

Agenda

1. Project Overview

- Business problem
- Dataset & features
- Objective & target

2. Modeling Approach

- Data preparation
- Model comparison
- Final model selection (XGBoost)
- Model performance & interpretation (SHAP)

3. Business Application

- Strategic insights
- Recommended actions
- Next steps

Business Problem & Objective

Superstore is offering a discounted \$499 Gold Membership.

Objective: Predict which customers are likely to accept the offer.

Helps improve ROI by focusing outreach on high-likelihood responders.

Business Value

- ► Cost Efficiency: Reduces wasted outreach
- Higher Conversion Rates: Precise targeting increases sign-ups
- Customer Insight: Segments customers by likelihood and traits
- Scalability: Model can be reused across future campaigns
- Estimated ROI: Targeting top 30% of likely responders could reduce costs by ~40% while capturing most conversions

Data Overview

- Records: 2,240 customer profiles
- Target Variable: Response (0 = Declined, 1 = Accepted)
- Predictors: Recency (days since last purchase), Income, Spending (Wines, Meat, Gold), Tenure, Education, Marital Status, Web Visits
- ► Class Imbalance: Only 15% of customers accepted the offer

EDA - Class Imbalance & Recency

- Class distribution: 85% No, 15% Yes → Imbalance handled with class weights
- Recency skew: Most customers purchased recently, few were inactive
- High Recency (lapsed buyers)
 correlated with higher response
 likelihood

EDA - Spending & Demographics

- Higher spending on wines, meat, gold = more likely to respond
- Longer-tenured customers (earlier join year) = higher response rate
- ► Families with teenagers respond more; those with young children less likely

EDA - Web Visits & Marital Status

- ► Lower web visits per month = higher campaign responsiveness
- Response varies by marital status: Married & Together > Single & Divorced
- ► Income boxplots show wider distribution among responders

High-Level Approach

Steps taken:

- Cleaned and prepared data (missing income, encoding, tenure)
- Extracted join year from customer signup date (used as loyalty indicator)
- ► Tested 3 models: Logistic Regression, Random Forest, XGBoost
- Evaluated with accuracy, precision, recall, F1, ROC AUC
- Interpreted results with SHAP

Model Comparison

Model	Accuracy	Precision (1)	Recall (1)	F1 Score	ROC AUC
XGBoost	0.88	0.60	0.48	0.53	0.88
Logistic Regression	0.75	0.35	0.81	0.49	0.86
Random Forest	0.87	0.68	0.23	0.34	0.88

Model Selection:

- XGBoost offers best balance of recall + precision
- Logistic: Over-predicts responders → costly
- Random Forest: High precision, low recall → misses too many responders

Final Model Performance* (XGBoost)

Accuracy: 88%

Precision: 60%

Recall: 48%

► ROC AUC: 0.88

Confusion Matrix:

► TP: 48, FN: 52, TN: 540, FP: 32

▶ Balanced results: manages campaign cost while capturing nearly half of responders

*All metrics shown are based on performance on the held-out 30% test set (stratified sampling)

Shap Insights - Key Features

- Top Predictors:
 - ► Recency: Long gaps → higher acceptance
 - ► MntWines, MntMeatProducts, MntGoldProds → premium spenders
 - ► Earlier Join Year: Indicates longer loyalty and correlates with higher response rates
 - ► Teenhome vs Kidhome: Teens ↑, small children ↓ response rate
- SHAP Summary: Confirms business intuition and shows local/global feature impact

Business Strategy & Implementation

- Integrate model into CRM for automated scoring
- Run A/B tests: Model-based vs traditional targeting
- Use response probability thresholds to tune reach (cost vs conversion)
- ► Tailor messages: Lapsed premium buyers vs long-term loyalists
- Target by segment: Wine/meat spenders, low web activity, etc.

Next Steps

Hyperparameter tuning for XGBoost

Deploy for real-time campaign targeting

Add new features: past campaign history, website behavior

Monitor monthly → retrain as behaviors shift

Layer in Customer Lifetime Value for deeper prioritization

Appendix

Data Preparation & Feature Engineering: # Convert join date to datetime format df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer']) # Fill missing income values with median df['Income'] = df['Income'].fillna(df['Income'].median()) # One-hot encode Education and Marital Status df = pd.get_dummies(df, columns=['Education', 'Marital_Status'], drop_first=True) # Extract Year_Customer_Joined (used as a proxy for tenure) df['Year_Customer_Joined'] = df['Dt_Customer'].dt.year

Model Training - Train/Test Split & XGBoost:

```
# Define X and y
y = df["Response"]
X = df.select_dtypes(include=np.number).drop("Response", axis=1)
 # 1. Import XGBoost
 import xgboost as xgb
# 2. Split into training and test sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.3, random_state=42)
 # 3. Train the XGBoost model
model = xgb.XGBClassifier(use label encoder=False, eval metric='logloss', random state=42)
model.fit(X_train, y_train)
# 4. Plot feature importances
import pandas as pd
import matplotlib.pyplot as plt
importances = pd.Series(model.feature_importances_, index=X.columns)
top features = importances.sort values(ascending=False).head(15)
plt.figure(figsize=(10, 6))
top features.plot(kind='barh')
plt.title("Top 15 Feature Importances (XGBoost)")
plt.xlabel("Importance Score")
plt.gca().invert_yaxis()
plt.tight_layout()
plt.show()
```

SHAP Model Explanation:

```
import shap
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)

# Summary plot (interactive)
shap.summary_plot(shap_values, X_test)
```

▶ Model Evaluation - Classification, AUC, Confusion Matrix, ROC Curve:

```
from sklearn.metrics import classification report, confusion matrix, roc auc score, roc curve
import seaborn as sns
# Predict on test data
y pred = model.predict(X test)
y_prob = model.predict_proba(X_test)[:, 1]
# Classification report
print("Classification Report:\n")
print(classification_report(y_test, y_pred))
# ROC AUC score
roc_auc = roc_auc_score(y_test, y_prob)
print(f"ROC AUC Score: {roc_auc:.4f}")
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
# ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_prob)
plt.figure(figsize=(6, 4))
plt.plot(fpr, tpr, label=f"XGBoost (AUC = {roc_auc:.2f})")
plt.plot([0, 1], [0, 1], 'k-')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt_title("ROC Curve")
plt.legend()
plt.show()
```

```
Comparison Models - Logistic & Random Forest
# Logistic Regression (scaled pipeline)
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
log_model = make_pipeline(
   StandardScaler(),
   LogisticRegression(class_weight='balanced', max_iter=1000)
log_model.fit(X_train, y_train)
# Random Forest
from sklearn.ensemble import RandomForestClassifier
rf_model = RandomForestClassifier(n_estimators=100, class_weight='balanced',
random_state=42)
rf_model.fit(X_train, y_train)
```