ECN 6338 Cours 5

Résolution de systèmes d'équations non-linéaires

William McCausland

2022-02-10

Les problèmes univarié et multivarié

Problème univarié : trouvez $x \in \mathbb{R}$ qui vérifie

$$f(x)=0,$$

où $f: \mathbb{R} \to \mathbb{R}$.

Problème multivarié : trouvez $x \in \mathbb{R}^n$ qui vérifie

$$f(x)=0_n,$$

où $f: \mathbb{R}^n \to \mathbb{R}^n$.

Problème multivarié, élément par élément : trouvez (x_1, \dots, x_n) qui vérifie

$$f^1(x_1,\ldots,x_n)=0$$

$$f^n(x_1,\ldots,x_n)=0$$

La résolution de systèmes d'équations et l'optimisation

La solution x^* au problème d'optimisation

$$\max_{x\in\mathbb{R}}f(x),$$

où $f: \mathbb{R} \to \mathbb{R}$ et $f \in C^2$, est aussi la solution du système

$$\frac{\partial f(x)}{\partial x^{\top}} = 0.$$

Cependant, la résolution du système g(x) = 0, $g \in C^1$, est plus générale :

- La matrice jacobienne de g n'est pas forcément symmétrique
- La matrice jabobienne de ∇f est la matrice hessienne symmétrique de g.

Systèmes non-linéaires et le nombre de solutions

Dans le cas spécial f(x) = Ax - b = 0, où A est une matrice $n \times n$,

- ▶ si le rang de A est de n, il y a une solution unique;
- ▶ si le rang de A est moins grand, il n'y a aucune solution :

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

ou il y a un nombre infini de solutions :

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Dans le cas général, il peut y avoir

- ▶ aucune solution, mème pour les fonctions fⁱ très différentes,
- un nombre fini arbitraire de solutions,
- un nombre infini de solutions.

Exemple: absence d'une solution

$$f^1(x_1, x_2) = x_2 - (x_1 + 1)^2, \quad f^2(x_1, x_2) = x_2 - (x_1 - 1)^2.$$

Exemple: solutions multiples

Les racines de ce système sont (0,-1), $(\pm\sqrt{3/4},1/2)$:

$$f^1(x_1, x_2) = x_1^2 + x_2^2 - 1$$
, $f^2(x_1, x_2) = 2x_1^2 - x_2 - 1$.

Jeu du duopole (Judd, pages 162-3)

- ▶ Dans un duopole, la firme 1 produit un bien en quantité Y, et la firme 2 produit un bien en quantité Z.
- Les coûts de production sont linéaires

$$c_Y(Y) = C_Y Y, \quad c_Z(Z) = C_Z Z,$$

où $C_Y = 0.07$ et $C_Z = 0.08$.

La demande est celle d'un consommateur avec utilité

$$U(Y,Z) = u(Y,Z) + M = (1 + Y^{\alpha} + Z^{\alpha})^{\eta/\alpha} + M,$$

où $\alpha =$ 0.999, $\eta =$ 0.2 et M représente les dépenses en autres biens.

► La demande pour Y, Z est donnée par les équations

$$p_Y = u_Y(Y, Z), \quad p_Z = u_Z(Y, Z),$$

où p_Y et p_Z sont les prix de Y et Z.

Jeu du duopole (cont.)

- lacktriangle On cherche une équilibre de Nash (Y^*, Z^*) où
 - Y* maximise le profit de la firme 1, pour Z* donnée,
 Z* maximise le profit de la firme 2, pour Y* donnée.
- ightharpoonup La meilleure réponse Y à Z la maximise le profit :

$$\Pi^{Y}(Y,Z) = Yu_{Y}(Y,Z) - C_{Y}Y$$

$$= \eta(1 + Y^{\alpha} + Z^{\alpha})^{\eta/\alpha - 1}Y^{\alpha} - C_{Y}Y$$

$$= \eta(1 + e^{\alpha y} + e^{\alpha z})^{\eta/\alpha - 1}e^{\alpha y} - C_{Y}e^{y},$$

- où $y = \log Y$, $z = \log Z$.
- ▶ Une condition de première ordre nécessaire pour la firme 1 :

$$\Pi_1^Y(Y,Z) = \alpha \eta (\frac{\eta}{\alpha} - 1)(1 + e^{\alpha y} + e^{\alpha z})^{\eta/\alpha - 2} e^{2\alpha y}$$

+ $\alpha \eta (1 + e^{\alpha y} + e^{\alpha z})^{\eta/\alpha - 1} e^{\alpha y} - C_Y e^y = 0.$

La même démarche pour la firme 2 donne une expression analogue $\Pi_2^Z(Y,Z) = 0$.

Le problème de computation pour le jeu du monopole

L'équilibre du jeu du monopole est

$$(Y^*, Z^*) = (e^{x_1^*}, e^{x_2^*}),$$

où $x^* = (x_1^*, x_2^*)$ est la solution du système f(x) = 0, où

$$f^1(x_1, x_2) = \Pi_1^Y(e^{x_1}, e^{x_2}), \qquad f^2(x_1, x_2) = \Pi_2^Z(e^{x_1}, e^{x_2}).$$

Illustration univariée I : méthode de Newton

Considérons la fonction f et sa dérivée, définie sur l'intervalle $\left[0,1\right]$:

$$f(x) = (1-x)^3 - \log(1+x), \quad f'(x) = -3(1-x)^2 - (1+x)^{-1}.$$

Si on prend le point initial $x_0 = 0$, la droite de tangente est

$$g(x) = f(0) + f'(0)(x - 0) = 1 - 4x,$$

et le point x_1 de l'itération de Newton est l'intersection de cette droite et l'axe des abscisses :

$$x_1 = x_0 - \frac{f'(0)}{f(0)} = 0 - \frac{1}{-3 - 1} = \frac{1}{4}.$$

Un pas de Newton de plus donne

$$x_2 = x_1 - \frac{f'(1/4)}{f(1/4)} \approx 0.329892,$$

très près de la racine unique.

Illustration univariée II : échec de la méthode de Newton

- On peut commencer à $x_0 = 1$ où la courbature est plus prononcée.
- ▶ On évalue $f(x_0) = -\log 2$, $f'(x_0) = -\frac{1}{2}$ et on calcule

$$x_1 = x_0 - \frac{f'(x_0)}{f(x_0)} \approx -0.3862944,$$

beaucoup plus loin de la racine et hors de l'intervalle [0,1].

▶ À voir aussi : "Pathological Examples", page 153 de Judd.

Illustration univariée III : méthode d'intérpolation linéaire

- Note : fonction f(x) en bleu, droites de tangente en rouge, droite de sécante en vert.
- Pour la première itération, où on calcule x_1 , on n'a pas encore deux valeurs précédentes et on utilise la méthode de Newton.
- Une fois qu'on a x_0 et x_1 , on peut construire la droite de sécante entre $(x_0, f(x_0))$ et $(x_1, f(x_1))$:

$$h(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

► Le point s de l'itération par interpolation linéaire est l'intersection de cette droite et l'axe des abscisses :

$$s = x_0 + \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} f(x_0) \approx 0.3120053,$$

un peu plus loin de la racine.

Illustration (Newton et interpolation linéaire)

Méthode de dichotomie

Intrants à l'itération k+1 : points $a_k,\ b_k,$ valeurs $f(a_k),\ f(b_k)$ tels que

- 1. $a_k < b_k$,
- 2. $f(a_k)f(b_k) < 0$. (signes opposés)

À l'itération k+1:

- 1. Calculer $m = \frac{1}{2}(a_k + b_k)$.
- 2. Évaluer f(m), si f(m) = 0, terminer avec la racine m.
- 3. Si f(m) a la même signe que a_k ,

$$a_{k+1}=m, \quad b_{k+1}=b_k.$$

sinon

$$a_{k+1} = a_k \quad b_{k+1} = m.$$

Si $b_{k+1} - a_{k+1} < \delta$, terminer avec $\frac{1}{2}(a_{k+1} + b_{k+1})$.

Quand la méthode de dichotomie marche relativement bien

```
x = seq(0, 1, by=0.0001)

plot(x, (2*x-1)^9 - 0.1, type='l')

abline(h=0)
```


Discussion, méthode de dichotomie

- Pour la méthode de dichotomie,
 - on gagne 1 bit de précision à chaque itération (pas beaucoup, mais sûr),
 - on sait à l'avance combien d'itérations il faut pour atteindre ces deux conditions : $b_k a_k < \delta$, $[a_k, b_k]$ contient une racine.
- Considérez des jeux zéro-somme entre
 - joueur 1 qui choisit une fonction continue f(x) avec $f(a_0)f(b_0) < 0$, et veut maximiser le nombre d'itérations pour trouver un intervalle $[a, a + \delta]$ qui contient une racine.
 - joueur 2 qui choisit un algorithme pour trouver un intervalle $[a, a + \delta]$ contenant une racine.
- Conjecture : Si joueur 2 joue en premier, la méthode de dichotomie est optimale (minmax) pour joueur 2.
- Mais la méthode de dichotomie est très sous-optimale pour les fonctions habituelles.
- On veut accélérer la convergence et en même temps garantir un intervalle court en un nombre borné d'itérations.

Méthodes du type Dekker-Brent

Intrants à l'itération k+1: points a_k , b_k , b_{k-1} $(b-1=a_0)$ et valeurs $f(a_k)$, $f(b_k)$ et $f(b_{k-1})$ tels que

- 1. $|f(a_k)| \leq |f(b_k)|$ (point b_k , contrepoint a_k)
- 2. $f(a_k)f(b_k) < 0$.

À l'itération k+1:

- 1. Calculer $m = \frac{1}{2}(a_k + b_k)$.
- 2. Calculer s comme fonction de a_k , b_k , $f(a_k)$, $f(b_k)$, b_{k-1} , $f(b_{k-1})$. (détails à venir)
- 3. Choisir entre $b_{k+1} = s$ et $b_{k+1} = m$. (détails à venir)
- 4. Évaluer $f(b_{k+1})$, si $f(b_{k+1}) = 0$, terminer avec b_{k+1} .
- 5. Choisir entre $a_{k+1} = a_k$ et $a_{k+1} = b_k$ tel que $f(a_{k+1})f(b_{k+1}) < 0$. (Condition 2.)
- 6. Si $|f(a_{k+1})| < f(b_{k+1})|$, échanger a_{k+1} et b_{k+1} . (Condition 1.)
- 7. Si $|a_{k+1} b_{k+1}| < \delta$, terminer avec b_{k+1} .

Calculer s (étape 2) par interpolation linéaire (droite sécante)

$$s = b_k - \frac{b_k - b_{k-1}}{f(b_k) - f(b_{k-1})} f(b_k)$$

Notes:

- 1. s n'est pas une fonction de a_k .
- 2. Si on choisit s par interpolation linéaire, une condition nécessaire pour choisir $b_{k+1} = s$ (étape 3) est que s se trouve entre m et b_k .

Calculer s (étape 2) par interpolation inverse quadratique

- ▶ Supposez que $f(a_k)$, $f(b_k)$ et $f(b_{k-1})$ sont distinctes.
- Voici une fonction quadratique g(y) qui passe par les points $(f(a_k), a_k), (f(b_k), b_k)$ et $(f(b_{k-1}), b_{k-1})$:

$$g(y) = \frac{(y - f(a_k))(y - f(b_k))}{(f(b_{k-1}) - f(a_k))(f(b_{k-1} - f(b_k)))} b_{k-1}$$

$$+ \frac{(y - f(a_k))(y - f(b_{k-1}))}{(f(b_k) - f(a_k))(f(b_k) - f(b_{k-1}))} b_k$$

$$+ \frac{(y - f(b_{k-1}))(y - f(b_k))}{(f(a_k) - f(b_{k-1}))(f(a_k) - f(b_k))} a_k$$

- La fonction inverse $x = f^{-1}(y)$ passe par les mêmes points.
- ▶ Défine s = g(0), un zéro de la fonction $g^{-1}(x)$

Calculer s par interpolation inverse quadratique (cont.)

$$s = \frac{f(a_k)f(b_k)}{(f(b_{k-1}) - f(a_k))(f(b_{k-1} - f(b_k)))}b_{k-1} + \frac{f(a_k)f(b_{k-1})}{(f(b_k) - f(a_k))(f(b_k) - f(b_{k-1}))}b_k + \frac{f(b_{k-1})f(b_k)}{(f(a_k) - f(b_{k-1}))(f(a_k) - f(b_k))}a_k$$

Notes:

- 1. Habituellement, c'est une amélioration, mais on peut toujours utiliser l'interpolation linéaire quand k=1 où quand deux des valeurs $f(a_k)$, $f(b_k)$ et $f(b_{k-1})$ sont très près l'une à l'autre.
- 2. Si on choisit s par interpolation inverse quadratique, une condition nécessaire habituelle pour choisir $b_{k+1} = s$ (étape 3) est que s se trouve entre $\frac{3}{4}b_k + \frac{1}{4}a_k$ et b_k .

Choisir entre s et m (étape 3)

- $b_{k+1} = m$ est plus sécure que $b_{k+1} = s$, mais le deuxième est habituellement meilleur.
- On ajoute aux conditions nécessaires déjà mentionnées pour choisir s d'autres conditions :
 - Après un pas de bisection (pour b_k), on ajoute les conditions $|b_k b_{k-1}| > \delta$ et $\frac{1}{2}|b_k b_{k-1}| > |s b_k|$.
 - Après un pas d'interpolation, on ajoute les conditions $|b_{k-1} b_{k-2}| > \delta$ et $\frac{1}{2}|b_{k-1} b_{k-2}| > |s b_k|$.
- Avec ces conditions, le nombre maximale d'itérations est de M², où M est le nombre d'itérations nécessaires pour la méthode de dichotomie.

Méthode de Gauss-Seidel (exemple)

► Rappelons l'exemple avec trois racines :

$$f^1(x_1, x_2) = x_1^2 + x_2^2 - 1$$
, $f^2(x_1, x_2) = 2x_1^2 - x_2 - 1$.

Résoudre $f_i(x_1, x_2) = 0$ pour x_i , i = 1, 2, donne une mise à jour possible de Seidel :

$$x_1^{k+1} = \pm \sqrt{1 - (x_2^k)^2}, \qquad x_2^{k+1} = 2(x_1^{k+1})^2 - 1$$

La version linéaire de Seidel donne

$$x_1^{k+1} = x_1^k - \frac{f^1(x_1^k, x_2^k)}{f_1^1(x_1^k, x_2^k)} = x_1^k - \frac{(x_1^k)^2 + (x_2^k)^2 - 1}{2x_1^k},$$

et x_2^{k+1} comme dans la version non-linéaire.

La Méthode de Gauss-Seidel avec une permutation

- L'ordre des variables et l'ordre des équations importent.
- ▶ Résoudre $f_1(x_1, x_2)$ pour x_2 et $f_2(x_1, x_2)$ pour x_1 donne une autre mise à jour de Seidel :

$$x_1^{k+1} = \sqrt{\frac{1}{2}(1+x_2^k)}, \quad x_2^{k+1} = \pm \sqrt{1-(x_1^k)^2}.$$

Illustration Gauss-Seidel

```
x0 = c(0.6, -0.6); name = 'seidel'
source('cerc_parab.R')
```


Illustration Gauss-Seidel linéaire

```
x0 = c(0.6, -0.6); name = 'seidel_lin'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, +, +)

```
x0 = c(0.6, -0.6); name = 'perm_seidel'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, +,-)

```
x0 = c(0.6, -0.6); name = 'perm_seidel+-'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, -, +)

```
x0 = c(0.6, -0.6); name = 'perm_seidel-+'
source('cerc_parab.R')
```


Illustration Gauss-Seidel (permutation, -, -)

```
x0 = c(0.6, -0.6); name = 'perm_seidel--'
source('cerc_parab.R')
```


Méthode de Newton

ightharpoonup L'expansion linéaire de Taylor autour du point actuel x^k est

$$g(x) = f(x^k) + J(x^k)(x - x^k).$$

ightharpoonup Si la matrice jacobienne est inversible, il y a un zéro de g à

$$\tilde{x}^* = x^k - J(x^k)^{-1} f(x^k).$$

▶ La mise à jour de Newton sans modification est $x^{k+1} = \tilde{x}^*$:

$$x^{k+1} = x^k - J(x^k)^{-1} f(x^k).$$

► La méthode converge rapidement (quadratiquement) d'un point local, mais elle n'est pas forcément globalement convergente.

Méthode de Broyden

Comme la méthode BFGS (B pour Broyden) pour l'optimisation multivariée, la méthode de Broyden pour résoudre les systèmes non-linéaires multivariés utilise une approximation A_k de la matrice jacobienne $J(x^k)$ pour donner le pas de Broyden :

$$s^k = -A_k^{-1} f(x^k), \quad x^{k+1} = x^k + s^k.$$

La mise à jour de A_k est de rang 1 :

$$A_{k+1} = A_k + \frac{(y_k - A_k s^k)(s^k)^\top}{(s^k)^\top s_k}$$

► Cela permet la mise à jour simultanée de A_k^{-1} à A_{k+1}^{-1} en $O(n^2)$ opérations avec le formule Sherman-Morrison.

Illustration, méthodes de Newton et Broyden

Code pour la fonction $f(x_1, x_2) = (x_1^2 + x_2^2 - 1, 2x_1^2 - x_2 - 1)$ library(pracma)

```
# La fonction

f <- function(x) {

f1 <- x[1]^2 + x[2]^2 - 1

f2 <- 2*x[1]^2 - x[2] - 1
```

Sa matrice jacobienne

J <- function(x) {
 J <- matrix(0, nrow=2, ncol=2)
 J[1, 1] <- 2*x[1]; J[1, 2] <- 2*x[2];
 J[2, 1] <- 4*x[1]; J[2, 2] <- -1;

c(f1, f2)

J

Illustration, méthode de Newton

```
x0 \leftarrow c(0.6, -0.6)
newtonsys(f, x0, Jfun=J)
## $zero
## [1] 7.573773e-09 -1.000000e+00
##
## $fnorm
## [1] 2.220446e-16
##
## $niter
## [1] 25
```

Illustration, méthode de Broyden

```
x0 \leftarrow c(0.6, -0.6)
broyden(f, x0, J0 = J(x0))
## $zero
## [1] 7.032333e-05 -1.000000e+00
##
## $fnorm
## [1] 1.043668e-08
##
## $niter
## [1] 20
```