Глава 1

Дебильник

1.1 Многомерное нормальное распределение

<u>def.</u> Стандартный гауссовский вектор — случайный n-мерный вектор $Z = (Z_1, Z_2, \dots Z_n)$, координаты которого независимы и имеют распределение $\mathcal{N}(0,1)$.

<u>def</u>. Гауссовский вектор (Нормальный вектор) — вектор, для которого существует матрица $\mathbf{A} \in \mathbb{R}^{n \times m}$, стандартный гауссовский вектор $Z \in \mathbb{R}^m$, и вектор $b \in \mathbb{R}^n$ такие, что $X = \mathbf{A}Z + b$.

 $\underline{\mathbf{def}}$. Распределение нормального вектора $X \in \mathbb{R}^n - \mathcal{N}(\mu, \mathbf{\Sigma})$ или $\mathcal{N}_n(\mu, \mathbf{\Sigma})$, где $\mu = \mathbb{E} X$ и $\mathbf{\Sigma} = \mathrm{cov}(X)$.

<u>def.</u> Распределение хи-квадрат с n степенями свободы — распределение $\chi^2(n)$ величины $\chi^2=Z_1^2+Z_2^2+\ldots+Z_n^2$, где $Z_1,Z_2,\ldots Z_n$ — независимы $\mathcal{N}(0,1)$ величины.

<u>def.</u> Распределение Стьюдента с n степенями свободы — распределение T(n) величины $\frac{\sqrt{n}X}{\sqrt{N}}$, где $X \sim \mathcal{N}(0,1)$, $Y \sim \chi^2(n)$ и независимы.

<u>def</u>. Распределение Фишера со степенями свободы n и m — распределение F(n,m) величины $\frac{X/n}{Y/m}$, где $X\sim \chi^2(n),\, Y\sim \chi^2(m)$ и независимы.

1.2 Условное матожидание

<u>def</u>. Условное матожидание $\mathbb{E}(Y \mid X)$ случайной величины Y при условии случайной величины X — такая измеримая функция g_0 величины X, при которой $\mathbb{E}(Y - g(X))^2$ минимально для всех измеримых функций g.

Условное матожидание — ортогональная проекция Y на линейное пространство всех измеримых функций X. То есть УМО — единственная измеримая функция, которая удовлетворяет условию ортогональности:

$$\forall g \colon \mathbb{E}(Y - \mathbb{E}(Y \mid X))g(X) = 0.$$

1.3 Статистическая модель, выборка

<u>def</u>. Статистическая модель — множество распределений \mathfrak{P} , которое, по нашему мнению, адекватно приближает \mathcal{P}_D .

 $\underline{\mathbf{def}}$. Данные d — реализация случайного элемента D, имеющего распределение \mathcal{P}_D .

Статистические модели делят на:

- параметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset \mathbb{R}^k \}.$ Пример: $\mathfrak{P} = \{ \mathcal{N}(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 \geqslant 0 \}.$
- непараметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset V \}$, где V не обязательно конечномерное.

Пример:
$$\mathfrak{P} = \{ \mathcal{P}^{\otimes n} \mid \int_{\mathfrak{T}} x \mathcal{P}(dx) = 0 \}$$

• семипараметрические, если $\mathfrak{P} = \{ \mathcal{P}_0 \mid \theta \in \Theta \subset \mathbb{R}^k \times V \}.$ Пример: линейная регрессия $Y = X\beta + \varepsilon, \ \beta \in \mathbb{R}^k, \ \mathbb{E}\varepsilon = 0, \ \mathbb{D}\varepsilon = \sigma^2.$

Если $D = [X_1, \dots X_n]$ и X_i независимы и имеют одинаковое распределение \mathcal{P}_X , D называется выборкой объема n и обозначается $X_{[n]}$, \mathcal{P}_X — генеральная совокупность. В этом случае модель приобретает вид $\mathfrak{P} = \{\mathcal{P}^{\otimes n} \mid \mathcal{P} \in \mathfrak{P}_X\}$, где \mathfrak{P}_X — модель для \mathcal{P}_X .

1.4 Формула Байеса, априорное, апостериорное распределение

- Априорное распределение наше ощущение относительно значения параметра до проведения эксперимента.
- Апостериорное распределение ощущение после получения данных эксперимента.

 $\underline{\mathbf{def}}$ (Формула Байеса). Здесь p — вероятность, d — данные, θ — параметры.

$$p(\theta \mid d) = \frac{p(d \mid \theta) \cdot p(\theta)}{p(d)}.$$

- $p(\theta \mid d)$ апостериорное распределение,
- $p(d \mid \theta)$ правдоподобие,
- $p(\theta)$ априорное распределение,
- p(d) вероятность данных.

1.5 Расстояние Кульбака-Лейблера, энтропия

Пусть мы принимаем случайные символы $x_1, \ldots x_k$, вероятность появления x_i равна p_i , записываем с помощью битовой строки длины l_i . Тогда средняя длина символа равна

$$l = \sum_{i=1}^{k} p_i \cdot l_i.$$

Чтобы минимизировать l, необходимо подобрать следующие $l_i = -\log_2 p_i$. И тогда средняя длина будет равна $H(x) := -\sum_{i=1}^k p_i \cdot \log_2 p_i$, эта величина называется **двоичной энтропией сообщения**. Аналогично можно брать любой другой логарифм, мы будем использовать натуральный.

Для непрерывной величины можно завести дифференциальную энтропию:

$$H(X) = -\int p(x)\log p(x)dx.$$

Пусть случайная величина X имеет функцию вероятности p, но мы кодируем символы, как-будто она имеет функцию вероятности q. Тогда средняя длина сообщения будет равна $-\sum_{i=1}^k p_i \cdot \log q_i$, эта величина называется кросс-энтропией $H(p \mid q)$ распределений p и q.

 $H(p \mid q)$ всегда будет больше H(p), так как H(p) минимально.

<u>def</u>. Величина потери информации из-за использования q вместо p называется расстоянием Кульбака-Лейблера между p и q:

$$D_{KL}(p,q) = H(p \mid q) - H(p) = -\sum_{i=1}^{k} p_i \cdot \log \frac{q_i}{p_i}.$$

Для непрерывных величин все обобщается следующим образом

$$D_{KL} = -\int p_i \cdot \log \frac{q_i}{p_i}.$$

1.6 Статистика...

1.6.1 Статистика

Параметр или характеристика распределения — функционал от этого распределения.

 $\underline{\mathbf{def}}$. Статистика — функция θ^* от данных d.

Пусть модель $\mathfrak{P}_{[n]}=\{\mathcal{P}^{\otimes n}\mid \mathcal{P}\in\mathfrak{P}\}$, искомая характеристика $\theta\colon\mathfrak{P}\to\mathbb{R}^k$.

1.6.2 Несмещенность

Чему равна оценка как случайная величина в среднем, если она равна характеристике?

def. Оценка Θ^* называется

• несмещенной, если $\forall \mathcal{P} \in \mathfrak{P} \colon \mathbb{E} \theta^*(X_{[n]}) = \theta(\mathcal{P})$, где $X_{[n]} \sim \mathcal{P}^{\otimes n}$,

ullet асимптотически несмещенной, если $orall \mathcal{P} \in \mathfrak{P} \colon \mathbb{E} heta^*(X_{[n]}) o heta(\mathcal{P}).$

Смещение — величина $b(\theta^*) = \mathbb{E}(\theta^*(X_{[n]})) - \theta(\mathcal{P}).$

Среднеквадратичная ошибка — величина $\mathrm{MSE}(\theta^*) = \mathbb{E}\left(\theta^*(X_{[n]}) - \theta(\mathcal{P})\right)^2$.

В общем случае

$$MSE(\theta^*) = \mathbb{D}\theta^*(X_{[n]} + b^2(\theta^*).$$

- Выборочное среднее как оценка матожидания несмещенная оценка,
- Выборочная дисперсия как оценка дисперсии асимптотически несмещенная,
- Исправленная выборочная дисперсия как оценка дисперсии несмещенная оценка.

1.6.3 Состоятельность

 $\underline{\mathbf{def}}$. Оценка θ^* называется

- состоятельной, если $\forall \mathcal{P} \in \mathfrak{P} \colon \theta^*(X_{[n]}) \xrightarrow{\mathbb{P}} \theta(\mathcal{P})$, где $X_{[n]} \sim \mathcal{P}^{\otimes n}$,
- ullet сильно состоятельной, если $\theta^*(X_{[n]}) \xrightarrow{\text{п. н.}} \theta(\mathcal{P}).$

1.6.4 Асимптотическая нормальность

<u>def</u>. Оценка θ^* называется асимптотически нормальной с коэффициентом рассеивания (или просто дисперсией) $\sigma^2(\theta(\mathcal{P}))$ 0, если

$$\sqrt{n} \left(\theta^*(X_{[n]}) - \theta(\mathcal{P}) \right) \xrightarrow{d} \eta \sim \mathcal{N}(0, \sigma^2(\theta^*(\mathcal{P}))).$$

В многомерном случае рассматривается ковариационная матрица вместо дисперсии.

- Выборочная дисперсия и второй момент асимптотически нормальная оценка.
- Из асимптотической нормальности следует состоятельность.

1.6.5 Эффективность

Рассмотрим класс оценок $K = \{\hat{\theta}\}$ параметра θ .

<u>def</u>. Оценка $\theta^* \in K$ называется эффективной в классе K, если для любой другой оценки $\hat{\theta} \in K$ и для любого исследуемого параметра $\theta \in \Theta$ выполняется

$$MSE_{\theta}(\theta^*) \leqslant MSE_{\theta}(\hat{\theta}).$$

Класс несмещенных оценок

$$K_0 = \{\hat{\theta} \mid \mathbb{E}\hat{\theta} = \theta, \forall \theta \in \Theta\}.$$

<u>def</u>. Эффективная оценка θ^* , если эффективна в классе K_0 .

 $\underline{\operatorname{def}}$. Асимптотически эффективной в классе K, если для любой оценки $\hat{\theta} \in K$ и для любого $\theta \in \Theta$ выполняется

$$\overline{\lim_{n\to\infty}} \frac{\mathrm{MSE}(\theta^*)}{\mathrm{MSE}(\hat{\theta})}.$$

1.6.6 Робастность

 $\underline{\mathbf{def}}$. Робастность — свойство оценки быть устойчивой к хвостам распределения.

Пусть F — распределение, $\{G_n\}$ — последовательность распределений, что

$$|F - G_n| := \sup_{x} |F(x) - G_n(x)| \to 0.$$

 $\underline{\mathbf{def}}.$ Характеристика θ обладает качественной робастностью, если $\theta(G_n)\to \theta(F)$

Пусть также δ_x — вырожденное распределение в точке x.

<u>def.</u> Загрязненное распределение — смесь $F_{x,\varepsilon} = (1-\varepsilon)F + \varepsilon \delta_x$.

 $\operatorname{\mathbf{def.}}$ Функция влияния характеристики θ — величина

$$IF(x) = \lim_{\varepsilon \to 0+} \frac{\theta(F_{x,\varepsilon}) - \theta(F)}{\varepsilon}.$$

<u>def</u>. Характеристика θ называется B-робастной или инфинитезимально робастной, если IF(x) ограничена.

 $\underline{\mathbf{def}}$. Асимптотическая толерантность характеристики θ —

$$\tau = \inf \{ \varepsilon \mid \sup_{x} |\theta(F_{x,\varepsilon} - \theta(F))| = \infty \}.$$

1.6.7 Достаточность

 $\underline{\mathbf{def}}$. Статистика $T(x)=\{T_1(x),\ldots,T_m(x))\}$ называется достаточной, если для всех

- $\theta \in \Theta$.
- $B \in \mathfrak{P}(\mathbb{R}^n)$ и
- $t = (t_1, \ldots, t_m)$

условная вероятность $\mathbb{P}(X_{[n]} \in B \mid T(X_{[n]}) = t)$ не зависит от θ .

То есть информация о θ в выборке полностью содержится в значении $T(x_{[n]})$.

 $\underline{\mathbf{thm}}$ (факторизации). T(x) достаточна, согда существуют функции g u h, что

$$p(X_{[n]} = x_{[n]} \mid \theta) = g(T(x_{[n]}), \theta) h(x_{[n]}),$$

 $\it rde\ p\ -\ вероятность\ или\ плотность.$

1.6.8 Полнота

 $\underline{\mathbf{def}}$. Статистика T называется полной, если для любой измеримой g верно следствие

$$\forall \theta \in \Theta \colon \mathbb{E}g(T(X_{[n]})) \equiv 0 \implies g(T(X_{[n]})) \stackrel{n.n.}{=} 0.$$

1.7 Теоремы Колмогорова-Блэкуэлла-Рао и Лемана-Шеффе

<u>thm</u> (Колмогорова-Блэкуэлла-Рао). Пусть θ^* — оценка параметра θ , T — достаточная статистика. Тогда

$$MSE(\theta^*) \geqslant MSE(\mathbb{E}(\theta^* \mid T)).$$

<u>thm</u> (Лемана-Шеффе). Пусть θ^* — оценка параметра θ , T — достаточная и полная статистика. Тогда $\mathbb{E}(\theta^* \mid T)$ — единственная эффективная оценка в классе оценок со смещением $b(\theta^*)$.

1.8 Доверительный интервал

Пусть есть модель $\mathfrak{P}_{[n]} = \{ \mathcal{P}^{\otimes n} \mid \mathcal{P} \in \mathfrak{P} \}$ и $\theta \colon \mathfrak{P} \to \mathbb{R}^k$ — искомая характеристика.

 $\underline{\mathbf{def}}$. Доверительный интервал (точный доверительный интервал) с уровнем доверия γ — пара статистик (θ_L^*, θ_R^*) , такая что для любого $\mathcal{P} \in \mathfrak{P}$ и $X_{[n]} \sim \mathcal{P}^{\otimes n}$

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) \leqslant \theta(\mathcal{P}) \leqslant \theta_R^*(X_{[n]})\right) = \gamma.$$

Интервал называется

• асимптотическим, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) \leqslant \theta(\mathcal{P}) \leqslant \theta_R^*(X_{[n]})\right) \xrightarrow{n \to \infty} \gamma.$$

• центральным, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) > \theta(\mathcal{P})\right) = \mathbb{P}\left(\theta_R^*(X_{[n]}) < \theta(\mathcal{P})\right).$$

• левым, если

$$\mathbb{P}\left(\theta_L^*(X_{[n]}) > \theta(\mathcal{P})\right) = 0.$$

• правым, если

$$\mathbb{P}\left(\theta_R^*(X_{[n]}) < \theta(\mathcal{P})\right) = 0.$$

1.9. БУТСТРЕП 9

1.9 Бутстреп

1.9.1 Параметрический бутстреп

Если работаем с параметрической моделью, можем заменить $X=X(\theta)$ не на X^* , а на $X(\theta^*)$ и сэмплировать из этого распределения.

1.9.2 Непараметрический бутстреп

Рецепт

- 1. изготовим N выборок $x_{[n],1}^*,\dots,x_{[n],N}^*$ из эмпирического распределения (рандом с возвращением)
- 2. вычисляем $\theta_i^b = \theta^*(x_{[n],i}^*$, получаем бутстреповскую выборку $\theta_{[N]}^b$,
- 3. по бутстреповской выборке оцениваем, что нужно.

Ограничения

- θ^* plug-in оценка
- θ^* достаточно гладкая (обычно дифференцируема)
- у X достаточно много моментов (обычно конечная дисперсия)
- нужно генерировать большие выборки
- на очень больших данных трудозатратен
- на маленьких данных велика неустранимая ошибка