Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

10 ноября 2018 г.

1 Введение

Эти лекции были рассказаны студентам групп M3334—M3337, M3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 1

2.1 λ -исчисление

Определение 2.1 (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

- 1. Аппликация левоассациативна.
- 2. Абстракции жадные, едят все что могут.

Пример.
$$(\lambda x.(\lambda f.((fx)(fx)\lambda y.(yf))))$$

Определение 2.2 (α -эквивалентность). $A =_{\alpha} B$, если имеет место одно из следующих условий:

1.
$$A \equiv x$$
, $B \equiv y$ (x,y—переменные) и $x \equiv y$

2.
$$A \equiv P_1Q_1$$
, $B \equiv P_2Q_2$ и $P_1 =_{\alpha} P_2$, $Q_1 =_{\alpha} Q_2$

3.
$$A\lambda x.P_1,\ B\lambda y.P_2$$
и $P_1[x\coloneqq t]=_{\alpha}P_2[y\coloneqq t],$ где t — новая переменная.

Определение 2.3 (β -редекс). β -редекс — выражение вида: ($\lambda x.A$) B

Определение 2.4 (β -редукция). $A \to_{\beta} B$, если имеет мето одно из следующих условий:

1.
$$A\equiv P_1Q_1,\ B\equiv P_2Q_2$$
 и либо $P_1=_{\alpha}P_2,\ Q_1\to_{\beta}Q_2,$ либо $P_1\to_{\beta}P_2,\ Q_1=_{\alpha}Q_2$

2.
$$A \equiv (\lambda x.P)\,Q,\, B \equiv P[x \coloneqq Q] - \mathbf{Q}$$
 свободна для подстановки вместо х в \mathbf{P}

Пример. $X \to_{\beta} X$, $(\lambda x.x) y \to_{\beta} y$

Пример. $a(\lambda x.x)y \rightarrow_{\beta} ay$

Пример. $A \equiv \lambda x.P, B \equiv \lambda x.Q, P \rightarrow_{\beta} Q$

2.2 Представление некоторых функций в лямбда исчислении

Boolean значения легко представить в терминах λ -исчисления, к примеру

- $True = \lambda a \lambda b.a$
- $False = \lambda a \lambda b.b$

Также мы можем выражать и более сложные функции If $=\lambda c.\lambda t.\lambda e.(ct)e$

Пример.

2.3 Черчевские нумералы

Определение 2.5 (черчевский нумерал).

$$\overline{n}=\lambda f.\lambda x.f^n x,$$
 где $f^n x=egin{cases} f\left(f^{(n-1)x}
ight) & \text{при } n>0 \ x & \text{при } n=0 \end{cases}$