Como fazer o título caber?

Kaique M. M. Oliveira

UNIVERSIDADE DE SÃO PAULO departamento de computação e matemática

Orientadora: Profa. Dra. Vanessa Rolnik Artioli

13 de Novembro de 2024

Sumário

- Introdução
 - Exemplo 1: Propagação de descontinuidades
 - Exemplo 2: Falta de injetividade entre valores iniciais e soluções
- Existência e Regularidade das soluções das Equações com Retardo
 - Propagação de Descontinuidades
- Métodos Numéricos Contínuos
 - Métodos Contínuos para EDOs
- 4 O Modelo SIR
 - Descrição Matemática
 - Número Básico de Reprodução
 - Tamanho da Epidemia
- 6 Referências

Introdução

Definição 1 (Equações Diferenciais Ordinárias (EDOs))

Um *Problema de Valor Inicial (PVI)* para *Equações Diferenciais Ordinárias (EDOs)* é dado por

$$\begin{cases} y'(t) = g(t, y(t)), & t_0 \le t \le t_f, \\ y(t_0) = y_0, \end{cases}$$
 (1)

para $g:[t_0,t_f]\times\mathbb{R}^d\to\mathbb{R}^d$ e $(t_0,y_0)\in\mathbb{R}\times\mathbb{R}^d$. Quanto ao PVI 1, nós temos:

- A primeira equação é a chamada EDO e a segunda, o valor inicial.
- Uma função $\gamma:[t_0,t_f]\to\mathbb{R}^d$ é dita solução do PVI se γ é diferenciável e se satisfaz 1.

Introdução

Definição 2 (Condição de Lipschitz)

Diz-se que uma função $g:D=[t_0,t_f]\times\mathbb{R}^d\to\mathbb{R}^d$ satisfaz uma condição de *Lipschitz* em relação a variável y no conjunto D se, e somente se,

$$\|g(t, y_1) - g(t, y_2)\| \le L\|y_1 - y_2\|,$$
 (2)

para todo $(t, y_1), (t, y_2) \in D$ para alguma constante L > 0.

Teorema 1 (Existência e Unicidade)

Considere o PVI (1). Se g for contínua e satisfazer a condição de Lipschitz na variável y no conjunto D, então existe uma única solução y(t) em $[t_0, t_f]$ de (1)

Definição 3 (Problema bem posto)

O problema de valor inicial (1) é dito ser um *problema bem posto* se

- Existe uma única solução y(t) para o PVI.
- Existem constantes $\epsilon_0 > 0$ e k > 0 tais que, para qualquer ϵ sendo $0 < \epsilon < \epsilon_0$ o problema perturbado

$$\begin{cases} z'(t) = g(t, z(t)) + \delta(t), & t_0 \leq t \leq t_f, \\ z(t_0) = \alpha + \delta_0, \end{cases}$$

possui uma solução única z(t) que satisfaz

$$|z(t) - y(t)| < k\epsilon, \quad \forall t \in [t_0, t_f],$$

para toda função $\delta \in C^0([t_0,t_f],(-\epsilon,\epsilon))$ e todo $|\delta_0|<\epsilon$.

Revisão EDO

Teorema 2 (Problema bem posto)

Considere o PVI (1). Se g satisfaz as condições do Teorema de Existência e Unicidade 1, então o problema (1) é bem posto.

- Equações Diferenciais com Retardo (EDRs) generalizam as EDOs ao levarem em consideração o estado passado da solução na sua equação.
- Seu Problema de Valor Inicial (PI, para evitar confusões) pode ser descrito de forma mais ou menos geral. Utilizaremos a definição utilizada por Bellen e zennaro, que é prática do posto de vista numérico.

Definição 4 (Equações Diferenciais com Retardo (EDRs))

Seja p > 0. Um PI para EDRs é dado por

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t_0 \le t \le t_f, \\ y(t) = \phi(t), & t_0 - p \le t \le t_0, \end{cases}$$
(3)

para $f:[t_0,t_f]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^d$, para $\tau:[t_0,t_f]\times\mathbb{R}^d\to[0,p]$ e para $\phi:[t_0-p,t_0]\to\mathbb{R}^d$. Quanto ao PI (3), nós temos:

- A primeira equação do PI é a chamada EDR, já a segunda, o estado inicial.
- Uma função $\gamma:[t_0-p,t_f]\to\mathbb{R}^d$ é chamada de *solução* para o PI se γ for contínua em $[t_0-p,t_f]$, diferenciável em $[t_0,t_f]$ e satisfaz (3).
- A função τ é chamada de *retardo* e assumisse que $\tau(t, y(t)) \geq 0$ para todo $t \in [t_0, t_f]$.

Quanto ao retardo $\tau(t, y(t))$, dizemos que

- O retardo depende do estado quando a função τ depende tanto do tempo t, quando do estado y. quanto do estado y
- O retardo depende do tempo caso a função retardo au dependa apenas da tempo t.
- *O retardo é constante* caso τ for constante.

Novos desafios emergem ao fazer a generalização das EDOs para EDRs, sendo necessária uma nova teoria de existência, unicidade e estabilidade das soluções.

Exemplo 1: Propagação de descontinuidades

Considere a equação

$$\begin{cases} y'(t) = -y(t-1), & t \ge 0, \\ y(t) = \phi(t) = 1, & t \le 0. \end{cases}$$

$$\tag{4}$$

Observe que

$$y'(0)^- = 0 \neq -1 = -y(-1) = y'(0)^+,$$

o que significa que y' tem uma descontinuidade no 0. Mais ainda, derivando a primeira equação de (4) obtemos

$$y''(t) = -y'(t-1),$$

mostrando que a descontinuidade foi propagada para a segunda derivada de y no ponto 1.

Exemplo 1: Continuação

Mostraremos, por indução, que a equação y''(t) = -y'(t-1) implica na seguinte relação de recorrência

$$y^{(n+1)}(t) = (-1)^n y'(t-n), \qquad n = 1, 2, ...$$

Sabemos que a relação é valida para n=1, suponhemos que o resultado para algum k>1, então

$$y^{n+2}(t) = (-1)^n \frac{d}{dt} y'(t-n) = (-1)^{n+1} y'((t-(n+1))$$

Logo, a relação é válida para todo $n \ge 1$ e, de fato, a descontinuidade de y'(0) é propagada para todo $y^{(n+1)}(n)$.

Exemplo 1: Continuação

- A solução do PI (4) $\begin{cases} y'(t)=-y(t-1), & t\geq 0, \\ y(t)=\phi(t)=1, & t\leq 0. \end{cases}$ existe?
- Observe que, para todo $t \in [0,1]$, tem-se que $t-1 \in [-1,0]$, logo, o PI (4) se reduz ao seguinte PVI

$$\begin{cases} y'(t) = -1, & t \in [0, 1], \\ y(0) = \phi(0) = 1. \end{cases}$$

Cuja solução é única e dada por y(t) = 1 - t em [0, 1].

- Repetindo este processo, o PI se reduz a um PVI nos intervalos $[i, i+1], i=1,2,\ldots$, cuja solução existe e é única.
- Este método é chamado de *método dos passos* e é a base para os métodos numéricos para EDRs.

Exemplo 1: Continuação

inaeiudnae GRÁFICO COMENTADO

Exemplo 2: Falta de injetividade entre valores iniciais e soluções

Considere a equação

$$y'(t) = y(t-1)(y(t)-1), t \ge 0,$$
 (5)

- Para toda $\phi: \mathbb{R} \to \mathbb{R}^d$ tal que $\phi(0) = 1$, tem-se que y(t) = 1 é solução.
- Então a unicidade entre valores iniciais e soluções é violada.
- Como veremos no teorema 3, isso ocorre porque a função f(t,y,x)=x(y-1) não satisfaz a condição de Lipschitz nas variáveis y e x.
- Para tanto, precisamos extender a definição 2.

Exemplo 2 (Continuação)

Definição 5 (Condição de Lipschitz)

Uma função $f: \overline{D} = [t_0, t_f] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ é dita que satisfaz a condição **Lipschitz** em relação às variáveis y e x no conjunto \overline{D} se, e somente se,

$$||f(t, y_1, x_2) - f(t, y_2, x_2)|| \le L(||y_1 - y_2|| - ||x_1 - x_2||),$$
 (6)

para todo $(t, y_1, x_1), (t, y_2, x_2) \in \overline{D}$ e para alguma constante L > 0.

• Considere os pontos $(0, \frac{1}{n}, \frac{1}{n})$ e $(0, 0, \frac{1}{n})$, então

$$\left\| f\left(0,\frac{1}{n},\frac{1}{n}\right) - f\left(0,0,\frac{1}{n}\right) \right\| = \left\| \frac{1}{n} \right\| = \left| \frac{1}{n} \right| \left(\left\| \frac{1}{n} - 0 \right\| - \left\| \frac{1}{n} - \frac{1}{n} \right\| \right).$$

• Como $|\frac{1}{n}| \to \infty$, então f(t, y, x) = x(y - 1) não satisfaz a definição 5.

TSP 14/43

Definição: Equações Diferenciais do tipo Neutro com Retardo (EDRNs) ??

Definição 6 (Equações Diferenciais do tipo Neutro com Retardo (EDRNs))

Seja p > 0. Um PI para EDRNs é dado por

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t))), y'(t - \sigma(t, y(t))), & t_0 \leq t \leq t_f, \\ y(t) = \phi(t), & t_0 - p \leq t \leq t_0, \end{cases}$$

$$\text{para } f: [t_0, t_f] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d, \ \tau: [t_0, t_f] \times \mathbb{R}^d \to [0, p],$$

$$\sigma: [t_0, t_f] \times \mathbb{R}^d \to [0, p] \text{ e } \phi: [t_0 - p, t_0] \to \mathbb{R}^d.$$

$$(7)$$

Quanto ao PI (7), tem-se que:

- A primeira equação do PI é a chamada EDRN, já a segunda, o estado inicial.
- Uma função $\gamma:[t_0-p,t_f]\to\mathbb{R}^d$ é chamada de solução para o PI se γ for contínua em $[t_0-p,t_f]$, diferenciável em $[t_0,t_f]$ e satisfaz (7).
- A função τ é chamada de *retardo* e assumisse que $\tau(t, y(t)) \geq 0$ para todo $t \in [t_0, t_f]$.
- Naturalmente, mais dificuldades são introduzidas ao genearalizar as EDRs. No próximo exemplo, mostra-se que as descontinuidades não se suavizam conforme o tempo aumenta.

Exemplo 3: Propagação de Descontinuidades (EDRs)

Considere a equação

$$\begin{cases} y'(t) = -y'(t-1), & t \ge 0, \\ y(t) = t, & t \le 0. \end{cases}$$
 (8)

Como

$$y'(0)^- = 1 \neq -1 = -y'(-1) = y'(0)^+,$$

temos que a a primeira derivada de y tem uma descontinuidade no ponto t=0, mas já que y'(t)=-y'(t-1), então a descontinuidade se propaga em y' para todo $t=2,3,\ldots$

Exemplo 3: Continuação

• Utilizando o método dos passos em (8), é possível mostrar por indução que a seguinte função é solução

$$y(t) = \begin{cases} -t + 2k, & t \in [2k, 2k + 1], & k = 0, 1, \dots \\ t - 2k, & t \in [2k - 1, 2k], & k = 1, 2, \dots \end{cases}$$

 Cuja gráfico é dado por gráfico comentado

Teorema 3 (Existência local)

Considere a equação (3), ou seja,

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t \ge t_0 \\ y(t) = \phi(t), & t \le t_0 \end{cases}$$

Sejam $U \subseteq \mathbb{R}^d$ e $V \subseteq \mathbb{R}^d$ vizinhanças de $\phi(t_0)$ e $\phi(t_0 - \tau(t_0, \phi(t_0)))$, respectivamente, e suponha que a função f(t, u, v) seja contínua em relação a t e Lipschitz contínua em relação a u e v em $[t_0, t_0 + h] \times U \times V$ para algum h > 0. Além disso, suponha que a função inicial $\phi(t)$ seja Lipschitz contínua para $t \le t_0$ e que a função de atraso $\tau(t, y) \ge 0$ seja contínua em relação a t e Lipschitz contínua em relação a t e Lipschitz contínua em relação a t e Lipschitz contínua em relação em $[t_0, t_0 + h] \times U$. Então o problema t tem uma única solução em t0, t0 para algum t0 e esta solução depende continuamente dos dados iniciais.

Existência e Regularidade das soluções das Equações com Retardo

• Nesta seção, generalizaremos alguns dos conceitos dos exemplos já apresentados, e além.

Propagação de Descontinuidades

• Para simplificar a notação, introduziremos a seguintes funções.

$$\alpha(t) = t - \tau(t, y(t))$$
 e $\beta(t) = t - \sigma(t, y(t)),$

os quais são chamados de argumentos deviados.

- Note que $\alpha(t) \leq t$ e $\beta(t) \leq t$.
- Partiremos do caso escalar de (3), ou seja, $y(t) \in \mathbb{R}$.
- ullet Também consideraremos que lpha(t) depende apenas do tempo.

:

• Suponha que $\alpha(t) \leq t_0$ para algum intervalo em $[t_0, t_f]$ e que y(t) tem uma descontinuidade em sua primeira derivada no ponto t_0 , ou seja,

$$y'(t_0)^- = \phi'(t_0)^- \neq f(t_0, \phi(t_0), \phi(\alpha(t_0))) = y'(t_0)^+$$

- Se f, ϕ e α forem contínuas, então y'(t) é também contínua para todo $t > t_0$.
- Se f, ϕ e α forem diferenciáveis, então y''(t) existe para qualquer t, exceto, talvez, nos pontos $\xi_{1,i} > t_0$ que são raízes da equação

$$\alpha(t)=t_0,$$

sendo i referente a multiplicidade da raiz.

• Suponha que $\alpha(\xi_{1,i}) = t_0$ e que $\alpha'(\xi_{1,i}) \neq 0$, pela regra da cadeia, obtemos

$$y''(t)^{\pm} = \frac{\partial f}{\partial t}(t, y(t), y(\alpha(t))) + \frac{\partial f}{\partial y}(t, y(t), y(\alpha(t)))y'(t) + \frac{\partial f}{\partial x}(t, y(t), y(\alpha(t)))y'(\alpha(t))^{\pm}\alpha'(t),$$
(9)

- Como assumimos que $\phi'(t_0)^- \neq y'(t_0)^+$, então não existe $y''(\xi_{1,i})^- \neq y''(\xi_{1,i})^+$ e, portanto, y'' tem uma descontinuidade em $\xi_{1,i}$.
- De forma análoga, é possível mostrar que as descontinuidades se propagam para y''' nos pontos $\xi_{2,i}$ tais que $\alpha(\xi_{2,i}) = \xi_{1,i}$, e assim sucessivamente.

- Cada $\xi_{k,i}$ gera uma descontinuidade em $y^{(k+1)}$. Estes pontos são chamados de descontinuidades primárias de k-ésimo nível.
- Note que, conforme o nível das descontinuidades primárias aumenta, também aumenta a suavidade da solução, como descrito por Neves e Feldstein em [1] na forma do seguinte teorema.

Teorema 4 (Suavização para EDRs)

Se $\xi_{j,i}$ é um ponto de descontinuidade primária onde a função y(t) tem derivadas contínuas até a ordem $\omega-1$, então y(t) é continuamente diferenciável no ponto propagado $\xi_{j+1,k}$ pelo menos até a ordem $z\cdot\omega$, desde que $\xi_{j+1,k}$ seja uma raiz de $\alpha(t)=\xi_{j,i}$ com multiplicidade ímpar z.

- Tal suavização, em geral, não ocorre para EDRNs.
- Suponha que y' tem um ponto de descontinuidade em t_0 para a equação 7;
- Suponha que exista $\bar{\xi}_{1,i}>t_0$ tal que $\beta(\bar{\xi}_{1,i})=t_0$. Caso

$$f(\bar{\xi}_{1,i}, y(\bar{\xi}_{1,i}), y(\alpha(\bar{\xi}_{1,i})), \phi'(t_0)^-) \neq f(\bar{\xi}_{1,i}, y(\bar{\xi}_{1,i}), y(\alpha(\bar{\xi}_{1,i})), y'(t_0)^+),$$
 (10)

Então $\bar{\xi}_{1,i}$ é uma descontínuidade em y'

 \bullet Observe que cada uma destas descontinuidades podem gerar mais discontinuidades através da função α ou β . Como Segue na próxima ilustração.

Gráfico comentado

- Em geral, a suavização das solução de EDRNs não pode ser garantida.
- \bullet No entanto, o seguinte teorema abaixo é foi encontrado por Neves e Thompson [2] que garante a suavização das EDRNs tais que $\tau=\sigma$ e que

$$\phi'(t_0)^- = y'(t_0)^+ = f(t_0, \phi(t_0), \phi(\alpha(t_0), \phi'(\alpha(t_0))))$$

Teorema 5 (Suavização para EDRNs)

Se $\xi_{j,i}$ é um ponto de descontinuidade primário onde a função y(t) possui derivadas contínuas até a ordem $\omega-1$, então y(t) é continuamente diferenciável no ponto propagado $\xi_{j+1,k}$ pelo menos até a ordem $z\cdot(\omega-1)$, desde que $\xi_{j+1,k}$ seja uma raiz de (2.1.5) com multiplicidade ímpar z.

USP 26/43

Desaparecimento do Retardo

- Diz-se que o retardo desaparece caso $\alpha(t) = t$ para algum t, ou seja, nos pontos fixos de α .
- Neste caso, as descontinuidades se acumulam a esquerda do ponto fixo, como visto na Proposição 1 abaixo.
- Considere, como hipótese para a Proposição 1, que f, ϕ, α e β sejam C^{∞} nos seus respectivos domínios.

Proposição 1

Seja $\xi > t_0$ único ponto fixo de α em $[t_0, \xi]$, ou seja, não existe outro ξ neste intervalo tal que $\alpha(\xi) = \xi$. Suponha que exista alguma descontinuidade primária $\xi_{k,i} < \xi$ de grau k tal que $\alpha(\xi_{k,i}) < \xi_{k,i}$. Então, para qualquer vizinhança a esquerda de ξ , existem infinitos pontos de descontinuidade nesta vizinhança.

Desaparecimento do Retardo

Demonstração.

- Como α é contínua, e como $\alpha(\xi_{k,i}) \leq \xi_{k,i} \leq \alpha(\xi)$, temos que, pelo teorema do valor intermediário, existe $\xi_{k+1,j} \in (\xi_{k,i},\xi)$ tal que $\alpha(\xi_{k+1,j}) = \xi_{k,i}$.
- Continuando este processo, podemos criar a sequência monotonicamente crescente $s=\{\xi_{k,i},\xi_{k+1,j},...\}$ limitada superiormente por ξ .
- Para simplificar a notação, denotaremos esta sequência por $s=\{s_1,s_2,\dots\}$, observe que $\alpha(s_{k+1})=s_k$ para todo $k=1,2,\dots$
- Pelo teorema da convergência monótona, temos que $\lim_{n\to\infty} s_n = \sup_{n>1} s_n \le \xi$. Logo, nós temos

$$\sup_{n\geq 1} s_n = \lim_{n\to\infty} s_n = \lim_{n\to\infty} \alpha(s_{n+1}) = \alpha(\lim_{n\to\infty} s_{n+1}) = \alpha\left(\sup_{n\geq 1} s_n\right).$$

ESP 28/43

Desaparecimento do Retardo

Demonstração ... Continuação.

:

- Como ξ é único ponto fixo em $[t_0, \xi]$ por hípotese, então $\lim_{n\to\infty} s_n = \xi$. Portanto, existem infinitos pontos de descontinuidade em qualquer vizinhança a esquerda de ξ .
- Para evitar este problema, a seguinte hipótese sobre α é introduzida.

Hipótese 1

Existe uma constante $\tau_0 > 0$ tal que $\tau(t) = t - \alpha(t) > \tau_0$ para todo $t \in [t_0, t_f]$.

[[S]P 29/43

Desaparecimento do Retardo

Figura: fig:Desaparecimento do Retardo

Retardos Limitados e Ilimitados

Retardos Limitados

- Caso o retardo seja limitado, a suavização da solução como visto no teorema 4, não ocorre.
- Para mostrar tanto, supoha que exista algum M>0 tal que $\lim_{t\to\infty}\alpha(t)\leq M.$
- Suponha que $\xi_{k,i}$ seja uma descontinuidade primária em $[M,+\infty)$, então $\alpha(t) < M < \xi_{k,j}$ para todo t > M, logo não existe $\xi_{k+1,i}$ que satisfaz $\alpha(\xi_{k+1,i}) = \xi_{k,j}$.
- Segue uma ilustração deste fenômemo.

Retardos Limitados e Ilimitados

Figura: Retardo limitado

Retardos Limitados e Ilimitados

ullet Para garantir a suavização das soluções, a função lpha deve setisfazer as seguintes duas hipóteses.

Hipótese 2

$$\lim_{t\to+\infty}\alpha(t)=+\infty.$$

Hipótese 3

Existe uma constante $\tau_1 > 0$ tal que $\tau(t) = t - \alpha(t) \le \tau_1$ para todo $t \in [t_0, t_f]$.

• abaixo, segue uma figura ilustrativa dessas três hipóteses em ação.

Retardos Limitados e Ilimitados

Figura: Hip 123

Descontinuidades Principais

• Dentre as descontinuidades primárias, um tipo delas se destaca em importância.

Definition 1

Seja $\bar{\xi_0}=t_0$ definido como uma descontinuidade principal de nível 0. Indutivamente, uma descontinuidade principal de nível (k+1) é a menor raiz $\bar{\xi}_{k+1}$ de

$$\alpha(t) = \bar{\xi_k}$$

com multiplicidade ímpar, sendo $\bar{\xi_k}$ uma descontinuidade principal de nível (k)

- Note que $lpha(t) \leq ar{\xi}_k, \quad orall t \in \left[ar{\xi}_k, ar{\xi}_{k+1}
 ight]$ e todo k
- Logo, a EDR (3) se reduz a uma EDO nos intervalos $\left[\bar{\xi}_k, \bar{\xi}_{k+1}\right]$.

TSP 35/43

Existência e unicidade de soluções

Teorema 6 (Existência local)

Teorema 2.2.4 Considere a equação 7, ou seja,

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t \ge t_0 \\ y(t) = \phi(t), & t \le t_0 \end{cases}$$

Sejam $U \subseteq \mathbb{R}^d$ e $V \subseteq \mathbb{R}^d$ vizinhanças de $\phi(t_0)$ e $\phi(t_0 - \tau(t_0, \phi(t_0)))$, respectivamente, e suponha que a função f(t, u, v) seja contínua em relação a t e Lipschitz contínua em relação a u e v em $[t_0, t_0 + h] \times U \times V$ para algum h > 0. Além disso, suponha que a função inicial $\phi(t)$ seja Lipschitz contínua para $t \le t_0$ e que a função de atraso $\tau(t, y) \ge 0$ seja contínua em relação a t e Lipschitz contínua em relação a t e Lipschitz contínua em relação a t e t em uma única solução em t em t esta solução depende continuamente dos dados iniciais.

Métodos Contínuos para EDOs

Definição 7 (Método de k-passos)

Para n = 0, ..., N - 1, sejam

- $\Delta = \{t_0, ..., t_N = t_f\}$ uma malha,
- $h_{n+1} = t_{n+1} t_n$ os passos,

Um método numérico para resolver o PVI (1) é chamado de *método de k-passos* se ele satisfaz

$$y_{n+1} = \alpha_{n,1}y_n + \dots + \alpha_{n,k}y_{n-k+1} + h_{n+1}\Phi(y_n, \dots, y_{n-k+1}; g, \Delta_n), \quad (11)$$

para $n \ge k - 1$ e para $\Delta_n = \{t_{n-k+1}, ..., t_n, t_{n+1}\}.$

A função Φ é chamada de função incremento.

alguma função Φ , chamada de função incremento e parâmetros $\alpha_{n,1},...,\alpha_{n,k}$, que definem os métodos particulares. A partir do y_0 dado

empty frame for reference

empty frame for reference

Modelo de Kermack e McKendrick

Modelo SIR

- *s*, *i*, *r* := Percentual de Susceptíveis, Infectados e Removidos;
- $\beta, \gamma :=$ Taxa média de Contato e de Remoção por tempo;

$$\bullet \ \, \text{O modelo \'e dado por} \begin{cases} \frac{ds}{dt} &= -\beta is; \\ \frac{di}{dt} &= \beta is - \gamma i; \text{ onde } s+i+r=1; \\ \frac{dr}{dt} &= \gamma i \gamma. \end{cases}$$

- Note que a taxa de infeção é homogênea, ou seja, a chance de um indivíduo infectado contaminar outra pessoa é sempre a mesma, independente da pessoa.
- Soluções analíticas para o modelo são difíceis de encontrar, o que não nos impede de tirar conclusões importantes sobre o comportamento do modelo.

Modelo de Kermack e McKendrick

Número Básico de Reprodução

- Suponha que a população sucetível seja 1. O Número Básico de Reprodução R_0 é o número médio de pessoas que a doença é transmitida antes da pessoa ser imunizada. Note que, se $R_0 > 1$ a doença cresce, já se $R_0 < 0$, a doença descresce. O limiar epidemiológico é definido quando $R_0 = 1$ i.
- No modelo SIR, a doença cresce quando $\frac{di}{dt} > 0$. Supondo que s=1 obtemos

$$0 < \frac{di}{dt} = \beta i s - \gamma i \iff 0 < \beta i - \gamma i \iff i < \frac{\beta}{\gamma} i \iff 0 < \frac{\beta}{\gamma}$$

ou seja, $R_0=rac{eta}{\gamma}$ denota o início da epidemia.

Modelo de Kermack e McKendrick

Tamanho da Epidemia

• O tamanho da epidemia no modelo SIR nunca é igual a 1 independente se $R_0 >> 1$ (onde $R_0 < \infty$), ou seja

$$s_{\infty}=1-r_{\infty}>0, \quad \forall R_0\in\mathbb{R}.$$

A demonstração deste fato é envolvida, eis um modelo visual interativo para exploração: geogebra

Referências

K. W. Neves and A. Feldstein,

Characterization of jump discontinuities for state dependent delay differential equations.

Journal of Mathematical Analysis and Applications, 56:689-707, 1976.

Referências

https://api.semanticscholar.org/CorpusID: 121097839.

K. W. Neves and S. Thompson,

Software for the numerical solution of systems of functional differential equations with state-dependent delays.

Applied Numerical Mathematics, 9(3):385-401, 1992.

https://doi.org/10.1016/0168-9274(92)90029-D.

Referências

M. E. J. Newman, Spread of epidemic disease on networks. Phys. Rev. E, 66(1):016128, 2002.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications.

Phys. Rev. E, 64(2):026118, 2001.

🌭 M. E. J. Newman

Networks

Oxford University Press, 2018.