M2 - Architecture et Programmation d'accélérateurs Matériels.

(APM 2016-2017)

Stream et Asynchronisme

julien.jaeger@cea.fr
patrick.carribault@cea.fr

Les objectifs de ce TP sont :

- Asynchronisme
- Exécutions concurrentes de kernels, notion de streams et d'events
- Copies asynchrones
- Opérations collectives
- Introduction à l'optimisation

I Streams, Events

Ouvrir le fichier stream_ex1.cu.

- Q.1: Combien de streams sont utilisés dans ce programme?
- Q.2: Combien y a-t-il de flux d'exécution différents?
- Q.3: Classer les fonctions et les appels de kernels en deux catégories : les synchrones et les asynchrones.
- Q.4: L'exécution des différentes fonctions CUDA au sein d'un stream est-elle ordonnée (i.e. séquentielle) ou bien désordonnée (Out-of-Order)?
- Q.5: Dessiner un schéma représentant les différentes tâches sur les flux d'exécution ainsi que leur dépendances.

Nous prendrons comme notation:

 $\mathbf{A} \to \mathbf{B}$: l'exécution de B ne peut commencer tant que celle de A n'est pas terminée.

 $\mathbf{A} \Rightarrow \mathbf{B}$: l'exécution de B ne peut se terminer tant que celle de A n'est pas terminée.

Liste des tâches:

Création S0	Création S1	Malloc Host	Thread Sync
requête	requête	requête	requête
cpy $H\rightarrow D$ [0,N[$cpy H \rightarrow D [N,2N[$	cpy D \rightarrow H [0,N[$\mathrm{cpy}\ \mathrm{D}{\rightarrow}\mathrm{H}\ [\mathrm{N}{,}2\mathrm{N}[$
$\mathrm{cpy}\; H {\rightarrow} D\; [0,N[$	cpy $H\rightarrow D$ [N,2N[cpy D→H [0,N[$\mathrm{cpy}\ \mathrm{D}{\rightarrow}\mathrm{H}\ [\mathrm{N}{,}2\mathrm{N}[$
requête	requête	exécution	exécution
K1 [0,N[K1 [N,2N[K1 [0,N[K1 [N,2N[

- Q.6: A quoi sert la commande cudaMallocHost? Pourquoi ne pas utiliser la fonction malloc?
- Q.7: Utiliser la fonction système gettimeofday pour mesurer le temps passé dans l'exécution du programme CUDA.
- Q.8: Avec les fonctions gettimeofday et cudaThreadSynchronize mesurer le temps d'exécution des kernels uniquement (sans compter le temps des transferts mémoire etc...).
- **Q.9:** Quel est l'impact (inconvénient) sur l'exécution générale du programme de cette dernière façon de mesurer? Vous pouvez vous aider du graphe de dépendance précédent et l'enrichir.
- **Q.10:** Comment mesurer le temps de chaque kernel avec la technique précédente?
- Q.11: Comment utiliser les événements (fonctions cudaEvent*) pour mesurer le temps de chaque kernel et le temps total de tous les kernels? Commentaire par rapport à la façon précédente?