SEQUENCE LISTING

```
<110> Renner, Wolfgang A.
      Bachmann, Martin
      Tissot, Alain
      Maurer, Patrick
      Lechner, Franziska
Sebbel, Peter
Piossek, Christine
<120> Molecular Antigen Array
<130> 1700.0190004
<140> (To be assigned)
<141> 2002-01-18
<150> US 60/262,379
<151> 2001-01-19
<150> US 60/288,549
<151> 2001-05-04
<150> US 60/326,998
<151> 2001-10-05
<150> US 60/331,045
<151> 2001-11-07
<160> 350
<170> PatentIn Ver. 2.1
<210> 1
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                       41
ggggacgcgt gcagcaggta accaccgtta aagaaggcac c
<210> 2
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 2
cggtggttac ctgctgcacg cgttgcttaa gcgacatgta gcgg
                                                                      44
<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Primer
<400> 3
                                                                   20
ccatgaggcc tacgataccc
<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 4
                                                                   25
ggcactcacg gcgcgcttta caggc
<210> 5
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 5
                                                                    47
ccttctttaa cggtggttac ctgctggcaa ccaacgtggt tcatgac
<210> 6
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    40
aagcatgctg cacgcgtgtg cggtggtcgg atcgcccggc
<210> 7
<211> 90
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 7
gggtctagat tcccaaccat tcccttatcc aggctttttg acaacgctat gctccgcgcc 60
catcgtctgc accagctggc ctttgacacc
<210> 8
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
```

```
<400> 8
gggtctagaa ggaggtaaaa aacgatgaaa aagacagcta tcgcgattgc agtggcactg 60
gctggtttcg ctaccgtagc gcaggccttc ccaaccattc ccttatcc
<210> 9
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
                                                                   31
cccgaattcc tagaagccac agctgccctc c
<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 10
                                                                    24
cctgcggtgg tctgaccgac accc
<210> 11
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 11
                                                                    41
ccgcggaagá gccaccgcaa ccaccgtgtg ccgccaggat g
<210> 12
<211> 33
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 12
ctatcatcta gaatgaatag aggattcttt aac
                                                                    33
<210> 13
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Modified ribosome
      binding site
```

```
<400> 13
aggaggtaaa aaacg
<210> 14
<211> 21
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: signal peptide
<400> 14
Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala
Thr Val Ala Gln Ala
             20
<210> 15
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: modified Fos
      construct
<400> 15
Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu
                                      10
  1
Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu
                                 25
Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly Gly Cys
<210> 16
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: peptide linker
<400> 16
Ala Ala Ser Gly Gly
  1
<210> 17
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: peptide linker
<400> 17
Gly Gly Ser Ala Ala Ala
```

```
<210> 18
<211> 256
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Fos fusion construct
gaattcagga ggtaaaaaac gatgaaaaag acagctatcg cgattgcagt ggcactggct 60
ggtttcgcta ccgtagcgca ggcctgggtg ggggcggccg cttctggtgg ttgcggtggt 120
ctgaccgaca ccctgcaggc ggaaaccgac caggtggaag acgaaaaatc cgcgctgcaa 180
accgaaatcg cgaacctgct gaaagaaaaa gaaaagctgg agttcatcct ggcggcacac 240
ggtggttgct aagctt
<210> 19
<211> 52
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Fos fusion construct
<400> 19
Ala Ala Ser Gly Gly Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala
Glu Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile
Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala
His Gly Gly Cys
     50
<210> 20
<211> 261
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Fos fusion
<220>
<221> CDS
<222> (22)..(240)
<400> 20
gaattcagga ggtaaaaaac g atg aaa aag aca gct atc gcg att gca gtg
                         Met Lys Lys Thr Ala Ile Ala Ile Ala Val
                                                                    99
gca ctg gct ggt ttc gct acc gta gcg cag gcc tgc ggt ggt ctg acc
Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Cys Gly Gly Leu Thr
                 15
                                      20
```

gac acc ctg cag gcg gaa acc gac cag gtg gaa gac gaa aaa tcc gcg 1. Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu Asp Glu Lys Ser Ala 30 35 40	47
ctg caa acc gaa atc gcg aac ctg ctg aaa gaa aaa gaa aag ctg gag 1 Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu 45 50 55	95
Phe Ile Leu Ala Ala His Gly Gly Cys Gly Gly Ser Ala Ala Ala 60 65 70	40 61
<210> 21 <211> 73 <212> PRT <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Fos fusion construct	
<pre><400> 21 Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15</pre>	
Thr Val Ala Gln Ala Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu 20 25 30	
Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala 35 40 45 .	
Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His 50 55 60	
Gly Gly Cys Gly Gly Ser Ala Ala Ala 65 70	
<210> 22 <211> 196 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Fos fusion construct	
<220> <221> CDS <222> (34)(189)	
<pre><400> 22 gaattcagga ggtaaaaaga tatcgggtgt ggg gcg gcc gct tct ggt ggt tgc 5 Ala Ala Ala Ser Gly Gly Cys 1 5</pre>	54
ggt ggt ctg acc gac acc ctg cag gcg gaa acc gac cag gtg gaa gac 1 Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu Asp 10 15 20	102

150 gaa aaa tcc gcg ctg caa acc gaa atc gcg aac ctg ctg aaa gaa aaa Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys 30 196 gaa aag ctg gag ttc atc ctg gcg gca cac ggt ggt tgc taagctt Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly Gly Cys 45 <210> 23 <211> 52 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Fos fusion <400> 23 Ala Ala Ala Ser Gly Gly Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly Gly Cys 50 <210> 24 <211> 204 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Fos fusion construct <400> 24 gaattcagga ggtaaaaaac gatggcttgc ggtggtctga ccgacaccct gcaggcggaa 60 accgaccagg tggaagacga aaaatccgcg ctgcaaaccg aaatcgcgaa cctgctgaaa 120 gaaaaagaaa agctggagtt catcctggcg gcacacggtg gttgcggtgg ttctgcggcc 180 gctgggtgtg gggatatcaa gctt <210> 25 <211> 56 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Fos fusion construct <400> 25 Lys Thr Met Ala Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr 10 Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn

```
25
             20
Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly
                           40
        35
Gly Cys Gly Gly Ser Ala Ala Ala
     50
<210> 26
<211> 26
<212> PRT
<213> Homo sapiens
<400> 26
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala
             20
<210> 27
<211> 262
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Fos fusion
      construct
<400> 27
gaattcaggc ctatggctac aggctcccgg acgtccctgc tcctggcttt tggcctgctc 60
tgcctgcct ggcttcaaga gggcagcgct gggtgtgggg cggccgcttc tggtggttgc 120
ggtggtctga ccgacacct gcaggcggaa accgaccagg tggaagacga aaaatccgcg 180
ctgcaaaccg aaatcgcgaa cctgctgaaa gaaaaagaaa agctggagtt catcctggcg 240
gcacacggtg gttgctaagc tt
<210> 28
<211> 52
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Fos fusion
      construct
<400> 28
Ala Ala Ser Gly Gly Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala
Glu Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile
Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala
His Gly Gly Cys
     50
```

```
<211> 261
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Fos fusion
<220>
<221> CDS
<222> (7)..(240)
<400> 29
gaatte atg get aca gge tee egg acg tee etg ete etg get ttt gge
                                                                   48
       Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly
ctg ctc tgc ctg ccc tgg ctt caa gag ggc agc gct tgc ggt ggt ctg
                                                                   96
Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Cys Gly Gly Leu
                                         25
                                                                   144
acc gac acc ctg cag gcg gaa acc gac cag gtg gaa gac gaa aaa tcc
Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu Asp Glu Lys Ser
gcg ctg caa acc gaa atc gcg aac ctg ctg aaa gaa aaa gaa aag ctg
                                                                   192
Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu
                                                                   240
gag ttc atc ctg gcg gca cac ggt ggt tgc ggt ggt tct gcg gcc gct
Glu Phe Ile Leu Ala Ala His Gly Gly Cys Gly Gly Ser Ala Ala Ala
         65
gggtgtggga ggcctaagct t
                                                                   261
<210> 30
<211> 78
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Fos fusion
      construct
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Cys Gly Gly Leu Thr Asp
Thr Leu Gln Ala Glu Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu
Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe
Ile Leu Ala Ala His Gly Gly Cys Gly Gly Ser Ala Ala Ala
```

```
<210> 31
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 31
                                                                   44
cctgggtggg ggcggccgct tctggtggtt gcggtggtct gacc
<210> 32
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    44
ggtgggaatt caggaggtaa aaagatatcg ggtgtggggc ggcc
<210> 33
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
                                                                    47
ggtgggaatt caggaggtaa aaaacgatgg cttgcggtgg tctgacc
<210> 34
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 34
gcttgcggtg gtctgacc
                                                                    18
<210> 35
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 35
                                                                    27
ccaccaagct tagcaaccac cgtgtgc
<210> 36
<211> 54
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
ccaccaagct tgatatcccc acacccagcg gccgcagaac caccgcaacc accg
                                                                    54
<210> 37
<211> 32
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 37
ccaccaagct taggcctccc acacccagcg gc
                                                                    32
<210> 38
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 38
                                                                    29
ggtgggaatt caggaggtaa aaaacgatg
<210> 39
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 39
                                                                    32
ggtgggaatt caggcctatg gctacaggct cc
<210> 40
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 40
                                                                    27
ggtgggaatt catggctaca ggctccc
<210> 41
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Primer
<400> 41
gggtctagaa tggctacagg ctcccggacg tccctgctcc tggcttttgg cctgctctg 59
<210> 42
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 42
                                                                   58
cgcaggcctc ggcactgccc tcttgaagcc agggcaggca gagcaggcca aaagccag
<210> 43
<211> 402
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Modified bee
      venom phospholipase A2
<220>
<221> CDS
<222> (1)..(402)
<400> 43
atc atc tac cca ggt act ctg tgg tgt ggt cac ggc aac aaa tct tct
                                                                    48
Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Lys Ser Ser
                                      10
                                                                    96
ggt ccg aac gaa ctc ggc cgc ttt aaa cac acc gac gca tgc tgt cgc
Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys Cys Arg
             20
acc cag gac atg tgt ccg gac gtc atg tct gct ggt gaa tct aaa cac
                                                                    144
Thr Gln Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser Lys His
         35
ggg tta act aac acc gct tct cac acg cgt ctc agc tgc gac tgc gac
                                                                    192
Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp Cys Asp
     50
                          55
gac aaa ttc tac gac tgc ctt aag aac tcc gcc gat acc atc tct tct
                                                                    240
Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ala Asp Thr Ile Ser Ser
                      70
                                          75
 65
                                                                    288
tac ttc gtt ggt aaa atg tat ttc aac ctg atc gat acc aaa tgt tac
Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr
                 85
                                      90
aaa ctg gaa cac ccg gta acc ggc tgc ggc gaa cgt acc gaa ggt cgc
                                                                    336
Lys Leu Glu His Pro Val Thr Gly Cys Gly Glu Arg Thr Glu Gly Arg
            100
                                                                    384
tgc ctg cac tac acc gtt gac aaa tct aaa ccg aaa gtt tac cag tgg
Cys Leu His Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp
        115
                             120
```

```
402
ttc gac ctg cgc aaa tac
Phe Asp Leu Arg Lys Tyr
   130
<210> 44
<211> 134
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Modified bee
      venom phospholipase A2
<400> 44
Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Lys Ser Ser
Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys Cys Arg
Thr Gln Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser Lys His
Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp Cys Asp
Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ala Asp Thr Ile Ser Ser
                     70
Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr
Lys Leu Glu His Pro Val Thr Gly Cys Gly Glu Arg Thr Glu Gly Arg
Cys Leu His Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp
        115
                            120
Phe Asp Leu Arg Lys Tyr
    130
<210> 45
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 45
                                                                   19
ccatcatcta cccaggtac
```

<210> 46 <211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer	
<400> 46 cccacaccca gcggccgcgt atttgcgcag gtcg	34
<210> 47 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 47 cggtggttct gcggccgcta tcatctaccc aggtac	36
<210> 48 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 48 ttagtatttg cgcaggtcg	19
<210> 49 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 49 ccggctccat cggtgcag	18
<210> 50 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 50 accaccagaa gcggccgcag gggaaacaca tctgcc	36
<210> 51 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 51	

cggtggttct gcggccgctg gctccatcgg tgcag	35
<210> 52 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 52 ttaaggggaa acacatctgc c	21
<210> 53 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 53 actagtctag aatgagagtg aaggagaaat atc	33
<210> 54 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 54 tagcatgcta gcaccgaatt tatctaattc caataattct tg	42
<210> 55 <211> 51 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 55 gtagcaccca ccaaggcaaa gctgaaagct acccagctcg agaaactggc a	51
<210> 56 <211> 48 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 56 caaagctcct attcccactg ccagtttctc gagctgggta gctttcag	48

```
<210> 57
<211> 36
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 57
                                                                   36
ttcggtgcta gcggtggctg cggtggtctg accgac
<210> 58
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    37
gatgctgggc ccttaaccgc aaccaccgtg tgccgcc
<210> 59
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: JUN amino acid
      sequence
<400> 59
Cys Gly Gly Arg Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu Lys
Ala Gln Asn Ser Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu Gln
                                  25
Val Ala Gln Leu Lys Gln Lys Val Met Asn His Val Gly Cys
<210> 60
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: FOS amino
      acid sequence
<400> 60
Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu
Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu
Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly Gly Cys
         35
                                                   45
```

	<210> 61 <211> 33 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 61 ccggaattca tgtgcggtgg tcggatcgcc cgg	33
,	<210> 62 <211> 39 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 62 gtcgctaccc gcggctccgc aaccaacgtg gttcatgac	39
	<210> 63 <211> 50 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
The state of the s	<400> 63 gttggttgcg gagccgcggg tagcgacatt gacccttata aagaatttgg	50
	<210> 64 <211> 38 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 64 cgcgtcccaa gcttctacgg aagcgttgat aggatagg	38
	<210> 65 <211> 33 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 65 ctagccgcgg gttgcggtgg tcggatcgcc cgg	33
	<210> 66 <211> 38 <212> DNA	

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    38
cgcgtcccaa gcttttagca accaacgtgg ttcatgac
<210> 67
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 67
                                                                    31
ccggaattca tggacattga cccttataaa g
<210> 68
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 68
                                                                    45
ccgaccaccg caacccgcgg ctagcggaag cgttgatagg atagg
<210> 69
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    47
ctaatggatc cggtggggc tgcggtggtc ggatcgcccg gctcgag
<210> 70
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    39
gtcgctaccc gcggctccgc aaccaacgtg gttcatgac
<210> 71
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Primer
<400> 71
                                                                   31
ccggaattca tggacattga cccttataaa g
<210> 72
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 72
                                                                    48
ccgaccaccg cagccccac cggatccatt agtacccacc caggtagc
<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
gttggttgcg gagccgcggg tagcgaccta gtagtcagtt atgtc
                                                                    45
<210> 74
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 74
cgcgtcccaa gcttctacgg aagcgttgat aggatagg
                                                                    38
<210> 75
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 75
                                                                    33
ctagccgcgg gttgcggtgg tcggatcgcc cgg
<210> 76
<211> 38
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer
<400> 76
```

	cgcgtcccaa gcttttagca accaacgtgg ttcatgac	38
	<210> 77 <211> 30 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 77 ccggaattca tggccacact tttaaggagc	30
	<210> 78 <211> 38 <212> DNA <213> Artificial Sequence	
TOTAL STATE OF THE	<220> <223> Description of Artificial Sequence: Primer	
	<400> 78 cgcgtcccaa gcttttagca accaacgtgg ttcatgac	38
the state of the s	<210> 79 <211> 31 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 79 ccggaattca tggacattga cccttataaa g	31
	<210> 80 <211> 51 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 80 cctagagcca cctttgccac catcttctaa attagtaccc acccaggtag c	51
	<210> 81 <211> 48 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Primer	
	<400> 81 gaagatggtg gcaaaggtgg ctctagggac ctagtagtca gttatgtc	48

```
<210> 82
<211> 38
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 82
                                                                    38
cgcgtcccaa gcttctaaac aacagtagtc tccggaag
<210> 83
<211> 36
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 83
                                                                    36
gccgaattcc tagcagctag caccgaattt atctaa
<210> 84
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 84
                                                                    33
ggttaagtcg acatgagagt gaaggagaaa tat
<210> 85
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 85
                                                                     30
taaccgaatt caggaggtaa aaagatatgg
<210> 86
<211> 35
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
 <400> 86
                                                                     35
 gaagtaaagc ttttaaccac cgcaaccacc agaag
 <210> 87
 <211> 33
 <212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 87
tcgaatgggc cctcatcttc gtgtgctagt cag
<210> 88
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Fos fusion
      construct
<400> 88
Glu Phe Arg Arg
<210> 89
<211> 183
<212> PRT
<213> Hepatitis B virus
<400> 89
Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp
                                 25
Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys
Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile
Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys
Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg
Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr
 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro
                         135
 Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr
                                         155
 Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser
                 165
                                     170
 Gln Ser Arg Gly Ser Gln Cys
```

```
<210> 90
```

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 90

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys
35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Thr 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Thr Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Cys Val Ile Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Gly Ser Gln Cys 180

<210> 91

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 91

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr
1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg
195 200 205

Glu Ser Gln Cys 210

<210> 92

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 92

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr
1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Asn Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140 Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr
165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 93

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 93

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu

1 5 10 15

Ser Phe Leu Pro Thr Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Cys Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 94

<211> 212

<212> PRT

<213> Hepatitis B virus

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Val Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro $180 \\ \hspace*{1.5cm} 185 \\ \hspace*{1.5cm} 190 \\ \hspace*{1.5cm}$

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 95

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 95

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Asp Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Val Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 96

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 96

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr
1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro Gln 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 97

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 97

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val

Tyr Lys Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr
165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Gly Ser Gln Cys 210

```
<210> 98
```

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 98

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Phe Arg Asp Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Asp Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Ser Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Cys Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 99

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 99

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60 Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 100

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 100

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile
20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg His Ala Ile Leu Cys Trp Gly Asp Leu Arg Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 101

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 101

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Asp Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Phe Arg Asp Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Ala Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln
115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Cys 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 102

<211> 183

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
human Hepatitus B construct

<400> 102

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 103

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 103

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Ser 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg

Glu Ser Gln Cys 210

<210> 104

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 104

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 105

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 105

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp 50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 106

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 106

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp

Thr Ala Ser Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys

40

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu

35

120

135

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val

140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 108

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 108

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 · 205

Glu Ser Gln Cys 210

```
<210> 109
<211> 212
<212> PRT
```

<213> Hepatitis B virus

<400> 109

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Thr Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 110

<211> 212 <212> PRT

<213> Hepatitis B virus

<400> 110

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30 Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Phe Glu Cys Ser Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 111

<211> 212

<212> PRT

<213> Hepatitis B virus

<220>

<221> UNSURE

<222> (28)

<223> May be any amino acid.

<400> 111

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Xaa Asp Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80 His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Ile Thr 85 90 95

Leu Ser Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Thr Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln
115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Thr Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 112

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 112

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Asn Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160 Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 113

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 113

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Cys Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Glu Ser Gln Cys 210 <211> 212

<212> PRT

<213> Hepatitis B virus

<400> 114

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Pro Gln Cys 210

<210> 115

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 115

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Ser Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln
115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 116

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 116

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr
1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Leu Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 117

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 117

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Lys Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

```
Glu Ser Gln Cys
210
```

<210> 118

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 118

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ala 50 55 60

Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 119

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 119

Ser Phe Leu Pro Ser Asp Phe Tyr Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Thr Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Gln Asp Pro Thr 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Val Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Val Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Gln Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Cys Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 120

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 120

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg His Val Phe Leu Cys Trp Gly Asp 50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Thr 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 121

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 121

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Thr Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210 <211> 212

<212> PRT

<213> Hepatitis B virus

<400> 122

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 \$120 \$125

Leu Leu Trp Phe His Ile Ser Cys Leu Ile Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 123

<211> 183

<212> PRT <213> Hepatitis B virus

<400> 123

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp 50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Val 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Ala Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 124

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 124

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr
1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Asn $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Val Ser Arg Asp 100 105 110

Leu Val Val Gly Tyr Val Asn Thr Thr Val Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160 Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 125

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 125

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp 50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Thr Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 126

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 126

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr

10

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu

15

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His

70

75

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Thr Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 128

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 128

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 . 80

His Thr Ala Leu Arg Gln Arg Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln
115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Thr Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 129

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 129

Met Gln Leu Phe His Leu Cys Leu Val Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ala 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Asn Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 150

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210 <211> 212

<212> PRT

<213> Hepatitis B virus

<400> 130

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr
1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Ala Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 131

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 131

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ala Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 132

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 132

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Cys Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 175 Gln Ser Arg Gly Ser Gln Cys 180 <210> 133 <211> 3221 <212> DNA <213> Hepatitis B virus <220> <221> CDS <222> (1901)..(2458) <400> 133 ttccactgcc ttccaccaag ctctgcagga ccccagagtc aggggtctgt attttcctgc 60 tggtggctcc agttcaggaa cagtaaaccc tgctccgaat attgcctctc acatctcgtc 120 aatctccgcg aggactgggg accctgtgac gaacatggag aacatcacat caggattcct 180 aggacccctg ctcgtgttac aggcggggtt tttattgttg acaagaatcc tcacaatacc 240 gcagagtcta gactcgtggt ggacttctct caattttata gggggatcac ccgtgtgtct 300 tggccaaaat tcgcagtccc caacctccaa tcactcacca acctcctgtc ctccaatttg 360 tcctggttat cgctggatgt gtctgcggcg ttttatcata ttcctcttca tcctgctgct 420 atgcctcatc ttcttattgg ttcttctgga ttatcaaggt atgttgcccg tttgtcctct 480 aattccagga tcaacaacaa ccagtacggg accatgcaaa acctgcacga ctcctgctca 540 aggcaactct atgtttccct catgttgctg tacaaaacct acggttggaa attgcacctg 600 tattcccatc ccatcgtcct gggctttcgc aaaataccta tgggagtggg cctcagtccg 660 tttctcttgg ctcagtttac tagtgccatt tgttcagtgg ttcgtagggc tttcccccac 720 tgtttggctt tcagctatat ggatgatgtg gtattggggg ccaagtctgt acagcatcgt 780 gagtcccttt ataccgctgt taccaatttt cttttgtctc tgggtataca tttaaaccct 840 aacaaaacaa aaagatgggg ttattcccta aacttcatgg gttacataat tggaagttgg 900 ggaacattgc cacaggatca tattgtacaa aagatcaaac actgttttag aaaacttcct 960 gttaacaggc ctattgattg gaaagtatgt caaagaattg tgggtctttt gggctttgct 1020 gctccattta cacaatgtgg atatcctgcc ttaatgcctt tgtatgcatg tatacaggct 1080 aaacaggett teaetttete geeaacttae aaggeettte taagtaaaca gtacatgaac 1140 ctttaccccg ttgctcggca acggcctggt ctgtgccaag tgtttgctga cgcaaccccc 1200 actggttggg gcttggccat aggccatcag cgcatgagtg gaacctttgt ggctcctctg 1260 ccgatccata ctgcggaact cctagccgct tgtattgctc gcagccggtc tggagcaaag 1320

ctcatcggaa ctgacaattc tgtcgtcctc tcgcggaaat atacatcgtt tccatggctg 1380

ctaggctgta c	tgccaactg ga	tccttcgc.	gggacgt	cct	ttgtt	ctac	gt c	ccgt	cggcg	1440
ctgaatcccg c	ggacgaccc ct	ctcggggc	cgcttgg	gac	tctat	tcgt	CC C	cttc	tccgt	1500
ctgccgttcc ag	gccgaccac gg	ggcgcacc	tctcttt	acg	cggt	ctcc	cc g	tctg	tgcct	1560
tctcatctgc c	ggtccgtgt go	acttcgct	tcaccto	ctgc	acgt	tgca	tg g	agac	caccg	1620
tgaacgccca t	cagatectg co	caaggtct	tacataa	agag	gact	cttg	ga c	tccc	agcaa	1680
tgtcaacgac c	gaccttgag go	ctacttca	. aagactg	gtgt	gttt	aagg	ac t	ggga	ggagc	1740
tgggggagga g	attaggtta aa	aggtctttg	tattagg	gagg	ctgt	aggc	at a	aatt	ggtct	1800
gcgcaccagc a	ccatgcaac tt	tttcacct	ctgccta	aatc	atct	cttg	ta c	atgt	cccac	1860
tgttcaagcc t	ccaagctgt go	ccttgggtg	gatttgg	gggc	atg Met 1	gac Asp	att Ile	gac Asp	cct Pro 5	1915
tat aaa gaa Tyr Lys Glu	ttt gga gct Phe Gly Ala 10	act gtg Thr Val	gag tta Glu Leu 15	ctc Leu	tcg Ser	ttt Phe	ttg Leu	cct Pro 20	tct Ser	1963
gac ttc ttt Asp Phe Phe	cct tcc gtc Pro Ser Val 25	aga gat Arg Asp	ctc cta Leu Leu 30	gac Asp	acc Thr	gcc Ala	tca Ser 35	gct Ala	ctg Leu	2011
tat cga gaa Tyr Arg Glu 40	gcc tta gag Ala Leu Glu	tct cct Ser Pro 45	gag cat Glu His	tgc Cys	tca Ser	cct Pro 50	cac His	cat His	act Thr	2059
gca ctc agg Ala Leu Arg 55	caa gcc att Gln Ala Ile	ctc tgc Leu Cys 60	tgg ggg Trp Gly	gaa Glu	ttg Leu 65	atg Met	act Thr	cta Leu	gct Ala	2107
acc tgg gtg Thr Trp Val 70	ggt aat aat Gly Asn Asn 75	ttg gaa Leu Glu	gat cca Asp Pro	gca Ala 80	tcc Ser	agg Arg	gat Asp	cta Leu	gta Val 85	2155
gtc aat tat Val Asn Tyr	gtt aat act Val Asn Thr 90	aac atg Asn Met	ggt tta Gly Leu 95	Lys	atc Ile	agg Arg	caa Gln	cta Leu 100	ttg Leu	2203
tgg ttt cat Trp Phe His	ata tct tgc Ile Ser Cys 105	ctt act Leu Thr	ttt gga Phe Gly 110	aga Arg	gag Glu	act Thr	gta Val 115	ctt Leu	gaa Glu	2251
tat ttg gtc Tyr Leu Val 120	tct ttc gga Ser Phe Gly	gtg tgg Val Trp 125	att cgc Ile Arg	act Thr	cct Pro	cca Pro 130	gcc Ala	tat Tyr	aga Arg	2299
cca cca aat Pro Pro Asn 135	gcc cct atc Ala Pro Ile	tta tca Leu Ser 140	aca ctt Thr Leu	ccg Pro	gaa Glu 145	act Thr	act Thr	gtt Val	gtt Val	2347
aga cga cgg Arg Arg Arg 150	gac cga ggc Asp Arg Gly 155	Arg Ser	cct aga Pro Arg	aga Arg 160	Arg	act Thr	ccc Pro	tcg Ser	cct Pro 165	2395
cgc aga cgc Arg Arg Arg	aga tct caa Arg Ser Glr 170	tcg ccg Ser Pro	cgt cgc Arg Arg 175	, Arg	aga Arg	tct Ser	caa Gln	tct Ser 180	cgg Arg	2443

```
gaa tct caa tgt tag tattccttgg actcataagg tgggaaactt tactgggctt
                                                                   2498
Glu Ser Gln Cys
tatteeteta cagtacetat etttaateet gaatggeaaa eteetteett teetaagatt 2558
catttacaag aggacattat tgataggtgt caacaatttg tgggccctct cactgtaaat 2618
gaaaagagaa gattgaaatt aattatgcct gctagattct atcctaccca cactaaatat 2678
ttgcccttag acaaaggaat taaaccttat tatccagatc aggtagttaa tcattacttc 2738
caaaccagac attatttaca tactctttgg aaggctggta ttctatataa gagggaaacc 2798
acacgtagcg catcattttg cgggtcacca tattcttggg aacaagagct acagcatggg 2858
aggttggtca ttaaaacctc gcaaaggcat ggggacgaat ctttctgttc ccaaccctct 2918
gggattettt ecegateate agttggacee tgeattegga geeaacteaa acaateeaga 2978
ttgggacttc aaccccatca aggaccactg gccagcagcc aaccaggtag gagtgggagc 3038
attegggeea gggeteacce etecacaegg eggtattttg gggtggagee eteaggetea 3098
gggcatattg accacagtgt caacaattcc tcctcctgcc tccaccaatc ggcagtcagg 3158
aaggcagcct actcccatct ctccacctct aagagacagt catcctcagg ccatgcagtg 3218
                                                                   3221
gaa
<210> 134
<211> 185
<212> PRT
<213> Hepatitis B virus
<400> 134
Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
                                      10
Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp
             20
                                  25
Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys
         35
                              40
Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
                                              60
     50
Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Glu Asp Pro Ala
                                          75
                      70
 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys
                  85
                                      90
 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg
                                 105
                                                     110
             100
 Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr
                                                 125
                             120
 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro
                                             140
                         135
 Glu Thr Thr Val Val Arg Arg Arg Asp Arg Gly Arg Ser Pro Arg Arg
                                         155
                                                              160
 Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg
                                                          175
                                     170
                 165
 Arg Ser Gln Ser Arg Glu Ser Gln Cys
```

185

180

<210> 135 <211> 188 <212> PRT <213> Woodchuck hepatitis B virus <400> 135 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ser Ser Tyr Gln Leu Leu Asn Phe Leu Pro Leu Asp Phe Phe Pro Asp Leu Asn Ala Leu Val Asp 25 Thr Ala Thr Ala Leu Tyr Glu Glu Glu Leu Thr Gly Arg Glu His Cys Ser Pro His His Thr Ala Ile Arg Gln Ala Leu Val Cys Trp Asp Glu Leu Thr Lys Leu Ile Ala Trp Met Ser Ser Asn Ile Thr Ser Glu Gln Val Arg Thr Ile Ile Val Asn His Val Asn Asp Thr Trp Gly Leu Lys Val Arg Gln Ser Leu Trp Phe His Leu Ser Cys Leu Thr Phe Gly Gln 105 His Thr Val Gln Glu Phe Leu Val Ser Phe Gly Val Trp Ile Arg Thr 125 120 Pro Ala Pro Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 135 130 Glu His Thr Val Ile Arg Arg Arg Gly Gly Ala Arg Ala Ser Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro 170 165 Arg Arg Arg Ser Gln Ser Pro Ser Thr Asn Cys 180 <210> 136 <211> 217 <212> PRT <213> Ground squirrel hepatitis virus <400> 136

His His Thr Ala Ile Arg Gln Ala Leu Val Cys Trp Glu Glu Leu Thr 85 90 95

Arg Leu Ile Thr Trp Met Ser Glu Asn Thr Thr Glu Glu Val Arg Arg 100 105 110

Ile Ile Val Asp His Val Asn Asn Thr Trp Gly Leu Lys Val Arg Gln
115 120 125

Thr Leu Trp Phe His Leu Ser Cys Leu Thr Phe Gly Gln His Thr Val 130 135 140

Gln Glu Phe Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Ala Pro 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu His Thr 165 170 175

Val Ile Arg Arg Arg Gly Gly Ser Arg Ala Ala Arg Ser Pro Arg Arg 180 185 190

Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg 195 200 205

Arg Ser Gln Ser Pro Ala Ser Asn Cys 210 215

<210> 137

<211> 262

<212> PRT

<213> Snow Goose Hepatitis B Virus

<400> 137

Met Asp Val Asn Ala Ser Arg Ala Leu Ala Asn Val Tyr Asp Leu Pro 1 5 10 15

Asp Asp Phe Phe Pro Lys Ile Glu Asp Leu Val Arg Asp Ala Lys Asp 20 25 30

Ala Leu Glu Pro Tyr Trp Lys Ser Asp Ser Ile Lys Lys His Val Leu 35 40 45

Ile Ala Thr His Phe Val Asp Leu Ile Glu Asp Phe Trp Gln Thr Thr 50 55 60

Gln Gly Met His Glu Ile Ala Glu Ala Ile Arg Ala Val Ile Pro Pro 65 70 75 80

Thr Thr Ala Pro Val Pro Ser Gly Tyr Leu Ile Gln His Asp Glu Ala 85 90 95

Glu Glu Ile Pro Leu Gly Asp Leu Phe Lys Glu Glu Glu Arg Ile 100 105 110

Val Ser Phe Gln Pro Asp Tyr Pro Ile Thr Ala Arg Ile His Ala His 115 120 125

Leu Lys Ala Tyr Ala Lys Ile Asn Glu Glu Ser Leu Asp Arg Ala Arg 130 135 140

Arg Leu Leu Trp Trp His Tyr Asn Cys Leu Leu Trp Gly Glu Ala Thr 145 150 155 160 Val Thr Asn Tyr Ile Ser Arg Leu Arg Thr Trp Leu Ser Thr Pro Glu 165 170 175

Lys Tyr Arg Gly Arg Asp Ala Pro Thr Ile Glu Ala Ile Thr Arg Pro 180 185 190

Ile Gln Val Ala Gln Gly Gly Arg Lys Thr Ser Thr Ala Thr Arg Lys 195 200 205

Pro Arg Gly Leu Glu Pro Arg Arg Lys Val Lys Thr Thr Val Val 210 215 220

Tyr Gly Arg Arg Ser Lys Ser Arg Glu Arg Arg Ala Ser Ser Pro 225 230 235 240

Gln Arg Ala Gly Ser Pro Leu Pro Arg Ser Ser Ser Ser His His Arg 245 250 255

Ser Pro Ser Pro Arg Lys 260

<210> 138

<211> 305

<212> PRT

<213> Duck hepatitis B virus

<400> 138

Met Trp Asp Leu Arg Leu His Pro Ser Pro Phe Gly Ala Ala Cys Gln
1 5 10 15

Gly Ile Phe Thr Ser Ser Leu Leu Leu Phe Leu Val Thr Val Pro Leu 20 25 30

Val Cys Thr Ile Val Tyr Asp Ser Cys Leu Cys Met Asp Ile Asn Ala 35 40 45

Ser Arg Ala Leu Ala Asn Val Tyr Asp Leu Pro Asp Asp Phe Phe Pro 50 55 60

Lys Ile Asp Asp Leu Val Arg Asp Ala Lys Asp Ala Leu Glu Pro Tyr 65 70 75 80

Trp Arg Asn Asp Ser Ile Lys Lys His Val Leu Ile Ala Thr His Phe 85 90 95

Val Asp Leu Ile Glu Asp Phe Trp Gln Thr Thr Gln Gly Met His Glu 100 105 110

Ile Ala Glu Ala Leu Arg Ala Ile Ile Pro Ala Thr Thr Ala Pro Val 115 120 125

Pro Gln Gly Phe Leu Val Gln His Glu Glu Ala Glu Glu Ile Pro Leu 130 135 140

Gly Glu Leu Phe Arg Tyr Gln Glu Glu Arg Leu Thr Asn Phe Gln Pro 145 150 155 160

Asp Tyr Pro Val Thr Ala Arg Ile His Ala His Leu Lys Ala Tyr Ala 165 170 175

Lys Ile Asn Glu Glu Ser Leu Asp Arg Ala Arg Arg Leu Leu Trp Trp 180 185 190

His Tyr Asn Cys Leu Leu Trp Gly Glu Pro Asn Val Thr Asn Tyr Ile 195 200 205

Ser Arg Leu Arg Thr Trp Leu Ser Thr Pro Glu Lys Tyr Arg Gly Lys 210 215 220

Asp Ala Pro Thr Ile Glu Ala Ile Thr Arg Pro Ile Gln Val Ala Gln 225 230 235 240

Gly Gly Arg Asn Lys Thr Gln Gly Val Arg Lys Ser Arg Gly Leu Glu 245 250 255

Pro Arg Arg Arg Val Lys Thr Thr Ile Val Tyr Gly Arg Arg Arg 260 265 270

Ser Lys Ser Arg Glu Arg Arg Ala Pro Thr Pro Gln Arg Ala Gly Ser 275 280 285

Pro Leu Pro Arg Thr Ser Arg Asp His His Arg Ser Pro Ser Pro Arg 290 295 300

Glu 305

<210> 139

<211> 212

<212> PRT

<213> Haemophilus influenzae

<400> 139

Met Lys Lys Thr Leu Leu Gly Ser Leu Ile Leu Leu Ala Phe Ala Gly
1 1 5 15

Asn Val Gln Ala Ala Ala Asn Ala Asp Thr Ser Gly Thr Val Thr Phe 20 25 30

Phe Gly Lys Val Val Glu Asn Thr Cys Gln Val Asn Gln Asp Ser Glu 35 40 45

Tyr Glu Cys Asn Leu Asn Asp Val Gly Lys Asn His Leu Ser Gln Gln 50 60

Gly Tyr Thr Ala Met Gln Thr Pro Phe Thr Ile Thr Leu Glu Asn Cys
65 70 75 80

Asn Val Thr Thr Asn Asn Lys Pro Lys Ala Thr Lys Val Gly Val 85 90 95

Tyr Phe Tyr Ser Trp Glu Ile Ala Asp Lys Asp Asn Lys Tyr Thr Leu 100 105 110

Lys Asn Ile Lys Glu Asn Thr Gly Thr Asn Asp Ser Ala Asn Lys Val 115 120 125

Asn Ile Gln Leu Leu Glu Asp Asn Gly Thr Ala Glu Ile Lys Val Val 130 135 140

Gly Lys Thr Thr Thr Asp Phe Thr Ser Glu Asn His Asn Gly Ala Gly 145 150 155 160

Ala Asp Pro Val Ala Thr Asn Lys His Ile Ser Ser Leu Thr Pro Leu 165 170 175

Asn Asn Gln Asn Ser Ile Asn Leu His Tyr Ile Ala Gln Tyr Tyr Ala 180 185 190

Thr Gly Val Ala Glu Ala Gly Lys Val Pro Ser Ser Val Asn Ser Gln 195 200 205

Ile Ala Tyr Glu 210

<210> 140

<211> 139

<212> PRT

<213> Pseudomonas stutzeri

<400> 140

Met Lys Ala Gln Met Gln Lys Gly Phe Thr Leu Ile Glu Leu Met Ile 1 5 10 15

Val Val Ala Ile Ile Gly Ile Leu Ala Ala Ile Ala Leu Pro Ala Tyr 20 25 30

Gln Asp Tyr Thr Val Arg Ser Asn Ala Ala Ala Ala Leu Ala Glu Ile 35 40 45

Thr Pro Gly Lys Ile Gly Phe Glu Gln Ala Ile Asn Glu Gly Lys Thr 50 55 60

Pro Ser Leu Thr Ser Thr Asp Glu Gly Tyr Ile Gly Ile Thr Asp Ser 65 70 75 80

Thr Ser Tyr Cys Asp Val Asp Leu Asp Thr Ala Ala Asp Gly His Ile 85 90 95

Glu Cys Thr Ala Lys Gly Gly Asn Ala Gly Lys Phe Asp Gly Lys Thr 100 105 110

Ile Thr Leu Asn Arg Thr Ala Asp Gly Glu Trp Ser Cys Ala Ser Thr 115 120 125

Leu Asp Ala Lys Tyr Lys Pro Gly Lys Cys Ser

<210> 141

<211> 59

<212> PRT

<213> Caulobacter crescentus

<400> 141

Met Thr Lys Phe Val Thr Arg Phe Leu Lys Asp Glu Ser Gly Ala Thr
1 5 10 15

Ala Ile Glu Tyr Gly Leu Ile Val Ala Leu Ile Ala Val Val Ile Val 20 25 30

Thr Ala Val Thr Thr Leu Gly Thr Asn Leu Arg Thr Ala Phe Thr Lys 45

Ala Gly Ala Ala Val Ser Thr Ala Ala Gly Thr
50 55

```
<210> 142
```

<211> 173

<212> PRT

<213> Escherichia coli

<400> 142

Met Ala Val Val Ser Phe Gly Val Asn Ala Ala Pro Thr Ile Pro Gln
1 5 10 15

Gly Gln Gly Lys Val Thr Phe Asn Gly Thr Val Val Asp Ala Pro Cys 20 25 30

Ser Ile Ser Gln Lys Ser Ala Asp Gln Ser Ile Asp Phe Gly Gln Leu 35 40 45

Ser Lys Ser Phe Leu Glu Ala Gly Gly Val Ser Lys Pro Met Asp Leu 50 55 60

Asp Ile Glu Leu Val Asn Cys Asp Ile Thr Ala Phe Lys Gly Gly Asn 65 70 75 80

Gly Ala Gln Lys Gly Thr Val Lys Leu Ala Phe Thr Gly Pro Ile Val 85 90 95

Asn Gly His Ser Asp Glu Leu Asp Thr Asn Gly Gly Thr Gly Thr Ala 100 105 110

Ile Val Val Gln Gly Ala Gly Lys Asn Val Val Phe Asp Gly Ser Glu
115 120 125

Gly Asp Ala Asn Thr Leu Lys Asp Gly Glu Asn Val Leu His Tyr Thr 130 135 140

Ala Val Val Lys Lys Ser Ser Ala Val Gly Ala Ala Val Thr Glu Gly 145 150 155 160

Ala Phe Ser Ala Val Ala Asn Phe Asn Leu Thr Tyr Gln 165 170

<210> 143

<211> 173

<212> PRT

<213> Escherichia coli

<400> 143

Met Ala Val Val Ser Phe Gly Val Asn Ala Ala Pro Thr Ile Pro Gln
1 15

Gly Gln Gly Lys Val Thr Phe Asn Gly Thr Val Val Asp Ala Pro Cys
20 25 30

Ser Ile Ser Gln Lys Ser Ala Asp Gln Ser Ile Asp Phe Gly Gln Leu 35 40 45

Ser Lys Ser Phe Leu Glu Ala Gly Gly Val Ser Lys Pro Met Asp Leu 50 55 60

Asp Ile Glu Leu Val Asn Cys Asp Ile Thr Ala Phe Lys Gly Gly Asn 65 70 75 80

Gly Ala Gln Lys Gly Thr Val Lys Leu Ala Phe Thr Gly Pro Ile Val 85 90 95 Asn Gly His Ser Asp Glu Leu Asp Thr Asn Gly Gly Thr Gly Thr Ala 100 105 110

Ile Val Val Gln Gly Ala Gly Lys Asn Val Val Phe Asp Gly Ser Glu 115 120 125

Gly Asp Ala Asn Thr Leu Lys Asp Gly Glu Asn Val Leu His Tyr Thr 130 135 140

Ala Val Val Lys Lys Ser Ser Ala Val Gly Ala Ala Val Thr Glu Gly
145 150 155 160
Ala Phe Ser Ala Val Ala Asn Phe Asn Leu Thr Tyr Gln

Ala Phe Ser Ala Val Ala Asn Phe Asn Leu Thr Tyr Gln 165 170

<210> 144

<211> 172

<212> PRT

<213> Escherichia coli

<400> 144

Met Ala Val Val Ser Phe Gly Val Asn Ala Ala Pro Thr Thr Pro Gln 1 5 10

Gly Gln Gly Arg Val Thr Phe Asn Gly Thr Val Val Asp Ala Pro Cys
20 25 30

Ser Ile Ser Gln Lys Ser Ala Asp Gln Ser Ile Asp Phe Gly Gln Leu 35 40 45

Ser Lys Ser Phe Leu Ala Asn Asp Gly Gln Ser Lys Pro Met Asn Leu 50 55 60

Asp Ile Glu Leu Val Asn Cys Asp Ile Thr Ala Phe Lys Asn Gly Asn 65 70 75 80

Ala Lys Thr Gly Ser Val Lys Leu Ala Phe Thr Gly Pro Thr Val Ser

Gly His Pro Ser Glu Leu Ala Thr Asn Gly Gly Pro Gly Thr Ala Ile 100 105 110

Met Ile Gln Ala Ala Gly Lys Asn Val Pro Phe Asp Gly Thr Glu Gly 115 120 125

Asp Pro Asn Leu Leu Lys Asp Gly Asp Asn Val Leu His Tyr Thr Thr 130 135 140

Val Gly Lys Lys Ser Ser Asp Gly Asn Ala Gln Ile Thr Glu Gly Ala 145 150 160

Phe Ser Gly Val Ala Thr Phe Asn Leu Ser Tyr Gln 165 170

<210> 145

<211> 853

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (281)..(829)

<400> 145	
acgtttctgt ggctcgacgc atcttcctca ttcttctctc caaaaaccac ctcatgca	at 60
ataaacatct ataaataaag ataacaaata gaatattaag ccaacaaata aactgaaa	aa 120
gtttgtccgc gatgctttac ctctatgagt caaaatggcc ccaatgtttc atcttttg	gg 180
ggaaactgtg cagtgttggc agtcaaactc gttgacaaac aaagtgtaca gaacgact	gc 240
ccatgtcgat ttagaaatag ttttttgaaa ggaaagcagc atg aaa att aaa act Met Lys Ile Lys Thr 1	
ctg gca atc gtt gtt ctg tcg gct ctg tcc ctc agt tct acg acg gct Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu Ser Ser Thr Thr Ala 10 15 20	343
ctg gcc gct gcc acg acg gtt aat ggt ggg acc gtt cac ttt aaa ggg Leu Ala Ala Thr Thr Val Asn Gly Gly Thr Val His Phe Lys Gly 25 30 35	391
gaa gtt gtt aac gcc gct tgc gca gtt gat gca ggc tct gtt gat caa Glu Val Val Asn Ala Ala Cys Ala Val Asp Ala Gly Ser Val Asp Glr 40 45 50	439 1
acc gtt cag tta gga cag gtt cgt acc gca tcg ctg gca cag gaa gga Thr Val Gln Leu Gly Gln Val Arg Thr Ala Ser Leu Ala Gln Glu Gly 55 60 65	487
gca acc agt tct gct gtc ggt ttt aac att cag ctg aat gat tgc gat Ala Thr Ser Ser Ala Val Gly Phe Asn Ile Gln Leu Asn Asp Cys Asp 70 75 80	
acc aat gtt gca tct aaa gcc gct gtt gcc ttt tta ggt acg gcg att Thr Asn Val Ala Ser Lys Ala Ala Val Ala Phe Leu Gly Thr Ala Ile 90 95 100	583
gat gcg ggt cat acc aac gtt ctg gct ctg cag agt tca gct gcg ggt Asp Ala Gly His Thr Asn Val Leu Ala Leu Gln Ser Ser Ala Ala Gly 105 110 115	631
agc gca aca aac gtt ggt gtg cag atc ctg gac aga acg ggt gct gcg Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp Arg Thr Gly Ala Ala 120 125 130	g 679 a
ctg acg ctg gat ggt gcg aca ttt agt tca gaa aca acc ctg aat aac Leu Thr Leu Asp Gly Ala Thr Phe Ser Ser Glu Thr Thr Leu Asn Ass 135 140 145	c 727
gga acc aat acc att ccg ttc cag gcg cgt tat ttt gca acc ggg gcg Gly Thr Asn Thr Ile Pro Phe Gln Ala Arg Tyr Phe Ala Thr Gly Ala 150 155 160 16	₹
gca acc ccg ggt gct gct aat gcg gat gcg acc ttc aag gtt cag ta Ala Thr Pro Gly Ala Ala Asn Ala Asp Ala Thr Phe Lys Val Gln Ty 170 175 180	t 823 r
caa taa cctacctagg ttcagggacg ttca Gln	853

<210> 146 <211> 182 <212> PRT

```
<213> Escherichia coli
<400> 146
Met Lys Ile Lys Thr Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu
                                    10
                                                        15
Ser Ser Thr Thr Ala Leu Ala Ala Ala Thr Thr Val Asn Gly Gly Thr
                                 2.5
Val His Phe Lys Gly Glu Val Val Asn Ala Ala Cys Ala Val Asp Ala
                             40
Gly Ser Val Asp Gln Thr Val Gln Leu Gly Gln Val Arg Thr Ala Ser
                         55
                                             60
Leu Ala Gln Glu Gly Ala Thr Ser Ser Ala Val Gly Phe Asn Ile Gln
                                         75
                     70
Leu Asn Asp Cys Asp Thr Asn Val Ala Ser Lys Ala Ala Val Ala Phe
                 85
                                     90
Leu Gly Thr Ala Ile Asp Ala Gly His Thr Asn Val Leu Ala Leu Gln
                                105
                                                     110
Ser Ser Ala Ala Gly Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp
                                                 125
                            120
        115
Arg Thr Gly Ala Ala Leu Thr Leu Asp Gly Ala Thr Phe Ser Ser Glu
                        135
                                            140
Thr Thr Leu Asn Asn Gly Thr Asn Thr Ile Pro Phe Gln Ala Arg Tyr
                                        155
                   150
Phe Ala Thr Gly Ala Ala Thr Pro Gly Ala Ala Asn Ala Asp Ala Thr
                165
                                    170
Phe Lys Val Gln Tyr Gln
            180
<210> 147
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: FLAG peptide
<400> 147
Cys Gly Gly Asp Tyr Lys Asp Asp Asp Asp Lys
<210> 148
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 148
                                                                    31
ccggaattca tggacattga cccttataaa g
<210> 149
<211> 37
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
```

<400> 149 gtgcagtatg gtgaggtgag gaatgctcag gagactc	37
<210> 150 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 150 gsgtctcctg agcattcctc acctcaccat actgcac	37
<210> 151 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 151 cttccaaaag tgagggaaga aatgtgaaac cac	33
<210> 152 <211> 47 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 152 cgcgtcccaa gcttctaaac aacagtagtc tccggaagcg ttgatag	47
<210> 153 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 153 gtggtttcac atttcttccc tcacttttgg aag	33
<210> 154 <211> 281 <212> PRT <213> Saccharomyces cerevisiae	
<pre><400> 154 Met Ser Glu Tyr Gln Pro Ser Leu Phe Ala Leu Asn Pro Met Gly Phe</pre>	
Ser Pro Leu Asp Gly Ser Lys Ser Thr Asn Glu Asn Val Ser Ala Ser 20 25 30	

Thr Ser Thr Ala Lys Pro Met Val Gly Gln Leu Ile Phe Asp Lys Phe 35 40 45

Ile Lys Thr Glu Glu Asp Pro Ile Ile Lys Gln Asp Thr Pro Ser Asn 50 55 60

Leu Asp Phe Asp Phe Ala Leu Pro Gln Thr Ala Thr Ala Pro Asp Ala 65 70 75 80

Lys Thr Val Leu Pro Ile Pro Glu Leu Asp Asp Ala Val Val Glu Ser

Phe Phe Ser Ser Ser Thr Asp Ser Thr Pro Met Phe Glu Tyr Glu Asn 100 105 110

Leu Glu Asp Asn Ser Lys Glu Trp Thr Ser Leu Phe Asp Asn Asp Ile 115 120 125

Pro Val Thr Thr Asp Asp Val Ser Leu Ala Asp Lys Ala Ile Glu Ser 130 135 140

Thr Glu Glu Val Ser Leu Val Pro Ser Asn Leu Glu Val Ser Thr Thr 145 150 155 160

Ser Phe Leu Pro Thr Pro Val Leu Glu Asp Ala Lys Leu Thr Gln Thr 165 170 175

Arg Lys Val Lys Lys Pro Asn Ser Val Val Lys Lys Ser His His Val 180 185 190

Gly Lys Asp Asp Glu Ser Arg Leu Asp His Leu Gly Val Val Ala Tyr 195 200 205

Asn Arg Lys Gln Arg Ser Ile Pro Leu Ser Pro Ile Val Pro Glu Ser 210 215 220

Ser Asp Pro Ala Ala Leu Lys Arg Ala Arg Asn Thr Glu Ala Ala Arg 225 230 235 240

Arg Ser Arg Ala Arg Lys Leu Gln Arg Met Lys Gln Leu Glu Asp Lys 245 250 255

Val Glu Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu Val Ala 260 265 270

Arg Leu Lys Lys Leu Val Gly Glu Arg 275 280

<210> 155

<211> 181

<212> PRT

<213> Escherichia coli

<400> 155

Met Lys Ile Lys Thr Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu 1 5 10 15

Ser Ser Thr Ala Ala Leu Ala Ala Ala Thr Thr Val Asn Gly Gly Thr 20 25 30

Val His Phe Lys Gly Glu Val Val Asn Ala Ala Cys Ala Val Asp Ala

Gly Ser Val Asp Gln Thr Val Gln Leu Gly Gln Val Arg Thr Ala Ser 55 Leu Ala Gln Glu Gly Ala Thr Ser Ser Ala Val Gly Phe Asn Ile Gln Leu Asn Asp Cys Asp Thr Asn Val Ala Ser Lys Ala Ala Val Ala Phe Leu Gly Thr Ala Ile Asp Ala Gly His Thr Asn Val Leu Ala Leu Gln 105 Ser Ser Ala Ala Gly Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp 120 115 Arg Thr Gly Ala Ala Leu Thr Leu Asp Gly Ala Thr Phe Ser Ser Glu 135 Thr Thr Leu Asn Asn Gly Thr Asn Thr Ile Pro Phe Gln Ala Arg Tyr Phe Ala Gly Ala Ala Thr Pro Gly Ala Ala Asn Ala Asp Ala Thr Phe 170 165 Lys Val Gln Tyr Gln 180 <210> 156 <211> 447 <212> DNA <213> Hepatitis B <220> <221> CDS <222> (1)..(447) <400> 156 48 atg gac att gac cct tat aaa gaa ttt gga gct act gtg gag tta ctc Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 96 tcg ttt ttg cct tct gac ttc ttt cct tcc gta cga gat ctt cta gat Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 144 acc gcc gca gct ctg tat cgg gat gcc tta gag tct cct gag cat tgt Thr Ala Ala Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys 192 tca cct cac cat act gca ctc agg caa gca att ctt tgc tgg gga gac Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp 240 tta atg act cta gct acc tgg gtg ggt act aat tta gaa gat cca gca Leu Met Thr Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Pro Ala 288 tct agg gac cta gta gtc agt tat gtc aac act aat gtg ggc cta aag Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys ttc aga caa tta ttg tgg ttt cac att tct tgt ctc act ttt gga aga Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg

384

432

447

Glu Thr Thr Val Val 145

<210> 158

130

×

<211> 152

<212> PRT

<213> Hepatitis B

<400> 158

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro

135

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp

,	Sei
	Lei 6!
	Lу:
	Gl:
	Ph
	Il

m

Thr Ala Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys 35 40 45

25

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp 50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Gly Gly 65 70 75 80

Lys Gly Gly Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Val 85 90 95

Gly Leu Lys Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr 100 105 110

Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp 115 120 125

Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser 130 135 140

Thr Leu Pro Glu Thr Thr Val Val 145 150

<210> 159

<211> 132

<212> PRT

<213> Bacteriophage Q Beta

<400> 159

Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly Lys 1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val 20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val 35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys 65 70 75 80

Asp Pro Ser Val Thr Arg Gln Ala Tyr Ala Asp Val Thr Phe Ser Phe 85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu 100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu 115 120 125

Asn Pro Ala Tyr 130

<210> 160

<211> 129

<212> PRT

<213> Bacteriophage R 17

<400> 160

Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asn Asp Gly Gly Thr Gly
1 5 10 15

Asn Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu Trp 20 25 30

Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser Val 35 40 45

Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu Val 50 55 60

Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val Ala 65 70 75 80

Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe Ala 85 90 95

Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu Leu 100 105 110

Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly Ile 115 120 125

Tyr

<210> 161

<211> 130

<212> PRT <213> Bacteriophage fr

<400> 161

Met Ala Ser Asn Phe Glu Glu Phe Val Leu Val Asp Asn Gly Gly Thr 1 5 10 15

Gly Asp Val Lys Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Asn Asn Arg Lys Tyr Thr Val Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Val Gln Gly Gly Val Glu Leu Pro Val 65 70 75 80

Ala Ala Trp Arg Ser Tyr Met Asn Met Glu Leu Thr Ile Pro Val Phe 85 90 95

Ala Thr Asn Asp Asp Cys Ala Leu Ile Val Lys Ala Leu Gln Gly Thr 100 105 110

Phe Lys Thr Gly Asn Pro Ile Ala Thr Ala Ile Ala Asn Ser Gly 115 120 125

```
Ile Tyr
   130
<210> 162
<211> 130
<212> PRT
<213> Bacteriophage GA
<400> 162
Met Ala Thr Leu Arg Ser Phe Val Leu Val Asp Asn Gly Gly Thr Gly
Asn Val Thr Val Val Pro Val Ser Asn Ala Asn Gly Val Ala Glu Trp
                                25
Leu Ser Asn Asn Ser Arg Ser Gln Ala Tyr Arg Val Thr Ala Ser Tyr
                            40
Arg Ala Ser Gly Ala Asp Lys Arg Lys Tyr Ala Ile Lys Leu Glu Val
Pro Lys Ile Val Thr Gln Val Val Asn Gly Val Glu Leu Pro Gly Ser
Ala Trp Lys Ala Tyr Ala Ser Ile Asp Leu Thr Ile Pro Ile Phe Ala
                                    90
Ala Thr Asp Asp Val Thr Val Ile Ser Lys Ser Leu Ala Gly Leu Phe
Lys Val Gly Asn Pro Ile Ala Glu Ala Ile Ser Ser Gln Ser Gly Phe
Tyr Ala
    130
<210> 163
<211> 132
<212> PRT
<213> Bacteriophage SP
```

Asp Pro Ser Val Thr Arg Ser Ala Phe Ala Asp Val Thr Leu Ser Phe 85 90 95

Thr Ser Tyr Ser Thr Asp Glu Glu Arg Ala Leu Ile Arg Thr Glu Leu 100 105 110

Ala Ala Leu Leu Ala Asp Pro Leu Ile Val Asp Ala Ile Asp Asn Leu 115 120 125

Asn Pro Ala Tyr 130

<210> 164

<211> 130

<212> PRT

<213> Bacteriophage MS2

<400> 164

Met Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asp Asn Gly Gly Thr 1 5 10 15

Gly Asp Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu 20 25 30

Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser 35 40 45

Val Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu 50 55 60

Val Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val 65 , 70 75 80

Ala Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe 85 90 95

Ala Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu 100 105 110

Leu Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Asn Ser Gly 115 120 125

Ile Tyr 130

<210> 165

<211> 133

<211> 133 <212> PRT

<213> Bacteriophage M11

<400> 165

Met Ala Lys Leu Gln Ala Ile Thr Leu Ser Gly Ile Gly Lys Lys Gly 1 5 10 15

Asp Val Thr Leu Asp Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly 20 25 30

Val Ala Ala Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Thr Ile Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys 50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ser Cys Thr Ala Ser Gly Thr 65 70 75 80

Cys Asp Pro Ser Val Thr Arg Ser Ala Tyr Ser Asp Val Thr Phe Ser 85 90 95

Phe Thr Gln Tyr Ser Thr Val Glu Glu Arg Ala Leu Val Arg Thr Glu 100 105 110

Leu Gln Ala Leu Leu Ala Asp Pro Met Leu Val Asn Ala Ile Asp Asn 115 120 125

Leu Asn Pro Ala Tyr 130

<210> 166

<211> 133

<212> PRT

<213> Bacteriophage MX1

<400> 166

Met Ala Lys Leu Gln Ala Ile Thr Leu Ser Gly Ile Gly Lys Asn Gly 1 5 10 15

Asp Val Thr Leu Asn Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly 20 25 30

Val Ala Ala Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg 35 40 45

Val Thr Ile Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys 50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ser Cys Thr Ala Ser Gly Thr 65 70 75 80

Cys Asp Pro Ser Val Thr Arg Ser Ala Tyr Ala Asp Val Thr Phe Ser 85 90 95

Phe Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Leu Val Arg Thr Glu 100 105 110

Leu Lys Ala Leu Leu Ala Asp Pro Met Leu Ile Asp Ala Ile Asp Asn 115 120 125

Leu Asn Pro Ala Tyr 130

<210> 167

<211> 330

<212> PRT

<213> Bacteriophage NL95

<400> 167

Met Ala Lys Leu Asn Lys Val Thr Leu Thr Gly Ile Gly Lys Ala Gly
1 10 15

Asn Gln Thr Leu Thr Leu Thr Pro Arg Gly Val Asn Pro Thr Asn Gly

				20					25					30		
Va	al .	Ala	Ser 35	Leu	Ser	Glu	Ala	Gly 40	Ala	Val	Pro	Ala	Leu 45	Glu	Lys	Arg
Va	ıl.	Thr 50	Val	Ser	Val	Ala	Gln 55	Pro	Ser	Arg	Asn	Arg 60	Lys	Asn	Tyr	Lys
Va 65		Gln	Ile	Lys	Leu	Gln 70	Asn	Pro	Thr	Ala	Cys 75	Thr	Lys	Asp	Ala	Cys 80
As	зp	Pro	Ser	Val	Thr 85	Arg	Ser	Gly	Ser	Arg 90	Asp	Val	Thr	Leu	Ser 95	Phe
Tł	ar	Ser	Tyr	Ser 100	Thr	Glu	Arg	Glu	Arg 105	Ala	Leu	Ile	Arg	Thr 110	Glu	Leu
A.	la	Ala	Leu 115	Leu	Lys	Asp	Asp	Leu 120	Ile	Val	Asp	Ala	I1e 125	Asp	Asn	Leu
A	sn	Pro 130	Ala	Tyr	Trp	Ala	Ala 135	Leu	Leu	Ala	Ala	Ser 140	Pro	Gly	Gly	Gly
	sn 45	Asn	Pro	Tyr	Pro	Gly 150	Val	Pro	Asp	Ser	Pro 155	Asn	Val	Lys	Pro	Pro 160
G	ly	Gly	Thr	Gly	Thr 165		Arg	Cys	Pro	Phe 170		Cys	Tyr	Arg	Arg 175	Gly
G	lu	Leu	Ile	Thr 180		Ala	Lys	Asp	Gly 185		Cys	Ala	Leu	Tyr 190	Ala	Cys
G	ly	Ser	Glu 195		Leu	Val	Glu	Phe 200		Tyr	Ala	Leu	Glu 205	Asp	Phe	Leu
G	ly	Asn 210		Phe	Trp	Arg	Asn 215		Asp	Gly	Arg	Leu 220		· Lys	Tyr	Asp
	1e 25	Glu	Thr	His	Arg	Arg 230		Arg	Gly	Asn	Gly 235	Tyr	· Val	. Asp	Leu	240
A	la	Ser	Val	. Met	Gln 245		Asp	Glu	Tyr	Val 250		Ser	Gly	7 Ala	Tyr 255	Asp
V	al	Val	Lys	Met 260	Gln	Pro) Pro	Gly	Thr 265	Phe	e Asp	Ser	Pro	270	Tyr	Туг
L	eu	His	Let 275		. Asp	o Gly	7 Il∈	280		. Asr	Leu	ı Ala	1 Glu 285	ı Val	Thr	Ala
T	'yr	Arg 290		Tyr	Gly	/ Met	Val 295		e Gly	7 Ph∈	e Trp	300		Ser	. Lys	s Sei
	ero 305		ı Leı	ı Pro	Thr	Asp 310		e Thr	arg	J Ph∈	e Asr 315	n Arç	g His	s Asr	ı Cys	320

Val Gln Thr Val Ile Val Ile Pro Ser Leu

325 330

<210> 168 <211> 134 <212> PRT

<213> Apis mellifera

Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys Cys Arg 20 25 30

Thr His Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser Lys His

Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp Cys Asp 50 55 60

Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ala Asp Thr Ile Ser Ser 65 70 75 80

Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr 85 90 95

Lys Leu Glu His Pro Val Thr Gly Cys Gly Glu Arg Thr Glu Gly Arg 100 105 110

Cys Leu His Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp 115 120 125

Phe Asp Leu Arg Lys Tyr 130

<210> 169

<211> 129

<212> PRT

<213> Apis mellifera

<400> 169 Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Lys Ser Ser

Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys Cys Arg

Thr His Asp Met Cys Pro Asn Val Met Ser Ala Gly Glu Ser Lys His 35 40 45

Gly Leu Thr Asp Thr Ala Ser Arg Leu Ser Cys Asn Asp Asn Asp Leu 50 55 60

Phe Tyr Lys Asp Ser Ala Asp Thr Ile Ser Ser Tyr Phe Val Gly Lys 65 70 75 80

Met Tyr Phe Asn Leu Ile Asn Thr Lys Cys Tyr Lys Leu Glu His Pro 85 90 95

Val Thr Gly Cys Gly Glu Arg Thr Glu Gly Arg Cys Leu His Tyr Thr 100 105 110

Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp Phe Asp Leu Arg Lys 115 120 125

Tyr

```
<210> 170
```

<211> 134

<212> PRT

<213> Apis dorsata

<400> 170

Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Val Ser Ser

1 10 15

Ser Pro Asp Glu Leu Gly Arg Phe Lys His Thr Asp Ser Cys Cys Arg 20 25 30

Ser His Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser Lys His 35 40 45

Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp Cys Asp 50 55 60

Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ser Asp Thr Ile Ser Ser 65 70 75 80

Tyr Phe Val Gly Glu Met Tyr Phe Asn Ile Leu Asp Thr Lys Cys Tyr 85 90 95

Lys Leu Glu His Pro Val Thr Gly Cys Gly Lys Arg Thr Glu Gly Arg
100 105 110

Cys Leu Asn Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp 115 120 125

Phe Asp Leu Arg Lys Tyr 130

<210> 171

<211> 134

<212> PRT

<213> Apis cerana

<400> 171

Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Val Ser Ser 1 5 10 15

Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys Cys Arg 20 25 30

Thr His Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser Lys His 35 40 45

Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp Cys Asp 50 55 60

Asp Thr Phe Tyr Asp Cys Leu Lys Asn Ser Gly Glu Lys Ile Ser Ser 65 70 75 80

Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr 85 90 95

Lys Leu Glu His Pro Val Thr Gly Cys Gly Glu Arg Thr Glu Gly Arg 100 105 110

Cys Leu Arg Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp 115 120 125

Phe Asp Leu Arg Lys Tyr 130

<210> 172

<211> 136

<212> PRT

<213> Bombus pennsylvanicus

<400> 172

Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly Asn Gly Asn Ile Ala Asn 1 5 10 15

Gly Thr Asn Glu Leu Gly Leu Trp Lys Glu Thr Asp Ala Cys Cys Arg 20 25 30

Thr His Asp Met Cys Pro Asp Ile Ile Glu Ala His Gly Ser Lys His 35 40 45

Gly Leu Thr Asn Pro Ala Asp Tyr Thr Arg Leu Asn Cys Glu Cys Asp 50 55 60

Glu Glu Phe Arg His Cys Leu His Asn Ser Gly Asp Ala Val Ser Ala 65 70 75 80

Ala Phe Val Gly Arg Thr Tyr Phe Thr Ile Leu Gly Thr Gln Cys Phe 85 90 95

Arg Leu Asp Tyr Pro Ile Val Lys Cys Lys Val Lys Ser Thr Ile Leu 100 105 110

Arg Glu Cys Lys Glu Tyr Glu Phe Asp Thr Asn Ala Pro Gln Lys Tyr 115 120 125

Gln Trp Phe Asp Val Leu Ser Tyr 130 135

<210> 173

<211> 142

<212> PRT

<213> Heloderma suspectum

<400> 173

Gly Ala Phe Ile Met Pro Gly Thr Leu Trp Cys Gly Ala Gly Asn Ala 1 5 10 15

Ala Ser Asp Tyr Ser Gln Leu Gly Thr Glu Lys Asp Thr Asp Met Cys 20 25 30

Cys Arg Asp His Asp His Cys Ser Asp Thr Met Ala Ala Leu Glu Tyr $35 \hspace{1cm} 45$

Lys His Gly Met Arg Asn Tyr Arg Pro His Thr Val Ser His Cys Asp 50 55 60

Cys Asp Asn Gln Phe Arg Ser Cys Leu Met Asn Val Lys Asp Arg Thr 65 70 75 80

Ala Asp Leu Val Gly Met Thr Tyr Phe Thr Val Leu Lys Ile Ser Cys 85 90 95

Phe Glu Leu Glu Glu Gly Glu Gly Cys Val Asp Asn Asn Phe Ser Gln 100 105 110

Gln Cys Thr Lys Ser Glu Ile Met Pro Val Ala Lys Leu Val Ser Ala 115 120 125

Ala Pro Tyr Gln Ala Gln Ala Glu Thr Gln Ser Gly Glu Gly 130 135 140

<210> 174

<211> 143

<212> PRT

<213> Heloderma suspectum

<400> 174

Gly Ala Phe Ile Met Pro Gly Thr Leu Trp Cys Gly Ala Gly Asn Ala 1 5 10 15

Ala Ser Asp Tyr Ser Gln Leu Gly Thr Glu Lys Asp Thr Asp Met Cys 20 25 30

Cys Arg Asp His Asp His Cys Glu Asn Trp Ile Ser Ala Leu Glu Tyr 35 40 45

Lys His Gly Met Arg Asn Tyr Tyr Pro Ser Thr Ile Ser His Cys Asp 50 55 60

Cys Asp Asn Gln Phe Arg Ser Cys Leu Met Lys Leu Lys Asp Gly Thr 65 70 75 80

Ala Asp Tyr Val Gly Gln Thr Tyr Phe Asn Val Leu Lys Ile Pro Cys 85 90 95

Phe Glu Leu Glu Glu Gly Glu Gly Cys Val Asp Trp Asn Phe Trp Leu 100 105 110

Glu Cys Thr Glu Ser Lys Ile Met Pro Val Ala Lys Leu Val Ser Ala 115 120 125

Ala Pro Tyr Gln Ala Gln Ala Glu Thr Gln Ser Gly Glu Gly Arg 130 135 140

<210> 175

<211> 142

<212> PRT

<213> Heloderma suspectum

<400> 175

Gly Ala Phe Ile Met Pro Gly Thr Leu Trp Cys Gly Ala Gly Asn Ala 1 5 10 15

Ala Ser Asp Tyr Ser Gln Leu Gly Thr Glu Lys Asp Thr Asp Met Cys 20 25 30

Cys Arg Asp His Asp His Cys Glu Asn Trp Ile Ser Ala Leu Glu Tyr $35 \hspace{1cm} 40 \hspace{1cm} 45$

Lys His Gly Met Arg Asn Tyr Tyr Pro Ser Thr Ile Ser His Cys Asp 50 60

Cys Asp Asn Gln Phe Arg Ser Cys Leu Met Lys Leu Lys Asp Gly Thr

65 70 75 80

Ala Asp Tyr Val Gly Gln Thr Tyr Phe Asn Val Leu Lys Ile Pro Cys 85 90 95

Phe Glu Leu Glu Glu Gly Glu Gly Cys Val Asp Trp Asn Phe Trp Leu 100 105 110

Glu Cys Thr Glu Ser Lys Ile Met Pro Val Ala Lys Leu Val Ser Ala 115 120 125

Ala Pro Tyr Gln Ala Gln Ala Glu Thr Gln Ser Gly Glu Gly 130 135 140

<210> 176

<211> 574

<212> PRT

<213> IgE heavy chain

<400> 176

Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 1 5 10 15

His Ser Gln Thr Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro 20 25 30

Gly Ala Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ile 35 40 45

Asp Ser Tyr Ile His Trp Ile Arg Gln Ala Pro Gly His Gly Leu Glu 50 60

Trp Val Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Pro 65 70 75 80

Arg Phe Gln Gly Arg Val Thr Met Thr Arg Asp Ala Ser Phe Ser Thr 85 90 95

Ala Tyr Met Asp Leu Arg Ser Leu Arg Ser Asp Asp Ser Ala Val Phe 100 105 110

Tyr Cys Ala Lys Ser Asp Pro Phe Trp Ser Asp Tyr Tyr Asn Phe Asp 115 120 125

Tyr Ser Tyr Thr Leu Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val 130 140

Ser Ser Ala Ser Thr Gln Ser Pro Ser Val Phe Pro Leu Thr Arg Cys 145 150 155 160

Cys Lys Asn Ile Pro Ser Asn Ala Thr Ser Val Thr Leu Gly Cys Leu 165 170 175

Ala Thr Gly Tyr Phe Pro Glu Pro Val Met Val Thr Trp Asp Thr Gly 180 185 190

Ser Leu Asn Gly Thr Thr Met Thr Leu Pro Ala Thr Thr Leu Thr Leu 195 200 205

Ser Gly His Tyr Ala Thr Ile Ser Leu Leu Thr Val Ser Gly Ala Trp 210 215 220

Ala Lys Gln Met Phe Thr Cys Arg Val Ala His Thr Pro Ser Ser Thr Asp Trp Val Asp Asn Lys Thr Phe Ser Val Cys Ser Arg Asp Phe Thr Pro Pro Thr Val Lys Ile Leu Gln Ser Ser Cys Asp Gly Gly His Phe Pro Pro Thr Ile Gln Leu Leu Cys Leu Val Ser Gly Tyr Thr Pro 280 Gly Thr Ile Asn Ile Thr Trp Leu Glu Asp Gly Gln Val Met Asp Val Asp Leu Ser Thr Ala Ser Thr Thr Gln Glu Gly Glu Leu Ala Ser Thr 310 Gln Ser Glu Leu Thr Leu Ser Gln Lys His Trp Leu Ser Asp Arg Thr 330 Tyr Thr Cys Gln Val Thr Tyr Gln Gly His Thr Phe Glu Asp Ser Thr Lys Lys Cys Ala Asp Ser Asn Pro Arg Gly Val Ser Ala Tyr Leu Ser 360 Arg Pro Ser Pro Phe Asp Leu Phe Ile Arg Lys Ser Pro Thr Ile Thr 375 380 Cys Leu Val Val Asp Leu Ala Pro Ser Lys Gly Thr Val Asn Leu Thr Trp Ser Arg Ala Ser Gly Lys Pro Val Asn His Ser Thr Arg Lys Glu Glu Lys Gln Arg Asn Gly Thr Leu Thr Val Thr Ser Thr Leu Pro Val 425 Gly Thr Arg Asp Trp Ile Glu Gly Glu Thr Tyr Gln Cys Arg Val Thr His Pro His Leu Pro Arg Ala Leu Met Arg Ser Thr Thr Lys Thr Ser Gly Pro Arg Ala Ala Pro Glu Val Tyr Ala Phe Ala Thr Pro Glu Trp Pro Gly Ser Arg Asp Lys Arg Thr Leu Ala Cys Leu Ile Gln Asn Phe Met Pro Glu Asp Ile Ser Val Gln Trp Leu His Asn Glu Val Gln Leu 505 Pro Asp Ala Arg His Ser Thr Thr Gln Pro Arg Lys Thr Lys Gly Ser Gly Phe Phe Val Phe Ser Arg Leu Glu Val Thr Arg Ala Glu Trp Glu 535 Gln Lys Asp Glu Phe Ile Cys Arg Ala Val His Glu Ala Ala Ser Pro 555 550

Ser Gln Thr Val Gln Arg Ala Val Ser Val Asn Pro Gly Lys

565

```
<210> 177
<400> 177
000
<210> 178
<211> 13
<212> PRT
<213> IgE Peptides
<400> 178
Cys Gly Gly Val Asn Leu Thr Trp Ser Arg Ala Ser Gly
<210> 179
<211> 8
<212> PRT
<213> IgE Mimotype
<400> 179
Ile Asn His Arg Gly Tyr Trp Val
<210> 180
<211> 8
<212> PRT
<213> IgE Mimotype
<400> 180
Arg Asn His Arg Gly Tyr Trp Val
<210> 181
 <211> 10
 <212> PRT
 <213> IgE Mimotype
 <400> 181
 Arg Ser Arg Ser Gly Gly Tyr Trp Leu Trp
                  5
 <210> 182
<211> 10
<211> 10
<212> PRT
<213> IgE Mimotype
 Val Asn Leu Thr Trp Ser Arg Ala Ser Gly
```

```
<210> 183
<211> 10
<212> PRT
<213> IgE Mimotype
<400> 183
Val Asn Leu Pro Trp Ser Arg Ala Ser Gly
<210> 184
<211> 10
<212> PRT
<213> IgE Mimotype
<400> 184
Val Asn Leu Thr Trp Ser Phe Gly Leu Glu
<210> 185
<211> 10
<212> PRT
<213> IgE Mimotype
<400> 185
Val Asn Leu Pro Trp Ser Phe Gly Leu Glu
<210> 186
<211> 10
<212> PRT
<213> IgE Mimotype
<400> 186
Val Asn Arg Pro Trp Ser Phe Gly Leu Glu
 <210> 187
 <211> 10
 <212> PRT
 <213> IgE Mimotype
 <400> 187
 Val Lys Leu Pro Trp Arg Phe Tyr Gln Val
                  5
 <210> 188
 <211> 10
 <212> PRT
<213> IgE Mimotype
 <400> 188
 Val Trp Thr Ala Cys Gly Tyr Gly Arg Met
 <210> 189
<211> 7
```

```
<212> PRT
<213> IgE Mimotype
      <400> 189
      Gly Thr Val Ser Thr Leu Ser
      <210> 190
<211> 7
<212> PRT
<213> IgE Mimotype
       <400> 190
       Leu Leu Asp Ser Arg Tyr Trp
                          5
       <210> 191
       <211> 7
<212> PRT
<213> IgE Mimotype
<400> 191
       Gln Pro Ala His Ser Leu Gly
T.
       <210> 192
<211> 7
<212> PRT
<213> IgE Mimotype
<400> 192
       Leu Trp Gly Met Gln Gly Arg
Fil
        <210> 193
        <211> 15
        <212> PRT
        <213> IgE Mimotype
        <400> 193
        Leu Thr Leu Ser His Pro His Trp Val Leu Asn His Phe Val Ser
                           5
        1
        <210> 194
        <211> 9
        <212> PRT
<213> IgE Mimotype
        <400> 194
        Ser Met Gly Pro Asp Gln Thr Leu Arg
        <210> 195
<211> 6
<212> PRT
<213> IgE Mimotype
```

<400> 195 Val Asn Leu Thr Trp Ser <210> 196 <211> 56 <212> DNA Oligonucleotide Primer <213> <400> 196 tagatgatta cgccaagctt ataatagaaa tagttttttg aaaggaaagc agcatg 56 <210> 197 <211> 45 <212> DNA <213> Oligonucleotide Primer <400> 197 45 gtcaaaggcc ttgtcgacgt tattccatta cgcccgtcat tttgg <210> 198 <211> 4623 <212> DNA <213> pFIMAIC <400> 198 agacgaaagg gcctcgtgat acgcctattt ttataggtta atgtcatgat aataatggtt 60 tettagaegt caggtggcae ttttegggga aatgtgegeg gaaceectat ttgtttattt 120 ttctaaatac attcaaatat gtatccgctc atgagacaat aaccctgata aatgcttcaa 180 taatattgaa aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt 240 300 tttgcggcat tttgccttcc tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc agttgggtgc acgagtgggt tacatcgaac tggatctcaa cagcggtaag 360 420 atccttgaga gttttcgccc cgaagaacgt tttccaatga tgagcacttt taaagttctg ctatgtggcg cggtattatc ccgtattgac gccgggcaag agcaactcgg tcgccgcata 480 cactattctc agaatgactt ggttgagtac tcaccagtca cagaaaagca tcttacggat 540 ggcatgacag taagagaatt atgcagtgct gccataacca tgagtgataa cactgcggcc 600 aacttacttc tgacaacgat cggaggaccg aaggagctaa ccgctttttt gcacaacatg 660 720 ggggatcatg taactcgcct tgatcgttgg gaaccggagc tgaatgaagc cataccaaac gacgagcgtg acaccacgat gcctgtagca atggcaacaa cgttgcgcaa actattaact 780 840 ggcgaactac ttactctagc ttcccggcaa caattaatag actggatgga ggcggataaa

						900
	cacttctgcg					
ggagccggtg	agcgtgggtc	tcgcggtatc	attgcagcac	tggggccaga	tggtaagccc	960
tcccgtatcg	tagttatcta	cacgacgggg	agtcaggcaa	ctatggatga	acgaaataga	1020
cagatcgctg	agataggtgc	ctcactgatt	aagcattggt	aactgtcaga	ccaagtttac	1080
tcatatatac	tttagattga	tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	1140
atcctttttg tcagaccccg	ataatctcat tagaaaagat	gaccaaaatc caaaggatct	ccttaacgtg tcttgagatc	agttttcgtt cttttttct	ccactgagcg gcgcgtaatc	1200 1260
tgctgcttgc	aaacaaaaa	accaccgcta	ccagcggtgg	tttgtttgcc	ggatcaagag	1320
ctaccaacto	tttttccgaa	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	1380
cttctagtgt	agccgtagtt	aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	1440
ctcgctctgc	taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	1500
gggttggact	caagacgata	gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	1560
tcgtgcacac	agcccagctt	ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	1620
gagctatgag	g aaagcgccac	gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	1680
ggcagggtcg	g gaacaggaga	gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	1740
tatagtcctg	g tegggttteg	ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	1800
ggggggcgg	a gcctatggaa	aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	1860
tgctggcct	t ttgctcacat	gttctttcct	gcgttatccc	ctgattctgt	ggataaccgt	1920
attaccgcc	t ttgagtgagc	tgataccgct	cgccgcagcc	gaacgaccga	gcgcagcgag	1980
tcagtgagc	g aggaagcgga	agagcgccca	atacgcaaac	cgcctctccc	cgcgcgttgg	2040
ccgattcat	t aatgcagctg	gcacgacagg	tttcccgact	ggaaagcggg	cagtgagcgc	2100
aacgcaatt	a atgtgagtta	gctcactcat	taggcacccc	aggctttaca	ctttatgctt	2160
ccggctcgt	a tgttgtgtgg	aattgtgagc	ggataacaat	ttcacacagg	aaacagctat	2220
gaccatgat	t acgccaagct	: tataatagaa	. atagttttt	gaaaggaaag	cagcatgaaa	2280
attaaaact	c tggcaatcgt	tgttctgtcg	gctctgtccc	tcagttctac	agcggctctg	2340
gccgctgcc	a cgacggttaa	tggtgggacc	gttcacttta	aaggggaagt	tgttaacgcc	2400
gcttgcgca	g ttgatgcagg	g ctctgttgat	caaaccgttc	agttaggaca	ggttcgtacc	2460
gcatcgctg	g cacaggaagg	g agcaaccagt	tctgctgtcg	g gttttaacat	tcagctgaat	2520
gattgcgat	a ccaatgttgo	atctaaagcc	gctgttgcct	ttttaggtad	ggcgattgat	2580
gcgggtcat	a ccaacgttct	ggctctgcag	g agttcagcto	g cgggtagcgd	c aacaaacgtt	2640
ggtgtgcag	a tcctggacag	g aacgggtgct	gcgctgacgo	tggatggtg	gacatttagt	2700
tcagaaaca	a ccctgaataa	a cggaaccaat	accattccgt	tccaggcgcg	g ttattttgca	2760

accggggccg	caaccccggg	tgctgctaat	gcggatgcga	ccttcaaggt	tcagtatcaa	2820
taacctaccc	aggttcaggg	acgtcattac	gggcagggat	gcccaccctt	gtgcgataaa	2880
aataacgatg	aaaaggaaga	gattatttct	attagcgtcg	ttgctgccaa	tgtttgctct	2940
ggccggaaat	aaatggaata	ccacgttgcc	cggcggaaat	atgcaatttc	agggcgtcat	3000
tattgcggaa	acttgccgga	ttgaagccgg	tgataaacaa	atgacggtca	atatggggca	3060
aatcagcagt tcatttacgg	aaccggtttc gaatgtagca	atgcggttgg cggtggtgag	ggaagatagc tgaacgtgta	gcaccggtgc ggtgtggcgt	cttttgttat ttcacggtgt	3120 3180
cgcggatggt	aaaaatccgg	atgtgctttc	cgtgggagag	gggccaggga	tagccaccaa	3240
tattggcgta	gcgttgtttg	atgatgaagg	aaacctcgta	ccgattaatc	gtcctccagc	3300
aaactggaaa	cggctttatt	caggctctac	ttcgctacat	ttcatcgcca	aatatcgtgc	3360
taccgggcgt	cgggttactg	gcggcatcgc	caatgcccag	gcctggttct	ctttaaccta	3420
tcagtaattg	ttcagcagat	aatgtgataa	caggaacagg	acagtgagta	ataaaaacgt	3480
caatgtaagg	aaatcgcagg	aaataacatt	ctgcttgctg	gcaggtatcc	tgatgttcat	3540
ggcaatgatg	gttgccggac	gcgctgaagc	gggagtggcc	ttaggtgcga	ctcgcgtaat	3600
ttatccggca	gggcaaaaac	aagagcaact	tgccgtgaca	aataatgatg	aaaatagtac	3660
ctatttaatt	caatcatggg	tggaaaatgc	cgatggtgta	aaggatggtc	gttttatcgt	3720
gacgcctcct	ctgtttgcga	tgaagggaaa	aaaagagaat	accttacgta	ttcttgatgc	3780
aacaaataac	caattgccac	aggaccggga	aagtttattc	tggatgaacg	ttaaagcgat	3840
tccgtcaatg	gataaatcaa	aattgactga	gaatacgcta	cagctcgcaa	ttatcagccg	3900
cattaaactg	tactatcgcc	cggctaaatt	agcgttgcca	cccgatcagg	ccgcagaaaa	3960
attaagattt	cgtcgtagcg	cgaattctct	gacgctgatt	aacccgacac	cctattacct	4020
gacggtaaca	gagttgaatg	ccggaacccg	ggttcttgaa	aatgcattgg	tgcctccaat	4080
gggcgaaagc	acggttaaat	tgccttctga	tgcaggaagc	aatattactt	accgaacaat	4140
aaatgattat	ggcgcactta	ccccaaaat	gacgggcgta	atggaataac	gtcgactcta	4200
gaggatcccc	gggtaccgag	ctcgaattca	ctggccgtcg	ttttacaacg	tcgtgactgg	4260
gaaaaccctg	gcgttaccca	acttaatcgc	cttgcagcac	atcccccttt	cgccagctgg	4320
cgtaatagcg	aagaggcccg	caccgatcgc	ccttcccaac	agttgcgcag	cctgaatggc	4380
gaatggcgcc	tgatgcggta	ttttctcctt	acgcatctgt	gcggtatttc	acaccgcata	4440
tggtgcactc	tcagtacaat	ctgctctgat	gccgcatagt	taagccagcc	ccgacacccg	4500
ccaacacccg	ctgacgcgcc	ctgacgggct	tgtctgctcc	cggcatccgc	ttacagacaa	4560
gctgtgaccg	tctccgggag	ctgcatgtgt	cagaggtttt	caccgtcatc	accgaaacgc	4620
gcg						4623

<210> 199 <211> 42 <212> DNA <213> Oligonu	ucleotide Primer				
<400> 199 aagatettaa get	taagcttg aattctctga	cgctgattaa	CC "		42
<210> 200 <211> 41 <212> DNA <213> Oligonu	ucleotide Primer				
<400> 200 acgtaaagca ttt	tctagacc gcggatagta	atcgtgctat	С		41
<210> 201					
<211> 5681					
<212> DNA					
<213> pFIMD					
<400> 201 tcaccgtcat cac	ccgaaacg cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	60
gttaatgtca tga	ataataat ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	120
cgcggaaccc cta	atttgttt atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	180
caataaccct ga	taaatgct tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	240
ttccgtgtcg cc	cttattcc cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	300
gaaacgctgg tg	aaagtaaa agatgctgaa	ı gatcagttgg	gtgcacgagt	gggttacatc	360
gaactggatc to	aacagcgg taagatcctt	gagagttttc	gccccgaaga	acgttttcca	420
atgatgagca ct	tttaaagt tctgctatgt	ggcgcggtat	tatcccgtat	tgacgccggg	480
caagagcaac to	ggtcgccg catacactat	tctcagaatg	acttggttga	gtactcacca	540
gtcacagaaa ag	catcttac ggatggcat	g acagtaagag	aattatgcag	tgctgccata	600
accatgagtg at	aacactgc ggccaactta	a cttctgacaa	cgatcggagg	accgaaggag	660
ctaaccgctt tt	ttgcacaa catggggga	catgtaactc	gccttgatcg	ttgggaaccg	720
gagctgaatg aa	gccatacc aaacgacgag	g cgtgacacca	cgatgcctgt	agcaatggca	780
acaacgttgc gc	caaactatt aactggcgaa	a ctacttactc	tagcttcccg	gcaacaatta	840
atagactgga tg	ggaggcgga taaagttgc	a ggaccacttc	tgcgctcggc	ccttccggct	900
ggctggttta tt	gctgataa atctggagc	c ggtgagcgtg	ggtctcgcgg	tatcattgca	960
gcactggggc ca	agatggtaa gccctcccg	t atcgtagtta	tctacacgac	ggggagtcag	1020

1080 gcaactatgg atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat 1140 tggtaactgt cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa 1200 1260 cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1320 gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1380 agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1440 aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1500 1560 agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1620 accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1680 aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1740 ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 1800 cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 1860 geetttttae ggtteetgge ettttgetgg eettttgete acatgttett teetgegtta 1920 teccetgatt etgtggataa eegtattaee geetttgagt gagetgatae egetegeege 1980 agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cccaatacgc 2040 aaaccgcctc tccccgcgcg ttggccgatt cattaatgca gctggcacga caggtttccc 2100 gactggaaag cgggcagtga gcgcaacgca attaatgtga gttagctcac tcattaggca 2160 ccccaggett tacactttat getteegget egtatgttgt gtggaattgt gageggataa 2220 caatttcaca caggaaacag ctatgaccat gattacgcca agcttgaatt ctctgacgct 2280 gattaacccg acaccctatt acctgacggt aacagagttg aatgccggaa cccgggttct 2340 tgaaaatgca ttggtgcctc caatgggcga aagcacggtt aaattgcctt ctgatgcagg 2400 aagcaatatt acttaccgaa caataaatga ttatggcgca cttaccccca aaatgacggg 2460 cgtaatggaa taacgcaggg ggaatttttc gcctgaataa aaagaattga ctgccggggt 2520 gattttaagc cggaggaata atgtcatatc tgaatttaag actttaccag cgaaacacac 2580 aatgcttgca tattcgtaag catcgtttgg ctggtttttt tgtccgactc gttgtcgcct 2640 gtgcttttgc cgcacaggca cctttgtcat ctgccgacct ctattttaat ccgcgctttt 2700 tageggatga teceeagget gtggeegatt tategegttt tgaaaatggg caagaattae 2760 cgccagggac gtatcgcgtc gatatctatt tgaataatgg ttatatggca acgcgtgatg 2820 tcacatttaa tacgggcgac agtgaacaag ggattgttcc ctgcctgaca cgcgcgcaac 2880

tcgccagtat	ggggctgaat	acggcttctg	tcgccggtat	gaatctgctg	gcggatgatg	2940
cctgtgtgcc	attaaccaca	atggtccagg	acgctactgc	gcatctggat	gttggtcagc	3000
agcgactgaa	cctgacgatc	cctcaggcat	ttatgagtaa	tcgcgcgcgt	ggttatattc	3060
ctcctgagtt	atgggatccc	ggtattaatg	ccggattgct	caattataat	ttcagcggaa	3120
atagtgtaca	gaatcggatt	gggggtaaca	gccattatgc	atatttaaac	ctacagagtg	3180
ggttaaatat acagatcatc	tggtgcgtgg aggtagcaaa	cgtttacgcg aataaatggc	acaataccac agcatatcaa	ctggagttat tacctggctt	aacagtagcg gagcgagaca	3240 3300
taataccgtt	acgttcccgg	ctgacgctgg	gtgatggtta	tactcagggc	gatattttcg	3360
atggtattaa	ctttcgcggc	gcacaattgg	cctcagatga	caatatgtta	cccgatagtc	3420
aaagaggatt	tgccccggtg	atccacggta	ttgctcgtgg	tactgcacag	gtcactatta	3480
aacaaaatgg	gtatgacatt	tataatagta	cggtgccacc	ggggcctttt	accatcaacg	3540
atatctatgc	cgcaggtaat	agtggtgact	tgcaggtaac	gatcaaagag	gctgacggca	3600
gcacgcagat	ttttaccgta	ccctattcgt	cagtcccgct	tttgcaacgt	gaagggcata	3660
ctcgttattc	cattacggca	ggagaatacc	gtagtggaaa	tgcgcagcag	gaaaaaaccc	3720
gctttttcca	gagtacatta	ctccacggcc	ttccggctgg	ctggacaata	tatggtggaa	3780
cgcaactggc	ggatcgttat	cgtgctttta	atttcggtat	cgggaaaaac	atgggggcac	3840
tgggcgctct	gtctgtggat	atgacgcagg	ctaattccac	acttcccgat	gacagtcagc	3900
atgacggaca	atcggtgcgt	tttctctata	acaaatcgct	caatgaatca	ggcacgaata	3960
ttcagttagt	gggttaccgt	tattcgacca	gcggatattt	taatttcgct	gatacaacat	4020
acagtcgaat	gaatggctac	aacattgaaa	cacaggacgg	agttattcag	gttaagccga	4080
aattcaccga	ctattacaac	ctcgcttata	acaaacgcgg	gaaattacaa	ctcaccgtta	4140
ctcagcaact	cgggcgcaca	tcaacactgt	atttgagtgg	tagccatcaa	acttattggg	4200
gaacgagtaa	tgtcgatgag	caattccagg	ctggattaaa	tactgcgttc	gaagatatca	4260
actggacgct	cagctatago	: ctgacgaaaa	. acgcctggca	aaaaggacgg	gatcagatgt	4320
tagcgcttaa	cgtcaatatt	cctttcagcc	e actggctgcg	g ttctgacagt	aaatctcagt	4380
ggcgacatgc	cagtgccago	tacagcatgt	cacacgatct	caacggtcgg	atgaccaatc	4440
tggctggtgt	atacggtacg	g ttgctggaag	g acaacaacct	cagctatago	gtgcaaaccg	4500
gctatgccgg	gggaggcgat	ggaaatagcg	gaagtacag	g ctacgccacg	g ctgaattatc	4560
gcggtggtta	cggcaatgc	c aatatcggtt	acagccatag	g cgatgatatt	aagcagctct	4620
attacggagt	cagcggtggg	g gtactggcto	atgccaatg	g cgtaacgctg	g gggcagccgt	4680
taaacgatac	ggtggtgctt	gttaaagcgo	c ctggcgcaaa	a agatgcaaaa	a gtcgaaaacc	4740
agacgggggt	gcgtaccgad	c tggcgtggtt	atgccgtgc	t gccttatgco	c actgaatatc	4800

gggaaaatag	agtggcgctg	gataccaata	ccctggctga	taacgtcgat	ttagataacg	4860
cggttgctaa	cgttgttccc	actcgtgggg	cgatcgtgcg	agcagagttt	aaagcgcgcg	4920
ttgggataaa	actgctcatg	acgctgaccc	acaataataa	gccgctgccg	tttggggcga	4980
tggtgacatc	agagagtagc	cagagtagcg	gcattgttgc	ggataatggt	caggtttacc	5040
tcagcggaat	gcctttagcg	ggaaaagttc	aggtgaaatg	gggagaagag	gaaaatgctc	5100
actgtgtcgc cagctgaatg	caattatcaa tcgttaaggg	ctgccaccag ggcgtgatga	agagtcagca gaaacaaacc	gcagttatta tttttatctt	acccagctat ctgtgcgctt	5160 5220
ttttgtggct	ggcggtgagt	cacgctttgg	ctgcggatag	cacgattact	atccgcggtc	5280
tagaggatco	ccgggtaccg	agctcgaatt	cactggccgt	cgttttacaa	cgtcgtgact	5340
gggaaaaccc	: tggcgttacc	caacttaatc	gccttgcagc	acatccccct	ttcgccagct	5400
ggcgtaatag	g cgaagaggcc	cgcaccgatc	gcccttccca	acagttgcgc	agcctgaatg	5460
gcgaatggcg	g cctgatgcgg	tattttctcc	ttacgcatct	gtgcggtatt	tcacaccgca	5520
tatggtgcad	c tctcagtaca	atctgctctg	atgccgcata	gttaagccag	ccccgacacc	5580
cgccaacac	c cgctgacgcg	ccctgacggg	cttgtctgct	cccggcatcc	gcttacagac	5640
aagctgtga	c cgtctccggg	g agctgcatgt	gtcagaggtt	t		5681
<400> 20	A igonucleotic		a cottttato			40
<210> 20 <211> 41 <212> DN	3					
<400> 20 gactaaggc	3 c tttctagat	t attgataaad	c aaaagtcacç	J C		41
<210> 20	4					
<211> 46	37					
<212> DN	Ä					
<213> pF	IMFGH					
<400> 20	4 c gtgatacgc	c tatttttat	a ggttaatgt	c atgataata	a tggtttctta	60

gacgtcaggt ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tattttcta

120

aatacattca	aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	180
ttgaaaaagg	aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	240
ggcattttgc	cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	300
agatcagttg	ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	360
tgagagtttt	cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	420
tggcgcggta ttctcagaat	ttatcccgta gacttggttg	ttgacgccgg agtactcacc	gcaagagcaa agtcacagaa	ctcggtcgcc aagcatctta	gcatacacta cggatggcat	480 540
gacagtaaga	gaattatgca	gtgctgccat	aaccatgagt	gataacactg	cggccaactt	600
acttctgaca	acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	660
tcatgtaact	cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	720
gcgtgacacc	acgatgcctg	tagcaatggc	aacaacgttg	cgcaaactat	taactggcga	780
actacttact	ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	840
aggaccactt	ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	900
cggtgagcgt	gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	960
tatcgtagtt	atctacacga	cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	1020
cgctgagata	ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	1080
tatactttag	attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	1140
ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	1200
ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	1260
cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	1320
aactctttt	ccgaaggtaa	. ctggcttcag	cagagegeag	ataccaaata	ctgtccttct	1380
agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	1440
tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	1500
ggactcaaga	cgatagttac	: cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	1560
cacacagccc	agcttggagc	: gaacgaccta	. caccgaactg	g agatacctac	agcgtgagct	1620
atgagaaagc	gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	1680
ggtcggaaca	. ggagagcgca	cgagggagct	tccaggggga	a aacgcctggt	atctttatag	1740
tcctgtcggg	tttcgccaco	c tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	1800
gcggagccta	tggaaaaacg	g ccagcaacgo	ggccttttta	a cggttcctgg	ccttttgctg	1860
gccttttgct	cacatgttct	ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	1920
cgcctttgag	tgagctgata	a ccgctcgccg	g cagccgaac	g accgagcgca	a gcgagtcagt	1980
gagcgaggaa	gcggaagag	c gcccaatacç	g caaaccgcct	t ctccccgcg	gttggccgat	2040

tcattaatgc	agctggcacg	acaggtttcc	cgactggaaa	gcgggcagtg	agcgcaacgc	2100
aattaatgtg	agttagctca	ctcattaggc	accccaggct	ttacacttta	tgcttccggc	2160
tcgtatgttg	tgtggaattg	tgagcggata	acaatttcac	acaggaaaca	gctatgacca	2220
tgattacgcc	aagcttatga	gaaacaaacc	tttttatctt	ctgtgcgctt	ttttgtggct	2280
ggcggtgagt	cacgctttgg	ctgcggatag	cacgattact	atccgcggct	atgtcaggga	2340
		ctgaatcaac ttggcgcgac				2400 2460
gtcaccctgt	ggtaatgccg	tttctgccgt	aaaggttggg	tttactggcg	ttgcagatag	2520
ccacaatgcc	aacctgcttg	cacttgaaaa	tacggtgtca	gcggcttcgg	gactgggaat	2580
acagcttctg	aatgagcagc	aaaatcaaat	accccttaat	gctccatcgt	ccgcgctttc	2640
gtggacgacc	ctgacgccgg	gtaaaccaaa	tacgctgaat	ttttacgccc	ggctaatggc	2700
gacacaggtg	cctgtcactg	cggggcatat	caatgccacg	gctaccttca	ctcttgaata	2760
tcagtaactg	gagatgctca	tgaaatggtg	caaacgtggg	tatgtattgg	cggcaatatt	2820
ggcgctcgca	agtgcgacga	tacaggcagc	cgatgtcacc	atcacggtga	acggtaaggt	2880
cgtcgccaaa	ccgtgtacgg	tttccaccac	caatgccacg	gttgatctcg	gcgatcttta	2940
ttctttcagt	cttatgtctg	ccggggcggc	atcggcctgg	catgatgttg	cgcttgagtt	3000
gactaattgt	ccggtgggaa	cgtcgagggt	cactgccagc	ttcagcgggg	cagccgacag	3060
taccggatat	tataaaaacc	aggggaccgc	gcaaaacatc	cagttagagc	tacaggatga	3120
cagtggcaac	acattgaata	ctggcgcaac	caaaacagtt	caggtggatg	attcctcaca	3180
atcagcgcac	ttcccgttac	aggtcagagc	attgacagta	aatggcggag	ccactcaggg	3240
aaccattcag	gcagtgatta	gcatcaccta	tacctacagc	tgaacccgaa	gagatgattg	3300
taatgaaacg	agttattacc	ctgtttgctg	tactgctgat	gggctggtcg	gtaaatgcct	3360
ggtcattcgc	ctgtaaaacc	gccaatggta	ccgctatccc	tattggcggt	ggcagcgcca	3420
atgtttatgt	aaaccttgcg	cccgtcgtga	atgtggggca	aaacctggtc	gtggatcttt	3480
cgacgcaaat	cttttgccat	aacgattatc	cggaaaccat	tacagactat	gtcacactgc	3540
aacgaggctc	ggcttatggc	ggcgtgttat	ctaatttttc	cgggaccgta	aaatatagtg	3600
gcagtagcta	tccatttcct	accaccagcg	aaacgccgcg	cgttgtttat	aattcgagaa	3660
cggataagcc	gtggccggtg	gcgctttatt	tgacgcctgt	gagcagtgcg	ggcggggtgg	3720
cgattaaagc	tggctcatta	attgccgtgc	ttattttgcg	acagaccaac	aactataaca	3780
gcgatgattt	ccagtttgtg	tggaatattt	acgccaataa	tgatgtggtg	gtgcctactg	3840
gcggctgcga	tgtttctgct	cgtgatgtca	ccgttactct	gccggactac	cctggttcag	3900
tgccaattcc	tcttaccgtt	tattgtgcga	aaagccaaaa	cctggggtat	tacctctccg	3960

gcacaaco	cgc agatgcgggc	aactcgattt	tcaccaatac	cgcgtcgttt	tcacctgcac	4020
agggcgt	cgg cgtacagttg	acgcgcaacg	gtacgattat	tccagcgaat	aacacggtat	4080
cgttagga	agc agtagggact	tcggcggtga	gtctgggatt	aacggcaaat	tatgcacgta	4140
ccggaggg	gca ggtgactgca	gggaatgtgc	aatcgattat	tggcgtgact	tttgtttatc	4200
aataatc	tag aggatccccg	ggtaccgagc	tcgaattcac	tggccgtcgt	tttacaacgt	4260
	ggg aaaaccctgg ggc gtaatagcga	-				4320 4380
ctgaatg	gcg aatggcgcct	gatgcggtat	tttctcctta	cgcatctgtg	cggtatttca	4440
caccgcat	tat ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	aagccagccc	4500
cgacacco	cgc caacacccgc	tgacgcgccc	tgacgggctt	gtctgctccc	ggcatccgct	4560
tacagaca	aag ctgtgaccgt	ctccgggagc	tgcatgtgtc	agaggttttc	accgtcatca	4620
ccgaaac	gcg cgagacg					4637
<210>	205					
<211>	9299					
<212>]	DNA					
<213>]	pFIMAICDFGH					

<400> 205 cgagacgaaa gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg 60 tttcttagac gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat 120 ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 180 aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct 240 tttttgegge attttgeett eetgtttttg etcacecaga aacgetggtg aaagtaaaag 300 360 atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta agatccttga gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc 420 tgctatgtgg cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca 480 tacactattc tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg 540 600 atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca 660 tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa 720 acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa 780 ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg gaggcggata 840

aagttgcagg	accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	gctgataaat	900
ctggagccgg	tgagcgtggg	tctcgcggta	tcattgcagc	actggggcca	gatggtaagc	960
cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	gaacgaaata	1020
gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	gaccaagttt	1080
actcatatat	actttagatt	gatttaaaac	ttcattttta	atttaaaagg	atctaggtga	1140
		atgaccaaaa atcaaaggat				1200 1260
tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	ccggatcaag	1320
agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	ccaaatactg	1380
tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	1440
acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	1500
ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	geggteggge	tgaacggggg	1560
gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	1620
gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	tatccggtaa	1680
gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	1740
tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	1800
caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctggcct	1860
tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	gtggataacc	1920
gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	1980
agtcagtgag	cgaggaagcg	gaagagcgcc	caatacgcaa	accgcctctc	cccgcgcgtt	2040
ggccgattca	ttaatgcagc	tggcacgaca	ggtttcccga	ctggaaagcg	ggcagtgagc	2100
gcaacgcaat	taatgtgagt	tagctcactc	attaggcacc	ccaggcttta	cactttatgc	2160
ttccggctcg	tatgttgtgt	ggaattgtga	gcggataaca	atttcacaca	ggaaacagct	2220
atgaccatga	ttacgccaag	cttataatag	aaatagtttt	ttgaaaggaa	agcagcatga	2280
aaattaaaac	tctggcaatc	gttgttctgt	cggctctgtc	cctcagttct	acagcggctc	2340
tggccgctgc	cacgacggtt	aatggtggga	ccgttcactt	taaaggggaa	gttgttaacg	2400
cegattgaga	agttgatgca	ggctctgttg	atcaaaccgt	tcagttagga	caggttcgta	2460
ccgcatcgct	ggcacaggaa	ggagcaacca	gttctgctgt	cggttttaac	attcagctga	2520
atgattgcga	taccaatgtt	gcatctaaag	ccgctgttgc	ctttttaggt	acggcgattg	2580
atgcgggtca	taccaacgtt	ctggctctgc	agagttcagc	tgcgggtagc	gcaacaaacg	2640
ttggtgtgca	gatcctggac	agaacgggtg	ctgcgctgac	gctggatggt	gcgacattta	2700
gttcagaaac	aaccctgaat	aacggaacca	ataccattcc	gttccaggcg	cgttattttg	2760

caaccggggc cgcaaccccg ggtgctgcta atgcggatgc gaccttcaag gttcagtatc 2820 2880 aataacctac ccaggttcag ggacgtcatt acgggcaggg atgcccaccc ttgtgcgata aaaataacga tgaaaaggaa gagattattt ctattagcgt cgttgctgcc aatgtttgct 2940 ctggccggaa ataaatggaa taccacgttg cccggcggaa atatgcaatt tcagggcgtc 3000 3060 attattgcgg aaacttgccg gattgaagcc ggtgataaac aaatgacggt caatatgggg 3120 caaatcagca gtaaccggtt tcatgcggtt ggggaagata gcgcaccggt gccttttgtt 3180 attcatttac gggaatgtag cacggtggtg agtgaacgtg taggtgtggc gtttcacggt gtcgcggatg gtaaaaatcc ggatgtgctt tccgtgggag aggggccagg gatagccacc 3240 3300 aatattggcg tagcgttgtt tgatgatgaa ggaaacctcg taccgattaa tcgtcctcca gcaaactgga aacggcttta ttcaggctct acttcgctac atttcatcgc caaatatcgt 3360 3420 gctaccgggc gtcgggttac tggcggcatc gccaatgccc aggcctggtt ctctttaacc tatcagtaat tgttcagcag ataatgtgat aacaggaaca ggacagtgag taataaaaac 3480 gtcaatgtaa ggaaatcgca ggaaataaca ttctgcttgc tggcaggtat cctgatgttc 3540 atggcaatga tggttgccgg acgcgctgaa gcgggagtgg ccttaggtgc gactcgcgta 3600 3660 atttatccgg cagggcaaaa acaagagcaa cttgccgtga caaataatga tgaaaatagt acctatttaa ttcaatcatg ggtggaaaat gccgatggtg taaaggatgg tcgttttatc 3720 gtgacgcctc ctctgtttgc gatgaaggga aaaaaagaga ataccttacg tattcttgat 3780 gcaacaaata accaattgcc acaggaccgg gaaagtttat tctggatgaa cgttaaagcg 3840 attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattatcagc 3900 3960 cgcattaaac tgtactatcg cccggctaaa ttagcgttgc cacccgatca ggccgcagaa aaattaagat ttcgtcgtag cgcgaattct ctgacgctga ttaacccgac accctattac 4020 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 4080 atgggcgaaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 4140 ataaatgatt atggcgcact tacccccaaa atgacgggcg taatggaata acgcaggggg 4200 4260 aatttttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 4320 tegtttgget ggtttttttg teegactegt tgtegeetgt gettttgeeg cacaggeace 4380 tttgtcatct gccgacctct attttaatcc gcgcttttta gcggatgatc cccaggctgt 4440 ggccgattta tcgcgttttg aaaatgggca agaattaccg ccagggacgt atcgcgtcga 4500 tatctatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 4560 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 4620 ggcttctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 4680

4740 ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 4800 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 4860 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 4920 4980 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 5040 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 5100 5160 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 5220 taatagtacg gtgccaccgg ggccttttac catcaacgat atctatgccg caggtaatag 5280 5340 tggtgacttg caggtaacga tcaaagaggc tgacggcagc acgcagattt ttaccgtacc ctattcgtca gtcccgcttt tgcaacgtga agggcatact cgttattcca ttacggcagg 5400 5460 agaataccgt agtggaaatg cgcagcagga aaaaacccgc tttttccaga gtacattact 5520 ccacggcctt ccggctggct ggacaatata tggtggaacg caactggcgg atcgttatcg tgcttttaat ttcggtatcg ggaaaaacat gggggcactg ggcgctctgt ctgtggatat 5580 gacgcaggct aattccacac ttcccgatga cagtcagcat gacggacaat cggtgcgttt 5640 5700 tctctataac aaatcgctca atgaatcagg cacgaatatt cagttagtgg gttaccgtta 5760 ttcgaccagc ggatatttta atttcgctga tacaacatac agtcgaatga atggctacaa cattgaaaca caggacggag ttattcaggt taagccgaaa ttcaccgact attacaacct 5820 5880 cgcttataac aaacgcggga aattacaact caccgttact cagcaactcg ggcgcacatc aacactgtat ttgagtggta gccatcaaac ttattgggga acgagtaatg tcgatgagca 5940 6000 attccaggct ggattaaata ctgcgttcga agatatcaac tggacgctca gctatagcct 6060 gacgaaaaac gcctggcaaa aaggacggga tcagatgtta gcgcttaacg tcaatattcc tttcagccac tggctgcgtt ctgacagtaa atctcagtgg cgacatgcca gtgccagcta 6120 cagcatgtca cacgatctca acggtcggat gaccaatctg gctggtgtat acggtacgtt 6180 6240 gctggaagac aacaacctca gctatagcgt gcaaaccggc tatgccgggg gaggcgatgg aaatagcgga agtacaggct acgccacgct gaattatcgc ggtggttacg gcaatgccaa 6300 6360 tatcggttac agccatagcg atgatattaa gcagctctat tacggagtca gcggtggggt actggctcat gccaatggcg taacgctggg gcagccgtta aacgatacgg tggtgcttgt 6420 6480 taaagcgcct ggcgcaaaag atgcaaaagt cgaaaaccag acgggggtgc gtaccgactg gcgtggttat gccgtgctgc cttatgccac tgaatatcgg gaaaatagag tggcgctgga 6540 taccaatacc ctggctgata acgtcgattt agataacgcg gttgctaacg ttgttcccac 6600

taataaaaaa	atcatacaaa	cagagtttaa	aggggggtt	nggataaaac	tactcataac	6660
gctgacccac	aataataagc	cgctgccgtt	tggggcgatg	gtgacatcag	agagtagcca	6720
gagtagcggc	attgttgcgg	ataatggtca	ggtttacctc	agcggaatgc	ctttagcggg	6780
aaaagttcag	gtgaaatggg	gagaagagga	aaatgctcac	tgtgtcgcca	attatcaact	6840
gccaccagag	agtcagcagc	agttattaac	ccagctatca	gctgaatgtc	gttaaggggg	6900
		tttatcttct cgattactat				6960 7020
tgtggccgct	gaatcaacca	attttactgt	tgatctgatg	gaaaacgcgg	cgaagcaatt	7080
taacaacatt	ggcgcgacga	ctcctgttgt	tccatttcgt	attttgctgt	caccctgtgg	7140
taatgccgtt	tctgccgtaa	aggttgggtt	tactggcgtt	gcagatagcc	acaatgccaa	7200
cctgcttgca	cttgaaaata	cggtgtcagc	ggcttcggga	ctgggaatac	agcttctgaa	7260
tgagcagcaa	aatcaaatac	cccttaatgc	tccatcgtcc	gcgctttcgt	ggacgaccct	7320
gacgccgggt	aaaccaaata	cgctgaattt	ttacgcccgg	ctaatggcga	cacaggtgcc	7380
tgtcactgcg	gggcatatca	atgccacggc	taccttcact	cttgaatatc	agtaactgga	7440
gatgctcatg	aaatggtgca	aacgtgggta	tgtattggcg	gcaatattgg	cgctcgcaag	7500
tgcgacgata	caggcagccg	atgtcaccat	cacggtgaac	ggtaaggtcg	tcgccaaacc	7560
gtgtacggtt	tccaccaccā	atgccacggt	tgatctcggc	gatctttatt	ctttcagtct	7620
tatgtctgcc	ggggcggcat	cggcctggca	tgatgttgcg	cttgagttga	ctaattgtcc	7680
ggtgggaacg	tcgagggtca	ctgccagctt	cagcggggca	gccgacagta	ccggatatta	7740
taaaaaccag	gggaccgcgc	aaaacatcca	gttagagcta	caggatgaca	gtggcaacac	7800
attgaatact	ggcgcaacca	aaacagttca	ggtggatgat	tcctcacaat	cagcgcactt	7860
cccgttacag	gtcagagcat	tgacagtaaa	tggcggagcc	actcagggaa	ccattcaggc	7920
agtgattagc	atcacctata	cctacagctg	aacccgaaga	gatgattgta	atgaaacgag	7980
ttattaccct	gtttgctgta	ctgctgatgg	gctggtcggt	aaatgcctgg	tcattcgcct	8040
gtaaaaccgc	caatggtacc	gctatcccta	ttggcggtgg	cagcgccaat	gtttatgtaa	8100
accttgcgcc	cgtcgtgaat	gtggggcaaa	acctggtcgt	ggatctttcg	acgcaaatct	8160
tttgccataa	cgattatccg	gaaaccatta	cagactatgt	cacactgcaa	cgaggctcgg	8220
cttatggcgg	cgtgttatct	aatttttccg	ggaccgtaaa	atatagtggc	agtagctatc	8280
catttcctac	caccagcgaa	acgccgcgcg	ttgtttataa	ttcgagaacg	gataagccgt	8340
ggccggtggc	gctttatttg	acgcctgtga	gcagtgcggg	cggggtggcg	attaaagctg	8400
gctcattaat	tgccgtgctt	attttgcgac	agaccaacaa	ctataacagc	gatgatttcc	8460
agtttgtgtg	gaatatttac	gccaataatg	atgtggtggt	gcctactggc	ggctgcgatg	8520

<212>

DNA <213> pFIMAICDFG

tttctgctcg tgatgtcacc	gttactctgc	cggactaccc	tggttcagtg	ccaattcctc	8580
ttaccgttta ttgtgcgaaa	agccaaaacc	tggggtatta	cctctccggc	acaaccgcag	8640
atgcgggcaa ctcgattttc	accaataccg	cgtcgttttc	acctgcacag	ggcgtcggcg	8700
tacagttgac gcgcaacggt	acgattattc	cagcgaataa	cacggtatcg	ttaggagcag	8760
tagggacttc ggcggtgagt	ctgggattaa	cggcaaatta	tgcacgtacc	ggagggcagg	8820
tgactgcagg gaatgtgcaa ggatccccgg gtaccgagct					8880 8940
aaaccctggc gttacccaac	ttaatcgcct	tgcagcacat	cccctttcg	ccagctggcg	9000
taatagcgaa gaggcccgca	ccgatcgccc	ttcccaacag	ttgcgcagcc	tgaatggcga	9060
atggcgcctg atgcggtatt	ttctccttac	gcatctgtgc	ggtatttcac	accgcatatg	9120
gtgcactctc agtacaatct	gctctgatgc	cgcatagtta	agccagcccc	gacacccgcc	9180
aacacccgct gacgcgccct	gacgggcttg	tctgctcccg	gcatccgctt	acagacaagc	9240
tgtgaccgtc tccgggagct	gcatgtgtca	gaggttttca	ccgtcatcac	cgaaacgcg	9299
<210> 206					
<211> 8464					

<400> 206 cgagacgaaa gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg 60 120 tttcttagac gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat 180 ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct 240 tttttgcggc attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag 300 atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta 360 agateettga gagttttege eecgaagaac gtttteeaat gatgageact tttaaagtte 420 480 tgctatgtgg cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca tacactattc tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg 540 atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg 600 ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca 660 tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa 720 acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa 780

ctggcgaact	acttactcta	gcttcccggc	aacaattaat	agactggatg	gagggggata	840
						900
		cgctcggccc				
		tctcgcggta				960
cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	gaacgaaata	1020
gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	gaccaagttt	1080
		gatttaaaac atgaccaaaa				1140 1200
cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	ctgcgcgtaa	1260
tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	ccggatcaag	1320
agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	ccaaatactg	1380
tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	1440
acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	1500
ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	tgaacggggg	1560
gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	1620
gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	tatccggtaa	1680
gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	1740
tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	1800
caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctggcct	1860
tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	gtggataacc	1920
gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	1980
agtcagtgag	cgaggaagcg	gaagagcgcc	caatacgcaa	accgcctctc	cccgcgcgtt	2040
ggccgattca	ttaatgcagc	tggcacgaca	ggtttcccga	ctggaaagcg	ggcagtgagc	2100
gcaacgcaat	taatgtgagt	tagctcactc	attaggcacc	ccaggcttta	cactttatgc	2160
ttccggctcg	tatgttgtgt	ggaattgtga	gcggataaca	atttcacaca	ggaaacagct	2220
atgaccatga	ttacgccaag	cttataatag	aaatagtttt	ttgaaaggaa	agcagcatga	2280
aaattaaaac	tctggcaatc	gttgttctgt	cggctctgtc	cctcagttct	acagcggctc	2340
tggccgctgc	cacgacggtt	aatggtggga	ccgttcactt	taaaggggaa	gttgttaacg	2400
ccgcttgcgc	agttgatgca	ggctctgttg	atcaaaccgt	tcagttagga	caggttcgta	2460
ccgcatcgct	ggcacaggaa	ggagcaacca	gttctgctgt	cggttttaac	attcagctga	2520
atgattgcga	taccaatgtt	gcatctaaag	ccgctgttgc	ctttttaggt	acggcgattg	2580
atgcgggtca	taccaacgtt	ctggctctgc	agagttcagc	tgcgggtagc	gcaacaaacg	2640
ttggtgtgca	gatcctggac	agaacgggtg	ctgcgctgac	gctggatggt	gcgacattta	2700

gttcagaaac	aaccctgaat	aacggaacca	ataccattcc	gttccaggcg	cgttattttg	2760
caaccggggc	cgcaaccccg	ggtgctgcta	atgcggatgc	gaccttcaag	gttcagtatc	2820
aataacctac	ccaggttcag	ggacgtcatt	acgggcaggg	atgcccaccc	ttgtgcgata	2880
aaaataacga	tgaaaaggaa	gagattattt	ctattagcgt	cgttgctgcc	aatgtttgct	2940
ctggccggaa	ataaatggaa	taccacgttg	cccggcggaa	atatgcaatt	tcagggcgtc	3000
	aaacttgccg gtaaccggtt					3060 3120
attcatttac	gggaatgtag	cacggtggtg	agtgaacgtg	taggtgtggc	gtttcacggt	3180
gtcgcggatg	gtaaaaatcc	ggatgtgctt	tccgtgggag	aggggccagg	gatagccacc	3240
aatattggcg	tagcgttgtt	tgatgatgaa	ggaaacctcg	taccgattaa	tcgtcctcca	3300
gcaaactgga	aacggcttta	ttcaggctct	acttcgctac	atttcatcgc	caaatatcgt	3360
gctaccgggc	gtcgggttac	tggcggcatc	gccaatgccc	aggcctggtt	ctctttaacc	3420
tatcagtaat	tgttcagcag	ataatgtgat	aacaggaaca	ggacagtgag	taataaaaac	3480
gtcaatgtaa	ggaaatcgca	ggaaataaca	ttctgcttgc	tggcaggtat	cctgatgttc	3540
atggcaatga	tggttgccgg	acgcgctgaa	gcgggagtgg	ccttaggtgc	gactcgcgta	3600
atttatccgg	cagggcaaaa	acaagagcaa	cttgccgtga	caaataatga	tgaaaatagt	3660
acctatttaa	ttcaatcatg	ggtggaaaat	gccgatggtg	taaaggatgg	tcgttttatc	3720
gtgacgcctc	ctctgtttgc	gatgaaggga	aaaaaagaga	ataccttacg	tattcttgat	3780
gcaacaaata	accaattgcc	acaggaccgg	gaaagtttat	tctggatgaa	cgttaaagcg	3840
attccgtcaa	tggataaatc	aaaattgact	gagaatacgc	tacagctcgc	aattatcagc	3900
cgcattaaac	tgtactatcg	cccggctaaa	ttagcgttgc	cacccgatca	ggccgcagaa	3960
aaattaagat	ttcgtcgtag	cgcgaattct	ctgacgctga	ttaacccgac	accctattac	4020
ctgacggtaa	cagagttgaa	tgccggaacc	cgggttcttg	aaaatgcatt	ggtgcctcca	4080
atgggcgaaa						
	gcacggttaa	attgccttct	gatgcaggaa	gcaatattac	ttaccgaaca	4140
ataaatgatt	gcacggttaa atggcgcact					4140 4200
		tacccccaaa	atgacgggcg	taatggaata	acgcaggggg	
aatttttcgc	atggcgcact	tacccccaaa agaattgact	atgacgggcg gccggggtga	taatggaata ttttaagccg	acgcaggggg	4200
aatttttcgc gtcatatctg	atggcgcact ctgaataaaa	taccccaaa agaattgact tttaccagcg	atgacgggcg gccggggtga aaacacacaa	taatggaata ttttaagccg tgcttgcata	acgcaggggg gaggaataat ttcgtaagca	4200 4260
aatttttcgc gtcatatctg tcgtttggct	atggcgcact ctgaataaaa aatttaagac	taccccaaa agaattgact tttaccagcg tccgactcgt	atgacgggcg gccggggtga aaacacacaa tgtcgcctgt	taatggaata ttttaagccg tgcttgcata gcttttgccg	acgcaggggg gaggaataat ttcgtaagca cacaggcacc	4200 4260 4320
aatttttcgc gtcatatctg tcgtttggct tttgtcatct	atggcgcact ctgaataaaa aatttaagac ggtttttttg	taccccaaa agaattgact tttaccagcg tccgactcgt attttaatcc	atgacgggcg gccggggtga aaacacacaa tgtcgcctgt gcgcttttta	taatggaata ttttaagccg tgcttgcata gcttttgccg gcggatgatc	acgcaggggg gaggaataat ttcgtaagca cacaggcacc	4200 4260 4320 4380
aatttttcgc gtcatatctg tcgtttggct tttgtcatct ggccgattta	atggcgcact ctgaataaaa aatttaagac ggtttttttg gccgacctct	taccccaaa agaattgact tttaccagcg tccgactcgt attttaatcc aaaatgggca	atgacgggcg gccggggtga aaacacacaa tgtcgcctgt gcgcttttta agaattaccg	taatggaata ttttaagccg tgcttgcata gcttttgccg gcggatgatc ccagggacgt	acgcaggggg gaggaataat ttcgtaagca cacaggcacc cccaggctgt atcgcgtcga	4200 4260 4320 4380 4440

ggcttctgtc	gccggtatga	atctgctggc	ggatgatgcc	tgtgtgccat	taaccacaat	4680
ggtccaggac	gctactgcgc	atctggatgt	tggtcagcag	cgactgaacc	tgacgatccc	4740
tcaggcattt	atgagtaatc	gcgcgcgtgg	ttatattcct	cctgagttat	gggatcccgg	4800
tattaatgcc	ggattgctca	attataattt	cagcggaaat	agtgtacaga	atcggattgg	4860
gggtaacagc	cattatgcat	atttaaacct	acagagtggg	ttaaatattg	gtgcgtggcg	4920
tttacgcgac taaatggcag	aataccacct catatcaata	ggagttataa cctggcttga	cagtagcgac gcgagacata	agatcatcag ataccgttac	gtagcaaaaa gttcccggct	4980 5040
gacgctgggt	gatggttata	ctcagggcga	tattttcgat	ggtattaact	ttcgcggcgc	5100
acaattggcc	tcagatgaca	atatgttacc	cgatagtcaa	agaggatttg	ccccggtgat	5160
ccacggtatt	gctcgtggta	ctgcacaggt	cactattaaa	caaaatgggt	atgacattta	5220
taatagtacg	gtgccaccgg	ggccttttac	catcaacgat	atctatgccg	caggtaatag	5280
tggtgacttg	caggtaacga	tcaaagaggc	tgacggcagc	acgcagattt	ttaccgtacc	5340
ctattcgtca	gtcccgcttt	tgcaacgtga	agggcatact	cgttattcca	ttacggcagg	5400
agaataccgt	agtggaaatg	cgcagcagga	aaaaacccgc	tttttccaga	gtacattact	5460
ccacggcctt	ccggctggct	ggacaatata	tggtggaacg	caactggcgg	atcgttatcg	5520
tgcttttaat	ttcggtatcg	ggaaaaacat	gggggcactg	ggcgctctgt	ctgtggatat	5580
gacgcaggct	aattccacac	ttcccgatga	cagtcagcat	gacggacaat	cggtgcgttt	5640
tctctataac	aaatcgctca	atgaatcagg	cacgaatatt	cagttagtgg	gttaccgtta	5700
ttcgaccagc	ggatatttta	atttcgctga	tacaacatac	agtcgaatga	atggctacaa	5760
cattgaaaca	caggacggag	ttattcaggt	taagccgaaa	ttcaccgact	attacaacct	5820
cgcttataac	aaacgcggga	aattacaact	caccgttact	cagcaactcg	ggcgcacatc	5880
aacactgtat	ttgagtggta	gccatcaaac	ttattgggga	acgagtaatg	tcgatgagca	5940
attccaggct	ggattaaata	ctgcgttcga	agatatcaac	tggacgctca	gctatagcct	6000
gacgaaaaac	gcctggcaaa	aaggacggga	tcagatgtta	gcgcttaacg	tcaatattcc	6060
tttcagccac	tggctgcgtt	ctgacagtaa	atctcagtgg	cgacatgcca	gtgccagcta	6120
cagcatgtca	cacgatctca	acggtcggat	gaccaatctg	gctggtgtat	acggtacgtt	6180
gctggaagac	aacaacctca	gctatagcgt	gcaaaccggc	tatgccgggg	gaggcgatgg	6240
aaatagcgga	agtacaggct	acgccacgct	gaattatcgc	ggtggttacg	gcaatgccaa	6300
tatcggttac	agccatagcg	atgatattaa	. gcagctctat	tacggagtca	gcggtggggt	6360
actggctcat	gccaatggcg	taacgctggg	gcagccgtta	aacgatacgg	tggtgcttgt	6420
taaagcgcct	ggcgcaaaag	atgcaaaagt	cgaaaaccag	acgggggtgc	gtaccgactg	6480
gcgtggttat	gccgtgctgc	cttatgccac	tgaatatcgg	gaaaatagag	tggcgctgga	6540

taccaatacc	ctggctgata	acgtcgattt	agataacgcg	gttgctaacg	ttgttcccac	6600
tcgtggggcg	atcgtgcgag	cagagtttaa	agcgcgcgtt	gggataaaac	tgctcatgac	6660
gctgacccac	aataataagc	cgctgccgtt	tggggcgatg	gtgacatcag	agagtagcca	6720
gagtagcggc	attgttgcgg	ataatggtca	ggtttacctc	agcggaatgc	ctttagcggg	6780
aaaagttcag	gtgaaatggg	gagaagagga	aaatgctcac	tgtgtcgcca	attatcaact	6840
gccaccagag cgtgatgaga	agtcagcagc aacaaacctt	agttattaac tttatcttct	ccagctatca gtgcgctttt	gctgaatgtc ttgtggctgg	gttaaggggg cggtgagtca	6900 6960
cgctttggct	gcggatagca	cgattactat	ccgcggctat	gtcagggata	acggctgtag	7020
tgtggccgct	gaatcaacca	attttactgt	tgatctgatg	gaaaacgcgg	cgaagcaatt	7080
taacaacatt	ggcgcgacga	ctcctgttgt	tccatttcgt	attttgctgt	caccctgtgg	7140
taatgccgtt	tctgccgtaa	aggttgggtt	tactggcgtt	gcagatagcc	acaatgccaa	7200
cctgcttgca	cttgaaaata	cggtgtcagc	ggcttcggga	ctgggaatac	agcttctgaa	7260
tgagcagcaa	aatcaaatac	cccttaatgc	tccatcgtcc	gcgctttcgt	ggacgaccct	7320
gacgccgggt	aaaccaaata	cgctgaattt	ttacgcccgg	ctaatggcga	cacaggtgcc	7380
tgtcactgcg	gggcatatca	atgccacggc	taccttcact	cttgaatatc	agtaactgga	7440
gatgctcatg	aaatggtgca	aacgtgggta	tgtattggcg	gcaatattgg	cgctcgcaag	7500
tgcgacgata	caggcagccg	atgtcaccat	cacggtgaac	ggtaaggtcg	tcgccaaacc	7560
gtgtacggtt	tccaccacca	atgccacggt	tgatctcggc	gatctttatt	ctttcagtct	7620
tatgtctgcc	ggggcggcat	cggcctggca	tgatgttgcg	cttgagttga	ctaattgtcc	7680
ggtgggaacg	tcgagggtca	ctgccagctt	cagcggggca	gccgacagta	ccggatatta	7740
taaaaaccag	gggaccgcgc	aaaacatcca	gttagagcta	caggatgaca	gtggcaacac	7800
attgaatact	ggcgcaacca	aaacagttca	ggtggatgat	tcctcacaat	cagcgcactt	7860
cccgttacag	gtcagagcat	tgacagtaaa	tggcggagcc	actcagggaa	ccattcaggc	7920
agtgattagc	atcacctata	cctacagctg	aacccgaaga	gatgattgta	atgaaacgag	7980
ttattaccct	gtttgctgta	ctgctgatgg	gctggtcggt	aaatgcctgg	tcattcgcct	8040
gtaaaaccgc	caatggtacc	gagctcgaat	tcactggccg	, tcgttttaca	acgtcgtgac	8100
tgggaaaacc	ctggcgttac	ccaacttaat	. cgccttgcag	cacatccccc	: tttcgccagc	8160
tggcgtaata	gcgaagaggc	ccgcaccgat	cgcccttccc	aacagttgcg	cagcctgaat	8220
ggcgaatggc	gcctgatgcg	gtattttctc	cttacgcato	tgtgcggtat	ttcacaccgc	8280
atatggtgca	ctctcagtac	aatctgctct	gatgccgcat	agttaagcca	gccccgacac	8340
ccgccaacac	ccgctgacgc	gccctgacgg	gcttgtctgc	c teceggeate	cgcttacaga	8400
caagctgtga	ccgtctccgg	gagetgeatg	tgtcagaggt	tttcaccgtc	atcaccgaaa	8460

```
<210> 207
<211> 13
<212> PRT
<213> Ce3epitope
<400> 207
Cys Gly Gly Val Asn Leu Thr Trp Ser Arg Ala Ser Gly
<210> 208
<211> 13
<212> PRT
<213> Ce3mimotope
<400> 208
Cys Gly Gly Val Asn Leu Pro Trp Ser Phe Gly Leu Glu
       209
<210>
<211>
<212>
      PRT
<213> Bee venom phospholipase A2 cloning vector
<400> 209
Ala Ala Ser Gly Gly Cys Gly Gly
<210> 210
<211> 145
<212> PRT
<213> PLA<sub>2</sub> fusion protein
<400> 210
Met Ala Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Lys
Ser Ser Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys
Cys Arg Thr Gln Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser
Lys His Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp
 Cys Asp Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ala Asp Thr Ile
 Ser Ser Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys
 Cys Tyr Lys Leu Glu His Pro Val Thr Gly Cys Gly Glu Arg Thr Glu
 Gly Arg Cys Leu His Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr
                                                 125
 Gln Trp Phe Asp Leu Arg Lys Tyr Ala Ala Ala Ser Gly Gly Cys Gly
                         135
     130
```

```
Gly
145
<210> 211
<211> 17
<212>
      PRT
<213> Ce4mimotope
<400> 211
Gly Glu Phe Cys Ile Asn His Arg Gly Tyr Trp Val Cys Gly Asp Pro
                                    10
                5
Ala
<210> 212
<211> 27
<212> PRT
<213> Synthetic M2 Peptide
<400> 212
Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly Cys
Arg Cys Asn Gly Ser Ser Asp Gly Gly Cys
<210> 213
<211> 97
<212> PRT
<213> Matrix protein M2
<400> 213
Met Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly
Cys Arg Cys Asn Gly Ser Ser Asp Pro Leu Ala Ile Ala Ala Asn Ile
 Ile Gly Ile Leu His Leu Ile Leu Trp Ile Leu Asp Arg Leu Phe Phe
 Lys Cys Ile Tyr Arg Arg Phe Lys Tyr Gly Leu Lys Gly Gly Pro Ser
 Thr Glu Gly Val Pro Lys Ser Met Arg Glu Glu Tyr Arg Lys Glu Gln
 Gln Ser Ala Val Asp Ala Asp Asp Gly His Phe Val Ser Ile Glu Leu
 Glu
 <210> 214
 <211>
        42
 <212> DNA
```

<213> Oligonucleotide

<400> 214 taaccgaatt caggaggtaa aaacatatgg ctatcatcta cc

42

<210> 215

<211> 129

<212> PR'

<213> Bacteriophage f2

<400> 215

Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asn Asp Gly Gly Thr Gly 1 $$ 5 $$ 10 $$ 15

Asn Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu Trp 20 25 30

Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser Val $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu Val 50 55 60

Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val Ala 65 70 75 80

Ala Trp Arg Ser Tyr Leu Asn Leu Glu Leu Thr Ile Pro Ile Phe Ala 85 90 95

Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu Leu 100 105 110

Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly Ile 115 120 125

Tyr

<210> 216

<211> 17

<212> PRT

<213> Circular Mimotope

<400> 216

Gly Glu Phe Cys Ile Asn His Arg Gly Tyr Trp Val Cys Gly Asp Pro 1 $$ 5 $$ 10 $$ 15

Ala

<210> 217

<211> 329

<212> PRT

<213> Bacteriophage Q-beta

<400> 217

Met Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly 1 5 10 15

Lys Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly 20 25 30

Val Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg 35 40 45

Val Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser 65 70 75 80

Cys Asp Pro Ser Val Thr Arg Gln Ala Tyr Ala Asp Val Thr Phe Ser 85 90 95

Phe Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu 100 105 110

Leu Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln
115 120 125

Leu Asn Pro Ala Tyr Trp Thr Leu Leu Ile Ala Gly Gly Gly Ser Gly 130 135 140

Ser Lys Pro Asp Pro Val Ile Pro Asp Pro Pro Ile Asp Pro Pro Pro 145 150 155 160

Gly Thr Gly Lys Tyr Thr Cys Pro Phe Ala Ile Trp Ser Leu Glu Glu 165 170 175

Val Tyr Glu Pro Pro Thr Lys Asn Arg Pro Trp Pro Ile Tyr Asn Ala 180 185 190

Val Glu Leu Gln Pro Arg Glu Phe Asp Val Ala Leu Lys Asp Leu Leu 195 200 205

Gly Asn Thr Lys Trp Arg Asp Trp Asp Ser Arg Leu Ser Tyr Thr Thr 210 215 220

Phe Arg Gly Cys Arg Gly Asn Gly Tyr Ile Asp Leu Asp Ala Thr Tyr 225 230 235 240

Leu Ala Thr Asp Gln Ala Met Arg Asp Gln Lys Tyr Asp Ile Arg Glu 245 250 255

Gly Lys Lys Pro Gly Ala Phe Gly Asn Ile Glu Arg Phe Ile Tyr Leu 260 265 270

Lys Ser Ile Asn Ala Tyr Cys Ser Leu Ser Asp Ile Ala Ala Tyr His 275 280 285

Ala Asp Gly Val Ile Val Gly Phe Trp Arg Asp Pro Ser Ser Gly Gly 290 295 300

Ala Ile Pro Phe Asp Phe Thr Lys Phe Asp Lys Thr Lys Cys Pro Ile 305 310 315 320

Gln Ala Val Ile Val Val Pro Arg Ala 325

<210> 218

<211> 770

<212> PRT

<213> Amyloid-Beta Protein (Homo Sapiens)

<400> 218

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu 145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile 165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu 180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val 195 200 205 Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys Val Val Glu Val Ala Glu Glu Glu Glu Val Ala Glu Val Glu Glu Glu Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu 250 Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 295 Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe 310 Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala 360 Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala 410 405 Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn 440 Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met 455 Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys 490 Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser

535

530

Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp 545 550 560

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val 565 570 575

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala 580 585 590

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe 610 615 620

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val 625 630 635 640

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser 645 650 655

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp 660 665 670

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu 675 680 685

Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly 690 695 700

Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu 705 710 715 720

Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val 725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met 740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met 755 760 765

Gln Asn 770

<210> 219

<211> 82

<212> PRT

<213> Beta-Amyloid Peptide Precursor (Homo Sapiens)

<400> 219

Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys 1 5 10 15

Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln 20 25 30

Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Ile Ile 50 55 60

Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Asn His His Gly Val 70 75 80

Val Glu

<210> 220

<211> 42

<212> PRT

<213> Amyloid Beta Peptide

<400> 220

Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys

Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile 20 25 30

Gly Leu Met Val Gly Gly Val Val Ile Ala 35 40

221:

RANKL_human: TrEMBL:O14788: extracellular domain

YFRAQMDPNRIS EDGTHCIYRI LRLHENADFQ DTTLESQDTK LIPDSCRRIK QAFQGAVQKE LQHIVGSQHI RAEKAMVDGS WLDLAKRSKL EAQPFAHLTI NATDIPSGSH KVSLSSWYHD RGWAKISNMT FSNGKLIVNQ DGFYYLYANI CFRHHETSGD LATEYLQLMV YVTKTSIKIP SSHTLMKGGS TKYWSGNSEF HFYSINVGGF FKLRSGEEIS IEVSNPSLLD PDQDATYFGA FKVRDID

222:

RANKL human: spliced isoformTrEMBL:O14788

MDPNRISEDG THCIYRILRL HENADFQDTT LESQDTKLIP DSCRRIKQAF QGAVQKELQH IVGSQHIRAE KAMVDGSWLD LAKRSKLEAQ PFAHLTINAT DIPSGSHKVS LSSWYHDRGW AKISNMTFSN GKLIVNQDGF YYLYANICFR HHETSGDLAT EYLQLMVYVT KTSIKIPSSH TLMKGGSTKY WSGNSEFHFY SINVGGFFKL RSGEEISIEV SNPSLLDPDQ DATYFGAFKV RDID

223:

RANKL_mouse: TrEMBL:O35235: extracellular domain

YFRAQMDPNRI SEDSTHCFYR ILRLHENAGL QDSTLESEDT LPDSCRRMKQ AFQGAVQKEL QHIVGPQRFS GAPAMMEGSW LDVAQRGKPE AQPFAHLTIN AASIPSGSHK VTLSSWYHDR

GWAKISNMTL SNGKLRVNQD GFYYLYANIC FRHHETSGSV PTDYLQLMVY VVKTSIKIPS SHNLMKGGST KNWSGNSEFH FYSINVGGFF KLRAGEEISI QVSNPSLLDP DQDATYFGAF KVQDID

224:

RANKL_mouse spliced isoforms: TrEMBL:Q9JJK8

MKQAFQGAVQ KELQHIVGPQ RFSGAPAMME GSWLDVAQRG KPEAQPFAHL TINAASIPSG SHKVTLSSWY HDRGWAKISN MTLSNGKLRV NQDGFYYLYA NICFRHHETS GSVPTDYLQL MVYVVKTSIK IPSSHNLMKG GSTKNWSGNS EFHFYSINVG GFFKLRAGEE ISIQVSNPSL LDPDQDATYF GAFKVQDID

225:

MIF rat: SwissProt

PMFIVNTNVP RASVPEGFLS ELTQQLAQAT GKPAQYIAVH VVPDQLMTFS GTSDPCALCS LHSIGKIGGA QNRNYSKLLC GLLSDRLHIS PDRVYINYYD MNAANVGWNG STFA

226:

MIF_mouse: SwissProt

PMFIVNTNVP RASVPEGFLS ELTQQLAQAT GKPAQYIAVH VVPDQLMTFS GTNDPCALCS LHSIGKIGGA QNRNYSKLLC GLLSDRLHIS PDRVYINYYD MNAANVGWNG STFA

227:

MIF human: SwissProt

PMFIVNTNVP RASVPDGFLS ELTQQLAQAT GKPPQYIAVH VVPDQLMAFG GSSEPCALCS LHSIGKIGGA QNRSYSKLLC GLLAERLRIS PDRVYINYYD MNAANVGWNN STFA

228:

Human IL-17

ACCESSION #: AAC50341

- 1 mtpgktslvs lllllsleai vkagitiprn pgcpnsedkn fprtvmvnln ihnrntntnp 61 krssdyynrs tspwnlhrne dperypsviw eakcrhlgci nadgnvdyhm nsvpiqqeil 121 vlrrepphcp nsfrlekilv svgctcvtpi vhhva
- 229:

Mouse IL-17

ACCESSION #: AAA37490

- 1 mspgrassvs lmlllllsla atvkaaaiip qssacpntea kdflqnvkvn lkvfnslgak 61 vssrrpsdyl nrstspwtlh rnedpdryps viweaqcrhq rcvnaegkld hhmnsvliqq 121 eilvlkrepe scpftfrvek mlvgvgctcv asivrqaa
- 230:

Human IL-13 (precursor)

 ${\tt MALLLTTVIALTCLGGFASPGPVPPSTALRELIEELVNITQNQKAPLCNGSMVWSINLTAGMYCAALESLINVSGCSAIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLFREGRFN}$

231:

Human IL-13 (processed)

GPVPPSTALR ELIEELVNIT QNQKAPLCNG SMVWSINLTA GMYCAALESL INVSGCSAIE KTQRMLSGFC PHKVSAGQFS SLHVRDTKIE VAQFVKDLLL HLKKLFREGR FN

232:

Mouse IL-13 (processed)

 ${\tt GPVPRSVSLPLTLKELIEELSNITQDQTPLCNGSMVWSVDLAAGGFCVALDSLTNISNCNAIYRTQRILHGLCNRKAPTTVSSLPDTKIEVAHFITKLLSYTKQLFRHGPF}$

233:

Human IL-5 (precursor)

MRMLLHLSLL ALGAAYVYAI PTEIPTSALV KETLALLSTH RTLLIANETL RIPVPVHKNH QLCTEEIFQG IGTLESQTVQ GGTVERLFKN LSLIKKYIDG QKKKCGEERR RVNQFLDYLQEFLGVMNTEW TIES

234:

Human IL-5 (processed)

I PTEIPTSALV KETLALLSTH RTLLIANETL RIPVPVHKNH QLCTEEIFQG IGTLESQTVQ GGTVERLFKN LSLIKKYIDG QKKKCGEERR RVNQFLDYLQ EFLGVMNTEW IIES

235:

Mouse IL-5 (processed)

 ${\tt MEIPMSTVVKETLTQLSAHRALLTSNETMRLPVPTHKNHQLCIGEIFQGLDILKNQTVRGGTVEMLFQNLSLIKKYDRQKEKCGEERRRTRQFLDYLQEFLGVMSTEWAMEG}$

236:

CCL21 Swissprot: SY21_human: Sequence after cleavage of signal peptide: SDGGAQD CCLKYSQRKI PAKVVRSYRK QEPSLGCSIP AILFLPRKRS QAELCADPKE LWVQQLMQHL DKTPSPQKPA QGCRKDRGAS KTGKKGKGSK GCKRTERSQT PKGP

237:

CCL21 Swissprot: SY21_mouse: Sequence after cleavage of signal peptide: SDGGGQD CCLKYSQKKI PYSIVRGYRK QEPSLGCPIP AILFSPRKHS KPELCANPEE GWVQNLMRRL

DQPPAPGKQS PGCRKNRGTS KSGKKGKGSK GCKRTEQTQP SRG

238:

Swissprot: SDF1_human: Sequence after cleavage of signal peptide:

DGKPVSLSYRC PCRFFESHVA RANVKHLKIL NTPNCALQIV ARLKNNNRQV CIDPKLKWIQ
EYLEKALNKR FKM

239:

Swissprot: SDF1_mouse: Sequence after cleavage of signal peptide:

DGKPVSLSYRC PCRFFESHIA RANVKHLKIL NTPNCALQIV ARLKNNNRQV CIDPKLKWIQ EYLEKALNK

240:

BLC Sequences: Human: Accession: NP_006410

Amino acids 1-22 are signal peptide.

MKFISTSLLL MLLVSSLSPV QGVLEVYYTS LRCRCVQESS VFIPRRFIDR IQILPRGNGC PRKEIIVWKK NKSIVCVDPQ AEWIQRMMEV LRKRSSSTLP VPVFKRKIP

241:

BLC Sequence Mouse: accession: NP_061354

Amino acids 1-21 are signal peptide

MRLSTATLLL LLASCLSPGH GILEAHYTNL KCRCSGVIST VVGLNIIDRI QVTPPGNGCP KTEVVIWTKM KKVICVNPRA KWLQRLLRHV QSKSLSSTPQ APVSKRRAA

242:

Human Eotaxin-1 1-23 is Signal peptide

1 mkvsaallwl lliaaafspq glagpasvpt tccfnlanrk iplqrlesyr ritsgkcpqk 61 avifktklak dicadpkkkw vqdsmkyldq ksptpkp

243:

Human Eotaxin-2 1-26 is Signal peptide

1 maglmtivts llflgvcahh iiptgsvvip spccmffvsk ripenrvvsy qlssrstclk 61 agvifttkkg qqfcgdpkqe wvqrymknld akqkkaspra ravavkgpvq rypgnqttc

Human Eotaxin-3

1-23 is signal peptide

1 mmglslasav llas
llslhl gtatrgsdis ktccfqyshk plpwtwvrsy eftsn
scsqr 61 avifttkrgk kvcthprkkw vqkyisllkt pkql

245:

Mouse Eotaxin-1

1-23 is signal peptide

- 1 mqsstallfl lltvtsftsq vlahpgsipt sccfimtskk ipntllksyk ritnnrctlk 61 aivfktrlgk eicadpkkkw vqdatkhldq klqtpkp
- 246:

Mouse Eotaxin-2

1-25 is signal peptide

1 magsativag llllvacacc ifpidsvtip sscctsfisk kipenrvvsy qlangsicpk 61 agvifitkkg hkictdpkll wvqrhiqkld akknqpskga kavrtkfavq rrrgnstev

247:

M-CSF Sequence: human: the construct would be an N-terminal fragment consisting of residue 33 -181 or 33 -185, corresponding to the soluble form of the receptor. Accession: NP_000748

MTAPGAAGRC	PPTTWLGSLL	LLVCLLASRS	ITEEVSEYCS	HMIGSGHLQS	LQRLIDSQME
TSCOITFEFV	DOEOLKDPVC	YLKKAFLLVQ	DIMEDTMRFR	DNTPNAIAIV	QLQELSLRLK
SCFTKDYEEH	DKACVRTFYE	TPLQLLEKVK	NVFNETKNLL	DKDWNIFSKN	CNNSFAECSS
ODVVTKPDCN	CLYPKAIPSS	DPASVSPHQP	LAPSMAPVAG	LTWEDSEGTE	GSSLLPGEQP
LHTVDPGSAK	ORPPRSTCOS	FEPPETPVVK	DSTIGGSPQP	RPSVGAFNPG	MEDILDSAMG
TNWVPEEASG	EASEIPVPOG	TELSPSRPGG	GSMQTEPARP	SNFLSASSPL	PASAKGQQPA
DVTGTALPRV	GPVRPTGQDW	NHTPQKTDHP	SALLRDPPEP	GSPRISSPRP	QGLSNPSTLS
AOPOLSRSHS	SGSVLPLGEL	EGRRSTRDRR	SPAEPEGGPA	SEGAARPLPR	FNSVPLTDTH
EROSEGSSSP	OLOESVFHLL	VPSVILVLLA	VGGLLFYRWR	RRSHQEPQRA	DSPLEQPEGS
PLTODDROVE					

248:

M-CSF Mouse sequence: Mature sequence starts at amino acid 33. Accession. NP_031804

MTARGAAGRC	PSSTWLGSRL	LLVCLLMSRS	IAKEVSEHCS	HMIGNGHLKV	LQQLIDSQME
TSCOIAFEFV	DOEOLDDPVC	YLKKAFFLVQ	DIIDETMRFK	DNTPNANATE	RLQELSNNLN
SCFTKDYEEO	NKACVRTFHE	TPLQLLEKIK	NFFNETKNLL	EKDWNIFTKN	CNNSFAKCSS
RDVVTKPDCN	CLYPKATPSS	DPASASPHQP	PAPSMAPLAG	LAWDDSQRTE	GSSLLPSELP
LRIEDPGSAK	ORPPRSTCOT	LESTEQPNHG	DRLTEDSQPH	PSAGGPVPGV	EDILESSLGT
NWVIÆEASGE	ASEGFLTOEA	KFSPSTPVGG	SIQAETDRPR	ALSASPFPKS	TEDQKPVDIT

DRPLTEVNPM RPIGQTQNNT PEKTDGTSTL REDHQEPGSP HIATPNPQRV SNSATPVAQL LLPKSHSWGI VLPLGELEGK RSTRDRRSPA ELEGGSASEG AARPVARFNS IPLTDTGHVE QHEGSSDPQI PESVFHLLVP GIILVLLTVG GLLFYKWKWR SHRDPQTLDS SVGRPEDSSL TQDEDRQVEL PV

249:

Sequence of Human Resistin: Precursor.

 ${\tt MKALCLLLLPVLGLLVSSKTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTSRGDLATCPRGFAVTGCTCGSACGSWDVRAETTCHCQCAGMDWTGARCCRVQP}$

250:

Sequence of Mouse Resistin: Precursor.

 ${\tt MKNLSFPLLFLFFLVPELLGSSMPLCPIDEAIDKKIKQDFNSLFPNAIKNIGLNCWTVSSRGKLASCPEGTAVLSCSCGSACGSWDIREEKVCHCQCARIDWTAARCCKLQVAS}$

251:

Lymphotoxin-β:

Swissprot: TNFC_human: Sequence of the extracellular domain:

QD QGGLVTETAD PGAQAQQGLG FQKLPEEEPE TDLSPGLPAA HLIGAPLKGQ GLGWETTKEQ AFLTSGTQFS DAEGLALPQD GLYYLYCLVG YRGRAPPGGG DPQGRSVTLR SSLYRAGGAY GPGTPELLLE GAETVTPVLD PARRQGYGPL WYTSVGFGGL VQLRRGERVY VN

252:

Lymphotoxin-β:

Swissprot: TNFC_mouse: Sequence of the extracellular domain:

QD QGRRVEKIIG SGAQAQKRLD DSKPSCILPS PSSLSETPDP RLHPQRSNAS RNLASTSQGP VAQSSREASA WMTILSPAAD STPDPGVQQL PKGEPETDLN PELPAAHLIG AWMSGQGLSW EASQEEAFLR SGAQFSPTHG LALPQDGVYY LYCHVGYRGR TPPAGRSRAR SLTLRSALYR AGGAYGRGSP ELLLEGAETV TPVVDPIGYG SLWYTSVGFG GLAQLRSGER VYVNISHPDM VDYRRGKTFF GAVMVG

253:

RNA-phage PP7:

msktivlsvg eatrtlteiq stadrqifee kvgplvgrlr ltaslrqnga ktayrvnlkl dqadvvdcst svcgelpkvr ytqvwshdvt ivansteasr kslydltksl vatsqvedlv vnlvplgr

254:

RNA-phage SP A1 protein:

aklnqvtls kigkngdqtl tltprgvnpt ngvaslseag avpalekrvt vsvaqpsrnr knfkvqiklq nptactrdac dpsvtrsafa dvtlsftsys tdeeralirt elaalladpl ivdaidnlnp aywaallvas sgggdnpsdp dvpvvpdvkp pdgtgrykcp facyrlgsiy evgkegspdi yergdevsvt fdyaledflg ntnwrnwdqr lsdydianrr rcrgngyidl datamqsddf vlsgrygvrk vkfpgafgsi kyllniqgda wldlsevtay rsygmvigfw tdskspqlpt dftqfnsanc pvqtviiips 1

255:

"Qβ 240":

AKLETVTLGNIGRDGKQTLVLNPRGVNPTNGVASLSQAGAVP ALEKRVTVSVSQPSRNRKNYKVQVKIQNPTACTANGSCDPSVTRQ KYADVTFSFTQYSTDEERAFVRTELAALLASPLLIDAIDQLNPAY

256:

"QB 243":

AKLETVTLGKIGKDGKQTLVLNPRGVNPTNGVASLSQAGAVP ALEKRVTVSVSQPSRNRKNYKVQVKIQNPTACTANGSCDPSVTRQ KYADVTFSFTQYSTDEERAFVRTELAALLASPLLIDAIDQLNPAY

257:

"Qß 250":

ARLETVTLGNIGROGKQTLVLNPRGVNPTNGVASLSQAGAVP ALEKRVTVSVSQPSRNRKNYKVQVKIQNPTACTANGSCDPSVTRQ KYADVTFSFTQYSTDEERAFVRTELAALLASPLLIDAIDQLNPAY

258:

"Qß 259":

ARLETVTLGNIGKDGRQTLVLNPRGVNPTNGVASLSQAGAVP ALEKRVTVSVSQPSRNRKNYKVQVKIQNPTACTANGSCDPSVTRQ KYADVTFSFTQYSTDEERAFVRTELAALLASPLLIDAIDQLNPAY

259:

"Qβ 251":

AKLETVTLGNIGKDGRQTLVLNPRGVNPTNGVASLSQAGAVP ALEKRVTVSVSQPSRNRKNYKVQVKIQNPTACTANGSCDPSVTRQ KYADVTFSFTQYSTDEERAFVRTELAALLASPLLIDAIDQLNPAY

260:

PH19 (SEQ ID NO:260)

TAAGTCCTCTGCCACGTACC

261:

PH20 (SEQ ID NO:261)

TGGAAACCACGCTCACTTCC

262:

PH21 (SEQ ID NO:262)

CGGGATCCGGGATGAAGAACCTTTCATTTC

263:

PH22 (SEQ ID NO:263)

GCCTCTAGAGAGGAAGCGACCTGCAGCTTAC

264:

PH29 (SEQ ID NO:264)

CTAGCGGGAGGGGTGGATGTGGGGACGACTACAAGGATGACGACA

265:

PH30 (SEQ ID NO:265)

AGCTTGTCGTCATCCTTGTAGTCGTCCCCACATCCACCCCCTCCCG

266:

PH31 (SEQ ID NO:266)

AGCTTACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGAGG

267:

PH32 (SEQ ID NO:267)

CGGCTTCAGGTGCTGGGCACGGTGGGCATGTGTGAGTA

268:

PH35 (SEQ ID NO:268)

CTAGCGGGAGGGGGTGGATGTGGGATCGAAGGTCGCA

269:

PH36 (SEQ ID NO:269)

AGCTTGCGACCTTCGATCCCACATCCACCCCCTCCCG

270:

PH37 (SEQ ID NO:270)

CGGGATCCAGCAGCTGGGCTCGAGGTGCTAGCTTTGTTTAAAC

271:

PH38 (SEQ ID NO:271)

GATCGTTTAAACAAACAAAGCTAGCACCTCGAGCCCAGCTGCTGGATCCCGGTAC

272:

PH39 (SEQ ID NO:272)

CTAGCGGGAGGGGTGGATGTGGGGACGATGACGACA

273:

PH40 (SEQ ID NO:273)

AGCTTGTCGTCATCGTCCCCACATCCACCCCCTCCCG

274:

PH41 (SEQ ID NO:274)

CATGGAGACAGACACTCCTGCTATGGGT

275:

PH42 (SEQ ID NO:275)

GCAGTACCCATAGCAGGAGTGTGTCTGTCTCCATGGTAC

276:

PH43 (SEQ ID NO:276)

ACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGCG

277:

PH44 (SEQ ID NO:277)

GATCCGCGTCACCAGTGGAACCTGGAACCCAGAGCA

278:

SU7 (SEQ ID NO:278)

AGCTTGCGGATCCAGGATATCGGCTCGAGGTTCTAGAGTG

279:

SU8 (SEQ ID NO:279)

GGCCCACTCTAGAACCTCGAGCCGATATCCTGGATCCGCA

280:

Resistin-C-Xa:

 $SSMPLCPIDEAIDKKIKQDFNSLFPNAIKNIGLNCWTVSSRGKLASCPEGTAVLSCSCG\\ SACGSWDIREEKVCHCQCARIDWTAARCCKLQVASSLAGGGGCGIEGR$

281:

Resistin-C-EK

 $SSMPLCPIDEAIDKKIKQDFNSLFPNAIKNIGLNCWTVSSRGKLASCPEGTAVLSCSCG\\ SACGSWDIREEKVCHCQCARIDWTAARCCKLQVASSLAGGGGCGDDDD\\$

282:

Resistin-GCG:

 $SSMPLCPIDEAIDKKIKQDFNSLFPNAIKNIGLNCWTVSSRGKLASCPEGTAVLSCSCG\\ SACGSWDIREEKVCHCQCARIDWTAARCCKLQVASSLAGGGGCG\\$

283: pCep-Xa-Fc*: (complete sequence)

GCCCGCCGC CGGACGAACT AAACCTGACT ACGGCATCTC TGCCCCTTCT TCGCTGGTAC GAGGAGCGCT TTTGTTTTGT ATTCGGGGCA GTGCATGTAA TCCCTTCAGT TGGTTGGTAC AACTTGCCAA CTGGGCCCTG TTCCACATGT GACACGGGGG GGGACCAAAC ACAAAGGGGT TCTCTGACTG TAGTTGACAT CCTTATAAAT GGATGTGCAC ATTTGCCAAC ACTGAGTGGC TTTCATCCTG GAGCAGACTT TGCATGCTGT GGACTGCAAC ACAACATTGC CTTTATGTGT AACTCTTGGC TGAAGCTCTT ACACCAATGC TGGGGGACAT GTACCTCCCA 351 GGGGCCCAGG AAGACTACGG GAGGCTACAC CAACGTCAAT CAGAGGGGCC TGTGTAGCTA CCGATAAGCG GACCTCAAG AGGGCATTAG CAATAGTGTT TATAAGGCCC CCTTGTTAAC CCTAAACGGG TAGCATATGC 421 491 TTCCCGGGTA GTAGTATATA CTATCCAGAC TAACCCTAAT TCAATAGCAT ATGTTACCCA ACGGGAAGCA TATGCTATCG AATTAGGGTT AGTAAAAGGG TCCTAAGGAA CAGCGATATC TCCCACCCA TGAGCTGTCA 561 CGGTTTTATT TACATGGGGT CAGGATTCCA CGAGGGTAGT GAACCATTTT AGTCACAAGG GCAGTGGCTG 631 AAGATCAAGG AGCGGGCAGT GAACTCTCCT GAATCTTCGC CTGCTTCTTC ATTCTCCTTC GTTTAGCTAA 701 TAGAATAACT GCTGAGTTGT GAACAGTAAG GTGTATGTGA GGTGCTCGAA AACAAGGTTT CAGGTGACGC 771 CCCCAGAATA AAATTTGGAC GGGGGGTTCA GTGGTGGCAT TGTGCTATGA CACCAATATA ACCCTCACAA 841 ACCCCTTGGG CAATAAATAC TAGTGTAGGA ATGAAACATT CTGAATATCT TTAACAATAG AAATCCATGG 911 981 GGTGGGGACA AGCCGTAAAG ACTGGATGTC CATCTCACAC GAATTTATGG CTATGGGCAA CACATAATCC 1051 TAGTGCAATA TGATACTGGG GTTATTAAGA TGTGTCCCAG GCAGGGACCA AGACAGGTGA ACCATGTTGT TACACTCTAT TTGTAACAAG GGGAAAGAGA GTGGACGCCG ACAGCAGCGG ACTCCACTGG TTGTCTCTAA 1121 CACCCCGAA AATTAAACGG GGCTCCACGC CAATGGGGCC CATAAACAAA GACAAGTGGC CACTCTTTTT 1191 TTTGAAATTG TGGAGTGGGG GCACGCGTCA GCCCCCACAC GCCGCCCTGC GGTTTTGGAC TGTAAAATAA 1261 GGGTGTAATA ACTTGGCTGA TTGTAACCCC GCTAACCACT GCGGTCAAAC CACTTGCCCA CAAAACCACT 1331 1401 AATGGCACCC CGGGGAATAC CTGCATAAGT AGGTGGGCGG GCCAAGATAG GGGCGCGATT GCTGCGATCT 1471 GGAGGACAAA TTACACACAC TTGCGCCTGA GCGCCAAGCA CAGGGTTGTT GGTCCTCATA TTCACGAGGT 1541 CGCTGAGAGC ACGGTGGGCT AATGTTGCCA TGGGTAGCAT ATACTACCCA AATATCTGGA TAGCATATGC 1611 TATCCTAATC TATATCTGGG TAGCATAGGC TATCCTAATC TATATCTGGG TAGCATATGC TATCCTAATC TATATCTGGG TAGCATATGC TATCCTAATT TATATCTGGG TAGCATAGGC TATCCTAATC TATATCTGGG 1681 1751 TAGCATATGC TATCCTAATC TATATCTGGG TAGTATATGC TATCCTAATC TGTATCCGGG TAGCATATGC 1821 TATCCTAATA GAGATTAGGG TAGTATATGC TATCCTAATT TATATCTGGG TAGCATATAC TACCCAAATA 1891 TCTGGATAGC ATATGCTATC CTAATCTATA TCTGGGTAGC ATATGCTATC CTAATCTATA TCTGGGTAGC 1961 ATAGGCTATC CTAATCTATA TCTGGGTAGC ATATGCTATC CTAATCTATA TCTGGGTAGT ATATGCTATC 2031 CTAATTTATA TCTGGGTAGC ATAGGCTATC CTAATCTATA TCTGGGTAGC ATATGCTATC CTAATCTATA 2101 TCTGGGTAGT ATATGCTATC CTAATCTGTA TCCGGGTAGC ATATGCTATC CTCATGCATA TACAGTCAGC 2171 ATATGATACC CAGTAGTAGA GTGGGAGTGC TATCCTTTGC ATATGCCGCC ACCTCCCAAG GGGGCGTGAA 2241 TTTTCGCTGC TTGTCCTTTT CCTGCATGCT GGTTGCTCC ATTCTTAGGT GAATTTAAGG AGGCCAGGCT 2311 AAAGCCGTCG CATGTCTGAT TGCTCACCAG GTAAATGTCG CTAATGTTTT CCAACGCGAG AAGGTGTTGA GCGCGGAGCT GAGTGACGTG ACAACATGGG TATGCCCCAAT TGCCCCATGT TGGGAGGACG AAAATGGTGA 2381 2451 CAAGACAGAT GGCCAGAAAT ACACCAACAG CACGCATGAT GTCTACTGGG GATTTATTCT TTAGTGCGGG 2521 GGAATACACG GCTTTTAATA CGATTGAGGG CGTCTCCTAA CAAGTTACAT CACTCCTGCC CTTCCTCACC 2591 CTCATCTCCA TCACCTCCTT CATCTCCGTC ATCTCCGTCA TCACCCTCCG CGGCAGCCCC TTCCACCATA 2661 GGTGGAAACC AGGGAGGCAA ATCTACTCCA TCGTCAAAGC TGCACACAGT CACCCTGATA TTGCAGGTAG 2731 GAGCGGCTT TGTCATAACA AGGTCCTTAA TCGCATCCTT CAAAACCTCA GCAAATATAT GAGTTTGTAA 2801 AAAGACCATG AAATAACAGA CAATGGACTC CCTTAGCGGG CCAGGTTGTG GGCCGGGTCC AGGGGCCATT 2871 CCAAAGGGGA GACGACTCAA TGGTGTAAGA CGACATTGTG GAATAGCAAG GGCAGTTCCT CGCCTTAGGT 2941 TGTAAAGGGA GGTCTTACTA CCTCCATATA CGAACACAC GGCGACCCAA GTTCCTTCGT CGGTAGTCCT 3011 TTCTACGTGA CTCCTAGCCA GGAGAGCTCT TAAACCTTCT GCAATGTTCT CAAATTTCGG GTTGGAACCT 3081 CCTTGACCAC GATGCTTTCC AAACCACCCT CCTTTTTTGC GCCTGCCTCC ATCACCCTGA CCCCGGGGTC 3151 CAGTGCTTGG GCCTTCTCCT GGGTCATCTG CGGGGCCCTG CTCTATCGCT CCCGGGGGCA CGTCAGGCTC 3221 ACCATCTGGG CCACCTTCTT GGTGGTATTC AAAATAATCG GCTTCCCCTA CAGGGTGGAA AAATGGCCTT 3291 CTACCTGGAG GGGGCCTGCG CGGTGGAGAC CCGGATGATG ATGACTGACT ACTGGGACTC CTGGGCCTCT 3361 TTTCTCCACG TCCACGACCT CTCCCCCTGG CTCTTTCACG ACTTCCCCCC CTGGCTCTTT CACGTCCTCT ACCCCGGCGG CCTCCACTAC CTCCTCGACC CCGGCCTCCA CTACCTCCTC GACCCCGGCC TCCACTGCCT 3431 CCTCGACCCC GGCCTCCACC TCCTGCTCCT GCCCCTCCTG CTCCTGCCCC TCCTCCTGCT CCTGCCCCTC 3501 CTGCCCCTCC TGCTCCTGCC CCTCCTGCCC TGCCCCTCCT GCCCCTCCTG CTCCTGCCCC 3571 3641 TCCTGCCCCT CCTCCTGCTC CTGCCCCTCC TGCCCCTCCT CCTGCTCCTG CCCCTCCTGC CCCTCCTGCT CCTGCCCCTC CTGCCCCTCC TGCTCCTGCC CCTCCTGCCC CTCCTGCTCC TGCCCCTCCT GCTCCTGCCC 3711 3781 CTCCTGCTCC TGCCCCTCCT GCTCCTGCCC CTCCTGCCCC TCCTGCCCCT CCTCCTGCTC CTGCCCCTCC TGCTCCTGCC CCTCCTGCCC CTCCTGCCCC TCCTGCTCCT GCCCCTCCTC CTGCTCCTGC CCCTCCTGCC 3851 CCTCCTGCCC CTCCTCCTGC TCCTGCCCCT CCTGCCCCTC TGCCCCTCCT CCTGCTCCTG 3921 CCCCTCCTGC CCCTCCTGCC CCTCCTCCTG CTCCTGCCCC TCCTGCCCCT CCTCCTGCTC CTGCCCCTCC 3991 4061 TCCTGCTCCT GCCCCTCCTG CCCTCCTCCT GCTCCTGCC CTCCTCCTGC TCCTGCCCCT CCTGCCCCTC CTGCCCCTCC TGCCCCTCCT CCTGCTCCTG CCCCTCCTCC TGCTCCTGCC CCTCCTGCTC 4131 CTGCCCCTCC CGCTCCTGCT CCTGCTCCTG TTCCACCGTG GGTCCCTTTG CAGCCAATGC AACTTGGACG 4201 TTTTTGGGGT CTCCGGACAC CATCTCTATG TCTTGGCCCT GATCCTGAGC CGCCCGGGGC TCCTGGTCTT 4271 4341 CCGCCTCCTC GTCCTCGTCC TCTTCCCCGT CCTCGTCCAT GGTTATCACC CCCTCTTCTT TGAGGTCCAC TGCCGCCGGA GCCTTCTGGT CCAGATGTGT CTCCCTTCTC TCCTAGGCCA TTTCCAGGTC CTGTACCTGG 4411 CCCCTCGTCA GACATGATTC ACACTAAAAG AGATCAATAG ACATCTTTAT TAGACGACGC TCAGTGAATA 4481 CAGGGAGTGC AGACTCCTGC CCCCTCCAAC AGCCCCCCCA CCCTCATCCC CTTCATGGTC GCTGTCAGAC 4551 AGATCCAGGT CTGAAAATTC CCCATCCTCC GAACCATCCT CGTCCTCATC ACCAATTACT CGCAGCCCGG 4621 4691 AAAACTCCCG CTGAACATCC TCAAGATTTG CGTCCTGAGC CTCAAGCCAG GCCTCAAATT CCTCGTCCCC CTTTTTGCTG GACGGTAGGG ATGGGGATTC TCGGGACCCC TCCTCTTCCT CTTCAAGGTC ACCAGACAGA 4761 GATGCTACTG GGGCAACGGA AGAAAAGCTG GGTGCGGCCT GTGAGGATCA GCTTATCGAT GATAAGCTGT

4901 CAAACATGAG AATTCTTGAA GACGAAAGGG CCTCGTGATA CGCCTATTTT TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT TTTCGGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA TTCAAATATG TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA 5041 AAGGAAGAGT ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 5111 GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA CGAGTGGGTT 5181 ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTGTTGACG CCGGGCAAGA GCAACTCGGT 5251 5321 CGCCGCATAC ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG 5391 GCATGACAGT AAGAGAATTA TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT 5461 GACAACGATC GGAGGACCGA AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 5531 GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG CCTGCAGCAA 5601 TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA 5671 CTGGATGGAG GCGGATAAAG TTGCAGGACC ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG GTTTATTGCT 5741 GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA TTGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT CATATATACT TTAGATTGAT TTAAAACTTC ATTTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTTGA TAATCTCATG ACCAAAATCC 6021 CTTAACGTGA GTTTTCGTTC CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC 6091 TTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTTGCCG 6161 GATCAAGAGC TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC 6231 TTCTAGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT 6301 AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG 6371 TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA 6441 CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCCCGAAG GGAGAAAGGC 6511 GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC 6581 TGGTATCTTT ATAGTCCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG 6651 GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCGGCCTT TTTACGGTTC CTGGCCTTTT GCTGCGCCGC 6721 GTGCGGCTGC TGGAGATGGC GGACGCGATG GATATGTTCT GCCAAGGGTT GGTTTGCGCA TTCACAGTTC 6791 TCCGCAAGAA TTGATTGGCT CCAATTCTTG GAGTGGTGAA TCCGTTAGCG AGGCCATCCA GCCTCGCGTC 6861 GAACTAGATG ATCCGCTGTG GAATGTGTGT CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CCAGCAGGCA 6931 GAAGTATGCA AAGCATGCAT CTCAATTAGT CAGCAACCAG GTGTGGAAAG TCCCCAGGCT CCCCAGCAGG 7001 CAGAAGTATG CAAAGCATGC ATCTCAATTA GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG CCCCTAACTC CGCCCAGTTC CGCCCCATTCT CCGCCCCATG GCTGACTAAT TTTTTTTATT TATGCAGAGG 7141 CCGAGGCCGC CTCGGCCTCT GAGCTATTCC AGAAGTAGTG AGGAGGCTTT TTTGGAGGGT GACCGCCACG 7211 ACCGGTGCCG CCACCATCCC CTGACCCACG CCCCTGACCC CTCACAAGGA GACGACCTTC CATGACCGAG 7281 TACAAGCCCA CGGTGCGCCT CGCCACCCGC GACGACGTCC CCCGGGCCGT ACGCACCCTC GCCGCCGCGT 7351 TCGCCGACTA CCCCGCCACG CGCCACACCG TCGACCCCGA CCGCCACATC GAACGCGTCA CCGAGCTGCA 7421 AGAACTCTTC CTCACGCGCG TCGGGCTCGA CATCGGCAAG GTGTGGGTCG CGGACGACGG CGCCGCGGTG 7491 GCGGTCTGGA CCACGCCGGA GAGCGTCGAA GCGGGGGCGG TGTTCGCCGA GATCGGCCCG CGCATGGCCG 7561 AGTTGAGCGG TTCCCGGCTG GCCGCGCAGC AACAGATGGA AGGCCTCCTG GCGCCGCACC GGCCCAAGGA 7631 GCCCGCGTGG TTCCTGGCCA CCGTCGGCGT CTCGCCCGAC CACCAGGGCA AGGGTCTGGG CAGCGCCGTC 7701 GTGCTCCCCG GAGTGGAGGC GGCCGAGCGC GCCGGGGTGC CCGCCTTCCT GGAGACCTCC GCGCCCCGCA 7771 ACCTCCCCTT CTACGAGCGG CTCGGCTTCA CCGTCACCGC CGACGTCGAG TGCCCGAAGG ACCGCGCGAC 7841 CTGGTGCATG ACCCGCAAGC CCGGTGCCTG ACGCCCCGCC CACGACCCGC AGCGCCCGAC CGAAAGGAGC 7911 GCACGACCCG GTCCGACGGC GGCCCACGGG TCCCAGGGGG GTCGACCTCG AAACTTGTTT ATTGCAGCTT 7981 ATAATGGTTA CAAATAAAGC AATAGCATCA CAAATTTCAC AAATAAAGCA TTTTTTTCAC TGCATTCTAG 8051 TTGTGGTTTG TCCAAACTCA TCAATGTATC TTATCATGTC TGGATCGATC CGAACCCCTT CCTCGACCAA 8121 TTCTCATGTT TGACAGCTTA TCATCGCAGA TCCGGGCAAC GTTGTTGCAT TGCTGCAGGC GCAGAACTGG 8191 TAGGTATGGA AGATCTATAC ATTGAATCAA TATTGGCAAT TAGCCATATT AGTCATTGGT TATATAGCAT 8261 AAATCAATAT TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT ATATTGGCTC 8331 ATGTCCAATA TGACCGCCAT GTTGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT TACGGGGTCA 8401 TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 8471 8541 TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA 8611 AGTCCGCCCC CTATTGACGT CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA 8681 8751 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT TGACGTCAAT 8821 GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA TAACCCCGCC CCGTTGACGC 8891 AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT TTAGTGAACC GTCAGATCTC 8961 TAGAAGCTGG GTACCGGGAT CCAGCAGCTG GGCTCGAGGT GCTAGCGGGA GGGGGTGGAT GTGGGATCGA 9031 AGGTCGCAAG CTTACTCACA CATGCCCACC GTGCCCAGCA CCTGAAGCCG AGGGGGCACC GTCAGTCTTC 9101 CTCTTCCCCC CAAAACCCAA GGACACCCTC ATGATCTCCC GGACCCCTGA GGTCACATGC GTGGTGGTGG 9171 ACGTGAGCCA CGAAGACCCT GAGGTCAAGT TCAACTGGTA CGTGGACGGC GTGGAGGTGC ATAATGCCAA 9241 GACAAAGCCG CGGGAGGAGC AGTACAACAG CACGTACCGT GTGGTCAGCG TCCTCACCGT CCTGCACCAG 9311 GACTGGCTGA ATGGCAAGGA GTACAAGTGC AAGGTCTCCA ACAAAGCCCT CCCAGCCTCC ATCGAGAAAA 9381 CCATCTCCAA AGCCAAAGGG CAGCCCCGAG AACCACAGGT GTACACCCTG CCCCCATCCC GGGATGAGCT 9451 GACCAAGAAC CAGGTCAGCC TGACCTGCCT GGTCAAAGGC TTCTATCCCA GCGACATCGC CGTGGAGTGG 9521 GAGAGCAATG GGCAGCCGGA GAACAACTAC AAGACCACGC CTCCCGTGTT GGACTCCGAC GGCTCCTTCT 9591 TCCTCTACAG CAAGCTCACC GTGGACAAGA GCAGGTGGCA GCAGGGGAAC GTCTTCTCAT GCTCCGTGAT 9661 GCATGAGGCT CTGCACAACC ACTACACGCA GAAGAGCCTC TCCCTGTCTC CGGGTAAATG ACTCGAGGCC 9731 CGAACAAAAA CTCATCTCAG AAGAGGATCT GAATAGCGCC GTCGACCATC ATCATCATCA TCATTGAGTT 9801 TNAACGATCC AGACATGATA AGATACATTG ATGAGTTTGG ACAAACCACA ACTAGAATGC AGTGAAAAAA 9871 ATGCTTTATT TGTGAAATTT GTGATGCTAT TGCTTTATTT GTAACCATTA TAAGCTGCAA TAAACAAGTT 9941 AACAACAACA ATTGCATTCA TTTTATGTTT CAGGTTCAGG GGGAGGTGGG GAGGTTTTTT AAAGCAAGTA 10011 AAACCTCTAC AAATGTGGTA TGGCTGATTA TGATCCGGCT GCCTCGCGCG TTTCGGTGAT GACGGTGAAA ACCTCTGACA CATGCAGCTC CCGGAGACGG TCACAGCTTG TCTGTAAGCG GATGCCGGGA GCAGACAAGC 10151 CCGTCAGGGC GCGTCAGCGG GTGTTGGCGG GTGTCGGGGC GCAGCCATGA CCGGTCGACT CTAGA 10221

5'LT•: (SEQ ID NO:284)

5'-CTT GGT GCC GCA GGA TCA G-3'

285:

3'LT•: (SEQ ID NO:285)

5'-CAG ATG GCT GTC ACC CCA C-3'

.286:

5'LT• long-NheI: (SEQ ID NO:286)

5'-GCC CGC TAG CCT GCG GTG GTC AGG ATC AGG GAC GTC G-3'

287:

5'LT• short-NheI: (SEQ ID NO:287)

5'-GCC CGC TAG CCT GCG GTG GTT CTC CAG CTG CGG ATT C -3'

288:

3'LT• stop-NotI: (SEQ ID NO:288)

5'-CAA TGA CTG CGG CCG CTT ACC CCA CCA TCA CCG -3'

289:

GST-EK-C-LT• 49-306: SEQ ID NO:289

APLVMSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQ SMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCH KTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATF GGGDHPPKASMTGGQQMGRDLYDDDDKLACGGQDQGRRVEKIIGSGAQAQKRLDDSKPSCILPSPSSL SETPDPRLHPQRSNASRNLASTSQGPVAQSSREASAWMTILSPAADSTPDPGVQQLPKGEPETDLNPEL PAAHLIGAWMSGQGLSWEASQEEAFLRSGAQFSPTHGLALPQDGVYYLYCHVGYRGRTPPAGRSRARS LTLRSALYRAGGAYGRGSPELLLEGAETVTPVVDPIGYGSLWYTSVGFGGLAQLRSGERVYVNISHPDMV DYRRGKTFFGAVMVG

290:

GST-EK-C-LT• ₁₂₆₋₃₀₆: SEQ ID NO:290

APLVMSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQ SMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCH KTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATF GGGDHPPKASMTGGQQMGRDLYDDDDKLACGGSPAADSTPDPGVQQLPKGEPETDLNPELPAAHLIGA WMSGQGLSWEASQEEAFLRSGAQFSPTHGLALPQDGVYYLYCHVGYRGRTPPAGRSRARSLTLRSALY RAGGAYGRGSPELLLEGAETVTPVVDPIGYGSLWYTSVGFGGLAQLRSGERVYVNISHPDMVDYRRGKT FFGAVMVG

291:

his-myc-EK-C-LT• 49-306: SEQ ID NO:291

APLVHHHHHHGPLVDVASNEQKLISEEDLASMTGGQQMGRDLYDDDDKLACGGQDQGRRVEKIIGSGAQ AQKRLDDSKPSCILPSPSSLSETPDPRLHPQRSNASRNLASTSQGPVAQSSREASAWMTILSPAADSTPDPGV QQLPKGEPETDLNPELPAAHLIGAWMSGQGLSWEASQEEAFLRSGAQFSPTHGLALPQDGVYYLYCHVGY RGRTPPAGRSRARSLTLRSALYRAGGAYGRGSPELLLEGAETVTPVVDPIGYGSLWYTSVGFGGLAQLRSG ERVYVNISHPDMVDYRRGKTFFGAVMVG

292:

his-myc-EK-C-LT• 126-306: SEQ ID NO:292

APLVHHHHHHGPLVDVASNEQKLISEEDLASMTGGQQMGRDLYDDDDKLACGGSPAADSTPDPGVQQLP KGEPETDLNPELPAAHLIGAWMSGQGLSWEASQEEAFLRSGAQFSPTHGLALPQDGVYYLYCHVGYRGRT PPAGRSRARSLTLRSALYRAGGAYGRGSPELLLEGAETVTPVVDPIGYGSLWYTSVGFGGLAQLRSGERVY VNISHPDMVDYRRGKTFFGAVMVG

293:

primerMCS-1F

5'-TAT GGA TCC GGC TAG CGC TCG AGG GTT TAA ACG GCG GCC GCA T-3' (SEQ ID NO:293)

294:

primerMCS-1R

5'-TCG AAT GCG GCC GCC GTT TAA ACC CTC GAG CGC TAG CCG GAT CCA-3' (SEQ ID NO:294)

295:

Bamhis6-EK-Nhe-F

5'-GAT CCA CAC CAC CAC CAC CAC GGT TCT GGT GAC GAC GAT GAC AAA GCG CTA GCC C-3' (SEQ ID NO:295)

Bamhis6-EK-Nhe-R

5'-TCG AGG GCT AGC GCT TTG TCA TCG TCG TCA CCA GAA CCG TGG TGG TGG TGG TGG TGT G-3' (SEQ ID NO:296)

297:

oligo1F-C-glycine-linker

 5°-TCG AGG GTG GTG GTG GTT GCG GTT AAT AAG TTT AAA CGC-3 $^{\circ}$ (SEQ ID NO:297)

298:

oligo1R-C-glycine-linker

5'-GGC CGC GTT TAA ACT TAT TAA CCG CAA CCA CCA CCA CCC-3' (SEQ ID NO:298)

299:

oligo1F-C-gamma1-linker

5'-TCG AGG ATA AAA CCC ACA CCT CTC CGC CGT GTG GTT AAT AAG TTT AAA CGC-3' (SEQ ID NO:299)

300:

oligo1R-C-gamma1-linker

5'-GGC CGC GTT TAA ACT TAT TAA CCA CAC GGC GGA GAG GTG TGG GTT TTA TCC-3' (SEQ ID NO:300)

301:

oligo1FA-C-gamma3-linker

 5°-TCG AGC CGA AAC CGT CTA CCC CGC CGG GTT CTT CTG-3 $^{\circ}$ (SEQ ID NO:301)

302:

oligo1RA-C-gamma3-linker

5'-CAC CAC CAG AAG AAC CCG GCG GGG TAG ACG GTT TCG GC-3' (SEQ ID NO:302)

oligo2FB-C-gamma3-linker

5'-GTG GTG CTC CGG GTG GTT GCG GTT AAT AAG TTT AAA CGC-3' (SEQ ID NO:303)

304:

oligo2RB-C-gamma3-linker

5'-GGC CGC GTT TAA ACT TAT TAA CCG CAA CCA CCC GGA G-3' (SEQ ID NO:304)

305:

rMIF-F

5'-GGA ATT CCA TAT GCC TAT GTT CAT CGT GAA CAC-3' (SEQ ID NO:305)

306:

rMIF-Xho-R

5'-CCC GCT CGA GAG CGA AGG TGG AAC CGT TC-3' (SEQ ID NO:306)

307:

rMIF-C1:

MPMFIVNTNVPRASVPEGFLSELTQQLAQATGKPAQYIAVHVVPDQLMTFSGTSDPCALCSLHSIGKIGGAQ NRNYSKLLCGLLSDRLHISPDRVYINYYDMNAANVGWNGSTFALEGGGGGCG (SEQ ID NO:307)

308:

rMIF-C2

MPMFIVNTNVPRASVPEGFLSELTQQLAQATGKPAQYIAVHVVPDQLMTFSGTSDPCALCSLHSIGKIGGAQ NRNYSKLLCGLLSDRLHISPDRVYINYYDMNAANVGWNGSTFALEDKTHTSPPCG (SEQ ID NO:308)

309:

rMIF-C3

MPMFIVNTNVPRASVPEGFLSELTQQLAQATGKPAQYIAVHVVPDQLMTFSGTSDPCALCSLHSIGKIGGAQ NRNYSKLLCGLLSDRLHISPDRVYINYYDMNAANVGWNGSTFALEPKPSTPPGSSGGAPGGCG (SEQ ID NO:309)

met-human-MIF-C1

MPMFIVNTNVP RASVPDGFLS ELTQQLAQAT GKPPQYIAVH VVPDQLMAFG GSSEPCALCS LHSIGKIGGA ONRSYSKLLC GLLAERLRIS PDRVYINYYD MNAANVGWNN STFALEGGGGGCG

311:

human-MIF-C1 (SEQ ID NO:311)

PMFIVNTNVP RASVPDGFLS ELTQQLAQAT GKPPQYIAVH VVPDQLMAFG GSSEPCALCS LHSIGKIGGA QNRSYSKLLC GLLAERLRIS PDRVYINYYD MNAANVGWNN STFALEGGGGGCG

312:

met-human-MIF-C2 (SEQ ID NO:312)

MPMFIVNTNVP RASVPDGFLS ELTQQLAQAT GKPPQYIAVH VVPDQLMAFG GSSEPCALCS LHSIGKIGGA QNRSYSKLLC GLLAERLRIS PDRVYINYYD MNAANVGWNN STFALEDKTHTSPPCG

313:

human-MIF-C2 (SEQ ID NO:313)

PMFIVNTNVP RASVPDGFLS ELTQQLAQAT GKPPQYIAVH VVPDQLMAFG GSSEPCALCS LHSIGKIGGA QNRSYSKLLC GLLAERLRIS PDRVYINYYD MNAANVGWNN STFALEDKTHTSPPCG

314:

met-human-MIF-C3 (SEQ ID NO:314)

MPMFIVNTNVP RASVPDGFLS ELTQQLAQAT GKPPQYIAVH VVPDQLMAFG GSSEPCALCS
LHSIGKIGGA QNRSYSKLLCGLLAERLRISPDRVYINYYD MNAANVGWNN STFALEPKPSTPPGSSGGAPGGCG

315:

human-MIF-C3 (SEQ ID NO:315)

PMFIVNTNVP RASVPDGFLS ELTQQLAQAT GKPPQYIAVH VVPDQLMAFG GSSEPCALCS LHSIGKIGGA QNRSYSKLLCGLLAERLRISPDRVYINYYD MNAANVGWNN STFALEPKPSTPPGSSGGAPGGCG

316:

RANKL-UP:

5'CTGCCAGGGGCCCGGGTGCGGGGGCCATCATCACCACCATCACCAGCGCTTCTCAGGAG-3'

317:

RANKL-DOWN:

5'-CCGCTCGAGTTAGTCTATGTCCTGAACTTTGAAAG-3'

318 and 319:

Protein sequence of GST-PS-C-RANKL (SEQ ID NO:318; capital letters) cDNA sequence of GST-PS-C-RANKL (SEQ ID NO:319; small letters)

```
1 M S P I L G Y W K I K G L V Q P T R L L E Y L E
 1 atgtcccctatactaggttattggaaaattaagggccttgtgcaacccactcgacttcttttggaatatcttgaa
 26 E K Y E E H L Y E R D E G D K W R N K K F
 76 gaaaaatatgaagagcatttgtatgagcgcgatgaaggtgataaatggcgaaacaaaagtttgaattgggtttg
 51 E F P N L P Y Y I D G D V K L T Q S M A I I R
151 gagtttcccaatcttccttattatattgatggtgatgttaaattaacacagtctatggccatcatacgttatata
76 A D K H N M L G G C P K E R A E I S M L E G A V L
226 gctgacaagcacaacatgttgggtggttgtccaaaagagcgtgcagagatttcaatgcttgaaggagcggttttg
      I R Y G V S R I A Y S K D F E T L K
301 gatattagatacggtgtttcgagaattgcatatagtaaagactttgaaactctcaaagttgattttcttagcaag
126 L P E M L K M F E D R L C H K T Y L N G D H V T H
376 ctacctgaaatgctgaaaatgttcgaagatcgtttatgtcataaaacatatttaaatggtgatcatgtaacccat
151 P D F M L Y D A L D V V L Y M D P M C L D A F P K
451 cctgacttcatgttgtatgacgctcttgatgttgttttatacatggacccaatgtgcctggatgcgttcccaaaa 176 L V C F K K R I E A I P Q I D K Y L K S S K Y I A
526 ttagtttgttttaaaaaacgtattgaagctatcccacaaattgataagtacttgaaatccagcaagtatatagca
201 W P L Q G W Q A T F G G G D H P P K S D L E V
601 tggcctttgcagggctggcaagccacgtttggtggtggcgaccatcctccaaaatcggatctggaagttctgttc
226 Q G P C C G G G H H H H H H Q R F S G A P A M M Z
676 cagGGGCCCGGGTGCGGCGGTGGCCATCATCACCACCATCACCAGCGCTTCTCAGGAGCTCCAGCTATGATGGAA
251 C S W L D V A Q R G K
751 GGCTCATGGTTGGATGTGGCCCAGCGAGGCAAGCCTGAGGCCCAGCCATTTGCACACCATCAATGCTGCC
          PSGSAKVTLSSWYHDRGWAKTSX
826 AGCATCCCATCGGGTTCCCATAAAGTCACTCTGTCCTCTTGGTACCACGATCGAGGCTGGGCCAAGATCTCTAAC
          LSNGKLRVNQ DG
901 ATGACGTTAAGCAACGGAAAACTAAGGGTTAACCAAGATGGCTTCTATTACCTGTACGCCAACATTTGCTTTCGG
                               DYLQLMVVVVK:S
976 CATCATGAAACATCGGGAAGCGTACCTACAGACTATCTTCAGCTGATGGTGTATGTCGTTAAAACCAGCATCAAA
       PSSHNLMKGGS
1051 ATCCCAAGTTCTCATAACCTGATGAAAGGAGGAGGAGCACGAAAAACTGGTCGGGCAATTCTGAATTCCACTTTTAT
          N V G G P F K L R A G F E L S I Q V S N P S L
1126 TCCATAAATGTTGGGGGATTTTTCAAGCTCCGAGCTGGTGAAGAAATTAGCATTCAGGTGTCCAACCCTTCCCTG
 40± 5 D P D Q D A P Y F G A F K V Q D
1201 CTGGATCCGGATCAAGATGCGACGTACTTTGGGGCTTTCAAAGTTCAGGACATAGACTAACTCGAGCGG
```

320:

Human-C-RANKL

GCGGGQHIRAEKAMVDGSWLDLAKRSKLEAQPFAHLTINATDIPSGSHKVSLSSWYHDRGWAKISNMTFSNGKLI VNQDGFYYLYANICFRHHETSGDLATEYLQLMVYVTKTSIKIPSSHTLMKGGSTKYWSGNSEFHFYSINVGGFFK LRSGEEISIEVSNPSLLDPDQDATYFGAFKVRDID

321:

Primer 5'PrP-BamHI

5'-CGG GAT CCC ACC ATG GTG GGG GGC CTT GG -3' (SEQ ID NO:321)

322:

Primer 3'PrP-NheI

5'-CTA GCT AGC CTG GAT CTT CTC CCG -3' (SEQ ID NO:322)

Protein sequence of mPrPt-EK-Fc*

MVGGLGGYMLGSAMSRPMIHFGNDWEDRYYRENMYRYPNQVYYRPVDQYSNQNNFVHDCVNITIKQHT VTTTTKGENFTETDVKMMERVVEQMCVTQYQKESQAYYDGRSRLAGGGGCGDDDDKLTHTCPPCPAPEA EGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVS VLTVLHQDWLNGKEYKCKVSNKALPASIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPS DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K

324:

 $mPrP_t$

 $MVGGLGGYMLGSAMSRPMIHFGNDWEDRYYRENMYRYPNQVYYRPVDQYSNQNNFVHDCVNITIKQHT\\VTTTTKGENFTETDVKMMERVVEQMCVTQYQKESQAYYDGRSRLAGGGGCGDDDDK$

325:

human resistin-C-Xa: (SEQ ID NO:325)

 $SSKTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTSRGDL\\ ATCPRGFAVTGCTCGSACGSWDVRAETTCHCQCAGMDWTGARCCRVQPGGGGCGIEGR$

326:

human resistin-C-EK: (SEQ ID NO:326)

SSKTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTSRGDL ATCPRGFAVTGCTCGSACGSWDVRAETTCHCQCAGMDWTGARCCRVQPGGGGCG DDDDK

327:

human resistin-C: (SEQ ID NO:327)

 $SSKTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTSRGDL\\ ATCPRGFAVTGCTCGSACGSWDVRAETTCHCQCAGMDWTGARCCRVQPGGGGCG\\$

328:

mouse C-IL-13-F: (SEQ ID NO:328)

ADPGCGGGGGLAGPVPRSVSLPLTLKELIEELSNITQDQTPLCNGSMVWSVDLAAGGFCVALDSLTNISNCN AIYRTQRILHGLCNRKAPTTVSSLPDTKIEVAHFITKLLSYTKQLFRHGPFLEVLAIEGR 329:

mouse C-IL-13-S: (SEQ ID NO:329)

 $LACGGGGGGPVPRSVSLPLTLKELIEELSNITQDQTPLCNGSMVWSVDLAAGGFCVALDSLTNISNCNAI\\ YRTORILHGLCNRKAPTTVSSLPDTKIEVAHFITKLLSYTKQLFRHGPF$

330:

human C-IL-13-F: (SEQ ID NO:330)

 $ADPGCGGGGGLAGPVPPSTALRELIEELVNITQNQKAPLCNGSMVWSINLTAGMYCAALESLINVSGCS\\ AIEKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLFREGRFNLEVLAIEGR$

331:

human C-IL-13-S: (SEQ ID NO:331)

LACGGGGGPVPPSTALRELIEELVNITQNQKAPLCNGSMVWSINLTAGMYCAALESLINVSGCSAIEKTQR MLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLFREGRFN 332:

mouse C-IL-5-E: (SEQ ID NO:332)

ALVGCGGPKPSTPPGSSGGAPASMEIPMSTVVKETLTQLSAHRALLTSNETMRLPVPTHKNHQLCIGEIFQGLDILKNQTVRGGTVEMLFQNLSLIKKYIDRQKEKCGEERRRTRQFLDYLQEFLGVMSTEWAMEG

333:

mouse C-IL-5-F: (SEQ ID NO:333)

ADPGCGGGGGLAMEIPMSTVVKETLTQLSAHRALLTSNETMRLPVPTHKNHQLCIGEIFQGLDILKNQTVR GGTVEMLFQNLSLIKKYIDRQKEKCGEERRRTRQFLDYLQEFLGVMSTEWAMEGLEVLAIEGR

334:

mouse C-IL-5-S: (SEQ ID NO:334)

LACGGGGGMEIPMSTVVKETLTQLSAHRALLTSNETMRLPVPTHKNHQLCIGEIFQGLDILKNQTVRGGTVEMLFQNLSLIKKYIDRQKEKCGEERRRTRQFLDYLQEFLGVMSTEWAMEG

335:

human C-IL-5-E: (SEQ ID NO:335)

ALVGCGGPKPSTPPGSSGGAPASIPTEIPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGI GTLESQTVQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEW IIES

336:

human C-IL-5-F: (SEQ ID NO:336)

ADPGCGGGGGLAIPTEIPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEW IIES LEVLAIEGR

337:

human C-IL-5-S: (SEQ ID NO:337)

 $LACGGGGGIPTEIPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEW\ IIES$

338:

primer NheIL13-F: (SEQ ID NO:338)

CTAGCTAGCCGGGCCGGTGCCAAGATC

339:

primer XhoIL13-R: (SEQ ID NO:339)

TTTCTCGAGGAAGGGCCCGTGGCGAA

340:

primer Spelinker3-F1: (SEQ ID NO:340)

CCCCGCCGGGTTCTTCTGGCGGTGCTCCGGCTAGCATGGAGATTCCCATGAGCAC

341:

Primer SpeNlinker3-F2: (SEQ ID NO:341)

TTTTACTAGTTGGTTGCGGCGGCCCGAAACCGAGCACCCCGCCGGGTTCTTC

342:

Primer IL5StopXho-R: (SEQ ID NO:342)

TTTTGCGGCCGCGTTTAAACTCGAGTTATTAGCCTTCCATTGCCCACTC

343:

Primer BamH1-FLK1-F: (SEQ ID NO:343)

CGCGGATCCATTCATCGCCTCTGTC

344:

Primer Nhe1-FLK1-B: (SEQ ID NO:344)

CTAGCTAGCTTTGTGTGAACTCGGAC

345:

mVEGFR-2 (2-3) fragment: (SEQ ID NO:345)

PFIAS VSDQHGIVYI TENKNKTVVI PCRGSISNLN VSLCARYPEK RFVPDGNRIS WDSEIGFTLP SYMISYAGMV FCEAKINDET YQSIMYIVVV VGYRIYDVIL SPPHEIELSA GEKLVLNCTA RTELNVGLDF TWHSPPSKSH HKKIVNRDVK PFPGTVAKMF LSTLTIESVT KSDQGEYTCV ASSGRMIKRN RTFVRVHTKP

346

human C-LT• 49-306: (SEQ ID NO:346)

LACGGQDQGRRVEKIIGSGAQAQKRLDDSKPSCILPSPSSLSETPDPRLHPQRSNASRNLASTSQGPVAQSSR EASAWMTILSPAADSTPDPGVQQLPKGEPETDLNPELPAAHLIGAWMSGQGLSWEASQEEAFLRSGAQFSP THGLALPQDGVYYLYCHVGYRGRTPPAGRSRARSLTLRSALYRAGGAYGRGSPELLLEGAETVTPVVDPIG YGSLWYTSVGFGGLAQLRSGERVYVNISHPDMVDYRRGKTFFGAVMVG

347

human C-LT• 126-306: (SEQ ID NO:347)

 $LACGGSPAADSTPDPGVQQLPKGEPETDLNPELPAAHLIGAWMSGQGLSWEASQEEAFLRSGAQFSPTHGL\\ ALPQDGVYYLYCHVGYRGRTPPAGRSRARSLTLRSALYRAGGAYGRGSPELLLEGAETVTPVVDPIGYGSL\\ WYTSVGFGGLAQLRSGERVYVNISHPDMVDYRRGKTFFGAVMVG$

348

Modified human prion protein fragment: (SEQ ID NO:348)

VGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDE YSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ RGRLAGGGGCG

349

Modified bovine prion protein fragment: (SEQ ID NO:349)

VGGLGGYMLGSAMSRPLIHFGSDYEDRYYRENMHRYPNQVYYRPVDQ YSNQNNFVHDCVNITVKEHTVTTTTKGENFTETDIKMMERVVEQMCITQYQRESQAYYQ RGRLAGGGGCG

350

Modified sheep prion protein fragment: (SEQ ID NO:350)

VGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRYPNQVYYRPVDR YSNQNNFVHDCVNITVKQHTVTTTTKGENFTETDIKIMERVVEQMCITQYQRESQAYYQ RGRLAGGGGCG