1 15.8: Lagrange Multipliers

Definition. (Parallel Gradients)

Let f be a differentiable function in a region of \mathbb{R}^2 that contains the smooth curve C given by g(x,y)=0. Assume f has a local extreme value on C at a point P(a,b). Then $\nabla f(a,b)$ is orthogonal to the line tangent to C at P. Assuming $\nabla g(a,b) \neq \mathbf{0}$, it follows that there is a real number λ (called a **Lagrange multiplier**) such that $\nabla f(a,b) = \lambda \nabla g(a,b)$.

Procedure- Lagrange Multipliers: Absolute Extrema on Closed and Bounded Constraint Curves

Let the objective function f and the constraint function g be differentiable on a region \mathbb{R}^2 with $\nabla g(x,y) \neq \mathbf{0}$ on the curve g(x,y) = 0. To locate the absolute maximum and minimum values of f subject to the constraint g(x,y) = 0, carry out the following steps.

1. Find the values of x, y, and λ (if they exist) that satisfy the equations

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
 and $g(x,y) = 0$.

2. Evaluate f at the values (x, y) in Step 1 and at the endpoints of the constraint curve (if they exist). Select the largest and smallest corresponding function values. These values are the absolute maximum and minimum values of f subject to the constraint.

Procedure- Lagrange Multipliers: Absolute Extrema on Closed and Bounded Constraint Surfaces

Let f and g be differentiable on a region of \mathbb{R}^3 with $\nabla g(x,y,z) \neq \mathbf{0}$ on the surface g(x,y,z) = 0. To locate the absolute maximum and minimum values of f subject to

the constraint g(x, y, z) = 0, carry out the following steps.

1. Find the values of x, y, z, and λ that satisfy the equations

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
 and $g(x, y, z) = 0$.

2. Among the points (x, y, z) found in Step 1, select the largest and smallest corresponding function values. These values are the absolute maximum and minimum values of f subject to the constraint.