Курс "Теория случайных процессов". Домашнее задание номер 1.

Тема: Траектории и конечномерные распределения случайных процессов. Процессы восстановления.

Крайний срок сдачи: 24 сентября 2019 г., 12:10.

Решение (набранное в LaTeX, Word,... или написанное от руки) нужно либо принести на занятие, либо прислать на e-mail Ольге Γ ниловой olyagnilova@gmail.com.

Если Вы решили отсканировать написанное от руки решение, то все сканы должны быть объединены в один PDF- файл.

- 1. Опишите траектории процесса X_t и найдите конечномерные распределения процесса X_t , если случайный процесс X_t определён для $t \in (0, \infty)$ следующим образом:
 - (i) $X_t = e^{\xi t}$, где случайная величина ξ равномерно распределена на [-1,1];
 - (ii) $X_t = (\xi + \eta)/t$, где ξ и η независимые случайные величины, имеющие нормальное распределение с нулевым средним и дисперсией 1/2.
- 2. Пусть ξ_1, ξ_2 2 независимые случайные величины, равномерно распределённые на отрезке [-1,1]. Определим случайный процесс

$$X_t = t (\xi_1 + a(\xi_2 + 2a)), \qquad t \ge 0,$$

где $a \in \mathbb{R}$ - детерминированный параметр (т.е. параметр, не являющийся случайной величиной). Найдите значения параметра a, при которых почти все траектории процесса X_t возрастают.

3. Найдите математическое ожидание считающего процесса N_t , построенного по процессу восстановления S_n , у которого плотность с.в. $\xi_n = S_n - S_{n-1}$ равна

$$f_{\xi}(x) = \frac{1}{2}e^{-x} + e^{-2x}, \qquad x > 0.$$

- 4. (i) Пусть ξ, η 2 независимые, равномерно распределённые на отрезке [0,1] случайные велчины. Найдите плотность распределения случайной величины $|\xi-\eta|$.
 - (ii) Пусть $\xi, \eta-2$ независимые случайные величины с одинаковым распределением, имеющим плотность

$$p(x) = \frac{1}{2}e^{-|x|}, \qquad x \in \mathbb{R}.$$

Найдите плотность распределения случайной величины $\xi + \eta$.

5*. Случайное блуждание определяется рекуррентной формулой

$$S_0 = 0,$$
 $S_n = S_{n-1} + \xi_n,$ $n = 1, 2, ...,$

где ξ_1, ξ_2, \dots - независимые случайные величины, принимающие значения 1 и -1 с вероятностями $p \in (0,1)$ и 1-p соответственно.

- (i) Является ли процесс S_n процессом восстановления?
- (ii) Опишите траектории процесса S_n .
- (iii) Найдите конечномерные распределения процесса S_n .
- (iv) Вычислите $p_n := \mathbb{P}\{S_n = 0\}$ и определите, сходится ли ряд

$$\mathcal{S} := \sum_{n=1}^{\infty} p_n.$$

Комментарий. Вопрос о сходимости ряда S крайне важен для изучения свойств процесса S_n как марковской цепи.

 6^* . Пусть S_n - процесс восстановления и N_t - соответствующий считающий процесс. Как известно, процессы S_n и N_t связаны соотношением

$${S_n > t} = {N_t < n}$$

справедливым для любых $n\in\mathbb{N},t\in\mathbb{R}_{+}.$ Верно ли, что

$$\{S_n \ge t\} = \{N_t \le n\}$$

для любых $n \in \mathbb{N}, t \in \mathbb{R}_+$?