T1. 点对

限制

时间限制 1s, 空间限制 512M

题目描述

直线上有 n 个点 (n 为偶数) : $L=\{x_1,x_2,\cdots,x_n\}$,把 n 个点分成 $\frac{n}{2}$ 组点对 (a_i,b_i) , $i=1,2,\cdots,\frac{n}{2}$, $a_i,b_i\in L$,使得 $\sum_{i=1}^{\frac{n}{2}}|a_i-b_i|$ 最小。

请编写程序计算该最小值。

输入格式

输入数据第一行包含一个整数 n ,表示点的数量。

第二行包含 n 个用空格隔开的整数 x_1, x_2, \dots, x_n 。

输出格式

输出包含一个整数,表示 $\sum_{i=1}^{rac{n}{2}}|a_i-b_i|$ 的最小值。

样例

输入1

```
    1
    4

    2
    1
    2
    3
    4
```

输出1

1 2

输入2

```
    1
    4

    2
    0
    0
    0
```

输出2

1 0

数据范围

任务得分	n	x_i
20	$1 \le n \le 10$	$-10^4 \leq x_i \leq 10^4$
20	$1 \le n \le 1000$	$-10^4 \leq x_i \leq 10^4$
30	$1 \leq n \leq 10^5$	$-10^4 \leq x_i \leq 10^4$
30	$1 \leq n \leq 10^5$	$-10^9 \leq x_i \leq 10^9$

T2. 三进制

限制

时间限制 1s,空间限制 512M

题目描述

平衡三进制记数系统以 3 为基数,但其数码不是使用数字 0、1 和 2 ,而是用数字 -1、0 和 1 来表示一个数码。下表给出平衡三进制数对应的十进制数,其中我们以 2 表示 -1。

平衡三进制	十进制
102	8
1120.22	$32\frac{5}{9}$
2210.11	$-32\frac{5}{9}$

例如: $32\frac{5}{9}=1 imes 3^3+1 imes 3^2+(-1) imes 3^1+(-1) imes 3^{-1}+(-1) imes 3^{-2}$ 。

输入一个平衡三进制数,请将其转成对应的十进制数。

输入格式

在一行中输入一个平衡三进制数。

输出格式

在一行中输出对应的十进制数,应该是最简的带分数,必须满足C>1。

特别地,对于带分数形如 $A\frac{B}{C}$ 的输出的格式为 A B C (使用一个空格分隔);对于带分数形如 $\frac{B}{C}$ 的输出的格式 为 B C (使用一个空格分隔);对于带分数形如 A 的输出的格式为 A (使用一个空格分隔)。

样例

输入1

```
1 | 102
```

输出1

```
1 | 8
```

输入2

```
1 1120.22
```

输出2

```
1 | 32 5 9
2 |
```

输入3

```
1 2210.11
```

输出3

```
1 | -32 5 9
2 |
```

数据范围

任务得分	平衡三进制数长度	其他限制
20	≤ 10	保证没有小数点
20	≤ 30	保证没有小数点
20	≤ 10	保证没有数字 2
40	≤ 30	无

T3. 开普勒

限制

时间限制 1s, 空间限制 512M

题目描述

我们可以从一个排列计算其开普勒表示,由排列 $a_{1,2,\dots,n}$ 计算其开普勒表示 $K_{1,2,\dots,n}$,方 法如下:

建立n个带编号的点,编号为 $1,2,\ldots,n$,初始没有边。

连有向边 $i \rightarrow a_i, i \in [1, n]$ 。

由于a是一个排列,那么这个有向图必然由若干个有向圈构成,注意这里圈长可能为1,即可能出现自环。

对每个圈,从任意一个点出发,沿着边方向,遍历一遍(不重复访问点),按照顺序写下访问到的点 编号,并加括号,如:(2,5,3,4,9)表示一个圈 $2\to 5\to 3\to 4\to 9\to 2$,当然表示不唯一,例 如(3,4,9,2,5)。

将所有圈的表示放在一起,此时圈与圈的相对顺序可以任意,例如:(7,8,10,9)(1,5,3)(4,2)(6)

将每个圈旋转到以圈内最大值开头,例如: (10,9,7,8)(5,3,1)(4,2)(6)。

确定圈与圈之间的顺序,以圈内最大值为关键字,从小到大排列: (4,2)(5,3,1)(6)(10,9,7,8) 去掉括号,得到开普勒表示: 42531610978。

输入格式

第一行包含一个整数op

第二行包含一个整数1 <= n <= 200000

第三行包含n个数,表示1到n的排列

op = 1时读入一个排列表示a

op = 2时读入一个排列表示K

输出格式

op = 1时输出一行表示K

op = 2时输出一行表示排列a,不存在输出-1

样例

输入

输出

1 4 5 2 3 8 9 6 7 10

数据范围

任务得分	op,n
10	n=10,op=1
10	n=10,op=2
10	n=1000,op=1
10	n=1000,op=2
10	n=10000,op=1
10	n=10000,op=2
10	n=100000,op=1
10	n=100000,op=2
10	n=200000,op=1
10	n=200000,op=2

T4. 染色

限制

时间限制 1s, 空间限制 512M

题目描述

在二维平面上给出一个由偶数个点构成的凸多边形。

多边形的对边,就是多边形中相对的边。准确的定义是,n 边形中,两条边是对边当且仅当这两条边之间分别包含 $\frac{n}{2}-1$ 条边,例如在六边形中,我们顺时针将边标记为 1,2,3,4,5,6 ,则 1,4 是对边、2,5 是对边、3,6 是对边。

凸多边形每组对边所在的直线将平面分割成数个部分(平行的话是三个区域, 否则是四个区域), 将多边形所在的部分包括边界染上颜色。

现在会询问q个点,需要知道点所在的位置是否被染色。

输入格式

第一行一个偶数 $n(1 \le n \le 10^5, n \mod 2 = 0)$,代表凸多边形点的数量。

接下来 n 行按逆时针顺序给出凸多边形的所有点,第 i 行两个整数 $x_i,y_i (1 \le |x_i|,|y_i| \le 10^9)$, (x_i,y_i) 代表多边形第 i 个点的坐标。

接下来一行一个整数 $q(1 \le q \le 10^5)$,代表询问的点数。

接下来 q 行,第 i 行两个整数 $a_i, b_i (0 \le |a_i|, |b_i| \le 2 \cdot 10^{18})$ 。令 cnt_i 代表前 i 个询问中被染色的点的数量,则第 i 次询问的点的坐标为 $(a_i \operatorname{xor} cnt_{i-1}^3, b_i \operatorname{xor} cnt_{i-1}^3)$ 。

输出格式

共q行,第i行一个字符串 "Yes" 或 "No",如果第i次询问的点被染色则输出 "Yes",否则输出 "No"。

样例

输入

```
      1
      4

      2
      0
      0

      3
      1
      0

      4
      2
      1

      5
      1
      1

      6
      5
      7

      7
      1
      -1

      8
      0
      -1

      9
      -2
      -2

      10
      10
      8

      11
      25
      -28

      12
      -2
      -2
```

输出

```
1 No
2 Yes
3 Yes
4 Yes
5 No
```

样例解释

数据范围

任务得分	n,q
10	$1 \leq n,q \leq 10$
10	$1 \leq n \leq 50, 1 \leq q \leq 2000$
20	$1 \leq n, q \leq 2000$
60	$1 \leq n,q \leq 10^5$