New Measurement Abstractions for Data Centers

Minlan Yu
University of Southern California

Key Challenges in Data Centers

- Service level agreements
 - Good, predictable performance

- Multi-tenancy
 - Resource isolation across tenants

- Cost reduction
 - Drive the network to high utilization
 All require fine-grained network management

Management = Measurement + Control

The state of today's Datacenter measurement

The need for new measurement abstractions

Many Measurement Programs

Query independence:

Specify many measurement queries with simple, programmable abstractions

Many Data Collection Primitives

- Passively collect different sources of data
- → Little control on what (not) to measure

Target independence:

Specify which data to collect independent of where and how it is collected

Limited Measurement Resources

- Low sampling rates
- Miss many important information

Reconfigurable:

Dynamically change the way resources are used for different measurement queries and traffic

7

A New Abstraction for Measurement

Specify measurement queries

Measurement Framework

Query independence:

Expressive Abstractions for many queries

Reconfigurable: Efficient Runtime

Dynamically configure devices & manage resources

Automatically collect the right data

Target independence:

Implementable for many devices

Expressive Abstractions (OpenSketch)

Picking the packets to measure

Storing & exporting data

Filter traffic aggregates
(e.g., to host A)
Classify a set of flows
(e.g., a set of malicious source IPs)

Dynamically flows to counters (e.g., more counters for elephant flows)

Support Many Queries

How many unique IPs send traffic to host A? Bitmap

Support Many Queries

Who's sending a lot to host A?

Count-Min Sketch

Multiple Tables

- Multiple tables for one query
 - Who's sending a lot to host A?
 - count-min sketch to count volume of flows
 - reversible sketch to identify flows with heavy counts in the count-min sketch

- Multiple tables for many queries
 - Bitmap for counting unique source IPs
 - CountMin sketch for counting traffic for each source IP

Support NetFlow

NetFlow

- Store flows and their counters in a hash table
- Accounting network utilization, capacity planning, troubleshooting, and attack detection
- It is challenging to implement NetFlow in hardware

SrclPadd	DstlPadd	Protocol	SrcPort	DstPort	Pkts	Bytes/Pkt
173.100.21.2	10.0.227.12	11	00A2	00A2	11000	1528
173.100.3.2	10.0.227.12	6	15	15	2491	740
173.100.20.2	10.0.227.12	11	00A1	00A1	10000	1428
173.100.6.2	10.0.227.12	6	19	19	2210	1040
173.100.7.2	10.0.227.12	1	41	41	3456	1140
173.100.4.2	10.0.227.12	11	16	16	1929	840
173.100.2.2	10.0.227.12	6	0	0	2228	628
173.100.5.2	10.0.227.12	11	17	17	1325	940

A Better NetFlow

- How to handle hash collisions
 - A larger hash table to reduce collisions
 - → Too much memory usage
 - A linked list of buckets, or send to the control plane
 - →Too much delay per packet
- Our idea: Embrace hash collisions
 - Encode all the collided (flow, counter) pairs in one bin
 - Network-wide decode in the controller
 - Simple fixed per packet processing
 - Memory usage similar to perfect hashing and actually smaller

A Better Netflow

Encode Hash a flow into multiple bins

FlowXOR	а	a⊕b	b⊕c	
FlowCounter	1	2	2	•
PacketCounter	C_a	C_a+C_b	C_b+C_c	

Decode

- Identify bins with a single flow
- Remove these flows, and then iterate

Extensions

- Identify more bins with a single flow
- Leverage flow information from other hops

Even More Queries...

Measurement Programs	Reconfigurable, hash-based counting table	
Loss Detection	Inversible Bloom Filter	
Superspreaders	Count-min sketch; Bitmap; Reversible sketch	
Traffic change detection	Count-min sketch; Reversible sketch	
Traffic entropy on port field	Multi-resolution classifier; Count-min sketch	
Flow size distribution	multi-resolution classifier; hash table	

Build on P4-compatible Switches

A New Abstraction for Measurement

Specify measurement queries

Measurement Framework

Query independence:

Expressive Abstractions for many queries

Reconfigurable: Efficient Runtime

Dynamically configure devices & manage resources

Automatically collect the right data

Target independence:

Implementable for many devices

