同変 Schubert 計算における組合せ論

京都大学大学院理学研究科数学·数理解析専攻 学籍番号 0530-35-6268 赤松 輝海

はじめに

はじめに

目次

1	同変コホモロジー	3
1.1	Borel 構成	3
1.2	Weil/Cartan モデル	3
1.3	localization theorem	3
2	GKM の定理	4
2.1	equivariantly formality	4
2.2	GKM の定理	4
3	同変 Schubert 計算	5
3.1	(同変/非同変)Schubert 計算	5
3.2	GKM 条件による Schuber Class の特徴づけ	5
3.3	Schubert puzzle による方法	5
3.4	edge labeled tableu による方法	5
3.5	weight preserving bijection の構成	5

1 同変コホモロジー

1.1 Borel 構成

X を位相空間, G をコンパクト Lie 群とする.

事実 1.1.1. ある主 G 東 $\pi:EG\to BG$ が存在して、任意の主 G 東 $E\to X$ に対してある連続写像 $f:X\to BG$ があって $E=f^*(EG)$ がなりたつ。さらに EG は可縮であり、G は EG に自由に (右から) 作用する。

定義 1.1.2. G が X に左から作用しているとき、G の $X \times EG$ への左作用を

$$g(x,e) := (gx, eg^{-1})$$
 for $g \in G, x \in X, e \in EG$

によって定める。 $X\times_G EG:=(X\times EG)/G$ とし、これを X の homotopy quotient という。このとき $H^*_G(X):=H^*(X\times_G EG)$ を X の同変コホモロジーという。

写像 $p: X \times EG \rightarrow X \times_G EG$ と $p_X: X \times_G EG \rightarrow BG$ を

$$p(x,e) := [x,e]$$
$$p_X([x,e]) := \pi(e)$$

によって定める。

命題 1.1.3.

- (i) $p: X \times EG \rightarrow X \times_G EG$ は主 G 束である
- (ii) $p_X: X \times_G EG \to BG$ は X をファイバーとするファイバー束である
- 1.2 Weil/Cartan モデル
- 1.3 localization theorem

- 2 GKM **の定理**
- 2.1 equivariantly formality
- 2.2 GKM **の定理**

- 3 同変 Schubert 計算
- 3.1 (同変/非同変)Schubert 計算
- 3.2 GKM 条件による Schuber Class の特徴づけ
- 3.3 Schubert puzzle による方法
- 3.4 edge labeled tableu による方法
- 3.5 weight preserving bijection の構成

謝辞

あざす

参考文献

- [1] Fulton, W. (1996). Young tableaux: with applications to representation theory and geometry. Cambridge University Press.
- [2] Knuston, A., & Tao, T. (2001). Puzzles and (equivariant) cohomology of grassmannians