Cryptographic Engineering: ECC 3 - Scalar multiplication

Lecture 6

Matthias J. Kannwischer matthias@chelpis.com

Version: v1.0.0

The ECC pyramid

The top of the pyramid

- · Pyramid levels are not independent
- Interactions trough all levels, relevant for
 - · Correctness,
 - · Security, and
 - Performance

The top of the pyramid

- · Pyramid levels are not independent
- · Interactions trough all levels, relevant for
 - · Correctness,
 - Security, and
 - · Performance
- Setting for this lecture (peak of the pyramid):
 - · Consider (finite, abelian) group G, written additively
 - Compute $k \cdot P$ for $k \in \mathbb{Z}$ and $P \in G$

The top of the pyramid

- · Pyramid levels are not independent
- Interactions trough all levels, relevant for
 - · Correctness,
 - Security, and
 - · Performance
- · Setting for this lecture (peak of the pyramid):
 - · Consider (finite, abelian) group G, written additively
 - Compute $k \cdot P$ for $k \in \mathbb{Z}$ and $P \in G$
 - This is the same as x^k for x in a multiplicative group G'
 - \cdot Same algorithms for scalar multiplication and exponentiation

The ECDLP

Definition

Given two points P and Q on an elliptic curve, such that $Q \in \langle P \rangle$, find an integer k such that kP = Q.

3

The ECDLP

Definition

Given two points P and Q on an elliptic curve, such that $Q \in \langle P \rangle$, find an integer k such that kP = Q.

- Typical setting for cryptosystems:
 - P is a fixed system parameter,
 - k is the secret (private) key,
 - · Q is the public key.
- Key generation needs to compute Q = kP, given k and P

EC Diffie-Hellman key exchange

- Users Alice and Bob have key pairs (k_A,Q_A) and (k_B,Q_B)

EC Diffie-Hellman key exchange

- Users Alice and Bob have key pairs (k_A, Q_A) and (k_B, Q_B)
- Alice sends Q_A to Bob
- Bob sends Q_B to Alice

EC Diffie-Hellman key exchange

- Users Alice and Bob have key pairs (k_A, Q_A) and (k_B, Q_B)
- Alice sends Q_A to Bob
- Bob sends Q_B to Alice
- Alice computes joint key as $K = k_A Q_B$
- Bob computes joint key as $K = k_B Q_A$

Schnorr signatures

- Alice has key pair (k_A, Q_A)
- Order of $\langle P \rangle$ is ℓ
- \cdot Use cryptographic hash function H

Schnorr signatures

- Alice has key pair (k_A, Q_A)
- Order of $\langle P \rangle$ is ℓ
- Use cryptographic hash function H
- Sign: Generate secret random $r \in \{1, ..., \ell 1\}$, compute signature (H(R, M), S) on M with

$$R = rP$$

 $S = (r - H(R, M)k_A) \mod \ell$

Schnorr signatures

- Alice has key pair (k_A, Q_A)
- Order of $\langle P \rangle$ is ℓ
- Use cryptographic hash function H
- Sign: Generate secret random $r \in \{1, ..., \ell 1\}$, compute signature (H(R, M), S) on M with

$$R = rP$$

 $S = (r - H(R, M)k_A) \mod \ell$

• Verify: compute $\overline{R} = SP + H(R, M)Q_A$ and check that

$$H(\overline{R},M) \stackrel{?}{=} H(R,M)$$

• Looks like all these schemes need computation of kP.

- Looks like all these schemes need computation of kP.
- · Let's take a closer look:
 - For key generation, the point *P* is *fixed* at compile time
 - For Diffie-Hellman joint-key computation the point is received at runtime

- · Looks like all these schemes need computation of kP.
- · Let's take a closer look:
 - For key generation, the point *P* is *fixed* at compile time
 - · For Diffie-Hellman joint-key computation the point is received at runtime
 - · Key generation and Diffie-Hellman need *one* scalar multiplication *kP*
 - Schnorr signature verification needs double-scalar multiplication $k_1P_1 + k_2P_2$

- · Looks like all these schemes need computation of kP.
- · Let's take a closer look:
 - For key generation, the point *P* is *fixed* at compile time
 - For Diffie-Hellman joint-key computation the point is received at runtime
 - · Key generation and Diffie-Hellman need *one* scalar multiplication *kP*
 - Schnorr signature verification needs double-scalar multiplication $k_1P_1 + k_2P_2$
 - \cdot In key generation and Diffie-Hellman joint-key computation, k is secret
 - The scalars in Schnorr signature verification are public

- Looks like all these schemes need computation of kP.
- · Let's take a closer look:
 - For key generation, the point *P* is *fixed* at compile time
 - · For Diffie-Hellman joint-key computation the point is received at runtime
 - · Key generation and Diffie-Hellman need *one* scalar multiplication *kP*
 - Schnorr signature verification needs double-scalar multiplication $k_1P_1 + k_2P_2$
 - In key generation and Diffie-Hellman joint-key computation, k is secret
 - The scalars in Schnorr signature verification are public
- In the following: Distinguish these cases

• Let's compute $105 \cdot P$.

- Let's compute 105 · P.
- Obvious: Can do that with 104 additions $P + P + P + \cdots + P$

- · Let's compute 105 · P.
- Obvious: Can do that with 104 additions $P + P + P + \cdots + P$
- Problem: 105 has 7 bits, we need roughly 2^7 additions, *cryptographic* scalars have \approx 256 bits, we would need roughly 2^{256} additions (more expensive than solving the ECDLP!)

- Let's compute 105 · P.
- Obvious: Can do that with 104 additions $P + P + P + \cdots + P$
- Problem: 105 has 7 bits, we need roughly 2^7 additions, *cryptographic* scalars have \approx 256 bits, we would need roughly 2^{256} additions (more expensive than solving the ECDLP!)
- · Conclusion: we need algorithms that run in polynomial time (in the size of the scalar)

$$\cdot$$
 105 = 64 + 32 + 8 + 1 = $2^6 + 2^5 + 2^3 + 2^0$

- \cdot 105 = 64 + 32 + 8 + 1 = $2^6 + 2^5 + 2^3 + 2^0$
- $105 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$

- $\cdot 105 = 64 + 32 + 8 + 1 = 2^6 + 2^5 + 2^3 + 2^0$
- $105 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$

- $105 = 64 + 32 + 8 + 1 = 2^6 + 2^5 + 2^3 + 2^0$ • $105 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ • $105 = (((((((((((((1 \cdot 2 + 1) \cdot 2) + 0) \cdot 2) + 1) \cdot 2) + 0) \cdot 2) + 0) \cdot 2) + 1 \text{ (Horner's rule)}$ • $105 \cdot P = ((((((((((((P \cdot 2 + P) \cdot 2) + 0) \cdot 2) + P) \cdot 2) + 0) \cdot 2) + P) \cdot 2) + 0) \cdot 2) + P$
- · Cost: 6 doublings, 3 additions

```
\cdot 105 = 64 + 32 + 8 + 1 = 2^6 + 2^5 + 2^3 + 2^0
\cdot 105 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0
\cdot 105 = (((((((((((((1.2 + 1) \cdot 2) + 0) \cdot 2) + 1) \cdot 2) + 0) \cdot 2) + 1) (Horner's rule)
• 105 \cdot P = (((((((((P \cdot 2 + P) \cdot 2) + 0) \cdot 2) + P) \cdot 2) + 0) \cdot 2) + 0) \cdot 2) + P
· Cost: 6 doublings, 3 additions
· General algorithm: "Double and add"
     R \leftarrow P
     for i \leftarrow n-2 downto 0 do
          R \leftarrow 2R
          if (k)_{2}[i] = 1 then
              R \leftarrow R + P
     return R
```

- Let *n* be the number of bits in the exponent
- Double-and-add takes n-1 doublings

- Let *n* be the number of bits in the exponent
- Double-and-add takes n-1 doublings
- Let *m* be the number of 1 bits in the exponent
- Double-and-add takes m-1 additions
- On average: $\approx n/2$ additions

- Let *n* be the number of bits in the exponent
- Double-and-add takes n-1 doublings
- Let *m* be the number of 1 bits in the exponent
- Double-and-add takes m-1 additions
- On average: $\approx n/2$ additions
- \cdot P does not need to be known in advance, no precomputation depending on P

- Let *n* be the number of bits in the exponent
- Double-and-add takes n-1 doublings
- Let *m* be the number of 1 bits in the exponent
- Double-and-add takes m-1 additions
- On average: $\approx n/2$ additions
- \cdot *P* does not need to be known in advance, no precomputation depending on *P*
- Handles single-scalar multiplication

- Let *n* be the number of bits in the exponent
- Double-and-add takes n-1 doublings
- Let *m* be the number of 1 bits in the exponent
- Double-and-add takes m-1 additions
- On average: $\approx n/2$ additions
- \cdot P does not need to be known in advance, no precomputation depending on P
- Handles single-scalar multiplication
- · Running time clearly depends on the scalar: insecure for secret scalars!

Double-scalar double-and-add

• Let's modify the algorithm to compute $k_1P_1 + k_2P_2$

Double-scalar double-and-add

- Let's modify the algorithm to compute $k_1P_1 + k_2P_2$
- · Obvious solution:
 - Compute k_1P_1 ($n_1 1$ doublings, $m_1 1$ additions)
 - Compute k_2P_2 (n_2-1 doublings, m_2-1 additions)
 - \cdot Add the results (1 addition)

Double-scalar double-and-add

- Let's modify the algorithm to compute $k_1P_1 + k_2P_2$
- · Obvious solution:
 - Compute k_1P_1 ($n_1 1$ doublings, $m_1 1$ additions)
 - Compute k_2P_2 (n_2-1 doublings, m_2-1 additions)
 - · Add the results (1 addition)
- We can do better (\mathcal{O} denotes the neutral element):

```
R \leftarrow \mathcal{O}

for i \leftarrow \max(n_1, n_2) - 1 downto 0 do

R \leftarrow 2R

if (k_1)_2[i] = 1 then

R \leftarrow R + P_1

if (k_2)_2[i] = 1 then

R \leftarrow R + P_2

return R
```

Double-scalar double-and-add

- Let's modify the algorithm to compute $k_1P_1 + k_2P_2$
- Obvious solution:
 - Compute k_1P_1 ($n_1 1$ doublings, $m_1 1$ additions)
 - Compute k_2P_2 (n_2-1 doublings, m_2-1 additions)
 - · Add the results (1 addition)
- We can do better (\mathcal{O} denotes the neutral element):

$$R \leftarrow \mathcal{O}$$

for $i \leftarrow \max(n_1, n_2) - 1$ downto 0 do
 $R \leftarrow 2R$
if $(k_1)_2[i] = 1$ then
 $R \leftarrow R + P_1$
if $(k_2)_2[i] = 1$ then
 $R \leftarrow R + P_2$

return R

• $\max(n_1, n_2)$ doublings, $m_1 + m_2$ additions

Some precomputation helps

• Whenever k_1 and k_2 have a 1 bit at the same position, we first add P_1 and then P_2 (on average for 1/4 of the bits)

Some precomputation helps

- Whenever k_1 and k_2 have a 1 bit at the same position, we first add P_1 and then P_2 (on average for 1/4 of the bits)
- Let's just precompute $T = P_1 + P_2$

Some precomputation helps

- Whenever k_1 and k_2 have a 1 bit at the same position, we first add P_1 and then P_2 (on average for 1/4 of the bits)
- Let's just precompute $T = P_1 + P_2$
- Modified algorithm (special case of Strauss' algorithm):

```
R \leftarrow \mathcal{O}
for i \leftarrow \max(n_1, n_2) - 1 downto 0 do
    R \leftarrow 2R
    if (k_1)_2[i] = 1 AND (k_2)_2[i] = 1 then
         R \leftarrow R + T
    else if (k_1)_2[i] = 1 then
         R \leftarrow R + P_1
    else if (k_2)_2[i] = 1 then
         R \leftarrow R + P_2
return R
```

· What if precomputation is free (fixed basepoint, offline precomputation)?

- · What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0P, P, 2P, 3P, \ldots$, when we receive k, simply look up kP.

- · What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0P, P, 2P, 3P, \ldots$, when we receive k, simply look up kP.
- Problem: *k* is large. For a 256-bit *k* we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152TB

- · What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0P, P, 2P, 3P, \ldots$, when we receive k, simply look up kP.
- Problem: *k* is large. For a 256-bit *k* we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152TB
- How about, for example, precompute $P, 2P, 4P, 8P, \dots, 2^{n-1}P$
- This needs only about 16KB of storage for n = 256 and 64-byte group elements

- · What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0P, P, 2P, 3P, \ldots$, when we receive k, simply look up kP.
- Problem: *k* is large. For a 256-bit *k* we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152TB
- How about, for example, precompute $P, 2P, 4P, 8P, \dots, 2^{n-1}P$
- This needs only about 16KB of storage for n=256 and 64-byte group elements
- Modified scalar-multiplication algorithm:

```
R \leftarrow \mathcal{O}
for i \leftarrow 0 to n-1 do
if (k)_2[i] = 1 then
R \leftarrow R + 2^i P
return R
```

- · What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0P, P, 2P, 3P, \ldots$, when we receive k, simply look up kP.
- Problem: *k* is large. For a 256-bit *k* we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152TB
- How about, for example, precompute $P, 2P, 4P, 8P, \dots, 2^{n-1}P$
- This needs only about 16KB of storage for n=256 and 64-byte group elements
- Modified scalar-multiplication algorithm:

$$R \leftarrow \mathcal{O}$$

for $i \leftarrow 0$ to $n - 1$ do
if $(k)_2[i] = 1$ then
 $R \leftarrow R + 2^i P$
return R

• Eliminated all doublings in fixed-basepoint scalar multiplication!

- · All algorithms so far perform conditional addition where the condition is secret
- For secret scalars (most common case!) we need something else

- · All algorithms so far perform conditional addition where the condition is secret
- For secret scalars (most common case!) we need something else
- Idea: Always perform addition, discard result:

```
R \leftarrow P

for i \leftarrow n-2 downto 0 do

R \leftarrow 2R

R_t \leftarrow R+P

if (k)_2[i] = 1 then

R \leftarrow R_t
```

- · All algorithms so far perform conditional addition where the condition is secret
- · For secret scalars (most common case!) we need something else
- · Idea: Always perform addition, discard result:
- \cdot Or simply add the neutral element ${\cal O}$

```
R \leftarrow P

for i \leftarrow n-2 downto 0 do

R \leftarrow 2R

if (k)_2[i] = 1 then

R \leftarrow R + P

else

R \leftarrow R + \mathcal{O}

return R
```

- · All algorithms so far perform conditional addition where the condition is secret
- · For secret scalars (most common case!) we need something else
- · Idea: Always perform addition, discard result:
- \cdot Or simply add the neutral element ${\cal O}$

```
R \leftarrow P

for i \leftarrow n-2 downto 0 do

R \leftarrow 2R

if (k)_2[i] = 1 then

R \leftarrow R + P

else

R \leftarrow R + \mathcal{O}

return R
```

Still not constant time, more later...

Let's rewrite that a bit ...

- We have a table $T = (\mathcal{O}, P)$
- Notation $T[0] = \mathcal{O}$, T[1] = P
- Scalar multiplication is

$$R \leftarrow P$$

for $i \leftarrow n - 2$ downto 0 **do**
 $R \leftarrow 2R$
 $R \leftarrow R + T[(k)_2[i]]$

- So far we considered a scalar written in radix 2
- How about radix 3?

- · So far we considered a scalar written in radix 2
- How about radix 3?
- We precompute a Table $T = (\mathcal{O}, P, 2P)$
- Write scalar k as $(k_{n-1},\ldots,k_0)_3$

- · So far we considered a scalar written in radix 2
- · How about radix 3?
- We precompute a Table $T = (\mathcal{O}, P, 2P)$
- Write scalar k as $(k_{n-1}, \ldots, k_0)_3$
- Compute scalar multiplication as

$$R \leftarrow T[(k)_3[n-1]]$$

for $i \leftarrow n-2$ downto 0 **do**
 $R \leftarrow 3R$
 $R \leftarrow R + T[(k)_3[i]]$

- · So far we considered a scalar written in radix 2
- How about radix 3?
- We precompute a Table $T = (\mathcal{O}, P, 2P)$
- Write scalar k as $(k_{n-1}, \ldots, k_0)_3$
- Compute scalar multiplication as

$$R \leftarrow T[(k)_3[n-1]]$$

for $i \leftarrow n-2$ downto 0 **do**
 $R \leftarrow 3R$
 $R \leftarrow R + T[(k)_3[i]]$

- · Advantage: The scalar is shorter, fewer additions
- · Disadvantage: 3 is just not nice (needs triplings)

- · So far we considered a scalar written in radix 2
- How about radix 3?
- We precompute a Table $T = (\mathcal{O}, P, 2P)$
- Write scalar k as $(k_{n-1}, \ldots, k_0)_3$
- Compute scalar multiplication as

$$R \leftarrow T[(k)_3[n-1]]$$

for $i \leftarrow n-2$ downto 0 **do**
 $R \leftarrow 3R$
 $R \leftarrow R + T[(k)_3[i]]$

- · Advantage: The scalar is shorter, fewer additions
- Disadvantage: 3 is just not nice (needs triplings)
- · How about some nice numbers, like 4, 8, 16?

Fixed-window scalar multiplication

- Fix a window width w
- Precompute $T = (\mathcal{O}, P, 2P, \dots, (2^w 1)P)$

Fixed-window scalar multiplication

- Fix a window width w
- Precompute $T = (\mathcal{O}, P, 2P, \dots, (2^w 1)P)$
- Write scalar k as $(k_{m-1}, \ldots, k_0)_{2^w}$
- \cdot This is the same as chopping the binary scalar into "windows" of fixed length w

Fixed-window scalar multiplication

- · Fix a window width w
- Precompute $T = (\mathcal{O}, P, 2P, \dots, (2^w 1)P)$
- Write scalar k as $(k_{m-1}, \ldots, k_0)_{2^w}$
- This is the same as chopping the binary scalar into "windows" of fixed length w
- Compute scalar multiplication as

$$R \leftarrow T[(k)_{2^w}[m-1]]$$

for $i \leftarrow m-2$ downto 0 do
for $j \leftarrow 1$ to w do
 $R \leftarrow 2R$
 $R \leftarrow R + T[(k)_{2^w}[i]]$

• For an n-bit scalar we still have n-1 doublings

- For an n-bit scalar we still have n-1 doublings
- Precomputation costs us $2^w/2 1$ additions and $2^w/2 1$ doublings

- For an n-bit scalar we still have n-1 doublings
- Precomputation costs us $2^w/2 1$ additions and $2^w/2 1$ doublings
- Number of additions in the loop is $\lceil n/w \rceil 1$

- For an n-bit scalar we still have n-1 doublings
- Precomputation costs us $2^w/2 1$ additions and $2^w/2 1$ doublings
- Number of additions in the loop is $\lceil n/w \rceil 1$
- · Larger w: More precomputation
- Smaller w: More additions inside the loop

- For an n-bit scalar we still have n-1 doublings
- Precomputation costs us $2^w/2 1$ additions and $2^w/2 1$ doublings
- Number of additions in the loop is $\lceil n/w \rceil 1$
- · Larger w: More precomputation
- · Smaller w: More additions inside the loop
- For \approx 256-bit scalars choose w = 4 or w = 5

Is fixed-window constant time?

 \cdot For each window of the scalar perform w doublings and one addition, sounds good.

Is fixed-window constant time?

- For each window of the scalar perform w doublings and one addition, sounds good.
- The devil is in the detail:
 - Is addition running in constant time? Also for O?
 - We can make that work, but how easy and efficient it is depends on the curve shape (remember tricky cases for fast addition on Weierstrass curves)

Is fixed-window constant time?

- For each window of the scalar perform w doublings and one addition, sounds good.
- · The devil is in the detail:
 - Is addition running in constant time? Also for O?
 - We can make that work, but how easy and efficient it is depends on the curve shape (remember tricky cases for fast addition on Weierstrass curves)
 - · Remember that table lookups are generally not constant time!

Making it constant time

```
/* Sets r to the neutral element on the elliptic curve */
extern ec point setneutral(ec point *r):
/* Adds p and q and stores the result in r */
extern ec point add(ec point *r, const ec point *p, const ec point *q);
/* Doubles p and stores the result in r */
extern ec point double(ec point *r. const ec point *p):
/* For point P contains pre-computed multiples P, 2*P, 3*P.....255*P */
extern ec point precomputed[255]:
ec scalarmult P(unsigned char scalar[32])
  int i.j:
  ec point r:
  ec setneutral(&r):
  for(i=31:i>=0:i--)
    for(j=0:j<8:j++)
      ec point double(&r.&r):
    if(scalar[i] != 0)
      ec_point add(&r.&r.precomputed[scalar[i]-1]):
```

Making it constant time

```
/* Sets r to the neutral element on the elliptic curve */
extern ec point setneutral(ec point *r);
/* Adds p and g and stores the result in r */
extern ec point add(ec point *r. const ec point *p. const ec point *g):
/* Doubles p and stores the result in r */
extern ec_point_double(ec_point *r, const ec_point *p);
/* For point P contains pre-computed multiples 0, P, 2*P, 3*P,...,255*P */
extern ec point precomputed[256]:
ec scalarmult P(unsigned char scalar[32])
  int i,j;
  ec_point r;
  ec setneutral(&r):
  for(i=31:i>=0:i--)
    for(i=0:i<8:i++)
      ec_point_double(&r,&r);
    ec point add(&r.&r.precomputed[scalar[i]]):
```

Making it constant time

```
/* Sets r to the neutral element on the elliptic curve */
extern ec point setneutral(ec point *r):
/* Adds p and q and stores the result in r */
extern ec point add(ec point *r, const ec point *p, const ec point *q);
/* Doubles p and stores the result in r */
extern ec point double(ec point *r. const ec point *p):
/* For point P contains pre-computed multiples 0, P, 2*P, 3*P,...,255*P */
extern ec point precomputed[256]:
ec scalarmult P(unsigned char scalar[32])
  int i.j:
  ec point r.t:
  ec setneutral(&r):
  for(i=31:i>=0:i--)
    for(i=0:i<8:i++)
      ec point double(&r.&r):
    ec_point_lookup(&t,precomputed,scalar[i]);
    ec point add(&r.&r.&t):
```

ec_point_lookup

```
static void ec_point_lookup(ec_point *t, const ec_point *table, int pos)
{
  int i,j;
  unsigned char b;
  *t = table[0];
  for(i=0;i<256;i++)
  {
      b = (i == pos); // Not constant time!
      ec_point_cmov(t, Stable[i], b); // Copy table[i] to t if b is 1
  }
}</pre>
```

ec_point_lookup

```
static void ec_point_lookup(ec_point *t, const ec_point *table, int pos)
{
  int i,j;
  unsigned char b;
  *t = table[0];
  for(i=0;i<256;i++)
  {
      b = int_eq(i, pos); // set b=1 if i==pos, else set b=0
      ec_point_cmov(t, &table[i], b); // Copy table[i] to t if b is 1
  }
}</pre>
```

int_eq and ec_point_cmov

```
unsigned char int eq(int a, int b)
  unsigned long long t = a ^ b;
  t = (-t) >> 63:
  return 1-t:
void ec_point_cmov(ec_point *r, const ec_point *t, unsigned char b)
  unsigned char *u = (unsigned char *)r:
  unsigned char *v = (unsigned char *)t;
  int i;
  b = -b:
  for(i=0:i<sizeof(ec point):i++)</pre>
    u[i] = (b \& v[i]) ^ (~b \& u[i]);
```

int_eq and ec_point_cmov

```
unsigned char int eq(int a, int b)
  unsigned long long t = a ^ b:
  t = (-t) >> 63:
  return 1-t:
void ec_point_cmov(ec_point *r, const ec_point *t, unsigned char b)
  unsigned char *u = (unsigned char *)r:
  unsigned char *v = (unsigned char *)t;
  int i;
  b = -b:
  for(i=0:i<sizeof(ec point):i++)</pre>
    u[i] = (b \& v[i]) ^ (~b \& u[i]);
```

- Recent compilers may re-introduce a branch in ec_point_cmov
- One solution: move ec_point_cmov to separate file, compile without -flto

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2P, 4P, 8P, \dots$

- · Let's get back to fixed-basepoint multiplication
- So far we precomputed P, 2P, 4P, 8P, ...
- We can combine that with fixed-window scalar multiplication
- Precompute $T_i = (\mathcal{O}, P, 2P, 3P, \dots, (2^w 1)P) \cdot 2^i$ for $i = 0, w, 2w, 3w, \lceil n/w \rceil 1$

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2P, 4P, 8P, \dots$
- · We can combine that with fixed-window scalar multiplication
- Precompute $T_i = (\mathcal{O}, P, 2P, 3P, ..., (2^w 1)P) \cdot 2^i$ for $i = 0, w, 2w, 3w, \lceil n/w \rceil 1$
- Perform scalar multiplication as

$$R \leftarrow T_0[(k)_{2^w}[0]]$$
for $i \leftarrow 1$ to $\lceil n/w \rceil - 1$ **do**

$$R \leftarrow R + T_{iw}[(k)_{2^w}[i]]$$

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2P, 4P, 8P, \dots$
- · We can combine that with fixed-window scalar multiplication
- Precompute $T_i = (\mathcal{O}, P, 2P, 3P, ..., (2^w 1)P) \cdot 2^i$ for $i = 0, w, 2w, 3w, \lceil n/w \rceil 1$
- · Perform scalar multiplication as

$$R \leftarrow T_0[(k)_{2^w}[0]]$$

for $i \leftarrow 1$ to $\lceil n/w \rceil - 1$ do
 $R \leftarrow R + T_{iw}[(k)_{2^w}[i]]$

• No doublings, only $\lceil n/w \rceil - 1$ additions

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2P, 4P, 8P, \dots$
- · We can combine that with fixed-window scalar multiplication
- Precompute $T_i = (\mathcal{O}, P, 2P, 3P, ..., (2^w 1)P) \cdot 2^i$ for $i = 0, w, 2w, 3w, \lceil n/w \rceil 1$
- Perform scalar multiplication as

$$R \leftarrow T_0[(k)_{2^w}[0]]$$

for $i \leftarrow 1$ to $\lceil n/w \rceil - 1$ do
 $R \leftarrow R + T_{iw}[(k)_{2^w}[i]]$

- No doublings, only $\lceil n/w \rceil 1$ additions
- · Can use huge w, but:
 - · at some point the precomputed tables don't fit into cache anymore.
 - constant-time loads get slow for large w

- Consider the scalar $22 = (10110)_2$ and window size 2
 - Initialize R with P
 - · Double, double, add P
 - · Double, double, add 2P

- Consider the scalar $22 = (10110)_2$ and window size 2
 - · Initialize R with P
 - · Double, double, add P
 - · Double, double, add 2P
- More efficient:
 - Initialize R with P
 - Double, double, double, add 3P
 - Double

- Consider the scalar $22 = (10110)_2$ and window size 2
 - · Initialize R with P
 - · Double, double, add P
 - · Double, double, add 2P
- More efficient:
 - Initialize R with P
 - · Double, double, double, add 3P
 - · Double
- · Problem with fixed window: it's fixed.

- Consider the scalar $22 = (10110)_2$ and window size 2
 - · Initialize R with P
 - · Double, double, add P
 - · Double, double, add 2P
- More efficient:
 - Initialize R with P
 - · Double, double, double, add 3P
 - · Double
- · Problem with fixed window: it's fixed.
- · Idea: "slide" the window over the scalar

- · Choose window size w
- Rewrite scalar k as $k = (k_0, ..., k_m)$ with k_i in $\{0, 1, 3, 5, ..., 2^w 1\}$ with at most one non-zero entry in each window of length w

- Choose window size w
- Rewrite scalar k as $k = (k_0, ..., k_m)$ with k_i in $\{0, 1, 3, 5, ..., 2^w 1\}$ with at most one non-zero entry in each window of length w
- Do this by scanning *k* from right to left, expand window from each 1-bit

- · Choose window size w
- Rewrite scalar k as $k = (k_0, ..., k_m)$ with k_i in $\{0, 1, 3, 5, ..., 2^w 1\}$ with at most one non-zero entry in each window of length w
- Do this by scanning *k* from right to left, expand window from each 1-bit
- Precompute $P, 3P, 5P, \ldots, (2^w 1)P$

- · Choose window size w
- Rewrite scalar k as $k = (k_0, ..., k_m)$ with k_i in $\{0, 1, 3, 5, ..., 2^w 1\}$ with at most one non-zero entry in each window of length w
- Do this by scanning k from right to left, expand window from each 1-bit
- Precompute $P, 3P, 5P, \ldots, (2^w 1)P$
- Perform scalar multiplication

```
R \leftarrow \mathcal{O}
for i \leftarrow m to 0 do
R \leftarrow 2R
if k_i \neq 0 then
R \leftarrow R + k_i P
```

Analysis of sliding window

- We still do n-1 doublings for an n-bit scalar
- Precomputation needs $2^{w-1} 1$ additions
- Expected number of additions in the main loop: n/(w+1)

Analysis of sliding window

- We still do n-1 doublings for an n-bit scalar
- Precomputation needs $2^{w-1} 1$ additions
- Expected number of additions in the main loop: n/(w+1)
- For the same w only half the precomputation compared to fixed-window scalar multiplication
- For the same w fewer additions in the main loop

Analysis of sliding window

- We still do n-1 doublings for an n-bit scalar
- Precomputation needs $2^{w-1} 1$ additions
- Expected number of additions in the main loop: n/(w+1)
- For the same w only half the precomputation compared to fixed-window scalar multiplication
- For the same w fewer additions in the main loop
- But: It's not running in constant time!
- · Still nice (in double-scalar version) for signature verification

- Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
 - Given the x-coordinate x_P of P, and
 - given the x-coordinate x_Q of Q, and
 - given the x-coordinate x_{P-Q} of P-Q

- Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
 - Given the x-coordinate x_P of P, and
 - given the x-coordinate x_Q of Q, and
 - given the x-coordinate x_{P-Q} of P-Q
 - compute the x-coordinate x_R of R = P + Q

- Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
 - Given the x-coordinate x_P of P, and
 - given the x-coordinate x_Q of Q, and
 - given the x-coordinate x_{P-Q} of P-Q
 - compute the x-coordinate x_R of R = P + Q
- This is called differential addition

- Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
 - Given the x-coordinate x_P of P, and
 - given the x-coordinate x_Q of Q, and
 - given the x-coordinate x_{P-Q} of P-Q
 - compute the x-coordinate x_R of R = P + Q
- This is called differential addition
- · Less efficient differential-addition formulas for other curve shapes

- Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
 - Given the x-coordinate x_P of P, and
 - given the x-coordinate x_Q of Q, and
 - given the x-coordinate x_{P-Q} of P-Q
 - compute the x-coordinate x_R of R = P + Q
- This is called differential addition
- Less efficient differential-addition formulas for other curve shapes
- Can be used for efficient computation of the x-coordinate of kP given only the x-coordinate of P
- For this, let's use projective representation (X:Z) with x=(X/Z)

One Montgomery "ladder step"

```
const a24 = (A + 2)/4 (A from the curve equation)
function LADDERSTEP(X_{O-P}, X_P, Z_P, X_O, Z_O)
      t_1 \leftarrow X_P + Z_P
      t_6 \leftarrow t_1^2
      t_2 \leftarrow X_P - Z_P
      t_7 \leftarrow t_2^2
      t_5 \leftarrow t_6 - t_7
      t_3 \leftarrow X_0 + Z_0
      t_4 \leftarrow X_0 - Z_0
      t_8 \leftarrow t_4 \cdot t_1
      t_0 \leftarrow t_3 \cdot t_2
      X_{P+Q} \leftarrow (t_8 + t_9)^2
      Z_{P+O} \leftarrow X_{O-P} \cdot (t_8 - t_9)^2
      X_{2P} \leftarrow t_6 \cdot t_7
      Z_{2P} \leftarrow t_5 \cdot (t_7 + a_{24} \cdot t_5)
      return (X_{2P}, Z_{2P}, X_{P+O}, Z_{P+O})
```

The Montgomery ladder

```
Require: A scalar 0 \le k \in \mathbb{Z} and the x-coordinate x_P of some point P Ensure: (X_{kP}, Z_{kP}) fulfilling x_{kP} = X_{kP}/Z_{kP}
x_1 = x_P; X_2 = 1; Z_2 = 0; X_3 = x_P; Z_3 = 1
for i \leftarrow n - 1 downto 0 do
if bit i of k is 1 then
(X_3, Z_3, X_2, Z_2) \leftarrow \text{LADDERSTEP}(x_1, X_3, Z_3, X_2, Z_2)
else
(X_2, Z_2, X_3, Z_3) \leftarrow \text{LADDERSTEP}(x_1, X_2, Z_2, X_3, Z_3)
return X_2/Z_2
```

The Montgomery ladder (ctd.)

```
Require: A scalar 0 \le k \in \mathbb{Z} and the x-coordinate x_P of some point P
Ensure: (X_{hP}, Z_{hP}) fulfilling X_{hP} = X_{hP}/Z_{hP}
   X_1 = X_P; X_2 = 1; Z_2 = 0; X_3 = X_P; Z_3 = 1; D = 0
   for i \leftarrow n - 1 downto 0 do
        b \leftarrow \text{hit } i \text{ of } s
        c \leftarrow b \oplus p
        p \leftarrow b
        (X_2, X_3) \leftarrow \mathsf{CSWAP}(X_2, X_3, C)
        (Z_2, Z_3) \leftarrow \text{CSWAP}(Z_2, Z_3, c)
        (X_2, Z_2, X_3, Z_3) \leftarrow \text{LADDERSTEP}(X_1, X_2, Z_2, X_3, Z_3)
   (X_2, X_3) \leftarrow \text{CSWAP}(X_2, X_3, p)
   (Z_2, Z_3) \leftarrow \text{CSWAP}(Z_2, Z_3, p)
   return X_2/Z_2
```

- Very regular structure, easy to protect against timing attacks
 - \cdot Replace the if statement by conditional swap
 - $\boldsymbol{\cdot}$ Be careful with constant-time swaps

- Very regular structure, easy to protect against timing attacks
 - · Replace the if statement by conditional swap
 - Be careful with constant-time swaps
- Very fast (at least if we don't compare to curves with efficient endomorphisms)

- Very regular structure, easy to protect against timing attacks
 - · Replace the if statement by conditional swap
 - · Be careful with constant-time swaps
- Very fast (at least if we don't compare to curves with efficient endomorphisms)
- \cdot Point compression/decompression is free

- Very regular structure, easy to protect against timing attacks
 - · Replace the if statement by conditional swap
 - · Be careful with constant-time swaps
- Very fast (at least if we don't compare to curves with efficient endomorphisms)
- · Point compression/decompression is free
- Easy to implement
- · No ugly special cases (see Bernstein's "Curve25519" paper)

- Consider computation $Q = \sum_{i=1}^{n} k_i P_i$
- We looked at n = 2 before, how about n = 128?

- Consider computation $Q = \sum_{i=1}^{n} k_i P_i$
- We looked at n = 2 before, how about n = 128?
- · De-Rooij algorithm

- Consider computation $Q = \sum_{1}^{n} k_{i} P_{i}$
- We looked at n = 2 before, how about n = 128?
- · De-Rooij algorithm
- Assume $k_1 > k_2 > \cdots > k_n$.
- Use that $k_1P_1 + k_2P_2 = (k_1 k_2)P_1 + k_2(P_1 + P_2)$
- · Replace:
 - (k_1P_1) and (k_2P_2) , with
 - $(k_1 k_2)P_1$ and $k_2(P_1 + P_2)$
- Each step requires one scalar subtraction and one point addition
- · Each step typically "eliminates" multiple scalar bits
- Can be very fast (but not constant-time)

- Consider computation $Q = \sum_{1}^{n} k_{i} P_{i}$
- We looked at n = 2 before, how about n = 128?
- · De-Rooij algorithm
- Assume $k_1 > k_2 > \cdots > k_n$.
- Use that $k_1P_1 + k_2P_2 = (k_1 k_2)P_1 + k_2(P_1 + P_2)$
- · Replace:
 - (k_1P_1) and (k_2P_2) , with
 - $(k_1 k_2)P_1$ and $k_2(P_1 + P_2)$
- Each step requires one scalar subtraction and one point addition
- · Each step typically "eliminates" multiple scalar bits
- Can be very fast (but not constant-time)
- · Requires fast access to the two largest scalars: put scalars into a heap
- · Crucial for good performance: fast heap implementation

A fast heap

- · Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0, left child node at position 1, right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i + 1$ and $2 \cdot i + 2$, parent node is at position $\lfloor (i-1)/2 \rfloor$

A fast heap

- · Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0, left child node at position 1, right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i + 1$ and $2 \cdot i + 2$, parent node is at position $\lfloor (i-1)/2 \rfloor$
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times

A fast heap

- · Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0, left child node at position 1, right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i + 1$ and $2 \cdot i + 2$, parent node is at position $\lfloor (i-1)/2 \rfloor$
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times
- Floyd's heap: swap down to the bottom, swap up for a variable amount of times, advantages:
 - Each swap-down step needs only one comparison (instead of two)
 - Swap-down loop is more friendly to branch predictors

- · So far we have considered:
 - · variable point, variable scalar
 - **fixed** point, **variable** scalar

- · So far we have considered:
 - · variable point, variable scalar
 - · fixed point, variable scalar
- How about variable point, fixed scalar?

- · So far we have considered:
 - · variable point, variable scalar
 - · fixed point, variable scalar
- · How about variable point, fixed scalar?
- · Optimizing for the scalar means that the scalar has to be public
- Not the typical setting for ECC

- · So far we have considered:
 - · variable point, variable scalar
 - · fixed point, variable scalar
- How about variable point, fixed scalar?
- · Optimizing for the scalar means that the scalar has to be public
- Not the typical setting for ECC
- Some applications:
 - · Inversion in finite fields (cmp. multiprecision lecture)
 - Elliptic-curve factorization method (not in this lecture)

Definition

- $s_1 = 1$
- $\cdot s_m = k$
- for each s_i with i > 1 it holds that $s_i = s_j + s_\ell$ for some $j, \ell < i$

Definition

- $s_1 = 1$
- $\cdot s_m = k$
- for each s_i with i > 1 it holds that $s_i = s_i + s_\ell$ for some $j, \ell < i$
- An addition chain for *k* immediately translates into a scalar multiplication algorithm to compute *kP*:
 - Start with $s_1P = P$
 - Compute $s_i P = s_j P + s_\ell P$ for i = 2, ..., m

Definition

- $s_1 = 1$
- $\cdot s_m = k$
- for each s_i with i > 1 it holds that $s_i = s_j + s_\ell$ for some $j, \ell < i$
- An addition chain for *k* immediately translates into a scalar multiplication algorithm to compute *kP*:
 - Start with $s_1P = P$
 - Compute $s_i P = s_j P + s_\ell P$ for i = 2, ..., m
- · All algorithms so far just computed additions chains "on the fly"
- · Signed-scalar representations are "addition-subtraction chains"

Definition

- $s_1 = 1$
- $\cdot s_m = k$
- for each s_i with i > 1 it holds that $s_i = s_i + s_\ell$ for some $j, \ell < i$
- An addition chain for *k* immediately translates into a scalar multiplication algorithm to compute *kP*:
 - Start with $s_1P = P$
 - Compute $s_i P = s_j P + s_\ell P$ for i = 2, ..., m
- · All algorithms so far just computed additions chains "on the fly"
- · Signed-scalar representations are "addition-subtraction chains"
- For fixed scalar we can spend a lot of time to find a good addition chain at compile time

Definition

- $s_1 = 1$
- $\cdot s_m = k$
- for each s_i with i > 1 it holds that $s_i = s_i + s_\ell$ for some $j, \ell < i$
- An addition chain for *k* immediately translates into a scalar multiplication algorithm to compute *kP*:
 - Start with $s_1P = P$
 - Compute $s_i P = s_j P + s_\ell P$ for i = 2, ..., m
- · All algorithms so far just computed additions chains "on the fly"
- · Signed-scalar representations are "addition-subtraction chains"
- For fixed scalar we can spend a lot of time to find a good addition chain at compile time
- This is what was used for inversion in $\mathbb{F}_{2^{255}-19}$
- · Computing good addition chains? See https://github.com/mmcloughlin/addchain

Quiz: Scalar Multiplication

https://pingo.coactum.de/994716

Q1: ECDH

In ECDH key exchange, Alice computes the shared key as $K = k_A \cdot Q_B$. What type of scalar multiplication is this?

- · A) Fixed-basepoint scalar multiplication with secret scalar
- · B) Variable-basepoint scalar multiplication with secret scalar
- · C) Fixed-basepoint scalar multiplication with public scalar
- D) Variable-basepoint scalar multiplication with public scalar

Q1: ECDH

In ECDH key exchange, Alice computes the shared key as $K = k_A \cdot Q_B$. What type of scalar multiplication is this?

- × A) Fixed-basepoint scalar multiplication with secret scalar
- √ B) Variable-basepoint scalar multiplication with secret scalar
- × C) Fixed-basepoint scalar multiplication with public scalar
- × D) Variable-basepoint scalar multiplication with public scalar

Q2: Schnorr Signature

Schnorr signature verification computes $\overline{R} = SP + H(R, M)Q_A$, which requires two scalar multiplications. What is the nature of the two scalars S and H(R, M)?

- A) Both scalars are secret
- B) Both scalars are public
- C) S is secret, H(R, M) is public
- D) S is public, H(R, M) is secret

Q2: Schnorr Signature

Schnorr signature verification computes $\overline{R} = SP + H(R, M)Q_A$, which requires two scalar multiplications. What is the nature of the two scalars S and H(R, M)?

- × A) Both scalars are secret
- √ B) Both scalars are public
- \times C) S is secret, H(R, M) is public
- \times D) S is public, H(R, M) is secret

Q3: Double-and-add

What is the problem with the basic double-and-add algorithm when used with secret scalars?

- \cdot A) It produces incorrect results for certain scalar values
- · B) Running time depends on the scalar
- · C) It requires too much memory for the precomputed table
- \cdot D) It only works for small scalars

Q3: Double-and-add

What is the problem with the basic double-and-add algorithm when used with secret scalars?

- × A) It produces incorrect results for certain scalar values
- √ B) Running time depends on the scalar
- × C) It requires too much memory for the precomputed table
- × D) It only works for small scalars

Q4: Double-and-add always

What is the purpose of "double-and-add always"?

- \cdot A) To make the algorithm faster by always performing additions
- · B) To reduce memory usage
- \cdot C) To make timing independent of the scalar bits
- \cdot D) To eliminate all doublings

Q4: Double-and-add always

What is the purpose of "double-and-add always"?

- × A) To make the algorithm faster by always performing additions
- × B) To reduce memory usage
- √ C) To make timing independent of the scalar bits
- × D) To eliminate all doublings

Q5: Fixed-basepoint precomputation

In fixed-basepoint scalar multiplication with precomputed table $P, 2P, 4P, 8P, \dots, 2^{n-1}P$, what is the cost of computing kP for an n-bit scalar k?

- A) n-1 doublings and $\sim n/2$ additions
- B) $\sim n/2$ additions only (no doublings)
- C) n-1 doublings only (no additions)
- · D) No doublings and no additions

Q5: Fixed-basepoint precomputation

In fixed-basepoint scalar multiplication with precomputed table $P, 2P, 4P, 8P, \dots, 2^{n-1}P$, what is the cost of computing kP for an n-bit scalar k?

- \times A) n-1 doublings and $\sim n/2$ additions
- ✓ B) $\sim n/2$ additions only (no doublings)
- \times C) n-1 doublings only (no additions)
- × D) No doublings and no additions

Q6: Fixed-window table size

For X25519 with 256-bit scalars and 32-byte points, if we use fixed-window scalar multiplication with window size w=8, how large is the precomputed table?

- · A) 8 KB (256 points)
- B) 16 KB (512 points)
- · C) 256 bytes (8 points)
- D) 2 KB (64 points)

Q6: Fixed-window table size

For X25519 with 256-bit scalars and 32-byte points, if we use fixed-window scalar multiplication with window size w=8, how large is the precomputed table?

- √ A) 8 KB (256 points)
- × B) 16 KB (512 points)
- × C) 256 bytes (8 points)
- × D) 2 KB (64 points)

Q7: Montgomery ladder

What is the key advantage of the Montgomery ladder for scalar multiplication?

- · A) It eliminates all point additions
- \cdot B) It has a very regular structure that is easy to make constant-time
- · C) It works only on Weierstrass curves
- D) It requires the smallest precomputed table

Q7: Montgomery ladder

What is the key advantage of the Montgomery ladder for scalar multiplication?

- × A) It eliminates all point additions
- \checkmark B) It has a very regular structure that is easy to make constant-time
- × C) It works only on Weierstrass curves
- × D) It requires the smallest precomputed table

Q8: Addition chains

Which of the following is a valid addition chain for 7?

- · A) 1, 2, 3, 4, 5, 6, 7
- B) 1, 2, 4, 6, 7
- · C) 1, 2, 3, 6, 7
- · D) 1, 3, 6, 7

Q8: Addition chains

Which of the following is a valid addition chain for 7?

- \times A) 1, 2, 3, 4, 5, 6, 7
- × B) 1, 2, 4, 6, 7
- ✓ C) 1, 2, 3, 6, 7
- × D) 1, 3, 6, 7