

Lecture 2

N. Swaminathan

Recap – Lecture 1

- Introduced quantities to characterise multi-component mixture and defined equivalence ratio, AFR
- Introduced stoichiometry relation
- Discussed methods to estimate adiabatic flame temperature
- Simple derivation of conservation equations for species
- Advective flux, $\rho Y_i U$, diffusive flux (Fick's Law)
- Discussed significance of energy equation

Governing Equation

$$\frac{\partial \rho \, Y_i}{\partial t} + \frac{\partial \rho U \, Y_i}{\partial x} = \frac{\partial}{\partial x} \left(\rho \, \mathcal{D} \frac{\partial Y_i}{\partial x} \right) + \underline{w_i}$$

Today: Chemical Kinetics & Equilibrium

Objectives – Chemical kinetics

- Introduce chemical kinetics concept
- Simple model for fuel consumption rate
 - Use NO formation as an example
- Qualitative description for hydrocarbon combustion

Global & Elementary Rxn.

How do we go from reactants to products?

Rxn. Mechanism – an example

	Reaction	Α	n	Ea
1	H+O2 = O+OH	2,650E+16	-0.6707	17041.0
2	O + H ₂ = H + OH	3,870E+04	2.7	6260.0
3	$OH + H_2 = H + H_2O$	2,160E+08	1,51	3430.0
4	20H = O + H ₂ O	3,570E+04	2.4	-2110.0
5*	$H + O_2 + M = HO_2 + M$	2,800E+18	-0.86	0.0
6	$H + O_2 + H_2O = HO_2 + H_2O$	1,126E+19	-0.76	0.0
7	$H + O_2 + N_2 = HO_2 + N_2$	2,535E+19	-1,3392	0.0
8	$H + O_2 + He \Rightarrow HO_2 + He$	7,000E+17	-0.8	0.0
9	$H + O_2 + Ar \Rightarrow HO_2 + Ar$	7,000E+17	-0.8	0.0
10	$H + 2O_2 = HO_2 + O_2$	2,080E+19	-1.24	0.0
11	H + HO ₂ = 20H	8,316E+13	0	635.0
12	$H + HO_2 = O_2 + H_2$	4,480E+13	0	1068,0
13(D)	$OH + HO_2 = O_2 + H_2O$	1.450E+13	0	-500.0
14(D)	$OH + HO_2 = O_2 + H_2O$	5,000E+15	0	17330,0
15	$H + HO_2 = O + H_2O$	3,970E+12	0	671.0
16	$O + HO_2 = OH + O_2$	2,000E+13	0	0.0
17(D)	$2HO_2 = O_2 + H_2O_2$	1,300E+11	0	-1630.0
18(D)	$2HO_2 = O_2 + H_2O_2$	4,200E+14	0	12000,0
19 ^b	$2OH(+M) = H_2O_2(+M)$	7.400E+13	-0.37	0.0
20	$H + H_2O_2 = OH + H_2O$	1,000E+13	0	3600.0
21(D)	$OH + H_2O_2 = HO_2 + H_2O$	1,700E+18	0	29410.0
22(D)	$OH + H_2O_2 = HO_2 + H_2O$	2,000E+12	0	427.0
23	$H + H_2O_2 = HO_2 + H_2$	1,210E+07	2	5200.0
24	$O + H_2O_2 = OH + HO_2$	9,630E+06	2	4000.0
25°	$2H + M = H_2 + M$	1,000E+18	-1	0.0
26	$2H + H_2 = 2H_2$	9,000E+16	-0.6	0.0
27	$2H + CO_2 = H_2 + CO_2$	5,500E+20	-2	0.0
28	$2H + H_2O = H_2 + H_2O$	6,000E+19	-1.25	0.0
29 ^d	$H + OH + M = H_2O + M$	2,200E+22	-2	0.0
30°	$20 + M = O_2 + M$	1,200E+17	-1	0.0
31 ^r	O+H+M=OH+M	5,000E+17	-1	0.0
32	OH + CO = H + CO ₂	4.689E+07	1,228	70.0
33	$HO_2 + CO = OH + CO_2$	1,500E+14	0	24544.0
348	$O + CO(+M) = CO_2(+M)$	1,800E+10	0	2385.0
35	$H + HCO = H_2 + CO$	7,340E+13	0	0.0
36	$OH + HCO = H_2O + CO$	5,000E+13	0	0.0
37	$HCO + O_2 = HO_2 + CO$	1,345E+13	0	400.0
38h	HCO + M = H + CO + M	1,870E+17	-1	17000,0
39	$HCO + H_2O = H + CO + H_2O$	1,500E+18	-1	17000.0
40	O + HCO = H + CO ₂	3,000E+13	0	0.0
41	O + CH ₄ = OH + CH ₃	1,020E+09	1,5	8600.0
42	$OH + CH_4 = CH_3 + H_2O$	1,000E+08	1.6	3120.0
43	0 + CH ₃ = H + CH ₂ O	5,060E+13	0	0.0
44	$O + CH_3 \Rightarrow H + H_2 + CO$	3,370E+13	0	0.6
45	O + CH ₂ O = OH + HCO	3,900E+13	0	3540.0
46¹	$H + CH_3(+M) = CH_4(+M)$	1,390E+16	-0.534	536.0

Detailed chemical mechanism: involves 100s of elementary reactions, 10s of species

even for a simplest hydrocarbon, CH4

(Combust. Flame, 160, p.56-75, 2013, Nikolaou, Chen, Swaminathan)

Law of Mass Action

Elementary reaction:

$$a_1R_1 + a_2R_2 + a_3R_3 + ... + a_MM$$
 $\rightarrow b_1P_1 + b_2P_2 + b_3P_3 + ... + b_MM$

Reactants

$$\frac{d[R_1]}{dt} = -a_1\omega$$
, $\frac{d[R_2]}{dt} = -a_2\omega$, $\frac{d[R_3]}{dt} = -a_3\omega$,...

$$\frac{d[P_1]}{dt} = b_1 \omega, \quad \frac{d[P_2]}{dt} = b_2 \omega, \quad \frac{d[P_3]}{dt} = b_3 \omega, \dots$$

$$\frac{d[M]}{dt} = b_M \omega - a_M \omega$$

$$\omega = k[R_1]^{a_1}[R_2]^{a_2}[R_3]^{a_3}...$$

Arrhenius Rate & Rate Constant

$$\omega = k[R_1]^{a_1}[R_2]^{a_2}[R_3]^{a_3}...$$
 (kmol/m³-s)

$$k = A \exp \left(-\frac{E_{act}}{R^0 T}\right)$$
 Proportions of successful collisions with enough energy to break bonds

Number of collisions per unit time

$$CH_{4} + O \rightarrow CH_{3} + OH$$

$$\frac{d[CH_{4}]}{dt} = -k_{1}[CH_{4}][O]$$

$$H + H + M \rightarrow H_{2} + M$$

$$\frac{d[H]}{dt} = -2k_{5}[H]^{2}[M] \quad \frac{d[H_{2}]}{dt} = k_{5}[H]^{2}[M] \quad \frac{d[M]}{dt} = 0$$

How to get rate constant?

Statistical mechanics calculations

shock tube experiments are used to measure the followings

$$H_2 + O \rightarrow OH + H$$

$$\frac{d[H2]}{dt} = -k[O][H2]$$

Shock Tube

Reverse (forward & backward) reactions

$$H_2 + O \stackrel{\triangle}{=} OH + H$$

$$H_2 + O \rightarrow OH + H$$

 $OH + H \rightarrow H_2 + O$

$$\frac{d[H]}{dt} = \underbrace{k_f[H_2][O]}_{\text{forward}} - \underbrace{k_b[OH][H]}_{\text{backward}}$$

$$\frac{d[H]}{dt} = 0 \qquad \frac{k_f}{k_b} = \frac{[OH][H]}{[H_2][O]}$$

 k_b from k_f and thermodynamic data

Multiple reactions & w_i

$$N_2 + O = NO + N$$
$$O_2 + N = NO + O$$

Zeldovich Mechanism for thermal nitric oxide

$$\hat{w}_{NO} \equiv \frac{d[NO]}{dt} = k_{Z1f}[N_2][O] - k_{Z1b}[NO][N] + k_{Z2f}[O_2][N] - k_{Z2b}[NO][O]$$
(kmol m⁻³ s⁻¹)

$$\dot{w}_{NO} = \hat{w}_{NO} MW_{NO}$$
 (This is for the species conservation equation) (kg m⁻³ s⁻¹)

Types of Reactions

$$A + mB + nC \longrightarrow b_1P_1 + b_2 P_2$$

$$d[A]/dt = -k[A][B]^m[C]^n$$

- m^{th} order w.r.t. species B; n^{th} order w.r.t. species C
- overall order (m+n+1)
- molecularity # of molecules taking part in the reaction overall order
- dissociation first order & unimolecular
 A + M <=> A* + M; A* → products
- bimolecular and second order most probable and common in combustion
- trimolecular less probable but plays very important role in flames
 H + O2 + M → HO2 + M (usually process terminator)
 H + H + M → H2 + M
- reactions may be classified

Classification of (chain) Reactions

Initiation - forms an unstable/excited molecule or atom

$$H_2 + O_2 \rightarrow 2OH$$
; $CH_4 + H \rightarrow CH_3 + H_2$ $H_2 + M \rightarrow H + H + M$

propagation - # of unstable species remain constant

$$OH + H_2 \longrightarrow H_2O + H$$
; $CO + OH \longrightarrow CO_2 + H \longrightarrow OH + OH$

 branching - # of unstable species grow - responsible for a type explosion

$$H + O_2 \longrightarrow OH + O;$$
 $CH + O_2 \longrightarrow CHO + O$

- termination # of unstable species produced is zero
 - wall/gas termination

$$H + H \longrightarrow H_2;$$
 $H + H + M \longrightarrow H_2 + M$ $H + OH + M \longrightarrow H_2O + M$

Simplification: one step model

$$rac{dc_i}{dt} = \sum_{r=1}^R \hat{w}_r(c_i, p, T)$$

- Coupled non-linear ODEs
- Many time scales ('stiff')
- Specialized solvers
 - ChemKin, Cosilab, Cantera

For this module:

$$\begin{split} C_x H_y + & (x + y/4)(O_2 + \frac{0.79}{0.21}N_2) \rightarrow xCO_2 + \frac{y}{2}H_2O + \frac{(x + y/4)0.79}{0.21}N_2 \\ \frac{d[C_x H_y]}{dt} &= -A_G \exp\left(-E_{act}/R^0T\right)C_x H_y]^p [O_2]^q \end{split}$$

$$p = q = 1$$

Simplification: systematic reduction

$$N_2 + O \rightarrow NO + N$$

$$O_2 + N \rightarrow NO + O$$

$$\frac{d[NO]}{dt} = k_{Z1f}[N_2][O] + k_{Z2f}[O_2][N]$$

Steady state for N:

$$\frac{d[N]}{dt} = k_{Z1f}[N_2][O] - k_{Z2f}[O_2][N] = 0$$

$$[N] = \frac{k_{Z1f}[N_2][O]}{k_{Z2f}[O_2]}$$

Partial equilibrium:

$$O_2 = 2O$$
 $k_{Z3f}[O_2] = k_{Z3b}[O]^2$

$$[O] = \left(\frac{k_{Z3b}}{k_{Z3f}}\right)^{1/2} [O_2]^{1/2}$$

$$\frac{d[NO]}{dt} = 2k_{Z1f} \left(\frac{k_{Z3f}}{k_{Z3b}}\right)^{1/2} \left[O_2\right]^{1/2} \left[N_2\right]$$

$$N_2 + O_2 \rightarrow 2NO$$

Typical combustion sequence

1. Fuel Attack by radicals – Break down of fuel

$$C_2H_6 + O \rightarrow C_2H_5 + OH$$

- 2. Formation of CO and H2
- 3. Oxidation of H2 to H2O and CO to CO2 large part of heat is released here

$$CO + OH \rightarrow CO_2 + H$$

 $H_2 + OH \rightarrow H_2O + H$
 $H + OH + M \rightarrow H_2O + M$

Summary: chemical kinetics

- Global reaction rate is typically empirical
- Elementary reaction rate is given by Law of Mass action $k\prod_{i=1}^{n}[R_i]$
- Rate constant Arrhenius rate energetic collisions are required
- Types of reactions
- Full mechanism is very large and complex
- Simplification possible: steady state and equilibrium approximations
 - NO formation as an example

Example 2-1

To introduce species lifetime and how to calculate it?

$$d[C_3H_8]/dt = -A_G \exp(-T_{act}/T)[C_3H_8][O_2]$$

$$\frac{d[C_3H_8]}{[C_3H_8]} = -A_G \exp(-T_{act}/T)[O_2]dt$$

$$[C_3H_8] = [C_3H_8]_{in} \exp(-t/\tau)$$

$$\tau^{-1} = A_G \exp(-T_{act}/T)[O_2]$$

$$\tau$$
 (1200 K)=149 x 10⁻³ s , and τ (1500 K)=15 x 10⁻³ s .

Why this change?

High *Tact* => high sensitivity of Rxn rate to *T*

How about *P* effects?

As
$$P \uparrow [O_2] \uparrow \Rightarrow \tau \downarrow$$