R documentation

 $of \ \hbox{`/Users/Niladri/Documents/Research/Extending'} etc.$

November 4, 2013

R topics documented:

bin_o	list Binned Distance	
Index		11
	uni_dist	
		10
	rorschach	9
	resid_sigma	g
	resid_pboot	8
	resid_boot	5
	reg_dist	6
	opt_diff	7
	null_permute	6
	null_lm	5
	null_dist	5
	lineup	2
	lal	4
	distmet	3
	decrypt	3
	calc_diff	2
	box_dist	2
	bin_dist	1

Description

euclidean distance is calculated by binning the data and counting the number of points in each bin

```
bin_dist(X, PX, X.bin = 5, Y.bin = 5)
```

2 calc_diff

Arguments

Χ	a data.frame with two variables, the first two columns are used
PX	another data.frame with two variables, the first two columns are used
X.bin	number of bins on the x-direction, by default $nbin.X = 5$
Y.bin	number of bins on the y-direction, by default $nbin.Y = 5$

Value

distance between X and PX

box_dist	Distance based on side by side Boxplots for two levels
----------	--

Description

distance is calculated by looking at the difference between first quartile, median and third quartile

Usage

```
box_dist(X, PX)
```

Arguments

X	a data.frame with one factor variable and one continuous variable
PX	a data.frame with one factor variable and one continuous variable

Value

distance between X and PX

calc_diff	Uses binned distance to calculate the mean distance between the true plot and the null plots in a lineup. also calculates the mean distance of the null plots among themselves and finds the difference between the mean distance of the true plot and the maximum mean distance of the
	null plots

Description

Uses binned distance to calculate the mean distance between the true plot and the null plots in a lineup. also calculates the mean distance of the null plots among themselves and finds the difference between the mean distance of the true plot and the maximum mean distance of the null plots

```
calc_diff(lineup.dat, X.bin, Y.bin, pos, m = 20)
```

decrypt 3

Arguments

lineup.dat	lineup data to get the lineup
X.bin	number of bins on the x-direction
Y.bin	number of bins on the y-direction
pos	position of the true plot in the lineup
m	number of plots in the lineup, by default $m = 20$

Value

difference between the mean distance of the true plot and the maximum mean distance of the null plots

decrypt

Use decrypt to reveal the position of the real data.

Description

The real data position is encrypted by the lineup function, and writes this out as a text string. Decrypt, decrypts this text string to reveal which where the real data is.

Usage

```
decrypt(...)
```

Arguments

... character vector to decrypt

Examples

```
decrypt("0uXR2p rut L202")
```

distmet

Calculates the distance measures

Description

Calculates the distance measures

```
distmet(lineup.dat, met, method, pos, m = 20,
    dist.arg = NULL, plot = TRUE)
```

4 lineup

Arguments

lineup.dat lineup data

met distance metric needed to calculate the distance

method method for generating null data sets
pos position of the observed data in the lineup

m the number of plots in the lineup; m = 20 by default

dist.arg a vector of inputs for the distance metric met; NULL by default

plot LOGICAL; if TRUE, returns density plot showing the distn of the measures;

TRUE by default

Author(s)

Niladri Roy Chowdhury

lal

Los Angeles Lakers play-by-play data.

Description

Play by play data from all games played by the Los Angeles lakers in the 2008/2009 season.

lineup

The line-up protocol.

Description

In this protocol the plot of the real data is embedded amongst a field of plots of data generated to be consistent with some null hypothesis. If the observe can pick the real data as different from the others, this lends weight to the statistical significance of the structure in the plot. The protocol is described in Buja, Cook, Hofmann, Lawrence, Lee, Swayne, Wickham (2009) Statistical inference for exploratory data analysis and model diagnostics, Phil. Trans. R. Soc. A, 367, 4361-4383.

Usage

```
lineup(method, true = NULL, n = 20, pos = sample(n, 1),
    samples = NULL)
```

Arguments

method method for generating null data sets

true true data set. If NULL, find_plot_data will attempt to extract it from the current

ggplot2 plot.

n total number of samples to generate (including true data)

pos position of true data. Leave missing to pick position at random. Encryped posi-

tion will be printed on the command line, decrypt to understand.

samples samples generated under the null hypothesis. Only specify this if you don't want

lineup to generate the data for you.

null_dist 5

Details

Generate n - 1 null datasets and randomly position the true data. If you pick the real data as being noticeably different, then you have formally established that it is different to with p-value 1/n.

Examples

```
if (require("ggplot2")) {
    qplot(mpg, wt, data = mtcars) %+%
        lineup(null_permute("mpg"), mtcars) +
        facet_wrap(~ .sample)
    qplot(mpg, .sample, data = lineup(null_permute("cyl"), mtcars),
        colour = factor(cyl))
}
```

null_dist

Generate null data with a specific distribution.

Description

Null hypothesis: variable has specified distribution

Usage

```
null_dist(var, dist, params = NULL)
```

Arguments

var	variable name
dist	distribution name. One of: beta, cauchy, chi-squared, exponential, f, gamma, geometric, log-normal, lognormal, logistic, negative binomial, normal, poisson, t, weibull
params	list of parameters of distribution. If NULL, will use fitdistr to estimate them.

Value

a function that given data generates a null data set. For use with lineup or rorschach

null_lm

Generate null data with null residuals from a model.

Description

Null hypothesis: variable is linear combination of predictors

```
null_lm(f, method = "rotate", ...)
```

6 null_permute

Arguments

f model specification formula, as defined by 1m

method method for generating null residuals. Built in methods "rotate", "pboot" and "boot" are defined by resid_rotate, resid_pboot and resid_boot respectively

... other arguments passedd onto method.

Value

a function that given data generates a null data set. For use with lineup or rorschach

Examples

```
if (require("ggplot2") && require("reshape2")) {

x <- lm(tip ~ total_bill, data = tips)
tips.reg <- data.frame(tips, .resid = residuals(x), .fitted = fitted(x))
qplot(total_bill, .resid, data = tips.reg) %+%
    lineup(null_lm(tip ~ total_bill, method = "rotate"), tips.reg) +
    facet_wrap(~ .sample)
}</pre>
```

null_permute

Generate null data by permuting a variable.

Description

Null hypothesis: variable is independent of others

Usage

```
null_permute(var)
```

Arguments

var

name of variable to permute

Value

a function that given data generates a null data set. For use with lineup or rorschach

opt_diff 7

opt_diff	finds the difference using calc_diff for all combinations of number of bins in x and y direction

Description

finds the difference using $calc_diff$ for all combinations of number of bins in x and y direction

Usage

```
opt_diff(lineup.dat, xlow, xhigh, ylow, yhigh, pos,
   plot = FALSE, m = 20)
```

Arguments

lineup.dat	lineup data to get the lineup
xlow	the lowest value of number of bins on the x-direction
xhigh	the highest value of number of bins on the x-direction
ylow	the lowest value of number of bins on the y-direction
yhigh	the highest value of number of bins on the y-direction
pos	position of the true plot in the lineup
plot	LOGICAL; if true, returns a tile plot for the combinations of number of bins with the differences as weights
m	number of plots in the lineup, by default $m = 20$

Value

a dataframe with the number of bins and differences the maximum mean distance of the null plots

reg_dist Distance based on the regression parameters	
--	--

Description

Distance based on the regression parameters

Usage

```
reg_dist(X, PX, X.bin = 1, Y.bin = X.bin)
```

Arguments

X	a data.frame with two variables, the first column giving the explanatory variable and the second column giving the response variable
PX	another data.frame with two variables, the first column giving the explanatory
	variable and the second column giving the response variable

Value

distance between X and PX

resid_rotate

resid_boot

Bootstrap residuals.

Description

For use with null_lm

Usage

```
resid_boot(model, data)
```

Arguments

model to extract residuals from

data used to fit model

 ${\tt resid_pboot}$

Parametric bootstrap residuals.

Description

For use with null_lm

Usage

```
resid_pboot(model, data)
```

Arguments

model to extract residuals from

data used to fit model

resid_rotate

Rotation residuals.

Description

For use with null_lm

Usage

```
resid_rotate(model, data)
```

Arguments

model to extract residuals from

data used to fit model

resid_sigma 9

resid_sigma	Residuals simulated by a normal model, with specified sigma

Description

For use with null_lm

Usage

```
resid_sigma(model, data, sigma = 1)
```

Arguments

model	to extract residuals from	
data	used to fit model	
sigma,	a specific sigma to model	

rorschach The Rorschach protocol.

Description

This protocol is used to calibrate the eyes for variation due to sampling. All plots are typically null data sets, data that is consistent with a null hypothesis. The protocol is described in Buja, Cook, Hofmann, Lawrence, Lee, Swayne, Wickham (2009) Statistical inference for exploratory data analysis and model diagnostics, Phil. Trans. R. Soc. A, 367, 4361-4383.

Usage

```
rorschach(method, true = NULL, n = 20, p = 0)
```

Arguments

method	method for generating null data sets
true	true data set. If NULL, $find_plot_data$ will attempt to extract it from the current ggplot2 plot.
n	total number of samples to generate (including true data)
р	probability of including true data with null data.

10 uni_dist

sep_dist	Distance based on separation of clusters	

Description

distance based on the separation between clusters separation is the minimum distances of a point in the cluster to a a point of another cluster

Usage

```
sep_dist(X, PX, clustering = FALSE, nclust = 3)
```

Arguments

X a data.frame with two or three columns, the first two columns providing the

dataset

PX a data.frame with two or three columns, the first two columns providing the

dataset

clustering LOGICAL; if TRUE, the third column is used as the clustering variable, by

default FALSE

nclust the number of clusters to be obtained by hierarchial clustering, by default nclust

=3

Value

distance between X and PX export

uni_dist Distance for univariate data

Description

distance is calculated based on the first four moments

Usage

```
uni_dist(X, PX)
```

Arguments

X a data.frame where the first column is only used
PX another data.frame where the first column is only used

Value

distance between X and PX

Index

```
*Topic datasets
     lal, 4
bin_dist, 1
box_dist, 2
calc_diff, 2
decrypt, 3, 4
distmet, 3
{\tt find\_plot\_data}, \textcolor{red}{4}, \textcolor{red}{9}
fitdistr, 5
1a1, 4
lineup, 4, 5, 6
lm, 6
null\_dist, 5
null_lm, 5, 8, 9
\verb|null_permute|, 6
\mathtt{opt\_diff}, \textcolor{red}{7}
reg_dist, 7
resid\_boot, 6, 8
resid_pboot, 6, 8
resid\_rotate, 6, 8
resid_sigma, 9
rorschach, 5, 6, 9
sep\_dist, 10
uni_dist, 10
```