File: vat_2024_4_3.dfw Date: 4/3/2024 Time: 7:15:07 PM

vat_compete_2024_x_y.dfw

#1: CaseMode := Sensitive

#2: InputMode := Word

degree of market power (transp cost)

#3: µ :∈ Real (0, ∞)

rate of sales tax

#4: τ :∈ Real (0, ∞)

total consumer population

#5: n :∈ Real (0, ∞)

prices

#6: pa :∈ Real (0, ∞)

#7: pb :∈ Real (0, ∞)

#8: qa :∈ Real (0, ∞)

#9: qb :∈ Real (0, ∞)

A's market share

#10: xhat :∈ Real (0, 1)

basic valuations

#11: va :∈ Real (0, ∞)

#12: vb :∈ Real (0, ∞)

#13: Δv :∈ Real [0, ∞)

*** Section 2: Price embedded into the price (benchmark model)

eq (1)

#14: $qa = pa \cdot (1 + \tau)$

#15: $qb = pb \cdot (1 + \tau)$

#16: SOLVE(qa = $pa \cdot (1 + \tau)$, pa)

#17: $pa = \frac{qa}{\tau + 1}$

#18: SOLVE(qb = $pb \cdot (1 + \tau)$, pb)

#19: $pb = \frac{qb}{T + 1}$

eq (2) Utility functions

#20: $va - pa \cdot (1 + \tau) - \mu \cdot x$

#21: $va - qa - \mu \cdot x$

#22: $vb - pb \cdot (1 + \tau) - \mu \cdot (1 - x)$

#23: $vb - qb - \mu \cdot (1 - x)$

#24: $va - pa \cdot (1 + \tau) - \mu \cdot x = vb - pb \cdot (1 + \tau) - \mu \cdot (1 - x)$

#25: SOLVE(va - pa·(1 + τ) - μ ·x = vb - pb·(1 + τ) - μ ·(1 - x), x)

eq (3)

#26: $xhat = -\frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - va + vb - \mu}{2 \cdot \mu}$

#27: xhat =
$$-\frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu}{2 \cdot \mu}$$

#28:
$$xhat = -\frac{qa - qb - \Delta v - \mu}{2 \cdot \mu}$$

eq (4) Profit max w.r.t. qa and qb (tax inclusive)

#29: profita = pa·n·xhat

#30: profitb = $pb \cdot n \cdot (1 - xhat)$

#31: profita =
$$\frac{qa}{\tau + 1} \cdot n \cdot \left(- \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu} \right)$$

#32: profitb =
$$\frac{qb}{\tau + 1} \cdot n \cdot \left(1 - - \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu}\right)$$

Appendix A. eq (A.1)

#33:
$$\frac{d}{d \cdot qa} \left(profita = \frac{qa}{\tau + 1} \cdot n \cdot \left(-\frac{qa - qb - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#34:
$$0 = -\frac{n \cdot (2 \cdot qa - qb - \Delta v - \mu)}{2 \cdot \mu \cdot (\tau + 1)}$$

#35:
$$\frac{d}{d \text{ qa}} \frac{d}{d \text{ qa}} \left(\text{profita} = \frac{\text{qa}}{\tau + 1} \cdot n \cdot \left(-\frac{\text{qa - qb - } \Delta \text{v - } \mu}{2 \cdot \mu} \right) \right)$$

#36:
$$0 > -\frac{n}{u \cdot (\tau + 1)}$$

#37:
$$\frac{d}{d \ qb} \left(profitb = \frac{qb}{\tau + 1} \cdot n \cdot \left(1 - - \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#38:
$$0 = \frac{n \cdot (qa - 2 \cdot qb - \Delta v + \mu)}{2 \cdot \mu \cdot (\tau + 1)}$$

#39:
$$\frac{d}{d \ qb} \frac{d}{d \ qb} \left(profitb = \frac{qb}{\tau + 1} \cdot n \cdot \left(1 - - \frac{qa - qb - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#40:
$$0 > -\frac{n}{u \cdot (\tau + 1)}$$

#41: SOLVE
$$\left[0 = -\frac{n \cdot (2 \cdot qa - qb - \Delta v - \mu)}{2 \cdot \mu \cdot (\tau + 1)}, 0 = \frac{n \cdot (qa - 2 \cdot qb - \Delta v + \mu)}{2 \cdot \mu \cdot (\tau + 1)} \right], [qa, qb]$$

eq (5): eql tax-inclusive prices

#42:
$$\left[qaI = \frac{\Delta v + 3 \cdot \mu}{3} \wedge qbI = \frac{3 \cdot \mu - \Delta v}{3} \right]$$

#43:
$$paI = \frac{\Delta V + 3 \cdot \mu}{3 \cdot (\tau + 1)}$$

#44:
$$pbI = \frac{3 \cdot \mu - \Delta v}{3 \cdot (\tau + 1)}$$

eq (6)

#45:
$$xhatI = \frac{\Delta V + 3 \cdot \mu}{6 \cdot \mu}$$

File: vat_2024_4_3.dfw

Date: 4/3/2024 Time: 7:15:07 PM

profitaI = $\frac{n \cdot (\Delta v + 3 \cdot \mu)^{2}}{18 \cdot \mu \cdot (\tau + 1)}$ #46:

profitbI = $\frac{n \cdot (\Delta v - 3 \cdot \mu)}{18 \cdot \mu \cdot (\tau + 1)}$ #47:

Discussion below eq (6)

 $\frac{d}{d\mu} \left(\text{profitb} = \frac{n \cdot (\Delta v - 3 \cdot \mu)}{18 \cdot \mu \cdot (\tau + 1)} \right)$ #48:

#49: $18 \cdot \mu \cdot (\tau + 1)$

 $\frac{d}{d\mu} \left(\text{profita} = \frac{n \cdot (\Delta v + 3 \cdot \mu)^{2}}{18 \cdot \mu \cdot (\tau + 1)} \right)$ **#50:**

 $0 < \frac{n \cdot (\Delta v + 3 \cdot \mu) \cdot (3 \cdot \mu - \Delta v)}{2}$ **#51:** $18 \cdot u \cdot (\tau + 1)$

Deriving eq (7)

#52: $g = n \cdot xhat \cdot \tau \cdot pa + n \cdot (1 - xhat) \cdot \tau \cdot pb$

#53:
$$gI = \frac{n \cdot \tau \cdot (\Delta V + 9 \cdot \mu)}{9 \cdot \mu \cdot (\tau + 1)}$$

*** section 3: Price competition with sales tax separated

** subsection 3.1: Single-stage cosnumer decision making

eq (8)

#54: profita = pa·n·xhat

#55: profitb = $pb \cdot n \cdot (1 - xhat)$

#56: profita = pa·n·
$$\left(-\frac{pa·(\tau + 1) - pb·(\tau + 1) - \Delta v - \mu}{2·\mu}\right)$$

#57: profitb =
$$pb \cdot n \cdot \left(1 - \frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu}{2 \cdot \mu}\right)$$

Appendix B, eq (B.1), Proof of Result 1

#58:
$$\frac{d}{d pa} \left(profita = pa \cdot n \cdot \left(- \frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#59:
$$0 = -\frac{n \cdot (2 \cdot pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu)}{2 \cdot \mu}$$

#60:
$$\frac{d}{d pa} \frac{d}{d pa} \left(profita = pa \cdot n \cdot \left(-\frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

File: vat_2024_4_3.dfw Date: 4/3/2024

Time: 7:15:07 PM

#61:
$$0 > -\frac{n \cdot (\tau + 1)}{\mu}$$

#62:
$$\frac{d}{d pb} \left(profitb = pb \cdot n \cdot \left(1 - - \frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#63:
$$0 = \frac{n \cdot (pa \cdot (\tau + 1) - 2 \cdot pb \cdot (\tau + 1) - \Delta v + \mu)}{2 \cdot \mu}$$

#64:
$$\frac{d}{d pb} \frac{d}{d pb} \left(profitb = pb \cdot n \cdot \left(1 - - \frac{pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu}{2 \cdot \mu} \right) \right)$$

#65:
$$0 > -\frac{n \cdot (\tau + 1)}{\mu}$$

#66: SOLVE
$$\left[0 = -\frac{n \cdot (2 \cdot pa \cdot (\tau + 1) - pb \cdot (\tau + 1) - \Delta v - \mu)}{2 \cdot \mu}, 0 = \frac{n \cdot (pa \cdot (\tau + 1) - 2 \cdot pb \cdot (\tau + 1) - \Delta v + \mu)}{2 \cdot \mu} \right], [pa, pb]$$

The solution below is the same as eq (5) above, proving Result 1:

#67:
$$\left[pa = \frac{\Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)} \wedge pb = \frac{3 \cdot \mu - \Delta v}{3 \cdot (\tau + 1)}\right]$$

** Subsection 3.2: Two-stage decision process with prices separated from sales tax eq (9) utility

#69:
$$vb - pb - vatb - \mu \cdot (1 - x)$$

#70:
$$vb - pb - vatb - \mu \cdot (1 - x) = va - pa - vata - \mu \cdot x$$

#71: SOLVE(vb - pb - vatb -
$$\mu \cdot (1 - x) = va - pa - vata - \mu \cdot x, x$$
)

eq (10)

#72:
$$xhat = -\frac{pa - pb - va + vata - vatb + vb - \mu}{2 \cdot \mu}$$

#73: xhat =
$$\frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu}$$

eq (11) profit max w/ two stages

#74: profita = pa·n·xhat

#75: profitb = $pb \cdot n \cdot (1 - xhat)$

#76: profita = pa·n·
$$\left(-\frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu}\right)$$

#77: profitb =
$$pb \cdot n \cdot \left(1 - \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu}\right)$$

Appendix C, eq (C.1)

#78:
$$\frac{d}{d pa} \left(profita = pa \cdot n \cdot \left(- \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right) \right)$$

#79:
$$0 = -\frac{n \cdot (2 \cdot pa - pb + vata - vatb - \Delta v - \mu)}{2 \cdot \mu}$$

#80:
$$\frac{d}{d pa} \frac{d}{d pa} \left(profita = pa \cdot n \cdot \left(-\frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right) \right)$$

#81:
$$0 > -\frac{n}{u}$$

#82:
$$\frac{d}{d pb} \left(profitb = pb \cdot n \cdot \left(1 - - \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right) \right)$$

#83:
$$0 = \frac{n \cdot (pa - 2 \cdot pb + vata - vatb - \Delta v + \mu)}{2 \cdot \mu}$$

#84:
$$\frac{d}{d pb} \frac{d}{d pb} \left(profitb = pb \cdot n \cdot \left(1 - - \frac{pa - pb - \Delta v + vata - vatb - \mu}{2 \cdot \mu} \right) \right)$$

#85:
$$0 > -\frac{n}{---}$$

eq (12) eq price two stage as functions of vata and vatb

#87:
$$\left[pa = -\frac{\text{vata - vatb - }\Delta \text{v - } 3 \cdot \mu}{3} \wedge pb = \frac{\text{vata - vatb - }\Delta \text{v + } 3 \cdot \mu}{3}\right]$$

eq (13) eql prices with two stage

#88: vata = τ⋅pa

#89: vatb = $\tau \cdot pb$

#90:
$$\left[pa = -\frac{\tau \cdot pa - \tau \cdot pb - \Delta v - 3 \cdot \mu}{3} \wedge pb = \frac{\tau \cdot pa - \tau \cdot pb - \Delta v + 3 \cdot \mu}{3}\right]$$

#91: SOLVE
$$\left[pa = -\frac{\tau \cdot pa - \tau \cdot pb - \Delta v - 3 \cdot \mu}{3} \wedge pb = \frac{\tau \cdot pa - \tau \cdot pb - \Delta v + 3 \cdot \mu}{3}\right], [pa, pb]$$

#92:
$$\left[paII = \frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} \wedge pbII = \frac{\mu \cdot (2 \cdot \tau + 3) - \Delta v}{2 \cdot \tau + 3} \right]$$

#93:
$$\left[qaII = \frac{(1+\tau) \cdot (\Delta V + \mu \cdot (2 \cdot \tau + 3))}{2 \cdot \tau + 3} \wedge qbII = \frac{(1+\tau) \cdot (\mu \cdot (2 \cdot \tau + 3) - \Delta V)}{2 \cdot \tau + 3} \right]$$

#94:
$$\left[qaII = \frac{(\Delta v + \mu \cdot (2 \cdot \tau + 3)) \cdot (\tau + 1)}{2 \cdot \tau + 3} \wedge qbII = \frac{(\mu \cdot (2 \cdot \tau + 3) - \Delta v) \cdot (\tau + 1)}{2 \cdot \tau + 3} \right]$$

eqs (14)

#95: vata =
$$\tau \cdot \frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3}$$

#96: vatb =
$$\tau \cdot \frac{\mu \cdot (2 \cdot \tau + 3) - \Delta v}{2 \cdot \tau + 3}$$

#97:
$$xhatII = \frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)}$$

#98:
$$\operatorname{profitaII} = \frac{n \cdot (\Delta v + \mu \cdot (2 \cdot \tau + 3))}{2}$$
$$2 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#99:
$$profitbII = \frac{n \cdot (\Delta v - \mu \cdot (2 \cdot \tau + 3))}{2 \cdot \mu \cdot (2 \cdot \tau + 3)}$$

eq (15) gov't revenue with two stage decision making

*** Section 4: Comparing the two pricing structure.

eq (16) and Result 2 (price comparisons)

#101: paII - pa =
$$\frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \tau + 3} - \frac{\Delta v + 3 \cdot \mu}{3 \cdot (\tau + 1)}$$

#102:
$$paII - pa = \frac{\tau \cdot (\Delta V + 3 \cdot \mu \cdot (2 \cdot \tau + 3))}{3 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} > 0$$

#103: pbII - pb =
$$\frac{\mu \cdot (2 \cdot \tau + 3) - \Delta v}{2 \cdot \tau + 3} - \frac{3 \cdot \mu - \Delta v}{3 \cdot (\tau + 1)}$$

#104:
$$pbII - pb = \frac{\tau \cdot (3 \cdot \mu \cdot (2 \cdot \tau + 3) - \Delta v)}{3 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)}$$

> 0 if [Yes!]

#105:
$$3 \cdot \mu \cdot (2 \cdot \tau + 3) - \Delta v > 0$$

#106: SOLVE(3· μ ·(2· τ + 3) - Δ v > 0, Δ v)

#107:
$$\Delta v < 3 \cdot \mu \cdot (2 \cdot \tau + 3)$$

Assumption 2 implies that $\Delta v < \mu$. Hence, it is sufficient to show

#108: $\mu < 3 \cdot \mu \cdot (2 \cdot \tau + 3)$

#109: SOLVE($\mu < 3 \cdot \mu \cdot (2 \cdot \tau + 3), \mu$)

#110:
$$\mu > 0$$

Proving Result 2(b): Added to the first part of Appendix D

#111:
$$\frac{d}{d\tau} \left(qaII = \frac{(\Delta v + \mu \cdot (2 \cdot \tau + 3)) \cdot (\tau + 1)}{2 \cdot \tau + 3} \right)$$

eq (D.1)

#112:
$$0 < \frac{\Delta v + \mu \cdot (4 \cdot \tau + 12 \cdot \tau + 9)}{2}$$

$$(2 \cdot \tau + 3)$$

#113:
$$\frac{d}{d\tau} \left(qbII = \frac{(\mu \cdot (2 \cdot \tau + 3) - \Delta v) \cdot (\tau + 1)}{2 \cdot \tau + 3} \right)$$

eq (D.2)

#114:
$$\frac{\mu \cdot (4 \cdot \tau + 12 \cdot \tau + 9) - \Delta v}{2}$$

$$(2 \cdot \tau + 3)$$

> 0 if

2 #115:
$$\mu \cdot (4 \cdot \tau + 12 \cdot \tau + 9) - \Delta v > 0$$

2 #116: SOLVE(
$$\mu$$
·(4·τ + 12·τ + 9) - Δ v > 0, Δ v)

#117:
$$\Delta v < \mu \cdot (4 \cdot \tau + 12 \cdot \tau + 9)$$

eq (17) and Result 3

#118: gII - g =
$$\frac{n \cdot \tau \cdot (\Delta v + \mu \cdot (2 \cdot \tau + 3))}{2} - \frac{n \cdot \tau \cdot (\Delta v + 9 \cdot \mu)}{9 \cdot \mu \cdot (\tau + 1)}$$

> 0 Appendix D if

2 2 2 #120:
$$9 \cdot \mu \cdot (2 \cdot \tau + 3) - \Delta v \cdot (4 \cdot \tau + 3) > 0$$

2 2 2 2 #121: SOLVE(
$$9 \cdot \mu \cdot (2 \cdot \tau + 3) - \Delta v \cdot (4 \cdot \tau + 3) > 0$$
, Δv)

File: vat_2024_4_3.dfw Date: 4/3/2024 Time: 7:15:07 PM

eq (D.3)

#122:
$$-\frac{3 \cdot \mu \cdot (2 \cdot \tau + 3)}{\sqrt{(4 \cdot \tau + 3)}} < \Delta v < \frac{3 \cdot \mu \cdot (2 \cdot \tau + 3)}{\sqrt{(4 \cdot \tau + 3)}}$$

By Assumption 2, $\Delta v < \mu$, hence it is sufficient to show that: eq (D.4)

#123:
$$\frac{3 \cdot \mu \cdot (2 \cdot \tau + 3)}{\sqrt{(4 \cdot \tau + 3)}} - \mu > 0$$

or that [holds for every $\tau \geq 0$]

#124:
$$\frac{3 \cdot (2 \cdot \tau + 3)}{\sqrt{(4 \cdot \tau + 3)}} - 1 > 0$$

Result 4 and Appendix E

#125: profitaII - profita =
$$\frac{n \cdot (\Delta v + \mu \cdot (2 \cdot \tau + 3))^{2}}{2} - \frac{n \cdot (\Delta v + 3 \cdot \mu)^{2}}{18 \cdot \mu \cdot (\tau + 1)}$$

#126: profitaII - profita = -
$$\frac{2}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} = \frac{2}{2}$$

$$\frac{2}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)}$$

evalutated at $\Delta v = 0$,

#127: profitaII - profita = -
$$\frac{2 \qquad 2 \qquad 2 \qquad 2}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)}$$

profitaII - profita =
$$\frac{n \cdot \mu \cdot \tau}{2 \cdot (\tau + 1)} > 0$$

#129: profitbII - profitb =
$$\frac{n \cdot (\Delta v - \mu \cdot (2 \cdot \tau + 3))}{2} - \frac{n \cdot (\Delta v - 3 \cdot \mu)}{18 \cdot \mu \cdot (\tau + 1)}$$

#130: profitbII - profitb = -
$$\frac{2}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} = \frac{2}{2} \cdot 2$$

$$\frac{2}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} = \frac{2}{2}$$

evaluated at $\Delta v = 0$,

#131: profitbII - profitb = -
$$\frac{2}{18 \cdot \mu \cdot (7 + 1) \cdot (2 \cdot \tau + 3)} + \frac{2}{18 \cdot \mu \cdot (7 + 1) \cdot (2 \cdot \tau + 3)} + \frac{2}{2}$$

#132:
$$profitbII - profitb = \frac{n \cdot \mu \cdot \tau}{2 \cdot (\tau + 1)} > 0$$

evaluted at $\Delta v = \mu$ (the other extreme):

#133: profitaII - profita = -
$$\frac{2 \quad 2 \quad 2}{n \cdot \tau \cdot (\mu \cdot (4 \cdot \tau + 3) - 6 \cdot \mu \cdot \mu \cdot (2 \cdot \tau + 3) - 9 \cdot \mu \cdot (2 \cdot \tau + 3))}{2}$$

#134: profitaII - profita =
$$\frac{2 \cdot n \cdot \mu \cdot \tau \cdot (9 \cdot \tau + 29 \cdot \tau + 24)}{2} > 0$$
$$9 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)$$

#135: profitbII - profitb = -
$$\frac{2}{n \cdot \tau \cdot (\mu \cdot (4 \cdot \tau + 3) + 6 \cdot \mu \cdot \mu \cdot (2 \cdot \tau + 3) - 9 \cdot \mu \cdot (2 \cdot \tau + 3))}$$

$$\frac{2}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)}$$

#136:
$$profitbII - profitb = \frac{2 \cdot n \cdot \mu \cdot \tau \cdot (9 \cdot \tau + 23 \cdot \tau + 15)}{2} > 0$$

$$9 \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)$$

so, look at the trend between $\Delta v=0$ and $\Delta v=\mu$ (look for monotonicity , i.e., derivative is either all >0 or all <0

#137:
$$\frac{d}{d \Delta v} \left(\text{profitbII - profitb} = -\frac{\frac{2}{n \cdot \tau \cdot (\Delta v \cdot (4 \cdot \tau + 3) + 6 \cdot \Delta v \cdot \mu \cdot (2 \cdot \tau + 3) - 9 \cdot \mu \cdot (2 \cdot \tau + 3)^{2})}{2} \right) \\ -\frac{\frac{2}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)}}{2} < 0$$
#138:

therefore profitbII is higher all over the range of Δv

#139:
$$\frac{d}{d \Delta v} \left(\text{profitaII - profita} = -\frac{\frac{2}{n \cdot \tau \cdot (\Delta v \cdot (4 \cdot \tau + 3) - 6 \cdot \Delta v \cdot \mu \cdot (2 \cdot \tau + 3) - 9 \cdot \mu \cdot (2 \cdot \tau + 3))}}{18 \cdot \mu \cdot (\tau + 1) \cdot (2 \cdot \tau + 3)} \right)$$

$$\frac{\mathsf{n}\cdot\mathsf{T}\cdot(3\cdot\mu\cdot(2\cdot\mathsf{T}+3)-\Delta\mathsf{v}\cdot(4\cdot\mathsf{T}+3))}{2}$$

$$9\cdot\mu\cdot(\mathsf{T}+1)\cdot(2\cdot\mathsf{T}+3)$$

> 0 if

#140:

#141:
$$3 \cdot \mu \cdot (2 \cdot \tau + 3) - \Delta v \cdot (4 \cdot \tau + 3) > 0$$

#142: SOLVE(
$$3 \cdot \mu \cdot (2 \cdot \tau + 3) - \Delta v \cdot (4 \cdot \tau + 3) > 0$$
, Δv)

#143:
$$\Delta v < \frac{3 \cdot \mu \cdot (2 \cdot \tau + 3)}{4 \cdot \tau + 3}$$

#144:
$$\frac{3 \cdot \mu \cdot (2 \cdot \tau + 3)}{4 \cdot \tau + 3} - \mu$$

#145:
$$\frac{2 \cdot \mu^{3} (1 + 3)}{4 \cdot \tau + 3} > 0$$

therefore profitaII is higher all over the range of Δv

*** Section 5: Welfare analysis

eq (18), first-best x^*

#146: $va - \mu \cdot xhatstar = vb - \mu \cdot (1 - xhatstar)$

#147: SOLVE(va - $\mu \cdot x$ hatstar = vb - $\mu \cdot (1 - x$ hatstar), xhatstar)

#148:
$$xhatstar = \frac{va - vb + \mu}{2 \cdot \mu}$$

eq (18)

#149: xhatstar =
$$\frac{\Delta v + \mu}{2 \cdot \mu}$$

recall xhatI and xhatII (start deriving Result 5)

#150: xhatI =
$$\frac{\Delta v + 3 \cdot \mu}{6 \cdot \mu}$$

#151: xhatII =
$$\frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)}$$

#152: xhatstar - xhatI =
$$\frac{\Delta v + \mu}{2 \cdot \mu} - \frac{\Delta v + 3 \cdot \mu}{6 \cdot \mu}$$

eq (19)

#153:
$$xhatstar - xhatI = \frac{\Delta v}{3 \cdot \mu}$$

#154: xhatI - xhatII =
$$\frac{\Delta v + 3 \cdot \mu}{6 \cdot \mu}$$
 - $\frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)}$

#155:
$$xhatI - xhatII = \frac{\Delta v \cdot \tau}{3 \cdot \mu \cdot (2 \cdot \tau + 3)}$$

In-text (below Result 5), derivation of Result 5(b)

#156:
$$\frac{d}{d\tau} \left(xhatI - xhatII = \frac{\Delta v \cdot \tau}{3 \cdot \mu \cdot (2 \cdot \tau + 3)} \right)$$

$$0 < \frac{\Delta v}{\mu \cdot (2 \cdot \tau + 3)}$$

#158:
$$\frac{d}{d \Delta v} \left(xhatI - xhatII = \frac{\Delta v \cdot \tau}{3 \cdot \mu \cdot (2 \cdot \tau + 3)} \right)$$

$$0 < \frac{\tau}{3 \cdot \mu \cdot (2 \cdot \tau + 3)}$$

eq (20) total welfare

#161:
$$\int_{xhat}^{1} (vb - \mu \cdot (1 - x)) dx$$

#162:
$$w = n \cdot \int_{0}^{xhat} (va - \mu \cdot x) dx + n \cdot \int_{xhat}^{1} (vb - \mu \cdot (1 - x)) dx$$

#163:
$$w = n \cdot \left(va \cdot xhat - \frac{2 \cdot vb \cdot (xhat - 1) + \mu \cdot (2 \cdot xhat - 2 \cdot xhat + 1)}{2} \right)$$

#164:
$$w = \frac{n \cdot (2 \cdot va \cdot xhat + 2 \cdot vb \cdot (1 - xhat) - \mu \cdot (2 \cdot xhat - 2 \cdot xhat + 1))}{2}$$

eq (21) three welfare levels

#165:
$$wI = \frac{n \cdot \left(2 \cdot va \cdot \frac{\Delta v + 3 \cdot \mu}{6 \cdot \mu} + 2 \cdot vb \cdot \left(1 - \frac{\Delta v + 3 \cdot \mu}{6 \cdot \mu}\right) - \mu \cdot \left(2 \cdot \left(\frac{\Delta v + 3 \cdot \mu}{6 \cdot \mu}\right)^2 - 2 \cdot \frac{\Delta v + 3 \cdot \mu}{6 \cdot \mu} + 1\right)\right)}{2}$$

#166: $wI = \frac{n \cdot (6 \cdot va \cdot (\Delta v + 3 \cdot \mu) + 6 \cdot vb \cdot (3 \cdot \mu - \Delta v) - \Delta v - 9 \cdot \mu)}{36 \cdot \mu}$

#167: wII =

$$n \cdot \left(2 \cdot va \cdot \frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} + 2 \cdot vb \cdot \left(1 - \frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)}\right) - \mu \cdot \left(2 \cdot \left(\frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)}\right)^2 - 2 \cdot \frac{\Delta v}{\sim} \right)$$

$$\frac{+ \mu \cdot (2 \cdot \tau + 3)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} + 1 \Bigg)$$

#168: wII =
$$n \cdot \left(\frac{va \cdot (\Delta v + \mu \cdot (2 \cdot \tau + 3))}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} + \frac{vb \cdot (\mu \cdot (2 \cdot \tau + 3) - \Delta v)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} - \frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{\Delta v + \mu \cdot (2 \cdot \tau + 3)} \right)$$

#169:
$$\text{wstar} = \frac{n \cdot \left(2 \cdot va \cdot \frac{\Delta v + \mu}{2 \cdot \mu} + 2 \cdot vb \cdot \left(1 - \frac{\Delta v + \mu}{2 \cdot \mu}\right) - \mu \cdot \left(2 \cdot \left(\frac{\Delta v + \mu}{2 \cdot \mu}\right)^2 - 2 \cdot \frac{\Delta v + \mu}{2 \cdot \mu} + 1\right)\right)}{2}$$

#170:
$$wstar = \frac{n \cdot (2 \cdot va \cdot (\Delta v + \mu) + 2 \cdot vb \cdot (\mu - \Delta v) - \Delta v - \mu)}{4 \cdot \mu}$$

Result 6 and Appendix F

#171: wstar - wI =
$$\frac{n \cdot (2 \cdot va \cdot (\Delta v + \mu) + 2 \cdot vb \cdot (\mu - \Delta v) - \Delta v - \mu)}{4 \cdot \mu}$$

$$\frac{n \cdot (6 \cdot va \cdot (\Delta v + 3 \cdot \mu) + 6 \cdot vb \cdot (3 \cdot \mu - \Delta v) - \Delta v - 9 \cdot \mu)}{36 \cdot \mu}$$

eq (F.1)

#172:
$$wstar - wI = \frac{n \cdot \Delta v \cdot (3 \cdot va - 3 \cdot vb - 2 \cdot \Delta v)}{9 \cdot \mu}$$

#173: wI - wII =
$$\frac{n \cdot (6 \cdot \text{va} \cdot (\Delta \text{v} + 3 \cdot \mu) + 6 \cdot \text{vb} \cdot (3 \cdot \mu - \Delta \text{v}) - \Delta \text{v} - 9 \cdot \mu)}{36 \cdot \mu} - n \cdot \left(\frac{\text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3))}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} + \frac{(\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))} + \frac{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))}{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))} + \frac{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))}{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))} + \frac{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))}{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))} + \frac{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (\Delta \text{v} + \mu \cdot (2 \cdot \tau + 3)))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau + 3))}{(\Delta \text{va} \cdot (2 \cdot \tau + 3))} + \frac{(\Delta \text{va} \cdot (2 \cdot \tau +$$

$$wI - wII = \frac{n \cdot \Delta v \cdot \tau \cdot (3 \cdot va \cdot (2 \cdot \tau + 3) - 3 \cdot vb \cdot (2 \cdot \tau + 3) - \Delta v \cdot (\tau + 3))}{2}$$

$$9 \cdot \mu \cdot (2 \cdot \tau + 3)$$

Date: 4/3/2024

#174:

#175:
$$wI - wII = \frac{n \cdot \Delta v \cdot \tau \cdot (3 \cdot \Delta v \cdot (2 \cdot \tau + 3) - \Delta v \cdot (\tau + 3))}{2}$$

$$9 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#176:

$$wI - wII = \frac{\frac{2}{n \cdot \Delta v \cdot \tau \cdot (5 \cdot \tau + 6)}}{2}$$

$$9 \cdot \mu \cdot (2 \cdot \tau + 3)$$

Second part of Result 7 (Appendix F) showing that the above gap increases (basically WII declines) with a higher τ

#177:
$$\frac{d}{d\tau} \left(wI - wII = \frac{2}{n \cdot \Delta v \cdot \tau \cdot (5 \cdot \tau + 6)} \right)$$

$$9 \cdot \mu \cdot (2 \cdot \tau + 3)$$

#178:

$$0 < \frac{2 \cdot n \cdot \Delta v \cdot (\tau + 1)}{3}$$

$$\mu \cdot (2 \cdot \tau + 3)$$

Another way is to differentiate wII w.r.t. τ

#179:
$$\frac{d}{d\tau} \left(wII = n \cdot \left(\frac{va \cdot (\Delta v + \mu \cdot (2 \cdot \tau + 3))}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} + \frac{vb \cdot (\mu \cdot (2 \cdot \tau + 3) - \Delta v)}{2 \cdot \mu \cdot (2 \cdot \tau + 3)} - \frac{\Delta v + \mu \cdot (2 \cdot \tau + 3)}{4 \cdot \mu \cdot (2 \cdot \tau + 3)} \right) \right)$$

 $-\frac{n \cdot \Delta v \cdot (va \cdot (2 \cdot \tau + 3) - vb \cdot (2 \cdot \tau + 3) - \Delta v)}{3}$ $\mu \cdot (2 \cdot \tau + 3)$

#180:

< 0 if [Yes]

#181: $n \cdot \Delta v \cdot (va \cdot (2 \cdot \tau + 3) - vb \cdot (2 \cdot \tau + 3) - \Delta v) > 0$

#182: $n \cdot \Delta v \cdot (\Delta v \cdot (2 \cdot \tau + 3) - \Delta v) > 0$

#183:

 $\begin{array}{c}
2 \\
n \cdot \Delta v \cdot (2 \cdot \tau + 2) > 0
\end{array}$

XXXXXXXXXXXXXXXXX