10/57332**1** MD9Rec'd PCT/PTO 24 MAR 2006

Press belt for nip press part of papermaking machine

Publication Number:

H01-36960Y

Publication Date:

1989-11-08

Inventor:

Norio KIUCHI (JP)

Applicant:

ICHĮKAWA KEORI KK (JP)

Application Number:

S59-90858 1984-06-20

Abstract

This reference discloses a press belt for a nip press part of a papermaking machine. According to the press belt disclosed in this reference, in order to prevent an opening of a drain groove from being closed because the press belt is deformed at the time of pressing, a lateral width of the opening of the groove is formed wider than that of the bottom of the groove.

⑩日本国特許庁(JP)

迎実用新案出願公告

⑫実用新案公報(Y2)

 $\Psi 1 - 36960$

50 Int. Cl. 4

識別記号

庁内整理番号

☎❸公告 平成1年(1989)11月8日

D 21 F 3/00

8929 - 4L

(全3頁)

図考案の名称

抄紙機の面圧ニッププレス用加圧ベルト

②実 顧 昭59-90858

∞Ω 開 昭61-7598

後出 顧 昭59(1984)6月20日

❸昭61(1986)1月17日

四考 案 者

木 内 理 夫

千葉県鎌ケ谷市東道野辺 4-14-41

⑪出 類 人 四代 理

市川毛織株式会社

東京都文京区本郷2-14-15

弁理士 羽村 行弘

審 查 官

西川 惠

図参考文献

実開 昭59-54598 (JP, U)

1

砂実用新案登録請求の範囲

プレスロールと加圧シューとが面接触する抄紙 機の面圧ニッププレスで、ニップを通過するエン ドレスフエルトと湿紙を該加圧シュー側より該プ 成繊維のフイラメントよりなり、無端状に形成し た基布の両面に硬度の高い合成樹脂層が設けられ ていて、そのエンドレスフエルトに接する面に、 ベルトの長手方向に多数本の排水溝を穿設し、該 より溝口の横幅を拡開したことを特徴とする抄紙 機の面圧ニッププレス用加圧ベルト。

考案の詳細な説明

「考案の目的」

"産業上の利用分野"

抄紙機の圧搾部は普通、線接触する上下一対の プレスロール間にエンドレスフエルトに乗つた湿 紙を通し、プレスロールの線圧により搾水するも のであるが、近年下部プレスロールに代えて上面 がプレスロールを抱えるように面接触し、両者間 を通過する湿紙を乗せたエンドレスフェルトの下 側に該エンドレスフエルトによつて従動する無端 状の加圧ベルトを配し、シユーで加圧ベルトを押 し上げ、これにつれてエンドレスフエルトをプレ 25 スロールに押しつけることによつて広いニップ領 域を形成し、プレスロールとシュー間の面圧によ り搾水効果を向上させた面圧ニップブレス装置が

2

開発された。本考案はかかる面圧ニッププレス装 置に用いる加圧ベルトに関するものである。

"従来の技術"

従来、面圧ニップブレス用加圧ベルトとして、 レスロールに押しつける加圧ベルトにおいて、合 5 基布の両面にポリウレタン樹脂層を形成してな り、かつ、エンドレスフエルトの接触面に排水溝 を設けたものがあつた (実開昭59-54598号)。

"考案が解決しようとする問題点"

従来例を詳述すると、排水溝はフエルト接触面 排水溝は溝底が面状であり、かつ、該溝底の横幅 10 の全面に格子状パターン或いは斜交状パターンに 穿設されており、断面形状は角形が半円形或いは V字形のものがあると記載されている。

しかしながら、フエルト接触面の全面に格子状 パターン或いは斜交状パターンの排水溝が切り込 15 まれていると、洋紙のうちでも500~600m/min の速度で加圧ベルトを回転させる筆記用紙や印刷 用紙の抄紙には問題ないが、新聞紙の如く900~ 1200m/minというより速い速度で加圧ベルトを 回転させて抄紙する場合には、ニップ通過時にか がやや窪んだシューを設け、シューの緩い湾曲面 20 かる摩擦力が大きくなり回転速度を上げることが できないため、大量に処理できず受注に追いつか なくなつたり、抄紙機を何台も用意しなければな らず採算が合わないといつた問題が生じており、 新聞紙の抄紙には不適当であった。

> また、切り込まれた排水溝が格子状パターンの 場合、加圧ベルトがガイドロールに沿つてターン する際に幅方向に走る排水溝が割れ、加圧ベルト 自体にかかる縦方向のテンションが加わって経時

的に亀裂が生じ易かつたし、斜交状パターンの場 合は、幅方向に走る排水溝はないが、斜交点の角 部がガイドロールでターンするときの曲げによつ てささくれたり欠損したりし易かつた点で、それ ぞれ耐久性に問題があった。

さらに、従来例には排水溝の寸法に関する記載 はないが、実際には溝口0.5~1㎜、深さ約2㎜ の排水溝を2~3㎜の間隔に穿設している。なぜ ならば、溝口がこれより狭かつたり排水溝同士の く低下し、逆に溝口がこれより広かつたり排水溝 同士の間隔がこれより狭かつたりすると、排水溝 の筋がフエルトを通して湿紙に痕跡として残つて しまうからである。従つて、上記寸法の排水溝を 従来例では、加圧時にフエルト接触面の表層部が 変形し、溝口を潰し排水効率を低下させる虞れが あつた。

というのは、従来例の排水溝の断面形状が次の形 状であつたからである。

① 角形の場合

シリコンゴムをこの形状の排水溝に注入し、通 常の抄紙の如くニップ通過時に40~50kg/cdの圧 力をかけて回転させる実験を行つたところ、排水 た三角形に収縮するという結果が得られた。この ことから、実用段階においても加圧されるとフェ ルト接触面の表層部が潰れて変形し、溝口を塞い でしまうことは明らかである。

② 半円形の場合

この断面形状の場合、溝口を0.5~1㎜に保と うとすると深さは0.25~0.5mmしか得られず、保 水容量が著しく不足するとともに、加圧されると 排水溝は平面化して溝としての機能がなくなつて 4㎜にも及んでしまい、前述の如く排水溝の痕跡 が湿紙に残ることとなり、実用に全く適さないと の結果となる。

③ V字形の場合

部が潰れてしまうほか、平面状の構底を有しない ため、対向する壁面同士が閉じて排水できる空隙 が全く無くなつてしまう。

このように、従来例の形状では未解決な課題が

多かつた。

「考案の構成」

"問題点を解決するための手段"

前記の問題点を解決するため下記の構成を考究 5 した。図面に基づき説明する。本考案の加圧ベル ト1は合成繊維のフィラメントよりなる経糸2及 び緯糸3で製織した基布4の両面に硬度が高い合 成樹脂層5を設け、そのエンドレスフェルト7に 接する面に、加圧ベルトーの長手方向に多数本の 間隔がこれより広かつたりすると保水容量が著し 10 排水溝 6 を穿設し、該排水溝 6 は溝底が面状であ り、かつ、該溝底の横幅より溝口の横幅を拡開し てなるものである。該基布は合成繊維のモノフィ ラメント又はマルチフイラメントを用いて有端状 に製織し、両端を接合して無端状にするか、始め 格子状パターン或いは斜交状パターンで穿設した 15 から無端状に製織したものであり、その材質はポ リアミド系、ポリエステル系などが用いられる。 両面に設けられる合成樹脂は硬度が高くJIS硬度 90~95度であり、塗布、乾燥及びキュアーを行な つて合成樹脂層を形成する。その材質はポリウレ 20 タン樹脂、ABS樹脂などであり、特に弾性、耐 摩耗性がよいポリウレタン樹脂が好ましい。加圧 ベルト1の長手方向に多数本字設された排水溝6 は、溝底が面状であり、かつ、該溝底の横幅より 溝口の横幅が拡開しており、溝の斜面が第1図の 溝中のシリコンゴムの断面形状が上部が圧縮され 25 ものは階段状斜面 8 a のもので、第 2 図のものは 急坂状斜面66のものである。その形状及び寸法 を具体的に詳述すると、断面形状が階段状斜面の 場合には溝口0.8㎜、深さ1㎜の溝の溝底に、さ らに溝口0.5째、深さ1㎜の溝を穿設して一つの 30 排水溝となし、該排水溝同士は2.2㎞間隔に形成 して得られるものである。また、急坂伏斜面は深 さ2㎜、横幅0.5㎜の溝底から、溝口が1㎜の幅 に拡がるようにフエルト接触面の角部を長手方向 一連にわたり面取りし円弧状に傾斜させるか、断 しまう。逆に、深さを約2㎜に保つには溝口が約 35 面テーバ状に形成し、該排水溝同士の間隔を2㎜ 取ることよつて得られる。

"作用"

本考案の加圧ベルト 1 を抄紙機の圧搾部に仕掛 けるには第3図の如く溝を穿設した合成樹脂層面 角形と同様、加圧によりフェルト接触面の表層 40 をエンドレスフェルト7側に配して加圧シュー 8、ガイドロール9及びテンションロール10間 に掛け渡す。プレスロール11と該加圧シューで 挟まれる領域で、湿紙12を乗せた該エンドレス フエルトと合流する。エンドレスフエルトを2枚

用いる場合は、湿紙はエンドレスフエルトの間に 挾まれる。該加圧シユーで該加圧ベルトを押し上 げ、これに密接する該エンドレスフェルトと共に 該湿紙を該プレスロールに押しつけ強圧を加える つて加圧ベルトに流下し、多数本の溝6に入り、 ここを伝わつて排出される。

〔考案の効果〕

以上のように、この考案はプレスロールと加圧 で、ニツブを通過するエンドレスフエルトと湿紙 を該加圧シュー側より該プレスロールに押しつけ る加圧ベルトにおいて、合成繊維のフイラメント よりなり、無端状に形成した基布の両面に硬度の 高い合成樹脂層が設けられていて、そのエンドレ 15 スフエルトに接する面に、ベルトの長手方向に多 数本の排水溝を穿設し、該排水溝は溝底が面状で あり、かつ、該溝底の横幅より溝口の横幅を拡開 したことを特徴とする抄紙機の面圧ニツブブレス る。

即ち、加圧ベルトの長手方向(走行方向)のみ に多数本排水溝を穿設しているので、ニッブ通過

時にかかる摩擦を最小限に押さえることができ、 新聞紙の抄紙への使用にも適するものとなつてお り、しかも、縦方向のテンションからは全く影響 を受けないから、ガイドロールでのターン時に、 と湿紙より搾出した水はエンドレスフエルトを通 5 加圧ベルトが排水溝から亀裂を生じて破損したり ささくれて欠損したりする虞れがなく、耐久性に 富んだものとなつている。

6

また、排水溝は溝底の横幅より溝口の横幅が拡 開しているから、フエルト接触面がたとえ潰れた シューとが面接触する抄紙機の面圧ニッププレス 10 としても開口部を塞ぐ虞れがなく、かつ、溝底が 面状で一定の面積を有するから、対向する壁面同 士が閉じることがないなど、各種の優れた効果を 有するものである。

図面の簡単な説明

第1図は本考案の加圧ベルトの縦断面図、第2 図は別の実施例の縦断面図、第3図はそれを使用 した抄紙機の圧搾部の説明図である。

図において、1 ……加圧ベルト、2 ……経糸、 3……緯糸、4……基布、5……合成樹脂層、6 用加圧ベルトであり、その効果は以下の通りであ 20 ……上部が広く下部が狭い形状の溝、 7……エン ドレスフエルト、8……加圧シュー、11……ブ レスロール、12……湿紙。

— 399 —