IETF-122 I2ICF Side Meeting

Interface to In-Network Computing Functions (I2ICF): Problem Statement

(draft-jeong-opsawg-i2icf-problem-statement-oo)

March 20, 2025 Bangkok in Thailand

Jaehoon Paul Jeong, Yiwen Shen, Yoseop Ahn, Younghan Kim, Elias P. Duarte Jr., Kehan Yao

Email: {pauljeong, chrisshen, ahnjs124}@skku.edu, younghak@ssu.ac.kr, elias@inf.ufpr.br, yaokehan@chinamobile.com

Introduction to I2ICF

- □ Interface to In-Network Computing Functions (I2ICF)
 - I2ICF aims at making <u>a standard framework and its interfaces for In-Network Computing Functions (ICF) like Programmable Network Devices (PNDs)</u>.
 - draft-jeong-opsawg-i2icf-problem-statement-oo
 - I2ICF will work on the standardization of Interface YANG Data Models (DMs):
 - In-Network Computing Function (ICF) Capability
 - Registration Interface, Consumer-Facing Interface, Service Function-Facing Interface, and Monitoring Interface

Goal of I2ICF Group

- □ Goal: Standardization of I2ICF for Computing in the Network
 - □ I2ICF Problem Statement
 - https://datatracker.ietf.org/doc/draft-jeong-opsawg-i2icf-problemstatement/
 - □ I2ICF Framework
 - <u>https://datatracker.ietf.org/doc/draft-jeong-opsawg-i2icf-framework/</u>
 - Use Cases: Data Center and Intelligent Transportation Systems
 - <u>https://datatracker.ietf.org/doc/draft-ywj-opsawg-i2icf-data-center-networking/</u>
 - https://datatracker.ietf.org/doc/draft-ahn-opsawg-i2icf-cits/

Motivation of this Draft

- Motivation of I2ICF Problem Statement
 - This draft <u>defines</u> the In-Network Computing Functions (ICFs) and Problems for Interface to In-Network Computing Functions (I2ICF).

- This draft <u>investigates</u> the need for <u>a standard framework with the</u> <u>interfaces for ICFs</u>, in terms of applications with the need to run AI in the network and interoperability among multi-vendor ICFs.
 - AI can enable the creation of dynamic, adaptable network/security policies, which are important in the cloud-edge-core-continuum.
 - Al can learn from telemetry data collected from multiple networks and reach conclusions that can be applied globally or to individual networks.

Scope of this Draft

- Scope of I2ICF Problem Statement
 - ICF Capability Registration and Intent-Based Service Provisioning
 - For a given intent, an **Intent Translator** in the I2ICF framework can translate it into policies executable in ICFs in a target network.
 - For intent assurance, a **Closed-Loop Intent Control** can make sure that the I2ICF framework operates correctly according to the user's intent.
 - □ ICFs to be considered in I2ICF
 - Programmable Network Devices (e.g., P4 Switches)
 - On-Device AI Devices called Moving Objects (e.g., Robots and Software-Defined Vehicles)

12ICF Framework for ICF Management:

(e.g., P4 Switch, VNF-Consensus, Failure Detector, and Reliable Broadcast)

This framework shows a VNF-Consensus Architecture in an Edge Cloud for I2ICF framework to synchonize the SDN Controllers for flow table information in the same Edge Cloud.

VNF: Virtual Network Function

SW: Switch

l2ICF Framework for ICF Management (e.g., Mobile Objects (MOs) like On-Device AI Devices)

In-Network Computing Functions (1/4)

- The State of the Art in Computing in Network (COIN)
 - □ In-Network Computing Functions (ICF) are proposed by COINRG with Network Softwarization (e.g., NFV and SDN).
- Services in COIN
 - Providing New COIN Experiences
 - Mobile application offloading and Extended Reality (XR) and immersive media.
 - Supporting New COIN Systems
 - In-Network Control, Time-Sensitive Application, Large Volume Applications, and Industrial Safety.

In-Network Computing Functions (2/4)

- Services in COIN (Con't)
 - Improving Existing COIN Capabilities
 - ■Content Delivery Networks (CDN), Compute-Fabric-as-a-Service (CFaaS), and Virtual Networks Programming (e.g., P4 programs and OpenFlow rules).
 - Enabling New COIN Capabilities
 - Distributed Al Training among distributed endpoints for large-scale problems.

In-Network Computing Functions (3/4)

Services in NFV-COIN

NFV Failure Detection

It gets monitoring data from SDN Switches via SDN Controller and detects the failure of communication links.

□ Virtual Network Function (VNF) Consensus

It performs the synchronization of the control planes of multiple SDN Controllers (e.g., flow table sharing).

■ NFV Reliable Broadcast

It performs reliable and in-order delivery of broadcasted data packets with a VNF-Sequencer.

In-Network Computing Functions (4/4)

- In-Network Computing Functions (ICFs)
 - Observation 1
 - Functionalities of each service need to be decomposed into Application Functions (AFs) and Network Functions (NFs).
 - Observation 2
 - The management and configuration of those AFs and NFs is a functionality that must be provided by a service coordinator in the context of COIN-based network services.
 - Observation 3
 - There is currently no framework or interfaces defined as standards specifying the life cycle of COIN-based services.

Comparison I2ICF with CATS and NeoTec (1/3)

Computing-Aware Traffic Steering (CATS)

Goal

CATS WG aims at handle how the network edge can steer traffic between clients of a service and sites offering the service.

Assumption

■The configuration and monitoring of edge server instances are done by other services, so they are out of scope.

□ I2ICF

□I2ICF aims the configuration and monitoring of those edge server instances according to a user's intent.

Comparison I2ICF with CATS and NeoTec (2/3)

- Network Telco-cloud Orchestration Interfaces (NeoTec)
 - Goal
 - Central Cloud: Elastic Scaling on Demand (Millisecond-Level Scaling)
 - ■Edge Cloud: Deterministic Low Latency (<10ms End-to-End)
 - Global Efficiency: Cross-Domain Resource Utilization Improved, and agile Domain Coordination
 - I2ICF
 - □I2ICF focuses on the <u>configuration and monitoring of</u>

 <u>Programmable Network Devices (PNDs) and On-Device AI</u>

 <u>Devices (ODAIDs)</u> rather than <u>edge cloud and central cloud</u>.

Comparison I2ICF with CATS and NeoTec (3/3)

□ Network Telco-cloud Orchestration Interfaces (NeoTec)

Intent-Based Networking (IBN)

□ Intent-Based System (IBS) can be based on RFC 9315 (Intent-Based Networking - Concepts and Definitions).

The Life Cycle of IBS for Intent Management

Problem Statement (1/5)

- □ The goal of an Intent-Based System (IBS)
 - <u>To enforce the service corresponding to a user's intent</u> with an appropriate application in a target network in terms of functionality and quality.
- Enforcement Procedure of an Intent
 - ① Intent Translation
 - An intent needs to be translated into either a network policy and an application policy by an intent translator.

Problem Statement (2/5)

- Enforcement Procedure of an Intent (Con't)
 - ② Delivery of Network and Application Policies
 - The network policy and application policy needs to be delivered to a network controller and an application controller.
 - ③ Network Policy Translation
 - ■The network controller translates the network policy into the network rules for network entities (i.e., NFs).
 - - ■The application controller translates the application policy into the application rules for application entities (i.e., AFs).

Problem Statement (3/5)

- Data Models for ICF Capability and Registration Interface (RI)
 - The Capability Data Model for ICFs (i.e., NFs and AFs) are required to describe the ICF capabilities for usage.
 - A **Registration Interface** is required for a vendor to register the ICF Capability with an I2ICF Controller.
 - YANG Data Models for ICF Capabilities and Registration Interface should be specified to make a registration message for the Vendor's Management System (VMS).

Problem Statement (4/5)

- Data Model for Consumer-Facing Interface (CFI)
 - An IBS user needs an interface to deliver its intent to an IBS Controller (e.g., Edge/Cloud Controller).
 - The IBS Controller translates the intent into a network policy and an application policy with an intent translator.
 - It dispatches the policies to appropriate destinations (e.g., NF Controller and AF Controller) with a dispatcher.
 - This interface is called a Customer-Facing Interface (CFI) for the IBS User.
 - A YANG Data Model for the Customer-Facing Interface should be specified.

Problem Statement (5/5)

- Data Model for Service Function-Facing Interface (SFI)
 - Both an NF Controller and an AF Controller need an **SF-Facing Interface** to deliver the <u>network and application</u> rules to the appropriate NFs and AFs, respectively.
- Data Models for Monitoring Interface (MI) and Analytics Interface (AI)
 - **Monitoring Interface** collects <u>monitoring data</u> from either an NF or an AF to a Data Collector.
 - **Analytics Interface** delivers <u>analysis results</u> to either an NF Controller or an AF Controller.

Planning for WG Scope

■ WG Phase 1

- 12ICF Problem Statement and Use Cases
- □ I2ICF Framework
- A YANG Data Model for ICF Capability
- A YANG Data Model for Registration Interface

■ WG Phase 2 (Re-charter)

YANG Data Models of Consumer-Facing Interface, Controller-Facing Interface, SF-Facing Interface, Monitoring Interface, and Analytics Interface

Next Steps

- □ This draft will include use cases for I2ICF as follows:
 - A Use Case of I2ICF for Data Center Networking
 - https://datatracker.ietf.org/doc/draft-ywj-opsawg-i2icf-data-centernetworking/
 - A Use Case of I2ICF for Cooperative ITS
 - https://datatracker.ietf.org/doc/draft-ahn-opsawg-i2icf-cits/
 - A Use Case of I2ICF for On-Device Al Devices
- I2ICF Group will prepare a WG-Forming BoF in the IETF 123 in Madrid in July, 2025.
- □ I2ICF Group will prepare IETF-123 Hackathon Project to clarify (i) the I2ICF Problem Statement & Use Cases and (ii) the I2ICF Framework.