Jeuring's Algorithm on Palindromes

Warning 1. The notes have not been proofread. Use at your own peril.

Question 2. Given a string $(s_i)_{0 \le i < n}$, try to compute the longest palindrome in s with O(n) time complexity.

In fact, we will compute $(a_m)_{0 \le m \le 2(n-1)}$ where a_m is the maximal length of a palindrome $(s_i)_{1 \le i \le r}$ such that l+r=m.

For sake of convenience, we set s_{-1} and s_n to be two distinct unused characters in $(s_i)_{0 \le i < n}$. The array A[0...2 (n-1)] will gradually compute $(a_m)_{0 \le m \le 2(n-1)}$. We design the scheme of the algorithm as

```
m \leftarrow 0 for i from 1 to n do if s_i \neq s_{m-i} then A[m] \leftarrow 2i - m - 1 Increase m to some new m' and compute A[j] for all j such that m \leq j < m'
```

where the loop invariant is that $i-1 \le m \le 2$ (i-1), and $A[j] = a_j$ for all $0 \le j < m$, and that $(s_j)_{m-i+1 \le j \le i-1}$ is the longest palindrome which ends at i-1. The algorithm terminates with i=n+1 and we succeed in computing the array A.

The increment in question is implemented as follows:

```
for j from m+1 to \infty do

if (s_k)_{j-i \le k \le i} is a palindrome then

m \leftarrow j

break

else

Compute A[j]
```

The trick is to determine whether $(s_k)_{j-i \le k \le i}$ is a palindrome and compute A[j] in constant time. For the former, we note that (s_k) in question is a palindrome if and only if A[2 j - m], which computes a_{2j-m} , equals to 2i - j - 1, and that $s_i = s_{j-i}$. For the later, we set $A[j] \leftarrow A[2 j - m]$:

```
u \leftarrow s_i for j from m+1 to \infty do t \leftarrow A[2\ j-m] if (t=2\ i-j+1) and (u=s_{j-i}) then m \leftarrow j break else A[j] \leftarrow t
```