1 Tensor Networks

Our goal is to define a class of models over strings. We begin by constructing a model for strings of a fixed length n, i.e., over Σ^n , using the formalism of tensor networks.

A tensor T is a multi-dimensional array of real numbers. We denote a tensor T_v with k axes and a corresponding tuple of dimensions $D_v = (d_1, \ldots, d_k)$ as a map:

$$T_v: [d_1] \times \cdots \times [d_k] \to \mathbb{R}$$

As a shorthand, we write $[D_v] := [d_1] \times \cdots \times [d_k]$.

The fundamental operation on tensors is *contraction*, which generalizes matrix multiplication. Given two tensors, say T_u with indices (j_1, \ldots, j_m, i_e) and T_v with indices (i_e, l_1, \ldots, l_p) , their contraction over the shared index i_e of size d_e produces a new tensor T_C . The new tensor's indices are the union of the uncontracted indices from T_u and T_v :

$$T_C(j_1, \dots, j_m, l_1, \dots, l_p) = \sum_{i_e=1}^{d_e} T_u(j_1, \dots, j_m, i_e) \cdot T_v(i_e, l_1, \dots, l_p)$$
.

We now define a specific architecture relevant to our work.

Definition 1.1 (Layered Tensor Network over Σ^n). A layered tensor network \mathcal{T} over Σ^n is defined by a graph G = (V, E) with the following structure:

- V is a set of vertices, partitioned into layers V_0, V_1, \ldots, V_L . Each vertex $v \in V$ corresponds to a tensor T_v .
- The input layer $V_0 = \{v_{0,1}, \dots, v_{0,n}\}$ consists of n vertices. The corresponding tensors $\{T_{v_{0,1}}, \dots, T_{v_{0,n}}\}$ are vectors (tensors with one axis) of size $|\Sigma|$. These are initialized with a one-hot encoding of a string $w \in \Sigma^n$.
- E is the set of edges, representing contractions. Edges only connect vertices in adjacent layers, i.e., $E \subseteq \bigcup_{l=0}^{L-1} \{\{u,v\} \mid u \in V_l, v \in V_{l+1}\}.$
- For any tensor T_v , its number of axes must equal the degree of its corresponding vertex v, i.e., $|D_v| = \deg(v)$. For any edge $e = \{u, v\} \in E$, the corresponding axes in T_u and T_v must have the same dimension.

The full contraction of the network, after initializing the input tensors with a string w, yields a scalar output $\mathcal{T}(w)$. This scalar induces a probability distribution over Σ^n via:

$$S_{n,\mathcal{T}}(w) := \frac{f(\mathcal{T}(w))}{\sum_{w' \in \Sigma^n} f(\mathcal{T}(w'))}$$
,

where $f: \mathbb{R} \to \mathbb{R}_{\geq 0}$ is a suitable non-negative function, such as the exponential function $f(x) = \exp(x)$.

Input Layer

Figure 1: A basic tensor network over Σ^3 .

Definition 1.2 (Normalized and Non-Negative Tensor Networks). Let \mathcal{T} be a tensor network over Σ^n with scalar output $\mathcal{T}(w)$ for each $w \in \Sigma^n$. Define the total mass of the network as

$$|\mathcal{T}| \coloneqq \sum_{w \in \Sigma^n} \mathcal{T}(w)$$
.

We say \mathcal{T} is normalized iff $|\mathcal{T}| = 1$.

Furthermore, a tensor network is said to be non-negative iff for all $w \in \Sigma^n$ we have $\mathcal{T}(w) \geq 0$.

Remark 1.1. We can enforce all tensor networks of our model space to be non-negative by only allowing for non-negative tensors in the networks.

Definition 1.3 (Normalization of Tensor Networks). Let \mathcal{T} be a tensor network over Σ^n , and let $H := V \setminus I$ be the set of non-input tensors, and define |H| as its cardinality. The *induced normalized tensor network* $\frac{\mathcal{T}}{|\mathcal{T}|}$ is the same network as \mathcal{T} , but each entry of each tensor in H is scaled by the factor $\frac{1}{|H|\sqrt{|\mathcal{T}|}}$.

Proposition 1.1. Let $J \subseteq [n]$ and let \mathcal{T} be a tensor network over Σ^n . Define a modified network \mathcal{T}_J where for all $j \in J$, the input tensor $T_{0,j}$ is initialized to the all-ones vector (i.e., $\mathbf{1} \in \mathbb{R}^{|\Sigma|}$). Then for any $w \in \Sigma^{[n] \setminus J}$:

$$\sum_{w_J \in \Sigma^{|J|}} \mathcal{T}(w_J, w) = \mathcal{T}_J(w) \quad .$$

Proof. The output $\mathcal{T}(w)$ is a multilinear function of its input tensors. Let's focus on the input tensor $T_{0,j}$ for some $j \in [n]$. We can express the network's output as a linear function of this input vector:

$$\mathcal{T}(w) = \langle A_j(w_{\setminus j}), T_{0,j} \rangle$$

where $T_{0,j}$ is the one-hot vector for the symbol w_j , and $A_j(w_{\setminus j})$ is a tensor representing the contraction of the entire network *except* for $T_{0,j}$. The value of A_j depends on all other inputs, denoted $w_{\setminus j}$.

Now, let's compute the marginal sum over all possible symbols for position j:

$$\sum_{c \in \Sigma} \mathcal{T}(w_{\setminus j}, w_j = c) = \sum_{c \in \Sigma} \langle A_j(w_{\setminus j}), \mathbf{e}_c \rangle$$

$$= \langle A_j(w_{\setminus j}), \sum_{c \in \Sigma} \mathbf{e}_c \rangle \quad \text{(by linearity of the inner product)}$$

$$= \langle A_j(w_{\setminus j}), \mathbf{1} \rangle$$

where \mathbf{e}_c is the one-hot vector for symbol c and $\mathbf{1}$ is the all-ones vector. This last expression is precisely the definition of $\mathcal{T}_{\{j\}}(w_{\setminus j})$, where the input at position j has been replaced by the all-ones vector.

The proposition follows by applying this argument repeatedly for each $j \in J$. \square

Corollary 1.1. Let \mathcal{T} be a tensor network over Σ^n , and let $\mathcal{T}_{[n]}$ be the network where all input tensors are initialized to the all-ones vector. Then:

$$\mathcal{T}$$
 is normalized $\iff \mathcal{T}_{[n]} = 1$,

i.e., the total contraction of the network with all-one input tensors equals 1.

Lemma 1.1. Let \mathcal{T} be a tensor network over Σ^n . The induced normalized tensor network $\frac{\mathcal{T}}{|\mathcal{T}|}$ is indeed normalized, and if additionally \mathcal{T} is non-negative and $f \equiv id$, we have for all $w \in \Sigma^n$:

$$S_{n,\mathcal{T}}(w) = S_{n,\frac{\mathcal{T}}{|\mathcal{T}|}}(w)$$
.

Proof. Let H be the set of non-input tensors in \mathcal{T} , and let |H| = m. In the induced normalized network, every tensor in H is scaled by a factor $\alpha = \frac{1}{\sqrt[m]{|\mathcal{T}|}}$.

Since the final output $\mathcal{T}(w)$ is a multilinear contraction over the tensors, this means the scalar output for any $w \in \Sigma^n$ becomes:

$$\left(\prod_{v \in H} \alpha\right) \cdot \mathcal{T}(w) = \alpha^m \cdot \mathcal{T}(w) = \frac{1}{|\mathcal{T}|} \cdot \mathcal{T}(w) \quad .$$

Hence,

$$\left(\frac{\mathcal{T}}{|\mathcal{T}|}\right)(w) = \frac{\mathcal{T}(w)}{|\mathcal{T}|} .$$

Summing over all $w \in \Sigma^n$,

$$\left| \frac{\mathcal{T}}{|\mathcal{T}|} \right| = \sum_{w \in \Sigma^n} \frac{\mathcal{T}(w)}{|\mathcal{T}|} = \frac{1}{|\mathcal{T}|} \sum_{w \in \Sigma^n} \mathcal{T}(w) = \frac{|\mathcal{T}|}{|\mathcal{T}|} = 1 \quad .$$

Moreover, since the normalization rescales all outputs by the same constant, the ratio of the terms to the total sum remains unchanged:

$$S_{n,\frac{\mathcal{T}}{|\mathcal{T}|}}(w) = \frac{\left(\frac{\mathcal{T}(w)}{|\mathcal{T}|}\right)}{\sum_{w' \in \Sigma^n} \left(\frac{\mathcal{T}(w')}{|\mathcal{T}|}\right)} = \frac{\mathcal{T}(w)}{|\mathcal{T}|} \cdot \frac{1}{1} = S_{n,\mathcal{T}}(w) .$$

This completes the proof.

One might ask whether our definition for tensor networks is bit restrictive, as it only allows for contraction over *pairs* of tensors. But what if we wanted to contract, say, three tensors at once over a common index?

Proposition 1.2. Let $V' \subseteq V$ be a set of tensors in a tensor network, each containing an axis of dimension d labeled by a shared index i. Contracting all tensors in V' over the shared index i is equivalent to contracting each tensor individually with a single tensor

$$\delta_{|V'|}:[d]^{|V'|}\mapsto \mathbb{R}_{\geq 0}$$

defined by

$$\delta_{|V'|}(i_1, \dots, i_{|V'|}) = \begin{cases} 1 & \text{if } i_1 = \dots = i_{|V'|} \\ 0 & \text{otherwise.} \end{cases},$$

That is, a full contraction over a shared index can be implemented by introducing a single copy tensor connected to each tensor in V'.

Proof. Each tensor T_v for $v \in V'$ has an index $i \in [d]$ corresponding to the shared axis. The contraction over this index is defined by summing over the

common value of i across all tensors:

$$\sum_{i=1}^{d} \prod_{v \in V'} T_v(\dots, i, \dots) \quad .$$

Now consider a new tensor $\delta_{|V'|}$ of order |V'|, defined as 1 if all indices are equal and 0 otherwise. Let each tensor T_v maintain its original indices, but connect to $\delta_{|V'|}$ via the position corresponding to v.

The contraction over this shared structure gives:

$$\sum_{i_1,\ldots,i_{|V'|}} \left(\prod_{v \in V'} T_v(\ldots,i_v,\ldots) \right) \delta_{|V'|}(i_1,\ldots,i_{|V'|}) \quad .$$

By definition of $\delta_{|V'|}$, this enforces $i_1 = \cdots = i_{|V'|}$, reducing the above to:

$$\sum_{i=1}^d \prod_{v \in V'} T_v(\dots, i, \dots) \quad ,$$

which is exactly the original contraction. Hence, the two constructions are equivalent. $\hfill\Box$

Figure 2: Contracting multiple tensors over one shared index is equivalent to contracting them individually with a single copy tensor.

1.1 Reshaping a Tensor by a Partition (Matricization)

A tensor network defines a probability tensor with $|\Sigma|^n$ entries. However, we can reshape this tensor by grouping together some axes. To this end, we first define a partition:

Definition 1.4. Let $I = \{1, 2, ..., n\}$ be a set of indices. A partition of I is a collection of non-empty, pairwise disjoint subsets $\{I_1, I_2, ..., I_k\}$ of I whose union is I. That is:

- 1. $I_j \neq \emptyset$ for all $j \in \{1, \ldots, k\}$
- 2. $I_i \cap I_l = \emptyset$ for all $j \neq l$
- 3. $\bigcup_{j=1}^{k} I_j = I$

The subsets I_j are called the *parts* of the partition.

In the context of a tensor with n axes, a partition of its indices allows for grouping these axes together, effectively reshaping the tensor. Partitions with two parts allows us to represent a tensor by a matrix. To this end, we use the notation $[[T]]_{A,B}$ to represent the reshaping of a tensor T into a matrix based on the partition $\{A, B\}$. This operation, also known as matricization, unfolding, or flattening, relies on partitioning the tensor's indices into two distinct sets, one for the rows and one for the columns of the new matrix. Formally:

Definition 1.5 (Tensor Matricization). Let T be an order-k tensor with indices in the set $I = \{1, 2, ..., k\}$, and corresponding dimensions $d_1, d_2, ..., d_k$. Let $\{A, B\}$ be a bipartition of I, such that $A \cup B = I$ and $A \cap B = \emptyset$. Let $A = \{a_1, ..., a_{|A|}\}$ and $B = \{b_1, ..., b_{|B|}\}$ be ordered sets of indices.

The matricization of T with respect to the partition $\{A, B\}$ is the matrix M = of size $D_A \times D_B$, where:

- The number of rows is $D_A = \prod_{i \in A} d_i$.
- The number of columns is $D_B = \prod_{j \in B} d_j$.

An element $T_{i_1,i_2,...,i_k}$ of the tensor is mapped to an element $M_{\alpha,\beta}$ of the matrix, where the row index α and column index β are "super-indices" formed from the indices in A and B, respectively. Assuming a lexicographical ordering, the mapping is given by:

$$\alpha = 1 + \sum_{j=1}^{|A|} (i_{a_j} - 1) \left(\prod_{l=j+1}^{|A|} d_{a_l} \right)$$
$$\beta = 1 + \sum_{j=1}^{|B|} (i_{b_j} - 1) \left(\prod_{l=j+1}^{|B|} d_{b_l} \right)$$

1.1.1 An Upper Bound for the Rank of Matrices in Tensor Networks

We can analyze these matrices, which depend on the partition $\{A, B\}$, of our tensor network. When picturing it as a graph, we can separate the states in A from the states in B with a cut. Metaphorically, we see that A and B communicate over this cut. Hence, we might assume that if the associated bond dimensions are small, so is the mutual information between the two sets. In fact, this intuition is backed up by mathematical evidence:

Theorem 1.1. Let \mathcal{T} be a tensor represented by a tensor network over a set of physical indices $\mathcal{I} = \{i_1, \ldots, i_N\}$. For any bipartition of these indices into sets \mathcal{I}_A and \mathcal{I}_B , which induces a cut through a set of internal bonds $E_{cut} = \{e_1, \ldots, e_c\}$ with dimensions $\{D_1, \ldots, D_c\}$, the rank of the reshaped matrix M corresponding to this partition is bounded by:

$$rank(M) \le \prod_{k=1}^{c} D_k$$

Proof. A tensor network represents a tensor \mathcal{T} by contracting a set of smaller tensors. Let's visualize a generic tensor network. A bipartition of the physical indices $(\mathcal{I}_A, \mathcal{I}_B)$ divides the graph of the network into two subgraphs.

Figure 3: A generic tensor network with a cut partitioning the physical indices into \mathcal{I}_A (blue) and \mathcal{I}_B (red). The cut crosses bonds e_1, e_2, e_3 .

We can group all tensors on the left of the cut (Partition A) and contract their internal bonds among themselves. This results in a single, large tensor, which we call U. The indices of U are the physical indices in \mathcal{I}_A and the cut bond indices $\{e_1, \ldots, e_c\}$. Likewise, we contract all tensors in Partition B to form a tensor V, with indices from \mathcal{I}_B and $\{e_1, \ldots, e_c\}$.

Figure 4: Contracting the subgraphs results in two tensors, U and V, connected by the cut bonds.

The original tensor \mathcal{T} is recovered by contracting U and V over the cut indices. Now, we reshape U and V into matrices. Let α be a multi-index that combines all cut indices $\{e_1,\ldots,e_c\}$. The dimension of this multi-index is $D_{cut} = \prod_{k=1}^c D_k$. Let I_A be the multi-index for all physical indices in \mathcal{I}_A . Let I_B be the multi-index for all physical indices in \mathcal{I}_B .

We reshape the tensor U into a matrix \mathbf{U} of size $(\dim(I_A) \times D_{cut})$ where the rows are indexed by I_A and the columns by α . We reshape the tensor V into a matrix \mathbf{V} of size $(D_{cut} \times \dim(I_B))$ where the rows are indexed by α and the columns by I_B .

The reshaped tensor matrix M (with rows I_A and columns I_B) is exactly the matrix product of U and V:

$$M = \mathbf{U} \cdot \mathbf{V}$$

Figure 5: The matrix M is a product of matrices \mathbf{U} and \mathbf{V} , with inner dimension D_{cut} .

A fundamental property of linear algebra states that the rank of a product of matrices is at most the minimum of their individual ranks:

$$rank(M) = rank(\mathbf{U} \cdot \mathbf{V}) \le min(rank(\mathbf{U}), rank(\mathbf{V}))$$

The rank of a matrix is also bounded by its dimensions. For ${\bf U}$ and ${\bf V}$, we have:

$$\operatorname{rank}(\mathbf{U}) \leq \min(\dim(I_A), D_{cut}) \leq D_{cut}$$

$$\operatorname{rank}(\mathbf{V}) \le \min(D_{cut}, \dim(I_B)) \le D_{cut}$$

Therefore, the rank of M is bounded by the total dimension of the cut:

$$rank(M) \le D_{cut} = \prod_{k=1}^{c} D_k$$

This completes the proof.