- Jazyk L je rozhodnutelný, pokud pro něj existuje turingův stroj T takový, že L(T) = L a navíc se pro každý vstup zastaví.
- \bullet Jazyk Lje částečné rozhodnutelný, pokud existuje turingův strojT,že L(T)=L.
- Ne všechny jazyky jsou částečně rozhodnutelné.
- Postova věta: Jazyk L je rozhodnutelný $\Leftrightarrow L$ i \overline{L} jsou částečně rozhodnutelné.
- $A \leq_m B$ a zároveň B je částečně rozhodnutelný $\Rightarrow A$ je částečně rozhodnutelný.
- A, B rozhodnutelné jazyky, potom $A \leq_m B$.
- A je částečně rozhodnutelný jazyk a $A \leq_m \overline{A}$, pak A je rozhodnutelný jazyk.
- Pokud je A rozhodnutelný, pak je i částečně rozhodnutelný.
- $HALT := \{ \langle M, x \rangle \mid M(x) \downarrow \}.$
 - Pokud M(x) zastaví, nemusí přijmout.
- $L_u := \{ \langle M, x \rangle \mid x \in L(M) \}.$
- HALT a L_u jsou částečně rozhodnutelné, ale nejsou rozhodnutelné.
 - $-\overline{L_u}$ není částečně rozhodnutelný.
- Jazyk $DIAG := \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \}$ není částečně rozhodnutelný.
- Jazyk $EMPTY := \{ \langle M \rangle \mid L(M) = \emptyset \}$ není částečně rozhodnutelný.
- Jak o jazyku dokázat, že není rozhodnutelný?
 - L je nerozhodnutelný (ale je částečně rozhodnutelný), pokud $L_u \leq_m L.$
 - Lnení částečně rozhodnutelný, pokud $DIAG \leq_m L.$ Nebo pokud $EMPTY \leq_m L.$
- Totálně vyčíslitelná funkce je turingovsky vyčíslitelná turingovským strojem, který se zastaví pro každý vstup.

1 Složitost

1.1 Vztahy mezi třídami

- Big-O notation Wikipedia
- TIME $(f(n)) \subseteq SPACE(f(n))$. Triviálně.
- (A) $NTIME(f(n)) \subseteq NSPACE(f(n))$. Triviálně.
- NTIME $(f(n)) \subseteq SPACE(f(n))$. Každá větev výpočtu se vejde do f(n).
- (B) $\mathrm{TIME}(f(n)) \subseteq \mathrm{NTIME}(f(n)) \subseteq \mathrm{SPACE}(f(n)) \subseteq \mathrm{NSPACE}(f(n))$. Vychází z předchozích.
- Nedeterministický turingův stroj M, pracující v prostoru f(n) má nanejvýš $2^{C_M f(n)}$ konfigurací. Konfigurace je:
 - Slovo na vstupní pásce
 - Poloha hlavy na všech páskách
 - Stav
- (C) f(n) taková, že $f(n) \ge \log_2 n$, pak pro každý jazyk L platí $L \in \text{NSPACE}(f(n)) \Rightarrow (\exists C_L \in \mathbb{N}) (L \in \text{TIME}(2^{C_L f(n)}))$.
 - (D) f(n) = o(g(n)), NSPACE $(f(n)) \subseteq TIME(2^{g(n)})$.
- (E) Savičova věta $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.
- Věta o prostorové deterministické hierarchii Pro každou f prostorově konstruovatelnou existuje jazyk A, který je rozhodnutelný v prostoru O(f(n)), ale není rozhodnutelný v prostoru o(f(n)).
 - (F) f(n) = o(g(n)), g je prostorově konstruovatelná. Potom SPACE $(f(n)) \subseteq$ SPACE(g(n)).
- Věta o časové deterministické hierarchii Pro každou f časově konstruovatelnou existuje jazyk A, který je rozhodnutelný v čase O(f(n)), ale ne v čase $o(f(n)/\log f(n))$
 - (G) $f(n) = o(\frac{g(n)}{\log g(n)})$, g je časově konstruovatelná. Potom TIME $(f(n)) \subseteq \text{TIME}(g(n))$.