节段肌肉量与脂肪率的判定标准

一,节段肌肉量的判断标准

输入参数: Weight(kg), Height(cm), BMI = Weight/((Height/100)^2)。

A、首先确定各节段 FFM 的标准值,左右对称

女,手: FFM_Arm标准 = -0.98666 + 9.0326 * 1/(Height/100) - 0.37064 * 1/Age - 106.4763 * 1/Weight - 0.1656* BMI - 0.00040719 * Age + 0.051186 * Weight sex = 0

男,手: FFM_Arm标准 = 0.017042 + 11.5916 * 1/(Height/100) - 1.3254 * 1/Age - 176.4793 * 1/Weight - 0.2071 * BMI - 0.0013458 * Age + 0.055659 * Weight sex = 1

女,腿: FFM_Leg标准 = -2.9762 + 29.0047 * 1/(Height/100) - 1.1965 * 1/Age - 345.965 * 1/Weight - 0.5337 * BMI - 0.0013882 * Age + 0.16134 * Weight sex = 0

男,腿: FFM_Leg标准 = 0.096857 + 32.1057 * 1/(Height/100) - 3.7095 * 1/Age - 490.2476 * 1/Weight - 0.5738 * BMI - 0.0036574 * Age + 0.15427 * Weight sex = 1

女,躯干: FFM_ Trunk标准 = -9.7821 + 87.1411 * 1/(Height/100) - 2.7852 * 1/Age - 1021.1428 * 1/Weight - 1.5975 * BMI - 0.0035455 * Age + 0.4758 * Weight sex = 0

男,躯干: FFM_ Trunk标准 = -8.5191 + 116.0064 * 1/(Height/100) - 5.5369 * 1/Age - 1583.0027 * 1/Weight - 1.9627 * BMI - 0.0062644 * Age + 0.50888 * Weight sex = 1

B、根据 FFM%的值,判断 FFM 的标准,FFM=(FFM 测试值 /FFM 标准值)*100%。

	手	躯干	脚	
女性标准范围	80-120	90-110	90-110	
男性标准范围	85-115	90-110	90-110	

低于标准范围的为低标准,高于标准范围为超标准。

二,节段脂肪率的判定标准

输入参数: Weight(kg),Height(cm),BMI = Weight./((Height/100)^2), BFM_of_Arm 为手臂的 BFM; BFM_rate_of_Arm 为手臂的 BFM 占手臂的比重(其它以此类推)。左右对称。

(1) 女性:

手: StandardBfmA = round(-3.1016 + 6.5727 * 1/(Height/100) -145.9159 * 1./Weight + 0.0058254 * BMI - 0.41087 * BFM_of_Arm + 0.056308 * BFM_rate_of_Arm)

躯干: StandardBfmT = round(-3.802 + 14.3863 * 1/(Height/100) -208.959 * 1./Weight - 0.12005 * BMI -0.041373 * BFM_of_Trunk + 0.064994 * BFM_rate_of_Trunk)

脚: StandardBfmL = round(-2.2634 + 0.73631 * 1/(Height/100) -2.9821 * 1./Weight + 0.015606 * BMI + 0.2378 * BFM of Leg + 0.028124 * BFM rate of Leg)

(2) 男性:

手: StandardBfmA = $-0.14602 + 2.2919 * 1/(Height/100) - 121.7269 * 1./Weight - 0.019634 * BMI - 0.4615 * BFM_of_Arm + 0.079326 * BFM_rate_of_Arm$

躯干: StandardBfmT = -0.81508 + 13.3601 * 1/(Height/100) -315.9495 * 1./Weight -0.13277 *

BMI -0.063787 * BFM_of_Trunk + 0.08005 * BFM_rate_of_Trunk

脚: StandardBfmL = $-0.45645 + 4.7232 * 1/(\text{Height/}100) - 150.2382 * 1./\text{Weight } -0.063746 * BMI -0.063093 * BFM_of_Leg + 0.089334 * BFM_rate_of_Leg$

备注:

BFM(节段脂肪量)=节段肌肉量*节段脂肪率*0.01/(1-节段脂肪率*0.01)

BFM_of_Arm 为手臂的 BFM; BFM_rate_of_Arm 为手臂的 BFM 占手臂的比重(其它以此类推)。

StandardBfmA = 0 标准。

StandardBfmA >= 1 超标准。

StandardBfmA <= -1 低标准。

round(x)函数的作用是对 x 做四舍五入处理。

三,综合判定如下

人体成分节段肌肉与节段脂肪的判定(成年男性)

节段名称	节段肥胖指数(-50~50)		节段肌肉标准百分比 (20%~200%)			
	低标准	标准	超标准	低标准	标准	超标准
左上肢	≤-1	0	≥1	<85%	85%~115%	>115%
右上肢	≤-1	0	≥1	<85%	85%~115%	>115%
躯干	≤-1	0	≥1	<90%	90%~110%	>110%
左下肢	≤-1	0	≥1	<90%	90%~110%	>110%
右下肢	≤-1	0	≥1	<90%	90%~110%	>110%

人体成分节段肌肉与节段脂肪的判定(成年女性)

节段名称	节段肥胖指数(-50~50)			节段肌肉标准百分比 (20%~200%)		
	低标准	标准	超标准	低标准	标准	超标准
左上肢	≤-1	0	≥1	<80%	80%~120%	>120%
右上肢	≤-1	0	≥1	<80%	80%~120%	>120%
躯干	≤-1	0	≥1	<90%	90%~110%	>110%
左下肢	≤-1	0	≥1	<90%	90%~110%	>110%
右下肢	≤-1	0	≥1	<90%	90%~110%	>110%

骨骼肌量

名词解释

骨骼肌由有收缩功能的肌细胞组成,是肌肉组织的一种(肌组织包括骨骼肌、心肌和平滑肌),是体内最多的组织,约占体重的 40%。在运动过程中,骨骼肌收缩是人体运动的动力,人体各种形式的运动,主要是靠骨骼肌的收缩活动来完成。骨骼肌含量受性别、年龄和身体活动等因素的影响,一般骨骼肌含量男性多于女性,成年大于老年,运动员比普通人高。

测试原理

生物电阻抗法。

判断标准

	身高(CM)	<150	150~160	>160
女	骨骼肌 (kg)	18.3 ± 2.3	21.3 ± 2.4	26.2 ± 4.1
	身高(CM)	<160	160~170	>170
男	骨骼肌 (kg)	23.9 ± 2.7	29.7±4.9	36.4±6.8

注:本参考标准基于大样本数据,根据骨骼肌占体重的比例关系,参考 inbody 的分析方法通过专业的算法计算统计而来。

健康建议

骨骼肌量不足:

骨骼肌减少或不足,肌力会下降,同时骨骼肌减少会导致骨质丢失,这预示着骨折风 险增加,身体活动能力降低。需加强营养,尤其是优质蛋白的摄入,进行适当的运动锻 炼。

骨骼肌增多:

除基因突变等病理性导致的肌肉量增加,通过运动锻炼与适当的营养补充使肌肉量大 于参考标准,是好的现象。

增肌:

抗组训练,加强蛋白质补充,控制脂肪摄入量。

参考资料

1. 王瑞元, 苏全生.运动生理学.人民体育出版社, 2011.