SBML Model Report

Model name: "Markevich2004_MAPK-_phosphoRandomMM"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Nicolas Le Novre¹ at May 24th 2005 at 10:57 a.m. and last time modified at May 15th 2012 at 9:42 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	6
events	0	constraints	0
reactions	7	function definitions	0
global parameters	15	unit definitions	1
rules	0	initial assignments	0

Model Notes

The model corresponds to the schema 3 of Markevich et al 2004, as described in the figure 2 and the supplementary table S3, and modelled using Michaelis-Menten like kinetics. Phosphorylations follow distributive random kinetics, while dephosphorylations follow an ordered mechanism.

¹EMBL-EBI, lenov@ebi.ac.uk

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2007 The BioModels Team.

For more information see the terms of use.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nanomole (default)

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

	racie 2. Froperates of all comparations.						
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cell	cell		3	1	litre		

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains six species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
M	ERK	cell	$nmol \cdot l^{-1}$		\Box
MpY	ERK-PY	cell	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
MpT	ERK-PT	cell	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
Мрр	ERK-PP	cell	$\operatorname{nmol} \cdot 1^{-1}$	\Box	
MEK	MEK	cell	$n \mod \cdot 1^{-1}$		
MKP3	MKP3	cell	$nmol \cdot l^{-1}$	$ \overline{\mathscr{A}} $	\Box

5 Parameters

This model contains 15 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Km1	Km1	410.000		
kcat1	kcat1	1.080		
Km2	Km2	40.000		$ \overline{\mathbf{Z}} $
kcat2	kcat2	0.007		$\overline{\mathbf{Z}}$
Km3	Km3	20.000		$\overline{\mathbf{Z}}$
kcat3	kcat3	0.008		$\overline{\checkmark}$
Km4	Km4	300.000		$ \overline{\checkmark} $
kcat4	kcat4	0.450		$\overline{\checkmark}$
Km5	Km5	22.000		$\overline{\checkmark}$
kcat5	kcat5	0.084		$\overline{\checkmark}$
Km6	Km6	18.000		$\overline{\mathbf{Z}}$
kcat6	kcat6	0.060		$\overline{\mathbf{Z}}$
Km7	Km7	34.000		$\overline{\mathscr{A}}$
kcat7	kcat7	0.108		$\overline{\mathbf{Z}}$
Km8	Km8	40.000		$\overline{\mathbf{Z}}$

6 Reactions

This model contains seven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	v1	phosphorylation of ERK on Tyr	$M \xrightarrow{MEK, MpT} MpY$	
2	v2	phosphorylation of ERK-PY on Thr	$MpY \xrightarrow{MEK, M, MpT} Mpp$	
3	v3	phosphorylation of ERK on Thr	$M \xrightarrow{MEK, MpY} MpT$	
4	v4	phosphorylation of ERK-PT on Tyr	$MpT \xrightarrow{MEK, M, MpY} Mpp$	
5	v5	dephosphorylation of ERK-PP on Tyr	$Mpp \xrightarrow{MKP3, MpY, M} MpT$	
6	v6	dephosphorylation of ERK-PT	$MpT \xrightarrow{MKP3, Mpp, MpY} M$	
7	v7	dephosphorylation of ERK-PY	$MpY \xrightarrow{MKP3, Mpp, MpT} M$	

6.1 Reaction v1

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name phosphorylation of ERK on Tyr

Reaction equation

$$M \xrightarrow{MEK, MpT} MpY$$
 (1)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
M	ERK	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
MEK	MEK	
TqM	ERK-PT	

Product

Table 8: Properties of each product.

Id	Name	SBO
МрҮ	ERK-PY	

Kinetic Law

Derived unit contains undeclared units

$$v_{1} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{kcat1} \cdot [\text{MEK}] \cdot [\text{M}]}{\text{Km1}}}{1 + [\text{M}] \cdot \frac{\text{Km1} + \text{Km3}}{\text{Km1} \cdot \text{Km3}} + \frac{[\text{MpY}]}{\text{Km2}} + \frac{[\text{MpT}]}{\text{Km4}}}$$

$$(2)$$

6.2 Reaction v2

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name phosphorylation of ERK-PY on Thr

Reaction equation

$$MpY \xrightarrow{MEK, M, MpT} Mpp$$
 (3)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
МрҮ	ERK-PY	

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
MEK	MEK	
M	ERK	
MpT	ERK-PT	

Product

Table 11: Properties of each product.

Id	Name	SBO
Мрр	ERK-PP	

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{kcat2} \cdot [\text{MEK}] \cdot [\text{MpY}]}{\text{Km2}}}{1 + [\text{M}] \cdot \frac{\text{Km1} + \text{Km3}}{\text{Km1} \cdot \text{Km3}} + \frac{[\text{MpY}]}{\text{Km2}} + \frac{[\text{MpT}]}{\text{Km4}}}$$

$$(4)$$

6.3 Reaction v3

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name phosphorylation of ERK on Thr

Reaction equation

$$M \xrightarrow{MEK, MpY} MpT$$
 (5)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
M	ERK	

Modifiers

Table 13: Properties of each modifier.

Id	Name	SBO
MEK	MEK	
MpY	ERK-PY	

Product

Table 14: Properties of each product.

	_	
Id	Name	SBO
MpT	ERK-PT	

Kinetic Law

Derived unit contains undeclared units

$$v_{3} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{kcat3} \cdot [\text{MEK}] \cdot [\text{M}]}{\text{Km3}}}{1 + [\text{M}] \cdot \frac{\text{Km1} + \text{Km3}}{\text{Km1} \cdot \text{Km3}} + \frac{[\text{MpY}]}{\text{Km2}} + \frac{[\text{MpT}]}{\text{Km4}}}$$
(6)

6.4 Reaction v4

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name phosphorylation of ERK-PT on Tyr

Reaction equation

$$MpT \xrightarrow{MEK, M, MpY} Mpp$$
 (7)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
МрТ	ERK-PT	

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
MEK	MEK	
M	ERK	
MpY	ERK-PY	

Product

Table 17: Properties of each product.

	•	•
Id	Name	SBO
Мрр	ERK-PP	

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{kcat4} \cdot [\text{MEK}] \cdot [\text{MpT}]}{\text{Km4}}}{1 + [\text{M}] \cdot \frac{\text{Km1} + \text{Km3}}{\text{Km1} \cdot \text{Km3}} + \frac{[\text{MpY}]}{\text{Km2}} + \frac{[\text{MpT}]}{\text{Km4}}}$$
(8)

6.5 Reaction v5

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name dephosphorylation of ERK-PP on Tyr

Reaction equation

$$Mpp \xrightarrow{MKP3, MpY, M} MpT$$
 (9)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
Мрр	ERK-PP	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
MKP3	MKP3	
MpY	ERK-PY	
M	ERK	

Product

Table 20: Properties of each product.

Id	Name	SBO
MpT	ERK-PT	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{kcat5} \cdot [\text{MKP3}] \cdot [\text{Mpp}]}{\text{Km5}}}{1 + \frac{[\text{Mpp}]}{\text{Km5}} + \frac{[\text{MpT}]}{\text{Km6}} + \frac{[\text{MpY}]}{\text{Km7}} + \frac{[\text{M}]}{\text{Km8}}}$$
(10)

6.6 Reaction v6

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name dephosphorylation of ERK-PT

Reaction equation

$$MpT \xrightarrow{MKP3, Mpp, MpY} M \tag{11}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
МрТ	ERK-PT	

Modifiers

Table 22: Properties of each modifier.

Id	Name	SBO
MKP3	MKP3	
Mpp	ERK-PP	
MpY	ERK-PY	

Product

Table 23: Properties of each product.

Id	Name	SBO
M	ERK	

Kinetic Law

Derived unit contains undeclared units

$$v_{6} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{kcat6} \cdot [\text{MKP3}] \cdot [\text{MpT}]}{\text{Km6}}}{1 + \frac{[\text{Mpp}]}{\text{Km5}} + \frac{[\text{MpT}]}{\text{Km6}} + \frac{[\text{MpY}]}{\text{Km7}} + \frac{[\text{M}]}{\text{Km8}}}$$
(12)

6.7 Reaction v7

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name dephosphorylation of ERK-PY

Reaction equation

$$MpY \xrightarrow{MKP3, Mpp, MpT} M$$
 (13)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
МрҮ	ERK-PY	

Modifiers

Table 25: Properties of each modifier.

Id	Name	SBO
MKP3	MKP3	
Mpp	ERK-PP	
MpT	ERK-PT	

Product

Table 26: Properties of each product.

Id	Name	SBO
M	ERK	

Kinetic Law

Derived unit contains undeclared units

$$v_{7} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{kcat7} \cdot [\text{MKP3}] \cdot [\text{MpY}]}{\text{Km7}}}{1 + \frac{[\text{Mpp}]}{\text{Km5}} + \frac{[\text{MpT}]}{\text{Km6}} + \frac{[\text{MpY}]}{\text{Km7}} + \frac{[\text{M}]}{\text{Km8}}}$$
(14)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species M

Name ERK

Initial concentration 800 nmol·l⁻¹

This species takes part in seven reactions (as a reactant in v1, v3 and as a product in v6, v7 and as a modifier in v2, v4, v5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M} = |v_6| + |v_7| - |v_1| - |v_3| \tag{15}$$

7.2 Species MpY

Name ERK-PY

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in v2, v7 and as a product in v1 and as a modifier in v3, v4, v5, v6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MpY} = |v_1| - |v_2| - |v_7| \tag{16}$$

7.3 Species MpT

Name ERK-PT

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in v4, v6 and as a product in v3, v5 and as a modifier in v1, v2, v7).

$$\frac{d}{dt}MpT = |v_3| + |v_5| - |v_4| - |v_6| \tag{17}$$

7.4 Species Mpp

Name ERK-PP

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v5 and as a product in v2, v4 and as a modifier in v6, v7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mpp} = |v_2| + |v_4| - |v_5| \tag{18}$$

7.5 Species MEK

Name MEK

Initial concentration $180 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a modifier in v1, v2, v3, v4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MEK} = 0\tag{19}$$

7.6 Species MKP3

Name MKP3

Initial concentration $100 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a modifier in v5, v6, v7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MKP3} = 0\tag{20}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany