

<u>Gameboard</u>

Maths

Differentiation and Gradients: Beyond Polynomials 4ii

Differentiation and Gradients: Beyond Polynomials 4ii

Find $\frac{dy}{dx}$ in each of the following cases.

Part A Derivative 1

$$y = x^3 e^{2x}$$

The following symbols may be useful: Derivative(y, x), e, ln(), log(), x, y

Part B Derivative 2

$$y=\ln{(3+2x^2)}$$

The following symbols may be useful: Derivative(y, x), e, ln(), log(), x, y

Part C Derivative 3

$$y = rac{x}{2x+1}$$

The following symbols may be useful: Derivative(y, x), e, ln(), log(), x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard

Maths

Differentiation and Gradients: Beyond Polynomials 3i

Differentiation and Gradients: Beyond Polynomials 3i

It is given that $y = 5^{x-1}$.

Part A Logarithm rules

Use the laws of logarithms to rearrange $y=5^{x-1}$ to give an expression for x in the form $x=a+\frac{\ln y}{\ln b}$, where a and b are positive integers.

The following symbols may be useful: ln(), log(), x, y

Part B Derivative

Find an expression for $\frac{\mathrm{d}x}{\mathrm{d}y}$ in terms of y.

The following symbols may be useful: Derivative(x,y), e, ln(), log(), y

Part C Gradient

Hence find the exact value of the gradient of the curve $y = 5^{x-1}$ at the point (3, 25).

The following symbols may be useful: , ln(), log()

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Differentiation Revision

<u>Gameboard</u>

Maths

Differentiation: Products 3ii

Differentiation: Products 3ii

Find the exact value of the x-coordinate of the stationary point of the curve $y = x \ln x$.

The following symbols may be useful: e, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Differentiation Revision

<u>Gameboard</u>

Maths

Differentiation: Quotients 3ii

Differentiation: Quotients 3ii

Part A Differentiate

A curve has equation $y=rac{2x+1}{3x-1}$. Find an expression for $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Tangent

Hence find the equation of the tangent to this curve at the point $(1, \frac{3}{2})$, giving your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Differentiation Revision

Gameboard

Maths

Differentiation: Chain Rule 4i

Differentiation: Chain Rule 4i

Earth is being added to a pile so that, when the height of the pile is h metres, its volume is V cubic metres, where

$$V=(h^6+16)^{rac{1}{2}}-4$$

Part A Rate of Change (a)

Find the value of $rac{\mathrm{d}V}{\mathrm{d}h}$ when h=2, to three significant figures.

Part B Rate of Change (b)

The volume of the pile is increasing at a constant rate of 8 cubic metres per hour. Find the rate in metres per hour, at which the height of the pile is increasing at the instant when h=2. Give your answer correct to 2 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Differentiation Revision

<u>Gameboard</u>

Maths

Differentiation: Implicit 4i

Differentiation: Implicit 4i

Find the equation of the normal to the curve $x^3 + 2x^2y = y^3 + 15$ at the point (2,1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Differentiation Revision

<u>Gameboard</u>

Maths

Differentiation: Synoptic Problems 5i

Differentiation: Synoptic Problems 5i

Part A Gradient

Find the gradient of the curve $x^2 + xy + y^2 = 3$ at the point (-1, -1).

The following symbols may be useful: Derivative(y, x)

Part B Coordinates

A curve ${\cal C}$ has parametric equations

$$x = 2t^2 - 1, \quad y = t^3 + t.$$

Find the coordinates of the point on C at which the tangent is parallel to the y-axis.

Give the x-value.

Give the y-value.

Part C Rates of Change

A curve ${\cal C}$ has parametric equations

$$x = 2t^2 - 1, \quad y = t^3 + t.$$

Find the values of t for which x and y have the same rate of change with respect to t.

Give the larger value of t.

The following symbols may be useful: t

Give the smaller value of t.

The following symbols may be useful: t

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Differentiation Revision

Gameboard

Maths

Differentiation: Synoptic Problems 1i

Differentiation: Synoptic Problems 1i

Figure 1 shows the curve $y = (\ln x)^2$.

Figure 1: The curve $y = (\ln x)^2$.

Part A First derivative

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

The following symbols may be useful: Derivative(y,x), ln(), log(), x

Part B Second derivative

Find $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.

The following symbols may be useful: Derivative (y , x , x), ln(), log(), x

${\bf Part \ C} \qquad {\bf The \ point} \ P$

The point P on the curve is the point at which the gradient takes its maximum value.

What is the nature of point P?

A maximum
A minimum
A horizontal point of inflection
An inclined point of inflection
An asymptote

None of the above

The tangent to the curve at P meets the y-axis at the point Q, which has coordinates (0,q). What is the value of q?

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Differentiation Revision

<u>Gameboard</u>

Maths

Parametric Equations 4i

Parametric Equations 4i

A curve has parametric equations

$$x=2\sin t, \qquad y=\cos 2t+2\sin t$$

for
$$-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$$
.

Part A Derivative

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ as a function of t.

The following symbols may be useful: Derivative(y, x), cos(), cosec(), cot(), sec(), sin(), t, tan(), x, y

Part B Coordinates

Find the x-coordinate of the stationary point.

The following symbols may be useful: x

Find the y-coordinate of the stationary point.

The following symbols may be useful: y

Part C Equation

Find the cartesian equation of the curve.

The following symbols may be useful: x, y

Part D Range

Find the range of values \boldsymbol{x} can take.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- x < a
- $x \leq a$
- > a
- $\bigcirc \quad x \geq a$
- $\bigcirc \quad a < x < b$
- $a \le x \le b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Part E Sketch

Hence sketch the curve.

Used with permission from UCLES A-level Maths papers, 2003-2017.