Completed cohomology, deformation theory, and a torsion local Langlands correspondence

Daniel Miller

August 7, 2016

1 Definitions

Consider the group $GL(2)_{/\mathbb{Q}}$. For each open compact $K \subset GL_2(\mathbf{A}_f)$, let X_K be the variety over \mathbb{Q} underlying the (compactification of the quotient

$$Y_K(\mathbf{C}) = \operatorname{GL}_2(\mathbf{Q}) \setminus (\mathbf{H}^{\pm} \times \operatorname{GL}_2(\mathbf{A}_{\mathrm{f}})) / K.$$

The projective system $\{X_K\}$ admits an action of $GL_2(\mathbf{A}_f)$. Moreover, if ρ is a representation of $GL(2)_{/\mathbf{Q}}$, there is a canonical sheaf, also denoted ρ , on the projective system $\{X_K\}$.

Let k be a finite field, W(k) its ring of Witt vectors. For any Artinian W(k)-algebra A, put

$$\mathrm{H}^{\bullet}(\rho)_{A} = \varinjlim_{K \subset \mathrm{GL}_{2}(\mathbf{A}_{\mathrm{f}})} \mathrm{H}^{1}_{\mathrm{\acute{e}t}}\left((X_{K})_{\overline{\mathbf{Q}}}, \rho_{A}\right).$$

This is an $A[\Gamma_{\mathbf{Q}} \times \mathrm{GL}_2(\mathbf{A}_{\mathrm{f}})]$ -module.

If $w \ge 0$ is an integer, we put $H^{\bullet}(w)_A = H^{\bullet}(\operatorname{sym}^{w-2})_A$. If $A = \varprojlim A_i$ is a pro-artinian W(k)-module, put $H^{\bullet}(\rho)_A = \varprojlim H^{\bullet}(\rho)_{A_i}$.

2 Some deformation theory

For a residual representation $\bar{\rho}: \Gamma_{\mathbf{Q}} \to \mathrm{GL}_2(k)$, we write $\mathfrak{X} = \mathfrak{X}(\bar{\rho})$ for the deformation functor classifying lifts $\Gamma_{\mathbf{Q},S} \to \mathrm{GL}_2(k)$, for some unspecified S. To be precise, we are considering $\mathfrak{X}(\bar{\rho})$ as an ind-(formal scheme). Assume $\bar{\rho}$ is odd and absolutely irreducible; then $\bar{\rho}$ is modular. By [Eme11, 1.2.6], there is a natural isomorphism

$$\bar{\pi}(\bar{\rho}) \simeq \hom_{\Gamma_{\mathbf{Q}}}(\bar{\rho}, \mathrm{H}_k^1)$$

of $GL_2(\mathbf{A}_f)$ -modules, assuming some technical conditions on $\bar{\rho}$. In particular, the hom-set is non-zero.

We define a functor $\mathfrak{H}(\bar{\rho})$ on local artinian W(k)-algebras with residue field k. For such an algebra A, we let $\mathfrak{H}(\bar{\rho})(A)$ be the set of pairs (ρ, f) , where $\rho \in \mathfrak{X}(\bar{\rho})(A)$ and $f : \rho \to H_A^1$ is $A[\Gamma_{\mathbf{Q}}]$ -linear and reduces to some specified $\bar{f} : \bar{\rho} \hookrightarrow H_k^1$.

3 Ordinary parts

We work out [Eme10a; Eme10b] for the group $GL_2(\mathbf{Q}_p)$. Let k be a finite field, W(k) its ring of Witt vectors, and A an artinian local W(k)-algebra. Let M be a locally profinite abelian group, $M^+ \subset M$ an open sub-semigroup. Let π be a finitely generated A-module with smooth M^+ -action. Put

$$\pi^{\operatorname{ord}} = \operatorname{hom}_{M^+}(A[M], \pi).$$

Theorem 3.1. The natural map $\pi^{\text{ord}} \to \pi$ given by evaluation at 1 induces an isomorphism between π^{ord} and the maximal $A[M^+]$ -submodule of π on which M^+ acts invertibly.

Proof. This is essentially the proof of [Eme10a, 3.1.5]. Let B be the image of $A[M^+]$ in $\operatorname{End}_A(\pi)$. Then there is a $B = \prod B_{\mathfrak{p}}$, where each $B_{\mathfrak{p}}$ is local Artinian. This induces a decomposition $\pi = \prod \pi_{\mathfrak{p}}$. Call \mathfrak{p} ordinary if M^+ acts invertibly on $\pi_{\mathfrak{p}}$, and non-ordinary otherwise. We claim that if \mathfrak{p} is ordinary, then $(\pi_{\mathfrak{p}})^{\operatorname{ord}} = \pi_{\mathfrak{p}}$, and that $(\pi_{\mathfrak{p}})^{\operatorname{ord}} = 0$ otherwise. The first claim is obvious: if M^+ acts invertibly on $\pi_{\mathfrak{p}}$, then its action extends uniquely to one of M. If some $m^+ \in M^+$ does not act invertibly on $\pi_{\mathfrak{p}}$, it acts nilpotently, and we may as well assume that $m^+\pi_{\mathfrak{p}} = 0$. But then for $\phi: A[M] \to \pi$, we have

$$\phi(m) = m^+ \cdot \phi((m^+)^{-1}m) = 0,$$

so $\phi = 0$.

Now let $M \subset \operatorname{GL}_2(\mathbf{Q}_p)$ be the subgroup $\binom*{}*$ of diagonal matrices, and M^+ be the sub-semigroup consisting of those $\binom{a}{b}$ with $|a| \geqslant |b|$. Note that if we put $K = \operatorname{GL}_2(\mathbf{Z}_p) \subset \operatorname{GL}_2(\mathbf{Q}_p)$, then by [Bum97, 4.6.2], the natural map $M^+ \to K \backslash G / K$ is surjective. In particular, if π is a spherical representation of $\operatorname{GL}_2(\mathbf{Q}_p)$, it should be determined by its restriction to M^+ . In fact, it should be determined by the action of $\binom{1}{p}$. If π is a smooth G-representation, we define

$$\pi^{\operatorname{ord}} = \operatorname{hom}_{M^+} \left(A[M], \pi^{N_0} \right)_{M-\operatorname{finite}},$$

where $N_0 = \begin{pmatrix} 1 \\ \mathbf{Z}_p \end{pmatrix}$. In the notation of [Eme10a], the functor (-)ord is $Ord_{\overline{B}}$. By [Eme10a, 4.4.6], if π is a smooth G-representation and ρ is a smooth B-representation, then there is a natural isomorphism

$$\hom_G\left(\operatorname{ind}_B^G\rho,\pi\right) = \hom_M\left(\rho,\pi^{\operatorname{ord}}\right).$$

Consider $R^1\pi^{ord}$

4 Representations of $GL(2)_{/\mathbf{Q}}$

Consider the split reductive group $GL(2)_{\mathbb{Q}}$. It has maximal torus

$$T = \begin{pmatrix} * \\ * \end{pmatrix} \subset GL(2).$$

We identify $X^*(T)$ with $\mathbf{Z}^2 = \langle \chi_1, \chi_2 \rangle$ via $\chi_i(g) = g_{ii}$. We have $\mathfrak{gl}(2) = \mathfrak{t} \oplus \mathfrak{gl}(2)_{\chi_1 - \chi_2} \oplus \mathfrak{gl}(2)_{\chi_2 - \chi_1}$. In particular, if we put $\alpha = \chi_1 - \chi_2$, we have $R = \{\pm \alpha\}$. We identify $X_*(T)$ with $X^*(T)$ in the obvious way, e.g. $\chi_1(g) = \begin{pmatrix} g \\ 1 \end{pmatrix}$. Under this identification, $(\pm \alpha)^{\vee} = \pm \alpha$, and the group $W \simeq S_2$ is generated by $(\chi_1, \chi_2) \mapsto (\chi_2, \chi_1)$.

The root lattice $Q = \mathbf{Z} \cdot R = \mathbf{Z}\alpha$ consists of all $n\chi_1 - n\chi_2$. Similarly, $X_0 = \{n\chi_1 + n\chi_2\}$. The weight lattice is $P = \mathbf{Z}\lambda = \{\frac{n}{2}(\chi_1 - \chi_2)\}$, where $\lambda = \frac{1}{2}\alpha$. Thus $P^+ = \mathbf{Z}_{\geqslant 0}\lambda$. The space of dominant weights is $X^+ = 2\mathbf{N} \cdot \lambda + X_0 = \{m\chi_1 + n\chi_2 : m \geqslant n\}$.

The standard representation sym¹ of GL(2) has highest weight χ_1 . Similarly, sym^k has highest weight $k\chi_1$. So sym^k $\otimes \det^d$ has highest weight $k\chi_1 + d(\chi_1 + \chi_2) = (d+k)\chi_1 + \chi_2$. To sum it up, we have the following:

Theorem 4.1. Up to isomorphism, every irreducible representation of GL(2) is of the form $\operatorname{sym}^k \otimes \det^d$ for $k \geq 0$, $d \in \mathbf{Z}$. Such a representation has highest weight (d+k,d).

5 Locally symmetric spaces

We will continue to work with the group $GL(2)_{/\mathbb{Q}}$. Let A = Z(G) be the maximal split central torus in G. Let $M = \bigcap_{\chi \in X^*(G)} \ker(\chi) = SL(2)$, $\mathfrak{m} = \text{Lie}(M)$. Then $\text{Lie}(A) = \mathfrak{t}$ and $\mathfrak{gl}(2) = \mathfrak{m} \oplus \mathfrak{t}$. For $K \subset GL_2(\mathbf{A}_f)$, put

$$Y_K = \operatorname{GL}_2(\mathbf{Q})A(\mathbf{R})^{\circ} \backslash \operatorname{GL}_2(\mathbf{A})/K_{\infty}K.$$

Since $A(\mathbf{R})^{\circ} \backslash \operatorname{GL}_2(\mathbf{R})/K_{\infty} = \mathbf{H}^{\pm}$, this can be rewritten as

$$Y_K = \operatorname{GL}_2(\mathbf{Q}) \setminus (\mathbf{H}^{\pm} \times \operatorname{GL}_2(\mathbf{A}_{\mathrm{f}})) / K.$$

The space of connected components of Y_K is naturally isomorphic to $\widehat{\mathbf{Z}}^{\times}/\det(K)$. It is known that Y_K is a moduli space of elliptic curves with level-K structure. As such, it has the canonical structure of a curve over \mathbf{Q} .

References

- [Bum97] Daniel Bump. Automorphic forms and representations. Vol. 55. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997.
- [Eme10a] Matthew Emerton. "Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties". In: Astérisque 331 (2010), pp. 355–402.
- [Eme10b] Matthew Emerton. "Ordinary parts of admissible representations of p-adic reductive groups II. Derived functors". In: Astérisque 331 (2010), pp. 403–459.
- [Eme11] Matthew Emerton. Local-global compatibility in the p-adic Langlands programme for $GL_{2/\mathbb{Q}}$. 2011. URL: http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf (visited on 10/01/2014).