Machine Learning Syllabus

- Prerequisites: (3h)
 - Linear Algebra Review
 - Vectors, Matrices and Tuples
 - Addition, Multiplication, Inverse, Transpose...
 - Multivariate Calculus
 - Functions
 - Differential Calculus / Partial Derivatives

• Introduction to Machine Learning (1j)

- What is Machine Learning
- o Applications
- Supervised vs Unsupervised
- o Introducing ML with Univariate Linear Regression
 - Model Representation
 - Cost Function
 - Optimization
 - Ordinary Least Squares
 - Non-invertibility
 - Gradient Descent

Practical Aspects of Machine Learning (1j)

- o Data Splitting
 - Validation
 - Cross-Validation
- Bias / Variance diagnosis
- Bias / Variance correction
- Learning Curves
 - Learning rate
 - Learning rate decay
- Regularization
- o Cost Functions & Optimization Techniques
 - Normalization
- Regression and Classification Evaluation Metrics
 - RMSE, RSquared...
 - Confusion Matrix, Accuracy, Precision, Recall...
 - ROC, AUC
 - Error metrics for skewed classes
- Hyperparameters tuning
- Feature Representation & Engineering
 - Numerical Features
 - Categorical Features
 - Images
 - Text
 - BOW
 - TF-IDF
 - N-grams

Regression (1j)

- Multiple Linear Regression
 - Multiple Features
 - Features and Polynomial regression

- Gradient descent for multiple variables
- Lasso Regression (L1 regularization)
- o Ridge Regression (L2 regularization)
- Decision Trees Regression

• Classification (1j)

- o Logistic Regression
 - Decision Boundary
 - Cost Function
- Multiclass Classification
 - One-vs-all
- Support Vector Machines
- o Decision Trees
- Ensemble Methods (Bagging, Boosting, Stacking). Examples:
 - Bagged Trees
 - Random Forest
 - Boosted Trees
 - Gradient Boosting
- Classification Metrics

Unsupervised Learning (1j)

- Clustering
 - Partition methods
 - k-means clustering
 - Cluster validity, choosing the number of clusters
 - Distribution models
 - Gaussian Mixture Models & EM
 - Hierarchical methods
 - Density Models
 - DBSCAN
- Dimensionality Reduction
 - Principal Component Analysis

Introduction to deep learning (1j)

- Why is deep learning becoming more popular?
- o Perceptron: the artificial neuron
- Conveying ideas using Binary Classification
 - Model Representation & Notations
 - Cost function
 - Gradient Descent
- Forward and backward propagation
- o Mini-batch Gradient Descent
- Activation Functions
- Optimization setting
 - Weights Initialization
 - Normalization
 - Vanishing / exploding gradients
 - Gradient. checking
- Regularization
 - Dropout regularization
- o Parameters vs. Hyperparameters
- Bias/Variance correction strategies
- Transfer Learning

Structuring machine learning projects (1j)

- Setting goals
 - Single Optimizing metric
 - Optimizing and satisfying metrics
- o The ML workflow
- o Comparing to human performance
- Manual error analysis
- Mismatched data distributions
- TBD...