Banach Spaces of Analytic Functions

Ashish Kujur

Last Updated: January 24, 2023

Contents

§1 Analytic and Harmonic Functions]
§1.1 Boundary Values]
§1.1.1 Weak* convergence of measures]
§1.1.2 Convergence in norm	2
§1.1.3 Weak* convergence of bounded functions	2
\$1.1.4 The entire picture!	2
§1.2 Fatou's Theorem	3
$\S1.3~H^p$ spaces	4

§1 Analytic and Harmonic Functions

§1.1 Boundary Values

§1.1.1 Weak* convergence of measures

Theorem §1.1.1. Let $\{\varphi_i\}_i$ be an approximate identity on \mathbb{T} and let $\mu \in \mathcal{M}(\mathbb{T})$. Then for all i, $\varphi_i * \mu \in L^1(\mathbb{T})$ with

$$\left\|\varphi_i * \mu\right\|_1 \le C_\varphi \|\mu\|$$

and

$$\|\mu\| \leq \sup_{i} \|\varphi_i * \mu\|_1.$$

Moreover, the measures $d\mu_i = (\varphi_i * \mu)(e^{it}) dt/2\pi$ converge to $d\mu(e^{it})$ in the weak* topology, i.e.

$$\lim_{i} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) (\varphi_{i} * \mu) (e^{it}) dt = \int_{\mathbb{T}} \varphi(e^{it}) d\mu (e^{it})$$

for all $f \in \mathcal{C}(\mathbb{T})$.

§1.1.2 Convergence in norm

Theorem §1.1.2. Let $\{\varphi_i\}_i$ be an approximate identity on \mathbb{T} and let $f \in L^p(\mathbb{T})$ with $p \in [1, \infty)$. Then for all $i, \varphi_i * f \in L^p(\mathbb{T})$ with

$$\|\varphi_i * f\|_p \le C_{\varphi} \|f\|_p$$

and

$$\lim_{i} \|\varphi_i * f - f\|_p = 0.$$

§1.1.3 Weak* convergence of bounded functions

Theorem §1.1.3. Let $\{\varphi_i\}_i$ be an approximate identity on \mathbb{T} and let $f \in L^{\infty}(\mathbb{T})$. Then for all i, $\varphi_i * \mu \in \mathscr{C}(\mathbb{T})$ with

$$\|\varphi_i * \mu\|_{\infty} \le C_{\varphi} \|\mu\|_{\infty}$$

and

$$||f||_{+\infty} \le \sup_{i} ||\varphi_i * f||_{\infty}.$$

Moreover, $\varphi_i * f$ converge to f in the weak* topology, i.e.

$$\lim_{i} \int_{-\pi}^{\pi} g\left(e^{it}\right) \left(\varphi_{i} * f\right) \left(e^{it}\right) dt = \int_{\mathbb{T}} g\left(e^{it}\right) f\left(e^{it}\right) dt$$

for all $g \in L^1(\mathbb{T})$.

§1.1.4 The entire picture!

Definition §1.1.4 (Poisson integral of some function or measure). Let $\tilde{f}: \mathbb{D} \to \mathbb{C}$ be a harmonic function. Then \tilde{f} is said to be the *Poisson integral* of the function $f: \mathbb{T} \to \mathbb{C}$ if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_{T} f\left(e^{it}\right) P_r\left(e^{i(\theta-t)}\right) dt$$

In such a case, we will denote the function \tilde{f} by P[f]. Similarly, f is said to be the *Poisson integral* of a complex measure μ on T if

$$\tilde{f}(re^{i\theta}) = \frac{1}{2\pi} \int_{T} P_r\left(e^{i(\theta-t)}\right) d\mu\left(e^{it}\right)$$

In such a case, we will denote the function \tilde{f} by $P[\mu]$.

Theorem §1.1.5 (Ultimate Convergence). Let $f : \mathbb{D} \to \mathbb{C}$ be a harmonic function. Define for each $r \in [0,1)$, the function $f_r : \mathbb{T} \to \mathbb{C}$ by

$$f_r\left(e^{i\theta}\right) = f\left(re^{i\theta}\right)$$

The following statements holds:

- 1. If 1 then <math>f = P[g] for some $g \in L^p[g]$ iff for each r > 0, $||f_r||_p < +\infty$.
- 2. If p=1 then f=P[g] for some $g \in L^p[g]$ iff f_r converge in the L^1 norm.
- 3. $f = P[\mu]$ for some $\mu \in \mathcal{M}(\mathbb{T})$ iff for each r > 0, $\|f_r\|_1 < +\infty$

§1.2 Fatou's Theorem

Theorem §1.2.1. Let μ be a complex measure on the unit circle \mathbb{T} , and let $f: \mathbb{D} \to \mathbb{C}$ be the harmonic function defined by

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{\mathbb{T}} P_r\left(e^{i(\theta-t)}\right) d\mu\left(e^{it}\right)$$

Let $e^{i\theta_0}$ be any point where μ is differentiable with respect to the normalised Lebesgue measure. Then

 $\lim_{r \to 1} f\left(re^{i\theta_0}\right) = \left(\frac{d\mu}{d\theta}\right) \left(e^{i\theta_0}\right) = \mu'\left(e^{i\theta_0}\right)$

In fact, $f(re^{i\theta}) \to \mu'(e^{i\theta_0})$ as $re^{i\theta}$ approaches $e^{i\theta_0}$ along any path in the open disc within the region of the form $|\theta - \theta_0| \le c(1-r)$ for some c > 0.

Corollary §1.2.2. Let μ be a complex measure on \mathbb{T} . Then $P[\mu]$ has nontangential limits equal everywhere to the Radon Nikodym derivative of μ with respect to the normalised Lebesgue measure.

Corollary §1.2.3. Let $f: \mathbb{T} \to \mathbb{C}$ be L^1 . Then P[f] has nontangential limits at almost everywhere and these limits equal to f almost everywhere.

Corollary §1.2.4. *Let* $f : \mathbb{D} \to \mathbb{C}$ *be a harmonic function and* $1 \le p < \infty$. *Suppose that for all* $0 \le r < 1$, *we have that*

$$||f_r||_p < +\infty$$

Then for almost every θ the radial limits

$$\tilde{f}(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$$

exist and define a function \tilde{f} in $L^p(\mathbb{T})$. The following also holds:

- 1. If p > 1 then $f = P[\tilde{f}]$.
- 2. If p = 1 then $f = P[\mu]$ for some complex measure μ whose absolutely continuous part is $f d\theta$.
- 3. If f is bounded then the boundary values exist almost everywhere and define a bounded measurable function \tilde{f} on \mathbb{T} such that $f = P[\tilde{f}]$.

Proof. Suppose that for each $r \in [0,1)$, we have $\|f_r\|_p < +\infty$. We need to prove that for almost every θ , $\lim_{r\to 1} f\left(re^{i\theta}\right)$ exists. Then by Theorem §1.1.5, we have that f=P[g] for some $g\in L^p(\mathbb{T})$. Since $L^p(\mathbb{T})\subset L^1(\mathbb{T})$, we can use the previous corollary. By the previous corollary, we have that P[g] has nontangential limits almost everywhere, we have that

$$\tilde{f}\left(e^{i\theta}\right) = \lim_{r \to 1} f(re^{i\theta}) = \lim_{r \to 1} P[g]\left(re^{i\theta}\right) \tag{§1.2.1}$$

exists almost everywhere.

Now we proceed to prove part (1). Also by Theorem §1.1.5, we have that f = P[g] for some $g \in L^p(\mathbb{T})$. Hence, we have that by Equation §1.2.1 that $\tilde{f}(e^{i\theta}) = \lim_{r \to 1} P[g] \left(re^{i\theta} \right)$ holds at almost every θ .

Also, by the previous corollary, $\lim_{r\to 1} P[g] \left(re^{i\theta}\right) = g(e^{i\theta})$ for almost every θ . Hence, we have that $\tilde{f} = g$.

Corollary §1.2.5. Let $f: \mathbb{D} \to \mathbb{R}_{\geq 0}$ be a harmonic function. Then f has nontangential limits at almost every point of \mathbb{T} . (Why demand nonnegative?)

Let $h(\mathbb{D})$ denote the set of all harmonic functions on \mathbb{D} . Let $p \in [1, \infty]$. Define

$$h^{p}\left(\mathbb{D}\right)=\left\{ f\in h\left(\mathbb{D}\right)\mid\left\{ f_{r}\right\} _{0\leq r<1}\text{ is uniformly bounded in }L^{p}\text{ norm}\right\}$$

We define a norm on $h^p(\mathbb{D})$ by

$$||f|| = \sup_{0 \le r < 1} ||f_r||_p = \begin{cases} \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}} & \text{if } p \in [1, \infty) \\ \sup_{0 \le r < 1} ||f(re^{i\theta})||_{\infty} \end{cases}$$

It is easy to see why $||f|| < +\infty$ for any $f \in h^p(D)$. So we now proceed to show that $h^p(D)$ is a Banach space with this norm. First we show that it is indeed a normed linear space.

Clearly, $h(\mathbb{D})$ is a vector space. To show that $h^p(\mathbb{D})$ is a vector space, it suffices to check that $h^p(\mathbb{D})$ is a subspace.

Let $f, g \in h^p(\mathbb{D})$ and let $\alpha \in \mathbb{C}$. Then for any $r \in [0, 1)$, we have that

$$\begin{aligned} \left\| (f + \alpha g)_r \right\|_p &= \left\| f_r + \alpha g_r \right\| \\ &= \left\| f_r \right\|_p + \alpha \left\| g_r \right\|_p \end{aligned}$$

Take note of the use of Holder's inequality. After this is done, since $\{f_r\}_{r\in[0,1)}$ and $\{g_r\}_{r\in[0,1)}$ is uniformly bounded, we have that $\{f+\alpha g\}_{r\in[0,1)}$ is uniformly bounded in L^p norm.

Now, we need to show that it is a normed linear space but this follows almost immediately. To show that it is a Banach space, we show that

Theorem §1.2.6. Let $p \in [1,\infty]$. If $u \in L^p(\mathbb{T})$ then $f = P * u \in h^p(\mathbb{D})$ and $\|f\|_p = \|u\|_p$. If $\mu \in \mathcal{M}(\mathbb{T})$ then $f = P * \mu \in h^1(\mathbb{D})$ and $\|f\|_1 = \|\mu\|$.

Proof. We consider the case $p \in [1,\infty)$. The other cases can be dealt similarly. Consider the map

$$u \stackrel{T}{\mapsto} U$$

where $U(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(e^{i(\theta-t)}) u(e^{it}) dt$. By Theorem §1.1.2, we have that $||U|| = ||u||_p < +\infty$. Hence $U \in h^p(\mathbb{D})$.

Linearity is obvious. We need to check injectivity and surjectivity.

To check injectivity, let $u \in L^p(\mathbb{T})$ and suppose that T(u) = P[u] = 0. Now $\lim_{r \to 1} P[u] \left(re^{i\theta} \right) = u$ for almost θ by Corollary §1.2.3 and hence u = 0 almost everywhere.

Surjectivity is clear from Theorem §1.1.5.

1.3 H^p spaces

4