1 Исчисление высказываний

1.1 Определение секвенции

Определение

Теперь расширим алфавит логики высказываний, добавив в него символ \vdash и запятую: $\mathcal{A}_{PC} = \mathcal{A}_{prop} \cup \{\vdash,,\}$. Полученный алфавит \mathcal{A}_{PC} - это алфавит исчисления высказываний.

Определение

Секвенция логики высказываний - это слово алфавита \mathcal{A}_{PC} вида $\phi_1, \phi_2, \dots, \phi_n \vdash \phi_0$ где ϕ_i - формулы для всех $0 \le i \le n$, при $n \ge 0$.

Основные виды Секвенций

Существуют следующие типы секвенций:

- $\phi_1,\phi_2,\ldots,\phi_n \vdash \phi_0$ общая секвенция
- $\phi_1, \phi_2, \dots, \phi_n \vdash \bot$ секвенция, выражающая несовместность формул $\phi_1, \phi_2, \dots, \phi_n$
- ullet $\vdash \phi_0$ секвенция, выражающая истинность ϕ_0

1.2 Аксиомы и правила вывода исчисления высказываний

Аксиомы

1)
$$\phi \vdash \phi$$
 2) $\vdash \top$

Правила вывода

1) $\frac{\Gamma \vdash \phi \ \Gamma \vdash \psi}{\Gamma \vdash (\phi \land \psi)}$ (введение \land)	8) $\frac{\Gamma, \neg \phi \vdash \bot}{\Gamma \vdash \phi}$ (исключение \neg)
2) $\frac{\Gamma \vdash (\phi \land \psi)}{\Gamma \vdash \phi}$ (исключение \land)	9) $\frac{\Gamma \vdash \phi \ \Gamma \vdash (\phi \rightarrow \psi)}{\Gamma \vdash \psi}$ (исключение \rightarrow)
3) $\frac{\Gamma \vdash (\phi \land \psi)}{\Gamma \vdash \psi}$ (исключение \land)	10) $\frac{\Gamma,\phi\vdash\psi}{\Gamma\vdash(\phi\to\psi)}$ (введение \to)
4) $\frac{\Gamma \vdash \phi}{\Gamma \vdash (\phi \lor \psi)}$ (введение \lor)	11) $\frac{\Gamma \vdash \phi, \ \Gamma \vdash \neg \phi}{\Gamma \vdash \bot}$ (введение \bot)
$5) \frac{\Gamma \vdash \psi}{\Gamma \vdash (\phi \lor \psi)}$ (введение \lor)	12) $\frac{\Gamma \vdash \bot}{\Gamma \vdash \phi}$ (исключение \bot)
6) $\frac{\Gamma, \phi \vdash \chi}{\Gamma, \psi \vdash \chi} \frac{\Gamma, \psi \vdash \chi}{\Gamma \vdash \chi} \stackrel{\Gamma \vdash (\phi \lor \psi)}{\Gamma \vdash \chi}$ (исключение \lor)	13) $\frac{\Gamma \vdash \phi}{\Gamma, \psi \vdash \phi}$ (расширение)
7) $\frac{\Gamma,\phi\vdash\bot}{\Gamma\vdash\neg\phi}$ (введение \neg)	14) $\frac{\Gamma_1, \phi, \varphi, \Gamma_2 \vdash \chi}{\Gamma_1, \psi, \phi, \Gamma_2 \vdash \chi}$ (перестановка)

Здесь ϕ, ψ, χ - формулы, $\Gamma, \Gamma_1, \Gamma_2$ - последовательности формул.

1.3 Линейное доказательство

Введем следующие обозначения: A_{PC} - множество всех аксиом и R_{PC} - множество всех правил вывода исчисления высказываний.

Определение

Линейное доказательство (или **линейный вывод**) из множества секвенций H в исчислении высказываний - это последовательность секвенций (s_1, s_2, \ldots, s_n) такая, что каждая секвенция s_i :

- ullet аксиома исчисления высказываний, т.е. $s_i \in A_{PC}$
- или $s_i \in H$
- или получена из некоторых секвенций $s_{j_1}, s_{j_2}, \ldots, s_{j_k}$, где $j_1, j_2, \ldots, j_k < i$, по одному из правил вывода, т.е.

$$\frac{s_{j_1}, s_{j_2}, \dots, s_{j_k}}{s_i} \in R_{PC}$$

Множество H называется множеством **предпосылок** или **предположений**, и если не указано, то будем считать, что $H = \emptyset$.

1.4 Выводимые секвенции

Определение

Секвенция s называется **выводимой** (или **доказуемой**, **допустимой**) в исчислении высказываний из множества секвенций H, тогда и только тогда, когда существует линейное доказательство (s_1, \ldots, s_n) из множества предпосылок H, такое, что $s = s_n$. Обозначается следующим образом:

$$H \rhd s$$

Если $H = \emptyset$, то можно писать просто $\triangleright s$.

Определение

Формула ϕ называется **выводимой** (или **доказуемой**, **допустимой**) в исчислении высказываний, тогда и только тогда, когда секвенция $\vdash \phi$ может быть выведена из пустого множества предпосылок, т.е. $\triangleright \vdash \phi$. Обозначается как $\triangleright \phi$.

1.5 Дерево секвенций

Определение

Теперь по индукции определим **дерево секвенций** T, его высоту h(T), корень r(T) и множество листьев l(T).

- секвенция s является деревом, h(s) = 0, r(T) = s, $l(T) = \{s\}$
- ullet если T_1,\ldots,T_n деревья, а s секвенция, то

$$T = \frac{T_1 \dots T_n}{s}$$

- является деревом:
 - высоты $h(T) = \max(\{h(T_i)|i \le n\}) + 1$
 - с корнем r(T) = s
 - с листьями $l(T) = \bigcup \{l(T_i) | i \le n\}$

переход в дереве секвенций T - 'это поддерево высоты 1, т.е. поддерево в T вида: $\frac{s_1\ s_2\ ...\ s_n}{s_0}$

1.6 Дерево вывода

Определение

Дерево секвенций T называется **деревом вывода** секвенции s из множества предпосылок H, тогда и только тогда, когда:

- 1. r(T) = s
- 2. все секвенции из множества листьев l(T) являются аксиомами исчисления высказываний или элементами H, т.е. $l(T) \subseteq H \cup A_{PC}$
- 3. все переходы $\frac{s_1 \ s_2 \ \dots \ s_n}{s_0}$ из T являются Правилами вывода исчисления высказываний, т.е.

$$\frac{s_1 \ s_2 \ \dots \ s_n}{s_0} \in R_{PC}$$

1.7 Характеризация вывода

Теорема

Для любого множества секвенций H и секвенции s, $H \rhd s \Leftrightarrow$ для s существует дерево вывода из предпосылок H.

Доказательство

 \Rightarrow .

Пусть для s существует линейное доказательство (s_1,\ldots,s_n) из предпосылок H. Индукцией по n докажем, что для s существует дерево вывода. Основание индукции: если n=1, то $s=s_1\in H\cup A_{PC}$ - аксиома или предпосылка, тогда T=s - дерево вывода для s. Шаг индукции. Предположим, что утверждение верно для всех i< n, т.е. для секвенций s_1,\ldots,s_{n-1} существуют деревья вывода T_1,\ldots,T_{n-1} с предпосылками H. По индукции линейного доказательства существуют такие $s_{j_1},\ldots s_{j_k}$, что $j_1,\ldots,j_k< n$ и $\frac{s_{j_1}\ldots s_{j_k}}{s_n}$ - правило вывода. Тогда

$$\frac{T_{j_1} \dots T_{j_k}}{s_n}$$

будет деревом вывода для s_n . Обратное включение. \Leftarrow .

Пусть существует дерево вывода T для s с предпосылками H. Индукцией по высоте T докажем, что для любого дерева вывода T с предпосылками H его корень линейно доказуем из H. Основание индукции: если

h(T) = 0, то T = s, следовательно, $s \in H \cup A_{PC}$ - аксиома или предпосылка, тогда s очевидно доказуем из H. Шаг индукции. Предположим, что утверждение верно для всех деревьев высоты $< n, T = \frac{T_1 \dots T_n}{S}$ - дерево вывода высоты n. Тогда $h(T_i) < n$ для всех $1 \le i \le n$, следовательно, все корни $r(T_i) = s_i$ линейно доказуемы из H. Пусть P_i - линейное доказательство s_i . Последний переход в дереве T выглядит следующим образом: $\frac{s_1 \dots s_n}{s}$ и происходит по какому-либо правилу вывода. Тогда секвенция $P = P_1 \hat{P}_2 \dots \hat{P}_n s$ будет линейным доказательством s с предпосылками H. \square

1.8 пример

Пример выводимой секвенции

$$\triangleright \phi, \psi \vdash (\phi \land \psi).$$

Доказательство

$$\triangleright \phi, \psi \vdash (\phi \land \psi) : \frac{\frac{\phi \vdash \phi}{\phi, \psi \vdash \phi} (13) \frac{\frac{\psi \vdash \psi}{\psi, \phi \vdash \psi} (13)}{\phi, \psi \vdash (\phi \land \psi)} (14)}{\phi, \psi \vdash (\phi \land \psi)} (1)$$

1.9 Допустимые правила вывода

Определение

Правило вывода $\frac{s_1, s_2, \dots, s_n}{s_0}$ называется допустимый или выводимым, тогда и только тогда, когда $\{s_1,\ldots,s_n\} \triangleright s_0$. Допустимость (выводимость) правила вывода обозначается следующим образом:

$$\triangleright \frac{s_1, s_2, \dots, s_n}{s_0}$$

Лемма

Следующие правила вывода допустимы в исчислении высказываний:
$$2) \rhd \frac{\Gamma \vdash \phi \ \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi} \quad 3) \rhd \frac{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \chi}{\Gamma_1, (\phi \land \psi), \Gamma_2 \vdash \chi} \quad 4) \rhd \frac{\Gamma_1, (\phi \land \psi)}{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \chi}$$
 1) если $\{\phi_1, \dots, \phi_n\} \subseteq \{\psi_1, \dots, \psi_m\}$, то $\triangleright \frac{\phi_1, \dots, \phi_n \vdash \chi}{\psi_1, \dots, \psi_n \vdash \chi}$ 5) $\triangleright \frac{\Gamma \vdash (\phi \land \neg \phi)}{\Gamma \vdash \bot}$ 6) $\triangleright \frac{\Gamma \vdash \phi}{\Gamma, \neg \phi \vdash \bot}$ 7) $\triangleright \frac{\Gamma, \phi \vdash \psi}{\Gamma, \neg \psi \vdash \neg \phi}$ 8) $\triangleright \frac{\Gamma, \neg \phi \vdash \neg \psi}{\Gamma, \psi \vdash \phi}$

Доказательство

1. Допустимость следует из правил 11, 12 и следующего вывода:

$$\triangleright \frac{\Gamma, \phi, \phi \vdash \psi}{\Gamma, \phi \vdash \psi} : \frac{\frac{\Gamma, \phi, \phi \vdash \psi}{\Gamma, \phi \vdash (\phi \to \psi)} (10) \quad \Gamma, \phi \vdash \phi}{\Gamma, \phi \vdash \psi} (9)$$

2. Второе правило называется "правилом сечения":

$$\triangleright \frac{\Gamma \vdash \phi \ \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi} : \frac{\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash (\phi \to \psi)} (10) \ \Gamma \vdash \phi}{\Gamma \vdash \psi} (9)$$

1.10 Закон исключенного третьего

Лемма

$$\triangleright \vdash (\phi \lor \neg \phi)$$
 Вывол:

$$\frac{\frac{\neg \phi \vdash \neg \phi}{\neg \phi \vdash \phi \lor \neg \phi} \neg (\phi \lor \neg \phi), \neg \phi \vdash \neg (\phi \lor \neg \phi)}{\neg (\phi \lor \neg \phi) \vdash \phi}}{\neg (\phi \lor \neg \phi) \vdash \phi} \neg (\phi \lor \neg \phi) \vdash \neg (\phi \lor \neg \phi)} \neg (\phi \lor \neg \phi) \vdash \bot \\ \vdash (\phi \lor \neg \phi)$$

1.11 Квази-вывод

Пусть D_{PC} - множество всех выводимых секвенций, и T_{PC} - множество всех допустимых правил вывода.

Определение

Квази-вывод - это вывод в расширенном исчислении: допускается использование выводимых секвенций D_{PC} вместе с аксиомами A_{PC} и допустимыми (т.е. выводимыми) правилами вывода T_{PC} вместе с основными правилами вывода R_{PC} . Обозначим квази-выводимость секвенции s из предпосылок H следующим образом:

Теорема (о квази-выводе)

Для любого множества секвенций H и секвенции s: $H \rhd' s \iff H \rhd s$.

Доказательство

Следование \Leftarrow очевидно: если $H \rhd s$, то существует вывод из $A_{PC} \subset D_{PC}$ и $R_{PC} \subset T_{PC}$. Обратное включение, пусть $H \rhd' s$. Тогда существует дерево вывода T секвенции s из предпосылок H. Рассмотрим переходы в дереве T. Пусть $p = \frac{s_1, \dots, s_n}{s_0}$ - переход в T. Теперь индукцией по числу таких переходов m докажем утверждение, что $p \notin R_{PC}$. Основание индукции: если m = 0, то все переходы в T выполняются по правилам из R_{PC} , следовательно, $H \rhd s$. Предположим, что m > 0 и утверждение верно для всех k < m. Рассмотрим некоторый переход $p \notin R_{PC}$. Так как $\rhd p$ доказуемо, существует дерево вывода T_p для s_0 из предпосылок (s_1, \dots, s_n) . Если мы поместим дерево T_p в T вместо перехода T_p мы получим новое дерево квази-вывода T', в котором T_p меньше на T_p секвенции T_p из T_p по предположению индукции, существует дерево вывода T_p секвенции T_p из T_p секвенции T_p секвенции T_p из T_p секвенции T_p секвенции T_p из T_p секвенции T_p секвенции T_p секвенции T_p из T_p секвенции T_p из T_p секвенции T_p секв

1.12 Лемма о подстановке

Обозначение

Пусть v - переменная, ψ - формула. Тогда

1.
$$(\phi_1, \ldots, \phi_n \vdash \phi_0)^v_{\psi} \leftrightharpoons (\phi_1)^v_{\psi}, \ldots, (\phi_n)^v_{\psi} \vdash (\phi_0)^v_{\psi}$$

2. если H - множество секвенций, то $(H)^v_\psi \leftrightharpoons \{(s)^v_\psi | s \in H\}$

3.
$$\left(\frac{s_1...s_n}{s_0}\right)_{\psi}^v \iff \frac{(s_1)_{\psi}^v...(s_n)_{\psi}^v}{(s_0)_{\psi}^v}$$

Лемма (о подстановке)

Для любой переменной v и формулы ϕ верно следующее:

1.
$$(A_{PC})^v_\phi \subseteq A_{PC}$$

$$2. (R_{PC})^{v}_{\phi} \subseteq R_{PC}$$

Доказательство

Следует из определений A_{PC} и R_{PC}

1.13 Теорема о подстановке

Теорема (о подстановке)

Пусть H - множество секвенций, s - секвенция. Тогда если $H \triangleright s$, то для любой переменной v и формулы ϕ верно, что $(H)^v_{\phi} \triangleright (s)^v_{\phi}$.

Доказательство

Индукция по длине вывода $H\rhd s$ n. Основание индукции. Пусть n=1, тогда $s\in A_{PC}\cup H$. Но $(s)_\phi^v\in A_{PC}\cup (H)_\phi^v$, так как $(A_{PC})_\phi^v\subseteq A_{PC}$. Шаг индукции. Пусть $p=(s_1,\ldots,s_n)$ - линейный вывод секвенции $s=s_n$ из H. Тогда $s_n\in A_{PC}\cup H$, этот случай аналогичен основанию индукции, или существует правило вывода $\frac{s_{j_1},\ldots,s_{j_k}}{s_n}\in R_{PC}$, где $j_i< n$ для всех $i\le k$, затем, пользуясь тем, что $\frac{(s_{j_1})_\phi^v,\ldots,(s_{j_k})_\phi^v}{(s_n)_\phi^v}\in (R_{PC})_\phi^v\subseteq R_{PC}$. Следовательно $(p)_\phi^v=((s_1)_\phi^v,\ldots,(s_n)_\phi^v)$ - вывод секвенции $(s)_\phi^v=(s_n)_\phi^v$ из $(H)_\phi^v$.