Lista 5 BCC204 - Teoria dos Grafos

Alunos: Carlos Eduardo Romaniello (19.1.4003) **Professor:** Marco Antônio de Moreira Carvalho

Questão 1:

Todas as regiões do grafo de Petersen possuem grau 5, logo a fórmula fica $2m \ge 5f$ Como f = 2 + m - n, ao substituir f na equação anterior temos: $2 + m - n \le (2/5)m$ $= 10 + 5m - 5n \le 2m == 3m \le 5n - 10$

Como o grafo de Petersen possui 10 vértices e 15 arestas temos que 45 <= 40 o que é uma contradição. Portanto o grafo de Petersen não é um grafo planar.

Questão 2:

O grafo complementar de um circuito de comprimento 6 possui 6 vértices e 9 arestas, com isso todas as regiões possuem grau 3. Substituindo isso na fórmula temos: $f \le (2/3)m$ Como f = 2 + m - n, ao substituir f na equação anterior temos: $2 + m - n \le (2/3)m$

$$= 6 + 3m - 3n \le 2m = 6 + m \le 3n$$

Substituindo os valores na fórmula temos que: $6 + 9 \le 18 = 15 \le 18$

Logo o grafo complementar de um circuito de tamanho 6 é planar.

Questão 3:

Utilizando o corolário apresentado em sala de aula temos que $m \le 3n - 6$. Para toda árvore m = n - 1, substituindo na fórmula temos: $n - 1 \le 3n - 6$. Desenvolvendo a inequação temos: $n \ge 5/2$, ou seja, para qualquer árvore com $n \ge 2$ ela será planar. Para uma árvore com $n \ge 2$ vértices existirá apenas uma aresta, logo não há a possibilidade de ocorrer cruzamento de arestas inviabilizando um gráfico planar e para árvores com $n \ge 2$ 0 vértice não existirá arestas, logo qualquer árvore é um grafo planar.

Questão 4:

Se um grafo não é 2-conexo ele pode ser apenas 1-conexo o que indica que haverá uma ponte neste grafo, o que implica na impossibilidade de se realizar um ciclo nele, logo não havendo essa possibilidade ele não pode ser hamiltoniano

Questão 5:

Os grafos são: (1) hamiltoniano, (2) não hamiltoniano, (3) hamiltoniano e (4) hamiltoniano, respectivamente.

Questão 6:

Nenhum dos grafos apresentados são eulerianos.

Questão 7:

Os grafos são: (1) semi-hamiltoniano, (2) não semi-hamiltoniano, (3) semi-hamiltoniano e (4) semi-hamiltoniano, respectivamente.

Questão 8:

Nenhum dos grafos apresentados são semi-eulerianos.

Questão 9:

Como nenhum dos grafos respeitam o teorema de euler, que diz que G é euleriano se todos os seus vértices possuem grau par (G1 possui vértices de grau 3, G2 possui vértices de grau 1, G3 possui vértices de grau 5 e G4 possui vértices de grau 3), não é possível executar o algoritmo de Fleury.

Questão 10:

Árvore geradora mínima com custo = 11:

Casamento perfeito mínimo com custo = 9:

Ciclo Euleriano $\{6, 3, 6, 1, 2, 4, 5, 6\}$ com custo = 20:

Ciclo Hamiltoniano {6, 3, 1, 2, 4, 5, 6} com custo = 18:

Questão 11:

Árvore geradora mínima com custo = 9:

Casamento perfeito mínimo com custo = 5:

Ciclo Euleriano {6, 3, 7, 1, 2, 4, 5, 6} com custo = 14:

Ciclo Hamiltoniano $\{6, 3, 7, 1, 2, 4, 5, 6\}$ com custo = 14:

Questão 12:

Arestas adicionadas: {1, 2}, {3, 6}, {4, 5}

Ciclo Euleriano: {1, 2, 1, 6, 5, 1, 4, 5, 4, 6, 3, 6, 2, 3, 4, 2, 5, 3, 1}

Custo do ciclo Euleriano: 88

Questão 13:

Arestas adicionadas: nenhuma aresta foi adicionada

Ciclo Euleriano: {1, 2, 7, 1, 3, 2, 6, 7, 3, 6, 1, 4, 2, 5, 6, 4, 3, 5, 4, 7, 5, 1}

Custo do ciclo Euleriano: 77

Questão 14:

Esse problema pode ser modelado utilizando o problema do caixeiro viajante:

- cada vértice será um ponto de entrega
- cada aresta representará a conexão entre um ponto de entrega e outro caso ele exista e seu peso será a distância entre eles

Como o veículo deve realizar todas as entregas percorrendo o menor caminho possível, isso corresponde a passar por todos os vértices do grafo através de um conjunto de arestas com custo mínimo. Não será necessário passar por todas as arestas.

Questão 15:

Esse problema pode ser modelado utilizando o problema do carteiro chinês:

- cada vértice será um um cruzamento entre as ruas da cidade
- cada aresta representará uma rua da cidade.

Dessa forma os funcionários devem percorrer todas as arestas do grafo (ruas da cidade) percorrendo a menor distância (somatório do custo das arestas).

Questão 16:

Esse problema pode ser modelado utilizando o problema do carteiro viajante:

- cada vértice será um componente do circuito
- cada aresta representará uma conexão entre dois componentes

Dessa forma para se conectar os componentes com a menor quantidade de material basta conectar todos os componentes através de um conjunto de arestas onde o somatório de seus custos seja o menor possível

Questão 17:

Esse problema pode ser modelado utilizando o problema do carteiro chinês:

- cada vértice será um cruzamento
- cada aresta será um rio

Dessa forma para se concluir o trabalho percorrendo o menor caminho possível, deve-se percorrer todas as arestas do grafo podendo passar pelo mesmo cruzamento mais de uma vez