

Consistent Explanations by Contrastive Learning

Vipin Pillai¹, Soroush Abbasi Koohpayegani¹, Ashley Ouligian², Dennis Fong², Hamed Pirsiavash^{1,3} ¹University of Maryland, Baltimore County ³University of California, Davis ²Northrop Grumman

Motivation

- Our goal is to train models that are more explainable given an explanation tool (e.g., Grad-CAM).
- Image classifiers may learn unwanted contextual biases from data
- Supervising explanation is not feasible since annotating explanations is not a well-defined task.

- We adopt ideas from self-supervised learning to improve explanation without annotating explanation.
- Our method can also leverage unlabeled data.

Key Idea

Consistent explanations w.r.t. spatial transformations

Method: Contrastive learning on the explanation space

Results

Our model focuses on the most discriminative regions of the object instead of the background pixels.

Content Heatmap (CH) [1]: Percentage of heatmap strictly within object bounding box.

ImageNet

Architecture	Method	Top-1 Acc (%)	CH (%)	CGC Loss
ResNet18	Cross-Entropy	69.76	54.47	3.19
	GCC [1]	67.74	57.73	3.14
	Ours (CGC)	66.37	65.83	2.59
ResNet50	Cross-Entropy	76.13	54.77	3.15
	GCC [1]	74.40	59.42	3.09
	Ours (CGC)	74.60	71.75	2.64

Our method results in models with improved explanation with marginal drop in classification accuracy.

Fine-grained Classification

Method	CUB-200	FGVC-Aircraft	Cars-196	VGG Flowers-102
Cross-Entropy	80.09 ± 0.89	83.65 ± 0.15	89.71 ± 0.14	96.09 ± 0.23
Ours (CGC)	81.49 ± 0.09	85.72 ± 0.20	90.28 ± 0.08	96.18 ± 0.09

Our method improves the classification accuracy on fine-grained datasets.

1% Labeled ImageNet Subset

Method	Top-1 Acc (%)	Top-5 Acc (%)	CH (%)
Cross-Entropy	54.00	78.69	46.08
Ours (CGC)	55.18	79.12	46.76

Our method leverages unlabeled data for L_{CGC} loss term (both models are initialized from SwaV[2])

Conclusion

- We introduce a contrastive learning method for training more explainable models for a given explanation tool (e.g., Grad-CAM).
- Compared to manual annotation, our method significantly improves explanation consistency on ImageNet, UnRel, and fine-grained datasets.
- Our method acts as a regularizer that focuses more attention on the discriminating aspects of the image, thereby reducing contextual bias.
- We further leverage unlabeled data to improve the classification accuracy in limited-label settings.

References

[1] Vipin Pillai and Hamed Pirsiavash. Explainable models with consistent interpretations. AAAI 2021. [2] Caron, Misra, Mairal, Goyal, Bojanowski, Joulin. Unsupervised learning of visual features by contrasting cluster assignments. NeurIPS 2020.