Language Models Introduction

Prof. Jesús Alfonso López jalopez@uao.edu.co

Universidad Autónoma de Occidente

Corpus

Corpus = Data Set

Token

Raw text is a sequence of characters (bytes), but most of the time it is useful to group the characters into contiguous units called tokens. Tokens correspond to words, parts of words, and numerical sequences separated by white space or punctuation marks.

```
import spacy
nlp = spacy.load('en')
text = "Mary, don't slap the green witch"
print([str(token) for token >in nlp(text.lower())])
Output[0]

['mary', ',', 'do', "n't", 'slap', 'the', 'green', 'witch', '.']
```

Token

https://platform.openai.c om/tokenizer

Token

GPT token encoder and decoder

For more information on this tool, read Understanding GPT tokenizers

Enter text to tokenize it:

Or convert tokens to text:

Paste space separated tokens here

https://observablehq.com/@simonw/ gpt-tokenizer

Word embedding = From tokens to vectors

One hot encoding

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

 man
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Each word gets a 1x9 vector representation

https://projector.tensorflow.org/

https://karpathy.github.io/2015/ 05/21/rnn-effectiveness/

https://www.youtube.com/watch?v=ySEx_Bqxvvo

Goal of Sequence Modeling

https://www.youtube.com/watch?v=ySEx_Bqxvvo

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* †
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

https://arxiv.org/pdf/1706.03762.pdf

Transformer

https://bbycroft.net/llm

http://jalammar.github.io/ illustrated-transformer/

https://www.youtube.com/wat ch?v=wjZofJX0v4M

ENCODER ONLY

aka

auto-encoding models

TASKS

- · Sentence classification
- Named entity recognition
- Extractive questionanswering
- Masked language modeling

EXAMPLES

BERT, RoBERTa, distilBERT

DECODER ONLY

aka

auto-regressive models

TASKS

- Text generation
- Causal language modeling

EXAMPLES

GPT-2, GPT Neo, GPT-3

ENCODER-DECODER

aka

sequence-tosequence models

TASKS

- Translation
- Summarization
- Generative questionanswering

EXAMPLES

BART, T5, Marian

Grandes Modelos de lenguaje (Large Language Model)

Year	Model	# of Parameters	Dataset Size
2019	BERT [39]	3.4E+08	16GB
2019	DistilBERT [113]	6.60E+07	16GB
2019	ALBERT [70]	2.23E+08	16GB
2019	XLNet (Large) [150]	3.40E+08	126GB
2020	ERNIE-GEN (Large) [145]	3.40E+08	16GB
2019	RoBERTa (Large) [74]	3.55E+08	161GB
2019	MegatronLM [122]	8.30E+09	174GB
2020	T5-11B [107]	1.10E+10	745GB
2020	T-NLG [112]	1.70E+10	174GB
2020	GPT-3 [25]	1.75E+11	570GB
2020	GShard [73]	6.00E+11	_
2021	Switch-C [43]	1.57E+12	745GB
2021	WuDao 2.0	1.75E+12	
2021	The Megatron-Turing	Natural Language	Generatio

5.30 E+11

https://www.merkleinc.com/in/blog/ai-search-what-openais-gpt-3-means-google-and-seo-0

model (MT-NLG)

LLM Evolution

https://magazine.sebastianraschka. com/p/understanding-large-languag e-models

LLM Evolution

https://www.researchgate.net/figure/A-chronological-overview-of-large-language-models-LLMs-multimodal-and-scientific fig2 373451304

https://github.com/jessevig/bertviz

https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ

ChatGPT: Optimizing Language Models for Dialogue

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in a prompt and provide a detailed response.

TRY CHATGPT 7

https://chatgpt.com/

Reinforcement learning from Human Feedback

"Models trained by RLHF can provide answers that align with human values, generate more detailed answers, and reject questions that are inappropriate or outside the model's knowledge space." Therefore, they can be used to reduce response bias. of the LLM

https://i.kym-cdn.com/entries/icons/original/000/044/025/shoggothhh_header.jpg

https://www.youtube.com/watch?v= bZQun8Y4L2A&t=16s

Hype Cycle for Artificial Intelligence, 2023

https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2023-gartner-hype-cycle

Edge Al and Generative Al 2023 Gartner Emerging Technologies

and Trends Impact Radar

gartner.com

Embedded GenAl

Impact Radar for Generative AI

https://www.gartner.com/en/articles/ understand-and-exploit-gen-ai-withgartner-s-new-impact-radar

- Al models optimizations
- Quantization
- Pruning
- Knowledge distillation

https://int8.io/local-large-langua ge-models-beginners-guide/ https://www.linkedin.com/pulse/quantization-what-you-s hould-understand-want-run-llms-pavan-mantha

llama4micro 🦙 🕰

A "large" language model running on a microcontroller.

https://github.com/maxbbraun/llama4micro

https://www.hackster.io/mjrobot /running-large-language-model s-on-raspberry-pi-at-the-edge-63bb11

Workshop on TinyML for Sustainable Development

Thanks

Prof. Jesús Alfonso López jalopez@uao.edu.co https://www.linkedin.com/in/jesusalfonso-lópez-sotelo-76100718/

Universidad Autónoma de Occidente

