SmartSquare – Motion Paths Extraction

HafenCity Universität
Hamburg

CityScienceLab | HafenCity University Hamburg

Visualize and Analyze

- · Input: Tracks with geographical coordinates
- Task: Visualize the tracks on maps, compute and visualize indicators on Dashboards, analyze tracks and regions
 - · The observed plaza has been divided into tiles

Map to Real World

- · Input: Tracks over all frames resp. over time
 - · with pixel coordinates
- Task: Transform the pixel-coordinates from all detections and camera perspectives into geographical coordinates
- Thin plate splines (TPS) is a spline-based technique for data interpolation and smoothing
- Based on: "Principal Warps: Thin-Plate splines and the decomposition of deformations" from F.L. Bookstein in IEEE Transaction on Pattern Analysis and Machine Intelligence (Vol. 11, No. 6, June 1989)
- Counting, statistics and indicators: computed on basis of:
 - · Frequency over time
 - Exposure time per track, per tile and over time

· CityScopes: e

Change over time

Track Paths

- · Input: Frames and its detections per frame
- Task: Associate the detections of former frames with the detections of later frames in order to generate tracks
 of pedestrians and vehicles movements over time
 - Amongst others we are using Deep SORT (https://github.com/nwoike/deep_sort)
 as Simple Online and Realtime Tracking algorithm utilizing a Deep Association Metric
 - Rudimentary combination of familiar techniques such as the Kalman Filter (state estimation) and Hungarian algorithm (data association) for the tracking components (SORT)
 - Extended to integrate appearance information based on a deep appearance descriptor (Deep SORT)
 - Multi-camera approach: Tracking results from all camera perspectives have to be merged by connecting its tracks (if pedestrians move from one camera perspective to another)
 - Multi-cameras are not used to observe the same scene from different perspectives but rather to observe a bigger space (means that cameras angles of view do not overlap much)

Transformation Approach:

Step 1: Transform images to georeferenced pointclouds (geoinformation-matrices) through landmark definition based on thin-plate splines warping

- a. Compute thin-plate splines
- b. Warping
- c. Save as geoinformation-matrix

Step 2: Transform the result of the detection algorithms (pixel-coordinates for each detection) to geographical coordinates via former generated (step 1) geoinformationmatrices

 geoinformation-matrices has to be generated for all camera perspectives · Find and track pattern in motion paths

· Analytics: Visualize tracks, statistics and indicators

· Load anonymized and geo-referenced trajectories

into our Data Analytics Pipeline (see our other

poster) to analyze and visualize motion paths over

- Provides diagrams, figures and maps
- Shows change over time

We do not track or save information or images about or from individuals! We do extract anonymized motion paths in order to explore the square ...

Detect Pedestrians

- Input: Frames
 - Records from 6 different fixed camera perspectives (Offline approach; using records from 3 weeks, 3 recorded days each and around 5 hours of recorded HD videos per camera and day ~ around 270 hours of video recordings)
 - From 1 permanent mounted "intelligent camera" module (NVIDIA Jetson TX2 with FLIR camera) which does the detection job on-the-fly and just sends anonymized detection results (privacy-by-design) and features to a server where the tracking and mapping tasks can be performed server side and in real-time (bigger hardware)
- We are using Detectron (https://github.com/facebookresearch/Detectron) and its Mask R-CNN
 (https://arxiv.org/abs/1703.06870) implementation for detection and segmentation as well as YOLOv3
 (https://pjreddie.com/darknet/yolo) and SSD (https://github.com/weiliu89/caffe/tree/ssd) within the
 "intelligent camera" module
- · Instant segmentation and masking enables instant anonymization (privacy-by-design)

