Lecture 1.

Algorithm complexity estimation. Sorting algorithms.

Algorithms and Data Structures
Ivan Solomatin
MIPT 2021

Outline

- Course description.
- Algorithm complexity basics
- Sorting problem statement
- Quadratic $O(N^2)$ sorting algorithms
 - Selection sort
 - Insertion sort
 - Bubble sort
- Linearithmic $O(N \log N)$ sorting algorithms
 - Merge sort
 - Quick sort
 - Heap sort (later)
- Greedy algorithms

Course description

Course goal:

- Get familiar with basic algorithms and data structures.
- Learn how to implement basic algorithms and data structures on python.
- Learn how to apply obtained knowledge in practice.
- Get experience and intuition in programming problems solving.

Sources:

- Thomas H. Cormen, et al. *Introduction to algorithms*. MIT press, 2009.
- www.geeksforgeeks.org/fundamentals-of-algorithms
- www.e-maxx.ru/algo/

Course description

Course content:

- Lectures (online)
- Homework (problem solving in contest.yandex.ru)
- Seminars (online, real time):
 - Brief repetition of lecture materials
 - Homework analysis
 - Additional topics / problems
 - Q&A

Final grade:

- Homework (~60%)
- Practical exam (problem solving) (~20%)
- Theoretical exam (~20%)

Definition

Algorithm: a finite sequence of well-defined, computerimplementable instructions, which solves a class of problems.

$$A: X \rightarrow Y$$

Number of elementary operations (processor instructions) for executing A on input $x \in X$:

Size of input x:

Worst case complexity:

$$T(A,N) = \max_{\substack{x \in X \\ s(x)=N}} t(A,x)$$

$$50N + 100500 = \mathbf{O}(N)$$

$$\longrightarrow 10N^2 + 5N + 1 = \mathbf{O}(N^2)$$

$$N \log_2 N = N \frac{\log_c N}{\log_c 2} = O(N \log N)$$

 $N \to \infty$

$$42 = \mathbf{0}(\mathbf{1}$$

Examples

Problem:

Calculate sum of two given numbers x, y: $x, y \in [-2^{63}; 2^{63})$

Input:

- x 64 bit integer = 8 bytes
- y 64 bit integer = 8 bytes

input size: 16 bytes

Algorithm:

calculate sum, return result.

Complexity:

0(1)

Examples

Problem:

Calculate sum of
$$N$$
 numbers $x_1, ..., x_N$.
 $x_i \in [-2^{31}; 2^{31})$

Input:

- x_1 32bit integer = 4 bytes
- ...
- x_N 32bit integer = 4 bytes

size: 4*N* bytes

Algorithm:

Iterate over x_i and accumulate sum:

Complexity:

$$O(1) * N = O(N)$$

Examples

Problem:

Check if there is a pair of equal numbers between given

N numbers
$$x_1, ..., x_N$$
. $x_i \in [-2^{31}; 2^{31})$

Input:

- x_1 32bit integer = 4 bytes
- ...
- x_N 32bit integer = 4 bytes

size: 4*N* bytes

Algorithm:

Iterate over each pair and check equality:

Complexity:

```
In worst case: (N-1) + (N-2) + \dots + 1 = \frac{N(N-1)}{2} = O(N^2)
```

```
def f(x):
  N = len(x)
  for i in range(N):
    for j in range(i + 1, N):
        if x[i] == x[j]:
        return True
  return False
```

Sorting problem statement

Given sequence of objects (let's suppose they're integer numbers for simplicity).

$$x_0, x_1, \dots, x_{N-1}: x_i \in X$$
 (1)

Also given binary relation \leq (transitive, reflexive) on X.

Task is to reorder elements:

$$x_{i_0}, x_{i_1}, \dots, x_{i_{N-1}}$$
 (2)
 $x_{i_0} \le x_{i_1} \le \dots \le x_{i_{N-1}}$ (3)

Sequence of source indices used to reorder elements construct a permutation:

$$\pi = (i_0, i_1, \dots i_{N-1})$$

In other words, the task is to find a permutation that will satisfy (3).

Sorting problem statement Example

Sorting problem statement

Example

Quadratic $O(N^2)$ sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort

Selection sort

- 1. Let's find minimum value in range [i, N): $x_{i_{min}}$.
- 2. We know the place $x_{i_{min}}$ should take in sorted array: i-th.
- 3. Let's swap $x_{i_{min}}$ with value on it's desired place.
- 4. Now, let's sort the rest array (x[i + 1:]) using the same approach (i += 1) and go to 1.).

Selection sort

Implementation

```
N = 8
i = 0:
           N = len(x)
 i_min = 5
           for i in range(N - 1):
i = 1:
 i min = 1
                i min = i
i = 2:
                for j in range(i + 1, N):
 i min = 4
                    if x[j] < x[i min]:
i = 3:
 i_min = 5
                         i min = j
i = 4:
                x[i], x[i min] = x[i min], x[i]
 i min = 4
i = 5:
 i min = 5
            0
              1 2 3 4
                                 5 6
                                         7
i = 6:
 i min = 6
                    5
                        6
                            3
                                 1
```

Complexity: $N - 1 + N - 2 + ... + 1 = N(N - 1)/2 = O(N^2)$

Quadratic $O(N^2)$ sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
4	2	5	6	3	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

	1						
4	2	5	6	3	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
2	4	5	6	3	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

This sorting algorithm works similar to the way you sort playing cards in your hands:

		2	_			_	
2	3	4	5	6	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
2	3	4	5	6	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

	1						
1	2	3	4	5	6	7	8

Implementation

```
N = len(x)
N = 8
i = 4
          for i in range(1, N):
              key = x[i]
              j = i - 1
              while j \ge 0 and key \langle x[j]:
                  x[j + 1] = x[j]
                  j -= 1
              x[j + 1] = key
              1 2 3 4 5 6
                5 6 3 1
```

Complexity: $1 + 2 + ... + N - 1 = N(N - 1)/2 = O(N^2)$

Quadratic $O(N^2)$ sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

Bubble sort Implementation

```
N = len(x)
for i in range(0, N - 1):
   for j in range(0, N - i - 1):
      if x[j] > x[j + 1]:
      x[j], x[j + 1] = x[j + 1], x[j]
```

Complexity:

$$1 + 2 + ... + N - 1 = N(N-1)/2 = O(N^2)$$

Linearithmic sorting algorithms $O(N \log N)$

- Merge sort
- Quick sort

Divide and conquer paradigm

Merging

Let's suppose, we need to sort array which is a union of two sorted arrays, $\frac{N}{2}$ each. How fast can we sort it?

Merging

Let's suppose, we need to sort array which is a union of two sorted arrays, $\frac{N}{2}$ each. How fast can we sort it?

 $sorted(a \oplus b)$

 $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{7}$ O(N)

Divide

sorted(x)

Conquer

Conquer χ $H = \log_2 N$ N

Complexity: $O(N \log N)$

Merge sort

Implementation

```
def merge(x, 1, m, r):
    tmp = []
    i1 = 1
    i2 = m
    while i1 < m or i2 < r:
        if (i2 >= r) or ((i1 < m) and
                          (x[i1] < x[i2])):
            tmp.append(x[i1])
            i1 += 1
        else:
            tmp.append(x[i2])
            i2 += 1
    x[1:r] = tmp
```

Merge sort Implementation

```
def merge sort(x, l=0, r=None):
    if r is None:
        r = len(x)
    if r - 1 > 1:
        m = (1 + r) // 2
        merge sort(x, 1, m)
        merge sort(x, m, r)
        merge(x, 1, m, r)
```

Linearithmic sorting algorithms $O(N \log N)$

- Merge sort
- Quick sort

Divide and conquer paradigm

Idea

QSort also uses Divide and Conquer approach, but dividing method is different.

- 1. Select pivot element (any element from array)
- 2. Divide by 3 parts: elements < pivot, == pivot, > pivot
- 3. Recursively sort 1st and 3rd parts.

0	1	2	3	4	5	6	7
7	5	2	4	6	3	1	8

Partition

Let's denote division into 3 parts with indices i_l , i_r .

Array to be partitioned is in range [l, r).

Division is correct in range [l, i).

$$x < pivot: [l, i_l)$$

$$x == pivot: [i_l, i_r)$$

$$x > pivot: [i_r, i)$$

Unprocessed: [i, r)

Partition

Adding element to $p_{>}$.

1. Element already stands on it's place.

Partition

Adding element to $p_{=}$.

- 1. Swap $x[i_r]$ and x[i].
- 2. Increase i_r .

Partition

Adding element to $p_{<}$.

- 1. Swap $x[i_l]$ and x[i].
- 2. If 2-nd part was not empty $(i_l < i_r)$, x[i] is from $p_=$ and we need to return it (as on previous slide). Otherwise, x[i] is from $p_>$, and it stands on it's place
- 3. Increase i_l and i_r .

Partition

Adding element to $p_{<}$.

- 1. Swap $x[i_l]$ and x[i].
- 2. If 2-nd part was not empty $(i_l < i_r)$, x[i] is from $p_=$ and we need to return it (as on previous slide). Otherwise, x[i] is from $p_>$, and it stands on it's place
- 3. Increase i_l and i_r .

QSort Implementation

```
def qsort(x, l=0, r=None):
  if r is None:
    r = len(x)
  if (r - 1) > 1:
    pivot = x[(1 + r) // 2]
    il, ir = partition(x, l, r, pivot)
    qsort(x, l, il)
    qsort(x, ir, r)
```

QSort Complexity

Complexity: $O(N \log N)$? (Actually, that's not correct proof. See the lecture.)

QSort Complexity

QSort Complexity

N N-1H = NN-2

$$N + N - 1 + \dots + 1 = O(N^2)$$

QSort Implementation

```
import random
def qsort(x, 1=0, r=None):
  if r is None:
    r = len(x)
  if (r - 1) > 1:
    pivot = x[random.randint(l, r - 1)]
    il, ir = partition(x, l, r, pivot)
    qsort(x, l, il)
    qsort(x, ir, r)
```

Expectation of complexity: $O(N \log N)$

Greedy algorithm

Definition

Greedy algorithm builds up a solution piece by piece, always choosing the next piece that offers the most obvious and immediate benefit.

So on each step it chooses locally optimal solution.

Greedy algorithm

Example

Problem: Ali Baba 1

Ali-baba entered the cave with lot's of treasures. He can hold only N items in his hands. You are given list of all items in the cave with their costs. Help Ali Baba take out items with maximum total cost.

Solution:

Let's sort elements in non-increasing cost order and take top N elements.

Proof (informal):

Let's suppose, our solution A is not optimal. That means that exists a better solution B. A and B differs at least by 1 item, but if we replace any item in A with another, total sum will not increase, because our solution contains top-cost items. Contradiction.

Conclusion

 $O(N^2): N \le 1000$

 $O(N \log N): N \le 100000$

Python built-ins

```
import random
x = [random.randint(0, 100000) for i in range(100000)]
y = sorted(x)
x.sort()
```

Visualizers

- http://sorting.at/
- www.youtube.com/user/AlgoRythmics

Thank you for watching!