VHD L

UP/DW SYNC COUNTER - EXE

Testo

Creare un contatore di tipo Up/Down sincrono con larghezza contatore generica (No process). Utilizzare il ff_d.vhd come FlipFlop. Simulare con il file top_sim.vhd fornito

```
entity UpDownSyncCounter is
   Generic(
        COUNT_WIDTH : integer := 4
   );
   Port (
        reset : in std_logic;
        clk : in std_logic;
        inc_count : in std_logic;
        dec_count : in std_logic;
        count : out std_logic;
        count : out std_logic_vector(COUNT_WIDTH-1 DOWNTO 0) -- Signed    );
end UpDownSyncCounter;
```

Testo

Il sistema deve avere il seguente comportamento:

- Se inc_count = '1' and dec_count = '1' -> count <= count al fronte di clk
- Se inc_count = 'o' and dec _count = 'o' -> count <= count al fronte di clk
- Se inc_count = '1' and dec _count = '0' -> count <= count+1 al fronte di clk
- Se inc_count = 'o' and dec _count = '1' -> count <= count-1 al fronte di clk

Name	Value	0 ns	7 (3 3		20 ns		40	15		60 ns	7 1 7	886.3	80 ns	84.8	7.7.7	100 ns	7.1.7
¹₩ clk	0																
¼ reset	0	1															
¹⅓ inc_count	0																
¹⅓ dec_count	0																
> 🔣 count[3:0]	0			0		X	-1	X	-2	X	-1	X	• X	1	2		0

Note

Note:

- Allegato file ff_d.vhd (Flip Flop D)
- File simulazione top_sim.vhd
- Utilizzare la libreria numeric_std per le operazioni matematiche

Attenzione: di seguito alcune linee guida per arrivare ad una soluzione dell'esercizio.

Consiglio di non leggerli prima di aver pensato autonomamente ad una soluzione.

Consigli

Nel modulo deve essere presente un elemento di memoria che permette di conoscere il valore del contatore attuale. Visto che il contatore è più di un bit si deve istanziare tramite un «for generate» il giusto numero di ff_d

Consigli

L'operazione di somma e sottrazione deve essere pronta prima di entrare nell'ingresso dei Flip Flop. Il risultato da caricare nei registri sarà selezionata da un Mux pilotato da una apposita logica. Usare il costrutto **«when»** oppure **«select»** per la costruzione.

