```
In [1]:
         !dir
         #!pip install openpyxl
         !python.exe -m pip install --upgrade pip
         Volume in drive E is Kingston-SSD
         Volume Serial Number is D895-0755
         Directory of E:\WPU\Final_internship
        28-02-2023 18:45
                            <DIR>
        23-02-2023 23:13
                            <DIR>
        28-02-2023 17:13
                            <DIR>
                                           .ipynb_checkpoints
        10-04-2022 17:25
                                   737,063 EDA_EmployeeAttrition_Amitkumar.ipynb
        28-02-2023 18:45
                                   246,458 EDA_Employee_Performance.ipynb
        23-02-2023 23:14
                                       511 New Text Document.txt
        28-02-2023 16:40
                                 1,565,147 Test_data.csv
        28-02-2023 16:40
                                 3,759,647 Train_data.csv
                       5 File(s) 6,308,826 bytes
                       3 Dir(s) 196,329,910,272 bytes free
        Requirement already satisfied: pip in c:\users\amit pc\appdata\local\programs\python\python37\lib\site-packages (23.0.1)
```

Loading data

```
import pandas as pd
train_data = pd.read_csv("Train_data.csv")
train_data.head()

test_data = pd.read_csv("Test_data.csv")
test_data.head()
```

Out[2]:	emp	oloyee_id	department	region	education	gender	recruitment_channel	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	awards_won?	avg_training_score
	0	8724	Technology	region_26	Bachelor's	m	sourcing	1	24	NaN	1	1	0	77
	1	74430	HR	region_4	Bachelor's	f	other	1	31	3.0	5	0	0	51
	2	72255	Sales & Marketing	region_13	Bachelor's	m	other	1	31	1.0	4	0	0	47
	3	38562	Procurement	region_2	Bachelor's	f	other	3	31	2.0	9	0	0	65
	4	64486	Finance	region_29	Bachelor's	m	sourcing	1	30	4.0	7	0	0	61

Data Info

```
RangeIndex: 54808 entries, 0 to 54807

Data columns (total 14 columns):

# Column Non-Null Count Dtype
------
0 employee_id 54808 non-null int64
1 department 54808 non-null object
2 region 54808 non-null object
3 education 52399 non-null object
```

```
recruitment channel
                                   54808 non-null object
                                   54808 non-null int64
             no_of_trainings
         6
                                   54808 non-null int64
         7
                                  50684 non-null float64
         8
             previous_year_rating
                                   54808 non-null int64
         9
             length_of_service
         10 KPIs_met >80%
                                   54808 non-null int64
         11 awards_won?
                                   54808 non-null int64
         12 avg_training_score
                                   54808 non-null int64
                                   54808 non-null int64
         13 is_promoted
        dtypes: float64(1), int64(8), object(5)
        memory usage: 5.9+ MB
In [4]:
         train_data.dtypes
Out[4]: employee_id
                                  int64
        department
                                 object
        region
                                 object
        education
                                 object
        gender
                                 object
        recruitment_channel
                                 object
        no_of_trainings
                                  int64
                                  int64
        age
        previous_year_rating
                                float64
        length_of_service
                                  int64
        KPIs met >80%
                                  int64
        awards_won?
                                  int64
        avg_training_score
                                  int64
        is_promoted
                                  int64
        dtype: object
       Data Cleaning
In [5]:
         #Checking for NULL values
         train_data.isna().sum()
Out[5]: employee_id
                                   0
        department
                                   0
        region
                                2409
        education
        gender
        recruitment_channel
        no of trainings
        previous_year_rating
                                4124
        length of service
        KPIs met >80%
        awards won?
                                   0
        avg_training_score
                                   0
        is promoted
        dtype: int64
In [6]:
         # Replacing NAs in education by 'Other'
         train_data['education'] = train_data['education'].fillna('Other')
         test_data['education'] = test_data['education'].fillna('Other')
In [7]:
         # Replacing NAs in previous_year_rating by '0'
         train_data['previous_year_rating'] = train_data['previous_year_rating'].fillna(0)
         test_data['previous_year_rating'] = test_data['previous_year_rating'].fillna(0)
```

54808 non-null object

4

gender

```
In [8]:
         # All NULL values are gone
          train_data.isna().sum()
Out[8]: employee_id
         department
         region
         education
         gender
         recruitment_channel
         no_of_trainings
         previous_year_rating
        length_of_service
         KPIs_met >80%
         awards_won?
                                0
         avg_training_score
                                0
         is_promoted
         dtype: int64
          # Checking for duplicates
          train_data.duplicated().sum()
Out[9]: 0
In [10]:
          # Dropping employee_id since it is redundant
          train_data = train_data.drop(["employee_id"], axis=1)
          test_data = test_data.drop(["employee_id"], axis=1)
        Checking for column types
```

```
import numpy as np

numeric_columns = list(train_data.select_dtypes(include=np.number).columns)
categorical_columns = list(train_data.select_dtypes(include="object").columns)
```

Numeric Columns

In [12]: train_data[numeric_columns].describe()

Out[12]:		no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	awards_won?	avg_training_score	is_promoted
	count	54808.000000	54808.000000	54808.000000	54808.000000	54808.000000	54808.000000	54808.000000	54808.000000
	mean	1.253011	34.803915	3.078748	5.865512	0.351974	0.023172	63.386750	0.085170
	std	0.609264	7.660169	1.496458	4.265094	0.477590	0.150450	13.371559	0.279137
	min	1.000000	20.000000	0.000000	1.000000	0.000000	0.000000	39.000000	0.000000
	25%	1.000000	29.000000	2.000000	3.000000	0.000000	0.000000	51.000000	0.000000
	50%	1.000000	33.000000	3.000000	5.000000	0.000000	0.000000	60.000000	0.000000
	75%	1.000000	39.000000	4.000000	7.000000	1.000000	0.000000	76.000000	0.000000
	max	10.000000	60.000000	5.000000	37.000000	1.000000	1.000000	99.000000	1.000000

```
In [13]:
           train_data[categorical_columns].describe()
Out[13]:
                                   region education gender recruitment_channel
                      department
                                                                          54808
           count
                           54808
                                    54808
                                               54808
                                                      54808
                               9
                                       34
                                                          2
                                                                             3
          unique
             top Sales & Marketing
                                  region_2
                                           Bachelor's
                                                                          other
                                                                         30446
                           16840
                                    12343
                                              36669
                                                      38496
            freq
```

Categorical Column Data Analysis

IndexError: index 4 is out of bounds for axis 0 with size 4

```
import matplotlib.pyplot as plt
import seaborn as sns

fig, ax = plt.subplots(2,2, figsize = (16,15))

ax = np.ravel(ax)
for i in range(len(categorical_columns)):
    sns.countplot(data = train_data, x = categorical_columns[i], ax = ax[i], palette="Set2")
    ax[i].set_xticklabels(labels = train_data[categorical_columns[i]].unique(), rotation=90, ha='right')
    ax[i].set_title(label = "Analysis for "+categorical_columns[i],fontsize=16)
    ax = np.reshape(ax, (2, 2))
    plt.tight_layout()
```


One Hot Encoding for Categorical Data

```
In [15]:
          from sklearn.preprocessing import LabelEncoder
          label_encoder = LabelEncoder()
          train_data["department"] = label_encoder.fit_transform(train_data["department"])
          train data["region"] = label encoder.fit transform(train data["region"])
          train_data["education"] = label_encoder.fit_transform(train_data["education"])
          train_data["gender"] = label_encoder.fit_transform(train data["gender"])
          train_data["recruitment_channel"] = label_encoder.fit_transform(train_data["recruitment_channel"])
In [16]:
          X = train data.loc[:, train data.columns != "is promoted"].copy()
          y = train data.loc[:, "is promoted"].copy()
          y = label encoder.fit transform(y)
          y = pd.DataFrame(y, index= train_data.index, columns=["is_promoted"])
          categorical_cols_features = list(X.select_dtypes(include="object").columns)
In [17]:
          # Data After Encoding
          X.head()
Out[17]:
            department region education gender recruitment_channel no_of_trainings age previous_year_rating length_of_service KPIs_met >80% awards_won? avg_training_score
                          31
                                                                                                  5.0
                                                                                                                                                             49
         0
                                                                            1 35
```

5.0

3.0

1.0

3.0

0

0

0

0

7

10

2

0

0

0

0

60

50

50

73

Feature Importance

7

8

14

10

15

18

Getting the feature importance for every column with respect to Target variable

1

0

0

0

2

0

0

1 30

1 34

2 39

1 45

Correlation Matrix

```
#get correlations of each features in dataset
corrmat = train_data.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(12,10))
#plot heat map
g=sns.heatmap(train_data[top_corr_features].corr(),annot=True,cmap="RdYlGn")
```


Inference

- From categorical importance we can infer that there is a hugh class imbalance in all the 4 attributes
- From the feature importance and Correlation Matrix we understand the importance of each attribute among which avg_training_score scores the highest
- All preprocessing steps are performed and after performing EDA in this module are data is ready to train under a classifier