Máximo conjunto independiente

Máximo conjunto independiente

Entrada: Una secuencia de N elementos con pesos no negativos w

Salida: Subconjunto de elementos no adyacentes (conjunto independiente) que maximice la suma de pesos

Solución: {B,D}

Máximo conjunto independiente

Para un valor de N, ¿Cuántas posibles soluciones (incluyendo las inválidas, es decir cuando contiene nodos adyacentes) tiene este problema? 2^N

Solución por búsqueda exhaustiva: Generar un arreglo de N valores binarios y evaluar en O(N) cada una de las 2^N posibilidades

Solución top-down (recursiva):

¿Cuál es la eficiencia de este algoritmo?

 $O(2^N)$, es decir, este algoritmo es prácticamente igual de eficiente que el de fuerza bruta.

Solución mediante programación dinámica

El primer paso a la hora de definir una solución mediante esta técnica es no pensar en el problema original y en cambio preguntarse ¿Qué forma debería tener la solución óptima de un subproblema?

Al analizar un nodo *i*, habría dos alternativas:

- Agregar i a la solución, de esta forma la máxima suma de pesos sería w_i mas la sumatoria de pesos de la solución óptima para los nodos restantes 1 a i-2
- 2. No agregar *i* a la solución, de esta forma la máxima suma de pesos sería la sumatoria de pesos de la solución óptima para los nodos restantes 1 a *i-1*

Solución mediante programación dinámica

```
S_0 = 0

S_1 = W_1

for i=2 to N:

S_i = MAX(W_i + S_{i-2}, S_{i-1})

print(S<sub>N</sub>)
```

Ejemplo: W = [5, 6, 7, 8]

i	0	1	2	3	4
S	0	5	6	12	14

¿Cuál es la eficiencia de este algoritmo?

O(N), sin duda mucho mejor que $O(2^N)$