11.19 线性变换

(by 姜姜 (translated by 🐻 🞳))

第一部分 线性变换,核与像,维数理论

【习题1.1】设 V 和 W 是线性空间, $T:V \to W$ 是线性映射。

- 1. 证明: T 是单射当且仅当 T 将 V 的线性无关子集映射到 W 的线性无关子集
- 2. 假设 T 是单射且 S 是 V 的一个子集。证明: S 是线性无关的当且仅当 T(S) 是线性无关的
- 3. 设 $eta=\{v_1,v_2,\cdots,v_n\}$ 是 V 的一个基,且 T 是单射且是满射。证明: $T(eta)=\{T(v_1),T(v_2),\cdots,T(v_n)\}$ 是 W 的一个基

【定义】设 V 是一个线性空间, W_1 和 W_2 是 V 的子空间且 $V=W_1\oplus W_2$ 。线性变换 $T:V\to V$ 满足: 对 $\forall x=x_1+x_2,x_1\in W_1,x_2\in W_2$ 都有 $T(x)=x_1$,称 T 为沿 W_2 在 W_1 上的投影。 【习题1.2】 使用上面定义中的记号,假设 $T:V\to V$ 为沿 W_2 在 W_1 上的投影。

- 1. 证明: T 是线性变换, $W_1 = \{x \in V : T(x) = x\}$.
- 2. 证明: $W_1=\operatorname{Im}(T)$ 且 $W_2=\ker(T)$ 。
- 3. 如果 $W_1 = V$,试描述 T。
- 4. 如果 W_1 是零空间,试描述 T。

【习题1.3】 假设 W 试有限维线性空间 V 的一个子空间。

- 1. 证明:存在一个子空间 W' 和一个映射 $T:V\to V$,使得 T 是沿 W' 在 W 上的投影。
- 2. 给出向量空间 V 的子空间 W 的一个例子,使得存在两个在 W 上的投影,它们分别沿两个不同的子空间。

【习题1.4】 设 V 是有限维线性空间, $T:V \to V$ 是线性映射。

- 1. 设 $V = \operatorname{Im}(T) + \ker(T)$,证明: $V = \operatorname{Im}(T) \oplus \ker(T)$
- 2. 设 $\operatorname{Im}(T) \cap \ker(T) = \{0\}$, 证明: $V = \operatorname{Im}(T) \oplus \ker(T)$

温馨提醒: 使用维数的有限性时请说明。

第二部分 线性映射的矩阵表示

【习题2.1】 设 V 和 W 是线性空间,S 是 V 的子集。定义 $S^0=\{T=L(V,W):T(x)=0, \forall x\in S\}$ 。证明下列命题:

- 1. S^0 是 L(V,W) 的子空间
- 2. 如果 S_1 和 S_2 是 V 的子集且 $S_1\subseteq S_2$,那么 $S_2^0\subseteq S_1^0$
- 3. 如果 V_1, V_2 是 V 的子空间,那么 $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$

【习题2.2】 设 V 和 W 是满足 $\dim(V)=\dim(W)$ 的线性空间, $T:V\to W$ 是线性映射。证明: V 和 W 分别存在有序基 β,γ ,使得 $[T]_\beta^\gamma$ 是对角矩阵。

第三部分 线性映射的复合与矩阵乘法

【习题3.1】设 A 是一个 $m\times n$ 矩阵,B 是一个 $n\times p$ 矩阵。用 u_j 和 v_j $j(1\leq j\leq p)$ 表示 AB 和 B 的第 i 列。

(这题小盆友们自己看一下哦,我不讲啦~)

- 1. 设 z 是 F^p 中的一个列向量。证明: Bz 是 B 的列向量的线性组合。特别地,如果 $z=(a_1,a_2,\cdots,a_p)^T$,证明 $Bz=\sum_{j=1}^p a_jv_j$ 。
- 2. 在 1 的基础上证明: AB 的第 j 列是 A 的线性组合,其系数是 B 的列中的元素。
- 3. 对任意行向量 $w \in F^m$,证明: wA 是 A 的行向量的线性组合,其系数是 w 的坐标。

提示: 使用 1 中应用的变换运算的性质

4. 证明 2 中的结论在行上的类推: AB 的第 i 行是 B 的线性组合,其系数是 A 的列中的元素。

(本题答案暂不译)

【习题3.2】 设 V 是一个有限维线性空间, $T:V \to V$ 是线性变换。

- 1. 若 $\mathrm{rank}(T)=\mathrm{rank}(T^2)$,证明: $\mathrm{Im}(T)\cap\ker(T)=\{0\}$ 。进一步证明: $V=\mathrm{Im}(T)\oplus\ker(T)$ 。
- 2. 证明:对某些正整数 k 成立 $V = \operatorname{Im}(T^k) \oplus \ker(T^k)$ 。

【习题3.3】 设 V 是线性空间。确定所有使得 $T=T^2$ 的 V 上的线性变换 T:V o V。

提示: 注意到 $\forall x \in V, x = T(x) + (x - T(x))$,证明: $V = \{y : T(y) = y\} \oplus \ker(T)$

第四部分 可逆性与同构

【习题4.1】 设 V 和 W 是 n 维线性空间, $T:V\to W$ 是线性映射。若 β 是 V 的一个基,证明:T 是一个同构,当且仅当 $T(\beta)$ 是 W 的一个基。

【习题4.2】 设 V 和 W 是有限维线性空间,T:V o W 是一个同构。设 V_0 是 V 的一个子空间。

- 1. 证明: $T(V_0)$ 是 W 的子空间。
- 2. 证明: $\dim(V_0) = \dim(T(V_0))$.

【习题4.3】 设 $T:V\to W$ 是从 n 维线性空间 V 到 m 维线性空间 W 的线性映射。设 β 和 γ 分别是 V 和 W 的有序基。证明: ${\rm rank}(T)={\rm rank}(L_A)$ 且 ${\rm dim}(\ker(T))={\rm dim}(\ker(L_A))$,其中 $A=[T]_\beta^\gamma$

引理:设 V 和 W 是数域 F 上的线性空间, $\{v_1,v_2,\cdots,v_n\}$ 是 V 的一个基。对 W 中的 w_1,w_2,\cdots,w_m ,存在确定且唯一的线性映射 $T:V\to W$ 使得 $T(v_i)=w_i(i=1,2,\cdots,n)$

【习题4.4】 设 V 和 W 是有限维线性空间,基分别为 $eta=\{v_1,v_2,\cdots,v_n\}$ 和

 $\gamma=\{w_1,w_2,\cdots,w_m\}$ 。由引理知:存在线性变换 $T_{ij}:V o W$ 使得 $T_{ij}(v_k)=egin{cases} w_i,k=j\ 0,k
eq j \end{cases}$

首先,证明 $\{T_{ij}:1\leq i\leq m,1\leq j\leq n\}$ 是 L(V,W) 的一个基。然后令 M^{ij} 是 m imes n 矩阵,其 i 行和 j 列全为 1,其余元素为 0,证明: $[T_{ij}]^\gamma_\beta=M^{ij}$ 。由引理又知,存在一个线性变换

 $\Phi: L(V,W) o M_{m imes n}(F)$ 使得 $\Phi(T_{ij}) = M^{ij}$,证明: Φ 是一个同构。

提示: 你可能用到习题4.1中的结论