MATH 2270: Midterm 3 Practice Problems

The following are practice problems for the third exam.

1. Inventions:

- (a) Invent a 2-dimensional subspace of \mathbb{P}_3 .
- (b) Invent a linearly independent set consisting of infinitely many vectors in P.
- (c) Invent a linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ such that ker T is one-dimensional.
- (d) Invent a basis for the subspace H of \mathbb{P}_3 defined by $H = \{p(t) \in \mathbb{P}_3 \mid p(1) = 0\}$.
- (e) Let $S = \{1, t, t^2\}$ be the standard basis for \mathbb{P}_2 . Invent a basis \mathcal{B} of \mathbb{P}_2 so that the change of basis matrix $\mathcal{P}_{\mathcal{B} \leftarrow S}$ is upper triangular.
- (f) Find a vector space V so that for any linear transformation $T: V \to \mathbb{R}^3$, the dimension of the kernel of T is at least 2.
- (g) Invent a 3×3 matrix A so that $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ is an eigenvectors of A with eigenvalue $\lambda = 1$.
- (h) Invent a 2×2 matrix A whose only eigenvalue is 3.
- 2. Answer each of the following true/false questions, and then give an explanation of your reasoning.
 - (a) \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
 - (b) \mathbb{P}^2 is a subspace of \mathbb{P}^3 .
 - (c) C([0,1]) is a subspace of C([0,2]).
 - (d) A change of basis matrix is never invertible.
 - (e) Eigenspaces for a linear transformation $T: V \to V$ are subspaces that are T-invariant.
 - (f) A linear transformation of an n-dimensional vector space has at least n different eigenvalues.
 - (g) If $T: V \to V$ is a linear transformation, then T is represented by a unique matrix.
- Determine whether or not each of the following linear transformations has a non-trivial eigenspace. If it does, describe the eigenspace and associated eigenvalue. Explain your reasoning.
 - (a) The linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ that rotates counter-clockwise about the origin by $\pi/2$.
 - (b) The linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ that reflects across the line y = x.
 - (c) The linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ that takes a vector $\begin{bmatrix} x \\ y \end{bmatrix}$ to $\begin{bmatrix} x \\ 2y \end{bmatrix}$.
 - (d) The linear transformation $\mathbb{R}^3 \to \mathbb{R}^3$ that reflects in the xy-plane.
- 4. Show that $H = \{ f \in C(\mathbb{R}) \mid f(0) = 0 \}$ is a subspace of $C(\mathbb{R})$.
- 5. Consider the linear transformation $D: \mathbb{P}_3 \to \mathbb{P}_3$ defined by D(p) = p'. Let $\mathcal{B} = \{1, t, t^2, t^3\}$ and let $\mathcal{C} = \{1, 1+t, 1+t+t^2, 1+t+t^2+t^3\}$.

- (a) Find the matrix for the linear transformation D with respect to the basis \mathcal{B} .
- (b) Let $p(t) = -2t^3 + 3t^2 10t + 1$. Find $[p(t)]_{\mathcal{C}}$.
- (c) Find the change of basis matrix $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ and the change of basis matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$.
- 6. Consider the following matrix:

$$A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

- (a) Compute the characteristic polynomial of A. Then factor it to find the eigenvalues of A.
- (b) For each eigenvalue, λ , find a basis for the corresponding eigenspace, $V^{(\lambda)}$.
- (c) Use the computations from parts (a) and (b) to write $A = PDP^{-1}$, where D is a diagonal matrix, and P is an invertible matrix. You do not need to compute P^{-1} .
- 7. Let H be the subspace of $C(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$) spanned by $\{\sinh x, \cosh x\}$. Recall (if you don't already know) that $\frac{d}{dx}(\sinh x) = \cosh x$ and $\frac{d}{dx}(\cosh x) = \sinh x$ (note the lack of a minus sign). Consider the linear transformation $D: H \to H$ defined by D(f) = f', where f' denotes the derivative of f.
 - (a) Compute the matrix of D with respect to the basis, $\mathcal{B} = \{\sinh x, \cosh x\}$. You do not need to show that \mathcal{B} is a basis for H.
 - (b) Use the techniques of Chapter 5 to find a basis for H in which the matrix for D is diagonal.
- 8. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(x) = Ax where A is a 3×3 matrix whose eigenvalues are 1,3, and -2. Does there exist a basis \mathcal{B} for \mathbb{R}^3 such that the matrix for T with respect to \mathcal{B} is diagonal? Why or why not?
- 9. Give an example of a 2×2 matrix that is not diagonalizable.
- 10. Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by T(x) = Ax, where $A = \begin{bmatrix} -6 & -2 \\ 4 & 0 \end{bmatrix}$. Find the matrix for T with respect to the basis $\mathcal{B} = \{\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix}\}$
- 11. §4.9 Exercises 4 & 14.
- 12. §5.6 Exercises 1 & 10.