Corollary: 1 of LMCT

Let $f, g \ge 0$ integrable, then f + g is also integrable and

$$\int (f+g) \ d\mu = \int f \ d\mu + \int g \ d\mu.$$

Proof

Choose simple $0 \le s_1(\omega) \le s_2(\omega) \le \ldots$ converging up to f, and simple $0 \le t_1(\omega) \le t_2(\omega) \le \ldots$ converging to g. Then $(s_n + t_n)$ is a nonnegative sequence.

Lemma

A finite "measure" μ with *only* finite additivity (i.e. $\mu : \mathcal{F} \to [0, \infty), \mu(\emptyset) = 0$, finite additivity) is countably additive iff $\mu(A_n) \searrow 0$ for every \mathcal{F} -sequence (A_n) satisfying $A_1 \supseteq A_2 \supseteq \ldots$ and $\bigcap_{i=1}^n A_i = \emptyset$.

Proof

 (\Rightarrow) : suppose μ is countably additive and a \mathcal{F} -sequence $(A_n) \searrow \emptyset$. By continuity from above and the fact that μ is finite, $\mu(A_n) \searrow \mu(\emptyset) = 0$, which only makes sense if μ is countably additive. (\Leftarrow) :

Corollary: 2 of LMCT

Suppose $f \geq 0$ integrable, the set function $\nu(\cdot)$ defined by $\nu(A) = \int_A f \ d\mu$ is a finite measure on (Ω, \mathcal{F}) .

Proof

f integrable implies $\nu(\Omega)=\int_\Omega f\ d\mu<\infty$. Thus ν is a finite measure. Recall that $\mu(A)=0\Rightarrow\int_A f\ d\mu=0$. So

$$\nu(\emptyset) = \int_{\emptyset} f \ d\mu = 0.$$

Take A_1, A_2 disjoint sets in \mathcal{F} .

$$\nu(A_1 \cup A_2) = \int_{A_1 \cup A_2} f \ d\mu$$

$$= \int_{\Omega} I_{A_1 \cup A_2} \cdot f \ d\mu$$

$$= \int_{\Omega} (I_{A_1} + I_{A_2}) \cdot f \ d\mu \text{ by disjoint}$$

$$= \int_{A_1} f \ d\mu + \int_{A_2} f \ d\mu$$

$$= \nu(A_1) + \nu(A_2)$$

Take any sequence $A_n \searrow \emptyset \Rightarrow 1 - I_{A_n} \nearrow 1 \Rightarrow (1 - I_{A_n}) f \nearrow$. By LMCT,

$$\int (1 - I_{A_n}) \cdot d\mu \nearrow \int f \ d\mu$$

$$\int f \ d\mu - \int_{A_n} f \ d\mu \nearrow \int f \ d\mu$$

$$\nu(\Omega) - \nu(A_n) \nearrow \nu(\Omega)$$

Thus by the lemma, ν is countably additive!