

NEON NIST DSE — Tree Crown Delineation

Arvind Kumar Sugumar, Nishant Agarwal

Computer and Information Science and Engineering, University of Florida

ABSTRACT

• GOAL: Delineate tree crowns from AOP camera and hyperspectral data

- Identifying the position and size of individual tree from remote sensing is useful in understanding forest structure and is an important first step in species identification
- Tracking tree density from satellite images has become very important, especially with growing concerns regarding climate change

INTRODUCTION

CHALLENGES

- Understanding the data and figuring out good visualization techniques to work on high dimensional hyperspectral & LiDAR data.
- Low resolution of images and presence of noise in the data made delineation very challenging
- Availability of data was also scarce which made deep learning and other machine learning algorithms unsuitable
- The variety in the tree composition is different for different plots

KEY CONTRIBUTIONS:

- Ensemble approach to handle multiple region types and tree compositions
- Use of canopy height model (CHM) to delineate crowns based on the variation in the tree heights from the ground
- Use of hyperspectral data to fill in the gaps in information due to the lower dimensional nature of camera and CHM rasters
- Laplacian of Gaussian as a edge detection as a first step before marker based watershed segmentation
- Use of 8 connectivity neighbourhood approach to Region Growing with the local maxima as the focal point
- Developed the evaluation pipeline for delineation, alignment and species classification. And also wrote the report generation module
- Use of Geodesic distance to identify portions of the image with clusters of maximal reflectance

MODEL DESIGN

- Using Laplacian of Gaussian yields the edges i.e. regions of changing reflectance patterns
- On these edges we run geodesic distance computation to get the final tree crown regions
- The non local max convolution yields another set of tree tops which is concatenated with the geodesic tops to get the final polygons
- Spurious polygons are removed by filtering and over segmented polygons are handled using morphological transforms

Hyperspectral, Camera, CHM Image Principal Component Analysis Watershed Subtraction Region Growing Algorithm MaxConvolve to find Local Max Find Contours

- Background subtraction algorithm is applied to remove regions of extreme dark and bright pixels.
- Watershed algorithm is applied on the corrected image.
- Contours are extracted from the segmented image.
- For each contour, points of local maxima is found by max convolution method.
- Regions having similar height from the ground surface are found by following the growing algorithm, taking local maxima points as focal point.

EVALUATION METRICS

- Delineation is measured as a function of the predicted area which can be considered to fall into one of the following classes i.e. False Positive (FP), True Positive (TP) and False Negative (FN).
 - Due to unavailability of perfect ground truth we use a modified F1 score which is calculated on a subset of the predicted polygons for which ground truth is available

$$F_1 = \frac{2P \times R}{P + R}$$

• Alignment is measured as a probability distribution between the ground truth (g) polygons and the predicted polygons (p) and is evaluated based on the value assigned to the correct predictions

$$F_1 = \frac{trace(M)}{\sum_{i,j} m_{i,j}}$$

• The output is expected to be a probability matrix of M x N where M is the number of ITCs and N is the number of species.

So we can use the Average Cross-Entropy loss (log loss) which is used in 1

 $cost = \frac{-\sum_{n,k} ln(p_{nk}) * \delta(g_n, k)}{N}$

PROJECTION

- The vector files (shapefiles) have their coordinates mentioned on the WGS84 UTM Zone 17 North projection
- In order to evaluate or visualize the ground truth appropriate reprojection must be done
- Moving to and from world coordinates to pixel coordinates using the extent of the image on a per plot basis requires the formulation of an affine transformation
 - Given the extent of the plot and the dimensions of the raster we are able to get a mapping between the pixels and the world coordinates
 - This formulation can be used to project raster to vector points and vice versa

RESULTS

Plot Description / ID	F1 Score - For Models 1,2,3		
Mostly Sparse (006)	62.21	53.35	37.23
Dense (001)	62.01	57.37	41.255
Moderate (011)	32.28	43.86	40.25

CONCLUSION

- Any real world data is bound to be noisy, so we must first account for that before embarking on application of any model
- Improvements to the model might lead us towards a local maxima so we must be careful about premature optimization
- An ensemble of models, each tuned to work in a particular setting, would prove to be really beneficial to this task
- Watershed is really good at doing the delineation but it just needs few cues to send it on the right track

REFERENCES

- Delineating individual trees from lidar data: a comparison of vector- and raster-based segmentation approaches. Jakubowski et.al. 2013
- Detection of individual tree crown in airborne lidar data. B.Koch et.al. 2002
- Individual tree crown delineation using local maxima approach and seeded region growing technique Jan NOVOTNÝ et. al 2011
- Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery Le Wang, Peng Gong, and Gregory S. Biging