Individual Project - Part B

Name: Papavgeri Georgia

1. Make a draft design of a database that can keep data for the main entities of the assignment and name the tables as: Students, Trainers, Assignments, Courses

Relationship Identification

There are the following relationships:

- The student attends course.
- The trainer **teaches** course.
- A course **has** assignments.

Page 1 of 6

Cardinality Identification

A student can attend **multiple** courses & each course can have **multiple** students.

Student – Course -> many-to-many relationship

The trainer can teach in **multiple** courses & each course can be taught by **multiple** trainers.

Trainer – Course -> many-to-many relationship

The assignment belongs to only **one** course & each course can have **multiple** assignments.

■ Course – Assignment -> one-to-many relationship

Identify Attributes

Entity	Primary Key	Attribute
Student	student_id	first_name
		last_name
		date_of_birth
		tuition_fees
Trainer	trainer_id	first_name
		last_name
		t_subject
Course	course_id	title
		stream
		c_type
		start_date
		end_date
Assignment	assignment_id	title
		a_description
		sub_DateTime
		oral_mark
		total_mark

Draft design of the database

Page 3 of 6

Or using tables:

Page 4 of 6

2. Identify any other tables you need based on your implementation and construct them Implementing more tables (junction tables):

Table: 'students per course'

Students and courses have many -to-many relationship, so a new table is created adding the two foreign key columns, one for each entity participating in the relationship.

(foreign key: course_id from table 'courses' and foreign key: student id from table 'students')

Table: 'trainers_per_course'

Trainers and courses have many -to-many relationship, so a new table is created adding the two foreign key columns, one for each entity participating in the relationship.

(foreign key: course_id from table 'courses' and

foreign key: trainer id from table 'trainers')

Table: 'assignments_per_course'

Courses and assignments have one -to-many relationship, so a foreign key column could be added in the (N-side) table participating in the relationship, which is the table 'Assignments'. Instead, a new table was created adding the two foreign key columns, one for each entity participating in the relationship, to make it more useful.

(foreign key: course id from table courses and

foreign key: student_id from table students)

3. Design the ERD of your system and verify it through an online tool such as https://sqldbm.com/

ERD through an online tool (https://app.sqldbm.com/MySQL/Share/JJNjMMKYnfN7tQRf4y9QJ0GFrngIE8md DYjF4jNYw0)

Page **6** of **6**