Introduction to R

Jennifer Latessa
Zhiyuan Yao
Richard Johansen

Workshop Agenda

Workshop Expectations
Why R?
Understanding Data
Data Visualizations in R
Work in R Studio

Workshop Agenda

Workshop Expectations

What is R?
Understanding Data
Data Visualizations in R
Work in R Studio

Expectations

- Prerequisites:
 - R and R studio installed
- Goal:
 - Explore R and R studio environment
 - Basic functions of R
 - Import data
 - Download packages
 - Simple modeling
 - Visualize data
 - Export data and visualization
- Caveat
 - This is only an introduction to the R and R studio environment. Learning a new programming language, like a spoken language, takes years of practice. So we cannot cover everything but we will highlight many common features that most of you will use most of the time.

Workshop Agenda

Workshop Expectations
What is R?
Understanding Data
Data Visualizations in R
Work in R Studio

What is R?

- R is a programming language specifically designed for statistical analysis and graphics
- R is free & open-source used in many academic and industry disciplines
- R Studio is the Interactive User Interface compatible with R
- R and R Studio can be downloaded here:
 - http://cran.r-project.org/
 - https://www.rstudio.com/products/RStudio/#Desktop

Why R?

- Pros:
 - Reproducibility
 - Explicit documentation of steps
 - Versatile
 - Run on any operating system
 - Integrates with other software, languages, and data extensions
 - Python, Java, SAS, SPSS, Excel
 - Free and Open-Source w/ large active community
 - 10K+ packages CRAN, Twitter, GitHub, etc.
 - Comprehensive
 - Eliminates the need for multiple software
 - GIS, Excel, ENVI, etc.
 - Computationally Robust
 - Fast and allows for high level analysis

• Cons:

- Steep Learning Curve
 - Requires a significant time investment especially starting with little to no coding experience
- Limited "Point & Click"
 - R Commander or Radiant?
- Open-Source
 - Rely on creators to follow coding etiquette
 - Version control and instability

Why R?

- Increasing in Popularity (especially in academia)
- User contributions significantly increased over the last decade

http://blog.revolutionanalytics.com/2014/01/in-data-scientist-survey-r-is-the-most-used-tool-other-than-databases.html

http://blog.revolutionanalytics.com/2016/03/16-years-of-r-history.html

Workshop Agenda

Workshop Expectations
What is R?

Understanding Data

Data Visualizations in R Work in R Studio

What is Data?

- Data is a collection of **objects** defined by **attributes**
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Synonyms: *Columns*, variables, fields, characteristics, features, etc.
- An object is the phenomena being described or evaluated
 - Examples: Bob/Sarah, house, substance, etc.
 - Synonyms: Rows, records, points, cases, samples, instances, etc.

Attribute Classification

- Discrete Attribute has a countable set of values
 - Examples: zip codes, number of words,
 - Typically represented as integers
- Continuous Attribute has an infinite set of numbers and potential divisions
 - Example: temperature, height, weight
 - Typically represented as floating point (decimal)

https://qph.fs.quoracdn.net/main-qimg-7badb966d5ff6063ddb515737011ed1b-c

Important Attribute Classes

Categorical

- Nominal Data that can be counted, but not aggregated or ordered
 - Examples: Eye Color, Zip Code, Music Genre
- Ordinal Data that can be counted and ordered, but not aggregated.
 - Examples: Grades, Clothing Size, Positions (in a race)

Numerical

- Interval (metrics) The difference in values are constant and meaningful
 - Examples: The difference between a temperature of 100°F and 90°F is the same difference as between 90°F and 80°F.
- Ratio An interval scale with an absolute zero
 - Examples: Income, Height, Weight

Numerical

Made of numbers

Age, weight, number of children, shoe size

Categorical

Made of words

Eye colour, gender, blood type, ethnicity

Continuous

Infinite options
Age, weight, blood
pressure

Discrete

Finite options
Shoe size, number of
children

Ordinal

Data has a hierarchy
Pain severity, satisfaction
rating, mood

Nominal

Data has no hierarchy Eye colour, dog breed, blood type

Primitive Data Types (Computer Language Data Types)

- Boolean:
 - True (T) or False (F)
- Char:
 - Characters and Strings "A", "Beta", "There are different data types!"
- Int:
 - Integers (1, 2, 100)
- Float/Double:
 - Decimal (0.1, 0.2, 0.1352)

- R has a wide variety of data types including scalars, vectors (numerical, character, logical), matrices, data frames, and lists.
- A scalar data structure is the most basic data type that holds only a single atomic value at a time. Using scalars, more complex data types can be constructed.

R has 5 basic atomic classes

- •logical (e.g., TRUE, FALSE)
- •integer (e.g., 2L, as.integer(3))
- •numeric (real or decimal) (e.g, 2, 2.0, pi)
- •complex (e.g, 1 + 0i, 1 + 4i)
- •character (e.g, "a", "swc")

Vector

```
a <- c(1,2,5.3,6,-2,4) # numeric vector
b <- c("one","two","three") # character vector
c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) #logical vector
```

Refer to elements of a vector using subscripts.

a[c(2,4)] # 2nd and 4th elements of vector

Matrices

```
mymatrix <- matrix(vector, nrow=r, ncol=c, byrow=FALSE,
    dimnames=list(char_vector_rownames, char_vector_colnames))</pre>
```

byrow=TRUE indicates that the matrix should be filled by rows. byrow=FALSE indicates that the matrix should be filled by columns (the default). dimnames provides optional labels for the columns and rows.

```
# generates 5 x 4 numeric matrix
y<-matrix(1:20, nrow=5,ncol=4)

# another example
cells <- c(1,26,24,68)
rnames <- c("R1", "R2")
cnames <- c("C1", "C2")
mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,
dimnames=list(rnames, cnames))</pre>
```

```
x[,4] # 4th column of matrix
x[3,] # 3rd row of matrix
x[2:4,1:3] # rows 2,3,4 of columns 1,2,3
```

Arrays

Arrays are similar to matrices but can have more than two dimensions. See help(array) for details.

Data Frames

A data frame is more general than a matrix, in that different columns can have different modes (numeric, character, factor, etc.). This is similar to SAS and SPSS datasets.

```
d <- c(1,2,3,4)
e <- c("red", "white", "red", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)
mydata <- data.frame(d,e,f)
names(mydata) <- c("ID","Color","Passed") # variable names</pre>
```

There are a variety of ways to identify the elements of a data frame.

```
myframe[3:5] # columns 3,4,5 of data frame
myframe[c("ID","Age")] # columns ID and Age from data frame
myframe$X1 # variable x1 in the data frame
```

Lists

An ordered collection of objects (components). A list allows you to gather a variety of (possibly unrelated) objects under one name.

```
# example of a list with 4 components -
# a string, a numeric vector, a matrix, and a scaler
w <- list(name="Fred", mynumbers=a, mymatrix=y, age=5.3)

# example of a list containing two lists
v <- c(list1,list2)

Identify elements of a list using the [[]] convention.

mylist[[2]] # 2nd component of the list
mylist[["mynumbers"]] # component named mynumbers in list</pre>
```

https://www.statmethods.net/input/datatypes.html

Workshop Agenda

Workshop Expectations
What is R?
Understanding Data
Data Visualizations in R
Work in R Studio

Enhancing Visualizations

- 1 Dimensional Data
 - Length
- 2 Dimensional Data
 - Position
- 2+ Dimensional Data
 - Position
 - Color Hue/Saturation
 - Size
 - Shape

Four Basic Chart Types

$Chart\ Suggestions \hbox{$-\!\!\!\!-\!\!\!\!-} A\ Thought\hbox{$-\!\!\!\!\!-} Starter$

Grammar of Graphics

Originated by Leland Wilkinson, simplified by Hadley Wickham and others.

- Data The raw materials of your visualization
- Layers What you actually see on the plot (plots, lines, etc.)
- Scales Maps the data to grpahical output
- Coordinates The visualization's perspective (normally a grid)
- Faceting Provides details into the data (analoguous to pivot tables)
- Themes Control the details of the display (color scheme, fonts)

Grammar of Graphics

Describe all the non-data ink

Plotting space for the data

Statistical models & summaries

Rows and columns of sub-plots

Shapes used to represent the data

Scales onto which data is mapped

The actual variables to be plotted

The Basics

- Data The raw materials of your visualization
- Aesthetics The mapping of your data to the visualization
 - X-axis is age
 - Y-axis is survival
- Layers Any visualization requires at least one layer and in ggplot2 these are typically the geoms.
 - Example a barchart is geom_bar()

Want to continue learning R?

Academic Courses:

- CS 2005C Introduction to Programming for Informatics with Python and R
- BE 8083 Data Analysis with R and SAS
- BANA 5143 Statistical Computing
- PH 7011 Statistical Computation and Software

Lynda (Many free courses):

- Learning R
- Data Wrangling with R
- R Statistics Essential Training

Library Workshops:

https://webapps2.uc.edu/ce/facdev/Workshops

Online Help/Resources

- Google!
- www.YouTube.com
- www.stackoverflow.com
- www.r-bloggers.com
- Twitter: #rstats

Contact Research & Data Services West

Email: AskData@uc.edu

Web: https://libraries.uc.edu/research-teaching-

support/research-data-services.html

Visit: 240 Braunstein Hall (Geology-Math-Physics

Library)

Consultations: walk-ins during open consultation hours or appointment by email

Twitter: @DataVizJohansen

