Esercizi su posizione dei poli e corrispondente andamento nel tempo

1)
$$F(s) = \frac{s^2+1}{5^3+10}s = \frac{s^2+1}{s(s^2+10)}$$
 $O_{1} = 0$
 $O_{2} = 0$
 $O_{3} = 0$
 $O_{4} = 0$
 $O_{1} = 0$
 $O_{2} = 0$
 $O_{3} = 0$
 $O_{4} = 0$
 $O_{5} = 0$
 $O_$

2)
$$F(s) = \frac{5s}{(s^2 + s + 1)^2}$$
 $Q(s) = (s^2 + s + 1)^2$ $Q(s) = 0$ $Q(s)$

ook di evolutione
$$sin(\sqrt{3}t)e^{-\frac{1}{2}t}.1(t), \omega s(\sqrt{3}t)e^{-\frac{1}{2}t}.1(t)$$

 $t \sin(\sqrt{3}t) e^{-\frac{1}{2}t}, 1(t), t \omega(\sqrt{3}t) e^{-\frac{1}{2}t}, 1(t)$

t mi-1 = t

$$\omega_1 = \frac{N_1}{2}$$

$$\lim_{t\to\infty} f(t) = 0$$

$$\omega_1 = \frac{\sqrt{3}}{2}$$
-) = 0

convergenti oscillenti

convergenti osallanti

3)
$$F(s) = \frac{58}{5(s^2+5+1)} = \frac{5}{s^2+5+1}$$
 $a(s) = s^2+5+1$

$$S(s^{2}+S+1) = S^{2}+S+1$$

$$P_{1} = -1 \pm j\sqrt{3} \qquad m_{1,2} = 1$$

$$P_{1,2} = -\frac{1}{2} \pm j \sqrt{2}$$
 $m_{1,2} = 1$
tuti poli con Re $\langle 0 \rangle = 0$ con 2 $\lim_{t \to \infty} f(t) = 0$

poli con Re
$$\langle 0 \rangle \Rightarrow (\omega \wedge D) \Rightarrow (\omega \wedge$$

modi di evolutione
$$e^{-\frac{1}{2}t}\sin(\frac{1}{2}t)-1(t)$$
, $e^{-\frac{1}{2}t}\cos(\frac{1}{2}t)-1(t)$ convergenti oscillenti

NOTA: possione applicare il teoreme del value finale
$$\lim_{t\to\infty} f(t) = \lim_{s\to0} sF(s) = \lim_{s\to0} \frac{s\cdot 5}{s^2 + s + 1} = 0$$

4)
$$F(s) = \frac{4s}{s^2 - s + 1}$$
 $Q(s) = 0 \iff s^2 - s + 1 = 0$
 $S = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1}{2} \pm j \frac{\sqrt{3}}{2}$

$$P_{1,2} = \frac{1}{2} \pm j \frac{\sqrt{3}}{2}$$

$$M_{1,2} = 1$$

$$M_{1,2} = 1$$

$$M_{1,2} = 1$$

$$M_{1,2} = 1$$

$$P_{1,2} = \frac{1}{2} + \frac{1}{3} + \frac{1}{2} \qquad \text{m}_{1,2} = 1 \qquad \frac{1}{2}$$

s poli un Re >0 => coso C)
$$\lim_{t\to\infty} |f(t)| = \infty$$

Esistano poli con Re >0
$$\Rightarrow$$
 coso C) $\lim_{t\to\infty} |f(t)| = \infty$
 $t\to\infty$

modi di evolutione
$$e^{2t}$$
 sin $(\omega_1 t)$ $1(t)$, e^{t} $(\omega_1 t)$ $1(t)$ $e^{\frac{1}{2}t}$ sin $(\sqrt{3}t)$ $1(t)$ $e^{\frac{1}{2}t}$ sin $(\sqrt{3}t)$ $1(t)$ $e^{\frac{1}{2}t}$ sin $(\sqrt{3}t)$ $1(t)$ $e^{\frac{1}{2}t}$ sin $(\sqrt{3}t)$ $1(t)$

5)
$$F(s) = \frac{25+1}{(s^2+4)^2}$$
 $Q(s) = (s^2+4)^2$ $Q(s) = 0$ $(s) = 0$ (s)

$$P_{1,2} = +j2$$
 $m_{1,2} = 2$

$$6_{1}=0$$

$$6_{1}=0$$

$$6_{1}=2$$

$$\delta_1 = 0$$

$$\omega_1 = 2$$

$$\omega_1 = 2$$

$$\Rightarrow (\omega_1, \omega_2) \quad \lim_{t \to \infty} |f(t)| = \infty$$

6)
$$F(s) = \frac{s}{s^3 + 2s^2} = \frac{s}{s^2(s+2)} = \frac{1}{s(s+2)}$$
 $Q(s) = s(s+2)$ $Q(s) = 0 \iff s = 0$ $S = -2$

$$P_1 = 0$$
 $m_1 = 1$
 $P_2 = -2$ $m_2 = 1$

Tuti pole and $P_2 = 0$

AND

AND

AND

 $P_3 = 0$ for 0
 $P_4 = 0$
 $P_5 = 0$
 $P_6 =$

 $\lim_{t\to\infty} f(t) = \lim_{s\to\infty} sF(s) = \lim_{s\to\infty} \frac{\frac{1}{s}}{\frac{s}{(s+z)}} = \frac{1}{2}$ moltipliate 1 resides del O mi alug