DFA Practice CSCI 338

Deterministic Finite Automaton (DFA)

DFA: Model of a computer that determines (accept or reject) if a string has a specific format.

Deterministic Finite Automaton (DFA)

DFA: Model of a computer that determines (accept or reject) if a string has a specific format.

DFAs consist of:

- 1. Finite set of states, Q.
- 2. Finite alphabet, Σ .
- 3. Transition function, $\delta: Q \times \Sigma \to Q$.
- 4. Start state, $q_0 \in Q$.
- 5. Set of accept states, $F \subseteq Q$.

The language of a DFA M is the set of all strings M accepts.

What is the language?:

1.

The language of a DFA M is the set of all strings M accepts.

What is the language?:

1. $\{\omega : \omega \text{ consists of } 0\text{'s and } 1\text{'s}\}$

The language of a DFA M is the set of all strings M accepts.

DFA Language Rules:

- 1. If the DFA accepts it, it is in the language.
- 2. If it is in the language, the DFA must accept it.

DFA Practice What is the language?: 1.

The language of a DFA M is the set of all strings M accepts.

What is the language?:

1. Ø

The language of a DFA M is the set of all strings M accepts.

What is the language?:

The language of a DFA M is the set of all strings M accepts.

1. $\emptyset = \{\omega : \omega \text{ contains no } 0\text{'s and contains at least one } 0\}$

What is the language?:

The language of a DFA M is the set of all strings M accepts.

1. $\emptyset = \{\omega : \omega \text{ contains no } 0\text{'s and contains at least one } 0\}$

Can it still process $\omega = 11010$?

What is the language?:

The language of a DFA M is the set of all strings M accepts.

1. $\emptyset = \{\omega : \omega \text{ contains no } 0\text{'s and contains at least one } 0\}$

Can it still process $\omega = 11010$? Yes – DFA's can process every string with the appropriate alphabet.

Proof:

What about 1010?

Proof:

If you had to name this state, what would you name it?

Proof:

If you had to name this state, what would you name it?

"We just processed a 1 state"

Prove that the following language is regular: $\{\omega : \omega \text{ starts and ends with a } 0\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ starts and ends with a } 0\}.$

Proof:

The string $\omega = 0$ starts and ends with a 0 and must be accepted!

Proof:

 $\omega = 0110$. Accept or Reject?

Proof:

 $\omega = 0110$. Accept or Reject? It rejects but should accept!

Prove that the following language is regular: $\{\omega \colon \omega \text{ starts and ends with the same symbol}\}.$

Prove that the following language is regular: $\{\omega \colon \omega \text{ starts and ends with the same symbol}\}.$

Prove that the following language is regular:

 $\{\omega\colon\omega\text{ consists of some number of }0\text{s followed by the same number of }1\text{s}\}.$ E.g. 000111

Prove that the following language is regular: $\{11\}.$

Prove that the following language is regular: $\{11\}.$

Prove that the following language is regular: $\{11\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ could be anything except } 11\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ could be anything except } 11\}.$

Complements of Regular Languages

Claim: If A is a regular language, then the following is also regular: $\overline{A} = \{\omega : \omega \notin A\}$

Proof: ?

Claim: If A is a regular language, then the following is also regular: $\overline{A} = \{\omega : \omega \notin A\}$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.

Claim: If A is a regular language, then the following is also regular: $\overline{A} = \{\omega : \omega \notin A\}$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it. Given DFA_A for A, build a DFA_{\bar{A}} for \bar{A} :

Claim: If A is a regular language, then the following is also regular: $\bar{A} = \{\omega \colon \omega \notin A\}$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.

Given DFA_A for A, build a DFA $_{\bar{A}}$ for \bar{A} :

Turn accept states into non-accept states and turn non-accept states into accept states.

Claim: If A is a regular language, then the following is also regular: $\overline{A} = \{\omega : \omega \notin A\}$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.

Given DFA_A for A, build a DFA_{\bar{A}} for \bar{A} :

Turn accept states into non-accept states and turn non-accept states into accept states.

Need to argue that this DFA defines \bar{A} ...

Claim: If A is a regular language, then the following is also regular: $\overline{A} = \{\omega : \omega \notin A\}$

Proof: A is a regular language $\Rightarrow \exists$ DFA for it.

Given DFA_A for A, build a DFA_{\bar{A}} for \bar{A} :

Turn accept states into non-accept states and turn non-accept states into accept states.

If $\omega \in A$, then processing it ended on an accept state, which is a non-accept state for DFA $_{\bar{A}}$, thus $\omega \notin \bar{A}$. (similar if $\omega \notin A$)

 ε is called the empty string. It is the string that contains no characters.

Prove that the following language is regular: $\{\varepsilon\}$.

Proof:

 ε is called the empty string. It is the string that contains no characters.

Prove that the following language is regular: $\{\varepsilon\}$.

Prove that the following language is regular: Ø.

Prove that the following language is regular: \emptyset .

$$L = \{\varepsilon\}$$

$$L = \emptyset$$

Empty string

VS.

Empty set

NFA Teaser

NFA Teaser

Prove that the following language is regular:

$$\{\omega: |\omega| \leq 3\}.$$

 $|\omega| = \text{length of } \omega$. I.e. number of characters in ω .

Prove that the following language is regular:

$$\{\omega: |\omega| \leq 3\}.$$

 $|\omega| = \text{length of } \omega$. I.e. number of characters in ω .

Prove that the following language is regular: $\{\omega : \omega \text{ contains at least } 3 \text{ } 1s\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ contains at least } 3 \text{ } 1s\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ contains exactly } 3 \text{ } 1s\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ contains exactly } 3 \text{ } 1s\}.$

Prove that the following language is regular: $\{\omega:\omega \text{ could be anything except } 11 \text{ or } 00\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ could be anything except } 11 \text{ or } 00\}.$

Prove that the following language is regular: $\{\omega : \omega \text{ contains the same number of } 0\text{s and } 1\text{s}\}.$