Problem 57: Square root convergents.

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$

First four iterations:

$$1 + \frac{1}{2} = 1 + \frac{1}{2}$$

$$1 + \frac{1}{2 + \frac{1}{2}} = 1 + \frac{1}{\frac{5}{2}} = 1 + \frac{2}{5}$$

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = 1 + \frac{1}{2 + \frac{2}{5}} = 1 + \frac{5}{12}$$

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} = 1 + \frac{1}{2 + \frac{5}{12}} = 1 + \frac{12}{29}$$

Note that each iteration is of the form $1 + \frac{1}{2 + (\text{previous iteration} - 1)}$.

Problem 64: Odd period square roots. Every square root can be written as

$$\sqrt{n} = \text{floor}(\sqrt{n}) + (\sqrt{n} - \text{floor}(\sqrt{n})).$$

Since $(\sqrt{n} - \text{floor}(\sqrt{n})) < 1$, we can repeat this on $1/(\sqrt{n} - \text{floor}(\sqrt{n}))$ to build a continued fraction. A cycle is reached once a repeated fraction is equal to $1/(\sqrt{n} - \text{floor}(\sqrt{n}))$. This is the simplest solution, but can run into precision errors. Expanding explicitly,

$$\sqrt{n} = a + (\sqrt{n} - a) = a + \frac{1}{\frac{1}{\sqrt{n} - a} \times \frac{\sqrt{n} + a}{\sqrt{n} + a}} = a + \frac{1}{\frac{\sqrt{n} + a}{n - a^2}} = a + \frac{1}{b + \left(\frac{\sqrt{n} + a}{n - a^2} - b\right)}$$

where $a = \text{floor}(\sqrt{n})$ and $b = \text{floor}(\frac{\sqrt{n}+a}{n-a^2})$. Continuing, the term in parentheses becomes the fraction

$$\frac{\sqrt{n} + a - b(n - a^2)}{n - a^2} = \frac{1}{\frac{\text{int1}}{\sqrt{n} - \text{int2}} \times \frac{\sqrt{n} + \text{int2}}{\sqrt{n} + \text{int2}}} = \frac{1}{c + \left(\frac{\text{float}}{\text{int3}} - c\right)}.$$

This general structure works, but float and int3 quickly become very large, even though float/int3 < 1. A similar but better solution is as follows. Let a_i denote the floors and l_i, m_i be integers. Then

$$\sqrt{n} = a_0 + (\sqrt{n} - a_0) = a_0 + \frac{1}{a_1 + \frac{\sqrt{n} + a_0 - a_1(n - a_0^2)}{n - a_0^2}} = a_0 + \frac{1}{a_1 + \frac{\sqrt{n} + l_1}{m_1}}$$

where $m_1 = n - a_0^2$, $a_1 = \text{floor}((\sqrt{n} + a_0)/m_1)$, and $l_1 = a_0 - a_1(n - a_0^2)$. Iterating once more,

$$a_1 + \frac{\sqrt{n} + l_1}{m_1} = a_1 + \frac{1}{a_2 + \frac{m_1(\sqrt{n} - l_1) - a_2(n - l_1^2)}{n - l_1^2}} = \frac{1}{a_2 + \frac{\sqrt{n} + l_2}{m_2}}$$

where $m_2 = (n - l_1^2)/m_1$, $a_2 = \text{floor}((\sqrt{n} - l_1)/m_2)$, and $l_2 = -l_1 - a_2(n - l_1^2)/m_1$. It's straightforward to deduce the general recurrence relation for $i = 0, 1, 2, \ldots$,

$$m_{i+1} = (n - l_i^2)/m_i$$

$$a_{i+1} = \text{floor}((\sqrt{n} - l_i)/m_{i+1})$$

$$l_{i+1} = -l_i - a_{i+1}(n - l_i^2)/m_i$$

with $m_0 = 1, a_0 = \text{floor}(\sqrt{n}), l_0 = -a_0$. A cycle is reached once $m_i, a_i, l_i = m_1, a_1, l_1, i > 1$.

Problem 65: Convergents of e. We can't use the same algorithm as Problem 64 because l_i, m_i are no longer guaranteed to be integers. Instead we have the following. Let $x \in \mathbb{R}$. Then

$$x = a_0 + (x - a_0) = a_0 + \frac{1}{\frac{1}{x - a_0}} = a_0 + \frac{1}{a_1 + \frac{1 - a_1(x - a_0)}{x - a_0}}.$$

Iterating twice more,

$$a_1 + \frac{1 - a_1(x - a_0)}{x - a_0} = a_1 + \frac{1}{\frac{x - a_0}{1 - a_1(x - a_0)}} = a_1 + \frac{1}{a_2 + \frac{x - a_0 - a_2[1 - a_1(x - a_0)]}{1 - a_1(x - a_0)}}$$

$$a_{2} + \frac{x - a_{0} - a_{2}[1 - a_{1}(x - a_{0})]}{1 - a_{1}(x - a_{0})} = a_{2} + \frac{1}{\frac{1 - a_{1}(x - a_{0})}{x - a_{0} - a_{2}[1 - a_{1}(x - a_{0})]}}$$

$$= a_{2} + \frac{1}{a_{3}\frac{1 - a_{1}(x - a_{0}) - a_{3}\{x - a_{0} - a_{2}[1 - a_{1}(x - a_{0})]\}}{x - a_{0} - a_{2}[1 - a_{1}(x - a_{0})]}},$$

we can begin to see a pattern. Let k_i, l_i, n_i, m_i be integers at each iteration, i = 0, 1, 2, ..., with $a_0 = \text{floor}(x), k_0 = 1, l_0 = -a_0, m_0 = 0, n_0 = 1$, i.e.

$$x = a_0 + (x - a_0) = a_0 + \frac{x - a_0}{1} = a_0 + \frac{k_0 x + l_0}{m_0 x + n_0}$$

Iterating,

$$a_0 + \frac{k_0 x + l_0}{m_0 x + n_0} = a_0 + \frac{1}{\frac{m_0 x + n_0}{k_0 x + l_0}} = a_0 + \frac{1}{a_1 + \frac{m_0 x + n_0 - a_1 (k_0 x + l_0)}{k_0 x + l_0}}$$

$$= a_0 + \frac{1}{a_1 + \frac{(m_0 - a_1 k_0) x + (n_0 - a_1 l_0)}{k_0 x + l_0}} = a_0 + \frac{1}{a_1 + \frac{k_1 x + l_1}{m_1 x + n_1}}$$

with $a_1 = \text{floor}[(m_0x + n_0)/(k_0x + l_0)]$, $k_1 = m_0 - a_1k_0$, $l_1 = n_0 - a_1l_0$, $m_1 = k_0$, and $n_1 = l_0$. The general recurrence relation is

$$a_{i+1} = \text{floor}[(m_i x + n_i)/(k_i x + l_i)]$$

$$k_{i+1} = k_1 = m_i - a_{i+1} k_i$$

$$l_{i+1} = n_i - a_{i+1} l_i$$

$$m_{i+1} = k_i$$

$$n_{i+1} = l_i$$

 $i=0,1,2,\ldots$, with base $a_0=\operatorname{floor}(x),\ k_0=1,\ l_0=-a_0,\ m_0=0,\ n_0=1.$ Unfortunately this runs into numerical issues because both the numerator and denominator are floats. Instead, I brute force the calculation using the given information $e=[2;1,2,1,1,4,1,1,6,1,\ldots,1,2k,1,\ldots]$.

Problem 94: Almost equilateral triangles. Let the triangle base have length $m_{\pm} = n \pm 1$, with remaining sides of length n. The area

$$A = \frac{m}{2} \sqrt{n^2 - \left(\frac{m}{2}\right)^2}$$

can only be integer if the height $h = \sqrt{n^2 - \left(\frac{m}{2}\right)^2}$ is rational. For bases m_{\pm} ,

$$h_{\pm}^2 = n^2 - \left(\frac{m_{\pm}}{2}\right)^2 = \frac{1}{4}(3n^2 \mp 2n - 1)$$

Rather than looping through all n = 2, 3, 4, ..., and checking if each h_{\pm} is rational, we can convert the above to a quadratic Diophantine equation (e.g. Problem 66), obtain the fundamental integer solutions, and recursively compute other solutions; the resultant search space of possible (n, h) pairs will be drastically reduced. After re-arranging and completing the square, we can express

$$\left(\frac{3n\mp1}{2}\right)^2 - 3h^2 = 1,$$

which is Pell's equation with $x_{\pm} = \frac{3n \pm 1}{2}$, y = h, and D = 3. The fundamental solution (x_1, y_1) can be found via continued fractions (see p66.py), which can then recursively generate additional solutions via

$$x_{k+1} = x_1 x_k + D y_1 y_k$$
$$y_{k+1} = x_1 y_k + y_1 x_k.$$

Converting back to (n, h) is simple:

$$n = \frac{1}{3} (2x_{\pm} \pm 1), \quad h = y.$$

The solution search terminates once $n > \frac{p_{\text{max}}}{3} + 1$, or

$$x_{\pm} > \frac{1}{2} (p_{\text{max}} + 3 \mp 1).$$

Thus after obtaining all (x_i, y_i) , we convert to (n, h) and test if n and the triangle area A are integer. (Note that it is possible that n is not an integer; it is x and y that are guaranteed to be integer.)

Problem 100: Arranged probability. Let the total number of discs be $N = n_B + n_R$. We seek integers n_B, N such that

$$P(BB) = \left(\frac{n_B}{N}\right) \left(\frac{n_B - 1}{N - 1}\right) = \frac{1}{2}.$$

After some algebra, this can be expressed as the negative Pell equation

$$x^{2} - Dy^{2} = -1$$
 where $D = 2$, $x = 2N - 1$, and $y = 2n_{B} - 1$.

Since the continued fraction of $\sqrt{D} = \sqrt{2}$ has odd period (equal to 1), the fundamental solution (x_1, y_1) can be obtained just like the positive Pell equation via continued fraction convergents (see p66.py). Other solutions are obtained recursively from

$$x_{k+1} = 3x_k + 4y_k$$

$$y_{k+1} = 2x_k + 3y_k$$

up until $N > N_{\text{max}}$ or $(x+1)/2 > N_{\text{max}}$.