Computergrafik SoSe 2012 Übung 2

Max Michels, Sebastian Kürten

10 Aufgabe 10

10.1 Teil a

10.1.1 Aufgabenstellung

Stellen Sie für die Gerade durch die Punkte (2,3) und (4,5) in der Ebene eine Geradengleichung der Form

$$ax + by + cw = 0$$

in homogenen Koordinaten (x, y, w) auf.

10.1.2 Lösung

Wir bestimmen die Geradengleichung durch Bildung des Kreuzprodukts der beiden Punkte in homogenen Koordinaten:

$$\begin{pmatrix} 2\\3\\1 \end{pmatrix} \times \begin{pmatrix} 4\\5\\1 \end{pmatrix} = \begin{pmatrix} 3-5\\4-2\\10-12 \end{pmatrix} = \begin{pmatrix} -2\\2\\-2 \end{pmatrix} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} a\\b\\c \end{pmatrix}$$

Damit ist die Geradengleichung:

$$x - y + w = 0$$

10.2 Teil b

10.2.1 Aufgabenstellung

Die Gleichung

$$x^2 + 2xw + y^2 - 12w^2 - 3wy = 0$$

in homogenen Koordinaten (x, y, w) beschreibt einen Kreis in der Ebene. Bestimmen Sie seinen Radius und den Mittelpunkt (in kartesischen Koordinaten).

10.2.2 Lösung

Die Gleichung wird in die Normalform überführt, in der sich Mittelpunkt und Radius ablesen lassen:

$$x^{2} + 2xw + y^{2} - 12w^{2} - 3wy = 0$$
$$= x^{2} + 2xw + w^{2} + y^{2} - 3wy + (\frac{3}{2})^{2}w^{2} - 12w^{2} - w^{2} - (\frac{3}{2})^{2}w^{2} = 0$$

$$= (x+w)^2 + (y - \frac{3}{2}w)^2 - \frac{61}{4}w^2 = 0$$

Wenn wir w = 1 setzen, erhalten wir:

$$= (x+1)^2 + (y-\frac{3}{2})^2 - \frac{61}{4} = 0$$

Der Mittelpunkt des Kreises ist daher $(-1, \frac{3}{2})$, der Radius $\frac{\sqrt{61}}{2}$.

11 Aufgabe 11

11.1 Aufgabenstellung

Bestimmen Sie die Abbildungsmatrix A (in homogenen Koordinaten) für die Zentralprojektion vom Punkt P = (4,1) auf die Getade g: x + 2y + 1 = 0.

11.2 Lösung

Zunächst führen wir eine Translation um (-4, -1) aus, um den Punkt P in den Ursprung zu verschieben. Dazu verwenden wir die folgende Matrix:

$$B = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Die Inverse (zum Zurückverschieben nach der Projektion) dieser Matrix ist:

$$B^{-1} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Wir brauchen noch eine Rotationsmatrix C, um die Projektionsgerade g auf eine Senkrechte der Form x=d abzubilden. Der Abstand d dieser Geraden lässt sich folgendermaßen ausrechnen:

Zunächst bestimmen wir zwei Punkte a_1 , a_2 auf der ursprünglichen Geraden g:

$$a_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, a_2 = \begin{pmatrix} 4 \\ -3 \\ 2 \end{pmatrix}$$

Wir verschieben diese mit der Translationsmatrix B:

$$a'_{1} = B \cdot a_{1} = \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix}, \ a'_{2} = B \cdot a_{2} = \begin{pmatrix} -4 \\ -5 \\ 2 \end{pmatrix}$$

Jetzt bestimmen wir die verschobene Gerade $g^{'}=a_{1}^{'}\times a_{2}^{'}=\begin{pmatrix}1\\2\\7\end{pmatrix}$.

Der Abstand einer Geraden $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ zum Ursprung ist $\frac{|c|}{\sqrt{a^2+b^2}}$

In unserem Fall ist also

$$d = \frac{|7|}{\sqrt{1^2 + 2^2}} = \frac{7}{\sqrt{5}}$$

Nun bestimmen wir die Rotationsmatrix. Sie hat die Gestalt:

$$C = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Wir wissen, dass die beiden Punkte a_1' , a_2' auf Punkte der Geraden $x = \frac{7}{\sqrt{5}}$ abgebildet werden. Formal wissen wir also:

$$C \cdot a_1' = C \cdot \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} d \\ * \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{7}{\sqrt{5}} \\ * \\ 1 \end{pmatrix}$$

und

$$C \cdot a_2' = C \cdot \begin{pmatrix} -4 \\ -5 \\ 2 \end{pmatrix} = \begin{pmatrix} 2d \\ * \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{14}{\sqrt{5}} \\ * \\ 2 \end{pmatrix}$$

Daraus folgt:

$$-3\cos(\alpha) + 2\sin(\alpha) = \frac{7}{\sqrt{5}}$$

sowie

$$-4\cos(\alpha) + 5\sin(\alpha) = \frac{14}{\sqrt{5}}$$

woraus sich ableiten lässt, dass $cos(\alpha) = -\frac{1}{\sqrt{5}}$ und $sin(\alpha) = \frac{2}{\sqrt{5}}$ ist. Damit ist die gesuchte Rotationsmatrix

$$C = \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ -\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Die Inverse dieser Matrix (zum Zurückdrehen nach der Projektion):

$$C^{-1} = \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ -\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Die Projetionsmatrix für die Projektion auf die Gerade $x=d=\frac{7}{\sqrt{5}}$

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/d & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{\sqrt{5}}{7} & 0 & 0 \end{pmatrix}$$

Die gesucht Abbildungsmatrix A, die die Abbildung im ursprünglichen Koordinatensystem angibt, ist also:

$$A = B^{-1} \cdot C^{-1} \cdot M \cdot C \cdot B = \begin{pmatrix} 3/7 & -8/7 & -4/7 \\ -1/7 & 5/7 & -1/7 \\ -1/7 & -2/7 & 6/7 \end{pmatrix}$$

12 Aufgabe 12

12.1 Teil a

12.1.1 Aufgabenstellung

Eine Kamera steht im Punkt $\vec{p} = \begin{pmatrix} 4 \\ 7 \\ 3 \end{pmatrix}$ und blickt in Richtung auf den Punkt $\vec{q} = \begin{pmatrix} 7 \\ 3 \\ 4 \end{pmatrix}$.

Bestimmen Sie das entsprechende rechtwinklige Augenkoordinatensystem so, dass die Kamera aufrecht steht.

12.1.2 Lösung

Die Kamera ist am Punkt \vec{p} und blickt in Richtung \vec{q} , d.h. die Blickrichtung ist $-\tilde{n} = \vec{q} - \vec{p}$:

$$\tilde{n} = \vec{p} - \vec{q} = \begin{pmatrix} 4 \\ 7 \\ 3 \end{pmatrix} - \begin{pmatrix} 7 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix}$$

 \tilde{u} berechnet sich so:

$$\tilde{u} = \tilde{n} \times \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \\ 0 \end{pmatrix}$$

 \tilde{n} und \tilde{u} werden normiert:

$$\vec{n} = \frac{\tilde{n}}{\|\tilde{n}\|} = \begin{pmatrix} -3/\sqrt{26} \\ 4/\sqrt{26} \\ -1/\sqrt{26} \end{pmatrix}$$

$$\vec{u} = \frac{\tilde{u}}{\|\tilde{u}\|} = \begin{pmatrix} -4/5 \\ -3/5 \\ 0 \end{pmatrix}$$

 \vec{v} berechnen:

$$\vec{v} = \vec{n} \times \vec{u} = \begin{pmatrix} -3/\sqrt{26} \\ 4/\sqrt{26} \\ -1/\sqrt{26} \end{pmatrix} \times \begin{pmatrix} -4/5 \\ -3/5 \\ 0 \end{pmatrix} = \begin{pmatrix} -3/5\sqrt{26} \\ 4/5\sqrt{26} \\ 5/\sqrt{26} \end{pmatrix}$$

12.2 Teil b

12.2.1 Aufgabenstellung

Bestimmen Sie die 4×4 -Transformationsmatrix zur Umrechnung von Weltkoordinaten in Augenkoordinaten.

12.2.2 Lösung

Jetzt können wir die Teile der Transformationsmatrix bestimmen:

$$A = \begin{pmatrix} -4/5 & -3/(5\sqrt{26}) & -3/\sqrt{26} \\ -3/5 & 4/(5\sqrt{26}) & 4/\sqrt{26} \\ 0 & 5/\sqrt{26} & -1/\sqrt{26} \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} -4/5 & -3/5 & 0 \\ -3/(5\sqrt{26}) & 4/(5\sqrt{26}) & 5/\sqrt{26} \\ -3/\sqrt{26} & 4/\sqrt{26} & -1/\sqrt{26} \end{pmatrix}$$

$$c = -A^{T} \cdot \begin{pmatrix} x_{Auge} \\ y_{Auge} \\ z_{Auge} \end{pmatrix} = -A^{T} \cdot \begin{pmatrix} 4 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 37/5 \\ -91/(5\sqrt{26}) \\ -13/\sqrt{26} \end{pmatrix}$$

$$M_{AW} = \begin{pmatrix} A^{T} & c \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -4/5 & -3/5 & 0 & 37/5 \\ -3/(5\sqrt{26}) & 4/(5\sqrt{26}) & 5/\sqrt{26} & -91/(5\sqrt{26}) \\ -3/\sqrt{26} & 4/\sqrt{26} & -1/\sqrt{26} & -13/\sqrt{26} \end{pmatrix}$$

$$0 & 0 & 0 & 1$$

13 Aufgabe 13

13.1 Teil a

Bei einer Scherung in x-Richtung sind alle Punkte auf der x-Achse Fixpunkte. Bei einer Scherung in y-Richtung sind alle Punkte auf der y-Achse Fixpunkte.

13.2 Teil b

Bei einer Scherung in x-Richtung sind alle Geraden parallel zur x-Achse Fixgeraden. Bei einer Scherung in y-Richtung sind alle Geraden parallel zur y-Achse Fixgeraden.

13.3 Teil c

Siehe nächste Seite