Location 8: Discrete Location and MILP

- What computer technology has had the biggest impact on industry since 1990?
 - 1. Data science/analytics
 - AI (visual/voice recognition, ChatGPT, etc)
 - 3. MILP solver improvements
- MILP biggest impact has been on tactical decisions
 - Production planning
 - Scheduling

Speedup from 1990-2014:

- 320,000 × computer speed
- 580,000 × algorithm improvements
- \Rightarrow 10 days of 24/7 processing \rightarrow 1 sec

Mixed-Integer Programming

- Mixed-integer programming used when
 - decision variables need to be integer-valued
 - decisions need to be made as part of the solution procedure, and can only be implemented using discrete (typically binary) decision variables

Solving a ILP: Branch and Bound

- For maximization ILP problems:
 - LP solutions provide UBs
 - Feasible ILP (incumbent) solutions provide LBs
- Stop when gap = UB LB < some threshold

MILP Solvers

6.1	1014 5
Cplex	IBM, first commercial solver
Gurobi	Developed by Robert Bixby
FICO Xpress	Used by LLamasoft
SAS/OR	Part of SAS system (not supported in JuMP)
Cbc	COIN-OR open-source solver
GLPK	Free Software Foundation GNU open-source solver

• **Pre-solve**: eliminate variables $2x_1 + 2x_2 \le 1$, $x_1, x_2 \ge 0$ and integer

$$\Rightarrow x_1 = x_2 = 0$$

- Cutting planes: cuts off LP solutions (Gomory cut)
- Heuristics: find good initial incumbent solution (Hybrid UFL)
 - **Parallel**: use separate cores to solve nodes in B&B tree
- Speedup from 1990-2014:
 - 320,000 \times computer speed
 - 580,000 \times algorithm improvements
 - \Rightarrow 10 days of 24/7 processing \rightarrow 1 sec

Speedup from 2001-2020:

- − 20 × computer speed
- 50 \times algorithm improvements
- \Rightarrow 1000 × speedup

Total Logistics Costs

- All costs impacting location decision termed total logistics costs
- When production costs are represented by a line with intercept (k) and slope (c_p) terms
 - only cost associated with adding another NF is k
 - $-c_p$ the same for any number of NFs

Total production cost: $TPC = k + c_p f$

Total transport cost: TC = f r d

Total logistics cost: TLC = k + f r d

where

k =fixed production cost (\$/yr)

 c_p = unit production cost (\$/ton)

f = production rate (ton/yr)

r = transport rate (\$/ton-mi)

d = transport distance (mi)

Uncapacitated Facility Location (UFL)

- NFs can only be located at discrete set of sites
 - Allows inclusion of fixed cost of locating NF at site ⇒ opt number NFs
 - Variable costs are usually transport cost from NF to/from EF
 - Total of $2^n 1$ potential solutions (all nonempty subsets of sites)

$$M = \{1, ..., m\}$$
, existing facilites (EFs)

$$N = \{1, ..., n\}$$
, sites available to locate NFs

 $M_i \subseteq M$, set of EFs served by NF at site i

 c_{ij} = variable cost to serve EF j from NF at site i

 k_i = fixed cost of locating NF at site i

 $Y \subseteq N$, sites at which NFs are located

$$Y^* = \arg\min_{Y} \left\{ \sum_{i \in Y} k_i + \sum_{i \in Y} \sum_{j \in M_i} c_{ij} : \bigcup_{i \in Y} M_i = M \right\}$$

= min cost set of sites where NFs located

$$|Y^*|$$
 = number of NFs located

UFL Solution Techniques

- Being uncapacitated allows simple heuristics to be used to solve
 - ADD construction: add one NF at a time
 - DROP construction: drop one NF at a time
 - XCHG improvement: move one NF at a time to unoccupied sites
 - HYBRID algorithm combination of ADD and DROP construction with
 XCHG improvement, repeating until no change in Y
 - Use as default heuristic for UFL
 - See Daskin [2013] for more details
- UFL can be solved as a MILP
 - Easy MILP, LP relaxation usually optimal (for strong formulation)
 - MILP formulation allows constraints to easily be added
 - e.g., capacitated facility location, fixed number of NFs, some NF at fixed location

MILP Formulation of UFL

$$\min \quad \sum_{i \in N} k_i y_i + \sum_{i \in N} \sum_{j \in M} c_{ij} x_{ij}$$

s.t.
$$\sum_{i \in N} x_{ij} = 1, \quad j \in M$$

$$my_i \ge \sum_{j \in M} x_{ij}, \quad i \in N$$

$$0 \le x_{ij} \le 1, \qquad i \in N, j \in M$$

$$y_i \in \{0,1\}, \quad i \in N$$

- Every EF needs to be assigned to a NF
- NF needs to be established at every site that has EFs assigned to it
 - Max m EFs can be assigned to each NF
- x_{ij} 's always 0 or 1 in UFL
 - But easier to solve if not binary

where

 k_i = fixed cost of NF at site $i \in N = \{1,...,n\}$

 c_{ij} = variable cost from i to serve EF $j \in M = \{1,...,m\}$

Strong Formulation

$$y_i = \begin{cases} 1, & \text{if NF established at site } i \\ 0, & \text{otherwise} \end{cases}$$

 x_{ij} = fraction of EF j demand served from NF at site i.

UFL Costs in MILP

$$TLC = \sum_{i \in N} k_i y_i + \sum_{i \in N} \sum_{j \in M} c_{ij} x_{ij} = \sum_{i \in N} k_i y_i + \sum_{i \in N} \sum_{j \in M} \underbrace{f_i r d_{ij}}_{c_{ij}} x_{ij}$$

where TLC = total fixed and variable cost (\$/yr)

 k_i = fixed production cost (\$/yr)

 c_{ij} = variable transport cost (\$/yr)

 $f_i = \text{demand rate (ton/yr)}$

r = transport rate (\$/ton-mi)

 d_{ij} = distance between NF at site i and EF at site j (mi)

Capacitated Facility Location (CFL)

min
$$\sum_{i \in N} k_i y_i + \sum_{i \in N} \sum_{j \in M} c_{ij} x_{ij}$$
 • CFL does not have simple and effective heuristics, unlike UFL • Other types of constraints: • Fix NF i at site j : set LB and UB of x_{ij} to 1 • Convert UFL to p-Median: set all k to 0 and add constraint sum $\{v_i\} = p$

- - x_{ii} to 1
- $0 \le x_{ij} \le 1$, $i \in N, j \in M$ Convert UFL to p-Median: set all k to 0 and add constraint $sum\{y_i\} = p$

where

 k_i = fixed cost of NF at site $i \in N = \{1,...,n\}$

 c_{ij} = variable cost from i to serve EF $j \in M = \{1,...,m\}$

 K_i = capacity of NF at site $i \in N = \{1,...,n\}$

 $f_i = \text{demand EF } j \in M = \{1, ..., m\}$

 $y_i = \begin{cases} 1, & \text{if NF established at site } i \\ 0, & \text{otherwise} \end{cases}$

 x_{ij} = fraction of EF j demand served from NF at site i.

(Weighted) Set Covering

 $M = \{1,...,m\}$, objects to be covered $M_i \subseteq M, i \in N = \{1,...,n\}$, subsets of M $c_i = \text{cost of using } M_i \text{ in cover}$ $I^* = \arg\min_{I} \left\{ \sum_{i \in I} c_i : \bigcup_{i \in I} M_i = M \right\}$, min cost covering of M

$$M = \{1, ..., 6\}$$

$$i \in N = \{1, ..., 5\}$$

$$M_1 = \{1, 2\}, M_2 = \{1, 4, 5\}, M_3 = \{3, 5\}$$

$$M_4 = \{2, 3, 6\}, M_5 = \{6\}$$

$$c_i = 1, \text{ for all } i \in N$$

$$I^* = \arg\min_{I} \left\{ \sum_{i \in I} c_i : \bigcup_{i \in I} M_i = M \right\}$$

$$= \{2, 4\}$$

$$\sum_{I \in I} c_i = 2$$

(Weighted) Set Covering

$$M = \{1,...,m\}$$
, objects to be covered $M_i \subseteq M, i \in N = \{1,...,n\}$, subsets of M $c_i = \text{cost of using } M_i \text{ in cover}$ $I^* = \arg\min_{I} \left\{ \sum_{i \in I} c_i : \bigcup_{i \in I} M_i = M \right\}$, min cost covering of M

$$\begin{aligned} & \min & \sum_{i \in N} c_i x_i \\ & \text{s.t.} & \sum_{i \in N} a_{ji} x_i \geq 1, \quad j \in M \end{aligned} & \text{model = Model(Cbc.Optimizer)} & \text{\# Unweighted set cover} \\ & \text{@variable(model, x[N], Bin)} \\ & \text{@objective(model, Min, sum(x[i] for } i \in N))} \\ & x_i \in \{0,1\}, \quad i \in N \end{aligned} & \text{@constraint(model, [j \in M], sum(A[j,i]*x[i] for } i \in N) >= 1) \end{aligned}$$

where

$$x_i = \begin{cases} 1, & \text{if } M_i \text{ is in cover} \\ 0, & \text{otherwise} \end{cases}$$

$$a_{ji} = \begin{cases} 1, & \text{if } j \in M_i \\ 0, & \text{otherwise.} \end{cases}$$

Set Packing

- Maximize the number of mutually disjoint sets
 - Dual of Set Covering problem
 - Not all objects required in a packing
 - Limited logistics engineering application (c.f. bin packing)

