Biçimsel Diller ve Otomata Teorisi

Hafta 6: Düzenli İfadeler (I. Bölüm)

Hafta 6 Plan

- 1. Düzenli Diller
- 2. Düzenli Operatörler
- 3. Düzenli İfade Örnekleri
 - i. R'den L'ye
 - ii. L'den R'ye
- 4. Online Düzenli İfade Programları
- 5. Sonlu Otomatalardan Düzenli İfadelere

Düzenli İfadeler (Regular Expressions) (Regex)

- Düzenli ifadeler otomatalar gibi <u>dilleri ifade etmenin bir yoludur</u>. Fakat otomatalar daha makine gibi iken, düzenli ifadeler, daha çok program sintaksı gibidir. Hatta düzenli ifadeler metin içi arama yapmak icin kullanılan bir programlama dili olarak düşünülebilir.
- → Düzenli ifadeler aslında sonlu otomataya denktir; sonlu otomatalarda duzenli ifadelere denktir (Kleene Teoremi)
- Duzenli ifadeler ve sonlu otomata birlikte düşünüldüğünde

'Düzenli Diller' (Regular Languages) oluştururlar.

Düzenli Diller (Regular Languages)

Düzenli diller, özyinelemeli (recursive) olarak tanımlanır:

 Σ , alfabesini kullanarak L düzenli dilini oluşturalım.

- 1. Temel: ε (boş kelime) L dilinin elemanıdır.
- 2. Tümevarım: her $w \in L$, her $k \in \Sigma$, için $wk \in L$ dir.

ör. $\Sigma = \{0,1\}$ olsun. Bu alfabeden üretilecek düzenli dil.

1.
$$L = \{\varepsilon\}$$

2.
$$\varepsilon \in L$$
, için $\varepsilon 0 = 0 \in L$
$$\varepsilon 1 = 1 \in L$$

$$L = \{\varepsilon, 0, 1\}$$

3. 0
$$\epsilon L$$
, için ,00 ϵL
01 ϵL
1 ϵL , için ,10 ϵL
11 ϵL

4.

Düzenli Operatörler (Regular Operations)

Düzenli ifadeler, düzenli operasyonlar kullanılarak inşa edilirler. Bu operasyonlar 3 tanedir.

L ve M iki dil olsun.

1. Birleşim (Union): $L \cup M = \{x \mid x \in L \lor x \in M\}$ (Birleşimin, elemanları ya L'nin, ya M'nin, yada her ikisinin birden elemanıdır).

Not bazı kaynaklarda birleşim işareti olarak '+' kullanılıyor.

2. Bitiştirme (Concatenation): $LM = L \circ M = \{xy \mid x \in L \land y \in M\}$ (Bitiştirmenin elemanları L'den ve M'den birer elemanın yanyana getirilmesiyle oluşur.)

ör. L = $\{0, 01\}, M = \{\varepsilon, b, bb\}; LM = \{0, 0b, 0bb, 01, 01b, 01bb\}$

3. Yıldız (Kleene Star): $L^* = \{ x_1 x_2 ... x_k | k \ge 0, \forall x_i \in L \}$

Yani L^* 'ın elemanları, L'nin herhangi elemanlarının herhangi sayıda bitiştirilmesiyle oluşur.

Yıldız (Kleene Star)

ör.
$$L = \{0,1\}$$
 iken $L^* = \{\varepsilon, 0, 1, 00, 11, 01, 10, 000, 111, 011, 101, \}...$

ör. $L = \{iyi, kötü\}$

 $L^* = \{\varepsilon, iyi, kötü, iyiiyi, kötükötü, iyikötü, kötüiyi, iyiiyiiyi, ...\}$

Not 1. L dili ne olursa olsun L^* her zaman boş kelime ε içerir.

Not 2. 1. hafta notlarından Σ^* 'ı hatırlayın. Σ^* , Σ alfabesinin <u>harfleri</u> kullanılarak oluştulabilecek bütün kelimerin kümesi idi. Aynı şekilde L^* ' da, L dilinin <u>kelimeleri</u> kullanılarak oluştulabilecek bütün kelimerin kümesidir.

ör.
$$L = \{0,11\}$$
 iken $L^2 = \{00,1111,011,110.\}$

11 elemanı iki defa tekrar ediyor!

ör. $A = \{0\}$ ise $A^* = \{\varepsilon, 0, 00, 000, 0000, 00000, \dots\} = 0^*$

Not. Düzenli ifadelerde daha çok tek harfli diller, örneğin $A = \{0\}$ (yada bunu direk 0 ile göstereceğiz) ve bu tek harfli dillerin yukanda saydığımız operatörler yardımıyla oluşturdukları <u>yeni dillerle</u> ilgileneceğiz, örneğin, 0 ve 1 dilleriyle oluşturulmuş 0 \cup 1* dili.

<u>Düzenli Operasyonların İşlem Sırasi:</u>

1. Yıldız, 2. Bitiştirme ,3. Birleşim ($* > \circ > \cup$) \mathcal{E} , \mathcal{C} , \mathcal{CC} , \mathcal{CCC} , \mathcal{CCCC} ... b, bc, bcc, bccc, bcccc ... $\{a, b, bc, bcc, bccc, bcccc...$ $a \cup bc^*$ dilinin kelimeleri ör. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimelerden sonu '101' ile biten kelimeleri kabul eden determinstik ve nondeterminstik sonlu otomatalar ve duzenli ifade:

Nondeterministik Sonlu Otomata

$$R = (0 \cup 1) *101$$

Düzenli Ifade

Düzenli İfade Örnekleri - I (R'den L'ye):

 R= (0∪1)01*: 0 yada 1 ile başlayan, ikinci harfi 0 olan, sonra (varsa) tüm harfleri 1 olan kelimelerin dilini ifade eden düzenli ifade. Bu dil şu şekilde gösterilebilir:

```
L = \{00,10,001,101,0011,1011,00111,10111, ...\}
```

- 2. $R=0*10*=\{\varepsilon,0,00,000,...\}\{1\}\{\varepsilon,0,00,000,...\}$ = $\{\varepsilon1\varepsilon,\varepsilon10,\varepsilon100,...,01\varepsilon,010,0100,...,001\varepsilon,0010,...\}$ = $\{1,10,100,...,01,010,0100,...,001,0010,...\}$ = $L=\{w|w \text{ yalnızca 1 defa 1 içerir}\}.$
- 3. Σ =0,1iken R= Σ *1 Σ *={0,1}*1{0,1}* R={ ϵ ,0,1,00,11,01,10,000} {1} { ϵ ,0,1,00,11,01,10,000, ...} R={1 10 11,100,..., 01,010,0100,...,11,110,111,1100...} =L ={w|w en az 1 defa 1 içerir}.

Düzenli İfade Örnekleri - I (R'den L'ye):

- 4. $R=((0\cup 10\cup 1))^*=(\{0,1\}\{0,1\})^*=\{00,01,10,11\}^*$ = $\{\varepsilon,00,01,10,11,0000,0101,1010,1111,0001,...,000110,...\}$ = $L=\{w|w'$ nun uzunluğu çift sayıdır. $\}$.
- 5. $\Sigma = \{a,b,c,...,z\}$ olsun. Bu durumda $\Sigma^* = \{\varepsilon,a,..z,aa,...zz,ab,...,az,...,bct,...,sampiyon,...\}$
- Σ alfabesiyle oluşturulabilecek tüm kelimelerin kümesi olur. Böylece

$$R=\Sigma^*$$
sivas Σ^*

içinde 'sivas' altkelimesi gecen tüm kelimelerin dilini temsil eder.

Düzenli İfade Örnekleri - II (L'den R'ye):

1. $L = \{w \mid w \text{ yalnizca 2 defa 0 içerir}\}$. Bu durumda L'nin kelimeleri su formda olur:

$$1...101...101...1$$

$$1* 1* 1*$$

$$R = 1*01*01*$$

2. $L = \{w | w' \text{nun ilk ve son harfi aynidir}\}.$

Dusunmemiz gereken durumlar:

- i. 0 ile baslayip 0 ile biten kelimeler: $0\Sigma^*0$
- ii. 1 ile baslayip 1 ile biten kelimeler: $1\Sigma^*1$
- iii. 0 kelimesi
- iv. 1 kelimesi

Su halde cevap bu dört durumun birleşimidir:

$$R = 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$$

Düzenli İfade Örnekleri - II (L'den R'ye):

- 3. $L = \{w \mid w' \text{da yanyana 0 ve yanyana 1 olmaz}\}$. Bu durumu saglayan dort durum vardir:
 - i. 01010101 ...=(01)* (0 ile baslayip 1 ile bitenler)
 - ii. 010101 ...0 = (01)*0 (0 ile baslayip 0 ile bitenler)
 - iii. $10101010...=(10)^*$ (1 ile baslayip 0 ile bitenler)
 - v. 101010 ... $1 = (10)^*1$ (1 ile baslayip 1 ile bitenler)

cevap bu dort durumun birlesimidir:

$$R = (01)^* \cup (01)^* \cup (10)^* \cup (10)^* 1$$

Online Düzenli İfade Programları

Oluşturdugumuz duzenli ifadeleri aşagidaki online programlari kullanarak test edebiliriz

- http://regex101.com
- http://rubular.com

Not. Bu programlarda { } icin [];birleşim ∪ için |kullanın.

Düzenli İfadelerin Gercek Hayattaki Kullanımları

- Düzenli İfadeler, Linux, Perl, Python gibi dillerde kaynak kodun program sintaksina uygunlugu kontrol edilirken derleyici (compliler) tarafından kullanılırlar.
- Kullanıcı tarafından girilen email adresinin istenilen formata uygunluğu test edilirken kullanılırlar. Bunun için kullanılan düz. İfade aşaği yukarı şöyle bir şeydir:

Uygulama Alanları

Arama motorları

- Bilgi edinim (Information retrieval)
- Kelime işleme (Word processing)
- Derlem (corpus) içinde frekans hesaplama
- Veri doğrulama (Data validation)
- Sözdizim belirginleştirme (Syntax highlighting)

•

Kullanım Amaçları

- Nasıl yazıldığını tam olarak bilmediğimiz bir sözcüğü aratabiliriz.
- Bir metnin içindeki, özel bir forma uyan parçaları bulabiliriz.
- Aldığımız bir metnin, belli bir yapıya uyup uymadığını kontrol edebiliriz.
- Belli formatta aldığımız bir veriyi, istediğimiz başka bir formata çevirebiliriz.

Sonlu Otomatalardan Duzenli Ifadelere

Daha once gordugumuz sonlu otomatalari (DFA, NFA) düzenli ifadelerle gosterebiliriz.

