

Vehicle States, Dynamics, and Simulation

Hongrui Zheng hongruiz@seas.upenn.edu

Overview

- Vehicle States
- Vehicle Dynamics Modelling
- Vehicle Dynamics Simulation

Vehicle States

Position

- Position defines the translation of the vehicle in some global or local frame
- Respective to the vehicle's center of gravity (CoG), or a pre-defined base frame
- Normally: X- and Y- position in meters

Heading

- Heading defines the rotation of the vehicle in some local and global frame
- Usually with respect to the x-axis of the coordinate system of current frame
- When represented as a single angle reading, heading can be displayed in ranges from:

$$\circ$$
 $-\pi$ $-\pi$ = -180° to 180°
 \circ 0 - 2 π = 0° to 360°

- Could be represented as RPY, Rotation matrix, Quaternion, etc.
- Only rotation

Heading

Position in Frenet Frame

- The Frenet frame along a curve is a moving coordinate system determined by the tangent line and curvature.
- The frame itself is defined as the coordinate system spanned by a **tangential vector T** and the **normal vector N**, and a **binormal vector B** at any point of the reference line (e.g. centerline of a track).
- (The binormal vector is the cross product of the tangential vector and the normal vector)

Position in Frenet Frame

- 2 coordinates in 2D.
- The s coordinate represents the run length.
 Starts with s = 0 at the beginning of the reference path.
- The d coordinate represents lateral position relative to the reference path. Starts with d = 0 for points on the reference path. Measured on the normal vector.
- d is positive to the left of the reference path and negative on the right of it. (Right hand rule)

Frenet Frame in Practice

Distance to Centerline

- Displacement (in meters) between the agent center and the track center
- The observable maximum displacement occurs when any of the agent's wheels are outside a track border and, depending on the width of the track border

Progress along the track

- An ordered list of track-dependent milestones along the track (waypoints).
- Each milestone is described by a coordinate of (x_i; y_i, ...).
- For a looped track, the first and last waypoints are the same.

Linear Velocity and Acceleration

- Linear velocity and acceleration are measured in the x- and y-, (and z-) axis in the coordinate system of the vehicle.
- For cars: longitudinal (x-axis) and lateral (y-axis) velocities and accelerations.
- Can be measure with GPS, IMU, wheel speed sensors, pitot sensors, etc.
- Usually velocity in meters per second: m/s, and acceleration in meters per second squared: m/s²
- (Right hand rule)

Angular Velocity and Acceleration

Vehicle State - Steering Angle

- Steering angle δ is the angle formed by the direction the front wheels are pointing at and the vehicle's x-axis.
- Steering angle is the same for both front wheels.
- Usually in radians or degrees.

Different Slip Angles

Sideslip angle β

Slip Angle α

Wheelslip ratio s

Measuring Vehicle States

- Vehicle states can be derived from different sensor
 - o GPS (Global Positioning System)

Odometry: Gyrometer, Wheel Speed Sensor

Camera

Lidar

Important - Visualize your States

Visualize

8000

8000

- Show trends
- Calculate errors
- Learn to Interpret the signals
- Plotjuggler, matplotlib, rqt_plot, etc.

Vehicle Dynamics Modelling

Why Modelling

Which trajectory is the car following?

We can not tell

We need information about:

Velocity

Acceleration

Steering angle

Vehicle: Mass, Length, Width,

Why Modelling?

System Dynamics

- A dynamic system is a mathematical description of the relation between an *input u* and an *output* y signal. This description is usually given in form of an ODE (Ordinary Differential Equation).
- The system has states x. These are variables which allow us to formulate the system behavior in form of a set of first-order ODE for each of this variables.
- The standard system description consists of the system dynamics and the output equation.
 The former describes the timely behavior of the states as a reaction to the inputs and the initial state. The latter describes the relation between the state and the output.

System Dynamics

Vehicle Dynamics Model Types

Vehicle Dynamics Model Types

Single Track Models

Single Track Model

Simplifications:

- Wheels of one axle are combined
- Center of gravity is at road level
- No rolling
- No pitching
- No wheel load differences left/right
- No vertical dynamics

Kinematic Single Track Model

Simplifications:

No tire dynamics, hence no lateral forces/accelerations and slip angles

At slow velocities, especially when cornering slowly, kinematic model is usually accurate enough for simulation.

Ackermann steering modeled around an instantaneous pole.

Kinematic Single Track Model

$$x_1 = s_x, \quad x_2 = s_y, \quad x_3 = \delta, \quad x_4 = v, \quad x_5 = \Psi$$

 $u_1 = v_\delta, \quad u_2 = a_{\text{long}}$

$$\dot{x}_1 = x_4 \cos(x_5)$$
 $\dot{x}_2 = x_4 \sin(x_5)$
 $\dot{x}_3 = f_{\text{steer}}(x_3, u_1)$
 $\dot{x}_4 = f_{acc}(x_4, u_2)$
 $\dot{x}_5 = \frac{x_4}{l_{\text{sub}}} \tan(x_3)$

Dynamic Single Track Model - Linear Tire Model

Single Track Model with Linear Tire Model:

- Consider important effects such as understeer or oversteer.
- Introduction of tire forces
 - A tire can apply lateral and longitudinal tyre forces
 - \circ A tire can apply more forces if there is a higher friction coefficient μ
 - Linear relation between tire force and side slip angle
 - Model the tire dynamics with the cornering stiffness C, or the cornering stiffness coefficient Cs

Linear Tire Model

Dynamic Single Track Model - Linear Tire Model

$$\begin{array}{lll} x_1 = s_x, & x_2 = s_y, & x_3 = \delta, & x_4 = v, & x_5 = \Psi, & x_6 = \dot{\Psi}, & x_7 = \beta \\ u_1 = v_\delta, & u_2 = a_{\mathrm{long}} \\ \dot{x}_1 = x_4 \cos(x_5 + x_7) & \dot{x}_2 = x_4 \sin(x_5 + x_7) \\ \dot{x}_3 = f_{\mathrm{steer}} \left(x_3, u_1 \right) & \dot{x}_4 = f_{acc} \left(x_4, u_2 \right) \\ \dot{x}_5 = x_6, & & \\ \dot{x}_6 = \frac{\mu m}{I_z \left(l_r + l_f \right)} \left(l_f C_{S,f} \left(g l_r - u_2 h_{cg} \right) x_3 + \left(l_r C_{S,r} \left(g l_f + u_2 h_{cg} \right) - l_f C_{S,f} \left(g l_r - u_2 h_{cg} \right) \right) x_7 \\ & - \left(l_f^2 C_{S,f} \left(g l_r - u_2 h_{cg} \right) + l_r^2 C_{S,r} \left(g l_f + u_2 h_{cg} \right) \right) \frac{x_6}{x_4} \right) \\ \dot{x}_7 = \frac{\mu}{x_4 \left(l_r + l_f \right)} \left(C_{S,f} \left(g l_r - u_2 h_{cg} \right) x_3 - \left(C_{S,r} \left(g l_f + u_2 h_{cg} \right) + C_{S,f} \left(g l_r - u_2 h_{cg} \right) \right) x_7 \\ & + \left(C_{S,r} \left(g l_f + u_2 h_{cg} \right) l_r - C_{S,f} \left(g l_r - u_2 h_{cg} \right) l_f \right) \frac{x_6}{x_4} \right) - x_6 \\ \end{array}$$

$$\Rightarrow \text{Penn Engineering}$$

Dynamic Single Track Model - Nonlinear Tire Model

Single Track Model with Nonlinear Tire Model:

- Based on the ST with linear tire model
- Extension of tire forces:
 - No small angle approximations
 - Considers longitudinal tire forces and longitudinal slip on the front and rear wheels
 - Nonlinear relation between tire force and side slip angle
 - Model the tire dynamics with the special models:
 - Pacejka Magic Formula
 - Fiala
 - **...**

Dynamic Single Track Model - Nonlinear Tire Model

$$x_1 = s_x, \quad x_2 = s_y, \quad x_3 = \delta, \quad x_4 = v, \quad x_5 = \Psi, \quad x_6 = \Psi, \quad x_7 = \beta, \quad x_8 = \omega_f, \quad x_9 = \omega_r$$

$$u_1 = v_\delta, \quad u_2 = a_{\mathrm{long}}$$

$$\dot{x}_1 = x_4 \cos(x_7 + x_5)$$

$$\dot{x}_2 = x_4 \sin(x_7 + x_5)$$

$$\dot{x}_3 = f_{\mathrm{steer}}(x_3, u_1)$$

$$\dot{x}_4 = \frac{1}{m} \left(-F_{s,f} \sin(x_3 - x_7) + F_{s,r} \sin x_7 + F_{l,r} \cos(x_7) + F_{l,f} \cos(x_3 - x_7) \right)$$

$$\dot{x}_5 = x_6$$

$$\ddot{x}_6 = \frac{1}{I_z} \left(F_{s,f} \cos(x_3) l_f - F_{s,r} l_r + F_{l,f} \sin(x_3) l_f \right)$$

$$\dot{x}_7 = -\dot{x}_5 + \frac{1}{mx_4} \left(F_{s,f} \cos(x_3 - x_7) + F_{s,r} \cos(x_7) - F_{l,r} \sin(x_7) + F_{l,f} \sin(x_3 - x_7) \right)$$

$$\dot{x}_8 = \frac{1}{I_{y,w}} \left(-R_w F_{l,f} + T_{s,b} T_B + T_{s,e} T_E \right)$$

$$\dot{x}_9 = \frac{1}{I_{y,w}} \left(-R_w F_{l,r} + (1 - T_{s,b}) T_B + (1 - T_{s,e}) T_E \right)$$
 Penm Engineering Allen, R. Wadde, et al. "Vehicle dynamic stability and rollower." MASA

STI/Recon Technical Report N 93 (1992): 30828.

Multi-body Model

- Each wheel is modelled individually with sprung and unsprung mass
- Each wheel has individual wheel load
- Each wheel has individual lat./long forces
- Center of gravity is at certain height
 - Rolling
 - Pitching
 - Wheel load differences left/right
 - Axle load differences front/rear
- Vertical dynamics
- Tyre modelling with different nonlinear models, similar to nonlinear ST

Example:

 $\frac{\text{https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/-/blob/master/vehicleModel}}{\text{s commonRoad.pdf}}$

Section 9

Vehicle Dynamics - Use Cases

 Vehicle Dynamics Simulation - Provide the correct behavior for your vehicle in Simulation

 State Estimation: Calculate how your vehicle has moved

Behavior Prediction: Calculate how other vehicles will move/behave

- Model-Based Algorithms:
 - Model Predictive Control (MPC)
 - Model based Reinforcement Learning

Example: Cornering

Example: Over and Under Steering

Example: Over and Under Steering

Questions?

