Index

Page numbers in **bold** refer to main discussion and those in *italic* to illustrations and tables.

Absorption spectrum, 37, 37	change, 35
Absorptivity, 30, 31, 36	cloud, 35
Adiabatic lapse rate, 64–65	snow and ice, 31, 35
Adiabatic process, 64, 360	urban areas, 23
Advection, 20, 25, 62–63, 89, 167, 236, 248,	vegetation, 32, 35, 375
253, 321–362	water surface, 31, 35
cold air, 62–63, 328–332	Altitude of the sun, 31, 35
heat, 20, 167, 168, 236, 248, 253	Anemometer, 217
moisture, 20	cup, 217
momentum, 89, 168, 322-328	hot-wire, 227
warm air, 62–63, 332, 334, 334–336 , 336	laser, 227
Aerodynamic approach, 228, 229	propeller, 227
Aerodynamic properties, 189–203	sonic, 217, 227
resistance, 369, 370	Annual temperature waves, 48, 49, 53,
rough surface, 194, 200–201, 200	58
smooth surface, 194, 202, 207	Antarctic, 78, 82, 83, 104, 104, 106, 106
transition between rough and smooth,	Anthropogenic heat, fuel consumption,
194–195, 202, 207	22, 23, 339, 340
Aerosol, 32	Applications, 6, 25–26, 43–44, 60, 85–86,
Agricultural meteorology, 9, 365–389	109–110, 139, 160, 185, 211, 239,
energy flux, 385–388	264, 317, 362, 388–389
humidity, 379–381, 380, 381	atmospheric boundary layers, 317
radiation, 370–375	energy budget, 25–26
temperature, 378–381, 379, 380, 381	evaporation, 264
turbulence, 381–388	humidity, 85–86, 264
wind, 375–377, 377, 378	micrometeorology, 6–9
Air mass modification, 334, 334–336	nonhomogeneous boundary layer,
cloud, 334–336	362
fog, 334–336	radiation budget, 43–44
humidity, 334–336	soil temperature, 60
temperature, 328–346	surface fluxes, 239
Air pollution meteorology, 7, 8, 346, 360	temperature, 85–86
Airflow, 336–360	turbulence, 160
around buildings, 346–353	turbulence theories, 185
around hills, 353–360, 354, 357	wind distribution, 109–110, 211
over an urban area, 336–346	Arctic, 78
Albedo, 20, 31, 32, 34, 35, 375	Atmospheric boundary layer see
bare surface, 31, 35	Boundary layer

Atmospheric pressure, 63–66, 89, 118 gradient, 89–90, 118	Bowen ratio, 12, 14, 17, 18, 20, 23, 25, 227, 246, 250–251 , 342
reference, 65	measurement, 250–251
Atmospheric scales, 1	method, 250–251
large scale, 1	Brunt-Vaisala frequency, 356, 357
mesoscale, I	Buckingham pi theorem, 178, 180, 183-
microscale, 1–2	184, 214
small/local scale, 1-2, 277	Building
Average, 149–152, 164, 166–169	air flow around, 346–353
ensemble, 150, 164, 166, 296, 302, 308,	aspect ratio, 348, 351, 352
313	height, 352–353
spatial, 149–150, 166	wake, 346-353
temporal, 149, 150, 166	Bulk transfer
	coefficient, 253
Baroclinic atmosphere, 93–94	method, 228, 251-255
Baroclinic effect, 93, 94, 97, 275–276	relations, 224–226 , 251–255 , <i>252</i> , 287–
Baroclinic planetary boundary layer, 93,	288, 314–315, 331, 366–367
97	Buoyancy, 71–77, 213–226, 245–247,
Barotropic atmosphere, 93	300
Barotropic planetary boundary layer, 96,	acceleration, 71, 74
96, 274	effect, 213-226, 245-247
Beer-Bouguer law, 373	force, 71, 74
Blackbody, 28, 30, 37	length, 214, 215, 245-247
equivalent temperature, 29-30, 30, 36	parameter, 71, 213-214, 245-247
radiation laws, 28–29	production, 146, 170
Bluff body, 346–347	-
Boras, 359–360	Canopy (roughness) layer, 4
Boundary layer, 1-4, 6-8, 89-110, 120-	architecture, 370-373, 372
135, 145, 146, 188–211	flow, 375–377
atmospheric, 1, 2-4, 5, 37, 89-110, 132,	resistance, 369
188–211, 266–317	sublayer/transition layer, 367-368
convective, 73, 75, 78–82 , 101–102, 236–	urban, 22–25 , <i>24</i>
237, 266, 267, 276, 285–287, 302,	vegetation, 20–22 , 367–368
315	Capping inversion, 316–317
depth/height, 2, 3, 89, 132–135, 195–	Carbon dioxide, 7
196, 316–317 , 326	absorption of radiation, 34, 36, 37, 37
flat-plate, 133–135, 134, 136, 145	concentration, 379, 380
internal, 322–336 , 327, 330, 341–346	exchange, 365
laminar, 120-135	greenhouse effect, 36
large-eddy simulations, 301–310, 305,	Cascade process, 148
306	theories of turbulence, 157, 158
oceanic, 124	Channel (plane-Poiseuille) flow, 115, 120-
parameterization, 310-317	121
planetary, 1, 2, 2, 89–110, 132, 195, 196,	Charnock's formula, 198, 200, 205, 206
207, 209, 266–317	Chinook, 360
spatial variation, 3–4	Clausius-Clapeyron equation, 66
stable, 79, 80, 102, 146	Cloud, effect on radiation, 32, 36, 37
urban, 202, 203, 341–346 , <i>342</i>	absorption, 33
Boundary layer hypothesis, 132	albedo, 35
Boussinesq assumption, 71, 138, 163, 173	emission, 37

Condensation, 12	Density stratification, 71
latent heat, 12, 13	Dew, 12, 13
nuclei, 6	Diffusivity see Eddy diffusivity
Conduction, 11, 12, 49, 136	Dimensional analysis, 177–178 , 179, 180, 181–182, 191, 213–214
heat, 11, 49, 51–52, 136	
Conductivity, 49, 244	Diurnal variation, 5, 13–14, 47, 82 , 84–85 ,
hydraulic, 244	107–108, 268
thermal, 49, 50, 51	heat flux, 11, 13, 14, 15, 25, 108, 109
water, 244	humidity, 80–81, 82, 85, 85
Conservation	latent heat flux, 13, 14, 20
energy, 12, 17, 41, 51, 64, 136, 163–169,	PBL height, 3, 108, 109, 269
235, 277, 329	radiation, 13–14, 20, 36, 38, 41–42
mass, 117–118, 163–169, 244, 277	temperature, 47–48, 48, 53, 54, 57, 58,
momentum, 117-119, 163-169, 234, 277	78–79, <i>79</i> , 82, 84, <i>84</i> , 85, 89
Constant flux layer see Surface layer	wind direction, 107–108, 108, 109
Constant-level surface, 93	wind speed, 107–108, 108, 109
Constant-pressure surface, 93	Divergence, 17, 41, 235–236
Continuity equation, 117, 163, 167	flux, 17, <i>17</i> , 19, 235–236
Convection, 11, 12, 63, 136–139, 183, 214–	radiative flux, 41–42, 42, 235
222 , 236–237, 253	Drag
forced, 63, 136–138, 214–222	coefficient, 204-205, 206, 207, 224-226,
free, 63, 138–139, 183, 221, 222, 236–	<i>225</i> , 228, 253, 254, <i>254</i> , 269, 376–
237, 237, 253	377, 385
mixed, 63	force, 7, 217–218, 226
Convective boundary layer, 73, 75, 78–82,	form, 376–377
101–102, 236–237, 266, 267	frictional, 7
height, 80, 102	geostrophic, 207-208, 274, 275
humidity, 80–81, 81, 102	measurement, 203
large-eddy simulations, 302	plate, 217–218, 226
nonlocal closure models, 285–287	Dry adiabatic lapse rate, 65
subgrid-scale fluxes, 315	
temperature, 80, 102	E-[omega] models, 293-294
turbulence, 236–237, 276	Earth's rotation, 89, 126–129, 355
winds, 102	Coriolis effect, 96, 97, 126–127
Convergence, 8, 16, 41–42	Coriolis parameter, 90, 126–127
flux, 16–17, 17, 19, 41–42	rotational speed, 90
frictional, 8	Eddy, 155–156
radiative flux, 41–42, 42	energy dissipation, 157, 292–293
Coriolis acceleration, 96, 118	large-scale, 156, 157, 158, 164, 279, 292,
Coriolis effect, 90, 195, 355	296, 297 –310
Coriolis force, 96, 97	Eddy correlation, 153, 205, 217, 227–228 ,
Coriolis parameter, 90–93 , 94, 273	250
Couette flow, 115, 120	Eddy diffusivity, 148, 171–173 , 190–191,
Critical condition	216–221 , 222, 243, 247, 278, 279,
Reynolds number, 143	303, 315, 376, 384–388
Richardson number, 100–101, 103–104,	heat, 171–172, 216–221, 387–388, 388
144	momentum, 171–172, 210–221, 387–388, 388
Cross-isobar angle, 73, 127, 326	221, 376, 384–388
C1035-1300a1 aligie, 13, 121, 320	
Darey's law 244	water vapour, 171–172
Darcy's law, 244	Eddy viscosity, 176, 279, 281, 292–294, 299

Ekman layer, laminar, 124–127 , <i>125</i> , 196	heat, 171–172, 224–226, 225, 253, 386–388
atmospheric, 126-129, 128	momentum, 171, 224-226, 225, 253,
oceanic, 124-126	384–388
Electromagnetic waves, 28	water vapor, 171-172, 243, 253
spectrum, 28	Exercises, 9–10, 26–27, 44–45, 60–61, 86–
speed, 28	88, 110–112, 161–162, 185–187,
Emissivity, 30, 31, 32, 32, 36	211–212, 239–241, 264–265, 362–
	364
Energy balance method, 250–251	
Energy balance/budget, 1, 7, 11–26, 340	agricultural/forest micrometeorology,
bare ground, 19, 19–20	389–390
crops, 20–25 , <i>21</i>	atmospheric boundary layer modeling,
desert, 19, 19, 20	317–320
forest, 21, 22	viscous flows, 139–141
ideal surface, 11–12	Extinction coefficient, 373
lake, 15	
layer, 15–18, 17	Fick's law, 242–243
ocean, 15	First law of thermodynamics, 64
suburban areas, 23, 24	Flow separation, 347, 347–349, 352, 353,
urban canopies, 22–25, 24, 340–341	356–359, <i>357</i> , <i>358</i>
vegetation canopies, 20–22 , <i>21</i> , <i>22</i>	mechanism, 347–347
volume, 18–19	recirculation, 348
water surfaces, 25	shear layer, 347-349
Energy dissipation, 7, 292-294	stagnation point, 348
turbulence, 156, 157, 158, 292-293	Flow zones, 346–347 , <i>350</i>
Energy flux, 11-26, 62, 108, 109, 340, 386,	cavity, 348–349 , <i>349</i>
386	displacement, 351
ground heat flux, 12, 48-60, 340	inner layer, 351
latent heat, 11-18, 62, 340, 386	mixing layer, 351
radiation, 7, 11–15, 19–20, 23, 28–44,	wake, 346–349 , <i>349</i>
340	Fluid flow type, 113-139, 115, 142-160
sensible heat, 11–18, 23, 62, 108, 109,	inviscid, 113
340, 342, 386, <i>386</i>	laminar, 113–139
Energy storage, 16, 18, 19, 341	turbulent, 116–117
crops, 21	viscous, 113–139
forest, 21	Flux determination, 226–238 , 248–260,
ocean mixed layer, 25	382–388
urban canopy, 22, 23, 24, 341	aerodynamic approach, 228, 229, 259
Entrainment, 89	eddy correlation method, 227–228, 250
Euler's equations, 118–119	energy balance, 12-19, 13, 250-251
Evaporation, 6, 12, 13, 20, 242–264	geostrophic departure, 234–235
latent heat, 12, 13, 20	gradient method, 228-231, 259, 278-280
measurement, 248-260	profile method, 232-234, 233, 260
process, 242-243	Flux-gradient relationships, 171–173, 191,
water bodies, 25	213–222, 245–247
Evapotranspiration, 12, 21, 47, 242–264	eddy diffusivity, 171–173 , 191
crops, 21	local closure models, 278–280
forest, 21	mixing length, 173–176, 174, 191
Exchange coefficient, 171–172, 224–226 ,	similarity, 179–181, 191, 213–222, 246–
243, 247, 253, 314, 369, 384–388	247
2.5, 2.7, 255, 51 1, 507, 501 500	- · ·

Foen, 360	ground heat flux measurement/
Force balance, 95–97 , <i>96</i>	parameterization, 56-60
Force-restore method, 58–60	latent, 11–18, 20, 62, 245–246, 386
Forest micrometeorology, 9, 365–389	local free convection similarity, 181–183
albedo, 375	mixing length hypothesis, 175
energy flux, 386–388, 386	sensible, 11–18, 20, 23, 62, 108, 109, 153,
radiation, 370–375	167, 213–238, 328–332
resistance, 369, 370	soil, 12, 48–60 , <i>50</i> , <i>52</i> , 57–58
temperature, 378–381, 379, 380, 381	Heat flux plate, 56–57
turbulence, 381–388	Heat transfer coefficient, 137, 224-226,
wind, 375–377, 377, 378	225, 228, 247, 251, 253, 254, 254,
Friction, 8, 95–97, 96	369
effect, 95–97	High-pressure systems (anticyclones), PBL
force, 7, 95–97, 118	height, 3
veering, 97, 106	Homogeneity, horizontal, 4, 15, 16, 101,
Friction velocity, 191–203, 213–214, 215,	150, 168, 213, 268–269 , 278
226–238 , 324, 366	Humidity, 62–63, 66–68, 78–82 , 247–263
Froude number, 356, 359, 360	diurnal variation, 80–81
1 Toude number, 330, 337, 300	profile, 78–82, 81, 260
Geostrophic, 90-94, 102-103, 195-196,	specific, 62–63, 66–68, 247–263, 248
234–235	Hydraulic jump, 356–357, 359
	Hygrometer, 250
balance, 90, 306 departure, 195–196, 234–235	Trygrometer, 250
	Inhomogeneities of surface 15-16 331
drag, 207–208, 274, 275 flow, 90–94	Inhomogeneities of surface, 15–16, 321–362
resistance, 208	land/water, 334–336
shear, 91–93, 102	roughness, 322–328
veering, 91–93, 92, 102	rural/urban, 336–346
wind, 90–95 , <i>90</i> , <i>92</i> , 102–103, 234–235,	temperature, 328–346
278, 306, 308 Gastrophia drag sofficient, 207, 208	topographic, 346–349
Geostrophic drag coefficient, 207, 208	Insolation, 33, 38
Global climate warming, 7	Instability, 142–146
Gradient transport	dynamic, 142–144
finite-difference approximations, 229–	gravitational, 142–144
230 method 238 231 250	inflexion point, 143–144
method, 228–231 , 259	inviscid, 143–144
relations, 171–176 , 228–231, 243, 259,	Kelvin–Helmholtz, 142–143 viscous, 143–145
278, 315 theory, 171–176 , 243, 294	
Grashof number, 139	Integral models, 287–290
Gravity flow, 115, 121–122, 359	Internal boundary layer, 322–336, 327,
Greenhouse effect, 36	330, 341–346
Grid-volume-averaging, 297–298	momentum, 322–328
Orid-volunic-averaging, 297–296	thermal, 328–336, 341–346
Heat composity 16 47 49 40 50 51	urban, 336–346
Heat capacity, 16, 47, 48–49, 50, 51	Inversion, temperature, 77–78, 316–317,
Heat flux, 7, 11–26, 62, 108, 109, 152, 153,	334–336, <i>336</i> , 343, 345
167, 168, 181–184, 213–238, 250– 251, 252, 275, 280, 206, 207, 208	elevated, 78, 334–336, 343
251, 252, 275, 289, 306, 307–308,	layer, 75, 334–336
314–315, 328–332, 386–388, <i>386</i>	surface, 78, 80, 334–336, 343
anthropogenic, 23, 24–25	Irrigation effect, 20, 23

Kinetic energy, 8, 116, 146–147 , 357, 358 dissipation, 8, 116, 147, 148, 170	Mesoscale meteorology, 1, 8, 270, 313–314 Methane, 7
generation, 147	Microclimatology, 5–6
turbulent see Turbulent kinetic energy	Micrometeorology
Kinetic theory, 114	applications, 8–9
Kirchoff's law, 31	experiments, 189–203 , 217–222, 226–238
Lake breeze, 329, 331–332	microclimatology comparison, 5–6
Laminar flow, 113–139, 115	scope, 1–5
boundary layer, 132–135, 134, 136	Mixed layer, 25, 73, 77–78, 80, 266, 287,
channel (plane-Poiseuille), 115, 120-121	341–346
Ekman layer, 124–127, 125	height, 188, 288-289
jet, 132	similarity theory/scaling, 271–273, 272,
plane-Couette flow, 120	302
plane-parallel, 119	Mixing
wake, 132	coefficients, 286
Lapse rate, 64–65, 106, 107	convective models, 287
dry adiabatic, 65	height, 3, 269, 269
moist adiabatic, 68	layer, 78, 114
pseudoadiabatic, 68	length, 173–176, 174, 191, 216, 278, 279,
Large-eddy simulations, 297–310	299, 376
planetary boundary layer, 301–310, 305,	ratio, 66-68
306 V	Molecular analogy, 172, 173
Latent heat flux, 11–14, 20, 62, 340, 386 Latent heat of water, 6	Molecular diffusion/exchange, 137, 168, 172, 242–245
Leaf area, 371–373	Momentum
density, 371, 372, 380, 381 index, 371, 372	conservation, 117–119, 163–169, 277, 376
Local closure models, 278–280	exchange/flux, 1, 2, 6, 7, 152, 153–154,
Local free convection similarity, 183	168, 213–238, 306, 307, 309, 314,
Local isotropy hypothesis, 158–159, 295	324, 326, 375–377, 383–388
Local scale, 1–2, 277	mixing length hypothesis, 173–176
Local similarity, 158–159, 277	Monin-Obukhov similarity theory, 213-
Longwave radiation, 29–30, 36–37, 38, 375	226 , 215, 219, 220, 221, 233, 237,
atmospheric, 36–37, 375	245–248 , 253, 260, 305, <i>306</i> , 314–
terrestrial, 29–30, 30, 36, 375	315, 366
Low-level jet, 103–104, 105, 105	Naviar Stales aquations 110 149 164
Low-pressure systems (cyclones), PBL height, 3	Navier–Stokes equations, 119, 148, 164, 166
Lysimeter, 248–249	Neutral boundary layer, 267-268
	flow zones, 353–355
Macrometeorology, 1, 8-9	Nocturnal boundary layer, 42, 78, 79–80,
Marine atmospheric boundary layer, 81-	100, 103, 144
82, <i>82</i>	Nonhomogenous boundary layer, 270,
humidity, 81–81	321-362
temperature, 81-82, 83	height/thickness, 326, 329-346
Mass exchange, 4, 6-7	shear stress profile, 323–324
carbon dioxide, 7	temperature profile, 329, 330
pollutants, 7	topography, 346–349
water vapor, 6	wind profile, 322–326, 325, 330

Numerical modeling/simulation, 164–169 , 169	earth-atmosphere momentum/heat exchanges, 231-232, 238-241
direct, 164	energy budget, 26–27
first order closure, 278–280	evaporation, 255–256, 260–263, 264–
higher order closure, 169, 171, 294–296	265
integral models, 287–290	near-neutral boundary layers, 196-197,
large-eddy, 165–166, 279	209–212
local closure models, 278–280	nonhomogeneous boundary layers,
nonlocal closure models, 285–287	332–333, 360–361, 362–364
planetary boundary layer, 277–280	radiation balance, 39, 42–43, 44–45
Nusselt number, 137	soil temperatures/heat transfer, 54, 55–
russeit number, 157	56, 60–61
Oasis effect, 20	turbulence, 154–155, 161–162
Obukhov length, 214, 215, 246, 268, 279	turbulence theories, 176–177, 185–187
Ocean surface	viscous flows, 122–123, 129–132, 139–
energy balance, 25	141
	wind distribution, 94–95, 98–99, 110–
fluxes, 25, 251, 252, 253, 260	112
mixed layer, 25	Profile method, 232–234 , <i>233</i> , 260
profile measurements, 260, 261, 262	Frome method, 232–234 , 233, 200
roughness, 200–202, 200 surface drag, 205	Radiation, 7, 28-44, 373-375, 374
temperature, 47, 251, 252, 253	diffuse (sky), 35–36, 38
transfer coefficients, 253	
see also Sea surface	longwave atmospheric, 36–37, 375 longwave terrestrial, 29–30 , 36, 38, 375
Oceanography, 9 Orographic effects, 68–69	net, 11–15, 19–20, 23, 38–39 photosynthetically active, 370, 373
Outer layer, 2 turbulence, 5	reflected, 32, 34–35, 38
Oxygen, absorption of radiation, 34, 37	shortwave, 20, 30, 32–36 , 38, 370, 373 –
Ozone, absorption of radiation, 34, 37	375, 374 solar, 11, 15, 29–30, 38
Ozone, absorption of radiation, 54, 57	Radiation balance/budget, 7, 28–44
Peclet number, 137	crop, 39–40, 40
Penman method, 257–259	lake, 40, 41
Planck's law, 29	ocean, 25
Planetary boundary layer see Boundary	Radiation laws, 28–32 , 373
layer	Beer-Bouguer law, 373
Plant cover see Vegetation	Kirchoff's law, 31
Poisson equation, 65	Planck's law, 29
Potential energy, 146, 357–358	Rayleigh's scattering law, 34
Potential evaporation, 243-245, 249	Stefan-Boltzmann law, 28-29, 31
Potential temperature, 65–66, 78, 367	Wien's law, 29
Prandtl number, 137, 139	Radiative cooling/warming, 38-39, 40, 40,
Pressure, atmospheric, 63–66, 90–94, 118	41, 62
gradient, 90-94, 118	Radiative properties, 30–32, 32
reference, 65	absorptive, 36
Problems, 9–10, 15, 17–18, 389–390	absorptivity, 30, 31
atmospheric boundary layer modeling,	albedo, 31, 34, 35
281–285, 290–291, 317–320	emissivity, 30, 31, 36
boundary layer temperature/humidity,	reflectivity, 30, 31, 35
69–70, 76–77, 86–88	transmissivity, 30, 31

Radiometer, 37, 46	Scales, characteristic, 182, 215, 237, 247
Rayleigh number, 139, 144	length, 116, 183, 215, 246, 292–293
Rayleigh's scattering law, 34	temperature, 183, 215, 247
Reference, 188	time, 116
density, 64	velocity, 183, 215, 237
height, 188, 204, 251	Sea breeze, 329, 331–332
pressure, 65	Sea surface
temperature, 64	drag, 205
Reflectivity see Albedo	energy balance, 25
Resistance, aerodynamic, 369, 370	flux, 25, 251, 252, 253, 260
Reynolds averaging, 166–169, 297	roughness, 200–202, 200, 201
equation of mean motion, 166–167	temperature, 47, 251, 252, 253
rules, 166	transfer coefficients, 253
Reynolds decomposition, 149, 150, 298	wind-profile measurements, 198
Develor number 122 122 142 144 145	
Reynolds number, 132, 133, 143, 144, 145,	see also Ocean surface
155, 157, 158, 159, 348	Seasonal variation, 5
critical, 143, 144, 145	urban energy balance, 23, 24
independence, 348	Shearing stress, 114–116, 120–135, 226 –
Reynolds stresses, 154, 298	238
Richardson number, 100–101, 103–104,	turbulent, 153–154, 226–238
144, 147, 170, 214–222 , <i>221</i> , 230,	viscous, 114–116, 120–135, 154
232, 279, 309	Shortwave radiation see Radiation
bulk, 225, 225, 253–254, 254, 268, 315,	Sign convention, 12–13
356, 360	Similarity, 179–185, 213–226, 237
criterion, 144	hypothesis formulation, 179, 180, 213
critical, 101, 103–104, 144, 147, 170, 221	214
Rossby number, 208, 279	parameters, 179, 180–181, 275–276
similarity theory, 273–275	scaling, 182–183, 213–214, 270–273,
Roughness, 189–209, 322–346	302
change, 322–346, 322	theory, 179–181 , 237, 270–277 , <i>271</i>
displacement height, 202–203, 203, 204	Sky (diffuse) radiation, 35–36, 38
effect, 22, 189–209, 341, 345	Sky view factor, 380–381
land surface, 197–203, 199, 224, 225,	Soil properties, 46–60
225	albedo, 31, 35
sea surface, 198, 200–202, 200, 201	emissivity, 31
see also Surface roughness	heat transfer, 12, 48–60 , <i>50</i> , <i>52</i> , 57–58
Roughness characteristics, 89, 189–209,	moisture content, 47, 51
192–202	moisture flow rate, 243–244
height, 198	temperature, 46–60 , 48, 50
length/parameter, 192, 197–202	thermal conductivity, 49, 50, 51
Roughness layer see Canopy layer	thermal diffusivity, 50, 51
	Solar constant, 32–33
Santa Anna, 360	Solar radiation, 11, 15, 32–34
Saturation water vapor curve, 67	absorption, 33, 34, <i>34</i>
Scale of turbulence, 153, 155–156 , 157,	depletion, 33
158–159 , 164, 178, 292–293	insolation, 33, 38
large-eddy, 156, 157, 158, 164, 279, 292,	reflection, 34–35
296, 297–310	scattering, 32, 33, 34
macroscale, 156	Solarimeter, 38
microscale, 156, 157, 158, 164	Specific heat, 16, 48–49, 50, 64

Specific humidity, 62–86 , 102, 102, 103, 247–263, 248, 254, 314, 315 distribution, 102, 102, 103, 247–263 diurnal variation, 80–81, 82, 85, 85 profile, 270, 271 Stability, 71–77 , 99–106 , 142–145, 300 analysis, 144–145 categories, 72–73, 73 dynamic/hydrodynamic, 142–144 effect, 99–106	flux-profile relationship, 188–203, 216–226, 245–247, 365–370 humidity profile, 247 profile measurements, 260, 261, 262 similarity theory, 191–196, 213–226 specific humidity, 254 temperature profile, 216–226 turbulence, 1, 2, 5, 236–237, 238 velocity profile, 188–203, 189, 216–226 Surface Rossby number, 208
gravitational, 71–77 nonlocal characterization, 74–77, 75	Surface roughness, 189–209 , 228, 234, 306 effect, 189–209, 224, 225, <i>225</i> step change, 322–328, <i>322</i>
static, 71–77, 142 Stability parameter, 274, 275 bulk Richardson number, 225, 253–254, 254, 356	Surface temperature, 28–29, 36, 46–47 , 53, 251, 252, 253 apparent, 36, 46–47
Monin-Obukhov, 214–238 , 245–248 , 366	change, 328–346 equivalent blackbody, 36, 46
Richardson number, 100–101, 103–104, 144, 214–222 , 230	sea, 47, 251, 252, 253 skin, 46, 53
static, 71–77 Stable boundary layer, 267, 274, 316	urban, 336–341 , 342–343
geostrophic drag, 275	Temperature, air, 62-86 , 102-103, 222,
heat transfer, 275	223, 234, 379–380, 380, 381
height, 275, 280, 282, 283	inversion, 77–78, 102
large-eddy simulations, 303-305	lapse rate, 65
Stanton number, 137	modification, 328–346
Stefan-Boltzmann law, 28-29, 31	profile, 78–82, 79, 102, 102, 103, 222,
Streamline	223–224, 234, 260, 262, 270, 271,
displacement, 351	379–380, <i>380</i> , <i>381</i>
flow, 113–135	Thermal properties, 48-51, 50, 137-139
pattern, 348	coefficient of expansion, 138
Subgrid-scale models, 298–301	conductivity, 49
large-eddy simulations, 302-305, 305	heat capacity, 16, 47, 48-49, 50, 51, 64
Subgrid-scale perturbation flux, 310, 313	specific heat, 16, 48–49, 50, 64
Subsidence motion, 63	thermal diffusivity, 50, 51, 137–139
Subsurface medium, 12, 46–60	Thermal wind, 91–93, 102
heat flux, 12, 48–60	Thermodynamic relations, 63–71
moisture content, 51	Clausius-Clapeyron equation, 66
temperature, 46, 47–48, 48, 49	equation of state, 63-64
Suburban areas, 23, 24, 24	first law, 64
Surface 202 209 224 229 274	hydrostatic equations, 63
drag, 203–208 , 224–238, 274	mixed layer growth, 289, 290
energy budget, 11, 12–20 , <i>13</i> , 226–227	Poisson equation, 65
fluxes, 11–26 , 108, <i>109</i> , 203, 224–238,	potential temperature, 65–66, 78
314–315 inhomogeneity 15 16 270 321 362	static stability, 71–77
inhomogeneity, 15–16, 270, 321–362 stress, 203, 204, 207, 224–238, 323–324	virtual temperature, 67–68, 74, 75
Surface layer, 1, 2, 4, 188–203, 213–226,	Topographic effects boundary layer, 3–4
245–247, 266, 365–370	on flow, 346–349
273 271, 200, 303 310	OIL HOW, JTO JTA

Transilient matrix, 286–287	Turbulent kinetic energy, 146–147 , 152,
Transition	156, 169–170 , 209, 273, 276, 277,
laminar-turbulent flow, 145-146	382
rough-smooth, 323-326, 325	buoyancy generation, 146, 170
smooth-rough, 323-326, 325	dissipation, 147, 156, 157, 170, 273
turbulent-laminar flow, 145-146	mathematical models, 291-294, 306-
Transition layer, 266–267	307, 309–310, 309, 311, 312, 326
Transition periods, 14	shear production, 146, 147, 170
Transmissivity, 30, 31	transport, 146, 170
Transpiration, 244–245	• , ,
Turbidity, 33	Urban area, 336–353
Turbulence, 4-5, 73, 116-117, 142-160,	anthropogenic heat flux, 23, 24-25
156–160, 163–185, 208–209 , <i>209</i> ,	building cluster effects, 351-353
236–237	building wakes, 346–349
characteristics, 147-148	canopy (roughness) layer, 4, 22
closure problems, 169, 171	energy budget, 22–25 , 340–342
convective, 266, 276	fuel consumption, 22, 23
frozen-turbulence hypothesis, 160	land use, 337–338, 338
fundamentals, 142-160	surface roughness, 22, 341, 345
intensity, 152, 381, 382	thermally-induced circulation system,
isotropic, 158	345
large-eddy simulations, 297-310	Urban boundary layer, 341-346, 342
local isotropy hypothesis, 158–159,	roughness (canopy) layer, 4, 343
295	Urban canyons, 351–353
mean/fluctuating variables, 149-152,	urban heat-island intensity, 340
151	Urban heat island, 337, 337-341, 339, 344
numerical modeling/simulation, 164-	345, <i>344</i>
169	intensity, 337–341, 343, 344–345
planetary boundary layer, 209, 266	Urban planning/management, 9
scales, 148, 153, 155-156	Urban plume, 336, 343
standard deviation, 208, 236, 272, 272,	
382, <i>383</i>	Vapor pressure see Water vapor pressure
statistical models, 158	Vegetation, 365–389
surface layer, 1, 2, 5, 208–209, 236–237 ,	albedo, 375
238	bulk transfer, 254, 255
theories, 156-160, 163-185	canopy architecture, 370-373, 372
transition, 145–146	canopy (roughness) layer, 4
urban area, 345-346, 350-353	carbon dioxide exchange, 379, 380
variance, 152-153, 168, 169, 236, 382	energy flux, 386–388, 386
Turbulent flux/transport, 6–8, 152–154,	energy storage, 21
167–168, 213–238 , 383–388	evaporation, 12
heat, 1, 2, 6, 7, 151, 151, 152, 153, 167,	radiation budget, 47, 370-375
168, 213–238, 386–388, <i>386</i>	roughness sublayer, 367-368
mass, 1, 2, 6–7	temperature, 378–381, 379, 380, 381
momentum, 1, 2, 6, 7, 152, 153-154, 168,	wind, 375–377, <i>377</i> , <i>378</i>
213–238, 383–388	Velocity profile, 95–107, 188–203, 189,
parameterization, 314-314	193, 222, 232–234, 275, 322–324,
pollutant, 7, 346, 360	348, 375–377, <i>377</i>
stress components, 153–154	logarithmic law, 191-195, 324, 326
water vapor, 6, 151, 151, 242-264, 252	power law, 188-192, 190, 192

Viscosity, 114–116, 129 dynamic, 114 effects, 114–116 kinematic, 114 Viscous flow, 113–139 sublayer, 168 von Karman constant, 191, 216, 218, 279 Vortex, 352, 355, 360 horseshoe, 350 von Karman, 350	Wind geostrophic, 89–95 gradient, 94 thermal, 89–95 turbulence, 5 Wind direction, 95–109 backing, 97 diurnal variation, 107–108, 108, 109 profile, 102 shear, 95–97, 102, 106 veering, 95–97, 106 Wind distribution, 89–110, 188–198, 223–
Wake, 346–349 cavity, 348–349, 352 far wake, 350–351, 354 near wake, 350–351, 354 Water surface see Ocean surface Water vapor, 37, 62–63, 66–68, 80, 81, 234–235, 247–263 absorption of radiation, 34, 36, 37, 37 exchange coefficient, 243, 253 mixing length hypothesis, 175 mixing ratios, 66–68 pressure, 66–68, 85, 85, 257–259, 379–380, 380 specific humidity, 62–63, 66–68, 80, 81, 247–263, 248, 254 Wave, 52–56, 198, 201, 260 amplitude, 53, 54, 55, 55 development stage, 200, 201 frequency, 53 period, 53 phase speed, 53, 54, 201	231 measurement, 101–109, 235 over water, 198, 200–202, 260 planetary boundary layer, 101–106, 102 surface layer, 188–198, 223–224, 234– 235, 324, 326 Wind drag, 7–8, 205, 206, 207 neutral drag coefficient, 205, 206 Wind hodograph, 106, 106, 125, 125, 127– 128 Wind shear, 91–93, 102, 216–226 dimensionless, 216–226, 219, 367 geostrophic, 91, 102 Wind speed, 95–109, 188–198, 223–231 diurnal variation, 107–108, 108, 109 profile, 101–109, 102, 188–198, 189, 193, 223–224, 234–235, 260, 261, 270 Wind veering, 95–97, 106, 107 Zenith angle, 31, 33 Zero-plane displacement, 202–203, 203,
Wavelength, 28 Wien's law, 29	251, 365–366