Chapter 7

Homework 21935004 谭焱

Exercise 7.1. 9. Consider the problem of minimizing the action $\int_0^t L(\dot{\mathbf{w}}(s), \mathbf{w}(s)) ds$ over the new admissible class

$$\mathcal{A} := \{ \mathbf{w}(\cdot) \in C^2([0,t]; \mathbb{R}^n) | \mathbf{w}(t) = x \},$$

where we do not require that $\mathbf{w}(0) = y$.

(a) Show that a minimizer $\mathbf{x}(\cdot) \in \mathcal{A}$ solves the Euler Lagrange equations

$$-\frac{d}{ds}(D_v L(\dot{\mathbf{x}}(s), \mathbf{x}(s))) + D_x L(\dot{\mathbf{x}}(s), \mathbf{x}(s)) = 0 \qquad (0 \le s \le t).$$

(b) Prove that

$$D_v L(\dot{\mathbf{x}}(0), \mathbf{x}(0)) = 0.$$

(c) Suppose now that $\mathbf{x}(\cdot) \in \mathcal{A}$ minimizes the modified action

$$\int_0^t L(\dot{\mathbf{w}}(s), \mathbf{w}(s)) ds + g(\mathbf{w}(0)).$$

Show that $\mathbf{x}(\cdot)$ solves the usual Euler-Lagrange equations and determine the boundary condition at s=0.

Solution.

- (a) Assume $y = \mathbf{x}(0)$, $\mathbf{x}(s)$ is minimizer in \mathcal{A} , of course also is minimizer in $\{\mathbf{w}(\cdot) \in C^2([0,t];\mathbb{R}^n) | \mathbf{w}(t) = x, \mathbf{w}(0) = y\}$. Which indicate that $-\frac{d}{ds}(D_v L(\dot{\mathbf{x}}(s), \mathbf{x}(s))) + D_x L(\dot{\mathbf{x}}(s), \mathbf{x}(s)) = 0$ $(0 \le s \le t)$.
- (b) Choose a smooth function $\mathbf{v} \colon [0,t] \to \mathbb{R}^n, \mathbf{v} = (v^1, \dots, v^n)$, satisfying $\mathbf{v}(t) = 0$.Let $i(\tau) := I[\mathbf{x}(\cdot) + \tau \mathbf{v}(\cdot)]$. From $\mathbf{x}(\cdot)$ is minimizer in \mathcal{A} know i'(0) = 0.Computing this derivative. Observe

$$i'(\tau) = \int_0^t \sum_{i=1}^n L_{q_i}(\dot{\mathbf{x}} + \tau \dot{\mathbf{v}}, \mathbf{x} + \tau \mathbf{v}) \dot{v}^i + L_{x_i}(\dot{\mathbf{x}} + \tau \dot{\mathbf{v}}, \mathbf{x} + \tau \mathbf{v}) v^i ds \qquad \text{Set } \tau = 0 \text{ and intergrate by parts}$$

$$0 = i'(0) = \sum_{i=1}^n \left(\int_0^t \left[-\frac{d}{ds} (L_{q_i}(\dot{\mathbf{x}}, \mathbf{x})) + L_{x_i}(\dot{\mathbf{x}}, \mathbf{x}) \right] v^i ds - L_{q_i}(\dot{\mathbf{x}}, \mathbf{x}) v^i \Big|_{s=0} \right)$$

$$= \sum_{i=1}^n \left(\int_0^t \left[-\frac{d}{ds} (L_{q_i}(\dot{\mathbf{x}}, \mathbf{x})) + L_{x_i}(\dot{\mathbf{x}}, \mathbf{x}) \right] v^i ds \right) - L_v(\dot{\mathbf{x}}, \mathbf{x}) \cdot \mathbf{v} \Big|_{s=0}$$

make $D_v L(\dot{\mathbf{x}}(0), \mathbf{x}(0))$ have to be zero, since \mathbf{v} can be any value in s = 0.

(c) By calculating above, similarly get

$$0 = i'(0) = \sum_{i=1}^{n} \left(\int_{0}^{t} \left[-\frac{d}{ds} \left(L_{q_i}(\dot{\mathbf{x}}, \mathbf{x}) \right) + L_{x_i}(\dot{\mathbf{x}}, \mathbf{x}) \right] v^i ds \right) - \left(L_v(\dot{\mathbf{x}}, \mathbf{x}) - Dg(\mathbf{x}(0)) \right) \cdot \mathbf{v} \Big|_{s=0}.$$

 $D_v L(\dot{\mathbf{x}}(0), \mathbf{x}(0)) - Dg(\mathbf{x}(0)) = 0$ is boundary condition in s = 0.

Exercise 7.2. 10. If $H: \mathbb{R}^n \to \mathbb{R}$ is convex, we write $L = H^*$.

(a) Let $H(p) = \frac{1}{r} |p|^r$, for $1 < r < \infty$. Show

$$L(v) = \frac{1}{s} |v|^s$$
, where $\frac{1}{r} + \frac{1}{s} = 1$.

(b) Let $H(p) = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} p_i p_j + \sum_{i=1}^{n} b_i p_i$, where $A = ((a_{ij}))$ is a symmetric, positive definite matrix, $b \in \mathbb{R}^n$. Compute L(v).

Solution.

- (a) From definition of $L(v) = \sup_{p = \in \mathbb{R}^n} \{v \cdot p H(p)\}$, differential inside of left part with p get $v \frac{p}{|p|^{2-r}}$. It follows that $L(v) = p |p|^{r-2} \cdot p \frac{1}{r} |p|^r = \frac{1}{s} |p|^r$. In other side, $|v|^2 = p \cdot p |p|^{2r-4} = |p|^{2r-2} \Longrightarrow |v|^s = |p|^{rs-s} = |p|^r$. So $L(v) = \frac{1}{s} |p|^r = \frac{1}{s} |v|^s$.
- (b) Calculating differential with variable p, assume $L(v) = v \cdot p H(p)$

$$0 = D_{p_i}(v \cdot p - H(p)) = v_i - \sum_{j=1}^n a_{ij}p_j - b_i$$
$$L(v) = \sum_{i=1}^n (\sum_{j=1}^n a_{ij}p_jp_i + b_ip_i) - H(p)$$
$$= 0$$

Exercise 7.3. 12. Assume $L_1, L_2 : \mathbb{R}^n \to \mathbb{R}$ are convex, smooth and superlinear. Show that

$$\min_{v \in \mathbb{R}^n} (L_1(v) + L_2(v)) = \max_{p \in \mathbb{R}^n} (-H_1(p) - H_2(-p)),$$

where $H_1 = L_1^*, H_2 = L_2^*$.

Solution. Since $-H_1(p) = -L_1^*(p) = -\max_{v \in \mathbb{R}^n} (p \cdot v - L_1(v)) = \min_{v \in \mathbb{R}^n} (-p \cdot v + L_1(v))$. Similarly get H_2 . So $\max_{p \in \mathbb{R}^n} (-H_1(p) - H_2(-p)) \le \max_{p \in \mathbb{R}^n} (\min_{v \in \mathbb{R}^n} (-p \cdot v + L_1(v) + p \cdot v + L_2(v))) = \min_{v \in \mathbb{R}^n} (L_1(v) + L_2(v))$, and $\min_{v \in \mathbb{R}^n} (L_1(v) + L_2(v)) = \min_{v \in \mathbb{R}^n} (\max_{p \in \mathbb{R}^n} (v \cdot p - H_1(p)) + \max_{p \in \mathbb{R}^n} (v \cdot p - H_2(p))) \ge \min_{v \in \mathbb{R}^n} (\max_{p \in \mathbb{R}^n} (v \cdot p - H_1(p) + v \cdot (-p) - H_2(-p))) = \min_{v \in \mathbb{R}^n} (\max_{p \in \mathbb{R}^n} (-H_1(p) - H_2(-p)))$. In summary, $\min_{v \in \mathbb{R}^n} (L_1(v) + L_2(v)) = \max_{p \in \mathbb{R}^n} (-H_1(p) - H_2(-p))$.

Exercise 7.4. 13. Prove that the Hopf-Lax formula reads

$$u(x,t) = \min_{y \in \mathbb{R}^n} \{ tL(\frac{x-y}{t}) + g(y) \} = \min_{y \in B(x,Rt)} \{ tL(\frac{x-y}{t}) + g(y) \}$$

for $R = \sup_{\mathbb{R}^n} |DH(Dg)|$, $H = L^*$. (This proves *finite propagation speed* for a Hamilton-Jacobi PDE with convex Hamiltonian and Lipschitz continuous initial function g.)

Solution. If $\min_{y \in \mathbb{R}^n} \{tL(\frac{x-y}{t}) + g(y)\} < \min_{y \in B(x,Rt)} \{tL(\frac{x-y}{t}) + g(y)\}$, assume $u(x,t) = tL(\frac{x-y_0}{t}) + g(y_0)$, $m = \frac{x-y_0}{t} > R$. So that it attain that $0 = D_y(tL(\frac{x-y_0}{t}) + g(y_0)) = -DL(\frac{x-y_0}{t}) + Dg(y_0)$, which conclude $DL(m) = Dg(y_0)$. In other side, assume $L(m) = m \cdot v - H(v)$. Also from the minimizer, $D_vL(m) = 0 \Longrightarrow m = DH(v)$. Since $H(v) = v \cdot m - L(m)$, same as above, v = DL(m). Combine with $DL(m) = Dg(y_0)$ and condition $R = \sup_{\mathbb{R}^n} |DH(Dg)|$ induct $D_vL(m) = m - DH(v) = m - DH(DL(m)) = m - DH(Dg(y_0)) > m - R > 0$. It indicate $L(m) = \max_{\mathbb{R}^n} \{m \cdot v - H(v)\}$ doesn't exist, that is a contradiction.

Exercise 7.5. 14. Let E be a closed subset of \mathbb{R}^n . Show that if the Hopf-Lax formula could be applied to the initial-value problem

$$\begin{cases} u_t + |Du|^2 = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = \begin{cases} 0 & x \in E \\ +\infty & x \notin E \end{cases} & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

it would give the solution

$$u(x,t) = \frac{1}{4t} \operatorname{dist}(x,E)^2.$$

Solution. Since $L(v) = \sup_{p \in \mathbb{R}^n} (v \cdot p - |p|^2) = \frac{1}{4} |v|^2$. By the Hopf-Lax formula

$$u(x,t) = \min_{y \in \mathbb{R}^n} \left\{ \frac{1}{4t} |x - y|^2 + g(y) \right\}$$

if $y \notin E$, $u(x,t) = +\infty$ is obvious not the minimizer. So $u(x,t) \ge \frac{1}{4t} \mathrm{dist}(x,E)^2$ and since E is a closed subset, the equal can be satisfy in ∂E . That's mean $u(x,t) = \frac{1}{4t} \mathrm{dist}(x,E)^2$.

Exercise 7.6. 16. Assume u^1, u^2 are two solutions of the initial-value problems

$$\begin{cases} u_t^i + H(Du^i) = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u^i = g^i & \text{on } \mathbb{R}^n \times \{t = 0\} (i = 1, 2), \end{cases}$$

given by the Hopf-Lax formula. Prove the L^{∞} -contraction inequality

$$\sup_{\mathbb{R}^n} \left| u^1(\cdot, t) - u^2(\cdot, t) \right| \le \sup_{\mathbb{R}^n} \left| g^1 - g^2 \right| (t > 0).$$

Solution. Assume $\sup_{\mathbb{R}^n} |g^1 - g^2| = |g^1(y_0) - g^2(y_0)|, y \in \mathbb{R}^n$, and $\sup_{\mathbb{R}^n} |u^1(\cdot, t) - u^2(\cdot, t)| = u^1(x_0, t) - u^2(x_0, t)$. By Hopf-Lax formula, set y_1 such that $u^2(x_0, t) = tL(\frac{x_0 - y_1}{t} + g(y_1))$, Then

$$\begin{split} u^1(x_0,t) - u^2(x_0,t) &= \min_{\mathbb{R}^n} \{ tL(\frac{x-y}{t} + g^1(y)) \} - \min_{\mathbb{R}^n} \{ tL(\frac{x-y}{t} + g^2(y)) \} \\ &\leq g^1(y_1) - g^2(y_1) \\ &\leq g^1(y_0) - g^2(y_0) \\ &= \sup_{\mathbb{R}^n} \left| g^1 - g^2 \right|. \end{split}$$

Therefore, $\sup_{\mathbb{R}^n} |u^1(\cdot,t) - u^2(\cdot,t)| \le \sup_{\mathbb{R}^n} |g^1 - g^2| (t > 0).$