PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED U	UNDER THE PATENT COOPERATION TREATY (PCT)							
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/56816							
C07K 14/205, A61K 39/106, G01N 33/569	A1	(43) International Publication Date: 17 December 1998 (17.12.98)							
(21) International Application Number: PCT/SE (22) International Filing Date: 8 June 1998 (6) (30) Priority Data: 9702242-0 12 June 1997 (12.06.97) (71) Applicant (for all designated States except US): AKTIEBOLAG [SE/SE]; S-151 85 Södertälje (SE (72) Inventors; and (75) Inventors/Applicants (for US only): BERGLINDH, [SE/SE]; Astra Hässle AB, S-431 83 Mölnd MELLGÅRD, Björn [SE/SE]; Astra Hässle AB, S Mölndal (SE). (74) Agent: ASTRA AKTIEBOLAG; Patent Dept., S Södertälje (SE).	08.06.9 S ASTR (). Thom lal (SE S-431 8	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.							
(54) Title: VACCINE COMPOSITIONS COMPRISING (57) Abstract The present invention relates to polypeptides and va pylori infection. The invention furthermore relates to the the treatment or prophylaxis of Helicobacter pylori infection.	ccine of	TELICOBACTER PYLORI FIGE POLYPEPTIDE compositions for inducing a protective immune response to Helicobacter Helicobacter pylori polypeptides in the manufacture of compositions for							

WO 98/56816

1

PCT/SE98/01093

VACCINE COMPOSITIONS COMPRISING THE HELICOBACTER PYLORI FIGE POLYPEPTIDE

TECHNICAL FIELD

The present invention relates to polypeptides and vaccine compositions for inducing a protective immune response to *Helicobacter pylori* infection. The invention furthermore relates to the use of *Helicobacter pylori* polypeptides in the manufacture of compositions for the treatment or prophylaxis of *Helicobacter pylori* infection.

10

BACKGROUND ART

Helicobacter pylori

15

The gram-negative bacterium *Helicobacter pylori* (*H. pylori*) is an important human pathogen, involved in several gastroduodenal diseases. Colonization of gastric epithelium by the bacterium leads to active inflammation and progressive chronic gastritis, with a greatly enhanced risk of progression to peptic ulcer disease. A lifelong inflammation of the gastric mucosa is very closely correlated with a significantly enhanced risk for gastric cancer.

In order to colonize the gastric mucosa, *H. pylori* uses a number of virulence factors. Such virulence factors comprise several adhesins, with which the bacterium associates with the mucus and/or binds to epithelial cells; urease which helps to neutralize the acid environment; and proteolytic enzymes which makes the mucus more fluid. In addition *H. pylori* is highly motile, swimming in the mucus and down into the crypts. Motility has been shown to be an essential virulence factor, since non motile *H. pylori* has failed to infect the mucosa in experimental models Eaton et al. (Infection & Immunity 64(7), 2445-2448, 1996).

There are many possible reasons for this, the most obvious being an inability to swim down and attach to mucosal cells and the inability to avoid noxious agents in the stomach.

Despite a strong apparent host immune response to *H. pylori*, with production of both local (mucosal) as well as systemic antibodies, the pathogen persists in the gastric mucosa, normally for the life of the host. The reason for this is probably that the spontaneously induced immune-responses are inadequate or directed towards the wrong epitopes of the antigens. Alternatively the immune response could be of the wrong kind, since the immune system might treat *H. pylori* as a commensal (as indicated from the life-time host/bacteria relationship).

In order to understand the pathogenesis and immunology of *H. pylori* infections, it is of great importance to define the antigenic structure of this bacterium. In particular, there is a need for characterization of surface-exposed, surface associated as well as secreted proteins which, in many bacterial pathogens, have been shown to constitute the main virulence factors, and which can be useful for the diagnosis of *H. pylori* and in the manufacture of vaccine compositions. If such proteins in addition to being surface associated also are essential for survival and/or colonization their usefulness as a target for vaccine mediated immunotherapy targets increase.

Whenever stressed or threatened, the *H. pylori* cell transforms from a bacillary to a coccoid form. In the coccoid form, the *H. pylori* cell is much less sensitive to antibiotics and other anti-bacterial agents. Circumstantial evidence indicate the *H. pylori* might be transmitted between individuals in this form, possibly via water or direct contact (oral-oral; feacal-oral). An efficient vaccine composition should therefore elicit an immune response towards both the coccoid and the bacillary form of *H. pylori*. Since systemic immunity probably only plays a limited role in

There are many possible reasons for this, the most obvious being an inability to swim down and attach to mucosal cells and the inability to avoid noxious agents in the stomach.

2

Despite a strong apparent host immune response to *H. pylori*, with production of both local (mucosal) as well as systemic antibodies, the pathogen persists in the gastric mucosa, normally for the life of the host. The reason for this is probably that the spontaneously induced immune-responses are inadequate or directed towards the wrong epitopes of the antigens. Alternatively the immune response could be of the wrong kind, since the immune system might treat *H. pylori* as a commensal (as indicated from the life-time host/bacteria relationship).

In order to understand the pathogenesis and immunology of *H. pylori* infections, it is of great importance to define the antigenic structure of this bacterium. In particular, there is a need for characterization of surface-exposed, surface associated as well as secreted proteins which, in many bacterial pathogens, have been shown to constitute the main virulence factors, and which can be useful for the diagnosis of *H. pylori* and in the manufacture of vaccine compositions. If such proteins in addition to being surface associated also are essential for survival and/or colonization their usefulness as a target for vaccine mediated immunotherapy targets increase.

Whenever stressed or threatened, the *H. pylori* cell transforms from a bacillary to a coccoid form. In the coccoid form, the *H. pylori* cell is much less sensitive to antibiotics and other anti-bacterial agents. Circumstantial evidence indicate the *H. pylori* might be transmitted between individuals in this form, possibly via water or direct contact (oral-oral; feacal-oral). An efficient vaccine composition should therefore elicit an immune response towards both the coccoid and the bacillary form of *H. pylori*. Since systemic immunity probably only plays a limited role in

protection against mucosal infections, it is also important that the vaccine composition will enhance protective immune mechanisms locally in the stomach.

3

Flagellar Hook protein

Flagellar hooks from *H. pylori* has been shown to be composed of FlgE subunits of 78 kDa (O'Toole et al. Molecular Microbiology, 14(4), 691-703, 1994). The role of the flagellar hook is to connect the flagella with the submembraneous flagellar motor. The part of the hook extruding outside the membrane is short, approximately 60 nanometers (compared to approximately 10 micrometers for the flagella). Like the fagellum of *H. pylori* the hook is probably covered with a sheet

The amino acid sequence of the FlgE polypeptide has significant resemblance with that of other known hook proteins, including limited homology to other *Helicobacter* species like *mustelae* (O'Toole et al., *supra*). Polyclonal antibodies raised against the FlgE polypeptide showed cross-reactivity against flagellar proteins A and B, possibly indicating the existence of shared epitopes. Production of FlgE knockout *H. pylori*, resulted in an aflagellar, non-motile bacteria, where FlgE polypeptide still was produced but could only be recovered in the cytoplasm.

BRIEF DESCRIPTION OF THE DRAWINGS

(Geis et al. (1993) J. Med. Microbiol. 38(5), 371-377).

25 Fig. 1:

Effect of therapeutic immunization of *H. pylori* infected mice (n=9-10/group) with FlgE polypeptide. Results are given as mean±SEM of number of *H. pylori* associated with antrum (=A), corpus (=B) or totally (A+C) (=C). Abbreviations: CFU, colony forming units (number of bacteria); unshaded bars=DOC + CT, Phosphate buffered saline with 0.5% deoxycholate given together with cholera

toxin 10 μg/mouse; shaded bars=FlgE + CT, mice given 100 μg FlgE and 10 μg cholera toxin. The decrease in cfu was significant in the antrum and as calculated for the whole stomach.

** p<0.01; * p<0.05 (Wilcoxon-Mann-Whittney sign rank test).

Fig. 2:

Serum IgG from mice measured by ELISA technique: response to infection and to immunisation with FlgE. The values are expressed as mean titers \pm SEM. n=9-10/group. ELISA coated with H. pylori strain 244: As a sign of infection H. pylori specific antibodies can be found in serum in animals treated with DOC + CT (=A. Control/244). Following immunization with FlgE + cholera toxin (=B. FlgE/244) this reactivity increased 4 fold (** p<0.01; Wilcoxon-Mann-Whittney sign rank test). C=FlgE specific. Specific FlgE IgG increased in animals given FlgE + CT, but could not be detected in control animals.

15

DISCLOSURE OF THE INVENTION

The purpose of this invention is to provide an antigenic H. pylori polypeptide which can be useful for eliciting a protective immune response against, and for diagnosis of, H. pylori infection. This purpose has been achieved by the recombinant cloning of an H. pylori gene which encodes a well conserved essential polypeptide. The nucleic acid sequence of this gene is similar to the sequence of the flgE gene as published by O'Toole et al., Molecular Microbiology, 14(4), 691-703, 1994. Being an essential protein for motility, the flgE gene is expressed by all H. pylori strains.

It has surprisingly been found that the H. pylori FlgE polypeptide, in spite of the facts that only a small part of the hook protein is existing outside bacteria and that it is probably covered by a sheet, can serve as a therapeutic antigen in an H. pylori

toxin 10 μ g/mouse; shaded bars=FlgE + CT, mice given 100 μ g FlgE and 10 μ g cholera toxin. The decrease in cfu was significant in the antrum and as calculated for the whole stomach.

** p<0.01; * p<0.05 (Wilcoxon-Mann-Whittney sign rank test).

Fig. 2:

Serum IgG from mice measured by ELISA technique: response to infection and to immunisation with FlgE. The values are expressed as mean titers \pm SEM. n=9-10/group. ELISA coated with H. pylori strain 244: As a sign of infection H. pylori specific antibodies can be found in serum in animals treated with DOC + CT (=A. Control/244). Following immunization with FlgE + cholera toxin (=B. FlgE/244) this reactivity increased 4 fold (** p<0.01; Wilcoxon-Mann-Whittney sign rank test). C=FlgE specific. Specific FlgE IgG increased in animals given FlgE + CT, but could not be detected in control animals.

15

DISCLOSURE OF THE INVENTION

The purpose of this invention is to provide an antigenic H. pylori polypeptide which can be useful for eliciting a protective immune response against, and for diagnosis of, H. pylori infection. This purpose has been achieved by the recombinant cloning of an H. pylori gene which encodes a well conserved essential polypeptide. The nucleic acid sequence of this gene is similar to the sequence of the flgE gene as published by O'Toole et al., Molecular Microbiology, 14(4), 691-703, 1994. Being an essential protein for motility, the flgE gene is expressed by all H. pylori strains.

It has surprisingly been found that the H. pylori FlgE polypeptide, in spite of the facts that only a small part of the hook protein is existing outside bacteria and that it is probably covered by a sheet, can serve as a therapeutic antigen in an H. pylori

to identify modified forms of the FlgE polypeptide retaining functionally equivalent antigenicity, by use of known methods, such as epitope mapping with *in vivo* induced antibodies.

In a preferred form of the invention, the *Helicobacter pylori* FlgE polypeptide, for use in inducing a protective immune response to *Helicobacter pylori* infection, has substantially the amino acid sequence set forth as SEQ ID NO: 2 in the Sequence Listing, or is a modified form thereof retaining functionally equivalent antigenicity.

10

20

It is thus to be understood that the definition of the *Helicobacter pylori* FlgE polypeptide is not to be limited strictly to a polypeptide with an amino acid sequence identical with SEQ ID NO: 2 in the Sequence Listing. Rather the invention encompasses polypeptides carrying modifications like substitutions, small deletions, insertions or inversions, which polypeptides nevertheless have substantially the biological activities of the *Helicobacter pylori* FlgE polypeptide and is retaining functionally equivalent antigenicity. Included in the definition of the *Helicobacter pylori* FlgE polypeptide are consequently polypeptides, the amino acid sequence of which is at least 90% homologous, preferably at least 95% homologous, with the amino acid sequence set forth as SEQ ID NO: 2 in the Sequence Listing.

In another aspect, the invention provides a vaccine composition for inducing a protective immune response to *Helicobacter pylori* infection, comprising an immunogenically effective amount of a *Helicobacter pylori* FlgE polypeptide as defined above, optionally together with a pharmaceutically acceptable carrier or diluent.

In the present context the term "immunologically effective amount" is to be understood as an amount which elicits a significant protective Helicobacter pylori

response, which will eradicate a *H. pylori* infection in an infected mammal or prevent the infection in a susceptible mammal. Typically an immunologically effective amount will comprise approximately 1 µg to 1000 mg, preferably approximately 10 µg to 100 mg, of *H. pylori* antigen for oral administration, or approximately less than 100 µg for parenteral administration.

The vaccine composition comprises optionally in addition to a pharmaceutically acceptable carrier or diluent one or more other immunologically active antigens for prophylactic or therapeutic use. Physiologically acceptable carriers and diluents are well known to those skilled in the art and include e.g. phosphate buffered saline (PBS), or, in the case of oral vaccines, HCO₃- based formulations or enterically coated powder formulations.

The vaccine composition can optionally include or be administered together with acid secretion inhibitors, preferably proton pump inhibitors (PPIs), e.g. omeprazole. The vaccine can be formulated in known delivery systems such as liposomes, ISCOMs, cochleates, etc. (see e.g. Rabinovich et al. (1994) Science 265, 1401-1404) or be attached to or incorporated into polymer microspheres of degradable or non-degradable nature. The antigens could be associated with live attenuated bacteria, viruses or phages or with killed vectors of the same kind. The antigens can be chemically or genetically coupled to carrier proteins of inert or adjuvantic types (i.e Cholera B subunit). Consequently, the invention provides in a further aspect a vaccine composition according to above, in addition comprising an adjuvant, such as a cholera toxin. Such pharmaceutically acceptable forms of cholera toxin are known in the art, e.g. from Rappuoli et al. (1995) Int. Arch. Allergy & Immunol. 108(4), 327-333; and Dickinson et al. (1995) Infection and Immunity 63(5), 1617-1623.

A vaccine composition according to the invention can be used for both therapeutic and prophylactic purposes. Consequently, the invention includes a vaccine

15

20

composition according as defined above, for use as a therapeutic or a prophylactic vaccine in a mammal, including man, which is infected by *Helicobacter pylori*. In this context the term "prophylactic purpose" means to induce an immune response which will protect against future infection by *Helicobacter pylori*, while the term "therapeutic purpose" means to induce an immune response which can eradicate an existing *Helicobacter pylori* infections.

The vaccine composition according to the invention is preferably administered to any mammalian mucosa exemplified by the buccal, the nasal, the tonsillar, the gastric, the intestinal (small and large intestine), the rectal and the vaginal mucosa. The mucosal vaccines can be given together with for the purpose appropriate adjuvants. The vaccine can also be given orally, or parenterally, by the subcutaneous, intracutaneous or intramuscular route, optionally together with the appropriate adjuvant. The vaccine composition can optionally be given together with antimicrobial therapeutic agents.

In a further aspect, the invention proivides the use of a *Helicobacter pylori* FlgE polypeptide, as defined above, in the manufacture of

- (i) a composition for the treatment, prophylaxis or diagnosis of *Helicobacter pylori* infection;
 - (ii) a vaccine for use in eliciting a protective immune response against *Helicobacter* pylori; and
 - (iii) a diagnostic kit for diagnosis of Helicobacter pylori infection.
- In yet a further aspect, the invention provides a method of *in vitro* diagnosis of Helicobacter pylori infection comprising at least one step wherein a Helicobacter pylori FlgE polypeptide as defined above, optionally labelled or coupled to a solid support, is used. The said method could e.g. comprise the steps (a) contacting a said Helicobacter pylori FlgE polypeptide, optionally bound to a solid support, with

a body fluid taken from a mammal; and (b) detecting antibodies from the said body fluid binding to the said FlgE polypeptide. Preferred methods of detecting antibodies are ELISA (Enzyme linked immunoabsorbent assay) methods which are well known in the art.

In another aspect the invention provides a diagnostic kit for the detection of Helicobacter pylori infection in a mammal, including man, comprising components which enable the method of in vitro diagnosis as described above to be carried out. The said diagnostic kit could e.g. comprise: (a) a Helicobacter pylori FlgE polypeptide; and (b) reagents for detecting antibodies binding to the said FlgE polypeptide. The said reagents for detecting antibodies could e.g. be an enzymelabelled anti-immunoglobulin and a chromogenic substrate for the said enzyme.

In yet a further aspect, the invention provides a method of eliciting in a mammal, including humans, a protective immune response against *Helicobacter pylori* infection, said method comprising the step of administering to the said mammal an immunologically effective amount of a *Helicobacter pylori* FlgE polypeptide as defined above, or alternatively administering to the said mammal an immunologically effective amount of a vaccine composition as defined above.

20

25

EXPERIMENTAL METHODS

Throughout this description the terms "standard protocols" and "standard procedures", when used in the context of molecular cloning techniques, are to be understood as protocols and procedures found in an ordinary laboratory manual such as: Current Protocols in Molecular Biology, editors F. Ausubel et al., John Wiley and Sons, Inc. 1994, or Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular Cloning: A laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989.

Preparation of recombinant Helicobacter pylori FlgE polypeptide

DNA sequence Information

5

Sequence information for the gene encoding for the FlgE polypeptide was obtained from the National Center for Biotechnology Information (Accession number U09549; SEQ ID NO: 1).

PCR Amplification and cloning of DNA sequences containing ORF's for membrane and secreted proteins from the J99 Strain of Helicobacter pylori.

Sequences were cloned from the J99 strain of *H. pylori* by amplification cloning using the polymerase chain reaction (PCR). Synthetic oligonucleotide primers (see below) specific for the 5'- and 3'-ends of open reading frames of genes were designed and purchased (GibcoBRL Life Technologies, Gaithersburg, MD, USA). Forward primers (specific for the 5'-end of the sequence) for FlgE were designed to include an *NcoI* cloning site at the extreme 5'-terminus, while reverse primers included a *Eco*RI site at the extreme 5'-terminus to permit cloning of each *H. pylori* sequence into the reading frame of the pET28b vector. Inserts cloned into the *NcoI-Eco*RI sites of the pET-28b vector are fused to a vector DNA sequence encoding an additional 20 carboxy-terminal amino including six histidine residues (at the extreme C-terminus).

Forward primer (SEQ ID NO: 3):
 5'-TAT ACC ATG GTG CTT AGG TCT TTA T-3'
 Reverse primer (SEQ ID NO: 4):
 5'-GCG AAT TCA ATT GCT TAA GAT TCA A-3'

Genomic DNA prepared from the J99 strain of *Helicobacter pylori* was used as the source of template DNA for PCR amplification reactions (Current Protocols in Molecular Biology, editors F. Ausubel et al., John Wiley and Sons, Inc. 1994). To amplify a DNA sequence containing an *H. pylori* ORF, genomic DNA (50 ng) was

- introduced into a reaction vial containing 2 mM MgCl₂, 1 µM synthetic oligonucleotide primers (forward and reverse primers) complementary to and flanking a defined *H. pylori* ORF, 0.2 mM of each deoxynucleotide triphosphate dATP, dGTP, dCTP, dTTP, and 2.5 units of heat stable DNA polymerase (Amplitaq, Roche Molecular Systems, Inc., Branchburg, NJ, USA) in a final volume of 100 µl. The following thermal cycling conditions were used to obtain amplified
- of 100 μl. The following thermal cycling conditions were used to obtain amplified DNA products for each ORF using a Perkin Elmer Cetus/ GeneAmp PCR System 9600 thermal cycler:

Denaturation at +94°C for 2 min;

2 cycles at +94°C for 15 sec, +30°C for 15 sec and +72°C for 1.5 min;

23 cycles at +94°C for 15 sec, +58°C for 15 sec and +72°C for 1.5 min; Reactions were concluded at +72°C for 6 minutes.

Upon completion of thermal cycling reactions, each sample of amplified DNA was washed and purified using the Qiaquick Spin PCR purification kit (Qiagen,

- Gaithersburg, MD, USA). Amplified DNA samples were subjected to digestion with the restriction endonucleases *NdeI* and *EcoRI* according to standard procedures. DNA samples were then subjected to electrophoresis on 1.0 % NuSeive (FMC BioProducts, Rockland, ME USA) agarose gels. DNA was visualized by exposure to ethidium bromide and long wave UV irradiation. DNA
- contained in slices isolated from the agarose gel was purified using the Bio 101 GeneClean Kit protocol (Bio 101 Vista, CA, USA).

Cloning of H. pylori DNA sequences into the pET-28b prokaryotic expression vector.

The pET-28b vector was prepared for cloning by digestion with *NcoI* and *EcoRI* according to standard procedures. Following digestion, DNA inserts were cloned according to standard procedures into the previously digested pET-28b expression vector. Products of the ligation reaction were then used to transform the BL21 strain of *E. coli* as described below.

Transformation of competent bacteria with recombinant plasmids

10

20

25

Competent bacteria, *E. coli* strain BL21 or *E. coli* strain BL21(DE3), were transformed with recombinant pET expression plasmids carrying the cloned *H. pylori* sequences according to standard methods. Briefly, 1 μ l of ligation reaction was mixed with 50 μ l of electrocompetent cells and subjected to a high voltage pulse, after which, samples were incubated in 0.45 ml SOC medium (0.5% yeast extract, 2.0% tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄ and 20, mM glucose) at +37°C with shaking for 1 hour. Samples were then spread on LB agar plates containing 25 μ g/ml kanamycin sulfate for growth overnight. Transformed colonies of BL21 were then picked and analyzed to evaluate cloned inserts as described below.

Identification of recombinant pET expression plasmids carrying H. pylori sequences

Individual BL21 clones transformed with recombinant pET-28b *H. pylori* genes were analyzed by PCR amplification of the cloned inserts using the same forward and reverse primers, specific for each *H. pylori* sequence, that were used in the original PCR amplification cloning reactions. Successful amplification verified the integration of the *H. pylori* sequences in the expression vector according to standard procedures.

Isolation and Preparation of plasmid DNA from BL21 transformants

Individual clones of recombinant pET-28b vectors carrying properly cloned *H. pylori* ORFs were picked and incubated in 5 ml of LB broth plus 25 µg/ml kanamycin sulfate overnight. The following day plasmid DNA was isolated and purified using the Qiagen plasmid purification protocol (Qiagen Inc., Chatsworth, CA, USA).

10 Expression of recombinant H. pylori sequences in E. coli

The pET vector can be propagated in any *E. coli* K-12 strain e.g. HMS174, HB101, JM109, DH5α, etc. for the purpose of cloning or plasmid preparation. Hosts for expression include *E. coli* strains containing a chromosomal copy of the gene for T7 RNA polymerase. These hosts are lysogens of bacteriophage DE3, a lambda derivative that carries the *lacI* gene, the lacUV5 promoter and the gene for T7 RNA polymerase. T7 RNA polymerase is induced by addition of isopropyl-β-D-thiogalactoside (IPTG), and the T7 RNA polymerase transcribes any target plasmid, such as pET-28b, carrying its gene of interest. Strains used in our laboratory include: BL21(DE3) (Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990) Methods Enzymol. 185, 60-89).

To express recombinant *H. pylori* sequences, 50 ng of plasmid DNA isolated as described above was used to transform competent BL21(DE3) bacteria as described above (provided by Novagen as part of the pET expression system kit). Transformed cells were cultured in SOC medium for 1 hour, and the culture was then plated on LB plates containing 25 µg/ml kanamycin sulfate. The following day, bacterial colonies were pooled and grown in LB medium containing kanamycin sulfate (25 µg/ml) to an optical density at 600 nm of 0.5 to 1.0 O.D.

units, at which point, 1 mM IPTG was added to the culture for 3 hours to induce gene expression of the $H.\ pylori$ recombinant DNA constructions .

After induction of gene expression with IPTG, bacteria were pelleted by centrifugation in a Sorvall RC-3B centrifuge at 3500 x g for 15 minutes at 4°C. Pellets were resuspended in 50 ml cold 10 mM Tris-HCl, pH 8.0, 0.1 M NaCl and 0.1 mM EDTA (STE buffer). Cells were then centrifuged at 2000 x g for 20 min at +4°C. Wet pellets were weighed and frozen at -80°C until ready for protein purification.

10

15

Analytical Methods

The concentrations of purified protein preparations were quantified spectrophotometrically using absorbance coefficients calculated from amino acid content (Perkins, S.J. 1986 Eur. J. Biochem. 157, 169-180). Protein concentrations were also measured by the method of Bradford, M.M. (1976) Anal.. Biochem. 72, 248-254, and Lowry, O.H., Rosebrough, N., Farr, A.L. & Randall, R.J. (1951), using bovine serum albumin as a standard.

Sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gels (12% or 4 to 25 % gradient acrylamide) were purchased from BioRad (Hercules, CA, USA), and stained with Coomassie Brilliant Blue. Molecular mass markers included rabbit skeletal muscle myosin (200 kDa), *E. coli* β-galactosidase (116 kDa), rabbit muscle phosphorylase B (97.4 kDa), bovine serum albumin (66.2 kDa), ovalbumin (45 kDa), bovine carbonic anhydrase (31 kDa), soybean trypsin inhibitor (21.5 kDa), egg white lysozyme (14.4 kDa) and bovine aprotinin (6.5 kDa).

Purification of FlgE from inclusion bodies

The following steps were carried out at +4°C. Cell pellets were resuspended in lysis buffer with 10% glycerol 200 μ g/ml lysozyme, 5 mM EDTA, 1 mM PMSF and 0.1% β -mercaptoethanol. After passage through the cell disrupter, the resulting homogenate was made 0.2% DOC, stirred 10 minutes, then centrifuged (10,000 g x 30 min). The pellets were first washed with lysis buffer containing 10% glycerol, 10 mM EDTA, 1% Triton X-100, 1 mM PMSF and 0.1% β -mercaptoethanol, then with lysis buffer containing 1 M urea, 1 mM PMSF and 0.1% β -mercaptoethanol. The resulting white pellet was composed primarily of inclusion bodies, free of unbroken cells and membranous materials.

The following steps were carried out at room temperature. Inclusion bodies were dissolved in 20 ml 8 M urea in lysis buffer with 1 mM PMSF and 0.1% βmercaptoethanol, and incubated at room temperature for 1 hour. Materials that did not dissolve were removed by centrifugation (100,000 x g for 30 min). The clear supernatant was filtered and loaded onto a Ni2+-NTA agarose column equilibrated in 8 M urea in lysis buffer. The column was washed with 250 ml (50 bed volumes) of lysis buffer containing 8 M urea, 1 mM PMSF and 0.1% βmercaptoethanol, and developed with sequential steps of lysis buffer containing 8 20 M urea, 1 mM PMSF, 0.1% β -mercaptoethanol and 20, 100, 200, and 500 mM imidazole. Fractions were monitored by absorbance at OD₂₈₀ nm, and peak fractions were analyzed by SDS-PAGE. Two bands were visualized by Coomassie Brilliant Blue staining, a major band $M_r = 78$ kDa and a minor band $M_r = 60$ kDa. Purity of recombinant FlgE (78 kDa) was assessed at greater than 90%. As with the purification of the soluble proteins, fractions containing the recombinant protein eluted at 100 mM imidazole.

Urea was slowly removed from the FlgE polypeptide by dialysis against TBS containing 0.5% DOC with sequential reduction in urea as follows; 6M, 4M, 3M,

2M, 1M, 0.5 M then 0 M. Each dialysis step was carried for a minimum of 4 hours at room temperature,

After dialysis, samples were concentrated by pressure filtration using Amicon stirred cells. Protein concentrations were then measured by the methods of Perkins, Bradford and Lowry.

EXAMPLES OF THE INVENTION

10

EXAMPLE 1: THERAPEUTIC IMMUNIZATION

1. Materials & Methods

5 1.1 Animals

Female SPF BALB/c mice were purchased from Bomholt Breeding centre (Denmark). They were kept in ordinary makrolon cages with free supply of water and food. The animals were 4-6 weeks old at arrival.

20

1.2. Infection

After a minimum of one week of acclimatization, the animals were infected with a type 2 strain of H. pylori (strain 244, originally isolated from an ulcer patient). This strain has earlier proven to be a good colonizer of the mouse stomach. Bacteria from a stock kept at -70° C were grown overnight in Brucella broth supplemented with 10% fetal calf serum, at $+37^{\circ}$ C in a microaerophilic atmosphere (10% CO₂, 5% O₂). The animals were given an oral dose of omeprazole ($400 \mu mol/kg$) and after 3-5 h an oral inoculation of H. pylori (approximately 10^7 - 10^8 CFU/animal).

Infection was checked in control animals 2-3 weeks after the inoculation.

1.3. Immunizations

One month after infection, two groups of mice (10 mice/group) were immunized 4 times over a 34 day period (day 1, 15, 25 and 35). Purified recombinant FlgE dissolved in PBS plus 0.5% Deoxycholate (DOC) was given at a dose of 100 microgram/mouse.

As an adjuvant, the animals in both the control as well as the FlgE group were also given $10 \,\mu\text{g}/\text{mouse}$ of cholera toxin (CT) with each immunization. Omeprazole (400 $\mu\text{mol/kg}$) was given orally to all animals 3-5 h prior to immunization as a way of protecting the antigens from acid degradation. Animals were sacrificed 1-2 weeks after final immunization.

Group 1: 300 μl PBS with 0.5% DOC containing 10 μg CT Group 2: 300 μl PBS with 0.5% DOC containing 100 μg FlgE and 10 μg CT.

1.4. Analysis of infection

15

The mice were sacrificed by CO₂ and cervical dislocation. The abdomen and chest cavity was opened and blood sampled by heart puncture. Subsequently the stomach was removed. After cutting the stomach along the greater curvature, it was rinsed in saline and subsequently cut into two identical pieces. An area of 25 mm² of the mucosa from the antrum and corpus was scraped separately with a surgical scalpel. The mucosa scraping was suspended in Brucella broth, diluted and plated onto Blood Skirrow plates. The plates were incubated under microaerophilic conditions for 3-5 days and the number of colonies was counted. The identity of *H. pylori* was ascertained by urease and catalase test and by direct microscopy or Gram staining.

1.5. Antibody measurements

Serum antibodies were collected from blood. Prior to centrifugation, the blood was diluted with equal amount of PBS. The serum was kept at -20° C until analysis.

Serum antibodies were measured using an ELISA where plates were coated either with a particulate fraction of *H. pylori* strain 244 or with FlgE followed by addition of different dilutions of serum. The ELISA was developed with alkaline phosphatase-labelled anti-mouse-Ig-antibodies. The anti-Ig antibodies were of an anti-heavy/anti-light chain type, which should detect all types of antibodies.

2. Results

10

- 2.1. Therapeutic immunization: effects on CFU
- The animals in this study were infected with *H. pylori* strain 244 one month prior to immunizations. Mice in groups of ten were then immunized with either cholera toxin (CT) or CT together with the recombinant FlgE polypeptide. Four weeks after the final immunization, the animals were sacrificed and CFU was determined (Fig. 1). The animals treated with CT alone, were highly infected both in corpus and antrum. Animals actively immunized with recombinant FlgE polypeptide and CT had significantly decreased CFU values in the antrum and in the stomach as a whole compared with the CT treated animals (p<0.01 and p<0.05, respectively; Wilcoxon-Mann-Whittney sign rank test).
- 25 2.2. Therapeutic immunization: effects on antibody formation and secretion

As a sign of infection *H. pylori* specific antibodies can be found in serum (Control/244). In animals given FlgE + CT the titer against strain 244 (as membrane proteins) increased 4-fold (p<0.01). Only in animals given FlgE + CT could a specific serum IgG titer against FlgE be measured (Fig. 2).

SEQUENCE LISTING

(1) GENERAL INFORMATION:	
(i) APPLICANT: (A) NAME: Astra AB (B) STREET: Västra Mälarehamnen 9 (C) CITY: Södertälje (E) COUNTRY: Sweden (F) POSTAL CODE (ZIP): S-151 85 (G) TELEPHONE: +46 8 553 260 00 (H) TELEFAX: +46 8 553 288 20	
(ii) TITLE OF INVENTION: Vaccine Compositions V	
(iii) NUMBER OF SEQUENCES: 4	
 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 	(EPO)
(2) INFORMATION FOR SEQ ID NO: 1:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2550 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Helicobacter pylori</pre>	
<pre>(ix) FEATURE:</pre>	ok
 (x) PUBLICATION INFORMATION: (A) AUTHORS: O'Toole, Paul W. Kostrzynska, Magdalena Trust, Trevor J. (B) TITLE: Non-motile mutants of Helicobacter pylo Helicobacter mustelae defective in flagella production (C) JOURNAL: Mol. Microbiol. (D) VOLUME: 14 	ri and r hook
(E) ISSUE: 4 (F) PAGES: 691-703 (G) DATE: 1994	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
AACAAAGCGA TAACTCCTTT GTCTTATTAG CGACACAATT TAACCCATTG ACTTT	AAATC 60
GCGCTTCAGC CGAAGAGATT CAAGATCATG AATGCGCGAT TTTGCACTAA AGCGA	GTTAG 120
ATTCTTAAAT TTGAGCGATA ACCTTTAAAA AGCGTAATTA AGGGGTGGTG TTACA	AAACC 180

CCC.	TATC	ccc	TTAT	GAAT	TT G	ACCG	ATCT	т тт	TGAT	TAAC	AAA	ACTT	TAA	AATC	CGCA	AT 240
CAA'	TCAT"	TCT	AAAA	AGCT	АТ Т	TAGG	AACA	A CT	TTTG	CTTT	ATT	TTGC	АТА	GATT	GAAT'	гт 300
CTT	TAAA'	ΓTΑ	AAGG	АТАА	CC A M	TG C et L 1	TT A eu A	GG T rg S	CT T er L	TA T eu T 5	GG T	CT G er G	GT G ly V	TC A	AT sn 10	350
GGG Gly	ATG Met	CAA Gln	GCC Ala	CAC His 15	CAA Gln	ATC	GCT Ala	TTG Leu	GAT Asp 20	Ile	GAG Glu	AGT Ser	AAC Asn	AAT Asn 25		398
GCG Ala	AAC Asn	GTG Val	AAT Asn 30	ACC Thr	ACT Thr	GGT Gly	TTT Phe	AAG Lys 35	TAT Tyr	TCT Ser	AGG Arg	GCT Ala	TCT Ser 40	Phe	GTG Val	446
GAT Asp	ATG Met	CTT Leu 45	TCT Ser	CAA Gln	GTC Val	AAA Lys	CTC Leu 50	ATC Ile	GCT Ala	ACC Thr	GCA Ala	CCC Pro 55	TAT Tyr	AAA Lys	AAC Asn	494
GGG Gly	TTA Leu 60	GCA Ala	GGG Gly	CAG Gln	AAT Asn	GAT Asp 65	TTT Phe	TCT Ser	GTG Val	GGG Gly	CTT Leu 70	GGG Gly	GTA Val	GGC Gly	GTG Val	542
GAT Asp 75	GCG Ala	ACG Thr	ACT Thr	AAA Lys	ATC Ile 80	TTT Phe	TCA Ser	CAA Gln	GGC Gly	AAT Asn 85	ATC Ile	CAA Gln	AAC Asn	ACA Thr	GAT Asp 90	590
GTC Val	AAA Lys	ACC Thr	GAT Asp	CTA Leu 95	GCG Ala	ATT Ile	CAA Gln	GGC Gly	GAT Asp 100	Gly	TTT Phe	TTT Phe	ATC Ile	ATT Ile 105	AAC Asn	638
CCT Pro	GAT Asp	AGG Arg	GGG Gly 110	ATC Ile	ACG Thr	CGC Arg	AAT Asn	TTC Phe 115	ACT Thr	AGA Arg	GAT Asp	GGG Gly	GAG Glu 120	TTC Phe	CTT Leu	686
TTT Phe	GAC Asp	TCG Ser 125	CAA Gln	GGG Gly	AGT Ser	TTG Leu	GTT Val 130	ACC Thr	ACC Thr	GGC Gly	GGG Gly	CTT Leu 135	GTG Val	GTG Val	CAA Gln	734
GGG Gly	TGG Trp 140	GTG Val	AGA Arg	AAT Asn	GGG Gly	AGC Ser 145	GAT Asp	ACC Thr	GGC Gly	AAT Asn	AAA Lys 150	GGG Gly	AGC Ser	GAT Asp	ACA Thr	782
GAC Asp 155	GCT Ala	TTA Leu	AAA Lys	GTG Val	GAT Asp 160	AAC Asn	ACC Thr	GGT Gly	CCT Pro	TTA Leu 165	GAA Glu	AAC Asn	ATT Ile	AGG Arg	ATT Ile 170	830
GAT Asp	CCT Pro	GGA Gly	ATG Met	GTG Val 175	ATG Met	CCA Pro	GCC Ala	AGA Arg	GCG Ala 180	AGT Ser	AAC Asn	CGC Arg	ATT Ile	TCT Ser 185	ATG Met	878
AGG Arg	GCG Ala	AAT Asn	TTA Leu 190	AAC Asn	GCT Ala	GGA Gly	AGG Arg	CAT His 195	GCC Ala	GAT Asp	CAA Gln	ACA Thr	GCG Ala 200	GCG Ala	ATA Ile	926
TTC Phe	GCT Ala	TTG Leu 205	GAT Asp	TCT Ser	TCA Ser	GCC Ala	AAA Lys 210	ACC Thr	CCT Pro	TCA Ser	GAT Asp	GGC Gly 215	ATT Ile	AAT Asn	CCG Pro	974
GTG Val	TAT Tyr 220	GAT Asp	TCA Ser	GGC Gly	ACG Thr	AAT Asn 225	CTT Leu	GCT Ala	CAA Gln	GTC Val	GCC Ala 230	GAA Glu	GAC Asp	ATG Met	GGA Gly	1022
TCT	TTA	TAC	AAT	GAA	GAT	GGC	GAC	GCT	CTT	TTG	TTG	AAT	GAA	AAT	CAA	1070

Ser 235	Leu	Tyr	Asn	Glu	Asp 240	Gly	Asp	Ala	Leu	Leu 245	Leu	Asn	Glu	Asn	Gln 250	
GGG Gly	ATT Ile	TGG Trp	GTG Val	AGC Ser 255	TAT Tyr	AAG Lys	AGT Ser	CCA Pro	AAA Lys 260	Met	GTC Val	AAA Lys	GAC Asp	ATC Ile 265	CTC Leu	1118
CCT Pro	TCT Ser	GCA Ala	GAA Glu 270	AAC Asn	AGC Ser	ACG Thr	CTT Leu	GAA Glu 275	TTG Leu	AAT Asn	GGC Gly	GTT Val	AAG Lys 280	ATT Ile	TCT Ser	1166
TTC Phe	ACA Thr	AAC Asn 285	GAT Asp	TCA Ser	GCG Ala	GTG Val	AGC Ser 290	CGG Arg	ACT Thr	TCA Ser	AGC Ser	TTA Leu 295	GTG Val	GCG Ala	GCT Ala	1214
AAA Lys	AAT Asn 300	GCG Ala	ATC Ile	AAT Asn	GCA Ala	GTC Val 305	AAA Lys	AGC Ser	CAA Gln	ACA Thr	GGC Gly 310	ATT Ile	GAA Glu	GCT Ala	TAT Tyr	1262
TTA Leu 315	GAC Asp	GGC Gly	AAG Lys	CAA Gln	TTG Leu 320	CGT Arg	TTG Leu	GAA Glu	AAC Asn	ACC Thr 325	AAT Asn	GAA Glu	TTA Leu	GAC Asp	GGC Gly 330	1310
GAT Asp	GAA Glu	AAG Lys	CTT Leu	AAA Lys 335	AAC Asn	ATT Ile	GTA Val	GTT Val	ACT Thr 340	CAA Gln	GCC Ala	GGA Gly	ACC Thr	GGA Gly 345	GCG Ala	1358
TTC Phe	GCT Ala	AAC Asn	TTT Phe 350	TTA Leu	GAC Asp	GGC Gly	GAT Asp	AAA Lys 355	GAT Asp	GTA Val	ACG Thr	GCT Ala	TTC Phe 360	AAA Lys	TAC Tyr	1406
AGC Ser	TAC Tyr	ACG Thr 365	CAT His	TCT Ser	ATT Ile	AGC Ser	CCT Pro 370	AAC Asn	GCC Ala	AAT Asn	AGC Ser	GGG Gly 375	CAG Gln	TTT Phe	AGG Arg	1454
ACC Thr	ACT Thr 380	GAA Glu	GAC Asp	TTG Leu	CGC Arg	GCC Ala 385	TTA Leu	ATC Ile	CAG Gln	CAT His	GAC Asp 390	GCT Ala	AAT Asn	ATC Ile	GTT Val	1502
AAA Lys 395	GAT Asp	CCT Pro	AGC Ser	CTA Leu	GCG Ala 400	GAC Asp	AAT Asn	TAC Tyr	CAA Gln	GAC Asp 405	TCA Ser	GCC Ala	GCT Ala	TCT Ser	ATA Ile 410	1550
GGA Gly	GTT Val	ACA Thr	ATC Ile	AAC Asn 415	CAA Gln	TAC Tyr	GGC Gly	ATG Met	TTT Phe 420	GAA Glu	ATC Ile	AAC Asn	AAT Asn	AAA Lys 425	GAC Asp	1598
AAT Asn	AAA Lys	AAT Asn	GTC Val 430	ATT Ile	AAA Lys	GAA Glu	AAT Asn	CTT Leu 435	AAT Asn	ATC Ile	TTT Phe	GTG Val	AGC Ser 440	GGG Gly	TAT Tyr	1646
TCT Ser	TCA Ser	GAC Asp 445	AGC Ser	GTA Val	ACG Thr	AAC Asn	AAT Asn 450	GTT Val	TTG Leu	TTT Phe	AAA Lys	AAT Asn 455	GCG Ala	ATG Met	AAA Lys	1694
GGG Gly	CTT Leu 460	AAT Asn	ACC Thr	GCT Ala	TCT Ser	TTA Leu 465	ATŤ Ile	GAA Glu	GGG Gly	GGA Gly	GCG Ala 470	TCA Ser	GCG Ala	AGC Ser	AGT Ser	1742
TCT Ser 475	AAA Lys	TTC Phe	ACC Thr	CAC His	GCT Ala 480	ACG Thr	CAT His	GCG Ala	ACA Thr	AGC Ser 485	ATT Ile	GAT Asp	GTG Val	ATA Ile	GAC Asp 490	1790
AGC Ser	TTA Leu	GGC Gly	ACT Thr	AAA Lys 495	CAC His	GCC Ala	ATG Met	CGC Arg	ATT Ile 500	GAG Glu	TTT Phe	TAT Tyr	AGG Arg	AGT Ser 505	GGG Gly	1838

GGA Gly	GCG Ala	GAT Asp	TGG Trp 510	AAT Asn	TTT Phe	AGA Arg	GTG Val	ATC Ile 515	GTG Val	CCT Pro	GAG Glu	CCT Pro	GGG Gly 520	GAA Glu	TTA Leu		1886
GTA Val	GGG Gly	GGG Gly 525	TCA Ser	GCG Ala	GCT Ala	AGG Arg	CCT Pro 530	AAT Asn	GTG Val	TTT Phe	GAA Glu	GGA Gly 535	GGC Gly	CGT Arg	TTG Leu		1934
CAC His	TTC Phe 540	AAT Asn	AAT Asn	GAC Asp	GGA Gly	TCG Ser 545	CTT Leu	GCA Ala	GGC Gly	ATG Met	AAC Asn 550	CCG Pro	CCT Pro	CTT Leu	TTG Leu		1982
CAA Gln 555	TTT Phe	GAC Asp	CCT Pro	AAA Lys	AAT Asn 560	GGT Gly	GCT Ala	GAT Asp	GCC Ala	CCC Pro 565	CAA Gln	CGC Arg	ATC Ile	AAT Asn	TTA Leu 570		2030
GCT Ala	TTT Phe	GGT Gly	TCC Ser	TCA Ser 575	GGG Gly	AGT Ser	TTT Phe	GAC Asp	GGG Gly 580	CTA Leu	ACG Thr	AGC Ser	GTG Val	GAT Asp 585	AAG Lys		2078
ATT Ile	TCT Ser	GAA Glu	ACT Thr 590	TAT Tyr	GCG Ala	ATT Ile	GAG Glu	CAA Gln 595	AAC Asn	GGC Gly	TAT Tyr	CAA Gln	GCG Ala 600	GGC Gly	GAT Asp		2126
TTG Leu	ATG Met	GAT Asp 605	GTC Val	CGC Arg	TTT Phe	GAT Asp	TCA Ser 610	GAT Asp	GGG Gly	GTG Val	CTT Leu	TTA Leu 615	GGA Gly	GCG Ala	TTC Phe		2174
AGT Ser	AAT Asn 620	GGC Gly	AGG Arg	ACT Thr	TTA Leu	GCG Ala 625	CTC Leu	GCT Ala	CAA Gln	GTG Val	GCT Ala 630	TTA Leu	GCG Ala	AAT Asn	TTC Phe		2222
GCT Ala 635	AAC Asn	GAT Asp	GCG Ala	GGC Gly	TTG Leu 640	CAG Gln	GCT Ala	TTA Leu	GGC Gly	GGG Gly 645	AAT Asn	GTC Val	TTT Phe	TCT Ser	CAA Gln 650		2270
ACC Thr	GGA Gly	AAC Asn	TCA Ser	GGG Gly 655	CAA Gln	GCC Ala	TTA Leu	ATC Ile	GGT Gly 660	GCG Ala	GCT Ala	AAT Asn	ACG Thr	GGG Gly 665	CGT Arg		2318
AGG Arg	GGT Gly	TCA Ser	ATT Ile 670	TCA Ser	GGA Gly	TCT Ser	AAA Lys	CTG Leu 675	GAG Glu	TCT Ser	AGT Ser	AAT Asn	GTG Val 680	GAT Asp	TTG Leu		2366
AGC Ser	CGG Arg	AGT Ser 685	TTA Leu	ACG Thr	AAT Asn	TTG Leu	ATT Ile 690	GTG Val	GTT Val	CAA Gln	AGG Arg	GGC Gly 695	TTT Phe	CAA Gln	GCA Ala		2414
AAC Asn	TCT Ser 700	AAA Lys	GCG Ala	GTA Val	ACC Thr	ACA Thr 705	TCC Ser	GAT Asp	CAA Gln	ATC Ile	CTT Leu 710	AAT Asn	ACC Thr	CTA Leu	TTG Leu	•	2462
AAT Asn 715	CTT Leu	AAG Lys	CAA Gln	TAA *	ACTA	AAGG	AT T	ACTO	TAAT	'A CA	rata.	`AATA	GGG	GCTA	ATT		2517
TAAA	GATT	'AA G	GTTI	'AGTA	T GC	ATGA	ATAC	TCG	}								2550

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 719 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

PCT/SE98/01093 WO 98/56816

GGA Gly	GCG Ala	GAT Asp	TGG Trp 510	AAT Asn	TTT Phe	AGA Arg	GTG Val	ATC Ile 515	GTG Val	CCT Pro	GAG Glu	CCT Pro	GGG Gly 520	GAA Glu	TTA Leu	1886
GTA Val	GGG Gly	GGG Gly 525	TCA Ser	GCG Ala	GCT Ala	AGG Arg	CCT Pro 530	AAT Asn	GTG Val	TTT Phe	GAA Glu	GGA Gly 535	GGC Gly	CGT Arg	TTG Leu	1934
CAC His	TTC Phe 540	AAT Asn	AAT Asn	GAC Asp	GGA Gly	TCG Ser 545	CTT Leu	GCA Ala	GGC Gly	ATG Met	AAC Asn 550	CCG Pro	CCT Pro	CTT Leu	TTG Leu	1982
CAA Gln 555	TTT Phe	GAC Asp	CCT Pro	AAA Lys	AAT Asn 560	GGT Gly	GCT Ala	GAT Asp	GCC Ala	CCC Pro 565	CAA Gln	CGC Arg	ATC Ile	AAT Asn	TTA Leu 570	2030
GCT Ala	TTT Phe	GGT Gly	TCC Ser	TCA Ser 575	GGG Gly	AGT Ser	TTT Phe	GAC Asp	GGG Gly 580	CTA Leu	ACG Thr	AGC Ser	GTG Val	GAT Asp 585	AAG Lys	2078
ATT Ile	TCT Ser	GAA Glu	ACT Thr 590	TAT Tyr	GCG Ala	ATT Ile	GAG Glu	CAA Gln 595	AAC Asn	GGC Gly	TAT Tyr	CAA Gln	GCG Ala 600	GGC Gly	GAT Asp	2126
TTG Leu	ATG Met	GAT Asp 605	GTC Val	CGC Arg	TTT Phe	GAT Asp	TCA Ser 610	GAT Asp	GGG Gly	GTG Val	CTT Leu	TTA Leu 615	GGA Gly	GCG Ala	TTC Phe	2174
AGT Ser	AAT Asn 620	GGC Gly	AGG Arg	ACT Thr	TTA Leu	GCG Ala 625	CTC Leu	GCT Ala	CAA Gln	GTG Val	GCT Ala 630	TTA Leu	GCG Ala	AAT Asn	TTC Phe	2222
GCT Ala 635	AAC Asn	GAT Asp	GCG Ala	GGC Gly	TTG Leu 640	CAG Gln	GCT Ala	TTA Leu	GGC Gly	GGG Gly 645	AAT Asn	GTC Val	TTT Phe	TCT Ser	CAA Gln 650	2270
ACC Thr	GGA Gly	AAC Asn	TCA Ser	GGG Gly 655	CAA Gln	GCC Ala	TTA Leu	ATC Ile	GGT Gly 660	GCG Ala	GCT Ala	AAT Asn	ACG Thr	GGG Gly 665	CGT Arg	2318
AGG Arg	GGT Gly	TCA Ser	ATT Ile 670	TCA Ser	GGA Gly	TCT Ser	AAA Lys	CTG Leu 675	GAG Glu	TCT Ser	AGT Ser	AAT Asn	GTG Val 680	GAT Asp	TTG Leu	2366
AGC Ser	CGG Arg	AGT Ser 685	TTA Leu	ACG Thr	AAT Asn	TTG Leu	ATT Ile 690	GTG Val	GTT Val	CAA Gln	AGG Arg	GGC Gly 695	TTT Phe	CAA Gln	GCA Ala	2414
AAC Asn	TCT Ser 700	AAA Lys	GCG Ala	GTA Val	ACC Thr	ACA Thr 705	TCC Ser	GAT Asp	CAA Gln	ATC Ile	CTT Leu 710	AAT Asn	ACC Thr	CTA Leu	TTG Leu	2462
AAT Asn 715	CTT Leu	AAG Lys	CAA Gln	TAA *	ACT	AAAG	GAT 1	PACTO	CTAAT	ra ca	ATA:	TAAT	A GGC	GCT	AATT	2517
TAA	AGAT'	raa (GTT.	PAGT	AT G	CATG	ATA	TC	3							2550

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 719 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Leu Arg Ser Leu Trp Ser Gly Val Asn Gly Met Gln Ala His Gln 1 5 10 15

Ile Ala Leu Asp Ile Glu Ser Asn Asn Ile Ala Asn Val Asn Thr Thr 20 25 30

Gly Phe Lys Tyr Ser Arg Ala Ser Phe Val Asp Met Leu Ser Gln Val 35 40 45

Lys Leu Ile Ala Thr Ala Pro Tyr Lys Asn Gly Leu Ala Gly Gln Asn 50 55 60

Asp Phe Ser Val Gly Leu Gly Val Gly Val Asp Ala Thr Thr Lys Ile 65 70 75 80

Phe Ser Gln Gly Asn Ile Gln Asn Thr Asp Val Lys Thr Asp Leu Ala 85 90 95

Ile Gln Gly Asp Gly Phe Phe Ile Ile Asn Pro Asp Arg Gly Ile Thr 100 105 110

Arg Asn Phe Thr Arg Asp Gly Glu Phe Leu Phe Asp Ser Gln Gly Ser 115 120 125

Leu Val Thr Thr Gly Gly Leu Val Val Gln Gly Trp Val Arg Asn Gly 130 140

Ser Asp Thr Gly Asn Lys Gly Ser Asp Thr Asp Ala Leu Lys Val Asp 145 155 160

Asn Thr Gly Pro Leu Glu Asn Ile Arg Ile Asp Pro Gly Met Val Met 165 170 175

Pro Ala Arg Ala Ser Asn Arg Ile Ser Met Arg Ala Asn Leu Asn Ala 180 185 190

Gly Arg His Ala Asp Gln Thr Ala Ala Ile Phe Ala Leu Asp Ser Ser 195 200 205

Ala Lys Thr Pro Ser Asp Gly Ile Asn Pro Val Tyr Asp Ser Gly Thr 210 215 220

Asn Leu Ala Gln Val Ala Glu Asp Met Gly Ser Leu Tyr Asn Glu Asp 225 230 230 240

Gly Asp Ala Leu Leu Leu Asn Glu Asn Gln Gly Ile Trp Val Ser Tyr 245 250 255

Lys Ser Pro Lys Met Val Lys Asp Ile Leu Pro Ser Ala Glu Asn Ser 260 265 270

Thr Leu Glu Leu Asn Gly Val Lys Ile Ser Phe Thr Asn Asp Ser Ala 275 280 285

Val Ser Arg Thr Ser Ser Leu Val Ala Ala Lys Asn Ala Ile Asn Ala 290 295 300

Val Lys Ser Gln Thr Gly Ile Glu Ala Tyr Leu Asp Gly Lys Gln Leu 305 310 315 320

Arg Leu Glu Asn Thr Asn Glu Leu Asp Gly Asp Glu Lys Leu Lys Asn

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Leu Arg Ser Leu Trp Ser Gly Val Asn Gly Met Gln Ala His Gln
1 10 15 Ile Ala Leu Asp Ile Glu Ser Asn Asn Ile Ala Asn Val Asn Thr Thr 20 25 30Gly Phe Lys Tyr Ser Arg Ala Ser Phe Val Asp Met Leu Ser Gln Val 35 40 45Lys Leu Ile Ala Thr Ala Pro Tyr Lys Asn Gly Leu Ala Gly Gln Asn 50 55 60 Asp Phe Ser Val Gly Leu Gly Val Gly Val Asp Ala Thr Thr Lys Ile 65 70 75 80 Phe Ser Gln Gly Asn Ile Gln Asn Thr Asp Val Lys Thr Asp Leu Ala 85 90 95 Ile Gln Gly Asp Gly Phe Phe Ile Ile Asn Pro Asp Arg Gly Ile Thr 100 105 110Arg Asn Phe Thr Arg Asp Gly Glu Phe Leu Phe Asp Ser Gln Gly Ser 115 120 125 Leu Val Thr Thr Gly Gly Leu Val Val Gln Gly Trp Val Arg Asn Gly 130 135 140 Ser Asp Thr Gly Asn Lys Gly Ser Asp Thr Asp Ala Leu Lys Val Asp 145 155 160 Asn Thr Gly Pro Leu Glu Asn Ile Arg Ile Asp Pro Gly Met Val Met 165 170 175 Pro Ala Arg Ala Ser Asn Arg Ile Ser Met Arg Ala Asn Leu Asn Ala 180 185 190 Gly Arg His Ala Asp Gln Thr Ala Ala Ile Phe Ala Leu Asp Ser Ser 195 200 205 Ala Lys Thr Pro Ser Asp Gly Ile Asn Pro Val Tyr Asp Ser Gly Thr 210 215 220 Asn Leu Ala Gln Val Ala Glu Asp Met Gly Ser Leu Tyr Asn Glu Asp 225 230 235 240 Gly Asp Ala Leu Leu Leu Asn Glu Asn Gln Gly Ile Trp Val Ser Tyr Lys Ser Pro Lys Met Val Lys Asp Ile Leu Pro Ser Ala Glu Asn Ser 260 265 270 Thr Leu Glu Leu Asn Gly Val Lys Ile Ser Phe Thr Asn Asp Ser Ala 275 280 285 Val Ser Arg Thr Ser Ser Leu Val Ala Ala Lys Asn Ala Ile Asn Ala 290 295 300 Val Lys Ser Gln Thr Gly Ile Glu Ala Tyr Leu Asp Gly Lys Gln Leu 305 310 315 320

Arg Leu Glu Asn Thr Asn Glu Leu Asp Gly Asp Glu Lys Leu Lys Asn

				325					330					335	
Ile	Val	Val	Thr 340	Gln	Ala	Gly	Thr	Gly 345	Ala	Phe	Ala	Asn	Phe 350	Leu	As
Gly	Asp	Lys 355	Asp	Val	Thr	Ala	Phe 360	Lys	Tyr	Ser	Tyr	Thr 365	His	Ser	11
Ser	Pro 370	Asn	Ala	Asn	Ser	Gly 375	Gln	Phe	Arg	Thr	Thr 380	Glu	Asp	Leu	Ar
Ala 385	Leu	Ile	Gln	His	Asp 390	Ala	Asn	Ile	Val	Lys 395	Asp	Pro	Ser	Leu	A1:
Asp	Asn	Tyr	Gln	Asp 405	Ser	Ala	Ala	Ser	Ile 410	Gly	Val	Thr	Ile	Asn 415	Gl
Tyr	Gly	Met	Phe 420	Glu	Ile	Asn	Asn	Lys 425	Asp	Asn	Lys	Asn	Val 430	Ile	Ly
Glu	Asn	Leu 435	Asn	Ile	Phe	Val	Ser 440	Gly	Tyr	Ser	Ser	Asp 445	Ser	Val	Th
Asn	Asn 450	Val	Leu	Phe	Lys	Asn 455	Ala	Met	Lys	Gly	Leu 460	Asn	Thr	Ala	Se
Leu 465	Ile	Glu	Gly	Gly	Ala 470	Ser	Ala	Ser	Ser	Ser 475	Lys	Phe	Thr	His	Ala 480
Thr	His	Ala	Thr	Ser 485	Ile	Asp	Val	Ile	Asp 490	Ser	Leu	Gly	Thr	Lys 495	His
Ala	Met	Arg	Ile 500	Glu	Phe	Tyr	Arg	Ser 505	Gly	Gly	Ala	Asp	Trp 510	Asn	Phe
Arg	Val	Ile 515	Val	Pro	Glu	Pro	Gly 520	Glu	Leu	Val	Gly	Gly 525	Ser	Ala	Ala
Arg	Pro 530	Asn	Val	Phe	Glu	Gly 535	Gly	Arg	Leu	His	Phe 540	Asn	Asn	Asp	Gly
Ser 545	Leu	Ala	Gly	Met	Asn 550	Pro	Pro	Leu	Leu	Gln 555	Phe	Asp	Pro	Lys	Asr 560
Gly	Ala	Asp	Ala	Pro 565	Gln	Arg	Ile	Asn	Leu 570	Ala	Phe	Gly	Ser	Ser 575	Gly
Ser	Phe	Asp	Gly 580	Leu	Thr	Ser	Val	Asp 585	Lys	Ile	Ser	Glu	Thr 590	Tyr	Ala
Ile	Glu	Gln 595	Asn	Gly	Туг	Gln	Ala 600	Gly	Asp	Leu	Met	As p 605	Val	Arg	Phe
Asp	Ser 610	Asp	Gly	Val	Leu	Leu 615	Gly	Ala	Phe	Ser	Asn 620	Gly	Arg	Thr	Leu
Ala 625	Leu	Ala	Gln	Val	Ala 630	Leu	Ala	Asn	Phe	Ala 635	Asn	Asp	Ala	Gly	Leu 640
Gln	Ala	Leu	Gly	Gly 645	Asn	Val	Phe	Ser	Gln 650	Thr	Gly	Asn	Ser	Gly 655	Gln
Ala	Leu	Ile	Gly 660	Ala	Ala	Asn	Thr	Gly 665	Arg	Arg	Gly	Ser	Ile 670	Ser	Gly
Ser	Lys	Leu	Glu	Ser	Ser	Asn	Val	Asp	Leu	Ser	Arg	Ser	Leu	Thr	Asr

WO 98/56816

PCT/SE98/01093

26

680

Leu Ile Val Val Gln Arg Gly Phe Gln Ala Asn Ser Lys Ala Val Thr 690 695 700

Thr Ser Asp Gln Ile Leu Asn Thr Leu Leu Asn Leu Lys Gln * 710

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

TATACCATGG TGCTTAGGTC TTTAT

25

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 25 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

GCGAATTCAA TTGCTTAAGA TTCAA

CLAIMS

5

10

15

- 1. A *Helicobacter pylori* FlgE polypeptide, or a modified form thereof retaining functionally equivalent antigenicity, for use in inducing a protective immune response to *Helicobacter pylori* infection.
- 2. A *Helicobacter pylori* FlgE polypeptide according to claim 1 which has substantially the amino acid sequence shown in SEQ ID NO: 2 in the Sequence Listing, for use in inducing a protective immune response to *Helicobacter pylori* infection.
- 3. A vaccine composition for inducing a protective immune response to Helicobacter pylori infection, comprising an immunogenically effective amount of a Helicobacter pylori FlgE polypeptide as defined in claim 1 or 2, optionally together with a pharmaceutically acceptable carrier or diluent.
- 4. A vaccine composition according to claim 3 in addition comprising an adjuvant.
- 5. A vaccine composition according to claim 4 wherein the adjuvant is a pharmaceutically acceptable form of cholera toxin.
 - 6. A vaccine composition according to any one of claims 3 to 5 for use as a therapeutic vaccine in a mammal, including man, which is infected by *Helicobacter pylori*.

- 7. A vaccine composition according to any one of claims 3 to 5 for use as a prophylactic vaccine to protect a mammal, including man, from infection by *Helicobacter pylori*.
- 8. Use of a Helicobacter pylori FlgE polypeptide as defined in claim 1 or 2 in the manufacture of a composition for the treatment, prophylaxis or diagnosis of Helicobacter pylori infection.
- 9. Use of a *Helicobacter pylori* FlgE polypeptide as defined in claim 1 or 2 in the manufacture of a vaccine for use in eliciting a protective immune response against *Helicobacter pylori*.
 - 10. Use of a *Helicobacter pylori* FlgE polypeptide as defined in claim 1 or 2 in the manufacture of a diagnostic kit for diagnosis of *Helicobacter pylori* infection.
 - 11. A method of *in vitro* diagnosis of *Helicobacter pylori* infection comprising at least one step wherein a *Helicobacter pylori* FlgE polypeptide as defined in claim 1 or 2, optionally labelled or coupled to a solid support, is used.
- 20 12. A method according to claim 11 comprising the steps
 - (a) contacting a said *Helicobacter pylori* FlgE polypeptide, optionally bound to a solid support, with a body fluid taken from a mammal; and
 - (b) detecting antibodies from the said body fluid binding to the said FlgE polypeptide.
 - 13. A diagnostic kit for the detection of *Helicobacter pylori* infection in a mammal, including man, comprising components which enable the method according to claim 11 or 12 to be carried out.

WO 98/56816

- 14. A diagnostic kit according to claim 13, comprising:
 - (a) a Helicobacter pylori FlgE polypeptide; and

5

10

15

(b) reagents for detecting antibodies binding to the said FlgE polypeptide.

29

PCT/SE98/01093

- 15. A method of eliciting in a mammal a protective immune response against Helicobacter pylori infection, said method comprising the step of administering to the said mammal an immunologically effective amount of a Helicobacter pylori FlgE polypeptide as defined in claim 1 or 2.
- 16. A method of eliciting in a mammal a protective immune response against Helicobacter pylori infection, said method comprising the step of administering to the said mammal an immunologically effective amount of a vaccine composition according to any one of claims 3 to 7.
- 17. A method according to claim 15 or 16 wherein the said mammal is a human.

Fig.1

PCT/SE98/01093

Fig.2