

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

December 2013

FAN7601B Green Current Mode PWM Controller

Features

- Green Current Mode PWM Control
- Low Operating Current: Maximum 4 mA
- Burst Mode Operation
- Internal High-Voltage Startup Switch
- Under-Voltage Lockout (UVLO): 12 V / 8 V
- Latch Protection and Soft-Start Function
- Over-Voltage Protection: 19 V
- Operating Frequency up to 300 kHz
- Maximum Duty Cycle: 95%

Applications

- Offline Adapter Applications
- Auxiliary Power Supplies

Related Resources

 AN4129 — Green Current Mode PWM Controller FAN7601

Description

The FAN7601B is a programmable frequency green current mode PWM controller. It is specially designed for the offline adapter applications and the auxiliary power supplies that require high efficiency at light load and no load. The internal high-voltage startup switch and burst mode reduce the power loss.

FAN7601B includes protections, such as latch protection and over-voltage protection. The latch protection can be used for over-voltage protection, thermal protection, and others. The soft-start prevents the output voltage overshoot at startup.

Ordering Information

Part Number	Operating Junction Temperature	Top Mark	Package	Packing Method
FAN7601BMX	-40°C to +150°C	7601B	8-SOP	Tape & Reel

Block Diagram

Figure 1. Internal Block Diagram

Pin Configuration

Figure 2. Pin Assignments (Top View)

Pin Definitions

Pin # (8-Pin)	Name	Description
1	V_{STR}	Startup
2	CS/FB	Current Sense and Feedback
3	Latch/SS	Latch Protection and Soft-Start
4	Rt/Ct	Oscillator Timing
5	GND	Ground
6	Out	Gate Drive Output
7	V _{cc}	IC Power Supply
8	V_{REF}	Voltage Reference

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage			20	V
V _{CS/FB}	Input Voltage CS/FB		-0.3	20.0	V
T _{STG}	Storage Temperature		-55	+150	°C
T _J	Recommended Operating Junction Temperature		-40	+150	°C
Io	Output Current			250	mA
V_{STR}	V _{STR} Input Voltage			500	V
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	1	2000	V
		Charged Device Model, JESD22-C101	.61	1500	V

Thermal Impedance

Symbol	Parameter	Value	Unit
$\theta_{\sf JA}$	Thermal Resistance, Junction-to-Ambient	180	°C/W

Electrical Characteristics

 $\rm T_A$ =-25°C~125°C, $\rm V_{CC}$ =14 V, $\rm R_T$ =9.5 k $\rm \Omega,~C_T$ =2.2 nF unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Reference S	Section	<u> </u>	'			
V_{REF}	Reference Output Voltage	I _O =1 mA	4.85	5.00	5.15	V
ΔV_{REF1}	Line Regulation	V _{CC} =10 V~18 V		10	20	mV
ΔV_{REF2}	Load Regulation	I _O =1 mA ~ 10 mA		20	30	mV
Oscillator S	ection	•	•	•	•	
fosc	Initial Accuracy		90	100	110	kHz
ST _V	Voltage Stability	V _{CC} =10 V~18 V		1.0	1.5	%
V _{OSC}	Amplitude	V _{pin4 peak-to-peak}		1.25		V
PWM Section	on					
V _{CS/FB1}	CS/FB Threshold Voltage1		0.9	1.0	1.1	V
D _{MAX}	Maximum Duty Cycle	T _A =25°C	92	95	98	%
D_{MIN}	Minimum Duty Cycle		Y.		0	%
Burst Mode	Section					
$V_{CS/FB2}$	CS/FB Threshold Voltage2 ⁽¹⁾		0.77	0.97	1.17	V
V _{CS/FB3}	CS/FB Threshold Voltage3 ⁽¹⁾		0.7	0.9	1.1	V
Soft-Start S	ection		1			
I _{SS}	Soft-Start Current	V _{pin3} =GND	9	12	15	μА
V _{SL}	Soft-Start Limit Voltage ⁽²⁾	I _{SS} =1 μA	1.2	1.5	1.8	V
Protection S	Section	·				
V_{LATCH}	Latch Voltage		2.25	2.50	2.75	V
V _{OVP}	Over-Voltage Protection		18	19	20	V
UVLO Secti	on					
V_{tH}	Start Threshold Voltage		11	12	13	V
V_{tL}	Minimum Operating Voltage		7	8	9	V
Total Curre	nt Section					
I _{OP}	Operating Supply Current			3	4	mA
Output Sect	tion					
V_{OL}	Low Output Voltage	T _A =25°C, I _O =100 mA		2.0	2.5	V
V _{OH}	High Output Voltage	T _A =25°C, I _O =-100 mA	11.5	12.0	14.0	V
t _r	Rising Time ⁽¹⁾	T _A =25°C, C _I =1 nF		45	150	ns
t _f	Falling Time ⁽¹⁾	T _A =25°C, C _I =1 nF		35	150	ns
Startup Sec	tion	•				6.1
I _{str}	V _{STR} Startup Current	V _{STR} =30V, T _A =25°C	0.5	1.0	1.5	mA
lotos:	OIK TIME TO THE	- 31K , - K	0.0			

Notes:

- 1. These parameters, although guaranteed, are not 100% tested in production.
- 2. It is recommended to connect a 1 $M\Omega$ resistor between the Latch/SS pin and GND to prevent abnormal operation of the latch protection by noise coupling.

Typical Performance Characteristics

Figure 3. Trimmed Reference Voltage

Figure 5. V_{CC} Start Threshold Voltage

Figure 7. Oscillator Frequency

Figure 9. Oscillator High Threshold Voltage

Figure 4. Supply Current

Figure 6. V_{CC} Stop Threshold Voltage

Figure 8. Maximum Duty Cycle

Figure 10. Oscillator Low Threshold Voltage

Typical Performance Characteristics (Continued)

Figure 11. Startup Current

Figure 13. Latch Protection Voltage

Figure 12. Over-Voltage Protection Level

Figure 14. Soft-Start Current

Figure 15. Oscillator Frequency Characteristic

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative