Classifiation with Slice Sampling

Andreas Hofheinz

27 11 2020

```
library(bisemSliceSampler)
library(latex2exp)
library(patchwork)
library(ggplot2)

data(PimaIndiansDiabetes , package = "mlbench")
diabetis_sub <- subset(PimaIndiansDiabetes, select = -c(triceps, insulin))
diabetis_sub$diabetes <- as.numeric(diabetis_sub$diabetes) - 1

n = nrow(diabetis_sub)
trainIndex = sample(1:n, size = round(0.7*n), replace = FALSE)
train = diabetis_sub[trainIndex, ]
test = diabetis_sub[-trainIndex, ]

# Scaling speeds up convergence
X <- scale(as.matrix(subset(train, select = -diabetes)))
y <- train$diabetes</pre>
```

Model:

- Verteilungsannahme: $y_i \mid \boldsymbol{x_i} \overset{\text{unabh.}}{\sim} \text{Bin}\left(1, \pi_i\right)$
- Linearer Prädiktor: $\eta_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}$
- Response function: $\mathbb{E}(y_i \mid x_i) = \pi_i = h(\eta_i) = \frac{\exp(\eta_i)}{1 + \exp(\eta_i)}$
- Features: $x_i = (x_{\text{pregnant},i}, \ x_{\text{glucose},i}, \ x_{\text{pressure},i}, x_{\text{mass},i}, \ x_{\text{pedigree},i}, \ x_{\text{age},i})$

Likelihood:

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} (h(\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}))^{yi} (1 - h(\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}))^{1-y_{i}}$$

Prior

In this example we specify a noninformative prior: $\beta \sim N(\mathbf{0}, 1000 * I)$ such that $p(\beta) \propto \exp\left(-\frac{1}{2*1000}\beta^{\top}\beta\right)$

Posterior

$$p\left(\boldsymbol{\beta} \mid \boldsymbol{y}\right) \propto \left[\prod_{i=1}^{n} (h(\boldsymbol{x_i}^T \boldsymbol{\beta}))^{yi} (1 - h(\boldsymbol{x_i}^T \boldsymbol{\beta}))^{1-y_i}\right] * \exp\left(-\frac{1}{2000} \boldsymbol{\beta}^\top \boldsymbol{\beta}\right)$$

Log-Posterior

$$log(p\left(\boldsymbol{\beta}\mid\boldsymbol{y}\right)) \propto \left(\sum_{i=1}^{n}y_{i}\right) \log h(\boldsymbol{x_{i}}^{T}\boldsymbol{\beta}) + \left(n - \sum_{i=1}^{n}y_{i}\right) \log(1 - h(\boldsymbol{x_{i}}^{T}\boldsymbol{\beta})) - \frac{\boldsymbol{\beta}^{\top}\boldsymbol{\beta}}{2000}$$

```
h <- function(x) exp(x) / (1 + exp(x))

logpost <- function(beta) {
   pi <- h(X %*% beta)
      y %*% log(pi) + (1 - y) %*% log(1 - pi) - (1 / 2000) * crossprod(beta)
}</pre>
```

Sampling from Log-Posterior

```
w <- rep(1, times = ncol(X))
n_samples <- 2000
beta_init <- rep(0, ncol(X))

beta_samples <- slice_sampler(
   logpost , x_init = beta_init, w = w, n_samples = n_samples
)</pre>
```

Convergence Diagnostic

Convergence Diagnostic - 300 burn-in samples removed

Coefficients and Credibility Intervals

```
    Mean
    2.5%
    97.5%

    pregnant
    0.367
    0.129
    0.623

    glucose
    1.036
    0.798
    1.300

    pressure
    -0.333
    -0.581
    -0.087

    mass
    0.602
    0.364
    0.848

    pedigree
    0.383
    0.163
    0.613

    age
    0.143
    -0.104
    0.396
```

Comparison with frequentist calculation

Expected to be similar since non-informative prior was chosen.

Waiting for profiling to be done...

```
    Mean
    2.5%
    97.5%

    pregnant
    0.363
    0.122
    0.611

    glucose
    1.018
    0.771
    1.281

    pressure
    -0.322
    -0.569
    -0.090

    mass
    0.590
    0.362
    0.834

    pedigree
    0.372
    0.150
    0.603

    age
    0.150
    -0.095
    0.397
```

Posterior predictive

Idea for presentation: - Maybe explain for one sample first - Add a bit more formulas $\,$

```
p(\tilde{y} \mid y) = \int p(\tilde{y} \mid \beta) p(\beta \mid y) d\beta
```

```
X_test <- scale(as.matrix(subset(test, select = -diabetes)))</pre>
```

```
# For each new obs we have 1700 eta (2000 - burn_in)
eta <- X_test %*% t(beta_samples_no_burnin)
pi <- h(eta)</pre>
```

```
# For each new obs i: for all (1700) pi_i : draw y ~ Bin(1, pi_i)
post_pred_y <- matrix(NA, nrow = nrow(X_test), ncol = ncol(pi))
for (i in 1:nrow(X_test)) {
   post_pred_y[i, ] <- rbinom(ncol(pi), 1, prob = pi[i, ])
}</pre>
```

```
dim(post_pred_y)
```

```
## [1] 230 1700
```

Point estimator for $\tilde{y_i}$:

$$\hat{\tilde{y_i}} = \frac{1}{1700} * \sum_{k=1}^{1700} \tilde{y}_{i,k}$$

DETAILS

Sensitivity 0.755	Specificity 0.77	Precision 0.844	Recall 0.755	F1 0.797
	Accuracy 0.761		Kappa 0.508	

Comparison with GLM

DETAILS

Sensitivity	Specificity	Precision	Recall 0.853	F1
0.853	0.402	0.701		0.77
	Accuracy 0.683		Kappa 0.275	

