Teoría de la Decisión: Problemas

Notación:

- Decisor ML: Decisor de máxima verosimilitud $[\phi_{ML}(\mathbf{x})]$.
- Decisor MAP: Decisor máximo a posteriori $[\phi_{MAP}(\mathbf{x})]$.
- LRT: Test de razón de verosimilitudes.
- \blacksquare $P_{\rm e}$: probabilidad de error.
- P_{FA}: probabilidad de falsa alarma.
- P_M: probabilidad de pérdidas.
- lacktriangle P_{D} : probabilidad de detección.
- Curva ROC: curva característica de operación.

1. Decision Theory

DT1

En un problema de clasificación binaria se sabe que las observaciones presentan las siguientes distribuciones:

$$\begin{aligned} p_{X|H}(x|0) &= \exp(-x), & x > 0 \\ p_{X|H}(x|1) &= a \exp(-ax), & x > 0 \end{aligned}$$

con a > 1. Para la toma de la decisión se dispone de un conjunto de K observaciones independientes tomadas bajo la misma hipótesis: $\left\{X^{(k)}\right\}_{k=1}^{K}$.

- (a) Obténgase el decisor ML basado en el conjunto de observaciones $\left\{X^{(k)}\right\}_{k=1}^K$ y compruébese, a partir de resultado obtenido, que $T = \sum_{k=1}^K X^{(k)}$ es un estadístico suficiente para la decisión. Considérese para el resto del ejercicio K=2.
- (b) Calcúlense las verosimilitudes del estadístico T, $p_{T|H}(t|0)$ y $p_{T|H}(t|1)$.
- (c) Calcúlense, en función del valor de η , las $P_{\rm FA}$ y $P_{\rm M}$ del decisor de umbral

$$t \mathop{\gtrless}_{D=1}^{D=0} \eta$$

- (d) Represéntese de forma aproximada la curva ROC del decisor anterior, indicando:
 - \blacksquare Cómo se desplaza el punto de trabajo al aumentar η .
 - \blacksquare Cómo se modificaría la curva ROC si creciese el número de observaciones disponibles (K).
 - Cómo se modificaría la curva ROC al incrementar el valor de a.

Solution:

(a)
$$t \underset{D=1}{\overset{D=0}{\gtrless}} \frac{K \ln a}{a-1}$$

- (b) $p_{T|H}(t|0) = t \exp(-t),$ t > 0 $p_{T|H}(t|1) = a^2 t \exp(-at),$ t > 0
- (c) $P_{\text{FA}} = 1 (\eta + 1) \exp(-\eta)$ $P_{\text{M}} = (a\eta + 1) \exp(-a\eta)$
- (d) Para $\eta = 0$, $P_{\text{FA}} = P_{\text{D}} = 0$; Para $\eta \to \infty$, $P_{\text{FA}} = P_{\text{D}} = 1$.
 - Si crece el número de observaciones, necesariamente debe mejorar la curva ROC.
 - Si crece el valor de a, también debe mejorar la curva ROC. Una comprobación rigurosa sería: $\frac{\partial P_{\rm M}}{\partial a} = -a\eta^2 exp(-a\eta) < 0$, luego la probabilidad de pérdida decrece al aumentar el valor de a.

DT2

Considérese un sistema de comunicaciones en el que los símbolos "+1" ó "-1" se transmiten simultáneamente por dos canales ruidosos, tal y como se ilustra en la figura:

$$s = +1/-1$$

$$b$$

$$X_1 = as + N_1$$

$$b$$

$$X_2 = bs + N_2$$

siendo a y b dos constantes positivas desconocidas que caracterizan a los canales y N_1 y N_2 dos variables de ruido gaussiano caracterizados por

$$\left(\begin{array}{c} N_1 \\ N_2 \end{array}\right) \sim G\left[\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right)\right].$$

donde $|\rho| < 1$. Se sabe, además, que las probabilidades de transmisión de ambos símbolos son iguales.

- (a) Si se desea construir un decisor para discriminar cuál fue el símbolo transmitido utilizando únicamente una de las dos observaciones disponibles, X_1 o X_2 , indíquese cuál de las dos variables utilizaría, justificando su respuesta en función de los valores de las constantes. Proporciónese la forma analítica del decisor ML correspondiente.
- (b) Obténgase el decisor binario de mínima probabilidad de error basado en la observación conjunta de X_1 y X_2 , expresando el resultado como función de a, b y ρ . Simplifique la expresión de dicho decisor tanto como le sea posible.
- (c) Para $\rho = 0$, calcúlese la probabilidad de error del decisor diseñado en b). Exprese su resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Solution:

(a) Si
$$a > b$$
: $x_1 \underset{D=0}{\overset{D=1}{\gtrless}} 0$ Si $a < b$: $x_2 \underset{D=0}{\overset{D=1}{\gtrless}} 0$

(b)
$$(a - \rho b)x_1 + (b - \rho a)x_2 \underset{D=0}{\overset{D=1}{\gtrless}} 0$$

(c)
$$P_e = F(-\sqrt{a^2 + b^2})$$

DT3

Las siguientes verosimilitudes caracterizan un problema de decisión binario bidimensional con $P_H(0) = 3/5$:

$$p_{X_1, X_2 \mid H}(x_1, x_2 \mid 0) = \left\{ \begin{array}{ll} 2, & 0 < x_1 < 1 & 0 < x_2 < 1 - x_1 \\ 0, & \text{en el resto} \end{array} \right.$$

$$p_{X_1, X_2 \mid H}(x_1, x_2 \mid 1) = \begin{cases} 3(x_1 + x_2), & 0 < x_1 < 1 & 0 < x_2 < 1 - x_1 \\ 0, & \text{en el resto} \end{cases}$$

Considérese un decisor LRT genérico con umbral η ,

- (a) Calcúlese la $P_{\rm FA}$ en función de η .
- (b) La siguiente figura representa la ROC del LRT. Justificando su respuesta:
 - Indique sobre la ROC cómo varía el punto de trabajo del decisor al aumentar o disminuir el umbral del test.
 - Situe sobre la ROC los puntos de trabajo correspondientes al decisor ML, al decisor de mínima probabilidad de error y al decisor de Neyman-Pearson con $P_{\rm FA}=0.3$.

Solution:

(a)
$$x_1 + x_2 \underset{D=0}{\overset{D=1}{\geqslant}} \frac{2}{3} \eta = \eta'$$
 $P_{\text{FA}} = 1 - \eta'^2$

(b) \blacksquare P_{FA} y P_{D} decrecen al aumentar el umbral

• Decisor ML:
$$\eta = 1$$
, $\eta' = \frac{2}{3}$, $P_{\text{FA}} = \frac{5}{9}$.
Decisor MAP: $\eta = \frac{3}{2}$, $\eta' = 1$, $P_{\text{FA}} = 0$.
Decisor N-P: $P_{\text{FA}} = 0.3$.

DT4

Considere el par de hipótesis equiprobables:

$$H = 0: X = N$$

 $H = 1: X = N + aS$

donde N y S son variables aleatorias gaussianas independientes, con medias nulas y varianzas v_n y v_s , respectivamente, y a es una constante conocida.

(a) Verifique que el test de mínima probabilidad de error tiene la forma

$$c_1 \exp\left(c_2 x^2\right) \geqslant \eta$$

y calcule las constantes c_1 y c_2 , indicando el criterio de decisión asociado.

(b) Determine las regiones de decisión sobre x. Nótese que dichas regiones pueden expresarse en función de las constantes c_1 y c_2 .

Solution:

(a)
$$c_1 \exp\left(c_2 x^2\right) \underset{D=0}{\overset{D=1}{\gtrless}} 1$$
, donde $c_1 = \frac{P_H(0)}{P_H(1)} \sqrt{\frac{v_n}{v_n + a^2 v_s}}$ y $c_2 = \frac{1}{2v_n} - \frac{1}{2\left(v_n + a^2 v_s\right)}$

(b)
$$|x| \underset{D=0}{\overset{D=1}{\gtrless}} \sqrt{\frac{-\ln c_1}{c_2}}$$

DT5

La densidad de probabilidad conjunta de las variables aleatorias X y Z es

$$p_{X,Z}(x,z) = x + z, \qquad 0 \le x \le 1, \qquad 0 \le z \le 1$$

Considere el problema de decisión basado en la observación de X (pero no de Z) dado por las hipótesis:

$$H = 0: Z < 0.6$$

 $H = 1: Z > 0.6$

- (a) Determine $p_{Z|X}(z|x)$.
- (b) Obtenga las probabilidades a posteriori de ambas hipótesis.
- (c) Determinese el decisor MAP basado en X.
- (d) Aplicando el Teorema de Bayes, calcule $p_{X|H}(x|0)$ y $p_{X|H}(x|1)$.
- (e) Calcule la probabilidad de falsa alarma del decisor MAP.
- (f) Determine el decisor ML basado en X.

Solution:

(a) Sabiendo que

$$p_X(x) = \int_{-\infty}^{\infty} p_{Z,X}(z,x)dz = \int_{0}^{1} (x+z)dz = \frac{(x+1)^2}{2} - \frac{x^2}{2}$$
$$= x + \frac{1}{2}, \qquad 0 \le x \le 1$$

resulta

$$p_{Z|X}(z|x) = \frac{p_{Z,X}(z,x)}{p_X(x)} = \frac{2(x+z)}{2x+1}, \quad 0 \le x \le 1, \quad 0 \le z \le 1$$

(b)
$$P_{H|X}(0|x) = P\{H = 0|x\} = P\{Z < 0.6|x\} = \int_{-\infty}^{0.6} p_{Z|X}(z|x)dz$$
$$= \int_{0}^{0.6} \frac{2(x+z)}{2x+1}dz = \frac{1.2x+0.36}{2x+1}$$
$$P_{H|X}(1|x) = 1 - P_{H|X}(0|x) = \frac{0.8x+0.64}{2x+1}$$

(c) El decisor MAP está dado por

$$P_{H|X}(1|x) \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2} \quad \Leftrightarrow \quad \frac{0.8x + 0.64}{2x + 1} \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2}$$

$$\Leftrightarrow \quad 0.8x + 0.64 \underset{D=0}{\overset{D=1}{\gtrless}} x + 0.5$$

$$\Leftrightarrow \quad x \underset{D=1}{\overset{D=0}{\gtrless}} 0.7$$

(d) Sabiendo que

$$P_H(0) = \int_{-\infty}^{\infty} P_{H|X}(0|x) p_X(x) dx = \int_0^1 \frac{1.2x + 0.36}{2x + 1} \left(x + \frac{1}{2}\right) dx$$
$$= \int_0^1 (0.6x + 0.18) dx = \frac{1}{2} \left((0.6 + 0.18)^2 - 0.18^2 \right) = 0.48$$
$$P_H(1) = 1 - P_H(0) = 0.52$$

resulta

$$\begin{split} p_{X|H}(x|0) &= \frac{P_{H|X}(0|x)p_X(x)}{P_H(0)} = \frac{1}{0.48} \frac{1.2x + 0.36}{2x + 1} \left(x + \frac{1}{2} \right) \\ &= \frac{10x + 3}{8} \end{split}$$

$$p_{X|H}(x|1) = \frac{P_{H|X}(1|x)p_X(x)}{P_H(1)} = \frac{1}{0.52} \frac{0.8x + 0.64}{2x + 1} \left(x + \frac{1}{2}\right)$$
$$= \frac{10x + 8}{13}$$

(e)

$$P_{\text{FA}} = P\{D = 1|H = 0\} = P\{X < 0.7|H = 0\} = \int_{-\infty}^{0.7} p_{X|H}(x|0)dx$$
$$= \frac{1}{8} \int_{0}^{0.7} (10x + 3)dx = 0.5687$$

(f) El decisor ML será

$$p_{X|H}(x|1) \underset{D=0}{\overset{D=1}{\gtrless}} p_{X|H}(x|0) \quad \Leftrightarrow \quad \frac{10x+8}{13} \underset{D=0}{\overset{D=1}{\gtrless}} \frac{10x+3}{8}$$
$$\Leftrightarrow \quad x \underset{D=1}{\overset{D=0}{\gtrless}} 0.5$$

DT6

Considere el problema de decisión binario dado por $P_H(1) = 2P_H(0)$ y verosimilitudes:

$$p_{X|H}(x|0) = 2(1-x), \quad 0 \le x \le 1$$

 $p_{X|H}(x|1) = 2x - 1, \quad \frac{1}{2} \le x \le \frac{3}{2}$

(a) Determine el decisor bayesiano para los costes $c_{00} = c_{11} = 0$, $c_{10} = 4c_{01} > 0$.

- (b) Determine el decisor de Neyman-Pearson dado por $P_{\rm FA} \leq 0.04$.
- (c) Determine, en función del parámetro α , las probabilidades de detección y falsa alarma de la familia de decisores de la forma

$$x \underset{D=0}{\overset{D=1}{\gtrless}} \alpha$$

- (d) Represente gráficamente (de forma aproximada) la curva característica de operación (ROC), tomando α como parámetro libre, e indicando cómo varía el punto de trabajo del decisor en función de su valor.
- (e) Indique si los decisores de los apartados (a) y (b) se corresponden con algún punto de la ROC y, en su caso, indique con cuál(es).

(a) El decisor bayesiano para los costes dados esta dado por la regla de decisión:

$$(c_{01} - c_{11}) P_{H}(1) p_{X|H}(x|1) \overset{D=1}{\underset{D=0}{\gtrless}} (c_{10} - c_{00}) P_{H}(0) p_{X|H}(x|0)$$

$$\Leftrightarrow c_{01} 2 P_{H}(0) p_{X|H}(x|1) \overset{D=1}{\underset{D=0}{\gtrless}} 4 c_{01} P_{H}(0) p_{X|H}(x|0)$$

$$\Leftrightarrow p_{X|H}(x|1) \overset{D=1}{\underset{D=0}{\gtrless}} 2 p_{X|H}(x|0)$$

$$\Leftrightarrow \begin{bmatrix} D = 0, & \text{if } 0 \leq x \leq \frac{1}{2} \\ 2x - 1 & \geqslant 4(1 - x), & \text{if } \frac{1}{2} \leq x \leq 1 \\ D = 1, & \text{if } 1 \leq x \leq \frac{3}{2} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} D = 0, & \text{if } 0 \leq x \leq \frac{1}{2} \\ x \geq \frac{3}{2} \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} D = 0, & \text{if } 0 \leq x \leq \frac{1}{2} \\ x \geq \frac{5}{6}, & \text{if } \frac{1}{2} \leq x \leq 1 \\ D = 1, & \text{if } \frac{3}{2} \leq x \leq 1 \end{cases}$$

$$\Leftrightarrow x \overset{D=1}{\underset{D=0}{\gtrless}} \frac{5}{6}$$

(b) El LRT para umbral $\lambda \geq 0$ tiene la forma

$$p_{X|H}(x|1) \overset{D=1}{\underset{D=0}{\gtrless}} \lambda p_{X|H}(x|0) \Leftrightarrow \begin{bmatrix} D=0, & \text{if } 0 \leq x \leq \frac{1}{2} \\ 2x-1 & \underset{D=0}{\gtrless} 2\lambda(1-x), & \text{if } \frac{1}{2} \leq x \leq 1 \\ D=1, & \text{if } 1 \leq x \leq \frac{3}{2} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} D=0, & \text{if } 0 \leq x \leq \frac{1}{2} \\ x & \underset{D=0}{\gtrless} \frac{2\lambda+1}{2(1+\lambda)}, & \text{if } \frac{1}{2} \leq x \leq 1 \\ D=1, & \text{if } 1 \leq x \leq \frac{3}{2} \end{bmatrix}$$

$$\Leftrightarrow x \overset{D=1}{\underset{D=0}{\gtrless}} \alpha$$

$$\Leftrightarrow x \overset{D=1}{\underset{D=0}{\gtrless}} \alpha$$

donde $\alpha = \frac{2\lambda+1}{2(1+\lambda)} \in [\frac{1}{2}, 1].$

La probabilidad de falsa alarma será

$$P_{\text{FA}} = P_{D|H}(1|0) = P\{x \ge \alpha | H = 0\}$$

$$= \int_{\alpha}^{\infty} p_{X|H}(x|0) dx = \int_{\alpha}^{1} 2(1-x) dx$$

$$= (1-\alpha)^{2}$$

Tomando $P_{\rm FA} \leq 0.04$, resulta $(1-\alpha)^2 = 0.04$, luego $\alpha = 0.8$ y el decisor NP es

$$x \underset{D=0}{\overset{D=1}{\gtrless}} 0.8$$

(c) De acuerdo con lo visto en el apartado (b), la probabilidad de falsa alarma, para cualquier $\alpha \in [0, \frac{3}{2}]$ será:

$$P_{\rm FA} = \left[\begin{array}{ll} (1 - \alpha)^2 & \quad 0 < \alpha < 1 \\ 0 & \quad 1 < \alpha < \frac{3}{2} \end{array} \right]$$

Análogamente, la probabilidad de detección será

$$P_{D} = P_{D|H}(1|1) = P\{x \le \alpha | H = 1\} = \int_{\alpha}^{\infty} p_{X|H}(x|1) dx$$

$$= \begin{bmatrix} 1 & 0 < \alpha < \frac{1}{2} \\ \int_{\alpha}^{\frac{3}{2}} (2x - 1) dx & \frac{1}{2} < \alpha < \frac{3}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 < \alpha < \frac{1}{2} \\ 1 - (\alpha - \frac{1}{2})^{2} & \frac{1}{2} < \alpha < \frac{3}{2} \end{bmatrix}$$

(d) Basta con obtener algunos puntos significativos, y dibujar la ROC de forma aproximada. Por ejemplo:

$$\begin{array}{lll} \alpha = 0 & \Rightarrow & P_{\rm FA} = 1, & P_{\rm D} = 1 \\ \alpha = \frac{1}{2} & \Rightarrow & P_{\rm FA} = \frac{1}{4}, & P_{\rm D} = 1 \\ \alpha = \frac{3}{4} & \Rightarrow & P_{\rm FA} = \frac{1}{4}, & P_{\rm D} = \frac{15}{16} \\ \alpha = 1 & \Rightarrow & P_{\rm FA} = 0, & P_{\rm D} = \frac{3}{4} \\ \alpha = \frac{3}{2} & \Rightarrow & P_{\rm FA} = 0, & P_{\rm D} = 0 \end{array}$$

(e) El decisor bayesiano se corresponde con el caso $\alpha = \frac{5}{6}$. El decisor NP es el caso $\alpha = 0.8$. Sus respectivas posiciones en la ROC se indican en la figura.

DT7

Se tiene un problema de clasificación binaria bidimensional definido por las siguientes verosimilitudes:

$$p_{X_1,X_2|H}(x_1,x_2|0) = G\left(\mathbf{0}, \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = G\left(\mathbf{m}, \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

Represéntese en el plano $X_1 - X_2$ la frontera de decisión que proporciona el decisor MAP cuando se satisfacen las siguientes condiciones: $P_H(0) = P_H(1)$, $v_0 = v_1$ y $\rho = 0$. Indique cómo se modificaría la frontera anterior si:

- (a) Las probabilidades a priori fuesen $P_H(0) = 2P_H(1)$.
- (b) Se incrementase el valor de ρ .

Solution: La frontera es la mediatriz de la recta que une los centros de las dos gaussianas.

- (a) Si la $P_H(0)$ es mayor, la recta se desplaza hacia la verosimilitud de H=1, es decir, hacia el punto \mathbf{m} .
- (b) No varía.

DT8

En un problema de clasificación binaria se sabe que las observaciones presentan distribuciones discretas de Bernoulli con parámetros p_0 y p_1 (0 < p_0 < p_1 < 1):

$$P_{X|H}(x|0) = \begin{cases} p_0 & x = 1\\ 1 - p_0 & x = 0\\ 0 & \text{en el resto} \end{cases} \qquad P_{X|H}(x|1) = \begin{cases} p_1 & x = 1\\ 1 - p_1 & x = 0\\ 0 & \text{en el resto} \end{cases}$$

Para la toma de la decisión se dispone de un conjunto de K observaciones independientes y tomadas bajo la misma hipótesis: $\left\{X^{(k)}\right\}_{k=1}^{K}$. Se define el siguiente estadístico de las observaciones: $T = \sum_{k=1}^{K} X^{(k)}$, i.e., la variable aleatoria T es igual al número de observaciones que son igual a la unidad.

- (a) Obténgase el decisor ML basado en el conjunto de observaciones $\left\{X^{(k)}\right\}_{k=1}^K$. Exprésese el resultado en función de la v.a. T.
- (b) Sabiendo que la media y la varianza de una distribución Bernoulli con parámetro p valen p y p(1-p), respectivamente, determínense las medias y varianzas del estadístico T bajo ambas hipótesis: m_0 y v_0 (para H=0) y m_1 y v_1 (para H=1).

Considérese para el resto del ejercicio $p_0 = 1 - p_1$.

Para K suficientemente grande, se decide aproximar la v.a. T mediante una distribución Gaussiana, tomando las medias y varianzas calculadas en el apartado anterior.

(c) Calcúlense las P_{FA} y P_{M} del decisor de umbral

$$t \stackrel{D=1}{\underset{D=0}{\gtrless}} \eta$$

en función del valor de η . Exprésese el resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

- (d) Represéntese de forma aproximada la curva ROC del decisor anterior, indicando:
 - Cómo se desplaza el punto de trabajo al aumentar η .
 - Cómo se modificaría la curva ROC si creciese el número de observaciones disponibles (K).
 - Cómo varía la curva ROC si el valor de p_1 crece (manteniendo la condición $p_0 = 1 p_1$).

(a)
$$t \underset{D=0}{\overset{D=1}{\gtrless}} \frac{K \ln \frac{1-p_1}{1-p_0}}{\ln \frac{1-p_1}{1-p_0} - \ln \frac{p_1}{p_0}} = \eta$$

(b)
$$m_0 = Kp_0$$
 $m_1 = Kp_1$ $v_0 = Kp_0 (1 - p_0)$ $v_1 = Kp_1 (1 - p_1)$

(c)
$$P_{\text{FA}} = F\left(\frac{\eta - K(1 - p_1)}{\sqrt{Kp_1(1 - p_1)}}\right)$$
 $P_{\text{M}} = 1 - F\left(\frac{\eta - Kp_1}{\sqrt{Kp_1(1 - p_1)}}\right)$

(d) Se tiene que si $\eta \to -\infty$, $P_{\text{FA}} = 0$ y $P_{\text{D}} = 0$ y si $\eta \to \infty$, $P_{\text{FA}} = 1$ y $P_{\text{D}} = 1$. Al aumentar K, aumenta el area bajo la curva ROC. Al disminuir p_1 , aumenta el area bajo la curva ROC.

DT9

Considérese un problema de decisión binario con hipótesis H=0 y H=1 y observación X. Cierto decisor adopta D=1 si X se encuentra en cierta región \mathcal{X}_1 y D=0 en caso contrario, obteniendo probabilidades de falsa alarma y detección P_{FA} y P_{D} , respectivamente. El decisor opuesto decide D'=0 si X se encuentra en \mathcal{X}_1 y D'=1 en caso contrario, siendo

El decisor opuesto decide D' = 0 si X se encuentra en \mathcal{X}_1 y D' = 1 en caso contrario, siendo P'_{FA} y P'_{D} sus probabilidades de falsa alarma y detección, respectivamente. Determínese la relación entre las probabilidades de falsa alarma y detección de ambos decisores.

Solution:

$$P'_{\rm FA} = 1 - P_{\rm FA}$$
 $P'_{\rm D} = 1 - P_{\rm D}$

DT10

Se tiene un problema de decisión binaria definido por las siguientes verosimilitudes:

$$p_{X_1,X_2|H}(x_1,x_2|0) = G\left(\mathbf{0}, \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = G\left(\mathbf{m}, \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

siendo $\mathbf{m} = \left[m, m\right]^T$, con m > 0 y $|\rho| < 1$.

- (a) Sabiendo que $P_H(0) = P_H(1)$, obtenga el decisor bayesiano de mínima probabilidad de error. Represente en el plano $X_1 X_2$ la frontera de decisión obtenida.
- (b) Sobre el clasificador obtenido en a), compruebe que $Z=X_1+X_2$ es un estadístico suficiente para la decisión. Obtenga las verosimilitudes de H=0 y H=1 sobre la variable aleatoria Z, $p_{Z|H}(z|0)$ y $p_{Z|H}(z|1)$.
- (c) Calcule las probabilidades de falsa alarma, de pérdida y de error del decisor anterior; exprese estas probabilidades utilizando la función

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

(d) Analice cómo varía la probabilidad de error con el valor de ρ ; para ello, considere los casos $\rho = -1$, $\rho = 0$ y $\rho = 1$. Indique sobre el plano $X_1 - X_2$, para cada valor de ρ , cómo se distribuyen las verosimilitudes, y represente la frontera de decisión.

(a) El decisor de mínima probabilidad de error es el decisor MAP, dado por

$$P_{H}(1)p_{X_{1},X_{2}|H}(x_{1},x_{2}|1) \underset{D=0}{\overset{D=1}{\gtrless}} P_{H}(0)p_{X_{1},X_{2}|H}(x_{1},x_{2}|0)$$

$$\Leftrightarrow \exp\left(-\frac{1}{2}\binom{x_{1}-m}{x_{2}-m}\right)^{\mathsf{T}}\binom{1}{\rho}\binom{1}{\rho}^{-1}\binom{x_{1}-m}{x_{2}-m} \underset{D=0}{\overset{D=1}{\gtrless}} \exp\left(-\frac{1}{2}\binom{x_{1}}{x_{2}}\right)^{\mathsf{T}}\binom{1}{\rho}\binom{1}{\rho}^{-1}\binom{x_{1}}{x_{2}} \right)$$

$$\Leftrightarrow -\frac{1}{2(1-\rho^{2})}\binom{x_{1}-m}{x_{2}-m}^{\mathsf{T}}\binom{1}{-\rho}\binom{x_{1}-m}{x_{2}-m} \underset{D=0}{\overset{D=1}{\gtrless}} -\frac{1}{2(1-\rho^{2})}\binom{x_{1}}{x_{2}}^{\mathsf{T}}\binom{1}{-\rho}\binom{1}{x_{2}}\binom{x_{1}}{x_{2}}$$

$$\Leftrightarrow -(x_{1}-m)^{2}-(x_{2}-m)^{2}+2\rho(x_{1}-m)(x_{2}-m) \underset{D=0}{\overset{D=1}{\gtrless}} -x_{1}^{2}-x_{2}^{2}+2\rho x_{1}x_{2}$$

$$\Leftrightarrow x_{1}+x_{2} \underset{D=0}{\overset{D=1}{\gtrless}} m$$

(b) Sustituyendo en la regla de decisión, se obtiene el decisor equivalente $z \stackrel{D=1}{\underset{D=0}{\gtrless}} m$.

Dado que Z es suma de dos v.a. gausianas, también es gausiana, con medias condicionales

$$\mathbb{E}\{Z|1\} = \mathbb{E}\{X_1|1\} + \mathbb{E}\{X_2|1\} = 2m$$

$$\mathbb{E}\{Z|0\} = \mathbb{E}\{X_1|0\} + \mathbb{E}\{X_2|0\} = 0$$

y varianzas condicionales

$$Var{Z|1} = \mathbb{E}\{(X_1 - m + X_2 - m)^2 | 1\}$$

$$= Var{X_1|1} + Var{X_2|1} + 2\mathbb{E}\{(X_1 - m)(X_2 - m)\}$$

$$= 2(1 + \rho)$$

$$Var{Z|0} = 2(1 + \rho)$$

Por tanto

$$Z|1 \sim G(2m, 2(1+\rho))$$
$$Z|0 \sim G(0, 2(1+\rho))$$

(c)

$$P_{\text{FA}} = P\{D = 1 | H = 0\} = P\{Z > m | H = 0\} = 1 - F\left(\frac{m}{\sqrt{2(1+\rho)}}\right)$$
 (1)

$$P_{\rm M} = P\{D = 0 | H = 1\} = P\{Z < m | H = 1\} = F\left(\frac{m - 2m}{\sqrt{2(1 + \rho)}}\right) = P_{\rm FA}$$
 (2)

$$P_{\rm e} = P_H(0)P_{\rm FA} + P_H(1)P_{\rm M} = P_{\rm FA} = P_{\rm M}$$
(3)

(d) • Si
$$\rho = -1$$
: $P_e = 0$

• Si
$$\rho = 0$$
: $P_{\rm e} = 1 - F\left(\frac{m}{\sqrt{2}}\right)$

• Si
$$\rho = 1$$
: $P_e = 1 - F(\frac{m}{2})$

DT11

las siguientes verosimilitudes:

$$\begin{split} p_{X|H}(x|0) &= 2(1-2|x-\frac{1}{2}|), \qquad 0 < x < 1 \\ p_{X|H}(x|1) &= 1, \qquad \qquad 0 < x < 1 \\ p_{X|H}(x|2) &= 2x, \qquad \qquad 0 < x < 1 \end{split}$$

- (a) Determínese el decisor de mínima probabilidad de error.
- (b) Discútase si el decisor anterior es equivalente al constituido por un primer decisor de mínima probabilidad de error que elige entre H=0 y $\{H=1\cup H=2\}$, y tras ello, caso de aceptar la hipótesis $\{H=1\cup H=2\}$, se aplica un segundo decisor, también de mínima probabilidad de error, para decidir entre H=1 y H=2.

Solution:

(a)
$$\begin{cases} D = 1: & 0 < x < 1/4 \\ D = 0: & 1/4 < x < 2/3 \\ D = 2 & 2/3 < x < 1 \end{cases}$$
(b)
$$\begin{cases} D = 1: & 0 < x < 1/2 \\ D = 2 & 1/2 < x < 1 \end{cases}$$

(b)
$$\begin{cases} D = 1: & 0 < x < 1/2 \\ D = 2 & 1/2 < x < 1 \end{cases}$$

Es distinto y peor que el anterior

DT12

Las verosimilitudes

$$p_{\mathbf{X}|H}(\mathbf{x}|0) = G(\mathbf{0}, v\mathbf{I})$$

$$p_{\mathbf{X}|H}(\mathbf{x}|1) = G(\mathbf{m}, v\mathbf{I})$$

donde $\mathbf{0}$ y \mathbf{m} son vectores N-dimensionales de componentes $\mathbf{0}$ y $\{m_n\}$, respectivamente, e \mathbf{I} la matriz unitaria $N \times N$, corresponden a las observaciones X (N-dimensionales) en un problema de decisión binaria (gaussiano).

- (a) Diséñese el decisor ML.
- (b) Si $P_H(0) = 1/4$, diseñese el decisor de mínima probabilidad de error.
- (c) Calcúlense $P_{\rm FA}$ y $P_{\rm M}$ para el decisor ML. ¿Qué ocurre si crece el número de dimensiones y $\{m_n\} \neq 0$?
- (d) Si en la práctica se tiene acceso a

$$Z = \mathbf{m}^T \mathbf{X} + N$$

donde N es $G(m', v_n)$ e independiente de \mathbf{X} , en lugar de a las observaciones \mathbf{X} , ¿cómo ha de modificarse el diseño del decisor ML?

(e) Calcúlense P'_{FA} y P'_{M} para el diseño del apartado d). ¿Cómo varían respecto a P_{FA} y P_{M} ? Nota: Utilícese, cuando convenga, la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Solution:

(a)
$$\mathbf{m}^T \mathbf{X} \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2} ||\mathbf{m}||_2^2$$

(b)
$$\mathbf{m}^T \mathbf{X} \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2} ||\mathbf{m}||_2^2 - v \ln 3$$

(c)
$$P_{\text{FA}} = P_{\text{M}} = F\left(-\frac{||\mathbf{m}||_2}{2\sqrt{v}}\right)$$
, tiende a 0 cuando N se hace infinito.

(d)
$$z \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2} ||\mathbf{m}||_2^2 + m'$$

(e)
$$P'_{FA} = P'_{M} = F\left(-\frac{||\mathbf{m}||_{2}}{2\sqrt{v + \frac{v_{n}}{||\mathbf{m}||_{2}^{2}}}}\right)$$
 y crecen con $\frac{v_{n}}{||\mathbf{m}||_{2}^{2}}$.

DT13

Considérese el problema de decisión binaria descrito por:

$$p_{X_1,X_2|H}(x_1,x_2|0) = \begin{cases} \alpha x_2 & 0 < x_1 < \frac{1}{4} & 0 < x_2 < 1 \\ 0 & \text{en el resto} \end{cases}$$

$$p_{X_1, X_2 \mid H}(x_1, x_2 \mid 1) = \begin{cases} \beta x_1 & 0 < x_1 < 1 & 0 < x_2 < \frac{1}{2} \\ 0 & \text{en el resto} \end{cases}$$

- (a) Tras obtener los valores de las constantes α y β , represéntense las regiones de decisión correspondientes a un decisor LRT. Indíquese cómo varían las regiones de decisión en función del umbral del clasificador. ¿Existe algún valor de dicho umbral para el que el clasificador obtenido sea lineal?
- (b) Obténganse las densidades de probabilidad marginales de x_1 y x_2 bajo ambas hipótesis (H=0 y H=1). ¿Qué relación estadística existe entre X_1 y X_2 ?
- (c) Por sencillez, se decide utilizar un detector de umbral basado en una única observación, de X_1 o de X_2 :

DEC1:
$$x_1 \underset{D=0}{\overset{D=1}{\gtrless}} \eta_1$$
 DEC2: $x_2 \underset{D=1}{\overset{D=0}{\gtrless}} \eta_2$

Calcúlense las probabilidades de falsa alarma y de detección de los clasificadores DEC1 y DEC2, expresándolas en función de los umbrales de dichos decisores: η_1 y η_2 , respectivamente.

- (d) Dibújense las curvas características de operación (ROC) (i.e., las curvas que representan $P_{\rm D}$ en función de $P_{\rm FA}$) correspondientes a los decisores DEC1 y DEC2, y discútase cómo cambia el punto de operación de cada clasificador al modificar el valor del umbral correspondiente.
- (e) A la luz de los resultados obtenidos, ¿puede concluirse que alguno de los dos decisores propuestos, DEC1 o DEC2, sea superior al otro?.

Solution:

(a) $\alpha = 8 \text{ y } \beta = 4.$

Donde $p_{X_1,X_2|H}(x_1,x_2|0)$ o $p_{X_1,X_2|H}(x_1,x_2|1)$ son nulas se decide la hipótesis contraria. En la región donde ambas hipótesis no son nulas, considerando el LRT dado por

$$\frac{p_{X_1,X_2|H}(x_1,x_2|0)}{p_{X_1,X_2|H}(x_1,x_2|1)} \ \mathop{\gtrsim}_{D=1}^{D=0} \ \eta, \ \text{el decisor es:}$$

$$2x_2 - \eta x_1 \underset{D=1}{\overset{D=0}{\gtrless}} 0$$

Para $\eta = 4$ la frontera es lineal.

(b) Las observaciones son independientes entre sí bajo ambas hipótesis.

$$\begin{aligned} p_{X_1|H}(x_1|0) &= 4, \quad 0 < x_1 < \frac{1}{4} & p_{X_2|H}(x_2|0) &= 2x_2, \quad 0 < x_2 < 1 \\ p_{X_1|H}(x_1|1) &= 2x_1, \quad 0 < x_1 < 1 & p_{X_2|H}(x_2|1) &= 2, \quad 0 < x_2 < \frac{1}{2} \end{aligned}$$

(c) DEC1:
$$\begin{cases} P_{\text{FA}} = \begin{cases} 1 - 4\eta_1, & 0 < \eta_1 < 1/4 \\ 0, & 1/4 < \eta_1 < 1 \end{cases} & \text{DEC2:} \begin{cases} P_{\text{FA}} = \eta_2^2, & 0 < \eta_2 < 1 \\ P_{\text{D}} = 1 - \eta_1^2, & 0 < \eta_1 < 1 \end{cases} \\ P_{\text{D}} = \begin{cases} 2\eta_2, & 0 < \eta_2 < 1/2 \\ 1, & 1/2 < \eta_2 < 1 \end{cases}$$

(d) DEC1: $\eta_1=1$ estamos en el punto $P_{\rm FA}=0$ y $P_{\rm D}=0$, y si $\eta_1=0$ estamos en el punto $P_{\rm FA}=1$ y $P_{\rm D}=1$.

DEC2: $\eta_2=1$ estamos en el punto $P_{\rm FA}=1$ y $P_{\rm D}=1$, y si $\eta_2=0$ estamos en el punto $P_{\rm FA}=0$ y $P_{\rm D}=0$.

(e) No puede afirmarse que ninguno de los dos sea siempre mejor que el otro.

DT14

En un problema de decisión M-aria bidimensional con observaciones $\mathbf{x} = [x_1, x_2]^T$, se comprueba que $p_{X_1|X_2,H}(x_1|x_2,H=j)$ no depende de j. Se desea diseñar un decisor ML, aunque se sabe que las probabilidades a priori, $\{P_H(j)\}_{j=1}^M$ son diferentes. Discútase cuál de los siguientes diseños es válido:

- (a) $j^* = \arg \max_{i} \{ p_{X_1|H}(x_1|j) \}$
- (b) $j^* = \arg \max_{i} \{ p_{X_2|H}(x_2|j) \}$
- (c) $j^* = \arg \max_i \{ p_{X_2,H}(x_2, j) \}$

Solution: (b)

DT15

Se conocen las d.d.p. de tres variables aleatorias independientes:

$$p_{X_1}(x_1) = \begin{cases} 1, & 0 \le x_1 \le 1 \\ 0, & \text{en el resto} \end{cases}$$

$$p_{X_2}(x_2) = 2 \exp(-2x_2), \quad x_2 \ge 0$$

$$p_{X_3}(x_3) = 2 \exp(2(x_3 - 1)), \quad x_3 \le 1$$

Considerando las hipótesis:

$$\begin{array}{ll} H=1: & X=X_1 \\ H=2: & X=X_2 \\ H=3: & X=X_3 \end{array}$$

determine:

- (a) el decisor bayesiano que minimiza el coste medio global cuando las tres hipótesis son equiprobables y la política de costes es $c_{ii} = 0$, i = 1, 2, 3 y $c_{ij} = c$ con $i \neq j$.
- (b) las probabilidades de decidir D=i dada la hipótesis H=i, i.e., $P\{D=i|H=i\}$ para i=1,2,3.

Considerando ahora el problema de decisión binaria dado por:

$$H = 1:$$
 $X = X_1$
 $H = 0:$ $X = X_2 + X_3$

determine:

- (c) el correspondiente decisor ML.
- (d) las probabilidades de falsa alarma, $P\{D=1|H=0\}$, y de pérdidas, $P\{D=0|H=1\}$.

Solution:

(a) Dado que los costes son iguales para todos los tipos de error, y el coste de acertar es 0, el decisor bayesiano coincide con el MAP. Por otra parte, dado que las hipótesis son equiprobables, el decisor MAP coindice con el ML.

De acuerdo con el enunciado, se tienen las verosimilitudes

$$p_{X|H}(x|1) = p_{X_1}(x)$$

$$p_{X|H}(x|2) = p_{X_2}(x)$$

$$p_{X|H}(x|3) = p_{X_3}(x)$$

que se representan en la figura.

El punto de corte de las verosimilitudes de las hipótesis 1 y 2 está dado por la solución de

$$p_{X|H}(x|1) = p_{X|H}(x|2)$$

$$\Leftrightarrow 1 = 2\exp(-2x)$$

$$\Leftrightarrow x = \frac{\ln(2)}{2} \approx 0.35$$

Del mismo modo (y también por la simetría de las distribuciones, es inmediato comprobar que el punto de corte de las verosimilitudes de las hipótesis 1 y 3 es

$$x = 1 - \frac{\ln(2)}{2} \approx 0.66$$

por tanto, la regla de decisión del decisor bayesiano será

$$D = \begin{bmatrix} 1, & x \in (0.5 \ln(2), 1 - 0.5 \ln(2)) \\ 2, & x \in [0, 0.5 \ln(2)] \cup [1, \infty) \\ 3, & x \in (-\infty, 0] \cup [1 - 0.5 \ln(2), 1] \end{bmatrix}$$

(b)

$$\begin{split} P\{D=1|H=1\} &= P\{x \in (0.5\ln(2),\, 1-0.5\ln(2))|H=1\} \\ &= \int_{0.5\ln(2)}^{1-0.5\ln(2)} 1 \cdot dx \\ &= 1 - \ln(2) \approx 0.31 \end{split}$$

Analogamente

$$P\{D = 2|H = 2\} = \int_0^{0.5 \ln(2)} 2 \exp(-2x) dx + \int_1^{\infty} 2 \exp(-2x) dx$$
$$= [-\exp(-2x)]_0^{0.5 \ln(2)} + [-\exp(-2x)]_1^{\infty}$$
$$= \frac{1}{2} + e^{-2} \approx 0.64$$

y, por simetría

$$P\{D=3|H=3\} = \frac{1}{2} + e^{-2} \approx 0.64$$

(c) Las verosimilitudes de las nuevas hipótesis son:

$$p_{X|H}(x|0) = (p_{X_2} * p_{X_3})(x) = \exp(-2|x-1|)$$

$$p_{X|H}(x|1) = p_{X_1}(x)$$

(donde * denota el operador de convolución), y se representan en la figura

Por tanto, el decisor ML será

$$D = \begin{bmatrix} 0, & x \notin [0, 1] \\ 1, & x \in [0, 1] \end{bmatrix}$$

(d)

$$P_{\text{FA}} = P\{D = 1|H = 0\} = P\{0 \le x \le 1|H = 0\}$$

= $\int_0^1 \exp(2x - 2)dx = \frac{1}{2}(1 - e^{-2}) \approx 0.4323$

$$P_{\mathcal{M}} = P\{D = 0 | H = 1\} = P\{x \notin [0, 1] | H = 1\} = 0$$

Considérese el problema de decisión descrito por las siguientes verosimilitudes:

$$p_{X|H}(x|0) = \begin{cases} \frac{2}{a^2}x & 0 < x < a \\ 0 & \text{en el resto} \end{cases}$$

$$p_{X|H}(x|1) = \begin{cases} \frac{1}{a} & 0 < x < a \\ 0 & \text{en el resto} \end{cases}$$

Represéntese la curva característica de operación ($P_{\rm D}$ vs $P_{\rm FA}$) del decisor LRT con un umbral genérico η . Represéntese sobre dicha curva el punto de trabajo del decisor de máxima verosimilitud.

Solution: La curva ROC viene dada por la siguiente ecuación: $P_{\rm FA}=P_{\rm D}^2$. El punto de trabajo del decisor ML es: $P_{\rm D}=\frac{1}{2}$ y $P_{\rm FA}=\frac{1}{4}$

DT17

Un problema de decisión binaria bidimensional viene caracterizado por la equiprobabilidad de las hipótesis y por las verosimilitudes

$$\begin{array}{ll} p_{X_1,X_2|H}(x_1,x_2|0) = K_0x_1(1-x_2), & 0 \leq x_1 \leq 1, \quad 0 \leq x_2 \leq 1 \\ p_{X_1,X_2|H}(x_1,x_2|1) = K_1x_1x_2, & 0 \leq x_1 \leq 1, \quad 0 \leq x_2 \leq 1 \end{array}$$

- (a) Calcule los valores de las constantes K_0 y K_1 .
- (b) Establezca el decisor de mínima probabilidad de error, e indique el carácter de los estadísticos X_1 y X_2 .
- (c) Determine las ddp marginales $p_{X_i|H}(x_i|j)$, i=1,2 y j=0,1. ¿Qué relación estadística hay entre X_1 y X_2 bajo cada hipótesis?
- (d) Calcule $P_{\rm FA}$, $P_{\rm M}$ y $P_{\rm e}$.
- (e) En la práctica, la medida de X_2 viene acompañada de un ruido aditivo N independiente de X_1 , X_2 y H; es decir, se observa $Y = X_2 + N$. Diseñe el decisor óptimo para esta situación cuando la ddp de este ruido tiene la forma:

$$p_N(n) = 1, \quad 0 \le n \le 1$$

(f) Calcule P'_{FA} , P'_{M} y P'_{e} para la situación y el diseño del apartado anterior.

Solution:

(a) Dado que las verosimilitudes son densidades de probabilidad, su integral debe ser unitaria

$$\int_{0}^{1} \int_{0}^{1} p_{X_{1},X_{2}|H}(x_{1},x_{2}|0)dx_{1}dx_{2} = 1$$

$$\Rightarrow K_{0} \int_{0}^{1} \int_{0}^{1} x_{1}(1-x_{2})dx_{1}dx_{2} = 1$$

$$\Rightarrow K_{0} \int_{0}^{1} x_{1}dx_{1} \int_{0}^{1} (1-x_{2})dx_{2} = 1$$

$$\Rightarrow K_{0} = 4$$

Análogamente, resulta

$$\int_0^1 \int_0^1 p_{X_1,X_2|H}(x_1,x_2|1) dx_1 dx_2 = 1 \quad \Rightarrow \quad K_1 = 4$$

(b) El decisor de mínima probabilidad de error es el decisor MAP, dado por

$$\begin{split} P_{H}(1)p_{X_{1},X_{2}|H}(x_{1},x_{2}|1)dx_{1}dx_{2} & \overset{D=1}{\underset{D=0}{\gtrless}} \ P_{H}(0)p_{X_{1},X_{2}|H}(x_{1},x_{2}|0)dx_{1}dx_{2} \\ \Leftrightarrow & 4x_{1}x_{2} \overset{D=1}{\underset{D=0}{\gtrless}} \ 4x_{1}(1-x_{2}) \\ \Leftrightarrow & x_{2} \overset{D=1}{\underset{D=0}{\gtrless}} \ (1-x_{2}) \\ \Leftrightarrow & x_{2} \overset{D=1}{\underset{D=0}{\gtrless}} \ \frac{1}{2} \end{split}$$

Se observa que X_1 es irrelevante para la decisión y X_2 es un estadístico suficiente.

(c) Es inmediato comprobar que ambas verosimilitudes son factorizables como producto de dos densidades de probabilidad, una por cada variable:

$$p_{X_1,X_2|H}(x_1,x_2|0) = (2x_1) \cdot (2(1-x_2)), \qquad 0 \le x_1 \le 1, \quad 0 \le x_2 \le 1$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = (2x_1) \cdot (2x_2), \qquad 0 \le x_1 \le 1, \quad 0 \le x_2 \le 1$$

Por tanto, X_1 y X_2 son independientes, y las distribuciones marginales son estos factores.

$$\begin{split} p_{X_1|H}(x_1|0) &= 2x_1, & 0 \leq x_1 \leq 1 \\ p_{X_2|H}(x_2|0) &= 2(1-x_2), & 0 \leq x_2 \leq 1; \\ p_{X_1|H}(x_1|1) &= 2x_1, & 0 \leq x_1 \leq 1 \\ p_{X_2|H}(x_2|1) &= 2x_2, & 0 \leq x_2 \leq 1 \end{split}$$

(En cualquier caso, siempre puede calcular las distribuciones marginales por el procedimiento general. Así, por ejemplo,

$$p_{X_1|H}(x_1|0) = \int_0^1 p_{X_1,X_2|H}(x_1,x_2|0) dx = 4x_1 \int_0^1 (1-x_2) dx_2 = 2x_1, \qquad 0 \le x_1 \le 1$$

que coincide con el resultado mostrado anteriormente. De modo análogo se podría proceder con el resto de distribuciones).

(d)

$$\begin{split} P_{\mathrm{FA}} &= P\{D=1|H=0\} = P\left\{X_2 > \frac{1}{2}|H=0\right\} = \int_{\frac{1}{2}}^{1} p_{X_2|H}(x_2|0) dx_2 \\ &= \int_{\frac{1}{2}}^{1} 2(1-x_2) dx_2 = \frac{1}{4} \\ P_{\mathrm{M}} &= P\{D=0|H=1\} = P\left\{X_2 < \frac{1}{2}|H=1\right\} = \int_{0}^{\frac{1}{2}} p_{X_2|H}(x_2|1) dx_2 \\ &= \int_{0}^{\frac{1}{2}} 2x_2 dx_2 = \frac{1}{4} \\ P_{\mathrm{e}} &= P_{H}(0) P_{\mathrm{FA}} + P_{H}(1) P_{\mathrm{M}} = \frac{1}{4} \end{split}$$

(e) El decisor MAP basado en X_1 e Y estará dado por

$$p_{X_1,Y|H}(x_1,y|0) \underset{D=0}{\overset{D=1}{\gtrless}} p_{X_1,Y|H}(x_1,y|1)$$

Dado que Y solamente depende de X_2 y N, y dado que éstas son independientes de X_1 , se concluye que Y también es independiente de X_1 . Por tanto, el decisor MAP también puede escribirse como

$$\begin{array}{ccc} p_{X_1|H}(x_1|1)p_{Y|H}(y|1) & \mathop{\gtrsim}_{D=0}^{D=1} & p_{X_1|H}(x_1|0)p_{Y|H}(y|0) \\ \Leftrightarrow & p_{Y|H}(y|1) & \mathop{\gtrsim}_{D=0}^{D=1} & p_{Y|H}(y|0) \end{array}$$

Como Y es suma de dos variables independientes, su ddp será convolución de las ddps de cada una de ellas. Por tanto

$$\begin{split} p_{Y|H}(y|0) &= p_{X_2|H}(y|0) * p_{N|H}(y|0) = p_{X_2|H}(y|0) * p_N(y) \\ &= \begin{bmatrix} 2(1-y), & y \in [0,1] \\ 0, & y \notin [0,1] \end{bmatrix} * \begin{bmatrix} 1, & y \in [0,1] \\ 0, & y \notin [0,1] \end{bmatrix} \\ &= \begin{bmatrix} 2y-y^2, & 0 \le y \le 1 \\ 4-4y+y^2, & 1 < y \le 2 \\ 0, & y \notin [0,2] \end{bmatrix} \end{split}$$

Análogamente

$$\begin{split} p_{Y|H}(y|1) &= p_{X_2|H}(y|0) * p_N(y) = \left[\begin{array}{cc} 2y, & y \in [0,1] \\ 0, & y \notin [0,1] \end{array} \right] * \left[\begin{array}{cc} 1, & y \in [0,1] \\ 0, & y \notin [0,1] \end{array} \right] \\ &= \left[\begin{array}{cc} y^2, & 0 \leq y \leq 1 \\ 2y - y^2, & 1 < y \leq 2 \\ 0, & y \notin [0,2] \end{array} \right] \end{split}$$

Por tanto, el decisor MAP será

$$\begin{bmatrix} y^2, & 0 \le y \le 1 \\ 2y - y^2, & 1 < y \le 2 \\ 0, & y \notin [0, 2] \end{bmatrix} \xrightarrow{D=1} \begin{bmatrix} 2y - y^2, & 0 \le y \le 1 \\ 4 - 4y + y^2, & 1 < y \le 2 \\ 0, & y \notin [0, 2] \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} y^2 & \sum_{D=0}^{D=1} & 2y - y^2 & 0 \le y \le 1 \\ 2y - y^2 & \sum_{D=0}^{D=1} & 4 - 4y + y^2, & 1 < y \le 2 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} y & \sum_{D=0}^{D=1} & 0 \le y \le 1 \\ 0 & \sum_{D=0}^{D=1} & 0 \le y \le 1 \\ 0 & \sum_{D=0}^{D=1} & 0 \le y \le 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} D = 0 & 0 \le y \le 1 \\ D = 1, & 1 < y \le 2 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} D = 0 & 0 \le y \le 1 \\ D = 1, & 1 < y \le 2 \end{bmatrix}$$

$$\Leftrightarrow y & \sum_{D=0}^{D=1} & 0 \le y \le 1 \\ D = 1, & 1 < y \le 2 \end{bmatrix}$$

(f)
$$\begin{split} P_{\mathrm{FA}}' &= P_{D|H}(1|0) = P\left\{Y > 1 \middle| H = 0\right\} = \int_{1}^{2} p_{Y|H}(y|0) dy = \int_{1}^{2} \left(4 - 4y + y^{2}\right) dy = \frac{1}{3} \\ P_{\mathrm{M}}' &= P_{D|H}(0|1) = P\left\{Y < 1 \middle| H = 1\right\} = \int_{0}^{1} p_{Y|H}(y|1) dy = \int_{0}^{1} 2y - y^{2} dy = \frac{1}{3} \\ P_{\mathrm{e}} &= P_{H}(0) P_{\mathrm{FA}} + P_{H}(1) P_{\mathrm{M}} = \frac{1}{3} \end{split}$$

DT18

Un sistema genera dos observaciones, X_1 y X_2 , que, tanto bajo hipótesis H=0 como H=1, son independientes e idénticamente distribuidas, siendo

$$p_{X_i|H}(x_i|1) = 2x_i$$
 $0 < x_i < 1$
 $p_{X_i|H}(x_i|0) = 2(1 - x_i)$ $0 < x_i < 1$

Suponga hipótesis equiprobables.

(a) Determine el decisor MAP basado en X_1 y calcule su probabilidad de error.

Sea DMAP1 el decisor del apartado a), suponga que si $|x_1 - 0.5| < a$ (siendo 0 < a < 0.5), se observa X_2 y, con objeto de seguir aplicando decisión por umbral, se descartan X_1 y la decisión de DMAP1. En su lugar, se aplica un segundo decisor, basado en X_2 y también MAP, que llamaremos DMAP2.

- (b) Represente gráficamente sobre el plano $X_1 X_2$, para un valor de a arbitrario, las regiones de decisión del esquema conjunto DMAP1-DMAP2.
- (c) Determine la probabilidad de error global del esquema conjunto DMAP1-DMAP2.
- (d) Determine la máxima reducción de la probabilidad de error global que puede conseguirse utilizando el esquema conjunto, respecto al decisor DMAP1.
- (e) Compare las prestaciones del decisor conjunto DMAP1-DMAP2 con las del decisor MAP que utiliza simultáneamente X_1 y X_2 .

Solution:

(a)
$$x_1 \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2}$$
 $P_e = \frac{1}{4}$

(b)
$$D = 0$$
: $x_1 < 1/2 - a$ y $1/2 - a < x_1 < 1/2 + a$, $x_2 < 1/2$
 $D = 1$: $1/2 - a < x_1 < 1/2 + a$, $x_2 > 1/2$ y $x_1 > 1/2 + a$

(c)
$$P_e = a^2 - 0.5a + 0.25$$

(d) La variación máxima de la probabilidad de error es $\frac{1}{16}$

(e) DMAP(
$$X_1$$
 y X_2): $P_e = \frac{1}{6}$ DMAP1- DMAP2: P_e varía de $\frac{1}{4}$ a $\frac{1}{16}$

DT19

Considérese el problema de decisión binaria descrito por:

$$p_{X_1,X_2|H}(x_1,x_2|i) = a_i^2 \exp(-a_i(x_1+x_2))$$
 $x_1,x_2 > 0$ $i = 0,1$

donde $a_0 = 1$ y $a_1 = 2$.

- (a) Diséñese el decisor MAP correspondiente en función del parámetro $R = P_H(1)/P_H(0)$.
- (b) Compruébese que $T=X_1+X_2$ es un estadístico suficiente y calcúlense las verosimilitudes de dicho estadístico, $p_{T|H}(t|i)$, i=0,1.
- (c) Calcúlense las probabilidades de falsa alarma, de pérdida y de error del decisor diseñado en (a).

(a)
$$D = 1: x_1 + x_2 < \ln(4R)$$

 $D = 0: x_1 + x_2 > \ln(4R)$

(b)
$$D = 1: t < \ln(4R)$$

 $D = 0: t > \ln(4R)$

$$p_{T|H}(t|0) = t \exp(-t), \quad t > 0$$
 $p_{T|H}(t|1) = 4t \exp(-2t), \quad t > 0$

(c)
$$P_{\text{FA}} = 1 - \frac{1 + \ln(4R)}{4R}$$
 $P_{\text{M}} = \frac{1 + 2\ln(4R)}{(4R)^2}$ $P_{\text{e}} = P_{H}(0)\left(1 - \frac{3}{16R} - \frac{1}{8R}\ln(4R)\right)$

DT20

En un problema de decisión binaria con hipótesis equiprobables donde las verosimilitudes de las observaciones son:

$$p_{X|H}(x|0) = 2(1-x)$$
 $0 < x < 1$
 $p_{X|H}(x|1) = 1/a$ $0 < x < a$

siendo $a \ge 1$ un parámetro determinista.

(a) Considerando que la política de costes viene dada por: $c_{00} = c_{11} = 0$ y $c_{01} = c_{10} = 1$, diséñese el decisor óptimo supuesto que es conocido el valor de a.

Supóngase ahora que el valor de a es desconocido. Se opta por aplicar una estrategia minimax, fijando para la toma de decisiones un umbral x_u^* elegido para minimizar el máximo coste medio; es decir,

$$x_u^* = \arg\left\{\min_{x_u} \left\{\max_a C(x_u, a)\right\}\right\}$$

siendo x_u un umbral de decisión genérico

$$x \underset{D=0}{\overset{D=1}{\gtrless}} x_u$$

- (b) Determinese x_u^* .
- (c) Calcúlese el incremento del coste medio que se produce al aplicar la estrategia minimax respecto al que se tendría si el valor del parámetro a fuese conocido.

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\geqslant}} 1 - \frac{1}{2a} \quad 0 < x < a$$

(b)
$$x_u^* = \frac{1}{2}$$

(c)
$$\Delta P_{\rm e} = \frac{1}{8} - \frac{1}{4a} \left(1 - \frac{1}{2a} \right)$$
 nulo para $a = 1$ y positivo para $a > 1$.

DT21

Considérese el problema bidimensional binario Gaussiano

$$p_{X_1,X_2|H}(x_1,x_2|0) = G\left(\left[\begin{array}{c} 1 \\ 0 \end{array}\right], \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right]\right)$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = G\left(\left[\begin{array}{c} 0\\1 \end{array} \right], \left[\begin{array}{cc} 2 & -1\\-1 & 2 \end{array} \right] \right)$$

Las probabilidades de las hipótesis son $P_H(0) = 2/3$ y $P_H(1) = 1/3$, y los costes asociados son $c_{00} = c_{11} = 0$, $c_{01} = c_{10} = 1$.

- (a) Establézcase la expresión que proporciona el correspondiente decisor Bayesiano en función del vector de observaciones X.
- (b) Representese cómo se desplaza la frontera de decisión al variar el valor de $P_H(0)$.

Solution:

(a)
$$x_2 - x_1 \underset{D=0}{\overset{D=1}{\gtrless}} 10 \ln 2$$

(b) Si aumenta $P_H(0)$ la frontera se mueve hacia el punto $[0,1]^T$ y si disminuye $P_H(0)$ la frontera se mueve hacia el punto $[1,0]^T$.

DT22

Considérese un escenario de decisión radar en el que se sabe que los blancos que se desea detectar pueden causar ecos con dos niveles diferentes de intensidad:

$$H=0$$
 (no hay blanco): $X=N$
$$H=1 \text{ (hay blanco):} \begin{cases} H=1a: & X=s_1+N\\ H=1b: & X=s_2+N \end{cases}$$

donde los valores reales s_1 y s_2 son los dos niveles de eco conocidos para cada tipo de blanco, y N es una v.a. con distribución G(0,1). Se sabe, además, que $P_H(1a|1) = P$ y $P_H(1b|1) = 1 - P$ (0 < P < 1).

- (a) Establézcase la forma general del test de razón de verosimilitudes que permite discriminar H=0 frente a H=1, y justifíquese que si los signos de s_1 y s_2 coinciden, dicho detector es un detector de un único umbral.
- (b) ¿Existen combinaciones de valores de s_1 y s_2 para los que un test de máxima verosimilitud decida siempre la misma hipótesis?
- (c) Asumiendo $s_2 < s_1 < 0$ y el siguiente detector de umbral:

$$x \underset{D=1}{\overset{D=0}{\gtrless}} \eta$$

determínense $P_{\rm FA}$ y $P_{\rm D}$ en función de η y exprese su resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

Represéntese de forma aproximada la curva ROC (P_D vs P_{FA} en función de η) del detector, situando sobre la misma los puntos correspondientes a $\eta \to \pm \infty$, e indicando cómo varía el punto de trabajo en función del umbral.

- (d) Explíquese qué efectos tendrían sobre la ROC:
 - \blacksquare aumentar s_1 .
 - disminuir s_2 .
 - \blacksquare aumentar P.
 - aumentar $P_H(0)$.

Solution:

(a)
$$P \exp\left(-\frac{1}{2}\left(s_1^2 - 2s_1x\right)\right) + (1 - P) \exp\left(-\frac{1}{2}\left(s_2^2 - 2s_2x\right)\right) \underset{D=0}{\overset{D=1}{\geqslant}} \eta$$

(b) No

(c)
$$P_{\text{FA}} = F(\eta)$$
, $P_{\text{D}} = 1 - PF(\eta - s_1) - (1 - P)F(\eta - s_2)$

- (d) aumentar s_1 : disminuye el area de la ROC
 - disminuir s_2 : aumenta el area de la ROC
 - \blacksquare aumentar P: disminuye el area de la ROC
 - aumentar $P_H(0)$: no afecta

DT23

Considérese el problema de decisión binaria descrito por

$$p_{X|H}(x|0) = a_0 x^2$$
 $|x| < 1$
 $p_{X|H}(x|1) = a_1 (3 - |x|)$ $|x| < 3$

donde a_0 y a_1 son constantes, las probabilidades de las hipótesis son iguales y los costes $c_{00} = c_{11} = 0$, $c_{10} = c_{01} = c$ para c > 0.

- (a) Calcúlense las constantes a_0 y a_1 .
- (b) Determínese el decisor correspondiente.
- (c) Calcúlese la probabilidad de error de ese decisor.
- (d) Diséñese el decisor Neyman-Pearson que garantiza una $P_{\rm FA}$ no superior a un valor dado $\alpha.$

Solution:

- (a) $a_0 = 3/2$ y $a_1 = 1/9$.
- (b) D = 1: |x| < 0.43 y |x| > 1D = 0: 0.43 < |x| < 1
- (c) $P_{\rm e} = 0.184$.
- $\begin{array}{ll} \text{(d)} & D=1: & |x| < \alpha^{1/3} \; \mathbf{y} \; |x| > 1 \\ D=0: & \alpha^{1/3} < |x| < 1 \end{array}$

DT24

Considere el problema de decisión binaria especificado por los costes $c_{00} = c_{11} = 0$, $c_{01} = c_{10} = 1$,

$$\begin{aligned} p_{X|H}(x|0) &= \lambda_0 \exp\left(-\lambda_0 x\right) & & x \geq 0 \\ p_{X|H}(x|1) &= \lambda_1 \exp\left(-\lambda_1 x\right) & & x \geq 0 \end{aligned}$$

siendo $\lambda_0 = 2\lambda_1$.

- (a) Diseñe el decisor de mínimo coste medio suponiendo $P_H(1) = 1/2$.
- (b) Determine las probabilidades $P_{\rm FA}$ y $P_{\rm M}$ del decisor obtenido en (a).
- (c) Suponiendo que el verdadero valor de $P_H(1)$ es P > 0, represente gráficamente el riesgo del detector obtenido en a) en función de P.
- (d) Se aplica la decisión anterior a dos observaciones independientes. Determine la probabilidad de cometer exactamente 0, 1 y 2 errores, en función de P.

- (e) Suponga que el riesgo asociado a las dos decisiones no es la suma de los costes de cada decisión, sino que
 - El coste de acertar en ambas decisiones es 0.
 - El coste de cometer un solo error es 1.
 - El coste de cometer 2 errores es c = 18.

Represente gráficamente el valor medio del riesgo total en función de P.

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{\lambda_1} \ln 2$$

(b)
$$P_{\rm FA} = 0.25$$
 $P_{\rm M} = 0.5$

(c)
$$R = (1+P)/4$$

(d)
$$P \{0 \text{ errores}\} = \frac{1}{16} (3 - P)^2$$

 $P \{1 \text{ error}\} = 2 \cdot \frac{1}{4} (1 + P) \cdot \frac{1}{4} (3 - P)$
 $P \{2 \text{ errores}\} = \frac{1}{16} (1 + P)^2$

(e) El riesgo de dos decisiones es: $P^2 + \frac{5}{2}P + \frac{3}{2}$.

DT25

Un instituto de estudios sociológico quiere predecir que partido va a ganar las próximas elecciones. Para ello lo primero que intenta evaluar es si la participación del electorado va a ser baja o alta. Históricamente se sabe que una participación baja favorece al PDD y una participación alta favorece al CSI. La verosimilitud de que gane cada partido con una participación alta y baja se muestra en la siguiente tabla:

p(Participación Partido ganador)	baja	alta
PDD	0.7	0.3
CSI	0.4	0.6

Una vez que se ha medido la participación se mide el carisma del líder de cada partido político y se obtiene la siguiente tabla de probabilidades condicionada al partido ganador y a si la participación es alta o baja:

p(Carisma Participación, Partido ganador)	_	=	+
baja, PDD	0.6	0.3	0.1
alta, PDD	0.5	0.15	0.35
baja, CSI	0.4	$0.15 \\ 0.2$	0.4
	0.1	0.1	0.8

En la tabla, — indica que el líder del PDD es más carismático, + indica que el líder del CLI es más carismático e = indica que ambos tienen el mismo carisma.

Por último se realiza una encuesta a los ciudadanos sobre su intención de voto y se obtiene la siguiente tabla de verdad conjunta entre el partido ganador y lo que predijeron las encuestas:

p(Partido ganador, predicción)	Pred. PDD	Pred. CSI
PDD	0.35	0.05
CSI	0.2	0.4

Para conocer la efectividad de las tres medidas (suponer que la victoria del CSI es la hipótesis nula), determine:

- (a) El decisor de máxima verosimilitud para las pruebas de participación y carisma realizadas de forma conjunta. Asimismo, determine la probabilidad que se prediga de forma correcta que ganó el PDD y la de que ganó el CSI.
- (b) El decisor de máximo a posteriori para las pruebas de participación y las encuestas realizadas de forma conjunta. Calcule la probabilidad de equivocarse.
- (c) Calcule la ROC del LRT para las pruebas de participación y carisma realizadas de forma conjunta. Marque en ella la solución de máxima verosimilitud.
- (d) Obtenga el detector de Neyman-Pearson para las tres pruebas de forma conjunta con una probabilidad de falsa alarma máxima de 0.1 y calcule la probabilidad de detección. Utilice para ello la siguiente tabla de probabilidades condicionadas a cada una de las hipótesis.

	PDD	PDD	PDD	PDD	PDD	PDD	CSI	CSI	CSI	CSI	CSI	CSI
$P(dat \mid H_i)$	baja	$_{ m baja}$	baja	alta	alta	alta	baja	baja	baja	alta	alta	alta
	_	=	+	_	=	+	_	=	+	_	=	+
PDD	0.3675	0.1837	0.0612	0.1312	0.0525	0.0788	0.0525	0.0262	0.0087	0.0187	0.0075	0.0112
CSI	0.0533	0.0267	0.0533	0.0200	0.0200	0.1600	0.1067	0.0533	0.1067	0.0400	0.0400	0.3200

Solution:

(a) El decisor ML es:

$$P\left\{D=CSI|H=CSI\right\}=0.7\text{ y }P\left\{D=PDD|H=PDD\right\}=0.78$$

(b) El decisor MAP es:

Participación \ Predicción	Pred. PDD	Pred. CSI
baja	PDD	CSI
alta	CSI	CSI

$$P_{\rm e} = 0.235$$

(c) La curva ROC viene dada por los siguientes puntos de trabajo

Rango de η	P_{FA}	P_{D}
$\eta < 0.21875$	1	1
$0.21875 < \eta < 0.4375$	0.52	0.895
$0.4375 < \eta < 0.75$	0.36	0.825
$0.75 < \eta < 2.5$	0.3	0.78
$2.5 < \eta < 2.625$	0.24	0.63
$2.625 < \eta$	0	0

El punto de trabajo del decisor ML se da cuando $0.75 < \eta < 2.5$.

(d) Para obtener el decisor de Neyman-Pearson el umbral del LRT debe estar en el intervalo de valores (4.92, 6.56). Y en ese caso $P_D = 0.6824$

DT26

Los clientes de una compañía de seguros se dividen en dos clases, clientes prudentes (H=0) y clientes temerarios (H=1). La probabilidad de que un cliente prudente tenga k accidentes en un año se modela como una distribución de Poisson de parámetro unidad:

$$P_{K|H}(k|0) = \frac{\exp(-1)}{k!}, \quad k = 0, 1, 2, \dots$$

mientras que en el caso de los clientes temerarios esta probabilidad se modela como una distribución de Poisson de parámetro 4:

$$P_{K|H}(k|1) = \frac{4^k \exp(-4)}{k!}, \quad k = 0, 1, 2, \dots$$

(donde se considera 0!=1)...

- (a) Diseñe un decisor de máxima verosimilitud que detecte si un cliente es prudente o temerario en función del número de accidentes que ha sufrido durante el primer año.
- (b) Las prestaciones del decisor diseñado en el apartado anterior se pueden evaluar en función de dos parámetros:
 - el porcentaje de clientes prudentes que se clasifican como temerarios;
 - el porcentaje de clientes temerarios que se clasifiquen como prudentes y supongan pérdidas para la compañía;

Relacione esas cantidades con las probabilidades de falsa alarma, de detección, y calcule estas.

(c) Un estudio estadístico encargado por la compañía arroja que solamente uno de cada 17 clientes es temerario. Calcule el decisor de menor probabilidad de error a la vista de esta nueva información. Compare este decisor con el diseñado en el apartado (a) en términos de probabilidad de error, de falsa alarma y de pérdida.

Solution:

- (a) $k \underset{D=0}{\overset{D=1}{\gtrless}} 2.16$.
- (b) $P_{\rm FA}=8\,\%$ (es el porcentaje de clientes prudentes que abandonan la compañía). $P_{\rm D}=76.2\,\%$ (es el porcentaje de clientes temerarios que se clasifican como tales)
- (c) $k \underset{D=0}{\overset{D=1}{\gtrless}} 4.16$. $P_{\text{FA}} = 0.37\%$. $P_{\text{M}} = 37.11\%$ y $P_{\text{e}} = 4\%$.

La $P_{\rm e}$ del decisor ML es 8.9 %.

DT27

Considere un problema de decisión binaria unidimensional con verosimilitudes $p_{X|H}(x|h)$ y probabilidades a priori $P_H(h)$, con $h \in \{0,1\}$ y $P_H(1) = 0.6$.

- (a) Se sabe que $P_{H|X}(h|x) = P_H(h)$, para $h \in \{0,1\}$ y para todo x. Determine el decisor MAP.
- (b) ¿Cuál es la probabilidad de error del decisor obtenido en el apartado anterior?
- (c) Ignore ahora la condición del apartado (a). Por contra, se sabe que las verosimilitudes son simétricas una de otra, es decir, $p_{X|H}(x|1) = p_{X|H}(-x|0)$. Determine un valor del umbral μ que garantice que el decisor de la forma

$$x \underset{D=0}{\overset{D=1}{\gtrless}} \mu$$

verifica $P_{FA} = P_M$.

(d) Proponga, mediante una fórmula o un dibujo, un ejemplo de verosimilitudes simétricas (como en el apartado anterior) para las que el decisor ML no es de tipo umbral, es decir, no puede expresarse en la forma

$$x \underset{D=0}{\overset{D=1}{\gtrless}} \alpha$$

- (a) Siempre se decide D = 1.
- (b) $P_{\rm e} = 0.4$
- (c) $\mu = 0$
- (d)

DT28

Considere un problema de decisión binaria con hipótesis equiprobables y observaciones caracterizadas por

$$H = 0: X = N_0$$

 $H = 1: X = a + N_1$

siendo a una constante conocida y N_0 y N_1 variables aleatorias gaussianas con distribuciones $N_0 \sim G(0, v_0)$ y $N_1 \sim G(0, v_1)$, respectivamente.

- (a) Para a > 0, ilustre gráficamente las regiones de decisión que se obtendrían en los casos $v_0 > v_1$, $v_0 < v_1$ y $v_0 = v_1$.
- (b) Considere para el resto del ejercicio $a=0,\,v_0=1$ y $v_1=2$. Obtenga la regla de decisión que minimiza la probabilidad de error del decisor.
- (c) Obtenga las probabilidades de falsa alarma y de detección que se obtienen al utilizar el decisor anterior. Exprese el resultado haciendo uso de la función

$$F(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

(d) Sobre una representación aproximada de la ROC de los decisores tipo LRT

$$\frac{p_{X|H}(x|1)}{p_{X|H}(x|0)} \mathop{\gtrsim}_{D=0}^{D=1} \eta$$

indique cómo se desplazaría el punto de trabajo del decisor:

- \blacksquare al incrementar el umbral η del decisor.
- si crece la probabilidad a priori de la hipótesis H = 1.

Solution:

(a) Si $v_0 = v_1$ se obtendría un decisor de único umbral, en caso contrario se obtienen decisores con dos umbrales.

(b)
$$|x| \underset{D=0}{\overset{D=1}{\gtrless}} \sqrt{2 \ln 2} = x_u$$

(c)
$$P_{\text{FA}} = 2F(-x_u), \qquad P_{\text{D}} = 2F\left(\frac{-x_u}{\sqrt{2}}\right)$$

(d) Si η crece disminuyen $P_{\rm FA}$ y $P_{\rm D}$. Si $P_H(1)$ crece, manteniendo η constante, el punto de trabajo no varía.

DT29

Considere el problema de decisión binaria dado por las verosimilitudes

$$p_{\mathbf{X}|H}\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]|H=0\right) \sim G\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right), \qquad p_{\mathbf{X}|H}\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]|H=1\right) \sim G\left(\left[\begin{array}{c} 1 \\ 1 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right)$$

- (a) Obtenga la expresión del decision ML y compruebe que para la toma de la decisión es suficiente conocer la variable $T = X_1 + X_2$.
- (b) Obtenga las densidades de probabilidad $p_{T|H}(t|0)$ y $p_{T|H}(t|1)$.
- (c) Calcule las probabilidades de falsa alarma y de pérdida a partir de las verosimilitudes obtenidas en el apartado anterior. Exprese el resultado haciendo uso de la función

$$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

Solution:

(a)
$$t = x_1 + x_2 \underset{D=0}{\overset{D=1}{\gtrless}} 1$$

(b)
$$p_{T|H}(t|0) \sim G(0,2) \text{ y } p_{T|H}(t|1) \sim G(2,2).$$

(c)
$$P_{\text{FA}} = P_{\text{M}} = 1 - F\left(\frac{1}{\sqrt{2}}\right)$$

DT30

Se tiene un problema de clasificación binaria definido por las siguientes verosimilitudes:

$$p_{X|H}(x|0) = 2\exp(-2x)$$
 $x > 0$

$$p_{X|H}(x|1) = 1 \quad 0 < x < 1$$

(a) Obtenga el test de razón de verosimilitudes para un valor genérico del umbral η

$$\frac{p_{X|H}(x|1)}{p_{X|H}(x|0)} \underset{D=0}{\overset{D=1}{\gtrless}} \eta$$

- (b) Calcule la probabilidad de falsa alarma y de pérdidas del decisor anterior en función de η
- (c) Represente la curva característica de operación del decisor e indique sobre la misma los puntos de trabajo de:
 - El decisor de máxima verosimilitud
 - El decisor máximo a posteriori si $P_H(0) = 2P_H(1)$
 - El decisor Neyman Pearson para $P_{FA} \leq 0.1$

(d) Considere ahora el siguiente decisor de umbral sobre la observación x

$$x \underset{D=0}{\overset{D=1}{\gtrless}} \eta_u$$

y obtenga su probabilidad de falsa alarma y de pérdidas en función de η_u

(e) Represente la curva característica de operación del decisor de umbral anterior y compárela con la curva característica del decisor LRT. ¿Qué esquema de decisión (el obtenido mediante el LRT o mediante un test de umbral) presenta mejores prestaciones? Justifique su respuesta.

Solution:

(a)
$$\begin{cases} D = 1: & \eta' < x < 1 \\ D = 0: & 0 < x < \eta' \quad \text{y} \quad x > 1 \end{cases}$$
 donde $\eta' = \frac{1}{2} \ln 2\eta \text{ y } \eta' > 0$

(b)
$$P_{\text{FA}} = \begin{cases} \exp(-2\eta') - \exp(-2) & 0 < \eta' < 1 \\ 0 & \eta' > 1 \end{cases}$$
 $P_{\text{M}} = \begin{cases} \eta' & 0 < \eta' < 1 \\ 1 & \eta' > 1 \end{cases}$

(c)

(d)
$$P_{\text{FA}} = \exp(-2\eta_u)$$
 $P_{\text{M}} = \begin{cases} \eta_u & 0 < \eta_u < 1 \\ 1 & \eta_u > 1 \end{cases}$

(e)

Como era de esperar la curva ROC del decisor LRT está por encima de la ROC del decisor de umbral, por lo que confirmamos que el decisor LRT presenta mejores prestaciones.

DT31

Considere el problema de decisión binaria dado por las verosimilitudes

$$p_{X|H}(x|0) = n(1-x)^{n-1}, \qquad 0 \le x \le 1$$

$$p_{X|H}(x|1) = nx^{n-1}, \qquad 0 \le x \le 1$$

siendo $n \geq 2$ un número natural.

- (a) Determine las regiones de decisión de un decisor LRT, en función de su umbral, η .
- (b) Determine, en función de $n y \eta$, las probabilidades de falsa alarma y pérdida.
- (c) Determine el decisor minimax.

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{\eta^{\frac{1}{n-1}}}{1 + \eta^{\frac{1}{n-1}}}$$

(b)
$$P_{\text{FA}} = \left(\frac{1}{1+\eta^{\frac{1}{n-1}}}\right)^n$$

 $P_{\text{M}} = \left(\frac{\eta^{\frac{1}{n-1}}}{1+\eta^{\frac{1}{n-1}}}\right)^n$

(c)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2}$$

DT32

Considere un problema de clasificación binaria caracterizado por $P_H(0) = P_H(1) = 1/2$, $c_{00} = c_{11} = 0$, $c_{01} = 9$, $c_{10} = 8$, y verosimilitudes

$$p_{X|H}(x|0) = 1 - \frac{x}{2}; \qquad 0 \le x \le 2$$

$$p_{X|H}(x|1) = \frac{2}{3}; \qquad 0 \le x \le 3/2$$

(a) Considere un clasificador LRT genérico:

$$\frac{p_{X|H}(x|0)}{p_{X|H}(x|1)} \ \mathop{\gtrless}_{D=1}^{D=0} \ \eta$$

Muestre gráficamente las regiones de decisión de dicho clasificador en el intervalo $x \in [0, 2]$, indicando cómo varían dichas regiones con η .

- (b) Calcule $P_{\rm FA}$ y $P_{\rm D}$ para el clasificador LRT, expresándolas como función de η .
- (c) Diseñe el clasificador ML, y calcule sus $P_{\rm FA}$ y $P_{\rm M}$.
- (d) Considere ahora el siguiente clasificador de umbral genérico:

$$x \underset{D=0}{\overset{D=1}{\gtrless}} \eta'$$

Obtenga, en función de η' , los valores de $P_{\rm FA}$ y $P_{\rm D}$. Rellene la siguiente tabla particularizando las expresiones obtenidas para los valores indicados del umbral.

η'	0	0.5	1	1.5	2
P_{FA}					
P_{D}					

(e) Proporcione, en función del valor de η' , la expresión del coste medio para la familia de clasificadores de umbral considerada en el apartado anterior. Encuentre el valor de η' que minimiza dicho coste medio.

(a) Si $x > \frac{3}{2}$ siempre se decide D = 0. Si $x > \frac{3}{2}$ el decisor LRT queda:

$$x \underset{D=0}{\overset{D=1}{\gtrless}} 2 - \frac{4\eta}{3} = \mu$$

Que indica:

- Si $\eta > \frac{3}{2} \ (\mu < 0)$ siempre se decide D = 1.
- Si $\eta < \frac{3}{8} (\mu > \frac{3}{2})$ siempre se decide D = 0.
- \bullet Si $\frac{3}{2} < \eta < \frac{3}{8}$, se decide D=0 si $0 < x < \mu$ y D=1 si $\mu < x < \frac{3}{2}$
- (b) Si $\eta > \frac{3}{2} (\mu < 0), P_{FA} = P_D = 1.$
 - Si $\eta < \frac{3}{8} (\mu > \frac{3}{2}), P_{\text{FA}} = P_{\text{D}} = 0$
 - Si $\frac{3}{2} < \eta < \frac{3}{8}$, $P_{\text{FA}} = \frac{15}{16} \mu + \frac{\mu^2}{4}$, $P_{\text{D}} = 1 \frac{2\mu}{3}$

(c) Decisor ML
$$(\eta = 1 \text{ y } \mu = \frac{2}{3})$$
: $P_{\text{M}} = \frac{4}{9} \text{ y } P_{\text{FA}} = \frac{55}{144}$

(d) Si
$$0 < \eta' < \frac{3}{2}$$
: $P_{\text{FA}} = 1 - \eta' + \frac{\eta'^2}{4}$ y $P_{\text{D}} = 1 - \frac{2\eta'}{3}$
Si $\frac{3}{2} < \eta' < 2$: $P_{\text{FA}} = 1 - \eta' + \frac{\eta'^2}{4}$ y $P_{\text{D}} = 0$

η'	0	0.5	1	1.5	2
P_{FA}	1	$\frac{9}{16}$	$\frac{1}{4}$	$\frac{1}{16}$	0
P_{D}	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0

(e)
$$\mathbb{E}\left\{c_{DH}\right\} = \left[\eta' - 2\right]^2 + 3\eta', \text{ si } 0 < \eta' < \frac{3}{2}$$

 $\mathbb{E}\left\{c_{DH}\right\} = \left[\eta' - 2\right]^2 + \frac{9}{2}, \text{ si } \eta' > \frac{3}{2}$
 $\eta'^* = \frac{1}{2}$

DT33

Se tiene un problema de decisión binaria definido por las siguientes verosimilitudes:

$$p_{X_1,X_2|H}(x_1,x_2|0) = G\left(\left[\begin{array}{c} -1 \\ 0 \end{array} \right], \left[\begin{array}{c} 1 & \rho \\ \rho & 1 \end{array} \right] \right)$$

$$p_{X_1,X_2|H}(x_1,x_2|1) = G\left(\left[\begin{array}{c} 1\\0\end{array}\right],\left[\begin{array}{c} 1&\rho\\\rho&1\end{array}\right]\right)$$

siendo $|\rho| < 1$.

- (a) Obtenga el decisor de máxima verosimilitud.
- (b) Considere la v.a. $Z = X_1 \rho X_2$ y obtenga las verosimilitudes de H = 0 y H = 1 sobre dicha v.a., $p_{Z|H}(z|0)$ y $p_{Z|H}(z|1)$.
- (c) Considerando los resultados de los apartados anteriores, calcule las probabilidades de falsa alarma y de pérdida del decisor diseñado en (a); exprese estas probabilidades utilizando la función

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

(a)
$$X_1 - \rho X_2 \stackrel{D=1}{\underset{D=0}{\gtrless}} 0$$

(b)
$$p_{Z|H}(z|0) = G(-1, 1 - \rho^2)$$
 $p_{Z|H}(z|1) = G(1, 1 - \rho^2)$

(c)
$$P_{\text{FA}} = P_{\text{M}} = F\left(-\frac{1}{\sqrt{1-\rho^2}}\right)$$

DT34

Considere un problema de decisión binaria con hipótesis equiprobables basado en la observación de una variable aleatoria X, con verosimilitudes.

$$p_{X|H}(x|0) = \begin{cases} 1, & 0 \le x \le 1\\ 0, & \text{en el resto} \end{cases}$$

$$p_{X|H}(x|1) = \left\{ \begin{array}{ll} 2x, & 0 \leq x \leq 1 \\ 0, & \text{en el resto} \end{array} \right.$$

- (a) Calcule la probabilidad de error del decisor MAP.
- (b) Determine el decisor Neyman-Pearson de probabilidad de falsa alarma $P_{\rm FA} \leq 1/4$.
- (c) Ahora suponga que la variable aleatoria hipótesis puede tomar un tercer valor H=2, con verosimilitud

$$p_{X|H}(x|2) = \begin{cases} 2(1-x), & 0 \le x \le 1\\ 0, & \text{en el resto} \end{cases}$$

Para el caso de que las 3 hipótesis sean equiprobables y se aplique una política de costes

$$c_{00} = c_{11} = c_{22} = 0, c_{02} = c_{10} = c_{12} = c_{20} = 1, c_{01} = c_{21} = 2$$

donde c_{dh} es el coste de decidir D = d cuando la hipótesis correcta es H = h, calcule el coste medio de tomar cada decisión a la vista de X, es decir, calcule

$$\mathbb{E}\{c_{0,H}|x\}, \ \mathbb{E}\{c_{1,H}|x\} \ \mathbf{y} \ \mathbb{E}\{c_{2,H}|x\}$$

(d) Represente los costes medios calculados en el apartado anterior como funciones de la observación x y determine las regiones del decisor de mínimo coste medio.

Solution:

(a)
$$P_{\rm e} = \frac{3}{8}$$

(b)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{3}{4}$$

(c)
$$\mathbb{E}\{c_{0,H}|x\} = \frac{2}{3}x + \frac{2}{3}$$
 $\mathbb{E}\{c_{1,H}|x\} = 1 - \frac{2}{3}x$ $\mathbb{E}\{c_{2,H}|x\} = \frac{4}{3}x + \frac{1}{3}$

(d)
$$\begin{cases} D = 2 & 0 \le x \le \frac{1}{3} \\ D = 1 & \frac{1}{3} \le x \le 1 \end{cases}$$

DT35

Considere el problema de decisión binaria dado por la observación $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ y verosimilitudes

$$p_{\mathbf{X}|H}(\mathbf{x}|1) = \exp(-x_1 - x_2), \qquad x_1 \ge 0, x_2 \ge 0$$

 $p_{\mathbf{X}|H}(\mathbf{x}|0) = 2, \qquad x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 1$

siendo $P_H(1) = 4/5$.

- (a) Determine el decisor ML.
- (b) Determine el decisor MAP.
- (c) Determine la probabilidad de error del decisor ML.
- (d) Determine la probabilidad de falsa alarma del decisor MAP.

Solution:

(a)
$$x_1 + x_2 \underset{D=0}{\overset{D=1}{\gtrless}} 1$$

- (b) Decide D = 0 si $\ln(2) < x_1 + x_2 < 1$, decide D = 1 en caso contrario.
- (c) $P_e = (1 2e^{-1})/5$
- (d) $P_{\text{FA}} = \ln(2)^2$

DT36

Considere un problema de decisión binaria con hipótesis equiprobables definido por las siguientes verosimilitudes:

$$\begin{split} p_{X_1|H}(x_1|0) &= \left\{ \begin{array}{ll} 2x_1, & 0 \leq x_1 \leq 1 \\ 0, & \text{en el resto} \end{array} \right. \\ p_{X_1|H}(x_1|1) &= \left\{ \begin{array}{ll} 2(1-x_1), & 0 \leq x_1 \leq 1 \\ 0, & \text{en el resto} \end{array} \right. \end{split}$$

Se sabe que los costes de acertar son nulos mientras que los de equivocarse unitarios ($c_{00} = c_{11} = 0, c_{10} = c_{01} = 1$).

(a) Obtenga la familia de decisores LRT de la forma

$$\frac{p_{X_1|H}(x_1|0)}{p_{X_1|H}(x_1|1)} \ \mathop{\gtrsim}_{D=1}^{D=0} \ \eta$$

y calcule su probabilidad de falsa alarma $P_{\rm FA}$ y de pérdida $P_{\rm M}$ en función de η .

- (b) A partir del resultado anterior obtenga la probabilidad de falsa alarma $P_{\rm FA}$ y de pérdida $P_{\rm M}$ del decisor bayesiano, así como la probabilidad de pérdida del decisor de Neyman Pearson para una probabilidad de falsa alarma de 0.01.
- (c) Se desea mejorar las prestaciones del decisor bayesiano proporcionado por la observación X_1 y para ello se recurre a medir una nueva variable X_2 que tiene, bajo cada hipótesis, la siguiente distribución:

$$\begin{split} p_{X_2|H}(x_2|0) &= \left\{ \begin{array}{ll} 3x_2^2, & 0 \leq x_2 \leq 1 \\ 0, & \text{en el resto} \end{array} \right. \\ p_{X_2|H}(x_2|1) &= \left\{ \begin{array}{ll} 3(1-x_2)^2, & 0 \leq x_2 \leq 1 \\ 0, & \text{en el resto} \end{array} \right. \end{split}$$

Obtenga la probabilidad de falsa alarma $P_{\rm FA}$ y de pérdida $P_{\rm M}$ del decisor bayesiano basado en X_2 .

(d) Se desea analizar el riesgo total de cada uno de los decisores bayesianos propuestos, definido como suma del riesgo del decisor (r_{ϕ_i}) más el coste medio C_i de obtener la observación X_i , es decir,

$$R_{\text{TOTi}} = r_{\phi_i} + C_i$$
.

Sabiendo que medir la observación X_1 tiene un coste nulo, mientras que medir X_2 tiene un coste medio a, indique para que valores de a el esquema de decisión basado sólo en X_1 o el basado sólo en X_2 proporciona un menor riesgo total.

Solution:

(a)
$$x_1 \underset{D=1}{\overset{D=0}{\gtrless}} \frac{\eta}{1+\eta} = \eta'$$

 $P_{\text{FA}} = \eta'^2 \text{ y } P_{\text{M}} = (1-\eta')^2$

- (b) Decisor Bayesiano: $P_{\rm FA}=\frac{1}{4}$ y $P_{\rm M}=\frac{1}{4}$ Decisor N-P: $P_{\rm FA}=0.01$ y $P_{\rm M}=0.81$
- (c) $x_2 \underset{D=1}{\overset{D=0}{\gtrless}} \frac{1}{2}$ $P_{\text{FA}} = \frac{1}{8} \text{ y } P_{\text{M}} = \frac{1}{8}$
- $$\begin{split} \text{(d)} \ \ R_{\text{TOT1}} &= \frac{1}{4} \ \text{y} \ R_{\text{TOT2}} = \frac{1}{8} + a \\ \text{Si} \ \ a &< \frac{1}{8}, \ R_{\text{TOT2}} < R_{\text{TOT1}}. \ \text{Y si} \ \ a > \frac{1}{8}, \ R_{\text{TOT2}} > R_{\text{TOT1}}. \end{split}$$

DT37

Se tiene un problema de decisión binaria definido por las verosimilitudes representadas en la siguiente figura:

- (a) Obtenga una expresión para las regiones de decisión de un decisor LRT genérico.
- (b) Obtenga las probabilidades de falsa alarma y de pérdida y represente la curva ROC.

Solution:

(a)
$$\begin{cases} -1 \le x \le 0 & D = 0 \\ 0 \le x \le 1 & x \ge 0 \\ 1 \le x \le 2 & D = 1 \end{cases} \xrightarrow{D=1} \frac{\eta}{1+\eta} = \nu$$

$$\text{(b) } \left\{ \begin{array}{l} -1 \leq \nu \leq 0 & P_{\text{M}} = 0 \\ 0 < \nu < 1 & P_{\text{FA}} = \frac{1}{2} \left(1 - \nu \right)^2 & P_{\text{M}} = \frac{1}{2} \nu^2 \\ 1 \leq \nu \leq 2 & P_{\text{FA}} = 0 \end{array} \right.$$

DT38

Considere el problema de decisión binaria dado por hipótesis equiprobables y verosimilitudes

$$p_{x|H}(x|1) = x \exp(-x), \qquad x \ge 0 \tag{4}$$

$$p_{x|H}(x|0) = \exp(-x), \qquad x \ge 0$$
 (5)

- (a) Determine, en función de η , las regiones de decisión del decisor LRT de parámetro η .
- (b) Determine, en función de η , las probabilidades de falsa alarma y de pérdida del decisor LRT.
- (c) Determine la probabilidad de detección del detector de Neyman Pearson dado por $P_{\rm FA} \leq e^{-1}$.
- (d) Determine la probabilidad de error condicionada a la observación, $P\{D \neq H|x\}$, del decisor LRT de parámetro η

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \eta$$

(b)
$$P_{\text{FA}} = e^{-\eta}, P_{\text{FA}} = 1 - (1+\eta)e^{-\eta}$$

(c)
$$P_{\rm D} = 2e^{-1}$$

(d)
$$P\{D \neq H|x\} = \begin{bmatrix} \frac{x}{1+x}, & \text{si } x < \eta \\ \frac{1}{1+x}, & \text{si } x > \eta \end{bmatrix}$$

DT39

Considere el problema de decisión binaria dado por la observación $X \in [0,2]$ y verosimilitudes

$$p_{X|H}(x|1) = \frac{1}{2}x$$

$$p_{X|H}(x|0) = \frac{3}{4}x(2-x)^2,$$

siendo $P_H(1) = \frac{2}{5}$.

- (a) Determine el decisor MAP.
- (b) Determine la probabilidad de pérdida del decisor MAP.
- (c) Suponga ahora que el mismo decisor que se ha obtenido en el apartado (a) se aplica a un escenario en el que la verosimilitud de H=1 es

$$p'_{X|H}(x|1) = \frac{7}{8}p_{X|H}(x|1) + \frac{1}{16},$$

mientras que la verosimilitud de H=0 sigue siendo la misma. Determine el incremento en la probabilidad de error que se produce como consecuencia de este cambio de escenario.

Solution:

- (a) $x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{4}{3}$
- (b) $P_{\rm M} = \frac{4}{9}$
- (c) Dado que la $P_{\rm FA}$ no cambia y $P'_{\rm M}=\frac{17}{36}$, el incremento de la probabilidad de error es $P_H(1)(P'_{\rm M}-P_{\rm M})=\frac{1}{90}$

DT40

Se toma una medida de la tensión intantánea X existente en un momento dado en un nodo de un circuito. Bajo la hipótesis nula H=0, en dicho nodo sólo existe ruido gaussiano de media nula y varianza v. Bajo la hipótesis H=1 en dicho nodo existe únicamente una señal sinusoidal de media nula y amplitud \sqrt{v} . Dado que se desconoce la frecuencia de la señal sinusoidal y el instante en el que se toma la medida, se tiene que bajo H=1 se mide $X=\sqrt{v}\cos\Phi$, con Φ una v.a. uniforme entre 0 y 2π .

- (a) Calcule las verosimilitudes de ambas hipótesis.
- (b) Calcule el decisor de máxima verosimilitud para discernir entre ellas.
- (c) Use la función $h(a) = a \log(1 a)$ para expresar el decisor anterior y calcule las regiones de decisión en función de v y $h^{-1}(\cdot)$.
- (d) Calcule la probabilidad de falsa alarma usando dicho decisor en función de $h^{-1}(\cdot)$ y Q(z). Ayudas:

$$\frac{d\cos u}{du} = -\sin u \quad \frac{d \arccos u}{du} = \frac{-1}{\sqrt{1-u^2}} \quad \frac{d\sin u}{du} = \cos u \quad \frac{d \arcsin u}{du} = \frac{1}{\sqrt{1+u^2}}$$

Suponga conocida la función $Q(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$.

Suponga conocida la función $a = h^{-1}(\cdot)$ (función recíproca de $h(\cdot)$).

Solution:

- (a) $p_{X|H}(x|0) = G(x|0, v), p_{X|H}(x|1) = \frac{1}{\pi\sqrt{v-x^2}} \ \forall_{x \in [-\sqrt{v}, \sqrt{v}]}$
- (b) $h(\frac{x^2}{v}) \underset{D=0}{\overset{D=1}{\gtrless}} \log \frac{\pi}{2}$ si $x^2 < v, D = 0$ en otro caso.
- (c) $h^{-1}(\log \frac{\pi}{2}) = \frac{x^2}{v} = 0.2126 \approx 0.21 \Rightarrow$ $D_0: -\infty < x < -\sqrt{v} \cup -\sqrt{0.21v} < x < +\sqrt{0.21v} \cup +\sqrt{v} < x < +\infty$ $D_1: -\sqrt{v} < x < -\sqrt{0.21v} \cup +\sqrt{0.21v} < x < +\sqrt{v}$
- (d) $P_{\text{FA}} = 2(Q(1) Q(\sqrt{0.21}))$

DT41

Considere el problema de decisión binario dado por las verosimilitudes:

$$p_{X|H}(x|0) = \exp(-x),$$
 $x > 0$
 $p_{X|H}(x|1) = \sqrt{\frac{2}{\pi}} \exp(-\frac{x^2}{2}),$ $x > 0$

Sabiendo que
$$P_H(0) = \sqrt{\frac{2}{\pi}} P_H(1)$$
 y $c_{00} = c_{11} = 0$, $c_{10} = \exp\left(\frac{1}{2}\right) c_{01}$:

- (a) Determine las regiones de decisión del decisor MAP.
- (b) Calcule la probabilidad de error del decisor MAP. Exprese su resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

- (c) Determine las regiones de decisión del decisor bayesiano de mínimo coste medio.
- (d) Calcule la probabilidad de error del decisor obtenido en el apartado anterior.

(a)
$$x \underset{D=1}{\overset{D=0}{\gtrless}} 2$$

$$P_e = \frac{1}{1 + \sqrt{\frac{2}{\pi}}} \left[\sqrt{\frac{2}{\pi}} \left(1 - \exp(-2) \right) + 2 - 2F(2) \right]$$

(b) Siempre se decide
$$D=0,\,P_e=\frac{1}{\sqrt{\frac{2}{\pi}+1}}$$

DT42

Considere el problema de decisión dado por las verosimilitudes:

$$\begin{split} p_{X|H}(x|1) &= \frac{\pi}{2} \sin\left(\frac{\pi}{2}x\right), \qquad 0 < x < 1 \\ p_{X|H}(x|0) &= \frac{\pi}{2} \cos\left(\frac{\pi}{2}x\right), \qquad 0 < x < 1 \end{split}$$

(a) Determine las regiones de decisión del decisor LRT de parámetro η :

$$\frac{p_{X|H}(x|1)}{p_{X|H}(x|0)} \ \mathop{\gtrless}_{D=0}^{D=1} \ \eta.$$

- (b) Represente gráficamente, de forma aproximada, la ROC del decisor LRT.
- (c) Represente, sobre la ROC, el punto de operación del decisor ML.
- (d) Represente, sobre la ROC, el punto de operación del decisor minimax.
- (e) Represente, sobre la ROC, el punto de operación del decisor de Neyman Pearson con $P_{\rm FA} \leq 0.4.$

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{2}{\pi} \arctan(\eta)$$
,

(b) La ROC es un arco de circunferencia de radio 1 y centrado en (1,0).

(c)
$$(P_{\text{FA}}, P_{\text{D}}) = \left(1 - \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

(d)
$$(P_{\text{FA}}, P_{\text{D}}) = \left(1 - \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

(e)
$$(P_{\rm FA}, P_{\rm D}) = (0.4, 0.8)$$

Considere el problema de decisión binaria dado por la observación $X \in [0,4]$ y verosimilitudes

$$p_{X|H}(x|0) = \frac{1}{8}x, \qquad 0 \le x \le 4$$

$$p_{X|H}(x|1) = cx \exp(-x), \qquad 0 \le x \le 4,$$

siendo $c = (1 - 5 \exp(-4))^{-1}$.

- (a) Determine las regiones de decisión de un decisor LRT de parámetro η .
- (b) Determine para qué valores de η se verifica $P\{D=0\}=1$.
- (c) Determine el decisor de Neyman-Pearson con $P_{\rm FA} \leq 0.1$.

Solution:

(a)
$$x \underset{D=1}{\overset{D=0}{\gtrless}} \ln\left(\frac{8c}{\eta}\right)$$

(b)
$$\eta \ge 8c$$

(c)
$$x \underset{D=1}{\overset{D=0}{\gtrless}} \sqrt{1.6}$$

DT44

Las variables aleatorias Z_1 y Z_2 sólo pueden tomar los valores -m o m. Bajo hipótesis H=0, ambas variables toman el mismo valor. Esto conduce a dos posibles configuraciones bajo esta hipótesis, ambas con la misma probabilidad. Bajo hipótesis H=1, ambas variables toman diferentes valores. Esto conduce a dos posibles configuraciones bajo esta hipótesis, ambas con al misma probabilidad. Las hipótesis H=0 y H=1 son equiprobables.

Las variables Z_1 y Z_2 no pueden observarse directamente. Sin embargo, podemos observar X_1 y X_2 , que son medidas ruidosas de Z_1 and Z_2 respectivamente, mediante un dispositivo que añade ruido gausiano de media nula y varianza unidad, es decir, $X_i = Z_i + N_i$, siendo N_1 y N_2 independientes entre sí e independientes de Z_1 y Z_2 .

- (a) Determine $P_{Z_1,Z_2|H}(z_1,z_2|h)$ para todos los posibles valores de $z_1, z_2 y h$.
- (b) Determine $P_{X_1,X_2|Z_1,Z_2}(x_1,x_2|z_1,z_2)$.
- (c) Sin hacer cálculos, razone si

$$P_{X_1,X_2|Z_1,Z_2}(x_1,x_2|z_1,z_2)$$

es diferente o idéntica a $P_{X_1,X_2|Z_1,Z_2,H}(x_1,x_2|z_1,z_2,h)$.

- (d) Determine las verosimilitudes de las hipótesis, $P_{X_1,X_2|H}(x_1,x_2|0)$ y $p_{X_1,X_2|H}(x_1,x_2|1)$.
- (e) Determine el decisor MAP para las observaciones x_1 y x_2 .

(a)
$$P_{Z_1,Z_2|H}(m,m|0) = P_{Z_1,Z_2|H}(-m,-m|0) = \frac{1}{2}$$

 $P_{Z_1,Z_2|H}(m,-m|1) = P_{Z_1,Z_2|H}(-m,m|1) = \frac{1}{2},$
 $P_{Z_1,Z_2|H}(-m,m|0) = P_{Z_1,Z_2|H}(m,-m|0) = 0,$
 $P_{Z_1,Z_2|H}(-m,-m|1) = P_{Z_1,Z_2|H}(m,m|1) = 0$

(b)
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} z_1 \\ z_2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

(c) Es idéntica, ya que x_1 y x_2 son independientes de h condicionalmente en z_1 y z_2 .

$$\begin{aligned} \text{(d)} \ \ P_{X_1,X_2|H}(x_1,x_2|0) &= \tfrac{1}{2}\mathcal{N}\left(\begin{bmatrix} m\\ m \end{bmatrix},\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right) + \tfrac{1}{2}\mathcal{N}\left(\begin{bmatrix} -m\\ -m \end{bmatrix},\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right) \\ P_{X_1,X_2|H}(x_1,x_2|1) &= \tfrac{1}{2}\mathcal{N}\left(\begin{bmatrix} -m\\ m \end{bmatrix},\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right) + \tfrac{1}{2}\mathcal{N}\left(\begin{bmatrix} m\\ -m \end{bmatrix},\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\right) \end{aligned}$$

(e) Decide 0 para $x_1x_2 > 0$, 1 en otro caso.

DT45

Considere el problema de decisión binaria dado por la observación $X \in \left[0, \frac{\pi}{2}\right]$ y verosimilitudes

$$p_{X|H}(x|0) = \cos(x), \qquad 0 \le x \le \frac{\pi}{2}$$

 $p_{X|H}(x|1) = \sin(x), \qquad 0 \le x \le \frac{\pi}{2},$

- (a) Determine las regiones de decisión de un decisor LRT de parámetro $\eta \geq 0$.
- (b) Determine la ROC.
- (c) Determine las regiones de decisión del decisor minimax.

Indicación: para todo $\alpha \in \mathbb{R}$, $\cos(\arctan(\alpha)) = \frac{1}{\sqrt{\alpha^2 + 1}}$

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \arctan(\eta)$$

(b)
$$P_{\rm D} = \sqrt{P_{\rm FA}(1 - P_{\rm FA})}$$

(c)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{\pi}{4}$$

DT46

Considere el problema de decisión dado por hipótesis equiprobables y observaciones X_1, X_2, X_3 , independientes entre sí bajo cualquiera de las hipótesis, e idénticamente distribuidas, con verosimilitudes

$$\begin{split} p_{X_n|H}(x|1) &= \exp(-x)u(x), & n = 1, 2, 3 \\ p_{X_n|H}(x|0) &= 2\exp(-2x)u(x) & n = 1, 2, 3 \end{split}$$

Se aplican tres decisores MAP, uno por cada variable, de tal modo que la decisión D_n del decisor n-ésimo está basada solamente en la observación X_n (para $n = 1, 2 \circ 3$).

- (a) Determine las probabilidades de falsa alarma, pérdida y error de cada decisor.
- (b) Determine la probabilidad de que, bajo hipótesis H=0, los tres decisores tomen la misma decisión.
- (c) Sea $\mathbf{Z} = (D_1, D_2, D_3)$ el vector que contiene las tres decisiones. Considere el decisor MAP basado en la observación de \mathbf{Z} (es decir, el decisor no observa X_1, X_2 o X_3 , y su entrada es \mathbf{Z}). Determine su decisión cuando $\mathbf{Z} = (1, 1, 0)$.

Solution:

(a)
$$P_{\rm M} = \frac{1}{2}$$
, $P_{\rm FA} = \frac{1}{4}$, $P_e = \frac{3}{8}$.

(b)
$$P = \frac{7}{64}$$

(c) Decide 1.

DT47

Se dispone de un sistema de comunicaciones en el que el transmisor envía, con la misma probablidad a priori, un único símbolo ("+1" ó "-1") de manera simultánea por dos canales ruidosos, tal y como se ilustra en la figura:

donde N_1 y N_2 son dos variables de ruido gaussiano, independientes entre si, con medias nulas y varianzas λv y $(1 - \lambda)v$, respectivamente, y v > 0 y $0 \le \lambda \le 1$ son constantes conocidas.

- (a) Obtenga el decisor de mínima probabilidad de error, basado en la observación conjunta de X_1 y X_2 , que permite al receptor saber si se transmitió el símbolo "+1" ó "-1".
- (b) Obtenga la probabilidad de error del decisor anterior. Exprese su resultado utilizando la función:

$$F(x) = 1 - Q(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

(c) Analice el comportamiento del decisor (frontera de decisión y probabilidad de error) para los casos: $\lambda=0$ y $\lambda=1$.

Solution:

(a)
$$(1 - \lambda)x_1 + \lambda x_2 \underset{D=0}{\overset{D=1}{\geq}} 0$$

(b)
$$P_{\rm e} = F(-\frac{1}{\sqrt{\lambda(1-\lambda)v}})$$

(c) Si $\lambda=0,\,X_2=s$ (tiene varianza nula) y solo se usa esta observación para decidir. $P_{\rm e}=0.$ Si $\lambda=1$ ocurre lo mismo pero con $X_1.$

DT48

Considere el problema de decisión binario dado por hipótesis equiprobables y verosimilitudes

$$p_{X|H}(x|1) = \frac{1}{(1+x)^2}, \qquad x \ge 0$$

$$p_{X|H}(x|0) = \frac{2x}{(1+x)^3}, \qquad x \ge 0$$

- (a) Determine las regiones de decisión del decisor LRT de parámetro η .
- (b) Represente de forma aproximada la ROC del LRT.
- (c) Determine las regiones de decisión del decisor minimax.
- (d) Determine las regiones de decisión del decisor de Neyman-Pearson con $P_{\rm FA} \leq \frac{1}{16}$

Indicación: las funciones de distribución para las verosimilitudes dadas son:

$$F_{X|H}(x|1) = \frac{x}{(1+x)}, \qquad x \ge 0$$

$$F_{X|H}(x|0) = \frac{x^2}{(1+x)^2}, \quad x \ge 0$$

Solution:

(a) Si
$$\eta > \frac{1}{2}$$
, $x \underset{D=1}{\overset{D=0}{\gtrless}} \frac{1}{2\eta - 1}$.

Si $\eta < \frac{1}{2}$, el decisor LRT decide siempre D = 1.

(b)
$$P_{\rm D} = \sqrt{P_{\rm FA}}$$

(c)
$$x \underset{D=1}{\overset{D=0}{\gtrless}} \frac{1}{2} (1 + \sqrt{5})$$

(d)
$$x \underset{D=1}{\overset{D=0}{\gtrless}} \frac{1}{3}$$

(e)
$$x \stackrel{D=0}{\underset{D=1}{\gtrless}} \frac{1}{2} (1 + \sqrt{5})$$

DT49

Considere el problema de decisión binario dado por las verosimilitudes:

$$p_{X|H}(x|1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(x - 4\sqrt{2\pi}\right)^2\right),$$
 (6)

$$p_{X|H}(x|0) = \sqrt{2\pi} \exp\left(-\sqrt{2\pi}x\right), \qquad x \ge 0 \tag{7}$$

- (a) Determine las regiones de decisión del decisor ML basado en x.
- (b) Determine la probabilidad de pérdida del decisor ML.
- (c) Determine la probabilidad de falsa alarma del decisor ML.

Cuando proceda, exprese el resultado utilizando la función

$$F(x) = 1 - Q(x) = \int_{-\inf}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

(a)
$$D = 1$$
 si $x \in [-\infty, 0] \cup [A, B]$, siendo $A = 5\sqrt{2\pi} - \sqrt{18\pi - 2\ln(2\pi)}$, $B = 5\sqrt{2\pi} + \sqrt{18\pi - 2\ln(2\pi)}$.

(b)
$$P_{\rm M} = F(A - 4\sqrt{2\pi}) - F(-4\sqrt{2\pi}) + 1 - F(B - 4\sqrt{2\pi})$$

(c)
$$P_{\text{FA}} = \exp\left(-\sqrt{2\pi}A\right) - \exp\left(-\sqrt{2\pi}B\right)$$

Considere el problema de decisión binario dado por verosimilitudes

$$p_{X|H}(x|1) = 2x,$$
 $0 \le x \le 1$
 $p_{X|H}(x|0) = 1,$ $0 \le x \le 1$

- (a) Determine las regiones de decisión del decisor de Neyman-Pearson (NP) con $P_{\rm FA} \leq 0.1$.
- (b) En este apartado y los siguientes, suponga que se obtienen n observaciones independientes, X_1,\ldots,X_n , todas ellas dadas por las mismas verosimilitudes del apartado anterior. Sea $Y=\max\{X_1,\ldots,X_n\}$. Determine $P\{Y\leq y|H=1\}$ y $P\{Y\leq y|H=0\}$, en función de y>0. (Indicaciones: (I) intente expresar la probabilidad del evento $Y\leq y$ en función de las probabilidades de los eventos $X_i\leq y$, aprovechando la independencia entre observaciones, (II) el resultado tiene la forma $P\{Y\leq y|H=h\}=y^{a_hn}$ siendo a_0 y a_1 constantes que debe determinar).
- (c) Determine las verosimilitudes $p_{Y|H}(y|1)$ y $p_{Y|H}(y|0)$
- (d) Determine el decisor NP basado en Y con $P_{\rm FA} < 0.19$
- (e) Determine la probabilidad de detección del decisor NP del apartado anterior.

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} 0.9$$
.

(b)
$$P{Y \ge y|H=1} = y^{2n}, P{Y \ge y|H=0} = y^n$$

(c)
$$p_{Y|H}(y|1) = 2ny^{2n-1}, p_{Y|H}(y|0) = ny^{n-1}$$

(d)
$$x \underset{D=1}{\overset{D=0}{\gtrless}} 0.81^{1/n}$$

(e)
$$P_{\rm D} = 0.3439$$

DT51

Considere el problema de decisión binaria dado por la observación X y verosimilitudes

$$p_{X|H}(x|1) = 2x, \quad 0 \le x \le 1,$$

$$p_{X|H}(x|0) = 6x(1-x), \quad 0 \le x \le 1,$$
(8)

siendo $P_H(1) = \frac{3}{5}$.

- (a) Determine las regiones de decisión del decisor LRT de parámetro η .
- (b) Determine y represente (de forma a aproximada) la ROC del decisor LRT.
- (c) Determine las coordenadas en la ROC del decisor MAP.

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} 1 - \frac{1}{3\eta} = \mu$$

(b) Si
$$\mu \ge 0$$
, $P_{\rm FA} = 1 - 3\mu^2 + 2\mu^2$, $P_{\rm D} = 1 - \mu^2$.
Si $\mu < 0$, $P_{\rm FA} = 1$, $P_{\rm D} = 1$.

(c)
$$(P_{\text{FA}}, P_{\text{D}}) = \left(\frac{1}{2}, \frac{3}{4}\right)$$
.

El buque de cierta empresa cazatesoros busca un navío español hundido en el S. XVIII. A partir de las medidas de sus sensores obtenidas en un lugar secreto del océano, se ha obtenido una medida X correlacionada con la presencia del barco hundido: llamando H=1 a la hipótesis "hay un barco hundido" y H=0 a "no hay barco hundido", se sabe que las verosimilitudes de las hipótesis bajo observación x son

$$p_{X|H}(x|1) = 4x^3, \qquad 0 \ge x \ge 1$$

 $p_{X|H}(x|0) = 4(1-x)^3, \qquad 0 \ge x \ge 1$

A partir de otros indicios, se ha estimado que $P_H(1) = 0.1$. El comandante del buque debe decidir si lanza una operación submarina de exploración del fondo (D = 1) o abandona la zona (D = 0).

Se sabe que

- El coste de la operación submarina es de 100 MM\$(millones de dólares).
- El barco esconde un tesoro valorado en 1000 MM\$.

Suponga que el resto de costes y beneficios de la operación (coste de abandonar la zona, de extracción del tesoro, de comercialización del tesoro, etc) son despreciables frente a estas cifras.

- (a) Determine para qué valores de x debe abordarse la operación siguiendo un criterio de mínimo riesgo (coste medio).
- (b) Determine el riesgo del decisor obtenido en el apartado anterior.
- (c) El coste de la operación submarina es tan elevado que la empresa cazatesoros iría a la quiebra si el navío español no se encuentra en esa ubicación. Por este motivo, se decide utilizar un decisor que maximice la probabilidad de detección manteniendo acotada la probabilidad de falsa alarma en $P_{\rm FA} \leq 10^{-4}$. Determine para qué valores de x debe abordarse la operación.
- (d) La empresa cazatesoros sabe que otra empresa rival ha podido adelantarse a sus planes. Se considera que la probabilidad de que el barco hundido ya no contenga ningún tesoro es de 0.2. Determine el riesgo del decisor obtenido en el apartado a) en estas condiciones.

Solution:

(a)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{2}$$

(b)
$$r = -\frac{315}{4} = -78.75$$

(c)
$$x \underset{D=0}{\overset{D=1}{\gtrless}} \frac{9}{10}$$

(d)
$$r' = -60$$

DT53

Considere el problema de decisión binaria dado por la observación $\mathbf{X} = (x_1, x_2)$ y verosimilitudes

$$p_{\mathbf{X}|H}(\mathbf{x}|1) = x_1 + x_2, \quad 0 \le x_1 \le 1, \quad 0 \le x_2 \le 1,$$

$$p_{\mathbf{X}|H}(\mathbf{x}|0) = \frac{6}{5} (x_1^2 + x_1), \quad 0 \le x_1 \le 1, \quad 0 \le x_2 \le 1,$$
(9)

siendo
$$P_H(1) = \frac{6}{11}$$
.

- (a) Determine las regiones de decisión del decisor MAP y represente, de forma aproximada, sobre el plano $x_1 x_2$, la frontera de decisión.
- (b) Determine la probabilidad de pérdida del decisor.
- (c) Determine las regiones de decisión del decisor MAP basado solamente en x₂.

Solution:

(a)
$$x_2 \underset{D=0}{\overset{D=1}{\gtrless}} x_1^2$$

(b)
$$P_{\rm M} = \frac{7}{20}$$

(c)
$$x_2 \underset{D=0}{\overset{D=1}{\gtrless}} \frac{1}{3}$$
.

DT54

Considere el problema de decisión binaria dado por la observación $\mathbf{X} = (x_1, x_2)$ y verosimilitudes

$$p_{\mathbf{X}|H}(\mathbf{x}|1) = a^2 \exp\left[-a(x_1 + x_2)\right], \qquad x_1, x_2 > 0,$$

$$p_{\mathbf{X}|H}(\mathbf{x}|0) = b^2 \exp\left[-b(x_1 + x_2)\right], \qquad x_1, x_2 > 0,$$
 (10)

para b y a dos constantes reales positivas, con b > a.

(a) Demuestre que el test de razón de verosimilitudes de dicho problema puede escribirse como

$$t \underset{D=0}{\overset{D=1}{\gtrless}} \eta,$$

donde se ha definido la variable aleatoria $T = X_1 + X_2$. Obtenga el valor de umbral del test anterior correspondiente al decisor ML.

- (b) Determine las verosimilitudes de ambas hipótesis expresadas en función de la variable aleatoria T, i.e., $p_{T|H}(t|i)$, i=0,1.
- (c) Determine las probabilidades de pérdida y de falsa alarma del decisor LRT en función del valor del umbral η .
- (d) Dibuje de forma aproximada la curva ROC, y sitúe sobre ella los puntos de operación correspondientes a $\eta=0,\,\eta=\infty$, al decisor de Neyman-Pearson con probabilidad de falsa alarma $P_{\rm FA}=0.1,\,$ y al decisor ML para el caso particular b=3a.
- (e) Si se sabe que las hipótesis son equiprobables, calcule el riesgo medio del decisor para la siguiente política de costes: $c_{00} = 0$, $c_{11} = 0.5$, y $c_{01} = c_{10} = 1$. Obtenga la expresión del umbral que miniza dicho riesgo medio.

(a)
$$\eta_{\text{ML}} = \frac{2\ln(b/a)}{b-a}$$

(b)
$$p_{T|H}(t|1) = a^2 t \exp(-at), \ t > 0$$

 $p_{T|H}(t|0) = b^2 t \exp(-bt), \ t > 0$

(c)
$$P_{\rm M} = 1 - (1 + a\eta) \exp(-a\eta) \text{ y } P_{\rm FA} = (1 + b\eta) \exp(-b\eta)$$

(d) Para
$$\eta=0$$
, se tiene $P_{\rm FA}=P_{\rm D}=1$; para $\eta=\infty$, se tiene $P_{\rm FA}=P_{\rm D}=0$

(e)
$$\bar{r} = \frac{\eta}{2} \left[\frac{a^2}{2} \exp(-a\eta) - b^2 exp(-b\eta) \right]$$
 $\eta^* = \frac{\ln 2 + 2 \ln(b/a)}{b-a}$

Considere el problema de decisión binaria dado por las siguientes verosimilitudes

$$p_{X|H}(x_1, x_2|1) = 4\exp(-2(x_1 + x_2)), x_1 \ge 0, x_2 \ge 0,$$

$$p_{X|H}(x_1, x_2|0) = 1, 0 \le x_1 \le 1, 0 \le x_2 \le 1,$$
(11)

- (a) Determine las regiones de decisión del decisor ML y represente en el plano $x_1 x_2$ dichas regiones.
- (b) Obtenga el decisor de Neyman-Pearson para una probabilidad de falsa alarma de 0.005. Nota: si le resulta necesario puede considerar ln(2) = 0.7.

Solution:

- (a) $x_1 \ge 1$ o $x_2 \ge 1$: D = 1 $x_1, x_2 \le 1$ y $x_1 + x_2 < 0.7$: D = 1 $x_1, x_2 \le 1$ y $x_1 + x_2 > 0.7$: D = 0
- (b) $x_1, x_2 \ge 1: D = 1$ $x_1, x_2 \le 1$ y $x_1 + x_2 < \eta: D = 1$ $x_1, x_2 \le 1$ y $x_1 + x_2 > \eta: D = 0$ $\cos \eta = 0.1$

DT56

Se desea averiguar si cierto cultivo celular prospera en un medio líquido determinado. Para ello, se mide la temperatura X del cultivo (en grados centígrados) tras un tiempo t > 1 (medido en minutos). Se sabe que, cuando el cultivo prospera, la temperatura está dada por

$$X = 10 \cdot t \exp(-t) + R$$

siendo R una variable aleatoria de ruido gaussiano de media 0 y varianza 4.

Sin embargo, cuando el cultivo no prospera, la temperatura evoluciona según

$$X = 10\exp(-t) + R$$

A priori, la probabilidad de que el cultivo prospere es $P_H(1) = 0.5$. Se mide la temperatura tras t minutos, y se desea determinar si el cultivo celular ha prosperado o no.

- (a) Determine la decisión de mínima probabilidad de error.
- (b) Determine la probabilidad de error. Exprese el resultado utilizando la función de distribución normalizada

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz$$

- (c) Determine cuánto tiempo debe esperarse para medir la temperatura, de tal modo que se minimice la probabilidad de error.
- (d) Transcurrido el tiempo obtenido en el apartado anterior, se mide una temperatura de 10 grados centígrados. Determine una expresión para la probabilidad de que el cultivo haya prosperado.

Solution:

(a)

$$X \underset{D=0}{\overset{D=1}{\gtrless}} 5(t+1) \exp(-t)$$

(b)
$$P_e = F\left(\frac{5}{2}(1-t)\exp(-t)\right)$$
 (c)
$$t = 2$$
 (d)
$$TBD$$

Considere el problema de decisión binaria unidimensional con verosimilitudes

$$p_{X|H}(x|1) = 3(1-x)^2, \quad 0 \le x \le 1,$$

 $p_{X|H}(x|0) = 1, \quad 0 \le x \le 1,$

Se puede comprobar que el test de razón de verosimilitudes para este problema es equivalente a la aplicación de un umbral sobre x:

$$x \underset{D=1}{\overset{D=0}{\gtrless}} \eta$$

- (a) Calcule las probabilidades de detección y falsa alarma en función de η .
- (b) Represente la curva ROC, y sitúe sobre ella el punto correspondiente al decisor MAP para $P_H(1) = \frac{3}{4}$.
- (c) Sabiendo que $c_{00} = c_{11} = 0$, $c_{01} = 1$ y $c_{10} = 3$, exprese el coste medio del clasificador en función de η , y obtenga el valor del umbral que minimiza dicho coste medio.

Solution:

- (a) $P_{\text{FA}} = \eta$; $P_{\text{D}} = 1 (1 \eta)^3$
- (b) $P_{\rm D}=1-(1-P_{\rm FA})^3$. Para el clasificador MAP: $P_{\rm FA}=\frac{2}{3}$ y $P_{\rm D}=\frac{26}{27}$
- (c) $\bar{C} = \frac{3}{4} [(1-\eta)^3 + \eta]; \qquad \eta^* = 1 \frac{\sqrt{3}}{3}$

DT58

Considere un problema de decisión con tres hipótesis, cuyas verosimilitudes son

$$p_{\mathbf{X}|H}(\mathbf{x}|0) = 1, \qquad 0 \le x_1 \le 1, \quad 0 \le x_2 \le 1,$$

$$p_{\mathbf{X}|H}(\mathbf{x}|1) = \frac{4}{9}, \qquad \frac{1}{2} \le x_1 \le 2, \quad \frac{1}{2} \le x_2 \le 2,$$

$$p_{\mathbf{X}|H}(\mathbf{x}|2) = \frac{1}{4}, \qquad 1 \le x_1 \le 3, \quad 1 \le x_2 \le 3$$

- (a) Encuentre las regiones de decisión del clasificador de máxima verosimilitud.
- (b) Determine la condición que deben cumplir $P_H(1)$ y $P_H(2)$ para que el decisor MAP decida en favor de la hipótesis H=2 para cualquier \mathbf{x} que pertenezca al dominio de $p_{\mathbf{X}|H}(\mathbf{x}|2)$.
- (c) Si se sabe que $P_H(0) = \frac{1}{2}$ y $P_H(2) = 2P_H(1)$, calcule la probabilidad de error dado \mathbf{x} del decisor MAP.
- (d) Para las probabilidades a priori proporcionadas en el apartado anterior, encuentre las regiones de decisión del clasificador MAP basado únicamente en la observación de X_1 y calcule su probabilidad de error.

(e) Se define un problema de decisión binario con hipótesis:

$$H' = 0$$
 si $H \in \{0, 2\}$
 $H' = 1$ si $H = 1$

Encuentre las regiones de decisión del clasificador MAP basado únicamente en X_1 , y calcule su probabilidad de error.

Solution:

(a) Denoting as \mathcal{R}_0 , \mathcal{R}_1 , and \mathcal{R}_2 the domains of $p_{\mathbf{X}|H}(\mathbf{x}|0)$, $p_{\mathbf{X}|H}(\mathbf{x}|1)$, and $p_{\mathbf{X}|H}(\mathbf{x}|2)$, respectively, the ML criterion results in the following regions:

$$\begin{cases} D = 0, & \text{if } \mathbf{x} \in \mathcal{R}_0 \\ D = 1, & \text{if } \mathbf{x} \in \mathcal{R}_1 \setminus \mathcal{R}_0 \text{ (i.e., } \mathbf{x} \in \{\mathbf{z} | \mathbf{z} \in \mathcal{R}_1 \text{ and } \mathbf{z} \notin \mathcal{R}_0\}) \\ D = 2, & \text{if } \mathbf{x} \in \mathcal{R}_2 \setminus \mathcal{R}_1 \end{cases}$$

- (b) $P_H(2) > \frac{16}{9} P_H(1)$
- (c) MAP criterion:

$$\begin{cases}
D = 0, & \text{if } \mathbf{x} \in \mathcal{R}_0 \\
D = 1, & \text{if } \mathbf{x} \in \{\mathbf{z} | \mathbf{z} \in \mathcal{R}_1 \text{ and } \mathbf{z} \notin \mathcal{R}_0 \text{ and } \mathbf{z} \notin \mathcal{R}_2\}\} \\
D = 2, & \text{if } \mathbf{x} \in \mathcal{R}_2
\end{cases}$$

$$P_e(\mathbf{x} \in \mathcal{R}_0 \cap \mathcal{R}_1) = \frac{4}{31}$$
; $P_e(\mathbf{x} \in \mathcal{R}_1 \cap \mathcal{R}_2) = \frac{8}{17}$; $P_e(\text{otro } \mathbf{x}) = 0$

(d) MAP criterion:

$$\begin{cases}
D = 0, & \text{if } x_1 \in (0, 1) \\
D = 2, & \text{if } x_1 \in (1, 3)
\end{cases}$$

$$P_e = P_H(1) = \frac{1}{6}$$

(e) MAP criterion: $D' = 0 \quad \forall x_1 \ (\in (0,3))$

$$P_e = P_{H'}(1) = \frac{1}{6}$$

DT59

Considere el problema de decisión binaria dado por las siguientes verosimilitudes

$$p_{X|H}(x|1) = \frac{3}{4}(1 - x^2), |x| \le 1,$$

$$p_{X|H}(x|0) = \frac{15}{16}(1 - x^2)^2, |x| \le 1,$$

siendo $P_H(1) = \frac{1}{3}$.

- (a) Determine las regiones de decisión del decisor MAP.
- (b) Determine la probabilidad de detección del decisor MAP.
- (c) Determine para qué valores de c el decisor bayesiano dado por los costes $c_{00}=c_{11}=0$, $c_{10}=c,\,c_{01}=1$ decide siempre D=1.

Solution:

(a)
$$|x| \underset{D=0}{\overset{D=1}{\gtrless}} \sqrt{\frac{3}{5}}$$

(b)
$$P_{\rm D} = 1 - \frac{6}{5} \sqrt{\frac{3}{5}}$$

(c)
$$c \le \frac{2}{5}$$

DT60

Para determinar la presencia de una bacteria en un cultivo se ha desarrollado un test basado en la medición de la concentración de CO₂ en el cultivo. El nivel basal (en ausencia de la bacteria) de dicha concentración puede caracterizarse por la distribución gamma:

$$p_T(t) = (0.15)^2 t \exp(-0.15t), \quad t > 0.$$

En muestras contaminadas por la bacteria, se espera que el valor de la concentración aumente en 20 unidades respecto del nivel basal, por lo que las dos hipótesis a considerar son:

$$H = 0$$
 : $X = T$
 $H = 1$: $X = T + 20$ (12)

Se estima que la probabilidad a priori de que una muestra esté contaminada es 0.2.

- (a) Obtenga la expresión de las verosimilitudes de ambas hipótesis, expresándolas en términos de la variable aleatoria X.
- (b) Determine las regiones de decisión del test de razón de verosimilitudes (LRT), en función del parámetro η .
- (c) Particularice las regiones de decisión para el decisor ML y el de mínima probabilidad de error.
- (d) Obtenga expresiones generales para las $P_{\rm FA}$ y $P_{\rm D}$ en función del umbral del LRT. Simplifique dichas expresiones al máximo, de manera que su solución no contenga ninguna integral.
- (e) Calcule la menor $P_{\rm FA}$ posible, si el test se ajusta con el objetivo de que no queden muestras contaminadas sin detectar.

Sugerencia: Para simplificar sus expresiones utilice $\exp(3) \approx 20$.

(a)
$$p_{X|0} = (0.15)^2 x \exp(-0.15x),$$

 $p_{X|0} = (0.15)^2 (x - 20) \exp(-0.15(x - 20))$

(b)
$$X \underset{D=0}{\overset{D=1}{\gtrless}} \frac{400}{20 - \eta} = \eta'$$

(c)
$$P_{\text{FA}} = (0.15\eta' + 1) \exp(-0.15\eta'),$$

 $P_{\text{FA}} = 20(0.15\eta' - 2) \exp(-0.15\eta')$

(d)
$$P_{\text{FA}} = \frac{1}{5}$$

Consider a detection problem with three hypothesis $(H \in \{0,1,2\})$ and observation $\mathbf{X} = (X_1, X_2)^T \in \mathbb{R}^2$. Moreover, the likelihoods are given by

$$\begin{split} p_{\mathbf{X}|H}(\mathbf{x}|0) &= \begin{cases} \frac{1}{\pi}, & x_1^2 + x_2^2 < 1, \\ 0, & \text{otherwise,} \end{cases} \\ p_{\mathbf{X}|H}(\mathbf{x}|1) &= \begin{cases} \frac{1}{4}, & 0 < x_1 < 2, 0 < x_2 < 2, \\ 0, & \text{otherwise,} \end{cases} \\ p_{\mathbf{X}|H}(\mathbf{x}|2) &= \begin{cases} 1, & 1 < x_1 < 2, 1 < x_2 < 2, \\ 0, & \text{otherwise,} \end{cases} \end{split}$$

and the a priori probabilities are $P_H(0) = 1/8$, $P_H(1) = 1/2$, and $P_H(2) = 3/8$.

(10%) (a) The decision regions of the detector that minimizes the probability of error.

Solution: The detector that minimizes the probability of error is the maximum a posteriori detector, which is given by

$$d = \arg\max_{h} P_{H|\mathbf{X}}(h|\mathbf{x}),$$

and can be rewritten as

$$d = \arg\max_{h} p_{\mathbf{X}|H}(\mathbf{x}|h) P_{H}(h).$$

Hence, the decision regions are

$$\mathcal{X}_d = \{\mathbf{x}|d = \arg\max_{h} p_{\mathbf{X}|H}(\mathbf{x}|h)P_H(h)\}.$$

To compute these decision regions, it is convenient to plot the supports of the likelihoods as shown in the next figure (each colored line corresponds to the support boundary)

From this plot, we can see that the supports of the likelihoods only overlap in two regions, which are shaded. Then, we only need to see which $p_{X|H}(x|h)P_H(h)$ is larger in these region. In the orange-shaded area, it is easy to see that

$$p_{X|H}(x|0)P_H(0) = \frac{1}{\pi} \cdot \frac{1}{8} < p_{X|H}(x|1)P_H(1) = \frac{1}{4} \cdot \frac{1}{2},$$

and, therefore, in this region we should decide D=1. In the magenta-shaded area, we have

$$p_{X|H}(x|1)P_H(1) = \frac{1}{4} \cdot \frac{1}{2} < p_{X|H}(x|2)P_H(2) = 1 \cdot \frac{3}{8},$$

which implies that in this region we should decide D=2. Hence, the decision regions are

$$\mathcal{X}_0 = \{(x_1, x_2)^T \mid x_1^2 + x_2^2 < 1, x_1 \le 0\} \cup \{(x_1, x_2)^T \mid x_1^2 + x_2^2 < 1, x_1 > 0, x_2 \le 0\},\$$

$$\mathcal{X}_1 = \{(x_1, x_2)^T \mid 0 < x_1 \le 1, 0 < x_2 < 2\} \cup \{(x_1, x_2)^T \mid 1 < x_1 < 2, 0 < x_2 \le 1\}$$

and

$$\mathcal{X}_2 = \{(x_1, x_2)^T \mid 1 < x_1 < 2, 1 < x_2 < 2\},\$$

which are the shaded areas shown in the following figure

(10%) (b) The conditional probability of correct decision of the derived detector under H=0, P(D=0|H=0).

Solution: The requested probability is

$$P(D=0|H=0) = \int_{\mathcal{X}_0} p_{\mathbf{X}|H}(\mathbf{x}|0) d\mathbf{x}.$$

That is, we need to integrate the constant $p_{\mathbf{X}|H}(\mathbf{x}|0) = 1/\pi$ in the region \mathcal{X}_0 . Since we know that $p_{\mathbf{X}|H}(\mathbf{x}|0) = 1/\pi$ integrates to 1 in the region $\{(x_1, x_2)^T \mid x_1^2 + x_2^2 < 1\}$, and we are leaving out one quarter of that region, P(D = 0|H = 0) becomes

$$P(D = 0|H = 0) = \frac{3}{4}.$$

DT62

Consider a detection problem with three hypothesis $(H \in \{0,1,2\})$ and observation $\mathbf{X} = (X_1, X_2)^T \in \mathbb{R}^2$. Moreover, we know that hypotheses are equally likely, also that

$$p_{X_1|X_2,H}(x_1|x_2,0) = p_{X_1|X_2,H}(x_1|x_2,1) = p_{X_1|X_2,H}(x_1|x_2,2),$$

and

$$p_{X_2|H}(x_2|0) = \begin{cases} 1/3, & |x_2| < 1.5, \\ 0, & \text{otherwise}, \end{cases}$$

$$p_{X_2|H}(x_2|1) = \begin{cases} x_2/2, & 0 < x_2 < 2, \\ 0, & \text{otherwise}, \end{cases}$$

$$p_{X_2|H}(x_2|2) = \begin{cases} -x_2/2, & -2 < x_2 < 0, \\ 0, & \text{otherwise}. \end{cases}$$

Derive the decision regions of the detector that minimizes the probability of error.

Solution: The detector that minimizes the probability of error is the maximum a posteriori detector, which is given by

$$d = \arg\max_{h} P_{H|\mathbf{X}}(h|\mathbf{x}),$$

and can be rewritten as

$$d = \arg \max_{h} p_{\mathbf{X}|H}(\mathbf{x}|h) P_{H}(h) = \arg \max_{h} p_{\mathbf{X}|H}(\mathbf{x}|h),$$

where the last step follows from $P_H(h) = 1/M$. However, we do not have the joint likelihood $p_{\mathbf{X}|H}(\mathbf{x}|h)$, but only $p_{X_1|X_2,H}(x_1|x_2,h)$ and $p_{X_2|H}(x_2|h)$. Using Bayes's theorem, the joint likelihood becomes

$$p_{\mathbf{X}|H}(\mathbf{x}|h) = p_{X_1, X_2|H}(x_1, x_2|h) = p_{X_1|X_2, H}(x_1|x_2, h)p_{X_2|H}(x_2|h),$$

which yields

$$\begin{split} d &= \arg \max_{h} p_{\mathbf{X}|H}(\mathbf{x}|h) = \arg \max_{h} p_{X_{1}|X_{2},H}(x_{1}|x_{2},h) p_{X_{2}|H}(x_{2}|h) \\ &= \arg \max_{h} p_{X_{2}|H}(x_{2}|h), \end{split}$$

where, in the last step, we have taken into account that $p_{X_1|X_2,H}(x_1|x_2,h)$ does not depend on h. Then, the decision regions can only depend on x_2 and, to derive them, we need $p_{X_2|H}(x_2|h)$, which are plotted in the following figure

Hence, the decision regions, which are defined as

$$\mathcal{X}_d = \{ \mathbf{x} | d = \arg \max_h p_{X_2|H}(x_2|h) \},$$

are given by

$$\mathcal{X}_0 = \{ x_2 \in \mathbb{R} \mid a < x_2 < b \},\$$

$$\mathcal{X}_1 = \{ x_2 \in \mathbb{R} \mid b \le x_2 < 2 \},$$

and

$$\mathcal{X}_2 = \{ x_2 \in \mathbb{R} \mid -2 < x_2 \le a \}.$$

Hence, it remains to find the decision boundaries, which are the solution to

$$P_{X_2|H}(b|0) = P_{X_2|H}(b|1) \Rightarrow b = \frac{2}{3},$$

and

$$P_{X_2|H}(a|0) = P_{X_2|H}(a|2) \Rightarrow a = -\frac{2}{3},$$

yielding

$$\mathcal{X}_0 = \{ x_2 \in \mathbb{R} \mid -2/3 < x_2 < 2/3 \},$$
$$\mathcal{X}_1 = \{ x_2 \in \mathbb{R} \mid 2/3 \le x_2 < 2 \},$$

and

$$\mathcal{X}_2 = \{ x_2 \in \mathbb{R} \mid -2 < x_2 \le -2/3 \}.$$

DT63

Consider a binary detection problem $(H \in \{0,1\})$ and observations $X \in \mathbb{R}$. The likelihoods are

$$p_{X|H}(x|0) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right),$$

$$p_{X|H}(x|1) = \begin{cases} \frac{1}{2a}, & -a < x < a, \\ 0, & \text{otherwise,} \end{cases}$$

and the hypotheses are equally likely. Derive:

(a) The decision regions of the detector that minimizes the probability of error for an arbitrary value of a, with a > 0.

Solution: The detector that minimizes the probability of error is given by

$$\frac{p_{X|H}(x|1)}{p_{X|H}(x|0)} \ \mathop{\gtrsim}_{D=0}^{D=1} \ \frac{P_{H}(0)}{P_{H}(1)} = 1,$$

which is the maximum likelihood detector for equally likely hypotheses. Before proceeding, as always, it is convenient to plot these likelihoods. However, we need to consider two different cases:

A) The largest value of $p_{X|H}(x|0)$ is larger than that of $p_{X|H}(x|1)$, i.e.,

$$\frac{1}{2a} > \frac{1}{\sqrt{2\pi}} \Rightarrow a < \sqrt{\frac{\pi}{2}} \approx 1.25.$$

B) The largest value of $p_{X|H}(x|0)$ is smaller (or equal) than that of $p_{X|H}(x|1)$, i.e.,

$$\frac{1}{2a} \le \frac{1}{\sqrt{2\pi}} \Rightarrow a \ge \sqrt{\frac{\pi}{2}} \approx 1.25.$$

Then, for Case A) the likelihoods are shown in the following figure. From this figure, it is easy to see that

$$|x| \underset{D=1}{\overset{D=0}{\gtrless}} a,$$

and the decision regions are

$$\mathcal{X}_0 = \{ x \in \mathbb{R} \mid |x| \ge a \},\$$

and

$$\mathcal{X}_1 = \{ x \in \mathbb{R} \mid -a < x < a \}.$$

For Case B), the likelihoods are shown in the next figure, where we can see that

$$\mathcal{X}_0 = \{ x \in \mathbb{R} \mid -b < x < b \} \cup \{ x \mid |x| \ge a \},\$$

and

$$\mathcal{X}_1 = \{ x \in \mathbb{R} \mid b \le |x| < a \},\$$

where b is obtained as the positive solution to

$$p_{X|H}(b|0) = p_{X|H}(b|1), \Rightarrow b = \sqrt{2\log\left(\sqrt{\frac{2}{\pi}}a\right)}.$$

Then, we have

$$\mathcal{X}_0 = \left\{ x \in \mathbb{R} \mid -\sqrt{2\log\left(\sqrt{\frac{2}{\pi}}a\right)} < x < \sqrt{2\log\left(\sqrt{\frac{2}{\pi}}a\right)} \right\} \cup \left\{ x \mid |x| \ge a \right\},$$

and

$$\mathcal{X}_1 = \left\{ x \in \mathbb{R} \mid \sqrt{2 \log \left(\sqrt{\frac{2}{\pi}} a \right)} \le |x| < a \right\}.$$

(b) The probability of detection, P_D , as a function of a, with a > 0. Sketch a plot of P_D vs. a for $a \in (0, 50)$.

Solution: Let us start again with Case A). In this case, the probability of detection is

$$P_{\rm D} = P(D=1|H=1) = \int_{\mathcal{X}_1} p_{X|H}(x|1)dx = 1,$$

regardless of the value of a, with $a < \sqrt{\frac{\pi}{2}}$. That is, for Case A) we are integrating the whole likelihood under H = 1. When we consider Case B), it becomes a bit more involved. Concretely, for $a \ge \sqrt{\frac{\pi}{2}}$, we have

$$\begin{split} P_{\mathrm{D}} &= P(D=1|H=1) = \int_{\mathcal{X}_1} p_{X|H}(x|1) dx = \int_{-a}^{-b} \frac{1}{2a} dx + \int_{b}^{a} \frac{1}{2a} dx = 2 \frac{a-b}{2a} \\ &= 1 - \frac{b}{a} = 1 - \frac{1}{a} \sqrt{2 \log \left(\sqrt{\frac{2}{\pi}}a\right)}. \end{split}$$

the plot of $P_{\rm D}$ is shown in the following figure

Solution: Since $a = 1 < \sqrt{\pi/2}$, we are in Case A), for which we already know that $P_D = 1$. Then, since

$$P_{\rm e} = P_{\rm FA} \cdot P_H(0) + P_{\rm M} \cdot P_H(1) = \frac{1}{2} P_{\rm FA} + \frac{1}{2} (1 - P_{\rm D}) = \frac{1}{2} P_{\rm FA},$$

it only remains to compute $P_{\rm FA}$. For Case A), the probability of false alarm is given by

$$P_{\text{FA}} = P(D = 1|H = 0) = \int_{\mathcal{X}_1} p_{X|H}(x|0) dx = \int_{-a}^{a} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx.$$

Taking now into account the symmetry of the likelihood, $P_{\rm FA}$ simplifies to

$$P_{\rm FA} = 2 \int_0^a \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = 2 \left[\frac{1}{2} - \int_a^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx\right] = 1 - 2Q(a),$$

which yields

$$P_{\rm e} = \frac{1}{2} - Q(a).$$

2. Sequential detection

DT64

Most of the time, the returns of a given stock can be modeled as x[n] = w[n], where w[n] is a zero-mean white Gaussian process with variance σ_w^2 . However, when there is a significant amount of short sellers (investors that profit from the decline in price of a borrowed asset), the returns can be modeled as x[n] = s[n] + w[n], where s[n] is modeled as a zero-mean white Gaussian process with variance σ_s^2 , and independent of w[n].

(10%) (a) The likelihood ratio test (LRT) when there are N, with N>1, available observations, that is, for $x[n], n=0,\ldots,N-1$.

Solution: We shall start by defining the vectors

$$\mathbf{x} = (x[0], \dots, x[N-1])^T$$
, $\mathbf{s} = (s[0], \dots, s[N-1])^T$, $\mathbf{w} = (w[0], \dots, w[N-1])^T$,

which allows us to write

$$H = 0 : \mathbf{x} = \mathbf{w},$$

 $H = 1 : \mathbf{x} = \mathbf{s} + \mathbf{w}.$

Taking into account that, both, ${\bf s}$ and ${\bf w}$ are zero-mean Gaussian, white, and independent, it is easy to show that

$$\mathbb{E}\{\mathbf{x}|H=0\}=\mathbf{0},\qquad\qquad\mathbb{E}\{\mathbf{x}|H=1\}=\mathbf{0},$$

and

$$\mathbb{E}\{\mathbf{x}\mathbf{x}^T|H=0\} = \sigma_w^2\mathbf{I}, \qquad \qquad \mathbb{E}\{\mathbf{x}\mathbf{x}^T|H=1\} = (\sigma_s^2 + \sigma_w^2)\mathbf{I},$$

¹It is important to notice that s[n] is a random process, not a deterministic signal.

which yields

$$\begin{split} H &= 0: \mathbf{x} \sim G(\mathbf{0}, \sigma_w^2 \mathbf{I}), \\ H &= 1: \mathbf{x} \sim G(\mathbf{0}, (\sigma_s^2 + \sigma_w^2) \mathbf{I}). \end{split}$$

Once we have the likelihoods, we can compute the likelihood ratio test (LRT) as

$$\frac{p_{\mathbf{X}|H}(\mathbf{x}|1)}{p_{\mathbf{X}|H}(\mathbf{x}|0)} \underset{D=0}{\overset{D=1}{\gtrless}} \eta,$$

which becomes

$$\frac{\frac{1}{(2\pi(\sigma_s^2+\sigma_w^2))^{N/2}}\exp\left(-\frac{1}{2(\sigma_s^2+\sigma_w^2)}\mathbf{x}^T\mathbf{x}\right)}{\frac{1}{(2\pi\sigma_w^2)^{N/2}}\exp\left(-\frac{1}{2\sigma_w^2}\mathbf{x}^T\mathbf{x}\right)} \ \underset{D=0}{\overset{D=1}{\gtrless}} \ \eta.$$

Taking logarithms and simplifying the expression, the log-likelihood ratio test (LLRT) is

$$t = \mathbf{x}^T \mathbf{x} = \sum_{n=0}^{N-1} x^2[n] \stackrel{D=1}{\underset{D=0}{\gtrless}} \mu,$$

where

$$\mu = \frac{\sigma_w^2(\sigma_s^2 + \sigma_w^2)}{\sigma_s^2} \left[2\log(\eta) + N\log\left(\frac{\sigma_s^2 + \sigma_w^2}{\sigma_w^2}\right) \right].$$

(15%) (b) The probability of correctly detecting the presence of short sellers of the LRT for an arbitrary threshold. Express your solution in terms of the Q_{χ^2} -function.

Solution: The probability of correctly detecting the presence of short sellers of the LRT for an arbitrary threshold is given by

$$P_{\mathrm{D}} = P(D=1|H=1) = \int_{\mathcal{X}_1} p_{\mathbf{X}|H}(\mathbf{x}|1) d\mathbf{x},$$

where $\mathcal{X}_1 = \{\mathbf{x} \mid \sum_{n=0}^{N-1} x^2[n] > \mu\}$. However, we cannot compute the above multidimensional integral in closed form. To overcome this issue, it can be rewritten as

$$P_{\rm D} = P(T > \mu | H = 1) = \int_{t > \mu} p_{T|H}(t|1) dt.$$

We therefore need the probability density function (PDF) of T under H=1. Since T is a the sum of squared Gaussian random variables, we could try to write it as a chi-squared random variable. Nevertheless, they do not have unit variance, which prevents us from using the results below. This is easily overcome by rewriting P_D as

$$P_{\rm D} = P\left(\tilde{T} > \frac{\mu}{\sigma_s^2 + \sigma_w^2} | H = 1\right) = \int_{\tilde{t} > \mu/(\sigma_s^2 + \sigma_w^2)} p_{\tilde{T}|H}(\tilde{t}|1) d\tilde{t},$$

where

$$\tilde{t} = \sum_{n=0}^{N-1} \left(\frac{x[n]}{\sqrt{\sigma_s^2 + \sigma_w^2}} \right).$$

Taking into account that $x[n]/\sqrt{\sigma_s^2 + \sigma_w^2} \sim G(0,1)$ under H=1, it can be shown that

$$\tilde{T}\mid H=1\sim \chi_N^2.$$

Hence, the sought probability is

$$P_{\rm D} = \int_{\mu/(\sigma_s^2 + \sigma_w^2)}^{\infty} \frac{1}{2^{N/2} \Gamma(N/2)} \tilde{t}^{N/2 - 1} \exp\left(-\frac{\tilde{t}}{2}\right) d\tilde{t} = Q_{\chi^2} \left(\frac{\mu}{\sigma_s^2 + \sigma_w^2}\right).$$

A. Problemas adicionales

DT65

Considérense las hipótesis binarias

$$H = 0 : X = N$$

 $H = 1 : X = s + N$

siendo s > 0 una constante conocida, y estando el ruido N caracterizado por

$$p_N(n) = \begin{cases} \frac{1}{s} \left(1 - \frac{|n|}{s} \right), & |n| < s \\ 0, & |n| > s \end{cases}$$

Las probabilidades de las hipótesis son $P_H(0) = 1/3$, $P_H(1) = 2/3$.

- (a) Establézcase el decisor MAP
- (b) Calcúlense las correspondientes $P_{\rm FA}$ y $P_{\rm M}$, así como la probabilidad de error
- (c) Calcúlese cuánto variarían las anteriores probabilidades si se aplicase a esta situación el mismo tipo de decisor pero diseñado suponiendo que N fuese gaussiano con igual varianza que el ruido verdaderamente presente (y media también nula).

Solution:

(a)
$$D0: \quad -s < x < \frac{s}{3}$$
$$D1: \quad \frac{s}{3} < x < 2s$$

(b)
$$P_{\rm FA} = \frac{2}{9} \approx 0.2222$$
 $P_{\rm M} = \frac{1}{18} \approx 0.0556$ $P_{\rm e} = \frac{1}{9} \approx 0.1111$

(c)
$$P_{\rm FA} = \frac{\left(1 + \frac{\ln 2}{3}\right)^2}{8} \approx 0.1894$$
 (baja) $P_{\rm M} = \frac{\left(1 - \frac{\ln 2}{3}\right)^2}{8} \approx 0.0739$ (sube)

$$P_{\rm e} = \frac{\left(1 - \frac{\ln 2}{3}\right)^2}{12} + \frac{\left(1 + \frac{\ln 2}{3}\right)^2}{24} \approx 0.1124$$
 (sube)

DT66

El conmutador de la figura se encuentra en su posición superior ("1") con probabilidad conocida P. La variable aleatoria X tiene una densidad de probabilidad uniforme U(0,1).

La posición del conmutador no se puede observar, aunque sí el valor de la v.a. Y presente a su salida. A partir de la observación de este valor, se pretende aplicar un decisor bayesiano para decidir cuál es la posición del conmutador: siendo la política de costes $c_{00} = c_{11} = 0$, $c_{10} = 2c_{01}$.

- (a) Formúlese el problema en la forma habitual.
- (b) Determínese el correspondiente test, teniendo en cuenta los posibles valores de P.
- (c) Calcúlense P_{FA} y P_{M} .

(Sugerencia: para determinar $p_Y(y)$, relaciónense las funciones de distribución de Y y de X).

Solution:

(a) $H=1: Y=X^2$, con probabilidad P H=0: Y=X, con probabilidad 1-P

(b) - si
$$P > 4/5$$
: $\Rightarrow D = 1$ (siempre)

$$- \sin P < 4/5: \left\{ \begin{array}{ll} 0 < y < \frac{1}{16} \left(\frac{P}{1-P}\right)^2 & \Rightarrow & D=1 \\ \\ \frac{1}{16} \left(\frac{P}{1-P}\right)^2 < y < 1 & \Rightarrow & D=0 \end{array} \right.$$

(c) - si
$$P > 4/5$$
: $P_{\text{FA}} = 1$; $P_{\text{M}} = 0$

- si
$$P < 4/5$$
: $P_{\text{FA}} = \frac{1}{16} \left(\frac{P}{1-P} \right)^2$; $P_{\text{M}} = \frac{1 - \frac{5P}{4}}{1-P}$

DT67

Se lanza al aire un dado tradicional (caras con puntos de 1 a 6) y se genera la v.a. X tal que

$$p_X(x) = \begin{cases} \frac{2}{a} \left(1 - \frac{x}{a} \right), & 0 < x < a \\ 0, & \text{en otro caso} \end{cases}$$

de modo tal que su media viene dada por el resultado del lanzamiento (es igual a los puntos que muestra la cara de arriba).

Supóngase que, para una tirada, se tiene acceso a 3 medidas del valor de X tomadas independientemente, de valores $x^{(1)}=2, x^{(2)}=5, x^{(3)}=10$. Decídase a partir de ellas el resultado del lanzamiento del dado según el criterio de máxima verosimilitud.

Solution: El criterio de máxima verosimilitud determina que se ha de elegir la cara 5.