Degenne Koolen Ménard

Pure Exploratio

Lower Bound

.

Conclusion

Pure Exploration by Solving Games

Rémy Degenne, Wouter M. Koolen and Pierre Ménard

October 27, 2019

Degenne Koolen Ménard

Pure Exploration

Lower Bound

Results

Conclusio

Main recipe

Take two adversarial strategies for regret minimization.

Add optimism.

Get one stochastic bandit algorithm for pure exploration.

Paper: R.D., Wouter M. Koolen and Pierre Ménard, Non-Asymptotic Pure Exploration by Solving Games, NeurIPS 2019. _____

0

Result

Conclusio

Pure Exploration

Usual Queries

- Best Arm Identification
- Thresholding Bandit

Our setting

- Bandit parametrized by means $\mu \in \mathcal{M} \subset \mathbb{R}^K$.
- Answers \mathcal{I} . Correct answer function $i^* : \mathcal{M} \to \mathcal{I}$.
- Fixed confidence $\delta \in [0, 1]$.
- Algorithm stops at time τ_{δ} , returns $\hat{\imath}$.

Goal: δ -correct algorithm, such that

$$\forall \mu \in \mathcal{M} \quad \mathbb{P}_{\mu}(\hat{\imath} \neq i^*(\mu)) \leq \delta \;, \qquad \mathbb{E}_{\mu} \, \tau_{\delta} \; \text{is minimal}.$$

Degenne Koolen Ménard

Pure Exploration

Lower Bour

Algorithr

Results

Conclusion

Pure Exploration

Degenne Koolen Ménard

Pure Exploration

20110. 20

Algorithm

December

Conclusio

Pure Exploration

This talk: about sampling rules.

Use GLRT stopping rule from Garivier and Kaufmann, 2016.

Degenne Koolen Ménard

Lower Bound

Lower Bound

Any δ -correct algorithm on \mathcal{M} must verify for all $\mu \in \mathcal{M}$,

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \max_{\boldsymbol{w} \in \triangle_{K}} \inf_{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{k=1}^{K} w^{k} d(\mu^{k}, \lambda^{k}) \geq \mathsf{kl}(\delta, 1 - \delta)$$

Sample complexity: what is

"minimal"?

$$\neg i = \{ \lambda \in \mathcal{M} : i^*(\lambda) \neq i \}.$$

Degenne Koolen Ménard

Pure Exploration

Lower Bound

Algorithn

Results

Conclusio

Sample complexity: what is "minimal"?

Lower Bound

Any δ -correct algorithm on ${\mathcal M}$ must verify for all ${\boldsymbol \mu} \in {\mathcal M}$,

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}] \max_{\boldsymbol{w} \in \triangle_{K}} \inf_{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{k=1}^{K} w^{k} d(\mu^{k}, \lambda^{k}) \geq \log \frac{1}{\delta}$$

$$\neg i = \{ \lambda \in \mathcal{M} : i^*(\lambda) \neq i \}.$$

Degenne Koolen Ménard

Pure Exploration

Lower Bound

Algorithm

resures

Conclusio

Follow the lower bound: attempt 1 Track and Stop

Compute estimated problem $\hat{\mu}_t$.

Compute the solution \boldsymbol{w}_t^* to

$$\underset{w \in \triangle_K}{\operatorname{argmax}} \inf_{\boldsymbol{\lambda} \in \neg i^*(\hat{\boldsymbol{\mu}}_t)} \sum_{k=1}^K w^k d(\hat{\boldsymbol{\mu}}_t^k, \boldsymbol{\lambda}^k) \,.$$

If an arm is sampled less than \sqrt{t} , sample it (forced exploration).

Otherwise, sample arm $k_t = \operatorname{argmin} N_{t-1}^k - (w_t^*)^k$ (tracking).

[Garivier and Kaufmann, Optimal Best Arm Identification with Fixed Confidence, 2016]

Degenne Koolen Ménard

Pure Exploratio

Lower Bound

Algorithm

0

Conclusio

Track-and-Stop

- · Asymptotically optimal,
- But sometimes only asymptotically.

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu} \, \tau_{\delta}}{\log(1/\delta)} \leq \frac{1}{\sup_{\boldsymbol{w} \in \triangle_{K}} \inf_{\boldsymbol{\lambda} \in \neg i^{*}(\mu)} \sum_{k=1}^{K} w^{k} d(\mu^{k}, \lambda^{k})} \, .$$

Degenne Koolen Ménard

Pure Exploratio

Lower Boar

Algorithm

Results

Conclusio

Follow the lower bound: attempt 2 with games!

A Game

Suppose μ , $i = i^*(\mu)$ known.

- k-Player plays in $\{1, \dots, K\}$.
- λ -Player plays in $\neg i$.
- zero-sum. reward for k-player: $d(\mu^k, \lambda^k)$.

After t iterations: reward $\sum_{s=1}^{t} d(\mu^{k_s}, \lambda_s^{k_s})$.

Algorithms

- Regret-minimizing algorithm for k: AdaHedge.
- Regret-minimizing algorithm for λ : Best-Response.
- Result: value $\frac{1}{t} \sum_{s=1}^{t} d(\mu^{k_s}, \lambda_s^{k_s})$ converges to max-min.

Degenne Koolen Ménard

Pure Exploration

Lower Bound

Algorithm

D 1

Results

Conclusio

Follow the lower bound: attempt 2

with games!

A Game

Suppose μ , $i = i^*(\mu)$ known.

- k-Player plays in $\{1, \ldots, K\}$.
- λ -Player plays in $\neg i$.
- zero-sum. reward for k-player: $d(\mu^k, \lambda^k)$.

After t iterations: reward $\sum_{s=1}^{t} d(\mu^{k_s}, \lambda_s^{k_s})$.

Algorithms

- Regret-minimizing algorithm for k: AdaHedge.
- Regret-minimizing algorithm for λ : Best-Response.
- Result: value $\frac{1}{t} \sum_{s=1}^{t} \sum_{k=1}^{K} w_s^k d(\mu^k, \lambda_s^k)$ converges to max-min.

Degenne Koolen Ménard

Algorithm

Algorithm for Pure Exploration

At stage $t \in \mathbb{N}$,

- Compute $\hat{\mu}_t$, define candidate answer i_t .
- Define game with optimistic reward $\max_{\xi \in [\hat{u}_{+}^{k} \pm ...]} d(\xi, \lambda^{k})$.
- Do 1 iteration of each learner on optimistic game.
- Sample the arm prescribed by the k-player (tracking).

And stop according to GLRT stopping rule.

Degenne Koolen Ménard

Pure Exploratio

Algorithm

Results

Conclusio

Computational Complexity

Track-and-Stop: solves one "max-min" at each stage.

$$\underset{w \in \triangle_K}{\operatorname{argmax}} \inf_{\boldsymbol{\lambda} \in \neg i^*(\hat{\boldsymbol{\mu}}_t)} \sum_{k=1}^K w^k d(\hat{\mu}_t^k, \lambda^k).$$

AdaHedge + Best-response: solves one "min" at each stage.

$$\underset{\lambda \in \neg i_t}{\operatorname{argmin}} \sum_{k=1}^K w_t^k d(\hat{\mu}_t^k, \lambda^k).$$

Examples

- Threshlolding: closed form vs closed form.
- BAI: (line search)² vs line-search.
- Many Problems (sparse, lipschitz, unimodal): complicated? vs convex.

Lower Bound

Lower Bouria

Results

Results

Conclusio

Results

For all $\mu \in \mathcal{M}$,

$$\mathbb{E}_{\mu} \, \tau_{\delta} \leq \frac{\log(1/\delta)}{\max\inf \sum_{k=1}^K w^k d(\mu^k, \lambda^k)} \left(1 + \mathcal{O}\left(\frac{1}{\sqrt{\log(1/\delta)}}\right)\right) \; .$$

Lower Bound

Results

Conclusio

Remarks

Variants

- Solve max-max-min at each stage ⇒ lowest sample complexity.
- Use a learner for $\lambda \Rightarrow$ no tracking needed:
 - Follow the perturbed leader: always available but t samples at stage t,
 - Easy if union of few simple convex regions.

Open problem

What if only few samples are available? What if we want $\delta = 1/4$?

Degenne Koolen Ménard

Pure Exploration

Algorithm

Results

Conclusion

Conclusion

- Pure Exploration is a very broad setting.
- The game point of view is successful.
- Many other applications possible in bandits.
- The small confidence regime is still unclear.

Degenne Koolen Ménard

Pure Exploration

Algorithm

Result

Conclusion

Conclusion

- Pure Exploration is a very broad setting.
- The game point of view is successful.
- Many other applications possible in bandits.
- The small confidence regime is still unclear.

Thank you!