

Local Illumination Model

- A local illumination model considers only light travelling from a light source to a surface and then reflected off the surface to the eye.
 - Requires only the light source coordinates, local surface geometry and the material characteristics at a vertex.
 - Suitable for the hardware pipeline (OpenGL, Direct3D)
- Does not consider occlusions and transmittance of light.

Global Illumination

- The illumination at a given point is a combination of the light received from a source and the light reflected from other surfaces in the scene.
- Considers the effects of occlusions, surface reflections, light transmission through a medium (direct transmittance and refractions), and indirect illumination.

Global Illumination Methods

Radiosity:

COSC363

- A scene illumination can be considered as an equilibrium state for radiant energy transfers between surface elements.
- Gives good results for diffuse illumination, but specularity is not handled.
 - Useful for modelling area light sources, colour bleeding, soft shadows.

Cornell Box

Ray Tracing (Backward Ray Tracing)

- Traces ray outwards from the eye to objects and light sources. The opposite of reality.
- Use secondary rays to determine shadows and to model mirror reflection and refraction
- We can easily generate many global illumination effects
- But:
 - Doesn't handle diffuse inter-reflections
 - e.g. "colour bleed" from a bright red wall to an adjacent white wall
 - Computationally expensive

"Tracing" a ray

- Compare the ray will all scene objects and compute the closest point of intersection Q, and obtain the intersecting object's index.
- Compute the colour value at the point of intersection Q.
- Generate a shadow ray to determine if the point
 Q is in shadow (2)
- If the surface is reflective, recursively trace the reflected ray at Q(3)
- If the surface is refractive, recursively trace the refracted ray at Q (4)
- Add the colour contributions from (2), (3) and
 (4), and return the colour value.

(3)

(2)

(1)

COSC363

Ray Casting

- Ray tracing without secondary rays.
- Trace a ray from the view point (called the primary ray) through each "pixel" on the image plane
 - Test each surface to determine if it is intersected by the ray.
 - Compute the points of intersection on each primary ray.
 - Get the point of intersection Q that is closest to the eye.
 - Use the colour of the object on which Q lies as pixel colour.

Ray Casting + Phong Lighting

 At the point of intersection Q, compute the colour value using an illumination model.

Simplified Phong Illumination:

Assumptions:

Light's ambient color A = (0.2, 0.2, 0.2)

Light's diffuse and specular color = (1,1,1)

M = Material Color (ambient and diffuse)

Material's specular color = (1, 1, 1)

Col = AM + M (
$$I \bullet n$$
) + (1, 1, 1) ($r \bullet v$)^f

Ambient Diffuse Specular

Shadow Ray

- Trace a ray from the point of intersection Q towards the light source L (2)
- If the shadow ray hits an object, and if the point of intersection *R* is between the light source and the object *A* (i.e., *RQ* < *LQ*), then the point *Q* is in shadow.

$$I_A = AM$$

Else

$$I_A = AM + M (I \cdot n) + (1, 1, 1) (r \cdot v)^f$$

Reflections

- If the surface is reflective, then a secondary ray along the direction of reflection is traced.
- If this secondary ray meets a surface at a point with intensity I_B , then $\rho_r I_B$ is added to the pixel color
 - ρ_r is a scale factor (< 1), called the coefficent of reflection
 - ρ_r represents how much of colour I_B is reflected on the surface A.
- The colour of the pixel is now

$$I = I_A + \rho_r I_B$$

Refractions

- If the surface is transparent, a secondary ray along the direction of refraction is traced.
- If this secondary ray meets a surface at a point with intensity I_C , then $\rho_t I_C$ is added to the pixel color.
 - ρ_t is a scale factor (<1), called the coeff. of transmission
- The colour of the pixel is now

$$I = I_A + \rho_t I_c$$

(Compare with a similar equation on Slide 12)

Binary Ray-tracing Tree EYE $I_A + \rho_r (I_B + \rho_r I_D) + \rho_t (I_C + \rho_r I_E)$ \boldsymbol{A} B $I_B + \rho_r I_D$ $I_C + \rho_r I_E$ DLeft branches represent reflections Right branches represent transmission paths

COSC363

What is a "ray"?

A ray is specified using

source

COSC363

- A point (the source of the ray): $p_0 = (x_0, y_0, z_0)$
- A vector (the direction of the ray): d = (l, m, n)
- The vector must be converted to a <u>unit</u> vector.

Any point on the ray can be represented using a single parameter t. The value of t denotes the distance from the source to that point.

Ray's Equation

 $p = p_0 + t d$ $p = p_0 + t d$ t > 0 $p_0 = (x_0, y_0, z_0)$ direction

```
glm::vec3 p0(x0, y0, z0);
glm::vec3 dir(l, m, n);
Ray ray = Ray(p0, dir);
ray.normalize();
```

Ray Tracing Setup

w = Width of screen in world units (eg. 5 units).

h = Height of screen in world units (eg. 5 units).

EDIST = Eye dist in world units (eg. 10 units)

 $XMIN = -w/2; \quad XMAX = w/2;$

 $YMIN = -h/2; \quad YMAX = h/2;$

NUMDIV = Number of subdivisions along x, y directions.

cellX = cell width = (XMAX-XMIN)/NUMDIV cellY = cell height = (YMAX-YMIN)/NUMDIV cell indices: i, j = 0, ..., NUMDIV-1.

Primary Ray Cell (i, j)(XMIN+(i+0.5)*CellX, (YMIN+(i+0.5)*CellY, -EDIST)

Ray position: (0, 0, 0)

COSC363

- Ray direction d: ((XMIN+(i+0.5)*CellX, (YMIN+(i+0.5)*CellY, —EDIST)
- Normalize the above direction.

Secondary Rays

Shadow ray: A ray that originates at a point of intersection with an object, and directed towards a light source.

Position = q (point of intersection)

Direction = L-q normalized.

<u>Reflection ray</u>: A ray from the intersection point towards the direction of reflection of the incident ray (Used only for reflective surfaces)

Position = q

Direction:

 $r = -2(d \cdot n)n + d$ normalized.

(We will use a GLM function to compute *r*)

GLM Functions for Ray Tracing

r = glm::reflect(d, n);

d: Unit incident vector

n: Unit normal vector

The reflection vector also is a unit vector.

Refraction:

g = glm::refract(d, n, eta);

d: Unit incident vector

n: Unit normal vector

The refraction vector also is a unit vector.

eta = Ratio of refractive indices = η_1/η_2

Reflections

Computation of specular reflections:

```
r = glm::reflect(-I, n);
```

I: Unit light source vector

Specular term = $(\mathbf{r}.\mathbf{v})^f$.

 \boldsymbol{v} : View vector = $-\boldsymbol{d}$

Surface reflections:

```
r = \text{glm}::\text{reflect}(d, n);
```



```
if(ray.xindex == 0 && step < MAX_STEPS)
{
   glm::vec3 refl = glm::reflect(ray.dir, normalVector);
   Ray reflectedRay(ray.xpt, refl);
   glm::vec3 reflCol = trace(reflectedRay, step+1);
   colorSum = colorSum + (0.8f*reflCol);
}</pre>
```

Index of Refraction

- Light travels at speed c/η in a medium with index of refraction η .
- Common values of index of refraction:
 - Air 1.
 - Water 1.33
 - Glass 1.5
 - Diamond 2.4
- Snell's Law of Refraction:
 - $\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$

Refracted Ray

$$\begin{vmatrix} \mathbf{u} \sin \theta_i - \mathbf{n} \cos \theta_i = \mathbf{d} \\ \mathbf{u} \sin \theta_t - \mathbf{n} \cos \theta_t = \mathbf{g} \end{vmatrix}$$

$$\mathbf{g} = \left(\frac{\eta_1}{\eta_2}\right) \mathbf{d} - \left(\frac{\eta_1}{\eta_2}(\mathbf{d.n}) + \cos\theta_t\right) \mathbf{n}$$

$$\cos \theta_t = \sqrt{\left(1 - \left(\frac{\eta_1}{\eta_2}\right)^2 \left(1 - (\boldsymbol{d.n})^2\right)\right)}$$


```
n = sceneObjects[ray.xindex]->normal(ray.xpt);
```

g = glm::refract(d, n, eta);

Ray refrRay1(ray.xpt, g)

refrRay1.closestPt(sceneObjects);

m = sceneObjects[refrRay1.xindex]->normal(refrRay1.xpt);

h = glm::refract(g, -m, 1.0f/eta);

Sphere Refraction

eta = 1/1.5

COSC363

COSC363

Sphere Refractions

eta = 1/1.01

eta = 1/1.003

COSC363

Shadows

Bad

Good

Better

Ray-plane intersection

 Given a point a on a plane, and the normal vector n of the plane, the plane's equation can be written as

$$(p-a) \bullet n = 0$$

A ray is given by the equation

$$p = p_0 + t d.$$

At the point of intersection, both equations are true.

Therefore,
$$(p_0 + t d - a) \cdot n = 0$$

From the above equation, we get

$$t = \frac{(a - p_0) \bullet n}{d \bullet n}$$

Ray-sphere intersection

• Equation of a sphere centred at C with radius r is $(p-C) \bullet (p-C) = r^2$

• Consider a ray given by the equation
$$p = p_0 + t d$$
.

At the point of intersection, both equations are true.

Therefore,
$$(p_0 + t d - C) \cdot (p_0 + t d - C) = r^2$$

 $(s + t d) \cdot (s + t d) = r^2$, where $s = p_0 - C$
 $(d \cdot d) t^2 + 2 (s \cdot d) t + (s \cdot s) - r^2 = 0$.
Since d is a unit vector, we get

$$t = -(s \bullet d) \pm \sqrt{(s \bullet d)^2 - (s \bullet s) + r^2}$$

Ray intersection with polygonal objects

- Use the plane equation of each triangle to get the point of intersection with the ray.
- Check if the point of intersection lies within the triangle.

Intersection:

$$t = \frac{(A - p_0) \cdot n}{d \cdot n}$$

$$q = p_0 + t d$$

Point inclusion test:

If the cross products $(u_A \times v_A)$, $(u_B \times v_B)$, $(u_C \times v_C)$ have the same sign, then the point q is inside the triangle.

Ray intersection with polygonal objects

- Complex polygonal objects will require a large amount of ray-triangle intersection tests.
- Bounding volume hierarchies and spatial subdivision methods (kd-Trees, Octrees) are used to reduce the number of ray-primitive intersection tests.

COSC363

Texture Mapping

- 2D texturing:
 - Similar to OpenGL texturing, but does not use texture coordinates or texture memory.
 - Map the coordinates of the point of intersection (x, y, z) to image coordinates, and assign the colour of the pixel to that point.

- Procedural texturing:
 - Define functions to map (x, y, z) coordinates to (r, g, b) colour values. r = r(x, y, z); g = g(x, y, z); b = b(x, y, z);

Texture Mapping

```
#include "Ray.h"
#include "TextureBMP.h"
#include <GL/glut.h>
using namespace std;
TextureBMP texture;
void initialize()
  texture = TextureBMP("myPicture.bmp");
glm::vec3 trace(Ray ray, int step)
  col = texture.getColorAt(s, t);
```

Lab₀₈

TextureBMP.h
TextureBMP.cpp

Note:

 $0 \le s \le 1$

 $0 \le t \le 1$

Texturing a Plane


```
if(ray.xindex == 3)
{
   texcoords = (ray.xpt.x - a1)/(a2-a1);
   texcoordt = (ray.xpt.y - b1)/(b2-b1);
   col = texture.getColorAt(texcoords, texcoordt);
}
```

Anti-Aliasing

The ray tracing algorithm samples the light field using a finite set of rays generated through a discretized image space. This results in distortion artefacts such as jaggedness along edges of polygons and shadows.

 Supersampling: Generate several rays through each square pixel (eg. divide the pixel into four equal segments) and compute the average of the colour values.

"Pixel"

Anti-Aliasing

 Adaptive Sampling: As shown on the previous slide, each pixel is divided into four "sub-pixels". Primary rays are generated through the centres of each sub-pixel. If the colour value along any ray varies significantly from the other three, that sub-pixel is split further into four subpixels, and more rays are generated through them.

Cylinder

 A cylinder at the origin with axis along the yaxis, radius R and height h is given by

$$x^2 + z^2 = R^2$$
$$0 \le y \le h$$

Normal vector at (x, y, z)
 (un-normalized) n = (x, 0, z)
 Normalized n = (x/R, 0, z/R)

Ray – Cylinder Intersection

• A cylinder at (x_c, y_c, z_c) , with axis parallel to the y-axis, radius R and height h is given by

$$(x - x_c)^2 + (z - z_c)^2 = R^2$$

 $0 \le (y - y_c) \le h$

Normal vector at (x, y, z)

(un-normalized)
$$\mathbf{n} = (x - x_c, 0, z - z_c)$$

(normalized) $\mathbf{n} = ((x - x_c)/R, 0, (z - z_c)/R)$

Ray equation:

$$x = x_0 + d_x t;$$
 $y = y_0 + d_y t;$ $z = z_0 + d_z t;$

Intersection equation:

$$t^{2}(d_{x}^{2} + d_{z}^{2}) + 2t\{d_{x}(x_{0} - x_{c}) + d_{z}(z_{0} - z_{c})\} + \{(x_{0} - x_{c})^{2} + (z_{0} - z_{c})^{2} - R^{2}\} = 0.$$

h

Cone

- Consider a cone with centre of base at (x_c, y_c, z_c) , axis parallel to the *y*-axis, radius *R*, and height *h*:
- Important equations:

$$\tan(\theta) = R/h$$
 $(\theta = \text{half cone angle})$
For any point (x, y, z) on the cone,
 $(x - x_c)^2 + (z - z_c)^2 = r^2$
where,
 $r = \left(\frac{R}{h}\right)(h - y + y_c)$

Surface normal vector (normalized):

$$\mathbf{n} = (\sin \alpha \cos \theta, \sin \theta, \cos \alpha \cos \theta)$$

where $\alpha = \tan^{-1} \left(\frac{x - x_c}{z - z_c} \right)$

Ray-Cone Intersection

Equation of a cone with base at (x_c, y_c, z_c) , axis parallel to the *y*-axis, radius *R*, and height *h*:

$$(x-x_c)^2 + (z-z_c)^2 = \left(\frac{R}{h}\right)^2 (h-y+y_c)^2$$

Ray equation:

$$x = x_0 + d_x t;$$
 $y = y_0 + d_y t;$ $z = z_0 + d_z t;$

 The points of intersection are obtained by substituting the ray equation in the cone's equation and solving for t.

