Algorithmic Game Theory

Martin Schmid

Department of Applied Mathematics Charles University in Prague

October 11, 2022

Overview

1. Week 1 - Normal Form Games

- 1.1 Definition
- 1.2 Strategies

2. Week 2 - Solution Concepts

- 2.1 Maximin
- 2.2 Nash
- 2.3 Non-Rational Player
- 2.4 Evaluating Strategies

3. Week 3 - Zero Sum, First Algorithms

- 3.1 Fictitious Play
- 3.2 LP prerequsites
- 3.3 Nash and LP
- 3.4 Correlated Equilibrium

4. Week 4 - Regret Minimization

4.1 External regret

E 1 Motivotion

- 4.2 Application to Games
- 5. Week 6 Counterfactual Regret Minimization

About the Course

Class

- Simultaneous and sequential decision making
- Solution concepts and optimal policies
- Practical algorithm for finding the optimal policies

Homeworks

• You will get to implement the games and algorithms!

Understand These!

(b) AlphaStar

(c) DeepStack

Game Theory - Reinforcement Learning

Reinforcement Learning

- Single agent settings
- Maximize reward
- Scalable practical algorithms

Game Theory

- Multi agent settings
- Analyzes agent interaction, incentives
- Optimal solution concepts
- Algorithms (historically) tabular and not scalable

Terminology

Reinforcement Learning

- 1. Environment
- 2. Agent
- 3. Policy
- 4. Reward

Game Theory

- 1. Game
- 2. Player
- 3. Strategy
- 4. Utility

Normal Form Games

The normal form games is a model in which each player chooses his strategy, and then all players play simultaneously. The outcome depends on the actions chosen by the players.

Definition: Normal Form Game

is a tuple $\langle N, (A_i), (u_i) \rangle$, where

- *N* is the **finite** set of players
- A_i is the nonempty set of actions available to the player i
- u_i is a **payoff/utility** function for the player i. Let $A = \times_{i \in N} A_i$. $u_i : A \to \mathbb{R}$

Normal Form Games

• If there are only two players (|N| = 2), we can conveniently described the game using a table

Confess (8, 8) (0, 10) Be quiet (10, 0) (2, 2)

Confess

Be quiet

- (c) Prisoner's dilemma
- Rows/columns correspond to actions of player one/two
- The cell (i,j) contains the players' payoffs $u_1(i,j)$ and $u_2(i,j)$

Constant Sum Games

- Constant-sum game is a game for which $u_1 + u_2 = c$
- Zero-sum game is a constant-sum game for c=0, so $u_1=-u_2$
- Critical implications!

Zero Sum Games

	Rock	Paper	Scissors
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissors	(-1, 1)	(1, -1)	(0, 0)

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

Normal Form Game Strategies

Definition: Pure Strategy

 $a_i \in A_i$ is player *i*'s pure strategy. This strategy is referred to as pure, because there's no probability involved. For example, the player can always play Scissors.

Definition: Mixed Strategy

is a probability measure over the player's pure strategies. The set of player i's mixed strategies is denoted as Π_i . Given $\pi_i \in \Pi_i$, we denote the probability that the player chooses the action $a_j \in A_i$ as $\pi^{\pi_i}(a_j)$ Mixed strategies allow a player to probabilistically choose actions.

Definition: Strategy profile

Is the set of all players' strategies (one for every player), denoted as $\pi = (\pi_0, \pi_1 \dots \pi_n)$. Finally, π_{-i} refers to all the strategies in π except π_i .

Normal Form Game Strategies II

- **Pure Strategy** $a_i \in A_i$ is player *i*'s pure strategy.
- **Mixed Strategy** is a probability measure over the player's pure strategies. The set of player i's mixed strategies is denoted as Π_i . Given $\pi_i \in \Pi_i$, we denote the probability that the player chooses the action $a_i \in A_i$ as $\pi_i(a_i)$
- Strategy profile Is a tuple of all players' strategies, denoted as $\pi = (\pi_0, \pi_1 \dots \pi_n)$. Finally, π_{-i} refers to all the strategies in π except for π_i .

Outcome

- Given a pure strategies of all players, we can easily compute the utilities. Player i's utility = $u_i(a)$
- How to compute the outcome if the players use mixed strategy (they randomize among the pure strategies)? We simply compute the expected value given the probability measure.
- Since the players choose the actions simultaneously, the events are independent and consequently $\pi^{\pi}((a_0, a_1, \ldots, a_n)) = \pi^{\pi_0}(a_0)\pi^{\pi_1}(a_1)\ldots\pi^{\pi_n}(a_n)$
- Using this fact, computing the expected value is easy

$$u_i(\pi) = \sum_{a \in A} \pi^{\pi}(a) u_i(a)$$

Best Response

- One of the key concepts, that you will see throughout the class
- Given the strategies π_{-i} of the opponents, the **best response** is the strategy that maximizes the utility for the player.

Definition: Best Response

Best response against a policy π_i is:

$$\underset{\pi_{-i} \in \Pi_{-i}}{\operatorname{arg max}} R_{-i}(\pi_i, \pi_{-i})$$

We use $\mathbb{BR}(\pi_i)$ to denote the set of best response policies against the policy π_i .

Best Response

Note that for zero-sum games, opponent maximizing their reward is equivalent to opponent minimizing our reward.

$$\arg\max_{\pi_{-i}} R_{-i}(\pi_i, \pi_{-i}) = \arg\min_{\pi_{-i}} R_i(\pi_i, \pi_{-i})$$

As this means the player's value against any best-response strategy is unique, we denote this unique value as $BRV_i(\pi_i)$.

$$BRV_i(\pi_i) = \min_{\pi_{-i}} R_i(\pi_i, \pi_{-i}) = -\max_{\pi_{-i}} R_{-i}(\pi_i, \pi_{-i})$$

Best Response

Lemma

For any best response strategy $\pi_i \in \mathbb{BR}_i(\pi_{-i})$, all the actions in the support have the same expected value.

Lemma

The best response set $\mathbb{BR}(\pi_{-i})$ is convex.

Dominated Strategies

- Some actions can be clearly poor choises, and it makes no sense for a rational player to take.
- Strategy π_i^a strictly dominates π_i^b iff for any π_{-i}

$$u_i(\pi_i^a, \pi_{-i}) > u_i(\pi_i^b, \pi_{-i})$$

• Strategy π_i^a weakly dominates π_i^b iff for any π_{-i}

$$u_i(\pi_i^a,\pi_{-i})\geq u_i(\pi_i^b,\pi_{-i})$$

- Strategy is strictly/weakly dominated if there's a strategy that strictly/weakly dominates it.
- Strategies π_i^a, π_i^b are **intransitive** iff one neither dominates nor is dominated by the other.

Examples

Can a weakly/strictly dominated strategy be a best response?

Iterated elimination of dominated strategies

- A rational player does not play dominated strategy
- Iterated elimination of dominated strategies

	Left	Center	Right
Тор	(13, 3)	(1, 4)	(7, 3)
Middle	(4, 1)	(3, 3)	(6, 2)
Up	(-1, 9)	(2, 8)	(8, -1)

Examples

Can a weakly/strictly dominated strategy that we found during the iterated elimination be a best response in the original game?

Week 1 Homework

- 1. Python and notebooks
- 2. Strategy pair evaluation for a matrix game
- 3. Best response calculation
- 4. Strategy evaluation against a best response
- 5. Iterated removal of dominated strategies
- 6. OpenSpiel