Static Site Generator

La Salle Campus Barcelona

Javier Mérida

12 02 2023

Chapter 1

Trying out popular SSGs

The following SSGs has been chosen based on their popularity in order to be tried to gather information on what the basic features for SSG are. It's important to notice that these are being tried in a Linux environment (Linux inside Windows, thanks to WSL), installing them from scratch, using vim as text editor to minimize external tools assistance to have an unbiased appreciation of each one of them.

- NextJS (https://nextjs.org/)
- Hugo
- VuePress
- Eleventy

• Astro

1.0.1 NextJS

NextJS is a NodeJS with ReactJS based SSG framework, meaning that in order to use it's needed to install the following dependencies.

- 1. First, install NodeJS: sudo apt install nodejs
- 2. Then, install npm (Node package manager): sudo apt install npm
- 3. Finally, using npm to install NextJS: npx create-next-app@latest nextjs-blog -use-npm

This command will install the additional dependencies required to develop a NextJS application, such as React. The pages of this SSG are located in the /pages folder, and each page entrypoint has the same name as its corresponding file. As a result, routing is handled automatically and everything is well-defined within the project.

There is no need to switch to a different file to view the routing pages or the names, as one folder contains all of this information.

In addition, the fundamental feature of NextJS is that it uses React as a foundation framework to generate content via components, and the page itself is a React component, so it's really simple to comprehend and begin working with if you' re already familiar with React.

The styles, on the other hand, are covered by basic CSS files in a styles/folder, as is customary in web development.

Overall, I found NextJS to be incredibly user-friendly, simple to design, utilize, and scale, and well-structured.

1.0.2 Hugo

Hugo is a highly efficient, portable, and easy-to-use content management system that comes with a variety of design themes.

As the testing environment is based on the Linux Debian distribution, one of the installation methods described on their main website was chosen for this test, which was sudo apt install hugo.

However, it is important to note that there are multiple methods and sources for obtaining the Hugo framework, and each has its own pros and cons, which are not discussed in this document because its primary purpose is to examine the framework's primary features after installation.

To get started with Hugo, simply execute the following command hugo new site new_site. Hugo will create a folder with the name of the project, in this case new-site, and a new theme can be added to this folder for styling. Notice that there are a large number of already-created and freely-distributed themes, which saves you development time on styles and aesthetics, you could install a theme (using git submodule add [REPOSITORY NAME]), add it to the Hugo configuration file config.toml, and focus on adding content to the website.

Nonetheless, it is essential to recognize Hugo strategy's limitations. The first is the existence of paid themes, which creates a financial gap within the open source community. This is understandable, however, as adding themes and structures requires time, effort, and a certain level of understanding of the dynamics of user design and experience.

The second drawback is the added difficulty to modify a theme as the framework relies on **overriding** to change specific configurations on styling, which obviously violates the SOLID principles in programming as per the inability to extend these configurations without overriding/changing the entire file, although this is not always applicable on styling due to the intrinsic nature of how these are defined and approached in Web via CSS, however there is either a straightforward method to perform tweaks to specific values, such as exposed variables which can provide the ability to make changes within the same authored skeleton or component. For instance, exposing a variable that allows the user to specify a desired padding between list entries, or a desired color for all secondary buttons.

1.0.3 VuePress

VuePress is self-defined as a minimalistic static site generator, powered by Vue to build the theme system, optimized to focus on content creation such as technical documentation via markdown files for metadata, content, configuration, and more. It renders pages with static HTML and turns the page to a Single Page Application.

In order to use it, NodeJS and Vue are required. Once these dependencies are up-to-date, one can start creating and working on a site by using the Node CLI command npx create-vuepress-site [optionalDirectoryName], and it will ask for further information on the site such as project name, description, and more.

Once done, it will create a basic documentation site under the docs folder. In order to see the website live, the Node modules within docs must be installed: npm install, and then it can be served locally doing npm run dev.

The development experience with VuePress is generally undemanding, as it handles all tasks required to build a website, leaving the emphasis on the content creation via markdown files, and the static content (images, videos) integration is also seamless, as all that is required is to leave them in a given folder and specify the media path within the config markdown, while the

theme handles all styling and structure.

However, the themes depend on the Vue framework, which adds an additional layer to the learning curve, and the theme styling can be exposed as variables following the config structure, although the developer has total control over how this structure is organized. The issue with this approach is that it makes it difficult to learn different themes, as each author is free to organize them as they see fit, and one must put in the time and effort to comprehend the theme in order to make further customizations. The lack of established and opined structure may result in disorderly configurations, but this is the price of such freedom.

After using VuePress and NextJS, it is important to note that using NodeJS as a package and dependencies manager increases the developer's pain and work load. NodeJS is notorious for causing pain among developers due to the complications it can lead to when a dependency is not met or is out-of-date, as the solution is never straightforward and further investigation is required to determine what could be happening in t. During this testing, conflicts between the NodeJS version and the VuePress required dependencies caused a number of issues.

1.0.4 Eleventy

Eleventy is a highly adaptable website site generator that enables you to create a website using a variety of template languages with a multitude of settings and pre-installed features to enhance and personalize the working process and final results.

It works with JavaScript, specifically NodeJS, making its installation a primary requirement. Once it's available in the environment, use npm to install it by doing npm install @11ty/eleventy.

In order to start working on the new project, it's required to create a template file, which can be accomplish by using HTML, JavaScript, Markdown, Nunjucks, and more. Once a template is already established, create the content, called index file which can be done using markdown, and the content of this file will be mapped to the specified location in the given template, generating the output files following this structure.

Eleventy is easy-to-use, framework agnostic as it does not rely on a specific framework, unlike Next.JS and VuePress, and comes with a plethora of features, template languages, flexibility, and the ability to add multiple well-known plugins and third-party tools, such as Sass for styling, to enhance the development experience. This flexibility enables the developer to begin working on the site with the specific set of desired tools, without additional

boilerplate or the burden of learning new technologies, while also adapting itself to the needs of the site to be generated, i.e. bringing the ability to use and implement already known tooling to address very specific situations in accordance with the industry standard.

Nonetheless, it is well-known that this flexibility increases the cognitive load associated with starting a new project, facing a blank sheet of paper (or in this case, a blank IDE), and deciding which tools to use to optimize both the work process and the final product/output. The absence of an established structure can be problematic when deciding which features to include, and it makes it more difficult to work on a project that has already begun because the tools used may be entirely different from those used on a previous project.

1.0.5 Astro

Astro promotes itself as an all-in-one web framework, as opposed to a simple static site generator, despite serving the same purpose with full batteries features specialized to focus on content creation and management rather than pure development, and designed to be fast and performant.

To utilize it, simply visit their website (http://astro.new) to play with a fully functional browser version of Astro. Similarly, to use it in a local

environment, NodeJS and npm are required, and a new project will be created using npm create astro@latest to begin development.

In contrast to other Single Page Application frameworks where everything is loaded at client-side, and most server-side render applications where it takes a considerable amount of time to load the page when the project starts growing, Astro uses a Partial Hydration, which means that the content (which is always, or at least it will try to always render it in the server) is only loaded when it is needed. For example, some content can be loaded concurrently with scrolling once it becomes visible in the browser.

This method, in conjunction with the island architecture, which divides the website into distinct sections, enables the framework to have significantly improved performance compared to other methods.

Therefore, Astro focuses on the serving sites' performance, allowing the developer to focus on content creation without worrying about execution details, while providing several features to customize the serving process and also enabling the customization of the working environment as it has hundreds of integrations to choose from, such as front-end frameworks (being framework agnostic in the sense that it does not rely on any particular tool), preprocessing toolings, such as Sass, and so on.

Finally, Astro is a highly effective framework with numerous customiza-

tion options from which to study. It allows for a great deal of freedom and flexibility while remaining simple to use. Nevertheless, for a simple static site generator it may be an overkill tooling system to use, as it is designed to compete against single page applications with their multiple page application approach, and it lacks an opinionated or strict structure to adhere to, which makes sense as it must fulfill the needs of a complete website.

1.1 Comparison Table

The following table outlines the features that has been considered as most important to take into account when considering static site generator. Note that the purpose of this document is not to benchmark any of these features, thus there is not a workload test to compare the performance of the explored SSGs. Instead, this is a simple exploration on what features are stand out in order to consider as requisites to build a new SSG.

Also, it is important to note that the lack or the presence of any of these characteristic do not make any SSG better than others, as each one of them are made for a specific purpose and shine in terms of addressing the obstacle they are meant to. In fact, this section must be taken as an exploration of requisites to be taken into account.

	NextJS	Hugo	VuePress	Eleventy	Astro
Easy to use	Yes	Yes	No	Yes	Yes
Flexible	No	No	No	Yes	Yes
Strict structure	No	Yes	No	No	No
Template system	No	Yes	No	Yes	Yes
Themes	No	Yes	No	Yes	Yes
Performance oriented	Yes	Yes	NA	Yes	Yes
Framework dependant	Yes	No	Yes	No	No
Easy to install	Yes*	Yes	Yes*	Yes*	Yes*
File-based routing	Yes	Yes	NA	Yes	Yes

Note*: The installation difficulty is strickly dependant of NodeJS and how 'npm' addresses any missing dependency, which can be (sometimes) a painful issue to solve.

Chapter 2

Software requirements specifications

2.1 Introduction

2.1.1 Purpose

The primary objective of this chapter, which is referred to as the Software Requirements Specification (from this point forward, SRS), is to define the requirements and, as a result, the goals that need to be accomplished by the Static Site Generator that is described and implemented throughout the entirety of this project. This will be accomplished by providing a detailed explanation of how the system as a whole works as well as the various components that make up the system.

The person in charge of the creation of the SSG, the developer and/or implementer, is the intended audience for this SRS. Given that it outlines the considered implementation details and design specifications, it serves as a guide for the developer to know exactly what to do along with the definition of done for each task and/or component.

2.1.2 Scope

The Static Site Generator described in the document will be known as VaGo, and will henceforth be referred to as such. The nomenclature of this tool is derived from its implementation in the Go programming language, as expounded upon in subsequent sections. Additionally, the name incorporates a homograph word in Spanish, "vago," which connotes indolence or sloth in English. This serves as a playful allusion to the minimal exertion demanded of prospective users in generating a static website through utilization of this software.

VaGo is a tool designed to facilitate the creation and distribution of static content on the web. Its primary function is to interpret and translate markdown files into web content, which includes HTML, CSS, and necessary JavaScript. Furthermore, the system will facilitate the implementation of a theming mechanism, which will enable the creation and dissemination of particular style guidelines for reuse and adherence by the content after its translation from markdown. This theming system will also allow for a flexible and open approach to effectuate specific author-provided modifications to the style of the pages, such as the inclusion of particular padding between elements, the adjustment of text size based on the heading hierarchy, the selection of colors, the application of specific button styles, and other customizable features, which will be contingent upon the preferences established by the theme author.

The provision of flexibility enables prospective users of designated themes to make necessary adjustments to suit their individual requirements, without the need of extensively search through the styling boilerplate and navigating through numerous CSS files to locate the particular parameter to modify.

Similarly, VaGo will offer a straightforward command-line interface (CLI) to facilitate interaction with the program to serve the purpose of translating content into static web pages. This will be possible once the content has been provided in the form of markdown, along with theme styling. Additionally, VaGo will enable users (via the command line) to serve the content as websites through a specified port, using Go's native HTTP methods.

Conversely, the system won't offer support for alternative interpretation formats, such as YAML or JSON, nor can be expected it facilitates the translation of Go code to JavaScript or vice versa. Hence, it is not to be anticipated that it would provide backing for JavaScript reactivity, akin to what is observed in other front-end frameworks. VaGo will exclusively restrict its capabilities to the delivery of static content through fundamental and native CSS and JavaScript. Its primary objective is to facilitate the development process, with a singular focus on this goal to ensure optimal performance. This approach aims to alleviate the burden of web development for individuals who seek to share text or images without delving into the intricacies of the field.

2.1.3 Definitions, acronyms and abbreviations.

- SSG: Static Site Generator.
- MD: Markdown files.
- JS: Javascript.
- CSS: Cascading Style Sheets.
- HTML: HyperText Markup Language.
- CLI: Command-line interface.
- Theme/Style theme(ing): A set of established reusable guidelines and rules to provide style to the web content (website) via HTML and CSS for the sake of consistency.

2.1.4 References

TODO: This section is empty hence must be defined or completed once reference are found.

2.1.5 Overall description

TODO: Add a short description of the whole structure of the document (SRS).

2.2 Overall description

2.2.1 Product perspective

VaGo is not the first SSG, nor does it claim to be unique or break any industry standards. Instead, it focuses on providing a simple interface for both the content creator (intended to work primarily in markdown files) and the theme author to create and style websites (meant to provide default styles while deciding editable parameters).

In this regard, it is very similar to, and in fact inspired by, HuGo, another SSG written in the Go programming language. Despite this, VaGo attempts

to adopt a comparable theming methodology while incorporating simplified modification capabilities. This would enable prospective users to reuse and personalize pre-existing themes without the need to delve into CSS files. Furthermore, the system in question lacks a focus on performance and does not aim to rival HuGo in this regard. HuGo is renowned for its exceptional performance in generating and delivering static content.

In contrast to NextJS and VuePress, which utilize React and Vue, respectively, for component creation and usage, VaGo does not employ a framework-based component system. In contrast, VaGo restricts itself to utilizing only native HTML, JS, and CSS. However, this does not necessarily preclude the platform from leveraging Go to facilitate or circumvent boilerplate when converting content into the aforementioned web technologies.

Additionally, the product is not intended to incorporate any reactive techniques or external frontend frameworks in order to achieve similar results. The entirety of the content is intended to be loaded and produced on the server side, with no additional features on the client side, unless the user chooses to incorporate them using JavaScript. It is noteworthy that the utilization of opinionated simplicity fulfills the objective of facilitating content creation for users, as they are not required to attend to such particulars. However, this approach is accompanied by the disadvantage of restricted customization options.

Furthermore, it should be noted that initially, there will be no available modules or tools for integration with this particular static site generator (SSG) framework, unlike other frameworks such as Astro. This is because the development of such modules is not a primary focus of the framework's feature development. Additionally, there are no plans to introduce a module customization feature, as outlined in the accompanying documentation.

Ultimately, it is imperative that end-users possess the capability to engage with the product through a straightforward Command Line Interface (CLI) to produce static content and subsequently distribute it online, with minimal parameters and concealed features. Ideally, the system should be designed to facilitate user comprehension and operation without necessitating the perusal of a cumbersome 30-page manual replete with convoluted directives and extraneous verbiage. Thus, it is apparent that a minimal number of commands, typically two or three, accompanied by fundamental parameters such as port, testing mode, and designated source folder, should suffice to initiate the task at hand.

2.2.2 Product functions

This Static Site Generator's primary objective is to convert markdown files' text to plain HTML, mapping the markup elements to understandable web elements in order to maintain the Web Standards' accessibility.

However, it should also be able to offer a theme system built on CSS files that gives the HTML elements styling. This will be made possible by also producing CSS with a set of additional parameters that follow a preestablished structure and should be simple to alter using Go variables.

Last but not least, VaGo will have a brief set of parameters to enable communication with the user via CLI, to enable them to create static content (translation of markdown to HTML with the addition of a theme via CSS), and to serve content via a particular port. A set of features for exporting and importing themes from authors whose works are shared online and/or in repositories may be added in the future.

2.2.3 User characteristics

VaGo is designed to be utilized by individuals possessing a basic understanding of web development and terminal operations. However, this does not necessarily demand that they must hold a degree in Computer Science in order to effectively employ the system. The primary objective of the system is to facilitate ease of use for individuals with limited knowledge of computer technologies, including academic scientists seeking to disseminate their knowledge, blog posts, papers, and ideas on the internet, without requiring extensive knowledge of web technologies.

Therefore, a computer-based academic background is not needed for this system to be used, as long as there is a bit of knowledge about markdown and how to use a terminal, it should be entirely enough. Henceforth, individuals possessing a greater depth of knowledge would be capable of executing more intricate undertakings by leveraging the available adaptability while adhering to the prescribed limitations.

2.2.4 Constraints

Considering that VaGo is programmed using the Go language, which inherently supports cross-platform functionality, the development efforts will be concentrated solely on Linux to streamline the implementation of CLI features and circumvent potential complications arising from newline interpretation and other cross-platform limitations.

In addition, the system does not account for security considerations related to delivering content over the internet, and therefore it cannot guarantee any level of safety in this regard beyond what is already provided by the Go programming language.

However, while there exist fundamental performance considerations for its implementation, it neither guarantees nor rivals other frameworks with respect to performance, velocity, or optimal resource utilization. Consequently, the implementation and development of VaGo will primarily rely on the pre-existing features of the language. As such, it is not anticipated that VaGo will establish its own mechanisms for managing HTTP requests, signaling protocols for handshaking, thread management through Go routines, or other hardware-related dependencies and controls for the host computer. Therefore, any inherent limitations within the Go programming language will inevitably impact the system, and no resources will be allocated towards attempting to circumvent them.

2.2.5 Assumptions and dependencies

The complete functioning of the SSG is contingent upon the availability of the Linux operating system for its execution. Furthermore, the accurate interpretation of Markdown files is contingent upon the existence of wellcrafted documents, without which complications may arise.

In addition, it is anticipated that any additional alterations to the styling will be heavily reliant on one's proficiency in CSS. Consequently, it is imperative that these modifications are accurate, as the system will not undertake any measures to verify the correctness of CSS files.

Moreover, in the event that the system is utilized for the purpose of delivering and sharing files, notably static content, it is anticipated that an internet connection will be accessible to facilitate communication with clientside requests. It is noteworthy that there will be no verification implemented on this communication, nor will there be any specific error handling beyond what is inherent to the language.

Alternatively, the system's potential expansion could be facilitated through the utilization of native JavaScript, thereby introducing interactive elements to the otherwise static content. However, it is important to note that VaGo does not assume responsibility for this aspect, and any modifications or augmentations are solely at the discretion of the user.

Vago's proper usage and functioning necessitate a collection of dependencies, including the Go HTTP module for internet traffic serving. These dependencies are managed by the Go modules import mechanism. Therefore, it's assumed that these dependencies are available in the host machine to be used by the system, and a default error message for the missing dependencies will be thrown in case these are not installed, without fancy or added complexity.

2.2.6 Apportioning of requirements

It is possible that in the future, the system may incorporate supplementary functionalities for the development and utilization of Web Components using conventional web technologies, devoid of any frameworks. The inclusion of these components may introduce an additional level of intricacy and consequently enhance adaptability in generating unique elements and segregating styling. This could potentially enable an approach akin to the Astro islands architecture, featuring isolated CSS. However, a noteworthy advantage lies in the utilization of solely standard technologies, thereby eliminating the need for supplementary tooling or increased size to support the same.

In addition, VaGo has the potential to provide fundamental capabilities for generating said components, by eliminating the redundant code required to construct a rudimentary web component, and furnishing a platform to associate specific functionalities to them, without necessitating extensive knowledge of JavaScript coding to achieve the same outcome. It is possible to write the components using Go language with the aid of VaGo, and subsequently interpret and convert them into JavaScript for the purpose of generating the Web Component.

Nonetheless, it should be noted that the act of translating may result in a loss of flexibility due to its dependence on the system's interpretation. Despite this, it may prove to be a suitable solution for a majority of component types commonly found in the industry. To gain a deeper understanding of the current state of such technologies and their relevance to existing needs, a comprehensive analysis of popular frameworks and their approaches is necessary.

2.3 Specific requirements

2.3.1 External interfaces

Users will be able to interact with the system using CLI commands to carry out simple operations that are built into the system. Here, two fundamental commands should be noted:

- Build.
- Serve: To serve and share content via a specific port.

Additionally, the system ought to alert the user any time a command it has issued contains an error because it is possible for them to accidentally type the wrong command or misspell any of these. (using build instead of build). Notably, unlike other systems, it will lack a recommendation system to offer hints of similar words that are actually interpreted as to assist the user in finding alternative commands, even though it will inform the user about the existence of an error that prevented the system from performing the required task.

2.3.1.1 Build

The task at hand involves the conversion of Markdown files into web-based content, specifically in the form of HTML, JS, and CSS.

The program is designed to utilize the Command Line Interface (CLI) as an input mechanism, whereby it recognizes the command name to execute its designated task. Its output function involves generating the HTML and CSS content into an out folder, in accordance with the pre-existing Markdown files. It is noteworthy that each MD file ought to generate an individual page to allow for the adaptability of transforming every file into a distinct output for the website.

Throughout the translation process, it is imperative that the user is kept informed of its progress. In the event of any errors, the system should prompt error messages to ensure the accuracy of the MD files, while simultaneously verifying that all necessary parameters for content and styling have been provided. Upon completion, the system should explicitly indicate the out folder path to the user.

Therefore, it should use the following format for each of the steps considered for the translation and building process: [Date][Page Name]: Step, where each one of these detail token corresponds to:

- Date: Specific date and time using the ISO 8601 format 1¹ without specifying the timezone as VaGo will limit itself to use the same timezone from the host machine. For instance: 2023-04-09T14: 22:05 should be used to represent the year 2023, month April (04), day 09 at 14 hours, 22 minutes and 05 seconds.
- Page Name: To specify the exact page name for the URL that takes to that specific page, which is the same as the MD file name.
- Step: To specify the building step it's currently on, whether it is identifying the MD tokens, performing translation to HTML and/or obtaining the parameters set for the theming and styling of the given page.

On the other hand, additional parameters can be added to the command for specific output capabilities. For instance, no-log should be using to omitting logging (no prompt message for every building process step) except for error and finalization message. Also, no-time should be used to omit the timestamp from the steps, prompting a message with the following structure: [Page name]:Step, with the purpose of avoiding overloading logs and make them easier to read.

¹https://en.wikipedia.org/wiki/ISO_8601

2.3.1.2 Serve

The second command serves the purpose of keep the system continuously executing, hence no accepting other commands in the meantime, in order to open a port and send the already built files (by means of the previous command, build) via HTTP.

It is important to note that this command will exclusively serve content available in the out folder, therefore if the previous command hasn't been run, or if there are no files in this folder, then it won't be able to serve any content at all. Because of it, it is required that the user must first build content in order to then serve it.

Moreover, in addition to the behavior noted above, it must output logs to inform the user of the current status of the serving process, starting by indicating as soon as it starts reading content and initiating listening for requests, while also informing of any issue that may occur by prompting error messages.

Once it starts listening for requests, it should inform of any incoming request/response using the following format: [Date]: Sending [Page] to [requester IP], where each one of these token corresponds to:

• Date: Same as the one outlined for build command, using the ISO 8601 format without timezone.

- Page: Page name as stated in the MD filename.
- Requester IP: Specific IP address of the incoming IP.

Additionally, an extra (optional) parameter can be provided to outline the specific port the system should open to listen for requests, instead of the default one.

2.3.2 Functions

The following provides a more in-depth explanation of the functional areas, including full requirements.

2.3.2.1 Generate page

2.3.2.1.1 Description and priority

The task at hand involves generating a page document through the process of translating the contents of a Markdown file into HTML. This requires the utilization of appropriate tags to accurately map the entities present within each Markdown block. Priority: HIGH.

2.3.2.1.2 Stimulus/Response sequences

Stimulus: This feature must obtain the markdown files from a source folder.

Response: Translate or generate a corresponding HTML file for each one of these MD files, outputting the result pages into an out folder.

2.3.2.1.3 Functional requirements

REQ-1: The MD blocks must be interpreted and translated to HTML tags to generate a page accordingly to what the user has described initially. It should, at least, implement the following elements to ensure a fully accessible page as per best practices for web standards:

- Heading level 1 (#): Heading 1 (<h1></h1>).
- Heading level 2 (##): Heading 2 (<h2></h2>).
- Heading level 3 (###): Heading 3 (<h3></h3>).
- Heading level 4 (####): Heading 4 (<h4></h4>).
- Heading level 5 (#####): Heading 5 (<h5></h5>).
- Heading level 6 (#####): Heading 6 (<h6></h6>).
- Text: Paragraph ().
- Bold text (**text**): Strong ().
- Italic text (_text_): Emphasis ().
- Blockquote (>): Blockquote (<blockquote></blockquote>).
- Unordered list (-): Unordered list () surrounding list items

().

- Ordered list (1., 2., 3., and so): Ordered list () surrounding list items ().
- Code (``): Code (<code></code>).
- Fenced code block (````): Preformatted text () surrounding a code block (<code></code>).
- Link ([text](URL)): Anchor tag along with the hyperlink attribute (text).
- Image (![Alt text](URL)): Image tag along with alt text and source attributes ().
- **REQ-2**: It must verify whenever there is an input error or incorrect usage of the MD blocks, and thereby let the user know about these via error messages and halt the translation process immediately.
- **REQ-3**: Each generated page will have the same file name as the input MD file.

2.3.2.2 Theme styling creation and customization

2.3.2.2.1 Description and priority

This feature is responsible for enabling the construction of a customizable theme for styling purposes. As long as the author (the theme creator) enhances these capabilities via exposed variables, it will manage CSS files

that will provide styles to the pages and provide functionalities to perform

tweaks and changes to the theme. Therefore, subsequent users of the same

theme would be able to make certain modifications to suit their needs, while

retaining the already provided set of opinionated styles. Priority: MEDIUM.

2.3.2.2.2Stimulus/Response sequences

Stimulus: Single or multiple files with preprocessed CSS attributes that

will receive the values of the exposed variables to be processed into a final

CSS file. Notice that the format of this file is not strictly CSS as it should be

noted that it is waiting for the building stage to add the variables, therefore

it's suggested to use a temporal file name adding .go.css to differentiate it

from its final version.

Response: Once processed, the file or set of files will be merged into a sin-

gle one, following an established structure and adding the exposed variables

via Go.

Stimulus: Authored parameters in the form of Go variables. There is

also the possibility of exposing such variables via YAML or JSON format, to

avoid overwriting Go code.

Response: The parameters are added to the final CSS file.

31

REQ-1: The exposed parameters should be added within the preprocessed style file using the pattern **\${[variable name]}** in the same place where it will be replaced.

REQ-2: These variables are then added or modified within a specific Go module specifically designed for this purpose. Thereby, the author will be able to expose these in this file, and add a default value in case the user decides to not change anything. It should be noted that the system won't take care of the compilation or verification of the CSS file, hence it is completely up to the author to verify whether it is correctly built.

REQ-3: Multiple style files could be added together in a single final one, providing the author the flexibility to split them into different modules for readability and maintainability purposes, thus these must be specified in a Go module specifically designed for this purpose, or within a main preprocessed style file using the nomenclature \${#module: [file name]}.

REQ-4: The system must verify and prompt a clear error message when there is a theme variable that has not been set. More specifically, it should display a message using the following structure: "Error: [variable name] has not been initialized.", where the variable name will be replaced with the specific variable missing its initialization.

2.3.2.3 Templating

2.3.2.3.1 Description and priority

The proposed system will incorporate a functionality that enables the establishment of a predetermined framework or outline, in addition to the primary template, for organizing the content into web pages. It is noteworthy that the utilization of Go language's templating capabilities is integral to the handling of this task. However, the system must furnish a mechanism for retrieving the primary information components from the markdown files. This will enable easy recognition and referencing of said components in the template, thereby facilitating customization. Priority: MEDIUM.

2.3.2.3.2 Stimulus/Response sequences

Stimulus: Single or multiple HTML files with Go templating variables to be filled with, from which the user can decide to use custom variables (from custom Go code) or the main, already provided variables from the markdown file components (headings, text, bold, italic, lists, etc).

Response: When built, a final HTML file should be prompted with the provided content via markdown files and following the provided structure or skeleton as in the template.

2.3.2.3.3 Functional requirements

REQ-1: The processed format must follow the established skeleton from the template. If there is no provided template, the system must use a base one already provided with the generator.

REQ-2: Each markdown component should be accessible via Go variables following this naming convention:

- Heading level 1 (#): H1
- Heading level 2 (##): H2.
- Heading level 3 (###): H3.
- Heading level 4 (####): H4.
- Heading level 5 (####): H5.
- Heading level 6 (#####): H6.
- Text: B.
- Bold text (**text**): Strong.
- Italic text (_text_): Em.
- Blockquote (>): Blockquote.
- Unordered list (-): U1.
- Ordered list (1., 2., 3., and so): 01.
- Code (``): Code.
- Fenced code block (```): Pre.
- Link ([text] (URL)): A, A.URL.

• Image (![Alt text](URL)): Img, Img.Alt, Img.Src.

It is important to note that the naming convention and HTML elements

are identical. This is intentional, as it should direct the user to the correct

element the component should be used in, so as to maintain best practices

for web accessibility and search engine optimization, avoiding the use of

meaningless div tags everywhere.

2.3.2.4Configuration files

2.3.2.4.1Description and priority

Through the configuration files the user will be able to set up certain

parameters that will change the way the system works to adapt it to given

needs and setup, such as determine specific input and output folders, theme

name, template file name, author information (name, website name, creation

date), and others. It's worth noting that these configuration files are not

strictly necessary as the system must initiate with a set of given default

parameters, which can be overwritten for extended customization. Priority:

LOW.

2.3.2.4.2 Stimulus/Response sequences

Stimulus: A Go, JSON or YAML file with the set of parameters to be

35

read from, so the system can use them as variables for its configuration. The type of file to be used will depend on the development time, as reading directly from a Go file or module it's easier and faster to implement than a JSON or YAML file, as it requires a parsing step first.

Response: The system will produce and/or build the static content following these parameters accordingly.

2.3.2.4.3 Functional requirements

REQ-1: The system will use a set of default values if the configuration files are not provided/changed, thus it is not strictly needed for the system to work properly.

REQ-2: The following configuration files must be scanned (found via specific filename) and used for its respective purpose: Theme config (theme.*,) to specify styling parameters as well as the theme name, template config ('layout.) to specify the files entries for templating, main configuration (main.) for the main parameters for VaGo. File extension to be decided depending on development time as noted on previous point.

REQ-3: For each configuration file, the system must be able to interpret and apply the following parameters:

1. Theme config (theme.*):

- Theme name (name): The name of the given theme. This name will be accessed for further setup steps.
- Parameters(params): An open field to add a list of the open parameters for styling.
- 2. Template config (layout.*):
- Entries (entries): A list of template filenames to be included in the templating system.
- Final layout (final): A nested ordered list of the templates to be merged for the final composition layout.
- 3. Main config (main.*):
- Author name (author): The author name of the website to generated content for.
- Input folder (input): Input folder to get the files to read content from, prior to the website generation.
- Output folder (output): Output folder to write the static generation results.
- Theme (theme): The name of the theme to be used for this website.

It is worth noting that these configuration files and parameters are not final, and yet other may get included in the future depending on the needs that may arise.