Lecture 8

Nucleophilic Aromatic substitution, and benzynes

Dr Andrea Vernall
andrea.vernall@otago.ac.nz

Reference textbook

- "Organic Chemistry" by Bruice, 8th Edn.
- This lecture Chapter 18, in particular 18.21
- And
 - https://www.masterorganicchemistry.com/2018/08/20/nucleophilic-aromaticsubstitution-nas/
 - https://www.masterorganicchemistry.com/2018/09/17/nucleophilic-aromaticsubstitution-2-benzyne/
 - (the benzyne mechanism is **not** discussed in depth in Bruice)

<u>Learning Objectives – Lecture 8</u>

Section 4— Aromatic nucleophilic substitution reactions

Account for the general lack of reactivity of benzene towards nucleophiles Discuss the reactions of aromatic compounds with nucleophiles by the addition/elimination mechanism, to include: the mechanism of the reaction, including resonance-stabilisation of reaction intermediates factors affecting reactivity of the aromatic ring towards the nucleophilic addition step factors affecting the course of the elimination step Discuss the reactions of aromatic compounds with nucleophiles by the benzyne mechanism, to include: the mechanism of the reaction the reactivity of benzyne intermediates

Lecture Outline: L8

- 1. Introduction
- 2. Nucleophilic Aromatic Substitution
- 3. Nucleophilic Aromatic Substitution addition then elimination
- 4. Nucleophilic Aromatic Substitution elimination then addition

1. Introduction

- On the whole, benzene doesn't react easily with nucleophiles because the π cloud repels the approach of a nucleophile
- Benzene derivatives with a leaving group undergo substitution with difficulty.
- A comparison of alkyl and aryl chloride bond strengths indicates why.....

- Aromatic C—Cl, 400 kJ mol⁻¹
- shorter

- Alkyl C—Cl, 346 kJ mol⁻¹
- longer

1. Introduction

NUCLEOPHILIC aromatic substitution CAN occur if

- The aromatic ring is electron poor (one or more EWGs)
- There is a good, incoming nucleophile
 AND
- There is a good leaving group

Remember from S_EAr :

Strongly Deactivating towards Shar

- $-NO_2$
- -CN
- $-SO_3H$
- $-NH_3^+$
- $-NR_3^+$

Activating/makes nucleophilic Ar substitution easier/possible

1. Introduction

What makes a good leaving group?

Good leaving groups are weak bases

• i.e. the conjugate base of strong acids, e.g. halide ions (I-, Br-, CI-) water

 (OH_2) , and sulfonates

Functional group / Example		pKa	Conjugate base (Leaving group)	
Hydroiodic acid	н	-10	Θ \	
Hydrobromic acid	HBr	-9	Br [⊖]	
			Θ	
Hydrochloric acid	HCI	-6	cı [⊖]	Excellent
Sulfuric acid	H ₂ SO ₄	-3	HSO₄ [©]	leaving groups (extremely weak
	0,0		0,,,0	bases)
Sulfonic acids H ₃ C´	OH	-3	H ₃ C	*
30	(tosic acid)		130	
Hydronium ion	H ₃ O [⊕]	-1.7	H₂ <mark>O</mark>	8)

2. Nucleophilic Aromatic Substitution

$$Nu$$
 Nu
 No_2
 No_2

There are two main types/mechanisms of S_NAr.

Part 3 of this lecture: Addition THEN elimination

 Requires electron poor benzene ring with electron withdrawing groups either ortho or para to a leaving group. The nucleophile adds, THEN the leaving group is eliminated.

Part 4 of this lecture: Elimination THEN addition

Requires a very strong base (amide anion or molten sodium hydroxide).
 Elimination of the HX, to give a benzyne, THEN addition of a nucleophile (from the base).

2. Nucleophilic Aromatic Substitution

- Both 'addition then elimination' and 'elimination then addition' for aromatic systems are DIFFERENT to 'alkyl halide' substitution reactions
- Aryl halides DO NOT undergo S_N2 or S_N1

Backside attack is geometrically (and electronically) impossible

'Sole' loss of leaving group does not occur

3. S_NAr – addition then elimination mechanism

If a benzene ring has:

a good leaving group, and

one or more strongly electron withdrawing substituents either o or p to the

leaving group

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\
 & NO_{2}
\end{array}$$

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\
 & 160 ^{\circ} C
\end{array}$$

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\
 & NO_{2}
\end{array}$$

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\
 & NO_{2}
\end{array}$$

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\
 & NO_{2}
\end{array}$$

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\
 & \downarrow \\
 & NO_{2}
\end{array}$$

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\
 & \downarrow \\
 & \downarrow \\
 & NO_{2}
\end{array}$$

$$\begin{array}{c}
 & OH^{-} \\
 & \downarrow \\$$

Mechanism – Step 1, addition, the slow step

Nucleophile attacks the carbon bearing the leaving group (X)
 perpendicular to the Ar ring

Mechanism – Step 1, addition, the slow step

The carbanion is resonance stabilized, called a "meisenheimer complex"

The reason an EWG substituent(s) helps is the resonance contributor(s) -

All the resonance contributors are termed the "meisenheimer complex" however this is the most stabilised contributor

Mechanism − Step 2, elimination of X⁻

 X must be a BETTER leaving group than Nu, i.e. the incoming Nu must be a stronger base than X.

or

Any of the resonance contributors can be used to show this elimination step

Factors influencing the reaction

one EWG two EWGs three EWGs slowest faster fastest (by a factor of about 10⁵) The more electron poor NO_2 NO₂ NO_2 the Ar ring is, the faster the reactions << << NO₂ O_2N NO_2 p-fluoronitrobenzene m-fluoronitrobenzene

Fast

Slow

BREAK

4. S_NAr – elimination then addition mechanism

Aryl halides **without** an electron withdrawing group(s) can undergo nucleophilic substitution in the presence of **very strong bases** such as sodium amide (NaNH₂).

• e.g. NH₃ has a pKa of 43.

$$NH_3 + H_2O \longrightarrow NH_2^- + H_3O^+$$

The overall reaction (i.e. substituted product) is the same.....

....but the mechanism if different to section 3 of this lecture, and the nucleophile must be a **very strong base**

Mechanism – Step 1, elimination of halide (but NOT just 'directly')

Believed to be via a benzyne

• The mechanism has been studied using ¹³C

$$\begin{array}{c} CI \\ NANH_2 \\ + \end{array}$$

$$C = {}^{13}C$$

Mechanism – Step 2, nucleophile attacks the benzyne

or

There must be a hydrogen adjacent (ortho to) the leaving group

Remember the mechanism....

The benzyne intermediate is very reactive...

Examine a normal alkyne:

Very good orbital overlap Strong π bond

Examine a benzyne

=

Poor overlap Weak π bond

- There can be 'substituent directing effects' but not quite in same way as we saw for S_FAr
- Remember if there is a strong EWG then the 'addition then elimination' mechanism will likely occur
- But the 'elimination then addition' mechanism can occur with other substituents present.....

If the benzyne is not symmetrical then regioisomers could form

The regiochemistry depends on the stability of the anion formed when the nucleophile attacks in step 2

Since the aromatic pi-system is at right angles to the triple bond, what's NOT relevant is the substituent's ability to donate the lone electron pair to the ring (like OCH₃), or accept a lone pair from it (like NO₂). **i.e. no +M or -M**

The negative charge can only be stablished by –I (inductive effects)

$$CI \xrightarrow{NaNH_2}$$
 $NH_2 \xrightarrow{NH_2}$ NH_2

$$\begin{array}{c|c}
OCH_3 \\
CI \\
\hline
NH_3
\end{array}$$

$$\begin{array}{c|c}
OCH_3 \\
\hline
NH_2
\end{array}$$

$$\begin{array}{c|c}
OCH_3 \\
\hline
NH_2
\end{array}$$

4. S_NAr – elimination then addition

Home work exercises:

Predict the products formed upon reaction with sodium amide in liquid ammonia.

$$CH_3$$
 CH_2CH_3 CH_3 $CH_$