1 Waves Motion

General equation of wave: $\frac{\partial^2 y}{\partial x^2} = \frac{1}{n^2} \frac{\partial^2 y}{\partial t^2}$.

Notation: Amplitude A, Frequency ν , Wavelength λ , Period T, Angular Frequency ω , Wave Number k,

$$T = \frac{1}{\nu} = \frac{2\pi}{\omega}, \quad v = \nu\lambda, \quad k = \frac{2\pi}{\lambda}$$

Progressive wave travelling with speed v:

$$y = f(t - x/v), \rightsquigarrow +x; \quad y = f(t + x/v), \rightsquigarrow -x$$

Progressive sine wave:

$$y = A\sin(kx - \omega t) = A\sin(2\pi (x/\lambda - t/T))$$

2 Waves on a String

Speed of waves on a string with mass per unit length μ and tension T: $v = \sqrt{T/\mu}$

Transmitted power: $P_{\rm av} = 2\pi^2 \mu v A^2 \nu^2$

Interference:

$$y_1 = A_1 \sin(kx - \omega t), \quad y_2 = A_2 \sin(kx - \omega t + \delta)$$

$$y = y_1 + y_2 = A \sin(kx - \omega t + \epsilon)$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos \delta}$$

$$\tan \epsilon = \frac{A_2 \sin \delta}{A_1 + A_2 \cos \delta}$$

$$\delta = \begin{cases} 2n\pi, & \text{constructive;} \\ (2n+1)\pi, & \text{destructive.} \end{cases}$$

Standing Waves:

$$y_1 = A_1 \sin(kx - \omega t), \quad y_2 = A_2 \sin(kx + \omega t)$$

$$y = y_1 + y_2 = (2A\cos kx)\sin \omega t$$

$$x = \begin{cases} (n + \frac{1}{2})\frac{\lambda}{2}, & \text{nodes; } n = 0, 1, 2, \dots \\ n\frac{\lambda}{2}, & \text{antinodes. } n = 0, 1, 2, \dots \end{cases}$$

String fixed at both ends:

- 1. Boundary conditions: y = 0 at x = 0 and at x = L
- 2. Allowed Freq.: $L = n\frac{\lambda}{2}$, $\nu = \frac{n}{2L}\sqrt{\frac{T}{\mu}}$, $n = 1, 2, 3, \ldots$
- 3. Fundamental/1st harmonics: $\nu_0 = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$

4. 1st overtone/2nd harmonics: $\nu_1 = \frac{2}{2L} \sqrt{\frac{T}{\mu}}$

Get Formulas

- 5. 2nd overtone/3rd harmonics: $\nu_2 = \frac{3}{2L} \sqrt{\frac{T}{\mu}}$
- 6. All harmonics are present.

String fixed at one end:

- 1. Boundary conditions: y = 0 at x = 0
- 2. Allowed Freq.: $L = (2n+1)\frac{\lambda}{4}, \ \nu = \frac{2n+1}{4L}\sqrt{\frac{T}{\mu}}, \ n =$
- 3. Fundamental/1st harmonics: $\nu_0 = \frac{1}{4L} \sqrt{\frac{T}{\mu}}$

4. 1st overtone/3rd harmonics: $\nu_1 = \frac{3}{4L} \sqrt{\frac{T}{\mu}}$

- 5. 2nd overtone/5th harmonics: $\nu_2 = \frac{5}{4L} \sqrt{\frac{T}{\mu}}$
- 6. Only odd harmonics are present.

Sonometer: $\nu \propto \frac{1}{L}$, $\nu \propto \sqrt{T}$, $\nu \propto \frac{1}{\sqrt{\mu}}$. $\nu = \frac{n}{2L}\sqrt{\frac{T}{\mu}}$

3 Sound Waves

Displacement wave: $s = s_0 \sin \omega (t - x/v)$

Pressure wave: $p = p_0 \cos \omega (t - x/v), p_0 = (B\omega/v)s_0$

Speed of sound waves:

$$v_{
m liquid} = \sqrt{rac{B}{
ho}}, \quad v_{
m solid} = \sqrt{rac{Y}{
ho}}, \quad v_{
m gas} = \sqrt{rac{\gamma P}{
ho}}$$

Intensity: $I = \frac{2\pi^2 B}{v} s_0^2 \nu^2 = \frac{p_0^2 v}{2B} = \frac{p_0^2}{2B}$

Standing longitudinal waves:

$$p_1 = p_0 \sin \omega (t - x/v), \quad p_2 = p_0 \sin \omega (t + x/v)$$

$$p = p_1 + p_2 = 2p_0 \cos kx \sin \omega t$$

Closed organ pipe:

- 1. Boundary condition: y = 0 at x = 0
- 2. Allowed freq.: $L = (2n+1)\frac{\lambda}{4}, \ \nu = (2n+1)\frac{\nu}{4L}, \ n =$
- 3. Fundamental/1st harmonics: $\nu_0 = \frac{v}{4L}$

- 4. 1st overtone/3rd harmonics: $\nu_1 = 3\nu_0 = \frac{3v}{4L}$ 5. 2nd overtone/5th harmonics: $\nu_2 = 5\nu_0 = \frac{5v}{4L}$

6. Only odd harmonics are present.

Open organ pipe:

- 1. Boundary condition: y=0 at x=0 Allowed freq.: $L=n\frac{\lambda}{2},\ \nu=n\frac{v}{4L},\ n=1,2,\ldots$
- 2. Fundamental/1st harmonics: $\nu_0 = \frac{v}{2L}$
- 3. 1st overtone/2nd harmonics: $\nu_1 = 2\nu_0 = \frac{2v}{2L}$
- 4. 2nd overtone/3rd harmonics: $\nu_2 = 3\nu_0 = \frac{3v}{2L}$
- 5. All harmonics are present.

Resonance column:

$$l_1 + d = \frac{\lambda}{2}, \quad l_2 + d = \frac{3\lambda}{4}, \quad v = 2(l_2 - l_1)\nu$$

Beats: two waves of almost equal frequencies $\omega_1 \approx \omega_2$

$$p_1 = p_0 \sin \omega_1(t - x/v), \quad p_2 = p_0 \sin \omega_2(t - x/v)$$

 $p = p_1 + p_2 = 2p_0 \cos \Delta \omega(t - x/v) \sin \omega(t - x/v)$
 $\omega = (\omega_1 + \omega_2)/2, \quad \Delta \omega = \omega_1 - \omega_2$ (beats freq.)

Doppler Effect:

$$\nu = \frac{v + u_o}{v - u_s} \nu_0$$

where, v is the speed of sound in the medium, u_0 is the speed of the observer w.r.t. the medium, considered positive when it moves towards the source and negative when it moves away from the source, and u_s is the speed of the source w.r.t. the medium, considered positive when it moves towards the observer and negative when it moves away from the observer.

4 Light Waves

Plane Wave: $E = E_0 \sin \omega (t - \frac{x}{v}), I = I_0$

Spherical Wave: $E = \frac{aE_0}{r} \sin \omega (t - \frac{r}{v}), I = \frac{I_0}{r^2}$

Young's double slit experiment

Path difference: $\Delta x = \frac{dy}{D}$

Phase difference: $\delta = \frac{2\pi}{\lambda} \Delta x$

Interference Conditions: for integer n,

$$\delta = \begin{cases} 2n\pi, & \text{constructive;} \\ (2n+1)\pi, & \text{destructive,} \end{cases}$$

$$\Delta x = \begin{cases} n\lambda, & \text{constructive;} \\ \left(n + \frac{1}{2}\right)\lambda, & \text{destructive} \end{cases}$$

Intensity:

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta,$$

$$I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2, \ I_{\text{min}} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$$

$$I_1 = I_2 : I = 4I_0 \cos^2 \frac{\delta}{2}, \ I_{\text{max}} = 4I_0, \ I_{\text{min}} = 0$$

Fringe width: $w = \frac{\lambda D}{d}$

Optical path: $\Delta x' = \mu \Delta x$

Interference of waves transmitted through thin film:

$$\Delta x = 2\mu d = \begin{cases} n\lambda, & \text{constructive;} \\ \left(n + \frac{1}{2}\right)\lambda, & \text{destructive.} \end{cases}$$

Diffraction from a single slit:

For Minima: $n\lambda = b\sin\theta \approx b(y/D)$

Resolution: $\sin \theta = \frac{1.22\lambda}{b}$

Law of Malus: $I = I_0 \cos^2 \theta$

Visit www.concepts-of-physics.com to buy "IIT JEE Physics: Topic-wise Complete Solutions" and our other books. Written by IITians, Foreword by Dr. HC Verma, Appreciated by Students.

