Using Support Vector Machine for Emotion Classification in presence of Noise Label

Po-sheng Wang

Advisor: **Dr. Ehsan Tarkesh Esfahani**

Committee Member: **Dr Rahul Rai**

Committee Member: Dr. Amin Karami

Human In Loop Laboratory M.S. in Mechanical Engineering. University at Buffalo August 13, 2015

Problem Definition

Facial Expression Recognition

• Ambiguity of data classes : even human may be confused

Challenge

Classification of data with label noise

Approach

- Human subject study to estimate the noise in the label of data
- Compared Standard SVM with Noise Label Robust SVM

Noise Label issue

Where is the noise coming from ... ambiguity of data classes

True label: Disgust

True label: Anger

True label: Sad

Happy, Disgust, Anger Sad, Neutral

Data Set and Classes Japanese Female Expression (JAFFE)

Class 1: Happy (30 images)

Class 3: Anger (30 images)

Class 4: Sad (31 images)

Class 5: Neutral (30 images)

Total: 150 images

函

Flow Chart

Classification – without considering noise in label

- Feature extraction
 - Pyramid Histogram of Oriented Gradients (PHOG)
 - Local Phase Quantization (LPQ)
 - Local Binary Patterns (LBP)
- Classification
 - Support Vector Machines (SVM)

Pyramid Histogram of Gradients (PHOG)

Calculating histogram information of image with kernel filters: $[-1\ 0\ 1]$ and $[-1\ 0\ 1]^T$

- For pixel number 1: m
 - Horizontal gradient : $G_x(x, y) = H(x + 1, y) H(x 1, y)$
 - Vertical gradient: $G_v(x,y) = H(x,y+1) H(x,y-1)$
 - Magnitude: $G(x,y) = \sqrt{G_x(x,y)^2 + G_y(x,y)^2}$,
 - Angle: $\alpha(x,y) = tan^{-1} \left(\frac{G_y(x,y)}{G_y(x,y)} \right)$
 - Bin size = $8 \cdot \text{Range} = [0-360]$.

End

Retrieval, 2007.

Count the occurrences in each of the bin

270

Pyramid Histogram of Gradients (PHOG)

Layers (L)	0	1	2	3	4	Total
# of histogram	8	32	128	512	2048	2728

Output PHOG descriptor

Local Phase Quantization (LPQ)

Quantize the local phase information by calculating the local Fourier transform and represent those information by the histogram distribution over the all pixels in the image.

1- Local Fourier transform

$$F(u,x) = \sum_{y \in N_x} f(x-y)e^{-j2\pi u^T y}$$

Directions: [1 0], [0 1], [1 1], [1 -1]

2- Calculating the histogram of phase angle

Each direction will have a Re(F) and Im(F) part. We calculate the histogram of sign of these values

possible value over all image

V. Ojansivu and J. Heikkil, "Blur insensitive texture classification using local phase quantization," in Image and Signal Processing, ser. Lecture Notes in Computer Science, 2008

Local Binary Pattern (LBP)

LBP creates the possible pattern label by thresholding neighborhood of each pixel with the intensity value

T. Ojala, M. Pietikainen, and D. Harwood, "A comparative study of texture measures with classification based on featured distribution," Pattern Recognit., vol. 29, no. 1, pp. 51–59, Jan.

1. Uniform Patterns:

Contains, at most, two bitwise transitions.

X4

2. Rotation invariant

01100101 11001010

Possible labels 1:10

(1 to 9 shows left, and 10 is any other patterns except uniform patters)

Binary: 011001019 Decimal: 101

Pattern

1:10

http://sstackexchange.com/questions/19844/number-of-different-output-labels-in-local-binary-pattern

Feature extraction

Feature Extraction	PHOG	LPQ	LBP	Total
# of features	2728	1280	3410	7418

7418 features to represent each image

Principal Component Analysis (PCA)

PCA

Original Feature coordinate

New Feature coordinate

- So that the greatest variance by any projection of the data set comes to lie on the first axis → First Component
- By selecting the first few components → Data dimension reduce without losing important information

- Figure Source: http://www.csie.ntnu.edu.tw/~u91029/Matrix.html
- How many components should we choose???

Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space". Philosophical Magazine 2 (11): 559–572.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441, and 498–520. Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 27, 321–77

Classification-**Support Vector Machine (SVM)**

Support Vector Machine (SVM)

Goal: Hyperplane with max margin

$$d(+) + d(-) = \frac{1}{||w||} + \frac{1}{||w||} = \frac{2}{\sqrt{w^T w}}$$

s.t.
$$\begin{cases} W^T X + b \ge 1 & if \ y_i = 1 \\ W^T X + b \le -1 & if \ y_i = -1 \end{cases}$$

W: normal vector

b: offset

Primal Optimization Problem

$$Minimize \quad \frac{1}{2} w^T w$$

s.t.
$$y_i(w^Tx_i+b) \geq 1$$
 $i=1,...n$

discriminant function: $y_{new} = sign(w^T x + b)$

Support Vector Machine (SVM)

Linear nseparable problems:

Soft Margin Hyperplane

Introduce a non-negative slack variable ξ_i for each data Allow "error" ξ_i in classification

$$\begin{cases} W^TX + b \ge 1 & if \ y_i = 1 \\ W^TX + b \le -1 & if \ y_i = -1 \end{cases} \Rightarrow \begin{cases} W^TX + b \ge 1 - \xi_i & if \ y_i = 1 \\ W^TX + b \le -1 + \xi_i & if \ y_i = -1 \end{cases}$$

Minimize
$$\frac{1}{2} w^T w$$

S.t. $y_i(w^T x_i + b) \ge 1$ $i = 1, n$

Minimize $\frac{1}{2} w^T w + C \sum_{i=1}^n \xi_i$

S.t. $y_i(w^T x_i + b) \ge 1 - \xi_i$ $i = 1, n$,

 $\xi_i \ge 0, i = 1, n$.

Parameters

Kernel type,

Kernel Parameter

Support Vector Machine (SVM)

Extension to **Non-linear decision boundary**

Key idea: Transform data by **kernel function** to higher dimensional space to **make it linear**

Linear Kernel : $K(x, y) = x^T y$

Polynomial Kernel: $K(x, y) = (x^T y)^r$

Radial Basis Function Kernel (RBF): $\mathbf{K}(x, y) = exp(-\frac{||x-y||^2}{2\sigma^2})$

Sigmoid Kernel: $K(x, y) = \tanh(\alpha x^{T}y - 1)$

Parameter

Kernel type,

Kernel Parameter

Support Vector Machine (SVM)

SVM multi-class classification → Combine a lot of binary classifications!

- One vs One
- One vs Others
- Directed Acyclic Graph (DAGSVM)

Train k(k-1)/2 binary SVMs Largest vote from all the classifiers

Train *k* binary SVMs

Train k classifier

Kernel type,

Kernel Parameter

Support Vector Machine (SVM)

Strategy type	Classes combination
Offategy type	1 vs 2
	1 vs 3
	1 vs 4
	1 vs 5
One-against-One	2 vs 3
One-against-One	2 vs 4
	2 vs 5
	3 vs 4
	3 vs 5
	4 vs 5

	Classes
Strategy type	combination
	1 vs All
	2 vs All
One-against-All	3 vs All
	4 vs All
	5 vs All

	Classes
Strategy type	combination
	{1,2} vs others
	{1,3} vs others
	{1,4} vs others
	{1,5} vs others
Two-against-	{2,3} vs others
All	{2,4} vs others
	{2,5} vs others
	{3,4} vs others
	{3,5} vs others
	{4,5} vs others

Kernel type, Kernel Parameter

Classifier Selection

Optimizing the type of **Kernel** Optimizing the **kernel parameter** and **C value**: 2^(-6)~2^(6) Optimizing the <u>number of features</u>

- For Feature number 1:5:75
 - For classifiers number 1:10
 - For kernel parameter 1:m
 - 10 random folds with 50%-50 classification (2 cross validation)
 - Fnd
 - End
 - Select the best parameter for each classifier
- End

Effects of number of features and Kernel type/parameters on classification accuracy

Mean and deviation of 10 random fold

Mean of 10 random fold.

Sensitivity Analysis

For each kernel type, compare the optimum parameter of each random fold to the optimum parameter of overall random folds

(10 fold cross validation is performed)

The smaller the distance: the more robust the system

Binary classifier	1 vs 2	1 vs 3	1 vs 4	1 vs 5	2 vs 3	2 vs 4	2 vs 5	3 vs 4	3 vs 5	4 vs 5
Most stable kernel	Linear	RBF	Linear	Linear	RBF	Linear	Linear	Linear	Linear	Linear

Final Classifier Selection

81% Accuracy – without considering the noise in label

函

Label Noise (LN) Robust SVM¹

• Label Flip → Noise label in the training data: Label of each data i will flip with some certain probability u

Kernel matrix becomes:

$$Q_{ij} = y_i y_j K(x_i, x_j) (1 - 2\varepsilon_i) (1 - 2\varepsilon_j)$$

• To be less sensitive to label flips, we learn an SVM using the expected kernel matrix:

$$Q = \begin{cases} y_i y_j K(x_i, x_j) (1 - 4\sigma^2), & \text{if } i \neq j \\ y_i y_j K(x_i, x_j), & \text{othrwise} \end{cases}$$

Where μ is the mean value of ε , $\sigma^2 = \mu(1 - \mu)$

Label Noise (LN) Robust SVM¹

1. Biggio, B., Nelson, B., & Laskov, P. (2011). Support Vector Machines Under Adversarial Label Noise. In ACML (pp. 97-112).

Label Noise (LN) Robust SVM --Separability investigation on modeling data

Generate different separability of data

Data cases	(1)	(2)	(3)	(4)	(5)
Separability ²	1.35%	2.77%	6.99%	13.2%	32.2%

- Label flipping: 10%, 20%, 30%, 40%, 50%
- Apply $\mu : 0.05, 0.1, 0.5$
- Standard SVM V.S. LN Robust SVM on different separability cases
- Modeling Result :
 - 1. Case (3) is the best
 - Much spearability → Decreasing the performance
 - 3. Performance decrease suddenly in Case (2)
- Separability affects the performance of LN Robust SVM
- 2. Sihouette value is used to measure the seperability of two clusters of data

Human Subject Study:

5 number of subjects (4 male and 1 female) to classify the images to one or more appropriate emotional classes.

Confusion matrix and voting probability

- Higher ambiguity images → Training set
- Less ambiguity images → Testing set

Noise label dataset (N

Noise information

	Нарру	Disgust	Anger	Sad	Neutral
Нарру	92.6	0	0	1	6.3
Disgust	1.3	46	12.5	35.2	4.8
Anger	0.3	11.2	45.6	27.8	14.8
Sad	3.87	2.9	2.9	79	11.2
Neutral	8.3	0	0.6	4.3	86.6

image 110.	парру	Disgust	mgci	Dau	ricuttai
1	0	0	0.2	0.3	0.5
2	0.3	0.2	0	0	0.5
3	0	0	0	0.6	0.4
4	0	0	0	0.8	0.2
5	1	0	0	0	0
6	0.4	0	0	0	0.6
150	0	0.2	0.4	0.2	0.2

Image No. Hanny Disgust Anger Sad Neutral

Accuracy: 69%

Voting probability

- For binary classifier number 1:25
 - Apply u = 0.05, 0.1 and 0.5 on LN-Robust SVM
 - Calculate the separability and ambiguity³
 - Accuracy improvement compared with Standard SVM
 - End
- End

3. Ambiguity is measured on human subject voting probability: if $i \ v. \ s. \ j$, then only consider data with true label is i and j. if true is i, the ambiguity is $\frac{Probability(j)}{Probability(i) + probability(j)}$

Consider all possible u (0.05, 0.1, 0.5)

Conclusion:

- Each point stand for one of the classifiers 1.
- 2. No matter what u value, there are still 4 classifiers reduce the accuracy
- 3. NL-robust SVM may not be effective for all classifiers because of separability criteria
- Red points are almost located in the range of 2%-4%, 4. which is similar to the modeling result

Multiple Classes LN-Robust SVMs Framework:

Only apply NL-Robust SVMs on classifiers, whose corresponding data separability is higher than 5 %

	Standard SVMs	LN-Robust SVMs	Total
number of classifiers	9	16	25

NL-dataset	u value	Accuracy
	u=0 (Standard SVMs)	64.86%
Apply to all classifiers	u=0.05	66.21%
	u=0.1	66.21%
	u=0.5	66.21%
Apply Framework	u=0.05	67.60%
	u=0.1	67.56%
	u=0.5	67.56%

Random images - dataset	u value	Accuracy
Apply to all classifiers	u=0 (Standard SVMs)	81.08%
	u=0.05	83.78%
	u=0.1	83.78%
	u=0.5	82.43%
Apply Framework	u=0.05	83.78%
	u=0.1	85.13%
	u=0.5	83.78%

Conclusion:

Thank You!

Dr. Ehsan Tarkesh Esfahani Dr Rahul Rai Dr. Amin Karami Lab member And all the audience!