Uniwersytet Jagielloński w Krakowie

Wydział Matematyki i Informatyki

Pola Kyzioł

Nr albumu: 1092406

Tytuł pracy dyplomowej

Praca magisterska na kierunku Informatyka Analityczna

Praca wykonana pod kierunkiem dr hab. Tomasz Krawczyk Instytut Informatyki Analitycznej

Oświadczenie autora pracy

Kraków, dnia

Świadom odpowiedzialności prawnej oświadczan pisana przeze mnie samodzielnie i nie zawiera trwiązującymi przepisami.	· · · · · · · · · · · · · · · · · · ·
Oświadczam również, że przedstawiona praca nie zanych z uzyskaniem tytułu zawodowego w wyż	v
Kraków, dnia	Podpis autora pracy
Oświadczenie kierującego pracą	
Potwierdzam, że niniejsza praca została przygoto do przedstawienia jej w postępowaniu o nadanie	-

Podpis kierującego pracą

Spis treści

1	l Dekompozycja drzewowa	3
	1.1 Definicja dekompozycji i szerokości drzewowej	. 3
	1.2 Ładna dekompozycja drzewowa	. 3
	1.3 Obliczanie dekompozycji drzewowej	. 4
2	2 Klasyczne algorytmy dynamiczne	Ę
	2.1 Drzewo Steinera	. 5

Rozdział 1

Dekompozycja drzewowa

1.1 Definicja dekompozycji i szerokości drzewowej

Dekompozycją drzewową grafu G nazywamy parę $\mathcal{T} = (T, \{X_t : t \in V(T)\})$, gdzie T jest drzewem, a $\{X_t : t \in V(T)\}$ zawiera zbiory wierzchołków grafu G i spełnia następujące warunki:

- Dla każdej krawędzi $\{u,v\} \in E(G)$, istnieje węzeł $t \in V(T)$, taki że $u \in X_t$ i $v \in X_t$.
- Dla każdego wierzchołka $v \in V(G)$, zbiór $\{t \in V(T) : v \in X_t\}$ jest poddrzewem drzewa T.

Od tej pory wierzchołki grafu wyjściowego G będą nazywane po prostu wierzchołkami, natomiast węzły drzewa T będą nazywane kubełkami.

Szerokość drzewowa dekompozycji drzewowej \mathcal{T} jest zdefiniowana następująco: $sd_{\mathcal{T}} = max_{t \in V(T)}|X_t - 1|$. Natomiast szerokość drzewowa grafu G jest minimalną szerokością drzewową wziętą po wszystkich możliwych dekompozycjach drzewowych G: $sd_G = min\{sd_{\mathcal{T}} : \mathcal{T} \text{ jest dekompozycją drzewową } G\}$.

1.2 Ładna dekompozycja drzewowa

Dla uproszczenia posługiwania się dekompozycją drzewową przy definiowaniu algorytmów dynamicznych, będziemy używać tzw. *ładnej dekompozycji drzewowej*, która została po raz pierwszy wprowadzona przez Kloks [1].

 $Ladna\ dekompozycja\ drzewowa\ \mathcal{T}=(T,\{X_t\}_{t\in V(T)})$ musi spełniać następujące warunki:

- T jest ukorzenione.
- Każdy kubełek T ma co najwyżej dwoje dzieci.
- Jeśli kubełek t ma dwoje dzieci p i q, wtedy $X_t = X_p = X_q$.

• Jeśli kubełek t ma jedno dziecko p, to $|X_t| = |X_p| + 1$ oraz $X_p \subset X_t$ albo $|X_t| = |X_p| - 1$ oraz $X_t \subset X_p$.

Ponieważ w ładnej dekompozycji drzewowej, kubełki różnią się od siebie o co najwyżej jeden wierzchołek, każde przejście między jednym a drugim kubełkiem odpowiada dokładnie jednej operacji na grafie wyjściowym G. Każdy kubełek ma jeden z następujących pięciu typów:

- WPROWADZAJĄCY v kubełek ten ma o jeden wierzchołek więcej niż jego jedyne dziecko: $X_p \cup \{v\} = X_t$. Każdy wierzchołek $v \in V(G)$, ma co najmniej jeden kubełek wprowadzający.
- ZAPOMINAJĄCY v kubełek o jednym wierzchołku mniej niż jedgo jedyne dziecko: $X_t \cup \{v\} = X_p$. Jego specjalnym reprezentantem jest korzeń. Dla każdego wierzchołka $v \in V(G)$, istnieje dokładnie jeden kubełek zapominający.
- SCALAJĄCY jedyny kubełek posiadający dwoje dzieci: $X_t = X_p = X_q$, scala dwa podgrafy o przecięciu X_t .
- LIŚĆ dla t będącego liściem: $X_t = \emptyset$.
- UZUPEŁNIAJĄCY uv kubetek, który nie pojawił się w pierwotnej definicji ładnej dekompozycji drzewowej, ale ułatwia definiowanie algorytmów operujących na dekompozycjach drzewowych. Kubetek uzupełniający wprowadza krawędź $uv \in E(G)$ (uzupełnia krawędziami reprezentację grafu G w drzewie T). Kubetek t UZUPEŁNIAJĄCY uv zawiera oba wierzchotki krawędzi: $u \in X_t$ i $v \in X_t$. Dla każdego uv istnieje dokładnie jeden kubetek uzupełniający i - przyjmując bez straty ogólności t(u) jest przodkiem t(v)(gdzie t(v) to najwyższy kubetek, taki że $v \in X_{t(v)}$) - znajduje się on pomiędzy t(v) a ZAPOMINAJĄCY v.

daj tu przykład

1.3 Obliczanie dekompozycji drzewowej

Rozdział 2

Klasyczne algorytmy dynamiczne

2.1 Drzewo Steinera

Mamy dany nieskierowany graf G oraz zbiór wierzchołków K będący podzbiorem V(G), $K \subset V(G)$. Wierzchołki te nazywane są terminalami. Naszym zadaniem jest znalezienie dla grafu G takiego jego spójnego podgrafu H, który zawiera wszystkie terminale i jego rozmiar jest minimalny. Zakładamy, że mamy daną ładną dekompozycję drzewową grafu wyjściowego $G: \mathcal{T} = (T, \{X_t\}_{t \in V(T)})$. Dodatkowo, dla uproszczenia samego algorytmu, przyjmujemy, że każdy kubelek zawiera przynajmniej jeden terminal.

Bibliografia

- [1] T. Kloks. *Treewidth. Computations and approximations*. Lecture Notes in Computer Science, 842, 1994.
- [2] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. Annalen der Physik, 322(10):891–921, 1905.
- [3] Knuth: Computers and Typesetting, http://www-cs-faculty.stanford.edu/~uno/abcde.html