學號:B04901147 系級: 電機四 姓名:黃健祐

請實做以下兩種不同 feature 的模型,回答第 (1) ~ (3) 題:

- (1) 抽全部 9 小時內的污染源 feature 當作一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等)都是可以用的
- c. 第 1-3 題請都以題目給訂的兩種 model 來回答
- d. 同學可以先把 model 訓練好, kaggle 死線之後便可以無限上傳。
- e. 根據助教時間的公式表示, (1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

Model	training	public	private	public+private
(1)	5.68229	5.66055	7.26422	6.51194
(2)	6.12302	5.90263	7.22356	6.59624

雖然(1)整體而言表現較(2)佳‧但其實結果相當接近‧推測可能是其他非 pm2.5 的 feature 還沒有經過適當的轉換。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

Model	training	public	private	public+private
(1)	5.80619	5.96629	7.21662	6.62104
(2)	6.20700	6.22732	7.22552	6.74491

兩個 model 的表現都比上一題的遜色,可以看出較長的時間數據對於預測 pm2.5 的 準確度是有幫助的。

Model (1)

Model (2)

本次作業中 regularization 並沒有太大的幫助,兩個 model 的 training loss 曲線都沒有因為 λ 的變化而有太大的改變。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]^\mathsf{T}$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^\mathsf{T}$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請選出正確答案。(其中 $\mathbf{X}^\mathsf{T}\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^TX)yX^T$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-1}yX^{T}$

(c)