

STATISTICAL PROGRAMMING FOR BUSINESS ANALYTICS

Assignment No.8

TANAY BHALERAO

U47707491

APRIL 10, 2015
UNIVERSITY OF SOUTH FLORIDA
MANAGEMENT INFORMATION SYSTEMS

Homework Chapter 10 and 11

1. An instructor for an introductory SAS programming class has 25 students. Each week, he makes a list of 8 problems pertaining to the topics covered in class. He wants to assign 4 of the 8 questions to be turned in by each student, but he also wants to select those 4 problems at random for each student to help curtail cheating. Write a SAS program which uses PROC PLAN to randomly choose 4 of 8 homework problems to be done by each student. Make sure that your program does not assign the same 4 problems to every student.

```
PROC PLAN SEED =0;
FACTORS STUDENT=25 ORDERED QUES=4 OF 8 /NOPRINT;
OUTPUT OUT= RANDOMQ;
RUN;
PROC TRANSPOSE DATA= RANDOMQ OUT= RANDOMQ;
VAR QUES;
BY STUDENT;
TITLE "RANDOM QUESTIONS";
RUN;
PROC PRINT DATA = RANDOMQ;
RUN;
```

	RA	ANDOM (QUE S	TIONS		
Obs	STUDENT	_NAME_	COL1	COL2	COL3	COL4
1	1	QUES	8	2	7	3
2	2	QUES	1	6	3	7
3	3	QUES	8	7	4	2
4	4	QUES	6	7	5	3
5	5	QUES	5	2	8	4
6	6	QUES	7	2	4	3
7	7	QUES	2	3	7	4
8	8	QUES	6	7	1	5
9	9	QUES	5	2	7	1
10	10	QUES	1	2	3	6
11	11	QUES	4	7	1	8
12	12	QUES	6	7	2	5
13	13	QUES	6	3	4	5
14	14	QUES	6	7	8	4
15	15	QUES	1	6	3	2
16	16	QUES	7	2	3	4
17	17	QUES	2	3	7	6
18	18	QUES	6	4	7	1
19	19	QUES	6	4	3	8
20	20	QUES	7	8	1	3
21	21	QUES	1	5	8	3
22	22	QUES	2	7	8	1
23	23	QUES	8	5	3	6
24	24	QUES	4	1	6	5
25	25	QUES	1	8	2	7

2. What does a *t* distribution with one degree of freedom look like? Create 1000 observations of the variables Z1 and Z2, where both Z1 and Z2 represent independent random observations from a normal distribution with mean 0 and variance 1. Next, calculate T=Z1/Z2, and use the PROC UNIVARIATE with the PLOT option to examine the distribution of T. (A *t* distribution with one degree of freedom is also known as a Cauchy distribution. It is symmetric about zero, and it is likely to have both positive and negative outlying values. It is very unlikely that you will reject a null hypothesis with a *t* test using only one degree of freedom.)

```
DATA OBS;
DO I= 1 TO 1000;
Z1= RANNOR(0);
Z2= RANNOR(100);
T= Z1/Z2;
OUTPUT;
END;
PROC UNIVARIATE DATA= OBS PLOT;
VAR T;
TITLE "CAUCHY DISTRIBUTION";
RUN;
```

				IVARI	ISTRIBUTIO ATE Procedure able: T			
				Moi	ments			
N				1000	Sum Weights			1000
Mear	n	-	0.105	0376	Sum Observa	tions	-105.0	3755
Std E	Deviation	1	14.8951624		Variance		221.88	5863
Skev	wness		0.6774243		Kurtosis		200.46	1113
Unco	mected S	SS	221655.03		Corrected SS		22164	3.997
Coef	f Variatio	n -	-14180.797		Std Error Mean		0.4710	2639
		В	asic	Statis	tical Measures			
Locatio		ation			Variabili	у		
			0504	Std [Deviation	14	.89516	
			0592	Varia	Variance		.86586	
				Rang	je	523	.26098	
				Interquartile F		2	.08403	

As observed from the above plot the t-distribution is symmetric around zero. And also it has both positive and negative outlying points. Hence it truly is difficult to reject the null hypothesis

3. In the Florida Lotto, six balls are randomly chosen from a hopper of balls marked with the integers 1 through 49. Money is awarded to players who match 3, 4, 5, or 6 numbers. Suppose that you know someone who always bets on the numbers 3, 7, 8, 11, 19, and 29, and you would like to calculate the approximate odds of matching at least 3 of those numbers. Use PROC PLAN to draw 6 "balls" out of 49; do this 1000 times. Use NOPRINT after a slash in the FACTORS statement to prevent SAS from printing out many pages of output (for example, FACTORS A=1000 ORDERED B=6 OF \$(/NOPRINT;). Then, in each draw, calculate the number of matches with 3, 7, 8, 11, 19, and 29. There could be no matches, 1 match, etc. up to 6 matches. (For this step, PROC TRANSPOSE and arrays will be helpful.) Finally, obtain a frequency table which shows the number of lotteries with no matches, 1 match, 2 matches, etc. Don't be surprised if you don't "win" anything; the probability of matching at least 3 numbers is only 1.9%, according to the Florida Lottery.

```
PROC PLAN SEED=99999;
FACTORS DRAW= 1000 ORDERED BALL=6 OF 49/NOPRINT;
OUTPUT OUT=LOTTO1;
RUN;
QUIT;
PROC TRANSPOSE DATA=LOTTO1 OUT=LOTTO2;
VAR BALL;
BY DRAW;
RUN;
DATA LOTTO2;
SET LOTTO2;
ARRAY BALLS (6) COL1-COL6;
MATCHES = 0;
DO i = 1 TO 6;
IF BALLS[i] = 3 THEN MATCHES = MATCHES + 1;
IF BALLS[i] = 7 THEN MATCHES = MATCHES + 1;
IF BALLS[i] = 8 THEN MATCHES = MATCHES + 1;
IF BALLS[i] = 11 THEN MATCHES = MATCHES + 1;
IF BALLS[i] = 19 THEN MATCHES = MATCHES + 1;
IF BALLS[i] = 29 THEN MATCHES = MATCHES + 1;
END;
RUN;
PROC FREQ DATA=LOTTO2;
TABLES MATCHES;
TITLE "LOTTO CHANCES";
RUN;
```

LOTTO CHANCES					
The FREQ Procedure					
	Cumulative Frequency	Percent	Frequency	MATCHES	
43.00	430	43.00	430	0	
83.80	838	40.80	408	1	
98.50	985	14.70	147	2	
99.90	999	1.40	14	3	
100.00	1000	0.10	1	4	

4. Suppose that you want to use SAS to help you learn some strategies for playing bridge. There are 52 cards in a deck. In a game of bridge, four players each receive 13 cards. Write a SAS program which randomly deals 13 cards to each of four players. Remember that the cards are dealt without replacement, so make sure that your program cannot possibly deal the same card to two players at once. Refer to the four players as North, East, South, and West.

```
DATA CARD;
FORMAT CARD_VALUE $5. CARD_SUITE $10.;
DO CARD_SUITE = 'HEART','SPADE', 'DIAMOND','CLUB';
DO
CARD_VALUE='ACE','2','3','4','5','6','7','8','9','10','JACK','QUEEN','KING';
DO RANDOM=RANNOR(RANUNI(2356));
OUTPUT;
END;
```

```
END;
END;
RUN;

PROC SORT DATA = CARD;

BY RANDOM;
RUN;

DATA GAME_BRIDGE;

SET CARD;

IF _V <=13 THEN PLAYER= 'NORTH';

ELSE IF 14<=_V <=26 THEN PLAYER='EAST';

ELSE IF 27<=_V <=39 THEN PLAYER= 'SOUTH';

ELSE IF _V >=40 THEN PLAYER='WEST';

RUN;

PROC PRINT DATA = GAME_BRIDGE;

VAR PLAYER RANDOM CARD_VALUE CARD_SUITE;

TITLE "BRIDGE GAME— RANDOM DISTRIBUTION OF CARDS";

RUN;
```

BRIDGE GAME-RANDOM DISTRIBUTION OF CARDS

Obs	PLAYER	RANDOM	CARD_VALUE	CARD_SUITE
1	NORTH	-2.87104	2	SPADE
2	NORTH	-2.25912	QUEEN	SPADE
3	NORTH	-2.21085	JACK	CLUB
4	NORTH	-1.58944	6	HEART
5	NORTH	-1.38761	10	DIAMOND
6	NORTH	-1.22658	KING	SPADE
7	NORTH	-1.15505	2	HEART
8	NORTH	-0.92143	7	HEART
9	NORTH	-0.90088	JACK	DIAMOND
10	NORTH	-0.90027	5	DIAMOND
11	NORTH	-0.88705	JACK	SPADE
12	NORTH	-0.88663	7	CLUB
13	NORTH	-0.79548	5	CLUB
14	NORTH	-0.79299	6	SPADE
15	NORTH	-0.75081	6	CLUB
16	NORTH	-0.74874	3	SPADE
17	NORTH	-0.69519	5	SPADE
18	NORTH	-0.67659	2	CLUB
19	NORTH	-0.68419	10	CLUB
20	NORTH	-0.65531	ACE	SPADE
21	NORTH	-0.64997	7	SPADE
22	NORTH	-0.38208	10	SPADE
23	NORTH	-0.35685	3	HEART
24	NORTH	-0.26148	4	CLUB
25	NORTH	-0.25179	8	SPADE
26	NORTH	-0.08882	8	HEART
27	NORTH	-0.07458	QUEEN	HEART

5. Suppose that boys and girls are randomly paired together in a dance class for fifth graders. Assume that the girls' heights are normally distributed with mean 137.8 cm and standard deviation 6.8 cm, while the boys' heights are normally distributed with mean 137.1 cm and standard deviation 6.1 cm. In what proportion of couples will the girl be taller than the buy? Simulate 1000 pairs of boys and girls and find the proportion of those in which the girl is taller. The theoretical percentage of couples with taller girls is 53%.

```
PROC FORMAT ;
VALUE GIRL TALL 1='YES' 2='NO';
RUN;
DATA COUPLES;
DO i =1 TO 1000;
GIRL HEIGHT = 137.8 + 6.8 * RANNOR(2000);
BOY HEIGHT = 137.1 + 6.1 *RANNOR(2000);
IF (GIRL HEIGHT > BOY HEIGHT) THEN HT = 1;
ELSE IF (BOY HEIGHT > GIRL HEIGHT ) THEN HT =2;
OUTPUT;
END;
RUN;
PROC FREQ DATA=COUPLES;
TABLES HT;
FORMAT HT GIRL TALL.;
TITLE "DANCE COUPLES-GIRL TALLER THAN BOY STATS";
```

DANCE COUPLES-GIRL TALLER THAN BOY STATS The FREQ Procedure Cumulative Cumulative HT Frequency Frequency Percent YES 558 55.60 556 55.60 NO 444 44.40 1000 100.00

6. Chapter 10: 10.2, 10.4 and Chapter 11: 11.2 and 11.4

10.2

```
DATA PRINCIPAL;
    DO SUBJ = 1 TO 200;
        X1 = ROUND (RANNOR (123) *50 + 500);
        X2 = ROUND (RANNOR (123) *50 + 100 + .8*X1);
        X3 = ROUND (RANNOR (123) *50 + 100 + X1 - .5*X2);
        X4 = ROUND (RANNOR (123) *50 + .3*X1 + .3*X2 + .3*X3);
    OUTPUT;
END;
RUN;
```

PROC FACTOR DATA = PRINCIPAL NFACTORS = 2 ROTATE = VARIMAX PLOT SCREE;
VAR X1-X4;
TITLE "FACTOR ANALYSIS";
RUN;

The scree plot graphs the eigenvalue against the factor number. Looking at the plot we will choose the factors 1 and 2. From the 3rd factor the line starts to flatten out. So the factors after this will account less to the total variance.

			Factor	Pattern		
	Facto	or1	Factor	2 Facto	r3	Factor4
Х1	0.905	544	-0.0158	7 0.313	24	-0.28800
Х2	0.720	71	-0.6214	2 0.148	27	0.26913
ХЗ	0.415	579	0.8657	7 0.202	98	0.19088
Х4	0.785	87	0.1301	1 -0.604	28	-0.01818
			•	Factor		Factor4
						0.1909091
Final Communality Estimates: Total = 4.000000						
	X1		Х2	1	Х3	X
1.0000000 1.0		0000000	4 00000		4 0000000	

Varimax rotatation is an orthogonal rotation which impose restriction on the factors after the initial extraction of factors that they cannot be correlated.

FACTOR ANALYSIS

The FACTOR Procedure Rotation Method: Varimax

	Orthogonal Transformation Matrix						
	1	2	3	4			
1	0.52029	0.30225	0.55377	0.57558			
2	-0.58401	0.81738	0.11381	-0.02890			
3	0.23480	0.29160	-0.82324	0.42687			
4	0.59679	0.39434	-0.05161	-0.69690			

Rotated Factor Pattern					
	Factor1	Factor2	Factor3	Factor4	
X1	0.38286	0.23926	0.25849	0.85483	
Х2	0.92086	-0.14073	0.19243	0.30850	
хз	-0.11057	0.96771	0.15185	0.16807	
Х4	0.18289	0.16051	0.94840	0.20328	

Variance Explained by Each Factor						
Factor1	Factor2	Factor3	Factor4			
1.0402418	1.0392811	1.0253418	0.8951352			

	= 4.000000	Final Communality Estimates: Total = 4.000					
	X4	ХЗ	X2	X1			
1	1.0000000	1.0000000	1.0000000	1.0000000			

FACTOR ANALYSIS The FACTOR Procedure Rotation Method: Varimax Plot of Factor Pattern for Factor1 and Factor2 Factor1 1 8 .9 .8 .7 .8 .5 .4 A .9 .2 D .1 E .1 E .1 E .1 E .1 C .1 C

```
PROC FACTOR DATA = PRINCIPAL NFACTORS=2 ROTATE=PROMAX PLOT OUT=FACT_SCORE;
TITLE "NON-OBLIQUE ROTATION";
VAR x1--x4;
RUN;
PROC PRINT DATA = FACT_SCORE (OBS = 10);
RUN:
```

NON-OBLIQUE ROTATION

The FACTOR Procedure

Input Data Type	Raw Data
Number of Records Read	200
Number of Records Used	200
N for Significance Tests	200

NON-OBLIQUE ROTATION

The FACTOR Procedure Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

	Eigenvalues of the Correlation Matrix: Total = 4 Average = 1						
	Eigenvalue	Difference	Proportion	Cumulative			
1	2.12973163	0.97682870	0.5324	0.5324			
2	1.15290294	0.62644662	0.2882	0.8207			
3	0.52645632	0.33554720	0.1316	0.9523			
4	0.19090911		0.0477	1.0000			

Variance Explained by Each Factor					
Factor1	Factor2				
2.1297316	1.1529029				

Final Communality Estimates: Total = 3.282635				
X4	Х3	X2	X1	
0.63451926	0.92244850	0.90558427	0.82008254	

NON-OBLIQUE ROTATION

The FACTOR Procedure Rotation Method: Promax (power = 3)

Targe	Tanget Matrix for Procrustean Transformation		
	Factor1	Factor2	
X1	0.99236	0.04089	
X2	1.00000	-0.03858	
ХЗ	0.00080	1.00000	
Х4	0.76849	0.13187	

Pro	crustean Transfo	ormation Matrix
	1	2
1	1.14094938	-0.051234
2	-0.059132	0.82272224

Non	Normalized Oblique Transformation Matrix	
	1	2
1	0.91911	0.30310
2	-0.41029	0.95981

Inter-Factor Correlations				
	Factor1	Factor2		
Factor1	1.00000	0.11373		
Factor2	0.11373	1.00000		

Rotated Factor	Pattern (Standardize	d Regression Coefficients)
	Factor1	Factor2
X1	0.83872	0.25921
X2	0.91738	-0.37799
Х3	0.02694	0.95700
X4	0.66892	0.36308

Reference Axis Correlations				
	Factor1	Factor2		
Factor1	1.00000	-0.11373		
Factor2	-0.11373	1.00000		

Refere	ence Structure Correlatio	
	Factor1	Factor2
X1	0.83328	0.25752
X2	0.91142	-0.37554
Х3	0.02677	0.95080
Х4	0.66458	0.38073

Facto	Factor Structure (Correlations)			
	Factor1	Factor2		
X1	0.86820	0.35459		
Х2	0.87439	-0.27368		
ХЗ	0.13578	0.98007		
X4	0.71021	0.43916		

Variance Explained by Each Factor Ignoring Other Factors		
Factor1	Factor2	
2.0411509	1.3152143	

Final Com	munality Esti	mates: Total	= 3.282635
X1	X2	Х3	X4
0.82008254	0.90558427	0.92244850	0.63451926

NON-OBLIQUE ROTATION							
Obs	SUBJ	X1	X2	Х3	X4	Factor1	Factor2
1	1	484	564	315	381	0.23615	-0.87875
2	2	539	498	389	389	0.22281	0.66694
3	3	536	592	346	422	1.09974	-0.26346
4	4	552	449	396	399	0.02706	1.10985
5	5	489	438	454	391	-0.68407	1.67869
6	6	537	566	390	400	0.76492	0.35783
7	7	495	510	326	365	-0.16134	-0.47906
8	8	521	614	322	424	1.15865	-0.73787
9	9	551	517	352	347	0.25733	-0.06547
10	10	517	405	437	425	-0.48218	1.87921

Promax allows factors to correlate with one another.

```
DATA CORR_SCORE;
SET FACT_SCORE;
FACT_A= MEAN(OF X1,X2,X4);
FACT_B=X3;
RUN;
PROC CORR DATA = CORR_SCORE NOSIMPLE;
VAR FACTOR1 FACTOR2;
WITH FACT_A FACT_B;
RUN;
```

NON-OBLIQUE ROTATION

The CORR Procedure

2 With Variables:	FACT_A FACT_B
2 Variables:	Factor1 Factor2

Pearson Correlation Coefficients, N = 200 Prob > r under H0: Rho=0						
	Factor1	Factor2				
FACT_A	0.99565 <.0001	0.16932 0.0165				
FACT_B	0.13578 0.0552	0.96007 <.0001				

```
11.2
```

```
DATA TEST;
ARRAY KEY[10] $ 1 KEY1-KEY10; **key solutions;
ARRAY SOL[10] $ 1 SOL1-SOL10; **student's solution;
ARRAY S[10] 3 S1-S10;
RETAIN KEY1-KEY10;
IF N_{=1} THEN INPUT (KEY1-KEY10) ($1.);
INPUT @1 ID 1-3
@5 (SOL1-SOL10) ($1.);
DO I = 1 TO 10;
S[I] = (SOL[I] EQ KEY[I]);
END;
RAW = SUM (OF S1-S10);
PERCENT = 100*RAW/10;
KEEP S1-S10 ID RAW PERCENT;
LABEL
ID = "ID"
RAW = "RAW SCORE"
PERCENT = "PERCENTILE_SCORE";
DATALINES;
ABCDEABCDE
001 ABCDBECDBE
002 ABCDEABCDE
003 ABCDEABCDD
004 ABCEDABCCE
005 BBCDEBBCDE
006 CABEDACBED
007 DECAACEDAA
008 ABCDEBBBEE
009 DDDDDDABCDE
010 ABECDABCDE
PROC PRINT DATA = TEST;
TITLE "SCORING TEST";
PROC CORR DATA = TEST NOSIMPLE ALPHA;
VAR S1-S10;
RUN;
```

					\$	sco	RIN	IG 1	ES	т			
Obs	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	ID	RAW	PERCENT
1	1	1	1	1	0	0	0	0	0	1	1	5	50
2	1	1	1	1	1	1	1	1	1	1	2	10	100
3	1	1	1	1	1	1	1	1	1	0	3	9	90
4	1	1	1	0	0	1	1	1	0	1	4	7	70
5	0	1	1	1	1	0	1	1	1	1	5	8	80
6	0	0	0	0	0	1	0	0	0	0	6	1	10
7	0	0	1	0	0	0	0	0	0	0	7	1	10
8	1	1	1	1	1	0	1	0	0	1	8	7	70
9	0	0	0	1	0	1	1	1	1	1	9	6	60
10	1	1	0	0	0	1	1	1	1	1	10	7	70

The Point-Biserial Correlation Coefficient is a correlation measure of the strength of association between a continuous-level variable and a binary variable.

The CORR Procedure						
10 V	ariables:	S1 S2	S3 S4	S5 S6 S7	S8 S	9 S10
	Cron	bach C	oeffici	ent Alpha	ı	
	Varia	bles		Alpha	t	
	Raw			0.804182	2	
	Stand	lardized	i	0.805231	1	
Cronb	ach Coeffi	cient A	lpha v	vith Delet	ed Va	ariable
		/ariable	•			Variables
Deleted Variable	Correlation		Alpha	Correla with T		Alpha
S1	0.4679	51 0.7	88321	0.47	7832	0.788435
S2	0.7051	17 0.70	61646	0.71	0814	0.761130
S3	0.1736	37 0.8°	18717	0.17	7591	0.820728
S4	0.4679	51 0.7	88321	0.47	0471	0.789265
S5	0.5716	45 0.7	76097	0.574	4604	0.777339
S6	0.0728	55 0.83	31210	0.06	5535	0.831985
S7	0.8036	85 0.79	50000	0.79	9462	0.750202
S8	0.6429	90 0.70	67442	0.63	8393	0.769835
S9	0.5433	0.7	79367	0.53	6561	0.781742
S10	0.4276	59 0.79	92614	0.43	0979	0.793685

	Pearson Correlation Coefficients, N = 10 Prob > r under H0: Rho=0									
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
S1	1.00000	0.80178 0.0053	0.35635 0.3122	0.16667 0.6454	0.25000 0.4860	0.16667 0.6454	0.35635 0.3122	0.16667 0.6454	0.00000 1.0000	0.35635 0.3122
S2	0.80178 0.0053	1.00000	0.52381 0.1202	0.35635 0.3122	0.53452 0.1114	-0.08909 0.8067	0.52381 0.1202	0.35635 0.3122	0.21822 0.5447	0.52381 0.1202
S 3	0.35635 0.3122	0.52381 0.1202	1.00000	0.35635 0.3122	0.53452 0.1114	-0.53452 0.1114	0.04762 0.8961	-0.08909 0.8067	-0.21822 0.5447	0.04762 0.8961
S4	0.16667 0.6454	0.35635 0.3122	0.35635 0.3122	1.00000	0.66667 0.0353	-0.25000 0.4860	0.35635 0.3122	0.16667 0.6454	0.40825 0.2415	0.35635 0.3122
S5	0.25000 0.4860	0.53452 0.1114	0.53452 0.1114	0.66667 0.0353	1.00000	-0.16667 0.6454	0.53452 0.1114	0.25000 0.4860	0.40825 0.2415	0.08909 0.8067
S6	0.16667 0.6454	-0.08909 0.8067	-0.53452 0.1114	-0.25000 0.4860	-0.16667 0.6454	1.00000	0.35635 0.3122	0.58333 0.0767	0.40825 0.2415	-0.08909 0.8067
S7	0.35635 0.3122	0.52381 0.1202	0.04762 0.8961	0.35635 0.3122	0.53452 0.1114	0.35635 0.3122	1.00000	0.80178 0.0053	0.65465 0.0400	0.52381 0.1202
S8	0.16667 0.6454	0.35635 0.3122	-0.08909 0.8067	0.16667 0.6454	0.25000 0.4860	0.58333 0.0767	0.80178 0.0053	1.00000	0.81650 0.0039	0.35635 0.3122
S9	0.00000 1.0000	0.21822 0.5447	-0.21822 0.5447	0.40825 0.2415	0.40825 0.2415	0.40825 0.2415	0.65465 0.0400	0.81650 0.0039	1.00000	0.21822 0.5447
S10	0.35635 0.3122	0.52381 0.1202	0.04762 0.8961	0.35635 0.3122	0.08909 0.8067	-0.08909 0.8067	0.52381 0.1202	0.35635 0.3122	0.21822 0.5447	1.00000

Like all Correlation Coefficients (e.g. Pearson's r), the Point-Biserial Correlation Coefficient measures the strength of association of two variables (raw and percentile score) in a single measure ranging from -1 to +1, where -1 indicates a perfect negative association, +1 indicates a perfect positive association and 0 indicates no association at all. All correlation coefficients are interdependency measures that do not express a causal relationship.

KAPPA-PSYCHIATRIST STUDY

The FREQ Procedure

KAPPA-PSYCHIATRIST STUDY

01-	DATED 4	DATED O
Obs	RATER_1	RATER_2
1	S	S
2	N	N
3	S	S
4	N	N
5	s	N
6	s	s
7	N	s
8	N	N
9	N	N
10	s	N
11	s	s
12	N	N
13	N	N
14	s	s
15	N	s
16	s	s
17	N	N
18	s	S
19	s	S

Frequency						
Row Pct						
Col Pct						

Table of RATER_1 by RATER_2							
	R	RATER_2					
RATER_1	N	s	Total				
N	7	2	9				
	77.78	22.22					
	77.78	20.00					
S	2	8	10				
	20.00	80.00					
	22.22	80.00					
Total	9	10	19				

Statistics for Table of RATER_1 by RATER_2

McNemar's Test					
Statistic (S)	0.0000				
DF	1				
Pr > S	1.0000				

Simple Kappa Coefficient				
Карра	0.5778			
ASE	0.1875			
95% Lower Conf Limit	0.2102			
95% Upper Conf Limit	0.9453			

