Дипломная работа

КУРСА «АРХИТЕКТОР ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ»

Эman 2

разработчик Драчёв О.Е.

11. Список ADR. (Architecture decision records - Записи архитектурных решений)

011 Разработка проекта – «Компания для привлечения людей к спортивному образу жизни»

Статус – accepted (принят).

Контекст:

Компания имеет большой штат разработчиков, говорящих на различных языках, и охотно адаптирует новые технологии для экспериментальных приложений. 90% всех систем, используемых в компании, расположены у облачных провайдеров, при этом нет одного выбранного провайдера — используется то, что больше подходит под конкретную задачу.

Решения:

Провести разработку проекта «Компания для привлечения людей к спортивному образу жизни».

Причины принятия решения:

Достижение бизнес целей.

Последствия:

При своевременных корректирующих действиях на риски, компания получит прибыль и выполнит бизнес цели.

Комплаенс (проверка соответствия):

Еженедельное подведение итогов разработка и демонстрация результатов.

Заметки:

ИТ архитектор Драчёв О.Е. 11.03.2022.

012 Архитектурный стиль - Microservices.

Статус – accepted (принят).

Контекст:

Рассмотрены предложения архитектурных стилей монолит или микросервис.

(010 Анализ и описание архитектурных опций и обоснование выбора).

Решения:

Будем использовать Архитектурный стиль – Microservices.

Причины принятия решения:

Архитектурный стиль – **Монолит** не соответствует пункту 8 НФТ, при увеличении нагрузки в монолите придется поднимать несколько монолитов, при микросервисной архитектуре мы можем поднять дополнительно только наиболее загруженные сервисы.

Последствия:

Увеличивается общая сложность разработки. Разделение проекта на сервисы упрощает работу команд разработчиков над отдельными модулями проекта. Вместе с тем повышаются требования к взаимодействию.

Комплаенс (проверка соответствия):

Необходима разработка сценариев тестирования взаимодействия модулей системы. Заметки:

ИТ архитектор Драчёв О.Е. 14.03.2022.

013 Применение распределенной архитектуры.

Статус – proposed (предложен).

Контекст:

Компания предполагает большой охват населения разных частей мира.

Решения:

Для решения поставленной задачи, будем использовать облака региональных операторов.

Причины принятия решения:

Снижение трафика локальных клиентов.

Последствия:

Постепенное расширение охвата локальных территорий.

Комплаенс (проверка соответствия):

Необходимо контролировать трафик в разрезе локализации. Поднимать новые центры при увеличении трафика выше контрольных показателей.

Заметки:

ИТ архитектор Драчёв О.Е. 14.03.2022.

014 Хранение данных.

Статус – accepted (принят).

Контекст:

Наша компания работает в различных регионах мира.

В результате работы активных клиентов формируется много клиентской информации. При хранении данных в едином хранилище возникает проблема передачи данных из различных регионов мира.

Решения:

Организовать региональные хранилища клиентских данных. Данные домена заказ будем хранить в региональном хранилище, а также передаваться в центральное хранилище.

Региональные хранилища данных хранят данные только не закрытых заказов, после получения статуса «заказ исполнен» и репликации – данные заказа из локального хранилища удаляется – остается только запись заголовка заказа.

Локальные и центральные базы данных объединены в одну виртуальную базу данных. Данные организованы по типу снежинка.

Причины принятия решения:

Экономия размера локального хранилища данных (одна из самых высоких статей затрат в облачных услугах). Для повышения надежности хранения данных - бизнес данные о заказах хранятся в 2х хранилищах.

Последствия:

Синхронизация коммерческих данных в 2х хранилищах повысит надежность системы.

Комплаенс (проверка соответствия):

Провести тестовую выборку данных из различных хранилищ и сравнить их.

Заметки:

ИТ архитектор Драчёв О.Е. 14.03.2022.

12. Описание сценариев использования приложения.

Стартовая страница приложения

Цель - увидеть состояние окружения и личной переписки.

Страница "Витрина товаров" Цель - просмотр товаров, поиск товаров и формирование корзины

На схеме (ниже) приведена типовая схема работы системы.

Страница "Спортивные показатели"

Цель - формирование планов тренировок, выбор группы по интересам, сбор материалов показателей организма, сохранение роликов и фотографий клиентов

Страница "Личный кабинет"

Цель - обеспечит работу клиента: с заказами, личной перепиской, настройками

ПО (локация, языковая панель, подключение IoT)

Перечень событий и команд при работе с личным кабинетом *(некоторые связи Actor – событие не указаны для лучшей читаемости схемы)*.

Страница "Региональных акций" Цель - Демонстрация акций клиентам

Страница "Индикатор сообщений" Цель - Перейти на контекст сообщения

Страница "Корзина продукта" Цель - Перейти в редактор корзины

13. Базовая архитектура с учётом ограничений бизнес - требований, НФТ, выбранной архитектуры, адресация атрибутов качества.

На рисунке представлена базовая схема проекта:

- Схема представляет распределенную систему под управлением Kubernetes.
- На схеме представлены основные блоки контейнеров.
- Система хранения данных и логов.
 - о Данные разделены по типу.
 - о БД Redis применяется для хранения ключей данных.
- Kubernetes обеспечивает оркестрацию подов при изменении нагрузки.
- Схема обеспечивает:
 - о Хранение личных данных фт п.1.
 - о Оптимальное использование ресурсов ВТ (вычислительной техники) нфт п. 8.

14. Основные представления:

а. Функциональное.

В схеме описаны основные функции пользователей системы. Не показаны функции бак-энда, в части разделения доступа к информации и т.д.

b. Информационное.

Информационная модель основана на потоках данных пользователь. В центре схемы находится клиент-рекламодатель. Рекламодатель использует данные медиа и геолокации совмесно с клиентом. Аналитик использует статистические данные по заказам и активность клиентов в группах.

с. Многозадачность (concurrency).

На схеме многозадачности представлена схема серверной части системы на основе Kubernetes. Клиентская часть ПО передает свои запросы в очереди серверной части. API Gateway на схеме не рассмотрен. Схеме представлена с уровня микросервисов пользовательского функционала.

d. Инфраструктурное.

На вершине схемы находиться клиент, который работает с интерфейсом клиентского ПО. ПО клиента через интернет и поты провайдера обращается к серверной части ПО. Серверное ПО работает с хранилищем данных. Вся схема опирается на электросети (на схеме не показаны).

е. Безопасность.

Элементы системы	№ вектора	Возможные векторы атак	Способы защиты от векторов атак					
0,1	1	1. Инъекции — Injections	 Использование более безопасного API, исключающего использование интерпретатора. Использование параметризованных запросов при кодировании. Отделение команд от данных во избежание атак. 					
0,1	2	Sensitive Data Exposure (незащищённость конфиденциальных данных)	 Используя защищённый URL. Использование надёжных и уникальных паролей. Шифрование всей конфиденциальной информации, которую необходимо сохранить. 					
0,3	3	XML External Entities (XXE) Insecure Deserialization (внешние сущности XML, небезопасная десериализация)	 Использование менее сложных форматов данных, таких как JSON. Обновление процессоров и библиотек XML. Использование инструментов SAST. 					
2	4	Broken Access Control (нарушение контроля доступа)	 Удаление аккаунтов, которые больше не нужны или неактивны. Отключение ненужных служб для снижения нагрузки на серверы. Использование тестирования на проникновение. 					
Вся система	5	Небезопасная конфигурация (Security Misconfiguration)	 Использование динамического тестирования безопасности приложений (DAST). Отключение использования паролей по умолчанию. Следите за облачными ресурсами, приложениями и серверами. 					
0,1	6	Межсайтовый скриптинг – XSS (Cross Site Scripting)	 Использование соответствующих заголовков ответа. Фильтрация ввода и кодирование вывода. Использование политики безопасности контента. 					

			 Применение подхода с нулевым доверием к пользовательскому вводу.
2	7	Broken Authentication (нарушенная аутентификация)	 Реализация многофакторной аутентификации. Защита учётных данных пользователя. Отправка паролей через зашифрованные соединения.
0,2,3	8	Использование компонентов с известными уязвимостями	 Удаление всех ненужных зависимостей. Использование виртуального исправления. Использование компонентов только из официальных и проверенных источников.
3	9	Небезопасная десериализация	 Внедрение цифровых подписей. Использование тестирования на проникновение. Изоляция кода, который десериализует, и запуск его в средах с низким уровнем привилегий для предотвращения несанкционированных действий.
Вся система	10	Недостаточное ведение журнала и мониторинг	 Внедрение программного обеспечения для ведения журналов и аудита. Создание эффективной системы мониторинга. Думайте, как злоумышленник и используйте метод проверки на проникновение.

15. Анализ рисков созданной архитектуры, компромиссов.

Nº	Риск	Способы снижения рисков					
1.	Принятие неправильных архитектурных решений или неправильным выбором платформы: • компоненты и подсистемы ИС и их физическое расположение, общения между компонентами системы, • выбор и определение характеристик каналов связи, выбор протоколов и программных интерфейсов, • выбор типа ПО промежуточного слоя (middleware), выбор форматов документов, передаваемых в системе.	•	Тщательная проработка проекта и привлечение опытных архитекторов. Тщательное фиксирование принятых решений.				
2.	Не четкие требования заказчика, когда детали проявляются в процессе разработки.	•	Организация тесного взаимодействия с заказчиком. Включение представителя заказчика в команду разработки.				
3.	Потеря коллектива разработчиков	•	Создание положительного климата в коллективе. Документирование всех принятых решений по проекту.				
4.	Остановка отдельных функций системы (не своевременное увеличение размеров хранилища)	•	НФТ п.4. Оперативная отработка сообщений систем (Остановка записи данных). Анализ логов, разработка мероприятий по достижению устойчивости системы.				
5.	Взлом сайта (DDoS атака)	•	Применение последних практик безопасности				
6.	Потеря данных на клиентских устройствах	•	Частичное хранение личных данных, для восстановления связи.				
7.	Потеря ключей в БД Redis	•	Восстановление ключей.				
8.	Нет провайдеров с требуемым набором услуг для развития нашего проекта на территориях удаленных от центра.	•	Пользоваться ближайшим провайдером (мирится с более дорогим трафиком) Стимулировать развитие провайдеров (спонсорское участие).				
9.	Потеря данных у локального провайдера	•	Заключение договоров с более высокими требованиями хранения данных. Создание подсистемы дублирования данных у ближайшего провайдера. Увеличение стоимости владения т.к. основная стоимость владения – это система хранения данных. Создание дополнительных дата центров.				
10.	Не своевременная оплата услуг провайдера	•	Организация рассылки сообщений о завершении оплаченного периода.				

16. Стоимость владения системой в первый, второй и пятый годы с учётом роста данных и базы пользователей

Первым приведем расчет стоимости на рекламу и будем считать его постоянным на каждый год.

Расходы на каждый вид ре													
Каналы рекламы\месяцы	1	2	3	4	5	6	7	8	9	10	11	12	Год сумма
SEO	25 000,00 ₽	25 000,00₽	25 000,00₽	25 000,00₽	25 000,00 ₽	25 000,00 ₽	25 000,00₽	25 000,00 ₽	25 000,00 ₽	25 000,00₽	25 000,00₽	25 000,00 ₽	300 000,00 ₽
Яндекс Директ	10 000,00 ₽	5 000,00₽		10 000,00₽	5 000,00 ₽		10 000,00₽	5 000,00 ₽		10 000,00₽	5 000,00 ₽		60 000,00 ₽
Google Adwards			20 000,00 ₽			20 000,00 ₽			20 000,00 ₽			20 000,00 ₽	80 000,00 ₽
Рекламные банеры		30 000,00₽			30 000,00 ₽			30 000,00 ₽			30 000,00 ₽		120 000,00₽
Рассылка	4 000,00 ₽		4 000,00 ₽		4 000,00 ₽		4 000,00 ₽		4 000,00 ₽		4 000,00 ₽		24 000,00 ₽
Прямые расходы	12 000,00 ₽	12 000,00₽	12 000,00 ₽	12 000,00 ₽	12 000,00 ₽	12 000,00 ₽	12 000,00₽	12 000,00 ₽	12 000,00 ₽	12 000,00 ₽	12 000,00 ₽	12 000,00 ₽	144 000,00 ₽
Итого:													728 000,00 ₽

Для быстрой доставки товаров, товаров для проведения акций и учета повышенного спроса на товары в период проведения спортивных мероприятий – необходим склад. Полного расчета по заданным условиям провести не возможно (как минимум нет групп товаров). Расчет стоимости взят с аналога, интернет магазина и составляет:

1й год - 1 768 686,00 ₽.

2й год - 2 299 291,80 ₽.

5й год - 3 360 503,40 ₽

Для расчета затрат на поддержание сайта я решил использовать «Cloud» калькулятор яндекса (https://cloud.yandex.ru/prices).

За аналог расчета были использованы статистические показатели сети ВКонтакте:

- Использована статистика открытых источников.
- Зарегистрированные пользователи 380 миллионов.
- Нас интересуют активные пользователи.
 - 1-й год 8 миллионов.
 - 2-й год 21 миллион.
 - о 5-й год 50 миллионов.
- За основу расчета взяты следующие метрики (в месяц):
 - о Объем исходящий трафик более 10гб (дальнейшее увеличение не учитывается).
 - о Выделенный Ір адрес.
 - SSD диски для загрузки ПО
 - Ram = 6Гб
 - o Get операции = 800000000
 - Post операции = 300000000
 - Размер хранилища = 500 Tb
 - Размер хранилища логов = 2 Тb
 - Redis Размер хранилища = 710 Гб

Итоги расчета первого года эксплуатации:

Compute Cloud – 4072.95 руб.
Object Storage – 1180183.29 руб.
Kubernetes – 25891.67 руб.
PostgreSQL – 34752.56 руб.
Redis - 14339.37 руб.
Elasticsearch - 40348.72 руб.
Тех. Поддержка - 53,55 руб.

• Итого: <u>1 299 657,41 руб./мес.</u>

Второй год владения. Произойдет увеличение функций и возможностей пользователя, потребуются новые ресурсы.

• За основу расчета взяты следующие метрики (в месяц):

- о Объем исходящий трафик более 10гб (дальнейшее увеличение не учитывается).
- о Выделенный Ір адрес.
- SSD диски для загрузки ПО
- Ram = 64Γ6
- o Get операции = 2400000000
- o Post операции = 1000000000
- о Размер хранилища = 4000 Tb (92Мб\клиент 65 миллиона клиентов 2й год владения 200 Мб\клиент 72 миллиона клиентов 5й год владения)
- Размер хранилища логов = 2 Tb
- Redis Размер хранилища = 710 Гб

Кроме увеличения вычислительных мощностей, нужно увеличить количество нодов. Устанавливаем 2 дополнительных нода. Снижение стоимости можно ожидать за счет подключения холодного хранилища.

Итого: $4\,867\,369,05 * 3 = 14\,602\,107,15$ руб.

Рассчитать стоимость

MongoDB

MySQL[®]

Пятый год владения – предполагаем расширение за счет периферийных нодов, в количестве 6 штук. Основные затраты - это системы хранения данных.

Стоимость 1 го месяца системы на пятый год эксплуатации.

Итого: 4 867 369,05 * 7 = 34 071 583,35 руб/месяц.

Итоговая таблица затрат по годам владения

Год владения	Реклама	Скдад	Затраты на сайт\месяц	Затраты на сайт\год	Сумма затрат в год	
1й год	728 000,00	1 768 686,00	1 299 657,41	15 595 888,92	18 092 574,92	
2й год	728 000,00	2 299 291,80	14 602 107,15	175 225 285,80	178 252 577,60	
5й год	728 000,00	3 360 503,40	34 071 583,35	408 859 000,20	412 947 503,60	

