

## MTI - Physikalische Eigenschaften von Werkstoffen

Prof. Dr.-Ing. Christian Willberg

Hochschule Magdeburg-Stendal

Kontakt: christian.willberg@h2.de
Teile des Skripts sind von
Prof. Dr.-Ing. Jürgen Häberle
übernommen



# Inhalte





## Werkstoffeigenschaften

► Was sind Werkstoffeigenschaften?



# **Symmetrien**

- isotropie
- transversale isotropie
- orthotropie
- ..
- anisotropie





### Mechanische Eigenschaften

- die reversible Verformung, bei der sofort bzw. eine bestimmte Zeit nach dem Einwirken der äußeren Belastung der verformte Werkstoff seine ursprüngliche Form zurückerhält: elastische und viskoelastische Verformung;
- die irreversible (bleibende) Verformung, bei der die Formänderung auch nach dem Einwirken der äußeren Belastung erhalten bleibt: plastische und viskose Verformung;
- der Bruch, d.h. eine durch Entstehen und Ausbreiten von Rissen bewirkte Trennung des Werkstoffes.



#### Elastizität

- reversibel, energieerhaltend
- Hooksches Gesetz 1D  $\text{Normalspannung } \sigma = E \varepsilon$  Schubspannung  $\tau = G \gamma$

## Grundlagen

• Normaldehnung [-]

$$arepsilon_{mechanisch} = rac{l-l_0}{l_0}$$

ullet Normalspannung  $\left[rac{N}{m^2}
ight]$ ,  $\left[Pa
ight]$ 

$$\sigma = rac{F}{A} = E arepsilon$$

E - Elastizitätsmodul, Young's modulus  $\left[\frac{N}{m^2}\right]$ 



#### Grundlagen

- Schubdehnungen [-]  $\varepsilon = \frac{1}{2}(\frac{u_x}{l_0} + \frac{u_y}{b_0}) = \frac{\gamma}{2}$
- ullet Schubspannung  $\left[rac{N}{m^2}
  ight]$ ,  $\left[Pa
  ight]$   $au=rac{F_s}{A}=G\gamma$
- Normal- und Schubspannungen sind nicht kompatibel; daher die Vergleichsspannungen -> Technische Mechnanik
- ullet G Schub-, Gleitmodul, Shear modulus  $\left[ rac{N}{m^2} 
  ight]$



#### Grundlagen

- Querkontraktionszahl [-]
- $u=-\frac{\varepsilon_y}{\varepsilon_x}$  für homogene Werkstoffe  $0\le \nu\le 0.5$  für heterogene Werkstoffe sind anderen Konstellationen denkbar



• Schubmodul 
$$K=rac{E}{2(1+
u)}$$





# Werkstoffbeispiele

| Werkstoff                        | E [GPa] | G [GPa] | u[-] |
|----------------------------------|---------|---------|------|
| Stahl unlegiert                  | 200     | 77      | 0.30 |
| Titan                            | 110     | 40      | 0.36 |
| Kupfer                           | 120     | 45      | 0.35 |
| Aluminium                        | 70      | 26      | 0.34 |
| Magnesium                        | 45      | 17      | 0.27 |
| Wolfram                          | 360     | 130     | 0.35 |
| Gusseisen mit lamellarem Graphit | 120     | 60      | 0.25 |
| Messina                          | 100     | 35      | 0.35 |



# Steifigkeiten

► Wie Materialeigenschaften den Steifigkeiten zusammen?



Bildreferenz 11



#### **Festigkeit**

Die Festigkeit eines Werkstoffes beschreibt die Beanspruchbarkeit durch mechanische Belastungen, bevor es zu einem Versagen kommt, und wird angegeben als mechanische Spannung  $\left[N/m^2\right]$ . Das Versagen kann eine **unzulässige Verformung** sein, insbesondere eine **plastische (bleibende) Verformung** oder auch ein **Bruch**.

Wichtig: Festigkeit  $\neq$  Steifigkeit



## Plastische Versagen

**Datenblatt Stahl** 





#### Viskoses Verhalten

- reversibel
- zeitabhängig

Federmodel  $\sigma=E\epsilon$ 

- Elastischer Anteil
- Dargestellt durch Federlemente



Dämpfer  $\sigma=\eta\dot{\epsilon}=\etarac{\partial\epsilon}{\partial t}$ 

- Viskoser Anteil
- Dargestellt durch Dämpferelemente













# Thermische Eigenschaften



#### Wärmedehnung

$$oldsymbol{arepsilon}_{thermisch} = -oldsymbol{lpha} \Delta T$$

Wärmeausdehnungskoeffizientenmatrix

$$oldsymbol{lpha} = egin{bmatrix} lpha_{11} & lpha_{12} & lpha_{13} \ lpha_{12} & lpha_{22} & lpha_{23} \ lpha_{13} & lpha_{23} & lpha_{33} \end{bmatrix}$$

#### 1D oder isotrop

$$\varepsilon_{thermisch} = -\alpha \Delta T$$

Beispiel -> Paraview



| Symmetrie                 | Modell                                                                | Beispiele                                                                  |
|---------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|
| Isotropie                 | $lpha_{11}=lpha_{22}=lpha_{33}$ und $lpha_{12}=lpha_{13}=lpha_{23}=0$ | Metalle, Kunststoffe                                                       |
| transversale<br>Isotropie | $lpha_{22}=lpha_{33}$ und $lpha_{12}=lpha_{13}=lpha_{23}=0$           | Einzellage Faserverbund                                                    |
| Orthotropie<br>Isotropie  | $lpha_{12}=lpha_{13}=lpha_{23}=0$                                     | Mehrlagiger Faserverbund                                                   |
| Anisotropie               | beliebige $lpha_{ij}$                                                 | homogenisierte Betrachtung eines<br>unysmmetrischen Mehrlagen-<br>Verbunds |



### Anwendungen

- Bi-Metall Streifen
- Brücken
- Schienen
- Hochpräzisionsmessgeräten
- Schweißen, Löten, etc.
- ..

Kann u.a. zu thermischen Eigenspannungen, Verzug führen.



#### Beispiel: Thermische Spannungen 1D

$$\sigma = E\varepsilon = E(\varepsilon_{mechanisch} + \varepsilon_{thermisch}) = E(\varepsilon_{mechanisch} - \alpha \Delta T)$$

Durch eine Vordehung kann die Belastung auf ein Bauteil reduziert werden

#### Beispiel: Thermische Längenänderung 1D

$$\Delta l = l_0 \varepsilon_{mechanisch}$$

Für freie eine Dehnung, d.h. es wirken keine Spannungen

$$0 = E\varepsilon = E(\varepsilon_{mechanisch} + \varepsilon_{thermisch}) = E(\varepsilon_{mechanisch} - \alpha \Delta T)$$
 $\varepsilon_{mechanisch} = \alpha \Delta T$ 
 $\Delta l = l_0 \varepsilon_{thermisch} = l_0 \alpha \Delta T$ 



#### Wärmeleitung

- auch Konduktion und Wärmediffusion
- $T_{hoch} 
  ightarrow T_{niedrig}$  (2. Hauptsatz der Thermodynamik).
- es geht keine Wärme aufgrund der Energieerhaltung (1. Hauptsatz) verloren.

#### Wärmestrom [W]

$$\dot{\mathbf{q}} = -\boldsymbol{\lambda} \mathrm{grad}(T)$$

- $\operatorname{grad}(T)$  ist der Gradient der Temperaturänderung  $\frac{\partial T}{\partial dx_i}$ ;
- ullet im linearen Fall  $\operatorname{grad}(T) = \Delta T/d = rac{T_2 T_1}{d}$





$$egin{aligned} \dot{\mathbf{q}} &= -oldsymbol{\lambda} \mathrm{grad}(T) \ \dot{\mathbf{q}} &= rac{\partial \mathbf{q}}{\partial t} \end{aligned}$$

ullet zeigt an das sich etwas ändert -> dt

$$oldsymbol{\lambda} = egin{bmatrix} \lambda_{11} & 0 & 0 \ 0 & \lambda_{22} & 0 \ 0 & 0 & \lambda_{33} \end{bmatrix}$$

ist die Matrix der Wärmeleitfähigkeit.

#### Sonderfälle

- wenn  $T_1$  =  $T_2$  gibt es keine Leitung
- wenn  $\lambda = 0$ ; perfekte Isolation und keine Wärmeleitung



| Symmetrie              | Modell                                   | Beispiele               |
|------------------------|------------------------------------------|-------------------------|
| Isotropie              | $\lambda_{11}=\lambda_{22}=\lambda_{33}$ | Metalle, Kunststoffe    |
| transversale Isotropie | $\lambda_{22}=\lambda_{33}$              | Einzellage Faserverbund |
| Anisotropie            | beliebige $\lambda_{ij}$                 | Mehrlagen Faserverbund  |

Beispiel -> Paraview



#### Wärmeübergang

Übertragung der Wärme von einem Festkörper in ein Fluid oder Gas.

Wichtig, wenn Maschinen gekühlt oder erwärmt werden sollen.

Wird durch den Wärmeübergangskoeffizient beschrieben  $\alpha_{\ddot{U}bergang}$ . Er hängt unter anderem von der spezifischen Wärmekapazität, der Dichte und dem Wärmeleitkoeffizienten des wärmeabführenden sowie des wärmeliefernden Mediums ab.

$$\dot{q} = lpha_{\ddot{\textit{U}}bergang} A \Delta T$$

Beispiel Wärmepumpe und Fußbodenheizung



#### Spezifische Wärmekapazität

sagt aus wieviel Energie in Form von Wärme in einen Stoff "stecken" muss, um die Temperatur zu erhöhen.

$$C_p = rac{\Delta q}{m \Delta T}$$



#### Wärmestrahlung

 $\dot{q} = \epsilon_{Emissionsgrad} \sigma_{Stefan-Boltzmann} A T^4$ 

Emissiongrad  $\epsilon_{Emissionsgrad}$  liegt zwischen 0 (perfekter Spiegel) und 1 (idealer Schwarzer Körper) und ist in Teilen materialabhängig.

nutzbar für Spektralanalysen, um die Zusammensetzung von Werkstoffen zu bestimmen.



# Spezielle Temperaturen

#### Phasenübergangstemperatur

Temperatur wo ein Phasenübergang in einer Kristallstruktur stattfindet (siehe Phasendiagramme). Wird maßgeblich durch beigesetzte Stoffe beeinflusst (siehe Legierungen)

#### Schmelztemperatur

Als Schmelztemperatur bezeichnet man die Temperatur, bei der ein Stoff vom festen in den flüssigen Aggregatzustand übergeht.



#### Siedetemperatur

Temperatur des Phasenübergangs von flüssig zu gasförmig. Für Schmierstoffe ggf. relevant.

#### **Curie Temperatur**

Nach Piere Curie benannt. Bezeichnet die Temperatur, bei deren Erreichen ferromagnetische bzw. ferroelektrische Eigenschaften eines Materials vollständig verschwunden sind, so dass sie oberhalb nur noch paramagnetisch bzw. paraelektrisch sind.



## Eigenspannungen

- Thermisch
- Verformung
- Gefügeumwandlung
- Chemisch

Positive Beispiele: ??

Negative Beispiele: ??



# Elektrische und magnetische Eigenschaften

Die elektrischen und magnetischen Eigeschaften hängen in der Regel eng zusammen und beeinflussen sich gegenseitig.



#### Permittivität

 beschreibt wie stark die innere Struktur der äußeren Ladung entgegenwirkt

#### unpolarisiert



polarisiert durch ein angelegtes elektisches Feld





 mathematisch Verhältnis zwischen der elektrischen Flussdichte und dem elektrischen Feld.

 $\varepsilon_0$  ist dabei die Permitivität im Vakuum.

$$\mathbf{D} = arepsilon_0 oldsymbol{arepsilon}_{Permitivit\ddot{a}\,t} \mathbf{E}$$

$$oldsymbol{arepsilon}_{Permitivit\ddot{a}\,t} = egin{bmatrix} arepsilon_{11} & arepsilon_{12} & arepsilon_{13} \ arepsilon_{12} & arepsilon_{22} & arepsilon_{23} \ arepsilon_{13} & arepsilon_{23} & arepsilon_{33} \end{bmatrix}$$



#### Je nach Mikrostruktur ist die Permittivität richtungsabhängig.

| Symmetrie              | Modell                                                                                              |
|------------------------|-----------------------------------------------------------------------------------------------------|
| Isotropie              | $arepsilon_{11}=arepsilon_{22}=arepsilon_{33}$ und $arepsilon_{12}=arepsilon_{13}=arepsilon_{23}=0$ |
| transversale Isotropie | $arepsilon_{22}=arepsilon_{33}$ und $arepsilon_{12}=arepsilon_{13}=arepsilon_{23}=0$                |
| Orthotropie Isotropie  | $arepsilon_{12}=arepsilon_{13}=arepsilon_{23}=0$                                                    |
| Anisotropie            | beliebige $arepsilon_{ij}$                                                                          |

#### Oft angeben als relative Permittivität

$$arepsilon_r = rac{arepsilon_{Permittivit\"{a}t}}{arepsilon_0}$$



Kapazität eines
 Plattenkondensatorsn

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

• Eine hohe Permittivität erlaubt stärkere Kondensatoren



#### Elektrische Leitfähigkeit

- Die Leitfähigkeit eines Stoffes oder Stoffgemisches hängt von der Verfügbarkeit und Dichte beweglicher Ladungsträger ab.
- In Metallen sind diese in Form von Elektronen sehr locker gebunden. Jedes Material ist in einem Gewissen Maß leitfähig.



Einheit 
$$\left[\frac{S}{m}, \frac{\Omega}{m}\right]$$

$$\mathbf{J} = \sigma_{elektrische\ Leitf\ddot{a}\ higkeit}\mathbf{E}$$

• Supraleiter besitzt unendliche Leitfähigkeit.



### **Elektrischer Widerstand**

 Spezialfall konstanter elektrischer Leitfähigkeit entspricht dies dem Ohmschen Gesetz

#### **Ohmschen Gesetzes**

$$R = rac{U}{I} = 
ho_{spezifisch} rac{l}{A}$$

- ullet Der spezifische Widerstand  $ho_{spezifisch}$  ist ein Materialkennwert. Er ist temperaturabhängig.
- wird für Thermoelemente genutzt



Leiter - Metalle (Kupfer, Silber, ...), Graphit

$$ho_{spezifisch} < 100 rac{\Omega mm^2}{m}$$

Halbleiter - Silizium, Bor, Selen, ...

$$100 < 
ho_{spezifisch} < 10^{12} rac{\Omega mm^2}{m}$$

Isolator - Aluminiumoxidkeramik, Epoxidharze

$$ho_{spezifisch} > 10^{12} rac{\Omega mm^2}{m}$$



### Dotierungen

- Durch Dotierung lässt sich die Leitfähigkeit von Halbleitern stark beeinflussen, oft um mehrere Zehnerpotenzen.
- hochreines Material ist erforderlich
- n-Dotierung Zugabe von Elektronendonatoren (überzählige Elektronen)
- p-Dotierung Zugabe von Elektronenakzeptoren



- durch p-Dotierung entstehen Elektronenfehlstellen, auch Löcher oder Defektelektronen genannt
- diese ermöglichen die Leitung des elektrischen Stroms
- Die Leitfähigkeit entsteht dadurch, dass die Löcher bzw. Elektronen beweglich sind
  - wenn auch nicht so beweglich wie die Elektronen in Metallen.





The phosphorus atom donates ist fifth valence electron. It acts as a free charge carrier.



The free place on the boron atom is filled with an electron. Therefore a new hole ("defect electron") is generated. This holes move in the opposite direction to the electrons



# Magnetismus

## Arten des Magnetismus

#### Diamagnetismus

Führt zu einer Abschwächung des Magnetfeldes durch die Wirkung der Lenzschen Regel in der Atomhülle (lokal induziertes Magnetfeld wirkt dem äußeren entgegen). *Beispiele:* Alle Materialien



Hochschule Magdeburg • Stendal

- Atome, Ionen oder Moleküle besitzen ein magnetisches Moment, das sich nach dem äußeren Magnetfeld ausrichtet und das Magnetfeld verstärkt
- Höhere Temperaturen verringern den Effekt, da sich die Atome, lonen oder Moleküle stärker bewegen

Beispiele: Lithium, Natrium, Metalle der Seltenen Erden (Scandium, Neodym, Holmium)





### Ferromagnetismus

- die magnetischen Momente richten sich spontan parallel aus
- kleinste kristalline Einheit wird als weissscher Bezirk bezeichnet
- der Effekt kann durch die Curie-Temperatur zerstört werden

Beispiele: Eisen, Nickel, Alnico (Eisen-, Aluminium-, Nickel-, Kobalt-, Kupferlegierungen)





### Ferrimagnetismus

- die magnetischen Momente der Atome mikroskopisch wechselweise antiparallel ausgerichtet und löschen sich nicht vollständig aus
- wirkt wie eine abgeschwächte
   Form des Ferromagnetismus

Beispiele: Nickel, Kupfer, Magnesium





- ähnlich dem Ferrimagnetismus, jedoch löschen sich die antiparallelen magnetischen Pole vollständig gegenseitig aus
- idealer Antiferromagnet zeigt nach außen kein magnetisches Verhalten
- bei Erhitzung über die Néel-Temperatur wird das Material paramagnetisch

Beispiele: Einige Nickelverbindungen, Chrom





### Permeabilität



Ist das Verhältnis zwischen magnetischer Flussdichte und magnetischer Feldstärke.

$$\mathbf{B} = \mu_0 \boldsymbol{\mu} \mathbf{H}$$

Ähnelt der Permittivität. Auch hier gibt es eine Konstante, die magnetische Feldkonstante  $\mu_0$ , welche die Permeabilität im Vakuum beschreibt.

Im Allgemeinen gilt

$$m{\mu} = egin{bmatrix} \mu_{11} & \mu_{12} & \mu_{13} \ \mu_{12} & \mu_{22} & \mu_{23} \ \mu_{13} & \mu_{23} & \mu_{33} \end{bmatrix}$$

Die relative Permeabilität

$$\mu_r=rac{\mu}{\mu_0}$$



Diamagnetische Stoffe  $0 \leq \mu_r < 1$ 

Paramagnetische Stoffe  $\mu_r > 1$ 

Superparamagnetische Stoffe  $\mu_r\gg 1$ 

Ferrimagnetische Stoffe \$ 20\lessapprox \mu\_{r} \lessapprox 15000\$

Ferromagnetische Stoffe  $\mu_r\gg 1$ ;  $40\lessapprox \mu_r\lessapprox 10^6$ 

Supraleiter 1. Art  $\mu_r=0$ .