

Can Image Enhancement be Beneficial to Find Smoke Images in Laparoscopic Surgery?

Congcong Wang^{1*}, Vivek Sharma^{2*}, Yu Fan¹, Faouzi Alaya Cheikh¹, Azeddine Beghdadi³, Ole Jacob Elle^{4,5}, and Rainer Stiefelhagen²

Presented by Ahmed Mohammod Kedir¹

Motivation

Laparoscopic Surgery

- Smoke degrades laparoscopic video quality.
 - Influences surgeon's visibility
 - Influences the performance of computer-vision-based navigation systems
 - May be harmful for surgeons and patients

2

Motivation

- Desmoking techniques
 - Smoke evacuation techniques
 - Computer vision algorithms

When to start to remove smoke?

Motivation

Smoke/non smoke images classification

- Goal:
 - o Enhance the images for improved classification

Main idea

• Pipeline

•5

Proposed enhancement method

• Weighted least squares optimization framework (WLS)

$$g^{Filtered} = F_{\lambda}(g) = (I + \lambda L_g)^{-1} g$$

- Decomposition of an image to a base-layer and a detail-layer.
 - \circ Base layer = $g^{Filtered}$
 - \circ Detail layer = $g g^{Filtered}$

Proposed enhancement method

Feature extraction

- Gradient Magnitude (GM) features
- Laplacian of Gaussian (LoG) features

Classifier

•9

- Cholec80 dataset: cholecystectomy surgeries manually labeled with smoke/non-smoke image sequence
 - o Training: 4,381 images obtained from three videos
 - Testing: 10,653 images obtained from nine videos

0 - -non smoke

1 - -smoke

- How to evaluate the classification result?
 - o Accuracy
 - The higher the better

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$= \frac{The \ number \ of \ correct \ classified \ smoke / non \ smoke \ images}{Total \ number \ of \ testing \ images}$$

- o F1-Score
 - The higher the better

$$F1-Score = 2 - \frac{precision - recall}{precision + recall}$$

Comparison with other enhancement methods

Method	Accuracy	F1-Score
RGB	0.60	0.60
IMSHARP	0.58	0.58
BF	0.60	0.59
GF	0.60	0.59
WLS	0.60	0.59
BFWLS_AVG	0.57	0.56
FC_MAX(Ours)	0.60	0.59
FC_AVG(Ours)	0.64	0.64

Tab. 1: Comparison with the baseline RGB images and other enhancement methods

Comparison with other enhancement methods

Fig. 1: The ROC curves for smoke/non-smoke classification task.

Comparison with the saturation histogram based classification methods

Method	Accuracy	F1-Score
SPA	0.63	0.58
SAN	0.63	0.59
FC_AVG(Ours)	0.64	0.64

Tab. 2: Comparison with the saturation histogram based classification methodologies Saturation Analysis (SAN) and Saturation Peak Analysis (SPA)

Fig. 2: The ROC curves for the three methods

Conclusion & Discussion

- Propose a method to enhance the informative features
- Combine the enhancement method with a SVM based classification method
- Improved smoke/non-smoke classification results
 - o Better result compared to the baseline RGB images
 - Better result compared to the saturation histogram based classification methods.
- Future work
 - o Employ CNN architecture for the classification task

Thank you, any questions?