

Dev - Probabilidade I

Síntese

- Limites de Conjuntos
- Leis de De Morgan
- Propriedades distributiva
- Arranjos
- Arranjos com repetição
- Permutações
- Permutações Circular
- Permutações Com Repetição
- Combinações
- Teorema Conjuntos
- · Probabilidade condicional
- Teorema da multiplicação
- Independência de dois eventos
- Variáveis Aleatórias (v.a)
 - Definição
 - Variáveis Aleatórias Discreta
 - Variáveis Aleatórias Continua
- Distribuição de Probabilidade
 - Função Discreta de Probabilidade
 - o Definição de Distribuição de Probabilidade
- Função de Distribuição Acumulada (f.d.a)
 - Definição
 - o De Distribuição de Probabilidade para f.d.a
- Esperança de v.a. Discretas ($\mathbb{E}(X)$)
 - Definição
 - Propriedades
- Variância de uma v.a. (Var(X))
 - Definição
 - Propriedades
- Resumo das distribuições discretas
- Distribuição Uniforme Discreta
 - Definição
- Modelo Bernoulli
 - Definição
- Distribuição Bernoulli
 - Definição
- Distribuição Binomial

Dev - Probabilidade I 1

- Definição
- Distribuição Hipergeométrica
 - Definição
- Distribuição Geométrica
 - Definição
- Distribuição Binomial Negativa (Pascal)
 - o Definição
- Distribuição Poisson
 - Definição
- Função Geradora de Probabilidade
 - Definição
 - Binomial
 - Geométrica
 - Poisson
- Função Geradora de Momento
 - Definição
 - Função Característica
 - Binomial
 - Geométrica
 - Poisson

Limites de Conjuntos

•

• A definição de conceitos de convergência para variáveis aleatórias baseia-se em manipulações de sequências de eventos que requerem limites de conjuntos. Seja $A_n \subset \Omega$ definimos

$$\inf_{k\geq n} A_k := \bigcap_{k=n}^{\infty} A_k, \quad \sup_{k\geq n} A_k := \bigcup_{k=n}^{\infty} A_k$$

$$\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k,$$

$$\limsup_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

ullet O limite de uma sequência de conjuntos é definido da seguinte forma: Se para alguma sequência $\{B_n\}$ de subconjuntos

$$\limsup_{n\to\infty}B_n=\liminf_{n\to\infty}B_n=B,$$

então B é chamado de limite de B_n e escrevemos $\lim_{n \to \infty} B_n = B$ ou $B_n \to B$ será demonstrado em breve que

$$\liminf_{n\to\infty} A_n = \lim_{n\to\infty} \left(\inf_{k\geq n} A_k \right)$$

and

$$\limsup_{n\to\infty} A_n = \lim_{n\to\infty} \left(\sup_{k\geq n} A_k \right).$$

• Exemplo:

$$\lim_{n \to \infty} \inf[0, n/(n+1)) = \lim_{n \to \infty} \sup[0, n/(n+1)) = [0, 1).$$

Podemos agora dar uma interpretação de $\liminf_{n o \infty} A_n$ e $\limsup_n o \infty A_n$.

LEMA: Seja $\{A_n\}$ uma sequência de subconjuntos de Ω .

a. Para lim sup temos a interpretação

$$\limsup_{n \to \infty} A_n = \left\{ \omega : \sum_{n=1}^{\infty} 1_{A_n}(\omega) = \infty \right\}$$
$$= \left\{ \omega : \omega \in A_{n_k}, k = 1, 2 \dots \right\}$$

para alguma subsequência n_k dependendo de ω . Consequentemente, escrevemos

$$\limsup_{n\to\infty} A_n = [A_n \ i.o.\]$$

onde i.o. significa infinitamente frequentemente.

b. Para lim inf temos a interpretação

$$\liminf_{n \to \infty} A_n = \{ \omega : \omega \in A_n \text{ for all } n \text{ except a finite number } \}$$

$$= \{ \omega : \sum_n 1_{A_n^c}(\omega) < \infty \}$$

$$= \{ \omega : \omega \in A_n, \forall n \ge n_0(\omega) \}.$$

Prova (a): Se

. .

$$\omega \in \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

então para todo n, $\omega\in \cup_{k\geq n}A_k$ e assim para todo n, existe algum $k_n\geq n$ tal que $\omega\in A_{k_n}$, e portanto

$$\sum_{i=1}^{\infty} 1_{A_i}(\omega) \geq \sum_n 1_{A_{k_n}}(\omega) = \infty,$$

que implica

$$\omega \in \left\{ \omega : \sum_{n=1}^{\infty} 1_{A_n}(\omega) = \infty \right\};$$

portanto

$$\limsup_{n\to\infty}A_n\subset\{\omega:\sum_{j=1}^\infty 1_{A_j}(\omega)=\infty\}.$$

Inversamente, se

$$\omega \in \{\omega : \sum_{j=1}^{\infty} 1_{A_j}(\omega) = \infty\},$$

então existe $k_n \to \infty$ tal que $\omega \in A_{k_n}$, e portanto para todo n, $\omega \in \cup_{j \ge n} A_j$ tal que $\omega \in \limsup_{n \to \infty} A_n$. Por definição

$$\{\omega: \sum_{j=1}^{\infty} 1_{A_j}(\omega) = \infty\} \subset \limsup_{n \to \infty} A_n.$$

Isso prova a inclusão do conjunto em ambas as direções e mostra a igualdade.

Prova (b): A prova de (b) é análoga.

Leis de De Morgan

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

Propriedades distributiva

- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Arranjos

$$A_{m, r} = \frac{m!}{(m - r)!}$$

• Seja M um conjunto com m elementos, isto é, $M=\{a_1,a_2,...,a_m\}$. Chamamos de arranjo dos m elementos tomados r a r $(1 \le r \le m)$ a qualquer r-upla (sequência de r elementos) formada com elementos de M, todos distintos.

Arranjos com repetição

$$(AR)_{m, r} = \underbrace{m \cdot m \cdot ... \cdot m}_{r \text{ vezes}} = m^r$$

• Seja M um conjunto com m elementos, isto é, $M=\{a_1,a_2,...,a_m\}$. Chamamos arranjo com repetição dos m elementos, tomados r a r, toda r-upla ordenada (sequência de tamanho r) formada com elementos de M não necessariamente distintos.

Permutações

$$P_{m} = m \cdot (m-1) \cdot (m-2) \cdot ... \cdot 3 \cdot 2 \cdot 1$$

• Seja M um conjunto com m elementos, isto é, $M = \{a_1, a_2, ..., a_m\}$. Chamamos de permutação dos m elementos a todo arranjo em que r = m.

Permutações Circular

- Quando elementos são dispostos ao redor de um círculo, a cada disposição possível chamamos permutação circular.
- Duas permutações circulares são consideradas idênticas, quando:

1) Tomando o elemento A, a sequência encontrada é (A,C, D, B).

2) Tomando o elemento A, a sequência encontrada é (A, C, D, B).

•

$$x = \frac{n!}{n} = (n-1)!$$

Permutações Com Repetição

$$P_n^{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$$

Combinações

$$C_{m, r} = {m \choose r} = \frac{m!}{r! (m-r)!}$$
 $\forall m, r \in \mathbb{N}^*, r < m$

• Casos particulares:

1º caso: m, r
$$\in \mathbb{N}^*$$
 e r = m
$$\begin{cases}
C_{m, m} = 1 \\
\frac{m!}{m!(m-m)!} = 1
\end{cases}$$

2º caso:
$$m \in \mathbb{N}^*$$
 e $r = 0$
$$\begin{cases} C_{m, \ 0} = 1 \text{ (o único subconjunto com 0 elemento \'e o vazio)} \\ \frac{m!}{0! \ (m-0)!} = 1 \end{cases}$$

$$3^{\circ}$$
 caso: m = 0 e r = 0
$$\begin{cases} C_{0,\,0} = 1 \text{ (o único subconjunto do conjunto vazio \'e o próprio vazio)} \\ \hline \frac{0!}{0! \; (0-0)!} = 1 \end{cases}$$

Teorema Conjuntos

- Se $A \subset B$, então $P(A) \leqslant P(B)$.
- Se A é um evento, então $0\leqslant P(A)\leqslant 1$.
- $P(A) = 1 P(A^c)$
- Sendo A e B dois eventos quaisquer, vale $P(B) = P(B \cap A) + P(B \cap A^c)$.
- ullet Regra da Adição de Probabilidades. Se A e B são eventos, então $P(A\cup B)=P(A)+P(B)-P(A\cap B)$
- Para eventos quaisquer $A_1, A_2, ...$

$$P\Big(igcup_{i=1}^{\infty}A_i\Big)\leq \sum_{i=1}^{\infty}Pig(A_i\Big)$$

• Se os eventos $A_1,A_2,...$ são mutuamente exclusivos, então:

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} P(A_i)$$

• Se A e B são mutuamente exclusivos $(A\cap B=\emptyset)$, então $P(A\cup B)=P(A)+P(B)-P(\emptyset)=P(A)+P(B)$.

- ullet Se A é um evento, então $P(A^C)=1$ –P(A)
- Continuidade da Probabilidade: Se $A_n \uparrow A$ então $P(A_n) \uparrow P(A)$. De forma similar, se $A_n \downarrow A$ então $P(A_n) \downarrow P(A)$. A notação $A_n \uparrow A$ indica que temos uma sequência monótona não decrescente ($n \leq n+1$) de eventos $A_i, A_2, ...$ tais que $\lim_{i \to \infty} A_i = A = \bigcup_{i=1}^{\infty} A_i$.

Probabilidade condicional

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \qquad P(B) > 0$$

6

Teorema da multiplicação

$$P(A | B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(B) \cdot P(A | B)$$

$$P(B | A) = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = P(A) \cdot P(B | A)$$

Independência de dois eventos

• Dois eventos A e B de um espaço amostral Ω , são chamados **independentes** se $P(A \cap B) = P(A) \cdot P(B)$. Ou seja, se os eventos são independentes a ocorrência de um não altera a probabilidade de ocorrência do outro.

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B) \cdot P(A|B)}{P(A)} = \frac{P(B) \cdot P(A)}{P(A)} = P(B)$$

Dois eventos A e B são independentes se, e somente se a definição é verdadeira:

$$P(A \cap B) = P(A)P(B)$$

• Obs: Sejam A e B eventos de um espaço amostral Ω tais que P(A)>0 e P(B)>0. Se A e B são INDEPENDENTES, então A e B não podem ser MUTUAMENTE EXCLUDENTES.

Variáveis Aleatórias (v.a)

- **▼** Definição
 - A variável aleatória vai associar um valor real para cada valor do espaço amostral Ω .

Ex: Lançar duas moedas consecutivamente

- Notação C = cara, K = coroa.
- $\omega_1 = (C, C); \ \omega_2 = (C, K); \ \omega_3 = (K, C); \ \omega_4 = (K, K)$
- Defina X: O número de coroas observadas.

$$\begin{array}{rcl} \omega_1 \to X & = & 0 \\ \omega_2 \, \mathrm{ou} \, \omega_3 \to X & = & 1 \\ \omega_4 \to X & = & 2 \end{array}$$

- De uma maneira mais formal: Uma variável aleatória é uma função definida num espaço amostral, que assume valores reais.
- Em outras palavras. Uma variável aleatória X representa um valor real, associado a cada resultado de um experimento de probabilidade. Ou seja para cada valor do Ω vai existir um valor x dentro da variável aleatória X.
- Obs: As variáveis aleatórias são representadas por letras maiúsculas X. E os valores assumidos pelas variáveis aleatórias são representados por letras minúsculas (x).

Definição

Sejam ε um experimento aleatório e Ω o espaço amostral associado a este. Uma $função\ X$, que associe a cada elemento $\omega \in \Omega$ um número real, $X(\omega)$, é denominada variável aleatória (v.a).

Notação:

- Letras maiúsculas (variável aleatória), X, Y, Z, etc.
- Letras minúsculas, (valor assumido pela variável aleatória), x, y, z etc.

Exemplos:

(a) Número de peças defeituosas entre n peças retiradas de uma linha de produção.

 $X = \{x | x \in \{0, 1, 2, \dots, D\}\}$ onde D é o total de peças defeituosas

(b) Número de veículos que passam por um posto de pedágio durante uma hora.

$$X = \{x | x \in \{0, 1, 2, \dots\}\}\$$

(c) Sexo de um indivíduo selecionado ao acaso de uma população $X = \{x | x = 0 \text{ ou } x = 1\}$

(d) Tempo de duração de um componente de um circuito.

$$X = \{x | x \in [0, \infty)\}$$

(e) Peso de animais sujeitos a uma dieta de engorda.

$$X = \{x | x \in [0, \infty)\}$$

• **Definição:** As variáveis aleatórias que assumem valores em um conjunto enumerável serão denominadas **Discretas** e aquelas que assumem valores em um intervalo da reta real serão denominadas **Contínuas**.

▼ Variáveis Aleatórias Discreta

• Uma variável aleatória é discreta se ela assume um **número finito** de valores ou assume um **número infinito de valores numeráveis** (contáveis).

• Ou seja, podemos dizer que uma variável é discreta quando seus valores puderem ser listados.

Por exemplo: o número de ligações recebidas por dia em um escritório pode ser um valor igual a 0, 1, 2, 3, 4, ... Assim, definimos a variável aleatória X:

X: número de ligações recebidas pelo escritório.

Os valores que essa variável pode assumir são x=0, 1, 2, 3, ... Dessa forma, se escrevermos X=3 estamos dizendo que "o número de ligações recebidas pelo escritório (X) é igual a 3 ligações (x)".

▼ Variáveis Aleatórias Continua

- Uma variável aleatória é contínua se ela possui um número incontável de possíveis resultados.
- Ou seja, uma variável é dita contínua quando os valores que ela pode assumir puderem ser representados como um intervalo na reta dos números reais.
- Neste caso, os valores assumidos por uma variável contínua **não podem ser listados**, visto que **são infinitos** os possíveis valores dessa variável.

Por exemplo: consideremos o tempo de duração de uma ligação recebida em minutos (incluindo frações de minutos). Neste caso, podemos definir uma variável aleatória Y da seguinte forma:

Y: tempo de duração de uma ligação em minutos.

Perceba que os valores de Y podem assumir qualquer valor em um intervalo real. Suponhamos, para facilitar, que o tempo máximo de uma ligação seja de 120 minutos. Neste caso, os valores y pertencem ao intervalo [0, 120].

Distribuição de Probabilidade

- **▼ Função Discreta de Probabilidade**
 - Para cada valor $x_1, x_2, x_3...$ de uma variável aleatória discreta (X) pode-se determinar uma probabilidade correspondente a esse valor. Ou seja, para cada x_i vai ser atribuído uma probabilidade de ocorrer.
 - Representamos essa probabilidade da seguinte maneira: $P(x_i)$ que é a mesma coisa que $\mathbb{P}(X=x_i)$. Essas duas expressões são chamadas de Função de Probabilidade ou Funções Discretas de Probabilidade.

$$P(x_i) = \mathbb{P}(X = x_i)$$

- ▼ Definição de Distribuição de Probabilidade
 - ullet A **Distribuição de probabilidade** vai ser a coleção de todas as probabilidades que foram atribuídas aos x_i .
 - Uma distribuição de probabilidades deve satisfazer a duas condições:
 - i. A probabilidade de cada valor $p(x_i)$ da variável aleatória tem que ser um número de 0 á 1.

$$0 \le \mathbb{P}(X = x) \le 1$$
 ou $0 \le P(x) \le 1$

ii. A soma de todas as probabilidades tem que ser igual a 1.

$$\sum_i \mathbb{P}(X=x_i) = 1 \qquad ou \qquad \sum_i p(x_i) = 1$$

Definição

Seja X uma variável aleatória discreta. Portanto, X assume no máximo um número infinito enumerável de valores x_1, x_2, \ldots A cada possível resultado x_i associaremos um número $p(x_i) = \mathbb{P}(X = x_i)$, denominado probabilidade de x_i satisfazendo as seguintes condições:

- (a) $p(x_i) \ge 0$ para todo i,
- (b) $\sum_{i} p(x_i) = 1$.

A função $p(x_i)$ é chamada função de probabilidade e a coleção de pares $[x_i, p(x_i)], i = 1, 2, \ldots$, é denominada distribuição de probabilidade de X.

▼ Exemplos

▼ Ex 1

ullet Considere uma urna com duas bolas brancas e três bolas vermelhas. Dessa urna, são extraídas, sem reposição, duas bolas. Seja X: "número de bolas vermelhas obtidas nas duas extrações". Determine a distribuição de probabilidade de X

2B 3V

• Os casos possíveis de retirar duas bolas da urna sem reposição são: $\Omega = (B,B), (B,V), (V,B), (V,V).$

- Seja X: "número de bolas vermelhas obtidas nas duas extrações". Logo os valores que a variável aleatória (X) pode assumir são $x=\{0,1,2\}$.
- ullet Então a probabilidade de cada x vai ser:

$$P(x) = P(X = x)$$
 $\forall x \in \{0, 1, 2\}$
 $P(0) = P(X = 0) = \frac{1}{\binom{5}{2}} = \frac{1}{10}$
 $P(1) = P(X = 1) = \frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}} = \frac{6}{10}$
 $P(0) = P(X = 0) = \frac{\binom{3}{2}}{\binom{5}{2}} = \frac{3}{10}$

• Só para termos certeza que é realmente uma distribuição de probabilidade, vamos ver se ela satisfaz as duas condições de distribuição de probabilidade.

- 1. Nitidamente percebemos que os valores são $0 \leq x_i \leq 1$.
- 2. Vamos somar todos os valores para ver se resulta em 1.

$$\sum_{x=0}^{2} P(x) = \frac{1}{10} + \frac{6}{10} + \frac{3}{10} = 1$$

• Logo a distribuição de probabilidade vai ser

х	0	1	2
P(x)	1/10	6/10	3/10

▼ Ex 2

- Número de filhos Com dados do último censo, a assistente social de um centro de saúde constatou que para as famílias de uma determinada região:
 - 20% não têm filhos
 - 30% têm 1 filho
 - 35% têm 2 filhos
 - 15% têm igualmente 3, 4 ou 5 filhos
- Vamos definir a variável aleatória N = "número de filhos por família".
- ullet Suponha que uma família será selecionada aleatoriamente nessa região e o número de filhos averiguado, queremos estudar a v.a N .

Função de Distribuição Acumulada (f.d.a)

- O conceito de Função de Distribuição Acumulada (ou **Distribuição Cumulativa de Probabilidade** ou **Função de Distribuição**) que introduziremos aplica-se tanto a variáveis aleatórias discretas quanto a variáveis aleatórias contínuas.
- A função de distribuição acumulada nos dá uma outra maneira de descrever como as probabilidades são associadas aos valores de uma variável aleatória.
- **▼** Definição
 - A função de distribuição acumulada (f.d.a) de uma variável aleatória (discreta ou contínua) X é definida como

$$F(x) = \mathbb{P}(X \le x)$$
 para todo x

• Propriedades: Uma função de distribuição acumulada tem que satisfazer as seguintes condições:

$$(F1) \ 0 \le F(x) \le 1$$

(F2) F é **não decrescente** , isto é, $F(x) \leq F(y)$ sempre que $x \leq y, \ \forall x,y \in \mathbb{R}.$

(F3) Continuidade à direita. Se $x_n \downarrow x$, então $F(x) \downarrow F(y)$.

$$(F4) F(-\infty) = \lim_{x \to -\infty} F(x) = 0 \quad e \quad F(\infty) = \lim_{x \to \infty} F(x) = 1.$$

▼ Demostração das Propriedades

- F1: Como F(x) representa uma probabilidade segue-se que $0 \le F(x) \le 1$.
- F2: Note que $[X \leq x] \cap [X \leq y]$ sempre que $x \leq y$. Logo as probabilidades satisfazem à desigualdade:

$$F(x) = P(X \le x) \le P(Xy) = F(y).$$

• F3: Seja $x \in \mathbb{R}$ e considere uma sequência $\{x_n, n \geq 1, n \in \mathbb{N}\}$ tal que $x_n \downarrow x$. Isto é, os x_n 's se aproximam de x pela direita ou, em outras palavras, por valores superiores a x. Então, $[X \leq x_n] \downarrow [X \leq x]$ e, assim, $P(X \leq x_n) \downarrow P(X \leq x)$. Como o resultado vale para qualquer x, a propriedade está verificada.

• F4: Aplicamos a continuidade da probabilidade. Observe que para $X_n\downarrow -\infty$, os eventos $[X\leq x_n]=\{w\in \Omega: X(w)\leq x_n\}$ têm como limite o conjunto vazio. Logo $F(x_n)=P(X\leq x_n)\downarrow 0$. De modo análogo, tomando $X_n\uparrow\infty$, os eventos $[X\leq x_n]\uparrow\Omega$ e, portanto $F(x_n)=P(X\leq x_n)\uparrow 1$.

▼ De Distribuição de Probabilidade para f.d.a

Quando quisemos encontrar a f.d.a de uma v.a., e o problema der a Distribuição de Probabilidade, podemos encontrar a f.d.a a partir da Distribuição de Probabilidade por meio da expressão:

$$F(x) = \sum_{i: x_i \leq x} P[X = x_i]$$

• O inverso também é possível:

$$P[X=x_i] = F(x_i) - \lim_{x o -x_i} F(x)$$

▼ Exemplos

▼ Ex 1:

- Um grupo de 1000 crianças foi analisado para determinar a efetividade de uma vacina contra um tipo de alergia. As crianças recebiam uma dose de vacina e após um mês passavam por um novo teste. Caso ainda tivessem tido alguma reação alérgica, recebiam outra dose. Ao fim de 5 doses, foram consideradas imunizadas.
- Variável de interesse: X ="número de doses"

Doses (X)	1	2	3	4	5
Freq.	245	288	256	145	66

• Uma criança é sorteada ao acaso, qual será a probabilidade dela ter recebido 2 doses?

$$P(X=2) = \frac{288}{1000} = 0,288$$

Doses (X)	1	2	3	4	5
p(x)	0,245	0,288	0,256	0,145	0,066

Qual a probabilidade da criança ter recebido até duas doses?

$$F(2) = P(X \le 2) = P(X = 1) + P(X = 2) = 0.245 + 0.288 = 0.533$$

- Note que, tendo em vista que a variável só assume valores inteiros, esse valor fica inalterado no intervalo [2,3). Isto é, F(2)=F(2,1)=F(2,45)=F(2,99).
- Por essa razão escrevemos:

$$F(x) = P(X \le x) = 0,533$$
 para $2 \le x < 3$

• Logo os valores completos da função de distribuição são os seguintes:

$$F(x) = \begin{cases} 0 & \text{se } x < 1; \\ 0,245 & \text{se } 1 \le x < 2; \\ 0,533 & \text{se } 2 \le x < 3; \\ 0,789 & \text{se } 3 \le x < 4; \\ 0,934 & \text{se } 4 \le x < 5; \\ 1 & \text{se } x \ge 5. \end{cases}$$

• A figura a seguir apresenta um diagrama dessa função:

Esperança de v.a. Discretas ($\mathbb{E}(X)$)

▼ Definição

• Definição: Seja X uma variável aleatória discreta, com função de probabilidade p(x) = P(X = x), x = 1, 2, ..., n, ...Então, a esperança (ou valor esperado ou média) de X, denotada por $\mathbb{E}(X)$ é definida como:

$$\mathbb{E}(X) = \mu x = \sum_{x=1}^{n} x \ \mathbb{P}(X = x) = \sum_{x=1}^{n} x \ p(x) \qquad \forall \ x = 1, 2, 3, \cdots, n$$

- A Esperança matemática também pode ser chamada de valor médio.
- Podemos usar o simbolo E para esperança quando houver mais de uma variável envolvida. Ou podemos usar o simbolo grego **mi** μ , quando houver só uma variável.
- Colocando em palavras, o valor esperado de X é uma **média ponderada** dos possíveis valores que X pode receber, com cada valor sendo ponderado pela probabilidade de que X seja igual a esse valor. Por exemplo, se a função de probabilidade de X é dada por:

$$p(0) = \frac{1}{2} = p(1)$$

então

$$E[X] = 0\left(\frac{1}{2}\right) + 1\left(\frac{1}{2}\right) = \frac{1}{2}$$

Nesse caso acima é somente a média ordinária dos dois valores possíveis, 0 e 1, que X pode assumir. Por outro lado, se

$$p(0) = \frac{1}{3} \qquad p(1) = \frac{2}{3}$$

então

$$E[X] = 0\left(\frac{1}{3}\right) + 1\left(\frac{2}{3}\right) = \frac{2}{3}$$

- Agora suponha que conheçamos uma variável aleatória discreta e sua função de probabilidade e que queiramos calcular o valor esperado de alguma função de X, digamos, g(X). Como podemos fazer isso?
- Uma maneira é a seguinte: como g(X) é ela mesmo uma variável aleatória discreta, ela tem uma função de probabilidade, que pode ser determinada a partir da função de probabilidade de X. Uma vez que tenhamos determinado a função de

probabilidade deg(X), podemos calcular E[g(x)] usando a definição de valor esperado.

Exemplo: Seja X uma variável aleatória que pode receber os valores -1,0,1 com respectivas probabilidades:

$$P{X = -1} = 0.2$$
 $P{X = 0} = 0.5$ $P{X = 1} = 0.3$

Calcule $E[X^2]$

Solução: Seja $Y=X^2$. Então a função de probabilidade de Y é dada por

$$P{Y = 1} = P{X = -1} + P{X = 1} = 0,5$$

 $P{Y = 0} = P{X = 0} = 0,5$

Logo

$$E[X^2] = E[Y] = 1(0.5) + 0(0.5) = 0.5$$

Observe que

$$0.5 = E[X^2] \neq (E[X])^2 = 0.01$$

Embora o procedimento anterior sempre nos permita calcular o valor esperado de qualquer função de X a partir do conhecimento da função de probabilidade de X, há uma outra maneira de raciocinar sobre E[g(X)]: já que g(X) será igual a g(x) sempre que X for igual a x, parece razoável que E[g(X)] deva ser uma média ponderada dos valores g(x), com g(x) sendo ponderado pela probabilidade de que X seja igual a x. Isto é, o resultado a seguir é bastante intuitivo:

$$E[g(X)] = \sum_{i} g(x_i)p(x_i)$$

• O exemplo acima refeito com esse novo método:

$$E\{X^2\} = (-1)^2(0,2) + 0^2(0,5) + 1^2(0,3)$$

= 1(0,2 + 0,3) + 0(0,5)
= 0,5

- Obs: O uso da denominação média para o valor esperado da variável tem origem histórica, mas também pode ser visto como uma referência a um resultado importante conhecido por Lei dos Grandes Números.
- Momento:
 - Momento Central de Ordem k: Para $k=1,2,\cdots$, o momento de ordem k da variável X é definido por $E(X^k)$, desde que essa quantidade exista.
 - Se $E(X)=\mu<\infty$, definimos o momento central de ordem k por $E[(X-\mu)^k]$, sempre que essa quantidade exista.
 - Momento Absoluto de Ordem k: De modo similar, o momento absoluto de ordem k da variável aleatória X é definido por $E(|X|^k)$.
 - A existência dos momentos está relacionada à discussão que fizemos sobre a existência da integral. Isto é, o valor infinito pode ocorrer, mas operações do tipo $\infty \infty$ são indeterminadas e levam à **inexistência** do momento.
 - \circ É imediato notar que o momento de ordem 1 é o valor esperado, já definido anteriormente.
- **▼ Propriedades**
 - Nas seguintes propriedades, X e Y é uma variável aleatória e a, b são constantes.

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

 $\mathbb{E}(X-Y) = \mathbb{E}(X) - \mathbb{E}(Y)$

Dev - Probabilidade I 14

- $\mathbb{E}(a) = a$
- $\mathbb{E}(a+X) = a + \mathbb{E}(X)$
- $\mathbb{E}(bX) = b\mathbb{E}(X)$
- $\mathbb{E}(a+bX) = a+b\mathbb{E}(X)$
- Para $r \ge 1$, o r-ésimo momento de uma variável aleatória é definido por $\mathbb{E}(X^r)$ (se existe).

Variância de uma v.a. (Var(X))

▼ Definição

- Dada uma variável aleatória X e sua função distribuição F, seria extremamente útil se pudéssemos resumir as propriedades essenciais de F em certas medidas convenientemente definidas.
- Uma dessas medidas seria E[X] o , valor esperado de X.
- ullet Entretanto, embora E[A] forneça a média ponderada dos valores possíveis de X, ela não nos diz nada sobre a variação, ou dispersão, desses valores.
- ullet Por exemplo, embora as v.a W, Y e Z com funções discretas de probabilidade determinadas por

$$W = 0 \quad \text{com probabilidade 1}$$

$$Y = \begin{cases} -1 & \text{com probabilidade } \frac{1}{2} \\ +1 & \text{com probabilidade } \frac{1}{2} \end{cases}$$

$$Z = \begin{cases} -100 & \text{com probabilidade } \frac{1}{2} \\ +100 & \text{com probabilidade } \frac{1}{2} \end{cases}$$

tenham todas a mesma esperança, que é igual a 0. Existe uma dispersão muito maior nos valores possíveis de Y do que naqueles de W (que é uma constante) e nos valores possíveis de Z do que naqueles de Y.

- ullet Como esperamos que X assuma valores em torno de sua média E[X], parece razoável que uma maneira de medir a possível variação de X seja ver, em média, quão distante X estaria de sua média.
- Uma possível maneira de se medir essa variação seria considerar a grandeza $E[|X-\mu|]$, onde $\mu=E[X]$. Entretanto, a manipulação dessa grandeza seria matematicamente inconveniente. Por esse motivo, uma grandeza mais tratável é usualmente considerada $E[(X-\mu)^2]$ esta é a esperança do quadrado da diferença entre X e sua média. Temos assim a definição a seguir.
- **Definição:** Se X é uma variável aleatória com média μ , então a variância de X, representada por Var(X), é definida como:

$$Var(X) = \sigma^2 = E[(X - \mu)^2] = E[(X - E(X))^2] = E(X^2) - E(X)^2$$

• Denominamos **Desvio-Padrão** de X a raiz quadrada positiva de Var(X), e é denotada por DP(X).

$$DP(X) = +\sqrt{Var(X)}$$

▼ Propriedades

• Nas seguintes propriedades, X é uma variável aleatória e a, b são constantes.

$$Var(X) = E[(X - \mu)^2]$$

•
$$Var(a) = 0$$

•
$$Var(a + X) = Var(X)$$

•
$$Var(bX) = b^2 Var(X)$$

•
$$Var(a + bX) = b^2 Var(X)$$

•
$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$

• Demostração da quarta propriedade $Var(a+bX)=b^2Var(X)$ Sendo $E(X)=\mu$, por uma propriedade do valor esperado temos E(aX+b)=a+b $E(X)=a+b\mu$. Assim,

$$Var(a+bX) = E\left[\left((a+bX) - (a+b\mu)\right)^{2}\right] = E\left[\left(a+bX - a - b\mu\right)^{2}\right] = E\left[\left(bX - b\mu\right)^{2}\right] = b^{2}E\left[\left(X - \mu\right)^{2}\right] = b^{2}Var(X)$$

• Demostração da última propriedade $Var(X) = E(X^2) - \left[E(X)\right]^2$.

Para verificar, vamos desenvolver o quadrado do desvio e aplicar propriedades da esperança.

$$Var(X) = E[(X - \mu)^2] = E[X^2 - 2X\mu + \mu^2] = E(X^2) - E(2X\mu) + E(\mu^2) = E(X^2) - 2\mu E(X) + \mu^2 = E(X^2) - 2\mu^2 + \mu^2 = E(X^2) - \mu^2 = E(X^2) - E(X^2) = Var(X)$$

Resumo das distribuições discretas

Distribuição	P(X=x)	Parâmetros	E(X)	Var(X)	f.g.p	f.g.m
Uniforme Discreta	$\frac{1}{N}, \ x = 1, 2, \cdots, N$	N	$\frac{N+1}{2}$	$\frac{N^2-1}{2}$	_	_
Bernoulli	$p^x(1-p)^{1-x}, x = 0, 1$	p	p	p(1-p)	_	_
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}, x = 0, 1,, n$	n, p	np	np(1-p)	$[pt + (1-p)]^n$	$(pe^t + 1 - p)^n$
Geométrica	$p(1-p)^{x-1}, x = 1, 2, 3, \cdots$	p	$\frac{1}{p}$	$\tfrac{1-p}{p^2}$	$\frac{pt}{1-t(1-p)}$	$\frac{pe^t}{1{-}e^t(1{-}p)}$
Binomial Negativa	$\binom{x-1}{r-1}p^r(1-p)^{x-r}, \ x=r, (r+1), (r+2), \cdots$	r, p	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	-	$\left[\frac{pe^t}{1 - e^t(1 - p)}\right]^r$
Hipergeométrica	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}, x = 0, 1, 2, \dots$	N, n, r	$\frac{nr}{N}$	$\frac{nr}{N}(1-\frac{r}{N})(\frac{N-n}{N-1})$	_	_
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \cdots$	λ	λ	λ	$e^{\lambda(t-1)}$	$e^{\lambda(e^t-1)}$

Distribuição Uniforme Discreta

- **▼ Definição**
 - Este é o caso mais simples de v.a. discreta, em que cada valor possível ocorre com a mesma probabilidade.
 - ullet Considere uma v.a X que toma um número finito de valores com a mesma probabilidade, ou seja, $X \in \{1,2,...,N\}$.
 - · Dessa forma podemos notar que,

$$p(x)=P(X=x)=rac{1}{N} \quad ext{para todo} \quad x \in \{1,2,...,N\}$$

- Uma v.a com essas propriedades é dita ter uma distribuição **uniforme discreta** com parâmetro N.
- Notação: $X \sim U\{1,2,...,N\}$.
- Pode se mostrar que:

$$\mathbb{E}(X) = \frac{N+1}{2}$$

$$Var(X) = \frac{N^2-1}{2}$$

▼ Exemplo

ightharpoonup Ex 1: Lançamos um dado equilibrado e observamos a face que ocorreu. A v.a sera X= "resultado obtido no lançamento de um dado honesto".

• Como todos os resultados de X são equiprováveis:

\overline{x}	1	2	3	4	5	6
p(x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- Podemos então usar a distribuição uniforme discreta, que sera: $X \sim U\{1,2,3,4,5,6\}$.
- A **esperança** desse experimento vai ser:

$$E(X) = rac{1}{6} \cdot (1 + 2 + 3 + 4 + 5 + 6) = rac{21}{6} = 3, 5$$

Poderíamos ter usado a formula de esperança para distribuição uniforme discreta:

$$E(X) = rac{N+1}{2} = rac{7}{2} = 3,5$$

• A variância desse experimento vai ser:

$$Var(X) = rac{1}{6} \cdot \left[(1+4+9+16+25+36) - rac{1}{6} \cdot (21)^2
ight] = rac{35}{2} = 17,5$$

Poderíamos ter usado a formula de variância para distribuição uniforme discreta:

$$E(X) = rac{N^2-1}{2} = rac{6^2-1}{12} = rac{35}{2} = 3,5$$

Modelo Bernoulli

▼ Definição

- Em muitas aplicações, cada observação de um experimento aleatório é binária: tem apenas dois resultados possíveis.
- Por exemplo, uma pessoa pode:
 - aceitar ou recusar uma oferta de cartão de crédito de seu banco.
 - ter ou não um plano de saúde.
 - votar sim ou não em uma assembléia.
- Nesse caso, os resultados do experimento podem ser classificados como sucesso ou fracasso. Exemplos:
 - Lançar uma moeda e verificar a ocorrência de cara ou coroa. Podemos considerar como sucesso, a obtenção de cara.
 - Lançar um dado e verificar se o resultado é par ou ímpar. Podemos considerar como sucesso obter um número par.
- Esse tipo de experimento é denominado **ensaio de Bernoulli**. Ou seja se o experimento tem resposta dicotômica do tipo sucesso-fracasso, ele vai ser denominado ensaio de bernoulli.

Distribuição Bernoulli

▼ Definição

- Experimentos que resultam numa v.a. de Bernoulli são chamados ensaios de Bernoulli.
- Para indicar a distribuição de Bernoulli com parâmetro p de uma v.a., usaremos a notação:

$$X \sim Ber(p)$$

O p é a probabilidade de ocorrer um evento o outro.

• Denotaremos com p a probabilidade de sucesso e 1-p a probabilidade de fracasso:

$$P(X = 1) = P(sucesso) = p$$

$$P(X = 0) = P(fracasso) = 1 - p$$

• Dizemos que X tem distribuição de Bernoulli com parâmetro p se sua função de probabilidade é dada por:

$$P(X = x) = p^{x}(1 - p)^{1 - x}$$
 em que $x = 0$ ou 1

- Logo por definição temos as formulas para esperança, variância e f.d.a:
 - $\bullet \ \mathbb{E}(X) = 0 \times (1-p) + 1 \times p = p$
 - $\mathbb{E}(X^2) = 0^2 \times (1-p) + 1^2 \times p = p$
 - $Var(X) = \mathbb{E}(X^2) [\mathbb{E}(X)]^2 = p p^2 = p(1-p)$

• f.d.a.:
$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & x \in [0, 1) \\ 1, & x \ge 1 \end{cases}$$

▼ Exemplo

Ex 1: Lançamos um dado e consideramos como sucesso, a obtenção da face 5. Supondo que o dado é honesto: Logo o p vai ser igual a probabilidade de sair face 5: $p=\frac{1}{6}$

\overline{x}	0	1
p(x)	$\frac{5}{6}$	$\frac{1}{6}$

Vamos prova que a probabilidade se não sair a face 5:

$$P(X = 0) = p^{0}(1 - p)^{1-0} = \left(\frac{1}{6}\right)^{0} \left(\frac{5}{6}\right)^{1-0} = \frac{5}{6}$$
$$P(X = 1) = p^{1}(1 - p)^{1-1} = \left(\frac{1}{6}\right)^{1} \left(\frac{5}{6}\right)^{1-1} = \frac{1}{6}$$

Vamos calcular a E(X) e a Var(X):

Pela definição E(X)=p e Var(X)=p(1-p), então temos:

$$E(X) = rac{1}{6}$$
 $Var(X) = rac{1}{6} \left(1 - rac{1}{6}
ight) = rac{1}{6} \cdot rac{5}{6} = rac{5}{36}$

Distribuição Binomial

▼ Definição

- A repetição de um ensaios de Bernoulli qualquer, onde cada repetição é **independente** da outra, dar origem a uma **variável aleatória Binomial**.
 - **Definição:** Suponha que n ensaios de Bernoulli independentes, são realizados. Ou seja, em cada ensaio pode acontecer sucesso com probabilidade p ou fracasso com probabilidade 1-p.
- Defina a v.a X como o **número de sucessos em** n **ensaios**, então X é dita ter distribuição binomial com parâmetros n e p e sua função de probabilidade é dada por:

$$p(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \qquad \forall \qquad x = \{0, 1, ..., n\}$$

- Notação: $X \sim B(n,p)$.
- Note que, $Ber(p) \equiv B(1,p)$.
- $f.d.a \ P(X \le x) = \sum_{i=0}^{\lfloor x \rfloor} {n \choose i} p^i (1-p)^{n-i}$
- Se $X \sim B(n,p)$ então:
 - $\bullet E(X) = np$
 - $\circ Var(X) = np(1-p)$
 - $\bullet \ E(X^k) = np \, E[(Y+1)^{k-1}]$ sendo que $Y \sim B(n-1,p)$.
- Demostração da E(X), $E(X^2)E(X^k)$, Var(X).
 - $\blacktriangledown E(X)$:

$$E(X) = \sum_{x=0}^{n} x \cdot p(x) = \sum_{x=1}^{n} x \cdot \binom{n}{x} p^{x} (1-p)^{n-x}$$

Note que, quando x=0 a equação vai ser igual a 0, logo o somatório começa no 1.

Note também:

$$x \cdot \binom{n}{x} = x \cdot \frac{n!}{x!(n-x)!} = x \cdot \frac{n(n-1)!}{x(x-1)!(n-x)!} = \frac{n(n-1)!}{(x-1)!(n-x)!} = n\binom{n-1}{x-1}$$

Logo:

$$\sum_{x=1}^{n} x \cdot \binom{n}{x} p^{x} (1-p)^{n-x} = \sum_{x=1}^{n} n \binom{n-1}{x-1} p^{x-1} \ p \ (1-p)^{(n-1)-(x-1)}$$

$$y = x - 1 \qquad m = n - 1$$

$$np \sum_{y=0}^{m} \binom{m}{y} p^{y} \ (1-p)^{m-y} = np \cdot 1 = np$$

Note que essa última somatória da equação acima \acute{e} a própria função de probabilidade da binomial que \acute{e} igual a $\acute{1}$.

19

Dev - Probabilidade I

$\blacktriangledown E(X^2)$:

Sabemos que E(X)=np e para $E(X^2)$ vem que

$$\mathbb{E}(X^{2}) = \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x}$$
*Note que $x^{2} = [x(x-1) + x]$

$$= \sum_{x=0}^{n} [x(x-1) + x] \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= \left(\sum_{x=0}^{n} x(x-1) \binom{n}{x} p^{x} (1-p)^{n-x}\right) + \left(\sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}\right)$$

$$= \left(\sum_{x=0}^{n} x(x-1) \binom{n}{x} p^{x} (1-p)^{n-x}\right) + \mathbb{E}(X)$$

*Note que, o somatorio deve começar no 2

$$\begin{split} &= \mathbb{E}(X) + \sum_{x=2}^{n} x(x-1) \; \frac{n!}{x!(n-x)!} \; p^{x}(1-p)^{n-x} \\ &= \mathbb{E}(X) + \sum_{x=2}^{n} x(x-1) \; \frac{n(n-1)(n-2)!}{x(x-1)(x-2)!(n-x)!} \; p^{x}(1-p)^{n-x} \\ &= \mathbb{E}(X) + n(n-1) \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} \; p^{x-2} \cdot p^{2}(1-p)^{(n-2)-(x-2)} \\ &= \mathbb{E}(X) + n(n-1)p^{2} \sum_{x=2}^{n} \binom{n-2}{x-2} p^{x-2}(1-p)^{(n-2)-(x-2)} \\ &* j = x-2 \quad \forall \; j = 0, 1, 2, 3, \cdots, n-2 \\ &= \mathbb{E}(X) + n(n-1)p^{2} \sum_{i=0}^{n-2} \binom{n-2}{j} p^{i}(1-p)^{(n-2)-j} \end{split}$$

*Note que o somatório é uma função de probabilidade logo ele é igual a 1

$$= \mathbb{E}(X) + n(n-1)p^2 \cdot 1$$

$$= np + (n^2 - n)p^2$$

$$= np + n^2p^2 - np^2$$

$$= n^2p^2 + np(1-p)$$

 $\blacktriangledown E(X^k)$:

$$E(X^k) = \sum_{x=0}^n x^k \cdot p(x) = \sum_{x=1}^n x^k \cdot \binom{n}{x} p^x (1-p)^{n-x}$$

Note que, quando x=0 a equação vai ser igual a 0, logo o somatório começa no 1.

Note também:

$$x^k \cdot \binom{n}{x} = x^k \cdot \frac{n!}{x!(n-x)!} = x^k \cdot \frac{n(n-1)!}{x(x-1)!(n-x)!} = x^{k-1} \frac{n(n-1)!}{(x-1)!(n-x)!} = x^{k-1} n \binom{n-1}{x-1}$$

Logo:

$$\sum_{x=1}^{n} x^{k} \cdot \binom{n}{x} p^{x} (1-p)^{n-x} = \sum_{x=1}^{n} x^{k-1} n \binom{n-1}{x-1} p^{x-1} p (1-p)^{(n-1)-(x-1)} = np \sum_{x=1}^{n} x^{k-1} \binom{n-1}{x-1} p^{x-1} (1-p)^{(n-1)-(x-1)}$$

$$y = x-1 \qquad m = n-1 \qquad x = y+1 \qquad \forall \ y = 0, 1, 2, 3, \cdots, m$$

$$np \sum_{y=0}^{m} (y+1)^{k-1} \binom{m}{y} p^{y} (1-p)^{m-y} = np \sum_{y=0}^{m} (y+1)^{k-1} p(x)$$

$$= np \cdot E \Big[(Y+1)^{k-1} \Big]$$

Concluímos então:

$$E(X^k) = np \cdot E \left[(Y+1)^{k-1}
ight] \qquad \qquad Y \sim B(n-1;p)$$

Usando essa formula para calcular $E(X^2)$:

$$E(X^2) = np \cdot E(Y+1) = np \cdot [(n-1)p+1]$$

 $\blacktriangledown Var(X)$

$$Var(X) = \mathbb{E}(X^2) - \mu^2$$

= $n^2p^2 + np(1-p) - (np)^2$
= $\mathbf{np}(\mathbf{1} - \mathbf{p})$

• Proposição:

Se
$$X \sim B(n,p)$$
 então
$$\mathbb{P}(X=x+1) = \frac{p}{1-p} \frac{n-x}{x+1} \mathbb{P}(X=x)$$

▼ Exemplo

▼ Ex 1: Sabe-se que a eficiência de uma vacina é de 80%. Um grupo de 3 indivíduos é sorteado, dentre a **população vacinada**, e cada um é submetido a testes para averiguar se está imunizado. Nesse caso, consideramos como sucesso a imunização.

$$X_i = \begin{cases} 1, & \text{indivíduo } i \text{ está imunizado} \\ 0, & \text{caso contrário} \end{cases}$$

- Pelo enunciado, sabe-se que $P(X_i=1)=p=0,8.$
- Os três $\{1,2,3\}$ indivíduos são independentes, cada um vai ter uma v.a $\{X_1,X_2,X_3\}$, que assumem valor 1 se o indivíduo está imunizado ou 0 caso contrário.

- A v.a X desse experimento vai ser igual ao número de indivíduos imunizados no grupo, X poderá assumir valores $\{0,1,2,3\}$.
- $\bullet \ \ \mathsf{Note} \ \mathsf{que} \ X = X_1 + X_2 + X_3 \ .$
- Logo o número de casos possíveis são:

$\mathbb{P}(\text{evento})$	X
$(0,2)^3$	0
$0,8 \times (0,2)^2$	1
$0,8 \times (0,2)^2$	1
$0,8 \times (0,2)^2$	1
$(0,8)^2 \times 0,2$	2
$(0,8)^2 \times 0,2$	2
$(0,8)^2 \times 0,2$	2
$(0,8)^3$	3
	$(0,2)^{3}$ $0,8 \times (0,2)^{2}$ $0,8 \times (0,2)^{2}$ $0,8 \times (0,2)^{2}$ $(0,8)^{2} \times 0,2$ $(0,8)^{2} \times 0,2$ $(0,8)^{2} \times 0,2$

• Assim, as probabilidades de cada valor possível de X são:

ullet E o comportamento de X é completamente determinado pela função:

$$p(x) = P(X = x) = {3 \choose x} (0,8)^x (1-0,8)^{n-x}$$
 \forall $x = \{0,1,2,3\}$

Distribuição Hipergeométrica

▼ Definição

$$p(x) = \mathbb{P}(X = x) = \frac{\binom{r}{x} \binom{N - r}{n - x}}{\binom{N}{n}}$$

- Este é um modelo para amostragem sem reposição de uma população com um número finito de elementos que podem ser classificados em duas categorias mutuamente excludentes.
- Detalhes:
 - \circ N objetos
 - \circ r possuem uma característica A
 - $\circ \ N-r$ possuem uma característica B
 - \circ Um grupo de n elementos é escolhido ao acaso, dentre os N possíveis, sem reposição.
- **Objetivo:** Calcular a probabilidade de que este grupo de n elementos contenha x elementos com a característica A.
- Seja X a v.a representando o número de elementos com a característica A, dentre os nelementos selecionados. Dizemos que X tem distribuição hipergeométrica e sua distribuição de probabilidade é dada por:

$$p(x) = \mathbb{P}(X = x) = \frac{\binom{r}{x} \binom{N - r}{n - x}}{\binom{N}{n}} \quad \forall$$

$$\max\{0, n - (N - r)\} \le x \le \min\{r, n\}.$$

- Notação: $X \sim Hip(N,n,r)$
- Se $X \sim Hip(N,n,r)$ então:
 - $\circ \ \mathbb{E}(X) = n rac{r}{N}$
 - $Var(X) = n \frac{r}{N} (1 \frac{r}{N}) (\frac{N-n}{N-1})$

Distribuição Geométrica

- **▼** Definição
 - Consideremos uma sequência ilimitada de ensaios de Bernoulli, com probabilidade de sucesso p em cada ensaio.
 - Realizamos os ensaios até que ocorra o primeiro sucesso.
 - Seja X a variável aleatória que conta o número de ensaios até o primeiro sucesso.
 - ullet Então X segue Distribuição Geométrica com parâmetro 0 e a sua função de probabilidade é dada por:

$$\mathbb{P}(X = x) = p(1-p)^{x-1}$$
 para todo $x = 1, 2, 3, ...$

$$F(x) = 1 - (1 - p)^x$$

- Notação: $X \sim Geo(p)$.
- Propriedades:
 - \circ $E(X) = \frac{1}{p}$
 - $E(X^2) = \frac{2-p}{p^2}$
 - $\circ Var(X) = \frac{1-p}{n^2}$
- Demostração:
 - $\circ \ E(X) = \frac{1}{p}.$

•
$$E(X^2) = \frac{2-p}{p^2}$$

• O r-ésimo momento fatorial de uma v.a. X é definido por:

$$\mathbb{E}\Big[(X)_r\Big] = \mathbb{E}\Big[X(X-1)(X-2)...(X-r+1)\Big]$$

• Por exemplo, para r=2, temos:

$$\mathbb{E}\Big[(X)_2\Big] = \mathbb{E}\Big[X(X-1)\Big] = \sum_{x=1}^{\infty} x(x-1)\mathbb{P}(x)$$

Note que:

$$\mathbb{E}\Big[X(X-1)\Big] = \mathbb{E}\Big[X^2 - X\Big] = \mathbb{E}(X^2) - \mathbb{E}(X)$$

Logo:

$$\mathbb{E}(X^2) = \mathbb{E}\Big[X(X-1)\Big] + \mathbb{E}(X)$$

- Agora, vamos encontra o valor de $\mathbb{E}\left[X(X-1)\right]$.
- Pela definição de esperança temos que:

$$\mathbb{E}\Big[X(X-1)\Big] = \sum_{x=1}^{\infty} x(x-1)\mathbb{P}(x)$$

Pela definição de função de probabilidade da Distribuição Geométrica, temos que $\mathbb{P}(x)=p(1-p)^{x-1}$, onde p é o parâmetro da Distribuição Geométrica.

$$\sum_{x=1}^{\infty} x(x-1) \mathbb{P}(x) = \sum_{x=1}^{\infty} x(x-1) p(1-x)^{x-1} = p \sum_{x=1}^{\infty} x(x-1) (1-x)^{x-1}$$

• Agora vamos substituir (1-p) por q e vamos multiplicar e dividir por q:

$$p\sum_{x=1}^{\infty}x(x-1)(1-x)^{x-1}=p\sum_{x=1}^{\infty}x(x-1)\,q^{x-1}\;rac{q}{q}=pq\sum_{x=1}^{\infty}x(x-1)\,q^{x-2}$$

• Note que a derivada segunda de q^x é igual a:

$$\frac{d^2}{dq^2}(q^x) = \frac{d}{dq}(xq^{x-1}) = x(x-1)q^{x-2}$$

Logo temos:

$$pq\sum_{x=1}^{\infty}x(x-1)\,q^{x-2}=\;pq\sum_{x=1}^{\infty}rac{d^2}{dq^2}q^x=\;pq\;rac{d^2}{dq^2}\sum_{x=1}^{\infty}q^x=\;pq\;rac{d^2}{dq^2}\Big[q^2+q^3+q^4+...\Big]$$

Note que o somatório é uma PG, logo a soma dos termos de uma PG infinita é data pela formula $\frac{a_1}{1-r}$, nesse caso temos então $\left(\frac{q^2}{1-q}\right)$. Essa fórmula só é válida para progressões geométricas decrescentes, com 0 < q < 1:

$$pq \; rac{d^2}{dq^2} \Big[q^2 + q^3 + q^4 + ... \Big] = \; pq \; rac{d^2}{dq^2} igg(rac{q^2}{1-q} igg)$$

Resolvendo a derivada, temos:

$$pq \frac{d^2}{dq^2} \left(\frac{q^2}{1-q} \right) = pq \frac{2}{(1-q)^3} = \frac{2pq}{(1-q)^3}$$

• Substituindo o q pelo valor original q=1-p:

$$rac{2pq}{(1-q)^3} = rac{2p(1-p)}{ig(1-(1-p)ig)^3} = rac{2p(1-p)}{(1-1+p)^3} = rac{2p(1-p)}{p^3} = rac{2(1-p)}{p^2}$$

• Pronto agora vamos voltar para a formula do $\mathbb{E}(X^2)$:

$$\mathbb{E}(X^2) = \mathbb{E}\Big[X(X-1)\Big] + \mathbb{E}(X) = \frac{2(1-p)}{p^2} + \frac{1}{p} = \frac{2(1-p)+p}{p^2} = \frac{2-2p+p}{p^2} = \frac{2-p}{p^2}$$

 $o Var(X) = \frac{1-p}{p^2}.$

Demonstração:

$$Var(X) = E(X^2) - E^2(X) = 2 - P - (1)^2 = 2 - P - 1 = 1 - P$$

 p_2 p_2 p_2 p_2 p_2

• Proposição:

Seja $X \sim \text{Geo}(p)$. Para quaisquer números inteiros positivos s e t, vale

$$\mathbb{P}(X \ge s + t | X \ge s) = \mathbb{P}(X \ge t).$$

- Essa propriedade é conhecida como Falta de Memória Geométrica.
- Ela indica a maneira como a variável incorpora a informação anterior.
- Em termos ilustrativos, podemos considerar que a variável "lembra" do presente, mais "esqueceu" do que ocorreu no passado.

Por exemplo, se X representasse a espera em dias para a ocorrência de um certo evento, a probabilidade condicional acima representaria a probabilidade de espera de pelo menos m+n dias, sabendo que o evento não ocorreu antes de m dias. A propriedade da falta de memória estabelece que essa probabilidade é a mesma de esperar pelo menos n dias.

Para verificar a propriedade, observe que

$$P(X \ge m + n \mid X \ge m) = \frac{P([X \ge m + n] \cap [X \ge m])}{P(X \ge m)} = \frac{P(X \ge m + n)}{P(X \ge m)}.$$

A função de probabilidade de X é dada por $P(X=x)=p(1-p)^x$. Então,

$$P(X \ge m + n \mid X \ge m) = \frac{(1 - p)^{m+n}}{(1 - p)^m} = (1 - p)^n = P(X \ge n).$$

- o Pode ainda demonstrar que o modelo Geométrico é o único modelo discreto com a propriedade da falta de memória.
- Uma generalização do modelo Geométrico é o Modelo Binomial Negativo.

Distribuição Binomial Negativa (Pascal)

- **▼** Definição
 - Esta distribuição pode ser considerada como uma generalização da distribuição geométrica.
 - Considere uma sequência ilimitada de ensaios de Benoulli, e seja X a v.a. que conta o número de ensaios até a ocorrência de r sucessos.
 - Nessas condições X é dita ter distribuição **binomial negativa**.
 - E sua função de probabilidade é dada por:

$$\mathbb{P}(x) = \mathbb{P}(X = x) = inom{x-1}{r-1} p^r (1-p)^{x-r} \qquad orall \ x = r, r+1, r+2, ...$$

- Notação: $X \sim BN(r,p)$
- · Logo temos:
 - $\circ E(X) = \frac{r}{p}$
 - $\circ \ Var(X) = rac{r(1-p)}{p^2}$
- Obs: A distribuição geométrica equivale a:

$$Geo(p) \equiv BN(1,p)$$

• A distribuição binomial negativa pode, também, ser definida em termos da v.a Y que conta o número de fracassos antes do r-ésimo sucesso. Esta formulação é equivalente a definição anterior, uma vez que, Y = X - r.

$$P(y) = P(Y = y) = {r + y - 1 \choose y} p^{r} (1-p)^{y}, \quad \forall y = 0, 1, ...$$

• Podemos ver que:

$$\sum_{x=r}^{\infty} P(X=x) = \sum_{x=r}^{\infty} {x-1 \choose r-1} p^r (1-p)^{x-r} = 1$$
 (1)

Pela própria definição da Função de Probabilidade fica provado que a equação (1) é igual a 1.

- **▼ Demonstração**: Mais podemos mostra que a equação (1) é igual a 1:
 - Para podemos fazer essa demonstração, vamos precisar primeiro mostrar alguns teoremas.

- Teorema Binomial: $(1+x)^r=1+rx+\binom{r}{2}x^2+\binom{r}{3}x^3+\ldots$
 - o Para provamos essa igualdade, vamos considera $f(x) = (1+x)^r$, e vamos usar a serie de Taylor, mais especificamente a serie de Mac-laurim.
 - Então temos:

$$(1+x)^r = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + f^3(0)\frac{x^3}{3!} + \dots + f^r(0)\frac{x^r}{r!}$$

$$= 1 + rx + \frac{r(r-1)}{2!}x^2 + \frac{r(r-1)(r-2)}{3!}x^3 + \dots$$

note que:

$$\binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{n(n-1)(n-2)\cdots(n-p+1)(n-p)!}{p!(n-p)!} = \frac{n(n-1)(n-2)\cdots(n-p+1)}{p!}$$

então, usando essa afirmação na equação anterior temos:

$$(1+x)^r = 1 + rx + \frac{r(r-1)}{2!}x^2 + \frac{r(r-1)(r-2)}{3!}x^3 + \cdots$$
$$= 1 + rx + \binom{r}{2}x^2 + \binom{r}{3}x^3 + \cdots$$

logo fica provado o teorema binomial.

• Note que essa serie pode ser representado por um somatório:

$$(1+x)^r = 1 + rx + inom{r}{2} x^2 + inom{r}{3} x^3 + \ ... = \sum_{k=0}^{\infty} inom{r}{k} x^k$$

- Agora vamos demostrar que:
- Demostração: $(1-x)^{-r} = \sum_{k=0}^{\infty} {r+k-1 \choose k} x^k$
 - $\circ~$ Sabemos que pelo teorema binomial podemos escrever o $(1-x)^{-r}$ como:

$$(1-x)^{-r} = \sum_{k=0}^{\infty} {-r \choose k} (-x)^k$$

para facilitar as contas vamos retira o sinal negativo do x:

$$(1-x)^{-r} = \sum_{k=0}^{\infty} {\binom{-r}{k}} (-x)^k = \sum_{k=0}^{\infty} (-1)^k {\binom{-r}{k}} x^k$$
 (2)

- o Agora vamos demostrar que $\binom{-r}{k}(-1)^k = \binom{r+k-1}{k}$
- Temos que

$$\binom{-r}{k} (-1)^k = \frac{-r(-r-1)(-r-2)\cdots(-r-k+1)(-r-k)!}{k!(-r-k)!} (-1)^k$$

$$= \frac{-r(-r-1)(-r-2)\cdots(-r-k+1)}{k!} (-1)^k$$

podemos colocar o menos em evidência:

$${\binom{-r}{k}(-1)^k = \frac{-r(-r-1)(-r-2)\cdots(-r-k+1)}{k!}(-1)^k}$$
$$= (-1)^k \frac{r(r+1)(r+2)\cdots(r+k-1)}{k!}(-1)^k$$

note que $(-1)^k \cdot (-1)^k = 1$ para todo k impar ou par.

$$\binom{-r}{k}(-1)^k = \frac{r(r+1)(r+2)\cdots(r+k-1)}{k!}\cdot 1$$

agora vamos reescrever a equação acima de traz para frente:

$${\binom{-r}{k}}(-1)^k = \frac{r(r+1)(r+2)\cdots(r+k-1)}{k!} \cdot 1$$
$$= \frac{(r+k-1)(r+k-2)\cdots(r+2)(r+1)r}{k!}$$

veja que o termo depois do r é o (r-1)! que foi cancelado com o fatorial do denominador:

$$\binom{-r}{k} (-1)^k = \frac{(r+k-1)(r+k-2)\cdots(r+2)(r+1)r}{k!}$$

$$= \frac{(r+k-1)(r+k-2)\cdots(r+2)(r+1)r (r-1)!}{k!(r-1)!}$$

$$= \frac{(r+k-1)!}{k!(r-1)!}$$

$$= \binom{r+k-1}{k}$$

Agora podemos volta pra a equação (2), relembrando ela era:

$$(1-x)^{-r} = \sum_{k=0}^{\infty} (-1)^k {-r \choose k} x^k$$

temos então a equação (3):

$$(1-x)^{-r} = \sum_{k=0}^{\infty} (-1)^k {r \choose k} x^k = \sum_{k=0}^{\infty} {r+k-1 \choose k} x^k$$
 (3)

Pronto, agora podemos prova a equação (1), relembrando ela era:

$$\sum_{x=r}^{\infty} {x-1 \choose r-1} p^r (1-p)^{x-r} = 1$$

 $\circ~$ Se $X \sim BN(r,p)$, então

$$\mathbb{P}(X=x)=inom{x-1}{r-1}p^r(1-p)^{x-r} \qquad orall \; \; x=r,r+1,r+2,...$$

Então:

$$\sum_{x=r}^{\infty} {x-1 \choose r-1} p^r (1-p)^{x-r} = p^r \sum_{x=r}^{\infty} {x-1 \choose r-1} (1-p)^{x-r}$$
$$= p^r \sum_{x=r}^{\infty} {x-1 \choose r-1} q^{x-r} \qquad q = (1-p)$$

 \circ Vamos substituir o x-r por y, e por consequência o x=y+r:

$$p^r \sum_{x=r}^{\infty} inom{x-1}{r-1} q^{x-r} = p^r \sum_{x=r}^{\infty} inom{r+y-1}{r-1} q^y$$

• Essa combinação pode ser rescrita como:

$$\binom{r+y-1}{r-1} = \frac{(r+y-1)!}{(r-1)! \left\lceil r+y-1-(r-1) \right\rceil !} = \frac{(r+y-1)!}{(r-1)! \ y!} = \binom{r+y-1}{y}$$

· Logo temos:

$$p^r \sum_{x=r}^{\infty} \, inom{r+y-1}{r-1} \, q^y \; = \; p^r \sum_{x=r}^{\infty} inom{r+y-1}{y} \, q^y$$

o Pela equação (3) sabemos que:

$$p^r \sum_{x=r}^{\infty} inom{r+y-1}{y} q^y = p^r (1-q)^{-r} = rac{p^r}{(1-q)^r} = rac{p^r}{ig(1-(1-p)ig)^r} = rac{p^r}{p^r} = 1$$

- Curiosidade:
 - Pascal ou binomial negativa?
 - Jain (1991) (página 492) considera Pascal e binomial negativa distintas. A binomial negativa é definida como sendo o número de falhas antes de ocorrerem r sucessos.
 - o Grinstead e Snell (1997), página 186, chamam a Pascal de binomial negativa.
 - o Para Meyer(1983), página 204, a distribuição de Pascal pode ser chamada de binomial negativa.

Distribuição Poisson

▼ Definição

- É um modelo discreto que expressa a probabilidade de um dado número de eventos ocorrer em um intervalo contínuo (que pode ser tempo ou espaço) se esses eventos ocorrem com uma taxa média conhecida e independentemente do tempo decorrido desde o último evento.
- Seja X a v.a aleatória que conta a ocorrência de um determinado evento em um intervalo contínuo. Então X tem distribuição de Poisson com parâmetro λ e sua distribuição de probabilidade é dada por:

$$\mathbb{P}(X=x) = \frac{e^{-\lambda}\lambda^x}{x!} \quad \forall \quad x = 0, 1, 2, \dots$$

em que, e é a base do logaritmo natural (e=2,71828...)

- ullet λ é um número real, igual ao número esperado de ocorrências num dado intervalo de tempo.
- Propriedades importantes:
 - $\circ \ e^{\lambda} = \sum_{x=0}^{\infty} rac{\lambda^x}{x!}$, demostramos por serie de Mac-Lourim:

$$e^{\lambda} = \ 1 + \lambda + rac{\lambda^2}{2!} + rac{\lambda^3}{3!} + \dots = \ \sum_{x=0}^{\infty} rac{\lambda^x}{x!}$$

$$e^{-\lambda} = 1 - \lambda + \frac{\lambda^2}{2!} - \frac{\lambda^3}{3!} + \cdots$$

$$\bullet \ \sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} = e^{-\lambda} \cdot \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} \cdot e^{\lambda} = 1$$

$$\lim_{x\to\infty} \left(1-\frac{\lambda}{n}\right)^{-x} = \lim_{x\to\infty} \frac{1}{\left(1-\frac{\lambda}{n}\right)^x} = \lim_{x\to\infty} \left[\frac{1}{\left(1-\frac{\lambda}{n}\right)} \cdot \frac{1}{\left(1-\frac{\lambda}{n}\right)} \cdots \frac{1}{\left(1-\frac{\lambda}{n}\right)}\right] = \lim_{x\to\infty} \left[\frac{1}{1-0} \cdot \frac{1}{1-0} \cdots \frac{1}{1-0}\right] = 1$$

$$\circ \lim_{x \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}$$

$$\circ \lim_{x \to \infty} \frac{(n)_x}{n^x} = 1$$

$$\lim_{x \to \infty} \frac{(n)_x}{n^x} = \lim_{x \to \infty} \frac{n}{n} \frac{(n-1)}{n} \frac{(n-2)}{n} \cdots \frac{(n-x+1)}{n} = \lim_{x \to \infty} 1 \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{x-1}{n}\right) = (1-0)(1-0) \cdots (1-0) = 1$$

• Demostração para $\mathbb{P}(X=x)$:

A variável aleatória de Poisson encontra uma tremenda faixa de aplicações em diversas áreas porque pode ser usada como uma aproximação para a variável aleatória binomial com parâmetros (n, p) no caso particular de n grande e p suficientemente **pequeno** para que np tenha **tamanho moderado**. Para ver isto, suponha que X seja uma variável aleatória **binomial** com parâmetros (n, p), e suponha que $\lambda = np$. Então:

$$\mathbb{P}(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

$$= \frac{n!}{x!(n - x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n - x} \qquad *p = \frac{\lambda}{n}$$

$$= \frac{n(n - 1)(n - 2) \cdots (n - x + 1)}{x!} \cdot \frac{\lambda^x}{n^x} \cdot \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-x}$$

$$= \frac{(n)_x}{n^x} \cdot \frac{\lambda^x}{x!} \cdot \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-x}$$

$$= 1 \cdot \frac{\lambda^x}{x!} \cdot e^{-\lambda} \cdot 1$$

$$= \frac{e^{-\lambda} \lambda^x}{x!}$$

- Notação: $X \sim P(\lambda)$.
 - \circ $E(X) = \lambda$
 - \bullet $E(X^2) = \lambda(\lambda+1)$
 - $\circ Var(X) = \lambda$
- Demostração da ${\cal E}(X)$, ${\cal E}(X^2)$, ${\cal V}\!ar(X)$

$$\blacktriangledown E(X) = \lambda$$

$$\mathbb{E}(X) = \sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}$$

$$= \sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^{x-1} \cdot \lambda}{x(x-1)!}$$

$$= \lambda e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}$$

$$= \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}$$

$$= \lambda e^{-\lambda} \cdot e^{\lambda}$$

$$= \lambda$$

 $\blacktriangledown E(X^2) = \lambda(\lambda + 1)$

$$\mathbb{E}(X^2) = \sum_{x=0}^{\infty} x^2 \cdot \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

$$= \sum_{x=0}^{\infty} x^2 \cdot \frac{e^{-\lambda} \cdot \lambda^{x-1} \cdot \lambda}{x(x-1)!}$$

$$= \lambda \sum_{x=0}^{\infty} \frac{x \cdot e^{-\lambda} \lambda^{x-1}}{(x-1)!}$$

$$= \lambda \sum_{j=0}^{\infty} \frac{(j+1)e^{-\lambda} \lambda^j}{j!} \qquad * j = x-1$$

$$= \lambda \left[\sum_{j=0}^{\infty} \frac{je^{-\lambda} \lambda^j}{j!} \right] + \left[\sum_{j=0}^{\infty} \frac{e^{-\lambda} \lambda^j}{j!} \right]$$

$$= \lambda(\lambda + 1)$$

 $\blacktriangledown Var(X) = \lambda$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \lambda(\lambda + 1) - \lambda^2 = \lambda^2 + \lambda - \lambda^2 = \lambda^2$$

- lacktriangle Exemplo: Seja X uma v.a.d., tal que $p(x)=rac{e^{-\lambda}\lambda^x}{x!(1-e^{-\lambda})}$ para $x=1,2,3,\cdots$
 - i. Mostre que p(x) é de fato uma função de probabilidade.

$$\sum_{x=1}^{\infty} \frac{e^{-\lambda} \cdot \lambda^x}{x!(1-e^{-\lambda})} = \frac{e^{-\lambda}}{(1-e^{-\lambda})} \sum_{x=1}^{\infty} \frac{\lambda^x}{x!}$$

Note que $\sum_{x=1}^{\infty} \frac{\lambda^x}{x!}$ é igual a $\sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$ menos o valor da equação quando o x=0 Logo o somatório $\sum_{x=1}^{\infty} \frac{\lambda^x}{x!}$ vai ser igual a:

$$\sum_{x=1}^{\infty} \frac{\lambda^x}{x!} = \left(\sum_{x=0}^{\infty} \frac{\lambda^x}{x!}\right) - \frac{\lambda^0}{0!} = e^{\lambda} - 1$$

Então,

$$\frac{e^{-\lambda}}{(1 - e^{-\lambda})} \sum_{x=1}^{\infty} \frac{\lambda^x}{x!} = \frac{e^{-\lambda}}{(1 - e^{-\lambda})} \cdot (e^{\lambda} - 1) = \frac{e^0 - e^{-\lambda}}{(1 - e^{-\lambda})} = \frac{1 - e^{-\lambda}}{1 - e^{-\lambda}} = \mathbf{1}$$

ii. Determine $\mathbb{E}(X)$ e Var(X).

Para a $\mathbb{E}(X)$ temos:

$$\mathbb{E}(X) = \sum_{x=1}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^x}{x!(1 - e^{-\lambda})}$$

$$= \frac{e^{-\lambda}}{(1 - e^{-\lambda})} \sum_{x=1}^{\infty} x \cdot \frac{\lambda^{(x-1)} \lambda}{x(x-1)!}$$

$$= \frac{\lambda e^{-\lambda}}{(1 - e^{-\lambda})} \sum_{x=1}^{\infty} \frac{\lambda^{(x-1)}}{(x-1)!}$$

$$= \frac{\lambda e^{-\lambda}}{(1 - e^{-\lambda})} \sum_{y=0}^{\infty} \frac{\lambda^y}{y!} \qquad *y = x - 1 \quad \forall y = 0, 1, 2, 3, \cdots$$

$$= \frac{\lambda e^{-\lambda}}{(1 - e^{-\lambda})} \cdot e^{\lambda}$$

$$= \frac{\lambda}{1 - e^{-\lambda}}$$

Para $\mathbb{E}(X^2)$ temos:

$$\mathbb{E}\left[X(X-1)\right] = \sum_{x=1}^{\infty} x(x-1) \cdot \frac{e^{-\lambda} \cdot \lambda^x}{x!(1-e^{-\lambda})}$$

$$= \frac{e^{-\lambda}}{(1-e^{-\lambda})} \sum_{x=1}^{\infty} x(x-1) \cdot \frac{\lambda^{(x-2)}\lambda^2}{x(x-1)(x-2)!}$$

$$= \frac{\lambda^2 e^{-\lambda}}{(1-e^{-\lambda})} \sum_{x=1}^{\infty} \frac{\lambda^{(x-2)}}{(x-2)!}$$

$$= \frac{\lambda^2 e^{-\lambda}}{(1-e^{-\lambda})} \sum_{y=0}^{\infty} \frac{\lambda^y}{y!} \qquad *y = x-2 \quad \forall y = 0, 1, 2, 3, \cdots$$

$$= \frac{\lambda^2 e^{-\lambda}}{(1-e^{-\lambda})} \cdot e^{\lambda}$$

$$= \frac{\lambda^2}{1-e^{-\lambda}}$$

Note que,

$$\mathbb{E}ig[X(X-1)ig] = \mathbb{E}(X^2) - \mathbb{E}(X)$$

Logo,

$$\mathbb{E}(X^2) = \mathbb{E}\Big[X(X-1)\Big] - \mathbb{E}(X) = \frac{\lambda^2}{\mathbf{1} - \mathbf{e}^{-\lambda}} - \frac{\lambda}{\mathbf{1} - \mathbf{e}^{-\lambda}} = \frac{\lambda^2 + \lambda}{(\mathbf{1} - \mathbf{e}^{-\lambda})}$$

Para Var(X) temos:

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

$$= \frac{\lambda^2 + \lambda}{(\mathbf{1} - \mathbf{e}^{-\lambda})} - \left(\frac{\lambda}{1 - e^{-\lambda}}\right)^2$$

$$= \frac{\lambda^2 + \lambda}{(\mathbf{1} - \mathbf{e}^{-\lambda})} - \frac{\lambda^2}{(1 - e^{-\lambda})^2}$$

Dev - Probabilidade I 33

Função Geradora de Probabilidade

- **▼** Definição
 - Em teoria de probabilidade, a **Função Geradora de Probabilidade (f.g.p.)** de uma variável aleatória discreta é uma representação em **série de potências** da função de probabilidade da uma variável aleatória discreta que assume somente valores não-negativos.
 - Se X for uma variável aleatória discreta assumindo valores nos inteiros não negativos $\{0,1,\cdots\}$, então a função geradora de probabilidade de X é definida como

$$G(t) = \ \mathbb{E}(t^x) = \ \sum_x t^x \ \mathbb{P}(X=x)$$

Demostração:

$$G(t) = P_0 t^0 + P_1 t^1 + P_2 t^2 + P_3 t^3 + \dots + P_n t^n$$

$$= P_0 + P_1 t + P_2 t^2 + P_3 t^3 + \dots + P_n t^n$$

$$= \sum_{x} t^x \cdot p(x)$$

$$= \mathbb{E}(t^x)$$

 $\bullet\,$ Ex: Seja X uma v.a.d. com a seguinte distribuição de probabilidade.

X	0	1	2	 n
p(x)	P_0	P_1	P_2	 P_n

Podemos associar as probabilidades aos coeficientes de um polinômio da seguinte forma:

$$G(t) = P_0 + P_1 t + P_2 t^2 + P_3 t^3 + \dots + P_n t^n$$

Note que para t=1 temos:

$$G(1) = P_0 + P_1 + P_2 + P_3 + \dots + P_n = 1$$

- **▼** Propriedades:
 - $G(1) = P_0 + P_1 + P_2 + P_3 + \dots + P_n = 1$
 - $G(t)' = \sum_{x} x t^{x-1} p(x)$

$$G(t) = P_0 + P_1 t + P_2 t^2 + P_3 t^3 + P_4 t^4 + \dots + P_n t^n$$

$$G(t)' = P_1 + 2P_2t + 3P_3t^2 + 4P_4t^3 + \dots + nP_nt^{n-1}$$

•
$$G(t)'' = \sum_{x} x(x-1) t^{x-2} p(x)$$

$$G(t)'' = 2P_2 + 6P_3t + 12P_4t^2 + \dots + n(n-1)P_nt^{n-2}$$

• $\mathbb{E}(X) = G(1)'$

$$G(t) = P_0 + P_1 t + P_2 t^2 + P_3 t^3 + \dots + P_n t^n$$

$$G(t)' = P_1 + 2P_2 t + 3P_3 t^2 + 4P_4 t^3 + \dots + nP_n t^{n-1}$$

$$G(1)' = P_1 + 2P_2 + 3P_3 + 4P_4 + \dots + nP_n = \sum_{x=1}^{n} x \ p(x) = \mathbb{E}(\mathbf{X})$$

• $\mathbb{E}\Big[X(X-1)\Big] = G(1)''$

$$G(1)'' = 2P_2 + 6P_3 \cdot 1 + 12P_4 \cdot 1^2 + \dots + n(n-1)P_n \cdot 1^{n-2}$$

$$= 2P_2 + 6P_3 + 12P_4 + \dots + n(n-1)P_n$$

$$= \sum_{x=2} x(x-1) \cdot p(x)$$

$$= \mathbb{E} \left[\mathbf{X}(\mathbf{X} - \mathbf{1}) \right]$$

• $Var(X) = G(1)'' + G(1)' - \left[G(1)'\right]^2$

$$G(1)'' = \mathbb{E}\left[X(X-1)\right] = \mathbb{E}(X^2) - \mathbb{E}(X)$$

$$\mathbb{E}(X^2) = G(1)'' + G(1)' = \mathbb{E}\left[X(X-1)\right] + \mathbb{E}(X) = \mathbb{E}(X^2) - \mathbb{E}(X) + \mathbb{E}(X) = \mathbb{E}(X^2)$$

$$Var(X) = G(1)'' + G(1)' - \left[G(1)'\right]^2$$

- $G(0) = P_0 = p(0)$
- $G(0)' = P_1 = p(1)$
- $G(0)'' = 2P_2$
- $G(0)^{(3)} = 6P_3$
- $\bullet \ G(0)^{(k)} = k! P_k$
- $\frac{G(0)''}{2} = P_2 = p(2)$
- $\frac{G(0)''}{6} = P_3 = p(3)$
- $p(x) = P_x = \frac{G(0)^{(x)}}{x!}$
- **▼** Binomial

$$G(t) = \mathbb{E}(t^x) = \sum_{x=0}^n t^x \ p(x) = \sum_{x=0}^n t^x \ \binom{n}{x} p^x (1-p)^{n-x} = \sum_{x=0}^n \binom{n}{x} (tp)^x (1-p)^{n-x}$$

Note que no último somatório temos o termo geral de um binômio de newton, usando a formula $(a+b)^n = \sum_{p=0}^n \binom{n}{p} a^{n-p} \ b^p$, temos:

$$\sum_{x=0}^{n} \binom{n}{x} (tp)^{x} (1-p)^{n-x} = \left[pt + (1-p) \right]^{n}$$

Logo,

$$G(t) = \Big[pt + (1-p) \Big]^n$$

• Vamos ver agora, que as propriedades citadas anteriormente sobre função geradora, são verdadeira:

$$\circ \ G(t) = \left[pt + (1-p) \right]^n$$

•
$$G(1) = 1$$

$$G(1) = \left[p \cdot 1 + (1-p) \right]^n = \left[p + 1 - p \right]^n = 1^n = 1$$

$$\circ \ G(t)' = np \Big[pt + (1-p) \Big]^{n-1}$$

$$G(t)' = \left(\left[pt + (1-p) \right]^n \right)' = n \left[pt + (1-p) \right]^{n-1} \cdot (pt + 1-p)' = n \left[pt + (1-p) \right]^{n-1} \cdot (p \cdot 1 + 0 - 0) = n \left[pt + (1-p) \right]^{n-1} \cdot p = np \left[pt + (1-p) \right]^{n-1} \cdot p$$

$$\circ \ G(1)' = \mathbb{E}(X) = np$$

$$G(1)' = np \Big[p \cdot 1 + (1-p) \Big]^{n-1} = np \Big[p + 1 - p \Big]^{n-1} = np \cdot 1^{n-1} = np$$

•
$$G(t)'' = n(n-1)p^2 \left[pt + (1-p) \right]^{n-2}$$

•
$$G(1)'' = n(n-1)p^2 = \mathbb{E}[X(X-1)]$$

$$G(1)'' = n(n-1)p^2 \Big[p \cdot 1 + (1-p) \Big]^{n-2} = n(n-1)p^2 \Big[p + 1 - p \Big]^{n-2} = n(n-1)p^2 (1)^{n-2} = n(n-1)p^2$$

•
$$Var(X) = G(1)'' + G(1)' - \left[G(1)'\right]^2$$

$$Var(X) = G(1)'' + G(1)' - \left[G(1)'\right]^2 = n(n-1)p^2 + np - (np)^2 = n^2p^2 - np^2 + np - n^2p^2 = -np^2 + np = np(1-p)$$

$$p(0) = G(0) = (1-p)^n$$

•
$$p(1) = G(0)' = np(1-p)^n$$

•
$$p(2) = \frac{G(0)''}{2} = \frac{n(n-1)}{2} \cdot p^2 (1-p)^{n-2}$$

$$p(x) = \frac{G(0)^{(x)}}{x!}$$

▼ Geométrica

$$G(t) = \mathbb{E}(t^{x})$$

$$= \sum_{x=1}^{n} t^{x} p(x)$$

$$= \sum_{x=1}^{n} t^{x} p(1-p)^{x-1}$$

$$= p \sum_{x=1}^{n} t^{x} (1-p)^{x-1} \cdot \frac{(1-p)}{(1-p)}$$

$$= \frac{p}{(1-p)} \sum_{x=1}^{n} t^{x} (1-p)^{x}$$

$$= \frac{p}{(1-p)} \sum_{x=1}^{n} \left[t (1-p) \right]^{x}$$

$$= \frac{p}{(1-p)} \left[t(1-p) + \left(t(1-p) \right)^{2} + \left(t(1-p) \right)^{3} + \cdots \right]$$

$$= \frac{p}{(1-p)} \cdot \frac{t(1-p)}{1-t(1-p)}$$

$$= \frac{pt}{1-t(1-p)}$$

- Note que esse resultado só é valido para t(1-p)<1, logo o $t<\frac{1}{1-p}$.
- **▼** Propriedades:

•
$$G(t) = \frac{pt}{1 - t(1 - p)}$$

•
$$G(1) = 1$$

$$G(1) = \frac{p}{1 - (1 - p)} = \frac{p}{1 - 1 + p} = \frac{p}{p} = 1$$

•
$$G(t)' = \frac{p \cdot (1 - t + pt) - pt \cdot (-1 + p)}{(1 - t + pt)^2} = \frac{p}{(1 - t + pt)^2}$$

$$G(t)' = \left(\frac{pt}{1 - t(1 - p)}\right)' = \left(\frac{pt}{1 - t + pt}\right)' = \frac{p \cdot (1 - t + pt) - pt \cdot (-1 + p)}{(1 - t + pt)^2} = \frac{p}{(1 - t + pt)^2}$$

• $G(1)' = \mathbb{E}(X) = \frac{1}{p}$

$$G(1)' = \frac{p \cdot (1 - 1 + p \cdot 1) - p \cdot 1 \cdot (-1 + p)}{(1 - 1 + p \cdot 1)^2} = \frac{p^2 + p - p^2}{p^2} = \frac{p}{p^2} = \frac{1}{p}$$

• $G(t)'' = \frac{2p-2p^2}{(1-t+pt)^3}$

$$G(t)'' = \left(\frac{p}{(1-t+pt)^2}\right)' = \frac{-p \cdot 2(1-t+pt)(-1+p)}{(1-t+pt)^4} = -\frac{2p(-1+p)}{(1-t+pt)^3} = -\frac{-2p+2p^2}{(1-t+pt)^3} = \frac{2p-2p^2}{(1-t+pt)^3}$$

• $G(1)'' = \mathbb{E}\left[X(X-1)\right] = \frac{2-2p}{p^2}$

$$G(1)'' = \frac{2p - 2p^2}{(1 - 1 + p \cdot 1)^3} = \frac{2p - 2p^2}{p^3} = \frac{p(2 - 2p)}{p^3} = \frac{2 - 2p}{p^2}$$

• $Var(X) = G(1)'' + G(1)' - \left[G(1)'\right]^2 = \frac{1-p}{p^2}$

$$Var(X) = G(1)'' + G(1)' - \left[G(1)'\right]^2 = \frac{2 - 2p}{p^2} + \frac{1}{p} - \left[\frac{1}{p}\right]^2 = \frac{2 - 2p}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{2 - p}{p^2} - \frac{1}{p^2} = \frac{1 - p}{p^2}$$

▼ Poisson

$$G(t) = \mathbb{E}(t^x)$$

$$= \sum_{x=1}^n t^x \ p(x)$$

$$= \sum_{x=1}^n t^x \ \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=1}^n \frac{(t \cdot \lambda)^x}{x!}$$

$$= e^{-\lambda} \cdot e^{t\lambda}$$

$$= e^{-\lambda + t\lambda}$$

$$= e^{\lambda(t-1)}$$

▼ Propriedades:

- $G(t) = e^{\lambda(t-1)}$
- G(1) = 1

$$G(1) = e^{\lambda(1-1)} = e^0 = 1$$

• $G(t)' = \lambda e^{\lambda t - \lambda}$

$$G(t)' = \left(e^{\lambda(t-1)}\right)' = \left(e^{\lambda t - \lambda}\right)' = e^{\lambda t - \lambda} \cdot (\lambda t - \lambda)' = e^{\lambda t - \lambda} \cdot (\lambda - 0) = \lambda e^{\lambda t - \lambda}$$

• $G(1)' = \mathbb{E}(X) = \lambda$

$$G(1)' = \lambda e^{\lambda - \lambda} = \lambda e^0 = \lambda$$

• $G(t)'' = \lambda^2 e^{\lambda t - \lambda}$

$$G(t)' = \left(\lambda e^{\lambda t - \lambda}\right)' = \lambda e^{\lambda t - \lambda} \cdot (\lambda t - \lambda)' = \lambda e^{\lambda t - \lambda} \cdot \lambda = \lambda^2 e^{\lambda t - \lambda}$$

• $G(1)'' = \mathbb{E}\left[X(X-1)\right] = \lambda^2$

$$G(1)'' = \lambda^2 e^{\lambda - \lambda} = \lambda^2 e^0 = \lambda^2$$

• $Var(X) = G(1)'' + G(1)' - [G(1)']^2 = \lambda$

$$Var(X)=G(1)''+G(1)'-\left[G(1)'
ight]^2=\lambda^2+\lambda-\lambda^2=\lambda$$

▼ Exemplos

lacktriangledown Ex1: Considere X uma v.a.d assumindo valores não-negativos com a seguinte f.g.p:

$$G_{X}\left(t
ight) =Aigg(rac{10+8t^{2}}{2-t}igg) \qquad orall t\in \left(-2,2
ight)$$

a. Determine o valor de A. Sabemos que $G_{X}\left(1\right)=1$, logo

$$G_X(1) = A\left(\frac{10 + 8 \cdot 1^2}{2 - 1}\right) = A(10 + 8) = 1$$

 $A(10 + 8) = 1 \iff A = \frac{1}{18}$

b. Determine o valor esperado de X.

Sabemos que o $\mathbb{E}(X) = G(1)'$, logo

$$G_X(t)' = \left[\frac{1}{18} \cdot \left(\frac{10 + 8t^2}{2 - t}\right)\right]' = \frac{1}{18} \cdot \left(\frac{10 + 8t^2}{2 - t}\right)' = \frac{1}{18} \cdot \left(\frac{16t \cdot (2 - t) - (10 + 8t^2) \cdot (-1)}{(2 - t)^2}\right) = \frac{1}{18} \cdot \left(\frac{32t - 8t^2 + 10}{(2 - t)^2}\right)$$

Para $G_X(1)'$ temos:

$$G_X(1)' = \frac{1}{18} \cdot \left(\frac{32 - 8 + 10}{(2 - 1)^2}\right) = \frac{1}{18} \cdot \frac{34}{1} = \frac{34}{18} = \frac{17}{9}$$

$$\mathbb{E}(X) = \frac{17}{9}$$

Ex2: Se se $X \sim Poisson(\lambda)$ prove com f.g.p que:

$$\mathbb{E}(X_{(r)}) = \mathbb{E}\Big[X(X-1)(X-2)\cdots(X-r+1)\Big] = \lambda^r$$

Vamos começar provando que $\mathbb{E}(X_{(r)}) = \mathbb{E}\Big[X(X-1)(X-2)\cdots(X-r+1)\Big]$

$$G'(t) = \sum_{x} xt^{x-1}p(x)$$

$$G'(1) = \sum_{x} xp(x) = \mathbb{E}(X)$$

$$G''(t) = \sum_{x} x(x-1)t^{x-2}p(x)$$

$$G''(1) = \sum_{x} x(x-1)p(x) = \mathbb{E}\left[X(X-1)\right] = \mathbb{E}(X_{(2)})$$

$$G'''(t) = \sum_{x} x(x-1)(x-2)t^{x-3}p(x)$$

$$G'''(1) = \sum_{x} x(x-1)(x-2)p(x) = \mathbb{E}\left[X(X-1)(X-2)\right] = \mathbb{E}(X_{(3)})$$

$$G^{(r)}(t) = \sum_{x} x(x-1)(x-2)\cdots(x-r+1)t^{x-r}p(x)$$

$$G^{(r)}(1) = \sum_{x} x(x-1)(x-2)\cdots(x-r+1)p(x) = \mathbb{E}\left[X(X-1)(X-2)\cdots(x-r+1)\right] = \mathbb{E}(X_{(r)})$$

Agora vamos prova que $\mathbb{E}(X_{(r)})=\lambda^r$, note que:

$$G(t) = \mathbb{E}(t^X) = \sum_{x=0}^{\infty} t^x \frac{e^{-\lambda} \cdot \lambda^x}{x!} = e^{-\lambda} \cdot \sum_{x=0}^{\infty} \frac{(t\lambda)^x}{x!} = e^{-\lambda} \cdot e^{t\lambda} = e^{\lambda(t-1)}$$

$$G'(t) = \lambda e^{\lambda(t-1)} \Rightarrow G'(1) = \lambda$$

$$G''(t) = \lambda^2 e^{\lambda(t-1)} \Rightarrow G''(1) = \lambda^2$$

$$G'''(t) = \lambda^3 e^{\lambda(t-1)} \Rightarrow G'''(1) = \lambda^3$$

$$\vdots$$

$$G^{(r)}(t) = \lambda^r e^{\lambda(t-1)} \Rightarrow G^{(r)}(1) = \lambda^r$$

Note que $\mathbb{E}(X_{(r)}) = G^{(r)}(1) = \lambda^r$.

Função Geradora de Momento

- ▼ Definição
 - Em teoria de probabilidade a função geradora de momento (f.g.m) de uma v.a. discreta ou continua fornece uma especificação alternativa para a distribuição de probabilidade.
 - **Definição:** Seja X uma v.a.d ou v.a.c. A função geradora de momentos de X é definida por X

$$M_X(t) = \mathbb{E}(e^{tX})$$

deste que a esperança seja finita para $t \in \mathbb{R}$ em algum inteiro $-t_0 < t < t_0 ext{ com } t_0 > 0$.

Obs: Se essa condição não for satisfeita, dizemos que a f.g.m não existe.

Obs: No caso de X ser uma v.a.d, então:

$$M_X(t) = \mathbb{E}(e^{tX}) = \sum_x e^{tx} p(x)$$

Note que:

$$e^x = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} + \cdots \ e^{tx} = 1 + tx + rac{(tx)^2}{2!} + rac{(tx)^3}{3!} + \cdots$$

Logo,

$$M_x(t) = \mathbb{E}(e^{tX}) = 1 + t\mathbb{E}(X) + \frac{t^2\mathbb{E}(X^2)}{2!} + \frac{t^3\mathbb{E}(X^3)}{3!} + \cdots$$

- Chamamos M(t) de função geradora de momentos porque todos os momentos de X podem ser obtidos com o cálculo sucessivo da derivada de M(t) e então com sua avaliação em t=O.
- A função geradora de momentos determina de forma unívoca a distribuição da variável aleatória, ou seja, existe uma única distribuição com função geradora m(t). Por outro lado, se duas variáveis aleatórias possuem uma mesma função geradora então possuem a mesma distribuição.

Dev - Probabilidade I

▼ Propriedades:

- $M_X(0) = \mathbb{E}(e^{0X}) = \mathbb{E}(1) = 1$
- $ightharpoonup M'(t) = \mathbb{E}(X) + t\mathbb{E}(X^2) + \frac{t^2\mathbb{E}(X^3)}{2} + \frac{t^3\mathbb{E}(X^4)}{6} + \cdots$

$$M'(t) = \mathbb{E}(e^{tX})' = \left(1 + t\mathbb{E}(x) + \frac{t^2\mathbb{E}(X^2)}{2!} + \frac{t^3\mathbb{E}(X^3)}{3!} + \frac{t^4\mathbb{E}(X^4)}{4!} + \cdots\right)'$$

$$= 0 + \mathbb{E}(x) + \frac{2t\mathbb{E}(X^2)}{2!} + \frac{3t^2\mathbb{E}(X^3)}{3!} + \frac{4t^3\mathbb{E}(X^4)}{4!} + \cdots$$

$$= \mathbb{E}(x) + t\mathbb{E}(X^2) + \frac{t^2\mathbb{E}(X^3)}{2} + \frac{t^3\mathbb{E}(X^4)}{6} + \cdots$$

- $M'(0) = \mathbb{E}(X)$
- $ightharpoonup M''(t) = \mathbb{E}(X^2) + t\mathbb{E}(X^3) + \frac{t^2\mathbb{E}(X^4)}{2} + \frac{t^3\mathbb{E}(X^5)}{6} + \cdots$

$$M''(t) = \mathbb{E}(e^{tX})'' = \left(\mathbb{E}(x) + t\mathbb{E}(X^2) + \frac{t^2\mathbb{E}(X^3)}{2} + \frac{t^3\mathbb{E}(X^4)}{6} + \frac{t^4\mathbb{E}(X^5)}{24} + \cdots\right)'$$

$$= 0 + \mathbb{E}(X^2) + \frac{2t\mathbb{E}(X^3)}{2} + \frac{3t^2\mathbb{E}(X^4)}{6} + \frac{4t^3\mathbb{E}(X^5)}{24} + \cdots$$

$$= \mathbb{E}(X^2) + t\mathbb{E}(X^3) + \frac{t^2\mathbb{E}(X^4)}{2} + \frac{t^3\mathbb{E}(X^5)}{6} + \cdots$$

- $M''(0) = \mathbb{E}(X^2)$
- $M^{(r)}(t) = \mathbb{E}(X^r) + t\mathbb{E}(X^{r+1}) + \sum_{n=2}^{\infty} \frac{t^n \cdot \mathbb{E}(X^{r+n})}{n!}$
- $\bullet \ M^{(r)}(0) = \mathbb{E}(X^r)$
- $M''(0) [M'(0)]^2 = Var(X)$
- **▼ Função Característica**
 - Existe uma outra função, estreitamente relacionada com a f.g.m, a qual é frequentemente empregada em seu lugar.
 - Ela é denominada função característica e é denota por:

$$\phi_X(t) = \mathbb{E}(e^{itX}) = \mathbb{E}[\cos(tX)] + i \mathbb{E}[\sin(tX)]$$

para $t \in \mathbb{R}$ e $i = \sqrt{-1}$ (unidade imaginária).

- As funções característica tem a vantagem de sempre existir. Entretanto, teremos o inconveniente de trabalhar com uma função de valores complexos.
- **▼** Binomial

$$M_X(t) = \mathbb{E}(e^{tX}) = \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$
$$= \sum_{x=0}^n \binom{n}{x} (e^t p)^x (1-p)^{n-x}$$
$$= (pe^t + 1 - p)^n$$

- A última igualdade decorre de uma aplicação direta do teorema binomial.
- **▼** Propriedades:
 - $M'(t) = n(pe^t + 1 p)^{n-1}pe^t$
 - $M'(0) = \mathbb{E}(X) = np$

$$\mathbb{E}(X) = M'(0) = n(pe^0 + 1 - p)^{n-1}pe^0 = n(p+1-p)^{n-1}p = np(1)^{n-1} = np$$

• $M''(t) = npe^t \cdot (pe^t + 1 - p)^{n-1} + (n^2p^2e^{2t} - np^2e^{2t}) \cdot (pe^t + 1 - p)^{n-2}$

$$\begin{split} M''(t) &= \left(n(pe^t + 1 - p)^{n-1}pe^t\right)' \\ &= \left(npe^t(pe^t + 1 - p)^{n-1}\right)' \\ &= \left((npe^t)' \cdot (pe^t + 1 - p)^{n-1}\right) + \left(npe^t \cdot \left((pe^t + 1 - p)^{n-1}\right)'\right) \\ &= \left(npe^t \cdot (pe^t + 1 - p)^{n-1}\right) + \left(npe^t \cdot (n-1)(pe^t + 1 - p)^{n-2} \cdot pe^t\right) \\ &= \left(npe^t \cdot (pe^t + 1 - p)^{n-1}\right) + \left((n^2p^2e^{2t} - np^2e^{2t}) \cdot (pe^t + 1 - p)^{n-2}\right) \\ &= npe^t \cdot (pe^t + 1 - p)^{n-1} + (n^2p^2e^{2t} - np^2e^{2t}) \cdot (pe^t + 1 - p)^{n-2} \end{split}$$

• $M''(0) = \mathbb{E}(X^2) = n^2 p^2 + np(1-p)$

$$\begin{split} M''(0) &= npe^0 \cdot (pe^0 + 1 - p)^{n-1} + (n^2p^2e^{2\cdot 0} - np^2e^{2\cdot 0}) \cdot (pe^0 + 1 - p)^{n-2} \\ &= np \cdot (p + 1 - p)^{n-1} + (n^2p^2 - np^2) \cdot (p + 1 - p)^{n-2} \\ &= np \cdot 1^{n-1} + (n^2p^2 - np^2) \cdot 1^{n-2} \\ &= np + n^2p^2 - np^2 \\ &= n^2p^2 + np(1 - p) \end{split}$$

• $Var(X) = M(0)'' - \left[M(0)' \right]^2$

$$Var(X) = M(0)'' - \left[M(0)'\right]^2 = n^2p^2 + np(1-p) - (np)^2 = np(1-p)$$

▼ Geométrica

$$M_X(t) = \mathbb{E}(e^{tX}) = \sum_{x=1}^{\infty} e^{tx} p (1-p)^{x-1}$$

$$= \sum_{x=1}^{\infty} e^{tx} p (1-p)^{x-1} \cdot \frac{(1-p)}{1-p}$$

$$= \frac{p}{1-p} \sum_{x=1}^{\infty} \left[e^t (1-p) \right]^x$$

$$= \frac{p}{q} \sum_{x=1}^{\infty} (e^t q)^x$$

$$= \frac{p}{q} \left[e^t q + (e^t q)^2 + (e^t q)^3 + \cdots \right]$$

$$= \frac{p}{q} \cdot \frac{e^t q}{1-e^t q}$$

$$= \frac{p e^t}{1-e^t q}$$

Note que essa resultado só é válido para $\forall \ e^t q < 1$, logo $e^t < \frac{1}{a} \Longrightarrow t < \ln(\frac{1}{a})$.

▼ Propriedades:

•
$$M(0) = 1$$

$$M(0) = \frac{p \cdot e^0}{1 - e^0 q} = \frac{p}{1 - q} = \frac{p}{1 - (1 - p)} = \frac{p}{p} = 1$$

•
$$M'(t) = \frac{pe^t}{(1-e^tq)^2}$$

$$M(t)' = \frac{pe^t \cdot (1 - e^t q) - pe^t \cdot e^t q}{(1 - e^t q)^2} = \frac{pe^t - pqe^{2t} - pqe^{2t}}{(1 - e^t q)^2} = \frac{pe^t}{(1 - e^t q)^2}$$

•
$$M'(0) = \mathbb{E}(X) = \frac{1}{p}$$

$$\mathbb{E}(X) = M'(0) = \frac{pe^0}{(1 - e^0q)^2} = \frac{p}{(1 - q)^2} = \frac{p}{\left(1 - (1 - p)\right)^2} = \frac{p}{p^2} = \frac{1}{p}$$

$$lacksquare$$
 $M''(t)=rac{pe^t(1+qe^t)}{(1-e^tq)^3}$

$$\begin{split} M(t)'' &= \left(\frac{pe^t}{(1-e^tq)^2}\right)' \\ &= \frac{pe^t(1-e^tq)^2 - pe^t2(1-e^tq)(-e^tq)}{(1-e^tq)^4} \\ &= \frac{pe^t(1-e^tq)^2 + 2pqe^{2t}(1-e^tq)}{(1-e^tq)^4} \\ &= \frac{(1-e^tq)\Big[pe^t(1-e^tq) + 2pqe^{2t}\Big]}{(1-e^tq)^4} \\ &= \frac{pe^t(1-e^tq) + 2pqe^{2t}}{(1-e^tq)^3} \\ &= \frac{pe^t - pqe^{2t} + 2pqe^{2t}}{(1-e^tq)^3} \\ &= \frac{pe^t + pqe^{2t}}{(1-e^tq)^3} \\ &= \frac{pe^t(1+qe^t)}{(1-e^tq)^3} \end{split}$$

$$ightharpoonup M''(0) = \mathbb{E}(X^2) = \frac{2-p}{p^2}$$

$$M''(0) = \frac{pe^{0}(1+qe^{0})}{(1-e^{0}q)^{3}}$$

$$= \frac{p(1+q)}{(1-q)^{3}}$$

$$= \frac{p(1+(1-p))}{(1-(1-p))^{3}}$$

$$= \frac{p(2-p)}{p^{3}}$$

$$= \frac{2-p}{p^{2}}$$

•
$$Var(X) = M(0)'' - [M(0)']^2$$

$$Var(X) = M(0)'' - \left[M(0)'\right]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}$$

▼ Poisson

$$egin{aligned} M_X(t) &= \mathbb{E}(e^{tX}) = \sum_{x=0}^\infty e^{tx} rac{e^{-\lambda} \cdot \lambda^x}{x!} \ &= e^{-\lambda} \sum_{x=0}^\infty rac{(\lambda e^t)^x}{x!} \ &= e^{-\lambda} \cdot e^{\lambda e^t} \ &= e^{-\lambda + \lambda e^t} \ &= e^{\lambda (e^t - 1)} \end{aligned}$$

▼ Exemplos

lacktriangledown Ex1: Se $X\sim B(n,p)$ determine a distribuição de Y=n-X utilizando a f.g.m de X.

$$M_Y(t)=\mathbb{E}(e^{tY})\ =\mathbb{E}(e^{t(n-X)})\ =\mathbb{E}(e^{tn}\cdot e^{-tX})\ =e^{tn}\cdot \mathbb{E}(e^{-tX})\ =e^{tn}\cdot M_X(-t)$$

Como v.a.d X tem distribuição binomial com parâmetros n e p, e sabemos que a f.g.m de uma distribuição binomial é $(pe^t+1-p)^n$, logo temos:

$$e^{tn} \cdot M_X(-t) = e^{tn} \cdot (pe^{-t} + 1 - p)^n = (e^t)^n \cdot (pe^{-t} + 1 - p)^n = \left[(e^t) \cdot (pe^{-t} + 1 - p) \right]^n = \left[(e^t) \cdot (pe^{-t} + 1 - p) \right]^n = \left[p + e^t (1 - p) \right]^n$$

Então Y tem distribuição binomial com parâmetros n e (1-p).

 $Y \sim B(n; 1-p)$

lacktriangledown Ex2: Se X. tem f.g.m $M_X(t)$, determine a f.g.m de Y=aX+b.

$$M_Y(t) = \mathbb{\,E}(e^{tY}) = \mathbb{\,E}(e^{t(aX+b)}) = \mathbb{\,E}(e^{taX} \cdot e^{tb}) = e^{bt} \cdot \mathbb{\,E}(e^{atX}) = e^{bt} \cdot M_X(at)$$

lacksquare Ex3: Seja X uma v.a. tal que $p(x)=rac{e^{-\lambda}\lambda^x}{x!(1-e^{-\lambda})} \quad orall x=1,2,3\cdots$

a. Determine o f.g.m de X.

$$M_X(t) = \mathbb{E}(e^{tX}) = \sum_{x=1}^{\infty} e^{tx} \frac{e^{-\lambda} \cdot \lambda^x}{x!(1 - e^{-\lambda})}$$

$$= \frac{e^{-\lambda}}{(1 - e^{-\lambda})} \sum_{x=1}^{\infty} \frac{(\lambda e^t)^x}{x!} + 1 - 1$$

$$= \frac{e^{-\lambda}}{(1 - e^{-\lambda})} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!} - 1$$

$$= \frac{e^{-\lambda}}{(1 - e^{-\lambda})} \cdot (e^{\lambda e^t} - 1)$$

$$= \frac{e^{\lambda e^t - \lambda} - e^{-\lambda}}{(1 - e^{-\lambda})}$$

$$= \frac{e^{\lambda e^t - \lambda} - \frac{1}{e^{\lambda}}}{1 - \frac{1}{e^{\lambda}}}$$

$$= \frac{e^{\lambda e^t} - 1}{\frac{e^{\lambda}}{e^{\lambda}} - 1}}$$

$$= \frac{e^{\lambda e^t} - 1}{e^{\lambda} - 1}$$

b. Determine o valor esperado de \boldsymbol{X} usando a f.g.m.

$$M_X(t)' = \left(\frac{e^{\lambda e^t} - 1}{e^{\lambda} - 1}\right)'$$

$$= \frac{1}{e^{\lambda} - 1} \left(e^{\lambda e^t} - 1\right)'$$

$$= \frac{1}{e^{\lambda} - 1} \left(e^{\lambda e^t} \cdot \lambda e^t\right)$$

$$= \frac{e^{\lambda e^t} \cdot \lambda e^t}{e^{\lambda} - 1}$$

Logo,

$$\mathbb{E}(X) = \ M_X(0)' = \ rac{e^{\lambda e^0} \cdot \lambda e^0}{e^\lambda - 1} \ = \ rac{e^\lambda \cdot \lambda}{e^\lambda - 1}$$