Exercise 1. (i) Let M be an R-module such that id_M is in the image of the natural morphism

$$\operatorname{Hom}_R(M,R) \otimes_R M \to \operatorname{Hom}_R(M,M).$$

Show that M is projective.

(ii) Let M, N, Q three R-modules. Assume that Q is flat, M is finitely generated, and R is noetherian. Show that the natural morphism

$$\operatorname{Hom}_R(M,N)\otimes_R Q \to \operatorname{Hom}_R(M,N\otimes_R Q)$$

is bijective. (Hint: Introduce a finite presentation of M, that is, an exact sequence $F_1 \to F_0 \to M \to 0$, with F_0, F_1 free and finitely generated R-modules).

- (iii) Assume that R is noetherian and let M is a finitely generated flat R-module. Show M is projective.
- (iv) Give an example of a flat, non-projective, Z-module.

Exercise 2. Let x be a nonzerodivisor in R. Express $Tor_1(R/x, M)$ in an elementary way in terms of x and M.

Exercise 3. Let I, J be two ideals in a ring R. Express $\operatorname{Tor}_1^R(R/I, R/J)$ in an elementary way in terms of R, I, J.

Exercise 4. (i) Show that M is flat, resp. projective, if and only if $Tor_1(N, M) = 0$, resp. $Ext^1(M, N) = 0$, for every module N.

(ii) Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence. Assume that M' and M'' are projective, resp. flat, and show that M is projective, resp. flat.

Exercise 5. Let M, N two R-modules. Assume that R is noetherian and that M is finitely generated. Show that $Tor_n(M, N)$ and $Ext^n(M, N)$ are finitely generated.

Exercise 6. Let $R \to S$ be a flat ring morphism, and M, N two R-modules.

(i) Show that

$$\operatorname{Tor}_n^R(M,N) \otimes_R S \simeq \operatorname{Tor}_n^S(M \otimes_R S, N \otimes_R S).$$

(ii) Assume that R is noetherian, and M finitely generated. Show that

$$\operatorname{Ext}_R^n(M,N) \otimes_R S \simeq \operatorname{Ext}_S^n(M \otimes_R S, N \otimes_R S).$$

Exercise 7 (Yoneda description of Ext^1). We fix two modules A and B. Given an exact sequence α of type

$$0 \to B \to X \to A \to 0$$

we define $[\alpha] \in \operatorname{Ext}^1(A, B)$ to be the image of id_A under the morphism $\operatorname{Hom}_R(A, A) \to \operatorname{Ext}^1(A, B)$ (which is part of the long exact sequence of Ext-groups associated with the short exact sequence α).

(i) We say that α splits if there is a morphism $A \to X$ such that the composite $A \to X \to A$ is the identity. Show that α splits if and only if $[\alpha] = 0$.

We say that two exact sequences $0 \to B \to X \to A \to 0$ and $0 \to B \to X' \to A \to 0$ are Yoneda equivalent if there is an isomorphism $X \to X'$ fitting in the commutative diagram

$$B \longrightarrow X \longrightarrow A$$

$$= \begin{vmatrix} & & & \\ & & & \\ & & & \\ & & & \\ B \longrightarrow X' \longrightarrow A \end{vmatrix}$$

- (ii) Show that a sequence splits if and if it is Yoneda equivalent to the sequence $0 \to B \to A \oplus B \to A \to 0$.
- (iii) We let E(A,B) be the set of exact sequences $0 \to B \to X \to A \to 0$ modulo Yoneda equivalence. Show that $\alpha \mapsto [\alpha]$ induces a map $E(A,B) \to \operatorname{Ext}^1(A,B)$.

We construct a map $\operatorname{Ext}^1(A,B) \to E(A,B)$ as follows. Take an exact sequence $0 \to K \to F \to A \to 0$ with F free. An element $u \in \operatorname{Ext}^1(A,B)$ is represented by a morphism $\varphi_u \colon K \to B$. Let X_u be the cokernel of the morphism $K \to F \oplus B$ given by $k \mapsto (j(k), -\varphi_u(k))$ where j is the injective morphism $K \to F$.

- (iv) Show that we have an exact sequence $0 \to B \to X_u \to A \to 0$, and therefore an element of E(A,B).
- (v) Show that this gives a map $\operatorname{Ext}^1(A,B) \to E(A,B)$.
- (vi) Show that $\operatorname{Ext}^1(A,B)$ and E(A,B) are in bijection.
- (vii) Let $\alpha, \beta \in E(A, B)$. Describe the element $\gamma \in E(A, B)$ such that $[\gamma] = [\alpha] + [\beta]$. Describe the functorialities of E(A, B) in A and B.