

C.V

FINAL PROJECT BONE FRACTURE DETECTION

FINAL PRESENTATION

DATE: Jul-23-2021

MADE BY: TOMMY NGUYEN + NHAT NGUYEN

CONTENTS

01 Introduction
Giới thiệu Bone Fracture

02

Experiment Review

Thực nghiệm nghiên cứu

Demo

Demo Két Quả

Q & A

Trao đổi với Thầy Cô

BONE FRACTURE - GÃY XƯƠNG

REVIEW OF PAPERS

3 Bài IMAGE ENHANCEMENT
DEEP LEARING: ANN, RESNET, RNN
METRIC: ACC, Confusion Matrix, ROC

- Huấn luyện với label datasets
- Sử Dụng Mạng Neuron kết hợp
- Phân vùng ảnh (ROI)

Bài Báo:

- •Jones, R. M., Sharma, A., Hotchkiss, R., Sperling, J. W., Hamburger, J., Ledig, C., ... & Lindsey, R. V. (2020). Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ digital medicine, 3(1), 1-6.
- •Zhang, X., Wang, Y., Cheng, C. T., Lu, L., Xiao, J., Liao, C. H., & Miao, S. (2020). A New Window Loss Function for Bone Fracture Detection and Localization in X-ray Images with Point-based Annotation. *arXiv* preprint arXiv:2012.04066.
- •Yang, A. Y., Cheng, L., Shimaponda-Nawa, M., & Zhu, H. Y. (2019, December). Long-bone fracture detection using Artificial Neural Networks based on line features of X-ray images. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 2595-2602). IEEE.

Cách Tiếp Cận

OBJECT DETECTION

Định vị vật thể bằng R-CNN (2014), Faster RNN (2016), SSD (2016), YOLO v2 (2016).

(x2, y2)

DATASET LABELING

Tạo dữ liệu dán nhãn MakeSense.Al, Labellmg, VGG, image annotator, LabelMe, Scalable, RectLabel。

TRAIN với Custom Models

Sử dụng Tranfer Learning .

Evaluation Metrics

ACC, F1 Score, Confusion Matrix.

RWTHAACHEN UNIVERSITY

DATASET

•

MURA(Stanford University), ImageCLEFmed (Aachen University of Technology)

LABELLING

Classification **Object Detection**

DATA PREPARATION Chuẩn Bị Dữ Liệu

Flip: Horizontal, Vertical

Rotation: Between -15° and +15°

Brightness: Between -30% and +30%

+ KERAS:

ImageDataGenerator

Normalised Data

- + Colour
- + Size
- + Extension

CLASSIFICATION

EXPERIMENT REVIEW

METRIC

YoloV4 Darknet Avg Loss: 2.22, 1.71 Class Loss: 0.45 IOU Loss = 0.188

Total Loss = 0.64

CODE WITH PYTHON.

MODEL ON TENSORFLOW 2.0.

DEPLOY ON WEBSITE APP.

FRONTEND: HTML5, CSS.

BACKEND: JS, NodeJs, React.

THANKS!

CẢM ƠN THẦY CÔ VÀ CÁC BẠN!

