IPv6

Addressing

Motivation for IPv6

- IPv6 address space
 - $-2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$
 - -340 trillion trillion (i.e. $\sim 340 \times 10^{36}$)

 About 6.65*10²³ addresses per square meter on earth (including waters)

Address categories

Unicast

 A unicast address uniquely identifies an <u>interface</u> of an IPv6 node. A packet sent to a unicast address is delivered to the interface identified by that address

Multicast

 A multicast address identifies a group of IPv6 interfaces. A packet sent to a multicast address is processed by all members of the multicast group

Anycast

 An anycast address is assigned to multiple interfaces (usually on multiple nodes). A packet sent to an anycast address is delivered to only one of these interfaces (usually the nearest one)

General rules

- An IPv6 address is assigned to an interface
 - At least one unicast address per interface of a node
 - A single interface can be assigned multiple IPv6 addresses of any type
- IPv6 addresses <u>have a scope</u> (encoded as part of the address)
 - The scope is a topological span within which the address may be used as a <u>unique</u> identifier
 - Global and non-global (e.g., link-local) scopes

IPv6 links

 Identified by a set of interfaces which can communicate directly with each other (single

IPv6 links

- Typical assumptions about a link (e.g., Ethernet or point-to-point)
 - Stable (over time)
 - Single <u>link-layer</u> broadcast domain
 - Transitive (if $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$)
- Implications
 - Network prefixes can be used to determine if an interface is attached to a given link
 - Duplicate address detection can be simply addressed

Address scope

Address scope

Address scope

Address notation

- Format: x:x:x:x:x:x:x:x
 - x is a 16-bit block represented with four hex digits
- Abbreviation rules
 - Leading zeros can be skipped
 - 09C0 = 9C0
 - 0000 = 0
 - 2031:**000**0:130F:**000**00:**000**0:**0**9C0:876A:130B = 2031:0:130F:0:0:9C0:876A:130B
 - Consecutive zeros can be replaced by '::'
 - 2031:0:130F:**0000**:**0000**:9C0:876A:130B = 2031:0:130F::9C0:876A:130B
 - This rule can be applied only once!

Address notation

- FF01:0000:0000:0000:0000:0000:0000:0001 → FF01:0:0:0:0:0:0:1 → FF01::1
- E3D7:0000:0000:0000:51F4:00C8:C0A8:6420 → E3D7::51F4:C8:C0A8:6420
- 3FFE:0501:0008:0000:0260:97FF:FE40:EFAB → 3FFE:501:8:0:260:97FF:FE40:EFAB → 3FFE:501:8::260:97FF:FE40:EFAB
- 0:0:0:0:0:0:0 → :: (unspecified address)
- 0:0:0:0:0:0:0: $1 \rightarrow ::1$ (loopback address)

Prefix notation

- Similar to IPv4 with CIDR
 - [IPv6 address]/[prefix length]
- Identifies a set of addresses (e.g., belonging to the same subnet)
- Examples
 - 2E78:DA53:1200::/40
 - 2001:DB8:0:56::/64

Prefix allocation

Allocation	Prefix binary	Prefix hex	Fraction of address space
Unassigned	0000 0000	::0/8	1/256
Reserved	0000 001		1/128
Global unicast	001	2000::/3	1/8
Link-local unicast	1111 1110 10	FE80::/10	1/1024
Reserved (formerly Site-local unicast)	1111 1110 11	FEC0::/10* * deprecated	1/1024
Unique-local	1111 110	FC00::/7	
Private administration	1111 1101	FD00::/8	
Multicast	1111 1111	FF00::/8	1/256

Global unicast address

 The global routing prefix identifies the address range allocated to a site

- Current allocations
 - http://www.iana.org/assignments/ipv6-unicastaddress-assignments

Interface ID


```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
```

- Interface ID: should follow the IEEE EUI-64 format
 - http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

Interface ID

Privacy issue

- Internet access could be traced even across networks, because the identifier is unique to the interface
- Stable vs. *temporary transient* [RFC 4941] addresses
 - Assigned using a random number that changes in regular intervals
- Stable privacy addresses [RFC 7217]
 - not based on any hardware identifier
 - stable within a subnet, but change when the host moves from one network to another

Link-local and local addresses

- Link-local addresses are assigned by default through auto-configuration
- The Global ID of local IPv6 addresses is generated randomly

Anycast address

- An anycast address is assigned to multiple interfaces (usually on multiple nodes). A packet sent to an anycast address is delivered to only one of these interfaces (usually the nearest one)
- Designed to provide <u>redundancy</u> and <u>load-balancing</u> when the same service is provided by multiple hosts/routers
 - Multiple HTTP or DNS servers
 - Multiple routers of the same ISP
- Implemented by the routing functionality
- The sender has <u>no control</u> over which interface the packet will be delivered

Anycast address

The subnet-router anycast address is a required anycast address

Multicast addresses

- When a packet is sent to a multicast address, all members of the multicast group process the packet
 - A node can belong to more than one multicast group

Value	Description
1	Interface-local scope
2	Link-local scope
E	Global scope

Multicast addresses

Well-known link-local scope multicast addresses

Address	Description
FF02:0:0:0:0:0:1	All-nodes address
FF02:0:0:0:0:0:2	All-routers address
FF02:0:0:0:0:0:5	OSPFIGP
FF02:0:0:0:0:0:9	RIP routers
FF02:0:0:0:0:0:A	EIGRP routers
FF02:0:0:0:0:0:B	Mobile agents
FF02:0:0:0:0:1:2	All DHCP agents
FF02:0:0:0:0:1:4	DTCP Announcement
FF02:0:0:0:1:FFXX:XXXX	Solicited-node address

References

• RFC 4291, "IPv6 Addressing Architecture," 2006