

UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia Elétrica e de Computação

Pedro Henrique Neves dos Santos

IT306W - Fluxo de carga linearizado

Resumo

Neste terceiro trabalho, será abordado uma simplicação no método utilizado no trabalho anterior. O fluxo de carga linearizado, ou CC.

Os códigos fonte desse trabalho bem como histórico de modificação, podem ser encontrados no endereço: https://github.com/phneves/ElectricPowerSystemsAnalysisTools

Sumário

1	Introdução e teoria									
	1.1	1.1 Modelagem								
	1.2	Formu	ılação do problema básico	5						
		1.2.1	Injeção de potências							
		1.2.2	Matriz de Admitância							
	1.3									
	1.4	Algori	itmo implementado	8						
		1.4.1								
2	Estu	ıdos de	caso	9						
	2.1	Rede d	le 4 barras e 4 linhas de transmissão	9						
		2.1.1	Dados do Problema	10						
		2.1.2	Equacionamento matriz P	10						
		2.1.3	Equacionamento matriz B'							
		2.1.4	Calculo do Fluxo de Potência	11						
		2.1.5	Solução por software	11						
3	Código comentado									
	3.1	Entrad	las e configurações	14						
4	Discussões e análise de resultados									
	4.1	1 Composição do trabalho								
	4.2	Performance								
Re	eferê	ncias bi	ibliográficas	19						

Introdução e teoria

A ferramenta de análise de sistemas de energia elétrica aqui discutida será a Análise de Fluxo de Potência. Essa análise nos fornecerá um metodo de cálculo de importantes grandezas de todo o sistema, a partir de algumas grandezas conhecidas, ou seja, que podem ser medidas. Esta é uma ferramenta aplicada à um sistema estático. (MONTICELLI, 1983)

1.1 Modelagem

Toda a rede será composta por ramos e barras, onde ramos são a representações das linhas de transmissão e transformadores. As barras são nós do sistema e nesses pontos de interesse, pode-se medir fisicamente algumas grandezas, a depender do tipo de barra. São definidas quatro variáveis à para cada k-ésima barra, correspondentes à tensão e à injeção de potência nesta barra, V_k , magnitude da tensão nodal, θ_k angulo da tensão nodal, P_k injeção líquida de potência ativa e Q_k injeção líquida de potência reativa. As barras são divididas em categorias como na tabela 1.1 de acordo com as grandezas conhecidas e suas incognitas.

Tabela 1.1: Categoria das barras de acordo com variáveis conhecidas

Tipo	Dados	Incógnitas	Caracteristicas
PQ	P_k,Q_k	$V_k, heta_k$	Barra de carga
PV	P_k, V_k	Q_k, θ_k	Barra de geração
Referência (Slack)	V_k, θ_k	P_k,Q_k	Barra de geração em grandes fornecedoras

1.2 Formulação do problema básico

1.2.1 Injeção de potências

Seja uma rede de energia genérica que contém um número de barras (NB) arbitrário. Para cada barra, é possível escrever duas equações de injeções de potência, como em 1.1 e 1.2. Elas são obtidas ao aplicar Lei de Kirchhoff das correntes em todas as NB barras do sistema.

$$P_k = V_k \sum_{m \in \kappa} V_m (G_{km} cos\theta_{km} + B_{km} sen\theta_{km})$$
 (1.1)

$$Q_k = V_k \sum_{m \in \mathcal{K}} V_m (G_{km} sen \theta_{km} - B_{km} cos \theta_{km})$$
 (1.2)

Portanto, em um sistema com NB barras, é possivel obter 2.NB equações.

Neste problema, utilizaremos como variáveis de estado, ou seja, nosso conjunto de incognitas que descreverão o sistema, as variáveis V e θ , representados em 1.3 e 1.4. Com esses valores resolvidos, é possível calcular todas as injeções de potência em todas as barras.

$$V^{S} = \begin{bmatrix} V_{1}^{S} & V_{2}^{S} & V_{3}^{S} & \dots & V_{NB}^{S} \end{bmatrix}^{T}$$
 (1.3)

$$\theta^{S} = \begin{bmatrix} \theta_1^{S} & \theta_2^{S} & \theta_3^{S} & \dots & \theta_1^{S} \end{bmatrix}^T \tag{1.4}$$

Quando 1.3 e 1.4 forem resolvidas, será possivel aplicar em 1.1 e 1.2 para se obter 1.5 e 1.6, que será as injeções de potência para o estado atual da rede.

$$P_k = V_k^S \sum_{m \in \kappa} V_m^S (G_{km} cos \theta_{km}^S + B_{km} sen \theta_{km}^S)$$
 (1.5)

$$Q_k = V_k^S \sum_{m \in \kappa} V_m^S (G_{km} sen \theta_{km}^S - B_{km} cos \theta_{km}^S)$$
 (1.6)

Problema consiste em obter o estado (V^S , θ^S).

Com um simples algebrismo matemático, as equações 1.1 e 1.2 serão representas aqui como em 1.7 e 1.8.

$$P_k - V_k \sum_{m \in \kappa} V_m (G_{km} cos\theta_{km} + B_{km} sen\theta_{km}) = 0$$
 (1.7)

$$Q_k - V_k \sum_{m \in \kappa} V_m (G_{km} sen \theta_{km} - B_{km} cos \theta_{km}) = 0$$
 (1.8)

1.2.2 Matriz de Admitância

Seja a matriz de admitância nodal Y e ela se relacione com o vetor de tensões nodais V e vetor de injeções de corrente nodais I da forma como em 1.9.

$$I = Y.V \tag{1.9}$$

A regra de formação dessa matriz *Y* será dada por 1.10 e 1.11 (A dedução desse conjunto de formulas não será abordado neste trabalho).

A dimensão da matriz *Y* será de *NB*x*NB*.

Para os elementos fora da diagonal principal, será o valor negativo da admitância série entre as duas barras, como em 1.10.

$$Y_{km} = -y_{km} \tag{1.10}$$

Para os elementos na diagonal principal, será a soma das admitâncias conectadas à barra, como em 1.11, onde Ω_k é o conjunto de barras vizinhas da barra k.

$$Y_{kk} = \sum_{m \in \mathcal{O}_k} \left(y_{km} + j \frac{b_{km}^{sh}}{2} \right) \tag{1.11}$$

Ainda, a matriz Y será dividida em parte real(1.12) e parte imaginária (1.13). Dando origem às matrizes de condutância G e susceptância B, usadas nas equações de injeção de potência 1.1 e 1.2.

$$G = \mathbb{R}(Y) \tag{1.12}$$

$$B = \mathbb{I}(Y) \tag{1.13}$$

1.3 Método linearizado

O método de Fluxo de potência linearizado ou CC, é um método que permite calcular, com baixo custo computacional, e precisão aceitável para algumas aplicações, a distribuição dos fluxo de potência ativa em redes de transmissão (extra-alta tensão e ultra-alta-tensão). Neste método, que se baseia na alta correlação entre entre a Potência Ativa e o ângulo da tensão (SOUZA BENEDITO, Consultado em 05/2020).

Importante: este é um método para potência ativa, ou seja, esse método não será usado para potência reativa.

No trabalho anterior, foi utilizado uma simplificação para o fluxo de potência ativa. O fluxo de potência ativa pode ser como em 1.16.

Antes, como hipóteses para simplificação, utiliza-se apenas a potência ativa e desconsidera-se as perdas ativas e tem-se 1.14.

$$P_{km} = G_{km}V_k^2 - V_k \cdot V_m (G_{km}cos\theta_{km} + B_{km}sen\theta_{km})$$
(1.14)

Considerando, então, as tensões iguais a 1pu, tem-se 1.15.

$$P_{km} = -B_{km} sen\theta_{km} \tag{1.15}$$

Por fim, linearizando a senoide com $sen\theta_{km} \approx \theta_{km} \approx (\theta_k - \theta_m)$, tem-se 1.16.

$$P_{km} \approx k_1.\theta_{km} \approx \frac{1}{x_{km}}.(\theta_k - \theta_m) \tag{1.16}$$

Ou seja, é aproximadamente proporcional à abertura angular da linha e desloca-se no sentido dos ângulos maiores para menores ($P_{km} > 0$ se $\theta_k > \theta_m$) (CASTRO, Consultado em 05/2020). A partir de 1.16, pode-se calcular a injeção liquida de potência em cada barra como em 1.17.

$$P_k = \sum_{m \in \Omega_k} P_{km} \tag{1.17}$$

Em termos matriciais, 1.16 pode ser reescrito como em 1.18

$$\left[P \right] = \left[B' \right] \cdot \left[\theta \right]$$
(1.18)

A matriz B' será escrita seguindo a regra de formação dada em 1.19 e 1.20

$$B'_{km} = -\frac{1}{x_{km}} \tag{1.19}$$

$$B'_{kk} = \sum_{m \in \Omega_k} \left(\frac{1}{x_{km}} \right) \tag{1.20}$$

1.4 Algoritmo implementado

Aqui será utilizado um algoritmo discutido nos slides do Professor Castro. (CASTRO, Consultado em 05/2020).

1.4.1 Método linearizado

- 1. Calcula-se agora a equação 1.18.
- 2. Calcula-se a matriz P, com os valores dados.
- 3. Calcula-se a matriz *B*′, como descrito em 1.19 e 1.20. Pode-se, também, obter a matriz B′ atravez da parte imaginária da matriz de admintânica Y (1.13). Neste caso, é necessário desconsiderar a linha e a coluna da barra de referência (slack).
- 4. Calcula-se a transposta de B'.
- 5. Multiplica-se $[B']^T$. $[P] = [\theta]$
- 6. Calcula-se os fluxos de potência. O fluxo de potência da barra k e a barra m será dado por $P_{km} = (\theta_k \theta_m)/x_{km}$ como na figura 1.1

Figura 1.1: Fluxo de potência aproximado. (CASTRO, Consultado em 05/2020)

7. Converte-se os angulos para graus, dado que estão em radianos.

Estudos de caso

Neste capítulo, será estudado uma rede elementar de 4 barras e 4 linhas de transmissão (na seção 2.1). A rede elementar tem um papel fundamental para compreensão de todos os passos do método, além de servir como calibração e teste para todas as modificações subsequentes. Para cada modificação no código de referência, ainda que pequena, deve ser retestado tendo a saída desta rede como parâmetro.

2.1 Rede de 4 barras e 4 linhas de transmissão

Considere a rede de quatro barras e quatro linhas de transmissão na figura 2.1.

Figura 2.1: Rede de quatro barras e quatro linhas de transmissão

2.1.1 Dados do Problema

Tem-se $S_{base} = 100MVA$.

Na tabela 2.1 estão os dados das barras do problema apresentado na seção 2.1.

Barra V (pu) θ (graus) Pg (MW) Qg (MVar) Pc (MW) Qc (MVar) 1 1,00 50 30,99 2 0 0 170 105,35 3 0 0 200 123,94 318 80 49,58 4 1,02

Tabela 2.1: Barras da rede de quatro barras

Na tabela 2.2 estão os dados das impedâncias séries dos ramos do problema apresentado na seção 2.1.

Tabela 2.2: Barras da rede de quatro barras

Ramos	r (pu)	x (pu)
1-2	0.01008	0.05040
1-3	0.00744	0.03720
2-4	0.00744	0.03720
3-4	0.01272	0.06360

2.1.2 Equacionamento matriz P

A matriz P será calculada a partir da tabela 2.1 e será uma matriz da potência gerada menos a potência consumida, como mostrado em 2.1.

$$P = \begin{bmatrix} 0 - 1, 70 \\ 0 - 2, 00 \\ 3, 18 - 0, 80 \end{bmatrix} = \begin{bmatrix} -1, 70 \\ -2, 00 \\ 2, 38 \end{bmatrix}$$
 (2.1)

2.1.3 Equacionamento matriz B'

A matriz B' apresentada na equação 2.2, será formada seguindo as equações 1.19 e 1.20.

$$B' = \begin{bmatrix} \frac{1}{0,05040} + \frac{1}{0,03720} & 0 & -\frac{1}{0,03720} \\ 0 & \frac{1}{0,03720} + \frac{1}{0,06360} & -\frac{1}{0,06360} \\ -\frac{1}{0,03720} & -\frac{1}{0,06360} & \frac{1}{0,03720} + \frac{1}{0,06360} \end{bmatrix} = \begin{bmatrix} 46.7230 & 0 & -26.8817 \\ 0 & 42.6050 & -15.7233 \\ -26.8817 & -15.7233 & 42.6050 \end{bmatrix}$$
(2.2)

2.1.4 Calculo do Fluxo de Potência

Com as matrizes P e B' calculadas nas equações 2.1 e 2.2, é possivel resolver a equação 1.18. Calcula-se a transposta de B' e resolve-se a equação 2.3.

$$\begin{bmatrix} P \\ \cdot \end{bmatrix} \cdot \begin{bmatrix} B' \end{bmatrix}^T = \begin{bmatrix} \theta \\ \end{bmatrix}$$
(2.3)

A solução de 2.3 é dada por 2.4

$$\begin{bmatrix} \theta 2 \\ \theta 3 \\ \theta 4 \end{bmatrix} = \begin{bmatrix} -1,70 \\ -2,00 \\ 2,38 \end{bmatrix} \cdot \begin{bmatrix} 46.7230 & 0 & -26.8817 \\ 0 & 42.6050 & -15.7233 \\ -26.8817 & -15.7233 & 42.6050 \end{bmatrix}^{T} = \begin{bmatrix} -0.0185 \\ -0.0355 \\ 0.0311 \end{bmatrix}$$
(2.4)

Para calcular os fluxos de potência de cada barra k para barra m, será utilizado a equação representada em 1.1, resultando na tabela 2.3.

Tabela 2.3: Fluxos de potência

De	Para	Pkm
1	2	0.3668
1	3	0.9532
2	4	-1.3332
3	4	-1.0468

2.1.5 Solução por software

Com os dados das tabelas 2.1 e 2.2 é possivel montar os *arrays* no código abaixo. Eles serão usados como *inputs* do código utilizado neste trabalho.

```
nome_da_rede = 'Rede de 4 barras e 4 ramos - Demostração';
            = 100 ; % MVA
baseMVA
   Barras
        Número - Tipo - V - Ângulo - Pg - Qg - Pc - Qc - bshk
        3 - slack ; 2 - PV ; 0 - PQ
barras = [1 3]
               1.000
                       0.00
                              000.00
                                      000.00 050.00 030.99
                                                             0.00
               0.000 1.00
                             000.00
         2 0
                                      000.00 170.00
                                                     105.35
                                                             0.00
               0.000 1.00
                             000.00
         3 0
                                      000.00 200.00
                                                     123.94 0.00
         4 2
               1.020 1.00
                              318.00
                                      000.00 080.00 049.58 0.00
       ];
   Ramos
        De - Para - r - x - bshl - tap - fi
      = [
ramos
                                 0.00
              0.01008
                        0.05040
                                        1.00 0.00
             0.00744 \qquad 0.03720
                                 0.00
                                       1.00 0.00
      1
      2
          4
            0.00744 0.03720 0.00 1.00 0.00
      3
              0.01272 0.06360
                                0.00
                                       1.00 0.00
      ];
```

A saída dessa rede, calculado pelo algoritmo descrito no capítulo 3, é dado nos blocos de código a seguir. Nesse bloco temos a formação da matriz B'. É a mesma matriz calculada em 2.2, como esperado.

```
Y =
   0.0 +46.7230i 0.0 -19.8413i
                                  0.0 - 26.8817i 0.0 + 0.0000i
   0.0 -19.8413i 0.0 +46.7230i
                                  0.0 + 0.0000i
                                                 0.0 -26.8817i
                                  0.0 +42.6050i 0.0 -15.7233i
   0.0 - 26.8817i 0.0 + 0.0000i
   0.0 + 0.0000i 0.0 - 26.8817i
                                  0.0 -15.7233i 0.0 +42.6050i
G =
   0
         0
               0
                     0
   0
         0
               0
                     0
         0
               0
               0
         0
                     0
B =
  46.7230 -19.8413 -26.8817
  -19.8413
          46.7230
                           0 -26.8817
                     42.6050 -15.7233
  -26.8817
           -26.8817 -15.7233
                               42.6050
```

Após isso, o vetor θ é calculado, como em 2.3.

```
Theta =

-0.0185

-0.0355

0.0311

ThetaGraus =

-1.0591

-2.0318

1.7826
```

Por fim, os fluxos de potência são calculados, como em 1.1

Código comentado

Os códigos fonte desse trabalho bem como histórico de modificação, podem ser encontrados no endereço: https://github.com/phneves/ElectricPowerSystemsAnalysisTools.

3.1 Entradas e configurações

Iniciamos com limpeza das variáveis no *workspace* e da tela. Também há configurações do script.

```
clear all;
clc;
tic; % iniciando contagem de tempo computacional
% Arquivo de dados da rede
Rede 4 barras valida
    Conversão graus <-> radianos
graus_to_rad = pi/180;
rad_to_graus = 180/pi;
%pneves: Enable debug prints.
%pneves: Better to use breakpoints. Used here to didactic purposes
Debug = true;
         Determinação do tamanho da rede
fprintf('\n> Processando dados da rede ...\n')
%pneves: nb and nr are varibles of interest.
%pneves: variable colunas won't be used.
[nb , colunas] = size(barras);
[nr , colunas] = size(ramos);
```

Carrega-se então, os valores da rede nas variáveis apropriadas. Vetores receberão dados das barras.

```
%Número - Tipo - V - Ângulo - Pg - Qg - Pc - Qc - bshk
for k = 1:nb
                       %pneves: extracting bar values into arrays
   numext(k) = barras(k, 1);
   tipo(k)
              = barras(k, 2);
   v(k)
              = barras(k,3);
              = barras(k,4) * graus_to_rad;
   ang(k)
   pg(k)
              = barras(k,5)/baseMVA; %pneves: PU
   qg(k)
              = barras(k,6)/baseMVA;
   pc(k)
              = barras(k,7)/baseMVA;
              = barras(k,8)/baseMVA;
   qc(k)
   bshk(k) = barras(k,9)/baseMVA;
       pnom(k)
                 = pg(k) - pc(k); %pneves: P liquido
       qnom(k)
                  = qg(k) - qc(k); %pneves: Q liquido
   numint(barras(k,1)) = k;
end
```

Vetores receberão dados dos ramos.

Neste ponto do código, será criada a matriz de admitância. A regra de formação dessa matriz está descrita em 1.10 e 1.11.

```
%pneves: Matriz Y dimensionada para NBxNB
Y = zeros(nb,nb);
for k = 1:nb
    Y(k,k) = i*bshk(k); %pneves: Cada Y(k,k) recebe 0+i*shunt
end
```

Preenchimento da matriz admitância.

```
for l = 1:nr %pneves: As formulas de formação da matriz
    k = de(1)% estão no Tópico Matriz de Admitância
    m = para(1)
    %pneves: resistência será desprezada nesse problema
    %y(1) = 1/(r(1) + i*x(1))
    y(1) = 1/(-i*x(1))
    Y(k,k) = Y(k,k) + y(1)
    Y(m,m) = Y(m,m) + y(1)
    Y(k,m) = Y(k,m) - y(1)
    Y(m,k) = Y(m,k) - y(1)
end
G = real(Y); %pneves: matriz de condutância
B = imag(Y); %pneves: matriz de susceptância
if (Debug == true) %pneves: Debug
    fprintf('DEBUG> Y, G and B complete\n');
    Y
    G
    В
end
```

A matriz G será composta por 0, já que a resistência foi desprezada e a matriz B originará a matriz B'.

```
%%
%pneves: Montando a matriz B'
Blinha = B;
P=pnom;
for k = 1:nb
    if tipo(k) == 3
        %pneves: retira a linha da barra slack
        Blinha(k,:) = []
        %pneves: retira a coluna da barra slack
        Blinha(:,k) = []
        %pneves: retira a linha da barra slack
        P(k,:) = []
    end
end
```

Matriz θ é calculada, como descrito em 2.3.

```
%pneves: Calculando a matriz Teta
Theta = inv(Blinha)*P
%pneves: Adicionando a barra de referência na matriz Theta
IndexTheta=1;
for k = 1:nb
    if tipo(k) == 3
        ThetaWithReferenceBar(k,1) = 0;
    else
        ThetaWithReferenceBar(k,1) = Theta(IndexTheta,1);
        IndexTheta = IndexTheta + 1;
    end
end
%pneves: Convertendo de radianos para graus
ThetaGraus=Theta*rad_to_graus
```

Por fim, os fluxos de potência são calculados, como em 1.1.

```
%'Fim do cálculo de fluxo de carga Linearizado');
fprintf('\n> Fim do cálculo de fluxo de carga.
                Preparando relatório de saída ...\n')
for 1 = 1:nr
   k = de(1);
   m = para(1);
   pkm(1) = (ThetaWithReferenceBar(k) - ThetaWithReferenceBar(m))/x(1);
end
        Relatório final
fprintf('\n\n> Relatório final\n\n')
fprintf('> Rede: %s\n', nome_da_rede)
fprintf('\n> Fluxos de potência\n\n')
fprintf(' De Para Pkm \n')
for 1 = 1:nr
        fprintf('%7d %4d %9.4f \n', de(1), para(1), pkm(1))
end
```

Discussões e análise de resultados

4.1 Composição do trabalho

Neste trabalho, foi abordado uma introdução à teoria de Fluxo de Potência e o método linearizado ou fluxo de carga C.C. É baseado no acoplamento das variáveis P e θ , como visto na seção 1.3. Quanto maiores os níveis de tensão da rede, maior também será este acoplamento. O fluxo de carga linearizado é bastante leve, do ponto de vista computacional, portanto é útil para etapas preliminares de estudos de planejamento da expansão de redes elétricas, onde é necessário simulação de um número elevado de cenários.

Também tem importantes aplicações em análises do mercado de energia elétrica, estudos de custos de transmissão e analise de segurança da operação, onde é possivel estudar cenários de violação de limites operacionais.

Contudo, deve-se deixar claro que, apesar de ser bastante útil nessas situações aqui descritas, a análise de fluxo de carga linearizado não substitui o fluxo de carga C.A.

4.2 Performance

Foi visto, no capítulo 2, o estudo de uma rede pequena com 4 barras e 4 ramos. O estudo levou em conta apenas uma possibilidade, mas como não há iterações nem risco de divergência, pode-se estudar dezenas de cenários em poucos segundos, enriquecendo a análise.

Deve-se atentar para o nível de tensão do sistema, já que não é aplicavel para em sistemas de distribuição e em sistemas com relação $\frac{X}{R}$ baixa (por exemplo $\frac{X}{R}$ << 1) e a solução será tão melhor quanto maior for o nível de tensão (SOUZA BENEDITO, Consultado em 05/2020).

Referências bibliográficas

CASTRO, C. A. **Cálculo de Fluxo de Carga Linearizado**. Campinas-SP: [s.n.], Consultado em 05/2020. Disponível em: http::

//www.dsee.fee.unicamp.br/~ccastro/cursos/it601/cap6.pdf>.

MONTICELLI, A. J. **Fluxo de carga em redes de energia elétrica**. 1. ed. São Paulo: Editora Edgard Blücher Ltda, 1983. ISBN 978-3-8417-2506-6.

SOUZA BENEDITO, R. A. de. **Fluxo de Potência Linearizado**. Curitiba-PR: [s.n.], Consultado em 05/2020. Disponível em: .

//paginapessoal.utfpr.edu.br/raphaelbenedito/sistemas-eletricos-de-potencia-i/aulas/SEP%201%20-%20Cap%204.%201%20Fluxo_Potencia_Linear.pdf>.