

Konstruktion und Laufzeitanalyse von Algorithmen

Einige erste Beispiele

Problem – Algorithmus – Programm: Lösungsalternativen

- Jedes Problem lässt sich durch verschiedene Algorithmen lösen.
- Jeder Algorithmus lässt sich durch verschiedene Programme darstellen.

Wie gut ist ein Algorithmus?

- Mögliche Kriterien
 - Wie schnell wird das Ergebnis berechnet
 - Zeitkomplexität
 - Wieviel Speicherplatz wird benötigt
 - ð Platzkomplexität
- Wir werden und auf Zeitkomplexität konzentrieren
- Wie können Zeitkomlexitäten verglichen werden?
 - Erste idee: Vergleiche Laufzeiten von Implementierungen

Komplexität eines Algorithmus

- Es gibt wesentliche Schwierigkeiten, wenn Laufzeiten von Programmen statt von Algorithmen verglichen werden
 - Welche Realisierung des Algorithmus als Programm ist benutzt?
 - Wie ist das Programm compiliert?
 - Welcher Computer wird zur Messung benutzt
- Analyse eines Algorithmus sollte davon unabhängig sein!

Aufwandsbestimmung

 Zählung der elementaren Operationen eines Algorithmus (in Abhängigkeit von der Größe der Eingabe) ist eine Möglichkeit der Aufwandsbestimmung (Komplexitätsbestimmung) des Algorithmus

Aufwandsbestimmung

Beispiel

Exakte Bestimmung der Komplexität

```
int f1 (int n) {
  int res = 1; // Init
  for(int j=1; j<n; j++)
    for(int i=1; i<j; i++)
    res = res * i;

return res;
}</pre>
```

n	Z(n)	V(n)	M(n)	I(n)
1	2	0	0	0
2	3	1	0	1
3	5	3	1	3
4	8	6	3	6
5	12	10	6	10
6	17	15	10	15
7	23	21	15	21
8	30	28	21	28
9	38	36	28	36
10	47	45	36	45

Aufwandsbestimmung

Weiteres Beispiel

```
int power(int m, int n)
  int res=1; // Initialize
  while(n > 0){
   if(n % 2 == 1){
      res = res * m;
     n = n-1;
    else {
     m = m * m;
     n = n/2;
return res;
```

n	M(n)
1	1
2	2
3	3
4	3
5	4
6	4
7	5
8	4
9	5
10	5

n	M(n)
11	6
12	5
13	6
14	6
15	7
16	5
17	6
18	6
19	7
20	6

Aufwandsfunktionen

- Die Laufzeit ergibt sich als Funktion der Eingabegröße
 - Wenn ein Eingabeparameter als ganze Zahl vorliegt, kann der Wert des Eingabeparameters direkt als Eingabegröße genommen werden
 - Manchmal wird aber die Stellenzahl, d.h. der 2er-Logarithmus, als Eingabegröße genommen
 - Bei mehreren Eingabeparametern (und nicht-numerischen Werten) muss erst eine Abbildung auf geeignete numerische Funktionen zur Messung der Eingabegröße durchgeführt werden

Aufwandsfunktionen

- Exakte Bestimmung dieser Funktion des zeitlichen Aufwands eines Algorithmus als Funktion der Eingabegröße im Allgemeinen zu komplex
 - Ergebnis auch nicht mehr sinnvoll interpretierbar
- Beschränkung auf Wachstumsraten häufig eingesetztes Hilfsmittel ("groß"-O-Notation)
 - Siehe später

Komplexität im schlechtesten, mittleren (und besten) Fall

- Analyse wird oftmals aufgeteilt in folgende Fälle
 - Komplexität der Wachstumsfunktion im schlechtesten Fall (worst case complexity)
 - Wachstumsrate im schlechtesten Fall
 - Komplexität der Wachstumsfunktion im mittleren Fall (average case complexity)
 - Wachstumsrate im "durchschnittlichen" Fall
 - Kann sehr viel besser als der "schlechteste Fall" sein.
 - Erfordert aber Wissen über statistische Verteilung von Eingabegrößen
 - Bester Fall oftmals weniger relevant
 - Durch Speicherung des Ergebnisses für bestimmte Fälle kann immer eine sehr geringe Komplexität im besten Fall erreicht werden

Aufwand und asymptotische Komplexität

Aufwand und asymptotische Komplexität

Beispiel für Wachstum von **Funktionen**

Wir wählen
$$f(n) = \frac{1}{3}n^2$$
. Es sei

$$t_1(n) = \frac{1}{4}n^2,$$

 $t_2(n) = n,$
 $t_3(n) = \frac{1}{3}n^2 + 2,$
 $t_4(n) = 2^n.$

Definition 10.4.4. Sei $f : \mathbb{N} \to \mathbb{R}^*$. Die **Ordnung** von f (the order of f) ist die Menge

$$O(f(n)) = \left\{ t : \mathbb{N} \to \mathbb{R}^* \mid \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ t(n) \le c \cdot f(n) \right\}$$

Definition 10.4.11 ("Omega"). Für eine Funktion $f : \mathbb{N} \to \mathbb{R}^*$ ist die Menge Ω wie folgt definiert:

$$\Omega(f(n)) = \left\{ t : \mathbb{N} \to \mathbb{R}^* \mid \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ t(n) \ge c \cdot f(n) \right\}$$

Definition 10.4.12 (,,Theta"). Die exakte Ordnung Θ von f(n) ist definiert als:

$$\Theta\left(f(n)\right) = O\left(f(n)\right) \cap \Omega\left(f(n)\right)$$

O-Notation: Effekt von Konstanten

Beispiele:

- $T_1(n) = 2^n + n^2 + n + 1 + \log(n)$ • $T_1(n) \hat{I} O(2^n)$
- $T_2(n) = n^{20000} + 2^n$ • $T_2(n) \hat{I} O(2^n)$
- $T_3(n) = n + \log_2(n)$ $T_3(n) \hat{I} O(n)$
- $T_4(n) = 10$ • $T_4(n) \hat{I} O(1)$

O-Notation: Effekt von Konstanten

- Beispiele:
 - $T_6(n) = 1000000000 + log_2(n) + log_{20}(n)$
 - ð Bemerkung:
 - $-\log_2(n) = \log_2(e) \log(n)$
 - $-\log_{20}(n) = \log_{20}(e) \log(n)$
 - $\rightarrow T_6(n) \hat{I} O(\log(n))$

Beispiele

- Beispiele:
 - Sei:

$$g(n) = n^2 + 4$$

Dann gilt:

$$\{f(n) = 2n^2 + \log_2(n+1)\} \in O(g(n))$$

Beweis:

- Beispiele:
 - Sei:

$$g(n) = n^2 + 4$$

Dann gilt:

$$\left\{ f(n) = 2n^2 + \log_2(n+1) \right\} \in \Omega(g(n))$$

Beweis:

$$f(n) > \frac{1}{4}g(n)$$
 if $n \ge 1$

Beispiele:

$$\left\{ f(n) = 2n^2 + \log_2(n+1) \right\} \in \Omega(g(n)) \left\{ f(n) = 2n^2 + \log_2(n+1) \right\} \in O(g(n))$$

$$\left\{ f(n) = 2n^2 + \log_2(n+1) \right\} \in \Theta(g(n))$$

- Im folgenden sollen einige nützliche mathematische Lemmata zusammengestellt werden
 - Diese implizieren, dass die Verwendung der Mengen von Funktionen, die durch die O-Notation beschrieben werden, sehr viel einfacher ist, als Wachstumsfunktion direkt zu beschreiben

Bemerkung:

- Wir verwenden O-Notation hauptsächlich im Zusammenhang mit Zeitkomplexitäten
- Kann auch für Platz-Komplexitäten verwendet werden
- Oder auch in ganz anderen Zusammenhängen

Lemma 1:

$$O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$$

- Beispiel: $O(n^2 + 2^n) = O(2^n)$
- Beweis:

$$f(n) + g(n) \le 2 \cdot \max(f(n), g(n))$$

$$\Rightarrow O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$$

Lemma 2:

a.)
$$O(f(n)) \subseteq O(g(n)) \Leftrightarrow f(n) \in O(g(n))$$

b.)
$$O(f(n)) = O(g(n)) \Leftrightarrow f(n) \in O(g(n)) \land g(n) \in O(f(n))$$

c.)
$$O(f(n)) \subset O(g(n)) \Leftrightarrow f(n) \in O(g(n)) \land g(n) \notin O(f(n))$$

• Beispiel: $O(n^2) \subset O(2^n)$

Lemma 3:

$$O(n^m) \subset O(n^{m+1})$$

◆ Beweis: Durch vollständige Induktion über *m*

- Lemma 4:
 - Sei

$$A(n) := a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0 \quad a_i \in$$

Dann gilt

$$A(n) \subset O(n^m)$$

Beweis:

$$A(n) \le \max(a_0, ..., a_m) \cdot m \cdot n^m \in O(n^m)$$

Greedy- und Divide-and-Conquer- Verfahren

Einige erste Analyse-Beispiele von "Greedy"- und "Divde-and-Conquer"-Verfahren

Design Paradigmem

- Es gibt einige wichtige allgemeine Design Paradigmen für Algorithmen
 - Greedy Method
 - "gierige" Methoden
 - Divide and conquer
 - Teile-und-Herrsche-Methoden
 - Divide et impera
 - Dynamic programming
 - Search and enumeration
- An dieser Stelle sollen nur erste Beispiele gegeben werden von
 - Greedy-Verfahren
 - Divide-and-conquer-Verfahren

Greedy- und Divide-and- Conquer-Verfahren

- Schritte in einem greedy-Verfahren
 - Behandle einfache und triviale Fälle
 - Reduziere Problem (in eine Richtung)
 - Löse durch Iteration oder Rekursion
- Schritte in Divide-and-Conquer-Verfahren
 - Behandle einfache und triviale Fälle
 - Divide: Reduziere das problem in zwei (oder mehr) Unterprobleme
 - Die in etwa "gleich groß" sind
 - Conquer: Löse die Subprobleme
 - Im allgemeinen durch Rekurison
 - Kombiniere: Erhalte Lösung des Ausgangsproblems durch Kombination der zuvor erhaltenen Teillösungen

Greedy- und Divide-and- Conquer-Verfahren

- Beispiel: Exponentiation x^y
 - **ð** Greedy

$$x^y = x \cdot x^{y-1}$$

```
int power(int x, int y)
{
  if (y == 0) then return 1;
  else return x*power(x,y-1);
}
```

Divide –and-Conquer

$$x^y = x^{\frac{y}{2}} \cdot x^{\frac{y}{2}}$$

```
int power(int x, int y)
{
  if (y == 0) then return 1;
  else
  {
    if (y % 2 == 0) {int c=power(x,y/2); return c*c}
    else return x*power(x,y-1);
    }
}
```


Bestimmung des Aufwandes

- Beispiel:
- Exponentiation x^y
 - Greedy:
 - y Multiplikationen sind notwendig
 - Divide-Conquer-Fall:
 - Bester Fall:
 - "In etwa" log₂(y) Multiplicationen
 - Schechtester Fall
 - "In etwa" 2*log₂(y) Multiplikationen
 - Siehe auch folgende Folien

```
int power(int x, int y)
 if (y == 0) then return 1;
  else return x*power(x,y-1);
```

```
int power(int x, int y)
  if (y == 0) then return 1;
   else
     if (v \% 2 == 0 \{ \text{int c=power}(x, v/2); \text{ return c*c} \}
     else return x*power(x,y-1);
```


Bestimmung des Aufwandes

- Analyse des "divide-and-conquer"-Exponentiations-Verfahrens
 - lacktriangle Anzahl der benötigten Multiplikationen M is (S-1)+E
 - In binärer Repräsentation der Eingabegröße n
 - S Stellenanzahl
 - E Anzahl der Stellen mit 1
 - ð Beispiel: $n = 9 = 1.8 + 0.4 + 0.2 + 1.1 = 1001_2$
 - E = 2
 - S = 4
 - M = (4-1)+2=5

Bestimmung des Aufwandes

Beste Fälle

- - ð Binärdarstellung hat eine 1 und k Nullen
- \bullet $M_{best}(n) = M(2^k) = k + 1 = log_2(n) + 1$

Schlechtester Fall

- - ð Binärdarstellung von n enthält keine Ziffern 0
- $M_{worst}(n) = M(2^{k}-1) = 1 + M(2^{k}-2) = 2 + M(2^{k-1}-1) = 3 + M(2^{k-1}-2) = 4 + M(2^{k-2}-1)$ $= \dots$

... =
$$2k+M(1) = 2k+1 = 2 |\log_2(n)|+1$$

Sortieralgorithmen

Weitere Beispiele von "Greedy"- und "Divde-and-Conquer"-Verfahren

Einleitung und Problemstellung

- Aufgabe: Sortiere Folge F aufsteigend (bzw. absteigend)
- Klassifikation elementarer Sortierverfahren
 - greedy
 - divide-and-conquer
- Implementierungen basieren auf Folgen als
 - Reihungen (arrays)
 - Listen (linked lists)
 - Siehe Vorlesung im Sommersemester
- Wichtige Gesichtspunkte:
 - Laufzeitkomplexität (asymptotisch)
 - Speicherplatz:
 - Bei Reihungen Operationen "in place" bevorzugt
 - ð Bei jeder Rekursion Platz für Parameter und Variablen

Grundprinzipien elementarer Sortierverfahren: Greedy

- Sortieren durch Auswahl (selection sort)
 - Finde in F kleinstes Element und füge es an das Ende von S an.
- Sortieren durch Einfügen (insertion sort)
 - Nehme erstes Element aus F und füge es an richtiger Stelle in S ein.
- Sortieren durch Austauschen (bubble sort)
 - Gehe von links nach rechts durch F und vertausche benachbarte Elemente, falls falsch geordnet. Wiederhole den Schritt, bis Folge fertig sortiert.

Grundprinzipien elementarer Sortierverfahren: divide-and-conquer

- Quicksort
 - Teile F in Teilfolgen F_{1} , F_{2} , wobei Elemente in F_{1} kleiner als Elemente in F_{2} sind.
 - Sortiere F₁, F₂ rekursiv
 - Füge sortierte Teilfolgen zusammen.
- Sortieren durch Mischen (merge sort)
 - ◆ Teile F in Teilfolgen F₁, F₂
 - Sortiere F₁, F₂ rekursiv
 - Bilde S durch iteratives Anhängen des kleineren der jeweils ersten Elemente aus F₁, F₂

Selection sort: Sortieren durch Auswahl

● Prinzip: Solange es Elemente in der Folge *F* gibt, nehme das kleinste Element und hänge es an die Resultatfolge *S* an.

```
SelectSort (F)
// Die unsortierte Folge F wird in die sortierte Folge S überführt.
1. Initialisiere: S = M;
2. Trivialfall: if (F == M) return (S);
3. Reduktion: Minimum aus S nach F überführen.
a = select (F);
S = appendElem (S, a);
F = deleteElem (F, a);
4. Iteriere: Weiter bei 2.
```


Selection sort: Sortieren durch Auswahl

	Position	0	1	2	3	4	5
Anfang	F	5	2	4	6	1	3
	S	-	-	-	-	-	-

Schritt 1

Position	0	1	2	3	4	5
F	5	2	4	6	3	-
S	1	_	_	-	_	_

Schritt 2

Position	0	1	2	3	4	5
F	5	4	6	3	-	-
S	1	2	-	-	-	-

Selection sort: Sortieren durch Auswahl

	Position	0	1	2	3	4	5
Schritt 3	F	5	4	6	-	-	-
	S	1	2	3	-	-	-
	Position	0	1	2	3	4	5
Schritt 4	F	5	6	-	-	-	-
	S	1	2	3	4	-	-
	Position	0	1	2	3	4	5
Schritt 5	F	6	-	-	-	-	-
	S	1	2	3	4	5	-
	Position	0	1	2	3	4	5
Schritt 6	F	-	-	-	-	-	-
	S	1	2	3	4	5	6

Selection sort: Array Implementierung I

- Reihung data 図 0 図, ..., data 図 n-1 図 partitioniert in
 - \bullet sortierter Anfang S: data $W \cap W$, ..., data W next-1 W
 - ulletunsortierter Rest F: data w next w, ..., data w n-1 w
- •Finde Index min des minimalen Elementes in F
- Vertausche data ※ next ※ mit data ※ min ※
- ●Inkrementiere next und iteriere bis next=n

Selection sort: Array Implementierung II

```
void swap(int* data, int a, int b) {
        int temp;
        temp = data[a];
        data[a] = data[b];
        data[b] = temp;
int findMin(int* data, int size, int pos) {
        int min = pos;
        int i;
        for(i = pos; i < size; i++) {
                if (data[i] < data[min])</pre>
                         min = i;
        return min;
void selectSort(int* data, int size) {
        int min, next;
        for (next = 0; next < size - 1; next++) {
                min = findMin(data, size, next);
                swap(data, next, min);
```


Insertion sort: Sortieren durch Einfügen

• Prinzip: Nehme jeweils das erste Element aus F und füge es in S an der richtigen Stelle ein.

```
InsertSort(F)
// Die unsortierte Folge F wird in die sortierte Folge S überführt.
1. Initialisiere: S = W;
2. Trivialfall: if (F == W) return(S);
3. Reduziere F: ein Element aus F sortiert nach S überführen.
a = takeFirst(F);
S = insertSorted(S, a);
4. Iteriere: Weiter bei 2.
```


Insertion sort: Sortieren durch Einfügen

Anfang

Position	0	1	2	3	4	5
F	5	2	4	6	1	3
S	-	-	-	-	-	-

Schritt 1

Position	0	1	2	3	4	5
F	2	4	6	1	3	-
S	5	-	-	-	-	-

Schritt 2

Position	0	1	2	3	4	5
F	4	6	1	3	-	-
S	2	5	-	-	-	-

Insertion sort: Sortieren durch Einfügen

	Position	0	1	2	3	4	5
Schritt 3	F	6	1	3	-	-	-
	S	2	4	5	-	-	-
	Position	0	1	2	3	4	5
Schritt 4	F	1	3	-	-	-	-
	S	2	4	5	6	-	-
	Position	0	1	2	3	4	5
Schritt 5	F	3	-	-	-	-	-
	S	1	2	4	5	6	-
Schritt 6	Position	0	1	2	3	4	5
	F	-	-	-	-	-	-
	S	1	2	3	4	5	6

Insertion sort: arraybasiert

- ●Reihung data ※0 ※, ..., ※ n-1 ※ partitioniert in
 - \bullet sortierter Anfang S: data W0W, ..., data W next-1 W
 - ullet unsortierter Rest F: data W next W, ..., data W n-1 W
- •Wähle Element data Wnext W zum Einfügen
- •Suche Einfügestelle absteigend von next-1 bis 0
- •Schiebe dabei jedes zu große Element eine Position nach hinten bis Einfügestelle gefunden

- •Gehe von links nach rechts durch Folge *F*, vertausche falsch geordnete Nachbarn. So wird größtes Element an das Ende bewegt.
- •Wiederholen bis die ganze Folge geordnet ist. (So oft wie die Folge Elemente hat.)
- S bildet sich also rechts von F und dehnt sich nach links aus.
- Optimierung: Größte Elemente nach Sortierung nicht mehr beachten.
- Zeiteffizient für vorsortierte Folgen.
- •Platzeffizient, da nur eine Folge benutzt wird.

Anfang	Position	0	1	2	3	4	5
	F	5	2	4	6	1	3
Schritt 1	Position	0	1	2	3	4	5
Schritt 1	F	2	5	4	6	1	3
Schritt 2	Position	0	1	2	3	4	5
Schritt 2	F	2	4	5	6	1	3
Sobritt 2	Position	0	1	2	3	4	5
Schritt 3	F	2	4	5	6	1	3
Sobritt 1	Position	0	1	2	3	4	5
Scill III 4	F	2	4	5	1	6	3
Schritt 3 Schritt 4	F Position	0	1	2	6 3	1	3

Schritt 5	Position	0	1	2	3	4	5				
	F	2	4	5	1	3	6				
Schritt 6	Position	0	1	2	3	4	5				
	F	2	4	5	1	3	6				
Schritt 7	Position	0	1	2	3	4	5				
Schill /	F	2	4	5	1	3	6				
Schritt 8	Position	0	1	2	3	4	5				
Schritt 8	F	2	4	1	5	3	6				
Schritt 9	Position	0	1	2	3	4	5				
	F	2	4	1	3	5	6				

Schritt 10	Position	0	1	2	3	4	5
	F	2	4	1	3	5	6
Schritt 11	Position	0	1	2	3	4	5
Scillitt 11	F	2	4	1	3	5	6
C 1 '44 10	Position	0	1	2	3	4	5
Schritt 12	F	2	1	4	3	5	6
Schritt 13	Position	0	1	2	3	4	5
Schill 13	F	2	1	3	4	5	6
Sobritt 11	Position	0	1	2	3	4	5
Schritt 14	F	2	1	3	4	5	6

. . .

Schritt 20	Position	0	1	2	3	4	5
	F	1	2	3	4	5	6

Tausch am Anfang eines Durchlaufs, danach nicht mehr: Fertig!

Bubble sort: Arrayimplementierung

```
void bubbleSort(int* data, int size) {
        int pos;
        int hasSwapped;
        do {
                hasSwapped = 0;
                for (pos = 0; pos < size - 1; pos++) {
                         if(data[pos] > data[pos + 1]) {
                                 swap(data, pos, pos + 1);
                                 hasSwapped = 1;
        } while(hasSwapped == 1);
```

Anmerkung: Keine Suche mehr nach dem Minimum! => bei langen Folgen schneller

divide-and-conquer: Prinzip

Beim Sortieren gibt es zwei Ausprägungen:

Hard split / **easy join**: Dabei wird die gesamte Arbeit beim Teilen des Problems verrichtet und die Kombination ist trivial, das heißt, F wird so in F_1 und F_2 partitioniert, daß $S = S_1$ S_2 . Dieses Prinzip führt zum *Quicksort*-Algorithmus. **Easy split** / **hard join**: Dabei ist die Aufteilung $F = F_1$ F_2 trivial und die ganze Arbeit liegt beim Zusammensetzen von S_1 und S_2 zu S. Dieses Prinzip führt zum *Mergesort*-Algorithmus.

quicksort: Allgemeines

- Einer der besten und meist genutzten Sortieralgorithmen
- Hauptvorteile:
 - sortiert Array in place
 - O(n log n) Komplexität im Mittel
 - O(log n) zusätzlicher Speicherplatz auf Stack
 - in Praxis schneller als andere Verfahren mit derselben asymptotischen Komplexität O(n log n)

quick sort: Prinzip

- Wähle und entferne Pivotelement p aus F
- Zerlege F in Teilfolgen F_1 , F_2 so daß
 - $e_1 für alle <math>e_1$ in F_1 , e_2 in F_2
 - Sortiere (rekursiv) F_1 zu S_1 und F_2 zu S_2
- Gesamtlösung ist S₁ p S₂

quicksort: Zerlegung in Teilfolgen

- Für Zerlegung in F₁, F₂ ist p mit jedem Element von F \ {p} zu vergleichen
- Zerlegung soll durch Vertauschen von Elementen geschehen (kein Zusatzspeicher, in place!)
- 3. Wähle *p* als rechtes Randelement von *F*
- 4. Suche *i* = arg min_i *F*⋈*i*⋈ ≥ *p, j* = arg max_i *F*⋈*j*⋈ < *p*
- 5. Paar Fເ i i i i j i i j i j i steht falsch", also vertausche F i i i i mit i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i i j i j i i j i i j i i j i
- 6. Terminierung (ohne Vertauschen!), wenn erstmals *i* > *j*, sonst gehe zum Suchschritt 4
- 7. Vertausche p mit linkem Rand von F_2 (also mit $F \boxtimes i \boxtimes i$)

quicksort: Wahl des Pivotelements

- Algorithmus ist schnell wenn die Teilfolgen F₁, F₂ etwa gleich groß
- Im schlimmsten Fall ist eine Teilfolge immer leer (kann vorkommen, wenn Folge vorsortiert ist)
- Daher wählt man häufig p als Median von drei Stichproben, z. B. erstes, mittleres und letztes Element von F
- (b ist Median von a,b,c, wenn $a \le b \le c$)

quicksort: Beispiel

Nun ist die 4 am richtigen Platz angelangt. Danach geht es weiter mit dem rekursiven Aufruf auf den beiden Teilfolgen:

$$F_1 = (3, 2, 1) \text{ und } F_2 = (7, 9, 8, 6)$$

quick sort: Implementierung I/II

```
/**
   * Sorts data[l], data[l+1], ..., data[r]\frac{1}{3}
   * in ascending order using the quicksort algorithm
   * Precondition: 0 <= 1 <= r < size.
   * /
 public void quickSort(int * data, int size, int
    // O. Initialisiere
    int i = 1, j = r-1;
    // 1. Check auf Trivialfall
    if (1 >= r) return;
    // Initialisiere pivot
    int pivot = data[r];
    // 2. Teile: Füge pivot an einem Platz p_{\parallel}^{L}
    // ein, so dass F[i]<F[p] für l<=i<p und</pre>
    // F[j] >= F[p] für p <= j <= r.
```

quicksort: Implementierung II

```
4 \mid 1 \mid \underline{5} \mid 9 \mid 2 \mid 6 \mid 5
// 2.1 Finde äusserstes ungeordnetes Paar F[i], F[j],
        i<j, mit F[i] >= pivot und <math>F[j] < pivot und f[j]
// F[s] < pivot für l <= s < i und <math>F[s] >= pivot
// für j<s<=r.
while( data[i]< pivot) ) i++;</pre>
while(j \ge 1 \&\& data[j] \ge pivot) j--;
// 2.2 Ordne Paar; finde nächstes ungeordnetes Paar
while (i < j) {
  // i<j impliziert j>=1,
  // daher F[j]<pivot und F[i]>=pivot.
                                                                5 4 5
  swap(data, i, j);
  while( data[i] < pivot) i++;</pre>
  while( data[j]>= pivot) j--;
                                                      1 2 3 4 5 4 5 9
                                                        2
                                                           3
```

quicksort: Implementierung III

```
// 2.3 Endgültiger Platz für pivot ist i: es dilt i
//
        (und nicht nur i>=j, denn i=j impliziert
//
       pivot<=F[i]<pivot) und F[k]<pivot f"ur 0<=k<i;
       F[k] > = pivot für j < k < = r; wegen i > j folg \( \frac{3}{3} \) | 1 | 2 | 1
    F[k] > = pivot für i < = k < = r.
                                                        2
                                                             4
swap(data, i, r);
// 3. Herrsche: Sortiere links und rechts
      vom Ausgangspunkt.
quickSort(data, size, 1, i-1);
quickSort(data, size, i+1, r);
// Das Combine war trivial!
                                                                5
                                                   1
                                                         2
                                                                5
```

quicksort: Komplexität I

- Anzahl der Vergleiche T(n), n = Länge der Eingabe
- Auf jeder Rekursionsebene sind O(n) Vergleiche von Datenelementen zu machen (genaue Zahl hängt ab von der Anzahl der swap-Operationen)
- Maximale Anzahl von Rekursionsebenen ist n (alle Folgenelemente sind kleiner als Pivotelement)
- Im schlimmsten Fall also O(n²) Vergleiche

quicksort: Komplexität II

Im besten Fall sind Teilfolgen gleich groß und ungefähre Rechnung für $n = 2^k$ ergibt

$$T_{\text{best}}(n) = T_{\text{best}}(2^{k}) = n + 2 \quad T_{\text{best}}(2^{k-1})$$

$$= n + 2 \cdot n/2 + 4 \cdot T_{\text{best}}(2^{k-2}) = n + n + 4 \quad T_{\text{best}}(2^{k-2})$$

$$= \cdot \cdot \cdot = n + n + \cdot \cdot \cdot + n + 2^{k} \cdot T_{\text{best}}(1)$$

$$= k \cdot n + 2^{k} \cdot T_{\text{best}}(1) = k \cdot n + n \cdot c$$

$$= n \log_{2} n + cn \quad \text{W} \quad O(n \log n)$$

Komlexität im Mittel ebenfalls $O(n \log n)$. (Beweis siehe z.B. in Ottmann/Widmayer)

Mergesort: Allgemeines

•Prinzip: Teile Folge rekursiv in immer kleinere Teilfolgen und sortiere diese. Füge Teilfolgen dann sortiert zusammen.

```
Mergesort (F)
1. Trivialfall: if (|F| == 1) return (F);
2. Divideschritt: teile F in zwei Hälften A und B
        X = Mergesort(A),
        Y = Mergesort(B)
3. Mergeschritt: return (merge(X, Y));
merge(A, B)
1. Initialisiere: S = [X];
2. Trivialfall: if (A == M) und B = M) return(S);
3. Verknüpfe: Durchlaufe A und B parallel,
   a = min(A, B); // Ist immer das erste Element von A oder B
  S = appendElem(S, a);
  F = deleteElem (A oder B, a );
4. Iteriere: Weiter bei 2
```


Mergesort: Beispiel Aufteilen: Mischen: a m

Mergesort: Arrayimplementierung

```
void merge(int* data, int start, int haelfte, int ende) {
        int pos1 = start, pos2 = haelfte + 1, i = 0;
        int temp[ende - start + 1];
        while(pos1 <= haelfte || pos2 <= ende) {</pre>
                if(pos2 > ende) {
                         temp[i++] = data[pos1++];
                 } else if (pos1 > haelfte) {
                         temp[i++] = data[pos2++];
                 } else if (data[pos1] < data[pos2]) {</pre>
                         temp[i++] = data[pos1++];
                 } else {
                         temp[i++] = data[pos2++];
        for (i=0; i < ende - start + 1; i++) {
                data[start + i] = temp[i];
void mergeSort(int* data, int start, int ende) {
        int haelfte;
        if(start != ende) {
                haelfte = (start + ende) / 2;
                mergeSort(data, start, haelfte);
                mergeSort(data, haelfte + 1, ende);
                merge (data, start, haelfte, ende);
```