```
In [5]:
```

print("innovation in education across USA, China, and Germany: world need ideas and innovation to deal pi #literacy rates across USA, China, and Germany print(' the following data frames and graphs below show how the literacy rates vary between USA, China and import numpy as np import matplotlib.pyplot as plt import pandas as pd

dataframe = pd.read_csv('cross-country-literacy-rates two.csv')

dataframe

innovation in education across USA, China, and Germany: world need ideas and innovation to deal progessively with the major problems the humanity face. Countries should create opportunities and conditions to cultivate such creative and talented people who contribute to this important work. let us look at the human resources quality of those three countries

the following data frames and graphs below show how the literacy rates vary between USA, China and Germa

Out[5]:

	COUNTRY_Code	Year	rates_of_Literacy
0	Germany DEU	1475	9.000000
1	Germany DEU	1550	16.000000
2	Germany DEU	1650	31.000000
3	Germany DEU	1750	38.000000
4	Germany DEU	2003	99.000000
5	China CHN	1982	65.505089
6	China CHN	1990	77.785057
7	China CHN	2000	90.920212
8	China CHN	2010	95.124481
9	China CHN	2015	96.357452
10	United States USA	1870	80.000000
11	United States USA	1880	83.000000
12	United States USA	1890	86.000000
13	United States USA	1900	89.300003
14	United States USA	1910	92.300003
15	United States USA	1920	94.000000
16	United States USA	1930	95.699997
17	United States USA	1940	97.099998
18	United States USA	1947	97.300003
19	United States USA	1950	96.800003
20	United States USA	1952	97.500000
21	United States USA	1959	97.800003
22	United States USA	1969	99.000000
23	United States USA	1979	99.400002
24	United States USA	2003	99.000000

[#] let us Compare Literacy rates across the US, China and Germany
US = dataframe[dataframe.COUNTRY_Code == 'United States USA']
China = dataframe[dataframe.COUNTRY_Code == 'China CHN']
Germany = dataframe[dataframe.COUNTRY_Code == 'Germany DEU']
Germany

```
Out[6]:
```

```
COUNTRY_Code
                Year rates_of_Literacy
0
     Germany DEU 1475
1
     Germany DEU 1550
                                  16.0
2
     Germany DEU 1650
                                  31.0
3
     Germany DEU 1750
                                  38.0
4
     Germany DEU 2003
                                  99.0
                                                                                                                       In [7]:
plt.plot(US.Year, US.rates_of_Literacy,'b.-')
plt.plot(China.Year, China.rates_of_Literacy,'r.-')
plt.plot(Germany.Year, Germany.rates_of_Literacy,'g.-')
plt.legend(['The US', 'China', 'Germany'])
plt.xlabel('Year')
plt.ylabel('rates_of_Literacy')
plt.show()
  100
         - The US
           China

    Germany

   80
rates of Literacy
   60
   40
   20
                                        1900
                                                2000
        1500
                1600
                        1700
                                1800
                                                                                                                          ▼
                                                                                                                       In [8]:
#as we can see from these graphs, US was leader for gaining higher literacy rates within the past decade.
                                                                                                                       In [9]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
researchers = pd.read csv('researchers-in-rd-per-million-peopleII.csv')
researchers
                                                                                                                      Out[9]:
                    Year Researchers_in_R_and_D_(per_million_people)
               Code
       country
 0
                CHN
                    1996
                                                        442.56548
         China
 1
         China
                CHN
                    1997
                                                        471.99494
 2
                                                        386.77167
         China
                CHN
                    1998
                                                        420.60209
 3
         China
                CHN
                    1999
                                                        547.30387
         China
                CHN
                     2000
 5
                                                        581.53188
         China
                CHN
                     2001
                                                        631.07801
 6
         China
                CHN
                     2002
 7
         China
                CHN
                     2003
                                                        667.53208
 8
                CHN
                     2004
                                                        713.28449
         China
 9
         China
                CHN
                     2005
                                                        856.84548
```

932.31417

1078.62521 1200.29490

863.92630

902.95975

977.68206

1035.87909

10

11

12

13

14 15

16

China

China

China

China

China

China

China

CHN

CHN

CHN

CHN

CHN

CHN

CHN

2006

2007

2008

2009

2010

2011

2012

17	country China	Code CHN	Year 2013	Researchers_in_R_and_D_(per_million_people) 1089.19205
18	China	CHN	2014	1113.07185
19	China	CHN	2015	1176.57712
20	Germany	DEU	1996	2811.61389
21	Germany	DEU	1997	2875.74074
22	Germany	DEU	1998	2898.56684
23	Germany	DEU	1999	3107.28263
24	Germany	DEU	2000	3148.80136
25	Germany	DEU	2001	3231.71759
26	Germany	DEU	2002	3253.51966
27	Germany	DEU	2003	3297.09098
28	Germany	DEU	2004	3318.86921
29	Germany	DEU	2005	3349.64573
30	Germany	DEU	2006	3452.20997
31	Germany	DEU	2007	3597.23882
32	Germany	DEU	2008	3751.78161
33	Germany	DEU	2009	3940.73576
34	Germany	DEU	2010	4077.76719
35	Germany	DEU	2011	4211.25463
36	Germany	DEU	2012	4379.07515
37	Germany	DEU	2013	4399.67239
38	Germany	DEU	2014	4363.77950
39	Germany	DEU	2015	4431.08151
40	United States	USA	1996	3122.57281
41	United States	USA	1997	3224.23913
42	United States	USA	1998	3388.20888
43	United States	USA	1999	3445.30961
44	United States	USA	2000	3475.69505
45	United States	USA	2001	3545.83215
46	United States	USA	2002	3630.61832
47	United States	USA	2003	3870.56966
48	United States	USA	2004	3765.10261
49	United States	USA	2005	3718.19505
50	United States	USA	2006	3781.80788
51	United States	USA	2007	3757.86688
52	United States	USA	2008	3911.53450
53	United States	USA	2009	4073.17633
54	United States	USA	2010	3868.56644
55	United States	USA	2011	4011.32862
56	United States	USA	2012	4015.88708
57	United States	USA	2013	4117.67409
58	United States	USA	2014	4231.98928

In [162]:

plt.style.use('default')

plt.figure(figsize=(8,7))

```
China = researchers.loc[researchers.country == 'China']['Researchers_in_R_and_D_(per_million_people)']

labels = ['Germany','United States','China']
boxes = plt.boxplot([Germany, United_States,China],labels= labels,patch_artist=True, medianprops={'linewifor box in boxes['boxes']:
    box.set(color='#15d432',linewidth =3)
plt.title('Researchers in research & development across countries ( USA, China, and Germany)')
plt.ylabel('Researchers in R&D (per million people)')
```


#The OECD Programme for International Student Assessment (PISA) examines what students know in reading, I #It provides the most comprehensive and rigorous international assessment of student learning outcomes to #Results from PISA indicate the quality and equity of learning outcomes attained around the world, and a.

#NOTE: The Reading, Mathematics and Science scale ranges from 0 to 1000. Some apparent differences betwee #SOURCE: Organization for Economic Cooperation and Development (OECD), Program for International Student

print("women vs men PISA reading performances across countries")

plt.xlabel('countries')

plt.show()

PISA = pd.read_csv('Averages for age 15 years PISA reading scale.csv')
PISA

_		
()ı ı+	1261	٠
Out	IJUI	

	Year	Country	average	Standard_Error
0	2018	Germany	512	(3.2)
1	2018	United States	517	(3.6)
2	2018	Hong Kong (China)	542	(2.8)
3	2015	Germany	520	(3.1)
4	2015	United States	507	(3.9)
5	2015	Hong Kong (China)	541	(3.6)
6	2012	Germany	530	(3.1)
7	2012	United States	513	(3.8)
8	2012	Hong Kong (China)	558	(3.3)
9	2009	Germany	518	(2.9)
10	2009	United States	513	(3.8)
11	2009	Hong Kong (China)	550	(2.8)
12	2006	Germany	517	(4.4)
13	2006	United States	515	(3.8)
14	2006	Hong Kong (China)	551	(3.0)
15	2003	Germany	513	(3.9)
16	2003	United States	511	(3.5)
17	2003	Hong Kong (China)	525	(3.5)
18	2000	Germany	502	(3.9)
19	2000	United States	518	(6.2)
20	2000	Hong Kong (China)	533	(3.6)

```
plt.hist(PISA.average,color='#3e28a8')
plt.yticks([0,2,3,5])
plt.xlabel('Average scores')
plt.ylabel('Frequency')
plt.title('distribution of average scores across countries for women PISA performance')
plt.show()
```


PISAmen = pd.read_csv('Averages for age 15 years PISA reading scale (male).csv')
PISAmen

In [26]:

	Year	Country	average	Standard Error
0	2018	Germany	486	(3.4)
1	2018	United States	494	(4.2)
2	2018	Hong Kong (China)	507	(3.5)
3	2015	Germany	499	(3.7)
4	2015	United States	487	(3.7)
5	2015	Hong Kong (China)	513	(3.4)
6	2012	Germany	486	(2.9)
7	2012	United States	482	(4.1)
8	2012	Hong Kong (China)	533	(3.8)
9	2009	Germany	478	(3.6)
10	2009	United States	488	(4.2)
11	2009	Hong Kong (China)	518	(3.3)
12	2006	Germany	475	(5.3)
13	2006	United States	490	(4.1)
14	2006	Hong Kong (China)	520	(3.5)
15	2003	Germany	471	(4.2)
16	2003	United States	479	(3.7)
17	2003	Hong Kong (China)	494	(5.3)
18	2000	Germany	468	(3.2)
19	2000	United States	490	(8.4)
20	2000	Hong Kong (China)	518	(4.8)

```
plt.hist(PISAmen.average, color='#3e28a8')
plt.yticks([0,2,3,5])
plt.xlabel('Average scores')
plt.ylabel('Frequency')
plt.title('distribution of average scores across countries for men PISA performance')
plt.show()
```


mean PISA performance in The science, math and reading across countries
print('mean reading performance across countries')
mean_PISA_reading = pd.read_csv('PISA mean reading performance.csv')
mean_PISA_reading

In [44]:

0

2

3

4

5

10

11

12

13

```
plt.style.use('default')
plt.figure(figsize=(8,7))
Germany = mean PISA reading.loc[mean PISA reading.country == 'Germany']['PISA: Mean performance on the reading.country
United_States = mean_PISA_reading.loc[mean_PISA_reading.country == 'United States']['PISA: Mean performar
China = mean_PISA_reading.loc[mean_PISA_reading.country == 'China']['PISA: Mean performance on the readir
labels = ['Germany','United States','China']
boxes = plt.boxplot([Germany, United_States, China], labels = labels, patch_artist = True, median props = { 'linewi
for box in boxes['boxes']:
    box.set(color='#1557d4',linewidth =3)
plt.title('comparison of mean PISA reading performance across USA, CHina, Germany')
plt.ylabel('PISA: Mean performance on the reading scale')
plt.show()
```


print('mean math performance across countries')
mean_PISA_math = pd.read_csv('PISA mean math performance.csv')
mean_PISA_math

mean math performance across countries

Out[90]:

In [90]:

	country	Year	PISA: Mean performance on the mathematics scale	
0	United States	2000	493.000000	
1	United States	2003	482.885038	
2	United States	2006	474.352158	
3	United States	2009	487.396520	
4	United States	2012	481.366786	
5	United States	2015	469.628500	
6	China	2009	600.076253	
7	China	2012	612.675536	
8	China	2015	531.296100	
9	Germany	2000	490.000000	
10	Germany	2003	502.985532	
11	Germany	2006	503.790859	
12	Germany	2009	512.777643	
13	Germany	2012	513.525056	
14	Germany	2015	505.971300	

```
In [181]
```

```
mean_PISA_math.pivot(index='Year', columns ='country', values = 'PISA: Mean performance on the mathematic
plt.xlabel('Year')
plt.ylabel('PISA: Mean performance on the math scale')
```

plt.title('Mean math performance across USA, China, and Germany')

print('mean science performance across countries')
mean_PISA_science = pd.read_csv('PISA mean science performance.csv')
mean_PISA_science

mean science performance across countries

Out[164]:

In [164]:

	country	Year	PISA: Mean performance on the science scale
0	United States	2000	499.460152
1	United States	2003	491.263463
2	United States	2006	488.906837
3	United States	2009	502.002265
4	United States	2012	497.409811
5	United States	2015	496.242400
6	China	2009	574.617355
7	China	2012	580.117831
8	China	2015	517.779300
9	Germany	2000	487.105836
10	Germany	2003	502.336476
11	Germany	2006	515.649130
12	Germany	2009	520.405349
13	Germany	2012	524.120799
14	Germany	2015	509.140600

In [179]:

mean_PISA_science.pivot(index='Year', columns ='country', values = 'PISA: Mean performance on the science
plt.xlabel('Year')

 $\verb|plt.ylabel('PISA: Mean performance on the science scale')|\\$

plt.title('Mean science performance across USA, China, and Germany')

Digital_device_usage = pd.read_csv('using digital devices.csv')
Digital device usage

 Country
 Year
 15-year_old_students_using_digital_devices_for_practising_and_drilling_(%_of_students)

 0
 Germany
 2006
 26

 1
 Germany
 2015
 32

 2
 Hong Kong China
 2006
 38

 3
 Hong Kong China
 2015
 34

In [191]:

```
In [200]:
Germany = Digital_device_usage[ Digital_device_usage.Country == 'Germany' ]
Hong_Kong_China = Digital_device_usage[ Digital_device_usage.Country == 'Hong Kong China' ]

Germany_students= Digital_device_usage.loc[Digital_device_usage.Country == 'Germany']['15_year_old_student
Hong_Kong_China_students= Digital_device_usage.loc[Digital_device_usage.Country == 'Hong Kong China']['15_
plt.figure(figsize=(10,9))
plt.plot (Germany.Year,Germany_students,'b.-')
plt.plot (Hong_Kong_China_Year,Hong_Kong_China_students,'r.-')

plt.title('Digital_device_usage_by_students_for_practising_and_drilling_across_Germany_and_Hong_Kong,Chin_plt.legend(['Germany', 'Hong_Kong, China', ])
plt.xlabel('Year')
plt.ylabel('15_year_old_students_using_digital_devices_for_practising_and_drilling_(%_of_students)')
plt.show()
```

