Module LU2IN003 Graphes: parcours en largeur semaine 10

Alix Munier Kordon et Maryse Pelletier

Exercice(s)

Exercice 1 – Parcours en largeur d'un graphe non orienté

On considère le graphe non orienté $G_1 = (V_1, E_1)$:

Question 1

Pour chacun des parcours génériques de G_1 suivants, dire s'il est ou non un parcours en largeur : (8,6,9,2,5,7,1,4,3), (6,8,5,7,4,2,3,1,9), (4,2,3,5,1,7,6,8,9), (3,1,4,2,6,5,7,8,9)

Justifier les réponses négatives.

Solution:

On rappelle la définition du parcours en largeur.

Soit G = (V, E) un graphe non orienté connexe et $L = (v_1, \dots, v_n)$ un parcours de G d'origine v_1 .

L est un parcours en largeur si pour tout sous-parcours $L_k = (v_1, \dots, v_k)$ avec $k < n, v_{k+1}$ est un sommet adjacent du premier sommet ouvert de L_k .

(8,6,9,2,5,7,1,4,3): oui.

(6, 8, 5, 7, 4, 2, 3, 1, 9): non, on n'a pas visité tous les voisins de 6 (il manque 2) avant de visiter un voisin (le sommet 4) d'un de ses voisins.

(4,2,3,5,1,6,7,8,9): non, 7 n'est pas voisin du premier sommet ouvert de (4,2,3,5,1) (qui est 2).

(3,1,4,2,6,5,7,8,9): non, on n'a pas visité tous les voisins de 3 (il manque 7) avant de visiter un voisin (le sommet 2) d'un de ses voisins.

Question 2

Donner trois parcours en largeur de G_1 , l'un partant du sommet 1, un autre du sommet 9 et un troisième du sommet 5. **Solution**:

Trois, parmi d'autres:

(1, 2, 3, 4, 6, 7, 5, 8, 9)

(9, 8, 6, 2, 5, 7, 1, 4, 3)

(5,4,6,2,3,7,8,1,9)

Ouestion 3

On considère le parcours L = (3, 1, 4, 7, 2, 5, 6, 8, 9) de G_1 . Dire quel est le premier sommet ouvert de chaque sous-parcours de L. Le parcours L est-il un parcours en largeur?

Solution:

sous-parcours	1er sommet ouvert
(3)	3
(3,1)	3
(3, 1, 4)	3
(3, 1, 4, 7)	1
(3,1,4,7,2)	4
(3,1,4,7,2,5)	7
(3, 1, 4, 7, 2, 5, 6)	6
(3, 1, 4, 7, 2, 5, 6, 8)	8
(3,1,4,7,2,5,6,8,9)	_

L est un parcours en largeur : pour tout sous-parcours $L_k = (v_1, \ldots, v_k)$ avec k < 9, v_{k+1} est bien un sommet adjacent au premier sommet ouvert de L_k .

Exercice 2 – Parcours en largeur et distance

Soit G = (V'E) un graphe non orienté connexe ayant n sommets. Soit $s \in V$ et $L = (s_1, \ldots, s_n)$ une liste des n sommets de G telle que $s_1 = s$ et $dist_s(s_1) \le dist_s(s_2) \le \ldots \le dist_s(s_n)$.

Ouestion 1

Prouver que L est un parcours générique de G.

Solution:

Il suffit de vérifier que tout sommet $u \neq s$ de L est adjacent à au moins un sommet situé avant lui dans L. Soit $u \neq s$ un sommet de L et soit $\mu = (u_0, \dots, u_{k-1}, u_k)$ une plus courte chaîne entre s et u, alors $dist_s(u) = k$, $dist_s(u_{k-1}) \leq k-1$ et u est adjacent à u_{k-1} . Comme $dist_s(u_{k-1}) < dist_s(u)$, u_{k-1} est situé avant u dans L.

Question 2

L est-elle nécessairement un parcours en largeur de G? Justifier la réponse.

Solution:

Non, par exemple:

L = (1, 2, 3, 4, 6, 5, 7) vérifie la condition de croissance des distances mais n'est pas un parcours en largeur : le plus petit sommet ouvert du sous-parcours (1, 2, 3, 4) est 2 et 6 n'est pas adjacent à 2.

Exercice 3 – Graphe de liaison en largeur

Question 1

On considère le parcours en largeur L = (4, 2, 3, 5, 1, 6, 7, 8, 9) du graphe G_1 . Dessiner le graphe de liaison en largeur de L. Existe-t-il un autre graphe de liaison en largeur pour L?

Solution:

© 26 avril 2020

Il n'y a pas d'autre graphe de liaison en largeur pour L.

Question 2

Soit G=(V,E) un graphe non orienté connexe et L un parcours en largeur de G. Montrer par contradiction que le graphe de liaison en largeur de L est unique.

Solution:

Soit $L=(s_1,\ldots,s_n)$ un parcours en largeur. Supposons qu'il existe deux graphes de liaison en largeur T et T'. Alors il existe un sommet s de G tel que le prédécesseur de s dans T est différent du prédécesseur de s dans T'. Soit i tel que $s=s_i$. Ce n'est pas possible car le prédécesseur de s dans T est le premier sommet encore ouvert de (s_1,\ldots,s_{i-1}) et le prédécesseur de s dans T' est aussi le premier sommet encore ouvert de (s_1,\ldots,s_{i-1}) . Donc le prédécesseur de s dans T est égal au prédécesseur de s dans T'. Contradiction. T est donc égal à T'.

Exercice 4

```
On rappelle l'algorithme de construction d'un parcours en largeur :
```

```
Require: Un graphe non orienté connexe G=(V,E), un sommet s Ensure: Un parcours en largeur L d'origine s, les valeurs dist_s(u), u \in V for all u \in V do dist_s(u) := +\infty end for L := (), \operatorname{Enfiler}(F,s), dist_s(s) := 0 while not \operatorname{FileVide}(F) do u := \operatorname{D\'efiler}(F), L := L + (u) for all \{u,v\} \in E do \operatorname{if} dist_s(v) = +\infty \text{ then} \operatorname{Enfiler}(F,v), dist_s(v) = dist_s(u) + 1 end if end for end while
```

Question 1

Appliquer cet algorithme au graphe G_1 en partant du sommet s=4. Préciser, à chaque itération, le sommet u retiré à F, le sous-parcours L, la valeur de la file F, la valeur des $dist_s(v)$ pour $v\in V_1$. Les valeurs de L, de F et de $dist_s$ sont celles obtenues à chaque itération en fin du corps de boucle.

Solution:

© 26 avril 2020

itération	sommet u	sous-parcours L	file F	$dist_s$
0	_	()	(4)	$[\infty,\infty,\infty,0,\infty,\infty,\infty,\infty]$
1	4	(4)	(2, 3, 5)	$[\infty, 1, 1, 0, 1, \infty, \infty, \infty, \infty]$
2	2	(4,2)	(3,5,1,6)	$[2,1,1,0,1,2,\infty,\infty,\infty]$
4	3	(4, 2, 3)	(5,1,6,7)	$[2,1,1,0,1,2,2,\infty,\infty]$
5	5	(4, 2, 3, 5)	(1, 6, 7)	$[2,1,1,0,1,2,2,\infty,\infty]$
6	1	(4, 2, 3, 5, 1)	(6,7)	$[2,1,1,0,1,2,2,\infty,\infty]$
7	6	(4, 2, 3, 5, 1, 6)	(7,8)	$[2,1,1,0,1,2,2,3,\infty]$
8	7	(4, 2, 3, 5, 1, 6, 7)	(8)	$[2,1,1,0,1,2,2,3,\infty]$
9	8	(4, 2, 3, 5, 1, 6, 7, 8)	(9)	[2, 1, 1, 0, 1, 2, 2, 3, 4]
10	9	(4,2,3,5,1,6,7,8,9)	()	[2, 1, 1, 0, 1, 2, 2, 3, 4]

L'algorithme est terminé, il a calculé le parcours en largeur (4, 2, 3, 5, 1, 6, 7, 8, 9).

Exercice 5 – Complexité du calcul d'un parcours en largeur

On considère un graphe non orienté connexe G=(V,E) ayant n sommets et m arêtes. Le but de cet exercice est d'évaluer la complexité du calcul d'un parcours en largeur. On suppose que :

- L et F sont stockés dans des listes circulaires doublement chaînées;
- les distances $dist_s$ sont stockées dans un tableau $D[1 \dots n]$;
- le graphe non orienté est représenté par une matrice sommet-sommet, une matrice sommet-arête ou des listes d'adjacences.

Question 1

Pour tout sommet $u \in V$, on note cv(u) le coût du calcul des sommets adjacents à u.

- 1. Rappeler sans explication l'ordre de grandeur de cv(u) en fonction de la représentation de G;
- 2. Donnez en fonction de cv(u) l'ordre de grandeur de la boucle interne de l'algorithme.

Solution:

- 1. Pour la matrice sommet-sommet, cv(u) est en $\Theta(n)$. Pour la matrice sommet-arête, cv(u) est en O(mn). Pour les listes d'adjacence, cv(u) est en $\Theta(d(u))$.
- 2. Le corps de la boucle interne est en $\Theta(1)$ et la boucle est exécuté d(u) fois. La compexité de la boucle interne est donc en $\Theta(d(u)+cv(u))$. On observe que, quel que soit la représentation, cv(u) est plus grand que ou égal à d(u). On en déduit qu'elle est en $\Theta(cv(u))$.

Ouestion 2

En déduire la complexité de l'algorithme de calcul d'un parcours en largeur en fonction de cv, puis pour chacune des représentations des graphes non orientés.

Solution:

— Pour l'initialisation :

L'instruction (1) est en $\Theta(n)$, l'instruction (2) en $\Theta(1)$.

— Pour la boucle principale,

```
(3) Tant que F n'est pas vide :
     (4) u := Defiler(F)
     (5) Pour tout sommet v adjacent a u :
```

© 26 avril 2020

(6)
$$\operatorname{si} D[v] = \operatorname{infini}$$
:
 $\operatorname{Enfiler}(F, v) ; D[v] = D[u] + 1$

L'instruction (4) est en $\Theta(1)$, l'instruction (5) est en $\Theta(cv(u))$ d'après la question précédente. Chaque sommet de G entre au plus une fois dans la file F et en sort donc au plus une fois. La complexité totale est donc en $\Theta(\sum (1+cv(u))), \, \mathrm{donc} \; \mathrm{en} \; \Theta(n+\sum cv(u)).$

Calculons-la en fonction de la représentation de ${\cal G}$:

- matrice sommet-sommet : $\sum_{u \in V} cv(u) = \sum_{u \in V} n = n^2$. On obtient donc du $\Theta(n^2)$; matrice sommet-arête : $\sum_{u \in V} cv(u) = \sum_{u \in V} mn = mn^2$. On obtient donc du $\mathcal{O}(mn^2)$; listes d'adjacence : $\sum_{u \in V} cv(u) = \sum_{u \in V} d(u) = 2m$. On obtient donc du $\Theta(n+m)$.

Exercice 6 – Parcours en largeur des graphes orientés

Question 1

On considère le graphe orienté $G_3 = (V_3, A_3)$:

Pour chaque racine de G_3 , donner un parcours en largeur de G_3 .

Solution:

Pas de solution donnée.

Question 2

Adapter l'algorithme de parcours en largeur au cas des graphes orientés. L'appliquer au graphe G_3 , en partant de l'une des racines.

Solution:

Pas de solution donnée.

26 avril 2020 (C)