

Deutsches Patent und Markenamt - 4 OCT 2004

10/511156

PCT/EP03/02741

BUNDESREPUBLIK DEUTSCHLAND

EPO - Munich
69
17. März 2003

RECD 11 APR 2003

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 102 16 996.9

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Anmeldetag: 16. April 2002

Anmelder/Inhaber: Merck Patent GmbH, Darmstadt/DE

Bezeichnung: Verfahren zur Perfluoralkylierung mittels
Tris(perfluoralkyl)phosphinoxiden

IPC: C 07 F, C 07 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der
ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 27. Januar 2003
Deutsches Patent- und Markenamt
Der Präsident

Im Auftrag

Guent

Fausch

EPO - Munich
69
17. März 2003

**Merck Patent Gesellschaft
mit beschränkter Haftung
64271 Darmstadt**

**Verfahren zur Perfluoralkylierung mittels
Tris(perfluoralkyl)phosphinoxiden**

Verfahren zur Perfluoralkylierung mittels
Tris(perfluoralkyl)phosphinoxiden

Die vorliegende Erfindung betrifft ein Verfahren zur Perfluoralkylierung mittels
5 Tris(perfluoralkyl)phosphinoxiden.

- Die Perfluoralkylierung stellt ein wichtiges Verfahren zur Herstellung von Fluorhaltigen Verbindungen, insbesondere Organofluorverbindungen dar. Als Perfluoralkylierungsreagenzien werden üblicherweise Perfluoralkylhalogenide, 10 insbesondere Perfluoralkyliodide eingesetzt, die als Quelle von Perfluoralkylradikalen fungieren ("Organofluorine Chemistry. Principles and Commercial Applications." Edited by R.E. Banks, Plenum Press, New York 1994; G.G. Furin, "Some new aspects in the application of perfluoralkyl halides in the synthesis of fluorine-containing organic compounds" (Review), 15 Russ.Chem.Rev. (English Translation), 69, Nr. 6 (2000), Seiten 491-522; N.O. Brace, "Syntheses with perfluoralkyl iodides. A review, Part III.", J. of Fluorine Chem., 108 (2001), Seiten 147-175; N.O. Brace, "Syntheses with perfluoralkyliodides. Part II.", J. of Fluorine Chem. 96 (1999), Seiten 101-127; 20 N.O. Brace, "Syntheses with perfluoralkyl radicals from perfluoralkyl iodides. A rapid survey of synthetic possibilities with emphasis on practical applications. Part one: alkenes, alkynes and allylic compounds", J. of Fluorine Chem., 96 (1999), Seiten 1-25; V.N. Boiko, "Ion-radical perfluoralkylation. Part II.", J. of Fluorine Chem., 69 (1994), Seiten 207-212).
- 25 Darüber hinaus werden Perfluoralkylhalogenide zur Herstellung von Perfluoralkyl-, insbesondere Trifluormethyl-Gruppen enthaltenden Organometallverbindungen eingesetzt, die ihrerseits zur Einführung von Perfluoralkylgruppen in organische Moleküle eingesetzt werden können (D.J. Burton, "Fluorinated organometallics: perfluoralkyl and functionalised 30 perfluoralkyl organometallic reagents in organic synthesis", Tetrahedron, 48, Nr. 2 (1992), Seiten 189-275).

- Des weiteren wurde das Reagenz TMSCF_3 zur nucleophilen Trifluormethylierung entwickelt (G.K. Surya Prakash, "Nucleophilic trifluormethylation tamed", J. of Fluorine Chem., 112 (2001), Seiten 123-131).
- 5 Durch die Reaktion von langkettigen Perfluoralkyliodiden mit Tetrakis(dimethylamino)ethylen in Gegenwart von Chlortrimethylsilan wurde dieses Verfahren der nucleophilen Perfluoralkylierung auf weitere organische und anorganische Substrate ausgedehnt (V.A. Petrov, Tetrahedron Letters, 42 (2001), Seiten 3267-3269).
- 10 Die vorstehend angegebenen Verfahren zu Perfluoralkylierung haben jedoch den Nachteil, daß die entsprechenden Perfluoralkylhalogenide entweder sehr teuer sind, oder deren Nutzung, wie beispielsweise im Falle der Verbindung CF_3Br , nach dem Montreal Protokoll nur sehr eingeschränkt gestattet ist.
- 15 Diese Nachteile führten zu der Entwicklung neuer Perfluoralkylierungsreagenzien, wie sie in J.R. Desmurs et al., 12th European Symposium on Fluorine Chemistry, Berlin, Germany, 1998, Abstracts A23 and A24 beschrieben sind. Die Herstellung dieser Reagenzien gelingt allerdings
- 20 nur unter Verwendung von CF_3H , einer hochflüchtigen und schwer handhabbaren Verbindung. Ferner wurden weitere stabile Perfluoralkylierungsreagenzien zur nucleophilen Trifluormethylierung entwickelt, wobei zur Synthese dieser Reagenzien vom Methylhemiketal des Fluorals ausgegangen wird, welches zuvor in einem relativ aufwendigen
- 25 Prozeß hergestellt werden muß. Außerdem ist die Anwendung dieser Reagenzien auf die Trifluormethylierung beschränkt (G. Blond et al., Tetrahedron Letters, 42 (2001), Seiten 2437-2475; T. Billard et al., Eur. J. Org. Chem., 2001, Seiten 1467-1471; T. Billard et al. Tetrahedron Letters, 41 (2000), Seiten 8777-8780; G. Blond et al., J. Org. Chem., 66, Nr. 14 (2001), Seiten 4826-4830).

Gegenstand der vorliegenden Erfindung ist daher die Verwendung wenigstens eines Tris(perfluoralkyl)phosphinoxids, zur Perfluoralkylierung von chemischen Substraten.

- 5 Perfluoralkylphosphinoxide sind bekannt. Sie können durch Umsetzung von Difluortris(perfluoralkyl)phosphoranen mit Hexamethyldisiloxan $[(CH_3)_3Si]_2O$ hergestellt werden, wie in V.Ya. Semenii et al., Zh. Obshch.Khim., 55, Nr. 12 (1985), Seiten 2716-2720 beschrieben.
- 10 Die Herstellung der Fluor(perfluoralkyl)phosphorane kann nach üblichen, dem Fachmann bekannten Methoden erfolgen.
Vorzugsweise werden diese Verbindungen durch elektrochemische Fluorierung geeigneter Ausgangsverbindungen hergestellt, wie in V.Ya. Semenii et al., Zh. Obshch.Khim., 55, Nr. 12 (1985), Seiten 2716-2720; N. 15 Ignatiev, J. of Fluorine Chem., 103 (2000), Seiten 57-61 sowie der WO 00/21969 beschrieben. Die entsprechenden Beschreibungen werden hiermit als Referenz eingeführt und gelten als Teil der Offenbarung.

- 20 Die als Ausgangsverbindungen eingesetzten Fluor(perfluoralkyl)phosphorane können durch elektrochemische Fluorierung kostengünstig hergestellt werden.

- Zur Perfluoralkylierung von chemischen Substraten mit Tris(perfluoralkyl)phosphinoxiden ist es erforderlich, das Perfluoralkylphosphinoxid vor oder während der Umsetzung mit dem zu 25 perfluoralkylierende Substrat mit wenigstens einer Base zu behandeln. Bevorzugt erfolgt die Perfluoralkylierung des chemischen Substrates mit wenigstens einem Tris(perfluoralkyl)phosphinoxid in Gegenwart wenigstens einer Base.

- Bevorzugt kommen hierfür starke Basen, wie beispielsweise Kalium tert-Butylat, n-Butyllithium, Metallamide und/oder ein Grignard-Reagenz in Betracht.
- 5 Vorzugsweise wird die Perfluoralkylierung in einem geeigneten, ggf. nach üblichen Verfahren getrocknetem Reaktionsmedium, wie beispielsweise cyclischen oder aliphatischen Ether, insbesondere Tetrahydrofuran oder Diethylether, durchgeführt.
- 10 Als chemische Substrate kommen bevorzugt organische Verbindungen, insbesondere dreifach koordinierte Organborverbindungen sowie Carbonyl-Gruppen aufweisende organische Verbindungen in Betracht.
- Als Organoborverbindungen kommen bevorzugt Tris-(C₁₋₃)-Alkylborate, 15 besonders bevorzugt Trimethylborat zum Einsatz.
- Bevorzugte Carbonylgruppen-aufweisende Verbindungen sind ggf. substituierte Diarylketonverbindungen, insbesondere Benzophenon.
- 20 Vorzugsweise kann die Perfluralkylierung chemischer Substrate mit Tris(perfluoralkyl)phosphinoxiden unter wasserfreier Atmosphäre, wie z.B. trockener Luft, oder Inertgasatmosphäre, wie z.B. Argon oder Stickstoff, durchgeführt werden.
- 25 Die Verwendung von Tris(perfluoralkyl)phosphinoxiden als Perfluoralkylierungsreagenzien ist insbesondere deshalb vorteilhaft, weil diese Verbindungen, im Gegensatz zu vielen anderen Perfluoralkylierungsreagenzien, stabile Verbindungen darstellen, was ihre einfache, sichere Handhabung ermöglicht.
- 30

Die NMR-Spektren wurden mit Hilfe eines Bruker Avance 300 NMR Spektrometers mit folgenden Frequenzen aufgenommen:

- 300,1 MHz für ^1H
- 5 282,4 MHz für ^{19}F und
- 96,3 MHz für ^{11}B .

Die Massenspektren wurden mit einem Gerät vom Typ AMD 604 (Deutschland) gemessen.

- 10
- Im folgenden wird die Erfindung anhand von Beispielen erläutert. Diese Beispiele dienen lediglich der Erläuterung der Erfindung und schränken den allgemeinen Erfindungsgedanken nicht ein.

15 **Beispiele**

Beispiel 1:

Herstellung von Tris(pentafluoreethyl)phosphinoxid

- 20
- In einem FEP(Fluorethylenpolymer)-Kolben werden 101,36 g (237,9 mmol) Difluortris(pentafluoreethyl)phosphoran und 38,63 g (237,9 mmol) Hexamethyldisiloxan unter heftigem Rühren für 1 Stunde bei einer Badtemperatur von 30 °C am Rückfluß erhitzt, bis die Gasbildung von
 - 25 $(\text{CH}_3)_3\text{SiF}$ zurückgeht. Anschließend wird das Reaktionsgemisch für 2 Stunden auf 110-120°C (Badtemperatur) erhitzt und unter Normaldruck destilliert. Es werden 86,5 g Tris(pentafluoreethyl)phosphinoxid, einer klaren und farblosen Flüssigkeit, mit einem Siedepunkt von 101°C erhalten, entsprechend einer Ausbeute von 90,0 %, bezogen auf das eingesetzte
 - 30 Difluortris(pentafluoreethyl)phosphoran.

Das so erhaltene Produkt wird mittels ^{19}F - und ^{31}P -NMR-Spektroskopie charakterisiert:

^{19}F NMR Spektrum; δ , ppm:

- 5 (Lösungsmittel CDCl_3 , interne Referenz CCl_3F)
-79,3 t (CF_3); -117,3 dq (CF_2); $J^2_{\text{P},\text{F}} = 84,5 \text{ Hz}$; $J^3_{\text{F},\text{F}} = 2,5 \text{ Hz}$

^{31}P NMR Spektrum; δ , ppm:

(Lösungsmittel CDCl_3 , Referenz 85 Gew.-%ige H_3PO_4)

- 10 20,2 sep, $J^2_{\text{P},\text{F}} = 84,5 \text{ Hz}$

Die Werte der gefundenen chemischen Verschiebungen entsprechen den aus der Veröffentlichung von V.Ya. Seminii et al., Zh. Obshch. Khim., 55, Nr. 12 (1985), Seiten 2716-2720 bekannten Werten.

15

Beispiel 2:

Herstellung von Tris(n-nonafluorbutyl)phosphinoxid

- 20 In einem FEP-Kolben wurden 30,6 g (42,15 mmol) Difluortris(n-nonafluorbutyl)phosphoran und 7,0 g (43,11 mmol) Hexamethyldisiloxan unter heftigem Rühren für 5 Stunden bei einer Badtemperatur von ca. 150-160 °C unter Rückfluß erhitzt, bis die Gasbildung von $(\text{CH}_3)_3\text{SiF}$ aufhört. Anschließend wurde das Reaktionsgemisch unter verminderter Druck (1,6 kPa) destilliert
25 und die Fraktion mit einem Siedepunkt von 87-88 °C aufgefangen. Es wurden 26,1 g der klaren, farblosen Flüssigkeit von Tris(n-nonafluorbutyl)phosphin erhalten. Die Ausbeute betrug 87,9 %, bezogen auf die eingesetzte Menge an Difluortris(n-nonafluorbutyl)phosphoran.
- 30 Das so erhaltene Produkt wurde mittels ^{19}F - und ^{31}P -NMR-Spektroskopie charakterisiert:

¹⁹F NMR Spektrum; δ, ppm:

(Lösungsmittel CDCl₃, interne Referenz ppm CCl₃F)

-81,2 t (CF₃); -112,5 dm (CF₂); -119,0 m (CF₂); -126,3 dm (CF₂); J⁴_{F,F} = 9,5 Hz;

5 J²_{P,F} = 86,8 Hz

³¹P NMR Spektrum; δ, ppm:

(Lösungsmittel CDCl₃, Referenz 85 Gew.-%ige H₃PO₄)

24,20 sept.; J²_{P,F} = 87,1 Hz

10

Die Werte der gefundenen chemischen Verschiebungen entsprechen den aus der Veröffentlichung von V.Ya. Seminii et al., Zh. Obshch. Khim., 55, Nr. 12 (1985), Seiten 2716-2720 bekannten Werten.

15 **Beispiel 3:**

Herstellung von 2,2,3,3,3-Pentafluor-1,1-diphenylpropan-1-ol

a) 1,87 g (4,63 mmol) Tris(pentafluorethyl)phosphinoxid werden langsam bei
20 -60°C einer Lösung aus 6 mmol Butyllithium (3 cm³ einer 2 M Lösung in
Cyclohexan) 30 cm³ trockenem Tetrahydrofuran zugegeben, wobei die
Temperatur unter -55°C gehalten werden soll. Die Lösung wird bei dieser
Temperatur ca. 1 Stunde gerührt, bis das Phosphinoxid vollständig gelöst ist.
Anschließend wird eine Lösung aus 0,98 g (5,38 mmol) Benzophenon in 5 cm³
25 trockenem Tetrahydrofuran zugegeben und die Mischung innerhalb 2 Stunden
auf Raumtemperatur erwärmt. Die Reaktionsmischung mit 20 cm³ einer 0,1 N
HCl behandelt und mit Diethylether (2 x 50 cm³) extrahiert. Das Extrakt wird
mit Wasser gewaschen (3 x 20 cm³) und über Magnesiumsulfat getrocknet.
Der Ether wird abdestilliert und das gewünschte Produkt aus Hexan
30 auskristallisiert. Es werden 0,42 g 2,2,3,3,3-Pentafluor-1,1-diphenylpropan-1-
ol, einem weißen Feststoff, erhalten, entsprechend einer Ausbeute von

30,0 %, bezogen auf das eingesetzte Phosphinoxid mit einem Schmelzpunkt von 82-83°C.

Das so erhaltene Produkt wird mittels ^{19}F -, und ^1H -NMR-Spektroskopie
5 charakterisiert:

^{19}F NMR Spektrum; δ , ppm:

(Lösungsmittel CDCl_3 , interne Referenz CCl_3F)
-77,6 s (CF_3); -116,9 m (CF_2)

10

^1H -NMR Spektrum; δ , ppm:

(Lösungsmittel CDCl_3 , Referenz TMS)
7,53-7,67 m (2H), 7,30-7,47 m (3H), 2,85 br.s (OH)

15

Die Werte der gefundenen chemischen Verschiebungen und des Schmelzpunktes entsprechen den aus der Veröffentlichung von L.S. Chen, J. of Fluorine Chem., 20 (1982), Seiten 341-348 bekannten Werten.

20

- b) Zu einer Lösung aus 1,98 g (12,27 mmol) Hexamethyldisilazan in 30 cm³ trockenem Tetrahydrofuran werden 7 cm³ einer 2 M Lösung Butyllithium in Cyclohexan gegeben und ca. 1 Stunde erhitzt, bis die Gasbildung von Butan beendet ist. Zu der daraus resultierenden Lösung des
25 Lithiumbis(trimethylsilyl)amid werden 1,80 g (9,88 mmol) Benzophenon gegeben und auf -60°C gekühlt. 3,91 g (9,68 mmol) Tris(pentafluorethyl)phosphinoxid werden zugegeben, wobei die Temperatur unter -55°C gehalten werden soll. Anschließend wird die Mischung innerhalb 2 Stunden auf Raumtemperatur erwärmt. Die Reaktionsmischung mit 20 cm³ Stufen auf Raumtemperatur erwärmt. Die Reaktionsmischung mit 20 cm³ 30 einer 0,1 N HCl behandelt und mit Diethylether (2 x 50 cm³) extrahiert. Das

Extrakt wird mit Wasser gewaschen ($3 \times 20 \text{ cm}^3$) und über Magnesiumsulfat getrocknet.

- Der Ether wird abdestilliert und das gewünschte Produkt aus Hexan auskristallisiert. Es werden 0,70 g 2,2,3,3,3-Pentafluor-1,1-diphenylpropan-1-ol, einem weißen Feststoff, erhalten, entsprechend einer Ausbeute von 5 23,9 %, bezogen auf das eingesetzte Phosphinoxid.

Schmelzpunkt und NMR-Daten entsprechen den in Beispiel a) angegebenen Werten.

10

- c) Zu 5,6 mmol Phenylmagnesiumbromid in 40 cm^3 trockenem Tetrahydrofuran werden bei -60°C 2,00 g (4,95 mmol) Tris(pentafluorethyl)phosphinoxid gegeben, wobei die Temperatur der 15 Reaktionsmischung unter -55°C gehalten werden soll. Die Reaktionsmischung wird eine Stunde bei -45°C gerührt und 0,96 g (5,27 mmol) Benzophenon in 5 cm^3 trockenem Tetrahydrofuran zugegeben. Anschließend wird die Mischung innerhalb 2 Stunden auf Raumtemperatur erwärmt. Die Reaktionsmischung mit 20 cm^3 einer 0,1 N HCl behandelt und mit Diethylether 20 (2 x 50 cm^3) extrahiert. Das Extrakt wird mit Wasser gewaschen ($3 \times 20 \text{ cm}^3$) und über Magnesiumsulfat getrocknet.
- Der Ether wird abdestilliert und das gewünschte Produkt aus Hexan auskristallisiert. Es werden 0,55 g 2,2,3,3,3-Pentafluor-1,1-diphenylpropan-1-ol, einem weißen Feststoff, erhalten, entsprechend einer Ausbeute von 25 36,8 %, bezogen auf das eingesetzte Phosphinoxid.

Schmelzpunkt und NMR-Daten entsprechen den in Beispiel a) angegebenen Werten.

PATENTANSPRÜCHE

5 1. Verfahren zur Perfluoralkylierung, dadurch gekennzeichnet, daß wenigstens ein Tris(perfluoralkyl)phosphinoxid mit dem zu perfluoralkylierenden Substrat umgesetzt wird, wobei das Tris(perfluoralkyl)phosphinoxid vor oder während der Umsetzung mit wenigstens einer Base behandelt wird.

10

2. Verfahren zur Perfluoralkylierung gemäß Anspruch 1, dadurch gekennzeichnet, daß als Substrate organische Verbindungen, vorzugsweise dreifach koordinierte Organoborverbindungen und/oder Carbonyl-Gruppen-haltige organische Verbindungen eingesetzt werden.

15

3. Verfahren zur Perfluoralkylierung gemäß Anspruch 1, dadurch gekennzeichnet, daß starke Basen, vorzugsweise Kalium tert-Butylat, n-Butyllithium, Metallamide und/oder Grignard-Reagenzien, verwendet werden.

20

4. Verwendung wenigstens eines Tris(perfluoralkyl)phosphinoxids zur Perfluoralkylierung chemischer Substrate.

Z u s a m m e n f a s s u n g

Die vorliegende Erfindung betrifft ein Verfahren zur Perfluoralkylierung mittels Tris(perfluoralkyl)phosphinoxiden.