# Assignment 9

Alberto Mejia RIN: 661514960

 $\operatorname{CSCI}$ 4100 - Machine Learning from Data

November 10, 2019

# 1. (100) 8<sup>th</sup> order Feature Transform

The transformation for a k polynomial feature transformation is denoted by 1+2+...+(k+1). Thus, for an  $8^{th}$  order Feature Transform, we have, 1+2+3+4+5+6+7+8+9=45 features. With 300 samples, the dimension of Z is  $R^{300} \cdot ^{45}$ 

#### 2. (100) Overfitting

When setting  $\lambda = 0$ , the algorithm overfits the data, many of the points are classified correctly but it is way too complex.



## 3. (100) Regularization

When setting  $\lambda = 2$ , the algorithm underfits the data, not many of the points are classified correctly and it is too simple.



## 4. (100) Cross Validation

 $E_{cv}$  is always smaller than  $E_{test}$  because when  $E_{cv}$  is at its minimum,  $E_{test}$  is not at its minimum but close to it. This is because  $E_{cv}$  follows  $E_{test}$  very closely, giving it the same trend as  $E_{test}$ . So, any change in  $E_{test}$  is reflected by  $E_{cv}$ .





Result:  $\lambda = 1.669$ 

6. (100) Estimate E<sub>out</sub>

Generalization Error Formula:

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N}ln(\frac{2M}{\delta})}$$

N = 8998 (Number of data points)

M = 1

 $\delta = 0.05$ 

$$E_{out}(g) \le E_{test}(g) + \sqrt{\frac{1}{2(8998)}ln(\frac{2(1)}{0.05})}$$

 $= 0.0142\,+\,0.01431$ 

= 0.0285

7. (100) Is  $E_{cv}$  biased?

As we covered in question 4,  $E_{cv}$  is an estimate for  $E_{out}$  based on N-1 points and  $E_{cv}$  is obtained from these N-1 data point in training.  $E_{cv}(\lambda^*)$  is biased as  $\lambda^*$  is chosen based on  $E_{cv}$ . In simpler terms, we selected  $\lambda^*$  based off of our results from our test set. In conclusion, we have snooped on our data, making  $E_{cv}$  a biased estimate of  $E_{test}$ .

#### 8. (100) Data snooping

 $E_{test}(w_{reg}(\lambda^*))$  is a biased estimate of  $E_{out}(w_{reg}(\lambda^*))$  as it was selected randomly chosen from all data; it was chosen from a dataset that was split into a train and test set using all datapoints. The issue is that the data is normalized before we split into the training set and testing set. This would affect every datapoint in our set. And given that we chose  $\lambda^*$  from one of these two groups, we have data snooped. To fix this we can either use a different dataset for validation, or do the data normalization after we split into training and testing.