Secure Sockets Layer (SSL)

مقدمه

- طراحی شده توسط شرکت Netscape در سال ۱۹۹۳
 - توسط اکثر مرورگرها پشتیبانی می شود.
- نمونه استاندارد شده: RFC 2246
 - هدف
 - محرمانگی (Confidentiality)
 - (Integrity) جامعیت –
 - تأیید هویت (Authentication)

https= secure web site. http= unsecured web site.

TCP/IP ₉ SSL

Application
ТСР
IP

Application
SSL
ТСР
IP

Normal Application

Application with SSL

مراحل برقراري ارتباط امن

- Handshake: تأیید هویت طرفین ارتباط با استفاده از گواهی دیجیتال و تبادل کلید مشترک محرمانه
- تولید کلید: استفاده از کلید مشترک محرمانه برای تولید کلیدهای مورد نیاز
 - تبادل داده: شکستن داده به تعدادی رکورد و ارسال رکوردها
- بستن ارتباط: تبادل پیام هایی برای بستن ارتباط به صورت امن

Handshake

- MS = Master Secret
- EMS = Encrypted Master Secret

بدست آوردن کلید عمومی

تولید کلیدهای مورد نیاز

- استفاده از کلید یکسان برای عملیات مختلف موجب کاهش امنیت می شود.
 - استفاده از کلیدهای مختلف برای رمزنگاری و MAC
 - کلید رمزنگاری برای ارسال داده از کلاینت بر سرور: \mathbf{K}_{c}
 - برای ارسال داده از کلاینت بر سرور MAC کلید: M_c
 - کلید رمزنگاری برای ارسال داده از سرور به کلاینت $K_{\rm s}$
 - برای ارسال داده از سرور به کلاینت MAC کلید : M_{s}
 - تولید کلیدهای فوق با کلید MS

MAC

رکورد داده

- داده به تعدادی رکورد شکسته می شود.
 - هر رکورد MAC دارد.
 - طول ركوردها مى تواند متفاوت باشد.

length	data	MAC
iongui	data	171710

شمارنده توالى: Sequence Number

- مهاجم می تواند رکوردها را بدست آورد و دوباره ارسال کند یا ترتیب ارسال رکوردها را تغییر دهد.
- برای جلوگیری از این حمله، شمارنده توالی هر رکورد را در MAC قرار می دهیم.
 - $MAC = MAC(M_x, seq_num || data) -$
- هیچ فیلدی برای شمارنده توالی در رکورد در نظر گرفته نشده
 و طرفین ارتباط شمارنده توالی را نگهداری می کنند.
 - شمارنده توالی از کلاینت به سرور و بالعکس مستقل هستند.

اطلاعات كنترلي

- مهاجم می تواند بسته پایان ارتباط را جعل کند و ارتباط بین طرفین را ببند.
 - برای جلوگیری از این حمله، برای رکوردها نوع مشخص کنیم.
 - نوع 0 برای رکورد داده -
 - نوع 1 برای رکورد بستن ارتباط
 - $MAC = MAC(M_x, seq_num || type || data) \cdot$

length type	data	MAC
-------------	------	-----

خلاصه

type 1, seq 2, close

hello

certificate, nonce $K_B^+(MS) = EMS$ type 0, seq 1, data

type 0, seq 2, data

type 0, seq 1, data

type 0, seq 1, data

type 0, seq 3, data

type 1, seq 4, close

الگوریتم های رمزنگاری مورد استفاده SSL

- رمزنگاری متقارن
- DES: Block Cipher –
- 3DES: Block Cipher
 - RC2: Block Cipher –
- RC4: Stream Cipher
 - رمزنگاری کلید عمومی
 - RSA –

SSL Cipher Suite

- Cipher Suite •
- الگوریتم رمزنگاری کلید عمومی
- الگوریتم رمزنگاری کلید متقارن
 - MAC الگوريتم
- کلاینت و سرور روی Cipher Suite توافق می کنند.
- کلاینت Cipher Suiteهایی که پشتیبانی می کند را به پیشنهاد می کند و سرور یکی از آنها را انتخاب می کند.

SSL Handshake

- 1. کلاینت لیست الگوریتم هایی که پیشتیانی می کند را همراه با nonce به سرور ارسال می کند.
- 2. سرور الگوریتم انتخابی را همراه گواهی و nonce خود به کلاینت می فرستد.
- 3. کلاینت صحت گواهی را تأیید کرده و سپس کلید عمومی سرور را استخراج می کند و کلید MS تولید شده را با کلید عمومی سرور رمز می کند و به سرور ارسال می کند.
- 4. کلاینت و سرور با استفاده از کلید MS و nonceها، کلیـدهای رمزنگـاری و MS. کلاینت و سرور با استفاده از کلید MS
 - 5. كلاينت MAC تمام پيام هاى Handshake را به سرور مى فرستد.
 - 6. سرور MAC تمام پیام های Handshake را به کلاینت می فرستد.

مراحل ۵ و ۶؟

- کلاینت معمولاً لیستی از الگوریتم ها را ارائه می دهد که بعضی قوی ترند و بعضی ها ضعیف تر.
- مهاجم می تواند با استفاده از حمله Man-In-The-Middle الگوریتم های قوی تر را از لیست حذف کند.
 - مراحل ۵ و ۶ از tampering جلوگیری می کنند.

nonce تصادفی؟

- مهاجم می تواند تمام رکوردهای رد و بدل شده بین کلاینت و سرور را بگیرد.
- سپس با سرور ارتباط برقرار کرده و تمام رکوردها را با توالی درست به سرور بفرستد.
 - مثال: اجرای دستور روی سرور
- برای جلوگیری از این حمله، در هر ارتباط nonceهای تصادفی تولید می شود تا کلیدهای رمزنگاری و MAC تولید شده متفاوت باشند.

انواع پیام های Handshake

- هر پیام Handshake دارای یک فیلد ۱ بایتی نوع می باشد:
 - ClientHello -
 - ServerHello -
 - Certificate -
 - ServerKeyExchange
 - CertificateRequest -
 - ServerHelloDone -
 - Certificate Verify –
 - ClientKeyExchange -
 - Finished –

SSL Protocol Stack

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	НТТР			
SSL Record Protocol						
ТСР						
	П	9				

SSL Record Protocol

- Record Header: نوع محتوا، ورژن، طول
- هر Fragment حداکثر ۱۶ کیلو بایت است.

SSL Record Format

1 byte	2 bytes	3 bytes			
content type	SSL version	length			
MAC (Encrypted)					

Content Type

- application_data (23)
 - alert (21) •
- Handshake در صورت بروز خطا در طی
 - handshake (22) •
 - change_cipher_spec (20) •
- درخواست برای تغییر الگوریتم های رمزنگاری و تأیید هویت

Man-In-The-Middle

تولید کلیدهای رمزنگاری و MAC

- با استفاده از nonce کلاینت، nonce سرور و کلید MS، یک عدد تصادفی تولید می کنیم.
- با استفاده از عدد تصادفی تولید شده و nonceها مقادیر زیـر تولید می شوند:
 - کلیدهای MAC کلاینت و سرور
 - کلیدهای رمزنگاری کلاینت و سرور
 - Initialization Vector (IV) کلاینت و سرور

CBC (Cipher Block Chaining)

• نحوه رمز بلاک جاری به رمز بلاک قبلی وابسته است:

$$C(i) = K_S(M(i) \oplus C(i-1)) -$$

$$M(i) = K_S(C(i)) \oplus C(i-1)$$
 -

- $C(0) = IV \bullet$
- تغییر IV برای هر پیام
- پیام های یکسان در یک ارتباط دارای رمزهای متفاوتی خواهند بود.

تأييد هويت كلاينت

- SSL همچنین می تواند هویت کلاینت را تأیید کند.
- سرور پیام CertificateRequest را به کلاینت می فرستد.