Hash Functions and Message Authentications

University of Birmingham

Outline of This Lecture

- Error Detection and non-cryptographic solutions
- Cryptographic Hash Functions
- Security of Hash Functions
- Message Authentication

Model

- ▶ Alice and Bob needs to communicate "correctly".
- Example: Downloaded software may be corrupt.

Error Detection in Communication

 Communications are prone to error as the channel is untrusted

Error Detection in Communication

- Communications are prone to error as the channel is untrusted
- ► IDEA: Add a checksum after the string
- ► Parity Bits: 1-bit error detection
- Cyclic Redundancy Check: Algebraic Error Detection

Hash Functions

A Hash function is a function from $\{0,1\}^* \to \{0,1\}^n$, where n is a fixed integer.

Hash Functions

A Hash function is a function from $\{0,1\}^* \to \{0,1\}^n$, where n is a fixed integer.

Practical hash functions have an upper bound μ on input message length with $\mu >> n$.

Hash Functions in Cryptography

- ▶ Collision Attack. If adversary could find distinct messages, m and m' such that H(m) = H(m').
- ▶ **Preimage Attack.** Given a random $y \in \{0,1\}^n$, if the adversary could find a message m such that H(m) = y.

Hash Functions in Cryptography

- ▶ Collision Attack. If adversary could find distinct messages, m and m' such that H(m) = H(m').
- ▶ **Preimage Attack.** Given a random $y \in \{0,1\}^n$, if the adversary could find a message m such that H(m) = y.

The idea of *Length Extension Attack* is also attributed to hash function.

Hardness of Collision Attack

Hash Functions have collisions

For a secure hash function $H:\{0,1\}^* \to \{0,1\}^n$, finding collision should take approximately $2^{n/2}$ computations.

Usage of Cryptographic Hash Functions

► Hash functions are useful where only the message (without the checksum) is transferred via the channel, and the receiver can compute and compare the checksum

Design of Cryptographic Hash: SHA3

Message Authentication Codes

Message Authentication Codes: Security

MAC design:HMAC

MAC design: CBC-MAC

Authenticated Encryption:CCM

 A_1 is auxiliary data, initialized to 0^n .