

Analysis

Suci Rahma Nura

Suci Rahma Nura

- Data Science Project Based Intern IDX Partners X Rakamin
- Data Science Intern 360DigiTMG
- Credit Analyst PT. BFI Finance Indonesia, Tbk
- Bachelor's degree in Mathematics Andalas University

Table of contents

0

Flowchart Modelling

01

Background and Objective

02

Data Understanding

03

Exploratory Data Analysis

04

Data Pre Processing 05

Modelling and Analysis 06

Analysis and Recommendations

0. Flowchart Modelling

Step 2

Step 1

Data Understanding

 Missing and duplicate values check

Exploratory Data Analysis

- Statistical Summary
- Univariate, Bivariate and Multivariate Analysis

Step 3

Data Preprocessing

- Missing Value and Outliers Handling
- Selection columns for RFM Modelling
- Feature Scalling

Modeling and Evaluation

Step 4

- Elbow Method
- ClusteringVisualization

Step 5

Analysis and Recommendations

- Insight
- Recommendations

01

Background and Objective

Passengers

Passengers are crucial to airlines because they are the **primary source of revenue**, and their satisfaction drives loyalty and repeat business.

Airlines must **prioritize** passenger satisfaction, service quality, and reputation in a competitive industry. Clustering passengers based on their characteristics helps **improve** personalized services, pricing strategies, and operational efficiency.

Objective

For grouping segment customers based on their criteria so that the company can take appropriate actions for each passenger group, **ultimately benefiting** the company.

Cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 62988 entries, 0 to 62987
Data columns (total 23 columns):

Data	COLUMNS (COCAL 23	corumns):				
#	Column	Non-Null Count	Dtype			
0	MEMBER_NO	62988 non-null	int64			
1	FFP_DATE	62988 non-null	object			
2	FIRST_FLIGHT_DATE	62988 non-null	object			
3	GENDER	62985 non-null	object			
4	FFP_TIER	62988 non-null	int64			
5	WORK_CITY	60719 non-null	object			
6	WORK_PROVINCE	59740 non-null	object			
7	WORK_COUNTRY	62962 non-null	object			
8	AGE	62568 non-null	float64			
9	LOAD_TIME	62988 non-null	object			
10	FLIGHT_COUNT	62988 non-null	int64			
11	BP_SUM	62988 non-null	int64			
12	SUM_YR_1	62437 non-null	float64			
13	SUM_YR_2	62850 non-null	float64			
14	SEG_KM_SUM	62988 non-null	int64			
15	LAST_FLIGHT_DATE	62988 non-null	object			
16	LAST_TO_END	62988 non-null	int64			
17	AVG_INTERVAL	62988 non-null	float64			
18	MAX_INTERVAL	62988 non-null	int64			
19	EXCHANGE_COUNT	62988 non-null	int64			
20	avg_discount	62988 non-null	float64			
21	Points_Sum	62988 non-null	int64			
22	Point_NotFlight	62988 non-null	int64			
dtypes: float64(5), int64(10), object(8)						
memory usage: 11.1+ MB						

Dataset

m mmmm /mmm (

 The dataset was sourced from

ww.Kaggle.com.

Have 62.988 rows and 23 column

Missing Value Checking

```
In []: data_null = df.isnull().sum().reset_index()
    data_null.columns = ['feature','missing_value']
    data_null['percentage'] = round((data_null['missing_value']/len(df))*100,2)
    data_null = data_null.sort_values('percentage', ascending=False).reset_index(drop=True)
    data_null = data_null[data_null['percentage']>0]
    data_null
```

Out[48]:

	feature	missing_value	percentage
0	WORK_PROVINCE	3248	5.16
1	WORK_CITY	2269	3.60
2	SUM_YR_1	551	0.87
3	AGE	420	0.67
4	SUM_YR_2	138	0.22
5	WORK_COUNTRY	26	0.04

We will identify the chategory of missing value

Duplicate Data

```
In [ ]: df.duplicated().sum()
Out[50]: 0
```

Tidak terdapat duplicate data

Dataset

- There are some missing values.
 And they will be handled in the next step.
- There is no duplicate values

O3 Exploratory Data Analysis

Distribution by Gender

Based on gender, **most** customers are male.

Distribution by Age

The average age of customers is around 41 years old

Distribution by Countrty

In the top 5 countries that use airlines services, CN is the number 1 airlines user followed by HK and JP

04 Data Pre Processing

Missing Value and Outliers Handling

Missing Values

"The dataset contains more than 5% missing values. We will address the missing data based on the type of missing data, either by using the mode or by filling in with 'other'."

Outliers

Handling Outlier using IQR (Inter-Quartile Range): $IQR = Q_3 - Q_1$

Q₃: Quantile 75th Q₁: Quantile 25th

Feature Scalling : Standar Scalling

Standard Scaling

```
# because it is unsupervised so there is no need to split the data.

from sklearn.preprocessing import StandardScaler

df_std = df_handling.copy()
scale = StandardScaler()
kolom_all = [x for x in ['LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM']]
for kolom in kolom_all:
    df_std[kolom] = scale.fit_transform(np.array(df_std[kolom]).reshape(-1,1))
df_std.describe()
```

	MEMBER_NO	LAST_TO_END	FLIGHT_COUNT	SEG_KM_SUM
count	54366.000000	5.436600e+04	5.436600e+04	5.436600e+04
mean	31502.348821	-2.509366e-17	3.345822e-17	-5.018732e-17
std	18176.328744	1.000009e+00	1.000009e+00	1.000009e+00
min	1.000000	-1.042134e+00	-9.658866e-01	-1.213653e+00
25%	15827.250000	-8.244570e-01	-8.241034e-01	-7.766996e-01
50%	31527.000000	-3.331287e-01	-3.987538e-01	-3.201364e-01
75%	47247.750000	5.500183e-01	4.519454e-01	5.165826e-01
max	62988.000000	2.739228e+00	3.429393e+00	3.397366e+00

Variables with different scales (check in range minimum values to maximum values each columns) can heavily impact certain machine learning algorithms. Rescaling variables to have similar scales helps avoid bias in the model.

What is RFM?

Recency

How **recent** or current a passenger's interaction or transaction with the airline is.

Frequency

How **often** passengers travel with the airline within a specific time frame.

Monetary

The flight **distance** traveled by passengers.

05

Modeling and Analysis

Elbow Method : to find the cluster

According to the graph, the best K value for **K-Means Clustering** is K = 3.

Visualization of the three clusters.

The results is best because of the **boundaries** can be **distinguished**

Visualization of the three clusters.

From the data displayed the **most** clusters are at cluster **0** followed by cluster 2, and then 1

Visualization Clustering Recency & Monetary Value

3 clusters

0 : New customer with **low** flight distance

1 : New customer with **high** flight distance

2 : Old customer with **low** flight distance

Visualization Clustering Recency & Frequency

3 clusters

0 and **2**: New customer with **low** flight count tends to **high** flight distance

1: New customer with **high** flight count and flight distance

Cluster 1

high value customers

Profiling

- Lowest level flight recency (most recent)
- Highest level of flight frequency
- Highest level of airline mileage
- Longest membership duration
- Lowest number of cluster members

Cluster 0

middle value customer

Profiling

- Mid-level flight recency
- Lowest to middle airline mileage
- Membership duration between cluster 1 and cluster 2
- Highest number of cluster members

Cluster 2

low value customer

Profiling

- Highest level flight recency (longest)
- Lowest rate flight frequency
- Lowest level of airline mileage
- In the average discount level, it shows the lower level flight class
- Most recent membership duration
- Middle number of cluster members

Recommendations

Cluster 1

high value customers

They are the most ideal type of customer, they contribute the most to the airline. They are also loyal. Airline needs to provide special management for these customers and improve their satisfaction, such as give a free trials services in term of some condition.

Cluster 0

middle value customer

As a potential customer, airline can encourage these customers to increase transactions. We have to give more offers such as **cashback or point** that make the customer have a feeling or a rush to use the offers again in the airlines.

Cluster 2

low value customer

Airline needs to increase interaction with these customers and needs to take certain marketing strategies to extend this customer cycle. Give a promotion that such as discount or holiday voucher to get the customers back to use Airlines.

Thank You!

Feel Free to Contact me!

sucirahma.srn@gmail.com

https://github.com/eseren

in https://www.linkedin.com/in/sucisrn/

Credits: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by Freepik

Please keep this slide for attribution

