# Contents

| 1. Entropy                                                        | 2    |
|-------------------------------------------------------------------|------|
| 1.1. Introduction                                                 |      |
| 1.2. Asymptotic equipartition property                            | 3    |
| 1.3. Fixed-rate lossless data compression                         | 5    |
| 2. Relative entropy                                               | 6    |
| 2.1. Asymptotically optimal hypothesis testing                    | 7    |
| 2.2. Relative entropy and optimal hypothesis testing              | 8    |
| 3. Properties of entropy and relative entropy                     | . 12 |
| 3.1. Joint entropy and conditional entropy                        | . 12 |
| 3.2. Properties of entropy, joint entropy and conditional entropy | . 13 |
| 3.3. Properties of relative entropy                               | . 15 |
| 4. Poisson approximation                                          | . 18 |
| 4.1. Poisson approximation via entropy                            | . 18 |
| 4.2. What is the Poisson distribution?                            | . 20 |
| 5. Mutual information                                             | . 20 |
| 5.1. Synergy and redundancy                                       | . 22 |
| 6. Entropy and additive combinatorics                             | . 24 |
| 6.1. Simple sumset entropy bounds                                 | . 24 |
| 6.2. The doubling-difference inequality for entropy               | . 25 |

# 1. Entropy

#### 1.1. Introduction

**Notation 1.1** Write  $x_1^n := (x_1, ..., x_n) \in \{0, 1\}^n$  for an length n bit string.

**Notation 1.2** We use P to denote a probability mass function. Write  $P_1^n$  for the joint probability mass function of a sequence of n random variables  $X_1^n = (X_1, ..., X_n)$ .

**Definition 1.3** A random variable X has a **Bernoulli distribution**,  $X \sim \text{Bern}(p)$ , if for some fixed  $p \in (0, 1)$ ,

$$X = \begin{cases} 1 \text{ with probability } p \\ 0 \text{ with probability } 1 - p \end{cases}$$

i.e. the probability mass function (PMF) of X is  $P : \{0,1\} \to \mathbb{R}$ , P(0) = 1 - p, P(1) = p.

Notation 1.4 Throughout, we take log to be the base-2 logarithm, log<sub>2</sub>.

**Definition 1.5** The binary entropy function  $h:(0,1)\to[0,1]$  is defined as

$$h(p) := -p \log p - (1-p) \log(1-p)$$

**Example 1.6** Let  $x_1^n \in \{0,1\}^n$  be an n bit string which is the realisation of binary random variables (RVs)  $X_1^n = (X_1, ..., X_n)$ , where the  $X_i$  are independent and identically distributed (IID), with common distribution  $X_i \sim \text{Bern}(p)$ . Let  $k = |\{i \in [n] : x_i = 1\}|$  be the number of ones in  $x_1^n$ . We have

$$\Pr(X_1^n = x_1^n) \coloneqq P^n(x_1^n) = \prod_{i=1}^n P(x_i) = p^k(1-p)^{n-k}.$$

Now by the law of large numbers, the probability of ones in a random  $x_1^n$  is  $k/n \approx p$  with high probability for large n. Hence,

$$P^n(x_1^n) \approx p^{np} (1-p)^{n(1-p)} = 2^{-nh(p)}.$$

Note that this reveals an amazing fact: this approximation is independent of  $x_1^n$ , so any message we are likely to encounter has roughly the same probability  $\approx 2^{-nh(p)}$  of occurring.

Remark 1.7 By the above example, we can split the set of all possible n-bit messages,  $\{0,1\}^n$ , into two parts: the set  $B_n$  of **typical** messages which are approximately uniformly distributed with probability  $\approx 2^{-nh(p)}$  each, and the non-typical messages that occur with negligible probability. Since all but a very small amount of the probability is concentrated in  $B_n$ , we have  $|B_n| \approx 2^{nh(p)}$ .

**Remark 1.8** Suppose an encoder and decoder both already know  $B_n$  and agree on an ordering of its elements:  $B_n = \{x_1^n(1), ..., x_1^n(b)\}$ , where  $b = |B_n|$ . Then instead of transmitting the actual message, the encoder can transmit its index  $j \in [b]$ , which can be described with

$$\lceil \log b \rceil = \lceil \log |B_n| \rceil \approx nh(p)$$

bits.

#### Remark 1.9

- The closer p is to  $\frac{1}{2}$  (intuitively, the more random the messages are), the larger the entropy h(p), and the larger the number of typical strings  $|B_n|$ .
- Assuing we ignore non-typical strings, which have vanishingly small probability for large n, the "compression rate" of the above method is h(p), since we encode n bit strings using nh(p) strings. h(p) < 1 unless the message is uniformly distributed over all of  $\{0,1\}^n$ .
- So the closer p is to 0 or 1 (intuitively, the less random the messages are), the smaller the entropy h(p), so the greater the compression rate we can achieve.

#### 1.2. Asymptotic equipartition property

**Notation 1.10** We denote a finite alphabet by  $A = \{a_1, ..., a_m\}$ .

**Notation 1.11** If  $X_1, ..., X_n$  are IID RVs with values in A, with common distribution described by a PMF  $P: A \to [0,1]$  (i.e.  $P(x) = \Pr(X_i = x)$  for all  $x \in A$ ), then write  $X \sim P$ , and we say "X has distribution P on A".

**Notation 1.12** For  $i \leq j$ , write  $X_i^j$  for the block of random variables  $(X_i,...,X_j)$ , and similarly write  $x_i^j$  for the length j-i+1 string  $(x_i,...,x_j) \in A^{i-j+1}$ .

**Notation 1.13** For IID RVs  $X_1, ..., X_n$  with each  $X_i \sim P$ , denote their joint PMF by  $P^n: A^n \to [0,1]$ :

$$P^n(x_1^n) = \Pr(X_1^n = x_1^n) = \prod_{i=1}^n \Pr(X_i = x_i) = \prod_{i=1}^n P(x_i),$$

and we say that "the RVs  $X_1^n$  have the product distribution  $P^n$ ".

**Definition 1.14** A sequence of RVs  $(Y_n)_{n\in\mathbb{N}}$  converges in probability to an RV Y if  $\forall \varepsilon > 0$ ,

$$\Pr(|Y_n-Y|>\varepsilon)\to 0\quad\text{as }n\to\infty.$$

**Definition 1.15** Let  $X \sim P$  be a discrete RV on a countable alphabet A. The **entropy** of X is

$$H(X) = H(P) \coloneqq -\sum_{x \in A} P(x) \log P(x) = \mathbb{E}[-\log P(X)].$$

#### Remark 1.16

- We use the convention  $0 \log 0 = 0$  (this is natural due to continuity:  $x \log x \to 0$  as  $x \downarrow 0$ , and also can be derived measure-theoretically).
- Entropy is technically a functional the probability distribution P and not of X, but we use the notation H(X) as well as H(P).
- H(X) only depends on the probabilities P(x), not on the values  $x \in A$ . Hence for any bijective  $f: A \to A$ , we have H(f(X)) = H(X).

- All summands of H(X) are non-negative, so the sum always exists and is in  $[0, \infty]$ , even if A is countable infinite.
- H(X) = 0 iff all summands are 0, i.e. if  $P(x) \in \{0,1\}$  for all  $x \in A$ , i.e. X is **deterministic** (constant, so equal to a fixed  $x_0 \in A$  with probability 1).

**Theorem 1.17** Let  $X = \{X_n : n \in \mathbb{N}\}$  be IID RVs with common distribution P on a finite alphabet A. Then

$$-\frac{1}{n}\log P^n(X_1^n)\longrightarrow H(X_1)\quad \text{in probability}\quad \text{as }n\to\infty$$

Proof (Hints). Straightforward.

*Proof.* We have

$$\begin{split} P^n(X_1^n) &= \prod_{i=1}^n P(X_i) \\ \Longrightarrow \frac{1}{n} \log P^n(X_1^n) &= \frac{1}{n} \sum_{i=1}^n \log P(X_i) \to \mathbb{E}[-\log P(X_1)] \quad \text{in probability} \end{split}$$

by the weak law of large numbers (WLLN) for the IID RVs  $Y_i = -\log P(X_i)$ .

Corollary 1.18 (Asymptotic Equipartition Property (AEP)) Let  $\{X_n : n \in \mathbb{N}\}$  be IID RVs on a finite alphabet A with common distribution P and common entropy  $H = H(X_i)$ . Then

•  $(\Longrightarrow)$ : for all  $\varepsilon > 0$ , the set of **typical strings**  $B_n^*(\varepsilon) \subseteq A^n$  defined by

$$B_n^*(\varepsilon)\coloneqq \left\{x_1^n\in A^n: 2^{-n(H+\varepsilon)}\leq P^n(x_1^n)\leq 2^{-n(H-\varepsilon)}\right\}$$

satisfies

$$|B_n^*(\varepsilon)| \leq 2^{n(H+\varepsilon)} \quad \forall n \in \mathbb{N}, \quad \text{and}$$
$$P^n(B_n^*(\varepsilon)) = \Pr(X_1^n \in B_n^*(\varepsilon)) \longrightarrow 1 \quad \text{as } n \to \infty$$

• ( $\Leftarrow$ ): for any sequence  $(B_n)_{n\in\mathbb{N}}$  of subsets of  $A^n$ , if  $P(X_1^n\in B_n)\to 1$  as  $n\to\infty$ , then  $\forall \varepsilon>0$ ,

$$|B_n|\geq (1-\varepsilon)2^{n(H-\varepsilon)}\quad\text{eventually}$$
 i.e.  $\exists N\in\mathbb{N}: \forall n\geq N,\quad |B_n|\geq (1-\varepsilon)2^{n(H-\varepsilon)}.$ 

 $Proof\ (Hints).$ 

- $(\Longrightarrow)$ : straightforward.
- ( $\Leftarrow$ ): show that  $P^n(B_n \cap B_n^*(\varepsilon)) \to 1$  as  $n \to \infty$ .

Proof.

- (⇒):
  - Let  $\varepsilon > 0$ . By Theorem 1.17, we have

$$\Pr(X_1^n \notin B_n^*(\varepsilon)) = \Pr\left(\left|-\frac{1}{n}\log P^n(X_1^n) - H\right| > \varepsilon\right) \to 0 \quad \text{as } n \to \infty.$$

• By definition of  $B_n^*(\varepsilon)$ ,

$$1 \geq P^n(B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n^*(\varepsilon)} P^n(x_1^n) \geq |B_n^*(\varepsilon)| 2^{-n(H+\varepsilon)}.$$

- (⇐=):
  - $\text{We have } P^n(B_n\cap B_n^*(\varepsilon)) = P^n(B_n) + P^n(B_n^*(\varepsilon)) P^n(B_n\cup B_n^*(\varepsilon)) \geq \\ P^n(B_n) + P^n(B_n^*(\varepsilon)) 1, \text{ so } P^n(B_n\cap B_n^*(\varepsilon)) \to 1.$
  - So  $P^n(B_n \cap B_n^*(\varepsilon)) \ge 1 \varepsilon$  eventually, and so

$$\begin{split} 1-\varepsilon & \leq P^n(B_n \cap B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n \cap B_n^*(\varepsilon)} P^n(x_1^n) \\ & \leq |B_n \cap B_n^*(\varepsilon)| 2^{-n(H-\varepsilon)} \leq |B_n| 2^{-n(H-\varepsilon)}. \end{split}$$

#### Remark 1.19

- The  $\Longrightarrow$  part of AEP states that a specific object (in this case, the  $B_n^*(\varepsilon)$ ) can achieve a certain performance, while the  $\Leftarrow$  part states that no other object of this type can significantly perform better. This is common type of result in information theory.
- Theorem 1.17 gives a mathematical interpretation of entropy: the probability of a random string  $X_1^n$  generally decays exponentially with n ( $P^n(X_1^n) \approx 2^{-nH}$  with high probability for large n). The AEP gives a more "operational interpretation": the smallest set of strings that can carry almost all the probability of  $P^n$  has size  $\approx 2^{nH}$ .
- The AEP tells us that higher entropy means more typical strings, and so the possible values of  $X_1^n$  are more unpredictable. So we consider "high entropy" RVs to be "more random" and "less predictable".

# 1.3. Fixed-rate lossless data compression

**Definition 1.20** A memoryless source  $X = \{X_n : n \in \mathbb{N}\}$  is a sequence of IID RVs with a common PMF P on the same alphabet A.

**Definition 1.21** A fixed-rate lossless compression code for a source X consists of a sequence of codebooks  $\{B_n : n \in \mathbb{N}\}$ , where each  $B_n \subseteq A^n$  is a set of source strings of length n.

Assume the encoder and decoder share the codebooks, each of which is sorted. To send  $x_1^n$ , an encoder checks with  $x_1^n \in B_n$ ; if so, they send the index of  $x_1^n$  in  $B_n$ , along with a flag bit 1, which requires  $1 + \lceil \log |B_n| \rceil$  bits. Otherwise, they send  $x_1^n$  uncompressed, along with a flag bit 0 to indicate an "error", which requires  $1 + \lceil \log |A| \rceil = 1 + \lceil n \log |A| \rceil$  bits.

**Definition 1.22** For each  $n \in \mathbb{N}$ , the **rate** of a fixed-rate code  $\{B_n : n \in \mathbb{N}\}$  for a source X is

$$R_n \coloneqq \frac{1}{n}(1+\lceil \log |B_n| \rceil) \approx \frac{1}{n} \log |B_n| \quad \text{bits/symbol}.$$

**Definition 1.23** For each  $n \in \mathbb{N}$ , the **error probability** of a fixed-rate code  $\{B_n : n \in \mathbb{N}\}$  for a source X is

$$P_e^{(n)} \coloneqq \Pr(X_1^n \notin B_n).$$

**Theorem 1.24** (Fixed-rate coding theorem) Let  $X = \{X_n : n \in \mathbb{N}\}$  be a memoryless source with distribution P and entropy  $H = H(X_i)$ .

• ( $\Longrightarrow$ ):  $\forall \varepsilon > 0$ , there is a fixed-rate code  $\{B_n^*(\varepsilon) : n \in \mathbb{N}\}$  with vanishing error probability  $(P_e^{(n)} \to 0 \text{ as } n \to \infty)$  and with rate

$$R_n \le H + \varepsilon + \frac{2}{n} \quad \forall n \in \mathbb{N}.$$

• ( $\Leftarrow$ ): let  $\{B_n : n \in \mathbb{N}\}$  be a fixed-rate with vanishing error probabilit. Then  $\forall \varepsilon > 0$ , its rate  $R_n$  satisfies

$$R_n > H - \varepsilon$$
 eventually.

 $Proof\ (Hints).\ (\Longrightarrow): straightforward.\ (\Longleftrightarrow): straightforward.$ 

Proof.

- (⇒):
  - ▶ Let  $B_n^*(\varepsilon)$  be the sets of typical strings defined in AEP (<u>Corollary 1.18</u>). Then  $P_e^{(n)} = 1 \Pr(X_1^n \in B_n^*) \to 0$  as  $n \to \infty$  by AEP.
  - Also by AEP,  $R_n = \frac{1}{n}(1 + \lceil \log |B_n^*| \rceil) \le \frac{1}{n} \log |B_n^*| + \frac{2}{n} \le H + \varepsilon + \frac{2}{n}$ .
- (⇐=):
  - WLOG let  $0 < \varepsilon < 1/2$ . By AEP,

$$R_n \geq \frac{1}{n} \log |B_n^*| + \frac{1}{n} \geq \frac{1}{n} \log(1-\varepsilon) + H - \varepsilon + \frac{1}{n} = H - \varepsilon + \frac{1}{n} \log(2(1-\varepsilon)) > H - \varepsilon$$
 eventually.

# 2. Relative entropy

**Definition 2.1** Suppose  $x_1^n \in A^n$  are observations generated by IID RVs  $X_1^n$  and we want to decide whether  $X_1^n \sim P^n$  or  $Q^n$ , for two distinct candidate PMFs P, Q on A. A **hypothesis test** is described by a **decision region**  $B_n \subseteq A^n$  such that

- If  $x_1^n \in B_n$ , then we declare that  $X_1^n \sim P^n$ .
- Otherwise, if  $x_1^n \notin B_n$ , then we declare that  $X_1^n \sim Q^n$ .

Definition 2.2 The associated error probabilities for a hypothesis test are

$$\begin{split} e_1^{(n)} &= e_1^{(n)}(B_n) \coloneqq \Pr(\text{declare } P \mid \text{data} \sim Q) = Q^n(B_n) \\ e_2^{(n)} &= e_2^{(n)}(B_n) \coloneqq \Pr(\text{declare } Q \mid \text{data} \sim P) = P^n(B_n^c). \end{split}$$

**Definition 2.3** The relative entropy between PMFs P and Q on the same countable alphabet A is

$$D(P \parallel Q) \coloneqq \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E} \bigg[ \log \frac{P(X)}{Q(X)} \bigg], \quad \text{where } X \sim P.$$

#### Remark 2.4

- We use the convention that  $0 \log \frac{0}{0} = 0$  (this can be avoided by defining relative entropy measure-theoretically).
- $D(P \parallel Q)$  always exists and  $D(P \parallel Q) \ge 0$  with equality iff P = Q.
- Relative entropy is not symmetric:  $D(P \parallel Q) \neq D(Q \parallel P)$  in general, and does not satisfy the triangle inequality.
- Despite this, it is reasonable and natural to think of  $D(P \parallel Q)$  as a statistical "distance" between P and Q.

**Remark 2.5** Let  $X \sim P$ . We have, by WLLN,

$$\begin{split} \frac{1}{n} \log \left( \frac{P^n(X_1^n)}{Q^n(X_1^n)} \right) &= \frac{1}{n} \log \prod_{i=1}^n \frac{P(X_i)}{Q(X_i)} \\ &= \frac{1}{n} \sum_{i=1}^n \log \frac{P(X_i)}{Q(X_i)} \\ &\longrightarrow D(P \parallel Q) \text{ in probability} \quad \text{as } n \to \infty. \end{split}$$

So for large n,  $\frac{P^n(X_1^n)}{Q^n(X_1^n)} \approx 2^{nD(P \parallel Q)}$  with high probability. Hence, the random string  $X_1^n$  is exponentially more likely under its true distribution P than under Q.

# 2.1. Asymptotically optimal hypothesis testing

**Theorem 2.6** (Stein's Lemma) Let P,Q be PMFs on a finite alphabet A, with  $D=D(P\parallel Q)\in (0,\infty)$ . Let  $X=\{X_n:n\in\mathbb{N}\}$  be a memoryless source on A, with either each  $X_i\sim P$  or each  $X_i\sim Q$ .

• ( $\Longrightarrow$ ): for all  $\varepsilon > 0$ , there is a hypothesis test with decision regions  $\{B_n^*(\varepsilon) : n \in \mathbb{N}\}$  such that

$$\forall n \in \mathbb{N}, \quad e_1^{(n)}(B_n^*(\varepsilon)) \leq 2^{-n(D-\varepsilon)}$$

and  $e_2^{(n)} \to 0$  as  $n \to \infty$ .

• ( $\Leftarrow$ ): for any hypothesis test with decision regions  $\{B_n:n\in\mathbb{N}\}$  such that  $e_2^{(n)}(B_n)\to 0$  as  $n\to\infty$ , we have  $\forall \varepsilon>0$ ,

$$e_1^{(n)}(B_n) \ge 2^{-n(D+\varepsilon+\frac{1}{n})}$$
 eventually.

Proof (Hints).

- (⇒):
  - Let  $B_n^*(\varepsilon) = \left\{ x_1^n \in A^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)} \right\}$ . The rest is straightforward (use above remark).
- (⇐=):
  - Show that  $P^n(B_n^*(\varepsilon) \cap B_n) \to 1$  as  $n \to \infty$ , use that  $\frac{1}{2} = 2^{-n(1/n)}$ .

Proof.

- - Let  $B_n^*(\varepsilon) = \left\{ x_1^n \in A^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)} \right\}.$ Then the convergence in probability of  $\frac{1}{n} \sum_{i=1}^n \log \frac{P(X_i)}{Q(X_i)}$  is equivalent to  $\Pr(X_1^n \notin B_n^*) = P^n(B_n^*(\varepsilon)) = e_2^{(n)} \to 0$  as  $n \to \infty$ , when  $X_1^n \sim P^n$ .

    Also,  $1 \ge P^n(B_n^*) = \sum_{x_1^n \in B_n^*(\varepsilon)} Q^n(x_1^n) \frac{P^n(x_1^n)}{Q^n(x_1^n)} \ge 2^{n(D-\varepsilon)} \sum_{x_1^n \in B_n^*(\varepsilon)} Q^n(x_1^n) = \frac{P^n(B_n^n)}{Q^n(x_1^n)} = \frac{P^n(B_n^n)}{Q^n(x_1$
  - $2^{n(D-\varepsilon)}Q^n(B_n^*(\varepsilon)).$
- - We have  $e_2^{(n)}(B_n^*(\varepsilon)) = P^n(B_n^*(\varepsilon)) \to 0$  as  $n \to \infty$ . Suppose  $e_2^{(n)}(B_n) =$  $P^n(B_n^c) \to 0$ . Then  $P^n(B_n \cap B_n^*(\varepsilon)) \to 1$ . So eventually,

$$\begin{split} \frac{1}{2} & \leq P^n(B_n \cap B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n \cap B_n^*(\varepsilon)} P^n(x_1^n) \frac{Q^n(x_1^n)}{Q^n(x_1^n)} \\ & \leq 2^{n(D+\varepsilon)} \sum_{x_1^n \in B_n} Q^n(x_1^n) \\ & = 2^{n(D+\varepsilon)} Q^n(B_n) = 2^{n(D+\varepsilon)} e_1^{(n)}(B_n) \end{split}$$

Remark 2.7

- The decision regions  $B_n^*$  are asymptotically optimal in that, among all tests that have  $e_2^{(n)} \to 0$ , they achieve the asymptotically smallest possible  $e_1^{(n)} \approx 2^{-nD}$ . However, they are not the most optimal decision regions for finite n. For finite regions, the optimal regions are given by the Neyman-Pearson Lemma.
- Assuming  $D \neq 0$  is a trivial assumption, as otherwise P = Q on A, so any test would give the correct answer.
- Assuming  $D < \infty$  is a reasonable assumption, as otherwise there is some  $a \in A$ such that P(a) > 0 but Q(a) = 0. In that case, we check whether any such a appear in  $x_1^n$  or not.
- In Stein's Lemma, we assume one error vanishes at possibly an arbitrarily slow rate, while the other decays exponentially. This is a natural asymmetry in many applications, e.g. in diagnosing disease.
- Stein's Lemma shows why the relative entropy is a natural measure of "distance" between two distributions, as large D means a smaller error probability (one vanishes exponentially at rate D), so easier to tell apart the distributions from the data.

# 2.2. Relative entropy and optimal hypothesis testing

**Theorem 2.8** (Neyman-Pearson Lemma) For a hypothesis test between P and Qbased on n data samples, the likelihood ratio decision regions

$$B_{\mathrm{NP}} = \left\{ x_1^n \in A^n : \frac{P^n(x_1^n)}{Q^n(x_1^n)} \ge T \right\}, \quad \text{for some threshold } T > 0,$$

are optimal in that, for any decision region  $B_n\subseteq A^n$ , if  $e_1^{(n)}(B_n)\leq e_1^{(n)}(B_{\mathrm{NP}})$ , then  $e_2^{(n)}(B_n)\geq e_2^{(n)}(B_{\mathrm{NP}})$ , and vice versa.

*Proof (Hints)*. Consider the inequality

$$(P^n(x_1^n) - TQ^n(x_1^n)) \Big( \mathbb{1}_{B_{\mathrm{NP}}}(x_1^n) - \mathbb{1}_{B_n}(x_1^n) \Big) \geq 0$$

(justify why this holds).

Proof.

• Consider the obvious inequality

$$(P^n(x_1^n) - TQ^n(x_1^n)) \Big( \mathbb{1}_{B_{\mathrm{NP}}}(x_1^n) - \mathbb{1}_{B_n}(x_1^n) \Big) \geq 0$$

• Then, summing over all  $x_1^n$ ,

$$\begin{split} 0 & \leq P^n(B_{\mathrm{NP}}) - P^n(B_n) - TQ^n(B_{\mathrm{NP}}) + TQ^n(B_n) \\ & = 1 - e_2^{(n)}(B_{\mathrm{NP}}) - \left(1 - e_2^{(n)}(B_n)\right) - T\left(e_1^{(n)}(B_{\mathrm{NP}}) - e_1^{(n)}(B_n)\right) \\ & \Longrightarrow e_2^{(n)}(B_n) - e_2^{(n)}(B_{\mathrm{NP}}) \geq T\left(e_1^{(n)}(B_{\mathrm{NP}}) - e_1^{(n)}(B_n)\right) \end{split}$$

**Remark 2.9** Neyman-Pearson says that if any decision region has an error as small as that of  $B_{NP}$ , then its other error must be larger than that of  $B_{NP}$ .

**Notation 2.10** Let  $\hat{P}_n$  denote the empirical distribution (or **type**) induced by  $x_1^n$  on  $A^n$  (the frequency with which  $a \in A$  occurs in  $x_1^n$ ):

$$\forall a \in A, \quad \hat{P}_n(a) \coloneqq \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i = a\}}$$

**Proposition 2.11** The Neyman-Pearson decision region  $B_{\rm NP}$  can be expressed in information-theoretic form as

$$B_{\mathrm{NP}} = \left\{ x_1^n \in A^n : D \Big( \hat{P}_n \parallel Q \Big) \geq D \Big( \hat{P}_n \parallel P \Big) + T' \right\}$$

where  $T' = \frac{1}{n} \log T$ .

*Proof (Hints)*. Rewrite the expression  $\frac{1}{n} \log \frac{P^n(x_1^n)}{Q^n(x_1^n)}$ .

*Proof.* We have

$$\begin{split} \frac{1}{n}\log\frac{P^n(x_1^n)}{Q^n(x_1^n)} &= \frac{1}{n}\log\left(\prod_{i=1}^n\frac{P(x_i)}{Q(x_i)}\right) \\ &= \frac{1}{n}\sum_{i=1}^n\log\frac{P(x_i)}{Q(x_i)} \\ &= \frac{1}{n}\sum_{i=1}^n\sum_{a\in A}\mathbb{1}_{\{x_i=a\}}\log\frac{P(a)}{Q(a)} \\ &= \sum_{a\in A}\left(\frac{1}{n}\sum_{i=1}^n\mathbb{1}_{\{x_i=a\}}\right)\log\frac{P(a)}{Q(a)} \\ &= \sum_{a\in A}\hat{P}_n(a)\log\left(\frac{P(a)}{Q(a)}\cdot\frac{\hat{P}_n(a)}{\hat{P}_n(a)}\right) \\ &= D\left(\hat{P}_n\parallel Q\right) - D\left(\hat{P}_n\parallel P\right). \end{split}$$

**Theorem 2.12** (Jensen's Inequality) Let I be an interval,  $f: I \to \mathbb{R}$  be convex and X be an RV with values in I. Then

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X]).$$

Moreover, if f is strictly convex, then equality holds iff X is almost surely constant.

**Theorem 2.13** (Log-sum Inequality) Let  $a_1,...,a_n,b_1,...,b_n$  be non-negative constants. Then

$$\sum_{i=1}^n a_i \log \frac{a_i}{b_i} \geq \left(\sum_{i=1}^n a_i\right) \log \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}$$

with equality iff  $\frac{a_i}{b_i} = c$  for all i, for some constant c. We use the convention that  $0 \log 0 = 0 \log \frac{0}{0} = 0.$ 

**Remark 2.14** This also holds for countably many  $a_i$  and  $b_i$ .

*Proof (Hints)*. Use Jensen's inequality with X the RV such that  $\Pr\left(X = \frac{a_i}{b_i}\right) =$  $\frac{b_i}{\sum_{j=1}^n b_j}$  for all  $i \in [n]$ , and a suitable f. 

Proof.

Define

$$f(x) = \begin{cases} x \log x & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

f is strictly convex.

- Let  $A = \sum_i a_i$ ,  $B = \sum_i b_i$ . Let X be the RV with  $\Pr\left(X = \frac{a_i}{b_i}\right) = \frac{b_i}{B}$  for all  $i \in [n]$ . Then  $\mathbb{E}[f(X)] = \sum_i \frac{b_i}{B} \frac{a_i}{b_i} \log \frac{a_i}{b_i} = \frac{1}{B} \sum_i a_i \log \frac{a_i}{b_i}$ .  $f(\mathbb{E}[X]) = \mathbb{E}[X] \log \mathbb{E}[X] = \sum_i \frac{a_i}{b_i} \frac{b_i}{B} \log \sum_i \frac{a_i}{b_i} \frac{b_i}{B} = \frac{A}{B} \log \frac{A}{B}$ .

• So by Jensen's inequality,  $\frac{A}{B} \log \frac{A}{B} \leq \frac{1}{B} \sum_{i} a_{i} \log \frac{a_{i}}{b_{i}}$ .

#### Proposition 2.15

1. If P and Q are PMFs on the same finite alphabet A, then

$$D(P \parallel Q) > 0$$

with equality iff P = Q.

2. If  $X \sim P$  on a finite alphabet A, then

$$0 \le H(X) \le \log|A|$$

with equality to 0 iff X is a constant, and equality to  $\log |A|$  iff X is uniformly distributed on A.

**Remark 2.16** This also holds for countably infinite A.

Proof (Hints).

- 1. Straightforward.
- 2. For  $\leq \log |A|$ , consider  $D(P \parallel Q)$  where Q is the uniform distribution on  $A \geq 0$  is straightforward.

Proof.

• By the log-sum inequality,

$$D(P \parallel Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)} \geq \left(\sum_{x \in A} P(x)\right) \log \frac{\sum_{x \in A} P(x)}{\sum_{x \in A} Q(x)} = 0$$

with equality if  $\frac{P(x)}{Q(x)}$  is the same constant for all  $x \in A$ , i.e. P = Q.

- Let Q be the uniform distribution on A, so  $H(Q) = \sum_{x \in A} \frac{1}{|A|} \log \frac{1}{1/|A|} = \log |A|$ . Now  $0 \le D(P \parallel Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{1/|A|} = \log |A| H(X)$  with equality iff P = 1Q, i.e. P is uniform.
  - Each term in -H(X) is  $\leq 0$ , with equality iff each  $P(x) \log P(x)$  is 0, i.e. P(x) =0 or 1.

**Remark 2.17** If  $X = \{X_n : n \in \mathbb{N}\}$  is a memoryless source with PMF P on A, then we have shown that it can be at best compressed to  $\approx H(P)$  bits/symbol. This means that we can always achieve non-trivial compression, i.e. a description using  $\approx H(P)$  $\log |A|$  bits/symbol, unless the source X is completely random (i.e. IID and uniformly distribute), in which case we cannot do better than simply describing each  $x_1^n$ uncompressed using  $\frac{\lceil \log |A^n| \rceil}{n} \approx \log |A|$  bits/symbol.

# 3. Properties of entropy and relative entropy

#### 3.1. Joint entropy and conditional entropy

**Definition 3.1** Let  $X_1^n$  be an arbitrary finite collection of discrete RVs on corresponding alphabets  $A_1, ..., A_n$ . Note we can think of  $X_1^n$  itself a discrete RV on alphabet  $A_1 \times \cdots \times A_n$ . Let  $X_1^n$  have PMF  $P_n$ , then the **joint entropy** of  $X_1^n$  is

$$H(X_1^n) = H(P_n) = H(X_1,...,X_n) \coloneqq \mathbb{E}[-\log P_n(X_1^n)] = -\sum_{x_1^n \in A^n} P_n(x_1^n) \log P_n(x_1^n).$$

**Example 3.2** Note that if X and Y are independent, then  $P_{X,Y}(x,y) = P_X(x)P_Y(y)$ , so

$$H(X,Y) = \mathbb{E} \big[ -\log P_{X,Y}(X,Y) \big] = \mathbb{E} [ -\log P_X(X) - \log P_Y(Y) ] = H(X) + H(Y).$$

**Example 3.3** Let X and Y have joint PMF given by

| X $Y$ | 1    | 2    | 3    |       |
|-------|------|------|------|-------|
| 0     | 1/10 | 1/5  | 1/4  | 11/20 |
| 1     | 1/5  | 1/20 | 1/5  | 9/20  |
|       | 3/10 | 1/4  | 9/20 |       |

Note that X and Y are not independent. We have

$$\begin{split} H(X) &= -\frac{3}{10}\log\frac{3}{10} - \frac{1}{4}\log\frac{1}{4} - \frac{9}{20}\log\frac{9}{20} \approx 1.539, \\ H(Y) &= -\frac{11}{20}\log\frac{11}{20} - \frac{9}{20}\log\frac{9}{20} \approx 0.993, \\ H(X,Y) &= -\frac{1}{10}\log\frac{1}{10} - \dots - \frac{1}{5}\log\frac{1}{5} \approx 2.441 < H(X) + H(Y). \end{split}$$

In general, if X and Y are not independent, then  $P_{XY}(x,y) = P_X(x)P_{Y\mid X}(y\mid x)$ , so

$$H(X,Y) = \mathbb{E}[-\log P_{XY}(x,y)] = \mathbb{E}[-\log P_X(x)] + \mathbb{E}\left[-\log P_{Y\mid X}(y\mid x)\right].$$

**Definition 3.4** Let X and Y be discrete random variables with joint PMF  $P_{X,Y}$ , then the **conditional entropy** of Y given X is

$$H(Y\mid X) = \mathbb{E} \big[ -\log P_{Y\mid X}(Y\mid X) \big] = -\sum_{x,y} P_{X,Y}(x,y) \log P_{Y\mid X}(y\mid x)$$

**Note 3.5**  $P_{Y|X}$  is a function of  $(x,y) \in X$ , and so for the expected value we multiply the log by the probability that X = x and Y = y.

**Proposition 3.6** For discrete RVs X and Y, we have

$$H(Y \mid X) = H(X, Y) - H(X).$$

*Proof (Hints)*. Straightforward.

*Proof.* Note that  $P_{Y\mid X}(y\mid x)=\Pr(Y=y\mid X=x)=\frac{\mathbb{P}(Y=y,X=x)}{\mathbb{P}(X=x)}=P_{X,Y}(x,y)P_X(x)$ . Hence

$$\begin{split} H(X,Y) &= \mathbb{E} \big[ -\log P_{X,Y}(X,Y) \big] \\ &= \mathbb{E} \big[ -\log P_X(X) - \log P_{Y\mid X}(Y\mid X) \big] \\ &= \mathbb{E} [ -\log P_X(X) ] + \mathbb{E} \big[ -\log P_{Y\mid X}(Y\mid X) \big]. \end{split}$$

# 3.2. Properties of entropy, joint entropy and conditional entropy

**Proposition 3.7** (Chain Rule for Entropy) Let  $X_1^n$  be a collection of discrete RVs. Then

$$H(X_1^n) = \sum_{i=1}^n H(X_i \mid X_1^{i-1}).$$

In particular, if the  $X_1^n$  are independent, then

$$H(X_1^n) = \sum_{i=1}^n H(X_i).$$

*Proof (Hints)*. By induction.

*Proof.* We can write

$$\begin{split} P_{X_1^n}(x_1^n) &= P_{X_1}(x_1) P_{X_2 \mid X_1}(x_2 \mid x_1) \cdots P_{X_n \mid X_1, \dots, x_{n-1}}(x_n \mid x_1, \dots, x_{n-1}) \\ &= \prod_{i=1}^n P_{X_i \mid X_1^{i-1}}\big(x_i \mid x_1^{i-1}\big). \end{split}$$

Then the result follows by inductively using the above proposition.

**Proposition 3.8** (Conditioning Reduces Entropy) For discrete RVs X and Y,

$$H(Y \mid X) \le H(Y)$$

with equality iff X and Y are independent.

*Proof (Hints)*. Express  $H(Y) - H(Y \mid X)$  as a relative entropy.

*Proof.* We have

$$\begin{split} H(Y) - H(Y \mid X) &= \mathbb{E}[-\log P_Y(Y)] - \mathbb{E}\left[-\log P_{Y \mid X}(Y \mid X)\right] \\ &= \mathbb{E}\left[\log \frac{P_{Y \mid X}(Y \mid X)}{P_Y(Y)}\right] \\ &= \mathbb{E}\left[\log \frac{P_{Y \mid X}(Y \mid X)P_X(X)}{P_Y(Y)P_X(X)}\right] \\ &= \mathbb{E}\left[\log \frac{P_{X,Y}(X,Y)}{P_X(X)P_Y(Y)}\right] \\ &= D\big(P_{X,Y} \parallel P_X P_Y\big). \end{split}$$

This is non-negative iff  $P_{X,Y} = P_X P_Y$ , i.e. X and Y are independent.

**Definition 3.9** Discrete RVs X and Z are conditionally independent given Y if:

- $P_{X,Z \mid Y}(x,z \mid y) = P_{X \mid Y}(x \mid y)P_{Z \mid Y}(z \mid y),$
- or equivalently,  $P_{X \mid Z,Y}(x \mid z, y) = P_{X \mid Y}(x \mid y)$ ,
- or equivalently,  $P_{Z \mid X,Y}(z \mid x, y) = P_{Z \mid Y}(z \mid y)$ .

We denote this by writing X - Y - Z and we say that X, Y, Z form a Markov chain. Note that X - Y - Z is equivalent to Z - Y - X, but not to X - Z - Y.

**Example 3.10** For any function g on Y, we have X - Y - g(Y).

Corollary 3.11  $H(X_1^n) \leq \sum_{i=1}^n H(X_i)$  with equality iff all  $X_1^n$  are independent.

*Proof.*  $H(X_1^n) = \sum_{i=1}^n H(X_i \mid X_1^{i-1}) \le \sum_{i=1}^n H(X_i)$  by the chain rule and conditioning reducing entropy.

Remark 3.12 We can write

$$\begin{split} H(Y\mid X) &= -\sum_{x,y} \left(P_{X,Y}(x,y)\right) \log P_{Y\mid X}(y\mid x) \\ &= \sum_{x} P_{X}(x) \left(-\sum_{y} P_{Y\mid X}(y\mid x) \log P_{Y\mid X}(y\mid x)\right) \\ &=: \sum_{x} P_{X}(x) H(Y\mid X=x) \end{split}$$

Note  $H(Y \mid X = x)$  is **not** a conditional entropy, and in particular, we do not always have  $H(Y \mid X = x) \leq H(Y)$ . Since  $0 \leq H(Y \mid X = x) \leq \log |A_Y|$ , we have  $0 \leq H(Y \mid X) \leq \log |A_Y|$  with equality to 0 iff Y is a function of X (i.e.  $H(Y \mid X = x) = 0$  for all x).

**Proposition 3.13** (Data Processing Inequality for Entropy) Let X be discrete RV on alphabet A and f be function on A. Then

- 1. H(f(X)|X) = 0.
- 2.  $H(f(X)) \leq H(X)$  with equality iff f is injective.

*Proof (Hints)*. Use that  $x \mapsto (x, f(x))$  is injective and the chain rule.

Proof. We have already shown the "if" direction of 2. We have H(X) = H(X, f(X)) = H(f(X)|X) + H(X), since  $x \mapsto (x, f(x))$  is injective. Also,  $H(X) = H(X, f(X)) = H(X \mid f(X)) + H(f(X)) \geq H(f(X))$ . So  $H(X) \geq H(f(X))$  with equality iff  $H(X \mid f(X)) = 0$ , i.e. X is a deterministic function of f(X), i.e. f is invertible.

**Proposition 3.14** (Properties of Conditional Entropy) For discrete RVs X, Y, Z:

- Chain rule:  $H(X, Z \mid Y) = H(X \mid Y) + H(Z \mid X, Y)$ .
- Subadditivity:  $H(X, Z \mid Y) \leq H(X \mid Y) + H(Z \mid Y)$  with equality iff X and Z are conditionally independent given Y.
- Conditioning reduces entropy:  $H(X \mid Y, Z) \leq H(X \mid Y)$  with equality iff X and Z are conditionally independent given Y.

**Theorem 3.15** (Fano's Inequality) Let X and Y be RVs on respective alphabets A and B. Suppose we are interested in the RV X but only are allowed to observe the possibly correlated RV Y. Consider the estimate  $\widehat{X} = f(Y)$ , with probability of error  $P_e := \Pr(\widehat{X} \neq X)$ . Then

$$H(X\mid Y) \leq h(P_e) + P_e \log(|A|-1),$$

where h is the binary entropy function.

*Proof (Hints)*. Consider an "error" Bernoulli RV E which depends on X and Y. Use the chain rule in two directions on  $H(X, E \mid Y)$ . Merge these and split up into the cases when E = 0 and E = 1 (using)

*Proof.* Let E be the binary RV taking value 1 when there is an error (i.e.  $\widehat{X} \neq X$ ), and taking value 0 otherwise. So  $E \sim \text{Bern}(P_e)$  and  $H(E) = h(P_e)$ . Then

$$H(X, E \mid Y) = H(X \mid Y) + H(E \mid X, Y) = H(X \mid Y)$$

since E is function of (X,Y). Using the chain rule in the other direction,

$$H(X,E\mid Y) = H(E\mid Y) + H(X\mid E,Y) \leq H(E) + E(X\mid E,Y).$$

Now

$$\begin{split} H(X\mid Y) - h(P_e) & \leq H(X\mid E, Y) \\ & = P_e H(X\mid E=1, Y) + (1-P_e) H(X\mid E=0, Y) \end{split}$$

When E=0, given Y, we can determine X=f(Y) as a function of Y, so  $H(X \mid E=0,Y)=0$ . When E=1, given Y, we know X doesn't take value f(Y), so there are |A|-1 possible values that it takes, so  $H(X \mid E=1,Y) \leq \log(|A|-1)$ .

## 3.3. Properties of relative entropy

**Theorem 3.16** (Data Processing Inequality for Relative Entropy) Let  $X \sim P_X$  and  $X' \sim Q_X$  be RVs on the same alphabet A, and  $f: A \to B$  be an arbitrary function. Let  $P_{f(X)}$  and  $Q_{f(X)}$  be the PMFs of f(X) and f(X') respectively. Then

$$D(P_{f(X)} \parallel Q_{f(X)}) \le D(P_X \parallel Q_X).$$

Proof (Hints). Use that  $P_{f(X)}(y) = \sum_{x \in f^{-1}(\{y\})} P_X(x)$ .

*Proof.* For each  $y \in B$ , let  $A_y = \{x \in A : f(x) = y\} = f^{-1}(\{y\})$ . Then

$$\begin{split} D\Big(P_{f(X)} \parallel Q_{f(X)}\Big) &= \sum_{y \in B} P_{f(X)}(y) \log \frac{P_{f(X)}(y)}{Q_{f(X)}(y)} \\ &= \sum_{y \in B} \left(\sum_{x \in A_y} P_X(x)\right) \log \frac{\sum_{x \in A_y} P_X(x)}{\sum_{x \in A_y} Q_X(x)} \\ &\leq \sum_{y \in B} \sum_{x \in A_y} P_X(x) \log \frac{P_X(x)}{Q_X(x)} \quad \text{by log-sum inequality} \\ &= \sum_{x \in A} P_X(x) \log \frac{P_X(x)}{Q_X(x)} = D(P_X \parallel Q_X). \end{split}$$

**Remark 3.17** The data processing inequality for relative entropy shows that we cannot make two distributions more "distinguishable" by first "processing" the data (by applying f).

**Definition 3.18** The total variation distance between PMFs P and Q on the same alphabet A is

$$||P - Q||_{\text{TV}} = \sum_{x \in A} |P(x) - Q(x)|.$$

**Remark 3.19** Let  $B = \{x \in A : P(x) > Q(x)\}$ , then

$$\begin{split} \|P - Q\|_{\text{TV}} &= \sum_{x \in A} |P(x) - Q(x)| \\ &= \sum_{x \in B} (P(x) - Q(x)) + \sum_{x \in B^c} (Q(x) - P(x)) \\ &= P(B) - Q(B) + Q(B^c) - P(B^c) \\ &= P(B) - Q(B) + (1 - Q(B)) + (1 - P(B)) \\ &= 2(P(B) - Q(B)). \end{split}$$

Notation 3.20 Write

$$D_e(P \parallel Q) = (\ln 2) P(D \parallel Q) = \sum_{x \in A} P(x) \log_e \frac{P(x)}{Q(x)}$$

and more generally, write

$$D_c(P \parallel Q) = (\log_c 2) P(D \parallel Q) = \sum_{x \in A} P(x) \log_c \frac{P(x)}{Q(x)}.$$

**Theorem 3.21** (Pinsker's Inequality) Let P and Q be PMFs on the same alphabet A. Then

$$\|P-Q\|_{\mathrm{TV}}^2 \leq (2\ln 2)D(P \parallel Q) = 2D_e(P \parallel Q).$$

Proof (Hints).

- First prove for case that P and Q are PMFs of  $\operatorname{Bern}(p)$  and  $\operatorname{Bern}(q)$  (explain why we can assume  $q \leq p$  WLOG), by definining  $\Delta(p,q) = 2D_e(P \parallel Q) \|P Q\|_{\operatorname{TV}}^2$ , and showing that  $\frac{\partial \Delta(p,q)}{\partial q} \leq 0$ .
- Then show for general PMFs by using data processing, where  $f = \mathbb{1}_B$  for  $B = \{x \in A : P(x) > Q(x)\}.$

П

*Proof.* First, assume that P and Q are the PMFs of the distributions Bern(p) and Bern(q) for some  $0 \le q \le p \le 1$  ( $q \le p$  WLOG since we can simultaneously interchange both P with 1 - P and Q with 1 - Q if necessary). Let

$$\Delta(p,q) = (2\ln 2)D(P \parallel Q) - \|P - Q\|_{\mathrm{TV}}^2 = 2p\ln\frac{p}{q} + 2(1-p)\ln\frac{1-p}{1-q} - (2(p-q))^2.$$

Since  $\Delta(p,p) = 0$  for all p, it suffices to show that  $\frac{\partial \Delta(p,q)}{\partial q} \leq 0$ . Indeed,

$$\frac{\partial \Delta(p,q)}{\partial q} = -2\frac{p}{q} + 2\frac{1-p}{1-q} + 8(p-q) = 2(q-p) \left(\frac{1}{q(1-q)} - 4\right) \leq 0$$

since  $q(1-q) \leq \frac{1}{4}$  for all  $q \in [0, 1]$ .

Now, assume P and Q are general PMFs and let  $B = \{x \in A : P(x) > Q(x)\}$  and  $f = \mathbb{1}_B$ . Define the RVs  $X \sim P$  and  $X' \sim Q$ , and let  $P_f$  and  $Q_f$  be the respective PMFs of the RVs f(X) and f(X'). Note that  $f(X) \sim \text{Bern}(p)$ ,  $f(X') \sim \text{Bern}(q)$  where p = P(B) and q = Q(B). Then

$$\begin{split} 2D_e(P \parallel Q) &\geq 2D_e \big(P_f \parallel Q_f\big) & \text{by data-processing} \\ &\geq \big\|P_f - Q_f\big\|_{\text{TV}}^2 & \text{by above} \\ &= (2(p-q))^2 \\ &= (2(P(B) - Q(B)))^2 \\ &= \|P - Q\|_{\text{TV}}^2. \end{split}$$

**Theorem 3.22** (Convexity of Relative Entropy) The relative entropy  $D(P \parallel Q)$  is jointly convex in P, Q: for all PMFs P, P', Q, Q' on the same alphabet and for all  $0 < \lambda < 1$ ,

$$D(\lambda P + (1-\lambda)P' \parallel \lambda Q + (1-\lambda)Q') \leq \lambda D(P \parallel Q) + (1-\lambda)D(P' \parallel Q').$$

Proof. Exercise.  $\Box$ 

**Corollary 3.23** (Concavity of Entropy) The entropy of H(P) is a concave function on all PMFs P on a finite alphabet.

*Proof (Hints)*. Use convexity of relative entropy of P and a suitable distribution.  $\square$ 

*Proof.* Let P be a PMF on finite alphabet A and U be the uniform PMF on A. Then by convexity of relative entropy,  $D(P \parallel U) = \sum_{x \in A} p(x) \log \frac{P(x)}{1/|A|} = \log m - H(P)$  is convex in P, so H(P) is concave in P.

# 4. Poisson approximation

## 4.1. Poisson approximation via entropy

**Theorem 4.1** Let  $X_1,...,X_n$  be IID RVs with each  $X_i \sim \operatorname{Bern}(\lambda/n)$ , let  $S_n = X_1 + \cdots + X_n$ . Then  $P_{S_n} \to \operatorname{Pois}(\lambda)$  in distribution as  $n \to \infty$ , i.e.  $\forall k \in \mathbb{N}$ ,

$$\Pr(S_n = k) \to e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{as } n \to \infty$$

**Remark 4.2** Using information theory, we can derive stronger and more general statements than the one above.

**Theorem 4.3** Let  $X_1,...,X_n$  be (not necessarily independent) RVs with each  $X_i \sim \text{Bern}(p_i)$ . Let  $S_n = \sum_{i=1}^n X_i$  and  $\lambda = \sum_{i=1}^n p_i = \mathbb{E}[S_n]$ . Then

$$D_e\Big(P_{S_n} \parallel \operatorname{Pois}(\lambda)\Big) \leq \sum_{i=1}^n p_i^2 + \Bigg(\sum_{i=1}^n H_e(X_i) - H_e(X_1^n)\Bigg).$$

Proof (Hints).

- Let  $Z_i = \operatorname{Pois}(p_i)$  for each  $i \in [n]$  be independent Poisson RVs so that  $T_n = \sum_{i=1}^n Z_i \sim \operatorname{Pois}(\lambda)$ .
- Use data processing inequality for relative entropy, and prove the fact that  $D_e(\operatorname{Bern}(p) \| \operatorname{Pois}(p)) \le p^2$  for all  $p \in [0,1]$  (use that  $1-p \le e^{-p}$ ).

*Proof.* Let  $Z_i = \operatorname{Pois}(p_i)$  for each  $i \in [n]$  be independent Poisson RVs so that  $T_n = \sum_{i=1}^n Z_i \sim \operatorname{Pois}(\lambda)$ . Then

$$\begin{split} D_e\Big(P_{S_n} \parallel \operatorname{Pois}(\lambda)\Big) &= D_e\Big(P_{S_n} \parallel P_{T_n}\Big) \\ &\leq D_e\Big(P_{X_1^n} \parallel P_{Z_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \\ &= \mathbb{E}\left[\ln\frac{P_{X_1^n}(X_1^n)}{P_{Z_1^n}(X_1^n)}\right] \\ &= \mathbb{E}\left[\ln\left(\frac{P_{X_1^n}(x_1^n)}{\prod_{i=1}^n P_{Z_1^n}(X_i)} \cdot \frac{\prod_{i=1}^n P_{X_i}(X_i)}{\prod_{i=1}^n P_{X_i}(X_i)}\right)\right] \\ &= \mathbb{E}\left[\ln\left(\prod_{i=1}^n \frac{P_{X_i}(x_i)}{P_{Z_i}(x_i)}\right)\right] + \sum_{x_1^n \in A^n} P_{X_1^n}(x_1^n) \ln\frac{1}{\prod_{i=1}^n P_{X_i}(x_i)} - H_e(X_1^n) \\ &= \sum_{i=1}^n D_e\Big(P_{X_i} \parallel P_{Z_i}\Big) + \sum_{i=1}^n H_e(X_i) - H_e(X_1^n) \end{split}$$

since for given  $x_1 \in A$ ,  $\sum_{x_2^n \in A^n} P_{X_1^n}(x_1^n) = P_{X_1}(x_1)$  (and similarly for each  $x_j$ , j=2,...,n). Now note that  $D_e\Big(P_{X_i} \parallel P_{Z_i}\Big) = D_e(\mathrm{Bern}(p_i) \parallel \mathrm{Pois}(p_i))$ , and for all  $p \in [0,1]$ ,

$$\begin{split} D_e(\mathrm{Bern}(p_i) \parallel \mathrm{Pois}(p_i)) &= p \ln \frac{p}{e^{-p}} + (1-p) \ln \frac{1-p}{pe^{-p}} \\ &= p \ln p + p^2 + (1-p) \ln (1-p) + (1-p) \ln p + (1-p) p \\ &= \ln (1-p) + \ln p + p - p \ln (1-p) \\ &= (1-p) \ln (1-p) + p + \ln p \\ &\leq -(1-p) p + p + \ln p \leq p^2 \end{split}$$

since  $1 - p \le e^{-p}$  for all  $p \in [0, 1]$ .

Corollary 4.4 Let  $X_1,...,X_n$  be independent, with each  $X_i \sim \text{Bern}(p_i)$ . Then

$$D_e \Big( P_{S_n} \parallel \operatorname{Pois}(\lambda) \Big) \leq \sum_{i=1}^n p_i^2$$

Corollary 4.5 Theorem 4.1 follows directly from Theorem 4.3.

*Proof.* Let  $P_{\lambda}$  be the PMF of the Pois( $\lambda$ ) distribution. Then by Pinsker's inequality,

$$\left\|P_{S_n}-P_{\lambda}\right\|_{\mathrm{TV}}^2 \leq 2D_e\Big(P_{S_n} \ \|\operatorname{Pois}(\lambda)\Big) \leq 2\sum_{i=1}^n \frac{\lambda^2}{n^2} = 2\frac{\lambda^2}{n}.$$

So for each 
$$k \in \mathbb{N}$$
,  $\left| P_{S_n}(k) - P_{\lambda}(k) \right| \leq \left\| P_{S_n} - P_{\lambda} \right\|_{TV} \leq \sqrt{\frac{2}{n}} \lambda \to 0 \text{ as } n \to \infty.$ 

Remark 4.6 Theorem 4.3 is stronger than Theorem 4.1 in that it holds for all n rather than being asymptotic. It also provides an easily computable bound on the difference between  $P_{S_n}$  and  $Pois(\lambda)$ , and does not assume the  $p_i$  are equal, or that the RVs  $X_1, ..., X_n$  are independent.

**Remark 4.7** It is known that for independent  $X_1, ..., X_n, P_{S_n} \to \operatorname{Pois}(\lambda)$  iff  $\sum_{i=1}^n p_i^2 \to 0$ . So the bound in <u>Theorem 4.3</u> is the best possible.

#### 4.2. What is the Poisson distribution?

**Lemma 4.8** (Binomial Maximum Entropy) Let  $B_n(\lambda)$  be set of distributions on  $\mathbb{N}_0$  that arise from sums  $\sum_{i=1}^n X_i$  where  $X_i \sim \text{Bern}(p_i)$  are independent and  $\sum_{i=1}^n p_i = \lambda$ . For all  $n \geq \lambda$ ,

$$H_e(\mathrm{Bin}(n,\lambda/n)) = \sup\{H_e(P) : P \in B_n(\lambda)\}$$

Proof. Exercise.  $\Box$ 

**Theorem 4.9** (Poisson Maximum Entropy) We have

$$\begin{split} &H_e(\operatorname{Pois}(\lambda)) \\ &= \sup \left\{ H_e(S_n) : S_n = \sum_{i=1}^n X_i, X_i \sim \operatorname{Bern}(p_i) \text{ independent } \wedge \sum_{i=1}^n p_i = \lambda, n \geq 1 \right\} \\ &= \sup_{n \in \mathbb{N}} \sup \left\{ H_{e(P)} : P \in B_n(\lambda) \right\}. \end{split}$$

 $\begin{array}{l} \textit{Proof.} \ \ \mathrm{Let} \ H^* = \sup_{n \in \mathbb{N}} \sup \{ H_e(P) : P \in B_n(\lambda) \}. \ \ \mathrm{Note \ that} \ B_n(\lambda) \subseteq B_{n+1}(\lambda), \ \mathrm{hence} \ H^* = \lim_{n \to \infty} \sup \left\{ H_{e(P)} : P \in B_n(\lambda) \right\} = \lim_{n \to \infty} H_e(\mathrm{Bin}(n, \lambda/n)). \end{array}$ 

Let  $P_n$  and Q be respective PMFs of  $Bin(n, \lambda/n)$  and  $Pois(\lambda)$ . Using that  $k! \leq k^k \leq e^{k^2}$ , we have

$$\begin{split} H_e(Q) &= \sum_{k=0}^{\infty} Q(k) \ln \frac{k!}{e^{-\lambda} \lambda^k} \\ &\leq \sum_{k=0}^{\infty} Q(k) \big(\lambda - k \ln \lambda + k^2\big) \\ &= \lambda^2 + 2\lambda - \lambda \ln \lambda < \infty \end{split}$$

since  $\mathbb{E}[X]=\lambda$  and  $\mathbb{E}[X^2]=\lambda+\lambda^2$  for  $X\sim \mathrm{Pois}(\lambda).$  So  $H_e(Q)$  is finite. The convergence is left as an exercise.

#### 5. Mutual information

**Definition 5.1** The mutual information between discrete RVs X and Y is

$$I(X;Y) = H(X) - H(X|Y).$$

The conditional mutual information between X and Y given a discrete RV Z is

$$\begin{split} I(X;Y \mid Z) &= H(X \mid Z) - H(X \mid Y,Z) \\ &= H(X \mid Z) + H(Y \mid Z) - H(X,Y \mid Z) \\ &= H(Y \mid Z) - H(Y \mid X,Z). \end{split}$$

**Proposition 5.2** Let X and Y be discrete RVs with marginal PMFs  $P_X$  and  $P_Y$  respectively, and joint PMF  $P_{X,Y}$ , then the mutual information can be expressed as:

$$\begin{split} I(X;Y) &= H(X) + H(Y) - H(X,Y) \\ &= H(Y) - H(Y \mid X) \\ &= D\big(P_{X,Y} \parallel P_X P_Y\big). \end{split}$$

Proof (Hints). Straightforward.

*Proof.* The first two lines are by the chain rule. For the third, we have

$$\begin{split} H(X) + H(Y) - H(X,Y) &= \mathbb{E}[-\log P_X(X)] + \mathbb{E}[-\log P_Y(Y)] - \mathbb{E}\left[-\log P_{X,Y}(X,Y)\right] \\ &= \mathbb{E}\left[\log\left(\frac{P_{X,Y}(X,Y)}{P_X(X)P_Y(Y)}\right)\right] \\ &= D\big(P_{X,Y} \parallel P_X P_Y\big). \end{split}$$

#### Remark 5.3

- I(X;Y) is symmetric in X and Y.
- The sum of the information contain in X and Y separately minus the information contained in the pair indeed is the amount of mutual information shared by both.
- Considering Theorem 2.6, we can consider I(X;Y) as a measure of how well data generated from  $P_{X,Y}$  can be distinguished from independent pairs (X',Y') generated by the product distribution  $P_X P_Y$ , so is a measure of how far X and Y are from being independent.

#### Proposition 5.4

- $0 \le I(X;Y) \le H(X)$  with equality to 0 iff X and Y are independent.
- Similarly,  $I(X; Z \mid Y) \ge 0$  with equality iff X Y Z, i.e. X and Z are conditionally independent given Y.

*Proof.* First is by <u>Proposition 5.2</u> and non-negativity of conditional entropy, second is an exercise.  $\Box$ 

**Proposition 5.5** (Chain Rule for Mutual Information) For all discrete RVs  $X_1, ..., X_n, Y$ ,

$$I(X_1^n;Y) = \sum_{i=1}^n I(X_i;Y \mid X_1^{i-1}).$$

*Proof (Hints)*. Straighforward.

*Proof.* By the chain rule for entropy,

$$\begin{split} I(X_1^n;Y) &= H(X_1^n) - H(X_1^n \mid Y) \\ &= \sum_{i=1}^n H(X_i \mid X_1^{i-1}) - \sum_{i=1}^n H(X_i \mid X_1^{i-1}, Y) \\ &= \sum_{i=1}^n \big( H(X_i \mid X_1^{i-1}) - H(X_i \mid X_1^{i-1}, Y) \big) \\ &= \sum_{i=1}^n I(X_i; Y \mid X_1^{i-1}). \end{split}$$

**Theorem 5.6** (Data Processing Inequalities for Mutual Information) If X - Y - Z (so X and Z are conditionally independent given Y), then

П

$$I(X; Z), I(X; Y \mid Z) \le I(X; Y).$$

*Proof* (*Hints*). Use chain rule for mutual information twice on the same expression.  $\Box$  *Proof*. By the chain rule, we have

$$I(X;Y,Z) = I(X;Y) + I(X;Z \mid Y)$$
  
=  $I(X;Z) + I(X;Y \mid Z)$ .

Now  $I(X; Z \mid Y) = 0$  by conditional independence, so  $I(X; Y) = I(X; Z) + I(X; Y \mid Z)$ .

**Example 5.7** We always have X - Y - f(Y), hence  $I(X; f(Y)) \leq I(X; Y)$ , so applying a function to Y cannot make X and Y "less independent".

#### 5.1. Synergy and redundancy

Note 5.8  $I(X; Y_1, Y_2)$  can greater than, equal to, or less than  $I(X; Y_1) + (X; Y_2)$ .

**Definition 5.9** The synergy of  $Y_1, Y_2$  about X is

$$\begin{split} S(X;Y_1,Y_2) &= I(X;Y_1,Y_2) - (I(X;Y_1) + I(X;Y_2)) \\ &= I(X;Y_2 \mid Y_1) - I(X,Y_2). \end{split}$$

So the synergy can be < 0, > 0 or = 0.

**Definition 5.10** If  $S(X; Y_1, Y_2)$  is:

- negative, then  $Y_1$  and  $Y_2$  contain **redundant** information about X;
- zero, then  $Y_1$  and  $Y_2$  are **orthogonal**;
- positive, then  $Y_1$  and  $Y_2$  are **synergistic**. Intuitively, knowing  $Y_1$  already makes the information in  $Y_2$  more valuable (in that it gives more information about X).

**Theorem 5.11** Let RVs  $Y_1, Y_2$  be conditionally independent given X, each with distribution  $P_{Y \mid X}$ , and RVs  $Z_1, Z_2$  be distributed according to  $Q_{Z \mid Y}(\cdot \mid Y_1), Q_{Z \mid Y}(\cdot \mid Y_2)$  respectively. Let RV Y have distribution  $P_{Y \mid X}$ , and  $W_1, W_2$  be conditionally independent given Y, distributed according to  $Q_{Z \mid Y}(\cdot \mid Y)$ .

If  $S(X; W_1, W_2) > 0$ , then  $I(X; W_1, W_2) > I(X; Z_1, Z_2)$ , for independent  $Z_1$  and  $Z_2$ , i.e. correlated observations are better than independent ones.

*Proof (Hints)*. Use data processing for mutual information.

Proof. As in Definition 5.9, we have  $I(X; W_2 \mid W_1) > I(X; W_2)$ .  $I(X; W_2) = I(X; Z_2)$  since  $(X, W_2)$  has the same joint distribution as  $(X, Z_2)$ . By the data processing inequality, we have  $I(X; Z_2 \mid Z_1) = I(Z_2; X \mid Z_1) \leq I(Z_2; X) = I(X; Z_2)$ , since  $Z_1$  and  $Z_2$  are conditionally independent given X. Hence  $I(X; W_2 \mid W_1) > I(X; Z_2 \mid Z_1)$ , so  $I(X; W_2 \mid W_1) + I(X; W_1) > I(X; Z_2 \mid Z_1) + I(X; Z_1)$ , and the result follows by the chain rule.

**Example 5.12** Given two equally noisy channels of a signal X, we want to decide whether it is better (gives more information about X) for the channels to be independent (this corresponds with choosing the  $Y_1, Y_2, Z_1, Z_2$ ) or correlated (this corresponds with choosing the  $Y, W_1, W_2$ ).

The natural assumption that the conditionally independent observations  $Z_1, Z_2$  would be "better" than  $W_1, W_2$  (i.e.  $I(X; Z_1, Z_2) \ge I(X; W_1, W_2)$ ) is **false**. We can show diagramatically as



**Example 5.13** For example, let  $P_{Y\mid X}$  be the Z-channel: if X=0, then Y=0 with probability 1, and if X=1, then  $Y\sim \mathrm{Bern}(1-\delta)$  for some  $\delta\in(0,1)$ . Let  $Q_{Z\mid Y}$  be a binary symmetric channel: given Y taking values in 0,1,Z=Y with probability  $1-\varepsilon$ , and Z=1-Y with probability  $\varepsilon$  for some  $\varepsilon\in(0,1)$ . We can represent this as



If  $X \sim \text{Bern}(1/2)$ ,  $\delta = 0.85$  and  $\varepsilon = 0.1$ , then  $I(X; W_1, W_2) \approx 0.047 > I(X; Z_1, Z_2) \approx 0.039$ . So the correlated observations  $W_1, W_2$  are better than the independent observations  $Z_1, Z_2$ .

# 6. Entropy and additive combinatorics

#### 6.1. Simple sumset entropy bounds

**Definition 6.1** For  $A, B \subseteq \mathbb{Z}$  the sumset of A and B is

$$A + B := \{a + b : a \in A, b \in B\}.$$

**Definition 6.2** For  $A, B \subseteq \mathbb{Z}$  the **difference set** of A and B is

$$A - B := \{a - b : a \in A, b \in B\}.$$

**Proposition 6.3** Let  $A, B \subseteq \mathbb{Z}$  be finite. Then

$$\max\{|A|, |B|\} \le |A + B| \le |A||B|.$$

 $Proof\ (Hints)$ . Trivial.

Proof. Trivial.  $\Box$ 

**Proposition 6.4** (Ruzsa Triangle Inequality) Let  $A, B, C \subseteq \mathbb{Z}$  be finite. Then

$$|A-C| \leq \frac{|A-B||B-C|}{|B|}$$

*Proof.* Fix a presentation  $y=a_y-c_y$  (where  $a_y\in A, c_y\in C$ ) for each  $y\in A-C$ . Let

$$\begin{split} f: B \times (A-C) & \to (A-B) \times (B-C) \\ (b,y) & \mapsto \left(a_y - b, b - c_y\right). \end{split}$$

If f(b,y)=f(b',y'), then  $a_{y'}-b'=a_y-b$  and  $b'-c_{y'}=b-c_y$ . So  $a_y-a_{y'}=b-b'=c_y-c_{y'}$ . So  $y=a_y-c_y=a_{y'}-c_{y'}=y'$ . Hence  $a_y=a_{y'}$ , and so b=b'. So f is injective, so  $|B\times (A-C)|\leq |(A-B)\times (B-C)|$ .

**Remark 6.5** If  $X_1^n$  is a large collection of IID RVs with common PMF P on alphabet A, then the AEP tells us that we can concentrate on the  $2^{nH}$  typical strings. Since  $2^{nH} = (2^H)^n$  is typically much smaller than all  $|A|^n = (2^{\log|A|})^n$  strings, we can think of  $2^H$  as the effective support size of the  $X_i$ .

**Proposition 6.6** Let X and Y are independent RVs on alphabet  $\mathbb{Z}$ , then

$$\max\{H(X), H(Y)\} \le H(X+Y) \le H(X) + H(Y).$$

*Proof.* For the lower bound,

$$H(X) + H(Y) = H(X,Y)$$
 by independence 
$$= H(Y,X+Y)$$
 by data processing 
$$= H(X+Y) + H(Y\mid X+Y)$$
 by chain rule 
$$\leq H(X+Y) + H(Y)$$
 by conditioning reduces entropy

Hence  $H(X+Y) \geq H(X)$ , and the same argument shows that  $H(X+Y) \geq H(Y)$ .

For the upper bound, we have 
$$H(X) + H(Y) = H(X + Y) + H(X \mid X + Y) \ge H(X + Y)$$
 by non-negativity of conditional entropy.

**Theorem 6.7** (Ruzsa Triangle Inequality for Entropy) Let X, Y, Z be independent RVs on alphabet  $\mathbb{Z}$ . Then

$$H(X-Z) + H(Y) \le H(X-Y) + H(Y-Z).$$

*Proof.* By the data processing inequality for mutual information, we have  $I(X; (X - Y, Y - Z)) \ge I(X; X - Z)$ . So  $H(X) + H(X - Y, Y - Z) - H(X, X - Y, Y - Z) \ge H(X) + H(X - Z)$ . So  $H(X - Y, Y - Z) - H(X, Y, Z) \ge H(X - Z) - H(X, Z)$ . Hence  $H(X - Y, Y - Z) - H(Y) \ge H(X - Z)$ , and  $H(X - Y, Y - Z) \ge H(X - Y) + H(Y - Z)$ . □

#### **6.2.** The doubling-difference inequality for entropy

**Definition 6.8** For IID RVs  $X_1, X_2$  on alphabet  $\mathbb{Z}$ , the **entropy-increase** due to addition  $(\Delta^+)$  or subtraction  $(\Delta^-)$  is

$$\begin{split} \Delta^+ &\coloneqq H(X_1 + X_2) - H(X_1), \\ \Delta^- &\coloneqq H(X_1 - X_2) - H(X_1). \end{split}$$

**Lemma 6.9** Let X, Y, Z be independent RVs on alphabet  $\mathbb{Z}$ . Then

$$H(X + Y + Z) + H(Y) \le H(X + Y) + H(Y + Z).$$

In particular,  $H(X+Z) + H(Y) \le H(X+Y) + H(Y+Z)$ .

*Proof.* By the data processing inequality for mutual information, since X-(X+Y)-(X+Y+Z), we have  $I(X;X+Y)\geq I(X;X+Y+Z)$ , i.e.  $H(X)+H(X+Y)-H(X,X+Y)\geq H(X)+H(X+Y+Z)-H(X,X+Y+Z)$ . H(X,X+Y)=H(X,Y)=H(X)+H(Y) by independence. So we have  $H(X+Y)-H(Y)\geq H(X+Y+Z)-H(Y+Z)$ .

**Theorem 6.10** (Doubling-difference Inequality) Let  $X_1$  and  $X_2$  be IID RVs on  $\mathbb{Z}$ . Then

$$\frac{1}{2} \le \frac{\Delta^+}{\Lambda^-} \le 2.$$

Equivalently,

$$\frac{1}{2} \leq \frac{I(X_1 + X_2; X_2)}{I(X_1 - X_2; X_2)} \leq 2.$$

$$\begin{split} &Proof. \text{ For the lower bound, let } X, -Y, Z \text{ be IID with the same distribution as } X_1. \\ &\text{Then by the Ruzsa triangle inequality, } &H(X_1-X_2) + H(X_1) \leq H(X_1+X_2) + H(X_1+X_2). \\ &So \ 2(H(X_1+X_2) - H(X_1)) \geq H(X_1-X_2) - H(X_1). \end{split}$$

For the upper bound, let X, -Y, Z be IID with the same distribution as  $X_1$ . Then by the above lemma,  $H(X_1+X_2)+H(X_1)\leq H(X_1-X_2)+H(X_1-X_2)$  so  $H(X_1+X_2)-H(X_1)\leq 2(H(X_1-X_2)-H(X_1))$ .