Integrale

Observație:

Multe din exemplele de mai jos se rezolvă folosind substituțiile lui Euler.

Exercițiul 1

Să se calculeze:

a)
$$\int \frac{2x-1}{x^2-3x+2} dx$$
, $x \in]2, +\infty[;$

b)
$$\int \frac{4}{(x-1)(x+1)^2} dx$$
, $x > 1$;

c)
$$\int \frac{1}{x^3 - x^4} dx$$
, $x > 1$;

d)
$$\int \frac{2x+5}{x^2+5x+10}, x \in \mathbb{R};$$

$$e) \int \frac{1}{x^2 + x + 1}, x \in \mathbb{R}.$$

Exercițiul 2:

Să se calculeze:

a)
$$I = \int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx, \ x \in]0, +\infty[;$$

b)
$$I = \int \frac{1}{x + \sqrt{x - 1}} dx, \ x \in]1, +\infty[.$$

Exerciţiul 3:

Să se calculeze:

a)
$$I = \int \frac{1}{1 + \sqrt{x^2 + 2x - 2}} dx$$
, $x \in]\sqrt{3} - 1, +\infty[$;

b)
$$I = \int \frac{1}{(x+1)\sqrt{-4x^2 - x + 1}} dx$$
, $x \in]\frac{-1 - \sqrt{17}}{8}, \frac{\sqrt{17} - 1}{8}[.$

Exerciţiul 4

Să se calculeze:

a)
$$\int_{1}^{2} \frac{1}{x^3 + x^2 + x + 1} dx$$
; b) $\int_{1}^{3} \frac{1}{x(x^2 + 9)} dx$;

c)
$$\int_{-1}^{1} \frac{x^2 + 1}{x^4 + 1} dx$$
; d) $\int_{-1}^{1} \frac{x}{x^2 + x + 1} dx$.

Exercițiul 5:

Să se calculeze:

a)
$$\int_{-3}^{-2} \frac{x}{(x+1)(x^2+3)} dx;$$
 b) $\int_{0}^{1} \frac{x+1}{(x^2+4x+5)^2} dx;$

b)
$$\int_0^1 \frac{x+1}{(x^2+4x+5)^2} dx;$$

c)
$$\int_{1}^{2} \frac{1}{x^3 + x} dx;$$

c)
$$\int_{1}^{2} \frac{1}{x^3 + x} dx;$$
 d) $\int_{0}^{2} \frac{x^3 + 2x^2 + x + 4}{(x+1)^2} dx.e$ $\int_{0}^{1} \frac{1}{(x+1)(x^2+4)} dx;$

$$f$$
) $\int_{2}^{3} \frac{2x^{3} + x^{2} + 2x - 1}{x^{4} - 1} dx;$ g) $\int_{0}^{1} \frac{x^{3} + 2}{(x + 1)^{3}} dx.$

$$g) \int_0^1 \frac{x^3 + 2}{(x+1)^3} \mathrm{d}x.$$

Exercițiul 6:

Să se calculeze:

a)
$$\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} dx$$

a)
$$\int_{-1}^{1} \frac{1}{\sqrt{4-x^2}} dx;$$
 b) $\int_{0}^{1} \frac{1}{\sqrt{x^2+x+1}} dx;$

c)
$$\int_{-1}^{1} \frac{1}{\sqrt{4x^2 + x + 1}} dx$$

c)
$$\int_{-1}^{1} \frac{1}{\sqrt{4x^2 + x + 1}} dx$$
; d) $\int_{2}^{3} \frac{x^2}{(x^2 - 1)\sqrt{x^2 - 1}} dx$.

Exercițiul 7:

Să se calculeze:

a)
$$\int_{2}^{3} \sqrt{x^2 + 2x - 7} dx$$

a)
$$\int_{2}^{3} \sqrt{x^2 + 2x - 7} dx$$
; b) $\int_{0}^{1} \sqrt{6 + 4x - 2x^2} dx$;

c)
$$\int_0^{3/4} \frac{1}{(x+1)\sqrt{x^2+1}} dx$$
; d) $\int_2^3 \frac{1}{x\sqrt{x^2-1}} dx$.

d)
$$\int_{2}^{3} \frac{1}{x\sqrt{x^2-1}} dx$$
.

Exercițiul 8:

Să se arate că:

a)
$$2\sqrt{2} < \int_{-1}^{1} \sqrt{x^2 + 4x + 5} dx < 2\sqrt{10};$$

b)
$$e^{2}(e-1) < \int_{e}^{e^{2}} \frac{x}{\ln x} dx < \frac{e^{3}}{2}(e-1)$$
.