

- Features
- Ultra low on-resistance.
- P-Channel MOSFET.
- SOT-23 Footprint.
- Low profile(<1.1mm).
- Available in tape and reel.
- Fast switching.

MARKING

■ Absolute Maximum Ratings Ta = 25°C

Parameter	Symbol	Rating	Unit	
Drain-Source Voltage	VDS	-20	V	
Gate-Source Voltage	Vgs	±12		
Continuous Drain Current Vgs=4.5V @ Ta=25°C	lp	-3.7	А	
Continuous Drain Current VGS=4.5V@ TA=70°C	טו	-2.2		
Pulsed Drain Current a	Ірм	-30		
Power Dissipation @ TA=25℃	D-	1.3	W	
Power Dissipation @ TA=70℃	Pb	0.8		
Single Pulse Avalanche Energy b	Eas	11	mJ	
Thermal Resistance.Junction- to-Ambient	RthJA	100	°C/W	
Linera Derating Factor		0.01	W/℃	
Junction Temperature	ТJ	150	°C	
Junction and Storage Temperature Range	Tstg	-55 to 150	C	

Notes:

a.Repetitive Rating :Pulse width limited by maximum junction temperature

b.Starting T_J=25 $^{\circ}$ C, L=1.65mH, R_G=25 Ω , I_{AS}=-3.7A

■ Electrical Characteristics Ta = 25°C

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit	
Drain-source Breakdown voltage	VDSS	ID= -250 μA, VGS = 0V	-20			V	
Zero Gate Voltage Drain Current	Ipss	Vps = -20 V, Vgs = 0V			-1.0		
	1055	Vps = -20 V, Vgs = 0V, Tj=70°C		-25	μA		
Gate-source leadage	Igss	Vgs =±12V			±100	nA	
Gate threshold voltage	VGS(th)	VDS = VGS, ID= -250 μA	-0.40	-0.55	-0.95	V	
Static drain-source on- resistance	Dec.	ID= -3.7A, VGS = -4.5V		0.050	0.065	Ω	
	RDS(on)	ID= -3.1A, VGS = -2.5V		0.080	0.135		
Forward Transconductance	g fs	VDS = -10 V, ID = -3.7 A	6.0			S	
Input capacitance	Ciss	V _{DS} = -10 V,		633			
Output capacitance	Coss	Vgs = 0 V,		145		pF	
Reverse transfer capacitance	Crss	f= 1MHz		110			
Total Gate Charge	Qg			8.0	12		
Gate-Source Charge	Qgs	VDS = -10V ,VGS = -5.0 V , ID= -3.7 A		1.2	1.8	nC	
Gate-Drain Charge	Qgd	7		2.8	4.2		
Turn-on delay time	td(on)	ID= -3.7 A,		350			
Rise time	tr	VDD= -10 V,		48		ns	
Turn-off delay time	td(off)	R _D = 2.7 Ω		588			
Fall time	tr	R _G = 89 Ω		381			
Reverse recovery time	trr	TJ=25℃, IF = -1.0 A,		29	43	ns	
Reverse recovery charge	Qrr	di / dt = -100 A/ μ s *2		11	17	nC	
Continuous source current	Is	MOSFET symbo I showing the			-1.3	A	
Pulsed source current *1	Isм	integral reverse p-n junction diode			-22		
Diode forward voltage	Vsp	TJ=25°C,VGS = 0 V, IS = -1.0 A *2			-1.2	V	

^{*1} Repetitive rating; pulse width limited by max.junction temperature.

^{* 2} Pulse width \leqslant 400 μ s, Duty cycle \leqslant 2%

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current