier with amplitude of 20VP. The second input is a 10 KHz modulating signal that is of sufficient amplitude to cause a change in the output wave of ±7.5VP. Determine A. Upper and lower side frequencies B. Modulation coefficient and percent modulation C. Peak amplitude of the modulated carrier and the upper and lower side frequency voltages D. Expression for the modulated wave.	05
Q1 (b)	Explain Armstrong method of FM generation using suitable neat and diagrams.	10
Q2 (a)(i)	What is correlated noise? Give its type. Determine percentage total harmonic distortion for the figure given below if fundamental frequency is 10KHz.	05
		1
	10 20 30 Frequency (KHz)	
Q2 (a)(ii)	A radio receiver with 10kHz bandwidth has noise figure of 30dB. Determine the signal power required at the input of receiver to achieve input SNR of 30dB.	0.5

		Explain working of Ring modulator circuit with neat diagrams. OR		
		Explain World near dis		
	Q2 (b)	waveform. OR		
	1	Draw the block diagram of filter method of SSB generation and his method requiring multiple oscillators to convert signal to the following multiple of the following multiple		
		A FM wave is represented to 1250 t]		
	Q3 (a)	· 10 eth 1 - /		6
of dat reduct		Carrier and modulating frequencies Carrier amplitude Modulation index and maximum deviation Modulation index and maximum deviation	ogramm ogramm lecomm me of th	Marks: 100 ne code: 03 ne: B.Tech Electronics a unication Engineering ne Constituent College:
		5. II Dilli	J. Soma	ilya College of Engineer
	Q3 (b)	1 Frequency spectrum	struction	de: 116U03C405 ns: 1)Draw neat diagran
		2. Noise triangle 3. Selection of I.F. frequency 4. Delayed AGC	restion No.	
	4.63	Explain Double spotting problem faced in receivers. If is = 800 kHz, IF = 455kHz, calculate image frequency and disproblem of double spotting in above given case.	(a) (i)	Point charge Q1=300µC F1= (8ax -8ay + 4az) N Q2.
		OR		Find the flux density at 1) A point charge Q of 2) A uniform charge d
		A SHR is tuned to 3MHz - 30 MHz and I.F. frequency is 40.525% bandwidth= 10kHz.		
		Find:	(a) (ii)	For x, y and z positive
		Range of local oscillator frequency Range of image frequency		region defined by 0≤ x Derive equation for El
	Q4 (b)	1. Draw waveforms 6		
	0.5	Draw waveforms for FM and PM How PM can be obtained from FM?	(b)	Given the potential V P (-2,1,5)m
	Q5 (a)(i)	x(t) = 6 cos 50 m + 20 mt + 20 mt = for following continuous-time signal	-2 (a) (i)	A current filament of Find magnetic field in
	(a)(ii)	Explain in brief PWM generation with neat diagrams.		Using Biot-Savart's
		What .		$Idl = 3\pi (ax + 2ay + 3a)$
	Q5 (b)	What are advantages and disadvantages of PCM?	2(a) (ii)	if B = (20/r) aφ Tesl:
	16	Enplain PAM general PAM general Suitables	2 (b)	Write short notes of 1. Lorenz Force ec 2. Boundary cond 3. Magnetic mater
		with neat-dist	3 (a)	4. Ampere's circu Given E= 10 sin (o
			S.	

Semester: January 2 rogramme code: 41 Semester: January 2 Examination: E	022 – May 2022 SE Examination	Duration:03 Hrs
rogramme: Minor in Artificial Intelligence & Machine Learning Same of the Constituent College:	Class: SY	Semester: IV(SVU 2020)
C. J. Somarya College of Engineering Course Code: 116m41C401	Name of the ETRX and	ne department: MXCH
nstructions: 1) All questions are compulsory 2)Dra	ourse: Data Scient w neat diagrams	ice and Analytics 3)Assume suitable data if

Question No.		Max.
Q1 (a)	What is meant by NoSQL Database? Explain MongoDB in detail. OR Describe the terms along with skill sets needed for various applications in following domain: • Big Data	Mark 10 M
Q1 (b)	Data Science What are discrete random variables? Derive the Probability Distribution Function (PDF) of any two discrete random variables.	10 M
Q2 (a)	Let X be a discrete random variable with the following PMF	10 M
	$P_X(k) = \begin{cases} 0.1 & \text{for } k = 0 \\ 0.4 & \text{for } k = 1 \\ 0.3 & \text{for } k = 2 \\ 0.2 & \text{for } k = 3 \\ 0 & \text{otherwise} \end{cases}$	
	 a) Find the CDF of X. b) Find EX. c) Find Var(X). d) If Y=(X-2)², find EY. 	
(b)	Explain Gaussian (normal) distribution with respect to PDF and CDF along its use in statistics.	10 M
	OR The number of touchdown (TD) passes thrown by each of the 31 teams in the National Football League in the 2000 season are shown below: 37, 33, 33, 32, 29, 28, 28, 23, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 16, 15, 14, 14, 14, 12, 12, 9, 6.	

	Compute the mean, median, and mode of above days in Comment on its central tendency measure.	XXXXXX
	List and elaborate the steps involved in Exploratory Data A	
Q3 (a)	sells paperback books and sales The prices and sales The	
Q3 (b)	relationship week and the relationship and the follows	Semester:
	Sales 3	Examination: ogramme code: 02 rogramme: B. Tech Electronics Engin
	Price \$14 30 311 315 \$14	me of the Constituent College: J. Somaiya College of Engineering
Q4 (a)	i. Apply simple linear regression model that uses price above dataset. predict weekly sales for the novel when priced is \$10.	aurse Code: 116U02C401
-	A database has five transactions. Let min_sup(s) = 3 and min	No.
Qu'(a)	TID Items_bought T100 {M,O,N,K,E,Y} T200 {D,O,N,K,E,Y} T300 {M,A,K,E} T400 {M,U,C,K,Y} T500 {C,O,O,K,I,E}	of $2i - j - 2k$. (A) OR Show that $\overline{F} = (y^2 - z^2 + 3y^2)$ is both solenoidal and irrotation
	i. Find all frequent itemsets using Apriori Algorithm. ii. List all of the strong association rules (with supports)	Attempt any TWO of the follows: Show that $\tilde{F} = (x^2 - yz)i + (yz)i$
Q4 (b)	Illustrate the DGIM algorithm for counting ones in a data stra	scalar potential. Find the scalars p, q if $(\tilde{a} \times \tilde{b})$ $\tilde{a} = pi + j + 2k, \tilde{b} = i - j,$
	Explain how Flajolet Martin Algorithm works for counting given stream.	(iii) Prove that $\nabla f(r) = f'(r) \frac{y}{r}$ and where $f' = xi + yj + zk$.
QS	Attempt any TWO of the following: (2x10 M) a) Illustrate the need of Data Visualization. Summanise effective Data Visualization. b) Describe in detail any two data visualization tools with the control of the contro	Evaluate $\int (x^2 - y^2) dx + (y^2 + y^2) dx = t, y = t^2 + 1$.

imum Marks: 100 Semester: Januar Examination:	y 2022 – ESE Exa	May 2022	
tramme: B Tech Electronics Engineering	CI	ass:	Duration:3Hrs
te of the Constituent Can	F	//SY/TY/LY	I/II/III/IV/V/VI/VII/VII I (SVU 2020)
Somaiya College of Engineering rse Code: 116U02C404 Name of the ructions: 1)Draw neat diagrams 2)Assume s	e Course:		department:
diagrams 2)Assume s	suitable d	ata if necessar	v

estion No.		
		Max Mark
	Answer any Two	
	 (A) A sinusoidal carrier has an amplitude of 20 V and frequency of 200 KHz. It is amplitude modulated by a sinusoidal voltage of amplitude 6V and frequency 1 KHz. Modulated voltage is developed across a 80 Ω resistance. 1. Write the equation of modulated wave. 2. Determine modulation index 	(2+2+3+3)
	Draw the spectrum of modulated wave Calculate total average power	
	(B) Verify AM is a wastage of power and bandwidth, Also draw the spectrum of AM wave and comment on the bandwidth.	(5+5)
	(C) Prove that the balanced modulator produces an output consisting of sidebands only with the carrier removed.	(10)
	Answer any Two	
	(A) Explain indirect method of generation of FM signal with the help of neat diagram.	(10)
	(B) Explain the concept of FM noise triangle also explain the concept of pre emphasis and de-emphasis.	(5+5)
	(C) Explain Foster Seeley discriminator with neat diagram	(10)
- 4	Answer any Two	
	A) Explain the following with reference to Radio receivers: i) Fidelity ii) Image frequency iii) Tracking error iv) Selectivity v) Sensitivity	(2+2+2 +2+2)
0	B) Compare	

Page 1 of 2

	i)PAM,PWM and PPM systems ii)PCM and Delta	(5)
	(C) Explain the following	(5)
	i)Quantization noise ii)Inter symbol Interference	(5) (5)
4	Answer any Two	
	(B) Draw and explain block diagram of BPSK transmitter and Receiver.	0) (10)
Q5	Answer any Two	(6+4)
	(A) Draw ASK, PSK and FSK signal for digital data 11010101 also compare all three techniques of modulation.	(10)
	(B) Explain the generation and detection of FSK signal.	(10)
	(C) Explain in detail working principle of M-ary FSK.	

3015/2022 (E

Maximum Marks: 100

Programme code: 75

Programme: Minor in Computer Engineering
Name of the Constituent College:
K. J. Somaiya College of Engineering
Course Code: 116m75C301

Name of the Course: Database Management System
Instructions: 1)Draw neat diagrams 2)Assume suitable data if necessary

iep .	No.		Max. Marks
	Q1 (a)	i. Explain Data Independence and its types in detail	
			4
		ii. Explain Single-valued, Multi-valued and Derived attributes with the help of examples.	6
	Q1 (b)	What are the different levels of abstraction in DBMS? Explain each of them with	10
		the help of Example.	10
	Q2 (a)	Consider the following requirements for a simple database for the National Hockey League (NHL):	12
		1. The NHL has many teams.	
		2. Each team has a name, a city, a coach, a captain, and a set of players.3. Each player belongs to only one team.	
		4. Each player has a name, a position (such as left wing or goalie), a skill level, and a set of injury records.	
1		5. A team captain is also a player.	
		6. A game is played between two teams and has a date and a score.	
1		Construct an E-R diagram for the NHL database. List your assumptions and mention the cardinality mappings. OR	
l			
		Let E1 and E2 be two entities in an E/R diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one1 to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. Calculate the minimum number of tables required to represent this situation in the relational model? And justify your answer.	
(Q2 (b)	Consider the following relational schema:	
		Employee (empno, name, office, age)	
		Books(isbn, title, authors, publisher)	
		Borrowed(empno, isbn, date)	
			1

	Write the following queries in relational algebra:	4	
	i. Find the names of employees who have borrowed a book Published by		
	McGraw-Hill?	4	
	ii. For each publisher, find the names of employees and title of the book who		
	have borrowed the books.	12 (3	
3 (a)	Write SQL statements for following:	each)	
	Student(Enrno, name, courseld, emailId, cellno, dept) Course(courseld, course_nm, duration)		
	i. Add a column "city" in student table. ii. Find out list of students who have enrolled in "computer" course. iii. List name of all courses with their duration. iv. List email Id and cell no of all mechanical engineering students.		
	OR		ı
	Consider the following database schema and write nested queries in SQL for the given case:		
	Supplier (id, name, city) Parts(pno, pname, pdescription) Supply(id, pno, cost)		
	i. Find the names of the parts supplied by "RamRaj" ii. Find the number of the suppliers who supply "Nuts" iii. Find the cost of bolts being supplied by Nagpur suppliers.	4 4 4	
Q3 (b)	Define the following terms and give examples (any Two)	8 (4	7
	i. Cardinality of Relationship ii. Recursive Relationship iii. Specialization	each)	1
	iv. Weak and Strong Entity		-
Q4 (a)	Explain different steps in high level query processing with diagram. OR	8	-
	Explain 1NF, 2NF and 3NF of Database with Example and Justify your answer.		
Q4 (b)	Explain the following with example:	12	
	i. Multilevel and Multiple key indexing. ii. Hash based Indexing and Tree based Indexing		
Q5 (a)	Define transaction and explain desirable properties of transactions with suitable example.	10	
Q5 (b)	Explain Concurrency control with locking methods.	10	

Programme code: 01 Programme: B.TECH		Examination f	Semester: III (SVU 2020)
Name of the Constituent College K. J. Somaiya College of Engine	erino	COMP	the Department:
Course Code: 116U01C301	Name of the C	ourse: Integral	Fransform and Vector
Duration : 1 Hours	Maximum M	arks: 50	

Question		Max Marks
No. Q1 (A)	Choose One correct option for the following questions (2 marks each)	10
(i)	Find $L(\int_0^t \frac{e^{-u} \sin u}{u} du)$ (a) $\frac{\tan^{-1} s}{s}$ (b) $\frac{\cot^{-1} s}{s}$ (c) $\frac{\tan^{-1} (s+1)}{s}$ (d) $\frac{\cot^{-1} (s+1)}{s}$	
(ii)	To represent $f(x) = x^2$ as Fourier series in $(0,2\pi)$, value of b_n is (a) $\frac{2\pi}{n}$ (b) $4\frac{\pi}{n}$ (c) $\frac{2}{n}$ (d) $\frac{4}{n}$	
(iii)	Let $\emptyset = xy + yz + zx$, what is the directional derivative of \emptyset in the direction of the normal to the surface $x^2 + y^2 = z + 4$ at $(1,1,-2)$? (a) -2 (b) 2 (c) 0 (d) -6	
(iv)	Green's theorem states that (a) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$ (b) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) dxdy$ (c) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x}\right) dxdy$ (d) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y}\right) dxdy$	
(v)	In Z – transform of unit impulse function, ROC is (a) $z \neq 0$ (b) $ z > 1$ (c) $ z < 1$ (d) entire z – plane	Page 1

Write the			10	
i. Find th		(2 marks Each)		Q. 4
McGraw	Q1 (B)	Attempt all the following questions. (2 marks Each)		(a)
ii. For ea		Find $L\left\{\frac{1}{2}(e^{-at}-\cos at)\right\}$		(b)
have bon				
Write SQ Student()		Find Laplace transform of $tH(t-4) + t^2\delta(t-4)$		
i. Add a c	(b)	Find Laplace transform of the street that the street transform of the street		
ii. Find ot iii. List na iv. List en		OR (stingerad@) and div(curl(grad@))		(0
Consider	(0)	$\frac{14yz}{1} + \frac{20xz^2k}{1}$, evaluate $\frac{14yz}{1} + \frac{14yz}{1} + 1$	P	
Consider t given case		If $\bar{A} = (3x^2 + 6y)t - 1/(y)t$ along the curve $x = t$, $y = t^2$, $z = t^3$ If z-transform of a sequence is $\frac{1}{z-5}$, $ z < 5$ then find the sequence		
Supplier (i Parts(pno, Supply(id,	(d)	If z-transform of a sequence is $\frac{1}{z-5}$, 121 Find C_{-2} in the Complex form of Fourier Series for $f(x) = e^x$ in $(-\pi, \pi)$		
i. Find the	(e)	a the following questions (6 marks Each)	12	
Define the	Q. 7	Obtain the Fourier expansion of $f(x)$ in interval $(-\pi,\pi)$ where		
i. Cardinali ii. Recursiv		f(x) = cos(px), p is not an integer OR		
iii. Speciali iv. W		Find the Fourier Cosine Transform of $f(x) = e^{-2x} + 4e^{-3x}$		
ain INI		Using Convolution Theorem, find Inverse Laplace Transform of $\left(\frac{s^2+s}{(s^2+1)(s^2+2s+2)}\right)$		
Explain the		2.3 Attempt any ONE questions out of the following (6 marks Each)	6	
il Multil		(a) If $f(k) = \sin(5k + \frac{\pi}{2}), k \ge 0$ then find $z - \text{transform of } f(k)$		
Com	41	(b) If $F(z) = \frac{1}{(z-3)(z-5)}$, $ z > 5$ then find inverse z-transform of $F(z)$		
		P	age 2013	
			1	- 32

	Attempt any TWO questions out of the following (6 marks Each)	12
2.4		1
(a)	Prove that $\nabla \left[\nabla \cdot \frac{\overline{r}}{r} \right] = -\frac{2}{r^3} \overline{r}$	+
	$(2+2yz^3)i+(3y^2z^2+x)k$,	1
(b)	Given $\overline{F} = (2xy + z)i + (x^2 + 2yz^3)j + (3y^2z^2 + x)k$,	1
(0)	F :- conservative	1
	done by F III moving	
\		
	$B(2,2,1) \text{ along the substitution of the region}$ C) Use Divergence theorem to evaluate $\iint_S \vec{F} \cdot d\vec{s}$ where	1
-	c) Use Divergence theorem to evaluate 7 %	1
1	Use Divergence theorem to evaluate \vec{F} Use Divergence theorem to evaluate \vec{F} and \vec{F} is the surface of the region \vec{F} and \vec{F} is a range of the region.	
	$\vec{F} = 4xt - 2y$ $x^2 + y^2 = 4, z = 3 \text{ above xy plane.}$	
	$v^2 + v^2 = 4$, $z = 3$ above	

D-10 2 of 2

12

Programme code: 01	Examination: ESE I		NGUST 2022
Programme: B.TECH		Class: SY	Semester: III (SVU 2020)
Name of the Constituent College: K. J. Somaiya College of Engineering		Name of the Department: COMP	
Course Code: 116U01C301	Name of the Course: Integral Transform and Vector Calculus		
Duration : 1 Hours	Maximum Marks: 50		

Question No.		Max Marks
Q1 (A)	Choose One correct option for the following questions (2 marks each)	10
(i)	Find $L(\int_0^t \frac{e^{-u} \sin u}{u} du)$ (a) $\frac{\tan^{-1} s}{s}$ (b) $\frac{\cot^{-1} s}{s}$ (c) $\frac{\tan^{-1} (s+1)}{s}$ (d) $\frac{\cot^{-1} (s+1)}{s}$	
(ii)	To represent $f(x) = x^2$ as Fourier series in $(0,2\pi)$, value of b_n is (a) $\frac{2\pi}{n}$ (b) $4\frac{\pi}{n}$ (c) $\frac{2}{n}$ (d) $\frac{4}{n}$	
(iii)	Let $\emptyset = xy + yz + zx$, what is the directional derivative of \emptyset in the direction of the normal to the surface $x^2 + y^2 = z + 4$ at $(1,1,-2)$? (a) -2 (b) 2 (c) 0 (d) -6	
(iv)	Green's theorem states that (a) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$ (b) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) dxdy$ (c) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x}\right) dxdy$ (d) $\int_{c} (Pdx + Qdy) = \iint_{R} \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y}\right) dxdy$	
(v)	In Z – transform of unit impulse function, ROC is (a) $z \neq 0$ (b) $ z > 1$ (c) $ z < 1$ (d) entire z – plane	

Q1 (B)	Attempt all the following questions. (2 marks Each)	10
(a)	Find $L\left\{\frac{1}{t}(e^{-at}-\cos at)\right\}$	
	OR	
	Find Laplace transform of $tH(t-4) + t^2\delta(t-4)$	
(b)	Let $\emptyset = xy(x - y + 2z)$ Find Maximum directional derivative of \emptyset at P(1,1,0).	
	If $\emptyset = x^2 + y^2 + z^2 - 2xyz$ find div(grad \emptyset) and div(curl(grad \emptyset))	
(c)	If $\vec{A} = (3x^2 + 6y)\hat{\imath} - 14yz\hat{\jmath} + 20xz^2\hat{k}$, evaluate $\oint \vec{A} \cdot \vec{dr}$ from $(0,0,0)$ to $(1,1,1)$ along the curve $x = t$, $y = t^2$, $z = t^3$	E
(d)	If z-transform of a sequence is $\frac{1}{z-5}$, $ z < 5$ then find the sequence	
(e)	Find C_{-2} in the Complex form of Fourier Series for $f(x) = e^x$ in $(-\pi, \pi)$	
Q. 2	Attempt the following questions (6 marks Each)	12
(a)	Obtain the Fourier expansion of $f(x)$ in interval $(-\pi, \pi)$ where $f(x) = cos(px)$, p is not an integer	
	OR	
	Find the Fourier Cosine Transform of $f(x) = e^{-2x} + 4e^{-3x}$	
(b)	Using Convolution Theorem, find Inverse Laplace Transform of $\left(\frac{s^2+s}{(s^2+1)(s^2+2s+2)}\right)$	
Q. 3	Attempt any ONE questions out of the following (6 marks Each)	6
(a)	If $f(k) = \sin(5k + \frac{\pi}{2}), k \ge 0$ then find $z - \text{transform of } f(k)$	
	If $F(z) = \frac{1}{(z-3)(z-5)}$, $ z > 5$ then find inverse z-transform of $F(z)$	

Page 2 of 3

Q. 4	Attempt any TWO questions out of the following (6 marks Each)	×
(6)	Prove that $\nabla \left[\nabla, \frac{r}{r}\right] = -\frac{2}{r^2} T$	
(6)	Given $F = (2xy + x)i + (x^2 + 2yx^2)j + (3y^2x^2 + x)k$. (a) Prove that F is conservative	CA
	(b) Find Scalar potential function 0 such that F = F0. (a) Find the work done by F in moving a particle from A(1, 2, 0) to	1
	B(2,2,1) along the straight line AB. Use Divergence theorem to evaluate \(\int_{g} \) \(\int_{ext} \) where	
	$\vec{p} = 4x\hat{1} - 2y^2\hat{J} + x^2\hat{x}$ and s in the surface of the region	
	$x^2+y^2=4$, $z=3$ above xy plane.	
M		
7		
		No. of the
		Page 3 of 3
	The second secon	