Introduction to AWS

Cloud Computing

Amazon Web Services (AWS) is a *cloud computing* service offering on-demand, pay-as-you-go computing power.

Cloud computing services offer access to compute resources, such as data storage or computing power without requiring direct active management by the user.

Cloud services take advantage of economies of scale to charge very little for the services they offer

Cloud Computing

Example: Setting up a Hadoop cluster can take weeks to do.

As an alternative, amazon EMR (Elastic MapReduce) lets you start working on as large a Hadoop or Spark cluster as needed in minutes.

Cloud Computing

Biggest Cloud Computing Services:

- Amazon Web Services
- Google Cloud
- Microsoft Azure
- Oracle Cloud

Google Cloud Platform	Amazon Web Services ^[9]	Microsoft Azure ^[10]	Oracle Cloud ^[11]
Google Compute Engine	Amazon EC2	Azure Virtual Machines	Oracle Cloud Infra OCI
Google App Engine	AWS Elastic Beanstalk	Azure App Services	Oracle Application Container
Google Kubernetes Engine	Amazon Elastic Container Service for Kubernetes	Azure Kubernetes Service	Oracle Kubernetes Service
Google Cloud Bigtable	Amazon DynamoDB	Azure Cosmos DB	Oracle NoSQL Database
Google BigQuery	Amazon Redshift	Microsoft Azure DataWarehouse	Oracle Autonomous DataWarehouse
Google Cloud Functions	AWS Lambda	Azure Functions	Oracle Cloud Fn
Google Cloud Datastore	Amazon DynamoDB	Cosmos DB	Oracle NoSQL Database
Google Cloud Storage	Amazon S3	Azure Blob Storage	Oracle Cloud Storage OCI

AWS Offerings

AWS offers a ton of different types of services.

In these slides, we'll look at a few of the common ones that you may encounter in the data science field.

▼ All services

Compute

EC2

Lightsail 🔼

ECR

ECS

EKS

Lambda

Batch

Elastic Beanstalk

Serverless Application Repository

AWS Outposts

EC2 Image Builder

Storage

S3

EFS

FSx

S3 Glacier

Storage Gateway

AWS Backup

■ Database

RDS

DynamoDB

Machine Learning

Amazon SageMaker

Amazon CodeGuru

Amazon Comprehend

Amazon Forecast

Amazon Fraud Detector

Amazon Kendra

Amazon Lex

Amazon Machine Learning

Amazon Personalize

Amazon Polly

Amazon Rekognition

Amazon Textract

Amazon Transcribe

Amazon Translate

AWS DeepLens

AWS DeepRacer

Amazon Augmented Al

Analytics

Athena

EMR

CloudSearch

Elasticsearch Service

Minnele

RDS = Relational Database Services (SQL Databases)

NoSQL database. Key-value and document storage

Large-scale columnar data warehouse. Similar to SQL, but more efficient for analytics queries

AWS S3 (**Simple Storage Service**) is a scalable storage service that offers low latency and high availability.

Can be used to store any type of file, so is good for holding unstructured or semi-structured data.

Objects are organized into buckets.

There are a number of ways to interact with S3:

- In the browser via AWS Management Console (we'll see this on Saturday)
- The AWS command line interface CLI
- Python's boto3 library

We'll look at option 2 first.

First, you need to download and configure the CLI: https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.

Once you've run the installer, check that it is installed by running

\$ aws --version

Next, you need to configure your access keys. Do this by running

\$ aws configure

Input the ID and Secret Key shared with you. Set the default region name as us-east-1 and the output format as json.

There are numerous open datasets available on AWS:

https://registry.opendata.aws/

Let's look at the New York City Taxi and Limousine Commission (TLC) Trip Record Data

(https://registry.opendata.aws/nyc-tlc-trip-records-pds/)

This data is contained in a bucket named nyc-tlc To see what is in this bucket, use

Let's see what kind of trip data is available.

\$ aws s3 ls s3://nyc-tlc/trip\ data/

Let's grab the file for December, 2019:

\$ aws s3 cp s3://nyc-tlc/trip\ data/yellow_tripdata_2019-12.csv .

You can also use the *boto3* library in Python to interact with AWS. It works for a large number of services, but we'll look specifically at s3 (https://boto3.amazonaws.com/v1/documentatio n/api/latest/reference/services/index.html).

You can install boto3 by running \$ pip install boto3

Note: For *boto3* to work, you will need to have installed the aws cli and run *aws configure*.

- >>> import boto3
- >>> s3 = boto3.resource('s3')
- >>> bucket = s3.Bucket('nyc-tlc')
- >>> bucket.download_file('trip data/yellow_tripdata_2019-12.csv',
- 'yellow_tripdata_2019-12.csv')

Save it at this filepath (on your local machine)

Download this file from the / bucket

AWS

In the next couple of classes, we will be exploring some of the other tools offered on AWS.

In order to prepare for this, you will need to install ssh.

On mac, it should come preinstalled, so to check that it is, type \$ ssh

Windows users should install PuTTY:

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html