Solved selected problems of Real Analysis - Carothers

Franco Zacco

Chapter 4 - Continuous Functions

Proof. 7

(a) Let $(a, \infty) \subset \mathbb{R}$ which is an open set, then we see that

$$f^{-1}[(a,\infty)] = \{x : x \in M \text{ and } f(x) > a\}$$

is also an open set because f is continuous and Theorem 5.1 part (iv). In the same way, let $(-\infty, a) \subset \mathbb{R}$ which is an open set, then we see that

$$f^{-1}[(-\infty, a)] = \{x : x \in M \text{ and } f(x) < a\}$$

is also an open set because f is continuous and Theorem 5.1 part (iv).

- (b) We proved the more general result in part (c) which also applies in this case.
- (c) Let V be an open set of \mathbb{R} then since the collection of open intervals with rational endpoints is a base for \mathbb{R} we can write V as

$$V = \bigcup_{\alpha} (p_{\alpha}, q_{\alpha})$$

where $p_{\alpha}, q_{\alpha} \in \mathbb{Q}$ so we have that

$$f^{-1}[V] = \bigcup_{\alpha} f^{-1}[(p_{\alpha}, q_{\alpha})]$$

then we can write that

$$f^{-1}[(p_{\alpha}, q_{\alpha})] = f^{-1}[(p_{\alpha}, \infty)] \cap f^{-1}[(-\infty, q_{\alpha})]$$

Also, we know that

$$f^{-1}[(p_{\alpha}, \infty)] = \{x : f(x) > p_{\alpha}\} \text{ and } f^{-1}[(-\infty, q_{\alpha})] = \{x : f(x) < q_{\alpha}\}$$

and we know both of them are open sets so $f^{-1}[(p_{\alpha}, q_{\alpha})]$ is the intersection of a finite number of open sets then it is also an open set. Finally, since $f^{-1}[V]$ is the union of open sets it's also an open set. Therefore f is continuous.

Proof. 10 Let $\epsilon > 0$ and let us take $\delta = 1$ no matter the value of ϵ then

$$B_{\delta}(2) = \{x \in A : d(2, x) < 1\} = \{2\}$$

So we have that $f(B_{\delta}(2)) = \{f(2)\}$ and certainly it must happen that $\{f(2)\} \subset B_{\epsilon}(f(2))$ because $f(2) \in B_{\epsilon}(f(2))$. Therefore f is continuous at 2.

Proof. 11

- (a) Let $x \in A \cup B$, then $x \in A$, $x \in B$ or both of them, also let $\epsilon > 0$ then we know there exists $\delta > 0$ such that $f(B_{\delta}(x)) \subset B_{\epsilon}(f(x))$ because f is continuous at x by the definition.
- (b) Let A = (0,1) and B = [1,2) also let $f : A \to \mathbb{R}$ be defined as f(x) = x and $f : B \to \mathbb{R}$ as f(x) = x + 1 then we see that $f : A \cup B \to \mathbb{R}$ is not continuous at x = 1. Therefore the statement is false.

Proof. 14 Given that a continuous function on \mathbb{R} is completely determined by its values on \mathbb{Q} . For each $q \in \mathbb{Q}$ we have that f(q) has a cardinality of \mathfrak{c} since for each real number $x \in \mathbb{R}$ we can find an f such that x = f(q). So the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$ has a cardinality of $\mathfrak{c}^{|\mathbb{Q}|}$ and doing some cardinality algebra we get that

$$\mathfrak{c}^{|\mathbb{Q}|} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0} = \mathfrak{c}$$

Therefore there are \mathfrak{c} continuous function $f: \mathbb{R} \to \mathbb{R}$.

Proof. 17 Let $x \in M$, and let us also define $(x_n) \subset D$ such that $x_n \to x$ which we know it exists because D is dense. Then $f(x_n) \to f(x)$ and $g(x_n) \to g(x)$ also we know that $f(x_n) = g(x_n)$ for every $x_n \in (x_n)$. Finally, since sequences have unique limits it must happen that f(x) = g(x) as we wanted to show.

In the same way, suppose we define $(x_n) \subset D$ such that $x_n \to x$ where $x \in M$. Then $f(x_n) \to f(x)$ also $(f(x_n)) \subset f(D)$. So we have a sequence $(f(x_n))$ for any f(x) and we know that every $y \in N$ has the form y = f(x) because f is onto. Therefore f(D) is dense in N.

Proof. **22** Let $n, m \in \mathbb{N}$ we want to show that d(E(n), E(m)) = d(n, m) this means that $||E(n) - E(m)||_1 = |n - m|$. Let us suppose that n > m then n = m + b where $b \in \mathbb{N}$ and so |n - m| = b. Then we have that

$$||E(n) - E(m)||_1 = \sum_{i=1}^{\infty} |E_i(n) - E_i(m)|$$

where $E_i(n)$ is the value of the *ith* element in the sequence, the same for $E_i(m)$. If $i \in \{1, 2, ..., m\}$ we have that $|E_i(n) - E_i(m)| = |1 - 1| = 0$ and for $i \in \{n + 1, n + 2, ...\}$ we have that $|E_i(n) - E_i(m)| = |0 - 0| = 0$ so we can write the following

$$||E(n) - E(m)||_1 = \sum_{i=m}^{n} |E_i(n) - 0| = \sum_{i=m}^{n} 1 = n - m = b$$

Therefore $||E(n) - E(m)||_1 = |n - m|$ as we wanted, in the case of $m \ge n$ the proof is analogous because we are taking the absolute value inside the sum.

Proof. **23** Let $S: c_0 \to c_0$ be defined as $S(x_0, x_1, ...) = (0, x_0, x_1, ...)$ such that S shifts the entries forward and puts 0 in the empty slot. We want to prove that d(S(x), S(y)) = d(x, y) where $x = (x_0, x_1, ...)$ and $y = (y_0, y_1, ...)$ then

$$||x - y||_{\infty} = \sup\{|x_0 - y_0|, |x_1 - y_1|, ...\}$$

And $\sup\{|x_0-y_0|, |x_1-y_1|, ...\} \ge 0$ because both x and y are sequences that tend to 0. Let us suppose that $\sup_n |x_n-y_n| = 0$ then we see that

$$||S(x) - S(y)||_{\infty} = \sup\{|0 - 0|, |x_0 - y_0|, |x_1 - y_1|, ...\} = 0$$

Now let us suppose that $||x-y||_{\infty} > 0$ then we have that

$$\sup\{|x_0 - y_0|, |x_1 - y_1|, \ldots\} = \sup\{|0 - 0|, |x_0 - y_0|, |x_1 - y_1|, \ldots\}$$

because $||S(x) - S(y)||_{\infty}$ cannot be 0. Therefore we have that

$$||S(x) - S(y)||_{\infty} = ||x - y||_{\infty}$$

as we wanted.

Proof. **24** Let $f: \mathbb{R} \to V$ such that for each $\alpha \in \mathbb{R}$ we map it to $\alpha y \in V$ where $y \in V$. Let $\alpha, \beta \in \mathbb{R}$ we want to show that for every $\epsilon > 0$ there is a $\delta > 0$ such that $||f(\alpha) - f(\beta)|| < \epsilon$ whenever $|\alpha - \beta| < \delta$. So let us define $\delta = \epsilon/||y||$ if $||y|| \neq 0$ then we have that when $|\alpha - \beta| < \delta$ we get that

$$\begin{aligned} |\alpha - \beta| &< \frac{\epsilon}{\|y\|} \\ |\alpha - \beta| \|y\| &< \epsilon \\ \|\alpha y - \beta y\| &< \epsilon \\ \|f(\alpha) - f(\beta)\| &< \epsilon \end{aligned}$$

Therefore f is continuous.

Let now $f: V \to V$ such that for each $x \in V$ we map it to $x + y \in V$ where $y \in V$. Let $x, x' \in V$ we want to show that for every $\epsilon > 0$ there is a $\delta > 0$ such that $||f(x) - f(x')|| < \epsilon$ whenever $||x - x'|| < \delta$. So let us define $\delta = \epsilon$ then we have that when $||x - x'|| < \delta$ we get that

$$||x - x'|| = ||(x + y) - (x' + y)|| = ||f(x) - f(x')|| < \epsilon$$

Therefore f is continuous.

Proof. **25** Let $f:(M,d) \to (N,\rho)$ be a Lipschitz mapping so there is $K < \infty$ such that $\rho(f(x),f(y)) \leq Kd(x,y)$ for all $x,y \in M$ also let's observe that $K \geq 0$ since both $\rho(f(x),f(y)) \geq 0$ and $d(x,y) \geq 0$

Let now $\epsilon > 0$ and $\delta > 0$, we want to prove that if $d(x,y) < \delta$ then $\rho(f(x), f(y)) < \epsilon$ i.e. f is continuous. So let $\delta = \epsilon/K$ with K > 0 then we have that if $d(x,y) < \epsilon/K$ then $Kd(x,y) < \epsilon$ and since $\rho(f(x), f(y)) \le Kd(x,y)$ we get that $\rho(f(x), f(y)) < \epsilon$ as we wanted. If K = 0 then it must happen that $\rho(f(x), f(y)) = 0$ and then $\rho(f(x), f(y)) = 0 < \epsilon$ which by definition is true. Therefore f is continuous.

Proof. 27 Let $k \geq 1$ and $f: l_{\infty} \to \mathbb{R}$ defined as $f(x) = x_k$ we want to prove that f is continuous but we will prove that f is Lipschitz which implies that f is continuous.

Let $x, y \in l_{\infty}$ then we have that for some fixed $k \geq 1$ the following is always true because of the definition of supremum

$$|f(x) - f(y)| = |x_k - y_k| \le \sup_n |x_n - y_n| = ||x - y||_{\infty}$$

then for K = 1 we see that

$$|f(x) - f(y)| \le K||x - y||_{\infty}$$

Therefore f is Lipschitz and hence continuous.

- (a) Let $x \in M$ since $M = \bigcup_{n=1}^{\infty} U_n$ then x is in some U_n we want to show that for every sequence $(x_n) \subset M$ such that $x_n \to x$ we have that $f(x_n) \to f(x)$. For every $(x_n) \subset U_n$ such that $x_n \to x$ since f is continuous in U_n then we have that $f(x_n) \to f(x)$. But if (x_n) is not completely in U_n then since U_n is an open set it must happen that eventually for some n onwards $x_n \in U_n$ and since f is continuous in U_n we have that $f(x_n) \to f(x)$. Therefore f is also continuous in M.
- (b) Let $F \in N$ be a closed set then we have that

$$f^{-1}(F) \cap M = f^{-1}(F) \cap \bigcup_{n=1}^{N} E_n = \bigcup_{n=1}^{N} f^{-1}(F) \cap E_n$$

We know that each $f^{-1}(F) \cap E_n$ is closed in E_n because f is continuous in E_n and we know that the finite union of closed sets is closed then $f^{-1}(F) \cap M$ is closed and therefore M is continuous.

(c) Let $E_n = [\frac{1}{n}, 1]$ we see that $\bigcup_{n=1}^{\infty} E_n = (0, 1]$ which is not a closed set. Therefore even though f is continuous in every E_n we based part of our proof on the fact that the finite union of closed sets is closed which is not the case here.

Proof. **34** Let $(M \times M, \rho)$ be a metric space where ρ is defined as

$$\rho((a, b), (c, d)) = d(a, c) + d(b, d)$$

and d is a metric on M. We want to prove that if $(x_n, y_n) \to (x, y)$ then $d(x_n, y_n) \to d(x, y)$ i.e. that d is continuous.

If $(x_n, y_n) \to (x, y)$ then this means that $x_n \to x$ and $y_n \to y$ then $d(x_n, x) \to 0$ and $d(y_n, y) \to 0$ which implies that

$$\rho((x_n, y_n), (x, y)) = d(x_n, x) + d(y_n, y) < \epsilon$$

for some $\epsilon > 0$. Also, we have that

$$d(x_n, y_n) \le d(x_n, x) + d(x, y_n)$$
 and $d(x, y_n) \le d(x, y) + d(y, y_n)$

so joining these inequalities we get that

$$d(x_n, y_n) - d(x, y) \le d(x_n, x) + d(y_n, y) < \epsilon$$

On the other hand, we also have that

$$d(x,y) \le d(x,x_n) + d(x_n,y)$$
 and $d(x_n,y) \le d(x_n,y_n) + d(y_n,y)$

then

$$d(x,y) - d(x_n, y_n) \le d(x_n, x) + d(y_n, y) < \epsilon$$

hence $|d(x,y)-d(x_n,y_n)|<\epsilon$. Therefore $d(x_n,y_n)\to d(x,y)$ as we wanted.

 (\rightarrow) We want to prove that $i:(M,d)\to (M,\rho)$ (the identity map) is a homeomorphism from (M,d) to (M,ρ) .

Let us check first that i is a one-to-one map. Let $i(a), i(b) \in (M, \rho)$ such that i(a) = i(b) then by definition a = i(a) = i(b) = b. Then i is a one-to-one map.

Let us also check that i is an onto map too. Let us take $a \in (M, \rho)$ then by definition we have $a \in (M, d)$ such that $i(a) = a \in (M, \rho)$. Then i is an onto map.

Also, we want to prove that i is continuous. Let $x \in (M, d)$ then if $d(x_n, x) \to 0$ (i.e. $x_n \to x$) for any $(x_n) \subset M$ we have that $\rho(x_n, x) \to 0$ because d and ρ are equivalent metrics. Therefore since i maps both x_n and x to themselves this implies that $i(x_n) \to i(x)$ where $i(x_n), i(x) \in (M, \rho)$.

Finally, we want to prove that also i^{-1} is continuous. In the same way let $x \in (M, \rho)$ if $\rho(x_n, x) \to 0$ (i.e. $x_n \to x$) for any $(x_n) \subset (M, \rho)$ we have that $d(x_n, x) \to 0$ because d and ρ are equivalent metrics. Therefore since i^{-1} maps both x_n and x to themselves this implies that $i^{-1}(x_n) \to i^{-1}(x)$ where $i^{-1}(x_n), i^{-1}(x) \in (M, d)$.

Therefore i is an homeomorphism from (M, d) to (M, ρ) .

 (\leftarrow) We want to prove that d and ρ are equivalent metrics on M knowing that i (the identity map) is a homeomorphism from (M, d) to (M, ρ) .

Let $x \in (M, d)$ and $(x_n) \subset (M, d)$ then if $d(x_n, x) \to 0$ we have that $\rho(i(x_n), i(x)) \to 0$ because i is continuous, but by definition, this also implies that $\rho(x_n, x) \to 0$.

In the same way, let $x \in (M, \rho)$ and $(x_n) \subset (M, \rho)$ then if $\rho(x_n, x) \to 0$ we have that $d(i^{-1}(x_n), i^{-1}(x)) \to 0$ because i^{-1} is continuous, but by definition, this also implies that $d(x_n, x) \to 0$.

Therefore d and ρ are equivalent metrics.

Proof. **44** We want to prove that "is homeomorphic to" is an equivalence relation, so we will prove it is a reflexive, symmetric and transitive relation.

Reflexivity: Let (M, d) be a metric space, we want to prove that (M, d) is homeomorphic to itself. Let i be the identity map, we saw in problem 43 that i is a homeomorphism from (M, d) to (M, d), then (M, d) is homeomorphic to itself.

Symmetry: Let (M,d) be homeomorphic to (N,ρ) then there is a relation $f:M\to N$ which is one-to-one and onto such that f and f^{-1} are continuous. Then we can define $g:N\to M$ such that $g=f^{-1}$ which is one-to-one and onto because f is bijective. Also, g is continuous because f^{-1} is continuous and $g^{-1}=(f^{-1})^{-1}=f$ is continuous because f is continuous. Therefore (N,ρ) is homeomorphic to (M,d).

Transitivity: Let (M,d) be homeomorphic to (N,ρ) and let (N,ρ) be homeomorphic to (L,τ) . We can define $h:M\to L$ as $h=g\circ f$ where $f:M\to N$ and $g:N\to L$ and they are the respective homeomorphisms. Since f and g are one-to-one and onto then h is also one-to-one and onto. Also, we see that $h^{-1}=(g\circ f)^{-1}=g^{-1}\circ f^{-1}$ and by the properties of the composition of functions we see that if $f,\ f^{-1},\ g$ and g^{-1} are continuous then both $h=g\circ f$ and $h^{-1}=g^{-1}\circ f^{-1}$ are also continuous. Therefore (M,d) is homeomorphic to (L,τ) .

Finally, since the relation "is homeomorphic to" is reflective, symmetric and transitive then it is an equivalence relation between metric spaces. \Box

Proof. **45** Let $M = \{1/n : n \ge 1\}$ and $f : \mathbb{N} \to M$ such that f(n) = 1/n. Let us prove first that f is one-to-one then let $n, m \in \mathbb{N}$ such that f(n) = f(m) then 1/n = 1/m i.e. n = m so f is one-to-one.

Let us prove now that f is an onto map. Let us take $a \in M$ then a has the form of a = 1/b where $b \in \mathbb{N}$ then there is always a $b \in \mathbb{N}$ such that f(b) = 1/b = a i.e. f is an onto map.

Now we want to prove that f is continuous. Let $f^{-1}: M \to \mathbb{N}$ defined as $f^{-1}(1/n) = n$. Since \mathbb{N} and M are discrete then a subset $V \subset M$ is open and because f^{-1} is bijective then $f^{-1}(V) \subset \mathbb{N}$ is also open. Therefore f is continuous.

In the same way, we want to prove that f^{-1} defined as we said is also continuous. Since \mathbb{N} and M are discrete then a subset $V' \subset \mathbb{N}$ is open and because f is bijective $(f^{-1})^{-1}(V') = f(V') \subset M$ is also open. Therefore f^{-1} is continuous.

So taking into account all these results we conclude that $\mathbb N$ is homeomorphic to M.

Proof. **48** We want to prove first that \mathbb{R} is homeomorphic to (0,1) this can be accomplished if we define $f: \mathbb{R} \to (0,1)$ such that $f(x) = \arctan(x)/\pi + 1/2$ since this map is bijective and continuous also $f^{-1}(x) = \tan(\pi(x-1/2))$ is continuous over (0,1).

Now we want to prove that (0,1) is homeomorphic to $(0,\infty)$ but we will prove first that \mathbb{R} is homeomorphic to $(0,\infty)$ so we define $f:\mathbb{R}\to (0,\infty)$ such that $f(x)=e^x$ we see that f is bijective and continuous also $f^{-1}(x)=\log(x)$ is continuous over $(0,\infty)$. So by composing these results, we have that a map $g:(0,1)\to(0,\infty)$ such that $g(x)=e^{\tan(\pi(x-1/2))}$ is an homeomorphism between (0,1) and $(0,\infty)$ as we wanted.

Let x = 0 and y = 2 then |0 - 2| = 2 but |f(0) - f(2)| is at most close to 1. Therefore \mathbb{R} is not isometric to (0, 1).

Let $f: \mathbb{R} \to (0, \infty)$ be an isometry from \mathbb{R} to $(0, \infty)$ we want to arrive at a contradiction. Let $x \in \mathbb{R}$ and suppose |x-0| = |x| = |f(x)-f(0)| then we have that f(x) = f(0) + x or f(x) = f(0) - x. Let us take $a \notin (0, \infty)$ then f(a-f(0)) = f(0) + a - f(0) = a or f(a-f(0)) = f(0) - a + f(0) = 2f(0) - a where we see that the first one cannot happen (otherwise $a \in (0, \infty)$). Also, let us consider that f(f(0) - a) = 2f(0) - a or f(f(0) - a) = a must be true where again the last case cannot happen, but also since f is injective we have that f(0) - a = a - f(0) which implies that f(0) = a hence $a \in (0, \infty)$ a contradiction. Therefore \mathbb{R} is not isometric to $(0, \infty)$.

Proof. **49** Let $y \in V$ and $f: V \to V$ which is defined as f(x) = x + y we want to show that f is an isometry on V. Let $x, z \in V$ since V is a normed vector space then we have that

$$||f(x) - f(z)|| = ||x + y - (z + y)|| = ||x - z||$$

Therefore f is an isometry on V.

Now let $\alpha \in \mathbb{R}$ and $g: V \to V$ which is defined as $g(x) = \alpha x$ we want to prove that g is a homeomorphism on V.

Let $x, z \in V$ and suppose g(x) = g(z) then x = z hence g is a one-to-one map. Also, let $v \in V$ such that v is in the image of g then by definition there must be an $x \in V$ such that $v = \alpha x$ so g is an onto map too.

Let us show now that g is continuous. Let $\epsilon > 0$ and $x, z \in V$ then let us take $\delta = \epsilon/|\alpha|$ so when $||x - z|| < \delta$ we get that

$$||x - z|| < \frac{\epsilon}{|\alpha|}$$
$$|\alpha| ||x - z|| < \epsilon$$
$$||\alpha x - \alpha z|| < \epsilon$$
$$||g(x) - g(z)|| < \epsilon$$

Therefore g is continuous.

Finally, we want to show that $g^{-1}(x) = x/\alpha$ (which we can define this way because α is nonzero) is continuous. Let $\epsilon > 0$ and let $x, z \in V$ (the image) then let us take $\delta = \epsilon |\alpha|$ so when $||x - z|| < \delta$ we have that

$$||x - z|| < \epsilon |\alpha|$$

$$\left| \frac{1}{\alpha} \right| ||x - z|| < \epsilon$$

$$\left| \left| \frac{x}{\alpha} - \frac{z}{\alpha} \right| \right| < \epsilon$$

$$||g^{-1}(x) - g^{-1}(z)|| < \epsilon$$

Therefore q^{-1} is continuous.

Joining all these results we see that g is a homeomorphism on V.

Proof. **50** Let us define a map $f:(M,d)\to (M,\rho)$ such that

$$f(m) = \begin{cases} 1 & \text{if } m = 0 \\ 0 & \text{if } m = 1 \\ 1/n & \text{if } m = 1/n \text{ where } n \ge 2 \end{cases}$$

Let $a, b \in (M, d)$ then

(i) If a = b = 0 we have that

$$d(a,b) = |a-b| = 0 = \rho(1,1) = \rho(f(a), f(b))$$

(ii) If a = b = 1 we have that

$$d(a,b) = |a-b| = 0 = \rho(0,0) = \rho(f(a), f(b))$$

(iii) If a = 1/n and b = 1/n' where $n, n' \ge 2$ we have that

$$d(a,b) = |1/n - 1/n'| = \rho(1/n, 1/n') = \rho(f(a), f(b))$$

(iv) If a = 0 and b = 1 (or a = 1 and b = 0) we have that

$$d(a,b) = |a-b| = 1 = \rho(1,0) = \rho(f(a), f(b))$$

(v) If a = 0 and b = 1/n (or a = 1/n and b = 0) where $n \ge 2$ we have that

$$d(a,b) = |0 - 1/n| = 1/n = \rho(1, 1/n) = \rho(f(a), f(b))$$

(vi) If a=1 and b=1/n (or a=1/n and b=1) where $n\geq 2$ we have that

$$d(a,b) = |1 - 1/n| = 1 - 1/n = \rho(0,1/n) = \rho(f(a),f(b))$$

Therefore f is an isometry which implies it's also a homeomorphism.

Finally, we want to prove that $i:(M,d)\to (M,\rho)$ the identity map is not continuous. We see that $\{0\}\subset (M,d)$ is not an open set since there is no $\epsilon>0$ such that $B^d_{\epsilon}(0)\subset (M,d)$. But $\{0\}\subset (M,\rho)$ is an open set since $\rho(0,1/n)=1-1/n\geq 1/2$ and $\rho(0,1)=1$ then there is $\epsilon=1/2$ such that $B^\rho_{\epsilon}(0)=\{0\}\subset (M,\rho)$. So if we take $V=\{0\}$ an open set in (M,ρ) we have that $i^{-1}(V)=i^{-1}(\{0\})=\{0\}\subset (M,d)$ is not open and therefore i is not continuous.

Proof. **52** We want to probe Theorem 55. Let $f:(M,d)\to (N,\rho)$ be one-to-one and onto.

- $(i) \Rightarrow (ii)$ Suppose f is a homeomorphisms and there is $(x_n) \subset (M,d)$ such that $x_n \to x$ then since f is continuous we have that $f(x_n) \to f(x)$. Now let us suppose that $f(x_n) \to f(x)$ then since f is an homeomorphism there is f^{-1} which is also continuous then we have that $f^{-1}(f(x_n)) \to f^{-1}(f(x))$ hence $x_n \to x$.
- $(ii) \Rightarrow (iii)$ Let G be an open set in M and let a sequence $(x_n) \subset M$ such that $x_n \to x$ where $x \in G$ then we have that $x_n \in G$ for all but finitely many n, but also we have that $f(x_n) \to f(x)$ so since $f(x) \in f(G)$ and f is bijective it must happen that all but finitely many $f(x_n) \in f(G)$ therefore $f(G) \subset N$ is an open set.

Now let us suppose $f(G) \subset N$ is open, also, let $f(x) \in f(G)$ such that $f(x_n) \to f(x)$ since f(G) is open then we have that $f(x_n) \in f(G)$ for all but finitely many n. But also we know that f is bijective then $x \in G$ and if $x_n \to x$ it must happen that $x_n \in G$ for all but finitely many n. Therefore $G \subset M$ is an open set.

- $(iii)\Rightarrow (iv)$ Let $E\subset M$ be a closed set then $M\setminus E$ is open in M then $f(M\setminus E)$ is an open set in N therefore $N\setminus f(M\setminus E)$ is a closed set in N and since f is bijective it must happen that $f(E)=N\setminus f(M\setminus E)$.

 Let now f(E) be a closed set in N then $N\setminus f(E)$ is an open set in N then $f^{-1}(N\setminus f(E))$ is an open set in M therefore $M\setminus f^{-1}(N\setminus f(E))$ is closed and since f^{-1} is bijective (as well as f) we have that $E=M\setminus f^{-1}(N\setminus f(E))$.
 - $(i) \Leftrightarrow (v)$ Let f be a homeomorphisms and $(x_n) \subset (M,d)$ be a sequence that tends to $x \in M$. Since f is continuous if $x_n \to x$ then $f(x_n) \to f(x)$ then $d(x_n, x) \to 0$ and $\hat{d}(x_n, x) = \rho(f(x_n), f(x)) \to 0$ hence d is equivalent to \hat{d} .
 - Let $\hat{d}(x,y) = \rho(f(x),f(y))$ be equivalent to the metric d(x,y) on M. We want to prove that f and f^{-1} are continuous, i.e. f is a homeomorphism (we already know f is bijective). Let $(x_n) \subset M$ be a sequence that tends to $x \in M$, then $d(x_n,x) \to 0$ but since \hat{d} is also equivalent to d this implies that $\rho(f(x_n),f(x)) \to 0$ hence f is continuous. Now let $(f(x_n)) \subset N$ be a sequence that tends to $f(x) \in N$ then $\hat{d}(x_n,x) = \rho(f(x_n),f(x)) \to 0$ but since \hat{d} is equivalent to d this implies that $d(x_n,x) \to 0$, hence f^{-1} is continuous. Therefore f is a homeomorphism.
 - $(iv) \Rightarrow (i)$ We want to prove that f and f^{-1} are continuous (we already know that f is bijective). Let E be closed in N, then because of (iv) we have that $f^{-1}(E)$ is closed in M hence f is continuous. In the same way, if E is closed in M then f(E) is closed in N so f^{-1} is also continuous. Therefore f is a homeomorphism.

- (\rightarrow) Let M be separable and $f:(M,d)\to (N,\rho)$ a homeomorphism. Also, let $A\subset M$ be a countable dense set in M then f(A) is countable since f is bijective but also we know that for every $x\in M$ there is a sequence $(x_n)\subset A$ such that $x_n\to x$. Since f is continuous we have $(f(x_n))\subset f(A)$ such that $f(x_n)\to f(x)$ where $f(x)\in N$. Hence f(A) is a countable dense subset of N and therefore N is separable.
- (\leftarrow) In the same way, if N is separable let us define a countable dense subset $B \subset N$ then $f^{-1}(B) \subset M$ is countable since f^{-1} is bijective (as well as f). But also we know that for every $y \in N$ there is a sequence $(y_n) \subset B$ such that $y_n \to y$. Since f^{-1} is continuous we have $(f^{-1}(y_n)) \subset f^{-1}(B)$ such that $f^{-1}(y_n) \to f^{-1}(y)$ where $f^{-1}(y) \in M$. Hence $f^{-1}(B)$ is a countable dense subset of M and therefore M is separable.

Proof. 57 Let $f:(M,d)\to(N,\rho)$ be one-to-one and onto.

- $(i) \Rightarrow (ii)$ Suppose f is open, so if $U \subset M$ is open then $f(U) \subset N$ is open. From Theorem 5.5. we know that "U is open if and only if f(U) is open" is equivalent to "E is closed if and only if f(E) is closed" when f is bijective (like in this case). Therefore f is closed
- $(ii) \Rightarrow (iii)$ We want to prove that f^{-1} is continuous. We know that if E is closed in M then f(E) is closed in N therefore f^{-1} is continuous.
- $(iii) \Rightarrow (i)$ From Theorem 5.1. we know that if f^{-1} is continuous and if U is open in M then f(U) is open in N. Therefore f is open.

 (\Rightarrow) Let f be a homeomorphism and A a subset of M. Also let $x \in \overline{A}$ then there is $(x_n) \in A$ such that $x_n \to x$. Since f is a homeomorphism we have that also $f(x_n) \to f(x)$ where $f(x_n) \in f(A)$ and $f(x) \in f(\overline{A})$ because f is bijective. But also $f(x) \in \overline{f(A)}$ because of Corollary 4.11. Then this implies that $f(\overline{A}) \subseteq \overline{f(A)}$.

In the same way, let $f(x) \in \overline{f(A)}$ then there is $(f(x_n)) \subset f(A)$ such that $f(x_n) \to f(x)$. Since f is a homeomorphism we also have that $x_n \to x$ where $x_n \in A$ and $x \in \overline{A}$ because f is bijective. But also again since f is bijective we have that $f(x) \in f(\overline{A})$. Then this implies that $\overline{f(A)} \subseteq f(\overline{A})$. Therefore $\overline{f(A)} = f(\overline{A})$.

 (\Leftarrow) Let E be a closed set in M so $E = \overline{E}$ then $f(E) = f(\overline{E}) = \overline{f(E)}$ therefore f is closed.

On the other hand, let B be closed set in N since f is bijective there must be A such that f(A) = B but also since B is closed we have that $B = \overline{B} = \overline{f(A)}$. We also have that $f(\overline{A}) = \overline{f(A)}$ so $B = f(\overline{A})$ then $f^{-1}(B) = \overline{A}$ which is closed. Therefore f^{-1} is closed.

Finally, since f and f^{-1} are both closed then f is a homeomorphism. \square

(i) We want to show that $\sigma(t) = a + t(b - a)$ is a homeomorphism. We will assume $b \neq a$.

Let us prove first it is a one-to-one function. Suppose $\sigma(t) = \sigma(t')$ then a + t(b - a) = a + t'(b - a) which implies that t = t' since $b \neq a$.

Now we want to prove it is an onto function. Let $c \in [a, b]$ then there is $t_c = \frac{c-a}{b-a}$ such that $\sigma(t_c) = c$ i.e. σ is onto.

Next, we want to prove that σ is continuous. Let $\epsilon > 0$ we want to show that $|\sigma(x) - \sigma(y)| < \epsilon$ whenever $|x - y| < \delta$. Let $\delta = \epsilon/|b - a|$ then if $|x - y| < \delta$ we have that

$$|x - y| < \frac{\epsilon}{|b - a|}$$

$$|x - y||b - a| < \epsilon$$

$$|a + x(b - a) - a - y(b - a)| < \epsilon$$

$$|\sigma(x) - \sigma(y)| < \epsilon$$

Finally, we want to prove that $\sigma^{-1}(t) = \frac{t-a}{b-a}$ is also continuous. Let $\epsilon > 0$ we want to show that $|\sigma^{-1}(x) - \sigma^{-1}(y)| < \epsilon$ whenever $|x-y| < \delta$. Let $\delta = \epsilon |b-a|$ then if $|x-y| < \delta$ we have that

$$|x - y| < \epsilon |b - a|$$

$$\frac{|x - y|}{|b - a|} < \epsilon$$

$$\frac{|(x - a) - (y - a)|}{|b - a|} < \epsilon$$

$$\left|\frac{x - a}{b - a} - \frac{y - a}{b - a}\right| < \epsilon$$

$$|\sigma^{-1}(x) - \sigma^{-1}(y)| < \epsilon$$

- (ii) (\Rightarrow) Let $f \in C[a, b]$. Since σ is a homeomorphism it is also continuous and because of the Lemma 5.7 we have that $f \circ \sigma$ is also continuous therefore $f \circ \sigma$ is a continuous map from [0, 1] to \mathbb{R} i.e. $f \circ \sigma \in C[0, 1]$.
 - (\Leftarrow) Let $f \circ \sigma \in C[0,1]$, since σ is a homeomorphism then σ^{-1} is continuous and because of the Lemma 5.7 we have that $(f \circ \sigma) \circ \sigma^{-1}$ is also continuous but $(f \circ \sigma) \circ \sigma^{-1} = f$ therefore $f \in C[a,b]$.

(iii) Let $f,g \in C[a,b]$ we want to prove that the map $f \to f \circ \sigma$ is an isometry from C[a,b] to C[0,1] then we have on one hand that

$$d(f,g) = ||f - g||_{\infty} = \max_{a \le t \le b} |f(t) - g(t)|$$

And on the other hand, we have that

$$\begin{split} \rho(f \circ \sigma, g \circ \sigma) &= \|f \circ \sigma - g \circ \sigma\|_{\infty} \\ &= \max_{0 \leq t \leq 1} |(f \circ \sigma)(t) - (g \circ \sigma)(t)| \\ &= \max_{0 \leq t \leq 1} |f(a + t(b - a)) - g(a + t(b - a))| \\ &= \max_{a < t < b} |f(t) - g(t)| \end{split}$$

Therefore the map $f \to f \circ \sigma$ is an isometry.

(iv) Let $\alpha, \beta \in \mathbb{R}$ then we have that

$$T((\alpha f + \beta g)(t)) = ((\alpha f + \beta g) \circ \sigma)(t)$$

$$= (\alpha f + \beta g)(a + t(b - a))$$

$$= \alpha f(a + t(b - a)) + \beta g(a + t(b - a))$$

$$= \alpha (f \circ \sigma)(t) + \beta (g \circ \sigma)(t)$$

$$= \alpha T(f(t)) + \beta T(g(t))$$

(v) In this case, we have that

$$T((fg)(t)) = ((fg) \circ \sigma)(t)$$

$$= (fg)(a + t(b - a))$$

$$= f(a + t(b - a))g(a + t((b - a)))$$

$$= (f \circ \sigma)(t)(g \circ \sigma)(t)$$

$$= T(f(t))T(g(t))$$

(vi) (\Rightarrow) If $T(f(t)) \leq T(g(t))$ for any $t \in [0,1]$ then we have that

$$f \circ \sigma(t) \le g \circ \sigma(t)$$
$$f(a + t(b - a)) \le g(a + t(b - a))$$
$$f(t') \le g(t')$$

This implies that $f \leq g$ for any $t' \in [a, b]$.

 (\Leftarrow) If $f(t) \leq g(t)$ for any $t \in [a,b]$ then we have that $f(a+t'(b-a)) \leq g(a+t'(b-a))$ for any $t' \in [0,1]$ so $f \circ \sigma(t') \leq g \circ \sigma(t')$. Therefore $T(f(t)) \leq T(g(t))$.

Proof. **64** Given $f, g \in C(\mathbb{R})$, we want to prove that

$$d(f,g) = \sum_{n=1}^{\infty} \frac{2^{-n} d_n(f,g)}{(1 + d_n(f,g))}$$

defines a metric on $C(\mathbb{R})$ then

(i) Since $d_n(f,g) \ge 0$ for any $n \in \mathbb{N}$ and any $f,g \in C(\mathbb{R})$ then $d(f,g) \ge 0$. Also, given that $d_n(f,g) < 1 + d_n(f,g)$ we have that

$$0 \le \frac{2^{-n}d_n(f,g)}{(1+d_n(f,g))} \le 2^{-n}$$

and since $\sum_{n=1}^{\infty} 2^{-n}$ converges we have that d(f,g) also converges i.e. $d(f,g) < \infty$.

(ii) (\Rightarrow) Suppose d(f,g) = 0 then

$$\sum_{n=1}^{\infty} \frac{2^{-n} d_n(f,g)}{(1 + d_n(f,g))} = 0$$

So it must happen that $d_n(f,g) = 0$ for every $n \in \mathbb{N}$ this implies that $\max_{|t| \leq n} |f(t) - g(t)| = 0$ for every $n \in \mathbb{N}$ hence it must happen that f(t) = g(t) for all $|t| \leq n$. Since this is true for every $n \in \mathbb{N}$ then f = g.

- (⇐) Suppose f = g then it must happen that $d_n(f,g) = 0$ for every $n \in \mathbb{N}$ since it is a pseudometric. Therefore $d(f,g) = \sum_{n=1}^{\infty} \frac{2^{-n} d_n(f,g)}{(1+d_n(f,g))} = 0$.
- (iii) Let $f, g \in C(\mathbb{R})$ then

$$d(f,g) = \sum_{n=1}^{\infty} \frac{2^{-n} d_n(f,g)}{(1 + d_n(f,g))} = \sum_{n=1}^{\infty} \frac{2^{-n} d_n(g,f)}{(1 + d_n(g,f))} = d(g,f)$$

Where we used that $d_n(f,g) = d_n(g,f)$ for every $n \in \mathbb{N}$ since it is a pseudometric and it has the symmetry property.

(iv) Let $f, g, h \in C(\mathbb{R})$. Since d_n is a pseudometric we have that

$$d_n(f,g) \le d_n(f,h) + d_n(h,g)$$

Also, from problem 5 (of Chapter 3) we know that the function F(t) = t/(1+t) is increasing so we have that

$$F(d_n(f,g)) \le F(d_n(f,h) + d_n(h,g))$$
$$\frac{d_n(f,g)}{1 + d_n(f,g)} \le \frac{d_n(f,h) + d_n(h,g)}{1 + d_n(f,h) + d_n(h,g)}$$

But also F satisfies $F(s+t) \leq F(s) + F(t)$ for $s,t \geq 0$ then joining these inequalities we have that

$$\frac{d_n(f,g)}{1+d_n(f,g)} \le \frac{d_n(f,h)+d_n(h,g)}{1+d_n(f,h)+d_n(h,g)} \le \frac{d_n(f,h)}{1+d_n(f,h)} + \frac{d_n(h,g)}{1+d_n(h,g)}$$

This implies that

$$\sum_{n=1}^{\infty} \frac{2^{-n} d_n(f,g)}{1 + d_n(f,g)} \le \sum_{n=1}^{\infty} \frac{2^{-n} d_n(f,h)}{1 + d_n(f,h)} + \frac{2^{-n} d_n(h,g)}{1 + d_n(h,g)}$$

Therefore $d(f,g) \le d(f,h) + d(h,g)$ as we wanted.

Finally, since the metric d satisfies (i) to (iv) it defines a metric on $C(\mathbb{R})$. \square