Problem Sequence - Problems

This document contains the problems that we are given throughout the course.

Problem 1 Show that if M is the set which contains only the number 0, and p is a point, then p is not a limit point of M.

Problem 2 Show that if M is the point set that contains only the two points 0 and 1, then no point is a limit point of M.

Problem 3 Show that 1 is a limit point of the segment (0,1).

Problem 4 Show that a and b are limit points of the segment (a,b).

Problem 5 If S is the segment (a,b), show that every point of S is a limit point of S.

Problem 6 Show that if M is an interval and p is a point not in M, then p is not a limit point of M.

Problem 7 Show that if H is a point set, and K is a point set, and $H \subseteq K$, and p is a limit point of H, then p is a limit point of K.

Problem 8 Show that if M is the set of all positive integers and p is a point, then p is not a limit point of M.

Problem 9 Show that if p is a limit point of the point set M and S is a segment containing p, then S contains 2 points of M.

Problem 10 Let H be a point set which has a limit point, and let K be the set of all limit points of H. Show that if p is a limit point of K, then p is also a limit point of H.

Problem 11 Show that if M is the set of all reciprocals of positive integers, then 0 is a limit point of M.

Problem 12 Show that if $p \neq 0$, then p is not a limit point of the set of all reciprocals of positive integers.

Problem 13 if H and K are two point sets having a common point, and p is a limit point of $H \cap K$, then p is a limit point of H and p is a limit point of K.

Problem 14 Suppose that M is a point set and p is a limit point of M. Must it be true that every interval containing p contains a point of M different from p?

Problem 15 Suppose that M is a point set and every interval containing p contains a point of M different from p. Must it be true that p is a limit point of M?

Problem 16 Show that if the point p is in each of the two segments S_1 and S_2 , then $S_1 \cap S_2$ is a segment containing p.

Problem 17 Show that if p is not a limit point of the point set H and p is not a limit point of the point set K, then p is not a limit point of $H \cup K$.

Problem 18 Show that if H and K are two point sets and p is a limit point of $H \cup K$,, then p is a limit point of H or p is a limit point of K.