BubbleTeaM - National University of Singapore

BubbleTeaM Random Stuff Cheatsheet (Page 25)

- 1. Combinatorial Design
- a. Existence and Construction of
- i. Balanced Incomplete Block Design
- ii. Steiner Triple System (k = 3)
 - 1. If lambda = 1, then v congruent 1 or 3 mod 6 if and only if there exist a triple system
- iii. Kirkman triple system
 - 1. Steiner but the 3-block need to be partitioned into classes, each of which contains n/3 3-block, and each treatment appear once in the class.
 - 2. There is a Kirkman triple system on v treatments for all v congruent 3 mod 6.
- iv. Latin squares
- v. One factorisation
- 2. Geometry
- a. Fermat-Toricelli Point, smallest total distance to vertices if all angle less than or equal to 120 degree. Otherwise it's the vertex with angle more than 120 degree.
- b. Smallest-length pedal triangle -> Orthic triangle, pedal triangle with smallest perimeter.
- 3. Group Theory
- a. jika phi: G -> H group homomorphism, maka image(phi) isomorphic G / ker(phi)
- 4. Counting techniques
- a. Twelvefold way
- i. Catat tabel
- ii. {n, x} is Stirling number of second kind

iii. $p_x(n)$ is partition of n into x parts.

The generating function for p(n) is given by^[5]

$$\sum_{n=0}^{\infty}p(n)x^n=\prod_{k=1}^{\infty}\left(rac{1}{1-x^k}
ight).$$

iv.

The twelve combinatorial objects and their enumeration formulas.			
f-class	Any f	Injective f	Surjective f
f	n -sequence in X x^n	n -permutation of X $x^{\underline{n}}$	composition of N with x subsets $x! {n \brace x}$
f.S _n	x multisubset of X	n -subset of X $\begin{pmatrix} x \\ n \end{pmatrix}$	composition of n with x terms $\binom{n-1}{n-x}$
$S_x \cdot f$	$\begin{array}{c} \text{partition of } N \text{ into } \leq x \\ \text{subsets} \\ \sum_{k=0}^{x} \left\{ {n \atop k} \right\} \end{array}$	partition of N into $\leq x$ elements $[n \leq x]$	partition of N into x subsets ${n \brace x}$
$S_x \cdot f \cdot S_n$	partition of n into $\leq x$ parts $p_x(n+x)$	partition of n into $\leq x$ parts 1 $[n \leq x]$	partition of n into x parts $p_x(n)$

- b. General Recursion
- c. GF and Exponential GF
- 5. Topological combinatorics
- a. Sperner Lemma
- i. 2D: Given a triangle ABC, and a triangulation T of the triangle, the set S of vertices of T is colored with three colors in such a way that: (i) A, B, C are colored 1, 2, 3 respectively. Each vertex on an edge of ABC is to be colored only with one of the two colors of the ends of its edge. Result: There exists a triangle T, whose vertices are colored with the three different colors.
- ii. Multidimensional: Given n-dimnesional simplex, triangulate to smaller ndimensional simplex. (i) Vertices of the original simplex are colored with differnent colors. (ii) Vertices of T located on any kdimensional subface of the large simplex are colored only with the colors in the vertices

of the original simplex that is part of the kdimensional subface. Result -> There exists odd number of simplices from T whose vertices are colored with all n+1 colors.

- b. Necklace Splitting Theorem
- i. Discrete splitting: The necklace has kn beads. The beads come in t different colors. There are k * a i beads of each color i, where a_i is positive integer. Partition the necklace into k parts, each of which has exactly a_i beads of color i. Use at most (k-1)t cuts.
- 6. Helly Theorem
- a. Let X_1, X_2, ..., X_n be a finite collection of convex subsets of R^d with n>d. If the intersection of every d+1 of these sets is nonempty, then the whole collection has a nonempty intersection

	f(n)	$a_n^{(p)}$
	Exponential function	
(i)	Ak^n	Bk^n
1	k is not a characteristic root	
(ii)	Ak^n	Bn^mk^n
	k is a characteristic root of multiplicity m	
	Polynomial	
(i)	$\sum_{i=0}^t p_i n^i$	$\sum_{i=0}^t q_i n^i$
	1 is not a characteristic root	
(ii)	$\sum_{i=0}^t p_i n^i$	$n^m \sum_{i=0}^t q_i n^i$
	1 is a characteristic root of multiplicity m	
	Special combined function	
(i)	An^tk^n	$\left(\sum_{i=0}^t q_i n^i\right) k^n$
	k is not a characteristic root	
(ii)	An^tk^n	$n^m \left(\sum_{i=0}^t q_i n^i\right) k^n$
	${m k}$ is a characteristic root of multiplicity ${m m}$	