

ข้อสอบชุดที่ หนึ่ง

คณะอนุกรรมการประสานงานการคัดเลือกบุคคลเข้าศึกษา ในสถาบันอุดมศึกษา สำนักงานคณะกรรมการการอุดมศึกษา

ชื่อ		รหัสวิชา 06
เลขที่นั่งสอบ	······	ข้อสอบวิชา ฟิสิกส์
สถานที่สอบ		วันศุกร์ที่ 11 มีนาคม 2548
ห้องสอบ		
คำอธิบาย		2
1. ข้อสอบนี้เป็นข้	ัอสอบ ชุดที่หนึ่ง	
และในกระคา กับชุดข้อสอบา์		สอบ รหัสวิชา และรหัสชุดข้อสอบให้ตรง
		้อ ข้อละ 5 คะแนน (หน้า 9-10)
	บอร์ 2B ระบายวงกลมตัวเลือกหรือค่	าตอบที่ต้องการในกระดาษคำตอบ
	ระบายนอกวง) ดังนี้	
<u>ตอนที่ 1</u> ร	ะบายตัวเลือก ปี 2 3 หรือ	4
(ในแต่ละข้อมีคำตอบที่ถูกต้องหรือเหมา	ะสมที่สุดเพียงคำตอบเดียว)
<u>ตัวอย่าง</u> ถึ	่าตัวเลือก ② เป็นคำตอบที่ถูกต้อง เ	ให้ทำดังนี้
	① ● ③ ④	
<u>ตอนที่ 2</u> ร	ะบายคำตอบที่ได้จากการคำนวณ เป็นเ	ลขจำนวนเต็ม 4 หลัก ทศนิยม 2 หลัก
	กังตัวอย่างในกระดาษคำตอบ	
ในกรณีที่ระบ	ายผิค ต้องการเปลี่ยนใหม่ ให้ลบรอยระ	ะบายในวงกลมเคิมให้สะอาคหมครอยคำ
เสียก่อนแล้วจึ	งระบายวงกลมใหม่	
. ห้ามนำข้อสอบและกระคาษคำตอบออกจากห้องสอบ		
6. ไม่อนุญาตให้ผู้เข้าสอบออกจากห้องสอบก่อนเวลาสอบผ่านไป 1 ชั่วโมง 30 นาที		

เอกสารนี้เป็นเอกสารสงวนลิขสิทธิ์ของทางราชการ ห้ามมิให้นำไปเผยแพร่ อ้างอิง หรือเฉลย ก่อนวันที่ 15 เมษายน 2548

ความหนาแน่นของน้ำ = 1000 kg/m^3

หน้า 2

หากมิได้กำหนดให้เป็นอย่างอื่น ให้ใช้ค่าต่อไปนี้ในการคำนวณ

$g = 9.80 \text{ m/s}^2$

$$e = 1.60 \times 10^{-19} \text{ C}$$
 $c = 3.0 \times 10^8 \text{ m/s}$ $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$ $h = 6.63 \times 10^{-34} \text{ J s}$ $R = 8.31 \text{ J/mol K}$ $k_B = 1.38 \times 10^{-23} \text{ J/K}$ $k_E = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{ N m}^2/\text{C}^2$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$ $N_A = 6.0 \times 10^{23} \text{ /mol}$ $1 \ u = 930 \text{ MeV}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ $m_p = 1.67 \times 10^{-27} \text{ kg}$ $\log 2 = 0.301$ $\log 3 = 0.477$ $\ln 2 = 0.693$ $\ln 10 = 2.30$ $\pi = 3.14$ $\pi^2 = 9.87$

ตอนที่ 1

- 1. กล่องมวล 2 กิโลกรัม ถูกดึงด้วยแรงคงที่ขนาด 10 นิวตัน ให้เคลื่อนที่บนพื้นราบที่ฝืดมี ความเร่งคงที่ 4 เมตรต่อวินาที² เป็นระยะทาง 9 เมตร จงหาปริมาณงานที่แรงเสียดทานทำ
 - 1. 90 J
- 2. 72 J
- 3. 36 J
- 4. 18 J
- 2. รถแข่งมวล 1000 กิโลกรัม กำลังวิ่งบนสะพานโค้งนูนที่ความเร็ว 90 กิโลเมตร/ชั่วโมง ตรง ยอคสะพานซึ่งมีรัศมีความโค้งเท่ากับ 100 เมตร จงหาแรงที่ถนนทำต่อรถ
 - 1. 9800 N
- 2. 6250 N
- 3. 3750 N
- 4. 3550 N

- 3. ให้กราฟระหว่างความเร็ว v และเวลา t ของการเคลื่อนที่เชิงเส้นของวัตถุเป็นคัง รูป จงหาเวลาที่วัตถุเคลื่อนที่ได้ระยะ ทาง 4.5 เมตร
 - 1. 1.0 s
- 2. 2.0 s
- 3. 3.0 s
- 4. 4.0 s

- 4. วัตถุไถลลงไปตามแนวพื้นเอียงด้วยความเร่งคงที่ a โดยพื้นเอียงนี้ทำมุม 45 องศากับแนวราบ จงหาค่าสัมประสิทธิ์ความเสียดทาน
 - 1. $\left(1 \frac{\sqrt{2} a}{g}\right)$

 $2. \qquad \left(1 - \frac{\sqrt{2} g}{a}\right)$

 $3. \qquad \left(1 + \frac{\sqrt{2}\,a}{g}\right)$

- $4. \qquad \left(1 + \frac{\sqrt{2} g}{a}\right)$
- 5. รถมวล 1000 กิโลกรัมพุ่งเข้าชนตั้งฉากกับกำแพงด้วยความเร็ว 15.0 เมตร/วินาที แล้วกระเด็น ถอยมาสวนทางเดิมด้วยความเร็ว 2.50 เมตร/วินาที ถ้าการชนกันนี้เกิดขึ้นในช่วงเวลา 0.10 วินาที จงหาขนาดของแรงเฉลี่ยที่กำแพงกระทำต่อรถ
 - 1. 0.25×10^5 N

2. 1.25×10⁵ N

3. 1.50×10⁵ N

4. 1.75×10⁵ N

วันศกร์ที่ 11 มีนาคม พ.ศ. 2548

- วัตถุหนึ่งเดิมอยู่นิ่งกับที่ ต่อมามีความเร่งคงที่ขนาด a_1 เมตร/วินาที 2 เป็นเวลา t วินาที จาก 6. นั้นมีความหน่วงขนาด a_2 เมตร/วินาที 2 วัตถุนี้จะใช้เวลานานอีกเท่าใดนับจากถูกหน่วงจึงจะ
 - 1. $\frac{a_1}{a_2}t$
- 2. $\frac{a_2}{a}t$
- 3. $\frac{a_1 + a_2}{a_2}t$ 4. $\frac{a_1 + a_2}{a_1}t$
- มวลที่อยู่นิ่งก้อนหนึ่งระเบิดออกเป็น 3 ส่วน โดยมีอัตราส่วนมวลเป็น 1 : 2 : 2 มวลที่เท่ากัน สองก้อนเคลื่อนที่ในทิศทางที่ตั้งฉากกันค้วยอัตราเร็ว 2.0 เมตร/วินาที มวลก้อนที่มีค่าน้อยที่ สุดจะมีอัตราเร็วกี่เมตร/วินาที
 - 1. $\sqrt{2}$

- $3 4\sqrt{2}$
- $8\sqrt{2}$
- สำหรับการเคลื่อนที่แบบฮาร์มอนิกอย่างง่ายที่มีแอมพลิจูคเป็น A จงหาขนาคของการกระจัค 8. ณ ตำแหน่งที่อัตราเร็วเป็นครึ่งหนึ่งของอัตราเร็วสูงสุด
 - 1. $\frac{1}{4}A$

- 2. $\frac{1}{2}A$ 3. $\frac{3}{4}A$
- 4. $\frac{\sqrt{3}}{2}A$
- มวล m_1, m_2 และ m_3 ผูกติดกันด้วยเส้นเชือกเบาและคล้องผ่านรอกเบา มวล m_1 เคลื่อนที่ลง 9. ด้วยความเร่ง จงหาแรงตึงในเส้นเชือก T ซึ่งอยู่ระหว่างมวล \emph{m}_2 กับ \emph{m}_3 บนโต๊ะลื่น

$$\frac{m_1 m_3 g}{m_1 + m_2 + m_3}$$

$$3. \qquad \frac{m_1 m_2 g}{m_1 + m_2 + m_3}$$

2.
$$\frac{m_2(m_1+m_3)g}{m_1+m_2+m_3}$$

4.
$$\frac{m_3(m_1+m_2)g}{m_1+m_2+m_3}$$

เวลา 08.30-10.30 น

10. สปริงที่มีค่าคงที่สปริงเป็น k_1 และ k_2 ผูกต่อกันเองและยึคติคกับกำแพงและมวล m บนพื้น ราบที่ตำแหน่งสมคุลคังรูป ต่อมาดึงมวลไปทางขวามือเป็นระยะ d สปริง k_1 จะยืคออกเท่าใค

1. $\frac{k_1}{k}d$

 $2. \quad \frac{k_2}{k} d$

3. $\frac{k_2}{k_1 + k_2}d$ 4. $\frac{k_1}{k_1 + k_2}d$

คลื่นเสียงถูกส่งออกจากแหล่งกำเนิดเสียงที่เป็นจุด กำลังเสียงที่ส่งออกไปมีค่า 3.14 วัตต์ ผู้ฟัง ได้ยินระดับความเข้มเสียงเป็น 80 เคซิเบล จงหาระยะห่างระหว่างผู้ฟังกับแหล่งกำเนิคเสียง

1. 25 m

- 2. 50 m
- 3. 100 m
- 4. 180 m
- สายโลหะขึ้งตึงยาว 0.5 เมตร ทำให้เกิดเสียงความถี่ 2.20 กิโลเฮิรตซ์ และ 2.64 กิโลเฮิรตซ์ ซึ่ง เป็นความถี่ฮาร์มอนิกที่อยู่ติดกัน จงหาอัตราเร็วของคลื่นเสียงในสายโลหะ

1. 220 m/s

- 2. 440 m/s
- 3. 550 m/s
- 4. 1100 m/s

เคาะส้อมเสียงความถี่ 1 กิโลเฮิรตซ์ เหนือปากท่อซึ่ง สามารถปรับความยาว ℓ ของลำอากาศในท่อได้ พบ ว่าเกิดการสั่นพ้องของเสียงในท่อเมื่อความยาวของลำ อากาศ ℓ ในท่อเป็น 9.5 และ 26.7 เซนติเมตร ตาม ลำคับ อัตราเร็วเสียงในอากาศมีค่ากี่เมตรต่อวินาที

331

3. 344 4 354

14. ท่อทรงกระบอกปลายเปิดสองข้างจำนวน 2 ท่อ ท่อสั้นยาว 1 เมตร จงหาความยาวของอีกท่อ หนึ่ง ที่ทำให้เกิดความถี่บีตส์ 10 ครั้ง/วินาที จากความถี่มูลฐานของท่อทั้งคู่ เมื่อถูกกระตุ้น พร้อมกัน (กำหนดให้อัตราเร็วเสียงในอากาศ = 350 เมตร/วินาที)

1. $\frac{165}{175}$ m

2. $\frac{175}{165}$ m 3. $\frac{185}{175}$ m

4. $\frac{175}{195}$ m

wir 6

15. วางลวดตรงยาว 70.0 เซนติเมตร ตามแนวแกนมุขสำคัญของกระจกโค้งนูนที่มีขนาดความยาว โฟกัส 40.0 เซนติเมตร ปลายค้านใกล้ของเส้นลวดอยู่ห่างจากกระจกเป็นระยะทาง 10.0

1. 8.0 cm

2. 18.7 cm

เซนติเมตร จงหาความยาวของภาพเส้นลวด

3. 26.7 cm

4. 34.7 cm

16. แสงในตัวกลาง A ซึ่งมีค่าครรชนีหักเห 1.50 มีความยาวคลื่นเป็น 500 นาโนเมตร เมื่อเคิน ทางในตัวกลาง B มีความยาวคลื่นเป็น 450 นาโนเมตร จงหาค่าครรชนีหักเหของตัวกลาง B

1. 1.35

2. 1.45

3. 1.54

4. 1.67

17. อิเล็กตรอนเคลื่อนที่ในระนาบ XY โดยที่อัตราเร็วในแนว X มีค่า $v_x = 4 \times 10^5$ เมตร/วินาที และอัตราเร็วในแนว Y มีค่า $v_y = 3 \times 10^5$ เมตร/วินาที เข้าไปในบริเวณที่มีความเข้มสนามแม่ เหล็กเท่ากับ 0.5 เทสลา ในทิศ Z จงหาขนาดของแรงแม่เหล็กที่กระทำต่ออิเล็กตรอน

1. 2.4×10^{-14} N

2. 3.2×10^{-14} N

3. 4.0×10^{-14} N

4. 8.0×10^{-13} N

18. ในบริเวณที่มีสนามแม่เหล็ก B มีแท่งอลูมิเนียมยาว ℓ มวล m ถูกแขวนอยู่ใน แนวระดับด้วยลวดเบาให้วางตัวตั้งฉาก กับสนามแม่เหล็ก ความตึงในเส้นลวดจะเปลี่ยนไปเท่าใดเมื่อกลับทิศของกระแสไฟฟ้า I

1. $2IB\ell$

2. *IBℓ*

3. 2mg

4. mg

19. อิเล็กตรอนมวล m ประจุ e เคลื่อนที่เป็นทางโค้งรัศมี R ในทิศตั้งฉากกับสนามแม่เหล็ก B แต่ ถ้าต้องการทำให้เคลื่อนที่เป็นทางตรง ต้องใส่สนามไฟฟ้าขนาดเท่าใด ในทิศตั้งฉากกับทั้งทิศ ของสนามแม่เหล็กและทิศการเคลื่อนที่ของอิเล็กตรอน

1. $\frac{eB^2R}{r}$

2. $\frac{eBR^2}{m}$

3. $\frac{e^2BR}{m}$

4. $\frac{eBR}{m}$

- - - - หน้า 7

20. จากวงจรในรูป ถ้าเปลี่ยน C ไปเป็นตัว เหนื่ยวนำ Lกระแส RMS ในวงจรจะ เปลี่ยนไปจากเดิมเท่าใด

1.
$$\frac{V_0}{\sqrt{2}} \frac{\left(1 - \omega^2 LC\right)}{\omega L}$$

3.
$$V_0 \frac{\omega L}{\left(1-\omega^2 LC\right)}$$

1.

2. $\frac{Q}{\varepsilon_0 R}$

3. $\frac{Q}{\pi \epsilon_0 R}$

4. $\frac{Q}{4\pi\varepsilon_0 R}$

$$2. \qquad \frac{V_0}{\sqrt{2}} \frac{\left(1 - \omega^2 LC\right)}{\omega C}$$

4.
$$V_0 \frac{\omega C}{(1-\omega^2 LC)}$$

สำหรับวงจรในรูป สมการใคต่อไปนี้ถูก

$$I_1 - I_2 + I_3 = 0$$

$$2. E - I_1 R_1 - I_2 (R_2 + r) = 0$$

$$I_2 R_2 + I_3 R_3 = 0$$

4.
$$E-I_1(R_1+r)-I_3R_3 = 0$$

- 23. ลวคโลหะสองชนิค A และ B มีความต้านทานไฟฟ้าเป็น 5 และ 3 โอห์มตามลำคับ เส้นลวค A มีความยาวเป็นสองเท่า แต่มีขนาคของพื้นที่หน้าตัดเป็นครึ่งหนึ่งของเส้นลวด B จงหาอัตรา ส่วนของค่าสภาพด้านทานไฟฟ้าของโลหะ A ต่อโลหะ B

- 2. $\frac{5}{12}$

24. สำหรับปฏิกิริยา

$${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + X + 3.3 \text{ MeV}$$

X แทนอนุภาคใด

- 1. อิเล็กตรอน
- 2. โพสิตรอน
- 3. โปรตอน
- นิวตรอน
- เมื่อแสงความถี่ 8.0×10¹⁴ เฮิรตซ์ ตกกระทบผิวโลหะชนิคหนึ่ง พบว่า ความต่างศักย์หยุดยั้ง เท่ากับ 1.1 โวลต์ ความถี่ขีดเริ่มของแสงสำหรับผิวโลหะนี้เป็นเท่าใด
 - 2.7×10^{14} Hz

2. 5.3×10^{14} Hz

3. 6.6×10^{14} Hz

- 4. 10.7×10^{14} Hz
- ณ เวลาหนึ่ง ชาตุกัมมันตรังสี ${f A}$ มีกัมมันตภาพ A_0 ในขณะที่ชาตุกัมมันตรังสี ${f B}$ มีกัมมันตภาพ B_0 ถ้าค่าคงที่การสลายตัวของธาตุ ${f A}$ เป็น a และของธาตุ ${f B}$ เป็น b เวลาผ่านไปอีกนานเท่าใด กับมันตภาพของธาตุทั้งสองจึงเท่ากัน
 - $1. \qquad \frac{A_0 B_0}{a b}$

$$2. \qquad \frac{A_0 - B_0}{b - a}$$

 $3. \qquad \frac{\ln A_0 - \ln B_0}{a - b}$

 $4. \qquad \frac{\ln A_0 - \ln B_0}{b - a}$

ริกร์ศ 🐠 เชริงสำร

27. คูดน้ำหวานกวามหนาแน่น 1020 กิโลกรัม/ ลูกบาศก์เมตร จนน้ำหวานไหลเข้าไปใน หลอดเป็นระยะ 0.1 เมตร โดยหลอดเอียงทำ มุม 60 องศากับแนวคิ่ง กวามดันอากาศภาย ในหลอดเหนือน้ำหวานเป็นเท่าใด (กำหนด ให้กวามดันบรรยากาศในขณะนั้นเท่ากับ 1.010×10⁵ พาสกัล)

- 1. 1.001×10⁵ Pa
- 3. 1.010×10⁵ Pa

- 2. 1.005×10^5 Pa
- 4. 1.015×10^5 Pa
- 28. รถยนต์จอดในที่ร่ม อุณหภูมิอากาศภายในรถเป็น 27 องศาเซลเซียส แต่เมื่อจอดกลางแดด อุณหภูมิอากาศภายในรถเป็น 77 องศาเซลเซียส มวลอากาศแทรกออกจากรถไปกี่เปอร์เซนต์ เทียบกับมวลเดิม ให้ถือว่าความดันอากาศภายในรถจงเดิม
 - 1. 14.3
- 2. 16.7
- 3. 83.3
- 4. 85.7

ตอนที่ 2

- 1. วัตถุมวล 80 กิโลกรัม มีความเร็วต้น 10 เมตร/วินาที มีแรง 20 นิวตัน กระทำในทิศเดียวกับการ เคลื่อนที่ของมวลเป็นเวลา 20 วินาที อัตราการทำงานเฉลี่ยในช่วงเวลา 20 วินาทีนี้เป็นเท่าใดใน หน่วยวัตต์
- 2. ทรงกลมโลหะเหมือนกัน 2 ถูก มีประจุ $+2.0\times10^{-5}$ และ -1.0×10^{-5} คูลอมบ์ มีศูนย์กลางห่าง กันเป็นระยะทางขนาดหนึ่ง คูคกันด้วยแรง F_1 ต่อมา น้ำทรงกลมทั้งสองมาสัมผัสกันแล้วแยก กลับไปไว้ยังตำแหน่งเดิม คราวนี้ทรงกลมผลักกันด้วยแรง F_2 จงหาค่า $\frac{F_1}{F_2}$

เวลา 08.30-10.30 น.

3. จงหากระแสไฟฟ้าที่ผ่านตัวด้านทาน 5 โอห์มในหน่วยแอมแปร์

- 4. เชือกขึ้งตึงยาว 1.2 เมตร สั่นค้วยความถี่ 100 เฮิรตซ์ เกิดปฏิบัพ 3 ตำแหน่ง ความเร็วของคลื่นใน เส้นเชือกเป็นเท่าใดในหน่วยเมตรต่อวินาที
- 5. สลิตคู่ที่มีระยะระหว่างสลิตเป็น 0.10 เซนติเมตร ฉากอยู่ห่างจากสลิตเป็นระยะทาง 1.0 เมตร ระยะระหว่างแถบมืดที่อยู่ติดกันมีค่าเป็น 0.5 มิลลิเมตร ความยาวคลื่นแสงที่ใช้เป็นเท่าใดใน หน่วยนาโนเมตร
- 6. วัตถุตันชิ้นหนึ่งลอยน้ำโดยมีปริมาตร 12% โผล่พ้นน้ำ จงหาความหนาแน่นของวัตถุนี้ในหน่วย กิโลกรัม/ลูกบาศก์เมตร