

Team 10

MagiChess

Jack Deguglielmo, Samantha Klein, Weishan Li, Sai Thuta Kyaw

Advisor: Shira Epstein

Meet the team

Shira EpsteinFaculty Team Advisor

Sai Thuta Kyaw Electrical Engineer

Samantha Klein Electrical Engineer

Jack Deguglielmo Computer Engineer

Weishan Li Computer Engineer

For centuries, the game of chess has been played by two players sitting across a chessboard.

The advent of digital technology in the last decades has brought virtual chess to computers and mobile phones and for the first time, this has allowed players to be anywhere across the world.

Digital chess lacks:

• A physical aspect/satisfaction of seeing and moving your own pieces

Physical chess lacks:

Ability to play from anywhere and with anyone

Our Solution

We've decided to close the gap between physical and digital chess. To do this, we plan to create a chess board that allows users to play with an AI or a remote human opponent.

Plan:

- Sense location of chess pieces on the board
- Interface with LiChess server
- Automate piece moving

Preliminary System Specifications (Design-agnostic)

11117

- Mechanically move a piece to destination cell
- Remove/replace a piece to/from game board
- Provide visual feedback
 - Game setup, tutorial
 - Game announcements
 - Highlights previous move
- Provide audio feedback
 - Notification alerts
- Play versus remote opponent
- Playback previous games
- Includes buffer zone to store captured pieces
- Topple the King after checkmate

- Total system dimensions: no larger than 32.5 in x 30 in x 8in (80 cm x 74 cm x 15 cm)
- Speed of XY plotter: 4-5 cm/s
 - Absolute maximum time taken for a move 25s.
 - Move pieces under 10s more than half of the time
- Weight: Under 50lbs

CDR Deliverables

Vision statement for our working prototype

Our vision for the working prototype and progress for Magichess includes several key functionalities. We will integrate subsystems described in MDR (LiChess API conversation with physical movement of gantry). We will have a complete assembly and wood frame of our board as well as communication between Pi and (at least) two 328p working as intended.

Key aspects of our prototype:

- Completed frame and mechanical assembly of the chessboard and gantry
- System able to detect Chess piece movement made by the user.
- System able to communicate with LiChess the movement made by the user.
- System able to move chess pieces around with Electromagnet and Gantry System with a reasonable success rate.
- Fully functional graphical user interface

Current Prototype

Left: Soldiered Hall Sensors on Sensor PCB

Right: Sensor PCBs setup and wiring. Breadboard Power Rails are used for wire connections only.

Previous Prototype

Current Prototype

Left: MagiChess frame, electromagnet and monitors for testing

Right: MagiChess Frame and Gantry

IIIIII

Quick GUI Updates

System Block Diagram

Software Diagram - Game State

- (A) gameStart, challengeDeclined, ...
- (B) gameState, chatLine, ...

UART Data Packet Description

8 bit UAR	Γ Data Pack	et						
Bit	7	6	5	4	3	2	1	0
Data	TYP2	TYP1	TYP0	DAT4	DAT3	DAT2	DAT1	DAT0
Initial Value	х	Х	Х	Х	Х	Х	Х	Х

No.	TYP2	TYP1	TYP0	TYPE/CATEGORY
0	0	0	0	N/A
1	0	0	1	X - Axis Address
2	0	1	0	Y - Axis Address
3	0	1	1	RFID Value Return
4	1	0	0	ELECTROMAGNET CONTROL
5	1	0	1	GO
6	1	1	0	ARRIVED
7	1	1	1	ELSE

Link to Document

Bit	7	6	5	4	3	2	1	0
BYTE0	TYP4	TYP3	TYP2	TYP1	TYP0	COL2	COL1	COLO
Bit	7	6	5	4	3	2	1	0

Demos for Integrated System

AAAAA

- 1. Raspberry Pi and Gantry Making Moves
 - a. Initial Homing using Contact Switches
 - b. Send Address and Go command

 Raspberry Pi and Fast Scanning Hall Sensors Detecting movement.

CDR Deliverables

- AAAAA
- ✓ System able to communicate with LiChess the movement made by the user.
- System able to detect chess piece movement made by the user
- ✓ System able to move chess pieces around with Electromagnet and Gantry System with a reasonable success rate.
- ✓ Fully functional graphical user interface
 - Audio Integrated
 - Optimized for touch display and added features
- Completed frame and mechanical assembly of the chessboard and gantry
 - Wooden frame as seen in the current prototype
 - Upgrading from wood to Aluminium and CAD frame model shown below

1. Gantry Control PCB

- 1. Microcontroller
- 2. Reset Button
- 3. Level Shifters
- 4. ICSP Port
- 5. Power Ports
- 6. Status LEDs + Resistors
- 7. Extra Ports
- 8. 12V Power Input

2. Sensor Board PCB

3. Sensor Control PCB

- L. Microcontroller
- 2. Power Input
- 3. Reset Button
- 4. Level Shifter

FPR Plan

- Migrate from wood to aluminium extrusion frame with plywood + plexiglass sides.
- Finish frame assembly before 10th April
- 3D-Print Chess pieces with velvet bottoms and embedded magnet
- Migrate from header pins to JST connectors
- Order new PCB to minimize wiring sensor boards

- Stress test gantry with simulated game play for 4 hours
- Stress test hall sensors with real game play
- Play socially-distanced chess with strangers
- Test and record failures to perform root cause analysis

Testing timing

Pi saves the "distance" for average and max move for a typical game

Use mathematical modeling to calculate the timings

- Retrying failed moves certain number of time
- Add option for User intervention to correct the physical gamestate
- Occasionally resetting the gantry
- Monitor thermals

Plans for FPR Demo

Play a game over the internet

Responsibilities post CDR

Jack

- Raspberry Pi interfaces with 328Ps
- Analysis of gantry move time
- Replay/resume/reset game
- Altium Lead

Weishan

- Refine and add features to GUI
- Improve and debug communication between Pi and 328p's
- Replayable Games

Sam

- Evaluate the use of other protocols over software UART
- Refine Fast Scanning
- Budget Manager

Sai

- Final Frame Assembly
- Testing and Hardening Movement
- Team Coordinator

Total Spendings Pre MDR

Items Purchased (Digikey)	Cost (\$)
16QFN breakout board	12
P25/20 Electromagnet	9.95
13MHz NFC antenna (10)	12.32
Tariff for NFC antenna	1.23
32QFN Breakout board	5.95
AH3564 Hall Sensors (5)	3.58
Tariff for Hall Sensors	0.36
PE4244 RF switches (4)	4.8
TI7960 RFID reader 32QFN (3)	14.46
At88RF RFID tag (10)	8.6
AT88RF RFID reader (5)	9.85
USPS Shipping	4.99

Items Purchased (AliExpress)	Cost (\$)
Gantry	162.34

Items Purchased (eBay)	Cost (\$)
36QFN breakout board (5)	9.25
USPS Shipping	5.15

Total Spent	264.83
Remainding	235.17

Total Spending Pre CDR

Gantt Chart After CDR							
Task	Team Member	Mar 28 - Apr 3	Apr 4 - Apr 10	Apr 11 - Apr 17	Apr 18 - Apr 24	Apr 25 - May 1	
Bug Fix	Jack						
Training/Replay	Jack						
Bug Fix	Wei						
Training/Replay	Wei						
System Integration	Sam						
Bug Fix	Sam						
Final Frame Assembly	Sai						
System Integration	Sai						

Team Website

All Demo Videos Playlist

Github Repo

Thank You

Additional Slides

Resolving Moves from Hall Sensor Matrix

- How are we resolving moves?
 - Normal
 - Data received from initial state 0b11000011
 - Data received from user move 0b11000101
 - Capturing
 - Edge cases like castling/en passant

Determining User's Piece Promotion

How do we determine which piece a user promotes to?

Option 1: User input to select promotion piece + autonomously exchange pieces

Option 2: User input to select promotion piece + prompt user to exchange pieces

Option 3: Use RFID to identify the type of piece exchanged

Replay Games/Resume Game in Progress

FPR

Move Time

What are the components of move delay?

Transmission Delay of Move Plannin	Transmission Delay of Path	Gantry Movement (to start cell)	Electromagnet Charging	Gantry Movement (to dest cell)
------------------------------------	-------------------------------	------------------------------------	---------------------------	--------------------------------------

Analysis/Plan for Assessing move time

MATT

• Update?

