

加窗傅立叶变换

刘海霞

数学与统计学院

2021年9月28日

一些定义

定义 (希尔伯特空间)

我们将带有内积的向量空间称为希尔伯特空间。例如,

$$\mathbb{R}^n = (x_1, x_2, \cdots, x_n) : x_j \in \mathbb{R}, \mathbb{C}^n = (x_1, x_2, \cdots, x_n) : x_j \in \mathbb{C}.$$

令 $x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n), 则 x 和 y 内积为$

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}.$$

一些定义

定义 (希尔伯特空间)

我们将带有内积的向量空间称为希尔伯特空间。例如,

$$\mathbb{R}^n = (x_1, x_2, \cdots, x_n) : x_j \in \mathbb{R}, \mathbb{C}^n = (x_1, x_2, \cdots, x_n) : x_j \in \mathbb{C}.$$

令
$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n), 则 x 和 y 内积为$$

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}.$$

定义 (L^2 空间)

$$L^{2}[a,b] = \{f(t) : \int_{a}^{b} |f(t)|^{2} dt < +\infty\},$$

其中内积定义为 $\langle f(t),g(t)\rangle=\int_a^bf(t)\overline{g(t)}dt,$ 称 $\int_a^b|f(t)|^2dt$ 为 f(t) 在 [a,b] 上的能量。

引理

令 f(t) 是周期为 T 的函数,那么 g(t) = f(Tt) 为周期为 1 的函数。

引理

令 f(t) 是周期为 T 的函数,那么 g(t) = f(Tt) 为周期为 $\mathbf 1$ 的函数。

定理

令 f(t) 为周期为 1 的函数,且 $\int_0^1 |f(t)|^2 dt < +\infty$,那么

$$f(t) = \frac{a_0}{2} + \sum_{n=0}^{+\infty} [a_n \cos(2\pi nt) + b_n \sin(2\pi nt)],$$

其中

$$\begin{cases} a_n = \int_0^1 f(t) \cos(2\pi nt) dt & n = 0, 1, \dots \\ b_n = \int_0^1 f(t) \sin(2\pi nt) dt & n = 1, 2, \dots \end{cases}$$

注意到

$$\begin{cases} \cos(2\pi nt) = \frac{e^{2\pi int} + e^{-2\pi int}}{2} \\ \sin(2\pi nt) = \frac{e^{2\pi int} - e^{-2\pi int}}{2i} \end{cases} ,$$

注意到

$$\begin{cases}
\cos(2\pi nt) = \frac{e^{2\pi i nt} + e^{-2\pi i nt}}{2} \\
\sin(2\pi nt) = \frac{e^{2\pi i nt} - e^{-2\pi i nt}}{2i}
\end{cases},$$

所以 f(t) 也可以用 $e^{2\pi int}$ 和 $e^{-2\pi int}$ 来表示。

注意到

$$\begin{cases} \cos(2\pi nt) = \frac{e^{2\pi i nt} + e^{-2\pi i nt}}{2} \\ \sin(2\pi nt) = \frac{e^{2\pi i nt} - e^{-2\pi i nt}}{2i} \end{cases},$$

所以 f(t) 也可以用 $e^{2\pi int}$ 和 $e^{-2\pi int}$ 来表示。

定理 (傅立叶分析)

令 f(t) 是周期为 1 的函数且 $\int_0^1 |f(t)|^2 dt < +\infty$, 那么

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n e^{2\pi i n t},$$

其中
$$c_n = \int_0^1 f(t)e^{-2\pi i nt} \triangleq \hat{f}(n)$$
.

定理 (isometry)

$$\int_{0}^{1} |f(t)|^{2} dt = \sum_{-\infty}^{+\infty} |\hat{f}(n)|^{2}.$$

证明:

$$\begin{split} \int_0^1 |f(t)|^2 dt &= \int_0^1 f(t) \overline{f(t)} dt \\ &= \int_0^1 \left(\sum_{n=-\infty}^{+\infty} \hat{f}(n) e^{2\pi i n t} \right) \cdot \left(\sum_{m=-\infty}^{+\infty} \overline{\hat{f}(m)} e^{-2\pi i m t} \right) dt \\ &= \int_0^1 \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \hat{f}(n) \overline{\hat{f}(m)} e^{2\pi i n t} e^{-2\pi i m t} dt \\ &= \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \hat{f}(n) \overline{\hat{f}(m)} \int_0^1 e^{2\pi i n t} e^{-2\pi i m t} dt \\ &= \sum_{n=-\infty}^{+\infty} \hat{f}(n) \overline{\hat{f}(n)} = \sum_{n=-\infty}^{+\infty} |\hat{f}(n)|^2. \end{split}$$

考虑周期为 1 的函数
$$f(t)=\left\{ egin{array}{ll} 1, & t\in[0,rac{1}{2}) \\ -1, & t\in[rac{1}{2},1) \end{array}
ight.,$$

考虑周期为 1 的函数
$$f(t) = \left\{ \begin{array}{ll} 1, & t \in [0, \frac{1}{2}) \\ -1, & t \in [\frac{1}{2}, 1) \end{array} \right.$$
,从而 $f_n(t) = \sum_{k=0}^n \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t), \; f(t) = \lim_{n \to +\infty} f_n(t).$

考虑周期为 1 的函数
$$f(t)=\left\{egin{array}{ll} 1, & t\in[0,rac{1}{2}) \\ -1, & t\in[rac{1}{2},1) \end{array}
ight.$$
 , 从而

$$f_n(t) = \sum_{k=0}^n \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t), \ f(t) = \lim_{n \to +\infty} f_n(t).$$

E:
$$f_9 = \sum_{k=0}^9 \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t), \ f_{39} = \sum_{k=0}^{39} \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t)$$

4 D > 4 B > 4 E > 4 E > E 9 9 9 9

考虑周期为 1 的函数
$$f(t)=\left\{egin{array}{ll} 1,&t\in[0,rac{1}{2})\\ -1,&t\in[rac{1}{2},1) \end{array}
ight.$$
 , 从而

$$f_n(t) = \sum_{k=0}^n \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t), \ f(t) = \lim_{n \to +\infty} f_n(t).$$

E:
$$f_9 = \sum_{k=0}^9 \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t), \ f_{39} = \sum_{k=0}^{39} \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t)$$

■ f_9 和 f_{39} 在矩形波的转角处不能给出好的逼近,

考虑周期为 1 的函数
$$f(t)=\left\{egin{array}{ll} 1, & t\in[0,rac{1}{2}) \\ -1, & t\in[rac{1}{2},1) \end{array}
ight.$$
 , 从而

$$f_n(t) = \sum_{k=0}^n \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t), \ f(t) = \lim_{n \to +\infty} f_n(t).$$

E:
$$f_9 = \sum_{k=0}^9 \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t), \ f_{39} = \sum_{k=0}^{39} \frac{4}{\pi(2k+1)} \sin(2\pi(2k+1)t)$$

- f_9 和 f_{39} 在矩形波的转角处不能给出好的逼近,

考虑周期为 1 的下列函数
$$f(t) = \left\{ \begin{array}{ll} \frac{1}{2} + t, & t \in [-\frac{1}{2}, 0] \\ \frac{1}{2} - t, & t \in [0, \frac{1}{2}] \end{array} \right.$$

考虑周期为 1 的下列函数
$$f(t) = \left\{ egin{array}{ll} \frac{1}{2} + t, & t \in [-\frac{1}{2},0] \\ \frac{1}{2} - t, & t \in [0,\frac{1}{2}] \end{array}
ight.$$
,则 $f_n(t) = \frac{1}{4} + \sum_{k=0}^n \frac{2}{\pi^2(2k+1)^2} \cos(2\pi(2k+1)t), \; f(t) = \lim_{n \to +\infty} f_n(t).$

考虑周期为 1 的下列函数
$$f(t) = \left\{ egin{array}{ll} \frac{1}{2} + t, & t \in [-\frac{1}{2},0] \\ \frac{1}{2} - t, & t \in [0,\frac{1}{2}] \end{array} \right.$$
 ,则
$$f_n(t) = \frac{1}{4} + \sum_{k=0}^n \frac{2}{\pi^2(2k+1)^2} \cos(2\pi(2k+1)t), \; f(t) = \lim_{n \to +\infty} f_n(t).$$

考虑周期为 1 的下列函数
$$f(t) = \left\{ \begin{array}{ll} \frac{1}{2} + t, & t \in [-\frac{1}{2}, 0] \\ \frac{1}{2} - t, & t \in [0, \frac{1}{2}] \end{array} \right.$$
,则 $f_n(t) = \frac{1}{4} + \sum_{k=0}^n \frac{2}{\pi^2(2k+1)^2} \cos(2\pi(2k+1)t), \; f(t) = \lim_{n \to +\infty} f_n(t).$

- 对非光滑函数的逼近效果不好。
- 寻求好的方法,比如,加窗的傅立叶变换或者小波。

■ 傅立叶变换 $\mathcal{F}(f(t))(s) \triangleq \hat{f}(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i s t}dt$,

- 傅立叶变换 $\mathcal{F}(f(t))(s) \triangleq \hat{f}(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i s t}dt$,
- 傅立叶反变换 $\mathcal{F}^{-1}(g(s))(t) \triangleq \check{g}(t) = \int_{-\infty}^{+\infty} g(s) e^{2\pi i t s} ds$.

- 傅立叶变换 $\mathcal{F}(f(t))(s) \triangleq \hat{f}(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i s t}dt$,
- 傅立叶反变换 $\mathcal{F}^{-1}(g(s))(t) \triangleq \check{g}(t) = \int_{-\infty}^{+\infty} g(s)e^{2\pi i t s}ds$.

定理 (傅立叶反演定理 (Fourier inversion theorem))

$$\mathcal{F}^{-1}(\mathcal{F}(f(t))) = f(t), \quad \mathcal{F}(\mathcal{F}^{-1}(g(s))) = f(s).$$

- 傅立叶变换 $\mathcal{F}(f(t))(s) \triangleq \hat{f}(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i s t}dt$,
- 傅立叶反变换 $\mathcal{F}^{-1}(g(s))(t) \triangleq \check{g}(t) = \int_{-\infty}^{+\infty} g(s)e^{2\pi i t s}ds$.

定理 (傅立叶反演定理 (Fourier inversion theorem))

$$\mathcal{F}^{-1}(\mathcal{F}(f(t))) = f(t), \quad \mathcal{F}(\mathcal{F}^{-1}(g(s))) = f(s).$$

傅立叶变换的基本性质

linearity

$$\mathcal{F}(f_1(t) + f_2(t)) = \mathcal{F}(f_1(t)) + \mathcal{F}(f_2(t)), \ \mathcal{F}(af(t)) = a\mathcal{F}(f(t)).$$

- 傅立叶变换 $\mathcal{F}(f(t))(s) \triangleq \hat{f}(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i s t}dt$,
- 傅立叶反变换 $\mathcal{F}^{-1}(g(s))(t) \triangleq \check{g}(t) = \int_{-\infty}^{+\infty} g(s)e^{2\pi i t s}ds$.

定理 (傅立叶反演定理 (Fourier inversion theorem))

$$\mathcal{F}^{-1}(\mathcal{F}(f(t))) = f(t), \quad \mathcal{F}(\mathcal{F}^{-1}(g(s))) = f(s).$$

傅立叶变换的基本性质

linearity

$$\mathcal{F}(f_1(t) + f_2(t)) = \mathcal{F}(f_1(t)) + \mathcal{F}(f_2(t)), \ \mathcal{F}(af(t)) = a\mathcal{F}(f(t)).$$

$$\hat{f}(0) = \int_{-\infty}^{+\infty} f(t)dt, \quad \check{g}(0) = \int_{-\infty}^{+\infty} g(s)ds.$$

- 傅立叶变换 $\mathcal{F}(f(t))(s) \triangleq \hat{f}(s) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i s t} dt$,
- 傅立叶反变换 $\mathcal{F}^{-1}(g(s))(t) \triangleq \check{g}(t) = \int_{-\infty}^{+\infty} g(s)e^{2\pi i t s}ds$.

定理 (傅立叶反演定理 (Fourier inversion theorem))

$$\mathcal{F}^{-1}(\mathcal{F}(f(t))) = f(t), \quad \mathcal{F}(\mathcal{F}^{-1}(g(s))) = f(s).$$

傅立叶变换的基本性质

linearity

$$\mathcal{F}(f_1(t) + f_2(t)) = \mathcal{F}(f_1(t)) + \mathcal{F}(f_2(t)), \ \mathcal{F}(af(t)) = a\mathcal{F}(f(t)).$$

- $\hat{f}(0) = \int_{-\infty}^{+\infty} f(t)dt, \quad \check{g}(0) = \int_{-\infty}^{+\infty} g(s)ds.$
- Isometry

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \int_{-\infty}^{+\infty} |\hat{f}(s)|^2 ds.$$

■ 设 f(t) 为实对称函数,即,f(-t) = f(t),那么 $\mathcal{F}(f(t))$ 为实函数。

- 设 f(t) 为实对称函数,即,f(-t) = f(t),那么 $\mathcal{F}(f(t))$ 为实函数。
- 设 f(t) 为实反对称函数,即,f(-t) = -f(t),那么 $\mathcal{F}(f(t))$ 为虚函数。

- lacksquare 设 f(t) 为实对称函数,即,f(-t)=f(t),那么 $\mathcal{F}(f(t))$ 为实函数。
- 设 f(t) 为实反对称函数,即,f(-t) = -f(t),那么 $\mathcal{F}(f(t))$ 为虚函数。
- $F(f(t+b)) = e^{2\pi i b s} \mathcal{F}(f(t))(s).$

- lacksquare 设 f(t) 为实对称函数,即,f(-t)=f(t),那么 $\mathcal{F}(f(t))$ 为实函数。
- lacksquare 设 f(t) 为实反对称函数,即,f(-t)=-f(t),那么 $\mathcal{F}(f(t))$ 为虚函数。
- $\mathcal{F}(f(t+b)) = e^{2\pi i b s} \mathcal{F}(f(t))(s)$. 证明:

$$\mathcal{F}(f(t+b)) = \int_{-\infty}^{+\infty} f(t+b)e^{-2\pi i s t} dt = \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s (u-b)} du$$
$$= \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s u} e^{2\pi i s b} du = e^{2\pi i s b} \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s u} du$$
$$= e^{2\pi i s b} \hat{f}(s).$$

- lacksquare 设 f(t) 为实对称函数,即,f(-t)=f(t),那么 $\mathcal{F}(f(t))$ 为实函数。
- lacksquare 设 f(t) 为实反对称函数,即,f(-t)=-f(t),那么 $\mathcal{F}(f(t))$ 为虚函数。
- $F(f(t+b)) = e^{2\pi i b s} F(f(t))(s).$ 证明:

$$\mathcal{F}(f(t+b)) = \int_{-\infty}^{+\infty} f(t+b)e^{-2\pi i s t} dt = \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s (u-b)} du$$
$$= \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s u} e^{2\pi i s b} du = e^{2\pi i s b} \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s u} du$$
$$= e^{2\pi i s b} \hat{f}(s).$$

 $\blacksquare \mathcal{F}(f(at)) = \frac{1}{a}\hat{f}(\frac{s}{a}).$

- lacksquare 设 f(t) 为实对称函数,即,f(-t)=f(t),那么 $\mathcal{F}(f(t))$ 为实函数。
- lacksquare 设 f(t) 为实反对称函数,即,f(-t)=-f(t),那么 $\mathcal{F}(f(t))$ 为虚函数。
- $F(f(t+b)) = e^{2\pi i b s} F(f(t))(s).$ 证明:

$$\mathcal{F}(f(t+b)) = \int_{-\infty}^{+\infty} f(t+b)e^{-2\pi i s t} dt = \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s (u-b)} du$$
$$= \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s u} e^{2\pi i s b} du = e^{2\pi i s b} \int_{-\infty}^{+\infty} f(u)e^{-2\pi i s u} du$$
$$= e^{2\pi i s b} \hat{f}(s).$$

$$\blacksquare \mathcal{F}(f(at)) = \frac{1}{a}\hat{f}(\frac{s}{a}).$$

$$\mathcal{F}(f(at+b)) = \frac{1}{a}e^{2\pi isb/a}\hat{f}(\frac{s}{a}).$$

定义

设 $g \in L^2(\mathbb{R})$ 且 $\|g\| = 1$. 定义函数 g 在时间和频率上的平移函数

$$g^{[x_1,x_2]}(t) = e^{2\pi i t x_2} g(t+x_1).$$

定义

设 $g \in L^2(\mathbb{R})$ 且 ||g|| = 1. 定义函数 g 在时间和频率上的平移函数

$$g^{[x_1,x_2]}(t) = e^{2\pi i t x_2} g(t+x_1).$$

■ $|g(t)|^2$ 为关于 t 的概率密度函数.

定义

设 $g \in L^2(\mathbb{R})$ 且 ||g|| = 1. 定义函数 g 在时间和频率上的平移函数

$$g^{[x_1,x_2]}(t) = e^{2\pi i t x_2} g(t+x_1).$$

■ $|g(t)|^2$ 为关于 t 的概率密度函数.设 $\hat{g}(w) = \int_{-\infty}^{+\infty} g(t)e^{-2\pi i w t}dt$, 则 $|\hat{g}(w)|^2$ 是关于 w 的概率密度函数。

定义

设 $g \in L^2(\mathbb{R})$ 且 ||g|| = 1. 定义函数 g 在时间和频率上的平移函数

$$g^{[x_1,x_2]}(t) = e^{2\pi i t x_2} g(t+x_1).$$

- $|g(t)|^2$ 为关于 t 的概率密度函数.设 $\hat{g}(w)=\int_{-\infty}^{+\infty}g(t)e^{-2\pi iwt}dt$, 则 $|\hat{g}(w)|^2$ 是关于 w 的概率密度函数。
- $lacksymbol{\blacksquare}$ 设 g 在相位 (时间-频率) 空间的中心为 (t_0,w_0) ,即

$$\int_{-\infty}^{+\infty} t |g(t)|^2 dt = t_0, \quad \int_{-\infty}^{+\infty} w |\hat{g}(w)|^2 dw = w_0,$$

定义

设 $g \in L^2(\mathbb{R})$ 且 ||g|| = 1. 定义函数 g 在时间和频率上的平移函数

$$g^{[x_1,x_2]}(t) = e^{2\pi i t x_2} g(t+x_1).$$

- $|g(t)|^2$ 为关于 t 的概率密度函数.设 $\hat{g}(w)=\int_{-\infty}^{+\infty}g(t)e^{-2\pi iwt}dt$, 则 $|\hat{g}(w)|^2$ 是关于 w 的概率密度函数。
- $lacksymbol{\blacksquare}$ 设 g 在相位 (时间-频率) 空间的中心为 (t_0,w_0) ,即

$$\int_{-\infty}^{+\infty} t |g(t)|^2 dt = t_0, \quad \int_{-\infty}^{+\infty} w |\hat{g}(w)|^2 dw = w_0,$$

 $g^{[x_1,x_2]}$ 在相位空间的中心为 $(t_0-x_1,w_0+x_2).$

定义

设 $g \in L^2(\mathbb{R})$ 且 ||g|| = 1. 定义函数 g 在时间和频率上的平移函数

$$g^{[x_1,x_2]}(t) = e^{2\pi i t x_2} g(t+x_1).$$

- $|g(t)|^2$ 为关于 t 的概率密度函数.设 $\hat{g}(w)=\int_{-\infty}^{+\infty}g(t)e^{-2\pi iwt}dt$, 则 $|\hat{g}(w)|^2$ 是关于 w 的概率密度函数。
- $lacksymbol{\blacksquare}$ 设 g 在相位 (时间-频率) 空间的中心为 (t_0,w_0) ,即

$$\int_{-\infty}^{+\infty} t |g(t)|^2 dt = t_0, \quad \int_{-\infty}^{+\infty} w |\hat{g}(w)|^2 dw = w_0,$$

■ $g^{[x_1,x_2]}$ 在相位空间的中心为 (t_0-x_1,w_0+x_2) .

$$\int_{-\infty}^{+\infty} t |g^{[x_1, x_2]}(t)|^2 dt = t_0 - x_1, \quad \int_{-\infty}^{+\infty} w |\widehat{g^{[x_1, x_2]}}(w)|^2 dw = w_0 + x_2.$$

对任意给定的函数 $f(t) \in L^2(\mathbb{R})$,定义

$$F(x_1, x_2) = \langle f, g^{[x_1, x_2]} \rangle = \int_{-\infty}^{+\infty} f(t) \overline{g^{[x_1, x_2]}(t)} dt.$$

对任意给定的函数 $f(t) \in L^2(\mathbb{R})$,定义

$$F(x_1, x_2) = \langle f, g^{[x_1, x_2]} \rangle = \int_{-\infty}^{+\infty} f(t) \overline{g^{[x_1, x_2]}(t)} dt.$$

对任意给定的函数 $f(t) \in L^2(\mathbb{R})$,定义

$$F(x_1, x_2) = \langle f, g^{[x_1, x_2]} \rangle = \int_{-\infty}^{+\infty} f(t) \overline{g^{[x_1, x_2]}(t)} dt.$$

$$F(x_1, x_2) = \int_{-\infty}^{+\infty} f(t)\overline{g(t+x_1)}e^{-2\pi i t x_2} dt,$$

对任意给定的函数 $f(t) \in L^2(\mathbb{R})$,定义

$$F(x_1, x_2) = \langle f, g^{[x_1, x_2]} \rangle = \int_{-\infty}^{+\infty} f(t) \overline{g^{[x_1, x_2]}(t)} dt.$$

$$F(x_1, x_2) = \int_{-\infty}^{+\infty} f(t)\overline{g(t+x_1)}e^{-2\pi i t x_2} dt,$$
$$f(t)\overline{g(t+x_1)} - \int_{-\infty}^{+\infty} F(x_1, x_2)e^{2\pi i t x_2} dx_2.$$

$$f(t)\overline{g(t+x_1)} = \int_{-\infty}^{+\infty} F(x_1, x_2)e^{2\pi i t x_2} dx_2.$$

对任意给定的函数 $f(t) \in L^2(\mathbb{R})$,定义

$$F(x_1, x_2) = \langle f, g^{[x_1, x_2]} \rangle = \int_{-\infty}^{+\infty} f(t) \overline{g^{[x_1, x_2]}(t)} dt.$$

$$F(x_1, x_2) = \int_{-\infty}^{+\infty} f(t) \overline{g(t+x_1)} e^{-2\pi i t x_2} dt,$$
$$f(t) \overline{g(t+x_1)} = \int_{-\infty}^{+\infty} F(x_1, x_2) e^{2\pi i t x_2} dx_2.$$

$$\begin{split} f(t) = & \frac{1}{\|g\|^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(x_1, x_2) g(t + x_1) e^{2\pi i t x_2} dx_1 dx_2 \\ = & \frac{1}{\|g\|^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(x_1, x_2) g^{[x_1, x_2]}(t) dx_1 dx_2. \end{split}$$

Proper choice of the window g

- method is flexible, window function can be chosen as we wish.
- impossibility of localizing g and \tilde{g} simultaneously in phase space with arbitrary accuracy.

Proper choice of the window g

- method is flexible, window function can be chosen as we wish.
- impossibility of localizing g and \tilde{g} simultaneously in phase space with arbitrary accuracy.
- Heisenberg inequality

$$\int_{-\infty}^{+\infty} (t - t_0)^2 |g(t)|^2 dt \int_{-\infty}^{+\infty} (w - w_0)^2 |\hat{g}(w)|^2 dw \ge \frac{1}{16\pi^2}.$$

定理

随着 $[x_1,x_2]$ 取遍 \mathbb{R}^2 中所有的值,函数 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上是稠密的。

定理

随着 $[x_1,x_2]$ 取遍 \mathbb{R}^2 中所有的值,函数 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上是稠密的。

定理

函数 $f \in L^2(\mathbb{R})$ 由内积 $\langle f, g^{[x_1, x_2]} \rangle, -\infty < x_1, x_2 < \infty$ 唯一确定。

证明: 设 $\langle f_1, g^{[x_1, x_2]} \rangle = \langle f_2, g^{[x_1, x_2]} \rangle$ 对 $f_1, f_2 \in L^2(\mathbb{R})$ 和所有的 x_1, x_2 .

定理

随着 $[x_1,x_2]$ 取遍 \mathbb{R}^2 中所有的值,函数 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上是稠密的。

定理

函数 $f \in L^2(\mathbb{R})$ 由内积 $\langle f, g^{[x_1, x_2]} \rangle, -\infty < x_1, x_2 < \infty$ 唯一确定。

证明: 设 $\langle f_1, g^{[x_1,x_2]} \rangle = \langle f_2, g^{[x_1,x_2]} \rangle$ 对 $f_1, f_2 \in L^2(\mathbb{R})$ 和所有的 x_1, x_2 .令 $f = f_1 - f_2$,则 $\langle f, g^{[x_1,x_2]} \rangle \equiv 0$. 因此 f 正交于所有的 $g^{[x_1,x_2]}$ 生成的子空间。

定理

随着 $[x_1,x_2]$ 取遍 \mathbb{R}^2 中所有的值,函数 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上是稠密的。

定理

函数 $f \in L^2(\mathbb{R})$ 由内积 $\langle f, g^{[x_1, x_2]} \rangle, -\infty < x_1, x_2 < \infty$ 唯一确定。

证明: 设 $\langle f_1, g^{[x_1,x_2]} \rangle = \langle f_2, g^{[x_1,x_2]} \rangle$ 对 $f_1, f_2 \in L^2(\mathbb{R})$ 和所有的 x_1, x_2 .令 $f = f_1 - f_2$,则 $\langle f, g^{[x_1,x_2]} \rangle \equiv 0$. 因此 f 正交于所有的 $g^{[x_1,x_2]}$ 生成的子空间。根据 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上正交得,f = 0, $f_1 = f_2$.

定理

随着 $[x_1,x_2]$ 取遍 \mathbb{R}^2 中所有的值,函数 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上是稠密的。

定理

函数 $f \in L^2(\mathbb{R})$ 由内积 $\langle f, g^{[x_1, x_2]} \rangle, -\infty < x_1, x_2 < \infty$ 唯一确定。

证明: 设 $\langle f_1,g^{[x_1,x_2]}\rangle=\langle f_2,g^{[x_1,x_2]}\rangle$ 对 $f_1,f_2\in L^2(\mathbb{R})$ 和所有的 x_1,x_2 .令 $f=f_1-f_2$,则 $\langle f,g^{[x_1,x_2]}\rangle\equiv 0$. 因此 f 正交于所有的 $g^{[x_1,x_2]}$ 生成的子空间。根据 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上正交得,f=0, $f_1=f_2$.问题: $g^{[x_1,x_2]}$, $-\infty < x_1,x_2 < \infty$ 在 $L^2(\mathbb{R})$ 上是过完备的。

定理

随着 $[x_1,x_2]$ 取遍 \mathbb{R}^2 中所有的值,函数 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上是稠密的。

定理

函数 $f \in L^2(\mathbb{R})$ 由内积 $\langle f, g^{[x_1, x_2]} \rangle, -\infty < x_1, x_2 < \infty$ 唯一确定。

证明: 设 $\langle f_1,g^{[x_1,x_2]}\rangle=\langle f_2,g^{[x_1,x_2]}\rangle$ 对 $f_1,f_2\in L^2(\mathbb{R})$ 和所有的 x_1,x_2 .令 $f=f_1-f_2$,则 $\langle f,g^{[x_1,x_2]}\rangle\equiv 0$. 因此 f 正交于所有的 $g^{[x_1,x_2]}$ 生成的子空间。根据 $g^{[x_1,x_2]}$ 在 $L^2(\mathbb{R})$ 上正交得, $f=0,f_1=f_2$.问题: $g^{[x_1,x_2]},-\infty< x_1,x_2<\infty$ 在 $L^2(\mathbb{R})$ 上是过完备的。

■ Sample F at the lattice points $(x_1, x_2) = (ma, nb), a, b > 0 \in \mathbb{R}$ and $m, n \in \mathbb{Z}$.

Lattice Hilbert space

The lattice Hilbert space V' of complex-valued functions $\varphi(x_1,x_2)\in\mathbb{R}^2$ satisfy

periodicity condition

$$\varphi(a_1 + x_1, a_2 + x_2) = e^{-2\pi i a_1 x_2} \varphi(x_1, x_2),$$

for $a_1, a_2 = 0, \pm 1, \cdots$

square integrable over the unit square

$$\int_0^1 \int_0^1 |\varphi(x_1, x_2)|^2 dx_1 dx_2 < \infty.$$

The inner product is

$$\langle \varphi_1, \varphi_2 \rangle = \int_0^1 \int_0^1 \varphi_1(x_1, x_2) \overline{\varphi_2(x_1, x_2)} dx_1 dx_2.$$

Lattice Hilbert space

The lattice Hilbert space V' of complex-valued functions $\varphi(x_1,x_2)\in\mathbb{R}^2$ satisfy

periodicity condition

$$\varphi(a_1 + x_1, a_2 + x_2) = e^{-2\pi i a_1 x_2} \varphi(x_1, x_2),$$

for $a_1, a_2 = 0, \pm 1, \cdots$

square integrable over the unit square

$$\int_0^1 \int_0^1 |\varphi(x_1, x_2)|^2 dx_1 dx_2 < \infty.$$

The inner product is

$$\langle \varphi_1, \varphi_2 \rangle = \int_0^1 \int_0^1 \varphi_1(x_1, x_2) \overline{\varphi_2(x_1, x_2)} dx_1 dx_2.$$

 $\varphi \in V'$ is determined by values in the square $\{(x_1,x_2): 0 \leq x_1, x_2 \leq 1\}$

periodizing operator (Weil-Brezin-Zak transform)

定义 (Weil-Brezin-Zak transform)

$$Pf(x_1, x_2) = P(f; (x_1, x_2)) = \sum_{n = -\infty}^{+\infty} e^{2\pi i n x_2} f(n + x_1).$$

■ P is well defined for $\forall f \in L^2(\mathbb{R})$ belonging to the Schwartz space,

periodizing operator (Weil-Brezin-Zak transform)

定义 (Weil-Brezin-Zak transform)

$$Pf(x_1, x_2) = P(f; (x_1, x_2)) = \sum_{n = -\infty}^{+\infty} e^{2\pi i n x_2} f(n + x_1).$$

- P is well defined for $\forall f \in L^2(\mathbb{R})$ belonging to the Schwartz space,
- Pf satisfies the periodicity condition and $Pf \in V'$.

periodizing operator (Weil-Brezin-Zak transform)

定义 (Weil-Brezin-Zak transform)

$$Pf(x_1, x_2) = P(f; (x_1, x_2)) = \sum_{n = -\infty}^{+\infty} e^{2\pi i n x_2} f(n + x_1).$$

- \blacksquare P is well defined for $\forall f \in L^2(\mathbb{R})$ belonging to the Schwartz space,
- Pf satisfies the periodicity condition and $Pf \in V'$.

$$Pf(a_1 + x_1, a_2 + x_2) = \sum_{n = -\infty}^{+\infty} e^{2\pi i n (a_2 + x_2)} f(n + a_1 + x_1)$$

$$= \sum_{n = -\infty}^{+\infty} e^{2\pi i n x_2} f(n + a_1 + x_1) = e^{-2\pi i a_1 x_2} \sum_{m = -\infty}^{+\infty} e^{2\pi i m x_2} f(m + x_1)$$

$$= e^{-2\pi i a_1 x_2} Pf(x_1, x_2).$$

Isometry

$$\langle Pf(\cdot,\cdot), Pf'(\cdot,\cdot)\rangle$$

$$==\int_0^1 dx_1 \int_0^1 dx_2 \sum_{m,n=-\infty}^{+\infty} e^{2\pi i(n-m)x_2} f(n+x_1) \overline{f'(m+x_1)}$$

$$=\int_0^1 dx_1 \sum_{n=-\infty}^{+\infty} f(n+x_1) \overline{f'(n+x_1)} = \int_{-\infty}^{+\infty} f(t) \overline{f'(t)} dt = \langle f, f' \rangle.$$

Isometry

$$\langle Pf(\cdot,\cdot), Pf'(\cdot,\cdot)\rangle$$

$$==\int_0^1 dx_1 \int_0^1 dx_2 \sum_{m,n=-\infty}^{+\infty} e^{2\pi i(n-m)x_2} f(n+x_1) \overline{f'(m+x_1)}$$

$$=\int_0^1 dx_1 \sum_{n=-\infty}^{+\infty} f(n+x_1) \overline{f'(n+x_1)} = \int_{-\infty}^{+\infty} f(t) \overline{f'(t)} dt = \langle f, f' \rangle.$$

P can be extended to an inner product preserving mapping of $L^2(\mathbb{R})$ into V.

Inverse mapping

定义

Define the mapping $P^*:V'\to L^2(\mathbb{R})$ as

$$P^*\varphi(t) = \int_0^1 \varphi(t, y) dy, \quad \varphi \in V'.$$

Inverse mapping

定义

Define the mapping $P^*: V' \to L^2(\mathbb{R})$ as

$$P^*\varphi(t) = \int_0^1 \varphi(t, y) dy, \quad \varphi \in V'.$$

Since $\varphi \in V'$, we have for an integer a

$$P^*\varphi(t+a) = \int_0^1 \varphi(t+a, y) dy = \int_0^1 \varphi(t, y) e^{-2\pi i a y} dy = \hat{\varphi}_{-a}(t).$$

Inverse mapping

定义

Define the mapping $P^*: V' \to L^2(\mathbb{R})$ as

$$P^*\varphi(t) = \int_0^1 \varphi(t, y) dy, \quad \varphi \in V'.$$

Since $\varphi \in V'$, we have for an integer a

$$P^*\varphi(t+a) = \int_0^1 \varphi(t+a, y) dy = \int_0^1 \varphi(t, y) e^{-2\pi i a y} dy = \hat{\varphi}_{-a}(t).$$

By the Parseval formula

$$\int_{0}^{1} |\varphi|^{2} dy = \sum_{a=-\infty}^{+\infty} |\hat{\varphi}_{-a}(t)|^{2} = \sum_{a=-\infty}^{+\infty} |P^{*}\varphi(t+a)|^{2}.$$

Preserving mapping

 $ightharpoonup P^*$ is an inner product preserving mapping of V' into $L^2(\mathbb{R})$.

Preserving mapping

 P^* is an inner product preserving mapping of V' into $L^2(\mathbb{R})$.

$$\langle \varphi, \varphi \rangle = \int_0^1 \int_0^1 |\varphi(t, y)|^2 dt dy = \int_0^1 \sum_{a = -\infty}^{+\infty} |P^* \varphi(t + a)|^2 dt$$
$$= \int_{-\infty}^{+\infty} |P^* \varphi(t)|^2 dt = \langle P^* \varphi, P^* \varphi \rangle.$$

 \blacksquare P^* is the adjoint of P.

Preserving mapping

 P^* is an inner product preserving mapping of V' into $L^2(\mathbb{R})$.

$$\langle \varphi, \varphi \rangle = \int_0^1 \int_0^1 |\varphi(t, y)|^2 dt dy = \int_0^1 \sum_{a = -\infty}^{+\infty} |P^* \varphi(t + a)|^2 dt$$
$$= \int_{-\infty}^{+\infty} |P^* \varphi(t)|^2 dt = \langle P^* \varphi, P^* \varphi \rangle.$$

 \blacksquare P^* is the adjoint of P. That is, for $q \in L^2(\mathbb{R}), \varphi \in V'$, we have $\langle Pa, \varphi \rangle = \langle a, P^* \varphi \rangle.$

$$f_P(x_1, x_2) = Pf(x_1, x_2) = \sum_{k=-\infty}^{+\infty} e^{2\pi i k x_2} f(x_1 + k)$$

$$f_P(x_1, x_2) = Pf(x_1, x_2) = \sum_{k=-\infty}^{+\infty} e^{2\pi i k x_2} f(x_1 + k)$$

 \blacksquare Choose $f=g^{[m,n]}(t)=e^{2\pi i t n}g(t+m),$ we have

$$f_P(x_1, x_2) = Pf(x_1, x_2) = \sum_{k=-\infty}^{+\infty} e^{2\pi i k x_2} f(x_1 + k)$$

 \blacksquare Choose $f=g^{[m,n]}(t)=e^{2\pi i t n}g(t+m),$ we have

$$g_P^{[m,n]}(x_1,x_2) = e^{2\pi i(nx_1 - mx_2)}g_P(x_1,x_2).$$

$$f_P(x_1, x_2) = Pf(x_1, x_2) = \sum_{k = -\infty}^{+\infty} e^{2\pi i k x_2} f(x_1 + k)$$

 \blacksquare Choose $f=g^{[m,n]}(t)=e^{2\pi i t n}g(t+m),$ we have

 $k=-\infty$

$$g_P^{[m,n]}(x_1,x_2) = e^{2\pi i(nx_1 - mx_2)}g_P(x_1,x_2).$$

$$g_p^{[m,n]}(x_1, x_2) = \sum_{k=-\infty}^{+\infty} e^{2\pi i k x_2} g^{[m,n]}(x_1 + k)$$

$$= \sum_{k=-\infty}^{+\infty} e^{2\pi i k x_2} e^{2\pi i (x_1 + k)n} g(x_1 + k + m)$$

$$= e^{2\pi i n x_1} \sum_{k=-\infty}^{+\infty} e^{2\pi i k x_2} g(x_1 + k + m) = e^{2\pi i (n x_1 - m x_2)} g_P(x_1, x_2).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆 り へ ○

ON (OrthoNormal)

lacksquare $E_{n,m}(x_1,x_2)=e^{2\pi i(nx_1-mx_2)}$ form an ON basis for lattice Hilbert space:

ON (OrthoNormal)

■ $E_{n,m}(x_1,x_2) = e^{2\pi i(nx_1-mx_2)}$ form an ON basis for lattice Hilbert space:

$$\int_0^1 \int_0^1 E_{n_1,m_1}(x_1,x_2) \overline{E_{n_2,m_2}(x_1,x_2)} dx_1 dx_2 = \delta_{n_1,n_2} \delta_{m_1,m_2}.$$

ON (OrthoNormal)

■ $E_{n,m}(x_1,x_2) = e^{2\pi i(nx_1-mx_2)}$ form an ON basis for lattice Hilbert space:

$$\int_0^1 \int_0^1 E_{n_1,m_1}(x_1,x_2) \overline{E_{n_2,m_2}(x_1,x_2)} dx_1 dx_2 = \delta_{n_1,n_2} \delta_{m_1,m_2}.$$

定义

Let f(t) be a function defined on the real line and let Ξ be the characteristic function of the set on which f vanishes:

$$\Xi(t) = \begin{cases} 1, & \text{if } f(t) = 0\\ 0, & \text{if } f(t) \neq 0 \end{cases}$$

we say f is nonzero almost everywhere (a.e.). If the L^2 norm of Ξ is 0, i.e., $\|\Xi\|=0$.

Theorem

定理

For (a,b)=(1,1), $g\in L^2(\mathbb{R})$. The transforms $\{g^{[m,n]}:m,n=0,\pm 1,\pm 2,\cdots\}$ span $L^2(\mathbb{R})$ iff $Pg(x_1,x_2)=g_P(x_1,x_2)\neq 0$ a.e..

Theorem

定理

For (a,b)=(1,1), $g\in L^2(\mathbb{R})$. The transforms $\{g^{[m,n]}:m,n=0,\pm 1,\pm 2,\cdots\}$ span $L^2(\mathbb{R})$ iff $Pg(x_1,x_2)=g_P(x_1,x_2)\neq 0$ a.e..

Proof: Let \mathcal{M} be the closed linear subspace of $L^2(\mathbb{R})$ spanned by $\{g^{[m,n]}\}$.

Theorem

定理

For $(a,b)=(1,1),\ g\in L^2(\mathbb{R}).$ The transforms $\{g^{[m,n]}:m,n=0,\pm 1,\pm 2,\cdots\}$ span $L^2(\mathbb{R})$ iff $Pg(x_1,x_2)=g_P(x_1,x_2)\neq 0$ a.e..

Proof: Let \mathcal{M} be the closed linear subspace of $L^2(\mathbb{R})$ spanned by $\{g^{[m,n]}\}$. Clearly $\mathcal{M}=L^2(\mathbb{R})$ iff the only solution of $\langle f,g^{[m,n]}\rangle=0$ for all integers m and n is f=0 a.e..

定理

For $(a,b) = (1,1), g \in L^2(\mathbb{R})$. The transforms $\{g^{[m,n]} : m, n = 0, \pm 1, \pm 2, \cdots\}$ span $L^2(\mathbb{R})$ iff $Pq(x_1, x_2) = q_P(x_1, x_2) \neq 0$ a.e..

Proof: Let \mathcal{M} be the closed linear subspace of $L^2(\mathbb{R})$ spanned by $\{g^{[m,n]}\}$. Clearly $\mathcal{M} = L^2(\mathbb{R})$ iff the only solution of $\langle f, g^{[m,n]} \rangle = 0$ for all integers m and n is f = 0 a.e..

Applying the Weyl-Brezin-Zak isomorphism P we have

$$\langle f,g^{[m,n]}\rangle = \langle Pf,Pg^{[m,n]}\rangle = \langle Pf,E_{n,m}Pg\rangle = \langle [Pf][\overline{Pg}],E_{n,m}\rangle = \langle f_P\overline{g_P},E_{n,m}\rangle.$$

定理

For (a,b)=(1,1), $g\in L^2(\mathbb{R})$. The transforms $\{g^{[m,n]}:m,n=0,\pm 1,\pm 2,\cdots\}$ span $L^2(\mathbb{R})$ iff $Pg(x_1,x_2)=g_P(x_1,x_2)\neq 0$ a.e..

Proof: Let \mathcal{M} be the closed linear subspace of $L^2(\mathbb{R})$ spanned by $\{g^{[m,n]}\}$. Clearly $\mathcal{M}=L^2(\mathbb{R})$ iff the only solution of $\langle f,g^{[m,n]}\rangle=0$ for all integers m and n is f=0 a.e..

Applying the Weyl-Brezin-Zak isomorphism P we have

$$\langle f, g^{[m,n]} \rangle = \langle Pf, Pg^{[m,n]} \rangle = \langle Pf, E_{n,m}Pg \rangle = \langle [Pf][\overline{Pg}], E_{n,m} \rangle = \langle f_P \overline{g_P}, E_{n,m} \rangle.$$

Since $E_{n,m}$ form an ON basis for the lattice Hilbert space,

$$\langle f, g^{[m,n]} \rangle = 0 \Leftrightarrow f_P(x_1, x_2) g_P(x_1, x_2) = 0$$
 a.e..

定理

For $(a,b) = (1,1), g \in L^2(\mathbb{R})$. The transforms $\{g^{[m,n]} : m, n = 0, \pm 1, \pm 2, \cdots\}$ span $L^2(\mathbb{R})$ iff $Pq(x_1, x_2) = q_P(x_1, x_2) \neq 0$ a.e..

Proof: Let \mathcal{M} be the closed linear subspace of $L^2(\mathbb{R})$ spanned by $\{g^{[m,n]}\}$. Clearly $\mathcal{M} = L^2(\mathbb{R})$ iff the only solution of $\langle f, g^{[m,n]} \rangle = 0$ for all integers m and n is f = 0 a.e..

Applying the Weyl-Brezin-Zak isomorphism P we have

$$\langle f, g^{[m,n]} \rangle = \langle Pf, Pg^{[m,n]} \rangle = \langle Pf, E_{n,m}Pg \rangle = \langle [Pf][\overline{Pg}], E_{n,m} \rangle = \langle f_P \overline{g_P}, E_{n,m} \rangle.$$

Since $E_{n,m}$ form an ON basis for the lattice Hilbert space,

$$\langle f, g^{[m,n]} \rangle = 0 \Leftrightarrow f_P(x_1, x_2) g_P(x_1, x_2) = 0$$
 a.e..

If $g_P \neq 0$ a.e., then $f_P = 0$ a.e. $\Rightarrow f \equiv 0$ a.e. $\Rightarrow \mathcal{M} = L^2(\mathbb{R})$.

定理

For (a,b)=(1,1), $g\in L^2(\mathbb{R})$. The transforms $\{g^{[m,n]}:m,n=0,\pm 1,\pm 2,\cdots\}$ span $L^2(\mathbb{R})$ iff $Pg(x_1,x_2)=g_P(x_1,x_2)\neq 0$ a.e..

Proof: Let \mathcal{M} be the closed linear subspace of $L^2(\mathbb{R})$ spanned by $\{g^{[m,n]}\}$. Clearly $\mathcal{M}=L^2(\mathbb{R})$ iff the only solution of $\langle f,g^{[m,n]}\rangle=0$ for all integers m and n is f=0 a.e..

Applying the Weyl-Brezin-Zak isomorphism P we have

$$\langle f, g^{[m,n]} \rangle = \langle Pf, Pg^{[m,n]} \rangle = \langle Pf, E_{n,m}Pg \rangle = \langle [Pf][\overline{Pg}], E_{n,m} \rangle = \langle f_P \overline{g_P}, E_{n,m} \rangle.$$

Since $E_{n,m}$ form an ON basis for the lattice Hilbert space,

$$\langle f, g^{[m,n]} \rangle = 0 \Leftrightarrow f_P(x_1, x_2) g_P(x_1, x_2) = 0 \text{ a.e.}.$$

If $g_P \neq 0$ a.e., then $f_P = 0$ a.e. $\Rightarrow f \equiv 0$ a.e. $\Rightarrow \mathcal{M} = L^2(\mathbb{R})$.

If $g_P=0$ on a set S of positive measure on unit square, set $Pf=f_P=\kappa_S$, then $f_Pg_P=0$ a.e., $\Rightarrow \langle f,g^{[m,n]}\rangle=0 \Rightarrow \mathcal{M}\neq L^2(\mathbb{R})$.

ON basis

推论

For (a,b)=(1,1) and $g\in L^2(\mathbb{R})$, the transforms $\{g^{[m,n]}:m,n=0\pm 1,\cdots\}$ form an ON basis for $L^2(\mathbb{R})$ iff $|g_P(x_1,x_2)|=1$, a.e..

Proof:By definition of ON basis, we have

$$\begin{split} \delta_{m,m'}\delta_{n,n'} = & \langle g^{[m,n]}, g^{[m',n']} \rangle = \langle E_{n,m}g_P, E_{n',m'}g_P \rangle \\ = & \langle |g_P|^2, E_{n'-n,m'-m} \rangle \end{split}$$

iff $|g_P|^2 = 1$ a.e..

Uniqueness

定理

For (a,b)=(1,1) and $g\in L^2(\mathbb{R})$, suppose there are constants A,B such that

$$0 < A \le |g_P(x_1, x_2)|^2 \le B < \infty$$

a.e. in the square $0 \le x_1, x_2 < 1$.

Uniqueness

定理

For (a,b)=(1,1) and $g\in L^2(\mathbb{R})$, suppose there are constants A,B such that

$$0 < A \le |g_P(x_1, x_2)|^2 \le B < \infty$$

a.e. in the square $0 \le x_1, x_2 < 1$. Then $\{g^{[m,n]}\}$ is a basis for $L^2(\mathbb{R})$, i.e., $\forall f \in L^2(\mathbb{R})$ can be expanded uniquely in the form $f = \sum_{m,n} a_{mn} g^{[m,n]}$. Indeed.

$$a_{mn} = \left\langle f_P, \frac{g_P^{[m,n]}}{|g_P|^2} \right\rangle = \left\langle \frac{f_P}{g_P}, E_{n,m} \right\rangle.$$

Since $|g_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 < 1$.

Since $|g_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 < 1$. Hence f_P/g_P is square integrable on this domain.

Since $|g_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 < 1$. Hence f_P/g_P is square integrable on this domain. From the periodicity properties in the lattice Hilbert space,

$$\frac{f_P}{g_P}(x_1 + n, x_2 + m) = \frac{f_P}{g_P}(x_1, x_2).$$

Since $|q_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 \le 1$. Hence f_P/q_P is square integrable on this domain. From the periodicity properties in the lattice Hilbert space,

$$\frac{f_P}{g_P}(x_1 + n, x_2 + m) = \frac{f_P}{g_P}(x_1, x_2).$$

It follows that

$$\frac{f_P}{g_P} = \sum a_{mn} E_{n,m}$$

where $a_{mn} = \langle f_P/q_P, E_{n,m} \rangle$.

Since $|q_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 \le 1$. Hence f_P/q_P is square integrable on this domain. From the periodicity properties in the lattice Hilbert space,

$$\frac{f_P}{g_P}(x_1 + n, x_2 + m) = \frac{f_P}{g_P}(x_1, x_2).$$

It follows that

$$\frac{f_P}{g_P} = \sum a_{mn} E_{n,m}$$

where $a_{mn} = \langle f_P/q_P, E_{n,m} \rangle_{\cdot, \cdot} \Rightarrow f_P = \sum a_{mn} E_{n,m} q_P$

Since $|q_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 \le 1$. Hence f_P/q_P is square integrable on this domain. From the periodicity properties in the lattice Hilbert space,

$$\frac{f_P}{g_P}(x_1 + n, x_2 + m) = \frac{f_P}{g_P}(x_1, x_2).$$

It follows that

$$\frac{f_P}{g_P} = \sum a_{mn} E_{n,m}$$

where $a_{mn} = \langle f_P/g_P, E_{n,m} \rangle$. $\Rightarrow f_P = \sum a_{mn} E_{n,m} g_P \Rightarrow f = \sum a_{mn} g^{[m,n]}$.

Since $|q_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 \le 1$. Hence f_P/q_P is square integrable on this domain. From the periodicity properties in the lattice Hilbert space,

$$\frac{f_P}{g_P}(x_1 + n, x_2 + m) = \frac{f_P}{g_P}(x_1, x_2).$$

It follows that

$$\frac{f_P}{g_P} = \sum a_{mn} E_{n,m}$$

where $a_{mn} = \langle f_P/g_P, E_{n,m} \rangle$. $\Rightarrow f_P = \sum a_{mn} E_{n,m} g_P \Rightarrow f = \sum a_{mn} g^{[m,n]}$. Conversely, given $f = \sum a_{mn} q^{[m,n]}$,

Since $|q_P|^{-1}$ is a bounded nonvanishing function a.e. on $0 \le x_1, x_2 \le 1$. Hence f_P/q_P is square integrable on this domain. From the periodicity properties in the lattice Hilbert space,

$$\frac{f_P}{g_P}(x_1 + n, x_2 + m) = \frac{f_P}{g_P}(x_1, x_2).$$

It follows that

$$\frac{f_P}{g_P} = \sum a_{mn} E_{n,m}$$

where $a_{mn} = \langle f_P/g_P, E_{n,m} \rangle$. $\Rightarrow f_P = \sum a_{mn} E_{n,m} g_P \Rightarrow f = \sum a_{mn} g^{[m,n]}$. Conversely, given $f = \sum a_{mn} q^{[m,n]}$.

$$a_{mn} = \langle f_P/g_P, E_{n,m} \rangle.$$

4 D > 4 D > 4 E > 4 E > E 990

章中科技大学 $a_{mn}g^{[m,n]}\Leftrightarrow f_P=\sum a_{mn}E_{n,m}g_P\Leftrightarrow f_P\overline{g}_P=\sum (a_{mn}E_{n,m})|g_P|^2.$

 $|\stackrel{\bullet}{\mathbf{F}}\stackrel{\bullet}{\mathbf{F}}\stackrel{\bullet}{\mathbf{F}}\stackrel{\bullet}{\mathbf{F}}\stackrel{\bullet}{\mathbf{F}} = \sum a_{mn}E_{n,m}g_P \Leftrightarrow f_P\overline{g}_P = \sum (a_{mn}E_{n,m})|g_P|^2.$

■ If g_P is bounded, then $f_P \overline{g}_P(x_1, x_2), |g_P|^2 \in V'$ are periodic functions in x_1 and x_2 with period 1.

 $a_{mn}a^{[m,n]}\Leftrightarrow f_P=\sum a_{mn}E_{n,m}g_P\Leftrightarrow f_P\overline{g}_P=\sum (a_{mn}E_{n,m})|g_P|^2.$

■ If g_P is bounded, then $f_P \overline{g}_P(x_1, x_2), |g_P|^2 \in V'$ are periodic functions in x_1 and x_2 with period 1.

$$f_P \overline{g}_P = \sum b_{mn} E_{n,m}, |g_P|^2 = \sum c_{mn} E_{n,m}$$

with

$$b_{mn} = \langle f_P \overline{g}_P, E_{n,m} \rangle = \langle f_P, g_P E_{n,m} \rangle = \langle f, g^{\rangle},$$

$$c_{mn} = \langle g_P \overline{g}_P, E_{n,m} \rangle \langle g, g^{[m,n]} \rangle.$$

 $a_{mn}a^{[m,n]}\Leftrightarrow f_P=\sum a_{mn}E_{n,m}g_P\Leftrightarrow f_P\overline{g}_P=\sum (a_{mn}E_{n,m})|g_P|^2$.

If g_P is bounded, then $f_P \overline{g}_P(x_1, x_2), |g_P|^2 \in V'$ are periodic functions in x_1 and x_2 with period 1.

$$f_P \overline{g}_P = \sum b_{mn} E_{n,m}, \ |g_P|^2 = \sum c_{mn} E_{n,m}$$

with

$$b_{mn} = \langle f_P \overline{g}_P, E_{n,m} \rangle = \langle f_P, g_P E_{n,m} \rangle = \langle f, g^{\rangle},$$

$$c_{mn} = \langle g_P \overline{g}_P, E_{n,m} \rangle \langle g, g^{[m,n]} \rangle.$$

 $|g_P| \neq 0$. Set c'_{mn} to be the Fourier coefficients of $|g_p|^{-2}$, then $|q_n|^{-2} = \sum_{n=1}^{\infty} c'_{mn} E_{n,m}$.

$$\frac{f_p \overline{g}_P}{|g_P|^2} = \sum a_{mn} E_{n,m} \Leftrightarrow \sum a_{mn} E_{n,m} = \sum b_{mn} E_{n,m} \sum c'_{mn} E_{n,m}.$$

章中科技大學 $a_{mn}g^{[m,n]}\Leftrightarrow f_P=\sum a_{mn}E_{n,m}g_P\Leftrightarrow f_P\overline{g}_P=\sum (a_{mn}E_{n,m})|g_P|^2$.

If g_P is bounded, then $f_P \overline{g}_P(x_1, x_2), |g_P|^2 \in V'$ are periodic functions in x_1 and x_2 with period 1.

$$f_P \overline{g}_P = \sum b_{mn} E_{n,m}, |g_P|^2 = \sum c_{mn} E_{n,m}$$

with

$$b_{mn} = \langle f_P \overline{g}_P, E_{n,m} \rangle = \langle f_P, g_P E_{n,m} \rangle = \langle f, g^{\rangle},$$

$$c_{mn} = \langle g_P \overline{g}_P, E_{n,m} \rangle \langle g, g^{[m,n]} \rangle.$$

 $|g_P| \neq 0$. Set c'_{mn} to be the Fourier coefficients of $|g_p|^{-2}$, then $|q_n|^{-2} = \sum_{n=1}^{\infty} c'_{mn} E_{n,m}$.

$$\frac{f_p \overline{g}_P}{|g_P|^2} = \sum a_{mn} E_{n,m} \Leftrightarrow \sum a_{mn} E_{n,m} = \sum b_{mn} E_{n,m} \sum c'_{mn} E_{n,m}.$$

 $|q_P|^2 = 0$ at some point.

$$\sum a_{mn} E_{n,m} = \sum b_{mn} E_{n,m} \sum c'_{mn} E_{n,m} \Leftrightarrow b = a * c$$

$$\Leftrightarrow b_{mn} = \sum a_{kl} c_{k'l'}.$$

作业

- 1. (This example is known as the *Gabor window*) Consider the case $g = \pi^{-1/4}e^{-t^2/2}$. Please verify the following:
 - Here g is essentially its own Fourier transform, centered about $(t_0, w_0) = (0, 0)$ in phase space.

$$g^{[x_1,x_2]}(t) = \pi^{-1/4}e^{2\pi itx_2}e^{-(t+x_1)^2/2}$$
 is centered about $(-x_1,x_2)$.

- **2.** Show directly that $PP^* = I$ on V'.
- **3.** Verify P^* is the adjoint of P.