FCC Part 15C Measurement and Test Report

For

RUIMA INTERNATIONAL (HK) INDUSTRIAL CO., LIMITED

FCC ID: 2AHSJ-MPD8APBZ

FCC Rule(s): FCC Part 15.249

Product Description: BOOMBOX SPEAKER

Tested Model: MPD8APBZ

Report No.: <u>BSL190712646601RF</u>

Tested Date: <u>July 17-22, 2019</u>

Issued Date: July 22, 2019

Tested By: <u>Cindy Zheng / Engineer</u>

Reviewed By: Haley Wen / EMC Manager

Approved & Authorized By: Mike Mo / PSQ Manager

Prepared By:

BSL Testing Co.,LTD.

No. 24, ZH Park, Nantou Nanshan District, Shenzhen, Guangdong, China

Tel: 400-882-9628 Fax: 86- 755-26508703

Report No.: BSL190712646601RF Page 1 of 29 FCC Part 15.249

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 1.2 TEST STANDARDS 1.3 TEST METHODOLOGY 1.4 TEST FACILITY 1.5 EUT SETUP AND TEST MODE 1.6 MEASUREMENT UNCERTAINTY 1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	8
3. ANTENNA REQUIREMENTS	9
3.1 STANDARD APPLICABLE	
4. RADIATED EMISSIONS	10
4.1 STANDARD APPLICABLE	
5. OUT OF BAND EMISSIONS	17
5.1 STANDARD APPLICABLE	17
6. EMISSION BANDWIDTH	19
6.1 Standard Applicable	19 19
7. CONDUCTED EMISSIONS	26
7.1 TEST PROCEDURE 7.2 BASIC TEST SETUP BLOCK DIAGRAM 7.3 ENVIRONMENTAL CONDITIONS 7.4 TEST RECEIVER SETUP	
7.5 SUMMARY OF TEST RESULTS/PLOTS	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: RUIMA INTERNATIONAL (HK) INDUSTRIAL CO.,

LIMITED

Address of applicant: NO:5/F building 1, fuye industrial zone, No.10 Furong

Road, Shiling Town, Huadu District, Guangzhou, China

Manufacturer: GUANGZHOU TEXING ELECTRONICS CO.,LTD

Address of manufacturer: NO:5/F building 1, fuye industrial zone, No.10 Furong

Road, Shiling Town, Huadu District, Guangzhou, China

General Description of EUT		
Product Name:	BOOMBOX SPEAKER	
Trade Name:	OEM BRAND	
Model No.:	MPD8APBZ	
Adding Madal/a).	MPD8AP,HA-94BT,BAZOOKA,PRM828S,	
Adding Model(s):	EXATUBE,RV-Y80, RM-828S	
Rated Voltage:	DC 13.5V 1A	
Power Adapter Model:	Input:100-240V 50/60Hz 0.6A	
Note: The test data is gathered from a production sample, provided by the manufacturer.		

Technical Characteristics of EUT	
Frequency Range:	2402-2480MHz
Max. Field Strength:	93.73dBuV/m@1.5m
Data Rate:	1Mbps, 2Mbps, 3Mbps
Modulation:	GFSK, Pi/4 QDPSK, 8DPSK
Quantity of Channels:	79
Channel Separation:	1MHz
Antenna Type:	PCB antenna
Antenna Gain:	5dBi
Lowest Internal Frequency of EUT:	32.768KHz

Report No.: BSL190712646601RF Page 3 of 29 FCC Part 15.249

1.2 Test Standards

The following report is prepared on behalf of the RUIMA INTERNATIONAL (HK) INDUSTRIAL CO., LIMITED in accordance with FCC Part 15, Subpart B, Subpart C, and section 15.107, 15.203, 15.205, 15.207, 15.209 and 15.249 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.107,15.203, 15.205, 15.207, 15.209 and 15.249 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which results in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices, and ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.4 Test Facility

BSL Testing Co.,LTD.

NO. 24, ZH Park, Nantou, Shenzhen, 518000 China

Designation Number: CN1217

Test Firm Registration Number: 866035

Tel: 86- 755-26508703 Fax: 86- 755-26508703

Report No.: BSL190712646601RF Page 4 of 29 FCC Part 15.249

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	Low Channel	2402MHz
TM2	Middle Channel	2442MHz
TM3	High Channel	2480MHz
TM4	Hopping	2402-2480MHz

Modulation Configure			
Modulation	Packet	Packet Type	Packet Size
	DH1	4	27
GFSK	DH3	11	183
	DH5	15	339
	2DH1	20	54
Pi/4 DQPSK	2DH3	26	367
	2DH5	30	679
	3DH1	24	83
8DPSK	3DH3	27	552
	3DH5	31	1021

Normal mode: the Bluetooth has been tested on the modulation of GFSK, (Pi/4)DQPSK and 8DPSK, compliance test and record the worst case.

Special Cable List and I	Details		
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
Notebook	Lenovo	E23	EB12648265
USB	ESR	S01	19682904994

EUT Exercise Software

The test software: 'FCCAssist' was used in test. The worst condition (maximum power) was configured by defau lt setting.

Report No.: BSL190712646601RF Page 5 of 29 FCC Part 15.249

1.6 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
RF Output Power	Conducted	± 0.42 dB
Occupied Bandwidth	Conducted	±1.5%
Conducted Spurious Emission	Conducted	±2.17dB
Conducted Emissions	Conducted	±2.88dB
Transmitter Spurious Emissions	Radiated	±5.1dB

Report No.: BSL190712646601RF Page 6 of 29 FCC Part 15.249

1.7 Test Equipment List and Details

Dscription	Manufacturer	Model	Serial No.	Cal Date	Due. Date
Communication Tester	Rohde & Schwarz	CMW500	100358	2018-11-08	2019-11-07
Spectrum Analyzer	R&S	FSP40	100550	2018-10-08	2019-10-07
Test Receiver	R&S	ESCI7	US47140102	2018-10-08	2019-10-07
Signal Generator	HP	83630B	3844A01028	2018-10-08	2019-10-07
Test Receiver	R&S	ESPI-3	100180	2018-10-08	2019-10-07
Amplifier	Agilent	8449B	4035A00116	2018-10-08	2019-10-07
Amplifier	HP	8447E	2945A02770	2018-10-08	2019-10-07
Signal Generator	IFR	2023A	202307/242	2018-10-08	2019-10-07
Broadband Antenna	SCHAFFNER	2774	2774	2018-10-21	2019-10-20
Biconical and log	ELECTRO-METRI	EM-6917B-1	171	2018-10-21	2019-10-20
periodic antennas	CS	EWI-091/D-1	1/1	2018-10-21	2019-10-20
Horn Antenna	R&S	HF906	100253	2018-10-21	2019-10-20
Horn Antenna	EM	EM-6961	6462	2018-10-21	2019-10-20
LISN	R&S	ESH3-Z5	100196	2018-10-08	2019-10-07
LISN	COM-POWER	LI-115	02027	2018-10-08	2019-10-07
3m Semi-Anechoic	Chengyu Electron	9 (L)*6 (W)* 6 (H)	BSL086	2018-10-08	2019-10-07
Chamber			DSLU60	2010-10-00	2019-10-07
Horn Antenna	Schwarzbeck	BBHA9170	00814	2018-10-21	2019-10-20
Loop Antenna	Schwarz beck	FMZB 1519B	9773	2018-10-21	2019-10-20
power meter	DARE	RPR3006W	15I00041SNO03	2018-10-21	2019-10-20

Report No.: BSL190712646601RF Page 7 of 29 FCC Part 15.249

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203	Antenna Requirement	PASS
§15.205	Restricted Band of Operation	PASS
§ 15.207(a)	Conducted Emission	PASS
§ 15.209(a)(f)	Radiated Spurious Emissions	PASS
§15.249(a)	Field Strength of Emissions	PASS
§15.249(d)	Out of Band Emission	PASS
§15.215 (c)	Emission Bandwidth	PASS

Note: PASS: applicable, N/A: not applicable.

Report No.: BSL190712646601RF Page 8 of 29 FCC Part 15.249

3. Antenna Requirements

3.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has a PCB antenna, fulfill the requirement of this section.

Report No.: BSL190712646601RF Page 9 of 29 FCC Part 15.249

4. Radiated Emissions

4.1 Standard Applicable

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field strength of fundamental	Field strength of Harmonics
	(milli-volts/meter)	(micro-volts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

4.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.249(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Report No.: BSL190712646601RF Page 10 of 29 FCC Part 15.249

Frequency:9kHz-30MHz

RBW=10KHz,

VBW = 30KHz

Sweep time= Auto

Trace = \max hold

Detector function = peak

Frequency:30MHz-1GHz

RBW=120KHz,

VBW=300KHz

Sweep time= Auto

Trace = \max hold

Detector function = peak, QP

Frequency: Above 1GHz

RBW=1MHz,

VBW=3MHz(Peak), 10Hz(AV)

Sweep time= Auto

Trace = \max hold

Detector function = peak, AV

4.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss – Ampl. Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

4.4 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	60 %
ATM Pressure:	1012 mbar

4.5 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.249 standards, and had the worst cases.

Note:

- 1. Worst-case radiated emission below 1GHz is GFSK (CH High) mode.
- 2. Worst-case radiated emission above IGHz is (Pi/4)DQPSK (CH Low, Middle, High) mode.

Report No.: BSL190712646601RF Page 12 of 29 FCC Part 15.249

Plot of Radiated Emissions Test Data (30MHz to 1GHz): GFSK (CH High) mode:

Test Specification: Horizontal

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		69.8448	23.75	-0.19	23.56	40.00	-16.44	QP	
2		88.9637	26.45	-0.45	26.00	43.50	-17.50	QP	
3		119.4360	27.49	2.53	30.02	43.50	-13.48	QP	
4		152.1297	22.32	1.07	23.39	43.50	-20.11	QP	
5		253.8367	24.98	2.44	27.42	46.00	-18.58	QP	
6	*	287.9904	29.10	3.82	32.92	46.00	-13.08	QP	

Test Specification: Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		68.6310	26.97	-0.10	26.87	40.00	-13.13	QP	
2		83.8156	26.43	-0.19	26.24	40.00	-13.76	QP	
3		118.6012	23.67	2.43	26.10	43.50	-17.40	QP	
4	*	152.1297	31.97	1.07	33.04	43.50	-10.46	QP	
5		272.2776	28.88	3.10	31.98	46.00	-14.02	QP	
6		375.9384	23.72	6.80	30.52	46.00	-15.48	QP	

Spurious Emissions Above 1GHz: (Pi/4)DQPSK (CH Low, Middle, High) mode.

Frequency	Rearding Level	Factor	Result	Limit	Margin	Polar	Detector
(MHz)	(dB µ V)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Chann	el-2402MHz			•
2402	88.62	5.62	94.24	114	-19.76	Н	PK
2402	72.24	5.62	77.86	94	-16.14	Н	AV
4804	55.79	4.62	60.41	74	-13.59	Н	PK
4804	43.24	4.62	47.86	54	-6.14	Н	AV
7206	46.58	3.51	50.09	74	-23.91	Н	PK
7206	35.24	3.51	38.75	54	-15.25	Н	AV
2402	82.32	5.62	87.94	114	-26.06	V	PK
2402	72.39	5.62	78.01	94	-15.99	V	AV
4804	52.05	4.62	56.67	74	-17.33	V	PK
4804	38.22	4.62	42.84	54	-11.16	V	AV
7206	60.54	3.51	64.05	74	-9.95	V	PK
7206	36.45	3.51	39.96	54	-14.04	V	AV
			Middle Chan	nel-2442MHz			
2442	85.12	4.52	89.64	114	-24.36	Н	PK
2442	73.65	4.52	78.17	94	-15.83	Н	AV
4884	53.79	3.65	57.44	74	-16.56	Н	PK
4884	42.54	3.65	46.19	54	-7.81	Н	AV
7326	48.27	3.48	51.75	74	-22.25	Н	PK
7326	43.65	3.48	47.13	54	-6.87	Н	AV
2442	84.32	4.52	88.84	114	-25.16	V	PK
2442	73.20	4.52	77.72	94	-16.28	V	AV
4884	54.52	3.65	58.17	74	-15.83	V	PK
4884	37.08	3.65	40.73	54	-13.27	V	AV
7326	52.54	3.48	56.02	74	-17.98	V	PK
7326	38.28	3.48	41.76	54	-12.24	V	AV

Frequency	Rearding Level	Factor	Result	Limit	Margin	Polar	Detector		
(MHz)	(dB µ V)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	H/V			
	Low Channel-2480MHz								
2480	85.28	3.52	88.8	114	-25.2	Н	PK		
2480	73.46	3.52	76.98	94	-17.02	Н	AV		
4960	58.86	2.51	61.37	74	-12.63	Н	PK		
4960	38.29	2.51	40.80	54	-13.20	Н	AV		
7440	49.11	3.10	52.21	74	-21.79	Н	PK		
7440	42.64	3.10	45.74	54	-8.26	Н	AV		
2480	85.23	3.52	88.75	114	-25.25	V	PK		
2480	73.47	3.52	76.99	94	-17.01	V	AV		
4960	48.24	2.51	50.75	74	-23.25	V	PK		
4960	41.22	2.51	43.73	54	-10.27	V	AV		
7440	45.09	3.10	48.19	74	-25.81	V	PK		
7440	38.60	3.10	41.70	54	-12.30	V	AV		

Note:

- 1. Result = Reading + Correct Factor.
- 2. Correct Factor = Ant. Factor + Cable Loss Ampl. Gain.

Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 5^{th} Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The measurements greater than 20dB below the limit from 9kHz to 30MHz..

5. Out of Band Emissions

5.1 Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

As the radiation test, set the Lowest and Highest Transmitting Channel, observed the outside band of 2400MHz to 2483.5MHz, than mark the higher-level emission for comparing with the FCC rules.

5.3 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	60 %
ATM Pressure:	1012 mbar

5.4 Summary of Test Results/Plots

Note: We pre-scan all mode, the worst data is DH1, 2DH1, 3DH1.

Report No.: BSL190712646601RF Page 17 of 29 FCC Part 15.249

Modulatio n	Frequen cy	Reading (dBuV)	Factor (dB/m)	Measurem ent (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Result
	2390.00	46.59	2.36	48.95	74	-25.05	Peak	PASS
	2390.00	35.45	2.36	37.81	54	-16.19	AV	PASS
	2400.00	48.28	3.45	51.73	74	-22.27	Peak	PASS
CECK	2400.00	37.08	3.45	40.53	54	-13.47	AV	PASS
GFSK	2483.50	50.45	2.51	52.96	74	-21.04	Peak	PASS
	2483.50	38.67	2.51	41.18	54	-12.82	AV	PASS
	2488.25	48.35	2.76	51.11	74	-22.89	Peak	PASS
	2488.25	37.21	2.76	39.97	54	-14.03	AV	PASS
	2390.00	49.55	2.36	51.91	74	-22.09	Peak	PASS
	2390.00	36.32	2.36	38.68	54	-15.32	AV	PASS
	2400.00	50.35	3.45	53.8	74	-20.2	Peak	PASS
Pi/4	2400.00	37.49	3.45	40.94	54	-13.06	AV	PASS
DQPSK	2483.50	48.54	2.51	51.05	74	-22.95	Peak	PASS
	2483.50	36.62	2.51	39.13	54	-14.87	AV	PASS
	2486.36	49.09	2.73	51.82	74	-22.18	Peak	PASS
	2486.36	37.24	2.73	39.97	54	-14.03	AV	PASS
	2390.00	48.45	2.36	50.81	74	-23.19	Peak	PASS
	2390.00	37.74	2.36	40.10	54	-13.90	AV	PASS
	2400.00	46.21	3.45	49.66	74	-24.34	Peak	PASS
ODDGIZ	2400.00	35.53	3.45	38.98	54	-15.02	AV	PASS
8DPSK	2483.50	50.21	2.51	52.72	74	-21.28	Peak	PASS
	2483.50	39.55	2.51	42.06	54	-11.94	AV	PASS
	2496.42	50.24	2.94	53.18	74	-20.82	Peak	PASS
	2496.42	36.99	2.94	39.93	54	-14.07	AV	PASS

6. Emission Bandwidth

6.1 Standard Applicable

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

6.2 Test Procedure

According to the ANSI 63.10-2013, the emission bandwidth test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Set span = 3MHz, centered on a transmitting channel

RBW ≥1% 20dB Bandwidth, VBW ≥RBW

Sweep = auto

Detector function = peak

Trace = max hold

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

6.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

Report No.: BSL190712646601RF Page 19 of 29 FCC Part 15.249

6.4 Summary of Test Results/Plots

Worst mode: GFSK (DH1)

Channel	Frequency	20dB Bandwidth
Channel	MHz	kHz
Low Channel	2402	822
Middle Channel	2442	816
High Channel	2480	828

Worst mode: Pi/4 QDPSK (2DH1)

Channel	Frequency	20dB Bandwidth
Channel	MHz	kHz
Low Channel	2402	1122
Middle Channel	2442	1122
High Channel	2480	1122

Worst mode: 8DPSK (3DH1)

Channel	Frequency	20dB Bandwidth
Channel	MHz	kHz
Low Channel	2402	1170
Middle Channel	2442	1170
High Channel	2480	1170

Please refer to the following test plots

Worst mode: GFSK (DH1)

Low Channel:

Middle Channel:

High Channel:

Worst mode: Pi/4 QDPSK (2DH1)

Low Channel:

Middle Channel:

High Channel:

Worst mode: 8DPSK (3DH1)

Low Channel:

Middle Channel:

High Channel:

7. Conducted Emissions

7.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

7.2 Basic Test Setup Block Diagram

7.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

Report No.: BSL190712646601RF Page 26 of 29 FCC Part 15.249

7.4 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	.150 kHz
Stop Frequency	. 30 MHz
Sweep Speed	. Auto
IF Bandwidth	. 10 kHz
Quasi-Peak Adapter Bandwidth	. 9 kHz
Quasi-Peak Adapter Mode	.Normal

7.5 Summary of Test Results/Plots

According to the data in section 7.7, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for this device.

7.6 Conducted Emissions Test Data

Note: We pre-scan all mode, the worst data is GFSK (Low channel).

Report No.: BSL190712646601RF Page 27 of 29 FCC Part 15.249

Plot of Conducted Emissions The Worst Test Data GFSK (Low channel):

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBuV	dB	Detector	Comment
1		0.4040	50.76	0.38	51.14	57.77	-6.63	QP	
2	*	0.4040	42.90	0.38	43.28	47.77	-4.49	AVG	
3		0.4561	47.65	0.40	48.05	56.76	-8.71	QP	
4		0.4561	37.36	0.40	37.76	46.76	-9.00	AVG	
5		1.2159	49.47	0.72	50.19	56.00	-5.81	QP	
6		1.2159	39.35	0.72	40.07	46.00	-5.93	AVG	
7		2.8389	46.79	0.83	47.62	56.00	-8.38	QP	
8		2.8389	35.93	0.83	36.76	46.00	-9.24	AVG	
9		3.2410	46.82	0.84	47.66	56.00	-8.34	QP	
10		3.2410	40.02	0.84	40.86	46.00	-5.14	AVG	
11	J.	12.3179	54.04	1.20	55.24	60.00	-4.76	QP	
12	A	12.3179	37.00	1.20	38.20	50.00	-11.80	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1		0.4061	50.06	0.38	50.44	57.73	-7.29	QP	
2		0.4061	41.04	0.38	41.42	47.73	-6.31	AVG	
3		1.2160	47.12	0.72	47.84	56.00	-8.16	QP	
4		1.2160	38.75	0.72	39.47	46.00	-6.53	AVG	
5		2.4346	49.30	0.82	50.12	56.00	-5.88	QP	
6		2.4346	39.76	0.82	40.58	46.00	-5.42	AVG	
7		2.8389	48.48	0.83	49.31	56.00	-6.69	QP	
8	*	2.8389	40.44	0.83	41.27	46.00	-4.73	AVG	
9		4.0486	50.23	0.88	51.11	56.00	-4.89	QP	
10		4.0486	38.47	0.88	39.35	46.00	-6.65	AVG	
11		11.5594	53.62	1.12	54.74	60.00	-5.26	QP	
12		11.5594	37.60	1.12	38.72	50.00	-11.28	AVG	

NOTE:

Corret Factor=LISN Factor+Cable loss.

Measurementt=Reading level+Corret Factor.

***** END OF REPORT *****