PROVA 1 (01/10/2013)

Nome:	RA:	Turma:	Y
1011101	20221	2 01111000	_

Trabalhe com radianos e 4 dígitos decimais exceto na Questão 1! Justifique as suas respostas!

Boa sorte!

1. Seja

$$A = \begin{pmatrix} 0.100 \cdot 10^{-4} & 0.200 \cdot 10^{0} \\ 0.100 \cdot 10^{0} & 0.300 \cdot 10^{0} \end{pmatrix}, b = \begin{pmatrix} 0.000 \cdot 10^{-9} \\ 0.100 \cdot 10^{5} \end{pmatrix}.$$

- (a) Considere uma maquina que opera no sistema de ponto flutuante utilizando arredondamento com $\beta=10,\ t=3$ dígitos na mantissa e um expoente em [-9,9]. Calcule as fatorações LU de A sem e com pivoteamento parcial e as use para resolver Ax=b fazendo todas as contas na maquina. Explicite as operações binárias que produzem erros numéricos. [2 pts]
- (b) Sejam \hat{x} e \check{x} as duas respostas obtidas no item (a). Verifique se $A\hat{x} = b$ ou se $A\check{x} = b$. Como podemos avaliar a qualidade da resposta obtida sem utilizar a solução exata de Ax = b? [1 pts]
- (c) Em qual dos métodos númericos que você conhece geralmente se usa a fatoração LU (com ou sem pivoteamento) e por que? [0.5 pts]
- 2. Lembre-se que a norma infinita de um vetor $x \in \mathbb{R}^n$ é dada por $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$.
 - (a) Seja $(x^{(k)}) = x^{(0)}, x^{(1)}, \ldots$ uma sequencia convergente de vetores em \mathbb{R}^n . Quando podemos afirmar que a ordem de convergência da sequencia $(x^{(k)})$ é linear? (Dica: utilize a noção da norma infinita.) [0.5 pts]
 - (b) Considere o sistema linear Ax = b, onde

$$A = \left(\begin{array}{cc} 2 & -1 \\ 2 & 4 \end{array}\right) , b = \left(\begin{array}{c} 3 \\ -1 \end{array}\right) .$$

Quando aplicado ao chute inicial $x^{(0)} = (1, -1)^t$, um certo método iterativo gera uma sequencia de vetores que converge para a solução de Ax = b. A seguinte tabela mostra $x^{(0)}, x^{(1)}, \dots, x^{(7)}$:

k	$x^{(k)}$
0	$(1.0000, -1.0000)^t$
1	$(1.0000, -0.7500)^t$
2	$(1.1250, -0.8125)^t$
3	$(1.0938, -0.7969)^t$
4	$(1.1016, -0.8008)^t$
5	$(1.0996, -0.7998)^t$
6	$(1.1001, -0.8000)^t$
7	$(1.1000, -0.8000)^t$

Explique por que esta tabela indica que a ordem de convergência da sequencia $(x^{(k)})$ é linear. [1 pt]

Veja as Questões 3 e 4 no verso!

- 3. Seja $f(x) = e^x \ln(x^2 + 1)$
 - (a) Quantas raizes de f existem? Justifique a sua resposta graficamente. [0.5 pts]
 - (b) Utilize o método de Newton-Raphson em forma tabelar com chute inicial $x_0 = -1$ para encontrar um zero da função f com precisão 10^{-2} . Observe que pelo menos um dos critérios de parada é atingido em somente 1 iteração . [1 pt]

k	x_k	$f(x_k)$	$ x_k - x_{k-1} $

4. Os donos Justin T. Lake e Dustin Z. Fake da empresa DOLDYS investiram \$20000 no desenho e no desenvolvimento do seu novo produto "Go-RNiX (by Justin & Dustin)" que pode ser produzido a um custo de \$2 por unidade.

Antes de lançar Go-RNiX no mercado, eles contratam a empresa de consultoria CoolCon. A CoolCon chega as seguintes conclusões: se gastar c em comerciais e consultoria e vender o Go-RNiX por um preço de p por unidade, eles conseguem vender c000 + c000 unidades.

- (a) Usando estas informações, expresse o lucro da DOLDYS com a venda do Go-RNiX como uma função f(c,p) de c e p. [0.5 pts]
- (b) Determine uma boa aproximação do vetor $x^* = (c^*, p^*)^t$ que maximize o lucro da DOLDYS e que segundo as estimativas da CoolCon é aproximadamente igual a (15000, 65). Para tanto, aplique o método de Newton com precisão $\varepsilon = 0.1$ e $x^{(0)} = (15000, 65)$ considerando que x^* é tal que $\nabla f(x^*) = (0,0)^t$. Seja $F = \nabla f$. Verifique se um dos 2 critérios de parada é satisfeito preenchendo a tabela seguinte. Qual é o lucro maximal que a DOLDYS pode realizar? [3 pts]

k	$x^{(k)}$	$F(x^{(k)})$	$ F(x^{(k)}) _{\infty}$	$ s^{(k-1)} _{\infty}$	$s^{(k)}$

Sem pivoteamato:

$$R = \begin{bmatrix} 0.100 \cdot 10^{-4} & 0.200 \cdot 10^{0} \\ 0.100 \cdot 10^{5} \end{bmatrix} = 0.200 \cdot 10^{0} \\ 0.300 \cdot 10^{0} - 0.200 \cdot 10^{4} = 0.0000 \cdot 10^{4} \\ 0.300 \cdot 10^{0} - 0.200 \cdot 10^{4} = 0.0000 \cdot 10^{4} \\ 0.300 \cdot 10^{0} - 0.200 \cdot 10^{4} = 0.0000 \cdot 10^{4} \\ 0.100 \cdot 10^{5} = 0.000 \cdot 10^{5} \end{bmatrix} = 0.200 \cdot 10^{4}$$

The sea blado da ma quina: $X - Y = -0.1200 \cdot 10^{4}$

Dai, a ma quina product:

 $L = \begin{bmatrix} 0.100 \cdot 10^{5} & 0.200 \cdot 10^{5} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} & 0.200 \cdot 10^{4} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} & 0.200 \cdot 10^{4} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} & 0.200 \cdot 10^{4} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} \times 2 = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} \times 2 = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} & 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix} 0.100 \cdot 10^{5} \\ 0.100 \cdot 10^{5} \end{bmatrix} = \begin{bmatrix}$

Compiloteamento: $R = \begin{cases} 0,100.10^{\circ} & 0,300.10^{\circ} \\ 0,100.10^{-3} & 0,200.10^{\circ} \\ -0,300.10^{-4} & 1 \end{cases} P = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ X=0,200.100=×, y=0,300.10=9 X-4= x-7= 0,200.10°-0,00003.10° $=0,19997.10^{\circ} \rightarrow \bar{x}-\bar{y}=0,200.10$ 1. Ly=Pb 0,100.10 0=0,000.10-9,0,100.105 0,100.103 0,100.10 10,000.109 $y_1 = \frac{0.100 \cdot 10^5}{0.100 \cdot 10^6} = 1,000 \cdot 10^4 = 0.100 \cdot 10^5$ Y2= -0,100.10³.0,100.10⁵-0,010.10²-0,100.1 0:100.100 0:300.100 10:100.105 $x_2 = -\frac{0.100 \cdot 10^1}{0.200 \cdot 10^0} = -0.500 \cdot 10^1$ X1 = 0,100.105+0,300.10°.6,500.101 = 01100.105 + 0,150.10 0,100-100 $=0,100.10^{5}+0,0000015.10^{5}$ ya $0,0,100015.10^{5}$ MAQUENA (0,100.105)/(0,100.10°) = 0,100.10°

$$\frac{1}{1} = \frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

(Q) Fl. raiz

(b)
$$f(x) = e^{x} - lu(x^{2} + 1)$$

 $f'(x) = e^{x} - \frac{2x}{x^{2} + 1}$

$$\times_{k+1} = \times_{k} - \frac{f(\times_{k})}{f'(\times_{k})}$$

 $\Sigma = 10^{-2}$

$$\frac{k}{0}$$
 $\times \frac{1}{1}$ $\frac{1}{1}$ $\frac{$

| f(x1) | = | 0,0086 | < 10= = PARE

$$4(Q) \int_{CC_{1}P} = (2000 + 4 c^{\frac{1}{2}} - 20p)(p-2) - 20000 - c$$
(b) $\frac{1}{3} C_{C_{1}P} = 2c^{\frac{1}{2}} (p-2) - 1 = \int_{CC_{1}P} (c_{1}p)$

$$\frac{1}{3} C_{C_{1}P} = -20(p-2) + 2000 + 4 c^{\frac{1}{2}} - 20p$$

$$= 2040 + 4 c^{\frac{1}{2}} - 40p = \int_{CC_{1}P} (c_{1}p)$$

$$\frac{1}{4} C_{C_{1}P} = \left(\frac{3}{4} C_{C_{1}P}\right)$$

$$\frac{1}{4} C_{C_{1}P} = \left(-\frac{3}{4} C_{C_{1}P}\right)$$

$$\frac{1}$$

Continuação 4(b) $E = 10^{-2}$ $E = 10^{-2}$ E

Entar o lucro maximal que a DOLDYS pode realizar é dado par f(x(2))

× 40025,00, que dizer