Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2} - \frac{1}{5} = \frac{3}{10}$	3p
	$\frac{3}{10} \cdot \frac{10}{3} = 1$	2 p
2.	$f(1) = 0 \Rightarrow 1 - a = 0$	3p
	a = 1	2p
3.	x+1=25	3p
	x = 24, care verifică ecuația	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	Multiplii de 30 din mulțimea M sunt 30, 60 și 90, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	2
	nr. cazuri posibile 9 3	2p
5.	$x_M = 5$, unde punctul M este mijlocul segmentului AB	3p
	$y_M = 5$	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$ şi, cum $x \in \left(0, \frac{\pi}{2}\right)$, obţinem $\sin x = \frac{12}{13}$	3p
	$tg x = \frac{\sin x}{\cos x} = \frac{12}{13} \cdot \frac{13}{5} = \frac{12}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1 \cdot 0 - 1 \cdot (-1) =$	3p
	=0+1=1	2p
b)	$B \cdot B = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$	3 p
	$B \cdot B + A = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
c)	$A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x & 0 \\ 0 & 4^y \end{pmatrix} \Leftrightarrow \begin{cases} 2^x = 1 \\ 4^y = 1 \end{cases}, \text{ deci } x = 0 \text{ si } y = 0$	3р
2.a)	$f(1)=1^3-2\cdot 1^2-2\cdot 1+1=$	3p
	=1-2-2+1=-2	2p

b)	Câtul este $X^2 - 3X + 1$	3 p
	Restul este 0	2p
c)	$x_1 + x_2 + x_3 = 2$	2p
	$(x_2 + x_3)(x_3 + x_1)(x_1 + x_2) = (2 - x_1)(2 - x_2)(2 - x_3) = f(2) = -3$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = -3x^2 + 3 =$	3 p
	$=3(1-x^2)=3(1-x)(1+x), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 2} \frac{f(x)}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} =$	3 p
	= f'(2) = -9	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	2p
	$x \in [-1,1] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[-1,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[1, +\infty)$	1p
	Cum $f(1) = 4$, obţinem $f(x) \le 4$, pentru orice $x \in [-1, +\infty)$	1p
2.a)	$\int_{-1}^{1} (f(x) - 2) dx = \int_{-1}^{1} (x + 2 - 2) dx = \int_{-1}^{1} x dx =$	2p
	$=\frac{x^2}{2} \bigg _{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0$	3 p
b)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} e^{x} (x+2) dx = e^{x} (x+2) \Big _{0}^{1} - e^{x} \Big _{0}^{1} =$	3p
	=(3e-2)-(e-1)=2e-1	2p
c)	$= (3e-2) - (e-1) = 2e-1$ $\int_{0}^{a} f(x)dx = \int_{0}^{a} (x+2)dx = \frac{a^{2}}{2} + 2a$	2p
	$\int_{0}^{6-a} (f(x)-4)dx = \int_{0}^{6-a} (x-2)dx = \frac{(6-a)^{2}}{2} - 2(6-a)$	2 p
	$\frac{a^2}{2} + 2a = \frac{\left(6 - a\right)^2}{2} - 2\left(6 - a\right) \Leftrightarrow a = 1$	1p