Math 172 Assignment 6 Tuesday, February 27, 2018

13.4.4, Problems B, C, D

13.4.4 Determine the splitting field and its degree over \mathbb{Q} for $x^6 - 4$.

- **B.** Let p be a prime number and F the field of integers mod p, and let p(x) and q(x) be any two irreducible polynomials of degree 2 over F. Show that the fields F[x]/(p(x)) and F[y]/(q(y)) are isomorphic by constructing an explicit isomorphism.
 - (a) Show that if p = 2, then the statement is true (what are the irreducibles?), so you may as well assume for the remainder of the problem that p is not 2.
 - (b) Show that if you construct a ring homomorphism $\phi : F[x] \to F[y]$ so that the ideal (p(x)) gets sent into the ideal (q(y)), then you will have a well-defined homomorphism γ on their quotients:

$$\gamma: F[x]/(p(y)) \to F[x]/(q(y)).$$

(c) Since $\{[1], [x]\}$ are a basis for F[x]/(p(x)), then it suffices to specify where 1 and x go under ϕ . As a ring homomorphism, $\phi(1) = 1$. Now you'll need to set

$$\phi(x) = ax + b$$

for some a and b, but choose a and b such a way that $\phi(p(x))$ is sent to a multiple of q(x).

C. Find a real number u such that $Q(\sqrt{3}, \sqrt{5}) = Q(u)$.

D. Suppose *K* is an extension of *F*, and $\phi : K \to K$ is an isomorphism that leaves every element of *F* fixed. Show that any polynomial in F[x] that has a root *r* in *K* also has $\phi(r)$ as a root.