

1、AVR单片机简介

- ATMEL公司介绍
 - 是世界上著名的高性能、低功耗、非易失性存储器和数字集成电路的一流半导体制造公司。
- 1997年,ATMEL公司出于市场需求,推出了全新配置的精简指令集RISC单片机高速8位单片机,简称为AVR。
- ■广泛应用于计算机外设、工业实时控制, 仪器仪表、通信设备、家用电器等各个领域。

1.1 AVR单片机主要特性

- 衡量单片机性能的重要指标
 - 高可靠性、功能强、高速度、低功耗、低价位

AVR单片机

- 1)有高可靠性为后盾。
- 2) 在软/硬件开销、速度、性能和成本多方面取得优化 平衡,是高性价比的单片机。
- 3) 内嵌高质量的 Flash程序存储器,擦写方便,便于产品的调试、开发、生产、更新。
- 4) I/O端口资源灵活、功能强大.
- 5) 单片机内具备多种独立的时钟分频器.

1.1 AVR单片机主要特性

- 6) 高波特率的可靠通信
- 7)包括多种电路,可增强嵌入式系统的可靠性.
 - 电路: 自动上电复位、看门狗、掉电检测
 - 多个复位源等
- 8) 具有多种省电休眠模式、宽电压运行 (2.7~5V), 抗干扰能力强,可降低一般8位机 中的软件抗干扰设计的工作量和硬件的使用量。
- 9) 集成多种器件和多种功能。

1.2 AVR系列单片机的选型

AVR单片机有3个档次:

- 低档Tiny系列单片机, 20脚
 - Tiny 11/12/13/15/26/28
 - AT89C1051, AT89C1052
- 中档(标准) AT90S系列单片机,40脚
 - AT90S1200/2313/8515/8535
 - AT89C51
- 高档ATmega系列单片机 64脚
 - ATmega8/16/32/64/128
 - 存储容量为8/16/32/64/128KB
 - ATmega8515/8535
- ATmega128单片机——基于AVR低功耗CMOS 8位 微控制器,近1MIPS/MHz。

ATmega128产品特点

- 1) RICS结构
 - 指令条数 133条指令 大多数可以在一个时钟周期内完成
 - 存储器 32 x 8位 通用工作寄存器 + 外设控制寄存器
 - 工作频率 工作于16 MHz 时性能高达16 MIPS
 - 片内乘法器 2个 只需两个时钟周期的硬件乘法器
- 2) 非易失存储器
 - 片上Flash 128K Bytes, 104次擦写
 - EEPROM 4K Bytes, 105次擦写
 - 内部SRAM 4K
 - 可选外部存储器 64K
 - 可编程安全锁、片内可编程SPI接口
- 3) JITAG接口
 - 边界扫描特性,扩展芯片调试支持,通过其进行可编程Flash、 EEPROM

ATmega128产品特点

4) 外设特性

- 定时器/计数器 (2个8位)
- 扩展定时器/计数器(2个16位)
- 实时时钟计数器 (1个)
- PWM通道
- 输出比较调制器
- 8通道10位ADC:
 - > 8个单端通道、7个差分通道、2个可调增益的差分通道
- 面向字节的双线接口
- 可编程的连续串口UART 2个
- 主/从SPI串口、可编程看门狗、片内模拟比较器

ATmega128产品特点

- 5) 特殊微控制器特性
 - 复位、中断源、省电模式等
- 6) I/O和封装
 - 53个可编程I/O口线
 - 64引脚TQFP与64引脚MLF封装
- 7) 工作电压
 - 2.7~5.5V (ATmega128L)
 - 4.5~5.5V (ATmega128)
- 8) 速度级别
 - 0~8MHZ (ATmega128L)
 - 0~16MHZ (ATmega128)

128的引脚说明:

除端口外的引脚说明: 1)~8)

端口引脚说明:9)~11)

1) VCC: 数字电路的电源

2) GND: 地

3) RESET: 复位输入引脚

4) XTAL1: 反向振荡放大器及片内时钟操作电路的输入

5) XTAL2: 反向振荡放大器的输出

6) AVCC: AVCC为端口F及ADC的电源

7) AREF: 为ADC的模拟基准输入引脚

8) PEN: 为SPI串行下载的使能引脚

128的引脚说明:

-端口引脚说明:9)~11)

- 9) 8位双向I/O端口
 - 端口A(PA7~PA0)
 - 端口B(PB7~PB0)
 - 端口C(PC7~PC0)
 - 端口D(PD7~PD0)
 - 端口E(PE7~PE0)
- 10) 8位端口F(PF7~PF0)
 - 为ADC的模拟输入引脚或作为8位双向I/O端口。
 - 可以作为JTAG接口
- 11)5位双向I/O端口G(PG4~PG0)

ATmega128单片机的系统结构 主要内容 1、ATmega128的CPU内核 2、ATmega128 存储器 3、主要时钟系统 4、系统控制和复位 5、中断向量 6、I/O端口 7、定时器/ 计数器 (T/C) 8、模数转换器 A/D

1、ATmega128的CPU内核

- 1.1 AVR CPU内核的结构
 - AVR 采用Harvard 结构,具有独立的数据和程序总线。

1.2 状态寄存器

AVR 中断寄存器 - SREG

- 1.3 通用寄存器结构
- Bit 7 I: 全局中断使能
- 1.4 X、Y、Z寄存器
- 1.5 堆栈指针
- 1.6 复位和中断处理

2、ATmega128 存储器

- 2.1 系统内可编程的Flash 程序存储器
 - 具有128K字节的在线编程Flash
- 2.2 SRAM数据存储器(静态随机存储器)
 - 还可以访问直到64K的外部数据SRAM
- 2.3 EEPROM数据存储器
 - 包含4K字节的EEPROM, 其寿命为100,000 次
- 2.4 I/O存储器
 - 所有I/O 和外设都被放置在I/O 空间。在32个通用工作寄存器和I/O之间传输数据。
- 2.5 外部存储器接口
 - 适合于与存储器器件互连,如外部SRAM和Flash, LCD, A/D, D/A,等等。

4、系统控制和复位

- 复位时所有的I/O 寄存器都被设置为初始值,程序从复位 向量处开始执行。
- 复位源生效时I/O 端口立即复位为初始值,不需要任何时 钟的辅助。
- ATmega128 有5个复位源:
 - 1. 上电复位
 - > 当电源电压低于上电复位门限 (V_{POT}) 时, MCU 复位。
 - 2. 外部复位
 - > 当引脚 RESET 上的低电平持续时间大于最小脉冲宽度时MCU 复位。
 - 3. 看门狗复位
 - > 当看门狗使能并且看门狗定时器超时时复位发生。
 - 4. 掉电检测复位
 - ➢ 当掉电检测复位功能使能,且电源电压低于掉电检测复位门限(V_{BOT})时MCU即复位。
 - 5. JTAG AVR复位
 - > 当复位寄存器为1时MCU即复位。

5、ATmega128 的中断向量1

向量号	程序地址	中断源	中断定义
1	\$0000	RESET	复位
2	\$0002	INT0	外部中断请求0
3	\$0004	INT1	外部中断请求1
4	\$0006	INT2	外部中断请求2
5	\$0008	INT3	外部中断请求3
6	\$000A	INT4	外部中断请求4
7	\$000C	INT5	外部中断请求5
8	\$000E	INT6	外部中断请求6
9	\$0010	INT7	外部中断请求7
10	\$0012	TIMER2 COMP	T/C 2 比较匹配
11	\$0014	TIMER2 OVF	T/C 2 溢出

ATmega128 的中断向量2

向量号	程序地址	中断源	中断定义
12	\$0016	TIMER1 CAPT	T/C 1 捕捉事件
13	\$0018	TIMER1 COMPA	T/C1比较匹配A
14	\$001A	TIMER1 COMPB	T/C 1 比较匹配B
15	\$001C	TIMER1 OVF	T/C 1 溢出
16	\$001E	TIMER0 COMP	T/C 0 比较匹配
17	\$0020	TIMER0 OVF	T/C 0 溢出
18	\$0022	SPI, STC	SPI 串行传输结束
19	\$0024	USARTO, RX	USART0, Rx 结束
20	\$0026	USARTO, UDRE	USARTO 数据寄存器空
21	\$0028	USARTO, TX	USART0, Tx 结束
22	\$002A	ADC	ADC 转换结束
23	\$002C	EE READY	EEPROM 就绪

ATmega128 的中断向量3

向量号	程序地址	中断源	中断定义
24	\$002E	ANALOG COMP	模拟比较器
25	\$0030(3)	TIMER1 COMPC	T/C1比较匹配C
26	\$0032(3)	TIMER3 CAPT	T/C 3 捕捉事件
27	\$0034(3)	TIMER3 COMPA	T/C 3 比较匹配 A
28	\$0036(3)	TIMER3 COMPB	T/C 3 比较匹配B
29	\$0038(3)	TIMER3 COMPC	T/C 3 比较匹配C
30	\$003A ⁽³⁾	TIMER3 OVF	T/C 3 溢出
31	\$003C ⁽³⁾	USART1, RX	USART1, Rx 结束
32	\$003E ⁽³⁾	USART1, UDRE	USART1 数据寄存器空
33	\$0040(3)	USART1, TX	USART1, Tx 结束
34	\$0042(3)	TWI	两线串行接口
35	\$0044(3)	SPM READY	保存程序存储器内容就绪

6、I/O端口

■ 所有AVR I/O端口都具有 真正的读-修改-写功能。

3个8位寄存器用于控制I/O端口

- 方向控制寄存器DDRx { =1输出 =0输入
- 数据寄存器PORTx 写
- 输入引脚寄存器PINx 只读

所有的寄存器和位以通用格式表示:小写的"x"表示端口序号,小写的"n"代表位的序号。

PORTB3 表示端口B的第3位

```
void port_init(void)
{
    PORTA = 0x00;
    DDRA = 0xFF;
    PORTB = 0x00;
    DDRB = 0x60;
    PORTC = 0xF0;
    //
    DDRC = 0xF0;
    PORTD = 0x0C;
    DDRD = 0x08;
    PORTE = 0xC3;
    DDRE = 0xF2;
    PORTF = 0x00;
    DDRF = 0x00;
    DDRG = 0x00;
    DDRG = 0x00;
}
```


7.1 8位T/C0

- T/C0 是一个通用的,单通道8 位定时器/ 计数器模块。其主要特点如下:
 - 1. 单通道计数器
 - 2. 比较匹配发生时,清除定时器(自动加载)
 - 3. 无毛刺的相位修正PWM
 - 4. 频率发生器
 - 5. 10 位时钟预分频器
 - 6. 溢出和比较匹配中断源(TOV0 和OCF0)
 - 7. 允许外部32kHz 晶振作为时钟

7.2 8位T/C2

- T/C2 是一个通用单通道8 位定时/ 计数器, 其主要特点如下:
 - 1. 单通道计数器
 - 2. 比较匹配时,清零定时器 (自动重载)
 - 3. 无干扰脉冲,相位正确的脉宽调制器 (PWM)
 - 4. 频率发生器
 - 5. 10 位时钟预分频器
 - 6. 溢出与比较匹配中断源(TOV2 与OCF2)
 - 7. 外部事件计数器

7.3 16位 T/ C1和T/ C3——实现D/A

- 16位的T/C 可以实现精确的程序定时(事件管理)、 波形产生和信号测量。其主要特点如下
 - 1. 真正的16 位设计(即允许16 位的PWM)
 - 2. 3个独立的输出比较单元
 - 3. 双缓冲的输出比较寄存器
 - 4. 一个输入比较单元
 - 5. 输入捕捉噪声抑制器
 - 6. 比较匹配发生时清除寄存器(自动重载)
 - 7. 无毛刺的相位修正PWM,可变的PWM 周期
 - 8. 频率发生器
 - 9. 外部事件计数器
 - 10. 10 个独立的中断源
 - TOV1、OCF1A、OCF1B、OCF1C、ICF1
 - TOV3、OCF3A、OCF3B、OCF3C、ICF3

内容

- 1、ATmega128的CPU内核
- 2、ATmega128 存储器
- 3、主要时钟系统
- 4、系统控制和复位
- 5、ATmega128 的中断向量
- 6、I/O端口
- 7、定时器/ 计数器 (T/C)
- 8、模数转换器 A/D

8、模数转换器 A/D

- 8.1 模数转换器特点
- 8.2 相关寄存器
- ■8.3 操作(启动一次转换)
- 8.4 预分频器
- 8.5 ADC转换结果处理

8.1 模数转换器特点

- 1. 10 位逐次逼近型精度
- 2. 0.5 LSB 的非线性度, ± 2 LSB 的绝对精度
- 3. 13 260 µs 的转换时间
- 4. 最高分辨率时采样率高达15kSPS
- 5. 8 路复用的单端输入通道
- 6. 7 路差分输入通道
- 7. 2 路可选增益为10x 与200x 的差分输入通道
- 8. 可选的左对齐ADC 读数
- 9. 0 VCC 的 ADC 输入电压范围
- 10. 可选的2.56V ADC 参考电压
- 11. 连续转换或单次转换模式
- 12. ADC 转换结束中断
- 13. 基于睡眠模式的噪声抑制器

8.2 相关寄存器

- ADC多工选择寄存器ADMUX
- ADC控制和状态寄存器ADCSRA
- ADC数据寄存器(ADCL和ADCH)

Table 97. ADC 参考电压选择								
	REFS1 REFS0 参考电压选择							
0 0 AREF,内部 Vref 关闭								
	0	1	AVCC, AREF 引脚外加滤波电容					
	1	0	保留					
	1	1	2.56V 的片内基准电压源, AREF 引脚外加滤波电容					

8.2.3 数据寄存器(ADCL和ADCH)

ADLAR = 0 (右对齐):

	15	14	13	12	11	10	9	8	
	-	-	-	-	-	-	ADC9	ADC8	ADCH
	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
ľ	7	6	5	4	3	2	1	0	

ADLAR =1 (左对齐):

	15	14	13	12	11	10	9	8	-122
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
	ADC1	ADC0	-	-	-	-		10-20	ADCL
×	7	6	5	4	3	2	1	0	-60

THE UNITY OF THE PROPERTY OF T

8.3 操作(启动一次转换)

- ADC 转换,最小值代表GND,最大值代表AREF引脚上的 电压再减去1 LSB。
- 设置ADCSRA寄存器的ADEN即可启动(使能)ADC。
- 默认情况下转换结果为右对齐,但可通过设置ADMUX寄存器的ADLAR变为左对齐。
- ADC转换结束可以触发中断。
- 启动一次转换
 - 向ADC启动转换位ADSC位写"1"可以启动单次转换。 在转换过程中此位保持为高,直到转换结束,然后被 硬件清零。

8.4 预分频器

- 逐次逼近电路需要一个从50 kHz到200 kHz的输入时钟 以获得最大精度。
- ADC模块包括一个预分频器, 它可以由任何超过100 kHz 的CPU时钟来产生可接受的 ADC时钟。
- 预分频器通过ADCSRA寄存器的ADPS进行设置。

ADC预分频器

8.5 ADC转换结果处理

- ■转换结束后,ADIF为高。
- 单次转换的结果 $ADC = \frac{V_{IN} * 1024}{V_{REF}}$

V_{IN}为被选中引脚的输入电压,V_{REF}为参考电压。0x000 代表模拟地电平,0x3FF代表所选参考电压的数值减去1LSB。

■使用差分通道的结果

$$ADC = \frac{(V_{POS} - V_{NEG}) * GAIN * 512}{V_{REF}}$$

 V_{POS} 为输入引脚正电压, V_{NEG} 为输入引脚负电压,GAIN为选定的增益因子,且 V_{REF} 为参考电压。结果用2的补码形式表示,从0x200 (-512d) 到0x1FF (+511d)。

