

Credit Card Default

December 2005

Grace and Mahima

Introduction

We are trying to predict whether a customer won't be able to pay their credit card bill the following month

Our data consists of the following information on 30,000 customers from April to September 2005 :

- 1. Demographics age, sex, marital status, education
- 2. Amount of credit given or the limit balance
- 3. Repayment status from April to September 2005
- 4. Bill statement as of April to September 2005
- 5. Amount of previous payment as in each month
- 6. Default next month (1 = yes, 0 = no)

Non-defaulters: 78% of the dataset

Defaulters by demographics (past 3 months)

Defaulters by demographics (past 6 months)

"Best" predictors based on correlation matrix:

- pay_sep
- pay_aug
- score_3mo: weighted average of last July September pay columns
- score 6mo: weighted average of April September pay columns
- pay_jul
- pay_jun
- pay_may
- pay_apr
- limit_bal (negative correlation)

Logistic Regression

- Feature engineering:
 - weighted average of 'pay' columns for the past 3 and 6 months
 - bill amount as of September as percentage of the total credit limit
- Feature selection:
 - SelectFromModel: 32 features selected out of 85
- Class imbalance:
 - SMOTE
- Correlated features
 - PCA

Logistic Regression (L2):

F1 score: 0.5467148884870403

Precision-Recall AUC: 0.5569426470458486

Classification	Report: precision	recall	f1-score	support
0	0.88	0.82	0.85	5123
1	0.50	0.60	0.55	1507
accuracy			0.77	6630
macro avg	0.69	0.71	0.70	6630
weighted avg	0.79	0.77	0.78	6630

Principal Component Analysis + Logistic Regression (L2 Norm)

1	0.670239
2	0.102631
3	0.043163
4	0.039036
5	0.037631
6	0.035778
7	0.029958
8	0.027473
9	0.006832
10	0.003431
11	0.002140
12	0.001688

Principal Component Analysis + Logistic Regression

Classification	Report: precision	recall	f1-score	support
0	0.86	0.82	0.84	5113
1	0.47	0.55	0.51	1472
accuracy			0.76	6585
macro avg	0.67	0.69	0.67	6585
weighted avg	0.78	0.76	0.77	6585

Support Vector Machine

F1 score: 0.5035629453681711

Precision-Recall AUC: 0.5035994024163514

Classification	Report: precision	recall	f1-score	support
0	0.86	0.86	0.86	5113
1	0.50	0.50	0.50	1472
accuracy			0.78	6585
macro avg	0.68	0.68	0.68	6585
weighted avg	0.78	0.78	0.78	6585

Random Forest

- Feature engineering:
 - weighted average of 'pay' columns for the past 3 and 6 months
 - bill amount as of September as percentage of the total credit limit
- Feature selection:
 - all features
- Class imbalance:
 - SMOTE

Random Forest

	precision	recall	f1-score	support
0 1	0.84 0.67	0.95 0.38	0.89 0.49	4106 1181
accuracy macro avg weighted avg	0.75 0.80	0.66 0.82	0.82 0.69 0.80	5287 5287 5287

0.5940512167372005

Random Forest

rank_test_score	params	mean_test_score	std_test_score
0 7	{'max_depth': 3, 'min_samples_leaf': 5}	0.436625	0.020016
1 7	{'max_depth': 3, 'min_samples_leaf': 10}	0.436625	0.020016
2 7	{'max_depth': 3, 'min_samples_leaf': 15}	0.436625	0.020016
3 1	{'max_depth': 5, 'min_samples_leaf': 5}	0.468013	0.020908
4 2	{'max_depth': 5, 'min_samples_leaf': 10}	0.465494	0.020496
5 3	{'max_depth': 5, 'min_samples_leaf': 15}	0.464945	0.020169
6 4	{'max_depth': 7, 'min_samples_leaf': 5}	0.461309	0.025128
7 6	{'max_depth': 7, 'min_samples_leaf': 10}	0.458842	0.018647
8 5	{'max_depth': 7, 'min_samples_leaf': 15}	0.460636	0.017897

Conclusions

- Recall is more important than Precision
- None of the models are good in predicting defaulters
- Our best model: Logistic (recall = 0.6, f1= 0.55)
- We need to revisit and get more features and samples
 - Income, estimate monthly expense
 - Related accounts (savings, loans, other credit cards)
 - Up to 12 or 24 month history

Thank you

Appendix

True positive (TP): the model predicts default and the client is indeed defaulting

False positive (FP): the model predicts default but the client is not defaulting

True negative (TN): the model predicts not defaulting and the client is not defaulting

False negative (FN): the model predicts not defaulting but the client is in fact defaulting

Precision = TP/TP+FP

Recall / Sensitivity = TP/TP+FN = TPR (probability of detection)

Why recall matters to us is because of the False Negatives component i.e. the chance of knowing if someone has defaulted if they have actually defaulted. Not knowing this number will be a heavy cost to the bank and hence this is our key metric.

auc(fpr,tpr)

0.7592424790469989

- 1. **Max depth 3, 5, 7**
- 2. Min samples leaf 5,10,15
- **3. Best** {'max_depth': 5, 'min_samples_leaf': 5}

Class: default vs no default (by sex)

Class: default vs no default (by education)

Class: default vs no default (by marital status)

Class: default vs no default (by age)

