Lecture 5

Ambiguity for the max plus semiring

Hierarchy of classes for weighted automata

• The inclusions are strict

for
$$(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$$

and
$$(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$$

Weighted automata (WA)

UI

Polynomially ambiguous WA

 \bigcup

Finitely ambiguous WA

UI

Unambiguous WA

UI

Deterministic WA

Hierarchy of classes for weighted automata

• The inclusions are strict

for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$

- and $(\mathbb{N}_{-\infty}, \mathsf{max}, +, -\infty, 0)$
- Not over 1-letter alphabet (last lecture)

Weighted automata (WA)

Ul

Polynomially ambiguous WA

 \bigcup

Finitely ambiguous WA

U

Unambiguous WA

UI

Deterministic WA

Hierarchy of classes for weighted automata

• The inclusions are strict for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

 Not over 1-letter alphabet (last lecture) Weighted automata (WA)

UI

Polynomially ambiguous WA

U

Finitely ambiguous WA

 \bigcup

Unambiguous WA

UI

Deterministic WA

• We focus on $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ unambiguous, finitely ambiguous and polynomially ambiguous

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

• Pumping argument: let $w \in L$ and |w| big enough

Then w = xyz such that $xy^iz \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough

 Then w = xyz such that $xy^iz \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough

 Then w = xyz such that $xy^iz \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough

 Then w = xyz such that $xy^iz \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?
- Fix $u \cdot v \cdot w \in \Sigma^*$

We say that $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w} \in \Sigma^*$, is a *refinement* of $u \cdot \underline{v} \cdot w$ if

1.
$$u \cdot v \cdot w = \hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$$

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough

 Then w = xyz such that $xy^iz \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?
- Fix $u \cdot v \cdot w \in \Sigma^*$ We say that $\hat{u} \cdot \hat{v} \cdot \hat{w} \in \Sigma^*$, is a *refinement* of $u \cdot v \cdot w$ if
- **1.** $u \cdot v \cdot w = \hat{u} \cdot \hat{\underline{v}} \cdot \hat{w}$
- **2.** there exist u', w' such that $u \cdot u' = \hat{u}$, $w' \cdot w = \hat{w}$, $u' \cdot \hat{v} \cdot w' = v$, and $\hat{v} \neq \epsilon$.

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough

 Then w = xyz such that $xy^iz \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?
- Fix $u \cdot v \cdot w \in \Sigma^*$ We say that $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w} \in \Sigma^*$, is a *refinement* of $u \cdot \underline{v} \cdot w$ if
- **1.** $u \cdot v \cdot w = \hat{u} \cdot \hat{v} \cdot \hat{w}$
- **2.** there exist u', w' such that $u \cdot u' = \hat{u}$, $w' \cdot w = \hat{w}$, $u' \cdot \hat{v} \cdot w' = v$, and $\hat{v} \neq \epsilon$.

Example: aab · bb · ba refines aa · bbbb · a

Fix the semiring $(\mathbb{N}_{-\infty}, \mathsf{max}, +, -\infty, 0)$

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Theorem (M. and Riveros 2018)

Let $f: \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \geq N$, $v \neq \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds:

- (1) $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- (2) $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Theorem (M. and Riveros 2018)

Let $f: \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \geq N$, $v \neq \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds:

- (1) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- (2) $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- Example: $f(w) = \max(\#_a(w), \#_b(w))$, fix N from the lemma

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Theorem (M. and Riveros 2018)

Let $f: \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \geqslant N$, $v \neq \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds:

- (1) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- (2) $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- Example: $f(w) = \max(\#_a(w), \#_b(w))$, fix N from the lemma $f(a^{(N+1)^2} \cdot b^N \cdot \epsilon) = (N+1)^2$, refining $a^{(N+1)^2} \cdot b^N$ we get $a^{(N+1)^2}b^n \cdot \underline{b^m} \cdot b^N$

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Theorem (M. and Riveros 2018)

Let $f: \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \geqslant N$, $v \neq \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds:

- (1) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- (2) $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- Example: $f(w) = \max(\#_a(w), \#_b(w))$, fix N from the lemma $f(a^{(N+1)^2} \cdot b^N \cdot \epsilon) = (N+1)^2$, refining $a^{(N+1)^2} \cdot b^N$ we get $a^{(N+1)^2}b^n \cdot \underline{b}^m \cdot b^N$
- Since $n + mN + I < (N + 1)^2$ then (1). But for i big enough (2)

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Proof.

Let ${\mathcal A}$ unambiguous automaton defining f. And let uvw with $v\geqslant N>>2^{|Q|}$

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Proof.

Let ${\mathcal A}$ unambiguous automaton defining f. And let uvw with $v\geqslant N>>2^{|Q|}$

• if $f(uvw) > -\infty$ then there is a unique accepting run on uvwLet $q_0, \ldots, q_{|v|}$ be the set of states on v

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Proof.

Let ${\mathcal A}$ unambiguous automaton defining f. And let uvw with $v\geqslant N>>2^{|Q|}$

ullet if $f(uvw)>-\infty$ then there is a unique accepting run on uvw Let $q_0,\ldots,q_{|v|}$ be the set of states on v

There is a cycle $\rho = q_i, \ldots, q_j$ for i < j

If the value on ρ is 0 then (1) otherwise (2)

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Proof.

Let ${\mathcal A}$ unambiguous automaton defining f. And let uvw with $v\geqslant N>>2^{|Q|}$

• if $f(uvw) > -\infty$ then there is a unique accepting run on uvwLet $q_0, \ldots, q_{|v|}$ be the set of states on v

There is a cycle $\rho = q_i, \dots, q_j$ for i < jIf the value on ρ is 0 then (1) otherwise (2)

• if $f(uvw) = -\infty$ then since there is at most n = exp(|Q|) runs on uvw (\mathcal{A} is unambiguous)

We can present all runs on v as sequences

$$(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$$

We can present all runs on v as sequences

$$(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$$

• For |v| big enough there is i < j such that

$$(q_{i,1},\ldots,q_{i,n})=(q_{j,1},\ldots,q_{j,n})$$

We can present all runs on v as sequences

$$(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$$

• For |v| big enough there is i < j such that

$$(q_{i,1},\ldots,q_{i,n})=(q_{j,1},\ldots,q_{j,n})$$

• Then i to j is a cycle for all old runs the output for uv^iw for all runs $1, \ldots, n$ remain $-\infty$

We can present all runs on v as sequences

$$(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$$

• For |v| big enough there is i < j such that

$$(q_{i,1},\ldots,q_{i,n})=(q_{j,1},\ldots,q_{j,n})$$

- Then i to j is a cycle for all old runs the output for uv^iw for all runs $1, \ldots, n$ remain $-\infty$
- If new runs occur then the number of runs for uv^iw would be at least n+i-1 (contradiction with finite ambiguity)

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \dots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \dots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

if $v_k = x_k \cdot y_k \cdot z_k$, $u'_k = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$.

and $y_k \neq \epsilon$ for every k

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$
if $v_k = x_k \cdot y_k \cdot z_k$, $u_k' = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$.
and $y_k \neq \epsilon$ for every k

• Let $S \subseteq \{1, \ldots, n\}$ Then $y_k(S, i)$ is y_k^i if $k \in S$ and y_k otherwise

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot y_1 \cdot u'_1 \cdot y_2 \cdot \dots \cdot u'_{n-1} \cdot y_n \cdot u'_n$

if
$$v_k = x_k \cdot y_k \cdot z_k$$
, $u_k' = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$.
and $y_k \neq \epsilon$ for every k

• Let $S \subseteq \{1, \ldots, n\}$

Then $y_k(S, i)$ is y_k^i if $k \in S$ and y_k otherwise

By w(S, i) we denote the word

$$w = u'_0 \cdot y_1(S, i) \cdot u'_1 \cdot y_2(S, i) \cdot \ldots \cdot u'_{n-1} \cdot y_n(S, i) \cdot u'_n.$$

Let $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$ A refinement is $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$ if $v_k = x_k \cdot y_k \cdot z_k$, $u_k' = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$. and $y_k \neq \epsilon$ for every k

- Let $S \subseteq \{1, ..., n\}$ Then $y_k(S, i)$ is y_k^i if $k \in S$ and y_k otherwise
 - By w(S, i) we denote the word

$$w = u'_0 \cdot y_1(S, i) \cdot u'_1 \cdot y_2(S, i) \cdot \ldots u'_{n-1} \cdot y_n(S, i) \cdot u'_n.$$

• Let $f: \Sigma^* \to \mathbb{N} \cup \{-\infty\}$. A refinement is linear if f(w(S, i + i)) = K + f(w(S, i)) for all i big enough For linear refinements we denote $\Delta(S) = K$

Let $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

A refinement is $w = u'_0 \cdot y_1 \cdot u'_1 \cdot y_2 \cdot \dots \cdot u'_{n-1} \cdot y_n \cdot u'_n$

if $v_k = x_k \cdot y_k \cdot z_k$, $u_k' = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$. and $y_k \neq \epsilon$ for every k

• Let $S \subseteq \{1, ..., n\}$ Then $y_k(S, i)$ is y_k^i if $k \in S$ and y_k otherwise

By w(S, i) we denote the word

$$w = u'_0 \cdot y_1(S, i) \cdot u'_1 \cdot y_2(S, i) \cdot \ldots \cdot u'_{n-1} \cdot y_n(S, i) \cdot u'_n.$$

• Let $f: \Sigma^* \to \mathbb{N} \cup \{-\infty\}$. A refinement is linear if f(w(S, i + i)) = K + f(w(S, i)) for all i big enough

For linear refinements we denote $\Delta(S) = K$

S is decomposable if
$$\Delta(S) = \sum_{j \in S} \Delta(\{j\})$$

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$.

There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \underline{v_n} \cdot u_n$, where $n \geqslant N$ and and $|v_i| \geqslant N$ for all i, there exists a linear refinement

$$w = x_0 \cdot y_1 \cdot x_1 \cdot y_2 \cdot \dots \cdot y_n \cdot x_n$$

such that for every sequence of pairwise different, non-empty sets

$$S_1, S_2, \dots S_k \subseteq \{1, \dots, n\}$$
 with $k \geqslant N$, one of the following holds:

- (1) exists j s.t. S_i is not decomposable
- (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$.

There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \underline{v_n} \cdot u_n$, where $n \geqslant N$ and and $|v_i| \geqslant N$ for all i, there exists a linear refinement

$$w = x_0 \cdot \underline{y_1} \cdot x_1 \cdot \underline{y_2} \cdot \dots \underline{y_n} \cdot x_n$$

such that for every sequence of pairwise different, non-empty sets

 $S_1, S_2, \dots S_k \subseteq \{1, \dots, n\}$ with $k \geqslant N$, one of the following holds:

- (1) exists j s.t. S_i is not decomposable
- (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.
- Example : f longest block of b's. Let N from the lemma

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$.

There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \underline{v_n} \cdot u_n$, where $n \geqslant N$ and and $|v_i| \geqslant N$ for all i, there exists a linear refinement

$$w = x_0 \cdot y_1 \cdot x_1 \cdot y_2 \cdot \dots \cdot y_n \cdot x_n$$

such that for every sequence of pairwise different, non-empty sets

 $S_1, S_2, \dots S_k \subseteq \{1, \dots, n\}$ with $k \geqslant N$, one of the following holds:

- (1) exists j s.t. S_i is not decomposable
- (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.
- Example : f longest block of b's. Let N from the lemma Let $(\underline{b}^{N+1}a)^{N+1}$ and define $S_i = \{j\}$

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$.

There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \underline{v_n} \cdot u_n$, where $n \geqslant N$ and and $|v_i| \geqslant N$ for all i, there exists a linear refinement

$$w = x_0 \cdot y_1 \cdot x_1 \cdot y_2 \cdot \dots \cdot y_n \cdot x_n$$

such that for every sequence of pairwise different, non-empty sets

 $S_1, S_2, \dots S_k \subseteq \{1, \dots, n\}$ with $k \geqslant N$, one of the following holds:

- (1) exists j s.t. S_i is not decomposable
- (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.
- Example : f longest block of b's. Let N from the lemma Let $(\underline{b}^{N+1}a)^{N+1}$ and define $S_i = \{j\}$

Every S_i is decomposable but any $\{j_1, j_2\}$ is not decomposable

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \mathsf{max}, +, -\infty, 0)$

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

• Proof.

Suppose f is recognised by $\mathcal A$ which is m-ambiguous, |Q|=r and $f(w)>-\infty$

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

• Proof.

Suppose f is recognised by $\mathcal A$ which is m-ambiguous, |Q|=r and $f(w)>-\infty$

• Set $N = \max\{r^m, m\} + 1$.

The refinement is defined in such a way that every y_i is a cycle on all accepting runs

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

• Proof.

Suppose f is recognised by $\mathcal A$ which is m-ambiguous, |Q|=r and $f(w)>-\infty$

- Set N = max{r^m, m} + 1.
 The refinement is defined in such a way that every y_i is a cycle on all accepting runs
- ullet Such a refinement is linear and $\Delta(S)$ is determined by maximal cycle weights in blocks in S

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

• Proof.

Suppose f is recognised by $\mathcal A$ which is m-ambiguous, |Q|=r and $f(w)>-\infty$

- Set N = max{r^m, m} + 1.
 The refinement is defined in such a way that every y_i is a cycle on all accepting runs
- ullet Such a refinement is linear and $\Delta(S)$ is determined by maximal cycle weights in blocks in S
- We will assume there are only accepting runs (to simplify technicalities)

Denote runs by ρ_1, \ldots, ρ_m

• Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in $w(S_j, i)$ is m and they come from ρ_1, \ldots, ρ_m

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in $w(S_j, i)$ is m and they come from ρ_1, \ldots, ρ_m
- For every $j \in \{1, ..., n\}$ and $l \in \{1, ..., m\}$ let $\rho_l[j]$ be the corresponding cycle Let $wt(\rho_l[j])$ be its weight

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in $w(S_j, i)$ is m and they come from ρ_1, \ldots, ρ_m
- For every $j \in \{1, ..., n\}$ and $l \in \{1, ..., m\}$ let $\rho_l[j]$ be the corresponding cycle Let $wt(\rho_l[j])$ be its weight
- A cycle $\rho_I[j]$ is dominant if $wt(\rho_I[j]) \ge wt(\rho_{I'}[j])$ for all $I' \in \{1, \ldots, m\}$

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in $w(S_j, i)$ is m and they come from ρ_1, \ldots, ρ_m
- For every $j \in \{1, ..., n\}$ and $l \in \{1, ..., m\}$ let $\rho_l[j]$ be the corresponding cycle Let $wt(\rho_l[j])$ be its weight
- A cycle $\rho_I[j]$ is dominant if $wt(\rho_I[j]) \ge wt(\rho_{I'}[j])$ for all $I' \in \{1, \ldots, m\}$
- If a cycle $\rho_l[j]$ is dominant then $\Delta(\{j\}) = wt(\rho_{l'}[j])$

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\Longrightarrow)

Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\Longrightarrow)

Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

ullet We claim that ho satisfies the lemma

By definition
$$\Delta(S) = \sum_{j \in S} wt(\rho[j])$$

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\Longrightarrow)

Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

- We claim that ρ satisfies the lemma By definition $\Delta(S) = \sum_{j \in S} wt(\rho[j])$
- For a contradiction let j^* s.t. $wt(\rho[j^*]) < \Delta(\{j^*\})$ Then $\Delta(S) = \sum_{j \in S} wt(\rho[j]) < \sum_{j \in S} \Delta(\{j\})$

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\Longrightarrow)

Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

- We claim that ρ satisfies the lemma By definition $\Delta(S) = \sum_{i \in S} wt(\rho[j])$
- For a contradiction let j^* s.t. $wt(\rho[j^*]) < \Delta(\{j^*\})$ Then $\Delta(S) = \sum_{j \in S} wt(\rho[j]) < \sum_{j \in S} \Delta(\{j\})$
- A contradiction with S being linear

(\longleftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

(\longleftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

• Then $\sum_{j \in S} wt(\rho[j]) \geqslant \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'

(\longleftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \geqslant \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by $\sum_{j \in S} wt(\rho[j])$ Which is equal to $\sum_{j \in S} \Delta(\{j\})$ since cycles are dominant

(\longleftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \geqslant \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by $\sum_{j \in S} wt(\rho[j])$ Which is equal to $\sum_{j \in S} \Delta(\{j\})$ since cycles are dominant

• To prove the theorem suppose all S_j are decomposable By lemma for all S_j there is ρ_{l_i} in which all cycles are dominant

(\longleftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \geqslant \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by $\sum_{j \in S} wt(\rho[j])$ Which is equal to $\sum_{j \in S} \Delta(\{j\})$ since cycles are dominant

- To prove the theorem suppose all S_j are decomposable By lemma for all S_j there is ρ_{l_i} in which all cycles are dominant
- ullet By choice of N there are more sets than runs so $I_{j_1}=I_{j_2}$ for some $j_1
 eq j_2$

(\longleftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \geqslant \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by $\sum_{j \in S} wt(\rho[j])$ Which is equal to $\sum_{j \in S} \Delta(\{j\})$ since cycles are dominant

- To prove the theorem suppose all S_j are decomposable By lemma for all S_j there is ρ_{l_i} in which all cycles are dominant
- ullet By choice of N there are more sets than runs so $I_{j_1}=I_{j_2}$ for some $j_1
 eq j_2$
- ullet By lemma $\{k_1,k_2\}$ is decomposable for every $k_1\in\mathcal{S}_{j_1}$ and $k_2\in\mathcal{S}_{j_2}$

Let S_1, \ldots, S_m over $\{1, \ldots, n\}$ a partition (S_i nonempty, pairwise disjoint) We say that $S \subseteq \{1, \ldots, n\}$ is a selection set if $|S \cap S_i| = 1$ for every i.

Let S_1, \ldots, S_m over $\{1, \ldots, n\}$ a partition (S_i nonempty, pairwise disjoint) We say that $S \subseteq \{1, \ldots, n\}$ is a selection set if $|S \cap S_i| = 1$ for every i.

Theorem

Let f poly-ambiguous over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exist N and a function $\varphi : \mathbb{N} \to \mathbb{N}$ such that for all $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$, where $|v_i| \geqslant N$ for every $1 \leqslant i \leqslant n$, there exists a linear refinement

$$w = u'_0 \cdot y_1 \cdot u'_1 \cdot y_2 \cdot \cdot \cdot u'_{n-1} \cdot y_n \cdot u'_n,$$

such that for every partition $\pi = S_1, S_2, \dots S_m$ of $\{1, \dots, n\}$ with $m \ge \varphi(\max_j(|S_j|))$ one of the following holds:

- (1) there exists j such that S_j is decomposable;
- (2) there exists a selection set S for π such that S is not decomposable.

Example $w_0 \# w_1 \# \dots \# w_n$ with $w_i \in \{a, b\}^*$

$$f(w) = \sum_{i=0}^{n} \max\{|w_i|_a, |w_i|_b\}$$

Example $w_0 \# w_1 \# \dots \# w_n$ with $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=0}^n \max\{|w_i|_a, |w_i|_b\}$

• Fix N and φ from the theorem. Let $m \geqslant \varphi(2)$ consider refinements of $(\underline{a}^N \underline{b}^N \#)^m$

Example $w_0 \# w_1 \# ... \# w_n$ with $w_i \in \{a, b\}^*$

$$f(w) = \sum_{i=0}^{n} \max\{|w_i|_a, |w_i|_b\}$$

• Fix N and φ from the theorem. Let $m \geqslant \varphi(2)$ consider refinements of $(\underline{a}^N \underline{b}^N \#)^m$

denote by $j,j'\in\{1,\ldots,m\}$ blocks of a and b $S_j=\{j,j'\}$ (not decomposable)

Example $w_0 \# w_1 \# ... \# w_n$ with $w_i \in \{a, b\}^*$

$$f(w) = \sum_{i=0}^{n} \max\{|w_i|_a, |w_i|_b\}$$

• Fix N and φ from the theorem. Let $m \geqslant \varphi(2)$ consider refinements of $(\underline{a}^N \underline{b}^N \#)^m$

denote by $j, j' \in \{1, \ldots, m\}$ blocks of a and b $S_j = \{j, j'\}$ (not decomposable)

But every selection set is decomposable

Corollary

Poly-ambiguous WA \subsetneq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Corollary

Poly-ambiguous WA \subseteq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Decision problems for weighted automata

ullet Is a given automaton ${\mathcal A}$ finitely ambiguous, polynomially ambiguous? in NLOGSPACE (tutorials)

Corollary

Poly-ambiguous WA \subseteq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Decision problems for weighted automata

- Is a given automaton \mathcal{A} finitely ambiguous, polynomially ambiguous? in NLOGSPACE (tutorials)
- Given an automaton \mathcal{A} is there an equivalent deterministic automaton \mathcal{B} ? Long-standing open problem for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Corollary

Poly-ambiguous WA \subseteq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Decision problems for weighted automata

- Is a given automaton \mathcal{A} finitely ambiguous, polynomially ambiguous? in NLOGSPACE (tutorials)
- Given an automaton $\mathcal A$ is there an equivalent deterministic automaton $\mathcal B$? Long-standing open problem for $(\mathbb N_{+\infty},\min,+,\infty,0)$ and $(\mathbb N_{-\infty},\max,+,-\infty,0)$ (less popular) open problem for $(\mathbb Q,+,\cdot,0,1)$

Corollary

Poly-ambiguous WA \subsetneq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Decision problems for weighted automata

- Is a given automaton \mathcal{A} finitely ambiguous, polynomially ambiguous? in NLOGSPACE (tutorials)
- Given an automaton $\mathcal A$ is there an equivalent deterministic automaton $\mathcal B$? Long-standing open problem for $(\mathbb N_{+\infty},\min,+,\infty,0)$ and $(\mathbb N_{-\infty},\max,+,-\infty,0)$ (less popular) open problem for $(\mathbb Q,+,\cdot,0,1)$
- Partial results: decidable for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ If we assume that \mathcal{A} is unambiguous, finitely ambiguous or poly-ambiguous

Variants of the classical emptiness problems for finite automata

Variants of the classical emptiness problems for finite automata

• Emptiness: Given A is there a word w such that:

$$\llbracket \mathcal{A} \rrbracket (w) = c$$
, or $\llbracket \mathcal{A} \rrbracket (w) \geqslant c$, or $\llbracket \mathcal{A} \rrbracket (w) \leqslant c$

Variants of the classical emptiness problems for finite automata

• Emptiness: Given A is there a word w such that:

$$\llbracket \mathcal{A} \rrbracket (w) = c$$
, or $\llbracket \mathcal{A} \rrbracket (w) \geqslant c$, or $\llbracket \mathcal{A} \rrbracket (w) \leqslant c$

Usually undecidable or trivially decidable

Variants of the classical emptiness problems for finite automata

• Emptiness: Given A is there a word w such that:

$$\llbracket \mathcal{A} \rrbracket \left(w \right) = c$$
, or $\llbracket \mathcal{A} \rrbracket \left(w \right) \geqslant c$, or $\llbracket \mathcal{A} \rrbracket \left(w \right) \leqslant c$

Usually undecidable or trivially decidable

$$\llbracket \mathcal{A} \rrbracket (w) = 0$$
 undecidable for $(\mathbb{Q}, +, \cdot, 0, 1)$ (next slide)

Variants of the classical emptiness problems for finite automata

• Emptiness: Given A is there a word w such that:

$$\llbracket \mathcal{A} \rrbracket \left(w \right) = c$$
, or $\llbracket \mathcal{A} \rrbracket \left(w \right) \geqslant c$, or $\llbracket \mathcal{A} \rrbracket \left(w \right) \leqslant c$

Usually undecidable or trivially decidable

$$\llbracket \mathcal{A} \rrbracket \left(w \right) = 0 \text{ undecidable for } \left(\mathbb{Q}, +, \cdot, 0, 1 \right) \text{ (next slide)}$$

But assuming 1-letter alphabet this is equivalent to the problem:

Given a linear recursive sequence u_0, u_1, \ldots is there $n \in \mathbb{N}$ s.t. $u_n = 0$

Variants of the classical emptiness problems for finite automata

• Emptiness: Given A is there a word w such that:

$$\llbracket \mathcal{A} \rrbracket \left(w \right) = c$$
, or $\llbracket \mathcal{A} \rrbracket \left(w \right) \geqslant c$, or $\llbracket \mathcal{A} \rrbracket \left(w \right) \leqslant c$

Usually undecidable or trivially decidable

$$\llbracket \mathcal{A} \rrbracket \left(w \right) = 0 \text{ undecidable for } \left(\mathbb{Q}, +, \cdot, 0, 1 \right) \text{ (next slide)}$$

But assuming 1-letter alphabet this is equivalent to the problem:

Given a linear recursive sequence u_0, u_1, \ldots is there $n \in \mathbb{N}$ s.t. $u_n = 0$

This is known as the Skolem problem (open for many years)

Next two weeks there will be a result related to this problem

Theorem (Bertoni 1974)

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $[\![\mathcal{A}]\!](w) = 0$ is undecidable.

Theorem (Bertoni 1974)

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $[\![\mathcal{A}]\!](w) = 0$ is undecidable.

Proof.

We reduce from the Post correspondence problem

Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word w

s.t.
$$\varphi_1(\mathbf{w}) = \varphi_2(\mathbf{w})$$

Theorem (Bertoni 1974)

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $[\![\mathcal{A}]\!](w) = 0$ is undecidable.

Proof.

We reduce from the Post correspondence problem

Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word w

s.t.
$$\varphi_1(\mathbf{w}) = \varphi_2(\mathbf{w})$$

For example $\varphi_1(a) = 0$, $\varphi_1(b) = 10011$, $\varphi_2(a) = 001$, $\varphi_2(b) = 1$

Theorem (Bertoni 1974)

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $[\![\mathcal{A}]\!](w) = 0$ is undecidable.

Proof.

We reduce from the Post correspondence problem

Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word w

s.t.
$$\varphi_1(\mathbf{w}) = \varphi_2(\mathbf{w})$$

For example $\varphi_1(a) = 0$, $\varphi_1(b) = 10011$, $\varphi_2(a) = 001$, $\varphi_2(b) = 1$

Then
$$\varphi_1(aab) = \varphi_2(aab) = 0010011$$

Theorem (Bertoni 1974)

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $[\![\mathcal{A}]\!](w) = 0$ is undecidable.

Proof.

We reduce from the Post correspondence problem

Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word w

s.t.
$$\varphi_1(\mathbf{w}) = \varphi_2(\mathbf{w})$$

For example
$$\varphi_1(a)=0$$
, $\varphi_1(b)=10011$, $\varphi_2(a)=001$, $\varphi_2(b)=1$
Then $\varphi_1(aab)=\varphi_2(aab)=0010011$

• One can assume that if such a w exists then the last letter of w is 1

 $A(a_1a_2 \dots a_n) = bin(a_1 \dots a_n) \qquad 1: \frac{1}{2}$ $= \sum_{i=1}^n \frac{a_i}{2^i}$ 1: 1 $0: \frac{1}{2}$ 0: 1

$$A(a_1 a_2 \dots a_n) = bin(a_1 \dots a_n) \qquad 1: \frac{1}{2}$$

$$= \sum_{i=1}^n \frac{a_i}{2^i}$$

$$1: \frac{1}{2}$$

$$1: \frac{1}{2}$$

$$0: \frac{1}{2}$$

• Notice that (almost) every w has a unique value $[\![\mathcal{A}]\!]$ (w) (assuming w ends with 1)

$$A(a_1 a_2 \dots a_n) = bin(a_1 \dots a_n) \qquad 1 : \frac{1}{2}$$

$$= \sum_{i=1}^n \frac{a_i}{2^i}$$

$$1 : \frac{1}{2}$$

$$1 : \frac{1}{2}$$

$$0 : \frac{1}{2}$$

- Notice that (almost) every w has a unique value [A](w) (assuming w ends with 1)
- Given a morphism $\varphi: \Sigma^* \to \{0,1\}^*$ we define \mathcal{A}_{φ} s.t. $\llbracket \mathcal{A}_{\varphi} \rrbracket (w) = \mathit{bin}(\varphi(w))$

• Say $\varphi(a) = 01$

• Say $\varphi(a) = 01$

• Say $\varphi(a) = 01$

ullet Define ${\cal A}_{arphi_1}$ and ${\cal A}_{arphi_2}$

• Say $\varphi(a) = 01$

- Define \mathcal{A}_{φ_1} and \mathcal{A}_{φ_2}
- ullet Then ${\cal A}$ defined as ${\cal A}_{arphi_1}-{\cal A}_{arphi_2}$ has the property that ${\cal A}(w)=0$ iff the Post correspondence instance is valid