<u>Help</u>

sandipan_dey >

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

* Course / Review / Practice exam (untimed, with solutions)

()

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

Previous

21:37:22

☐ Bookmark this page

6

2.0/2 points (ungraded)

Let c be the curve $x^2+xy+2y^2=4$. The point (1,1) is in the curve c.

Find a vector which is normal to c at (1,1).

[3,5] **Answer:** [3,5]

Then find a vector which is tangent to c at (1,1).

[5,-3] **Answer:** [5,-3]

? INPUT HELP

Solution:

Let $f(x,y)=x^2+xy+2y^2$. Hence c is the level curve of f given by f(x,y)=4. We know that $\nabla f(1,1)$ will be normal to c at (1,1). Computing f_x and f_y gives

$$f_x=2x+y$$
 $f_y=x+4y$

Hence a normal vector will be

$$abla f(1,1) = \overline{\langle 3,5
angle.}$$

To find a tangent vector, we must rotate the normal vector by 90 degrees; this gives $\langle -5,3 \rangle$ as a tangent vector.

Submit

Answers are displayed within the problem

6. Practice Exam

Hide Discussion

by recent activity ~

Topic: Review / 6. Practice Exam

Add a Post

Show all posts

There are no posts in this topic yet.

×

Previous

Next >

■ Calculator

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>