Fiche d'exercices n°1 : nombres complexes

Prenez l'habitude de vérifier systématiquement vos résultats, par exemple avec www.wolframalpha.com.

Pour réviser...

Exercice 1. Développer les expressions suivantes :

$$(a-b)^2$$

$$(x+y)(x-y)$$

$$iii) (u+3)^2$$

$$i) (a-b)^2$$
 $ii) (x+y)(x-y)$ $iii) (u+3)^2$ $iv) (x+y)^3$ $v) (a-b)^3$

$$v) (a - b)^3$$

Exercice 2. Factoriser: $i) a^2 - b^2$ $ii) a^3 - b^3$ $iii) a^4 - b^4$

i)
$$a^2 - b^2$$

$$ii) a^3 - b^3$$

$$iii) a^4 - b^4$$

Exercice 3.

1. Supprimer les racines carrées au dénominateur en utilisant l'expression conjuguée.

$$A = \frac{1}{\sqrt{2} + 2}$$

$$B = \frac{12}{\sqrt{3} - 1}$$

$$A = \frac{1}{\sqrt{2} + 2}$$
 $B = \frac{12}{\sqrt{3} - 1}$ $C = \frac{4\sqrt{2}}{3\sqrt{2} - 2}$ $D = \frac{\sqrt{3} + 1}{\sqrt{2} - 2}$

$$D = \frac{\sqrt{3} + 1}{\sqrt{2} - 2}$$

2. En utilisant la quantité conjuguée pour transformer certaines expressions, regrouper les nombres par paires identiques.

$$\frac{2}{5-\sqrt{2}}$$
 ; $4+2\sqrt{2}$; $\frac{5}{3+\sqrt{2}}$; $\frac{4}{2-\sqrt{2}}$; $\frac{15-5\sqrt{2}}{7}$; $\frac{10+2\sqrt{2}}{23}$

3. Comparer
$$\frac{2\sqrt{3}}{5-\sqrt{23}}$$
 et $5\sqrt{3}+\sqrt{69}$

Exercice 4. Dans chacun des cas, résoudre dans \mathbb{R} l'équation P(x) = 0 et factoriser P(x).

$$P_1(x) = 3x^2 - x + 2$$

$$P_1(x) = 3x^2 - x + 2$$
 $P_2(x) = -5x^2 - 9x + 2$ $P_3(x) = \frac{1}{3}x^2 - 2x + 3$ $P_4(x) = -4x + 3x^2 + 1$

$$P_3(x) = \frac{1}{3}x^2 - 2x + 3$$

$$P_4(x) = -4x + 3x^2 +$$

Exercice 5.

1. Simplifier les expressions suivantes :

$$a) e^{-5} \frac{1}{e^{-3}}$$

$$b) \quad \frac{e^{10}}{-e^{-2}} \, \frac{-e^{-4}}{e^{-8}}$$

a)
$$e^{-5} \frac{1}{e^{-3}} e$$
 b) $\frac{e^{10}}{e^{-2}} \frac{-e^{-4}}{e^{-8}}$ c) $e^3(e^{-3} - e^2) + e^2(e^3 + e) - 1$

$$d) \quad \frac{\sqrt[3]{e} \ e^2}{\left(\sqrt{e}\right)^3}$$

d)
$$\frac{\sqrt[3]{e} e^2}{(\sqrt{e})^3}$$
 e) $\frac{(e^{-2a})^3 e^{4a}}{e^{-2a}}$ f) $\frac{(e^{1-t/2})^3}{e e^{-9t/2}}$

$$f) \quad \frac{\left(e^{1-t/2}\right)^3}{e \, e^{-9t/2}}$$

2. Prouver que, pour tout $x \in \mathbb{R}$:

$$\frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$e^{-x} - e^{-2x} = \frac{e^x - 1}{e^{2x}}$$

$$\frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{e^{2x} - 1}{e^{2x} + 1} \qquad e^{-x} - e^{-2x} = \frac{e^{x} - 1}{e^{2x}} \qquad \left(e^{x} + e^{-x}\right)^{2} - 2 = \frac{e^{4x} + 1}{e^{2x}}$$

Exercice 6. Dans le plan, calculer la distance entre les 2 points A et B:

- a) A(2,1) B(-1,2) b) A(5,-3) B(3,1) c) A(-1,3) B(2,-1)

Exercice 7.

- 1. Déterminer l'équation du cercle de centre C(-2,1) et de rayon 2.
- 2. Quel est l'ensemble des points (x, y) vérifiant l'équation $x^2 + y^2 4 4x + 2y = 0$?
- 3. Quel est l'ensemble des points (x, y) vérifiant l'équation $2x 2x^2 2y^2 4y + \frac{15}{4} = 0$?

Exercice 8.

1. Donner les valeurs des sinus et cosinus des angles suivants :

$$\frac{2\pi}{3}$$
 $\frac{9\pi}{2}$ $\frac{-9\pi}{12}$ $\frac{11\pi}{6}$ $\frac{-13\pi}{4}$ $\frac{7\pi}{3}$ $\frac{8\pi}{3}$

2. Exprimer les sinus et cosinus des angles suivants en fonction de sin $\frac{\pi}{5}$ et cos $\frac{\pi}{5}$:

$$-\frac{\pi}{5}$$
 $\frac{6\pi}{5}$ $\frac{9\pi}{5}$ $\frac{4\pi}{5}$ $\frac{\pi}{2} - \frac{\pi}{5}$ $\frac{3\pi}{2} + \frac{\pi}{5}$

Exercices de base sur les nombres complexes ____

Exercice 9. Pour chacun des nombres complexes ci-dessous, indiquer sa partie réelle, sa partie imaginaire, son module, un argument, et le placer dans le plan complexe.

a)
$$1+i$$
 b) $2-2i$ c) $\sqrt{3}+i$ d) $-i$
e) $-1+i\sqrt{3}$ f) $\overline{-1+i}$ g) -5 h) $a+ia$

Exercice 10. Mettre sous forme algébrique les expressions suivantes, et placer dans le plan complexe les différents termes mis en jeu.

a)
$$(1+i)^2$$
 b) $(2-i)^2$ c) $(a+ib)^2$ d) $\overline{(1+i)}(2+i)$
e) $(1+2i)(3+4i)$ f) $(1-3i)\overline{(5+2i)}$ g) $(2+3i)^2\overline{(2+3i)}$ h) $(3+i)^3$
i) $(2+5i)(2-5i)$ j) $(1-4i)(1+4i)$ k) $(2+3i)^2+(2-3i)^2$ l) $(a+bi)^2+(a-bi)^2$

Exercice 11. Simplifier les expressions suivantes :

a)
$$\mathcal{R}e(3-7i)$$
 b) $\mathcal{R}e(-\sqrt{7}+2i)$ c) $\mathcal{I}m(\sqrt{5}+i)$ d) $\mathcal{I}m(\overline{2+i})$
e) $\mathcal{R}e((1-i)(3+4i))$ f) $\mathcal{R}e((1+i)(3+i))$ g) $\mathcal{I}m(i(2-i))$ h) $\mathcal{I}m(\overline{(3-i)}(1+2i))$

Exercice 12.

- 1. Soit A le point du plan de coordonnées (1,3). Quelle est l'équation caractérisant les affixes des points du cercle de centre A et de rayon 2?
- 2. Généraliser le résultat précédent au cercle de centre A(a,b) et de rayon r.
- 3. Soient P(1,3) et Q(-1,2) deux points du plan. Quelle est l'équation caractérisant les affixes des points de la médiatrice de [PQ]?
- 4. Généraliser le résultat de la question précédente à la médiatrice des points P(a,b) et Q(c,d).

Exercice 13. Par un raisonnement géométrique, trouver et dessiner pour chacun des cas suivants l'ensemble des points dont l'affixe z satisfait la condition indiquée.

a)
$$|z-3| = |z-1+i|$$

$$b) \quad |z+2-i| = \sqrt{3}$$

$$c) \quad |z - 1 + 2i| \le 2$$

a)
$$|z-3| = |z-1+i|$$
 b) $|z+2-i| = \sqrt{3}$ c) $|z-1+2i| \le 2$ d) $\left|\frac{z-3}{z-5}\right| = 1$

e)
$$\mathcal{R}e(z) \le 2, \mathcal{I}m(z) \le 1$$
 et $|z| \le 3$

e)
$$\Re(z) \le 2, \Im(z) \le 1$$
 et $|z| \le 3$ f $-\frac{\pi}{3} \le \arg z \le \frac{\pi}{2}$ et $2 \le |z| < 3$

Exercice 14. Par quelle(s) condition(s) sur leurs affixes z peut-on caractériser l'ensemble des points de la zone grisée des dessins ci-dessous?

Exercice 15. Pour un point M du plan, d'affixe z quelconque, placer dans le plan les points d'affixe 2z, -3z, $0.5 \overline{z}$, iz.

Exercice 16. Mettre sous forme algébrique les expressions suivantes :

$$a) \quad \frac{5-5i}{4-3i}$$

$$b) \quad \frac{3+2i}{3-2i}$$

$$c) \quad \frac{3+i}{2-i}$$

$$d) \quad \frac{1+i}{3+4i}$$

$$e) \quad \frac{a+ib}{a-ib}$$

a)
$$\frac{5-5i}{4-3i}$$
 b) $\frac{3+2i}{3-2i}$ c) $\frac{3+i}{2-i}$ d) $\frac{1+i}{3+4i}$ e) $\frac{a+ib}{a-ib}$ f) $\frac{(1-2i)^2}{(1+2i)^2}$

Exercice 17. Soit $z \in \mathbb{C}$ avec $z \neq 1$, et $Z = \frac{z+2i}{z-1}$.

Déterminer l'ensemble des points d'affixe z tels que :

- a) Z soit un nombre réel
- b) Z soit un nombre imaginaire pur

Exercice 18. Mettre sous forme algébrique les nombres complexes suivants :

$$e^{2i\pi}$$

$$e^{i\pi}$$

$$e^{-i\pi}$$

$$e^{i\frac{\pi}{3}}$$

$$\frac{2\pi}{3}$$

$$e^{2i\pi}$$
 $e^{i\pi}$ $e^{-i\pi}$ $e^{i\frac{\pi}{3}}$ $2e^{i\frac{2\pi}{3}}$ $e^{i\frac{\pi}{4}}$ $\sqrt{2}e^{i\frac{3\pi}{4}}$ $e^{i\frac{\pi}{6}}$

$$e^{i\frac{\pi}{6}}$$

$$4e^{i\frac{7\pi}{6}}$$

Exercice 19. Mettre sous forme exponentielle les nombres complexes suivants :

$$a)$$
 i

$$-1$$

$$-i$$

$$f$$
) $\left(e^{i\frac{\pi}{6}}\right)^{-2}$

$$(e^{i\frac{\pi}{3}})^{\xi}$$

$$\frac{1}{e^{i\frac{\pi}{4}}}$$

$$i)$$
 -

$$k) -ie^{i\frac{\pi}{4}}$$

$$l$$
) $\left(\overline{2e^{i\frac{\pi}{7}}}\right)^{-}$

$$m) \quad \overline{\left(\frac{1}{2}e^{i\frac{\pi}{3}}\right)}$$

$$n) \quad \left(\frac{4e^{i\frac{\pi}{3}}}{e^{i\frac{\pi}{2}}}\right)^{-2}$$

a)
$$i$$
 b) -1 c) $-i$ d) $(-i)^7$ e) $e^{i\frac{\pi}{3}}$

f) $(e^{i\frac{\pi}{6}})^{-2}$ g) $(e^{i\frac{\pi}{3}})^5$ h) $\frac{1}{e^{i\frac{\pi}{4}}}$ i) $-2e^{i\frac{\pi}{3}}$ j) $ie^{-i\frac{\pi}{6}}$

k) $-ie^{i\frac{\pi}{4}}$ l) $(\overline{2}e^{i\frac{\pi}{7}})^{-3}$ m) $\overline{\left(\frac{1}{2}e^{i\frac{\pi}{3}}\right)^{-2}}$ n) $(\frac{4e^{i\frac{\pi}{3}}}{e^{i\frac{\pi}{2}}})^{-2}$ o) $(\frac{2}{3}e^{i\frac{\pi}{3}})^{-1}$

Exercice 20. Mettre sous forme exponentielle les nombres complexes suivants :

$$a)$$
 $1+i$

$$c) \qquad \frac{1}{1+i}$$

$$d) \qquad -2+2$$

$$e$$
) $(1+i)^9$

$$f) \qquad \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$g) \quad \frac{1}{2} - \frac{\sqrt{3}}{2}$$

$$h$$
) $i + \sqrt{3}$

$$i) \qquad \frac{1+i}{i+\sqrt{3}}$$

$$j) \frac{(-1+i)^4}{1+i\sqrt{3}}$$

$$k) (1 - i\sqrt{3})^{10}$$

$$l) \quad \frac{(1+i\sqrt{3})^5}{(1-i\sqrt{3})^5}$$

$$m) \quad \frac{(\sqrt{3}+i)^8}{(\sqrt{3}-i)^8}$$

a)
$$1+i$$
 b) $1-i$ c) $\frac{1}{1+i}$ d) $-2+2i$ e) $(1+i)^9$
f) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ g) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ h) $i+\sqrt{3}$ i) $\frac{1+i}{i+\sqrt{3}}$ j) $\frac{(-1+i)^4}{1+i\sqrt{3}}$
k) $(1-i\sqrt{3})^{10}$ l) $\frac{(1+i\sqrt{3})^5}{(1-i\sqrt{3})^5}$ m) $\frac{(\sqrt{3}+i)^8}{(\sqrt{3}-i)^8}$ n) $\left(\frac{1}{\sqrt{2}} + i\frac{\sqrt{2}}{2}\right)^{17}$

Exercice 21. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$Z^2 = 8 - 6$$

a)
$$Z^2 = 8 - 6i$$
 b) $Z^2 = -3 + 4i$ c) $Z^2 = 7 + 24i$ d) $Z^2 = 9 + 40i$

c)
$$Z^2 = 7 + 24i$$

d)
$$Z^2 = 9 + 40i$$

Exercice 22. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$X^2 + 3 = 0$$

$$(X^2 - X + 6) = 0$$

c)
$$X^2 - 4X + 5 = 0$$

a)
$$X^2 + 3 = 0$$
 b) $X^2 - X + 6 = 0$ c) $X^2 - 4X + 5 = 0$ d) $X^2 - 2X + 4 = 0$

Exercice 23. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$z^2 + (1-5i)z + 2i - 6 = 0$$
 b) $z^2 - (3+4i)z + 7i - 1 = 0$ c) $2z^2 + (5+i)z + 2 + 2i = 0$

b)
$$z^2 - (3+4i)z + 7i - 1 = 0$$

c)
$$2z^2 + (5+i)z + 2 + 2i = 0$$

Pour vous entrainer...

Exercice 24. Mettre sous forme algébrique les expressions suivantes, et placer dans le plan complexe les différents termes mis en jeu.

a)
$$(1-i)^2$$

b)
$$(3-i)^2$$

$$(2+3i)^2$$

$$d)$$
 $(a-ib)^2$

$$e) (2-i)(3-4i)$$

$$(1+2i)\overline{(4-2i)}$$
 $g)$ $(1-3i)$

$$h) \frac{(a-i)^{\frac{1}{2}}}{(2-i)^{\frac{1}{2}}}$$

$$i) (1+3i)(1-3i)$$

$$(2-i)(2+i)$$

$$(1)$$
 $(1+2i)(3-4i)$

Exercice 25. Simplifier les expressions suivantes :

a)
$$\Re e((2+i)(3-4i))$$

$$a) \quad \mathcal{R}e((2+i)(3-4i)) \quad b) \quad \mathcal{R}e((-1+i)(2+3i)) \quad c) \quad \mathcal{I}m(-i(2+i)) \quad d) \quad \mathcal{I}m(\overline{(2-i)}(1-2i)) = 0$$

c)
$$\mathcal{I}m(-i(2+i))$$

d)
$$\mathcal{I}m(\overline{(2-i)}(1-2i)$$

Exercice 26. Mettre sous forme algébrique les expressions suivantes :

$$a) \quad \frac{1-5i}{1+2i}$$

$$b) \quad \frac{2-3i}{3-2i}$$

$$c) \quad \frac{1+i}{2+i}$$

$$d) \quad \frac{2-2i}{2+4i}$$

$$e) \quad \frac{a-ib}{2a+ib}$$

a)
$$\frac{1-5i}{1+2i}$$
 b) $\frac{2-3i}{3-2i}$ c) $\frac{1+i}{2+i}$ d) $\frac{2-2i}{2+4i}$ e) $\frac{a-ib}{2a+ib}$ f) $\frac{(1+i)^2}{(1-2i)^2}$

Exercice 27. Par un raisonnement géométrique, trouver pour chacun des cas suivants l'ensemble des points dont l'affixe z satisfait la condition indiquée.

a)
$$|1+i-z| = |z-4+2i|$$
 b) $|z+3-2i| = 5$ c) $|z-2+i| > 1$

b)
$$|z+3-2i|=5$$

c)
$$|z-2+i| > 1$$

Exercice 28. Mettre sous forme algébrique les nombres complexes suivants :

$$e^{-i\frac{\pi}{2}}$$

$$e^{i}$$

$$e^{i\frac{\pi}{2}}$$
 $e^{i\frac{3\pi}{2}}$ $2e^{-i\frac{2\pi}{3}}$ $e^{-i\frac{\pi}{3}}$ $e^{i\frac{3\pi}{4}}$ $\sqrt{2}e^{-i\frac{\pi}{4}}$ $e^{i\frac{5\pi}{6}}$

$$e^{-i\frac{\pi}{3}}$$

$$e^{i\frac{3\pi}{4}}$$

$$\sqrt{2}\,e^{-i\frac{\pi}{4}}$$

$$e^{i\frac{5\pi}{6}}$$

$$2e^{i\frac{\pi}{6}}$$

Exercice 29. Mettre sous forme exponentielle les nombres complexes suivants :

$$(e^{i\frac{3\pi}{4}})^3$$

$$(2e^{-i\frac{\pi}{6}})^{-3}$$

$$\frac{e^{i\frac{\pi}{3}}}{\left(e^{i\frac{\pi}{8}}\right)^2}$$

$$(e^{i\frac{3\pi}{4}})^3 \qquad (2e^{-i\frac{\pi}{6}})^{-3} \qquad \frac{e^{i\frac{\pi}{3}}}{\left(e^{i\frac{\pi}{8}}\right)^2} \qquad \left(e^{i\frac{\pi}{3}}\right)^3 \left(e^{i\frac{\pi}{2}}\right)^3 \qquad \left(e^{-i\frac{\pi}{4}}\right)^6 \left(e^{i\frac{\pi}{2}}\right)^6 \qquad \left(\overline{3}e^{i\frac{\pi}{3}}\right)^2$$

$$\left(e^{-i\frac{\pi}{4}}\right)^6 \left(e^{i\frac{\pi}{2}}\right)^6$$

$$\left(\overline{3e^{i\frac{\pi}{3}}}\right)^2$$

$$\frac{1}{\left(2e^{i\frac{3\pi}{4}}\right)^{-2}}$$

$$\left(\frac{e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{6}}}\right)^{-1}$$

$$\frac{\left(e^{i\frac{\pi}{3}}\right)^5}{\left(e^{i\frac{2\pi}{3}}\right)^7 \left(e^{-i\frac{\pi}{3}}\right)^4}$$

$$\frac{1}{\left(2e^{i\frac{3\pi}{4}}\right)^{-2}} \qquad \left(\frac{e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{6}}}\right)^{-2} \qquad \frac{\left(e^{i\frac{\pi}{3}}\right)^{5}}{\left(e^{i\frac{2\pi}{3}}\right)^{7}\left(e^{-i\frac{\pi}{3}}\right)^{4}} \qquad \left(2e^{i\frac{\pi}{3}}\right)^{-3}\left(\sqrt{2}\,e^{i\frac{\pi}{6}}\right)^{4} \qquad \frac{\left(ie^{i\frac{\pi}{3}}\right)^{6}}{\left(-e^{i\frac{2\pi}{3}}\right)^{-2}}$$

$$\frac{\left(ie^{i\frac{\pi}{3}}\right)^6}{\left(-e^{i\frac{2\pi}{3}}\right)^{-2}}$$

Exercice 30. Mettre sous forme exponentielle les nombres complexes suivants :

a)
$$\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)(1+i)$$
 b) $\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}\right)e^{i\frac{\pi}{2}}$ c) $(1+i)e^{i\frac{\pi}{3}}$ d) $\frac{1}{\sqrt{3}-i}$

$$b) \quad \left(\frac{\sqrt{3}}{2}i + \frac{1}{2}\right)e^{i\frac{\pi}{2}}$$

$$c) \quad (1+i)e^{i\frac{\pi}{3}}$$

$$d) \qquad \frac{1}{\sqrt{3}-i}$$

$$e) \qquad \frac{1-i}{i-\sqrt{3}}$$

$$f) \qquad \frac{(1 - i\sqrt{3})^3}{(1 + i\sqrt{3})^3}$$

$$g) \quad \frac{(\sqrt{3}+i)^8}{(\sqrt{3}-i)^8}$$

$$\frac{1-i}{i-\sqrt{3}} \qquad f) \qquad \frac{(1-i\sqrt{3})^3}{(1+i\sqrt{3})^3} \qquad g) \quad \frac{(\sqrt{3}+i)^8}{(\sqrt{3}-i)^8} \qquad h) \quad \left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{57}$$

Exercice 31. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$X^2 - X + 3 = 0$$

b)
$$2X^2 - X + 5 = 0$$

c)
$$3X^2 - X + 1 = 0$$

a)
$$X^2 - X + 3 = 0$$
 b) $2X^2 - X + 5 = 0$ c) $3X^2 - X + 1 = 0$ d) $X^2 + 2X + 4 = 0$

$$e) Z^2 = 1 + i$$

$$(f) Z^2 = 7 - 24c$$

$$Z^2 = 1 + i$$
 f) $Z^2 = 7 - 24i$ g) $Z^2 = 3 + 4i$ h) $Z^2 = 1 - 3i$

$$h) Z^2 = 1 - 3i$$

Exercice 32. Résoudre les équations suivantes et placer les solutions dans le plan complexe :

a)
$$z^2 - (3+2i)z + 5 + 5i = 0$$

a)
$$z^2 - (3+2i)z + 5 + 5i = 0$$
 b) $z^2 + (2-i)z - 13 + 11i = 0$ c) $z^2 + (3-3i)z - 5i = 0$

c)
$$z^2 + (3-3i)z - 5i = 0$$

Pour aller plus loin...

Exercice 33.

- 1. Résoudre l'équation $Z^2 = 1 + i$ de deux façons différentes (via la forme exponentielle et via la forme algébrique).
- 2. En déduire les valeurs de $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.
- 3. Retrouver ces valeurs en utilisant les formules de trigonométrie $\cos 2a = \cos^2 a \sin^2 a$ $et \cos^2 a + \sin^2 a = 1.$

Exercice 34. On considère les nombres complexes $z_1 = e^{i\frac{\pi}{3}}$ et $z_2 = e^{-i\frac{\pi}{4}}$.

- 1. Écrire z_1 et z_2 sous forme algébrique.
- 2. Déterminer les écritures sous formes algébriques et exponentielles de z_1z_2 .
- 3. En déduire les valeurs exactes de $\sin \frac{\pi}{12}$ et $\cos \frac{\pi}{12}$.

Exercice 35. Trouver les valeurs du paramètre réel a pour lesquelles le module du nombre complexe z est égal à 1. Pour les valeurs de a trouvées, mettre z sous forme exponentielle.

a)
$$z = \frac{(1+i)}{(1-ai)}$$

b)
$$z = \frac{(1+i)^2}{(1+ai)}$$

a)
$$z = \frac{(1+i)}{(1-ai)}$$
 b) $z = \frac{(1+i)^2}{(1+ai)}$ c) $z = \frac{(1+\sqrt{3}i)^2(\sqrt{3}+2i)^2}{7(\sqrt{3}+ai)^2}$ d) $z = \frac{a+2i}{1-ai}$

$$d) z = \frac{a+2i}{1-ai}$$

Exercice 36. Montrer que : $\forall w, z \in \mathbb{C}$, $|z + w|^2 + |z - w|^2 = 2|z|^2 + 2|w|^2$. Donner une interprétation géométrique de ce résultat.

Exercice 37. Soit $z \in \mathbb{C} \setminus \{i\}$. Montrer que $\frac{z+i}{1+iz}$ est un nombre réel si et seulement si |z|=1.

Exercice 38.

1. En raisonnant sur le cercle trigonométrique, exprimer $\cos \frac{4\pi}{5}$, $\cos \frac{6\pi}{5}$ et $\cos \frac{8\pi}{5}$ en fonction de $\cos \frac{\pi}{5}$ et $\cos \frac{2\pi}{5}$. Rappeler par ailleurs la formule reliant $\cos \frac{\pi}{5}$ et $\cos \frac{2\pi}{5}$.

- 2. Soit $z=e^{\frac{2i\pi}{5}}$. En utilisant les connaissances sur les suites géométriques, ou en raisonnant sur le cercle trigonométrique, calculer $1 + z + z^2 + z^3 + z^4$.
- 3. En déduire les valeurs de $\cos \frac{\pi}{5}$ et $\sin \frac{\pi}{5}$.

Exercice 39.

- 1. Trouver les racines troisièmes de l'unité (c'est-à-dire les nombres z tels que $z^3 = 1$). Comment peut-on les exprimer en fonction du nombre $j=e^{\frac{2i\pi}{3}}$
- 2. Les représenter sur le cercle trigonométrique.
- 3. Montrer que la somme des racines troisièmes de 1 vaut 0.
- 4. Trouver les racines troisièmes de -8i.

Exercice 40. Résoudre dans \mathbb{C} l'équation : $z^n + 1 = 0$.

Exercice 41. Déterminer les nombres complexes z tels que :

a)
$$z^2 + |z| - 2 = 0$$

$$b) \quad z|z| - 2z = 1$$

$$c) \quad z^2 = \bar{z}$$

a)
$$z^2 + |z| - 2 = 0$$
 b) $z|z| - 2z = i$ c) $z^2 = \bar{z}$ d) $z^2 - z = |z|^2 - |z|$

Exercice 42. Déterminer les nombres complexes z et w tels que

$$a) \quad \begin{cases} zw^2 = 1\\ z^2 + w^4 = 2 \end{cases}$$

a)
$$\begin{cases} zw^2 = 1 \\ z^2 + w^4 = 2 \end{cases}$$
 b) $\begin{cases} z\bar{w} = i \\ |z|^2w + z = 1 \end{cases}$

Exercice 43. Déterminer et représenter dans le plan complexe l'ensemble des nombres complexes z tels que :

$$a) \quad |1 - z| \le \frac{1}{2}$$

a)
$$|1-z| \le \frac{1}{2}$$
 b) $|(1-i)z - 3i| = 3$ c) $Re(1-z) \le 2$ d) $Re(iz) \ge 1$

c)
$$Re(1-z) \le 2$$

$$d)$$
 $\mathcal{R}e(iz) \geq 1$

$$e) \quad \left|1 - \frac{1}{z}\right|^2 = 2$$

e)
$$\left|1 - \frac{1}{z}\right|^2 = 2$$
 f) z^7 et $\frac{1}{z^2}$ soient conjugués g) $\frac{|z-3|}{|z+3|} > 2$ h) $\frac{|z-3|}{|z-5|} < 1$

$$g) \qquad \frac{|z-3|}{|z+3|} > 2$$

$$h) \quad \frac{|z-3|}{|z-5|} <$$