LAB 3

יוחאי תבל 207235052 שיר משה 318492667

Theoretical Questions

לבין המדידות. simplified model שמביא למינימום את שביא $\gamma(path\ loss\ exponent)$ נמצא את

$$f = 2.4GH_z$$
 $d_0 = 1_m$ $K[dB] = 20\log_{10}\left(\frac{\lambda}{4\pi d_0}\right) = -40.04 dB$ $d = 150_m$ $P_t = 1mW (0dBm)$ $\lambda = \frac{c}{f} = \frac{1}{8}$

Distance from Transmitter	$M = P_r/P_t$
10m	-65 dB
50m	-75 dB
100m	-95 dB
200m	-105 dB
500m	-135 dB

: MMSE פונקציית ה

$$F(\gamma) = \sum_{i=1}^{5} [M_{measurred}(d_i) - M_{model}(d_i)]^2$$

:Simplified Path Loss Model באמצעות: $M_{model}(d_i)$ בחשב את

$$\begin{split} P_r[dBm] &= P_t[dBm] + K[dB] - 10\gamma \log_{10}\left(\frac{d}{d_0}\right) = -40.04 - 10\gamma \log_{10}d_i \\ &: \\ F(\gamma) &= (-65 + 40.04 + 10\gamma)^2 + (-75 + 40.04 + 16.9\gamma)^2 + (-95 + 40.04 + 20\gamma)^2 \\ &\quad + (-105 + 40.04 + 23\gamma)^2 + (-135 + 40.04 + 26\gamma)^2 = \\ &\quad 1990.6\gamma^2 - 11805.32\gamma + 18103 \\ &\quad \frac{dF(\gamma)}{d\gamma} = 3981.2\gamma - 11805.32 = 0 \rightarrow \gamma = 2.96 \end{split}$$

נחשב את ה receive power עם הנתונים שחישבנו:

$$P_r[dBm] = P_t[dBm] + K[dB] - 10\gamma \log_{10}\left(\frac{d}{d_0}\right) = -40.04 - 10 * 2.96 \log_{10} 150 = -104.45 dBm$$

2. נחפש תחת אילו תנאים ה simplified model מתלכד עם ה

$$P_{rfree\ space}[dB] = P_{rsimplified\ model}[dB]$$
 $ightarrow P_{t}[dB] + K[dB] - 10\gamma \log_{10}\left(rac{d}{d_{0}}
ight) = P_{t}[dB] + 10\log_{10}rac{G_{l}\lambda^{2}}{(4\pi d)^{2}}
ightarrow 10\log_{10}\left(rac{\lambda}{4\pi d_{0}}
ight)^{2} - 10\gamma \log_{10}\left(rac{d}{d_{0}}
ight) = -10\log_{10}rac{G_{l}\lambda^{2}}{(4\pi d)^{2}}$ $d = d_{0}$ $G_{l} = 1$ $\gamma = 0$ נדרוש:

$$p_n = -160[dBm],$$
 $d_0 = 1 [m],$ $\gamma = 4,$ $P_t = 10 [mW],$ $SNR = 20 [dB],$ $K = 20 \log_{10} \frac{\lambda}{4\pi d_0},$ $f = 800 [Mhz]$

$$\lambda = \frac{c}{f} = \frac{3}{8}$$
 בדומה למקודם:

$$K = 20 \log_{10} \frac{\lambda}{4\pi d_0} \rightarrow K = -30.50 \ [dB]$$
 : K את

 P_r נוכל לחשב את SNRמכיוון שידוע לנו

$$P_r - P_n = SNR \rightarrow P_r = -140 [dB]$$

נציב בנוסחה של המודל הנתון:

$$P_r[dBm] = P_t[dBm] + K[dB] - 10\gamma \log_{10} \left[\frac{d}{d_0}\right]$$
$$-140 = 10 - 30.50 - 10 * 4 * \log_{10}[d]$$
$$\frac{119.5}{40} = 40 * \log_{10}[d] \rightarrow d = 971.627 [m]$$

The Embedded Python Block

- ע"י watt) ע"מ לעבוד ביחידות הספק נצטרך להמיר אות הקוסינוס המקורי היא בvolt (מתח) ע"מ לעבוד ביחידות הספק נצטרך להמיר ל $E=V^2$ העלאת האמפליטודה בריבוע
- במרחק קטן מזה תהיה, simplify pathloss הוא מרחק החל ממרחק המנכל להתשמש בנוסחה של הוא מרחק רפרנס, שהחל ממרחק המנכל להתשמש בנוסחה של לנו יותר אי וודאות.
 - 6. גמא הוא האקספוננט של הנוסחה, ככל שגמא תעלה האות ידעך מהר יותר כפונקציה של המרחק.
 - $\gamma=4$ עבור.7

20	30	40	50	60	מרחק
1	0.198	0.062	0.0256	0.0123	סימולציה
1.003	0.1981	0.062	0.0256	0.0123	חישוב ידני

$\gamma = 2$ עבור.8

20	30	40	50	60	מרחק
1.003	0.445	0.250	0.160	0.111	סימולציה
1.003	0.445	0.250	0.160	0.111	חישוב ידני

נשים לב שקיבלנו במרחקים זהים ירידה באמפליטודה ככל שהאקספוננט גדל. הניחות גדל. (מתאים לנוסחה לפיה האקספוננט הוא על שבר קטן מאחד ולכן יורד).

Part 2 - Doppler Simulation- Practical experiment

9. שלחנו אות קוסינוס מהמשדר, וקלטנו אותו במקלט.

בעזרת לוח מתכת (נפנף) ששובר את הקרניים בין המקלט למשדר אך מבלי לחסום את ה LOS. בעקבות כך קיבלנו שינוי בספקטוגרמה למשך זמן מסוים ואז האות חזר לצורתו המקורית.

10. ראשית ע"מ למצוא את המהירות נשתמש בנוסחאות של אפקט דופלר מההרצאה:

 f_{total} נשלח קרן בתדר f שתפגע באובייקט ותחזור אלינו בחזרה. נמדוד את התדר של הקרן החוזרת

$$f_{total} = f + f_d$$
 ונמצא את f_d לפי נוסחה:

$$f_{total} = f + f_d$$
 ונמצא את f_d לפי נוסחה: $f_d = v rac{cos heta}{\lambda}$ ואת המהירות נמצא לפי:

עבור המרחק נשתמש בנוסחה x=vt כאשר t זה הזמן שנמדוד מרגע שידור הקרן עד לקבלת הקרן הוא: d נגדיר להיות בקירוב מהירות האור. נקבל שהמרחק v

$$2d = vt \rightarrow d = \frac{vt}{2}$$

- רה תדר תדר קבוע ידוע מראש, ע"מ שנוכל לחשב את f_d , בנוסף מכיוון שאנו מקבלים בחזרה תדר. . המורכב מ $f+f_d$ נצטרך לבחור בחכמה את התדר כך שהמקלט יוכל לקלוט את התדר
 - -12. נדאג לשלוח את האות בעוצמה מספיק גבוהה, משום שכשאר האות עובר מרחק גדול הוא עובר ניחות עוצמתו יורדת, ולכן ע"מ שנוכל לקלוט אותו היטב נצטרך לשאוג לעוצמה מספיקה בשליחה.

Theoretical Questions

.13

 $f_d > 500 Hz$ נחפש את המרחק בו לא נוכל לזהות את המטוס. נגדיר מרחק זה כאשר התדר (a ע"מ שנחרוג מטווח התדרים שיכולה התחנה לגלות.

> $height_{nlan} - height_{tower} = 3000m$ גובה המטוס ביחס לקצה תחנת השידור הזווית בין המטוס למגדל ביחס לקרקע:

$$f_d = v \frac{\cos \theta}{\lambda} > 500 \rightarrow \frac{\lambda 500}{v} < \cos \theta \rightarrow \frac{c}{fv} 500 < \cos \theta \rightarrow \frac{3 * 10^8 * 3.6}{978 * 10^6 * 700} 500 < \cos \theta \rightarrow 0.778 < \cos \theta \rightarrow \theta > 37.91^{\circ}$$

משיקולי גאומטריה נחשב את המרחק במשולש שנוצר:

(המרחק מהמטוס לקצה המגדול בקו ישיר)

$$d = \frac{height_{plan} - height_{tower}}{sin\theta} > 4882.63 m$$

. לפי הנוסחה $f_d = v rac{cos heta}{\lambda}$ ניתן להבחין שכשאר הזווית תהיה 90 מעלות נקבל ש f_d מתאפס (b

לכן נבחר מסלול שיחוג מעל קצה האנטנה בזווית קרובה מאוד ל90, וכן נקבל תדר דופלר אפסי.

14. נשתמש בנוסחה לחישוב אפקט דופלר:

$$v = 140 \frac{km}{h} = 38.88 \frac{m}{s}$$
 $f = 5GHz = 5 * 10^9 Hz$ $c = 3 * 10^8 \frac{m}{s}$ נתונים:

: heta נחפש את הזווית

$$tan\theta = \frac{50}{283.55} \rightarrow \theta = 10^{\circ}$$

נציב את כל הנתונים ונקבל:

$$f_d = v \frac{\cos \theta}{\lambda} = \frac{vf}{c} \cos \theta = 38.88 * 5 * \frac{10^9 \cos(10)}{3 * 10^8} = 638.154 \text{ Hz}$$