Feuille Exercice - Résidus quadratiques et anneaux

Résidus quadratiques

Etant donné un groupe G, un élément $y \in G$ est un *résidu quadratique* si il existe $x \in G$ tel que $x^2 = y$. Dans ce cas, on appelle *x* la racine carrée de *y*.

Dans le cas spécifique de \mathbb{Z}_p^{\times} où $p \geq 2$ est premier, un élément y est un résidu quadratique s'il existe x tel que $x^2 = y \mod p$. On appelle QR_p l'ensemble des résidus quadratiques modulo p, et QNR_p l'ensemble des éléments qui ne sont pas des résidus quadratiques modulo p.

Soit $x \in \mathbb{Z}_p^{\times}$, on définit $\mathcal{J}_p(x)$, le *symbole de Jacobi de x modulo p* de la manière suivante :

$$\mathcal{J}_p(x) = \left\{ \begin{array}{l} +1 \text{ if } x \text{ est un residu quadratique modulo } p, \\ -1 \text{ if } x \text{ n'est pas un résidu quadratique modulo } p. \end{array} \right.$$

Exercise 1.

Pour tout l'exercice, on considérera que $p \ge 3$ est un nombre premier.

- 1. Montrer que QR_p est un sous-groupe de $(\mathbb{Z}_p^{\times}, \times)$.
- 2. Calculer les racines carrées de 3 dans \mathbb{Z}_{13}^{\times} .
- 3. Montrez que tout résidu quadratique de \mathbb{Z}_p^{\times} a exactement deux racines.
- Déterminez l'ensemble des résidus quadratiques de Z₁[×].
- 5. Combien d'éléments de \mathbb{Z}_p^{\times} sont des résidus quadratiques? Combien n'en sont pas?

On rappelle que \mathbb{Z}_p^{\times} est un groupe cyclique d'ordre p-1, soit g un de ses générateurs, on peut écrire :

$$\mathbb{Z}_p^{\times} = \{g^0, g^1, g^2, \dots, g^{\frac{p-1}{2}-1}, g^{\frac{p-1}{2}}, g^{\frac{p-1}{2}+1}, \dots, g^{p-2}\}.$$

Si on met chacun de ces éléments au carré, on obtient :

$$QR_p = \{g^0, g^2, g^4, \dots, g^{p-3}, g^0, g^2, \dots, g^{p-3}\},\$$

où chaque élément apparaît deux fois.

Les résidus quadratiques s'écrivent donc g^i pour $i \in \{0, 2, ..., p-2\}$ pair.

- 6. Montrez que pour tout $x \in \mathbb{Z}_p^{\times}$, on a $\mathcal{J}_p(x) = x^{\frac{p-1}{2}} \mod p$. En déduire un algorithme polynomial pour tester si un élément $x \in \mathbb{Z}_p^{\times}$ est un résidu quadratique ou non.
- 7. Montrer que pour tout $x, y \in \mathcal{J}_p(xy) = \mathcal{J}_p(x)\mathcal{J}_p(y)$. En déduire que si $x, x' \in QR_p$ et $y, y' \in QNR_p$ alors :

 - $xx' \bmod p \in QR_p$ $yy' \bmod p \in QR_p$ $xy' \bmod p \in QNR_p$

Exercise 2.

Soit N=pq avec p et q deux nombres premiers distincts. On rappelle que \mathbb{Z}_N^{\times} est isomorphe à $\mathbb{Z}_p^{\times} \times \mathbb{Z}_q^{\times}$ et on appelle f l'isomorphisme correspondant, pour tout $y \in \mathbb{Z}_N^{\times}$, $f(y) = (y_p, y_q)$ tel que $y_p = y \mod p$ et $y_q = y \mod q$.

On étend la définition du symbole de Jacobi dans le cas où N=pq, pour tout x qui est premier avec N:

$$\mathcal{J}_N(x) = \mathcal{J}_p(x) \cdot \mathcal{J}_q(x).$$

- 1. Soit $y \in \mathbb{Z}_N^{\times}$ et $(y_p, y_q) = f(y)$. Montrer que y est un résidu quadratique modulo N si et seulement si y_p est un résidu quadratique modulo p et y_q est un résidu quadratique modulo q.
- 2. Combien d'éléments de \mathbb{Z}_N^{\times} sont des résidus quadratiques?
- 3. Montrer que si x est un résidu quadratique modulo N, alors $\mathcal{J}_N(x) = +1$. Montrer que l'inverse n'est pas vrai.
- 4. Soit \mathcal{J}_N^{+1} les éléments de \mathbb{Z}_N^{\times} dont le symbole de Jacobi est égal à 1. Montrez que :
 - La moitié des éléments de \mathbb{Z}_N^{\times} sont dans \mathcal{J}_N^{+1} . $\mathcal{QR}_N \subseteq \mathcal{J}_N^{+1}$.

 - Exactement la moitié des éléments de \mathcal{J}_N^{+1} sont dans \mathcal{QR}_N .

Exercices complémentaires sur les anneaux

Exercise 3.

- 1. Soient A un anneau intègre et $a \in A$ non nul. Montrer que l'application $f_a \colon A \to A$ définie par $f_a(x) = ax$ est injective.
- 2. En déduire que si A est intègre et de cardinal fini, alors A est un corps (il suffit de trouver un inverse à l'élément a).

Exercise 4.

Soit (G, +) un groupe commutatif. On note End(G) l'ensemble des endomorphismes de G sur lequel on définit la loi + par $f + g : G \to G, x \mapsto f(x) + g(x)$. Démontrer que $(End(G), +, \circ)$ est un anneau.

Résoudre l'équation $x^2 - 4x + 3 = 0$ dans l'anneau \mathbb{Z}_{21} à l'aide du théorème des restes chinois.