ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет программной инженерии и компьютерной техники Дисциплина «Информационная безопасность»

Лабораторная работа №2.3 «Атака на алгоритм шифрования RSA методом бесключевого чтения»

Вариант: 4

Учебно-методическое пособие: Криптографические системы с секретным и открытым ключом: учебное пособие. / А.А. Ожиганов; УНИВЕРСИТЕТ ИТМО. — Санкт-Петербург, 2015

Автор: Калинин Даниил Дмитриевич

Группа: Р34141

Преподаватель: Маркина Татьяна Анатольевна

г. Санкт-Петербург 2024

Содержание

Содержание	2
Цель работы	2
Порядок выполнения работы	2
Вариант	3
Выполнение работы	4
Код	4
Результаты работы программы	6
Вывод	7

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения.

Порядок выполнения работы

- Ознакомьтесь с теорией в [3], в подразделе («Бесключевое чтение»);
- Получите вариант задания у преподавателя;
- По полученным данным определите значения r и s при условии, чтобы $e_1r + e_2s = 1$. Для этого необходимо использовать расширенный алгоритм Евклида;
- Используя полученные выше значения r и s, запишите исходный текст;
- Результаты и промежуточные вычисления значений для любых трех блоков шифрованного текста оформите в виде отчета.

Вариант

Вариант	Модуль, <i>N</i>	Экспоненты		Блок зашифрованного текста	
		e1	e2	C1	C2
4	535598392051	455341	396971	444982997352 277831853272 133187882628 331361392426 273206302188 470299046774 168157171491 258737286129 312335302650 489235057221 427689116872 418723605534 135022585485	358696089912 360292494113 91390259562 534590606880 193203217609 166702058071 68207231399 487524624411 325841328769 533726724224 369967614519 247201359991 478832067683

Выполнение работы

Код

```
def extended euclidean algorithm(e1, e2):
   if e2 == 0:
       print(f'Pacш. алг. Евклида (e1 = \{e1\}, e2 = \{e2\}) --> r = \{1\}, s = \{0\}')
       return 1, 0
   else:
       print(f'Pacш. алг. Евклида (e1 = {e1}, e2 = {e2})')
       r, s = \text{extended euclidean algorithm}(e2, e1 % e2)
       print(f'Pacш. алг. Евклида (e1 = \{e1\}, e2 = \{e2\}) --> r = \{s\}, s = \{r - s * (e1)\}
// e2)}')
       return s, r - s * (e1 // e2)
def decode(N, C1, C2, r, s):
   """Декодирует полученные сообщение в текст"""
  print("-- Дешифрование сообщения --")
   # Раздаляем закодированное сообщение на части и подготавливаем их
   raw parts C1 = C1.split("\n")
   parts_C1 = []
   for i in range(len(raw parts C1)):
       if raw_parts_C1[i].strip() != "":
           parts_C1.append(int(raw_parts_C1[i].strip()))
   raw_parts_C2 = C2.split("\n")
   parts C2 = []
   for i in range(len(raw parts C2)):
       if raw_parts_C2[i].strip() != "":
           parts C2.append(int(raw parts C2[i].strip()))
   if (len(parts C1) != len(parts C2)):
       print("Дешифрование прервано - Ввод С1 и С2 с разным количеством частей")
       exit(1)
   # Декодируем каждую часть
   original message = ""
   for i in range(len(parts_C1)):
       y1 = parts C1[i]
       y2 = parts_C2[i]
       int_decoded_part = pow(y1, r, N)*pow(y2, s, N) % N
       decoded_part = int_decoded_part.to_bytes(4, byteorder='big').decode('cp1251')
       original message += decoded part
       print(f'Декодирована часть C1 = \{y1\} и C2 = \{y2\} ----> \{int decoded part\} ----
-> {decoded part}')
   return original message
if name == ' main ':
   # Описание варианта
```

```
N = 535598392051
e1 = 455341
e2 = 396971
C1 = """
    444982997352
    277831853272
    133187882628
    331361392426
    273206302188
    470299046774
    168157171491
    258737286129
    312335302650
    489235057221
   427689116872
    418723605534
    135022585485
C2 = """
    358696089912
    360292494113
    91390259562
    534590606880
   193203217609
    166702058071
    68207231399
    487524624411
    325841328769
    533726724224
    369967614519
    247201359991
    478832067683
    11 11 11
print("-- Исходные данные --")
print(f'N = {N}')
print(f'e1 = {e1}')
print(f'e2 = {e2}')
print(f'C1 = \"{C1}\"')
print(f'C2 = \"\{C2\}\"')
print()
# Решаем уравнение r*e1 + s*e2 = 1
print("-- Расширенный алгоритм Евклида --")
r, s = extended_euclidean_algorithm(e1, e2)
print(f'r = \{r\}')
print(f's = {s}')
print(f'r*e1 + s*e2 = {r}*{e1} + {s}*{e2} = {r*e1 + s*e2}')
print()
# Декодируем сообщение
original message = decode(N, C1, C2, r, s)
print(f'\nOpигинальное сообщение - \"{original_message}\"')
```

Результаты работы программы

```
1 C:\Python310\python.exe "D:\Учеба\4 курс\7 семестр\(ИБ) Информационная безопасность\
   information-security-labs\lab_2_3\lab_2.3.py"
 2 -- Исходные данные --
 3 N = 535598392051
 4 e1 = 455341
5 e2 = 396971
 6 C1 = "
          444982997352
 8
          277831853272
 9
          133187882628
10
          331361392426
          273206302188
11
          470299846774
12
13
          168157171491
14
          258737286129
          312335302650
16
          489235057221
          427689116872
17
18
          418723685534
19
          135022585485
20
21 C2 = "
          358696089912
22
23
          360292494113
24
          91390259562
25
          534590606880
          193203217609
27
          166702058071
28
          68207231399
          487524624411
29
30
          325841328769
31
          533726724224
          369967614519
32
33
          247201359991
          478832067683
34
35
37 -- Расширенный алгоритм Евклида --
38 Расш. алг. Евклида (e1 = 455341, e2 = 396971)
39 Расш. алг. Евклида (e1 = 396971, e2 = 58378)
40 Расш. алг. Евклида (e1 = 58370, e2 = 46751)
41 Расш. алг. Евклида (el = 46751, e2 = 11619)
42 Расш. алг. Евклида (el = 11619, e2 = 275)
43 Расш. алг. Евклида (e1 = 275, e2 = 69)
44 Расш. алг. Евклида (e1 = 69, e2 = 68)
45 Pacw. алг. Евклида (e1 = 68, e2 = 1)
46 Расш. алг. Евклида (e1 = 1, e2 = 0) --> r = 1, s = 0
47 Расш. алг. Евклида (e1 = 68, e2 = 1) --> r = 0, s = 1
48 Расш. алг. Евклида (e1 = 69, e2 = 68) --> r = 1, s = -1
49 Расш. алг. Евклида (e1 = 275, e2 = 69) --> r = -1, s = 4
50 Расш. алг. Евклида (e1 = 11619, e2 = 275) --> r = 4, s = -169
51 Расш. алг. Евклида (e1 = 46751, e2 = 11619) --> r = -169, s = 680
52 Расш. алг. Евклида (el = 58370, e2 = 46751) --> r = 680, s = -849
53 Расш. алг. Евклида (e1 = 396971, e2 = 58370) --> r = -849, s = 5774
54 Расш. алг. Евклида (el = 455341, e2 = 396971) --> r = 5774, s = -6623
56 s = -6623
57 r*e1 + s*e2 = 5774*455341 + -6623*396971 = 1
59 -- Дешифрование сообщения --
60 Декодирована часть С1 = 444982997352 и С2 = 358696089912 ----> 4059228192 ----> сти
61 Декодирована часть C1 = 277831853272 и C2 = 360292494113 ----> 3789613554 ----> байт
62 Декодирована часть С1 = 133187882628 и С2 = 91390259562 ----> 4007799840 ----> ов,
63 Декодирована часть C1 = 331361392426 и C2 = 534590606880 ----> 3760254437 ----> а не
64 Декодирована часть C1 = 273206302188 и C2 = 193203217609 ----> 552728549 ----> сче
65 Декодирована часть C1 = 470299846774 и C2 = 166702058071 ----> 4076333290 ----> тчик
66 Декодирована часть С1 = 168157171491 и С2 = 68207231399 ----> 4079022048 ----> у па
67 Декодирована часть C1 = 258737286129 и C2 = 487524624411 ----> 3940938478 ----> кето
68 Декодирована часть С1 = 312335302650 и С2 = 325841328769 ----> 3794673873 ----> в. С
69 Декодирована часть C1 = 489235057221 и C2 = 533726724224 ----> 3957712110 ----> ледо
```

```
70 Декодирована часть C1 = 427689116872 и C2 = 369967614519 ----> 3806393061 ----> вате 71 Декодирована часть C1 = 418723605534 и C2 = 247201359991 ----> 3959221742 ----> льно 72 Декодирована часть C1 = 135022585485 и C2 = 478832067683 ----> 740302880 ----> , 73  
74 Оригинальное сообщение - "сти байтов, а не счетчику пакетов. Следовательно, " 75 76 Process finished with exit code 0
```

Вывод

В ходе лабораторной работы была совершена атака на алгоритм шифрования RSA методом бесключевого чтения, в следствии чего было декодировано исходное сообщение. В процессе выполнения была изучена атака на алгоритм шифрования RSA посредством метода бесключевого чтения, а также был изучен расширенный алгоритм Евклида.