Lesson 13:4

(Please listen to the explanations and fill in the blanks. The enclosed 5 questions will be discussed in the class)

6. Internal energy U

1.	Internal	energy	is	the	of	а	<u>distribution</u> of	_energy	and
		ene	ergy	asso	ciated with _		_the $\underline{\text{molecules}}$ of a system. U = \sum (KE + PE	Ξ)	

- 2. KE of molecules is related to the absolute temperature.
- 3. PE of molecules depends on intermolecular bonds which hold the molecules together and the separation between molecules.
- 4. In an ideal gas, NO ______ exists between molecules. PE = ____ and the internal energy is the sum of KE only. Since $\langle KE \rangle \propto T$, internal energy of ideal gas depends on temperature only.

substance and not in any way by the path or manner of the change.

5. The change of internal energy of a substance depends only on the initial and final states of the

$$\Delta U = U_2 - U_1$$

where **U**₁ and **U**₂ are intrinsic energy of the system at initial and final states, respectively.

6. When a substance undergoes some changes and eventually goes back to the initial state, there is no change in its internal energy, i.e. $\Delta U = 0$.

7. The First Law of Thermodynamics

1. dU = Q + W

The	in intern	nal energy U of molecules in system is
equal to the		•

2. It is based on the law of Conservation of which states that

Heat supplied Q

Whatever actions that increase the internal energy of the system are given +ve signs and the reverse, –ve signs.

	+ve	–ve
ΔU	increase in internal energy	decrease in internal energy
Q	Heat supplied to the system	heat extracted from the system
W	work done on the system	work done by the system (expansion)

Questions on the 1st Law of Thermodynamics

- 1. An ideal gas does 500 J of work in an adiabatic state, i.e. no heat energy supplied or lost.
 - a) Deduce the change in the internal energy of the gas.
 - b) Deduce about the temperature of the gas.
- 2. A sample of gas is enclosed in a cylinder by a frictionless piston of area 60 cm². The cylinder is heated so that 400 J of heat energy is supplied to the gas which then expands against atmosphere pressure and pushes the piston 20 cm along the cylinder. Given that atmospheric pressure is 1.0x10⁵ Pa, calculate:
 - c. the external work done by the gas [120J]
 - d. the change in internal energy of the gas. [280J]

- 3. When 0.60 kg of water is converted into steam at I0 °C at a pressure of 1.0x10⁵ Pa, the amount of heat energy supplied is 2.9 x 10⁶ J. If during the vaporisation the water increases its volume by 2.2 m³, calculate:
 - e. the work done against the external pressure [220kJ]
 - f. the increase in the internal energy of the water. [2.7e6J]

4. Given:

- density of water at 100 °C = 960 kgm⁻³
- density of steam at 100 °C and at atmospheric pressure = 0.59 kgm⁻³
- atmospheric pressure, Po = 1.01 x 10⁵ Pa
- specific latent heat of vaporisation = 2.26 x 10⁶ J kg⁻¹

Using the data given above, calculate the increase in internal energy when 1.00 kg of water at 100 °C changes to steam at atmospheric pressure. [ans: 20.9 x 10⁵ J]

Solution:

5.

Energy supplied $Q = mI_v$ Work done in expansion $W = p \Delta V$ 1st Law : dU = Q + W

(a) What is meant, in molecular terms, by the <i>internal energy</i> of a gas?
[2]
(b) State qualitatively and explain in molecular terms, what happens to the internal energy of a fixed mass of an ideal gas when, separately,
(i) the temperature of the gas is raised,
(ii) the volume is decreased at constant temperature,
(iii) the gas as a whole is moving at a certain speed.
[8]