

TD 2: Lois fondamentales

Lois de Kirchoff

Dans tous les cas, donner l'expression littérale avant de faire l'application numérique

1) $E_1=10~V$; $E_2=15~V$; $R=1~k\Omega$ Calculer I

2) $I=0,3~A~;E=5~V~;R=8~\varOmega$ Calculer U et V

3) Le générateur (E, R) impose U = 80 V si $R_{\text{C}}=8~\Omega$ et le double si $R_{\text{C}}=32~\Omega.$

Calculer E et R

4) $E = 10 V R_1 = 3R_2$

Calculer U_1 , U_2 et V selon que K est ouvert ou fermé.

5) Calculer U dans les 4 cas possibles et pour les 2 circuits ci-dessous :

6)
$$R_1 = R_3 = 100 \Omega$$
; $R_2 = 200 \Omega$; $R_4 = 300 \Omega$
 $I = 1 A$

Calculer la résistance équivalente "vue" par le générateur de courant et les intensités dans R_2 et R_3 .

7)
$$E = 64 V$$

 $R1 = 6,25 k\Omega$
 $R2 = 10 k\Omega$
 $R3 = 6 k\Omega$

Flécher et calculer les 3 courants

8) Calculer R' par rapport à R pour que U = E/4 Calculer U' par rapport à E.

9)
$$E = 15 V$$

 $R_1 = 200 \Omega$
 $R_2 = 100 \Omega$
 $I_1 = 0.1 A$

Calculer U et I

10)
$$E_1 = 10 V$$

 $E_2 = 20 V$
 $R_1 = 2 k\Omega$
 $R_2 = 5 k\Omega$
 $R_3 = 10 k\Omega$

Calculer U

11)
$$I = 2 mA$$

 $R = 1 k\Omega$

Calculer U_1 , U_2 et U_3

