Package 'spectrolab'

January 13, 2025

Type Package

Title Class and Methods for Spectral Data

Version 0.0.19

Date 2025-01-07

Description Input/Output, processing and visualization of spectra taken with different spectrometers, including SVC (Spectra Vista), ASD and PSR (Spectral Evolution). Implements an S3 class spectra that other packages can build on. Provides methods to access, plot, manipulate, splice sensor overlap, vector normalize and smooth spectra.

License GPL-3

URL https://CRAN.R-project.org/package=spectrolab

Encoding UTF-8

LazyData true

Depends R (>= 4.0), stats

Suggests covr, tinytex, knitr (>= 1.30), rmarkdown (>= 2.5), testthat (>= 3.0.0)

VignetteBuilder knitr

Imports grDevices, parallel, RColorBrewer (>= 1.0), shiny (>= 1.5.0), shinyjs (>= 1.1)

RoxygenNote 7.3.2

NeedsCompilation no

Author Jose Eduardo Meireles [aut, cre], Anna K. Schweiger [aut], Jeannine Cavender-Bares [aut]

Maintainer Jose Eduardo Meireles < jemeireles@gmail.com>

Repository CRAN

Date/Publication 2025-01-13 17:50:02 UTC

2 Contents

Contents

aggregate.spectra	
as.data.frame.spectra	
as.matrix.spectra	
as_spectra	
as_spectra.data.frame	
as_spectra.matrix	
bands	
bands<	
combine	. 10
default_spec_regions	. 11
dim.spectra	
guess_splice_at	 . 12
is_spectra	. 13
make_fwhm	 . 13
match_sensors	 . 14
max.spectra	 . 15
mean.spectra	 . 16
median.spectra	 . 16
meta	. 17
meta<	. 18
min.spectra	. 19
names.spectra	. 19
names <spectra< td=""><td>. 20</td></spectra<>	. 20
normalize	. 21
Ops.spectra	. 22
pairwise_indices	
plot.spectra	
plot_interactive	
plot_quantile	
plot_regions	
print.spectra	
quantile.spectra	
range.spectra	
read_spectra	
resample	
sd	 . 31
sd.default	
sd.spectra	
smooth	
smooth.default	. 33
smooth.spectra	 . 34
smooth_fwhm	 . 35
smooth_moving_avg	 . 35
smooth_spline	 . 36
spectra	. 36

aggregate.spectra 3

	spec_matrix_example	37
	split.spectra	
	str.spectra	39
	subset_by	
	summary.spectra	40
	t.spectra	41
	try_keep_txt	42
	value	43
	value<	43
	var	44
	var.default	45
	var.spectra	45
	[.spectra	46
	[<spectra< td=""><td>47</td></spectra<>	47
Index		49
	egate.spectra Aggregate spectra	

Description

Applies FUN (and FUN_meta) over spectra aggregating by factor 'by'.

Usage

```
## S3 method for class 'spectra'
aggregate(x, by, FUN, FUN_meta = NULL, ...)
```

Arguments

Х	spectra object
by	vector of factors to guide the aggregation
FUN	function to be applied to value (and meta if FUN_meta is NULL)
FUN_meta	function to be applied to metadata. If NULL (default), same FUN applied to value is used.
	extra args to FUN

Details

Argument FUN_meta is useful if you want to apply a different function to metadata and value. If you want to aggregate spectra and metadata using 'mean', 'sd', 'median' etc. but try to keep the text values, wrap your function in try_keep_txt(f).

Value

spectra object

4 apply_by_band

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec_mean = aggregate(spec, by = names(spec), mean, try_keep_txt(mean))
```

apply_by_band

Apply numeric function by band

Description

apply_by_band is conceptually similar to apply(as.matrix(x), 2, fun), but returns a spectra object while dealing with metadata and attributes. Applying a function that does not act on numeric values may crash the function or render all values NA.

Usage

```
apply_by_band(x, fun, na.rm = TRUE, keep_txt_meta = TRUE, name = NULL, ...)
## S3 method for class 'spectra'
apply_by_band(x, fun, na.rm = TRUE, keep_txt_meta = TRUE, name = NULL, ...)
```

Arguments

x spectra

fun numeric function to be applied to each band.

na.rm boolean.remove NAs?

keep_txt_meta boolean. try to keep text in the metadata?

name for each sample in the output spectra. The default (NULL) will give sam-

ples sequential numeric names. Recycled if necessary.

... extra arguments passed to fun

Value

spectra

Methods (by class)

• apply_by_band(spectra): Apply a numeric function by band

Author(s)

as.data.frame.spectra 5

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec_mean = apply_by_band(spec, mean)
```

as.data.frame.spectra Convert spectra to data.frame

Description

Returns a data.frame that includes sample names, metadata (if present) and value data. One advantage over as.matrix, is that the metadata are returned.

Usage

```
## S3 method for class 'spectra'
as.data.frame(
    X,
    row.names = NULL,
    optional = FALSE,
    fix_names = "none",
    metadata = TRUE,
    ...
)
```

Arguments

```
x spectra object
row.names does nothing. Here for compatibility with S3 generics
optional does nothing. Here for compatibility with S3 generics
fix_names Use make.names to normalize names? Pick one: "none" "row" "col" "both".
metadata boolean. Include spectral metadata? Defaults to TRUE
... extra parameters passed to the generic as_spectra
```

Value

data.frame with: sample_name, metadata (if any) and value.

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
df = as.data.frame(spec, fix_names = "none")
```

6 as_spectra

as.matrix.spectra

Convert spectra to matrix

Description

Convert spectra to matrix

Usage

```
## S3 method for class 'spectra'
as.matrix(x, fix_names = "none", ...)
```

Arguments

x spectra object

fix_names Use make.names to normalize names? Pick one: "none" "row" "col" "both".

does nothing. Here for compatibility with S3 generics

Value

matrix of spectral value. columns are bands and rows are samples

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
mat = as.matrix(spec)
```

as_spectra

Convert matrix or data frame to spectra

Description

Convert matrix or data frame to spectra

Usage

```
as_spectra(x, name_idx = NULL, meta_idxs = NULL)
```

as_spectra.data.frame 7

Arguments

x matrix or dataframe. Samples are in rows and bands in columns. Any data that

are not the spectra themselves (labels or metadata) must have their column index

included in 'name_idx' or 'meta_idxs'.

name_idx column index with sample names. Defaults to NULL. If NULL or 0, row-

names(x) or a sequence of integers will be assigned as names.

meta_idxs column indices with metadata (not name and not value). Defaults to NULL

Value

spectra object

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
as_spectra(spec_matrix_example, name_idx = 1)
```

```
as_spectra.data.frame Convert data.frame to spectra
```

Description

Convert data.frame to spectra

Usage

```
## S3 method for class 'data.frame'
as_spectra(x, name_idx = NULL, meta_idxs = NULL)
```

Arguments

x data.frame

name_idx column index with sample names. Defaults to NULL.

meta_idxs column indices with metadata (not name and not value). Defaults to NULL

Value

spectra object

Author(s)

8 bands

as_spectra.matrix

Convert matrix to spectra

Description

Convert matrix to spectra

Usage

```
## S3 method for class 'matrix'
as_spectra(x, name_idx = NULL, meta_idxs = NULL)
```

Arguments

x matrix

name_idx column index with sample names. Defaults to NULL

meta_idxs column indices with metadata (not name and not value). Defaults to NULL

Value

spectra object

Author(s)

Jose Eduardo Meireles

bands

Get spectra band labels

Description

bands returns a vector of band labels from spectra

Usage

```
bands(x, min = NULL, max = NULL, return_num = TRUE)
## S3 method for class 'spectra'
bands(x, min = NULL, max = NULL, return_num = TRUE)
```

Arguments

 $\begin{array}{ll} x & & spectra \ object \\ \min & & = NULL \\ \max & & = NULL \end{array}$

return_num boolean. return vector of numeric values (default). otherwise, a vector of strings

is returned

bands<-

Value

```
vector of bands. numeric if 'return_num' = TRUE (default).
```

Methods (by class)

• bands(spectra): Get spectra band labels

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
head(bands(spec))
```

bands<-

Set band labels

Description

bands sets band labels of lhs to the rhs values

Usage

```
bands(x) \leftarrow value
```

Arguments

```
x spectra object (lhs) value rhs
```

Value

nothing. called for its side effect.

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
bands(spec) = bands(spec) / 1000
```

10 combine

combine

Combine spectral datasets

Description

combine binds two spectral datasets. Both spectra must have the very same band labels, but different metadata are acceptable

Usage

```
combine(s1, s2)
## S3 method for class 'spectra'
combine(s1, s2)
```

Arguments

```
s1 spectra object 1
s2 spectra object 2
```

Value

combined spectra object

Methods (by class)

• combine(spectra): Combines two spectral datasets

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)

# Create dummy spectra datasets. Pretend that these are all different...
s1 = as_spectra(spec_matrix_example, name_idx = 1)
s2 = as_spectra(spec_matrix_example, name_idx = 1)
s3 = as_spectra(spec_matrix_example, name_idx = 1)

# combine 2 spectra objects
s_1and2 = combine(s1, s2)

# combine n spectra objects using the `Reduce` function
s_n = Reduce(combine, list(s1, s2, s3))
```

default_spec_regions 11

default_spec_regions Return default spectral regions matrix

Description

Return default spectral regions matrix

Usage

```
default_spec_regions()
```

Value

matrix with default_spec_regions

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
# matrix that defines regions on the spectra
# Useful for plotting w/ plot_regions()
```

dim.spectra

Get dimension of spectra

Description

dim returns a vector with number of samples and bands (bands)

Usage

```
## S3 method for class 'spectra'
dim(x)
```

Arguments

Χ

spectra object

Value

```
tuple of integers: c("n_samples", "n_bands")
```

12 guess_splice_at

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
dim(spec)
```

guess_splice_at

Guess splice bands (bounds between senors)

Description

Guess splice bands (bounds between senors)

Usage

```
guess_splice_at(x)
## S3 method for class 'spectra'
guess_splice_at(x)
```

Arguments

Χ

spectra object

Value

vector of band values

Methods (by class)

• guess_splice_at(spectra): Guess splice bands (bounds between senors)

Author(s)

is_spectra 13

is_spectra

Is it a spectra object?

Description

is_spectra tests if the argument is a spectra class object

Usage

```
is_spectra(x)
```

Arguments

Х

any object

Value

boolean

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec1 = unclass(spec)
is_spectra(spec)
is_spectra(spec1)
```

make_fwhm

Resample the FWHM to a new set of bands using a gaussian model

Description

Resample the FWHM to a new set of bands using a gaussian model

Usage

```
make_fwhm(spec, new_bands, new_fwhm = NULL, return_type = "max", k = 3)
```

match_sensors

Arguments

spec spectra object

new_bands band values to resample the spectra to

new_fwhm FWHM for the new bands

return_type either "max" or "old". If "old" (default), it returns the fwhm inferred from the

original's spectra bands. If max (default), it returns the max between the new

and old fwhm.

k number of unique FHWM to estimate

Value

FWHM as a numeric vector

match_sensors Match spectra at sensor transitions

Description

match_sensors scales values of sensors 1 (VIS) and 3 (SWIR 2)

Usage

```
match_sensors(x, splice_at, fixed_sensor = 2, interpolate_wvl = c(5, 1))
## S3 method for class 'spectra'
match_sensors(x, splice_at, fixed_sensor = 2, interpolate_wvl = c(5, 2))
```

Arguments

x spectra object

splice_at bands that serve as splice points, i.e the beginnings of the rightmost sensor. Must

be length 1 or 2 (max 3 sensors)

fixed_sensor sensor to keep fixed. Can be 1 or 2 if matching 2 sensors. If matching 3 sensors,

'fixed_sensor' must be 2 (default).

interpolate_wvl

extent around splice at values over which the splicing factors will be calculated.

Defaults to 5

Details

Splice_at has no default because sensor transition points vary between vendors and individual instruments. The function guess_splice_at can help you guess what those values could be. However, splice_at is an important parameter though, so you should visually inspect your spectra before assigning it. Typical values in our own individual instruments were: $SVC \sim c(990, 1900)$, $ASD \sim c(1001, 1801)$.

If the factors used to match spectra are unreasonable, match_sensors will throw. Unreasonable factors (f) are defined as 0.5 > f > 3 or NaN, which happens when the value for the right sensor is 0.

max.spectra 15

Value

```
spectra object
```

Methods (by class)

• match_sensors(spectra): Match sensor overlap regions

Author(s)

Jose Eduardo Meireles and Anna Schweiger

max.spectra

Maximum value

Description

max Returns the maximum value in a spectra object

Usage

```
## S3 method for class 'spectra'
max(..., na.rm = FALSE)
```

Arguments

```
... spectra objectna.rm boolean. remove NAs? Defaults to FALSE
```

Value

single numeric value

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
max(spec)
```

16 median.spectra

mean.spectra

Mean spectrum

Description

mean computes the arithmetic mean spectrum.

Usage

```
## S3 method for class 'spectra'
mean(x, na.rm = TRUE, keep_txt_meta = TRUE, ...)
```

Arguments

```
x spectra
```

na.rm boolean. remove NAs? Defaults to TRUE

... nothing

Value

single spectrum

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
mean(spec)
```

median.spectra

Median spectrum

Description

median computes the median spectrum

Usage

```
## S3 method for class 'spectra'
median(x, na.rm = TRUE, keep_txt_meta = TRUE, ...)
```

meta 17

Arguments

x spectra

na.rm boolean. remove NAs? Defaults to TRUE

keep_txt_meta try to keep text in the metadata

... nothing

Value

single spectrum

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
median(spec)
```

meta

Get metadata

Description

meta returns metadata of spectra

Usage

```
meta(x, label = NULL, sample = NULL, simplify = FALSE, quiet = TRUE)
## S3 method for class 'spectra'
meta(x, label = NULL, sample = NULL, simplify = FALSE, quiet = TRUE)
```

Arguments

x spectra object

label metadata column index or label

sample sample index or name

simplify boolean. defaults to FALSE

quiet boolean. warn about non-existent metadata? defaults to TRUE

Value

data frame or vector

18 meta<-

Methods (by class)

• meta(spectra): get metadata

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec = normalize(spec)
meta(spec, "normalization_magnitude")
```

meta<-

Set metadata

Description

meta sets metadata

Usage

```
meta(x, label = NULL, sample = NULL) <- value
```

Arguments

value

x spectra object (lhs)
label metadata column label
sample sample name

rhs. TODO

Value

nothing. called for its side effect

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
meta(spec, "random") = rnorm(nrow(spec), mean(10), sd = 2)
```

min.spectra 19

 $\min.\operatorname{spectra}$

Minimum value

Description

min Returns the minimum value in a spectra object

Usage

```
## S3 method for class 'spectra'
min(..., na.rm = FALSE)
```

Arguments

```
... spectra object
```

na.rm boolean. remove NAs? Defaults to FALSE

Value

single numeric value

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
min(spec)
```

names.spectra

Get spectra sample names

Description

names returns a vector of sample names

Usage

```
## S3 method for class 'spectra'
names(x)
```

Arguments

X

spectra object

20 names<-.spectra

Value

vector of sample names

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
names(spec)
```

names<-.spectra

Set spectra sample names

Description

names assigns sample names to lhs

Usage

```
## S3 replacement method for class 'spectra' names(x) \leftarrow value
```

Arguments

x spectra object (lhs)valuevalues to be assigned (rhs)

Value

nothing. called for its side effect.

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
names(spec) = toupper(names(spec))
```

normalize 21

normalize

Vector normalize spectra

Description

normalize returns a spectra obj with vector normalized values. Normalization value for each spectrum computed as $sqrt(sum(x^2))$

Usage

```
normalize(x, quiet = FALSE, ...)
## S3 method for class 'spectra'
normalize(x, quiet = FALSE, ...)
```

Arguments

```
x spectra object. bands must be strictly increasingquiet boolean. Warn about change in y value units? Defaults to FALSE... nothing
```

Value

spectra object with normalized spectra

Methods (by class)

• normalize(spectra): Vector normalize spectra

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec = normalize(spec)
```

22 pairwise_indices

Ops.spectra

Arithmetic operators for spectra

Description

Overloads arithmetic operators for spectra using 'Ops.'

Usage

```
## S3 method for class 'spectra'
Ops(e1, e2)
```

Arguments

e1 lhs

Value

Depends on the operator. math operators will return spectra and logical or comparison operators will return boolean matrices

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec1 = spec * 2
spec2 = spec + spec
all(spec1 == spec2)
```

pairwise_indices

Pairwise indices

Description

pairwise_indices computes pairwise spectral indices. Indices are computed as (a - b) / (a + b) where a is the lower band. The column names of the resulting matrix are given as "alb".

Usage

```
pairwise_indices(x, max_out_elements = 5e+08)
```

plot.spectra 23

Arguments

Value

list that includes the *indices* between bands a and b (column names alb) and the pairwise *band_combinations*

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)

# Resampling spectra since a spectral dataset with 2,001 bands
# results in 2,001,000 unique spectral indices per sample
new_bands = seq(400, 2400, 10)
spec = resample(spec, new_bands, make_fwhm(spec, new_bands) )
p_idx = pairwise_indices(spec)
```

plot.spectra

Plot spectra

Description

```
plot plots spectra.
```

Usage

```
## S3 method for class 'spectra'
plot(x, ylab = "value", xlab = "band", col = "black", lty = 1, type = "l", ...)
```

Arguments

x	spectra object	
ylab	label for y axis. Defaults to "value".	
xlab	label for x axis. Defaults to "band".	
col	line color. Defaults to "black".	
lty	line type. Defaults to 1.	
type	type of plot. Meant to take either line "l" or no plotting "n".	
	other arguments passed to matplot.	

24 plot_interactive

Value

nothing. Called for side effect.

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
plot(spec, lwd = 1.2)
```

plot_interactive

Plot spectra interactively

Description

Interactively plots spectra with a shiny app. Useful to inspect large datasets.

Usage

```
plot_interactive(
   spec,
   colpalette = function(n) RColorBrewer::brewer.pal(n, "Dark2"),
   ...
)
```

Arguments

spec spectra object

colpalette a color palette function, e.g. rainbow, terrain.colors, or a function returned by

 $color Ramp Palette() \ or \ color Ramps \ package$

... Other arguments passed to plot

Details

plot_interact limits the number of spectra displayed at once to 600 for performance reasons. As of now, the function does not return anything and does not have side effects. This means that spectra can be selected and highlighted but not yet deleted or subset from the shiny app.

Value

interactive plot

Author(s)

Jose Eduardo Meireles and Anna K. Schweiger

plot_quantile 25

Examples

```
if(interactive()){
# Create a spectra object
spec = as_spectra(spec_matrix_example, name_idx = 1)
# Start interactive plot
plot_interactive(spec)
}
```

plot_quantile

Plot spectra quantiles

Description

plot_quantile plots polygons for the quantiles of spectra per band.

Usage

```
plot_quantile(
   spec,
   total_prob = 0.95,
   col = rgb(0, 0, 0, 0.1),
   border = TRUE,
   add = FALSE,
   na.rm = TRUE,
   ...
)
```

Arguments

spec	spectra object
total_prob	total probability mass to encompass. Single number between 0.0 and 1.0. Defaults to 0.95 .
col	polygon color
border	boolean. Draw border?
add	if add = FALSE (default), a new plot is created. Otherwise (add = TRUE), the quantile is added to the current plot.
na.rm	boolean. remove NAs to compute quantiles? Defaults to TRUE
	other parameters passed to polygon() or to plot.

Value

nothing. Called for its side effect.

Author(s)

26 plot_regions

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
plot_quantile(spec, total_prob = 0.5)
```

plot_regions

Plot polygons for spectral regions

Description

plot_regions plots polygons for default (VIS, NIR, SWIR 1, SWIR 2) or customized regions of the spectrum.

Usage

```
plot_regions(
   spec,
   regions = default_spec_regions(),
   col = grDevices::rgb(0.7, 0.7, 0.7, 0.3),
   border = FALSE,
   add = TRUE,
   add_label = TRUE,
   cex_label = 1,
   ...
)
```

Arguments

spec	spectra object
regions	matrix with spectral regions in columns and only two rows named "begin" and "end". Values are the bands where a spectral regions begins and ends. See details for how the default regions are defined.
col	color for regions. Single value or vector of length ncol (regions).
border	color for region borders. Defaults to FALSE (no border).
add	boolean. If TRUE (default) adds polygons to current plot (if a plot exists) or throws an error if a plot does not exist. If FALSE, a new plot is created **without** any spectra.
add_label	boolean. Add region column names on top of the polygons?
cex_label	label scale
	additional parameters passed to polygon().

Details

```
Default regions: spec_regions = cbind("VIS" = c(begin = 400, end = 700), "NIR" = c(begin = 800, end = 1300), "SWIR1" = c(begin = 1550, end = 1800), "SWIR2" = c(begin = 2000, end = 2400)).
```

print.spectra 27

Value

nothing. Called for its side effect.

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
plot_regions(spec, default_spec_regions())
plot(spec, add = TRUE)

# Alternatively, if you want to get fancy...
col_fun = colorRampPalette(c(rgb(1, 1, 0, 0.7), rgb(1, 0, 0, 0.7)), alpha = TRUE)
colors = col_fun(4)

plot_regions(spec,default_spec_regions(), col = colors)
plot(spec, add = TRUE)
```

print.spectra

Print spectra

Description

print prints basic information about the spectra obj to the console

Usage

```
## S3 method for class 'spectra'
print(x, ...)
```

Arguments

x spectra object

... other arguments passed to print. not implemented for spectra

Value

nothing. called for side effect

Author(s)

28 quantile.spectra

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
print(spec)
## or simply
spec
```

quantile.spectra

Compute spectra quantiles

Description

quantile computes quantiles by band and returns them as 'spectra'.

Usage

```
## S3 method for class 'spectra'
quantile(
    x,
    probs = c(0.025, 0.25, 0.5, 0.75, 0.975),
    na.rm = TRUE,
    names = NULL,
    ...
)
```

Arguments

Х	spectra object. Must have at least the same number of sample that length(probs) has.
probs	Probabilities to compute quantiles. Must be a vector of numerics between 0.0 and 1.0 . Defaults to $c(0.025,0.25,0.5,0.75,0.975)$. Duplicated probs will be removed.
na.rm	remove NAs before computing quantiles? Defaults to TRUE
names	names for each quantile spectrum. If NULL (default), names are set to 'probs'. A char vector should otherwise be given. Recycled.
	other arguments passed to quantile.

Value

spectra object with one spectrum for each prob

Author(s)

range.spectra 29

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
quantile(spec, probs = c(0.25, 0.75))
```

range.spectra

Range of spectral values

Description

range Returns the range of (min, max) values in spectra

Usage

```
## S3 method for class 'spectra'
range(..., na.rm = FALSE)
```

Arguments

```
... spectra objectna.rm boolean. remove NAs? Defaults to FALSE
```

Value

```
tuple of numeric values (min, max)
```

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
range(spec)
```

30 read_spectra

read_spectra

Read files from various formats into 'spectra'

Description

Read files from various formats into 'spectra'

Usage

```
read_spectra(
  path,
  format = NULL,
  type = "target_reflectance",
  extract_metadata = FALSE,
  exclude_if_matches = NULL,
  ignore_extension = FALSE
)
```

Arguments

path Path to directory or input files.

format File format. Defaults to NULL so spectrolab tries to guess it from the file name.

Alternatively, use "asd" for ASD; "sig" for SVC (Spectra Vista); or "sed" for

PSR (Spectral Evolution)

type Data type to read. "target_reflectance", "target_radiance", or "reference_radiance".

Defaults to "target_reflectance".

extract_metadata

Boolean. Defaults to FALSE. Only implemented for the Spectra Vista (.sig) and

Spectral Evolution (.sed) file types.

exclude_if_matches

excludes files that match this regular expression. Example: "BAD"

ignore_extension

Boolean. If TRUE, the parser will try to read every file in path regardless of the

expected extension.

Value

a single 'spectra' or a list of 'spectra' (in case files have incompatible band number or bands values)

Author(s)

resample 31

Examples

```
library(spectrolab)
dir_path = system.file("extdata", "Acer_example", package = "spectrolab")
spec = read_spectra(path = dir_path, format = "sig")
```

resample

Resample spectra

Description

Resample spectra

Usage

```
resample(spec, new_bands, fwhm)
```

Arguments

spec spectra object

new_bands band values to resample the spectra to

fwhm FWHM for the new bands

Value

resampled spectra

sd

Standard deviation

Description

sd computes the standard deviation spectrum. Note that values will not reflect value anymore, but the sd of the value instead.

Usage

```
sd(x, na.rm = FALSE)
```

Arguments

x a numeric vector or an R object which is coercible to one by as.double(x)

na.rm logical. Should missing values be removed?

Value

standard deviation

32 sd.spectra

sd.default

Default standard deviation

Description

sd computes the standard deviation of the values in x. If na.rm is TRUE then missing values are removed before computation proceeds.

Usage

```
## Default S3 method:
sd(x, na.rm = FALSE)
```

Arguments

x a numeric vector or an R object which is coercible to one by as.double(x)

na.rm logical. Should missing values be removed?

Value

standard deviation of x

Examples

```
x = rnorm(n = 200, mean = 0, sd = 1)
 sd(x)
```

sd.spectra

Standard deviation spectrum

Description

```
Forces keep_txt_meta = TRUE
```

Usage

```
## S3 method for class 'spectra'
sd(x, na.rm = TRUE)
```

Arguments

```
x spectra
```

na.rm boolean.remove NAs?

smooth 33

Value

```
single spectrum
```

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
sd(spec)
```

smooth

Generic Smoothing function

Description

Generic Smoothing function

Usage

```
smooth(x, ...)
```

Arguments

x data to smooth over... additional arguments

Value

smoothed data

smooth.default

Default smoothing function

Description

Default smoothing function

Usage

```
## Default S3 method:
smooth(x, ...)
```

34 smooth.spectra

Arguments

x data to smooth over... additional arguments

Value

smoothed data

smooth.spectra

Smooth spectra

Description

smooth runs each spectrum by a smoothing and returns the spectra

Usage

```
## S3 method for class 'spectra'
smooth(x, method = "gaussian", ...)
```

Arguments

x spectra object. bands must be strictly increasing

method Choose smoothing method: "gaussian" (default), "spline", or "moving_average"

 $\dots \qquad \text{additional parameters passed to methods smooth_fwhm, smooth_spline, smooth_moving_avg}$

Value

a spectra object of with smoothed spectra

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec = smooth(spec)
```

smooth_fwhm 35

 $smooth_fwhm$

Smooth spectra with a gaussian model

Description

Smooth spectra with a gaussian model

Usage

```
smooth_fwhm(x, fwhm = NULL)
```

Arguments

x spectra

fwhm Full Width at Half Maximum.

Value

smoothed spectra

smooth_moving_avg

Smooth moving average for spectra

Description

Smooth moving average for spectra

Usage

```
smooth_moving_avg(x, n = NULL, save_bands_to_meta = TRUE)
```

Arguments

```
x spectra object n = NULL save_bands_to_meta
```

boolean. keep lost ends of original wvls in metadata

Value

spectra object

Author(s)

36 spectra

smooth_spline Smooth spline functions for spectra

Description

Gets spline functions for each spectrum in a spectra object.

Usage

```
smooth_spline(x, parallel = TRUE, return_fn = FALSE, ...)
```

Arguments

X	spectra object. bands must be strictly increasing
parallel	boolean. Do computation in parallel? Defaults to TRUE. Unfortunately, the parallelization does not work on Windows.
return_fn	Boolean. If TRUE, smooth_spline returns the spline functions instead of the smoothed spectra. Defaults to FALSE
•••	additional parameters passed to smooth spline except nknots, which is computed internally $ \\$

Value

Smoothed spectra or, if return_fn = TRUE, a list of spline functions.

Author(s)

Jose Eduardo Meireles

spectra	Spectra object constructor

Description

```
spectra "manually" creates a spectra object
```

Usage

```
spectra(value, bands, names, meta = NULL, ...)
```

spec_matrix_example 37

Arguments

value	N by M numeric matrix. N samples in rows and M bands in columns
bands	band names in vector of length M
names	sample names in vector of length N
meta	spectra metadata. defaults to NULL. Must be either of length or nrow equals to the number of samples (nrow(value) or length(names))
	additional arguments to metadata creation. not implemented yet

Value

spectra object

Note

This function resorts to an ugly hack to deal with metadata assignment. Need to think a little harder to find a solution.

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
# 1. Create a value matrix.
# In this case, by removing the first column that holds the species name
rf = spec_matrix_example[ , -1]

# (2) Create a vector with band labels that match
# the value matrix columns.
wl = colnames(rf)

# (3) Create a vector with sample labels that match
# the value matrix rows.
# In this case, use the first colum of spec_matrix_example
sn = spec_matrix_example[ , 1]

# Finally, construct the spectra object using the `spectra` constructor
spec = spectra(value = rf, bands = wl, names = sn)
```

 ${\tt spec_matrix_example} \quad \textit{ Example spectral dataset}$

Description

Simulated spectral dataset as a matrix. First column hold species names and the remaining ones store the spectra values. band labels are given as column names

38 split.spectra

Usage

```
spec_matrix_example
```

Format

An object of class matrix (inherits from array) with 50 rows and 2102 columns.

Author(s)

Jose Eduardo Meireles

split.spectra

Split spectra

Description

split a spectra object into a list of spectra according to grouping f.

Usage

```
## S3 method for class 'spectra'
split(x, f, drop = FALSE, ...)
```

Arguments

x spectra object

f factor vector defining the grouping. Must have length nrow(x)

drop NOT used ... NOT used

Value

list of spectra

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec_list = split(spec, names(spec))
```

str.spectra 39

str.spectra

Structure of the spectra object

Description

Structure of the spectra object

Usage

```
## S3 method for class 'spectra'
str(object, ...)
```

Arguments

object spectra object

... additional args. not implemented

Value

prints to console

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
str(spec)
```

subset_by

Subset spectra by factor

Description

subset_by subsets spectra by a factor 'by' ensuring that it appears at most 'n_max' times **and** at least 'n_min' times in the dataset.

Usage

```
subset_by(x, by, n_min, n_max, random = TRUE)
## S3 method for class 'spectra'
subset_by(x, by, n_min, n_max, random = TRUE)
```

40 summary.spectra

Arguments

X	spectra object
by	vector coercible to factor and of same length as $nrow(x)$
n_min	int. only keep spectra with at least (inclusive) 'n_min' number of samples per unique 'by'.
n_max	int. keep at most (incl) this number of spectra per unique 'by'
random	boolean. Sample randomly or keep first n_max? Defaults to TRUE

Details

Note that subset_by forces you to provide both a minimum and a maximum number of spectra to be kept for each unique value of 'by'. In case you're interested in subsetting *only* based on 'n_min', set 'n_max' to 'Inf'.

Value

spectra

Methods (by class)

• subset_by(spectra): Subset spectra by factor

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
# remove spec of species with less than 4 samples
spec = subset_by(spec, by = names(spec), n_min = 4, n_max = Inf)
```

summary.spectra

Summarize spectra

Description

Summarize spectra

Usage

```
## S3 method for class 'spectra'
summary(object, ...)
```

t.spectra 41

Arguments

```
object spectra object
... additional params to summary. not used yet
```

Value

```
nothing yet (just prints to console)
```

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
summary(spec)
```

t.spectra

Spectra Transpose

Description

spectra are not transposable. Transpose the value instead

Usage

```
## S3 method for class 'spectra'
t(x)
```

Arguments

Χ

spectra

Value

No return value. Operation not allowed

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
s = as_spectra(spec_matrix_example, name_idx = 1)
t(value(s))
t(as.matrix(s))
```

42 try_keep_txt

try_keep_txt

Wrap function to try to keep text

Description

Function operator returning a function f that tries to keep text.

Usage

```
try_keep_txt(f)
```

Arguments

f

function to be applied

Details

try_keep_txt takes a function f as argument, typically a mathematical operation such as mean, median, etc. and returns a modified version of it that will try return a string of unique values in case function f emits a warning. Useful when aggregating over spectral metadata that has both numeric values (which you want to aggregate) and text values, which you want to keep.

Value

```
modified function f (f').
```

Author(s)

Jose Eduardo Meireles

```
library(spectrolab)
g = try_keep_txt(mean)
g(c(1, 2))
g(c("a", "b"))
```

value 43

value

Get spectra value

Description

value returns the value matrix from spectra

Usage

```
value(x)
## S3 method for class 'spectra'
value(x)
```

Arguments

Х

spectra object

Value

matrix with samples in rows and bands in columns

Methods (by class)

• value(spectra): Get spectra value

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
is.matrix(value(spec))
```

value<-

Set spectra value

Description

value<- Assigns the rhs to the value of the lhs spectra obj

Usage

```
value(x) <- value</pre>
```

44 var

Arguments

x spectra object

value value to be assigned to the lhs

Value

nothing. called for its side effect

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
# scale all refletance values by 2
value(spec) = value(spec) * 2
```

var

Variance

Description

var computes the variance spectrum. Note that values will not reflect value anymore, but the variance of the value instead.

Usage

```
var(x, y = NULL, na.rm = FALSE, use)
```

Arguments

x a numeric vector, matrix or data frame
y NULL (default) or a vector, matrix or data frame with compatible dimensions to x.
na.rm logical. Should missing values be removed?
use an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"

Value

variance

var.default 45

Description

var computes the variance spectrum. Note that values will not reflect value anymore, but the variance of the value instead.

Usage

```
## Default S3 method:
var(x, y = NULL, na.rm = FALSE, use)
```

Arguments

x	a numeric vector, matrix or data frame
У	NULL (default) or a vector, matrix or data frame with compatible dimensions to
	X.
na.rm	logical. Should missing values be removed?
use	an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything" "all obe" "complete obe" "no or complete" or "nairwise complete obe"
	"everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"

Value

variance

Description

```
Forces keep_txt_meta = TRUE
```

Usage

```
## S3 method for class 'spectra'
var(x, y = NULL, na.rm = TRUE, use)
```

Arguments

```
x spectray nothingna.rm boolean. remove NAs?use nothing
```

[.spectra

Value

single spectrum

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
var(spec)
```

[.spectra

Subset spectra

Description

`[` Subsets spectra by sample names (rows) or (and) bands (columns)

Usage

```
## S3 method for class 'spectra' x[i, j, simplify = TRUE]
```

Arguments

X	spectra object	
i	Sample names (preferred), index, or a logical vector of length nrow(x)	
j	band labels, as numeric or character or a logical vector of length $ncol(x)$. Do not use indexes!	
simplify	Boolean. If TRUE (default), single band selections are returned as a named vector of values	

Details

Subset operations based on samples (first argument) will match sample names or indexes, in that order. The spectra constructor ensures that names are not numeric nor are coercible to numeric, such that x[1:2,] will return the first and second samples in the 'spectra' object. Subsetting based on bands (second argument) matches the band labels, not indices! That is, x[, 600] will give you the value data for the 600nm band and not the 600th band. Boolean vectors of the appropriate length can be used to subset samples and bands.

Value

```
usually a spectra object, but see param 'simplify'
```

[<-.spectra 47

Author(s)

Jose Eduardo Meireles

Examples

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
head(names(spec), n = 3)
# by name
spec1 = spec[ "species_7" , ]
spec1
# by band
spec2 = spec[ , 400:700 ]
spec2
```

[<-.spectra

Assign values to spectra

Description

`[<-` assigns the rhs values to spectra

Usage

```
## S3 replacement method for class 'spectra' x[i, j] \leftarrow value
```

Arguments

X	spectra object (lhs)	
i	Sample names (preferred), index, or a logical vector of length nrow(x)	
j	band labels, as numeric or character or a logical vector of length $ncol(x)$. Do not use indexes!	
value	value to be assigned (rhs). Must either data coercible to numeric or another 'spectra' obj	

Value

nothing. modifies spectra as side effect

Author(s)

Jose Eduardo Meireles

48 [<-.spectra

```
library(spectrolab)
spec = as_spectra(spec_matrix_example, name_idx = 1)
spec[ , 400:500] = spec[ , 400:500] * 1.2
spec
```

Index

* datasets	plot.spectra, 23
<pre>spec_matrix_example, 37</pre>	plot_interactive, 24
[.spectra, 46	plot_quantile, 25
[<spectra, 47<="" td=""><td>plot_regions, 26</td></spectra,>	plot_regions, 26
	print.spectra, 27
aggregate.spectra, 3	
apply_by_band, 4	quantile.spectra, 28
as.data.frame.spectra,5	
as.matrix.spectra, 6	range.spectra, 29
as_spectra, 6	read_spectra, 30
as_spectra.data.frame,7	resample, 31
as_spectra.matrix,8	sd, 31
	sd, 31 sd.default, 32
bands, 8	sd. spectra, 32
bands<-, 9	·
	smooth, 33
combine, 10	smooth.default, 33
de Coulte and a market at 11	smooth.spectra, 34
default_spec_regions, 11	smooth_fwhm, 35
dim.spectra, 11	smooth_moving_avg, 35
guess enlies at 12	smooth_spline, 36
guess_splice_at, 12	spec_matrix_example, 37
is_spectra, 13	spectra, 36
13_3pecti a, 13	split.spectra, 38
make_fwhm, 13	str.spectra, 39
match_sensors, 14	subset_by, 39
max.spectra, 15	summary.spectra,40
mean.spectra, 16	t.spectra,41
median.spectra, 16	try_keep_txt, 42
meta, 17	ιι y_κεερ_ιχι, 42
meta<-, 18	value, 43
min.spectra, 19	value<-, 43
min. spectra, 19	var, 44
names.spectra, 19	var.default,45
names <spectra, 20<="" td=""><td>var.spectra, 45</td></spectra,>	var.spectra, 45
normalize, 21	va. vepeed a, ie
-,	
Ops.spectra, 22	
naimuias indiass 22	
pairwise indices, 22	