(8) Dar al menos dos conjuntos Γ diferentes que sean consistentes maximales y contengan al conjunto $\{p_0, \neg (p_1 \to p_2), p_3 \lor p_2\}$

d, T asignaciones de simbolos proposicionales en 10,11 tales que

$$\frac{|\gamma: \mathcal{N} \longrightarrow \{0, 1\}}{\gamma(\beta) := 1 \quad \text{Sii} \quad i \neq 2 \quad \& \quad i \neq 4}$$

$$\frac{\left| \delta : \mathcal{N} \longrightarrow \{0, 1\} \right|}{\left| \delta \left(\beta \right) := 1 \quad \text{sii} \quad \vec{c} \neq \lambda \right|}$$

Por lo demostrado en BSE7b, by f validan $\{P_0, \neg (P_1 \longrightarrow P_2), P_3 \lor P_2\}$, Ademas of valida Γ y f valida Γ entonces por lema 28 sabernos que tanto Γ como Γ to son ambos consitentes.

Por lema 30 (De lindenbaum): si A es consistente entonces existe un consonto consistente maximal que lo incluye.

los conjuntos $H(S):=\{\varphi\in Pop: [\varphi]S=1\}$ & $H(Y):=\{\varphi\in Pop: [\varphi]Y=1\}$ son ambos maximales (sustificación en exemplo 13 del aporte)

Vego
$$\Gamma \subseteq h(S)$$
 & $\Gamma^{+} \subseteq h(T)$
Pero $h(S) \neq h(T)$, veamos esto

Corollary 1.5.10 If Γ is maximally consistent, then $\varphi \in \Gamma \Leftrightarrow \neg \varphi \notin \Gamma$, and $\neg \varphi \in \Gamma \Leftrightarrow \varphi \notin \Gamma$.

Supongamos que
$$th(8) = th(7)$$

$$P_{4} \in \Gamma$$

$$\Rightarrow \{ \Gamma \subseteq Hh(S) \}$$

$$P_{4} \in Hh(S)$$

$$\equiv \{ Hipotesis \}$$

$$P_{4} \in Hh(S)$$

$$\equiv \{ Corollary 1. S. 10 \ Van Dalen \}$$

$$\Rightarrow \{ \Gamma \neq Hh(S) \}$$

$$\equiv \{ T \neq Hh(S) \}$$

$$\Rightarrow \{ T \neq Hh(S) \}$$

Como suponer
$$H(\delta) = H(\gamma)$$
 es contradictorio

Concluimos
$$th(s) \neq th(r)$$