CONTENTS The Endian Class

Contents

1	\mathbf{The}	Endian Class															1
	1.1	Using Endian]
	1.2	Final Thoughts															1

1 The Endian Class

The Endian Class is a simple little class for testing endianess on a system. Its used primarily (for this project) in determining the placement of HI and LO digits of number data. For example an uint32_t has a size of four bytes, and the first two and latter two bytes are each a digit of type uint16_t. Which is the Hi or Lo digit? Use the Endian class to find out.

1.1 Using Endian

To use Endian just make use of its members directly as seen in Example 1.

```
Example 1: Testing Endianess

uint32_t num = 1048833;

// 1048833 == [0000 0000 0001 0000][0000 0001 0000 0001]

uint16_t* numLoPart = nullptr;

if(cg::Endian::litte)

/*system is little endian*/
numLoPart = (uint16_t) #

else

/*system is big endian*/
numLoPart = ((uint16_t) &num) + 1; //Move to the first uint16_t
data plus 1 unit of uint16_t in the significance direction.

*numLoPart = 0; // num == 1048576

// 1048576 == [0000 0000 0001 0000][0000 0000 0000]
```

1.2 Final Thoughts

A great example is in the source code for the Num<T> class header. The member functions use the endian class to detect system endianess to properly decompose larger data types into multiple smaller data types as a reference or copy.