Python Chilla Pandas Assignment

Title= "Mr"\ Name= "Ali Nawaz"\ email = "nawazktk99@gmail.com"\ whatsapp = "03358043653"\ Artificial Intelligence Engineer at NUST\ Education : Master in Software Engineering

```
In [ ]:
           import pandas as pd
           import numpy as np
           import os
           import matplotlib.pyplot as plt
           import seaborn as sns
In [ ]:
          pholl = sns.load dataset("titanic")
          pholl.head()
                                                                                           adult_male
Out[ ]:
             survived pclass
                                                            fare embarked
                                                                             class
                                                                                      who
                                                                                                       deck
                                 sex
                                      age sibsp
                                                  parch
                   0
                                                          7.2500
          0
                           3
                                male
                                      22.0
                                                                             Third
                                                                                      man
                                                                                                  True
                                                                                                        NaN
          1
                           1
                              female
                                      38.0
                                                         71.2833
                                                                              First woman
                                                                                                  False
                                                                                                           C
          2
                              female
                                      26.0
                                                          7.9250
                                                                             Third
                                                                                   woman
                                                                                                  False
                                                                                                        NaN
          3
                                      35.0
                                                         53.1000
                   1
                              female
                                                                              First
                                                                                   woman
                                                                                                  False
                                                                                                           C
                   0
                           3
                                male
                                     35.0
                                               0
                                                          8.0500
                                                                          S
                                                                            Third
                                                                                      man
                                                                                                  True
                                                                                                        NaN
In [ ]:
          sns.lineplot(x='sepal_length', y = "sepal_width", data=pholl)
          plt.title("Flower Plot")
          plt.show()
                                      Flower Plot
            4.0
            3.8
            3.6
            3.4
          sepal width
            3.2
            3.0
            2.8
            2.6
            2.4
                                                      7.0
                                                             7.5
                    4.5
                           5.0
                                  5.5
                                        6.0
                                               6.5
                                                                    8.0
                                      sepal length
In [ ]:
           sns.lineplot(x='sepal_length', y = "sepal_width", data=pholl)
           plt.title("Flower Plot")
```

plt.xlim(2)

```
plt.ylim(1)
plt.show()
```



```
In []: # fig size
    pholl = sns.load_dataset("iris")
    plt.figure(figsize=(8,6))
    sns.set_style(style= "darkgrid")
    sns.lineplot(x='sepal_length', y = "sepal_width", data=pholl)
    plt.title("Flower Plot")
    plt.show()
```



```
In [ ]:
```

```
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
pholl = sns.load_dataset("iris")
pholl.head()
```

```
sepal_width petal_length petal_width
                                                               species
0
              5.1
                            3.5
                                            1.4
                                                          0.2
                                                                 setosa
1
              4.9
                            3.0
                                            1.4
                                                          0.2
                                                                 setosa
2
              4.7
                            3.2
                                            1.3
                                                          0.2
                                                                 setosa
3
              4.6
                            3.1
                                            1.5
                                                          0.2
                                                                 setosa
              5.0
                            3.6
                                            1.4
                                                          0.2
                                                                 setosa
```

```
pholl = sns.load_dataset("iris")
sns.barplot(x='species', y = "petal_length", data=pholl)
plt.title("Flower Plot")
plt.show()
```



```
In [ ]:
    pholl = sns.load_dataset("iris")
    sns.barplot(x='species', y = "sepal_width", data=pholl)
    plt.title("Flower Plot")
    plt.show()
```



```
In [ ]:
    kashti = sns.load_dataset("titanic")
    kashti.head()
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	е
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	•
1	1	1	female	38.0	1	0	71.2833	C	First	woman	False	С	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Ç
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	٤
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	٤

```
sns.barplot(x='who', y = "age", hue='sex', data=kashti)
plt.title("Kashti Plot")
plt.show()
```



```
In [ ]: # color change with ordering
    kashti = sns.load_dataset("titanic")
    sns.barplot(x='sex', y = "alone", hue='who', data =kashti, order=["female", "male"], co
    plt.show()
```



```
In []: # color pallets with ordering
    # deep , muted , pastel , bright , dark , and colorblind

kashti = sns.load_dataset("titanic")

sns.barplot(x='sex', y = "alone", hue='who', data =kashti, order=["female", "male"], co
plt.show()
```



```
# by adding saturatin we can increase and dreacze contrast
sns.set_style(style='dark')
sns.barplot(x='class', y = "fare", hue='sex', data =kashti, color="red", estimator= np.
plt.show()
```



```
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
```



```
In [ ]:
         kashti = sns.load_dataset("titanic")
         print(kashti.head(5))
         sns.barplot(x='fare', y = "class", data=kashti, saturation=0.2)
         sns.set style('dark')
         plt.title("Flower Line Plot")
         plt.show()
            survived
                      pclass
                                                   parch
                                                              fare embarked
                                                                             class \
                                 sex
                                       age
                                            sibsp
                                male
                                      22.0
                                                           7.2500
                                                                          S Third
```

```
1
                      female
                                                 0
                                                    71.2833
                                                                        First
          1
                   1
                               38.0
                                         1
                                                                    C
2
                               26.0
                                                                    S
                                                                        Third
          1
                   3
                      female
                                         0
                                                 0
                                                     7.9250
3
          1
                               35.0
                                          1
                                                 0
                                                                    S
                                                                        First
                   1
                      female
                                                    53.1000
4
          0
                   3
                        male
                               35.0
                                          0
                                                     8.0500
                                                                       Third
     who
          adult male deck
                             embark_town alive
                                                alone
0
                 True
                       NaN
                             Southampton
                                                 False
     man
1
   woman
                False
                         C
                               Cherbourg
                                            yes
                                                 False
2
   woman
                False
                       NaN
                             Southampton
                                            yes
                                                  True
3
                False
                         C
                             Southampton
                                                 False
   woman
                                            yes
4
     man
                 True
                       NaN
                             Southampton
                                                  True
```


<matplotlib.axes. subplots.AxesSubplot at 0x2c5a2ba4860>


```
In [ ]: # errcolor='0.2' 0 balck and 1 is white
```

```
# edgecolor = '0.2' 0 to one sns.barplot(x='class', y = "fare", data=kashti, linewidth = 2.5, facecolor = (0,0,0,1),
```

<matplotlib.axes._subplots.AxesSubplot at 0x2c5a31987f0>

Box Plot

```
In [ ]: sns.boxplot(x='class', y = "fare", data=kashti)
```

<matplotlib.axes._subplots.AxesSubplot at 0x2c5a299efd0>


```
In [ ]: df = sns.load_dataset("tips")
    df.head()
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

```
In []:
    df = sns.load_dataset("tips")
    sns.boxplot(x='day', y = "tip", data=df, saturation=0.5)
    sns.set_style(style='whitegrid')
    plt.title("Flower Line Plot")
    plt.show()
```


	total_bill	tip	size
count	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672
std	8.902412	1.383638	0.951100
min	3.070000	1.000000	1.000000
25%	13.347500	2.000000	2.000000
50%	17.795000	2.900000	2.000000
75%	24.127500	3.562500	3.000000
max	50.810000	10.000000	6.000000

```
In [ ]: # single variable box plot only work with numerical and will not add any other stuff
sns.boxplot(x=df['total_bill'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x2c5a33343c8>


```
df = sns.load_dataset("tips")
    # dodge is used to chakker laga kr nikal jana
    # not give tip of thess tip
    sns.boxplot(x='tip', y = "day", data=df, hue='smoker', palette= 'Set2', dodge=True, sa
```

<matplotlib.axes._subplots.AxesSubplot at 0x2c5a48c4278>


```
df = sns.load_dataset("tips")
    # u can change the color to add any code of hexa color piker on google
#
sns.boxplot(x='tip', y = "day", data=df, saturation=1, color='#e8fc03')
#
```

<matplotlib.axes._subplots.AxesSubplot at 0x2c5a4b17518>

In []:

Start of Chilla Students Data with ploting

Name: Ali Nawaz

Education: MS in Software Engineering

Current Status: Artificial Intelligence Engienerg at NUST

From: KPK

```
In []: # Improting Libraries
   import pandas as pd
   import numpy as np
   import os
   import matplotlib.pyplot as plt
   import seaborn as sns
   from matplotlib.ticker import StrMethodFormatter
In []: # import dataset of the chilla
   df = pd.read_csv('Chilla_data.csv')
   df.head()
```

 ${\bf Gender} \quad {\bf Location} \quad {\bf Age} \quad {\bf Qualification_completed} \quad {\bf field_of_study} \quad {\bf Purpose_for_chilla}$

Blood

group

What are

you?

			_	- •	,	Purpose_for_cnilla	you?
0	Male	Pakistan	36- 40	Masters	Natural Sciences	to boost my skill set	Unemplyed
1	Male	Pakistan	26- 30	Bachelors	CS/IT	to boost my skill set	Studen
2	Male	Pakistan	31- 35	Masters	Enginnering	Switch my field of study	Employed
3	Female	Pakistan	31- 35	Masters	CS/IT	to boost my skill set	Employed
4	Female	Pakistan	26- 30	Masters	Enginnering	to boost my skill set	Studen
5 r	ows × 23	columns					
C F	df_new = orint("Le	df[['Loc ength of	ation', 'Age'	wise desnisty , 'What are yo ", len(df_new)	ou?']]	et provided by t	he studer
r C	lf_new = orint("Le df_new.he	df[['Loc ength of ead()	ration', 'Age' the Data is :	, 'What are yo	ou?']]	et provided by t	he studer
r C	lf_new = orint("Le df_new.he	df[['Loc ength of ead() the Data	ation', 'Age'	, 'What are yo	ou?']]	et provided by t	he studer
1	<pre>#f_new = print("Le #f_new.he ength of Location</pre>	df[['Loc ength of ead() the Data	the Data is :	, 'What are yo	ou?']]	et provided by t	he studer
Le	<pre>#f_new = print("Le #f_new.he ength of Location Pakistan</pre>	df[['Loc ength of ead() the Data	the Data is : a is : 375 What are you?	, 'What are yo	ou?']]	et provided by t	he studer
Le	<pre>#f_new = print("Le #f_new.he ength of Location Pakistan Pakistan</pre>	df[['Loc ength of ead() the Data Age 1	the Data is : a is : 375 What are you? Unemplyed	, 'What are yo	ou?']]	et provided by t	he studer
0 1	<pre>#f_new = print("Le #f_new.he ength of Location Pakistan Pakistan Pakistan</pre>	df[['Loc ength of ead() the Data Age 1 36-40	the Data is: a is: 375 What are you? Unemplyed Student	, 'What are yo	ou?']]	et provided by t	he studer
0 1 2	If_new = Drint("Le If_new.he If_new.he If_new.he Pakistan Pakistan Pakistan Pakistan	df[['Loc ength of ead() the Data Age 1 36-40 26-30 31-35	the Data is: a is: 375 What are you? Unemplyed Student Employed	, 'What are yo	ou?']]	et provided by t	he studen

Gender Location Age Qualification_completed field_of_study Purpose_for_chilla

What are Blood

In []: df.head(2)

	Gender	Location	Age	Qaulification	Subject	purpose	Employment	Blood_group	SIM_company
0	Male	Pakistan	36- 40	Masters	Natural Sciences	to boost my skill set	Unemplyed	B+	U-fone
1	Male	Pakistan	26- 30	Bachelors	CS/IT	to boost my skill set	Student	B+	U-fone

2 rows × 23 columns

Ceaning Data

```
# rename_col_name
df.rename(columns={'Qualification_completed': 'Qaulification', 'field_of_study': 'Subje
    'Purpose_for_chilla': 'purpose', 'What are you?': 'Employment', 'Blood group ':'Blood', 'W
    'Your favorite programming language?':'Programming_language', 'Marital Status?':'Marital
    'Where do you live?':'living_place', 'Research/Working experience (Float/Int) years':'ex
    'Your Weight in kg? (float)':'Weight', 'Height in cm? Freelancer- (Float)':'Height', 'How
    'Light kitni der band hti hy? int':'Loadsheeding'}, inplace = True)
In []: df.to_csv('cleaned_chilla_data.csv')
```

Different Plots to understand what data need for each plot and how it's works

```
# plot for finding the relation between two variable
dff = df[['Blood_group', 'Age', 'Location']]
dff.set_index('Blood_group', 'Location').plot()
plt.title("Blood GRoup Wise Frequncy of Students")
plt.show()
```



```
In [ ]: plt.plot(df.index, df['Location'], '*', ls='dotted', color='red')
    plt.tick_params(rotation=45)
    plt.show()
```



```
fig, ax = plt.subplots()
  plt.title('Blood Group Comparsion in Python Chilla Students')
  df['Blood_group'].value_counts().plot(ax=ax, kind='bar', xlabel='Blood Group', ylabel='
  plt.show()
```



```
In [ ]:  # scatter plot the dataframe
    df.plot.scatter(x="Location", y="Blood_group")

# displaying scatter plot
    plt.show()
```



```
In [ ]:
    # Histogram for a dataframe for some numeric value
    df.hist(column='Weight')
    plt.show()
```



```
# To Check how much peoples are married and unmarried
gender_column = 'Gender'
df.groupby(["Marital_status", gender_column]).size().unstack(level=1).plot(kind='bar')
```


ව ශි Marital_status

0

```
In []: # Plot the lines
    # Set the figure size
    dff = df[['Code_deuration', 'Age']]
    plt.rcParams["figure.figsize"] = [7.00, 3.50]
    plt.rcParams["figure.autolayout"] = True
    dff.plot()
    plt.title("Comparison of the Age wise Code DUration")
    plt.ylabel('Duration')
    plt.xlabel('Students')

plt.show()
```



```
In [ ]:
    # Bar plot to show that how many are married and how many or not in 5 year of experinve
Y = list(df.Code_deuration)
X = list(df.Marital_status)

# Plot the data using bar() method
plt.bar(X, Y, color='g')
plt.title("Students over 5 Years Experince")
plt.xlabel("Years")
plt.ylabel("Number of Students")

# Show the plot
plt.show()
```


In []:	df.head(2)
	df.nead(2)

	Gender	Location	Age	Qaulification	Subject	purpose	Employment	Blood_group	SIM_company
0	Male	Pakistan	36- 40	Masters	Natural Sciences	to boost my skill set	Unemplyed	B+	U-fone
1	Male	Pakistan	26- 30	Bachelors	CS/IT	to boost my skill set	Student	B+	U-fone

2 rows × 23 columns

<AxesSubplot:xlabel='Code_deuration', ylabel='Programming_language'>

<seaborn.axisgrid.FacetGrid at 0x22a835ee6a0>


```
In [ ]: titanic = sns.load_dataset("titanic")
    titanic.head()
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	е
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	(

```
adult_male
             survived
                       pclass
                                 sex
                                       age
                                           sibsp
                                                  parch
                                                             fare embarked
                                                                              class
                                                                                       who
                                                                                                         deck e
          1
                    1
                              female
                                       38.0
                                                          71.2833
                                                                               First woman
                                                                                                   False
                                                                                                            C
                           1
                                                       0
          2
                    1
                           3
                              female
                                      26.0
                                                0
                                                       0
                                                           7.9250
                                                                           S
                                                                              Third
                                                                                    woman
                                                                                                   False
                                                                                                          NaN
                                                                                                                (
          3
                    1
                           1
                              female
                                      35.0
                                                          53.1000
                                                                           S
                                                                               First woman
                                                                                                   False
                                                                                                            C
                                                                                                                (
                    0
                           3
                                male
                                      35.0
                                                           8.0500
                                                                              Third
                                                                                                    True
                                                                                                          NaN
                                                                                                                (
                                                                                       man
In [ ]:
           df.head(2)
                     Location Age Qaulification
             Gender
                                                   Subject purpose Employment Blood_group SIM_company
                                                             to boost
                                36-
                                                    Natural
                                          Masters
          0
               Male
                      Pakistan
                                                              my skill
                                                                        Unemplyed
                                                                                              B+
                                                                                                         U-fone
                                 40
                                                   Sciences
                                                                  set
                                                             to boost
                                 26-
               Male
                      Pakistan
                                         Bachelors
                                                      CS/IT
                                                              my skill
                                                                           Student
                                                                                              B+
                                                                                                         U-fone
                                 30
                                                                  set
         2 rows × 23 columns
In [ ]:
           df.head(2)
             Gender
                     Location
                               Age Qaulification
                                                    Subject
                                                            purpose
                                                                      Employment Blood_group SIM_company
                                                             to boost
                                36-
                                                    Natural
          0
                                                              my skill
                                                                        Unemplyed
                                                                                              B+
                                                                                                         U-fone
               Male
                      Pakistan
                                          Masters
                                 40
                                                   Sciences
                                                                  set
                                                             to boost
                                 26-
          1
                      Pakistan
                                                                                             B+
                                                                                                         U-fone
               Male
                                         Bachelors
                                                      CS/IT
                                                              my skill
                                                                           Student
                                 30
                                                                  set
         2 rows × 23 columns
In [ ]:
           diamonds = sns.load dataset("diamonds")
           diamonds.head(2)
                                   clarity depth
             carat
                         cut color
                                                   table price
                                                                               Z
                                                                   X
                                                                         У
          0
              0.23
                       Ideal
                                 Ε
                                       SI2
                                              61.5
                                                     55.0
                                                           326
                                                                 3.95
                                                                      3.98
                                                                            2.43
                                 Ε
          1
              0.21 Premium
                                       SI1
                                              59.8
                                                    61.0
                                                           326
                                                                 3.89
                                                                      3.84
                                                                           2.31
In [ ]:
          sns.set_theme(style="whitegrid")
           # diamonds = sns.load dataset("diamonds")
           clarity_ranking = ["I1", "SI2", "SI1", "VS2", "VS1", "VVS2", "VVS1", "IF"]
```

<AxesSubplot:xlabel='Blood_group', ylabel='Code_deuration'>


```
In []:
In []:

#package

import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')

x = ['A', 'B', 'C']
y = [1, 5, 3]

sns.barplot(x, y)
plt.show()
```

C:\Users\Ali\anaconda3\envs\python-chilla\lib\site-packages\seaborn_decorators.py:43: F utureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

FutureWarning


```
In [ ]: # Set Seaborn style
    sns.set_style('darkgrid')
    # Import Data
    titanic_dataset = sns.load_dataset("titanic")

# Construct plot
    sns.barplot(x = "sex", y = "survived", data = titanic_dataset)
    plt.show()
```



```
In [ ]:
          print(titanic_dataset.head())
            survived
                      pclass
                                                     parch
                                                               fare embarked
                                                                               class \
                                  sex
                                        age
                                             sibsp
                                                                               Third
        0
                   0
                           3
                                 male
                                       22.0
                                                  1
                                                         0
                                                             7.2500
                                                                            S
         1
                                                                            C
                                                                               First
                   1
                           1
                               female
                                       38.0
                                                  1
                                                         0
                                                            71.2833
         2
                   1
                           3
                               female
                                       26.0
                                                  0
                                                         0
                                                             7.9250
                                                                            S
                                                                               Third
                                                                            S
         3
                   1
                                       35.0
                                                         0
                                                                               First
                           1
                               female
                                                  1
                                                            53.1000
         4
                   0
                                                                            S Third
                           3
                                 male
                                       35.0
                                                             8.0500
                   adult_male deck
                                     embark_town alive
              who
                                                        alone
        0
              man
                         True
                               NaN
                                     Southampton
                                                     no
                                                         False
         1
           woman
                        False
                                 C
                                       Cherbourg
                                                   yes
                                                         False
         2
            woman
                        False
                               NaN
                                     Southampton
                                                    yes
                                                          True
        3
           woman
                        False
                                  C
                                     Southampton
                                                    yes
                                                         False
              man
                         True NaN
                                     Southampton
                                                     no
                                                          True
```

In []:

```
# horizontal_bar plot
sns.barplot(x = "survived", y = "class", data = titanic_dataset)
plt.show()
```



```
In [ ]: # color changeing
sns.barplot(x = "embark_town", y = "survived", palette = 'hls', data = titanic_dataset)
plt.show()
```



```
In [ ]: # Plot Grouped Bar Plot in Seaborn

sns.barplot(x = "class", y = "survived", hue = "embark_town", data = titanic_dataset)
plt.show()
```



```
# create plot
sns.countplot(x = 'class', hue = 'who', data = titanic_dataset, palette = 'magma')
plt.title('Survivors')
plt.show()
```



```
In [ ]:
    # for continous data we use scatter
    sns.set_theme(style='ticks', color_codes=True)
    g = sns.FacetGrid(titanic_dataset, row='sex', hue='alone')
    g = (g.map(plt.scatter, "age", "fare").add_legend)
    plt.show()
```

```
sex = male
   500
   400
   300
fare
   200
   100
      0
                 sex = female
   500
   400
   300
fare
   200
   100
                                   .
75
                 25
                          50
                      age
```

```
In [ ]:
    sns.set_theme(style="ticks", color_codes=True)
    tips = sns.load_dataset("tips")
    sns.catplot(x="day", y="total_bill", data=tips)
```

<seaborn.axisgrid.FacetGrid at 0x1da92e5e278>


```
In [ ]: sns.catplot(x="day", y="total_bill", jitter=False, data=tips)
```

<seaborn.axisgrid.FacetGrid at 0x1da92ed78d0>

