Nombres complexes : partie Algébrique

I. Ensemble des nombres complexes

1. Préambule

L'équation x + 5 = 2 a ses coefficients dans \mathbb{N} mais pour tant sa solution $x = \underline{\hspace{1cm}}$ n'est pas un entier naturel. Il faut ici considérer l'ensemble plus grand \mathbb{Z} des entiers relatifs.

$$\mathbb{N} \xrightarrow{x+5=2} \mathbb{Z} \xrightarrow{2x=-3} \mathbb{Q} \xrightarrow{x^2=2} \mathbb{R} \xrightarrow{x^2=-1} \mathbb{C}$$

De même l'équation 2x=-3 a ses coefficients dans $\mathbb Z$ mais sa solution x= _____ est dans l'ensemble plus grand des rationnels $\mathbb Q$. Continuons ainsi, l'équation $x^2=\frac{1}{2}$ à coefficients dans $\mathbb Q$, a ses solutions $x_1=$ ____ et $x_2=$ ____ dans l'ensemble des réels $\mathbb R$. Ensuite l'équation $x^2=-1$ a ses coefficients dans $\mathbb R$ et ses solutions $x_1=$ ____ et $x_2=$ ____ dans l'ensemble des nombres complexes $\mathbb C$. Ce processus est-il sans fin? Non! Les nombres complexes sont en quelque sorte le bout de la chaîne...

Outre la résolution d'équations, les nombres complexes s'appliquent à la trigonométrie, à la géométrie (comme nous le verrons cette année) mais aussi à l'électronique, à la mécanique quantique, etc.

2. Forme algébrique d'un nombre complexe

Étant donné que certaines équations polynomiales à coefficients réels n'ont pas toujours de solution (comme l'équation $x^2 = -1$), on cherche à construire un nouvel ensemble de nombres :

- 1. contenant tous les *nombres réels*,
- 2. muni de deux opérations prolongeant l'addition et la multiplication des nombres réels et ayant les mêmes règles de calculs,
- 3. contenant un élément noté i tel que ______,
- 4. tout nombre z s'écrive de manière unique z = x + iy où a et b sont des réels,
- **5.** le nombre 0 s'écrit ______.

On admettra qu'un tel ensemble existe : il s'agit de l'ensemble des nombres complexes noté \mathbb{C} .

Définition.

L'écriture z = x + iy unique est appelée forme algébrique du complexe z.

- Le *nombre réel* x est appelé *partie* _____ de z et notée Re(z).
- Le *nombre réel* y est appelé *partie* ______ de z et notée Im(z).

- 1. Écrire sous forme algébrique z + z' et $z \times z'$.
- **2.** En déduire Re(z+z') et $\text{Im}(z\times z')$.

3. La division dans \mathbb{C}

Propriété.

Tout nombre complexe non nul z admet un unique inverse, noté $\frac{1}{z}$.

Méthode. Pour obtenir la forme algébrique d'un quotient dans \mathbb{C} , on *multiplie* le numérateur et le dénominateur du quotient par *l'expression conjuguée* du dénominateur.

Exercice 2.1. Déterminer l'inverse de 3 + 2i.

4. Conjugué

Définition.

On appelle *conjugué* du nombre complexe z = x + iy le nombre complexe noté \overline{z} défini par :

$$\overline{z} =$$

Exemples.
$$\overline{3-2i} = \underline{\hspace{1cm}}$$

$$\overline{5 + i} =$$

Propriétés.

Soit z et z' deux nombres complexes.

1.
$$\overline{\overline{z}} = z$$
 (1)

2.
$$\overline{z+z'}=\overline{z}+\overline{z'}$$
 (2)

3.
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$
 (3)

4.
$$\overline{z^n} = \overline{z}^n, \forall n \in \mathbb{N}^*$$
 (4)

$$\mathbf{5.} \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}} \quad (5)$$

6.
$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}} \text{ pour } z' \neq 0 \quad (6)$$

Faire une démonstration.

Exercice 3.1. Donner la forme algébrique des nombres complexes suivants :

1.
$$z = \frac{2+i}{3-2i}$$
.

2.
$$z' = \frac{1-i}{1+i}$$

II. Techniques opératoires

1. Nombres réels, nombres imaginaires purs

Propriétés.

1.
$$z \stackrel{\textbf{r\'eel}}{\Longleftrightarrow} \operatorname{Im}(z) = 0 \Longleftrightarrow z = \overline{z}$$
.

2.
$$z$$
 imaginaire $pur \iff \text{Re}(z) = 0 \iff z = -\overline{z}$.

Faire au choix une démonstration.

Exercice 4.1. Démontrer que le nombre complexe $z = \frac{2-7\mathrm{i}}{-3+5\mathrm{i}} - \frac{2+7\mathrm{i}}{3+5\mathrm{i}}$ est un nombre réel après avoir calculé \bar{z} .

2. Formule du binôme de Newton

Propriété.

Soit a et b deux nombres complexes. On a alors :

$$(a+b)^n = \sum_{s=0}^n \binom{n}{s} a^s b^{n-s}$$

Cette formule s'appelle binôme de Newton et elle est démontrée page 4.

Remarque. On peut calculer les coefficients binomiaux $\binom{n}{k}$ à l'aide du triangle de Pascal.

Exercice 5.1. Calculer $(1+i)^3$ puis vérifier le résultat à la calculatrice.

3. Équations dans \mathbb{C}

Propriété.

Deux nombres complexes sont $\acute{e}gaux$ si et seulement si ils ont $m\^{e}me$ partie $r\'{e}elle$ et $m\^{e}me$ partie imaginaire.

Faire la preuve.

Exercice 6.1. Résoudre dans $\mathbb C$ l'équation $z+3+\mathrm{i}=2\overline{z}+1+6\mathrm{i}$ en posant $z=x+\mathrm{i} y$ où x et y sont réels.

Démonstration du binôme de Newton.

On démontre cette égalité par récurrence. On pose \mathscr{P}_n : $(a+b)^n = \sum_{s=0}^n \binom{n}{s} a^s b^{n-s}$.

Initialisation: si n = 0, on a d'une part $(a + b)^0 = 1$ et d'autre part $\sum_{s=0}^{0} {0 \choose s} a^s b^{0-s} = {0 \choose 0} a^0 b^0 = 1$ ce qui montre que \mathscr{P}_0 est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: soit k un entier naturel quelconque.

On suppose que \mathscr{P}_k est vraie c'est-à-dire $(a+b)^k = \sum_{s=0}^k \binom{k}{s} a^s b^{k-s}$.

Montrons que \mathscr{P}_{k+1} est vraie soit $(a+b)^{k+1} = \sum_{s=0}^{k+1} \binom{k+1}{s} a^s b^{k+1-s}$

$$(a+b)^{k+1} = (a+b)(a+b)^k (1.1)$$

$$= (a+b)\sum_{s=0}^{k} {k \choose s} a^{s} b^{k-s}$$
 par hypothèse de récurrence (1.2)

$$= \sum_{s=0}^{k} {k \choose s} a^{s+1} b^{k-s} + \sum_{s=0}^{k} {k \choose s} a^{s} b^{k+1-s}$$
(1.3)

$$= \sum_{s=0}^{k-1} {k \choose s} a^{s+1} b^{k-s} + {k \choose k} a^{k+1} b^0 + {k \choose 0} a^0 b^{k+1-0} + \sum_{s=1}^k {k \choose s} a^s b^{k+1-s}$$
 (1.4)

$$= \sum_{p=1}^{k} {k \choose p-1} a^p b^{k-p+1} + a^{k+1} + b^{k+1} + \sum_{s=1}^{k} {k \choose s} a^s b^{k+1-s}$$
(1.5)

$$= a^{k+1} + b^{k+1} + \sum_{s=1}^{k} \left(\binom{k}{s-1} + \binom{k}{s} \right) a^s b^{k+1-s}$$
(1.6)

$$= {k+1 \choose k+1} a^{k+1} b^0 + {k+1 \choose 0} a^0 b^{k+1} + \sum_{s=1}^k {k+1 \choose s} a^s b^{k+1-s}$$
(1.7)

$$= {k+1 \choose 0} a^0 b^{k+1} + \sum_{s=1}^k {k+1 \choose s} a^s b^{k+1-s} + {k+1 \choose k+1} a^{k+1} b^0$$
(1.8)

$$= \sum_{s=0}^{k+1} {k+1 \choose s} a^s b^{k+1-s} \tag{1.9}$$

On en déduit donc que \mathscr{P}_{k+1} est vraie. Ainsi :

- \mathscr{P}_0 est vraie.
- \mathscr{P}_n est héréditaire à partir du rang n=0.

On peut en conclure que \mathscr{P}_n est vraie pour **tout** entier naturel n.