

Recurrent Neural Network, Tensorization, and Chaotic Time Series Forecasting

Xiangyi Meng

Department of Physics, Boston University

Motivation

Why time series forecasting?

Mechanical analysis, fluid dynamics, traffic, weather, finance, ... all **relevant**.

How?

Classical:

- 1) Auto-regressive moving average (ARMA)
- Hidden Markov models (HMM)

Machine Learning (ML):

- Gradient boosted trees (GBT)
- 2) Neural networks (NN)

Motivation

Time series data is best learned by a recurrent NN architecture.

The recurrent behavior of time series is fundamental.

Recurrent NN Architectures

Vanilla RNN:

LSTM is the **gold standard**: speech recognition, video tasks, e-sports...

LSTM Definition

Why is LSTM useful?

No activation function = nonvanishing gradient!

Chaos ForecastingDifficulties

LSTM is specialized in learning non-Markovian time series

(i.e., long-term memory)

What about chaos forecasting?

Chaos is governed by **short-term nonlinear** dynamics.

$$|\delta x_t| \approx e^{\lambda t} |\delta x_0|$$

The difficulties are two-fold:

- a) Small error propagates exponentially -> multiple-step-ahead predictions will be exponentially worse than one-step-ahead ones.
- b) (more subtly) When Δt (time step of discretization) increases -> the minimum redundancy needed for smoothly descending to the global minima also **increases exponentially**.

Chaos Forecasting

Difficulties

$$|\delta x_t| \approx \mathrm{e}^{\lambda t |\delta x_0|}$$

When Δt (or equivalently, λ) is large, difficulty (b) is more crucial -> usually **a trivial**, **ergodic local minimum** would most likely be reached instead.

...which is what we focus on (unlike traditional studies)

How to add nonlinearity into the NN architecture?

Tensorization: vectors, matrices -> higher-order tensor products.

e.g.,
$$x_{\mu} \rightarrow \mathcal{T}_{\mu\nu\xi\eta\dots} = x_{\mu} \otimes x_{\nu} \otimes x_{\xi} \otimes x_{\eta}\dots$$

Benefits of tensorization:

- 1) Introducing equally weighted nonlinear terms (by tensor products).
- 2) Theoretical analysis (polynomial functional space).
- 3) Experimentally tested in different recurrent NN architectures [1-2, etc.].
- [1] Schlag, I. & Schmidhuber, J. Learning to Reason with Third Order Tensor Products. in *Proceedings of Neural Information Processing Systems 2018*, vol. 31 9981–9993.
- [2] Yang, Y., Krompass, D. & Tresp, V. Tensor-Train Recurrent Neural Networks for Video Classification. in *Proceedings of the 34th International Conference on Machine Learning*, vol. 70 3891–3900 (PMLR, 2017).

On LSTM

We introduce a new LSTM-based recurrent architecture, keeping the **long-term** memory feature of LSTM while simultaneously enhancing the learning of short-term nonlinear complexity.

On LSTM

tensorize: $\mathcal{T}(\tanh c_t) = \text{tensor product of all column vectors above.}$

(Degrees of freedom = P^L . Here h, P, L are the dimensions.)

(When $L \to \infty$, $\mathcal{T}(\tanh c_t) \in \mathbb{T} = (1 \oplus q)^{\otimes L}$ which becomes a tensor algebra.)

Theoretical Analysis

Lemma 1: Given a chaotic dynamical system x_t characterized by a matrix λ of which the spectrum is the Lyapunov exponent(s), then, up to the first order (δx_{t-1}) ,

 $|\delta s_t| \ge Ce^{\lambda} |\delta c_t|$. Proof: (derivative propagation)

The $c_t \rightarrow s_t$ path governs the chaotic behavior of x_t .

Theoretical Analysis

Proof: (The Hölder-continuous spectral convergence theorem for polynomial space).

provided that $(h-1)hP^L \ge (h^{1+\min(L,\lfloor L(P-1)/h\rfloor)}-1)$. $||f||_{H^k_{\mu}(\Lambda)} = \sum_{|\mathbf{i}| \le k} ||\partial^{(\mathbf{i})} f||_{L^2_{\mu}(\Lambda)}$ is the Sobolev norm and C a finite constant.

The expressive power of s_t (as a function of c_t) is guaranteed by the derivatives of s_t over c_t , which is of the order of $\sim e^{\lambda}$ (from Lemma 1).

Curse of Dimensionality

Luckily, two tensor representations have been widely used for reducing the degrees of freedom in the literature of condensed matter physics:

- 1) Matrix product state (MPS).
- 2) Multiscale entanglement renormalization ansatz (MERA).

MPS vs MERA

* The MERA algorithm is re-arranged so that the memory storage of arrays is minimally used -> essential for GPU training.

MPS vs MERA

How well can MPS/MERA approximate the full tensor? It depends.

We can characterize it by α -Rényi entropy in an analogous way:

Theorem 3. Given a tensor $[W_{\mathcal{T}}]_{\mu_1\cdots\mu_L}$ and its tensor decomposition $\overline{W}_{\mathcal{T}}$, the worst-case p-norm $(p \geq 1)$ approximation error is bounded from below by

$$\min_{\{\overline{W}_{\mathcal{T}}\}} \max_{l \geq 1} \|W_{\mathcal{T}}(l) - \overline{W}_{\mathcal{T}}(l)\|_{p}$$

$$\geq \min_{\{\overline{W}_{\mathcal{T}}\}} \max_{l \geq 1} \left| e^{\frac{1-p}{p} S_{p}(W_{\mathcal{T}}(l))} \|W_{\mathcal{T}}(l)\|_{1} - e^{\frac{1-p}{p} S_{p}(\overline{W}_{\mathcal{T}}(l))} \|\overline{W}_{\mathcal{T}}(l)\|_{1} \right|, \tag{8}$$

where $S_{\alpha \equiv p}(W(l))$ is the α -Rényi entropy [Eq. (5)].

PROOF. Equation (8) is easily proved by noting the Minkowski inequality $||A + B||_p \le ||A||_p + ||B||_p$ and that $(1 - \alpha)S_{\alpha}(l) = \alpha \log ||W_{\mathcal{T}}(l)||_{\alpha} - \alpha \log ||W_{\mathcal{T}}(l)||_1$ when $\alpha \equiv p \ge 1$ [Eq. (5)].

MPS is simpler when $S_p(W_T(l))$ does not change with l;

MERA is better when $S_p(W_T(l))$ scales with $\omega(\ln l)$.

We investigate the accuracy of LSTM-MPS/MERA by evaluating the root mean squared error (RMSE) of its one-step-ahead predictions.

All models were (proudly) trained by Mathematica 12.0 on its NN infrastructure, Apache MXNet, using an ADAM optimizer.

Learning rate = 10^-2 and batch size = 64 were *a priori* chosen.

Comparison of LSTM-Based Architectures

LSTM	# of param.	h	L	P	$\{D_{\mathrm{I}},D_{\mathrm{II}},\cdots\}$	RMSE	LSTM	# of]
Benchmark	332	7	_	_	_	0.307	Benchmark	
"Wider"	696	11	_	_	_	0.279	"Wider"	1
"Deeper"	640	7	_	_	_	0.105	"Deeper"	1
MPS	663	7	2^3	2	$\{P,4\}$	0.088	MPS	1
MERA	640	7	2^3	2	$\{P, 2, 3\}$	0.066	MERA	1

LSTM	# of param.	h	L	P	$\{D_{\mathrm{I}},D_{\mathrm{II}},\cdots\}$	RMSE
Benchmark	35	2	_	_	-	0.259
"Wider"	1169	16	_	_	_	0.187
"Deeper"	1156	11	_	_	_	0.204
MPS	1231	2	2^3	2	$\{P, 9\}$	0.181
MERA	1053	2	2^3	2	$\{P, 4, 4\}$	0.010

Tensorized LSTM performed better;

LSTM-MERA performed even better than LSTM-MPS.

Comparison with Statistical/ML Models

Gauss "cubed" map, i.e., a Gauss iterated map sampled every three steps

Model	# of param.	RMSE (×10 ⁻²)				
$(n ext{ steps ahead})$	_	1 step	2 steps	4 steps		
Benchmark	35	1.54	7.63	32.03		
LSTM-MERA	89	0.19	0.89	13.77		
HO-RNN	23	11.91	23.16	27.69		
HO-LSTM	83	2.96	14.50	47.99		
HOT-RNN	81	12.04	23.76	29.61		
HOT-LSTM	315	1.39	6.40	26.83		
Deep NN	17950	0.81	3.66	23.49		
GBT	_	3.15	16.25	31.37		
ARMA	_	24.95	24.93	23.54		

Benchmark: vanilla LSTM

HO/HOT-RNN/LSTM: traditional tensorized NN

architectures.

GBT: gradient boosted trees.

Multiple-step-ahead predictions are exponentially worse.

Comparison with LSTM-MERA Alternatives

4				
3				
2				
1				
0				
-1				
-2				
-3				
4				
4				
2	0			2 4
	-2		0	
		4 4	-2	
		34		

Thomas' cyclically symmetric dynamical system					
Model	Site RMSE ($\times 10^{-1}$)				
Benchmark		1.13			
LSTM-MERA	A	0.45			
Alternatives	В	1.12			
	С	1.10			
	D	0.73			

The c_t -> s_t path governs the chaotic behavior of x_t .

Generalization and Parameter Dependence of LSTM-MERA

When Δt is too large, it's difficult for LSTM-MERA to reach the global minimum too.

LSTM-MERA still performed better when partial historical information was given.

Generalization and Parameter Dependence of LSTM-MERA

The performance increases with L; No simple dependence on P.

(f)

Generalization and Parameter Dependence of LSTM-MERA

Summary

		٠.					
Ιı	m	ΙŤ	' 2	TI	വ	n	

☐ Our model is only better than traditional LSTM at capturing short-term nonlinearity but not long-term non-Markovianity.

Advantage:

- ☐ The LSTM long-term feature is preserved.
- ☐ Tensorization introduces nonlinear terms, suitable for chaos forecasting.
- ☐ Theoretical analysis is conductible.
- Tensor decomposition techniques are available.

References:

Some pictures are from Wikipedia and https://colah.github.io/posts/2015-08-Understanding-LSTMs/.