Vehicle Loan Default Prediction

How Predictive Modeling reduces financial losses from defaults

The problem

Problem statement

To reduce financial loss from vehicle loan defaults, we want to accurately predict (at least 75%) borrowers who will make their first equal monthly installment (EMI) on time and those who won't. We also want to identify the top 5 most important features for prediction to assist our underwriting team.

Company

Generalized vehicle loan company with access to large database.

Needs additional models that could assist the credit and underwriting team to help identify potentially risky loan applicants

Relevant Parties

- Underwriting Managers
- R&D
- Financial Analysts
- C-Suite Leadership

Challenges deep-dive

Challenge 1

Useful Visualizations

Building visualizations of our dataset that can be useful for underwriting purposes. The interactions between features are complex.

Challenge 2

Accuracy vs Overfitting

For the prediction to be generalizable to *new* data, we tune parameters to avoid overfitting, which could mean lower accuracy score.

Exploratory Data Analysis

Our Data

40 FEATURES

- Borrower Information: loan to value ratio, loan disbursed amount, credit score, outstanding loan amounts at time of disbursement, date of birth, employment type etc.
- Other: branch, manufacturer, state

PREDICTOR VARIABLE

Loan_default: value of 0 if borrower pays the first equal monthly installment on time (non defaulter), 1 if the borrower does not (defaulter)

Our Data

Variable Name	Description		
UniqueID	Identifier for customers		
loan_default	Payment default in the first EMI on due date		
disbursed_amount	Amount of Loan disbursed		
asset_cost	Cost of the Asset		
Itv	Loan to Value of the asset		
branch_id	Branch where the loan was disbursed		
supplier_id	Vehicle Dealer where the loan was disbursed		
manufacturer_id	Vehicle manufacturer(Hero, Honda, TVS etc.)		
Current_pincode	Current pincode of the customer		
Date.of.Birth	Date of birth of the customer		
Employment.Type	Employment Type of the customer (Salaried/Self Employed)		
DisbursalDate	Date of disbursement		
State_ID	State of disbursement		
Employee_code_ID	Employee of the organization who logged the disbursement		
MobileNo_Avl_Flag	if Mobile no. was shared by the customer then flagged as 1		
Aadhar_flag	if aadhar was shared by the customer then flagged as 1		
PAN_flag	if pan was shared by the customer then flagged as 1		
VoterID_flag	if voter was shared by the customer then flagged as 1		
Driving_flag	if DL was shared by the customer then flagged as 1		
Passport_flag	if passport was shared by the customer then flagged as 1		
PERFORM_CNS.SCORE	Bureau Score		
PERFORM_CNS.SCORE.DESCRIPTION	Bureau score description		
PRI.NO.OF.ACCTS	count of total loans taken by the customer at the time of disbursement		

PRI.ACTIVE.ACCTS	count of active loans taken by the customer at the time of disbursement		
PRI.OVERDUE.ACCTS	count of default accounts at the time of disbursement		
PRI.CURRENT.BALANCE	total Principal outstanding amount of the active loans at the time of disbursen		
PRI.SANCTIONED.AMOUNT	total amount that was sanctioned for all the loans at the time of disbursement		
PRI.DISBURSED.AMOUNT	total amount that was disbursed for all the loans at the time of disbursement		
SEC.NO.OF.ACCTS	count of total loans taken by the customer at the time of disbursement		
SEC.ACTIVE.ACCTS	count of active loans taken by the customer at the time of disbursement		
SEC.OVERDUE.ACCTS	count of default accounts at the time of disbursement		
SEC.CURRENT.BALANCE	total Principal outstanding amount of the active loans at the time of disbursement		
SEC.SANCTIONED.AMOUNT	total amount that was sanctioned for all the loans at the time of disbursement		
SEC.DISBURSED.AMOUNT	total amount that was disbursed for all the loans at the time of disbursement		
PRIMARY.INSTAL.AMT	EMI Amount of the primary loan		
SEC.INSTAL.AMT	EMI Amount of the secondary loan		
NEW.ACCTS.IN.LAST.SIX.MONTHS	New loans taken by the customer in last 6 months before the disbursment		
DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS	Loans defaulted in the last 6 months		
AVERAGE.ACCT.AGE	Average loan tenure		
CREDIT.HISTORY.LENGTH	Time since first loan		
NO.OF_INQUIRIES	Enquries done by the customer for loans		

Data Analysis Tools

<u>Difference of Mean Independent t-test:</u> This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. If the provided p-value < 0.05, we reject the null hypothesis of equal averages. **Use this test to see if the averages of a feature** between the defaulter and non-defaulter classes are different i.e. p-value < 0.05.

<u>Chi-square Distribution:</u> The chi-square test tests the null hypothesis that the categorical data has the given frequencies in our case, if the non-defaulter frequencies for a categorical feature matches the defaulter frequencies for the same feature. *If p-value > 0.05, we conclude that the frequencies do not match.*

Data Visualization for Numerical Features: disbursed_amount

Nondefaulter mean for disbursed_amount : 53826.47111091633 , std: 13140.699007454747 Defaulter mean for disbursed_amount : 56270.47386931695 , std: 12150.255527172361 Ttest_indResult(statistic=39.32291321262725, pvalue=0.0)

Data Visualization for Numerical Features: Itv

Nondefaulter mean for ltv: 74.15409333691578, std: 11.681454560472389 Defaulter mean for ltv: 76.88332180751246, std: 10.327771446422924 Ttest_indResult(statistic=51.07804645618371, pvalue=0.0)

Data Visualization for Numerical Features: PERFORM_CNS.SCORE

Nondefaulter mean for PERFORM_CNS.SCORE : 590.6796912947271 , std: 244.5933876500854 Defaulter mean for PERFORM_CNS.SCORE : 541.8708349250817 , std: 247.84156027494095 Ttest indResult(statistic=-27.06155806056678, pvalue=1.1001651810636842e-159)

Data Visualization for Categorical Features

Data Visualization for Categorical Features

statistic=0.0118161806370888, pvalue=0.9134386517838328

Models

Model 1: Decision Tree Classifier

Model 2: Random Forest Classifier

Model 3: Gradient Boost Classifier

Model 1: Decision Tree Classifier

Grid Search CV

Training vs Test

Model 2: Random Forest Classifier

Grid Search CV

Training vs Test

Model 3: Gradient Boost Classifier

Grid Search CV

Training vs Test

Model Results: F-1 Score

Comasion watrix

Gradient Boost: Accuracy=0.811 Gradient Boost: f1-score=0.809

	precision	recall	f1-score	support
0	0.76	0.92	0.83	36561
1	0.90	0.70	0.79	36457
accuracy			0.81	73018
macro avg	0.83	0.81	0.81	73018
weighted avg	0.83	0.81	0.81	73018

Model 3: Important Features

How the User Can Utilize our Results

Important Feature Identification

Credit Score Discrepancy

Default Prediction as Final Voice of Reason