Exploring Plain Vision Transformer Backbones for Object Detection

2022 Mar 30

Outline

- 1. Introduction
- 2. Related Work
- з. Method
- 4. Experiments
- 5. Conclusion

Introduction

Introduction – Detection CNN base

- 1. VGG
- ResNet
- 3. DarkNet

- 1. Region Proposal Networks (RPN)
- 2. Region-of-Interest (RoI)
- 3. Feature Pyramid Networks (FPN)

Introduction – Vision Transformers

- 1. Vision Transformers
- 2. Swin Transformers

Introduction – Swin

Introduction – Target

- 1. Use plain, non-hierarchical backbones. (Vision Transformers)
- 2. Independence of upstream vs. downstream tasks.
- 3. Use a simple feature pyramid.
- 4. Use Masked Autoencoder (MAE) pretraining.
- 5. Compete with the hierarchical-backbone detectors. (Swin, MViT)

Related Work

Related Work - Object detector backbones

- 1. Pioneered by the work of R-CNN.
- 2. SSD is the first works that leverage the hierarchical nature of the ConvNet backbones (VGG).
- 3. FPN pushes this direction further by using all stages of a hierarchical backbone, approached by lateral and top-down connections.
- ViT is a powerful alternative to standard ConvNets for image classification.
 (Swin, MViT, PVT, PiT)

Related Work - Plain-backbone detectors

- 1. ViT has inspired people to push the frontier of plain backbones for object detection.
- 2. UViT is presented as a single-scale Transformer for object detection.
 - 1. depth, width, input resolution.
 - 2. window attention strategy

Related Work - Object detection methodologies

- two-stage (R-CNN, Fast R-CNN, Faster R-CNN, SPP-Net) vs. one-stage (YOLO, SSD, RetinaNet)
- 2. anchor-based (Faster R-CNN) vs. anchor-free (FCOS, CenterNet, CornerNet)
- 3. region-based (R-CNN, Fast R-CNN, Faster R-CNN, SPP-Net) vs. query-based (DETR)
- 4. Plain vs. Hierarchical

Method

Method - Simple feature pyramid

Method - Backbone adaptation

- 1. Global propagation
- 2. Convolutional propagation

Method - Implementation

- 1. Pretraining backbones: ViT-B, ViT-L, ViT-H with MAE
- 2. Patch size: 16
- 3. Detector heads: Mask R-CNN or Cascade Mask R-CNN
- 4. Input image: 1024 X 1024
- 5. Augmented: large-scale jittering
- 6. Dataset: COCO train2017/val2017
- 7. Optimizer : AdamW

Experiments

	ViT-B		ViT-L	
pyramid design	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}
no feature pyramid	47.8	42.5	51.2	45.4
(a) FPN, 4-stage	50.3 (+2.5)	44.9 (+2.4)	54.4 (+3.2)	48.4 (+3.0)
(b) FPN, last-map	50.9 (+3.1)	45.3 (+2.8)	54.6 (+3.4)	48.5 (+3.1)
(c) simple feature pyramid	51.2 (+3.4)	45.5 (+3.0)	54.6 (+3.4)	48.6 (+3.2)

prop. strategy	APbox	AP ^{mask}
none	52.9	47.2
4 global blocks	54.6 (+1.7)	48.6 (+1.4)
4 conv blocks	54.8 (+1.9)	48.8 (+1.6)
shifted win.	54.0 (+1.1)	47.9 (+0.7)

prop. conv	APbox	AP ^{mask}	
none	52.9	47.2	
naïve	54.3 (+1.4)	48.3 (+1.1)	
basic	54.8 (+1.9)	48.8 (+1.6)	
bottleneck		48.6 (+1.4)	

(a) Window attention with various crosswindow propagation strategies.

prop. locations	APbox	AP^{mask}
none	52.9	47.2
first 4 blocks	52.9 (+0.0)	47.1 (-0.1)
last 4 blocks	54.3 (+1.4)	48.3 (+1.1)
evenly 4 blocks	54.6 (+1.7)	48.6 (+1.4)

(c) Locations of cross-window global propagation blocks.

(b) Convolutional propagation with different residual block types (4 blocks).

prop. blks	APbox	AP ^{mask}	
none	52.9	47.2	
2	54.4 (+1.5)	48.5 (+1.3)	
4	54.6 (+1.7)	48.6 (+1.4)	
24 [†]	54.4 (+1.5) 54.6 (+1.7) 55.1 (+2.2)	48.9 (+1.7)	

(d) Number of global propagation blocks.
 †: Memory optimization required.

Na ive: 3x3 conv

Basic: two 3×3 conv

Bottleneck: 1x1 -> 3x3 -> 1x1

prop. strategy	AP ^{box}	# params	train mem	test time
none	52.9	$1.00 \times (331M)$	1.00× (14.6G)	1.00× (88ms)
4 conv (bottleneck)	54.6 (+1.7)	1.04×	1.05×	1.04×
4 global	54.6 (+1.7)	1.00×	1.39×	1.16×
24 global	55.1 (+2.2)	1.00×	$3.34 \times^{\dagger}$	1.86×

	ViT-B		ViT-L	
pre-train	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}
none (random init.)	48.1	42.6	50.0	44.2
IN-1K, supervised	47.6 (-0.5)	42.4 (-0.2)	49.6 (-0.4)	43.8 (-0.4)
IN-21K, supervised	47.8 (-0.3)	42.6 (+0.0)	50.6 (+0.6)	44.8 (+0.6)
IN-1K, MAE	51.2 (+3.1)	45.5 (+2.9)	54.6 (+4.6)	48.6 (+4.4)

		Mask l	R-CNN	Cascade M	le Mask R-CNN		
backbone	pre-train	APbox	AP ^{mask}	APbox	AP ^{mask}		
hierarchical-b	ackbone detec	ctors:					
Swin-B	21K, sup	51.4	45.4	54.0	46.5		
Swin-L	21K, sup	52.4	46.2	54.8	47.3		
MViTv2-B	21K, sup	53.1	47.4	55.6	48.1		
MViTv2-L	21K, sup	53.6	47.5	55.7	48.3		
MViTv2-H	21K, sup	54.1	47.7	55.8	48.3		
our plain-baci	kbone detector	s:					
ViT-B	1K, mae	51.6	45.9	54.0	46.7		
ViT-L	1K, mae	55.6	49.2	57.6	49.8		
ViT-H	1K, mae	56.7	50.1	58.7	50.9		

 $Attention(Q, K, V) = softmax(rac{QK^T}{\sqrt{d_k}})V$

 $Attention(Q, K, V) = Softmax(QK^{T} + B)V$

			single-scale test		multi-scale test	
method	framework	pre-train	AP ^{box}	AP ^{mask}	APbox	AP ^{mask}
hierarchical-backl	bone detectors	:				
Swin-L [40]	HTC++	21K, sup	57.1	49.5	58.0	50.4
MViTv2-L [32]	Cascade	21K, sup	56.9	48.6	58.7	50.5
MViTv2-H [32]	Cascade	21K, sup	57.1	48.8	58.4	50.1
CBNetV2 [34] [†]	HTC	21K, sup	59.1	51.0	59.6	51.8
SwinV2-L [39]	HTC++	21K, sup	58.9	51.2	60.2	52.1
plain-backbone de	tectors:					
UViT-S [8]	Cascade	1K, sup	51.9	44.5	-	_
UViT-B [8]	Cascade	1K, sup	52.5	44.8	-	-
ViTDet, ViT-B	Cascade	1K, MAE	56.0	48.0	57.3	49.4
ViTDet, ViT-L	Cascade	1K, MAE	59.6	51.1	60.4	52.2
ViTDet, ViT-H	Cascade	1K, mae	60.4	52.0	61.3	53.1

Comparisons on COCO

- 1. input size 1024->1080
- 2. adopt soft-nms

method	pre-train	AP ^{mask}	AP _{rare}	AP ^{box}
hierarchical-backbone detectors:				
Copy-Paste [18]	unknown	38.1	32.1	41.6
Detic [56]	21K, sup; CLIP	41.7	41.7	-
competition winner 2021 [17] [†] , baseline	21K, sup	43.1	34.3	_
competition winner 2021 [17] [†] , full	21K, sup	49.2	45.4	-
plain-backbone detectors:				
ViTDet, ViT-L	1K, mae	46.0	34.3	51.2
ViTDet, ViT-H	1K, mae	48.1	36.9	53.4

LVIS

- 1.1203 classes
- 2. long-tailed object distribution

Comparisons on LVIS

- federated loss
- repeat factor sampling

HTC+CBNetV2+2*Swim-L

Conclusion

Conclusion

- 1. Plain-backbone detection is a promising research direction.
- 2. Decoupling pretraining from fine-tuning will generally benefit the community.
- 3. Plain-backbone detector has benefited from pretrained models from MAE.

We hope this methodology will also help bring the fields of computer vision and NLP closer.

報告完畢 THE END

謝謝 Thank You