Optimization

732A90 Computational Statistics

Krzysztof Bartoszek (krzysztof.bartoszek@liu.se) with Maryna Prus' slides

14 XI 2022 (R41)
Department of Computer and Information Science
Linköping University

Plan for today

- Introduction
- Mathematical definition of problem
- 1D optimization
- kD optimization
- ullet R code examples

Optimization

Nearly everything is optimization!

- Chemistry
- Physics
- Economics, **Industry**
- Engineering

BUT EVEN

- Your mobile price plan
- Course scheduling
- Your lunch choice

STATISTICS

- Fit parameters to data
- Propose optimal decision

ANY BIOLOGICAL ORGANISM

YOU

Industry

How to produce a cylindrical (**WHY?**) 0.5L beer can so it requires minimum material?

Given a certain product minimize e.g. material usage, production effort while still meeting consumer requirements.

Economics/Logistics

- Travelling Salesman Problem
- Windmills
- Flight schedule (especially "cheap" airlines)

Statistics

Maximize likelihood, model fitting

Maximal likelihood

An i.i.d. sample $(X_1, ..., X_n)$ is drawn from a probability distribution $P(X|\Theta)$, where Θ is an unknown parameter set.

The joint probability of all the observations is

$$P(X_1, \dots, X_n | \Theta) = \prod_{i=1}^n P(X_i | \Theta).$$

Find Θ that maximizes $P(X_1, \ldots, X_n | \Theta)$.

Mathematical formulation

The goal is to minimize (maximize)

Objective function: $f(\theta)$

(reproduction, chances of survival, quality of life, cost, profit, likelihood, fit to data)

depending on

Parameters or Unknowns θ

(reproduction strategy, resource utilization, consumer choices, height & diameter, production, raw material choice, service times, route, flight routes/times ,parameters)

Mathematical formulation

$$\min_{\theta \in \Theta} f(\theta) \text{ subject to } \begin{aligned} c_i(\theta) &= 0, & i \in E \\ c_i(\theta) &\geq 0, & i \in I \end{aligned}$$

QUESTION: What should we do if we are interested in maximization instead of minimization?

QUESTION: What should we do if the constraints are $c_i(x) \leq 0, i \in I$?

Constraints examples

- Available environment
- Volume: 0.5l of can
- Production: Factories (F_1, F_2) , retail outlets (R_1, R_2, R_3) , cost of shipping $i \to j$: c_{ij} , production a_i per week, requirement b_j per week **to optimize:** x_{ij} amount shipped $i \to j$ per week

$$\begin{aligned} & \min_{x \in \mathbb{R}^3} \sum_{ij} c_{ij} x_{ij} & \text{minimize shipping costs} \\ & \sum_{j=1}^3 x_{ij} \leq a_i, i = 1, 2 & \text{production capacity} \\ & \sum_{i=1}^3 x_{ij} \geq b_j, j = 1, 2, 3 & \text{demand} \\ & \forall_{i,j} x_{ij} \geq 0 & \end{aligned}$$

Question: What would happen if we drop demand constraint?

• ML: often no constraints

Exercise

- Split into pairs/triplets/quadruples
- Think of some human anatomy part/organ:
 - What is its function?
 - What could it have been optimized for over the course of time?
 - Is it still under selection?
 - What constraints was and is it under?
- Think of a situation where optimization is needed in your own student/professional/personal/financial situation.
- State the problem in terms of
 - Objective function
 - Parameters
 - Constraints
 - Does it have a trivial solution?
- 10 minutes

Optimization approaches

- Constrained optimization
 - Lagrange multipliers, linear programming
 - E.g. LASSO
 - Not this lecture!

- Unconstrained optimization
 - Steepest descent
 - Newton method
 - Quasi–Newton–Methods
 - Conjugate gradients

Why are there different methods?

1D Optimization: analytical approach

• To minimize / maximize

$$f(x), \quad x \in \mathbb{R}$$

x - one dimensional variable

- Compute first derivative: $\frac{\partial f}{\partial x}$
- Find x^* for which first derivative is 0
- Compute second derivative: $\frac{\partial^2 f}{\partial x^2}$
- Compute value of second derivative at $x = x^*$
 - Second derivative positive $\Rightarrow x^*$ local minimum
 - Second derivative negative $\Rightarrow x^*$ local maximum
 - Second derivative 0 $\Rightarrow x^*$ saddle point

1D Optimization

- Function of a single parameter, find minimum
- What algorithm would you suggest?
- Golden–section search local minimum on [A, B] interval (constraint)
- Works by narrowing down the search interval with a constant reduction factor

$$1 - \alpha = \frac{\sqrt{5} - 1}{2} \approx 0.62$$

Question: Does α remind you of something?

Golden section (minimization)

1:
$$x_1 = A$$
, $x_3 = B$,
2: **while** $x_1 - x_3 > \epsilon$ **do**

$$3: \quad a = \alpha(x_3 - x_1)$$

4:
$$x_2 = x_1 + a, x_4 = x_3 - a$$

5: **if**
$$f(x_4) > f(x_2)$$
 then

6:
$$x_1 = x_1, x_3 = x_4$$

8:
$$x_1 = x_2, x_3 = x_3$$

10: end while

Wikipedia, Golden–section search

f has to be UNIMODAL

 $732 \texttt{A} 90_\texttt{ComputationalStatisticsHT2022_Lecture02codeSlide16.R}$

Multi-dimensional optimization

Find

$$\min_{ec{x} \in \mathbb{R}^n} f(ec{x})$$

Using (known, or numerically evaluated)

Gradient
$$\nabla f(\vec{x}) = \left(\frac{\partial f(\vec{x})}{\partial x_1}, \dots, \frac{\partial f(\vec{x})}{\partial x_n}\right)^T$$

Hessian
$$\nabla^2 f(\vec{x}) = \left[\frac{\partial^2 f(\vec{x})}{\partial x_i \partial x_j} \right]_{i,j=1}^n$$

kD Optimization: analytical approach

• Compute Hessian matrix:

$$\nabla^2 f(\vec{x}) = \left[\frac{\partial^2 f(\vec{x})}{\partial x_i \partial x_j} \right]_{i,j=1}^n$$

- matrix of all second partial derivatives
- Compute values of Hessian matrix at $x = x^*$
 - Hessian matrix positive definite $\Rightarrow \vec{x}^*$ local minimum
 - Hessian matrix negative definite
 - \Rightarrow \vec{x}^* local maximum
 - Otherwise
 - \Rightarrow \vec{x}^* saddle point

General strategy

- Provide a (good) starting point \vec{x}_0 , $\vec{x} = \vec{x}_0$
- Choose a direction \vec{p} (||p|| = 1) and step size a
- Repeat step 2 until convergence

How to choose the direction?

Taylor's theorem

$$f(\vec{x} + a\vec{p}) = f(\vec{x}) + \left[\alpha \vec{p}^T \cdot \nabla f(\vec{x})\right] + o(\alpha^2)$$

$$\vec{p}$$
 s.t. $\vec{p}^T \cdot \nabla f(\vec{x}) < 0$ is a descent direction.

Steepest descent is

$$\vec{p} = -(\bigtriangledown f(\vec{x})) / \|\bigtriangledown f(\vec{x})\|$$

How to choose the step size?

- \bullet Expensive way: find the global minimum in direction \vec{p}
- Trade-off way: find a decrease which is *sufficient*

BACKTRACKING

- 1: Choose (large) $\alpha_0 > 0, \ \rho \in (0,1), \ c \in (0,1),$
- 2: $\alpha = \alpha_0$
- 3: repeat
- 4: $\alpha = \rho \alpha$
- 5: **until** $f(\vec{x} + \alpha \vec{p}) \le f(\vec{x}) + c\alpha \vec{p}^T \nabla f(\vec{x})$

Newton's method

- Newton–Raphson method
- Hessian ignored in steepest descent
- If f is quadratic

$$f(\vec{p}) = \frac{1}{2}\vec{p}^T \mathbf{A} \vec{p} + \vec{b}^T \vec{p} + c,$$

then minimum

$$\vec{p}^* = \mathbf{A}^{-1} \vec{b}.$$

ullet Taylor expansion of f

$$f(\vec{x} + a\vec{p}) = f(\vec{x}) + \alpha \vec{p}^T \cdot \nabla f(\vec{x}) + \frac{\alpha^2}{2} \vec{p}^T \nabla^2 f(\vec{x}) \vec{p} + o(\alpha^3)$$

• $x := x + \alpha \vec{p}$ where

$$\vec{p} = -\left(\nabla^2 f(\vec{x})\right)^{-1} \nabla f(\vec{x})$$

Newton's method

- $(\nabla^2 f(\vec{x}))^{-1}$ is expensive to compute, there are quicker approaches, e.g. Cholesky decomposition
- Hessian should be **positive definite** for \vec{p} to be a descent direction (if not see book)
- Memory expensive need to store $O(n^2)$ elements

BUT

• Method converges quickly esp. near optimum

Quasi-Newton methods

- k iteration number
- Compute an approximation to the Hessian, **B**, that will allow for efficient choice of \vec{p} .
- **SECANT CONDITION:** (quasi-Newton condition)

$$\mathbf{B}_{k+1}(\vec{x}_{k+1} - \vec{x}_k) = \nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k)$$

BFGS Algorithm

- 1: Choose $\mathbf{B}_0 > 0, \vec{x}_0, k = 0$
- 2: repeat
- 3: \vec{p}_k is solution of $\mathbf{B}_k \vec{p}_k = \nabla f(\vec{x}_k)$
- 4: find suitable α_k
- 5: $\vec{x}_{k+1} = \vec{x}_k + \alpha_k \vec{p}_k$
- 6: calculate \mathbf{B}_{k+1} {next slide}
- 7: k = k + 1
- 8: **until** convergence of \vec{x}_k at minimum

How to compute \mathbf{B}_{k+1} ?

• We want \mathbf{B}_{k+1} and \mathbf{B}_k to be close to each other

$$\min_{\mathbf{B}} \|\mathbf{B} - \mathbf{B}_k\|$$
 $s.t. \ \mathbf{B} = \mathbf{B}^T, \text{ secant condition}$

•
$$\vec{y}_k = \nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k), \ \vec{s}_k = \vec{x}_{k+1} - \vec{x}_k$$

$$\mathbf{B}_{k+1} = \mathbf{B}_k - \frac{\mathbf{B}_k \vec{y}_k \vec{y}_k^T \mathbf{B}_k}{\vec{y}_k^T \mathbf{B}_k \vec{y}_k} + \frac{\vec{s}_k \vec{s}_k^T}{\vec{y}_k \vec{s}_k^T}$$

- Closed form Sherman–Morrison formula for ${\bf B}_{k+1}^{-1}$
- We have to store \mathbf{B}_k^{-1}

•

BFGS

 \bullet BGFS: Broyden–Fletcher–Goldfarb–Shanno

- More iterations than Newton's method (uses approximation)
- Each iteration quicker, no numeric inversion
- Good for large scale problems
- Choice of \mathbf{B}_0 ?

Conjugate Gradient method—quadratic case

Minimize

$$f(\vec{x}) = \frac{1}{2}\vec{x}^T \mathbf{A}\vec{x} - \vec{b}^T \vec{x}$$

for **A** symmetric positive definite.

Gradient:

$$\nabla f(\vec{x}) = \mathbf{A}\vec{x} - \vec{b} = r(\vec{x})$$

Two vectors \vec{p} and \vec{q} are **conjugate** with respect to **A** if

$$\vec{p}^T \mathbf{A} \vec{q} = 0.$$

IDEA: \vec{p} and \vec{q} are orthogonal w.r.t. to an inner product associated with $\bf A$. Use this to find a basis that will allow for easy finding of \vec{x} .

Conjugate Gradient method

- $\vec{p_0} = \vec{r_0}$
- $\vec{p}_{k+1} = -\vec{r}_k + \beta_{k+1}\vec{p}_k$
- Conjugate condition has to be satisfied so

$$\beta_{k+1} = \frac{\vec{r}_k^T \mathbf{A} \vec{p}_{k-1}}{\vec{p}_k^T \mathbf{A} \vec{p}_k}$$

Exercise: check this

• Convergence in dim(\mathbf{A}) steps (or unless cutoff for \vec{r}_k)

Nonlinear CG method

7: k = k + 18: **end while**

• If $f(\cdot)$ general, use $\nabla f(\cdot)$ instead of $r(\cdot)$

1: Choose
$$\vec{x}_0$$
, $\vec{p}_0 = -\nabla f(\vec{x}_0)$, $k = 0$
2: **while** $\nabla f(x_k) \neq \vec{0}$ **do**
3: find suitable α_k
4: $\vec{x}_{k+1} = \vec{x}_k + \alpha_k \vec{p}_k$ {and now update step}
5:
$$\beta_{k+1} = \left(\nabla^T f(\vec{x}_{k+1}) \nabla f(\vec{x}_{k+1})\right) / \left(\nabla^T f(\vec{x}_k) \nabla f(\vec{x}_k)\right)$$
{Fletcher-Reeves update, other possible}

$$D_{k+1} := \nabla f(\vec{x}_{k+1}) - \nabla f(\vec{x}_k)$$

$$\beta_{k+1} = \left(\nabla^T f(\vec{x}_{k+1}) D_{k+1}\right) / \left(\nabla^T f(\vec{x}_k) \nabla f(\vec{x}_k)\right)$$
{Polak-Ribiére update, other possible}
6: $\vec{p}_{k+1} = -\nabla f(\vec{x}_{k+1}) + \beta_{k+1} \vec{p}_k$

Nonlinear CG method

- Local minimum convergence
- But this is true of all methods that cannot "jump out" of descent path
- Faster than steepest descent
- Slower than Newton and Quasi–Newton but significantly less memory

732A90_ComputationalStatisticsHT2022_Lecture02codeSlide33.R

kD Optimization in $\mathbf R$

Function optim()

Methods:

- Nelder-Mead
- BFGS
- Conjugate Gradient
- \bullet L-BFGS-B
- SANN
- Brent

Summary

- Optimization is everywhere
- Numerical methods for finding minimum
- 1D: Golden section (unimodal), optimize()
- kD: choose step size and direction (gradient), optim()