Chapter17 Unsupervised Learning – Word Embedding

- 1. 1-of-N Encoding to Word Embedding
 - a) Generating Word Vector is unsupervised
 - b) A word can be understood by its context
- 2. Context
 - a) Count-based (Glove Vector):

If two words w_i and w_j frequently co-occur, $V(w_i)$ and $V(w_j)$ would be close to each other

b) Prediction-based:

Sharing parameters:

$$z = W_1 x_{i-2} + W_2 x_{i-1}$$

The length of x_{i-1} and x_{i-2} are both |V|, the length of z is |Z|

The weight matrix W_1 and W_2 are both $|Z|^*|V|$ matrices

$$W_1 = W_2 = W \implies z = W(x_{i-2} + x_{i-1})$$

Continuous bag of word (CBOW) model:

Predict the word given its context

Skip-gram:

Predict the context given a word

- 3. Multi-lingual Embedding
- 4. Multi-domain Embedding
- 5. Document embedding
 - a) Word sequences with different length → Vector with the same length
 - b) Semantic Embedding
- 6. Beyond Bag-of-Word
 - a) Paragraph Vector
 - b) Seq2seq Auto-encoder
 - c) Skip Thought