

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics and Communication Engineering

Major Examination (Even Sem) 2022-23(May, 2023) Class: B Tech ECE 2021 Batch (IV Semester)

Total Number of Questions: 5

21BEC127

Course Title: Digital Communication Engineering Time Allowed: 3 Hrs.

Course Code: ECL 2152 Max Marks: [50]

Instructions / Note:

i. Attempt All Questions. ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.

iii. Assume any missing data to suit the case / derivation / answer (Scientific Calculator is allowed)

SECTION A (Descriptive)

- Q1. With appropriate plots elaborate on these formats: a) Unipolar NRZ b) Unipolar RZ c) Polar NRZ d) Polar RZ e) Manchester (2*5= 10 marks)
- Q2. Explain BFSK generation and demodulation with suitable diagrams. (5+5= 10 marks)
- Q3. What is channel matrix? With help of channel diagrams mention the channel matrices for different types of channels. (2+8=10 marks)

SECTION B (Numerical)

Q4. (10 marks)

Consider two real valued signals, x(t) band-limited to [-500 Hz, 500 Hz] and y(t) band-limited to [-1 kHz, 1 kHz]. For $z(t) = x(t) \cdot y(t)$, the Nyquist sampling frequency (in kHz) is __

Q5.(10 marks)

Let $Q(\sqrt{\gamma})$ be the BER of a BPSK system over an AWGN channel with two-sided noise power spectral density $N_0/2$. The parameter γ is a function of bit energy and noise power spectral density.

A system with two independent and identical AWGN channels with noise power spectral density $N_0/2$ is shown in the figure. The BPSK demodulator receives the sum of outputs of both the channels.

If the BER of this system is $Q(b\sqrt{\gamma})$, then the value of b is _____.

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

<u>School of Electronics and Communication Engineering</u> Minor I Examination (Even Sem) 2022-23(Feb, 2023)

Class: B Tech ECE 2021 Batch (IV Sem) Total Number of Questions: 3

Course Title: Digital Communication Engineering

Time Allowed: 1.5 Hrs.

Course Code: ECL 2152 Max Marks: [20]

Instructions / Note:

i. Attempt All Questions.

ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate, iii. Assume any missing data to suit the case / derivation / answer (Scientific Calculator is allowed)

SECTION A (Descriptive Type)

Q1. Differentiate the following:

- a) Quantizer and Encoder in PCM
- b) Ideal and Natural Sampling
- c) PAM and PPM
- d) Analog and Digital Modulation
- e) SNR and Signal to Quantization Ratio

(2x5=10 marks)

SECTION B (Numericals)

Q2. Find the Nyquist sampling rate of the signal

 $x(t) = sinc(200t) sinc^{2}(1000t)$ in samples/s.

(5 marks)

Q3. Consider a binary digital communication system with equally likely 0's and 1's. When binary 0 is transmitted, the detector input can lie between the levels -0.25 V and +0.25 V with equal probability. When binary 1 is transmitted, the voltage at the detector can have any value between 0 and 1V with equal probability. If the detector has a threshold of 0.2V (i.e., if the received signal is greater than 0.2V, the bit is taken as 1). Find the average bit error probability.

(5 marks)

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Electronics and Communication Engineering

Minor II Examination (Even Sem) 2022-23(March, 2023) Class: B Tech ECE 2021 Batch (IV Sem)

Total Number of Questions: 5

Course Title: Digital Communication Engineering

Time Allowed: 1.5 Hrs.

Course Code: ECL 2152 Max Marks: [20]

Instructions / Note:

i Attempt All Questions.

ü. Support your answer with neat freehand sketches/diagrams, wherever appropriate.

iii. Assume any missing data to suit the case / derivation / answer (Scientific Calculator is allowed)

SECTION A (Descriptive)

- Q1. What is non uniform quantization and why does it give better SNR as compared to uniform quantization technique? (4 marks)
- Q2. Define companding. Differentiate between μ and A law companding. (4 marks)
- Q3. Explain why adaptive delta modulation is better than delta modulation to overcome slope overload distortion and granular noise distortion. (4 marks)

SECTION B (Numerical)

Q4. In a PCM system, if the code word length is increased from 6 to 8 bits, the signal-to-quantization-noise ratio improves by what factor? (4 marks)

Q5. (Write all steps for obtaining correct option below) (4 marks)

The input to a linear delta modulator having a step size Δ = 0.628 is a sine wave with frequency $f_{\scriptscriptstyle m}$ and peak amplitude E_m . If the sampling frequency f_s = 40 kHz, the combination of the sine wave frequency and the peak amplitude, where slope overload will take place is:

E_m	f_m
a) 0.3 V	8kHz
b) 1.5V	4 kHz
c) 1.5 V	2 kHz
d) 3.0 V	1 kHz