Algorithmic Economics

Sendhil Mullainathan

joint work with

Jens Ludwig, Ashesh Rambachan, Amanda Agan and Diag Dvaneport

Why AI Needs Behavioral Economics

Why Behavioral Economics Needs Al

Why Al Needs Behavioral Economics

Why Behavioral Economics Needs Al

12 million arrests

Where to wait for trial?

12 million arrests

Where to wait for trial?

Implications for both society and arrestee

Jail stay: 2-3 months (as high as 9-12)

Law dictates jailing decision

Flight risk: Will defendant appear at trial?

Public safety risk
Will defendant commit crime?

Judge must *predict risk*And jail those with high risk

Judge is doing what <u>supervised learning</u> algorithms do

Machine Learning

Given X (image, soundwave,...)
Predict Y (face?, object,...)

Prediction Policy

Given X (defendant characteristics)
Predict Y (flight risk)

Build

Defendant Risk Predictor Evaluate Compare to Judge

Data from New York State

2011-13

758,027 cases

Many judges

Input variables: RAP sheet, current charge

Label: Flight (failure to appear) or Arrested for crime

Rank all defendants by predicted risk

Calculate crime rate for releasing x% of them

Need a benchmark!

Keep jail population fixed Reduce crime by 24%

Keep crime fixed Reduce jail population by 40%

Close Riker's in July

Some subtle issues here (see paper)

Selective labels
Omitted payoff bias
Racial bias
Equity

Rambachan (2021)

<u>Can</u> algorithms improve judicial decision making?

Keep crime fixed Reduce jail population by 40%

Keep jail population fixed Reduce crime by 24%

Can **reduce** racial disparities

The key is to build the algorithm correctly

<u>Can</u> algorithms improve judicial decision making?

decision making?

Key feature: Decision depends on some prediction

Domestic violence

decision making?

Key feature: Decision depends on some prediction

Domestic violence

Financial advice

decision making?

Key feature: Decision depends on some prediction

Domestic violence

Financial advice

Job search advice

decision making?

Key feature: Decision depends on some prediction

Domestic violence

Financial advice

Job search advice

Who will make a good teacher?

decision making?

Key feature: Decision depends on some prediction

Domestic violence

Financial advice

Job search advice

Who will make a good teacher?

Student advising

How much can algorithms improve

decision making?

The marginal value of public funds (MVPF) of a policy is

$$MVPF = \frac{Benefit\ to\ Society}{Net\ Cost\ to\ Government}$$

We have a way of answering this question

We have calculated this for a whole suite of programs

How much can algorithms improve

decision making?

We have a way of answering this question

We have calculated this for a whole suite of programs

Hendren & Sprung-Keyser (2020): unified analysis of 133 historical policy changes.

Note: a very few programs have *infinite* return

How much can algorithms improve

decision making?

Let's calculate it for algorithms

Every algorithm has infinite returns

Only 19 out of 133 historical policies studied by Hendren & Sprung-Keyser (2020) have MVPF = Infinity.

Why can algorithms improve

decision making?

Figure 1: Stylized illustration of the social welfare gains from algorithmic re-ranking of who is prioritized for services

This argues we should invest more research in algorithms

Why might these benefits be so consistently big?

Reason 1: Improved ranking has first order social gains

Why can algorithms improve

decision making?

This argues we should invest more research in algorithms

Why might these benefits be so consistently big?

Reason 1: Improved ranking has first order social gains

Reason 2: Algorithms have low marginal cost

Reason 3: Behavioral economics

Why Al Needs Behavioral Economics

Why Behavioral Economics Needs Al

Algorithms can help us tackle social problems (Choice architecture 2.0)

Many social problems are ultimately behavioral economics problems

Why can algorithms improve judicial decision making?

Why are judges doing so badly?

How would we go about answering this question?

Generate a hypothesis

Then test it

But what about this bit?

Where do hypotheses come from?

Vast array of methods

Lab experiments

Field experiments

Structural estimation

Observational causal inference

Something inconsistent here: if judges are bad at pattern detection....

Why can't SL algorithms help us generate overlooked hypotheses?

Why can algorithms improve judicial decision making?

Let's build a predictive model of the <u>judge</u>

Ludwig & Mullainathan

Which factors predict judge decision?

1. Mugshot

2. Current charge: Violent crime

3. Current charge: Property crime

4. Current charge: Felony crime

5. Current charge: Drug crime

Not facial features we coded but the pixels themselves....

Form a new predictor using only the face

Large fraction of the predictable variation comes from the face

Key Steps

- 1. Check that there is *new* signal in face
 - Race, skin color, age all in face
 - So are factors identified by psychologists
 - Can even collect human predictions based on face
 - All these are rediscovered by algorithm
 - But collectively explain little of what algorithm has found

Key Steps

1. Check that there is *new* signal in face

2. Build a way to communicate with algorithm

3. Give that to subjects, not just us looking at it

Mugshot GAN

(GAN = generative adversarial network)

Build a mugshot-specific GAN Pre-trained GANs not enough

Generates very realistic synthetic mugshots

Two real mugshots
Two GAN generated

Mugshot GAN

(GAN = generative adversarial network)

Build a mugshot-specific GAN Pre-trained GANs not enough

Generates very realistic synthetic mugshots

Two real mugshots
Two GAN generated

Start with a synthetic mugshot

Morph to increase detention risk

Mugshot GAN

(GAN = generative adversarial network)

Changes in detention probability during latent-editing

0.41

0.389

0.337

0.257

0.13

0.13

Build a mugshot-specific GAN Pre-trained GANs not enough

Generates very realistic synthetic mugshots

Two real mugshots
Two GAN generated

Start with a synthetic mugshot

Morph to increase detention risk

Key Steps

- 1. Check that there is *new* signal in face
- 2. Build a way to communicate with algorithm
 - Not off the shelf
- 3. Give that to subjects, not just us looking at it

Applying Pipeline to Judge Prediction

Applying Pipeline to Judge Prediction

All morphs: bottom to top decile

.13 to .41 prediction detention

Applying Pipeline to Judge Prediction

Applying Pipeline to Judge Prediction

Can users guess better than chance?

Can users articulate something meaningful (and do they agree)?

Does that articulated feature actually correlate with algorithm prediction?

More where this comes from Orthogonalize and iterate

Can users guess better than chance?

Can users articulate something meaningful (and do they agree)?

Does that articulated feature actually correlate with algorithm prediction?

Proof of Concept

- Do these actually predict judge behavior?
 - Yes and at large magnitudes

Well Groomed is Important

Those <u>not</u> wellgroomed are 28.7% more likely to be detained

Full Faced is Important

Fuller-faced <u>less likely</u> to be detained

Top-bottom quartile difference is ~7 ppt

That's 30% of overall detention rate

Proof of Concept

- Do these actually predict judge behavior?
 - Yes and at large magnitudes
- Are these "new"?
 - Experiments with public defenders
- They even seem to work "causally" in lab experiments
 - Control for predicted risk
 - Lab experiments that manipulate full-faced and well-groomed

• But...

Proof of Concept

- This is not a paper about well groomed or full faced
- It is not a paper even about faces
- It is not a paper about judges
- It is about a new way to study people
- Transcends hypothesis generation can help improve formal theories

Expected	
Utility	
Theory	

Expected Utility Theory Allais Paradox

Lottery A:

For sure: \$1 million

Lottery B:

89% chance: \$1 million 10% chance: \$5 million

1% chance: nothing

Most people pick this

Why risk losing the million?

Expected Utility Theory Allais Paradox

Lottery A:

For sure: \$1 million

Lottery B:

89% chance: \$1 million 10% chance: \$5 million 1% chance: nothing

Lottery C:

89% chance: 0

11% chance: \$1 million

Lottery D:

90% chance: \$0

10% chance: \$5 million

Most people pick this

Anyway it's a long shot, go for the big bucks

Expected Utility Theory Allais Paradox

Lottery A:

For sure: \$1 million

Lottery B:

89% chance: \$1 million 10% chance: \$5 million

1% chance: nothing

Lottery C:

89% chance: 0

11% chance: \$1 million

Lottery D:

90% chance: \$0

10% chance: \$5 million

Allais (1953): These choices violate independence axiom Inconsistent with expected utility theory

Salience theory – Bordalo et al. (2012) Simplicity preferences – Oprea (2022), Puri (2022). Cognitive uncertainty – Enke & Graeber (2023) And many more... Harless & Camerer (1994) sits above this process: compare how well theories can explain these anomalies?

Anomalies Improve Theories

Anomalies Improve Theories

Anomalies Central to Evolution of Theories

Current Anomaly Generation

Current Anomaly Generation

Ideal for ML

Algorithms can see things in data that we might not

Algorithmic Anomaly Generation

Build Tool to Fully Automate Anomaly Generation

- (1) Given a dataset
- (2) Given a theory
- (3) Produce any anomalies

Mullainathan and Ramba (2023)

Why Al Needs Behavioral Economics

Why Behavioral Economics Needs Al

Algorithms can help us tackle social problems (Choice architecture 2.0)

Many social problems are ultimately behavioral economics problems

Algorithms can help us <u>understand people</u>

Subjects screenshare while scrolling through FB

Answer questions about how much they like posts

We track details of post

Newsfeed

Newsfeed

People You May Know

Interacting with friends

Audited second algorithm

Making new friends

Audit of PYMK

Audit of PYMK

Audit of PYMK

Redid both audits in India Muslim/Hindu

Newsfeed

People You May Know

Why the algorithmic bias?

Why in NewsFeed but not in PYMK?

Existing explanations of bias predict no difference or opposite sign

Cannot give a definitive answer without working with Facebook

But here's one **hypothesis**

My host was exceptionally considerate

But I'm never going back there

I went wrong

I clearly have a problem with Doritos

Host went wrong?

Heart was in right place: Give me what I <u>want</u>

Host went wrong?

Heart was in right place: Give me what I want

Head was not: Gave me what I ate

Her mistake:

Choices = Preferences

Well understood behavioral science fact

Here – self control

e.g. want-should conflict

But can happen for **many** reasons

Well understood behavioral science fact

Widely ignored behavioral science fact

Especially when building algorithms

Newsfeed algorithm trained on behavior – how I interact with posts

But clicks may not reflect preferences

"There can be no peace until they renounce their Rabbit God and accept our Duck God."

Widely documented – Ingroup bias

Favor own group <u>more</u> in behavior than in preference

So an algorithm trained on my behaviors produces more ingroup favoritism than I myself want....

But how does this explain PYMK vs Newsfeed

Ingroup Bias

"There can be no peace until they renounce their Rabbit God and accept our Duck God."

Bias has structure:

Larger when behaving <u>automatically</u>...

Low deliberation

Quick choices

Low consequences

Ingroup Bias

Newsfeed

People You May Know

Bias has structure:

Larger when behaving automatically...

Low deliberation

Quick choices

Low consequences

How do you interact with Facebook posts?

How do you decide who to friend?

Ingroup Bias

Behavior less thoughtful More ingroup favoritism

Algorithm biased

How do we test?

Newsfeed

Behavior more thoughtful Less ingroup favoritism

Algorithm less biased

People You May Know

Lab study that manipulates automaticity

Create two worlds

Simulate scrolling

Manipulate automaticity

Preferences the same Behavior different

Train an algorithm on each of these conditions

automatic deliberate behavior behavior

"PYMK"

"Newsfeed"

Lab study that manipulates automaticity

Algorithms trained on two worlds

How does algorithm rank posts?

Does it create a bias?

Lab study that manipulates automaticity

Algorithms trained on two worlds

How does algorithm rank posts?

Does it create a bias?

It does when behavior is automatic

Broader lessons

Algorithms that Misunderstand us

ML approach

Predict easy to measure behavior

Use predictions to drive "decisions"

Algorithms that Misunderstand us

ML approach

Naïve presumption – measured behavior revealed our preferences, objectives, feelings...

Problem transcends social media

Recommender systems

Hiring algorithms

Pricing algorithms

Algorithms that misunderstand us

ML approach

Naïve presumption – measured behavior revealed our preferences, objectives, feelings...

Problem transcends automaticity or want-should conflict

Algorithms that misunderstand us

ML approach

Naïve presumption – measured behavior revealed our preferences, objectives, feelings...

Problem transcends automaticity or want-should conflict

Algorithms that misunderstand us

ML approach

Naïve presumption – measured behavior revealed our preferences, objectives, feelings...

How do we fix this?

Use known psychology to model behavior relates to user's mind

Incorporate behavioral insights into how we build machine learning models

ML needs structural modeling

Why Al Needs Behavioral Economics

Why Behavioral Economics Needs Al

Algorithms have (often implicit) models of people Those models are naive and likely wrong. Those errors can have massive consequences

Humans

Machine "intelligence"

Humans

Understand hidden "meaning" behind data Machine "intelligence"

Trapped inside data

Humans

Understand hidden "meaning" behind data

We are limited in what we see in the data

Machine "intelligence"

Trapped inside data

Can see things in data we cannot

Behavioral Economics

Computer Science

