实践课项目一

第一次实践课实践范围:本次实践围绕第1章到第2章内容进行。

第一次实践课计算机所需环境:

- (1) 若计算机操作系统是 Windows 2003, xp, 7 等 32 位操作系统,可以直接进入实验。
- (2) 若计算机操作系统是 Windows 7,8 等 64 位操作系统,则先在本邮箱中下载 DOSBox 工具包并安装到电脑上(注意:这个工具包内有使用说明),然后进行实验。

一、DOS 命令练习。

- 1) 进入虚拟 8086 模式的 DOS 界面: (1) 若计算机操作系统是 Windows 2003, xp, 7 等 32 位操作系统, 开始→运行→输入 command; (2) 若计算机操作系统是 Windows 7, 8 等 64 位操作系统, 按照 DOSBox 工具包内的使用说明进入 DOS 界面。
- 2) 返回到 C 盘根目录 (C:\>_):用 "cd.."命令返回到上一级目录,重复用此命令直到返回到根目录为止,或直接用"cd\"返回到根目录。
- 3) 进入到 C 盘下的 WINDOWS 目录 (C:\WINDOWS>_): 用 "'cd 空格'+'目录名称'" 进入到 WINDOWS 目录。
- 4) 查看 WINDOWS 目录下的文件:用 "dir" 命令一次性查看该目录下的文件;用 "dir/p" 命令查看该目录下的文件,并在每个信息屏幕后暂停。
- 5) 在 C 盘根目录新建一个名为 masm 的目录: 用"'md 空格'+'目录名称'"命令新建一个目录。
- 6) 将 C 盘目录下的 masm 目录删除: 用"'rd 空格'+'目录名称'"命令来删除指 定的目录。
- 7) 如需了解更丰富的 dos 命令,输入: help。
- 二、在 0000: 0200 处,用 a 命令输入以下代码, u 命令查看输入的汇编指令, r 命令将 cs, ip 值修改到代码所存位置, t 命令单步执行查看各个寄存器执行后结果及 cs、ip 值。

mov ax, 1

mov bx, 2

add ax, bx

add ax, 2

mov bx, ax

add bx, 1

add bx, ax

- 三、用 debug 命令,将检测点 2.1 中的程序写入内存并逐条执行,查看相应寄存器的值,验证之前学习中得出结果的正确性。
- 四、按下列步骤进行上机实践, 并回答问题。

第一步: 用 d 命令查看内存单元的物理地址为 10010H—1001fH 的内容, 可以有多种查

看形式。(提示:同样的物理地址,段地址和偏移地址的组合形式可以很多种。) 你使用的命令格式是(有多种方法,均可写出);

第二步: 用 e 命令在 10010H 处写入'You_can_do_it_!_'。('__'表示空格)你使用的命令格式是(有多种方法,均可写出):

e 1001:0000 59 6f 75 20 63 61 6e 20 64 6f 20 69 74 20 21 20 2e

第三步: 用 d 命令查看 10010H—1001fH 处的内容。 这 16 个字节内存单元的内容是: you can do it!.

000000.....

五、按下列步骤进行上机实践, 并回答问题。

第一步:用 a 命令输入下列汇编语句。

mov ax, 0001

mov bx, 0002

add ax, bx

mov cx, ax

输入的第一条指令 "mov ax,0001" 的段地址和偏移地址分别是 073f_和 0100_。

第二步:用r命令查看此时各个寄存器的值。填入下列空格内。

ax:	0000	bx:	_0000	cx:	_0000	cs: _	_073f	ip:_	_0100
-----	------	-----	-------	-----	-------	-------	-------	------	-------

第三步:看此时 cs:ip 是否指向你程序的第一条指令,若不是,则用 r 命令改变 cs、ip 的值使其指向你的程序的第一条指令。

第四步:用t命令执行你的程序,并填写每条语句执行之后ax、bx、cx中的值。

 mov ax, 0001
 ax: __0001_______ bx: __0000______ cx: __0000_____

 mov bx, 0002
 ax: __0001______ bx: __0002_____ cx: __0000____

 add ax, bx
 ax: __0003______ bx: __0003_____ cx: __0000____

 mov cx, ax
 ax: __0003_______ bx: __0002_____ cx: __0003e_____

六、按下列步骤进行上机实践, 并回答问题。

第一步:用 e 命令在 0:200H 处写入下列数据。

B8 23 01 BB 01 00 01 D8 FF E3

第二步: 用 u 命令查看内存地址为 0:200H 处的机器码和对应的汇编指令。写出这上面 所写的机器码所对应的汇编指令:

b82301 mov ax, 0123

七、用 E 命令在内存单元 B800:068A 处输入: 68 0A 65 0A 6C 0A 6C 0A 6F 0A, 退出 debug, 用 dos 命令清屏后再进入 debug 中在内容单元 B800:068A 处输入: 'h' 0A 'e' 0A '1' 0A '0' 0A。

通过这个实验项目研究如何在显存中显示数据,在屏幕上第 10 行用绿字显示"hello"。在相应的现存内存单元写数据,对应的是 ASII 值是表示字母。在数据输入后的单元在输入的为颜色。

注:下面的内容涉及到部分第3章的内容,大家可以在尝试理解[0]的基础上,进行下面的实验内容。

八、填空: 取出 FFFF0H 处的字型数据,扩大 2 倍,再存储到 10000H 单元处。用 a 命令写入,用 d 命令查看内存中数据的变化。

程序	ទ 如下:		
mov	ax, ffff	ax: _	
mov	ds, ax	ds: _	
	ax, [0]	ax: _	
add	ax, ax	ax: _	
mov	bx, 1000	bx: _	
mov	ds, bx	ds: _	
mov	[0], ax		的内存单元地址是:。 后的内容是:。
意使用 a, u, mov mov mov add mov	i 这段代码依次写 , r, t 命令)。 bx, c261 ax, b851 ds, ax b1, 1 [0], bx 0:208	分 0000 :(0200 内存单元中,并在 debug 中执行,深入思考(注
1)进 <i>入</i> 2)输 <i>入</i> 3)用 d	l 命令查看 20:0。 、a 0:220,在 (,20	入 debug 命~ 2_3_4_5 ,把前 20 个	
mov ax, mov bx, add ax,	,[1]	ax= bx= ax=	
mov cl,		cx=	

	add cl,dl	cx=	dx=
	mov ax, [2] mov bx, [3] sub bx, ax	ax= bx= ax=	bx=
	mov cl, [2] mov dl, [3] sub dl, cl	cx= dx= cx=	dx=
	5) 用 r 命令修改 cs, 6) 用 t 命令单步执行,	_	
+-	一、按下列步骤进行上标	l实践,并回答问是	<u> </u>

用 a 命令把下面程序写入 0:200H 处

mov ax, 1fff

mov ss, ax

mov sp, 10

mov ax, 2d

mov ds, ax

pop [0] sp=_____,修改的内存字单元地址是_____,内容是____。

pop [2] sp=_____,修改的内存字单元地址是_____,内容是____。

pop [4] sp=_____,修改的内存字单元地址是_____,内容是____。

pop [6] sp=_____,修改的内存字单元地址是_____,内容是____。

pop [8] sp=_____,修改的内存字单元地址是_____,内容是____。

单步执行程序,完成上面的填空内容。