Neural Network Model Report

Overview of the Analysis

The purpose of this analysis is to develop and evaluate a deep learning model for Alphabet Soup's charity funding prediction. The goal is to determine whether a given funding application will be successful based on historical data.

Results

Data Preprocessing

- Target Variable: The target variable for the model is the funding success indicator.
- **Feature Variables:** The input features include various attributes of the funding application, such as categorical and numerical data.
- **Removed Variables:** Non-beneficial columns such as 'EIN' and 'NAME' were removed, as they do not contribute to the predictive capability of the model.

Compiling, Training, and Evaluating the Model

Neural Network Structure:

- Input layer with a number of input features (number_input_features)
- First hidden layer: hidden_nodes_layer1 neurons, ReLU activation
- Second hidden layer: hidden_nodes_layer2 neurons, ReLU activation
- Output layer: 1 neuron, sigmoid activation

• Compilation and Training:

- Loss function: Binary Cross-Entropy
- Optimizer: AdamTraining epochs: 100

• Performance:

- The model was evaluated using accuracy.
- Final evaluation results: Loss: model_loss, Accuracy: model_accuracy

• Performance Improvements:

 Various attempts were made to improve model performance, including adjusting the number of hidden layers and neurons, modifying activation functions, and tuning hyperparameters.

Summary

The deep learning model successfully classified funding applications with a certain level of accuracy. However, further improvements may be necessary to achieve optimal performance. A potential alternative model for this classification problem could be a **Random Forest classifier** or **XGBoost**, as these models are robust with categorical and numerical data and often perform well on structured datasets. These methods could be explored to compare performance with the neural network approach.