Ejercicio 1. Demostrar que MP preserva validez para toda clase de modelos. Es decir que, si $\mathcal{C} \models \alpha \rightarrow \beta$ y $\mathcal{C} \models \alpha$ entonces $\mathcal{C} \models \beta$.
Sa A ∈ C, pr digs 12 de les 10 robenon que:
AF(X-B)= mo AFX & AFB > AFB
A =x
Como A E C -> C/= B -> Vole poro todo vole de molela
ı

	Ejercicio 2. Sea $\Delta = \{SQ1, \dots, SQ7\}$ el conjunto de todos los axiomas de SQ .
	a. Supongamos que agregamos a Δ una fórmula φ que no es universalmente válida. Mostrar que
	el sistema resultante no es correcto con respecto a la clase de todos los modelos.
	b. Yendo al otro extremo, supongamos que eliminamos todos los axiomas, esto es, $\Delta = \emptyset$. Mostrar que el sistema resultante no es completo con respecto a la clase de todos los modelos.
	c. Supongamos que agregamos a Δ una nueva fórmula universalmente válida φ . Explicar por qué el sistema resultante es correcto y completo con respecto a la clase de todos los modelos.
	a) grg: tsq' x => tsq' x
	Saberra que 3 AEC/AKI.
	Tomas a g A will give Sp' a . + ,
	Tommo enl A y up que Sa' en correcto:
	=> tsa' 4 paque l'en oxisma. Adema tsa, l'=> Esa! 4] ABS!
	→ Sa' no e souto
	b) t_{ana} $A \in C / A $ t_{anal} t_{an
	lo aseguro?
	Sup sa' complets por la que = sa' 4 => + sa' 4 \ ABS!
	Absurdo porque al no tener axiomas no puedo demostrar nada, en particular no puedo
/	demostrar phi.
	Lug Sa! us a completo.
	V
	-) Sa' ex complets Fsa' 4 => Fsa' 4.
	7 M
	Si agregamos una formula universalmente valida SQ', entonces el conjunto de psis que son
	consecuencia semantica de 30, se mantiene igual ya que esta ditima pin no aporta nada ndevo.
	Ademas, si yo podia demostrar todas las psis sin meter al axioma phi, ahora puedo seguir demostrandolos, es tan facil como no usar el nuevo axioma.
	Chequear
	Criequeal

Ejercicio 3. Se dice que un modelo de primer orden es transitivo cuando todas sus relaciones binarias son transitivas. Partiendo de la axiomatización para SQ, proponer una extensión SQ^T que caracterice la clase de modelos transitivos. a. Demostrar que SQ^T es correcta con respecto a la clase de los modelos transitivos. b. Demostrar que SQ^T es completa con respecto a la clase de todos los modelos. c. Demostrar que SQ^T es completa con respecto a la clase de los modelos transitivos. d. Demostrar que SQ^T no es correcta con respecto a la clase de todos los modelos. Vale (YP: polish)? Sea L: CUFUP, Sonde P={R1,-,Rn} $SE_1: (\forall x) [xR_1 x]_{\Lambda} ... \Lambda (\forall x) [xR_n x]$ SEZ: (Yx,y)[xR,y -> y R, x], n (Yx,y)[xR,y -> y R,x] SE3: (Yx/z)[(xR,y/yR,z) -xR,z] -xR,z] a) F () = = = Y Suprayor + sat & (SE1, SEZ, SE3) Fsa f Como SQ es completo y correcto puedo usar correctitud fuerte (SE1, SEZ, SE3) = sa 1 Si probono que todo L'entruturo (e not () => Ce not 1. SEL: $(\forall x) \lceil x R_1 x \rceil \wedge \dots \wedge (\forall x) \lceil x R_n x \rceil$ Por Toda a E M M, N [X) a] = x R1 X r Por Toda α∈ M M, v[x→a] = xRzx n Pon Todo a ∈ M M, v[x→a] = xRnx Por Todo a ∈ [M M, v[x→a] = xR1 x y Por Todo on E M M, N [x - o] = x Rz X y Por Toda a E M M, v[x - a] = xRnx

b. Demostrar que SQ^T es completa con respecto a la clase de todos los modelos.
Par completitud => II. Qua: [SE3 I sa 4 => I sat 4]
Basicamente metiste un axioma extra, o sea que lo que podias demostrar antes lo podes seguir demostrando => estas como queres
•
c. Demostrar que SQ^T es completa con respecto a la clase de los modelos transitivos.
C) Son y/ C/= l son C models tromitive. Tota (SAT SE3 e de tromiteradold y uniquin models SAT y => {SE3} = y => = sqr y
d. Demostrar que SQ^T no es correcta con respecto a la clase de todos los modelos.
quq: + 50, 1 > + 50, 1 0 0 1 50, 1
mitad(x,y): x es la mitad de y
no vole que [mitod (x, y) , mitol (x, z)]
LSOT SE3 oxiona J
Suy Sa CONTO TO SE3 O sea que SE3 es tautologia y no deberia haber
ninguna valuacion ni modelo que no lo satisfaga. Datazo, encontramos el de arriba => ABS!

	Ejercicio 7. Sea \mathcal{L} un lenguaje con igualdad.
	a. Dar un conjunto de fórmulas Γ tal que si Γ es satisfacible en un modelo \mathcal{M} entonces el dominio de \mathcal{M} sea infinito. Sugerencia: escribir una fórmula que, dado un n fijo, fuerce a que el modelo tenga al menos n elementos.
	b. Usando compacidad y el ítem anterior, demostrar que no existe ninguna fórmula φ tal que φ es satisfacible en un modelo $\mathcal M$ sii el dominio de $\mathcal M$ es finito.
a)	queen
	$\Gamma' = \{ Y_i, i \in [N] \}$ $Y_i = \{ \mathcal{F}_{x_1, \dots, x_i} \} [T_{x_1, \dots, x_i}] [T_{x_1, \dots, x_i} \} [T_{x_1, \dots, x_i}] [T_{x_1, \dots, x_i$
	Tons M/ IM = K, KEIN
	Johns MFT => MF 1 K+2, pers 1 K+2 = "Al monn K+1 distrib" y M tiese K distints J ABS! For reposer M first => M infinite
b)	gra. ZY/M=Y SM frits
	Sup que I I/ M= y => M fints re interpoets com
	Y= "el dominio en finito"
	Soo $\Gamma = \{1, i \in \mathbb{N}\}$ del puto $\alpha y \Gamma' = \Gamma \cup \{4\}$.
	Tomy Co fints Ep!
	$MAX = mox ({ i : { i \in \Gamma_0 } \cup \{1\}})$
	Tons M/ [M] = MAX y a finite]
	⇒ M ⊨ M Esto pasa porque M hace verdadero a todas las phi_{i}, (i < MAX) y como e finito en particular tambien hacer verdadero a phi. Luego, M = Gamma0
	Por composidos, como M votifice a toto Po finity EP, J M / M F []
	•

	pacidad que no existe una fórmula $\varphi_R(x,y)$ tal que su interpretación en cualquier \mathcal{L} -estructura \mathcal{M} sea que (x,y) pertenece a la clausura transitiva de la relación binaria $R^{\mathcal{M}}$.
Y _R ($9rg$: No exite $\frac{1}{R(x,y)}/(x,y) \in \text{downna transition de }R^M \ \forall M$ $x(y) = xR^{\dagger}y = \text{Exite coning de relocion entere } x = y.$
	$V_{1}(x,y)=xRy=\tau(xRy)$ $V_{1}(x,y)=(\forall y_{1},,y_{i-1})\left[\tau(xRy, n, y_{i}Ry, n, y_{i}Ry, n, y_{i-1}Ry)\right]$
	$\Gamma = \{\forall i, i \in \mathbb{N}\}$ $\Gamma' = \Gamma \cup \{\forall\}$
V	T' en ma SAT
	ni vole I => Existe comins entre X & y, dugins de longitus K. I Pero ri porse ero Ik mo vole J T' no SAT T' en SAT
	Tom To fints = T' off off
	$I = \left(\begin{array}{c} 1 & \text{Max} + 2 \\ 1 & \text{Max} + 2 \end{array} \right)$ $I = \left(\begin{array}{c} 1 & \text{Max} + 2 \\ 0 & \text{Max} + 2 \end{array} \right)$
	Haces compacibilidad y tenes un absurdo.

Ejercicio 8. Sea $\mathcal L$ un lenguaje con un símbolo de predicado R binario. Demostrar usando com-

como la relación "es adyacente a" (esto es, cualquier interpretación donde la relación $R^{\mathcal{M}}$ sea irreflexiva y simétrica). Demostrar que no es posible expresar la propiedad que afirma que un grafo es conexo, es decir, que entre cualquier par de nodos hay un camino de longitud finita.
I re interprets como "by un sories entre toto por de rodor"
Y1: (Jex) [(xRy)]
Yz: (FX) [Vz)[-(2Rz x zRY)]
Vi: (Hz,,,, Zi-1) [-(xRt, n 1 Zi-1 Ry)]
I re interpreto soms "Exiter 2 moder me consutolog por la cominer € i
Γ = { Yi, i ∈ N}
Γ' » SAT
Tomo lo finto El'
Exiter M rodels y v vol / M, v = To
$MAX = \max \left(\left\{ i : \forall_i \in \Gamma_0 \right\} \cup \left\{ L \right\} \right)$ $MAX = \max \left(\left\{ i : \forall_i \in \Gamma_0 \right\} \cup \left\{ L \right\} \right)$ $MAX + 2$
$\overline{J}: \left\{ \left\{ m_{1}, \ldots, m_{\text{MAX}+2} \right\}, R = \left\{ \left(1, 2 \right), \ldots, \left(M_{4} \times 1^{1}, M_{4} \times 1^{2} \right) \right\} \right\}, V\left(\chi \right) = m_{1}, V\left(\chi \right) = m_{1} M_{4} \times 1$
El modelo satisface phi_{MAX} ya que los nodos 1 y MAX+2 estan a distancia mayor a MAX. En particular entonces se satisfacen todos los phis_{i} tomados a Gamma0. Ademas, como el grafo es conexo tambien se satisface phi.
=) In Fro pro unquier to first = [] =) Por composed t'e SAT

Ejercicio 9. Sea \mathcal{L} un lenguaje con un símbolo de predicado R, y \mathcal{M} cualquier modelo cuyo dominio represente a los nodos de un grafo no orientado, y el símbolo R pueda ser interpretado

P' e m SAT
$\Gamma' = \{ \forall i, i \in \mathbb{N} \} \cup \{ \emptyset \}$
Supergo (SAT
Como Gamma' es SAT en particular phi es SAT y el grafo es conexo. Entonces existen 2 nodos i y j cuya distancia es maxima en el grafo y tiene distancia MAX.
Si tomamos phi_{MAX+1} entonces existen 2 nodos i' y j' que no tienen un camino menor a MAX+1. Esto es absurdo porque el camino entre i y j era el maximo.
→ [m SAT]

Ejercicio 10. Una función f se dice <i>circular</i> cuando para todo elemento e en el dominio de f existe un natural $n > 0$ tal que $f^n(e) = e$, en donde f^n representa el resultado de aplicar n veces la función f en forma sucesiva. Mostrar que no es expresable en primer orden la proposición " f es una función circular".
La interpeto cons" for circular"
$\forall i(x) = \neg (l(x) = x)$
$ \frac{\sqrt{1}(x)}{1} = \neg \left(\frac{1}{x}(x) = x \right) $ $ \sqrt{1}(x) = \neg \left(\frac{1}{x}(x) = x \right) $
li re interpreto como "forbeds i vece en distits de x"
1 see southern some I officer that so seems at so

reales positivos. Claramente, en el modelo estándar de los reales (notación: \mathcal{R}) no hay números infinitesimales. Sea $SQ_{\mathbb{R}}$ una axiomatización de primer orden correcta con respecto a \mathcal{R} sobre el lenguaje $S = \{0, suc, <, +, -, *, /\}$, que extiende a SQ con nuevos axiomas. Sea $SQ_{\mathbb{R}}^+$ una extensión de $SQ_{\mathbb{R}}$ en donde se agrega un nuevo símbolo de constante c y los siguientes (infinitos) axiomas:
Positivo $c>0$ Menor _n $c<\frac{1}{suc^{(n)}(0)}$ para todo $n>1$
a. Demostrar que si \mathcal{M} es modelo de $SQ_{\mathbb{R}}^+$, entonces \mathcal{M} es modelo de $SQ_{\mathbb{R}}$.
b. Demostrar que $SQ_{\mathbb{R}}^+$ es satisfacible (Sugerencia: usar compacidad).
c. Demostrar que cualquier axiomatización correcta con respecto a $\mathcal R$ admite un modelo que posee números infinitesimales.
a) Claranete ni M rungle SQR - sumple SQR. O va, SQR = SQR
b) SQR en un royents de oxiono infinits.
Tonono Sart fiit = sart.
Solema que exite MAX/ Menon MAX € SQ & pero Menon: € SQ &: i>MAX
Querens en M'/M' = 5Qt.
Sea M'/M' = Sar, agregon a M' la ste = 1
Solema que <>0 => M' = Poitirs.
Adena, M' F Mann; , i & MAX => M' F SQ &
Por compaided, J M/ M F Sat

Ejercicio 11. Un número r es llamado infinitesimal si es mayor que cero y menor que todos los

y sucesor. Considerar un lenguaje de primer orden con igualdad \mathcal{L} con un símbolo de constante 0 y un símbolo unario de función suc . Sea la siguiente axiomatización SQ_N , que extiende a SQ con infinitos axiomas:
S1 $(\forall x)suc(x) \neq 0$ 0 ~ here predecense
S2 $(\forall x)(\forall y)(suc(x) = suc(y) \rightarrow x = y)$ were light => Mine over S3 $(\forall y)(y \neq 0 \rightarrow (\exists x)(y = suc(x)))$ Toly Time poleon, who is 0.
$\mathbf{S4}_n (\forall x)(suc^{(n)}(x) \neq x)$ para todo $n > 1$ Nunco para so vieto
a. Demostrar que $S1$ y toda instancia de $S4_n$ es verdadera en $\mathcal{N}.$
a) $M, v \models (\forall x) \text{ nuc}(x) \neq 0 \Rightarrow \text{Pora todo a } M, v[x \rightarrow a] \models \text{nuc}(a) \neq 0$
⇒ Pora todo a vale que us rucosa e ditito de OJ VALE EN IN
M, v = (Vx) [ne "(x) + x) = Pour todo a M, v[x a] + ne "(a) + a
@ Pon todo a vole que aplica rucero a vecer a ditinto de a J VALE EN N Y m 21
b. Dado un conjunto de fórmulas de primer orden Σ , demostrar que si existe un conjunto finito
de fórmulas Γ tal que $Con(\Gamma) = Con(\Sigma)$, entonces existe un conjunto finito $\Sigma_0 \subseteq \Sigma$ tal que $\Sigma_0 \models \Sigma$. Sugerencia: usar alguna de las formulaciones del teorema de compacidad.
20 - 2. sugoronom. and alguna do has formalaciones del costoma de compuedada.
b) Sea Σ , $\exists \Gamma \text{ finits } / \text{ COV}(\Gamma) = \text{CON}(\Sigma) \Rightarrow \exists \Sigma_0 \text{ finit } \Sigma / \Sigma_0 \models \Sigma$.
TCOMPACIDAD:
Si $\Gamma \models \alpha \Rightarrow \exists \Gamma_0 \text{ finite } \subseteq \Gamma / \Gamma_0 \models \alpha \qquad \Gamma = \{ \chi_1, \dots, \chi_n \}$
+ + + + + + + + + + + + + + + + + + + +
$CON(\Gamma) = CON(\overline{\Sigma}) \Rightarrow \Gamma \in CON(\Gamma) \Rightarrow \Gamma \in CON(\overline{\Sigma}) \Rightarrow \overline{\Sigma} = \Gamma$
Anologo [F E
long Σ F Γ ⇒ Σ F Y, y Σ F Y2 y - 2 Z F Ym
somo - 1 1 - LT 01 y 2T 12 y - 1 y 2T /m
Con compacidad, existen \$\tilde{\infty}_1,,\tilde{\infty}_n finita/
$\Sigma_1 \models \delta_1, \dots, \Sigma_n \models \delta_n$
Sen $\Sigma_0 = \bigcup_{\Sigma_i}^{\infty}$, leien = $\Sigma_0 \neq \Gamma$
Asleman, cons (FE por trusticida) So FE
that and it is the interest of

Ejercicio 12. Vamos a llamar $\mathcal{N} = \langle \mathbb{N}; 0; suc \rangle$ al modelo usual de los números naturales con cero

tal que $\mathcal{M} \models \Gamma$ pero $\mathcal{M} \not\models SQ_N$.
Ing un oxisma MAX. Tono M= ({0,, MAX+10}, we (x)= x+1 % MAX+10}
 d. Sabiendo que SQ_N es correcta y completa con respecto a N, demostrar que ninguna axiomatización correcta y finita de primer orden es completa con respecto a N. Sugerencia, aplicar el punto b al ítem anterior. b. Dado un conjunto de fórmulas de primer orden Σ, demostrar que si existe un conjunto finito
de fórmulas Γ tal que $Con(\Gamma) = Con(\Sigma)$, entonces existe un conjunto finito $\Sigma_0 \subseteq \Sigma$ tal que $\Sigma_0 \models \Sigma$. Sugerencia: usar alguna de las formulaciones del teorema de compacidad.
Sea San una aximatigación sorresta y finita de San