Some Important Distributions

We end the theoretic preliminaries with a (non-exhaustive) list of common probability distributions that you will come across throughout the course.

- The distribution of a biased coin with probability $P_X(1)=p$ to land heads, and a probability of $P_X(0)=1-p$ to land tails is called **Bernoulli(p)** distribution. The expected value is $\mathbb{E}[X]=p$ and the variance is $\mathrm{Var}[X]=p(1-p)$.
- When n coins X_1, X_2, \ldots, X_n are flipped independently and every X_i is Bernoulli(p) distributed, let $S = \sum_{i=1}^n X_i$ be their sum, i.e., the number of heads in n throws of a biased coin. Then, S has the **binomial**(n, p) distribution:

$$P_S(k) = inom{n}{k} p^k (1-p)^{n-k} \quad ext{ where } k=0,1,2,\ldots,n \,.$$

From simple properties of the expected value and variance, one can show that $\mathbb{E}[S]=np$ and $\mathrm{Var}[S]=np(1-p)$.

 The geometric(p) distribution of a random variable Y is defined as the number of times one has to flip a Bernoulli(p) coin before it lands heads:

$$P_Y(k) = (1-p)^{k-1}p \quad ext{ where } k = 1, 2, 3, \dots.$$

There is another variant of the geometric distribution used in the literature, where one excludes the final success event of landing heads in the counting:

$$P_Z(k) = (1-p)^k p$$
 where $k = 0, 1, 2, 3, \dots$

While the expected values are slightly different, namely $\mathbb{E}[Y]=rac{1}{p}$ and $\mathbb{E}[Z]=rac{1-p}{p}$, their variances are the same: $\mathrm{Var}[Y]=\mathrm{Var}[Z]=rac{1-p}{p^2}$.

created: 2018-12-11