

DÉPLOYEZ UN MODÈLE DANS LE CLOUD

FORMATION DATA SCIENTIST - PROJET 8

OCTAVE POUILLOT

OCTOBRE 2023

- Mission & Dataset
- Environnement Big Data
- Preprocessing
- Démonstration
- Conclusion

MISSION

- Data Scientist dans la start-up de l'AgriTech "Fruits!", qui cherche à proposer des solutions innovantes pour la récolte des fruits.
- Se faire connaître par une application mobile permettant de prendre en photo un fruit et d'obtenir des informations sur ce fruit.

Objectifs:

- S'approprier les travaux réalisés par l'alternant
- Compléter la chaîne de traitement
- Mettre en œuvre une architecture Big Data

Images de fruits:

- 90483 images
- 67692 images train / 22688 images test
- 131 classes (variétés de fruits)

• Dossier "Test1" de 30 images, 3 fruits (banane, citron, pomme)

MACHINE VIRTUEL

ARCHITECTURE GLOBALE

IAM / S3 / EMR

TUNNEL SSH

- Virtual Box
- Linux Ubuntu
- Installation:
 - Pip
 - Spark
 - Jupyter
 - Aws cli

- Root user
 - All access
 - Gestion EMR
- UserP8
 - \$3 Full Access
 - AWS CLI
 - Génération de clés SSH
- OPouillotP8Evaluator
 - S3 Read Access

- Définition de la région sur Paris (eu-west-3)
- Création d'un bucket « p8octave-dataset »
- Copie des données « Test1 »

aws s3 mb s3://p8octave-dataset

aws sync . s3://p8octave-dataset /Test

- Région : Paris (eu-west-3)
- Applications
 - Spark
 - JupyterHub
 - Tensorflow
- Instances cóg.xlarge (\$)
- Résiliation auto : 1h

- Création d'un fichier Bootstrap :
 - Upgrade setuptools & pip
 - Installation des librairies nécessaires
 - + Tensorflow
- Clés SSH EC2

Status and time

Status

Creation time

October 09, 2023, 08:42

(UTC+02:00)

Elapsed time

6 minutes, 59 seconds

Connexion SSH

• -D 5555

Paramétrage de FoxyProxy

- Connexion à JupyterHub
- Upload du notebook
- Kernel PySpark

PREPROCESSING

ETAPES GÉNÉRALE

PREPROCESSING

PREPROCESSING

PREPROCESSING

```
In [*]: # Appliquer la conversion à la colonne 'features'
features_df = features_df.withColumn('features', array_to_vector(features_df['features']))

# Standardisation
scaler = StandardScaler(inputCol="features", outputCol="scaled_features")

# PCA
pca = PCA(k=2, inputCol="scaled_features", outputCol="pca_features")

# Création du pipeline
pipeline = Pipeline(stages=[scaler, pca])

# Application du pipeline sur le DataFrame
model = pipeline.fit(features_df)
result = model.transform(features_df)

# Sélection des colonnes
result = result.select("path", "label", "pca_features")

# Convertion des vecteurs en listes Python
features_df = result.withColumn("pca_features", vector_to_list("pca_features"))

Progress:
```


Conversion (features) array

vector

Définition StandardScaler

Définition PCA

Définition pipeline

Application du pipeline sur ((features))

Création d'un dataframe (path | label | pca_features)

Conversion (pca_features) vector

list

DÉMONSTRATION!

CONCLUSION

- Mise en place d'un environnement Big Data
- Lancement d'un notebook via JupyterHub
- PCA via PySpark
- → PoC valide

- Entrainement et évaluation du modèle
- Déploiement du modèle dans le cloud
- Scaling automatique via EMR

