Aula 2 - Introdução aos Sistemas de Tempo Real

Prof.: Dr. Reuber Regis

E-mail: reuber.regis@sobral.ufc.br

Definição 1/2

Sistemas de tempo real

• Sistemas <u>computacionais com requisitos</u> de tempo real

• Isto significa:

- O problema é de tempo real (está na especificação do sistema)
- Submetidos a requisitos de natureza temporal <u>não triviais</u>
- Requisitos definidos pelo ambiente físico
- Resultados devem estar corretos lógica e temporalmente
- Não é o projetista do sistema que decide se o mesmo será ou não de tempo real, esta decisão já foi tomada por quem especificou o sistema.

Aspectos temporais

- NÃO estão limitados a uma questão de maior ou menor desempenho
- Estão diretamente associados com a funcionalidade
- Não funciona se não respeitar os requisitos

Software de tempo real *x Software* convencional

- O software de tempo real tem que computar uma resposta "a tempo"
 - Ex: Controle de Robô existe um limite entre o tempo em que o robô em movimento percebe uma obstrução em seu caminho, e o tempo em que um atuador, como um controlador de roda, é ativado para mover o robô em uma direção segura.
 - Sistema anticolisão em carros

Software de tempo real x Software convencional

- Software de tempo real deve lidar com concorrência
 - Concorrência de computação
 - Tempo de execução definidos pelos sinais do ambiente de tempo real
- Confiabilidade e Tolerância a falha
 - Medida de quão frequentemente um sistema falhará
 - Erro e falhas podem ser muito caros (prejuízos materiais e humanas)
- Criticalidade
 - Quanto maior o custo da falha, mais crítico é o sistema
 - Ex: Controle de uma aeronave ou de uma usina de energia nuclear.
- Teste e Certificação
 - Simulações confiáveis para sistemas complexos em ambientes reais
 - Testes de subsistemas
 - Especificações cuidadosas
 - Análise de projetos abrangentes
 - Procedimentos de execução completos para detecção e tratamento de falhas

Definição 2/2

- Sistemas em geral:
 - "Fazer o trabalho usando o tempo necessário"
 - Exemplo: gcc, folha de pagamentos

- Sistemas de tempo real:
 - "Fazer o trabalho usando o tempo disponível"
 - Exemplo: freio ABS do automóvel

Exemplos de Requisitos Temporais

- Deadline da tarefa em questão:
 - Se a pressão no duto passar de X, precisa abrir a válvula em 500 milisegundos, caso contrário o duto explode
- Período da tarefa em questão:
 - Controle realimentado, malha de controle executada a cada 10 milisegundos
 - Reprodução de áudio e vídeo (25 FPS = 40 milisegundos por frame)
- Atualidade ou Frescor dos dados:
 - O controlador da caldeira deve usar uma medição de temperatura feita há no máximo 100 milisegundos
- Simultaneidade dos dados:
 - A tensão elétrica e a corrente elétrica devem ser medidas "ao mesmo tempo" Fundamentos dos Sistemas de Tempo Real 6

Exemplos de Aplicações

• Em quais mercados podem ser encontrados exemplos de aplicações com requisitos de tempo real?

Exemplos de Aplicações: Aviônica 1/1

• Cockpit do Embraer E-190

Exemplos de Aplicações: Aviônica 1/1

• Controle de tráfego aéreo (CTA)

Principais objetivos desses sistemas são:

- Segurança
- Eficiência
- Desempenho

Fonte: Shaw A. C. (2003)

Exemplos de Aplicações: Aviônica 1/1

• Um CTA simplificado

Algumas Restrições temporais nesse tipo de sistema:

- O Radar deve rastrear cada avião no espaço à razão de, no mínimo, uma observação a cada 10 segundos por avião.
- A posição e o trajeto de cada avião deve ser atualizados e exibidos, no mínimo, uma vez a cada três segundos.
- Uma resposta a um comando de operador deve ser fornecida em até dois segundos.

Objetivo dessas restrições para os operadores:

- Entender o estado do espaço aéreo
- Controlar a posição das aeronaves através de mensagens para elas
- Responder a emergências (colisões, sobrecargas)

Fonte: Shaw A. C. (2003)

Exemplos de Aplicações: Automotivo 1/1

- Carro moderno possui dezenas de processadores
 - Injeção eletrônica, freio abs, transmissão automática, etc

Exemplos de Aplicações: Defesa 1/3

- Sala de controle de um navio da marinha
 - Sonar, Radar, Armamento

Exemplos de Aplicações: Defesa 2/3

• Nike Hercules

- Míssel terra-ar de dois estágios com combustível sólido
- Usado pelos Estados Unidos e OTAN para defesa em médias e alta altitudes

Improved Nike-Hercules missile control and guidance system

Exemplos de Aplicações: Defesa 3/3

• Nike Hercules

- Inicialmente construido em 1959
- Últimas unidades na Europa desativadas em 1988

Exemplos de Aplicações: Vídeogames 1/2

• First-person shooter

Exemplos de Aplicações: Vídeogames 2/2

• Simuladores, esportes

Exemplos de Aplicações: Telecomunicações 1/1

- Central telefônica
 - Computador disfarçado

• Áudio e vídeo

Bem-vindo ao Skype.

Exemplos de Aplicações: Indústria 1/4

• Robôs

Manufaturas

Exemplos de Aplicações: Indústria 2/4

• Petroquímica

Exemplos de Aplicações: Indústria 3/4

Setor elétrico

Tempo Real 20

Exemplos de Aplicações: Indústria 4/4

- Sistemas grandes
 - Várias redes interconectadas
 - Redes industriais, redes locais, Internet

The ALSTOM e-Control Architecture

Exemplos de Aplicações: Financeiras (Cartões) 1/1

- Detecção de fraudes em cartões de crédito e débito
- Uma transação legitima pode ser rejeitada por várias razões
 - Excedeu o limite diário
 - Excedeu o limite do saldo
 - Data do cartão expirou
 - Cartão tem uma garantia pendente (credit hold)
- Para que uma transação de cartão seja aceita
 - O caixa automático ou o lojista deve submeter o pedido
 - e o banco que emitiu o cartão deve autorizar a compra ou o saque
 - Esta aprovação deve ser em **tempo real**, pois o cliente está esperando
- Um sistema de detecção de fraude requer
 - Múltiplos servidores de alta performance
 - Análise das transações em tempo real
 - Algoritmos para detectar transações suspeitas
 - São usados algoritmos de inteligência artificial

Exemplos de Aplicações: Financeiras (Bolsas) 1/4

- Boa parte das ordens de compra e venda são emitidas por programas de computadores (robôs)
- Quantitative trading é a execução sistemática de ordens de compra/venda decidida por modelos quantitativos do mercado
- Precisa:
 - Plataformas de execução rápidas e confiáveis
 - Modelos de previsão precisos e abrangentes
- Exemplo: Market Making
 - Procura aproveitar diferenças entre as ofertas de compra e venda pendentes existentes (Quote to the market) (High-frequency trading)
- Exemplo: Statistical Arbitrage
 - Aposta na direção do mercado (Trend following)

Exemplos de Aplicações: Vários Mercados 1/1

- Veículos
 - Automação em aeronaves, automóveis, sondas espaciais
- Defesa
 - Radar, sonar, sistema guia em mísseis
- Entretenimento
 - Vídeogames, vídeo sob demanda, áudio
- Telecomunicações
 - Centrais telefônicas, videoconferência
- Indústria
 - Controle de processos, robôs, aquisição de dados
- Financeiro
 - Transações em bolsa, negociação automática

O que elas tem em comum? Fundamentos dos Sistemas de Tempo Real 27

Caracterização 1/3

- Forte acoplamento do sistema com o seu Ambiente:
 - Forte relação com o mundo físico
 - Processamento ativado por estímulos do ambiente
 - Ex:
 - No caso de um radar, a detecção de um objeto requer sua análise.
 - No caso de um vídeo, a passagem do tempo requer a exibição do próximo quadro (frame).
- Requisitos temporais são definidos pelo ambiente
 - Mundo físico onde o sistema computacional está inserido
 - No caso de um vídeo, é a física do olho humano que define os tempos para a exibição dos quadros.
- Tempos de Resposta delimitam Estímulos/Respostas
 - Processamentos devem terminar dentro de prazos (deadlines)
 - Se terminar fora de prazo sistema falha (falha temporal)

Caracterização 2/3

- Fluxos de estímulos na execução são definidos pelo ambiente:
 - Todo sistema de tempo real, o poder do computador sobre o ambiente controlado é limitado.
 - Não é possível congelar o mundo externo quando o processador estiver sobrecarregado.
 - A dinâmica do sistema físico segue suas próprias regras, e o sistema computacional está a mercê destas regras.
 - Quase sempre impossível controlar os estímulos provenientes do ambiente

A propriedade mais importante de um sistema de tempo real é a sua previsibilidade temporal (predictability).

Caracterização 3/3

Complexidade variada

O comportamento no tempo de um dado sistema é afetado por vários fatores:

- Linguagem de Programação
- Sistema Operacional
- Protocolos de comunicação
- Arquitetura de computador
- Etc.

Sistema Simples: Tarefa Única Responde ao Ambiente

Sistema Complexo: Grafo de Tarefas Responde ao Ambiente
Fundamentos dos Sistemas de
Tempo Real 30

Concepções Erradas 1/3

- ERRADO: Tempo real significa execução rápida
- Tempo real é a necessidade de cumprir requisitos temporais
- Não necessariamente significa execução rápida
- Fazer muito rápido pode ser tão ruim quanto fazer muito lento
 - Controlador semafórico
 - Amostragem de uma variável física através de um sensor

Concepções Erradas 2/3

- ERRADO: Computadores cada vez mais rápidos resolverão todos os problemas
- Computadores cada vez mais poderosos facilitam a construção de sistemas
- Mas restrições de custo exige processador mais barato
- Processadores multicore requerem multiplas threads

Concepções Erradas 3/3

- ERRADO: Sistemas de tempo real são pequenos, apenas tratadores de interrupção
- Sistemas abordo de um avião
- Sistemas de defesa em um navio
- Etc

Referências

• Rômulo S. de Oliveira. Fundamentos dos Sistemas de Tempo Real. Publicação independente, 2018)