Химические реакции, стохастическое горение

Этап 2. Алгоритмы моделирования

Озьяс Стев Икнэль Дани

Содержание

1	Цель работы	3
2	Задачи	4
3	Описание алгоритмов	5
	3.1 Алгоритм для случая нулевой теплопроводности	. 5
	3.2 Алгоритм для случая бесконечной теплопроводности (адиабатиче-	-
	ский процесс)	. 5
	3.3 Численное решение системы дифференциальных уравнений	. 6
4	Выводы	7
5	Список литературы	8

1 Цель работы

Описать алгоритмы решения задачи.

2 Задачи

- 1. Напишите программу, моделирующую ансамбль частиц, в которых возможна мономолекулярная экзотермическая реакция. Рассмотрите случай нулевой теплопроводности. Постройте графики зависимости числа непрореагировавших частиц от времени при разных температурах. Сравните полученные графики с теоретическими зависимостями.
- 2. Постройте графики зависимости числа непрореагировавших частиц, температуры и скорости реакции от времени в случае бесконечной теплопроводности внутри области моделирования, считая процесс адиабатическим.

3 Описание алгоритмов

3.1 Алгоритм для случая нулевой теплопроводности

- 1. Инициализация: № частиц, температура Ты, параметры Еа, q, ы.
- 2. Для каждого временного шага:
 - Для каждой непрореагировавшей частицы:
 - Вычисляется энергия E = -kT * ln(rand()).
 - Если E > Ea, частица реагирует.
 - Обновляется N(t).
- 3. Построение графика N(t).

3.2 Алгоритм для случая бесконечной теплопроводности (адиабатический процесс)

- 1. После реакции каждой частицы:
 - Температура увеличивается:

$$\Delta T = \frac{q}{N_0 c}$$

- 2. Таким образом, с каждой реакцией растёт вероятность новых реакций.
- 3. Реакция моделируется до тех пор, пока N **№** 0.

3.3 Численное решение системы дифференциальных уравнений

$$\frac{dN}{dt} = -\frac{N}{\tau}e^{-E_a/kT}, \quad \frac{dT}{dt} = \frac{q}{N_0c} \cdot \frac{N}{\tau}e^{-E_a/kT}$$

Метод Эйлера или метод Рунге-Кутты используем для численного решения.

4 Выводы

Во время выполнения второго этапа проекта сделали теоретическое описание алгоритмов решения задачи в случаях нулевой теплопроводности и бесконечной теплопроводности.

5 Список литературы

- 1. Медведев Д.А. и др. Моделирование физических процессов и явлений на ПК: Учеб. пособие. Новосибирск: Новосиб. гос. ун-т, 2010. 101 с.
- 2. Gillespie D.T. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry. 1977. Vol. 81, No. 25. P. 2340–2361.
- 3. Yu C., Cai L., Chen J.-Y. Stochastic Modeling of Partially Stirred Reactor (PaSR) for the Investigation of the Turbulence-Chemistry Interaction for the Ammonia-Air Combustion. Flow, Turbulence and Combustion. 2023. Vol. 111. P. 575–597.