Фрактальный анализ и синтез оптических изображений морского волнения

Каныгин Юрий

МФТИ

10.11.2018

Outline

Введение

Определение фрактальной размерности Примеры фракталов Фрактал Серпинского

Постановка задачи машинного обучения

Заключение

Заключение

Введение

Рис. 1: Обработанный снимок морской поверхности

Введение

Рис. 1: Изолинии яркости снимка морской поверхности

Определение фрактальной размерности

$$D_2 = \frac{\partial \log \sum_{i} C_{r,i}^2}{\partial \log r}, \quad r \in [r_1, r_2]$$

- 1. На вход подается изображение нашего «безобразия»
- 2. Для набора точек в n-мерном пространстве определяется его конечное покрытие
- 3. Последнее разбивается сеткой разной мелкости.
- 4. Для каждой мелкости разбиения r, производится подсчёт непустых ячеек N либо квадрат числа точек, оказавшихся в ячейке, C.
- 5. Строится график N либо C vs. r в log-log масштабе.
- 6. Наклон кривой на «линейном» участке является фрактальной размерностью, которая подается на выход.

Примеры фракталов

No.	Name of figure	Figure	Dimension	Level
1	Koch snowflake	~5^2~	1.262	4~8
2	Apollonian Gasket		1.328	3~7
3	Vicsek fractal	# <u>***</u> #********************************	1.465	3~7
4	Sierpinski triangle		1.585	5~9
5	Rand cantor		1.678	Five seeds
6	Koch curve 85°		1.785	5~9
7	Sierpinski Carpet		1.893	3~7

Рис. 2: Тестовые общеизвестные фракталы

Фрактал Серпинского

	a	dp	h	red1	red2	red3	dp+h	dp*h	sqrt(dp)*h+exp(h)*dp**2	y_train
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000
mean	1.552328	1.548484	1.549477	1.552231	1.557139	1.553571	3.097961	2.396580	22.020000	16.736888
std	0.837495	0.836141	0.837220	0.836886	0.838756	0.834842	1.180910	1.955536	28.231539	27.524510
min	0.100145	0.100091	0.100017	0.100024	0.100037	0.100067	0.220042	0.012027	0.050513	-0.324576
25%	0.828249	0.824821	0.826110	0.831683	0.832746	0.834455	2.246583	0.786694	3.746293	0.705060
50%	1.555304	1.549505	1.549549	1.554555	1.560352	1.554183	3.096212	1.853881	10.907733	4.902508
75%	2.275450	2.269600	2.275488	2.280282	2.286842	2.276296	3.945308	3.587736	28.250031	20.054569
max	2.999975	2.999999	2.999975	2.999871	2.999952	2.999964	5.977110	8.931434	182.212647	230.371688

Рис. 3: Характеристики алгоритма вычисления фрактальной размерности для треугольника Серпинского

Фрактал Серпинского

Рис. 3: График N vs. r в log-log масштабе

Постановка задачи машинного обучения

Для практического применения, очень удачным оказывается тот факт, что в исследуемом диапазоне зависимость фрактальной размерности и показателя спектра изолиний оказывается линейной.

$$D(p) = \beta_o(n) + \beta_1(n)(p - p_0)$$

Данная задача является задачей линейной регрессии. Для ее решения, первое, что может прийти в голову — это решение с помощью метода наименьших квадратов.

Постановка задачи машинного обучения

Рис. 4: Зависимость показателя спектра от фрактальной размерности

Заключение

План работ на следующий семестр таков:

- 1. Хотелось бы миновать стадию определения фрактальной размерности и иметь программу, которая на входе имеет фото морского волнения, а на выходе ответ о показателе спектра.
- Для этого можно попробовать построить нейронную сеть.
 Архитектура которой, пока что нами не разработана и не продумана.
- Статей по близкой тематике в области машинного обучения нами найдены не были, поэтому данная работа претендует на наличие научной новизны.
- 4. Будет возможность сравнить ответы между двумя способами: нейронной сетью и метода фрактальной размерности.