Assessed Coursework 1

- Available from 13:00 on February 20th to 13:00 on February 27th
- Please submit your work in PDF format directly on Blackboard
- This exam counts for %7.5 of your final course mark
- Feel free to discuss Q1 to Q3 with each other, but I expect Q4 and Q5 to be the outcome of your sole effort
- Q1. (20 marks) For $f, g \in \mathbb{C}[x_1, x_2]$ compare the following closed sets with respect to inclusion. You need to justify your answers.
 - $-\mathbb{V}(f+g),$
 - $\mathbb{V}((f) + (g)),$
 - $\mathbb{V}((f) \cap (g)),$
 - $\mathbb{V}(f) \cap \mathbb{V}(g).$
 - $\mathbb{V}(fg).$
- Q2. (20 marks) Let $A \subseteq \mathbb{A}^n$ be a subset.
 - (a) What is the definition of the closure of A in \mathbb{A}^n ?
 - (b) Prove that $\mathbb{V}(\mathbb{I}(A))$ equals the closure of A in \mathbb{A}^n .
 - (c) Give an example of two subsets $B, C \subseteq \mathbb{A}^1$, such that $B \subsetneq C$, but $\mathbb{V}(\mathbb{I}(B)) = \mathbb{V}(\mathbb{I}(C))$.
 - (d) Find a curve $W \subseteq \mathbb{A}^2$ and a morphism $\varphi : \mathbb{A}^2 \longrightarrow \mathbb{A}^2$, such that W is irreducible but $\varphi^{-1}(W)$ is not.

Q3. (20 marks)

- (a) What is the definition of a compact subset of a topological space?
- (b) Prove that $\mathbb{V}(x^2-y)\subseteq \mathbb{A}^2$ is compact in the Zariski topology but not in the Euclidean topology.
- Q4. (20 marks) Let k be a field, and denote by \overline{k} its algebraic closure.
 - (a) What is the definition of the algebraic closure of a field?
 - (b) Assume that $I \subseteq k[x_1, \ldots, x_n]$ is an ideal and recall that Nullstellensatz holds over any algebraically closed field. Prove that $I \neq (1)$ if and only if $\mathbb{V}(I) \neq \emptyset$ as a subset of \overline{k}^n .
- Q5. (20 marks) Prove at least one implication from each of the following equivalences.
 - (a) Show that the pullback $\varphi^*: \mathbb{C}[W] \longrightarrow \mathbb{C}[V]$ is injective if and only if φ is dominant. Recall that a map, φ , is called dominant if its image, $\varphi(V)$, is dense in W.
 - (b) Prove that the pullback $\varphi^* : \mathbb{C}[W] \longrightarrow \mathbb{C}[V]$ is surjective if and only if φ defines an isomorphism between V and some algebraic subvariety of W.