

MATURITA NANEČISTO 2007

MATEMATIKA 1

didaktický test

Testový sešit obsahuje 20 úloh.

Na řešení úloh máte 90 minut.

Úlohy řešte v testovém sešitu.

Odpovědi pište do záznamového archu.

Používejte rýsovací potřeby.

Počet bodů za správně vyřešenou úlohu je uveden u čísla úlohy vpravo.

Je-li u počtu bodů zkratka max., je možné za řešení úlohy získat i dílčí body.

U všech úloh/podúloh s volbou odpovědi je právě jedna odpověď správná.

Za nesprávnou nebo neuvedenou odpověď se body neodečítají.

V průběhu testování je povoleno používat Matematické, fyzikální a chemické tabulky a kalkulátor bez grafického displeje.

Pokyny pro vyplňování záznamového archu

- Nejdříve nalepte podle pokynů zadavatele na vyznačené místo v záznamovém archu identifikační štítek s čárovým kódem.
- Odpověď, kterou považujete za správnou, zřetelně zakřížkujte v příslušném poli záznamového archu.

 Pokud budete chtít následně zvolit jinou odpověď, pečlivě zabarvěte původně zakřížkované pole a zvolenou odpověď vyznačte křížkem do nového pole.

- Jakýkoli jiný způsob záznamu odpovědí a jejich oprav bude považován za nesprávnou odpověď.
- Pokud zakřížkujete více než jedno pole, bude vaše odpověď považována za nesprávnou.
- Odpovědi na otevřené úlohy pište čitelně do vyznačených oblastí v záznamovém archu.

• Pište modrou nebo černou propisovací tužkou.

Zadání neotvírejte, počkejte na pokyn!

Úloha 1

1 b.

Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v.

Úloha 2

1 b.

Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete vzdálenost d obrazů čísel $-\frac{25}{3}$ a 6,5. Výsledek zaokrouhlete na mm.

Úloha 3

max. 2 b.

Určete podíl $\frac{c}{a}$, jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

Úloha 4

max. 2 b.

Určete všechna reálná čísla x, pro něž platí $\sqrt{3+x} = \sqrt{3} + \sqrt{x}$.

Úloha 5

max. 2 b.

Určete všechna reálná čísla y, pro něž platí $\sqrt{3y} = \sqrt{3} \cdot \sqrt{y}$.

Úloha 6

max. 2 b.

Určete hodnotu výrazu $V(\alpha) = -\frac{\sin \alpha}{4\cos \alpha}$, je-li tg $\alpha = -2$.

Úloha 7 max. 3 b.

- 7.1 Na polopřímce AX najděte vrchol B lichoběžníku ABCD. Vrchol B popište.
- 7.2 Na polopřímce VY najděte vrchol U pravoúhlého trojúhelníku TUV. Vrchol U popište. Vyznačte všechna řešení.

Úloha 8

Je dána kružnice k se středem S a bod A, který leží na této kružnici.

- Na kružnici k sestrojte jednu takovou dvojici bodů B a C, pro niž platí: délka dráhy po kružnici z bodu A do bodu B je v jednom směru pětkrát delší než v opačném směru;
 - bod B leží v jedné třetině dráhy po oblouku z bodu A do bodu C.
- 8.2 Určete velikost konvexního úhlu BSC.

Náčrtek:

Konstrukci proveďte v záznamovém archu.

Rozhodněte o každém z následujících tvrzení, zda je **pravdivé (ANO)**, nebo **nepravdivé (NE)**.

Pro **všechna** kladná čísla *k* platí:

9.1
$$k-k^2+k^3=k[1-k(1+k)]$$

9.2
$$(k^2-k)(k-2)=k(k^2+k-2)$$

$$9.3 \qquad 3 \cdot \frac{2}{k} \left(\frac{k}{6} + 2k \right) = 13$$

9.4
$$\frac{4k-3}{2k+2} = 1 + \frac{k-2.5}{k+1}$$

Úloha 10

Rovnice přímky p je $\frac{x}{3} - \frac{y}{4} - 1 = 0$.

Rozhodněte o každém z následujících tvrzení, zda je **pravdivé (ANO)**, nebo **nepravdivé (NE)**.

- 10.1 Bod $B\left[\frac{1}{4}; -\frac{11}{3}\right]$ leží na přímce p.
- 10.2 Vektor $\vec{n} = (4; 3)$ je normálový vektor přímky p.
- 10.3 Vzdálenost přímky p od počátku soustavy souřadnic je menší než 2,5.
- 10.4 Vzdálenost X, Y průsečíků přímky p s osami soustavy souřadnic je 5.

Úloha 11 max. 4 b.

Mlékárna prodává 20 % svých výrobků na zahraničním trhu, zbytek dodává na trh domácí. To, že o výrobky je zájem, potvrzují podepsané kontrakty. Rozhodněte o každém z následujících tvrzení, zda je **pravdivé (ANO)**, nebo **nepravdivé (NE)**.

- 11.1 Pokud se má vývoz zvýšit o 10 % a dodávky na domácí trh vzrostou o 5 %, mlékárna musí zvýšit výrobu o 6 %.
- 11.2 Pokud má mlékárna zachovat objem výroby a vývoz se má zvýšit o 10 %, dodávky na domácí trh budou o 2,5 % nižší.
- 11.3 Pokud má mlékárna zvýšit objem výroby o 10 % a dodávky na domácí trh se nezmění, je nasmlouváno zvýšení vývozu do zahraničí o 50 %.
- 11.4 Pokud má mlékárna zvýšit objem výroby o 10 % a vývoz do zahraničí má být beze změny, je nasmlouváno zvýšení dodávky na domácí trh o 15 %.

Úloha 12 2 b.

Hanka se poprvé účastní filmového maratonu pěti filmů. Žádný z nich netrvá méně než 1 hodiny. Čistá doba promítání všech pěti filmů dobromady je 8 hodin a 40 minut. Průměrná délka prvních tří filmů je

doba promítání všech pěti filmů dohromady je 8 hodin a 40 minut. Průměrná délka prvních tří filmů je 100 minut. Jak nejdéle může trvat některý ze zbývajících dvou filmů?

- A) nejdéle 2 hodiny a 10 minut
- B) nejdéle 2 hodiny
- C) nejdéle 1 hodinu a 50 minut
- D) nejdéle 1 hodinu a 40 minut

Úloha 13Kolika různými cestami mohou dojít turisté z Jedlové do Smrkové, když se chtějí nasvačit na rozcestí

Kolika různými cestami mohou dojít turisté z Jedlové do Smrkové, když se chtějí nasvačit na rozcestí U Malin? (Cesty se považují za různé, pokud se liší aspoň v jednom úseku. Předpokládáme, že se turisté nebudou vracet, tj. každým místem projdou nejvýše jednou.)

- A) 10 cestami
- B) 28 cestami
- C) 30 cestami
- D) jiné řešení

Rovnice $(x-1)^2 = 1-x$ s neznámou x z oboru **R**

- A) má právě jeden kořen,
- B) má dva různé reálné kořeny,
- C) má nekonečně mnoho řešení,
- D) nemá řešení.

Úloha 15

2 b.

Největší záporný člen aritmetické posloupnosti, jejímž prvním členem je číslo 100 a třetím členem číslo 76, je

- A) -2,
- B) -6,
- C) -10,
- D) jiné záporné číslo.

Úloha 16

2 b.

Na obrázku je graf exponenciální funkce $f: y = a^x$, kde a je kladné číslo. Graf prochází bodem A[1;3].

Pro kterou hodnotu proměnné x platí $f(x) = \frac{1}{9}$?

- A) x = -3
- B) x = -2.5
- C) x=-2
- D) x = -1.5

Krychle *ABCDEFGH* má obsah jedné stěny 125 cm². Jaký objem (po zaokrouhlení na cm³) má jehlan *ABCDH* s hlavním vrcholem *H*?

- A) 466 cm³
- B) 520 cm³
- C) 625 cm³
- D) jiné řešení

Úloha 18 2 b.

Bod *E* je ve třetině strany *CD* čtverce *ABCD*, blíž k bodu *D*. Úsečky *AE* a *BE* rozdělí čtverec na tři trojúhelníky. V jakém poměru jsou jejich obsahy, a to v pořadí od nejmenšího k největšímu?

- A) 3:6:8
- B) 2:4:9
- C) 1:2:3
- D) v jiném poměru

V pravoúhlém trojúhelníku jsou délky odvěsen $\frac{1}{2}$ a $\sqrt{2}$. Úhel φ leží proti delší odvěsně.

Ke každé z goniometrických funkcí úhlu φ uvedených v úlohách 19.1–19.4 vybírejte odpovídající hodnotu z nabídek A)–F).

- 19.1 $tg \varphi$
- 19.2 $\cot \varphi$
- 19.3 $\sin \varphi$
- 19.4 $\cos \varphi$

- A) $\frac{1}{3}$
- B) 3
- C) $2\sqrt{2}$
- D) $\frac{2\sqrt{2}}{3}$
- E) $\frac{3\sqrt{2}}{4}$
- F) $\frac{\sqrt{2}}{4}$

Z nabídek A)–E) vybírejte odpovídající hodnotu ke každé z neznámých v, y, z, uvedených v obrázcích 20.1–20.3.

- A) 14
- B) 15
- C) 16
- D) 17
- E) 18

KROK ZA KROKEM K NOVÉ MATURITĚ MATURITA NANEČISTO 2007

Klíč správných řešení MA1ACZMZ07DT

Matematika 1

Didaktický test

	celkem	uzavřených	otevřených
počet úloh	20	12	8
počet svazků	5	5	0

typ úlohy	úloha	podúloha	správné řešení	bodování
0	1		v = 34	1 0 9
0	2		d = 74 mm	1 0 9
0	3		$\frac{c}{a} = \frac{9}{10}$	2 1 0 9
0	4		x = 0	2 1 0 9
0	5		$y \in \mathbf{R}_0^+$	2 1 0
0	6		$V\left(\alpha\right) = \frac{1}{2}$	9 2 1 0 9

KROK ZA KROKEM K NOVÉ MATURITĚ MATURITA NANEČISTO 2007

O		7.1	D C A B	1 0 9
	7	7.2	V U_1 U_2	2 1 0 9
0	8	8.1	S C k	2 1 0 9
		8.2	úhel <i>BSC</i> =120 °	1 0 9
SU	9	9.1	NE	Max. 4 body
		9.2	NE	4 podúlohy 4 b. 3 podúlohy 2 b.
		9.3	ANO	2 podúlohy 1 b.
		9.4	ANO	1 podúloha 0 b. 0 podúloh 0 b.
SU	10	10.1	ANO	Max. 4 body
		10.2	NE	4 podúlohy 4 b. 3 podúlohy 2 b.
		10.3	ANO	2 podúlohy 1 b.
		10.4	ANO	1 podúloha 0 b. 0 podúloh 0 b.

Centrum pro zjišťování výsledků vzdělávání, Jeruzalémská 12, 110 00 Praha 1 koordinátorky pro matematiku – RNDr. Eva Lesáková, PhDr. Eva Řídká, CSc. tel.: 224 507 412, 224 507 413

e-mail: <u>lesakova@cermat.cz</u>, <u>ridka@cermat.cz</u> <u>www.cermat.cz</u>

KROK ZA KROKEM K NOVÉ MATURITĚ MATURITA NANEČISTO 2007

SU	11	11.1	ANO	Max. 4 body 4 podúlohy 4 b.
		11.2	ANO	3 podúlohy 2 b.
		11.3	ANO	2 podúlohy 1 b. 1 podúloha 0 b.
		11.4	NE	0 podúloh 0 b
U	12		Α	2
U	13		С	2
U	14		В	2
U	15		D	2
U	16		С	2
U	17		Α	2
U	18		С	2
SU	19	19.1	С	Max. 4 body 4 podúlohy 4 b.
		19.2	F	3 podúlohy 3 b.
		19.3	D	2 podúloha 2 b.
SU	20	19.4	A	- 1 podúloha 1 b. 0 podúloh 0 b
		20.1	E	Max. 4 body 3 podúlohy 4 b.
		20.2	С	2 podúlohy 2 b. 1 podúloha 1 b.
		20.3	D	1 podúloha 0 b. 0 podúloh 0 b
CELKEM				50 bodů

Vysvětlivky:

U – uzavřená úloha

O – otevřená úloha

SU – svazek uzavřených úloh

Centrum pro zjišťování výsledků vzdělávání, Jeruzalémská 12, 110 00 Praha 1 koordinátorky pro matematiku – RNDr. Eva Lesáková, PhDr. Eva Řídká, CSc. tel.: 224 507 412, 224 507 413

e-mail: <u>lesakova@cermat.cz</u>, <u>ridka@cermat.cz</u> <u>www.cermat.cz</u>