بسمه تعالى

مقدمهای بر پردازش تصاویر پزشکی در Matlab <u></u>

By: Saeed Mohagheghi Shahed University Winter 1396 | 2018

فهرست مطالب

- مقدمه
- فرمتهای ذخیره تصاویر پزشکی
- جهتهای آناتومیکی در تصاویر پزشکی

MATLAB •

- خواندن و نوشتن فرمتهای مختلف تصاویر پزشکی (Dicom ،Analyze ،Meta)
 - نمایش اسلایسهای تصویر (دوبعدی) و ماسک (سهبعدی)
 - ایجاد ROI با استفاده از ماسک / انتخاب دستی ROI در تصاویر \cdot
 - اعمال ROI یا ماسک برای جداسازی قسمتی از تصویر
 - آستانه گذاری / پکسان سازی هیستوگرام

مقدمه

Medical image formats / Anatomical Planes & Directions

5

فرمتهای مرسوم ذخیره تصاویر پزشکی

Format	Extension	No. of files
Meta	.mhd / .raw (.zraw) .mha	 2 (1 for header / 1 for image) 1 (1 for all)
Analyze	.hdr / .img	$\underline{2}$ (1 for header / 1 for image)
Nifti	.hdr / .img .nii (.nii.gz)	 2 (1 for header / 1 for image) 1 (1 for all)
Dicom	.dcm No extension!	? (1 for each slice + header)

 $\begin{tabular}{ll} \textbf{Nifti} & \to \textbf{Neuroimaging Informatics Technology Initiative} \\ \textbf{Dicom-} & \textbf{Digital Imaging and Communications in Medicine} \\ \end{tabular}$

جهتهای آناتومیکی

• محورهای مختصات

9

جهتهای آناتومیکی

• Image File Voxel Ordering (what comes in header file):

Storage order in file	Slice orientation	3-Letter "from" name	Increasing position
$\text{R-L} \rightarrow \text{P-A} \rightarrow \text{I-S}$	Axial	RPI	LAS
$\text{L-R} \rightarrow \text{P-A} \rightarrow \text{I-S}$	Axial	LPI	RAS
$R-L \rightarrow I-S \rightarrow P-A$	Coronal	RIP	LSA

R-L \rightarrow P-A \rightarrow I-S means:

Voxels ordered from right to left to store a row Rows ordered from posterior to anterior to store a slice Slices stored from inferior to superior to store a volume

تصاویر پزشکی در Matlab

Meta / Analyse / Dicom

11

Meta خواندن تصاویر

- (هنوز) تابع آماده برای خواندن این نوع تصاویر در Matlab وجود ندارد
- چند نمونه از تولباکسهای موجود برای خواندن و نوشتن تصاویر پزشکی
- · ReadData3D *
- Medical Image Processing **
- <u>Slicer</u> ***
- ${\color{blue}*~ \underline{https://www.mathworks.com/matlabcentral/fileexchange/29344-read-medical-data-3dense and \underline{ata-3dense files.}}$
- $\textcolor{red}{**} \ \underline{\text{http://www.mathworks.com/matlabcentral/fileexchange/41594-medical-image-processing-toolbox} \\$

اضافه کردن تولباکسها و کدهای جدید به Matlab

- حالت 1: نصب برنامه با پسوند mlappinstall.
 - Install App \leftarrow APPS نصب از طریق تب \bullet
 - open ← HOME نصب از طریق تب
 - ← نتیجه: اضافه شدن به برنامههای تب APPS ←
 - حالت 2: نصب برنامه با پسوند mltbx.
 - open ← HOME نصب از طریق تب •
- ← نتیجه: اضافه شدن به تولباکسها در پنجره Add-Ons

13

اضافه کردن تولباکسها و کدهای جدید

- حالت 3: اضافه كردن مسير پوشه حاوى كدها به مسيرهاى Matlab
 - از طریق گزینه Set Path در تب
 - 👡 ۰ از طریق کدنویسی
- ← نتیجه: اضافه شدن پوشهها به مسیرهای شناخته شده در Matlab

→ از طریق کدنویسی

- addpath(genpath('path'))
- savepath

Meta خواندن تصاویر

• ReadData3D

- 1. info = mha_read_header(filename);
- % Read (filename = address of .mhd file)
- 2. img = mha_read_volume(info);
- % (Also Reads compressed data)

• [img info] = ReadData3D;

% Load from GUI

• Medical Image Processing

- [img info] = read mhd(filename);
- % Read (filename = address of .mhd file)
- write_mhd(filename, image);
- % Write (filename = address of .mhd file)

• Slicer

- 1. Files \rightarrow Open...
- 2. Files → Export To Workspace...
- 3. Files \rightarrow Save Image...

15

Meta تصاویر

• Our Code

· Read

- info = metalmageInfo(filename);
- % Read (filename = address of .mhd file)
- 2. img = metalmageRead(info);
- [img info] = metalmageRead(filename);
- Write
 - metalmageWrite(img, filename);
- % Write (filename = address of .mhd file)

metalmageWrite(img, filename, info);

تصاویر Analyze

• توابع آماده فقط برای خواندن این نوع تصاویر در Matlab وجود دارد

- · Read
 - info = analyze75info(filename);
 - 2. img = analyze75read(info);
 img = analyze75read(filename);
 - برای نوشتن تصاویر Analyze میتوان از کد آماده زیر استفاده کرد
- Write (Our Code)
 - writeanalyze(img, filename, voxelsize)

17

تصاویر Dicom

- توابع آماده برای خواندن و نوشتن این نوع تصاویر در Matlab وجود دارد
- برای خواندن تصاویر Dicom باید تمام فایلها (اسلایسها) به ترتیب لود شوند
- · Read
 - info = dicominfo(filename);
 - img = dicomread(info);
 img = dicomread(filename);
 - برای نوشتن تصاویر Dicom باید تمام فایلها (اسلایسها) به ترتیب ذخیره شوند
- Write
 - dicomwrite(img, filename);
 - dicomwrite(img, filename, info);

نمایش اسلایسها

- 3rd dimension: axial plane
 - imshow(squeeze(img(:,:,80)), []); title('Axial slice')
- 2nd dimension: coronal plane
 - imshow(squeeze(img(:,80,:)), []); title('Coronal slice')
- 1st dimension: sagittal plane
 - imshow(squeeze(img(80,:,:)), []); title('Sagittal slice')
 - Attention: you may need to use some functions to have real view of the images such as <u>fliplr</u>, <u>rot90</u>, <u>imrotate</u>, ...

19

استفاده از تصویر ماسک

- محاسبه ROI حول بافت مورد نظر با استفاده از تصویر ماسک
- [ROI, ROI_Coordinate] = GetBoundingBox(Image, Mask, pad)
 - اعمال ماسک بر روی تصویر برای جداسازی بافت مورد نظر
- segmented_image = img .* mask
 - بهتر است ماسک به صورت باینری باشد
- mask_bw = logical(mask)

```
نمایش سه بعدی ماسک
mask = smooth3(mask, 'box', 5);
                                                                  ← Pre-Process volume
mask = reducevolume(mask, [5,5,5]);
                                                                    (optional)
[m, n, p] = size(mask);
                                                                 ← Create grids
[x, y, z] = meshgrid(1:n,1:m,1:p);
                                                                 ← Create faces + vertices
fv = isosurface(x, y, z, mask);
                                                                                           (4)
patch(fv, 'FaceColor', [0.3,0.8,0.8], 'EdgeColor', [0.3,0.3,0.3]);
                                                                 ← Visualize
trisurf(fv.faces, fv.vertices(:,1), fv.vertices(:,2), fv.vertices(:,3));
                                                                                                   21
trimesh(fv.faces, fv.vertices(:,1), fv.vertices(:,2), fv.vertices(:,3));
```


	آستانه گذاری		
<pre>imhist(img);</pre>	← Histogram (to check)	1	
thresh = img > 0.5; thresh = img > 0.1 & img < 0.6;	← Thresholding	2	
<pre>thresh = img > graythresh(img); thresh_img = img .* thresh_mask;</pre>			
imshow(thresh_img)	← Show overlay image	3	
			4

