第1章 随机事件及其概率

(1) 排列	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。			
组合公式	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。			
	加法原理 (两种方法均能完成此事): m+n			
(2) (-)	某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种			
(2) 加法	方法来完成,则这件事可由 m+n 种方法来完成。			
和乘法原	乘法原理 (两个步骤分别不能完成这件事): m×n			
理	某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种			
	方法来完成,则这件事可由 m×n 种方法来完成。			
	重复排列和非重复排列(有序)			
(3) 一些	对立事件 (至少有一个)			
常见排列	顺序问题			
(4) 随机	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进			
试验和随	一次试验之前却不能断言它出现哪个结果,则称这种试验为 随机试验 。			
机事件	试验的可能结果称为 随机事件 。			
	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:			
·-> ** !	✓ 每进行一次试验,必须发生且只能发生这一组中的一个事件;			
(5) 基本	✓ 任何事件,都是由这一组中的部分事件组成的。			
事件、样 	这样一组事件中的每一个事件称为 基本事件 ,用ω来表示。			
本空间和	基本事件的全体,称为试验的 样本空间 ,用Ω表示。			
事件	一个 事件 就是由 Ω 中的部分点 (基本事件 ω) 组成的集合。通常用大写字母 A, B, C,			
	表示事件,它们是Ω的子集。			

Ω 为必然事件,Ø 为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事 件 (Ω) 的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: ✓ 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生): $A \subset B$ ✓ 如果同时有 $A \subset B$, $B \supset A$, 则称事件A与事件B等价, 或称A等于B: A=B。 ✓ A, B 中至少有一个发生的事件: $A \cup B$, 或者 A + B. ✓ 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可 表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。 ✓ A, B同时发生: $A^{\bigcap} B$, 或者 AB, $A^{\bigcap} B = \emptyset$, 则表示 A = B 不可能同时发生, (6)事件 的关系与 称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。 ✓ Ω -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A。它表示 A 不发生的 运算 事件。互斥未必对立。 ②运算: 交换律: AUB=BUA ANB=BNA 结合率: A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率: (AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

德摩根率:
$$\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$$
 $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

(7) 概率

件:

设 Ω 为样本空间,A为事件,对每一个事件A都有一个实数 P(A),若满足下列三个条

的公理化

1° 0≤P(A)≤1, **非负性**

定义

2° P(Ω) =1, **规范性**

	3° 对于两两互不相容的事件 A_1 , A_2 , …有					
	$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$					
	常称为 可列(完全)可加性 。					
	则称 P(A)为事件 ^A 的 概率 。					
	$1^{\circ} \Omega = \left\{ \omega_1, \omega_2 \cdots \omega_n \right\},$					
(8) 古典	$P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n}$					
(5) 白英	设任一事件 A ,它是由 $^{\omega_1,\omega_2\cdots\omega_m}$ 组成的,则有					
「妖 <u>华</u> 	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$					
	$=\frac{m}{n}=A$ 所包含的基本事件数 基本事件总数					
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的					
(9) 几何	每一个基本事件可以使用一个有界区域来描述,则称此随机试验为 几何概型。					
概型	对任一事件 A, $P(A) = \frac{L(A)}{L(\Omega)}$ 。 其中 L 为几何度量(长度、面积、体积)。					
(10) 加	P(A+B)=P(A)+P(B)-P(AB)					
法公式	当 P(AB) = 0 时, P(A+B)=P(A)+P(B)					
(11))計	P(A-B)=P(A)-P(AB)					
(11) 减	当 B⊂A 时,P(A-B)=P(A)-P(B)					
法公式	当 $A = \Omega$ 时, $P(\overline{B}) = 1 - P(B)$					
(12) 条	定义 设 A、B 是两个事件,且 P(A)>0,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事件 B 发					
件概率	生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。					
	条件概率是概率的一种,所有概率的性质都适合于条件概率。					

	例如 P(Ω/B)=1⇒P(¬B/A)=1-P(B/A)			
(13) 乘	乘法公式: $P(AB) = P(A)P(B/A)$			
	更一般地,对事件 A1,A2,An,若 P(A1A2An-1)>0,则有			
法公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2A_{n-1})$			
	①两个事件的独立性			
	✓ 设事件 A 、 B 满足 $P(AB) = P(A)P(B)$,则称事件 A 、 B 是相互独立的。			
	✓ 若事件 A 、 B 相互独立,且 $^{P(A)>0}$,则有			
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$			
	✓ 若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独立。			
(14) 独	✓ 必然事件Ω和不可能事件 Ø 与任何事件都相互独立。			
立性	✓ Ø 与任何事件都互斥。			
	②多个事件的独立性			
	设 ABC 是三个事件,如果满足两两独立的条件,			
	P(AB)=P(A)P(B); $P(BC)=P(B)P(C)$; $P(CA)=P(C)P(A)$			
	并且同时满足 P(ABC)=P(A)P(B)P(C)			
	那么 A、B、C 相互独立 。			
	对于 n 个事件类似。			
	设事件 B_1,B_2,\cdots,B_n 满足			
	$1^{\circ B_1, B_2, \cdots, B_n}$ 两两互不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$,			
(15) 全	2° $A \subset \bigcup_{i=1}^{n} B_{i}$			
概率公式				
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$			

	设事件 B ₁ , B ₂ , , B _n 及 A 满足
	1° B_1 , B_2 ,, B_n 两两互不相容, $P(Bi) > 0$, $i = 1$, 2,, n ,
	$2^{\circ} A \subset \bigcup_{i=1}^{n} B_{i}, P(A) > 0,$
(16) 贝	贝山
叶斯公式	$P(B_i / A) = \frac{P(B_i)P(A/B_i)}{\sum_{j=1}^{n} P(B_j)P(A/B_j)}, i=1, 2,n_o$
	此公式即为 贝叶斯公式 。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫 先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$, 通常
	 称为 后验概率 。贝叶斯公式反映了"因果"的概率规律,并作出了"由果朔因"的推断。
	我们作了 n 次试验,且满足
	✓ 每次试验只有两种可能结果, A 发生或 A 不发生;
	\checkmark n 次试验是重复进行的,即 A 发生的概率每次均一样;
(17) (白	\checkmark 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响
(17) 伯	的。
努利概型	这种试验称为 伯努利概型 ,或称为 n 重伯努利试验。
	$\begin{bmatrix} & & & & & & & \\ & & & & & & \\ & & & & $
	试验中 A 出现 $^{k(0 \le k \le n)}$ 次的概率,
	$P_n(k) = C_n^k p^k q^{n-k}, k = 0,1,2,\dots,n$

第二章 随机变量及其分布

(1) 离	设离散型随机变量 X 的可能取值为 $X_k(k=1,2,)$ 且取各个值的概率,即事件 $(X=X_k)$ 的概				
散型随	率为 P(X=x _k)=p _k ,k=1,2,,				
机变量	则称上式为 离散型随机变量 X 的概率分布或分布律 。有时也用分布列的形式给出:				
的分布	$\frac{X}{P(X=x_k)} \left \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} \right $				
律	显然分布律应满足下列条件:				
	∞				
	(1) $p_k \ge 0$, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$				
(2) 连	设 $F(x)$ 是随机变量 X 的分布函数,若存在非负函数 $f(x)$,对任意实数 x ,有				
续型随	$F(x) = \int_{-\infty}^{x} f(x)dx$				
机变量	f(x) = 0				
的分布	则称 X 为 连续型随机变量 。 $f^{(x)}$ 称为 X 的概率密度函数或密度函数,简称 概率密度 。				
密度	密度函数具有下面 4 个 性质 :				
山 皮	$1^{\circ} f(x) \ge 0;$				
	$2^{\circ} \int_{-\infty}^{+\infty} f(x) dx = 1;$				
	3° 对于任意实数 $x_1, x_2(x_1 \le x_2), P\{x_1 < X \le x_2\} = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx;$				
	4° 若 $f(x)$ 在点 x 处连续,则有 $F^{'}(x)=f(x)$ 。				
(3) 离	$P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$				
散与连	积分元 $f(x)dx$ 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量				
续型随	理论中所起的作用相类似。				
机变量					

的关系

变量落入区间 (-∞, x]内的概率。

布函数

$$F(x) = P(X \le x)$$

称为**随机变量 X 的分布函数**,本质上是一个累积函数。

 $P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间 (a,b] 的概率。分布函数 F(x) 表示随机

分布函数具有如下**性质**:

1°
$$0 \le F(x) \le 1$$
, $-\infty < x < +\infty$;

2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$;

3°
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;

4°
$$F(x+0) = F(x)$$
, 即 $F(x)$ 是右连续的;

5°
$$P(X = x) = F(x) - F(x - 0)$$
.

对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$;

对于连续型随机变量, $F(x) = \int_{-\infty}^{x} f(x)dx$ 。

泊松分布	设随机变量 X 的分布律为
	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda} , \lambda > 0 , k = 0,1,2 \cdots,$
	则称随机变量 X 服从参数为 λ 的 泊松分布 ,记为 $X \sim \pi(\lambda)$ 或者 $P(\lambda)$ 。
	泊松分布为二项分布的极限分布(np=λ,n→∞)。
	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, 2 \cdots, l$ $l = \min(M, n)$
布	随机变量 X 服从参数为 n,N,M 的 超几何分布 ,记为 H(n,N,M)。
几何分布	$P(X = k) = q^{k-1}p, k = 1,2,3,\dots$, 其中 p≥0, q=1-p。
	随机变量 X 服从参数为 p 的 几何分布 ,记为 G(p)。
均匀分布	设随机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f^{(x)}$ 在 $[a,b]$ 上为常数
	$\frac{1}{b-a}$,即
	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & 其他, \end{cases}$
	则称随机变量 ^X 在[a,b]上服从 均匀分布 ,记为 X~U(a,b)。
	分布函数为
	$\begin{cases} 0, & x < a, \\ \\ \frac{x-a}{b-a}, & a \leqslant x \leqslant b \end{cases}$
	\$ \$\frac{\pi}{\pi} \tag{\pi} \tag{\pi}\$
	$F(x) = \int_{-\infty}^{x} f(x)dx = $ 1, x>b.
	当 $a \le x_1 < x_2 \le b$ 时,X 落在区间(x_1, x_2)内的概率为
	$P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a}$

指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $^{\lambda > 0}$,则称随机变量 X 服从参数为 $^{\lambda}$ 的**指数分布**。

X 的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

记住积分公式:

$$\int_{0}^{+\infty} x^n e^{-x} dx = n!$$

正态分布

设随机变量 X 的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$

其中 $^{\mu}$ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 $^{\mu}$ 、 σ 的**正态分布或高**

斯 (Gauss) 分布,记为 $X \sim N(\mu, \sigma^2)$ 。

f(x)具有如下**性质**:

1° f(x) 的图形是关于 $x = \mu$ 对称的;

2° 当
$$^{x = \mu}$$
时, $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$ 为最大值;

若 $X \sim N(\mu, \sigma^2)$,则X的分布函数为

$$F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

参数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为**标准正态分布**,记为 $X\sim N(0,1)$,其密

度函数记为

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty,$$

分布函数为

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
.

 $\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。

$$\Phi(-x) = 1 - \Phi(x) \perp \Phi(0) = \frac{1}{2}$$
.

如果
$$X \sim N(\mu, \sigma^2)$$
 , 则 $\frac{X - \mu}{\sigma} \sim N(0,1)$ 。

$$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)_{\bullet}$$

(6) 分	下分位表:	$P(X \le \mu_{\alpha}) = \alpha$;		
位数	上分位表:	$P(X > \mu_{\alpha}) = \alpha$		
(7) 函	离散型	已知 X 的分布列为		
数分布		$\frac{X}{P(X=x_i)} \left \frac{x_1, x_2, \cdots, x_n, \cdots}{p_1, p_2, \cdots, p_n, \cdots} \right $		
		$Y = g(X)$ 的分布列 ($y_i = g(x_i)$ 互不相等) 如下:		
		$\frac{Y}{P(Y=y_i)} \left \frac{g(x_1), g(x_2), \cdots, g(x_n), \cdots}{p_1, p_2, \cdots, p_n, \cdots} \right ,$		
		若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。		
	连续型	先利用 X 的概率密度 f _x (x)写出 Y 的分布函数 F _Y (y) = P(g(X)≤y),再利用变		
		上下限积分的求导公式求出 f _Y (y)。		

第三章 二维随机变量及其分布

(1) 联合

分布

离散型

如果二维随机向量 ξ (X, Y) 的所有可能取值为至多可列个有序对 (x,y),

则称 ξ 为**离散型随机**量。

设 ξ = (X, Y) 的所有可能取值为 $(x_i,y_j)(i,j$ = 1,2,...) , 且事件{ ξ = (x_i,y_j) }

的概率为 p_{ij} ,称

$$P\{(X,Y) = (x_i, y_j)\} = p_{ij}(i, j = 1, 2, \cdots)$$

为 $\xi = (X, Y)$ 的分布律或称为 X 和 Y 的**联合分布律**。联合分布有时也用

下面的概率分布表来表示:

X	<i>y</i> 1	y 2		<i>Yi</i>	
X ₁	<i>p</i> ₁₁	<i>p</i> ₁₂	•••	p_{1j}	•••
X2	<i>p</i> ₂₁	<i>p</i> ₂₂	•••	<i>p</i> _{2j}	
:	:	:		:	:
Xi	p _{i1}			p_{ij}	
:	:	:		:	:

这里 pjj具有下面两个性质:

- (1) $p_{ij} \ge 0$ (i,j=1,2,...);
- (2) $\sum_{i} \sum_{j} p_{ij} = 1$.

	连续型	对于二维随机向量 $\xi=(X,Y)$, 如果存在非负函数
		$f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边分别平行于坐标轴
		的矩形区域 D,即 D={(X,Y) a <x<b,c<y<d}有< td=""></x<b,c<y<d}有<>
		$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$
		则称 ξ 为 连续型随机向量 ;并称 $f(x,y)$ 为 $\xi = (X, Y)$ 的分布密度或称为 X
		和 Y 的 联合分布密度 。
		分布密度 f(x,y)具有下面两个 性质 :
		(1) f(x,y)≥0;
		(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$
(2) 二维	$\xi(X=x,Y=$	$(x,y) = \xi(X = x \cap Y = y)$
随机变量		
的本质		

(3) 联合

设(X, Y)为二维随机变量,对于任意实数 x,y,二元函数

分布函数

$$F(x, y) = P\{X \le x, Y \le y\}$$

称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的**联合分布函数**。

分 布 函 数 是 一 个 以 全 平 面 为 其 定 义 域 , 以 事 件 $\{(\omega_1,\omega_2)|-\infty < X(\omega_1) \leq x, -\infty < Y(\omega_2) \leq y\} \text{ 的概率为函数值的一个实值函数。分布函数}$

F(x,y)具有以下的基本性质:

- (1) $0 \le F(x, y) \le 1$;
- (2) F (x,y) 分别对 x 和 y 是非减的,即

当 x₂>x₁时,有 F(x₂,y)≥F(x₁,y);当 y₂>y₁时,有 F(x,y₂)≥F(x,y₁);

(3) F(x,y) 分别对 x 和 y 是右连续的,即

$$F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);$$

- **(4)** $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$
- (5) 对于 $x_1 < x_2$, $y_1 < y_2$,

 $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$

(4) 离散

$$P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dx dy$$

型与连续

型的关系

(5) 边缘 | 离散型

X 的边缘分布为

分布

$$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij}(i, j = 1, 2, \dots);$$

Y的边缘分布为

$$P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij}(i, j = 1, 2, \dots)_{\bullet}$$

	连续型	X 的边缘分布密度为			
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$			
		Y的边缘分布密度为			
		$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$			
(6) 条件	离散型	在已知 X=x;的条件下,Y 取值的条件分布为			
分布		$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$			
		在已知 Y=yi的条件下,X 取值的条件分布为			
		$P(X = x_i \mid Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$			
	连续型	在已知 Y=y 的条件下,X 的条件分布密度为			
		$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$			
		在已知 X=x 的条件下,Y 的条件分布密度为			
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$			
(7) 独立	一般型	$F(X,Y) = F_X(x)F_Y(y)$			
性	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$			
		有零不独立			
	连续型	$f(x,y) = f_X(x)f_Y(y)$			
		直接判断,充要条件:			
		①可分离变量			
		②正概率密度区间为矩形			
	二维正态	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$			
	יוו כל	$\rho = 0$			

随机变量

若 X₁,X₂,...X_m,X_{m+1},...X_n 相互独立, h,g 为连续函数,则:

的函数

h (X₁, X₂,...X_m) 和 g (X_{m+1},...X_n) 相互独立。

特例: 若 X 与 Y 独立,则: h (X) 和 g (Y) 独立。

例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。

(8) 二维 设随机向量 (X, Y) 的分布密度函数为

均匀分布

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & \text{其他} \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 $(X,Y) \sim U$ (D)。 例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

图 3.3

(9) 二维

设随机向量 (X, Y) 的分布密度函数为

正态分布

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$$

其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$ 是 5 个参数,则称(X,Y)服从**二维正态分布**,

记为 (X, Y) ~N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$).

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

即 X ~ N (μ_1, σ_1^2), Y ~ $N(\mu_2, \sigma_2^2)$.

但是若 X ~ N (μ_1 , σ_1^2),Y ~ $N(\mu_2$, σ_2^2), (X, Y)未必是二维正态分布。

(10) 函

Z=X+Y

根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$

数分布

对于连续型, $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$

两个独立的正态分布的和仍为正态分布 ($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。

n 个相互独立的正态分布的线性组合, 仍服从正态分布。

$$\mu = \sum_{i} C_i \mu_i$$
, $\sigma^2 = \sum_{i} C_i^2 \sigma_i^2$

Z=max,m 若 $X_1, X_2 \cdots X_n$ 相互独立,其分布函数分别为 $F_{x_1}(x), F_{x_2}(x) \cdots F_{x_n}(x)$,则

in(X₁,X₂, ... | Z=max,min(X₁,X₂,...X_n)的分布函数为:

 X_n)

 $F_{\text{max}}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$

 $F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$

 χ^2 分布

设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明

它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 W 服从自由度为 n 的 χ^2 分布,记为 W ~ $\chi^2(n)$,其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2} - 1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。

 χ^2 分布满足可加性:设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$$

t 分布

设 X, Y 是两个相互独立的随机变量, 且

$$X \sim N(0,1), Y \sim \chi^2(n),$$

可以证明函数

$$T = \frac{X}{\sqrt{Y/n}}$$

的概率密度为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$$

我们称随机变量 T 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$ 。

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

F 分布

设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且 X 与 Y 独立,可以证明 $F = \frac{X/n_1}{Y/n_2}$ 的概率密度

函数为

$$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1 + n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$$

我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,

记为 F~f(n₁, n₂).

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

第四章 随机变量的数字特征

(1) 一维	离散型	连续型
--------	-----	-----

随机变量	期望	设 X 是离散型随机变量, 其分布	设 X 是连续型随机变量, 其概率
的数字特	期望就是平均值	律为 P($X=x_k$) = p_k ,	密度为 f(x),
征		k=1,2,,n,	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
		$E(X) = \sum_{k=1}^{n} x_k p_k$	(要求绝对收敛)
		(要求绝对收敛)	
	函数的期望	Y=g(X)	Y=g(X)
		$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$
	方差		$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$
	$D(X)=E[X-E(X)]^2,$	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	-∞
	标准差		
	$\sigma(X) = \sqrt{D(X)} ,$		

	矩	①对于正整数 k, 称随机变量 X	①对于正整数 k, 称随机变量 X 的
		的k次幂的数学期望为X的k阶	k 次幂的数学期望为 X 的 k 阶原
		原点矩,记为 vk,即	点矩,记为 Vk,即
		$v_k = E(X^k) = \sum_i x_i^k p_i$, k=1,2,	$v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx,$
		②对于正整数 k, 称随机变量 X	k=1,2,
		与 E (X) 差的 k 次幂的数学期	②对于正整数 k, 称随机变量 X 与
		望为 X 的 k 阶中心矩,记为 μ_k ,	E (X) 差的 k 次幂的数学期望为
		即	X 的 k 阶中心矩,记为 μ_k ,即
		$\mu_k = E(X - E(X))^k$	$\mu_k = E(X - E(X))^k$
		$= \sum_{i} (x_i - E(X))^k p_i \qquad ,$	$= \int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx,$
		k=1,2,	k=1,2,
	切比雪夫不等式	设随机变量 X 具有数学期望 $E(X) = \mu$,方差 $D(X) = \sigma^2$,则对于	
		任意正数ε,有下列切比雪夫不等	式
		$ P(X-\mu \geq\varepsilon)\leq\frac{\sigma^2}{\varepsilon^2}$	
		切比雪夫不等式给出了在未知X	的分布的情况下,对概率
		$P(X-\mu \geq \varepsilon)$	
		的一种估计,它在理论上有重要	意义。
(2) 期望	(1) E(C)=C		
的性质	(2) E(CX) = CE(X)		
	(3) E(X+Y)=	$E(X)+E(Y), E(\sum_{i=1}^{n} C_{i}X_{i}) = \sum_{i=1}^{n} C_{i}E(X_{i})$)
	(4) E(XY)=E(X) E(Y),充分条件: X 和 Y 独立;		
	充要条件: X 和 Y 不相关。		

(1) $D(C)=0$; $E(C)=C$		
(2) $D(aX)=a^2D(X)$; $E(aX)=aE(X)$		
(3) $D(aX+b)=a^2D(X)$; $E(aX+b)=aE(X)+b$		
(4) $D(X) = E(X^2)$)-E ² (X)	
(5) D(X±Y)=D	(X)+D(Y),充分条件: X 和 Y 独立	Σ;
	充要条件: X和Y不	相关。
$D(X\pm Y)=D(X\pm Y)$	$(X) + D(Y) \pm 2E[(X-E(X))(Y-E(Y))],$	无条件成立。
而 E(X+Y)=l	E(X)+E(Y),无条件成立。	
	期望	方差
0-1 分布 B(1, p)	p	p(1-p)
二项分布 B(n, p)	пр	np(1-p)
泊松分布 P(λ)	λ	λ
几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
超几何分布	nM	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$
H(n,M,N)	N	$N \setminus N \setminus N-1$
均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态分布	и	σ^2
$N(\mu, \sigma^2)$	<i>r</i> ·	U
χ ² 分布	n	2n
t 分布	0	$\frac{n}{n-2} (n>2)$
	(2) D(aX)=a ² D (3) D(aX+b)= (4) D(X)=E(X ²) (5) D(X±Y)=D (5) D(X±Y)=D (7) TE(X+Y)=1 (7) TE(X+Y)=1 (8) TE(X+Y)=1 (9) TE(X+Y)=1 (9) TE(X+Y)=1 (10) TE(X+Y)	(2) $D(aX)=a^2D(X)$; $E(aX)=aE(X)$ (3) $D(aX+b)=a^2D(X)$; $E(aX+b)=aE(X)+b$ (4) $D(X)=E(X^2)-E^2(X)$ (5) $D(X\pm Y)=D(X)+D(Y)$, 充分条件: X 和 Y 独立 充要条件: X 和 Y 不 $D(X\pm Y)=D(X)+D(Y)$ $\pm 2E[(X-E(X))(Y-E(Y))]$, 而 $E(X+Y)=E(X)+E(Y)$, 无条件成立。 期望 0-1 分布 $B(1,p)$ p 二项分布 $B(n,p)$ np 泊松分布 $P(\lambda)$ λ 几何分布 $G(p)$ $\frac{1}{p}$ 超 几 何 分 布 $\frac{nM}{N}$ $H(n,M,N)$ $\frac{a+b}{2}$ 指数分布 $e(\lambda)$ $\frac{1}{\lambda}$ 正 态 分 布 μ $N(\mu,\sigma^2)$ χ^2 分布 π

(5) 二维	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
随机变量的数字特		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =
		$\sum_{i} \sum_{j} G(x_i, y_j) p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$ $D(Y) = \sum_{i} [x_j - E(Y)]^2 p_{\bullet j}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
		j , , , , , , , , , , , , , , , , , , ,	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$
	协方差	对于随机变量 X 与 Y, 称它们的	二阶混合中心矩 μ_{11} 为 X 与 Y 的协
		 方差或相关矩,记为 $\sigma_{\scriptscriptstyle XY}$ 或 $\cos(X)$	(,Y), 即
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))]$	())].
		 与记号 σ _{xy} 相对应,X 与 Y 的方刻	≜ D (X) 与 D (Y) 也可分别记为
		$\sigma_{\scriptscriptstyle XX}$ 与 $\sigma_{\scriptscriptstyle YY}$ 。	

	相关系数		对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
			$\frac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
			为 X 与 Y 的相关系数,记作 ρ_{xy} (有时可简记为 ρ)。
			$ \rho \le 1$, 当 $ \rho = 1$ 时,称 X 与 Y 完全相关: $P(X = aY + b) = 1$
			完全相关 $\left\{ \begin{array}{ll} \mathbb{E}[a] & \exists \rho = \mathbb{I}[a] > 0, \\ \mathbb{E}[a] & \exists \rho = -\mathbb{I}[a] < 0, \end{array} \right.$
			而当 $\rho=0$ 时,称 X 与 Y 不相关。
			以下五个命题是等价的:
			$\bigcirc \rho_{XY} = 0;$
			②cov(X,Y)=0;
			$\Im E(XY) = E(X)E(Y);$
			4D(X+Y)=D(X)+D(Y);
			$\bigcirc D(X-Y)=D(X)+D(Y).$
	协方差矩阵		$ \begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix} $
	混合矩		对于随机变量 X 与 Y , 如果有 $E(X^kY^l)$ 存在, 则称之为 X 与 Y 的 $k+l$
			阶混合原点矩,记为 $ u_{kl}$; $k+l$ 阶混合中心矩记为:
			$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6) 协方	(1)	cov (X, Y)=	=cov (Y, X);
差的性质	(2)	cov(aX,bY)=ab cov(X,Y);
	(3)	$cov(X_1+X_2)$	$(X_{1},Y) = cov(X_{1},Y) + cov(X_{2},Y);$
	(4)	cov(X,Y)=I	E(XY)-E(X)E(Y).

(7) 独立

(1) 若随机变量 X 与 Y 相互独立,则 $\rho_{XY}=0$;反之不真。

和不相关

(2) 若 (X, Y) ~ N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$), 则 X 与 Y 相互独立的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

(1) 大数定律

切比雪夫

设随机变量 X₁, X₂, ...相互独立, 均具有有限方差, 且被同一常数 C

 $\overline{X} \to \mu$

大数定律

所界: D (X_i) <C(i=1,2,...),则对于任意的正数ε,有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right| < \varepsilon\right) = 1.$$

特殊情形: 若 X_1 , X_2 , ...具有相同的数学期望 $E(X_i) = \mu$, 则上式成为

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right) = 1.$$

伯努利大

设µ是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在每次试验中

数定律

发生的概率,则对于任意的正数ε,有

$$\lim_{n\to\infty} P\left(\left|\frac{\mu}{n}-p\right|<\varepsilon\right)=1.$$

伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率

与概率有较大判别的可能性很小,即

$$\lim_{n\to\infty} P\left(\left|\frac{\mu}{n}-p\right|\geq\varepsilon\right)=0.$$

这就以严格的数学形式描述了频率的稳定性。

辛钦大数

设 X_1 , X_2 , ..., X_n , ...是相互独立同分布的随机变量序列, 且 E (X_n)

定律

=μ,则对于任意的正数ε有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right) = 1.$$

(2) 中心极限	列维 - 林	设随机变量 X ₁ , X ₂ ,相互独立, 服从同一分布, 且具有相同的数学		
定理	德伯格定	期望和方差: $E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \cdots)$, 则随机变量		
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	理	$Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}}$		
		的分布函数 <i>F_n(x)</i> 对任意的实数 x, 有		
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$		
		此定理也称为独立同分布的中心极限定理。		
	棣莫弗 -	设随机变量 X_n 为具有参数 n , $p(0 的二项分布,则对于任意实$		
	拉普拉斯	数 x,有		
	定理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$		
(3) 二项定理	若当 N → °	$\rightarrow \infty$ 时, $\frac{M}{N} \rightarrow p(n, k$ 不变),则		
	$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} =$	$\stackrel{M}{\longrightarrow} C_n^k p^k (1-p)^{n-k} \qquad (N \longrightarrow \infty).$		
	超几何分布	布的极限分布为二项分布。		
(4) 泊松定理	若当 $n \to \infty$ 时, $np \to \lambda > 0$,则			
	$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$			
	其中 k=0,	0, 1, 2,, n,		

第六章 样本及抽样分布

二项分布的极限分布为泊松分布。

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为 总体
统计的基		(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。

本概念	个体	总体中的每一个单元称为 样品 (或 个体)。	
	样本	我们把从总体中抽取的部分样品 x_1, x_2, \cdots, x_n 称为 样本。 样本中所含的样品	
		数称为样本容量,一般用 n 表示。在一般情况下,总是把样本看成是 n 个	
		相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样	
		本。在泛指任一次抽取的结果时, x_1,x_2,\cdots,x_n 表示 n 个随机变量 (样本);	
		在具体的一次抽取之后, x_1, x_2, \dots, x_n 表示 n 个具体的数值(样本值)。我	
		们称之为样本的两重性。	
	样本函数	设 x_1, x_2, \cdots, x_n 为总体的一个样本,称	
	和统计量	$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$	
		为 样本函数 ,其中 φ 为一个连续函数。如果 φ 中不包含任何未知参数,则	
		ϕ (x_1, x_2, \dots, x_n) 为一个统计量。	

	常见统计	样本均值
	量及其性	$n_{i=1}$
	质	样本方差 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$
		样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_i)^2}.$
		样本 k 阶 原点矩
		$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$
		样本 k 阶 中心矩
		$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2, 3, \cdots$
		$E(\overline{X}) = \mu$, $D(\overline{X}) = \frac{\sigma^2}{n}$,
		$E(S^2) = \sigma^2$, $E(S^{*2}) = \frac{n-1}{n}\sigma^2$,
		其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为 二阶中心矩。
(2) 正态	正态分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数
总体下的 四大分布		$u \stackrel{def}{=} \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
	t 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数
		$t = \frac{1}{s - \mu} - t(n-1),$
		其中 t(n-1)表示自由度为 n-1 的 t 分布。
	χ ² 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数
		$w^{\frac{def}{}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 n-1 的 χ^2 分布。

	F 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而 y_1, y_2, \cdots, y_n 为来
		自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本函数
		$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为 n_2-1 的 F 分布。
(3) 正态		Z.
总体下分		
布的性质		

第七章 参数估计

(1) 点估

计

设总体 X 的分布中包含有未知数 $\theta_{\scriptscriptstyle 1}, \theta_{\scriptscriptstyle 2}, \cdots, \theta_{\scriptscriptstyle m}$, 则其分布函数可以表成 矩估计

 $F(x; \theta_1, \theta_2, \dots, \theta_m)$. 它的 k 阶原点矩 $v_k = E(X^k)(k = 1, 2, \dots, m)$ 中也包含了未知参数

 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。又设 x_1,x_2,\cdots,x_n 为总体 X 的 n 个样本值,

其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} \quad (k=1,2,\cdots,m).$$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原 则建立方程,即有

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \end{cases}$$

$$v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2$$

$$v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m.$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\cdots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\cdots,\theta_m)$ 的矩估计量。

若 $\hat{\theta}$ 为 θ 的矩估计,g(x)为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的**矩估计。**

	I		
	极大似	当总体 X 为连续型随机变量时,设其分布密度为 $f(x; \theta_1, \theta_2, \dots, \theta_m)$,其中	
	然估计	$\theta_1, \theta_2, \dots, \theta_m$ 为未知参数。又设 x_1, x_2, \dots, x_n 为总体的一个样本,称	
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$	
		为样本的 似然函数 ,简记为 <i>Ln.</i>	
		当总体 X 为离型随机变量时,设其分布律为 $P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_m)$,则称	
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$	
		为样本的 似然函数 。	
		若似然函数 $L(x_1,x_2,\cdots,x_n;\theta_1,\theta_2,\cdots,\theta_m)$ 在 $\hat{\theta}_1,\hat{\theta}_2,\cdots,\hat{\theta}_m$ 处取到最大值,则称	
		$\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_m$ 分别为 $\theta_1, \theta_2, \cdots, \theta_m$ 的最大似然估计值,相应的统计量称为 最大似然	
		估计量。	
		$\left \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \dots, m$	
		$\stackrel{\wedge}{B}$ 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的 极大似然估计。	
(2)	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的无	
估计		偏估计量。	
量的		$E(\overline{X}) = E(X), E(S^2) = D(X)$	
评 选	有效性		
标准		量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。	

	一致性	设 $\hat{\theta}_n$ 是 θ 的一串估计量,如果	果对于任意的正数ε,都有	
		$\lim_{n\to\infty}P(\overset{\wedge}{\theta}_n-\theta >\varepsilon)=0,$		
		则称 $\overset{\wedge}{ heta_n}$ 为 $ heta$ 的一致估计量(或相合估计量)。		
		$\stackrel{\wedge}{ }$ 为 $ heta$ 的无偏估计,且 $D($	$\hat{\theta}$) $\rightarrow 0 (n \rightarrow \infty)$,则 $\hat{\theta}$ 为 θ 的一致估计。	
		只要总体的 E(X)和 D(X)存	在,一切样本矩和样本矩的连续函数都是相应总体的	
		一致估计量。		
(3)	置信区	设总体 X 含有一个待估的	未知参数8。如果我们从样本x1,x,2,…,xn出发,找出两	
区间	间和置	个统计量 $\theta_1 = \theta_1(x_1, x_{,2}, \cdots, x_n)$	$\theta_1 = \theta_2(x_1, x_2, \dots, x_n)(\theta_1 < \theta_2)$,使得区间 $[\theta_1, \theta_2]$ 以1 –	
估计	信度	α(0 < α < 1)的概率包含这个	~待估参数 θ,即	
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$		
		那么称区间 $[\theta_1,\theta_2]$ 为 θ 的置信区间, $1-\alpha$ 为该区间的置信度(或置信水平)。		
	单正态	设 $x_1,x_{,2},\cdots,x_n$ 为总体 $X\sim N(\mu,\sigma^2)$ 的一个样本,在置信度为 $1-\alpha$ 下,我们来确定 μ 和		
	总体的	σ^2 的置信区间[$ heta_1, heta_2$]。具体步骤如下:		
	期望和	(i) 选择样本函数;		
	方差的	(ii) 由置信度1 – α, 查表	找分位数;	
	区间估	(iii)导出置信区间 $[heta_1, heta_2]$ 。		
	计	已知方差,估计均值	(i) 选择样本函数	
			$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1).$	
			(ii) 查表找分位数	
			$P\left(-\lambda \le \frac{\overline{x} - \mu}{\sigma_0/\sqrt{n}} \le \lambda\right) = 1 - \alpha.$	
			(iii) 导出置信区间	
			$\left[\overline{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \overline{x} + \lambda \frac{\sigma_0}{\sqrt{n}}\right]$	

未知方差,估计均值	(i) 选择样本函数
	$t = \frac{\overline{x} - \mu}{S/\sqrt{n}} \sim t(n-1).$
	(ii)查表找分位数
	$P\left(-\lambda \leq \frac{\overline{x}-\mu}{S/\sqrt{n}} \leq \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\overline{x} - \lambda \frac{S}{\sqrt{n}}, \overline{x} + \lambda \frac{S}{\sqrt{n}}\right]$
方差的区间估计	(i) 选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
	$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$
	(iii) 导出σ的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S, \sqrt{\frac{n-1}{\lambda_1}}S\right]$

第八章 假设检验

基本思 假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,想 即小概率原理。

为了检验一个假设 Ho 是否成立。我们先假定 Ho 是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定 Ho 是不正确的,我们拒绝接受 Ho;如果由此没有导出不合理的现象,则不能拒绝接受 Ho,我们称 Ho 是相容的。与 Ho 相对的假设称为备择假设,用 Ho 表示。

这里所说的小概率事件就是事件 $\{K \in R_{\alpha}\}$,其概率就是检验水平 α ,通常我们取 α =0.05,有时也取 0.01 或 0.10。

基本步	假设检验的基本步骤如下:					
骤	(1) 提出零假设 <i>H</i> ₀ ;					
	(2) 选择统计量 <i>K</i> ;					
	(3) 对于检验水平α查表找分位数λ;					
	(4) 由样本值 x_1, x_2, \cdots, x_n 计算统计量之值 K ;					
	将 \hat{K} 与 λ 进行比较,作出判断:当 $ \hat{K} > \lambda(\hat{gK} > \lambda)$ 时否定 H_0 ,否则认为 H_0 相容。					
两 类 错	第一类错误	当 Ho 为真时,而样本值却落入了否定域,按照我们规定的检验法则,				
误		应当否定 H。这时,我们把客观上 H。成立判为 H。为不成立(即否定				
		了真实的假设),称这种错误为"以真当假"的错误或第一类错误,证				
		α为犯此类错误的概率,即				
		P{否定 <i>H</i> ₀ <i>H</i> ₀ 为真}=α;				
		此处的α恰好为检验水平。				
	第二类错误	当 H ₁ 为真时,而样本值却落入了相容域,按照我们规定的检验法则,				
		应当接受 H。这时,我们把客观上 H。不成立判为 H。成立(即接受				
		了不真实的假设),称这种错误为"以假当真"的错误或第二类错误,				
		记β为犯此类错误的概率,即				
		P{接受 <i>H</i> ₀ <i>H</i> ₁ 为真}=β。				

两类错误的关	人们当然希望犯两类错误的概率同时都很小。但是,当容量 n 一定时,
系	α 变小,则 β 变大;相反地, β 变小,则 α 变大。取定 α 要想使 β 变小,则必
	须增加样本容量。
	在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性
	水平α。α大小的选取应根据实际情况而定。当我们宁可"以假为真"、
	而不愿"以真当假"时,则应把α取得很小,如 0.01,甚至 0.001。反
	之,则应把α取得大些。

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
已知 σ^2	H_0 : $\mu = \mu_0$	$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N (0, 1)	$ u > u_{1-\frac{\alpha}{2}}$
	$H_0: \mu \leq \mu_0$			$u > u_{1-\alpha}$
	$H_0: \mu \ge \mu_0$			$u < -u_{1-\alpha}$
未知 σ^2	H_0 : $\mu = \mu_0$	$T = \frac{\overline{x} - \mu_0}{S/\sqrt{n}}$	t(n-1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
	$H_0: \mu \leq \mu_0$			$t > t_{1-\alpha}(n-1)$
	$H_0: \mu \ge \mu_0$			$t < -t_{1-\alpha}(n-1)$
	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{\alpha}{2}}^2 (n-1)$ 或
 未知σ²				$w > \kappa_{1-\frac{\alpha}{2}}^2(n-1)$
NAMA	$H_0: \sigma^2 \le \sigma_0^2$	σ_0^2		$w > \kappa_{1-\alpha}^2(n-1)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$w < \kappa_{\alpha}^2(n-1)$