Часть 1. Тест.

Вопрос 1 \clubsuit Если модули остатков оценённой с помощью МНК регрессионной модели линейно и значимо зависят от квадрата регрессора Z, то гетероскедастичность можно попытаться устранить,

- $\overline{|\mathbf{A}|}$ умножив исходное уравнение на Z
- \fbox{B} умножив исходное уравнение на Z^2
- \square поделив исходное уравнение на \sqrt{Z}
- $\boxed{\mathrm{D}}$ умножив исходное уравнение на \sqrt{Z}
- $oxed{\mathbb{E}}$ поделив исходное уравнение на Z^2
- ${\mathbb F}$ поделив исходное уравнение на Z
- G Нет верного ответа.

Вопрос 2 — Выберите верное утверждение про метод максимального правдоподобия применительно к линейной регрессии.

- [A] ММП не может быть применим при нестрогой мультиколлинеарности
- В ММП может быть применим только при нормально распределённых ошибках
- С ММП может быть применим только в случае гетероскедастичности
- [D] ММП требует спецификации семейства распределения для ошибок
- Е ММП может быть применим только в случае гомоскедастичности
- **F** Нет верного ответа.

Вопрос 3 • При наличии условной гетероскедастичности нарушается следующее свойство МНК-оценок параметров классической регрессии:

- A эффективность в классе линейных и несмещенных оценок
- В линейность по зависимой переменой
- С несмещённость

- [D] равенство нулю суммы остатков
- **E** ортогональность вектора остатков и вектора прогнозов
- **F** Нет верного ответа.

Вопрос 4 \clubsuit Оценка максимального правдоподобия параметра λ по случайной выборке X_1 , ..., X_n из распределения с функцией плотности

$$f(x|\lambda) = \begin{cases} (2\lambda+1) \exp(-x) \exp(-2\lambda x), \text{ если } 0 < x; \\ 0, \text{ иначе.} \end{cases}$$

имеет вид:

$$\boxed{\mathbf{A}} \hat{\lambda}_{ML} = \frac{1}{2X} - \frac{1}{2}$$

$$\boxed{\mathbf{B}} \ \hat{\lambda}_{ML} = \frac{1}{2X} + 1$$

$$\boxed{\mathbf{C}} \ \hat{\lambda}_{ML} = \bar{X} - \frac{1}{2}$$

$$\boxed{\mathbf{D}} \ \hat{\lambda}_{ML} = \frac{1}{X} + \frac{1}{2}$$

$$\boxed{\mathrm{E}} \; \hat{\lambda}_{ML} = \frac{1}{2\bar{X}} + \frac{1}{2}$$

F Нет верного ответа.

Вопрос 5 👗 Методом максимального правдоподобия Гоша оценил модель

$$Y_i = \beta_1 + \beta_2 X_{i2} + \ldots + \beta_6 X_{i6} + \varepsilon_i,$$

где $\varepsilon\sim\mathcal{N}(0,\sigma_\varepsilon^2I)$, по 12 наблюдениям. Оказалось, что RSS=24. Оценка дисперсии случайной составляющей равна

A 2.4

C 2

E 0.48

B 24/7

D 0.5

F Нет верного ответа.

Вопрос 6 \clubsuit Имеются данные по 100 работникам: затраты на проезд в общественном транспорте (E_i , руб.), количество часов работы в день (WH_i , руб.), количество часов отдыха в день (LH_i , руб.) и количество часов сна в день (SH_i , руб.). Считая, что всё время суток распределяется между трудом, сном и отдыхом, оценка регрессии в виде

$$E_i = \beta_1 + \beta_2 W H_i + \beta_3 L H_i + \beta_4 S H_i + u_i$$

приведет к тому, что

- А МНК-оценки получить не удастся
- В МНК-оценки параметров окажутся смещёнными
- С МНК-оценки параметров окажутся неэффективными в классе линейных и несмещённых
- $\boxed{\mathrm{D}}$ коэффициент детерминации R^2 окажется отрицательным
- $\overline{|E|}$ МНК-оценки параметров регрессии будут несмещенными и эффективными
- **F** Нет верного ответа.

Вопрос 7 ♣ Взвешенный МНК служит для оценивания регрессионных моделей в случае нарушений следующего условия теоремы Гаусса-Маркова:

 $oxed{A}$ Величина Y_i линейна по $eta_1,\,eta_2,\,\dots$

E u_i распределены нормально

F Нет верного ответа.

Вопрос 8 • По n = 650 наблюдениям была оценена регрессия:

$$Y_i = \beta_1 + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + u_i.$$

Затем была оценена регрессия $|\hat{u}_i|=\alpha_1+\alpha_2\frac{1}{Z_i}+\nu_i$. Оказалось, что $\hat{\alpha}_2=36$ и $se(\hat{\alpha}_2)=5$. Согласно этим данным, на уровне значимости 5% гипотеза о

- A верной функциональной форме не отвергается
- Е гомоскедастичности отвергается
- \fbox{B} пропущенной переменной $1/Z_i$ не отвергается
- F верной функциональной форме отвергается
- С гомоскедастичности не отвергается

Вопрос 9 \clubsuit Василий хочет оценить константу μ в модели $Y_i = \mu + u_i$, где $\mathbb{E}(u_i) = 0$, $\mathbb{E}(u_i u_j) = 0$ при $i \neq j$, $\mathrm{Var}(u_i) = \sigma^2 X_i$ и $X_i > 0$.

В классе линейных несмещенных оценок наиболее эффективной является:

$$\boxed{\mathbf{A}} \quad \frac{\sum Y_i / \sqrt{X_i}}{\sum 1 / X_i}$$

$$\boxed{\mathbf{D}} \quad \frac{\sum Y_i X_i}{\sum X_i^2}$$

$$\lceil \mathbf{F} \rceil (I'I)^{-1}I'Y$$

|G| Нет верного ответа.

$$\bar{B}$$
 \bar{Y}

$$C$$
 $\frac{\sum Y_i/X_i}{\sum 1/X_i^2}$

$$E \sum_{X_i} \frac{\sum Y_i X_i}{\sum X_i}$$

Вопрос 10 \clubsuit Василий оценивает модель $Y_i = \beta_1 + \beta_2 X_i + u_i$ с помощью МНК при двух разных предположениях. Предположение A: $u_i \sim \mathcal{N}(0; \sigma^2)$. Предположение B: u_i распределены экспоненциально с параметром λ . При этом окажется, что

$$[A] \hat{\beta}_{1}^{A} > \hat{\beta}_{1}^{B}, \hat{\beta}_{2}^{A} = \hat{\beta}_{2}^{B}$$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} \hat{\beta}_1^A = \hat{\beta}_1^B, \hat{\beta}_2^A = \hat{\beta}_2^B$$

$$\begin{bmatrix} C \end{bmatrix} \hat{\beta}_1^A = \hat{\beta}_1^B, \hat{\beta}_2^A < \hat{\beta}_2^B \end{bmatrix}$$

$$\widehat{\mathbf{D}}$$
 $\hat{\beta}_1^A < \hat{\beta}_1^B, \hat{\beta}_2^A = \hat{\beta}_2^B$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix} \hat{\beta}_1^A = \hat{\beta}_1^B, \hat{\beta}_2^A > \hat{\beta}_2^B$$

F Нет верного ответа.

- **Вопрос 1** : A B C D E F G
- Bonpoc 2: A B C D E F
- **Вопрос 3** : A B C D E F
- **Вопрос** 4 : A B C D E F
- **Вопрос** 5 : A B C D E F
- **Вопрос 6** : A B C D E F
- **Вопрос** 7 : A B C D E F
- Bonpoc 8: A B C D E F G
- **Вопрос** 9 : A B C D E F G
- **Вопрос 10** : A B C D E F

Часть 2. Задачи.

- 1. По 35 наблюдениям сотрудники НИИ оценили уравнение регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и рассчитали остатки ε_i . После того они приступили к диагностике возможных недостатков модели, обнаружили гетероскедастичность и решили её побороть.
 - а) Самый младший научный сотрудник выдвинул предположение, что стандартное отклонение случайной составляющей может быть выражено так: $\sigma_{\varepsilon,i} = ax_i$, где a неизвестный коэффициент. Каким образом нужно преобразовать исходное уравнение регрессии, чтобы избавиться от гетероскедастичности?
 - б) Профессор решил перепроверить результаты и оценил регрессию:

$$\hat{e}_i^2 = -0.3 + 0.08x_i - 0.01x_i^2, R^2 = 0.15$$

Свидетельствует ли полученный профессором результат о наличии гетероскедастичности?

2. Были обследованы 36 предприятий по трём показателям: K_i — основным фондам (млн. руб.), W_i — фонду оплаты труда (млн. руб.), R_i — расходам на НИОКР (млн. руб.). Получены оценки вектора средних $\hat{\mu}=(3,4,5)'$ и ковариационной матрицы $\hat{\Sigma}=\begin{pmatrix} 2 & 0 & 3 \\ 0 & 11 & 0 \\ 3 & 0 & 10 \end{pmatrix}$.

Предполагая, что приведение переменных к общему масштабу не требуется, найдите первую главную компоненту и определите долю суммарной дисперсии, которую она объясняет.

- 3. Используя 80 наблюдений, исследователь оценил две конкурирующие модели: $\hat{y}=\hat{\beta}_1+\hat{\beta}_2x+\hat{\beta}_3z$, в которой $RSS_1=36875$ и $\widehat{\ln y}=\hat{\beta}_1+\hat{\beta}_2x+\hat{\beta}_3z$, в которой $RSS_2=122$. Выполнив преобразование $y_i^*=y_i/\sqrt[n]{\prod y_i}$, исследователь также оценил две вспомогательные регрессии: $\hat{y}^*=\hat{\beta}_1+\hat{\beta}_2x+\hat{\beta}_3z$, в которой $RSS_1^*=239$ и $\widehat{\ln y^*}=\hat{\beta}_1+\hat{\beta}_2x+\hat{\beta}_3z$, в которой $RSS_2^*=121$.
 - а) Проинтерпретируйте коэффициент $\hat{\beta}_2$ в двух конкурирующих моделях
 - б) С помощью подходящего теста выберите наилучшую из двух конкурирующих моделей