```
In [3]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Out[4]:

	cgpa	placement_exam_marks	placed
0	7.19	26	1
1	7.46	38	1
2	7.54	40	1
3	6.42	8	1
4	7.23	17	0
995	8.87	44	1
996	9.12	65	1
997	4.89	34	0
998	8.62	46	1
999	4.90	10	1

1000 rows × 3 columns

In [5]: data.head()

Out[5]:

	cgpa	placement_exam_marks	placed
0	7.19	26	1
1	7.46	38	1
2	7.54	40	1
3	6.42	8	1
4	7.23	17	0

```
In [6]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 3 columns):
         #
             Column
                                    Non-Null Count Dtype
         0
              cgpa
                                    1000 non-null
                                                     float64
         1
             placement_exam_marks
                                    1000 non-null
                                                     int64
         2
             placed
                                    1000 non-null
                                                     int64
        dtypes: float64(1), int64(2)
        memory usage: 23.6 KB
In [7]: data.describe()
Out[7]:
                     cgpa placement_exam_marks
                                                   placed
```

			-
count	1000.000000	1000.000000	1000.000000
mean	6.961240	32.225000	0.489000
std	0.615898	19.130822	0.500129
min	4.890000	0.000000	0.000000
25%	6.550000	17.000000	0.000000
50%	6.960000	28.000000	0.000000
75%	7.370000	44.000000	1.000000
max	9.120000	100.000000	1.000000

```
In [8]: data.columns
```

```
Out[8]: Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')
```

In [9]: sns.pairplot(data)

Out[9]: <seaborn.axisgrid.PairGrid at 0x20eb9d016d0>

In [11]: sns.distplot(data)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:ylabel='Density'>

In [12]: da=data[['cgpa', 'placement_exam_marks', 'placed']]
da

Out[12]:

	cgpa	placement_exam_marks	placed
0	7.19	26	1
1	7.46	38	1
2	7.54	40	1
3	6.42	8	1
4	7.23	17	0
995	8.87	44	1
996	9.12	65	1
997	4.89	34	0
998	8.62	46	1
999	4.90	10	1

1000 rows × 3 columns

```
placement model - Jupyter Notebook
In [13]: sns.heatmap(da.corr())
Out[13]: <AxesSubplot:>
                                                                                  - 1.0
                             cgpa
                                                                                  - 0.8
             placement_exam_marks
                                                                                  - 0.2
                           placed
```

```
In [17]: x=da[['cgpa', 'placement_exam_marks']]
         y=da['placed']
```

cgpa

placement_exam_marks placed

```
In [18]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [19]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
```

Out[19]: LinearRegression()

```
In [20]: print(lr.intercept_)
```

0.15746468346583975

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [22]:
         coeff
```

Out[22]:

	Co-efficient
сдра	0.051178
placement exam marks	-0.000820

```
In [23]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[23]: <matplotlib.collections.PathCollection at 0x20ebfce3460>

In [24]: print(lr.score(x_test,y_test))

-0.012040009794943574

In []: