

Laboratorio 3

Autoencoders Variacionales

Profesor: Felipe Tobar

Auxiliares: Cristóbal Alcázar, Camilo Carvajal Reyes Ayudante: Joaquín Barceló

Fecha de entrega: 13 de octubre 2023

Instrucciones: El siguiente laboratorio consiste de una parte teórica y otra práctica, para la cual se adjuntará un código que deben completar con el formato solicitado. La ponderaciones son 50 % para cada parte. Deben entregar:

- Un reporte en formato PDF (extensión máxima de 4 páginas) con sus respuestas de la parte teórica. Puede ser a mano si lo desea, pero debe ser legible. NO es necesario entregar un infore de la parte práctica.
- Un archivo de extensión .ipynb donde contenga el código con sus respuestas a la parte práctica. Este debe seguir el formato de base (ser copia) del notebook entregado en material docente/repositorio.

Parte Teórica (50%)

(P1) Cota inferior de evidencia

Definimos la divergencia de Kullback-Leibler entre dos medidas de probabilidad p y q como:

$$D_{KL}(p(x)||q(x)) = \mathbb{E}_{x \sim p(\cdot)} \left(\log \left(\frac{p(x)}{q(x)} \right) \right)$$

a) (1.5 ptos) Demuestre la siguiente equivalencia,

$$D_{KL}(q(z|x)||p(z|x)) = \log p(x) + \mathbb{E}_{z \sim q(\cdot|x)} \left(\log \left(\frac{q(z|x)}{p(x,z)}\right)\right),$$

donde $x \mapsto p(x|z)$ denota la medida de probabilidad condicional a z.

b) (1 pto) Demuestre que

$$\mathbb{E}_{z \sim q(\cdot|x)}(\log\left(\frac{q(z|x)}{p(x,z)}\right)) = D_{KL}(q(z|x)||p(z)) - \mathbb{E}_{z \sim q(\cdot|x)}(\log p(x|z))$$

c) (1 pto) Usando las partes anteriores, escriba una **cota inferior** de la log-verosimilitud. Indicación: recuerde que la divergencia D_{KL} es siempre mayor o igual a cero.

Laboratorio 3

(P2) VAE y reparametrización

Considere que la divergencia de Kullback-Leibler entre una distribución Gaussiana estándar $p(x) \sim \mathcal{N}(0, I)$ y una Gaussiana (no necesariamente estándar) $q(x) \sim \mathcal{N}(\mu, \sigma^2)^1$ tiene una forma cerrada dada por:

$$D_{KL}(q(z)||p(z)) = -\mathbb{E}_{z \sim q(\cdot)} \left(\log \left(\frac{p(z)}{q(z)} \right) \right)$$
$$= -\frac{1}{2} \sum_{j=1}^{J} \left(1 + \log \sigma_j^2 - \mu_j^2 - \sigma_j^2 \right).$$

con $\mu = (\mu_1, \dots, mu_J)$ y $\sigma = (\sigma_1, \dots, \sigma_J)$ para J la dimensionalidad de la variable latente z. Además, podemos usar el truco de la reparametrización para reescribir, dada una función $f(\cdot)$, lo siguiente:

$$\mathbb{E}_{\epsilon \sim \mathcal{N}(\mu, \sigma^2)} \left(f(z) \right) = \mathbb{E}_{z \sim \mathcal{N}(0, 1)} \left(f(\mu + \sigma \epsilon) \right) .$$

Además, podemos considerar una estimación de Monte-Carlo para la esperanza:

$$\mathbb{E}_{\epsilon \sim \mathcal{N}(0,1)} \left(f(\mu + \sigma \epsilon) \right) = \frac{1}{L} \sum_{l=1}^{L} f(\mu + \sigma \epsilon_l) ,$$

donde ϵ_l es una realización de $\mathcal{N}(0,1) \ \forall l=1,\ldots,L$.

a) (1 pto) Considerando una formulación apropiada de la ELBO y usando lo anterior, de una aproximación de $\mathcal{L}_{\phi,\theta}(x)$ para un punto de dato x, en el caso donde $p_{\theta}(z) = \mathcal{N}(z;0,I)$ y $q_{\phi}(z|x) = \mathcal{N}(z;\mu,\sigma^2)$.

Nota 1: μ y σ serán determinados posteriormente.

Nota 2: $p_{\theta}(z)$ no tiene parámetros, pero $p_{\theta}(x|z)$ si los tiene.

Un Autoencoder variacional corresponderá al caso anterior donde además computamos los elementos aprendibles a través de redes neuronales. Supondremos que nuestros datos son un subconjunto de los reales, i.e., $x \in \mathbb{R}^n$, por lo cual consideramos que la distribución $p_{\theta}(x|z)$ será una Gaussiana multivariada dado un $z \in \mathbb{R}^J$ fijo. Responda lo siguiente considerando la aproximación de la parte anterior.

- b) (0.75 ptos) ¿Qué variables son modeladas por el encoder y el decoder respectivamente? Explique qué representan.
- c) (Bonus) ¿Cómo generamos nuevos puntos de datos? Explique de qué modo logramos expresividad en los modelos pese a lo simple de las distribuciones.
- d) (0.75 ptos) Explique cual es el problema de intentar usar descenso de gradiente (estocástico) para optimizar la ELBO antes del truco de la reparametrización.

Laboratorio 3

¹ Como $\sigma = (\sigma_1, \dots, \sigma_J)$ es un vector, $\mathcal{N}(\mu, \sigma^2)$ es un abuso de notación, donde la verdadera matriz de covariance es la matriz que tiene al vector σ^2 (el cuadrado de cada elemento) como diagonal.