(六) 集合: 函数 (Functions)

魏恒峰

hfwei@nju.edu.cn

2021年04月15日

1/64

2/64

从"关系"的角度理解"函数"

$$f(x) = 2x + 1$$

"函数"也是"关系"

$$\{\ldots, (-2, -3), (-1, -1), (0, 1), (1, 3), \ldots\}$$

4/64

$$(x^2 + y^2)^2 + 4ax(x^2 + y^2) - 4a^2y^2 = 0$$

"函数"不允许"一对多"

Functions

6/64

Functions

PROOF!

Definition of Functions

$$R \subseteq A \times B$$

is a relation from A to B

8/64

 $f \subseteq A \times B$ is a *function* from A to B if

 $\forall a \in A. \exists ! b \in B. (a, b) \in f.$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists! b \in B. (a, b) \in f.$$

$$f:A\to B$$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists ! b \in B. (a, b) \in f.$$

$$f:A\to B$$

$$dom(f) = A$$
 $cod(f) = B$
 $ran(f) = f(A) \subseteq B$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists ! b \in B. (a, b) \in f.$$

$$f:A\to B$$

$$dom(f) = A$$
 $cod(f) = B$
 $ran(f) = f(A) \subseteq B$

$$f: a \mapsto b$$

$$f: a \mapsto b$$
$$f(a) \triangleq b$$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists! b \in B. (a, b) \in f.$$

For Proof:

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists! b \in B. (a, b) \in f.$$

For Proof:

$$\forall a \in A$$
.

$$\forall a \in A. \ \exists b \in B.(a,b) \in f$$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists ! b \in B. (a, b) \in f.$$

For Proof:

$$\forall a \in A$$
.

$$\forall a \in A. \ \exists b \in B.(a,b) \in f$$

$$\exists ! b \in B.$$

$$\forall b, b' \in B. (a, b) \in f \land (a, b') \in f \implies b = b'$$

$$I_X:X\to X$$

X 上的恒等函数

$$\forall x \in X. \ I_X(x) = x$$

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

0 < a < 1, b is a positive odd integer, $ab > 1 + \frac{3}{2}\pi$

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

0 < a < 1, b is a positive odd integer, $ab > 1 + \frac{3}{2}\pi$

Weierstrass Function (1872)

"处处连续, 但处处不可导"

$$Y^X = \{ f \mid f : X \to Y \}$$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$|X| = x$$
 $|Y| = y$, $|Y^X| =$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$|X| = x \quad |Y| = y, \qquad |Y^X| = y^x$$

$$Y^X = \{f \mid f : X \to Y\}$$

$$\forall Y. Y^{\emptyset} =$$

魏恒峰 (hfwei@nju.edu.cn)

$$Y^X = \{f \mid f : X \to Y\}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

$$Y^X = \{f \mid f : X \to Y\}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

$$\emptyset^{\emptyset} = \{\emptyset\}$$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

$$\emptyset^{\emptyset} = \{\emptyset\}$$

$$\forall X \neq \emptyset. \ \emptyset^X =$$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

$$\emptyset^{\emptyset} = \{\emptyset\}$$

$$\forall X \neq \emptyset. \ \emptyset^X = \emptyset$$

$$Y^X = \{f \mid f: X \to Y\}$$

The *set* of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

The **set** of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

The *set* of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

The *set* of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

For every set X, there exists a function $I_{\{X\}}: \{X\} \to \{X\}$.

The **set** of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

For every set X, there exists a function $I_{\{X\}}: \{X\} \to \{X\}$.

$$\bigcup_{I_X \in A} \operatorname{dom}(I_X)$$

The **set** of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

For every set X, there exists a function $I_{\{X\}}: \{X\} \to \{X\}$.

 $\bigcup_{I_X \in A} \operatorname{dom}(I_X) \text{ would be the universe that does not exist!}$

Functions as Sets

Theorem (函数的外延性原理 (The Principle of Functional Extensionality))

f, g are functions:

$$f = g \iff dom(f) = dom(g) \land (\forall x \in dom(f). \ f(x) = g(x))$$

Theorem (函数的外延性原理 (The Principle of Functional Extensionality))

f, g are functions:

$$f = g \iff \mathit{dom}(f) = \mathit{dom}(g) \land \big(\forall x \in \mathit{dom}(f). \ f(x) = g(x) \big)$$

$$f=g\iff \forall (a,b).\ ((a,b)\in f\leftrightarrow (a,b)\in g).$$

Theorem (函数的外延性原理 (The Principle of Functional Extensionality))

f, g are functions:

$$f = g \iff \mathit{dom}(f) = \mathit{dom}(g) \land \big(\forall x \in \mathit{dom}(f). \ f(x) = g(x) \big)$$

$$f = g \iff \forall (a, b). ((a, b) \in f \leftrightarrow (a, b) \in g).$$

It may be that $cod(f) \neq cod(g)$.

$$f:A \to B \qquad g:C \to D$$

Q: Is $f\cap g$ a function?

$$f: A \to B$$
 $g: C \to D$

Q: Is $f \cap g$ a function?

Theorem (Intersection of Functions)

$$f\cap g:(A\cap C)\to (B\cap D)$$

 $f:A\to B \qquad g:C\to D$

Q: Is $f \cup g$ a function?

$$f:A \to B$$
 $g:C \to D$

Q: Is $f\cup g$ a function?

Theorem (Union of Functions)

$$f \cup g : (A \cup C) \to (B \cup D) \iff \forall x \in dom(f) \cap dom(g). \ f(x) = g(x)$$

$$f:A \to B$$
 $g:C \to D$

Q: Is $f \cup g$ a function?

Theorem (Union of Functions)

$$f \cup g: (A \cup C) \rightarrow (B \cup D) \iff \forall x \in \mathit{dom}(f) \cap \mathit{dom}(g). \ f(x) = g(x)$$

$$f: \mathbb{Q} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+1, & \text{if } x \in 2\mathbb{Z} \\ x-1, & \text{if } x \in 3\mathbb{Z} \\ 2, & \text{otherwise} \end{cases}$$

$$f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$$

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}$$

$$f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$$

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}$$

$$dom(f) \cap dom(g) = \emptyset$$

By the Well-Ordering Principle of \mathbb{N}

$$D:\mathbb{R}\to\mathbb{R}$$

$$D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Dirichlet Function

"处处不连续"

Special Functions (-jectivity)

$$f: A \to B$$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$$

$$f:A\to B \qquad f:A\rightarrowtail B$$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$$

23 / 64

$$f:A\to B$$
 $f:A\rightarrowtail B$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \to f(a_1) \neq f(a_2)$$

For Proof:

▶ To prove that f is 1-1:

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \to a_1 = a_2$$

$$f: A \to B$$
 $f: A \rightarrowtail B$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \to f(a_1) \neq f(a_2)$$

For Proof:

 \blacktriangleright To prove that f is 1-1:

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \to a_1 = a_2$$

 \blacktriangleright To show that f is not 1-1:

魏恒峰 (hfwei@nju.edu.cn)

$$\exists a_1, a_2 \in A. \ a_1 \neq a_2 \land f(a_1) = f(a_2)$$

$$f:A\to B$$

$$ran(f) = B$$

$$f:A \to B$$
 $f:A woheadrightarrow B$

$$ran(f) = B$$

$$f:A \to B$$
 $f:A woheadrightarrow B$

$$ran(f) = B$$

For Proof:

 \blacktriangleright To prove that f is onto:

$$\forall b \in B. \ (\exists a \in A. \ f(a) = b)$$

$$f:A\to B$$
 $f:A\twoheadrightarrow B$

$$ran(f) = B$$

For Proof:

ightharpoonup To prove that f is onto:

$$\forall b \in B. \ (\exists a \in A. \ f(a) = b)$$

ightharpoonup To show that f is not onto:

$$\exists b \in B. \ (\forall a \in A. \ f(a) \neq b)$$

Definition (Bijective (one-to-one correspondence) 双射; ——对应)

$$f:A\to B$$

1-1 & onto

Definition (Bijective (one-to-one correspondence) 双射; 一一对应)

$$f: A \to B$$
 $f: A \stackrel{1-1}{\longleftrightarrow} B$

1-1 & onto

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$$

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$$

$$f: \mathbb{N} \to \mathbb{N}, \qquad f(x) = 2^x$$

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$$

$$f: \mathbb{N} \to \mathbb{N}, \qquad f(x) = 2^x$$

$$f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}, \qquad f(z,n) = \frac{z}{n+1}$$

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{N} \to \mathbb{O} \qquad f(x) = \frac{1}{x^2 + 1}$$

$$f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$$

$$f: \mathbb{N} \to \mathbb{N}, \qquad f(x) = 2^x$$

$$f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}, \qquad f(z, n) = \frac{z}{n+1}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \qquad f(x,y) = (x+1, y+1)$$

26 / 64

If $f: A \to 2^A$, then f is **not** onto.

Proof. Let A be a set and let $f: A \to 2^A$. To show that f is not onto, we must find a $B \in 2^A$ (i.e., $B \subseteq A$) for which there is no $a \in A$ with f(a) = B. In other words, B is a set that f "misses." To this end, let

$$B = \{x \in A : x \notin f(x)\}.$$

We claim there is no $a \in A$ with f(a) = B.

Suppose, for the sake of contradiction, there is an $a \in A$ such that f(a) = B. We ponder: Is $a \in B$?

- If a ∈ B, then, since B = f(a), we have a ∈ f(a). So, by definition of B, a ∉ f(a); that is, a ∉ B.⇒ ←
- If $a \notin B = f(a)$, then, by definition of $B, a \in B. \Rightarrow \Leftarrow$

Both $a \in B$ and $a \notin B$ lead to contradictions, and hence our supposition [there is an $a \in A$ with f(a) = B] is false, and therefore f is not onto.

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Onto

$$\forall B \in 2^A$$
. $(\exists a \in A. \ f(a) = B)$

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Onto

$$\forall B \in 2^A. \ (\exists a \in A. \ f(a) = B)$$

Not Onto

$$\exists B \in 2^A. \ (\forall a \in A. \ f(a) \neq B)$$

$$f(1) = \{1, 2\}$$

 $f(2) = \{1, 3\}$
 $f(3) = \emptyset$

$$f(1) = \{1, 2\}$$

$$f(2) = \{1, 3\}$$

$$f(3) = \emptyset$$

$$B = \{2, 3\}$$

30 / 64

$$f(1) = \{1, 2\}$$

$$f(2) = \{1, 3\}$$

$$f(3) = \emptyset$$

$$B = \{2, 3\}$$

$$B = \{x \in \{1, 2, 3\} \mid x \notin f(x)\} = \{2, 3\}$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ \left(\forall a \in A. \ f(a) \neq B \right)$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ (\forall a \in A. \ f(a) \neq B)$$

Constructive proof (\exists) :

$$B = \{a \in A \mid a \notin f(a)\}$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ (\forall a \in A. \ f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ \left(\forall a \in A. \ f(a) \neq B \right)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \not\in f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A. \ f(a) = B.$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ \left(\forall a \in A. \ f(a) \neq B \right)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \not\in f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A. \ f(a) = B.$$

 $Q: a \in B$?

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ (\forall a \in A. \ f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \not\in f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A. \ f(a) = B.$$

 $Q: a \in B$?

 $a \in B \iff a \notin B$

If $f: A \to 2^A$, then f is **not** onto.

对角线论证 (Cantor's diagonal argument).

If $f: A \to 2^A$, then f is **not** onto.

对角线论证 (Cantor's diagonal argument).

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

32 / 64

If $f: A \to 2^A$, then f is **not** onto.

对角线论证 (Cantor's diagonal argument).

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	• • •
3	1	0	0	1	0	• • •
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

If $f: A \to 2^A$, then f is **not** onto.

对角线论证 (Cantor's diagonal argument).

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

If $f: A \to 2^A$, then f is **not** onto.

对角线论证 (Cantor's diagonal argument) (以下仅适用于可数集合 A).

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

Functions as Relations

$$f|_X \qquad f(A) \qquad f^{-1}(B) \qquad f \circ g \qquad f^{-1}$$

Definition (Restriction)

The *restriction* of a function $f: A \to B$ to X is the function:

$$f|_X = \{(x, y) \in f \mid x \in X\}$$

Definition (Restriction)

The *restriction* of a function $f: A \to B$ to X is the function:

$$f|_X = \{(x, y) \in f \mid x \in X\}$$

It is unnecessary that $X \subseteq A$, though it is usually the case.

Definition (Restriction)

The *restriction* of a function $f: A \to B$ to X is the function:

$$f|_X = \{(x, y) \in f \mid x \in X\}$$

It is unnecessary that $X \subseteq A$, though it is usually the case.

$$f|_X: A \cap X \to B$$

$$\forall x \in A \cap X. \ f|_X(x) = f(x)$$

34 / 64

The *image* of X under a function $f: A \to B$ is the set

$$f(X) = \{ y \mid \exists x \in X. \ (x, y) \in f \}$$

The *image* of X under a function $f: A \to B$ is the set

$$f(X) = \{ y \mid \exists x \in X. \ (x, y) \in f \}$$

It is unnecessary that $X \subseteq \text{dom}(f) = A$, though it is usually the case.

The *image* of X under a function $f: A \to B$ is the set

$$f(X) = \{ y \mid \exists x \in X. \ (x, y) \in f \}$$

It is unnecessary that $X \subseteq \text{dom}(f) = A$, though it is usually the case.

$$f(X) = f(A \cap X)$$

The *image* of X under a function $f: A \to B$ is the set

$$f(X) = \{ y \mid \exists x \in X. \ (x, y) \in f \}$$

It is unnecessary that $X \subseteq \text{dom}(f) = A$, though it is usually the case.

$$f(X) = f(A \cap X)$$

$$f({a}) = {b}$$
 简记为 $f(a) = b$

35/64

魏恒峰 (hfwei@nju.edu.cn)

The *image* of X under a function $f: A \to B$ is the set

$$f(X) = \{ y \mid \exists x \in X. \ (x, y) \in f \}$$

$$y \in f(X) \iff \exists x \in X. \ y = f(x)$$

The *inverse image* of Y under a function $f: A \to B$ is the set

$$f^{-1}(Y) = \{x \mid \exists y \in Y. (x, y) \in f\}$$

The *inverse image* of Y under a function $f: A \to B$ is the set

$$f^{-1}(Y) = \{x \mid \exists y \in Y . (x, y) \in f\}$$

It is unnecessary that $Y \subseteq \operatorname{ran}(f)$, though it is usually the case.

The *inverse image* of Y under a function $f: A \to B$ is the set

$$f^{-1}(Y) = \{x \mid \exists y \in Y . (x, y) \in f\}$$

It is unnecessary that $Y \subseteq \operatorname{ran}(f)$, though it is usually the case.

$$f^{-1}(Y) = f^{-1}(Y \cap ran(f))$$

The *inverse image* of Y under a function $f: A \to B$ is the set

$$f^{-1}(Y) = \{x \mid \exists y \in Y. (x, y) \in f\}$$

It is unnecessary that $Y \subseteq \operatorname{ran}(f)$, though it is usually the case.

$$f^{-1}(Y) = f^{-1}(Y \cap ran(f))$$

$$f^{-1}(\{b\}) = \{a\}$$
 可简记为 $f^{-1}(b) = \{a\}$ 不能简记为 $f^{-1}(b) = a$

The *inverse image* of Y under a function $f: A \to B$ is the set

$$f^{-1}(Y) = \{x \mid \exists y \in Y . (x, y) \in f\}$$

$$x \in f^{-1}(Y) \iff f(x) \in Y$$

$$y \in f(X) \iff \exists x \in X. \ y = f(x)$$

$$x \in f^{-1}(Y) \iff f(x) \in Y$$

$$f:A\to B$$

$$a \in A_0 \implies f(a) \in f(A_0)$$

$$f:A\to B$$

$$a \in A_0 \implies f(a) \in f(A_0)$$

$$a \in A_0 \cap A \implies f(a) \in f(A_0)$$

Theorem (Properties of f and f^{-1})

$$f:A o B$$
 Affill A

- (i) f preserves only \subseteq and \cup :
 - $(1) \ A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$
 - (2) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
 - (3) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - (4) $f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$

$$f:A\to B$$

$$A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$$

$$f:A\to B$$

$$A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$$

对任意 b,

$$b \in f(A_1) \tag{1}$$

(4)

$$f: A \to B$$

$$A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$$

对任意 b,

$$b \in f(A_1) \tag{1}$$

$$\iff \exists a \in A_1. \ b = f(a) \tag{2}$$

(4)

$$f:A\to B$$

$$A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$$

对任意 b,

$$b \in f(A_1) \tag{1}$$

$$\iff \exists a \in A_1. \ b = f(a) \tag{2}$$

$$\Longrightarrow \exists a \in A_2. \ b = f(a) \tag{3}$$

(4)

$$f: A \to B$$

$$A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$$

对任意 b,

$$b \in f(A_1) \tag{1}$$

$$\iff \exists a \in A_1. \ b = f(a) \tag{2}$$

$$\Longrightarrow \exists a \in A_2. \ b = f(a) \tag{3}$$

$$\iff b \in f(A_2) \tag{4}$$

$$f: A \to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$f: A \to B$$
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

对任意 b,

$$b \in f(A_1 \cap A_2) \tag{1}$$

$$f: A \to B$$
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

对任意 b,

$$b \in f(A_1 \cap A_2) \tag{1}$$

$$\iff \exists a \in A_1 \cap A_2. \ b = f(a) \tag{2}$$

$$f: A \to B$$
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

对任意 b,

$$b \in f(A_1 \cap A_2) \tag{1}$$

$$\iff \exists a \in A_1 \cap A_2. \ b = f(a) \tag{2}$$

$$\Longrightarrow (\exists a \in A_1. \ b = f(a)) \land (\exists a \in A_2. \ b = f(a))$$
 (3)

(5)

魏恒峰 (hfwei@nju.edu.cn)

$$f: A \to B$$
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

对任意 b,

$$b \in f(A_1 \cap A_2) \tag{1}$$

$$\iff \exists a \in A_1 \cap A_2. \ b = f(a) \tag{2}$$

$$\Longrightarrow (\exists a \in A_1. \ b = f(a)) \land (\exists a \in A_2. \ b = f(a))$$
 (3)

$$\iff b \in f(A_1) \land b = f(A_2) \tag{4}$$

$$f: A \to B$$
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

对任意 b,

$$b \in f(A_1 \cap A_2) \tag{1}$$

$$\iff \exists a \in A_1 \cap A_2. \ b = f(a) \tag{2}$$

$$\Longrightarrow (\exists a \in A_1. \ b = f(a)) \land (\exists a \in A_2. \ b = f(a))$$
 (3)

$$\iff b \in f(A_1) \land b = f(A_2) \tag{4}$$

$$\iff b \in f(A_1) \cap f(A_2) \tag{5}$$

$$f: A \to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

对任意 b,

$$b \in f(A_1 \cap A_2) \tag{1}$$

$$\iff \exists a \in A_1 \cap A_2. \ b = f(a) \tag{2}$$

$$\Longrightarrow (\exists a \in A_1. \ b = f(a)) \land (\exists a \in A_2. \ b = f(a))$$
 (3)

$$\iff b \in f(A_1) \land b = f(A_2) \tag{4}$$

$$\iff b \in f(A_1) \cap f(A_2)$$
 (5)

Q: When does $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ hold?

43 / 64

$$f: A \to B$$
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

对任意 b,

$$b \in f(A_1 \cap A_2) \tag{1}$$

$$\iff \exists a \in A_1 \cap A_2. \ b = f(a) \tag{2}$$

$$\Longrightarrow (\exists a \in A_1. \ b = f(a)) \land (\exists a \in A_2. \ b = f(a))$$
 (3)

$$\iff b \in f(A_1) \land b = f(A_2) \tag{4}$$

$$\iff b \in f(A_1) \cap f(A_2) \tag{5}$$

Q: When does $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ hold?

f is injective.

$$f: A \to B$$
$$f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$$

$$f: A \to B$$
$$f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$$

对任意 b,

魏恒峰 (hfwei@nju.edu.cn)

$$b \in f(A_1) \setminus f(A_2) \tag{1}$$

$$f: A \to B$$
$$f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$$

对任意 b,

$$b \in f(A_1) \setminus f(A_2) \tag{1}$$

$$\iff b \in f(A_1) \land b \notin f(A_2) \tag{2}$$

$$f: A \to B$$
$$f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$$

对任意 b,

$$b \in f(A_1) \setminus f(A_2) \tag{1}$$

$$\iff b \in f(A_1) \land b \notin f(A_2)$$
 (2)

$$\iff (\exists a_1 \in A_1. \ b = f(a_1)) \land (\forall a_2 \in A_2. \ b \neq f(a_2)) \tag{3}$$

$$f: A \to B$$
$$f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$$

对任意 b,

$$b \in f(A_1) \setminus f(A_2) \tag{1}$$

$$\iff b \in f(A_1) \land b \notin f(A_2) \tag{2}$$

$$\iff (\exists a_1 \in A_1. \ b = f(a_1)) \land (\forall a_2 \in A_2. \ b \neq f(a_2)) \tag{3}$$

$$\iff b \in f(A_1 \setminus A_2) \tag{5}$$

$$f: A \to B$$
$$f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$$

对任意 b,

$$b \in f(A_1) \setminus f(A_2) \tag{1}$$

$$\iff b \in f(A_1) \land b \notin f(A_2) \tag{2}$$

$$\iff (\exists a_1 \in A_1. \ b = f(a_1)) \land (\forall a_2 \in A_2. \ b \neq f(a_2)) \tag{3}$$

$$\Longrightarrow \exists a \in A_1 \setminus A_2. \ b = f(a) \tag{4}$$

$$\iff b \in f(A_1 \setminus A_2) \tag{5}$$

Theorem (Properties of f and f^{-1})

$$f:A o B$$
 Affilially for the first of the second of the s

- (ii) f^{-1} preserves \subseteq , \cup , \cap , and \setminus :
 - $(5) B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$
 - (6) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
 - (7) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
 - (8) $f^{-1}(B_1 \setminus B_2) = f^{-1}(B_1) \setminus f^{-1}(B_2)$

$$f: A \to B$$

$$B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

$$f: A \to B$$

$$B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

对任意 a,

魏恒峰 (hfwei@nju.edu.cn)

$$a \in f^{-1}(B_1) \tag{1}$$

$$f: A \to B$$

$$B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

对任意 a,

$$a \in f^{-1}(B_1) \tag{1}$$

$$\iff f(a) \in B_1$$
 (2)

$$f: A \to B$$

$$B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

对任意 a,

$$a \in f^{-1}(B_1) \tag{1}$$

$$\iff f(a) \in B_1$$
 (2)

$$\Longrightarrow f(a) \in B_2$$
 (3)

$$f: A \to B$$

$$B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$$

对任意 a,

$$a \in f^{-1}(B_1) \tag{1}$$

$$\iff f(a) \in B_1$$
 (2)

$$\Longrightarrow f(a) \in B_2$$
 (3)

$$\iff a \in f^{-1}(B_2) \tag{4}$$

$$f: A \to B$$

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

$$f: A \to B$$

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

对任意 a,

$$a \in f^{-1}(B_1 \cap B_2) \tag{1}$$

$$f: A \to B$$

 $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

对任意 a,

$$a \in f^{-1}(B_1 \cap B_2) \tag{1}$$

$$\iff f(a) \in B_1 \cap B_2 \tag{2}$$

(5)

47/64

$$f: A \to B$$

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

对任意 a,

$$a \in f^{-1}(B_1 \cap B_2) \tag{1}$$

$$\iff f(a) \in B_1 \cap B_2 \tag{2}$$

$$\iff f(a) \in B_1 \land f(a) \in B_2$$
 (3)

$$f: A \to B$$

 $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

对任意 a,

$$a \in f^{-1}(B_1 \cap B_2) \tag{1}$$

$$\iff f(a) \in B_1 \cap B_2$$
 (2)

$$\iff f(a) \in B_1 \land f(a) \in B_2$$
 (3)

$$\iff a \in f^{-1}(B_1) \land a \in f^{-1}(B_2) \tag{4}$$

(5)

47/64

$$f: A \to B$$

 $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

对任意 a,

$$a \in f^{-1}(B_1 \cap B_2) \tag{1}$$

$$\iff f(a) \in B_1 \cap B_2 \tag{2}$$

$$\iff f(a) \in B_1 \land f(a) \in B_2$$
 (3)

$$\iff a \in f^{-1}(B_1) \land a \in f^{-1}(B_2) \tag{4}$$

$$\iff a \in f^{-1}(B_1) \cap f^{-1}(B_2) \tag{5}$$

Theorem (Properties of f and f^{-1})

$$f: A \to B$$

- (iii) f and f^{-1} :
 - $(9) \ A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$
 - (10) $B_0 \supseteq f(f^{-1}(B_0))$

$$f: A \to B$$

$$A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$$

$$f: A \to B$$

$$A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$$

对任意 b,

$$a \in A_0 \tag{1}$$

$$f: A \to B$$

$$A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$$

对任意 b,

$$a \in A_0 \tag{1}$$

$$\implies a \in A_0 \cap A$$
 (2)

$$f: A \to B$$

 $A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$

对任意 b,

$$a \in A_0 \tag{1}$$

$$\Longrightarrow a \in A_0 \cap A \tag{2}$$

$$\Longrightarrow f(a) \in f(A_0)$$
 (3)

(4)

魏恒峰 (hfwei@nju.edu.cn)

$$f: A \to B$$

$$A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$$

对任意 b,

$$a \in A_0 \tag{1}$$

$$\Longrightarrow a \in A_0 \cap A \tag{2}$$

$$\implies f(a) \in f(A_0)$$
 (3)

$$\iff a \in f^{-1}(f(A_0))$$
 (4)

Function Composition

魏恒峰 (hfwei@nju.edu.cn)

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$ $\operatorname{ran}(f) \subseteq C$

The *composite function* $g \circ f : A \to D$ is defined as

$$(g \circ f)(x) = g(f(x))$$

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$
$$\operatorname{ran}(f) \subseteq C$$

The *composite function* $g \circ f : A \to D$ is defined as

$$(g \circ f)(x) = g(f(x))$$

Definition (Composition)

The *composition* of relations R and S is the relation

$$R \circ S = \{(a,c) \mid \exists b : (a,b) \in S \land (b,c) \in R\}$$

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$ $\operatorname{ran}(f) \subseteq C$

The *composite function* $g \circ f : A \to D$ is defined as

$$(g \circ f)(x) = g(f(x))$$

Why not " $\exists b$ " as below?

Definition (Composition)

The *composition* of relations R and S is the relation

$$R \circ S = \{(a,c) \mid \exists b : (a,b) \in S \land (b,c) \in R\}$$

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Proof.

Theorem (Associative Property for Composition)

$$f: A \to B \quad g: B \to C \quad h: C \to D$$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Proof.

$$dom(h \circ (g \circ f)) = dom((h \circ g) \circ f)$$

$$\forall x \in A. \ (h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$$

$$(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$$

$$(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$$

$$(h \circ (g \circ f))(x) \tag{1}$$

$$= h((g \circ f)(x)) \tag{2}$$

$$= h(g(f(x))) \tag{3}$$

$$(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$$

$$(h \circ (g \circ f))(x) \qquad (1) \qquad ((h \circ g) \circ f)(x) \qquad (1)$$

$$=h((g \circ f)(x))$$
 (2) $=((h \circ g)(f(x)))$

$$= h(g(f(x)))$$
 (3) $= h(g(f(x)))$

$$f:A\to B$$
 $g:B\to C$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

$$f:A \to B$$
 $g:B \to C$

If f, g are injective, then $g \circ f$ is injective.

$$f: A \to B$$
 $g: B \to C$

If f, g are injective, then $g \circ f$ is injective.

$$\forall a_1, a_2 \in A. \ \left((g \circ f)(a_1) = (g \circ f)(a_2) \to a_1 = a_2 \right)$$

$$f: A \to B$$
 $g: B \to C$

If f, g are injective, then $g \circ f$ is injective.

$$\forall a_1, a_2 \in A. \ ((g \circ f)(a_1) = (g \circ f)(a_2) \to a_1 = a_2)$$

$$(g \circ f)(a_1) = (g \circ f)(a_2) \tag{1}$$

$$\iff g(f(a_1)) = g(f(a_2))$$
 (2)

(4)

$$f: A \to B$$
 $g: B \to C$

If f, g are injective, then $g \circ f$ is injective.

$$\forall a_1, a_2 \in A. \ ((g \circ f)(a_1) = (g \circ f)(a_2) \to a_1 = a_2)$$

$$(g \circ f)(a_1) = (g \circ f)(a_2) \tag{1}$$

$$\iff g(f(a_1)) = g(f(a_2))$$
 (2)

$$\Longrightarrow f(a_1) = f(a_2) \tag{3}$$

(4)

55/64

$$f: A \to B$$
 $g: B \to C$

If f, g are injective, then $g \circ f$ is injective.

$$\forall a_1, a_2 \in A. \ ((g \circ f)(a_1) = (g \circ f)(a_2) \to a_1 = a_2)$$

$$(g \circ f)(a_1) = (g \circ f)(a_2) \tag{1}$$

$$\iff g(f(a_1)) = g(f(a_2))$$
 (2)

$$\Longrightarrow f(a_1) = f(a_2) \tag{3}$$

$$\implies a_1 = a_2 \tag{4}$$

$$f:A\to B$$
 $g:B\to C$

- (i) If $g \circ f$ is injective, then f is injective.
- (ii) If $g \circ f$ is surjective, then g is surjective.

$$f:A \to B$$
 $g:B \to C$

If $g \circ f$ is surjective, then g is surjective.

$$f: A \to B$$
 $g: B \to C$

If $g \circ f$ is surjective, then g is surjective.

对任意 a_1, a_2 ,

$$g \circ f$$
 is surjective (1)

$$f: A \to B$$
 $g: B \to C$

If $g \circ f$ is surjective, then g is surjective.

对任意 a_1, a_2 ,

$$g \circ f$$
 is surjective (1)

$$\iff \forall c \in C. \ \exists a \in A. \ (g \circ f)(a) = c$$
 (2)

$$f: A \to B$$
 $g: B \to C$

If $g \circ f$ is surjective, then g is surjective.

对任意 $a_1, a_2,$

魏恒峰 (hfwei@nju.edu.cn)

$$g \circ f$$
 is surjective (1)

$$\iff \forall c \in C. \ \exists a \in A. \ (g \circ f)(a) = c$$
 (2)

$$\iff \forall c \in C. \ \exists a \in A. \ g(f(a)) = c \tag{3}$$

$$f: A \to B$$
 $g: B \to C$

If $g \circ f$ is surjective, then g is surjective.

对任意 a_1, a_2 ,

$$g \circ f$$
 is surjective (1)

$$\iff \forall c \in C. \ \exists a \in A. \ (g \circ f)(a) = c$$
 (2)

$$\iff \forall c \in C. \ \exists a \in A. \ g(f(a)) = c$$
 (3)

$$\Longrightarrow \forall c \in C. \ \exists b \in B. \ g(b) = c$$
 (4)

$$f: A \to B$$
 $g: B \to C$

If $g \circ f$ is surjective, then g is surjective.

对任意 a_1, a_2 ,

$$g \circ f$$
 is surjective (1)

$$\iff \forall c \in C. \ \exists a \in A. \ (g \circ f)(a) = c$$
 (2)

$$\iff \forall c \in C. \ \exists a \in A. \ g(f(a)) = c$$
 (3)

$$\Longrightarrow \forall c \in C. \ \exists b \in B. \ g(b) = c$$
 (4)

$$\iff g \text{ is surjective}$$
 (5)

Inverse Functions

Definition (Inverse)

Let $f: A \to B$ be a bijective function.

The *inverse* of f is the function f^{-1} : $B \to A$ defined by

$$f^{-1}(b) = a \iff f(a) = b.$$

Definition (Inverse)

Let $f: A \to B$ be a bijective function.

The *inverse* of f is the function f^{-1} : $B \to A$ defined by

$$f^{-1}(b) = a \iff f(a) = b.$$

信息量太大

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

60/64

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

f is invertible $\implies f$ is bijective

60/64

 $f:X\to Y$ is invertible if there exists $g:Y\to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

```
f is invertible \implies f is bijective g is a function \implies f is injective \operatorname{dom} g = Y \implies f is surjective
```

 $f:X\to Y$ is invertible if there exists $g:Y\to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

```
f is invertible \implies f is bijective g is a function \implies f is injective \operatorname{dom} g = Y \implies f is surjective
```

f is bijective $\implies f$ is invertible

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

f is invertible $\implies f$ is bijective g is a function $\implies f$ is injective $\operatorname{dom} g = Y \implies f$ is surjective

f is bijective $\implies f$ is invertible

To show that g defined above is indeed a function from Y to X.

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

By Contradiction

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

By Contradiction

$$f^{-1} \triangleq g$$

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

By Contradiction

$$f^{-1} \triangleq g$$

$$f(x) = y \iff f^{-1}(y) = x$$

$f: A \rightarrow B$ is bijective

(i)
$$f \circ f^{-1} = I_B$$

(ii)
$$f^{-1} \circ f = I_A$$

- (iii) f^{-1} is bijective.
- (iv) $g: B \to A \land f \circ g = I_B \implies g = f^{-1}$
- (v) $g: B \to A \land g \circ f = I_A \implies g = f^{-1}$

 $f: A \rightarrow B$ is bijective

(i)
$$f \circ f^{-1} = I_B$$

(ii)
$$f^{-1} \circ f = I_A$$

(iii) f^{-1} is bijective.

(iv)
$$g: B \to A \land f \circ g = I_B \implies g = f^{-1}$$

(v)
$$g: B \to A \land g \circ f = I_A \implies g = f^{-1}$$

The ways to find/check f^{-1} .

$f: A \to B$ is bijective

(i)
$$f \circ f^{-1} = I_B$$

(ii)
$$f^{-1} \circ f = I_A$$

- (iii) f^{-1} is bijective.
- (iv) $g: B \to A \land f \circ g = I_B \implies g = f^{-1}$
- (v) $g: B \to A \land g \circ f = I_A \implies g = f^{-1}$

The ways to find/check f^{-1} .

$$g = f^{-1} \circ (f \circ g) = f^{-1} \circ I_B = f^{-1}$$

Theorem (Inverse of Composition)

$$f:A \to B$$
 $g:B \to C$ are bijective

- (i) $g \circ f$ is bijective
- (ii) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Proof for (ii).

It suffices to check either one of the following identities:

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = I_A$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = I_C$$

$$f:A\to B$$
 $g:B\to A$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

$$f:A \to B \quad g:B \to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

You need to check both identities.

$$f: A \to B \quad g: B \to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

You need to check both identities.

Theorem

$$f:A \to B$$
 $g:B \to C$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

$$f: A \to B \quad g: B \to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

You need to check **both** identities.

Theorem

$$f:A \to B \qquad g:B \to C$$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

First show that f is bijective, and then use the Theorem.

Thank You!

Office 926 hfwei@nju.edu.cn