lme mods

Jacob Salminen

2024-04-19

Packages & Setup

```
# install.packages(c("tidyverse", "purrr", "R.matlab", "readxl", "dplyr"))
library(readxl);
library(purrr)
library(tidyverse);
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.0
                       v tibble
                                   3.2.1
## v lubridate 1.9.3
                                   1.3.1
                       v tidyr
## -- Conflicts -----
                                          ## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(tibble)
library(knitr);
library(gtsummary)
library(kableExtra)
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
      group_rows
library(lme4)
## Loading required package: Matrix
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
      expand, pack, unpack
##
```

GTSUMMARY THEME

```
# my_theme <-
  list(
#
      "tbl_summary-str:default_con_type" = "continuous2",
      "tbl_summary-str:continuous_stat" = c(
#
#
        "\{median\} (\{p25\} - \{p75\})",
        "{mean} ({sd})",
#
#
        "{min} - {max}"
#
#
     "tbl_summary-str:categorical_stat" = "{n} / {N} ({p}%)",
#
      "style number-arg:big.mark" = "",
#
      "tbl_summary-fn:percent_fun" = function(x) style_percent(x, digits = 3)
   )
#
# my_theme <-
  list()
# qtsummary::set_qtsummary_theme(my_theme)
gtsummary::set_gtsummary_theme(theme_gtsummary_journal("jama"))
## Setting theme 'JAMA'
## Setting theme 'JAMA'
# reset qtsummary theme()
```

load table

get unique entries

```
clusters = unique(eegt$cluster_id);
subjects = unique(eegt$subj_char);
groups = unique(eegt$group_char);
kin_measures = c('mean_APexc_COV', 'mean_APexc_mean', 'mean_MLexc_COV', 'mean_MLexc_mean', 'mean_StepDur','eeg_measures = c('theta_avg_power', 'alpha_avg_power', 'beta_avg_power', 'aperiodic_exp', 'aperiodic_offset
```

get speeds only

```
eegt <- filter_at(eegt,vars('cond_char'), any_vars(. %in% c('0.25','0.5','0.75','1.0')))
flat_speeds = unique(eegt$cond_char)
eegt$cond_char <- as.numeric(eegt$cond_char)
eegt$speed_cond_num <- as.numeric(eegt$cond_char)
eegt <- mutate(eegt,across(c('subj_char'), factor))</pre>
```

Cluster:	3											
	EEG	Theta		EEG A	Alpha		EEG	Beta				
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value			
(Intercept)	0.48 (0.15 to 0.81)	0.004	0.007	4.7 (4.0 to 5.5)	< 0.001	< 0.001	2.6 (2.2 to 3.0)	< 0.001	< 0.001			
speed_cond_num	-0.09 (-0.25 to 0.06)	0.24	0.24	-0.49 (-0.74 to -0.23)	< 0.001	< 0.001	-0.22 (-0.35 to -0.09)	< 0.001	0.001			
group_char		< 0.001	< 0.001		0.035	0.035		0.004	0.004			
H1000's	_			_			_					
H2000's	0.57 (0.10 to 1.0)			-1.3 (-2.5 to -0.25)			-0.76 (-1.3 to -0.18)					
H3000's	1.1 (0.68 to 1.6)			-1.1 (-2.1 to -0.02)			-0.89 (-1.4 to -0.33)					
subj_char.sd(Intercept)	0.82 (NA to NA)			1.9 (NA to NA)			1.0 (NA to NA)					
Residual.sdObservation	0.38 (NA to NA)			0.63 (NA to NA)			0.32 (NA to NA)					

¹ CI = Confidence Interval

get terrains only (if applicable)

```
# eegt <- filter_at(eegt, vars('cond_char'), any_vars(. %in% c('flat', 'low', 'med', 'high'))) # eegt <- filter_at(eegt, vars('cond_char'), any_vars(. %in% c('high'))) # eegt$terr_ord_speed <- cut(eegt$speed_ms, 4, ordered = TRUE)
```

convert speeds to ordered & groups to factors

```
eegt <- mutate(eegt,across(c('group_char'), factor))</pre>
eegt$speed_ord <- cut(eegt$cond_char, 4, ordered = TRUE)</pre>
eegt <- mutate(eegt,across(c('cond_char'), factor))</pre>
head(eegt)
## # A tibble: 6 x 139
     speed_ms subj_id subj_cl_ind subj_char comp_id design_id cond_id cond_char
##
        <dbl> <chr> <dbl> <fct>
                                             <dbl> <chr> <chr>
                                                                      <fct>
## 1
        0.87 1
                               1 H1004
                                                 3 2
                                                             1
                                                                      0.25
        0.91 2
                                                  3 2
## 2
                               2 H1007
                                                             1
                                                                      0.25
## 3
        0.67 3
                               3 H1009
                                                  4 2
                                                             1
                                                                      0.25
        0.78 4
                                                 4 2
                                                                      0.25
## 4
                               4 H1010
                                                             1
## 5
        1.2 5
                               5 H1011
                                                 5 2
                                                             1
                                                                      0.25
## 6
        0.7 6
                               6 H1012
                                                  8 2
                                                                      0.25
## # i 131 more variables: group_id <chr>, cluster_id <chr>, aperiodic_exp <dbl>,
## #
      aperiodic_offset <dbl>, central_freq_1 <dbl>, central_freq_2 <dbl>,
      central_freq_3 <dbl>, power_1 <dbl>, power_2 <dbl>, power_3 <dbl>,
## #
## #
      r_squared <dbl>, theta_avg_power <dbl>, alpha_avg_power <dbl>,
## #
       beta_avg_power <dbl>, theta_1 <dbl>, theta_2 <dbl>, theta_3 <dbl>,
## #
       theta_4 <dbl>, theta_5 <dbl>, theta_6 <dbl>, theta_7 <dbl>, theta_8 <dbl>,
       'alpha_ 1' <dbl>, 'alpha_ 2' <dbl>, 'alpha_ 3' <dbl>, 'alpha_ 4' <dbl>, ...
## #
eegt$group_speed_code = paste(eegt$group_char,eegt$cond_char,sep="_")
```

LME EEG ~ 1+speed+group

$LME~KIN \sim 1 + speed + group + speed:group$

² False discovery rate correction for multiple testing

Cluster:	4										
	EEG '	Theta		EEG A	Alpha		EEG	Beta			
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		
(Intercept)	0.37 (0.16 to 0.59)	< 0.001	0.002	3.7 (2.8 to 4.6)	< 0.001	< 0.001	2.6 (1.9 to 3.2)	< 0.001	< 0.001		
speed_cond_num	0.09 (-0.01 to 0.19)	0.093	0.093	-0.44 (-0.67 to -0.21)	< 0.001	< 0.001	-0.36 (-0.49 to -0.22)	< 0.001	< 0.001		
group_char		0.070	0.093		0.55	0.55		0.11	0.11		
H1000's	_			_			_				
H2000's	-0.25 (-0.56 to 0.06)			-0.46 (-1.9 to 0.98)			0.41 (-0.53 to 1.3)				
H3000's	-0.33 (-0.63 to -0.04)			-0.76 (-2.1 to 0.60)			0.95 (0.07 to 1.8)				
subj_char.sd(Intercept)	0.51 (NA to NA)			2.4 (NA to NA)			1.6 (NA to NA)				
Residual.sdObservation	0.25 (NA to NA)			0.54 (NA to NA)			0.32 (NA to NA)				

CI = Confidence Interval
 False discovery rate correction for multiple testing

Cluster:	5										
	EEG	Theta		EEG .	Alpha		EEG	Beta			
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		
(Intercept)	0.03 (-0.24 to 0.30)	0.82	0.82	2.6 (1.6 to 3.5)	< 0.001	< 0.001	1.2 (0.75 to 1.6)	< 0.001	< 0.001		
speed_cond_num	0.30 (0.15 to 0.46)	< 0.001	< 0.001	-0.26 (-0.56 to 0.03)	0.079	0.12	-0.08 (-0.20 to 0.05)	0.24	0.24		
group_char		0.10	0.15		0.62	0.62		0.11	0.17		
H1000's	_			_			_				
H2000's	0.31 (-0.20 to 0.83)			-0.32 (-2.1 to 1.5)			0.39 (-0.48 to 1.3)				
H3000's	0.45 (0.02 to 0.87)			-0.74 (-2.2 to 0.75)			-0.56 (-1.3 to 0.16)				
subj_char.sd(Intercept)	0.62 (NA to NA)			2.2 (NA to NA)		1.1 (NA to NA)					
Residual.sdObservation	0.30 (NA to NA)			0.57 (NA to NA)			0.24 (NA to NA)				

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	6										
	EEG	Theta		EEG .	Alpha		EEG	Beta			
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		
(Intercept)	1.3 (0.94 to 1.7)	< 0.001	< 0.001	0.78 (0.40 to 1.2)	< 0.001	< 0.001	1.4 (0.90 to 1.8)	< 0.001	< 0.001		
speed_cond_num	0.18 (0.04 to 0.32)	0.012	0.018	-0.03 (-0.18 to 0.13)	0.71	0.93	-0.25 (-0.34 to -0.15)	< 0.001	< 0.001		
group_char		0.037	0.037		0.93	0.93		0.12	0.12		
H1000's	_			_			_				
H2000's	-0.72 (-1.3 to -0.12)			-0.09 (-0.68 to 0.50)			0.70 (-0.01 to 1.4)				
H3000's	-0.54 (-1.1 to 0.03)			-0.10 (-0.67 to 0.46)			0.51 (-0.16 to 1.2)				
subj_char.sd(Intercept)	0.93 (NA to NA)			0.93 (NA to NA)			1.1 (NA to NA)				
Residual.sdObservation	0.31 (NA to NA)			0.34 (NA to NA)			0.21 (NA to NA)				

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing $\,$

Cluster:	7								
	EEG '	Γheta		EEG A	Alpha		EEG	Beta	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	0.32 (0.06 to 0.58)	0.015	0.022	2.8 (1.8 to 3.9)	< 0.001	< 0.001	2.7 (2.0 to 3.4)	< 0.001 < 0.003	
speed_cond_num	0.23 (0.13 to 0.32)	< 0.001	< 0.001	-0.50 (-0.79 to -0.20)	< 0.001	0.001	-0.47 (-0.63 to -0.31)	< 0.001	< 0.001
group_char		0.063	0.063		0.85	0.85		0.063	0.063
H1000's	_			_			_		
H2000's	-0.44 (-0.85 to -0.04)			-0.44 (-2.1 to 1.2)			0.71 (-0.39 to 1.8)		
H3000's	-0.33 (-0.68 to 0.03)			-0.01 (-1.5 to 1.5)			1.1 (0.18 to 2.1)		
subj_char.sd(Intercept)	0.64 (NA to NA)			2.6 (NA to NA)			1.7 (NA to NA)		
Residual.sdObservation	0.23 (NA to NA)			0.69 (NA to NA)			0.38 (NA to NA)		
1 or o o 1 r . 1		•		•		•		•	

CI = Confidence Interval
 False discovery rate correction for multiple testing

Cluster:	8											
	EEG '	Theta		EEG .	Alpha		EEG	Beta				
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value			
(Intercept)	0.42 (0.11 to 0.72)	0.007	0.011	4.1 (3.2 to 5.0)	< 0.001	< 0.001	2.5 (2.0 to 3.0)	< 0.001	< 0.001			
speed_cond_num	0.15 (0.06 to 0.24)	< 0.001	0.003	-0.21 (-0.45 to 0.03)	0.088	0.13	-0.18 (-0.30 to -0.05)	0.005	0.008			
group_char		0.57	0.57		0.82	0.82		0.73	0.73			
H1000's	_			_			_					
H2000's	-0.20 (-0.67 to 0.27)			-0.36 (-1.8 to 1.1)			0.29 (-0.47 to 1.0)					
H3000's	0.06 (-0.40 to 0.52)			-0.40 (-1.8 to 1.0)			0.22 (-0.52 to 0.95)					
subj_char.sd(Intercept)	0.83 (NA to NA)			2.5 (NA to NA)			1.3 (NA to NA)					
Residual.sdObservation	0.22 (NA to NA)			0.59 (NA to NA)			0.30 (NA to NA)					

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	9											
	EEG	Theta		EEG .	Alpha		EEG	Beta				
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value			
(Intercept)	0.49 (0.12 to 0.87)	0.009	0.014	0.71 (-0.08 to 1.5)	0.076	0.076	0.88 (0.47 to 1.3)	< 0.001	< 0.001			
speed_cond_num	0.26 (0.10 to 0.42)	0.002	0.005	-0.22 (-0.46 to 0.02)	0.075	0.076	-0.14 (-0.25 to -0.02)	0.021	0.031			
group_char		0.54	0.54		0.029	0.076		0.15	0.15			
H1000's	_			_			_					
H2000's	0.19 (-0.34 to 0.72)			1.5 (0.35 to 2.6)			-0.18 (-0.78 to 0.43)					
H3000's	-0.10 (-0.59 to 0.39)			1.0 (-0.04 to 2.1)			-0.54 (-1.1 to 0.02)					
subj_char.sd(Intercept)	0.64 (NA to NA)			1.4 (NA to NA)			0.75 (NA to NA)					
Residual.sdObservation	0.28 (NA to NA)			0.43 (NA to NA)			0.21 (NA to NA)					

CI = Confidence Interval
 False discovery rate correction for multiple testing

Cluster:	10														
	EEG	Theta		EEG A	Alpha		EEG	Beta							
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value						
(Intercept)	0.57 (0.25 to 0.88)	< 0.001	0.001	1.9 (1.0 to 2.8)	< 0.001	< 0.001	0.99 (0.55 to 1.4)	< 0.001	< 0.001						
speed_cond_num	0.00 (-0.13 to 0.13)	0.97	0.97	-0.46 (-0.72 to -0.19)	< 0.001	0.001	-0.17 (-0.28 to -0.06)	0.002	0.003						
group_char		0.90	0.97		0.013	0.013		0.63	0.63						
H1000's	_			_			_								
H2000's	0.06 (-0.43 to 0.55)			2.1 (0.66 to 3.5)			-0.02 (-0.72 to 0.68)								
H3000's	-0.06 (-0.48 to 0.37)			1.2 (-0.04 to 2.4)			-0.28 (-0.89 to 0.34)								
subj_char.sd(Intercept)	0.63 (NA to NA)			1.8 (NA to NA)			0.92 (NA to NA)								
Residual.sdObservation	0.25 (NA to NA)			0.52 (NA to NA)			0.21 (NA to NA)								

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

Cluster:	11											
	EEG	Theta		EEG .	Alpha		EEG	Beta				
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value			
(Intercept)	0.94 (0.57 to 1.3)	< 0.001	< 0.001	1.4 (0.82 to 2.0)	< 0.001	< 0.001	0.88 (0.42 to 1.3)	< 0.001	< 0.001			
speed_cond_num	0.37 (0.24 to 0.49)	< 0.001	< 0.001	-0.20 (-0.44 to 0.03)	0.090	0.13	-0.24 (-0.35 to -0.12)	< 0.001	< 0.001			
group_char		0.012	0.012		0.34	0.34		0.052	0.052			
H1000's	_			_			_					
H2000's	-0.71 (-1.2 to -0.18)			-0.04 (-0.85 to 0.76)			0.58 (-0.08 to 1.2)					
H3000's	-0.66 (-1.2 to -0.13)			0.51 (-0.30 to 1.3)			0.78 (0.12 to 1.4)					
subj_char.sd(Intercept)	0.83 (NA to NA)			1.3 (NA to NA)			1.1 (NA to NA)					
Residual.sdObservation	0.27 (NA to NA)			0.52 (NA to NA)			0.24 (NA to NA)					

 $^{^{1}}$ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing

60	1.0										
Cluster:	12										
	EEG '	Theta		EEG .	Alpha		EEG	Beta			
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		
(Intercept)	0.72 (0.38 to 1.1)	< 0.001	< 0.001	1.3 (0.41 to 2.2)	0.004	0.013	1.7 (0.93 to 2.5)	< 0.001	< 0.001		
speed_cond_num	0.27 (0.12 to 0.42)	< 0.001	< 0.001	-0.08 (-0.28 to 0.13)	0.47	0.71	-0.24 (-0.37 to -0.10)	< 0.001	< 0.001		
group_char		0.10	0.10		0.80	0.80		0.087	0.087		
H1000's	_			_			_				
H2000's	-0.28 (-0.77 to 0.21)			-0.08 (-1.4 to 1.2)			0.62 (-0.55 to 1.8)				
H3000's	-0.50 (-0.96 to -0.04)			0.32 (-0.90 to 1.5)			1.2 (0.14 to 2.3)				
subj_char.sd(Intercept)	0.75 (NA to NA)	2.0 (NA to NA)			1.8 (NA to NA)						
Residual.sdObservation	0.33 (NA to NA)			0.46 (NA to NA)			0.30 (NA to NA)				

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing $\,$

Cluster:	13										
	EEG	Theta		EEG A	Alpha		EEG	Beta			
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		
(Intercept)	0.57 (0.17 to 0.97)	0.005	0.016	4.0 (2.9 to 5.1)	< 0.001	< 0.001	2.0 (1.5 to 2.6)	< 0.001	< 0.001		
speed_cond_num	0.00 (-0.14 to 0.14)	>0.99	>0.99	-0.66 (-0.99 to -0.33)	< 0.001	< 0.001	-0.38 (-0.54 to -0.22)	< 0.001	< 0.001		
group_char		0.15	0.22		0.95	0.95		0.33	0.33		
H1000's	_			_			_				
H2000's	-0.36 (-0.99 to 0.26)			-0.26 (-2.0 to 1.4)			0.26 (-0.57 to 1.1)				
H3000's	0.29 (-0.30 to 0.88)			-0.20 (-1.8 to 1.4)			-0.39 (-1.2 to 0.39)				
subj_char.sd(Intercept)	0.89 (NA to NA)			2.4 (NA to NA)			1.2 (NA to NA)				
Residual.sdObservation	0.27 (NA to NA)			0.66 (NA to NA)			0.31 (NA to NA)				

¹ CI = Confidence Interval

 $^{^{2}}$ False discovery rate correction for multiple testing $\,$

Cluster:	3																													
	AProx	COV		AP	1000		MLe	az COV		ML	essoc		Step	Step Dur		UDe	SE COV			Acasc	- 1	Stano	e Dur		GainCy	cle Dur		Peak Up	Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	19 (16 to 21)	< 0.001	< 0.001	0.08 (0.08 to 0.09)	< 0.001	< 0.001	11 (9.3 to 13)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.6 (1.5 to 1.6)	< 0.001	< 0.000	23 (21 to 24)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	23 (2.2 to 2.4)	< 0.001	< 0.001	3.1 (3.0 to 3.2)	< 0.001	< 0.001	0.00 (-0.02 to 0.03)	0.67	0.67
speed_cond_num	-3.8 (-6.7 to -0.82)	0.012	0.026	-0.04 (-0.05 to -0.04)	< 0.002	< 0.002	5.1 (2.9 to 7.4)	< 0.001	< 0.001	-0.07 (-0.08 to -0.06)	< 0.001	< 0.001	-1.0 (-1.1 to -0.96)	< 0.002	< 0.000	-16 (-18 to -15)	< 0.001	< 0.001	0.03 (0.02 to 0.03)		< 0.001	-1.7 (-1.9 to -1.6)	< 0.001	< 0.001	-2.1 (-2.2 to -1.9)	< 0.001	< 0.001	0.37 (0.35 to 0.39)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.002	0.002		< 0.001	< 0.001		< 0.001	< 0.000		0.34	0.34		0.25	0.26		< 0.001	< 0.001		< 0.001	< 0.001		0.20	0.26
H1000's	_			_			_			_						_			_						_			_	-	$\overline{}$
H2000's	5.9 (2.3 to 9.6)			-0.02 (-0.03 to -0.01)			-4.1 (-6.9 to -1.3)			0.03 (0.02 to 0.05)			-0.41 (-0.50 to -0.32)			1.3 (-0.80 to 3.4)			0.00 (0.00 to 0.00)			-0.62 (-0.77 to -0.47)			-0.82 (-0.99 to -0.64)			0.00 (-0.04 to 0.03)		
H3000's	10 (7.0 to 14)			-0.03 (-0.04 to -0.02)			0.50 (-2.1 to 3.2)			0.01 (-0.01 to 0.02)			-0.57 (-0.65 to -0.49)			-0.15 (-2.2 to 1.9)			0.00 (0.00 to 0.00)			-0.86 (-1.0 to -0.72)			-1.1 (-1.3 to -0.97)			0.03 (-0.01 to 0.06)		$\overline{}$
speed_cond_num * group_char		0.34	0.34		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.000		0.040	0.054		0.049	0.066		< 0.001	< 0.001		< 0.001	< 0.001		0.037	0.074
speed_cond_num * H2000's	1.2 (-3.1 to 5.6)			0.02 (0.01 to 0.03)			7.0 (3.6 to 10)			-0.04 (-0.05 to -0.02)			0.40 (0.25 to 0.52)			-0.47 (-3.1 to 2.2)			0.00 (0.00 to 0.01)			0.63 (0.42 to 0.84)			0.79 (0.55 to 1.0)			0.04 (0.01 to 0.07)		
speed_cond_num * H3000's	-2.0 (-6.1 to 2.2)			0.02 (0.01 to 0.03)			-0.83 (-4.1 to 2.4)			-0.01 (-0.02 to 0.00)			0.54 (0.43 to 0.66)			2.6 (0.11 to 5.2)			0.00 (0.00 to 0.00)			0.87 (0.67 to 1.1)			1.1 (0.86 to 1.3)			0.00 (-0.03 to 0.03)		$\overline{}$
subj_char.ed_(Intercept)	3.6 (NA to NA)			0.01 (NA to NA)			2.7 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			1.9 (NA to NA)			0.00 (NA to NA)			0.08 (NA to NA)			0.12 (NA to NA)			0.04 (NA to NA)		$\overline{}$
Residual.ed Observation	4.3 (NA to NA)			0.01 (NA to NA)			3.4 (NA to NA)			0.01 (NA to NA)			0.12 (NA to NA)	$\overline{}$		2.6 (NA to NA)			0.00 (NA to NA)			0.21 (NA to NA)			0.24 (NA to NA)			0.03 (NA to NA)		$\overline{}$

Cluster:	4																													
	AProx	c COV		AP	1900		MLe	se COV		ML	1000		Step	Dur		UDe	E COV		UE	Nesse		Stano	e Dur		GažeCy	de Dur	- 1	Peak Up	Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	e q-value
(Intercept)	17 (15 to 20)	< 0.001	< 0.001	0.08 (0.08 to 0.09)	< 0.001	< 0.001	11 (9.4 to 13)	< 0.001	< 0.001	0.12 (0.11 to 0.13)	< 0.001	< 0.001	1.6 (1.5 to 1.6)	< 0.001	< 0.001	23 (21 to 24)	< 0.001	< 0.001	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.3 (2.2 to 2.4)	< 0.001	< 0.001	3.1 (3.0 to 3.2)	< 0.001	< 0.001	0.01 (-0.01 to 0.03)	0.49	0.53
speed_cond_num	-2.6 (-5.5 to 0.21)	0.020	0.003	-0.04 (-0.05 to -0.04)	< 0.001	< 0.001	5.3 (2.9 to 7.6)	< 0.001	< 0.001	-0.07 (-0.05 to -0.05)	< 0.001	< 0.001	-1.0 (-1.1 to -0.95)	< 0.001	< 0.001	-16 (-18 to -14)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.7 (-1.9 to -1.6)	< 0.001	< 0.001	-2.1 (-2.2 to -1.9)	< 0.001	< 0.001	0.37 (0.35 to 0.39)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.16	0.16		< 0.001	< 0.001		< 0.001	< 0.001		0.38	0.38		0.70	0.70		< 0.001	< 0.001		< 0.001	< 0.001		0.53	0.53
H1000's	_			_			_			_			_			_			_			_			_			_		-
H2000's	6.9 (3.3 to 11)			-0.02 (-0.03 to -0.01)			-2.9 (-6.0 to 0.25)			0.03 (0.02 to 0.05)			-0.39 (-0.49 to -0.30)			1.4 (-0.89 to 3.7)			0.00 (0.00 to 0.00)			-0.60 (-0.76 to -0.44)			-0.78 (-0.98 to -0.29)			0.00 (-0.03 to 0.04)		_
H3000's	11 (7.8 to 15)			-0.03 (-0.04 to -0.02)			-0.35 (-3.3 to 2.6)			0.01 (0.00 to 0.03)			-0.57 (-0.67 to -0.48)			-0.11 (-2.3 to 2.1)			0.00 (0.00 to 0.00)			-0.88 (-1.0 to -0.73)			-1.1 (-1.3 to -0.97)			0.02 (-0.02 to 0.05)		$\overline{}$
speed_cond_num * group_char		0.43	0.43		< 0.001	< 0.001		0.15	0.16		< 0.001	< 0.001		< 0.001	< 0.001		0.051	0.009		0.080	0.11		< 0.001	< 0.001		< 0.001	< 0.001		0.23	0.46
	-1.3 (-5.7 to 3.1)			0.01 (0.00 to 0.02)			2.8 (-0.79 to 6.5)			-0.03 (-0.05 to -0.02)			0.40 (0.27 to 0.52)			-1.1 (-3.9 to 1.7)			0.00 (0.00 to 0.01)			0.63 (0.40 to 0.85)			0.79 (0.53 to 1.0)			0.03 (-0.01 to 0.07)		$\overline{}$
speed_cond_num * H3000's	-2.8 (-6.9 to 1.4)			0.03 (0.02 to 0.04)			-0.66 (-4.1 to 2.8)			-0.01 (-0.02 to 0.00)			0.55 (0.43 to 0.67)			24 (-0.31 to 5.1)			0.00 (0.00 to 0.00)			0.88 (0.67 to 1.1)			1.1 (0.85 to 1.3)			0.00 (-0.03 to 0.04)		-
	3.4 (NA to NA)			0.01 (NA to NA)			3.2 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			2.1 (NA to NA)			0.00 (NA to NA)			0.07 (NA to NA)			0.13 (NA to NA)			0.04 (NA to NA)		T
Residual ad Observation	4.1 (NA to NA)			0.01 (NA to NA)												2.7 (NA to NA)			0.00 (NA to NA)						0.25 (NA to NA)					$\overline{}$

CI = Confidence Interval
False discovery rate correction for multiple testing

Cleator																														
	APos	COV	1	AT	Year	1	MLe	se COV	1	ML	1900		Step	Dur		UDe	c COV		UE	1000		Stano	e Dur		GazeCy	rele Dur		Prok U	Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	18 (16 to 20)	< 0.001	< 0.001	0.08 (0.07 to 0.09)	< 0.001	< 0.001	11 (8.9 to 13)	< 0.001	< 0.001	0.12 (0.11 to 0.13)	< 0.001	< 0.001	1.5 (1.5 to 1.6)	< 0.001	< 0.001	23 (22 to 25)	< 0.001	< 0.000	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.2 (2.1 to 2.4)	< 0.001	< 0.001	3.0 (2.9 to 3.2)	< 0.001	< 0.001	0.01 (-0.01 to 0.03)	0.45	0.59
speed_cond_num	-3.1 (-6.0 to -0.12)	0.042	0.055	-0.04 (-0.05 to -0.03)	< 0.001	< 0.001	6.2 (3.9 to 8.5)	< 0.001	< 0.001	-0.07 (-0.06 to -0.06)	< 0.001	< 0.001	-0.99 (-1.1 to -0.90)	< 0.001	< 0.001	-16 (-18 to -15)	< 0.001	< 0.000	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.6 (-1.6 to -1.5)	< 0.001	< 0.001	-2.0 (-2.2 to -1.8)	< 0.001	< 0.001	0.37 (0.34 to 0.39)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.59	0.77		0.003	0.003		< 0.001	< 0.002		0.62	0.77		0.76	0.76		< 0.001	< 0.001		< 0.001	< 0.001		0.59	0.59
H1000's	_			_						_			_						_			_						_		
H2000's	5.2 (0.31 to 10)			-0.01 (-0.02 to 0.00)			-1.9 (-6.1 to 2.3)			0.03 (0.01 to 0.06)			-0.29 (-0.42 to -0.15)			1.3 (-1.8 to 4.4)			0.00 (0.00 to 0.01)			-0.38 (-0.60 to -0.15)			-0.57 (-0.83 to -0.31)			0.01 (-0.03 to 0.06)		
H3000's	12 (7.6 to 16)			-0.03 (-0.04 to -0.02)			-1.3 (-4.7 to 2.1)			0.02 (0.00 to 0.04)			-0.57 (-0.68 to -0.46)			0.94 (-1.6 to 3.5)			(00.0 cd (0.00) 00.0			-0.83 (-1.0 to -0.64)			-1.1 (-1.4 to -0.93)			0.02 (-0.02 to 0.05)		
speed_cond_num * group_char		0.61	0.62		< 0.001	< 0.001		0.77	0.77		< 0.001	< 0.001		< 0.001	< 0.001		0.77	0.77		0.22	0.43		< 0.001	< 0.001		< 0.001	< 0.001		0.17	0.35
speed_cond_num * H2000's	0.62 (-5.2 to 6.5)			0.01 (0.00 to 0.02)			1.6 (-3.1 to 6.3)			-0.04 (-0.06 to -0.02)			0.27 (0.09 to 0.45)			-0.45 (-4.3 to 3.4)			0.00 (0.00 to 0.00)			0.37 (0.06 to 0.68)			0.54 (0.18 to 0.90)			0.01 (-0.04 to 0.06)		
speed_cond_num * H3000's	-2.1 (-7.0 to 2.7)			0.03 (0.01 to 0.04)			0.88 (-3.0 to 4.7)			-0.02 (-0.04 to 0.00)			0.54 (0.39 to 0.68)			0.92 (-2.3 to 4.1)			0.00 (0.00 to 0.01)			0.82 (0.56 to 1.1)			1.1 (0.78 to 1.4)			0.04 (0.00 to 0.05)		
sub _char.ed(Intercept)	3.6 (NA to NA)			0.01 (NA to NA)			3.4 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			1.9 (NA to NA)			0.00 (NA to NA)			0.08 (NA to NA)			0.12 (NA to NA)			0.04 (NA to NA)		
Residual ad Observation	4.1 (NA to NA)			0.01 (NA to NA)			3.3 (NA to NA)			0.01 (NA to NA)			0.12 (NA to NA)			2.7 (NA to NA)			0.00 (NA to NA)			0.22 (NA to NA)			0.25 (NA to NA)					

 $^{^2}$ False discovery rate correction for multiple testin

Claster:	6																													
		COV	- 1	AP	esso		ML	nz COV		707	1000		Step	Dur		UDes	c COV		UI	leace .		Stano	se Dur		GaltC	cle Dur		Peak Up	Down Vel	
Characteristic	Beta (95% CI)	p-value	d-Angre	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Heta (95% CI)	p-value	d-zagre	Heta (95% CI)	p-value	q-value	Heta (95% CI)	p-value	d-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
Intercept)	18 (16 to 20)	< 0.001	< 0.001	0.08 (0.07 to 0.09)	< 0.001	< 0.001	10 (8.1 to 12)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.5 (1.5 to 1.6)	< 0.001	< 0.001	22 (20 to 23)	< 0.001	< 0.001	0.01 (0.01 to 0.00)	< 0.001	< 0.001	2.3 (2.2 to 2.4)	< 0.001	< 0.001	3.1 (3.0 to 3.2)	< 0.001	< 0.001	0.01 (-0.01 to 0.03)	0.28	0.48
peed_cond_num	-3.2 (-6.1 to -0.25)	0.034	0.045	-0.04 (-0.05 to -0.03)	< 0.001	< 0.001	6.9 (4.5 to 9.3)	< 0.001	< 0.001	-0.07 (-0.08 to -0.06)	< 0.001	< 0.001	-1.0 (-1.1 to -0.93)	< 0.001	< 0.001	-15 (-16 to -13)	< 0.001	< 0.001	0.63 (0.02 to 0.63)	< 0.001	< 0.001	-1.7 (-1.8 to -1.5)	< 0.001	< 0.001	-2.0 (-2.2 to -1.9)	< 0.001	< 0.001	0.36 (0.33 to 0.35)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.49	0.49		0.002	0.002		< 0.001	< 0.001		0.009	0.013		0.58	0.58		< 0.001	< 0.001		< 0.001	< 0.001		0.48	0.48
H1000's	_			_			_			_			_			_			_						_					$\overline{}$
H2000's	7.8 (4.0 to 12)			-0.02 (-0.02 to -0.01)			-1.4 (-4.7 to 1.9)			0.03 (0.01 to 0.05)			-0.41 (-0.51 to -0.31)			3.4 (1.2 to 5.6)			0.00 (0.00 to 0.00)			-0.63 (-0.90 to -0.46)			-0.81 (-1.0 to -0.61)			0.00 (-0.04 to 0.03)		Т —
H3000's	13 (9.1 to 16)			-0.02 (-0.03 to -0.01)			0.09 (-2.5 to 3.9)			0.02 (0.00 to 0.03)			-0.56 (-0.66 to -0.46)			0.66 (-1.5 to 2.8)			0.00 (0.00 to 0.00)			-0.84 (-1.0 to -0.68)			-1.1 (-1.3 to -0.92)			0.02 (-0.02 to 0.05)		T
peed_cond_num * group_char		0.029	0.039		0.013	0.013		0.28	0.37		< 0.001	< 0.001		< 0.001	< 0.001		0.019	0.019		0.12	0.16		< 0.001	< 0.001		< 0.001	< 0.001		0.015	0.031
speed_cond_num * H2000's	-1.7 (-6.4 to 3.0)			0.01 (0.00 to 0.02)			1.6 (-2.2 to 5.5)			-0.03 (-0.05 to -0.02)			0.40 (0.26 to 0.54)			-3.1 (-5.7 to -0.45)			0.00 (0.00 to 0.00)			0.64 (0.40 to 0.88)			0.80 (0.52 to 1.1)			0.05 (0.01 to 0.09)		T
speed cond num * H3000's	-5.4 (-10 to -0.93)			0.02 (0.01 to 0.03)			-1.7 (-5.4 to 2.0)			-0.02 (-0.04 to -0.01)			0.52 (0.39 to 0.65)			0.71 (-1.8 to 3.2)			0.00 (0.00 to 0.00)			0.83 (0.60 to 1.1)			1.0 (0.78 to 1.3)			0.04 (0.00 to 0.07)		-
ub_char.ed_(Intercept)	3.1 (NA to NA)			0.01 (NA to NA)			3.2 (NA to NA)			0.02 (NA to NA)			0.07 (NA to NA)			2.0 (NA to NA)			0.00 (NA to NA)			0.08 (NA to NA)			0.13 (NA to NA)			0.04 (NA to NA)		-
Issidual.sd Observation	4.2 (NA to NA)			0.01 (NA to NA)			3.4 (NA to NA)			0.01 (NA to NA)			0.12 (NA to NA)			2.4 (NA to NA)			0.00 (NA to NA)			0.21 (NA to NA)			0.24 (NA to NA)			0.03 (NA to NA)		T

² False discovery rate correction for multiple testing

Cluster:	7																													
	APex			Al	bood		ML	az COV		ML	esoc		Step	Dur		UDes	ic COV		UD	Nesse:		Stano	o Dur		GairCy	cle Dur			pDown Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	d-zapas	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	d-zagne	Heta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	e q-value
(Intercept)	18 (16 to 21)	< 0.001	< 0.001	0.08 (0.05 to 0.09)	< 0.001	< 0.001	10 (8.2 to 12)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.5 (1.5 to 1.6)	< 0.001	< 0.000	22 (21 to 24)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	23 (2.2 to 2.4)	< 0.001	< 0.001	3.1 (3.0 to 3.2)	< 0.001	< 0.001	0.01 (-0.02 to 0.03)	0.61	0.61
speed_cond_num	-3.5 (-6.3 to -0.71)	0.014	0.029	-0.04 (-0.05 to -0.04)	< 0.001	< 0.001	5.7 (3.5 to 7.9)	< 0.001	< 0.001	-0.08 (-0.08 to -0.07)	< 0.001	< 0.001	-1.0 (-1.1 to -0.93)	< 0.001	< 0.000	-16 (-17 to -14)	< 0.001	< 0.001	0.63 (0.62 to 0.63)	< 0.001	< 0.001	-1.7 (-1.8 to -1.5)	< 0.001	< 0.001	-2.0 (-2.2 to -1.9)	< 0.001	< 0.001	0.37 (0.35 to 0.39)	< 0.001	< 0.001
group_clar		< 0.001	< 0.001		< 0.002	< 0.001		0.031	0.031		0.002	0.002		< 0.002	< 0.000		0.24	0.24		0.45	0.46		< 0.002	< 0.001		< 0.001	< 0.001		0.31	0.61
H1000's	_			_									_						_						_			_		$\overline{}$
H2000's	5.8 (1.9 to 9.7)			-0.01 (-0.02 to 0.00)			-2.6 (-5.7 to 0.40)			0:03 (0:01 to 0:05)			-0.31 (-0.40 to -0.21)			2.0 (-0.36 to 4.3)			0.00 (0.00 to 0.00)			-0.45 (-0.65 to -0.32)			-0.61 (-0.81 to -0.41)			0.01 (-0.03 to 0.04)		-
H3000's	11 (7.2 to 14)			-0.03 (-0.03 to -0.02)			1.5 (-1.2 to 4.2)			0.01 (-0.01 to 0.02)			-0.53 (-0.61 to -0.44)			0.41 (-1.7 to 2.5)			0.00 (0.00 to 0.00)			-0.81 (-0.95 to -0.06)			-1.1 (-1.2 to -0.88)			0.02 (-0.01 to 0.05)		_
speed_cond_num * group_char		0.33	0.33		< 0.001	< 0.001		0.002	0.002		< 0.001	< 0.001		< 0.001	< 0.000		0.023	0.031		0.33	0.44		< 0.001	< 0.001		< 0.001	< 0.001		0.49	0.61
speed_cond_num * H2000's	0.44 (-4.1 to 5.0)			0.01 (0.00 to 0.02)			4.9 (1.3 to 8.5)			-0.03 (-0.05 to -0.02)			0.30 (0.17 to 0.43)			-2.1 (-4.9 to 0.70)			0.00 (0.00 to 0.00)			0.49 (0.25 to 0.72)			0.59 (0.33 to 0.86)			0.02 (-0.02 to 0.06)		1
speed_cond_num * H3000's	-2.6 (-6.6 to 1.5)			0.02 (0.01 to 0.03)			-1.6 (-4.7 to 1.6)			-0.01 (-0.02 to 0.01)			0.51 (0.39 to 0.62)			1.9 (-0.62 to 4.3)			0.00 (0.00 to 0.00)			0.81 (0.61 to 1.0)			1.0 (0.78 to 1.2)			0.00 (-0.03 to 0.03)		$\overline{}$
sub char.sd (Intercept)	3.8 (NA to NA)			0.01 (NA to NA)			2.9 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			2.1 (NA to NA)			0.00 (NA to NA)			0.07 (NA to NA)			0.12 (NA to NA)			0.04 (NA to NA)		1
Residual at Observation	4.1 (NA to NA)			0.01 (NA to NA)			3.2 (NA to NA)			0.01 (NA to NA)			9.12 (NA to NA)			2.5 (NA to NA)									0.24 (NA to NA)			0.03 (NA to NA)		

CI = Confidence Interval
² False discovery rate correction for multiple testing

Cluster:																														
		COV		AP	bood			az COV		ML	racc .		Step	Dur		UDa	SEC COV		UI	Nesse		Stane			GaitCy	cle Dur		Peak Up		
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	d-zagne	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Heta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	d-raine	Beta (95% CI)	p-value	q-value
(Intercept)	18 (16 to 20)	< 0.001	< 0.001	0.08 (0.05 to 0.09)	< 0.001	< 0.001	11 (9.2 to 13)	< 0.001	<0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.002	1.6 (1.5 to 1.6)	< 0.001	< 0.001	23 (21 to 24)	< 0.001	< 0.001	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.3 (2.2 to 2.4)	< 0.002	< 0.001	3.1 (3.0 to 3.2)	< 0.001	<0.001	0.01 (-0.01 to 0.03)	0.37	0.37
speed_cond_num	-3.5 (-6.2 to -0.79)	0.011	0.015	-0.04 (-0.05 to -0.04)	< 0.001	< 0.001	5.6 (3.2 to 7.9)	< 0.001	< 0.001	-0.07 (-0.08 to -0.07)	< 0.001	< 0.001	-1.0 (-1.1 to -0.94)	< 0.001	< 0.001	-16 (-18 to -14)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.7 (-1.8 to -1.6)	< 0.001	< 0.001	-2.0 (-2.2 to -1.9)	< 0.001	< 0.001	0.36 (0.34 to 0.35)	< 0.001	< 0.002
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.10	0.10		< 0.001	< 0.001		< 0.001	< 0.001		0.24	0.31		0.46	0.46		< 0.001	< 0.001		< 0.001	< 0.001		0.15	0.20
H1000's	_			_			_			_			_			_			_			_			_			_		_
H2000's	6.2 (2.8 to 9.7)			-0.02 (-0.03 to -0.01)			-2.8 (-5.9 to 0.27)			0.63 (0.61 to 0.04)			-0.35 (-0.47 to -0.25)			1.8 (-0.27 to 3.9)			0.00 (0.00 to 0.00)			-0.59 (-0.74 to -0.43)			-0.75 (-0.93 to -0.57)			-0.01 (-0.04 to 0.02)		$\overline{}$
H3000's	12 (8.2 to 15)			-0.63 (-0.94 to -0.92)			0.52 (-2.5 to 3.6)			0.01 (-0.01 to 0.02)			-0.57 (-0.66 to -0.48)			0.70 (-1.3 to 2.7)			0.00 (0.00 to 0.00)			-0.86 (-1.0 to -0.71)			-1.1 (-1.3 to -0.97)			0.02 (-0.01 to 0.05)		-
speed cond nun * group_char		0.10	0.10		< 0.001	< 0.001		0.038	0.050		< 0.001	< 0.001		< 0.001	< 0.001		0.38	0.35		0.21	0.26		< 0.001	< 0.001		< 0.001	< 0.001		0.021	0.042
speed_cond_num * H2000's	-0.54 (-4.8 to 3.7)			0.66 (0.00 to 0.02)			3.8 (0.10 to 7.5)			-0.63 (-0.65 to -0.02)			0.36 (0.24 to 0.49)			-1.1 (-3.7 to 1.4)			0.00 (0.00 to 0.01)			0.59 (0.37 to 0.80)			0.72 (0.47 to 0.97)			0.05 (0.01 to 0.08)		-
speed_cond_num * H3000's	-4.4 (-8.6 to -0.19)			0.02 (0.01 to 0.03)			-1.1 (-4.8 to 2.5)			-0.01 (-0.02 to 0.01)			0.55 (0.43 to 0.67)			0.83 (-1.7 to 3.4)			0.00 (0.00 to 0.00)			0.87 (0.66 to 1.1)			1.1 (0.86 to 1.3)			0.02 (-0.01 to 0.05)		1
sub char.sd (Intercept)	3.1 (NA to NA)			0.01 (NA to NA)			3.1 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			1.9 (NA to NA)			0.00 (NA to NA)			0.07 (NA to NA)			0.12 (NA to NA)			0.04 (NA to NA)		$\overline{}$
Residual.ed Observation	4.2 (NA to NA)			0.01 (NA to NA)			3.7 (NA to NA)			0.01 (NA to NA)			9.12 (NA to NA)						0.00 (NA to NA)											

CI = Confidence Interval
 False discovery rate correction for multiple testin

Cluster:	9																													
		z COV		AP	booc		ML	exe COV		ML	900		Sto	p Dur		UDe	xc COV		UD	losc		Stane	to Dur		GazeCy	cle Dur		Peak Up	Down Vel	
Characteristic		p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Heta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	18 (14 to 22)	< 0.001	< 0.001	0.09 (0.05 to 0.10)	< 0.001	< 0.001	13 (10 to 16)	< 0.001	< 0.001	0.12 (0.11 to 0.14)	< 0.001	< 0.001	1.6 (1.5 to 1.7)	< 0.001	< 0.001	23 (21 to 25)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	24 (23 to 26)	< 0.001	< 0.001	3.3 (3.1 to 3.4)	< 0.001	< 0.001	0.00 (-0.03 to 0.04)	0.59	0.89
speed_cond_num	-3.5 (-8.2 to 1.2)	0.14	0.19	-0.05 (-0.06 to -0.04)	< 0.001	< 0.001	3.2 (-0.20 to 6.6)	0.065	0.065	-0.07 (-0.09 to -0.06)	< 0.001	< 0.001	-1.1 (-1.2 to -0.99)	< 0.001	< 0.001	-17 (-19 to -14)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.8 (-2.0 to -1.6)	< 0.001	< 0.001	-2.2 (-2.5 to -2.0)	< 0.001	< 0.001	0.35 (0.35 to 0.41)	< 0.001	< 0.001
group_char		< 0.001	0.001		< 0.001	< 0.001		0.027	0.035		0.017	0.017		< 0.001	< 0.001		0.71	0.71		0.21	0.24		< 0.001	< 0.001		< 0.001	< 0.001		0.20	0.26
H1000's	_			_			_			_			_			_						_			_				$\overline{}$	$\overline{}$
H2000's	7.4 (1.9 to 13)			-0.03 (-0.04 to -0.02)			-5.7 (-9.9 to -1.5)			0.02 (0.00 to 0.04)			-0.45 (-0.61 to -0.35)			1.0 (-1.9 to 3.9)			0.00 (-0.01 to 0.00)			-0.72 (-0.93 to -0.50)			-0.96 (-1.2 to -0.70)			0.00 (-0.04 to 0.05)	$\overline{}$	$\overline{}$
H3000's	9.9 (4.7 to 15)			-0.03 (-0.05 to -0.02)			-2.0 (-5.9 to 1.9)			0.03 (0.01 to 0.05)			-0.64 (-0.76 to -0.53			-0.11 (-2.8 to 2.6)			0.00 (0.00 to 0.01)			-0.97 (-1.2 to -0.77)			-1.3 (-1.5 to -1.1)			0.04 (-0.01 to 0.08)	-	$\overline{}$
speed_cond_num * group_char		0.77	0.77		< 0.001	< 0.001		< 0.001	0.002		0.026	0.017		< 0.001	< 0.001		0.25	0.22		0.24	0.24		< 0.001	< 0.001		< 0.001	< 0.001		0.17	0.26
speed_cond_num * H2000's	-1.4 (-8.4 to 5.6)			0.02 (0.01 to 0.04)			9.0 (4.0 to 14)			-0.03 (-0.05 to -0.01)			0.45 (0.30 to 0.66)			0.66 (-2.9 to 4.3)			0.00 (0.00 to 0.01)			0.73 (0.42 to 1.0)			0.96 (0.59 to 1.3)			0.02 (-0.03 to 0.07)	-	$\overline{}$
speed cond num * H3000's	-2.4 (-8.9 to 4.1)			0.03 (0.02 to 0.05)			1.3 (-3.3 to 6.0)			-0.02 (-0.04 to 0.00)			0.65 (0.45 to 0.82)			2.7 (-0.62 to 6.1)			0.00 (-0.01 to 0.00)			1.0 (0.73 to 1.3)			1.3 (0.97 to 1.6)			-0.03 (-0.07 to 0.02)		$\overline{}$
sub char.sd (Intercept)	3.5 (NA to NA)			0.01 (NA to NA)			3.1 (NA to NA)			0.02 (NA to NA)			0.05 (NA to NA)			1.9 (NA to NA)			0.00 (NA to NA)			0.04 (NA to NA)			0.10 (NA to NA)			0.04 (NA to NA)	$\overline{}$	$\overline{}$
Residual.sd_Observation	4.9 (NA to NA)			0.01 (NA to NA)			3.5 (NA to NA)			0.02 (NA to NA)			0.13 (NA to NA)			25 (NA to NA)			0.00 (NA to NA)			0.22 (NA to NA)			0.25 (NA to NA)			0.03 (NA to NA)	-	-

¹ CI = Confidence Interval ² False discovery rate correction for multiple testing.

Cluster																														
	APv	az COV		AP	Year		MLe	ne COV		ML	esse		Step	Dur		UDe	ac COV		UD UD	esse	1	Stano	e Dur		GaitC	ycle Dur		Prok Upl	Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Heta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-valu-	e q-value
(Intercept)	20 (17 to 23)	< 0.000	< 0.001	0.08 (0.08 to 0.09)	< 0.001	< 0.001	12 (9.4 to 14)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.5 (1.5 to 1.6)	< 0.001	< 0.001	23 (21 to 25)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.3 (2.2 to 2.4)	< 0.001	< 0.001	3.1 (2.9 to 3.2)	< 0.001	< 0.001	0.00 (-0.03 to 0.03)	0.83	0.83
speed_cond_num	-5.2 (-9.2 to -1.3)	0.009	0.012	-0.05 (-0.05 to -0.04)	< 0.001	< 0.001	4.2 (1.2 to 7.2)	0.006	0.012	-0.08 (-0.09 to -0.06)	< 0.001	< 0.001	-1.0 (-1.1 to -0.91)	< 0.001	< 0.001	-17 (-19 to -14)	< 0.001	< 0.001	0.02 (0.02 to 0.03)	< 0.001	< 0.001	-1.7 (-1.8 to -1.5)	< 0.001	< 0.001	-2.0 (-2.2 to -1.8)	< 0.001	< 0.001	0.36 (0.34 to 0.39)	< 0.001	< 0.000
group_char		< 0.000	< 0.001		< 0.001	< 0.001		0.18	0.24		0.654	0.054		< 0.001	< 0.001		0.39	0.39		0.11	0.11		< 0.001	< 0.001		< 0.001	< 0.001		0.38	0.50
H1000's	-			_			_			_			_			-			_			_			_			-		-
H2000's	4.8 (-0.29 to 9.8)			-0.02 (-0.03 to -0.01)			-3.5 (-7.3 to 0.27)			0.02 (0.00 to 0.04)			-0.41 (-0.53 to -0.30)			0.77 (-1.9 to 3.5)			0.00 (-0.01 to 0.00)			-0.63 (-0.52 to -0.44)			-0.53 (-1.1 to -0.60)			-0.01 (-0.05 to 0.04)	$\overline{}$	
H3000's	9.4 (4.9 to 14)			-0.03 (-0.04 to -0.02)			-0.92 (-4.3 to 2.4)			0.01 (0.00 to 0.03)			-0.55 (-0.65 to -0.45)			-1.1 (-3.5 to 1.3)			0.00 (0.00 to 0.00)			-0.83 (-0.99 to -0.67)			-1.1 (-1.3 to -0.90)			0.02 (-0.02 to 0.05)	-	-
speed_cond_num * group_char		0.58	0.58		< 0.001	< 0.001		0.47	0.47		0.027	0.036		< 0.001	< 0.001		0.045	0.059		0.001	0.001		< 0.001	< 0.001		< 0.001	< 0.001		0.011	0.022
speed cond num * H2000's	0.52 (-5.7 to 6.8)			0.02 (0.00 to 0.03)			3.0 (-1.8 to 7.7)			-0.03 (-0.05 to -0.01)			0.49 (0.25 to 0.55)			-0.31 (-3.7 to 3.1)			0.01 (0.00 to 0.01)			0.63 (0.37 to 0.90)			0.50 (0.49 to 1.1)			0.07 (0.02 to 0.11)	$\overline{}$	$\overline{}$
speed_cond_num * H3000's	0.37 (-5.1 to 5.9)			0.02 (0.01 to 0.04)			1.4 (-2.8 to 5.6)			-0.01 (-0.03 to 0.01)			0.53 (0.39 to 0.66)			33 (0.29 to 6.3)			0.00 (0.00 to 0.01)			0.54 (0.60 to 1.1)			1.1 (0.78 to 1.3)			0.04 (0.00 to 0.05)		-
sub _char.ed(Intercept)	3.5 (NA to NA)			0.01 (NA to NA)			2.6 (NA to NA)			0.02 (NA to NA)			0.05 (NA to NA)			1.8 (NA to NA)			0.00 (NA to NA)			0.05 (NA to NA)			0.11 (NA to NA)			0.04 (NA to NA)	$\overline{}$	$\overline{}$

CI = Confidence Interval
² False discovery rate correction for multiple testin

Cluter	11																													
		COV		AP	Vogo		Mile	se COV		ML	1000		Stop	Dur		UDe	oc COV		I UD	e000	- 1	Stano	o Dur	- 1	GatCy	de Dur			Down Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
Intercept)	18 (16 to 21)	< 0.001	< 0.001	0.08 (0.07 to 0.09)	< 0.001	< 0.001	10 (8.2 to 12)	< 0.001	< 0.001	0.13 (0.12 to 0.14)	< 0.001	< 0.001	1.5 (1.5 to 1.6)	< 0.001	< 0.001	22 (21 to 24)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.3 (2.2 to 2.4)	< 0.001	< 0.001	3.1 (2.9 to 3.2)	< 0.001	< 0.001	0.00 (-0.02 to 0.03)	0.92	0.82
pood_cond_num	-3.9 (-7.2 to -0.95)	0.019	0.025	-0.04 (-0.05 to -0.03)	< 0.001	< 0.002	6.1 (3.4 to 5.5)	< 0.001	< 0.001	-0.07 (-0.09 to -0.06)	< 0.001	< 0.001	-1.0 (-1.1 to -0.91)	< 0.002		-16 (-18 to -14)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.7 (-1.8 to -1.5)	< 0.001	<0.001	-2.0 (-2.2 to -1.8)			0.37 (0.35 to 0.40)	< 0.001	< 0.001
roup_clar		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		0.001	0.001		< 0.001	< 0.001		0.35	0.35		0.14	0.14		< 0.001	< 0.001		< 0.001	< 0.001		0.16	0.22
H1000's	_			_			_			_			_			_			_						_			_		
H2000'x	5.8 (1.9 to 9.7)			-0.02 (-0.03 to -0.02)			-3.5 (-6.5 to -0.50)			0.03 (0.01 to 0.05)			-0.39 (-0.49 to -0.30)			1.5 (-0.57 to 3.6)			0.00 (-0.01 to 0.00)			-0.62 (-0.78 to -0.45)			-0.79 (-0.99 to -0.93)			0.00 (-0.04 to 0.03)		
H3000's	14 (10 to 18)			-0.03 (-0.04 to -0.02)			2.6 (-0.44 to 5.5)			0.00 (-0.01 to 0.02)			-0.64 (-0.74 to -0.54)			0.95 (-1.1 to 3.0)			0.00 (0.00 to 0.01)			-0.95 (-1.1 to -0.79)			-1.3 (-1.5 to -1.1)			0.03 (-0.01 to 0.07)		
peed_cond_num * group_char		0.11	0.11		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		0.25	0.35		0.056	0.022		< 0.001	< 0.001		< 0.001	< 0.001		0.11	0.22
speed_cond_num * H2000's	0.73 (-4.0 to 5.5)			0.02 (0.01 to 0.03)			4.8 (0.90 to 8.8)			-0.03 (-0.05 to -0.01)			0.40 (0.27 to 0.53)	-		-0.78 (-3.3 to 1.8)			0.00 (0.00 to 0.01)			0.65 (0.42 to 0.87)			0.80 (0.54 to 1.1)			0.04 (0.00 to 0.08)		
speed_cond_num * H3000's	-4.1 (-5.9 to 0.64)			0.02 (0.01 to 0.03)			-3.0 (-6.9 to 0.95)			-0.01 (-0.02 to 0.01)			0.61 (0.45 to 0.74)			1.3 (-1.2 to 3.8)			0.00 (0.00 to 0.00)			0.96 (0.74 to 1.2)			1.2 (0.96 to 1.5)			0.03 (-0.01 to 0.06)		
ubj_char.ed(Intercept)	3.4 (NA to NA)			0.00 (NA to NA)			2.1 (NA to NA)			0.02 (NA to NA)			0.07 (NA to NA)			1.9 (NA to NA)			0.00 (NA to NA)			0.09 (NA to NA)			0.14 (NA to NA)			0.04 (NA to NA)		

CI = Confidence Interval
 Palse discovery rate correction for multiple testi

Cluster:	12																													
		cov.		AP	1900		ML	osc COV		ML.	1000		Step	Dur			se COV		U	kooc		Stano	e Dur			cle Dur		Peak Up		
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	b-zagre	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	17 (14 to 20)	< 0.001	< 0.001	0.05 (0.05 to 0.09)	< 0.001	< 0.001	11 (8.8 to 13)	< 0.001	< 0.001	0.12 (0.11 to 0.14)	< 0.001	< 0.001	1.6 (1.5 to 1.7)	< 0.001	< 0.001	22 (21 to 24)	< 0.001	< 0.001	0.01 (0.01 to 0.01)	< 0.001	< 0.001	2.3 (2.2 to 2.5)	< 0.001	< 0.000	3.2 (3.0 to 3.3)	< 0.001	< 0.001	0.01 (-0.02 to 0.03)	0.63	0.63
speed_cond_num	-2.1 (-5.2 to 0.90)	0.17	0.17	-0.04 (-0.05 to -0.04)	< 0.001	< 0.001	6.0 (3.1 to 8.8)	< 0.001	< 0.001	-0.07 (-0.05 to -0.06)	< 0.001	< 0.001	-1.1 (-1.2 to -0.97)	< 0.001	< 0.001	-16 (-15 to -14)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.8 (-1.9 to -1.6)	< 0.001	< 0.000	-2.1 (-2.3 to -2.0)	< 0.001	< 0.001	0.37 (0.34 to 0.39)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.10	0.10		< 0.001	< 0.001		< 0.001	< 0.001		0.21	0.21		0.50	0.50		< 0.001	< 0.000		< 0.001	< 0.001		0.52	0.63
H1000's				_			_			_			_			_			_			_			_			_		
H2000's	7.9 (4.0 to 12)			-0.02 (-0.03 to -0.01)			-3.2 (-6.6 to 0.30)			0.05 (0.03 to 0.05)			-0.40 (-0.51 to -0.30)			2.1 (-0.23 to 4.5)			0.00 (0.00 to 0.00)			-0.60 (-0.77 to -0.42)			-0.80 (-1.0 to -0.59)			0.00 (-0.04 to 0.04)	$\overline{}$	$\overline{}$
H3000's	12 (8.7 to 16)			-0.03 (-0.04 to -0.02)			0.32 (-2.9 to 3.6)			0.01 (0.00 to 0.03)			-0.58 (-0.68 to -0.49)			0.96 (-1.3 to 3.2)			0.00 (0.00 to 0.00)			-0.86 (-1.0 to -0.70)			-1.2 (-1.4 to -0.98)			0.02 (-0.02 to 0.05)		
speed_cond_num * group_char		0.12	0.16		< 0.001	< 0.001		0.10	0.10		< 0.001	< 0.001		< 0.001	< 0.001		0.19	0.21		0.051	0.11		< 0.001	< 0.000		< 0.001	< 0.001		0.073	0.15
speed_cond_num * H2000's	-2.0 (-6.5 to 2.6)			0.01 (0.00 to 0.03)			3.6 (-0.66 to 7.9)			-0.05 (-0.06 to -0.03)			0.41 (0.27 to 0.55)			-1.5 (-4.9 to 1.2)			0.00 (0.00 to 0.01)			0.63 (0.38 to 0.87)			0.81 (0.53 to 1.1)			0.04 (0.01 to 0.08)		
speed_cond_num * H3000's	-4.5 (-8.8 to -0.22)			0.02 (0.01 to 0.03)			-0.81 (-4.8 to 3.2)			-0.02 (-0.03 to 0.00)			0.57 (0.43 to 0.70)			0.98 (-1.9 to 3.8)			0.00 (0.00 to 0.00)			0.88 (0.65 to 1.1)			1.1 (0.87 to 1.4)			0.01 (-0.02 to 0.05)		
sub_char.ed_(Intercept)	3.7 (NA to NA)			0.01 (NA to NA)			2.9 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			LS (NA to NA)			0.00 (NA to NA)			0.08 (NA to NA)			0.13 (NA to NA)			0.04 (NA to NA)	$\overline{}$	$\overline{}$
	4.0 (NA to NA)			0.01 (NA to NA)			3.7 (NA to NA)			0.01 (NA to NA)			0.12 (NA to NA)			2.7 (NA to NA)			0.00 (NA to NA)			0.21 (NA to NA)			0.24 (NA to NA)			0.03 (NA to NA)		
¹ CI = Confidence Interval																														

CI = Confidence Interval False discovery rate correction for multiple testi

Cinete	APer	cov.		AP	eac		ML	ssc COV		MI	4000		Step	Dur		UD	sec COV		UI	Acsec.		Stane	e Dur		GaltCy	cle Dur		Peak Up	pDown Vel	
Characteristic	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value		p-value	q-value	Beta (95% CI)	p-value	q-value	Beta (95% CI)	p-value	q-value
(Intercept)	17 (14 to 20)	< 0.001	< 0.001	0.08 (0.08 to 0.09)	< 0.001	< 0.001	11 (8.7 to 13)	< 0.001	< 0.001	0.12 (0.11 to 0.13)	< 0.001	< 0.001	1.6 (1.5 to 1.7)	< 0.001	< 0.001	21 (20 to 23)	< 0.001	< 0.001	0.01 (0.00 to 0.01)	< 0.001	< 0.001	2.4 (2.2 to 2.5)	< 0.001	< 0.001	32 (3.0 to 3.3)	< 0.001	< 0.001	0.01 (-0.02 to 0.03)	0.61	0.71
speed_cond_mm	-2.7 (-6.1 to 0.73)	0.12	0.16	-0.04 (-0.05 to -0.03)	< 0.001	< 0.001	5.4 (2.6 to 8.3)	< 0.001	< 0.001	-0.07 (-0.05 to -0.05)	< 0.001	< 0.001	-1.1 (-1.2 to -0.96)	< 0.001	< 0.001	-15 (-17 to -13)	< 0.001	< 0.001	0.03 (0.02 to 0.03)	< 0.001	< 0.001	-1.7 (-1.9 to -1.6)	< 0.001	< 0.001	-2.1 (-2.3 to -1.9)	< 0.001	< 0.001	0.37 (0.34 to 0.40)	< 0.001	< 0.001
group_char		< 0.001	< 0.001		< 0.001	< 0.001		0.39	0.52		< 0.001	< 0.001		< 0.001	< 0.001		0.27	0.27		0.39	0.39		< 0.001	< 0.001		< 0.001	< 0.001		0.46	0.71
H1000's	_			_			_	T		_			_			_			_			_			_			_	_	T = T
H2000's	7.5 (3.0 to 12)			-0.02 (-0.03 to -0.01)			-2.4 (-6.1 to 1.4)			0.03 (0.02 to 0.05)			-0.46 (-0.57 to -0.34)			2.2 (-0.48 to 4.8)			0.00 (-0.01 to 0.00)			-0.70 (-0.88 to -0.51)			-0.91 (-1.1 to -0.69)			0.01 (-0.03 to 0.05)		$\overline{}$
H3000's	13 (8.3 to 17)			-0.02 (-0.03 to -0.02)			0.00 (-3.5 to 3.5)			0.03 (0.01 to 0.05)			-0.58 (-0.68 to -0.47)			1.1 (-1.4 to 3.6)			0.00 (0.00 to 0.01)			-0.87 (-1.0 to -0.70)			-1.2 (-1.4 to -0.94)			0.02 (-0.01 to 0.06)		-
speed_cond_num * group_char		0.65	0.68		0.004	0.004		0.57	0.57		< 0.001	< 0.001		< 0.001	< 0.001		0.18	0.24		0.052	0.11		< 0.001	< 0.001		< 0.001	< 0.001		0.71	0.71
speed_cond_num * H2000's	-2.3 (-7.7 to 3.2)			0.02 (0.00 to 0.03)			23 (-22 to 6.8)			-0.03 (-0.05 to -0.01)			0.47 (0.32 to 0.63)			-1.8 (-5.1 to 1.5)			0.00 (0.00 to 0.01)			0.74 (0.47 to 1.0)			0.95 (0.64 to 1.3)			0.02 (-0.02 to 0.06)		
speed_cond_num * H3000's	-1.7 (-6.8 to 3.5)			0.02 (0.01 to 0.03)			0.15 (-4.1 to 4.4)	$\overline{}$		-0.03 (-0.04 to -0.01)		$\overline{}$	0.54 (0.40 to 0.69)	$\overline{}$	$\overline{}$	1.5 (-1.7 to 4.6)	$\overline{}$		0.00 (-0.01 to 0.00)			0.86 (0.61 to 1.1)	$\overline{}$		1.1 (0.90 to 1.4)			0.00 (-0.03 to 0.04)	$\overline{}$	T
sub _char.sd(Intercept)	3.5 (NA to NA)			0.01 (NA to NA)			3.1 (NA to NA)			0.02 (NA to NA)			0.06 (NA to NA)			1.9 (NA to NA)			0.00 (NA to NA)			0.07 (NA to NA)			0.12 (NA to NA)			0.04 (NA to NA)	$\overline{}$	$\overline{}$
Residual.ed_Observation	4.4 (NA to NA)			0.01 (NA to NA)			3.6 (NA to NA)			0.01 (NA to NA)			0.12 (NA to NA)			2.7 (NA to NA)			0.00 (NA to NA)			0.21 (NA to NA)			0.25 (NA to NA)			0.03 (NA to NA)	-	-

OI = Confidence Interval
False discovery rate correction for multiple testing