WHAT IS CLAIMED IS:

change of 0.4% or less.

6

1	1. An optical element comprising
2	a base member; and
3	a resin layer formed on the surface of the base member and
4	comprising a cured product of a photosensitive resin composition
5	wherein said resin layer has a refractive index of 1.55 or more.
1	2. An optical element comprising
2	a base member; and
3	a resin layer formed on the surface of the base member and
4	comprising a cured product of a photosensitive resin composition
5	wherein said resin layer has a visible-light inner transmittance of
6	95% or more in a 100 μm thick area.
	æ
1	3. An optical element comprising
2	a base member; and
3	a resin layer formed on the surface of the base member and
4	comprising a cured product of a photosensitive resin composition,
5	wherein said resin layer has a rate of hygroscopic dimensional

- 4. An optical element comprising
 a base member; and
 a resin layer formed on the surface of the base member and
 comprising a cured product of a photosensitive resin composition,
 wherein said resin layer has a durometer hardness of HDD 70 or
 more.
- 5. An optical element comprising a base member; and
- a resin layer formed on the surface of the base member and comprising a cured product of a photosensitive resin composition, wherein said resin layer has a gel percentage of 95% or more.
- 6. An optical element comprising
- 2 a base member; and
- a resin layer formed on the surface of the base member and
 comprising a cured product of a photosensitive resin composition,
 wherein said resin layer has a glass transition temperature of 95°C or
- 6 above.

- 7. An optical element comprising
- a base member; and
- a resin layer formed on the surface of the base member and
- 4 comprising a cured product of a photosensitive resin composition,

wherein said photosensitive resin composition has a rate of shrinkage on curing of 7% or less.

- 8. The optical element according to any one of claims 1 to 7,
 wherein said resin composition comprises:
- 3 (A) a polyfunctional (meth)acrylate;
- 4 (B) a polyfunctional urethane-modified (meth)acrylate; and
- 5 (C) a photopoly merization initiator.
- 9. The optical element according to any one of claims 1 to 8,
 wherein said resin composition has a refractive index before
 polymerization curing of, 1.52 or more.
- 10. The optical element according to claim 8, wherein said 2 polyfunctional (meth)acrylate has a refractive index before 3 polymerization curing, of 1.53 or more.
- 1 11. The optical element according to any one of claims 8 to 10,
 wherein said polyfunctional (meth) acrylate has two or more benzene
 ring structures in one molecule.
- 1 12. The optical element according to any one of claims 8 to 11,
 2 wherein said resin composition comprising, as at least a part of said
 3 polyfunctional (meth)acrylate, a di(meth)acrylate represented by the

5

following Formula (1):

- wherein R1 and R2 are each a hydrogen atom or a methyl group, R3 6
- and R4 are each a hydrocarbon group having 2 to 4 carbon atoms, and 7
- m and n are each an integer of 1 or more. 8
- 1 The optical element according to any one of claims 8 to 12,
- 2 wherein said polyfunctional (meth)acrylate has a molecular weight
- before polymerization curing, of 1,000 or less. 3
- 1 The optical element according to claim 8, wherein said
- polyfunctional urethane-modified (meth)acrylate has a refractive 2
- 3 index before polymerization curing, of 1.48 or more.
- The optical element according to any one of claims 8 to 14, 15.
- wherein said polyfunctional urethane-modified (meth)acrylate
- 3 contains at least one of compounds represented by any of the
- 4 following Formulas (2) to (4):

cont An

- wherein R⁵ and R⁶ are each a hydrogen atom or a methyl group, R⁷
- 7 and R⁸ are each a hydrocarbon group having 1 to 10 carbon atoms, R⁹
- 8 is an isocyanate residual group, R10 is a polyol residual group or a
- 9 polyester residual group, and p is 0 or an integer of 10 or less.

- wherein R¹¹ is a hydrogarbon group having 1 to 10 carbon atoms, and
- 12 R¹² is

10

13

16

- wherein R14, R15 and R18 are each a hydrogen atom or a methyl group,
- and R¹⁷ is a hydrocarbon group having 1 to 10 carbon atoms;

- wherein R¹⁹ is a hydrocarbon group having 1 to 10 carbon atoms, and
- 18 R²⁰ and R²¹ are each

wherein R24, R25 and R26 are each a hydrogen atom or a methyl group, and R²⁷ is a hydrocarbon group having 1 to 10 carbon atoms.

1

1

2

21

19

An optical article having the optical element according to any one of claims 1 to 15.

1

- The optical article according to claim 16, wherein; 17.
- 2 said optical element is a lens; and
- said optical article is a still camera. 3

1

- The optical article according to claim 16, wherein; 18.
- said optical element is a lens; and 2
- said optical article is a video camera. 3

1

- The optical article according to claim 16, wherein; 1
- said optical element is a lens; and 2
- 3 said optical article is an interchangeable lens.
- 1
- 20. A process for producing a resin-cemented optical element,
- the process comprising: 2

8

in this order.

- a first exposure step of irradiating a photosensitive resin

 composition held between the surface of a base member and a mold

 tool, to cure the composition to form a resin layer;

 a mold release step of mold-releasing the resin layer; and

 a heating step of heating the resin layer,
- 21. A process for producing a resin-cemented optical element, the process comprising:
- a first exposure step of irradiating a photosensitive resin

 composition held between the surface of a base member and a mold

 tool, with heating to cure the composition to form a resin layer; and

 a mold mold release step of mold-releasing the resin layer,

 in this order.
- 22. The production process according to claim 21, wherein the heating in said exposure step is carried out at a temperature of from 40°C to 130°C.
- 23. A process for producing a resin-cemented optical element, the process comprising:
- a first exposure step of irradiating a photosensitive resin

 composition held between the surface of a base member and a mold

 tool, by light with a wavelength of 300 nm or more to cure the

- 6 composition to form a resin layer; and
- a mold release step of mold-releasing the resin layer,
- 8 in this order.
- 24. A process for producing a resin-cemented optical element,
 the process comprising:
- a first exposure step of irradiating a photosensitive resin

 composition held between the surface of a base member and a mold

 tool, to cure the composition to form a resin layer;
- a mold release step of mold-releasing the resin layer; and
- 7 a second exposure step of irradiating the resin layer by light
- 8 with a wavelength of 300 nm or more,
- 9 in this order.
- 1 25. The production process according to any one of claims 20,
- 2 21 and 23, which further comprises, after said mold release step, a
- 3 second exposure step of irradiating said resin layer by light with a
- 4 wavelength of 300 nm or more.
- 1 26. The production process according to any one of claims 23
- 2 to 25, wherein at least one irradiation by light with a wavelength of
- 3 300 nm or more is performed shutting out light with a wavelength of
- 4 less than 300 nm among light emitted from a light source.

- 1 27. The production process according to claim 21 or 23, which
- 2 further comprises, after said mold release step, a heating step of
- 3 heating said resin layer.
- 1 28. The production process according to claim 21 or 23, which
- 2 further comprises, after said second exposure step, a heating step of
- 3 heating said resin layer.
- 1 29. The production process according to any one of claims 20,
- 2 27 and 28, wherein the heating in said heating step is carried out at a
- 3 temperature of from 40°C to 130°C.
- 1 30. The production process according to any one of claims 20,
- 2 21, 23 and 24, wherein said resin composition comprises:
- 3 (A) a polyfunctional (meth)acrylate;
- 4 (B) a polyfunctional urethane-modified (meth)acrylate; and
- 5 (C) a photopolymerization initiator.

Arz Add

