Álgebra Lineal - Clase 26

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Formas bilineales simétricas reales.
- Clasificación vía autovalores.
- Clasificación vía menores principales.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 10.

Clasificación de formas bilineales simétricas reales

Sea V un \mathbb{R} -e.v. de dimensión n y sea $\Phi: V \times V \to \mathbb{R}$ una forma bilineal simétrica. Existe una base B de V tal que

$$(|\Phi|_B)_{ij} = \begin{cases} 1 & \text{si } 1 \le i \le r, j = i \\ -1 & \text{si } r+1 \le i \le s, j = i & \iff |\Phi|_B = \begin{pmatrix} I_r & \\ & -I_{s-r} & \\ 0 & \text{en otro caso} \end{pmatrix}$$

Para $x, y \in V$, si $(x)_B = (\alpha_1, \dots, \alpha_n)$ y $(y)_B = (\beta_1, \dots, \beta_n)$, entonces

$$\Phi(x,y) = (x)_B |\Phi|_B(y)_B^t = (\alpha_1 \dots \alpha_n) \begin{pmatrix} I_r \\ -I_{s-r} \\ 0_{n-s} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$
$$= \sum_{i=1}^r \alpha_i \beta_i - \sum_{i=r+1}^s \alpha_i \beta_i$$

En particular,

$$\Phi(x,x) = \sum_{i=1}^{r} \alpha_i^2 - \sum_{i=r+1}^{s} \alpha_i^2$$

$$(x)_B = (\alpha_1, \dots, \alpha_n) \Rightarrow \Phi(x, x) = \sum_{i=1}^r \alpha_i^2 - \sum_{i=r+1}^s \alpha_i^2$$

Observación.

- i) Φ es definida positiva si $\Phi(x,x) > 0 \ \forall x \neq 0$ $\iff r = n$.
- ii) Φ es semidefinida positiva si $\Phi(x,x) \ge 0 \ \forall x \in V$ $\iff r < n \ y \ s = r$.
- iii) Φ es definida negativa si $\Phi(x,x) < 0 \ \forall x \neq 0$ $\iff r = 0 \ y \ s = n$.
- iv) Φ es semidefinida negativa si $\Phi(x,x) \leq 0 \ \forall x \in V$ $\iff r = 0 \ y \ s < n$.
- v) Φ es indefinida \iff 0 < r < s.

Definición.

Se define la signatura de Φ como la diferencia entre la cantidad de 1 y la cantidad de -1 en $|\Phi|_B$ (para una base B de V tal que la matriz es diagonal como vimos).

$$\operatorname{sig}(\Phi)=2r-s.$$

Si $B = \{v_1, \dots, v_n\}$ es una base tal que $|\Phi|_B = \binom{I_r}{I_{s-r}} - I_{s-r}$ entonces:

- ▶ $V^+ = \langle v_1, \dots, v_r \rangle$ es un subespacio de V de dimensión máxima tal que $\Phi_{|_{V^+ \times V^+}}$ es definida positiva.
- $V^- = \langle v_{r+1}, \dots, v_s \rangle$ es un subespacio de V de dimensión máxima tal que $\Phi_{|_{V^- \times V^-}}$ es definida negativa.

Observación.

- $ightharpoonup \operatorname{rg}(\Phi) = \dim V^+ + \dim V^-,$
- $ightharpoonup \operatorname{sig}(\Phi) = \dim V^+ \dim V^-$

Los subespacios V^+ y V^+ no son únicos, aunque sí lo son sus dimensiones. Por ejemplo, para $\Phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $\Phi(x,y) = x_1y_1$, podemos tomar $V^+ = \langle (1,0) \rangle$ o $V^+ = \langle (1,-1) \rangle$ entre otros.

Clasificación en términos de autovalores

Proposición.

Sea V un \mathbb{R} -e.v. de dimensión n y sea $\Phi: V \times V \to \mathbb{R}$ una forma bilineal simétrica. Sea B una base de V. Entonces Φ es definida positiva si y sólo si todos los autovalores de $|\Phi|_B \in \mathbb{R}^{n \times n}$ son positivos.

Demostración.

 $A = |\Phi|_B \in \mathbb{R}^{n \times n}$ es simétrica $\Rightarrow \exists O \in \mathbb{R}^{n \times n}$ ortogonal tal que

$$O^t$$
. A . $O = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} = D$,

donde $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ son los autovalores de A.

$$B'=\{v_1,\ldots,v_n\}$$
 base de V tal que $O=\mathcal{C}(B',B)\Rightarrow |\Phi|_{B'}=D.$

$$(\Rightarrow) \ \forall 1 \leq i \leq n, \ \lambda_i = \Phi(v_i, v_i).$$

$$\Phi$$
 definida positiva $\Rightarrow \Phi(v_i, v_i) = \lambda_i > 0 \ \forall \ 1 \leq i \leq n$.

 (\Leftarrow) Supongamos que los autovalores $\lambda_1,\dots,\lambda_n$ son positivos.

$$\forall x \in V$$
, si $(x)_{B'} = (x_1, \dots, x_n)$, entonces

$$\Phi(x,x) = (x)_{B'}. D. (x)_{B'}^t = \sum_{i=1}^n \lambda_i x_i^2 \ge 0,$$

y vale
$$\Phi(x,x) = 0 \iff x_i = 0 \ \forall \ 1 \le i \le n \iff x = 0$$
. $\Rightarrow \Phi$ es definida positiva.

Observación.

Sea $\Phi: V \times V \to \mathbb{R}$ una forma bilineal simétrica.

Si $\lambda_1, \ldots, \lambda_n$ son los autovalores de $|\Phi|_B$ para B una base de V:

- ▶ Φ definida positiva $\iff \forall 1 \leq i \leq n, \ \lambda_i > 0$
- $ightharpoonup \Phi$ semidefinida positiva $\iff \forall 1 < i < n, \lambda_i > 0$
- ▶ Φ definida negativa $\iff \forall 1 \leq i \leq n, \ \lambda_i < 0$
- Φ semidefinida negativa $\iff \forall 1 \leq i \leq n, \ \lambda_i \leq 0$
- ▶ Φ indefinida \iff $\exists i \neq j$ tales que $\lambda_i > 0$ y $\lambda_j < 0$.

Ejemplos.

$$1. \ \Phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \text{ forma bilineal tal que } |\Phi|_{\textit{E}} = \left(\begin{array}{ccc} 4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

$$\mathcal{X}_{|\Phi|_{\mathcal{E}}} = (X-1)(X^2-5X) \Rightarrow \text{Autovalores: 0, 1 y 5}$$

 $\Rightarrow \Phi \text{ es semidefinida positiva.}$

2. $\Phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ forma bilineal tal que $|\Phi|_E = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.

$$\mathcal{X}_{|\Phi|_{\mathcal{E}}} = X(X^2 - 2X - 3) = X(X + 1)(X - 3)$$

 \Rightarrow Autovalores: 0, -1 y 3
 \Rightarrow Φ es indefinida.

Clasificación vía menores principales

Sea $A \in \mathbb{R}^{n \times n}$. Un menor principal de A de orden k es el determinante de una submatriz de A obtenida al suprimir n-k filas y las mismas n-k columnas.

Llamaremos menores principales superiores de A a los menores principales $\Delta_k = \det((a_{ij})_{1 \leq i,j \leq k})$ para $k = 1, \ldots, n$.

Ejemplo.

Sea
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 5 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
.

Menores principales de A:

- ▶ de orden 1: 1, 5 y 3
- de orden 2: $\det \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix} = 4$, $\det \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = 3$ y $\det \begin{pmatrix} 5 & 2 \\ 2 & 3 \end{pmatrix} = 11$
- ightharpoonup de orden 3: det(A) = 8

Menores principales superiores de A:

$$\Delta_1 = 1$$
, $\Delta_2 = \det\left(\frac{1}{1}\frac{1}{5}\right) = 4$, $\Delta_3 = \det(A) = 8$

Teorema (criterio de Sylvester).

Sean V un \mathbb{R} -e.v de dimensión n y $\Phi: V \times V \to \mathbb{R}$ una forma bilineal simétrica. Sea B una base de V. Entonces Φ es definida positiva si y sólo si todos los menores principales superiores de $|\Phi|_B \in \mathbb{R}^{n \times n}$ son positivos.

Demostración.

Por inducción en n = dim(V).

Sean $B = \{v_1, \dots, v_n\}$ y $|\Phi|_B = A = (a_{ij})_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$.

Recordar: si $a_{11} \neq 0$,

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ -\frac{a_{12}}{a_{11}} & 1 & & \vdots \\ \vdots & & \ddots & 0 \\ \vdots & & & \ddots & 0 \\ \vdots & & & & \ddots & 0 \\ \vdots & & & & & \ddots & 0 \\ 0 & & & & & & & \ddots & \vdots \\ 0 & & \dots & & & & & \ddots & \vdots \\ 0 & & \dots & & & & & & & & \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & & & & & & \\ 0 & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & & \end{pmatrix} = A'$$

 $A' = |\Phi|_{B'}$ para la base $B' = \{v_1, v_2 - \frac{a_{12}}{a_{11}}, v_1, \dots, v_n - \frac{a_{1n}}{a_{11}}, v_1\}$. Los menores principales superiores de A' son iguales a los de A (por la estructura triangular con 1 en la diagonal de C(B', B).) $\Rightarrow \Delta_k(A) = \Delta_k(A') = a_{11}, \Delta_{k-1}(M) \ \forall 2 \le k \le n$.

Sean
$$S = \langle v_2 - \frac{a_{12}}{a_{11}}, v_1, \dots, v_n - \frac{a_{1n}}{a_{11}}, v_1 \rangle$$
 y $B_S = \{v_2 - \frac{a_{12}}{a_{11}}, v_1, \dots, v_n - \frac{a_{1n}}{a_{11}}, v_1\}.$

$$\Phi_{|_{S \times S}}: S \times S o \mathbb{R}$$
 forma bilineal simétrica y $M = |\Phi_{|_{S \times S}}|_{B_S}$.

 (\Rightarrow) Supongamos que Φ es definida positiva.

$$\Delta_1(A) = a_{11} = \Phi(v_1, v_1) > 0.$$

 $\Phi|_{S \times S} : S \times S \to \mathbb{R}$ definida positiva, $M = |\Phi|_{S \times S}|_{B_S}.$

Por HI, los menores principales superiores de ${\it M}$ son positivos.

$$\Rightarrow \Delta_k(A) = a_{11}. \Delta_{k-1}(M) > 0 \ \forall 2 \leq k \leq n.$$

(
$$\Leftarrow$$
) Supongamos que $\Delta_k(A) > 0 \ \forall 1 \le k \le n$. $a_{11} = \Delta_1(A) > 0 \Rightarrow \Delta_j(M) = \Delta_{j+1}(A)/a_{11} > 0 \ \forall j$

$$M = |\Phi_{|_{S \times S}}|_{B_S} \text{ y dim}(S) = n - 1.$$

Por HI, $\Phi_{|_{S\times S}}: S\times S\to \mathbb{R}$ es definida positiva.

$$\Rightarrow \exists B' = \{w_2, \dots, w_n\}$$
 base de S tal que $|\Phi_{|_{S \times S}}|_{B'} = I_{n-1}$

$$\Rightarrow |\Phi|_{\{v_1,w_2,...,w_n\}} = \begin{pmatrix} a_{11} & 0 \\ 0 & I_{n-1} \end{pmatrix} \text{ con } a_{11} > 0.$$

$$\Rightarrow$$
 Φ es definida positiva.

Observación.

Si $\Phi: V \times V \to \mathbb{R}$ y $A = |\Phi|_B$ para una base de B de V, entonces Φ es definida negativa $\iff (-1)^k \Delta_k(A) > 0 \ \forall 1 \le k \le n$ $(\Delta_1(A) < 0, \ \Delta_2(A) > 0, \ \Delta_3(A) < 0, \ldots$ los menores principales superiores tienen signos alternados, comenzando con negativo).

Ejemplos.

1.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 5 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

$$\Delta_1 = 1 > 0, \ \Delta_2 = 4 > 0 \text{ y } \Delta_3 = 8 > 0$$

$$\Rightarrow \Phi_A(x, y) = x. \ A. \ y^t \text{ es definida positiva.}$$

$$\Rightarrow \Phi_A \text{ define un producto interno en } \mathbb{R}^3.$$

2.
$$A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & -2 \end{pmatrix}$$

 $\Delta_1 = -1 < 0, \ \Delta_2 = 3 > 0 \text{ y } \Delta_3 = -5 < 0$
 $\Rightarrow \Phi_A(x, y) = x. \ A. \ y^t \text{ es definida negativa.}$

El criterio de los menores principales superiores no se extiende para determinar si una forma bilineal es semidefinida positiva o negativa.

Ejemplo.

Sean
$$A = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 y $A' = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.

$$ightharpoonup \Delta_1(A') = 1 \ge 0$$
, $\Delta_2(A') = 0$ y $\Delta_3(A') = 0$

La forma bilineal simétrica definida por A es semidefinida positiva, pero la definida por A' es indefinida (criterio de los autovalores).

Proposición.

Sea V un \mathbb{R} -e.v de dimensión n y sea $\Phi: V \times V \to \mathbb{R}$ una forma bilineal simétrica. Sea B una base de V.

- ▶ Φ es semidefinida positiva \iff todos los menores principales de $|\Phi|_B$ son ≥ 0 .
- ▶ Φ es semidefinida negativa $\iff \forall 1 \leq k \leq n$ todo menor principal Δ de orden k de $|\Phi|_B$ cumple $(-1)^k \Delta \geq 0$.

Ejemplos.

$$A = \left(\begin{array}{ccc} 4 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

 Φ_A semidefinida positiva Menores principales:

- ▶ de orden 1: 4, 1, 1.
- ▶ de orden 2: 0, 4, 1.
- ▶ de orden 3: 0

$$A' = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 1 \end{array}\right).$$

 $\Phi_{A'}$ indefinida

Menores principales:

- ▶ de orden 1: 1, 0, 1.
- ightharpoonup de orden 2: 0, -3, 0.
- de orden 3: 0