Лабораторная работа 3.6.1 Спектральный анализ электрических сигналов

Вехов Владимир

27ноября 2024 г.

1 Введение

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки.

В работе используются:

генератор сигналов произвольной формы,

цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

2 Теория

2.1 Ряд Фурье и спектральный анализ

Согласно теореме Фурье, любая периодическая функция может быть представлена в виде ряда (конечного или бесконечного) гармонических функций с кратными частотами — ряда Фурье. Одно из представлений ряда Фурье для функции с периодом Т имеет вид

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$

Здесь $\frac{a_0}{2}$ - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$

Операцию, при которой функции f(t) ставится в соответствие её ряд (или интеграл) Фурье называют преобразованием Фурье. Это преобразование является взаимно-однозначным, а восстановление исходной функции по её спектру называется обратным преобразованием Фурье. Однако при спектральном анализе электрических сигналов, как правило, измеряются именно амплитуды $|a_n|$ (или интенсивности $|a_n|^2$) спектральных компонент, а информация об их фазах ϕ_n теряется. Это приводит к тому, что пропадает взаимно-однозначное соответствие между сигналом и спектром, и весьма разные сигналы могут иметь один и тот же амплитудный спектр (пример: амплитудная и фазовая модуляции).

2.2 Соотношения неопределённостей

Между сигналом как функцией времени f(t) и его спектром как функции частоты $a(\nu)$ имеется простая и универсальная взаимосвязь. А именно, если у сигнала f(t) есть какое характерное время Δt (например, период повторения, длительность импульса, время нарастания и т.п.), то в спектре $a(\nu)$ в том или ином виде будет наблюдаться характерный масштаб $\Delta \nu \approx 1/\Delta t$ (расстояния между пиками, ширина спектра, ширина пиков и т.п.).

Соотношения вида

принято называть соотношениями неопределённостей. Конкретный вид соотношения неопределённостей зависит от обстоятельств, в которых оно применяется. Например, если $\Delta t = \tau$ — характерная длительность импульса, то характерная ширина спектра по порядку величины будет равна $\Delta \nu \approx 1/\Delta t$. Здесь единица в правой части (4) — это единица именно по порядку величины. Конкретное числовое значение зависит, во-первых, от детальной формы сигнала, и, во-вторых, от того, что именно мы называем «характерным» временем и что — «шириной» спектра.

Другой пример, для любого сигнала с периодом T в спектре обязательно будут наблюдаться гармоники на расстоянии $\delta \nu = 1/T$ друг от друга. В данном случае соотношение является точным и от формы сигнала не зависит

2.3 Методы спектрального анализа

Современные методы спектрального анализа электрических сигналов можно разделить на два типа: цифровые (математические) и аналоговые (физические).

Простейшим физическим анализатором частот является высокодобротный колебательный контур (RLC-цепочка). Такой контур, как известно, хорошо откликается на частоты, близкие к его резонансной, и почти не реагирует на частоты, находящиеся за пределами его узкой (т.к. контур высокодобротный) амплитудно-частотной характеристики. Подстраивая параметры контура и изменяя его резонансную частоту, можно «просканировать» весь частотный спектр поступающего на него сигнала. В современной лаборатории спектральные приборы, основанные на физических методах (как правило, довольно дорогостоящие), применяются для анализа высоких частот (сотни мегагерц и более).

Если же частота исследуемого сигнала не слишком велика (заведомо меньше тактовой частоты процессоров), современная цифровая техника позволяет проводить частотный анализ сигналов в реальном времени непосредственно по математическим формулам (2). Входящий сигнал при этом оцифровывается (дискретизуется) и, с помощью так называемого алгоритма «быстрого преобразования Фурье», осуществляется вычисление частот и амплитуд его гармоник.

Цифровой спектральный анализ имеет две отличительные особенности, о которых стоит упомянуть. Во-первых, при цифровом анализе возникает частота дискретизации $\nu_{\text{дискр}}$, то есть частота, с которой считываются значения напряжения, подаваемого на входной канал анализатора. Ясно, что дискретизация не позволит исследовать спектр частот, превышающих частоту $\nu_{\text{дискр}}$, и исказит спектр вблизи неё. Поэтому надёжно получать спектр можно лишь на достаточно низких частотах $\nu << \nu_{\text{дискр}}$, когда влияние дискретности минимально (точнее, как следует из теоремы Котельникова, необходимо выполнение условия $\nu < \nu_{\text{дискр}}/2$). Внутренняя частота дискретизации осциллографов обычно велика (типичное значение — 1 ГГц), однако для преобразования Фурье в целях оптимизации скорости работы она может существенно урезаться. В настройках цифровых осциллографов часто используется параметр «количество точек» на интервал времени. Например, если сигнал записывался в течение 1 с, то при стандартных для многих осциллографов 4096 точках дискретизации, спектр будет заведомо ограничен лишь частотой 2 кГц!

Во-вторых, интервал времени Δt , в течение которого регистрируется сигнал, всегда ограничен. Для анализа сигнала вырезается его участок — «окно» $t \in [t_0; t_0 + \Delta t]$. Такое преобразование Фурье часто называют «оконным». Изза ограниченности размеров «окна» неизбежно возникают дополнительные искажения спектра (их можно назвать «краевыми эффектами»). Чтобы компенсировать эти искажения, значениям регистрируемой функции в пределах «окна» придают разный вес. В таком случае говорят об «оконной» (или «весовой») функции преобразования Фурье. На практике применяются различные оконные функции, каждая из которых обладает своими достоинствами и недостатками (одни уменьшают шумы, другие уменьшают ширину пиков и погрешность частоты, третьи погрешность измерения амплитуд и т.д.). В нашей работе важно аккуратное измерения амплитуд, для чего лучше всего подходят окна «с плоской вершиной» (flat top) и, в меньше степени,

Блэкмана (Blackman). Для более точного измерения частот предпочтительнее окна Ханна (Hann) и Хэмминга (Hamming).

3 Ход работы

Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённостей

В начале настроим прямоугольный сигнал с параметрами $\nu_{\text{повт}}=1$ к Γ ц, $\tau=T/20=50$ мкс, так чтобы была усточивая картина на экране.

Получим на экране спектр прямоугольных импульсов (преобразование Фурье).

Рис. 1: Спектр прямоугольных импульсов (преобразование Фурье)

Пронаблюдаем изменения спектра при изменеии параметров сигнала

Рис. 2: Спектр прямоугольного сигнала ($\nu_{\text{повт}} = 5 \text{ к}\Gamma \text{ц}; \ \tau = 50 \text{ мкc})$

Рис. 3: Спектр прямоугольного сигнала ($\nu_{\text{повт}}=10~\text{к}\Gamma_{\text{П}};~\tau=50~\text{мкc})$

Рис. 4: Спектр прямоугольного сигнала ($\nu_{\text{повт}}=15~\text{к}\Gamma$ ц; $\tau=50~\text{мкc})$

Рис. 5: Спектр прямоугольного сигнала ($\nu_{\text{повт}}=1~\text{к}\Gamma$ ц; $\tau=100~\text{мкc})$

Рис. 6: Спектр прямоугольного сигнала ($\nu_{\text{повт}}=1~\text{к}\Gamma \text{ц};~ \tau=150~\text{мкc})$

Рис. 7: Спектр прямоугольного сигнала ($\nu_{\text{повт}}=1~\text{к}\Gamma$ ц; $\tau=200~\text{мкc})$

Измерение параматров спектра

$$\nu_n^{\text{reop}} = \frac{n}{T}, \qquad |a_n| = \frac{|\sin \frac{\pi n\tau}{T}|}{\pi n} = \frac{\tau}{T} \frac{|\sin \pi \nu_n \tau|}{\pi \nu_n \tau}$$

Результаты измерений и расчётов в таблице 1

n			1	4	2		3	4	1	٦	5	
$\nu_n^{\text{эксп}}, \kappa \Gamma$ ц		0.0	988	1.	99	2.9	989	3.9	99	-	5	
$\nu_n^{\text{reop}}, \kappa$	$\nu_n^{\text{теор}}$, к Γ ц		1 2		2	3		4	4		5	
$ a_n ^{\mathfrak{s}_{\mathrm{KCH}}}$, усл.ед.		28	80	27	6.8	27	1.2	263	3.6	255	2.5	
$ a_n/a_1 ^{\mathfrak{S}KC\Pi}$			1	0.9	988	0.9	968	0.9	41	0.9	002	
$ a_n/a_1 ^{\text{reop}}$			1	0.9	988	0.9	067	0.9	39	0.9	004	
n	(6	,	9	1	2	15		17		19	
эксп Г		\overline{c}	-	<u> </u>	1	<u> </u>	1 1		17		10	

n	6	9	12	15	17	19
$ u_n^{\scriptscriptstyle ЭКСП}, K\Gamma$ Ц	6	9	12	15	17	19
$ u_n^{\mathrm{reop}}, \mathrm{к}\Gamma$ ц	6	9	12	15	17	19
$ a_n ^{\mathfrak{s}_{\mathrm{KC\Pi}}}$, усл.ед.	241.7	196.6	141.9	84.8	48.15	14.2
$ a_n/a_1 ^{\mathfrak{S}KC\Pi}$	0.863	0.702	0.507	0.303	0.172	0.051
$ a_n/a_1 ^{\text{Teop}}$	0.862	0.702	0.507	0.302	0.171	0.053

Таблица 1: Параметры спектра прямоугольного сигнала

Измерение полной ширины спектра при различных длинах импульса

Зафиксируем T=1 мс.

Измерение расстояния между соседними гармониками при различных периодах повторения сигнала

Зафиксируем $\tau = 100$ мкс.

Результаты представлены в таблицах ниже

τ , MKC	Δu , к Γ ц
20	49.0 ± 0.5
35	26.0 ± 0.5
40	25.0 ± 0.5
50	20.0 ± 0.5
75	13.5 ± 0.5
100	10.0 ± 0.5
150	7.0 ± 0.5
200	5.0 ± 0.5

T, MKC	δu , к Γ ц
200	5.00 ± 0.01
500	1.00 ± 0.01
1000	0.50 ± 0.01
1500	0.33 ± 0.01
2000	0.25 ± 0.01
2500	0.2 ± 0.01
3000	0.17 ± 0.01
4000	0.125 ± 0.01
5000	0.1 ± 0.01

Таблица 2: Зависимость полной ширины спектра Таблица 3: Зависимость расстояния между сосед-

ними гармониками от периода повторения

Графики зависимостей $\Delta \nu(1/\tau)$ и $\delta \nu(1/T)$. Проверка соотношений неопределённости

Проверим соотношения неопределённостей: $\Delta \nu \sim \frac{1}{\tau}$ и $\delta \nu \sim \frac{1}{T}$ По МНК коэффициенты: $k_{\tau}=0.962\pm0.027;~k_{T}=1.002\pm0.097.$ Соотношения выполняются с хорошей точностью.

Рис. 8: График зависимости $\Delta \nu(1/\tau)$

Рис. 9: График зависимости $\delta\nu(1/T)$

Наблюдение периодической последовательности цугов

Устойчивая картина цугов на экране осциллографа

 Частота несущей $\nu_0=50$ к Г
ц, период повторения T=1 мс, число периодов синусоиды в одном импульсе
 N=5

Спектр периодической последовательности цугов

Рис. 10: Спектр цугов $(\nu_0 = 50 \ \mbox{к} \Gamma \mbox{ц;} \ T = 1 \ \mbox{мc;} \ N = 5)$

Изменение спектра при изменении параметров

Рис. 11: Спектр цугов $(\nu_0 = 25 \ \mathrm{k}\Gamma\mathrm{u}; \ T = 1 \ \mathrm{mc}; \ N = 5)$

Рис. 12: Спектр цугов $(\nu_0 = 10 \text{ к}\Gamma \text{ц}; T = 1 \text{ мc}; N = 5)$

Рис. 13: Спектр цугов $(\nu_0 = 50 \text{ к}\Gamma \text{ц}; T = 0.5 \text{ мc}; N = 5)$

Рис. 14: Спектр цугов $(\nu_0 = 50 \text{ к}\Gamma_{\text{Ц}}; T = 0.2 \text{ мс}; N = 5)$

Рис. 15: Спектр цугов ($\nu_0=50$ к Γ ц; T=1 мс; N=10)

Рис. 16: Спектр цугов $(\nu_0 = 50 \ \mathrm{k}\Gamma \mathrm{u}; \ T = 0.2 \ \mathrm{mc}; \ N = 20)$

Параметры спектров, проверка соотношений неопределённостей

Проверим соотношения неопределённостей: должно выполняться $\Delta \nu \cdot \tau_0 \sim 1$ и $\delta \nu \cdot T \sim 1$

По теореме смещения, смещение по времени не меняет амплитуд спектральных компонент, а лишь сдвигает их фазы (пропорционально частоте компоненты)

τ_0 , MC	$\Delta \nu$, к Γ ц	$\Delta \nu \cdot \tau_0$	T, MC	$\delta \nu$, к Γ ц	$\delta \nu \cdot T$
0.1	10	1	1	1	1
0.04	25	1	1	1	1
0.1	10	1	0.5	2	1
0.2	5	1	1	1	1

Таблица 4: Параметры спектра последовательности цугов

Исследование спектра амплитудно-модулированного сигнала

Модулированный по амплитуде синусоидальный сигнал

Частота несущей $\nu_0=50$ к Γ ц, частота модуляции $\nu_{\text{мод}}=2$ к Γ ц, глубина модуляции 50~%(m=0.5)

3.0.1 Параметры сигнала

$$A_{max} = 1.252 \text{ B}$$

$$A_{min} = 0.48 \text{ B}$$

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = 0.497\%$$

Изменение спектра при изменении параметров

Рис. 17: Спектр модулированного сигнала ($\nu_0=50~\mathrm{k\Gamma \mu};~\nu_{\mathrm{мод}}=2~\mathrm{k\Gamma \mu};~m=0.5$)

Рис. 18: Спектр модулированного сигнала ($\nu_0=25$ к Γ ц; $\nu_{\text{мод}}=2$ к Γ ц; m=0.5)

Рис. 19: Спектр модулированного сигнала ($\nu_0=50$ кГц; $\nu_{\text{мод}}=10$ кГц; m=0.5)

m	$\frac{a_{\mathrm{бok}}}{a_{\mathrm{och}}}$
0.1	0.05
0.2	0.10
0.35	0.17
0.5	0.25
0.7	0.35
0.8	0.40
0.9	0.45
1	0.50

Таблица 5: Отношение амплитуд при различной глубине модуляции

m,%	10	20	30	40	50	60	70	80	90	100
$\frac{a_{\rm fok}}{a_{\rm och}}$	0.051	0.1	0.15	0.2	0.249	0.299	0.348	0.399	0.449	0.495

Таблица 6: Отношение амплитуд при различной глубине модуляции

Рис. 20: График зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m

График совпадает с теорией, что a(t) прямо пропорциональна m.

Изучение фильтрации сигналов

Параметры RC-цепочки:

$$R=3$$
 кОм $C=1000$ пФ

$$\tau_{RC} = RC = 3 \text{ MKC}$$

$$u_{RC} = 1/\nu_{RC} = 0.33 \; \mathrm{M}\Gamma$$
ц

Прямоугольные импульсы с периодом повторения T=3 мкс $\sim \tau_{RC}$ и длительностью $\tau=150$ нс $\sim T/20$

Изменение спектра при изменении параметров

Рис. 21: Прямоугольные импульсы $(T=3 \ \mathrm{mkc}; \ \tau=150 \ \mathrm{hc})$

Рис. 22: Прямоугольные импульсы $(T=500 \ \mathrm{mkc}; \ \tau=150 \ \mathrm{hc})$

Сравнение амплитуд спектральных гармоник исходного и фильтрованного сигналов

Подадим последовательность прямоугольных импульсов с периодом повторения T=3 мкс и длительностью $\tau=150$ нс

Результаты измерения амплитуд фильтрованного и исходного сигнала в таблице 7

n	a_n^0 , мВ	a_n^{Φ} , мВ	$K_n = a_n^{\oplus} / a_n^0 $
1	265 ± 10	37	0.141
2	264 ± 10	18	0.069
3	260 ± 10	12	0.047
4	250 ± 10	9	0.036
5	242 ± 10	7.4	0.031
6	233 ± 10	4.5	0.019
7	219 ± 10	3.7	0.017
9	190 ± 10	2.9	0.015
13	120 ± 10	1.6	0.013
15	90 ± 10	1.0	0.012

Таблица 7: Сравнение амплитуд спектральных гармоник исходного и фильтрованного сигналов

В теории $K=\frac{1}{\tau_{RC}}\int_0^t f(t')dt'$ Построим график $K(1/\nu).$ По углу наклона определим τ_{RC}

Рис. 23: График зависимости $K(1/\nu)$

$$au_{RC} = rac{1}{2\pi k} = (3.5 \pm 0.4) \; \mathrm{MKC}$$

4 Вывод

В данной работе мы изучили спектры сигналов различной формы (прямоугольных импульсов, цугов гармонических колебаний, гармонических сигналов, модулированных по амплитуде и частоте) и влияние параметров сигнала на вид соответствующих спектров; проверили справедливость соотношений неопределённостей; проанализировали фильтрацию сигналов при прохождении их через RC контур.