Mathematik

im

mathematisch-naturwissenschaftlichem Profil der Sekundarstufe II

Berliner Netzwerk mathematisch-naturwissenschaftlich profilierter Schulen

Andreas-Gymnasium Heinrich-Hertz-Gymnasium Herder-Gymnasium Immanuel-Kant-Gymnasium

Humboldt-Universität zu Berlin

Stand: Juli 2009

Vorbemerkung

Der vorliegende Rahmenplan gilt ab dem Schuljahr 2010/2011 für die vier Kurssemester im Leistungsfach Mathematik MA+. Der Leistungskurs wird im zweiten und dritten Semester durch zwei zusätzliche Grundkurse ma-Z ergänzt.

Der Rahmenplan gibt die zu unterrichtenden Lerninhalte an; durch spezifische Anmerkungen methodisch-didaktischer Art werden das intendierte Vorgehen und die beabsichtigte Tiefe ergänzend beschrieben.

Zielgruppe des Unterrichts auf der Basis dieses Planes sind Schülerinnen und Schüler mit besonderem mathematischen Interesse oder Begabung, die sich in den entsprechenden Klassen der oben genannten Schulen mit mathematisch-naturwissenschaftlichem Schwerpunkt befunden haben.

Der Rahmenplan wurde in enger Kooperation mit dem Institut für Mathematik der Humboldt-Universität zu Berlin entwickelt und orientiert sich an den inhaltlichen Erfordernissen der Vorlesungen des Grundstudiums Mathematik *Analysis I* und *Lineare Algebra / Analytische Geometrie I*. Selbstverständlich kann der Schulunterricht weder in der Breite noch in der Tiefe diese Vorlesungen und Übungen vorwegnehmen oder ersetzen. Jedoch ist es erklärtes Ziel und Absicht der Planungsgruppe, dass Schulabgängerinnen und -abgänger mit diesem unterrichtlichen Hintergrund einen deutlich leichteren Zugang zum Mathematikstudium finden sollen.

Globale Übersicht über die Unterrichtseinheiten

Kurs	Thema	Std.	Unterrichtseinheiten	
	Analysis I	75	Reelle Zahlenfolgen, Grenzwerte	20
MA-1+			Grenzwerte von Funktionen, Stetigkeit	20
1,171			Differenzierbarkeit, Ableitung	15
			Funktionsuntersuchungen	20
			Integralrechnung I	10
			Integralrechnung II	15
MA-2+	Analysis II	60	Anwendungen	10
			Exponential- und Logarithmusfunktion	15
			Anwendungen und Vertiefungen	10
	Stochastik I	15	Grundbegriffe der Stochastik	15
	Analysis	45	Sätze und Ergänzungen zur Differentialrechnung	30
ma-Z.2			Vertiefungen und Anwendungen der Integralrechnung	12
			Ergänzungen	3
			Vektorraum	25
	Lineare Algebra und Analytische Geometrie	75	Analytische Geometrie: affine Geometrie	10
MA-3+			Analytische Geometrie: metrische Geometrie	10
			geometrische Grundaufgaben	20
			Schwerpunkt nach Wahl (z. B. Determinanten)	10
		45	Lineare Gleichungssysteme (LGS) und Matrizen	20
ma-Z.3	Lineare Algebra		Lineare Abbildungen, LGS und Matrizen I	15
			Lineare Abbildungen, LGS und Matrizen II	10
			Zufallsgrößen	10
MA-4+	Stochastik II	55	spezielle Wahrscheinlichkeitsverteilungen	30
	Beurteilende Statistik		Beurteilende Statistik	15
		Rest	komplexe Übungen (Prüfungsvorbereitung)	Rest

MA-1+: Analysis I (75 Stunden)

Std.	: Analysis I (75 Stunden) Lerninhalte	Anmerkungen
		O .
20	Reelle Zahlenfolgen, Grenzwerte Reelle Zahlenfolgen als Funktionen von den natürlichen in die reellen Zahlen Veranschaulichung von Folgen auf der	Hier ist ggf. an den Abschnitt <i>Folgen und Grenzwerte in elementarer Form</i> der Klasse 10 anzuknüpfen. Es bietet sich an, exemplarisch rekursive und explizite Darstellungen von Folgen gegenüber zu stellen (u.a. für geometrische Folgen und
	Zahlengeraden Beschränktheit und Monotonie von Folgen	Reihen) und so eine Verbindung zum Thema Vollständige Induktion zu knüpfen.
	Grenzwerte, Konvergenz einer Folge, Häufungswerte, konvergente Teilfolgen, Beschränktheit einer konvergenten Folge	Es sollten logische Zusammenhänge zwischen den Begriffen Grenzwert und Häufungswert diskutiert und ein Ausblick auf bestimmt und unbestimmt divergente Folgen gegeben werden.
	Nachweise dafür, dass eine Zahl Grenzwert einer gegebenen Folge ist mittels der Grenzwertdefinition	Aus Zeitgründen sollte man sich auf instruktive Beispiele beschränken.
	Konvergenzkriterium von Cauchy	Der Beweis ist eine lehrreiche Anwendung der Definition von Konvergenz.
	Grenzwertsätze für konvergente Folgen (Summe, Differenz, Produkt, Quotient)	Der Beweis eines Grenzwertsatzes genügt. Anwenden der Sätze für den Konvergenznachweis bzw. die Ermittlung von Grenzwerten für
	Konvergenzkriterium für monotone Folgen	Folgen. Als Beispiele für konvergente bzw. divergente Folgen sollten auch Partialsummen-
	$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$	folgen herangezogen werden. empfohlene Ergänzung
20	Grenzwerte von Funktionen, Stetigkeit	2
	Grenzwertuntersuchungen (insbesondere an Definitionslücken und im Unendlichen)	Funktionsterme wie $\frac{x^2-1}{x+1}$, $\frac{ x }{x}$, $\frac{\sin(x)}{x}$, $\frac{\cos(x)-1}{x}$, $x^n \cdot \sin\left(\frac{1}{x}\right)$
	Übertragung der Grenzwertsätze für Folgen auf solche für Funktionen	
	Stetigkeit von Funktionen (Folgendefinition) an einer Stelle und auf ihrem Definitionsbereich	z. B. trigonometrische Funktionen.
	stetige Fortsetzbarkeit Verknüpfung stetiger Funktionen ein- schließlich Verkettung	Es sind auch Beispiele für nicht-stetige oder nicht stetig fortsetzbare Funktionen zu behan- deln.
	reelle Nullstellen ganzrationaler Funktio- nen, Faktorisierung und Polynomdivision, Nullstellensatz	Begründung, dass jede ganzrationale Funktion ungeraden Grades mindestens eine reelle Nullstelle besitzt.
	Betrachtung gebrochenrationaler Funktionen unter obigen Aspekten (Definitionslücken, Asymptotenfunktionen)	(also ohne Ableitungen!)

Std.	Lerninhalte	Anmerkungen
15	Differenzierbarkeit, Ableitung Ableitung einer Funktion an einer Stelle als Grenzwert von Differenzenquotientenfolgen	Aus Zeitgründen soll nicht neu gestartet werden, die Kenntnisse aus Klasse 10 sind zu vertiefen. Die drei Aspekte der 1. Ableitung sollten anschaulich herausgearbeitet werden: 1. Tangentensteigung an der entsprechenden Stelle 2. lokale Änderungsrate (z. B. Momentangeschwindigkeit) 3. lineare Approximierbarkeit der Funktion an der entsprechenden Stelle
	Zusammenhang Stetigkeit Differenzier- barkeit Begriff der Ableitungsfunktion	An einer Stelle stetige, jedoch nicht differenzierbare Funktionen sollten angesprochen werden. Zu vorgegebenen Funktionen die Ableitungsfunktion ermitteln und graphisch darstellen. Vergleich der Graphen von f , f' , f''
	Ableitungsregeln: $(c)' = 0; (x)' = 1;$ $(x^n)' = n \cdot x^{n-1}, n \in \mathbb{N} \setminus \{0; 1\}$ $(f(x) + g(x))' = f'(x) + g'(x)$ $(c \cdot f(x))' = c \cdot f'(x)$ Ableitung trigonometrischer Funktionen Produkt-, Quotienten- und Kettenregel Ableitung der Umkehrfunktion	Die Regeln sollten aus Klasse 10 bekannt sein. Die Ableitung von Kosinus, Tangens und Kotangens kann auf die Ableitung des Sinus gestützt werden. Wiederholung zu Umkehrfunktionen aus Klasse 10, graphische Darstellung von f und
	Ableitung von x^r , $r \in \mathbb{Q} \setminus [0]$	f^{-1}
20	Funktionsuntersuchungen Relative Extrema einer Funktion, Hochund Tiefpunkte, Monotonie, Krümmungsverhalten und Wendepunkte eines Funktionsgraphen mit entsprechenden notwendigen und hinreichenden Kriterien (auch Vorzeichenwechselkriterium) bei differenzierbaren Funktionen Funktionsuntersuchungen mit den bisher behandelten Funktionsklassen, auch Scharen absolute Extrema einer Funktion auf einer Menge Extremwert- und Anwendungsaufgaben zu den bisher behandelten Funktionsklassen	Auch hier ist an Inhalte aus Klasse 10 anzu- knüpfen. Es sollte verdeutlicht werden, dass diese Be- griffsbildungen nicht an die Differenzierbar- keit der entsprechenden Funktionen gebunden sind. Die Kriterien sind anschaulich plausibel zu machen; deren Beweis erfolgt im ma-Z. Beweise im ma-Z
	Newton-Verfahren	nur als Werkzeug, ohne Konvergenzuntersuchungen

MA-2+: Analysis II und Stochastik I (75 Stunden)

Std.	Lerninhalte	Anmerkungen
10	Integralrechnung I	
	Inhalte von Flächen unter Graphen als Grenzwerte	Flächeninhalte als Grenzwerte von Folgen von Ober- und Untersummen berechnen
	eine Definition des bestimmten Integrals (Riemann-Integrals) für auf [a;b] definierte und beschränkte Funktionen mittels ausge- zeichneter Zerlegungsfolgen	Definition z. B. mittels Ober- und Untersummen oder mittels Riemannscher Zwischensummen
	Beispiel einer nicht integrierbaren Funktion	
	Existenz des bestimmten Integrals für auf dem Integrationsintervall monotone bzw. stetige Funktionen	Für den Nachweis der Integrierbarkeit einer über [a;b] stetigen Funktion ist die Aussage des Satzes über die gleichmäßige Stetigkeit erforderlich; dies wird im ma-Z behandelt.
	Eigenschaften des bestimmten Integrals: Intervalladditivität, Linearität	
15	Integralrechnung II	
	Mittelwertsatz der Integralrechnung	geometrische Interpretation des Mittelwertsat-
	Integralfunktion, Hauptsatz der Differential- und Integralrechnung	zes
	Stammfunktion, unbestimmtes Integral	
	Satz über die Differenz zweier Stamm- funktionen zu derselben Funktion	
	Berechnen einfacher bestimmter Integrale mittels Stammfunktionen	
	Methode der partiellen Integration	
	Integration durch Substitution	mögliche Ergänzung: Differentiale
10	inner- und außermathematische Anwen-dungen : Flächeninhalte, Volumen von Rotationskörpern (Kugel, Paraboloid, Ellipsoid), physikalische Arbeit	
15	Exponential- und Logarithmusfunktion	
	Einführung der In-Funktion über das Integral $L(x) := \int_{1}^{x} \frac{1}{t} dt$, $x > 0$	Äquivalente Zugänge sind hier natürlich möglich.

Std.	Lerninhalte	Anmerkungen
	Folgerungen aus der Integraldefinition: einzige Nullstelle 1, Stetigkeit, Differen- zierbarkeit, Monotonie	Dieser Weg bietet sich wegen seiner Effektivität an: Es werden alle zentralen Begriffe aus der Analysis benutzt.
	Funktionalgleichung der Funktion L , Ermittlung der Wertemenge $W(\ln) = \mathbb{R}$: "Enttarnung" als Logarithmusfunktion	
	Ermittlung der Basis z. B. mit Hilfe der Zwischenwerteigenschaft des bestimmten Integrals	
	Aus den obigen Betrachtungen ergibt sich $\int \frac{dx}{x} = \ln(x) + C, x \in \mathbb{R} \setminus \{0\}$	
	Einführung der e-Funktion als Umkehr- funktion der ln-Funktion, Eigenschaften der e-Funktion	Die Eigenschaften der e-Funktion ergeben sich als Folgerungen aus den entsprechenden Eigenschaften der In-Funktion (der Funktion <i>L</i>).
	Integrale der Form $\int \frac{f'(x)}{f(x)} dx = \ln(f(x)) + C$	
10	Anwendungen und Vertiefungen	
	Funktionsuntersuchungen (auch Scharen) und Anwendungsaufgaben zu exp und ln.	Ortskurven
	uneigentliche Integrale	
	Integration mittels einfacher Partialbruchzerlegung	ist eine mögliche Ergänzung. Hier ist nur an wenige, einfache Beispiele gedacht.
	Arcus-Funktionen	sind eine mögliche Ergänzung: Ableitung mittels Umkehrfunktion, Vervollständigung der zur Verfügung stehenden Grundintegrale.
15	Stochastik	
	Systematisierung des Wahrscheinlichkeits- begriffs bei endlicher Ergebnismenge (Er- gebnisse, Ereignisse, Eigenschaften des Wahrscheinlichkeitsmaßes)	Aus der Mittelstufe sollten bekannt sein: (Laplace-) Wahrscheinlichkeit, kombinatorische Zählprinzipien; mehrstufige Zufallsexperimente, Baumdiagramm, Pfadregeln, Vierfeldertafel.
	Modelle (Urnenmodelle, Baumdiagramm, Glücksrad, Galton-Brett,), Paradoxa	Daran ist anzuknüpfen; eine gemeinsame Basis sollte geschaffen werden.
	Unabhängigkeit, bedingte Wahrscheinlichkeit, Bayes-Formel	

ma-Z.2: Analysis (45 Stunden im 2. Semester)

Std.	Lerninhalte	Anmerkungen
	Sätze und Ergänzungen zur Differential- rechnung	
9	Stetigkeit:	
	ε-δ-Definition der Stetigkeit	an einfachen, exemplarischen Beispielen, dann auch Abgrenzung zur gleichmäßigen Ste-
	gleichmäßige Stetigkeit	tigkeit Die zentrale Bedeutung dieser Sätze (z. B.
	Zwischenwertsatz, Satz vom Maximum	Vollständigkeit von R, Hilfsmittel bei Beweisen) ist hervorzuheben.
12	Sätze über differenzierbare Funktionen:	weisen) ist hervorzuneben.
	Satz von Rolle	Die Sätze eignen sich zur Vergabe von Referaten.
	1. Mittelwertsatz der Differentialrechnung	Beweis des Monotoniekriteriums mittels Mit-
	Monotonie und Ableitung	telwertsatz $f = const \Leftrightarrow f' = 0$
	Regeln von de l' Hospital	Der Beweis einer Regel reicht aus.
	stetige Differenzierbarkeit	
9	Satz von Taylor mit Restglied, Darstellung von Funktionen durch Taylorreihen	Mittels Restgliedabschätzung sollten einige Funktionen in Taylorreihen entwickelt werden.
12	Vertiefungen und Anwendungen der Integralrechnung	
	Integration stetiger Funktionen auf abgeschlossenen Intervallen	
	numerische Integrationsmethoden	Ala Anguardona dan Daganlinga biatat ag siab
	Bogenlänge	Als Anwendung der Bogenlänge bietet es sich an, die Krümmung eines Funktionsgraphen in einem Kurvenpunkt zu ermitteln.
3	mögliche Ergänzungen:	
	einfache, gewöhnliche, lineare Differenti- algleichungen	Über die Modellierung realer Prozesse (Wachstum, Zerfall) gelangt man zu entspre- chenden DGL, die durch elementare Verfahren
	kontrahierende Abbildungen, Fixpunktsätze	gelöst werden sollen.
	Integration durch Partialbruchzerlegung	

MA-3+: Lineare Algebra und Analytische Geometrie (75 Stunden)

MA-3	-3+: Lineare Algebra und Analytische Geometrie (75 Stunden)			
Std.	Lerninhalte	Anmerkungen		
25	Vektorraum Erarbeitung des Begriffes Vektorraum anhand geeigneter Modelle Linearkombination, lineare Abhängigkeit und Unabhängigkeit, lineare Hülle, Erzeugendensystem, Basis, Basisaustauschsatz, Dimension, Eindeutigkeit der Darstellung bez. einer Basis Unterraum, Unterraumkriterium	Der Lösungsraum einer homogenen linearen Gleichung sollte nicht als Beispiel gewählt werden: → ma-Z. Auf geometrische Interpretationen sollte an dieser Stelle bewusst verzichtet werden, um den Begriff des Vektors allgemeiner zu verankern.		
	Ergänzung: Körper C als weiteres Beispiel einer algebraischen Struktur	Auf Kenntnisse aus Klasse 10 (Additum) ist aufzubauen.		
10	Analytische Geometrie: affine Geometrie der affine (Punkt-) Raum A³ (Geometrie) mit dem zugehörigen Vektorraum V³ der Verschiebungen, Axiome des Zusammenhangs, affines Koordinatensystem und zugehörige (kanonische) Basis des Vektorraums geometrische Probleme: Punkte, Geraden und Ebenen im A³ (in Parameter- und Koordinatenform)	An geeigneten Stellen können die Kenntnisse und Voraussetzungen aus der ebenen euklidischen Geometrie aufgegriffen werden.		
10	Untersuchung von Lagebeziehungen Analytische Geometrie: metrische Geometrie			
	Skalarprodukt, Vektorprodukt, Spatprodukt: Definitionen, Rechenregeln, Cauchy-Schwarzsche Ungleichung	Beim Skalarprodukt ist der zentrale Aspekt der geometrische Gedanke der Projektion auf eine vorgegebene Richtung.		
20	geometrische Grundaufgaben: Abstände, Längen und Winkel; Flächeninhalt eines Dreiecks Normalenform der Ebenengleichung, Hessesche Normalenform; Kugeln Inzidenzuntersuchungen komplexerer Art mit Geraden, Ebenen und Kugeln, Abstände und Winkel; Tangentialebenen Volumen eines Spats, einer dreiseitigen Pyramide	Hier ist auch an die variable Herleitung von Ebenengleichungen aus unterschiedlichen be- stimmenden Objekten gedacht.		
10	Schwerpunkt nach Wahl	Die genannten Gebiete sollen nach Bedarf und Wunsch vertieft werden. Auch Erweiterungen Empfehlung: <i>Determinanten</i> sind möglich.		

ma-Z.3: Lineare Algebra (45 Stunden im 3. Semester)

ma-Z.	3: Lineare Algebra (45 Stunden im 3. Sem	ester)
Std.	Lerninhalte	Anmerkungen
20	Lineare Gleichungssysteme (LGS) und Matrizen	
	Begriff des LGS, Lösungsmengenbestimmung über das Gauß-Verfahren im homogenen und inhomogenen Fall, Zusammenhang der Lösungsmenge des homogenen Systems mit der eines zugehörigen inhomogenen Systems	Das Gauß-Verfahren sollte begründet werden.
	Matrix-Vektor-Schreibweise eines LGS, Rang einer Matrix, Gleichheit von Spalten- und Zeilenrang	Die Gleichheit von Spalten- und Zeilenrang muss nicht bewiesen werden.
	Lösbarkeitskriterien über den Rangbegriff	
	Satz über die Anzahl der frei wählbaren Parameter	
	Lösungsraum des homogenen LGS als Vektorraum mit Dimensionsbegriff	(vgl. MA-3+)
15	Lineare Abbildungen, LGS und Matrizen I	Die verschiedenen Darstellungsformen mittels linearer Abbildung, Matrix und LGS sollen flexibel und angemessen genutzt werden.
	lineare Abbildungen als strukturverträgli- che Abbildung zwischen Vektorräumen	Albei und angemessen genutzt werden.
	Kern(f) als Unterraum des Urbildraumes, Zusammenhang mit der Lösungsmenge eines homogenen LGS, geometrisch im Dreidimensionalen Schnitt dreier Ebenen durch den Ursprung	
	Bild(f) als Unterraum des Bildraumes	
	Matrix A_f als basisabhängige Darstellung einer linearen Abbildung mit den Spaltenvektoren als Bilder der Basisvektoren, Rang (A_f) = dim Bild (f) ; Interpretation eines inhomogenen LGS über Bild (f) (dreidimensional-geometrisch: Schnitt dreier Ebenen, aus dem Ursprung verschoben)	
	Rangbestimmungen mittels elementarer Umformungen	
	Dimensionssatz	

Std.	Lerninhalte	Anmerkungen
10	Lineare Abbildungen, LGS und Matrizen II	
	Hintereinanderausführung linearer Abbildungen, Matrizenmultiplikation, Matrizenaddition und Vervielfachung	
	inverse Matrix (Existenz der Umkehrabbildung), eindeutige Lösbarkeit von LGS mit den dazugehörigen Interpretationen wie dim $Kern(f) = 0$	
	Anwendungsaufgaben, z. B. mehrstufige Produktionsprozesse, Markow-Ketten oder Quadriken (Kegelschnitte)	

MA-4+: Stochastik II (55 Stunden) und Prüfungsvorbereitung (restliche Stunden)

Std.	Lerninhalte	Anmerkungen
10	Stochastik Zufallsgrößen: Erwartungswert und Varianz (Standardabweichung); Eigenschaften, Ungleichung von Tschebyschew	Fortsetzung von MA-2+. Die entsprechenden Begriffe der Statistik, Mittelwerte und Streuungsmaße, sollten aus der Mittelstufe bekannt sein.
10	Bernoulli-Ketten, binomialverteilte Zufallsgrößen: graphische Darstellung, Erwartungswert, Varianz; Näherung durch die Normalverteilung Anwendungen (z. B. Wahlumfragen), ko-Intervalle, \sqrt{n} - und $\frac{1}{\sqrt{n}}$ -Gesetz, signifikante Abweichung, Wechselwirkung zwischen Realität, Modell und Stichprobe Gesetz der großen Zahlen für eine unbekannte Wahrscheinlichkeit mögliche Ergänzungen: Markow-Ketten, Finanzmathematik	mögliche Ergänzung: Poisson-Verteilung
15	Beurteilende Statistik: Hypothesentests, Null- und Gegenhypothese, Fehler 1. und 2. Art, Signifikanzniveau, Annahme- und Ablehnungsbereich, Konfidenzintervall	mögliche Ergänzung: Chi²-Test
Rest	komplexe Übungen zur Vorbereitung der schriftlichen Abiturprüfung	