Architecture for delivering multicast mobility services using network slicing

Truong Xuan Do Younghan Kim

Current standards

- 3GPP, NGMN slicing definition
 - Same definitions about network slicing
 - Service instance = network slice = network functions + resources + logical network with certain characteristics
 - Network service template = Network slice blueprint
 - Network slice instance
 - Define use cases
 - Diverse requirements: network characteristics (bandwidth, latency),
 mobility, reliability, reserved resources, priority, usage profile
 - 5G design principles
 - CP/DP separation, SDN/NFV support
 - Multi-RATs, MANO, open source ...

NGMN White Paper 3GPP 23.799 v1.1.0 Study on Architecture for next generation system

NGMN use cases

Figure 5: Use case categories definition

NGMN 5G architecture

Figure 8: 5G Architecture

Use cases for delivering mobility and multicast services using network slicing

- Several use cases have different requirements on mobility and multicast services
 - Multicast Broadcast : public safety, video surveillance, emergency, sport event
 - Mobility: mobile users without video demand
 - Multicast + mobility : mobile users with video demand
 - Without mobility and multicast: other cases
- Services are provided based on
 - Operator requirements
 - Traffic type
 - Usage profile

Functional description

 Mobility and multicast services could be provided using DMM functions (DMM WG)

1	L	L	L	L	L	L
Service Primitive	H-CPA	H-DPA	A-CPN	A-DPN	MC	RC
IP Management	X				X	
IP Anchoring		X				
MN Detect			X	X		
Routing		X		X		
Tunneling		X		X		
QoS Enforcement		X		X		
FPC Client	X		X		X	
FPC Agent		X		X		X
NSH Classifier		X		X		
F:	igure 1:	Mapping	of DMM	function	3	

+=====+ FUNCTION +======+	PMIPv6	MIPv6	IPsec	I 3GPP	Broadband
Home-CPA	LMA-CPA	HA-CPA	IKE-CPA	PGW-CPA	BNG-CPA
Home-DPA	LMA-DPA	HA-DPA	IKE-DPA	PGW-DPA	BNG-DPA
Access-CPN	MAG-CPN	-	-	SGW-CPN	RG-CPN
Access-DPN	MAG-DPN	-	-	SGW-DPN	RG-DPN
T					т

Figure 2: Mapping of DMM functions

FUNCTIONS		IETF
CMA	BMSC-CPA	Multicast Router-CPA
DMA	BMSC-DPA	Multicast Router-DPA
CPN	MBMS-GW-CPN	Multicast Proxy-CPN
DPN	MBMS-GW-DPN	Multicast Proxy-DPN

draft-ietf-dmm-deployment-models draft-kjsun-dmm-deployment-scenarios-multicast-dmm

Reference architecture

Functional description

- The specific VNF managers are used to instantiate, configure, and manage DMM functions
 - These DMM functions are described by VNF descriptors
- The specific network controllers are used to configure virtual networks with specific characteristics for slice
- A combined orchestration service
 - based on operator's requirements to compose different DMM functions to provide appropriate network services for each use case

IETF protocol enhancement considerations

Protocols in IETF

- Need to support
 - CP/DP separation
 - Function decomposition, function chaining → On-demand provisioning, combination to serve more specific use cases
 - Deployment with considerations of management and orchestration framework
- Use case specific protocols
 - More configuration options for protocols to support slicing
 - more reliable protocols for slice with higher reliability requirements
- Overlay network protocols
 - QoS, latency, bandwidth guarantee

Conclusion

Network Slicing

- Allocate efficient resources, network characteristics for specific use cases
- Different ways to realize network slice
 - Resource allocation and reservation mechanisms
 - Reliability mechanisms
 - Deterministic network with required bandwidth, latency
- From protocols point of view
 - Support function decomposition and chaining
 - More options for protocol deployment

