```
In [1]: # Load the Data
         import numpy as np
         import pandas as pd
In [2]: from sklearn.tree import DecisionTreeClassifier
         from sklearn.model selection import train test split
         import matplotlib.pyplot as plt
         from sklearn.tree import plot tree
In [3]: from sklearn.metrics import confusion matrix
         from sklearn.metrics import precision score
         from sklearn.metrics import recall score
         from sklearn.metrics import accuracy score
In [4]: Team1vsTeam2 = pd.read excel(r'Team1vsTeam2 2019-2023.xlsx')
         df = Team1vsTeam2
        df
                             WR
                                    KD CKPM
                                                GPR GSPD EGR
                                                                            FB
                                                                                  FT ...
Out[4]:
                index
                                                                    MLR
           0
                   T1
                       0.119447
                                  0.13
                                         -0.02
                                                0.37
                                                       0.014
                                                               1.1
                                                                    10.9
                                                                          -0.01
                                                                                 0.05
               Cloud9
                                  0.35
                                                0.33
                                                                                -0.07 ...
                       0.196685
                                         -0.18
                                                       0.045
                                                               4.0
                                                                    15.2
                                                                           0.00
           2
               Gen.G
                       0.030134
                                 0.25
                                         -0.23
                                                0.27
                                                       0.025
                                                               7.0
                                                                     -4.0
                                                                          0.15
                                                                                 0.12
                Team
           3
                       -0.236601 -0.55
                                         -0.05 -1.07
                                                      -0.089
                                                              -9.7
                                                                   -16.2
                                                                          0.01 -0.07
                 BDS
                   G2
                       0.099203
                                  0.01
                                          0.35
                                                0.27
                                                       0.030
                                                              -0.4
                                                                    10.4 -0.10
                                                                                 0.08
               Esports
                                         -0.20 -0.47
                                                      -0.027
                                                              -5.8
                                                                     -5.7 -0.12 -0.09
         363
                       -0.109790 -0.30
               l Team
                Dplus
         364
                       -0.070833 -0.09
                                         -0.02 -0.10
                                                       0.019
                                                              -7.0
                                                                     -0.1 -0.15 -0.03
                  KΙΑ
              Invictus
         365
                       0.103757 -0.03
                                          0.38
                                                0.17
                                                       0.022
                                                               1.5
                                                                     9.5 -0.23
                                                                                 0.04
              Gaming
                Royal
                Never
         366
                                  0.30
                                                0.60
                                                       0.019
                                                                          0.03 -0.01
                       0.177327
                                          0.12
                                                               8.0
                                                                    11.2
                 Give
                   Up
         367
                Fnatic -0.037646 -0.28
                                          0.23 -0.09 -0.013
                                                              -0.8
                                                                     -3.5
                                                                          0.01 -0.02 ...
        368 \text{ rows} \times 21 \text{ columns}
In [5]: df.IsWin.value counts()
        df.describe()
```

Out[5]:	WR count 368.000000		KD	СКРМ	GPR	GSPD	EGR	
	count	368.000000	368.000000	368.000000	368.000000	368.000000	368.000000	
	mean	0.005476	0.011848	0.002174	0.021630	0.001641	0.260598	
	std	0.112255	0.268764	0.158620	0.527456	0.039215	7.766588	
	min -0		-0.940000	-0.430000	-1.640000	-0.125000	-18.500000	
	25%	-0.078084	-0.170000	-0.110000	-0.330000	-0.024250	-5.825000	
	50%	0.007489	0.020000	-0.010000	0.065000	0.002500	0.300000	
	75 %	0.089830	0.180000	0.110000	0.360000	0.027000	6.425000	
	max	0.279326	0.890000	0.430000	1.640000	0.125000	18.500000	

In []:

Dummy Encoding

Encoding scheme to 'index' variable

```
In [6]: df_enc = pd.get_dummies(df, columns = ['index'])
    df_enc2 = pd.get_dummies(df, columns = ['index'], drop_first = True)

In [7]: df_enc.info()
    df_enc.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 368 entries, 0 to 367
Data columns (total 66 columns):

#		Non-Null Count	
0	WR	368 non-null	
1	KD	368 non-null	
2	CKPM	368 non-null	
3	GPR	368 non-null	
4	GSPD	368 non-null	
5	EGR	368 non-null	
6	MLR	368 non-null	float64
7	FB	368 non-null	float64
8	FT	368 non-null	float64
9	F3T	368 non-null	float64
10	HLD	368 non-null	float64
11	FD	368 non-null	float64
12	DRG	368 non-null	
13	ELD	368 non-null	
14	BN	368 non-null	float64
15	LNE	368 non-null	float64
16	JNG	368 non-null	
17	WPM	368 non-null	float64
18	CWPM	368 non-null	float64
19	IsWin	368 non-null	int64
20	index 100 Thieves	368 non-null	uint8
21	index Bilibili Gaming	368 non-null	uint8
22	index CTBC Flying Oyster		uint8
23	index Cloud9	368 non-null	uint8
24	index Clutch Gaming	368 non-null	uint8
25	index DRX	368 non-null	
26	index DWG KIA	368 non-null	
27	index DetonatioN FocusMe	368 non-null	
28	index Dplus KIA	368 non-null	
29	index Dplus Kia	368 non-null	
30	index EDward Gaming	368 non-null	
31	index Evil Geniuses	368 non-null	uint8
32	index_FlyQuest	368 non-null	uint8
33	index Fnatic	368 non-null	uint8
34	index FunPlus Phoenix	368 non-null	uint8
35	index G2 Esports	368 non-null	uint8
36	index GAM Esports	368 non-null	uint8
37	index GEN.G	368 non-null	uint8
38	index Gen.G	368 non-null	uint8
39	index Griffin	368 non-null	uint8
40	index Hanwha Life Esports	368 non-null	uint8
41	index Hong Kong Attitude	368 non-null	uint8
42	index Invictus Gaming	368 non-null	uint8
43	index_J Team	368 non-null	uint8
44	index JD Gaming	368 non-null	uint8
45	index KT Rolster	368 non-null	uint8
46	index_KT NotSter	368 non-null	uint8
47	index_LOD daming	368 non-null	uint8
48	index_ENG Esports index MAD Lions	368 non-null	uint8
49	index_Nachi Esports	368 non-null	uint8
50	index_NRG	368 non-null	uint8
50	THEON_INTO	Job Holl Hucc	a ± i i c o

```
51 index PSG Talon
                              368 non-null
                                             uint8
52 index RNG
                              368 non-null
                                             uint8
53 index Roque
                             368 non-null
                                             uint8
54 index Royal Never Give Up 368 non-null
                                             uint8
55 index SK Telecom T1
                             368 non-null
                                            uint8
56 index_Splyce
                              368 non-null uint8
57 index Suning
                              368 non-null uint8
58 index T1
                              368 non-null uint8
59 index TSM
                              368 non-null uint8
60 index Team BDS
                              368 non-null
                                            uint8
61 index Team Liquid
                             368 non-null uint8
62 index Top Esports 368 non-null uint8
63 index_Unicorns of Love.CIS 368 non-null uint8
64 index_Weibo Gaming 368 non-null
65 index_ahq eSports Club 368 non-null
                                            uint8
                                            uint8
```

dtypes: float64(19), int64(1), uint8(46)

memory usage: 74.2 KB

Out[7]:

	WR	KD	СКРМ	GPR	GSPD	EGR	MLR	FB	FT	F3T	•••	inde
0	0.119447	0.13	-0.02	0.37	0.014	1.1	10.9	-0.01	0.05	0.03		
1	0.196685	0.35	-0.18	0.33	0.045	4.0	15.2	0.00	-0.07	-0.03		
2	0.030134	0.25	-0.23	0.27	0.025	7.0	-4.0	0.15	0.12	0.06		
3	-0.236601	-0.55	-0.05	-1.07	-0.089	-9.7	-16.2	0.01	-0.07	-0.19		
4	0.099203	0.01	0.35	0.27	0.030	-0.4	10.4	-0.10	0.08	0.03		

 $5 \text{ rows} \times 66 \text{ columns}$

```
In [8]: df enc2.info()
        df enc2.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 368 entries, 0 to 367
Data columns (total 65 columns):

рата #	Columns (total 65 columns):	Non-Null Count	Dtype
π 			
0	WR	368 non-null	float64
1	KD	368 non-null	float64
2	CKPM	368 non-null	float64
3	GPR	368 non-null	float64
4	GSPD	368 non-null	float64
5	EGR	368 non-null	float64
6	MLR	368 non-null	float64
7	FB	368 non-null	
8	FT	368 non-null	float64
9	F3T	368 non-null	float64
10	HLD	368 non-null	float64
11	FD	368 non-null	float64
12	DRG	368 non-null	float64
13	ELD	368 non-null	float64
14	BN	368 non-null	float64
15	LNE	368 non-null	float64
16	JNG	368 non-null	float64
17	WPM	368 non-null	float64
18	CWPM	368 non-null	float64
19	IsWin	368 non-null	int64
20	index_Bilibili Gaming	368 non-null	uint8
21	<pre>index_CTBC Flying Oyster</pre>	368 non-null	uint8
22	index_Cloud9	368 non-null	uint8
23	<pre>index_Clutch Gaming</pre>	368 non-null	uint8
24	index_DRX	368 non-null	uint8
25	index_DWG KIA	368 non-null	uint8
26	<pre>index_DetonatioN FocusMe</pre>	368 non-null	uint8
27	index_Dplus KIA	368 non-null	uint8
28	index_Dplus Kia	368 non-null	uint8
29	index_EDward Gaming	368 non-null	uint8
30	index_Evil Geniuses	368 non-null	uint8
31	index_FlyQuest	368 non-null	uint8
32	index_Fnatic	368 non-null	uint8
33	index_FunPlus Phoenix	368 non-null	uint8
34	index_G2 Esports	368 non-null	uint8
35	index_GAM Esports	368 non-null	uint8
36	index_GEN.G	368 non-null	uint8
37	index_Gen.G	368 non-null	uint8
38	index_Griffin	368 non-null	uint8
39	index_Hanwha Life Esports	368 non-null	uint8
40	index_Hong Kong Attitude	368 non-null	uint8
41	index_Invictus Gaming	368 non-null	uint8
42	index_J Team	368 non-null	uint8
43	index_JD Gaming	368 non-null	uint8
44	index_KT Rolster	368 non-null	uint8
45	index_LGD Gaming	368 non-null	uint8
46	index_LNG Esports	368 non-null	uint8
47	index_MAD Lions	368 non-null	uint8
48	index_Machi Esports	368 non-null	uint8
49	index_NRG	368 non-null	uint8
50	index_PSG Talon	368 non-null	uint8

```
uint8
51 index RNG
                               368 non-null
52 index Roque
                               368 non-null
                                               uint8
53 index Royal Never Give Up 368 non-null
                                               uint8
54 index SK Telecom T1
                               368 non-null
                                               uint8
55 index Splyce
                               368 non-null
                                               uint8
56 index Suning
                               368 non-null
                                               uint8
57 index T1
                               368 non-null
                                               uint8
58 index TSM
                               368 non-null
                                               uint8
59 index Team BDS
                               368 non-null
                                               uint8
60 index Team Liquid
                              368 non-null
                                               uint8
61 index Top Esports
                              368 non-null
                                               uint8
62 index Unicorns of Love.CIS 368 non-null
                                               uint8
                            368 non-null
368 non-null
63 index Weibo Gaming
                                               uint8
64 index and eSports Club
                                               uint8
dtypes: float64(19), int64(1), uint8(45)
```

memory usage: 73.8 KB

Out[8]:

	WR	KD	СКРМ	GPR	GSPD	EGR	MLR	FB	FT	F3T	•••	inde
0	0.119447	0.13	-0.02	0.37	0.014	1.1	10.9	-0.01	0.05	0.03		
1	0.196685	0.35	-0.18	0.33	0.045	4.0	15.2	0.00	-0.07	-0.03		
2	0.030134	0.25	-0.23	0.27	0.025	7.0	-4.0	0.15	0.12	0.06		
3	-0.236601	-0.55	-0.05	-1.07	-0.089	-9.7	-16.2	0.01	-0.07	-0.19		
4	0.099203	0.01	0.35	0.27	0.030	-0.4	10.4	-0.10	0.08	0.03		

 $5 \text{ rows} \times 65 \text{ columns}$

```
In [9]: X = df enc2[['WR', 'KD', 'CKPM', 'GPR', 'GSPD', 'EGR', 'MLR', 'FB', 'FT', 'F3T', 'HL
                                                      Y = df enc2[['IsWin']]
In [10]: model = DecisionTreeClassifier()
                                                       model.fit(X,Y)
                                                        feature importance = model.feature importances
                                                        feature importance df enc2 = pd.DataFrame({'Feature': X.columns, 'Importance
                                                        feature importance df enc2 = feature_importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importance_df_enc2.sort_values(by='Importanc
                                                        feature importance df enc2.head(25)
```

Out[10]:		Feature	Importance
	17	WPM	0.201932
	13	ELD	0.094971
	18	CWPM	0.080782
	2	СКРМ	0.080069
	7	FB	0.076451
	1	KD	0.065964
	0	WR	0.065082
	11	FD	0.052038
	16	JNG	0.050143
	4	GSPD	0.050075
	10	HLD	0.047507
	6	MLR	0.035129
	14	BN	0.031032
	8	FT	0.025621
	5	EGR	0.019369
	12	DRG	0.013958
	15	LNE	0.004968
	9	F3T	0.004907
	3	GPR	0.000000

```
In [24]: features_to_remove = ['F3T', 'LNE', 'GPR']
    df1=df.drop(features_to_remove, axis=1)
    df1
```

Out[24]:		index	WR	KD	СКРМ	GSPD	EGR	MLR	FB	FT	HLD	F									
	0	T1	0.119447	0.13	-0.02	0.014	1.1	10.9	-0.01	0.05	0.02	0.0									
	1	Cloud9	0.196685	0.35	-0.18	0.045	4.0	15.2	0.00	-0.07	0.12	0.1									
	2	Gen.G	0.030134	0.25	-0.23	0.025	7.0	-4.0	0.15	0.12	-0.05	-0.0									
	3	Team BDS	-0.236601	-0.55	-0.05	-0.089	-9.7	-16.2	0.01	-0.07	-0.03	0.0									
	4	G2 Esports	0.099203	0.01	0.35	0.030	-0.4	10.4	-0.10	0.08	0.10	-0.0									
	363	J Team	-0.109790	-0.30	-0.20	-0.027	-5.8	-5.7	-0.12	-0.09	-0.05	-0.1									
	364	Dplus KIA	-0.070833	-0.09	-0.02	0.019	-7.0	-0.1	-0.15	-0.03	0.04	-0.1									
	365	Invictus Gaming	0.103757	-0.03	0.38	0.022	1.5	9.5	-0.23	0.04	-0.10	-0.1									
	366	Royal Never Give Up	0.177327	0.30	0.12	0.019	8.0	11.2	0.03	-0.01	-0.10	0.1									
	367	Fnatic	-0.037646	-0.28	0.23	-0.013	-0.8	-3.5	0.01	-0.02	-0.15	-0.0									
In [25]:	368 rows × 18 columns [25]: X = df1[['WR','KD','CKPM','GSPD','EGR','MLR','FT','FB','HLD','FD','DRG','ELI Y = df1[['IsWin']]																				
In [26]:	<pre># Split Data X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, ran X train.shape, X test.shape</pre>											rar									
Out[26]:	((25	7, 16),	(111, 16))																		
In [27]:	<pre># BASELINE negative = np.sum(Y_train == 0) positive = np.sum(Y_train == 1) print(pd.Series({'0': negative, '1': positive}))</pre>																				
	0 IsWin 128 dtype: int64 1 IsWin 129 dtype: int64 dtype: object																				
In [28]:			onTreeClass		_	ples_le	eaf=5,	ccp_al	pha=0.	003,ra	ndom_s	tate									
											· =										

Node count = 53


```
In [30]: # MAKE PREDICTIONS
Y_pred = dtc.predict(X_test)
cm = confusion_matrix(Y_test, Y_pred)
Y_proba = dtc.predict_proba(X_test)
print ("Confusion Matrix : \n", cm)
print('Precision:',precision_score(Y_test, Y_pred))
print('Recall:',recall_score(Y_test, Y_pred))
```

```
print('Accuracy:',accuracy_score(Y_test, Y_pred))
display(Y_proba)
```

Confusion Matrix : [[24 25]

[27 35]]

Precision: 0.5833333333333334 Recall: 0.5645161290322581 Accuracy: 0.5315315315315315

```
array([[0. , 1. ],
      [0.42857143, 0.57142857],
      [0.2 , 0.8 ],
              , 0.
      [1.
[0.1
               , 0.9
                         ],
      [0.90909091, 0.09090909],
      [0. , 1. ],
              , 1.
      [0.
[0.
              , 1.
             , 0.625
      [0.375
[0.6
                         ],
             , 0.4
                         ],
     ],
                         ],
                         ],
                         ],
                         ],
                         ],
      [0. , 1. ]
[0.1 , 0.9]
[0. , 1. ]
[0. , 1. ]
                         ],
                         ],
                         ],
      [0.28571429, 0.71428571],
      [0.2 , 0.8 ],
      [0.75 , 0.25 ]
[1. , 0.
               , O.
      [0.90909091, 0.09090909],
      [0.08333333, 0.91666667],
      [1. , 0. ],
     [0.6 , 0.4 
[0.4 , 0.6 
[0.95 , 0.05 
[1. , 0.
                        ],
                        ],
      [0.71428571, 0.28571429],
      [0. , 1. ],
      [0.2 , 0.8
      [0.28571429, 0.71428571],
      [0.6 , 0.4 ],
[0.375 , 0.625 ],
      [0.90909091, 0.09090909],
      [0.75 , 0.25 ],
      [0. , 1. [0.2 , 0.8
      [0.28571429, 0.71428571],
      [0.8 , 0.2 ],
      [0.2
[1.
              , 0.8
      [1. , 0. ],
[0.95 , 0.05 ],
      [0.08333333, 0.91666667],
      [1. , 0. ],
              , 0.9
      [0.1
                         ],
      [0. , 1.
                         ],
```

```
[0.5 , 0.5 ],
[0.42857143, 0.57142857],
[0.6 , 0.4 ],
],
                        ],
],
[0.90909091, 0.09090909],
[0. , 1. ],
[0.90909091, 0.09090909],
[0.57142857, 0.42857143],
[0. , 1. ],
[0. , 1. ],
[0.95 , 0.05 ],
[1. , 0. ],
[0.66666667, 0.333333333],
[0. , 1. ],
[0.1 , 0.9
[0.71428571, 0.28571429],
[0.71428371, 0.28371429],
[1. , 0. ],
[0. , 1. ],
[0. , 1. ],
[0.4 , 0.6 ],
[0.2 , 0.8 ],
[0.75 , 0.25 ],
[1. , 0. ],
[0.90909091, 0.09090909],
[0. , 1. ],
[0.08333333, 0.91666667],
[1. , 0. ],

[0. , 1. ],

[0.6 , 0.4 ],

[0.1 , 0.9 ],

[0.6 , 0.4 ],

[0.6 , 0.4 ],
[1. , 0. ],

[0. , 1. ],

[0. , 1. ],

[0.75 , 0.25 ],

[0.2 , 0.8 ],
[0.71428571, 0.28571429],
[0.66666667, 0.333333333],
[0. , 1. ]])
```

Predict the Winner

8-in-4

GAM

Esports

0.696429 1.28

0.98

0.050

53.8

15.9 0.54 0.46 0.58 0.49

0.59

year2023StatForWorldsTeam = pd.read excel(r'year2023StatForWorldsTeam(1).xls year2023StatForWorldsTeam.set_index("team", inplace = True) year2023StatForWorldsTeam.rename(columns={"win rate": "WR"}, inplace=True) selected columns = year2023StatForWorldsTeam[['WR','KD','CKPM','GSPD','EGR', selected columns WR KD CKPM **GSPD EGR MLR** FT DRG Out[31]: FB HLD FD team Gen.G 0.726562 1.53 0.75 0.075 60.8 11.9 0.66 0.61 0.53 0.44 0.59 T1 0.611511 1.10 59.8 0.77 0.040 1.4 0.72 0.51 0.61 0.61 0.58 0.694215 1.52 0.69 0.045 57.5 11.9 0.61 0.55 0.45 0.55 0.60 Rolster **Dplus** 0.606061 1.35 0.67 0.039 60.5 0.1 0.53 0.58 0.54 0.62 0.62 **KIA** 0.777778 1.58 0.86 0.083 58.5 21.5 0.55 0.52 0.43 0.50 0.60 Gaming Bilibili 0.641379 1.21 0.91 0.053 58.7 6.9 0.52 0.57 0.48 0.59 0.56 Gaming **LNG** 0.651786 1.39 0.045 0.81 61.4 -1.4 0.40 0.61 0.60 0.60 0.54 **Esports** Weibo 0.607843 1.18 0.82 0.044 52.3 -18.9 0.67 0.45 0.50 0.51 0.67 **Gaming** 0.705263 1.36 1.02 0.069 60.1 10.5 0.61 0.48 0.64 0.60 0.59 **Esports** Fnatic 0.492754 0.97 0.92 -0.009 46.6 1.9 0.41 0.50 0.36 0.47 0.50 **MAD** 0.483871 0.93 0.98 -0.002 52.2 -3.3 0.53 0.49 0.44 0.57 0.53 Lions Team 0.541176 1.03 0.81 -0.006 48.8 5.3 0.48 0.53 0.56 0.40 0.55 **BDS** NRG 0.560976 1.14 0.84 -0.007 43.1 13.0 0.44 0.44 0.49 0.51 0.51 Cloud9 0.680556 1.28 56.2 0.80 0.043 11.9 0.46 0.49 0.56 0.67 0.59 Team 0.492063 0.97 58.7 0.79 0.026 -9.5 0.67 0.52 0.59 0.56 0.55 Liquid

```
In [32]: # GenG in Blue
         GenG vs BLG = selected columns.loc[["Gen.G"]].sub(selected columns.loc[["Bil
         # BlG in Blue
         BLG vs GenG = selected columns.loc[["Bilibili Gaming"]].sub(selected columns
In [33]: # Predict the Winning Rate
         GenG WR = dtc.predict proba(GenG vs BLG)
         BLG WR = dtc.predict proba(BLG vs GenG)
         print('The Winning Rate for Gen.G in the blue side is ', GenG WR,
                '; the Winning Rate for BLG in the blue side is ', BLG WR)
        The Winning Rate for Gen.G in the blue side is [[0. 1.]]; the Winning Rate
        for BLG in the blue side is [[0.2 0.8]]
         GenG win
In [37]: # NRG in Blue
         NRG vs WBG = selected columns.loc[["NRG"]].sub(selected columns.loc[["Weibo
         # WBG in Blue
         WBG vs NRG = selected columns.loc[["Weibo Gaming"]].sub(selected columns.loc
         # Predict the Winning Rate
         NRG WR = dtc.predict proba(NRG vs WBG)
         WBG_WR = dtc.predict_proba(WBG vs NRG)
         print('The Winning Rate for NRG in the blue side is ', NRG WR, '; the Winning Rate for NRG in the blue side is ', NRG WR, ';
        The Winning Rate for NRG in the blue side is [[1. 0.]]; the Winning Rate f
        or WBG in the blue side is [[0.8 0.2]]
         WBG win
In [38]: # JDG in Blue
         JDG vs KT = selected columns.loc[["JD Gaming"]].sub(selected columns.loc[["K
         # KT in Blue
         KT vs JDG = selected columns.loc[["KT Rolster"]].sub(selected columns.loc[["
         # Predict the Winning Rate
         JDG WR = dtc.predict(JDG vs KT)
         KT WR = dtc.predict(KT vs JDG)
         print('The Winning Rate for JDG in the blue side is ', JDG WR, '; the Winnin
        The Winning Rate for JDG in the blue side is [0]; the Winning Rate for KT
        in the blue side is [1]
         KT win
In [41]: # LNG in Blue
         LNG vs T1 = selected columns.loc[["LNG Esports"]].sub(selected columns.loc[[
         # T1 in Blue
         T1 vs LNG = selected columns.loc[["T1"]].sub(selected columns.loc[["LNG Espc
         # Predict the Winning Rate
```

LNG WR = dtc.predict proba(LNG vs T1)

```
T1_WR = dtc.predict_proba(T1_vs_LNG)
print('The Winning Rate for LNG in the blue side is ', LNG_WR, '; the Winning
```

The Winning Rate for LNG in the blue side is $[[0.66666667\ 0.33333333]]$; the Winning Rate for T1 in the blue side is $[[1.\ 0.]]$

LNG win

```
In [ ]:
```

Semifinals

```
In [43]: # GenG in Blue
    GenG_vs_WBG = selected_columns.loc[["Gen.G"]].sub(selected_columns.loc[["Wei
# WBG in Blue
    WBG_vs_GenG = selected_columns.loc[["Weibo Gaming"]].sub(selected_columns.lo
# Predict the Winning Rate
    GenG_WR = dtc.predict_proba(GenG_vs_WBG)
    WBG_WR = dtc.predict_proba(WBG_vs_GenG)
    print('The Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG in the blue side is ', GenG_WR, '; the Winning Rate for GenG_WR, '; the Winning Rat
```

The Winning Rate for GenG in the blue side is $[[0.6 \ 0.4]]$; the Winning Rate for WBG in the blue side is $[[0.909090901 \ 0.09090909]]$

GenG win

The Winning Rate for KT in the blue side is [1]; the Winning Rate for LNG in the blue side is [0]

KT win

```
In [ ]:
```

Final

```
In [47]: # GenG in Blue
GenG_vs_KT = selected_columns.loc[["Gen.G"]].sub(selected_columns.loc[["KT F
# KT in Blue
KT_vs_GenG = selected_columns.loc[["KT Rolster"]].sub(selected_columns.loc[[
# Predict the Winning Rate
GenG_WR = dtc.predict(GenG_vs_KT)
KT_WR = dtc.predict(KT_vs_GenG)
```

The Winning Rate for GenG in the blue side is [1]; the Winning Rate for KT in the blue side is [0]

By CART model, the winner is GenG