ITERATIVE TECHNIQUES FOR SOLVING

NON-LINEAR SYSTEMS (AND LINEAR SYSTEMS)

Jacobi Iterative Technique

Consider the following set of equations.

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 25$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = -11$$

$$3x_{2} - x_{3} + 8x_{4} = 15$$

Convert the set Ax = b in the form of x = Tx + c.

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5}$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11}$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10}$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}$$

Start with an initial approximation of:

$$x_1^{(0)} = 0$$
, $x_2^{(0)} = 0$, $x_3^{(0)} = 0$ and $x_4^{(0)} = 0$.

$$x_{1}^{(1)} = \frac{1}{10} x_{2}^{(0)} - \frac{1}{5} x_{3}^{(0)} + \frac{3}{5}$$

$$x_{2}^{(1)} = \frac{1}{11} x_{1}^{(0)} + \frac{1}{11} x_{3}^{(0)} - \frac{3}{11} x_{4}^{(0)} + \frac{25}{11}$$

$$x_{3}^{(1)} = -\frac{1}{5} x_{1}^{(0)} + \frac{1}{10} x_{2}^{(0)} + \frac{1}{10} x_{4}^{(0)} - \frac{11}{10}$$

$$x_{4}^{(1)} = -\frac{3}{8} x_{2}^{(0)} + \frac{1}{8} x_{3}^{(0)} + \frac{15}{8}$$

$$x_{1}^{(1)} = \frac{1}{10}(0) -\frac{1}{5}(0) + \frac{3}{5}$$

$$x_{2}^{(1)} = \frac{1}{11}(0) + \frac{1}{11}(0) -\frac{3}{11}(0) + \frac{25}{11}$$

$$x_{3}^{(1)} = -\frac{1}{5}(0) + \frac{1}{10}(0) + \frac{1}{10}(0) -\frac{11}{10}$$

$$x_{4}^{(1)} = -\frac{3}{8}(0) + \frac{1}{8}(0) + \frac{15}{8}(0)$$

$$x_1^{(1)} = 0.6000, x_2^{(1)} = 2.2727,$$

 $x_3^{(1)} = -1.1000 \text{ and } x_4^{(1)} = 1.8750$

$$x_{1}^{(2)} = \frac{1}{10} x_{2}^{(1)} - \frac{1}{5} x_{3}^{(1)} + \frac{3}{5}$$

$$x_{2}^{(2)} = \frac{1}{11} x_{1}^{(1)} + \frac{1}{10} x_{2}^{(1)} - \frac{3}{11} x_{4}^{(1)} + \frac{25}{11}$$

$$x_{3}^{(2)} = -\frac{1}{5} x_{1}^{(1)} + \frac{1}{10} x_{2}^{(1)} + \frac{1}{10} x_{4}^{(1)} - \frac{11}{10}$$

$$x_{4}^{(2)} = -\frac{3}{8} x_{2}^{(1)} + \frac{1}{8} x_{3}^{(1)} + \frac{15}{8}$$

$$x_{1}^{(k)} = \frac{1}{10} x_{2}^{(k-1)} - \frac{1}{5} x_{3}^{(k-1)} + \frac{3}{5}$$

$$x_{2}^{(k)} = \frac{1}{11} x_{1}^{(k-1)} + \frac{1}{11} x_{3}^{(k-1)} - \frac{3}{11} x_{4}^{(k-1)} + \frac{25}{11}$$

$$x_{3}^{(k)} = -\frac{1}{5} x_{1}^{(k-1)} + \frac{1}{10} x_{2}^{(k-1)} + \frac{1}{8} x_{3}^{(k-1)} + \frac{1}{10} x_{4}^{(k-1)} - \frac{11}{10}$$

$$x_{4}^{(k)} = -\frac{3}{8} x_{2}^{(k-1)} + \frac{1}{8} x_{3}^{(k-1)} + \frac{15}{8}$$

Results of Jacobi Iteration:

\boldsymbol{k}	0	1	2	3
$X_1^{(k)}$	0.0000	0.6000	1.0473	0.9326
$X_2^{(k)}$	0.0000	2.2727	1.7159	2.0530
$X_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493
$X_4^{(k)}$	0.0000	1.8750	0.8852	1.1309

Gauss-Seidel Iterative Technique

Consider the following set of equations.

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 25$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = -11$$

$$3x_{2} - x_{3} + 8x_{4} = 15$$

$$x_{1}^{(k)} = \frac{1}{10} x_{2}^{(k-1)} - \frac{1}{5} x_{3}^{(k-1)} + \frac{3}{5}$$

$$x_{2}^{(k)} = \frac{1}{11} x_{1}^{(k-1)} + \frac{1}{10} x_{2}^{(k-1)} - \frac{3}{11} x_{4}^{(k-1)} + \frac{25}{11}$$

$$x_{3}^{(k)} = -\frac{1}{5} x_{1}^{(k-1)} + \frac{1}{10} x_{2}^{(k-1)} + \frac{1}{10} x_{4}^{(k-1)} - \frac{11}{10}$$

$$x_{4}^{(k)} = -\frac{3}{8} x_{2}^{(k-1)} + \frac{1}{8} x_{3}^{(k-1)} + \frac{15}{8} x_{4}^{(k-1)}$$

$$x_{1}^{(k)} = \frac{1}{10} x_{2}^{(k-1)} - \frac{1}{5} x_{3}^{(k-1)} + \frac{3}{5}$$

$$x_{2}^{(k)} = \frac{1}{11} x_{1}^{(k)} + \frac{1}{11} x_{3}^{(k-1)} - \frac{3}{11} x_{4}^{(k-1)} + \frac{25}{11}$$

$$x_{3}^{(k)} = -\frac{1}{5} x_{1}^{(k)} + \frac{1}{10} x_{2}^{(k)} + \frac{1}{10} x_{4}^{(k-1)} - \frac{11}{10}$$

$$x_{4}^{(k)} = -\frac{3}{8} x_{2}^{(k)} + \frac{1}{8} x_{3}^{(k)} + \frac{15}{8}$$

Results of Gauss-Seidel Iteration: (Blue numbers are for Jacobi iterations.)

k	0	1	2	3
$X_1^{(k)}$	0.0000	0.6000	1.0300	1.0065
$\boldsymbol{\lambda}_1$		0.6000	1.0473	0.9326
$X_2^{(k)}$	0.0000	2.3272	2.0370	2.0036
\boldsymbol{X}_2		2.2727	1.7159	2.0530
$X_3^{(k)}$	0.0000	-0.9873	-1.0140	-1.0025
\boldsymbol{x}_3		-1.1000	-0.8052	-1.0493
$X_4^{(k)}$	0.0000	0.8789	0.9844	0.9983
X_4		1.8750	0.8852	1.1309

The solution is: $x_1 = 1$, $x_2 = 2$, $x_3 = -1$, $x_4 = 1$

It required 15 iterations for Jacobi method and 7 iterations for Gauss-Seidel method to arrive at the solution with a tolerance of 0.00001.