

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of the Claims:

1 Claim 1. (Previously Presented) An image sensor comprising:
2 a plurality of pixels each having an output, each pixel including:
3 a first circuit that produces a signal proportional to incident light intensity,
4 said first circuit being connected to supply said proportional signal to said pixel
5 output,
6 a select node connected to receive a select signal for selecting said pixel
7 from said plurality of pixels, and
8 a reset transistor for resetting said pixel;
9 an amplifier having:
10 a first input for receiving said outputs of said pixels, and
11 an output coupled to said reset transistors to provide a negative feedback
12 signal to a selected pixel; and
13 a reset reference voltage source connected to apply a reset reference voltage signal to
14 said amplifier to provide a voltage reference for controlling reset of said pixels.

1 Claim 2. (Previously Presented) The image sensor of claim 1 wherein said amplifier
2 further includes a second input receiving said reset reference voltage signal.

1 Claim 3. (Previously Presented) The image sensor of claim 2 wherein said reset
2 transistor includes a gate and first and second terminals, said first terminal connected to receive
3 said negative feedback signal to adjust said second terminal's voltage to a selected reset voltage.

1 Claim 4. (Previously Presented) The image sensor of claim 3 wherein said reset
2 reference voltage source signal is selected to control said voltage at said second reset transistor
3 terminal to be about $V_T - \Delta V$ below a reset voltage applied at said gate terminal of said reset
4 transistor, where V_T is a threshold voltage that is characteristic of said reset transistor, and ΔV is
5 selected to maintain said reset transistor in a subthreshold region of operation during a steady
6 state phase of pixel reset.

1 Claim 5. (Previously Presented) The image sensor of claim 4 wherein said selected ΔV
2 is greater than about one hundred millivolts.

1 Claim 6. (Previously Presented) The image sensor of claim 4 wherein said select node of
2 each said pixel comprises a terminal of a row select transistor that is coupled to said first input of
3 said amplifier.

1 Claim 7. (Previously Presented) The image sensor of claim 6 wherein each said pixel
2 further comprises a source follower transistor coupled between said second terminal of said reset
3 transistor and a terminal of said row select transistor.

1 Claim 8. (Previously Presented) The image sensor of claim 3 wherein said first circuit
2 comprises a photocircuit.

1 Claim 9. (Previously Presented) The image sensor of claim 8 wherein said amplifier
2 comprises a differential amplifier including a first differential amplifier input transistor
3 connected to receive said first amplifier input and a second differential amplifier input transistor
4 connected to receive said second amplifier input, said first and second differential amplifier input
5 transistors connected to provide a signal to a current mirror circuit that is connected to deliver
6 said negative feedback signal to said reset transistor first terminal.

1 Claim 10. (Previously Presented) The image sensor of claim 8 wherein said photocircuit
2 includes a photodiode and a capacitance.

1 Claim 11. (Previously Presented) The image sensor of claim 7 wherein said first circuit
2 is a photocircuit.

1 Claim 12. (Previously Presented) The image sensor of claim 11 wherein said
2 photocircuit includes a photodiode and a capacitance.

1 Claim 13. (Previously Presented) An image sensor array having rows and columns of
2 pixels, comprising:

3 at least one column line;
4 a plurality of pixels each having an output, the outputs of pixels in a column being
5 connected to a common respective column line, each said pixel including:
6 a first circuit that produces a signal proportional to incident light intensity,
7 said first circuit being connected to supply said proportional signal to said pixel
8 output, and
9 a reset transistor for resetting said pixel;
10 at least one amplifier, each said amplifier having a first input coupled to at least one said
11 column line, each said amplifier being connected to provide a negative feedback signal to each
12 said pixel reset transistor of a respective column of pixels; and
13 a reset reference voltage source connected to apply a reset reference voltage signal to each
14 said amplifier to provide a voltage reference for controlling reset of said pixels.

1 Claim 14. (Previously Presented) The image sensor of claim 13 wherein said amplifier
2 further includes a second input for receiving said reset reference voltage signal.

1 Claim 15. (Previously Presented) The image sensor of claim 14 wherein said reset
2 transistor includes a gate and first and second terminals, said first terminal connected to receive
3 said negative feedback signal to adjust said second terminal's voltage to a selected reset voltage.

1 Claim 16. (Previously Presented) The image sensor of claim 15 wherein said reset
2 reference voltage source signal is selected to control said voltage at said second reset transistor
3 terminal to be about $V_T - \Delta V$ below a reset voltage applied at said gate terminal of said reset
4 transistor, where V_T is a threshold voltage that is characteristic of said reset transistor, and ΔV is
5 selected to maintain said reset transistor in a subthreshold region of operation during a steady
6 state phase of pixel reset.

1 Claim 17. (Currently Amended) The image sensor array of ~~claim 15~~ claim 16 wherein
2 said selected ΔV is greater than about one hundred millivolts.

1 Claim 18. (Previously Presented) The image sensor array of claim 16 wherein each pixel
2 comprises a row select transistor coupled between said second terminal of said reset transistor
3 and said first input of said amplifier.

1 Claim 19. (Previously Presented) The image sensor array of claim 18 wherein each pixel
2 further comprises a source follower transistor coupled between said second terminal of said reset
3 transistor and a terminal of said row select transistor.

1 Claim 20. (Previously Presented) The image sensor array of claim 16 wherein said first
2 circuit of each pixel comprises a photocircuit.

1 Claim 21. (Previously Presented) The image sensor array of claim 20 wherein said
2 amplifier comprises a differential amplifier including a first differential amplifier input transistor
3 connected to receive said first amplifier input and a second differential amplifier input transistor
4 connected to receive said second amplifier input, said first and second differential amplifier input
5 transistors connected to provide a signal to a current mirror circuit that is connected to deliver
6 said negative feedback signal to said reset transistor first terminal.

1 Claim 22. (Previously Presented) The image sensor array of claim 20 wherein said
2 photocircuit of each active pixel comprises a photodiode and a capacitance.

1 Claim 23. (Previously Presented) The image sensor array of claim 19 wherein each said
2 first circuit comprises a photocircuit.

1 Claim 24. (Previously Presented) The image sensor array of claim 23 wherein each said
2 photocircuit comprises a photodiode and a capacitance.

1 Claim 25. (Currently Amended) AAn image sensor array having rows and columns of
2 pixels, comprising:

3 at least one row line;
4 a plurality of pixels each having an output, the outputs of pixels in a row being connected
5 to a common respective row line, each said pixel including:

6 a first circuit that produces a current proportional to incident light
7 intensity, said first circuit being connected to supply said proportional current to
8 said pixel output, and
9 a reset transistor for resetting said pixel;
10 at least one amplifier, each said amplifier having a first input coupled to at least one said
11 row line, each said amplifier being connected to provide a negative feedback signal to each said
12 pixel reset transistor of a respective row if pixels; and
13 a reset reference voltage source connected to apply a reset reference voltage signal to each
14 said amplifier to provide a voltage reference for controlling reset of said pixels.

1 Claim 26. (Previously Presented) The image sensor of claim 25 wherein said amplifier
2 further includes a second input for receiving said reset reference voltage signal.

1 Claim 27. (Previously Presented) The image sensor of claim 26 wherein said reset
2 transistor includes a gate and first and second terminals, said first terminal connected to receive
3 said negative feedback signal to adjust said second terminal's voltage to a selected reset voltage.

1 Claim 28. (Previously Presented) The CMOS image sensor of claim 27 wherein said
2 reset reference voltage source signal is selected to control said voltage at said second terminal to
3 be about $V_T - \Delta V$ below a reset voltage applied at said gate terminal of said reset transistor, where
4 V_T is a threshold voltage that is characteristic of said reset transistor, and ΔV is selected to
5 maintain said reset transistor in a subthreshold region of operation during a steady state phase of
6 pixel reset.

1 Claim 29. (Currently Amended) The image sensor array of ~~claim 27~~ claim 28 wherein
2 said selected ΔV is greater than about one hundred millivolts.

1 Claim 30. (Previously Presented) The image sensor array of claim 28 wherein each pixel
2 comprises a column select transistor coupled between said second terminal of said reset transistor
3 and said first input of said amplifier.

1 Claim 31. (Previously Presented) The image sensor array of claim 30 wherein each pixel
2 further comprises a source follower transistor coupled between said second terminal of said reset
3 transistor and a terminal of said column select transistor.

1 Claim 32. (Previously Presented) The image sensor array of claim 28 wherein said first
2 circuit of each pixel comprises a photocircuit.

1 Claim 33. (Previously Presented) The image sensor array of claim 32 wherein said
2 amplifier comprises a differential amplifier including a first differential amplifier input transistor
3 connected to receive said first amplifier input and a second differential amplifier input transistor
4 connected to receive said second amplifier input, said first and second differential amplifier input
5 transistors connected to provide a signal to a current mirror circuit that is connected to deliver
6 said negative feedback signal to said reset transistor first terminal.

1 Claim 34. (Previously Presented) The image sensor array of claim 32 wherein said
2 photocircuit of each pixel comprises a photodiode and a capacitance.

1 Claim 35. (Previously Presented) The image sensor array of claim 31 wherein each said
2 first circuit comprises a photocircuit.

1 Claim 36. (Previously Presented) The image sensor array of claim 35 wherein each said
2 photocircuit comprises a photodiode and a capacitance.

1 Claim 37. (Previously Presented) The image sensor of claim 1 wherein said image
2 sensor comprises a CMOS-compatible image sensor.

1 Claim 38. (Previously Presented) The image sensor array of either of claims 13 or 25
2 wherein said image sensor array comprises a CMOS-compatible image sensor array.

1 Claim 39. (Previously Presented) The image sensor of claim 1 wherein said pixels
2 comprise active pixels.

1 Claim 40. (Previously Presented) The image sensor array or either of claims 13 or 25
2 wherein said pixels comprise active pixels

Amendments to the Drawings:

Attached are 7 replacement sheets of drawings.

Replacement Sheet 1, Figs. 1-2, replaces the original sheet including Figs. 1-2.

In Fig. 1, the legend "Prior Art" has been added. In Fig. 2, the reference voltage, V_R , has been circled in the manner of a voltage source.

Replacement Sheet 2, Fig. 3, replaces the original sheet including Fig. 3.

In Fig. 3, the reference voltage, V_R , has been circled in the manner of a voltage source.

Replacement Sheet 3, Fig. 4a, replaces the original sheet including Fig. 4a.

In Fig. 4a, the reference voltage, V_R , has been circled in the manner of a voltage source.

Replacement Sheet 4, Fig. 4b, replaces the original sheet including Fig. 4b.

In Fig. 4b, the reference voltage, V_R , has been circled in the manner of a voltage source.

Replacement Sheet 5, Figs. 5-6, replaces the original sheet including Figs. 5-6.

In Figs. 5 and 6, the reference voltage, V_R , has been circled in the manner of a voltage source.

Replacement Sheet 6, Fig. 7, replaces the original sheet including Fig. 7.

In Fig. 7, the reference voltage, V_R , has been circled in the manner of a voltage source.

Replacement Sheet 7, Fig. 8, replaces the original sheet including Fig. 8.

In Fig. 8 the reference voltage, V_R , has been circled in the manner of a voltage source.