Study Group

Professor A. Manikas

Imperial College London

Comms-1

Fourier Series & Fourier Transform

Table of Contents Introduction

- - Temporal Representation
 - Phasor Representation
 - Spectral Representation
- 2 Fourier Series Description of Periodic Signals
 - 1st Form
 - 2nd Form
 - 3rd Form

Introduction

• Consider the sinusoid g(t) of amplitude A, frequency F_0 and phase ϕ . This signal can be represented as follows:

$$g(t) = A \cdot \cos(2\pi F_0 t + \phi)$$
(1)

$$= A \cdot \text{Re} \left(\exp\{j \cdot (2\pi F_0 t + \phi)\} \right)$$
(2)

$$= \frac{A}{2} \cdot \left(\exp\{j \cdot (2\pi F_0 t + \phi)\} + \exp\{-j \cdot (2\pi F_0 t + \phi)\} \right)$$
(3)

$$= \frac{A}{2} \cdot \cos \phi \cdot \left(\exp[j \cdot 2\pi F_0 t] + \exp\{-j \cdot 2\pi F_0 t\} \right)$$

$$+j \cdot \frac{A}{2} \cdot \sin \phi \cdot \left(\exp\{j \cdot 2\pi F_0 t\} - \exp\{-j \cdot 2\pi F_0 t\} \right)$$
(4)

i) Temporal Representation (Equ.1): $g(t) = A \cdot \cos(2\pi F_0 t + \phi)$

ii) Phasor Representation (Equs 2 and 3): we represent exponentials as rotating phasors in the complex plane. There are two different phasor representations:

- \star above, both diagrams, represent a "snapshot" at t=0
- * angular velocity of phasors = $\pm 2\pi F_0 \frac{\text{rad}}{\text{sec}}$ i.e. always real
- * The second phasor representation (ii.b) leads to the SPECTRAL REPRESENTATION.

iii) Spectral Representation (Equ.4)

Line spectrum:

The spectrum indicates the sizes and starting angles of the phasors (resolved intro Re and Im parts), and also that they should rotate at $2\pi F_0$ rad $\frac{\text{rad}}{\text{sec}}$ More usual representation: (based on Equ. 3)

* N.B.: to specify spectrum fully, we need two quantities at each frequency, that is amplitude and phase.

1st Form

- Joseph Fourier (1768-1830) Theorem: Any periodic waveform can be represented by a sum of sine and cosine terms having frequencies F₀, 2F₀, 3F₀, etc. (in general to ∞).
- Let us define

• N.B.: The reason why the DC level is an a and not a b is that $\cos 0^{\circ} = 1$.

2nd Form

by using

$$A.\cos\theta + B.\sin\theta = \sqrt{A^2 + B^2}\cos\left(\theta - \tan^{-1}\frac{B}{A}\right)$$

we get the 2^{nd} Form:

$$g(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos\left(2\pi \frac{n}{T_0} t - \phi_n\right)$$

$$C_0 = a_0$$

$$C_n = \sqrt{a_n^2 + b_n^2}$$

$$C_n = \sqrt{a_n^2 + b_n^2}$$

$$\phi_n = \tan^{-1} \frac{b_n}{a_n}$$

N.B: the coefficients C_n are called Single-Sided Spectral-Amplitudes

◆ロ > ◆昼 > ◆昼 > ○昼 * り へ ○

3rd Form (Most Important)

• The 3^{rd} Form can be derived by using $\cos \theta = \frac{\exp(j\theta) + \exp(-j\theta)}{2}$. This form, which finds extensive application in communication theory, is given as follows:

$$g(t) = \sum_{n=-\infty}^{\infty} G_n \exp\left(j2\pi \frac{n}{T_0}t\right) \qquad G_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} g(t) \exp\left(-j2\pi \frac{n}{T_0}t\right) dt$$

- Remember: FS provides a Discrete Spectral Representation for Periodic Signals (i.e we sum spectral components to return to the time domain).
- N.B.:
 - ▶ G_n = are in general complex even with a real input signal, i.e. amplitude of a component at $n.F_0$ is $|G_n|$ and phase angle is $\angle G_n$
 - $G_{-n} = G_n^*$
 - $G_0 = C_0$
 - $G_n = \frac{\tilde{C_n}}{2} \cdot \exp\{-j.\phi_n\}$

Fourier T	ransform	Tables 9(1)-	FT > G(f)= FT{9(1)}
	Description	Function	Transformation	
I →	Definition	g(t)	$G(f) = \int_{-\infty}^{\infty} g(t).e^{-j2\pi ft}dt$	
m → 2	Scaling	g(t)	T .G(fT)	
	Time shift	g(t-T)	$G(f).e^{-j2\pi fT}$	
4	Frequency shift	$g(t).e^{j2\pi Ft}$	G(f - F)	
D 5	Complex conjugate	g*(t)	$G^*(-f)$	
<u>-</u>	Temporal derivative	$\frac{d^n}{dt^n}g(t)$	$(j2\pi f)^n.G(f)$	
P 4 4 6 7 7 N - 8	Spectral derivative	$(-j2\pi t)^n.g(t)$	$\frac{d^n}{df^n}G(f)$	
√ ⊸ 8	Reciprocity	G(t)	g(-f)	
↑ → 9	Linearity	A.g(t) + B.h(t)	A.G(f) + B.H(f)	Ī
—	Multiplication	g(t).h(t)	G(f) * H(f)	
→ 11	Convolution	g(t) * h(t)	G(f).H(f)	
⊸ 12	Delta function	$\delta(t)$	1	
 0 13	Constant	1	$\delta(f)$	
→ 14	Rectangular function	$rect\{t\} \triangleq \begin{cases} 1 & \text{if } t < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$	$\operatorname{sinc}\{f\} \triangleq \frac{\sin(\pi f)}{\pi f}$	
→ 19	Sinc function	sinc(t)	$rect\{f\}$	
16	Unit step function	$u(t) \triangleq \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$	$\frac{1}{2}\delta(f) - \frac{j}{2\pi f}$	
17	Signum function	$\operatorname{sgn}(t) \triangleq \left\{ egin{array}{ll} 1 & t > 0 \\ -1 & t < 0 \end{array} \right.$	$-\frac{j}{\pi f}$	
18	decaying exp (two-sided)	$e^{- t }$	$\frac{2}{1+(2\pi f)^2}$	
19	decaying exp (one-sided)	$e^{- t }.u(t)$	$\frac{1-j2\pi f}{1+(2\pi f)^2}$	These replace F5
20	Gaussian function	$e^{-\pi t^2}$	$e^{-\pi f^2}$	
→ 21		$\Lambda\{t\} \triangleq \left\{ \begin{array}{ll} 1-t & \text{if} 0 \le t \le 1\\ 1+t & \text{if} -1 \le t \le 0 \end{array} \right.$	$\operatorname{sinc}^2\left\{f\right\}$]
→ 22	Repeated function	$\operatorname{rep}_{\mathcal{T}}\left\{g(t)\right\} = g(t) * \operatorname{rep}_{\mathcal{T}}\left\{\delta(t)\right\}$	$\left \frac{1}{T}\right comb_{\frac{1}{T}} \{G(f)\}$]}
→ 23	Sampled function	$comb_{T}\{g(t)\} = g(t).rep_{T}\left\{\delta(t)\right\}$	$\left \begin{array}{c} \frac{1}{T} \operatorname{rep}_{\frac{1}{T}} \left\{ G(f) \right\} \end{array} \right $	

Note: Problem Sheet 2, Q3 and Q4 are related to FS > [even function of time] > [add function of time] dt = 0 this is a function with (+) ve area under the curve equal to the (-) ve avea under the curve : its integral is equal to 0 * cos(zTFot) = even function of time * sin (27 Fot) = odd * [[even function of time] .cos(217Fot) dt \$\neq 0\$ * [[even function of time]. sin (27/5t) dt = 0 => by=0 * [odd function of +ime] . cos(27 Fot) dt = 0 => dn=0 * [old function of time]. sin(27 Fut) dt \$=0 P52-Q4 ⇒ ×(+) = even → by=0 ⇒ only cosines

$$G(f) = FT \left\{ g(t) \right\} = A. rect \left(\frac{t - C}{T} \right)$$

$$G(f) = FT \left\{ g(t) \right\} = ATsinc \left\{ fT \right\} e \times p(-j2\pi) = ATsinc \left\{ fT \right\}$$

$$g(t) = \frac{1}{\sqrt{T_2}}$$

$$G(f) = FT \left\{ g(t) \right\} = 3 \frac{T}{2} sinc \left\{ f \frac{T}{2} \right\}$$

Example:
$$3(4) = rec4(\frac{4}{5}) = \frac{1}{7}$$

$$G(f) \stackrel{?}{=} \int 3(4) \exp(-3\pi f t) dt$$

$$= \int 1 \exp(-j2\pi f t) dt$$

$$= -\frac{1}{2\pi f} \exp(-j2\pi f t) \int_{-\frac{7}{2}}^{\frac{7}{2}} = \exp(ij2\pi f t)$$

$$= -\frac{1}{2\pi f} \exp(-j2\pi f t) - \exp(ij2\pi f t)$$

$$= \frac{1}{\pi f} \exp(-j2\pi f t) - \exp(ij\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) - \exp(ij\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$= \frac{1}{\pi f} \exp(\pi f t) = \frac{1}{\pi f} \exp(\pi f t)$$

$$g(t) = \frac{1}{1} = rect\{t-5\}$$