Give a parallel program for adding two vectors x and y. Process 0 lets the user input the order, x and y, and then print x, y and x+y. Your program should have Read_vector and Print_vector functions.

2.1.

MPI_Type_contiguous can be used to build a derived datatype from a collection of contiguous elements in an array. Its syntax is

Modify the Read_vector and Print_vector functions so that they use an MPI datatype created by a call to MPI_Type_contiguous and a count argument of 1 in the calls to MPI_Scatter and MPI_Gather.

2.2.

Finding **prefix sums** is a generalization of global sum. Rather than simply finding the sum of *n* values,

$$x_0 + x_1 + \cdots + x_{n-1}$$

the prefix sums are the n partial sums

$$x_0, x_0 + x_1, x_0 + x_1 + x_2, \dots, x_0 + x_1 + \dots + x_{n-1}$$

- **a.** Devise a serial algorithm for computing the *n* prefix sums of an array with *n* elements.
- **b.** Parallelize your serial algorithm for a system with n processes, each of which is storing one of the x_i s.
- **d.** MPI provides a collective communication function, MPI_Scan, that can be used to compute prefix sums:

It operates on arrays with count elements; both sendbuf_p and recvbuf_p should refer to blocks of count elements of type datatype. The op argument is the same as op for MPI_Reduce. Write an MPI program that generates a random array of count elements on each MPI process, finds the prefix sums, and prints the results.