

Andrzej M. Borzyszkowski

Bazy Danych

Borzyszkowski

Andrzej M.

Relacyjne Bazy Danych

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski PJATK/ Gdańsk

materiały dostępne elektronicznie http://szuflandia.pjwstk.edu.pl/~amb

Bibliografia, oprogramowanie

- R. Elmasari, S. B. Navathe, *Wprowadzenie do systemów baz danych*, Helion, 2005
- R. Stones, N.Matthew, *Bazy danych i PostgreSQL*, Helion, 2002 (seria Wrox)
- Jeffrey D. Ullman, Jennifer Widom, Podstawowy wykład z systemów baz danych, WNT, 2001 (seria Klasyka Informatyki)
- Praca w laboratorium:
 - system PostgreSQL (open source, dostępny na systemy Linux i Windows)
 - każdy student ma swoją bazę danych na serwerze szuflandia
 - dostęp do bazy w trybie tekstowym (terminal) i graficznym (dedykowany program, przeglądarka)

Program wykładu

- Wstęp: historia, systemy zarządzania bazą danych
- Modelowanie danych: encje, związki, atrybuty
- · Model relacyjny i algebra relacyjna
- Projektowanie baz danych
 - postaci normalne
- Język SQL realizacja algebry relacyjnej
 - definiowanie danych
 - operowanie na danych: dostęp, aktualizacja
- Fizyczna organizacja plików, indeksy, optymalizacja
- Współbieżność, blokady, transakcje
- Integracja ze środowiskiem programistycznym

2

Dane

- Przechowywanie danych:
 - bank: wszystkie transakcje
 - sprzedaż: klienci, towary
 - produkcja: części, dostawcy, proces produkcyjny
 - administracja państwowa: dane osobowe, miejsce zamieszkania, samochody
 - urząd skarbowy: dochody, podatki
 - szkoła wyższa: studenci, pracownicy, proces dydaktyczny
- Komputery służą (były zaprojektowane) do obliczeń
 - ale chcemy je użyć do przechowywania i przetwarzania danych

ej M. Borzyszkow

Relacyjne Bazy Danych

- Technologia komputerowa
 - plik: sekwencyjny zapis danych, dobry np. dla muzyki/filmu
 - albo trochę struktury: wiersze z polami, znaczniki

hplip:x:107:7:HPLIP system user,,,:/var/run/hplip:/bin/false
gdm:x:108:113:Gnome Display Manager:/var/lib/gdm:/bin/false
amb:x:1000:1000:Andrzej Borzyszkowski,,,:/home/amb:/bin/bash
postgres:x:111:115:PostgreSQL
 administrator,,,:/var/lib/postgresql:/bin/bash

- rekordy i pola
- indeksy: dodatkowy plik zawierający adresy rekordów wyszukiwanych wg klucza
- tzw. hasze (skróty): sam klucz wyznacza adres
 - gdy zachodzi kolizja adresów, to wyszukiwanie sekwencyjne

Technologia - problemy

- Problemy:
 - nieregularność danych, różna liczba pól w rekordach, różna wielkość rekordów
 - wielkość danych (tzn. liczba rekordów), wydajność
 - warunki spójności
 - nie są wyrażone bezpośrednio
 - nie są też gwarantowane
 - problem dostępu współbieżnego

elacyjne

5

Borzyszkowski

Andrzej M.

Andrzej M. Borzyszkowski

Baza danych

- Zbiór powiązanych ze sobą informacji
 - opisujących fakty i zdarzenia
 - zachodzące w pewnym wycinku rzeczywistości
 - przechowywanych w sposób trwały
 - zorganizowanych w strukturę pozwalającą na ich szybkie wyszukiwanie i analizę
- Baza danych jest projektowana, konstruowana i wypełniana danymi
 - w określonym celu, ma określona zastosowania,
 - ma określonych użytkowników.

System Zarządzania Bazą Danych

- Zestaw programów umożliwiających definiowanie, konstruowanie baz danych, manipulowanie i udostępnianie zawartych w nich danych oraz ochronę i konserwację
 - SZBD (DBMS database management system)
- System bazy danych = baza danych + system zarządzania bazą danych

6

3azy Danych © Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Znane i lubiane implementacje SZBD

- Oracle
- mySQL
- MicroSoft SQL Server
- PostgreSQL
- DB2
- Sybase
- Informix

- dBASE
- Ingres
- Adabas
- Paradox (staroć)
- SQLite (niezupełnie)
- MS Access (czy to w ogóle SZBD?)
- http://is.gd/buzdrE wikipedia:
 Lista_systemów_zarządzania_relacyjnymi_bazami_danych
- http://db-engines.com/en/ranking_trend lista rankingowa

9

Borzyszkowski

Andrzej M.

Bazy Danych

Architektura klient-serwer

- Aplikacja bazodanowa
 - na serwerze zawierającym SZBD
 - na komputerze użytkownika (klient)
- Funkcje serwera
 - zarządzanie bazą danych (w tym dbałość o spójność danych)
 - zarządzanie kontami użytkowników
 - wykonywanie poleceń przekazanych przez klienta
- Funkcje klienta
 - kontakt z użytkownikiem (interfejs, np.. graficzny)
 - wykonywanie lokalne obliczeń
 - komunikacja z serwerem
 - prezentacja danych otrzymanych od serwera

Otoczenie programistyczne

- Aplikacje zewnętrzne
- Programy do budowy aplikacji
- Programy narzędziowe (np. kopie zapasowe)
- Arkusze kalkulacyjne,
 - pakiety statystyczne,
 - inne programy do analiz wykorzystujących zgromadzone dane,
 - programy do grafiki,
 - edytory raportów, etc

10

Języki zapytań

- Języki zapytań (query)
 - dawniej przewidywane zapytania sterowały projektem bazy
 - inne zapytania były bardzo nieefektywne
 - bazy relacyjne są neutralne
- Pierwsze języki zapytań
 - QBE (query by example) zapytanie przez przykład
 - SQL standardowy język zapytań
 - dziś rozwinął się do powszechnego standardu
- SQL
 - manipulowanie danymi wstawianie, usuwanie, wyszukiwanie
 - definiowanie danych tworzenie tabel
 - sterowanie danymi np. prawa dostępu w bazie danych

elacyine Bazy Danycl

11

Andrzej M.

Bazy Danych

Przykład

- Baza danych "uniwersytet":
 - student (imię i nazwisko, rok i kierunek studiów, indeks)
 - przedmiot (nazwa i skrót, kierunek, l.godzin)
 - obsada (przedmiot, prowadzący, semestr)
 - oceny (student, przedmiot, ocena)
 - wymagania (przedmiot, co wymaga)
- Dane podzielone są na wiele plików,
 - plik składa się z rekordów (wiersze/krotki, tuple)
 - kolumny/pola/atrybuty, stała liczba i format
 - komórki są atomowe
 - mają one ustalone z góry typy (napis/liczba/data ...)

Baza danych vs. dane rozproszone

Integracja danych

Andrzej M. Borzyszkowski

Bazy Danych

13

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

- baza może być traktowana jako połączenie informacji zawartych w odrębnych plikach danych
- przykład: dziekanat posługuje się tabelą studentów i ocen by analizować zaliczenia, inny dział oblicza wynagrodzenie pracowników korzystając z tabel obsady danych
- Gdyby każdy z działów miał swoje dane:
 - nadmiarowość
 - niepotrzebnie zajęte miejsce
 - niebezpieczeństwo niespójności danych
 - odmienny format danych w każdym dziale
 - być może utrudniłoby to wymianę

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

Cechy systemów baz danych

- Opis struktury
 - SZBD przechowuje katalog czyli informację o strukturze wszystkich plików bazy danych
 - również informacje o użytkownikach i ich uprawnieniach
 - SZBD jest przystosowany do obsługi dowolnej bazy, struktura nie jest częścią aplikacji
- Abstrakcja danych
 - aplikacja jest niezależna od struktury bazy danych
 - istnieje możliwość dodania pól, połączenia tabel, zmiany organizacji wewnętrznej, etc.
 - istnieje możliwość zmiany sposobu dostępu do danych
 - w podejściu obiektowym aplikacja może być niezależna od operacji: wywołuje metody, implementacja operacji w metodzie.

Cechy systemów baz danych, c.d.

- Spójność (integralność) danych
 - system pozwala zdefiniować własności wymagane od danych
 - system sprawdza te własności
 - zmniejsza ryzyko zapisania błędnych danych w bazie (błędy użytkowników)
 - zmniejsza/niweluje ryzyko błędów sprzętowych/awarii
 - zmniejsza/niweluje ryzyko błędów wskutek dostępu współbieżnego

1,

ine Bazy Danych © Andrzej M. Borzyszkowski

Cechy systemów baz danych, c.d.

- Poufność danych, obsługa perspektyw
 - różni użytkownicy mają dostęp do różnych danych
 - nie każdy użytkownik bazy powinien mieć dostęp do wszystkich danych,
 - dane zbiorcze/indywidualne, czytanie/zapis
 - może nawet nie wiedzieć o istnieniu niektórych danych
- Autoryzacja dostępu: system kont z hasłami, różne systemy identyfikacyjne
- Szyfrowanie danych

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M.

Bazy Danych

Zalety rozwiązań bazodanowych

- Ograniczanie nadmiarowości (redundancji)
 - większy wysiłek przy wprowadzaniu danych
 - większa zajętość miejsca (dziś mniej ważny argument)
 - niespójność danych (błędy w niektórych kopiach, rozbieżność wprowadzanych danych)
- Ale: nadmiarowość może być pożyteczna
 - dane bliżej użytkownika końcowego
 - dane wynikowe przechowywane w celu dalszego użycia
 - wniosek: nadmiarowość trzeba kontrolować

Cechy systemów baz danych, c.d.

- Współdzielenie danych
 - fragmenty danych mogą być używane przez wielu użytkowników jednocześnie (współbieżność)
 - problem czytelników i pisarzy
 - transakcja niepodzielna operacja dokonana przez jednego z użytkowników, izolowana od innych operacji
- Niezawodność
 - możliwość odtworzenia bazy sprzed awarii sprzętowej czy programowej
- Wydajność
 - struktura odpowiednia do wyszukiwania danych (indeksy)

. 1

Zalety rozwiązań bazodanowych, c.d.

- Różnorodność interfejsów
 - baza danych jest jedna, ale różni użytkownicy mogą różnie ją widzieć
 - narzędzia graficzne, formatki do wprowadzania danych, graficzne przedstawienie danych
 - dostęp poprzez witrynę internetową
 - dostęp poprzez SQL
- · Definiowanie reguł
 - automatyczne wnioskowanie na podstawie danych
 - automatyczne podejmowanie odpowiednich działań
 - również dbałość o spójność (wartości czy zależności pomiędzy danymi, business rules)

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

System BD – użytkownicy

- Użytkownik końcowy
 - komunikuje się z bazą, np. ze stacji roboczej
 - realizuje swoje cele za pomocą udostępnionego mu interfejsu (system formularzy, procesora zapytań SQL)
- Rodzaje użytkowników końcowych:
 - dorywczy: inne potrzeby za każdym podejściem
 - naiwny użytkownik: standardowe i powtarzalne czynności, używa formularzy
 - doświadczony użytkownik: wykonuje niestandardowe operacje, używa SQL

Modelowanie danych (model związków encji) System BD – użytkownicy

- Programista aplikacji
 - określa wymagania użytkowników końcowych (naiwnych)
 - tworzy programy umożliwiające użytkownikom końcowym dostęp do bazy
- Administrator

Borzyszkowski

Andrzej M.

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

- specjalista z dziedziny IT (Information Technology)
- zakłada bazę danych, implementuje kontrolę dostępu do bazy, monitoruje wykorzystanie, odpowiada za wydajność systemu i za bezpieczeństwo danych
- Projektant bazy
 - identyfikuje dane do przechowania, projektuje struktury, przewiduje perspektywy dla różnych użytkowników

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Modelowanie rzeczywistości

- Model semantyczny: "rozumiemy" modelowaną rzeczywistość
 - potem planujemy jej reprezentacje

Projektowanie bazy danych: analiza wymagań

- wymagania funkcjonalne (planowane operacje)
 - diagramy przepływu danych, diagramy sekwencji, scenariusze (inżynieria oprogramowania)
 - stosowane są diagramy UML (unified modelling language)
- wymagania danych
 - schemat koncepcyjny: decyzje biznesowe (bussiness logic) co chcemy przechowywać?
 - jakie operacje chcemy wykonywać
 - warunki spójności narzucane na dane

Relacyjne Bazy Danych

Modelowanie rzeczywistości, c.d.

- Modele historyczne
 - model hierarchiczny (np. drzewo katalogów systemu operacyjnego)
 - model sieciowy
- Model relacyjny (Peter Chen 1976)
 - dane tworzą relację/wiele relacji
 - relacja ≈ tabela
 - diagramy związków encji entity relationship diagrams
- Modele przyszłości?
 - model obiektowo-relacyjny
 - model semistrukturalny
 - itd.

Encje

- Encja (jednostka) jest opisywana atrybutami
 - np. imię, nazwisko, pesel (atrybuty proste)
 - mogą być atrybuty złożone (np. adres)
 - pochodne (np. wiek)
 - wielowartościowe (np. wykształcenie)

Encje i związki

- Encja (entity): realny byt, jednostkowy i odróżnialny od innych podobnych encji, np. człowiek, przedmiot, organizacja
 - baza danych zawiera właśnie informacje o encjach
 - encje pewnego typu stanowią zbiór, ma on swoją nazwę
 - encje charakteryzują się własnościami.
- Własność (atrybut): cecha encji przechowywana w bazie danych
 - ma wartość w pewnym zbiorze właściwym dla tej własności
 - a priori może być złożona, wielowartościowa, pochodna.
- Klucz (key): jedna lub więcej własności jednoznacznie identyfikujących encję w bazie danych.
- Związek (relationship): zależność pomiędzy zbiorami encji w bazie danych, ma swoją nazwę.

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Encje, c.d.

- · Typ encji definiuje zbiór możliwych encji o tych samych atrybutach - schemat, intensja
- Ekstensja chwilowy stan bazy danych, zbiór encji przechowywanych w danej chwili
- Atrybut kluczowy dla każdej ekstensji atrybut jest niepowtarzalny
 - tzn. nigdy nie będą przechowywane dwie encje o tej samej wartości klucza
 - oznaczany jest jako podkreślenie nazwy
 - najczęściej jest to atrybut atomowy
 - może być kilka atrybutów kluczowych
- Dziedzina wartości atrybutu nie jest na diagramie reprezentowana
 - ani typ danych, ani dodatkowe ograniczenia

Relacyjne Bazy Danych

Borzyszkowski Andrzej M.

Bazy Danych

Związki

- Typ związku określa typy encji, pomiędzy którymi zachodzi związek oraz dopuszczalną liczność elementów encji będących w związku
 - bieżący stan bazy danych określa istniejące powiązania dla danego związku
- Np. w bazie danych przechowywane są informacje o studentach, przedmiotach i zaliczeniach
 - zaliczenie jest związkiem pomiędzy encjami przedmiotów i studentów, związkiem wieloznacznym
 - w bazie danych przechowywane są bieżące informacje na powyższy temat, zmieniają się one w czasie
 - ale istnienie i typ związku jest niezmienny
- Prawie zawsze związki są binarne (pomiędzy dwiema encjami)

Klasyfikacja (binarnych) związków encji

- 1-1 (jednojednoznaczny)
 - każda encja z jednego zbioru encji może być skojarzona z co najwyżej jednym elementem z drugiego zbioru
 - pewne encje moga pozostać bez skojarzenia
 - czasami wyraźnie chcemy uniknąć takiej sytuacji
 - np. przedmiot ma pełen udział w związku oznacza, że każdy przedmiot ma przypisany termin - wymóg istnienia

Klasyfikacja (binarnych) związków encji

• 1-wielu, 1-N (jednoznaczny)

- każda encja ze jednego zbioru może być skojarzona z pewną ich liczbą z drugiego zbioru
- jednakże encja z drugiego zbioru najwyżej z jedną encją z pierwszego zbioru
- i znowu mogą pozostać encje bez skojarzenia
- ale czasami wyraźnie chcemy uniknąć takiej sytuacji
- np. zapewnić, że przedmioty maja obsade

Klasyfikacja (binarnych) związków encji

- wieloznaczny
 - dowolna liczba encji z jednego zbioru może być skojarzona z dowolną liczbą encji z drugiego zbioru nadal aktualne uwagi
- o encjach niezwiązanych

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

29

© Andrzej M. Borzyszkowski

- Szkoła Wyższa organizuje bazę danych zawierającą informacje o nauczycielach akademickich (nazwisko, imię, nr legitymacji), studentach (nazwisko, imię, nr indeksu), wykładanych przedmiotach (nazwa, rodzaj, liczba godzin w tygodniu, kod) i ich terminach (dzień tygodnia, godzina, sala).
- Rozważamy też następujące związki między encjami:
 - odbywa się: każdy przedmiot posiada określony termin/salę
 - związek jednojednoznaczny
 - jest prowadzony: każdy przedmiot jest prowadzony przez nauczyciela, który prowadzi wiele przedmiotów
 - związek jednoznaczny
 - zalicza: każdy student zalicza kilka przedmiotów, każdy z nich gromadzi wielu studentów, zaliczenia są na ocenę
 - związek wieloznaczny

Cechy związków

Andrzej M. Borzyszkowski

Bazy Danych

Relacyjne

- Dla związku binarnego mamy dwie możliwe nazwy
 - student zalicza przedmiot przedmiot jest uczęszczany
 - przedmiot odbywa się w terminie termin jest zajęty przez
 - nauczyciel wykłada przedmiot przedmiot jest wykładany
- Technicznie nie ma znaczenia jaką nazwę przyjmiemy
 - ale musi być jasna w przypadku związku rekursywnego
 - np. pracownik jest kierownikiem innego pracownika
- Na diagramie reprezentuje się dokładniej możliwe liczebności encji w związku, np. 1:∞, 0:∞, 2:10
 - albo podaje się tylko maksymalne ograniczenie
- Związki mogą posiadać swoje atrybuty
 - np. student nie tylko uczęszcza na wykład, ale i zalicza na ocene

34

Diagram ER (notacja ISO)

Diagram ER (notacja Martina)

© Andrzej M. Borzyszkowski

Diagram ER w notacji UML

37