C12 problems

Given that $V_{bn} = 110/30^{\circ} V$, find V_{an} and V_{cn} , assuming a positive (abc) sequence.

Answer: $110/150^{\circ}$ V, $110/-90^{\circ}$ V.

A positive-sequence, balanced Δ -connected source supplies a balanced Δ -connected load. If the impedance per phase of the load is $18 + j12 \Omega$ and $I_a = 9.609/35^{\circ}$ A, find I_{AB} and V_{AB} .

Answer: $5.548/65^{\circ}$ A, $120/98.69^{\circ}$ V.

In a balanced Δ -Y circuit, $V_{ab}=240/15^{\circ}$ and $Z_Y=(12+j15)$ Ω . Calculate the line currents.

Practice Problem 12.5

Answer: $7.21 / -66.34^{\circ}$ A, $7.21 / +173.66^{\circ}$ A, $7.21 / 53.66^{\circ}$ A.

Calculate the line current required for a 30-kW three-phase motor having a power factor of 0.85 lagging if it is connected to a balanced source with a line voltage of 440 V.

Answer: 46.31 A.

Practice Problem 12.7

Figure 12.24

Unbalanced Δ -load; for Practice Prob. 12.9.

The unbalanced Δ -load of Fig. 12.24 is supplied by balanced line-to-line voltages of 440 V in the positive sequence. Find the line currents. Take V_{ab} as reference.

Answer: 39.71/-41.06° A, 64.12/-139.8° A, 70.13/74.27° A.

If the load in Fig. 12.35 is delta-connected with impedance per phase of $\mathbf{Z}_p = 30 - j40 \,\Omega$ and $V_L = 440 \,\mathrm{V}$, predict the readings of the wattmeters W_1 and W_2 . Calculate P_T and Q_T .

Answer: 6.167 kW, 0.8021 kW, 6.969 kW, -9.292 kVAR.

Figure 12.35
Two-wattmeter method applied to a balanced wye load.

- 12.1 (s12.2)
- 12.4 (s12.5)
- 12.5 (s12.6)
- 12.7 (s12.7)
- 12.9 (s12.8)
- 12.15 (s12.10)