Estimating Respondents by State of 2022 ACS USA*

Ziqi Zhu Yuanchen Miao

October 3, 2024

Table of contents

1	Introduction	1
2	Obtain Data	1
3	Overview of ratio estimators approach	2
4	Our estimates and the actual number of respondents.	2
5	Possible reasons of the difference	4
Re	eferences	5

1 Introduction

The R programming language (R Core Team (2023)), dplyr(Wickham et al. (2023)), and (Müller and Wickham (2023)) were used to estimate data and generate tables, package (Xie (2023)) and (Zhu (2024)) is used for adding caption to table. The data were gathered from USA (n.d.).

^{*}Code and data are available at: https://github.com/zzq20010617/2022ACS

2 Obtain Data

The data is obtained from the IPUMS USA(USA n.d.), the sample of 2022 only is selected from all of the samples, and "GEOGRAPHIC" and "EDUCATION" are selected in harmonized variables to get variables of "STATEICP" from "GEOGRAPHIC" and "EDUCD" from "EDUCATION". By using the code book, we are able to find out which state is the code of stateicp presents and what degree is the code of educd presents. The format of the data downloading from IPUMS USA has been changed to CSV files. This table Table 1 shows the first several rows of the data we use.

Table 1: 2022 ACS respondent state and educated level

STATEICP	EDUCD	
41	71	
41	64	
41	26	

Then we can filter by doctoral degree by EDUCD and get the number for each STATEICP as Table 2 shows, the number of California (STATEICP=71) shows in Table 3

Table 2: doctoral respondents number of each state in USA 2022

STATEICP	doctoral_respondents
1	600
2	165
3	2014
4	244
5	177

Table 3: Doctoral Respondents number in California 2022

STATEICP	$doctoral_respondents$
71	6336

3 Overview of ratio estimators approach

The ratio estimator is found by first filtering the doctor degree out from all of the respondents by reducing all the other rows which do not have the code of "EDUCD" equal to 116 (where

116 is the doctor degree according to the codebook of IPUMS USA) then we use the method group_by STATEICP to gather the number of doctor degrees together with the same stateicp. Then, by checking the code book, we find the row with stateicp equal to 71, California, and divide the number of doctor degrees in California with the total number of respondents given by Rohan to obtain the ratio estimators

4 Our estimates and the actual number of respondents.

Our estimates and actual number for all states is shown in following table Table 4

Table 4: estimate and actual respondents of each state in USA 2022

$actual_total_respondents$	$estimated_total$	$doctoral_respondents$	STATEICP
37369	37042.708	600	1
14523	10186.745	165	2
73077	124340.024	2014	3
14077	15064.035	244	4
10401	10927.599	177	5
6860	8087.658	131	6
9641	9384.153	152	11
93166	88779.024	1438	12
203891	174656.370	2829	13
132605	100015.312	1620	14
128046	89952.043	1457	21
69843	38277.465	620	22
101512	61182.207	991	23
120666	74888.009	1213	24
61967	31671.516	513	25
33586	15928.365	258	31
29940	19817.849	321	32
58984	35314.049	572	33
64551	38339.203	621	34
19989	9445.891	153	35
8107	3704.271	60	36
9296	4383.387	71	37
88761	94520.644	1531	40
51580	28399.410	460	41
31288	15496.200	251	42
217799	168606.061	2731	43
109349	89581.616	1451	44
45040	27782.031	450	45

Table 4: estimate and actual respondents of each state in USA 2022

actual_total_respondents	$estimated_total$	$doctoral_respondents$	STATEICP
29796	16237.054	263	46
109230	87729.481	1421	47
54651	39944.387	647	48
292919	198548.917	3216	49
46605	27658.556	448	51
62442	99274.458	1608	52
39445	17348.335	281	53
72374	51921.530	841	54
18135	9816.318	159	56
74153	55317.111	896	61
59841	63651.720	1031	62
19884	10804.123	175	63
11116	6976.377	113	64
30749	17410.073	282	65
20243	21608.247	350	66
35537	26423.799	428	67
5962	4445.125	72	68
391171	391171.000	6336	71
43708	39944.387	647	72
80818	73776.727	1195	73
6972	3148.630	51	81
14995	13211.899	214	82
6718	19200.470	311	98

5 Possible reasons of the difference

The primary reason for discrepancies is the varying levels of educational attainment across states. States with more urban areas and a higher concentration of educational institutions often have a greater proportion of respondents with doctoral degrees compared to California. In such cases, applying California's ratio will result in an overestimation of the total number of doctoral degree holders, like Massachusetts Table 5. Conversely, states with fewer educational institutions or lower educational attainment levels will produce an underestimate.

Another contributing factor is population composition. Differences in population size and demographics can affect the distribution of educational attainment. For example, states with a larger number of immigrants or international students may have more individuals pursuing doctoral degrees. Additionally, states with older populations are more likely to have a higher

ratio of residents holding doctoral degrees, as advanced degrees are often obtained later in life.

Table 5: Doctoral respondents, and estimate/actual respondents in Massachusetts 2022

	STATEICP	doctoral_respondents	estimated_total	actual_total_respondents
3	3	2014	124340	73077

References

- Müller, Kirill, and Hadley Wickham. 2023. *Tibble: Simple Data Frames.* https://CRAN.R-project.org/package=tibble.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- USA, IPUMS. n.d. "Variables by Group." University of Minnesota. https://usa.ipums.org/usa-action/variables/group%7D.
- Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023. Dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org.
- Xie, Yihui. 2023. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://CRAN.R-project.org/package=knitr.
- Zhu, Hao. 2024. kableExtra: Construct Complex Table with 'Kable' and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.