Kalman Filter using MATLAB 1: Introduction

by Midhun T. Augustine

Overview

- 1 Introduction
 - State estimation: Basic idea
 - Types of dynamical systems
- 2 State estimation
 - Types of estimation problems
 - Deterministic estimator
 - Stochastic estimator

Introduction

State estimation: Basic idea

- State estimation problem deals with estimating the states of a dynamical system using the available information.
- States are the dynamic variables of a system that captures the dynamics of the system.
- Knowing the full state information has many practical significance in control systems, guidance and navigation, etc.
- In general measuring all the states using sensors is impractical.
- Kalman estimator: is an optimal linear estimator.

Notations

- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{R}$: Set of natural numbers, integers and real numbers
- $\bullet \ \mathbb{R}^n: n-$ dimensional Euclidean space
- $\mathbb{R}^{m \times n}$: Space of $m \times n$ real matrices
- \bullet X, x : Scalar <math>X, x
- \bullet **X**, **x** : Matrix/vector **X**, **x**
- \bullet \mathbb{X} : Set \mathbb{X}
- P > 0: Real symmetric positive definite matrix P
- \bullet **P** \geq 0 : Real symmetric positive semidefinite matrix **P**
- I, 0: Identity matrix and zero matrix.

Notations

- k: Discrete time instant $k \in \{0, 1, ..., N\}$
- \mathbf{x}_k : State vector (actual state), $\mathbf{x}_k \in \mathbb{R}^n$
- \mathbf{u}_k : Control input vector, $\mathbf{u}_k \in \mathbb{R}^m$
- \mathbf{y}_k : Output vector, $\mathbf{y}_k \in \mathbb{R}^p$
- \mathbf{d}_k : Disturbance vector, $\mathbf{d}_k \in \mathbb{R}^n$
- \bullet \mathbf{v}_k : Noise vector, $\mathbf{v}_k \in \mathbb{R}^p$
- **A**: System matrix, $\mathbf{A} \in \mathbb{R}^{n \times n}$
- **B**: Input matrix, $\mathbf{B} \in \mathbb{R}^{n \times m}$
- C: Output matrix, $C \in \mathbb{R}^{p \times n}$
- $\hat{\mathbf{x}}_k$: Estimated state vector
- $\hat{\mathbf{x}}_{k|i}$: Estimate of the state at time instant k computed using the measurement information at time instant i.

Types of dynamical systems

- In general dynamical systems can be classified as
 - ① Deterministic system: in which the states can be exactly predicted using the model given the initial state and control input. Eg. Deterministic linear time invariant (LTI) system:

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k$$
$$\mathbf{y}_k = \mathbf{C}\mathbf{x}_k \tag{1}$$

② Uncertain system: has some uncertain parameters/variables in the system model and the model predicts the state approximately. Eg. Stochastic linear time invariant (LTI) system:

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{d}_k$$
$$\mathbf{y}_k = \mathbf{C}\mathbf{x}_k + \mathbf{v}_k$$
(2)

Types of dynamical systems

Deterministic system: Example

$$x_{k+1} = 0.5x_k + u_k (3)$$

• Stochastic system: Example

$$x_{k+1} = 0.5x_k + u_k + d_k (4)$$

Simulation parameters

$$x_0 = 5, \ u_k = -0.2x_k, \ d_k = 0.25r_1, \ N = 25$$
 (5)

Algorithm 1 (Forward simulation)

- 1: Initialize $x_0 = 5$
- 2: **for** k = 0 to N 1 **do**
- 3: $u_k = -0.2x_k$
- 4: $d_k = 0.25r_1$, $d_k = 0$ (for deterministic system)
- 5: $x_{k+1} = 0.5x_k + u_k + d_k$
- 6: end for

Types of dynamical systems

Figure 1: (a) Deterministic system

(b) Stochastic system

State estimation

State estimator: Block diagram

Figure 2: State estimator with a state feedback controller

Types of estimation problems

- Let l denotes the time instant up to which the output/measurement data is available, and suppose the estimate of the state: $\hat{\mathbf{x}}_k$ at time instant k is made using the measurement up to time instant l, i.e., $\{\mathbf{y}_0, \mathbf{y}_1, ..., \mathbf{y}_l\}$.
- \bullet Based on l, the estimation problem can be classified as follows
 - **① Prediction problem:** in which l < k and the estimator is called predictor.
 - **2** Filtering problem: in which l = k and the estimator is called filter.
 - **3** Smoothing problem: in which l > k and the estimator is called smoother.
- Based on nature of the system, estimation problems are grouped as
 - **Deterministic estimation**: which deals with the state estimation of a deterministic system.
 - **Stochastic estimation:** which deals with the state estimation of a stochastic system.

Deterministic estimator

- One of the popular deterministic estimator is the Luenberger observer
- For the deterministic LTI system

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k$$
$$\mathbf{y}_k = \mathbf{C}\mathbf{x}_k \tag{6}$$

• The Luenberger observer is defined as

$$\hat{\mathbf{x}}_{k+1} = \mathbf{A}\hat{\mathbf{x}}_k + \mathbf{B}\mathbf{u}_k + \mathbf{L}[\mathbf{y}_k - \hat{\mathbf{y}}_k]. \tag{7}$$

• Define the estimation error vector $\mathbf{x}_{e_k} = \mathbf{x}_k - \hat{\mathbf{x}}_k$, and the error dynamics becomes

$$\mathbf{x}_{e_{k+1}} = \mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k - \mathbf{A}\hat{\mathbf{x}}_k - \mathbf{B}\mathbf{u}_k - \mathbf{L}[\mathbf{C}\mathbf{x}_k - \mathbf{C}\hat{\mathbf{x}}_k]$$

$$= [\mathbf{A} - \mathbf{L}\mathbf{C}]\mathbf{x}_{e_k}$$
(8)

• For which the solution is

$$\mathbf{x}_{e_k} = [\mathbf{A} - \mathbf{LC}]\mathbf{x}_{e_{k-1}} = [\mathbf{A} - \mathbf{LC}]^2 \mathbf{x}_{e_{k-2}} = \dots = [\mathbf{A} - \mathbf{LC}]^k \mathbf{x}_{e_0}$$
(9)

Stochastic estimator

For the stochastic LTI system

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{d}_k$$
$$\mathbf{y}_k = \mathbf{C}\mathbf{x}_k + \mathbf{v}_k$$
(10)

The Luenberger observer is

$$\hat{\mathbf{x}}_{k+1} = \mathbf{A}\hat{\mathbf{x}}_k + \mathbf{B}\mathbf{u}_k + \mathbf{L}[\mathbf{y}_k - \hat{\mathbf{y}}_k]. \tag{11}$$

• Define the error vector $\mathbf{x}_{e_k} = \mathbf{x}_k - \hat{\mathbf{x}}_k$, and the error dynamics becomes

$$\mathbf{x}_{e_{k+1}} = \mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1}$$

$$= \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{d}_k - \mathbf{A}\hat{\mathbf{x}}_k - \mathbf{B}\mathbf{u}_k - \mathbf{L}[\mathbf{C}\mathbf{x}_k + \mathbf{v}_k - \mathbf{C}\hat{\mathbf{x}}_k]$$

$$= [\mathbf{A} - \mathbf{L}\mathbf{C}]\mathbf{x}_{e_k} + \mathbf{d}_k - \mathbf{L}\mathbf{v}_k$$
(12)

- For faster error convergence the observer gain is to be large, and for noise rejection, the observer gain is to be small.
- For stochastic systems, a Luenberger observer with fixed gain L may not be sufficient, and one can go for the Kalman estimator, which is an optimal state estimator with time-varying gain \mathbf{L}_k .

Thank you