Use the definition of Big-Oh to prove that $T(n) = O(n^2)$, where

$$T(n) = \begin{cases} O(1), & \text{if } n = 1\\ T(n-1) + O(n), & \text{if } n > 1 \end{cases}$$

Proof. Since T(n) = T(n-1) + O(n) if n > 1, $T(n) \le T(n-1) + cn$, for all $n \ge n_0$. Let $c_2 = \max\{T(n_0), c\}$. We prove that $T(n) \le c_2 n^2$ for all $n \ge n_0$ by induction.

(Base case) Since $n_0 \ge 1$ and $c_2 = \max\{T(n_0), c\}, c_2 n_0^2 \ge c_2 \ge T(n_0)$, so $T(n) \le c_2 n^2$ when $n = n_0$.

(Inductive step) Suppose that $T(n) \leq c_2 n^2$ for n = k, and consider n = k+1. $T(k+1) \leq T(k) + c(k+1)$. By the inductive hypothesis, $T(k) \leq c_2 k^2$, so $T(k+1) \leq c_2 k^2 + ck + c$. Since $c \leq c_2$, $T(k+1) \leq c_2 k^2 + c_2 k + c_2 \leq c_2 k^2 + 2c_2 k + c_2 = c_2 (k+1)^2$. Thus, $T(k+1) \leq c_2 (k+1)^2$, so $T(n) \leq c_2 n^2$ for all $n \geq n_0$ by induction. Since there exist constants c_2 and n_0 such that $T(n) \leq c_2 n^2$ for all $n \geq n_0$, $T(n) = O(n^2)$ by the definition of Big-Oh.