Linear Algebra MATH 2318 (Fall 2022)

Deadline: Monday November 28th, 11:59pm.

Policy to turn in assignment:

- Assignment should be submitted via BlackBoard.
- Student needs to turn in their assignment as a single PDF file.
- No email or late submission will be accepted.
- Only three of the five problems will be graded.

- 1. Let $A = \begin{bmatrix} 0 & -4 & -6 \\ -1 & 0 & -3 \\ 1 & 2 & 5 \end{bmatrix}$. The eigenvalues of A are $\lambda_1 = 2$ with $a_{\lambda_1} = 2$, and $\lambda_2 = 1$,
 - a) Find a basis for the corresponding eigenspaces.
 - b) Is A diagonalizable? Justify your answer. If it is diagonalizable, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.
 - c) Give a formula for A^k , for any positive integer k.

- 6 points 2. Let $\vec{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$.
 - a) Show that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 .
 - b) Write $\vec{v} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$ as a linear combination of $\vec{u}_1, \vec{u}_2, \vec{u}_3$.

4 points

3. Find the closest point to $\vec{v} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}$ in $H = \operatorname{Span}\{\vec{u}\}$, where $\vec{u} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$. What is the shortest distance from \vec{v} to H'