

EN 1090-1, -2

General delivery conditions and technical requirements for the execution of steel structures

Versuchsanstalt für Stahl, Holz & Steine - Abt. Stahl- und Leichtmetallbau - Dr.-Ing. Michael Volz

Execution of steel structures and aluminium structures

- Part 1: Requirements for conformity assessment for structural components (CE)
 - replaces "Übereinstimmungsnachweis" Ü

- Part 2: Technical requirements for the execution of steel structures
 - replaces DIN 18800 part 7

- Part 3: Technical requirements for the execution of aluminium structures
 - replaces DINV 4113 part 3

EN 1090 🕥

Execution of steel structures and aluminium structures

- Part 1: Requirements for conformity assessment for structural components (CE)
 - replaces "Übereinstimmungsnachweis" Ü

- Part 2: Technical requirements for the execution of steel structures
 - replaces DIN 18800 part 7

- Part 3: Technical requirements for the execution of aluminium structures
 - replaces DINV 4113 part 3

Normative Regulations

steel constructions

DIN 18800-7

railway vehicles

DIN 6700 / EN 15085

road vehicles no regulatory requirement

ISO 3834, EN 1011, EN 287, ISO 14731, ISO 15609 ...

pressure tanks

EN 13445

AD-Regulations

nuclear technology

KTA-Regulations

further areas of application

with and without regulatory requirement

Normative Regulations

steel constructions DIN 18800-7 > **EN 1090-2**

railway vehicles

DIN 6700 / EN 15085

road vehicles no regulatory requirement

ISO 3834, EN 1011, EN 287, ISO 14731, ISO 15609 ...

pressure tanks

EN 13445

AD-Regulations

nuclear technology

KTA-Regulations

further areas of application

with and without regulatory requirement

- material
- thickness of product
- welding process
- component
- loading

1 – 4

depend on

- consequence class CC
- service categorie SC
- production categorie PC

EN 1090-2

Terms and definitions

execution

all activities performed for the physical completion of the works, i.e. procurement, fabrication, welding, mechanical fastening, transportation, erection, surface treatment and the inspection and documentation thereof

execution class

classified set of requirements specified for the execution of the works as a whole, of an individual component or of a detail of a component

service category

category that characterises a component in terms of the circumstances of its use

production category

category that characterises a component in terms of the methods used for its execution

Consequence classes

EN 1990:2002 gives in its Annex B guidelines for the choice of consequence class for the purpose of reliability differentiation. Consequence classes for structural components are divided in three levels denoted CCi (i = 1, 2 or 3).

Consequence Classes CC

EN 1990 Annex B

Schadens- folgeklassen	Merkmale	Beispiele im Hochbau oder bei sonstigen Ingenieurbauwerken
CC 3	Hohe Folgen für Menschenleben <u>oder</u> sehr große wirtschaftliche, soziale oder umweltbeeinträchtigende Folgen	Tribünen, öffentliche Gebäude mit hohen Versagensfolgen (z. B. eine Konzerthalle)
CC 2	Mittlere Folgen für Menschenleben, beinträcht- liche wirtschaftliche, soziale oder umweltbe- trächtigende Folgen	Wohn- und Bürogebäude, öffentliche Gebäude mit mittleren Versagensfolgen (z. B. ein Bürogebäude)
CC 1	Niedrige Folgen für Menschenleben <u>und</u> kleine oder vernachlässigbare wirtschaftliche, soziale oder umweltbeeinträchtigende Folgen	Landwirtschaftliche Gebäude ohne regelmäßigen Personenverkehr (z. B. Scheunen, Gewächshäuser)

CC1 = low

CC2 = standard

CC3 = high

Versagens- folgeklasse	Beispiel für Zusammenhang von Gebäudetyp und -Nutzung					
1	Einfamilienhäuser mit his zu 4 Stockwerken Landwirtscha Gebäude, die Gebäuden oder Flachen mit naunger Nutzung durch Fersonen mindestens das 1,5- fache der Gebäudehöhe beträgt.					
2a Untere Risiko- Gruppe	5-stöckige Gebäude mit einheitlicher Nutzung. Hotels mit bis 4 Stockwerken. Wohn- und Apartmentgebäude mit bis 4 Stockwerken. Bürogebäude mit bis 4 Stockwerken. Industriebauten mit bis 3 Stockwerken. Einzelhandelsgeschäfte mit bis 3 Stockwerken und bis 1 000 m² Geschoßfläche in jedem Geschoß. Einstöckige Schulgebäude Alle Gebäude bis 2 000 m² ir CC2 = standard					
2b Obere Risiko- Gruppe	Hotels, Wohn- und Apartmentgebäude mit mehr als 4 und bis 15 Stockwerken. Schulgebäude mit mehr als einem und bis 15 Stockwerken. Einzelhandelsgeschäfte mit mehr als 3 und bis 15 Stockwerken. Krankenhäuser mit bis 3 Stockwerken. Bürogebäude mit mehr als 4 und bis zu 15 Stockwerken. Alle Gebäude mit Publikumsverkehr mit Geschoßflächen von mehr als 2 000 m² und					
3	extraordinary big buildings Alle Über Alle Sta Ge (railway bridges)					

Consequence Classes CC

Further examples für CC3

Suggestion for Austria, source: Internet

- Hospitals
- Kindergartens, schools
- Buildings with a capacity >1000 persons

Service Categorie SC

Categories	Criteria
SC1	Structures and components designed for quasi static actions only (Example: Buildings)
	 Structures and components with their connections designed for seismic actions in regions with low seismic activity and in DCL* Structures and components designed for fatigue actions from cranes (class S₀)**
SC2	 Structures and components designed for fatigue actions according to EN 1993. (Examples: Road and railway bridges, cranes (class S₁ to S₉)**, structures susceptible to vibrations induced by wind, crowd or rotating machinery)
	 Structures and components with their connections designed for seismic actions in regions with medium or high seismic activity and in DCM* and DCH*

^{*} DCL, DCM, DCH: ductility classes according to EN 1998-1

SC1 = static

SC2 = fatigue

^{**} For classification of fatigue actions from cranes, see EN 1991-3 and EN 13001-1

Production Categorie PC

Categories	Criteria
PC1	 Non welded components manufactured from any steel grade products Welded components manufactured from steel grade products below S355
PC2	 Welded components manufactured from steel grade products from S355 and above Components essential for structural integrity that are assembled by welding on construction site Components with hot forming manufacturing or receiving thermic treatment during manufacturing Components of CHS lattice girders requiring end profile cuts

PC1 S235 / S275 PC2

≥ S355 or building site

Consequence classes		CC1		CC2		CC3	
Service categories		SC1	SC2	SC1	SC2	SC1	SC2
Production	PC1	EXC1	EXC2	EXC2	EXC3	EXC3 ^a	EXC3 ^a
categories	PC2	EXC2	EXC2	EXC2	EXC3	EXC3 ^a	EXC4

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions.

EXC 1 EXC 2 EXC 3 EXC 4

Consequence Class CC

Production Categorie **PC**

Service Categorie **SC**

- CC 1 - low

- PC 1 < S355

- SC 1 – static

- CC 2 standard
- PC 2 ≥ S355

- SC 2 – fatigue

- CC 3 – high

- building site

Execution Classes (workshop welded components)

Consequence Class		CC1		CC2		CC3	
(workshop)		low		standard		high	
Service Categorie		SC1	SC2	SC1	SC2	SC1	SC2
		static	fatigue	static	fatigue	static	fatigue
Production	PC1 S235, S275	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
Categorie	PC2 ≥ S355	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

welding supervisor

B = IWS S = IWT C = IWE

EVC	Steels	Reference standards	Thickness (mm)			
(steel group)		Reference standards	t ≤ 25 ^a	25 < t ≤ 50 b	<i>t</i> > 50	
EXC2	S235 to S355 (1.1, 1.2, 1.4)	EN 10025-2, EN 10025-3, EN 10025-4 EN 10025-5, EN 10149-2, EN 10149-3 EN 10210-1, EN 10219-1	В	s	C °	
LAGZ	S420 to S700 (1.3, 2, 3)	EN 10025-3, EN 10025-4, EN 10025-6 EN 10149-2, EN 10149-3 EN 10210-1, EN 10219-1	s	C d	С	
EXC3 -	S235 to S355 (1.1, 1.2, 1.4)	EN 10025-2, EN 10025-3, EN 10025-4 EN 10025-5, EN 10149-2, EN 10149-3 EN 10210-1, EN 10219-1	s	С	С	
	S420 to S700 (1.3, 2, 3)	EN 10025-3, EN 10025-4, EN 10025-6 EN 10149-2, EN 10149-3 EN 10210-1, EN 10219-1	С	С	С	
EXC4	All	All	С	С	С	

Column base plates and endplates ≤ 50 mm.

For steels N, NL, M and ML, level S is sufficient.

Column base plates and endplates ≤ 75 mm. For steels up to and including S275, level S is sufficient.

Execution Classes (workshop welded components)

Consequence Class		CC1		CC2		CC3	
(workshop)		low		standard		high	
Service Categorie		SC1	SC2	SC1	SC2	SC1	SC2
		static	fatigue	static	fatigue	static	fatigue
Production	PC1 S235, S275	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
Categorie	PC2 ≥ S355	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

Execution Class and welding supervisor (workshop welded components)

Cons	Consequence Class CC1		CC2		CC3		
		low		standard		high	
Corr	vias Catagoria	SC1	SC2	SC1	SC2	SC1	SC2
Serv	Service Categorie		fatigue	static	fatigue	static	fatigue
	4 < 25 (501)	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
	$t \le 25 \ (50^1)$		IWS	IWS	IWT	IWT T	IWT
PC1	$25 < t \le 50 \ (75^1)$	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
< <u>S355</u>			IWT	IWT	IWE	IWE	IWE
	t > 50	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
			IWT	IWT	IWE	IWE	IWE

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

²⁾ IWT adequate if grade N, NL, M, ML

¹⁾ column base plates and endplates

Execution Classes (workshop welded components)

Consequence Class		CC1		CC2		CC3	
(workshop)		low		standard		high	
Service Categorie		SC1	SC2	SC1	SC2	SC1	SC2
		static	fatigue	static	fatigue	static	fatigue
Production Categorie	PC1 S235, S275	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
	PC2 ≥ S355	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

Execution Class and welding supervisor (workshop welded components)

4	

Consequence Class		CC1		CC2		CC3	
		low		standard		high	
Carrier Catarania		SC1	SC2	SC1	SC2	SC1	SC2
Sei	Service Categorie		fatigue	static	fatigue	static	fatigue
			EXC2	EXC2	EXC3	EXC3	EXC4
	$t \le 25 (50^1)$	IWS	IWS	IWS	IWT	IWT	IWE
PC2	25 < 4 < 50 (751)	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4
S355	$25 < t \le 50 \ (75^1)$	IWT	IWT	IWT	IWE	IWE	IWE
	t > 50	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4
1 > 30	ι / 30 -	IWE	IWE	IWE	IWE	IWE	IWE

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

²⁾ IWT adequate if grade N, NL, M, ML

¹⁾ column base plates and endplates

Execution Class and welding supervisor (workshop welded components)

4	

Consequence Class		CC1		CC2		CC3	
			low		standard		gh
Service Categorie		SC1	SC2	SC1	SC2	SC1	SC2
		static	fatigue	static	fatigue	static	fatigue
t < 25 (50 ¹)	$t \le 25 (50^1)$	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4
	1 \leq 25 (50)	IWT	IWT	IWT	IWE	IWE	IWE
PC2	$25 < t \le 50 \ (75^1)$	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4
> S355	23 < t \le 30 (73)	IWE ²	IWE ²	IWE ²	IWE	IWE	IWE
	t > 50	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4
	1 / 30	IWE	IWE	IWE	IWE	IWE	IWE

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

²⁾ IWT adequate if grade N, NL, M, ML

¹⁾ column base plates and endplates

welding supervisor IWS - application limits

standard steel structures

CC2

DIN 18800 part 7

S235, S275

 $t \le 22 \text{ mm}$

 $t \le 30 \text{ mm (endplates)}$

span, height ≤ 20 m

single-story

MAG, MIG, WIG, E

static actions

EN 1090 part 2

S235 - S355

 $t \le 25 \text{ mm}$

 $t \le 50 \text{ mm (endplates)}$

span, height → no limits

4 floors / 15 floors

no limits

static actions

welding according to

VERSUCHSANSTALT FÜR STAHL, HOLZ & STEINE

qualified welding procedure specifications WPS

welding according to

qualified welding procedure specifications WPS

Table 12 — Methods of qualification of welding procedures for the processes 111, 114, 12, 13 and 14

Method of qualification		EXC 2	EXC 3	EXC 4
Welding p	N ISO 15614-1	Х	Х	Х
Pre-produ welding test	EN ISO 15613	Х	Х	Х
Standard welding procedure	EN ISO 15612	X a	-	-
Previous welding experience	EN ISO 15611	X b		
Tested welding consumables	EN ISO 15610	<u>. </u>	_	

X Permitted

- Not permitted
- a Only for materials ≤ S 355 and only for manual or partly mechanized welding.
- b Only for materials ≤ S 275 and only for manual or partly mechanized welding.

Schweißanweisung WPS Welding Procedure Specification

HSP Spengler

Ort Place Grünsfeld Datum / Date. 01.04.2007 Schweißverfahren des Herstellers: 135 - MAG Welding process Beleg-Nr.: WPS-HSP-001 ReferenceNo.

Hersteller: HSP Spengler GmbH & Co. KG Manufactor: Naluart: FW

Joint type: Weld preparation (Zeichnung)*):

Art der Vorbereitung und Reinigung, trocken und sauber Method of preparation and cleaning

Spezifikation des Grundwerkstoffes: 1.1, 1.2, 1.4 Parem metal specification.

Werkstückdicke (mm): >15 mm Parem metal thickness (mm): Außendurchmesser (mm): Pipe outside diameter Schweißnosition: PB Welding position

Einzelheiten für das Schweißen welding details

Sehweißmupe Rm	Prozeß Process	Durchmesser des Zusatzwerkstoffes Stze of filler metal (mm)	Strom- stärke Current (A)	Spanning Voltage (V)	Stromart Polung Current Pol.	Draht- vorselmb Wire feed (m/min)	Vorschubge- schwindigkeit *) Travel speed (cm/min)	Warmeem- bringung *) Heat input (kJ/cm)
1	135	1.2	260 ± 30	28 ± 3	=/+	9	40 - 50	7.8
2-n	135	1.2	260 ± 30	28 ± 3	=/+	9	40 - 50	7.8

Zusatzwerkstoff Filler metall - Einteilung und Markenname: G4Sil - CarbofillA - Typ and designation: Sondervorschriften fitr Trocknung Any special backing or drying: Schutzgas / Schweißpulver Gas welding flux -Schweißpulver: welding flux. -Schutzgas -gas: M21 (ArC-18, Igumix 18)

-Wuzelschutz: Bemerkungen Remarks.

Letzte Aktualisierung/last update 04.05.09

HSP Spengler GmbH & Co. KG Schweißfachingenieur *) falls gefordert if necessary

Gasdurchflussmenge Gas flow rate

Schutzgas: 15 l/min

Wurzelschutz: Backing Wolframelektrodenart / Durchmesser:

Timgsten elektrode type size Einzelheiten über Ausfügen / Schweißbadsicherung Details of back gouging backing Vorwänntemperatur

Preheat temperature 1 < 30 mm; schwitzwasserfrei vertrocknen t ≥ 30 mm; 50 - 80°C

t < 25 mm: 50 - 80°C 1 > 25 mm; > 100°C - 5355NL 1 < 25 mm: 50 - 80°C

1≥ 25 mm: 120 - 150°C

Zwischenlagertenmeratur: max 250 °C Interpass temperature

Adress:

Versuchsanstalt für Stahl, Holz und Steine (Amtliche Materialprüfungsanstalt)

Universität Karlsruhe (TH)

Head: Univ.-Prof. Dr.-Ing. H. J. Blaß und Univ.-Prof. Dr.-Ing. T. Ummenhofer

Welding Procedure Qualification Record (WPQR)

Qualification based on tested welding consumables (DIN EN ISO 15610)

Test-Certificate Nr. 092096-1

Manufactorer: HSP Spengler GmbH & Co. KG

Philipp-Holzmann-Straße 11

97947 Grünsfeld

Reference number: ---WPS number: WPS HSP-001 (s. Annex) Inspection scope: DIN EN ISO 15610/DIN 18800

Welding process: 135 - MAG-welding Joint type: FW (s. WPS) Parent material group: 1.1, 1.2, 1.4 Parent material thickness (mm): t>15 (s. WPS)

Weld metal thickness (mm): n.a. Fillet weld thickness (mm): a>4 (s. WPS) Single/multi layer: sl/ml Welding position: PB Preheat temperature: s. WPS

Interpass temperature: s. WPS Designation of gas/flux: M21 (ArC-18, Igumix 18) Test centre: Versuchsanstalt für Stahl, Holz und Steine,

Universität Karlsruhe (TH) Dep: Stahl- und Leichtmetallbau, D-76128 Karlsruhe Tel.: +49 (0)721 608 2205, Fax: +49 (0)721 608 4078 Regulation/testing standard: DINENISO 15610/DIN 18800

Date of welding: n.a. Name of welder/operator: n.a.

Outside diameter (mm): n.a.

Designation of filler material: G4Si1 - Carbofil1A

Size of filler metal (mm): 1,2 Heat input: s. WPS

Heat treatment: n.a. Current/Polarisation: =/+

Designation of backing gas: n.a.

The approval for the Carbofil 1A as tested welding consumable is e.g.:

"DB-Zulassungsnummer": 42,098,01

"VdTÜV-Kennblattnummer": 11042.00 03.08 and/or 00266.10 06.07

This WPQR confirms the qualification of the mentioned welding procedure specification (WPS) of the manufacturer based on the application of the described tested welding consumables.

This test certificate may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

DIN 18800 part 7

Limits of application

MAG, MIG, WIG, E

S235 - S275 (1.1) (+S355) Stainless steels (8.1)

thickness 3 - 40 mm

fillet welds a \geq 3 mm

tube diameters > 25 mm

EN 1090 part 2

Limits of application

MAG, MIG, WIG, E

S235 - S275 (1.1) (+5355) Stainless steels (8.1)

Thickness 3 - 40 mm

fillet welds a \geq 3 mm

tube diameters > 25 mm

EN 1090 part 2

Limits of application

MAG, MIG, WIG, E

only EXC2!

S235 - S275 (1.1) (+S300)

Stainless steels (8.1)

- changings for fatigue actions

THICKNESS 3 - 40 MIN

- changings in CC3 (high)

fillet welds a \geq 3 mm

- if welding supervisor IWS → similar to DIN 18800-7

supplementary non destructive testings

Town of world		Shop	and site v	welds
Type of weld	<u>IWS</u>	EXC2	EXC3	EXC4
Transverse butt welds and partial penetration welds in but tensile stress.	utt joints subjected to			
<i>U</i> ≥ 0,5		10 %	20 %	100 %
U < 0,5		0 %	10 %	50 %
Transverse butt welds and partial penetration welds:				
in cruciform joints		10 %	20 %	100 %
in T joints	M	5 %	10 %	50 %
Transverse fillet welds in tension or shear:	_			
With a > 12 mm or t > 20 mm		5 %	10 %	20 %
With $a \le 12$ mm and $t \le 20$ mm		0 %	5 %	10 %
Longitudinal welds and welds to stiffeners		0 %	5 %	10 %

NOTE 1 Longitudinal welds are those made parallel to the component axis. All the others are considered as transverse welds.

NOTE 2 U = Utilization grade for welds for quasi-static actions. $U = E_d/R_d$, where E_d is the largest action effect of the weld and R_d is the resistance of the weld in the ultimate limit state.

NOTE 3 Terms a and t refer respectively to the throat thickness and the thickest material being joined.

Execution of steel structures and aluminium structures

- -Part 1: Requirements for conformity assessment for structural components (CE)
 - replaces "Übereinstimmungsnachweis" Ü

- Part 2: Technical requirements for the execution of steel structures
 - replaces DIN 18800 part 7

- Part 3: Technical requirements for the execution of aluminium structures
 - replaces DINV 4113 part 3

The Construction Products Directive (CPD) shall guarantee the **free trade** with and the **unlimited use** of construction products in the single european market

CE - conformity assessment

EN 1090-1 Annex ZA

01234

AnyCo Ltd, PO Box 21, B-1050

08

01234-CPD-00234

EN 1090-1

Welded steel beam - M 346

Tolerances on geometrical data: EN 1090-2.

Weldability: Steel S235J0 according to EN 10025-2.

Fracture toughness: 27 J at 0°C.

Reaction to fire: Material classified: Class A1.

Release of cadmium: NPD.

Emission of radioactivity: NPD.

Durability: Surface preparation according to EN 1090-2, preparation grade P3. Surface painted according to EN ISO 12944-5, S.1.09.

Structural characteristics:

Design: NPD.

Manufacturing: According to component specification CS-034/2006, and EN 1090-2,

execution class EXC2.

CE conformity marking, consisting of the "CE"-symbol given in Directive 93/68/EEC.

Identification number of the notified body

Name or identifying mark and registered address of the producer

Last two digits of the year in which the marking was affixed

Certificate number

No. of European standard

Description of product

and

information on regulated characteristics

Regulations for the CE-conformity assessment

conformity assessment procedure 2+

Table ZA.2 System of attestation of conformity for steel and aluminium structural components

Product	Intended use	Level(s) or class(s)	Attestation of conformity system	
Steel and aluminium structural components	For structural use in all types of construction works		2+	

System 2+: See CPD Annex III.2 (ii). First possibility, including certification of the factory production control by an approved body on the basis of initial inspection of factory and of factory production control as well as of continuous surveillance, assessment and approval of factory production control.

Table ZA.3 Assignment of tasks for evaluation of conformity of structural steel and aluminium components

	Tasks		confe	ation of ormity s to apply
Tasks under the	Initial type testing		Relevant parameters related to the performance characteristics of Table ZA.1	5.2
responsibility of the manufacturer	Factory Produ	uction Control (FPC)	Relevant parameters related to the performance characteristics of Table ZA.1	5.3
	Sampling, test	sting and inspection at	Relevant characteristics of Table ZA.1 Ta	ble 2
Tasks for the	Certification	Initial inspection of factory and of FPC	Relevant parameters related to the characteristics of Table ZA.1	Annex B
certification body	of FPC by a certified body on the basis of:	surveillance,	Relevant parameters related to the characteristics of Table ZA.1	Annex B

Welding Certificate

The welding certificate should include the following information:

- scope and the applicable standards;
- execution class(es);
- welding process(es);
- parent material(s);
- responsible welding coordinator, see EN ISO 14731;

remarks if any.

Table B.3 — Routine surveillance intervals							
Execution class	Intervals between inspections of manufacturer's FPC after the ITT (years)						
EXC1 and EXC2	1-2-3-3						
EXC3 and EXC4	1-1-2-3-3						

Quality control system

DIN 18800 part 7

conformity assessment (ÜH)

+

Certificate of manufacturers qualification

Initial Inspection

+

Continuous Inspection

EN 1090 Teil 2

conformity assessment 2+ (Welding Certificate)

Initial Inspection

Continous Inspection

Ex: Factory Building

- span 25 m
- $\max t = 16 \, \text{mm}$
- end plates 40 mm

- S235

- shop welding

- Static loading

→ SC 1

Consequence classes		CC1		CC2		CC3	
Service categories		SC1	SC2	SC1	SC2	SC1	SC2
Production	PC1	EXC1	EXC2	EXC2	EXC3	EXC3 ^a	EXC3 ^a
categories	PC2	EXC2	EXC2	EXC2	EXC3	EXC3 ^a	EXC4

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions.

Ex: Factory Building

CC2, SC1, PC1, EXC2

- max t = 16 mm

- end plates 40 mm

- S235

Execution Class and welding supervisor (workshop welded components)

Cons	Consequence Class		CC1		CC2		CC3	
		10	ow	standard		high		
Samina Catanania		SC1	SC2	SC1	SC2	SC1	SC2	
Serv	Service Categorie		fatigue	static	fatigue	static	fatigue	
$t \le 25 (50^1)$		EXC1	EXC2	EXC2	EXC3	EXC3	EXC3	
	$1 \le 23 (30)$		IWS	IWS	IWT	IWT T	IWT	
PC1	25 < t < 50 (75 ¹)	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3	
<s355< th=""><td>$25 < t \le 50 \ (75^1)$</td><td></td><td>IWT</td><td>IWT</td><td>IWE</td><td>IWE</td><td>IWE</td></s355<>	$25 < t \le 50 \ (75^1)$		IWT	IWT	IWE	IWE	IWE	
_		EXC1	EXC2	EXC2	EXC3	EXC3	EXC3	
	t > 50		IWT	IWT	IWE	IWE	IWE	

Ex: Factory Building

- max t = 16 mm

- end plates 40 mm

CC2, SC1, PC1, EXC2

- S235

Qualification of the WPS

Table 12 — Methods of qualification of welding procedures for the processes 111, 114, 12, 13 and 14

Method of qualification			EXC 2	EXC 3	EXC 4
Welding procedure test		EN ISO 15614-1	Х	Х	X
Pre-production welding test		EN ISO 15613	X	Х	X
Standard welding procedure		EN ISO 15612	X a	-	-
Previous welding experience		EN ISO 15611	X b		
Tested welding consumables	Ε	EN ISO 15610		-	-

X Permitted

Not permitted

b Only for materials ≤ S 275 and only for manual or partly mechanized welding.

a Only for materials ≤ S 355 and only for manual or partly mechanized welding.

Schweißanweisung WPS Welding Procedure Specification

HSP Spengler

Ort Place Grünsfeld Datum / Date. 01.04.2007 Schweißverfahren des Herstellers: 135 - MAG Welding process Beleg-Nr.: WPS-HSP-001 ReferenceNo.

Hersteller: HSP Spengler GmbH & Co. KG

Manufactor: Naluart: FW Joint type: Weld preparation (Zeichnung)*):

Art der Vorbereitung und Reinigung, trocken und sauber Method of preparation and cleaning

Spezifikation des Grundwerkstoffes: 1.1, 1.2, 1.4 Parem metal specification.

Werkstückdicke (mm): >15 mm Parem metal thickness (mm): Außendurchmesser (mm): Pipe outside diameter Schweißnosition: PB Welding position

Einzelheiten für das Schweißen welding details

Schweißmupe Rm	Prozeß Process	Durchmesser des Zusatzwerkstoffes Stze of filler metal (mm)	Strom- stårke Current (A)	Spanning Voltage (V)	Stromart Polung Current Pol.	Draht- vorselmb Wire feed (m/min)	Vorschubge- schwindigkeit *) Travel speed (cm/min)	Warmeein- bringung *) Heat input (kJ/cm)
1	135	1.2	260 ± 30	28 ± 3	=/+	9	40 - 50	7.8
2-n	135	1.2	260 ± 30	28 ± 3	=/+	9	40 - 50	7.8
- 55								
			100000000000000000000000000000000000000					

Zusatzwerkstoff Filler metall

- Einteilung und Markenname: G4Sil - CarbofillA

- Typ and designation: Sondervorschriften fitr Trocknung Any special backing or drying: Schutzgas / Schweißpulver Gas welding flux -Schweißpulver:

welding flux. -Schutzgas -gas: M21 (ArC-18, Igumix 18)

-Wuzelschutz: Bemerkungen Remarks.

Letzte Aktualisierung/last update 04.05.09

HSP Spengler GmbH & Co. KG Schweißfachingenieur *) falls gefordert if necessary

Gasdurchflussmenge Gas flow rate

Schutzgas: 15 l/min

Wurzelschutz: Backing

Wolframelektrodenart / Durchmesser: Timgsten elektrode type size Einzelheiten über Ausfügen / Schweißbadsicherung

Details of back gouging backing Vorwänntemperatur Preheat temperature

1 < 30 mm; schwitzwasserfrei vertrocknen t≥ 30 mm: 50 - 80°C

t < 25 mm: 50 - 80°C 1 > 25 mm; > 100°C

- 5355NL 1 < 25 mm: 50 - 80°C 1≥ 25 mm: 120 - 150°C

Zwischenlagertenmeratur: max 250 °C Interpass temperature

Adress:

Versuchsanstalt für Stahl, Holz und Steine (Amtliche Materialprüfungsanstalt)

Universität Karlsruhe (TH)

Head: Univ.-Prof. Dr.-Ing. H. J. Blaß und Univ.-Prof. Dr.-Ing. T. Ummenhofer

Welding Procedure Qualification Record (WPQR)

Qualification based on tested welding consumables (DIN EN ISO 15610)

Test-Certificate Nr. 092096-1

Manufactorer: HSP Spengler GmbH & Co. KG

Philipp-Holzmann-Straße 11

97947 Grünsfeld

Reference number: ---WPS number: WPS HSP-001 (s. Annex)

Inspection scope: DIN EN ISO 15610/DIN 18800 Welding process: 135 - MAG-welding

Joint type: FW (s. WPS) Parent material group: 1.1, 1.2, 1.4 Parent material thickness (mm): t>15 (s. WPS) Weld metal thickness (mm): n.a.

Fillet weld thickness (mm): a>4 (s. WPS) Single/multi layer: sl/ml Welding position: PB Preheat temperature: s. WPS

Interpass temperature: s. WPS Designation of gas/flux: M21 (ArC-18, Igumix 18) Test centre: Versuchsanstalt für Stahl, Holz und Steine,

Universität Karlsruhe (TH) Dep: Stahl- und Leichtmetallbau, D-76128 Karlsruhe Tel.: +49 (0)721 608 2205, Fax: +49 (0)721 608 4078 Regulation/testing standard: DINENISO 15610/DIN 18800

Date of welding: n.a. Name of welder/operator: n.a.

Outside diameter (mm): n.a.

Designation of filler material: G4Si1 - Carbofil1A

Size of filler metal (mm): 1,2 Heat input: s. WPS

Heat treatment: n.a. Current/Polarisation: =/+

Designation of backing gas: n.a.

The approval for the Carbofil 1A as tested welding consumable is e.g.:

"DB-Zulassungsnummer": 42,098,01

"VdTÜV-Kennblattnummer": 11042.00 03.08 and/or 00266.10 06.07

This WPQR confirms the qualification of the mentioned welding procedure specification (WPS) of the manufacturer based on the application of the described tested welding consumables.

This test certificate may only be reproduced in an unabridged version. A publication in extracts needs our written approval.

supplementary non destructive testings

Table 24 — Extent of supplementary NDT

Type of weld	Shop and site welds			
Type of weld	EXC2	EXC3	EXC4	
Transverse butt welds and partial penetration welds in butt joints subjected to tensile stress.				
U≥ 0,5	10 %	20 %	100 %	
U < 0,5	0 %	10 %	50 %	
Transverse butt welds and partial penetration welds:				
in cruciform joints	10 %	20 %	100 %	
in T joints	5 %	10 %	50 %	
Transverse fillet welds in tension or shear:				
With a > 12 mm or t > 20 mm	5 %	10 %	20 %	
With $a \le 12$ mm and $t \le 20$ mm	0 %	5 %	10 %	
Longitudinal welds and welds to stiffeners	0 %	5 %	10 %	

NOTE 1 Longitudinal welds are those made parallel to the component axis. All the others are considered as transverse welds.

NOTE 2 U = Utilization grade for welds for quasi-static actions. U = E_d/R_d, where E_d is the largest action effect of the weld and R_d is the resistance of the weld in the ultimate limit state.

NOTE 3 Terms a and t refer respectively to the throat thickness and the thickest material being joined.

Ex: soccer arena

- max t = 50 mm
- end plates 60 mm
- S355
- site weldings
- Static loading

Consequence classes		CC1		CC2		CC3	
Service categories		SC1	SC2	SC1	SC2	SC1	SC2
Production	PC1	EXC1	EXC2	EXC2	EXC3	EXC3 ^a	EXC3 ^a
categories	PC2	EXC2	EXC2	EXC2	EXC3	EXC3 ^a	EXC4

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions.

Ex: soccer arena

- max t = 50 mm

CC3, SC1, PC2, EXC3

- Stirnplatten 60 mm

- S355

Consequence Class		CC1		CC2		CC3	
		low		standard		high	
Service Categorie		SC1 static	SC2 fatigue	SC1 static	SC2 fatigue	SC1 static	SC2 fatigue
	$t \le 25 \ (50^1)$	EXC2 IWS	EXC2 IWS	EXC2 IWS	EXC3 IWT	EXC3 IWT	EXC4 IWE
PC2 S355	$25 < t \le 50 \ (75^1)$	EXC2 IWT	EXC2 IWT	EXC2 IWT	EXC3 IWE	EXC3 IWE	EXC4 IWE
	t > 50	EXC2 IWE	EXC2 IWE	EXC2 IWE	EXC3 IWE	EXC3 IWE	EXC4 IWE

Ex: soccer arena

CC3, SC1, PC2, EXC3

Qualifification of the WPS

Table 12 — Methods of qualification of welding procedures for the processes 111, 114, 12, 13 and 14

Method of qualification		EXC 2	EXC 3	EXC 4
Welding procedure test	EN ISO 15614-1	Х	Х	X
Pre-production welding test	EN ISO 15613	Х	X	Х
Standard welding procedure	EN ISO 15612	X a	-	-
Previous welding experience	EN ISO 15611	X b		
Tested welding consumables	EN ISO 15610	^	-	-

X Permitted

Not permitted

Only for materials ≤ S 275 and only for manual or partly mechanized welding.

Only for materials ≤ S 355 and only for manual or partly mechanized welding.

supplementary non destroying testings

Table 24 — Extent of supplementary NDT

Type of wold	Shop and site welds			
Type of weld	EXC2	EXC3	EXC4	
Transverse butt welds and partial penetration welds in butt joints subjected to tensile stress.				
<i>U</i> ≥ 0,5	10 %	20 %	100 %	
U < 0,5	0 %	10 %	50 %	
Transverse butt welds and partial penetration welds:				
in cruciform joints	10 %	20 %	100 %	
in T joints	5 %	10 %	50 %	
Transverse fillet welds in tension or shear:				
With a > 12 mm or t > 20 mm	5 %	10 %	20 %	
With $a \le 12$ mm and $t \le 20$ mm	0 %	5 %	10 %	
Longitudinal welds and welds to stiffeners	0 %	5 %	10 %	

NOTE 1 Longitudinal welds are those made parallel to the component axis. All the others are considered as transverse welds.

NOTE 2 U = Utilization grade for welds for quasi-static actions. U = E_d/R_d, where E_d is the largest action effect of the weld and R_d is the resistance of the weld in the ultimate limit state.

NOTE 3 Terms a and t refer respectively to the throat thickness and the thickest material being joined.

Ex: Bridges

railway bridge

Lambda Exc 4

road bridge

CC 2/3

SC 2 PC 1/2

EXC 3/4

Pedestrian bridge

CC 2/3

SC 1/2 PC 1/2

EXC 2/3/4

Consequence classes		CC1		CC2		CC3	
Service categories		SC1	SC2	SC1	SC2	SC1	SC2
Production	PC1	EXC1	EXC2	EXC2	EXC3	EXC3 ^a	EXC3 ^a
categories	PC2	EXC2	EXC2	EXC2	EXC3	EXC3 ^a	EXC4

^a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions.

Summary

- EN 1090-2 replaces national regulations (DIN 18800 part 7)
- EN 1090-2 classifies Execution Classes EXC 1 4
- EN 1090-2 defines welding supervisors IWS / IWT / IWE with aplication limits
- EN 1090-2 defines supplementary non destructive testings
- EN 1090-2 defines test piece weldings
- EN 1090-1 defines regulations for the CE conformity assessment
- EN 1090-1 requires a welding certificate

