

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T y \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Кручение стержня прямоугольного сечения

Студент	ФН2-51Б		В. Г. Пиневич	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Руководитель курсовой работы			A. D. Wamanyu	
			А.В. Котович	
		(Подпись, дата)	(И. О. Фамилия)	

Оглавление 2

Оглавление

Введение	3
1. Постановка задачи	3
Заключение	3
Список использованных источников	4

Введение 3

Введение

Проблема вычисления уравнение прогиба балки возникает во многих задачах, в частности в строительной механике. В силу наличия большого числа действующих сил и моментов решение такой задачи классическим методом, т.е. вычислением дифференциального уравнения, вызывает сложности в виду большого числа граничных условий. Однако с развитием теории обобщенных функций и сопротивления материалов был найден более удобный способ расчета прогиба балки. Данная работа посвящена изучению методов решения подобных задач, выделение их недостатков и преимуществ.

1. Постановка задачи

Для расчета уравнения гибкого стержня необходимо ввести несколько понятий. q — распределенная нагрузка, Q — сосредоточенная сила, M — момент.

Заключение

В ходе выполнения курсовой были изучены методы интегрирования и обобщенных функций нахождения уравнения упругого изгиба стержня. С помощью этих методов были решены два типа задач, их результаты оказались идентичны. Метод интегрирования является более трудоемким и менее удобным по сравнению с методом обобщенных функций, так как требует учета большего количества граничных условий и большего объема вычислений.

Список использованных источников

1. В.И. Феодосьев Сопротивление материалов: учеб. для вузов. — 10-е изд., перераб. и доп. — М.: Изд-во МГТУ им. Н.Э.Баумана, 1999. — 590 с.