§1. Vecteurs

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

 $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ de *n* nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

```
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ de } n \text{ nombres réels. On note } \mathbb{R}^n \text{ l'ensemble} de ces vecteurs.
```

On utilise \vec{x} , \vec{u} , \vec{v} , \vec{w} etc. pour désigner ces vecteurs.

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

```
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} de n nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.
```

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

```
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} de n nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.
```

$$\vec{0} =$$

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 de *n* nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.

$$ec{\mathbf{0}} = egin{pmatrix} 0 \ 0 \ 0 \ dots \ 0 \end{pmatrix},$$

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 de *n* nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.

$$ec{\mathbf{0}} = egin{pmatrix} 0 \ 0 \ 0 \ dots \ 0 \end{pmatrix}, ec{\mathbf{e_1}} = egin{pmatrix} 1 \ 0 \ 0 \ dots \ 0 \end{pmatrix},$$

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 de *n* nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.

$$ec{\mathbf{0}} = egin{pmatrix} 0 \ 0 \ 0 \ dots \ 0 \end{pmatrix}, ec{\mathbf{e_1}} = egin{pmatrix} 1 \ 0 \ 0 \ dots \ 0 \end{pmatrix}, ec{\mathbf{e_2}} = egin{pmatrix} 1 \ 0 \ 0 \ dots \ 0 \end{pmatrix}$$

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 de *n* nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.

$$\vec{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_1}} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_2}} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 de *n* nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.

$$\vec{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_1}} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_2}} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_3}} = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix}, \cdots, \vec{\mathbf{e_n}} = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix}.$$

§1. Vecteurs

Définition. On appelle un vecteur réel en dimension n une colonne

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 de *n* nombres réels. On note \mathbb{R}^n l'ensemble de ces vecteurs.

On utilise \vec{x} , \vec{u} , \vec{v} , \vec{w} etc. pour désigner ces vecteurs. Voici quelques vecteurs spéciaux (avec leurs noms réservés)

$$\vec{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_1}} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_2}} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{\mathbf{e_3}} = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix}, \cdots, \vec{\mathbf{e_n}} = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix}.$$

Les $\vec{e_1}, \dots, \vec{e_n}$ constituent les vecteurs de la base canonique de \mathbb{R}^n .

En dimension
$$2: \vec{\mathbf{e_1}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \vec{\mathbf{e_2}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

En dimension 2 :
$$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\vec{e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, et en dimension 3 :

En dimension 2 : $\vec{\mathbf{e_1}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{\mathbf{e_2}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, et en dimension 3 :

$$ec{\mathbf{e_1}} = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}$$
 , $ec{\mathbf{e_2}} = \mathbf{0}$, $ec{\mathbf{e_3}} = \mathbf{0}$.

Si on liste en colonne les notes d'un élève au Bac , c'est un vecteur en quelle dimension?

En dimension
$$2: \vec{\mathbf{e_1}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \vec{\mathbf{e_2}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, et en dimension $3: \vec{\mathbf{e_1}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{\mathbf{e_2}} = \begin{pmatrix} \mathbf{e_3} \\ \mathbf{e_3} = \end{pmatrix}$.

Si on liste en colonne les notes d'un élève au Bac , c'est un vecteur en quelle dimension?

matière	Note	
maths		
Physique Chimie		
SVT		
Histoire Géo		
Français		Réponse : en dimension 9
Philosophie		
LV 1		
LV 2		
EPS		<□> <∄> <ё> <ё

addition, soustraction ou multiplication par un scalaire, ou une combinaison de ces opérations, appelée combinaison linéaire.

Exemples:
$$3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = , \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} =$$

$$a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -3 \end{pmatrix} + 3\vec{\mathbf{e_1}} + 2\vec{\mathbf{e_2}} =$$

addition, soustraction ou multiplication par un scalaire, ou une combinaison de ces opérations, appelée combinaison linéaire.

Exemples:
$$3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -5 \\ 3 \end{pmatrix}$, $a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -3 \end{pmatrix} + 3\vec{\mathbf{e_1}} + 2\vec{\mathbf{e_2}} = \begin{pmatrix} a - 3 \\ 11 \end{pmatrix}$.

addition, soustraction ou multiplication par un scalaire, ou une combinaison de ces opérations, appelée combinaison linéaire.

Exemples:
$$3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -5 \\ 3 \end{pmatrix}$, $a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -3 \end{pmatrix} + 3\vec{\mathbf{e_1}} + 2\vec{\mathbf{e_2}} = \begin{pmatrix} a - 3 \\ 11 \end{pmatrix}$.

On peut aussi décomposer en combinaison linéaire :

$$\begin{pmatrix} 7 \\ 5 \end{pmatrix} = 5 \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3\vec{\mathbf{e_1}}, \begin{pmatrix} a \\ b \end{pmatrix} = a\vec{\mathbf{e}}_1 + b\vec{\mathbf{e}}_2.$$

addition, soustraction ou multiplication par un scalaire, ou une combinaison de ces opérations, appelée combinaison linéaire.

Exemples:
$$3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -5 \\ 3 \end{pmatrix}$, $a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -3 \end{pmatrix} + 3\vec{\mathbf{e_1}} + 2\vec{\mathbf{e_2}} = \begin{pmatrix} a - 3 \\ 11 \end{pmatrix}$.

On peut aussi décomposer en combinaison linéaire :

$$\begin{pmatrix} 7 \\ 5 \end{pmatrix} = 5 \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3\vec{\mathbf{e_1}}, \begin{pmatrix} a \\ b \end{pmatrix} = a\vec{\mathbf{e}}_1 + b\vec{\mathbf{e}}_2.$$

Décomposer $\binom{3}{2}$ en combinaison linéaire de $\binom{7}{3}$ et $\binom{2}{1}$ revient à chercher des coefficients x et y tels que $\binom{3}{2} = x \binom{7}{3} + y \binom{2}{1}$. Ceci revient à résoudre le système $\begin{cases} 7x + 2y = 3 \\ 3x + y = 2 \end{cases}$ x = -1, y = 5

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples:
$$(1\ 2)$$
, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples:
$$(1\ 2)$$
, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles :

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples:
$$(1\ 2)$$
, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles : addition et soustraction (des matrices de même taille) et multiplication par un scalaire ou leur combinaison :

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples: (1 2),
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles : addition et soustraction (des matrices de même taille) et multiplication par un scalaire ou leur combinaison :

$$\begin{pmatrix} 3 & -3 \\ 0 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + s \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples: (1 2),
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles : addition et soustraction (des matrices de même taille) et multiplication par un scalaire ou leur combinaison :

$$\begin{pmatrix} 3 & -3 \\ 0 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + s \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 + sa & -3 + sb \\ sc - 2 & 6 + sd \end{pmatrix}.$$

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples: (1 2),
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles : addition et soustraction (des matrices de même taille) et multiplication par un scalaire ou leur combinaison :

$$\begin{pmatrix} 3 & -3 \\ 0 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + s \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 + sa & -3 + sb \\ sc - 2 & 6 + sd \end{pmatrix}.$$

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples: (1 2),
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles : addition et soustraction (des matrices de même taille) et multiplication par un scalaire ou leur combinaison :

$$\begin{pmatrix} 3 & -3 \\ 0 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + s \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 + sa & -3 + sb \\ sc - 2 & 6 + sd \end{pmatrix}.$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix},$$

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples: (1 2),
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles : addition et soustraction (des matrices de même taille) et multiplication par un scalaire ou leur combinaison :

$$\begin{pmatrix} 3 & -3 \\ 0 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + s \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 + sa & -3 + sb \\ sc - 2 & 6 + sd \end{pmatrix}.$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} \frac{1}{15} & \frac{2}{15} \\ \frac{4}{15} & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} =$$

Définition. On appelle matrice réelle de taille $m \times n$ un tableau de m lignes et n colonnes de nombres réels. On note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble de ces matrices.

Exemples: (1 2),
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -2 \\ 2 & \pi \end{pmatrix}$, $\begin{pmatrix} 1 & -2 \\ 0 & \pi \\ a & b \end{pmatrix}$, ...

On utilise en générale des lettres capitales A, B, M etc. pour désigner des matrices.

Opérations naturelles : addition et soustraction (des matrices de même taille) et multiplication par un scalaire ou leur combinaison :

$$\begin{pmatrix} 3 & -3 \\ 0 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + s \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 + sa & -3 + sb \\ sc - 2 & 6 + sd \end{pmatrix}.$$

$$\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} \frac{1}{15} & \frac{2}{15} \\ \frac{4}{15} & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} -14 & 2 \\ 4 & 15 \end{pmatrix}$$

Comment indexer chaque entrée (position) dans une matrice?

Facile pour un vecteur
$$\vec{\mathbf{v}} = \begin{pmatrix} * \\ * \\ * \end{pmatrix} : \vec{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
.

Comme faire pour une matrice

$$A = \begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix} = \begin{pmatrix} a_? & a_? \\ * & * \\ * & * \end{pmatrix}$$

Comment indexer chaque entrée (position) dans une matrice?

Facile pour un vecteur
$$\vec{\mathbf{v}} = \begin{pmatrix} * \\ * \\ * \end{pmatrix} : \vec{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
.

Comme faire pour une matrice

$$A = \begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix} = \begin{pmatrix} a_{?} & a_{?} \\ * & * \\ * & * \end{pmatrix} \xrightarrow{\text{double indice}} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ ?? & ?? \end{pmatrix}$$

 $a_{ij} = 1$ 'entrée sur la *i*-ème ligne et la *j*-ième colonne.

Exo. 1. Déterminer le vecteur $\vec{\mathbf{v}}$ en dimension 3 tel que $v_i = i+1$, i=1,2,3 ainsi que la matrice A de taille 3x3 telle que $a_{23}=1$ et

les autres $a_{ij} = 0$.

Comment indexer chaque entrée (position) dans une matrice?

Facile pour un vecteur
$$\vec{\mathbf{v}} = \begin{pmatrix} * \\ * \\ * \end{pmatrix} : \vec{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
.

Comme faire pour une matrice

$$A = \begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix} = \begin{pmatrix} a_{?} & a_{?} \\ * & * \\ * & * \end{pmatrix} \xrightarrow{\text{double indice}} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ ?? & ?? \end{pmatrix}$$

 $a_{ij} = 1$ 'entrée sur la *i*-ème ligne et la *j*-ième colonne.

Exo. 1. Déterminer le vecteur $\vec{\mathbf{v}}$ en dimension 3 tel que $v_i = i+1$, i=1,2,3 ainsi que la matrice A de taille 3x3 telle que $a_{23}=1$ et

les autres
$$a_{ij} = 0$$
. Solution : $\vec{\mathbf{v}} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Comment indexer chaque entrée (position) dans une matrice?

Facile pour un vecteur
$$\vec{\mathbf{v}} = \begin{pmatrix} * \\ * \\ * \end{pmatrix} : \vec{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
.

Comme faire pour une matrice

$$A = \begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix} = \begin{pmatrix} a_? & a_? \\ * & * \\ * & * \end{pmatrix} \xrightarrow{\text{double indice}} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ ?? & ?? \end{pmatrix}$$

 $a_{ij} = 1$ 'entrée sur la *i*-ème ligne et la *j*-ième colonne.

Exo. 1. Déterminer le vecteur $\vec{\mathbf{v}}$ en dimension 3 tel que $v_i = i+1$, i=1,2,3 ainsi que la matrice A de taille 3x3 telle que $a_{23}=1$ et

les autres
$$a_{ij} = 0$$
. Solution : $\vec{\mathbf{v}} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

2. Expliciter $(d_{ij})_{2,2}$ avec $d_{ij} = i + j$ (à faire à la maison).

Matrices spéciales

La matrice d'identité de taille n est toujours notée par la lettre I, Id ou bien I_n , Id_n :

$$I_1 = (1), I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, I_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrices spéciales

La matrice d'identité de taille n est toujours notée par la lettre I, Id ou bien I_n , Id_n :

$$I_1 = (1), I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, I_4 =$$

On peut aussi représenter une matrice comme une liste de vecteurs

colonnes
$$A = (\vec{\mathbf{u}} \, \vec{\mathbf{v}} \, \vec{\mathbf{e_3}})$$
 avec $\vec{\mathbf{u}} = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$ et $\vec{\mathbf{v}} = 2\vec{\mathbf{e_2}}$.

$$A =$$

Matrices spéciales

La matrice d'identité de taille n est toujours notée par la lettre I, Id ou bien I_n , Id_n :

$$I_1 = (1), I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, I_4 =$$

On peut aussi représenter une matrice comme une liste de vecteurs

colonnes
$$A = (\vec{\mathbf{u}} \, \vec{\mathbf{v}} \, \vec{\mathbf{e_3}})$$
 avec $\vec{\mathbf{u}} = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$ et $\vec{\mathbf{v}} = 2\vec{\mathbf{e_2}}$.

$$A = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

Matrices spéciales

La matrice d'identité de taille n est toujours notée par la lettre I, Id ou bien I_n , Id_n :

$$I_1 = (1), I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, I_4 =$$

On peut aussi représenter une matrice comme une liste de vecteurs

colonnes
$$A = (\vec{\mathbf{u}} \, \vec{\mathbf{v}} \, \vec{\mathbf{e_3}})$$
 avec $\vec{\mathbf{u}} = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$ et $\vec{\mathbf{v}} = 2\vec{\mathbf{e_2}}$.

$$A = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

Quels sont les vecteurs colonnes de Id_n ?

Attention. L'ordre est important! NE PAS confondre avec BA.

Attention. L'ordre est important! NE PAS confondre avec BA.

Pour pouvoir effectuer AB, il faut

la longueur d'une ligne de A =la longueur d'une colonne de B

Attention. L'ordre est important! NE PAS confondre avec BA.

Pour pouvoir effectuer AB, il faut

la longueur d'une ligne de A =la longueur d'une colonne de B

On pose
$$A$$
 et B de telle façon : A , puis on calcule A B en suivant l'exemple :
$$A = \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} = B$$

$$A = \begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} = AB$$

Attention. L'ordre est important! NE PAS confondre avec BA.

Pour pouvoir effectuer AB, il faut

la longueur d'une ligne de A =la longueur d'une colonne de B

On pose
$$A$$
 et B de telle façon : A , puis on calcule A and A are A are A and A are A

où
$$* = 4 \times 3 + 2 \times 1 = 14$$
.

Attention. L'ordre est important! NE PAS confondre avec BA.

Pour pouvoir effectuer AB, il faut

la longueur d'une ligne de A =la longueur d'une colonne de B

On pose
$$A$$
 et B de telle façon : A , puis on calcule A and A are A on pose A et B de telle façon : A , puis on calcule A are A are

$$où * = 4 \times 3 + 2 \times 1 = 14.$$

C'est comme le calcul de la note finale de deux matières avec (4 2) comme coefficients (c'est aussi le produit scalaire de deux vecteurs).

$$\begin{array}{c|cccc}
 & \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} \\
\hline
\begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} & \begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix},$$

Calculer toutes les cases de *AB* de la même manière en commençant par * :

$$A = \begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 14 & * \\ * & * \\ * & * \end{pmatrix}$$

où $* = 4 \times 3 + 2 \times 1 = 14$.

$$\begin{array}{c|cccc}
 & \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} \\
\hline
\begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} & \begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix},$$

Calculer toutes les cases de *AB* de la même manière en commençant par * :

cases
manière
r*:
$$A = \begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} \begin{vmatrix} 14 & * \\ * & * \\ * & * \end{vmatrix}$$

où $* = 4 \times 3 + 2 \times 1 = 14$.

Donc
$$\begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 14 & 6 \\ -6 & -4 \\ -2 & -3 \end{pmatrix}$$
.

Calculer toutes les cases de *AB* de la même manière en commençant par * :

$$A = \begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} \begin{vmatrix} \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} = B$$

$$\begin{pmatrix} 14 & * \\ * & * \\ * & * \end{pmatrix}$$

Donc
$$\begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 14 & 6 \\ -6 & -4 \\ -2 & -3 \end{pmatrix}$$
.

Remarque. La première colonne de AB ne concerne que A entière et la première colonne de B :

$$\begin{pmatrix} 4 & 2 \\ -2 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 14 \\ -6 \\ -2 \end{pmatrix}$$
 (c'est la première colonne de AB).

1. La première colonne de AB ne concerne que A entière et la première colonne de B. La première ligne de AB ne concerne que ?? et ??.

2.
$$(a \ b) \begin{pmatrix} a' \\ b' \end{pmatrix} =$$

3.
$$(a \ b) (a \ b)$$

4.
$$\binom{a}{b} (a' \ b') =$$

5.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

1. La première colonne de AB ne concerne que A entière et la première colonne de B. La première ligne de AB ne concerne que la première ligne de A et B entière.

2.
$$(a \ b) \binom{a'}{b'} = aa' + bb'$$

3. $(a \ b) (a \ b)$ n'est PAS définie. Les tailles sont incompatibles!

4.
$$\binom{a}{b}$$
 $(a' \quad b') =$

5.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

1. La première colonne de AB ne concerne que A entière et la première colonne de B. La première ligne de AB ne concerne que la première ligne de A et B entière.

2.
$$(a \ b) \begin{pmatrix} a' \\ b' \end{pmatrix} = aa' + bb'$$

3. $(a \ b) (a \ b)$ n'est PAS définie. Les tailles sont incompatibles!

4.
$$\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a' & b' \end{pmatrix} = \begin{pmatrix} aa' & ab' \\ ba' & bb' \end{pmatrix}$$
 (bizarre ...?)

5.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

1. La première colonne de AB ne concerne que A entière et la première colonne de B. La première ligne de AB ne concerne que la première ligne de A et B entière.

2.
$$(a \ b) \begin{pmatrix} a' \\ b' \end{pmatrix} = aa' + bb'$$

3. $(a \ b) (a \ b)$ n'est PAS définie. Les tailles sont incompatibles!

4.
$$\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a' & b' \end{pmatrix} = \begin{pmatrix} aa' & ab' \\ ba' & bb' \end{pmatrix}$$
 (bizarre ...?)

5.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

1. La première colonne de AB ne concerne que A entière et la première colonne de B. La première ligne de AB ne concerne que la première ligne de A et B entière.

2.
$$(a \ b) \begin{pmatrix} a' \\ b' \end{pmatrix} = aa' + bb'$$

3. $(a \ b) (a \ b)$ n'est PAS définie. Les tailles sont incompatibles!

4.
$$\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a' & b' \end{pmatrix} = \begin{pmatrix} aa' & ab' \\ ba' & bb' \end{pmatrix}$$
 (bizarre ...?)

5.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

matriciel.
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
.

1. La première colonne de AB ne concerne que A entière et la première colonne de B. La première ligne de AB ne concerne que la première ligne de A et B entière.

2.
$$(a \ b) \binom{a'}{b'} = aa' + bb'$$

3. $(a \ b) (a \ b)$ n'est PAS définie. Les tailles sont incompatibles!

4.
$$\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a' & b' \end{pmatrix} = \begin{pmatrix} aa' & ab' \\ ba' & bb' \end{pmatrix}$$
 (bizarre ...?)

5.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

6. Réécrire le système $\begin{cases} 7x + 2y = 3 \\ 3x + y = 2 \end{cases}$ sous forme de produit

matriciel.
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
.

C'est l'une des raisons de multiplier deux matrices de telle façon!.

Définition formelle

Rappel. Pour une matrice quelconque A, on utilise une double indice a_{ij} indiquant la valeur de A dans la i-ème ligne et j-ème colonne.

Définition

Etant données deux matrices A de taille $m \times n$ et B de taille $n \times p$ (NB : le même nombre n) on définit le produit des deux matrices $AB \in \mathcal{M}_{m,p}(\mathbb{R})$, par

$$(AB)_{ik} = \sum_{i=1}^{n} A_{ij} B_{jk}$$

Définition formelle

Rappel. Pour une matrice quelconque A, on utilise une double indice a_{ij} indiquant la valeur de A dans la i-ème ligne et j-ème colonne.

Définition

Etant données deux matrices A de taille $m \times n$ et B de taille $n \times p$ (NB : le même nombre n) on définit le produit des deux matrices $AB \in \mathcal{M}_{m,p}(\mathbb{R})$, par

$$(AB)_{ik} = \sum_{j=1}^{n} A_{ij} B_{jk} = A_{i1} B_{1k} + A_{i2} B_{2k} + A_{i3} B_{3k} + \cdots + A_{in} B_{nk}.$$

Définition formelle

Rappel. Pour une matrice quelconque A, on utilise une double indice a_{ij} indiquant la valeur de A dans la i-ème ligne et j-ème colonne.

Définition

Etant données deux matrices A de taille $m \times n$ et B de taille $n \times p$ (NB : le même nombre n) on définit le produit des deux matrices $AB \in \mathcal{M}_{m,p}(\mathbb{R})$, par

$$(AB)_{ik} = \sum_{j=1}^{n} A_{ij} B_{jk} = A_{i1} B_{1k} + A_{i2} B_{2k} + A_{i3} B_{3k} + \cdots + A_{in} B_{nk}.$$

l'élément ik est formé à partir de la i-ème ligne de A :

$$(A_{i1} A_{i2} \cdots A_{in})$$
 et la k-ème colonne de $B: \begin{pmatrix} B_{1k} \\ B_{2k} \\ \vdots \\ B_{nk} \end{pmatrix}$ par un produit

scalaire.

Retrouver une ligne ou colonne

On peut récupérer la j-ème colonne d'une matrice $A\in\mathcal{M}_{m,n}(\mathbb{R})$

par
$$A\vec{e_j}$$
 où $\vec{e_j} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n$, avec 1 à la j -ème ligne et 0 ailleurs. Le

n-tuple de vecteurs, $(\vec{e_1}, \dots, \vec{e_n})$ s'appelle la base canonique de \mathbb{R}^n .

Retrouver une ligne ou colonne

On peut récupérer la j-ème colonne d'une matrice $A \in \mathcal{M}_{m,n}(\mathbb{R})$

par
$$A\vec{e_j}$$
 où $\vec{e_j} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n$, avec 1 à la j -ème ligne et 0 ailleurs. Le

n-tuple de vecteurs, $(\vec{e_1}, \dots, \vec{e_n})$ s'appelle la base canonique de \mathbb{R}^n .

Question : Comment récupérer la i-ème line d'une matrice?

Retrouver une ligne ou colonne

On peut récupérer la j-ème colonne d'une matrice $A \in \mathcal{M}_{m,n}(\mathbb{R})$

par
$$A\vec{e_j}$$
 où $\vec{e_j} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n$, avec 1 à la j -ème ligne et 0 ailleurs. Le

n-tuple de vecteurs, $(\vec{e_1}, \dots, \vec{e_n})$ s'appelle la base canonique de \mathbb{R}^n .

Question : Comment récupérer la i-ème line d'une matrice ? réponse : la multiplier à gauche par un vecteur spécial!

Théorème. Soient A, B, C trois matrices.

Théorème. Soient A, B, C trois matrices.

1. Multiplier avec la matrice identité ne change rien :

$$Id \cdot A = A$$
 et $B \cdot Id = B$

Théorème. Soient *A*, *B*, *C* trois matrices.

1. Multiplier avec la matrice identité ne change rien :

$$Id \cdot A = A$$
 et $B \cdot Id = B$

2. Si les produits AB et BC sont définis, alors on peut effectuer les produits (AB)C et A(BC), de plus :

$$(AB)C = A (BC)$$

On écrit simplement ABC pour ce produit (c'est la lois associative).

Théorème. Soient *A*, *B*, *C* trois matrices.

1. Multiplier avec la matrice identité ne change rien :

$$Id \cdot A = A$$
 et $B \cdot Id = B$

2. Si les produits AB et BC sont définis, alors on peut effectuer les produits (AB)C et A(BC), de plus :

$$(AB)C = A (BC)$$

On écrit simplement ABC pour ce produit (c'est la lois associative).

3. Si B et C ont la même taille, et AB est défini, on peut factoriser

$$AB+AC=A(B+C)$$
, $A(B+kC)=AB+kAC$

(c'est la lois distributive).

Théorème. Soient *A*, *B*, *C* trois matrices.

1. Multiplier avec la matrice identité ne change rien :

$$Id \cdot A = A$$
 et $B \cdot Id = B$

2. Si les produits AB et BC sont définis, alors on peut effectuer les produits (AB)C et A(BC), de plus :

$$(AB)C = A (BC)$$

On écrit simplement ABC pour ce produit (c'est la lois associative).

3. Si B et C ont la même taille, et AB est défini, on peut factoriser

$$AB+AC=A(B+C)$$
, $A(B+kC)=AB+kAC$

(c'est la lois distributive).

4. AC + BC = (A + B)C (sous quelle condition?)

Théorème. Soient *A*, *B*, *C* trois matrices.

1. Multiplier avec la matrice identité ne change rien :

$$Id \cdot A = A$$
 et $B \cdot Id = B$

2. Si les produits AB et BC sont définis, alors on peut effectuer les produits (AB)C et A(BC), de plus :

$$(AB)C = A (BC)$$

On écrit simplement ABC pour ce produit (c'est la lois associative).

3. Si B et C ont la même taille, et AB est défini, on peut factoriser

$$AB+AC=A(B+C)$$
, $A(B+kC)=AB+kAC$

(c'est la lois distributive).

4. AC + BC = (A + B)C (sous quelle condition?)

Question piège : Est-ce qu'on peut factoriser AB + BC?

Exemples.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}. \text{ et}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix}.$$

Exemples.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}. \text{ et}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix}.$$

Question.
$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix}$$
 $\begin{pmatrix} \text{matrice identit\'e} \\ \text{de quelle taille} \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix}$?

Preuve de (AB)C = A(BC)

Prenons $B \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors :

$$((AB)C)_{il} = \sum_{k=1}^{p} (AB)_{ik} C_{kl} = \sum_{k=1}^{p} \left(\sum_{j=1}^{n} A_{ij} B_{jk}\right) C_{kl} =$$

$$\sum_{j=1}^{n} \sum_{k=1}^{p} A_{ij} B_{jk} C_{kl} = \sum_{j=1}^{n} A_{ij} \left(\sum_{k=1}^{p} B_{jk} C_{kl} \right) = \sum_{j=1}^{n} A_{ij} (BC)_{jl} = (A(BC))_{il}.$$

(commutativité de l'addition des nombres réels).

Preuve de (AB)C = A(BC)

Prenons $B \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors :

$$((AB)C)_{il} = \sum_{k=1}^{p} (AB)_{ik} C_{kl} = \sum_{k=1}^{p} \left(\sum_{j=1}^{n} A_{ij} B_{jk} \right) C_{kl} =$$

$$\sum_{j=1}^{n} \sum_{k=1}^{p} A_{ij} B_{jk} C_{kl} = \sum_{j=1}^{n} A_{ij} \left(\sum_{k=1}^{p} B_{jk} C_{kl} \right) = \sum_{j=1}^{n} A_{ij} (BC)_{jl} = (A(BC))_{il}.$$

(commutativité de l'addition des nombres réels).

Ex. 1.
$$\begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -8 \end{pmatrix}$$

Ex. 2.
$$(3 \ 1 \ 2) \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} (3 \ 1 \ 2) \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} = 3 \cdot 3 = 9$$
. Il serait 'stupide' de calculer ce produit différemment.

Définition. Une matrice A est dite **carrée** si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Attention. Il y a des matrices *A* n'admettant pas de matrice d'inverse!

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Attention. Il y a des matrices *A* n'admettant pas de matrice d'inverse!

Questions: A quoi ça sert? Comment la trouver (si elle existe)?

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Attention. Il y a des matrices *A* n'admettant pas de matrice d'inverse!

Questions: A quoi ça sert? Comment la trouver (si elle existe)?

A quoi ça sert ? Ça sert à annuler l'effet d'avoir été multiplié par A : si on connaît AX sans pour autant connaître X, on peut retrouver X à l'aide de A^{-1} :

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Attention. Il y a des matrices *A* n'admettant pas de matrice d'inverse!

Questions: A quoi ça sert? Comment la trouver (si elle existe)?

A quoi ça sert? Ça sert à annuler l'effet d'avoir été multiplié par A: si on connaît AX sans pour autant connaître X, on peut retrouver X à l'aide de A^{-1} : X =

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Attention. Il y a des matrices *A* n'admettant pas de matrice d'inverse!

Questions: A quoi ça sert? Comment la trouver (si elle existe)?

A quoi ça sert? Ça sert à annuler l'effet d'avoir été multiplié par A: si on connaît AX sans pour autant connaître X, on peut retrouver X à l'aide de A^{-1} : $X = Id \cdot X =$

Définition. Une matrice A est dite **carrée** si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Attention. Il y a des matrices *A* n'admettant pas de matrice d'inverse!

Questions: A quoi ça sert? Comment la trouver (si elle existe)?

A quoi ça sert? Ça sert à annuler l'effet d'avoir été multiplié par A: si on connaît AX sans pour autant connaître X, on peut retrouver X à l'aide de A^{-1} : $X = Id \cdot X = (A^{-1}A)X =$

Définition. Une matrice A est dite carrée si elle a le même nombre de lignes et de colonnes. La diagonale d'une telle matrice part d'en haut à gauche vers en bas à droite.

Soit A une matrice carrée de taille n. Si une matrice B de même taille vérifie $BA = Id_n$, on dit que B est la matrice inverse de A, et on note B par A^{-1} .

Ex. :
$$\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} = I_2$$
, donc $\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}^{-1}$.

Attention. Il y a des matrices *A* n'admettant pas de matrice d'inverse!

Questions: A quoi ça sert? Comment la trouver (si elle existe)?

A quoi ça sert? Ça sert à annuler l'effet d'avoir été multiplié par A: si on connaît AX sans pour autant connaître X, on peut retrouver X à l'aide de A^{-1} : $X = Id \cdot X = (A^{-1}A)X = A^{-1}(AX)$.

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette : $X = Id \cdot X = (A^{-1}A)X$

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette :

On suit la recette :
$$X = Id \cdot X = (A^{-1}A)X$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}) \begin{pmatrix} x \\ y \end{pmatrix}$$

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette :
$$\begin{array}{ccc} X & = & \textit{Id} \cdot X & = & (A^{-1}A)X \\ \begin{pmatrix} x \\ y \end{pmatrix} & = & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} & = & \begin{pmatrix} \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}) \begin{pmatrix} x \\ y \end{pmatrix} \\ = & A^{-1}(AX) \end{array}$$

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette :
$$\begin{array}{ccc}
X & = & Id \cdot X & = & (A^{-1}A)X \\
\begin{pmatrix} x \\ y \end{pmatrix} & = & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} & = & \begin{pmatrix} \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}) \begin{pmatrix} x \\ y \end{pmatrix} \\
& = & A^{-1}(AX) \\
& = & \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix})$$

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette :
$$X = Id \cdot X = (A^{-1}A)X$$

On suit la recette :

$$\begin{array}{lll}
X &=& ld \cdot X &=& (A^{-1}A)X \\
\begin{pmatrix} x \\ y \end{pmatrix} &=& \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} &=& (\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}) \begin{pmatrix} x \\ y \end{pmatrix} \\
&=& A^{-1}(AX) \\
&=& \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}) &=& \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix} \\
&=& \text{Solution } \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}.$$

Solution
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
.

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette :
$$X = Id \cdot X = (A^{-1}A)X$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= A^{-1}(AX)$$

$$= \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} (\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
Solution
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}.$$

Une autre façon de poser la question, résoudre (avec x, y comme inconnues) $\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette :
$$X = Id \cdot X = (A^{-1}A)X$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (\begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= A^{-1}(AX)$$

$$= \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} (\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
Solution
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}.$$

Une autre façon de poser la question, résoudre (avec x, y comme inconnues) $\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. Ou encore : résoudre le système $\begin{cases} 7x + 2y = 3 \\ 3x + y = 2 \end{cases}$.

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

Une autre façon de poser la question, résoudre (avec x,y comme inconnues) $\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. Ou encore : résoudre le système $\begin{cases} 7x + 2y = 3 \\ 3x + y = 2 \end{cases}$. Solution : x = -1 et y = 5.

Exemple : Sachant
$$\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, quel est $\begin{pmatrix} x \\ y \end{pmatrix}$?

On suit la recette:

$$\begin{array}{lll}
X &=& ld \cdot X &=& (A^{-1}A)X \\
\binom{x}{y} &=& \binom{1}{0} \binom{1}{1} \binom{x}{y} &=& (\binom{1}{1} - 2 \binom{7}{3} \binom{7}{1}) \binom{x}{y} \\
&=& A^{-1}(AX) \\
&=& \binom{1}{1} - 2 \binom{7}{1} \binom{7}{1} \binom{x}{1} \binom{x}{y} = \binom{1}{1} - 2 \binom{3}{1} \binom{3}{1} = \binom{-1}{5} \binom{3}{1} = \binom{-1}{5} \binom{3}{5} = \binom{-1}{5}.
\end{array}$$
Solution $\binom{x}{y} = \binom{-1}{5}$.

Une autre façon de poser la question, résoudre (avec x,y comme inconnues) $\begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. Ou encore : résoudre le système $\begin{cases} 7x+2y=3 \\ 3x+y=2 \end{cases}$. Solution : x=-1 et y=5.

Donc ça sert à résoudre les systèmes (entre autres).

Comment trouver l'inverse d'une matrice?

Méthode 'brutale' : on considère les coefficients comme des inconnus et on essaye de résoudre le problème : ?A = I .

Exemple. Soit.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
. On cherche $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Comment trouver l'inverse d'une matrice?

Méthode 'brutale' : on considère les coefficients comme des inconnus et on essaye de résoudre le problème : ?A = I .

Exemple. Soit.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
. On cherche $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Réponse?

Comment trouver l'inverse d'une matrice?

Méthode 'brutale' : on considère les coefficients comme des inconnus et on essaye de résoudre le problème : ?A = I .

Exemple. Soit.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
. On cherche $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Réponse?

Plus tard nous allons apprendre:

- des tests simples sur la possibilité ou non d'inverser une matrice donnée.
- des méthodes systématiques de calculer cette matrice inverse lorsqu'elle existe.
- résoudre des systèmes $A\vec{x} = \vec{c}$: si A admet une matrice inverse B, alors la solution du système est $B\vec{c}$.
- tirer des info lorsque A n'est pas inversible.

§6. Matrices particulières et d'autres opérations matricielles

Définition

Si $A \in \mathcal{M}_{m,n}(\mathbb{R})$ on définit sa matrice transposée ${}^{\mathbf{t}}A \in \mathcal{M}_{n,m}(\mathbb{R})$ qui échange les lignes et les colonnes : $({}^{\mathbf{t}}A)_{ji} = A_{ij}$.

Ex. 1.
$${}^{\mathbf{t}} \begin{pmatrix} 2 & 3 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \end{pmatrix}$$
.

Ex. 2.
$$\vec{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 et $\vec{b} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. On a

produit scalaire
$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \overset{\mathbf{t}}{\mathbf{a}} \, \vec{\mathbf{b}} = \begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 3 \times (-1) + 4 \times 2 = 1.$$

Questions : Lorsqu'on combine la transposée avec +, k. et la multiplication AB, qu'obtient-on?

Théorème

$$(AC)^{-1} = C^{-1}A^{-1}$$
. Si $BA = I$ alors $AB = I$.

Preuve : Pour que $C^{-1}A^{-1}$ soit la matrice inverse de AC, il faut les multiplier :

$$C^{-1}A^{-1}(AC) = C^{-1}(A^{-1}A)C = C^{-1}IC = C^{-1}C = I$$
.

Pour le deuxième, $BA = I \Longrightarrow$ pour tout $\vec{\mathbf{v}}$, le système $A\vec{\mathbf{x}} = \vec{\mathbf{v}}$ admet comme solution $\vec{\mathbf{x}} = B\vec{\mathbf{v}}$. Du coup

$$(AB)\vec{\mathbf{v}} = A(B\vec{\mathbf{v}}) = A\vec{\mathbf{x}} = \vec{\mathbf{v}}$$

pour tout $\vec{\mathbf{v}}$. En particulier $(AB)\vec{\mathbf{e}}_j = \vec{\mathbf{e}}_j$ pour tout $\vec{\mathbf{e}}_j$ de la base standard. Or $(AB)\vec{\mathbf{e}}_j$ est la j-ième colonne de AB. Cette colonne est donc $\vec{\mathbf{e}}_j$. Ainsi AB = I.

Questions pièges : Comment procéder lorsqu'on combine l'inversion avec la transposition, la multiplication avec un scalaire, et l'addition?

Définition

Une matrice carrée est dite

- **symétrique** si ${}^{\mathbf{t}}A = A$, ou encore $A_{ij} = A_{ji}$
- ▶ anti-symétrique si ${}^{t}A = -A$, $A_{ij} = -A_{ji}$
- ▶ diagonale si $A_{ij} = 0$ pour $i \neq j$
- triangulaire supérieure (inférieure) si A_{ij} = 0 pour i > j (i < j respectivement).</p>

Exemples

- 1. une matrice symétrique : la table des multiplication, la table des kilométrages entre des pairs de villes.
- 2. un exemple antisymétrique : la table des différence, ou prêt-emprunts.
- 3. $\binom{0}{1} \binom{-1}{0} \binom{x}{y} = \binom{-y}{x}$ correspond à l'opération "chapeau" $\widehat{(x;y)} = (-y;x)$ qui effectue une rotation de $\pi/2 = 90^{\circ}$ dans le sens direct dans le plan.