Seite 1

Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2013

Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München

9. September 2013

Grundlagen und **Formalismus**

Aufgabe 1 (*) Betrachte die Wellenfunktion

$$\Psi(x,t) = Ae^{-\lambda|x|}e^{-i\omega t},$$

wobei $A, \lambda, \omega > 0$

- a) Normiere Ψ
- b) Was ist der Erwartungswert von x und x^2
- c) Bestimme die Standardabweichung von x. Wie sieht der Graph von $|\Psi|^2$ als Funktion von x aus? Markiere die Punkte $(\langle x \rangle + \Delta x)$ und $(\langle x \rangle - \Delta x)$ und berechne die Wahrscheinlichkeit das Teilchen außerhalb dieses Bereichs zu finden

Aufgabe 2 (*) Wir haben einen unendlichdimensionalen Hilbertraum mit einem abzählbaren Orthonormalsystem $\{|0\rangle, |1\rangle, |2\rangle, ...\}$, dh $\langle n|m\rangle = \delta_{nm}$. Ein kohärenter Zustand ist definiert als

$$|\Psi_{\alpha}\rangle \equiv C \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

 $mit\ einer\ komplexen\ Zahl\ \alpha.$

Außerdem definieren wir uns den Absteigeoperator a über

$$a\left|n\right\rangle \equiv\sqrt{n}\left|n-1\right\rangle \ \forall n\geq1\quad und\quad a\left|0\right\rangle \equiv0$$

- a) Bestimme C, sodass $|\Psi_{\alpha}\rangle$ normiert ist.
- b) Zeige, dass $|\Psi_{\alpha}\rangle$ Eigenzustand von a ist und berechne den Eigenwert.
- c) Sind kohärente Zustände $|\Psi_{\alpha}\rangle$ und $|\Psi_{\beta}\rangle$ für $\alpha \neq \beta$ orthogonal?

Tag 1

(*) Wir benutzen einen zweidimensionalen komplexen Hilbertraum (dh. $den \mathbb{C}^2$) um ein System mit zwei Zuständen zu beschreiben. Unsere Orthonormalbasis bezeichnen wir mit $|+\rangle$, $|-\rangle$. Außerdem definieren wir uns die Operatoren

$$S_x \equiv \frac{\hbar}{2}(|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_y \equiv \frac{i\hbar}{2}(-|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_z \equiv \frac{\hbar}{2}(|+\rangle \langle +|-|-\rangle \langle -|)$$

- a) Zeige, dass $|+\rangle$ und $|-\rangle$ Eigenzustände von S_z sind
- b) Zeige, dass $[S_x, S_y] = i\hbar S_z$
- c) Wie lautet die Unschärferelation für die beiden Operatoren S_x und S_y für ein System im Zustand $|+\rangle$.

Aufgabe 4 (**)

- a) Zeige, dass Eigenwerte von hermiteschen Operatoren reell sind.
- b) Zeige, dass Eigenwerte von antihermiteschen Operatoren imaginär sind.
- c) Zeige, dass Eigenfunktionen zu verschiedenen Eigenwerten von hermiteschen Operatoren orthogonal sind.

Aufgabe 5 (*)

- a) Zeige $[p, x^n] = -i\hbar nx^{n-1}$
- b) Zeige mit a), dass $[p,F(x)]=-i\hbar \frac{\partial F}{\partial x}$ für alle F gilt, die als Potenzreihe ausgedrückt werden können.

(*) Berechne den Erwartungswert für p und p² einer ebenen Wellen die Aufgabe 6 mit einem Gauss moduliert ist:

$$\psi(x) = \frac{1}{\pi^{1/4}\sqrt{d}} \exp\left(ikx - \frac{x^2}{2d^2}\right)$$

Aufgabe 7 (*) Zeige für zwei hermitesche Operatoren A und B die Identität

$$\langle i[B,A] \rangle_{\Psi} = 2 \text{Im} \langle A\Psi, B\Psi \rangle$$

Aufgabe 8 (**) Zeige, dass kommutierende Observablen einen gemeinsamen Satz von Eigenfunktionen haben, also simultan diagonalisierbar sind.

Aufgabe 9 (**) Wir definieren das Exponential eines Operators A als

$$e^A \equiv \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

- a) Zeige $e^{A+B} = e^A e^B$ für [A, B] = 0
- b) Zeige mit a), dass $e^{-A}e^{A} = e^{A}e^{-A} = 1$
- c) Nun sei [A, [A, B]] = [B, [A, B]] = 0. Berechne

$$e^A B e^{-A}$$
.

Benutz dafür die Taylorentwicklung der operatorwertigen Funktion

$$f(\lambda) = e^{\lambda A} B e^{-\lambda A}$$

d) Sei immer noch [A, [A, B]] = [B, [A, B]] = 0. Benutz c) um zu zeigen, dass

$$e^B e^A = e^A e^B e^{[B,A]}$$

Aufgabe 10 (*) Betrachte einen Hilbertraum der von den Eigenkets $|1\rangle$, $|2\rangle$, $|3\rangle$, ... von A aufgespannt wird. Die entsprechenden Eigenwerte lauten $a_1, a_2, a_3, ...$. Beweise, dass

$$\prod_{n} (A - a_n)$$

der Nulloperator ist.

Aufgabe 11 (*)

 $a) \ \ Die \ normierte \ Wellen funktion \ von \ einem \ Teilchen \ im \ 1\text{-}dimensionalen \ Ortsraum \\ lautet$

$$\Psi(x) = \frac{\gamma}{2} e^{-\gamma|x|}$$

Berechne die Wellenfunktion $\Phi(p)$ im Impulsraum.

b) Die normierte Wellenfunktion eines Teilchens im 1-dimensionalen Ortsraum lautet

$$\Psi(x) = \frac{1}{2a}\theta(a - |x|)$$

Berechne die Wellenfunktion $\Phi(p)$ im Impulsraum.

 $c) \ \ Die \ normierte \ Wellen funktion \ eines \ Teilchens \ im \ 1\text{-}dimensionalen \ Impulsraum \\ lautet$

$$\Phi(p) = \frac{b}{\pi} \frac{1}{p^2 + b^2}.$$

Berechne die Wellenfunktion im Ortsraum.

Aufgabe 12 (*) Eine Observable A besitzt die zwei normierten Eigenzustände ψ_1 und ψ_2 , mit den Eigenwerten a_1 und a_2 . Die Observable B besitzt die normierten Eigenzustände ϕ_1 und ϕ_2 mit den Eigenwerten b_1 und b_2 . Für die Eigenzustände gilt

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \quad \psi_2 = (4\phi_1 - 3\phi_2)/5$$

- a) Observable A wird gemessen und man erhält den Wert a₁. Was ist der Zustand des Systems direkt nach der Messung?
- b) Im Anschluss wird B gemessen. Was sind die möglichen Ergebnisse und mit welcher Wahrscheinlickeit treten sie auf?
- c) Direkt nach der Messung von B wird wieder A gemessen. Mit welcher Wahrscheinlichkeit erhalten wir wieder a_1 ?