$12n_{0257} (K12n_{0257})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.90485 \times 10^{17} u^{17} - 2.51658 \times 10^{17} u^{16} + \dots + 3.03349 \times 10^{16} b - 4.02818 \times 10^{17},$$

$$2.08713 \times 10^{17} u^{17} - 2.72839 \times 10^{17} u^{16} + \dots + 7.58374 \times 10^{15} a - 3.96132 \times 10^{17}, \ u^{18} - u^{17} + \dots - 4u + 1 \rangle$$

$$I_2^u = \langle 3u^{11} - u^{10} + u^9 - 9u^8 - 6u^7 - 3u^6 + 4u^5 + 18u^4 + 12u^3 + 7u^2 + b - 3u - 3,$$

$$- 4u^{11} + 3u^{10} - 2u^9 + 13u^8 + 2u^7 + 2u^6 - 9u^5 - 20u^4 - 8u^3 - u^2 + a + 8u + 4,$$

$$u^{12} - 3u^9 - 3u^8 - u^7 + 2u^6 + 7u^5 + 6u^4 + 2u^3 - 2u^2 - 3u - 1 \rangle$$

$$I_3^u = \langle u^3 + 3u^2 + 18b - 17u + 46, \ -5u^3 + 3u^2 + 36a - 41u - 32, \ u^4 - u^3 + 7u^2 + 6u - 4 \rangle$$

$$I_4^u = \langle 2b + u - 1, \ a - u - 1, \ u^2 + u - 1 \rangle$$

$$I_5^u = \langle b - u - 1, \ -2u^3 + 3u^2 + 66a + 19u - 1, \ u^4 + 4u^3 + 7u^2 + 6u + 11 \rangle$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 1.90 \times 10^{17} u^{17} - 2.52 \times 10^{17} u^{16} + \dots + 3.03 \times 10^{16} b - 4.03 \times 10^{17}, \ 2.09 \times 10^{17} u^{17} - 2.73 \times 10^{17} u^{16} + \dots + 7.58 \times 10^{15} a - 3.96 \times 10^{17}, \ u^{18} - u^{17} + \dots - 4u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -27.5212u^{17} + 35.9768u^{16} + \dots - 342.299u + 52.2344 \\ -6.27938u^{17} + 8.29598u^{16} + \dots - 84.9277u + 13.2790 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -27.5212u^{17} + 35.9768u^{16} + \dots - 342.299u + 52.2344 \\ -11.3536u^{17} + 14.8220u^{16} + \dots - 146.271u + 21.7346 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -7.55482u^{17} + 8.52485u^{16} + \dots - 73.2580u + 8.96058 \\ -1.14106u^{17} + 1.22922u^{16} + \dots - 9.94123u + 0.881867 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -12.4658u^{17} + 7.03725u^{16} + \dots + 23.8108u - 25.5769 \\ -1.03310u^{17} + 1.07235u^{16} + \dots - 13.6155u + 0.722053 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -6.41376u^{17} + 7.29563u^{16} + \dots - 63.3168u + 8.07871 \\ -1.14106u^{17} + 1.22922u^{16} + \dots - 9.94123u + 0.881867 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 6.19684u^{17} - 0.924141u^{16} + \dots - 69.5089u + 28.5882 \\ 0.881867u^{17} + 0.259189u^{16} + \dots - 17.5763u + 6.41376 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 7.07871u^{17} - 0.664952u^{16} + \dots - 87.0852u + 35.0020 \\ 0.881867u^{17} + 0.259189u^{16} + \dots - 17.5763u + 6.41376 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 7.07871u^{17} - 0.664952u^{16} + \dots - 86.0852u + 35.0020 \\ 0.881867u^{17} + 0.259189u^{16} + \dots - 17.5763u + 6.41376 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 22.1744u^{17} - 27.4894u^{16} + \dots + 263.201u - 35.7652 \\ 5.27270u^{17} - 6.06640u^{16} + \dots + 53.3756u - 6.19684 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-\frac{2063530662655740221}{30334945780497320} u^{17} + \frac{4790167344610047657}{60669891560994640} u^{16} + \cdots - \frac{39519432929474093823}{60669891560994640} u + \frac{3918064914900190251}{60669891560994640}$

Crossings	u-Polynomials at each crossing
c_1	$u^{18} + 9u^{17} + \dots - 656u + 256$
c_2, c_4	$u^{18} - 3u^{17} + \dots + 52u - 16$
c_3, c_8	$u^{18} - 5u^{17} + \dots + 80u + 64$
c_5, c_6, c_9	$u^{18} + 5u^{16} + \dots - 5u - 1$
c_7, c_{10}, c_{11}	$u^{18} + u^{17} + \dots + 4u + 1$
c_{12}	$u^{18} + 12u^{17} + \dots + 6u - 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^{18} + 3y^{17} + \dots + 495872y + 65536$
c_2, c_4	$y^{18} - 9y^{17} + \dots + 656y + 256$
c_{3}, c_{8}	$y^{18} + 9y^{17} + \dots - 29440y + 4096$
c_5, c_6, c_9	$y^{18} + 10y^{17} + \dots - 45y + 1$
c_7, c_{10}, c_{11}	$y^{18} + 31y^{17} + \dots + 6y + 1$
c_{12}	$y^{18} - 50y^{17} + \dots - 2700y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.584558 + 0.366182I		
a = -0.031695 + 0.764128I	1.158820 - 0.715487I	6.82546 + 3.87567I
b = -0.238877 + 0.648680I		
u = -0.584558 - 0.366182I		
a = -0.031695 - 0.764128I	1.158820 + 0.715487I	6.82546 - 3.87567I
b = -0.238877 - 0.648680I		
u = 1.51394 + 0.18364I		
a = -0.619867 + 0.808006I	10.72160 + 4.05902I	-5.48776 - 6.30227I
b = -0.40901 + 1.77160I		
u = 1.51394 - 0.18364I		
a = -0.619867 - 0.808006I	10.72160 - 4.05902I	-5.48776 + 6.30227I
b = -0.40901 - 1.77160I		
u = -0.022331 + 0.452997I		
a = 1.61941 + 0.40552I	0.21869 - 2.12649I	2.57122 + 5.28808I
b = 0.156583 + 0.047051I		
u = -0.022331 - 0.452997I		
a = 1.61941 - 0.40552I	0.21869 + 2.12649I	2.57122 - 5.28808I
b = 0.156583 - 0.047051I		
u = 0.025010 + 0.431550I		
a = -1.34703 + 2.60646I	-2.52651 - 6.83690I	1.00389 + 11.16505I
b = 0.250192 + 0.749320I		
u = 0.025010 - 0.431550I		
a = -1.34703 - 2.60646I	-2.52651 + 6.83690I	1.00389 - 11.16505I
b = 0.250192 - 0.749320I		
u = 0.007817 + 0.411255I		
a = -0.85304 - 2.78085I	-3.55439 + 1.25550I	-1.98701 - 1.61045I
b = 0.325456 - 0.844226I		
u = 0.007817 - 0.411255I		
a = -0.85304 + 2.78085I	-3.55439 - 1.25550I	-1.98701 + 1.61045I
b = 0.325456 + 0.844226I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.75357		
a = -0.620403	7.06782	-18.1410
b = 1.40026		
u = 0.204909		
a = 4.38528	-1.30691	-9.62130
b = 0.536453		
u = -1.10465 + 2.31020I		
a = 0.029942 + 0.642788I	-13.4615 - 12.9156I	0
b = 0.31930 + 2.83217I		
u = -1.10465 - 2.31020I		
a = 0.029942 - 0.642788I	-13.4615 + 12.9156I	0
b = 0.31930 - 2.83217I		
u = -0.50858 + 2.58223I		
a = 0.535381 - 0.129487I	-8.47225 - 5.66445I	0
b = -0.444741 - 0.317296I		
u = -0.50858 - 2.58223I		
a = 0.535381 + 0.129487I	-8.47225 + 5.66445I	0
b = -0.444741 + 0.317296I		
u = 0.19411 + 2.91147I		
a = -0.215532 - 0.577704I	-13.28390 + 2.28868I	0
b = 0.82274 - 2.38447I		
u = 0.19411 - 2.91147I		
a = -0.215532 + 0.577704I	-13.28390 - 2.28868I	0
b = 0.82274 + 2.38447I		

$$I_2^u = \langle 3u^{11} - u^{10} + \dots + b - 3, -4u^{11} + 3u^{10} + \dots + a + 4, u^{12} - 3u^9 + \dots - 3u - 1 \rangle$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 4u^{11} - 3u^{10} + \dots - 8u - 4 \\ -3u^{11} + u^{10} + \dots + 3u + 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 4u^{11} - 3u^{10} + \dots - 8u - 4 \\ -5u^{11} + 2u^{10} + \dots + 8u + 6 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -3u^{11} + u^{10} + 9u^{8} + 6u^{7} - 7u^{5} - 19u^{4} - 11u^{3} - u^{2} + 8u + 6 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -6u^{11} + 4u^{10} + \dots + 14u + 8 \\ 7u^{11} - 5u^{10} + \dots - 21u - 13 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -3u^{11} + u^{10} + 9u^{8} + 6u^{7} - 7u^{5} - 19u^{4} - 11u^{3} + 8u + 7 \\ -u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3u^{11} + 3u^{8} + 3u^{7} + u^{6} - 2u^{5} - 7u^{4} - 6u^{3} - 2u^{2} + 2u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 7u^{11} - 3u^{10} + u^{9} - 18u^{8} - 9u^{7} + 12u^{5} + 35u^{4} + 17u^{3} + u^{2} - 12u - 10 \\ -u^{11} + 3u^{8} + 3u^{7} + u^{6} - 2u^{5} - 7u^{4} - 6u^{3} - 2u^{2} + 2u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6u^{11} - 3u^{10} + u^{9} - 18u^{8} - 9u^{7} + 12u^{5} + 35u^{4} + 17u^{3} + u^{2} - 13u - 10 \\ -u^{11} + 3u^{8} + 3u^{7} + u^{6} - 2u^{5} - 7u^{4} - 6u^{3} - 2u^{2} + 2u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6u^{11} - 3u^{10} + u^{9} - 18u^{8} - 9u^{7} + 12u^{5} + 35u^{4} + 17u^{3} + u^{2} - 13u - 10 \\ -u^{11} + 3u^{8} + 3u^{7} + u^{6} - 2u^{5} - 7u^{4} - 6u^{3} - 2u^{2} + 2u + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 10u^{11} - 6u^{10} + \dots - 21u - 17 \\ -3u^{11} + u^{10} + 9u^{8} + 6u^{7} - 7u^{5} - 19u^{4} - 11u^{3} + 8u + 7 \end{pmatrix}$$

(ii) Obstruction class = 1

$$= 12u^{11} - 12u^{10} + 3u^9 - 41u^8 + 15u^6 + 38u^5 + 73u^4 - u^3 - 22u^2 - 57u - 30$$

Crossings	u-Polynomials at each crossing
c_1	$u^{12} - 4u^{11} + \dots - 13u + 1$
c_2	$u^{12} + 4u^{11} + \dots - u + 1$
<i>C</i> 3	$u^{12} + 6u^{10} + 3u^9 + 13u^8 + 7u^7 + 15u^6 + 6u^5 + 2u^3 - 2u^2 - 3u + 1$
c_4	$u^{12} - 4u^{11} + \dots + u + 1$
c_5, c_9	$u^{12} - 3u^{11} + 2u^{10} + 2u^9 - 6u^8 + 7u^7 - 2u^6 - u^5 + 3u^4 - 3u^3 - 1$
<i>c</i> ₆	$u^{12} + 3u^{11} + 2u^{10} - 2u^9 - 6u^8 - 7u^7 - 2u^6 + u^5 + 3u^4 + 3u^3 - 1$
c_7, c_{10}	$u^{12} - 3u^9 - 3u^8 - u^7 + 2u^6 + 7u^5 + 6u^4 + 2u^3 - 2u^2 - 3u - 1$
C ₈	$u^{12} + 6u^{10} - 3u^9 + 13u^8 - 7u^7 + 15u^6 - 6u^5 - 2u^3 - 2u^2 + 3u + 1$
c_{11}	$u^{12} + 3u^9 - 3u^8 + u^7 + 2u^6 - 7u^5 + 6u^4 - 2u^3 - 2u^2 + 3u - 1$
c_{12}	$u^{12} - 12u^{11} + \dots - 12u + 9$

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} + 12y^{11} + \dots - 81y + 1$
c_2, c_4	$y^{12} - 4y^{11} + \dots - 13y + 1$
c_3, c_8	$y^{12} + 12y^{11} + \dots - 13y + 1$
c_5, c_6, c_9	$y^{12} - 5y^{11} + 4y^{10} + 10y^9 - 27y^7 - 8y^6 + 25y^5 + 15y^4 - 5y^3 - 6y^2 + 1$
c_7, c_{10}, c_{11}	$y^{12} - 6y^{10} - 5y^9 + 15y^8 + 25y^7 - 8y^6 - 27y^5 + 10y^3 + 4y^2 - 5y + 1$
c_{12}	$y^{12} - 24y^{11} + \dots - 234y + 81$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.366604 + 0.825368I		
a = 1.11814 + 0.91713I	-2.86185 + 6.14960I	-3.55511 - 1.94828I
b = -0.413716 + 0.377477I		
u = -0.366604 - 0.825368I		
a = 1.11814 - 0.91713I	-2.86185 - 6.14960I	-3.55511 + 1.94828I
b = -0.413716 - 0.377477I		
u = -0.851892		
a = -0.391239	3.56755	13.7860
b = -2.26079		
u = 0.111536 + 1.194340I		
a = 0.317924 - 0.704003I	-5.28057 - 0.69048I	-8.92309 + 4.67234I
b = -0.993719 + 0.895794I		
u = 0.111536 - 1.194340I		
a = 0.317924 + 0.704003I	-5.28057 + 0.69048I	-8.92309 - 4.67234I
b = -0.993719 - 0.895794I		
u = 0.765921		
a = 1.24205	2.40622	-53.6250
b = -9.03089		
u = -0.496770 + 1.152800I		
a = -0.554307 + 0.648652I	-0.483582 + 0.496104I	-0.592681 - 0.118839I
b = 0.388509 + 0.841432I		
u = -0.496770 - 1.152800I		
a = -0.554307 - 0.648652I	-0.483582 - 0.496104I	-0.592681 + 0.118839I
b = 0.388509 - 0.841432I		
u = -0.629825 + 0.069225I		
a = 1.33711 - 0.51168I	4.44304 + 1.79476I	4.83493 - 4.62713I
b = -0.874744 + 0.682079I		
u = -0.629825 - 0.069225I		
a = 1.33711 + 0.51168I	4.44304 - 1.79476I	4.83493 + 4.62713I
b = -0.874744 - 0.682079I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.42465 + 0.18625I		
a = -0.644266 + 0.830701I	11.06570 + 3.92660I	15.1553 + 1.2084I
b = -0.46049 + 1.87154I		
u = 1.42465 - 0.18625I		
a = -0.644266 - 0.830701I	11.06570 - 3.92660I	15.1553 - 1.2084I
b = -0.46049 - 1.87154I		

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{5}{36}u^{3} - \frac{1}{12}u^{2} + \frac{41}{36}u + \frac{8}{9} \\ -\frac{1}{18}u^{3} - \frac{1}{6}u^{2} + \frac{17}{18}u - \frac{23}{9} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{36}u^{3} - \frac{1}{12}u^{2} + \frac{41}{36}u + \frac{8}{9} \\ -\frac{5}{18}u^{3} + \frac{1}{6}u^{2} + \frac{13}{18}u - \frac{25}{9} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{9}u^{3} - \frac{1}{6}u^{2} + \frac{11}{18}u + \frac{11}{18} \\ -\frac{1}{18}u^{3} - \frac{1}{6}u^{2} - \frac{1}{18}u - \frac{14}{9} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{9}u^{3} - \frac{1}{6}u^{2} + \frac{11}{18}u + \frac{11}{18} \\ \frac{7}{18}u^{3} - \frac{5}{6}u^{2} + \frac{7}{18}u - \frac{19}{9} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{6}u^{3} + \frac{2}{3}u + \frac{13}{6} \\ -\frac{1}{18}u^{3} - \frac{1}{6}u^{2} - \frac{1}{18}u - \frac{14}{9} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{5}{12}u^{3} - \frac{1}{4}u^{2} + \frac{29}{12}u + \frac{5}{3} \\ -\frac{5}{18}u^{3} + \frac{1}{6}u^{2} - \frac{23}{18}u - \frac{7}{9} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{5}{36}u^{3} - \frac{1}{12}u^{2} + \frac{41}{36}u + \frac{8}{9} \\ -\frac{5}{18}u^{3} + \frac{1}{6}u^{2} - \frac{23}{18}u - \frac{7}{9} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{12}u^{3} - \frac{1}{4}u^{2} + \frac{1}{12}u + \frac{1}{3} \\ \frac{11}{18}u^{3} - \frac{7}{6}u^{2} - \frac{43}{18}u + \frac{1}{9} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{9}u^{3} + \frac{1}{6}u^{2} - \frac{11}{18}u - \frac{11}{18} \\ -\frac{1}{6}u^{3} + \frac{1}{2}u^{2} + \frac{5}{6}u + \frac{4}{3} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -2

Crossings	u-Polynomials at each crossing
c_1	$(u^2 + 3u + 1)^2$
c_2, c_4, c_{12}	$(u^2 - u - 1)^2$
c_3, c_8	$(u^2+u-1)^2$
c_5, c_6, c_9	$u^4 + 4u^3 + 5u^2 - 8u - 11$
c_7, c_{10}, c_{11}	$u^4 + u^3 + 7u^2 - 6u - 4$

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 - 7y + 1)^2$
c_2, c_3, c_4 c_8, c_{12}	$(y^2 - 3y + 1)^2$
c_5, c_6, c_9	$y^4 - 6y^3 + 67y^2 - 174y + 121$
c_7, c_{10}, c_{11}	$y^4 + 13y^3 + 53y^2 - 92y + 16$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.06243		
a = -0.581719	2.96088	-2.00000
b = -3.68046		
u = 0.444394		
a = 1.39074	2.96088	-2.00000
b = -2.17364		
u = 0.80902 + 2.79600I		
a = -0.154508 + 0.533989I	-12.8305	-2.00000
b = 0.42705 + 2.79600I		
u = 0.80902 - 2.79600I		
a = -0.154508 - 0.533989I	-12.8305	-2.00000
b = 0.42705 - 2.79600I		

IV.
$$I_4^u = \langle 2b + u - 1, \ a - u - 1, \ u^2 + u - 1 \rangle$$

a) Arc colorings
$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u+1 \\ -\frac{1}{2}u+\frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u-1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u+1 \\ -\frac{3}{2}u+\frac{1}{2} \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u+1 \\ -\frac{1}{2}u+\frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 2u-1 \\ -u+1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2u \\ -3u+2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 2u \\ -3u+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{45}{4}u + \frac{45}{4}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_8	u^2
C ₄	$(u+1)^2$
c_5, c_6	$u^2 + 3u + 1$
	u^2-u-1
<i>c</i> 9	$u^2 - 3u + 1$
c_{10}, c_{11}, c_{12}	$u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_8	y^2
c_5, c_6, c_9	$y^2 - 7y + 1$
$c_7, c_{10}, c_{11} \\ c_{12}$	$y^2 - 3y + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.61803	-0.657974	4.29710
b = 0.190983		
u = -1.61803		
a = -0.618034	7.23771	29.4530
b = 1.30902		

V.
$$I_5^u = \langle b - u - 1, -2u^3 + 3u^2 + 66a + 19u - 1, u^4 + 4u^3 + 7u^2 + 6u + 11 \rangle$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0303030u^{3} - 0.0454545u^{2} - 0.287879u + 0.0151515 \\ u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0303030u^{3} - 0.0454545u^{2} - 0.287879u + 0.0151515 \\ -\frac{1}{6}u^{3} - u^{2} + \frac{1}{3}u - \frac{5}{6} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.121212u^{3} - 0.318182u^{2} - 0.348485u - 0.560606 \\ -\frac{1}{6}u^{3} - \frac{1}{2}u^{2} - \frac{1}{6}u - \frac{1}{3} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.121212u^{3} - 0.318182u^{2} - 0.348485u - 0.560606 \\ \frac{1}{6}u^{3} + \frac{3}{2}u^{2} + \frac{7}{6}u + \frac{10}{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.04545454u^{3} + 0.181818u^{2} - 0.181818u - 0.227273 \\ -\frac{1}{6}u^{3} - \frac{1}{2}u^{2} - \frac{1}{6}u - \frac{1}{3} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.227273u^{3} + 0.409091u^{2} + 0.590909u + 0.363636 \\ -\frac{1}{6}u^{3} + \frac{1}{3}u + \frac{1}{6} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0606061u^{3} + 0.409091u^{2} + 0.924242u + 0.530303 \\ -\frac{1}{6}u^{3} + \frac{1}{3}u + \frac{1}{6} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.272727u^{3} - 0.590909u^{2} - 0.409091u - 1.13636 \\ \frac{1}{6}u^{3} + 2u^{2} - \frac{4}{3}u + \frac{23}{6} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.121212u^{3} + 0.318182u^{2} + 0.348485u + 0.5606066 \\ -\frac{1}{2}u^{2} + \frac{1}{2}u - \frac{3}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -2

Crossings	u-Polynomials at each crossing
c_1	$(u^2 + 3u + 1)^2$
c_2, c_4, c_{12}	$(u^2 - u - 1)^2$
c_3,c_8	$(u^2+u-1)^2$
c_5, c_6, c_9	$u^4 - u^3 + 5u^2 + 2u + 4$
c_7, c_{10}, c_{11}	$u^4 - 4u^3 + 7u^2 - 6u + 11$

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 - 7y + 1)^2$
c_2, c_3, c_4 c_8, c_{12}	$(y^2 - 3y + 1)^2$
c_5, c_6, c_9	$y^4 + 9y^3 + 37y^2 + 36y + 16$
c_7, c_{10}, c_{11}	$y^4 - 2y^3 + 23y^2 + 118y + 121$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.118034 + 1.322880I		
a = 0.041356 - 0.463500I	-4.93480	-2.00000
b = 1.11803 + 1.32288I		
u = 0.118034 - 1.322880I		
a = 0.041356 + 0.463500I	-4.93480	-2.00000
b = 1.11803 - 1.32288I		
u = -2.11803 + 1.32288I		
a = 0.549553 + 0.343238I	-4.93480	-2.00000
b = -1.11803 + 1.32288I		
u = -2.11803 - 1.32288I		
a = 0.549553 - 0.343238I	-4.93480	-2.00000
b = -1.11803 - 1.32288I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^2)(u^2+3u+1)^4(u^{12}-4u^{11}+\cdots-13u+1)$ $\cdot (u^{18}+9u^{17}+\cdots-656u+256)$
c_2	$((u-1)^2)(u^2 - u - 1)^4(u^{12} + 4u^{11} + \dots - u + 1)$ $\cdot (u^{18} - 3u^{17} + \dots + 52u - 16)$
c_3	$u^{2}(u^{2} + u - 1)^{4}$ $\cdot (u^{12} + 6u^{10} + 3u^{9} + 13u^{8} + 7u^{7} + 15u^{6} + 6u^{5} + 2u^{3} - 2u^{2} - 3u + 1)$ $\cdot (u^{18} - 5u^{17} + \dots + 80u + 64)$
c_4	$((u+1)^2)(u^2-u-1)^4(u^{12}-4u^{11}+\cdots+u+1)$ $\cdot (u^{18}-3u^{17}+\cdots+52u-16)$
c_5	$(u^{2} + 3u + 1)(u^{4} - u^{3} + 5u^{2} + 2u + 4)(u^{4} + 4u^{3} + 5u^{2} - 8u - 11)$ $\cdot (u^{12} - 3u^{11} + 2u^{10} + 2u^{9} - 6u^{8} + 7u^{7} - 2u^{6} - u^{5} + 3u^{4} - 3u^{3} - 1)$ $\cdot (u^{18} + 5u^{16} + \dots - 5u - 1)$
c_6	$(u^{2} + 3u + 1)(u^{4} - u^{3} + 5u^{2} + 2u + 4)(u^{4} + 4u^{3} + 5u^{2} - 8u - 11)$ $\cdot (u^{12} + 3u^{11} + 2u^{10} - 2u^{9} - 6u^{8} - 7u^{7} - 2u^{6} + u^{5} + 3u^{4} + 3u^{3} - 1)$ $\cdot (u^{18} + 5u^{16} + \dots - 5u - 1)$
<i>C</i> 7	$(u^{2} - u - 1)(u^{4} - 4u^{3} + 7u^{2} - 6u + 11)(u^{4} + u^{3} + 7u^{2} - 6u - 4)$ $\cdot (u^{12} - 3u^{9} - 3u^{8} - u^{7} + 2u^{6} + 7u^{5} + 6u^{4} + 2u^{3} - 2u^{2} - 3u - 1)$ $\cdot (u^{18} + u^{17} + \dots + 4u + 1)$
c_8	$ u^{2}(u^{2} + u - 1)^{4} $ $ \cdot (u^{12} + 6u^{10} - 3u^{9} + 13u^{8} - 7u^{7} + 15u^{6} - 6u^{5} - 2u^{3} - 2u^{2} + 3u + 1) $ $ \cdot (u^{18} - 5u^{17} + \dots + 80u + 64) $
<i>C</i> 9	$(u^{2} - 3u + 1)(u^{4} - u^{3} + 5u^{2} + 2u + 4)(u^{4} + 4u^{3} + 5u^{2} - 8u - 11)$ $\cdot (u^{12} - 3u^{11} + 2u^{10} + 2u^{9} - 6u^{8} + 7u^{7} - 2u^{6} - u^{5} + 3u^{4} - 3u^{3} - 1)$ $\cdot (u^{18} + 5u^{16} + \dots - 5u - 1)$
c_{10}	$(u^{2} + u - 1)(u^{4} - 4u^{3} + 7u^{2} - 6u + 11)(u^{4} + u^{3} + 7u^{2} - 6u - 4)$ $\cdot (u^{12} - 3u^{9} - 3u^{8} - u^{7} + 2u^{6} + 7u^{5} + 6u^{4} + 2u^{3} - 2u^{2} - 3u - 1)$ $\cdot (u^{18} + u^{17} + \dots + 4u + 1)$
c_{11}	$(u^{2} + u - 1)(u^{4} - 4u^{3} + 7u^{2} - 6u + 11)(u^{4} + u^{3} + 7u^{2} - 6u - 4)$ $\cdot (u^{12} + 3u^{9} - 3u^{8} + u_{24}^{7} + 2u^{6} - 7u^{5} + 6u^{4} - 2u^{3} - 2u^{2} + 3u - 1)$ $\cdot (u^{18} + u^{17} + \dots + 4u + 1)$
c_{12}	$((u^{2} - u - 1)^{4})(u^{2} + u - 1)(u^{12} - 12u^{11} + \dots - 12u + 9)$ $\cdot (u^{18} + 12u^{17} + \dots + 6u - 4)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^2)(y^2 - 7y + 1)^4(y^{12} + 12y^{11} + \dots - 81y + 1)$ $\cdot (y^{18} + 3y^{17} + \dots + 495872y + 65536)$
c_2, c_4	$((y-1)^2)(y^2 - 3y + 1)^4(y^{12} - 4y^{11} + \dots - 13y + 1)$ $\cdot (y^{18} - 9y^{17} + \dots + 656y + 256)$
c_3,c_8	$y^{2}(y^{2} - 3y + 1)^{4}(y^{12} + 12y^{11} + \dots - 13y + 1)$ $\cdot (y^{18} + 9y^{17} + \dots - 29440y + 4096)$
c_5, c_6, c_9	$(y^{2} - 7y + 1)(y^{4} - 6y^{3} + 67y^{2} - 174y + 121)$ $\cdot (y^{4} + 9y^{3} + 37y^{2} + 36y + 16)$ $\cdot (y^{12} - 5y^{11} + 4y^{10} + 10y^{9} - 27y^{7} - 8y^{6} + 25y^{5} + 15y^{4} - 5y^{3} - 6y^{2} + (y^{18} + 10y^{17} + \dots - 45y + 1)$
c_7, c_{10}, c_{11}	$(y^{2} - 3y + 1)(y^{4} - 2y^{3} + 23y^{2} + 118y + 121)$ $\cdot (y^{4} + 13y^{3} + 53y^{2} - 92y + 16)$ $\cdot (y^{12} - 6y^{10} - 5y^{9} + 15y^{8} + 25y^{7} - 8y^{6} - 27y^{5} + 10y^{3} + 4y^{2} - 5y + 1)$ $\cdot (y^{18} + 31y^{17} + \dots + 6y + 1)$
c_{12}	$((y^2 - 3y + 1)^5)(y^{12} - 24y^{11} + \dots - 234y + 81)$ $\cdot (y^{18} - 50y^{17} + \dots - 2700y + 16)$