Driver assistance system design A

Introduction to the course

Carlo Novara

Politecnico di Torino Dip. Elettronica e Telecomunicazioni

Outline

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- Exam

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- 4 Exam

Course organization

- Lectures:
 - Theory/methodology.
 - Examples/exercises.
 - ► Simulations.
 - ► Teacher: Carlo Novara.
- Lab sessions:
 - Exercises/problems/design.
 - ► Teachers: Carlo Novara, Michele Pagone.
- Projects:
 - ▶ Projects about driving assistance system design in collaboration with Part B.
 - ▶ Teachers: several teachers from Parts A and B.
- Use of Matlab/Simulnk in lectures, labs and projects.

Course organization

Lectures:

- Presenting new topics/material (theory, examples, simulations).
- Questions, Answers and Discussions (QAD).
- Lab sessions and projects:
 - ► Exercises and simulations will be similar to those discussed during the lectures.
 - Students are expected to be prepared for the lab sessions and projects. The level of the proposed exercises is tailored for students that have studied what presented during the lectures.
 - The goal is to teach to students not only technical notions but also to become independent, able in problem solving and creative.
 - Interactive modality: QAD and deepening of the studied topics.

Course organization

	Monday	Tuesday	Wednesday	Thursday	Friday
8,30-10,00					DRIVER ASS. Lab
10,00-11,30					DRIVER ASS. Lab
11,30-13,00			DRIVER ASS. Les.		
13,00-14,30			DRIVER ASS. Les.		
14,30-16,00		DRIVER ASS. Lab		DRIVER ASS. Les.	
16,00-17,30		DRIVER ASS. Lab		DRIVER ASS. Les.	
17,30-19,00					

- The available slots will be used with flexibility.
- Coordination between Part A and Part B.
- Part A: Wednesday and Friday.
- Possible changes will be communicated in advance.

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- Exam

Course overview

- Control is a multi-disciplinary area, involving theoretical, numerical and hardware tools, finalized at modifying and optimizing the behavior of real-world systems.
- Control is nowadays fundamental in most fields of science and technology:
 - automotive, aerospace, robotics and energy, biomedical, data analytics, communications and networks.
- The goal of the course is to present basic and advanced control methods suitable for driver assistance systems and autonomous driving.
 - One part of the course is dedicated to the study of basic and advanced control methods.
 - Another part regards the application of these methods to driver assistance systems.
- Pre-requirements: differential and integral calculus, vector valued functions, linear algebra, basic physics, basic notions on dynamic systems and automatic control, basic notions about Matlab/Simulink.

Course overview

- Dynamic systems, automatic control, Matlab/Simulink.
 - Dynamic system properties; state equations; stability concepts.
 - Basic notions about feedback control.
- Basic and advanced control methods (useful for driving assistance systems):
 - PID control, eigenvalue placement.
 - ► LQR/LQI control, Gain-Scheduling, Model Predictive Control.
 - Observer/filter design for linear and nonlinear systems.
- Examples of applications to driving assistance systems. Presented during lectures and developed by students in the labs (using simplified models). Topics:
 - lateral and longitudinal control,
 - platoon control,
 - trajectory planning and control.
- Projects (in collaboration with Part B):
 - Development and analysis of a high-fidelity vehicle model, design of vehicle dynamics control strategies, trajectory planning and control. (Development/use of high-fidelity models).

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- Exam

Dynamic systems

A dynamic system can be (roughly) defined as a set of interacting objects which evolve over time.

Examples:

- vehicles
- mechanical systems
- electrical circuits
- aircrafts
- spacecrafts, satellites
- stock market
- animal population
- atmosphere
- planet systems
- and so on...

Dynamic systems

Fundamental variables:

- Input u(t): variables which influence the time evolution of the system (causes).
- Output y(t): measured.

· Input types:

- Command inputs: their behavior can be chosen by the human user.
- Disturbances: their behavior is independent on the human user; they cannot be chosen.

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- Exam

What is control?

- Controlling a dynamic system (plant): using a command u such that the corresponding output y tracks a desired reference r.
- ullet The controlled system should be as little as possible sensitive to the disturbance d.

Control design problem: Find a system, called the controller, such that $y\cong r$ for a set of reference signals of interest. \square

Control methods

- Time-domain methods:
 - eigenvalue (pole) placement,
 - proportional integrative derivative (PID),
 - optimal control (LQR),
 - model predictive control (MPC),
 - ▶ internal model control (IMC),
 - embedded model control (EMC)
 - gain-scheduling,
 - feedback linearization,
 - sliding mode control,
 - etc ...
- Frequency domain methods:
 - pole placement,
 - proportional integrative derivative (PID),
 - root locus,
 - lead-lag compensator,
 - ▶ internal model control (IMC),
 - ▶ H_{∞} control,
 - etc ...

Control methods - PID control

- Proportional Integral Derivative (PID) control is probably the most popular control approach in industrial applications:
 - automotive
 - aerospace
 - electrical systems
 - power systems
 - chemical processes
 - many others ...
- The main reason for such a popularity is its simplicity: a standard PID controller is characterized by a few parameters,
- The PID parameters can be suitably tuned
 - off-line, via computer design and simulation,
 - on-line, directly on the physical plant of interest.

Control methods - state feedback

- State feedback is a fundamental principle for control of linear and nonlinear systems.
- It can be applied to a large class of systems:
 - Nonlinear (without using linearization)
 - ► Time-varying
 - ► MIMO.
- It accounts for the connection between the internal and external descriptions.
- It allows to introduce optimality concepts.
- It can deal with constraints on states, input and output.
- It allows a more effective stabilization of unstable complicated systems.
- We'll consider the following approaches:
 - "manual" eigenvalue placement (LTI systems).
 - ► LQR/LQI optimal design (LTI systems).
 - Gain-scheduling (nonlinear systems)
 - Model Predictive Control (linear and nonlinear systems).

Control methods - MPC

- Model Predictive Control (MPC) is a general and flexible approach to control
 of linear and nonlinear systems.
- MPC allows us to deal with input/state/output constraints and to manage systematically the trade-off performance/command effort.
- Approach. At each time step:
 - A prediction over a given time horizon is performed, using a model of the plant.
 - ► The command input is chosen as the one yielding the "best" prediction (i.e., the prediction closest to the desired behavior) by means of some on-line optimization algorithm.
- Many industrial applications: automotive systems, aerospace systems, chemical processes, robotics, biomedical devices, etc.

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- Exam

Application: lane keeping

- The goal of lane keeping systems is to maintain the vehicle within the lane through a control action on the steer.
- Indeed, lateral dynamics is unstable and control is necessary to keep the vehicle in the lane (in manual driving, controller = driver).
- The control system is not intended to replace the driver.
- The control system is aimed to improve safety:
 - help the driver in emergency situations, e.g. in the case of tiredness, lack of attention, critical road conditions, etc.
 - reduce the driver's tiredness/drowsiness.

Application: cruise control

- A cruise control system automatically regulates the throttle of a vehicle to maintain a desired speed.
- It is the driver's responsibility to ensure that the vehicle can safely travel at the desired speed on the road.
- If a preceding vehicle travels at a slower speed or is too close to the vehicle, the driver must take action and if necessary apply brakes.
 - Application of the brakes automatically disengages the cruise control system and returns control of the throttle to the driver.

Application: adaptive cruise control

- Adaptive Cruise Control (ACC) is an evolution of standard cruise control, based on a radar or other sensors that measure the distance from the preceding vehicle (PV).
- The goal of ACC is to ensure all the vehicles in the same group (string or platoon) to move at a consensual speed while maintaining the desired spaces between adjacent vehicles.
- Advantages with respect to standard cruise control and "manual" driving:
 - increased traffic capacity,
 - improved safety,
 - improved comfort,
 - reduced fuel consumption.
- Stability properties of the platoon are fundamental.

Application: trajectory planning and control

- Global trajectory planning (path planning): Find an optimal path between two points on a map, avoiding obstacles (and possibly on roads).
- Local trajectory planning: Similar to the global one but:
 - The trajectory is planned over a shorter time interval.
 - ▶ The planned trajectory should be consistent with the vehicle dynamics.
 - ▶ The trajectory is planned in real-time.
- Trajectory planning and control (TPC): Trajectory planning + providing the control action that makes the vehicle track the planned trajectory.
- TPC can be performed in combination with low-level lateral and longitudinal controllers (lane keeping and cruise control).

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- 4 Exam

Bibliography

- Lecture material (slides, Matlab/Simulink files).
- G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, Prentice Hall, 2009.
- Kwakernaak, Huibert & Sivan, Raphael, Linear Optimal Control Systems. Wiley, 1972.
- 4 J-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
- F. Borrelli, A. Bemporad, M. Morari, Predictive control for linear and hybrid systems, Cambridge University Press, 2014.
- L. Grune and J. Pannek, Nonlinear Model Predictive Control Theory and Algorithms, Springer, 2011.
- G. Genta, Motor Vehicle Dynamics, World Scientific, 2002.
- R. Rajamani, Vehicle Dynamics and Control, Springer, 2012.
- Preparatory material of automatic control can be found at the website

https://www.polito.it/didattica/corsi-di-laurea-magistrale/mechatronic-engineering-ingegneria-meccatronica

- Course organization
- 2 Course overview
 - Dynamic systems
 - Control methods
 - ADAS applications
- Bibliography
- Exam

Exam

- Mandatory:
 - Computer-based written test with multiple-choice and open-ended questions using the Exam platform and Matlab/Simulink.
 - * Theory/methodology.
 - Exercises/problems.
 - * Simulations.
 - ★ Design.
 - Project report.
- Optional:
 - Oral exam (in particular situations).
- Other technical details will be given at the end of the course.