

Microlensing parameters in MulensModel

Radek Poleski last update: Jul 2025

Microlensing parameters of the ModelParameters class in the MulensModel package are presented on the next page:

•
_

Parameter	Name in MulensModel	Unit	Description
t_0	t_0		The time of the closest approach between the source and the lens.
u_0	u0		The impact parameter between the source and the lens center of
			mass.
$t_{ m E}$	t_E	d	The Einstein crossing time.
$t_{ m eff}$	t_eff	d	The effective timescale, $t_{\rm eff} \equiv u_0 t_{\rm E}$.
ho	rho		The radius of the source as a fraction of the Einstein ring.
t_{\star}	t_star	d	The source self-crossing time, $t_{\star} \equiv \rho t_{\rm E}$.
$\pi_{\mathrm{E},N}$	pi_E_N		The North component of the microlensing parallax vector.
$\pi_{\mathrm{E},E}$	pi_E_E		The East component of the microlensing parallax vector.
$t_{0,\mathrm{par}}$	t_O_par		The reference time for parameters in parallax models. ^a
K	${\tt convergence_K}$		External mass sheet convergence.
G	${ t shear_G}$		External mass sheet shear; complex valued to represent both the
			magnitude and angle relative to the binary axis.
s	s		The projected separation between the lens primary and its com-
			panion as a fraction of the Einstein ring radius.
q	q		The mass ratio between the lens companion and the lens primary
			$q \equiv m_2/m_1$.
α	alpha	\deg .	The angle between the source trajectory and the binary axis.
ds/dt	dsdt	yr^{-1}	The rate of change of the separation.
$d\alpha/dt$	dalpha_dt	$\deg. \ yr^{-1}$	The rate of change of α .
s_z	$S_{-}Z$		Position along the line of sight as a fraction of the Einstein ring
			radius. Positive axis points to the observer. ^b
ds_z/dt	ds_z_dt	yr^{-1}	The rate of change of s_z . ^b
$t_{0,\mathrm{kep}}$	t_0_{kep}		The reference time for lens orbital motion calculations. ^a
$x_{\rm caustic,in}$	$x_{caustic_{in}}$		Curvelinear coordinate of caustic entrance for a binary lens model. c
$x_{\rm caustic,out}$	$x_{caustic_out}$		Curvelinear coordinate of caustic exit for a binary lens model. ^c
$t_{ m caustic,in}$	$t_{caustic_in}$		Epoch of caustic exit for a binary lens model. ^c
$t_{ m caustic,out}$	t_caustic_out		Epoch of caustic exit for a binary lens model. ^c
ξ_P	$ exttt{xi_period}$	d	The orbital period of xallarap.
ξ_a	xi_semimajor_axis		The semimajor axis of a xallarap orbit as a fraction of the Einstein
			ring.
ξ_i	$ exttt{xi_inclination}$	deg	The inclination of a xallarap orbit. ^d
ξ_Ω	xi_Omega_node	\deg	The longitude of the ascending node of a xallarap orbit. ^d

ξ_u	xi_argument_of_latitude_reference	deg	The argument of latitude at the reference epoch $(t_{0,\chi})$. The argument of latitude is a sum of true anomaly $(\nu, \text{ changes with time})$ and the argument of periapsis $(\omega, \text{ orbit parameter, i.e., does not change with time}): u = \nu + \omega.^d$
ξ_e	$ exttt{xi_eccentricity}$		The eccentricity of a xallarap orbit.
ξ_ω	xi_omega_periapsis	\deg	The argument of periapsis of a xallarap orbit. ^d
$q_{ m source}$	q_source		Mass ratio of source components: $m_{s,2}/m_{s,1}$. It is valid only for xallarap models.
$t_{0,\xi}$	t_0_xi		The reference epoch for parameters in xallarap models. a

Table 1: Notes:

 $[^]a$ – $t_{0,\mathrm{par}}$, $t_{0,\mathrm{kep}}$, and $t_{0,\chi}$ are reference parameters, hence, do not change these during fitting.

b – To include keplerian motion of the lenses on a circular orbit either s_z or ds_z/dt has to be defined.

^c – The four parameters of binary lens in Cassan (2008) parameterization ($x_{\text{caustic,in}}$, $x_{\text{caustic,out}}$, $t_{\text{caustic,out}}$, are used instead of (t_0 , u_0 , t_E , α).

 $^{^{}d}$ – The orbital angles are illustrated in Figure 1.

Figure 1: Definition of orbital angles. There are Wikipedia articles that give more details: orbital elements and argument of latitude. For xallarap, the reference direction is the relative lens-source proper motion direction and the reference plane is the plane of the sky.

Some of the parameters can be defined separately for each of the sources in binary source models. In that case, add $_1$ or $_2$ to parameter name. These are:

- t_0_1, t_0_2,
- u_0_1, u_0_2,
- rho_1, rho_2,
- t_star_1, t_star_2.

Also note that there are properties of the microlensing events that are not considered parameters in the ModelParameters class, but are implemented in other parts of the MulensModel. The most important are:

- source and blending fluxes Event and FitData; also see use case 38,
- sky coordinates Model.coords,
- limb-darkening coefficients Model.set_limb_coeff_gamma and Model.set_limb_coeff_u,
- flux ratio for binary source models Model.set_source_flux_ratio and Model.set_source_flux_ratio_for_band,
- methods used to calculate magnification Model.set_magnification_methods,
- coordinates of space telescopes Model.get_satellite_coords.