

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Praca licencjacka

Testowanie regresji liniowej przeciwko wypukłej

Grzegorz Mika

Kierunek: Matematyka

Nr albumu: 267543 dr Konrad Nosek

Promotor

Kraków 2016

Oświadczenie autora

Ja, niżej podpisany Grzegorz Mika oświadczam, że praca ta została napisana samodzielnie i wykorzystywała (poza zdobytą na studiach wiedzą) jedynie wyniki prac zamieszczonych w spisie literatury.		
(Podpis autora)		
Oświadczenie promotora		
Oświadczam, że praca spełnia wymogi stawiane pracom licencjackim.		
(Podpis promotora)		

Spis treści

Wstęp		1
1	Stożki wypukłe	3
2	Regresja wypukła	5
3	Test statystyczny i jego rozkład	8
Bibliografia		12

Wstęp

Rozważmy pewien zestaw danych $\{(x_i, y_i)\}_{i=1,2,\dots,n}$ i spróbujmy dopasować pewną funkcję f do danych według modelu

$$y_i = f(x_i) + \varepsilon_i$$

gdzie zakładamy, że błędy ε_i są niezależnymi zmiennymi losowym o tym samym rozkładzie normalnym.

Najprostszym związkiem między obserwcjami x_i a odpowiedziami y_i jest zależność liniowa, możliwy jest jednak również inny związek między obserwacjami a odpowiedziami, co prowadzi do sformułowania hipotezy

$$H_0: f(x) = ax + b$$
 vs. $H_1: f \in \mathcal{F}$,

gdzie \mathcal{F} jest klasą funkcji wypukłych.

W niniejszej pracy postaramy się skonstruować odpowiedni do postawionego problemu test statystyczny. Zaproponowane zostanie rozwiązanie oparte o iloraz wiarogodniści w przypadku modelu regresji z ograniczeniami w postaci nierówności.

W pierwszym rozdziale zostaną omówione podstawowe własności stożków wypukłych traktowanych jako po podzbiór przestrzeni liniowej. Drugi rozdział będzie traktował o konstrukcji estymatora regresji wypukłej jako rzutu wektora danych na wypukły stożek wielościenny. W trzecim rozdziale zostanie wyznaczony rozkład szukanego testu w przypadku ze znaną wariancją błędu obserwacji.

Praca została napisana na podstawie [2], natomiast rozdział o algorytmie baz prymalno- dualnych został napisany w dużym stopniu na podstawie [1].

1 Stożki wypukłe

Poszukiwany test zostanie wyznaczony metodą rzutowania wektora danych na wielościan powstały w wyniku narzuconych ograniczeń liniowym. W tym rozdziale zostaną przedstwione podstawowe definicje i własności wypuklych stożków wielościennych użyteczne w dalszych rozważaniach.

Definicja 1 (**Ortant**). Ortantem w n-wymiarowej przestrzeni \mathbb{R}^n nazywamy podzbiór powstały przez ograniczenie każdej ze współrzędnych do bycia nieujemną lub niedodatnia, czyli

$$O = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \epsilon_i x_i \ge 0, |\epsilon_i| = 1, i = 1, 2, \dots, n\}$$
(1.1)

Definicja 2 (**Stożek wypukły**). Niech V będzie przestrzenią wektorową. Stożkiem wypukłym nazywamy przecięcie skończonej ilości półprzestrzeni przestrzeni V.

Rozważmy n- wymiarową przestrzeń wektorową V. Dowolną półprzestrzeń H przestrzeni V można wyrazić jako

$$H = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : a_1 x_1 + a_2 x_2 + \dots a_n x_n \geqslant b\}$$
(1.2)

gdzie a_1, a_2, \ldots, a_n, b są pewnymi, ustalonymi liczbami rzeczywistymi.

Korzystając z tego przedstawienia możemy dowolny stożek wypukły ${\cal P}$ zapisać jako

$$K = \bigcap_{i=1}^{m} H_i, \tag{1.3}$$

gdzie

$$H_j = \{ \mathbf{x} \in \mathbb{R}^n \colon \sum_{i=1}^n a_i^j x_j \geqslant b^j \}.$$
 (1.4)

Stad możemy zapisać, że

$$K = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \begin{cases} \sum_{i=1}^n a_i^1 x_i \geqslant b^1 \\ \sum_{i=1}^n a_i^2 x_i \geqslant b^2 \\ \vdots \\ \sum_{i=1}^n a_i^m x_i \geqslant b^m \end{cases} \right\}$$
(1.5)

co będziemy zapisywać skrótowo jako

$$K = \{ \mathbf{x} \in \mathbb{R}^n \colon \mathbf{A}\mathbf{x} \geqslant \mathbf{b} \}$$
 (1.6)

gdzie

$$\mathbf{A} = \begin{bmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_m^2 \\ \vdots & \vdots & \dots & \vdots \\ a_1^n & a_2^n & \dots & a_m^n \end{bmatrix}, \mathbf{b}^T = (b^1, b^2, \dots, b^m), \mathbf{x} = (x_1, x_2, \dots, x_n)^T.$$
 (1.7)

Symbolem $\langle \cdot, \cdot \rangle$ będziemy oznaczać iloczyn skalarny w przestrzeni wektorowej V. Oznaczmy przez γ_i kolejne wiersze macierzy $-\mathbf{A}$. Bez straty ogólności możemy załóżyć ponadto, że tworzą one układ wektorów liniowo niezależnych, gdyż w przeciwnym wypadku któreś ograniczenie stanowiłoby kombinację pozostałych oraz że $m \leq n$. Wtedy stożek K możemy też zapisać w sposób

$$K = \{ \mathbf{x} \in \mathbb{R}^n \colon \langle \mathbf{x}, \boldsymbol{\gamma}_i \rangle \leqslant 0, i = 1, 2, \dots, m \}$$
 (1.8)

Uzupełniając zbiór wektorów $\{\gamma_i\}$ do bazy przestrzni \mathbb{R}^n o wektory ortogonalne i definując bazę dualną złożoną z wektorów β_i w następujący sposób

$$\boldsymbol{\beta}_i^T \boldsymbol{\gamma}_j = \begin{cases} -1, & i = j \\ 0, & i \neq j \end{cases}$$
 (1.9)

możemy zapisać równoważne przedstawienie stożka K

$$K = \{ \mathbf{x} \in \mathbb{R}^n \colon \mathbf{x} = \sum_{i=1}^m b_i \boldsymbol{\beta}_i + \sum_{i=m+1}^n c_i \boldsymbol{\beta}_i, b_i \geqslant 0, c_i \in \mathbb{R} \}$$
 (1.10)

Twierdzenie 1. Przedstawienia

$$K = \{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{x}, \boldsymbol{\gamma}_i \rangle \leqslant 0, i = 1, 2, \dots, m \}$$
(1.11)

$$K = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x} = \sum_{i=1}^m b_i \boldsymbol{\beta}_i + \sum_{i=m+1}^n c_i \boldsymbol{\beta}_i, b_i \geqslant 0, c_i \in \mathbb{R} \}$$
 (1.12)

są równoważne.

Dowód. Wektory $\boldsymbol{\beta}_i, \boldsymbol{\gamma}_i, i=1,2,\ldots,n$ spełniają zależność $\boldsymbol{\beta}_i^T \boldsymbol{\gamma}_i = -1$ oraz $\boldsymbol{\beta}_i \boldsymbol{\gamma}_j = 0, i \neq j$. Oznaczając rzez \mathbf{B}, \mathbf{C} macierze, których kolumnami są odpowiednio wektory $\boldsymbol{\beta}_i, \boldsymbol{\gamma}_i$, związek ten możemy przedstawić jako $\mathbf{B}^T \mathbf{C} = -\mathbf{I}$. Ze związku $\mathbf{B}^T \mathbf{C} = -\mathbf{I}$ dostajemy, że $\mathbf{C}^T \mathbf{x} = -\mathbf{B}^{-1} \mathbf{x}$. Wyrażenia $\langle \mathbf{x}, \boldsymbol{\gamma}_i \rangle, i = 1, 2, \ldots, m$ są pierwszymi m współrzędnymi $\mathbf{C}^T \mathbf{x}$. Zatem wektor \mathbf{x} wyrażony w bazie złożonej z wektorów $\boldsymbol{\beta}_i$ ma pierwsze m współrzędnych nieujemnych wtedy i tylko wtedy, gdy $\langle \mathbf{x}, \boldsymbol{\gamma}_i \rangle \leqslant 0, i = 1, 2, \ldots, m$, co dowodzi równoważności przedstawień.

2 Regresja wypukła

Podobnie jak w przypadku zwykłego estymatora regresji liniowej, który jest rzutem wektora danych na pewną mniej wymiarową podprzestrzeń, tak w przypadku estymatora regresji wypukłej jest on rzutem na pewen wielościan wypukły powstały w wyniku stosownych ograniczeń.

Zbiór nad którym będziemy minimalizować kwadrat błędu powstaje w sposób następujący. Przypuśmy, że wartości x są różne między sobą i uporządkowane rosnąco oraz niech $\theta_i = f(x_i), i = 1, 2, \dots, n$. Rozważając kawałkami liniowe przybliżenie funkcji regresji z węzłami w punktach x_i , wymóg wypukłości może zostać zapisany jako zbiór ograniczeń w postaci nierówności linowych następującej postaci:

$$\theta_i(x_{i+2} - x_{i+1}) - \theta_{i+1}(x_{i+2} - x_i) + \theta_{i+2}(x_{i+1} - x_i) \ge 0, i = 1, 2, \dots, n-2$$
 (2.1)

Zgodnie z definicją 1 możemy zbiór tych ograniczeń zapisać jako

$$K = \{ \mathbf{A}\theta \geqslant 0 \} \tag{2.2}$$

gdzie A jest rzeczywistą macierzą wymiaru $(n-2) \times n$.

W tym momencie problem znalezienia estymatora regresji wypukłej przyjmuje postać

minimalizuj
$$||\mathbf{y} - \boldsymbol{\theta}||^2$$
 po $\boldsymbol{\theta} \in K$, (2.3)

 $gdzie ||\mathbf{x}|| = \sqrt{\mathbf{x}^T \mathbf{x}}.$

Niech $B = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ oznacza bazę kanoniczną przestrzeni \mathbb{R}^n . Oznaczmy przez $\boldsymbol{\gamma}_i = -\mathbf{e}_i^T \mathbf{A}^T$, $i = 1, 2, \dots, n-2$. Wtedy zbiór K możemy zapisać jako $K = \{\boldsymbol{\theta} \in \mathbb{R}^n : -\mathbf{e}_i^T \mathbf{A}^T \boldsymbol{\theta} \leq 0, i = 1, 2, \dots, n-2\} = \{\boldsymbol{\theta} \in \mathbb{R}^k : \langle \boldsymbol{\gamma}_i, \boldsymbol{\theta} \rangle \leq 0, i = 1, 2, \dots, n-2\}.$

Z określenia macierzy **A** oraz wektorów γ_i , $i=1,2,\ldots,n-2$, widać, że tworzą one układ wektorów liniowo niezależnych. Zatem zbiór $B'_{\gamma} = \{\gamma_i, i=1,2,\ldots,n-2\}$ można uzupełnić do bazy B_{γ} przestrzeni \mathbb{R}^n o wektory γ_{n-1}, γ_n tak, żeby były one ortogonalne do wszytkich wektorów z bazy B'_{γ} . Łatwo sprawdzić, że warunek ten spełniają wektory $\gamma_{n-1} = \mathbf{1}$ oraz $\gamma_n = (x - \bar{x}\mathbf{1})$, gdzie $x = (x_1, x_2, \ldots, x_n)$, \bar{x} oznacza wartość średnią, $\mathbf{1} = (1, 1, \ldots, 1)^T$, a norma $||\cdot||$ jest normą zadaną wcześniej.

Teraz możemy zdefiniować bazę $B_{\beta} = \{\beta_1, \beta_2, \dots, \beta_n\}$ dualną do bazy B_{γ} w następujący sposób:

$$\boldsymbol{\beta}_i^T \boldsymbol{\gamma}_j = \begin{cases} -1, & i = j \\ 0, & i \neq j \end{cases}$$
 (2.4)

Oznaczając przez B i C macierze, których kolumnami są odpowiednio wektory β_i i γ_i związek między nimi możemy wyrazić jako

$$\mathbf{B}^T \mathbf{C} = -\mathbf{I},\tag{2.5}$$

gdzie I oznacza macierz jednostkową.

Niech E oznacza podprzestrzeń przestrzeni \mathbb{R}^n rozpiętą przez wektory $\boldsymbol{\beta}_{n-1}, \boldsymbol{\beta}_n$, natomiast $\mathcal{L}(K)$ oznacza przestrzeń rozpiętą przez wektory $\boldsymbol{\beta}_i, i = 1, 2, \dots, n-2$. Przestrzenie E oraz $\mathcal{L}(K)$ są do siebie ortogonalne, zatem wektor obserwacji \mathbf{y} możemy zapisać jako sumę $\mathbf{y}_E + \mathbf{z}$, gdzie \mathbf{y}_E i \mathbf{z} są rzutami wektora \mathbf{y} odpowiednio na podprzestrzeń E oraz $\mathcal{L}(K)$.

Przykład 1. Prześledźmy powyższe rozważania na przykładzie dla przypadku czterowymiarowego i równoodległych punktów x_i odległych o 1.

Macierz ograniczeń G przybiera wtedy postać

$$G = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$
 (2.6)

Zatem stożek powstały z ograniczeń jest postaci

$$K = \{ \theta \in \mathbb{R}^4 \colon \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} \theta \geqslant 0 \}$$
 (2.7)

Baza wektorów B_{γ} jest postaci

$$B_{\gamma} = \left((-1, 2, -1, 0), (0, -1, 2, -1), (1, 1, 1, 1), \left(-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2} \right) \right) \tag{2.8}$$

Wektory β_i spełniające warunek $\langle \beta_i, \gamma_j \rangle = \left\{ \begin{smallmatrix} -1, & i=j \\ 0, & i\neq j \end{smallmatrix} \right.$ przybierają następująca postać

$$B_{\beta} = ((3, -4, -1, 2), (2, -1, -4, 3), (-1, -1, -1, -1), (3, 1, -1, -3)) \tag{2.9}$$

Przestrzenie na które bedziemy rzutować wektor danych przybierają postać

$$E = \{t_1(-1, -1, -1, 1) + t_2(3, 1, -1, -3), t_1, t_2 \in \mathbb{R}\}$$

$$\mathcal{L}(K) = \{t_1(3, -4, -1, 2) + t_2(2, -1, -4, 3), t_1, t_2 \in \mathbb{R}\} \quad \diamondsuit$$

$$(2.10)$$

Zadanie znalezienia rzutu wektora danych na stożek K sprowadza się w tym momencie do znalezienia rzutu jego składowych na stożek K. Wszytkie elementy podprzestrzeni E należą do stożka K, więc rzut wektora \mathbf{y} na stożek K jest tym samym co jego rzut na podprzestrzeń E i wyraża się wzorem

$$\mathbf{y}_E = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}, \tag{2.11}$$

gdzie macierz ${\bf X}$ jest podmacierzą macierzy ${\bf A}$ złożoną z pierwszych n-2 kolumn. Pozostaje zagadnienie znalezienia rzutu ${\bf z}$ na stożek K. Sprowadza się ono do znalezienia rzutu ${\bf z}$ na stożek

$$K' = K \cap \mathcal{L}(K) = \{ \boldsymbol{\theta} \in \mathbb{R}^n : \boldsymbol{\theta} = \sum_{i=1}^{n-2} b_i \boldsymbol{\beta}_i, b_i \geqslant 0 \}.$$
 (2.12)

W pracy [1] zostało pokazane, że przestrzeń $\mathcal{L}(K)$ może zostać podzielona na 2^{n-2} rozłącznych regionów w taki sposób, że każdy z nich może byś opisany jako nieujemny ortant w bazie $B_J = \{\beta_i, i \in J, \gamma_i, i \in L \setminus J\}$, gdzie J jest pewnym podzbiorem zbioru $L = \{1, 2, ..., n-2\}$. Zatem każdy element z należacy do $\mathcal{L}(K)$ może być przedstawiony w następujący sposób

$$z = \sum_{i \in J} b_i \boldsymbol{\beta}_i + \sum_{i \in L \setminus J} c_i \boldsymbol{\gamma}_i, \ b_i > 0, c_i \geqslant 0$$
(2.13)

Dla dowolnego zbioru $J \subset L$ B_J jest bazą przestrzeni $\mathcal{L}(K)$, ponadto β_i , $i \in J$ oraz γ_i , $i \in L \setminus J$ są wzajemnie ortogonalne, zatem rzutem z na K' jest wektor postaci

$$z_{K'} = \sum_{i \in J} b_i \boldsymbol{\beta}_i, b_i > 0 \tag{2.14}$$

Podsumowując, dowolny wektor \mathbf{y} z przestrzeni \mathbb{R}^n można przedstawić w następującej postaci

$$\mathbf{y} = \mathbf{z} + \mathbf{y}_E = \sum_{i \in J} b_i \boldsymbol{\beta}_i + \sum_{i \in L \setminus J} c_i \boldsymbol{\gamma}_i + d_1 \boldsymbol{\gamma}_{n-1} + d_2 \boldsymbol{\gamma}_n, \ b_i > 0, c_i \geqslant 0, d_1, d_2 \in \mathbb{R}(2.15)$$

Wtedy rzut tego wektora na stożek

$$K = \{ \mathbf{A}\boldsymbol{\theta} \geqslant 0 \} \tag{2.16}$$

jest postaci

$$\hat{\boldsymbol{\theta}} = \sum_{i \in J} b_i \boldsymbol{\beta}_i + d_1 \boldsymbol{\gamma}_{n-1} + d_2 \boldsymbol{\gamma}_n. \tag{2.17}$$

Natomiast wektor błędu $\hat{\boldsymbol{\rho}} = \mathbf{y} - \hat{\boldsymbol{\theta}}$ jest postaci

$$\hat{\boldsymbol{\rho}} = \sum_{i \in L \setminus J} c_i \boldsymbol{\gamma_i}. \tag{2.18}$$

3 Test statystyczny i jego rozkład

Na początek wprowadzimy kilka oznaczeń i udowodnimy cztery lematy z których skorzystamy w dalszej części rozważań.

$$C_{L\setminus J} = \{ \boldsymbol{y} \in \mathbb{R}^n : y = \sum_{i \in L\setminus J} b_i \boldsymbol{\gamma}_i + \sum_{i \in J} c_i \boldsymbol{\beta}_i + d_1 \boldsymbol{\gamma}_{n-1} + d_2 \boldsymbol{\gamma}_n, b_i > 0, c_i \geqslant 0, d_1, d_2 \in \mathbb{R} \}$$
(3.1)

$$S_{L\setminus J} = \operatorname{span}\{\gamma_i, i \in L \setminus J\}$$
(3.2)

$$d = |L \setminus J| = n - 2 - |J| \tag{3.3}$$

Niech

$$A_{L\setminus J}$$
 (3.4)

oznacza macierz wymiaru $(n-2) \times n$ taką, że pierwsze d wierszy to wektory $-\gamma_i, i \in L \setminus J$ natomiast pozostałe n-2-d wierszy to wektory $-\beta_i, i \in J$.

Lemat 1. Niech $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_n)^T \sim N_n(0, \mathbf{I})$ oraz niech \mathbf{A} będzie rzeczywistą macierzą wymiaru $m \times n$. Wtedy rozkładem warunkowym $||\mathbf{Z}||^2$ pod warunkiem $\mathbf{AZ} \geqslant 0$ jest χ_n^2 , o ile zbiór $\{\mathbf{Z} \colon \mathbf{AZ} \geqslant 0\}$ jest niepusty.

 $Dow \acute{o}d$. Chcemy pokazać, że $P(||\boldsymbol{Z}||^2 \leq a|\boldsymbol{A}\boldsymbol{Z} \geqslant 0) = \chi_n^2(a)$. W tym celu zapiszmy wektor \boldsymbol{Z} we współrzędnych biegunowych

$$Z_{1} = r \cos \phi_{1} \cos \phi_{2} \cos \phi_{3} \dots \cos \phi_{n-1}$$

$$Z_{2} = r \sin \phi_{1} \cos \phi_{2} \cos \phi_{3} \dots \cos \phi_{n-1}$$

$$Z_{3} = r \sin \phi_{2} \cos \phi_{3} \dots \cos \phi_{n-1}$$

$$Z_{4} = r \sin \phi_{3} \dots \cos \phi_{n-1}$$

$$\vdots$$

$$Z_{n} = r \sin \phi_{n-1},$$

$$(3.5)$$

gdzie $r \in (0, \infty), \phi_i \in [0, 2\pi), i = 1, 2, \dots, n - 1.$ Wtedy

$$||\boldsymbol{Z}||^2 = r^2 \tag{3.6}$$

oraz

$$\mathbf{AZ} \geqslant 0 \iff \mathbf{A} \begin{bmatrix} \cos \phi_{1} \cos \phi_{2} \cos \phi_{3} \dots \cos \phi_{n-1} \\ \sin \phi_{1} \cos \phi_{2} \cos \phi_{3} \dots \cos \phi_{n-1} \\ \sin \phi_{2} \cos \phi_{3} \dots \cos \phi_{n-1} \\ \sin \phi_{3} \dots \cos \phi_{n-1} \\ \vdots \\ \sin \phi_{n-1} \end{bmatrix} \geqslant 0.$$
 (3.7)

Widzimy zatem, że wartość $||Z||^2$ zależy jedynie od wartości r natomiast warunek $AZ \ge 0$ dotyczy jedynie kąta, który jest niezależny od promienia r, a zatem $P(||Z||^2 \le a|AZ \ge 0) = \chi_n^2(a)$.

Lemat 2. Niech $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_n)^T \sim N(0, \mathbf{I})$ oraz niech $\hat{\mathbf{Z}}$ będzie rzutem \mathbf{Z} na przestrzeń liniową S wymiaru d < n. Ponadto niech \mathbf{A} będzie rzeczywistą macierzą wymiaru $m \times n$ taką, że każdy jej wiersz jest ortogonalny do przestrzeni S. Wtedy rozkładem warunkowym $||\hat{\mathbf{Z}}||^2$ pod warunkiem $\mathbf{AZ} \ge 0$ jest χ_d^2 , o ile zbiór $\{\mathbf{AZ} \ge 0\}$ jest niepusty.

Dowód. Niech $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ będą wzjamnie ortonormalnymi wektorami w \mathbb{R}^n takimi, że wektory $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$ rozpinają przestrzeń S. Wektor \mathbf{Z} możemy zapisać jako $\mathbf{Z} = \sum_{i=1}^n a_i \mathbf{v}_i$, gdzie $a_i = \langle \mathbf{v}_i, \mathbf{z} \rangle$. Stąd $a_i, i = 1, 2, \dots, n$ są niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym oraz $\hat{\mathbf{Z}} = \sum_{i=1}^d a_i \mathbf{v}_i$. Wtedy $||\hat{\mathbf{Z}}||^2 = a_1^2 + a_2^2 + \dots + a_d^2$ co ma gęstość χ_d^2 . Niech teraz \mathbf{V} oznacza macierz taką, której poszczególne kolumny są kolejno wektorami $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ oraz niech $\mathbf{a} = (a_1, a_2, \dots, a_n)^T$. Macierz \mathbf{V} możemy zapisać jako $\mathbf{V} = [\mathbf{V}_1 | \mathbf{V}_2]$, gdzie \mathbf{V}_1 jest macierzą wymiaru $n \times d$, oznaczmy też przez \mathbf{a}^1 wektor $(a_1, a_2, \dots, a_d)^T$ a przez \mathbf{a}^2 wektor $(a_{d+1}, \dots, a_n)^T$. Wtedy $\mathbf{Z} = \mathbf{V}\mathbf{a} = \mathbf{V}_1\mathbf{a}^1 + \mathbf{V}_2\mathbf{a}^2$ a warunek $\mathbf{A}\mathbf{Z} \geqslant 0$ możemy zapisać jako $\mathbf{A}\mathbf{V}_1\mathbf{a}^1 + \mathbf{A}\mathbf{V}_2\mathbf{a}^2 \geqslant 0$. Zauważmy, że z założeń oraz konstrukcji macierzy \mathbf{V} dostajemy, że $\mathbf{A}\mathbf{V}_1 = 0$ oraz $\mathbf{a}^1, \mathbf{a}^2$ są niezależne. Zatem warunek $\mathbf{A}\mathbf{Z} \geqslant 0$ nie wpływa na gęstość $||\hat{\mathbf{Z}}||^2$.

Lemat 3. Niech $\mathbf{y} \in C_J$ dla pewngo zbioru $J \subset L = \{1, 2, ..., n-2\}$ oraz niech $a, b \in \mathbb{R}$. Wtedy $\mathbf{y}' = \mathbf{y} + a\mathbf{\gamma}_{n-1} + b\mathbf{\gamma}_n \in C_J$ oraz wektory błędów $\mathbf{\rho} = \mathbf{y} - \hat{\boldsymbol{\theta}}$ i $\mathbf{\rho}' = \mathbf{y}' - \hat{\boldsymbol{\theta}}'$ są sobie równe.

Dowód. Jeśli $\boldsymbol{y} \in C_J$ to \boldsymbol{y} możemy zapisać jako $\boldsymbol{y} = \sum_{i \in J} b_i \boldsymbol{\beta}_i + \sum_{i \in L \setminus J} c_i \boldsymbol{\gamma}_i + d_1 \boldsymbol{\gamma}_{n-1} + d_2 \boldsymbol{\gamma}_n, \ b_i > 0, c_i \geqslant 0, d_1, d_2 \in \mathbb{R}.$ Wtedy $\boldsymbol{y}' = \sum_{i \in J} b_i \boldsymbol{\beta}_i + \sum_{i \in L \setminus J} c_i \boldsymbol{\gamma}_i + (d_1 + a) \boldsymbol{\gamma}_{n-1} + (d_2 + b) \boldsymbol{\gamma}_n, \ b_i > 0, c_i \geqslant 0, d_1, d_2 \in \mathbb{R}.$ Oczywiście $d_1 + a, d_2 + b \in \mathbb{R}$ zatem $\boldsymbol{y}' \in C_J$.

Wektor $\boldsymbol{\rho}$ jest postaci $\boldsymbol{\rho} = \sum_{i \in L \setminus J} c_i \boldsymbol{\gamma}_i$. Z postaci wktora \boldsymbol{y}' widzimy jednak, że $\boldsymbol{\rho}' = \sum_{i \in L \setminus J} c_i \boldsymbol{\gamma}_i = \boldsymbol{\rho}$.

Lemat 4. Wektory losowe $\mathbf{y} - \hat{\boldsymbol{\theta}} i \hat{\boldsymbol{\theta}} - \hat{\mathbf{y}}$ są niezależne.

Dowód. Zauważmy, że
$$\langle \boldsymbol{y} - \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{y}} - \hat{\boldsymbol{\theta}} \rangle = \langle \boldsymbol{y} - \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{y}} \rangle + \langle \boldsymbol{y} - \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\theta}} \rangle = 0 + 0 = 0.$$

Dla ułatwienia rozważań założymy, że wariancja w zaproponowanym modelu σ^2 jest znana.

Teraz możemy przystąpić do wyliczania rozkładu testu opartego o iloraz wiarogodności hipotezy

$$H_0$$
: $f(x) = ax + b \text{ vs. } H_1$: $f \in \mathcal{F}$ (3.8)

gdzie \mathcal{F} jest klasą funkcji wypukłych.

Niech $\hat{\boldsymbol{y}}$ oznacza estymator regresji liniowej, czyli rzut wektora danych \boldsymbol{y} na przestrzeń span $\{\boldsymbol{\gamma}_{n-1},\boldsymbol{\gamma}_n\}$. Ponadto oznaczmy przez $R_0 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ oraz $R_1 = \sum_{i=1}^n (y_i - \hat{\theta}_i)^2$. Wtedy poszukiwany test przyjmuje postać

$$M = \frac{R_0 - R_1}{\sigma^2}. (3.9)$$

W celu znalezienia rozkładu testu M, gdy prawdziwa jest hipoteza zerowa potrzebne będzie znalezienie wymiaru modelu i liczby stopni swobody błędu dla modelu regresji wypukłej. Z postaci rzutu $\hat{\boldsymbol{\theta}}$ wektora \boldsymbol{y} można przypuszczać, że wymiar modelu wynosi n-d oraz liczba stopni swobody błędu wynosi d. Jednak zbiór J jest losowy, różne wartości wektora błędu $\boldsymbol{\varepsilon}$ mogą umieścić wektor danych \boldsymbol{y} w różnych zbiorach C_J . Wyliczenie rozkładu testu zaczniemy w następujący sposób

$$P(M \leqslant a) = \sum_{J \in \mathcal{P}(L)} P(M \leqslant a, \boldsymbol{y} \in C_J) = \sum_{J \in \mathcal{P}(L)} P(M \leqslant a | \boldsymbol{y} \in C_J) P(\boldsymbol{y} \in C_J) (3.10)$$

gdzie $\mathcal{P}(L)$ oznacza zbiór potęgowy zbioru L.

Z lematu 3. możemy bez straty ogólności założyć, że f(x)=0 i $\boldsymbol{y}=\boldsymbol{\varepsilon}$. Dla dowolnej realizacji wektora $\boldsymbol{\varepsilon}\in\mathbb{R}^n$ oznaczmy przez $L\setminus J$ taki zbiór indeksów, że $\boldsymbol{\varepsilon}\in C_{L\setminus J}$. Niech $\hat{\boldsymbol{\varepsilon}}$ będzie rzutem wektora $\boldsymbol{\varepsilon}$ na przestrzeń $S_{L\setminus J}$. Zauważmy, że macierz $\boldsymbol{A}_{L\setminus J}$ można zapisać jako $[\boldsymbol{A}^1|\boldsymbol{A}^2]$, gdzie macierz \boldsymbol{A}^1 jest wymiaru $d\times n$. Zatem kolumny macierzy \boldsymbol{A}^1 rozpinają $S_{L\setminus J}$, natomiast kolumny macierzy \boldsymbol{A}^2 są ortogonalne do przestrzeni $S_{L\setminus J}$. Dodatkowo, gdy $\boldsymbol{\varepsilon}\in C_J$, zachodzi $\boldsymbol{A}^1\boldsymbol{\varepsilon}\geqslant 0$ oraz $\boldsymbol{A}^2\boldsymbol{\varepsilon}\geqslant 0$. Stąd na mocy lematu 2. dostajemy, że rozkładem warunkowym $\frac{\|\hat{\boldsymbol{\varepsilon}}\|^2}{\sigma^2}$ przy zadanym J jest χ_d^2 . Jako że $R_1=\|\hat{\boldsymbol{\rho}}\|^2$ a przy założeniu prawdziwości hipotezy zerowej $\|\hat{\boldsymbol{\rho}}\|^2$ jest równa $\frac{\|\hat{\boldsymbol{\varepsilon}}\|^2}{\sigma^2}$ przy ustalonym zbiorze J możemy napisać następujący wniosek

Wniosek 1. Jeśli hipoteza zerowa $\boldsymbol{\theta} \in span\{\boldsymbol{\gamma}_{n-1}, \boldsymbol{\gamma}_n\}$ jest prawdziwa to rozkładem warunkowym $\frac{R_1}{\sigma^2}$ przy ustalonym $\boldsymbol{y} \in C_J$ jest χ_d^2 , gdzie $d = |L \setminus J|$.

Zmienna losowa $\frac{R_0}{\sigma^2}$ ma oczywiście rozkład χ^2_{n-2} . Niech D będzie zmienną losową reprezentującą liczność zbioru $L\setminus J$. Z Wniosku 1. mamy, że rozkładem warunkowym $\frac{R_1}{\sigma^2}$ pod warunkiem D=d jest χ^2_d . Z lematu 4. dostajemy zatem, że rozkładem warunkowym M jest χ^2_{n-d-2} pod warunkiem D=d. Stąd możemy zapisać następujący wniosek

Wniosek 2. Przy założeniu prawdziwości hipotezy zerowej postawionego problemu mamy

$$P(M \leqslant a) = \sum_{d=0}^{n-2} P(\chi_{n-d-2}^2 \leqslant a) P(D = d), \tag{3.11}$$

 $gdzie \ \chi_0^2 \equiv 0.$

Wartości prawdopodobieństw $P(D=d), d=0,1,\ldots,n-2$ jest wyliczane na podstawie względnych objętości zbiorów $C_J, J\in \mathcal{P}(L)$. Prawdopodobieństwo, że $\boldsymbol{y}\in C_J$, gdy hipoteza zerowa jest prawdziwa, jest równoważne prawdopodobieństwu, że wektor losowy o n- wymiarowym standardowym rozkładzie normalny wpada do zbioru C_J .

Kropka nie oznacza końca zdania. Ona daje możliwość coraz to lepszej kontynuacji.

Bibliografia

- [1] Fraser D.A.S., Massam H., A Mixed Primal- Dual Bases Algorithm for Regression under Inequality Constraints. Application to Concave regression, Scand J. Statist, **16** 65-74, 1989
- [2] Meyer Mary C., A test for linear vs convex regression function using shaperestricted regression, Stanford University, Technical Report No. 2001-20, sierpień 2001