DEPARTAMENTO DE ENGENHARIA MECÂNICA

Rumo à Indústria 4.0

Towards Industry 4.0

Dissertação apresentada para a obtenção do grau de Mestre em Engenharia e gestão Industrial. Autor

Pedro Miguel Nogueira Coelho

Orientador

Professor Doutor Cristóvão Silva

Júri

Professor Doutor Nuno Alberto Marques Mendes Presidente Professor auxiliar da Universidade de Coimbra

> Professor Doutor Cristóvão Silva Professor da Universidade de Coimbra

Vogais Professor Doutor Pedro Mariano Simões Neto.

Professor auxiliar da Universidade de Coimbra

Orientador Professor Doutor Cristóvão Silva

Coimbra, julho, 2016

Colaboração Institucional

SRAMPORT, Transmissões Mecânicas, Lda.

"Mudam-se os tempos, mudam-se as vontades, Muda-se o ser, muda-se a confiança: Todo o mundo é composto de mudança, Tomando sempre novas qualidades". [1]

> " O homem é do tamanho do seu sonho. " Fernando Pessoa (1888-1935)

Agradecimentos

Aos funcionários da SRAMPORT em geral, pela forma com me receberam desde o primeiro momento, pelas oportunidades, pela amizade e pelo carinho.

Ao Professor Doutor Cristóvão Silva pelo apoio durante o desenvolvimento desta dissertação.

Ao Diretor Geral cessante, Eng.º João Pires, e à atual diretora, Engª Isabel Gomes pela oportunidade.

À equipa do projeto que é responsável pelo seu sucesso. (Joao Pires; Isabel Gomes; Eugenia Martins; Hélio Palrilha; Pedro Tenreira; João Reis; Fernando Rosinha; Silvia Carmen; Mafalda Martins)

Ao Joao Paulo, parceiro em muitos dos projetos rumo ao 4.0.

A Eugenia e ao Paulo Carvalho colegas de trabalho e de curso pelo apoio e amizade ao longo destes anos.

Amigos de uma vida que alimentaram esta ideia, muito Obrigado!

Aos Meus Pais pelo apoio incondicional.

A minha Esposa, Alcinda Carnim.

Ao meu filho David Coelho.

RESUMO

A indústria está em transformação a uma velocidade nunca antes vista, impulsionada pelo desenvolvimento e utilização de tecnologias facilitadoras, cada vez mais evoluídas e ágeis. A transformação será transversal, apesar de alguns setores assumirem a liderança, como é o caso da indústria automóvel, tecnológica e biológica. "I believe the auto industry will change more in the next five to 10 years than it has in the last 50." [2] . A velocidade e o impacto da transformação é tal que se fala numa nova revolução Industrial, a quarta.

Esta revolução está a provocar alterações profundas, não só na indústria, mas também na sociedade, na economia, nos valores, na forma como nos relacionamos, como escolhemos os produtos e serviços, compra ou aluguer, economia partilhada, inovação colaborativa, manufatura aditiva, as redes sociais, as plataformas digitais, entre outras. O mundo anda a velocidades diferentes, aumentando cada vez mais o fosso entre países desenvolvidos e países em desenvolvimento, entre indústria de vanguarda e as outras, é preciso entender as oportunidades e os riscos de forma a criar vantagem competitiva.

O objetivo desta dissertação não é a implementação da indústria 4.0 na SRAMPORT, até porque não existe uma definição, mas sim uma visão em constante evolução à medida que tecnologias facilitadoras vão imergindo. Este trabalho é acerca de um caminho, uma estratégia que tem vindo a ser seguida e que tem colocado a empresa em vantagem competitiva perante as suas congéneres e rumo ao futuro.

O presente documento está dividido em duas partes distintas: primeira parte em que são abordadas algumas vertentes e pilares da indústria 4.0. Na segunda parte são dados alguns exemplos de iniciativas que abrem caminho à sua implementação preparando infraestruturas de suporte numa estratégia vanguardista de inovação.

Palavras-chave: Indústria 4.0; *Smart Factory;* Indústria do futuro; Inovação competitiva; tecnologia facilitadora

Rumo à Industria 4.0 Abstract

ABSTRACT

The industry is changing at a speed never seen before, driven by the development and use of enabling technologies, advanced and agile. The transformation will be transverse, although some sectors take the lead such as the automotive, technology and biology industry. "I believe the auto industry will change more in the next five to 10 years than it has in the last 50." [2] .The speed and the impact of change is such that we speak in a new Industrial revolution, the fourth.

This revolution is causing profound changes, not only in the industry but also in society, the economy, the values in the way we interact, how we choose the products and services, purchase vs. rental, shared economy, collaborative innovation, additive manufacturing, the social networks, digital platforms among others. The world moves at different speeds, continually increasing the gap between developed and developing countries, between cutting-edge industry and others, we need to understand the opportunities and risks in order to create advantage.

The goal of this dissertation is not the implementation of industry 4.0 at SRAMPORT, because there is no definition, but a vision constantly evolving as enabling technologies immerse. This work is about a path, a strategy that has been followed creating competitive advantage and preparing for the future.

This document is divided into two distinct parts: The first part is addressed some aspects and pillars of industry 4.0. In the second part are given some examples of initiatives that will support his implementation, preparing base infrastructure in strategy of innovation.

Keywords: Industry 4.0; Smart Factory, industry of the future; Innovation ;Enabling technology Rumo à Industria 4.0 Abstract

ÍNDICE

Agradecimentos	ii
Resumo	iv
Abstract	Vi
Índice	viii
Índice de Figuras	x
	xi
	Xi
1 7	
	Xii
E	xii
Siglas	xii
1. Evolução Histórica	14
2. Indústria 4.0	
-	s17
•	ria 4.020
* *	24
3. Rumo à indústria inteligente	25
	ORT28
4. Digitalização das Linhas de Pro	dução da Montagem29
	29
3	29
5	29
4.4. Processo produtivo de corre	entes
4.5. Desenvolvimento do conce	ito36
4.6. Implementação do projeto .	50
4.7. Avaliação e enceramento	
4.8. Rumo à indústria 4.0	53
5. Conclusões	54
6. Referências Bibliográficas	55
<u> </u>	55
6.2. Bibliografia	55
	55
Anexo A: Parking Lote	57
Anavo R. Dlano de Projeto	50

Rumo à Industria 4.0 Índice

ÍNDICE DE FIGURAS

Figura 1 - Evolução historia [4]	15
Figura 2 - Ano medio esperado para o ponto crítico	17
Figura 3 - Pontos críticos em 2025 [7]	18
Figura 4 - Membros artificiais controlados pelo poder da mente	19
Figura 5 - IoF	20
Figura 6 - Internet Vs IOT/IOS	20
Figura 7- Tira-Vez continente	21
Figura 8 - Big Data	22
Figura 9 - Pirâmide DIKW	23
Figura 10 – "Digital Compass", McKinsey&Company	24
Figura 11 - CP Fornos	25
Figura 12 - CP CHC	25
Figura 13 - Monitor Controlo de Processo	26
Figura 14 - Fabrica virtual (CPS)	26
Figura 15 - Produtividade CHC's	27
Figura 16 - Análise Pareto de Paragens	27
Figura 17 - Distribuição geográfica da SRAM	28
Figura 18 -Produtos e marcas SRAM	28
Figura 19 - Corrente PCXX1	33
Figura 20 - Routing correntes	33
Figura 21 - Estrutura da corrente	34
Figura 22 - Carta SPC manual	35
Figura 23 - Limitações à utilização de Lotes WIP em SAP [15]	39
Figura 24 - Divisão das ordens de produção	40
Figura 25 - Programação regressiva	40
Figura 26 - Kanban	42
Figura 27 - Fluxo Corrente não unitária	43
Figura 28 - Fluxo corrente unitária	43
Figura 29 - Confirmação das operações com associação de lote	44
Figura 30 - Exemplo de carta SPC e Western Digital rules	45
Figura 31 - Histograma Dist. Normal e capacidade do processo	46
Figura 32 - Routing com operações de controlo	46
Figura 33 - Etiqueta Kanban	47

Rumo à Industria 4.0 Índice de Tabelas

Figura 34 - Etiqueta de identificação de produto	47
ÍNDICE DE TABELAS	
Tabela 1 - Análise Top-Down	37
Tabela 2 - Análise Botom-up por componente defeituoso	38
Tabela 3 - Análise Botom-up por defeito na linha de produção	38
Tabela 4 - Conteúdo etiqueta Kanban	47
Tabela 5 – Conteúdo da etiqueta de Identificação do produto	47
ÍNDICE DE EQUAÇÕES	
Equação 1 Capacidade do processo (CP)	45
Equação 2 - Capacidade do processo (CPK)	46

Rumo à Industria 4.0 Simbologia e Siglas

SIMBOLOGIA E SIGLAS

Simbologia

SÍMBOLO SIGNIFICADO

σ Sigma - Desvio Padrão

Siglas

Sigla	Significado
BOM	Bill of Materials
СНС	Máquina de Produção de correntes - SRAMPORT
CPS	Cyber-Physical Systems
DEM	Departamento de Engenharia Mecânica
DIKW	Data, Information, Knowledge, Wisdom
FCTUC	Faculdade de Ciências e Tecnologia da Universidade de Coimbra
IOS	Internet of Services
IoT	Internet of things
IT	Information Technology
MIT	Massachusetts Institute of Technology
MTO	Make to Order
MTS	Make to Stock
RFID	Radio-frequency identification
SAP	Enterprise resources planning from SAP
SPC	Statistical Process Control
VSM	Value stream mapping
WEF	World economic forum (https://www.weforum.org/)
WIP	Work in Process
LSL	low specification limit
USL	Upper specification limit

Rumo à Industria 4.0 Simbologia e Siglas

Rumo à Industria 4.0 Evolução Histórica

1. Evolução Histórica

A primeira revolução Industrial começou algures entre 1760 e 1840 na Inglaterra, com a substituição progressiva dos métodos artesanais por máquinas e ferramentas, pela exploração do carvão como energia alternativa à madeira e outros biocombustíveis, e pelo uso crescente da energia do vapor. As alterações dos processos produtivos tiverem consequências significativas a nível económico e social. O artesão que até então controlava todo o processo produtivo, desde a exploração da matéria-prima até à comercialização do produto final, passou a trabalhar para um patrão que controlava o processo, a matéria-prima, o produto final e os lucros.

Nas décadas que se seguiram e sensivelmente até ao fim da segunda guerra mundial (1945), as evoluções foram significativas na área da indústria química, elétrica e do aço, assim como um aprimoramento significativo das técnicas existentes. Surgiram os primeiros barcos de aço movidos por potentes motores a vapor, revolucionando o transporte de mercadorias. Surgiram também as primeiras linhas de produção que viriam a permitir a produção em massa e a baixos custos. A invenção e inovação andaram de mãos dadas nesta que foi a segunda revolução Industrial.

Nas décadas de 1950 e 1970 começou-se a desenhar aquela que viria a ser considerada a terceira revolução Industrial, a revolução digital, com a proliferação e uso dos semicondutores, dos computadores, automação e robotização em linhas de produção, com informação armazenada e processada de forma digital, as comunicações, os telefones móveis e a internet.

No início do seculo XXI, com o desenvolvimento da internet, sensores cada vez mais pequenos e potentes, com preços cada vez mais acessíveis, software e hardware cada vez mais sofisticado, a capacidade das máquinas aprenderem e colaborarem criando gigantescas redes de "coisas", iniciou-se uma transformação na indústria, cujo impacto na competitividade, na sociedade e na economia será de tal forma que irá transformar o mundo tal como o conhecemos. Esta transformação foi apelidada pelos professores Erilk Braynjolfsson e Andrew McAfee do instituto de tecnologia de Massachusetts como segunda idade da máquina e em 2011 na feira Industrial de Hannover, na Alemanha, falava-se em indústria 4.0. [3]

Figura 1 - Evolução historia [4]

2. Indústria 4.0

O termo "Indústria 4.0"; "smart factory"; "intelegent factory"; "factory of the future" são termos que descrevem uma visão do que será uma fábrica no futuro [5]. Nesta visão as fábricas serão muito mais inteligentes, flexíveis, dinâmicas e ágeis. Outra definição para "Smart factory" é uma fábrica que faz produtos inteligentes, em equipamentos inteligentes, em cadeias de abastecimento inteligentes.

2.1. Impacto da Indústria 4.0

O impacto da Indústria 4.0 vai para além da simples digitalização, passando por uma forma muito mais complexa de inovação baseada na combinação de múltiplas tecnologias, que forçará as empresas a repensar a forma como gerem os seus negócios e processos, como se posicionam na cadeia de valor, com pensam no desenvolvimento de novos produtos e os introduzem no mercado, ajustando as ações de marketing e de distribuição.

É preciso perceber que as alterações se irão verificar em ambos os lados da cadeia de abastecimento, tanto a nível das exigências dos clientes como dos parceiros de negócio. De acordo com Klaus Schwab no seu Livro "the fouth Indústrial Revolution" são quatro as principais alterações esperadas na Indústria em geral: [3]

- ✓ Alterações nas expetativas dos clientes.
- ✓ Produtos mais inteligentes e mais produtivos.
- ✓ Novas formas de colaboração e parcerias.
- ✓ A transformação do modelo operacional e conversão em modelo digital

Mais do que procurar produtos, o cliente procura experiências, tudo é considerado na altura da compra, desde a embalagem, a marca, o serviço de atendimento, serviços pós venda, o que os outros dizem sobre o produto, o que o produto diz sobre si mesmo, como são partilhadas as experiencias por outros consumidores, o que se diz nas redes sociais, que informação está disponível para que se possa fazer uma escolha conscienciosa baseada em factos e não apenas intuições.

De produção em massa evoluímos para uma customização em massa. A customização em massa é definida como produção de bens ou serviços que atendam desejos específicos e individuais a custos reduzidos, muito próximos dos custos de produção em massa sem customização, só possível com uma grande agilidade e flexibilidade da empresa.

Produtos e serviços estão a ser potenciados com a inclusão de capacidades digitais, pela utilização de novos materiais mais inteligentes, sensores capazes de monitorizar em tempo real, fornecendo estatística de desempenho e prevenir proactivamente desvios em relação ao funcionamento normal, de forma que sejam corrigidas antes mesmo de se transformarem em falhas, maximizando a sua utilização, reduzindo custo de posse e aumentar o valor percebido pelo cliente.

WEF (World economic forum) no seu relatório "Collaborative Innovation Transforming Business, Driving Growth" publicado em Agosto de 2015 define inovação como sendo a "comercialização com sucesso de ideais inovadoras, incluindo novos produtos, serviços, processos ou modelos de negócio, que se traduzam numa melhor experiencia para o cliente ou aumento de produtividade das empresas que as usam".

A inovação colaborativa impulsiona sinergias em pontos-chave que se traduzem em vantagens competitivas e é vista como motor para o crescimento social e económico. Este tipo de inovação é procurada por empresas jovens com ideias inovadoras mas sem recursos suficientes que procuram empresas bem implantadas no mercado, ou empresas que apesar de estarem bem implementadas procuram novas oportunidades de se tornarem mais ágeis e competitivas. Inovação impulsiona o crescimento através da introdução de produtos ou serviços que tiraram partido da procura existente ou latente no mercado, criando valor adicional para as empresas, consumidores, e aumentando a produtividade de quem as emprega.

Para Mark Esposito, Professor "of Business and Economics", Harvard University Extension School, a Inovação colaborativa é a próxima grande ideia que se precisa de moldar de forma a permitir o aparecimento de novos modelos de negócios colaborativos. Ancorada em bases sólidas de empreendedorismo, a inovação colaborativa é o motor das organizações modernas, capazes de criar novas oportunidades, explorar novas ideias radicais, testando os limites dos mercados. Um verdadeiro melhor amigo para o crescimento.

Esta mudança de paradigma tem forçadas as organizações a repensar o modelo operacional de forma a se tornarem as mais rápidas, ágeis e adaptadas ao mundo em constante mudança onde a concorrência é cada vez mais complexa.

O aparecimento de plataformas virtuais globais intimamente ligadas ao mundo físico, em vez de simples digitalização é um marco em relação à indústria 3.0. A necessidade das organizações se focarem no cliente altera o paradigma entre vender produtos ou distribuir

serviços, em vez de comprar o produto, o cliente compra o seu acesso através de plataformas digitais especialmente criadas para o efeito, veja-se o exemplo dos livros (Amazon com Kindle), da música (Spotify), da mobilidade através do car-sharing sem a necessidade da compra de um veículo (UBER ou Citydrive [6]), aluguer de habitação AIRBNB.

2.2. Mudanças e Pontos Críticos

Em setembro de 2015 o WEF lançou um relatório intitulado "Deep Shift Technology Tipping Points and Societal Impact" que tinha por base uma consulta a 800 executivos e especialistas do setor de tecnologias da informação e comunicação e que pedia que localizassem no tempo de acordo com a sua perceção, 21 pontos críticos de mudança. A Figura 2 mostra o resultado dessa análise com referência temporal em que é esperado que os mesmos se tornem uma realidade [7]:

Figura 2 - Ano medio esperado para o ponto crítico

Os dados foram analisados no sentido de apurar qual a percentagem do ponto crítico que era esperado estar completo no ano de 2025, isto é no prazo de 10 anos. O resultado está espelhado na Figura 3 - Pontos críticos em 2025.

Table: Tipping Points Expected to Occur by 2025

	%
10% of people wearing clothes connected to the internet	91.2
90% of people having unlimited and free (advertising-supported) storage	91.0
1 trillion sensors connected to the Internet	89.2
The first robotic pharmacist in the US	86.5
10% of reading glasses connected to the Internet	85.5
80% of people with a digital presence on the Internet	84.4
The first 3D-printed car in production	84.1
The first government to replace its census with big-data sources	82.9
The first implantable mobile phone available commercially	81.7
5% of consumer products printed in 3D	81.1
90% of the population using smartphones	80.7
90% of the population with regular access to the Internet	78.8
Driverless cars equalling 10% of all cars on US roads	78.2
The first transplant of a 3D-printed liver	76.4
30% of corporate audits performed by Al	75.4
Tax collected for the first time by a government via a blockchain	73.1
Over 50% of Internet traffic to homes for appllances and devices	69.9
Globally more trips/journeys via car sharing than in private cars	67.2
The first city with more than 50,000 people and no traffic lights	63.7
10% of global gross domestic product stored on blockchain technology	57.9
The first Al machine on a corporate board of directors	45.2

Figura 3 - Pontos críticos em 2025 [7]

No referido relatório são identificadas seis tendências que estão a moldar a sociedade criando oportunidades e riscos:

- ✓ Pessoas e a internet: Redes sociais, a forma como as pessoas interagem umas com as outras.
- ✓ Computadores, comunicações e armazenamento: A rápida redução de custo, o tamanho dos computadores e tecnologias de comunicação.
- ✓ Internet das coisas: Sensores cada vez mais pequenos e baratos estão a ser introduzidos em casas, acessórios, cidades, transportes e processos produtivos.
- ✓ Inteligência Artificial e Big-Data: Crescimento exponencial da digitalização, da informação acerca de tudo e de todos associados a software com algoritmos cada

vez mais sofisticados e capazes de aprender e evoluir sozinhos, começam a ocupar lugares até agora reservados ao homem, inclusive lugares de decisão.

- ✓ Economia partilhada e confiança distribuída: As redes socias, a partilha de recursos em vez da sua aquisição, as bitcoins e a blockchain estão a criar novos modelos de negócio e a reformular os existentes, alterando a forma como nos relacionamos e a perceção de confiança entre parceiros.
- ✓ Digitalização da matéria: A impressão em 3D de objetos físicos recorrendo à produção aditiva e usando materiais cada vez mais evoluídos e inteligentes está a transformar a era Industrial, no que diz respeito a prototipagem, batch size 1, logística de distribuição e a criar um conjunto de oportunidades para o ambiente Industrial, mercado doméstico e saúde.

As inovações estão em todo o lado, desde transplantes de fígado produzidos por impressoras 3D à AI (inteligência Artificial), inclusivamente em cargos de decisão, cidades inteligentes, sistema financeiro emergente baseado em bitcoins e blockchain, etc.

Dra Aisha Bin Bishr alta dirigente do governo do programa "Smart Dubai initiative" dizia em relação a cidades inteligentes "Blockchain technology is one of the most elegant and advanced technologies for cross-business efficiencies. We believe blockchain will have an important role in boosting productivity, increasing the competitiveness of Dubai and securing our economic infrastructure." [8]

Em 1982 era notícia uma serie televisiva em que o carro era autossuficiente, conduzir-se sozinho, tinha acesso a uma base de dados infindável, falava e possuía uma inteligência artificial capaz de definir o curso da ação, e em algumas situações de se sobrepor à vontade do próprio condutor. Em 2002, Jackie Chan vestia um fato evoluído que interagia diretamente com o seu corpo em constante monotorização e sempre que necessário agia com

Figura 4 - Membros artificiais controlados pelo poder da mente.

uma extensão do mesmo. Estes são dois de muitos exemplos que estávamos apenas preparados para ver como sendo ficção científica e de alguma forma distantes do nosso quotidiano. Contudo, hoje e até certos limites convivemos com elas: desde carros inteligentes em fase avançada de testes a próteses médicas captando e interpretando estímulos do próprio corpo humano para definir a sua ação.

Não é objetivo desta análise avaliar os pontos críticos e o seu estado de evolução mas sim dar focos à dimensão da mudança e ao impacto social que lhe está adjacente. Esta é provavelmente a

primeira revolução pré-anunciada, pelo que não há razões para não se estar preparado.

O relatório do WEF publicado em 2015 pode ser consultado na íntegra no sítio: [7] http://www3.weforum.org/docs/WEF_GAC15_Technological_Tipping_Points_report_2015.pdf

2.3. Principais pilares da Indústria 4.0

A indústria 4.0 está fortemente focada na melhoria contínua em termos de eficiência, segurança, produtividade das operações e especialmente no retorno do investimento.

São várias as tecnologias e tendências facilitadoras disponíveis. Neste capítulo serão focadas aquelas que são consideradas como os principais pilares da indústria inteligente: A internet das coisas e serviços; sistemas cyber-phisicos; Big-Data.

2.3.1. The Internet of Things (IoT)/ Internet of Services (IoS)

Figura 5 - IoF

O termo internet das Coisas "Internet of Things (IoT)" refere-se a objetos físicos e virtuais ligados à internet, tem as suas raízes no MIT (Massachusetts Institute of Technology) quando em 1999 um grupo desenvolvia o seu trabalho na área da identificação por radio frequência (RFID) conectada. Desde então, tem sido impulsionada pela aparecimento e uso generalizado de sensores cada vez mais pequenos e baratos, assim como um avanço nos dispositivos móveis, comunicações wireless e tecnologias cloud.

Como qualquer inovação não "apareceu", mas foi simplesmente sendo introduzida e melhorada exponencialmente. Cisco Internet Business Solutions Group (IBSG) defende que a *internet of thing* surgiu entre os anos 2008 e 2010, altura em que o número de coisas ligadas à internet superou o número de pessoas. Estima-se que em 2020 o número de objetos ligados rondem os 50 mil milhões (50 Biliões na escala americana).

Figura 6 - Internet Vs IOT/IOS

Atualmente a IoT faz parte do nosso quotidiano. Está presente sempre que usamos o telemóvel para ligar a televisão, ligar o forno da cozinha à saída do escritório, verificar a

produção do sistema de energia, para encontrar o caminho mais rápido para chegar do ponto A ao ponto B tendo em consideração condições de tráfego, para monitorizar e controlar ambientes de produção em tempo real, verificar o estado de desgaste dos nossos equipamentos e se necessário agendamos ou deixamos que o próprio equipamento agende a sua manutenção, carros inteligentes que se monitorizam regularmente e tomam decisões de segurança (Travar, analisar condições da estrada e se auto ajustar) ou mesmo procurar ajuda.

Temos atualmente disponível uma biblioteca infindável de informação (Big-Data) que consultamos a qualquer instante sempre que temos de tomar uma decisão ou temos dúvidas sobre algo ou alguém. Inúmeras "Coisas" a usam para tomar decisões "inteligentes" e inclusivamente antecipar o que precisamos.

Será que a IoT está para durar, ou como alguns defendem tem os dias contados? Temse verificado uma mudança nos modelos de negócios, mais do que vender produtos as empresas querem vender serviços, veja-se alguns exemplos do nosso dia-a-dia: a Xerox vende serviços de impressão em vez de impressoras; a Rolls Royce's vende horas de voo em vez de motores para aviões; as empresas logísticas de distribuição mais do que levar o material do ponto A para B fornecem serviços de tracking em tempo real; grandes superfícies fornecem aplicações através da web que melhoram significativamente a experiencia do consumidor, criando serviços inovadores e fidelizando o cliente; os exemplos nunca mais acabavam e estão para ficar.

TIRA-VEZ

Com esta aplicação pode tirar senhas e ser atendido nas lojas Continente. Faça as suas compras enquanto espera: a APP avisa-o quando a sua vez estiver a chegar. Serviço atualmente disponível em 31 lojas Continente.

Figura 7- Tira-Vez continente

Empresas vão usar a Internet para construir e fornecer um grande número de novos tipos de serviços que vão além da reserva de voos ou compra de livros. Serviços que estão disponíveis na Web em separado serão combinados e ligados entre si, resultando em serviços agregados de valor acrescentado. [9]

Esta nova abordagem por *internet of services* (*IoS*), e é a evolução natural da Internet of things. A conectividade e interação das coisas criando serviços de valor percetível para o cliente é um dos mais fortes suportes da revolução que aí vem, abrindo um mundo de oportunidades e desafios.

2.3.2. Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) são sistemas que integram computação, redes de comunicação, computadores embutidos e processos físicos interagindo entre si e influenciando-se mutuamente. É o resultado da evolução tecnológica dos computadores, dos sensores, e das tecnologias de comunicação, que ao evoluírem no sentido de maior agilidade, capacidade de processamento e preços cada vez mais acessíveis tem permitido a sua conjugação de forma efetiva e em tempo-real.

Se consideramos as redes de comunicação apenas como um poderoso facilitador, o coração dos sistemas Cyber-Physical são os sistemas de computação embutidos (Embedded Systems). Embedded systems são sistemas de processamento de informação incluídos em outos produtos ou equipamentos principais. As tarefas que até agora eram desempenhadas por computadores dedicados apenas à recolha de informação proveniente da automação tradicional, estão a ser transferidas para estes novos sistemas com dimensões e performance ajustada às novas necessidades. Os computadores, tal como os conhecemos, tendem a desaparecer criando espaço para um novo conceito de Ubiquitous computing (Computação omnipresente).

Ubiquitous computing (or "ubicomp") is a concept in software engineering and computer science where computing is made to appear anytime and everywhere. In contrast to desktop computing, ubiquitous computing can occur using any device, in any location, and in any format. [10].

Alguns exemplos de CPS que fazem parte do nosso quotidiano: ABS; ESP; Airbag,

De uma forma genérica Cyber-Physical Systems = Embedded systems + Ambiente físico

Tendo em atenção o uso generalizado e o impacto destes sistemas, é fundamental que estes sejam projetados desde a sua conceção, para que sejam robustos, tenham alta disponibilidade, sejam possíveis de se intervir em caso de falha, segurança para quem os opera e para restantes elementos do ecossistema, não esquecendo segurança informática necessária a qualquer dispositivo ligado a qualquer coisa.

2.3.3. Big-Data

Figura 8 - Big Data

O termo BIG-Data refere-se a grandes quantidades de dados que são armazenados a cada instante resultante da existência de milhões de sistemas atualmente ligados a rede (IoT), que produzem dados em tempo real sobre quase tudo e que se querem disponíveis em todo o lado.

Este conceito levanta algumas questões que as grandes empresas da área tecnológica tem

esforçado para resolver: Onde guardar os dados de forma segura e que possam ser acedidos de qualquer lugar? Como processar esses dados para que eles possam ter significado, permitindo as organizações melhorar as operações com decisões mais rápidas e inteligentes?

Com tantos dados a serem gerado continuamente são precisas ferramentas de análise poderosas para lhe dar significado. Dados são números, palavras ou outros sinais e representam factos discretos sobre uma realidade objetiva. Podem ser verificados e validados, contudo não tem qualquer significado se não forem interpretados e contextualizados, dando origem à informação. Por seu turno a informação tende a evoluir levando à criação de teorias e a prever o futuro, neste caso estamos perante conhecimento.

Apesar de não ser conhecida com exatidão as suas raízes a piramide DIKW é usada à varios anos na área das tecnologias de informação, e reflete os vários niveis de informação e a sua relação.

Figura 9 - Pirâmide DIKW

O Grande desafio da indústria 4.0 é colecionar todos os dados considerados relevantes, processá-los, transformando-os em conhecimento. Esta atividade nobre, requer sistemas tecnologicamente evoluídos, providos de capacidade de processamento em tempo real e algoritmos sofisticados. Alcançar o conhecimento e a sabedoria abre horizontes para além do imaginário, sendo um grande motor do nosso mundo e do caminho para a indústria do futuro

2.4. A indústria do futuro

A Mckinsey&company publicou em junho de 2015 um artigo intitulado "Manufacturing's next act" [12], no qual apresentava o "DigitalCompass", (Figura 10 – "Digital Compass", McKinsey&Company) e onde eram identificadas oito áreas básicas da criação de valor e respetivos elementos de alavancagem na perspetiva da indústria 4.0. O objetivo do compasso digital é ajudar as organizações a identificar as áreas de atuação de acordo com os problemas e desafios atuais, ao mesmo tempo que oferece uma visão global do impacto esperado por esta transformação.

Figura 10 - "Digital Compass", McKinsey&Company

Numa visão holística, as grandes alavancas são no sentido da flexibilidade, inovação, otimização de recursos, aumentando a eficiência e produtividade, sempre no sentido de satisfazer as necessidades dos clientes, com elevados padrões de qualidade ao mais baixo custo e com a maior rapidez.

3. Rumo à indústria inteligente

Este projeto <u>não é sobre a implementação da indústria 4.0 na SRAMPORT</u>, mas demonstra um caminho, uma preocupação constante da empresa de estar na vanguarda da tecnologia através da utilização de tecnologias facilitadoras que se transformem em vantagem competitiva, e que em breve lhe possa dar o selo de Indústria inteligente.

Automatização foi desde sempre uma área que teve a devida atenção na SRAMPORT, sendo em 2004 que se começou a desenvolver projetos que aliavam a automatização ao controlo e monitorização de processos com recolha de dados e ferramentas de análise. Dos projetos até então implementados destacam-se os seguintes:

- ✓ Fornos de tratamento em contínuo
 - Monotorização
 - Alertas de divergências em relação a especificações do processo
 - Gestão de ações corretivas

Figura 11 - CP Fornos

✓ Fornos Delta

- Controlo do processo de produção, através da monotorização das condições dos equipamentos
- Controlo e monotorização de cargas de produto necessárias para controlo de processo
- Gestão dos materiais auxiliares de produção (cornues; bojões...) com informações para manutenção apos período de utilização...

✓ Linhas de Produção CHC

- Registo de paragens com análise de pareto
- Produtividades por máquina/produto/operador etc.
- Informação em tempo real do estado das máquinas (artigos em produção/ produtividade)
- Ordens de Produção etc

Figura 12 - CP CHC

✓ MES / Fábrica virtual com cmNavigo

- Criação de um ponto central com a informação combinada e recolhida partir de várias máquinas nas linhas de produção
- Fablive Representação virtual do chão de fábrica com monotorização em tempo real

✓ Digitalização das linhas de Produção Montagem

• Traçabilidade e controlo de qualidade em Linha.

O exemplo que se segue espelha o sistema integrado de controlo de processo contendo informações em tempo real dos projetos mencionados anteriormente:

Figura 13 - Monitor Controlo de Processo

A fábrica virtual MES implementado recentemente que que se procedeu a virtualização do chão de fábrica criando um sistema Cyber-Physical e onde é possível ver em tempo real informações relevantes como o estado do equipemento permite uma análise em tempo real e sempre que necessário de produtividades a vários níveis (maquina, operador, produto, hora/dia/mês) e analise pareto de paragem.

Figura 14 - Fabrica virtual (CPS)

Figura 15 - Produtividade CHC's

Figura 16 - Análise Pareto de Paragens

O caminho faz-se passo a passo e a SRAMPORT tem vindo a dar passos largos na modernização das suas linhas de produção, utilizando tecnologia de ponta sempre que tal se traduza em vantagem competitiva. Os projetos aqui apresentados são meros exemplos selecionados por um lado serem um marco nesta caminhada e por outro lado ter tido participação ativa no desenvolvimento e implementação de cada um deles.

Nesta dissertação será abordada a "Digitalização das Linhas de Produção da Montagem" e a fábrica virtual por ter sido o último a ser implementado.

3.1. Caracterização da SRAMPORT

A SRAMPORT, localizada em Coimbra, faz parte do grupo SRAM desde 1998, com sede em Chicago nos Estados Unidos, tem atualmente 3825 funcionários em 17 localizações espalhadas por 13 países.

Figura 17 - Distribuição geográfica da SRAM

Produz componentes inovadores que inspiram os clientes, para a SRAM "O nosso sucesso é baseado na constante inovação dos nossos produtos e na integridade, colaboração, paixão, e comprometimento da nossa equipa Global". [13]

Figura 18 - Produtos e marcas SRAM

Em Coimbra, a SRAMPORT desenvolve e produz correntes para bicicleta essencialmente para exportação; cubos e monta rodas de carbono. Tem atualmente 127 empregados dos quais 22% tem qualificação superior.

4. Digitalização das Linhas de Produção da Montagem

4.1. Introdução

A traçabilidade das correntes produzidas nas linhas de montagem da SRAMPORT é assegurada através de lotes de produção e a qualidade por controlo em linha usando planos de inspeção específicos. É usado o ERP SAP para controlo das atividades básicas, como gestão de materiais, gestão produção e seus impactos financeiros, mas não inclui funcionalidades como traçabilidade ou controlo de qualidade, que são atualmente geridos em registos manuais recorrendo a folhas de traçabilidade e cartas de SPC Manuais.

Com este projeto pretendia-se implementar um sistema de chão de fábrica, robusto e flexível, capaz de responder às necessidades de qualidade.

4.2. Objetivos

O objetivo do projeto incluiu:

- ✓ Traçabilidade por lotes Traçabilidade de produto acabado e de componentes ao longo de toda a cadeia de abastecimento.
- ✓ Controlo de qualidade em linha Inspeção de produto final na linha de produção associado ao fluxo de matérias.
- ✓ Substituição das cartas SPC manuais por cartas sistematizadas.

Para cada lote de corrente produzido pretendia-se um sistema capaz de responder a questões como: de onde veio? Para onde foi? Quais foram as garantias de boa qualidade do produto mediante evidências de controlo em linha e respetivos valores. Durante o processo de produção o operador devia ter informação necessária sobre a evolução do processo para que conseguisse intervir atempadamente, evitando desvios em relação às especificações.

Sempre que possível são implementadas ferramentas para minimizar o erro natural do operador e ao mesmo tempo facilitar e agilizar as operações, tais como sistemas de códigos de barras e outros sistemas considerados relevantes

4.3. Plano de Projeto

A gestão de projeto é uma peça fundamental para o sucesso de cada mudança a nível organizacional, este teve quatro fases distintas e organizadas de acordo com o ciclo de Deming (PDCA) aqui adaptado ao projeto específico [Anexo A] e segundo as recomendações da HBR no seu guia para a gestão de projetos [14].

Planeamento

- ✓ Identificar o problema real e objetivos: Por forma a garantir que o resultado está alinhado com as expectativas, é necessário entender o problema real. Qual é a dificuldade, necessidade ou falha que estamos a tentar resolver?
- ✓ Identificar as partes interessadas: A identificação das partes interessadas ajuda a entender melhor o problema ao mesmo tempo que se garante o empenho e recursos necessários para o sucesso do projeto.
- ✓ Definir os objetivos: Um projeto apenas terá sucesso se os objetivos forem atingidos pelo que é extremamente importante que estes estejam definidos e sejam devidamente comunicados. Os objetivos devem ser definidos tendo em atenção os seguintes princípios de acordo com conceito SMART:
 - S (Specific): Devem ser específicos, identificar de forma clara o que se pretende atingir, qual a falha ou problema que se tenta resolver.
 - M (Measurable): Devem ser mensuráveis.
 - A (Achievable): Devem ser passíveis de resolução no contexto de projeto.
 - R (Relevante): Devem ser relevantes e trazer valor acrescentado à organização
 - T (Time): Devem ser definidos no tempo, identificando uma data no qual este deve estar completo.
- ✓ Objetivos, recursos e principais tarefas: Um projeto não é tarefa de uma mas de várias pessoas. É importante incluir na equipa pessoas com os conhecimentos e atitudes adequadas de acordo com os objetivos a atingir. A motivação e empenho de todos e cada um é um dos fatores chave para o sucesso.
- ✓ Preparar concessões e compensações: É claro que este projeto vai aumentar o trabalho em alguns departamentos ou alguns indivíduos, e os benefícios serão mais visíveis noutros. Se é verdade que a qualidade somos todos nós também é certo que alguns departamentos estão mais sensíveis que outros. É importante que todos vejam de uma forma holística os benefícios e como todos vão acabar por beneficiar do esforço adicional. Durante a análise, recorrendo a técnicas de VSM, vamos procurar tarefas que não se traduzam em valor acrescentado, podendo resultar em poupança de tempo e que possam ser utilizadas nos novos processo ou apenas na melhoria de eficiência.

Construção

- ✓ Organização das tarefas: Criação de plano de projeto detalhado.
- Reunião de abertura: Explicar à organização o projeto, explicar o impacto que é esperado para cada um, mostrar de forma clara os benefícios esperados para a organização como um todo. Tão importante como explicar o que está incluído no projeto é explicar o que não esta incluído de forma a gerir e evitar falsas expectativas.
- ✓ Plano: Tarefas, tempo e recursos necessários para a sua concretização. Verificar se a equipa tem competências necessárias.

Implementação

- ✓ Garantir que se executam as tarefas planeadas no tempo acordado, se necessário, ajustar as tarefas e tempos com base nos últimos desenvolvimentos, garantir contudo que os novos requisitos não comprometem o objetivo e datas inicialmente acordas.
- ✓ Reuniões de seguimento para manter todos os atores envolvidos motivados e comprometidos em resolver os problemas e contratempos que entretanto vão surgindo.
- ✓ Liderando e motivando a equipa de projeto assim como todos aquelas que vão ser afetados pelo projeto
- ✓ Gerir expetativas do que vai ser entregue e o que não vai ser entregue.

Fecho

- ✓ Entrega do projeto de acordo com o plano.
- ✓ Avaliar a performance do projeto, o que correu mal, o que poderia ter sido melhorado, o que correu bem, o que aprendemos?
- Criar lista de ações de seguimento com tarefas que não foram concluídas ou necessitam de melhoria.
- ✓ Definir novo dono do processo, responsável pela continuação do trabalho agora em produção

4.4. Processo produtivo de correntes

4.4.1. Enquadramento logístico

Uma das fases críticas para garantir o sucesso do projeto é fazer uma análise total do processo identificando as interações e pontos críticos.

De uma forma geral, o processo logístico associado ao de produção de correntes segue o seguinte fluxo:

Ordem de cliente

•Ordem de Cliente , produzida especificamente para a ordem e item (MTO)

Ordem de Produção

- •As ordens de produção são criadas para quatro semanas em avanço de forma a permitir balanceamento das linhas e gestão de capacidades
- Data final da ordem de produção = Data do requisito (Confirmação ao cliente tempo de preparação da expedição e expedição)
- Data de Inicio: 5 dias antes da data final

Ficheiro Excel com a calendarização da produção

•A Calendarização das ordens de produção é feita em excel de acordo com os requisitos do cliente

Impressao das ordens de produção

• Duas Semanas antes do ínicio de produção

Organização das folhas de produção na area de montagem

•Folha de produção é guardada na zona de montagem organizada por modelo e prioridade.

Produção de elos

•Algumas referencias de correntes requerem elos de ligação que são produzidos em paralelo e em ordem de produção separada.

Produção

• A produção de correntes começa nas CHC's organizadas por modelo

4.4.2. Análise

A SRAMPORT, produz atualmente cerca de 200 referências pertencentes a 28 modelos distintos de correntes. Uma referência corresponde a um modelo, num agrupamento e embalagem específica, com um tipo de elo, cortada a uma medida definida. São produzidas em linha contínua, agrupadas por modelo, começando a sua produção numa máquina concebida especificamente para o efeito (CHC). A quantidade a produzir depende do plano de produção organizado pelo chefe de turno e de acordo com os requisitos do cliente. Após a operação de LDF as correntes são cortadas nas dimensões desejadas e de seguida embaladas e transportadas para o armazém sob a forma de stock específico de cliente.

Figura 19 - Corrente PCXX1

Até ao ponto de diferenciação, todas as correntes do mesmo modelo, são iguais e tratadas em contínuo. A routing contêm todas as operações e tempos necessários para apuramentos de custos e determinação de tempos. Durante a fase de análise procurou-se definir o ponto de diferenciação ótimo de forma a garantir, por um lado a satisfação do cliente num menor espaço de tempo com o mínimo possível de stock intermédio e por outro permitir flexibilidade na linha.

Considerou-se que o ponto ótimo se encontra na LDF, de acordo com a figura seguinte assinalada a linha vermelha. Nas operações a montante temos uma produção por modelo genérico e nas operações a jusante as correntes são cortadas à medida (número de elos) e embalada de acordo com quantidades requeridas pelo cliente.

Devido a constrangimentos de capacidade, falta de componentes ou mudanças de prioridades, uma ordem de produção pode ser interrompida e retomada mais tarde quando a dificuldade for resolvida, sendo novamente associada à ordem de cliente específica.

Figura 20 - Routing correntes

As correntes são atualmente produzidas com uma única ordem de produção, multioperações, o reabastecimento dos componentes são garantidos por um sistema de gestão de produção Kanban e consumidos para ordem de produção por explosão da BOM (Backflush).

4.4.3. Traçabilidade

A Traçabilidade das correntes é garantida através de lotes de produção e a cada um corresponde um conjunto específico de lotes de componentes, produzido numa única linha. Em cada lote de corrente existe um e apenas um lote de cada componente básico. Sempre que se alterar um lote de qualquer componente também o lote do produto final é alterado.

A nomenclatura (BOM) da corrente para além da embalagem tem quatro componentes estruturantes: Placa interior; Placa Exterior; Rolo e Eixo e em alguns modelos existe também Elo de Ligação que apesar de ser gerido em lotes podem coexistir mais do que um lote no mesmo lote de corrente.

Estrutura de uma corrente tendo em atenção os componentes relevantes a lotes:

Figura 21 - Estrutura da corrente

A Traçabilidade dos componentes definidos deve ser total e bidirecional desde a matéria-prima até ao cliente e vice-versa.

A determinação do lote é feita antes do processo de embalagem já que essa informação será incluída no interior da caixa fazendo parte da sua identificação. Associado à informação de lote existe também informação relacionada com o controle de qualidade executado em linha e em laboratório.

O produto físico está marcado com um "date code " mas não tem qualquer informação de lote, pelo que a traçabilidade é apenas efetiva enquanto o produto estiver identificado com a etiqueta definida para o efeito.

4.4.4. Controlo de qualidade em linha

As correntes são controladas pelos operadores diretamente na linha de produção usando modos operatórios de referência e registos manuais.

O tipo de inspeção é definido através de um plano de controlo de qualidade e depende do produto final e do evento impulsionador da inspeção.

Os operadores excutam controlo de qualidade sempre que ocorram um dos seguintes eventos:

- ✓ Mudança de lote de componentes
- ✓ Alteração da família/modelo de produto
- ✓ Mudança de turno
- ✓ Calibrações
- ✓ Por tempo, a cada 30 minutos

A Figura 22 - Carta SPC manual é um exemplo das cartas de controlo manuais que eram utilizados:

Figura 22 - Carta SPC manual

4.5. Desenvolvimento do conceito

Após uma fase de análise, em que se avaliaram as alternativas ao fluxo de produção e qualidade, de forma a se atingir o objetivo proposto sem criar rutura no processo, e de preferência ainda agilizar através da aplicação de conceitos Lean (VSM, sistemas anti erro, etc) e de tecnologias facilitadoras, desenvolveu-se um conceito assente em três vertentes: Fluxo de Produção; Níveis de Traçabilidade e controlo de processo em linha (SPC). Os próximos capítulos espelham essas preocupações e as soluções encontradas.

4.5.1. Níveis de Traçabilidade

Sendo um dos principais objetivos a traçabilidade do produto, tanto "Top-down", do cliente à matéria-prima como "botom-up", da matéria-prima ao cliente, uma discussão que teria forçosamente de acontecer seria o nível e detalhe da traçabilidade e possíveis tradesoff das escolhas tomadas.

A Traçabilidade é importante em situações em que são encontrados desvios no produto e nos quais é necessário avaliar o impacto e abrangência de forma a tomar medidas planeadas. Considerando uma traçabilidade top-down, do produto final à matéria-prima, é importante perceber em que estado está o produto final na cadeia de abastecimento na altura em que foi detetado o desvio. Nesta análise vamos considerar três posições chave:

- O produto final está ainda no armazém.
- O produto final está no cliente e ainda se encontra na caixa original.
- O produto final está no cliente e já fora da caixa, exemplo na linha de montagem do cliente ou já no campo.

É importante perceber que informação dispomos para iniciar a pesquisa, sabendo que está diretamente relacionada com a posição na cadeia de abastecimento. Consideramos aqui os seguintes elementos:

- Número de Lote
- Ordem de cliente e item mas sem informação do lote
- Data da ordem de cliente

Para determinar a dimensão e a abrangência de um lote tendo em consideração as limitações do software a implementar, foram considerados três cenários a seguir descritos, em que o tamanho da ordem corresponde à quantidade necessária do artigo:

Cenário 1: Um lote por ordem de produção e embalagem identificada com número de sequencia.

- O lote é associado no início da ordem de produção e sempre que muda um lote de componente incrementa-se a sequência.
- Confirmações parciais na primeira operação (altura em que se consome os componentes) sempre que se altera o lote de um componente
- Sempre que a produção é interrompida por alterações de priorização, desvio de qualidade ou falta de componentes são necessárias medidas adicionais de identificação e operacionalização.

Cenário 2: Múltiplos Lotes por ordem de produção

- O número de lote é associado no início da ordem de produção e os lotes subsequentes são estimados tendo a seguinte nomenclatura ordem + Sequencia
- Todas as embalagens serão marcadas com o número de lote de produção
- Confirmação parcial na primeira operação e na última
- Devem ser considerados cenários em que a produção da ordem é interrompida temporariamente e a corrente tem de ser armazenada na linha

Cenário 3: Lote WIP (Work in Process)

• Um lote WIP é associado a cada confirmação a ser executada sempre que se troca um lote de componente

Para facilitar a decisão criaram-se as seguintes tabelas que resumem os vários cenários numa pesquisa "top-down" e botom-up, de acordo com a localização do produto e informação disponível para pesquisa:

Pesquisa top-down: Exemplo de defeito na corrente

Tabela 1 - Análise Top-Down

Traçabilidade por:	Cenario1: 1 lote por ordem de produção	Cenário 2: Múltiplos lotes por ordem de produção	Cenário 3: Lotes WIP (Processo atual em papel)							
 Por Lotes A corrente está no armazém A corrente está no cliente mas ainda na caixa 	O universo de componentes possível é maior, requer uma análise fina para determinar exatamente os lotes do componentes, a sequência da caixa limitará a abrangência	O universo de componentes possíveis é maior, requer uma análise fina para determinar exatamente quais os lotes afetados.	A abrangência era reduzida e limitada ao lote exato de componentes.							
Por ordem de cliente / item mas sem referência ao lote	Os três cenários produzem o mesmo resultado final									
Pela marca de data no produto	Os três cenários produzem o mesmo resultado final									
• Pela data da ordem de cliente	Os três cenários produzem o mesmo resultado final									

Pesquisa Botom-up exemplo de componente defeituoso

Tabela 2 - Análise Botom-up por componente defeituoso

Traçabilidade por:	Cenario1: Um lote por ordem de produção	Cenário 2: Múltiplos lotes por ordem de produção	Cenário 3: Lotes Wip (Processo atual em papel)
 Pesquisa por lote de componente ou Date code A Corrente ainda está no armazém A corrente está no cliente mas ainda dentro da caixa original 	O universo de correntes possíveis é maior e requer uma análise detalhada a fim de reduzir o seu universo	O universo de correntes possíveis é maior e requer uma análise detalhada a fim de reduzir o seu universo	Universo reduzido
Pesquisa por lote de componente mas a corrente está no cliente e já fora da caixa original	Os três cenários produzen	n o mesmo resultado final	

Pesquisa Botom-up exemplo de Defeito na linha de produção

Tabela 3 - Análise Botom-up por defeito na linha de produção

Traçabilidade por:	Cenario1: 1 lote por ordem de produção	Cenário 2: Múltiplos lotes por ordem de produção	Cenário 3: Lotes Wip (Processo atual em papel)
 Procura por data A Corrente ainda esta no armazém A corrente esta no cliente mas ainda dentro da caixa original 	Para grandes ordens de produção, produzidas em vários dias requer analise detalhada para limitar o universo de corretes afetadas	Para grandes ordens de produção, produzidas em vários dias requer analise detalhada para limitar o universo de corretes afetadas, neste caso o universo será menor que no cenário 1	O universo de produto afetado será reduzido
 Pesquisa por data de componente mas a corrente esta no cliente e já fora da caixa original 	Os três cenários produzen	n o mesmo resultado final	

Após cuidada análise conclui-se que o cenário três é o ideal por se aproximar dos níveis de traçabilidade desejado, contudo algumas limitações do sistema ERP da SAP, (Figura 23 - Limitações à utilização de Lotes WIP em SAP) obrigaria a algumas modificações de processo e trabalho extra do operador. Assim decidiu-se criar um quarto cenário, semelhante ao terceiro, em que se criavam tantas ordens de produção como lotes necessários. Neste caso cada ordem de produção não continha mais que um lote de componentes, tal como será descrito na próxima secção.

- . .
- Milestone confirmation is not possible.
- Automatic goods receipt is not possible: The system always displays the finished product (header material) of the order in the goods receipt area for WIP batches even if no automatic goods receipt is provided for in the operation key of the operation to be confirmed. In addition, no goods receipt quantity is proposed.
- There is no backflushing: In the goods issue screen for WIP batches, the system displays
 components that are assigned to the operation that is to be confirmed. The system displays all
 assigned components regardless of whether the backflushing indicator is set or not. In addition, no
 goods issue quantity is proposed.
- You cannot use documentary batches together with WIP batches in the single-screen entry of the confirmation.
- If there are areas for WIP batch management in the confirmation profile used, the goods
 movement overview is not available. The relevant pushbutton is not displayed. We recommend
 that you include the areas for goods issues and goods receipts in the confirmation profile when
 you use WIP batches.

Figura 23 - Limitações à utilização de Lotes WIP em SAP [15]

4.5.2. Fluxo de produção

Após análise detalhada do fluxo produtivo e respetivas operações(Routing) achou-se por bem dividir a produção de correntes em duas ordens de produção, em alternativa à atual que abrange todo o processo.

Ambas seriam MTO (Make to Order), sendo que a primeira seria baseada no artigo genérico "corrente ao metro" e a segunda seria MTO especifica por cliente, baseada no artigo final. Entre as duas ordens criou-se um armazém para estágio temporário do produto da primeira ordem de produção.

Figura 24 - Divisão das ordens de produção

Foram ainda analisadas alternativas para organizar as ordens de produção do "Artigo genérico ao metro" de forma efetiva e flexível, sendo que ordem de produção final, especifica do cliente será sempre criada pelo MRP, baseado nas datas prometidas ao cliente e um tempo de produção de cinco dias úteis. Significa que, à data de uma necessidade de cliente será retirada um dia para expedição, cinco dias para iniciar a ordem e dez dias para sua preparação de acordo com a seguinte regra de calendarização regressiva (Backward scheduling), representada na Figura 25 - Programação regressiva a título de exemplo.

Figura 25 - Programação regressiva

Das alternativas analisadas para a criação das ordens de produção do artigo genérico destacam-se as seguintes:

1) Ordem (tipo PPK2) será criada manualmente pelo operador com base nas indicações do chefe de turno que calcula as necessidades pelo plano de produção específica de cliente (ordens tipo PPK3):

a) Desvantagens:

- ✓ Não será possível validar plano de produção com a execução e assim perceber atempadamente a necessidade de uma recalendarização.
- ✓ Controlo de quantidade gerida manualmente, podendo levar a excesso de stock.
- ✓ Como as ordens de produção não têm quantidade definida, mas são flexíveis, não será possível validar confirmações duplas e excessos de quantidade.
- ✓ Possibilidade de stock intermédio entre ordens.

b) Vantagens:

- ✓ Não requer trabalho extra do planeamento.
- ✓ Cada ordem de produção terá apenas um lote de produto final, em linha com análise de abrangência anterior
- ✓ Tarefa pode ser facilitada recorrendo a estratégias kanban para iniciar produção
- 2) Ordem (tipo PPK2) será criada automaticamente pelo SAP com amplitude de 5 dias e planeamento fino pelo planeador:

a) Desvantagens

- ✓ Trabalho adicional do planeador para planeamento fino
- ✓ Um lote de corrente contem mais que um lote de componentes
- ✓ Um lote final do cliente terá mais de um lote de produto final
- ✓ Possibilidade de stock intermédio entre ordens

b) Vantagens:

- ✓ Possibilidade de validar o plano de produção com a execução e assim perceber atempadamente a necessidade de uma re-calendarização.
- ✓ Controlo pelo planeamento da quantidade e mudanças de fabrico.
- ✓ Melhor planeamento dos componentes.

Após uma análise cuidada pela equipa de projeto optou-se pela primeira alternativa. Para facilitar a produção do artigo genérico e a sua execução por parte do operador, decidiu-se usar um cartão kanban contendo as informações necessárias, incluindo código de barras para que se conseguisse gerar em SAP uma ordem produção com o mínimo esforço e com o menor número de erros possíveis.

Figura 26 - Kanban

Por questões de traçabilidade as ordens são fechadas sempre que se tenha de mudar um dos lotes de componentes ou a quantidade necessária esteja totalmente satisfeita, correspondendo a cada ordem de produção um lote de produto final, o lote é associado automaticamente em SAP e é igual ao número da ordem.

Ao fim de completa a ordem de produção o operador tem de confirmar os metros produzidos, recorrendo a um contador que foi instalado para o efeito nas máquinas CHC, e baseado na BOM de produção serão consumidos os componentes por backflush identificados e os lotes.

Em cada linha de produção foi instalado um computador com SAP, leitores de código de barras, impressoras de etiquetas Industriais e equipamentos de medição com ligação wireless para criação das cartas de controlo de qualidade e traçabilidade.

As figuras seguintes mostram o fluxo de operações para corrente não unitária, em barquete (agrupamentos de 25 ou 50 PCS), bobine e corrente unitária

Figura 27 - Fluxo Corrente não unitária

Figura 28 - Fluxo corrente unitária

O SAP foi parametrizado para executar ordens de produção criadas por impulso kanban, com componentes geridos por lotes e controlo de qualidade em linha por SPC

Figura 29 - Confirmação das operações com associação de lote

4.5.3. Controlo estatístico de qualidade em linha

A qualidade tem sido ao longo dos anos uma grande preocupação e um dos pilares de sucesso da SRAMPORT, certificada ISO 9001 desde 1995. Para fidelizar o cliente é necessário produzir cada vez mais barato ao mesmo tempo aumentar os níveis de qualidade.

Todo o processo produtivo tem associado uma variabilidade inerente ao próprio sistema, que é importante monitorizar de forma a mante-lo dentro de controlo, garantindo a conformidade do produto final. Divergências devido a alterações dos equipamentos, falhas humanas ou componentes quando não detetadas atempadamente geram custos de não qualidade tais como, rework, falhas no prazo de entrega ao cliente, ou falhas na utilização do produto no terreno e possíveis consequências de segurança.

Os gráficos de controlo de qualidade são das ferramentas mais utilizadas no controlo estatístico, pela sua representação visual da evolução do processo, ao estarem no local de recolha de dados, junto aos operadores, permite uma análise em tempo real e com a interligação de sistemas de medição iremos reduzir variações por erros de introdução.

No controlo das correntes utilizaram-se características quantitativas, sendo representadas por dois gráficos em paralelo: Gráfico de médias (X - BAR) e R, enquanto no primeiro cada amostra é representada pela média, no segundo pela amplitude. O primeiro mostrando que o produto está a ser produzido de acordo com as especificações exigidas e em controlo, o segundo a precisão do processo ou variabilidade.

Por cada caraterística a controlar é necessário validar a amostra através da média e amplitude, que devem estar dentro dos limites de controlo (UCL – Upper control limit e LCL Lower control limit) e dentro dos limites de especificação (USL upper specification limit e LSL – Lower specification limit). Apesar destes parâmetros darem uma indicação de conformidade, é preciso saber interpretar a evolução dos sinais de forma a tomar medidas

para que as condições se mantenham. Existem várias regras de referência para detetar sinais de que o processo está a evoluir para fora de controlo. Exemplo dessas regras são as "Western Electric rules" que realçam seis sinais aos quais o operador deve ter atenção:

- ✓ 1 Ponto fora de 3-Sigma
- ✓ 2 De 3 pontos fora de 2 Sigma
- ✓ 4 De 5 pontos fora de 1 Sigma
- √ 8 Pontos acima ou abaixo de média
- ✓ 15 Pontos dentro de +- 1 sigma
- ✓ 6 Pontos de ordem crescente ou decrescente

Quando estamos perante um dos sinais é preciso avaliar, identificar as causas, e tomar medidas para que o processo não saia do controlo. A imagem seguinte mostra um exemplo de uma violação das regras, assinaladas com um ponto a vermelho e foi retirada do software implementado no chão de fábrica.

Figura 30 - Exemplo de carta SPC e Western Digital rules

Ter o processo sob controlo não significa ter produtos de acordo com as especificações do cliente, o processo pode estar estável, com valores médios dentro dos limites de controlo, com pouca variabilidade mas não estar alinhado com necessidades do cliente. Assim serão usado dois indicadores para mostrar a capacidade do processo e o alinhamento com as especificações do cliente, são eles C_P e C_{PK} . C_P confronta a variabilidade do processo com a variabilidade máxima aceite pelo cliente e é representado pela seguinte fórmula:

$$CP = \frac{LSL - USL}{6S} \label{eq:cp}$$
 Equação 1 - - Capacidade do processo (CP)

Em que:

- LSL low specification limit
- USL Upper specification
- S desvio padrão da amostra

O C_{PK} , mede a variabilidade centrada na média e pode ser utilizado quando existe apenas um limite de especificação, quando o valor é 1 significa que as amplitudes da variabilidade do processo é igual às amplitudes das especificações, normalmente o valor mínimo aceite e de C_{PK} 1.33, ou 1.67 quando o a exigência é elevada ou 2 para situações criticas.

$$CPK = Min \left[\frac{USL - \bar{X}}{3\sigma}, \frac{\bar{X} - LSL}{3\sigma} \right]$$

Equação 2 - Capacidade do processo (CPK)

Figura 31 - Histograma Dist. Normal e capacidade do processo

Nas routings do artigo final associado a cada operação são especificadas as caraterísticas a controlar, o tamanho da amostra e os limites da especificação e servem de base a toda a avaliação do processo inclusive para o cálculo dos limites de controlo a calcular em automático pelo sistema.

Operation Overv.																						
艮	Ор	SOp	Work c	Plnt	Co	Stan	dar	Descri	escription						P	Cl	0	P	C	S	Base Quantity	U
	0011		351	0341	QM04			Monta	Iontagem de correntes em continuo												1,000	М
	0020		350	0341	PE01				Rebitagem							\Box	П	П			1.000	М
	0030		328	0341	QM04		1	nspec	spection characteristics													
	0035		LAB	0341	QM01			Char.	Preset	Qn	Ql	Master i	Plant	Ver	rsion	R.	. Sh	ort	tex	t ins	sp.char	
	0100		300	0341	PE02			10		ah		EFP	0341	1			Sai	ída e	eixo	fora	a da placa ex	terio

Figura 32 - Routing com operações de controlo

Um Gráfico de controlo de qualidade ou carta de controlo, é criada com o início de produção do artigo final, na maquina especifica, diferentes máquinas requerem diferentes cartas de controlo uma vez que esta é um elemento chave do processo, contudo tem de existir um momento que a carta é fechada e outra é criada. Normalmente, esse momento deve coincidir com uma reparação de fundo na máquina em causa.

4.5.4. Identificação do produto e processo

Foram criadas etiquetas de identificação de produto a incluir nas embalagens a enviar para o cliente e outras que ao completarem a informação dos cartões kanban automatizam os processos de criação de ordens e confirmação das operações, controlo de qualidade e associação de lotes.

Para completar o cartão kanban foi criada uma etiqueta aqui exposta que será impressa automaticamente com a criação da ordem.

Tabela 4 - Conteúdo etiqueta Kanban

CampoConteúdo1Ordem2Ordem3Data Atual4Nº Cartão Kanban5Lote de Controlo de qualidade

Figura 33 - Etiqueta Kanban

O produto a enviar ao cliente será identificado com a etiqueta a imprimir a pedido diretamente do SAP

Tabela 5 – Conteúdo da etiqueta de Identificação do produto

Campo	Conteúdo
1	Grupo de material
2	Descrição
3	SAP Referencia
4	Nome do cliente
5	Referência do cliente
6	Ordem de compra do cliente
7	Ordem de Cliente
8	Item do Ordem de cliente
9	Código UPC
10	Quantidade na caixa
11	Data de Produção

Figura 34 - Etiqueta de identificação de produto

4.5.5. Inventário de componentes e correntes nas linhas.

Ao dividir o processo produtivo de uma ordem de produção para duas, criou-se um stock intermédio e temporário de artigo genérico, que deve ser regularizado de forma regular para não influenciar a determinação de necessidades, ou valor contabilístico de WIP (work-In-Process).

Cada lote de componentes é produzido em sistema kanban e no final confirmadas as quantidades produzidas com base em pesagem que tem um erro admissível de 10 KGS, cada componente tem um peso líquido aproximado inferior a uma Grama, esta variabilidade pode ser traduzida na produção de alguns metros de corrente extra ou numa falta teórica de componentes para a corrente produzida. Se não forem tomadas medidas, serão previsíveis acertos de inventário significativos assim com dificuldades nas confirmações das ordens de produção pelos operadores, para tal criaram-se mecanismos automáticos facilitadores:

- ✓ Sempre que ao se confirmar um lote de corrente, as quantidades de componentes no lote específico não são suficientes cria-se uma lista de movimentos para processamento posterior.
- ✓ Sempre que ao se confirmar um lote de corrente sobra uma quantidade teórica de componentes (lefover) abaixo de uma percentagem definida como aceitável é usada para compensar a quantidade em falta no ponto anterior.

As listas são processadas de forma frequente, através de um programa criado para análise de faltas e excessos mencionados anteriormente. Sempre que possível são transferidas quantidades remanescentes do lote específico para lote temporário A000000 e posteriormente do lote A000000 para o lote em falta na lista de movimentos, para processamento posterior, limpado assim a maioria erros e minimizando o trabalho do supervisor garantindo a traçabilidade dentro dos limites exigidos.

4.5.6. Plano de Contingência

Apesar de se tomarem preocupações de segurança e disponibilidade do sistema, falhas e interrupções podem acontecer, pelo que é necessário garantir a continuidade do processo produtivo mesmo quando as atividades de suporte não estão disponíveis. Para tal foi criado um plano de contingência para as falhas mais previsíveis e definidas nos cenários 1 e 2.

4.5.6.1. Cenário 1: SAP não está disponível na altura da criação da ordem/Lote

Neste cenário o SAP não está disponível, devido a uma falha no sistema informático, computadores, ligação à sede nos Estados Unidos etc.

O operador quer começar uma nova ordem de produção mas não tem o número de lote disponível uma vez que ele é dado pelo sistema, não tem número de ordem de produção e não tem onde registar os valores de controlo de qualidade, apesar de ter disponíveis planos de controlo em papel.

Ao começar uma nova ordem de produção o operador deve:

- a) Atribuir lote manualmente segundo a regra 8 Dígitos (DDMMHHMM) (DDMMHHMM) Dia:Mês:Hora:Minuto
- b) Registar lote como sendo ordem de produção na consola da CHC
- c) Preencher folha manual de apoio ao SAP incluindo Lote de corrente, metros e componentes e respetivos lotes
- d) Fazer registo de qualidade manualmente
 - Existe dossiê no laboratório com cartas de controlo e folhas de registos de arrancamentos
 - Usar Referência do lote atribuído em a)
- e) Confirmação ao cliente usando referencia ao lote atribuído em a)
- f) Identificação do lote na caixa atribuído em a)

Quando o SAP estiver disponível ou a dificuldade ultrapassada

Na linha de montagem o operador deve:

- Abrir novo lote, quantidade recomeça a zero
- Processo normal.

Operações do departamento de Planeamento/qualidade:

- Criar ordens de produção associadas a um cartão kanban (planeamento)
- Durante a confirmação subscrever o lote automático
- Registo QE11 pela qualidade na ordem aberta pelo planeamento

4.5.6.2. Cenário 2: SAP não está disponível / Lote em Curso

A ordem de produção já esta em curso mas ainda não está completa quando o sistema falhou:

- a) Registo de qualidade
 - Existe no laboratório Dossiê com cartas de controlo e folhas de registos de arrancamentos
 - Referencia ao lote (ordem de produção Kanban)
- b) Folha de Apoio SAP (metros, componentes e lotes de componentes)

Assim que o SAP esteja novamente ativo:

Nas linhas de montagem:

• Recomeçam os registos no mesmo lote

No departamento de Qualidade

Introduz dados em falta

4.6. Implementação do projeto

Após um período de análise e discussão o projeto foi implementado a 1 de Janeiro de 2015 e está em funcionamento nas linhas de produção da SRAMPORT.

É atualmente possível uma análise top-down e botom-up com todos os lotes envolvidos no processo como é exemplo a imagem que se segue.

As cartas de controlo são geridas e estão disponível em SAP no chão de fábrica, junto aos operadores:

Existem mecanismos que permitem ao departamento de qualidade analisar e controlar o processo prevendo desvios atempadamente, nomeadamente pela análise baseada em regras *Western electric rules*:

Assim com estatística de capacidade processo através de indicadores com C_P e C_{PK}

4.7. Avaliação e enceramento.

Concluído o projeto é altura de analisar o que correu bem, o que se aprendeu o que deve ser melhorado? Neste capítulo será avaliado e analisados os resultados no contexto da tese "rumo à indústria 4.0".

A nível de traçabilidade o processo era manual através de um documento gerido internamente, o "lotorasto", em que a operadora registava durante o processo de produção os lotes de componentes utilizados em cada lote de corrente, assim como o cliente que lhe estava predestinado. As confirmações das ordens de produção e consumos de componentes era feito pelo planeamento e não na linha de produção. Pela aplicação do sistema conseguiram-se as seguintes vantagens:

- ✓ Maior eficiência do departamento de planeamento, devido à transferência de alguma atividades para as linhas de produção.
- ✓ Inventário em tempo real e ao lote.
- ✓ Traçabilidade simplificada, disponível em qualquer lado através de sistemas de informação em vez de procura em papel.
- ✓ Trocas de lotes entre cliente devido a priorizações de ordens passou a estar assegurada automaticamente.
- ✓ Códigos de barras e validação nas linhas reduziu os erros de associação de lotes errados.

O controlo de qualidade em que os valores observados eram registados manualmente pela operadora que também calculava a media e a amplitude para criar a carta de controlo manual, passou a ser registado automático através de comunicação com os dispositivos de medida em que os valores são validados em tempo real com base num plano de controlo, as medias e amplitudes são calculadas automaticamente, e exibidas de forma gráfica destacando-se os seguintes melhoramentos:

- ✓ Eliminação de erros de leitura, uma vez que os equipamento de medição comunicam com o computador
- ✓ Redução dos erros de cálculo e de representação.
- ✓ Rapidez de Processo pela automatização e leitura direta no sistema.

- ✓ Validação visual de desvios baseado em especificações do produto e do processo (Cartas de controlo automáticas)
- ✓ Analise à posterior com horizonte alargado.
- ✓ Análise de capacidade do processo (C_P;C_{PK}).
- ✓ Redução de custos de não qualidade devido à deteção atempada de desvios.

A analise de falhas frequentes das CHC abre possibilidades a manutenção de melhoramento e o controlo visual permite uma analise me tempo real e em qualquer lugar.

Numa Perspetiva de melhoria contínua criou-se uma lista de melhorias a executar à posterior geridas no Anexo B.

4.8. Rumo à indústria 4.0

Os equipamentos produtivos tem vindo a ser otimizados com capacidades de monotorização e processamento de dados, gerando informação para posterior análise e melhoramento do processo, os sistemas de informação tem sido otimizados para o processamento de grandes quantidade de dados gerados por todas os equipamentos e sensores atualmente ligado à rede. Então o que falta à SRAMPORT para ser uma fábrica inteligente?

Dar inteligência aos componentes seria uma excelente forma de continua a remar para a indústria 4.0. Vamos considerar por momentos a produção de componentes. Estes são produzidos segundo sistema Kanban, transportados dentro de contentores com quantidade standard. Durante o seu processo produtivo passam por vários centros de trabalho, alguns em que é necessário a intervenção do operador para a mudança de ferramentas e outros em que apenas é necessário ajustes técnicos de acordo com as receitas do produto. Neste Capitulo vamos considerar apenas o centro de trabalho das prensas e dos tratamentos térmicos, o primeiro requer mudança de ferramenta, obrigatoriamente executada pelo operador o segundo requer ajustes que podem ser automáticos.

Cada lote/contentor estaria identificado com sistemas de RFID contendo informações, como a quantidade a produzir, código do material e informação das operações já executadas assim como acesso à informação partilhada como operações (routing) e a BOM, stock de componentes etc.

Assim que o produto chega-se ao centro de trabalho das prensas seria estabelecida comunicação com o equipamento em que seria feita uma verificação se o equipamento está preparado para início de produção; está carregada a ferramenta correta, está apto (tem as manutenções adequadas para terminar o lote), se existe stock dos componentes, e se o atual centro de trabalho é o correto; isto é: todas as operações anteriores foram executadas e a atual faz parte das operações necessárias. Durante o processo produtivo são feitos testes de controlo de qualidade sendo a informação de conformidade registada.

No centro de trabalho dos tratamentos térmicos os ajustes necessários são essencialmente temperaturas e concentrações, assim com a chegada do lote seria feita a verificação do estado atual e os ajustes necessários, neste caso sem a necessidade da intervenção humana. Assim que as condições sejam as necessárias para garantir a conformidade iniciam-se os trabalhos.

Rumo à Industria 4.0 Conclusões

Também a movimentação dos lotes pelo chão de fábrica seria usada para traçabilidade e confirmação de operações. A passagem para a zona de armazenagem poderia despoletar a confirmação da ordem de produção e o regresso do contentor vazio apos operações de montagem do produto final criar uma necessidade de nova produção.

Com este melhoramento é legítimo esperar uma diminuição dos risco de erro humano, maior eficiência no processo, redução de custos, inventário permanente em automático, maior capacidade de reação em caso de desvios de conformidade e Kanban digital.

5. Conclusões

A escolha do tema desta dissertação não foi pacífico especialmente no que diz respeito ao enquadramento teórico. Por um lado procurei usar alguns dos projetos de relevo executados recentemente na fábrica em Portugal que se enquadrassem no âmbito do curso e que por outro cria-se músculo para futuros projetos atualmente em carteira.

Com olhos postos no futuro pareceu-me lógico a escolha deste tema pela sua abrangência e importância que terá da definição de um futuro próximo.

Não sei se alguma vez vamos ter uma implementação plena de uma fábrica 4.0, ou se teremos outra revolução que transformará a atual num mero ponto de passagem. Não existe uma definição clara ou um selo "*industry 4.0 ready*", dependendo das pessoas também significado e os conceitos são diferentes, o que existe uma visão em que um dos grandes pilares é a inovação e a melhoria contínua no sentido de melhores produtos ou serviços, melhores processos e melhor cadeia abastecimento.

"A inovação é o que distingue um líder de um seguidor." (Steve Jobs: 24 Fev 1955 a 5 Out 2011)

6. Referências Bibliográficas

6.1. Web Grafia

http://www.economist.com/node/21553017

https://pt.wikipedia.org/wiki/Hist%C3%B3ria da computa%C3%A7%C3%A3o

https://en.wikipedia.org/wiki/Information Age

https://www.publico.pt/tecnologia/noticia/quarta-revolucao-Indústrial-levara-a-perda-de-cinco-

milhoes-de-empregos-em-cinco-anos-1720599

http://www.weforum.org/reports/world-economic-forum-annual-meeting-2016-mastering-the-

fourth-Indústrial-revolution

http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

6.2. Bibliografia

The fourth Industrial Revolution, Klaus Schwab.

The industry of the future, Alex Ross

Gestão de operações, Joao Veríssimo Lisboa; Carlos Ferreira Gomes, vida económica.

Lean Thinking, James P. Womarck, Daniel T. Jones, Simon &schuster

Project Management, Harvard business Review Press

6.3. Referências

- [1] L. V. d. Camões, Sonetos, 1524-1580.
- [2] C. E. O. a. C. o. G. M. U. Mary Barra, 2015.
- [3] K. Schwab, "Historical context," em *The Fourth Industrial Revolution*, WEF, 2016, p. 7.
- [4] F. M. Menezes, "A linha do tempo na Engenharia de Produção," 2015. [Online]. Available: https://www.linkedin.com/pulse/linha-do-tempo-na-engenharia-de-produ%C3%A7%C3%A3o-felipe-morais-menezes. [Acedido em 07 07 2016].
- [5] H. MacKenzie, "The Smart Factory of the Future Part 1," www.belden.com, 01 2015. [Online]. Available: http://www.belden.com/blog/industrialethernet/The-Smart-Factory-of-the-Future-Part-1.cfm. [Acedido em 06 2016].
- [6] "CityDrive," 2016. [Online]. Available: https://www.citydrive.pt/. [Acedido em 20 06 2016].
- [7] WEF, "Deep Shift Technology Tipping Points and Societal Impact," 2015. [Online]. Available: http://www3.weforum.org/docs/WEF_GAC15_Technological_Tipping_Points_report_2015.pdf. [Acedido em 20 6 2016].
- [8] P. Rizzo, "Smart Dubai Director Sees Blockchain as Key to Connected Cities," 05 31 2016. [Online]. Available: http://www.coindesk.com/smart-dubai-blockchain-connected-cities.
- [9] "Internet of Services," 01 06 2016. [Online]. Available: http://saphanatutorial.com/internet-of-services/.

- [10] "Ubiquitous computing Wikipedia, the free encyclopedia," 02 6 2016. [Online]. Available: https://en.wikipedia.org/wiki/Ubiquitous_computing.
- [11] t. f. e. Wikipedia, "DIKW Pyramid," 2016. [Online]. Available: https://en.wikipedia.org/wiki/DIKW_Pyramid. [Acedido em 06 2016].
- [12] Cornelius Baur and Dominik Wee, "Manufacturing's next act," 06 2015. [Online]. Available: http://www.mckinsey.com/business-functions/operations/our-insights/manufacturings-next-act. [Acedido em 07 2016].
- [13] SRAMPORT, Manual de Acolhimento, 2016.
- [14] Harvard Business Reveiw, Project Management, Boston: Harvard Business Reveiw, 2012.
- [15] SAP, "1473025 FAQ: WIP batches," 11 06 2016. [Online]. Available: https://launchpad.support.sap.com/#/notes/1473025/E.

ANEXO A: PARKING LOTE

Parking Lot

Ação	Data	Estado
Impressão Automática ordens /lote de controlo	a ser definida	Aprovadas 6 impressoras; 1 para as peças soltas 5 para a montagem
Métodos de Controlo	Fev 15	Em processo
Review consumption of packaging in the boms (small quantities)		
Rever braços dos computadores de forma a evitar vibrações		Pedro T faz pedido à manutenção
Scanners para computadores?		Aprovado, serão instalados com as impressoras
Suportes para os cartões kanban (de acordo estado)	·	Hélio esta à procura
Formação SPC ativar cartas		Eugenia, Pedro Coelho para apoio
Programa para a gestão do COGI	Prev. Fev 2015	Pcoelho:Em processo
Analisar a possibilidade de pesquisa dos dados de controlo, dos lotes produzidos, por máquina no SAP		Feito (?)
Mesa de flecha com medições automáticas		Em projeto separado
Alterar o formulário das ordens de produção para incluir registos de quantidades	A ser definida	PCoelho : Em lista de Espera
Campo de lote obrigatório na confirmação		Em analise para verificar o que é possível
Sistemas wireless de medição		em processo
Relatório de ordens por semana /desvios		PCoelho : Em lista de Espera

Rumo à Industria 4.0

ANEXO B: PLANO DE PROJETO

Pedro Miguel Nogueira Coelho

		Task	Task Name	Duration	Start	Finish	Pre Resource Names	6 Complete	
	0	Mode							11 May 14 06 Jul 14 31 Aug 14 26 Oct 14 21 Dec 14 15 Feb 15 12 Apr 15 T S F W M S T T S F W M S T T
23	Y	*	Create Supply area Assembly (PK05)	1 day	Fri 19/12/14	Fri 19/12/14	Pedro Coelho	100%	Pedro Coelho
24	✓ 🖥	*	Create Control Cycles	1 day	Fri 19/12/14	Fri 19/12/14	Helio Palrinha	100%	■ Helio Palrinha
25	/	*	Change Generic Materials (MM)	15 days	Thu 04/12/1	Wed 24/12/1	i	100%	
:6	~	*	Extend Generic Materials to storage location 30	1 day	Fri 12/12/14	Fri 12/12/14	Mafalda Martin	100%	■ Mafalda Martirs
7	Y	*	Assign MRP controller 10 to Generic materials	1 day	Fri 19/12/14	Fri 19/12/14	Mafalda Martin	100%	■ Mafalda Martirs
в	~	*	Change Production scheduler profile to 5 Generic materials	1 day	Fri 19/12/14	Fri 19/12/14	Mafalda Martins	100%	■ Wefalda Wertirs
9	Y	*		1 day	Fri 19/12/14	Fri 19/12/14	Mafalda Martin	100%	■ Mafalda Martirs
0	~	*	Create QM veiw and activate the inspection type C	1 day	Thu 04/12/14	4Thu 04/12/14	4 Mafalda Martin	100%	Mala Ida Martins
1	~	*	Change MRP type and lot size	1 day	Fri 19/12/14	Fri 19/12/14	Mafalda Martin	100%	■ Wafalda Wartins
2	~	*	Assign 03 PT to all generic	1 day	Wed 03/12/1	LWed 03/12/1		100%	
3	~	*	Routing of the finish goods (based on ECN) Also for li	1 day	Fri 19/12/14	Fri 19/12/14	Mafalda Martin	100%	■ Vafalda Vartins;Joao Reis
4	Y	*	Routings for the Generic Materials (based on ECN)	1 day	Fri 19/12/14	Fri 19/12/14	Mafalda Martin	100%	■ Veifalda Vertins;Joao Reis
5	~	*	Production for Links	12 days	Thu 04/12/1	Fri 19/12/14		100%	
6	Y	*	Check if all links have Batch	1 day	Thu 04/12/14	4Thu 04/12/14	4 Mafalda Martin	100%	Malada Martins
7	~	*	Check Bom's and routing of links	1 day	Thu 04/12/14	4Thu 04/12/14	4 Mafalda Martin	100%	Matalda Martirs
В	Y	*	Check Control cycles to PPK2	1 day	Fri 19/12/14	Fri 19/12/14	Pedro Coelho;H	100%	Ped to Coelho; Helio Palrinha
9	~	*	Routings for links	12 days	Thu 04/12/1	4Fri 19/12/14	Joao Reis Mafal	100%	load Reis; Mafalda Martins
0	Y	*	Change BOM for the Chains to include links	1 day	Fri 19/12/14	Fri 19/12/14	Mafalda Martin	100%	● Vefalda Wertirs
1	Y	*	Run cost for links	1 day	Fri 19/12/14	Fri 19/12/14	Andreia Meixec	100%	And reia Meixedo;Nuro Coelho
2	~	*	Prepare Go Live	4 days	Mon 22/12/:	1Thu 25/12/1		100%	
3	Y	*	Run Cost in Qa by Dalton	1 day	Mon 22/12/1	LMon 22/12/1	L Pedro Coelho;D	100%	Pedro Coe lho; Dalton Moloney
4	~	*	Create SAP users and authorizations (GRC)	1 day	Mon 22/12/1	l Mon 22/12/1	Pedro Coelho;S	100%	₽ Pedro Coelho;Sara Ramos

Pedro Miguel Nogueira Coelho

ID		Tas k	Task Name	Duration	Start	Finish P	re Resource Names % C	amplete	
	0	Mode							11 May '14 06 Jul '14 31 Aug '14 26 Oct '14 21 Dec '14 15 Feb '15 12 Apr '15 07 T S F W M S T T S F W M S T T S
45	Y	*	Basic Training material	2 days	Mon 22/12/1	lTue 23/12/14	Pedro Coelho	100%	Pedro Coelho
46	~	*	Phisical inventory	1 day	Fri 19/12/14	Fri 19/12/14		100%	•
47	Y	*	Change generic material From Phantom to regular	1 day	Mon 22/12/1	l Mon 22/12/1	Mafalda Martin	100%	
48	~	*	Close all open producion orders for assembly (or reread existing)	1 day		Mon 22/12/14	Helio Palrinha; Pedro	100%	Hel o Palrinha; Pedro Coelho
49	~	*		6 days		Fri 02/01/15 4		100%	*
50	~	*	New costing	1 day	Fri 26/12/14	Fri 26/12/14	Andreia Meixec	100%	Andreia Meixedo; Nuno Coelho
51	Y	*	Evaluate new costing and adjust if necessary	1 day	Fri 26/12/14	Fri 26 /12/14	Andreia Meixec	100%	Andreia Meixedo; Nuno Coelho; Pedro Co
52	~	-4	Release new costing	1 day	Fri 02/01/15	Fri 02/01/15	Andreia Meixec	100%	¡ Andreia Meixedo;Nuro Coelho
53		*	Prepare Hardware	73 days	Mon 22/09/:	1Wed 31/12/11	Silvia Carmen	99%	31/12
54	/ -	*	Computers	1 day	Mon 22/09/1	1 Mon 22/09/1	Silvia Carmen	100%	Silvia Carmen
55	v	*	Interfaces QM interfaces instalation	1 day	Mon 22/09/1	l Mon 22/09/1	Silvia Carmen	100%	Silvia Carmen
56	Y	*	Training	1 day	Mon 15/12/1	l Mon 15/12/1	Helio Palrinha; F	100%	Helio Palrinha; Pedro Coelho; Pedro Tenreiro
57	~	*	Integration Testing	1 day	Thu 19/06/14	4Thu 19/06/14		100%	
58	Y	*	Training Before Production	2 days	Sun 04/01/19	5Mon 05/01/1	Helio Palrinha; J	100%	Helio Palrinha;Joao Reis;Pedro Coelho;
59	V	*	Go-live	2 days	Fri 02/01/15	Mon 05/01/1	Pedro Coelho	100%	os/01
60	Y	=4	On-site Supporte	5 days	Tue 06/01/19	Mon 12/01/15	9 Helio Palrinha; J	100%	Helio Palrinha;Joao Reis;Pedro Coelho
61	~	*	Training Follow up	6 days	Wed 07/01/1	lWed14/01/1	Pedro Coelho	100%	Pedro Coelho