Probabilidade

Métodos de Contagem

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Tamanho do conjunto

Número de elementos dentro de um conjunto (cardinalidade);

Notação: | S | ou # S;

Moeda: $|\{ cara, coroa \}| = 2$ Dado: $|\{ 1, 2, 3, 4, 5, 6 \}| = 6$

Conjunto vazio: $|\emptyset| = 0$

$$|N| = |Z| = |P| = \infty$$
 — Infinito contável

Tamanho do conjunto em Python

Usar a função len().

```
print(len({ -1, 1 })) # 2
```

Quantos elementos tem no intervalo de inteiros de 1024 a 49151?

Tamanho do conjunto em intervalos de inteiros

```
\{m, ..., n\} = \{ \text{ inteiros entre m e n inclusivo } \}
|\{m, ..., n\}| = n - m + 1
\{3, ..., 5\} = \{3, 4, 5\}
|\{3, ..., 5\}| = 5 - 3 + 1 = 3
```

Quantos números de 1 a 100 são múltiplos de 3?

Conjunto de múltiplos

```
D3 = \{3, 6, 9, ..., 99\}
D = \{i \in Z : 1 \le i \le n : d \mid i\}
D3 = \{ 1 \le i \le 100 : 3 \mid i \} = \{ 3, 6, 9, ..., 99 \}
|D| = |\{1 \le i \le n : d|i\}| = Ln/dJ
|D3| = |\{1 \le i \le 100 : 3 | i\}| = |L100 / 3| = |L100 / 3
 33
```

União disjunta

$$|A \cup B| = |A| + |B| = 7$$

Para conjuntos disjuntos, o tamanho da união é a soma dos tamanhos dos conjuntos.

Regra da soma

Complementos

A e A^c são disjuntos, então:

$$|\Omega| = |A| + |A^c|$$

$$|A^c| = |\Omega| - |A|$$
 Regra da subtração

Complemento

Existem situações onde a regra da subtração é mais conveniente para o cálculo do tamanho do conjunto:

A = { 1 ≤ i ≤ 100 : 3
$$\nmid$$
 i } → { 1, 2, 4, 5, 7, ..., 100 }
Ω = { 1, ..., 100 }
A^c = { 1 ≤ i ≤ 100 : 3 | i } → { 3, 6, 9, ..., 99 }
| A^c | = L 100 / 3 J = 33
| A | = | Ω | - | A^c | = 100 - 33 = 67


```
A = { 2, 4, 6, 8, ..., 100}
B = { 3, 6, 9, 12, ... 99}
|A U B|=|A| + |B|?
```

União no geral

Se A e B são disjuntos, $|A \cup B| = |A| + |B|$

Em geral: $|A \cup B| \neq |A| + |B|$

$$|\{1\} \cup \{1\}| = |\{1\}| = 1 \neq |\{1\}| + |\{1\}| = 2$$

Princípio da Inclusão e Exclusão:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Múltiplos de 2 números

В

Múltiplos conjuntos

Dois conjuntos:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Três conjuntos:

$$|A_1 \cup A_2 \cup \dots A_t| = \sum_{i=1}^t (-1)^{i-1} N_t$$

Nt denota a soma de todas as interseções de tamanho t

Quantas rotas possíveis de A para C?

Regra da multiplicação

Possíveis rotas: (1,4), (1,5), (1,6), ..., (3,8)

Produto cartesiano

	1	B	5	\
A (2	X	6	\int_{C}
	3		1	1
			8	

rAB	= { [L ,2,	3	}	
rBC	= { 4	1 ,5,	6,	7,	8]

	4	5	6	7	8
1	1,4	1,5	1,6	1,7	1,8
2	2,4	2,5	2,6	2,7	2,8
3	3,4	3,5	3,6	3,7	3,8

rAB X rBC = {
$$(1, 4), (1, 5), (1, 6), (1, 7), (1, 8)$$

 $(2, 4), (2, 5), (2, 6), (2, 7), (2, 8)$
 $(3, 4), (3, 5), (3, 6), (3, 7), (3, 8) }$

Regra de multiplicação para três conjuntos

$$A \times B = \{ (a,b) \mid a \in A, b \in B \}$$

$$|A \times B| = |A| \times |B|$$

$$A \times B \times C = \{ (a,b,c) \mid a \in A, b \in B, c \in C \}$$

$$|A \times B \times C| = |A| \times |B| \times |C|$$

"Potência cartesiana" de um conjunto

Produto cartesiano de um conjunto com ela mesma.

$$A^2 = A \times A \rightarrow quadrado cartesiano$$

$$A^n = A \times A \times ... \times A \rightarrow n$$
-ésima potência cartesiana

$$|A^{n}| = |A \times A \times ... \times A| = |A| \times |A| \times ... \times |A| = |A|^{n}$$

Aplicações teóricas e práticas.

Potência em conjunto de binário

{0,1}

 $\{0, 1\}^n = \{\text{ string binário de tamanho n}\} = \{\text{ string de n-bit }\}$

n	Conjunto	String
1	{0,1} ¹	0, 1
2	{0,1} ²	00, 01, 10, 11
3	{0,1} ³	000, 001, 010, 011, 100, 101, 110, 111
		•••
n	{0,1} ⁿ	0 0,, 1 1

$$|\{0, 1\}^n| = |\{0, 1\}|^n = 2^n$$

Subconjuntos

Potência cartesiana de S é a coleção de todos os subconjuntos de S.

$$P({a,b}) = {\{\}, \{a\}, \{b\}, \{a,b\}\}}$$

$$|P(S)| = ?$$

 $\mathbb{P}(S)$ possui uma correspondência com $\{0,1\}^{|S|}$.

Subconjuntos

Correspondência entre $\mathbb{P}(S)$ e $\{0, 1\}^{|S|}$:

$$\mathbb{P}(\{a,b\}) \in \{0,1\}^2$$
.

$$| \mathbb{P}(S) | = | \{ 0, 1 \}^{|S|} | = 2^{|S|}$$

Tamanho do conjunto de partes é a potência de base 2 elevado ao tamanho do conjunto.

P({a,b})	а	b	$\{0,1\}^2$
{ }	X	X	00
{a}	0	X	10
{b}	X	0	01
{a,b}	0	0	11

Árvores

Produto cartesiano como árvores

 $2 \times 3 = 6$

Usado apenas quando, em todos os níveis, os nós possuem o mesmo grau.

 $|\{a, b\} \times \{1, 2, 3\}| = 2 \times 3 = 6$

Uso da árvore de forma generalizada

Criação de um novo curso (Bioinformática) envolvendo dois departamentos.

Se cada uma der 3 disciplinas, Quantas disciplinas terá no total?

Esta estrutura de árvore **não** é um produto cartesiano!

É possível aplicar a regra da multiplicação → em todos os níveis, os nós possuem o mesmo grau.

Por quê utilizar árvores?

Uma árvore pode representar qualquer conjunto de sequência, não só produto cartesiano;

Um método sistemático de contagem;

Úteis para modelar fenômenos randômicos;

Melhor de n

Nos esportes, times e atletas disputam entre si para saber quem é o melhor.

Como jogar uma partida é relativamente randômico

Partidas de melhor de n

Tênis: n = 3 ou 5 sets

Playoffs do NBA: n = 7 jogos

Objetivo: vencer a maioria dos jogos.

Uma vez que um time ou atleta vence mais que $n/2 \rightarrow Parar a partida$

Sequências de vitória

Suponha uma disputa de Tênis entre Federer e Djokovic.

A disputa é interrompida quando um deles vencem duas partidas.

Caminhos da fonte até o destino

Generalização da contagem de caminhos para um grafo acíclico:

Caminhos da fonte até o destino

Generalização da contagem de caminhos para um grafo acíclico :

Revisão

- Tamanho dos conjuntos
 - Número de elementos em um intervalo de inteiros;
 - Número de elementos divisíveis por um número;
- Regra da soma
- Regra da subtração
- Regra da multiplicação
- Potência cartesiana
- Árvores

Slides e notebook em:

github.com/tetsufmbio/IMD0033/