Лабораторная работа №3

Вычисление функций с использованием их разложения в степенной ряд

Цель работы.

Практика в организации итерационных и арифметических циклов.

3.1. Теоретические сведения.

Действительная функция f(x) называется аналитической в точке ϵ , если в некоторой окрестности $|x-\epsilon| < R$ этой точки функция разлагается в степенной ряд (ряд Тейлора):

$$f(x) = f(\varepsilon) + f'(\varepsilon)(x - \varepsilon) + \frac{f''(\varepsilon)}{2!}(x - \varepsilon)^2 + \dots + \frac{f^{(n)}(\varepsilon)}{n!}(x - \varepsilon)^n + \dots$$
 (1)

При ε=0 получаем ряд Маклорена:

$$f(x) = f(0) + f'(0)(x) + \frac{f''(0)}{2!}(x)^2 + \dots + \frac{f^{(n)}(0)}{n!}(x)^n + \dots$$
 (2)

Разность
$$R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(\varepsilon)}{k!} (x - \varepsilon)^k$$
 (3)

называется остаточным членом и представляет собой ошибку при замене функции f(x) полиномом Тейлора.

Для ряда Маклорена

$$R_n(x) = \frac{f^{(n+1)}(\theta \cdot x)}{(n+1)!} x^{n+1} \text{ где } 0 < \theta < 1.$$
(4)

Таким образом, вычисление значения функции можно свести к вычислению суммы числового ряда

$$a_1+a_2+\ldots+a_n+\ldots (5)$$

Известно, что числовой ряд называется сходящимся, если существует предел последовательности его частных сумм:

$$S = \frac{\lim S_n}{n \to \infty},\tag{6}$$

где $S_n = a_1 + a_2 + \ldots + a_n + \ldots$.

Число S называется суммой ряда.

Из формулы (13) получаем $S=S_n+R_n$,

где R_n - остаток ряда, причем $R \rightarrow 0$ при $n \rightarrow \infty$.

Для нахождения суммы S сходящегося ряда (5) с заданной точностью ϵ нужно выбрать число слагаемых n столь большим, чтобы имело место неравенство $|R_n| < \epsilon$.

Тогда частная сумма S_n приближенно может быть принята за точную сумму S ряда (5).

Приближенно n выбрать так, чтобы имело место неравенство $|S_{n+1}\text{-}S_n|<\epsilon$ или $a_n<\epsilon$.

Задача сводится к замене функции степенным рядом и нахождению суммы некоторого количества слагаемых $S = \sum a_n(x,n)$ при различных параметрах

суммирования х . Каждое слагаемое суммы зависит от параметра х и номера п, определяющего место этого слагаемого в сумме.

Обычно формула общего члена суммы принадлежит одному из следующих трех типов:

a)
$$\frac{x^n}{n!}$$
; $(-1)^n \frac{x^{2n+1}}{(2n+1)!}$; $\frac{x^{2n}}{(2n)!}$;

6)
$$\frac{\cos(nx)}{n}$$
; $\frac{\sin(2n-1)x}{2n-1}$; $\frac{\cos(2nx)}{4n^2-1}$;

B)
$$\frac{x^{4n+1}}{4n+1}$$
; $(-1)^n \frac{\cos(nx)}{n^2}$; $\frac{n^2+1}{n!} (\frac{x}{2})^n$.

В случае а) для вычисления члена суммы a_n целесообразно использовать рекуррентные соотношения, т. е. выражать последующий член суммы через предыдущий: $a_{n+1} = \psi(x, n) a_n$. Это позволит существенно сократить объем вычислительной работы. Кроме того, вычисление члена суммы по общей формуле в ряде случаев невозможно (например из-за наличия n!).

В случае б) применение рекуррентных соотношений нецелесообразно. Вычисления будут наиболее эффективными, если каждый член суммы вычислять по общей формуле a_n = $\phi(x,n)$.

В случае в) член суммы целесообразно представить в виде двух сомножителей, один из которых вычисляется по рекуррентному соотношению, а другой непосредственно $a_n = \phi(x, n) * c_n(x, n)$, где $c_n = c_{n-1} \psi(x, n)$.

3.2. Постановка задачи.

Для х изменяющегося от а до b с шагом (b-a)/k, где (k=10), вычислить функцию f(x), используя ее разложение в степенной ряд в двух случаях:

- а) для заданного n;
- б) для заданной точности ε (ε =0.0001).

Для сравнения найти точное значение функции.

3.3. Методические указания.

Алгоритм решения задачи сводится к трем циклам, причем два из них вложены в третий. Внутренние циклы суммируют слагаемые при фиксированном параметре x, один (арифметический для заданного n), другой (итерационный для заданной точности ε . При организации этих циклов следует обратить внимание на правильный выбор формулы для вычисления элемента ряда a_n и правильное присвоение начальных значений переменным цикла. Внешний цикл организует изменение параметра x.

Результаты расчетов отпечатать в следующем виде:

 Вычисление функции

 X=..... SN=.....
 SE=.....
 Y=.....

 X=..... SN=.....
 SE=.....
 Y=.....

 X=..... SN=.....
 SE=.....
 Y=.....

 Здесь X- значение параметра;
 SN- знач

ение суммы для заданного n; SE- значение суммы для заданной точности; Y-точное значение функции.

3.4. Варианты

No	функция	Диапазон	n	сумма
		Изменения		
		аргумента		
1	$y=3^X$	$0,1 \le x \le 1$	10	$S = 1 + \frac{\ln 3}{1!}x + \frac{\ln^2 3}{2!}x^2 + \dots + \frac{\ln^n 3}{n!}x^n$
2	$y = -\ln\left 2\sin\frac{x}{2}\right $	$\frac{\pi}{5} \le x \le \frac{9\pi}{5}$	40	$S = \cos x + \frac{\cos 2x}{2} + \dots + \frac{\cos nx}{n}$
3	$y = \sin X$	$0,1 \le x \le 1$	10	$S = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
4	$y = XarctgX - $ $-\ln\sqrt{1+x^2}$	$0.1 \le x \le 0.8$	10	$S = \frac{x^2}{2} - \frac{x^4}{12} + \dots + (-1)^{n+1} \frac{x^{2n}}{2n(2n-1)}$
5	$y = e^x$	$1 \le x \le 2$	15	$S = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$
6	$y = e^{x \cos^{\pi}/4} \cdot$	$0,1 \le x \le 1$	25	$\frac{\pi}{\cos \pi}$ $\frac{\pi}{\cos \pi}$
	$\cos(x\sin\frac{\pi}{4})$			$S = 1 + \frac{\cos\frac{\pi}{4}}{1!}x + \dots + \frac{\cos n\frac{\pi}{4}}{n!}x^{n}$
7	$y = \cos x$	$0,1 \le x \le 1$	10	$S = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$
8	$y = \frac{x \sin \frac{\pi}{4}}{1 - 2x \cos \frac{\pi}{4} + x^2}$	$0.1 \le x \le 0.8$	40	$S = x \sin \frac{\pi}{4} + x^2 \sin 2 \frac{\pi}{4} + \dots + x^n \sin n \frac{\pi}{4}$
9	$y = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \operatorname{arctg} X$	$0.1 \le x \le 0.8$	3	$S = x + \frac{x^5}{5} + \dots + \frac{x^{4n+1}}{4n+1}$
10	$y = e^{\cos x} \cos(\sin x)$	$0,1 \le x \le 1$	20	$S = 1 + \frac{\cos x}{1!} + \dots + \frac{\cos nx}{n!}$
11	$y = (1 + 2x^2)e^{x^2}$	$0,1 \le x \le 1$	10	$S = 1 + 3x^2 + \dots + \frac{2n+1}{n!}x^{2n}$
12	$y = -\frac{1}{2}\ln(1 - \frac{\pi}{3} + x^2)$	$0.1 \le x \le 0.8$	35	$S = \frac{x \cos \frac{\pi}{3}}{1} + \frac{x^2 \cos 2\frac{\pi}{3}}{2} + \dots + \frac{x^n \cos n\frac{\pi}{3}}{n}$
13	$y = \frac{1}{2} \ln x$	$0,2 \le x \le 1$	10	$S = \frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1}\right)^3 + \dots + \frac{1}{2n+1} \left(\frac{x-1}{x+1}\right)^{2n+1}$

$ \begin{vmatrix} 14 \\ y = \frac{1}{4}(x^2 - \frac{\pi^3}{3}) & \frac{\pi}{5} \le x \le \pi \\ y = \frac{1+x^2}{2} \operatorname{arctg} X - \frac{x}{2} & \frac{\text{old } x \le 1}{30} & 30 \\ y = \frac{\pi^2}{3} - \frac{\pi}{15} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1} \\ \begin{vmatrix} 16 \\ y = \frac{\pi^2}{8} - \frac{\pi}{4} x & \frac{\pi}{5} \le x \le \pi \\ y = \frac{\pi^2}{2} - \frac{\pi}{4} \sin x & \frac{\pi}{5} \le x \le \pi \\ 0.1 \le x \le 1 & 10 & S = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n-1)^2} \\ \end{vmatrix} $ $ \begin{vmatrix} 17 \\ y = \frac{e^x + e^{-x}}{2} & 0.1 \le x \le 1 \\ 0.1 \le x \le 1 & 10 & S = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n-1)} \\ \end{vmatrix} $ $ \begin{vmatrix} 18 \\ y = \frac{1}{2} - \frac{\pi}{4} \sin x & 0.1 \le x \le 0.8 \\ 0.1 \le x \le 1 & 20 & S = \frac{\cos 2x}{3} + \frac{\cos 4x}{15} + \dots + \frac{\cos 2nx}{4n^2 - 1} \\ \end{vmatrix} $ $ \begin{vmatrix} 19 \\ y = e^{2x} & 0.1 \le x \le 1 \\ 0.1 \le x \le 1 & 30 & S = 1 + 2\frac{x}{2!} + \dots + \frac{(2x)^n}{n!} \\ \end{vmatrix} $ $ \begin{vmatrix} 20 \\ y = (\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x^2}{2}} & 0.1 \le x \le 1 \\ 0.1 \le x \le 1 & 30 & S = 1 + 2\frac{x}{2} + \dots + \frac{n^2 + 1}{n!} (\frac{x}{2})^s \\ \end{vmatrix} $ $ \begin{vmatrix} 21 \\ y = \operatorname{arctg} X & 0.1 \le x \le 1 \\ 0.1 \le x \le 1 & 30 & S = 1 + 2\frac{x}{3} + \dots + (-1)^n \frac{2n^2 + 1}{2n + 1} \end{aligned} $ $ \begin{vmatrix} 22 \\ y = (1 - \frac{x^2}{2})\cos x - \frac{0.1 \le x \le 1}{2} & 35 & S = 1 - \frac{3}{2}x^2 + \dots + (-1)^n \frac{2n^2 + 1}{(2n)!} x^{2n} \\ \end{vmatrix} $ $ \begin{vmatrix} 23 \\ y = 2(\cos^2 x - 1) & 0.1 \le x \le 1 \\ 0.1 \le x \le 1 & 15 & S = -\frac{(2x)^2}{2} + \frac{(2x)^4}{24} + \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} \end{aligned} $ $ \begin{vmatrix} 24 \\ y = \ln(\frac{1}{2 + 2x + x^2}) & -2 \le x \le -0 \end{vmatrix} $ $ \begin{vmatrix} 3 \\ y = \frac{e^x - e^{-x}}{2} & 0.1 \le x \le 1 \\ 0.1 \le x \le 1 & 20 & S = x + \frac{x^3}{3!} + \dots + \frac{\cos n\pi}{4} x^n + \dots + (-1)^n \frac{(2n)^{2n}}{2n!} $ $ \begin{vmatrix} 25 \\ y = \frac{e^x - e^{-x}}{2} & 0.1 \le x \le 1 \\ 0.1 \le x \le 1 & 25 & S = 1 + \frac{\cos \pi}{4} x + \dots + (-1)^n \frac{x^{2n}}{(2n)!} $ $ \begin{vmatrix} 27 \\ y = \cos x & 0.1 \le x \le 1 \\ 1 - 2x \cos \frac{\pi}{4} + x^2 & 1 \end{vmatrix} $ $ \begin{vmatrix} 3 \\ y = \frac{x \sin \frac{\pi}{4}}{4} & 0.1 \le x \le 0.8 \\ 0.1 \le x \le 0.8 \end{vmatrix} $ $ \begin{vmatrix} 40 \\ 5 \\ 5 \\ -1 + \frac{x^2}{2} + \frac{x^2}{2} + \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} $ $ \begin{vmatrix} 3 \\ 5 \\ -1 + \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} $ $ \begin{vmatrix} 3 \\ 5 \\ -1 + \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} $ $ \begin{vmatrix} 3 \\ 5 \\ -1 + \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} $ $ \begin{vmatrix} 3 \\ 5 \\ -1 + \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} $ $ \begin{vmatrix} 3 \\ 5 \\ -1 + \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} $ $ \begin{vmatrix} 3$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	4 3	J	20	$S = -\cos x + \frac{\cos 2x}{2^2} + \dots + (-1)^n \frac{\cos nx}{n^2}$
$y = \frac{x}{8} - \frac{\lambda}{4} x \qquad \overline{5} \le x \le \pi \qquad S = \cos x + \frac{33^2}{3^2} + \dots + \frac{50\cos x + 50\pi}{(2n-1)^2}$ $17 y = \frac{e^x + e^{-x}}{2} \qquad 0.1 \le x \le 1 \qquad 10 \qquad S = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!}$ $18 y = \frac{1}{2} - \frac{\pi}{4} \sin x \qquad 0.1 \le x \le 0.8 \qquad 50 \qquad S = \frac{\cos 2x}{3} + \frac{\cos 4x}{15} + \dots + \frac{\cos 2nx}{4n^2 - 1}$ $19 y = e^{2x} \qquad 0.1 \le x \le 1 \qquad 20 \qquad S = 1 + \frac{2x}{1!} + \dots + \frac{(2x)^n}{n!}$ $20 y = (\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x}{2}} \qquad 0.1 \le x \le 1 \qquad 30 \qquad S = 1 + 2\frac{x}{2} + \dots + \frac{n^2 + 1}{n!} (\frac{x}{2})^n$ $21 y = \arctan x \qquad 0.1 \le x \le 1 \qquad 40 \qquad S = x - \frac{x^3}{3} + \dots (-1)^n \frac{x^{2n+1}}{2n+1}$ $22 y = (1 - \frac{x^2}{2})\cos x - \frac{0.1 \le x \le 1}{2} \qquad 35 \qquad S = 1 - \frac{3}{2}x^2 + \dots + (-1)^n \frac{2n^2 + 1}{(2n)!}x^{2n}$ $23 y = 2(\cos^2 x - 1) \qquad 0.1 \le x \le 1 \qquad 15 \qquad S = -\frac{(2x)^2}{2} + \frac{(2x)^4}{24} + \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!}$ $24 y = \ln(\frac{1}{2 + 2x + x^2}) \qquad -2 \le x \le -0.00 \qquad S = -(1 + x)^2 + \frac{(1 + x)^4}{2} + \dots + (-1)^n \frac{(1 + x)^{2n}}{n}$ $25 y = \frac{e^x - e^{-x}}{2} \qquad 0.1 \le x \le 1 \qquad 20 \qquad S = x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!}$ $26 y = e^{x\cos x/4} \cdot \qquad 0.1 \le x \le 1 \qquad 25 \qquad S = 1 + \frac{x^2}{1!} + \dots + (-1)^n \frac{x^{2n}}{2n+1}$ $27 y = \cos x \qquad 0.1 \le x \le 1 \qquad 10 \qquad S = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$ $28 y = \frac{x \sin \pi/4}{1 - 2x \cos \pi/4 + x^2} \qquad 0.1 \le x \le 0.8 \qquad 3 \qquad S = x + \frac{x^5}{5} + \dots + \frac{x^{4n+1}}{4n+1}$ $29 y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{1}{4} \frac{2 \cos x}{1 - x} \qquad 0.1 \le x \le 0.8 \qquad 3 \qquad S = x + \frac{x^5}{5} + \dots + \frac{x^{4n+1}}{4n+1}$	15	$y = \frac{1+x^2}{2} \operatorname{arctg} X - \frac{x}{2}$	$0,1 \le x \le 1$	30	$S = \frac{x^3}{3} - \frac{x^5}{15} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1}$
$y = \frac{c}{2}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{2}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{1 + \frac{x}{2} + \dots + \frac{x}{(2n)!}}{15}$ $ S = \frac{x}{2} + \dots + \frac{x}{(2n)!}$ $ S = \frac{x}{2} + \dots + \frac{x}{2} + \dots + \frac{x}{2} + \dots + \frac{x}{2} + \dots + \frac{x}{2}$ $ S = \frac{x}{2} + \dots + \frac{x}{2}$ $ S = \frac{x}{2} + \dots + $	16	$y = \frac{\pi^2}{8} - \frac{\pi}{4} x $	$\frac{\pi}{5} \le x \le \pi$	40	$S = \cos x + \frac{\cos 3x}{3^2} + \dots + \frac{\cos(2n-1)x}{(2n-1)^2}$
$y = \frac{1}{2} - \frac{1}{4} \sin x $ $y = e^{2x}$ $0.1 \le x \le 1$	17	$y = \frac{e^x + e^{-x}}{2}$	$0,1 \le x \le 1$	10	$S = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!}$
$S = 1 + \frac{1}{1!} + \dots + \frac{1}{n!}$ $20 y = (\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x}{2}} \qquad 0.1 \le x \le 1$ $21 y = arctgX \qquad 0.1 \le x \le 1$ $22 y = (1 - \frac{x^2}{2})\cos x - \frac{x}{2}\sin x$ $23 y = 2(\cos^2 x - 1) \qquad 0.1 \le x \le 1$ $24 y = \ln(\frac{1}{2 + 2x + x^2}) \qquad 0.1 \le x \le 1$ $25 y = \frac{e^x - e^{-x}}{2} \qquad 0.1 \le x \le 1$ $26 y = e^{x\cos^x/4} \cdot \frac{x}{4} \qquad 0.1 \le x \le 1$ $27 y = \cos x \qquad 0.1 \le x \le 1$ $29 y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{1}{2} arctgX$ $0.1 \le x \le 0.8$	18	Z 4		50	$S = \frac{\cos 2x}{3} + \frac{\cos 4x}{15} + \dots + \frac{\cos 2nx}{4n^2 - 1}$
$y = (\frac{x}{4} + \frac{x}{2} + 1)e^{x/2}$ $21 y = arctgX$ $0.1 \le x \le 1$ $22 y = (1 - \frac{x^2}{2})\cos x - \frac{0.1 \le x \le 1}{2\sin x}$ $0.1 \le x \le 1$ $0.1 \le x \le 0.8$ $0.1 \le x \le $	19	$y = e^{2x}$	$0,1 \le x \le 1$	20	$S = 1 + \frac{2x}{1!} + \dots + \frac{(2x)^n}{n!}$
$S = x - \frac{x}{3} + \dots + (-1)^{n} \frac{x}{2n+1}$ $22 y = (1 - \frac{x^{2}}{2}) \cos x - \frac{x}{2} \sin x$ $23 y = 2(\cos^{2} x - 1)$ $24 y = \ln(\frac{1}{2 + 2x + x^{2}})$ $25 y = \frac{e^{x} - e^{-x}}{2}$ $26 y = e^{x \cos^{x} 4} \cdot \cos x \sin^{x} \frac{\pi}{4}$ $27 y = \cos x$ $28 y = \frac{x \sin^{x} 4}{1 - 2x \cos^{x} 4 + x^{2}}$ $29 y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{1}{2} \operatorname{arct} gX$ $0.1 \le x \le 1 \Rightarrow 0.1 \le x \le 0.8$ $0.1 \le x \le 0.8$	20	$y = (\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x}{2}}$	$0,1 \le x \le 1$	30	$S = 1 + 2\frac{x}{2} + \dots + \frac{n^2 + 1}{n!} (\frac{x}{2})^n$
$y = (1 - \frac{x}{2})\cos x - \frac{x}{2}\sin x$ $23 y = 2(\cos^{2} x - 1) \qquad 0.1 \le x \le 1 \qquad 15 \qquad S = -\frac{(2x)^{2}}{2} + \frac{(2x)^{4}}{24} + \dots + (-1)^{n} \frac{(2x)^{2n}}{(2n)!}$ $24 y = \ln(\frac{1}{2 + 2x + x^{2}}) \qquad -2 \le x \le -040 \qquad S = -(1 + x)^{2} + \frac{(1 + x)^{4}}{2} + \dots + (-1)^{n} \frac{(1 + x)^{2n}}{n}$ $25 y = \frac{e^{x} - e^{-x}}{2} \qquad 0.1 \le x \le 1 \qquad 20 \qquad S = x + \frac{x^{3}}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!}$ $26 y = e^{x \cos^{\pi}/4} \cdot \cos(x \sin^{\pi}/4) \qquad 0.1 \le x \le 1 \qquad 25 \qquad S = 1 + \frac{\cos \frac{\pi}{4}}{1!} x + \dots + \frac{\cos \frac{\pi}{4}}{n!} x^{n}$ $27 y = \cos x \qquad 0.1 \le x \le 1 \qquad 10 \qquad S = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!}$ $28 y = \frac{x \sin^{\pi}/4}{1 - 2x \cos^{\pi}/4 + x^{2}} \qquad 0.1 \le x \le 0.8 \qquad 40 \qquad S = x \sin^{\pi}/4 + x^{2} \sin^{2}/4 + \dots + x^{n} \sin^{\pi}/4$ $29 y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{1}{2} \arctan X$ $3 S = x + \frac{x^{5}}{5} + \dots + \frac{x^{4n+1}}{4n+1}$	21	y = arctgX	$0,1 \le x \le 1$	40	$S = x - \frac{x^3}{3} + \dots (-1)^n \frac{x^{2n+1}}{2n+1}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	2	$0,1 \le x \le 1$	35	$S = 1 - \frac{3}{2}x^{2} + \dots + (-1)^{n} \frac{2n^{2} + 1}{(2n)!}x^{2n}$
$S = -\frac{(2x)}{2} + \frac{(2x)}{24} + \dots + (-1)^n \frac{(2x)}{(2n)!}$ $2^4 y = \ln(\frac{1}{2 + 2x + x^2}) \qquad -2 \le x \le -040 \qquad S = -(1 + x)^2 + \frac{(1 + x)^4}{2} + \dots + (-1)^n \frac{(1 + x)^{2n}}{n}$ $2^5 y = \frac{e^x - e^{-x}}{2} \qquad 0,1 \le x \le 1 \qquad 2^0 \qquad S = x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!}$ $2^6 y = e^{x \cos \frac{\pi}{4}} \cdot \qquad 0,1 \le x \le 1 \qquad 2^5 \qquad S = 1 + \frac{\cos \frac{\pi}{4}}{1!} x + \dots + \frac{\cos n \frac{\pi}{4}}{n!} x^n$ $2^7 y = \cos x \qquad 0,1 \le x \le 1 \qquad 1^0 \qquad S = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$ $2^8 y = \frac{x \sin \frac{\pi}{4}}{1 - 2x \cos \frac{\pi}{4} + x^2} \qquad 0,1 \le x \le 0,8 \qquad 4^0 \qquad S = x \sin \frac{\pi}{4} + x^2 \sin 2\frac{\pi}{4} + \dots + x^n \sin n\frac{\pi}{4}$ $2^9 y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{0,1 \le x \le 0,8}{1 - 2} \qquad S = x + \frac{x^5}{5} + \dots + \frac{x^{4n+1}}{4n+1}$		2			
$y = \ln(\frac{1}{2 + 2x + x^{2}})$ $y = \frac{e^{x} - e^{-x}}{2}$ $y = \frac{e^{x} - e^{-x}}{2}$ $0,1 \le x \le 1$ $0,1 \le x \le 0,8$ $0,1 \le $	23	$y = 2(\cos^2 x - 1)$	$0,1 \le x \le 1$	15	$S = -\frac{(2x)^2}{2} + \frac{(2x)^4}{24} + \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!}$
$y = \frac{c}{2}$ $y = e^{x \cos \frac{\pi}{4}}.$ $\cos(x \sin \frac{\pi}{4})$ $y = \frac{c \cos \frac{\pi}{4}}{1!} x + \dots + \frac{c \cos \frac{\pi}{4}}{n!} x^{n}$ $S = 1 + \frac{c \cos \frac{\pi}{4}}{1!} x + \dots + \frac{c \cos \frac{\pi}{4}}{n!} x^{n}$ $S = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!}$ $y = \frac{x \sin \frac{\pi}{4}}{1 - 2x \cos \frac{\pi}{4} + x^{2}}$ $y = \frac{x \sin \frac{\pi}{4}}{1 - 2x \cos \frac{\pi}{4} + x^{2}}$ $y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{0.1 \le x \le 0.8}{1 - 2x \cos \frac{\pi}{4}}$ $y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{0.1 \le x \le 0.8}{1 - 2x \cos \frac{\pi}{4}}$ $x = \frac{1}{2} \arctan \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{n} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{2} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{2} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + \frac{x^{2}}{4!} + \dots + x^{2} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + \frac{x^{2}}{4!} + \dots + x^{2} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + \frac{x^{2}}{4!} + \dots + x^{2} \sin \frac{\pi}{4!} + \dots + x^{2} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \frac{x^{2}}{1!} + \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{2} \sin \frac{\pi}{4}$ $x = \frac{x^{2}}{1!} + \frac{x^{2}}{1!} + \frac{x^{2}}{1!} + \dots + \frac{x^{2}}{4!} + \dots + x^{$	24	$y = \ln(\frac{1}{2 + 2x + x^2})$	$-2 \le x \le -$	O 4D	$S = -(1+x)^{2} + \frac{(1+x)^{4}}{2} + \dots + (-1)^{n} \frac{(1+x)^{2n}}{n}$
$cos(x \sin \frac{\pi}{4})$ $S = 1 + \frac{4}{1!}x + \dots + \frac{4}{n!}x^{n}$ $S = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!}$ $S = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$	25	$y = \frac{e^x - e^{-x}}{2}$	$0,1 \le x \le 1$	20	$S = x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!}$
$y = \cos x$ $0,1 \le x \le 1$ $0,1 \le x \le 1$ $0,1 \le x \le 1$ $0 \le 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!}$ $S = x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}$ $y = \frac{x \sin \frac{\pi}{4} + x^{2} \sin 2\frac{\pi}{4} + \dots + x^{n} \sin n\frac{\pi}{4}}{1 - 2x \cos \frac{\pi}{4} + x^{2}}$ $y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{0}{1 - x} + \frac{1}{2} \operatorname{arctg} X$ $S = x + \frac{x^{5}}{5} + \dots + \frac{x^{4n+1}}{4n+1}$	26		$0,1 \le x \le 1$	25	$S = 1 + \frac{\cos\frac{\pi}{4}}{1!}x + \dots + \frac{\cos n\frac{\pi}{4}}{n!}x^n$
$y = \frac{x \sin^{n} / 4}{1 - 2x \cos^{n} / 4 + x^{2}}$ $S = x \sin^{n} / 4 + x^{2} \sin^{2} / 4 + \dots + x^{n} \sin^{n} / 4$ $y = \frac{1}{4} \ln \frac{1 + x}{1 - x} + \frac{1}{2} \operatorname{arctg} X$ $S = x \sin^{n} / 4 + x^{2} \sin^{2} / 4 + \dots + x^{n} \sin^{n} / 4$ $S = x + x^{5} + \dots + \frac{x^{4n+1}}{4n+1}$	27	$y = \cos x$	$0,1 \le x \le 1$	10	$S = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$
$y = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \operatorname{arctg} X$ $S = x + \frac{x}{5} + \dots + \frac{x}{4n+1}$	28	$y = \frac{x \sin \frac{\pi}{4}}{1 - 2x \cos \frac{\pi}{4} + x^2}$	$0.1 \le x \le 0.8$	40	$S = x \sin \frac{\pi}{4} + x^2 \sin 2\frac{\pi}{4} + \dots + x^n \sin n\frac{\pi}{4}$
30 $y = e^{\cos x} \cos(\sin x)$ $0.1 \le x \le 1$ 20 $S = 1 + \frac{\cos x}{1!} + \dots + \frac{\cos nx}{n!}$	29		$0.1 \le x \le 0.8$	3	$S = x + \frac{x^5}{5} + \dots + \frac{x^{4n+1}}{4n+1}$
	30	$y = e^{\cos x} \cos(\sin x)$	$0,1 \le x \le 1$	20	$S = 1 + \frac{\cos x}{1!} + \dots + \frac{\cos nx}{n!}$

3.5. Содержание отчета:

- 1. Постановка задачи (общая и конкретного варианта).
- 2. Алгоритм программы.
- 3. Текст программы.
- 4. Результаты работы программы (10 точек, для каждой 3 результата: y, SN, SE).