Appln. No.: 10/574,383

Amendment Dated December 31, 2009 Reply to Office Action of November 2, 2009

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A hermetic compressor comprising:

a hermetic container;

a motor element accommodated in the hermetic container; and

a compressing element that is accommodated in the hermetic container and driven by the motor element,

wherein

the compressing element has a shaft including an eccentric shaft and a main shaft, and a main bearing for pivoting the main shaft,

the motor element is a bipolar permanent magnet motor that has a stator including a stator core and a rotor including a rotor core, the rotor having a built-in permanent magnet in the rotor core, an axial length of the permanent magnet being less than the axial length of the rotor core,

the rotor core defines a hollow bore extends extending from a top end, the top end on the compressing element side of the rotor core first axial end of the rotor core, the first axial end on the compressing element side of the rotor core, and

the rotor core includes a built-in permanent magnet, an axial length of the permanent magnet being less than an axial length of the rotor core, the permanent magnet is being positioned in the rotor core so that it extends from a bottom end opposite the top end of the rotor core a second axial end of the rotor core opposite the hollow bore.

2. (Original) The hermetic compressor according to claim 1,

MAT-8823US

Appln. No.: 10/574,383

Amendment Dated December 31, 2009 Reply to Office Action of November 2, 2009

wherein axial length of the rotor core is longer than axial length of a stator core of the stator, hence the wide magnetic path is provided to smooth the flow of the magnetic flux by the permanent magnet.

3. (Original) The hermetic compressor according to claim 2,

wherein both axial ends of the rotor core are disposed outside both axial ends of the stator core, respectively.

- 4. (Cancelled)
- 5. (Original) The hermetic compressor according to claim 2, wherein axial length of the permanent magnet is shorter than axial length of the rotor core, and the permanent magnet covers a region having no bore in the axial direction of the rotor.
- 6. (Original) The hermetic compressor according to claim 2, wherein,

the rotor core has a cylindrical through hole having a first diameter into which the shaft is inserted,

the bore is a cylindrical recessed part that is formed in the upper part of the through hole and has a second diameter larger than the first diameter,

the permanent magnet has an axial length shorter than the axial length of the rotor core, and covers a region of the first diameter in the rotor in an axial direction of the rotor core.

7. (Original) The hermetic compressor according to claim 1,

wherein the main bearing is made of magnetic material, and the wide magnetic path is provided to smooth the flow of the magnetic flux by the permanent magnet.

8. (Original) The hermetic compressor according to claim 7,

wherein the main bearing is one of a casting and a molded product that is made of ironbased sintered material.

9. (Previously Presented) The hermetic compressor according to claim 7,

MAT-8823US

Appln. No.: 10/574,383

Amendment Dated December 31, 2009 Reply to Office Action of November 2, 2009

wherein axial length of the bore is 1/3 of axial length of the rotor core or more.

10. (Previously Presented) The hermetic compressor according to claim 7,

wherein a clearance between a peripheral surface of the bore and an outer peripheral surface of the main bearing is 0.5 to 3 mm.

11. (Previously Presented) The hermetic compressor according to claim 1, wherein the motor element is a self-starting permanent magnet synchronous motor,

the motor element has many conductor bars of a cage conductor for start on the outer periphery of the rotor core, and

the permanent magnet is disposed in the inner peripheral side of the conductor bars.

- 12. (Previously Presented) The hermetic compressor according to claim 1, wherein the permanent magnet is a rare-earth magnet.
- 13. (Previously Presented) The hermetic compressor according to claim 8, wherein axial length of the bore is 1/3 of axial length of the rotor core or more.
- 14. (Previously Presented) The hermetic compressor according to claim 8,

wherein a clearance between a peripheral surface of the bore and an outer peripheral surface of the main bearing is 0.5 to 3 mm.

15. (Previously Presented) The hermetic compressor according to claim 2, wherein the motor element is a self-starting permanent magnet synchronous motor,

the motor element has many conductor bars of a cage conductor for start on the outer periphery of the rotor core, and

the permanent magnet is disposed in the inner peripheral side of the conductor bars.

16. (Previously Presented) The hermetic compressor according to claim 7, wherein

Appln. No.: 10/574,383

Amendment Dated December 31, 2009 Reply to Office Action of November 2, 2009

the motor element is a self-starting permanent magnet synchronous motor,

the motor element has many conductor bars of a cage conductor for start on the outer periphery of the rotor core, and

the permanent magnet is disposed in the inner peripheral side of the conductor bars.

- 17. (Previously Presented) The hermetic compressor according to claim 2, wherein the permanent magnet is a rare-earth magnet.
- 18. (Previously Presented) The hermetic compressor according to claim 7, wherein the permanent magnet is a rare-earth magnet.