

CS323: Information Security Lab

Computer Science and Engineering T.Y. Trimester VIII (2020-21)

Assign No.	Name of Assignment
A	Core Level security (Any two)
1	Implement any classical cryptographic technique using java or python or C++
2	Implement simple DES symmetric key algorithm using python or java or C++
3	Implement simple RSA asymmetric key algorithm using python or java or C++
В	API Level - (Using Libraries) (Any two)
1	To program asymmetric key cryptography such as RSA cryptography using JAVA API, Python or C++ API.
2	To program basic cryptography hash algorithm SHA1 or MD5 Use Java or Python or C++ API. Additionally demonstrate client server authentication using socket programming.
3	Write program for demonstration of digital signature and its verification using Java or Python or C++.
C	Security Tools Level – (Any two)
1	Demonstrate use of PGP open source security tool for Confidentiality, Authentication and Integrity.
2	Demonstrate secured web applications system using SSL certificates and its deployment in Apache tomcat server
3	Implement Intrusion Detection System using Snort IDS tool
4	Install and configure and demonstrate NESSUS tool of vulnerability assessment

LCA Marks Distribution

Examination	Weightage	Marks		
Understanding, Practical Implementation and Demonstration Skills	30%	15		
Timely Submission and Ethics	30%	15		
Understanding (End Term Oral)	40%	20		
Total	50			

1. Implement any classical cryptographic technique using java or python or C++

Objectives:

* conceal the context of some message from all except the sender and recipient (privacy or secrecy)

Classical Cryptography

Basic Terminology

- Plaintext- the original message
- Ciphertext the coded message
- Cipher algorithm for transforming plaintext to ciphertext
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext
- Decipher (decrypt) recovering ciphertext from plaintext
- Cryptography study of encryption principles/methods
- Cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key
- Cryptology the field of both cryptography and cryptanalysis

Cryptography Classification

- ❖ By type of encryption operations used
 - Substitution
 - Transposition
 - Product
- ❖ By number of keys used By number of keys used
 - Single-key or private key or private
 - Two-key or public key or public
- ❖ By the way in which plaintext is processed
 - Block
 - Stream

Caesar Cipher

- Earliest known substitution cipher. Invented by Julius Caesar
- replace each letter of message by a letter a fixed distance away eg use the 3rd letter on
- Each letter is replaced by the letter **three** positions further down the alphabet.

Example: **mit pune** → plw sxqh

Mathematically, map letters to numbers:

а	b	С	d	е	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	o	р	q	r	S	t	u	v	w	X	У	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Then the general Caesar cipher is:

$$c = EK(p) = (p + k) \mod 26$$

$$p = DK(c) = (c - k) \bmod 26$$

Monoalphabetic Cipher

monoalphabetic - only one substitution/transposition is used, or polyalphabetic - where several substitutions/transpositions are used

• Shuffle the letters and map each plaintext letter to a different random ciphertext letter:

Plain letters: abcdefghijklmnopqrstuvwxyz

Cipher letters: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: if we wish to replace letters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Input:

Enter the string (Plaintext):

Enter the key position:

Output:

1. Cipher text: