The Equivalence of Robustness and Regularization with Non-Perturbable Predictors

Sheng Yang¹

December 9, 2022

¹Harvard John Paul School of Engineering and Applied Science

Motivation

Previously, uncertainty set $\mathcal{U}_{(h,g)}$ controls the magnitude of perturbation

$$\mathcal{U}_{(h,g)} = \{ \Delta : ||\Delta||_{(h,g)} \leqslant \lambda \}$$

This implicitly assumes that every feature is *continuously* perturbable.

However, this assumption may fail:

- Categorical (contrast coded) columns do not admit continuous perturbabtions
 - gender
- Some continuous columns are prespecified without uncertainty
 - medical research controlled trials

Penalizing only Perturbable Features

Theorem (Partial Penalization in its General Form)

If $g : \mathbb{R}^n \to \mathbb{R}$ is a non-identically 0 seminorm and $h : \mathbb{R}^n \to \mathbb{R}$ is a norm, then for any $\mathbf{z} \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^p$,

$$\max_{\boldsymbol{\Delta} \in \mathcal{U}_{(h,g)}} g(\boldsymbol{z} + \boldsymbol{\Delta} \boldsymbol{S} \boldsymbol{\beta}) = g(\boldsymbol{z}) + \lambda h(\boldsymbol{S} \boldsymbol{\beta}) \tag{1}$$

where $m{S} = diag(s_j)$ and $s_j = 1_{[j-th \ predictor \ is \ perturbable]}$

Corollary (Partial Penalization in LASSO)

$$\min_{\boldsymbol{\beta}} \max_{||\boldsymbol{\Delta}_{i}||_{2} \leq \lambda} ||\boldsymbol{y} - (\boldsymbol{X} + \boldsymbol{\Delta}\boldsymbol{S})\boldsymbol{\beta}||_{2} = \min_{\boldsymbol{\beta}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_{2} + \lambda \sum_{j:s_{j}=1} |\beta_{j}| \qquad (2)$$

Perturbing a subset of features is equivalent to regularizing parameters of the corresponding features!

Application in Robust Classification: SVM

Formulate classification problems to robusitfy against perturbable features:

$$\min_{\beta,b} \max_{\boldsymbol{\Delta} \in \mathcal{U}_q} \sum_{i=1}^n \max(1 - y_i(\beta^T(x_i + \boldsymbol{S}\boldsymbol{\Delta}_i) - b), 0)$$
 (3)

Theorem (Partially Robust SVM)

Equation 3 is equivalent to

$$\min_{\beta,b} \sum_{i=1}^{n} \xi_{i}$$

$$s.t. \ y_{i}(\beta^{T}x_{i} - b) - \lambda ||\mathbf{S}\beta||_{q^{*}} \geqslant 1 - \xi_{i} \ \forall i \in \{1, ..., n\}$$

$$\xi_{i} \geqslant 0, \qquad \forall i \in \{1, ..., n\}$$
(4)

where l_{q^*} is the dual-norm of l_q

Similar results are proven for Logistic Regression and OCT in report.

Empirical Study

Simulation: Partially penalizing Gaussian Mixture; does not do very well

data	terms	LR	LR Regularized	LR Robust	SVM	SVM Regularized	SVM Robust
continuous	both	0.9686 ± 0.015	0.9649 ± 0.023	$\begin{array}{c} \textbf{0.9705} \pm \textbf{0.014} \\ \textbf{0.9642} \pm \textbf{0.019} \end{array}$	0.9730 ± 0.014	0.9755 ± 0.011	0.9753 ± 0.012
	first	0.9686 ± 0.015	0.9657 ± 0.021	0.9642 ± 0.019	0.9730 ± 0.014	0.9693 ± 0.018	0.9692 ± 0.017
	second	0.9686 ± 0.015	0.9650 ± 0.023	0.9638 ± 0.019	0.9730 ± 0.015	0.9695 ± 0.018	0.9692 ± 0.018
categorical	first	0.9425 ± 0.005	0.9327 ± 0.018	0.9411 ± 0.006	0.9348 ± 0.009	0.9307 ± 0.013	0.9327 ± 0.010

Table 1: simulated accuracy across 2000 random initialization

UCI Dataset: 5 dataset with both continuous and categorical columns; marginal Improvement

dataset	LR	LR Regularized	LR Robust	SVM	SVM Regularized	SVM Robust
australian	0.8246 ± 0.03	0.8260 ± 0.04	0.8304 ± 0.04	0.7478 ± 0.04	0.7319 ± 0.02	0.7478 ± 0.04
bands	0.6894 ± 0.07	0.6894 ± 0.07	0.6847 ± 0.07	0.6706 ± 0.02	0.6659 ± 0.02	0.6706 ± 0.02
heart	0.8370 ± 0.07	0.8370 ± 0.07	$\textbf{0.8370}\pm\textbf{0.07}$	0.8259 ± 0.06	$\textbf{0.8333}\pm\textbf{0.05}$	0.8259 ± 0.06
hepatitis	1.0000 ± 0.00	1.0000 ± 0.00	1.0000 ± 0.00	0.9226 ± 0.04	0.9226 ± 0.03	0.9226 ± 0.04
horse	0.7100 ± 0.05	0.7167 ± 0.05	$\textbf{0.7200}\pm\textbf{0.06}$	0.6967 ± 0.04	0.7100 ± 0.06	$\textbf{0.7167}\pm\textbf{0.06}$

Table 2: 5-fold CV accuracy of UCI dataset

Conclusion

In this work, we have

- provided a theoretical justification of equivalence of robustness and classification with non-perturbable predictors
- demonstrated the empirical weak performance: not robust enough
- Outlined future work: support automatic perturbable set discovery

All codes are public in yangshengaa/robust_classification_partial!

