CO 367

272284444

September 2023

Contents

1	Introduction	2
	1.1 Lecture 1-Preliminaries	
	1.2 Lecture 2	5
2	Unconstrained Optimization	6
	2.1 Lecture 2	6
	2.2 Lecture 3	8
	2.3 Lecture 4	9
3	Linear Least Squares & Solving Linear Systems	12
	3.1 Lecture 5	12
	3.2 Lecture 6	14
	3.3 Lecture 7	16

1 Introduction

1.1 Lecture 1-Preliminaries

Definition 1.1 - Quadratic Form

Let A be a symmetric matrix and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. The **quadratic form** Q of the matrix A is defined as

$$Q = x^T A x$$

Problem 1.1 - Example

Consider the matrix $A = \begin{bmatrix} 5 & -5 \\ -5 & 1 \end{bmatrix}$. The quadratic form of A is

$$Q(x) = 5x_1^2 - 10x_1x_2 + x_2^2$$

Definition 1.2 - Classification of Quadratic Forms

Let Q be a quadratic form of a matrix A. Then Q is

- 1. positive definite if Q(x) > 0 for all non-zero vectors x, and Q(x) = 0 if and only if x = 0. Or all eigenvalues of A are positive.
- 2. positive semidefinite if $Q(x) \ge 0$ for all vectors x, with Q(x) = 0 occurring for some non-zero vectors x. Or all eigenvalues of A are non-negative.
- 3. negative definite if Q(x) < 0 for all non-zero vectors x, and Q(x) = 0 if and only if x = 0. Or all eigenvalues of A are negative.
- 4. negative semidefinite if $Q(x) \leq 0$ for all vectors x, with Q(x) = 0 occurring for some non-zero vectors x. Or all eigenvalues of A are non-negative.
- 5. indefinite if Q(x) can be positive or negative. Or there are positive and negative eigenvalues for A.

Definition 1.3 - Big O and little o

Big O is basically the rate of growth of that function. A function f(n) is of order 1, or O(1) if there exists some non zero constant c such that

$$\frac{f(n)}{c} \to 1$$

as $n \to \infty$.

Little o is the upper bound of the rate of growth of that function. Therefore, a function f(n) is of order 1, or o(1) if for all constants c > 0,

$$\frac{f(n)}{c} \to 0$$

as $n \to \infty$.

Definition 1.4 - Differentiability Based on Big o and Little o

If f is differentiable at x = a, then

$$f(a+h) = f(a) + f'(a)h + o(h)$$

Conversely, if there exists constants A and B such that

$$f(a+h) = A + Bh + o(h)$$

then f is differentiable at x = a. Moreover, A = f(a) and B = f'(a).

Definition 1.5 - Product Rule

If f, g are differentiable at x = a, then

$$f(a+h) = f(a) + f'(a)h + o(h), \quad g(a+h) = g(a) + g'(a)h + o(h)$$

Then

$$p(a+h) = f(a+h)g(a+h)$$

= $f(a)g(a) + [f(a)g'(a) + g(a)f(a)]h + o(h)$

Then by above theorem, p = fg is differentiable at x = a, and p'(a) = f(a)g'(a) + g(a)f'(a).

Definition 1.6 - Chain Rule

WIP

Definition 1.7 - Inner Product Space

Let $x \in \mathbb{R}^n$, represented as:

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

The inner product space is defined as:

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$
 (dot product)

The angle between vectors x and y is given by $\cos(\theta) = \frac{\langle x,y \rangle}{\|x\|}$.

With corresponding norm to be the Euclidean Norm

Definition 1.8 - Open ball

Given $\delta > 0$, $\bar{x} \in \mathbb{R}^n$, the open ball $B_{\delta}(\bar{x}) = \{x \in \mathbb{R}^n \mid ||x - \bar{x}|| < \delta\}$

Definition 1.9 - map

Suppose the map $f: \mathbb{R}^n - > \mathbb{R}$.

Definition 1.10 – open set

Let $D \subset \mathbb{R}^n$, D open set. $\forall x \in D, \exists \delta > 0$, s.t $B_{\delta}(x) \subset D$

Definition 1.11 - differ

We define f to be in C^1,C^2 on an open set $D\subseteq\mathbb{R}^n$, denoted $f\in C^1(D),C^2(D)$, respectively, if the partial first $\frac{\partial f(x)}{\partial x_i}$ and second $\frac{\partial^2 f(x)}{\partial x_i\partial x_j}$ derivatives exist and are continuous for all i,j, respectively. We then get the gradient vector in \mathbb{R}^n and the $n\times n$ symmetric Hessian matrix, respectively denoted as:

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_i}\right) \in \mathbb{R}^n, \quad \nabla^2 f(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right] \in \mathbb{S}^n.$$

Here, \mathbb{S}^n is the vector space of $n \times n$ symmetric matrices.

Definition 1.12 - General Nonlinear opt. function NLO

The general problem of nonlinear optimization, denoted NLO, is defined as follows: Given C²-smooth functions $f, g_i, h_j : D \subseteq \mathbb{R}^n \to \mathbb{R}$ for $i = 1, \dots, m$ and $j = 1, \dots, p$, where D is an open subset of \mathbb{R}^n , the objective is to find the optimal value p^* and an optimum x^* of NLO, represented as:

$$p^* := \min f(x)$$
 s.t. $g_i(x) \le 0$, $\forall i = 1, ..., mh_j(x) = 0$, $\forall j = 1, ..., px \in D$

If f, g_i, h_i are all **affine** function and D= \mathbb{R}^2 , then we have an LP

Definition 1.13 - affine

$$f(x) = Ax + b \tag{1}$$

where $b\neq 0$

Definition 1.14 - Types of Minimality

Consider $f: \mathbb{R}^n \to \mathbb{R}$ and $D \subset \mathbb{R}^n$. Then $\bar{x} \in D$ is:

- a global minimizer for f on D if $f(\bar{x}) \leq f(x)$ for all $x \in D$.
- a strict global minimizer for f on D if $f(\bar{x}) < f(x)$ for all $x \in D$ where $x \neq \bar{x}$.
- a local minimizer for f on D if there exists $\delta > 0$ such that $f(\bar{x}) \leq f(x)$ for all $x \in D \cap B_{\delta}(\bar{x})$.
- a strict local minimizer for f on D if there exists $\delta > 0$ such that $f(\bar{x}) < f(x)$ for all $x \in D \cap B_{\delta}(\bar{x})$ where $x \neq \bar{x}$.

Definition 1.15 - Linear Approximation

Suppose f is a function that is differentiable on an interval I containing the point a. The **linear approximation** to f at a is the linear function

$$L(x) = f(a) + f'(a)(x - a)$$

for $x \in I$.

Definition 1.16 - Quadratic Approximation

Similar as above, the **quadratic approximation** to f at a is the quadratic function

$$Q(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^{2}$$

for $x \in I$.

Definition 1.17 - Formal Definition of Derivative

The **derivative** of f at a is defined as

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if the limit exists.

An alternate definition is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

1.2 Lecture 2

Definition 1.18 - General NLO/NLP

A Non-linear Optimization Problem (NLP) is of the following form:

$$\underbrace{p^*}_{\text{Optimal Value}} = \min \underbrace{\underbrace{f(x)}_{\text{Objective function}}}_{\text{Objective function}}$$

s.t.

$$g(x) = (g_i(x)) \le 0 \in \mathbb{R}^m$$
$$h(x) = (h_i(x)) = 0 \in \mathbb{R}^p$$

Problem 1.2 - Example

$$\min(x_1 - 2)^2 + (x_2 - 1)^2$$

s.t.

$$x_1^2 - x_2 \le 0$$
 $(g_1(x) \le 0)$
 $x_1 + x_2 - 2 \le 0$ $(g_2(x) \le 0)$

Definition 1.19 - Contour

For $\alpha \in \mathbb{R}$, the **contour** of a function f is

$$C_{\alpha} = \{ x \in \mathbb{R}^n : f(x) = \alpha \}$$

Definition 1.20 - Feasible Set

The **feasible set** is

$$F = \{x \in \mathbb{R}^n : g(x) \le 0, h(x) = 0, x \in D\}$$

(Is D the domain??)

Definition 1.21 - Gradient

The **gradient** of f is

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

For the optimal solution x^* , we have

$$\alpha \nabla f(x^*) = \lambda_1 \nabla g_1(x^*) + \lambda_2 \nabla g_2(x^*)$$

for some $\alpha, \lambda_1, \lambda_2 \in \mathbb{R}$.

We will see later that we can choose $\alpha = 1$ and we need $\lambda_1 \geq 0, \lambda_2 \geq 0$.

Problem 1.3 - Max-cut Problem

Given a weighted graph $G=(\underbrace{V}_{\text{vertices}},\underbrace{E}_{\text{edges}},\underbrace{w}_{\text{weight}})$, a **cut** is $U\subseteq V,U\neq\emptyset$. The objective function

$$\max \quad \frac{1}{2} \sum_{\substack{i \in U, j \notin U \\ (i,j) \in E}} w_{i,j}$$

maximizes the sum of edges in a cut.

Formulating as an NLP, we introduce variables $x_i \in \{\pm 1\}, i = 1, \dots, n$. Then the Max-cut problem (MC) is as follows:

$$\max \quad \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_i x_j)$$

Why 1/2 s.t.

$$x_i \in \{\pm 1\}$$
 (equivalent to $x_i^2 = 1$) $\forall i = 1, \dots, n$

This works because

$$1 - x_i x_j = \begin{cases} 0 & \text{if } x_i = x_j \\ 2 & \text{otherwise} \end{cases}$$
 (i, j in the same set, U or U^c)

MC is a quadratically constrained quadratic program (QOP) since each constraint $x_i \in \{-1, 1\}$ is equivalent to the quadratic constraint $x_i^2 = 1$. Note that MC is an NP-hard problem.

2 Unconstrained Optimization

2.1 Lecture 2

Problem 2.1 – Simplest Case - No Constraints

Let $\Omega \subseteq \mathbb{R}^n$ be an open set. Assume f is sufficiently smooth (differentiable) then the NLP with no constraints is

$$\min_{x \in \Omega} \quad f(x)$$

Theorem 2.1 - Taylor's Theorem on the real line

Let $f:(a,b)\to\mathbb{R}$, and $\bar{x},x\in(a,b)$, then there exists z strictly between x,\bar{x} such that

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + \frac{f''(z)}{2}(x - \bar{x})^2$$

or equivalently

$$f(\bar{x} + \delta x) = \underbrace{f(x) + f'(x)\delta x}_{\text{Linear approximation}} + o(|\delta x|) \text{(little O)}$$

Lemma 2.1 - Directional Derivative

Let $f: \mathbb{R}^n \to \mathbb{R}, \bar{x}, d \in \mathbb{R}^n$ where d is the direction. We define

$$\phi(\epsilon) = f(\bar{x} + \epsilon d) : \mathbb{R} \to \mathbb{R}$$

Then the **directional derivative**, denoted f'(x; d) of f at x at the direction d is

$$f'(x;d) = \phi'(0) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon d) - f(x)}{\epsilon} = \nabla f(x)^T d$$

Problem 2.2

Let $f(x, y, z) = x^2z + y^3z^2 - xyz$ with $d = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$ Then the **directional derivative** in the direction d is

$$\nabla f(x,y,z)^T d = \begin{pmatrix} 2xz - yz \\ 3y^2z^2 - xz \\ x^2 + 2y^3z - xy \end{pmatrix}^T \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} = -2xz + yz + 3x^2 + 6y^3z - 3xy$$

Corollary 2.1

Let $f:(a,b)\to\mathbb{R}$

- 1. If \bar{x} is a **local minimizer** of f on (a,b), then $f'(\bar{x})=0$ and $f''(\bar{x})\geq 0$.
- 2. If $f(\bar{x}) = 0$, $f''(\bar{x}) > 0$ then \bar{x} is a **strict local minimizer** of f.

Definition 2.1 - Hessian

The **Hessian** of f at $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ is the matrix

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1^2} & \frac{\partial f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial f(x)}{\partial x_2 \partial x_1} & \frac{\partial f(x)}{\partial x_2^2} & \cdots & \frac{\partial f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(x)}{\partial x_n \partial x_1} & \frac{\partial f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial f(x)}{\partial x_n^2} \end{bmatrix}$$

Theorem 2.2 - Multivariate Taylor

Consider a C^2 -smooth function $f: U \to \mathbb{R}$ on an open set $U \subset \mathbb{R}^n$. If \bar{x} and x are such that the segment $[\bar{x}, x] := \{\bar{x} + t(x - \bar{x}) : t \in [0, 1]\}$ is contained in U, then there exists a point $z \in [\bar{x}, x]$ such that

$$f(x) = f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2} \langle \nabla^2 f(z)(x - \bar{x}), (x - \bar{x}) \rangle$$

Lemma 2.2

Let $v \in \mathbb{R}^n$. Then

$$v = 0 \iff \langle v, d \rangle = 0, \quad \forall d \in \mathbb{R}^n$$

2.2 Lecture 3

Definition 2.2 - Matrix Norm

 $||Q|| = max_{||x||=1} ||Qx|| =$ Largest singular value of A

Definition 2.3

Define f, D, \bar{x}, D is an open set Then:

- 1. Nec: If \bar{x} is a local minimum for f on D, then $\nabla f(\bar{x}) = 0$ and $\nabla^2 f(\bar{x}) \succeq 0$ is positive semidefinite.
- 2. Suff: If $\nabla f(\bar{x}) = 0$, $\nabla^2 f(\bar{x}) > 0$ is positive definite then \bar{x} is a strict local minimum of f on D.

Proof. 1. updated later after I confirmed some details with the professor

Definition 2.4 - Critical/Stationary Points

A point $\bar{x} \in U$ is a critical point of a function $f: U \to \mathbb{R}$ if $\nabla f(\bar{x})$ exists and satisfies $\nabla f(\bar{x}) = 0$.

Problem 2.3 - Algorithm to Find Local Minimizer

Given $f: \mathbb{R} \to \mathbb{R}$ and $f'(\bar{x}) \neq 0$, then $x_{new} = \bar{x} - (\text{step}) * f'(\bar{x})$.

The idea is that if $f'(\bar{x}) > 0$, then we know that the function is increasing at \bar{x} , so we want to move to the left to obtain the minimum. Similarly, if $f'(\bar{x}) < 0$, then we know that the function is decreasing at \bar{x} , so we want to move to the right to obtain the minimum.

Problem 2.4

Given $f:\mathbb{R}^n \implies \mathbb{R}, \phi(\epsilon) = f(\bar{x} + \epsilon d)$

using tylar expansion $f(\bar{x} + \epsilon d) = f(\bar{x}) + \epsilon \nabla f(\bar{x})^T d + o(\|\epsilon\|)$ shouldnt be ϵd ? or d is the unit vector let $d = -\nabla f(\bar{x})$, $f(\bar{x}) - \epsilon \|f(\bar{x})\|^2 + o(\epsilon)$. < f(x) (if $\nabla f(\bar{x}) \neq 0$)

i.e test nec condition

If $\nabla f(\bar{x}) \neq 0$, then $x_{new} = \bar{x} + \epsilon(-\nabla f(\bar{x}))$ Move to the deapest direction

Definition 2.5 - Cauchy's method of steepest descant

https://www.math.usm.edu/lambers/mat419/lecture10.pdf $x_0 \in \mathbb{R}^n$.

$$Is\nabla f(x_k) \approx 0$$
?IF yes Stop

•

O.W, find a Stop $\alpha > 0$

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

repeat

Problem 2.5 - Example of finding global and local minimizers

Find global and local minimizers of $f(x, y) = x^3 - 12xy + 8y^3$.

We first find the gradient and the Hessian:

$$\nabla f(x,y) = \begin{pmatrix} 3x^2 - 12y \\ -12x + 24y^2 \end{pmatrix}$$

$$\nabla^2 f(x,y) = \begin{bmatrix} -6x & -12\\ -12 & 48y \end{bmatrix}$$

We can find the critical points when we solve for $\nabla f(x,y) = 0$. Solving it, we get solutions (0,0) or (2,1). The Hessian at (0,0) is

$$\nabla^2 f(0,0) = \begin{bmatrix} 0 & -12 \\ -12 & 0 \end{bmatrix}$$

The eigenvalues of $\nabla^2 f(0,0)$ are -12,12. Therefore it is indefinite. So (0,0) is a saddle point.

The Hessian at (2, 1) is

$$\nabla^2 f(2,1) = \begin{bmatrix} -12 & -12 \\ -12 & 48 \end{bmatrix}$$

Checking all leading principal minors, we see that they are all positive. So $\nabla^2 f(2,1)$ is positive definite. So (2,1) is a local minimizer.

2.3 Lecture 4

Definition 2.6 - Principal Submatrices

Let

$$A = \begin{bmatrix} 1 & 1 & 2 & 7 \\ 1 & 1 & 4 & 6 \\ 2 & 4 & 7 & 8 \\ 7 & 6 & 8 & 1 \end{bmatrix}, \quad I = \{1, 3\}, \quad A[I] = \begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix}$$

Then A[I] is a **principal submatrix** of A.

Definition 2.7 - Principal Minors

Let $A \in \mathbb{S}^n$, where \mathbb{S}^n is the set of all symmetric $n \times n$ matrices.

- 1. $\det(A[I])$ is called the **principal minor** of A.
- 2. If $I = \{1, ..., k\}$ then det(A[I]) is called the **leading principal minor** of A.

Proposition 2.1 - Characterizing Positive Definiteness with Principal Minors

Let $A \in \mathbb{S}^n$. Then

- 1. $A \succeq 0 \iff \det(A[I]) \geq 0$ for all principal minors $\det(A[I])$.
- 2. $A \succ 0 \iff \det(A[I]) > 0$ for all **leading** principal minors $\det(A[I])$.

Definition 2.8 - Eigenvectors and Eigenvalues

 $0 \neq v \in \mathbb{R}^n$ is an **eigenvector** of A if there exists $\lambda \in \mathbb{R}$ such that $Av = \lambda v$. The number λ is called an **eigenvalue** of A.

Theorem 2.3 - Finding Eigenvectors and Eigenvalues

Let A be a matrix.

1. Set up the characteristic equation. We find

$$\det(A - \lambda I) = 0$$

- 2. Solve for λ . These are the eigenvalues.
- 3. Plug eigenvalues $\lambda_1, \ldots, \lambda_n$ into $(A \lambda I)v = 0$ and solve for v. These are the eigenvectors.

Theorem 2.4 - Orthogonal Spectral Decomposition

Let $A \in \mathbb{S}^n$. Then A has an **orthogonal spectral decomposition**

$$A = \sum_{i} \lambda_{i} u_{i} u_{i}^{T} = UDU^{T}$$

where U is orthogonal with the orthogonal eigenvectors u_i as columns and D is a diagonal matrix with real eigenvalues on the diagonal.

Corollary 2.2

Let $A \in \mathbb{S}^n$. Then

- 1. $A \succeq 0$ (positive semidefinite) iff all eigenvalues of A are nonnegative.
- 2. $A \succ 0$ (positive definite) iff all eigenvalues of A are positive.

Proposition 2.2

Let $A \in \mathbb{S}^n$. The following are equivalent (Positive definite):

- 1. $A \succ 0$.
- 2. All the eigenvalues of A are in \mathbb{R}^n_{++} , the interior of the nonnegative orthant.
- 3. A has a real symmetric positive definite square root, $A = SS, S \in \mathbb{S}_{++}^n$.
- 4. A has a lower triangular factorization, a Cholesky factorization, $A = LL^T$ and L has positive diagonal elements.
- 5. All principal minors of A are positive.
- 6. All leading principal minors of A are positive.

And the following are equivalent (Positive semidefinite):

- 1. $A \succeq 0$.
- 2. All the eigenvalues of A are in \mathbb{R}^n_+ , the nonnegative orthant.
- 3. A has a real symmetric square root, $A = SS, S \in \mathbb{S}^n$.
- 4. A has a lower triangular factorization, a Cholesky factorization, $A=LL^T$.
- 5. All principal minors of A are nonnegative.

Problem 2.6 - Motivation

When can we guarantee that global minimizers of $f: \mathbb{R}^n \to \mathbb{R}$ exist?

For example, the real valued function on \mathbb{R} $f(x) = e^x$ is bounded below by 0 but has no minimizers. The minimum value is 0 but is not attained.

Proposition 2.3 - Weierstrass Extreme Value Theorem

If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, and if $D \subset \mathbb{R}^n$ is a closed and bounded set, then f is bounded below and the minimum value is attained on D.

Definition 2.9 - Coercive function

A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ is **coercive** if for any sequence x_i with $||x_i|| \to \infty$, it must be the case that $f(x_i) \to +\infty$. In other words,

$$\lim_{\|x\| \to \infty} f(x) = +\infty$$

Here are some examples:

- 1. $f_1(x) = x^2$ is coercive.
- 2. g(x) = x is not coercive (because as $x \to -\infty$, $g(x) \to -\infty \neq \infty$).
- 3. $h(x) = e^x$ is not coercive.

Proposition 2.4 - Coercive Functions and Minimizers

A coercive function $f: \mathbb{R}^n \to \mathbb{R}$ has a global minimizer.

Definition 2.10 - Level Sets

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function and let $\alpha \in \mathbb{R}$. An α -level set of f is defined by

$$L_{\alpha} = \{ x \in \mathbb{R}^n : f(x) = \alpha \}$$

That is, all points x such that $f(x) = \alpha$.

- When n=2, we call this a level curve.
- When n=3, we call this a level surface.
- When n > 3, we call this a level hypersurface.

Definition 2.11 - Sub-level set

Let $f:\mathbb{R}^n \to \mathbb{R}$ be a function and let $\alpha \in \mathbb{R}$. An α -sublevel set of f is defined by

$$S_{\alpha}(f) = \{x \in \mathbb{R}^n : f(x) \le \alpha\}$$

That is, all points x below the line $f(x) = \alpha$.

3 Linear Least Squares & Solving Linear Systems

3.1 Lecture 5

Problem 3.1 - Motivation For Least Squares

Suppose we have a series of observed values from an experiment:

$$\{(t_1, s_1), (t_2, s_2), \dots, (t_m, s_m)\}\$$

where t_i is the time and s_i is the observed value at time t_i . We want to find a polynomial function

$$p(t) = x_0 + x_1 t + \dots + x_n t^n$$

that fits the data. So we want to find coefficients $x_0, \dots x_n$ such that $p(t_i) \approx s_i$ for all i. More formally, we want to minimize the absolute value of the error of each term. The error $(\ell_1 \text{ norm})$ is defined as

$$|e_i| = |p(t_i) - s_i|$$

This can be formulated into a ℓ_1 norm minimization problem:

$$\min \left\{ \sum_{i=1}^{m} |p(t_i) - s_i| : (x_0, \dots, x_n) \in \mathbb{R}^{n+1} \right\}$$

This is a non-differentiable optimization problem since we have absolute values which make it not smooth. So we can be reformualte it as a linear program:

$$\min \quad \sum_{i=1}^{m} \lambda_i$$

s.t.

$$s_i - p(t_i) \le \lambda_i$$
 for all $i = 1, ..., m$
 $p(t_i) - s_i \le \lambda_i$ for all $i = 1, ..., m$

This minimization problem is called **compressive sensing**.

Definition 3.1 - Vandermonde Matrix

Let

$$A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^n \\ 1 & t_2 & t_2^2 & \cdots & t_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^n \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}, \quad b = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix}, \quad x = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}$$

A is called a **Vandermonde matrix**.

Theorem 3.1

The Vandermonde Matrix

$$A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^n \\ 1 & t_2 & t_2^2 & \cdots & t_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^n \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}, \quad b = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix}, \quad x = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}$$

is full column rank if $n+1 \leq m$ and the points t_i are distinct.

Definition 3.2 – ℓ_1 and ℓ_2 **Norm**

The ℓ_1 norm of a vector x is defined to be

$$||x|| = \sum |x_i|$$

The ℓ_2 norm of a vector x is defined to be

$$||x|| = \sqrt{\sum x_i^2}$$

Problem 3.2 - Linear Least Squares Problem

Recall our ℓ_1 norm minimization problem:

$$\min \left\{ \sum_{i=1}^{m} |p(t_i) - s_i| : (x_0, \dots, x_n) \in \mathbb{R}^{n+1} \right\}$$

We can instead use ℓ_2 norm defined as $\|e\|_2 = \sqrt{\sum e_i^2}$. So our ℓ_2 minimization problem is

$$\min \left\{ \sum_{i=1}^{m} (p(t_i) - s_i)^2 : (x_0, \dots, x_n) \in \mathbb{R}^{n+1} \right\}$$

where $p(t)=x_0+x_1t+\cdots+x_nt^n$. Using the Vandermonde matrix, we can rewrite our problem to be

$$\min \frac{1}{2} ||Ax - b||^2$$

where

$$A = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^n \\ 1 & t_2 & t_2^2 & \cdots & t_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^m \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}, \quad b = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix}, \quad x = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}$$

The objective function is $g(x) = \frac{1}{2} ||Ax - b||^2$. Let's first expand g(x):

$$g(x) = \frac{1}{2} ||Ax - b||^2$$

$$= \frac{1}{2} (Ax - b)^T (Ax - b)$$

$$= \frac{1}{2} (Ax)^T Ax - (Ax)^T b + \frac{1}{2} ||b||^2$$

$$= \frac{1}{2} x^T A^T Ax - x^T A^T b + \frac{1}{2} ||b||^2$$

Then, using the definition of linear transformation definition of the gradient (WTF is this), we have

$$\nabla g(x) = A^T A x - A^T b$$

To find the critical points, we solve for $\nabla g(x) = 0$. So the critical points are x^* that satisfy the equation

$$A^T A x = A^T b$$

This is also called a **normal equation**.

also something about the condition number, i dont really understand.

Definition 3.3 - Singular Values of a Matrix

The singular values of a matrix A are the square roots of the eigenvalues of the matrix A^TA . They are always non-negative real numbers.

The number of non-zero singular values of a matrix equals the rank of that matrix.

Definition 3.4 - Condition Number of a Matrix

Suppose $A \in \mathbb{R}^{m \times n}, m > n$ is full column rank. The condition number of the matrix A, $\operatorname{cond}(A)$, is the ratio of the largest to smallest nonzero singular values of A. Let σ_{\max} be the largest singular value and σ_{\min} be the smallest singular value. Then

$$\operatorname{cond}(A) = \frac{\sigma_{\max}}{\sigma_{\min}}$$

Definition 3.5 - Frechet Derivative

Let $h:U\to W$, where U is an open subset of V, and V,W are finite dimensional vector spaces. The function h is **Frechet differentiable** at $x\in U$ if there exists a linear transformation $A:V\to W$ such that

$$\lim_{d \to 0} \frac{\|h(x+d) - h(x) - Ad\|}{\|d\|} = 0$$

idk

3.2 Lecture 6

Goal: Solving normal equation/non linear case

Definition 3.6 – SVD Decomposition

Let A be an $m \times n$ matrix. Then A can be factored into

$$\underbrace{A}_{m\times n} = \underbrace{U}_{m\times m} \underbrace{\sum}_{m\times n} \underbrace{V^T}_{n\times n}$$

where

- U is an $m \times m$ orthogonal matrix consisting of eigenvectors of AA^T
- V^T is the transpose of an $n \times n$ matrix containing the eigenvectors of A^TA
- Σ is a diagonal matrix with $r=\mathrm{rank}(A)$ positive eigenvalues of AA^T (Singular values of A) on the diagonal.

there is a section on piazza posted lecture notes that shows why using SVD decomposition to solve normal equation is a bad idea. Not sure if i should include here

Definition 3.7 - Orthogonal Matrix

A matrix Q is orthogonal if $Q^TQ = I$.

Definition 3.8 - Orthonormal Columns

A matrix Q has orthonormal columns if each column vector is a unit vector (norm is 1), and any two distinct columns are orthogonal (inner product is 0).

Definition 3.9 - QR Factorization

For any $m \times n$ matrix A, there there exists an $m \times m$ orthogonal matrix Q ($QQ^T = I$) and an $m \times n$ upper triangular matrix R ($R_{i,j} = 0, \forall i < j$) satisfying A = QR. Moreover, if the columns of A are linearly independent then we can get

$$A = QR$$

$$= Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

$$= Q_1 R_1$$

where

- R_1 is an invertible $n \times n$ upper triangular matrix
- 0 is an $(m-n) \times n$ zero matrix
- Q_1 is an $m \times n$ matrix with orthonormal columns
- Q_2 is an $m \times (m-n)$ matrix with orthonormal columns

Theorem 3.2 - QR Factorization on Normal Equation

Assuming that the columns of A are linearly independent, then the normal equation $A^TAx = A^Tb$ can be solved by applying QR factorization to A:

$$(A^{T}A)x = A^{T}b$$

$$((Q_{1}R_{1})^{T}Q_{1}R_{1})x = (Q_{1}R_{1})^{T}b$$

$$(R_{1}^{T}Q_{1}^{T}Q_{1}R_{1})x = R_{1}^{T}Q_{1}^{T}b$$

$$R_{1}^{T}R_{1}x = R_{1}^{T}Q_{1}^{T}b$$

$$R_{1}x = Q_{1}^{T}b$$

Since Q_1 is orthogonal Since R_1 is invertible

Definition 3.10 - Methods of Solving General Linear Systems

Suppose we are given a linear system Bx=b, and we know that this system has a solution, i.e. $b\in {\rm range}(B)$. There are 3 important algorithms/factorizations used to find x:

- Gaussian Elimination (LU factorization) (PB = LU)
- OR factorization
- · SVD, singular value decomposition

Problem 3.3 - Solving Large Positive Definite Systems

Suppose we have a linear system, Ax = b, with A postive definite. If x^* is a solution, then $Ax^* - b = 0$. Then this is equivalent to minimizing the function

$$f(x) = \frac{1}{2} ||A_x - b||^2, \nabla f(x) = Ax - b = 0$$

Dont understand this and the part after as well. You will have to add more notes here. Link to notes HERE

Theorem 3.3 - Conjugate Gradient Method

The first search direction is the negative gradient,

$$v_0 = -\nabla q(x_0)$$

with q = f. At the kth iteration:

$$v_{k+1} = -\nabla q(x_k) + \beta_k v_k$$

where β_k is chosen to ensure $\langle Av_{k+1}, v_k \rangle = 0$. This guarantees that the directions are A-conjugate wtf is A conjugate. We then set

$$x_{k+1} = x_k + \alpha_{k+1} v_{k+1}$$

where α_{k+1} is chosen from an exact line search (what is line search).

3.3 Lecture 7

Definition 3.11 - Nonlinear Least Square

Suppose we have $F: \mathbb{R}^n \to \mathbb{R}^m$ where

$$F(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

Then the nonlinear least squares problem is

$$\min\{h(x)\}$$

where

$$h(x) = \frac{1}{2} ||F(x)||^2 = \frac{1}{2} \langle F(x), F(x) \rangle = \frac{1}{2} \sum_{i=1}^{m} f_i^2(x)$$

Definition 3.12 - Jacobian Matrix

Let F be defined as above, then the Jacobian matrix is J(x) = F'(x) where

$$F'(x) = \begin{bmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{bmatrix}$$

Problem 3.4 – Solving Nonlinear Least Squares

For the nonlinear least squares problem defined above, we consider the special case m=n. Then we can consider the problem as solving the square system of nonlinear equations F(x)=0. Recall that for current

approximation x_c ,

$$0 = F(x_c + d) \approx F(x_c) + \underbrace{F'(x_c)}_{\text{Jacobian}} \underbrace{d}_{\text{search direction}}$$

So we solve

$$F'(x_c)d = -f(x_c)$$

which is called the Newton equation. Then we can take a step in the search/Newton direction d to get a new approximation $x_{c+1} = x_c + \alpha d$ for appropriate step length α .