PSYCH 308B - DA6 - 2024

A local school district realized that none of their elementary teachers taught science (true story). In an attempt to remedy the situation, they developed a professional development course designed to teach their teachers science and how to teach science to their classes. This district sent their teachers to this course in cohorts. In order to determine if the PD course was working they had the first cohort of teachers complete a survey which asked them to rate, among other things, how comfortable they were teaching science to their elementary school class on a scale of 1 to 7. This survey was administered just before the PD course began, during the course, and one month after the course was completed. A CGU student begged them to get a comparison group and so, the same survey was administered to the second cohort of teachers at the same time as it was administered to the first cohort of teachers. This second cohort still has not received the PD course.

```
#Pre-work
#Set up your libraries
library(psych)
library(ez)
library(car)
library(reshape)
library(jmv)
library(ggplot2)
library(heplots) # <- this library is needed for Box's test</pre>
library(tidyr) # <- this one is needed for pivot-wider code</pre>
library(pastecs)
#Pre-work
#Set up your data
science <- read.csv("308B.Data.DA6.csv")</pre>
science$Subject <- as.factor(science$Subject)</pre>
science$time <- factor(science$time, levels = c("pre", "during", "post"))</pre>
#convert data from Long to wide so you have it ready for the ANOVA code
science.wide <- pivot_wider(science, names_from = time, values_from = value)</pre>
```

#creating a bar graph

barscience <- ggplot(science, aes(time, value, fill = condition)) #order of the variables matters here!! If
it's backwards, the bars are gonna go sideways</pre>

barscience + stat_summary(fun.y = mean, geom = "bar", position = "dodge") + stat_summary(fun.data = mean_cl
_normal, geom = "errorbar", position = position_dodge(width = 0.90), width = 0.2) + labs(x = "time", y = "C
omfort Level", fill = "condition") + ggtitle('Effect of Professional Development on Comfort Level with Teac
hing Over Time') + scale_fill_manual("condition", values = c("aquamarine3", "orange2"))

Effect of Professional Development on Comfort Level wi

#create a line graph

linescience <- ggplot(science, aes(time, value, colour = condition))</pre>

```
linescience + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = mean, geom = "line", aes(group = condition)) + stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2) + labs(x = "time", y = "Comfort Level", colour = "condition") + ggtitle('Effect of Professional Development on Comfort Level with Teaching Over Time') + scale_color_manual("condition", values = c("aquamarine3", "orange2"))
```

Effect of Professional Development on Comfort Level wi


```
#This code specifies your model...
modeltc<-aov(value~as.factor(condition)*as.factor(time),data=science)
#....and this one returns all of the means (cell, marginal, and grand) for the model you specified
model.tables(modeltc, type="means")</pre>
```

```
Tables of means
Grand mean
4.22
as.factor(condition)
as.factor(condition)
  control treatment
     3.20
              5.24
as.factor(time)
as.factor(time)
   pre during post
  3.78 4.20 4.68
as.factor(condition):as.factor(time)
                   as.factor(time)
as.factor(condition) pre during post
          control 4.08 2.28 3.24
          treatment 3.48 6.12 6.12
```

Check Assumptions

```
#Histograms: You already specified your model above, so in the code below we're just plotting the residuals (how much the model over or underestimates someones feedback score. You only need to check this one histogra m!

restc<-modeltc$residuals
hist(restc, main="Histogram of residuals", xlab="Residuals")
```

Histogram of residuals


```
#confirm skew and kurtosis
by(science$value, list(science$time, science$condition), basic = FALSE, norm = TRUE, stat.desc)
: pre
: control
      median
                               SE.mean CI.mean.0.95
                                                                       std.dev
                     mean
                                                              var
   4.0000000
                4.0800000
                             0.2640707
                                          0.5450151
                                                       1.7433333
                                                                     1.3203535
    coef.var
                 skewness
                              skew.2SE
                                           kurtosis
                                                        kurt.2SE
                                                                    normtest.W
   0.3236161
                0.1728305
                             0.1863669
                                         -0.1412354
                                                       -0.0783144
                                                                     0.9230784
  normtest.p
   0.0602361
```

```
: during
: control
      median
                    mean
                              SE.mean CI.mean.0.95
                                                           var
2.0000000000 2.2800000000 0.3241398875 0.6689918476 2.6266666667
     std.dev
                 coef.var
                             skewness
                                          skew.2SE
                                                       kurtosis
1.6206994375 0.7108330866 1.0288620478 1.1094443150 -0.1675416321
    kurt.2SE
               normtest.W
                           normtest.p
-0.0929010838   0.7852087638   0.0001301105
: post
: control
     median
                         SE.mean CI.mean.0.95
                                                               std.dev
                  mean
                                                      var
 3.00000000
                                     0.76559231 3.44000000 1.85472370
            3.24000000 0.37094474
   coef.var
               skewness
                         skew.2SE
                                      kurtosis
                                                  kurt.2SE
                                                            normtest.W
 0.57244559
            0.90891373
 normtest.p
 0.02882748
: pre
: treatment
     median
                           SE.mean CI.mean.0.95
                                                               std.dev
                  mean
                                                       var
 4.00000000 3.48000000 0.31685959
                                     0.65396605 2.51000000 1.58429795
   coef.var
               skewness
                           skew.2SE
                                      kurtosis
                                                  kurt.2SE
                                                            normtest.W
 0.45525803 -0.29684142 -0.32009056 -1.08220766 -0.60007930 0.90412488
 normtest.p
 0.02258554
: during
: treatment
      median
                              SE.mean CI.mean.0.95
                    mean
                                                           var
7.000000e+00 6.120000e+00 2.471167e-01 5.100238e-01 1.526667e+00
     std.dev
                 coef.var
                             skewness
                                          skew.2SE
                                                       kurtosis
1.235584e+00 2.018927e-01 -1.362090e+00 -1.468772e+00 7.870201e-01
    kurt.2SE
            normtest.W
                           normtest.p
4.363991e-01 7.269201e-01 1.715429e-05
```

```
: post
: treatment
      median
                    mean
                             SE.mean CI.mean.0.95
                                                         var
6.000000000 6.120000000 0.1942506971 0.4009137344 0.943333333
     std.dev
                coef.var
                             skewness
                                         skew.2SE
                                                     kurtosis
kurt.2SE
              normtest.W
                           normtest.p
1.0047297081 0.7881593646 0.0001452044
#Box's Test
#This code run Box's test to check homogeneity of the co-variance matrices. Box's M follows the chi square
distribution, so we report is as x2(df) = X.XX, p = .XXX. Note that it uses the wide data
BoxTestScience<-boxM(science.wide[,4:6],science.wide$condition) #use the wide format data for Box's test
BoxTestScience$cov
```

\$control

pre during post pre 1.7433333 -0.10666667 -1.31166667 during -0.1066667 2.62666667 -0.02833333 post -1.3116667 -0.02833333 3.44000000

\$treatment

pre during post pre 2.5100000 -0.81000000 -0.39333333 during -0.8100000 1.52666667 0.06833333 post -0.3933333 0.06833333 0.94333333

BoxTestScience

Box's M-test for Homogeneity of Covariance Matrices

data: science.wide[, 4:6]
Chi-Sq (approx.) = 14.491, df = 6, p-value = 0.02461

```
#Mixed Factorial ANOVA
#Questions 2-3: Main Effect for Time, Main Effect for Condition, and Interaction
model.rm <- anovaRM(data = science.wide,</pre>
                 rm = list(list(label = 'Time',
                                levels = c('pre', 'during', 'post'))),
                 rmCells = list(list(measure = 'pre', cell = 'pre'),
                                list(measure = 'during', cell = 'during'),
                                list(measure = 'post', cell = 'post')),
                 rmTerms = list('Time'),
                 bs = 'condition',
                 bsTerms = list('condition'),
                 effectSize = c('partEta'),
                 leveneTest = TRUE,
                 spherTests = TRUE,
                 spherCorr = c('none','GG'),
                 postHoc = list('Time', 'condition'),
                 postHocCorr = list('holm', 'tukey'),
                 emMeans = ~ Time + condition + Time:condition,
                 emmTables = T)
model.rm
```

REPEATED MEASURES	REPEATED MEASURES ANOVA							
Within Subjects Ef	Within Subjects Effects							
	Sphericity Correction	Sum of Squares	df	Mean Square	F	р	η²-p	
Time	None Greenhouse-Geisser	20.28000 20.28000	2 1.921398	10.140000 10.554813	3.957931 3.957931	0.0222993 0.0238539	0.0761757 0.0761757	
Time:condition	None Greenhouse-Geisser	136.44000 136.44000	2 1.921398	68.220000 71.010783	26.628212 26.628212	< .0000001 < .0000001	0.3568116 0.3568116	
Residual	None Greenhouse-Geisser	245.94667 245.94667	96 92.227120	2.561944 2.666750				
Note. Type 3 Sun	ns of Squares							

Between Subjects Effects

	Sum of Squares	df	Mean Square	F	р	η² -p
condition Residual	156.06000 61.01333	1 48	156.060000 1.271111	122.7745	< .0000001	0.7189276

Note. Type 3 Sums of Squares

ASSUMPTIONS

Tests of Sphericity

	Mauchly's W	р	Greenhouse-Geisser ε	Huynh-Feldt ε
Time	0.9590914	0.3747229	0.9606992	0.9999058

Homogeneity of Variances Test (Levene's)

	F	df1	df2	р
pre	1.674873	1	48	0.2017993
during	2.764349	1	48	0.1029033
post	10.746707	1	48	0.0019470

POST HOC TESTS

Post Hoc Comparisons - Time

.me Mean Dif	ference SE	df 	t	p-tukey	p-holm
6			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.2106991 0.0377185
)	st -0.	st -0.9000000 0.3470833	st -0.9000000 0.3470831 48.00000	st -0.9000000 0.3470831 48.00000 -2.593039	st -0.9000000 0.3470831 48.00000 -2.593039 0.0330659

Post Hoc Comparisons - condition

- condition		condition	Mean Difference	SE	df	t	p-tukey	p-holm
control	-	treatment	-2.040000	0.1841095	48.00000	-11.08036	< .0000001	< .0000001

ESTIMATED MARGINAL MEANS TIME

Estimated Marginal Means - Time

Time	Mean	SE	Lower	Upper
pre	3.780000	0.2062361	3.365335	4.194665
during	4.200000	0.2037973	3.790238	4.609762
post	4.680000	0.2093641	4.259045	5.100955

CONDITION

Estimated Marginal Means - condition

condition	Mean	SE	Lower	Upper
control	3.200000	0.1301851	2.938245	3.461755
treatment	5.240000	0.1301851	4.978245	5.501755

TIME: CONDITION

Estimated Marginal Means - Time:condition

condition	Time	Mean	SE	Lower	Upper
control	pre during post pre during post	4.080000 2.280000 3.240000 3.480000 6.120000	0.2916619 0.2882129 0.2960856 0.2916619 0.2882129 0.2960856	3.493574 1.700509 2.644680 2.893574 5.540509 5.524680	4.666426 2.859491 3.835320 4.066426 6.699491 6.715320


```
#Simple Effects Option 1
#Question 4: Assumptions for simple effect analyses
#Normal distribution, but to do this, you can first create a subset for each time point
Pre <- subset(science, science$time == "pre")
During <- subset(science, science$time == "during")
Post <- subset(science, science$time == "post")

# Then run descriptives of each time point by condition
descriptives(Pre, vars = c('value'), splitBy = c('condition'), skew = TRUE, kurt = TRUE, hist = TRUE)

DESCRIPTIVES</pre>
```

Descriptives

	condition	value
N	control	25
	treatment	25
Missing	control	0
	treatment	0
Mean	control	4.080000
	treatment	3.480000
Median	control	4
	treatment	4
Standard deviation	control	1.320353
	treatment	1.584298
Minimum	control	1
	treatment	1
Maximum	control	7
	treatment	6
Skewness	control	0.1956867
	treatment	-0.3360976
Std. error skewness	control	0.4636835
	treatment	0.4636835
Kurtosis	control	0.4103199
	treatment	-0.8488039
Std. error kurtosis	control	0.9017205
	treatment	0.9017205

descriptives(During, vars = c('value'), splitBy = c('condition'), skew = TRUE, kurt = TRUE, hist = TRUE)

DESCRIPTIVES

Descriptives

	condition	value
N	control	25
	treatment	25
Missing	control	0
	treatment	0
Mean	control	2.280000
	treatment	6.120000
Median	control	2
	treatment	7
Standard deviation	control	1.620699
	treatment	1.235584
Minimum	control	1
	treatment	3
Maximum	control	6
	treatment	7
Skewness	control	1.164925
	treatment	-1.542222
Std. error skewness	control	0.4636835
	treatment	0.4636835
Kurtosis	control	0.3751193
	treatment	1.652427
Std. error kurtosis	control	0.9017205
	treatment	0.9017205

descriptives(Post, vars = c('value'), splitBy = c('condition'), skew = TRUE, kurt = TRUE, hist = TRUE)

DESCRIPTIVES

Descriptives

	condition	value
N	control	25
	treatment	25
Missing	control	0
	treatment	0
Mean	control	3.240000
	treatment	6.120000
Median	control	3
	treatment	6
Standard deviation	control	1.854724
	treatment	0.9712535
Minimum	control	1
	treatment	3
Maximum	control	7
	treatment	7
Skewness	control	0.5977686
	treatment	-1.443081
Std. error skewness	control	0.4636835
	treatment	0.4636835
Kurtosis	control	-0.5449346
	treatment	3.023923
Std. error kurtosis	control	0.9017205
	treatment	0.9017205


```
#Simple Effects Option 1
# Question 5: Simple Effects Analyses
# Note: notice that a Welch's correction was added to the code for the third t-test since levene's was sign
ificant for those two groups (i.e., treatment and control for the "Post" time point)
ttestIS(data=Pre, vars = 'value', group = 'condition', eqv = T, effectSize = T, desc = TRUE)
```

INDEPENDENT SAMPLES T-TEST

Independent Samples T-Test

		Statistic	df	р		Effect Size
value	Student's t	1.454643	48.00000	0.1522766	Cohen's d	0.4114353

Note. H_a μ _{control} \neq μ _{treatment}

ASSUMPTIONS

Homogeneity of Variances Test (Levene's)

	F	df	df2	р
value	1.674873	1	48	0.2017993

Note. A low p-value suggests a violation of the assumption of equal variances

Group Descriptives

	Group	N	Mean	Median	SD	SE
value	control	25	4.080000	4.000000	1.320353	0.2640707
	treatment	25	3.480000	4.000000	1.584298	0.3168596

ttestIS(data=During, vars = 'value', group = 'condition', eqv = T, effectSize = T, desc = TRUE)

INDEPENDENT SAMPLES T-TEST

Independent Samples T-Test

		Statistic	df	р		Effect Size
value	Student's t	-9.421126	48.00000	< .0000001	Cohen's d	-2.664697

Note. H_a μ _{control} \neq μ _{treatment}

ASSUMPTIONS

Homogeneity of Variances Test (Levene's)

	F	df	df2	р
value	2.764349	1	48	0.1029033

Note. A low p-value suggests a violation of the assumption of equal variances

Group Descriptives

	Group	N	Mean	Median	SD	SE
value	control	25	2.280000	2.000000	1.620699	0.3241399
	treatment	25	6.120000	7.000000	1.235584	0.2471167

ttestIS(data=Post, vars = 'value', group = 'condition', welchs = T, eqv = T, effectSize = T, desc = TRUE)

INDEPENDENT SAMPLES T-TEST

Independent Samples T-Test

		Statistic	df	р		Effect Size
value	Student's t	-6.877969	48.00000	< .0000001	Cohen's d	-1.945384
	Welch's t	-6.877969	36.24219	< .0000001	Cohen's d	-1.945384

Note. H_a μ _{control} \neq μ _{treatment}

ASSUMPTIONS

Homogeneity of Variances Test (Levene's)

	F	df	df2	р
value	10.74671	1	48	0.0019470

Note. A low p-value suggests a violation of the assumption of equal variances

Group Descriptives

	Group	N	Mean	Median	SD	SE
value	control	25	3.240000	3.000000	1.854724	0.3709447
	treatment	25	6.120000	6.000000	0.9712535	0.1942507

#Simple Effects Option 2
#Question 4: Assumptions for simple effect analyses (subset by condition)

```
#Normal distribution, but to do this, you can first create a subset for each time point
Treatment <- subset(science.wide, science.wide$condition == "treatment")</pre>
Control <- subset(science.wide, science.wide$condition == "control")</pre>
# Then run descriptives of each time point by condition
describe.by(Treatment)
Warning: describe.by is deprecated. Please use the describeBy function
Warning in describeBy(x = x, group = group, mat = mat, type = type, ...): no
grouping variable requested
                          sd median trimmed mad min max range skew kurtosis
          vars n mean
                                                           24 0.00
Subject*
             2 25 13.00 7.36
                                 13
                                      13.00 8.90
                                                  1 25
                                                                       -1.34
condition*
             3 25 1.00 0.00
                                       1.00 0.00
                                                  1 1
                                                                NaN
                                                                         NaN
                                  1
                                                            0
             4 25 3.48 1.58
                                      3.48 1.48 1
                                                      6
                                                            5 -0.30
                                                                       -1.08
pre
during
             5 25 6.12 1.24
                                       6.33 0.00 3
                                                      7
                                                            4 -1.36
                                                                        0.79
             6 25 6.12 0.97
                                       6.24 1.48 3
                                                      7
                                                            4 -1.27
                                                                        1.81
post
            se
Subject*
          1.47
condition* 0.00
pre
          0.32
during
          0.25
          0.19
post
describe.by(Control)
Warning: describe.by is deprecated. Please use the describeBy function
Warning: no grouping variable requested
                          sd median trimmed mad min max range skew kurtosis
          vars n mean
Subject*
             2 25 38.00 7.36
                                 38
                                      38.00 8.90 26 50
                                                           24 0.00
                                                                      -1.34
condition*
             3 25 1.00 0.00
                                       1.00 0.00
                                                 1 1
                                                            0 NaN
                                                                        NaN
pre
             4 25 4.08 1.32
                                      4.05 1.48 1
                                                      7
                                                            6 0.17
                                                                      -0.14
during
             5 25 2.28 1.62
                                       2.05 1.48
                                                 1
                                                            5 1.03
                                                                      -0.17
             6 25 3.24 1.85
                                  3
                                       3.10 1.48 1
                                                      7
                                                            6 0.53
                                                                      -0.86
post
```

```
se
Subject*
           1.47
condition* 0.00
           0.26
pre
           0.32
during
           0.37
post
#Simple Effects Option 2
# Question 5: Simple Effects Analyses - Subset by condition, Treatment
modeltreat <- anovaRM(data = Treatment,</pre>
                 rm = list(list(label = 'Time',
                                 levels = c('pre', 'during', 'post'))),
                 rmCells = list(list(measure = 'pre', cell = 'pre'),
                                 list(measure = 'during', cell = 'during'),
                                 list(measure = 'post', cell = 'post')),
                 rmTerms = list('Time'),
                 effectSize = c('partEta', 'eta'),
                 spherTests = TRUE,
                 spherCorr = c('none', 'GG'),
                 postHoc = list('Time'),
                 postHocCorr = 'holm',
                 emMeans = \sim Time,
                 emmTables = T)
modeltreat
```

REPEATED MEASURES ANOVA Within Subjects Effects **Sphericity Correction** df Sum of Squares Mean Square η² η²-p p < .0000001 0.0000001</pre> $\substack{116.16000\\116.16000}$ 58.080000 71.039209 28.49387 28.49387 0.4928717 0.4928717 Time 0.5428037 1.635153 Greenhouse-Geisser 0.5428037 97.84000 97.84000 2.038333 2.493140 **Residual** 48 39.243680 Greenhouse-Geisser Note. Type 3 Sums of Squares

Between Subjects Effects

	Sum of Squares	df	Mean Square	F	р	η²	η² -p
Residual	21.68000	24	0.9033333				

Note. Type 3 Sums of Squares

ASSUMPTIONS

Tests of Sphericity

	Mauchly's W	р	Greenhouse-Geisser ε	Huynh-Feldt ε
Time	0.7768731	0.0548310	0.8175767	0.8691952

POST HOC TESTS

Post Hoc Comparisons - Time

Time		Time	Mean Difference	SE	df	t	p-holm
pre	_	during	-2.640000	0.4756750	24.00000	-5.550008	0.0000208
	-	post	-2.640000	0.4118252	24.00000	-6.410487	0.0000038
during	-	post	0.000000	0.3055050	24.00000	0.000000	1.0000000

ESTIMATED MARGINAL MEANS

TIME

Estimated Marginal Means - Time						
Time	Lower	Upper				
pre during post	3.480000 6.120000 6.120000	0.3168596 0.2471167 0.1942507	2.826034 5.609976 5.719086	4.133966 6.630024 6.520914		


```
#Simple Effects Option 2
# Question 5: Simple Effects Analyses - Subset by condition, Control
modelcont <- anovaRM(data = Control,</pre>
                 rm = list(list(label = 'Time',
                                levels = c('pre', 'during', 'post'))),
                 rmCells = list(list(measure = 'pre', cell = 'pre'),
                                 list(measure = 'during', cell = 'during'),
                                 list(measure = 'post', cell = 'post')),
                 rmTerms = list('Time'),
                 effectSize = c('partEta', 'eta'),
                 spherTests = TRUE,
                 spherCorr = c('none', 'GG'),
                 postHoc = list('Time'),
                 postHocCorr = 'holm',
                 emMeans = \sim Time,
                 emmTables = T)
modelcont
```

REPEATED MEASURES ANOVA Within Subjects Effects Sphericity Correction Sum of Squares df Mean Square η²-p None Greenhouse-Geisser 40.56000 40.56000 20.280000 22.125511 6.572560 6.572560 0.0029999 0.0039992 0.1778947 0.1778947 Time 0.2149823 2 1.833178 0.2149823 3.085556 3.366346 Residual 148.10667 48 43.996273 Greenhouse-Geisser 148.10667 Note. Type 3 Sums of Squares

Between Subjects Effects

	Sum of Squares	df	Mean Square	F	р	η²	η²-p
Residual	39.33333	24	1.638889				

Note. Type 3 Sums of Squares

ASSUMPTIONS

Tests of Sphericity

	Mauchly's W	р	Greenhouse-Geisser ε	Huynh-Feldt ε
Time	0.9089985	0.3337923	0.9165890	0.9886273

POST HOC TESTS

Post Hoc Comparisons - Time

Time		Time	Mean Difference	SE	df	t	p-holm
pre during	- - -	during post post	1.8000000 0.8400000 -0.9600000	0.4281744 0.5588083 0.4949074	24.00000 24.00000 24.00000	4.203894 1.503199 -1.939757	0.0009431 0.1458335 0.1284987

ESTIMATED MARGINAL MEANS

TIME

Estimated Marginal Means - Time							
Time	Mean	SE	Lower	Upper			
pre during post	4.080000 2.280000 3.240000	0.2640707 0.3241399 0.3709447	3.534985 1.611008 2.474408	4.625015 2.948992 4.005592			

