Reservoir Gradient

Jay T. Lennon, Megan L. Larsen, Nathan I. Wisnoski, & Mario E. Muscarella 06 January, 2016

Effects of metacommunity processes on microbial assembly at the terrestrial-aquatic interface

Initial Setup

```
rm(list=ls())
getwd()
setwd("~/GitHub/ReservoirGradient/analyses")
opar <- par(no.readonly = TRUE) # Saves plot defaults</pre>
# Import Required Packages
require("png")
require("grid")
require("ggplot2")
require("maps")
require("rgdal")
require("raster")
require("OpenMx")
require("reshape")
require("ggmap")
## Warning: replacing previous import by 'grid::arrow' when loading 'ggmap'
## Warning: replacing previous import by 'grid::unit' when loading 'ggmap'
## Warning: replacing previous import by 'scales::alpha' when loading 'ggmap'
require("akima")
require("plyr")
require("raster")
require("gridExtra")
require("vegan")
```

Fig 1: Microbial metabolism along reservoir gradient

Read in data

```
metab <- read.table("../data/res.grad.metab.txt", sep="\t", header=TRUE)
colnames(metab)[1] <- "dist"
colnames(metab)[2] <- "BP"
colnames(metab)[3] <- "BR"
BGE <- round((metab$BP/(metab$BP + metab$BR)),3)
metab <- cbind(metab, BGE)</pre>
```

Figure 1: Microbial Processes Across the Gradient

```
png(filename="../figures/Figure1.png",
    width = 1200, height = 1200, res = 96*2)
par(mfrow = c(1,1), mar = c(0, 5, 0, 1) + 0.5, oma = c(6, 2, 0, 0) + 0.5)
bar.layout \leftarrow layout(rbind(1, 2, 3), height = c(3, 3, 3))
#layout.show(bar.layout)
# Baterial Productivity (BP)
plot(metab$dist, metab$BP, ylab = "", xlab = "", pch = 22, ylim = c(0, 2),
     xlim = c(400, -15), cex = 2, bg = "white", col = "black", cex.lab = 2,
     las = 1, lwd = 2, yaxt = "n", xaxt = "n")
axis(side = 1, lwd.ticks = 2, tck=-0.02, labels = F, cex.axis = 1, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   labels = c("0.0", "1.0", "2.0"), at = c(0, 1.0, 2.0))
axis(side = 3, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 4, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1,
   at = c(0, 1.0, 2.0))
axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 2, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
   at = c(0, 1.0, 2.0)
axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 4, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
   at = c(0, 1.0, 2.0)
box(lwd = 2)
mtext(expression(paste('BP (', mu ,'M C h'^-1* ')')), side = 2, line = 4, cex = 1.25)
# Quadratic regression for BP
dist <- metab$dist</pre>
dist2 <- metab$dist^2</pre>
BP.fit <- lm(metab$BP ~ dist + dist2)</pre>
BP.R2 <- round(summary(BP.fit)$r.squared, 2)</pre>
dist.vals \leftarrow seq(0, 375, 25)
BP.pred <- predict(BP.fit,list(dist = dist.vals, dist2 = dist.vals^2))
lines(dist.vals, BP.pred, col = "black", lwd = 2.5, lty = 6)
text(40, 1.8, labels = bquote(italic(R)^2 == .(BP.R2)), cex = 1.5)
# Bacterial Respiration (BR)
plot(metab$dist, metab$BR, ylab = "", xlab = "", pch = 22, ylim = c(0, 4),
     xlim = c(400, -15), cex = 2, bg = "white", col = "black", cex.lab = 2,
     las = 1, lwd = 2, yaxt = "n", xaxt = "n")
axis(side = 1, lwd.ticks = 2, tck=-0.02, labels = F, cex.axis = 1, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   labels = c("0.0", "2.0", "4.0"), at = c(0, 2, 4))
```

```
axis(side = 3, lwd.ticks = 2, tck=-0.02, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 4, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1,
   at = c(0, 2, 4))
axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 2, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
   at = c(0, 2, 4))
axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 4, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
   at = c(0, 2, 4))
box(lwd = 2)
mtext(expression(paste('BR (', mu ,'M C h'^-1* ')')), side = 2, line = 4, cex = 1.25)
# Simple linear regression for BR
BR.fit <- lm(metab$BR ~ metab$dist)
BR.R2 <- round(summary(BR.fit)$r.squared, 2)
BR.int <- BR.fit$coefficients[1]
BR.slp <- BR.fit$coefficients[2]</pre>
clip(0, 375, 0, 4.1)
abline(a = BR.int, b = BR.slp, col = "black", lwd = 2.5, lty = 6)
text(40, 3.75, labels = bquote(italic(R)^2 == .(BR.R2)), cex = 1.5)
# Bacterial Growth Efficiency
plot(metab$dist, metab$BGE, ylab = "", xlab = "", pch = 22, ylim = c(0, 0.6),
     xlim = c(400, -15), cex = 2, bg = "white", col = "black", cex.lab = 2,
     las = 1, lwd = 2, yaxt = "n", xaxt = "n")
axis(side = 1, lwd.ticks = 2, cex.axis = 1.5, las = 1,
     labels = c("400", "300", "200", "100", "0"), at = c(400, 300, 200, 100, 000))
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
   labels = c("0.0", "0.3", "0.6"), at = c(0, 0.3, 0.6))
axis(side = 3, lwd.ticks = 2, tck=-0.02, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 4, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1,
   at = c(0, 0.3, 0.6))
axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
    at = c(0, 100, 200, 300, 400))
axis(side = 2, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
    at = c(0, 0.3, 0.6))
axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
    at = c(0, 100, 200, 300, 400))
axis(side = 4, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
  at = c(0, 0.3, 0.6))
box(lwd = 2)
mtext("BGE", side = 2, line = 4, cex = 1.25)
mtext("Distance (m)", side = 1, line = 4, cex = 1.25)
```

```
# Simple linear regression for BGE
BGE.fit <- lm(metab$BGE ~ metab$dist)
BGE.R2 <- round(summary(BGE.fit)$r.squared, 2)
BGE.int <- BGE.fit$coefficients[1]
BGE.slp <- BGE.fit$coefficients[2]
clip(0, 375, 0, 0.58)
abline(a = BGE.int, b = BGE.slp, col = "black", lwd = 2.5, lty = 6)
text(40, 0.535, labels = bquote(italic(R)^2 == .(BGE.R2)), cex = 1.5)

dev.off() # this writes plot to folder
graphics.off() # shuts down open devices
par(opar)</pre>
```


Figure 1: Microbial Processes Along Gradient

Crump Model: Mass Effects vs. Species Sorting

Model Description: How will we explore this model?

Load required R packages and tools

```
source("../bin/MothurTools.R")
se <- function(x, ...){sd(x, na.rm = TRUE)/sqrt(length(na.omit(x)))}</pre>
```

Import Shared and Design Files

```
# Define Inputs
# Design = general design file for experiment
# shared = OTU table from mothur with sequence similarity clustering
# Taxonomy = Taxonomic information for each OTU
design <- ".../data/UL.design.txt"
shared <- ".../data/UL.bac.final.shared"
taxon <- ".../data/UL.bac.final.0.03.taxonomy"

# Import Design
design <- read.delim(design, header=T, row.names=1)

# Import Shared Files
OTUs <- read.otu(shared = shared, cutoff = "0.03") # 97% Similarity

# Import Taxonomy
OTU.tax <- read.tax(taxonomy = taxon, format = "rdp")</pre>
```

Data Transformations

```
# Remove OTUs with less than two occurences across all sites
OTUs <- OTUs[, which(colSums(OTUs) >= 2)]
# Sequencing Coverage
coverage <- rowSums(OTUs)</pre>
# Good's Coverage
goods <- function(x = ""){</pre>
  1 - (sum(x == 1) / rowSums(x))
goods.c <- goods(OTUs)</pre>
# Remove Low Coverage Samples (This code removes two sites: Site 5DNA, Site 6cDNA)
lows <- which(coverage < 10000)</pre>
OTUs <- OTUs[-which(coverage < 10000), ]
design <- design[-which(coverage < 10000), ]</pre>
# Make Relative Abundence Matrices
OTUsREL <- OTUs
for(i in 1:dim(OTUs)[1]){
  OTUsREL[i,]<- OTUs[i,]/sum(OTUs[i,])</pre>
```

```
# Log Transform Relative Abundances
OTUsREL.log <- decostand(OTUs, method="log")</pre>
```

Calculate Alpha Diversity

```
# Observed Richness
S.obs \leftarrow rowSums((OTUs > 0) * 1)
# Simpson's Evenness
SimpE <- function(x = ""){
  x <- as.data.frame(x)</pre>
  D <- diversity(x, "inv")</pre>
  S \leftarrow sum((x > 0) * 1)
  E \leftarrow (D)/S
  return(E)
simpsE <- round(apply(OTUs, 1, SimpE), 3)</pre>
# Shannon's Diversity
H \leftarrow function(x = "")
  x \leftarrow x[x>0]
  H = 0
  for (n_i in x){
    p = n_i / sum(x)
    H = H - p*log(p)
  return(H)
shan <- round(apply(OTUs, 1, H), 2)</pre>
shan2 <- diversity(OTUs, index = "shannon")</pre>
alpha.div <- cbind(design, S.obs, simpsE, shan)</pre>
```

Import Phototrophs

```
# The phototrophs
cyanos.in <- "../data/UL.cyano.final.shared"
phytos.in <- "../data/UL.euks.final.shared"

cyanos <- read.otu(shared = cyanos.in, cutoff = "0.03")
phytos <- read.otu(shared = phytos.in, cutoff = "0.03")

# Remove OTUs with less than two occurences across all sites
cyanos <- cyanos[, which(colSums(cyanos) >= 2)]
phytos <- phytos[, which(colSums(phytos) >= 2)]

# Remove sites where we have low coverage
cyanos <- cyanos[-which(coverage < 10000), ]</pre>
```

```
phytos <- phytos[-which(coverage < 10000), ]</pre>
# Remove Non Intersecting Sites
ratio.sites <- intersect(intersect(rownames(cyanos), rownames(phytos)), rownames(OTUs))
cyanos <- cyanos[ratio.sites, ]</pre>
phytos <- phytos[ratio.sites, ]</pre>
heteros <- OTUs[ratio.sites, ]</pre>
design.int <- design[ratio.sites, ]</pre>
# Remove RNA Sites
DNA.samps <- which(design.int$molecule == "DNA")
cyanos <- cyanos[DNA.samps, ]</pre>
phytos <- phytos[DNA.samps, ]</pre>
heteros <- OTUs[DNA.samps, ]</pre>
design.dna <- design[DNA.samps, ]</pre>
# Observed Richness
S.cyano <- rowSums((cyanos > 0) * 1)
S.phyto <- rowSums((phytos > 0) * 1)
S.hetero <- rowSums((heteros > 0) * 1)
N.cyano <- rowSums(cyanos)</pre>
N.phyto <- rowSums(phytos)</pre>
N.hetero <- rowSums(heteros) - rowSums(cyanos)</pre>
HtoC <- N.hetero / N.cyano</pre>
HtoP <- N.hetero / N.phyto</pre>
HtoBoth <- N.hetero / (N.cyano + N.phyto)</pre>
# Ratio Across Gradient Plot
# plot(HtoC ~ design.dna$distance, col= "black", pch = 22, las = 1,
       xlim = c(400, 0), ylim = c(0, 1000), cex = 1.5,
        xlab="", ylab="")
```

Alpha Diversity Across Gradient

```
# Seperate data based on lake and soil samples
lake <- alpha.div[alpha.div$type == "water",]
soil <- alpha.div[alpha.div$type == "soil", ]

# Calculate Linear Model
model.rich <- lm(lake$S.obs ~ lake$distance * lake$molecule)

# Calculate Confidence Intervals of Model
newdata.rich <- data.frame(cbind(lake$molecule, lake$distance))
conf95.rich <- predict(model.rich, newdata.rich, interval="confidence")

# Average Richess in Terrestrial Habitat
mean(soil$S.obs)</pre>
```

[1] 7158.667

```
# Dummy Variables Regression Model ("Species Richness")
D1 <- (lake$molecule == "RNA")*1
fit.Fig.3a <- lm(lake$S.obs ~ lake$distance + D1 + lake$distance*D1)
summary(fit.Fig.3a)
##
## Call:
## lm(formula = lake$S.obs ~ lake$distance + D1 + lake$distance *
##
## Residuals:
               1Q Median
##
      \mathtt{Min}
                               3Q
                                      Max
## -394.78 -164.65 -18.63 122.24 722.23
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   368.9165 125.7785 2.933 0.00637 **
## lake$distance
                     4.4396
                              0.5291 8.390 2.30e-09 ***
                   113.2278 176.7261 0.641 0.52658
## D1
## lake$distance:D1 -4.4788
                               0.7445 -6.016 1.33e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 253.6 on 30 degrees of freedom
## Multiple R-squared: 0.8407, Adjusted R-squared: 0.8247
## F-statistic: 52.76 on 3 and 30 DF, p-value: 4.472e-12
D1.R2 <- round(summary(fit.Fig.3a)$r.squared, 2)
DNA.int.3a <- fit.Fig.3a$coefficients[1]
DNA.slp.3a <- fit.Fig.3a$coefficients[2]
RNA.int.3a <- DNA.int.3a + fit.Fig.3a$coefficients[3]
RNA.slp.3a <- DNA.slp.3a + fit.Fig.3a$coefficients[4]
```

Similarity To Terrestrial Habitat Across Gradient (Terrestrial Influence)

```
D2 <- (UL.sim$molecule == "RNA")*1
D2.R2 <- round(summary(fit.Fig.3b)$r.squared, 2)
summary(fit.Fig.3b)
##
## Call:
## lm(formula = UL.sim$bray.mean ~ UL.sim$distance + D2 + UL.sim$distance *
      D2)
##
## Residuals:
        Min
                  1Q
                       Median
                                    3Q
                                             Max
## -0.051051 -0.012638 -0.002573 0.008963 0.091666
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     1.567e-02 1.461e-02 1.073 0.291795
                     4.143e-04 6.144e-05 6.743 1.78e-07 ***
## UL.sim$distance
## D2
                     1.127e-02 2.052e-02 0.549 0.586965
## UL.sim$distance:D2 -3.855e-04 8.646e-05 -4.459 0.000107 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.02945 on 30 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7294
## F-statistic: 30.65 on 3 and 30 DF, p-value: 2.868e-09
DNA.int.3b <- fit.Fig.3b$coefficients[1]
DNA.slp.3b <- fit.Fig.3b$coefficients[2]</pre>
RNA.int.3b <- DNA.int.3b + fit.Fig.3b$coefficients[3]
RNA.slp.3b <- DNA.slp.3b + fit.Fig.3b$coefficients[4]
```

Similarity To Lake Habitat Across Gradient

```
# Similarity to Lake Sample 1
             <- 1 - as.matrix(vegdist(OTUsREL.log, method="bray"))
UL.brav2
UL.bray.lake2 <- UL.bray[-c(1:3), 4:7]
UL.sim2
              <- cbind(design[-c(1:3), ],
                        "DNA" = apply(UL.bray.lake2[,c(1,3)], 1, mean),
                        "RNA" = apply(UL.bray.lake2[,c(2,4)], 1, mean))
# Calculate Linear Model
model.lake1 <- lm(UL.sim2$DNA ~ UL.sim2$distance * UL.sim2$molecule)</pre>
model.lake2 <- lm(UL.sim2$RNA ~ UL.sim2$distance * UL.sim2$molecule)</pre>
summary(model.lake1)
##
## Call:
## lm(formula = UL.sim2$DNA ~ UL.sim2$distance * UL.sim2$molecule)
##
```

```
## Residuals:
##
                         Median
        Min
                   10
                                       30
                                                 Max
## -0.212825 -0.075949 -0.006199 0.054511 0.254650
## Coefficients:
                                         Estimate Std. Error t value
##
## (Intercept)
                                        0.7804831 0.0493547 15.814
## UL.sim2$distance
                                        -0.0015905 0.0002076 -7.660
## UL.sim2$moleculeRNA
                                        -0.4639770 0.0693462 -6.691
## UL.sim2$distance:UL.sim2$moleculeRNA 0.0014089 0.0002921
                                                               4.823
                                       Pr(>|t|)
## (Intercept)
                                        4.27e-16 ***
## UL.sim2$distance
                                        1.52e-08 ***
## UL.sim2$moleculeRNA
                                        2.06e-07 ***
## UL.sim2$distance:UL.sim2$moleculeRNA 3.84e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.09951 on 30 degrees of freedom
## Multiple R-squared: 0.7385, Adjusted R-squared: 0.7124
## F-statistic: 28.24 on 3 and 30 DF, p-value: 7.107e-09
summary(model.lake2)
##
## Call:
## lm(formula = UL.sim2$RNA ~ UL.sim2$distance * UL.sim2$molecule)
## Residuals:
        Min
                   1Q
                        Median
                                       3Q
## -0.278785 -0.037188 0.002748 0.040844 0.290619
##
## Coefficients:
##
                                         Estimate Std. Error t value
                                         4.249e-01 5.839e-02
## (Intercept)
                                                              7.276
## UL.sim2$distance
                                       -7.120e-04 2.456e-04 -2.898
## UL.sim2$moleculeRNA
                                        1.850e-02 8.205e-02
## UL.sim2$distance:UL.sim2$moleculeRNA -3.571e-05 3.457e-04 -0.103
                                       Pr(>|t|)
## (Intercept)
                                       4.22e-08 ***
## UL.sim2$distance
                                        0.00695 **
## UL.sim2$moleculeRNA
                                        0.82311
## UL.sim2$distance:UL.sim2$moleculeRNA 0.91840
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1177 on 30 degrees of freedom
## Multiple R-squared: 0.3743, Adjusted R-squared: 0.3117
## F-statistic: 5.982 on 3 and 30 DF, p-value: 0.002539
# Calculate Confidance Intervals of Model
newdata.lake <- data.frame(cbind(UL.sim2$molecule, UL.sim2$distance))</pre>
conf95.lake <- predict(model.lake1, newdata.lake, interval="confidence")</pre>
```

```
# Dummy Variables Regression Model ("Lake Influence")
D3 <- (UL.sim2$molecule == "RNA")*1
fit.Fig.3c <- lm(UL.sim2$DNA ~ UL.sim2$distance + D3 + UL.sim2$distance*D3)
# summary(fit.Fig.3c)

DNA.int.3c <- fit.Fig.3c$coefficients[1]
DNA.slp.3c <- fit.Fig.3c$coefficients[2]
RNA.int.3c <- DNA.int.3c + fit.Fig.3c$coefficients[3]
RNA.slp.3c <- DNA.slp.3c + fit.Fig.3c$coefficients[4]</pre>
```

Figure 2: Bacterial Richness and Terrestrial Influence Across Gradient

```
# Set Plot Symbol Parameters
mol <- rep(NA, length(lake$molecule))</pre>
  for (i in 1:length(mol)){
    if (lake$molecule[i] == "DNA"){
      mol[i] <- 22
    } else {
      mol[i] \leftarrow 24
cols <- rep(NA, length(lake$molecule))</pre>
  for (i in 1:length(cols)){
    if (lake$molecule[i] == "DNA"){
      cols[i] <- "gray15"</pre>
    } else {
      cols[i] <- "gray75"
    }
  }
# Initial Plot
png(filename="../figures/Figure2.png",
    width = 1200, height = 1200, res = 96*2)
par(mfrow = c(1,1), mar = c(0, 5, 0, 1) + 0.5, oma = c(4, 2, 0, 0) + 0.5)
bar.layout \leftarrow layout(rbind(1, 2), height = c(4, 4))
# Richness Across Gradient Plot
plot(lake$S.obs ~ lake$distance, col= "black", bg = cols, pch=mol, las = 1,
     xlim = c(400, -15), ylim = c(0, 2750), cex = 1.5,
     xlab="", ylab="", xaxt="n")
# matlines(lake$distance[lake$molecule == "DNA"], conf95.rich[lake$molecule == "DNA", ],
           lty = c(1, 0, 0), col = c("black", "gray50", "gray50"), lwd = c(2, 1, 1))
   matlines(lake$distance[lake$molecule == "RNA"], conf95.rich[lake$molecule == "RNA", ],
#
           lty = c(1, 0, 0), col=c("black", "gray50", "gray50"), lwd=c(2, 1, 1))
# Add multiple regression lines
clip(400, 0, 0, 2800)
```

```
abline(a = DNA.int.3a, b = DNA.slp.3a, col = "black", lwd = 2.5, lty = 6)
abline(a = RNA.int.3a, b = RNA.slp.3a, col = "black", lwd = 2.5, lty = 4)
text(40, 1500, labels = bquote(italic(R)^2 == .(D1.R2)), cex = 1)
axis(side = 1, lwd.ticks = 2, tck=-0.02, labels = F, cex.axis = 1, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1)
axis(side = 3, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 4, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400))
axis(side = 2, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(0, 100, 200, 300, 400)
axis(side = 4, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
mtext("Richness \n(S)", side = 2, line = 4, cex=1.5)
legend("topright", legend = levels(lake$molecule), pch=c(22, 24),
       pt.bg = c("gray15", "gray75"), bty='n', cex = 1, ncol=2)
box(1wd=2)
# Terrestrial Influence Plot
plot(UL.sim$bray.mean ~ UL.sim$distance, col= "black", bg = cols, pch=mol,
     las = 1, x = c(400, -15), y = c(0, 0.25), cex = 1.5,
    xlab="", ylab="", xaxt="n")
  matlines(lake$distance[lake$molecule == "DNA"], conf95.terr[lake$molecule == "DNA", ],
           lty = c(1, 0, 0), col = c("black", "gray 50", "gray 50"), lwd = c(2, 1, 1))
#
  matlines(lake$distance[lake$molecule == "RNA"], conf95.terr[lake$molecule == "RNA", ],
#
           lty = c(1, 0, 0), col = c("black", "gray 50", "gray 50"), lwd = c(2, 1, 1))
# Add multiple regression lines
clip(400, 0, 0, 0.27)
abline(a = DNA.int.3b, b = DNA.slp.3b, col = "black", lwd = 2.5, lty = 6)
abline(a = RNA.int.3b, b = RNA.slp.3b, col = "black", lwd = 2.5, lty = 4)
text(40, 0.125, labels = bquote(italic(R)^2 == .(D2.R2)), cex = 1)
axis(side = 1, lwd.ticks = 2, cex.axis = 1, las = 1,
     labels = c("400", "300", "200", "100", "0"), at = c(400, 300, 200, 100, 000))
axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1)
axis(side = 3, lwd.ticks = 2, tck=-0.02, labels = F, cex.axis = 2, las = 1,
     at = c(400, 300, 200, 100, 000))
axis(side = 4, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(400, 300, 200, 100, 000)
axis(side = 2, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1,
     at = c(400, 300, 200, 100, 000))
axis(side = 4, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
```

```
mtext("Terrestrial\nInfluence" , side = 2, line = 4, cex=1.5)
mtext("Distance (m)" , side = 1, line = 3, cex=1.5)
# legend("topright", legend = levels(UL.sim$molecule), pch=c(22, 24),
        pt.bg = c("gray15", "gray75"), bty='n', cex = 1.25)
box(1wd=2)
# # Lake Influence Plot
# # plot(UL.sim2$DNA ~ UL.sim2$distance, col= "black", bg = cols, pch=mol, las = 1,
         xlim = c(400, 0), ylim = c(0, 1), cex = 1.5,
# #
         xlab="", ylab="")
#
# #
    matlines(lake$distance[lake$molecule == "DNA"], conf95.lake[lake$molecule == "DNA", ],
            lty = c(1, 0, 0), col = c("black", "qray50", "qray50"), lwd = c(2, 1, 1))
# #
# # matlines(lake$distance[lake$molecule == "RNA"], conf95.lake[lake$molecule == "RNA", ],
             lty = c(1, 0, 0), col=c("black", "gray50", "gray50"), lwd=c(2, 1, 1))
# #
# # Add multiple regression lines
# clip(400, 0, 0, 1)
\# abline(a = DNA.int.3c, b = DNA.slp.3c, col = "black", lwd = 2.5, lty = 6)
# clip(400, 0, 0, 1)
\# abline(a = RNA.int.3c, b = RNA.slp.3c, col = "black", lwd = 2.5, lty = 4)
\# axis(side = 1, lwd.ticks = 2, cex.axis = 1, las = 1)
\# axis(side = 2, lwd.ticks = 2, cex.axis = 1, las = 1)
# axis(side = 3, lwd.ticks = 2, tck=-0.05, labels = F, cex.axis = 2, las = 1)
\# axis(side = 4, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1)
\# axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
# axis(side = 2, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
# axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
\# axis(side = 4, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
# mtext("Distance (m)" , side = 1, line = 3, cex=1.5)
\# mtext("Lake\nInfluence", side = 2, line = 4, cex=1.5)
# legend("topleft", legend = levels(UL.sim$molecule), pch=c(22, 24),
         pt.bg = c("gray15", "gray75"), bty='n', cex = 1.25)
#
# box(lwd=2)
# Close Plot Defice
dev.off()
## pdf
##
   2
graphics.off()
par(opar)
```


Figure 2: Microbial Community Shifts

Identifying the Soil Bacteria

```
soil.only <- OTUs[, which(colSums(OTUs[-c(1:3),]) == 0)]</pre>
lake.n.soil <- OTUs[, setdiff(colnames(OTUs),colnames(soil.only))]</pre>
w.dna <- OTUs[which(design$molecule == "DNA" & design$type == "water"), ]</pre>
w.rna <- OTUs[which(design$molecule == "RNA" & design$type == "water"), ]</pre>
nvr.act <- which(colSums(w.rna) == 0)</pre>
terr.lake <- w.dna[ , c(names(nvr.act))]</pre>
terr.rich <- rowSums((terr.lake > 0) * 1)
terr.REL <- rowSums(terr.lake) / rowSums(w.dna)</pre>
design.dna <- design[which(design$molecule == "DNA" & design$type == "water"), ]</pre>
terr.rich.log <- log10(terr.rich)</pre>
terr.REL.log <- log10(terr.REL)</pre>
terr.mod1 <- lm(terr.rich.log ~ design.dna$distance)</pre>
summary(terr.mod1)
##
## lm(formula = terr.rich.log ~ design.dna$distance)
##
## Residuals:
        Min
##
                   1Q
                         Median
                                       3Q
                                                Max
```

```
## -0.24705 -0.12361 0.02547 0.09541 0.22716
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                      2.025051
                                0.077485 26.135 6.35e-14 ***
## design.dna$distance 0.003018
                                0.000326 9.257 1.37e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1562 on 15 degrees of freedom
## Multiple R-squared: 0.851, Adjusted R-squared: 0.8411
## F-statistic: 85.7 on 1 and 15 DF, p-value: 1.365e-07
T1.R2 <- round(summary(terr.mod1)$r.squared, 2)
T1.int <- terr.mod1$coefficients[1]</pre>
T1.slp <- terr.mod1$coefficients[2]</pre>
terr.mod2 <- lm(terr.REL.log ~ design.dna$distance)</pre>
summary(terr.mod2)
##
## lm(formula = terr.REL.log ~ design.dna$distance)
## Residuals:
       Min
                 10 Median
                                  30
                                          Max
## -0.43842 -0.10220 -0.00186 0.10962 0.42941
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
                      ## (Intercept)
## design.dna$distance 0.002900
                               0.000477
                                             6.08 2.10e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2286 on 15 degrees of freedom
## Multiple R-squared: 0.7114, Adjusted R-squared: 0.6921
## F-statistic: 36.97 on 1 and 15 DF, p-value: 2.105e-05
T2.R2 <- round(summary(terr.mod2)$r.squared, 2)
T2.int <- terr.mod2$coefficients[1]
T2.slp <- terr.mod2$coefficients[2]
```

Figure 3: Soil Organisms Plot

```
# Initial Plot
png(filename="../figures/Figure3.png",
    width = 1200, height =1200, res = 96*2)
par(mfrow = c(1,1), mar = c(0, 7, 0, 1) + 0.5, oma = c(4, 2, 0, 0) + 0.5)
```

```
bar.layout <- layout(rbind(1, 2), height = c(4, 4))</pre>
# Soil OTU Richness Across Gradient Plot
plot(terr.rich.log ~ design.dna$distance, col= "black", pch=22, las = 1,
           xlim = c(400, -15), ylim = c(1.5, 3.5), cex = 1.5,
           xlab="", ylab="", xaxt="n", yaxt="n")
clip(0, 375, 1.5, 3.4)
abline(a = T1.int, b = T1.slp, col = "black", lwd = 2.5, lty = 6)
text(40, 3, labels = bquote(italic(R)^2 == .(T1.R2)), cex = 1)
axis(side = 1, lwd.ticks = 2, tck = -0.02, labels = F, cex.axis = 1, las = 1)
axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 3, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 2, lwd.ticks = 2, at = c(2, 3), labels = c(10^2, 10^3), cex.axis = 1, las = 1)
axis(side = 2, lwd.ticks = 2, tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at = log10(c(seq(10, 100, by = 10), tck = -0.02, at =
           seq(100, 1000, by = 100), seq(1000, 10000, by = 1000))), labels = F, cex.axis = 1, las = 1)
axis(side = 2, lwd.ticks = 2, at = c(2, 3), tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 2, lwd.ticks = 2, tck = 0.005, at = log10(c(seq(10, 100, by = 10), tck = 10))
           seq(100, 1000, by = 100), seq(1000, 10000, by = 1000))), labels = F, cex.axis = 1, las = 1)
axis(side = 4, lwd.ticks = 2, at = c(2, 3), tck=-0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 4, lwd.ticks = 2, at = c(2, 3), tck=0.02, labels = F, cex.axis = 2, las = 1)
axis(side = 4, lwd.ticks = 2, tck = 0.01, at = log10(c(seq(10, 100, by = 10), at = log10(c(seq(10, 1
           seq(100, 1000, by = 100), seq(1000, 10000, by = 1000))), labels = F, cex.axis = 1, las = 1)
mtext("Transient\nRichness\n(S)" , side = 2, line = 4, cex=1.5)
box(1wd=2)
# Soil OTU Relative Abundance Across Gradient Plot
plot(terr.REL.log ~ design.dna$distance, col= "black", pch=22, las = 1,
           xlim = c(400, -15), ylim = c(-2.5, -.5), cex = 1.5,
           xlab="", ylab="", xaxt="n", yaxt="n")
clip(0, 375, -2.5, -0.5)
abline(a = T2.int, b = T2.slp, col = "black", lwd = 2.5, lty = 6)
text(40, -1, labels = bquote(italic(R)^2 == .(T2.R2)), cex = 1)
    axis(side = 1, lwd.ticks = 2, labels = T, cex.axis = 1, las = 1)
    axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
    axis(side = 3, lwd.ticks = 2, tck=-0.02, labels = F, cex.axis = 2, las = 1)
    axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
    axis(side = 2, lwd.ticks = 2, at = c(-2, -1), labels = c(0.01, 0.1), cex.axis = 1, las = 1)
    axis(side = 2, lwd.ticks = 2, tck = -0.02, at = log10(c(seq(0.001, 0.01, by = 0.001),
               seq(0.01, 0.1, by = 0.01), seq(0.1, 1, by = 0.1))), labels = F, cex.axis = 1, las = 1)
    axis(side = 2, lwd.ticks = 2, at = c(-2, -1), tck=0.01, labels = F, cex.axis = 2, las = 1)
    axis(side = 2, lwd.ticks = 2, tck = 0.005, at = log10(c(seq(0.001, 0.01, by = 0.001),
               seq(0.01, 0.1, by = 0.01), seq(0.1, 1, by = 0.1))), labels = F, cex.axis = 1, las = 1)
    axis(side = 4, lwd.ticks = 2, at = c(-2, -1), tck=-0.01, labels = F, cex.axis = 2, las = 1)
    axis(side = 4, lwd.ticks = 2, at = c(-2, -1), tck=0.02, labels = F, cex.axis = 2, las = 1)
    axis(side = 4, lwd.ticks = 2, tck = 0.01, at = log10(c(seq(0.001, 0.01, by = 0.001),
               seq(0.01, 0.1, by = 0.01), seq(0.1, 1, by = 0.1))), labels = F, cex.axis = 1, las = 1)
```

```
mtext("Distance (m)" , side = 1, line = 3, cex=1.5)
mtext("Transient\nRelative\nAbundance", side = 2, line = 4, cex=1.5)
box(lwd=2)

# Close Plot Defice
dev.off()

## pdf
## 2
graphics.off()
```


Figure 3: Transient Species Distributions

Define Core Lake Taxa

```
# lake.only <- OTUs[, which(colSums(OTUs[c(1:3),]) == 0)]
#
# lake.dna <- lake.only[which(design$molecule == "DNA" & design$type == "water"), ]
# lake.rna <- lake.only[which(design$molecule == "RNA" & design$type == "water"), ]
#
# w.dna <- OTUs[which(design$molecule == "DNA" & design$type == "water"), ]</pre>
```

```
# w.rna <- OTUs[which(design$molecule == "RNA" & design$type == "water"), ]
# soil.lake.dna <- w.dna[, setdiff(colnames(w.dna), colnames(lake.dna))]</pre>
# soil.lake.rna <- w.rna[, setdiff(colnames(w.rna), colnames(lake.rna))]</pre>
# lake.rna.pa <- (lake.rna > 0) * 1
# lake.core <- lake.rna[, which((colSums(lake.rna.pa) / nrow(lake.rna.pa)) >= 0.75)]
# core.total <- w.dna[, colnames(lake.core)]</pre>
# core.rich <- rowSums((core.total > 0) * 1)
# core.REL <- rowSums(core.total) / rowSums(w.dna)
# total lake core
in.soil <- OTUs[, which(colSums(OTUs[c(1:3),]) > 0)]
in.lake <- OTUs[, which(colSums(OTUs[-c(1:3),]) > 0)]
in.lake.rna <- in.lake[which(design$molecule == "RNA" & design$type == "water"), ]
in.lake.rna.pa \leftarrow (in.lake.rna > 0) * 1
in.lake.core <- w.dna[, which((colSums(in.lake.rna.pa) / nrow(in.lake.rna.pa)) >= 0.75)]
in.lake.core.from.soils <- in.lake.core[, intersect(colnames(in.lake.core), colnames(in.soil))]</pre>
in.lake.core.not.soils <- in.lake.core[, setdiff(colnames(in.lake.core), colnames(in.soil))]
in.lake.core.soil.REL <- rowSums(in.lake.core.from.soils) / rowSums(w.dna)
in.lake.core.water.REL <- rowSums(in.lake.core.not.soils) / rowSums(w.dna)
```

Model Fit

```
terrestrial <- data.frame(in.lake.core.soil.REL, design.dna$distance)
terrestrial$distance[1] <- 10^-8</pre>
colnames(terrestrial) <- c("t.rel.abund", "distance")</pre>
mm <- function(x,V,K){
  (V * x)/(K + x)
fit.t.1 <- lm(terrestrial$t.rel.abund ~ terrestrial$distance)</pre>
fit.t.2 <- lm(terrestrial$t.rel.abund ~ poly(terrestrial$distance,2,raw=TRUE))</pre>
fit.t.3 <- lm(terrestrial$t.rel.abund ~ poly(terrestrial$distance,3,raw=TRUE))</pre>
fit.t.mm <- nls(t.rel.abund ~ mm((400-distance[1:15]), max, halfsat), data = terrestrial[1:15,], start
## 0.3668947 : 0.75 75.00
## 0.08903506 : 0.6951443 21.8083098
## 0.06670413 : 0.7430342 22.7045992
## 0.0667018 : 0.7426183 22.5471933
## 0.06670177 : 0.7426968 22.5671676
## 0.06670177 : 0.7426869 22.5646800
## 0.06670177 : 0.7426882 22.5649901
summary(fit.t.mm)$coefficients
##
            Estimate Std. Error t value
                                             Pr(>|t|)
## max
           ## halfsat 22.5649901 7.6917650 2.933656 1.163141e-02
```

```
colnames(lake) <- c("l.rel.abund", "distance")

fit.l.1 <- lm(lake$l.rel.abund ~ lake$distance)
fit.l.2 <- lm(lake$l.rel.abund ~ poly(lake$distance,2,raw=TRUE))
fit.l.3 <- lm(lake$l.rel.abund ~ poly(lake$distance,3,raw=TRUE))
fit.l.mm <- nls(l.rel.abund ~ mm((400-distance), max, halfsat), data = lake[1:15,], start = list(max = 0.001514233 : 0.1185238 74.3861828
## 0.001313028 : 0.1204971 66.8216152
## 0.001312812 : 0.1204972 67.1696498
## 0.001312812 : 0.1205036 67.1849185

#fit.l.pow = nls(l.rel.abund ~ I(distance power), data=lake, start=list(power = -0.06590247), trace = T.</pre>
```

Figure 4: Plot Core Community

lake\$distance[1] <- 10^-8</pre>

lake <- data.frame(in.lake.core.water.REL, design.dna\$distance)</pre>

```
png(filename="../figures/Figure4.png",
    width = 1200, height = 1200, res = 96*2)
plot(in.lake.core.soil.REL ~ design.dna$distance,
     ylim = c(0, 1), xlim = c(400, -15), pch = 22, bg = "black",
     ylab = "", xlab = "", xaxt = "n", yaxt = "n", cex = 2, cex.lab = 2)
points(in.lake.core.water.REL ~ design.dna$distance, cex = 2, pch = 22)
axis(side = 1, lwd.ticks = 2, labels = T, cex.axis = 1, las = 1)
axis(side = 1, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 3, lwd.ticks = 2, tck=-0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 3, lwd.ticks = 2, tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 2, lwd.ticks = 2, at = c(0, .25, .5, .75, 1), cex.axis = 1, las = 1)
axis(side = 2, lwd.ticks = 2, at = c(0, .25, .5, .75, 1), tck=0.01, labels = F, cex.axis = 2, las = 1)
axis(side = 4, lwd.ticks = 2, at = c(0, .25, .5, .75, 1), tck=-0.01, labels = F, cex.axis = 2, las = 1
axis(side = 4, lwd.ticks = 2, at = c(0, .25, .5, .75, 1), tck=0.01, labels = F, cex.axis = 2, las = 1)
legend("topright", c("Terrestrial", "Lake"), col = c("black", "black"),
         pt.bg = c("black", "white"), pch = 22, cex = 1.25, bty = "n")
box(1wd=2)
x <- lake$distance[1:15]
\#lines(terrestrial\$distance, predict(fit.t.2, data.frame(x=x)))
#lines(lake$distance, predict(fit.l.2, data.frame(x=x)))
#power <- round(summary(fit.t.pow)$coefficients[1], 3)</pre>
#power.se <- round(summary(m)$coefficients[2], 3)</pre>
```

```
lines(x, predict(fit.t.mm, list(x = x)), lwd = 2.5, lty = 6)
lines(x, predict(fit.l.mm, list(x = x)), lwd = 2.5, lty = 6)

dev.off()

## pdf
## 2

graphics.off()
```


Figure 4: Core Lake Abundance

Taxonomic Analysis

```
# Taxa comprising total lake 'core', those from soils, and those not from soils
OTU.tax[OTU.tax$OTU %in% colnames(in.lake.core),]
```

```
##
             OTU
                   Domain
                                   Phylum
                                                        Class
## 1
       Otu000001 Bacteria
                           Actinobacteria
                                               Actinobacteria
## 2
       Otu000002 Bacteria
                             unclassified
                                                 unclassified
       Otu000003 Bacteria Actinobacteria
                                               Actinobacteria
## 4
       Otu000004 Bacteria Proteobacteria Gammaproteobacteria
## 5
       Otu000005 Bacteria Proteobacteria Gammaproteobacteria
```

##	6	Otu000006	Pastoria	unclassified	unclassified
	7	Otu000007		Proteobacteria	
##	8	Otu000007			Betaproteobacteria Gammaproteobacteria
##	9			Actinobacteria	Actinobacteria
##	9 10	Otu000009 Otu000010		Bacteroidetes	
##	11	Otu000010			Sphingobacteria
##	12			Proteobacteria	Betaproteobacteria
##	13	Otu000012		Proteobacteria	Betaproteobacteria
##		Otu000013 Otu000014		Actinobacteria	Actinobacteria Clostridia
##	14 15			Firmicutes	
##	16	Otu000015		Proteobacteria	Betaproteobacteria
##		Otu000016 Otu000017		Proteobacteria	Betaproteobacteria
	17			Bacteroidetes	Sphingobacteria
##	18	Otu000018		Bacteroidetes	Sphingobacteria
##	19	Otu000019			Alphaproteobacteria
##	20	Otu000020			Gammaproteobacteria
##	21	Otu000021		Actinobacteria	Actinobacteria
##	22	Otu000022		Bacteroidetes	Sphingobacteria
	23	Otu000023		Actinobacteria	Actinobacteria
##		Otu000024		Actinobacteria	Actinobacteria
##		Otu000025			Alphaproteobacteria
##		Otu000026		Bacteroidetes	unclassified
##		Otu000027		Bacteroidetes	unclassified
##		Otu000029		Acidobacteria	- 1
##		Otu000030		Actinobacteria	Actinobacteria
##		Otu000031		Actinobacteria	Actinobacteria
##		Otu000032			Alphaproteobacteria
	33	Otu000033			Gammaproteobacteria
	34	Otu000034		Bacteroidetes	unclassified
##	35	Otu000035		Proteobacteria	Betaproteobacteria
##	36	Otu000036		Bacteroidetes	Sphingobacteria
##	37	Otu000037		unclassified	unclassified
##	38	Otu000038			Alphaproteobacteria
##	39	Otu000039		Proteobacteria	${\tt Gammaproteobacteria}$
##	42	Otu000042		Bacteroidetes	Flavobacteria
##	43	Otu000043	Bacteria	Actinobacteria	Actinobacteria
##	44	Otu000044	Bacteria	Bacteroidetes	Sphingobacteria
##		Otu000045		Proteobacteria	Betaproteobacteria
##	49	Otu000049	Bacteria	Bacteroidetes	Flavobacteria
##	51	Otu000051	Bacteria	Verrucomicrobia	Spartobacteria
##	53	Otu000053	Bacteria	Acidobacteria	Acidobacteria_Gp6
##	55	Otu000055	Bacteria	Planctomycetes	Planctomycetacia
##	56	Otu000056	${\tt Bacteria}$	unclassified	unclassified
##	57	Otu000057	${\tt Bacteria}$	Proteobacteria	Betaproteobacteria
##	58	Otu000058		unclassified	unclassified
##	61	Otu000061	${\tt Bacteria}$	${\tt Verrucomicrobia}$	Opitutae
##	62	Otu000062	${\tt Bacteria}$	Bacteroidetes	unclassified
##	65	Otu000065	Bacteria	Firmicutes	Bacilli
##	67	Otu000067	${\tt Bacteria}$	Proteobacteria	Betaproteobacteria
##	70	Otu000070	${\tt Bacteria}$	Bacteroidetes	unclassified
##	73	Otu000073	${\tt Bacteria}$	Firmicutes	Bacilli
##	74	Otu000074	${\tt Bacteria}$	Proteobacteria	Betaproteobacteria
##	77	Otu000077	${\tt Bacteria}$	Proteobacteria	Gammaproteobacteria
##	83	Otu000083	${\tt Bacteria}$	Bacteroidetes	Sphingobacteria
##	84	Otu000084	${\tt Bacteria}$	Proteobacteria	Betaproteobacteria

```
## 87
       Otu000087 Bacteria Actinobacteria
                                                Actinobacteria
       Otu000088 Bacteria Proteobacteria Betaproteobacteria
  88
       Otu000098 Bacteria Proteobacteria
                                            Betaproteobacteria
       Otu000099 Bacteria Verrucomicrobia
                                                       Opitutae
  132 Otu000132 Bacteria Proteobacteria Gammaproteobacteria
  162 Otu000162 Bacteria
                           Proteobacteria Alphaproteobacteria
## 164 Otu000164 Bacteria
                                Firmicutes
                                                       Bacilli
                                                Actinobacteria
## 191 Otu000191 Bacteria
                           Actinobacteria
## 219 Otu000219 Bacteria
                           Actinobacteria
                                                Actinobacteria
  222 Otu000222 Bacteria
                           Proteobacteria Gammaproteobacteria
  223 Otu000223 Bacteria
                           Proteobacteria Alphaproteobacteria
## 225 Otu000225 Bacteria
                           Actinobacteria
                                                Actinobacteria
  309 Otu000309 Bacteria
                           Actinobacteria
                                                Actinobacteria
## 432 Otu000432 Bacteria
                                             Acidobacteria_Gp1
                             Acidobacteria
  532 Otu000532 Bacteria
                          Proteobacteria Deltaproteobacteria
##
                                         Order
## 1
                               Actinomycetales
## 2
                                  unclassified
## 3
                               Actinomycetales
## 4
                               Pseudomonadales
## 5
                               Pseudomonadales
## 6
                                  unclassified
## 7
                               Burkholderiales
## 8
                               Pseudomonadales
## 9
                               Actinomycetales
## 10
                           Sphingobacteriales
## 11
                               Burkholderiales
## 12
                                  unclassified
## 13
                               Actinomycetales
                                 Clostridiales
## 14
## 15
                               Burkholderiales
##
  16
                               Burkholderiales
## 17
                           Sphingobacteriales
## 18
                           Sphingobacteriales
## 19
                                   Rhizobiales
## 20
                               Xanthomonadales
## 21
                                  unclassified
## 22
                           Sphingobacteriales
## 23
                               Actinomycetales
##
  24
                               Actinomycetales
                              Sphingomonadales
##
  25
## 26
                                  unclassified
##
  27
                                  unclassified
##
  29
       Acidobacteria_Gp4_order_incertae_sedis
##
  30
                               Actinomycetales
## 31
                               Actinomycetales
##
  32
                                   Rhizobiales
## 33
                               Pseudomonadales
## 34
                                  unclassified
## 35
                               Burkholderiales
##
  36
                           Sphingobacteriales
## 37
                                  unclassified
## 38
                               Rhodobacterales
## 39
                                  unclassified
```

##	40	Flourabeatamialag
	42 43	Flavobacteriales
	44	Actinomycetales
##		Sphingobacteriales unclassified
##		Flavobacteriales
##		
##		Spartobacteria_order_incertae_sedis Acidobacteria_Gp6_order_incertae_sedis
##		Planctomycetales
##		unclassified
##		Burkholderiales
##		unclassified
##		unclassified
	62	unclassified
##		Bacillales
##		Burkholderiales
##		unclassified
	73	Bacillales
		Burkholderiales
		Pseudomonadales
	83	Sphingobacteriales
	84	Burkholderiales
##		unclassified
	88	Burkholderiales
	98	Burkholderiales
##		Opitutales
##	132	Enterobacteriales
##	162	Rhodospirillales
##	164	Bacillales
##	191	Solirubrobacterales
		Rubrobacterales
	222	unclassified
	223	Sphingomonadales
	225	Actinomycetales
	309	Solirubrobacterales
##	432	Acidobacteria_Gp1_order_incertae_sedis
##	532	Myxococcales
##		Family
##	1	Micrococcaceae
##	2	unclassified
##	3	unclassified
##	4	Moraxellaceae
##	5	Pseudomonadaceae
##	6	unclassified
##	7	Burkholderiaceae
##	8	Pseudomonadaceae
##	9	unclassified
##	10	unclassified
##	11	Comamonadaceae
##	12	unclassified
##	13	Microbacteriaceae
##	14	Clostridiales_Incertae_Sedis_XI
##	15	Burkholderiaceae
##	16	Comamonadaceae
##	17	Chitinophagaceae

##		Saprospiraceae
##		unclassified
## :		Xanthomonadaceae
## :		unclassified
## :		Cyclobacteriaceae
## :		unclassified
## :		unclassified
## :		Sphingomonadaceae
## :		unclassified
## :		unclassified
## :		${\tt Acidobacteria_Gp4_family_incertae_sedis}$
## 3		Microbacteriaceae
## 3		unclassified
## 3		Bradyrhizobiaceae
## 3		Pseudomonadaceae
## 3		unclassified
## 3		Comamonadaceae
## 3		Cytophagaceae
## 3	37	unclassified
## 3	38	Rhodobacteraceae
## 3	39	unclassified
## 4		Flavobacteriaceae
## 4	43	Micrococcaceae
## 4		Chitinophagaceae
## 4	45	unclassified
## 4	49	Flavobacteriaceae
## !		Spartobacteria_family_incertae_sedis
## !		${\tt Acidobacteria_Gp6_family_incertae_sedis}$
## !	55	Planctomycetaceae
## !		unclassified
## !		Comamonadaceae
## !		unclassified
(unclassified
(unclassified
(Bacillaceae_1
	67	Comamonadaceae
## '	70	unclassified
## '		Planococcaceae
## '		Oxalobacteraceae
## '		Pseudomonadaceae
## 3		Sphingobacteriaceae
## 8		Oxalobacteraceae
## 3		unclassified
## 3		Oxalobacteraceae
## 9		unclassified
## 9		Opitutaceae
##		Enterobacteriaceae
	162	Acetobacteraceae
	164	unclassified
##		Solirubrobacteraceae
## :		Rubrobacteraceae
## :		unclassified
## :		Sphingomonadaceae
	225	Micrococcaceae

	200	7
	309	unclassified
		Acidobacteria_Gp1_family_incertae_sedis
##	532	unclassified
##	1	Genus
##	1 2	Micrococcus
##	_	unclassified
##	3	unclassified
##	4	Acinetobacter
##	5	Pseudomonas
##	6	unclassified
##	7	Burkholderia
##	8	Pseudomonas
##	9	unclassified
##	10	unclassified
##	11	unclassified
##	12	unclassified
##	13	unclassified
##	14	Finegoldia
##	15	Polynucleobacter
##	16	unclassified
##	17	Sediminibacterium
##	18	unclassified
##	19	unclassified
##	20	Stenotrophomonas
##	21	unclassified
##	22	Algoriphagus
##	23	unclassified
##	24	unclassified
##	25	Sphingomonas
##	26	unclassified
##	27	unclassified
##	29	Gp4
##	30	unclassified
##	31	unclassified
##	32	Bradyrhizobium
##	33	Pseudomonas
##	34	unclassified
##	35	Comamonas
##	36	unclassified
##	37	unclassified
##	38	Rhodobacter
##	39	unclassified
##	42	Flavobacterium
##	43	Arthrobacter
##	44	unclassified
##	45	unclassified
##	49	Flavobacterium
##		Spartobacteria_genera_incertae_sedis
##		Gp6
##		unclassified
##		unclassified
	57	unclassified
##		unclassified
##		unclassified

e 62 unclassifie	fied
65 Bacillu	llus
e 67 unclassifie	fied
÷ 70 unclassifie	fied
: 73 Lysinibacillu	llus
: 74 unclassifie	fied
F 77 Pseudomona	onas
83 Mucilaginibacte	cter
84 Janthinobacteriu	rium
e 87 unclassifie	fied
: 88 Duganell	ella
98 unclassifie	fied
99 Opitutu	utus
£ 132 Yersini	inia
: 162 unclassifie	fied
: 164 unclassifie	fied
: 191 Solirubrobacte	cter
E 219 Rubrobacte	cter
± 222 unclassifie	fied
± 223 unclassifie	fied
± 225 unclassifie	fied
± 309 unclassifie	fied
432 Gp	Gp1
532 unclassifie	fied

OTU.tax[OTU.tax\$OTU %in% colnames(in.lake.core.from.soils),]

Class	Phylum	Domain	OTU		##
Actinobacteria	Actinobacteria	Bacteria	Otu000001	1	##
unclassified	unclassified	Bacteria	Otu000002	2	##
Actinobacteria	Actinobacteria	Bacteria	Otu000003	3	##
Gammaproteobacteria	Proteobacteria	Bacteria	Otu000004	4	##
Gammaproteobacteria	Proteobacteria	Bacteria	Otu000005	5	##
unclassified	unclassified	Bacteria	Otu000006	6	##
Betaproteobacteria	Proteobacteria	Bacteria	Otu000007	7	##
Gammaproteobacteria	Proteobacteria	Bacteria	Otu000008	8	##
Actinobacteria	Actinobacteria	Bacteria	Otu000009	9	##
Sphingobacteria	Bacteroidetes	Bacteria	Otu000010	10	##
Betaproteobacteria	Proteobacteria	Bacteria	Otu000011	11	##
Betaproteobacteria	Proteobacteria	Bacteria	Otu000012	12	##
Actinobacteria	Actinobacteria	Bacteria	Otu000013	13	##
Clostridia	Firmicutes	Bacteria	Otu000014	14	##
Betaproteobacteria	Proteobacteria	Bacteria	Otu000016	16	##
Sphingobacteria	Bacteroidetes	Bacteria	Otu000017	17	##
Sphingobacteria	Bacteroidetes	Bacteria	Otu000018	18	##
Alphaproteobacteria	Proteobacteria	Bacteria	Otu000019	19	##
Gammaproteobacteria	Proteobacteria	Bacteria	Otu000020	20	##
Actinobacteria	Actinobacteria	Bacteria	Otu000021	21	##
Sphingobacteria	Bacteroidetes	Bacteria	Otu000022	22	##
Actinobacteria	Actinobacteria	Bacteria	Otu000023	23	##
Actinobacteria	Actinobacteria	Bacteria	Otu000024	24	##
Alphaproteobacteria	Proteobacteria	Bacteria	Otu000025	25	##
unclassified	Bacteroidetes	Bacteria	Otu000026	26	##
Acidobacteria_Gp4	Acidobacteria	Bacteria	Otu000029	29	##

```
30
       Otu000030 Bacteria Actinobacteria
                                                 Actinobacteria
  32
       Otu000032 Bacteria
                           Proteobacteria Alphaproteobacteria
##
  33
       Otu000033 Bacteria
                           Proteobacteria Gammaproteobacteria
##
  34
       Otu000034 Bacteria
                             Bacteroidetes
                                                   unclassified
##
   35
       Otu000035 Bacteria
                            Proteobacteria
                                            Betaproteobacteria
##
   36
       Otu000036 Bacteria
                             Bacteroidetes
                                                Sphingobacteria
##
   37
       Otu000037 Bacteria
                              unclassified
                                                   unclassified
##
  38
       Otu000038 Bacteria
                           Proteobacteria Alphaproteobacteria
##
   39
       Otu000039 Bacteria
                            Proteobacteria Gammaproteobacteria
##
  42
       Otu000042 Bacteria
                             Bacteroidetes
                                                  Flavobacteria
##
       Otu000043 Bacteria
                            Actinobacteria
                                                 Actinobacteria
##
   45
       Otu000045 Bacteria
                            Proteobacteria
                                            Betaproteobacteria
##
       Otu000049 Bacteria
                             Bacteroidetes
                                                  Flavobacteria
##
   51
       Otu000051 Bacteria Verrucomicrobia
                                                 Spartobacteria
##
  53
       Otu000053 Bacteria
                             Acidobacteria
                                             Acidobacteria_Gp6
##
  57
       Otu000057 Bacteria
                            Proteobacteria
                                            Betaproteobacteria
   65
       Otu000065 Bacteria
                                Firmicutes
                                                        Bacilli
##
   67
       Otu000067 Bacteria
                            Proteobacteria
                                            Betaproteobacteria
##
  70
       Otu000070 Bacteria
                             Bacteroidetes
                                                   unclassified
  73
##
       Otu000073 Bacteria
                                Firmicutes
                                                        Bacilli
##
  74
       Otu000074 Bacteria
                           Proteobacteria
                                            Betaproteobacteria
##
  77
       Otu000077 Bacteria
                            Proteobacteria Gammaproteobacteria
## 83
       Otu000083 Bacteria
                             Bacteroidetes
                                                Sphingobacteria
##
  84
       Otu000084 Bacteria
                           Proteobacteria
                                            Betaproteobacteria
##
  88
       Otu000088 Bacteria
                                            Betaproteobacteria
                           Proteobacteria
       Otu000099 Bacteria Verrucomicrobia
                                                       Opitutae
  132 Otu000132 Bacteria
                            Proteobacteria Gammaproteobacteria
   164 Otu000164 Bacteria
                                Firmicutes
                                                        Bacilli
  191 Otu000191 Bacteria
                            Actinobacteria
                                                 Actinobacteria
## 222 Otu000222 Bacteria
                            Proteobacteria Gammaproteobacteria
## 223 Otu000223 Bacteria
                            Proteobacteria Alphaproteobacteria
   309 Otu000309 Bacteria
                            Actinobacteria
                                                 Actinobacteria
   432 Otu000432 Bacteria
                             Acidobacteria
                                             Acidobacteria_Gp1
                           Proteobacteria Deltaproteobacteria
   532 Otu000532 Bacteria
##
                                         Order
## 1
                               Actinomycetales
## 2
                                  unclassified
## 3
                               Actinomycetales
## 4
                               Pseudomonadales
## 5
                               Pseudomonadales
## 6
                                  unclassified
## 7
                               Burkholderiales
## 8
                               Pseudomonadales
## Q
                               Actinomycetales
## 10
                            Sphingobacteriales
## 11
                               Burkholderiales
##
  12
                                  unclassified
## 13
                               Actinomycetales
## 14
                                 Clostridiales
## 16
                               Burkholderiales
##
  17
                            Sphingobacteriales
## 18
                            Sphingobacteriales
## 19
                                   Rhizobiales
                               Xanthomonadales
## 20
```

## 21	unclassified
## 21	Sphingobacteriales
## 22	Actinomycetales
## 23	Actinomycetales Actinomycetales
## 25	Sphingomonadales
## 25 ## 26	sphingomonadares unclassified
## 20	
## 29 ## 30	Acidobacteria_Gp4_order_incertae_sedis
## 30 ## 32	Actinomycetales Rhizobiales
## 32 ## 33	RNIZODIALES Pseudomonadales
## 33 ## 34	unclassified
## 34 ## 35	Burkholderiales
## 36	
## 36 ## 37	Sphingobacteriales
	unclassified
## 38	Rhodobacterales
## 39	unclassified
## 42	Flavobacteriales
## 43 ## 45	Actinomycetales
20	unclassified
## 49	Flavobacteriales
## 51	Spartobacteria_order_incertae_sedis
## 53	Acidobacteria_Gp6_order_incertae_sedis
## 57	Burkholderiales
## 65	Bacillales
## 67	Burkholderiales
## 70	unclassified
## 73	Bacillales
## 74	Burkholderiales
## 77	Pseudomonadales
## 83	Sphingobacteriales
## 84	Burkholderiales
## 88	Burkholderiales
## 99	Opitutales
## 132	Enterobacteriales
## 164	Bacillales
## 191	Solirubrobacterales
## 222	unclassified
## 223	Sphingomonadales
## 309	Solirubrobacterales
	Acidobacteria_Gp1_order_incertae_sedis
## 532	Myxococcales
##	Family
## 1	Micrococcaceae
## 2	unclassified
## 3	unclassified
## 4	Moraxellaceae
## 5	Pseudomonadaceae
## 6	unclassified
## 7	Burkholderiaceae
## 8	Pseudomonadaceae
## 9	unclassified
## 10	unclassified
## 11	Comamonadaceae
## 12	unclassified

	13	Microbacteriaceae
	14	Clostridiales_Incertae_Sedis_XI
	16	Comamonadaceae
	17	Chitinophagaceae
	18	Saprospiraceae
	19	unclassified
	20	Xanthomonadaceae
	21	unclassified
	22	Cyclobacteriaceae
	23	unclassified
	24	unclassified
	25	Sphingomonadaceae
	26	unclassified
	29	Acidobacteria_Gp4_family_incertae_sedis
	30	Microbacteriaceae
	32	Bradyrhizobiaceae
	33	Pseudomonadaceae
	34	unclassified
	35	Comamonadaceae
	36	Cytophagaceae
##	37	unclassified
##	38	Rhodobacteraceae
##	39	unclassified
##	42	Flavobacteriaceae
##	43	Micrococcaceae
##	45	unclassified
##	49	Flavobacteriaceae
##	51	Spartobacteria_family_incertae_sedis
##	53	${\tt Acidobacteria_Gp6_family_incertae_sedis}$
##	57	Comamonadaceae
##	65	Bacillaceae_1
##	67	Comamonadaceae
##	70	unclassified
##	73	Planococcaceae
##	74	Oxalobacteraceae
##	77	Pseudomonadaceae
##	83	Sphingobacteriaceae
##	84	Oxalobacteraceae
##	88	Oxalobacteraceae
##	99	Opitutaceae
	132	Enterobacteriaceae
##	164	unclassified
	191	Solirubrobacteraceae
##	222	unclassified
	223	Sphingomonadaceae
	309	unclassified
		${\tt Acidobacteria_Gp1_family_incertae_sedis}$
##	532	unclassified
##		Genus
##	1	Micrococcus
##	2	unclassified
##	3	unclassified
##	4	Acinetobacter
##	5	Pseudomonas

##	6	unclassified
##	7	Burkholderia
##	8	Pseudomonas
##	9	unclassified
##	10	unclassified
##	11	unclassified
##	12	unclassified
##	13	unclassified
##	14	Finegoldia
##	16	unclassified
##	17	Sediminibacterium
##	18	unclassified
##	19	unclassified
##	20	Stenotrophomonas
##	21	unclassified
##	22	Algoriphagus
##	23	unclassified
##	24	unclassified
##	25	Sphingomonas
##	26	unclassified
##	29	Gp4
##	30	unclassified
##	32	Bradyrhizobium
##	33	Pseudomonas
##	34	unclassified
##	35	Comamonas
##	36	unclassified
##	37	unclassified
##	38	Rhodobacter
##	39	unclassified
##	42	Flavobacterium
##	43	Arthrobacter
##	45	unclassified
##	49	Flavobacterium
##	51	Spartobacteria_genera_incertae_sedis
##	53	Gp6
##	57	unclassified
##	65	Bacillus
##	67	unclassified
##	70	unclassified
##	73	Lysinibacillus
##	74	unclassified
##	77	Pseudomonas
##	83	Mucilaginibacter
##	84	Janthinobacterium
##	88	Duganella
##	99	Opitutus
##	132	Yersinia
##	164	unclassified
##	191	Solirubrobacter
##	222	unclassified
##	223	unclassified
##	309	unclassified
##	432	Gp1
		-r-

532 unclassified

OTU.tax[OTU.tax\$OTU %in% colnames(in.lake.core.not.soils),]

```
##
             OTU
                   Domain
                                   Phylum
                                                         Class
## 15
       Otu000015 Bacteria
                           Proteobacteria
                                            Betaproteobacteria
## 27
       Otu000027 Bacteria
                            Bacteroidetes
                                                  unclassified
## 31 Otu000031 Bacteria
                           Actinobacteria
                                                Actinobacteria
                                               Sphingobacteria
## 44
       Otu000044 Bacteria
                            Bacteroidetes
## 55 Otu000055 Bacteria
                                              Planctomycetacia
                           Planctomycetes
  56 Otu000056 Bacteria
                             unclassified
                                                  unclassified
## 58 Otu000058 Bacteria
                             unclassified
                                                  unclassified
       Otu000061 Bacteria Verrucomicrobia
                                                      Opitutae
## 62 Otu000062 Bacteria
                            Bacteroidetes
                                                  unclassified
       Otu000087 Bacteria Actinobacteria
                                                Actinobacteria
## 98
       Otu000098 Bacteria
                           Proteobacteria Betaproteobacteria
## 162 Otu000162 Bacteria Proteobacteria Alphaproteobacteria
## 219 Otu000219 Bacteria
                           Actinobacteria
                                                Actinobacteria
## 225 Otu000225 Bacteria
                           Actinobacteria
                                                Actinobacteria
##
                    Order
                                     Family
                                                        Genus
## 15
          Burkholderiales Burkholderiaceae Polynucleobacter
## 27
             unclassified
                               unclassified
                                                 unclassified
## 31
          Actinomycetales
                               unclassified
                                                 unclassified
## 44
       Sphingobacteriales
                           Chitinophagaceae
                                                 unclassified
                                                 unclassified
## 55
         Planctomycetales Planctomycetaceae
## 56
             unclassified
                               unclassified
                                                 unclassified
## 58
             unclassified
                               unclassified
                                                 unclassified
## 61
             unclassified
                               unclassified
                                                 unclassified
                                                 unclassified
## 62
             unclassified
                               unclassified
## 87
                               unclassified
                                                 unclassified
             unclassified
## 98
          Burkholderiales
                               unclassified
                                                 unclassified
         Rhodospirillales
                                                 unclassified
## 162
                           Acetobacteraceae
## 219
          Rubrobacterales
                           Rubrobacteraceae
                                                  Rubrobacter
## 225
          Actinomycetales
                             Micrococcaceae
                                                 unclassified
```

Figure S1: Map of University Lake

```
# Load environmental data
env.dat <- read.csv("../data/ResGrad_EnvDat.csv", header = TRUE)
env.dat <- env.dat[-16,]
# ggplot theme</pre>
```

```
axis.title = element_blank(),
    legend.position = c(0.9,0.25)
    #,axis.title.x = element_blank(),axis.title.y = element_blank()
)

# get shape files
## for map inset
usa <- map_data("usa")
IN <- map_data("state", region = "Indiana")

## for main plot
ul <- readOGR("../maps","UniversityLakePoly")
#summary(ul) # Check projection and and datum
#ul <- spTransform(ul, CRS("+proj=longlat +datum=WGS84")) # transform if necessary
ul <- fortify(ul) # raster image for plotting with ggplot2</pre>
```

Regions defined for each Polygons

```
# If using google map as baselayer
\#ul.coords \leftarrow c(lon = -86.503087, lat = 39.188686)
#ul.map <- get_map(location = ul.coords,</pre>
                    zoom = 17, #maptype = "terrain",
#
                    source = "google", color = "bw")
#base.map <- ggmap(ul.map, extent = "device", legend = "topleft")</pre>
# Main Map
main.map <- ggplot(aes(long,lat), data = env.dat) +</pre>
  geom_polygon(fill = "grey", size = 0.5, color = 'black', data = ul, alpha = 1) +
 geom_point(size = 6, shape = 20) +
 theme_maps() +
 labs(x = "\nLatitude", y = "Longitude\n") +
  annotate("text", x = -86.5010, y = 39.18943,
           label = "DAM", fontface = "bold")
print(main.map)
# Inset Map
inset <- ggplot() +</pre>
 theme_maps() +
 theme(axis.text = element_blank(),
        axis.ticks = element_blank(),
        panel.border = element_rect(color = NULL)) +
 labs(x = NULL, y = NULL)
inset <- inset + geom_map(data = usa, map = usa,
                    aes(x = long, y = lat, map_id = region),
                    color = "black", fill = "#e7e7e7", size = 0.15)
inset <- inset + geom_map(data = IN, map = IN,</pre>
                    aes(x = long, y=lat, map_id = region),
                     color = "black", fill = "black", size = 0.15)
```


Figure 5: University Lake Map

Figure S2: chemical and physical variables along reservoir gradient

```
# Start Plotting File
png(filename="../figures/FigureS2.png",
    width = 1500, height = 1200, res = 96*2)
```

```
par(mfrow = c(2,2))
par(mar = c(5, 6, 1, 2) + 0.5)
# Total Phosphorus
TP <- plot(rev(env.dat$dist.dam), env.dat$TP,</pre>
     ylab = "", xlab = "", cex.lab = 2, las = 1,
     ylim = c(0,140), xlim = c(-15, 400),
    pch = 22, cex = 2, bg = "white", col = "black", lwd = 2,
     yaxt = "n", xaxt = "n")
box(1wd = 2)
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
    labels = c("0", "40", "80", "120"), at = c(0, 40, 80, 120))
axis(side = 1, lwd.ticks = 2, labels = F, cex.axis = 2, las = 1, mgp = c(3, 1.5, 0),
   #labels = c("0", "100", "200", "300", "400"),
   at = c(0, 100, 200, 300, 400))
mtext(expression(paste('Total Phosphorus (',mu,'g P L'^-1*')')), side = 2, line = 4, cex = 1)
par(mar = c(5, 5, 1, 3) + 0.5)
# Chlorophyll
chla <- plot(rev(env.dat$dist.dam), env.dat$chla,</pre>
     ylab = "", xlab = "", cex.lab = 2, las = 1,
     ylim = c(0,30), xlim = c(-15, 400),
     pch = 22, cex = 2, bg = "white", col = "black", lwd = 2,
     yaxt = "n", xaxt = "n")
box(lwd = 2)
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
    labels = c("0", "10", "20", "30"), at = c(0, 10, 20, 30))
axis(side = 1, lwd.ticks = 2, labels = F, cex.axis = 2, las = 1, mgp = c(3, 1.5, 0),
   #labels = c("0", "100", "200", "300", "400"),
   at = c(0, 100, 200, 300, 400))
mtext(expression(paste('Chlorophyll a (',mu,'g L'^-1*')')), side = 2, line = 4, cex = 1)
par(mar = c(5, 6, 0, 2) + 0.5)
#Dissolved Oxygen
plot(rev(env.dat$dist.dam), env.dat$DO,
     ylab = "", xlab = "", cex.lab = 2, las = 1,
     ylim = c(5,10), xlim = c(-15, 400),
    pch = 22, cex = 2, bg = "white", col = "black", lwd = 2,
     yaxt = "n", xaxt = "n")
box(lwd = 2)
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
    labels = c("5", "7.5", "10"), at = c(5,7.5, 10))
axis(side = 1, lwd.ticks = 2, cex.axis = 1.5, las = 1, mgp = c(3, 1.5, 0),
```

```
labels = c("0", "100", "200", "300", "400"),
   at = rev(c(0, 100, 200, 300, 400)))
mtext(expression(paste('Dissolved Oxygen (mg L'^-1*')')), side = 2, line = 4, cex = 1)
text(x = 35, y = 5.1, "STREAM", font = 2)
text(x = 375, y = 5.1, "DAM", font = 2)
\#pH
par(mar = c(5, 5, 0, 3) + 0.5)
plot(rev(env.dat$dist.dam), env.dat$pH,
     ylab = "", xlab = "", cex.lab = 2, las = 1,
     ylim = c(8,9), xlim = c(-15, 400),
    pch = 22, cex = 2, bg = "white", col = "black", lwd = 2,
    yaxt = "n", xaxt = "n")
box(lwd = 2)
axis(side = 2, lwd.ticks = 2, cex.axis = 1.5, las = 1,
    labels = c("8", "8.5", "9"), at = c(8, 8.5, 9))
axis(side = 1, lwd.ticks = 2, cex.axis = 1.5, las = 1, mgp = c(3, 1.5, 0),
  labels = c("0", "100", "200", "300", "400"),
   at = rev(c(0, 100, 200, 300, 400)))
mtext("pH", side = 2, line = 4, cex = 1)
text(x = 35, y = 8.02, "STREAM", font = 2)
text(x = 375, y = 8.02, "DAM", font = 2)
dev.off() # this writes plot to folder
```

```
## pdf
## 2
```

graphics.off() # shuts down open devices