Date: May 21 Made by Eric

Goal

Theorem 1. (List of All finite field) Every finite field are of prime power order, and conversely, for all prime power $x = p^n$, there exists exactly one field of order x.

The theorem above is short and powerful, but it is no way simple. We partition the theorem into:

Part (A) Every field is of order of prime power.

Part (B) For all prime power $x = p^n$, there exists a field of order x.

Part (C) For all prime power $x = p^n$, there is only one finite field of order x.

Part (A)

Theorem 2. Every finite field \mathbb{F} is of prime characteristic.

Proof. Because $\mathbb F$ is finite, we know the characteristic is non-zero. Then we assume the characteristic of $\mathbb F$ is mn where m,n are greater than 1. Let $u=n\cdot 1\neq 0$ and observe that $m\cdot (u)=(mn)\cdot 1=0$ CaC

Theorem 3. Every finite field \mathbb{F} is of prime power order.

Proof. Let p be the characteristic of \mathbb{F} , and observe that $\{m\cdot 1|m\in\mathbb{Z}\}$ is a subfield of \mathbb{F} of order p. By Theorem of Lagarange, we know p divides the order of \mathbb{F} , so we wish to show that no other prime q divides the order of \mathbb{F} . Assume there exists some other prime q divides the order of \mathbb{F} . Notice that $\langle \mathbb{F}, + \rangle$ is a group of some order divided by q, so by First Sylow Theorem, we know there exists an element α of order q in group $\langle \mathbb{F}, + \rangle$. In other word, $q \cdot \alpha = 0$. Do division algorithm to q with p, to have q = np + r where $0 \le r < p$. Here, 0 < r because q is a prime, not divided by p. Then we see $0 = q \cdot \alpha = (np) \cdot \alpha + r \cdot \alpha = r \cdot \alpha$ CaC to p is the characteristic of \mathbb{F} .

Part (B): Existence

Lemma 4. Every finite field \mathbb{F} of power p^n contain a sub-field isomorphic to \mathbb{Z}_p , thus \mathbb{F} is isomorphic to a sub-field of $\overline{\mathbb{Z}_p}$

Proof. Check that $\{m \cdot 1 | m \in \mathbb{Z}\}$ is a sub-field and is isomorphic to \mathbb{Z}_p .

Lemma 5. There are p^n amount of distinct zeros in $\overline{\mathbb{Z}_p}$ of the polynomial $x^{p^n} - x \in \mathbb{Z}_p[x]$

Proof. Let $f(x) = x^{p^n} - x \in \overline{\mathbb{Z}_p}$. We wish to show that every zero α of f(x) are of multiplicity 1.

It is obvious that 0 is a zero of f(x) of multiplicity 1. Assume $\alpha \neq 0$ and $\alpha \in \overline{\mathbb{Z}_p}$ is a zero of f(x) of multiplicity greater than 1. Observe

$$x^{p^n} - x = x(x^{p^n - 1} - 1) (1)$$

Because $\alpha \neq 0$, we know $\alpha^{p^n-1}-1=0$. In other words, $\alpha^{p^{n-1}}=1$. Then

$$f(x) = x^{p^n} - x = x(x^{p^{n-1}} - 1) = x(x^{p^{n-1}} - \alpha^{p^{n-1}})$$
 (2)

$$= x(x - \alpha)(x^{p^{n}-2} + \alpha x^{p^{n}-3} + \alpha^{2} x^{p^{n}-4} + \dots + \alpha^{p^{n}-2})$$
 (3)

Because α is of multiplicity greater than 1, we should see $g(x):=x(x^{p^n-2}+\alpha x^{p^n-3}+\alpha^2 x^{p^n-4}+\cdots+\alpha^{p^n-2})=\frac{f(x)}{(x-\alpha)}$, satisfy $g(\alpha)=0$. Yet, if we actually calculate $g(\alpha)=(p^n-1)\cdot\alpha(\alpha^{p^n-2})=(p^n-1)=\alpha^{p^n-1}=(p^n-1)\cdot 1=-1$, we will see CaC.

Theorem 6. The zeros in $\overline{\mathbb{Z}_p}$ of the polynomial $x^{p^n} - x \in \mathbb{Z}_p[x]$ constitute a field of order p^n

Proof.

$$K := \{ x \in \overline{\mathbb{Z}_p} | x^{p^n} - x = 0 \} \tag{4}$$

By Lemma 5, we know $|K|=p^n$, so it only remains to show that K is a sub-field.

Arbitrarily pick $\alpha, \beta \in K$, and observe

$$(\alpha + \beta)^p = \alpha^p + \binom{p}{1} \cdot \alpha^{p-1}\beta + \dots + \binom{p}{1} \cdot \alpha\beta^{p-1} + \beta^p \tag{5}$$

Notice that the $\overline{\mathbb{Z}_p}$ is an extension of $\overline{\mathbb{Z}_p}$, which means, the 1 in $\overline{\mathbb{Z}_p}$ is exactly the 1 in $\overline{\mathbb{Z}_p}$. The enable us to deduce that $\overline{\mathbb{Z}_p}$ is of characteristic p by observing $p \cdot 1 = 0 \in \overline{\mathbb{Z}_p}$. Notice that $\forall 1 \leq x < p, p | \binom{p}{x}$, so we deduce

$$(\alpha + \beta)^p = \alpha^p + \beta^p \tag{6}$$

We now use induction to show that $\alpha + \beta \in K$. Suppose $(\alpha + \beta)^{p^m} = \alpha^{p^m} + \beta^{p^m}$, which is true when m = 1. Observe

$$(\alpha + \beta)^{p^{m+1}} = [(\alpha + \beta)^{p^m}]^p = (\alpha^{p^m} + \beta^{p^m})^p \tag{7}$$

$$=\alpha^{p^{m+1}} + \binom{p}{1} \cdot (\alpha^{p^m})^{p-1} \beta^{p^m} + \dots + \binom{p}{1} \cdot \alpha^{p^m} (\beta^{p^m})^{p-1} + \beta^{p^{m+1}} = \alpha^{p^{m+1}} + \beta^{p^{m+1}}$$

(8)

and observe

$$(\alpha + \beta)^{p^n} - (\alpha + \beta) = \alpha^{p^n} - \alpha + \beta^{p^n} - \beta = 0 \text{ (done)}$$
(9)

Notice that because $\alpha, \beta \in K$, so we know $\alpha^{p^n} = \alpha$ and $\beta^{p^n} = \beta$. Then $(\alpha\beta)^{p^n} - \alpha\beta = \alpha^{p^n}\beta^{p^n} - \alpha\beta = \alpha\beta - \alpha\beta = 0$. In other words, $\alpha\beta \in K$. It remains to show $-\alpha \in K$ and $\alpha^{-1} \in K$. Observe

$$(-\alpha)^{p^n} - (-\alpha) = -(\alpha^{p^n} - \alpha) = 0 \text{ if } p > 2$$
 (10)

$$(-\alpha)^{2^n} - (-\alpha) = \alpha^{2^n} + \alpha =_{\alpha}^{2^n} - \alpha = 0$$
 because $\overline{\mathbb{Z}}_2$ is of characteristic 2 (11) (done)

$$\alpha^{p^n} = \alpha \implies \alpha^{-p^n} - \alpha^{-1} \implies (\alpha^{-1})^{p^n} - \alpha^{-1} = 0 \text{ (done)}$$
 (12)

Part (C): Uniqueness

Theorem 7. For all prime power $x = p^n$, there is only one finite field of order x.

Proof. Suppose \mathbb{E} , \mathbb{F} are two field of order p^n . Here, we denote $\mathbb{E}' = \{m \cdot 1_{\mathbb{E}} | m \in \mathbb{Z}\}$ and $\mathbb{F}' = \{m \cdot 1_{\mathbb{F}} | m \in \mathbb{Z}\}$, where $1_{\mathbb{E}}$ and $1_{\mathbb{F}}$ stands for the unity of \mathbb{E} and \mathbb{F} .

Because $\langle \mathbb{E}^*, * \rangle$ and $\langle \mathbb{F}^*, * \rangle$ are cyclic, we know there exists $\alpha \in \mathbb{E}^*, \beta \in \mathbb{F}^*$, such that $\langle \mathbb{E}^*, * \rangle = \langle \alpha \rangle$ and $\langle \mathbb{F}^*, * \rangle = \langle \beta \rangle$. This enable us to deduce $\mathbb{E} = \mathbb{E}'(\alpha)$ and $\mathbb{F} = \mathbb{F}'(\beta)$. Denote $\operatorname{irr}\langle \alpha, \mathbb{E}' \rangle$ by $f(x) \in \mathbb{E}'[x]$, and denote $\operatorname{irr}\langle \beta, \mathbb{F}' \rangle$ by $g(x) \in \mathbb{F}'[x]$. We will complete the proof by showing

$$\mathbb{E} = \mathbb{E}'(\alpha) \simeq \mathbb{E}'[x]/\langle f(x)\rangle \simeq \mathbb{F}'[x]/\langle g(x)\rangle \simeq \mathbb{F}'(\beta) = \mathbb{F}$$
 (13)

Let $\phi: \mathbb{E}'[x]/\langle f(x)\rangle \to \mathbb{E}'(\alpha)$ be defined by $\langle f(x)\rangle + p(x) \mapsto p(\alpha)$. We first show ϕ is an isomorphism. Then the symmetric part of proof about \mathbb{F} can be done in exactly same fashion. For abbreviation, we denote $\langle f(x)\rangle + p(x)$ by [p(x)], and so forth. The following two equations finish the work of showing ϕ is a homomorphism.

$$\phi([p(x)]) + \phi([q(x)]) = p(\alpha) + q(\alpha) = (p+q)(\alpha) = \phi([(p+q)(x)])$$
 (14)

$$\phi([p(x)])\phi([q(x)]) = p(\alpha)q(\alpha) = (pq)(\alpha) = \phi([(pq)(x)]) \tag{15}$$

 ϕ is onto, since every element y in $\mathbb{E}'(\alpha)$ is an output of a polynomial $r(x) \in \mathbb{E}'[x]$ with input α , so we know $\phi([r(x)]) = y$.

To see ϕ is one-to-one, observe

$$\phi([p(x)]) = \phi([q(x)]) \implies (p - q)(\alpha) = 0 \tag{16}$$

Because $f(x) = \operatorname{irr}\langle \alpha, \mathbb{E}' \rangle$ is the smallest polynomial in $\mathbb{E}'[x]$ that send α to 0, we know f(x)|(p-q)(x). This indicates $(p-q)(x) \in \langle f(x) \rangle$, which shows

$$\langle f(x) \rangle + p(x) = \langle f(x) \rangle + q(x)$$
. (done)

Notice that because $\mathbb{E}'\simeq \mathbb{F}'$, one can easily deduce $\mathbb{E}'[x]\simeq \mathbb{F}'[x]$. Let $\psi:\mathbb{E}'[x]/\langle f(x)\rangle\to \mathbb{F}'[x]/\langle g(x)\rangle$ be defined by $\langle f(x)\rangle+p(x)\mapsto \langle g(x)\rangle+\mu(p)(x)$ where μ is an isomorphism from $\mathbb{E}'[x]$ to $\mathbb{F}'[x]$. We now show ψ is an isomorphism. Again we use [p(x)] to denote $\langle f(x)\rangle+p(x)$ and use $[r(x)]_{\mathbb{F}}$ to denote $\langle g(x)\rangle+r(x)$

$$\psi([p(x)]) + \psi([q(x)]) = [(\mu(p))(x)]_{\mathbb{F}} + [(\mu(q)(x))]_{\mathbb{F}}$$
(17)

$$= [(\mu(p) + \mu(q))(x)]_{\mathbb{F}} = [\mu(p+q)(x)]_{\mathbb{F}}$$
(18)

$$= \psi([(p+q)(x)]) = \psi([p(x)] + [q(x)]) \tag{19}$$

$$\psi([p(x)])\psi([q(x)]) = [(\mu(p))(x)]_{\mathbb{F}}[(\mu(q)(x))]_{\mathbb{F}}$$
(20)

$$= [(\mu(p)\mu(q))(x)]_{\mathbb{F}} = [\mu(pq)(x)]_{\mathbb{F}}$$
(21)

$$= \psi([(pq)(x)]) = \psi([p(x)][q(x)]) \tag{22}$$

The above two equations show that ψ is a homomorphism. Notice that we have known $\mathbb{E}'[x]/\langle f(x)\rangle \simeq \mathbb{E}$ and $\mathbb{F}'[x]/\langle g(x)\rangle \simeq \mathbb{F}$, where \mathbb{E} and \mathbb{F} are of the same order, so to show ψ is an isomorphism, it only remains to show that ψ is onto.

This is actually obvious if we strips off layers of isomorphism. For all $\langle g(x) \rangle + r(x) \in \mathbb{F}'[x]/\langle g(x) \rangle$, because $r(x) \in \mathbb{F}'[x]$ and μ is an isomorphism from $\mathbb{E}'[x]$ to $\mathbb{F}'[x]$, we know there exists $d(x) \in \mathbb{E}'[x]$ such that $\mu(d(x)) = r(x)$. Then we can simply pick $\psi(\langle f(x) \rangle + d(x)) = \langle g(x) \rangle + (\mu(d))(x) = \langle g(x) \rangle + r(x)$. (done)