Fundamentos de Geoprocessamento

Introdução a SIG Modelagem de Dados

INPE - Divisão de Processamento de Imagens

Por que **Geoprocessamento** ?

Informações sobre dados com distribuição geográfica - > MAPAS

Desenvolvimento de tecnologias computacionais para tratar estas informações - > Geoprocessamento

Geoprocessamento representa a área do conhecimento que utiliza técnicas matemáticas e computacionais para tratar a informação geográfica.

"Se ONDE é importante para seu negócio, Geoprocessamento é sua ferramenta de trabalho."

Sistemas de Informação Geográfica (SIG) são as ferramentas computacionais para Geoprocessamento, integrando dados de diversas fontes em bancos de dados georeferenciados.

Brasil - potencial para tomada de decisões em problemas urbanos, rurais e ambientais.

SIG x CAD

CAD

- coordenadas de papel
- regularidades nos objetos
- desenhos sem atributos

SIG

- projeções cartográficas
- topologia do espaço
- atributos descritivos

SIG - definições, conceitos

Burrough

 Conjunto poderoso de ferramentas para coletar, armazenar, recuperar, transformar e visualizar dados sobre o mundo real.

Cowen

 Um sistema de suporte à decisão que integra dados referenciados espacialmente num ambiente de respostas a problemas.

SIG - definições, conceitos

Goodchild

 O valor potencial maior de sistemas de informação geográfica está em sua capacidade de analisar dados espaciais

Dangermond

 Um SIG agrupa, unifica e integra a informação, tornando-a disponível de um modo a que ninguém teve acesso anteriormente, ou seja, coloca informação antiga num novo contexto

Atribuições de um SIG

 Produção de Mapas: geração e visualização de dados espaciais.

 Banco de Dados: armazenamento e recuperação de informação espacial.

 Análise Espacial: combinação de informações espaciais.

Histórico - no mundo

- Anos 50 Inglaterra botânica e USA volume de tráfego
- Anos 60 Canadá inventário de recursos naturais
- Anos 70 Geographic Information System & CAD
- Anos 80 massificação, avanço da microinformática

NCGIA - Geoprocessamento como disciplina

Popularização e barateamento -> difusão

Histórico - no Brasil

Início década 80 - Prof. Xavier (UFRJ) e visita de R.Tomlinson - criador do 1º SIG:

- UFRJ (SAGA) Sistema de Análise Geo-Ambiental
- MaxiDATA MaxiCAD, dbMapa
- CPqD/TELEBRÁS (SAGRE) Sistema
 Automatizado de Gerência da Rede Externa VISION e ORACLE

INPE - 1984-1990 - SITIM e SGI, 1991 - SPRING

Componentes do GEOPROCESSAMENTO

HARDWARE

Hardware corresponde ao computador e aos periféricos utilizados para que um SIG opere.

SOFTWARE

O *software* SIG fornece as ferramentas necessárias para armazenar, analisar, e visualizar as informações geográficas

PEOPLEWARE

A tecnologia SIG tem seu valor limitado sem as pessoas que gerenciam o sistema, desenvolvem aplicações,mantém o sistema operando, e os usuários

• BASE DE DADOS

Talvez o componente mais importante de um SIG seja o dado. A informação geográfica e sua informação em forma tabular correspondente pode ser capturada pela própria instituição que provém o SIG, ou adquirida de um provedor de dados comercial.

Uma aplicação SIG de sucesso irá operar de acordo com um planejamento e regras bem especificadas e definidas, que são os modelos e práticas operacionais específicas para cada organização.

Modelagem de dados geográficos

Paradigma dos 4 Universos

Níveis de abstração

mundo real \rightarrow cadastro urbano, vegetação, solos conceitual \rightarrow **campos, objetos** representação \rightarrow matrizes, vetores implementação \rightarrow R-trees, quad-trees

Universo do Mundo Real

Modelando a natureza

- O que há num mapa?
- Linhas no mapa
 - divisão política
 - separação entre tipos de solo
 - isolinhas (cota 1000)
- E o mapa como modelo de dados?

Universo de Representação

Representação Vetorial

- A localização e a aparência gráfica dos objetos são representadas por um ou + pares de coordenadas
- Coordenadas e atributos descrevem o elemento
- Objetos compostos

Universo de Representação

Representação Vetorial

- Componentes
 - ponto, linha, região
 - região M={1,2,3,4,5}
- Topologia
 - relação espacial entre objetos
 - Toulouse fica na região M

Modelo de Objeto

Mapas cadastrais

- Contêm objetos geográficos individuais
 - mapas de países, lotes, propriedades rurais

Universo de Representação

Representação Matricial

- Espaço superfície plana, decomposto em porções do terreno
 - Matriz P (m,n), células: coluna, linha, valor do atributo
 - tamanho célula -> resolução

Definições

Região Geográfica -(R) uma superfície qualquer pertencente ao espaço geográfico, que pode ser representada num plano ou reticulado, dependente de uma projeção cartográfica

P<u>lano de informação</u> - suporte para a representação geográfica de diferentes tipos de dados geográficos.

É o lugar geométrico de um conjunto de dados geográficos - um geo-campo ou um mapa de geo-objetos.

<u>Banco de Dados Geográficos</u> é composto por conjuntos de planos de informação, um conjunto de geo-objetos e um conjunto de objetos não-espaciais

Planos de Informação

O que há de especial com dados espaciais?

- Localização: Onde está...?
 - Quais as áreas com densidade demográfica acima de 50 hab / km²?
- Condição: Como está...?
 - Qual a população desta cidade?
- Tendência: O que mudou...?
 - Ocorreu expansão urbana nos últimos cinco anos?
- Roteamento: Qual o melhor caminho...?
 - Qual o melhor caminho para a linha do metrô?
- Padrões: Qual o padrão...?
 - Qual a distribuição da renda nesta cidade?
- Modelos: O que acontece se...?
 - O que acontece se ocorrer um aumento do trânsito em determinada área...?

Universo do Mundo Real

- Tipos de Dados em Geoprocessamento
 - Dados (mapas) temáticos
 - Dados (mapas) cadastrais
 - Modelos numéricos de terreno
 - Redes
 - Imagens de sensores remotos

Tipos de mapa

- Mapas Numéricos
 - representação de superfícies
- Mapas temáticos
 - conceitos qualitativos (uso do solo, clima)
- Mapas cadastrais e redes
 - localização de objetos do mundo (lotes)
- Imagens
 - informação indireta sobre a realidade

Universo do Mundo Real

Imagens

- Fontes: satélites, fotografias aéreas
- Elemento de imagem (pixel)
 - proporcional à energia
 eletromagnética refletida ou
 emitida por área da superfície
 terrestre

Universo do Mundo Real

Mapa

* Mapa temático

Cerrado: 50 km² Café: 6000 ha

Mapas cadastrais

- Contêm objetos geográficos individuais
 - mapas de países, lotes, propriedades rurais

Representações para MNT

Grade triangular (TIN)

- conexão entre amostras
- estrutura topológica arco-nó

Representações para MNT

Grade regular (matriz de reais)

- elemento com espaçamento fixo
- valor estimado da grandeza

Representações para MNT

	Grade triangular	Grade regular
Vantagens	1. Melhor representação de re-	1. Facilita manuseio e
	levo complexo	conversão
	2. Incorporação de restrições	2. Adequada para geo-
	como linhas de crista	física e visualização
		3D
Problemas	1. Complexidade de manuseio	1. Representação de re-
	2. Inadequada para visualiza-	levo complexo
	ção 3D	2. Cálculo de declividade

Mapas de rede

- Objetos endereçados no espaço
- Exemplo: rede de distribuição elétrica
 - rede primária
 - rede secundária
 - sub-estações, alimentadores
 - postes, transformadores, chaves
 - cadastro urbano
 - cadastro de consumidores

Mapas de rede

- Contêm objetos com topologia arco-nó
 - utilizado para redes conectadas

