World Scientists' Warning to Humanity: A Second Notice

William J. Ripple, Christopher Wolf, Mauro Galetti, Thomas M Newsome, Mohammed Alamgir, Eileen Crist, Mahmoud I. Mahmoud, William F. Laurance

And 13,524 signatories from 180 countries (A full list of signatories can be found in the Supplemental file S2)

Twenty-five years ago, the Union of Concerned Scientists and more than 1500 independent scientists, including the majority of living Nobel laureates in the sciences, penned the 1992 "World Scientists' Warning to Humanity" (see Supplemental File S1). These concerned professionals called on humankind to curtail environmental destruction and cautioned that "a great change in our stewardship of the Earth and the life on it is required, if vast human misery is to be avoided." In their manifesto, they showed that humans were on a collision course with the natural world. They expressed concern about current, impending, or potential damage on planet Earth involving ozone depletion, freshwater availability, marine fishery collapses, ocean dead zones, forest loss, biodiversity destruction, climate change, and continued human population growth. They proclaimed that fundamental changes were urgently needed to avoid the consequences our present course would bring.

The authors of the 1992 declaration feared that humanity was pushing Earth's ecosystems beyond their capacities to support the web of life. They described how we are fast approaching many of the limits of what the planet can tolerate without substantial and irreversible harm. The scientists pleaded that we stabilize the human population, describing how our large numbers—swelled by another 2 billion people since 1992, a 35 percent increase—exert stresses on Earth that can overwhelm other efforts to realize a sustainable future (Crist et al. 2017). They implored that we cut greenhouse gas (GHG) emissions and phase out fossil fuels, reduce deforestation, and reverse the trend of collapsing biodiversity.

On the 25th anniversary of their call, we look back at their warning and evaluate the human response by exploring available time-series data. Since 1992, with the exception of stabilizing the stratospheric ozone layer, humanity has failed to make sufficient progress in generally solving these foreseen environmental challenges, and alarmingly, most of them are getting far worse (figure 1, Supplemental File S1). Especially troubling is the current trajectory of potentially catastrophic climate change due to rising GHGs from burning fossil fuels (Hansen et al. 2013), deforestation (Keenan et al. 2015), and agricultural production—particularly from farming ruminants for meat consumption (Ripple et al. 2014). Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms could be annihilated or at least committed to extinction by the end of this century.

Humanity is now being given a second notice as illustrated by these alarming trends (figure 1). We are jeopardizing our future by not reining in our intense but geographically and demographically uneven material consumption and by not perceiving continued rapid population growth as a primary driver behind many ecological and even societal threats (Crist et al. 2017). By failing to adequately limit population growth, reassess the role of an economy rooted in growth, reduce greenhouse gases, incentivize renewable energy, protect habitat, restore ecosystems, curb pollution, halt defaunation, and constrain invasive alien species, humanity is not taking the urgent steps needed to safeguard our imperilled biosphere.

As most political leaders respond to pressure, scientists, media influencers, and lay citizens must insist that their governments take immediate action, as a moral imperative to current and future generations of human and other life. With a groundswell of organized grassroots efforts, dogged opposition can be overcome and political leaders compelled to do the right thing. It is also time to re-examine and change our individual behaviours, including limiting our own reproduction (ideally to replacement level at most) and drastically diminishing our percapita consumption of fossil fuels, meat, and other resources.

The rapid global decline in ozone-depleting substances shows that we can make positive change when we act decisively. We have also made advancements in reducing extreme poverty and hunger (www.worldbank.org). Other notable progress (which does not yet show up in the global data sets in figure 1) include: the rapid decline in fertility rates in many regions attributable to investments in girls' and women's education (www.un.org/esa/population), the promising decline in the rate of deforestation in some regions, and the rapid growth in the renewable-energy sector. We have learned much since 1992, but the advancement of urgently needed changes in environmental policy, human behavior, and global inequities is still far from sufficient.

Sustainability transitions come about in diverse ways and all require civil-society pressure and evidence-based advocacy, political leadership, and a solid understanding of policy instruments, markets, and other drivers. Examples of diverse and effective steps humanity can take to transition to sustainability include (not in order of importance or urgency):

- prioritizing the enactment of connected well-funded and well-managed reserves for a significant proportion of the world's terrestrial, marine, freshwater, and aerial habitats;
- maintaining nature's ecosystem services by halting the conversion of forests, grasslands, and other native habitats;
- restoring native plant communities at large scales, particularly forest landscapes;
- rewilding regions with native species, especially apex predators, to restore ecological processes and dynamics;
- developing and adopting adequate policy instruments to remedy defaunation, the poaching crisis, and the exploitation and trade of threatened species;
- reducing food waste through education and better infrastructure;
- promoting dietary shifts towards mostly plant-based foods;
- further reducing fertility rates by ensuring that women and men have access to education and voluntary family-planning services, especially where such resources are still lacking;
- increasing outdoor nature education for children as well as the overall engagement of society in the appreciation of nature;
- divesting of monetary investments and purchases to encourage positive environmental change;
- devising and promoting new green technologies and massively adopting renewable energy sources, while phasing out subsidies to energy production through fossil fuels;
- revising our economy to reduce wealth inequality and ensure that prices, taxation and incentive systems take into account the real costs which consumption patterns impose on our environment; and
- estimating a scientifically defensible, sustainable human population size for the long term while rallying nations and leaders to support that vital goal.

To prevent widespread misery and catastrophic biodiversity loss, humanity must practice a more environmentally sustainable alternative to business as usual. This prescription was well articulated by the world's leading scientists 25 years ago, but in most respects, we have not heeded their warning. Soon it will be too late to shift course away from our failing trajectory, and time is running out. We must recognize, in our day-to-day lives and in our governing institutions, that Earth with all its life is our only home.

Epilogue

We have been overwhelmed with the support for our article and thank the more than 15,000 signatories from all ends of the Earth. As far as we know, this is the most people to ever co-sign and formally support a published journal article. In the paper, we have captured the environmental trends over the last 25 years, showed realistic concern, and suggested a few examples of possible remedies. Now, as an Alliance of World Scientists (scientists.forestry.oregonstate.edu) and with the public at large, it is important to continue this work to document challenges as well as improved situations, and to develop clear, trackable, and practical solutions, while communicating trends and needs to world leaders. Working together, while respecting the diversity of people and opinions, and need for social justice around the world, we can make great progress for the sake of humanity and the planet on which we depend.

A Spanish, Portuguese, and French version of this article can be found in Supplemental File S1.

Acknowledgments

Peter Frumhoff and Doug Boucher of the Union of Concerned Scientists, as well as the following individuals, provided thoughtful discussions, comments, or data for this paper: Stuart Pimm, David Johns, David Pengelley, Guillaume Chapron, Steve Montzka, Robert Diaz, Drik Zeller, Gary Gibson, Leslie Green, Nick Houtman, Peter Stoel, Karen Josephson, Robin Comforto, Terralyn Vandetta, Luke Painter, Rodolfo Dirzo, Guy Peer, Peter Haswell, and Robert Johnson.

References cited

- Crist E, Mora C, Engelman R. 2017. The interaction of human population, food production, and biodiversity protection. Science 356: 260–264.
- Hansen J, et al. 2013. Assessing "dangerous climate change": Required reduction of carbon emissions to protect young people, future generations and nature. PLOS ONE 8: e81648.
- Keenan, RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. 2015. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352: 9–20.
- Ripple WJ, Smith P, Haberl H, Montzka SA, McAlpine C, Boucher DH. 2014. Ruminants, climate change and climate policy. Nature Climate Change 4: 2–5. doi:10.1038/nclimate2081

William J. Ripple (bill.ripple@oregonstate.edu), Christopher Wolf, and Thomas M. Newsome are affiliated with the Global Trophic Cascades Program, in the Department of Forest Ecosystems and Society, at Oregon State University, in Corvallis. TMN is also affiliated with the Centre for Integrative Ecology, in the School of Life and Environmental Sciences, at Deakin University, in Geelong, Australia. Mauro Galetti is affiliated with the Instituto de Biociências, Universidade Estadual Paulista, Departamento de Ecologia, in São Paulo, Brazil. Mohammed Alamgir is affiliated with the Institute of Forestry and Environmental Sciences, at the University of Chittagong, in Bangladesh. Eileen Crist is affiliated with the Department of Science and Technology in Society, at Virginia Tech, in Blacksburg. Mahmoud I. Mahmoud is affiliated with the ICT/Geographic Information Systems Unit of the National Oil Spill Detection and Response Agency (NOSDRA), in Abuja, Nigeria. William F. Laurance is affiliated with the Centre for Tropical Environmental and Sustainability Science and the College of Science and Engineering, at James Cook University, in Cairns, Queensland, Australia.

Figure 1. Trends over time for environmental issues identified in the 1992 scientists' warning to humanity. The years before and after the 1992 scientists' warning are shown as gray and black lines, respectively. Figure 1a shows emissions of halogen source gases, which deplete stratospheric ozone, assuming a constant natural emission rate of 0.11 Mt CFC-11-equivalent per year. In panel (c), marine catch has been going down since the mid-1990s, but, at the same time, fishing effort has been going up (Supplemental File S1). The vertebrate abundance index in (f) has been adjusted for taxonomic and geographic bias but incorporates relatively little data from developing countries, where there are the fewest studies; between 1970 and 2012, vertebrates declined by 58 percent, with freshwater, marine, and terrestrial populations declining by 81, 36, and 35 percent respectively (Supplemental File S1). Five-year means are shown in (h). In (i), ruminant livestock consist of domestic cattle, sheep, goats, and buffaloes. Note that y-axes do not start at zero, and it is important to inspect the data range when interpreting each graph. Percentage change, since 1992, for the variables in each panel include (a) -68.1%, (b) -26.1%, (c) -6.4%, (d) +75.3%, (e) -2.8%, (f) -28.9%, (g) +62.1%, (h) +167.6%, (i) humans: +35.5%; ruminant livestock +20.5%. Additional descriptions of the variables and trends, as well as sources for figure 1, are included in Supplemental File S1.

Supplemental File S1

For the article "World Scientists' Warning to Humanity: A Second Notice" published in BioScience in 2017 by William J. Ripple, Christopher Wolf, Mauro Galetti, Thomas M Newsome, Mohammed Alamgir, Eileen Crist, Mahmoud I. Mahmoud, William F. Laurance

and 15,364 signatories from 184 countries (see supplemental File S2)

Contents: P	age
Descriptions of variables and trends in figure 1	2
References for figure 1	. 3
Full text of the 1992 World Scientists' Warning to Humanity	4-6
Spanish version of the main article	7-11
Portuguese version of the main article	2-16
French version of the main article	7-21

Descriptions of variables and trends in Figure 1.

Ozone depletion, Figure 1a. During the 1970s, human-produced chemicals known as ozone-depleting substances, mainly chlorofluorocarbons, were rapidly depleting the ozone layer. In 1987, governments of the world came together and crafted the United Nations Montreal Protocol as a global attempt to address this issue. With protocol compliance, emissions of halogen source gases (ozone-depleting substances and natural sources) peaked in the late 1980s and since then they have significantly decreased (Figure 1a). Global ozone depletion is no longer increasing, and significant recovery of the ozone layer is expected to occur by the middle of this century (Hegglin et al. 2014).

Declining Freshwater availability, Figure 1b. Per capita freshwater availability is less than half of levels of the early 1960s (Figure 1b, AQUASTAT 2017) with many people around the world suffering from a lack of fresh clean water. This decrease in available water is nearly all due to the accelerated pace of human population growth. It is likely that climate change will have an overwhelming impact on the freshwater availability through alteration of the hydrologic cycle and water availability. Future water shortages will be detrimental to humans, affecting everything from drinking water, human health, sanitation, and the production of crops for food.

<u>Unsustainable marine fisheries</u>, <u>Figure 1c</u>. In 1992, the total marine catch was at or above the maximum sustainable yield and fisheries were on the verge of collapse. Reconstructed time series data show that global marine fisheries catches peaked at 130 million tonnes in 1996 and has been declining ever since (Figure 1c). The declines happened despite increased industrial fishing efforts and despite developed countries expanding to fishing the waters of developing countries (Pauly and Zeller 2016, updated).

Ocean dead zones, Figure 1d. Coastal dead zones which are mainly caused by fertilizer runoff and fossil-fuel use, are killing large swaths of marine life. Dead zones with hypoxic, oxygen-depleted waters, are a significant stressor on marine systems and identified locations have dramatically increased since the 1960s, with more than 600 systems affected by 2010 (Figure 1d, Diaz and Rosenberg 2008, updated).

<u>Forest loss, Figure 1e</u>. The world's forests are crucial for conserving carbon, biodiversity, and freshwater. Between 1990 and 2015, total forest area decreased from 4,128 to 3,999 million ha, a net loss of 129 million ha which is approximately the size of South Africa (Figure 1e). Forest loss has been greatest in developing tropical countries where forests are now commonly converted to agriculture uses (FAO 2015).

Dwindling biodiversity, Figure 1f. The world's biodiversity is vanishing at an alarming rate and populations of vertebrate species are rapidly collapsing (World Wildlife Fund 2016). Collectively, global fish, amphibians, reptiles, birds, and mammals declined by 58% between 1970 and 2012 (Figure 1f). Here, we display a diversity-weighted Living Planet Index that has been adjusted for taxonomic and geographic bias by accounting for the estimated number of species within biogeographical regions, and the relative species diversity within them. (McRae et al. 2017). Freshwater, marine, and terrestrial populations declined by 81%, 36%, and 35% respectively (McRae et al. 2017).

Climate change, Figure 1g, Figure 1h. Global fossil-fuel carbon dioxide emissions have increased sharply since 1960 (Figure 1g, Boden et al. 2017). Relative to the 1951-1980 average, global average annual surface temperature, in parallel to CO₂ emissions, has also rapidly risen as shown by 5-year mean temperature anomaly (Figure 1h, NASA's Goddard Institute for Space Studies (GISS) 2017). The 10 warmest years in the 136-year record have occurred since 1998. The most recent year of data, 2016, ranks as the warmest on record. Temperature increases will likely cause a decline in the world's major food crops, an increase in the intensity of major storms, and a substantial sea level rise inundating major population centers.

Population growth, Figure 1i. Since 1992, the human population has increased by approximately 2 billion individuals, a 35% change (Figure 1i, FAOSTAT 2017). The world human population is unlikely to stop growing this century and there is a high likelihood that the world population will grow from 7.2 billon people now to between 9.6 and 12.3 billon by 2100 (Gerland et al. 2014). Like the change in human population, the domestic ruminant population, which has its own set of major environmental and climate impacts, has been increasing in recent decades to approximately 4 billion individuals on Earth (Figure 1i, FAOSTAT 2017).

Note that the loss of soil productivity was listed as a concern in the 1992 scientists' warning, but this variable was not analyzed here due to a lack of global data on changes in soil productivity. For each variable listed below, we calculated percentage change since 1992 using the values for 1992 and the most recent year available. When data were unavailable for 1992, we used linear interpolation to estimate the value there. These change results are in the caption for Figure 1. See original data sources shown above for any statements on levels of uncertainty associated with the varibles in Figure 1. Some sources describe this uncertainty and others do not.

References for figure 1

Figure 1a, Hegglin, M. I., D. W. Fahey, M. McFarland, S. A. Montzka, and E. R. Nash. 2015. Twenty questions and answers about the ozone layer: 2014 Update: Scientific assessment of ozone depletion: 2014. World Meteorological Organization, Geneva, Switzerland.

Figure 1b, AQUASTAT. 2017. AQUASTAT - FAO's Information System on Water and Agriculture. http://www.fao.org/nr/aquastat/.

Figure 1c, Pauly, D., and D. Zeller. 2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Updated. Nature Communications 7:10244.

Figure 1d, Diaz, R. J., and R. Rosenberg. 2008. Spreading Dead Zones and Consequences for Marine Ecosystems. Updated. Science 321:926–929.

Figure 1e, Food and Agriculture Organization of the United Nations. 2015. Global forest resources assessment 2015. http://www.fao.org/forest-resources-assessment/en/.

Figure 1f, World Wildlife Fund. 2016. Living planet report 2016: risk and resilience in a new era. McRae, L., Deinet, S. and Freeman, R., 2017. The Diversity-Weighted Living Planet Index: Controlling for Taxonomic Bias in a Global Biodiversity Indicator. PloS one, 12(1), p.e0169156.

Figure 1g, Boden, T. A., G. Marland, and R. J. Andres. 2017. Global, regional, and national fossil-fuel CO2 emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. US Department of Energy, Oak Ridge, Tenn., USA 2009. doi 10.3334/CDIAC 1.

Figure 1h, NASA's Goddard Institute for Space Studies (GISS). 2017. Global Temperature. https://climate.nasa.gov/.

Figure 1i, FAOSTAT. 2017. FAOSTAT Database on Agriculture. http://faostat.fao.org/.

World Scientists' Warning to Humanity (1992)

UNION OF CONCERNED SCIENTISTS World Scientists' Warning to Humanity

Union of Concerned Scientists

This 1992 document was signed by 1,575 of the world's most prominent scientists (including 99 of the 196 living Nobel laureates) and was sent to governmental leaders all over the world. The document asks people to take immediate action to stop the ever-increasing environmental degradation that threatens global life support systems on this planet. The appeal was coordinated by Dr. Henry Kendall, Nobel laureate (1990, Physics), and former Chairperson of the Union of Concerned Scientists.

"World Scientists' Warning to Humanity"

Introduction

Human beings and the natural world are on a collision course. Human activities inflict harsh and often irreversible damage on the environment and on critical resources. If not checked, many of our current practices put at serious risk the future that we wish for human society and the plant and animal kingdoms, and may so alter the living world that it will be unable to sustain life in the manner that we know. Fundamental changes are urgent if we are to avoid the collision our present course will bring about.

The Environment

The environment is suffering critical stress:

The Atmosphere

Stratospheric ozone depletion threatens us with enhanced ultra-violet radiation at the earth's surface, which can be damaging or lethal to many life forms. Air pollution near ground level, and acid precipitation, are already causing widespread injury to humans, forests, and crops.

Water Resources

Heedless exploitation of depletable ground water supplies endangers food production and other essential human systems. Heavy demands on the world's surface waters have resulted in serious shortages in some 80 countries, containing 40% of the world's population. Pollution of rivers, lakes, and ground water further limits the supply.

Oceans

Destructive pressure on the oceans is severe, particularly in the coastal regions which produce most of the world's food fish. The total marine catch is now at or above the estimated maximum sustainable yield. Some fisheries have already shown signs of collapse. Rivers carrying heavy burdens of eroded soil into the seas also carry industrial, municipal, agricultural, and livestock waste—some of it toxic.

Soil

Loss of soil productivity, which is causing extensive land abandonment, is a widespread byproduct of current practices in agriculture and animal husbandry. Since 1945, 11% of the earth's vegetated surface has been degraded—an area larger than India and China combined—and per capita food production in many parts of the world is decreasing.

Forests

Tropical rain forests, as well as tropical and temperate dry forests, are being destroyed rapidly. At present rates, some critical forest types will be gone in a few years, and most of the tropical rain forest will be gone before the end of the next century. With them will go large numbers of plant and animal species.

Living Species

The irreversible loss of species, which by 2100 may reach one third of all species now living, is especially serious. We are losing the potential they hold for providing medicinal and other benefits, and the contribution that genetic diversity of life forms gives to the robustness of the world's biological systems and to the astonishing beauty of the earth itself.

Much of this damage is irreversible on a scale of centuries or permanent. Other processes appear to pose additional threats. Increasing levels of gases in the atmosphere from human activities, including carbon dioxide released from fossil fuel burning and from deforestation, may alter climate on a global scale. Predictions of global warming are still uncertain—with projected effects ranging from tolerable to very severe—but potential risks are very great.

Our massive tampering with the world's interdependent web of life—coupled with the environmental damage inflicted by deforestation, species loss, and climate change—could trigger widespread adverse effects, including unpredictable collapses of critical biological systems whose interactions and dynamics we only imperfectly understand.

Uncertainty over the extent of these effects cannot excuse complacency or delay in facing the threats.

Population

The earth is finite. Its ability to absorb wastes and destructive effluent is finite. Its ability to provide food and energy is finite. Its ability to provide for growing numbers of people is finite. And we are fast approaching many of the earth's limits. Current economic practices which damage the environment, in both developed and underdeveloped nations, cannot be continued without the risk that vital global systems will be damaged beyond repair.

Pressures resulting from unrestrained population growth put demands on the natural world that can overwhelm any efforts to achieve a sustainable future. If we are to halt the destruction of our environment, we must accept limits to that growth. A World Bank estimate indicates that world population will not stabilize at less than 12.4 billion, while the United Nations concludes that the eventual total could reach 14 billion, a near tripling of today's 5.4 billion. But, even at this moment, one person in five lives in absolute poverty without enough to eat, and one in ten suffers serious malnutrition.

No more than one or a few decades remain before the chance to avert the threats we now confront will be lost and the prospects for humanity immeasurably diminished.

Warning

We the undersigned, senior members of the world's scientific community, hereby warn all humanity of what lies ahead. A great change in our stewardship of the earth and the life on it, is required, if vast human misery is to be avoided and our global home on this planet is not to be irretrievably mutilated.

What We Must Do

Five inextricably linked areas must be addressed simultaneously:

1. We must bring environmentally damaging activities under control to restore and protect the integrity of the earth's systems we depend on.

We must, for example, move away from fossil fuels to more benign, inexhaustible energy sources to cut greenhouse gas emissions and the pollution of our air and water. Priority must be given to the development of energy sources matched to third world needs—small scale and relatively easy to implement.

We must halt deforestation, injury to and loss of agricultural land, and the loss of terrestrial and marine plant and animal species.

2. We must manage resources crucial to human welfare more effectively.

We must give high priority to efficient use of energy, water, and other materials, including expansion of conservation and recycling.

- 3. We must stabilize population. This will be possible only if all nations recognize that it requires improved social and economic conditions, and the adoption of effective, voluntary family planning.
- 4. We must reduce and eventually eliminate poverty.
- 5. We must ensure sexual equality, and guarantee women control over their own reproductive decisions.

The developed nations are the largest polluters in the world today. They must greatly reduce their overconsumption, if we are to reduce pressures on resources and the global environment. The developed nations have the obligation to provide aid and support to developing nations, because only the developed nations have the financial resources and the technical skills for these tasks.

Acting on this recognition is not altruism, but enlightened self-interest: whether industrialized or not, we all have but one lifeboat. No nation can escape from injury when global biological systems are damaged. No nation can escape from conflicts over increasingly scarce resources. In addition, environmental and economic instabilities will cause mass migrations with incalculable consequences for developed and undeveloped nations alike.

Developing nations must realize that environmental damage is one of the gravest threats they face, and that attempts to blunt it will be overwhelmed if their populations go unchecked. The greatest peril is to become trapped in spirals of environmental decline, poverty, and unrest, leading to social, economic, and environmental collapse.

Success in this global endeavor will require a great reduction in violence and war. Resources now devoted to the preparation and conduct of war—amounting to over \$1 trillion annually—will be badly needed in the new tasks and should be diverted to the new challenges.

A new ethic is required—a new attitude toward discharging our responsibility for caring for ourselves and for the earth. We must recognize the earth's limited capacity to provide for us. We must recognize its fragility. We must no longer allow it to be ravaged. This ethic must motivate a great movement, convincing reluctant leaders and reluctant governments and reluctant peoples themselves to effect the needed changes.

The scientists issuing this warning hope that our message will reach and affect people everywhere. We need the help of many.

We require the help of the world community of scientists—natural, social, economic, political;

We require the help of the world's business and industrial leaders;

We require the help of the world's religious leaders; and

We require the help of the world's peoples.

We call on all to join us in this task.

Spanish versión translated by Emilio de las Heras

Advertencia de la Comunidad Científica Mundial a la Humanidad: Segundo Aviso

William J. Ripple, Christopher Wolf, Mauro Galetti, Thomas M Newsome, Mohammed Alamgir, Eileen Crist, Mahmoud I. Mahmoud, William F. Laurance

y 15,364 co-signatarios de 184 países (la lista completa de co-signatarios puede consultarse en los materiales suplementarios.)

Hace 25 años, la asociación norteamericana Union of Concerned Scientists y más de 1500 científicos independientes, incluyendo la mayoría de los Premios Nobel en Ciencias que vivían entonces, escribieron "La Advertencia de los Científicos del Mundo a la Humanidad", 1992 (ver material suplementario en la versión en Inglés). Estos profesionales preocupados, reclamaron a la humanidad que frenase la destrucción ambiental y avisaron de "sería necesario un gran cambio en nuestra forma de cuidar la Tierra y la vida sobre ella, si quería evitarse una enorme miseria humana...". En su manifiesto, mostraban que los seres humanos estaban en rumbo de colisión con el mundo natural. Expresaron preocupación acerca de daños actuales, inminentes y potenciales sobre el planeta Tierra por: La destrucción de la capa de ozono, la disponibilidad de agua dulce, el colapso de la pesca marina, el incremento de zonas muertas en los océanos, la pérdida de masa forestal, la destrucción de biodiversidad, el cambio climático y el crecimiento continuado de la población. Proclamaron que cambios fundamentales eran urgentes y necesarios para evitar las consecuencias que nuestro actual rumbo podrían acarrearnos.

Los autores de la declaración de 1992 temían que la humanidad estaba empujando a los ecosistemas de la Tierra más allá de su capacidad de soportar la red de la vida. Describieron cuán rápido nos estábamos aproximando a muchos de los límites de lo que el planeta puede tolerar sin daños serios e irreversibles. Los científicos alegaron que deberíamos estabilizar la población, describiendo como la enorme cifra - que ha crecido en 2000 millones desde 1992, un incremento del 35% - ejerce una presión sobre la Tierra que puede aplastar otros esfuerzos para conseguir un futuro sostenible (Crist et al. 2017). Imploraron que redujéramos las emisiones de gases efecto invernadero (en adelante, GEI) y eliminásemos los combustibles fósiles, redujéramos la deforestación y revirtiéramos la tendencia de extinción de la biodiversidad.

En el 25º aniversario de su llamada de atención, miramos hacia atrás a su alarma y evaluamos la respuesta humana, analizando la evolución en el tiempo de los indicadores disponibles. Desde 1992, con la excepción de que se ha estabilizado la capa de ozono, la humanidad ha fracasado en hacer suficientes progresos para resolver esos retos ambientales previstos y, de manera muy alarmante, en la mayoría de ellos, estamos mucho peor que entonces (figura 1, tabla suplementaria S1). Especialmente preocupante es la trayectoria actual del catastrófico cambio climático de origen humano debido a las crecientes emisiones de GEI procedentes de la quema de combustibles fósiles (Hansen et al. 2013), la deforestación (Keenan et al. 2015) y la producción agrícola - principalmente por la ganadería de rumiantes y el consumo de carne (Ripple

et al. 2014). Además, hemos desatado un evento de extinción masiva de especies, la sexta en unos 540 millones de años, mediante la cual muchos de las actuales formas de vida podrían ser aniquiladas o, como poco, comprometidas a la extinción hacia el final de este siglo.

Por la presente, damos un Segundo Aviso a la Humanidad, ilustrado por la alarmante tendencia de variables mostradas en la figura 1. Estamos poniendo en peligro nuestro futuro por nuestro desproporcionado consumo material y por no darnos cuenta de que el alocado crecimiento de la población mundial es el principal impulsor detrás de la mayoría de amenazas ecológicas e, incluso, societales (Crist et al. 2017). Con su fracaso en limitar adecuadamente el crecimiento de la población, en reevaluar el papel de una economía enraizada en el crecimiento permanente, en reducir la emisión de GEI, en incentivar la energía renovable, en proteger el hábitat, en restaurar los ecosistemas, en parar la extinción de fauna, en frenar las especies invasivas, la humanidad no está tomando los pasos urgentes que necesitamos para salvaguardar nuestra muy amenazada biosfera.

Puesto que la mayoría de líderes políticos responde a la presión, los científicos, los medios de comunicación y los ciudadanos deben insistir en que sus gobiernos pasen a la acción inmediata, como un imperativo moral hacia las actuales y futuras generaciones, humanas y de otras formas de vida. Con una marejada de esfuerzos desde organizaciones surgidas desde el pueblo, la obstinada oposición puede ser superada y los líderes políticos se verán obligados a hacer lo correcto. Es también el momento de reexaminar y modificar nuestros comportamientos individuales, incluyendo nuestra propia reproducción (idealmente, al nivel de reemplazo, 2 hijos por mujer, como máximo) y reducir drásticamente nuestro nivel de consumo per-cápita de combustibles fósiles, carne y otros recursos.

La rápida reducción mundial de las sustancias que destruían la capa de ozono nos muestra que podemos hacer cambios positivos cuando actuamos de manera decidida. También hemos hecho avances importantes para reducir la pobreza extrema y el hambre (www.worldbank.org). Otros progresos notables (no incluidos en la figura 1) incluyen: rápida reducción de las tasas de fertilidad en muchas regiones mediante políticas educativas entre mujeres y jóvenes (www.un.org/esa/population), la prometedora reducción de la tasa de deforestación en algunas regiones y el rápido despliegue de energías renovables. Hemos aprendido mucho desde 1992, pero el progreso de los cambios necesarios y urgentes en políticas ambientales, comportamiento humano y reducción de las inequidades globales está, todavía, lejos de ser suficiente.

Las transiciones hacia la sostenibilidad se pueden producir de diferentes maneras, pero todas requieren presión de la sociedad civil y argumentaciones basadas en evidencias, liderazgo político, políticas adecuadas, mercados y otras consideraciones. Ejemplos de acciones diferentes y efectivas que la humanidad puede tomar para la transición a la sostenibilidad incluyen (sin presumir orden de importancia o urgencia):

- Priorizando a la promulgación de grandes reservas protegidas de una proporción significativa de los hábitats terrestres, marinos, de agua dulce y aéreos de todo el mundo;
- Mantenimiento de los servicios ecosistémicos de la naturaleza parando la conversión de selvas, bosques, pastizales y otros hábitats naturales;

- Restaurar comunidades con plantas autóctonas a gran escala, principalmente, bosques;
- Devolver a la naturaleza salvaje zonas con especies nativas, especialmente con depredadores ápice, para recuperar procesos y dinámicas ecológicos;
- Implementar políticas adecuadas para remediar la extinción de especies animales, la caza furtiva y la explotación y comercio de especies amenazadas;
- Reducir el desperdicio de alimentos mediante educación y mejores infraestructuras;
- Promover un cambio hacia dietas más vegetales y menos animales;
- Promover la reducción adicional de los índices de fertilidad procurando que mujeres y hombres tengan acceso a la educación reproductiva y a los servicios voluntarios de planificación familiar, especialmente, en lugares donde falten tales recursos;
- Aumentar la educación ambiental para niños y fomentar un mayor aprecio por la naturaleza por parte de la sociedad.
- Desinvertir en inversiones monetarias e invertir en iniciativas que promuevan cambio ambiental
- Idear y promover tecnologías no contaminantes y adoptar masivamente energías renovables y, simultéaneamente, eliminar subvenciones a la producción de energía con combustibles fósiles.
- Revisar nuestra economía para reducir desigualdades y asegurarse que precios, impuestos y sistemas de incentivos tengan en cuenta los costes reales que nuestro patrón de consumo imponen en nuestro medio ambiente; y
- Evaluar de manera científica el tamaño de población humana sostenible a largo plazo y pedir a las naciones y a sus líderes que apoyen ese objetivo vital.

Para prevenir pérdidas catastróficas de biodiversidad y un deterioro generalizado de las condiciones de vida humana, la humanidad debe poner en práctica una forma de vida más sostenible ambientalmente que la actual ("business as usual"). Esta receta ya fue bien articulada hace 25 años por los científicos del mundo, pero en la mayoría de los temas, no hemos escuchado su llamada de atención. Pronto será demasiado tarde para cambiar el rumbo de la actual trayectoria que nos lleva al fracaso y nos estamos quedando sin tiempo. Debemos reconocer, en nuestras vidas diarias y en nuestras instituciones de gobierno, que la Tierra con toda su vida es nuestro único hogar.

Reconocimientos

Peter Frumhoff y Doug Boucher, de la Union of Concerned Scientists, así como las siguientes personas, han planteado profundas discusiones, comentarios y datos para este documento: Stuart Pimm, David Johns, David Pengelley, Guillaume Chapron, Steve Montzka, Robert Diaz, Drik Zeller, Gary Gibson, Leslie Green, Nick Houtman, Peter Stoel, Karen Josephson, Robin Comforto, Terralyn Vandetta, Luke Painter, Rodolfo Dirzo, Guy Peer, Peter Haswell, and Robert Johnson.

Referencias citadas

- Crist E, Mora C, Engelman R. 2017. The interaction of human population, food production, and biodiversity protection (*La interacción de la población humana, la producción de alimentos y la protección de la biodiversidad*). Science 356: 260–264.
- Hansen J, et al. 2013. Assessing "dangerous climate change": Required reduction of carbon emissions to protect young people, future generations and nature. (Evaluación del "cambio climático peligroso": Necesitamos reducir las emisiones de carbono para proteger a los jóvenes, a las generaciones futuras y a la naturaleza). PLOS ONE 8: e81648.
- Keenan, RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. 2015. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015 (Dinámica del área forestal global: resultados de la Valoración 2015 de los Recursos Forestales Globales de la FAO). Forest Ecology and Management, 352: 9–20.
- Ripple WJ, Smith P, Haberl H, Montzka SA, McAlpine C, Boucher DH. 2014. Ruminants, climate change and climate policy (*Rumiantes, cambio climático y política climática*). Nature Climate Change 4: 2–5. doi:10.1038/nclimate2081

William J. Ripple (bill.ripple@oregonstate.edu), Christopher Wolf y Thomas M. Newsome pertenecen al Global Trophic Cascades Program, en el Departmento de Ecosistemas Forestales y Sociedad de la Oregon State University, en Corvallis. TMN pertenece también al Centre for Integrative Ecology, en la School of Life and Environmental Sciences, en Deakin University, en Geelong, Australia. Mauro Galetti pertenece al Instituto de Biociências, de la Universidade Estadual Paulista, Departamento de Ecologia, en São Paulo, Brazil. Mohammed Alamgir pertenece al Institute of Forestry and Environmental Sciences, en la University of Chittagong, en Bangladesh. Eileen Crist pertenece al Department of Science and Technology in Society, en Virginia Tech, en Blacksburg. Mahmoud I. Mahmoud pertenece al ICT/Geographic Information Systems Unit de la National Oil Spill Detection and Response Agency (NOSDRA), en Abuja, Nigeria. William F. Laurance pertenece al Centre for Tropical Environmental and Sustainability Science y al College of Science and Engineering, en la James Cook University, en Cairns, Queensland, Australia.

Figura 1. Tendencia a lo largo del tiempo de las variables ambientales identificadas en la Advertencia de 1992 de la Comunidad Científica a la Humanidad. Los años anteriores a la Advertencia de 1992 se muestran mediante una línea gris y los posteriores mediante una línea negra. (a) Muestra las emisiones globales de gases halógenos, que destruyen la capa de ozono de la estratosfera, suponiendo que los niveles naturales de emisión son constantes a razón de 0,11 millones de toneladas anuales (MTm/a) de CFC-11 equivalente. En (c) se muestra cómo las capturas globales de pesca marina han ido descendiendo desde mediados los 1990s mientras que, simultáneamente, los esfuerzos pesqueros han aumentado de manera constante (ver tabla suplementaria S1). El indicador de abundancia de vertebrados mostrado en (f), aunque ha sido ajustado por sesgos de tipo geográfico y taxonómico, incorpora relativamente pocos datos de los países en desarrollo, donde hay menos estudios; entre 1970 y 2012, el número de especies de vertebrados se redujo un 58%, con poblaciones que se redujeron en el 81% las especies de agua dulce, 36% las especies marinas y 35% las especies terrestres (ver tabla suplementaria S1). En (h) se muestran los cambios en la temperatura superficial, tomando medias de 5 años. En (i) se muestra la evolución de la población humana en miles de millones y de ganado rumiante, que incluye vacas, ovejas, cabras y búfalos. Noten que los ejes Y de las gráficas no empiezan en cero y que hay que analizar los rangos de datos para interpretar cada gráfica. Los cambios en porcentaje, desde 1992, para las variables de cada panel, incluyen (a) -68.1%, (b) -26.1%, (c) -6.4%, (d) +75.3%, (e) -2.8%, (f) -28.9%, (g) +62.1%, (h) +167.6%, (i) humanos: +35.5%; ganado rumiante: +20.5%. Descripciones adicionales de las variables y tendencias, así como las fuentes de datos de esta Figura 1, se incluyen en la Tabla suplementaria S1.

Portuguese version translated by Luiz Marques

Advertência dos Cientistas do Mundo à Humanidade: um Segundo Aviso

William J. Ripple, Christopher Wolf, Mauro Galetti, Thomas M. Newsome, Mohammed Alamgir, Eileen Crist, Mahmoud I. Mahmoud, William F. Laurance

E mais de 15 mil signatários de 184 países (a lista completa dos signatários encontra-se no Arquivo Suplementar 2)

Há vinte e cinco anos, a *Union of Concerned Scientists* e mais de 1500 cientistas independentes, incluindo a maioria dos então laureados com o Prêmio Nobel nas ciências, assinaram a **Advertência dos Cientistas do Mundo à Humanidade** de 1992 (veja-se Arquivo Suplementar S1).

Esses profissionais alarmados apelavam à humanidade para que reduzisse a destruição ambiental e alertavam ser "necessária uma grande mudança em nossa gestão da Terra e da vida para se evitar uma vasta miséria humana". Em seu manifesto, mostravam que os humanos estavam em rota de colisão com o mundo natural. Expressavam preocupação com os danos presentes, iminentes ou potenciais infligidos ao planeta Terra, envolvendo depleção da camada de ozônio, disponibilidade de água doce, colapsos da pesca marinha, zonas mortas no oceano, perdas de floresta, destruição da biodiversidade, mudanças climáticas e crescimento contínuo da população humana. Proclamavam a urgente necessidade de mudanças fundamentais, de modo a evitar as consequências que nossa trajetória traria.

Os autores da declaração de 1992 temiam o fato da humanidade estar impelindo os ecossistemas da Terra além de sua capacidade de suportar a teia da vida. Descreviam como estávamos rapidamente nos aproximando de muitos dos limites do que o planeta pode tolerar sem danos substanciais e irreversíveis. **Os cientistas exortavam-nos** a estabilizar a população humana, descrevendo como nossos grandes números – inchados em mais 2 bilhões de pessoas desde 1992, um aumento de 35% – exercem sobre a Terra estresses que podem anular outros esforços para realizar um futuro sustentável (Crist *et al.*, 2017). Imploravam que reduzíssemos as emissões de gases de efeito estufa (GEE), eliminássemos os combustíveis fósseis, reduzíssemos o desmatamento e revertêssemos a tendência ao colapso da biodiversidade.

No 25º aniversário dessa Advertência, voltamos os olhos para trás e avaliamos a resposta humana, explorando os dados disponíveis em séries históricas. Desde 1992, com exceção da estabilização da camada de ozônio estratosférico, a humanidade fracassou em fazer progressos suficientes na resolução geral desses desafios ambientais anunciados, sendo que a maioria deles está piorando de forma alarmante (Figura 1, Arquivo Suplementar S1). Especialmente perturbadora é a trajetória atual das mudanças climáticas potencialmente catastróficas, devidas ao aumento dos gases de efeito estufa (GEE) emitidos pela queima de combustíveis fósseis (Hansen *et al.* 2013), desmatamento (Keenan *et al.*, 2015) e produção agropecuária – particularmente do gado ruminante para consumo de carne (Ripple *et al.* 2014). Além disso,

desencadeamos um evento de extinção em massa, o sexto em cerca de 540 milhões de anos, no âmbito do qual muitas formas de vida atuais podem ser aniquiladas ou, ao menos, condenadas à extinção até o final deste século.

A humanidade está agora recebendo **um segundo aviso**, conforme ilustrado por essas tendências alarmantes (figura 1). Estamos ameaçando nosso futuro ao não refrear nosso intenso consumo material, embora geográfica e demograficamente desigual, e ao não perceber o rápido e contínuo crescimento da população como motor primário de muitas ameaças ecológicas e mesmo sociais (Crist *et al.*, 2017). Ao fracassar em limitar adequadamente o crescimento populacional, em reavaliar o papel de uma economia enraizada no crescimento, em reduzir os gases de efeito estufa, em incentivar as energias renováveis, em proteger os habitats, em restaurar os ecossistemas, em eliminar a defaunação, e em restringir as espécies exóticas invasoras, a humanidade não está tomando as medidas urgentemente necessárias à salvaguarda da nossa biosfera em perigo.

Dado que a maioria dos líderes políticos é sensível à pressão, os cientistas, os formadores de opinião nas mídias e os cidadãos em geral devem insistir para que seus governos tomem medidas imediatas, como um imperativo moral em relação às gerações atuais e futuras da vida humana e de outras espécies. Com uma vaga de esforços organizados e popularmente embasados, é possível vencer oposições obstinadas e obrigar os líderes políticos a fazer o que é certo. Também é hora de reexaminar e mudar nossos comportamentos individuais, incluindo a limitação de nossa própria reprodução (idealmente, o nível de reposição no máximo) e diminuir drasticamente nosso consumo *per capita* de combustíveis fósseis, de carne e de outros recursos.

O rápido declínio global das substâncias que destroem o ozônio mostra que **podemos fazer mudanças positivas quando agimos resolutamente**. Também fizemos avanços na redução da pobreza extrema e da fome (www.worldbank.org). Outros progressos notáveis (que ainda não se apresentam nos conjuntos de dados globais na figura 1) incluem: o rápido declínio nas taxas de fecundidade em muitas regiões, atribuível aos investimentos na educação de meninas e mulheres (www.un.org/esa/population), o declínio promissor da taxa de desmatamento em algumas regiões e o rápido crescimento do setor de energia renovável. Aprendemos muito desde 1992, mas o avanço das mudanças urgentemente requeridas nas políticas ambientais, no comportamento humano e nas desigualdades globais ainda está longe de ser suficiente.

Transições em direção à sustentabilidade ocorrem de diversas maneiras e todas requerem pressão da sociedade civil e argumentação baseada em evidências, liderança política e uma sólida compreensão de instrumentos políticos, dos mercados e de outros fatores. Eis alguns exemplos de passos diversos e efetivos que a humanidade pode dar para **uma transição em direção à sustentabilidade** (não por ordem de importância ou urgência):

• priorizar a criação de reservas conectadas, bem financiadas e bem gerenciadas de modo a preservar uma proporção significativa dos habitats terrestres, marinhos, de água doce e aéreos do mundo;

- cessar a destruição das florestas, prados e outros habitats nativos, de modo a manter os serviços ecossistêmicos da natureza;
- restaurar comunidades nativas de plantas em larga escala, particularmente paisagens florestais;
- renaturalizar regiões com espécies nativas, especialmente predadores do ápice da pirâmide alimentar, para restaurar processos e dinâmicas ecológicas;
- desenvolver e adotar instrumentos políticos adequados para reparar a defaunação, a crise de caça ilegal e a exploração e o tráfico de espécies ameaçadas;
- reduzir o desperdício de alimentos através da educação e de uma melhor infra-estrutura;
- promover transições na dieta na direção, sobretudo, de uma alimentação à base de plantas;
- reduzir ainda mais as taxas de fecundidade, garantindo que as mulheres e os homens tenham acesso à educação e a serviços de planejamento familiar voluntário, especialmente onde tais serviços ainda não estão disponíveis.
- aumentar a educação natural e ao ar livre para crianças, bem como o engajamento geral da sociedade na apreciação da natureza;
- reorientar investimentos e compras no sentido de incentivar mudanças ambientais positivas;
- detectar e promover novas tecnologias ecológicas, com adoção massiva de fontes de energia renováveis, eliminando os subsídios à produção de energia através de combustíveis fósseis;
- revisar nossa economia para reduzir a desigualdade econômica e garantir que os preços, a tributação e os sistemas de incentivo levem em conta os custos reais impostos ao nosso meio ambiente por nossos padrões de consumo e
- estimar um tamanho de população humana cientificamente defensável e sustentável a longo prazo, reunindo nações e líderes para apoiar esse objetivo vital.

Para evitar miséria generalizada e perda catastrófica de biodiversidade, a humanidade deve adotar práticas mais ambientalmente sustentáveis e alternativas em relação às práticas atuais. Esses preceitos foram bem formulados pela liderança científica mundial há 25 anos, mas, na maioria dos aspectos, não acatamos sua advertência. Logo será tarde demais para mudar o curso de nossa trajetória de fracasso e o tempo está se esgotando. Devemos reconhecer, em nossa vida cotidiana e em nossas instituições de governo, que a Terra, com toda a sua vida, é nosso único lar.

Versões em espanhol e em francês desse artigo podem ser encontradas no Arquivo Suplementar S1.

Agradecimentos

Peter Frumhoff e Doug Boucher, da Union of Concerned Scientists, assim como as seguintes pessoas, forneceram discussões produtivas, comentários ou dados para este artigo: Stuart Pimm, David Johns, David Pengelley, Guillaume Chapron, Steve Montzka, Robert Diaz, Drik Zeller, Gary Gibson, Leslie Green, Nick Houtman, Peter Stoel, Karen Josephson, Robin Comforto, Terralyn Vandetta, Luke Painter, Rodolfo Dirzo, Guy Peer, Peter Haswell e Robert Johnson.

Referências citadas

Crist E, Mora C, Engelman R. 2017. The interaction of human population, food production, and biodiversity protection. Science 356: 260–264.

Hansen J, et al. 2013. Assessing "dangerous climate change": Required reduction of carbon emissions to protect young people, future generations and nature. PLOS ONE 8: e81648.

Keenan, RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. 2015. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352: 9–20.

Ripple WJ, Smith P, Haberl H, Montzka SA, McAlpine C, Boucher DH. 2014. Ruminants, climate change and climate policy. Nature Climate Change 4: 2–5. doi:10.1038/nclimate2081

William J. Ripple (bill.ripple@oregonstate.edu), Christopher Wolf e Thomas M. Newsome são vinculados ao Global Trophic Cascades Program, no Department of Forest Ecosystems and Society, da Oregon State University, em Corvallis. TMN também é vinculado ao Centre for Integrative Ecology, na School of Life and Environmental Sciences, da Deakin University, em Geelong, Austrália. Mauro Galetti é vinculado ao Instituto de Biociências, da Universidade Estadual Paulista, Departamento de Ecologia, em São Paulo, Brasil. Mohammed Alamgiris é vinculado ao Institute of Forestry and Environmental Sciences, da University of Chittagong, em Bangladesh. Eileen Crist é vinculado ao Department of Science and Technology in Society, da Virginia Tech, em Blacksburg. Mahmoud I. Mahmoud é vinculado ao ICT/Geographic Information Systems Unit of the National Oil Spill Detection and Response Agency (NOSDRA), em Abuja, Nigéria. William F. Laurance é vinculado ao Centre for Tropical Environmental and Sustainability Science and the College of Science and Engineering, da James Cook University, em Cairns, Queensland, Austrália.

Figura 1. Tendências ambientais identificadas na advertência dos cientistas para a humanidade de 1992, identificadas ao longo do tempo. Os anos antes e depois desse alerta de 1992 são mostrados como linhas cinza e preta, respectivamente. A Figura 1a mostra as emissões de gases fonte de halogênios, que causam depleção do ozônio estratosférico, pressupondo-se uma taxa de emissão natural constante de 0,11 Mt CFC-11-equivalente por ano. No painel (c), as capturas marinhas têm caído desde meados da década de 1990, mas, ao mesmo tempo, o esforço de pesca vem subindo (Arquivo Suplementar S1). O índice de abundância de vertebrados em (f) foi ajustado por viés taxonômico e geográfico, mas incorpora relativamente poucos dados de países em desenvolvimento, onde há o menor número de estudos; entre 1970 e 2012, os vertebrados diminuíram 58%, com declínio das populações de água doce, marinha e terrestre de 81%, 36% e 35%, respectivamente (Arquivo Suplementar S1). Em (h) mostram-se médias de cinco anos. Em (i), o gado ruminante refere-se à criação de gado bovino, ovino, caprino e bufalino. Observe-se que os eixos y não começam em zero, e é importante atentar para o intervalo entre os dados ao interpretar cada gráfico. A variação percentual, desde 1992, para as variáveis em cada painel, inclui (a) -68,1%, (b) -26,1%, (c) -6,4%, (d) +75,3%, (e) -2,8%, (f) -28,9%, (g) +62,1%, (h) +167,6%, (i) humanos: +35,5%; gado ruminante +20,5%. Descrições adicionais das variáveis e tendências, bem como as fontes da figura 1, estão incluídas no Arquivo Suplementar S1.

French version translated by Luiz Margues

L'alerte des scientifiques du monde à l'humanité: un deuxième avis

William J. Ripple, Christopher Wolf, Mauro Galetti, Thomas M Newsome, Mohammed Alamgir, Eileen Crist, Mahmoud I. Mahmoud, William F. Laurance

Et plus de 15 mille signataires de 184 pays (La liste complète des signataires peut être trouvée dans le fichier supplémentaire S2)

Il y a vingt-cinq ans, l'Union of Concerned Scientists et plus de 1500 scientifiques indépendants, y compris la majorité des lauréats du prix Nobel dans les sciences, ont écrit l'Avertissement des scientifiques du monde à l'humanité, de 1992 (voir le Fichier Supplémentaire S1). Ces professionnels concernés ont appelé l'humanité à réduire la destruction de l'environnement et ont insisté qu'"un changement radical dans notre intendance de la Terre et de la vie sur elle s'avère nécessaire pour éviter la misère humaine à grande échelle». Dans leur manifeste, ils ont montré que les humains étaient sur un cours de collision avec le monde naturel. Ils se sont dits préoccupés par les dommages actuels, imminents ou potentiels sur la planète Terre impliquant l'appauvrissement de l'ozone, la disponibilité en eau douce, les effondrements de la pêche marine, les zones mortes de l'océan, la perte de forêt, la destruction de la biodiversité, le changement climatique et la croissance continue de la population humaine. Ils ont proclamé que des changements fondamentaux étaient nécessaires de toute urgence pour éviter les conséquences que notre cours actuel apporterait.

Les auteurs de la déclaration de 1992 craignaient que l'humanité poussât les écosystèmes terrestres audelà de leurs capacités à soutenir la toile de la vie. Ils ont décrit comment nous approchons rapidement plusieurs des limites de ce que la planète peut tolérer sans dommage substantiel et irréversible. Les scientifiques ont plaidé pour la stabilisation de la population humaine, en décrivant comment notre nombre important - gonflé par 2 milliards de personnes supplémentaires depuis 1992, une augmentation de 35% - exerce des tensions sur Terre qui peuvent annuler d'autres efforts pour réaliser un avenir durable (Crist *et al.*, 2017). Ils ont imploré de réduire les émissions de gaz à effet de serre (GES), d'éliminer les combustibles fossiles, de réduire la déforestation et d'inverser la tendance à l'effondrement de la biodiversité.

À l'occasion du 25ème anniversaire de leur appel, nous lançons un regard retrospectif sur cet avertissement afin d'en évaluer la réponse humaine, tout en explorant les données disponibles en séries chronologiques. Depuis 1992, à l'exception de la stabilisation de la couche d'ozone stratosphérique, **l'humanité n'a pas réussi à faire des progrès suffisants** dans la résolution générale de ces défis environnementaux prévus et, de façon alarmante, la plupart d'entre eux deviennent bien pires (figure 1, Fichier Supplémentaire S1). Particulièrement troublant est la trajectoire actuelle du changement climatique potentiellement catastrophique en raison de la hausse des GES poussée par la combustion des combustibles fossiles (Hansen *et al.*, 2013), la déforestation (Keenan *et al.*, 2015) et la production agricole - en particulier des ruminants pour la consommation de viande (Ripple *et al.* 2014). En outre, nous avons déchaîné un événement d'extinction de masse, le sixième en environ 540 millions d'années, où de nombreuses formes de vie actuelles pourraient être anéanties ou au moins condamnées à l'extinction d'ici la fin de ce siècle.

L'humanité reçoit maintenant un **deuxième avis**, comme le montrent ces tendances alarmantes (figure 1). Nous mettons en péril notre avenir en ne résistant pas à notre consommation matérielle intense, quoique géographiquement et démographiquement inégale, et en ne prenant pas conscience de la croissance rapide et continue de la population en tant que principal moteur de nombreuses menaces écologiques et même sociales (Crist *et al.*, 2017). Faute de limiter adéquatement la croissance de la population, réévaluer le rôle d'une économie enracinée dans la croissance, réduire les gaz à effet de serre, inciter les énergies renouvelables, protéger l'habitat, restaurer les écosystèmes, mettre fin à la défaunation et contraindre les espèces exotiques envahissantes, l'humanité ne prend pas les mesures urgentes nécessaires à sauvegarder notre biosphère en péril.

Étant donné que la plupart des dirigeants politiques répondent à la **pression**, les scientifiques, les influenceurs des médias et les citoyens en général doivent insister pour que leurs gouvernements prennent des mesures immédiates, comme un impératif moral pour les générations actuelles et futures de la vie humaine et des autres espèces. Avec une vague d'efforts populaires et organisés, l'opposition obstinée peut être vaincue et les dirigeants politiques forcés de faire le bon choix. Il est également temps de réexaminer et de modifier nos comportements individuels, y compris en limitant notre propre reproduction (idéalement au niveau de remplacement au plus) et en diminuant drastiquement notre consommation par habitant de combustibles fossiles, de viande et d'autres ressources.

Le déclin mondial rapide des substances appauvrissant la couche d'ozone montre que **nous pouvons faire des changements positifs lorsque nous agissons de manière décisive**. Nous avons également fait des progrès dans la réduction de la pauvreté extrême et de la faim (www.worldbank.org). D'autres progrès remarquables (qui ne se présentent pas encore dans les ensembles de données globales de la figure 1) comprennent: la baisse rapide des taux de fécondité dans de nombreuses régions, attribuable aux investissements dans l'éducation des filles et des femmes (www.un.org/esa/population), le déclin prometteur du taux de déforestation dans certaines régions et la croissance rapide du secteur des énergies renouvelables. Nous avons beaucoup appris depuis 1992, mais l'avancement des changements urgents de la politique environnementale, du comportement humain et des inégalités mondiales est encore loin d'être suffisant.

Les transitions vers le développement durable se déroulent de manières diverses et exigent toujours une pression de la société civile et un plaidoyer fondé sur des preuves, un leadership politique et une compréhension solide des instruments politiques, des marchés et d'autres facteurs. Des exemples d'étapes diverses et efficaces que l'humanité peut prendre pour passer au **développement durable** comprennent (pas dans l'ordre d'importance ou d'urgence):

- prioriser la mise en place de réserves connectées, bien financées et bien gérées, pour une proportion significative des habitats terrestres, marins, d'eau douce et aériens dans le monde;
- maintenir les services écosystémiques de la nature en arrêtant la destruction des forêts, des prairies et d'autres habitats naturels;
- restaurer les communautés de plantes à grande échelle, en particulier les paysages forestiers;

- rénaturaliser des régions avec des espèces natives, en particulier des prédateurs apex, pour rétablir les processus et la dynamique écologiques;
- élaborer et adopter des instruments politiques adéquats pour remédier à la défaunation, au braconnage et à l'exploitation et au trafic d'espèces menacées;
- réduire le gaspillage alimentaire grâce à l'éducation et à une meilleure infrastructure;
- promouvoir des changements alimentaires vers surtout des aliments à base de plantes;
- réduire davantage les taux de fécondité en veillant à ce que les femmes et les hommes aient accès à l'éducation et aux services volontaires de planification familiale, en particulier là où ces ressources manquent encore;
- renforcer l'éducation en plein air pour les enfants ainsi que l'engagement global de la société dans l'appréciation de la nature;
- réorienter les investissements financiers et diminuer la consommation pour encourager des changements environnementaux positifs;
- concevoir et promouvoir de nouvelles technologies vertes et adopter de manière massive des sources d'énergie renouvelables, tout en supprimant progressivement les subventions à la production d'énergie par des combustibles fossiles;
- réviser notre économie pour réduire les inégalités et veiller à ce que les prix, la fiscalité et les systèmes incitatifs tiennent compte des coûts réels que les modes de consommation imposent à notre environnement; et
- estimer une taille de population humaine scientifiquement défendable et durable à long terme tout en rassemblant les nations et les dirigeants pour soutenir cet objectif vital.

Pour éviter une misère généralisée et une perte de biodiversité catastrophique, l'humanité doit adotper des pratiques alternatives plus durables sur le plan environnemental que les modalités actuelles. Cette prescription a été bien formulée par les plus grands scientifiques du monde il y a 25 ans, mais, à bien des égards, nous n'avons pas tenu compte de leur avertissement. Bientôt, il sera trop tard pour dévier de notre trajectoire défaillante, et le temps s'épuise. Nous devons reconnaître, dans notre vie quotidienne et dans nos institutions gouvernementales, que la Terre avec toute sa vie est notre seul foyer.

Remerciements

Peter Frumhoff et Doug Boucher, de l'Union of Concerned Scientists, ainsi que les personnes suivantes ont enrichi cet article par des discussions productives, commentaires ou des données: Stuart Pimm, David Johns, David Pengelley, Guillaume Chapron, Steve Montzka, Robert Diaz, Drik Zeller, Gary Gibson, Leslie Green, Nick Houtman, Peter Stoel, Karen Josephson, Robin Comforto, Terralyn Vandetta, Luke Painter, Rodolfo Dirzo, Guy Peer, Peter Haswell e Robert Johnson.

Références citées

- Crist E, Mora C, Engelman R. 2017. The interaction of human population, food production, and biodiversity protection. Science 356: 260–264.
- Hansen J, et al. 2013. Assessing "dangerous climate change": Required reduction of carbon emissions to protect young people, future generations and nature. PLOS ONE 8: e81648.
- Keenan, RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. 2015. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352: 9–20.
- Ripple WJ, Smith P, Haberl H, Montzka SA, McAlpine C, Boucher DH. 2014. Ruminants, climate change and climate policy. Nature Climate Change 4: 2–5. doi:10.1038/nclimate2081

William J. Ripple (bill.ripple@oregonstate.edu), Christopher Wolf et Thomas M. Newsome sont attachés au Global Trophic Cascades Program, Department of Forest Ecosystems and Society, à l'Oregon State University, Corvallis. TMN aussi est attaché au Centre for Integrative Ecology, de la School of Life and Environmental Sciences, à la Deakin University, Geelong, Australie. Mauro Galetti est attaché à l'Instituto de Biociências, de l'Universidade Estadual Paulista, Departamento de Ecologia, São Paulo, Brésil. Mohammed Alamgiris est attaché à l'Institute of Forestry and Environmental Sciences, à l'University of Chittagong, Bangladesh. Eileen Crist est attaché au Department of Science and Technology in Society, de la Virginia Tech, Blacksburg. Mahmoud I. Mahmoud est attaché à l'ICT/Geographic Information Systems Unit of the National Oil Spill Detection and Response Agency (NOSDRA), en Abuja, Nigéria. William F. Laurance est attaché au Centre for Tropical Environmental and Sustainability Science and the College of Science and Engineering, à la James Cook University, Cairns, Queensland, Australie

Figure 1. Tendances au fil du temps pour les problèmes environnementaux identifiés dans l'Avertissement des scientifiques du monde à l'humanité, de 1992. Les années avant et après cet alerte des scientifiques de 1992 sont respectivement représentées par des lignes grises et noires. La Figure 1a montre les émissions de gaz source d'halogène, qui épuisent l'ozone stratosphérique, en supposant un taux d'émission naturel constant de 0,11 Mt CFC-11-équivalent par an. Dans le panneau c), les prises maritimes ont diminué depuis le milieu des années 1990, mais en même temps, des efforts de pêche ont augmenté (Fichier Supplémentaire S1). L'indice d'abondance des vertébrés dans (f) a été ajusté en fonction du biais taxonomique et géographique, mais incorpore relativement peu de données provenant des pays en développement, où le nombre d'études est le moins élevé; entre 1970 et 2012, les vertébrés ont diminué de 58%, les populations d'eau douce, marine et terrestre ont diminué respectivement de 81% 36% et 35% (Fichier Supplémentaire S1). En (h) sont indiquées les moyennes quinquenales. En (i), le bétail des ruminants comprend des bovins domestiques, des moutons, des chèvres et des buffles. Notez que les axes « y » ne commencent pas à zéro, et il est important d'inspecter la plage de données lors de l'interprétation de chaque graphique. Voici les variations en pourcentage, depuis 1992, pour les variables de chaque panneau: (a) -68,1%, (b) -26,1%, (c) -6,4%, (d) +75,3%, (e) -2,8%, (f) -28,9%, (g) +62,1%, (h) +167,6%, (i) humains: +35,5%; élevage de ruminants +20,5%. Des descriptions supplémentaires des variables et des tendances, ainsi que des sources pour la figure 1, sont incluses dans le Fichier Supplémentaire SA.