King County Development Recommendations

Business Understanding

A midsized real estate developer in King County, Washington, has engaged the Argon Team to gather and analyze available data and determine what factors of a home most influence price and by how much. The Argon Team has identified trends in real estate prices in King County to determine a) the optimal locations in which to develop and b) the most potentially profitable housing configurations.

Data understanding

The primary source of the available data was provided as a CSV file containing the King County House Sales dataset and was gathered between May, 2014, and May, 2015. It should be noted that the data is already several years old and King County (which includes Seattle) has continued to grow at a rate far exceeding the rest of the country. It has also recently experienced the effects of the global Covid pandemic. This data set predates these factors and therefore cannot reflect their impact if, indeed, there was an impact.

A secondary source of data was taken from the <u>point 2 website</u>
https://www.point2homes.com/US/Neighborhood/WA/King-County-
Demographics.html#MedianIncomeByZipcode). This provided population figures and the median and mean income of each zip code in King County.

Import Relevant Modules

```
In [85]:
              1 import numpy as np
              2 import pandas as pd
              3 from matplotlib import pyplot as plt
              4 import seaborn as sns
              5 import statsmodels.api as sm
              6 from sklearn.preprocessing import OneHotEncoder, StandardScaler
                 from sklearn.datasets import make regression
              8 from sklearn.linear model import LinearRegression
              9 import sklearn.metrics as metrics
              10 from random import gauss
              11 from mpl toolkits.mplot3d import Axes3D
              12 from scipy import stats as stats
              13 from sklearn.model_selection import train_test_split
              14 from sklearn.preprocessing import StandardScaler
              15 from sklearn.model selection import cross validate
              16 from statsmodels.formula.api import ols
              17 from sklearn.metrics import r2 score
             18 from sklearn.metrics import mean_squared_error
              19 from sklearn.metrics import mean_absolute_error
              20 from sklearn.feature selection import RFE
              21 from sklearn.preprocessing import PolynomialFeatures, StandardScaler
              22
              23 %matplotlib inline
```

Exploring Data and Cleaning Up Null Values

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

Da ca	columns (cocal	•	
#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	object
9	view	21534 non-null	object
10	condition	21597 non-null	object
11	grade	21597 non-null	object
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtype	es: float64(6),	int64(9), object	t(6)
memor	ry usage: 3.5+ N	МВ	

In [87]: ▶	1	. df	
------------	---	------	--

Out[87]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	١
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 21 columns

Creating a graph that plots the location of houses sold.

For more information see this blog post: https://towardsdatascience.com/easy-steps-to-plot-geographic-data-on-a-map-python-11217859a2db)

Eliminating Outliers

```
In []: # During analyses we saw that one home had 33 bedrooms with the next high 2 # so we are going to get rid of that outlier as it was most likely a mis: df = df[df['bedrooms'] < 10]
```

Make Grade only Numeric

Out[88]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	١
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 22 columns

Fill in null values with the null values associated to the column

Looking briefly at the null values, we can safely assume that the majority of them are data entry problems. There is a null value for each column that is an overwhelming proportion, this is safe to do.

Replace View Column with numeric Values

_	100	r 0 4 '	
()	пт	191	1.
0	uc		

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	١
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	
21597 ı	ows × 23 col	umns							

Add Zipcode Data

Data is from: https://www.point2homes.com/US/Neighborhood/WA/King-County-

<u>Demographics.html#MedianIncomeByZipcaode</u>

(https://www.point2homes.com/US/Neighborhood/WA/King-County-

<u>Demographics.html#MedianIncomeByZipcaode)</u>

Out[92]:

	ZipCode	Population	Number of Households	Median Income	Average Income
0	98001	34,455	11,648	\$88,962.00	\$102,586.00
1	98002	33,947	13,162	\$59,097.00	\$70,945.00
2	98003	49,445	18,515	\$59,560.00	\$76,753.00
3	98004	37,265	17,460	\$142,173.00	\$210,129.00
4	98005	21,414	8,590	\$135,225.00	\$186,020.00

```
In [93]:
                 df income.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 84 entries, 0 to 83
             Data columns (total 5 columns):
              #
                  Column
                                        Non-Null Count Dtype
                  -----
                                        -----
              0
                  ZipCode
                                        84 non-null
                                                        int64
              1
                  Population
                                                        object
                                        84 non-null
              2
                  Number of Households 84 non-null
                                                        object
              3
                  Median Income
                                        84 non-null
                                                        object
                  Average Income
                                        84 non-null
                                                        object
             dtypes: int64(1), object(4)
             memory usage: 3.4+ KB
         Clean up the data to make each column numerical
In [94]:
          M
                 # Rename zipcode to match existing datafram
               2 df income.rename(columns = {'ZipCode': 'zipcode'}, inplace=True)
                 # Merge the dataframes together
               4 | df = df.merge(df income, how = 'left', on = 'zipcode')
In [95]:
          H
                 # Get rid of commas in our new data
                 df['Median Income']=df['Median Income'].str.replace(',','')
                 df['Average Income']=df['Average Income'].str.replace(',','')
                 df['Number of Households']=df['Number of Households'].str.replace(',',''
                 df['Population']=df['Population'].str.replace(',','')
```

```
#Get rid of dollar signs in our new data
g df['Median Income']=df['Median Income'].str.replace('$','')
df['Average Income']=df['Average Income'].str.replace('$','')

In [96]:  # Turn our new data into floats so we can use it for regression analysis
df['Median Income'] = df['Median Income'].astype('float64')
df['Average Income'] = df['Average Income'].astype('float64')
df['Number of Households'] = df['Number of Households'].astype('float64')
df['Population'] = df['Population'].astype('float64')
```

df['Population']=df['Population'].str.replace(',','')

Out[97]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	١
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	-
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 27 columns

Using One Hot Encoder for Waterfront Collumn

In [99]: ▶

1 #sanity check

2 df

Out[99]:

		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	١
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	-
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
21	592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21	593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21	594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21	595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21	596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 28 columns

```
df.rename(columns={0: "Waterfront"}, inplace = True)
              3
                 df
Out[100]:
                             id
                                       date
                                                      bedrooms bathrooms sqft_living sqft_lot floors \(\infty\)
                  0 7129300520
                                 10/13/2014 221900.0
                                                                        1.00
                                                               3
                                                                                   1180
                                                                                            5650
                                                                                                     1.0
                  1 6414100192
                                  12/9/2014 538000.0
                                                               3
                                                                        2.25
                                                                                   2570
                                                                                            7242
                                                                                                     2.0
                  2 5631500400
                                  2/25/2015 180000.0
                                                               2
                                                                        1.00
                                                                                    770
                                                                                           10000
                                                                                                     1.0
                    2487200875
                                                                                   1960
                                                                                            5000
                                  12/9/2014 604000.0
                                                               4
                                                                        3.00
                                                                                                     1.0
                     1954400510
                                  2/18/2015 510000.0
                                                               3
                                                                        2.00
                                                                                   1680
                                                                                            8080
                                                                                                     1.0
                                                              ...
             21592
                      263000018
                                  5/21/2014 360000.0
                                                               3
                                                                        2.50
                                                                                   1530
                                                                                            1131
                                                                                                     3.0
                                  2/23/2015 400000.0
             21593 6600060120
                                                               4
                                                                        2.50
                                                                                   2310
                                                                                            5813
                                                                                                     2.0
             21594 1523300141
                                                                                   1020
                                  6/23/2014 402101.0
                                                               2
                                                                        0.75
                                                                                            1350
                                                                                                     2.0
             21595
                      291310100
                                  1/16/2015 400000.0
                                                               3
                                                                        2.50
                                                                                   1600
                                                                                            2388
                                                                                                     2.0
             21596 1523300157 10/15/2014 325000.0
                                                               2
                                                                        0.75
                                                                                   1020
                                                                                            1076
                                                                                                     2.0
            21597 rows × 28 columns
```

rename the column created to something meaningfull

In [100]:

Create a Dataframe with Only numeric columns

Since we plan on running regression analyses we can drop the non-numeric columns

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21597 entries, 0 to 21596
Data columns (total 21 columns):
#
    Column
                          Non-Null Count Dtype
    ----
                          -----
    price
                          21597 non-null float64
0
                          21597 non-null int64
 1
    bedrooms
 2
    bathrooms
                          21597 non-null float64
 3
    sqft_living
                          21597 non-null int64
 4
                          21597 non-null int64
    sqft_lot
 5
    floors
                          21597 non-null float64
 6
    sqft above
                          21597 non-null int64
 7
    yr built
                          21597 non-null int64
 8
    yr_renovated
                          21597 non-null float64
 9
    zipcode
                          21597 non-null int64
 10
    lat
                          21597 non-null float64
 11
    long
                          21597 non-null float64
 12
    sqft living15
                          21597 non-null int64
 13
    sqft lot15
                          21597 non-null int64
    numerical_grade
                          21597 non-null float64
 15
    view_num
                          21597 non-null int64
    Population
                          21597 non-null float64
    Number of Households 21597 non-null float64
 18
    Median Income
                          21597 non-null float64
 19
                          21597 non-null float64
    Average Income
 20 Waterfront
                          21597 non-null float64
dtypes: float64(12), int64(9)
```

In [102]:

1 #sanity check

Creating a Heat Chart to Judge Correlation

memory usage: 4.2 MB

Out[103]: <AxesSubplot:>

Examining Linearity of Potential X Variables

```
H
                  # rename our dataframes for simpler code.
In [104]:
                2
                  y = df['price']
                  X = df.drop(columns=['price'], axis=1)
In [105]:
           M
                  # sanity check
                1
                2 X.columns
   Out[105]: Index(['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
                      'sqft_above', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                     'sqft_living15', 'sqft_lot15', 'numerical_grade', 'view_num',
                     'Population', 'Number of Households', 'Median Income', 'Average Inco
              me',
                     'Waterfront'],
                    dtype='object')
In [106]:
                  # Rename our columns to be consistant
                  df.rename(columns={"Number of Households": 'number_of_households', 'Medi
                3
                                      , 'Average Income': 'average_income'}, inplace = True
                4
```


Ó

Linear Relationship Analysis

Most of the variables we looked at don't appear to have a linear relationship with price.

Create a Renovated Column

Although there doesn't appear to be much correlation with when a house was built to price. Intuitively it would make sense that houses that have recently been worked on would be more desirable than those that havent. Creating a column that is binary that says whether work has ever been done on it may be useful for our analyses.

C:\Users\Johnn\anaconda3\envs\learn-env\lib\site-packages\pandas\core\index
ing.py:670: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

iloc._setitem_with_indexer(indexer, value)

Out[108]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	sqft_above	yr_built	yr_r
0	221900.0	3	1.00	1180	5650	1.0	1180	1955	
1	538000.0	3	2.25	2570	7242	2.0	2170	1951	
2	180000.0	2	1.00	770	10000	1.0	770	1933	
3	604000.0	4	3.00	1960	5000	1.0	1050	1965	
4	510000.0	3	2.00	1680	8080	1.0	1680	1987	
21592	360000.0	3	2.50	1530	1131	3.0	1530	2009	
21593	400000.0	4	2.50	2310	5813	2.0	2310	2014	
21594	402101.0	2	0.75	1020	1350	2.0	1020	2009	
21595	400000.0	3	2.50	1600	2388	2.0	1600	2004	
21596	325000.0	2	0.75	1020	1076	2.0	1020	2008	

21597 rows × 22 columns

Examine the Price Distribution

It's important to examine the distribution of price because to see if it is skewed or their is a large tail. This will have an impact on our regressions that we may need to address when building our final model.

```
In [109]:
               1 sns.histplot(df['price'])
```

Out[109]: <AxesSubplot:xlabel='price', ylabel='Count'>

It appears that their is large right tail for our price model that we may want to address in our final model.

Data Analysis

Reserve some data for model validation

```
In [110]:
                   y = df['price']
                   X = df.drop(columns=['price'], axis=1)
                   X_train, X_test, y_train, y_test = train_test_split(X,
                7
                                                                         test_size=.2,
                8
                                                                         random_state=42
                9
                   )
               10
```

Modelless Base

With no model we would use the price mean of our training data to predict the price of our testing data.

```
In [111]:
                  train target mean = y train.mean()
               3 baseline_train_preds = [train_target_mean] * len(y_train)
                  baseline test preds = [train target mean] * len(y test)
               6 # R squared
               7
                  print('Model fit for training data')
               8 print(f"R2: {metrics.r2_score(y_train, baseline_train_preds):.2f}")
               9 # Mean squared error
               10 print(f"Mean Square Error: {metrics.mean_squared_error(y_train, baseline}
              11 # Mean absolute error
              12 print(f"Mean Absolute Error: {metrics.mean_absolute_error(y_train, basel
              13 | print("\n")
              14
              15 # R squared
              16 print('Model fit for test data')
              17 | print(f"R2: {metrics.r2_score(y_test, baseline_test_preds):.2f}")
              18 # Mean squared error
               19 print(f"Mean Square Error: {metrics.mean_squared_error(y_test, baseline_
              20 # Mean absolute error
               21 print(f"Mean Absolute Error: {metrics.mean absolute error(y test, baseli
              Model fit for training data
              R2: 0.00
              Mean Square Error: 368,958
              Mean Absolute Error: 235,058
              Model fit for test data
              R2: -0.00
              Mean Square Error: 360,907
```

Create Functions to help make regression analysis easier

Mean Absolute Error: 231,542

Inspiration for this code came from: https://github.com/brooke57 (https://github.com/brooke57)

```
In [113]:
                1
                  def assess(model):
                       tr preds=model.predict(X train)
                2
                3
                       te_preds=model.predict(X_test)
                4
                       y tr = y train
                5
                       y_te = y_test
                6
                   # Format the string output using f-strings
                7
                       print(f"Train R2: {r2_score(y_tr, tr_preds)}")
                8
                       print(f"Test R2: {r2_score(y_te, te_preds)}")
                9
                       print('----')
                       print(f"Train RMSE: {mean_squared_error(y_tr, tr_preds, squared = Fal
               10
                       print(f"Test RMSE: {mean_squared_error(y_te, te_preds, squared = Fal})
               11
               12
                       print('----')
                       print(f"Train MAE: {mean_absolute_error(y_tr, tr_preds)}")
               13
               14
                       print(f"Test MAE: {mean absolute error(y te, te preds)}")
               15
               16
               17 # Set Variables for graphing
               18
                       tr_res= y_tr - tr_preds
               19
                       te_res= y_te - te_preds
               20
               21
                  # Graph Syntax
               22
                       plt.scatter(tr_preds, tr_res, label = 'Train')
                       plt.scatter(te_preds, te_res, label = 'Test')
               23
               24
                       plt.axhline(y=0, color = 'red', label = '0')
               25
               26
                       plt.xlabel('predictions')
                       plt.ylabel('residuals')
               27
               28
                       plt.legend()
               29
                       plt.show
```

```
In [115]:
                1
                   def model_and_assess(ind_variable, data):
                       multi_model, multi_model_summ = model(ind_variable,data)
                2
                3
                       assessment = assess(multi_model)
                4
                       scaled summ = scaled model(ind variable,data)
                5
                       qq = sm.graphics.qqplot(multi_model.resid, dist=stats.norm, line='45
                6
                       print('
                                      ')
                7
                       print('This is the summary of the model')
                8
                                      ')
                9
                       print(multi_model_summ)
               10
                                      ')
                       print('
               11
                       print('This is the summary of the scaled model')
               12
                       print('
                       print(scaled_summ)
               13
               14
                       print('
                       print('This is the correlation table between variables')
               15
               16
                       print('
                       print(data[ind_variable].corr())
               17
               18
                       print('
                       print('This is the residual plot and qq plot')
               19
               20
                                      ')
               21
                       print(assessment)
               22
                       print(qq)
```

Create a base model with the highest correlated column as the only feature

```
In [116]:
           1 model_and_assess(['sqft_living'],df)
          Train R2: 0.49248102591707765
          Test R2: 0.4934364209286596
          Train RMSE: 262847.0640099154
          Test RMSE: 256832.28945676202
          Train MAE: 174592.15379749413
          Test MAE: 170756.35511471998
          This is the summary of the model
                             OLS Regression Results
          ______
          Dep. Variable:
                                price R-squared:
          0.493
          Model:
                                 0LS
                                     Adj. R-squared:
          0.493
          Method:
                          Least Squares F-statistic:
                                                          2.0
          97e+04
          Date:
                       Sun, 15 May 2022 Prob (F-statistic):
          0.00
                              20:52:20 Log-Likelihood:
                                                 -3.00
          Time:
          06e+05
          No. Observations:
                                21597 AIC:
                                                          6.0
          01e+05
          Df Residuals:
                                21595
                                     BIC:
                                                          6.0
          01e+05
          Df Model:
                                   1
          Covariance Type:
                            nonrobust
          ______
                      coef std err t P>|t|
                                                    [0.025
          0.975]
          -----
          Intercept -4.399e+04 4410.023 -9.975 0.000 -5.26e+04 -
          3.53e+04
          sqft living 280.8630
                            1.939 144.819
                                            0.000
                                                    277.062
          284.664
          ______
          Omnibus:
                             14801.942 Durbin-Watson:
          1.982
          Prob(Omnibus):
                                0.000 Jarque-Bera (JB):
                                                         5426
          62.604
          Skew:
                                2.820
                                     Prob(JB):
          0.00
          Kurtosis:
                               26.901
                                     Cond. No.
                                                           5.
          63e+03
          ______
```

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is c orrectly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

This is the summary of the scaled model

OLS Regression Results

==========	========	_		======	===========	:======	
=====							
Dep. Variable:		pri	ice	R-squ	ared:		
0.493							
Model:		(DLS	Adj.	R-squared:		
0.493							
Method:	L	east Squar	res	F-sta	tistic:		2.0
97e+04							
Date:	Sun,	15 May 20	922	Prob	(F-statistic):		
0.00							
Time:		20:52:	21	Log-L	ikelihood:		-
23317.							
No. Observation	ns:	215	597	AIC:			4.6
64e+04		24.5	-0-	DIC			
Df Residuals:		215	595	BIC:			4.6
65e+04			1				
Df Model:	••	بطمعممم	1				
Covariance Type		nonrobu			==========		
======							
	coef	std err		+	P> t	[0.025	
0.975]	202.	3 6 4 6		Č	. , 61	[0.023	
_							
Intercept -6	.353e-17	0.005	-1.3	1e-14	1.000	-0.010	
0.010							
sqft_living	0.7019	0.005	14	4.819	0.000	0.692	
0.711							
	=======	=======	====	=====	========		====
=====		44004		- · ·			
Omnibus:		14801.9	942	Durbi	n-Watson:		
1.982		0.4		-	D (3D)		E 426
Prob(Omnibus):		0.6	900	Jarqu	e-Bera (JB):		5426
62.604		2.0	220	Duals /	JD).		
Skew: 0.00		2.8	320	Prob(JB):		
		26 (901	Cond.	No		
Kurtosis: 1.00		20.3	TO	conu.	INU .		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is c orrectly specified.

This is the correlation table between variables

Add Additional features to our Model based on Correlation Scores

```
1 model_and_assess(['sqft_living', 'median_income', 'numerical_grade', 'view
In [117]:
                                     'Waterfront', 'renovated'],df)
```

Train R2: 0.611810655421914 Test R2: 0.6120897235946879

Train RMSE: 229878.7324419146 Test RMSE: 224749.2674320919

Train MAE: 149374.77828280875 Test MAE: 147593.1951313988

This is the summary of the model

=======================================		J	sion Results			
===						
Dep. Variable: 612		price	R-squared:			0.
Model: 612		OLS	Adj. R-squa	red:		0.
Method:	Lea	st Squares	F-statistic	::		68
08. Date:	Sun, 1	5 May 2022	Prob (F-sta	tistic):		
0.00 Time:		20:52:21	Log-Likelih	ood:	-2.97	17e
+05 No. Observations	5:	21597	AIC:		5.9	44e
+05 Df Residuals:		21591	BIC:		5.9	44e
+05 Df Model:		5				
Covariance Type:		nonrobust				
=======================================		=======	=======	:======:	=======	===
0.975]		std err			-	
Intercept 6.82e+05	-7.065e+05	1.25e+04	-56.744	0.000	-7.31e+05	-
sqft_living 163.027	157.8112	2.661	59.305	0.000	152.595	
median_income 2.094	1.9855	0.055	36.003	0.000	1.877	
numerical_grade 8.28e+04	7.866e+04	2106.822	37.335	0.000	7.45e+04	
view_num 8.12e+04	7.675e+04	2292.007	33.486	0.000	7.23e+04	
Waterfront 6.73e+05	6.324e+05	2.06e+04	30.762	0.000	5.92e+05	
======================================		17407.752	Durbin-Wats			1.
969 Prob(Omnibus):		0.000	Jarque-Bera	(JB):	13102	97.

296
Skew: 3.360 Prob(JB):
0.00
Kurtosis: 40.562 Cond. No.

1.50e

1.

===

+06

Notes:

Omnibus:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.5e+06. This might indicate that there are

strong multicollinearity or other numerical problems.

This is the summary of the scaled model

OLS Regression Results

OLS REGIESSION RESULTS							
===							
Dep. Variable:		price		R-squared:			
612 Model:		OLS		Adj. R-squared:			
612			-				
Method: 08.	Lea	Least Squares		F-statistic:			
Date:	Sun, 1	Sun, 15 May 2022		Prob (F-statistic):			
0.00	,	,					
Time:		20:52:21		Log-Likelihood:			
25.							
No. Observations	5:	21597	AIC:		4.086e		
Df Residuals:		21591	BIC:		4.091e		
+04							
Df Model:		5					
Covariance Type:		nonrobust					
===========	=======	=======	========	=======	========		
======	coef	std err	t	P> t	[0.025		
0.975]	Coei	Sca en	C	17 0	[0.023		
Intercept	-6.353e-17	0.004	-1.5e-14	1.000	-0.008		
0.008							
sqft_living 0.407	0.3944	0.007	59.305	0.000	0.381		
median_income 0.176	0.1665	0.005	36.003	0.000	0.157		
numerical_grade	0.2512	0.007	37.335	0.000	0.238		
0.264							
view_num	0.1598	0.005	33.486	0.000	0.150		
0.169 Waterfront	0.1411	0.005	30.762	0.000	0.132		
0.150	0,171	0.003	30.702	0.000	0.132		
			========		=======================================		
===							

17407.752 Durbin-Watson:

```
969
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1310297.
296
Skew: 3.360 Prob(JB):
0.00
Kurtosis: 40.562 Cond. No.
3.05
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

This is the correlation table between variables

sqft_living median income	sqft_living 1.000000 0.337315	median_income 0.337315 1.000000	numerical_grade 0.762779 0.387134	view_num 0.281715 0.038370	\
numerical_grade	0.762779	0.387134	1.000000	0.249082	
view_num	0.281715	0.038370	0.249082	1.000000	
Waterfront	0.104637	0.002275	0.082818	0.380543	
	Waterfront				
sqft_living	0.104637				
median_income	0.002275				
numerical_grade	0.082818				
view_num	0.380543				
Waterfront	1.000000				

This is the residual plot and qq plot

None

Figure(432x288)

Evaluation

The model improved and none of the features had a significance level above an alpha of .05. The model is definitely an improvement but it is possable that numerical grade and price is not linearly correlated. One way to account for this in our model is to one hot encode the grade column. This would allow us to see how each grade affects the price based off of the coefficient values.

```
In [118]:
                   # creating instance of one-hot-encoder
           H
                   enc = OneHotEncoder(handle_unknown='error')
                   # passing bridge-types-cat column (label encoded values of bridge types)
                   enc_df = pd.DataFrame(enc.fit_transform(df[['numerical_grade']]).toarray
                5
                   # merge with main df bridge_df on key values
                7
                   df = df.merge(enc_df, right_index = True, left_index = True)
                   list(enc.get_feature_names())
   Out[118]: ['x0_3.0',
                'x0_4.0',
                'x0 5.0',
                'x0_6.0',
                'x0 7.0',
                'x0_8.0',
                'x0_9.0',
                'x0 10.0',
                'x0 11.0',
                'x0_12.0',
                'x0_13.0']
```

```
In [119]:
                1 #sanity check
                2 df.columns
   Out[119]: Index([
                                                           'bedrooms',
                                                                                  'bathroom
                                     'price',
              s',
                                                                                     'floor
                               'sqft living',
                                                           'sqft lot',
              s',
                                'sqft_above',
                                                           'yr_built',
                                                                               'yr_renovate
              ď',
                                                                                        'lon
                                   'zipcode',
                                                                'lat',
              g',
                             'sqft living15',
                                                         'sqft lot15',
                                                                       'numerical grad
              е',
                                                         'Population', 'number_of_household
                                  'view_num',
              s',
                             'median income',
                                                    'average income',
                                                                                 'Waterfron
              t',
                                 'renovated',
                                                                    0,
              1,
                                           2,
                                                                    3,
              4,
                                           5,
                                                                    6,
              7,
                                           8,
                                                                    9,
              10],
                     dtype='object')
In [120]:
           H
                   # Rename the new columns for easier interpretability
                1
                2
                3
                   df.rename(columns={0: 'grade 3', 1: 'grade 4', 2: 'grade 5', 3: 'grade 6
                                      6: 'grade_9', 7: 'grade_10', 8: 'grade_11', 9: 'grade
                4
                5
                                     }, inplace = True)
                6
                1 #sanity check
In [121]:
          H
                2 df.columns
   Out[121]: Index(['price', 'bedrooms', 'bathrooms', 'sqft living', 'sqft lot', 'floor
              s',
                      'sqft_above', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                      'sqft_living15', 'sqft_lot15', 'numerical_grade', 'view_num',
                      'Population', 'number_of_households', 'median_income', 'average_inco
              me',
                      'Waterfront', 'renovated', 'grade_3', 'grade_4', 'grade_5', 'grade_
              6',
                      'grade_7', 'grade_8', 'grade_9', 'grade_10', 'grade_11', 'grade_12',
                      'grade 13'],
                     dtype='object')
```

Train R2: 0.6579508928418821 Test R2: 0.6320766773376292

Train RMSE: 215784.983697498 Test RMSE: 218882.63166376975

Train MAE: 140456.2658171113 Test MAE: 139838.85552357975

This is the summary of the model

OLS Regression Results

=========	========		========	=======	========	====	
===							
Dep. Variable 653	:	price		R-squared:		0.	
Model:		OLS		Adj. R-squared:		0.	
653							
Method: 01.	Le	Least Squares		F-statistic:		29	
Date:	Sun,	15 May 2022	Prob (F-s	tatistic):			
0.00							
Time: +05		20:52:22		Log-Likelihood:		-2.9596e	
No. Observation	ons:	21597	AIC:		5.	920e	
+05							
Df Residuals: +05		21582	BIC:		5.	921e	
Df Model:		14					
Covariance Type	ne•	nonrobust					
==========		=========		.=======		.====	
=====							
	coef	std err	t	P> t	[0.025		
0.975]					L		
Intercept 99e+05	2.573e+05	2.11e+04	12.208	0.000	2.16e+05	2.	
	134.2730	2.565	52.347	0.000	129.245	1	
39.301		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
<pre>median_income 2.160</pre>	2.0572	0.052	39.287	0.000	1.955		
view num	7.08e+04	2173.470	32.574	0.000	6.65e+04	7.	
51e+04							
Waterfront	6.025e+05	1.95e+04	30.925	0.000	5.64e+05	6.	
41e+05							
grade_3 78e+04	-3.215e+05	1.99e+05	-1.619	0.105	-7.11e+05	6.	
grade_4	-4.266e+05	4.29e+04	-9.948	0.000	-5.11e+05	-3.	
43e+05							
grade_5	-4.262e+05	2.34e+04	-18.222	0.000	-4.72e+05	-	

3.8e+05						
grade_6	-3.874e+05	2e+04	-19.351	0.000	-4.27e+05	-3.
48e+05						
grade_7	-3.697e+05	1.95e+04	-19.001	0.000	-4.08e+05	-3.
32e+05						
grade_8	-3.308e+05	1.94e+04	-17.046	0.000	-3.69e+05	-2.
93e+05 grade 9	-2.316e+05	1.96e+04	-11.796	0.000	-2.7e+05	-1.
93e+05	-2.3106+03	1.900+04	-11.790	0.000	-2.76+05	-1.
grade 10	-7.235e+04	2.03e+04	-3.567	0.000	-1.12e+05	-3.
26e+04	7 1 2 3 3 6 7 6 7	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.000		
grade_11	1.916e+05	2.21e+04	8.650	0.000	1.48e+05	2.
35e+05						
grade_12	6.66e+05	2.94e+04	22.623	0.000	6.08e+05	7.
24e+05						
grade_13	1.966e+06	5.94e+04	33.081	0.000	1.85e+06	2.
08e+06						
===	========	========				====
Omnibus:		13364.232	Durbin-Wa	atson:		1.
976						
Prob(Omnibus	s):	0.000	Jarque-Be	era (JB):	456	5517.
394						
Skew:		2.437	Prob(JB):	:		
0.00						
Kurtosis:		24.990	Cond. No.	•	-	1.95e
+19						
=======================================	=========	========	========	=======	========	====

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.34e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the summary of the scaled model

============	=======================================		=========
===			
Dep. Variable:	price	R-squared:	0.
653			
Model:	0LS	Adj. R-squared:	0.
653			
Method:	Least Squares	F-statistic:	29
00.			
Date:	Sun, 15 May 2022	Prob (F-statistic):	
0.00			
Time:	20:52:22	Log-Likelihood:	-192
17.			
No. Observations:	21597	AIC:	3.846e
+04			
Df Residuals: +04	21582	BIC:	3.858e
Df Model:	14		
Covariance Type:	nonrobust		

=========	-=======	=======		========	=======	
=====						
	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	-6.353e-17	0.004	-1.58e-14	1.000	-0.008	
0.008	-0.3336-17	0.004	-1.386-14	1.000	-0.008	
sqft_living	0.3362	0.007	50.844	0.000	0.323	
0.349	0.000=		2000	0.000	0.022	
median_income	0.1724	0.004	39.207	0.000	0.164	
0.181						
view_num	0.1474	0.005	32.575	0.000	0.139	
0.156						
Waterfront	0.1343	0.004	30.888	0.000	0.126	
0.143	2 751 - : 00	7 2- : 00	0 277	0.706	1 1610	1
grade_3 71e+10	2.751e+09	7.3e+09	0.377	0.706	-1.16e+10	1.
grade_4	1.429e+10	3.79e+10	0.377	0.706	-6.01e+10	8.
86e+10	1.4250110	3.736.10	0.377	0.700	0.010.10	٠.
grade_5	4.256e+10	1.13e+11	0.377	0.706	-1.79e+11	2.
64e+11						
grade_6	1.182e+11	3.14e+11	0.377	0.706	-4.97e+11	7.
33e+11						
grade_7	1.993e+11	5.29e+11	0.377	0.706	-8.38e+11	1.
24e+12	1 01711	4 02-114	0 277	0.706	7 (411	
grade_8 13e+12	1.817e+11	4.82e+11	0.377	0.706	-7.64e+11	1.
grade_9	1.319e+11	3.5e+11	0.377	0.706	-5.54e+11	8.
18e+11	1.5150111	3.30.111	0.377	0.700	3.340111	0.
grade_10	9.019e+10	2.39e+11	0.377	0.706	-3.79e+11	5.
59e+11						
grade_11	5.445e+10	1.45e+11	0.377	0.706	-2.29e+11	3.
38e+11						
grade_12	2.59e+10	6.88e+10	0.377	0.706	-1.09e+11	1.
61e+11	0.01700	2 62-110	0 277	0.706	4 17- 10	_
grade_13 15e+10	9.917e+09	2.636+10	0.3//	0.706	-4.17e+10	6.
136+10	.======					
===						
Omnibus:		13364.361	Durbin-	Watson:		1.
977						
Prob(Omnibus):	:	0.000) Jarque-	Bera (JB):	45	4355.
323						
Skew:		2.439	Prob(JB):		
0.00 Kurtosis:		24.934	L Cond. N	0		3.48e
+14		24.334	r Conu. N	··		J. 40E
	.=======	========	.=======	=======	========	=====

===

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 4.18e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
sqft living median income view num
                                                     Waterfront
                                                                  grade_3
sqft living
                  1.000000
                                 0.337315
                                           0.281715
                                                       0.104637 -0.011565
median_income
                  0.337315
                                 1.000000 0.038370
                                                       0.002275 -0.004238
view num
                  0.281715
                                 0.038370 1.000000
                                                       0.380543 -0.002075
Waterfront
                  0.104637
                                 0.002275 0.380543
                                                       1.000000 -0.000561
grade 3
                 -0.011565
                                -0.004238 -0.002075
                                                       -0.000561 1.000000
grade 4
                 -0.053935
                                -0.009219 -0.003934
                                                       -0.002919 -0.000241
grade 5
                 -0.127198
                                -0.050634 -0.013479
                                                       0.012691 -0.000724
grade_6
                 -0.312486
                                -0.169862 -0.059287
                                                       -0.007301 -0.002197
                 -0.358915
                                -0.215072 -0.147272
                                                       -0.045482 -0.005738
grade 7
                                 0.065800 0.010612
grade 8
                  0.071115
                                                       -0.011317 -0.004252
grade 9
                  0.318499
                                 0.185681
                                           0.094153
                                                       0.007487 -0.002526
                                           0.127753
grade 10
                  0.369228
                                 0.215769
                                                       0.051514 -0.001602
grade 11
                  0.345964
                                 0.134906 0.140282
                                                       0.068410 -0.000934
grade 12
                  0.238136
                                 0.068073
                                           0.114607
                                                       0.082899 -0.000438
                  0.144424
                                 0.021730 0.051769
                                                      -0.002025 -0.000167
grade 13
                grade_4
                          grade 5
                                    grade_6
                                              grade_7
                                                        grade_8
                                                                  grade_9
              -0.053935 -0.127198 -0.312486 -0.358915 0.071115
sqft living
                                                                 0.318499
median income -0.009219 -0.050634 -0.169862 -0.215072 0.065800
                                                                 0.185681
              -0.003934 -0.013479 -0.059287 -0.147272 0.010612
                                                                 0.094153
view_num
Waterfront
              -0.002919
                         0.012691 -0.007301 -0.045482 -0.011317
                                                                 0.007487
grade 3
              -0.000241 -0.000724 -0.002197 -0.005738 -0.004252 -0.002526
               1.000000 -0.003766 -0.011421 -0.029831 -0.022108 -0.013132
grade 4
              -0.003766 1.000000 -0.034363 -0.089757 -0.066521 -0.039511
grade 5
              -0.011421 -0.034363 1.000000 -0.272170 -0.201711 -0.119810
grade 6
grade_7
              -0.029831 -0.089757 -0.272170 1.000000 -0.526882 -0.312951
grade 8
              -0.022108 -0.066521 -0.201711 -0.526882 1.000000 -0.231935
grade 9
              -0.013132 -0.039511 -0.119810 -0.312951 -0.231935
                                                                 1.000000
              -0.008329 -0.025060 -0.075989 -0.198488 -0.147104 -0.087375
grade 10
              -0.004854 -0.014605 -0.044286 -0.115678 -0.085732 -0.050922
grade 11
              -0.002276 -0.006848 -0.020765 -0.054238 -0.040197 -0.023876
grade 12
              -0.000868 -0.002613 -0.007922 -0.020693 -0.015336 -0.009109
grade_13
               grade 10
                         grade 11
                                   grade 12
                                             grade 13
sqft living
                                             0.144424
               0.369228
                         0.345964
                                   0.238136
median income
                         0.134906
               0.215769
                                   0.068073
                                             0.021730
                                   0.114607
view num
               0.127753
                         0.140282
                                             0.051769
Waterfront
               0.051514
                         0.068410
                                   0.082899 -0.002025
              -0.001602 -0.000934 -0.000438 -0.000167
grade 3
grade 4
              -0.008329 -0.004854 -0.002276 -0.000868
              -0.025060 -0.014605 -0.006848 -0.002613
grade 5
grade_6
              -0.075989 -0.044286 -0.020765 -0.007922
              -0.198488 -0.115678 -0.054238 -0.020693
grade 7
grade 8
              -0.147104 -0.085732 -0.040197 -0.015336
grade 9
              -0.087375 -0.050922 -0.023876 -0.009109
grade 10
               1.000000 -0.032297 -0.015143 -0.005777
grade 11
              -0.032297
                         1.000000 -0.008825 -0.003367
grade_12
              -0.015143 -0.008825
                                   1.000000 -0.001579
              -0.005777 -0.003367 -0.001579 1.000000
grade 13
```

This is the residual plot and qq plot

Once anoin the model income	
imrpove it farther.	ed, but using another proxy for school district make
· · · · · · · · · · · · · · · · · · ·	ithout creating multi-collinearity is to use some of the loon he model with latitude, longitude, and both added.

Train R2: 0.7020826026817109 Test R2: 0.6745321834053045

Train RMSE: 201383.98072491345 Test RMSE: 205866.96766016827

Train MAE: 127537.7141849933 Test MAE: 126660.88941980782

This is the summary of the model

=========	========	========		:======	========	====
===						
Dep. Variable	:	price	R-squared	l:		0.
697 Model:		OLS	Adj. R-sq	uared:		0.
697			- J			
Method:	Le	east Squares	F-statist	ic:		33
06.						
Date:	Sun,	15 May 2022	Prob (F-s	tatistic):		
0.00	·	,	•	•		
Time:		20:52:23	Log-Likel	ihood:	-2.9	9451e
+05			_			
No. Observati	ons:	21597	AIC:		5.	.890e
+05						
Df Residuals:		21581	BIC:		5.	.892e
+05						
Df Model:		15				
Covariance Ty	pe:	nonrobust				
=========	========		========	=======	========	====
=====						
	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	-7.12e+07	1.28e+06	-55.630	0.000	-7.37e+07	-6.
87e+07						
sqft_living	153.4639	2.422	63.356	0.000	148.716	1
58.212						
median_income	3.3773	0.054	62.130	0.000	3.271	
3.484						
view_num	5.618e+04	2048.512	27.424	0.000	5.22e+04	6.
02e+04						
Waterfront	5.992e+05	1.82e+04	32.901	0.000	5.64e+05	6.
35e+05						
grade_3	-6.633e+06	2.17e+05	-30.514	0.000	-7.06e+06	-6.
21e+06						
grade_4	-6.862e+06	1.22e+05	-56.234	0.000	-7.1e+06	-6.
62e+06						
grade_5	-6.88e+06	1.18e+05	-58.487	0.000	-7.11e+06	-6.

CF - + OC						
65e+06 grade 6	-6.884e+06	1.18e+05	-58.416	0.000	-7.12e+06	-6.
65e+06	-0.0046+00	1.100+03	-30.410	0.000	-7.120+00	-0.
grade 7	-6.868e+06	1.18e+05	-58.306	0.000	-7.1e+06	-6.
64e+06	0.0000.00	1.100.03	30.300	0.000	7.12.00	٠.
grade 8	-6.835e+06	1.18e+05	-57.978	0.000	-7.07e+06	_
6.6e+06						
grade_9	-6.736e+06	1.18e+05	-57.121	0.000	-6.97e+06	-
6.5e+06						
grade_10	-6.594e+06	1.18e+05	-55.727	0.000	-6.83e+06	-6.
36e+06						
grade_11	-6.343e+06	1.19e+05	-53.372	0.000	-6.58e+06	-6.
11e+06						
grade_12	-5.88e+06	1.2e+05	-48.829	0.000	-6.12e+06	-5.
64e+06						
grade_13	-4.684e+06	1.31e+05	-35.641	0.000	-4.94e+06	-4.
43e+06						_
long	-6.365e+05	1.14e+04	-55.837	0.000	-6.59e+05	-6.
14e+05						
=======================================	=========	========	========	======	========	====
Omnibus:		13836.203	Durbin-Wat	con:		1.
975		13030.203	Dui Din-Wac	3011.		1.
Prob(Omnibus	٠).	0.000	Jarque-Ber	a (JB):	587	7501.
087	3).	0.000	Jui que Dei	u (35).	30.	, 501.
Skew:		2.494	Prob(JB):			
0.00			(,-			
Kurtosis:		28.060	Cond. No.		<u>-</u>	1.95e
+19						
========			========	======		
===						

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.34e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the summary of the scaled model

===			
Dep. Variable:	price	R-squared:	0.
697			
Model:	0LS	Adj. R-squared:	0.
697			
Method:	Least Squares	F-statistic:	33
05.			
Date:	Sun, 15 May 2022	Prob (F-statistic):	
0.00			
Time:	20:52:23	Log-Likelihood:	-177
61.			
No. Observations:	21597	AIC:	3.555e
+04			
Df Residuals:	21581	BIC:	3.568e
+04			

Df Model: 15 Covariance Type: nonrobust

=========						
=====	coef		 t	P> t	[0.025	
0.975]					-	
Intercept 0.011	0.0012	0.005	0.234	0.815	-0.009	
sqft_living 0.396	0.3840	0.006	61.650	0.000	0.372	
median_income 0.292	0.2830	0.005	61.982	0.000	0.274	
view_num 0.125	0.1170	0.004	27.409	0.000	0.109	
Waterfront 0.142	0.1336	0.004	32.877	0.000	0.126	
grade_3 57e+10	2.36e+09	6.83e+09	0.346	0.730	-1.1e+10	1.
grade_4 17e+10	1.225e+10	3.54e+10	0.346	0.730	-5.72e+10	8.
grade_5 43e+11	3.651e+10	1.06e+11	0.346	0.730	-1.7e+11	2.
grade_6 76e+11	1.014e+11	2.93e+11	0.346	0.730	-4.73e+11	6.
grade_7 14e+12	1.709e+11	4.94e+11	0.346	0.730	-7.98e+11	1.
grade_8 04e+12	1.559e+11	4.51e+11	0.346	0.730	-7.28e+11	1.
grade_9 55e+11	1.131e+11	3.27e+11	0.346	0.730	-5.28e+11	7.
grade_10 16e+11	7.736e+10	2.24e+11	0.346	0.730	-3.61e+11	5.
grade_11 11e+11	4.67e+10	1.35e+11	0.346	0.730	-2.18e+11	3.
grade_12 48e+11	2.222e+10	6.43e+10	0.346	0.730	-1.04e+11	1.
grade_13 67e+10	8.506e+09	2.46e+10	0.346	0.730	-3.97e+10	5.
long -0.235	-0.2440	0.004	-55.653	0.000	-0.253	
=========	========		========	.=======	:=======	====
===						
Omnibus: 975		13828.125	Durbin-Wa	ntson:		1.
Prob(Omnibus): 272		0.000	Jarque-Be	era (JB):	584	1428.
Skew: 0.00		2.494	Prob(JB):			
Kurtosis: +14		27.992	Cond. No.		3	3.58e
=======================================	========	========	=======	:=======	-=======	====

===

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corr

ectly specified.

[2] The smallest eigenvalue is 4.18e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the correlation table between variables

	sqft_livi	ng media	n_income	view_num	Waterfront	grade_3
\						
sqft_living	1.0000	00	0.337315	0.281715	0.104637	-0.011565
median_income	0.3373	15	1.000000	0.038370	0.002275	-0.004238
view_num	0.2817	15	0.038370	1.000000	0.380543	-0.002075
Waterfront	0.1046	37	0.002275	0.380543	1.000000	-0.000561
grade_3	-0.0115	65 -	0.004238	-0.002075	-0.000561	1.000000
grade_4	-0.0539	35 -	0.009219	-0.003934	-0.002919	-0.000241
grade_5	-0.1271	98 -	0.050634	-0.013479	0.012691	-0.000724
grade_6	-0.3124	86 -	0.169862	-0.059287	-0.007301	-0.002197
grade_7	-0.3589	15 -	0.215072	-0.147272	-0.045482	-0.005738
grade_8	0.0711	15	0.065800	0.010612	-0.011317	-0.004252
grade_9	0.31849		0.185681	0.094153	0.007487	-0.002526
grade_10	0.3692		0.215769	0.127753		-0.001602
grade_11	0.3459		0.134906	0.140282		-0.000934
grade_12	0.2381		0.068073	0.114607		-0.000438
grade_12 grade_13	0.1444		0.000073	0.051769		-0.000438
~ -						
long	0.2412	14	0.482594	-0.077702	-0.037628	0.010589
	grade 4	grade 5	anado	6 grade 7	anada 9	anada 0
\	grade_4	grade_5	grade_	_o graue_/	grade_8	grade_9
\ sqft_living	0 052025	A 127100	0 21240	36 -0.358915	0.071115	0.318499
. –						0.318499
median_income				52 -0.215072		
view_num				37 -0.147272	0.010612	0.094153
Waterfront	-0.002919		-0.00730			0.007487
grade_3				97 -0.005738		-0.002526
grade_4	1.000000	-0.003766	-0.01142	21 -0.029831	-0.022108	-0.013132
grade_5	-0.003766	1.000000	-0.03436	3 -0.089757	-0.066521	-0.039511
grade_6	-0.011421	-0.034363	1.00000	0 -0.272170	-0.201711	-0.119810
grade_7	-0.029831	-0.089757	-0.27217	70 1.000000	-0.526882	-0.312951
grade_8	-0.022108	-0.066521	-0.20171	11 -0.526882	1.000000	-0.231935
grade_9				l0 -0.312951		1.000000
grade_10		-0.025060		39 -0.198488		-0.087375
grade_11				36 -0.115678		
grade_12				55 -0.054238		
grade_12 grade_13				22 -0.020693		
_						
long	0.0122/8	0.011084	-0.11125	58 -0.113233	0.026554	0.126992
	gnade 10	anada 11	anada 1	L2 grade_13	long	
saft living	0.369228	_		36 0.14442 4	_	
median_income				73 0.021730		
view_num				0.051769		
Waterfront				9 -0.002025		
grade_3				38 -0.000167		
grade_4				76 -0.000868		
grade_5	-0.025060	-0.014605	-0.00684	18 -0.002613	0.011084	
grade_6	-0.075989	-0.044286	-0.02076	55 -0.007922	-0.111258	
grade_7	-0.198488	-0.115678	-0.05423	88 -0.020693	-0.113233	
grade_8				7 -0.015336		
grade_9				76 -0.009109		
grade_10				13 -0.005777		
P. 44c_10	1.00000	3.032237	0.0151-	.5 0.005///	0.105/50	

This is the residual plot and qq plot

None Figure(432x288)

Train R2: 0.7019463457743972 Test R2: 0.6786339187739434

Train RMSE: 201430.0284244488 Test RMSE: 204565.62676040918

_ _ _ .

Train MAE: 124064.40659388344 Test MAE: 123106.3960231164

This is the summary of the model

=========	========	========	========	=======	========	====
=== Dep. Variable:		price	R-squared	•		0.
697	•	price	N-Squareu	•		ο.
Model:		OLS	Adj. R-sq	uared:		0.
697				•		22
Method: 17.	L	east Squares	F-statist	1C:		33
Date:	Sun,	15 May 2022	Prob (F-s	tatistic):		
0.00	•	,	•	,		
Time:		20:52:24	Log-Likel	ihood:	-2.9	9448e
+05 No. Observatio	nns•	21597	AIC:		5	.890e
+05	J.1.5 .	21337	AIC.		,	.0300
Df Residuals:		21581	BIC:		5	.891e
+05		45				
Df Model: Covariance Typ	ne:	15 nonrobust				
=========			========	=======	=======	====
=====						
0 0751	coef	std err	t	P> t	[0.025	
0.975] 						
Intercept	-2.611e+07	4.68e+05	-55.734	0.000	-2.7e+07	-2.
52e+07	145 6000	2 402	60 500	0.000	4.40.000	
sqft_living 50.320	145.6088	2.403	60.582	0.000	140.898	1
median_income	0.9598	0.053	18.236	0.000	0.857	
1.063						
view_num	6.866e+04	2029.781	33.824	0.000	6.47e+04	7.
26e+04 Waterfront	6.136e+05	1.82e+04	33.726	0.000	5.78e+05	6.
49e+05	0.1300.03	1.020.04	33.720	0.000	3.700.03	٠.
grade_3	-2.525e+06	1.9e+05	-13.320	0.000	-2.9e+06	-2.
15e+06	2 704 .06	F 0 : 04	40 422	0.000	2 04 .05	•
grade_4 68e+06	-2.794e+06	5.8e+04	-48.133	0.000	-2.91e+06	-2.
grade_5	-2.806e+06	4.76e+04	-59.004	0.000	-2.9e+06	-2.
~ -						

71e+06						
grade_6 2.7e+06	-2.792e+06	4.66e+04	-59.915	0.000	-2.88e+06	-
grade_7 69e+06	-2.783e+06	4.65e+04	-59.807	0.000	-2.87e+06	-2.
grade_8 65e+06	-2.745e+06	4.65e+04	-58.995	0.000	-2.84e+06	-2.
grade_9 55e+06	-2.646e+06	4.66e+04	-56.763	0.000	-2.74e+06	-2.
grade_10 2.4e+06	-2.489e+06	4.69e+04	-53.077	0.000	-2.58e+06	-
grade_11 14e+06	-2.237e+06	4.78e+04	-46.787	0.000	-2.33e+06	-2.
grade_12 67e+06	-1.77e+06	5.12e+04	-34.545	0.000	-1.87e+06	-1.
grade_13 81e+05	-5.197e+05	7.09e+04	-7.330	0.000	-6.59e+05	-3.
lat 28e+05	6.071e+05	1.08e+04	56.333	0.000	5.86e+05	6.
=========	========		========		:======	====
===						
Omnibus: 991		14707.135	Durbin-Wa	atson:		1.
Prob(Omnibus 487):	0.000	Jarque-Be	era (JB):	67	5619.
Skew: 0.00		2.713	Prob(JB):	:		
Kurtosis:		29.858	Cond. No.	•	:	1.95e
	=========	========	========		:=======	====
===						

Df Residuals:

+04

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.34e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the summary of the scaled model

OLS Regression Results _____ Dep. Variable: price R-squared: 0. 697 Model: 0LS Adj. R-squared: 0. 697 Least Squares F-statistic: 33 Method: 16. Date: Sun, 15 May 2022 Prob (F-statistic): 0.00 Time: 20:52:24 Log-Likelihood: -177 36. No. Observations: 21597 AIC: 3.550e +04

21581

BIC:

3.563e

Df Model: 15 Covariance Type: nonrobust

	========	=========	:=======	========	========	====
=====	coef	std err	t	P> t	[0.025	
0.975]					-	
Intercept 0.011	0.0015	0.005	0.295	0.768	-0.008	
sqft_living 0.376	0.3645	0.006	59.348	0.000	0.352	
median_income 0.089	0.0806	0.004	18.235	0.000	0.072	
view_num 0.151	0.1429	0.004	33.809	0.000	0.135	
Waterfront 0.145	0.1368	0.004	33.700	0.000	0.129	
grade_3 63e+10	2.967e+09	6.82e+09	0.435	0.663	-1.04e+10	1.
grade_4 48e+10	1.541e+10	3.54e+10	0.435	0.663	-5.4e+10	8.
grade_5 53e+11	4.59e+10	1.05e+11	0.435	0.663	-1.61e+11	2.
grade_6 02e+11	1.275e+11	2.93e+11	0.435	0.663	-4.47e+11	7.
grade_7 18e+12	2.149e+11	4.94e+11	0.435	0.663	-7.53e+11	1.
grade_8 08e+12	1.959e+11	4.5e+11	0.435	0.663	-6.87e+11	1.
grade_9 83e+11	1.422e+11	3.27e+11	0.435	0.663	-4.99e+11	7.
grade_10 35e+11	9.725e+10	2.24e+11	0.435	0.663	-3.41e+11	5.
grade_11 23e+11	5.871e+10	1.35e+11	0.435	0.663	-2.06e+11	3.
grade_12 54e+11	2.793e+10	6.42e+10	0.435	0.663	-9.79e+10	1.
grade_13 89e+10	1.069e+10	2.46e+10	0.435	0.663	-3.75e+10	5.
lat 0.237	0.2289	0.004	56.266	0.000	0.221	
=========	========		:======:	=======		=====
===						
Omnibus: 990		14695.214	Durbin-Wa	atson:		1.
Prob(Omnibus): 950		0.000	Jarque-Be	era (JB):	674	4133.
Skew: 0.00		2.710	Prob(JB)	:		
Kurtosis: +14		29.828	Cond. No	•	3	3.51e
=======================================	=======	========	=======	=======		====

===

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corr

ectly specified.

[2] The smallest eigenvalue is 4.18e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the correlation table between variables

```
sqft living median income view num Waterfront
                                                                  grade 3
sqft_living
                  1.000000
                                 0.337315 0.281715
                                                       0.104637 -0.011565
                                 1.000000 0.038370
                                                       0.002275 -0.004238
median income
                  0.337315
view num
                  0.281715
                                 0.038370 1.000000
                                                       0.380543 -0.002075
Waterfront
                  0.104637
                                 0.002275 0.380543
                                                       1.000000 -0.000561
                 -0.011565
                                -0.004238 -0.002075
                                                      -0.000561 1.000000
grade 3
                                -0.009219 -0.003934
                                                      -0.002919 -0.000241
grade 4
                 -0.053935
grade 5
                 -0.127198
                                -0.050634 -0.013479
                                                       0.012691 -0.000724
                                -0.169862 -0.059287
                                                      -0.007301 -0.002197
grade 6
                 -0.312486
                 -0.358915
                                -0.215072 -0.147272
                                                      -0.045482 -0.005738
grade 7
grade 8
                 0.071115
                                 0.065800 0.010612
                                                      -0.011317 -0.004252
grade 9
                 0.318499
                                 0.185681 0.094153
                                                       0.007487 -0.002526
                                 0.215769 0.127753
                                                       0.051514 -0.001602
grade 10
                 0.369228
grade 11
                 0.345964
                                 0.134906 0.140282
                                                       0.068410 -0.000934
grade_12
                 0.238136
                                 0.068073 0.114607
                                                       0.082899 -0.000438
                                                      -0.002025 -0.000167
grade 13
                  0.144424
                                 0.021730 0.051769
lat
                  0.052155
                                 0.375826 0.006321
                                                      -0.012157 -0.017283
                grade 4
                          grade 5
                                    grade 6
                                              grade 7
                                                        grade 8
                                                                  grade 9
١
              -0.053935 -0.127198 -0.312486 -0.358915 0.071115
                                                                0.318499
sqft living
median income -0.009219 -0.050634 -0.169862 -0.215072 0.065800
                                                                 0.185681
              -0.003934 -0.013479 -0.059287 -0.147272 0.010612
view num
                                                                 0.094153
                        0.012691 -0.007301 -0.045482 -0.011317
Waterfront
             -0.002919
                                                                 0.007487
grade 3
             -0.000241 -0.000724 -0.002197 -0.005738 -0.004252 -0.002526
grade 4
               1.000000 -0.003766 -0.011421 -0.029831 -0.022108 -0.013132
             -0.003766 1.000000 -0.034363 -0.089757 -0.066521 -0.039511
grade 5
             -0.011421 -0.034363 1.000000 -0.272170 -0.201711 -0.119810
grade 6
             -0.029831 -0.089757 -0.272170 1.000000 -0.526882 -0.312951
grade 7
             -0.022108 -0.066521 -0.201711 -0.526882 1.000000 -0.231935
grade 8
grade 9
             -0.013132 -0.039511 -0.119810 -0.312951 -0.231935 1.000000
             -0.008329 -0.025060 -0.075989 -0.198488 -0.147104 -0.087375
grade 10
grade 11
              -0.004854 -0.014605 -0.044286 -0.115678 -0.085732 -0.050922
             -0.002276 -0.006848 -0.020765 -0.054238 -0.040197 -0.023876
grade 12
grade 13
             -0.000868 -0.002613 -0.007922 -0.020693 -0.015336 -0.009109
lat
             -0.016323 -0.046573 -0.062851 -0.040532 0.026330 0.042136
               grade 10
                        grade 11
                                   grade 12 grade 13
                                                            lat
sqft living
               0.369228
                        0.345964 0.238136 0.144424 0.052155
median_income
               0.215769
                        0.134906 0.068073
                                            0.021730
                                                      0.375826
               0.127753
                        0.140282 0.114607
                                            0.051769 0.006321
view num
Waterfront
               0.051514
                        0.068410 0.082899 -0.002025 -0.012157
              -0.001602 -0.000934 -0.000438 -0.000167 -0.017283
grade_3
grade 4
             -0.008329 -0.004854 -0.002276 -0.000868 -0.016323
grade 5
              -0.025060 -0.014605 -0.006848 -0.002613 -0.046573
             -0.075989 -0.044286 -0.020765 -0.007922 -0.062851
grade_6
             -0.198488 -0.115678 -0.054238 -0.020693 -0.040532
grade 7
             -0.147104 -0.085732 -0.040197 -0.015336 0.026330
grade 8
grade 9
             -0.087375 -0.050922 -0.023876 -0.009109
                                                       0.042136
grade 10
               1.000000 -0.032297 -0.015143 -0.005777 0.052262
```

This is the residual plot and qq plot

None Figure(432x288)

Train R2: 0.7218344833703131 Test R2: 0.6954068078694756

Train RMSE: 194593.63646492016 Test RMSE: 199155.6989571329

Train MAE: 120193.77376613383 Test MAE: 120193.87414294749

This is the summary of the model

==========		========	=======		========	====
===						
Dep. Variable: 717	:	price	R-squared:			0.
Model:		0LS	Adj. R-sq	uared:		0.
717						
Method: 13.	Le	ast Squares	F-statist:	ic:		34
Date:	Sun,	15 May 2022	Prob (F-s	tatistic):		
0.00						
Time: +05		20:52:24	Log-Likel:	ihood:	-2.9	9377e
No. Observation	ons:	21597	AIC:		5.	876e
+05						
Df Residuals: +05		21580	BIC:		5.	877e
Df Model:		16				
Covariance Typ		nonrobust				
=====	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	-7.024e+07	1.24e+06	-56.767	0.000	-7.27e+07	-6.
78e+07	456 2020	2 242	66 726	0.000	454 700	
sqft_living 60.885	156.2939	2.342	66.726	0.000	151.703	1
<pre>median_income 2.328</pre>	2.2097	0.060	36.541	0.000	2.091	
view_num	5.873e+04	1981.045	29.648	0.000	5.49e+04	6.
26e+04						
Waterfront 43e+05	6.082e+05	1.76e+04	34.546	0.000	5.74e+05	6.
grade_3	-6.457e+06	2.1e+05	-30.725	0.000	-6.87e+06	-6.
04e+06						
grade_4 54e+06	-6.77e+06	1.18e+05	-57.392	0.000	-7e+06	-6.
grade_5	-6.792e+06	1.14e+05	-59.729	0.000	-7.02e+06	-6.

57e+06						
grade_6	-6.802e+06	1.14e+05	-59.709	0.000	-7.03e+06	-6.
58e+06	-6.792e+06	1.14e+05	-59.648	0.000	-7.02e+06	-6.
grade_7 57e+06	-6./920+06	1.140+05	-59.046	0.000	-7.020+00	-0.
grade 8	-6.758e+06	1.14e+05	-59.299	0.000	-6.98e+06	-6.
53e+06						
grade_9	-6.659e+06	1.14e+05	-58.413	0.000	-6.88e+06	-6.
44e+06						
grade_10 29e+06	-6.513e+06	1.14e+05	-56.944	0.000	-6.74e+06	-6.
grade_11	-6.268e+06	1.15e+05	-54.559	0.000	-6.49e+06	-6.
04e+06						
grade_12	-5.807e+06	1.16e+05	-49.887	0.000	-6.04e+06	-5.
58e+06						_
grade_13 37e+06	-4.618e+06	1.27e+05	-36.352	0.000	-4.87e+06	-4.
long	-4.575e+05	1.19e+04	-38.332	0.000	-4.81e+05	-4.
34e+05	4.5/50105	1.150104	30.332	0.000	4.010103	•
lat	4.406e+05	1.13e+04	39.003	0.000	4.18e+05	4.
63e+05						
=========						====
===						
Omnibus:		14769.316	Durbin-Wa	tson:		1.
985	,	0.000		(35)	72.	
Prob(Omnibus	5):	0.000	Jarque-Be	ra (JB):	/36	5858.
Skew:		2.703	Prob(JB):			
0.00		2.703	1100(30).			
Kurtosis:		31.100	Cond. No.		<u>.</u>	1.95e
+19						
=========				=======		====
===						

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.35e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the summary of the scaled model

OLD REGIESSION RESULES						
===========			=========			
===						
Dep. Variable:	price	R-squared:	0.			
717						
Model:	OLS	Adj. R-squared:	0.			
717		,				
Method:	Least Squares	F-statistic:	34			
13.	·					
Date:	Sun. 15 May 2022	<pre>Prob (F-statistic):</pre>				
0.00	,,					
Time:	20:52:25	Log-Likelihood:	-170			
24.	20.32.23	log likelihood.	2,0			
No. Observations:	21597	AIC:	3.408e			
+04	21337	AIC.	J.400E			
⊤ ∪4						

Df Residuals: 21580 BIC: 3.422e

+04

Df Model: 16
Covariance Type: nonrobust

Covariance Typ		nonrobust				
=====	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	0.0013	0.005	0.270	0.787	-0.008	
0.011	0.0013	0.003	0.270	0.707	0.000	
sqft_living	0.3910	0.006	65.700	0.000	0.379	
0.403						
median_income	0.1853	0.005	36.542	0.000	0.175	
0.195						
view_num	0.1224	0.004	29.530	0.000	0.114	
0.131	0.4357	0.004	24 542	0.000	0.420	
Waterfront	0.1357	0.004	34.543	0.000	0.128	
0.143	2.626e+09	6.6e+09	0.398	0.691	-1.03e+10	1.
grade_3 56e+10	2.6260+09	0.00+09	0.396	0.091	-1.036+10	1.
grade_4	1.364e+10	3.43e+10	0.398	0.691	-5.35e+10	8.
08e+10	1.5046110	3.450110	0.550	0.031	3.330.10	0.
grade_5	4.062e+10	1.02e+11	0.398	0.691	-1.59e+11	2.
41e+11						
grade_6	1.128e+11	2.83e+11	0.398	0.691	-4.43e+11	6.
68e+11						
grade_7	1.902e+11	4.78e+11	0.398	0.691	-7.46e+11	1.
13e+12						
grade_8	1.734e+11	4.36e+11	0.398	0.691	-6.81e+11	1.
03e+12	1 25011	2 1611	0.200	0.601	4 0411	_
grade_9	1.259e+11	3.16e+11	0.398	0.691	-4.94e+11	7.
46e+11 grade_10	8.607e+10	2.16e+11	0.398	0.691	-3.38e+11	
5.1e+11	0.0076+10	2.100+11	0.558	0.051	-3.366+11	
grade_11	5.197e+10	1.31e+11	0.398	0.691	-2.04e+11	3.
08e+11	302276120		01000	0.02		
grade_12	2.472e+10	6.21e+10	0.398	0.691	-9.7e+10	1.
46e+11						
grade_13	9.465e+09	2.38e+10	0.398	0.691	-3.71e+10	5.
61e+10						
long	-0.1754	0.005	-38.247	0.000	-0.184	
-0.166						
lat	0.1662	0.004	39.004	0.000	0.158	
0.175 ========						
===						
Omnibus:		14757.418	Durbin-Wa	itson:		1.
986						
Prob(Omnibus):		0.000	Jarque-Be	era (JB):	735	5190.
797						
Skew:		2.700	Prob(JB):			
0.00					_	
Kurtosis:		31.068	Cond. No.		3	3.60e
+14						

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.18e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the correlation table between variables

,	sqft_living	median_income	view_num	Waterfront	grade_3
\ sqft_living	1.000000	0.337315	0.281715	0 10/637	-0.011565
median_income	0.337315	1.000000	0.038370		-0.004238
view_num	0.281715	0.038370	1.000000		-0.002075
Waterfront	0.104637	0.002275	0.380543		-0.000561
grade_3	-0.011565		-0.002075	-0.000561	1.000000
grade_4	-0.053935		-0.003934	-0.002919	
grade_5	-0.127198	-0.050634	-0.013479	0.012691	-0.000724
grade_6	-0.312486	-0.169862	-0.059287	-0.007301	-0.002197
grade_7	-0.358915	-0.215072	-0.147272	-0.045482	-0.005738
grade_8	0.071115	0.065800	0.010612	-0.011317	-0.004252
grade_9	0.318499	0.185681	0.094153	0.007487	-0.002526
grade_10	0.369228	0.215769	0.127753	0.051514	-0.001602
grade_11	0.345964	0.134906	0.140282		-0.000934
grade_12	0.238136	0.068073	0.114607		-0.000438
grade_13	0.144424	0.021730	0.051769	-0.002025	
long	0.241214		-0.077702	-0.037628	0.010589
lat	0.052155	0.375826	0.006321	-0.012157	-0.017283
\	grade_4 g	grade_5 grade_	6 grade_7	grade_8	grade_9
sqft_living	-0.053935 -0.	127198 -0.31248	6 -0.358915	0.071115	0.318499
	-0.009219 -0.	050634 -0.16986	2 -0.215072	0.065800	0.185681
view_num	-0.003934 -0.	013479 -0.05928	7 -0.147272	0.010612	0.094153
Waterfront	-0.002919 0.	012691 -0.00730	1 -0.045482	-0.011317	0.007487
grade_3	-0.000241 -0.	.000724 -0.00219	7 -0.005738	-0.004252	-0.002526
grade_4		003766 -0.01142		-0.022108	-0.013132
grade_5		.000000 -0.03436		-0.066521	-0.039511
grade_6	-0.011421 -0.		0 -0.272170		-0.119810
grade_7		.089757 -0.27217			-0.312951
grade_8		066521 -0.20171			-0.231935
grade_9		.039511 -0.11981			1.000000
grade_10		.025060 -0.07598			
grade_11		.014605 -0.04428			
grade_12		.006848 -0.02076			
grade_13		.002613 -0.00792			
long		011084 -0.11125			
lat	-0.016323 -0.	.046573 -0.06285	1 -0.040532	0.026330	0.042136
	anada 10 an	nada 11 gmada 1	2 anada 12	long	1
sqft_living		rade_11 grade_1 .345964 0.23813	_		
median income			3 0.021730		
view_num		140282 0.11460		-0.077702	
Waterfront			9 -0.002025		
grade_3		.000934 -0.00043			-0.012137
grade_3 grade_4		.004854 -0.00227			-0.017283
gi aue_4	-0.000323 -0.	.004034 -0.0022/	0 -0.00000	0.0122/8	-0.010273

```
grade_5
              -0.025060 -0.014605 -0.006848 -0.002613 0.011084 -0.046573
grade_6
              -0.075989 -0.044286 -0.020765 -0.007922 -0.111258 -0.062851
grade_7
              -0.198488 -0.115678 -0.054238 -0.020693 -0.113233 -0.040532
grade_8
              -0.147104 -0.085732 -0.040197 -0.015336
                                                      0.026554
                                                                 0.026330
grade_9
              -0.087375 -0.050922 -0.023876 -0.009109
                                                       0.126992
                                                                 0.042136
               1.000000 -0.032297 -0.015143 -0.005777
grade_10
                                                       0.103756
                                                                 0.052262
grade_11
              -0.032297
                         1.000000 -0.008825 -0.003367
                                                       0.061840
                                                                 0.039372
              -0.015143 -0.008825
                                   1.000000 -0.001579
                                                       0.031744
grade_12
                                                                 0.016946
grade_13
              -0.005777 -0.003367 -0.001579
                                             1.000000 -0.008562
                                                                 0.013142
                         0.061840
                                   0.031744 -0.008562
long
               0.103756
                                                       1.000000 -0.135371
lat
               0.052262
                         0.039372
                                   0.016946 0.013142 -0.135371
                                                                 1.000000
```

This is the residual plot and qq plot

None Figure(432x288)

-5

Ö

5

Theoretical Quantiles

10

15

20

information. We felt comfortable including Latitiude in our model for this reason but did not want to include longitude because we couldn't find a reason for this correlation.

Final model analysis

X Variables: Latitude, Square Feet Living, House Grade, Waterfront, View Grade, renovated

Train R2: 0.7059535130630036 Test R2: 0.6837844226516643

- - - -

Train RMSE: 200071.3885125683 Test RMSE: 202919.72845490542

Train MAE: 123008.6987545759 Test MAE: 122693.92561063345

This is the summary of the model

===	===						
Dep. Variable	:	price	R-squared	:		0.	
702				_			
Model:		OLS	Adj. R-sq	uared:		0.	
701						24	
Method:	Le	east Squares	F-statist	1C:		31	
73.	C	45 May 2022	D /F -				
Date:	Sun,	15 May 2022	Prob (F-S	tatistic):			
0.00 Time:		20:52:39	Log Likel	ibood.	2 (9433e	
+05		20.52.59	Log-Likel	illood.	-2.5	7433E	
No. Observati	ons:	21597	AIC:		5	.887e	
+05	0113.	21337	AIC.		. ر	.0076	
Df Residuals:		21580	BIC:		5	.888e	
+05		21300	DIC.		3.	.0000	
Df Model:		16					
Covariance Ty	pe:	nonrobust					
========			=======	=======	========	====	
=====							
	coef	std err	t	P> t	[0.025		
0.975]							
Intercept	-2.582e+07	4.65e+05	-55.484	0.000	-2.67e+07	-2.	
49e+07							
sqft_living	143.3718	2.390	59.985	0.000	138.687	1	
48.057	0.0725	0.050	10.606	0.000	0.070		
median_income	0.9725	0.052	18.606	0.000	0.870		
1.075	C CF2-104	2010 205	22 042	0.000	C 2C-104	7	
view_num	6.652e+04	2019.295	32.942	0.000	6.26e+04	7.	
05e+04 Waterfront	5.994e+05	1.81e+04	22 144	0.000	5.64e+05	6	
35e+05	3.9946+03	1.010+04	33.144	0.000	3.040+03	6.	
grade_3	-2.502e+06	1.88e+05	-13.292	0.000	-2.87e+06	-2.	
13e+06	-2.3020+00	1.000+03	-13.292	0.000	-2.070+00	-2.	
grade 4	-2.773e+06	5.76e+04	-48.109	0.000	-2.89e+06	-2.	
66e+06	2.7736+00	J. / 00 TO4	70.107	0.000	2.036+00	۷.	
grade_5	-2.782e+06	4.72e+04	-58.886	0.000	-2.87e+06	-2.	
9. ~~~_>	21,7020100	, 20.04	30.000	0.000	2.0, 0.00	-•	

69e+06						
grade_6	-2.77e+06	4.63e+04	-59.841	0.000	-2.86e+06	-2.
68e+06						
grade_7	-2.759e+06	4.62e+04	-59.690	0.000	-2.85e+06	-2.
67e+06						
grade_8	-2.72e+06	4.62e+04	-58.856	0.000	-2.81e+06	-2.
63e+06						
grade_9	-2.62e+06	4.63e+04	-56.585	0.000	-2.71e+06	-2.
53e+06						
grade_10	-2.46e+06	4.66e+04	-52.810	0.000	-2.55e+06	-2.
37e+06						
grade_11	-2.205e+06	4.75e+04	-46.409	0.000	-2.3e+06	-2.
11e+06						
grade_12	-1.734e+06	5.09e+04	-34.046	0.000	-1.83e+06	-1.
63e+06						
grade_13	-4.955e+05	7.04e+04	-7.037	0.000	-6.34e+05	-3.
57e+05						
lat	6.007e+05	1.07e+04	56.095	0.000	5.8e+05	6.
22e+05						
renovated	1.319e+05	7544.456	17.488	0.000	1.17e+05	1.
47e+05						
=========			========	======		====
===						
Omnibus:		14534.882	Durbin-Wat	tson:		1.
989						
Prob(Omnibus	s):	0.000	Jarque-Ber	ra (JB):	648	8822.
011						
Skew:		2.674	Prob(JB):			
0.00						
Kurtosis:		29.314	Cond. No.		-	1.95e
+19						
========			=======			====
===						

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.33e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the summary of the scaled model

old help edution headles						
===========	===========		========			
===						
Dep. Variable:	price	R-squared:	0.			
702						
Model:	OLS	Adj. R-squared:	0.			
701						
Method:	Least Squares	F-statistic:	31			
71.	•					
Date:	Sun. 15 May 2022	<pre>Prob (F-statistic):</pre>				
0.00	,,	(
Time:	20:52:39	Log-Likelihood:	-175			
86.	20.32.33	Log Likelihood.	1,3			
No. Observations:	21597	AIC:	3.521e			
+04	21397	AIC.	3.3216			
TU4						

Df Residuals: 21580 BIC: 3.534e

+04

Df Model: 16
Covariance Type: nonrobust

Covariance Typ	e:	nonrobust				
======	========				========	
0.975]	coef	std err	t	P> t	[0.025	
Intercept 0.012	0.0020	0.005	0.400	0.689	-0.008	
sqft_living 0.371	0.3590	0.006	58.837	0.000	0.347	
median_income 0.090	0.0817	0.004	18.610	0.000	0.073	
view_num 0.147	0.1385	0.004	32.941	0.000	0.130	
Waterfront 0.142	0.1336	0.004	33.105	0.000	0.126	
grade_3 73e+10	3.993e+09	6.77e+09	0.590	0.555	-9.28e+09	1.
grade_4 97e+10	2.074e+10	3.52e+10	0.590	0.555	-4.82e+10	8.
grade_5 67e+11	6.177e+10	1.05e+11	0.590	0.555	-1.44e+11	2.
grade_6 42e+11	1.716e+11	2.91e+11	0.590	0.555	-3.99e+11	7.
grade_7 25e+12	2.892e+11	4.9e+11	0.590	0.555	-6.72e+11	1.
grade_8 14e+12	2.637e+11	4.47e+11	0.590	0.555	-6.13e+11	1.
grade_9 28e+11	1.915e+11	3.25e+11	0.590	0.555	-4.45e+11	8.
grade_10 66e+11	1.309e+11	2.22e+11	0.590	0.555	-3.04e+11	5.
grade_11 42e+11	7.903e+10	1.34e+11	0.590	0.555	-1.84e+11	3.
grade_12 63e+11	3.76e+10	6.38e+10	0.590	0.555	-8.74e+10	1.
grade_13 22e+10	1.439e+10	2.44e+10	0.590	0.555	-3.35e+10	6.
lat 0.234	0.2265	0.004	56.075	0.000	0.219	
renovated 0.073	0.0655	0.004	17.492	0.000	0.058	
0. 0/3	========	========	=======	:======:	========	
=== Omnibus:		14558.020	Durbin-Wa	ntson:		1.
990 Prob(Omnibus):		0.000			640	9892.
683 Skew:		2.680	Prob(JB):		045	,U3 Z ,
0.00 Kurtosis:		29.334			3	3.52e
+14	========	=========				

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.18e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

This is the correlation table between variables

	sqft_living	g median_incom	ne view_num	Waterfront	grade_3
\					
sqft_living	1.000000				-0.011565
median_income	0.337315				-0.004238
view_num	0.281715				-0.002075
Waterfront	0.104637				-0.000561
grade_3	-0.011565			-0.000561	1.000000 -0.000241
grade_4	-0.053935 -0.127198				-0.000241
grade_5 grade_6	-0.12/196				-0.000724
grade_0 grade_7	-0.358915				-0.002137
grade_7 grade_8	0.071115				-0.003738
grade_0 grade_9	0.318499				-0.004232
grade_10	0.369228				-0.001602
grade_10 grade_11	0.345964				-0.001002
grade_11 grade_12	0.238136				-0.000438
grade_12 grade_13	0.144424				-0.000438
lat	0.052155				-0.017283
renovated	0.050829				-0.001285
renovaceu	0.030023	0.00236	0.030480	0.074207	-0.001283
	grade 4	grade_5 grad	le_6 grade_7	grade_8	grade_9
\	8	8 2 - 8	8	8	8
sqft_living	-0.053935 -0	0.127198 -0.312	486 -0.358915	0.071115	0.318499
median_income		0.050634 -0.169			0.185681
view_num	-0.003934 -0	0.013479 -0.059	287 -0.147272	0.010612	0.094153
_ Waterfront	-0.002919	0.012691 -0.007	301 -0.045482	-0.011317	0.007487
grade_3	-0.000241 -0	0.000724 -0.002	197 -0.005738	-0.004252	-0.002526
grade_4	1.000000 -0	0.003766 -0.011	.421 -0.029831	-0.022108	-0.013132
grade_5	-0.003766 1	L.000000 -0.034	363 -0.089757	-0.066521	-0.039511
grade_6	-0.011421 -6	0.034363 1.000	000 -0.272170	-0.201711	-0.119810
grade_7	-0.029831 -0	0.089757 -0.272	1.000000	-0.526882	-0.312951
grade_8	-0.022108 -0	0.066521 -0.201	711 -0.526882	1.000000	-0.231935
grade_9	-0.013132 -0	0.039511 -0.119	810 -0.312951	-0.231935	1.000000
grade_10	-0.008329 -6	0.025060 -0.075	989 -0.198488	-0.147104	-0.087375
grade_11	-0.004854 -6	0.014605 -0.044	286 -0.115678	-0.085732	-0.050922
grade_12	-0.002276 -6	0.006848 -0.026	765 -0.054238	-0.040197	-0.023876
grade_13	-0.000868 -6	0.002613 -0.007	922 -0.020693	-0.015336	-0.009109
lat	-0.016323 -0	0.046573 -0.062	851 -0.040532	0.026330	0.042136
renovated	0.000502 -0	0.010460 0.002	425 -0.017076	0.006251	0.016277
	grade_10 g	grade_11 grade	_12 grade_13	lat	renovated
sqft_living	0.369228	3.345964 0.238	3136 0.144424	0.052155	0.050829
median_income	0.215769	0.134906 0.068	8073 0.021730	0.375826	0.002503
view_num	0.127753 6	0.140282 0.114	607 0.051769	0.006321	0.090480
Waterfront	0.051514 6	0.068410 0.082	899 -0.002025	-0.012157	0.074267
grade_3	-0.001602 -6	0.000934 -0.000	438 -0.000167	-0.017283	-0.001285
grade_4	-0.008329 -0	0.004854 -0.002	276 -0.000868	-0.016323	0.000502

```
grade_5
              -0.025060 -0.014605 -0.006848 -0.002613 -0.046573
                                                                  -0.010460
grade_6
              -0.075989 -0.044286 -0.020765 -0.007922 -0.062851
                                                                   0.002425
grade_7
              -0.198488 -0.115678 -0.054238 -0.020693 -0.040532
                                                                  -0.017076
              -0.147104 -0.085732 -0.040197 -0.015336
grade 8
                                                       0.026330
                                                                   0.006251
grade_9
              -0.087375 -0.050922 -0.023876 -0.009109
                                                        0.042136
                                                                   0.016277
               1.000000 -0.032297 -0.015143 -0.005777
grade_10
                                                        0.052262
                                                                   0.002202
grade_11
              -0.032297
                         1.000000 -0.008825 -0.003367
                                                        0.039372
                                                                  -0.001405
              -0.015143 -0.008825
                                   1.000000 -0.001579
                                                        0.016946
                                                                  -0.000261
grade_12
grade_13
              -0.005777 -0.003367 -0.001579
                                              1.000000
                                                        0.013142
                                                                   0.016067
lat
               0.052262
                         0.039372
                                   0.016946
                                             0.013142
                                                        1.000000
                                                                   0.027908
```

renovated 0.002202 -0.001405 -0.000261 0.016067 0.027908 1.000000

This is the residual plot and qq plot

None Figure(432x288)

Create a New Dataframe of the Co-Efficient Grade between grades for analysis

In [133]: ▶	1	grade	_df		
Out[133]:		grade	regression_coefficient	change_from_previous_grade	•
	0	3	-2500000	0	
	1	4	-2770000	-270000	
	2	5	-2780000	-10000	
	3	6	-2770000	10000	
	4	7	-2760000	10000	
	5	8	-2720000	40000	
	6	9	-2620000	100000	
	7	10	-2460000	160000	
	8	11	-2210000	250000	
	9	12	-1730000	480000	
	10	13	-496000	1234000	•
In [134]: ▶	1 2	<pre>#Make the columsn numeric values grade_df.astype('int64')</pre>			

Out[134]:

	grade	regression_coefficient	change_from_previous_grade
0	3	-2500000	0
1	4	-2770000	-270000
2	5	-2780000	-10000
3	6	-2770000	10000
4	7	-2760000	10000
5	8	-2720000	40000
6	9	-2620000	100000
7	10	-2460000	160000
8	11	-2210000	250000
9	12	-1730000	480000
10	13	-496000	1234000

Out[135]:

	grade	regression_coefficient	change_from_previous_grade	change_from_3
0	3	-2500000	0	0
1	4	-2770000	-270000	-270000
2	5	-2780000	-10000	-280000
3	6	-2770000	10000	-270000
4	7	-2760000	10000	-260000
5	8	-2720000	40000	-220000
6	9	-2620000	100000	-120000
7	10	-2460000	160000	40000
8	11	-2210000	250000	290000
9	12	-1730000	480000	770000
10	13	-496000	1234000	2004000

Create a graph for analyses

```
In [137]:
                   fig, ax = plt.subplots(figsize=(15, 12))
                   ax.bar(grade_df['grade'], grade_df['change_from_3'], color = '#012169',
                3
                   ax.bar(grade_df['grade'], grade_df['change_from_previous_grade'],
                4
                5
                          bottom = (grade_df['change_from_3'] -grade_df['change_from_previous
                6
                                    ,color = '#F2A900', label = 'Change From Previous Grade
                7
                8
                  plt.legend(loc="upper left", fontsize = 20)
                9
                   ax.set title('How Grade Affects Price in Our Model', fontsize = 30)
               10
                  ax.set_xlabel('Grade', fontsize = 18)
                  ax.set ylabel('Affect on Home Price', fontsize = 25)
               11
                   ax.tick_params(axis='x', labelsize=15)
               12
                   ax.tick_params(axis='y', labelsize=12)
                   ax.grid(which = 'major', alpha = .7)
               14
               15
               16
                  plt.tight_layout()
               17
```


Our final model residual graph shows it is pretty evenly distributed between over and under estimating price. It has a slight lean towards overestimating price that should be analyzed further.

Additionally, the QQ plot shows that our model fails to accurately predict houses at either end of the extreme. Beyond two standard deviations from our average price our model becomes inaccurate. This is most likely due to high/low end houses having extremely specific reasons for their price. Our model is too general to account for these factors.

Based off the coefficient for our model. We saw that with all other variables being equal a one dollar increase in median income affects the final price by \$.975. Additionally, we were able to see how grade affects a house from one grade to the next.

Recommendations

Our recommendations are thusly to not focus on improving the grade of a house at the lower end. But heavily prioritize improving the grade of houses beyond 10. We saw an exponential relationship between grade and price meaning it is far more valuable to move up from 10-11 than it is to move from 5-6. This recommendation can also be used for building houses. It makes economic sense to reach a minimum grade of around 5 for new houses being built, but is likely not worth spending money to prioritize a higher grade for these types of houses. However, when building luxury homes achieving the highest grade possible will raise the price significantly.

Additionally, using the coefficient values in our model for locations can give insight into finding undervalued homes in desirable locations.

Farther Analysis

Using the data provided, a more complicated model could be made to improve its accuracy. This may lead to significant multi-collinearity complications and reduce the interpretability of any one variable.

Additionally, more data could be gathered to improve our location metrics. Although median income served as a reasonable proxy for a neighborhood's desirability it's not a perfect predictor. Researching things such as school districts, walkability, or crime would improve the model.

In []: 🔰 1