## E2 210 (Jan.-Apr. 2025)

## **Homework Assignment 4**

Submission deadline: Monday, March 31, 11:59pm

This assignment consists of two pages.

1. Let  $S = \langle g_1, g_2, \dots, g_{n-k} \rangle$  be a stabilizer group in  $\mathcal{P}_n$ , with  $\mathcal{Q}_S$  the corresponding stabilizer code. Let  $\mathbf{s} = [s_1, s_2, \dots, s_{n-k}] \in \{0, 1\}^{n-k}$  be the syndrome associated with a Pauli error E. For a codestate  $|\psi\rangle \in \mathcal{Q}_S$ , let  $|\tilde{\psi}\rangle = E |\psi\rangle$ . Verify that the circuit below determines the syndrome bit  $s_\ell$  without modifying the input state  $|\tilde{\psi}\rangle$ .



2. Let  $C_1$  and  $C_2$  be, respectively, binary linear codes such that  $C_1^{\perp} \subsetneq C_2$ . Show that the minimum distance of the quantum code Q obtained via the CSS construction is  $\min\{d_{\min}(C_1 \setminus C_2^{\perp}), d_{\min}(C_2 \setminus C_1^{\perp})\}$ . (Here, for a set A of binary vectors,  $d_{\min}(A)$  refers to the least Hamming weight among the vectors in A.)

A logical operator for an n-qubit quantum code  $\mathcal Q$  is any unitary operator U acting on n qubits such that  $U(\mathcal Q)=\mathcal Q$ . In other words, for any  $|\psi\rangle\in\mathcal Q$ , we have  $U|\psi\rangle\in\mathcal Q$ . If U acts as the identity operator on  $\mathcal Q$ , i.e.,  $U|\psi\rangle=|\psi\rangle$  for all  $|\psi\rangle\in\mathcal Q$ , then we say that the operator is a logical identity for  $\mathcal Q$ . In the following problems, we identify some logical operators of CSS codes obtained from dual-containing binary linear codes.

3. Let  $C_1$  be an  $[n, k_1]$  binary linear code that contains its own dual, i.e.,  $C_1^{\perp} \subseteq C_1$ , and let  $H_1$  be an  $(n - k_1) \times n$  parity-check matrix of  $C_1$ , so that  $H_1H_1^T = 0 \pmod{2}$ . Let Q be the  $[[n, 2k_1 - n]]_2$  quantum stabilizer code obtained via the CSS construction, i.e., it is the stabilizer code associated with the check matrix

$$\begin{bmatrix} H_1 & \mathbf{0} \\ \mathbf{0} & H_1 \end{bmatrix}$$

- (a) Show that  $X^{\otimes n}$  and  $Z^{\otimes n}$  are always logical operators for  $\mathcal{Q}$ . What property of the matrix  $H_1$  ensures that these are <u>not</u> logical identities for  $\mathcal{Q}$ ?
  - [Hint: Since  $H_1H_1^T=0 \pmod 2$ , every row of  $H_1$  must have even Hamming weight (why?). Use this to argue that  $X^{\otimes n}$  and  $Z^{\otimes n}$  commute with all the stabilizer generators, and hence, are in the centralizer  $C(\mathcal{S})$ .]
- (b) Show that  $\overline{H}:=H^{\otimes n}$  is also always a logical operator for  $\mathcal{Q}$ . (Here, H denotes the single-qubit Hadamard gate.)

[Hint: First, show that every stabilizer generator g, there is another stabilizer generator g' such that  $g \cdot \overline{H} = \overline{H} \cdot g'$ . This follows easily from the special structure of the stabilizer generators.]

4. Let  $C_1$  be the [7,4] Hamming code, which contains its own dual. The Steane code is the  $[[7,1]]_2$  quantum stabilizer code obtained by applying the CSS construction to  $C_1^{\perp} \subset C_1$ . Thus, the check matrix of the Steane code is  $\begin{bmatrix} H_1 & \mathbf{0} \\ \mathbf{0} & H_1 \end{bmatrix}$ , where  $H_1$  is a  $3 \times 7$  parity-check matrix for  $C_1$ . For concreteness, take

$$H_1 = egin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

Now,  $C_1^{\perp}$  and  $C_1 \setminus C_1^{\perp}$  are the two cosets of  $C_1^{\perp}$  within  $C_1$ . As we saw in Problem 3 of Homework Assignment #3,

$$|\overline{0}\rangle := \frac{1}{\sqrt{2^3}} \sum_{\mathbf{x} \in \mathcal{C}_1^\perp} |\mathbf{x}\rangle \quad \text{and} \quad |\overline{1}\rangle := \frac{1}{\sqrt{2^3}} \sum_{\mathbf{x} \in \mathcal{C}_1 \setminus \mathcal{C}_1^\perp} |\mathbf{x}\rangle$$

form an orthonormal basis of Q. Explicitly,

$$|\overline{0}\rangle := \frac{1}{\sqrt{8}}(|0000000\rangle + |1101100\rangle + |1011010\rangle + |0111001\rangle + |0110110\rangle + |1100011\rangle + |1010101\rangle + |0001111\rangle)$$

$$|\overline{1}\rangle \ := \ \frac{1}{\sqrt{8}}(|1111111\rangle + |0010011\rangle + |0100101\rangle + |1000110\rangle + |1001001\rangle + |0011100\rangle + |0101010\rangle + |1110000\rangle)$$

- (a) Determine the minimum distance of the Steane code.
- (b) From Problem 3(a), we know that  $\overline{X} := X^{\otimes 7}$  and  $\overline{Z} := Z^{\otimes 7}$  are logical operators for the Steane code. Verify that these are indeed the logical-X and logical-Z operators, in the sense that

$$\overline{X} |\overline{0}\rangle = |\overline{1}\rangle, \quad \overline{X} |\overline{1}\rangle = |\overline{0}\rangle, \quad \overline{Z} |\overline{0}\rangle = |\overline{0}\rangle, \quad \overline{Z} |\overline{1}\rangle = -|\overline{1}\rangle$$

(c) From Problem 3(b), we know that  $\overline{H}:=H^{\otimes 7}$  is also a logical operator. Show that this is indeed the logical-Hadamard operator, i.e.,

$$\overline{H} \ket{\overline{0}} = \frac{1}{\sqrt{2}} \left( \ket{\overline{0}} + \ket{\overline{1}} \right) \text{ and } \overline{H} \ket{\overline{1}} = \frac{1}{\sqrt{2}} \left( \ket{\overline{0}} - \ket{\overline{1}} \right).$$

(You may need to write a small program to verify this.)

(d) Recall that the S-gate maps  $|0\rangle$  to  $|0\rangle$  and  $|1\rangle$  to  $i|1\rangle$ . Verify that  $\overline{S}:=(S^{\dagger})^{\otimes 7}$  acts as a logical-S gate for the Steane code, i.e.,

$$\overline{S}\,|\overline{0}\rangle = |\overline{0}\rangle \quad \text{and} \quad \overline{S}\,|\overline{1}\rangle = i\,|\overline{1}\rangle$$