Support Vector Machines in R

Contents

- 1. Introduction to Support Vector Machine (SVM)
- 2. Understanding Hyper Planes
 - i. What is a Hyper Plane
 - ii. Hyper Plane Separation
- 3. Linear Separators
 - i. Classification Margin
- 4. Mathematical Approach to Linear SVM
- 5. Non-Linear SVM
- 6. About the Kernel Function
- 7. SVM in R
 - i. SVM Modeling
 - ii. ROC and Area Under ROC Curve

Introduction to Support Vector Machines

- Support Vector Machines (SVM's) are a relatively new learning method generally used for classification problem.
- Although the first paper dates way back to early 1960's it is only in 1992-1995 that
 this powerful method was universally adopted as a mainstream machine learning
 paradigm

The basic idea is to find a hyper plane which separates the d-dimensional data perfectly into its classes. However, since training data is often not linearly separable, SVM's introduce the notion of a "Kernel-induced Feature Space" which casts the data into a higher dimensional space where the data is separable.

What is a Hyper Plane

In two dimensions, a hyper plane is defined by the equation:

$$W_1 X_1 + W_2 X_2 + b = 0$$

This is nothing but equation of line.

The above equation can be easily extended to the p-dimensional setting:

$$W_1X_1 + W_2X_2 + \dots + W_pX_p + b = 0$$

In short,

$$\mathbf{W}^T\mathbf{X} + \mathbf{b} = \mathbf{0}$$

In p > 3 dimensions, it can be hard to visualize a hyper planes.

Separating a Hyper Plane

• Binary classification can be viewed as the task of separating classes in feature space:

Fig. 01: Binary Classification

Linear Separators

The objective in SVM is to find optimum separator

Fig. 02: Linear Separators

Classification Margin

• Distance from case \mathbf{x}_i to the separator is

$$r = \frac{w^T x_i + b}{\parallel w \parallel}$$

Here || w || is length of a vector given by sqrt(sum(W^2))

- Cases closest to the hyper plane are Support Vectors
- Margin ρ of the separator is the distance between support vectors

Maximum Margin Classification

- The objective is now to maximize the margin $\boldsymbol{\rho}$ of the separator
- The focus is on 'Support Vectors'
- Other cases are not considered in the algorithm

Mathematical Approach to Linear SVM

Let training set be separated by a hyper plane with margin ρ . Then for each training observation

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + \mathbf{b} \leq -\rho/2$$
 if $\mathbf{y}_{i} = -1$
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + \mathbf{b} \geq \rho/2$ if $\mathbf{y}_{i} = 1$ $y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + \mathbf{b}) \geq \rho/2$

For every support vector x_s the above inequality is an equality

After rescaling w and b by $\rho/2$ in the equality, we obtain that distance between each x_s

and the hyper plane is
$$r = \frac{y_i(w^Tx_s + b)}{\|w_i\|} = \frac{1}{\|w_i\|}$$

Margin can be expressed through (
$$\rho = 2r = \frac{2}{\parallel w \parallel}$$

Mathematical Approach to Linear SVM

Quadratic Optimisation problem is:

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximised}$$

and

$$y_i(w^Tx_i + b) \ge 1$$

which can be reformulated as:

Find w and b such that

$$\phi(w) = w^T w$$
 is minimised

and

$$y_i(w^Tx_i + b) \ge 1$$

Non-Linear SVMs – Feature Spaces

General idea: The original feature space can always be mapped to some higher-dimensional feature space where the training set is separable

The "Kernel Trick"

The linear classifier relies on inner product between vectors

$$K(x_i, x_j) = x_i^T x_j$$

If every data point is mapped into high-dimensional space via some transformation $\phi\colon\thinspace x\to\phi(x)$ then the inner product becomes

$$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$

A kernel function is a function that is equivalent to an inner product in some feature space

The "Kernel Trick"

Example:

2-dimensional vector $\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2];$

Let
$$K(x_i, x_j) = (1 + x_i^T x_j)^2$$

Need to show that $K(x_i, x_i) = \phi(x_i)^T \phi(x_i)$:

$$\begin{split} &K\big(x_i,x_j\big) = (1+x_i{}^Tx_j)^2\\ &= 1+x_{i1}{}^2x_{j1}{}^2+2x_{i1}x_{j1}x_{i2}x_{j2}+x_{i2}{}^2x_{j2}{}^2+2x_{i1}x_{j1}+2x_{i2}x_{j2}\\ &= [1\ x_{i1}{}^2\sqrt{2}x_{i1}x_{i2}\ x_{i2}{}^2\sqrt{2}x_{i1}\ \sqrt{2}x_{i2}]\ T\ [1\\ &x_{j1}{}^2\sqrt{2}x_{j1}x_{j2}\ x_{j2}{}^2\sqrt{2}x_{j1}\ \sqrt{2}x_{j2}]\\ &= \phi(x_i)^T\phi(x_j)\ \text{where}\ \phi(x) = [1\ x_1{}^2\sqrt{2}x_1x_2\ x_2{}^2\sqrt{2}x_1\sqrt{2}x_2] \end{split}$$

Thus, a kernel function implicitly maps data to a high-dimensional space (Without the need to compute each $\phi(x)$ explicitly)

Examples of Kernel Functions

Linear

$$K(x_i, x_j) = x_i^T x_j$$

Mapping φ

 $x \to \phi(x)$ where $\phi(x)$ is x itself

Polynomial of power ρ

$$K(x_i, x_j) = (1 + x_i^T x_j)^{\rho}$$

Gaussian (Radial basis function)

$$K(x_i, x_j) = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}}$$

Case Study – Predicting Loan Defaulters

Background

• The bank possesses demographic and transactional data of its loan customers. If the bank has a robust model to predict defaulters it can undertake better resource allocation.

Objective

 To predict whether the customer applying for the loan will be a defaulter

Available Information

- Sample size is 700
- Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts are the independent variables
- **Defaulter** (=1 if defaulter, 0 otherwise) is the dependent variable

Data Snapshot

BANK LOAN

Independent Variables

Dependent Variable

	SN AGE EMPLOY	ADDRESS DEBT	INC CREDDEBT OTHDEB	T DEFAULTER
Column	Description	Type	Measurement	Possible Values
SN	Serial Number	-	-	-
AGE	Age Groups	Integer	1(<28 years),2(28-40 years),3(>40 years)	3
EMPLOY	Number of years customer working at current employer	Integer	-	Positive value
ADDRESS	Number of years customer staying at current address	Integer	-	Positive value
DEBTINC	Debt to Income Ratio	Continuous	-	Positive value
CREDDEBT	Credit to Debit Ratio	Continuous	-	Positive value
OTHDEBT	Other Debt	Continuous	-	Positive value
DEFAULTER	Whether customer defaulted on loan	Integer	1(Defaulter), 0(Non-Defaulter)	2

SVM in R

Importing and Readying the Data

```
bankloan$AGE<-as.factor(bankloan$AGE) 

str(bankloan)

str() is used to check if the conversion to factor has taken place and if all other variable formats are appropriate, before moving to SVM modeling.
```

Output

```
'data.frame': 700 obs. of 8 variables:
$ SN : int 1 2 3 4 5 6 7 8 9 10 ...
$ AGE : Factor w/ 3 levels "1","2","3": 3 1 2 3 1 3 2 3 1 2 ...
$ EMPLOY : int 17 10 15 15 2 5 20 12 3 0 ...
$ ADDRESS : int 12 6 14 14 0 5 9 11 4 13 ...
$ DEBTINC : num 9.3 17.3 5.5 2.9 17.3 10.2 30.6 3.6 24.4 19.7 ...
$ CREDDEBT : num 11.36 1.36 0.86 2.66 1.79 ...
$ OTHDEBT : num 5.01 4 2.17 0.82 3.06 ...
$ DEFAULTER: int 1 0 0 0 1 0 0 0 1 0 ...
```

SVM in R

SVM Using Package "e1071"

```
install.packages("e1071")
library(e1071)
model<-svm(formula=DEFAULTER~AGE+EMPLOY+ADDRESS+</pre>
             DEBTINC+CREDDEBT+OTHDEBT, data=bankloan,
             type="C",probability=TRUE,kernel="linear")
                         svm() trains a support vector machine.
                         formula= gives the model to be fit.
                         data= specifies the data object.
                         type= specifies whether SVM is used for classification or
                         regression or novelty detection. Default for type= is "C".
                         probability= logical for indicating whether model should
model
                         allow for probability predictions.
                         kernel= specifies the kernel used in training and
                         predicting. Here, we have kept kernel as linear.
```

SVM in R

Output

```
> model

Call:
svm(formula = DEFAULTER ~ AGE + EMPLOY + ADDRESS + DEBTINC + CREDDEBT + OTHDEBT,
    data = bankloan, type = "C", probability = TRUE,
        kernel = "linear")

Parameters:
    SVM-Type: C-classification
SVM-Kernel: linear
    cost: 1

Number of Support Vectors: 312
```

Predictions Based on SVM

Predictions

<pre>pred1<-predict(</pre>	model,bankloan, probability =TRUE)	
	 predict() returns predicted probabilities based on the model results and historical data. First argument is the svm() model object while the second argument is original dataset. probability=TRUE returns raw probabilities. This argument is valid only when type="probability" is specified in svm(). 	
pred2<-attr(pre	d1,"probabilities")[,1]	
war Firs	 attr(), from base R, is used get or set specific attributes of an object. Here, we want to get the predicted probabilities obtained by the svm() model. First argument is the name of the object whose attributes we want to extract. Second argument is the character string specifying which attribute is to be accessed. Check pred1 to know the exact name, which is "probabilities". 	

ROC Curve and Area Under ROC Curve

#ROC Curve

```
install.packages("ROCR")
library(ROCR)

pred<-prediction(pred2,bankloan$DEFAULTER)

perf<-performance(pred,"tpr","fpr")

plot(perf)
abline(0,1)</pre>
```

prediction() creates object of
class prediction, required for
ROC curve. performance()
calculates predictor evaluations.
Using measure="tpr",
measure="fpr" we can plot an
ROC Curve.
abline()
adds a straight line to the plot.

ROC Curve and Area Under ROC Curve

Output

Area Under ROC Curve

```
auc<-performance(pred, "auc")
auc@y.values
[[1]]
[1] 0.855577</pre>
"auc" in performance() calculates Area Under
ROC Curve.
```

Quick Recap

Support Vector Machines

- SVMs find a hyper plane which separates the d-dimensional data perfectly into its classes
- Since training data is often not linearly separable, SVM's introduce the notion of a "Kernel-induced Feature Space" which casts the data into a higher dimensional space where the data is separable

SVM in R

- Package "e1071" has svm() that trains a support vector machine
- The function takes arguments to specify whether **svm()** is to be used for classification or regression; if probabilities are to be returned and which kernel to use for training and predicting