

Fig. 1.1 Generated human faces by GAN

Fig. 1.2 Generated cats by GAN

Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) are a type of neural network that can generate new data samples that resemble a given dataset.

by 22022522 Đàm Thái Ninh

Generative vs. Discriminative Models

Generative Models

Generative models can generate new data. They learn the patterns in the input data to generate new data.

Discriminative Models

Discriminative models are used for classification. They do not consider how the data was generated.

GAN Architecture

1 2 3

Generator Discriminator Adversarial Training
Generates new data samples. Classifies data as real or fake. Generator and discriminator compete in a zero-sum game.

GAN Training

GAN Loss Functions

1 Generator Loss

Measures the quality of generated data.

Minimize.

Discriminator Loss

Measures the model's ability to discriminate between real and fake data.

Maximize.

3 Binary Cross-Entropy Loss

Measures the difference between the discriminator output and the actual label.

4 Mean Squared Error

Measures the difference between generated and real data samples.

GAN Weaknesses

Stability

GANs can be difficult to train.

Diversity

GANs can produce only a limited set of outputs.

Interpretability

It is difficult to understand how GANs work.

GAN Applications

Human Faces Generation

Deep Fake

Image-to-Image Translation

Enhancing Image Resolution

Summary

What you have accomplished?

- GANs
- MRI