Hierarchical Clustering:

- It is a method of cluster analysis which seeks to build a hierarchy of clusters.
- Using function hclust() to perform Hierarchical Clustering.
- hclust() Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

K means clustering:

- It aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.
- Using function kmeans() to perform K means clustering.

Density-based Clustering:

- Discovers dense regions in the data space separated by regions of lower object density of arbitrary shape called clusters
- Using function hdbscan() to perform Density-based Clustering.
- HDBSCAN is a clustering algorithm developed by Campello, Moulavi, and Sander. It extends
 DBSCAN by converting it into a hierarchical clustering algorithm, and then using a technique to
 extract a flat clustering based in the stability of clusters.

Graph-based Clustering:

- a subset of nodes in a graph such that every two nodes in the subset are connected by an edge.
- Using method sNNclust() to perform Graph-based Clustering.
- sNNclust() implements the shared nearest neighbor algorithm by Ertoz, Steinbach, Kumar.

Dataset 1:

Hierarchical Clustering without Normalization:

1	2	3	4	5	6	7	8
113	189	159	222	111	54	100	52

Hierarchical Clustering with Normalization:

1	2	3	4	5	6	7	8
91	117	256	131	81	96	127	101

Density based Clustering without Normalization:

HDBSCAN clustering for 1000 objects.

Parameters: minPts = 12

The clustering contains 8 cluster(s) and 340 noise points.

0	1	2	3	4	5	6	7	8
340	28	423	31	24	29	26	42	57

Density based Clustering with Normalization:

HDBSCAN clustering for 1000 objects.

Parameters: minPts = 13

The clustering contains 8 cluster(s) and 403 noise points.

0	1	2	3	4	5	6	7	8
403	23	418	17	20	23	53	25	18

Graph based Clustering without Normalization:

0	1	2	3	4	5	6	7	8
21	122	342	143	67	110	22	20	153

Graph based Clustering with Normalization:

0	1	2	3	4	5	6	7	8
881	16	19	14	13	13	13	13	14

k means Clustering without Normalization:

K-means clustering with 8 clusters of sizes: 102, 100, 152, 116, 120, 171, 117, 122

k means Clustering with Normalization:

K-means clustering with 8 clusters of sizes: 124, 112, 161, 112, 120, 101, 99, 171

Root Mean Square Deviation values:

1)	K means Clustering Without Normalization vs Ground Truth labels:	3.538474
2)	K means Clustering With Normalization vs Ground Truth labels:	3.587698
3)	Graph-Based Clustering Without Normalization vs Ground Truth labels:	3.165789
4)	Graph-Based Clustering With Normalization vs Ground Truth labels:	3.263707
5)	Hierarchical Clustering Without Normalization vs Ground Truth labels:	3.013222
6)	Hierarchical Clustering With Normalization vs Ground Truth labels:	3.325489
7)	Density based Clustering Without Normalization vs Ground Truth labels	3.025773
8)	Density based Clustering Without Normalization vs Ground Truth labels	2.898295

Accuracies:

K means Clustering Without Normalization vs Ground Truth labels: 0.133
K means Clustering With Normalization vs Ground Truth labels: 0.113
Graph-Based Clustering Without Normalization vs Ground Truth labels: 0.109
Graph-Based Clustering With Normalization vs Ground Truth labels: 0.125
Hierarchical Clustering Without Normalization vs Ground Truth labels: 0.11
Hierarchical Clustering With Normalization vs Ground Truth labels: 0.141
Density based Clustering Without Normalization vs Ground Truth labels: 0.113

8) Density based Clustering Without Normalization vs Ground Truth labels: 0.127

hierarchical clustering with normalization dataset1:

hierarchical clustering without normalization dataset1:

kmeans clustering with normalization dataset1:

kmeans clustering without normalization dataset1:

Note: Cannot print Graph Based and Density based Clustering 3d plots because of noise points (Cluster 0).

Х

hierarchical clustering with normalization dataset1:

Cluster Dendrogram

distance hclust (*, "complete")

hierarchical clustering without normalization dataset1:

Cluster Dendrogram

distance hclust (*, "complete")

WSS with Normalization:

WSS without Normalization:

Dataset 2:

How many clusters you think is the best to seek?

In order to find the no of clusters to use, I have used the **Elbow method** which is often used to identify the optimal number of clusters and it involves observing a set of possible numbers of clusters relative to how they minimize the within-cluster sum of squares. In other words, the Elbow method examines the **within-cluster dissimilarity** as a function of the number of clusters.

In order to implement it I have tried cluster sizes from 2 to 15 and plotted the values on the graph. In the process I used **nstart option set to 3** so that the starting position is different each time and best value among them is taken. Below was the graph for nstart = 3. **(PS – I have changed the nstart option to 1 again now in the script as it takes time to get results using higher values of nstart)**

WSS Without normalization:

WSS With Normalization:

From both the graphs we can say that after 10 clusters the observed difference in the within-cluster dissimilarity is not substantial. Consequently, we can say with some reasonable confidence that the optimal number of clusters to be used is 10. Hence, I have used cluster value of 10 in the final r script submitted.

Type of clustering used:

I have only applied the k means clustering technique for want of memory for the other clustering methods(Error: cannot allocate vector of size 3771.5 Gb).

kmeans clustering without normalization dataset2:

kmeans clustering with normalization dataset2:

Conclusion:

- 1) For Dataset 1, almost all the clustering techniques have pretty much similar accuracies between 0.1 and 0.15 with Hierarchical Clustering With Normalization having the highest accuracy(0.141) and Graph-Based Clustering Without Normalization having the lowest accuracy(0.109)
- 2) We found that there are limitations on which clustering techniques can be used depending on the size of data.
- 3) We also found out that the clustering results are neither very accurate nor very consistent.

References:

- 1) http://planspace.org/2013/02/03/pca-3d-visualization-and-clustering-in-r/
- 2) https://www.youtube.com/watch?v=5eDqRysaico
- 3) https://cran.r-project.org/web/packages/dbscan/README.html