1. More on latches

a. S-R NOR latch below

S	R	\mathbf{Q}_{n+1}			
0	0	Q_n			
0	1	0			
1	0	1			
1	1	Undefined			

Characteristic Table

- b. State transition table for S-R NOR latch
 - i. State transition table for sequential circuits similar to truth table for combinational circuits
 - ii. Need to list out all possible current states and inputs, like below
 - 1. Combination of inputs and present state form entire list of possible outcomes
 - 2. Same as a regular truth table, just need to consider present state as well

State Transition Table for S-R NOR Latch						
Present Inputs		Present State	Next State	Type of Circuit		
S	R	ď	à	Type of Circuit		
0	0	0	0	Memory		
0	0	1	1	Memory		
0	1	0	0	Combinational		
0	1	1	0	Combinational		
1	0	0	1	Combinational		
1	0	1	1	Combinational		
1	1	0	?	Combinational		
1	1	1	?	Combinational		

c. State transition diagram

- i. Visual representation of circuit's output based on current state and input
 - 1. The values in the circles are Q, the output of the latch
 - 2. The values in parentheses (0, 1) are the combination of (S, R) respectively
 - 3. The arrows are transitions from one state to the next (or staying in the same state)
- ii. For every state, all possible output combinations need to be listed
 - 1. All possible transitions from a state to other states (or the same state)
 - 2. (1, 1) isn't listed below as it leads to undefined behavior

2. Other latches

- a. Clocking the latches
 - i. Prevent the latch from changing, except at specific times as determined by the clock

b. Clocked J-K latch

- i. Like a S-R latch
 - 1. However, passing in (S, R) = (1, 1) toggles/inverts Q
 - a. Doesn't lead to undefined behavior
 - 2. Uses feedback from outputs to do so

b. Clocked D latch

- i. Only takes one input, ensures that inputs that cause unpredictable states don't occur
- ii. Output of latch is equal to the most recent value applied to the input
 - 1. When clock is 1, sample the current value of D
 - 2. Store that value in the latch
 - 3. Can retrieve the value at output Q

2. Flip-flops

- a. Circuit terminology
 - i. Level sensitive output controlled by the level of the clock input
 - ii. Edge triggered output changes only when the clock changes from one value to the other
 - 1. Positive / rising edge when clock "rises" from 0 to 1
 - 2. Negative / falling edge when clock "falls" from 1 to 0
- b. Back to flip-flops
 - i. Clocked (gated) latches are level sensitive
 - ii. Unlike latches, flip flops are edge-triggered
 - iii. Named so because they flip and flop from one stable state (0) to another (1)
- c. Advantages
 - i. Signal on input pin captured as soon as the clock changes
 - ii. Subsequent changes of the input are ignored until clock changes again
 - iii. Better timing control on complex circuits
- d. Disadvantage
 - i. More complicated than a latch
 - 1. Benefits outweigh this drawback, though
- e. Types of flip flops

- f. Named flip flops work similarly to their latch counterparts
 - i. One new addition T flip flop
 - ii. When T is high, on next clock the output is "toggled" and is inverted
 - iii. Same as (1, 1) input on J-K flip flop and latch

- 3. Flip flop timing terminology
 - a. Setup time t_{su}
 - i. Minimum time before clock arrives that inputs must be stable and unchanging to ensure first latch in flip flop is stable
 - b. Hold time t_h
 - i. Minimum time after clock arrives that inputs must remain stable and unchanging to ensure first latch clock NAND is off
 - ii. Not important for this course, but exists

