

Fig. 1 20

40

F 11 20 01 24 T = 23 10 E 55 10 00 T

Figure 10

Fig - 10

Fig. 11

Fig. 11

v₂

v₁

v₁

Fig. 3. A graph showing the variation of ρ with T .

1. 0 5 0 2 F = 2 2 2 E 2 0 0 0 0

Fig - 13

FIG - 14

FIGURE 21

FIG. 21

FIG. 21

21

21

FIG 49 \$22

F(5) - 22

E^{ij} E^{jk} E^{ki}

卷之三

17

Fig. 1 - ~~Fig. 5~~ 26
17

Fig - 31

TOE SLIP = SWELLING

F9 - 31

Brown friction

ANCHORING POINT

decoupling TUNER

TAKEDOWN ASSEMBLY
DENDROLOGY
MECHANISM

polymer
matrix

TAKE DOWN