Отчет по заданию курса «Суперкомпьютерное моделирование и технологии»

Михальцов Данила Алексеевич

Октябрь 2024 - Декабрь 2024

Содержание

1	Математическая постановка дифференциальной задачи	2
2	Численный метод решения задачи	2
3	Программная реализация 3.1 OpenMP	3 3 4
4	Результаты и их анализ 4.1 Результаты для ОрепМР-версии 4.2 Результаты для МРІ-версии 4.3 Результаты для версии ОрепМР + МРІ	5
5	Заключение	7

1 Математическая постановка дифференциальной задачи

В трехмерной замкнутой области

$$\Omega = [0 \leqslant x \leqslant L_x] \times [0 \leqslant y \leqslant L_y] \times [0 \leqslant z \leqslant L_z]$$

для $(0 < t \le T]$ требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \Delta u \tag{1}$$

с начальными условиями

$$u|_{t=0} = \varphi(x, y, z), \tag{2}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = 0 \tag{3}$$

при условии, что на границах области заданы следующие граничные условия:

• Периодические граничные условия по осям x и y:

$$u(0, y, z, t) = u(L_x, y, z, t), u_x(0, y, z, t) = u_x(L_x, y, z, t),$$

$$u(x, 0, z, t) = u(x, L_y, z, t), u_y(x, 0, z, t) = u_y(x, L_y, z, t)$$

• Граничные условия первого рода по оси z:

$$u(x, y, 0, t) = 0, \quad u(x, y, L_z, t) = 0$$
 (4)

Аналитическое решение задачи имеет вид:

$$u_{\text{analytical}}(x, y, z, t) = \sin\left(\frac{2\pi x}{L_x} + 3\pi\right) \sin\left(\frac{2\pi y}{L_y} + 2\pi\right) \sin\left(\frac{\pi z}{L_z}\right) \cos(a_t \cdot t + \pi) \tag{5}$$

где

$$a_t = \pi \sqrt{\frac{4}{L_x^2} + \frac{4}{L_y^2} + \frac{1}{L_z^2}} \tag{6}$$

2 Численный метод решения задачи

Для численного решения задачи введем на Ω сетку $\omega_{h\tau} = \bar{\omega}_h \times \omega_{\tau}$, где

$$T = T_0$$

$$L_x = L_{x_0}, L_y = L_{y_0}, L_z = L_{z_0}$$

$$\bar{\omega}_h = \{(x_i = ih_x, y_j = jh_y, z_k = kh_z), i, j, k = 0, 1, \dots, N, h_x N = L_x, h_y N = L_y, h_z N = L_z\},$$

$$\omega_\tau = \{t_n = n\tau, n = 0, 1, \dots, K, \tau K = T\}$$

Через ω_h обозначим множество внутренних, а через γ_h- множество граничных узлов сетки $\bar{\omega}_h.$

Для аппроксимации исходного уравнения (1) с однородными граничными условиями (4)-(6) и начальными условиями (2)-(3) воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n, \quad (x_i, y_j, z_k) \in \omega_h, \quad n = 1, 2, \dots, K - 1$$

Здесь Δ_h - семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h_x^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h_y^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h_z^2}.$$

Приведенная выше разностная схема является явной - значения u_{ijk}^{n+1} на (n+1)-м шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета (т.е. для нахождения u_{ijk}^2) должны быть заданы значения $u_{ijk}^0, u_{ijk}^1, (x_i, y_j, z_k) \in \omega_h$. Из условия (2) имеем

$$u_{ijk}^{0} = \varphi\left(x_i, y_j, z_k\right), \quad (x_i, y_j, z_k) \in \omega_h \tag{10}$$

Аппроксимацию второго порядка по τ и h дает разностное уравнение

$$\frac{u_{ijk}^{1} - u_{ijk}^{0}}{\tau} = \frac{\tau}{2} \Delta_{h} \varphi \left(x_{i}, y_{j}, z_{k} \right), \quad \left(x_{i}, y_{j}, z_{k} \right) \in \omega_{h}.$$

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \varphi \left(x_{i}, y_{j}, z_{k} \right)$$
(12)

Разностная аппроксимация для периодических граничных условий по ОХ и ОУ выглядит следующим образом

$$\begin{split} u_{0jk}^{n+1} &= u_{Njk}^{n+1}, \\ u_{i0k}^{n+1} &= u_{iNk}^{n+1}, \\ u_{1jk}^{n+1} &= u_{N+1jk}^{n+1}, \\ u_{ik}^{n+1} &= u_{iN+k}^{n+1}, \end{split}$$

$$i, j, k = 0, 1, \dots, N.$$

Для вычисления значений $u^0, u^1 \in \gamma_h$ допускается использование аналитического значения u, которое задается в программе еще для вычисления погрешности решения задачи.

3 Программная реализация

Программа написана на языке C++11. Изначально была реализована последовательная версия программы, не использующая возможности OpenMP или MPI.

3.1 OpenMP

Для реализации параллельной версии программы с помощью интерфейса OpenMP в программу к основным вычисляющим циклам были добавлены следующие клаузы:

- #pragma omp parallel for collapse(3) для основных циклов
- #pragma omp parallel for collapse(3) reduction(max : error) для определения максимальной погрешности в конце выполнения программы

3.2 MPI

В MPI-версии программы для блочного разбиения используются функции MPI_Dims_create и MPI_Cart_create: создаётся декартова решетка процессов. Функция compute_local_size рассчитывает размер и начальный индекс локальной области сетки для каждого процесса, равномерно распределяя элементы оси с учетом остатка деления. Функция exchange_boundaries реализует передачу данных между соседними процессами по трем направлениям (x, y, z). Используются операции MPI_Isend и MPI_Irecv для асинхронной отправки и получения данных. MPI_Reduce используется для вычисления глобальной максимальной ошибки среди всех процессов.

Обмен граничными значениями

- 1. Соседи определяются с использованием функции MPI_Cart_shift, которая возвращает ранги соседних процессов в заданном направлении. Это позволяет связать процессы в декартовой топологии и определить, куда отправлять и откуда принимать данные.
- 2. Передача данных между процессами осуществляется через MPI_Isend (асинхронная отправка) и MPI_Irecv (асинхронный приём). Это позволяет перекрывать время на упаковку данных.
- 3. Все асинхронные операции синхронизируются вызовом MPI_Waitall, который завершает обмен данными и гарантирует, что все данные корректно переданы и приняты.
- 4. Принятые данные записываются в специальные слои-призраки локальных массивов, которые используются для расчётов на границах текущего процесса.

Компиляция программ

Последовательная программа и версия с OpenMP компилировались с помощью свободно распространяемого компилятора g++, для MPI-версии использовался mpic++. Для компиляции параллельной версии программы был добавлен флаг -fopenmp. Для повышения производительности программы при компиляции использовался флаг оптимизации -02.

4 Результаты и их анализ

Результаты численных расчетов приведены в таблицах ниже.

Во всех таблицах при $N_{\rm threads}=1$ и $N_{\rm processes}$ использовалась последовательная версия программы (без прагм OpenMP и без использования функций MPI).

4.1 Результаты для ОренМР-версии

Полученные результаты для L=1:

$N_{ m threads}$	N^3	Т (время решения в секундах)	S (ускорение)	δ (погрешность)
1	128^{3}	7.75161	1.00	9.78588×10^{-5}
2	128^{3}	3.87850	2.00	9.78588×10^{-5}
4	128^{3}	1.97013	3.93	9.78588×10^{-5}
8	128^{3}	1.06273	7.29	9.78588×10^{-5}
1	256^{3}	57.4123	1.00	4.78022×10^{-5}
2	256^{3}	28.5211	2.01	4.78022×10^{-5}
4	256^{3}	14.4583	3.97	4.78022×10^{-5}
8	256^{3}	7.70675	7.45	4.78022×10^{-5}
1	512^{3}	440.478	1.00	2.3903×10^{-5}
2	512^{3}	218.594	2.02	2.3903×10^{-5}
4	512^{3}	111.082	3.96	2.3903×10^{-5}
8	512^{3}	57.2771	7.69	2.3903×10^{-5}

Полученные результаты для $L=\pi$:

$N_{\rm threads}$	N^3	Т (время решения в секундах)	S (ускорение)	δ (погрешность)
1	128^{3}	7.7516	1.00	9.78588×10^{-5}
2	128^{3}	3.8829	2.00	9.78588×10^{-5}
4	128^{3}	1.9888	3.90	9.78588×10^{-5}
8	128^{3}	1.1054	7.01	9.78588×10^{-5}
1	256^{3}	57.4123	1.00	4.78022×10^{-5}
2	256^{3}	28.5332	2.01	4.78022×10^{-5}
4	256^{3}	14.5339	3.95	4.78022×10^{-5}
8	256^{3}	7.7635	7.39	4.78022×10^{-5}
1	512^{3}	440.4780	1.00	2.3903×10^{-5}
2	512^{3}	219.4330	2.01	2.3903×10^{-5}
4	512^{3}	110.2730	4.00	2.3903×10^{-5}
8	512^{3}	57.1360	7.71	2.3903×10^{-5}

4.2 Результаты для МРІ-версии

Полученные результаты для L=1:

$N_{\text{processes}}$	N^3	Т (время решения в секундах)	S (ускорение)	δ (погрешность)
1	128^{3}	7.75161	1.00	9.78588×10^{-5}
4	128^{3}	4.92677	1.57	9.7158×10^{-4}
8	128^{3}	4.53628	1.71	9.7158×10^{-4}
16	128^{3}	7.72939	1.00	9.7158×10^{-4}
32	128^{3}	9.20474	0.84	9.7158×10^{-4}
1	256^{3}	57.4123	1.00	4.78022×10^{-5}
4	256^{3}	31.2190	1.84	4.85947×10^{-4}
8	256^{3}	33.2043	1.73	4.85947×10^{-4}
16	256^{3}	37.4448	1.53	4.85947×10^{-4}
32	256^{3}	28.4587	2.02	4.85947×10^{-4}
1	512^{3}	440.478	1.00	2.3903×10^{-5}
4	512^{3}	235.206	1.87	2.42993×10^{-4}
8	512^{3}	231.367	1.90	2.42993×10^{-4}
16	512^{3}	195.181	2.26	2.42993×10^{-4}
32	512^{3}	116.538	3.78	2.42993×10^{-4}

Полученные результаты для $L=\pi$:

$N_{\text{процессов}}$	N^3	Т (время решения в секундах)	S (ускорение)	δ (погрешность)
1	128^{3}	7.75161	1.00	9.78588×10^{-5}
4	128^{3}	4.90805	1.58	9.7158×10^{-4}
8	128^{3}	6.68562	1.16	9.7158×10^{-4}
16	128^{3}	10.2063	0.76	9.7158×10^{-4}
32	128^{3}	9.99473	0.78	9.7158×10^{-4}
1	256^{3}	57.4123	1.00	4.78022×10^{-5}
4	256^{3}	31.2203	1.84	4.85947×10^{-4}
8	256^{3}	33.4433	1.72	4.85947×10^{-4}
16	256^{3}	37.1163	1.55	4.85947×10^{-4}
32	256^{3}	28.7275	2.00	4.85947×10^{-4}
1	512^{3}	440.478	1.00	2.3903×10^{-5}
4	512^{3}	235.137	1.87	2.42993×10^{-4}
8	512^{3}	231.873	1.90	2.42993×10^{-4}
16	512^{3}	205.28	2.15	2.42993×10^{-4}
32	512^{3}	116.397	3.78	2.42993×10^{-4}

4.3 Результаты для версии OpenMP + MPI

Полученные результаты для L=1:

$N_{\text{процессов}}$	$N_{\text{потоков}}$	N^3	Т (секунды)	S (ускорение)	δ (погрешность)
1	1	128^{3}	7.75161	1.00	9.78588×10^{-5}
2	4	128^{3}	2.91323	2.66	9.7158×10^{-4}
4	4	128^{3}	2.76536	2.80	9.7158×10^{-4}
8	4	128^{3}	5.05592	1.53	9.7158×10^{-4}
16	4	128^{3}	10.162	0.76	9.7158×10^{-4}
32	4	128^{3}	12.8685	0.60	9.7158×10^{-4}
1	1	256^{3}	57.4123	1.00	4.78022×10^{-5}
2	4	256^{3}	15.7445	3.65	4.85947×10^{-4}
4	4	256^{3}	8.64876	6.64	4.85947×10^{-4}
8	4	256^{3}	11.3902	5.04	4.85947×10^{-4}
16	4	256^{3}	16.3104	3.52	4.85947×10^{-4}
32	4	256^{3}	15.8975	3.61	4.85947×10^{-4}
1	1	512^{3}	440.478	1.00	2.3903×10^{-5}
2	4	512^{3}	114.071	3.86	2.42993×10^{-4}
4	4	512^{3}	59.6326	7.39	2.42993×10^{-4}
8	4	512^{3}	61.3528	7.18	2.42993×10^{-4}
16	4	512^{3}	66.0439	6.67	2.42993×10^{-4}
32	4	512^{3}	48.4313	9.09	2.42993×10^{-4}

Полученные результаты для $L=\pi$:

$N_{\text{processes}}$	$N_{ m threads}$	N^3	Т (секунды)	S (ускорение)	δ (погрешность)
1	1	128^{3}	7.75161	1.00	9.78588×10^{-5}
2	4	128^{3}	3.18958	2.43	9.7158×10^{-4}
4	4	128^{3}	2.70394	2.87	9.7158×10^{-4}
8	4	128^{3}	4.91475	1.58	9.7158×10^{-4}
16	4	128^{3}	10.2256	0.76	9.7158×10^{-4}
32	4	128^{3}	12.5563	0.62	9.7158×10^{-4}
1	1	256^{3}	57.4123	1.00	4.78022×10^{-5}
2	4	256^{3}	15.6375	3.67	4.85947×10^{-4}
4	4	256^{3}	8.67156	6.62	4.85947×10^{-4}
8	4	256^{3}	11.3301	5.07	4.85947×10^{-4}
16	4	256^{3}	16.4405	3.49	4.85947×10^{-4}
32	4	256^{3}	16.058	3.57	4.85947×10^{-4}
1	1	512^{3}	440.478	1.00	2.3903×10^{-5}
2	4	512^{3}	113.539	3.88	2.42993×10^{-4}
4	4	512^{3}	59.7976	7.36	2.42993×10^{-4}
8	4	512^{3}	61.7325	7.13	2.42993×10^{-4}
16	4	512^{3}	53.214	8.28	2.42993×10^{-4}
32	4	512^{3}	49.6448	8.87	2.42993×10^{-4}

Порядок проведения экспериментов

Для получения более стабильных результатов было проведено по 5 запусков для каждого набора параметров, и в качестве времени выполнения для этого набора параметров было взято минимальное из значений этих запусков. Результаты по времени сильно различались от запуска к запуску из-за разной загруженности IBM Polus задачами пользователей, однако взятие минимума помогло получить более объективную картину.

Также, вне рамок постановки задания, были проведены эксперименты для N=1024, однако для такого размера последовательная программа превышает максимально доступный на IBM Polus лимит по времени для задач пользователя-студента (30 минут), поэтому посчитать ускорение для такого N не представляется возможным.

Для наглядности все значения в таблице округлены до двух знаков после запятой в ускорении и до четырех знаков после запятой во времени выполнения.

5 Заключение

На основании полученных данных можно сделать вывод о том, что увеличение количества потоков приводит к значительному сокращению времени вычислений, что демонстрирует эффективность параллелизации задачи с использованием OpenMP и MPI.

Полученное ускорение не равно количеству используемых тредов, и это вполне ожидаемо. Самым главным фактором является пропускная способность памяти. Влияние этого фактора подтвердилось с помощью запуска одной и той же программы в разное время: при разной загрузке суперкомпьютера задачами других пользователей получались сильно разные результаты по времени, что свидетельствует о том, что, скорее всего, на работу программы влияет интенсивность использования памяти. Также, для параллельных вычислений неизбежны накладные расходы, связанные с управлением потоками, в том числе для подсчёта максимальной погрешности. В программе присутствуют непараллельные области, что ограничивает теоретически возможное ускорение.

Для MPI версии видно, что при увеличении размерности задачи ускорение для одинакового числа процессов увеличивается. При текущих выбранных значениях N накладные расходы на обмен данными между процессами достаточно велики по сравнению с арифметическими операциями. При большем размере задачи (N > 1000 и далее), скорее всего, можно будет получить большее ускорение, повышая эффективность распараллеливания.

Таким образом, проведенные расчеты показывают, что распараллеливание программ с помощью OpenMP и MPI позволяет добиться значительного ускорения. Для небольших размеров задачи, когда массив задачи может поместиться в оперативную память целиком, и пропускной способности памяти хватает, разумно использовать распараллеливание с применением OpenMP. Для больших размеров задач будет эффективнее использовать MPI-версию, в том числе с применением OpenMP.