Correctness Triples (Continue)

- 1. If we are given valid two triples, can we join them?
 - a. We have valid triples $\{x=k\}$ S_1 $\{x=m\}$, and $\{x=m\}$ S_2 $\{x=n\}$, what can be a postcondition for $\{x=k\}$ S_1 ; S_2 $\{q\}$?

It is quite easy to see that $\{x = k\}$ S_1 ; S_2 $\{x = n\}$ can be a valid triple.

- If we have valid triples $\{p\}$ S_1 $\{q\}$ and $\{q\}$ S_2 $\{r\}$, then we have valid triple $\{p\}$ S_1 ; S_2 $\{r\}$.
- b. What if we have triples $\{x=k\}$ S_1 $\{x\geq m\}$ and $\{x\geq m-1\}$ S_2 $\{x=n\}$, can we still combine these two triples into $\{x=k\}$ S_1 ; S_2 $\{x=n\}$? Yes, since after executing S_1 we will end up with a state $\tau \vDash x \geq m$, so τ also satisfies the precondition of S_2 .
- [Sequence Rule] If we have valid triples $\{p\}$ S_1 $\{q\}$ and $\{q'\}$ S_2 $\{r\}$, and $q \Rightarrow q'$, then we have valid triple $\{p\}$ S_1 ; S_2 $\{r\}$.

(Weaker and Stronger Conditions)

- 2. What is the strongest condition and what is the weakest condition?
 - O A condition is weaker when it is less restricted. In the previous lectures, we've seen that *T* means "there is no restriction on any variables, and every state can satisfy it"; so *True* is the weakest condition.
 - o On the hand, F is so restricted that no state can satisfy it; so False is the strongest condition.
- We learned that we could weaken the postcondition or strengthen the prediction can fix the validity of a triple; and we could have these operations in a valid triple without creating a problem. But this doesn't mean that we should always do this.
- 3. Let $\{x \ge 0\}$ S $\{y = 0\}$ be a valid triple. We can get the following valid triples by strengthening the precondition and/or weakening the postconditions:
 - a. $\{x = 0\}$ $S\{y = 0\}$ # Strengthen the precondition
 - b. $\{x \ge 0\}$ $S\{y = 0 \lor y = 1\}$ # Weaken the postcondition

Including $\{x \ge 0\}$ S $\{y = 0\}$, which triple gives us the most information?

- Compare $\{x \ge 0\}$ S $\{y = 0\}$ and $\{x = 0\}$ S $\{y = 0\}$. The previous one tells us that S can work well whenever $X \ge 0$; the later says S can work well ONLY when X = 0. The previous one contains more information.
- O Compare $\{x \ge 0\}$ S $\{y = 0\}$ and $\{x \ge 0\}$ S $\{y = 0 \lor y = 1\}$. The previous one tells us that S can provide us an accurate outcome with y = 0; the later one says S can provide us a not-so-accurate outcome with y = 1 or S. The previous one contains more information.
- In general, weakening the postcondition or strengthening the prediction makes a valid triple to *lose information* and become less useful. On the other hand, strengthening the postcondition or weakening the prediction might affect the validity of a triple. Thus, it is quite important to find *the weakest precondition* and *the strongest postcondition* (and maintaining the validity at the same time), to create the "good" triples.

Weakest Preconditions

- w is the weakest precondition of S and q (we write w = wp (S,q) or $w \Leftrightarrow wp$ (S,q)) if w is a precondition for S and q that can't be weakened. In other word, $\vDash_{tot} \{w\} S \{q\}$ and there is no r weaker than w such that $\vDash_{tot} \{r\} S \{q\}$.
 - o In terms of collection of states: $wp(S,q) = \{ \sigma \in \Sigma \mid M(S,\sigma) \models q \}.$
- 1. Let's consider $w = wp(x := x + 1, x \ge 2)$.
 - O Using the backward assignment rule we can see that $w \Leftrightarrow (x+1 \ge 2) \Leftrightarrow (x \ge 1)$.
 - o If we use terms of states, we can see w is the collection of all σ that makes $M(x := x + 1, \sigma) \models (x \ge 2)$. This collection can contain $\{x = 1, y = 3\}, \{x = 100, z = 1, y = 4\}$... In general, we can say that is the collection of states that satisfy $x \ge 1$.
- 2. Let w = wp(S, q). Decide true or false.
 - a. If $\vDash_{tot} \{r\} S \{q\}$, we have $w \Rightarrow r$.

False. w should be the weakest precondition.

- b. If $r \Rightarrow w$, then $\vDash_{tot} \{r\} S \{q\}$. True
 - To sum up, $(w = wp(S,q)) \Leftrightarrow \vDash_{tot} \{w\} S \{q\} \land \forall r. \vDash_{tot} \{r\} S \{q\} \leftrightarrow (r \rightarrow w)$.
- c. If $\sigma \not\models w$, then we know nothing interesting about $M(S,\sigma)$.

 False. Since any w is the most general precondition for S and q, if a state σ doesn't satisfy it then $M(S,\sigma) \not\models a$.
- d. If S is deterministic, then $\vDash \{\neg w\} S \{\neg q\}$. True. For any state σ , if $\sigma \vDash \neg w$ and $M(S, \sigma) = \{\tau\}$, we must have $\tau \not\vDash q$; in other words, $\tau = \bot$ or $\tau \vDash \neg q$.
- e. If $u \Leftrightarrow w$, then u is also the weakest precondition of S and q. True. For example, if wp(S,q) is $x \ge 1$, then x > 0 or $1 \le x$ can also be used as the weakest precond
- The weakest liberal precondition for S and q, written wlp(S,q), is like w(S,q) but for partial correctness. In other words, wlp(S,q) is a valid precondition for q under partial correctness where no weaker valid precondition exists.
 - o In symbols: $(w = wlp(S, q)) \Leftrightarrow \vDash \{w\} S \{q\} \land \forall u. (\vDash \{u\} S \{q\}) \leftrightarrow (u \rightarrow w).$
 - o In terms of collection of states: $wlp(S,q) = \{ \sigma \in \Sigma \mid M(S,\sigma) \bot \models q \}.$
- We care about wp and wlp since they are the most general conditions a program requires to run "successfully" in when we want to get a certain postcondition.
 - \circ From one of the above examples, we learned that if a state σ does not satisfy wp, then it is guaranteed that $M(S,\sigma) \not\models q$. Similarly, for wlp, if $\sigma \not\models wlp$, then $M(S,\sigma) \bot \not\models q$.
- We talked about two ways to understand wp(S,q): as a predicate and as a collection of states. We keep the second understanding because sometimes we want to say " $wp(S,q) \models \cdots$ " or " $wp(S,q) \models_{tot} \dots$ "; it is also quite convenient to have a set that represents the collection of all possible states that works for S and Q.
- Here is one way to connect these two understandings. When we want to express that " σ satisfies wp(S,q)":
 - o If wp(S,q) is considered as a predicate, then we can say $\sigma \models wp(S,q)$.
 - o If wp(S,q) is considered as a collection of states, then we can say $\sigma \in wp(S,q)$.

(wp and wlp for deterministic program)

• The following figure illustrates the relationships between wp and wlp for deterministic programs. Here it uses the definitions of wp and wlp as they are set of states.

$$wlp(S,q) \begin{cases} \sigma \in wp(S,q) \text{ iff } M(S,\sigma) = \{\tau\} \models q \\ M(S,\sigma) = \{\bot\} \end{cases}$$

$$\sigma \in wp(S,\neg q) \text{ iff } M(S,\sigma) = \{\tau\} \models \neg q \end{cases}$$

$$wlp(S,\neg q)$$

- \circ For a state σ and a deterministic program S, we can have three possible outcomes for $M(S,\sigma)$:
- 1) $M(S, \sigma) = \{\tau\} \text{ and } \{\tau\} \vDash q$.
- 2) $M(S, \sigma) = \{\bot\}$
- 3) $M(S, \sigma) = \{\tau\} \text{ and } \{\tau\} \vDash \neg q$.
- o wp(S,q) is set of all σ in situation 1).
- o $wp(S, \neg q)$ is set of all σ in situation 3).
- o wlp(S,q) is set of all σ in situation 1) and 2).
- o $wlp(S, \neg q)$ is set of all σ in situation 2) and 3).

3. True or False.

- a. Let S be deterministic. $wlp(S,T) \Leftrightarrow T$. True. Because, for any state σ , either $M(S,\sigma) = \bot$ or $M(S,\sigma) \neq \bot$. If $M(S,\sigma) = \bot$, then $\sigma \in wlp(S,T)$; if $M(S,\sigma) \neq \bot$, then $M(S,\sigma) \models T$. Thus, all states are in wlp(S,T); in other words, $wlp(S,T) \Leftrightarrow T$.
- b. Let S be deterministic. $wp(S, F) \Leftrightarrow F$. True. For any state σ , either $M(S, \sigma) = \bot$ or $M(S, \sigma) \neq \bot$. If $M(S, \sigma) = \bot$, then $\sigma \notin wp(S, F)$; if $M(S, \sigma) \neq \bot$, then $M(S, \sigma) \not\models F$. Thus, wp(S, F) is an empty set; in other words, $wp(S, F) \Leftrightarrow F$.
- c. $wp(y \coloneqq x * x, \ y \ge 4) \Leftrightarrow wlp(y \coloneqq x * x, \ y \ge 4)$ True, because the statement $y \coloneqq x * x$ is loop-free and cannot create a runtime error. As an aside, using backward assignment rule, we can get $wp(y \coloneqq x * x, \ y \ge 4) \Leftrightarrow x * x \ge 4$.
- d. $wp(S,q) \Leftrightarrow wlp(S,q)$, where $S \equiv \mathbf{while} \ x \neq 0 \ \mathbf{do} \ x \coloneqq x-1 \ \mathbf{od}, \ q \equiv x = 0$. False. It is easy to see that wp(S,q) is $x \geq 0$, because x < 0 will make S diverges. wlp(S,q) is T, since we can accept S diverges.

(wp and wlp in general programs)

- We need to be careful when nondeterminism is considered, $M(S, \sigma)$ might contain more than one states.
 - $\circ \quad \sigma \in wp(S,q) \Leftrightarrow M(S,\sigma) \vDash q.$
 - $\circ \quad \sigma \in wlp(S,q) \Leftrightarrow M(S,\sigma) \bot \vDash q.$
 - $\circ \quad \sigma \notin wp(S,q) \Leftrightarrow \exists \tau \in M(S,\sigma). \tau = \bot \lor \tau \not\models q.$
 - $\circ \quad \sigma \notin wlp(S,q) \Leftrightarrow \exists \tau \in M(S,\sigma). \tau \neq \bot \land \tau \not\vDash q.$

- 4. Show the following property: $wp(S, q_1) \land wp(S, q_2) \Leftrightarrow wp(S, q_1 \land q_2)$.
 - o If a state $\sigma \in wp(S, q_1) \land wp(S, q_2)$, then $\sigma \in wp(S, q_1)$ and $\sigma \in wp(S, q_2)$; then $M(S, \sigma) \models q_1$ and $M(S, \sigma) \models q_2$; thus $M(S, \sigma) \models q_1 \land q_2$, which implies $\sigma \in wp(S, q_1 \land q_2)$.
 - o If a state $\sigma \in wp(S, q_1 \land q_2)$, then $M(S, \sigma) \models q_1 \land q_2$; thus $M(S, \sigma) \models q_1$ and $M(S, \sigma) \models q_2$, which implies $\sigma \in wp(S, q_1) \land wp(S, q_2)$.
 - Using a similar proof, we can also show the following property: $wlp(S, q_1) \land wlp(S, q_2) \Leftrightarrow wlp(S, q_1 \land q_2)$.
- 5. Show the following property: $wp(S, q_1) \lor wp(S, q_2) \Rightarrow wp(S, q_1 \lor q_2)$.
 - o If a state $\sigma \in wp(S, q_1) \lor wp(S, q_2)$, then $\sigma \in wp(S, q_1)$ or $\sigma \in wp(S, q_2)$; then $M(S, \sigma) \models q_1$ or $M(S, \sigma) \models q_2$; thus $M(S, \sigma) \models q_1 \lor q_2$, which implies $\sigma \in wp(S, q_1 \lor q_2)$.
 - O How about the inverse of this property? Is it true that " $wp(S, q_1) \lor wp(S, q_2) \leftarrow wp(S, q_1 \lor q_2)$ "?
 - When $M(S, \sigma) = \{\tau\}$ ($M(S, \sigma)$ contains only one state): If $\sigma \in wp(S, q_1 \lor q_2)$, then $M(S, \sigma) \vDash q_1 \lor q_2$, and $M(S, \sigma) \vDash q_1$ or $M(S, \sigma) \vDash q_2$; then $\sigma \in wp(S, q_1)$ or $\sigma \in wp(S, q_2)$ which implies $\sigma \in wp(S, q_1) \lor wp(S, q_2)$.
 - When $M(S,\sigma)$ contains more than one states: Let $M(S,\sigma)\supseteq \{\tau_1,\tau_2\}$. When $M(S,\sigma)\vDash q_1\lor q_2$, it is possible that $\tau_1\vDash q_1$ and $\tau_2\vDash q_2$. So, even if we can have $M(S,\sigma)\vDash q_1\lor q_2$, but don't necessarily have $M(S,\sigma)\vDash q_1$ or $M(S,\sigma)\vDash q_2$.
 - To sum up, $wp(S, q_1) \lor wp(S, q_2) \Leftarrow wp(S, q_1 \lor q_2)$ is only true when S is deterministic (or $M(S, \sigma)$ contains only one state).
 - Using a similar proof, we can also show the following property: $wlp(S, q_1) \lor wlp(S, q_2) \Rightarrow wlp(S, q_1 \lor q_2)$. But $wlp(S, q_1) \lor wlp(S, q_2) \Leftarrow wlp(S, q_1 \lor q_2)$ only holds when S is deterministic (or $M(S, \sigma)$ contains only one state).