Integración

1 Teorema Fundamental del Cálculo

Ejercicio 1. Halla las derivadas de cada una de las funciones siguientes:

a)
$$F(x) = \int_a^x \operatorname{sen}^3(t) dt$$
,

b)
$$F(x) = \int_x^b \frac{1}{1+t^2 + \sin^2(t)} dt$$
,

c)
$$F(x) = \int_a^b \frac{x}{1+t^2+\sin^2(t)} dt$$
.

Ejercicio 2. Halla las derivadas de cada una de las funciones siguientes:

a)
$$F(x) = \int_0^{x^2} \sin(\log(1+t)) dt$$
,

b)
$$F(x) = \int_{x^2}^1 \sin^3(t) dt$$
,

c)
$$F(x) = \int_{x^2}^{x^3} \cos^3(t) dt$$
.

E Ejercicio 3. Estudia el crecimiento y decrecimiento de la función $f: \mathbb{R}^+ \to \mathbb{R}$ definida como

$$f(x) = \int_0^{x^3 - x^2} e^{-t^2} dt.$$

Como consecuencia, estudiar los extremos relativos de dicha función.

E Ejercicio 4. Calcula el siguiente límite:

$$\lim_{x \to 0} \frac{\int_{x^2 + x}^{\operatorname{sen}(x)} e^{-t^2} dt}{\operatorname{sen}^2(x)}.$$

E Ejercicio 5. Calcula el máximo absoluto de la función $f:[1,+\infty[\to\mathbb{R}$ definida por

$$f(x) = \int_0^{x-1} (e^{-t^2} - e^{-2t}) dt.$$

Sabiendo que $\lim_{x\to +\infty} f(x) = \frac{1}{2}(\sqrt{\pi} - 1)$, calcula el mínimo absoluto de f.

Ejercicio 6. Calcula el siguiente límite

$$\lim_{x \to 0} \frac{\int_x^{2x} \operatorname{sen}(\operatorname{sen}(t)) dt}{x^2} \,.$$

- **E** Ejercicio 7. Se considera la función $f(x) = \int_0^{x^3 x^2} e^{-t^2} dt$, $\forall x \in \mathbb{R}$.
 - a) Encuentra los intervalos de crecimiento y de decrecimiento de la función f en \mathbb{R} .
 - b) Calcula los extremos relativos de f.
 - c) Calcula $\lim_{x\to 0} \frac{f(x)}{\operatorname{sen}(x^3 x^2)}$.

Cálculo de primitivas

2.1 Integrales inmediatas y cambio de variable

Ejercicio 8. Calcula las siguientes primitivas

a)
$$\int 5 x^6 dx$$

d)
$$\int \frac{dx}{\sqrt[n]{x}}$$

f)
$$\int \frac{x^2+1}{x-1} dx$$

a)
$$\int 5x^6 dx$$

b) $\int x(x+1)(x-2)dx$
c) $\int (2+3x^3)^2 dx$
d) $\int \frac{dx}{\sqrt[n]{x}}$
e) $\int (a^{\frac{2}{3}}-x^{\frac{2}{3}})^3 dx$

e)
$$\int (a^{\frac{2}{3}} - x^{\frac{2}{3}})^3 dx$$

Ejercicio 9. Calcula las siguientes primitivas

a)
$$\int \frac{\sqrt[3]{1 + \log(x)}}{x} dx$$

b)
$$\int \frac{dx}{e^x+1}$$

c)
$$\int x(2x+5)^{10}dx$$

2.2 Integración por partes

Ejercicio 10. Calcula las siguientes primitivas

a)
$$\int \log(x) dx$$

d)
$$\int x \operatorname{sen}(x) dx$$

e) $\int xe^{-x} dx$
f) $\int x^2 e^{3x} dx$

g)
$$\int x \operatorname{sen}(x) \cos(x) dx$$

a)
$$\int \log(x)dx$$

b) $\int \arctan(x)dx$
c) $\int \arcsin(x)dx$

e)
$$\int_{a}^{b} xe^{-x}dx$$

c)
$$\int \arcsin(x) dx$$

f)
$$\int x^2 e^{3x} dx$$

2.3 Integración de funciones racionales

Ejercicio 11. Calcula las siguientes primitivas

a)
$$\int \frac{x^2 - 5x + 9}{x^2 - 5x + 6} dx$$

c)
$$\int \frac{dx}{x(x+1)^2}$$

e)
$$\int \frac{dx}{(x+a)(x+b)}$$

b)
$$\int \frac{5x^3+2}{x^3-5x^2+4x} dx$$

a)
$$\int \frac{x^2 - 5x + 9}{x^2 - 5x + 6} dx$$

b) $\int \frac{5x^3 + 2}{x^3 - 5x^2 + 4x} dx$
c) $\int \frac{dx}{x(x+1)^2}$
e) $\int \frac{dx}{(x+a)(x+b)}$

Ejercicio 12. Calcula las siguientes primitivas

a)
$$\int \frac{dx}{x^3+1}$$

b) $\int \frac{dx}{(x+1)^2(x^2+1)^2}$

c)
$$\int \frac{dx}{(x^4-1)^2}$$

2.4 Integración de funciones trigonométricas

Ejercicio 13. Calcula las siguientes primitivas

a)
$$\int \cos^3(x) dx$$

e) $\int \cos^6(3x)dx$ f) $\int \frac{\cos^5(x)}{\sin^3(x)}dx$

b)
$$\int \sin^5(x) dx$$

a)
$$\int \cos^3(x)dx$$
b)
$$\int \sin^5(x)dx$$
c)
$$\int \sin^2(x)\cos^3(x)dx$$
d)
$$\int \sin^2(x)\cos^2(x)dx$$

Ejercicio 14. Calcula las siguientes primitivas

a)
$$\int \frac{\cos(x)}{1 + \cos(x)} dx$$

d) $\int \frac{dx}{3 \sin^2(x) + 5 \cos^2(x)}$ e) $\int \frac{\sin(2x)}{1 + \sin^2(x)} dx$

a)
$$\int \frac{\cos(x)}{1+\cos(x)} dx$$

b)
$$\int \frac{1+\tan(x)}{1-\tan(x)} dx$$

c)
$$\int \frac{dx}{1+\cos^2(3x)}$$

c)
$$\int \frac{dx}{1+\cos^2(3x)}$$