Todas as respostas devem ser justificadas com cálculos e/ou argumentos lógicos.

FIGURA 1. Oito cubos de lado ℓ , unidos pelas faces, formando um cubo de lado 2ℓ .

Questão 1 (peso 2,8). Na Figura 1:

- (a) (peso 0,6) Dê exemplo de dois vetores que são paralelos entre si e dois outros vetores que não são paralelos entre si.
- (b) (peso 0,6) Dê exemplo de três vetores que são coplanares entre si e três outros vetores que não são coplanares entre si.
- (c) (peso 0,8) O vetor $\overrightarrow{D_3E_1}$ pode ser escrito como combinação linear de $\overrightarrow{G_2G_3}$ e $\overrightarrow{A_3B_2}$? Se sim, mostre a combinação linear.
- (d) (peso 0,4) Está bem definida a medida angular
- entre $\overrightarrow{E_2H_3}$ e $\overrightarrow{A_1B_2}$? Se sim, determine-a. (e) (peso 0,4) Existe a projeção ortogonal de $\overrightarrow{E_2I_3}$ sobre $\overrightarrow{H_2G_1}$? Se sim, determine-a.

Questão 2 (peso 4,2, uniformemente distribuído entre os itens). Considere os vetores $\vec{u}=(-4,\,-1,\,9),\,\vec{v}=(-4,\,-1,\,9)$ $(8, 0, 2), \vec{w} = (6, 5, -4)$ num sistema de coordenadas ortogonal com orientação positiva. Calcule:

- (a) $\|\vec{u}\|$.
- (b) $\|\vec{v}\|$.

- (c) $\vec{u} \cdot \vec{v}$.
- (d) $\operatorname{proj}_{\vec{v}}\vec{u}$.

- (e) $\cos \arg(\vec{u}, \vec{v})$.
- (f) $\vec{u} \wedge \vec{v}$.
- (g) $[\vec{u}, \vec{v}, \vec{w}]$.
- (h) $[\vec{u}, \vec{v}/2, \vec{u} + \vec{w}].$
- (i) A área de um triângulo $[\![A,B,C]\!]$ tal que $\vec{u}=\overrightarrow{AB}$ e $\vec{v}=\overrightarrow{AC}$.
- (j) A altura, com relação ao lado [A, B] do triângulo do item anterior. Responda:
 - (k) Os vetores \vec{u} e \vec{v} são paralelos?

- (1) Os vetores \vec{u} , \vec{v} , \vec{w} são coplanares?
- (m) \vec{w} pode ser escrito como combinação linear de \vec{u} e \vec{v} ?

Questão 3 (peso 1,0). Escreva um sistema de equações paramétricas para a reta r que passa pelos pontos A = (6, -5, 8) e B = (-3, -5, -4). Esta reta tem equações na forma simétrica? Se sim, mostre-as.

Questão 4 (peso 2,0). Seja π o plano que passa pelos pontos A=(-2,7,-9), B=(-7,-4,-2) e C=(-7,-4,-2)(0, 1, -5).

- (a) (peso 1,5) Dê equações nas formas vetorial, paramétrica e geral para o plano π .
- (b) (peso 0,5) Verifique se o vetor (-19, -21, 13) é paralelo ao plano π .

UNIVASF, COLEGIADO DE ENG. DE PRODUÇÃO | E-MAIL: JOAO.ALVESJ@UNIVASF.EDU.BR