Университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №5 по дисциплине «Вычислительная Математика»

Выполнил:

Студент группы P3207 Разинкин А.В.

Преподаватели:

Рыбаков С.Д.

Оглавление

3
3
4
5
.11
.14

Цель лабораторной работы

Решить задачу интерполяции, найти значение функции при заданных значениях аргумента, отличных от узловых точек.

Порядок выполнения работы

Вычислительная часть:

1. Выбранная таблица y = f(x):

X	y	X ₁	y 1
2,10	3,7587	2,112	2,205
2,15	4,1861	2,355	2,254
2,20	4,9218	2,114	2,216
2,25	5,3487	2,359	2,259
2,30	5,9275	2,128	2,232
2,35	6,4193	2,352	2,284
2,40	7,0839	2,147	2,247

- 2. Построить таблицу конечных разностей для выбранной таблицы.
- 3. Вычислить значения функции для аргумента x₁, используя первую или вторую интерполяционную формулу Ньютона.
- 4. Вычислить значения функции для аргумента x₂, используя первую или вторую интерполяционную формулу Гаусса.

Программная часть:

- 1. Исходные данные задаются тремя способами:
 - а) в виде набора данных, пользователь вводит значения с клавиатуры;
 - b) в виде сформированных в файле данных;
 - с) на основе выбранной функции, из тех, которые предлагает программа, например, sin(x). Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного аргумента, введенного с клавиатуры, методами Лагранжа, Ньютона (с разделенными/конечными разностями);
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционных многочленов.

Рабочие формулы

Многочлен Лагранжа:

$$L_n(x) = \sum_{i=0}^{n} y_i \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$

Многочлен Ньютона с разделенными разностями:

$$N_n(x) = f(x_0) + \sum_{k=1}^n f(x_0, x_1, \dots, x_k) \prod_{j=0}^{k-1} (x - x_j)$$

Многочлен Ньютона с конечными разностями (общая формула):

$$N_n(x) = a_0 + \sum_{k=1}^n a_n \prod_{j=0}^{k-1} (x - x_j)$$
$$a_k = \frac{\Delta^k y_0}{k! \ h^k}$$

Многочлен Ньютона с конечными разностями (для интерполирования вперед):

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!} \Delta^2 y_i + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} \Delta^n y_0$$
$$t = \frac{x - x_i}{h}$$

Многочлен Ньютона с конечными разностями (для интерполирования назад):

$$\begin{split} N_n(x) &= y_n + t \Delta y_{n-1} + \frac{t(t-1)}{2!} \Delta^2 y_{n-2} + \dots + \frac{t(t-1) \dots (t-n+1)}{n!} \Delta^n y_0 \\ t &= \frac{x - x_n}{h} \end{split}$$

Многочлен Гаусса (первая формула):

$$\begin{split} P_n(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_{-2} + \cdots \\ &\quad + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-(n-1)} + \frac{(t+n-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

Многочлен Гаусса (вторая формула):

$$\begin{split} P_n(x) &= y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-n} \\ &\quad + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

Вычислительная часть

Таблица конечных разностей:

No	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
0	2,10	3,7587	0,4274	0,3083	-0,6171	1,0778	-1,7774	2,973
1	2,15	4,1861	0,7357	-0,3088	0,4607	-0,6996	1,1956	
2	2,20	4,9218	0,4269	0,1519	-0,2389	0,4987		
3	2,25	5,3487	0,5788	-0,087	0,2598			
4	2,30	5,9275	0,4918	0,1728				
5	2,35	6,4193	0,6646					
6	2,40	7,0839						

Вычисление значения функции формулой Ньютона:

$$x_1 = 2,112$$
:

$$t = \frac{2,112 - 2,10}{0.05} = 0,24$$

$$\begin{split} N_6(2.112) &= 3,7587 + 0,24 \times 0,4274 + \frac{0,24 \times (0,24-1)}{2!} \times 0,3083 \\ &+ \frac{0,24 \times (0,24-1) \times (0,24-2)}{3!} \times (-0,6171) \\ &+ \frac{0,24 \times (0,24-1) \times (0,24-2) \times (0,24-3)}{4!} \times 1,0778 \\ &+ \frac{0,24 \times (0,24-1) \times (0,24-2) \times (0,24-3) \times (0,24-4)}{5!} \times (-1,7774) \\ &+ \frac{0,24 \times (0,24-1) \times (0,24-2) \times (0,24-3) \times (0,24-4)}{6!} \times 2.973 \approx 3.646 \end{split}$$

$$x_1 = 2,335$$
:

$$t = \frac{2,335 - 2,40}{0.05} = -1,3$$

$$N_{6}(2.112) = 7,0839 + (-1,3) \times 0,6646 + \frac{-1,3 \times (-1,3-1)}{2!} \times 0,1728$$

$$+ \frac{-1,3 \times (-1,3-1) \times (-1,3-2)}{3!} \times 0,2598$$

$$+ \frac{-1,3 \times (-1,3-1) \times (-1,3-2) \times (-1,3-3)}{4!} \times 0,4987$$

$$+ \frac{-1,3 \times (-1,3-1) \times (-1,3-2) \times (-1,3-3) \times (-1,3-4)}{5!} \times 1,1956$$

$$+ \frac{-1,3 \times (-1,3-1) \times (-1,3-2) \times (-1,3-3) \times (-1,3-4) \times (-1,3-5)}{6!} \times 2.973 \approx 10.542$$

 $x_1 = 2,114$:

$$t = \frac{2,114 - 2,10}{0,05} = 0,28$$

$$N_6(2.112) = 3,7587 + 0,28 \times 0,4274 + \frac{0,28 \times (0,28 - 1)}{2!} \times 0,3083$$

$$+ \frac{0,28 \times (0,28 - 1) \times (0,28 - 2)}{3!} \times (-0,6171)$$

$$+ \frac{0,28 \times (0,28 - 1) \times (0,28 - 2) \times (0,28 - 3)}{4!} \times 1,0778$$

$$+ \frac{0,28 \times (0,28 - 1) \times (0,28 - 2) \times (0,28 - 3) \times (0,28 - 4)}{5!} \times (-1,7774)$$

$$+ \frac{0,28 \times (0,28 - 1) \times (0,28 - 2) \times (0,28 - 3) \times (0,28 - 4) \times (0,28 - 5)}{6!}$$

$$\times 2.973 \approx 3.649$$

$$t = \frac{2,359 - 2,40}{0,05} = -0,82$$

$$N_6(2.112)$$

$$= 7,0839 + (-0,82) \times 0,6646 + \frac{-0,82 \times (-0,82 - 1)}{2!} \times 0,1728$$

$$+ \frac{-0,82 \times (-0,82 - 1) \times (-0,82 - 2)}{3!} \times 0,2598$$

$$+ \frac{-0,82 \times (-0,82 - 1) \times (-0,82 - 2) \times (-0,82 - 3)}{4!} \times 0,4987$$

$$+ \frac{-0,82 \times (-0,82 - 1) \times (-0,82 - 2) \times (-0,82 - 3) \times (-0,82 - 4)}{5!} \times 1,1956$$

$$+ \frac{-0,82 \times (-0,82 - 1) \times (-0,82 - 2) \times (-0,82 - 3) \times (-0,82 - 4) \times (-0,82 - 5)}{6!} \times 2,973$$

$$\approx 7,910$$

 $x_1 = 2,128$:

$$t = \frac{2,128 - 2,10}{0,05} = 0,56$$

$$N_6(2.112) = 3,7587 + 0,56 \times 0,4274 + \frac{0,56 \times (0,56 - 1)}{2!} \times 0,3083$$

$$+ \frac{0,56 \times (0,56 - 1) \times (0,56 - 2)}{3!} \times (-0,6171)$$

$$+ \frac{0,56 \times (0,56 - 1) \times (0,56 - 2) \times (0,56 - 3)}{4!} \times 1,0778$$

$$+ \frac{0,56 \times (0,56 - 1) \times (0,56 - 2) \times (0,56 - 3) \times (0,56 - 4)}{5!} \times (-1,7774)$$

$$+ \frac{0,56 \times (0,56 - 1) \times (0,56 - 2) \times (0,56 - 3) \times (0,56 - 4) \times (0,56 - 5)}{6!}$$

$$\times 2,973 \approx 3,79$$

 $x_1 = 2,352$:

$$t = \frac{2,352 - 2,40}{0.05} = -0.96$$

$$N_6(2.112)$$

$$= 7,0839 + (-0,96) \times 0,6646 + \frac{-0,96 \times (-0,96 - 1)}{2!} \times 0,1728$$

$$+ \frac{-0,96 \times (-0,96 - 1) \times (-0,96 - 2)}{3!} \times 0,2598$$

$$+ \frac{-0,96 \times (-0,96 - 1) \times (-0,96 - 2) \times (-0,96 - 3)}{4!} \times 0,4987$$

$$+ \frac{-0,96 \times (-0,96 - 1) \times (-0,96 - 2) \times (-0,96 - 3) \times (-0,96 - 4)}{5!} \times 1,1956$$

$$+ \frac{-0,96 \times (-0,96 - 1) \times (-0,96 - 2) \times (-0,96 - 3) \times (-0,96 - 4) \times (-0,96 - 5)}{6!} \times 2,973$$

$$\approx 8,428$$

 $x_1 = 2,147$:

$$t = \frac{2,147 - 2,10}{0,05} = 0,94$$

$$N_6(2.112) = 3,7587 + 0,94 \times 0,4274 + \frac{0,94 \times (0,94 - 1)}{2!} \times 0,3083$$

$$+ \frac{0,94 \times (0,94 - 1) \times (0,94 - 2)}{3!} \times (-0,6171)$$

$$+ \frac{0,94 \times (0,94 - 1) \times (0,94 - 2) \times (0,94 - 3)}{4!} \times 1,0778$$

$$+ \frac{0,94 \times (0,94 - 1) \times (0,94 - 2) \times (0,94 - 3) \times (0,94 - 4)}{5!} \times (-1,7774)$$

$$+ \frac{0,94 \times (0,94 - 1) \times (0,94 - 2) \times (0,94 - 3) \times (0,94 - 4)}{6!} \times 2,973 \approx 4,128$$

Вычисление значения функции формулой Гаусса:

$$x_2 = 2,205$$
:

$$t = \frac{2,205 - 2,25}{0,05} = -0,9$$

$$P_6 = 5,3487 + (-0,9) \times 0,4269 + \frac{(-0.9) \times (-0.9 + 1)}{2!} \times 0,1519$$

$$+ \frac{(-0,9 + 1) \times (-0,9) \times (-0,9 - 1)}{3!} \times 0,4607$$

$$+ \frac{(-0,9 + 2) \times (-0,9 + 1) \times (-0,9) \times (-0,9 - 1)}{4!} \times (-0,6996)$$

$$+ \frac{(-0,9 + 2) \times (-0,9 + 1) \times (-0,9) \times (-0,9 - 1) \times (-0.9 - 2)}{5!} \times (-1,7774)$$

$$+ \frac{(-0,9 + 3) \times (-0,9 + 2) \times (-0,9 + 1) \times (-0,9) \times (-0,9 - 1) \times (-0.9 - 2)}{6!}$$

$$\times 2,973 \approx 4,969$$

 $x_2 = 2,254$:

$$t = \frac{2,254 - 2,25}{0,05} = 0,08$$

$$P_6 = 5,3487 + 0,08 \times 0,5788 + \frac{0,08 \times (0,08 - 1)}{2!} \times 0,1519$$

$$+ \frac{(0,08 + 1) \times 0,08 \times (0,08 - 1)}{3!} \times (-0,2389)$$

$$+ \frac{(0,08 + 1) \times 0,08 \times (0,08 - 1) \times (0,08 - 2)}{4!} \times (-0,6996)$$

$$+ \frac{(0,08 + 2) \times (0,08 + 1) \times 0,08 \times (0,08 - 1) \times (0,08 - 2)}{5!} \times 1,1956$$

$$+ \frac{(0,08 + 2) \times (0,08 + 1) \times 0,08 \times (0,08 - 1) \times (0,08 - 2) \times (0,08 - 3)}{6!}$$

$$\times 2.973 \approx 5.387$$

$$x_2 = 2,216$$
:

$$t = \frac{2,216 - 2,25}{0,05} = -0,68$$

$$P_{6}$$

$$= 5,3487 + (-0,68) \times 0,4269 + \frac{(-0,68) \times (-0,68 + 1)}{2!} \times 0,1519$$

$$+ \frac{(-0,68 + 1) \times (-0,68) \times (-0,68 - 1)}{3!} \times 0,4607$$

$$+ \frac{(-0,68 + 2) \times (-0,68 + 1) \times (-0,68) \times (-0,68 - 1)}{4!} \times (-0,6996)$$

$$+ \frac{(-0,68 + 2) \times (-0,68 + 1) \times (-0,68) \times (-0,68 - 1) \times (-0,68 - 2)}{5!} \times (-1,7774)$$

$$+ \frac{(-0,68 + 3) \times (-0,68 + 2) \times (-0,68 + 1) \times (-0,68) \times (-0,68 - 1) \times (-0,68 - 2)}{6!} \times 2,973 \approx 5,063$$

 $x_2 = 2,259$:

$$t = \frac{2,259 - 2,25}{0,05} = 0,18$$

$$P_6 = 5,3487 + 0,18 \times 0,5788 + \frac{0,18 \times (0,18 - 1)}{2!} \times 0,1519$$

$$+ \frac{(0,18 + 1) \times 0,18 \times (0,18 - 1)}{3!} \times (-0,2389)$$

$$+ \frac{(0,18 + 1) \times 0,18 \times (0,18 - 1) \times (0,18 - 2)}{4!} \times (-0,6996)$$

$$+ \frac{(0,18 + 2) \times (0,18 + 1) \times 0,18 \times (0,18 - 1) \times (0,18 - 2)}{5!} \times 1,1956$$

$$+ \frac{(0,18 + 2) \times (0,18 + 1) \times 0,18 \times (0,18 - 1) \times (0,18 - 2) \times (0,18 - 3)}{6!}$$

$$\times 2,973 \approx 5.438$$

 $x_2 = 2,232$:

$$t = \frac{2,232 - 2,25}{0,05} = -0,36$$

$$P_{6}$$

$$= 5,3487 + (-0,36) \times 0,4269 + \frac{(-0,36) \times (-0,36 + 1)}{2!} \times 0,1519$$

$$+ \frac{(-0,36 + 1) \times (-0,36) \times (-0,36 - 1)}{3!} \times 0,4607$$

$$+ \frac{(-0,36 + 2) \times (-0,36 + 1) \times (-0,36) \times (-0,36 - 1)}{4!} \times (-0,6996)$$

$$+ \frac{(-0,36 + 2) \times (-0,36 + 1) \times (-0,36) \times (-0,36 - 1) \times (-0,36 - 2)}{5!} \times (-1,7774)$$

$$+ \frac{(-0,36 + 3) \times (-0,36 + 2) \times (-0,36 + 1) \times (-0,36) \times (-0,36 - 1) \times (-0,36 - 2)}{6!} \times 2.973 \approx 5.191$$

$$x_2 = 2,284$$
:

$$t = \frac{2,284 - 2,25}{0,05} = 0,68$$

$$P_6 = 5,3487 + 0,68 \times 0,5788 + \frac{0,68 \times (0,68 - 1)}{2!} \times 0,1519$$

$$+ \frac{(0,68 + 1) \times 0,68 \times (0,68 - 1)}{3!} \times (-0,2389)$$

$$+ \frac{(0,68 + 1) \times 0,68 \times (0,68 - 1) \times (0,68 - 2)}{4!} \times (-0,6996)$$

$$+ \frac{(0,68 + 2) \times (0,68 + 1) \times 0,68 \times (0,68 - 1) \times (0,68 - 2)}{5!} \times 1,1956$$

$$+ \frac{(0,68 + 2) \times (0,68 + 1) \times 0,68 \times (0,68 - 1) \times (0,68 - 2) \times (0,68 - 3)}{6!}$$

$$\times 2.973 \approx 5.727$$

 $x_2 = 2,247$:

 $\times 2.973 \approx 5.321$

$$t = \frac{2,232 - 2,25}{0,05} = -0,06$$

$$P_{6}$$

$$= 5,3487 + (-0,06) \times 0,4269 + \frac{(-0,06) \times (-0,06 + 1)}{2!} \times 0,1519$$

$$+ \frac{(-0,06 + 1) \times (-0,06) \times (-0,06 - 1)}{3!} \times 0,4607$$

$$+ \frac{(-0,06 + 2) \times (-0,06 + 1) \times (-0,06) \times (-0,06 - 1)}{4!} \times (-0,6996)$$

$$+ \frac{(-0,06 + 2) \times (-0,06 + 1) \times (-0,06) \times (-0,06 - 1) \times (-0,06 - 2)}{5!} \times (-1,7774)$$

$$+ \frac{(-0,06 + 3) \times (-0,06 + 2) \times (-0,06 + 1) \times (-0,06) \times (-0,06 - 1) \times (-0,06 - 2)}{6!}$$

Программная реализация

 $\underline{https://github.com/DecafMangoITMO/ITMO/tree/main/ComputationalMathematics/lab} \ \ \underline{5}$

Примеры работы программы:

input.txt:

- 1 1
- 2 2
- 3 3
- 44
- 5 5
- 66
- 77

Программа:

Введите способ ввода точек:

- 1. Ввод из терминала
- 2. Ввод из файла
- 3. Ввод через функцию

>> 2

Введите путь до файла:

>> input.txt

_	1	5.0	5.0	1.0	0.0)				
5	5	6.0	6.0	1.0						
6	5	7.0	7.0							

Многочлен Лагранжа -- оранжевая линия Многочлен Ньютона с разделенными разностями -- зеленая линия Многочлен Ньютона с конечными разностями -- синяя линия

input.txt:

- -39
- -2 4
- -1 1
- 0 0
- 1 1
- 2 4
- 39

Программа:

Введите способ ввода точек:

- 1. Ввод из терминала
- 2. Ввод из файла
- 3. Ввод через функцию

>> 2

Введите путь до файла:

>> input.txt

No	xi	yi	Δyi	Δ2yi	Δ3yi	Δ4yi	Δ5yi	Δ6yi
0	-3.0	9.0	-5.0	2.0	0.0	0.0	0.0	0.0
1	-2.0	4.0	-3.0	2.0	0.0	0.0	0.0	
2	-1.0	1.0	-1.0	2.0	0.0	0.0		
3	0.0	0.0	1.0	2.0	0.0			
4	1.0	1.0	3.0	2.0				
5	2.0	4.0	5.0					
6	3.0	9.0						

Многочлен Лагранжа -- оранжевая линия Многочлен Ньютона с разделенными разностями -- зеленая линия Многочлен Ньютона с конечными разностями -- синяя линия Узлы интерполяции -- круги цвети Тиффани

Вывод

Я научился решать задачу интерполяции – я снова молодец.