Ontology-based Data Access: Theory and Practice

Guohui Xiao

Roman Kontchakov

KRDB Research Centre

re Department of Computer Science & Inf. Systems

Free University of Bozen-Bolzano

Birkbeck, University of London

http://ontop.inf.unibz.it/ijcai-2018-tutorial

as produced, e.g., by PerfectRef

= unions of SPJ queries SiZe $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

as produced, e.g., by PerfectRef

= unions of SPJ queries Size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

PE (positive existential formulas)

= SPJU queries

as produced, e.g., by PerfectRef

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

PE (positive existential formulas)

= SPJU queries

 Π_2 -PE have matrix of the form $\wedge \vee$

= semiconjunctive queries (SCQs)

for ontologies without $\exists y$ on RHS, the size is $|q|\cdot |\mathcal{T}|$

as produced, e.g., by PerfectRef

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

PE (positive existential formulas)

= SPJU aueries

 Π_2 -PE have matrix of the form $\wedge \vee$

= semiconjunctive queries (SCQs)

for ontologies without $\exists y$ on RHS, the size is $|q| \cdot |\mathcal{T}|$

 Σ_3 -PE have matrix of the form $\vee \wedge \vee$

= unions of SCQs

e.g., tree-witness rewriting

size $O(2^{|\Theta_Q|} \cdot |Q|^2)$ with $|\Theta_Q| \leq 3^{|q|}$

as produced, e.g., by PerfectRef

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

PE (positive existential formulas)

= SPJU aueries

 Π_2 -PE have matrix of the form $\wedge \vee$

= semiconjunctive queries (SCQs)

for ontologies without $\exists y$ on RHS, the size is $|q| \cdot |\mathcal{T}|$

 Σ_3 -PE have matrix of the form $\vee \wedge \vee$

= unions of SCQs

e.g., tree-witness rewriting

Size $O(2^{|\Theta_Q|} \cdot |Q|^2)$ with $|\Theta_Q| \leq 3^{|q|}$

 Π_4 -PE have matrix of the form $\wedge \vee \wedge \vee$

e.g., modified tree-witness rewriting without conflicts has size $O(|\Theta_Q| \cdot |Q|^2)$

as produced, e.g., by PerfectRef

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

PE (positive existential formulas)

= SPJU aueries

 Π_2 -PE have matrix of the form $\wedge \vee$

= semiconjunctive queries (SCQs)

for ontologies without $\exists y$ on RHS, the size is $|q| \cdot |\mathcal{T}|$

 Σ_3 -PE have matrix of the form $\vee \wedge \vee$

= unions of SCQs

e.g., tree-witness rewriting

size $O(2^{|\Theta_Q|} \cdot |Q|^2)$ with $|\Theta_Q| \leq 3^{|q|}$

 Π_4 -PE have matrix of the form $\wedge \vee \wedge \vee$

e.g., modified tree-witness rewriting without conflicts has size $O(|\Theta_Q| \cdot |Q|^2)$

NDL (non-recursive datalog)

= PE + shared subformulas = SPJU + views

e.g., Presto produced rewritings of size $|\mathcal{T}|^{O(1)} \cdot 2^{|q|}$

UCQ

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

PE (positive existential formulas)

 Π_2 -PE have matrix of the form $\wedge \vee$

as produced, e.g., by PerfectRef

= semiconjunctive queries (SCQs)

for ontologies without $\exists y$ on RHS, the size is $|q|\cdot |\mathcal{T}|$

 Σ_3 -PE have matrix of the form $\vee \wedge \vee$

= unions of SCQs

= SPJU queries

e.g., tree-witness rewriting

size $O(2^{|\Theta_Q|} \cdot |Q|^2)$ with $|\Theta_Q| \leq 3^{|q|}$

number of tree witnesses

 Π_4 -PE have matrix of the form $\land\lor\land\lor$

e.g., modified tree-witness rewriting without conflicts has size $O(|\Theta_Q|\cdot |Q|^2)$

NDL (non-recursive datalog)

= PE + shared subformulas = SPJU + views

e.g., Presto produced rewritings of size $|\mathcal{T}|^{O(1)} \cdot 2^{|q|}$

FO (first-order formulas)

= PE + negation \approx RA

UCQ

as produced, e.g., by PerfectRef

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

PE (positive existential formulas)

= SPJU queries

 Π_2 -PE have matrix of the form $\wedge \vee$

= semiconjunctive queries (SCQs)

for ontologies without $\exists y$ on RHS, the size is $|q|\cdot |\mathcal{T}|$

 Σ_3 -PE have matrix of the form $\vee \wedge \vee$

= unions of SCQs

e.g., tree-witness rewriting

size $O(2^{|\Theta_Q|} \cdot |Q|^2)$ with $|\Theta_Q| \leq 3^{|q|}$

 Π_4 -PE have matrix of the form $\land\lor\land\lor$

e.g., modified tree-witness rewriting without conflicts has size $O(|\Theta_Q|\cdot |Q|^2)$

NDL (non-recursive datalog)

= PE + shared subformulas = SPJU + views

e.g., Presto produced rewritings of size $|\mathcal{T}|^{O(1)} \cdot 2^{|q|}$

(first-order formulas)

= PE + negation \approx RA

no combined approach (no additional constants, no assumptions on data)

$$egin{aligned} A_1(x) &
ightarrow &\exists y \, P(x,y) & P(x,y) &
ightarrow R(x,y) & P(x,y)
ightarrow Q(y,x) \ A_2(x) &
ightarrow &\exists y \, S_1(x,y) &
ightarrow S_1(x,y)
ightarrow S_2(x,y) \ A_3(x) &
ightarrow &\exists y \, Q(x,y) & \exists y \, Q(y,x)
ightarrow &\exists y \, S_1(x,y) \end{aligned}$$

$$A_1(x) \to \exists y \ P(x,y) \qquad P(x,y) \to R(x,y) \qquad P(x,y) \to Q(y,x)$$

$$A_2(x) \to \exists y \ S_1(x,y) \qquad S_1(x,y) \to S_2(x,y)$$

$$A_3(x) \to \exists y \ Q(x,y) \qquad \exists y \ Q(y,x) \to \exists y \ S_1(x,y)$$

$$C_{\mathcal{O}}^{A_2(a)} \qquad C_{\mathcal{O}}^{A_3(a)}$$

$$C_{\mathcal{O}}^{A_1(a)} \qquad C_{\mathcal{O}}^{A_3(a)}$$

$$C_{\mathcal{O}}^{A_1(a)} \qquad C_{\mathcal{O}}^{A_1(a)} \qquad C_{\mathcal{O}}^{A_3(a)}$$

$$C_{\mathcal{O}}^{A_1(a)} \qquad C_{\mathcal{O}}^{A_1(a)} \qquad$$

$$q' = igvee_{\Theta \subseteq \Theta_Q ext{ compatible}} \Big(igwedge_{S(z) \in q \setminus q_\Theta} S(z) \ \land igwedge_{\mathfrak{t} \in \Theta} ext{tw}_{\mathfrak{t}} \Big)$$

5 **compatible** subsets: \emptyset , $\{\mathfrak{t}_1\}$, $\{\mathfrak{t}_2\}$, $\{\mathfrak{t}_3\}$ and $\{\mathfrak{t}_1,\mathfrak{t}_2\}$ (exponentially many in general)

a map from variables of q to $\operatorname{ind}(\mathcal{A})$

a homomorphism $q \to \mathfrak{C}_{\mathcal{O}}(\mathcal{D})$ an compatible subset of Θ_Q such that 1. each tree witness is 'generated' by the data

2. each atom outside tree witnesses is 'present' in the data

Tree Witness Rewritings as Hypergraphs

Tree Witness Rewritings as Hypergraphs

OMQ hypergraph

vertices = query atoms hyperedges = sets of query atoms that can be mapped to trees

Tree Witness Rewritings as Hypergraphs

OMQ hypergraph

vertices = query atoms

hyperedges = sets of query atoms that can be mapped to trees

$$f_H = igvee_{E' ext{ independent}} \Big(igwedge_{v \in V \setminus V_{E'}} p_v \ \land igwedge_{e \in E'} p_e\Big)$$

hypergraph function f_H

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by

0, 1, or a literal over p_1,\ldots,p_n

P returns 1 on an assignment $\alpha\colon\{p_1,\ldots,p_n\}\to\{0,1\}$ if there is an independent subset in H that covers all zeroes under α

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by

0, 1, or a literal over p_1,\ldots,p_n

P returns 1 on an assignment $\alpha \colon \{p_1, \dots, p_n\} \to \{0, 1\}$ if there is an independent subset in H that covers all zeroes under α

a HGP is monotone if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by

0, 1, or a literal over p_1, \ldots, p_n

P returns 1 on an assignment $\alpha \colon \{p_1,\ldots,p_n\} \to \{0,1\}$ if there is an independent subset in H that covers all zeroes under α

a HGP is **monotone** if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

 $\mathsf{m}\Pi_{3} \subsetneq \mathsf{mAC}^{0} \subsetneq \mathsf{mNC}^{1} \subsetneq \mathsf{mNL/poly} \subseteq \mathsf{mLogCFL/poly} \subsetneq \mathsf{mP/poly} \subsetneq \mathsf{mNP/poly}$

monotone Boolean formulas (PE)

nondeterministic Boolean circuits (FO)

monotone circuits (NDL)

Roadmap for Succinctness Proofs

ontology depth

 $0 = \text{no axioms with } \exists y \text{ on the right-hand side}$

 $d~pprox~{
m trees}~{\mathfrak C}^{ au(a)}_{\mathcal O}$ of labelled nulls are of depth at most d

Succinctness Landscape

OMQ Answering Combined Complexity

OMQ Answering Combined Complexity

NB: polynomial-size NDL rewritings exist in all cases when OMQ answering is in LogCFL

OMQ Answering Combined Complexity

NB: polynomial-size NDL rewritings exist in all cases

when OMQ answering is in LogCFL

constructed polynomial-size NDL rewritings that can be evaluated in LogCFL/NL

LogCFL means that they are highly parallelisable

References

- M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii & M. Zakharyaschev. "Ontologymediated queries: combined complexity and succinctness of rewritings via circuit complexity". In: JACM, 2018.
- 2. M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, V. Ryzhikov & M. Zakharyaschev. "The complexity of ontology-based data access with OWL 2 QL and bounded treewidth queries". In: Proc. of the 36th ACM Symposium on Principles of Database Systems, PODS 2017, 2017.
- 3. G. Gottlob, S. Kikot, R. Kontchakov, V. V. Podolskii, T. Schwentick & M. Zakharyaschev. "The Price of Query Rewriting in Ontology-Based Data Access". In: Artificial Intelligence, 213:42–59, 2014.
- 4. R. Rosati & A. Almatelli. "Improving query answering over DL-Lite ontologies". In: Proc. of the 12th Int. Conf. on Principles of Knowledge Representation & Reasoning, KR'10, pp. 290–300. AAAI, 2010.
- M. Thomazo. "Compact rewritings for existential rules". In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence IJCAI 2013, pp. 1125–1131. IJCAI/AAAI, 2013.