Root of unity

Farkas lemma

Step 3:
$$y = y + \theta \times \Delta y$$

Farkas lemma

Max Coverage Problem

Max Coverage Problem2

Lagrangian

Lagrangian

Lagrangian

Pentagon

CCCCCCC

CCCCCCC

S: explored area

CCCCCCC

AAAA

Lec6 Alignment matrix Suffix FULL

Lec6 Alignment matrix Prefix FULL

S:	1.1	0	C	U	R	R	Α	N	C	E
T:'	0	-3	-6	-9	-12	-15	-18	-21	-24	-27
0	-3	1	-2	-5	-8	-11	-14	-17	-20	-23
C	-6	-2	2	-1	-4	-7	-10	-13	-16	-19
C	-9	-5	-1	1	-2	-5	-8	-11	-12	-15
U	-12	-8	-4	0	0	-3	-6	-9	-12	13
R	-15	-11	-7	-3	1	1	-2	-5	-8	-11
R	-18	-14	-10	-6	-2	2	-	-3	-6	-9
E	-21	-17	-13	-9	-5	-1	1	-1	-4	-5
N	-24	-20	-16	-12	-8	-4	-2	2	-1	-4
C	-27	-23	-19	-15	-11	-7	-5	-1	3	0
E	-30	-26	-22	-18	-14	-10	-8	-4	0	4

Lec7 Shortest Path example FULL

	k=0	1	2	3	4	5
S	0	0	0	0	0	0
U	_		1	1	1	1
V	-	2	2	2	2	2
X	_	4	2	2	2	2
Y	-	1	4	3	3	3
Z	_	_	5	4	4	4

Lec6 Alignment matrix Prefix

S:	1.1	0	C	U	R	R	Α	N	C	E
T:'	0	-3	-6	- 9	-12	-15	-18	-21	-24	-27
0	-3									
C	-6									
C	-9									
U	-12									
R	-15									
R	-18									
E	-21									
N	-24									
C	-27									
E	-30									

Lec6 Step1

Lec6 Step2

Lec6 Step3

Lec6 444

 $\frac{n}{2}$

S: OCUR RANCE

 $\begin{array}{c|c} \texttt{T:} & \texttt{OCCUR} & \texttt{RENCE} \\ \hline & 1 \leq q \leq n \end{array}$

Lec6 333

Lec6 DP 1

Lec6 DP 2

Lec6 DP 3

Lec6 DP4

1	`		
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ļ			\longrightarrow

$$1 \times 2 \quad 2 \times 3 \qquad 3 \times 4 \qquad 4 \times 5$$

$$A_1 = \left[\begin{array}{cccc} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 \end{array} \right] A_3 = \left[\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right] A_4 = \left[\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{array} \right]$$

Lec5. Where did we save? Merge sort

MergeSort step 1: 4 ops

 $\operatorname{MERGESORT}$ step 2: 4 ops, save: 4 ops

MERGESORT step 3: 4 ops, save: 12 ops

Lec5. Where did we save?

	$\overline{}$	_						
8	3	7	6	15	4	3	2	1

÷

InsertSort: 28 ops

cube

f(x) convex

f(x) convex

f(x)

Lec5 Closest Pair n points

Shortest path

Dual

dual of shortest path

Stable Proof 1

Step
$$j - k : \underbrace{m'}$$
 $w = bv(m)$

Step $j : m$ Reject $w = bv(m)$

Step $j : m$ $w' = bv(m)$

Step $j : m$ $w' = bv(m)$

Step
$$j:$$
 w $w = bv(m)$

Step $j + k:$ w' $w = bv(m)$, $w \neq bv(m)$, $w \neq bv(m)$

Step m $w \neq bv(m)$ $w \neq bv(m)$

Stable match S^{\prime}

network example

Lec5 1

Lec5 2

Lec5 how to divide?

Lec5 how to combine?

Lec5 time complexity?

Lec5 tree

Lec5 Splitter

best splitter

good splitters

Lec5 Closest Pairs

Lec5 Closest Pairs

Lec5 Closest Pairs Middle Red Line

Leech Closest Pairs Left

Lec5 Closest Pair Right

Examples

Edmonds Karp

Step k:

Step k+1: s v v v

Primal and dual

Step k'':

Max Flow

LP example

$$\begin{pmatrix} 0 & c_1 & c_2 & \cdots & c_m & \cdots & c_n \\ b_1 & a_{11} & a_{12} & \cdots & a_{1m} & \cdots & a_{1n} \\ b_2 & a_{21} & a_{22} & \cdots & a_{2m} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_m & a_{m1} & a_{m2} & \cdots & a_{mm} & \cdots & a_{mn} \end{pmatrix}$$

$$\Longrightarrow \times \mathbf{B}^{-1}$$

$$\begin{pmatrix} \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} & 0 & 0 & \cdots & 0 & \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ & 1 & 0 & \cdots & 0 \\ \mathbf{B}^{-1} \mathbf{b} & 0 & 1 & \cdots & 0 & \mathbf{B}^{-1} \mathbf{N} \\ & \vdots & \vdots & \ddots & \vdots \\ & 0 & 0 & \cdots & 1 & \end{pmatrix}$$

 \Rightarrow

$$\begin{pmatrix} -\frac{a_{me}}{a_{le}}b_{l} & \dots & -\frac{c_{e}}{a_{le}} & \dots & 0 & \dots \\ b_{1} - \frac{a_{1e}}{a_{le}}b_{l} & \dots & -\frac{a_{1e}}{a_{le}} & \dots & 0 & \dots \\ b_{2} - \frac{a_{2e}}{a_{le}}b_{l} & \dots & -\frac{a_{2e}}{a_{le}} & \dots & 0 & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{1}{a_{le}}b_{l} & \dots & \frac{1}{a_{le}} & \dots & 1 & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{m} - \frac{a_{me}}{a_{le}}b_{l} & \dots & -\frac{a_{me}}{a_{le}} & \dots & 0 & \dots \end{pmatrix}$$

LP x1x2-1

Sequence alignment

Backtrack path

S:	1.1	0	C	U	R	R	Α	N	C	E
T:''	0	-3	-6	-9	-12	-15	-18	-21	-24	-27
0	-3	1	-2	-5	-8	-11	-14	-17	-20	-23
C	-6	-2	2	-1	-4	-7	-10	-13	-16	-19
C	-9	-5	-1	1	-2	-5	-8	-11	-12	-15
U	-12	-8	-4	\circ	0	-3	-6	-9	-12	-13
R	-15	-11	-7	-3	1	1	-2	-5	-8	-11
R	-18	-14	-10	-6	-2	2	0	-3	-6	-9
E	-21	-17	-13	-9	-5	-1	1	-1	-4	-5
N	-24	-20	-16	-12	-8	-4	-2	2	-1	-4
C	-27	-23	-19	-15	-11	-7	-5	-1	3	0
Е	-30	-26	-22	-18	-14	-10	-8	-4	0	4