Programmation d'un drone pour la photogrammétrie

Q. ANDRE P. VAN ISEGHEM B. DARNALA E. DUVERGER

Encadrante : Hinde BOUZIANE Département Informatique

5 Juin 2019

Objectifs

Objectifs principaux:

- Prendre des photos exploitables
- Avoir une trajectoire sécurisée

Orientation du projet :

- Programmation d'une trajectoire dynamique
- Production d'un plan de vol

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- Discussion et perspectives

Le Drone

DJI Phantom 3 SE 4K

- Autonomie de vol : 20 minutes
- Poids: 1 236 grammes
- Précision verticale : ± 0,5 mètre (en utilisant les données GPS)
- ullet Précision horizontale : \pm 1,5 mètre (en utilisant les données GPS)

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- 4 Discussion et perspectives

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- 4 Discussion et perspectives

Principe de l'algorithme manuel de génération de plan de vol

Entrée:

- Une hauteur maximum H
- Un ensemble de points de passage E

Sortie:

Un plan de vol P

Objectifs de l'algorithme

- Prendre en charge automatiquement le déplacement des points
- Calculer automatiquement l'orientation du drone
- Générer un plan de vol viable

- Identifier une scène à modéliser
- Définir les points de passage à partir de google map
- Récupérer les points choisis

Représentation de la structure

Ajout des points choisis par l'utilisateur

Définition de la distance maximale possible entre les points

Définition de la distance de sécurité et création du cercle de parcours

Projection des points sur le cercle de parcours

Calcul d'un azimut et projection d'un point

- Azimut : angle entre deux vecteurs
- Valeur des azimuts : de - 180° à 180°
- Azimut Nord en tant que direction de référence et sens horaire pour la rotation

Gestion de la hauteur

- Gestion par étage des points de passage
- Conservation de la répartition des points placés précédemment


```
Données : E un ensemble de points de passage, H la hauteur de l'objet
EFinal \leftarrow null;
pour i < taille(E) faire
     pour i < taille(E) faire
          d \leftarrow distanceMax(E(i), E(j));

Amax \leftarrow E(i); Bmax \leftarrow E(j);
     fin
fin
dSecu \leftarrow d + distanceSecurité:
g \leftarrow getMiddle(Amax, Bmax);
pour i < H faire
     décollage pour i < taille(E) faire
           az \leftarrow getAzimut(g, j); azInverse \leftarrow getazimut(j, g);
           F \leftarrow projectionPoint(g, dSecu, az);
           EFinal \leftarrow add(F, H);
     fin
fin
```

Résultat: Efinal, un ensemble de points de passage

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- 4 Discussion et perspectives

Objectif de la méthode de génération automatique des points de passage

- Minimiser le nombre d'action de l'utilisateur
- Calcul automatique de l'emplacement des points de passage
- Calcul automatique de l'orientation du drone
- Répartition équitable des points de passage autour de l'objet

Positionnenement du drone

Calcul de l'angle entre chaque points de passage

Projection du nouveau point de controle

Réitération pour chaque point de passage

Réitération pour chaque point de passage

Production du plan de vol

Algorithme 1: Plan de vol hélicoïdal

Données: N le nombre de photos voulues, H la hauteur de l'objet, DO la distance drone-objet, T le nombre de tour de l'hélice $A \leftarrow Orientation du drone$: DRONE ← Coordonées GPS du drone: $OBJET \leftarrow projectionPoint(DRONE, A, DO, 0);$ $Pas_angle \leftarrow \frac{T \times 2 \times \pi}{N}$: $A \leftarrow A + \pi$: $i \leftarrow 0$: $WaypointList \leftarrow \{\};$ tant que i < N faire $A \leftarrow A + Pas_angle$: WaypointList[i] \leftarrow projectionPoint(OBJET, A, DO, $\frac{i \times H}{N}$); $WaypointList[i] \longrightarrow Corriger I' orientation du drone;$ $WaypointList[i] \longrightarrow Prendre la photo;$ i + +:

fin

Résultat: WaypointList

Exemple de plan de vol complet

Mission complète : 32 Points de passage, 2 tours

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- 2 Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- 4 Discussion et perspectives

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- Discussion et perspectives

Connexion

Écran de connexion

- Connexion au drone
- Connexion aux serveurs de DJI

Interface/Vol du Drone

Fonctionnement:

- Décollage
- Atterrissage

Interface/Mission de waypoints

Fonctionnement:

- Manualmission / Automission
- Chargement
- Waypoint mission
- Stop

- Production d'un plan de vo
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- 4 Discussion et perspectives

Technologies

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- 4 Discussion et perspectives

Développement

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- 4 Discussion et perspectives

- Production d'un plan de vol
 - Approche Manuelle
 - Approche Automatique
- Application mobile pour le contrôle du drone
 - Interface et fonctionnalités
 - Technologies
 - Développement
- Oémonstration
- Discussion et perspectives

Discussion et perspectives

- Correction et amélioration de l'application
- Trajectoire elliptique
- Amélioration de la précision de récolte du drone