1. Identify the primary states associated with the cash register and list the cycles numbers associated with			
them.	primary states	cycles numbers	
A. LoadX	3'd 1	5.8 د	
B. AddX	3,97	3. 6.9	
C. MoreX	3'd3	4.7.10	
D. LoadT	3'd4	H.	
E. DisplayTotal	3'd5	13.13	

2. Take a look at the simulation and notice that the registers are loaded after their respective load signals go low. Why is this? Hint: Consider the synchronous (clock driven) operation of the A register.

since inputs must be synchronized with the system clock before being applied to a synchronous system and the registers are made of Dflip flops. So the outputs of registers can only change when the system clock go from 0 to one which means the rising edge of the clock. So even if the load signals go low, the registers still need to wait the rising edge of the system signal.

