Correction du DS (2) de physique-chimie – Électrocinétique & Cinétique chimique

I Cinétique de décomposition de l'eau oxygénée (D'après CCINP 2019)

1. Tableau d'avancement en quantité de matière :

2. D'après l'énoncé, à l'équivalence il n'y a plus ni eau oxygénée ni permanganate dans la solution. L'avancement à l'équivalence est dans ce cas solution du système :

$$\begin{cases} c_1 V_1 - 2\xi_{\text{\'eq}} = 0\\ cV - 5\xi_{\text{\'eq}} = 0 \end{cases}$$

On en déduit :

$$c = \frac{5V_1}{2V}c_1 \tag{1}$$

3. Loi de vitesse : v = k [H₂O₂]. Définition de la vitesse : $v = -\frac{d [H_2O_2]}{dt}$. Identifions ces deux expressions :

$$-\frac{\mathrm{d}\left[\mathrm{H}_{2}\mathrm{O}_{2}\right]}{\mathrm{d}t} = k\left[\mathrm{H}_{2}\mathrm{O}_{2}\right] \quad \Leftrightarrow \quad \frac{\mathrm{d}\left[\mathrm{H}_{2}\mathrm{O}_{2}\right]}{\mathrm{d}t} + k\left[\mathrm{H}_{2}\mathrm{O}_{2}\right] = 0$$

Les solutions de cette équation linéaire du premier ordre sont du type $[H_2O_2](t) = \alpha e^{-kt}$. La constante α se déduit de la condition initiale $[H_2O_2](0) = c_0 \Leftrightarrow \alpha = c_0$. En posant plus simplement $c = [H_2O_2](t)$:

$$c = c_0 e^{-kt}$$
 (2)

4. En identifiant les expression 1 et 2, on obtient après reformulation :

$$\boxed{\frac{V_1}{V} = \frac{2c_0}{5c_1} e^{-kt}} \tag{3}$$

5. L'équation 3 peut se réécrire :

$$\ln\left(\frac{V_1}{V}\right) = \ln\left(\frac{2c_0}{5c_1}\right) - kt$$

Une régression linéaire de $\ln\left(\frac{V_1}{V}\right) = f(t)$ à la calculatrice conduit à un coefficient de corrélation r = -0,99977 tel que $|r| \ge 0,999$: la distribution de points étudiée correspond donc bien à une droite, ce qui valide l'hypothèse de cinétique d'ordre 1. La pente $a = -2,0 \times 10^{-3}$ et l'ordonnée à l'origine $b = 2,0 \times 10^{-1}$ permettent s'identifient à $a = -k \Leftrightarrow \boxed{k = -a}$ et $b = \ln\left(\frac{2c_0}{5c_1}\right) \Leftrightarrow \boxed{c_0 = \frac{5}{2}c_1e^b}$. Application numérique : $\boxed{k = -2,0 \times 10^{-3} \text{ s}^{-1}}$ et $\boxed{c_0 = 3,1 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}}$.

6. Le temps de demi-réaction correspond au temps nécessaire à la consommation de la moitié de la quantité de matière initiale du réactif (limitant). À volume constant, il est ainsi solution de :

$$\frac{c_0}{2} = c_0 e^{-kt_{1/2}} \quad \Leftrightarrow \quad \boxed{t_{1/2} = \frac{\ln 2}{k}}$$

Numériquement, on trouve $t_{1/2} = 338 \text{ s} = 5 \text{ min } 45 \text{ s}$

7. (a) Il s'agit de la loi d'Arrhenius donnant la constante de vitesse en fonction notamment de la température :

$$k = A \exp\left(-\frac{E_{\rm A}}{RT}\right)$$

où:

- \circ A est un facteur géométrique, appelé facteur pré-exponentiel, caractérisant l'efficacité des collisions à l'échelle microscopique lors de la réaction
- o $E_{\rm A}$ est l'énergie d'activation qu'il faut apporter pour atteindre l'état de transition et permettre la formation des produits ; elle s'exprime en kJ·mol⁻¹
- o $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ est la constante des gaz parfaits
- $\circ\,\,T$ est la température du système exprimée kelvin.
- (b) La vitesse de réaction étant multipliée par 5 quand la température augmente de $T_1 = 298$ K à $T_2 = 348$ K, toutes choses égales par ailleurs, le rapport des vitesses s'identifie au rapport des constantes de vitesses :

$$5 = \exp\left(-\frac{E_{\mathcal{A}}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right) \quad \Leftrightarrow \quad E_{\mathcal{A}} = \frac{RT_1T_2\ln 5}{T_2 - T_1}$$

Numériquement, on obtient $E_{\rm A}=20~{\rm kJ\cdot mol^{-1}}$. On peut alors exploiter :

$$A = k \exp\left(\frac{E_{\rm A}}{RT}\right)$$

à $T_1=298~\mathrm{K}$ où $k=-2,0\times10^{-3}~\mathrm{s}^{-1}$. On en déduit $A=5,9~\mathrm{s}^{-1}$

II Etude d'un circuit RC, RL parallèle

1. Pour t > 0 après fermeture de l'interrupteur, le circuit est équivalent à :

Mise en équation:

- $\circ\,$ Loi des nœuds (LDN) : $i=i_1+i_2$
- $\circ\,$ Lois des mailles (LDM) : $E=u_1+u_L$ et $E=u_2+u_C$
- Relations caractéristiques : $u_1 = Ri_1$, $u_L = L\frac{\mathrm{d}i_1}{\mathrm{d}t}$, $u_2 = Ri_2$ et $i_2 = C\frac{\mathrm{d}u_C}{\mathrm{d}t}$

Pour trouver l'équation demandée, la loi des mailles et les relations caractéristiques faisant intervenir la branche contenant la bobine suffit :

$$E = Ri_1 + L \frac{\mathrm{d}i_1}{\mathrm{d}t}$$

soit:

$$\boxed{\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau_1} = \frac{E}{L}} \qquad \text{avec} \qquad \boxed{\tau_1 = \frac{L}{R}}$$

- 2. Ce graphe représente le portrait de phase de l'intensité i_1 c'est à dire l'évolution de la dérivée de celleci en fonction de cette même intensité. Ce graphe permet de comprendre l'évolution du système sans avoir recours à la résolution analytique de l'équation différentielle obtenue à la question précédente. Il s'agit aussi d'un représentation de la caractéristique dynamique de la bobine.
- **3.** La trajectoire de phase est parcourue de gauche à droite. En effet, $\frac{\mathrm{d}i_1}{\mathrm{d}t}(t) > 0$ donc $i_1(t)$ est strictement croissante.

4. Régime permanent initial : point de départ Régime permanent final : point d'arrivée

Régime transitoire : le reste.

5. Pour t < 0 avant fermeture de l'interrupteur, le circuit est dans un régime permanent où la bobine peut être modélisée par un fil et le condensateur par un interrupteur ouvert :

La présence des deux interrupteurs ouverts impose i = 0 et $i_2 = 0$. La loi des nœuds $i = i_1 + i_2$ fournit ainsi $i_1 = 0$. En particulier, juste avant fermeture de l'interrupteur, on peut écrire $i_1(0^-) = 0$. Par continuité de l'intensité du courant traversant une bobine, on en déduit $i_1(0^+) = 0$.

6. D'après l'équation différentielle obtenue précédemment :

$$\frac{\mathrm{d}i_1}{\mathrm{d}t} = -\frac{i_1}{\tau_1} + \frac{E}{L}$$

Le portrait de phase $\frac{\mathrm{d}i_1}{\mathrm{d}t} = f(i_1)$ est donc une droite de pente $-\frac{1}{\tau_1}$. Ici on a donc numériquement :

$$\frac{1}{\tau_1} = \frac{10}{10.10^{-3}} = 10^3$$

On en conclut que $\tau_1 = 1$ ms. Par lecture graphique directe, on obtient : $i_1(t \to \infty) = 1 \times 10^{-2}$ mA

7. On a déjà établi que $\tau_1 = \frac{L}{R}$. En outre, pour $t \to \infty$, un régime permanent est atteint où $i_1(t \to \infty)$ est constant. En réécrivant l'équation différentielle sur i_1 dans le cas où la dérivée première est ainsi nulle, on obtient :

$$0 = -\frac{i_1(t \to \infty)}{\tau_1} + \frac{E}{L}$$

On obtient finalement les expressions suivantes :

$$L = \frac{E\tau_1}{i_1(t \to \infty)} \qquad \text{et} \qquad R = \frac{L}{\tau_1} \Leftrightarrow \boxed{R = \frac{E}{i_1(t \to \infty)}}$$

La résolution de ce système donne :

$$L = 1 \text{ H}$$
 et $R = 1 \text{ k}\Omega$

8. En utilisant la mise en équation de la question 1, la deuxième loi des mailles fournit :

$$E = Ri_2 + u_C$$

Il suffit alors de la dériver par rapport au temps et d'exploiter $i_2 = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$ pour obtenir

$$0 = R \frac{\mathrm{d}i_2}{\mathrm{d}t} + \frac{i_2}{C}$$

soit

$$\frac{\mathrm{d}i_2}{\mathrm{d}t} + \frac{i_2}{\tau_2} = 0 \qquad \text{avec} \qquad \boxed{\tau_2 = RC}$$

9. La solution homogène de cette équation est la solution générale car il n'y a pas de second membre à l'équation. Elle est de la forme :

$$i_2(t) = i_{2_h}(t) = A \exp\left(-\frac{t}{\tau_2}\right)$$

Pour déterminer la condition initiale $i_2(0^+)$, on peut utiliser la LDM $E = Ri_2 + u_C$ valable pour t > 0. Le condensateur étant d'après l'énoncé initialement déchargé, on a $u_C(0^-) = 0$. Par continuité de la tension à ses bornes, on en déduit $u_C(0^+) = 0$. La loi des mailles précédemment évoquée s'écrit

donc à l'instant particulier $t = 0^+$: $E = Ri_2(0^+) + u_C(0^+)$. On en déduit $i_2(0^+) = \frac{E}{R}$ d'où $A = \frac{E}{R}$. Finalement :

$$i_2(t) = \frac{E}{R} \exp\left(-\frac{t}{\tau_2}\right)$$

- 10. Le régime transitoire a une durée de l'ordre de τ . Plus précisément, au bout de $5\tau_2$ la différence entre le régime permanent et le régime transitoire est inférieure à 1%.
- 11. Pour plus de précision que la méthode de la tangente à l'origine, on peut par exemple utiliser le fait que :

$$i_2(\tau_2) = \exp(-1)\frac{E}{R} = 0,37 \times \frac{E}{R} = 3,7 \text{ mA}$$

soit $Ri_2(\tau_2) = 3,7$ V = 1,85 DIV. On obtient $\tau_2 = 1$ ms ce qui entraine C = 1 μ F d'après la relation $\tau_2 = RC$.

12. On identifie ici:

$$i_1(t) = \frac{E}{R} \left(1 - \exp\left(-\frac{t}{\tau_1}\right) \right)$$
 et $i_2(t) = \frac{E}{R} \exp\left(-\frac{t}{\tau_2}\right)$

ce qui donne :

$$1 - \exp\left(-\frac{t_0}{\tau_1}\right) = \exp\left(-\frac{t_0}{\tau_2}\right)$$

ou encore:

$$\exp\left(\frac{t_0}{\tau_2}\right) - \exp\left(-\frac{t_0}{\tau_1} + \frac{t_0}{\tau_2}\right) = 1$$

Or, $\tau_1 = \tau_2 = \tau$ ce qui donne simplement :

$$\exp\left(\frac{t_0}{\tau_2}\right) = 2$$
 soit $t_0 = \tau \ln 2$

Numériquement, on obtient : $t_0 = 7 \times 10^{-4} \text{ s}$

- **13.** cf figure 1
- 14. L'interrupteur K étant ouvert, on peut supprimer la branche qui le contient :

Nous sommes donc ramenés à un circuit R'LC série, de résistance équivalente R'=2R, étudié en régime libre.

FIGURE 1 – Evolution de e(t), $i_1(t)$ et $i_2(t)$ après fermeture de l'interrupteur.

15. On applique la loi des mailles :

$$-u_C + u_L + u = 0$$

En exploitant les relations caractéristiques aux bornes de chaque dipôle (attention, le condensateur est ici en convention générateur), on en déduit :

$$\frac{q}{C} + L\frac{\mathrm{d}i_1}{\mathrm{d}t} + 2Ri_1 = 0$$

ou encore:

$$L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + 2R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = 0$$

et donc:

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + 2\lambda\omega_0 \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{LC} = 0$$

avec:

$$\lambda = R\sqrt{\frac{C}{L}}$$
 et $\omega_0 = \frac{1}{\sqrt{LC}}$

- 16. Il s'agit d'un oscillateur harmonique amorti avec $Q=\frac{1}{2\lambda}$. On a ici $Q=\frac{1}{2R}\sqrt{\frac{L}{C}}=\frac{1}{2}=Q_{\rm crit}$, l'évolution de l'oscillateur suit un régime critique.
- 17. La solution générale est ici la solution de l'équation homogène car l'équation différentielle n'a pas de second membre. La solution est donc de la forme :

$$q(t) = (At + B) \exp(-\omega_0 t)$$

À la fin du régime transitoire précédent, on montre d'après les question 7 et 9 par exemple que $i_1(t \to \infty) = \frac{E}{R}$ et $u_C(t \to \infty) = E$. Avec la nouvelle origine des temps, ces deux relations deviennent $i_1(0^-) = \frac{E}{R}$ et $u_C(0^-) = E$. Par continuité de ces deux grandeurs, $i_1(0^+) = \frac{E}{R}$ et $u_C(0^+) = E$, soit $-C\frac{\mathrm{d}u_C}{\mathrm{d}t}(0^+) = \frac{E}{R}$ et $\frac{q(0^+)}{C} = E$, ou encore $\frac{\mathrm{d}q}{\mathrm{d}t}(0^+) = -\frac{E}{R}$ et $\frac{q(0^+)}{C} = E$.

Comme $\frac{dq}{dt}(t) = (A - \omega_0(At + B)) \exp(-\omega_0 t)$, on en déduit le système :

$$\begin{cases} -\frac{E}{R} = A - B\omega_0 \\ CE = B \end{cases}$$

d'où
$$B = CE$$
 et $A = E\left(\sqrt{\frac{C}{L}} - \frac{1}{R}\right)$

Pour une aller plus loin, on peut remarquer d'après la première partie que les valeurs numériques conduisent à $\frac{L}{R} = RC$ d'où $\boxed{A=0}$ et finalement, on aura donc :

$$q(t) = CE \exp\left(-\frac{t}{\sqrt{LC}}\right)$$

18. Calculons $\frac{\mathrm{d}q}{\mathrm{d}t}$:

$$\frac{\mathrm{d}q}{\mathrm{d}t}(t) = -\frac{CE}{\sqrt{LC}} \exp\left(-\frac{t}{\sqrt{LC}}\right) = -\frac{1}{\sqrt{LC}}q(t) = -\frac{E}{R} \exp\left(-\frac{t}{\sqrt{LC}}\right)$$

Le portrait de phase est donc une droite de pente $-\omega_0$ partant du point $(CE, -\frac{E}{R})$ et arrivant en (0,0).

- 19. Ce type de portrait de phase correspond usuellement à un système d'ordre 1 comme en témoigne l'expression de la charge portée par le condensateur.
- 20. Energie stockée dans le condensateur :

$$\mathcal{E}_C = \frac{q^2}{2C} = \frac{CE^2}{2} \exp\left(-\frac{2t}{\sqrt{LC}}\right)$$

Energie stockée dans la bobine :

$$\mathcal{E}_L = \frac{Li^2}{2} = \frac{CE^2}{2} \exp\left(-\frac{2t}{\sqrt{LC}}\right)$$

Energie dissipée dans les résistances :

$$\mathcal{E}_R = 2Ri^2 = 2\frac{E^2}{R} \exp\left(-\frac{2t}{\sqrt{LC}}\right)$$

21. Pour modifier le facteur de qualité en laissant inchangée ω_0 , on peut diminuer R.