

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Medidas Elétricas e Magnéticas ELT210

AULA 11 – Aquisição de Dados

Prof. Tarcísio Pizziolo

1. Definição de Sistema de Aquisição de Dados

- Medição de informações do mundo real.
- A maior parte dos eventos do mundo real e a sua medição são de **natureza analógica**. Isto é, a medição pode conduzir a uma gama de valores contínuos.
- Exemplos de quantidades físicas de interesse para medições:
- Luz
- Temperatura
- Pressão
- Força
- Deslocamento

- Os sensores e transdutores recebem as quantidades físicas (sinais analógicas) e convertem-nas em quantidades elétricas, tais como tensão, corrente ou impedância.

Todas essas grandezas possuem energia. Deste modo, torna-se necessário para sua medição a utilização de dispositivos capazes de receber esta energia, relativa a uma determinada quantidade física da grandeza desejada, e convertê-la numa forma de energia manipulável pelos circuitos eletrônicos.

2. Sistema de Aquisição de Dados

A figura abaixo mostra o processo de aquisição de dados:

3. Arquitetura de um Sistema de Aquisição de Dados

4. Tipos de Sistemas de Aquisição de Dados

4.1. Sistemas Locais

São denominados sistemas de aquisição de dados remotos aqueles cuja aplicação se encontra próxima do sistema que irá processá-los. Para efeitos de referência, consideram-se sistemas de aquisição de dados locais aqueles cuja aplicação se situa a uma distância inferior a 30 metros do elemento de processamento do sinal.

4.2. Sistemas Remotos

Consideram-se sistemas de aquisição de dados remotos aqueles cuja aplicação se encontra a uma **distância superior a 30 metros** do elemento de processamento do sinal..

5. Elementos de um Sistema de Aquisição de Dados

Um sistema de aquisição de dados típico para aplicações em Engenharia é composto pelos elementos seguintes:

- Sensores e Transdutores;
- Condicionadores de Sinais;
- Módulo ou Placa de Aquisição de Dados;
- Processador

5.1. Sensores e Transdutores

Os Sensores e Transdutores percebem as alterações nas variáveis a serem medidas e produzem sinais elétricos que os sistemas de aquisição medem.

Ex.: termopares, resistências dependentes de temperatura (RTD's), termistores e sensores em circuitos integrados convertem a temperatura para um sinal analógico, que pode ser medido por um conversor analógico digital.

Também são aplicados os extensômetros, transdutores de fluxo, transdutores de pressão, que medem força e variação de fluxo e pressão, respectivamente.

Em cada caso, os sinais elétricos produzidos são proporcionais aos parâmetros físicos.

5.2. Condicionadores de Sinal

- Os sinais elétricos gerados pelos sensores e transdutores devem ser otimizados para a escala de entrada do conversor A/D.
- Os dispositivos condicionadores de sinal amplificam sinais de baixa intensidade, isolando-os e filtrando-os para uma medição mais precisa.
- Os circuitos de condicionamento de sinal utilizados apresentam uma grande variedade de características:
 - Amplificação O tipo mais comum de condicionamento é a amplificação. Os sinais de baixa intensidade como os dos termopares, por exemplo, devem ser amplificados para aumentar a resolução e reduzir o ruído. Para uma maior precisão, o sinal deve ser amplificado de forma, que a tensão máxima do sinal a ser condicionado coincida com a tensão máxima de entrada do conversor A/D:

conversor A/D;

- Isolamento Outra característica comum no condicionamento de sinais é o seu isolamento dos sensores/transdutores em relação à entrada do conversor, de forma a garantir a segurança.
- O sistema a ser monitorado pode conter "transientes" de alta tensão que podem danificar o conversor.
- Outra razão para o isolamento é garantir que as leituras do equipamento de aquisição sejam imunes a diferenças de potencial entre os referenciais "terra" utilizados.
- Multiplexagem Trata-se de uma técnica para medir diversos sinais utilizando um único equipamento de medição.
- Geralmente o equipamento de condicionamento de sinal para sinais analógicos fornece **multiplexagem** para uso com sinais que variam lentamente, tais como temperatura. O conversor A/D amostra um canal, comuta para o próximo, amostra, comuta para o próximo, amostra e assim sucessivamente. Por amostrar muitos canais ao mesmo tempo, a taxa de amostragem efetiva de cada canal será inversamente proporcional ao número de canais amostrados.

- Filtragem O objetivo de um filtro é remover os sinais indesejados do sinal que será medido.
- Um filtro de ruídos é utilizado para sinais **DC**, como temperatura, para atenuar os sinais de alta frequência, que podem reduzir a precisão da medição.
- Geralmente, os sinais **AC** como a vibração, requerem um tipo de filtro diferente, conhecido por filtro *anti-aliasing*. Tal como o filtro de ruído, o filtro *anti-aliasing* é também um filtro passa-baixa; entretanto, requer uma frequência de corte muito alta, e remove em geral, por completo, todas as frequências do sinal superiores à largura de banda de entrada do equipamento. Se esses sinais não forem removidos, estes surgirão erroneamente com os sinais da largura de banda de entrada do equipamento.
- Os equipamentos projetados especificamente para medição de sinais **AC** incluem filtros **anti-aliasing**.

- Excitação O condicionamento de sinais pode gerar a excitação para alguns transdutores.
- Os extensômetros, termistores, e RTDs, por exemplo, requerem uma tensão externa ou corrente de excitação. Geralmente, os módulos de condicionamento de sinais para esses transdutores geram esses sinais.
- As medições com RTD são feitas geralmente com uma fonte de corrente, que converte a variação de resistência em relação a uma tensão mensurável.
- Os Extensômetros, que são equipamentos de baixa resistência, são usados tipicamente na configuração de ponte de *Wheatstone*, com uma fonte de tensão para excitação.
- Linearização Uma outra função do condicionamento de sinal é a linearização. Muitos transdutores, como os termopares, têm uma resposta não-linear às variações nos fenômenos que estão sob medição.

5.3. Módulos ou Placas de Aquisição

Uma placa de aquisição de dados é geralmente composta pelos seguintes elementos:

- Entradas Analógicas
- Conversor A/D
- Conversor D/A
- Saídas Analógicas
- Entradas e Saídas Digitais
- Contadores e Temporizadores

5.3.1. Entradas Analógicas

- As especificações de entradas analógicas fornecem informações sobre as características e a precisão do sistema de aquisição de dados. As especificações básicas informam sobre o número de canais, a taxa de amostragem, a resolução e a escala de entrada.
- Número de Canais O número de canais analógicos de entrada é especificado pelas entradas single-ended e diferenciais. As entradas single-ended são todas referenciadas a uma terra comum. Estas entradas são usadas para os sinais de entrada > 1 V, as distâncias entre a fonte de sinal ao hardware de entrada analógica são < 3 m e todos os sinais de entrada partilham uma terra comum. Se os sinais não se enquadram nesses critérios, devem-se utilizar as entradas diferenciais. Nas entradas diferenciais, cada entrada tem sua própria terra; os erros causados por ruídos são reduzidos.
- Taxa de amostragem Este parâmetro determina a frequência com que as conversões são efetuadas.
- Escala A escala refere-se aos níveis de tensão máxima e mínima que um conversor pode quantizar.

5.3.2. Conversor Analógico-Digital (A/D)

- O conversor A/D converte o sinal de entrada de natureza analógica para um valor digital. A precisão da conversão é dependente da resolução e linearidade do conversor. O ganho e os erros de offset do amplificador de entrada afetam ainda a precisão. A principal característica a ser observada num conversor A/D é a sua taxa de desempenho ou seja, o sua taxa de processamento (*throughput*).
- Os três elementos que especificam o *throughput* de um conversor A/D são:
- 1) o tempo de conversão;
- 2) o tempo de aquisição;
- 3) o tempo de transferência.
- O throughput é a taxa à qual estes três tempos são completados. Geralmente, o throughput é o fator mais importante na escolha da interface de aquisição de dados.
- Pelo **Teorema de Nyquist**, por exemplo, para a amostragem precisa de um sinal de **1 kHz**, a taxa de *throughput* mínima deve ser de **2 kHz**.

5.3.2.1. Tempos do throughput de um conversor A/D

- Tempo de conversão: é o tempo necessário para o conversor A/D produzir um valor digital, correspondente ao valor da entrada analógica.
- Tempo de aquisição: é o tempo necessário associado ao circuito analógico que adquire o sinal.
- **Tempo de transferência: é** o tempo de transferência corresponde ao tempo necessário para transferir os dados da interface, para os "centros de processamento" (memória dos computadores).

5.3.3. Saídas Analógicas

- As saídas analógicas são necessárias para gerar os sinais de um sistema de aquisição de dados.
- As especificações para o conversor D/A que determinam a qualidade do sinal de saída são:
- Tempo de ajuste;
- **Slew Rate**; (Slew Rate (*velocidade de varrimento* em português) define-se como a velocidade de resposta do **amplificador instrumental** a uma variação de tensão na entrada.
- Resolução de saída.
- **Tempo de ajuste** é o tempo necessário para a saída (um amplificador, um relé ou outros circuitos) alcançar um modo estável. Normalmente, o tempo de ajuste é especificado para uma alteração na tensão.

5.3.3. Saídas Analógicas

- **Slew Rate** é a taxa máxima de variação que o conversor D/A pode produzir para o sinal de saída. O Tempo de ajuste e o *Slew Rate* trabalham juntos na determinação da rapidez das alterações no nível do sinal de saída.
- Um conversor D/A com um pequeno Tempo de ajuste e um *Slew Rate* alto pode gerar sinais de alta frequência porque é necessário um tempo pequeno para alterar com precisão a saída para um novo nível de tensão.

Exemplo 1: geração de sinais de áudio.

O conversor D/A precisa de um *Slew Rate* alto e de um pequeno Tempo de ajuste para gerar sinais de alta frequência para cobrir a escala de áudio.

Exemplo 2: fonte de tensão que controla um aquecedor.

O conversão D/A não precisa de uma *Slew Rate* alto porque o aquecedor não responde rapidamente a alterações de tensão.

5.3.3. Saídas Analógicas

- Resolução de Saída é o número de bits no código digital que gera o sinal analógico.
- Um número de bits elevado reduz a amplitude de cada incremento de tensão de saída, tornando possível, desse modo, a geração de sinais que variam suavemente.
- As aplicações que requerem uma escala dinâmica grande com pequenas variações incrementais de tensão no sinal de saída analógico necessitam de uma resolução de saída alta.

5.3.5. Entradas e Saídas Digitais

- Geralmente as Interfaces de Entrada e Saída Digital são usadas nos sistemas de aquisição de dados baseados em PC para controlar processos, gerar padrões para teste e comunicar com os equipamentos periféricos.
- Em cada caso, os parâmetros incluem o número de linhas (entradas/saídas) digitais, a taxa à qual se pode admitir e gerar dados digitais nessas linhas, assim como a capacidade de acionamento dessas linhas. Se as linhas digitais são usadas para controlar eventos tais como desligar aquecedores, motores ou luzes, não é normalmente necessária uma taxa de dados alta, pois esses equipamentos não têm uma resposta muito rápida.
- O número de linhas digitais deve estar relacionado com o número de processos a serem controlados..

5.3.5. Entradas e Saídas Digitais

- Em cada um desses exemplos, a corrente necessária para acionar e desligar esses equipamentos deve ser menor que a corrente disponibilizada pelo equipamento.
- Contudo, com acessórios de condicionamento de sinais digitais apropriados, podem-se usar sinais TTL de baixa corrente, do hardware de aquisição de dados, para monitorar ou controlar tensões elevadas e sinais de corrente de dispositivos industriais.
- Por exemplo, a tensão e a corrente necessárias para abrir e fechar uma válvula grande, são aproximadamente 100 V_{AC} e 2 A. Por estar na saída um dispositivo digital na faixa de 0 a 5 V_{DC} e alguns miliampéres, é necessário geralmente um módulo de acionamento com acoplamento óptico, para ativar o sinal de potência que controla a válvula.

5.3.6. Contadores e Temporizadores

- Normalmente, os contadores e os temporizadores são utilizados em muitas aplicações, incluindo a contagem de eventos digitais, a temporização digital de impulsos e a geração de ondas quadradas e de impulsos.
- Podem-se implementar todas essas aplicações, utilizando os três sinais de contadores e temporizadores: **gate, fonte e saída**.
- Gate é a entrada digital que é usada para habilitar ou desabilitar a função do contador;
- **Fonte** é a entrada digital que provoca o incremento do contador em cada impulso, gerando assim a base de tempo para as operações de temporização e contagem;
- Saída gera ondas quadradas ou impulsos na linha de saída.

5.4. Processadores

- São os elementos responsáveis pelo processamento dos sinais adquiridos.
- Atualmente os mais utilizados em sistemas de aquisição de dados são os computadores pessoais (PC).

6. Aplicações que utilizam Sistemas de Aquisição de Dados

6.1. Agricultura

- Sistema de Controle e Monitorização de Estufas Um PC é utilizado para monitorar e controlar a temperatura, a umidade e a irrigação. Um fino controle e monitoração permitem avaliar os métodos precisos a serem conduzidos para determinar as condições otimizadas para as culturas.
- Sistema de Controle e Monitoração de Criação de Peixes Um PC é utilizado para controlar as condições da água. O sistema monitoriza a temperatura, o pH e a taxa de oxigénio de um tanque. Estas informações são usadas no controle dos compressores, dos aquecedores, dos misturadores ácido/base e da entrada e saída de fluxo de água para manter as condições desejadas.

6.2. Indústria automobilística

- Teste de Estrada Os sistemas com PC portáteis são usados para capturar e analisar dados pertinentes dos fatores de desempenho tais como o ruído, o desempenho do motor, da suspensão e da aceleração.
- Teste Automóvel de Pré-Montagem As soluções de aquisição de dados baseadas em PC são usadas no teste elétrico e eletrônico de montagem, tais como um painel de comando.
- Um painel de comando é colocado numa instalação de teste e o PC controla os atuadores que movem as chaves e os controles e medem o resultado.

6.3. Meio Ambiente

- Monitoração de Aquecimento Solar de Água Um PC com uma placa multifunção é usada para medir a eficiência e a distribuição de temperatura de um aquecedor solar de água. A água aquecida é utilizada para fornecer água quente aos moradores de um complexo de apartamentos.
- Sistemas de Controle de Poluição Um PC é usado para monitorar uma série de sensores que medem o nível de poluentes do ar, que passam através do sistema. Baseado nessas medições, o sistema usa um queimador para eliminar a presença dos poluentes antes de liberar o ar para fora. O sistema é usado em pequenas e médias fábricas de componentes semicondutores.
- Sistema de Monitoramento da Qualidade de Água Múltiplos PC's com placas de aquisições de dados são usados para monitorizar a qualidade da água usada numa instalação de produção automóvel. O sistema mede a qualidade da água armazenada nos tanques usadas para lavar as peças do carro antes da pintura.

6.4. Geradores de Energia

- Simuladores de Equipamentos de Radiação Muitos fabricantes de equipamentos de raio-X usam uma combinação de placas e módulos de expansão para construir equipamentos simuladores de radiação usados na terapia do câncer.
- Monitorização de Sistemas Geradores Portáteis Um PC é usado para implementar um sistema de teste de geradores de energia portátil. O sistema monitora as entradas, as saídas e as condições de funcionamento tais como a potência de saída, a temperatura, o consumo de combustível, o fluxo de ar e a eficiência.

Aquisição de Dados Wireless

- Os Sistemas de Aquisição *Wireless* constituem um exemplo de sistema de aquisição de dados remoto. A tecnologia *Wireless* é uma alternativa ao cabeamento para a troca de dados em medições e aplicações de automação. As vantagens incluem:
 - solução mais barata e mais conveniente;
 - compatibilidade com aplicações que envolvem partes móveis ou correias de transporte;
 - fácil de usar devido à configuração transparente.
- Pode-se utilizar comunicação sem fios para qualquer faixa de frequência livre de licença ou frequências autorizadas. Pode-se adquirir dados num local que possua um sistema de I/O distribuído, e então transmitir em cima de ondas de rádio para um computador. Dependendo do poder do transmissor, são permitidas distâncias até **10 Km** não necessariamente dentro de linha-de-visão.