

AL5

TD nº 6 : algorithme de Floyd-Warshall

Exercice 1 : application de l'algorithme de Floyd-Warshall

Appliquer l'algorithme de Floyd-Warshall sur le graphe de la figure 1. On donnera les matrices obtenues après chaque itération principale (la boucle Pour extérieure).

FIGURE 1 – Exemple pour l'exercice 1

Exercice 2 : relation d'accessibilité

On considère un graphe orienté G = (S, A) avec $S = \{x_1, \ldots, x_n\}$. On note M la matrice d'adjacence de G, c'est-à-dire la matrice booléenne $(\alpha_{ij})_{1 \leq i,j \leq n}$ telle que : $\alpha_{ij} = \top$ si $(x_i, x_j) \in A$ et $\alpha_{ij} = \bot$ sinon.

On définit la somme et le produit de matrices booléennes de manière standard : la multiplication est remplacée par la conjonction (\wedge), et l'addition par la disjonction (\vee). Soit ainsi A, B et C trois matrices booléennes $n \times n$ avec les coefficients a_{ij} , b_{ij} ou c_{ij} , on a :

$$- C \stackrel{\text{def}}{=} A + B \operatorname{ssi} c_{ij} = a_{ij} \vee b_{ij};$$

$$- C \stackrel{\text{def}}{=} A \cdot B \operatorname{ssi} c_{ij} = \bigvee_{k=1...n} (a_{ik} \wedge b_{kj});$$

On note Id la matrice booléenne $(\gamma_{ij})_{1 \leq i,j \leq n}$ telle que $\gamma_{ii} \stackrel{\text{def}}{=} \top$ et $\gamma_{ij} \stackrel{\text{def}}{=} \bot$ si $i \neq j$.

On définit la suite de matrices M^k pour $k=0,\ldots,n-1$ de la manière suivante : $M^0 \stackrel{\text{def}}{=} \text{Id}$ et $M^k \stackrel{\text{def}}{=} M^{k-1} \cdot M$ pour $k=1,\ldots,n-1$.

- 1. Montrer que M^k , pour $k=0,\ldots n-1$, représente la matrice d'accessibilité en exactement k transitions de G, en d'autres termes montrer que le coefficient α_{ij}^k de M^k est \top ssi il existe un chemin de longueur k entre k et k.
- 2. Soit M^* la matrice booléenne correspondant à la fermeture réflexive et transitive de la relation induite par G: le coefficient γ_{ij} de M^* est \top si et seulement s'il existe un chemin (de longueur quelconque) de x_i à x_j dans G.

Montrer que $M^* = \sum_{i=0}^{n-1} M^i$. Quelle est la complexité de l'algorithme qui calcule (naïvement) M^* avec cette méthode?

- **3.** Adapter l'algorithme de Floyd pour calculer M^* plus efficacement. Donner sa complexité.
- **4.** Étant donné une matrice booléenne M^* représentant la fermeture réflexive et transitive de G = (S, A) et un nouvel arc (x_i, x_j) , donner un algorithme qui calcule la fermeture réflexive et transitive du graphe $G' = (S, A \cup \{(x_i, x_j)\})$. Donner sa complexité.

^{1.} Dans cet exercice, la longueur d'un chemin est le nombre d'arcs composant ce chemin.

L3 Informatique Année 2023-2024

Seconde partie. On souhaite maintenant *compter* le nombre de chemins possibles entre les sommets du graphe G. Pour cela, nous allons utiliser une matrice d'adjacence N à coefficient $\alpha_{i,j}$ dans $\{0,1\}: \alpha_{ij} = 1$ si $(x_i, x_j) \in A$ et $\alpha_{ij} = 0$ sinon.

On considère à présent la multiplication classique sur les matrices et on note $N^0 = \text{Id}$ la matrice identité (composée de 1 sur la diagonale), et $N^{k+1} \stackrel{\text{def}}{=} N^k \cdot N$. On a bien sûr $N^1 = N$.

- 5. Montrer que la valeur du coefficient $\alpha_{i,j}^k$ de N^k représente exactement le nombre de chemins de longueur k dans le graphe G.
- **6.** Est-ce que les coefficients $\alpha_{i,j}^k$ ne prennent en considération que les chemins simples (sans cycle)? Expliquer.
- 7. Lorsqu'on veut calculer le nombre de chemins de longueur inférieure à n entre tous les sommets de G, l'algorithme naturel se fait en $O(n^4)$. Expliquez-le. Peut-on adapter l'algorithme de Floyd dans ce cas? Expliquer votre réponse.

Exercice 3: le meilleur routage

On considère un réseau formé d'un ensemble R de n routeurs. Pour chaque paire de routeurs (r_i, r_j) avec $1 \le i, j \le n$ connectés par un fil sur le réseau, on connait la bande passante (débit binaire maximal) b_{ij} du routeur r_i vers le routeur r_j . On pose $B = (b_{ij})_{1 \le i, j \le n}$ la matrice telle que b_{ij} est la bande passante de r_i à r_j lorsqu'ils sont connectés, et 0 sinon. Le réseau est donc défini par son ensemble de routeurs R et sa matrice de bandes passantes B.

On souhaite calculer pour chaque couple de routeurs (r_i, r_j) du réseau, la meilleure route de r_i vers r_j , c'est-à-dire la route qui offre la meilleure bande passante.

- 1. Soit une route $c = r_{i_1} r_{i_2} \dots r_{i\ell}$ sur le réseau avec $r_{i_1}, r_{i_2}, \dots, r_{i\ell} \in R$ et $r_{i_j}, r_{i_{j+1}}$ sont connectés, $\forall 1 \leq j < l$. Quelle est la bande passante de c en fonction des $(b_{i_j i_{j+1}})_{1 \leq j < \ell}$?
- 2. Soit deux chemins distincts c_1 et c_2 sur le réseau, allant d'un routeur r_i à un routeur r_j . Comment déterminer la meilleure route entre ces deux routes en fonction des bandes passantes de B?
- 3. Écrire un algorithme qui calcule la meilleure route entre chaque paire de routeurs d'un réseau R. Prouver sa correction.