7. 级数的审敛问题

SDS 高数小班课 (2025 春)

崔畅 北京大学化学与分子工程学院 CuiChang2022@stu.pku.edu.cn 2025.4.26

1 常数项级数的审敛

1.1 Cauchy 收敛准则

定义 1.1 (收敛序列与 Cauchy 序列). 给定 (无穷) 实序列 $\{a_k\}_{k=1}^{\infty}$.

- 1. 若存在 $A \in \mathbb{R}$, 使得对任给的 $\epsilon > 0$ 都存在对应的 $N(\epsilon) \in \mathbb{N}$ 满足 $|a_k A| < \epsilon (\forall k \geq N)$, 则称序列 $\{a_k\}_{k=1}^{\infty}$ 为收敛序列 (convergent sequence), 且以 A 为其极限. 记作 $\lim_{k \to \infty} a_k = A$;
- 2. 若存在 $N \in \mathbb{N}$, 使得对任给的 $i, j \geq N$ 都满足 $|a_i a_j| < \epsilon$, 则称序列 $\{a_k\}_{k=1}^{\infty}$ 为 Cauchy 序列 (Cauchy sequence).

定理 1.1. 收敛序列必为 Cauchy 序列. 定义在有限维内积空间 (例如 \mathbb{R} , 实数序列) 上的 Cauchy 序列必为收敛序列.

- 收敛性是 Cauchy 性的充分非必要条件. 必要性的成立依赖于完备性和维度的有限性.
 - 有理序列 $\left\{ (1+k^{-1})^k \right\}_{k=1}^{\infty}$ 是 Cauchy 序列, 但由于极限 e $\notin \mathbb{Q}$, 故并非收敛序列. 这是因为有理数集并非完备集.
 - 函数序列 $\{f_k\}_{k=1}^{\infty}$, 其中

$$f_k(x) = \begin{cases} 0, & -1 \le x < -\frac{1}{k}, \\ \frac{1}{2}(kx+1), & -\frac{1}{k} \le x < \frac{1}{k}, \\ 1, & \frac{1}{k} < x \le 1 \end{cases}$$
 (1)

是定义在 (无限维内积空间) $\mathcal{C}^0[-1,1]$ 上的 Cauchy 序列, 但由于极限

$$f_{\infty}(x) = \begin{cases} 0, & -1 \le x < 0, \\ 1, & 0 \le x < 1 \end{cases}$$
 (2)

不是 [-1,1] 上的连续函数, 故并非收敛序列. 这是因为在该空间上"绝对值"(或说, 范数)的计算涉及无穷和.

定理 1.2 (Cauchy 收敛准则). 无穷级数 $\sum_{k=1}^{\infty} a_k$ 收敛的充要条件是: 对任给的 $\epsilon > 0$ 都存在对应的 $N(\epsilon) \in \mathbb{N}$ 满足

$$|S_{n+p} - S_n| \equiv \left| \sum_{k=n+1}^{n+p} a_k \right| < \epsilon \left(\forall n \ge N, p \ge 1 \right)$$
 (3)

例题 1.1 (调和级数的发散性). 证明: 调和级数 $S_n = \sum_{k=1}^n \frac{1}{k}$ 发散.

1.2 正项级数的比较审敛

定理 1.3 (比较审敛法). 设两个正项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 的一般项满足 $u_n \leq v_n$. 则

- 1. 级数 $\sum_{n=1}^{\infty} v_n$ 收敛蕴涵了级数 $\sum_{n=1}^{\infty} u_n$ 收敛;
- 2. 级数 $\sum_{n=1}^{\infty} u_n$ 发散蕴涵了级数 $\sum_{n=1}^{\infty} v_n$ 发散.

定理 1.4 (比较审敛法: 极限形式). 给定两个正项级数 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$, 记 $h \equiv \lim_{n \to \infty} \frac{u_n}{v_n}$ (可以为有限数或 $+\infty$). 则

- 1. 若 $0 \le h < +\infty$, 则级数 $\sum_{n=1}^{\infty} v_n$ 收敛蕴涵了级数 $\sum_{n=1}^{\infty} u_n$ 收敛;
- 2. 若 $0 < h \le +\infty$, 则级数 $\sum_{n=1}^{\infty} v_n$ 发散蕴涵了级数 $\sum_{n=1}^{\infty} u_n$ 发散.

例题 1.2 (以等比级数为比较基准). 讨论下列级数的敛散性:

- 1. $\sum_{n=1}^{\infty} \frac{n^n}{n!};$
- 2. p-级数: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (其中 p > 0);

注记 1.1. 对 $a_1 \neq 0$ 及 q > 0 $(q \neq 1)$, 我们根据部分和 $S_n = \sum_{k=1}^n a_1 q^k = \frac{a_1(1-q^n)}{1-q}$, 讨论等比级数 $\sum_{k=1}^{\infty} a_1 q^k$ 的敛散性:

- 1. 若 0 < q < 1, 则级数收敛到 $S \equiv S_{\infty} = \frac{a_1}{1-a}$;
- 2. 若 q > 1, 则级数发散.

例题 1.3 (以 p-级数为比较基准). 讨论下列级数的敛散性:

- 1. $\sum_{n=1}^{\infty} \frac{3\sqrt[5]{n}+1}{(\sqrt[4]{n}+n)(\sqrt[3]{n}+n)};$
- 2. $\sum_{n=1}^{\infty} n \left(2\sqrt{n} \sqrt{n+1} \sqrt{n-1} \right);$
- 3. $\sum_{n=1}^{\infty} \ln(\cos \frac{\pi}{n}).$

注记 1.2. 对 p > 0, 我们根据 p 的取值, 讨论 p-级数 $\sum_{n=1}^{\infty} \frac{1}{n!}$ 的敛散性.

- 1. 若 0 , 则由其与调和级数之间的比较审敛, 得到发散性;
- 2. 若 p > 1, 基于和式的重排与部分和有界定理可证, 级数收敛.

注记 1.3. 根据级数项的形式, 提炼出增长/衰减的"主要部分", 作为比较或放缩的依据. 许多复杂问题中, 不等式放缩的方向是从量级估计所得的猜想中得到启发的.

定理 1.5 (d'Alembert 审敛法: 以等比级数为基准). 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $l = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}$, 则 l < 1 蕴涵级数收敛, l > 1 蕴涵级数发散.

定理 1.6 (Cauchy 审敛法: 以等比级数为基准). 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $l=\lim_{n\to\infty} \sqrt[n]{u_n}$,则 l<1 蕴涵级数收敛,l>1 蕴涵级数发散.

例题 1.4 (基于等比级数的比较审敛法). 讨论下列级数的敛散性:

1. $\sum_{n=1}^{\infty} \frac{b^n}{n^{\alpha}}$ (其中 $\alpha > 0, b > 0$);

2.
$$\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2 + \sqrt{2}}} + \sqrt{2 - \sqrt{2 + \sqrt{2} + \sqrt{2}}} + \cdots;$$

$$3. \sum_{n=2}^{\infty} \left(\frac{n-1}{n+1}\right)^{n^2-n}.$$

定理 1.7 (Raabe 审敛法: 以 *p*-级数为基准). 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $R = \lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right)$, 则 R>1 蕴涵级数收敛, R<1 蕴涵级数发散.

定理 1.8 (对数审敛法: 以 p-级数为基准). 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $r=\lim_{n\to\infty}\frac{\ln\frac{1}{u_n}}{\ln n}$, 则 r>1 蕴涵级数收敛, $r\leq 1$ 蕴涵级数发散.

• 并非课本定理,应用时需要基于比较审敛法做简单的证明.

例题 1.5 (基于 p-级数的比较审敛法). 讨论下列级数的敛散性:

- 1. $\sum_{n=1}^{\infty} \frac{n!e^n}{n^{n+p}} (\sharp p > \frac{3}{2});$
- 2. $\sum_{n=2}^{\infty} \frac{1}{(\ln \ln n)^{\ln n}}$.

注记 1.4. 在级数的前面添加或删除有限个项, 不改变级数的敛散性.

注记 1.5. p-级数的衰减相较于等比级数要"慢", 是更为"精细"、"温和"的比较基准.

1.3 绝对收敛的任意项级数

定义 1.2 (绝对收敛). 若 (正项) 级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则称 (任意项) 级数 $\sum_{n=1}^{\infty} u_n$ (必然也收敛) 是**绝对收敛** (absolutely convergent) 的.

• 绝对收敛级数的和具有重排不变性 (permutation invariance), 改变各项的 排列次序不影响和的值.

例题 1.6 (绝对收敛级数). 证明: $\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{1}{n}\right)$ 绝对收敛.

例题 1.7 (和式的重排). 正项级数 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛, 证明: 级数 $\sum_{n=1}^{\infty} \frac{n}{a_1+a_2+\cdots+a_n}$ 收敛.

注记 1.6. 想要将给定的序列 $S = \{a_n\}_{n=1}^{\infty}$ 重排为单调 (递增) 序列 $S' = \{a_{\sigma_n}\}_{n=1}^{\infty}$,方法显然是:循环往复地挑选 S 中的最小元素 a,将其剔除出 S、排入 S'. 所以,重排是否可行,取决于能否在每一轮循环中都能找到最小元素. 这涉及良序集 (well-ordered set) 的概念,其定义是任意非空 (\mathcal{L}_S) 子集都存在最小元素.

良序性的充要条件是不存在严格递减的无穷子序列. 本题, S 的良序性由 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 的收敛性保证.

1.4 条件收敛的任意项级数

定义 1.3 (条件收敛). 若 (正项) 级数 $\sum_{n=1}^{\infty} |u_n|$ 发散但 (任意项) 级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 则称级数 $\sum_{n=1}^{\infty} u_n$ 是条件收敛 (conditionally convergent) 的.

定义 1.4 (Abel 变换). 任给两组实数 $\{\alpha_k\}_{k=1}^m$ 与 $\{\beta_k\}_{k=1}^m$, 则成立 **Abel 变换**恒 等式

$$\sum_{k=1}^{m} \alpha_k \beta_k = \sum_{k=1}^{m-1} (\alpha_k - \alpha_{k+1}) B_k + \alpha_m B_m,$$
 (4)

其中 $B_k \equiv \sum_{i=1}^k \beta_i$ 为序列 $\{\beta_k\}_{k=1}^m$ 的部分和.

例题 1.8 (Abel 变换与级数审敛). 若序列 $\{a_n\}_{n=1}^{\infty}$ 的部分和有界, 序列 $\{b_n\}_{n=1}^{\infty}$ 满足 $\lim_{n\to\infty}b_n=0$ 且级数 $\sum_{n=1}^{\infty}|b_n-b_{n+1}|$ 收敛. 证明: 级数 $\sum_{n=1}^{\infty}a_nb_n$ 收敛.

注记 1.7. 任意项级数的审敛,一般包括两个步骤: (1) 验证绝对收敛性; (2) 对不绝对收敛 (或绝对收敛性难以验证) 的级数, 验证条件收敛性.

注记 1.8. 应用 Abel 变换处理形如 $\sum_{n=1}^{\infty} a_n b_n$ 的级数, 动机是我们对某一序列 $\{a_n\}_{n=1}^{\infty}$ 的差分 (difference) 和另一序列 $\{b_n\}_{n=1}^{\infty}$ 的部分和有所掌握. 此时, 可以对下述的绝对值不等式

$$\left| \sum_{k=n+1}^{n+p} a_k b_k \right| = \left| \sum_{k=n+1}^{n+p-1} (a_k - a_{k+1}) B_k + a_{n+p} B_{n+p} \right|$$

$$\leq \sum_{k=n+1}^{n+p-1} |a_k - a_{k+1}| |B_k| + |a_{n+p}| |B_{n+p}|$$
(5)

作进一步放缩,并尝试应用 Cauchy 收敛准则完成收敛性的证明.

定理 1.9 (Dirichilet-Abel 审敛法). 考虑级数 $\sum_{n=1}^{\infty} a_n b_n$.

- 1. (Dirichlet 审敛法) 若序列 $\{a_n\}_{n=1}^{\infty}$ 单调且 $\lim_{n\to\infty} a_n = 0$, 序列 $\{b_n\}_{n=1}^{\infty}$ 的部分和有界, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛;
- 2. (Abel 审敛法) 若序列 $\{a_n\}_{n=1}^{\infty}$ 单调且有界, 序列 $\{b_n\}_{n=1}^{\infty}$ 的级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

例题 1.9 (Dirichlet-Abel 审敛法). 判别级数 $\sum_{n=1}^{\infty} \frac{\sin(2n)}{n+\frac{1}{n}} \left(1+\frac{1}{n}\right)^n$ 的敛散性.

注记 1.9. 因子 $\sin(n\theta)$ 作为有界函数显然并不影响一般项的增长"量级", 但根据其它因子的"量级估计"结果, 我们将需要在下述两个方向的不等式中选择一个进行放缩:

$$\frac{1 - \cos(2n\theta)}{2} \equiv \sin^2(n\theta) \le |\sin(n\theta)| \le 1.$$
 (6)

注记 1.10. Dirichlet-Abel 审敛法的难点是涉及和式的那个级数 b_n . 常用的选择包括:

• (Dirichlet 审敛) 符号级数 $b_n \equiv (-1)^n$, 三角级数 $b_n \equiv \sin(n\theta)$;

• (Abel \oplus \oplus) $b_n \equiv \frac{(-1)^n}{n^p} \oplus b_n \equiv \frac{\sin(n\theta)}{n^p}$ ($\sharp + p > 0$).

例题 1.10 (和式的重组). 判别级数 $\sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n}$ 的敛散性.

注记 1.11. 收敛级数的和具有结合律, 增删括号形成的新级数仍收敛到原级数的和.

2 函数项级数的审敛

2.1 函数序列的收敛性

定义 2.1 (函数序列: 点收敛). 给定 D 上的函数序列 $S \equiv \{f_n(x)\}_{n=1}^{\infty}$, 我们称 S 在点 x_0 处收敛 (convergent), 若 $\lim_{n\to\infty} f_n(x_0)$ 存在. 全体收敛点 x_0 构成的集合 X 称为该序列的收敛域 (convergence domain). 在收敛域 X 中, 序列 S 定义了一个函数 $f(x) \equiv \lim_{n\to\infty} f_n(x)$, 称为极限函数 (limit function).

• 根据极限函数的定义, 对任意给定的 $\epsilon > 0$, 都存在 $N \equiv N(x; \epsilon) \in \mathbb{N}_+$, 使 得 $|f_n(x) - f(x)| < \epsilon$ 对任意 $n \ge N$ 及 $x \in X$ 成立.

定义 2.2 (函数序列: 一致收敛). 特别地, 若收敛序列定义中的临界下标 $N \equiv N(\epsilon)$ 不依赖于 x, 则称序列 S 在收敛域 X 上一致收敛 (uniformly converge) 到极限函数 f(x), 记作 $f_n(x) \Rightarrow f(x)$ $(n \to \infty)$.

• 收敛速度可由 $N(\epsilon) \equiv \sup_{x \in X} N(\epsilon; x)$ 对 X 内所有点作 "统一的" 控制.

定理 2.1 (函数序列的一致收敛性). 设函数序列 $S \equiv \{f_n(x)\}_{n=1}^{\infty}$ 在 X 上收敛到极限函数 f(x).

1. 若存在常数序列 $\{a_n\}_{n=1}^{\infty}$ 及正整数 $N \in \mathbb{N}_+$, 使得

$$|f_n(x) - f(x)| \le a_n \, (\forall n \ge N) \tag{7}$$

对任给的 $x \in X$ 成立, 且 $\lim_{n\to\infty} a_n = 0$, 则 S 在 X 上一致收敛到 f(x).

2. 若存在常数 l > 0 及正整数 $N \in \mathbb{N}_+$, 使得

$$|f_n(x_n) - f(x_n)| \ge l \, (\forall n \ge N) \tag{8}$$

对 X 上的某点列 $\{x_n \in X\}_{n=1}^{\infty}$ 成立, 则 S 在 X 上不一致收敛. 一个等价的论断是 $\lim_{n\to\infty} |f_n(x_n) - f(x_n)| > 0$.

例题 2.1 (函数序列的一致收敛性). 讨论函数序列 $f_n(x) = \left(1 - \frac{1}{\sqrt{n}}\right)^{x^2}, n = 1, 2, \cdots$ 在 $x \in (0, +\infty)$ 上的一致收敛性.

2.2 函数项级数的点收敛

例题 2.2 (点审敛). 讨论级数 $\sum_{n=1}^{\infty} \frac{\sin^n x}{1+\sin^{2n} x}$, $x \in (-\infty, +\infty)$ 的绝对收敛性和条件收敛性.

例题 2.3 (点审敛). 求函数项级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^x + 2n}$ 的收敛域, 绝对收敛点 x 的全体, 条件收敛点 x 的全体.

2.3 函数项级数的一致收敛

定理 2.2 (一致收敛的 Cauchy 准则). 函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在集合 X 上一致收敛的充要条件是: 对任给的 $\epsilon > 0$ 都存在对应的 (只依赖于 ϵ 的) $N \in \mathbb{N}$ 满足

$$|S_{n+p}(x) - S_n(x)| \equiv \left| \sum_{k=n+1}^{n+p} u_n(x) \right| < \epsilon \, (\forall n \ge N, p \ge 1). \tag{9}$$

定理 2.3 (一致收敛: 必要条件). 若函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在集合 X 上一致收敛, 则 $u_n(x) \Rightarrow 0$ $(x \in X, n \to \infty)$.

定理 2.4 (一致收敛: 强级数审敛法). 若函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的一般项满足 $|u_n(x)| \leq a_n \ (\forall x \in X, n \in \mathbb{N}_+)$,且正项级数 $\sum_{n=1}^{\infty} a_n \ (称为强级数)$ 收敛,则 $\sum_{n=1}^{\infty} u_n(x)$ 一致收敛.

例题 2.4 (强级数审敛: 内闭一致收敛). 设 $\alpha, \beta > 0$, 证明: 函数项级数 $\sum_{n=1}^{\infty} n^{\alpha} e^{-n^{\beta}x}$ 在 $(0, +\infty)$ 上并非一致收敛; 但在 $[r, +\infty)$ 上一致收敛 (其中 r > 0 任意给定).

例题 2.5 (强级数审敛: 递推函数序列). 对于每个 $x \in [0,1], n = 1,2,\cdots$, 定义

$$f_1(x) = \int_0^x \sqrt{1 + t^4} \, dt, \ f_{n+1}(x) = \int_0^x f_n(t) \, dt,$$
 (10)

证明: $\sum_{n=1}^{\infty} f_n(x)$ 在 [0,1] 上一致收敛.

定理 2.5 (一致收敛: Dirichlet-Abel 审敛法). 考虑函数项级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$.

- 1. (Dirichlet 审敛法) 若函数序列 $\{a_n(x)\}_{n=1}^{\infty}$ 在 X 上一致收敛到 0 且对任意 给定的 $x \in X$ 都对 n 单调, 函数序列 $\{b_n(x)\}_{n=1}^{\infty}$ 的部分和序列在 X 上一致有界, 则级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 收敛;
- 2. (Abel 审敛法) 若函数序列 $\{a_n(x)\}_{n=1}^{\infty}$ 在 X 上一致有界且对任意给定的 $x \in X$ 都对 n 单调, 函数序列 $\{b_n(x)\}_{n=1}^{\infty}$ 的级数 $\sum_{n=1}^{\infty} b_n(x)$ 在 X 上一致 收敛, 则级数 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 收敛.

例题 2.6 (Dirichlet 级数). 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明: 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 在 $[0, +\infty)$ 上一致收敛.

3 收敛级数的性质

3 收敛级数的性质

定理 3.1 (点收敛: 与线性运算的对易性). 收敛级数 $A = \sum_{n=1}^{\infty} a_n$ 与 $B = \sum_{n=1}^{\infty} b_n$ 作线性运算后所得的新级数将收敛到和 A, B 的对应线性组合:

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda A + \mu B. \tag{11}$$

8

定理 3.2 (一致收敛: 与极限运算的对易性). 在区间 [a,b] 上一致收敛的级数 $\sum_{n=1}^{\infty} u_n(x)$,若每一项 $u_n(x)$ 都在 [a,b] 上连续,则其和函数 $S(x) \equiv \sum_{n=1}^{\infty} u_n(x)$ 也在 [a,b] 上连续.

• 对一致收敛且各项连续的函数项级数, 无穷和运算与极限运算彼此对易, 即

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x).$$
 (12)

例题 3.1 (一致收敛与连续性). 证明下列函数的连续性:

- 1. $f(x) = \sum_{n=-\infty}^{+\infty} \frac{1}{(n-x)^2}$, 其中 x 定义在某个不包含整数的闭区间 [a,b] 上;
- 2. $f(x) = \sum_{n=1}^{\infty} \frac{|x-r_n|}{3^n}$, 其中 $x \in [0,1]$, $\{r_n\}_{n=1}^{\infty}$ 为 [0,1] 上的全体有理数.

例题 3.2 (一致收敛与无穷和极限). 计算极限 $\lim_{x\to 0_+}\sum_{n=1}^{\infty}\frac{1}{2^nn^x}$.

定理 3.3 (一致收敛: 与积分运算的对易性). 在区间 [a,b] 上一致收敛的级数 $\sum_{n=1}^{\infty} u_n(x)$,若每一项 $u_n(x)$ 都在 [a,b] 上连续,则其和函数 $S(x) \equiv \sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 上可积,且可逐项积分:

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} u_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x) dx.$$
 (13)

定理 3.4 (一致收敛: 与微分运算的对易性). 在区间 [a,b] 上逐点收敛的级数 $\sum_{n=1}^{\infty} u_n(x)$,若其导数的级数 $\sum_{n=1}^{\infty} u'_n(x)$ 在 [a,b] 上一致收敛,且每一项 $u'_n(x)$ 都在 [a,b] 上连续,则其和函数 $S(x) \equiv \sum_{n=1}^{\infty} u_n(x)$ 在 [a,b] 上可导,且可逐项求导:

$$\left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u_n'(x),\tag{14}$$

且 S'(x) 在 [a,b] 上也连续.

例题 3.3 (一致收敛序列与可导性). 证明: 函数序列 $f_n(x) = x^2 + \frac{1}{n}\sin(n(x + \frac{\pi}{2}))$ 在 $(-\infty, +\infty)$ 内一致收敛,但 $[\lim_{n\to\infty} f_n(x)]' \neq \lim_{n\to\infty} f_n'(x)$.

3 收敛级数的性质 9

注记 3.1. 一致收敛性只能传递可积性,并不能传递可导性. 可以这样理解: 导函数的增长趋势通常难以由原函数的值进行控制.

例题 3.4 (一致收敛级数与可导性). 定义函数项级数 $S(x) \equiv \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n \sin \frac{x}{n!}$. 证明:

- 1. S(x) 在 (0, +∞) 上不一致收敛,但在区间 $(0, \delta]$ 上一致收敛 (其中 $\delta > 0$ 任意给定);
- 2. S(x) 在 $(0,+\infty)$ 上有连续的导函数.

Snacks

Riemann-zeta 函数

函数项级数

$$\zeta(x) \equiv \sum_{n=1}^{\infty} \frac{1}{n^x} \tag{15}$$

定义为 Riemann- ζ 函数, 容易看出它实为 p-级数在实数域 \mathbb{R} 上的推广. 在区间 $(1, +\infty)$ 上, ζ 函数有定义, 且具有连续的导函数

$$\zeta'(x) = -\sum_{n=1}^{\infty} \frac{\ln n}{n^x}.$$
 (16)

其导函数的存在性与连续性无法在 $(1,+\infty)$ 上直接证明, 因为级数 (16) 不在 $(1,+\infty)$ 上满足一致收敛性. 但注意它在任意 $[1+\delta,+\infty)$ 上满足一致收敛性, 这也可以导出导函数 $\zeta'(x)$ 在 $(1,+\infty)$ 上的连续性. 反复应用可导性传递定理可知, $\zeta(x)$ 具有连续的各阶导数.

有趣的是, ζ 函数与自然数中素数的分布有着深刻的关联. 早在 18 世纪, Euler 就证明了下述定理 (其证明非常简单, 读者可以尝试自行完成): 设全体素数构成集合 \mathcal{P} , 则

$$\zeta(x) = \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-x}}.$$
(17)

这启发了人们在数论中著名的 Goldbach 猜想与复分析领域的 Riemann 猜想之间建立 联系. 可惜, 时至今日, 这两个猜想及其二者之间的关系都还没有被研究清楚.