ECE 235: Introduction to Solid State Electronics

Discussion

Week 10

Md Mobinul Haque

PN Junction

$$\frac{dE}{dx} = \frac{\rho(x)}{\varepsilon}$$

 ϵ is the permittivity of Silicon

$$E_{\max} = -\frac{qN_A}{\varepsilon} x_p = -\frac{qN_D}{\varepsilon} x_n$$

$$N_a x_p = N_d x_n$$

Potential Profile

Built-in Potential

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

Forward bias

Reverse bias

Consider a silicon pn junction diode at 300 K with doping concentrations of $N_d=10^{15}cm^{-3}$ and $N_a=2\times 10^{17}cm^{-3}$. Given that $n_i=1.5\times 10^{10}cm^{-3}$, find the built-in potential.

A silicon pn junction diode has a depletion width of $x_n = 0.8644 \ \mu m$ in the n side. Calculate the maximum electric field in the diode at zero bias. Silicon dielectric constant of 11.7 and given that $N_d = 10^{15} cm^{-3}$.

A silicon pn junction diode has a built in potential of 0.7 V at 300 K. If both the n and p side of the diode has the same doping concentration, find the doping density. Given that $n_i = 1.5 \times 10^{10} cm^{-3}$.

For a pn junction diode $N_d=10^{15}cm^{-3}$ and $N_a=10^{16}cm^{-3}$. If the depletion width in the n side is $0.8644~\mu m$, find the total depletion width.