SURE-Val:

Safe Urban Relevance Extension and Validation

Motivation

Automated driving

- Safety assurance
- Typical Sense-Plan-Act architecture
- Modular evaluation/validation
- Act requirements are specified

Open questions

- How to define relevance for automated driving?
- How to validate relevance?

→ How to know we have a valid model for relevance?

Image: https://www.nuscenes.org/static/media/road-750h.c22d47a4.webp

Related Work: Relevance

Heuristics

- Arbitrary criteria
- Geometric criteria
- Human perception on sensor data

Formal Approaches

Formal specification of driving task

Planner Based

- Relevance as downstream impact
- Neural planner lacks interpretability and validity

Image: https://www.highd-dataset.com/static/img/titelvideo_MomentHighD.5174a14.png

Related Work: Validation

Problems

- Incompatible approaches and results
- Validation methods insufficient and lack of validity
- Planner based restricted to single implementation
- Transfer from formal specification to perception

State of the Art

- No validation methods available
- Validation of planners challenging

Relevance Concept

Goals

- Conservative estimate for object detection relevance
- Closed form solution
- Minimum assumptions about scenario
 - No road
 - No ego/object intentions

Principles

- (1) Always assume the worst case
- (2) If worst case is implausible introduce variable as contract

Formal Approach

- Specify minimum system
- Specify use case
- Decompose into functional scenarios
- Identify behavioral requirements

Relevance Concept

Use Case Decomposition

- Distinguishing Scenarios
- Radial-Tangential
- Pairwise Interaction
- Superposition Principle

Validation: Methodology I

Prior validation

- No methodology available
- Argumentations and planner-based approaches not reconciled

Proposed method

- Interpretable relevance with argumentation
- Motion Prediction DNN
 - Proxy for human behavior
 - Performance can be validated
 - Open-loop and offline evaluation
- Analyze impact of removing objects
 - Correct relevance should not impact prediction

Validation: Methodology II

Problem

- Inherent uncertainty in prediction task
- Typical outputs discrete trajectories
- Probabilistic predictions not verifiable
- Single scenario not interpretable

Proposed solution

- Consider prediction performance
- Global evaluation across dataset
- Empirical cumulative distribution function of errors
- Compare two error distributions

Validation: Methodology III

Problem

- What constitutes significant difference?
- All distributions visually similar

Proposed solution

- Statistical test for similarity
- Likelihood of two observations belonging to same underlying distribution
- Considers available data
- Multiple runs for non-determinism
- Plot boxplots of p-values

Validation: Verification and Results

Validation

- Verify with implausible criteria
- All-All (A-A) as baseline for fluctuation

Results

- Same GT inputs show fluctuation
- Remove all objects
- Remove 5% objects in front of vehicle
- Remove 10% irrelevant objects
- → Validation identifies invalid inputs
- → Validation supports results

Discussion & Conclusion

Validation Procedure

- Novel method based on motion prediction DNN
- Reconciles analytic criteria with context aware DNN
- Verified sufficient sensitivity

Relevance

Derived interpretable model for relevance confirmed by validation

Limitations

- Validation dataset does not contain near-accidents
- Sensitivity of validation procedure unknown

Outlook

Simulator studies and critical scenarios

