Problem statement: The transactions made by a UK-based,we will design a clustering model and select the ideal groupof clients for the business to target.

In [2]:

#importing libraries
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [3]:

df=pd.read_csv(r"C:\Users\shaik\Desktop\202U1A3344\OnlineRetail.csv")
df

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	ŀ		
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	ŀ		
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	ŀ		
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	ŀ		
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	ŀ		
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0			
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0			
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0			
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0			
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0			
541909 rows × 8 columns										
1								•		

Data cleaning and preprocessing

In [4]:

df.head()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdorr
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
4								•

In [5]:

df.tail()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	(
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	
4							l l	•

```
In [6]:
```

```
df['InvoiceNo'].value_counts()
Out[6]:
573585
           1114
            749
581219
581492
            731
580729
            721
558475
            705
554023
              1
554022
              1
554021
              1
               1
554020
              1
C558901
Name: InvoiceNo, Length: 25900, dtype: int64
In [7]:
df['CustomerID'].value_counts()
Out[7]:
17841.0
           7983
           5903
14911.0
14096.0
           5128
12748.0
           4642
14606.0
           2782
           ...
15070.0
              1
15753.0
              1
              1
17065.0
16881.0
              1
16995.0
              1
Name: CustomerID, Length: 4372, dtype: int64
In [8]:
df['Quantity'].value_counts()
Out[8]:
 1
          148227
 2
           81829
 12
           61063
 6
           40868
 4
           38484
-472
               1
-161
               1
               1
-1206
-272
               1
-80995
               1
Name: Quantity, Length: 722, dtype: int64
```

In [9]:

```
plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[9]:

Text(0, 0.5, 'Quantity')

In [10]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
```

υаτа	columns (tota	at a cotnmus):								
#	Column	Non-Null Count	Dtype							
0	InvoiceNo	541909 non-null	object							
1	StockCode	541909 non-null	object							
2	Description	540455 non-null	object							
3	Quantity	541909 non-null	int64							
4	InvoiceDate	541909 non-null	object							
5	UnitPrice	541909 non-null	float64							
6	CustomerID	406829 non-null	float64							
7	Country	541909 non-null	object							
dtypes: float64(2), int64(1), object(5)										
memor	memorv usage: 33.1+ MB									

```
In [11]:
df.isnull().sum()
Out[11]:
InvoiceNo
                     0
StockCode
                     0
Description
                  1454
Quantity
                     0
InvoiceDate
                     0
UnitPrice
                     0
CustomerID
                135080
Country
dtype: int64
In [13]:
df.fillna(method='ffill',inplace=True)
df.isnull().sum()
Out[13]:
InvoiceNo
                0
StockCode
                0
Description
                0
Quantity
                0
InvoiceDate
                0
UnitPrice
                0
CustomerID
                0
Country
dtype: int64
In [14]:
from sklearn.cluster import KMeans
km=KMeans()
km
Out[14]:
KMeans()
In [15]:
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
Out[15]:
```

```
localhost:8888/notebooks/online retail.ipynb
```

array([5, 5, 5, ..., 2, 2, 2])

In [16]:

df["cluster"]=y_predicted
df.head()

Out[16]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unitec Kingdorr
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unitec Kingdorr
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unitec Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4								•

In [17]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[17]:

Text(0, 0.5, 'Quantity')

scaling both Quantity& Customer ID

In [18]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[18]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdon
4								•

In [19]:

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdon
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom
4								•

K-MeansClustering

In [20]:

```
km=KMeans()
```

In [21]:

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

Out[21]:

```
array([0, 0, 0, ..., 4, 4, 4])
```

In [22]:

df["New Cluster"]=y_predicted
df.head()

Out[22]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdon
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdon
4								•

In [23]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[23]:

Text(0, 0.5, 'Quantity')

In [24]:

```
km.cluster_centers_
```

Out[24]:

In [25]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[25]:

Text(0, 0.5, 'Quantity')

In [26]:

```
k_rng=range(1,10)
sse=[]
```

In [27]:

```
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["CustomerID","Quantity"]])
    sse.append(km.inertia_)#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
```

[46374.84553398474, 11336.0653054853, 4915.846310146818, 2723.519105189528 5, 1695.4682879942648, 1178.4300834535607, 902.5520745011557, 677.36411498 17914, 529.6668004019358]

Out[27]:

Text(0, 0.5, 'Sum of Squared Error')

conclusion:

So, finally we can Conclude the given dataset is bestfit for K-Means Clustering