# Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ»

Институт системной и программной инженерии и информационных технологий (СПИНТех)

#### Отчёт

по дисциплине «Электроника»

Лабораторная работа №1 «Исследование маломощного выпрямителя»

| Руководител | IЬ                            |
|-------------|-------------------------------|
|             | _ Жмылев В. А.                |
| «»          | 2023 г.                       |
| Студент гру | ппы ПИН-23<br>_ Исламов Р. Р. |
| w w         | 2023 г                        |

Москва

2023

### Цель работы

Исследование однофазных одно- и двухполупериодных схем выпрямления; построение вольтамперных характеристик выпрямителей.

Задание 1. Работа однополупериодного выпрямителя на активную нагрузку.



### Осциллограф XSC1



4-х канальный осциллограф XSC3

Задание 2 Подключение емкостного фильтра





# Осциллограф XSC1



Таблица 1

| R <sub>H</sub> | 400    | 500    | 600    | 700   | 800    | Ом |
|----------------|--------|--------|--------|-------|--------|----|
| $U_0$          | 9.407  | 9.518  | 9.598  | 9.658 | 9.705  | В  |
| $I_0$          | 56.428 | 46.426 | 39.471 | 34.35 | 30.412 | мА |

#### Нагрузочная характеристика выпрямителя:



Задание 3 Определение внутреннего сопротивления выпрямителя

$$dU0 = 0.08 \text{ B}$$
  
 $dI0 = 6.955 \text{ mA}$   
 $r_{\text{BH}} = 11.503 \text{ Om}$ 

# Задание 4 Определение коэффициента пульсации

Таблица 2

| $C_{\phi}$         | 10     | 20     | 50     | 100    | 150    | 500    | мкФ |
|--------------------|--------|--------|--------|--------|--------|--------|-----|
| $U_{\Pi 	ext{УЛ}}$ | 1.079  | 0.546  | 0.219  | 0.11   | 0.118  | 0.041  | В   |
| $U_0$              | 23.213 | 23.426 | 23.488 | 23.496 | 23.498 | 23.297 | В   |
| Рпул               | 4.648  | 2.331  | 0.932  | 0.468  | 0.502  | 0.176  | %   |



Зависимость Рпул от Сф

Таблица 3

| F <sub>r</sub>  | 400   | 500   | 600   | 700   | 800   | 900   | 1000  | Гц |
|-----------------|-------|-------|-------|-------|-------|-------|-------|----|
| $U_{\Pi Y J I}$ | 2.506 | 2.066 | 1.751 | 1.517 | 1.338 | 1.195 | 1.079 | В  |



Зависимость Uпул от Fr

#### Объяснение:

Когда электрический ток проходит через диод, график синусоидального сигнала "срезается" снизу, потому что диод позволяет проходить ток только в одном направлении. Это означает, что только положительные значения сигнала пропускаются, а отрицательные значения отсекаются.

После прохождения через диод сигнал поступает на конденсатор, который начинает заряжаться. Заряженный конденсатор затем постепенно разряжается через нагрузку. Процесс зарядки и разрядки конденсатора происходит медленно, и он действует как временное хранилище заряда, не позволяя напряжению сигнала резко падать.

Таким образом, с помощью диода и конденсатора переменный сигнал "выпрямляется" и преобразуется в более плавный сигнал, приближенный к постоянному напряжению. Этот процесс выпрямления сигнала с использованием диода и конденсатора позволяет получить постоянное напряжение из переменного сигнала.

# Задание 5 Работа двухполупериодного выпрямителя на активную нагрузку



4-х канальный осциллограф XSC3

#### Задание 6 Подключение емкостного фильтра

Таблица 4

| $R_{\mathrm{H}}$ | 400    | 500    | 600    | 700    | 800    | Ом |
|------------------|--------|--------|--------|--------|--------|----|
| $\mathrm{U}_0$   | 22.85  | 23.344 | 23.714 | 23.997 | 24.224 | В  |
| $I_0$            | 57.125 | 46.69  | 39.519 | 34.281 | 30.277 | мА |



Задание 7 Определение внутреннего сопротивления двухполупериодного выпрямителя

$$dU0 = 0.37$$
 В  $dI0 = 7.171$  мА  $r_{\rm BH} = 0.516$  Ом

# Задание 8 Определение коэффициента пульсации

| $C_{\phi}$      | 10     | 20     | 50     | 100    | 150    | 500    | мкФ |
|-----------------|--------|--------|--------|--------|--------|--------|-----|
| $U_{\Pi Y J I}$ | 1.087  | 0.552  | 0.222  | 0.133  | 0.117  | 0.041  | В   |
| $U_0$           | 23.021 | 23.263 | 23.335 | 23.344 | 23.348 | 23.201 | В   |
| Рпул            | 4.722  | 2.373  | 0.951  | 0.57   | 0.501  | 0.177  | %   |



Зависимость Рнул от Сф

| $F_{r}$ | 400   | 500   | 600   | 700   | 800   | 900   | 1000  | Гц |
|---------|-------|-------|-------|-------|-------|-------|-------|----|
| Uпул    | 2.501 | 2.068 | 1.757 | 1.525 | 1.346 | 1.203 | 1.087 | В  |



Зависимость Uпул от Fr

#### Вывод

Из полученных результатов можно заметить разницу между одно- и двухполупериодными схемами выпрямления. На осциллограмме двухполупериодной схемы видно, что отрицательная часть синусоиды преобразуется в положительную, в то время как в однополупериодной схеме отрицательная часть сигнала "срезается". Это приводит к меньшей величине коэффициента пульсации в двухполупериодных выпрямителях при использовании того же значения конденсатора, по сравнению с однополупериодной схемой.

Таким образом, двухполупериодные схемы выпрямления имеют преимущество перед однополупериодными схемами, поскольку они более эффективно используют отрицательные полупериоды сигнала, преобразуя их в положительные. Это приводит к более стабильному постоянному напряжению и меньшей величине пульсации, что может быть важно для некоторых приложений электроники и электроэнергетики.