

Photonics

Quantities and Units of Light

Basic concepts
Energetic and photometric quantities
Human eye

Introduction

- Light is an EM-radiation, which is (almost) visible by the human eye:
 - ■visible light
 - ■Infrared (IR)
 - Ultraviolet (UV)

Electromagnetic spectrum

Basic quantities (1)

Quantity	Symbol	Unit	
Frequency	f, v	THz	
Wavelength	λ	nm	$\lambda = \frac{c}{n \cdot f}$
Refractive index	n	-	
Speed	c/n	km/s	

Basic quantities (2)

Quantity	Symbol	Unit	
Wave number	σ	1/cm	$\sigma = \frac{1}{\lambda}$
Wave number (EM)	\boldsymbol{k}	1/cm	$k = \frac{2\pi}{\lambda}$
Photon energy	E	eV	$E = h \cdot \nu = h \cdot f$

Spectrum of a "light" source

Energetic quantities (1)

- Radiant energy
 - symbol: *Q*^e
 - unit: Joule
- Radiant Flux
 - Amount of radiation through a surface per time unit
 - symbol: *F*^e
 - unit: Watt

Energetic quantities (2)

- Radiant Intensity
 - Radiant flux in a given direction per unit solid angle (for a point source)
 - symbol: *I*e
 - unit: Watt / sr

Exercise

You look straight at a clock on the wall, which is at a distance s=3 m. The circular clock has a diameter of d=25 cm.

Calculate the solid angle that corresponds to your view of the clock.

Energetic quantities (3)

- Radiance
 - Radiant intensity of a surface around a given point in a given direction per unit of effective area of the surface
 - symbol: *L*e
 - unit: Watt / sr / m²

$$L^{e} = \frac{dI^{e}}{dS_{eff}}$$

$$dS_{\rm eff} = dS\cos\theta$$

Energetic quantities (4)

- Radiant exitance
 - Radiant flux emitted per unit area
 - symbol: *M*^e
 - unit: Watt / m²

$$M^{e} = \frac{\mathrm{d}F^{e}}{\mathrm{d}S}$$

Energetic quantities (5)

- Irradiance
 - Radiant flux received per unit area
 - symbol: *E*^e
 - unit: Watt / m²

$$E^{e} = \frac{\mathrm{d}F^{e}}{\mathrm{d}S}$$

Energetic quantities (6)

Spectral density

- Quantity per wavelength interval
 - symbol: subscript S
 - e.g. spectral density of the radiant flux

$$F_{\rm S}^{\rm e}(\lambda) = \frac{\mathrm{d}F^{\rm e}}{\mathrm{d}\lambda}$$

Human eye

- 2 types of light sensitive neurons in the retina
 - cones
 - 3 types (red, green, blue)
 - good at normal illuminationphotopic sight, color vision
 - rods
 - 1 type
 - important at low light intensityscotopic sight, night vision

Eye sensitivity

rods (scotopic sight)

cones (photopic sight)

Photometric quantities (1)

- Photometric: take into account the response of the human eye
- Luminous flux
 - symbol: *F*
 - unit: lumen [lm]

$$F = K \int F_S^e \cdot V(\lambda) d\lambda$$
 with $K = 683$ lumen/Watt

Photometric quantities (2)

- Luminous intensity
 - Luminous flux in a given direction per unit solid angle (for a point source)
 - symbol: *I*
 - unit: candela = lumen / sr, [cd] or [lm/sr]

Photometric quantities (3)

- Luminance; brightness
 - luminous intensity of a surface around a given point in a given direction per unit of effective area of the surface
 - symbol: *L*
 - unit: candela / m², [cd/m²] (or nit)

$$L = \frac{\mathrm{d}I}{\mathrm{d}S_{\mathrm{eff}}}$$

$$dS_{eff} = dS \cos \theta$$

Photometric quantities (4)

- Luminous exitance
 - Luminous flux emitted per unit area
 - symbol: *M*
 - unit: lumen / m²

$$M = \frac{\mathrm{d}F}{\mathrm{d}S}$$

Photometric quantities (5)

- Illuminance
 - Luminous flux received per unit area
 - symbol: *E*
 - unit: $lux = lumen / m^2$

$$E = \frac{\mathrm{d}F}{\mathrm{d}S}$$

Energetic vs. photometric

Energetic

Photometric

Radiant flux Fe

Luminous flux F

$$F = K \int F_{S}^{e}(\lambda) \cdot V(\lambda) d\lambda$$

with K = 683 lumen/Watt

- Radiant intensity $I^e \leftarrow \blacksquare$ Luminous intensity I
- Radiance L^e Luminance L
- Radiant exitance M^e Luminous exitance M
- Irradiance E^e Illuminance E

Calculation of the illuminance

- Point source
 - solid angle

$$\mathrm{d}\Omega = \frac{\mathrm{d}S\mathrm{cos}\theta}{D^2}$$

 \blacksquare luminous flux dF on dS

$$dF = I(\theta, \phi) \frac{dS \cos \theta}{D^2}$$

Illuminance E of the surface

$$E = \frac{\mathrm{d}F}{\mathrm{d}S} = \frac{I\cos\theta}{D^2} = \frac{I\cos^3\theta}{h^2}$$

Perpendicular incidence $(\theta = 0)$

$$E = \frac{I}{h^2}$$

Exercise: desk lamp

- A desk lamp contains a light bulb with an electrical power of 60 Watt. The conversion efficiency is 15 lumen per (electric) Watt. Due to the fitting the luminous flux is divided uniformly over a cone with a half opening angle of 30 degrees. The lamp is 50 cm above the desk surface.
- Calculate the average illuminance on the desk surface.
- Calculate the illuminance on the desk surface in the center and at the edge of the light cone.

Calculation of the illuminance

- Not a point source
 - Luminance L
 - Luminous flux dF in $d\Omega$

$$dF = L(\theta, \phi)(dS\cos\theta)d\Omega$$
$$d\Omega = \frac{dS'\cos\theta'}{D^2}$$

Illuminance dE on dS'

$$\mathrm{d}E = L \frac{\cos\theta \cos\theta'}{D^2} \mathrm{d}S$$

Total illuminance *E*

$$E = \iint_{\text{source}} L \frac{\cos\theta \cos\theta'}{D^2} \, \mathrm{d}S$$

Retina illuminance as function of a light source

• Luminous flux from dS to S'

$$dF = LdS_{eff}d\Omega$$

and
$$d\Omega = \frac{S'}{D^2}$$
, so $dF = LdS_{eff} \frac{S'}{D^2}$

• dS_{eff} is projected on dS''

$$\frac{\mathrm{d}S''}{\mathrm{d}S_{\mathrm{eff}}} = \frac{h^2}{D^2}$$
, or $\frac{\mathrm{d}S_{\mathrm{eff}}}{D^2} = \frac{\mathrm{d}S''}{h^2}$

Luminous flux to dS''

$$\mathrm{d}F = L \frac{\mathrm{d}S''S'}{h^2}$$

Illuminance at retina

$$E = \frac{\mathrm{d}F}{\mathrm{d}S''} = L\frac{S'}{h^2} = L\mathrm{d}\Omega''$$

Lambert's law

Lambert surface:

$$L(\theta, \phi) = \text{constant}$$

Examples:

- Many incoherent sources, like the sun, incandescent lamp...
- Rough, diffusely reflecting surfaces

Luminous intensity of dS

$$dI(\theta) = L \cdot dS_{eff}(\theta)$$

$$= L \cdot dS \cdot \cos \theta$$

$$= dI_0 \cos \theta$$

• Luminous flux from d*S*

$$\mathrm{d}F = \int \mathrm{d}I \mathrm{d}\Omega \qquad \qquad \mathrm{d}\Omega = \sin\theta \,\mathrm{d}\theta \mathrm{d}\phi$$

$$= dI_0 \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta \int_0^{2\pi} d\phi$$
$$= \pi dI_0 = \pi L dS$$

Luminous exitance of the surface

$$M = \frac{\mathrm{d}F}{\mathrm{d}S} = \pi L$$

Illuminances

Summer sun	100000 lux
------------------------------	------------

Winter sun	10000 lux
VVIIICOI DOIII	

Retina sensitivity	10 ⁻⁹ lux
--------------------	----------------------

• ISO-400 film sensitivity 10⁻² lux (1 s exposure)

Recommended illuminances

Eye functions optimally from 10000 lux

Daylight

Artificial light

Offices:

Very precise work:

Living area (local):

Living area (general):

1000-100000 lux

500-1000 lux

1000-5000 lux

500-1000 lux

50-100 lux

Luminance (brightness)

- Sun
- Moon
- Filament of an incandescent lamp
- Fluorescent lamp
- LED
- Laser (1W green)
- Computer monitor
- White paper (80% reflection 400 lux)
- needed for photopic sight (cones)
- needed for scotopic sight (rods)

- $1.65 \ 10^9 \ cd/m^2$
- $2.5 \ 10^3 \ cd/m^2$
- $7 \ 10^6 \ cd/m^2$
- $8 \ 10^3 \ cd/m^2$
- $10^4 10^6 \, \text{cd/m}^2$
- $10^{15} \, \text{cd/m}^2$
- 300 cd/m^2
- $10^2 \, \text{cd/m}^2$
- $> 1 10 \text{ cd/m}^2$
- $> 0.01 0.1 \text{ cd/m}^2$

Examples

- Projectors
 - light output in lumen
 - www.barco.com
- Lamps
 - luminous intensity in cd
 - www.osram.com
- Monitor / TV
 - brightness in cd/m² (nit)
 - tweakers.net