Real Analysis Written Examination

August 2015

- 1. Let f be an L^2 integrable function on [0,1] and $F(x) = \int_0^x f(t) dt$.
- (a). Prove that f is L^1 integrable on [0,1] and therefore F(x) is well-defined on [0,1].
- (b). Prove that

$$\sup_{0 \le x \le 1} |F(x)| \le \sqrt{\int_0^1 f^2(t) dt}$$

- (c). Prove that F is uniformly continuous on [0, 1].
- (d). Find the total variation of the function F on [0,1].
- 2. Consider the equation $x = \ln(x + N)$ for x > -N.
- (a). Show that the equation has exactly two solutions for each N > 1.
- (b). Let $x_1(N) < x_2(N)$ be the two solutions for each N > 1. Show that

$$\lim_{N \to \infty} x_1(N) = -\infty \quad and \quad \lim_{N \to \infty} x_2(N) = \infty$$

.

3. Let f be a continuous real valued function with two variables and at most polynomial growth, that is, there exists a constant N such that $|f(x,t)| \leq N(1+x^2+t^2)^N$ for all $(x,t) \in \mathbb{R}^2$. Consider the function g defined by

$$g(x) = \int_0^\infty f(x, t)e^{-t} dt$$

Prove that g is a continuous function on the real line R.

- 4. Let $E \subset \mathbb{R}^n$ be a Lebesgue measurable subset of \mathbb{R}^n .
- (a). Prove that there is a set E_1 with zero measure $m(E_1)=0$ and a G_δ set G such that $E=G-E_1$.
- (b). Prove that there is a set E_2 with $m(E_2) = 0$ and an F_{σ} set F such that $E = F \cup E_2$.
 - 5. Let **H** be an infinite dimensional Hilbert space and let $S \subset H$ be a subspace of **H**.
- (a). Show that \mathbf{S}^{\perp} , the orthogonal complement of \mathbf{S} in \mathbf{H} , is a closed subspace of \mathbf{H} .
- (b). Show that $\mathbf{H} = \mathbf{S} \bigoplus \mathbf{S}^{\perp}$ if and only if **S** is a closed subspace of **H**.
- (c). Either show that there is an infinite dimensional subspace **S** in **H** that is not a closed subspace or prove the contrary.
- 6. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of L^1 integrable functions on [0,1] and f_n converges to a bounded function f almost everywhere on [0,1]. Disprove by example or prove the following statements:
- (a). $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$
- (b). If, furthermore, $|f_n(x)| \leq |f(x)|$ for almost all $x \in [0,1]$, then

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx$$

COMPLEX ANALYSIS part of Analysis Qualifier Exam, August, 2015. All your answers must be justified whether or not the problem asks for a proof.

1.Let f(z) be a holomorphic function (meaning that its complex derivative f'(z) exists) on a domain $D \subset \mathbb{C}$ and that its real and imaginary parts are C^{∞} . State and prove the Cauchy-Riemann equations for f.

2. Let γ be the counterclockwise circle with center 0 and radius 2. Find the value of the line integral

$$\int_{\gamma} \frac{e^{3z} - z}{z^3 - iz^2} \, dz.$$

3.State and prove (briefly) the maximum modulus theorem for holomorphic functions.

4. Find the Laurent series of

$$f(z) = \frac{1}{z^2 - 3z}$$

on a punctured disc $\Delta^*(3;R) = \{z \in \mathbb{C} \mid 0 < |z-3| < R\}$ and determine the largest R for which the series converges.

5. The functions cos(z) and sin(z) are defined and holomorphic for all $z \in \mathbb{C}$. Explain carefully why $cos^2(z) + sin^2(z) = 1$ for all $z \in \mathbb{C}$.

6.Let Δ be an open disc with center p and positive radius. Suppose f is holomorphic on the punctured disc $\Delta \setminus \{p\}$.

- a) Define "f has an essential singularity at p".
- b) Give an example of such an f.
- c) Give a condition on or property of f (distinct from the definition) that is equivalent to f having an essential singularity at p.