Index

Page numbers followed by f indicate figure, t indicate table

Α	Additive fixed effects, 154
A Abundance apparent, 14t covariate relationship with, 395, 395f estimation, 15, 384 analysis of real data, 396–409 covariates in, 390–396 ecological process in, 392f generation and analysis of simulated data, 388–396 GLMM and, 383 introduction to, 383–388 N-mixture model with overdispersion in, 404–409	Age effects models with, 208–212 time effects combined with, 212 Age-dependent models, multinomial likelihood and, 227–231, 252–255 Age-specific probability, of first breeding model analysis of, 290–294 description of, 288–289 generation of simulated data, 289–290 survival and movement estimation with 288–294
observation process in, 392f open-population N-mixture model in, 396–409 posterior distributions in, 394f, 397, 401f program R in, 396 p-values in, 397 silver-washed fritillary example of, 396–409, 397f, 408f simple Poisson model for, 398–401 simplest case of, 388–390 summary of, 409–410 WinBUGS and, 388–410 ZIP N-mixture model in, 401–404 false negatives and, 384 importance of, 20	Akaike's information criterion (AIC), 42, 469, 470 Algebra BUGS language and, 50–51, 84 modeling in, 25, 267 multistate models and, 267 ANCOVA linear model GLM, 50, 52 GLMM, 74–77, 106 R code for, 50, 52 random-effects, 75–76 Andrewartha, H. G., 1 ANOVA, 100–106 Apparent abundance, 14t Apparent distribution, 14t, 415 Asp viper, 17–18, 18–19f, 74–77, 76f
as key population descriptor, 409–410 latent, 384 modeled, 14t overdispersion in, 404–409 parameters, 387 Poisson distribution for, 385 spatial variation in, 384 in species–abundance distribution, 5	Band-recovery models. See Mark-recovery models Batched effects, pooling of, 81 Bayes rule exaggerated difficulty of, 36
as state variable, 410, 414 study of, 1–6 true, 14t	information combined with, 35 learning formalized in, 34–35 paraphrased, 34

Bayes rule (Cont.)	ecological process in, 392f
priors and, 35–37, 44	generation and analysis of simulated
quantities in, 33	data, 388–396
Bayesian computation, in Bayesian statistical	GLMM and, 383
modeling, 38	introduction to, 383-388
Bayesian statistical modeling	N-mixture model with
Bayesian computation in, 38	overdispersion in, 404-409
challenges of, 41	observation process in, 392f
hierarchical, 43–44	open-population N-mixture model
inference in, 44	in, 396–409
introduction to, 23-24, 28-38	posterior distributions in, 394f, 397,
overview of, 464	401f
parameter nonidentifiability and, 217	program R in, 396
posterior sampling and, 41–43	p-values in, 397
<i>p</i> -values in, 222–223, 226f	silver-washed fritillary example of,
role of, 24–27	396–409, 397f, 408f
summary of, 44–45	simple Poisson model for, 398–401
WinBUGS and, 38–40	simplest case, 388–390
Begon, M., 2	summary of, 409–410
Behavioral effects	WinBUGS and, 388–410
defined, 136	ZIP N-mixture model, 401–404
in generation and analysis of simulated	assumptions, 387–388
data, 148–150	benefits, 385
importance of, 138	defined, 384
Bernoulli distribution	detection probability in, 387
defined, 67	for dynamic situations, 387
site-occupancy models and, 417	false positives and, 388
Bernoulli trials, 176, 244	Poisson-binomial, 385–386
Beta-binomial distribution, 12	for static situations, 387
Bias	Binomial response, 15
descriptor, 7	Biodiversity, 4–5
estimation error and, 366	Birch, L. C., 1
simulations and, 16–20	Black grouse, 329, 329f, 334f
systematic, 121–126	Blue bug. See Rosalia alpina beetle
Binomial distribution	Brooks–Gelman–Rubin statistic, 39
beta-binomial, 12	
capture–recapture models and, 385	BRT. See Bugs run time bugs function, 87
negative, 12, 386	BUGS language
observation process and, 9–13, 20	0 0
Binomial GLM	algebraic description in, 50–51, 84
analysis of real data, 70–71	as hierarchical model translation, 25
generation and analysis of simulated	history of, 38
data, 68–70	latent suitability indicators defined in, 402
for modeling-bounded counts or	likelihood defined in, 358
proportions, 67–71	logit stabilized in, 430
	value of, 25, 39, 41, 54–55
Poisson GLM compared to, 48	Bugs run time (BRT), 93
summary of, 71–72	Burnin, 39
WinBUGS and, 68–71	C
Binomial mixture model	
abundance estimation and, 15, 384	Capture–recapture data
analysis of real data, 396–409	for estimating closed population size
covariates in, 390–396	analysis of real data, 157–162

behavioral effects in, 148–150 CJS model and, 135, 137–138 combined effects in, 154–157 generation and analysis of simulated data, 139–157 individual effects in, 150–153 introduction to, 134–139 model M _{thh} for, 157–162 model M _{t+x} for, 162–168 pen shell example of, 166–168, 167f summary of, 169–170 time effects in, 145–147 trap response example of, 136–137, 148–157 in integrated population model example, 357–363 joint analysis of generation of simulated data, 296–297 model for, 295–300 survival and movement estimation from, 295–300 likelihood of, 354 mark-recovery data compared to, 295 overdispersion and, 196	for survival and movement estimation using multistate models age-specific probability of first breeding model, 288–294 fire salamanders example of, 282–284, 283f introduction to, 264–268 little ringed plover example of, 270–274, 271f, 289–290, 302–303 model for joint analysis of capture-recapture and mark-recovery data, 295–300 movement among three sites, 300–306 movement between two sites, 268–281 real-data example, 307–311 showy lady's slipper example, 307f, 307–311 state-space likelihood and, 274 summary of, 311–312 temporal effects and, 280 temporary emigration model, 281–287
for recruitment, survival, and population size estimation using JS model analysis of real data, 341–345 assumptions of, 316 black grouse example of, 329, 329f, 334f connections between parameters in, 339–341 constant survival and time-dependent entry models in, 328–335 data augmentation in, 319–328, 338 GLM and, 328, 345 grey-headed woodpecker example of, 335–339, 336f identifiability in, 339–341 introduction to, 316–317 Leisler's bats example of, 341–345, 344f models with individual capture heterogeneity, 335–339 parameterizations of, 317, 325–328 priors in, 326	WinBUGS and, 270–287, 289–294, 296–300, 302–312 for survival estimation using CJS model age effect models and, 208–212 age-dependent models and, 227–231 analysis of real data, 231–237 constant parameters and, 177–183 fixed group and random time effect models in, 204–208 fixed group and time effect models in, 199–204 fixed group effect models in, 192–194 fixed time effect models in, 184 GLM and, 199, 211, 237 individual group effects in, 195–199 introduction to, 172–175 latent state variable in, 181–183 Leisler's bat example, 231–237, 232f, 235–236f little owls example of, 177–183, 178f, 185, 189, 196, 209, 227–231 models with individual variation and, 192–199 multinomial likelihood and, 220–231, 237
for recruitment, survival, and population size estimation using JS model analysis of real data, 341–345 assumptions of, 316 black grouse example of, 329, 329f, 334f connections between parameters in, 339–341 constant survival and time-dependent entry models in, 328–335 data augmentation in, 319–328, 338 GLM and, 328, 345 grey-headed woodpecker example of, 335–339, 336f identifiability in, 339–341 introduction to, 316–317 Leisler's bats example of, 341–345, 344f models with individual capture heterogeneity, 335–339 parameterizations of, 317, 325–328	296–300, 302–312 for survival estimation using CJS model age effect models and, 208–212 age-dependent models and, 227–231 analysis of real data, 231–237 constant parameters and, 177–183 fixed group and random time effect models in, 204–208 fixed group and time effect models in, 199–204 fixed group effect models in, 192–194 fixed time effect models in, 184 GLM and, 199, 211, 237 individual group effects in, 195–199 introduction to, 172–175 latent state variable in, 181–183 Leisler's bat example, 231–237, 232f, 235–236f little owls example of, 177–183, 178f, 185, 189, 196, 209, 227–231 models with individual variation and, 192–199

pen shell example of, 166–168, 167f
summary of, 169–170
time effects in, 145-147
trap response example of, 136-137,
148–157
Closure assumption
relaxing of, 475–476
temporary emigration and, 416
Coal tit, 95f, 95–110, 97f
Coefficient of variation (CV), 129
Common terns, 244-246, 245f, 252-255
Community
models, for metapopulation designs,
474–475
as population, 5
Confidence interval (CI), 37
Conservation, population analysis for,
477–478
Constant detection probability, 447, 472
Constant parameters, 177–183, 246–252
Constant survival and time-dependent entry
models
comparison of estimates, 333-335
multistate, 332
recruitment, survival, and population size
estimation using, 328–335
restricted occupancy, 331
superpopulation formulation and, 333
Conventional Poisson GLMM, for count data
analysis of real data, 88–90, 95–110
fixed site and fixed year effects,
100–102
fixed site effects, 99-100
full model, 108-110
generation and analysis of simulated
data, 84–88, 92–95
introduction to, 73-82
overdispersion in, 83
with random effects for variability among
groups, 90–110
random site and random year effects,
103–105
random site effect, random year effect,
and first-year fixed observer effect,
105–106
105–106
105–106 random site effect, random year effect,
105–106 random site effect, random year effect, first-year fixed observer effect, and
105–106 random site effect, random year effect, first-year fixed observer effect, and overall linear time trend, 106–108
105–106 random site effect, random year effect, first-year fixed observer effect, and overall linear time trend, 106–108 random site effects, 102–103

Cormack-Jolly-Seber (CJS) model	time-dependent models and,
assumptions, 173–174	222–227
closed population size and, 135, 137-138	time-variation models and, 183-192
emigration and, 371	trap response models and, 212-216
false negatives and, 173	WinBUGS and, 177–208, 212–237
false positives and, 173	Count data
in integrated population models, 371	in integrated population model, 357–363
JS model compared to, 237, 345	likelihood of, 352–354
mark-recovery model compared to,	Poisson GLMM for
243–244, 248	analysis of real data, 88–90, 95–110
	<u> </u>
m-array and, 44, 220–231	fixed site and fixed year effects, 100–102
multinomial likelihood and, 173, 175,	
220–231, 237	fixed site effects, 99–100
multistate model compared to, 267, 278	full model, 108–110
state-space models and, 173, 175–177, 181,	generation and analysis of simulated
237, 465, 466t	data, 84–88, 92–95
survival estimation using	introduction to, 73–82
age effect models and, 208–212	overdispersion in, 83
age-dependent models and, 227-231	with random effects for variability
analysis of real data, 231–237	among groups, 90–110
constant parameters and, 177–183	random site and random year
fixed group and random time effect	effects, 103–105
models in, 204–208	random site effect, random year
fixed group and time effect models	effect, and first-year fixed observer
in, 199–204	effect, 105–106
fixed group effect models in, 192-194	random site effect, random year
fixed time effect models in, 184	effect, first-year fixed observer effect,
GLM and, 199, 211, 237	and overall linear time trend,
individual group effects in, 195-199	106–108
introduction to, 172-175	random site effects, 102-103
latent state variable in, 181-183	uses of, 111
Leisler's bat example, 231–237, 232f,	replicated, 385, 409
235–236f	Covariates
little owls example of, 177–183, 178f,	in abundance estimation, 390-396
185, 189, 196, 209, 227–231	abundance's relationship with, 395, 395f
models with individual variation	effects of, 79
and, 192–199	flexible modeling of, 476
multinomial likelihood and,	in individual covariate models
220–231, 237	capture-recapture models, 162–168
parameter identifiability in, 216–220	for population size estimation,
R code and, 178	166–168
random group effects in, 194–195	for species richness estimation,
random time effect models in,	163–166
184–188	in N-mixture model, 390–396
recapture probability and, 212–216	single-season occupancy model with,
red-backed shrikes example, 213,	422–427
214f	site, 390
summary of, 237–238	temporal, 188–192
temporal covariates in, 188–192	Credible interval (CRI)
temporal variability, 204	defined, 37
1	increase in, 369
time and group effect models in, 199–208	
177–200	CV. See coefficient of variation

D	Detection. See also Detection/nondetection
DA. See Data augmentation	data
DAG. See Directed acyclic graph	linear predictor for, 386
Data augmentation (DA)	N-mixture model with overdispersion
capture–recapture models and, 139, 140,	with, 404–409
152	probability, 6, 11
defined, 140	in binomial mixture models, 387
generation and analysis of simulated data	capture-recapture models and, 137t,
with, 139–157	136–137
behavioral effects, 148-150	constant, 447, 472
combined effects, 154-157	date related to, 433
individual effects, 150-153	model selection view of, 473
introduction to, 139-145	state-space models and, 124–125,
time effects, 145–147	131
introduction to, 139	time of day related to, 433
JS model and, 319–328, 338	within-capture-history dependence
as multistate model, 322–325	of, 148
as restricted dynamic occupancy	of silver-washed fritillary, 408f
model, 320–322	Detection error. See False negatives
superpopulation parameterization	Detection/nondetection data
and, 325–328	defined, 414
in random-effects models, 152	introduction to, 414–419
in recruitment, survival, and population	occurrence and species distribution
size estimation, 319–328, 338	estimation from
Data cloning, 36 Data dredging, 469–470	analysis of real data, 427–436, 445–450
Dead-recovery matrix, 247	dynamic models for, 436-450, 459
Dead-recovery models. See Mark-recovery	generation and analysis of simulated
models	data in, 420-427, 439-445
Demographic parameters, temporal	goodness of fit and, 418
variability of, 373	introduction to, 414-418
Demographic rates	long-eared owl example of, 439–445,
integrated population models estimating	440f, 454, 456
analysis of, 358–363 CJS model in, 371	multistate occupancy models, 450–458
fecundity estimated with, 363-366,	<i>p</i> -values and, 419–420
377–378	Rosalia alpina example of, 427–436,
hoopoe example of, 371f, 371–379, 378f	428–429f, 432f, 434f single-season occupancy analysis,
introduction to, 348–350	420–427
ortolan bunting example of, 349, 350–351f, 357–363, 366–370	six-spot burnet example of, 445–450, 445f, 450f
for population viability analysis, 366–370	summary of, 459–460 WinBUGS in, 419–436, 439–450
	Deterministic mechanisms, 6
without productivity data, 363–366	Deviance information criterion (DIC), 42, 469
real data example of, 371–379	Directed acyclic graph (DAG), 356f, 467
simple example of, 357–363	Dirichlet distribution, 300, 302, 308, 454
summary of, 379–380	Dispersion, extra-Poisson, 386, 405
WinBUGS and, 357–379	Distance sampling, 135, 169
population size and, 350–352	Distribution. See also specific distributions
Descriptors, biased, 7	apparent, 14t, 415
• • • • • • • • • • • • • • • • • • •	

atlas, 4	not required, 473
catalog, 49	SECR, 135, 475
importance of, 20	Extra-Poisson dispersion, 386, 405
organism, 4	Extrinsic nonidentifiability, 216
study of, 1–6	r
true, 14t, 415	F
The Distribution and Abundance of Animals	False negatives
(Andrewartha and Birch), 1	abundance and, 384
Double-counting, 125	accounting for, 476
Dynamic multistate occupancy model,	CJS model and, 173
458–459	false positives canceling out, 125
Dynamic occupancy models, 436–450	introduction to, 11–13, 20
Dynamic occurrence and species	multistate models and, 265
distribution models, 436–450, 459	site-occupancy model and, 417
T	False positives
E	accounting for, 476
Ecological process, 8, 392f	binomial mixture models and, 388
Ecology	CJS model and, 173
definition of, 1–6	false negatives canceling out, 125
hierarchical view of, 6, 7f	introduction to, 12–13, 20
metapopulation, 3–4	multistate models and, 265
state changes in, 2, 2f	sample size and, 13
Ecology: Individuals, Populations, and	site-occupancy model and, 416–417
Communities (Begon), 2	Fecundity
Ecology: The Experimental Analysis of Distribution and Abundance (Krebs), 1	integrated population models estimating, 363–366, 377–378
Emigration. See also Temporary emigration	Poisson GLM modeling, 66-67
CJS model and, 371	Fidelity, 295
permanent, 295	Finite-population standard deviation, 79
Entry probability, 317, 323, 329, 333, 340, 345	Fire salamanders, 282–284, 283f
Errors. See also False negatives; False	First breeding model, age-specific
positives	probability of
estimation, 366	analysis of, 290–294
misclassification, 476	description of, 288–289
Monte Carlo, 144	generation of simulated data, 289–290
nondetection, 7, 10	survival and movement estimation with,
observation, 11	288–294
hierarchical models correcting, 11,	First-year fixed observer effect, 105–108
116–117, 117f, 384	Fisher Scoring, 58
Poisson distribution for, 352	Fixed effects
standard, of estimator, 20	additive, 154
Estimated population size, 121–126	in fixed group and random time effect
Estimation error, bias and, 366	models, 204–208
Estimator, 17, 20	in fixed group and time effect models,
E-SURGE, 470–471	199–204
Exchangeability, assumption of, 77, 82	in fixed group effect models in,
Expected count, 111, 134	192–194
Explanation, objective of, 26 Explicit models	in fixed site and fixed year effects model, 100–102
defined, 26	in fixed site effects model, 99–100
hierarchical, 43, 111, 384, 472	in fixed time effect models, 184
of misclassification error, 476	random effects compared to, 76, 82
of Americanication Citor, 470	random enects compared to, 70, 02

Fixed effects (Cont.) in random site effect, random year effect, and first-year fixed observer effect model, 105–106 time effects, 184, 199–204 in WinBUGS, 76 Frailty, 208 Freeman—Tukey statistic, 224 Frequentist analysis, of statistical models, 28–38 Freuler, Reto, 126	introduction to, 73–82 latent effects and, 73 null, 98–99 peregrine falcon example of, 84–90, 86f, 92–95 summary of, 110–112 Swiss coal tit example of, 95f, 95–110, 97f Generalized linear models (GLM) advantages of, 54 ANCOVA, 50, 52 binomial
G	analysis of real data, 70-71
GAM. See Generalized additive model Gamma prior, 120 Generalized additive model (GAM) defined, 71 development of, 476 smoothing of, 131 Generalized linear mixed model (GLMM) abundance estimation and, 383 ANCOVA and, 74–77, 106 ANOVA and, 100–106 asp viper example, 17–18, 18–19f, 74–77, 76f complex estimation in, 95 conventional Poisson, for count data analysis of real data, 88–90, 95–110 fixed site and fixed year effects, 100–102 fixed site effects, 99–100 full model, 108–110 generation and analysis of simulated data, 84–88, 92–95 introduction to, 73–82 overdispersion in, 83 with random effects for variability among groups, 90–110 random site and random year effects, 103–105 random site effect, random year effect, and first-year fixed observer effect, first-year fixed observer effect, and overall linear time trend,	generation and analysis of simulated data, 68–70 for modeling-bounded counts or proportions, 67–71 Poisson GLM compared to, 48 summary of, 71–72 WinBUGS and, 68–71 capture-recapture models and, 138 effects formulation, 199 GLMM compared to, 88 introduction to, 48 movement among three sites model and, 301 peregrine falcon example of, 56–71, 56–57f, 65f Poisson analysis of real data, 64–66 binomial GLM compared to, 48 fecundity modeling by, 66–67 generation and analysis of simulated data, 56–64 overdispersion in, 83 in R, 55–66 summary of, 71–72 WinBUGS and, 55–66 random effects in, 73 in recruitment, survival, and population size estimation, 328, 345 response components in link function and, 54–55 noise, 48–55 signal, 48–55 summary of, 71–72 in survival estimation using CJS model,
106–108	199, 211, 237
random site effects, 102-103	themes in, 15
uses of, 111	with WinBUGS, 48
defined, 71	binomial GLM and, 68-71
GLM compared to, 88	Poisson GLM and, 55-66

time series of counts modeled with,	for synthetic understanding of
55–66	models, 466t, 465–467
undefined real result trap in, 60–61	for unmarked, 470–471
Gibbs sampling, 38	random variables in, 43
GLM. See Generalized linear models	stochastic parts of, 27
GLMM. See Generalized linear mixed model	systematic parts of, 27
Goodness of fit (GOF)	variable selection and, 469–470
for integrated population models, 380	Hierarchical scales of organization, 2
m-array and, 222, 224	ecology and, 6, 7f
in occurrence and species distribution	modeling of, 5
estimation, 418 Crow hazded woodpacker, 335, 339, 336f	Scale 1, 2, 3t Scale 2, 3, 3t
Grey-headed woodpecker, 335–339, 336f Group effects, 138	Scale 2, 3, 3t Scale 3, 3t, 5
fixed	Scale 4, 3t, 5
in fixed group and random time	Home range, 135
effect models, 204–208	Hoopoe, 371f, 371–379, 378f
in fixed group and time effect	House martin, 126–130, 126f, 130f
models, 199–204	110400 11411411, 120 100, 1201, 1001
in fixed group effect models in,	I
192–194	Ibex population, 118–121, 118f, 121f, 124f
individual, 195–199	Identifiability, 216–220, 339–341
models with, 199-208	Immigration, 371, 377
random, 194–195	Implicit models
	defined, 26
Н	hierarchical, 43, 111, 384, 472
Heterogeneity model, 150-153, 335-339	Incidence. See also Occupancy
Hierarchical models. See also specific models	defined, 437
Bayesian statistical modeling and,	in metapopulation, 3
43–44	Independence assumption, of integrated
BUGS language translation of, 25	population models, 355
defined, 91	Individual capture heterogeneity models,
explicit, 43, 111, 384, 472	335–339
implicit, 43, 111, 384, 472	Individual covariate models
importance of, 8	capture–recapture, 162–168
N-mixture, 44	for population size estimation, 166–168
observation error corrected by, 11,	for species richness estimation, 163–166
116–117, 117f, 384	Individual effects, 136, 138
partitioning in, 13	in generation and analysis of simulated
power of, 464–472 for cleaner thinking, 467	data with data augmentation, 150–153
for E-SURGE, 470–471	group, 195–199
for fitting of complex statistical	Individual variation, models with
models, 464–465	with fixed group effects, 192–194
for MARK, 470–471	with individual group effects, 195–199
for PRESENCE, 470–471	with random group effects, 194–195
for primary model selection,	survival estimation and, 192–199
468–469	Inference, scope of, 78–79
for secondary model selection,	Information combination
469–470	with Bayes rule, 35
for step-up approach to problems,	development of, 474
467	as motivation for random-effects model,
for study design, 471–472	81

Inits function, 128	as multistate model, 322-325
Integrated population models	as restricted dynamic occupancy
capture-recapture data in, 357-363	model, 320–322
count data in, 357-363	superpopulation parameterization
defined, 348	and, 325–328
demographic rates, population size, and	inferences of, 15
projection matrices estimation using	as multistate model, 322–325, 332
analysis of, 358–363	N-mixture, 475
CJS model in, 371	observation process in, 318, 318f
fecundity estimated with, 363–366,	recruitment, survival, and population size
377–378	estimation using
hoopoe example of, 371f, 371–379,	analysis of real data, 341–345
378f	assumptions of, 316
introduction to, 348–350	black grouse example of, 329, 329f,
ortolan bunting example of, 349,	334f
350–351f, 357–363, 366–370	connections between parameters in,
for population viability analysis, 366–370	339–341
without productivity data, 363–366	data augmentation in, 319–328, 338 GLM and, 328, 345
real data example of, 371–379	grey-headed woodpecker example
simple example of, 357–363	of, 335–339, 336f
summary of, 379–380	identifiability in, 339–341
WinBUGS and, 357–379	introduction to, 316–317
development of, 349	Leisler's bats example of, 341–345,
first step, 350–352	344f
second step, 352–354	models with constant survival and
third step, 354–357	time-dependent entry, 328-335
fecundity estimated by, 363–366, 377–378	models with individual capture
goodness of fit and, 380	heterogeneity, 335–339
independence assumption of, 355	parameterizations of, 317, 325–328
for population viability analysis, 366-370	priors in, 326
reproduction in, 357-363	summary of, 345-346
simulation with, 349	WinBUGS and, 321-339, 341-345
state-space likelihood and, 354	as restricted occupancy model, 331
Intercept-only model. See Null model	state process in, 318, 318f
Intercepts	as state-space model, 317–319
random, 75, 78	superpopulation formulation and, 333
varying, 78	uses of, 170
Intrinsic nonidentifiability, 216	variants, 317
Inverse Wishart distribution, 206–207	JS model. See Jolly–Seber model
Ţ	K
3	Kittiwakes, 414
Joint analysis, of capture–recapture and mark-recovery data	Krebs, C. J., 1
generation of simulated data, 296–297	Kiebs, C. J., 1
model for, 295–300	L
survival and movement estimation from,	Lack-of-fit ratio, 401
295–300	Latent abundance, 384
Joint likelihood, formulation of, 354–357	Latent effects, GLMMs and, 73
Jolly–Seber (JS) model	Latent state variable, 181-183, 247, 276, 318
CJS model compared to, 237, 345	Latent suitability indicators, 402
data augmentation and, 319-328, 338	Learning, formalized, 34–35

Leisler's bats	Mark recovery data
	Mark-recovery data
in recruitment, survival, and population size estimation using JS, 341–345,	capture–recapture data compared to, 295 joint analysis of
344f	generation of simulated data,
in survival estimation using CJS model,	296–297
176f, 231–237, 232f, 235–236f	model for, 295–300
Leslie-matrix modeling, 14t, 362, 379	survival and movement estimation
Levels, 78	from, 295–300
Likelihood. See also Maximum likelihood	simulations with, 244–246, 296–297
estimate; Multinomial likelihood	survival estimation using
BUGS language defining, 358	common terns example of, 244–246,
of capture–recapture data, 354	245f, 252–255
of count data, 352–354	introduction to, 241–242
function, 29, 33, 36	latent state variable in, 247
joint, 354–357	m-array for, 249, 251-253, 255
principle, 223	MCMC and, 261
of reproductive success data, 354	multinomial likelihood and,
state-space	248–255, 261
integrated population models and,	priors in, 258, 260
354	R code and, 249
in survival and movement	real-data example of, 255–261
estimation using multistate models,	red kites example, 255-261, 256f,
274	259–260f
Linear models. See also specific models	sampling for, 242
mean structure described by, 49	simulation of, 244-246
themes in, 15	state-space models and, 242–248,
Linear predictor, for detection, 386	261
Link function, 54–55, 422	summary of, 261
Little owls, 177–183, 178f, 185, 189, 196, 209,	WinBUGS and, 244–261
227–231	Mark-recovery models
Little ringed plover, 270–274, 271f, 289–290,	CJS model compared to, 243–244, 248
302–303	multinomial likelihood fitting, 248–255
Log-function, 386, 394f	model with age-dependent
Logistic normal, 150	parameters, 252–255
Logit, 148, 154, 186, 430	model with constant parameters,
Logit-link function, 386, 394f	248–252
Long-eared owl, 439–445, 440f,	as state-space model
454, 456	advantages of, 242–248, 261
M	analysis of model with constant parameters, 246–248
Magden, 126–130	simulation of mark-recovery data,
Marginal probability, 33	244–246
MARK, 470–471	state and observation processes,
Markov chain Monte Carlo (MCMC)	243f, 243
benefits of, 358	M-array
development of, 38	CJS model fitted via, 44, 220–231
mark-recovery data and, 261	goodness of fit and, 222–224
random effects and, 406	mark-recovery data and, 249, 251–253,
in restricted occupancy model, 343	255
sampling techniques, 38	Maximum likelihood estimate (MLE)
state-space models and, 120, 130	benefits of, 31
WinBUGS blackbox of, 38–41, 44	from data cloning, 36

Maximum likelihood estimate (MLE) (Cont.)	<i>p</i> -values and, 419–420
defined, 29	Rosalia alpina example of, 427–436,
mode and, 28, 37	428–429f, 432f, 434f
posterior mean and, 28	single-season occupancy analysis,
tadpole example of, 29, 30f, 33	420–427
MCMC. See Markov chain Monte Carlo	six-spot burnet example of, 445-450,
Mean effects, 78	445f, 450f
Memory, 160	summary of, 459-460
Metacommunity, 3t, 5	WinBUGS in, 419-436, 439-450
Metapopulation, 15, 96	population models for, 474-475
ecology, 3–4	Misclassification error, 476
extent of, 4	Mixed models. See Generalized linear mixed
incidence in, 3	model
Metapopulation designs	MLE. See Maximum likelihood estimate
abundance estimation and, 15, 384	Mode, 28, 37
analysis of real data, 396–409	Modeling. See also specific types of modeling
covariates in, 390–396	in algebra, 25, 267
ecological process in, 392f	flexible, of covariates, 476
generation and analysis of simulated	of hierarchical scales of organization, 5
data, 388–396	objectives, 26
GLMM and, 383	of parameter correlations, 79-80
introduction to, 383-388	role of, 24–27
N-mixture model with	sayings about, 24
overdispersion in, 404-409	summary of, 44–45
observation process in, 392f	synthetic understanding of, 465-467, 466t
open-population N-mixture model	themes, 15
in, 396–409	Modeling-bounded counts or proportions
posterior distributions in, 394f, 397,	analysis of real data, 70–71
401f	binomial GLM for, 67–71
program R in, 396	generation and analysis of simulated
<i>p</i> -values in, 397	data, 68–70
silver-washed fritillary example of,	Models. See also specific models
396–409, 397f, 408f	M _b , 148–150
simple Poisson model for, 398–401	M _h , 150–153
simplest case, 388–390	M_t , 145–147
summary of, 409–410	M_{tbh} , 157–162
WinBUGS and, 388–410	M_{th} , 154–157
ZIP N-mixture model, 401–404	M_{t+x}
community models for, 474–475	capture-recapture data and,
in occurrence and species distribution	162–168
estimation	for population size estimation,
analysis of real data, 427–436,	162–168
445–450	for species richness, 163–166
dynamic models for, 436–450, 459	selection of, 37
generation and analysis of simulated data in, 420–427, 439–445	detection probability and, 473 primary, 468–469
goodness of fit and, 418	secondary, 469–470
introduction to, 414-418	Monte Carlo error, 144
long-eared owl example of, 439-445,	Movement among three sites, model of
440f, 454, 456	analysis of, 304–306
multistate occupancy models,	description of, 300-302
450-458	generation of simulated data, 302-303

GLM and, 301	Multistate models
survival and movement estimation using,	algebraic description of, 267
300–306	applications of, 265
Movement and survival estimation, from	CJS models compared to, 267, 278
capture-recapture data using	as constant survival and time-dependent
multistate models	entry models, 332
age-specific probability of first breeding	false negatives and, 265
model, 288–294	false positives and, 265
fire salamanders example of, 282–284,	JS model as, 322–325, 332
283f	observation process and, 265, 266f
introduction to, 264–268	occupancy
little ringed plover example of, 270–274,	dynamic, 458, 459
271f, 289–290, 302–303	extensions of, 458, 459
model for joint analysis of	importance of, 459
capture–recapture and mark-	in occurrence and species
recovery data, 295–300	distribution estimation, 450–458
movement among three sites, 300–306	parameterizations of, 453
movement between two sites, 268–281	uses of, 451
real-data example, 307–311	state process and, 265, 266f
showy lady's slipper example, 307f,	in survival and movement estimation
307–311	from capture–recapture data
state-space likelihood and, 274	
	age-specific probability of first breeding model, 288–294
summary of, 311–312	
temporal effects and, 280	fire salamanders example of, 282–284, 283f
temporary emigration model, 281–287	*
WinBUGS and, 270–287, 289–294,	introduction to, 264–268
296–300, 302–312	little ringed plover example of,
Movement between two sites, estimated	270–274, 271f, 289–290, 302–303
analysis of, 274–281	model for joint analysis of capture-recapture and mark-
described, 268–270	
generation of simulated data, 270–274	recovery data, 295–300
using multistate models, 268–281	movement among three sites,
Movement probability, 14t	300–306
Multidimensional arrays, in WinBUGS, 396 Multievent models, 312	movement between two sites, 268–281
•	
Multinomial likelihood	real-data example, 307–311
age-dependent models, 227–231, 252–255	showy lady's slipper example, 307f, 307–311
CJS model fitted using, 173, 175, 220-231,	state-space likelihood and, 274
237	summary of, 311–312
constant parameters and, 248-252	temporal effects and, 280
introduction to, 220–222	temporary emigration model,
mark-recovery models fitted with,	281–287
248–255	WinBUGS and, 270-287, 289-294,
with age-dependent parameters,	296–300, 302–312
252–255	Mutually exclusive events, 32, 32t
with constant parameters, 248-252	
survival estimation and, 220-231, 237,	N
248–255, 261	Negative binomial distribution, 12, 386
time-dependent models, 222-227	N-mixture model
Multiseason site-occupancy models,	basic, 387
436–450	covariates in, 390–396

N-mixture model (Cont.)	dynamic models for, 436-450, 459
generalization of, 410	generation and analysis of simulated data
hierarchical, 44	in, 420–427, 439–445
JS, 475	goodness of fit and, 418
open-population	introduction to, 414-418
in abundance estimation, 396–409	long-eared owl example of, 439-445,
simple Poisson model, 398-401	440f, 454, 456
with overdispersion in abundance and	multistate occupancy models, 450-458
detection, 404–409	<i>p</i> -values and, 419–420
power of, 409	Rosalia alpina example of, 427–436,
simplest case of, 388–390	428–429f, 432f, 434f
ZIP, 401–404	single-season occupancy analysis,
Noise	420–427
link function and, 54–55	six-spot burnet example of, 445–450,
as response component, 48–55	445f, 450f
Nondetection data. See Detection/	summary of, 459–460
nondetection data	WinBUGS in, 419–436, 439–450
Nondetection error, 7, 10	OpenBUGS, 390, 439
Nonidentifiability, parameter, 216–217 Nonparametric assumptions, 476	Open-population model
Nuisance parameter, 320	N-mixture
Null model, 98–99	in abundance estimation, 396–409 simple Poisson model, 398–401
Ivan model, 70 77	understanding of, 465
0	Organism distribution, 4
Observation	Ortolan buntings, 349, 350–351f, 357–363,
equations, 116	366–370
error	Overall linear time trend model, 106–108
hierarchical models correcting, 11,	Overdispersion
116–117, 117f, 384	capture–recapture data subject to, 196
Poisson distribution for, 352	correction for, 386, 404
genesis of, 6-9	defined, 82
process, 7f	N-mixture model with, 404-409
in abundance estimation, 392f	in Poisson GLM, 83
accounted for, 13	in Poisson GLMM, 83
binomial distribution and, 9-13, 20	in random-effects models, 82-90
importance of, 472–474	Overparameterization, 100
in JS models, 318, 318f	D.
in mark-recovery models, 243f, 243	P
in multistate models, 265, 266f	Parameterization
population analysis and, 8	of JS recruitment, survival, and
systematic bias in, 121–126	population size modeling, 317,
true state and, 8	325–328
Variance, 123	of multistate occupancy models, 450–458
Observed population size, 121–126	overparameterization and, 100
Occupancy. See also Site-occupancy models	superpopulation, 325–328 treatment contrast, 53
defined, 437	Parameters
as state variable, 4	
Occurrence and species distribution	abundance, 387 age-dependent, 252–255
estimation, using site-occupancy	connections between, 339–341
models	constant, 177–183, 246–252
analysis of real data, 427-436, 445-450	correlations, modeling of, 79–80

1.6: 1.00	1 4 6 100 100
defined, 20	random site effects, 102–103
demographic, 373	uses of, 111
estimation and inference, 29	PLN, 83–84
fixed, 28–29	Poisson-binomial mixture model,
identifiability, 216–220, 339–341	385–386
nonidentifiability, 216–217	Poisson random variable, 55
nuisance, 320	Poisson response, 15
of Poisson distribution, 55	Poisson-log-normal (PLN) model, 83–84
variance, 37	Population(s). See also Integrated
Pen shell, 166–168, 167f	population models; Metapopulation; Open-population model; Population
Peregrine falcons GLM and, 56–71, 56–57f, 65f	size; Superpopulation
	abundance as key descriptor of, 409–410
GLMM and, 84–90, 86f, 92–95 Permanent emigration, 295	
Poisson distribution, 12	analysis for conservation, 477–478
for abundance, 385	defined, 6
for observation error, 352	methods for, 15
parameter of, 55	observation process and, 8
zero-inflated, 386	recurring themes in, 477
Poisson means, 63	viability, 366–370
Poisson models	for wildlife management, 477–478
for abundance estimation, 398–401	asp viper, 17–18, 18–19f, 74–77, 76f
GLM	black grouse, 329, 329f, 334f
analysis of real data, 64-66	classic, 4
binomial GLM compared to, 48	common terns, 244-246, 245f, 252-255
fecundity modeling by, 66–67	community as, 5
generation and analysis of simulated	counts, state-space models for
data, 56–64	analysis of simulated data, 119
overdispersion in, 83	framework of, 117
in R, 55–66	house martin example, 126-130,
summary of, 71-72	126f, 130f
WinBUGS and, 55-66	ibex example, 118f, 118–121, 121f,
GLMM	124f
analysis of real data, 88–90, 95–110	introduction to, 115-118
fixed site and fixed year effects,	MCMC and, 120, 130
100–102	observation equations in, 116
fixed site effects, 99–100	simple, 118–121, 131
full model, 108–110	state-process equations in, 116
generation and analysis of simulated	systematic bias and, 121–126
data, 84–88, 92–95	WinBUGS and, 118–130
introduction to, 73–82	descriptors, 7
overdispersion in, 83	in finite-population standard deviation, 79
with random effects for variability	fire salamanders, 282–284, 283f
among groups, 90–110	grey-headed woodpecker, 335–339, 336f
random site and random year	hoopoe, 371f, 371–379, 378f
effects, 103–105	kittiwakes, 414 Loislar's bats
random site effect, random year	Leisler's bats
effect, and first-year fixed observer effect, 105–106	in recruitment, survival, and
random site effect, random year effect,	population size estimation using JS model, 341–345, 344f
first-year fixed observer effect, and	survival estimation using CJS model
overall linear time trend, 106–108	and, 231–237, 232f, 235–236f
overan micar ante actia, 100–100	uria, 201 201, 2021, 200-2001

Population(s) (Cont.)	CJS model in, 371
likelihood of count data, 352-354	fecundity estimated with, 363-366,
little owls, 177-183, 178f, 185, 189, 196,	377–378
209, 227–231	hoopoe example of, 371f, 371–379,
little ringed plover, 270–274, 271f, 289–290, 302–303	378f introduction to, 348–350
long-eared owl, 439-445, 440f, 454, 456	ortolan bunting example of, 349,
models, for metapopulation designs,	350–351f, 357–363, 366–370
474–475	for population viability analysis,
ortolan bunting, 349, 350-351f, 357-363,	366–370
366–370	without productivity data, 363-366
pen shell, 166–168, 167f	real data example of, 371–379
peregrine falcon	simple example of, 357–363
GLM model of, 56–71, 56–57f, 65f	summary of, 379–380
GLMM model of, 84–90, 86f, 92–95	WinBUGS and, 357–379
quantities, sample size and, 20	JS model estimating
red kites, 255–261, 256f, 259–260f	analysis of real data, 341–345
Rosalia alpina beetle, 427–436, 428–429f,	assumptions of, 316
432f, 434f	black grouse example of, 329, 329f,
silver-washed fritillary, 396–409, 397f, 408f	334f
six-spot burnet, 445–450, 445f, 450f sparrow, 9–11, 11f	connections between parameters in 339–341
spotted owl, 414	data augmentation in, 319–328, 338
Swiss coal tit, 95f, 95–110, 97f	GLM and, 328, 345
tadpole, 29, 30f, 33, 38	grey-headed woodpecker example
unobserved, 366	of, 335–339, 336f
white storks, 252	identifiability in, 339-341
wryneck, 156f	introduction to, 316-317
Population size	Leisler's bats example of, 341-345,
closed, capture-recapture data for	344f
estimating	models with constant survival and
analysis of real data, 157–162	time-dependent entry, 328-335
behavioral effects in, 148–150	models with individual capture
CJS model and, 135, 137–138	heterogeneity, 335–339
combined effects in, 154-157	parameterizations of, 317, 325–328
generation and analysis of simulated	priors in, 326
data, 139–157	summary of, 345–346
individual effects in, 150–153	WinBUGS and, 321–339, 341–345
introduction to, 134–139	observed, 121–126
model M _{tbh} for species richness	of occupied patches, 13
estimation, 157–162	as smoothed index, 380 true, 121–126
model M _{t+x} , 162–168 pen shell example of, 166–168, 167f	
summary of, 169–170	of unobserved populations, 366 Positional matching, 87
time effects in, 145–147	Posterior distributions
trap response example of, 136–137,	in abundance estimation, 394f, 397, 401f
148–157	introduction to, 33–34, 36–37
demographic rates and, 350–352	Posterior mean, MLE and, 28
individual covariate models estimating,	Posterior sampling, 41–43
166–168	Postwork activity, 32
integrated population models estimating	Potential individuals, 141
analysis of, 358–363	Precision, 16–20

Predator control, 477	Projection matrices, integrated population
Prediction, objective of, 26	models and
PRESENCE, 470–471	analysis of, 358-363
Presence/absence data, 414, 416. See also	CJS model in, 371
Detection/nondetection data	fecundity estimated with, 363-366,
Primary model selection, 468-469	377–378
Priors	hoopoe example of, 371f, 371-379, 378f
Bayes rule and, 35-37, 44	introduction to, 348-350
Dirichlet distribution, 300, 302,	ortolan bunting example of, 349,
308, 454	350–351f, 357–363, 366–370
gamma, 120	for population viability analysis, 366-370
mark-recovery data and, 258, 260	without productivity data, 363-366
random effects and, 77	real data example of, 371–379
in recruitment, survival, and population	reproduction and, 357–363
size estimation, 326	summary of, 379–380
state-space models and, 127	WinBUGS and, 357–379
uniform, 120	Pseudo-individuals, 319, 331
for variance parameters, 37	Pseudoreplication
Probability	avoidance of, 80
age-specific, of first breeding model	in site-occupancy models, 437
analysis of, 290–294	p-values
description of, 288-289	in abundance estimation, 397
generation of simulated data,	in Bayesian statistical modeling, 222-223,
289–290	226f
survival and movement estimation	criticisms of, 222–223
with, 288–294	in site-occupancy model, 419-420
	1 2
defined, 28	
defined, 28 detection, 6, 11	Q
detection, 6, 11 in binomial mixture models, 387	Quantity
detection, 6, 11	Quantity defined, 33
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137	Quantity
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t,	Quantity defined, 33
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433	Quantity defined, 33 sample size and, 20 R
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473	Quantity defined, 33 sample size and, 20 R R code
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125,	Quantity defined, 33 sample size and, 20 R R code
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216 removal entry, 320, 323, 333 survival, 14t, 15	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53 R function, 63–64, 221
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216 removal entry, 320, 323, 333 survival, 14t, 15 Process variance, 123	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53 R function, 63–64, 221 Random effects
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216 removal entry, 320, 323, 333 survival, 14t, 15	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53 R function, 63–64, 221 Random effects annual rates as, 377
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216 removal entry, 320, 323, 333 survival, 14t, 15 Process variance, 123 Productivity data, estimation without,	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53 R function, 63–64, 221 Random effects annual rates as, 377 costs of, 82 defined, 73, 77–78
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216 removal entry, 320, 323, 333 survival, 14t, 15 Process variance, 123 Productivity data, estimation without, 363–366	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53 R function, 63–64, 221 Random effects annual rates as, 377 costs of, 82
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216 removal entry, 320, 323, 333 survival, 14t, 15 Process variance, 123 Productivity data, estimation without, 363–366 Program R. See also R code	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53 R function, 63–64, 221 Random effects annual rates as, 377 costs of, 82 defined, 73, 77–78 fixed effects compared to, 76, 82
detection, 6, 11 in binomial mixture models, 387 capture–recapture models and, 137t, 136–137 constant, 447, 472 date related to, 433 model selection view of, 473 state-space models and, 124–125, 131 time of day related to, 433 within-capture-history dependence of, 148 entry, 317, 323, 329, 333, 340, 345 marginal, 33 movement, 14t recapture, 212–216 removal entry, 320, 323, 333 survival, 14t, 15 Process variance, 123 Productivity data, estimation without, 363–366 Program R. See also R code in abundance estimation, 396	Quantity defined, 33 sample size and, 20 R R code for ANCOVA linear model, 50, 52 mark-recovery data and, 249 Poisson GLM in, 55–66 presentation of, 16 random-effects modeling in, 82–90 for survival estimation using CJS model, 178 treatment contrast parameterization and, 53 R function, 63–64, 221 Random effects annual rates as, 377 costs of, 82 defined, 73, 77–78 fixed effects compared to, 76, 82 flexibility from, 15

Random effects (Cont.)	random site effect, random year effect, first-
in linear predictor for detection, 386	year fixed observer effect, and overall
MCMC and, 406	linear time trend model, 106-108
for overdispersion correction, 404	random site effects model, 102-103
priors and, 77	random time effect model, 184-188
time effects, 184–188, 204–208	terminology, 78
for variability among groups,	in WinBUGS, 82–90
90–110	Random-intercepts models, 75, 78
in WinBUGS, 76, 82-90	Range, 4
Random factor, 78	Recapture probability, survival estimation
Random processes, accounting for, 80	and, 212–216
Random site and random year effects model,	Recruitment, survival, and population size
103–105	estimation using JS model
Random site effect, random year effect, and	analysis of real data, 341-345
first-year fixed observer effect model,	assumptions of, 316
105–106	black grouse example of, 329, 329f, 334f
Random site effect, random year effect,	connections between parameters in,
first-year fixed observer effect, and	339–341
overall linear time trend model,	data augmentation in, 319-328, 338
106–108	GLM and, 328, 345
Random site effects model, 102–103	grey-headed woodpecker example of,
Random temporary emigration, 436	335–339, 336f
Random time effect models, 184–188	identifiability in, 339–341
Random variables, 27	introduction to, 316-317
in fitting of complex statistical models,	Leisler's bats example of, 341-345, 344f
464-465	models with constant survival and time-
in hierarchical models, 43	dependent entry, 328-335
Poisson, 55	models with individual capture
Random-coefficients models, 78	heterogeneity, 335-339
Random-effects models	parameterizations of, 317, 325-328
ANCOVA, 75–76	priors in, 326
data augmentation in, 152	summary of, 345-346
difficulty fitting, 191	WinBUGS and, 321-339, 341-345
motivations, 78–81	Recruitment probability. See Entry
accounting for all random processes,	probability
80	Red kites, 255–261, 256f, 259–260f
borrowed strength, 80-81, 110	Red-backed shrikes, 213, 214f
information combination, 81	Regression model, 74
modeling parameter correlations,	Reif, Jiri, 157
79–80	REML method, 75
partitioning of variability, 79	Removal entry probability, 320, 323, 333
pooling of batched effects, 81	Replicated counts, 385, 409
pseudoreplication avoidance, 80	Reproduction, in integrated population
scope of inference, 78–79	model, 357–363
variability assessment, 79	Reproductive success data, 354
overdispersion accounted for in, 82–90	Response components, in GLM
in R, 82–90	link function and, 54–55
random site and random year effects	noise, 48–55
model, 103–105	signal, 48–55
random site effect, random year effect,	Restricted occupancy model
and first-year fixed observer effect	dynamic, 320–322
model, 105–106	IS model as, 331

MCMC samples for, 343	from inside out, 17
speed of, 341	with integrated population models, 349
Rhat statistic, 39, 62, 63f, 87	of mark-recovery data, 244–246, 296–297
Robust design, 387, 472	in model for joint analysis of
Rosalia alpina beetle, 427–436, 428–429f, 432f,	capture–recapture and mark-
434f	recovery data, 296–297
	of movement among three sites, 302–303
S	of movement between two sites,
Sample size	270–274
false positives and, 13	in occurrence and species distribution
population quantities and, 20	estimation, 420-427, 439-445
Sampling	Poisson GLM and, 56-64
of capture–recapture data, 472	Poisson GLMM and, 84-88, 92-95
design, 468	with program R, 9–10
distance, 135, 169	state-space models and, 119
Gibbs, 38	in temporary emigration model,
for mark-recovery data, 242	282–284
MCMC, 38	Single-season occupancy analysis
posterior, 41–43	model with covariates, 422–427
repeated, 17	in occurrence and species distribution
variation, 13, 19–20, 422	estimation, 420–427
Scale 1, 2, 3t	Rosalia alpina beetle example of, 427-436,
Scale 2, 3, 3t	428–429f, 432f, 434f
Scale 3, 3t, 5	simplest model for, 420-422
Scale 4, 3t, 5	Site covariate, 390
Science, modeling's role in, 24-27	Site effects, 90–110
Seasons, as grouping factor, 437	Site-occupancy models
Secondary model selection, 469-470	assumptions of, 416
SECR models. See Spatially explicit	Bernoulli distributions and, 417
capture-recapture models	defined, 414
Showy lady's slipper, 307f, 307–311	dynamic, 436–450, 459
Shrinkage, 80, 377	false negatives and, 417
Signal	false positives and, 416–417
link function and, 54–55	metapopulation designs and, 474-475
as response component, 48–55	multiseason, 436–450
Silver-washed fritillary, 396–409, 397f, 408f	multistate
Simulations	dynamic, 458–459
abundance and covariate relationship in,	extensions of, 458–459
395f	importance of, 459
in abundance estimation, 388–396	in occurrence and species
with age-specific probability of first	distribution estimation, 450–458
breeding model, 289–290	parameterizations of, 453
asp viper, 17–18, 18–19f, 74–77, 76f	uses of, 451
benefits of, 16–20	occurrence and species distribution
bias and, 16–20	estimation using
binomial GLM and, 68–70	analysis of real data, 427–436,
with capture–recapture models, 139–157	445–450
behavioral effects, 148–150	dynamic models for, 436–450, 459
combined effects, 154–157	generation and analysis of simulated
individual effects, 150–153	data in, 420–427, 439–445
introduction to, 139–145	goodness of fit and, 418
time effects, 145–147	introduction to, 414–418

Site-occupancy models (Cont.)	Rosalia alpina example of, 427-436,
long-eared owl example of, 439-445,	428–429f, 432f, 434f
440f, 454, 456	single-season occupancy analysis,
multistate occupancy models,	420–427
450–458	six-spot burnet example of, 445–450,
p-values and, 419–420	445f, 450f
<i>Rosalia alpina</i> example of, 427–436, 428–429f, 432f, 434f	summary of, 459–460
single-season occupancy analysis,	WinBUGS in, 419–436, 439–450 site-occupancy model for, 15, 419–420
420–427	species–abundance, 5
six-spot burnet example of, 445–450,	Species richness, 139
445f, 450f	biodiversity and, 5
summary of, 459–460	model M _{tbh} for estimating, 157–162
WinBUGS in, 419–436, 439–450	model M_{t+X} for estimating, 162–166
p not accounted for in, 419–420	Species–abundance distribution, 5
pseudoreplication in, 437	Spline modeling, 476
simplest version of, 420–422	Spotted owl, 414
for single-season occupancy analysis	Standard error, of estimator, 20
model with covariates, 422-427	State
in occurrence and species	changes in, 2, 2f
distribution estimation, 420-427	defined, 264
Rosalia alpina beetle example of,	observed, 8
427–436, 428–429f, 432f, 434f	process
simplest model for, 420-422	equations, 116, 265
for species distributions, 15,	in JS model, 318, 318f
419–420	in mark-recovery model, 243f, 243
state process of, 439	multistate models and, 265, 266f
temporary emigration in, 436–437	in site-occupancy model, 439
Six-spot burnet, 445–450, 445f, 450f	true, 8
Smoothed estimate, 131	variables, 6
Sparrows, 9–11, 11f	abundance, 410, 414
Spatial models	latent, 181–183, 247, 276, 318
development of, 475	occupancy, 4
SECR, 135, 475	State-space likelihood
for study design, 475	integrated population models and, 354
Spatial variation, in abundance, 384 Spatially explicit capture–recapture (SECR)	in survival and movement estimation
models, 135, 475	using multistate models, 274
Species distribution	State-space models CJS models and, 173, 175–177, 181, 237,
estimation	465, 466t
analysis of real data, 427–436,	defined, 111, 115
445–450	detection probability and, 124–125,
dynamic models for, 436-450, 459	131
generation and analysis of simulated	JS model as, 317–319
data in, 420–427, 439–445	mark-recovery models as
goodness of fit and, 418	advantages of, 242–248, 261
introduction to, 414–418	analysis of model with constant
long-eared owl example of, 439-445,	parameters, 246–248
440f, 454, 456	simulation of mark-recovery data,
multistate occupancy models,	244–246
450–458	state and observation processes,
<i>p</i> -values and, 419–420	243, 243f

for population counts	Leisler's bat example, 231-237, 232f,
analysis of simulated data, 119	235–236f
framework of, 117	little owls example of, 177–183, 178f,
house martin example, 126–130,	185, 189, 196, 209, 227–231
126f, 130f	models with individual variation
ibex example, 118f, 118-121, 121f,	and, 192–199
124f	multinomial likelihood and,
introduction to, 115-118	220–231, 237
MCMC and, 120, 130	parameter identifiability in, 216–220
observation equations in, 116	R code and, 178
simple, 118–121, 131	random group effects in, 194-195
state-process equations in, 116	random time effect models in,
systematic bias and, 121–126	184–188, 204–208
WinBUGS and, 118-130	recapture probability and, 212–216
priors and, 127	red-backed shrikes example, 213, 214f
summary of, 131	summary of, 237-238
survival estimation using mark-recovery	temporal covariates in, 188-192
data and, 242-248, 261	temporal variability, 204
Statistical models. See also Bayesian	time and group effect models in,
statistical modeling	199–208
complex, fitting of, 464-465	time-dependent models and, 222-227
frequentist analysis of, 28-38	time-variation models and, 183-192
introduction to, 27	trap response models and, 212-216
organic approach to, 469	WinBUGS and, 177-208, 212-237
response components in, 48–55	using JS model
Step-up approach, to problems, 467	analysis of real data, 341–345
Strength, borrowed, 80–81, 110	assumptions of, 316
Study design	black grouse example of, 329, 329f,
hierarchical models for, 471-472	334f
spatial models for, 475	connections between parameters in,
Suitability indicators, latent, 402	339–341
Superpopulation	data augmentation in, 319-328, 338
in constant survival and time-dependent	GLM and, 328, 345
entry models, 333	grey-headed woodpecker example
parameterization, 325-328	of, 335–339, 336f
Survival estimation	identifiability in, 339–341
using CJS model	introduction to, 316-317
age effect models and, 208-212	Leisler's bats example of, 341–345,
age-dependent models and, 227-231	344f
analysis of real data, 231-237	models with constant survival and
constant parameters and, 177-183	time-dependent entry, 328-335
fixed group and random time effect	models with individual capture
models in, 204–208	heterogeneity, 335–339
fixed group and time effect models	parameterizations of, 317, 325-328
in, 199–204	priors in, 326
fixed group effect models in,	summary of, 345-346
192–194	WinBUGS and, 321-339, 341-345
fixed time effect models in, 184	using mark-recovery data
GLM and, 199, 211, 237	common terns example of, 244-246,
individual group effects in, 195-199	245f, 252–255
introduction to, 172-175	introduction to, 241-242
latent state variable in, 181-183	latent state variable in, 247

Survival estimation (Cont.)	Temporal variability
m-array for, 249, 251–253, 255	of demographic parameters, 373
MCMC and, 261	in survival estimates, 204
multinomial likelihood and,	Temporary emigration
248–255, 261	challenge of dealing with, 135
priors in, 258, 260	closure and, 416
R code and, 249	model
real-data example of, 255–261	analysis of, 284–287
red kites example, 255–261, 256f,	description of, 281–282
259–260f	generation of simulated data,
sampling for, 242	282–284
simulation of, 244–246	survival and movement estimation
state-space models and, 242-248, 261	from, 281–287
summary of, 261	random, 436
WinBUGS and, 244-261	in site-occupancy models, 436-437
using multistate models	Territory mapping method, 95
age-specific probability of first	Three sites, movement among
breeding model, 288-294	analysis of, 304–306
fire salamanders example of,	description of, 300-302
282–284, 283f	generation of simulated data, 302-303
introduction to, 264–268	GLM and, 301
little ringed plover example of,	survival and movement estimation using,
270–274, 271f, 289–290, 302–303	300–306
model for joint analysis of	Time and group effect models, 199–208
capture_recapture and mark-	Time effects, 136, 138
recovery data, 295–300 movement among three sites,	age effects combined with, 212 fixed, 184, 199–204
300–306	in generation and analysis of simulated
movement between two sites,	data with data augmentation,
268–281	145–147
real-data example, 307–311	random, 184-188, 204-208
showy lady's slipper example, 307f,	in time and group effect models, 199-208
307–311	Time series, of counts, 55–66
state-space likelihood and, 274	Time-dependent models, 223-227. See also
summary of, 311–312	Constant survival and time-dependent
temporal effects and, 280	entry models
temporary emigration model,	Time-variation, models with
281–287	with fixed time effects, 184
WinBUGS and, 270–287, 289–294,	with random time effects, 184–188
296–300, 302–312	survival estimation with, 183–192
Survival probability, modeled, 14t, 15 Swiss coal tit, 95f, 95–110, 97f	with temporal covariates, 188–192
Swiss red kites, 255–261, 256f, 259–260f	Trap response closed population size estimation and,
Synthetic understanding, of models, 466t,	136–137, 148–157
465–467	survival estimation and, 212–216
Systematic bias, state-space models and,	Trap-happy effect, 137, 213
121–126	Trap-shyness, 137
	Treatment contrast parameterization, 53
T	Trend, 5
Tadpole example, 29, 30f, 33, 38	True abundance, 14t
Temporal covariates, models with, 188–192	True distribution, 14t, 415
Temporal effects, 280	True population size, 121–126

True state, observed state compared to, 8	GLM with, 48
Two sites, movement between	binomial GLM and, 68-71
analysis of, 274–281	Poisson GLM and, 55-66
described, 268-270	time series of counts modeled with,
generation of simulated data, 270-274	55–66
using multistate models, 268-281	undefined real result trap in, 60-61
_	idiosyncrasies of, 40
U	integrated population models and, 357-379
Ultrastructural modeling, 189	MARK compared to, 471
Unbiased estimate, 17	as MCMC blackbox, 38-41, 44
Uncertainty, evaluation of, 28	multidimensional arrays in, 396
Uniform priors, 120	in occurrence and species distribution
Unmarked, 470–471	estimation, 419-436, 439-450
Unobserved populations, estimates of, 366	presentation of, 16
	primary model selection in, 468-469
V	random effects in, 76, 82–90
Variability	in recruitment, survival, and population
assessment, random-effects models and,	size estimation using JS model,
79	321–339, 341–345
among groups, 90–110	secondary model selection in, 469-470
partitioning of, 79	as standalone software, 40
temporal, 204, 373	state-space models for population counts
Variance	and, 118–130
decomposition, 8	in step-up approach, 467
observation, 123	for survival and movement estimation
parameters, 37	using multistate models, 270-287,
process, 123	289-294, 296-300, 302-312
Varying-intercepts models, 78	in survival estimation using CJS model,
Varying-slopes models, 78	177–208, 212–237
Viability analysis, 366–370	in survival estimation using mark-
Vital rates, 14t, 15	recovery data, 244–261
	Within-capture-history dependence, of
\mathbf{W}	detection probability, 148
White storks, 252	Wryneck, 158f
Wildlife management, population analysis	
for, 477–478	Y
WinBUGS. See also BUGS language	Year effects, 90–110
in abundance estimation, 388-410	Yobs, 140
Bayesian statistical modeling and, 38-40	
capture-recapture models and, 138-169	Z
cleaner thinking in, 467	Zero-inflated Poisson distribution, 386
fixed effects in, 76	Zero-inflated Poisson (ZIP) N-mixture
flexibility of, 41	model, 401–404