5. I/O zařízení – Klávesnice, myši

Klávesnice

- Jejím účelem je vkládání znaků a ovládání počítače
- Na vrchní straně má tlačítka (klávesy)
- Stisk klávesy způsobí odeslání jednoho znaku

Materiál

- Plast
- Fólie
- Dřevo
- Silikon
- sklo

Rozložení

Rozložení znaků na klávesnici je zkopírované ze standardů rozložení na psacích strojích (úplný původ je u děrných štítků)

QWERTY

QWERTZ

Rozložení je ale nastavitelné.

Rozpoznání stisku klávesy

Mechanické

- Klávesnice používají elektrické mechanické spínače
- Pro odpružení je použita železná pružina
- Hlučné, složité a drahé na výrobu

Polovodivá guma

 Uprostřed klávesy je umístěn vodivý pruh gumy, kdy po stisku klávesy spojí kontakty na tištěném spoji (nebo fólii)

Membránové

- Na plošném spoji jsou dvě vrstvy kontaktních plošek umístěné nad sebe a oddělené izolační vrstvou s kruhovým otvorem.
- Při stisknutí klávesy zatlačí spodní plocha klávesy na membránu, ta se pohne a propojí skrz otvor v izolačním materiálu vrchní a spodní kontaktní plošku

PRINCIP MEMBRÁNOVÉ KLÁVESNICE

Kapacitní

 Zde není použit žádný mechanický spínač, je zde pouze měřen kapacitní odpor mezi ploškami pod klávesou, kdy při pohybu plošek proti sobě je tento odpor změněn a vyhodnocen jako stisk klávesy.

Magnetické

- Tento typ kláves má uvnitř permanentní magnet
- Pod klávesou je umístěna Hallova sonda
- Při stisku klávesy se magnet přiblíží k Hallově sondě, která na vzrůst magnetického pole reaguje vysláním elektrického signálu
- Kvalitní provedení, ale poměrně drahé.

Rozhraní – připojení klávesnice k PC

DIN (DIN5)

- Stejný konektor, který se používal k přenosu zvuku před příchodem konektorů jack
- Zastaralé, jedná se vlastně vůbec první způsob připojení klávesnice, pěti-kolíkový konektor

PS/2 (MiniDIN6)

• Šesti-kolíkový konektor, jímž se k počítači připojuje myš a klávesnice, případně speciální zařízení typu čtečky čárového kódu.

USB

• Dříve nebyla podpora v biosu, později byla přidána USB Device Legacy Support

Bezdrátové

- Skládá se z jednotky, která se připojí k počítači a ze samotné klávesnice
- Základní jednotka se připojí k počítači a s klávesnicí komunikuje pomocí infračerveného nebo rádiového přenosu
- Dnes se více používá rádiový přenos, protože oproti infračervenému není třeba přímá viditelnost mezi vysílačem a klávesnicí

Myši

Polohovací zařízení, které při pohybu přesně kopíruje kurzor na obrazovce počítače.

Snímací technologie

Mechanicko-optická (kuličková)

- Gumová kulička se pohybuje mezi dvěma válečky, pomocí kterých je pohyb vyhodnocován opto-mechanickými čidly u kolečka na válečku.
- Jeden váleček vyhodnocuje osu X a druhý osu Y. Váleček je pravidelně děrován a optický vysílač a přijímače na stranách kolečka vyhodnocují pohyb myši

Optická

- Kulička je nahrazena optickým digitálním snímačem pohybu, který je přesnější a spolehlivější
- Optické čidlo skenuje povrch a podle nerovností terénu (mikroskopických) vyhodnocuje pohyb myši
- Má problémy na lesklých plochách (zrcadlo, sklo)

Připojování

- Sériový port, PS/2 > zastaralé
- USB
- Bezdrátová

Alternativy

Touchpad

- Vstupní zařízení běžně používané u notebooků jako náhrada za myš
- Účelem je pohybovat kurzorem po obrazovce podle pohybů uživatelova prstu
- Většinou pracuje na principu snímání elektrické kapacity prstu, nebo kapacity senzoru
- Kapacitní senzory obvykle leží podél horizontální a vertikální osy touchpadu
- Poloha prstu je pak zajištěna ze vzorků kapacity z těchto senzorů (nereaguje ale na špičku tužky, na prst s rukavicí, vlhký prst)
- Většinou mají i 2 tlačítka jako u myši

Trackpoint

- Náhrada myši u přenosových počítačů vyvinutých firmou IBM
- Uprostřed klávesnice se nachází malá gumová páčka sloužící k pohybu kurzoru
- Má podobnou funkci jako joystick čím více stlačíme páčku daným směrem, tím rychleji se kurzor pohybuje

Trackball

- Kulička umístěna v podložce, jíž se dá pohybem prstů pohybovat (oproti myši je kulička nahoře)
- Hodí se na průmyslové použití počítačová grafika (aplikace CAD, DTP), veřejné informační stránky

Herní zařízení

- Speciální zařízení určena k ovládání her (ne nezbytně)
- Velké rozšíření souvisí s rozvojem herních konzolí

Joystick

- Používá se zejména ovládání leteckých simulátorů
- Základním dílem je tyčka upevněná kolmo do vodorovné podložky. Vychýlení tyčky vyvolá odpovídající pohyb objektu na obrazovce.
- Využívá se i v průmyslu ovládání strojů jako jeřáby, roboti, letadla, rakety
- Miniaturní joysticky ovládané palcem nalezneme v mobilních telefonech

Digitální (neproporcionální)

Indikuje sepnutí v jednom ze čtyř nebo osmi směrů

Analogové (proporcionální)

Směr a velikost výchylky je určena více podrobně

Volant

Herní zařízení pro automobilové simulace, bývá rozšířen o pedály a řadicí páku

Wii remote

- Herní ovladač konzole Nintendo Wii
- Tvarem je podobný televiznímu ovladači
- Velice přesně reaguje na pohyb ruky uživatele
- Přesné zaměření provádí Wii podle Sensor Baru umístěném pod nebo nad televizí.

Dotykové obrazovky

- Jsou vstupní i výstupní zařízení
- Slouží k lepší interakci se zobrazeným obsahem bez nutnosti používání a hlavně držení dalšího hw v ruce

Rezistivní displeje (odporový)

- Pružná membrána na povrchu displeje s tenkou kovovou průhlednou vrstvou pod membránou také průhledná kovová vrstva
- Mezi vrstvami je tenká vzduchová mezera s izolačním rastrem, která odděluje vrstvy od sebe

Výhody

- K dotyku lze pužít cokoli (špička prstu i v rukavici, tužka etc..)
- Odolnost jsou tedy vhodné pro nasazení i v průmyslových aplikacích

Kapacitní

- Funguje na principu vodivost lidského těla
- Povrch displeje je pokryt vodivou vrstvou, při dotyku prstem vznikne kapacita mezi okrajem displeje a vodivou rukou – uzavře se obvod a analyzují se výsledné kapacity pro určení polohy prstu

Výhody

- Vysoká mechanická odolnost
- Málo náchylné na poruchy (mastnota, prach..)

Nevýhody

 Dotyk funguje pouze při dotyku elektricky vodivým předmětem – ruka v rukavici by nefungovala

Displeje s infračerveným zářením

• Velice hustá síť infračervených paprsků, které když přerušíte dotykem, vyhodnotí souřadnice přerušení a zjistí přesnou polohu

Výhody

 Možnost vytvoření rámu s touto technologií, který pak vložíte na jakýkoli monitor – dá se tedy i z CRT monitoru udělat moderní dotykovou obrazovku

Displeje s povrchovou vlnou

 V rozích pevné průhledné plochy nad displejem najdeme vysílače a přijímače signálu (pracuje na 5 MHz)

- Ten se šíří na protilehlou stranu displeje (od vysílače k přijímači)
- Při vložení překážky do vlnového pole řídící jednotka vyhodnotí polohu překážky

Výhody

- Vysoké dotykové rozlišení
- Vysoká rychlost vodivosti a jas obrazu
- Spolehlivost a životnost

Nevýhody

- Vysoká citlivost na znečištění
- Objevují se i hluchá místa

Skenery

- Skener je zařízení, které slouží pro přenos dat z nějakého zdroje (papír, film, diapozitiv) do počítače
- Pracuje podobně jako kopírka, ale data netiskne na papír, ale ukládá ve formě obrázků do souborů

Dělení podle snímače

CDD (Charge coupled device)

- Jednoprůchodové jednotlivé složky barvy jsou snímány najednou
- V podstatě je to na světlo citlivý polovodičový čip (využívá foto-efekt)
- Předlohu osvětluje katodová lampa. Odraz se odráží od zrcadel, prochází objektivem a dopadá na CDD čip.
- Před snímáním vyžaduje zahřátí lampy, aby nedocházelo ke změně intenzity světla
- Skenování trvá přibližně 30s

CIS (Contact Image senzor)

- Používá pouze jeden řádek senzorů umístěných co nejblíže papíru
- Zdrojem světla jsou tři řádky LED diod v základních barvách, integrovaných přímo do čtecí hlavy – tím se ruší optický systém (zrcadla a čočky), snižuje se cena skeneru a prodlužuje životnost snímací hlavy

Výhody

- Zmenšení snímací hlavy až o 40% (vzhledem k CDD)
- Snížení napájecí hlavy na 5v nepotřebuje napětí pro rozsvícení zářivky
- Snížení ceny a výrobní náročnosti snímací hlavy

Nevýhody

- Neumožňuje snímat transparentní předlohy (diapozitivy, filmy)
- Má nižší rozlišovací schopnost na tmavších plochách obrazu
- Se vzdáleností předlohy od plochy skeneru klesá osvícení rychleji než u CDD

Dělení dle konstrukce

Řádkové (lineární)

- Příkladem může být čtečka čárového kódu, fax, scanner
- Z čárového kódu sejme kteroukoli řádku (nemusí být ani kolmá)
 - které jdou na výstup jako množina pulzů odpovídajícím černým a bílým čarám v kódu (ty se pak v počítači zpracují na číslice)

Plošné

- Nejčastěji u digitálních fotoaparátů a kamer
- Prvky obdélníkového tvaru složené z miliónů snímacích buněk.
- Buňky samotné jsou buď obdelníkové (video snímače), čtvercové (digitální fotoaparáty) nebo plastové (super CCD)
- Každá buňka měří dopadající světlo a podle jeho intenzity generuje elektrický náboj, ten se odvede na AD převodník, který ho zpracuje na digitální informaci

Snímání barevného obrazu

Pomocí CDD prvků

- 1. Pro tři základní barvy RGB se použijí tři základní CDD snímače, před které se umístí barevné filtry
- 2. Barevné filtry se umístí v šachovnicovém vzoru přímo před jednotlivé pixely v jediného CDD snímače

Typy skenerů

Bubnové

- Předloha je uchycena na bubnu, který se rychle otáčí a posunuje
- Snímacím elementem je snímač s technologií PMT (photo multiplier tube), která používá fotonásobič elektronka, která dokáže elektrický signál zesílit

Plochý skener

- Plochá obdélníková krabice s víkem, pod kterým je skleněná plocha, na kterou se pokládají skenované předlohy
- Pod deskou je jak snímač, tak zdroj světla (dnes nejčastěji výbojka poskytující chladné, rovnoměrné a intenz ivní světlo). Je zde také nutná soustava zrcadel, která světlo odražené od předlohy převede zpět ke snímači.
- Prvotně určen pro práci s plochými neprůhlednými předlohami (text, obrázky, grafy), později byl ale vylepšen a dokázal snímat i průhledné předlohy (dia-nástavec)
- Cesta je: předloha zrcadlo zrcadlo zrcadlo optika snímač

Filmový skener

- Jsou určeny pouze a jedině ke skenování filmů
- Kvalita výstupu kvalitního filmového skeneru je prvotřídní
- Z jedné strany je filmové políčko prosvětleno a na druhé straně políčka je obraz usměrněn optikou přímo na snímač
- Cesta je: předloha optika snímač

Ruční skener

- Po stisku snímacího tlačítka se rozsvítí LED dioda a osvětlí předlohu skeneru
- Pod úhlem skloněné zrcadlo odráží obraz do čoček v zadní části tělesa skeneru
- Čočky zaostří jediný řádek předlohy do CDD, který je částí určenou pro zjišťování jemných světelných rozdílů – ta obsahují řadu světelných čidel, která registrují množství světla jako úroveň napětí
- Napětí generovaná CDD jsou odesílaná do specializovaného analogového čipu na provedení gama korekce (proces, který zdůrazní černé tóny v předloze)

Uložení obrázku

Bezeztrátová komprese (lossless)

- Algoritmy, které dovolují přesnou zpětnou rekonstrukci komprimovaných dat nejsou ztraceny informace
- Formáty využívající tuto metodu: PNG, GIF, TIFF

Ztrátová komprese (lossy)

• Algoritmy, které zmenšují objem dat a nebojí se ztrácet některé informace. Zkomprimovaná data nejsou přesně rekonstruovatelná.

• Formáty: JPEG

OCR (Optical Character Recognition – optické rozpoznání znaků)

- Metoda, která pomoci scanneru umožňuje digitalizovat tištěný text, s nimiž pak lze pracovat jako s normálním počítačovým textem.
- Počítačový program převádí obraz buď automaticky, nebo se musí naučitelná rozpoznávat znaky.
- Pokud není schopný rozpoznat znak, znak se nahradí nějakou defaultní hodnotou: ~, #, @