Lecture 12

GLMs so far

- Linear and logistic regression:
 - Estimation
 - Inference
 - Diagnostics
 - Prediction
- Poisson regression:
 - Estimation
 - Inference

Poisson regression model

$$Y_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = \beta^T X_i$$

Question: What assumptions does this model make?

The importance of assumptions

$$Y_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = \beta^T X_i$$

Question: How could we assess the *importance* of the Poisson regression assumption? I.e., what is the impact if this assumption is wrong?

Simulation plan

ADEMP: A useful framework for simulation studies

- Aims: Why are we doing the study?
- Data generation: How are the data simulated?
- Estimand/target: What are we estimating for each simulated dataset?
- Methods: What methods are we using for model fitting, estimation, etc?
- Performance measures: How do we measure performance of our chosen methods?

ADEMP

For the Poisson simulation study:

- Aims:
- Data generation:
- Estimand/target:
- Methods:
- Performance measures:

Class activity

https://sta712-

f23.github.io/class_activities/ca_lecture_12.html