AD-A183 289 MODIFICATION OF LUBRICANT TRACTION HEASURING DEVICE(U) 1/1
UNIVERSAL ENERGY SYSTEMS INC DAYTON OH S K SHARMA
16 JAN 87 AFWAL-TR-86-4831 F33615-82-C-58081
F/G 11/8
NL

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

OTTE FILE COPY

AFWAL-TR-86-4031

MODIFICATION OF LUBRICANT TRACTION MEASURING DEVICE

Shashi K. Sharma Universal Energy System, Inc. 4401 Dayton-Xenia Road Dayton, OH 45432

January 1987

Final Report for Period October 1983 - July 1984

Approved for public release; distribution unlimited

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

UNCLA	22	TF	TE	n
OHCE	-		-1	v

A183289

ECURITY CLASSIFICATION OF THIS PAGE

				REPORT DOCUME	NTATION PAGE	E		
1a REPORT	SECURITY C	LASSIFICA	TION		16. RESTRICTIVE M	ARKINGS		
	ASSIFIED		·					
28. SECURI	TY CLASSIFIC	CATION AU	THORITY		3. DISTRIBUTION/A			
T. OFCI AS	SIFICATION	DOWNGRA	DING SCHE	TUR E	release.	or bubile r	elease; dist	ribution
20. DECEN	Sir ich i ion,				l'elease,			
4. PERFORI	MING ORGAN	IZATION R	EPORT NUM	BER(S)	5. MONITORING OR	GANIZATION R	EPORT NUMBER(S)	
None					AFWAL-TR-86			
	F PERFORMI		IZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONIT	FORING ORGAN	IZATION	
1	rsal Ener ms, Inc.	gy			Materials I	Laboratory	(AFWAL/MLBT)	
	S (City, State	and ZIP Cod	le)	<u></u>	7b. ADDRESS (City,	State and ZIP Cod	le)	
4401	Dayton-Xe	nia Roa	d		Air Force W	Vright Aero	nautical Lab	oratories
	n, Ohio				AFSC	,		
							он <u>45433-</u> 6	
	F FUNDING/	SPONSORIN	IG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	NSTRUMENT ID	ENTIFICATION NU	MBER
	ials Labo	ratorv		AFWAL/MLBT	F33615-82-0	C-5001		
	SS (City, State		le)		10. SOURCE OF FUN	NDING NOS.		
					PROGRAM	PROJECT	TASK	WORK UNIT
					ELEMENT NO.	NO.	NO.	NO.
						ł		
Table 6	include Securi	iy Classificati	Modif	ication of	61102F	2307	Pl	₹6
	ant Tract		suring L	evice	<u> </u>	<u> </u>	<u> </u>	·
	ni K. Sha							
13a TYPE	F REPORT		136. TIME C		14. DATE OF REPOR			TAUC
Fin			FROM 10) -83 то <u>7-84</u>	1987 Janua	ary 16	45	
16. SUPPLE	MENTARY N	OTATION						
17	COSATI	CODES		18. SUBJECT TERMS (C	ontinue on reverse if ne	cessary and identi	ify by block number!	
FIELD	GROUP	SUE	. GR.	7				
11	08	ļ. <u></u>		Traction Rig Disc Load Ca				
14	02			<u> </u>				
19. ABSTRA	ACT (Continue	on reverse if	necessary and	d identify by block number	r)			
				chanical proble				
				nh April 1984, a				
SOLV	e them.	The cal	ibration	of disc load v	ersus the appl	lied load i	s also repor	rted.
20 DISTRI	SUTION/AVA	LABILITY	OF ARSTRA		21. ABSTRACT SECU	IBITY CLASSIC	CATION	
					· I		CATION	
UNCLASSIF	IED/UNLIMI	TED 🔀 SA	ME AS RPT.	DTIC USERS	UNCLASSIFIE	ED		
22ª NAME	OF RESPONS	BLE INDIV	IDUAL		22b TELEPHONE NI (Include Area Co		22c OFFICE SYME	30 L
B. D	. McConne	211			(513) 255-90	033	AFWAL/MI	BT

TABLE OF CONTENTS

		PAGE
1.0	INTRODUCTION	1
2.0	TRACTION RIG DESCRIPTION	2
3.0	PROBLEMS AND MODIFICATIONS	8
	3.1 Torque Sensor Male Spline	8
	3.2 Test Disc Retaining Nut Failure	8
	3.2.1 Failure	8
	3.2.2 Failure Analysis 3.2.3 Remedies/Modifications	16 16
	3.3 Translating Spindle Support Mechanism	
4.0	DISC LOAD CALIBRATION, REAR END OF TRANSLASPINDLE RESTRAINED	ATING 21
	4.1 Calibration, Gear Coupling and Face Plate Removed	22
	4.1.1 Raw Data 4.1.2 Reduced Data	23 24
	4.2 Calibration, Gear Coupling and Face Plate Attached	22
	4.2.1 Raw Data 4.2.2 Reduced Data	25 26
5.0	DISC LOAD CALIBRATION, REAR END OF TRANSLASPINDLE NOT RESTRAINED	ATING 38

DTIC	b acal o		
By Dot#	ution/		
	va rability	Codes	
List	LAVID OF Spec		
A-1			

Accesion For

LIST OF ILLUSTRATIONS

FIGURE		PAGE
2.1	Simple Two Disc Design for the Study of Lubricant Characteristics	3
2.2	Traction Rig, General Assembly	4
2.3a	Photograph of Traction Rig Apparatus	5
2.3b	Photograph of Traction Rig Apparatus	6
2.4	Support Spindle Assembly	7
3.1a	Torque Sensor Bracket Assembly	9
3.1b	Parts List, Torque Sensor Bracket Assembly	10
3.2	Test Disc Mounting Arrangement	11
3.3	Test Disc Retaining Nut, Original	12
3.4	Test Disc Retaining Nut, Modified	13
3.5	High Speed Test Disc Support Shaft	14
3.6	Inboard Solder Ring	15
3.7	Tie Bolt	17
3.8	Translating Spindle Support, Deflection Test	20
4.1	Translating Spindle Support Mechanism Set Up	27
4.2	Disc Load Calibration, Set Up	28
4.3	Disc Load Calibration, Set Up	29
4.4	Disc Load Calibration, Set Up	30
4.5	Disc Load Calibration, Set Up	31
4.6	Digital Voltmeter, Applied Load	32
4.7	Test Block (Fixed Spindle)	33
4.8	Test Block (Translating Spindle	34
4.9	Disc Load Cell Calibration	35
4.10	Test Enclosure	36
4.11	Calibration Curve, Rear End of Translating Spindle Restrained	37

LIST OF ILLUSTRATIONS

FIGURE		PAGE
5.1	Calibration Curve, Rear End of Translating Spindle Not Restrained	39

1.0 INTRODUCTION

Lubricant Traction Measuring Device (Traction Rig) in the AFWAL Materials Laboratory (AFWAL/MLBT) was designed and manufactured by Shaker Research Corporation, Ballston Lake, New York under Air Force Contract F33615-79C-5051. The description of the original design can be found in R. L. Smith's "Development of a Lubricant Traction Measuring Device," AFWAL-TR-81-4102, Materials Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, September, 1981.

In the original design, the operation of the traction rig was primarily manual with provisions for automatic data logging but without anticipating and traction rig operation was completely automated and computerized by the University of Dayton Research Institute under the Air Force contract No. F33615-82-C-5019. The detailed description of these systems are listed in UDR-TR-84-19, dated 1 December 1983.

Other modifications made to the original equipment are listed in Bruce Schreiber's "Traction Rig Operation/Modifications/
Specification," University of Dayton Research Institute, Dayton,
Ohio report #UDR-TR-83-125, October 1983.

Mechanical difficulties were also encountered during operation of the traction rig. Original torque sensor (0-100 in-1b) was replaced with a 150-in-oz capacity torque sensor to improve accuracy of measurements. Gear coupling connecting the translating spindle and the transmission failed due to excessive misalignment and had to be replaced. The above changes took place before October 1983.

The purpose of this document is to record the mechanical problems faced in operation of the traction rig from October 1983 to April 1984 and the modification carried out to solve them.

Calibration of disc load versus the applied load is also reported.

2.0 TRACTION RIG DESCRIPTION

One Torque Sensor

Traction Rig is designed around the use of two independently driven crowned cylinderical discs to impinging parallel spin axis, as shown schematically in Figure 2.1.

A plan view of traction apparatus is shown in Figure 2.2. Photographs of the traction rig are shown in Figure 2.3a and 2.3b. The basic mechanical apparatus consists of the following:

a.	Two Spindles for Mounting Test Discs (Figure 2.4)	Item #4 in Figure 2.2
b.	Two Test Discs	Item #24 in Figure 2.4
c.	One Pneumatic Loading Mechanism	Item #61 in Figure 2.2
d.	One Applied Load Sensor	Item #63 in Figure 2.2

- f. Two Drive Transmissions with Motors
- g. Gear Coupling Connecting Spindle Item #15 in Figure 2.2 to transmission

Item #62 in Figure 2.2

Assembly drawing of spindles is shown in Figure 2.4. Spindle G2 is fixed whereas spindle G1 can translate horizontally on linear ball bushings and guide shafts (Items 30 and 31/Figure 2.2) and provides the desired normal load via the pneumatic loading system. The spindle is connected to the drive transmission through a gear coupling. (Item 15, Figure 2.2)

A peristaltic-type variable speed pump is used to circulate the lubricant between the test enclosure bottom and the inlet to test discs. A heating element wrapped around the lubricant inlet tubing maintains the lubricant inlet temperature.

TRACTION COEFFICIENT = TANGENTIAL FORCE
NORMAL FORCE

Figure 2.1. Simple Two-Disk Design for the Study of Lubricant Characteristics

Figure 2.2. Traction Rig, General Assembly.

CHIEF CONTRACTOR

DIVINON MAKKING PREPERSONANDANDANDANDAN KAKKIKIN KAKKING SAKKING PERSONAN PERSONAN PERSONAN

Figure 2.4. Support Spindle Assembly.

ASSECTION TOTALISM DESCRIPTIONS SERVINGED RESERVINGS RESERVED RESERVINGS

3.0 PROBLEMS AND MODIFICATIONS

The problems encountered with the traction equipment, their analysis, and modifications made to solve them are listed in detail.

3.1 Torque Sensor Male Spline

Torque sensor bracket assembly is shown in Figure 3.1. A # 6-32, 0.18-inch-long set screw (Item 10) holds the male spline (Item A) onto the torque sensor shaft. The set screw came loose causing excessive play between torque sensor shaft and the male spline.

The set screw was tightened after applying Loctite 290 to its threads.

3.2 Test Disc Retaining Nut Failure

3.2.1 Failure

Figure 3.2 shows the arrangement used for mounting the test disc onto the translating spindle. Similar arrangement is used for the fixed spindle except that the spacer is not used. Note that Figure 2.4 does not show the actual mounting arrangement used. The original Retaining Nut is shown in Figure 3.3 and Figure 3.4 shows the Modified Retaining Nut.

During one of the experiments, the Retaining Nut on the Translating Spindle came loose, causing excessive chattering noise. The test was discontinued and the following damage was noticed.

- (1) Helicoil threads in the Retaining Nut (Figure 3.3) on the Translating Spindle and Fixed Spindle damage.
- (2) Both test discs (52100 steel, 35" crown radius, 1.125" dia., 0.500" thick) showed tremendous amounts of wear.
- (3) Plasma spray on Translating spindle (Figure 3.5) chipped off at some places, along with some scratches due to spinning of the test disc on the spindle.
- (4) Glass ceramic on the inboard solder ring was damaged. (Item 1/Figure 3.6)

CONTROLLE DESCRIBION ROSCIONA DO DO DO DESCRIBOR DE CONTROLA DE CO

Figure 3.1a. Torque Sensor Bracket Assembly.

	LESS			ALE 55	; ;	STAINLESS		STAINLESS					-		AL	A S S S			REV
	18-8 STAINLESS	BUNA-N		18-8 STAINLE		18-8 STAIN		18-8 STAIN							. MATERIAL	SENSOR - ASSY	G NUMBER:	0 0	OF
	2A , 3,6, set screw	4 1.D.	ZA x % LONG	ND SCREW	A . 1 1/2 LONG	AD SCREW	A * SLONG	ND SCREW	SPLINE	INE	SENSOR	ASSOC	END	T BODY	TION	; SRQUE RACKET	DRAWING 311-	5	SHEET
	6-32 UNF-2A × 316 SOCKET HEAD SET SCREW	0-RING 14 1. D.	10-32 UNF-ZA x & LONG	SOCKET HEAD SCREW	3/8-24 UNF-2A" 1 1/2 LONG	SOCKET HEAD SCREW	36-24 UNF-2A \$ LONG	SOCKET HEAD SCREW	FEMALE SPLINE	MALE SPLINE	TORQUE	-LEBOW ASSOC	BRACKET	BRACKET	DESCRIPTION	TITIE: TOR BRA	SCALE:	·	
									311 - 0-078	311 - 6-077		1602-200	2-620-Q-	311 - 3-079-1	PART. NUMBER,	PEC	125 ORNERS RS	20 FEB 83	
-	0	6	i	00	 	7	 	9	\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	4		3	2	_	ITEM	IONAL DTHERWI S: 2 PL 3 PL NS	FINISH SHARP C ALL BUR	" whie	
-		4		4		9	! !	<u>د</u>		! _			_		QUANTITY	DIMENSIONAL TOL UNLESS OTHERWISE S DECIMALS: 2 PLACES 3 PLACES FRACTIONS ANGLES	SURFACE FINISH REMOVE SHARP CORNERS REMOVE ALL BURRS	DRAWN: 7	

Parts List, Torque Sensor Bracket Assembly. Figure 3.1b.

Figure 3.2. Test Disc Mounting Arrangement.

HELICOIL INSERT

MATERIAL - ALUMINUM

Figure 3.3. Test Disc Retaining Nut, Original.

MATERIAL: - 17-4 PH H-1100 STAINLESS STEEL

Figure 3.4. Test Disc Retaining Nut, Modified.

Test Disk and Support Shaft

Figure 3.5. High Speed Test Disk Support Shaft.

2	ATE	RIAL LIST
Š	QTY	DESCRIPTION
	/	CORNING "NACOR" MACHINA BLE CERAMIC
7	1	BRASS - COA 260 \$ HARB

NOTE: BOND ITEM "I TO ITEM "Z WITH EASTMAN 310, OR HIGH TEMPERATURE EPOXY. - MACHINE TO SIZE.

RESEARCH CORPORATION SHAKER

SOLDER RING SOLDER RING SCALE DRAWING NO TITLE SCALE

Inboard Solder Ring Figure 3.6.

SSESSORIA PROPERLA FORMORIA LONGINERA DIREGGIA ASSESSORIA PERSONNA INFERENCIA PROPERTA PORTORIA PERSON

3.2.2 Failure Analysis

The following might have caused the above mentioned failures.

(1) Helicoil threads in the retaining nut on the translating spindle were damaged due to over tightening, reduced thread engagement and absence of any locking mechanism.

Since no torque wrench was used to tighten the retaining nut, these could have been easily overtorqued. Recommended torque for this helicoil insert (per Helicoil bulletin 1000) is only 30 in-lb. The Tie bolt is made out of 4340 Alloy Steel Rc28-32, for which minimum tensile strength is approximately 120,000 psi (Figure 3.2 and 3.7). Catalog recommended torque for 1/4 - 28 threads for such material is 90 in-lb (see Unbrako Catalog page 9). A gross mismatch between the strengths of tie bolts threads and the retaining nut threads is clearly evident.

The length of the helicoil insert in the retaining nut should have been 1.50 x diameter instead of hardly 1 x diameter as designed.

Thread engagement between the tie bold and the retaining nut, on translating spindle was further reduced due to the use of 0.056 thick spacer (Figure 3.2) between the solder ring and the test disc. This spacer was used to align the two test disks with each other. Moreover, the thickness of the spacer varied from 0.056 to 0.0575 which meant the faces were not parallel, thereby affecting the clamping of the test disc.

(2) Other damage listed in 3.2.1 was a result of retaining nut failure.

3.2.3 Remedies/Modifications

- (1) New tie bolt (Figure 3.7) was made and installed in the translating spindle. Conducting wire (Item 51) and shrink tubing (Item 53) in Figure 2.4 were not installed.
- (2) New retaining nuts were made for both spindles, using 17-4 PH-H1100 stainless steel (Figure 3.4).

Figure 3.7. Tie Bolt.

POLICY IN THE CONTROL OF THE CONTROL

SOSTINE LESSON CONTRACTOR OF CONTRACTOR DESCRIPENTATIONS OF THE CONTRACTOR OF THE CO

- (3) We recommend that during mounting of retaining nut onto the spindle, the threads on the tie bolt and retaining nut should be thoroughly cleaned and a drop of Loctite 290 be applied to the tie bolt threads. The retaining nuts should be torqued to 80-90 in-lb.
- (4) To increase thread engagement, the 0.056-inch thick spacer was eliminated. To align the test discs, 0.056-inch thick spacers were installed between translating spindle body and support brackets (Figure 3.8 and 4.1).

3.3 Translating Spindle Support Mechanism

The normal load is applied to the translating spindle by means of pneumatic loading mechanism as shown in Figure 2.2. applied load is measured by load cell (Item 63/Figure 2.2). ideal conditions, all of the applied load should be transmitted to the test discs. Gear coupling (Item 15/Figure 2.2) should not experience any side load. Due to some misalignment between the line of application of the load and the point of contact on the test discs and other unknown causes (deflection of various components, etc.) a moment is created by the applied load. counterbalance this moment, a side force and lateral misalignment is caused in the gear coupling. The conditions get worse as the load and speed are increased. The excessive vibrations and side loads may have been the cause of a previous failure of a gear coupling as mentioned in section 1.0. With the gear coupling disconnected, an applied load of 150 lbf created a lateral movement of 0.010 inch at the front guide bushing and 0.070 inch at the rear guide bushing (Figure 3.8).

Apart from affecting the mechanical stability of the equipments, this setup created an error in the collected data. With the gear coupling sharing some of the applied load, the actual normal force between the test discs was NOT equal to the applied load. So any data collected under this setup should be corrected using the actual disc load and not the applied load. Disc load calibration was carried out under this setup and is reported in section 5.0.

To improve the mechanical stability of the system, we decided to restrain the lateral movement of the rear end of the spindle. A "Holo-krome two piece Clamp Tite" locking collar (1.00-in Bore) was used on the rear guide shaft as shown in Figure 4.1. To achieve repeatability for each new test or a new pair of test discs, the following setup procedure was established.

- o Remove the gear coupling (Item 15/Figure 2.2) from the translating spindle.
- o Mount the test discs on each spindle and tighten the retaining nuts to 80-90 in-1b after applying Loctite 290 to its threads.
- o Apply a normal load of 6 lbf to the test discs, through pneumatic loading mechanism.
- o Adjust the length of coil spring on the front guide shaft to 1.25 in. as shown in Figure 4.1.
- o Using a dial indicator against the rear guide bushing, tighten the split locking collar, to restrain the lateral movement of translating spindle at that point.
- o Connect the gear coupling between translating spindle and the transmission.
 - o Remove dial indicator.
 - o Remove 6-lbf normal load from the discs.

Translating Spindle Support, Deflection Test. Figure 3.8.

4.0 <u>DISC LOAD CALIBRATION, REAR END OF TRANSLATING SPINDLE RESTRAINED</u>

As discussed in section 3.3, the normal load between the test discs is not equal to the applied load. In order to get the actual load experienced by the test discs, this calibration was carried out. A setup procedure similar to that described in 3.3 was used and gave good repeatability. In place of test discs, test blocks SKI (Figure 4.7) and SK2 (Figure 4.8) were mounted on fixed spindle and translating spindle respectively. To measure disc load, a 'Sensotec' (Model 13/1161-17 S. No. 56703) load cell was placed between the test blocks such that similar sides of the test blocks faced each other. Using a spirit level, top faces of test blocks SK1 and SK2 were made made horizontal. For this load cell, 1 MV = 22.31810742 lbf (Figure 4.9). Normal load (applied load) was applied through the pneumatic system shown in Figure 2.2 and measured by load cell (Item 63/Figure 2.2). Applied load values were based upon the calibration of this load cell using 50-lbf and 100-lbf dead weights, 1 lbf = 0.002485 Volts. Applied load was increased by increments of 25 lbf and the disc load readings (from Model 13/1161-17) were noted. Due to almost point loading between the load cell tip and test block SK2, local yielding of material occurred on the test block, which gave lower values. In subsequent loadings when the yielding of material stopped, the disc load were slightly higher with better repeatability. So the values of disc load in first data set for each center distance were not sued in calibration, but are reported here for record only. Data was taken with increasing values of load, as is the case in actual testings.

To check the repeatability between different setups, after taking data under one setting, the gear coupling (Item 15/Figure 2.2) and the locking collar on rear guide shaft (Figure 4.1) were disassembled. For the next setting, complete setup procedure was followed.

Photographs of disc load calibration are shown in Figures 4.2 through 4.5. Figure 4.6 shows the digital voltmeter used to read the applied load values. Data were also taken after varying the center distance between the spindles, using different sides of

the test blocks. Nonimal gap between the faces of test blocks was 0.130 in (due to the space occupied by disc load cell). Data were taken with spindles' center distances of 1.250 in, 1.375 in and 1.500 in, which was achieved by using '*' dimensions (Figure 4.7 and 4.8) .560, .623 and .685 respectively on the test blocks facing each other.

Face plate (Item 3/Figure 4.10) was modified to change the pilot bore dimension from 3.479 to 3.560 to eliminate any changes of its interference with translating spindle.

4.1 Calibration, Gear Coupling and Face Plate Removed

For this calibration, gear coupling (Item 15/Figure 2.2) and face plate (Item 3/Figure 4.10) were removed from the translating spindle.

4.2 Calibration, Gear Coupling and Face Plate Attached

For this calibration, the face plate (Item 3/Figure 4.10) was attached to the translating spindle. Gear coupling (Item 15/Figure 2.2) was also connected between the spindle and the transmission. This setup completely simulates the actual testing conditions.

The data fitted to a straight line that gave

Disc Load = .695 APPLIED LOAD.

A plot of disc load versus the applied load is shown in Figure 4.11.

								1 M1111-1	volt = 22.	Milli-volt = 22,31810742 bf	~
Applied Load		Center Distance =1.250 IN	ter Distance =1.250 IN		Center Distance = 1.375 IN	istance 75 IN		Center = 1	بتاح		
LBF	Setting #1	Setting #2	Setting #2	Setting #3	Setting #1	Setting #2	Setting #1	Setting #2	Setting #2	Setting #3	Setting #4
0	0.03	0.045	0.05	0.045	90.0	90.0	0.05	0.05	0.05	0.05	0.05
25	0.76	0.81	0.83	0.79	0.70	9.76	0.82	0.88	0.88	0.88	0.88
50	1.57	1.62	1.65	1.62	1.50	1.56	1.62	1.69	1.71	1.72	1.72
75	2.36	2.43	2.45	2.42	2.29	2.38	2.39	2.48	2.51	2.52	2.52
100	3.14	3.21	3.23	3.21	3.10	3.20	3.15	3.24	3.28	3.30	3.30
125	3.88	3.96	3.97	3.97	3.87	3.99	3.88	3.97	4.01	4.03	4.04
150	4.61	4.71	4.71	4.73	4.66	4.75	4.61	4.69	4.72	4.75	4.75
175	5.34	5.43	5.42	5.48	5.46	5.45	5.35	5.43	5.43	5.46	5.46

and provident production production becomes the contract of the production of the contract of

4.1.2 REDUCED DATA

	Average Disc Load LBF		0.0000	17.7708	36.2111	54.1214	71.5295	88.1286	104.4488	120.5736
		Setting #4	0.000	18.5240	37.2712	55.1257	72.5338	89.0492	104.8951	120.7410
	NI NI	Setting #3	0.0000	18.5240	37.2712	55.1257	72.5338	88.8261	104.8951	120.7410
	Center Distance = 1.500 IN	Setting #2	0.0000	18.5240	37.0481	54.9025	72.5338	88.3797	104.2256	120.0714
O (LBF)		Setting #2	0.000	18.5240	36.6017	54.2330	71.1948	87.4870	103.5560	120.0714
DISC LOAD (LBF)	Center Distance =1.375 IN	Setting #2	0.0000	16.9618	35.4858	53.7866	71.6411	88.8261	105.3415	121.6337
		Setting #3	0.000	16.6270	35.1510	53.0055	70.6368	87.5986	104.5603	121.2989
	Center Distance =1.250 IN	Setting #2	0.000	17.4081	35.7090	53,5635	70.9716	87.4870	104.0024	119.8482
		Setting #2	0.000	17.0734	35.1510	53.2287	70.6368	87.3754	104.1140	120.1830
	Applied Load		0	25	20	75	100	125	150	175

4.2.1 RAW DATA

			סוצכ ב	DISC LOAD CELL READING (MILLIVOLTS)	ADING (MILL)	rvolts)	IMV = 22.3	1MV = 22.31810742 LBF	
Applied Load	H	Center Distance			Center Distance	2		Center Oistance = 1.500 IN	
	Setting #1	Setting	Setting #2	Setting #1	Setting	Setting #2	Setting #1	Setting	Setting #2
0	90.0	90.0	90.0	0.06	0.06	0.06	90.0	90.0	0.06
25	0.71	0.80	0.82	0.75	0.74	0.79	0.72	0.74	0.82
20	1.55	1.63	1.65	1.56	1.57	1.60	1.51	1.56	1.64
75	2.38	2.46	2.49	2.38	2.39	2.42	2.26	2.38	2.47
100	3.18	3.26	3.29	3.20	3.21	3.23	3.00	3.17	3.27
125	3.95	4.03	4.04	3.99	4.00	4.03	3.79	3.93	4.03
150	4.71	4.78	4.75	4.75	4.76	4.79	4.57	4.66	4.76
175	5.45	5.45	5.40	5.47	5.47	5.50	5.35	5.33	5.42

4.2.2 REDUCED DATA

	Average Disc Load BF		0.0	16.18	34.56	53.01	70.94	98.16	104.67	119.81
DISC LOAD (LBF)	Center Distance = 1.500 IN	Setting #2	0.0	16.96	35.26	53.79	71.64	98.60	104.90	119.63
	Dis	Setting #1	0.00	15.18	33.48	51.78	69.41	86.37	102.66	117.62
	Ce IN	Setting #2	0.00	16.29	34.37	52.67	70.75	98.60	105.56	121.41
	Center Distance =1.375 IN	Setting	0.00	15.18	33.70	52.00	70.30	87.93	104.90	120.74
	Center Distance	Setting #2	0.00	16.96	35.49	54.23	72.09	88.83	104.67	119.18
	Cer Dist	Setting	0.00	16.52	35.04	53.56	71.42	98.60	105.34	120.29
	App 1 red	5	0	25	95	75	100	125	150	175

CONTROL OF THE PARTY OF THE PAR

Tilling 4.1. Translating Stindle Support Mechanism Set Ur.

SSSSTANDAL PRODUCE PROCESSE SOCIONES ESCOROS ESCOROS ESCOROS ESCOROS ESCOROS ESCOROS ESCOROS ESCOROS ESCOROS E

. r.v. 1.2. tise Load Calibration.

- Notes: 1. Scale 2X
 - 2. All Dimensions in Inches

 - 3. Material SST 4. All sides Parallel to $\frac{0.670}{0.674}$ Dia Within 0.002.
 - 5. Surface Finish 63 µin all over

Figure 4.7. Test Block (Fixed Spindle).

Notes: 1. Scale 2X

- 2. All Dimensions in inches
- 3. Material SST 4. All Sides Parallel to $\frac{0.670}{0.674}$ Dia Within 0.002
- 5. Surface Finish 63 μ in all over

Figure 4.8. Test Block (Translating Spindle).

SENSOTEC, INC.

1280 CHESAPEAKE AVENUE, COLUMBUS, 0HIO 43212 (614) 486-7723 TWX 810 482 1188

FORCE TRANSDUCER CALIBRATION RECORD

Type: Comp		n <u>v</u>	_	Excitation	(Input) Volts	<u>5.0</u> x			
Model No	3/11 567	703		Compensated Temperature Range: 60 °P to 160 °P					
Date	- 2/ -	80							
Capacity:					Output:				
Ascending	0% 50%	of C	apacity		6.721	Millivolts Millivolts Millivolts			
Descending	50%	•	•		6.766				
Resistance: Input Output Leakage	• <u>3</u>	<u>52</u>	Ohms	Non-Standa:		Input: + A & B - C & D Output: - E + F			
Wiring • White = + • Red = + • Green = - • Black = -	Input	: it	- Gr	Shunt Resided & Bur		5万人 Ohms Across Millivolts Output			

Figure 4.9. Disc Load Cell Calibration.

Figure 4.10. Test Enclosure.

TRACTION RIG DISC LOAD CALIBRATION

- Notes: 1. Gear Coupling and Face Plate Connected.
 - 2. Rear End of Translating Spindle Restrained With Locking Collar.

Figure 4.11. Calibration Curve, Rear Fnd of Translating Spindle Restrained.

5.0 CALIBRATION, REAR END OF TRANSLATING SPINDLE NOT RESTRAINED

This calibration was carried out to provide a correction factor for the disc load for all the tests conducted before April 1984.

We used the procedure described in 4.0 except that rear end of translating spindle was <u>NOT</u> restrained by the use of split locking collar on the rear guide shaft. (Figure 4.1)

A normal load of 6 lbf was applied to the translating spindle through the pneumatic system (Item 61/Figure 2.2). Transmission mount (Item 42/Figure 2.2) was moved to align the gear coupling (Item 15/Figure 2.2) and then locked in place. Another set of data was taken by aligning the gear coupling under 20-lbf normal load.

Lateral movement of translating spindle, at the rear guide bushing, was also recorded to estimate the horizontal misalignment created in the gear coupling because of applied load.

The plots of disc load and the spindle movement are shown in Figure 5.1.

00.051

LOAD. 20 # PRELOAD LOAD.6 * PRELOAD Gear Coupling on Translating Spindle Installed. Notes:

Rear end of Translating Spindle not Restrained With Locking Collar. ₩.

Calibration Curve, Rear Fnd of Translating Sprindle Not Restrained. Figure 5.1.

ALTERNATURE SEPRESSION (SESSESSE) PROPERTO PROPERTO (SE

SSI THE CONTRACTOR DESCRIPTION OF THE CONTRACTOR PROTECTION OF THE CONTRACTOR OF THE