Data Mining und Maschinelles Lernen

Ensemble Methods

- Bias-Variance Trade-off
- Basic Idea of Ensembles
- Bagging
 - Basic Algorithm
 - Bagging with Costs

- Randomization
 - Random Forests
- Boosting
- Stacking
- Error-Correcting Output Codes (ECOC)

Bias and Variance Decomposition

- Bias:
 - the part of the error that is caused by bad model
- Variance:
 - the part of the error that is caused by the data sample
- Bias-Variance Trade-off:
 - algorithms that can easily adapt to any given decision boundary are very sensitive to small variations in the data
 - and vice versa
 - Models with a low bias often have a high variance
 - e.g., nearest neighbor, unpruned decision trees
 - Models with a low variance often have a high bias
 - e.g., decision stump, linear model

Ensemble Classifiers

IDEA:

- do not learn a single classifier but learn a set of classifiers
- combine the predictions of multiple classifiers

MOTIVATION:

- reduce variance: results are less dependent on peculiarities of a single training set
- reduce bias: a combination of multiple classifiers may learn a more expressive concept class than a single classifier

KEY STEP:

 formation of an ensemble of diverse classifiers from a single training set

Why do ensembles work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - i.e., probability that a classifier makes a mistake does not depend on whether other classifiers made a mistake
 - Note: in practice they are not independent!
- Probability that the ensemble classifier makes a wrong prediction
 - The ensemble makes a wrong prediction if the majority of the classifiers makes a wrong prediction
 - The probability that 13 or more classifiers err is

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} \approx 0.06 \ll \varepsilon$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Bagging: General Idea

TECHNISCHE UNIVERSITÄT DARMSTADT

Generate Bootstrap Samples

 Generate new training sets using sampling with replacement (bootstrap samples)

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- some examples may appear in more than one set
- some examples will appear more than once in a set
- for each set of size n, the probability that a given example appears in it is $\Pr(n \in D) = 1 \cdot (1 1)^n \cdot 0.6222$

 $\Pr(x \in D_i) = 1 - (1 - \frac{1}{n})^n \to 0.6322$

• i.e., on average, less than 2/3 of the examples appear in any single bootstrap sample

Bagging Algorithm

- 1. for m = 1 to t // t ... number of iterations
 - a) draw (with replacement) a bootstrap sample D_m of the data
 - b) learn a classifier C_m from D_m
- 2. for each test example
 - a) try all classifiers C_m
 - b) predict the class that receives the highest number of votes
 - variations are possible
 - e.g., size of subset, sampling w/o replacement, etc.
 - many related variants
 - sampling of features, not instances
 - learn a set of classifiers with different algorithms

Bagged Decision Trees

Original Tree

Bootstrap Tree 2

Bootstrap Tree 1

Bootstrap Tree 3

Bagged Trees

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

Bagging with costs

- Bagging unpruned decision trees is known to produce good probability estimates
 - Where, instead of voting, the individual classifiers' probability estimates $Pr_n(j \mid x)$ are averaged

$$\Pr(j|x) = \frac{1}{t} \sum_{n=1}^{t} \Pr_{n}(j|x)$$

- Note: this can also improve the error rate
- We can use this with minimum-expected cost approach for learning problems with costs
 - predict class c with $c = \arg\min_{i} \sum_{i} C(i|j) \Pr(j|x)$
- Problem: not interpretable
 - MetaCost re-labels training data using bagging with costs and then builds single tree (Domingos, 1997)

Randomization

- Randomize the learning algorithm instead of the input data
- Some algorithms already have a random component
 - eg. initial weights in neural net
- Most algorithms can be randomized, e.g. greedy algorithms:
 - ullet Pick from the N best options at random instead of always picking the best options
 - Eg.: test selection in decision trees or rule learning
- Can be combined with bagging

Random Forests

- Combines bagging and random attribute subset selection:
 - Build the tree from a bootstrap sample
 - Instead of choosing the best split among all attributes, select the best split among a random subset of k attributes
 - is equal to bagging when k equals the number of attributes
- There is a bias/variance tradeoff with k:
 - The smaller k, the greater the reduction of variance but also the higher the increase of bias

Boosting

- Basic Idea:
 - later classifiers focus on examples that were misclassified by earlier classifiers
 - weight the predictions of the classifiers with their error
- Realization
 - perform multiple iterations
 - each time using different example weights
 - weight update between iterations
 - increase the weight of incorrectly classified examples
 - this ensures that they will become more important in the next iterations (misclassification errors for these examples count more heavily)
 - combine results of all iterations
 - weighted by their respective error measures

Boosting – Algorithm AdaBoost.M1

- 1. initialize example weights $w_i = 1/N$ (i = 1..N)
- 2. for m = 1 to t // t ... number of iterations
 - a) learn a classifier C_m using the current example weights
 - b) compute a weighted error estimate $err_m = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum w_i of \ all \ incorrectly \ classified \ e_i}{\sum_{i=1}^{N} w_i} = \frac{\sum_{i=1}^{N} w_i}{\sum_{i=1}^{N} w_$
 - c) compute a classifier weight $\alpha_m = \frac{1}{2} \ln(\frac{1 err_m}{err_m})$
 - d) for all correctly classified examples e_i : $w_i^m \leftarrow w_i e^{-\alpha_m}$
 - e) for all incorrectly classified examples e_i : $w_i \leftarrow w_i e^{\alpha_m}$
 - f) normalize the weights w_i so that they sum to 1
- 3. for each test example
 - a) try all classifiers C_m
 - b) predict the class that receives the highest sum of weights α_m

= 1 because weights are normalized

update weights so that sum of correctly classified examples equals sum of incorrectly classified examples

Illustration of the Weights

- Classifier Weights α_m
 - differences near 0 or 1 are emphasized

- Example Weights w_i
 - multiplier for correct and incorrect examples, depending

Boosting – Error rate example

boosting of decision stumps on simulated data

The Elements of Tibshirani, Friedman: from Hastie,

Toy Example

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)

- An Applet demonstrating AdaBoost
 - http://www.cse.ucsd.edu/~yfreund/adaboost/

Round 1

Round 2

Round 3

$$\epsilon_{3} = 0.14$$

$$\epsilon_{3} = 0.14$$
 $\alpha_{3} = 0.92$

Final Hypothesis

Dealing with Weighted Examples

Two possibilities (→ cost-sensitive learning)

- directly
 - example e_i has weight w_i
 - number of examples $n \Rightarrow \text{total example weight } \sum_{i=1}^{n} w_i$
- via sampling
 - interpret the weights as probabilities
 - examples with larger weights are more likely to be sampled
 - assumptions
 - sampling with replacement
 - weights are well distributed in [0,1]
 - learning algorithm sensible to varying numbers of identical examples in training data
 - boosting can thus be used in very much the same way as bagging

Comparison Bagging/Boosting

- Bagging
 - noise-tolerant
 - produces better class probability estimates
 - not so accurate
 - statistical basis

related to random sampling

- Boosting
 - very susceptible to noise in the data
 - produces rather bad class probability estimates
 - if it works, it works really well
 - based on learning theory (statistical interpretations are possible)
 - related to windowing

Example

Boosted Decision Rule

FIGURE 8.11. Data with two features and two classes, separated by a linear boundary. Left panel: decision boundary estimated from bagging the decision rule from a single split, axis-oriented classifier. Right panel: decision boundary from boosting the decision rule of the same classifier. The test error rates are 0.166, and 0.065 respectively. Boosting is described in Chapter 10.

Additive regression

- It turns out that boosting is a greedy algorithm for fitting additive models
- More specifically, implements forward stagewise additive modeling
- Same kind of algorithm for numeric prediction:
 - 1.Build standard regression model (e.g. tree)
 - 2. Gather residuals
 - 3.learn model predicting residuals (e.g. tree)
 - 4.goto 2.
- To predict, simply sum up individual predictions from all models

Combining Predictions

- voting
 - each ensemble member votes for one of the classes
 - predict the class with the highest number of vote (e.g., bagging)
- weighted voting
 - make a weighted sum of the votes of the ensemble members
 - weights typically depend
 - on the classifiers confidence in its prediction (e.g., the estimated probability of the predicted class)
 - on error estimates of the classifier (e.g., boosting)
- stacking
 - Why not use a classifier for making the final decision?
 - training material are the class labels of the training data and the (cross-validated) predictions of the ensemble members

Stacking

- Basic Idea:
 - learn a function that combines the predictions of the individual classifiers
- Algorithm:
 - train n different classifiers $C_1...C_n$ (the base classifiers)
 - obtain predictions of the classifiers for the training examples
 - form a new data set (the meta data)
 - classes
 - the same as the original dataset
 - attributes
 - one attribute for each base classifier
 - value is the prediction of this classifier on the example
 - train a separate classifier M (the meta classifier)

This is better done with cross-validation!

Stacking (2)

Example:

1	Class	
x_{11}	 x_{1n_a}	t
x_{21}	 x_{2n_a}	f
x_{n_e1}	 $x_{n_e n_a}$	t

training set

C_1	C_2	 C_{n_c}
t	t	 f
f	t	 t
f	f	 t

predictions of the classfiers

C_1	C_2	 C_{n_c}	Class
t	t	 f	t
f	t	 t	f
f	f	 t	t

training set for stacking

- Using a stacked classifier:
 - try each of the classifiers $C_1...C_n$
 - form a feature vector consisting of their predictions
 - submit these feature vectors to the meta classifier M

Error-correcting output codes

(Dietterich & Bakiri, 1995)

- Class Binarization technique
 - Multiclass problem → binary problems
 - Simple scheme: One-vs-all coding
- Idea: use error-correcting codes instead
 - one code vector per class
- Prediction:
 - base classifiers predict 1011111, true class = ??
- Use code words that have large pairwise Hamming distance d
 - Can correct up to (d-1)/2 single-bit errors

class	class vector
a	1 0 0 0
b	0 1 0 0
С	0 0 1 0
d	0 0 0 1

class	class vector
a	1111111
b	0000111
С	0011001
d	0101010

7 binary classifiers

More on ECOCs

- Two criteria :
 - Row separation:
 minimum distance between rows
 - Column separation:
 minimum distance between columns
 - (and columns' complements)
 - Why? Because if columns are identical, base classifiers will likely make the same errors
 - Error-correction is weakened if errors are correlated
- 3 classes → only 2³ possible columns
 - (and 4 out of the 8 are complements)
 - Cannot achieve row and column separation
- Only works for problems with > 3 classes

Exhaustive ECOCs

- Exhaustive code for k classes:
 - Columns comprise every possible k-string ...
 - ... except for complements and all-zero/one strings
 - Each code word contains $2^{k-1} 1$ bits
- Class 1: code word is all ones
- Class 2: 2^{k-2} zeroes followed by $2^{k-2}-1$ ones
- Class i : alternating runs of 2^{k-i} 0s and 1s
 - last run is one bit shorter than the others

class	class vector
а	1111111
b	0000111
С	0011001
d	0101010

Exhaustive code, k = 4

Extensions of ECOCs

- Many different coding strategies have been proposed
 - exhaustive codes infeasible for large numbers of classes
 - Number of columns increases exponentially
 - Random code words have good error-correcting properties on average!
- Ternary ECOCs (Allwein et al., 2000)
 - use three-valued codes -1/0/1, i.e., positive / ignore / negative
 - this can, e.g., also model pairwise classification
- ECOCs don't work with NN classifier
 - because the same neighbor(s) are used in all binary classifiers for making the prediction
 - But: works if different attribute subsets are used to predict each output bit

Summary: Forming an Ensemble

- Modifying the data
 - Subsampling
 - bagging
 - boosting
 - feature subsets
 - randomly feature samples
- Modifying the learning task
 - pairwise classification / round robin learning
 - error-correcting output codes

- Exploiting the algorithm characterisitics
 - algorithms with random components
 - neural networks
 - randomizing algorithms
 - randomized decision trees
 - use multiple algorithms with different characteristics
- Exploiting problem characteristics
 - e.g., hyperlink ensembles