4 Bootstrap

1. [# **30**] На станции лондонского метро подсчитывалось количество женщин в каждой из 100 очередей длиной 10. Таким образом, был получен набор данных $x_1, x_2, ..., x_{100}$, где x_i обозначает наблюдаемое количество женщин в i-й очереди. Набор данных представлен в таблице

Женщин	0	1	2	3	4	5	6	7	8	9	10
Количество очередей	1	3	4	23	25	19	18	5	1	1	0

- 1) Найдите медиану и с помощью bootstrap найдите стандартное отклонение медианы. Для этого 1000 раз сгенерируйте случайную выборку из данных в таблице, вычислите медиану в каждой выборке и оцените стандартное отклонение получившихся значений.
- 2). Найдите IQR и, с помощью bootstrap, найдите стандартное отклонение IQR, аналогично 1).
- **2.** [# **20**] Во время Второй мировой войны на Лондон обрушилось множество летающих бомб. Следующие данные относятся к площади в Южном Лондоне площадью 36 квадратных километров. Площадь была разделена на 576 квадратов со сторонами длиной $\frac{1}{4}$ километра. Для каждого из 576 квадратов было записано количество ударов. Таким образом, мы получаем набор данных $x_1, x_2, ..., x_{576}$, где x_i обозначает количество ударов в i-м квадрате. Данные обобщены в следующей таблице, в которой указано количество квадратов без ударов, с одним попаданием, с двумя попаданиями и т.д.

Попаданий	0	1	2	3	4	5	6	7
Количество	229	211	93	35	7	0	0	1
квадратов	>		7.0					_

Используя принцип bootstrap, проверьте является ли распределение ударов распределением Пуассона.