| Computer Interfacing       | Tercer Parcial                                                                                                        | 09/01/2019                       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Nom i Cognoms: _           |                                                                                                                       |                                  |
| Justifiqueu totes les res  | postes!                                                                                                               |                                  |
| convertidor analògic digi  | ocontrolador PIC18F45K22 funcionant<br>ital de 10 bits en el seu punt més òptim d<br>ccions del fabricant) (2,5punts) |                                  |
| 1.1- Quina seria la config | guració dels bits ADCS i ACQT que utilitz                                                                             | zaries?                          |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
| 1.2- Segons la configurac  | ció triada, quin seria el temps que trigari                                                                           | ia el PIC en obtenir una mostra? |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
|                            | p obtinguda la mostra, el programa trig<br>n màxima del senyal que podem mostrej                                      |                                  |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |
|                            |                                                                                                                       |                                  |

| 2) Volem mostrejar el senyal analògic provinent d'un sensor de temperatura connectat a un PIC18F45K22. El sensor es comporta de manera LINEAL i dóna tensions entre 0V i 5V corresponents a temperatures d'entre 0 i 100 graus. Per restriccions del problema, necessitem mesurar temperatures entre 20 i 60 graus i volem tenir la màxima resolució possible (2 punts) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1 Quines tensions de referència triaries?                                                                                                                                                                                                                                                                                                                             |
| 2.2 Quina es la resolució en graus que tindrem?                                                                                                                                                                                                                                                                                                                         |
| 3) Necessitem fer servir el <b>convertidor D/A</b> del PIC18FK22 a una freqüència elevada i un alumne amic nostre de telecos ens ha recomanat que fem servir la freqüència de clock més alta possible per tal de que el temps de conversió <b>D/A</b> es minimitzi. Té raó el nostre amic? (1 punt)                                                                     |

## Nom i Cognoms:

## 22-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM



REGISTER 17-3: ADCON2: A/D CONTROL REGISTER 2

| R/W-0 | U-0 | R/W-0 | R/W-0     | R/W-0 | R/W-0 | R/W-0     | R/W-0 |
|-------|-----|-------|-----------|-------|-------|-----------|-------|
| ADFM  | ·—- |       | ACQT<2:0> |       |       | ADCS<2:0> |       |
| t 7   |     |       |           |       | 11.0  |           | bit   |

| Legend:           | 0111 - 1141      |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 7 ADFM: A/D Conversion Result Format Select bit

1 = Right justified

0 = Left justified bit 6 Unimplemented: Read as '0'

ACQT<2:0>: A/D Acquisition time select bits. Acquisition time is the duration that the A/D charge holding capacitor remains connected to A/D channel from the instant the GO/DONE bit is set until bit 5-3

conversions begins.

 $000 = 0^{(1)}$ 

001 = 2 TAD

010 = 4 TAD 011 = 6 TAD

100 = 8 TAD

101 = 12 TAD 110 = 16 TAD

111 = 20 TAD

bit 2-0 ADCS<2:0>: A/D Conversion Clock Select bits

000 = Fosc/2

001 = Fosc/8

010 = Fosc/32 011 = Frc(1) (clock derived from a dedicated internal oscillator = 600 kHz nominal)

100 = Fosc/4

101 = Fosc/16

110 = Fosc/64 111 = Frc<sup>(1)</sup> (clock derived from a dedicated internal oscillator = 600 kHz nominal)

## TABLE 27-22: A/D CONVERSION REQUIREMENTS PIC18(L)F2X/4XK22

| Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at +25°C |        |                                                           |     |              |          |       |                              |
|-----------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------|-----|--------------|----------|-------|------------------------------|
| Param.<br>No.                                                                                 | Symbol | Characteristic                                            | Min | Тур          | Max      | Units | Conditions                   |
| 130                                                                                           | TAD    | A/D Clock Period                                          | 1   | 5 8          | 25       | μS    | -40°C to +85°C               |
|                                                                                               |        | 15                                                        | 1   |              | 4        | μS    | +85°C to +125°C              |
| 131                                                                                           | Tonv   | Conversion Time (not including acquisition time) (Note 1) | 11  | -            | 11       | TAD   |                              |
| 132                                                                                           | TACQ   | Acquisition Time (Note 2)                                 | 1.4 | * <u>=</u> = | 32_8     | μS    | $VDD = 3V$ , $Rs = 50\Omega$ |
| 135                                                                                           | Tswc   | Switching Time from Convert → Sample                      | _   |              | (Note 3) | 8 3   |                              |
| 136                                                                                           | TDIS   | Discharge Time                                            | 1   | . —          | 1        | TCY   |                              |

Suposem:  $T_{AD} \ge 1 \ \mu s$ ,  $T_{ACQ} \ge 7,45 \ \mu s$ ,  $T_{DIS} = 1 \ T_{AD}$ 

| 4) Indica per cada un dels següents busos, si hi ha algun mecanisme per detectar si està connectat o no l'equip amb que estem comunicant-nos (1,5 punts):                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I2C:                                                                                                                                                                                                                                                               |
| SPI:                                                                                                                                                                                                                                                               |
| 1Wire:                                                                                                                                                                                                                                                             |
| 5) Calcula el temps necessari per transmetre 2048 Bytes de dades per <b>línia sèrie</b> a 19200 bps utilitzant bit de paritat (parell), suposant que els enviarem en blocs de 256 Bytes (un Bank de memòria). Després de cada un dels blocs esperem rebre per L/S: |
| <ul> <li>- un Byte ACK (0x0F) que vol dir que s'han rebut tots correctament,</li> <li>- un Byte ERR (0xAA) que vol dir que hi ha hagut error a la comunicació,</li> <li>- res si el receptor s'ha desconnectat.</li> </ul>                                         |
| Immediatament després de rebre la resposta enviem el següent bloc o repetim l'anterior si hi ha error. Suposeu que estadísticament falla la transmissió d'1 bit de cada 22000 (2 punts).                                                                           |
|                                                                                                                                                                                                                                                                    |
| 6) En una prova volem configurar la línia sèrie del PIC18F45K22 amb Fosc=8MHz a 100Kbps. Serà possible obtenir aquesta velocitat en les configuracions assíncrones? (1 punt)                                                                                       |

## Nom i Coanome

TABLE 20-1: BAUD RATE FORMULAS

| Configuration Bits |       | its  | DDC/FUGADT Mada     | David Data Farmilla |  |  |
|--------------------|-------|------|---------------------|---------------------|--|--|
| SYNC               | BRG16 | BRGH | BRG/EUSART Mode     | Baud Rate Formula   |  |  |
| 0                  | 0     | 0    | 8-bit/Asynchronous  | Fosc/[64 (n + 1)]   |  |  |
| 0                  | 0     | 1    | 8-bit/Asynchronous  | Fosc/[16 (n + 1)]   |  |  |
| 0                  | 1     | 0    | 16-bit/Asynchronous |                     |  |  |
| 0                  | 1     | 1    | 16-bit/Asynchronous |                     |  |  |
| 1                  | 0     | х    | 8-bit/Synchronous   | Fosc/[4 (n + 1)]    |  |  |
| 1                  | 1     | х    | 16-bit/Synchronous  | 1                   |  |  |

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair





Figure 10.3 Connection between an SPI master and an SPI slave