tingunt.com/apexcalculus Additiona Quostion Given the product rule, and the derivate of $f(x) = \frac{1}{x^2}$ is the function $f'(x) = \frac{1}{x^2}$ Can you use these to anichly establish denoratives of other reciprocal powers. eg. $g(x) = \frac{1}{x^2}$, $h(x) = \frac{1}{x^3}$. (fg)'(n) = f'(n)g(n) + f(n)g'(a)(uN)'(n) = u'(n)v(n) + u(n)v'(n)For $g(n) = \frac{1}{n^2}$, g'(n) = 7= \frac{1}{n} \frac{1}{n} Can then use derivatives of \frac{1}{n} \text{ and product} rule to obtain $g'(n) = (\frac{1}{n})' \cdot \frac{1}{n} + \frac{1}{n} \cdot (\frac{1}{n})'$, by product. $= \frac{1}{n^2} \cdot \frac{1}{n} + \frac{1}{n} \left(-\frac{1}{n^2}\right)$ $= -\frac{1}{n^2} - \frac{1}{n^3} = \frac{2}{n^3}$

For
$$[h(x) = \frac{1}{x^3}] = \frac{1}{x^2} \cdot \frac{1}{x}$$

by prod. rule.
$$[h'(x) = (\frac{1}{x^2})' \cdot \frac{1}{x} + \frac{1}{x^2} \cdot (\frac{1}{x})'$$

$$= \frac{-2}{x^3} \frac{1}{x} + \frac{1}{x^2} \left(\frac{-1}{x^2}\right)$$

$$= \frac{2}{x^4} - \frac{1}{x^4} = \frac{3}{x^4}$$

And 50 on

