6322.TXT SEQUENCE LISTING

<110> Sharma, Satish Rank, Kenneth													
	<120> Assays for Accessing Aß-Tau Aggregation												
	<130>	0> 6322											
	<160> 7												
	<170> PatentIn version 3.0												
O	<210> 1												
	<211>	2796	5										
ū	<212>	DNA											
	<213>	Homo	sapiens										
	<400> cctccc	1 ctgg	ggaggctcgc	gttcccgctg	ctcgcgcctg	ccgcccgccg	gcctcaggaa	60					
T	cgcgcc	ctct	cgccgcgcgc	gccctcgcag	tcaccgccac	ccaccagctc	cggcaccaac	120					
	agcagc	gccg	ctgccaccgc	ccaccttctg	ccgccgccac	cacagccacc	ttctcctcct	180					
	ccgctgt	tcct	ctcccgtcct	cgcctctgtc	gactatcagg	tgaactttga	accaggatgg	240					
	ctgagc	cccg	ccaggagttc	gaagtgatgg	aagatcacgc	tgggacgtac	gggttggggg	300					
	acaggaa	aaga	tcaggggggc	tacaccatgc	accaagacca	agagggtgac	acggacgctg	360					
	gcctgaa	aaga	atctcccctg	cagaccccca	ctgaggacgg	atctgaggaa	ccgggctctg	420					
	aaaccto	tga	tgctaagagc	actccaacag	cggaagatgt	gacagcaccc	ttagtggatg	480					
	agggago	ctcc	cggcaagcag	gctgccgcgc	agccccacac	ggagatccca	gaaggaacca	540					
	cagctga	aaga	agcaggcatt	ggagacaccc	ccagcctgga	agacgaagct	gctggtcacg	600					
	tgaccca	aagc	tcgcatggtc	agtaaaagca	aagacgggac	tggaagcgat	gacaaaaaag	660					
	ccaagggggc		tgatggtaaa	acgaagatcg	ccacaccgcg	gggagcagcc	cctccaggcc	720					
	agaagggcca		ggccaacgcc	accaggattc	cagcaaaaac	cccgcccgct	ccaaagacac	780					
	cacccag	jctc	tggtgaacct	ccaaaatcag	gggatcgcag	cggctacagc	agccccggct	840					
	ccccago	gcac	tcccggcagc	cgctcccgca	ccccgtccct	tccaacccca	cccacccggg	900					
	agcccaa	agaa	ggtggcagtg	gtccgtactc	cacccaagtc Page		gccaagagcc	960					

gcctgcagac	agcccccgtg	cccatgccag	acctgaagaa	tgtcaagtcc	aagatcggct	1020
ccactgagaa	cctgaagcac	cagccgggag	gcgggaaggt	gcagataatt	aataagaagc	1080
tggatcttag	caacgtccag	tccaagtgtg	gctcaaagga	taatatcaaa	cacgtcccgg	1140
gaggcggcag	tgtgcaaata	gtctacaaac	cagttgacct	gagcaaggtg	acctccaagt	1200
gtggctcatt	aggcaacatc	catcataaac	caggaggtgg	ccaggtggaa	gtaaaatctg	1260
agaagcttga	cttcaaggac	agagtccagt	cgaagattgg	gtccctggac	aatatcaccc	1320
acgtccctgg	cggaggaaat	aaaaagattg	aaacccacaa	gctgaccttc	cgcgagaacg	1380
ccaaagccaa	gacagaccac	ggggcggaga	tcgtgtacaa	gtcgccagtg	gtgtctgggg	1440
acacgtctcc	acggcatctc	agcaatgtct	cctccaccgg	cagcatcgac	atggtagact	1500
cgccccagct	cgccacgcta	gctgacgagg	tgtctgcctc	cctggccaag	cagggtttgt	1560
gatcaggccc	ctggggcggt	caataattgt	ggagaggaga	gaatgagaga	gtgtggaaaa	1620
aaaaagaata	atgacccggc	cccgccctc	tgcccccagc	tgctcctcgc	agttcggtta	1680
attggttaat	cacttaacct	gcttttgtca	ctcggctttg	gctcgggact	tcaaaatcag	1740
tgatgggagt	aagagcaaat	ttcatctttc	caaattgatg	ggtgggctag	taataaaata	1800
tttaaaaaaa	aacattcaaa	aacatggcca	catccaacat	ttcctcaggc	aattcctttt	1860
gattctttt	tcttcccct	ccatgtagaa	gagggagaag	gagaggctct	gaaagctgct	1920
tctgggggat	ttcaagggac	tgggggtgcc	aaccacctct	ggccctgttg	tgggggttgt	1980
cacagaggca	gtggcagcaa	caaaggattt	gaaaactttg	gtgtgttcgt	ggagccacag	2040
gcagacgatg	tcaaccttgt	gtgagtgtga	cgggggttgg	ggtggggcgg	gaggccacgg	2100
gggaggccga	ggcaggggct	gggcagaggg	gaggaggaag	cacaagaagt	gggagtggga	2160
gaggaagcca	cgtgctggag	agtagacatc	ccctccttg	ccgctgggag	agccaaggcc	2220
tatgccacct	gcagcgtctg	agcggccgcc	tgtccttggt	ggccgggggt	gggggcctgc	2280
tgtgggtcag	tgtgccaccc	tctgcagggc	agcctgtggg	agaagggaca	gcgggttaaa	2340
aagagaaggc	aagcctggca	ggagggttgg	cacttcgatg	atgacctcct	tagaaagact	2400
gaccttgatg	tcttgagagc	gctggcctct	tcctccctcc	ctgcagggta	gggcgcctga	2460
gcctaggcgg	ttccctctgc	tccacagaaa	ccctgtttta	ttgagttctg	aaggttggaa	2520
ctgctgccat	gattttggcc	actttgcaga	cctgggactt	tagggctaac	cagttctctt	2580
tgtaaggact	tgtgcctctt	gggagacgtc	cacccgtttc	caagcctggg	ccactggcat	2640
ctctggagtg	tgtgggggtc	tgggaggcag	gtcccgagcc	ccctgtcctt	cccacggcca	2700
ctgcagtcac	cccgtctgcg	ccgctgtgct	gttgtctgcc	gtgagagccc	aatcactgcc	2760
tatacccctc	atcacacgtc	acaatgtccc	gaattc			2796

<210> 2

<211> 441

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Glu Pro Arg Gln Glu Phe Glu Val Met Glu Asp His Ala Gly 10 15 Thr Tyr Gly Leu Gly Asp Arg Lys Asp Gln Gly Gly Tyr Thr Met His 20 25 30 Gln Asp Gln Glu Gly Asp Thr Asp Ala Gly Leu Lys Glu Ser Pro Leu
35 40 45 Gln Thr Pro Thr Glu Asp Gly Ser Glu Glu Pro Gly Ser Glu Thr Ser 50 60 Asp Ala Lys Ser Thr Pro Thr Ala Glu Asp Val Thr Ala Pro Leu Val 65 70 75 80 Asp Glu Gly Ala Pro Gly Lys Gln Ala Ala Gln Pro His Thr Glu 85 90 95 Ile Pro Glu Gly Thr Thr Ala Glu Glu Ala Gly Ile Gly Asp Thr Pro 100 105 110 Ser Leu Glu Asp Glu Ala Ala Gly His Val Thr Gln Ala Arg Met Val 115 120 125 Ser Lys Ser Lys Asp Gly Thr Gly Ser Asp Asp Lys Lys Ala Lys Gly 130 140 Ala Asp Gly Lys Thr Lys Ile Ala Thr Pro Arg Gly Ala Ala Pro Pro 145 150 155 160 Gly Gln Lys Gly Gln Ala Asn Ala Thr Arg Ile Pro Ala Lys Thr Pro 165 170 175 Pro Ala Pro Lys Thr Pro Pro Ser Ser Gly Glu Pro Pro Lys Ser Gly 180 185 190 Asp Arg Ser Gly Tyr Ser Ser Pro Gly Ser Pro Gly Thr Pro Gly Ser 195 200 205 Arg Ser Arg Thr Pro Ser Leu Pro Thr Pro Pro Thr Arg Glu Pro Lys 210 220 Lys Val Ala Val Val Arg Thr Pro Pro Lys Ser Pro Ser Ser Ala Lys 225 230 235 240 Ser Arg Leu Gln Thr Ala Pro Val Pro Met Pro Asp Leu Lys Asn Val 245 250 255 Lys Ser Lys Ile Gly Ser Thr Glu Asn Leu Lys His Gln Pro Gly Gly 260 265 270 Gly Lys Val Gln Ile Ile Asn Lys Lys Leu Asp Leu Ser Asn Val Gln 275 280 285 Ser Lys Cys Gly Ser Lys Asp Asn Ile Lys His Val Pro Gly Gly 290 295 300 Ser Val Gln Ile Val Tyr Lys Pro Val Asp Leu Ser Lys Val Thr Ser 305 310 315 320

Lys	Cys	Gly	Ser	Leu 325	Gly	Asn	Ile	His		22.T Lys		Gly	Gly	G]y 335	Gln
Val	Glu	Val	Lys 340	Ser	Glu	Lys	Leu	Asp 345	Phe	Lys	Asp	Arg	Val 350	Gln	Ser
Lys	Ile	G]y 355	Ser	Leu	Asp	Asn	11e 360	Thr	His	Val	Pro	Gly 365	Gly	Gly	Asn
Lys	Lys 370	Ile	Glu	Thr	His	Lys 375	Leu	Thr	Phe	Arg	G] u 380	Asn	Ala	Lys	Ala
Lys 385	Thr	Asp	His	Gly	Ala 390	Glu	Ile	Val	Tyr	Lys 395	Ser	Pro	Val	Val	ser 400
Gly	Asp	Thr	Ser	Pro 405	Arg	His	Leu	Ser	Asn 410	Val	Ser	Ser	Thr	Gly 415	Ser
Ile	Asp	Met	va1 420	Asp	Ser	Pro	Gln	Leu 425	Ala	Thr	Leu	Ala	Asp 430	Glu	Val

Ser Ala Ser Leu Ala Lys Gln Gly Leu 435 440

<210> 3

<211> 1200

<212> DNA

<213> Homo sapiens

tgtcgactat caggtgaact ttgaaccagg atggctgagc cccgccagga gttcgaagtg 60 atggaagatc acgctgggac gtacgggttg ggggacagga aagatcaggg gggctacacc 120 180 atgcaccaag accaagaggg tgacacggac gctggcctga aagctgaaga agcaggcatt 240 ggagacaccc ccagcctgga agacgaagct gctggtcacg tgacccaagc tcgcatggtc 300 agtaaaagca aagacgggac tggaagcgat gacaaaaaag ccaagggggc tgatggtaaa 360 acgaagatcg ccacaccgcg gggagcagcc cctccaggcc agaagggcca ggccaacgcc 420 accaggattc cagcaaaaac cccgcccgct ccaaagacac cacccagctc tggtgaacct ccaaaatcag gggatcgcag cggctacagc agccccggct ccccaggcac tcccggcagc 480 540 cgctcccgca ccccgtccct tccaacccca cccacccggg agcccaagaa ggtggcagtg 600 gtccgtactc cacccaagtc gccgtcttcc gccaagagcc gcctgcagac agcccccgtg cccatgccag acctgaagaa tgtcaagtcc aagatcggct ccactgagaa cctgaagcac 660 cagccgggag gcgggaaggt gcagataatt aataagaagc tggatcttag caacgtccag 720 780 tccaagtgtg gctcaaagga taatatcaaa cacgtcccgg gaggcggcag tgtgcaaata gtctacaaac cagttgacct gagcaaggtg acctccaagt gtggctcatt aggcaacatc 840 catcataaac caggaggtgg ccaggtggaa gtaaaatctg agaagcttga cttcaaggac 900 agagtccagt cgaagattgg gtccctggac aatatcaccc acgtccctgg cggaggaaat 960 aaaaagattg aaacccacaa gctgaccttc cgcgagaacg ccaaagccaa gacagaccac Page 4 1020

ggggcggaga tcgtgtacaa gtcgccagtg gtgtctgggg acacgtctcc acggcatctc 1080 agcaatgtct cctccaccgg cagcatcgac atggtagact cgcccagct cgccacgcta 1140 gctgacgagg tgtctgcctc cctggccaag cagggtttgt gatcaggccc ctggggcggt 1200

<210> 4

<211> 383

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Glu Pro Arg Gln Glu Phe Glu Val Met Glu Asp His Ala Gly
10 15 Thr Tyr Gly Leu Gly Asp Arg Lys Asp Gln Gly Gly Tyr Thr Met His 20 25 30 Gln Asp Gln Glu Gly Asp Thr Asp Ala Gly Leu Lys Ala Glu Glu Ala 35 40 45 Gly Ile Gly Asp Thr Pro Ser Leu Glu Asp Glu Ala Ala Gly His Val 50 60 Thr Gln Ala Arg Met Val Ser Lys Ser Lys Asp Gly Thr Gly Ser Asp 65 70 75 80 Asp Lys Lys Ala Lys Gly Ala Asp Gly Lys Thr Lys Ile Ala Thr Pro 85 90 95 Arg Gly Ala Ala Pro Pro Gly Gln Lys Gly Gln Ala Asn Ala Thr Arg 100 105 110 Ile Pro Ala Lys Thr Pro Pro Ala Pro Lys Thr Pro Pro Ser Ser Gly 115 120 Glu Pro Pro Lys Ser Gly Asp Arg Ser Gly Tyr Ser Ser Pro Gly Ser 130 135 140 Pro Gly Thr Pro Gly Ser Arg Ser Arg Thr Pro Ser Leu Pro Thr Pro 145 150 160 Pro Thr Arg Glu Pro Lys Lys Val Ala Val Val Arg Thr Pro Pro Lys 165 170 175 Ser Pro Ser Ser Ala Lys Ser Arg Leu Gln Thr Ala Pro Val Pro Met 180 185 190 Pro Asp Leu Lys Asn Val Lys Ser Lys Ile Gly Ser Thr Glu Asn Leu 195 200 205 Lys His Gln Pro Gly Gly Gly Lys Val Gln Ile Ile Asn Lys Lys Leu 210 215 220 Asp Leu Ser Asn Val Gln Ser Lys Cys Gly Ser Lys Asp Asn Ile Lys 225 230 235 His Val Pro Gly Gly Gly Ser Val Gln Ile Val Tyr Lys Pro Val Asp 245 250 255

Leu Ser Lys Val Thr Ser Lys Cys Gly Ser Leu Gly Asn Ile His His Lys Pro Gly Gly Gly Gln Val Glu Val Lys Ser Glu Lys Leu Asp Phe Lys Asp Arg Val Gln Ser Lys Ile Gly Ser Leu Asp Asn Ile Thr His Val Pro Gly Gly Gly Asn Lys Lys Ile Glu Thr His Lys Leu Thr Phe 320 Arg Glu Asn Ala Lys Ala Lys Thr Asp His Gly Ala Glu Ile Val Tyr Asp Ser Pro Val Val Ser Gly Asp Thr Ser Pro Arg His Leu Ser Asn Val Ser Ser Thr Gly Ser Ile Asp Met Val Asp Ser Pro Gln Leu Ala Thr Leu Ala Asp Glu Val Ser Ala Ser Ala Ser Leu Ala Lys Gln Gly Leu Cally Ser Ser Pro DNA Ser Ser DNA

cctccctgg ggaggctcgc gttcccgctg ctcgcgcctg ccgcccgccg gcctcaggaa 60 cgcgccctct cgccgcgcg gccctcgcag tcaccgccac ccaccagctc cggcaccaac 120 180 agcagcgccg ctgccaccgc ccaccttctg ccgccgccac cacagccacc ttctcctct ccgctgtcct ctcccgtcct cgcctctgtc gactatcagg tgaactttga accaggatgg 240 300 ctgagccccg ccaggagttc gaagtgatgg aagatcacgc tgggacgtac gggttggggg acaggaaaga tcaggggggc tacaccatgc accaagacca agagggtgac acggacgctg 360 420 gcctgaaagc tgaagaagca ggcattggag acacccccag cctggaagac gaagctgctg 480 gtcacgtgac ccaagctcgc atggtcagta aaagcaaaga cgggactgga agcgatgaca 540 aaaaagccaa gggggctgat ggtaaaacga agatcgccac accgcgggga gcagccctc 600 caggccagaa gggccaggcc aacgccacca ggattccagc aaaaaccccg cccgctccaa agacaccacc cagctctggt gaacctccaa aatcagggga tcgcagcggc tacagcagcc 660 720 ccggctcccc aggcactccc ggcagccgct cccgcacccc gtcccttcca accccaccca 780 cccgggagcc caagaaggtg gcagtggtcc gtactccacc caagtcgccg tcttccgcca agagccgcct gcagacagcc cccgtgccca tgccagacct gaagaatgtc aagtccaaga 840 900 tcggctccac tgagaacctg aagcaccagc cgggaggcgg gaaggtgcaa atagtctaca 960 aaccagttga cctgagcaag gtgacctcca agtgtggctc attaggcaac atccatcata 1020 aaccaggagg tggccaggtg gaagtaaaat ctgagaagct tgacttcaag gacagagtcc Page 6

agtcgaagat	tgggtccctg	gacaatatca	cccacgtccc	tggcggagga	aataaaaaga	1080
ttgaaaccca	caagctgacc	ttccgcgaga	acgccaaagc	caagacagac	cacggggcgg	1140
agatcgtgta	caagtcgcca	gtggtgtctg	gggacacgtc	tccacggcat	ctcagcaatg	1200
tctcctccac	cggcagcatc	gacatggtag	actcgcccca	gctcgccacg	ctagctgacg	1260
aggtgtctgc	ctccctggcc	aagcagggtt	tgtgatcagg	cccctggggc	ggtcaataat	1320
tgtggagagg	agagaatgag	agagtgtgga	aaaaaaaga	ataatgaccc	ggccccgcc	1380
ctctgccccc	agctgctcct	cgcagttcgg	ttaattggtt	aatcacttaa	cctgcttttg	1440
tcactcggct	ttggctcggg	acttcaaaat	cagtgatggg	agtaagagca	aatttcatct	1500
ttccaaattg	atgggtgggc	tagtaataaa	atatttaaaa	aaaaacattc	aaaaacatgg	1560
ccacatccaa	catttcctca	ggcaattcct	tttgattctt	tttcttccc	cctccatgta	1620
gaagagggag	aaggagaggc	tctgaaagct	gcttctgggg	gatttcaagg	gactgggggt	1680
gccaaccacc	tctggccctg	ttgtgggggt	tgtcacagag	gcagtggcag	caacaaagga	1740
tttgaaaact	ttggtgtgtt	cgtggagcca	caggcagacg	atgtcaacct	tgtgtgagtg	1800
tgacgggggt	tggggtgggg	cgggaggcca	cgggggaggc	cgaggcaggg	gctgggcaga	1860
ggggaggagg	aagcacaaga	agtgggagtg	ggagaggaag	ccacgtgctg	gagagtagac	1920
atcccctcc	ttgccgctgg	gagagccaag	gcctatgcca	cctgcagcgt	ctgagcggcc	1980
gcctgtcctt	ggtggccggg	ggtgggggcc	tgctgtgggt	cagtgtgcca	ccctctgcag	2040
ggcagcctgt	gggagaaggg	acagcgggtt	aaaaagagaa	ggcaagcctg	gcaggagggt	2100
tggcacttcg	atgatgacct	ccttagaaag	actgaccttg	atgtcttgag	agcgctggcc	2160
tcttcctccc	tccctgcagg	gtagggcgcc	tgagcctagg	cggttccctc	tgctccacag	2220
aaaccctgtt	ttattgagtt	ctgaaggttg	gaactgctgc	catgattttg	gccactttgc	2280
agacctggga	ctttagggct	aaccagttct	ctttgtaagg	acttgtgcct	cttgggagac	2340
gtccacccgt	ttccaagcct	gggccactgg	catctctgga	gtgtgtgggg	gtctgggagg	2400
caggtcccga	gccccctgtc	cttcccacgg	ccactgcagt	caccccgtct	gcgccgctgt	2460
gctgttgtct	gccgtgagag	cccaatcact	gcctataccc	ctcatcacac	gtcacaatgt	2520
cccgaattc						2529

<210> 6

<211> 352

<212> PRT

<213> Homo sapiens

<400> 6

Met Ala Glu Pro Arg Gln Glu Phe Glu Val Met Glu Asp His Ala Gly 10 15 Page 7

43

6322.TXT

Thr Tyr Gly Leu Gly Asp Arg Lys Asp Gln Gly Gly Tyr Thr Met His 20 25 30 Gln Asp Gln Glu Gly Asp Thr Asp Ala Gly Leu Lys Ala Glu Glu Ala
35 40 45 Gly Ile Gly Asp Thr Pro Ser Leu Glu Asp Glu Ala Ala Gly His Val 50 60 Thr Gln Ala Arg Met Val Ser Lys Ser Lys Asp Gly Thr Gly Ser Asp 65 70 75 80 Asp Lys Lys Ala Lys Gly Ala Asp Gly Lys Thr Lys Ile Ala Thr Pro
85 90 95 Arg Gly Ala Ala Pro Pro Gly Gln Lys Gly Gln Ala Asn Ala Thr Arg 100 105 110 Ile Pro Ala Lys Thr Pro Pro Ala Pro Lys Thr Pro Pro Ser Ser Gly 115 120 Glu Pro Pro Lys Ser Gly Asp Arg Ser Gly Tyr Ser Ser Pro Gly Ser 130 135 140 Pro Gly Thr Pro Gly Ser Arg Ser Arg Thr Pro Ser Leu Pro Thr Pro 145 150 155 160 Pro Thr Arg Glu Pro Lys Lys Val Ala Val Val Arg Thr Pro Pro Lys 165 170 175 Ser Pro Ser Ser Ala Lys Ser Arg Leu Gln Thr Ala Pro Val Pro Met 180 185 190 Pro Asp Leu Lys Asn Val Lys Ser Lys Ile Gly Ser Thr Glu Asn Leu 195 200 205 Lys His Gln Pro Gly Gly Gly Lys Val Gln Ile Val Tyr Lys Pro Val 210 220 Asp Leu Ser Lys Val Thr Ser Lys Cys Gly Ser Leu Gly Asn Ile His 225 230 235 His Lys Pro Gly Gly Gln Val Glu Val Lys Ser Glu Lys Leu Asp 245 250 255 Phe Lys Asp Arg Val Gln Ser Lys Ile Gly Ser Leu Asp Asn Ile Thr 260 265 270 His Val Pro Gly Gly Gly Asn Lys Lys Ile Glu Thr His Lys Leu Thr 275 280 285 Phe Arg Glu Asn Ala Lys Ala Lys Thr Asp His Gly Ala Glu Ile Val 290 295 300 Tyr Lys Ser Pro Val Val Ser Gly Asp Thr Ser Pro Arg His Leu Ser 305 310 315 Asn Val Ser Ser Thr Gly Ser Ile Asp Met Val Asp Ser Pro Gln Leu 325 330 335 Ala Thr Leu Ala Asp Glu Val Ser Ala Ser Leu Ala Lys Gln Gly Leu 340 345 350 <210> 7 <211>

<212> PRT

<213> Homo sapiens

<400> 7

Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys 10° Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile 20° 30°

Gly Leu Met Val Gly Gly Val Val Ile Ala Thr 35 40