Towards maximal singular curves over finite fields

Annamaria lezzi
(Joint work with Yves Aubry)

Institut des Mathématiques de Marseille, Université d'Aix-Marseille, France

AGCT, 18 May 2015

Towards maximal singular curves over finite fields

Notation

The arithmetic genus

Bounds for singular curves

The quantity $N_{oldsymbol{q}}(g\,,\,\pi)$

onstruction of rescribed ngularity

he main

laximal curves ver \mathbb{F}_q , q a

Notation

• \mathbb{F}_q the finite field with q elements.

• The word "curve" will always stand for an absolutely irreducible projective algebraic curve.

Let X be a curve over \mathbb{F}_a . We denote by:

- $\mathbb{F}_q(X)$ the function field of X;
- $\sharp X(\mathbb{F}_q)$, the number of rational points on X over \mathbb{F}_q ;
- \tilde{X} the normalization of X and $\nu: \tilde{X} \to X$ the normalization map (regular finite and birational): $\mathbb{F}_q(X) = \mathbb{F}_q(\tilde{X})$;
- g the geometric genus of X, i.e. the genus of \tilde{X} ;
- π the arithmetic genus of X.

Towards maximal singular curves over finite fields

lotation

The arithmetic

Bounds for singular curves

he quantity $g(g,\pi)$

onstruction of rescribed

The main heorem

Maximal curves ver \mathbb{F}_q , q a

The arithmetic genus

Let Q be a point on X and let \mathcal{O}_Q be the local ring in $\mathbb{F}_q(X)$ associated to Q.

Fact: \mathcal{O}_Q is integrally closed if and only if Q is a nonsingular point.

Let $\overline{\mathcal{O}_Q}$ be the integral closure of \mathcal{O}_Q . $\overline{\mathcal{O}_Q}/\mathcal{O}_Q$ is a finite dimensional \mathbb{F}_q -vector space. We define the **degree of singularity of** Q:

$$\delta_{\mathcal{Q}} := \dim_{\mathbb{F}_q} \overline{\mathcal{O}_{\mathcal{Q}}}/\mathcal{O}_{\mathcal{Q}}$$

The **arithmetic genus** π of a curve X is the integer:

$$\pi := g + \sum_{Q \in X} \delta_Q$$
.

- $\pi > g$;
- $\pi = g$ if and only if X is a smooth curve;
- If X is a plane curve of degree d, $\pi = \frac{(d-1)(d-2)}{2}$.

Towards maximal singular curves over finite fields

Notation

The arithmetic genus

Bounds for singular curves

ne quantity $g(g,\pi)$

escribed gularity

he main neorem

aximal curves ver \mathbb{F}_q , q a

Smooth curves

If X is smooth $(\pi = g)$, the integers $q, \sharp X(\mathbb{F}_q)$ and g satisfy the **Serre-Weil inequality**:

$$|\sharp X(\mathbb{F}_q) - (q+1)| \le g[2\sqrt{q}]$$

Let us denote by

$$N_q(g)$$

the maximal number of rational points over \mathbb{F}_q that a smooth curve of genus g can have. We have:

$$N_q(g) \leq q + 1 + g[2\sqrt{q}]$$

Towards maximal singular curves over finite fields

Notatio

The arithmetic genus

Bounds for singular curves

The quantity $\mathsf{V}_q(\mathsf{g}\,,\,\pi)$

escribed ngularity

The mair :heorem

Maximal curves ver \mathbb{F}_q , q a

Bounds for singular curves

In 1996, Aubry and Perret find relations between a curve and its normalization:

$$Z_X(T) = Z_{\tilde{X}}(T) \prod_{P \in \operatorname{Sing} X} \left(\frac{\prod_{Q \in \nu^{-1}(P)} (1 - T^{\deg Q})}{1 - T^{\deg P}} \right)$$

$$|\sharp \tilde{X}(\mathbb{F}_q) - \sharp X(\mathbb{F}_q)| \leq \pi - g,$$

As a consequence we get the analogous of Serre-Weil bound for singular curves (**Aubry-Perret bound**):

$$|\sharp X(\mathbb{F}_q)-(q+1)|\leq g[2\sqrt{q}]+\pi-g.$$

Towards maximal singular curves over finite fields

lotation

genus

Bounds for singular curves

The quantity $N_q(g, \pi)$

onstruction of a rescribed ngularity

he main heorem

Maximal curves over \mathbb{F}_q , q a

The quantity $N_q(g,\pi)$

We introduce an analogous quantity of $N_q(g)$ for singular curves:

Definition

For q a power of a prime, g and π non negative integers such that $\pi \geq g,$ let us define the quantity

$$N_q(g,\pi)$$

as the maximal number of rational points over \mathbb{F}_q that a curve defined over \mathbb{F}_q of geometric genus g and arithmetic genus π can have.

Obviously we have

$$N_q(g,g) = N_q(g),$$
 $N_q(g,\pi) \le N_q(g) + \pi - g,$ $N_q(g,\pi) \le q + 1 + g[2\sqrt{q}] + \pi - g.$

Towards maximal singular curves over finite fields

Notatio

genus

Bounds for singular curves

The quantity $N_q(g, \pi)$

Construction of a prescribed singularity

he main heorem

laximal curve ver Fa. q a

Terminology

Definition

Let X be a curve over \mathbb{F}_q of geometric genus g and arithmetic genus π . The curve X is said to be:

(i) an optimal curve if

$$\sharp X(\mathbb{F}_q) = N_q(g,\pi);$$

(ii) a δ -optimal curve if

$$\sharp X(\mathbb{F}_q) = N_q(g) + \pi - g = N_q(g) + \delta;$$

(iii) a maximal curve if

$$\sharp X(\mathbb{F}_q) = q + 1 + g[2\sqrt{q}] + \pi - g.$$

Towards maximal singular curves over finite fields

Notation

genus Rounds for

Bounds for singular curves

The quantity $N_q(g, \pi)$

prescribed singularity

The main heorem

faximal curve ver **F**q, q a

Fukasawa, Homma and Kim's curve

In 2011, Fukasawa, Homma and Kim consider and study the rational plane curve B over \mathbb{F}_q defined by the image of

$$\Phi: \quad \mathbb{P}^1 \quad \to \quad \mathbb{P}^2$$

$$(s,t) \quad \mapsto \quad (s^{q+1}, s^q t + s t^q, t^{q+1})$$

B is a maximal singular curve with g=0 and $\pi=\frac{q^2-q}{2}$:

$$\sharp B(\mathbb{F}_q) = q+1+rac{{\mathsf q}^2-{\mathsf q}}{2}$$

Remark: For $P \in \mathbb{P}^1$, $\Phi(P) \in \text{Sing}(B)$ if and only if $P \in \mathbb{P}^1(\mathbb{F}_{q^2}) \setminus \mathbb{P}^1(\mathbb{F}_q)$. In this case, $\Phi^{-1}(\Phi(P)) = \{P, P^q\}$.

Towards maximal singular curves over finite fields

Votation

I he arithmetic genus

Bounds for singular curves

The quantity $N_q(g, \pi)$

prescribed singularity

The main heorem

Maximal curves over \mathbb{F}_q , q a

δ -optimal and maximal curves

Towards maximal singular curves over finite fields

Proposition

Let X be a curve of geometric genus g and arithmetic genus π . If X is δ -optimal (maximal) then

- the normalization \tilde{X} is an optimal (maximal) curve;
- \bigcirc Sing $(X) \subset X(\mathbb{F}_q)$;
- **9** if P is a singular point on X, then $\nu^{-1}(P) = \{Q\}$, with Q a point of degree 2 on \tilde{X} ;
- π − g ≤ B₂(X̃), where B₂(X̃) denotes the number of points of degree 2 on X̃;
- **5** $Z_X(T) = Z_{\tilde{X}}(T)(1+T)^{\pi-g}$.

Notatio

I he arithmetic genus

Bounds for singular curves

The quantity $N_q(g, \pi)$

prescribed singularity

The main heorem

laximal curves ver \mathbb{F}_q , q a

Construction of a prescribed singularity

Let start from a smooth curve X over \mathbb{F}_q and let $S = \{Q_1, \dots, Q_s\}$ be a non-empty finite set of closed points on X.

 $\mathcal O$ is a semi-local ring with maximal ideals $\mathcal N_{Q_i}:=\mathcal M_{Q_i}\cap\mathcal O$ for $i=1,\ldots,s$.

Let n_1,\ldots,n_s be s positive integers, let us set $\mathcal{N}:=\mathcal{N}_{Q_1}^{n_1}\cdots\mathcal{N}_{Q_s}^{n_s}$ and let us consider:

$$\mathcal{O}' := \mathbb{F}_q + \mathcal{N}.$$

Towards maximal singular curves over finite fields

Notation

The arithmetic genus

Sounds for Singular curves

he quantity $_q(g\,,\,\pi)$

construction of a prescribed ingularity

he main heorem

laximal curves ver \mathbb{F}_q , q a quare

Proposition

 $\mathcal{O}' = \mathbb{F}_a + \mathcal{N}$ verifies the following properties:

- Frac(\mathcal{O}') = $\mathbb{F}_q(X)$ and \mathcal{O} is the integral closure of \mathcal{O}' in $\mathbb{F}_q(X)$.
- ${f 0}$ ${\cal O}'$ is a local ring with maximal ideal ${\cal N}$ and residual field ${\cal O}'/{\cal N}\cong {\Bbb F}_q$.
- **3** \mathcal{O}/\mathcal{O}' is a \mathbb{F}_q -vector space such that

$$\mathsf{dim}_{\mathbb{F}_q}(\mathcal{O}/\mathcal{O}') = \sum_{i=1}^s n_i \deg Q_i - 1.$$

Towards maximal singular curves over finite fields

lotation

The arithmetic genus

Bounds for singular curves

he quantity $q(g,\,\pi)$

Construction of a prescribed singularity

The main heorem

aximal curves ver \mathbb{F}_q , q a

Theorem

There exists a curve X' defined over \mathbb{F}_a

- having X as normalization,
- ② with only one singular point P such that $\mathcal{O}_P = \mathcal{O}'$ and P is rational.
- **1** P has a degree of singularity equal to $\sum_{i=1}^{s} n_i \deg Q_i 1$ and

$$\pi(X') = g + \sum_{i=1}^s n_i \deg Q_i - 1.$$

Towards maximal singular curves over finite fields

lotation

The arithmetic genus

Bounds for singular curves

ne quantity $q(g,\pi)$

ionstruction of rescribed ingularity

The main heorem

laximal curves ver \mathbb{F}_q , q a quare

$$\mathbb{F}_{q}(X)$$

$$|
O = O_{Q}$$

$$O' = \mathbb{F}_{q} + \mathcal{M}_{Q}$$

Proposition

 $\mathcal{O}' = \mathbb{F}_q + \mathcal{M}_Q$ verifies the following properties:

- Frac(\mathcal{O}') = $\mathbb{F}_q(X)$ and \mathcal{O} is the integral closure of \mathcal{O}' in $\mathbb{F}_q(X)$.
- $\textbf{ 0} \quad \textit{o' is a local ring with maximal ideal } \mathcal{N} \text{ and residual field } \mathcal{O'}/\mathcal{N} \cong \mathbb{F}_q.$

$$\mathsf{dim}_{\mathbb{F}_q}(\mathcal{O}/\mathcal{O}') = \mathsf{deg}\; Q - 1.$$

Towards maximal singular curves over finite fields

lotation

The arithmetic genus

Bounds for singular curves

he quantity $q(g,\pi)$

Construction of a prescribed singularity

The main heorem

aximal curves ver \mathbb{F}_q , q a

$$\mathbb{F}_{q}(X)$$

$$|
O = O_{Q}$$

$$O' = \mathbb{F}_{q} + \mathcal{M}_{Q}$$

Theorem

There exists a curve X' defined over \mathbb{F}_q

- having X as normalization,
- ② with only one singular point P such that $\mathcal{O}_P = \mathcal{O}'$ and P is rational.
- $oldsymbol{0}$ P has a degree of singularity equal to $\deg Q-1$ and

$$\pi(X') = g + \deg Q - 1.$$

Towards maximal singular curves over finite fields

lotation

The arithmetic genus

Bounds for singular curves

ne quantity $q(g, \pi)$

Construction of prescribed singularity

The main heorem

> laximal curves ver \mathbb{F}_q , q a nuare

Singular curves with many points and small $\boldsymbol{\pi}$

Theorem

Let X be a smooth curve of genus g defined over \mathbb{F}_q . Let π be an integer of the form

$$\pi = g + a_2 + 2a_3 + 3a_4 + \cdots + (n-1)a_n$$

with $0 \le a_i \le B_i(X)$, where $B_i(X)$ is the number of closed points of degree i on the curve X. Then there exists a (singular) curve X' over \mathbb{F}_q of arithmetic genus π such that X is the normalization of X' and

$$\sharp X'(\mathbb{F}_q) = \sharp X(\mathbb{F}_q) + a_2 + a_3 + a_4 + \cdots + a_n.$$

Roughly speaking we can "transform" a point of degree d on a smooth curve in a singular rational one provided that we increase the value of the arithmetic genus of d-1.

Towards maximal singular curves over finite fields

Notation

The arithmetic genus

Bounds for ingular curves

ie quantity $q(g, \pi)$

rescribed

The main theorem

Maximal curves ver \mathbb{F}_q , q a quare

 $\mathcal{X}_q(g)$: the set of optimal smooth curves X over \mathbb{F}_q of genus g.

 $B_2(\mathcal{X}_q(g))$: the maximum number of points of degree 2 on a curve of $\mathcal{X}_q(g)$.

Theorem

We have:

$$N_q(g,\pi) = N_q(g) + \pi - g \iff g \le \pi \le g + B_2(\mathcal{X}_q(g)).$$

Notation

The arithmetic genus

Bounds for singular curves

The quantity $I_q(g, \pi)$

Construction of a prescribed singularity

The main theorem

> laximal curves ver \mathbb{F}_q , q a quare

The case of rational curves: g=0

Towards maximal singular curves over finite fields

Proposition

We have

$$N_q(0,\pi)=q+1+\pi$$

if and only if $0 \le \pi \le \frac{q^2-q}{2}$.

Fukasawa, Homma and Kim's curve is an explicit example of this proposition for $\pi = \frac{q^2 - q}{2}$.

Votation

The arithmetic genus

Bounds for singular curves

The quantity $V_{\alpha}(g, \pi)$

Construction of a prescribed singularity

The main heorem

laximal curves ver \mathbb{F}_q , q a

g=1

Towards maximal singular curves over finite fields

Proposition

1 If p does not divide m, or q is a square, or q = p we have:

$$N_q(1,\pi) = q + 1 + [2\sqrt{q}] + \pi - 1$$

if and only if $1 \leq \pi \leq 1 + \frac{q^2 + q - [2\sqrt{q}]([2\sqrt{q}] + 1)}{2}.$

2 In the other cases we have

$$N_q(1,\pi) = q + [2\sqrt{q}] + \pi - 1$$

if and only if $1 \leq \pi \leq 1 + \frac{q^2 + q + [2\sqrt{q}](1 - [2\sqrt{q}])}{2}$.

Notatio

The arithmetic genus

singular curves

The quantity $I_q(g,\,\pi)$

nstruction of escribed gularity

The main theorem

Maximal curves ver \mathbb{F}_q , q a

Spectrum of maximal curves

Towards maximal singular curves over finite fields

Proposition

Assume q is square. If X is a maximal curve defined over \mathbb{F}_q of geometric genus g and arithmetic genus π , then:

$$\pi \leq g + \frac{q^2 + (2g-1)q - 2g\sqrt{q}(2\sqrt{q}+1)}{2} = (-q - \sqrt{q} + 1)g + \frac{q(q-1)}{2},$$

$$g \leq \frac{\sqrt{q}(\sqrt{q}-1)}{2}$$

and

$$\pi \leq \frac{q(q-1)}{2}$$
.

Notatio

The arithmetic genus

Bounds for singular curves

The quantity $\mathsf{V}_{m{q}}(m{g}\,,\,m{\pi})$

onstruction of a rescribed ngularity

The main theorem

Maximal curves over \mathbb{F}_q , q a

Spectrum of maximal curves

Towards maximal singular curves over finite fields

Votation

The arithmetic genus

Bounds for singular curves

The quantity $V_{m{q}}(m{g},\,m{\pi})$

Construction of prescribed singularity

The main heorem

Maximal curves over \mathbb{F}_q , q a

Merci!

Thank you very much for the attention!

Towards maximal singular curves over finite fields

lotation

The arithmetic genus

Bounds for singular curve

The quantity $N_{\sigma}(g, \pi)$

 $Nq(g, \pi)$ Construction of

escribed ngularity

he main neorem

Maximal curves over \mathbb{F}_q , q a square

21 / 21