Computer Assignment 1a Econometrics, Sep 2017

Joost Bouten, SNR: 1265889

Fons Strik, SNR: 1257943

Twan Vissers, SNR: 1266283

Ш

a.

	Coefficient	Standard error
constant	0.2696	0.0432
bicyclestolen_ever	0.1411	0.0754

If a person's bike has ever been stolen, their perception of the chance that their bike will be stolen in the next 30 days being very unlikely increases by approximately 14.11%-point.

A 1% increase in bicyclestolen ever results in a .1411%-point increase in perception person low.

b.

The size of the estimated coefficient for bicyclestolen_ever decreases by approximately 0.07, which is nearly 50%. The standard error increases by 0.03, thus it nearly remains the same value.

The variable international could be related to their perception of their bike being stolen in the upcoming 30 days because their behavior of using a bike may differ from a non-international, further, the bikes of internationals may be newer than the bikes of non-internationals, causing them to be more careful with their bike. Also, Dutch people may have more experience in carrying their bike in the Netherlands, they may have a better perception of where not to park their bike.

International may related to bicyclestolen_ever as well, as internationals may not have had a bike for the largest part of their life while most Dutch people are likely to have had a bike for a great part of their life.

c.

If bicycle owners were victimized before, they might indeed become more careful, which in turn decreases the perceived likelihood of their bike being stolen. This, however, is part of actual effect being analyzed; the victimized relative to the non-victimized bike owners are more careful as a result of having their bike stolen. So, being more careful is actually one of the mechanisms that drives the treatment effect that decreases the perceived likelihood of their bike being stolen.

IV

a.

There are two potential outcomes, measured by the perception of risk of bicycle theft. The first potential outcome is the outcome for the group that has been subjected to the treatment of being asked to recall the last instance of bicycle theft before answering the question measuring their risk

perception. The other potential outcome is that of the group who was first asked about their risk perception of bicycle theft before being made to recall the last instance of their bicycle being stolen.

The causal effect is the difference between the treated group and the counterfactual, in this instance being the effect of the recall of their last instance of bicycle theft on risk perceptions. The intuition being that fresh memory of the theft might increase the perceived risk.

b.

There cannot be any adverse selection since the research design is based on random selection into treatment. Theoretically causing the treatment and control groups to be perfectly comparable. So therefore there is no selection bias.

c.

According to the first graph, the mean perception of a surveyed individuals' bicycle being stolen in the next 30 days being 'very unlikely' conditional on not being treated is higher than the same mean conditional on being treated.

The second graph suggest that the mean perception of bicycle theft occurring in the neighborhood 'frequently' conditional on an individual not being treated is lower than the same mean conditional on being treated.

Thus, if an individual is recalled of their bicycle being stolen before being asked about their risk perceptions, the perceived risk of their bicycle being stolen is higher. Furthermore, the recall of their bicycle being stolen increases the perceived frequency of bicycle thefts in the neighborhood.

d.

For the regression on *perception_person_low* we get the following results:

	Coefficient	Standard error
constant	0.0715	0.2186
treatment	-0.1048	0.1242
own_bicycle	0.6173	0.2629
frequentuser	-0.2528	0.1926

For the regression on *perception_nhood_high* we get the following results:

	Coefficient	Standard error
constant	0.1719	0.2112
treatment	0.0552	0.1200
own_bicycle	0.0100	0.2540
frequentuser	0.0853	0.1860

e.

The data shows the same effect of the treatment as explained above when elaborating on the graphs in question \mathbf{c} .

In the case that an individual is treated (treatment = 1), it is 10.48 percentage-point less likely that you think you are personally 'very unlikely' to be a victim of bicycle theft in the next 30 days.

And in the case that an individual is treated (treatment = 1), it is 5.52 percentage-point more likely that you think bicycle theft occurs 'frequently' in your neighborhood.

Even though the first coefficient is negative and the second is positive, the difference makes sense to us. In the first case the survey answer analyzed was the low perception of bicycle theft risk, which is expected to be chosen less if treated. This explains the negative coefficient. In the second case the survey answer with a high perception of risk is analyzed, which is expected to be chosen more if treated. This explains the positive coefficient.

f.

For the first regression, dividing the coefficient by the mean of the control group we get that the percentage decrease from being treated, thus the estimated causal effect equals $-\frac{.1047679}{.40625}\approx-0.2579$. This means that in the case of being treated, an individual is approximately 25% less likely to choose the option "very unlikely" when regarding the likeliness of their bicycle being stolen in the next 30 days. In our opinion, this effect is quite substantial.

For the second regression, we use the same method. The causal estimated causal effect now equals $\frac{.055207}{.25} \approx 0.2208$. This means that in the case of being treated, an individual is approximately 22% more likely to choose the option "frequently" when regarding the perceived frequency of bicycle theft in their neighborhood. In our opinion, this effect is quite substantial too.

g.

Both regression results show no statistically significant effects on the outcome variables. Therefore we cannot reject the null hypothesis of the treatment having no effect. This means that there is no evidence of the treatment having any effect on the outcomes of the perception of risk as well as the perception of frequency of bicycle theft.

name: <unnamed> log: C:\Users\u1265889\Downloads\Econometrics1a.smcl
log type: smcl opened on: 1 Sep 2017, 16:52:39 1 . do "C:\Users\u1265889\Downloads\Computerassignmentleconometrics1 (1).do" 2 . * Computer Assignment la Econometrics, Sep 2017 3 . * Joost Bouten, Fons Strik, Twan Vissers 5 . *Question I 6 . use "C:\Users\u1265889\Downloads\ca1a_2017.dta", clear () 8 . *Question II (a) 9 . histogram likelihood if own_bicycle==1, discrete (start=1, width=1)11 . tab likelihood if own_bicycle==1 How likely do you think you personally are to be a victim of bicycle theft in th Freq. Percent Cum. Very likely 0.58 0.58 1 Fairly likely 26 15.20 15.79 Fairly unlikely 90 52.63 68.42 54 31.58 100.00 Very unlikely 171 100.00 Total 12 . 13 . tab likelihood if own_bicycle==1, miss How likely do you think you personally

victim of bicycle theft in th Freq. Percent Cum. 1 Very likely 0.58 0.58 Fairly likely 26 15.20 15.79 Fairly unlikely 90 52.63 68.42 54 100.00 Very unlikely 31.58 171 Total

14.

are to be a

15 . tab likelihood if own_bicycle==1, nolabel

How likely do you think

you pers

persona | lly are to be a victim of bicycle

of bicycle theft in th	Freq.	Percent	Cum.
1 2 3 4	1 26 90 54	0.58 15.20 52.63 31.58	0.58 15.79 68.42 100.00
Total	171	100.00	

16 .

- 17 . gen perception_person_low=(likelihood==4)
- 18 . gen perception_nhood_high=(freq_nhood==3)

19 .

- 20 . label var perception_person_low "'Very unlikely' victim of bicycle theft in nx > t 30 days"
- 21 . label var perception_nhood_high "'Frequently' bicycle theft occurs in n'hood"

22 .

23 . summ perception_nhood_high

perception~h	189	.1481481	.3561903	0	1
Variable	Obs	Mean	Std. Dev.	Min	Max

24 . summ perception_person_low if own_bicycle==1

Variable	Obs	Mean	Std. Dev.	Min	Max

25 .

26 . summ perception_nhood_high, detail

'Frequently' bicycle theft occurs in n'hood

		Smallest	Percentiles	
		0	0	1%
		0	0	5%
189	Obs	0	0	10%
189	Sum of Wgt.	0	0	25%
.1481481	Mean		0	50%
.3561903	Std. Dev.	Largest		
		1	0	75%
.1268716	Variance	1	1	90%
1.980887	Skewness	1	1	95%
4.923913	Kurtosis	1	1	99%

27 . summ perception_person_low if own_bicycle==1, detail $\,$

'Very unlikely' victim of bicycle theft in nxt 30 days

	Percentiles	Smallest		
1%	0	0		
5%	0	0		
10%	0	0	Obs	171
25%	0	0	Sum of Wgt.	171

Friday September 1 16:55:44 2017 Page 3

50%	0		Mean	.3157895
		Largest	Std. Dev.	.4661947
75%	1	1		
90%	1	1	Variance	.2173375
95%	1	1	Skewness	.7925939
99%	1	1	Kurtosis	1.628205

28 . 29 . *Question II (b) 30 . tab treatment female, col

Key
frequency
column percentage

treatment	female 0	e 1	Total
0	55	33	88
	45.08	49.25	46.56
1	67	34	101
	54.92	50.75	53.44
Total	122	67	189
	100.00	100.00	100.00

31 . tab treatment international, col

Key	
frequency column percentage	

	Considers h		
treatment	0	1	Total
0	41	47	88
	44.09	48.96	46.56
1	52	49	101
	55.91	51.04	53.44
Total	93	96	189
	100.00	100.00	100.00

32 . tab treatment moved_notrecent, col

Key	
frequency	
column percentage	

Friday September 1 16:55:44 2017 Page 4

Moved to current address more than 3										
	yrs	ago								
treatment	0	1	Total							
0	69	19	88							
	48.59	40.43	46.56							
1	73	28	101							
	51.41	59.57	53.44							
Total	142	47	189							
	100.00	100.00	100.00							

33 .
34 . bys treatment: summ age

-> treatment = 0					
Variable	Obs	Mean	Std. Dev.	Min	Max
age	87	23.55172	3.098231	20	42
-> treatment = 1					
Variable	Obs	Mean	Std. Dev.	Min	Max

age 93 22.88172 2.042215 20 31

35 .
36 . ttest female, by(treatment)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	88 101	.375 .3366337	.0519034 .0472558	.4868973 .4749153	.2718363 .2428794	.4781637 .4303879
combined	189	.3544974	.034888	.4796313	. 285675	. 4233197
diff		.0383663	.0700723		0998676	.1766002

 $\begin{array}{rcl} & & t = & \textbf{0.5475} \\ \text{degrees of freedom} = & \textbf{187} \end{array}$ diff = mean(0) - mean(1)Ho: diff = 0

37 . * There is no significant difference in proportion of student being female bet > ween treatment and control group

38 .

39 . *Question III (a) 40 .

41 . regres perception_person_low bicyclestolen_ever if own_bicycle==1

	Source	SS	df	MS	Number of obs	=	171
_					F(1, 169)	=	3.50
	Model	.750318732	1	.750318732	Prob > F	=	0.0630
	Residual	36.1970497	169	.214183726	R-squared	=	0.0203
_					Adj R-squared	=	0.0145
	Total	36.9473684	170	.217337461	Root MSE	=	.4628

> —— perception_perso~w > val]	Coef.	Std. Err.	t	P> t	[95% Conf.	Inter
> —— bicyclestolen_ever > 0226	.1411491	.0754134	1.87	0.063	0077245	. 290
_cons	.2695652	.0431563	6.25	0.000	.1843703	.354

42 .

43 . *Question III (b)

44 . regres perception_person_low bicyclestolen_ever international if own_bicycle== > 1

Source		SS	df	M	3	Number		=		171	
		823212 791363	2 1.08411606 168 .207018668			F(2, 168) Prob > F R-squared		= 0. = 0.		5.24 .0062 .0587	
Total	36.9	473684	170	.21733	7461	Adj R-s Root MS	-	===		0475 5499	
> —— perception_per > val]	rso~w	Coef.	Std	. Err.	t	. P> t	:	[95%	Conf.	Inter	
> —— bicyclestolen_ > 6065	_ever	.0736294	. 07	85018	0.9	94 0.3	50 –	.0813	3477	. 228	
internati	onal	1929134	. 07	37127	-2.0	52 0.01	- 0	.3384	4359	047	

6.29 0.000

.264319

.506

> 3075 -----

> 3909

45 .

46 . *Question IV

47 . drop if bicyclestolen_ever==0 (128 observations deleted)

_cons

48 .

49 . *Question IV (c)

50 . graph bar perception_person_low if own_bicycle==1, over(treatment)

.3853132 .0612882

51 . graph export "M:\Graph1.pdf", as(pdf) replace
 (file M:\Graph1.pdf written in PDF format)

52 . graph bar perception_nhood_high, over(treatment)

53 . graph export "M:\Graph2.pdf", as(pdf) replace
 (file M:\Graph2.pdf written in PDF format)

54.

55 . *Question IV (d)

56 . regres perception_person_low treatment own_bicycle frequentuser

	Source	SS	df	MS	Number of obs	=	61
_					F(3, 57)	=	1.93
	Model	1.31971327	3	.439904423	Prob > F	=	0.1354
	Residual	13.0081556	57	.228213256	R-squared	=	0.0921
_					Adj R-squared	=	0.0443
	Total	14.3278689	60	.238797814	Root MSE	=	.47772

perception~w	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
treatment own_bicycle frequentuser _cons	1047679	.1242038	-0.84	0.402	3534817	.143946
	.6173149	.2628981	2.35	0.022	.0908706	1.143759
	2528231	.1925645	-1.31	0.194	6384268	.1327806
	.0715182	.2185933	0.33	0.745	3662074	.5092438

57 . regres perception_nhood_high treatment own_bicycle frequentuser

61	os =	ber of ob	Nun	MS	df		SS	Source
0.9024 0.0099	= = =	F(3, 57) Prob > F R-squared Adj R-squared		.0405893	_		.121768106 12.140527	Model Residual
0.0122	ed = =	R-square t MSE	-	.2043715	60		12.2622951	Total
Interval]	Conf.	[95%	P> t	t	Err.	Std.	Coef.	perception~h

perception~h	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
treatment own_bicycle frequentuser _cons	.055207	.1199902	0.46	0.647	1850692	.2954833
	.0100376	.2539793	0.04	0.969	4985471	.5186224
	.0853199	.1860317	0.46	0.648	2872022	.4578421
	.1718946	.2111776	0.81	0.419	2509812	.5947704

58 .

59 . *Question IV (f): We use the means of the following variables as a baseline to

> get the percentage decrease as provided in question f

60 . sum perception_person_low if treatment==0

perception~w	32	. 40625	.4989909	0	1
Variable	Obs	Mean	Std. Dev.	Min	Max

61 . sum perception_nhood_high if treatment==0

perception~h	32	. 25	.4399413	0	1
Variable	Obs	Mean	Std. Dev.	Min	Max

62 .

63 .

end of do-file

64 . log close

name: <unnamed>

 $\label{log:conometrics1a.smcl} \mbox{log type:} \quad \mbox{C:\Users\ul265889\Downloads\Econometrics1a.smcl}$

closed on: 1 Sep 2017, 16:54:36