

Seed dispersal connectivity among palm swamp patches in Costa Rica and Nicaragua

Gabriel Muñoz

Theoretical and Computational Ecology Group IBED

Assessors:

Dr. Renkse Onstein

Dr. A.C. (Harry) Seijmonsbergen

Examiner:

Dr Emiel van Loon

fgabriel1891@gmail.com

August 2017

Introduction

Flows of energy

Flows of (genetic) information

Flows of individuals

Other flows...

Conservation (Long term)

Physical landscape

Anthropogenic Global Impacts

Biodiversity loss

Climate change

Deforestation

Introduction

Seed Dispersal

- Key Ecological Flow
- Gene flow among populations
- Evolution of mutualistic interactions (e.g. Frugivory in the tropics)

Connectivity = Movement

- Structural Connectivity
- Functional Connectivity
- Effective Connectivity

Introduction

Wetlands (palm swamps) dominated by *Raphia taedigera* in Central America

- 22% and 16.24% of wetland area in NI and CR.
- Globally important for carbon sequestration
- Raphia taedigera
 - only *Raphia* in America
 - Non-floating seeds
 - Megafaunal fruit traits
- Connectivity poorly understood

How does connectivity among Raphia taedigera patches varies in function of Tapirus bairdii maximum dispersal distances?

H1) Overall connectivity increases with increasing maximum dispersal distances.

H2) Individual contribution of patches to connectivity is distributed equally

Are there functional corridors among all patches of Raphia taedigera?

H3) Functional corridors facilitating the movement of *Tapirus bairdii* are present among all *Raphia taedigera* patches

METHODS

Structural connectivity

- Spatial explicit network of patches
 - Based on Serrano-Sandi maps
 - Probability of Connectivity (PC)
 - Patch removal effect (dPC)

Tapir Movements + Gut Passage Time
= Distance thresholds = Tapir choices
of movement

METHODS

Functional connectivity

Landscape resistance layer

Variable	Class	Resistance
Population Density	0-10	3
	10-50	70
	50-120	100
Slope	0-15	0
	15-30	70
	30-90	100
Road Network	1st & 2nd order roads	100
	3rd order roads	70
Distance to water	Water bodies	0
	$HAND^{1}$ (< 30m)	10
	HAND (> 30m)	40
Forest TreeCover(%)	0-15	80
	15-40	70
	40-60	30
	60-80	10
	80-100	50
	0	100

METHODS

Functional connectivity

Functional Corridors

Circuit theory

• Electric current flow among focal nodes

Randomized shortests paths

- Tapir records to random *Raphia* patches
- Based on camera trap observations
- Constrained to a tradeoff between exploration and shortest path

Available area for dispersal increases with max.dispersal distances (H1)

Changes in long distance dispersal tapir distances (dispersal + migration) greater effects in global connectivity

Maximum Dispersal Distance threshold Log(m)

Individual patch removal effects on connectivity are much higher for specific few patches (H2)

Maximum Dispersal Distance thresholds Log(m)

Spatial pattern in the distribution of patches important for connectivity

Functional Connectivity

Landscape corridors among all patches (H3) + +

- Atlantic corridor
- InterOceanic corridors
- Pacific corridors

DISCUSSION

Baseline connectivity scenarios

- Patch network of late 1980s
- Forest coverage 2000

Measure changes in connectivity

- Localized pressures, global effects
 - Patch removal
 - Deforestation landscape matrix
 - <u>MAP</u>

Limitations:

Euclidean distances

Resistance values and aggregation (Step Selection Models)

PERSPECTIVES

- Monitoring ecological flows and connectivity
 - Large scale composites
 - Sentinel 1 + ASTER (Radar in wetlands)
 - Effective connectivity

- Important areas for conservation
 - Additional species
 - Other variables: e.g. Cultural variables

G C Dargie et al. Nature 1-5 (2017)

QUESTIONS?

AKNOWLEDGEMENTS

- Supervisors: Renske Onstein, A.C. Harry Seijmonsbergen.
- Examiner: Emiel van Loon
- Daniel Kissling
- Suzette Flantua
- Jose Serrano-Sandi, Mahmood Sasa, Ronald Myers.
- Charlotte Laurin
- All my friends and family
- SENESCYT

Bigger patches (in Area) are not *necessarily* more important for connectivity

Maximum Dispersal Distance thresholds Log(m)

Workflow

dPC fractions

Maximum dispersal distances

Validation Resistance Layer

