### Drawback of Nussinov

Nussinov does not calculate biologically relevant structures because:

 often there are various possibilities for basepairing (especially due to pseudoknots), the Nussinov algorithm detects mostly just one variant.

 stacking of basepairs is not considered ⇒ differences in structure and stability of helices.

Size of internal loops are not considered



# Solution: minimizing the free energy

### Definition (Free Energy)

The Gibbsian Free Energie G in a system (e.g. of gas molecules in equilibrium or in a dilution of molecules) holds

$$G = H - TS \tag{1}$$

where H is the *enthalpy* (potential to perform work), T the *absolute temperature* (in Kelvin) and S the *entropy* (measure of disorder).

- enthalpy: by basepairs
- entropy: "disorder in unpaired regions"
- only possible to measure the difference

$$\Delta G = \Delta H - T \Delta S$$

- can be measured ⇒ flexible rules for loops, stacks and further secondary structure elements.
- complete free energy: summation



#### Freier Rules





# The Zuker Algorithm/Definitions

#### Definition (Secondary structure elements)

Let S be a fixed sequence. Further, let P be an RNA structure for S.

- a basepair  $(i,j) \in P$  closes a **hairpin loop** if  $\forall i < i' \le j' < j : (i',j') \notin P$ .
- a basepair  $(i,j) \in P$  closes a **stacking** if  $(i+1,j-1) \in P$ .
- two basepairs  $(i,j) \in P$  and  $(i',j') \in P$  form an **internal loop** (i,j,i',j') if
  - i < i' < j' < j
  - (i'-i)+(j-j')>2 (no stack)
  - there is no basepair (k, l) between (i, j) and (i', j').



### The Zuker Algorithm/Definitions

The Zuker Algorithm/Definitions

Definition (Secondary structure elements)

Let S be a fixed sequence. Further, let P be an RNA structure for S.

u a basepair  $(i,j) \in P$  closes a hairpin loop

if  $\forall i < i' \le j' < j : (i',j') \notin P$ . u a basepair  $(i,j) \in P$  closes a stacking if

 $(i+1,j-1) \in P$ . • two basepairs  $(i,j) \in P$  and  $(i',j') \in P$ 

form an internal loop (i, j, i', j') if i < i' < j' < j i' < i' < j' < j i' < i' < j' < j' < jthere is no basepair (k, l)

 there is no basepair (k, l) between (i, j) and (i', j').

• hairpin loop

• stacking

• internal loop (i, j, i', j')



# The Zuker Algorithm/Definitionen

• An internal loop is called **left** (**right**, resp.) **bulge**, falls j = j' + 1 oder i' = i + 1.

- A k-multiloop consists of multiple basepairs,  $(i_1, j_1) \dots (i_k, j_k) \in P$  with a closing basepair  $(j_0, i_{k+1}) \in P$  with the property that
  - $\forall \ 0 \le l \le k : (j_l < i_{l+1})$
  - $\forall$   $0 \leq l, l' \leq k$  is true that there is no basepair  $(i', j') \in P$  with  $i' \in [j_l \dots i_{l+1}]$  and  $j' \in [j_{l'} \dots i_{l'+1}]$ .
- $(i_1, j_1) \dots (i_k, j_k)$  close the **helices** of the multiloop.



### Remarks



#### Remark

- Usually hairpin loops are constrained to a loop sequence of at least  $3nt \Rightarrow$  every hairpin loop  $(i,j) \in P$  requires to hold the condition i < j 3.
- each secundary structure element is defined uniquely by its closing basepair
- for any basepair (i,j) we denote the corresponding secondary structure element with Sec(i,j).



# **Energy of Secondary Structure Elements**

### Definition (energy contribution of loops)

Energy contributions of the various structure elements are as follows:

```
• hairpin loop (i,j): eH(i,j)
```

- **stacking** (i,j): eS(i,j,i+1,j-1)
- internal loop (i, j, i, j'): eL(i, j, i', j')
- multiloop:  $eM(j_0, i_1, j_1, \dots, i_k, j_k, i_{k+1})$

#### Remark

Multiloop contribution too expensive: exponential explosion! For prediction use a simplified contribution.



# Simplified Energy Contribution of Multiloops

### Definition (simplified energy contribution for multiloop)

• multiloop eM = a + bk + ck' a = energy contribution for closing the loop k = number of helices k' = number of unpaired bases within the loop

### Definition (free energy)

**loop free energy**:  $E_{i,j}^P = \text{energy of the structure element } Sec(i,j)$  total free energy:  $E(P) = \sum_{(i,j) \in P} E_{i,j}^P$ 



# Example





 $\sqsubseteq$ Example



• for multiloop:  $k' = \sum_{l=0}^{k} i_{l+1} - j_l - 1$ 

**example** for simplified energy function of multiloops:

$$\begin{array}{l} eM(2,7,15,19,27,30,38,42) = a+b\cdot 3+c\cdot 12\\ k'=12\Rightarrow \text{ unpaired bases within big loop}\\ k=3\Rightarrow \text{ helices within loop}\\ E_{2,42}^P=eM(2,7,15,19,27,30,38,42)+eH(7,15)+\\ eH(19,27)+eH(30,38)\\ \text{Bem: } (2,42)\Rightarrow \text{ external binding} \end{array}$$

# Zuker's Free Energy Minimization Problem

#### Definition (RNA Structure Prediction (by Energy Minimization))

• IN: RNA sequence *S* 

OUT: non-crossing RNA structure of S

$$\operatorname{argmin}_{P \text{ of } S} E(P)$$

#### Remark

- actually  $E_S(P)$ : energy of P also depends on S.
- → assume S fix.
- efficient solution: again DP
- → necessary differences to Nussinov?
- → define DP by recursion equations



### Matrices for Zuker

**In general:** Each matrix entry contains the best free energy for subsequence  $S_i \dots S_j$ 

#### Definition

For minimizing the energy the following matrices are applied:

$$V_{i,j} = \min \left\{ \begin{array}{l} E(P) & P \text{ structure of } S_i \dots S_j \\ \text{and } (i,j) \in P \end{array} \right\}$$

$$WM_{i,j} = \min \left\{ \begin{array}{l} E(P) & P \text{ structure of } S_i \dots S_j \\ \text{and } S_i \dots S_j \text{ is real part of a multiloop} \end{array} \right\}$$

$$W_i = \min \left\{ \begin{array}{l} E(P) & P \text{ structure of } S_1 \dots S_i \end{array} \right\}$$



## Recursion



# recursion for $V_{i,i}$

 $V_{i,j}$ : (i,j) closes either hairpin, stacked, internal loop or multiloop

```
Thus V_{i,j} = \text{minimum over}
```

```
\begin{cases} eS(i,j,i+1,j-1) + V_{i+1,j-1} \\ & \min_{i < i' < j' < j, \ i'-i+j-j' > 2} \end{cases} \{eL(i,j,i',j') + V_{i',j'}\}
   \min_{i+1 < k < j} \quad \{WM_{i+1,k} + WM_{k+1,j-1} + a\}
```



$$\Rightarrow$$

$$V_{i,j}$$

$$\Rightarrow$$

V:: +

# Recursion for WM<sub>i,i</sub>

- $WM_{i,j} \Rightarrow S_i \dots S_j$  is **part** of a multiloop ((i,j) no external basepairing!)
- multiloop must be split at least once, otherwise simple internal loop
- Idea cut parts of multiloop until only helices are left over
   ⇒ WM<sub>i,i</sub> = minimum over

```
\left\{\begin{array}{l} WM_{i+1,j}+c\\WM_{i,j-1}+c\\\\ \min_{i< k\leq j} \quad \left\{WM_{i,k}+WM_{k+1,j}\right\}\\\\ V_{i,j}+b \end{array}\right\}
```



### Remark

Is it guaranteed that recursion

$$V_{i,j} \Rightarrow \min_{i+1 < k < j} \left\{ WM_{i,k} + WM_{k+1,j} + a \right\}$$

produces at least 2 helices?

for that: new WM recursion:

$$WM_{i,j} = \min \left\{ \begin{array}{l} WM_{i+1,j} + c \\ WM_{i,j-1} + c \\ \min_{i < k < j} \{WM_{i,k} + \bigvee_{k+1,j}\} \\ V_{i,j} + b \end{array} \right\}$$

Other possibilities?



### Recursive Calculation of W-Matrix

• so far: several parallel helices only in multiloops

 $\Rightarrow$  here case of no closing base pair

Rekursionsgleichung für W<sub>i</sub>:

$$W_i = \min \left\{ \begin{array}{l} W_{i-1} \\ \min\limits_{0 \le k < i} \{W_k + V_{k+1,i}\} \end{array} \right.$$



# Complexity

|                   | space    | time     |
|-------------------|----------|----------|
| W-matrix          | O(n)     | $O(n^2)$ |
| <i>WM</i> -matrix | $O(n^2)$ | $O(n^3)$ |
| V-matrix          | $O(n^2)$ | $O(n^4)$ |

### Total complexity?

#### Remark

reason for n<sup>4</sup>:

```
number of runs 1 \le i' < j' \le n is given by:
for i' = 1 there are n - 1 values for j'
for i' = 2 there are n - 2 values for j'
\#(i',j') = \sum_{j'=1}^{n'} j' = \frac{n'(n'-1)}{2}, where n' = n - 1.
```

• in practice:  $O(n^4)$  too expensive: restrict loop size. Which loop? Consequence?



## How to get MFE structure?

As usual: by Traceback.

- Traceback similar to Nussinov, however 3 matrices/states
- use stack of entries (i,j,s)
- meaning of stack entry: determine base pairs in structure of  $S_i \dots S_j$ , when starting from matrix/state s



### Programs:

- Zukers Mfold
- Vienna RNA Package
- Example:



# Example: tRNAs

Mouse tRNA-ALA:



Mouse tRNA-CYS:





## Problem of suboptimal Structures

- RNA structures variable
- ⇒ energy minimization does not always give correct result
- ⇒ structure with minimal energy only a high probable one
  - How probable is a structure?
  - in the following:  $\mathcal{P} = \{P_1, \dots, P_m\}$  set of all RNA structures with given sequence S
  - $E(P_i)$  is free energy of structure  $P_i$
  - wanted:
    - probability  $p_i$  that S is structure of  $P_i$
    - Problem: How to measure quality of distribution?
    - Wanted: distribution, which makes least number of unproven assumption
      - $\Rightarrow$  requires measurement for the information content of a distribution
    - Solution: maximum entropy



## Excursion: Entropy

- given probability space  $\Omega = \{e_1, \dots, e_n\}$  $p_i$  is probability for event  $e_i$
- 2 persons A,B A knows which event  $\Omega$  occured B used yes/no question to determine this event
- entropy measures the complexity of this situation, i.e., how much the information of A worth is
- $H_0(\vec{p}) = \text{number of yes/no questions for } A$ , which B must use to determine the real event, given known (by B) distribution  $\vec{p}$



### **Problem**

• all possible distributions for  $\Omega$  of size 2 have two possible entropy values:  $\Rightarrow$  not fine enough

### Example

Consider  $\Omega = \{e_1, e_2\}$  and the following 2 distributions:

- $\vec{p_1} = (1,0) \Rightarrow B$  doesn't need to ask, i.e.  $H_0(\vec{p_1}) = 0$
- $\vec{p_2} = (\frac{1}{2}, \frac{1}{2}) \Rightarrow B$  asks: "Is it  $e_1$ ?", i.e.  $H_0(\vec{p_2}) = 1$
- $\vec{p_3} = (0.9999, 0.0001 \Rightarrow H_0(\vec{p_3}) = 1$ 
  - $\Rightarrow$  B cannot benefit from his knowledge about the distribution



# Now: k-times Independent Iteration

• for  $\vec{p_3} = (0.9999, 0.00001)$ : possible advantage from fact that the result is nearly always  $e_1$ :



 then the expected number of questions for two consecutive events is:

$$E[Quest.] = 0.9999^2 \cdot 1 + 0.9999 \cdot 0.0001 \cdot 2 + 0.0001 \cdot 0.9999 \cdot 3 + 0.0001^2 \cdot 3 = 1.0003$$



# Real and Ideal Entropy

### Definition (Real Entropy)

The real entropy  $H_0^k(\vec{p})$  for k-times iteration of  $\vec{p}$  is defined as the minimal number of questions that have to be asked on average to determine the sequence of k events (given an optimal strategy for performing the questions), divided by k

### Definition (Ideal Entropy)

The ideal entropy of a distribution  $\vec{p} = (p_1, \dots, p_m)$  is defined by

$$H(\vec{p}) = -\sum_i p_i \log p_i$$

#### **Theorem**

(Shannon)

$$H(\vec{p}) = \lim_{k \to \infty} H_0^k(\vec{p})$$

