MATH326: Mathématiques pour les sciences 3

Contrôle continu 1 du Mercredi 12 octobre 2011 — 10-11h

Documents et calculatrices non autorisés.

Lors de l'appréciation des copies, il sera tenu le plus grand compte du soin apporté à la présentation, de la clarté de la rédaction et de la précision des démonstrations.

Exercice 1 – Montrer que la série de terme général $u_n = \frac{1}{(n+3)(n+4)}$ est convergente puis calculer la somme de la série $S = \sum_{n=1}^{+\infty} u_n$.

Exercice 2 – Déterminer la nature des séries numériques suivantes :

$$1. \sum \frac{\ln(n^n)}{(\ln n)^n}$$

3.
$$\sum \frac{\cos(n^3)}{n^4 + e^{-n}}$$

5.
$$\sum \frac{(2n)!}{n! (2n)^n}$$

2.
$$\sum \frac{1}{(2n-1)2^{2n-1}}$$
 4. $\sum \frac{(-1)^n}{n \ln n}$

$$4. \sum \frac{(-1)^n}{n \ln n}$$

6.
$$\sum e^{-\sqrt{n}}$$

Exercice 3 – Soit la suite u_n définie par $u_0 = 2$, $u_1 = 1$ et, pour $n \geqslant 2$, $u_n = \frac{3u_{n-1} + u_{n-2}}{4}$. On pose, pour tout $n \in \mathbb{N}$, $v_n = u_{n+1} - u_n$.

- 1. Exprimer v_n en fonction de u_n et u_{n-1} . En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera la raison.
- 2. En considérant la série de terme général v_n , montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

Exercice 4 – Soit (u_n) le terme général d'une série à termes positifs.

- 1. Montrer que la série de terme général $v_n = \frac{u_n}{1 + n^2 u_n}$ converge.
- 2. Le but est de montrer que les séries de terme général u_n et $w_n = \frac{u_n}{1+u_n}$ sont de même nature.
 - (a) On suppose $\sum u_n$ convergente. Montrer que $\sum w_n$ converge.
 - (b) Montrer que si $\sum w_n$ converge, il en va de même de $\sum u_n$.