GLS 5 - Data set: NAZIONI

INTRODUZIONE

Nel dataset in oggetto sono riportati i risultati di un'indagine effettuata nel 1995 su 66 nazioni riguardanti alcuni fra gli aspetti socio-demografici prevalenti. Le variabili presenti nel dataset sono le seguenti:

- 1. DENSITA': densità di popolazione
- 2. URBANA: percentuale di popolazione residente nelle città
- 3. VITAFEM: speranza di vita alla nascita delle donne
- 4. VITAMAS: speranza di vita alla anascita dei maschi
- 5. ALFABET: percentuale di alfabetizzati sul totale della popolazione
- 6. PIL: prodotto interno lordo pro-capite
- 7. RELIG: religione prevalente nella nazione (1=cattolica, 2=ortodossa, 3=protestante)

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione
- 3. Gestione dell'autocorrelazione

```
#-- R CODE
library(Hmisc)
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2
  y <- fitted(lmod)
 Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
 LM <- nrow(data)*Ru2
 p.value <- 1-pchisq(LM, 2)
  data.frame("Test statistic"=LM,"P value"=p.value)
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x>mean(x)+sd_factor*sd(x) | x<mean(x)-sd_factor*sd(x))</pre>
#-- import dei dati
ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
d <- read.csv(paste0(ABSOLUTE_PATH,"\\F. Esercizi(22) copia\\1.Error-GLS copy(8)\\5.Error-GLS\\nazioni.
d$pil <- as.numeric(gsub(",","",paste(d$pil))) #-- trasformo pil in variabile numerica</pre>
#-- vettore di variabili numeriche presenti nei dati
```

VAR_NUMERIC <- c("densita","urbana","vitafem","vitamas","alfabet","pil")</pre>

#-- print delle prime 6 righe del dataset
pander(head(d),big.mark=",")

nazione	densita	urbana	vitafem	vitamas	alfabet	pil	relig
Argentina	12	86	75	68	95	3,408	1
Armenia	126	68	75	68	98	5,000	2
Australia	2	85	80	74	100	16,848	3
Austria	94	58	79	73	99	18,396	1
Barbados	605	45	78	73	99	6,950	3
Belgio	329	96	79	73	99	17,912	1

STATISTICHE DESCRITTIVE

#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive

Table 2: Table continues below

densita	urbana	vitafem	vitamas
Min. : 2.00	Min.: 5.00	Min. :43.00	Min. :41.00
1st Qu.: 19.75	1st Qu.:49.50	1st Qu.:70.00	1st Qu.:64.00
Median: 61.00	Median: 64.50	Median: 76.00	Median $:69.00$
Mean : 100.15	Mean $:62.18$	Mean : 72.74	Mean $:66.58$
3rd Qu.:122.25	3rd Qu.:75.00	3rd Qu.:79.00	3rd Qu.:73.00
Max. $:605.00$	Max. $:96.00$	Max. $:82.00$	Max. $:76.00$

alfabet	pil
Min.: 27.00	Min.: 208
1st Qu.: 83.50	1st Qu.: 1412
Median: 95.50	Median: 4464
Mean: 87.58	Mean: 7303
3rd Qu.: 99.00	3rd Qu.:14048
Max. $:100.00$	Max. :23474

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

	densita	urbana	vitafem	vitamas	alfabet	pil
densita	1	-0.1501	-0.01275	0.01848	0.02142	0.09363
urbana	-0.1501	1	0.7317	0.7043	0.7054	0.54
${f vitafem}$	-0.01275	0.7317	1	0.9836	0.8874	0.601
$\mathbf{vitamas}$	0.01848	0.7043	0.9836	1	0.8628	0.6039
${f alfabet}$	0.02142	0.7054	0.8874	0.8628	1	0.5629

	densita	urbana	vitafem	vitamas	alfabet	pil
pil	0.09363	0.54	0.601	0.6039	0.5629	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
```


Esiste una fortissima correlazione fra "vitafem" e "vitamas" che fa presagire una collinearità fra le due variabili. Effettuiamo ora una regressione di "pil" su "urbana", "vitamas", "vitafem", "alfabet".

REGRESSIONE

#-- R CODE
mod1 <- lm(pil ~ urbana + vitamas + vitafem + alfabet, d) #-- stima modello lineare semplice
pander(summary(mod1),big.mark=",")</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-19,325	5,645	-3.423	0.001111
urbana	75.85	51.38	1.476	0.145
vitamas	404.1	425	0.9507	0.3455
${f vitafem}$	-123.1	430.9	-0.2856	0.7762
alfabet	45.24	94.14	0.4806	0.6325

Table 6: Fitting linear model: pil ~ urbana + vita
mas + vitafem + alfabet

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
66	5623	0.3933	0.3535

pander(anova(mod1),big.mark=",")

Table 7: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
urbana	1	927,255,670	927,255,670	29.32	1.095e-06
vitamas	1	315,409,111	315,409,111	9.974	0.002469
${f vitafem}$	1	411,646	411,646	0.01302	0.9095
${f alfabet}$	1	7,304,548	7,304,548	0.231	0.6325
Residuals	61	1.929e + 09	31,623,430	NA	NA

pander(white.test(mod1),big.mark=",") #-- white test

Test.statistic	P.value
11.78	0.00277

pander(dwtest(mod1),big.mark=",") #-- Durbin-Whatson test

Table 9: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.659	0.07578	true autocorrelation is greater than 0

Il modello è significativo ma non interpreta molto bene la variabile dipendente e infatti solo l'intercetta risulta significativa.

Si sarebbe portati a cambiar modello, ma prima occorre verificare la diagnostica. Tralasciando la verifica di multicollinearità che pur sarebbe molto opportuna consideriamo la sfericità degli errori. Analizziamo dapprima l'eteroschedasticità degli errori.

```
#-- R CODE
plot(fitted(mod1),resid(mod1),pch=19,xlab="Predicted",ylab="Residuo",type="p",col=1,lwd=2)
text(fitted(mod1),resid(mod1),d$nazione,pos=1,cex=.6)
abline(h=0,lwd=2,lty=2,col=2)
```


La rappresentazione grafica dei residui ben lontana da una forma rettangolare e il test di White mostrano con chiarezza che l'ipotesi di omoschedasticità degli errori va respinta. Inoltre si vede la presenza di outlier (Stati Uniti e Svizzera). Per ciò che concerne la non correlazione degli errori si vede dal test di Durbin-Watson che è respinta l'ipotesi di non correlazione dei residui.

Per risolvere il problema si propone un metodo di stima FGLS.

```
#-- R CODE
mod2 <- lm(resid(mod1)^2 ~ urbana + vitamas + vitafem + alfabet, d)
weight <- 1/fitted(mod2)

mod3 <- lm(pil ~ urbana + vitamas + vitafem + alfabet, d,weights=weight)
pander(summary(mod3),big.mark=",")</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-13,079	3,263	-4.009	0.0001688
urbana	26.99	36.69	0.7356	0.4648
vitamas	627.6	274.1	2.289	0.02553
${f vitafem}$	-358.5	297.2	-1.206	0.2324
alfabet	34.3	70.98	0.4833	0.6306

Table 11: Fitting linear model: pil ~ urbana + vita
mas + vitafem + alfabet

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
66	0.9919	0.5146	0.4828

pander(anova(mod3),big.mark=",")

Table 12: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
urbana	1	41.51	41.51	42.19	1.692e-08
${f vitamas}$	1	20.69	20.69	21.03	2.301e-05
${f vitafem}$	1	1.207	1.207	1.226	0.2725
alfabet	1	0.2298	0.2298	0.2336	0.6306
Residuals	61	60.02	0.9839	NA	NA

```
#-- R CODE
plot(fitted(mod3),resid(mod3),pch=19,xlab="Predicted",ylab="Residuo",type="p",col=1,lwd=2)
text(fitted(mod3),resid(mod3),d$nazione,pos=1,cex=.6)
abline(h=0,lwd=2,lty=2,col=2)
```


Il modello ora fitta in modo rilevante i dati e "vitamas" è significativa.

Si propone ora un modello basato su stime FGLS con errori espressi in forma esponenziale.

```
#-- R CODE
mod5 <- lm(log(resid(mod1)^2) ~ urbana + vitamas + vitafem + alfabet, d)
sd_error <- sqrt(exp(fitted(mod5)))
mod6 <- lm(I(pil/sd_error) ~ 0 + I(1/sd_error) + I(urbana/sd_error) + I(vitamas/sd_error) + I(vitafem/sepander(summary(mod6),big.mark=",")</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
$I(1/sd_error)$	-16,206	4,283	-3.784	0.0003544
$I(urbana/sd_error)$	30.54	44.55	0.6856	0.4956
$I(vitamas/sd_error)$	655.4	310.3	2.112	0.03877
$I(vitafem/sd_error)$	-343.6	353	-0.9733	0.3342
$I(alfabet/sd_error)$	33.4	77.84	0.4291	0.6694

```
Table 14: Fitting linear model: I(pil/sd\_error) \sim 0 + I(1/sd\_error) + I(urbana/sd\_error) + I(vitafem/sd\_error) + I(vitafem/sd\_error) + I(alfabet/sd\_error)
```

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
66	1.386	0.731	0.7089

pander(anova(mod6),big.mark=",")

Table 15: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
$I(1/sd_error)$	1	233	233	121.4	3.842e-16
$I(urbana/sd_error)$	1	44.49	44.49	23.18	1.012e-05
$I(vitamas/sd_error)$	1	38.81	38.81	20.22	3.154e-05
$I(vitafem/sd_error)$	1	1.513	1.513	0.7881	0.3782
$I(alfabet/sd_error)$	1	0.3534	0.3534	0.1841	0.6694
Residuals	61	117.1	1.92	NA	NA

pander(white.test(mod6),big.mark=",") #-- white test

Test.statistic	P.value
4.693	0.0957

pander(dwtest(mod6),big.mark=",") #-- Durbin-Whatson test

Table 17: Durbin-Watson test: mod6

Test statistic	P value	Alternative hypothesis	
1.828	0.2416	true autocorrelation is greater than 0	

Il modello ora ha un fitting ancora più elevato che il precedente modello e "vitamas" rimane l'unica variabile con parametri significativi a mostrare che il "Pil" è influenzato solo dalla speranza di vita maschile tra le variabili esplicative prescelte. I test di White e Durbin Watson mostrano che i residui sono omoschedastici e incorrelati.