Summary

Alpa is a framework that automates model training through generation of execution plans that take care of data, operator and pipeline parellelism. It achieves this through a hierarchical model that splits optimizations into intra-operator and inter-operator methods.

Intra-Operator Parallelism

Refers to partitioning of tensors along their dimensions to execute them at different portions of the time. For splitting and merging of the operator, communication is required.

Inter-Operator Parallelism

Refers to assiging different operators of the graph to execute on each graph.

Alpa first optimises the model w.r.t inter-operator parallelisation latecy through slicing the model and device cluster into stages and device meshes and their respective mapping onto the high-speed device meshes. For intra-operator parallelization, the cost of executing a stage is minimized on a given device mesh. The intra-op pass is repeatedly queried for each mesh created by the inter-op pass.

Strengths

- Considers both intra-operator and inter-operator parallelism, hierarchical nature ensures that best possible optimization occurs for a wide variety of models
- Facilitates deployment over a large range of servers

Weaknesses

- Focused on throughput, not latency, hence cannot be used for inference of large models such as GPT4
- Does not model communication latency between different stages and assumes its small
- Does not optimize for best possible overlap between computation and communication

Possible Improvements

 Modelling communication along with computation allows Alpa to be more useful in cases where large models are trained, overlapping compute with communication, reducing latency