Th. Mopepa. f(z) непрерывна в D и $\forall \gamma \in D$ $\int_{\gamma} f(z)dz = 0 \Longrightarrow f(z)$ аналитична в D

При данных условиях $\exists \Phi(z) = \int_{z_0}^z f(\zeta) d\zeta \mid \Phi'(z) = f(z)$ и $\Phi(z)$ аналитична Так как $\Phi(z)$ дифференцируема, то она дифференцируема сколько угодно раз. Таким образом, существуют f'(z), f''(z) и так далее, а из этого означает, что f(z) – аналитична

Th. Лиувилля. f(z) аналитична в $\mathbb C$ и $\exists M \in \mathbb R^+ \mid |f(z)| \leq M \ \forall z \in \mathbb C$ Тогда $f(z) \equiv \mathrm{const}$

Докажем, что
$$f'(z) = 0$$

$$|f'(z)| = \left[\text{контур } \gamma - \text{круг } z + \rho e^{i\varphi}\right] = \left|\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta\right| = \left|\frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z + \rho e^{i\varphi})\rho i e^{i\varphi}}{\rho^2 e^{2i\varphi}} d\varphi\right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \left|\frac{f(z + \rho e^{i\varphi})\rho i e^{i\varphi}}{\rho^2 e^{2i\varphi}}\right| d\varphi \leq \frac{1}{2\pi} \int_{0}^{2\pi} \frac{M}{\rho} d\varphi = \frac{M}{\rho} \underset{\rho \to \infty}{\longrightarrow} 0 \Longrightarrow f(z) = \text{const}$$

 $Nota. \ w = \sin z \neq \mathrm{const} \Longrightarrow \sin z$ — неограниченная функция

4.4. Ряд Лорана

Def. Ряд вида $\sum_{n=-\infty}^{\infty} C_n (z-z_0)^n$, где $C_n, z_0 \in \mathbb{C}$, называется рядом Лорана в точке z_0

Nota. Исследуем ряд. Обозначим $f_1 = \sum_{n=0}^{\infty} C_n (z-z_0)^n$

$$f_2 = \sum_{n=-1}^{-\infty} C_n (z - z_0)^n \stackrel{m=-n}{\Longrightarrow} \sum_{m=1}^{\infty} \frac{C_{-m}}{(z - z_0)^m} = \sum_{n=1}^{n=0} \frac{C_{-n}}{(z - z_0)^n}$$

Тогда ряд можно записать так:
$$C_0 + \sum_{n=0}^{\infty} \left(C_n (z-z_0)^n + \frac{C_{-n}}{(z-z_0)^n} \right)$$

Рассмотрим $f_1 = \sum_{n=0}^{\infty} C_n (z-z_0)^n$ – ряд согласно теореме Абеля

сходится в круге с центром z_0 и радиусом $R_1 = \lim_{n \to \infty} \left| \frac{C_n}{C_{n+1}} \right|$

Рассмотрим
$$f_2 = \sum_{n=1}^{\infty} \frac{C_{-n}}{(z-z_0)^n} \stackrel{t=\frac{1}{z-z_0}}{=\!\!\!=\!\!\!=} \sum_{n=1}^{\infty} C_{-n} t^n$$
 – ряд сходится в круге $|t| < r = \lim_{n \to \infty} \left| \frac{C_{-n}}{C_{-n-1}} \right|$ или $|z-z_0| > \lim_{n \to \infty} \left| \frac{C_{-n-1}}{C_{-n}} \right| = R_2$

Таким образом, ряд Лорана сходится в кольце с внутренним радиусом R_2 и внешним радиусом R_1 и центром z_0 к значению некой аналитической функции f(z)

f(z), аналитичная в кольце $K=(z_0,R_2,R_1)$, однозначно представима рядом Лорана в кольце K

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta \stackrel{\Gamma = \underline{\Gamma_2} \cup \Gamma_1}{=} \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Разложим $\frac{1}{\zeta - z}$ в ряд Тейлора:

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0 - (z - z_0)} = \begin{bmatrix} \frac{1}{(\zeta - z_0)(1 - (\frac{z - z_0}{\zeta - z_0}))} = \sum_{n=1}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} \\ \frac{1}{-(z - z_0)(1 - (\frac{\zeta - z_0}{z - z_0}))} = -\sum_{n=1}^{\infty} \frac{(\zeta - z_0)^n}{(z - z_0)^{n+1}} \end{bmatrix}$$

1. Первый ряд сходится, если $\frac{z-z_0}{\zeta-z_0} < 1 \Longleftrightarrow |z-z_0| < |\zeta-z_0|$

Также
$$\frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} \frac{f(\zeta)(z - z_0)^n}{(\zeta - z_0)^{n+1}}$$

По теореме Коши:

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{\Gamma_1} \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}} \right) (z - z_0)^n = \sum_{n=0}^{\infty} C_n (z - z_0)^n$$
Из этого $C_n = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}}$

2. Второй ряд сходится, если $\frac{z-z_0}{\zeta-z_0}<1\Longleftrightarrow |z-z_0|>|\zeta-z_0|$ — это Γ_2 Lab.

Nota. Таким образом, коэффициенты ряда Лорана $C_n = \frac{1}{2\pi i} \int_{\Gamma_i} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$

Def. Изолированной особой точкой однозначного характера называется точка $a \in \mathbb{C} \mid f(z)$ аналитична в кольце $0 < |z-a| < \rho$, но не определена в z=a

Def. Точка $a = \infty$ называется изолированной особой, если f(z) аналитична в кольце $\rho < |z| < \infty$ **Def.** Устранимой особой точкой a называется точка, для которой $\lim_{z \to a} f(z) \in \mathbb{C}$, в a функция не определена

Полюсом a называется точка, для которой $\lim_{z \to a} f(z) = \infty$

Существенно особой точкой a называется точка, для которой $\nexists \lim_{z \to a} f(z)$

Ex.~1.~Для $f(z)=rac{\sin z}{z}$ точка z=0 является устранимой особой — $\lim_{z o 0} rac{\sin z}{z}=1$

$$Ex.\ 2.\ Для\ f(z)=rac{z}{(z+i)^2}\lim_{z o-i}rac{z}{(z+i)^2}=\left[rac{1}{0^2}=\infty^2
ight],\ a=-i$$
 - полюс 2-ого порядка $Ex.\ 3.\ Для\ f(z)=\sin z$

Def. Для ряда Лорана функции f(z) в окрестности особой точки $z=a\in\mathbb{C}$ $f(z)=\sum_{n=0}^{\infty}C_n(z-a)^n+\sum_{n=1}^{\infty}\frac{C_{-n}}{(z-a)^n}$ это правильная часть это главная часть

Def. Для ряда Лорана в
$$a = \infty$$
: $f(z) = \sum_{n = -\infty}^{\infty} C_n z^n = \sum_{n = 1}^{\infty} C_n z^n + \sum_{n = 0}^{\infty} \frac{C_{-n}}{z^n}$

Def. Вычетом $\operatorname{res}(f(z), z_0)$ функции f(z) в точке z_0 называется C_{-1} коэффициент ряда Лорана, если $z_0 \in \mathbb{C}$, и $-C_{-1}$, если $z_0 = \infty$