Programmation synchrone Projet 2011

Déploiement du mât de communication

Date limite: 15 décembre 2011

david.lesens@m4x.org

Déploiement du mât de communication d'un véhicule spatial

Déploiement du mât de communication

Le logiciel de bord contrôle l'alimentation des couteaux thermiques afin de déployer le mât

Gestion du mât

Le mât déployable permet la communication avec la station spatiale internationale. Au largage, le mât est replié. Le logiciel de bord est responsable de son déploiement.

Système:

- ✓ Le mât
- ✓ Des liens et des couteaux thermiques
- ✓ Des batteries
- ✓ Un contrôleur
- → Objectif: Développer et valider le contrôleur

Couteau thermique (1/3)

- ➤ Un couteau thermique consiste en une « résistance » associée à un « lien » 1
- S'il est alimenté par une « source de puissance » pendant 2 cycles de suite, le « lien » est coupé 2
- > S'il est alimenté pendant 4 cycles (ou plus) de suite, il peut prendre feu 3

Couteau thermique (2/3)

- > Un couteau thermique prend en entrée
 - ✓ Deux sources redondantes de puissance « power1 » et « power2 » de type booléen (valant vraie si active)
- > Et en sortie
 - ✓ « cut » valant vraie si et seulement si le lien est coupé
 - ✓ « error » en cas d'erreur:
 - Les deux sources de puissance sont actives en même temps
 - **❖**Le lien prend feu
 - La couteau est alimenté alors que le lien est déjà coupé

Couteau thermique (3/3)

- ➤ Développer l'opérateur « TK » (thermal knife)
- **101** ✓ Sans automate et
- ⁰² ✓ Avec uniquement des automates (sans FBY ni PRE)
- ⁰³ ➤ Le valider par simulation
- Prouver formellement que les deux versions (avec et sans automates) sont équivalentes

Batterie (1/3)

- ➤ Une batterie peut délivrer à la demande une certaine puissance pour alimenter plusieurs couteaux
- > Elle prend en entrée
 - ✓ « requested_power » de type entier, correspondant au nombre de couteaux thermiques à alimenter
- > Et renvoie deux sorties
 - ✓ « delivered_power » de type entier (puissance réellement délivrée)
 - ✓ « power_load » de type entier (puissance actuellement disponible)

Batterie (2/3)

- ➤ A chaque cycle, les panneaux solaires chargent la batterie d'une unité (power_load=power_load+1)
- ➤ Si la puissance requise est disponible (requested_power<=power_load), la batterie délivre la puissance requise (delivered_power=requested_power) et la batterie se décharge d'autant (power_load=power_load-requested_power)
- > Sinon, la puissance délivrée est nulle
- La puissance maximale de la batterie est 6
- > Initialement, la batterie est complètement chargée

Batterie (3/3)

```
requested_power

battery

power_load
```

- 05 > Développer l'opérateur « battery »
- **66** ➤ Le valider par simulation

Validation de la batterie

- La charge de la batterie doit être toujours comprise entre 0 et sa charge maximale
- 07 > Ecrire l'observateur de cette propriété
- Prouver formellement cette propriété sur la batterie

Contrôle de puissance (1/2)

- ➤ Une batterie est incorporée dans un équipement de « contrôle de puissance »
- ➤ Un contrôle de puissance prend en entrée « n » demandes de puissance (on_requested de type bool^n)
- ➤ Il renvoie en sortie « n » commandes (« on_realized » de type bool^n)

Contrôle de puissance (2/2)

- Développer l'opérateur <u>générique</u> « power », pour une taille « n » <u>quelconque</u> (« n » étant un paramètre de l'opérateur)
- Valider par simulation une instance n=4 de l'opérateur « power »

Batterie imparfaite

- > Une batterie peut tomber en panne
- > Une panne est modélisée par une entrée « failure »
- Lorsqu'une batterie est en panne, elle ne délivre plus aucune puissance

11 > Développer l'opérateur « unsafe_battery »,

Contrôle de puissance imparfait

Développer l'opérateur <u>générique</u> « unsafe_power », pour une taille « n » <u>quelconque</u> (« n » étant un paramètre de l'opérateur)

Système

- ➤ Le système est composé:
 - ✓ De 4 couteaux correspondant à 4 liens
 - ✓ De 2 contrôles de puissance de taille 4 (chaque couteau étant donc relié à deux contrôles de puissance)
 - ✓D'un contrôleur
 - Entrées: 4 états de liens (TK1_cut, TK2_cut, TK3_cut, TK4_cut: booléen)
 - Sorties: 2 commandes de 4 couteaux

Le système

- 13 > Développer le contrôleur et le système
- 14 > Valider par simulation
- 15 > Prouver formellement sa correction