- 1. Let $S = \{\text{all bitstrings of length 3}\}$, and define aRb iff $a \oplus b = 000$.
 - (a) **Reflexive?** Yes. For every $a \in S$, $a \oplus a = 000$, so aRa.
 - (b) **Symmetric?** Yes. If aRb, then $a \oplus b = 000$; since XOR is symmetric, $b \oplus a = 000$, hence bRa.
 - (c) **Antisymmetric?** Yes. Antisymmetry requires: if aRb and bRa, then a = b. Here aRb already implies a = b, so the condition is satisfied.
 - (d) **Transitive?** Yes. If aRb and bRc, then a = b and b = c, so a = c and aRc.
 - (e) **Equivalence relation?** Yes. R is reflexive, symmetric, and transitive, hence an equivalence relation.
- 2. Let $S=\{f:[0,\infty)\to\mathbb{R}\mid f\text{ continuous}\}, \text{ and } (f,g)\in R\text{ iff } f(x)=O(g(x)).$
 - (a) Reflexive? Yes, since f(x) = O(f(x)) via the bound $|f(x)| \le 1 \cdot |f(x)|$.
 - (b) **Antisymmetric?** No. Since f(x) = x and g(x) = 2x satisfy f = O(g) and g = O(f) but $f \neq g$.
 - (c) **Symmetric?** No. Since f(x) = x and $g(x) = x^2$ give f = O(g) (for $x \ge 1$) but not g = O(f).
 - (d) **Transitive?** Yes. If f = O(g) and g = O(h), then there exist constants C_1, C_2 and x_0, x_1 so that

$$|f(x)| \le C_1 |g(x)|, \quad |g(x)| \le C_2 |h(x)| \quad \text{for large } x.$$

Hence $|f(x)| \leq C_1 C_2 |h(x)|$ for sufficiently large x, so f = O(h).

3. Extra Credit