CS-419m: Practice questions on Probabilistic Classifiers

1. An insurance company is trying to classify customers as "Risky" (y=1) or "Not-risky" (y=2) based on two attributes of a customer: x_1 denoting the number of "incidents" in the past ten years and x_2 denoting the type of the vehicle. Assume for each class y that the first attribute follows a Poisson distribution with parameter λ_y (Recall that for a Poisson distribution $P(x=k|\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$) and the second attribute follows a multinomial distribution with parameter θ_{yr} for $r \in (F,T,S)$. The table below denotes a sample training set.

	x_1	x_2	y
\mathbf{x}^0	0	F	2
\mathbf{x}^1	3	Т	1
\mathbf{x}^2	1	Т	2
\mathbf{x}^3	2	\mathbf{S}	1
\mathbf{x}^4	2	F	2
\mathbf{x}^5	3	Γ	1
\mathbf{x}^6	4	S	1
\mathbf{x}^7	5	S	1

(a) Write the estimate of λ_y for each y using the training data above? [Show the derivation for one y]

..3

$$\begin{split} \lambda_y^{MLE} &= \mathrm{argmax}_{\lambda_y} \sum_{i=1}^{N_y} (k_i log \lambda_y - \lambda_y) \Rightarrow \frac{1}{\lambda_y} \sum_{i=1}^{N_y} k_i - N_y = 0 \\ \lambda_y &= \frac{1}{N_y} \sum_{i=1}^{N_y} k_i \\ \lambda_1 &= (3+2+3+4+5)/5 \text{ and } \lambda_2 = (0+1+2)/3 \end{split}$$

(b) Is the maximum likelihood objective concave in λ_y ? Justify.

$$F = \sum_{i=1}^{N} (k_i log \lambda - \lambda + costant)$$

$$\nabla_y F = \frac{1}{\lambda} \sum_{i=1}^{N} k_i - N$$

$$\nabla_y^2 F = -\frac{1}{\lambda^2} \sum_{i=1}^{N} k_i \leq 0 \text{ because \# of incidents, } k_i \geq 0$$

$$\therefore F \text{ is concave in } \lambda \text{ by Hessian test}$$

- (c) Write the estimate of all the θ_{yr} s for $r \in (F, T, S)$ and each y ...1 $\theta_{1F}^{MLE} = 0, \theta_{1T}^{MLE} = \frac{2}{5}, \theta_{1S}^{MLE} = \frac{3}{5}, \ \theta_{2F}^{MLE} = \frac{2}{3}, \theta_{1T}^{MLE} = \frac{1}{3}, \theta_{1S}^{MLE} = 0$
- (d) Assume the class labels follow a Bernoulli distribution with parameter p denoting the probability of class 1. What is the maximum likelihood estimate of p. ... $p^{MLE} = \frac{5}{8}$
- 2. Consider a binary classification problem $(y \in \{0,1\})$ and two dimension data (d=2) where both x_1 and x_2 are binary. Let $n_{00}^y, n_{10}^y, n_{01}^y, n_{11}^y$ denote the number of training instances in class y where $[x_1 \ x_2]$ is $[0\ 0]$, $[1\ 0]$, $[0\ 1]$, $[1\ 1]$ respectively.
 - (a) Suppose we use a naive Bayes classifier where x_1 is assumed independent of x_2 .
 - i. What is the maximum likelihood estimate of the two Bernoulli parameters in class y in terms of the counts $n_{00}^y, n_{10}^y, n_{01}^y, n_{11}^y$...1 $p^y(x_1 = a) = \frac{n_{00}^y + n_{01}^y + n_{01}^y + n_{01}^y + n_{11}^y}{n_{00}^y + n_{10}^y + n_{01}^y + n_{10}^y + n_{01}^y + n_{11}^y} p^y(x_2 = a) = \frac{n_{00}^y + n_{10}^y + n_{01}^y + n_{11}^y}{n_{00}^y + n_{10}^y + n_{01}^y + n_{11}^y}$
 - ii. What is the maximum likelihood estimate of $\Pr(y)$ in terms of the counts $n_{00}^y, n_{10}^y, n_{10}^y, n_{11}^y$ $p(y=0) = \frac{n_{00}^0 + n_{10}^0 + n_{01}^0 + n_{11}^0}{\sum_{a=\{0,1\}} n_{00}^a + n_{10}^a + n_{01}^a + n_{11}^a}$...1

- iii. For what values of $n_{00}^y, n_{10}^y, n_{01}^y, n_{11}^y$ will the naive Bayes classifier incur the maximum percentage training error? Justify. Assume number of instances in both classes is the same.

 ..3 If $n_{00}^0 = n_{11}^0, n_{10}^0 = n_{01}^0 = 0$ and $n_{01}^1 = n_{10}^1, n_{00}^1 = n_{11}^1 = 0$, the estimated Bernoulli parameter will be 1/2 in both classes. The $\Pr(\mathbf{x}|y)$ value will also be the same. The error will be 50%.
- (b) Now suppose we decide to use a model more powerful than naive Bayes. In each class, we model the probability that $\Pr([x_1 \ x_2] = [a \ b] \ | y)$ with a parameter p_{ab}^y . Further we follow a LDA like parameter sharing to reduce the number of parameters by requiring that $p_{11}^0 = p_{11}^1 = p_{11}$. Clearly, $p_{00}^y + p_{10}^y + p_{01}^y + p_{11} = 1$. Write the log-likelihood function on the training data in terms of the counts n_{ab}^y , and parameters p_{ab}^y , $\Pr(y = 1)$, $\Pr(y = 0)$.

$$\begin{split} & \sum_{i} log P(y_{i}) * P(y_{i}|x) = \sum_{i} log P(y_{i}) + \sum_{i} log P(y_{i}|x) \\ & = n^{1} * log P(y=1) + n^{0} * log P(y=0) + \sum_{y} (n_{00}^{y} * log p_{00}^{y} + n_{01}^{y} * log p_{01}^{y} + n_{10}^{y} * log p_{10}^{y}) + (n_{11}^{0} + n_{11}^{1}) * log P_{11} \end{split}$$

(c) Derive the maximum likelihood estimates of the $p_{00}^y, p_{10}^y, p_{01}^y$ parameters only in terms of p_{11} and the training counts. [Hint: Use Lagrangian multiplier to push the two constraints $p_{00}^y + p_{10}^y + p_{01}^y + p_{11} = 1$, one for each y to the objective.] ...3 We Maximize the objective created above (F_{ab}^y) using the lagrangian dual. We thus have the objective as: Maximize $F_{ab}^y - \lambda_1 * (p_{00}^1 + p_{01}^1 + p_{10}^1 + p_{11}^1) - \lambda_0 * (p_{00}^0 + p_{01}^0 + p_{01}^1) + \frac{\partial F(P_{ab}^y)}{\partial P_{ab}^y} = \frac{n_{ab}^y}{P_{ab}^y} - \lambda_y$

Using the constraints we get $\frac{n_{00}^y}{\lambda_y} + \frac{n_{01}^y}{\lambda_y} + \frac{n_{10}^y}{\lambda_y} + P_{11} = 1$ Thus $P_{ab}^y = \frac{n_{ab}^y}{(n^y - n_{11}^y)} * (1 - P_{11})$

(d) Now derive the maximum likelihood estimate for p_{11} Using the values obtained above in $F(P_{ab}^y)$ and taking only the terms concerning P_{11} we get $log(1-P_{11})*\sum_y(n_{00}^y+n_{10}^y+n_{01}^y)+(n_{11}^0+n_{11}^1)*logP_{11}$ On differentiating this with P_{11} and solving for P_{11} we get $P_{11}=\frac{(n_{11}^0+n_{11}^1)}{(n^0+n^1)}$

..1