

Pokerbots 2020

Lecture 3: Game Theory

Weekly Tournament: Tonight @ 11:59pm EST

Engine Updates!

\$git pull

C++ Skeleton Fix Coming Soon

Games

First game

- Submit an integer between 0-1000 inclusive
- Winner is the closest guess to 2/3 of the average submission (a tie is broken randomly)
- Prize: today's giveaway

pkr.bot/beauty

Second game

- Entry fee: wager 20 scrimmage server ELO points
- Parse the last 4 digits of your MIT ID as an integer 0-9999
- Winner is the highest integer (a tie is broken randomly)
- Prize: all wagered ELO points

pkr.bot/lemons

Agenda

- What is a game?
- Pure and mixed strategies
- Nash equilibria
- Applications to poker

What is a game?

Definition

We generally only consider two-player zero-sum games; we will refer to these as simply games.

Examples: RPS, tic-tac-toe, (chess? poker??)

For Blotto Hold'em, the game is technically non zero-sum, so there are a few more specific considerations.

Formalized

A game between players 1 and 2 consists of a pair of strategy sets S_1 and S_2 , and a utility function $u: S_1 \times S_2 \to \mathbf{R}$. Players submit strategies simultaneously. Player 1 seeks to maximize u, and player 2 seeks to minimize u.

Think of utility as chips. This means players want to submit actions that have the highest payout.

Player 2 is minimizing since we're talking about zero-sum games.

Pure and mixed strategies

Pure and mixed strategies

- There are only 3 pure strategies in RPS, but infinitely many mixed strategies
- A mixed strategy is described by a probability distribution over pure strategies:
 - Example:
 - \circ P(rock) = 0.4
 - \circ P(paper) = 0.3
 - \circ P(scissors) = 0.3
- Mixed strategies show us the power of randomness

Matrix form games

Suppose the strategy sets S_1 and S_2 consist of probability distributions over a finite list of pure strategies. Also, suppose that the utility function is linear. Then, we can write our game in *matrix form*, with utility function shown.

	Rock	Paper	Scissors
Rock	0	-1	+1
Paper	+1	0	-1
Scissors	-1	+1	0

Revisiting the first game

The Keynesian beauty contest

- No rational player would play above $2/3 \cdot 1000 = 667$
- Hence, no rational player would play above $2/3 \cdot 667 = 445$
- What happens if we continue this logic?
- What would "rational" players play?

Dominance

- We say that strategy A dominates strategy B if playing A is always a better idea
- u(A, O) ≥ u(B, O) for all player 2 strategies O
- Second-order dominance: replace "is always a better idea" with "is always a better idea, if our opponent does not play dominated strategies"

Dominance Example

	C (c)	D (d)
A (a)	(+3, -3)	(+2, -2)
B (b)	(+1, -1)	(-1, 1)

	C (c)	D (d)
A (a)	(+3, -3)	(+2, -2)
B (b)	(+1, -1)	(-1, 1)

	C (c)	D (d)
A (a)	(+3, -3)	(+2, -2)
B (b)	(+1, -1)	(-1, 1)

	C (c)	D (d)
A (a)	(+3, -3)	(+2, -2)
B (b)	(+1, -1)	(-1, 1)

What does this mean?

Nash equilibria

An equilibrium is a set of strategies, one for each player, such that nobody has an incentive to switch.

Nash equilibrium examples

- 0 is an equilibrium for the Keynesian beauty contest
- 1/3 rock, 1/3 paper, 1/3 scissors is an equilibrium for RPS

Solving the equilibrium for RPS

$$r + p + s = 1$$
; $r, p, s \ge 0$

Expected value of opponent playing each case

	Rock (r)	Paper (p)	Scissors (s)
Rock (r)	0	-1	+1
Paper (p)	+1	0	-1
Scissors (s)	-1	+1	0
EV Opponent	p-s	s-r	r-p

Solve p - s = s - r = r - p to get r = p = s = 1/3. This guarantees us at least 0

Why
$$p - s = s - r = r - p$$
?

- Suppose opponent plays the optimal counterstrategy against our r, p, s strategy
- Opponent minimizes the utility function amongst their three options:

$$min_{args}(p - s, s - r, r - p)$$

 We play the strategy that maximizes the utility function even against the optimal counterstrategy:

$$\max_{r, p, s} (\min_{args} (p - s, s - r, r - p))$$

Asymmetric game

Toy game for illustration: I am choosing battle plans against the enemy

	Full Defense	Defend in shifts
Charge	0	+3
Sneak attack	+1	-1

We notice two things: the game isn't symmetric, and that we see a lot of positive values.

Asymmetric game mixed strategy equilibrium

Setting this up, we start with c + s = 1; $c, s \ge 0$

	Full Defense (f)	Defend in shifts (d)	EV Opponent
Charge (c)	0	+3	3d
Sneak attack (s)	+1	-1	f-d
EV Opponent	s	3c-s	:)

Solving, we get c = 0.4, s = 0.6, f = 0.8, d = 0.2

"Value" of the game to us is 0.6

Existence of Nash equilibria

Theorem (Nash, 1951): Every finite game has a Nash equilibrium in mixed strategies.

Proof: Topology (uses fixed point theorem).

Applications to poker

Game Tree

Extensive form games

Tic Tac Toe Full Extensive Form

Backwards induction

Black are the determined payouts based on players acting rationally

Blue are the leaves - the terminal states of the game

Follow the game tree up (backwards) to find the state's value

Backwards induction

Looking at the leaf states first, I see -1s in the left 2 branches, leaving their parents as -1.

The rightmost branch has payouts 0 and 1. Following this up the tree, we get 0 for the black value.

Finally, all together X should try to play for 0 (tie), and does so by putting x in left center.

Conversion to normal form

• Every extensive form is also a normal form (matrix) game

Conversion to normal form

- Every extensive form is also a normal form (matrix) game
- Mapping: each pure strategy (row/column) is a complete set of instructions for what to do at each node
- Example: in poker, each pure strategy would be a dictionary which maps the game_state to a unique action

Implications

- Poker has a Nash equilibrium it's a finite game that satisfies the conditions
- Can we use backwards induction to solve for it? Can we still use the same type of game tree?
- How is poker different from tic-tac-toe? RPS? Chess?

Adding in imperfect information and randomness

Imperfect Information and Randomness

- Randomness: Don't know where in the game tree you're moving next
- Imperfect: Don't know what node you're currently at since your opponent's hole cards are hidden (information sets)
- Together, this leads to a really nice property of poker. The general game tree
 movements (bet/fold/call) are known, but the definite game state isn't.
 Imperfect information makes games fun!

Kuhn Poker Game Tree

Poker Nash equilibrium and use

- Poker has a Nash equilibrium that has EV 0
- The matrix is doubly exponential in size incomputable
- Does "play good poker" reduce to "play the equilibrium strategy"?
- Exploitative strategies as alternatives

Variant Specific Implications

Non Zero-Sum Game

This game is non zero sum. A very simplified matrix form is below.

	Fold	Check/Call	Raise
Fold	-1	-1	-1
Check/Call	x	0	-1.5
Raise	+6	+3	0

The main difference here is the larger potential gains on raises, especially when the opponent folds.

Applied game theory

Revisiting the second game

The MIT ID game

- Suppose rational players would only play if their number is ≥X
 - Students might submit only if ≥9000
- But if only ≥X is submitted, then X is the smallest value and shouldn't be submitted
 - Why submit 9000?
- Continue this logic (nth order dominance)
 - Output
 Why submit 9001? 9002?

Adverse selection

- Occurs anytime "buyer" and "seller" have asymmetric information
- Market for cars: suppose there are used cars with private value distributed uniformly between \$1000 and \$10000. What should the market price be?
- What would car owners do? Then what happens?

Sources of adverse selection in poker

- First action when betting (differential check to the preflop aggressor)
- Multiple bets in a row (what types of hands do this?)
- Being in the later stages of the round (why would are they still in the pot?)
- Others?

When I bet, am I happy with my bet conditioned on my opponent calling?

Adverse selection and determinism

- Suppose I have the following deterministic betting strategy:
- All-in when I have a top X% hand
- How can my opponent exploit me?

Coding Reference-3 Bot

Beauty Contest Winner

MIT ID Contest Winner