Off-policy deep reinforcement learning algorithms (seminar)

Oleksii Hrinchuk

Deep Q-Network (DQN)

- 1. Initialize Q-Network Q_{θ} , set initial exploration rate $\varepsilon=1$. Run epsilon-greedy policy w.r.t. Q_{θ} (or random policy which is the same) for a number of steps to initialize replay buffer \mathcal{D} .
- 2. (Train loop)
 - Make a step in the environment with policy $\pi = \varepsilon$ -greedy (Q_{θ})
 - Put transition $\mathbf{d}_t = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1}\}$ into replay buffer \mathcal{D}
 - If step % q_update_frequency == 0: Sample mini-batch of transitions $\{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_B\} \sim \mathcal{D}$ Update Q-Network weights $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\theta}$
 - If step % target_update_frequency == 0: Update target network weights $\tilde{\theta} \leftarrow \theta$
 - Decay exploration rate $\varepsilon \leftarrow \varepsilon \Delta \varepsilon$
- 3. Return greedy policy w.r.t. the learned Q-function Q_{θ}

Improvements to DQN

Double DQN (DDQN)

 Max operator in TD-targets leads to overoptimistic estimates of Q-function.

$$y_{t} = \mathbf{r}_{t} + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}')$$

$$= \mathbf{r}_{t} + \gamma Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \arg \max_{\mathbf{a}' \in \mathcal{A}} Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}'))$$

 Q-Network is used to select actions, target network is used to evaluate actions

$$y_t = \mathbf{r}_t + \gamma Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \arg \max_{\mathbf{a}' \in \mathcal{A}} Q_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}'))$$

Dueling DDQN

- Split Q-function into two channels
 - Action independent value function $V(\mathbf{s})$
 - Action dependent advantage function $A(\mathbf{s}, \mathbf{a})$

$$Q(\mathbf{s}, \mathbf{a}) = V(\mathbf{s}) + A(\mathbf{s}, \mathbf{a}) - \frac{1}{|\mathcal{A}|} \sum_{\mathbf{a} \in \mathcal{A}} A(\mathbf{s}, \mathbf{a})$$

Prioritized experience replay

Transitions with high TD-error are sampled more often

$$\mathbf{d}_{t} = \{\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{r}_{t}, \mathbf{s}_{t+1}\}$$

$$\delta_{t} = \mathbf{r}_{t} + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q(\mathbf{s}_{t+1}, \mathbf{a}') - Q(\mathbf{s}_{t}, \mathbf{a}_{t})$$

- Define prioritization
 - proportional $p_t = |\delta_t| + \epsilon$
 - rank-based $p_t = 1/\text{rank}(t)$
- Sample transitions according to probability

$$P(\mathbf{d}_t) = \frac{p_t^{\alpha}}{\sum_{t'=1}^{|\mathcal{D}|} p_{t'}^{\alpha}}$$

Boltzmann exploration

- Epsilon-greedy exploration is bad in situations when picking random action can be disastrous
- Idea: pick exploratory actions based on Q-function:
 - good actions have high probability
 - bad actions have really low probability

$$\pi_{\mathcal{B}}(\mathbf{a}|\mathbf{s}) = \operatorname{softmax}\left(\frac{Q(\mathbf{s}, \mathbf{a})}{\tau}\right) = \frac{\exp\left(Q(\mathbf{s}, \mathbf{a})/\tau\right)}{\sum_{\mathbf{a}' \in \mathcal{A}} \exp\left(Q(\mathbf{s}, \mathbf{a}')/\tau\right)}$$

$$\pi_{\mathcal{B}}(\mathbf{a}|\mathbf{s}) \to \arg\max_{\mathbf{a}\in\mathcal{A}} Q(\mathbf{s},\mathbf{a}), \quad \tau \to 0$$

Additional off-policy references

- A Distributional Perspective on Reinforcement Learning. Bellemare et al., ICML (2017)
- Distributional Reinforcement Learning with Quantile Regression. Dabney et al., AAAI (2018)
- Rainbow: Combining Improvements in Deep Reinforcement Learning. Hessel et al., AAAI (2018)
- Self-Imitation Learning. Oh et al., ICML (2018)

Additional on-policy references

- Asynchronous Methods for Deep Reinforcement Learning. Mnih et al., ICML (2016)
- Trust Region Policy Optimization. Schulman et al., ICML (2015)
- Proximal Policy Optimization Algorithms. Schulman et al. (2017)

Why so many RL algorithms?

- Different tradeoffs
 - Sample efficiency
 - Stability and ease of use
- Different assumptions
 - Stochastic or deterministic?
 - Continuous or discrete?
 - Episodic or infinite horizon?
- Different things are easy or hard in different settings
 - Easier to represent the policy?
 - Easier to represent the model?

Sample efficiency

At best, minimizes error of fit ("Bellman error")
At worst, does not optimize anything

Task

- Train the best agent to play 10x10 Snake game
- You are allowed to adopt third-party open source code, but you have to cite the source
- You are not allowed to change the file snake.py
- You should submit
 - Plot (reward / number of training transitions)
 - Best agent score (mean and std of 1000 runs)
 - Source code which reproduces best agent results
 - Short report on what you try, what worked best (worst)
- Deadline: Sunday, Sep 30, 23:59