Advanced Computer Contest Preparation Lecture 18

STATE COMPRESSION BITMASK DP

Sample Problem: Travelling Salesman Problem

- ullet There are N cities connected by M weighted roads
- You start in any city and end in any city
- You want to visit every city
- You can visit cities more than once
- What is the length of the shortest possible path?

Solutions?

- Preprocess:
 - Run an all-pairs shortest path algorithm so we can get distance between any 2 cities in O(1) time in the future
 - Floyd-Warshall runs in O(N³) time; very short code
- Brute force?
 - Try every possible permutation of cities to visit
 - Runtime: *O(N!)*

State Compression

- DP revolves around the concept of subproblems, or states
- These states must be able to be represented in memory
 - Easy to convert to some array/map location
- Sometimes, states are complex
 - Many variables
 - Abstract variables
- State compression involves turning a complex state into a simpler representation

Bitmask

- Used when the state has several variables and each can either be true (1) or false (0)
- A single integer is used to represent all of these variables
 - Integers are represented in binary in a computer
 - Each digit is called a bit
- Size of data type in bits corresponds to how many variables we can store
 - short = 16, int = 32, long long = 64
- Similar functionality to a bool array, but can be indexed by arrays and maps

Bitwise Operations

- Bitwise AND (&)
 - Takes each corresponding bit and performs the AND function
 - e.g. 7 & 13 = 5
- Bitwise OR (|)
 - Takes each corresponding bit and performs the OR function
 - e.g. 5 | 9 = 13
- Bitwise XOR (^)
 - Takes each corresponding bit and performs the XOR function
 - e.g. $7 \wedge 13 = 10$

Bitwise Operations

- Complement (~)
 - Flips all bits
- Left shift (<<)
 - Takes bits and shifts it left a specified number of times
 - Same as doubling repeatedly
 - e.g. 11 << 2 = 44
- Right shift (>>)
 - Takes bits and shifts it right a specified number of times
 - Same as halving repeatedly
 - e.g. 45 >> 3 = 5

Bitmask Tips

- Check if bit is set (equal to 1)
 - if (n & (1 << k))
- Set a bit
 - $n \mid = (1 << k)$
- Unset a bit
 - $n \&= \sim (1 << k)$
- Flip a bit
 - n ^= (1 << k)
- Get number with first k bits set
 - (1 << k) 1

Travelling Salesman – DP Solution

- The overall problem is:
 - What is the length of the shortest path that visits all cities?
- The subproblems are:
 - If the last city we visited was city i, what is the length of the shortest path that visits some subset of the N cities?
 - We will use a bitmask to represent which cities have been visited
 - If bit i is set, city i has been visited

DP Solution

- Let p(i,st) be the minimum distance of a path ending on city i that visits all nodes with bits set in st
- Base case: p(i,st) = 0 if no bits are set in st2 (st2 = 0)
 - Explanation: city i is the first city visited
- p(i,st) = min(p(j,st2) + dist(j,i)) if bit j is set in st2
 - Explanation: go to city i from city j with state st2

Pseudocode - Recursive

```
int solve(int node, int state) {
        if (dp[node][state] != INF) return dp[node][state];
        int state2 = state & (\sim (1 << node));
        if (!state2) return dp[node][state] = 0;
        for (int i = 0; i < N; i++) {
                 if (state2 & (1 << i)) {
                          dp[node][state] = min(dp[node][state],
                                   solve(i,state2) + dist[i][node]);
        return dp[node][state];
//qet input, init DP array to INF, do all pairs shortest path (Floyd-Warshall)
int ans = INF;
for (int i = 0; i < N; i++) ans = min(ans, solve(i, (1 << N)-1);
print(ans);
```

Analysis

- How many states are there?
 - \bullet $O(N \times 2^N)$
- How many subproblems does each state depend on?
 - O(N)
- What is the time complexity needed to compute the solution to a problem?
 - O(N)
- Therefore, the final time complexity is $O(N^2 \times 2^N)$

THANK YOU!