Topic: Leading and Lagging Power Factor Operation

- **8-13 (Solved Problem)** A 1.0MW/575V/60Hz/2160rpm DFIG is used in wind energy conversion system. The parameters of the generator are given in Table B-6 of Appendix B. Generator operates with an MPPT scheme and its stator power factor is 0.95 leading. Determine following when DFIG operates at super-synchronous speed of 2160 rpm:
- a) generator mechanical torque and power,
- b) rms stator current using simplified expression,
- c) rms magnetizing voltage and current,
- d) rms rotor current and voltage,
- e) equivalent resistance and reactance for the rotor side converter, and
- f) maximum torque and the corresponding slip.

Generator Type	DFIG, 1.0MW/575V/60Hz	
Rated Mechanical Power	1.0 MW	1.0 pu
Rated Stator Line-to-line Voltage	575 V (rms)	
Rated Stator Phase Voltage	331.98 V (rms)	1.0 pu
Rated Rotor Phase Voltage	67.97 V (rms)	0.2047 pu
Rated Stator Current	829.2 A (rms)	0.8258 pu
Rated Rotor Current	882.2 A (rms)	0.8786 pu
Rated Stator Frequency	60 Hz	1.0 pu
Rated Rotor Speed	2160 rpm	1.0 pu
Nominal Rotor Speed Range	1350–2160 rpm	0.625-1.0pu
Rated Slip	-0.2	
Number of Pole Pairs	2	
Rated Mechanical Torque	4.421 kN.m	1.0 pu
Stator Winding Resistance R_s	$3.654~\mathrm{m}\Omega$	0.0111 pu
Rotor Winding Resistance R_r	$3.569 \text{ m}\Omega$	0.0108 pu
Stator Leakage Inductance L_{ls}	0.1304 mH	0.1487 pu
Rotor Leakage Inductance L_{lr}	0.1198 mH	0.1366 pu
Magnetizing Inductance L_m	4.12 mH	4.6978 pu
Base Current $I_B = 1 \text{MW} / (\sqrt{3} \times 575 \text{V})$	1004.1 A (rms)	1.0 pu
Base Flux Linkage Λ_B	0.8806 Wb (rms)	1.0 pu
Base Impedance Z_B	0.3306 Ω	1.0 pu
Base Inductance L_B	0.877 mH	1.0 pu
Base Capacitance C_B	8022.93 μF	1.0 pu

Solution:

a) The rotor mechanical speed:

$$\omega_m = 2160 \times (2\pi/60) = 226.19 \text{ rad/sec}$$

The rotor electrical speed:

$$\omega_r = \omega_m \times P = 226.195 \times 2 = 452.39 \text{ rad/sec}$$

The rated rotor mechanical speed:

$$\omega_{m,R} = 2160 \times (2\pi/60) = 226.19 \text{ rad/sec}$$

The stator frequency:

$$\omega_{\rm s} = 2\pi \times 60 = 376.99 \, \text{rad/sec}$$

The pu rotor speed

$$\omega_{m,pu} = \omega_m/\omega_{m,R} = 226.19/226.19 = 1.0$$
pu

The generator mechanical torque at 1.0 purotor speed:

$$T_m = T_{m,R} \times (\omega_{m,pu})^2 = -4421 \times (1.0)^2 = -4421 \text{ N.m}$$

The rated mechanical power:

$$P_{m,R} = \omega_{m,R} \times T_{m,R} = -226.19 \times 4421 = -1000 \times 10^3 \text{ W}$$

The generator mechanical power at 1.0 purotor speed:

$$P_m = P_{m,R} \times (\omega_{m,pu})^3 = -1000 \times 10^3 \times (1.0)^3 = -1000 \times 10^3 \text{ W}$$

b) The rms stator current using simplified expression:

$$I_s = \frac{|T_m|\omega_s/P}{3V_s \cos \varphi_s} = \frac{4421 \times 2\pi \times 60/2}{3 \times (575/\sqrt{3}) \times 0.95} = 880.78 \text{ A (rms)}$$

When DFIG operates with a leading power factor, its stator power factor angle is in the range of

$$180^{\circ} \le \varphi_s \le 270^{\circ}$$

stator power factor angle for 0.95 leading power factor can then be calculated by

$$\varphi_s = 180^{\circ} + \cos^{-1}(0.95) = 180^{\circ} + 18.2^{\circ} = 198.2^{\circ}$$

from which the stator current phasor is

$$\bar{I}_s = I_s \angle -\varphi_s = 880.78 \angle -198.2^{\circ} \text{ A (rms)}$$

c) The magnetizing branch voltage:

$$\overline{V}_{m} = \overline{V}_{s} - \overline{I}_{s} (R_{s} + j\omega_{s} L_{ls})$$

$$= 575 / \sqrt{3} \angle 0^{\circ} - 880.78 \angle -198.2^{\circ} \times (3.654 \times 10^{-3} + j120\pi \times 0.1304 \times 10^{-3})$$

$$= 350.86 \angle 6.57^{\circ} \text{ V (rms)}$$

Magnetizing current can be calculated by

$$\bar{I}_m = \frac{V_m}{j\omega_s L_m} = 225.9 \angle -83.43^{\circ} \text{ A (rms)}$$

d) The rotor current:

$$\bar{I}_r = \bar{I}_s - \bar{I}_m = 880.78 \angle -198.2^{\circ} - 225.9 \angle -83.43^{\circ} = 996.74 \angle 149.93^{\circ} \text{ A (rms)}$$

The rotor voltage:

$$\overline{V}_r = s\overline{V}_m - \overline{I}_r(R_r + js\omega_s L_{lr}) = 73.29 \angle -166.1^{\circ} \text{ V (rms)}$$

where
$$s = (\omega_s - \omega_r)/\omega_s = (376.99 - 452.39)/376.99 = -0.2$$

e) The equivalent impedance for the rotor side converter is given by

$$\overline{Z}_{eq} = \overline{V}_r / \overline{I}_r = 0.05292 + j0.05105 \Omega$$

from which
$$R_{eq} = 0.05292 \ \Omega \ \& \ X_{eq} = 0.05105 \ \Omega$$

f) The slip at which the maximum torque occurs can be obtained

$$s_{T \max} = \pm \sqrt{\frac{(R_r + R_{eq})^2 + X_{eq}^2}{R_s^2 + (X_{ls} + X_{lr})^2}} = -0.8066$$

(s = +0.8066) is omitted because of the super - synchronous mode of operation)

The maximum torque:

$$T_{\text{max}} = \frac{1}{2\omega_s / P} \times \frac{3V_s^2}{R_s + \frac{(X_{ls} + X_{lr})X_{eq}}{R_r + R_{eq}} - \sqrt{((X_{ls} + X_{lr})^2 + R_s^2) \times \left(1 + \frac{X_{eq}^2}{(R_r + R_{eq})^2}\right)}} = -22876 \text{ N.m} \quad (5.17 \text{ pu})$$

Cross Check:

$$T_{m} = \frac{1}{\omega_{s}/P} \times 3I_{r}^{2} \left(R_{eq} + R_{r}\right)/s = \frac{1}{2\pi \times 60/2} \times 3 \times 996.74^{2} \left(0.05292 + 3.569 \times 10^{-3}\right)/(-0.2) = -4466.12 \text{ N.m}$$

$$P_m = 3I_r^2 \left(R_{eq} + R_r \right) (1 - s) / s = 3 \times 996.74^2 \left(0.05292 + 3.569 \times 10^{-3} \right) (1 + 0.2) / (-0.2) = -1010.2 \times 10^3 \text{ W}$$

8-14 Repeat Problem 8-13 when the DFIG operates at sub-synchronous speed of 1350 rpm and stator power factor of 0.95 lagging.

Answers:

a)
$$T_m = -1726.9 \text{ N.m}$$
, $P_m = -244.1 \times 10^3 \text{ W}$

$$\bar{I}_m = 211.37 \angle -87.13^{\circ} \text{ A (rms)}$$

e)
$$R_{eq} = -0.2221 \Omega$$
, $X_{eq} = -0.0906 \Omega$

b)
$$\bar{I}_s = 344.1 \angle -161.8^{\circ} \text{ A (rms)}$$
 c) $\bar{V}_m = 328.3 \angle 2.87^{\circ} \text{ V (rms)}$,

d)
$$\bar{I}_r = 353.02 \angle 162.92^\circ \text{ A (rms)}, \ \overline{V}_r = 84.69 \angle 5.12^\circ \text{ V (rms)}$$

f)
$$s_{T \text{max}} = 2.5064$$
, $T_{\text{max}} = -14759 \text{ N.m}$ (3.338 pu)

8-15 Repeat Problem 8-13 when the DFIG operates at sub-synchronous speed of 1780 rpm and stator power factor of 0.9 lagging.

Answers:

a)
$$T_m = -3002.3 \text{ N.m}$$
, $P_m = -559.6 \times 10^3 \text{ W}$

$$\bar{I}_m = 207.2 \angle -84.84^{\circ} \text{ A (rms)}$$

e)
$$R_{eq} = -0.00962 \ \Omega$$
, $X_{eq} = -0.00034 \ \Omega$

b)
$$\overline{I}_s = 631.37 \angle -154.16^\circ \text{ A (rms)}$$
 c) $\overline{V}_m = 321.83 \angle 5.2^\circ \text{ V (rms)}$,

d)
$$\bar{I}_r = 590.89 \angle -173.3^{\circ} \text{ A (rms)}, \ \overline{V}_r = 5.69 \angle 8.72^{\circ} \text{ V (rms)}$$

f)
$$s_{T \text{ max}} = 0.0642$$
, $T_{\text{max}} = -10247 \text{ N.m} (2.3178 \text{ pu})$

0.95 lagging power factor operation for the DFIG WECS

- **8-16 (Solved Problem)** Consider a 1.5MW/690V/50Hz/1750 rpm DFIG WECS. Parameters of the generator are given in Table B-5 of Appendix B. The generator operates with an MPPT scheme. At a given wind and generator speed, the stator active power *Ps* is found to be –1008.616 kW. Calculate the following assuming **0.95 lagging power factor** operation for the DFIG WECS:
- a) the rms stator current,
- b) the generator mechanical torque and power,
- c) the rotor mechanical and electrical speeds and slip,
- d) the rms magnetizing voltage and current,
- e) the rms rotor current and voltage, and
- f) the equivalent resistance and reactance for the rotor side converter.

Generator Type	DFIG, 1.5MW/690V/50Hz	
Rated Mechanical Power	1.5 MW	1.0 pu
Rated Stator Line-to-line Voltage	690 V (rms)	
Rated Stator Phase Voltage	398.4 V (rms)	1.0 pu
Rated Rotor Phase Voltage	67.97 V (rms)	0.1706 pu
Rated Stator Current	1068.2 A (rms)	0.8511 pu
Rated Rotor Current	1125.6 A (rms)	0.8968 pu
Rated Stator Frequency	50 Hz	1.0 pu
Rated Rotor Speed	1750 rpm	1.0pu
Nominal Rotor Speed Range	1200–1750 rpm	0.686-1.0pu
Rated Slip	-0.1667	
Number of Pole Pairs	2	
Rated Mechanical Torque	8.185 kN.m	1.0 pu
Stator Winding Resistance R_s	$2.65~\mathrm{m}\Omega$	0.0084 pu
Rotor Winding Resistance R_r	$2.63~\mathrm{m}\Omega$	0.0083 pu
Stator Leakage Inductance L_{ls}	0.1687 mH	0.167 pu
Rotor Leakage Inductance L_{lr}	0.1337 mH	0.1323 pu
Magnetizing Inductance L_m	5.4749 mH	5.419 pu
Base Current $I_B = 1.5 \text{MW} / (\sqrt{3} \times 690 \text{V})$	1255.1 A (rms)	1.0 pu
Base Flux Linkage Λ_B	1.2681 Wb (rms)	1.0 pu
Base Impedance Z_B	0.3174 Ω	1.0 pu
Base Inductance L_B	1.0103 mH	1.0 pu
Base Capacitance C_B	10028.7 μF	1.0 pu

Solution:

a) The rms stator can be calculated by

$$I_s = |P_s|/(3V_s \cos \varphi_s) = 1008.6 \times 10^3/(3 \times 690/\sqrt{3} \times 0.95) = 888.37 \text{ A (rms)}$$

When the DFIG operates with a lagging power factor, its stator power factor angle is in the range of

$$90^{\circ} \le \varphi_{s} \le 180^{\circ}$$

stator power factor angle for 0.95 lagging power factor can then be calculated by

$$\varphi_s = 180^{\circ} - \cos^{-1}(0.95) = 180^{\circ} - 18.2^{\circ} = 161.8^{\circ}$$

from which the stator current phasor is

$$\bar{I}_{s} = I_{s} \angle - \varphi_{s} = 888.37 \angle -161.8^{\circ} \text{ A (rms)}$$

b) The generator air-gap power can be given by

$$\frac{\omega_s T_m}{P} = 3V_s I_s \cos \varphi_s = P_s$$

from which generator mechanical torque can be obtained as

$$T_m = P_s \times (P/\omega_s) = -6421.05 \text{ N.m}$$

The generator mechanical torque can be related to pu rotor speed as

$$T_m = T_{m,R} \times (\omega_{m,pu})^2 \text{ N.m}$$

from which pu rotor speed can be calculated by

$$\omega_{m,pu} = \sqrt{\frac{T_m}{T_{m,R}}} = \sqrt{\frac{-6421.05}{-8185}} = 0.8857$$

The rated mechanical power:

$$P_{m,R} = \omega_{m,R} \times T_{m,R} = 1750(2\pi)/60 \times (-8185) = -1500 \times 10^3 \text{ W}$$

The generator mechanical power at 0.8857 pu rotor speed:

$$P_m = P_{m,R} \times (\omega_{m,pu})^3 = -1500 \times 10^3 \times (0.8857)^3 = -1042.24 \times 10^3 \text{ W}$$

c) The rotor mechanical and electrical speeds:

$$\omega_m = \omega_{m,R} \times \omega_{m,pu} = 1750(2\pi)/60 \times 0.8857 = 162.32 \text{ rad/sec}$$
 (1550 rpm)

$$\omega_r = \omega_m \times P = 162.32 \times 2 = 324.64 \text{ rad/sec}$$

The slip can be calculates as:

$$s = (\omega_s - \omega_r)/\omega_s = (314.16 - 324.64)/314.16 = -0.0333$$

d) The magnetizing branch voltage:

$$\overline{V}_{m} = \overline{V}_{s} - \overline{I}_{s} (R_{s} + j\omega_{s} L_{ls})$$

$$= 690 / \sqrt{3} \angle 0^{\circ} - 888.37 \angle -161.8^{\circ} \times (2.65 \times 10^{-3} + j100\pi \times 0.1687 \times 10^{-3})$$

$$= 388.58 \angle 6.72^{\circ} \text{ V (rms)}$$

The magnetizing current can be calculated by

$$\bar{I}_m = \frac{V_m}{j\omega_s L_m} = 225.92 \angle -83.28^{\circ} \text{ A (rms)}$$

e) The rotor current:

$$\bar{I}_r = \bar{I}_s - \bar{I}_m = 888.37 \angle -161.8^{\circ} - 225.92 \angle -83.28^{\circ} = 871.99 \angle -176.5^{\circ} \text{ A (rms)}$$

The rotor voltage:

$$\overline{V}_r = s\overline{V}_m - \overline{I}_r(R_r + js\omega_s L_{lr}) = 10.82 \angle -166.1^\circ \text{ V (rms)}$$

f) The equivalent impedance for the rotor side converter is given by

$$\overline{Z}_{eq} = \overline{V}_r \, / \, \overline{I}_r = 0.01220 + j0.00224 \, \Omega$$

from which $R_{eq} = 0.01220 \ \Omega \ \& \ X_{eq} = 0.00224 \ \Omega$

Cross Check:

$$T_{m} = \frac{1}{\omega_{s}/P} \times 3I_{r}^{2} \left(R_{eq} + R_{r}\right)/s = \frac{1}{2\pi \times 50/2} \times 3 \times 871.99^{2} \left(0.01220 + 2.63 \times 10^{-3}\right)/\left(-0.0333\right) = -6461 \text{ N.m}$$

$$P_m = 3I_r^2 \left(R_{eq} + R_r \right) (1 - s)/s = 3 \times 871.99^2 \left(0.01220 + 2.63 \times 10^{-3} \right) (1 + 0.0333) / (-0.0333) = -1048.72 \times 10^3 \text{ W}$$

$$P_m = 3I_r^2 \left(R_{eq} + R_r \right) (1 - s)/s = 3 \times 871.99^2 \left(0.01220 + 2.63 \times 10^{-3} \right) (1 + 0.0333) / (-0.0333) = -1048.72 \times 10^3 \text{ W}$$

$$P_s = 3V_s I_s \cos \varphi_s = 3 \times 690 / \sqrt{3} \times 888.37 \times \cos(161.8^\circ) = -1008.616 \times 10^3$$
 W, verified.

8-17 Repeat Problem 8-16 if the stator active power *Ps* is -1285.7 kW. Assume stator power factor as 0.95 leading.

Answers:

a)
$$\bar{I}_s = 1132.4 \angle -198.2^{\circ} \text{ A (rms)}$$

b)
$$T_m = -8185 \text{ N.m}$$
, $P_m = -1500 \times 10^3 \text{ W}$

c) $\omega_m = 183.26 \text{ rad/sec}$ (1750 rpm), $\omega_r = 366.52 \text{ rad/sec}$, s = -0.1667

d)
$$\overline{V}_m = 423.7 \angle 7.61^\circ \text{ V (rms)}, \ \overline{I}_m = 246.33 \angle -82.4^\circ \text{ A (rms)}$$

e)
$$\bar{I}_r = 1259.3 \angle 151.7^{\circ} \text{ A (rms)}, \ \overline{V}_r = 73.67 \angle -165.3^{\circ} \text{ V (rms)}$$

f)
$$R_{eq} = 0.04277 \ \Omega$$
, $X_{eq} = 0.03992 \ \Omega$

8-18 Repeat problem 8-16 if the stator active power *Ps* is -604.54 kW. Assume stator power factor as 0.8 leading.

Answers:

a)
$$\bar{I}_s = 632.3 \angle -216.87^{\circ} \text{ A (rms)}$$

b)
$$T_m = -3848.6 \text{ N.m}$$
, $P_m = -483.63 \times 10^3 \text{ W}$

- c) $\omega_m = 125.66 \text{ rad/sec}$ (1200 rpm), $\omega_r = 251.32 \text{ rad/sec}$, s = 0.2
- d) $\overline{V}_m = 420.61 \angle 3.52^{\circ} \text{ V (rms)}, \ \overline{I}_m = 244.54 \angle -86.48^{\circ} \text{ A (rms)}$

e)
$$\bar{I}_r = 812.4 \angle 129.88^\circ \text{ A (rms)}, \ \bar{V}_r = 90.92 \angle 4.98^\circ \text{ V (rms)}$$

f)
$$R_{eq} = -0.06402 \ \Omega$$
, $X_{eq} = -0.09179 \ \Omega$