Assignment 6– Review

Assignment overview. This assignment is aimed at reviewing some concepts of the deep learning and reinforcement learning and to provide practice questions for the final exam.

Submission. Please provide your answers to the written question (1-8) as a pdf file, and the last question (9) as Jupyder file through Brightspeae.

Submission deadline. Thursday, April 5, 2:00 pm.

Late submission policy. No late submission can be accepted.

Academic Integrity. Dalhousie academic integrity policy applies to all submissions in this course. You are expected to submit your own work. Please refer to and understand the academic integrity policy, available at https://www.dal.ca/academicintegrity

If you have a question: Teaching Assistants (TAs) will be present during the labs to help you with any questions you may have. If you still have questions, feel free to email me at tt@cs.dal.ca.

Questions:

- 1. **[4 Marks] What** is the *vanishing gradient problem* in deep learning and how can it be mediated?
- 2. [5 Marks] What is the result when convolving the array A with the filter B without padding?

- 3. **[3 Marks] What** is a pooling operation in convolutional neural networks and why is this operation important?
- 4. [4 Marks] What is a gated recurrent network? Name an example of such a neural network.
- 5. [4 Marks] In reinforcement learning, what is a policy?
- 6. [3 Marks] Explain the difference between the SARSA and Q-Learning algorithm.
- 7. [2 Marks] Briefly explain 'dropout' and why it is used in deep networks.

8. **[5 marks] What** are the optimal Q values for the T-maze below, assuming that we value diminishing returns with y=0.5?

9. **[20 Marks]** Implement a neural network version of an RL to solve the linear maze example and submit your program as jupyter notebook.

State x:	0	1	2	3	4
$\rho(x)$:	1	0	0	0	2
Q*(x,u):	$ \begin{array}{c c} S & S \\ 0 & 0 \end{array} $	$l \mid r$ $1 \mid 0.5$	<i>l r</i> 0.5 1	l r 0.5 2	$\begin{bmatrix} S & S \\ O & O \end{bmatrix}$
$\pi(x)$:	•	•			←