A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 5EI	Bookmark	Show all steps: ON
-------------------------	----------	--------------------

Problem

Conclude (using the FHT) that $(G/H)K/H) \cong G/K$.

Step-by-step solution

Step 1 of 4

Suppose that G is any group and let H, K are normal subgroups of G with $H \subseteq K$.

Consider a well-defined mapping $\phi: G/H \to G/K$ defined by

$$\phi(Ha) = Ka$$
, for all $a \in G$.

Objective is to prove that $(G/H)/(K/H) \cong G/K$, by using fundamental homomorphism theorem.

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of G onto H, with kernel K then

$$H \cong G/K$$

Comment

Step 2 of 4

First show that ϕ is an onto homomorphism mapping.

Assume that Ha, $Hb \in G/H$, for some $a, b \in G$. Then use the definition of mapping in the following manner:

$$\phi(Ha \cdot Hb) = \phi(Hab)$$

$$= Kab$$

$$= (Ka) \cdot (Kb)$$

$$= \phi(Ha) \cdot \phi(Hb).$$

Assume that $Kx \in G/K$, for some $x \in G$. An element x is the member of G because of the

coset of G/K. So from there it implies that $Hx \in G/H$ such that $\phi(Hx) = Kx$ Thus, ϕ is an onto. Comment **Step 3** of 4 Let $Ha \in G/H$, for some $a \in G$. If $Ha \in Ker \phi$ then by the define function, $\phi(Ha) = K$ Ka = K. It implies that $a \in K$ and correspondingly $Ha \in K/H$. Thus, $\ker \phi \subseteq K/H$ Now let $Ha \in K/H$. Then $a \in K$ and Ka = K $\phi(Ha) = K$ So, $K/H \subseteq \ker \phi$ On combining both the equations of containment, $\ker \phi = K/H$ Comment **Step 4** of 4 Since $\phi: G/H \to G/K$ is onto homomorphism with $\ker \phi = K/H$, therefore by fundamental homomorphism theorem it conclude that $(G/H)/(K/H) \cong G/K$ Comment