Agrégation Interne. Le 23/11/2011 E.N.S. 2011

Pour ce problème :

- K est un corps commutatif;
- n un entier naturel non nul;
- $-\mathcal{M}_n(\mathbb{K})$ est l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} ;
- de manière plus générale, pour n, m entiers naturels non nuls, $\mathcal{M}_{n,m}(\mathbb{K})$ est l'espace vectoriel des matrices à n et m colonnes, à coefficients dans \mathbb{K} ;
- pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on note $\mathrm{Tr}(A)$ la trace de A et $\mathrm{det}(A)$ le déterminant de A;
- $-GL_{n}(\mathbb{K})$ est le groupe des matrices inversibles dans $\mathcal{M}_{n}(\mathbb{K})$;
- $-\mathcal{N}_n(\mathbb{K})$ est le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices nilpotentes, c'est-à-dire des matrices $A \in \mathcal{M}_n(\mathbb{K})$ pour lesquelles il existe un entier naturel non nul tel que $A^k = 0$;
- $-\mathcal{T}_n(\mathbb{K})$ est le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices de trace nulle;
- le polynôme caractéristique d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est défini par $P_A(X) = \det(XI_n A)$ (noter que le polynôme caractéristique est ici unitaire);
- si E un \mathbb{K} -espace vectoriel de dimension n, $\mathcal{L}(E)$ est l'algèbre des endomorphismes de E et GL(E) est le groupe des automorphismes de E.

- I - Matrices nilpotentes et matrices de trace nulle dans $\mathcal{M}_{2}\left(\mathbb{R} ight)$

On suppose pour cette partie que n=2.

1. Soit E un \mathbb{K} -espace vectoriel de dimension 2. Montrer qu'un endomorphisme $u \in \mathcal{L}(E) \setminus \{0\}$ est nilpotent si, et seulement si, il existe une base $\mathcal{B} = (e_1, e_2)$ de E telle que :

$$u(e_1) = 0 \text{ et } u(e_2) = e_1$$
 (1)

- 2. Montrer que $\mathcal{N}_2(\mathbb{K}) \setminus \{0\}$ est l'ensemble des matrices semblable à la matrice $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- 3. Montrer que :

$$\mathcal{N}_{2}\left(\mathbb{K}\right) = \left\{A \in \mathcal{M}_{2}\left(\mathbb{K}\right) \mid \operatorname{Tr}\left(A\right) = \det\left(A\right) = 0\right\}$$

- 4. Quel est le sous-espace vectoriel de $\mathcal{M}_2(\mathbb{K})$ engendré par $\mathcal{N}_2(\mathbb{K})$?
- 5. Soit Φ un automorphisme de $\mathcal{M}_2(\mathbb{K})$ tel que $\Phi(\mathcal{N}_2(\mathbb{K})) \subset \mathcal{N}_2(\mathbb{K})$. Montrer que $\Phi(\mathcal{T}_2(\mathbb{K})) = \mathcal{T}_2(\mathbb{K})$.

Donner un exemple de tel automorphisme.

6. Montrer que l'application :

$$\varphi: \mathbb{K}^3 \to \mathcal{M}_2(\mathbb{K})$$

$$(x, y, z) \mapsto \begin{pmatrix} x & y \\ z & -x \end{pmatrix}$$

réalise un isomorphisme de \mathbb{K}^3 sur $\mathcal{T}_2(\mathbb{K})$ et que $\mathcal{N}_2(\mathbb{K})$ est l'image par φ du cône isotrope $\mathcal{C}_q = q^{-1}\{0\}$ de la forme quadratique :

$$q: \mathbb{K}^3 \to \mathbb{K}$$

 $(x,y,z) \mapsto x^2 + yz$

On suppose, pour la suite de cette partie, que $\mathbb{K} = \mathbb{R}$ et on utilise la fonction φ et la forme quadratique q introduites à la question précédente.

- 7. Montrer que:
 - (a) $\mathbb{R}^3 \setminus \mathcal{C}_q$ est la réunion de trois ouverts connexes par arcs;
 - (b) et que l'une de ces composantes connexes est :

$$C_{1} = \left\{ X \in \mathbb{R}^{3} \mid \varphi\left(X\right) \neq 0 \text{ et } \varphi\left(X\right) \text{ est diagonalisable} \right\}$$

8. Montrer que tout point A = (a, b, c) de $\mathcal{C}_q \setminus \{0\}$ est régulier et que le plan tangent à \mathcal{C}_q en A est :

$$\mathcal{P}_{A} = \left\{ X \in \mathbb{R}^{3} \mid \operatorname{Tr}\left(\varphi\left(A\right) \cdot \varphi\left(X\right)\right) = 0 \right\}$$

- 9. Soit $X \in \mathbb{R}^3 \setminus \{0\}$ tel que $\varphi(X)$ soit diagonale.
 - (a) Montrer qu'il existe deux plans tangents à $\mathcal{C}_q \setminus \{0\}$, Π_1 et Π_2 , qui passent par X.
 - (b) Montrer que $\mathcal{N}_2(\mathbb{R}) \cap \varphi(\Pi_1 \cup \Pi_2)$ est l'ensemble des matrices nilpotentes M telles que $\ker(M)$ contient l'une des deux droites propres de $\varphi(X)$ (on identifie ici une matrice $A \in \mathcal{M}_2(\mathbb{R})$ à l'endomorphisme qu'elle définit dans la base canonique de \mathbb{R}^2).
- 10. On se donne $P \in GL_2(\mathbb{R})$ et Φ est l'automorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par :

$$\forall M \in \mathcal{M}_2(\mathbb{R}), \ \Phi(M) = PMP^{-1}$$

- (a) Montrer que $(\varphi^{-1} \circ \Phi \circ \varphi)(\mathcal{C}_q) = \mathcal{C}_q$.
- (b) Soient $A \in \mathcal{C}_q \setminus \{0\}$ et \mathcal{P}_A le plan tangent à \mathcal{C}_q en A. Montrer que $B = (\varphi^{-1} \circ \Phi \circ \varphi)(A)$ est dans $\mathcal{C}_q \setminus \{0\}$ et que le plan tangent à \mathcal{C}_q en B est $\mathcal{P}_B = (\varphi^{-1} \circ \Phi \circ \varphi)(\mathcal{P}_A)$.
- 11. Soit $X \in \mathbb{R}^3 \setminus \{0\}$ tel que $\varphi(X)$ soit diagonalisable.
 - (a) Montrer qu'il existe deux plans tangents à $\mathcal{C}_q \setminus \{0\}$, \mathcal{P}_1 et \mathcal{P}_2 , qui passent par X.
 - (b) Montrer que $\mathcal{N}_2(\mathbb{R}) \cap \varphi(\mathcal{P}_1 \cup \mathcal{P}_2)$ est l'ensemble des matrices nilpotentes M telles que $\ker(M)$ contient l'une des deux droites propres de $\varphi(X)$.

- II - Réduction des endomorphismes nilpotents

Pour cette partie n est un entier naturel non nul, E un \mathbb{K} -espace vectoriel de dimension n et E^* est le dual de E.

- 1. Montrer que les valeurs propres d'un endomorphisme $u \in \mathcal{L}(E)$ sont les racines de son polynôme minimal.
- 2. Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, son polynôme minimal est de la forme $\pi_u(X) = X^r$, où r est un entier compris entre 1 et n. On dit alors que u est nilpotent d'ordre r.
- 3. On suppose que le corps \mathbb{K} est algébriquement clos. Montrer qu'un endomorphisme $u \in \mathcal{L}(E)$ est nilpotent si, et seulement si, son polynôme caractéristique est $P_u(X) = X^n$.

Pour la suite de cette partie, $u \in \mathcal{L}(E)$ est nilpotent d'ordre $r \geq 1$.

- 4. Soit $x \in E$ un vecteur tel que $u^{r-1}(x) \neq 0$.
 - (a) En notant $e_i = u^{i-1}(x)$ pour tout i compris entre 1 et r, montrer que la famille $\mathcal{B}_{u,x} = (e_i)_{1 \le i \le i}$ est libre dans E.
 - (b) Montrer que l'espace vectoriel $F_{u,x} = \text{Vect}(\mathcal{B}_{u,x})$ est stable par u.
 - (c) Donner la matrice de la restriction de u à $F_{u,x}$ dans la base $\mathcal{B}_{u,x}$.

5. On désigne par ℓ une forme linéaire sur E telle que ℓ (e_r) \neq 0 et par $\mathcal{B}_{u,x}^* = (\ell_i)_{1 \leq i \leq r}$ la famille de formes linéaires définie par :

$$\forall i \in \{1, \cdots, r\}, \ \ell_i = \ell \circ u^{i-1}$$

- (a) Montrer que la famille $\mathcal{B}_{u,x}^*$ est libre dans E^* .
- (b) Montrer que l'espace vectoriel $G_{u,x} = \bigcap_{i=1}^r \ker(\ell_i)$ est un supplémentaire stable par u de $F_{u,x}$.
- (c) Que peut-on dire du polynôme minimal de la restriction de u à $G_{u,x}$.
- 6. Montrer qu'il existe un entier $m \geq 1$, une suite d'entiers $r_1 \geq r_2 \geq \cdots \geq r_m \geq 1$ et une base \mathcal{B} de E tels que la matrice de u dans cette base soit diagonale par blocs de la forme :

$$J = \begin{pmatrix} J_{r_1} & 0 & \cdots & 0 \\ 0 & J_{r_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{r_m} \end{pmatrix} \text{ où } J_r = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in M_r(\mathbb{K}) \text{ pour tout } r \ge 1$$

- 7. Montrer que l'entier r_1 ne dépend que de u.
- 8. Calculer le rang de $J_r^i \in M_r(\mathbb{K})$ pour tout entier $i \geq 0$.
- 9. On utilise les notations qui précèdent.
 - (a) Calculer le rang de u^i pour tout entier $i \geq 0$. En déduire que l'entier m ne dépend que de u.
 - (b) Montrer que pour tout entier naturel i, on a :

$$\operatorname{rg}(u^{i}) - \operatorname{rg}(u^{i+1}) = \operatorname{card}\{k \in \{1, \dots, m\} \mid r_{k} \ge i+1\}$$

(c) On suppose que $m \geq 2$. Montrer que pour j compris entre 2 et m, on a :

$$\operatorname{rg}(u^{r_j}) - \operatorname{rg}(u^{r_j+1}) \le j - 1 < \operatorname{rg}(u^{r_j-1}) - \operatorname{rg}(u^{r_j})$$

et en déduire que les entiers r_j , pour j compris entre 2 et m, sont uniquement déterminés par u.

10. Le commutant de u est le sous ensemble de $\mathcal{L}(E)$ défini par :

$$\mathcal{C}(u) = \{ v \in \mathcal{L}(E) \mid u \circ v = v \circ u \}$$

- (a) Montrer que $\mathcal{C}(u)$ est une sous-algèbre de $\mathcal{L}(E)$ qui contient $\mathbb{K}[u]$.
- (b) On suppose, pour cette question que u est nilpotent d'indice $n = \dim(E)$. Montrer que $\mathcal{C}(u) = \mathbb{K}[u]$ est de dimension n.
- (c) Montrer que, pour u nilpotent d'ordre r, on a dim $(\mathcal{C}(u)) = \sum_{k=1}^{m} (2k-1) r_k$.

- III - Outils topologiques

Pour cette partie, $\mathbb{K} = \mathbb{C}$.

Les espaces vectoriels de dimension finie $\mathcal{M}_n(\mathbb{C})$ et $\mathbb{C}_n[X]$ sont munis d'une norme quelconque.

- 1. Montrer que l'application qui associe à une matrice $M \in \mathcal{M}_n(\mathbb{C})$ son polynôme caractéristique $P_M \in \mathbb{C}_n[X]$ est continue
- 2. Montrer que $\mathcal{N}_n(\mathbb{C})$ est fermé dans $\mathcal{M}_n(\mathbb{C})$.
- 3. Soient, n, m, r des entiers naturels non nuls. Montrer que le sous-ensemble $\mathcal{R}_{n,m,r}(\mathbb{C})$ de $\mathcal{M}_{n,m}(\mathbb{C})$ formé des matrices de rang au moins égal à r est un ouvert de $\mathcal{M}_{n,m}(\mathbb{C})$.
- 4. Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices dans $\mathcal{M}_n(\mathbb{C})$ qui converge vers une matrice A. Montrer qu'il existe un entier k_0 tel que :

$$\forall k \geq k_0, \dim(\ker(A)) \geq \dim(\ker(A_k))$$

- IV - Deux endomorphismes qui commutent

Pour cette partie n est un entier naturel non nul, \mathbb{K} est un corps commutatif infini et E un \mathbb{K} -espace vectoriel de dimension n.

1. Soit $u \in \mathcal{L}(E)$. Pour tout $x \in E$, on note:

$$I_{u,x} = \{ P \in \mathbb{K} [X] \mid P(u)(x) = 0 \}$$

et le sous-espace vectoriel $E_{u,x}$ de E défini par :

$$E_{u,x} = \operatorname{Vect} \left\{ u^k(x) \mid k \in \mathbb{N} \right\}$$

est appelé sous espace cyclique engendré par x.

On dit que u est cyclique s'il existe un vecteur $x \in E$ tel que $E = E_{u,x}$.

- (a) Montrer que $I_{u,x}$ est un idéal de $\mathbb{K}[X]$ non réduit au polynôme nul et qu'il existe un unique polynôme unitaire $\pi_{u,x} \in \mathbb{K}_n[X]$ tel que $I_{u,x} = \mathbb{K}[X] \cdot \pi_{u,x}$. Justifier le fait que $\pi_{u,x}$ divise π_u .
 - On dit que $\pi_{u,x}$ est le polynôme minimal de x relativement à u.
- (b) Montrer que u est cyclique si, et seulement si, il existe un vecteur $x \in E$ tel que la famille $\mathcal{B}_{u,x} = (u^{i-1}(x))_{1 \le i \le n}$ soit une base de E.
- (c) Montrer que u est cyclique si, et seulement si, il existe un vecteur $x \in E$ tel que deg $(\pi_{u,x}) = n$.
- (d) On suppose que u est nilpotent. Montrer que u est cyclique si, et seulement si, il existe une base de E dans laquelle la matrice de u est J_n .
- (e) Montrer que si u est cyclique, son polynôme minimal est alors égal à son polynôme caractéristique.
- 2. Soit $u \in \mathcal{L}(E)$ cyclique. Montrer que $\mathcal{C}(u) = \mathbb{K}[u]$ et dim $(\mathcal{C}(u)) = n$.
- 3. Soient $u \in \mathcal{L}(E)$ cyclique et $v \in \mathcal{L}(E)$. On fixe un vecteur $x \in E$ tel que $\mathcal{B}_{u,x} = (u^{i-1}(x))_{1 \le i \le n}$ soit une base de E. Montrer que l'endomorphisme $v + \lambda u$ est cyclique pour tous les scalaires λ sauf peut être un nombre fini d'entre eux.