Машинное обучение _{Лекция 15}

Ранжировани

е

На прошлых лекциях

- Методы обучения с учителем: линейные модели, решающие деревья, случайные леса, ...
- •Дано: матрица «объекты-признаки**¾** и у
- Найти: модельa(x) ответы
- Модель должна выдавать прогнозы, близкие к истинным ответам

Задача Ранжирования

• Дано

Матрица объекты-признаки
$$X=\{x_1,\dots x_n\}$$
 Отношени x_j лучш $x_i:i\prec j$

• Найти

Ранжирующую функцию а, которая восстанавливает правильное отношение порядка

$$i \prec j \Rightarrow a(x_i) < a(x_j)$$

Примеры Задач Ранжирования

- Ранжирование поисковой выдачи
- Ранжирование рекомендаций пользователям
- Ранжирование вариантов автоматического завершения запроса
- Ранжирование ответов в диалоговых системах

машинное обучение

Найти

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Что такое машинное обучение и почему оно может...

lifehacker.ru > Лайфхакер > ...-mashinnoe-obuchenie ▼

Машинное обучение избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему.

Курс «Машинное обучение» 2014 - YouTube

youtube.com > playlist?list=... b9zqEQiiBtC v

Курс "Машинное обучение" является одним из основных курсов Школы, поэтому он является обязательным для всех студентов ШАД.

Р Машинист электропоезда - обучение | Про профессии.ру

proprof.ru > Машинист электропоезда v

Машинист электропоезда - **обучение**. И метрополитен, и РЖД приглашают на **обучение** в собственные учебно-производственные центры.

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

машинное обучение

Найти

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Что такое машинное обучение и почему оно может...

lifehacker.ru > Лайфхакер > ...-mashinnoe-obuchenie ▼

Машинное обучение избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему.

□ Курс «Машинное обучение» 2014 - YouTube

youtube.com > playlist?list=..._b9zqEQiiBtC ▼

Курс "Машинное обучение" является одним из основных курсов Школы, поэтому он является обязательным для всех студентов ШАД.

Р Машинист электропоезда - обучение | Про профессии.ру

proprof.ru > Машинист электропоезда 🔻

Машинист электропоезда - **обучение**. И метрополитен, и РЖД приглашают на **обучение** в собственные учебно-производственные центры.

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

ие

- Дан набор запросо $\{q_1, \dots, q_m\}$
- Дан набор документо $\{d_1, ..., d_n\}$
- Нужно для каждого запроса правильно упорядочить документы
- Что такое «правильно»?

ие

- Дан набор запросо $\{q_1, ..., q_m\}$
- •Дан набор документо $\{d_1, \dots, d_n\}$
- Рассматриваем пары «запрос-докуме(ндт, и)

ие

- Дан набор запросо $\{q_1, ..., q_m\}$
- Дан набор документо $\{d_1, ..., d_n\}$
- Рассматриваем пары «запрос-докуме(ндг,м)
- Известно, что для запро $oldsymbol{q}$ а докуме $oldsymbol{q}$ нт, должен стоять раньше, че $oldsymbol{m}_2$

Обозначим эт (q, d_1, d_2)

ие

- Дан набор запросо $\{q_1, ..., q_m\}$
- Дан набор документо $\{d_1, ..., d_n\}$
- Рассматриваем пары «запрос-докуме(ндг,м)
- Известно, что для запро $oldsymbol{q}$ а докуме $oldsymbol{q}$ нт, должен стоять раньше, че $oldsymbol{m}_2$

Обозначим эт (q, d_1, d_2)

 Обозначение — множество троек, для которых известен такой порядок

ие

• Раньше: строим a(x), которая приближает ответы модель a(q,d), которая правильно

• Сейчас: строим упорядочивает модель документы для запросов $(q,d_1,d_2) \in R \Rightarrow a(q,d_1) > a(q,d_2)$

Приме

- р ∙Для запроса_/ известны пары d_1), (d_3, d_2) , (d_1, d_4)
 - Какие наборы прогнозов модели

```
(13,44,4,1)
```

- (2, 3, 4, 1)
- (3, 4, 2, 1)
- (13, 10, 20, 7)

Приме

- **р** •Для запросаq известны пары d_1), (d_3, d_2) , (d_1, d_4)
- Какие наборы прогнозов модели лучше?
- (3, 2, 4, 1)
- (2,3,4,1)
- (3, 4, 2, 1)
- (13, 10, 20, 7)
- Важен порядок, а не абсолютные значения!

Метрики качества ранжирования

Задача Ранжирования

Матрица объекты-признаки $X=\{x_1,\dots x_n\}$ $x_{\mathbf{i}}=(q,d)$

Ответы — числауі

Отношение x_j лучшеi $y_i > y_i$

Качество

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Обучение машиниста бурильно-крановых машин — АНО...

ccrp.ru > rabochie/mashinist burilno-kranovoy... v

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html >

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

Обучение машиниста бурильно-крановых машин — AHO...

ccrp.ru > rabochie/mashinist burilno-kranovoy... ▼

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение *

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html v

После **обучения машины** или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

Обучение машиниста бурильно-крановых машин — АНО...

ccrp.ru > rabochie/mashinist burilno-kranovoy... v

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

w Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

- Какое ранжирование лучше?
- Какое хуже всех?

Бинарные ответь $y_i \in \{0, 1\}$

• Документ либо соответствует запросу, или нет

- Можно применять стандартные метрики классификации:
 - Вычисляем метрику в рамках каждого запроса
 - Усредняем по всем запросам из выборки

Метрики классификации

$$precision = \frac{|\{relevant\} \cap \{retrieved\}|}{|\{retrieved\}|}$$

$$recall = \frac{|\{relevant\} \cap \{retrieved\}|}{|\{relevant\}|}$$

Метрики классификации

- Paccomotpum precision
- На самом деле нас интересуют документы, которые оказались вверху выдачи
- Поэтому рассматривают precision@k: метрика, вычисленная на k первых выдачах
- (!) Мы никак не учитываем порядок внутри первых k позиций

AP@
$$k(q) = \sum_{i=1}^{k} \frac{y_{(i)}}{\sum_{j=1}^{k} y_{(j)}} \text{precision@} i(q),$$

Вещественная целевая переменная

```
• (q_1, d_1), 1
```

•
$$(q_1, d_2), 0.7$$

•
$$(q_1, d_3), 0.1$$

•
$$(q_2, d_1), 0.1$$

•
$$(q_2, d_2), 1$$

```
•Дл q_1 должны получить (d_1, d_2, d_3) я q_2 ранжирование должны (d_2, d_1)
```

•Дл получить ранжирование

Я

Метрики классификации

- Paccomotpum precision
- y_i релевантность документа на і-й позиции
- Тогда можно посчитать Average Precision, где документ на первой позиции будет иметь больший вес

AP@
$$k(q) = \sum_{i=1}^{k} \frac{y_{(i)}}{\sum_{j=1}^{k} y_{(j)}} \text{precision@} i(q),$$

DCG (Discounted cumulative gain)

$$DCG@k(q) = \sum_{i=1}^{k} \frac{2^{y_i} - 1}{\log(i+1)}$$

- Вычисляется по первым документам из выдачи для q запроса i
- — истинный ответ для документа на -й позиции
- Чтобы получить итоговую оценку, DCG усредняется по всем запросам

Доля дефектных пар

DP@
$$k(q) = \frac{2}{k(k-1)} \sum_{i < j}^{k} [y_i < y_j]$$

 Число инверсий порядка среди первых

k документо в

pFound

https://habr.com/ru/company/yandex/blog/197838/

pFound

- Вероятностная модель поведения пользователя
- При неуспехе с очередным документом выдачи разочавуется и уйдет с P_{out}
- Реродтность дойти до -ого документа, $_{i}$ вероятность того, что пользователь удовлетворится-ым документом

$$P_1 = 1,$$

 $P_{i+1} = P_i(1 - y_i)(1 - P_{out})$
pFound@ $k(q) = \sum_{i=1}^{k} P_i y_i$

Разнообразие поисковой выдачи

- Неоднозначные запросы
- Пример: «ягуар»
 - Животное?
 - Марка автомобиля?
 - Танк? (немецкий или китайский?)
 - Напиток?

Разнообразие поисковой выдачи

- Неоднозначные запросы
- С точки зрения обычных метрик, весь топ выдачи нужно замостить одинаковыми релевантными документами
- Разнообразие позволяет собрать разнородную выдачу,
 чтобы удовлетворить в среднем всех

Wide pFound

- Предполагается, что пользователь, делая запрос, мог иметь в виду один из I_{M} нте I_{M} нгов I_{m} I_{m}
- Примеры интентов: автомобили, картинки, новости, животные, ... $p(I_i)$
- Каждый интент имеет некоторую вероятность и порождает собственное распределение релевантностей на документа $\mathbf{Wide} \ \mathrm{pFound} = \sum_{i=1}^{p} p(I_i) \mathrm{pFound}(I_i)$

Wide pFound

• Как вычислить вероятности интентов?

Wide pFound

- Как вычислить вероятности интентов?
- Интент пользователя определяется по продолжениям введенного запроса
- Продолжения классифицируются по различным тематикам
- Тематики являются интентами
- Вероятности определяются по частоте соответствующих продолжений запросов

Признаки в задачах ранжирования

Типы

Признаков • Запросные

- - Популярность запроса
 - Тип запроса (навигационный, товарный и т.д.)
- Статические зависят только от документа
 - Популярность документа
 - Тематика
 - Распределение слов
- Динамические зависят от документа и от запроса
 - Расстояния между запросом и документом

Признаки ранжирования Google • https://backlinko.com/google-ranking-factors

Мешок

СЛОВ

- v(большое) = (1, 0, 0, 0, ..., 0)
- v(спасибо) = (0, 1, 0, 0, ..., 0)
- v(минус) = (0, 0, 1, 0, ..., 0)
- v(зарубежный) = (0, 0, 0, 1, ..., 0)
- . . .
- v(инквизиция) = (0, 0, 0, 0, ..., 1)

Мешок

СЛОВ

• Текст — это вектор*х*, содержащий счётчики слов

Косинусное расстояние

- **Расстояние** Пусть \vec{q} вектор запрос \vec{a} вектор документа
- Мера сходства: $s(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\|\vec{q}\| \|\vec{d}\|}$
- •Чем больше, тем сильнее тексты похожи по долям слов

Продвинутое расстояние: ВМ25

BM25
$$(q, d) = \sum_{i=1}^{n} IDF(q_i) \frac{tf(q_i, d)(k_1 + 1)}{tf(q_i, d) + k_1 \left(1 - b + b \frac{|D|}{\bar{n}_d}\right)}$$

- Документы в сети ссылаются друг на друга
- Если документ А ссылается на документ В, то он «голосует» за В
- Чем меньше голосов отдаёт A, тем сильнее его голос
- Документ В важен, если за него отдано много сильных голосов

- Пусть пользователь бродит по сети
- 6 ТВРДУЯТНОС-ПИЗАЙНОГЯ вреходит по одной из ссылок с документа равными
- С вероятностью переходит на случайный документ из всей
- PageRank вероянность при таком случайном блуждании попасть в данный документ

• PageRank страницыu зависит от PageRank страниц из множества B_u (страниц, которые ссылаются на), поделенного на число исходящих ссылок из страницы:

$$PR(u) = \sum_{v \in B_{u}} \frac{PR(v)}{L(v)}$$

- Учтем, что пользователь может остановиться в какой-то момент $d\approx 0.85$
- Установим damping factor (фактор затухания) обычно
- N число рассматриваемых страниц

$$PR(u) = \frac{1-d}{N} + d \sum_{v \in B_u} \frac{PR(v)}{L(v)}$$

Методы ранжирования

Поточечный (pointwise)

подход

- модел y_i ответы
- Обучим a(q,d), чтобы она как можно точнее приближала
- Например, линехная $(\langle w, x(q,d) \rangle y_i)^2 \to \min_w$ регрессия: $(q,d,y) \in R$
- $\chi(q,d)$ признаки для пары «запросдокумент»

Поточечный (pointwise)

- **ПОДХОД** Простой в реализации
- Можно использовать любую из известных моделей (линейные, деревья, случайные леса, нейронные сети...)
- Восстанавливает точные значения , хотя нас интересует порядок

Попарный (pairwise) подход

• В ранжировании требуется правильно располагать пары документов — формализуем это

$$\sum_{(q,d_i,d_j)\in R} \left[a(q,d_i) - a(q,d_j) < 0 \right]$$

• Штрафуем, если второй документ из пары оказался раньше

Попарный (pairwise)

подход

- Получили разрывный функционал сложно оптимизировать
- Перейдём к гладкой верхней оценке (как в линейных классификаторах):

$$\sum_{(q,d_i,d_j)\in R} \left[a(q,x_i) - a(q,x_j) < 0 \right] \le \sum_{(q,d_i,d_j)\in R} L\left(a(q,x_i) - a(q,x_j) \right)$$

RankNet

$$\sum_{(q,d_{i},d_{j})\in R} [a(q,x_{i}) - a(q,x_{j}) < 0] \le \sum_{(q,d_{i},d_{j})\in R} L(a(q,x_{i}) - a(q,x_{j}))$$

• Выберем логистическую функцию:

$$L(z) = \log(1 + e^{-z})$$

Попарный (pairwise)

ПОДХОД

- Сложнее поточечного (больше слагаемых в функционале)
- Обычно даёт качество выше, чем поточечный
- Реализаци SVM^{light}, xgboost (rank:pairwise) и:

Резюм

e

- Ранжирование задача сортировки документов по релевантности
- Метрика должна учитывать позиции, а не абсолютные значения прогнозов например, DCG
- Поточечный и попарный подходы
- Отдельная задача разработка признаков