UNIVERSITE IBN TOFAIL ECOLE NATIONALE DES SCIENCES APPLIQUEES Cycle Intégré Préparatoire aux Formations d'Ingénieurs

Année Universitaire 2013/2014

Physique 3 : Électromagnétisme

Solution Devoir Libre N° 2 : Lois fondamentales de la magnétostatique – Théorème d'Ampère

Exercice 2.5. (Exercice supplémentaire : Contrôle continu 2012-2013)

1- Déterminer la direction du champ magnétique $\vec{B}(M)$ en tout point M de l'espace.
Tout plan (M. ex. eg) est un plan de symetrie du système
=> B(M) est perpendiculaire à ceptan
$\Rightarrow B(M) = B(M) \overline{ey} $

2- Donner les coordonnées dont il dépend le champ magnétique $\vec{B}(M)$.	
La distribution est invariante par translation	1000
suivant les axes (Ox) et (Oy) -> B(M) ne dépend pas dexet	y
$\Rightarrow \overrightarrow{B}(M) = B(3) \overrightarrow{ey}$	0
0, 0	

3- Par des arguments d	e symétrie, trouver la relation entre $\vec{B}(x,y,z)$ et $\vec{B}(x,y,-z)$.
Le plan (D	(ex. ex) oot un plan de symétrie
	$\mathcal{B}(x_1y_1-3)=-\mathcal{B}(x_1y_13)$
	$=) \overrightarrow{B}(-3) = -\overrightarrow{B}(3)$

4 - En utilisant le théorème d'Ampère, calculer le champ magnétique en tout point de l'espace.

Exercice 2.8. (Exercice supplémentaire)

208010 Champ crée par une spire en M point de l'axe (02) de la spire

$$\vec{B}(m) = \frac{p_0 I}{2R} \sin^3 d \vec{e_3} = \frac{p_0 I}{2} \frac{R^2}{(R^2 + \frac{1}{2})^3 / 2} \vec{e_3}$$

208020 Si Mestloin de la spire: 18/>>R

donc
$$\overrightarrow{B}(M) \approx \frac{\gamma_0 I}{2} \frac{R^2}{|3|^3} \overrightarrow{e_3} = \frac{\gamma_0 M}{2\pi |3|^3}$$

Evec $\overrightarrow{m} = I.\overrightarrow{S} = I \pi R^2 \overrightarrow{e_3}$

2.8.3. On aurait pu trouver le résultat en considérant la spire comme un dipôle magnétique Missavec et = ez (ME à l'axe) et r = 131 m

$$\vec{B}(M) = \frac{p_0}{4\pi} \frac{3m\vec{e_3} - m\vec{e_3}}{|\vec{s}|^3} = \frac{p_0}{3\pi} \frac{\vec{m}}{|\vec{s}|^3}$$