

Санкт-Петербургский Государственный Политехнический Университет

Факультет Технической Кибернетики

Кафедра Компьютерных Системы и Программных Технологий

ОТЧЁТ

о лабораторной работе №8

Выполнил: гр. 5081/10 Туркин Е.А

Преподаватель: Сабонис С.С.

Система диагностирования: система с использованием фильтра Калмана, процесс авторегрессии 2 порядка (лабораторная работа №4).

Алгоритмы: Интервальный, АНОМ.

Вероятность ложного обнаружения: 0.01, 0.02.

- 1. ПОСТРОИТЬ КОМПЛЕКСНЫЕ АЛГОРИТМЫ, ИСПОЛЬЗУЮЩИЕ ЧЕТЫРЕ РАССМОТРЕННЫХ АЛГОРИТМА, РЕШЕНИЕ О НАЛИЧИИ ДЕФЕКТА В ОПРЕДЕЛЕННЫЙ МОМЕНТ ВРЕМЕНИ ПРИНИМАЕТСЯ НА ОСНОВЕ НЕСКОЛЬКИХ РЕШАЮЩИХ ФУНКЦИЙ:
 - -АИВ;
 - C И D.

ДЛЯ РАЗЛИЧНЫХ ТИПОВ И УРОВНЕЙ ДЕФЕКТОВ ОПРЕДЕЛИТЬ ЗНАЧЕНИЯ СРЕДНЕГО ВРЕМЕНИ ОБНАРУЖЕНИЯ И ВЕРОЯТНОСТИ ЛОЖНОГО ОБНАРУЖЕНИЯ.

Комплексный алгоритм принимает решение об ошибке при одновременном срабатывании двух алгоритмов — интервального и АНОМ. Так как интервальный алгоритм не может обнаруживать дефекты типа «увеличение дисперсии шумов», то исследоваться будут дефекты типа «смещение мат.ожидания шумов» с различными уровнями.

- А) Интервальный алгоритм, настроенный на уровень вероятности ложного обнаружения 0,01;
- В) Алгоритм АНОМ, настроенный на уровень вероятности ложного обнаружения 0,01;

1.1 Смещение мат.ожидания шума в канале измерения

Рис. Пример работы комплексного алгоритма

Тип дефекта	Значение	Тобн ср.	Тобн интервальная оценка	
Постоянное смещение	большой (10)	97	61.2065	132.7935
уровня шумов в	Средний (7)	68,2	58,3	78,0
канале измерения	малый (4)	34,4	30,8	37,9

Рис. Доверительные интервалы времени обнаружения

1.2 Смещение мат.ожидания шума в канале возмущения

Тип дефекта	Значение	Тобн ср.	Тобн интервальная оценка	
Постоянное смещение	малый (1)	36,2	30,6	41,7
уровня шумов в	Средний (2)	59,0	52,5	65,5
канале возмущения	большой (4)	64,2	74,2	84,0

Рис. Доверительные интервалы времени обнаружения

- <u>С)</u> Интервальный алгоритм, настроенный на уровень вероятности ложного обнаружения 0,02;
- <u>D) Алгоритм АНОМ, настроенный на уровень вероятности ложного обнаружения 0,02.</u>

1.3 Смещение мат.ожидания шума в канале измерения

Тип дефекта	Значение	Тобн ср.	Тобн интервальная оценка	
Постоянное смещение	малый	49	43,1	54,8
уровня шумов в	средний	74,4	64,8	83,9
канале измерения	большой	105,8	91,0	120,5

Рис. Доверительные интервалы времени обнаружения

1.4 Смещение мат.ожидания шума в канале возмущения

Тип дефекта	Значение	Тобн ср.	Тобн интервальная оценка	
Постоянное смещение	малый	34	30,4	37,6
уровня шумов в	средний	59,2	52,6	65,8
канале возмущения	большой	87,6	77,8	97,3

Рис. Доверительные интервалы времени обнаружения

РЕШАЮЩЕЕ 2. МОДИФИЦИРОВАТЬ ПРАВИЛО ИСХОДНЫХ АЛГОРИТМОВ ТАКИМ ОБРАЗОМ, ЧТОБЫ В КАЖДЫЙ МОМЕНТ ВРЕМЕНИ ПРИ ПРИНЯТИИ РЕШЕНИЯ О НАЛИЧИИ ИЛИ ОТСУТСТВИИ **ДЕФЕКТА УЧИТЫВАЛОСЬ** HE ТОЛЬКО ЗНАЧЕНИЕ РЕШАЮЩЕЙ ТЕКУЩЕЕ ФУНКЦИИ, HO И ПРЕДЫДУЩИЕ ЕЕ ЗНАЧЕНИЯ.

Принятие решения в каждый момент времени происходит следующим образом: если все предыдущие N шагов отличаются от текущего, то устанавливается новое решение о дефекте. Таким образом, для того чтобы идентифицировать дефект необходимо чтобы решение о дефекте с выхода комплексного алгоритма было постоянно на предыдущих шагах, в результате этого вероятность ложного обнаружения становится очень мала, но время обнаружения увеличивается прямо пропорционально с увеличением памяти алгоритма (N).

Рис. Пример работы комплексного алгоритма

3. ВЫВОДЫ

В данной работе рассматривалось применение комплексных алгоритмов диагностирования. Применение данных алгоритмов целесообразно для уменьшения вероятности ложного обнаружения, а также для более точного обнаружения дефекта, т.к. каждый алгоритм имеет свои сильные и слабые стороны. Ведение дополнительного анализа предыдущих шагов так же существенно уменьшает вероятность ложного обнаружения, но увеличивает время обнаружения.