

Milestones

Weekly Status Reports Criteria

Date of Report: 29'March'2023

Date of Last Report: 15'March'2023

Prepared By: Rajalakshmi Nagarajan

Project Status: On Track

Issues or Challenges encountered this week and what was done to overcome them

We are using Microsoft Excel for cleaning and grouping of data.

Update(25'jan): We are using Python for data cleaning instead of doing manually in Excel.

Understanding outliers and cleaning the data is quite challenging.

Data of years 2017, 2018 and 2019 are considered.

Update(01'feb): no challenges

Update(08'feb): Understanding the numerical data visualization

is quite challenging.

Update(15'feb): no challenges

Update(22'feb): Identifying predictive model and testing the

accuracy is quite challenging

Update(08'Mar): Testing the clustering model is challenging

Update(15'Mar): No challenges

Update(29'Mar): Faced challenges executing Random Forest

Communications

- Weekly status meeting with Professor Rick Lambroff
- Week 1 (18'Jan'2023)
 - Professor suggested to use Python for cleaning of dataset instead of doing it manually by Microsoft Excel
 - Professor provided tutorial sites for ETL of data processing using Python
- Week 2 (25'Jan'2023)
 - Professor provided tutorial sites for building a predictive model
 - Professor suggested to learn these models and understand clustering algorithms
- Week 3 (01'Feb'2023)
 - Professor suggested to add more data visualizations after data cleaning process for a better understanding
- Week 4 (08'Feb'2023)
 - Professor mentioned few changes in the visualizations like adding heatmap, adding same palette colors
- Week 5 (15'Feb'2023)
 - Professor suggested to try one of the predictive models and test for the accuracy
- Week 6 (22'Feb'2023)
 - Presented our midterm presentation
- Week 8 (08'Mar'2023)
 - Professor suggested to explore on Random Forest predictive analysis

Week - 9 (15'Mar'2023)

Improvised as per our Knowledge

Team meetings

	9					
Date	Agenda	Budgeted hours	Attendees	Approval of previous minutes		
08/03/2023	Weekly status update – week 8	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
22/02/2023	Weekly status update – week 6(Midterm Presentation)	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
15/02/2023	Weekly status update – week 5	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
08/02/2023	Weekly status update – week 4	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
01/02/2023	Weekly status update – week 3	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
25/01/2023	Weekly status update – week 2	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
18/01/2023	Weekly status update – week 1	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
07/12/2022	Final group project – submission of SharePoint link, project charter and project proposal	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
23/11/2022	Review of MRP SharePoint Site Follow-up	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
16/11/2022	Review of MRP SharePoint Site Follow-up	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		
09/11/2022	Introductory Client meeting - Finalized project topic and dataset	0.15	 Moganaviniith Rathinavel Paras Kishorbhai Gangani Ragavi Mudaliyar 	Awaiting approval		

Activities Completed This week

- Collected and securely stored the original data
- Using copies of the original data, clean and prepare the data for analysis
- The original data is available for the years 2017, 2018 and 2019
- Identifying outliers and data cleaning is completed for the year 2017 using Microsoft Excel
- Update(25'Jan): Going through tutorials for ETL of data cleaning instead of manual cleaning is in progress
- Update(01'Feb): Completed ETL tutorials and data cleaning for the years 2017, 2018, 2019
- **Update(08'Feb):** Completed data visualization for the year 2019
- **Update(15'Feb):** Completed data visualization for the year 2019, 2018, 2017
- **Update(22'Feb):** Attempted one of the predictive models K means clustering
- **Update(08'Mar):** Testing the clustering model
- **Update(15'Mar):** Testing on Random Forest
- Updated(29'Mar): Testing Completed on Random Forest and started working on visualizations

Datatypes of variables and missing values distribution for year 2019

```
# check datatype in each column
print("Column datatypes: ")
print(honeybee 2019.dtypes)
Column datatypes:
Monitoring Site
                                                                     int64
Inspection Period
                                                                     int64
Inspection Start Date
                                                                    object
Collection Date
                                                                    object
Region
                                                                    object
County
                                                                    object
Num. Colonies Inspected
                                                                   float64
Num. Colonies - No AFB Found
                                                                   float64
Num. Colonies with AFB (< 10 Cells)
                                                                   float64
Num. Colonies with AFB (10 or More Cells)
                                                                   float64
Num. Colonies - No EFB Found
                                                                   float64
Num. Colonies with EFB (< 10 Cells)
                                                                   float64
Num. Colonies with EFB (10 or More Cells)
                                                                   float64
Num. Colonies - No Chalkbrood Found
                                                                   float64
Num. Colonies with Chalkbrood (< 10 Cells)
                                                                   float64
Num. Colonies with Chalkbrood (10 or More Cells)
                                                                   float64
Num. Colonies - No Sacbrood Found
                                                                   float64
Num. Colonies with Sacbrood (< 10 Cells)
                                                                   float64
Num. Colonies with Sacbrood (10 or More Cells)
                                                                   float64
Num. Colonies with SHB Adults (1-20)
                                                                   float64
Num. Colonies with SHB Adults (>20)
                                                                   float64
Num. Colonies with SHB Larvae (1-20)
                                                                   float64
Num. of Colonies with SHB Larvae (21-1/4cup)
                                                                   float64
Num. Colonies with SHB Larvae (>1/4 cup)
                                                                   float64
Average Varroa Infestation (%)
                                                                   float64
Max Varroa Infestation (%)
                                                                   float64
Num. Colonies - Queenless
                                                                   float64
Num. Colonies - Queenright
                                                                   float64
Num. Colonies - Queen Newly Installed
                                                                   float64
Num. Colonies - Virgin Queen
                                                                   float64
Num. Colonies - Oueen Not Observed
                                                                   float64
% Colonies Queenless in Yard at Inspection
                                                                    object
Acute Bee Paralysis Virus (log10 RNA copies/bee) - Average
                                                                   float64
Deformed Wing Virus (log10 RNA copies/bee) - Average
                                                                   float64
Israeli Acute Paralysis Virus (log10 RNA copies/bee) - Average
                                                                   float64
Nosema ceranae (log10 DNA copies/bee) - Average
                                                                   float64
Kashmir Bee Virus (log10 RNA copies/bee)
                                                                   float64
                                                                   float64
Sacbrood Virus (log10 RNA copies/bee)
Tracheal Mite Infestation (# bees infested per 25 bees tested)
                                                                     int64
dtype: object
```

```
# examining missing values
print("Missing values distribution: ")
print(honeybee_2019.isnull().mean())
print("")
Missing values distribution:
Monitoring Site
                                                                   0.000000
Inspection Period
                                                                   0.000000
Inspection Start Date
                                                                   0.010989
Collection Date
                                                                   0.000000
Region
                                                                   0.000000
County
                                                                   0.000000
Num. Colonies Inspected
                                                                   0.010989
Num. Colonies - No AFB Found
                                                                   0.010989
Num. Colonies with AFB (< 10 Cells)
                                                                   1.000000
Num. Colonies with AFB (10 or More Cells)
                                                                   1.000000
Num. Colonies - No EFB Found
                                                                   0.010989
Num. Colonies with EFB (< 10 Cells)
                                                                   0.989011
Num. Colonies with EFB (10 or More Cells)
                                                                   1.000000
Num. Colonies - No Chalkbrood Found
                                                                   0.010989
Num. Colonies with Chalkbrood (< 10 Cells)
                                                                   0.901099
Num. Colonies with Chalkbrood (10 or More Cells)
                                                                   0.802198
Num. Colonies - No Sacbrood Found
                                                                   0.010989
Num. Colonies with Sacbrood (< 10 Cells)
                                                                   0.989011
Num. Colonies with Sacbrood (10 or More Cells)
                                                                   0.989011
Num. Colonies with SHB Adults (1-20)
                                                                   1.000000
Num. Colonies with SHB Adults (>20)
                                                                   1.000000
Num. Colonies with SHB Larvae (1-20)
                                                                   1.000000
Num. of Colonies with SHB Larvae (21-1/4cup)
                                                                   1.000000
Num. Colonies with SHB Larvae (>1/4 cup)
                                                                   1.000000
Average Varroa Infestation (%)
                                                                   0.010989
Max Varroa Infestation (%)
                                                                   0.010989
Num. Colonies - Queenless
                                                                   0.813187
Num. Colonies - Queenright
                                                                   0.010989
Num. Colonies - Queen Newly Installed
                                                                   0.934066
Num. Colonies - Virgin Oueen
                                                                   0.945055
Num. Colonies - Oueen Not Observed
                                                                   1.000000
% Colonies Queenless in Yard at Inspection
                                                                   0.010989
Acute Bee Paralysis Virus (log10 RNA copies/bee) - Average
                                                                   0.000000
Deformed Wing Virus (log10 RNA copies/bee) - Average
                                                                   0.000000
Israeli Acute Paralysis Virus (log10 RNA copies/bee) - Average
                                                                   0.000000
Nosema ceranae (log10 DNA copies/bee) - Average
                                                                   0.000000
Kashmir Bee Virus (log10 RNA copies/bee)
                                                                   0.000000
Sacbrood Virus (log10 RNA copies/bee)
                                                                   0.000000
Tracheal Mite Infestation (# bees infested per 25 bees tested)
                                                                   0.000000
dtype: float64
```

Cleaning Dataset - 2019

df.head()

	Monitoring Site	Inspection Period	Inspection Start Date	Collection Date	Region	County	Num. Colonies Inspected	Num. Colonies - No AFB Found	Num. Colonies - No EFB Found	Num. Colonies - No Chalkbrood Found		Num. Colonies - Queen Newly Installed	Num. Colonies - Virgin Queen	Colonies Queenless in Yard at Inspection	Acute Paral V (log10 F copies/I - Aver
0	1	1	06-27-19	2019-06-27	East	LENNOX & ADDINGTON COUNTY	6.0	6.0	6.0	3.0	-	0.0	0.0	0%	0.
1	1	2	08-29-19	2019-08-29	East	LENNOX & ADDINGTON COUNTY	6.0	6.0	6.0	1.0	995	0.0	0.0	16.7%	0.
2	1	3	09-24-19	2019-09-24	East	LENNOX & ADDINGTON COUNTY	6.0	6.0	6.0	3.0		0.0	0.0	0%	0.
3	2	1	06-11-19	2019-06-11	South	HALTON REGION	6.0	6.0	6.0	6.0		0.0	0.0	0%	0.
4	2	2	08-12-19	2019-08-12	South	HALTON REGION	6.0	6.0	6.0	6,0	900	0.0	0.0	0%	6.

Dataset correlation - 2019

Correlation Between The Features
sns.heatmap(df.corr(),annot=True,cmap='RdYlGn',linewidths=0.2) #data.corr()-->correlation matrix
fig=plt.gcf()
fig.set_size_inches(17,10)
plt.show()

Dataset visualization - 2019

Dataset visualization - 2019

5.50 5.75 6.00

1,00

0.75

0.50

0.25

4.00 4.25 4.50

4.75 5.00 5.25

Num. Colonies Inspected

Region

South Southwest Central

North

Predictive analysis - K means clustering

```
clustering score = []
for i in range(1, 11):
   kmeans = KMeans(n_clusters = i, init = 'random', random_state = 42)
   kmeans.fit(X)
   clustering score.append(kmeans.inertia ) # inertia = Sum of squared distances of samples to their closest cluster center.
plt.figure(figsize=(10,6))
plt.plot(range(1, 11), clustering_score)
plt.scatter(5, clustering score[4], s = 200, c = 'red', marker='*')
plt.title('The Elbow Method')
plt.xlabel('No. of Clusters')
plt.ylabel('Clustering Score')
plt.show()
kmeans = KMeans(n_clusters = 5, random_state = 42)
# Compute k-means clustering
kmeans.fit(X)
# Compute cluster centers and predict cluster index for each sample.
pred = kmeans.predict(X)
pred
array([0, 0, 3, 0, 0, 3, 1, 1, 3, 3, 1, 0, 0, 2, 0, 3, 1, 0, 0, 0, 0, 0,
         0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 3, 0, 3, 1, 0, 0, 0, 4,
         4, 0, 0, 3, 0, 0, 0, 1, 1, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 3, 0, 0, 3, 3, 0, 0, 0, 0, 3, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
        0, 31)
```


Predictive analysis - K means clustering

```
plt.figure(figsize=(10,6))
plt.scatter(X[pred == 0, 0], X[pred == 0, 1], c = 'brown', label = 'Cluster 0')
plt.scatter(X[pred == 1, 0], X[pred == 1, 1], c = 'green', label = 'Cluster 1')
plt.scatter(X[pred == 2, 0], X[pred == 2, 1], c = 'blue', label = 'Cluster 2')
plt.scatter(X[pred == 3, 0], X[pred == 3, 1], c = 'purple', label = 'Cluster 3')
plt.scatter(X[pred == 4, 0], X[pred == 4, 1], c = 'orange', label = 'Cluster 4')

plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:, 1],s = 300, c = 'red', label = 'Centroid', marker='+')

plt.xlabel('Deformed Wing Virus (log10 RWA copies/bee) - Average')
plt.ylabel('Average Varroa Infestation (%)')
plt.legend()
plt.title('Virus Clusters')

Text(0.5, 1.0, 'Virus Clusters')
```


Predictive analysis - Random forest classifier

```
# Import the model we are using
from sklearn.ensemble import RandomForestRegressor

# Instantiate model
rf = RandomForestRegressor(n_estimators= 1000, random_state=42)

# Train the model on training data
clf = rf.fit(train_features, train_labels);

# Use the forest's predict method on the test data
predictions = rf.predict(test_features)

# Calculate the absolute errors
errors = abs(predictions - test_labels)

# Print out the mean absolute error (mae)
print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.')

Mean Absolute Error: 0.22 degrees.

# Calculate and display accuracy
clf.score(train_features, train_labels)
0.9636324831180688
```


Activities to be Completed Before Next Report

- Preliminary data analysis is to be completed for all the years 2017, 2018 and 2019
- Securely store the cleaned data using naming conventions and version controls
- Identify the databases, languages to be used and develop a functional flow of the project
- **Update(25'Jan):** Data cleaning using ETL python will be completed for all the datasets of years 2017, 2018 and 2019
- **Update(01'Feb):** Understanding predictive models and find a suitable predictive model for our project
- **Update(08'Feb):** Complete the data visualization for all years and start the development of predictive model
- **Update(15'Feb):** Continue development phase II of prediction model
- **Update(22'Feb):** Continue development and testing of predictive models
- Update(08'Mar): Complete the testing and work on the dashboard designing
- Update(15'Mar): work on dashboard designing
- Update(29'Mar): Complete designing dashboard

