# Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ITMO University

Лабораторная работа 1.03 по теме «Изучение центрального соударения двух тел. Проверка второго закона Ньютона»

По дисциплине

Физика

#### Выполнили:

Стафеев И.А. (К3121)

Голованов Д. И. (К3123)

Данилов H. O. (K3121)

Поток: ОФ-1 ИКТ 1.2.1

Проверила

Рудель А. Е.

Санкт-Петербург, 2024

# СОДЕРЖАНИЕ

|          |         |                                       | Стр. |
|----------|---------|---------------------------------------|------|
| 1        | Введени | e                                     | 3    |
|          | 1.1     | Цели работы                           |      |
|          | 1.2     | Задачи                                | 3    |
|          | 1.3     | Объект исследования                   | 3    |
|          | 1.4     | Рабочие формулы и исходные данные     | 3    |
|          | 1.5     | Измерительные приборы                 | 5    |
|          | 1.6     | Схема установки                       | 6    |
| <b>2</b> | Задание | 1                                     | 7    |
| 3        | Задание | 2                                     | 10   |
| 4        | Окончат | ельные результаты                     | 12   |
|          | 4.1     | Погрешности и доверительные интервалы | 12   |
|          | 4.2     | Графики                               | 13   |
| 5        | Выводы  | и анализ результатов работы           | 14   |
| 6        | Ответы  | на контрольные вопросы                | 15   |

#### 1 Введение

#### 1.1 Цели работы

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

#### 1.2 Задачи

- 1. Измерение скоростей тележек до и после соударения;
- 2. Измерение скорости тележки при ее разгоне под действием постоянной силы;
- 3. Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.;
- 4. Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.;

#### 1.3 Объект исследования

Импульс и механическая энергия при соударении двух тел

#### 1.4 Рабочие формулы и исходные данные

1. Импульсы тел в системе

$$p_{10x} = m_1 v_{10x}, p_{1x} = m_1 v_{1x}, p_{2x} = m_2 v_{2x}$$
 (1)

2. Относительное изменение импульса

$$\delta_p = \Delta p_x / p_{10x} = \frac{(p_{1x} + p_{2x})}{p_{10x}} - 1 \tag{2}$$

3. Относительное изменение кинетической энергии

$$\delta_W = \Delta W_k / W_{k0} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1 \tag{3}$$

4. Средние значения изменения импульса и кинетической энергии

$$\bar{\delta}_p = \frac{\sum_{i=1}^N \delta_{pi}}{N}; \delta_W^- = \frac{\sum_{i=1}^N \delta_{Wi}}{N}$$
 (4)

5. Погрешность среднего значения изменения импульса

$$\Delta \bar{\delta}_p = t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^N (\delta_{pi} - \bar{\delta}p)^2}{N \cdot (N-1)}}$$
 (5)

6. Погрешность среднего значения изменения энергии

$$\Delta \bar{\delta}_W = t_{\alpha,N} \sqrt{\frac{\sum_{i=1}^N (\delta_{Wi} - \bar{\delta}W)^2}{N \cdot (N-1)}}$$
 (6)

7. Экспериментальное значение относительного изменения механической энергии

$$\delta_W^{()} = \Delta W_k / W_{k0} = \frac{(m_1 + m_2) v_2^2}{m_1 v_{10}^2} - 1 \tag{7}$$

8. Теоретическое значение относительного изменения механической энергии

$$\delta_W^{(T)} = -\frac{W_{\text{пот}}}{\frac{m_1 v_{10}^2}{2}} = -\frac{m_2}{m_1 + m_2} \tag{8}$$

9. Ускорение тележки и сила натяжения нити

$$a = \frac{v_2^2 - v_1^2}{2(x_2 - x_1)}, T = m(g - a)$$
(9)

10. Зависимость силы натяжения от ускорения

$$T = Ma + F_{\rm TP} \tag{10}$$

Исходные данные: N=5,~g=9.82 м/с²,  $\alpha=0.95,~t_{\alpha,N}=2.7764451051977987$ 

Начальные параметры установки:

- 1. Положение левых оптических ворот в задании 1 x=0.3 м; правых ворот x'=0.7 м
- 2. Положение левых оптических ворот в задании 2  $x_1 = 0.15$  м; правых ворот  $x_2 = 0.8$  м

### 1.5 Измерительные приборы

Таблица 1 — Измерительные приборы

| $\mathcal{N}_{\overline{\mathbf{o}}}$ | Наименование | Предел           | Цена деления         | Погрешность                   |
|---------------------------------------|--------------|------------------|----------------------|-------------------------------|
| $\Pi/\Pi$                             |              | измерения        |                      | прибора $\Delta_{\mathrm ut}$ |
| 1                                     | Линейка на   | 1.3 м            | 1 см/дел             | 5 мм                          |
|                                       | рельсе       |                  |                      |                               |
| 2                                     | ПКЦ-3 в ре-  | $9.99  { m m/c}$ | $0.01 \mathrm{~m/c}$ | $0.01~\mathrm{m/c}$           |
|                                       | жиме измере- |                  |                      |                               |
|                                       | ния скорости |                  |                      |                               |
| 3                                     | Лабораторные | 250 г            | 0.01 г               | 0.01 г                        |
|                                       | весы         |                  |                      |                               |

#### 1.6 Схема установки



Рисунок 1 — Схема установки для проведения измерений

#### Числами на схеме обозначены:

- 1. Рельс с сантиметровой шкалой, по которому движется тележка;
- 2. Сталкивающиеся тележки;
- 3. Воздушный насос, уменьшающий трение между тележкой и рельсом;
- 4. Источник питания насоса ВС 4-12;
- 5. Опоры рельса, регулирующие высоты рельса;
- 6. Опорная плоскость;
- 7. Электромагнит, фиксирующий тележку в начальном положении;
- 8. Оптические ворота;
- 9. Цифровой измерительный прибор ПКЦ-3, фиксирующий момент времени, скорость и ускорение тележки при прохождении оптических ворот;
- 10. Пульт дистанционного управления прибором ПКЦ-3;

# 2 Задание 1

Таблица 2 — Значения скоростей при упругом соударении тележек одинаковой массы

| № опыта | $m_1$ , г | $m_2$ , г | $v_{10x},  { m M/c}$ | $v_{1x}$ , м/с | $v_{2x},  { m M/c}$ |
|---------|-----------|-----------|----------------------|----------------|---------------------|
| 1       | 50.93     | 47.95     | 0.47                 | 0.05           | 0.46                |
| 2       | 50.93     | 47.95     | 0.47                 | 0.05           | 0.45                |
| 3       | 50.93     | 47.95     | 0.46                 | 0.05           | 0.45                |
| 4       | 50.93     | 47.95     | 0.45                 | 0.05           | 0.43                |
| 5       | 50.93     | 47.95     | 0.46                 | 0.05           | 0.45                |

Таблица 3 — Значения скоростей при упругом соударении тележек разной массы

| № опыта | $m_1$ , г | $m_2$ , г | $v_{10x},  { m M/c}$ | $v_{1x}$ , м/с | $v_{2x}$ , м/с |
|---------|-----------|-----------|----------------------|----------------|----------------|
| 1       | 50.93     | 98.62     | 0.47                 | -0.14          | 0.16           |
| 2       | 50.93     | 98.62     | 0.46                 | -0.12          | 0.11           |
| 3       | 50.93     | 98.62     | 0.45                 | -0.12          | 0.13           |
| 4       | 50.93     | 98.62     | 0.46                 | -0.11          | 0.11           |
| 5       | 50.93     | 98.62     | 0.45                 | -0.12          | 0.15           |

Таблица 4 — Значения скоростей при неупругом соударении тележек одинаковой массы

| № опыта | $m_1$ , г | $m_2$ , г | $v_{10},  { m m/c}$ | v, м/с |
|---------|-----------|-----------|---------------------|--------|
| 1       | 53.96     | 50.89     | 0.43                | 0.15   |
| 2       | 53.96     | 50.89     | 0.41                | 0.12   |
| 3       | 53.96     | 50.89     | 0.42                | 0.15   |
| 4       | 53.96     | 50.89     | 0.35                | 0.07   |
| 5       | 53.96     | 50.89     | 0.35                | 0.08   |

Таблица 5 — Значения скоростей при неупругом соударении тележек разной массы

| № опыта | $m_1$ , г | $m_2$ , г | $v_{10},  { m m/c}$ | v, м/с |
|---------|-----------|-----------|---------------------|--------|
| 1       | 53.96     | 101.57    | 0.46                | 0.07   |
| 2       | 53.96     | 101.57    | 0.45                | 0.07   |
| 3       | 53.96     | 101.57    | 0.46                | 0.07   |
| 4       | 53.96     | 101.57    | 0.45                | 0.07   |
| 5       | 53.96     | 101.57    | 0.45                | 0.07   |

Таблица 6 — Косвенные измерения при упругом соударении тележек одинаковой массы

| № опыта | $p_{10x}$ , м $\mathbf{H}$ ·с | $p_{1x}$ , м $\mathbf{H}$ · $\mathbf{c}$ | $p_{2x}$ , нМ·с | $\delta_p$ | $\delta_W$ |
|---------|-------------------------------|------------------------------------------|-----------------|------------|------------|
| 1       | 24                            | 3                                        | 22              | 0.028      | -0.087     |
| 2       | 24                            | 3                                        | 22              | 0.008      | -0.126     |
| 3       | 23                            | 3                                        | 22              | 0.030      | -0.087     |
| 4       | 23                            | 3                                        | 21              | 0.011      | -0.128     |
| 5       | 23                            | 3                                        | 22              | 0.030      | -0.087     |

$$ar{\delta}_p = rac{\sum_{i=1}^N \delta_{pi}}{N} = 0.021$$
 $ar{\delta}_W = rac{\sum_{i=1}^N \delta_{Wi}}{N} = -0.103$ 
По формуле 5  $\Delta ar{\delta}_p = 0.014$ 
По формуле 6  $\Delta ar{\delta}_W = 0.027$ 

Таблица 7 — Косвенные измерения при упругом соударении тележек разной массы

| № опыта | $p_{10x}$ , мН·с | $p_{1x}$ , мН·с | $p_{2x}$ , нМ·с | $\delta_p$ | $\delta_W$ |
|---------|------------------|-----------------|-----------------|------------|------------|
| 1       | 24               | -7              | 16              | -0.64      | -0.69      |
| 2       | 23               | -6              | 11              | -0.80      | -0.82      |
| 3       | 23               | -6              | 13              | -0.71      | -0.77      |
| 4       | 23               | -6              | 11              | -0.78      | -0.83      |
| 5       | 23               | -6              | 15              | -0.62      | -0.71      |

$$\bar{\delta}_p = \frac{\sum_{i=1}^N \delta_{pi}}{N} = -0.71$$

$$ar{\delta}_W = rac{\sum_{i=1}^N \delta_{Wi}}{N} = -0.76$$
 По формуле 5  $\Delta ar{\delta}_p = 0.10$  По формуле 6  $\Delta ar{\delta}_W = 0.08$ 

Таблица 8 — Косвенные измерения при неупругом соударении тележек одинаковой массы

| № опыта | <i>р</i> <sub>10</sub> , мН⋅с | p, м $H$ ·с | $\delta_p$ | $\delta_W^{(\mathfrak{B})}$ | $\delta_W^{(\mathrm{T})}$ |
|---------|-------------------------------|-------------|------------|-----------------------------|---------------------------|
| 1       | 23                            | 16          | -0.322     | -0.76                       | -0.49                     |
| 2       | 22                            | 13          | -0.430     | -0.83                       | -0.49                     |
| 3       | 23                            | 16          | -0.306     | -0.75                       | -0.49                     |
| 4       | 19                            | 10          | -0.610     | -0.92                       | -0.49                     |
| 5       | 19                            | 10          | -0.560     | -0.90                       | -0.49                     |

$$ar{\delta}_p = rac{\sum_{i=1}^N \delta_{pi}}{N} = -0.45$$
 $ar{\delta}_W = rac{\sum_{i=1}^N \delta_{Wi}}{N} = -0.83$ 
По формуле 5  $\Delta ar{\delta}_p = 0.17$ 
По формуле 6  $\Delta ar{\delta}_W = 0.10$ 

Таблица 9 — Косвенные измерения при неупругом соударении тележек разной массы

| № опыта | <i>р</i> <sub>10</sub> , мН⋅с | p, м $H$ ·с | $\delta_p$ | $\delta_W^{(\Im)}$ | $\delta_W^{(\mathrm{T})}$ |
|---------|-------------------------------|-------------|------------|--------------------|---------------------------|
| 1       | 25                            | 11          | -0.56      | -0.93              | -0.65                     |
| 2       | 24                            | 11          | -0.55      | -0.93              | -0.65                     |
| 3       | 25                            | 11          | -0.56      | -0.93              | -0.65                     |
| 4       | 24                            | 11          | -0.55      | -0.93              | -0.65                     |
| 5       | 24                            | 11          | -0.55      | -0.93              | -0.65                     |

$$ar{\delta}_p = rac{\sum_{i=1}^N \delta_{pi}}{N} = -0.55$$
 $ar{\delta}_W = rac{\sum_{i=1}^N \delta_{Wi}}{N} = -0.93$ 
По формуле 5  $\Delta ar{\delta}_p = 0.01$ 
По формуле 6  $\Delta ar{\delta}_W = 0.01$ 

# 3 Задание 2

Таблица 10 — Разгоняемое тело - тележка 1.  $M_1=49.3~{
m f}$ 

| № опыта | Количество шайб | m, г | $v_1$ , м/с | $v_2$ , м/с |
|---------|-----------------|------|-------------|-------------|
| 1       | 0               | 2.1  | 0.21        | 0.29        |
| 2       | 1               | 3.0  | 0.25        | 0.39        |
| 3       | 2               | 3.8  | 0.34        | 0.46        |
| 4       | 3               | 4.7  | 0.39        | 0.52        |
| 5       | 4               | 5.6  | 0.43        | 0.58        |
| 6       | 5               | 6.4  | 0.47        | 0.63        |
| 7       | 6               | 7.3  | 0.50        | 0.67        |

Таблица 11 — Разгоняемое тело - тележка 1 с утяжелителем.  $M_1=100.3~{
m f}$ 

| № опыта | Количество шайб | m, г | $v_1$ , м/с | $v_2$ , м/с |
|---------|-----------------|------|-------------|-------------|
| 1       | 0               | 2.1  | 0.12        | 0.18        |
| 2       | 1               | 3.0  | 0.18        | 0.25        |
| 3       | 2               | 3.8  | 0.24        | 0.33        |
| 4       | 3               | 4.7  | 0.25        | 0.35        |
| 5       | 4               | 5.6  | 0.29        | 0.40        |
| 6       | 5               | 6.4  | 0.32        | 0.44        |
| 7       | 6               | 7.3  | 0.35        | 0.48        |

Таблица 12 — Косвенные измерения при исследовании зависимости ускорения тележки от приложенной силы и массы тележки

| № опыта | m, г | $a$ , $M/c^2$ | T, м $H$ |
|---------|------|---------------|----------|
| 1       | 2.1  | 0.031         | 21       |
| 2       | 3.0  | 0.069         | 29       |
| 3       | 3.8  | 0.074         | 37       |
| 4       | 4.7  | 0.091         | 46       |
| 5       | 5.6  | 0.117         | 54       |
| 6       | 6.4  | 0.135         | 62       |
| 7       | 7.3  | 0.153         | 71       |

По МНК 
$$M_1 = 420.8$$
 г,  $\Delta_{M_1} = 2S_{M_1} = 67.5$  г

Таблица 13 — Косвенные измерения при исследовании зависимости ускорения тележки с утяжелителем от приложенной силы и массы тележки

| № опыта | $m$ , $\Gamma$ | $a$ , $M/c^2$ | T, мН |
|---------|----------------|---------------|-------|
| 1       | 2.1            | 0.014         | 21    |
| 2       | 3.0            | 0.023         | 29    |
| 3       | 3.8            | 0.039         | 37    |
| 4       | 4.7            | 0.046         | 46    |
| 5       | 5.6            | 0.058         | 55    |
| 6       | 6.4            | 0.070         | 62    |
| 7       | 7.3            | 0.083         | 71    |

По МНК 
$$M_1 = 729.5$$
 г,  $\Delta_{M_1} = 2S_{M_1} = 66.9$  г

#### 4 Окончательные результаты

#### 4.1 Погрешности и доверительные интервалы

Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении

1. 
$$\delta_p = (0.021 \pm 0.014); \ \varepsilon_{\delta_p} = 66\%; \ \alpha = 0.95$$

$$\delta_W = (-0.103 \pm 0.027); \ \varepsilon_{\delta_W} = 26\%; \ \alpha = 0.95$$

2. 
$$\delta_p = (-0.71 \pm 0.010); \ \varepsilon_{\delta_p} = 14\%; \ \alpha = 0.95$$
  
 $\delta_W = (-0.76 \pm 0.08); \ \varepsilon_{\delta_W} = 10\%; \ \alpha = 0.95$ 

Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении

1. 
$$\delta_p = (-0.45 \pm 0.17); \ \varepsilon_{\delta_p} = 38\%; \ \alpha = 0.95$$

$$\delta_W^{(\Im)} = (-0.83 \pm 0.10); \ \varepsilon_{\delta_W} = 12\%; \ \alpha = 0.95$$

$$\delta_W^{(\Tau)} = -0.49$$

2. 
$$\delta_p = (-0.55 \pm 0.01); \ \varepsilon_{\delta_p} = 2\%; \ \alpha = 0.95$$

$$\delta_W^{(\Im)} = (-0.93 \pm 0.01); \ \varepsilon_{\delta_W} = 1\%; \ \alpha = 0.95$$

$$\delta_W^{(\Tau)} = -0.65$$

Доверительные интервалы массы тележки

1. 
$$M_1 = (420.8 \pm 67.5) \text{ r}; \varepsilon_{M_1} = 16\%; \alpha = 0.95$$

2. 
$$M_1 = (729.5 \pm 66.9) \text{ r}; \ \varepsilon_{M_1} = 9\%; \ \alpha = 0.95$$

# 4.2 Графики



Рисунок 2 — График зависимости T от a для тележки без утяжелителя (красный) и без него (синий)

#### 5 Выводы и анализ результатов работы

- 1. Теоретическое значение изменения энергии не попадает в экспериментальный доверительный интервал ни для первого эксперимента, ни для второго.
- 2. Измеренная с помощью лабораторных весов масса тележки не попадает в доверительный интервал массы, полученной с помощью МНК, ни для первого эксперимента, ни для второго.

#### 6 Ответы на контрольные вопросы

1. При каком условии импульс системы тел сохраняется с течением времени?

Импульс системы тел сохраняется с течением времени при отсутствии внешних сил, изменяющих импульс системы

2. При каком условии механическая энергия системы тел сохраняется с течением времени?

Механическая энергия системы тел сохраняется с течением времени при отсутствии внешних сил, совершающих работу над системой

3. При каком условии кинетическая энергия системы тел сохраняется с течением времени?

Кинетическая энергия системы тел сохраняется с течением времени при отсутствии внешних сил, совершающих работу над системой и отсутствии потерь энергии

- 4. Каковы теоретические значения изменения импульса системы при упругом и неупругом центральном соударении двух тел?
  При упругом центральном соударении двух тел изменение импульса системы равно нулю, а при неупругом соударении изменение импульса системы равно разности импульсов тел до и после соударени
- 5. Как влияет наличие сил трения на измеряемое в задании 1 изменение импульса тележек?

Наличие сил трения приводит к потере механической энергии и изменению импульса тележек при соударении

6. Каковы теоретические значения изменения кинетической энергии системы при упругом и неупругом центральном соударении двух тел?

При упругом центральном соударении двух тел изменение кинетической энергии системы равно нулю, а при неупругом соударении изменение кинетической энергии равно разности кинетических энергий тел до и после соударения

7. Как влияет наличие сил трения на измеряемое в задании 1 изменение кинетической энергии тележек?

- Наличие сил трения приводит к потере кинетической энергии тележек при соударении
- 8. От чего зависит, изменится или нет направление движения первой тележки в результате соударения при выполнении задания 1? Направление движения первой тележки после соударения зависит от относительных скоростей и масс тележек
- 9. Каким соотношением связаны сила натяжения нити и ускорение тележки при выполнении задания 2, если силой трения для тележки можно пренебречь?
  - Сила натяжения нити и ускорение тележки связаны соотношением второго закона Ньютона: сила натяжения равна произведению массы тележки на ее ускорение
- 10. Может ли график зависимости силы натяжения нити от ускорение тележки при выполнении задания 2 идти ниже начала координат?
  - График зависимости силы натяжения нити от ускорения тележки не может идти ниже начала координат, так как сила натяжения не может быть отрицательной
- 11. Как зависит величина силы сопротивления воздуха от скорости движения тележки в задании 2? Как эта зависимость могла бы повлиять на вид графика T(a)?
  - Величина силы сопротивления воздуха зависит от скорости движения тележки и может привести к уменьшению скорости и изменению траектории движения