Announcements for Thursday, 12SEP2024

For those who just recently joined the class:

 Check Canvas Announcements and e-mails often and read through all the posted material as soon as possible to get current with the class

For everyone:

- Homework Assignments available on Canvas/eLearning
 - Week 2: Graded and Timed Quiz 2 "Essentials" due Monday, 16SEP2024, at 6:00 PM (EDT)
 - Week 2: Readiness Assessment will be re-opened on tomorrow for 24 hours
 - Week 2: Study Skills and Time Management Digital Badge Assignments due tomorrow at 11:59 PM (EDT)
 - Week 3: Beginning of Semester Chemistry surveys due Monday, 16SEP2024, at 11:59 PM (EDT)
 - Week 3: Metacognition Digital Badge Assignment due Friday, 20SEP2024, at 11:59 PM (EDT)
- In-person/online recitations begin this week
 - Students interested in ALWs should attend regular recitations until officially accepted
- First Day Course Materials See Canvas announcement about opting-out (deadline: 17SEP2024)

ANY GENERAL QUESTIONS? Feel free to see me after class!

Isotopes

Dalton: "All atoms of a given element have the same mass and other properties..."
...Not Quite

- isotopes = atoms with the same number of protons but different number of neutrons (and, therefore, slightly different masses)
 - different isotopes of an element generally exhibit the same *chemical* behavior
- a naturally occurring sample of a given element may be made up of more than one isotope
 - example: carbon (6 p⁺) with 6, 7, or 8 neutrons
- mass number (A) = number of protons + number of neutrons
- natural abundance = the relative amount of an isotope in a naturally occurring sample of an element; usually given as percentages
- symbolizing isotopes: ^AZNnotation vs. X-A notation

Try This On Your Own

Use a periodic table and A/Z notation to give the symbol for the following species or fill-in the missing information

number of protons	number of neutrons	number of electrons	symbol
9	10	9	
2	2	0	
33	42	36	
			¹⁰⁹ X ² -
			${}^{55}_{?}Mn^{3+}$

Atomic Mass

- the atomic mass of each element is listed directly beneath its symbol on the periodic table
 - NOTE THE LACK OF UNITS! More to come about this...
- it is a WEIGHTED AVERAGE (?!?) of the masses of the isotopes that compose that element
 - the masses of isotopes with greater natural abundances impact the average atomic mass more so than isotopes with lesser natural abundances
 - a common example of a weighted average: your GPA
- example: carbon (atomic mass = 12.01 amu)

Calculating Average Atomic Mass of Carbon

isotope	mass (amu)	% abundance	fractional abundance (F.A.)
carbon-12	12.0000	98.93%	0.9893
carbon-13	13.0034	1.07%	0.0107

Average Atomic Mass =
$$[(F.A._{6}^{12}C)(mass_{6}^{12}C)] + [(F.A._{6}^{13}C)(mass_{6}^{13}C)]$$

= $[(0.9893)(12.0000)] + [(0.0107)(13.0034)]$
= $[11.87] + [0.139]$

 $= 12.01 \, \text{amu}$

Calculating the Average Atomic Mass of an Element in General

definitely an important skill for this course!

isotope	mass (amu)	abundance
isotope-1	mass1	%1
isotope-2	mass2	%2
isotope-3	mass3	%3

Average Atomic Mass =
$$\left[\left(\frac{\%1}{100} \right) (mass1) \right] + \left[\left(\frac{\%2}{100} \right) (mass2) \right] + \left[\left(\frac{\%3}{100} \right) (mass3) \right] \dots$$
isotope-1 isotope-2 isotope-3 ... etc

Remember: all percent abundances must add to 100%

Try This On Your Own

Magnesium has three naturally occurring isotopes:
magnesium-24 (23.99 amu, 78.99% abundant)
magnesium-25 (24.99 amu, 10.00% abundant)
magnesium-26 (25.98 amu)

Calculate the average atomic mass of magnesium and compare it to the value given on your periodic table.

Beware of a Common Mistake!

Atomic Number (Z) vs. Atomic Mass vs. Mass Number (A)

Don't confuse them!

the Mole (mol)

- it is a unit of amount (i.e., a unit of "how many?"...a countable amount)
- note that "mol" is the abbreviation of "mole", NOT "molecule"
- you may be already familiar with some common units of amount
 - pair, dozen, baker's dozen, gross
- conceptually we must distinguish between an actual number of entities given as a whole number and a number of entities given as an amount
 - 12 eggs vs 1 dozen eggs (BE CARFEUL OF THE DETAILS!!)
- the mole is simply a unit of amount analogous to the dozen, except that the number associated with the mole is much larger than 12

the Mole (continued)

1 mol = $6.022\ 140\ 76\times10^{23}$ entities (?!?)

• can be atoms, ions, molecules, people, books...whatever!

602 214 076 000 000 000 000 000.

- 6.022 140 76×10²³ is called Avogadro's number (N_A) .
 - Like 12, N_A is ultimately a (HUGE) whole number
 - the magnitude of N_A...
- if you can work with the dozen, you can work with the mole
 - just like the dozen, you can have fractions of a mole to represent a whole number of things (0.5 dozen eggs is still 6 whole eggs)
- Be Careful of what you have a mole of and what you have N_A of ...
 - 1 mole of gold vs. 1 mole of CO₂ vs. 1 mole sodium chloride (NaCl)
- N_A can be used as a *conversion factor*

the Mole (continued)

1 mol = 6.022×10^{23} entities

consider 1 billion (1×10⁹) molecules of water determine the following

- the amount of water in **dozens** $1 \times 10^9 \, \text{H}_2\text{O} \text{ molecules} \times \frac{1 \, \text{dozen}}{12 \, \text{molecules}} = 8.33 \times 10^7 \, \text{dozen molecules}$
- the amount of water in **moles** $1 \times 10^9 \, \text{H}_2\text{O}$ molecules $\times \frac{1 \, \text{mole water}}{6.022 \times 10^{23} \, \text{molecules}} = 1.66 \times 10^{-15} \, \text{moles of water}$
- the **number** of hydrogen atoms $1 \times 10^9 \, \text{H}_2\text{O}$ molecules $\times \frac{2 \, \text{H atoms}}{1 \, \text{molecule H}_2\text{O}} = 2 \times 10^9 \, \text{H atoms}$
- the number of moles of hydrogen $2 \times 10^9 \text{ H atoms} \times \frac{1 \text{ mole hydrogen}}{6.022 \times 10^{23} \text{ H atoms}} = 3.32 \times 10^{-15} \text{ moles of H}$
- the total number of atoms $1 \times 10^9 \, \text{H}_2\text{O} \, \text{molecules} \times \frac{3 \, \text{atoms}}{1 \, \text{molecule} \, \text{H}_2\text{O}} = 3 \times 10^9 \, \text{atoms}$
- the number of **moles** of atoms 3×10^9 atoms $\times \frac{1 \text{ mole atoms}}{6.022 \times 10^{23} \text{ atoms}} = 4.98 \times 10^{-15} \text{ moles of atoms}$

DETAILS MATTER!!

Molar Mass (\mathcal{M}) of an Element

$$\mathcal{M} = \frac{mass\ substance\ (g)}{amount\ substance\ (mol)} = \frac{g}{mol}$$

- since atoms are so small, we are unable to count them out. The only way we can "count" out a number of atoms is by weighing them
 - a substance's MOLAR MASS is mass of a substance required to provide N_A of that substance
 - it is numerically equal to the atomic mass of the substance
 - BE CAREFUL OF UNITS NOW: 12.01 amu/atom vs. 12.01 g/mol
- can be used as a *conversion factor*
 - converts mass of a substance ↔ moles of a substance

The Conversion Factor Approach to Problem Solving (continued)

• What volume, in mm³, is occupied by 9.55×10^{15} aluminum atoms given that density of Al = 2.70 g/cm³ and the molar mass of Al = 26.98 g/mol?

$$9.55 \times 10^{15} \text{ Al atoms} \times \frac{1 \text{ mole Al}}{6.022 \times 10^{23} \text{ Al atoms}} \times \frac{26.98 \text{ g}}{1 \text{ mole Al}} \times \frac{1 \text{ cm}^3}{2.70 \text{ g}} \times \frac{1000 \text{ mm}^3}{1 \text{ cm}^3} = 1.58 \times 10^{-4} \text{ mm}^3$$

More Conversion Practice Problems

- Convert 22.5 km 3 to ft 3 (2.54 cm = 1 in)
- A sample of uranium contains 1.4×10²⁰ atoms. How many moles of uranium is this?
- How many dozens of silver atoms are in 0.214 moles of silver?
- Calculate the mass, in mg, of 2.25×10²⁶ magnesium atoms.
- A drop of mercury has a volume of 22.0 μ L and a density of 13.55 g/cm³. How many atoms of mercury are contained within this drop?
- A 1.550-m³ sample of a pure metal having a density of 21.40 g/cm³ is known to contain 1.024×10^{29} atoms. With this data and a periodic table, identify the metal.