Verão IME-USP 2019 - Álgebra Linear - Lista 1

araujofpinto

janeiro 2019

- 1. Mostre que os seguintes conjuntos são espaços vetoriais reais: $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n, \mathbb{M}_n(\mathbb{R}), \mathbb{M}_{m \times n}(\mathbb{R}), \mathcal{P}(\mathbb{R})$ e $\mathcal{F}(X, \mathbb{R})$.
- 2. Sejam V um espaço vetorial real, $u, v \in V$ e $\alpha, \beta \in \mathbb{R}$. Prove as seguintes afirmações:
 - a) $0 \odot u = 0_V$
 - b) $\alpha \odot 0_V = 0_V$
 - c) $(-\alpha) \odot u = -(\alpha \odot u) = \alpha \odot (-u)$
 - d) se $\alpha \odot u = 0_V$, então $\alpha = 0$ ou $u = 0_V$
 - e) Se $\alpha \odot u = \alpha \odot v$ e $\alpha \neq 0$, então u = v.
 - f) Se $\alpha \odot u = \beta \odot u$ e $u \neq 0_V$, então $\alpha = \beta$.
- 3. Sejam V e W espaços vetoriais reais. Mostre que o conjunto

$$V \times W = \{(v, w) : v \in V, w \in W\}$$

munido com as operações

$$(v_1, w_1) \oplus (v_2, w_2) = (v_1 + v_2, w_1 + w_2), \ \forall (v_1, w_1), (v_2, w_2) \in V \times W$$

$$\alpha \odot (v, w) = (\alpha v, \alpha w), \ \forall (v, w) \in V \times W, \ \alpha \in \mathbb{R}$$

é um espaço vetorial real.

4. Mostre que o conjunto $V = \{x \in \mathbb{R} : x > 0\}$ munido com as operações:

$$x_1 \oplus x_2 = x_1 x_2, \ \forall x, y \in V$$

$$\alpha \odot x = x^{\alpha}, \ \forall x \in V, \ \alpha \in \mathbb{R}$$

é um espaço vetorial real.

5. Considere o conjunto $V = \{(x, y) : x, y \in \mathbb{R}\}$, com as seguintes operações:

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 + 5, y_1 + y_2)$$

$$\alpha \odot (x, y) = (\alpha x + 5(\alpha - 1), \alpha y).$$

- a) Verifique que V é um espaço vetorial real.
- b) Verifique que o subconjunto $W = \{(x, y) \in V : x = -5\}$ é subespaço vetorial de V.
- 6. Seja V um espaço vetorial real e U e W subespaços vetoriais de V.
 - (a) Mostre que $U \cap W$ é subespaço vetorial de V;
 - (b) Mostre que $U + W = \{u + w : u \in U, w \in W\}$ é subespaço vetorial de V;
 - (c) Mostre que $U \cup W$ é subespaço vetorial de V se, e somente se, $U \subset W$ ou $W \subset U$;
 - (d) Mostre que, se S é um subespaço vetorial de V que contém $U \cup W$, então U + W é um subespaço vetorial de S.

- 7. Em cada ítem abaixo, decida se os subespaços U_1 e U_2 do espaço vetorial real V são iguais:
 - (a) $V = \mathbb{R}^3$, $U_1 = [(-1, 2, 0), (3, 1, 2)]$, $U_2 = [(2, 3, 2), (-4, 1, -2), (-1, 2, 0), (0, 0, 0)]$;
 - **(b)** $V = \mathbb{R}^3$, $U_1 = [(1,0,1), (0,1,0)]$, $U_2 = [(1,1,1), (-1,-1,-1))]$;
 - (c) $V = \mathbb{R}^3$, $U_1 = [(1,0,0), (0,1,0)]$, $U_2 = [(0,1,0), (0,0,1)]$;
 - (d) $V = \mathcal{P}(\mathbb{R}), U_1 = [t^2 1, t + 1], U_2 = [t^2 + t, 2t + 2];$
 - (e) $V = \mathcal{P}(\mathbb{R}), U_1 = [t^2, t, 1], U_2 = [t^2 + t + 1];$
- 8. Dados um espaço vetorial real V e um subconjunto S de V, decida se S é subespaço vetorial de V. Em caso positivo, determine um conjunto que seja gerador de S:
 - (a) $V = M_2(\mathbb{R}), S = \{A = \begin{pmatrix} x & y \\ z & t \end{pmatrix} : x y z = 0\};$
 - **(b)** $V = \mathbb{R}^2, S = \{v \in \mathbb{R}^2 : v = \alpha(1, 2) + (3, 2), \alpha \in \mathbb{R}\};$
 - (c) $V = \mathcal{P}_3(\mathbb{R}), S = \{p(x) \in \mathcal{P}_3(\mathbb{R}) : p(-1) = p(1) = 0\};$
 - (d) $V = \mathbb{M}_n(\mathbb{R})$, $S = \{A \in \mathbb{M}_n(\mathbb{R}) : tr(A) = 0\}$, onde o **traço** tr(A) de uma matriz $A = [a_{ij}] \in \mathbb{M}_n(\mathbb{R})$ é a soma dos elementos de sua diagonal principal, ou seja $tr(A) = \sum_{i=1}^n a_{ii}$;
 - (e) $V = \mathbb{R}^4$, $S = \{(x, y, z, t) \in \mathbb{R}^4 : x y + z + t = 0, -x + 2y + z t = 0\}.$
- 9. Mostre que o espaço vetorial $\mathbb{M}_2(\mathbb{R})$ é gerado pelas matrizes

$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_4 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

- 10. Encontre as equações (cartesiana, vetorial e paramétrica) do espaço(plano) afim de \mathbb{R}^3 que contém os vetores (1,0,0),(0,1,0) e (0,0,1).
- 11. Seja V um espaço vetorial real e um espaço afim $F \subset V$. Mostre que, dados $v_1, \ldots, v_m \in F$, então $\alpha_1 v_1 + \cdots + \alpha_m v_m \in F$, para quaisquer números reais $\alpha_1, \ldots, \alpha_m$ com $\alpha_1 + \cdots + \alpha_m = 1$.
- 12. Mostre que a intersecção de espaços afim de um espaço vetorial V é um espaço afim de V.
- 13. Sejam V um espaco vetorial real, $v_1, \ldots, v_n \in V$ e $v \in V$.
 - a) Se $\{v_1, \ldots, v_n\}$ é linearmente independente no espaço vetorial real V, prove que o conjunto $\{v_1, \ldots, v_n, v\}$ é lineramente independente em V se e somente se, $v \notin [v_1, \ldots, v_n]$. Interprete esse resultado geometricamente em \mathbb{R}^2 e \mathbb{R}^3 .
 - b) Se $v \in [v_1, \dots, v_n]$, prove que $[v_1, \dots, v_n] = [v_1, \dots, v_n, v]$. Interprete esse resultado geometricamente em \mathbb{R}^2 e \mathbb{R}^3
- 14. Dados um espaço vetorial real V e um subconjunto U de V, decida se U é linearmente independente em V. No caso de U ser linearmente dependente, determine uma base do subespaço vetorial S de V gerado por U:
 - (a) $V = \mathbb{R}^3$, $U = \{(1,0,0), (0,1,0), (0,0,1), (2,2,5)\}$,
 - **(b)** $V = \mathbb{R}^3$, $U = \{(1, 1, 1), (1, 2, 1), (3, 2, -1)\}$,
 - (c) $V = \mathbb{R}^3$, $U = \{(1, 2, 3), (1, 4, 9), (1, 8, 27)\}.$
 - (d) $V = \mathcal{P}_4(\mathbb{R}), U = \{1, x 1, x^2 + 2x + 1, x^2\},\$
 - (e) $V = \mathcal{P}_4(\mathbb{R}), U = \{x(x-1), x^3, 2x^3 x^2, x\}.$
 - (f) $V = \mathbb{R}^4$, $U = \{(1,0,0,-1), (0,1,0,1), (1,0,0,1), (0,0,1,1)\}.$
 - (g) $V = \mathcal{F}(\mathbb{R}, \mathbb{R}), U = \{1, e^x, xe^x\};$
 - (h) $V = \mathcal{F}(\mathbb{R}, \mathbb{R}), U = \{1, \sin x, \cos x\};$
 - (i) $V = \mathcal{F}(\mathbb{R}, \mathbb{R}), U = \{1, \sin^2 x, \cos^2 x\};$
 - (j) $V = M_2(\mathbb{R}), U = \{A_1, A_2, A_3\}, \text{ com } A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$

- 15. Dados um espaço vetorial real V e um subconjunto \mathcal{B} de V, decida se B é base de V:
 - (a) $V = \mathbb{R}^4$, $\mathcal{B} = \{(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1);$
 - **(b)** $V = \mathcal{P}_3(\mathbb{R}), \mathcal{B} = \{1, 1 x, (1 x)^2, (1 x)^3\}.$
- 16. Para quais valores de $a \in \mathbb{R}$ o seguinte conjunto $B = \{(a,1,0), (1,a,0), (0,1,a)\}$ é uma base de \mathbb{R}^3 ?
- 17. Mostre que $\mathcal{B} = \{(1,0,1), (1,1,-1), (0,2,0)\}$ é uma base de \mathbb{R}^3 . Determine as coordenadas dos vetores (1,0,0), (0,1,0) e (0,0,1) na base acima. Determine as coordenadas dos vetores $(1,1,1)_{\mathcal{B}}$, $(2,3,-1)_{\mathcal{B}}$ e $(0,0,1)_{\mathcal{B}}$ com relação à base canônica.
- 18. Considere as seguintes matrizes em $\mathbb{M}_2(\mathbb{R})$:

$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix}.$$

Tome o subconjunto $S = \{A_1, A_2, A_3\}$ de $\mathbb{M}_2(\mathbb{R})$. Considere o seguinte subespaço de $\mathbb{M}_2(\mathbb{R})$:

$$V = \{A \in \mathbb{M}_2(\mathbb{R}) : A^t = A\} = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.$$

- a) Mostre que S é linearmente independente.
- b) Mostre que S gera V.
- c) Conclua que S é uma base de V e determine a dimensão de V. Justifique sua resposta.
- 19. Sejam U e V subespaços vetoriais de $\mathcal{P}_3(\mathbb{R})$ com dimU = dimV = 3 tais que

$$U \cap V = [1 - x + x^2 - x^3, 1 + x + x^2 + x^3].$$

- a)Determine o subespaço U + V de $\mathcal{P}_3(\mathbb{R})$.
- b) Vale que $U \oplus V = \mathcal{P}_3(\mathbb{R})$?

Justifique cada passo da sua resposta.

20. Sejam $U \in W$ subespaços vetoriais de dimensão 3 em \mathbb{R}^4 . Considerando que

$$U \cap W = [(1, 2, 1, 0), (-1, 1, 0, 1), (1, 5, 2, 1)].$$

Qual é a dimensão do subespaço U+W? Justifique a sua resposta.

- 21. Dados um espaço vetorial real V e subespaçoes vetoriais U, W de V, determine uma base para $U \cap W$ e U + W. O subespaço U + W é uma soma direta? Justifique
 - (a) $V = \mathbb{R}^3$, $U = [(1,0,0), (1,1,1)] \in W = [(0,1,0), (0,0,1)];$
 - **(b)** $V = \mathcal{P}_2(\mathbb{R}), U = \{p(x) \in \mathcal{P}_2(\mathbb{R}) : a 2c = 0\} \in W = [1 x, x x^2];$
 - (c) $V = \mathbb{R}^4$, $U = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0, z t = 0\}$ e $W = \{(x, y, z, t) \in \mathbb{R}^4 : x y z + t = 0\}$
- 22. Seja $V = \mathbb{R}^3$.
 - (a) Seja U o subespaço de V gerado pelo elemento $u_1 = (1,0,0)$ e W o subespaço de V gerado pelos elementos (1,1,0) e (0,1,1). Mostre que vale $V = U \oplus W$;
 - (b) Considere o subespaço U de V dado por $U=\{(x,y,z)\in\mathbb{R}^3: x+2y+z=0, -x+3y+2z=0\}$. Determine um subespaço W de V tal que $V=U\oplus W$;
 - (c) Sejam U e W subespaços vetoriais de V tais que dim(U)=1, dim(W)=2 e U não está contido em W. Mostre que $V=U\oplus W$.
- 23. Sejam $U = \{A \in \mathbb{M}_3(\mathbb{R}) : A^t = A\}$ e $W = \{A \in \mathbb{M}_3(\mathbb{R}) : A^t = -A\}$ subespaços de $\mathbb{M}_3(\mathbb{R})$:
 - a) Determine a dimensão de U e exiba uma base de U;
 - b) Determine a dimensão de W e exiba uma base de U;
 - c) Mostre que $\mathbb{M}_3(\mathbb{R}) = U \oplus W$.

24. Considere o espaço vetorial real $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$. Mostre que os seguintes subconjuntos

$$U = \{ f \in V : f(-x) = f(x); \forall x \in \mathbb{R} \}$$

$$W = \{ f \in V : f(-x) = -f(x); \forall x \in \mathbb{R} \}$$

são subespaços vetoriais de V. Mostre que $V = U \oplus W$.

- 25. (Elon 1.18) Sejam E um espaço vetorial e $u,v\in E$. O segmento de reta de extremidades u,v é, por definição, o conjunto $[u,v]=\{(1-t)u+tv;0\le t\le 1\}$ (ou \overline{uv}). Um conjunto $X\subset E$ chama-se convexo quando $u,v\in X\Rightarrow [u,v]\subset X$. (Ou seja: o segmento de reta que liga dois pontos quaisquer de X está contido em X.) Prove:
 - (a) A intersecção $X_1 \cap ... \cap X_m$ de conjuntos convexos $X_1, ..., X_n \subset E$ é um conjunto convexo;
 - (b) Dados $a, b, c \in \mathbb{R}$, o conjunto $X = \{(x, y) \in \mathbb{R}^2 : ax + by \le c\}$ é convexo em \mathbb{R}^2 ;
 - (c) O conjunto $Y = \{(x, y, z) \in \mathbb{R}^3; a \le x \le b, c < y < d\}$ é convexo em \mathbb{R}^3 ;
 - (d) Seja $X \subset E$ convexo. Se r, s, t são números reais ≥ 0 tais que r+s+t=1, então $u, v, w \in X \Rightarrow ru+sv+tw \in X$:
 - (e) Generalizando o resultado acima, a expressão $t_1v_1 + \cdots + t_kv_k$, onde t_1, \ldots, t_k são ≥ 0 e $t_1 + \cdots + t_k = 1$ chama-se uma *combinação convexa* dos vetores v_1, \ldots, v_k . Se o conjunto $X \subset E$ é convexo, prove que toda combinação convexa de vetores $v_1, \ldots, v_k \in X$ ainda pertence a X.
- 26. Um corpo é um conjunto K com as operações de soma $+: K \times K \to K$ e multiplicação . : $K \times K \to K$ satisfazendo:
 - (S1) (associatividade) x + (y + z) = (x + y) + z, para todos x, y, z em K;
 - (S2) (comutatividade) x + y = y + x, para todos x, y em K;
 - (S3) (elemento neutro da soma) existe $0 \in K$ tal que 0 + x = x + 0 = x, para todo $x \in K$;
 - (S4) (elemento oposto) para cada $x \in K$, existe um elemento em K, denotado por -x e chamado de oposto de x tal que x + (-x) = (-x) + x = 0;
 - (M1) (associatividade) x.(y.z) = (x.y).z, para todos x, y, z em K;
 - (M2) (comutatividade) x.y = y.x, para todos x, y em K;
 - (M3) (elemento neutro da multiplicação) existe $1 \in K$ com $1 \neq 0$ e tal que 1.x = x.1 = x, para todo $x \in K$;
 - (M4) (elemento inverso) para cada $x \in K$ com $x \neq 0$, existe um elemento em K, denotado por x^{-1} e chamado de inverso de x tal que $x.(x^{-1}) = (x^{-1}).x = 1$;
 - (D) (distributividade) x.(y+z) = x.y + x.z, para todos x, y, z em K;

Seja K um corpo, mostre que:

- (a) x.0 = 0, para todo $x \in K$;
- (b) x.y = 0 se, e somente se, x = 0 ou y = 0;
- (c) -x = (-1).x, para todo $x \in K$.
- 27. Mostre que os conjuntos a seguir são corpos quando munidos da soma e multiplicação de números reais:
 - (a) Q;
 - **(b)** $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}; a \in \mathbb{Q}, b \in \mathbb{Q}\};$
 - (c) $\mathbb{C} = \{a + b.i; a \in \mathbb{R}, b \in \mathbb{R}\}, \text{ onde } i^2 = -1.$
- 28. Sejam K e L corpos. Uma função $f \colon K \to L$ chama-se um homomorfismo de corpos quando satisfaz (i) f(x+y) = f(x) + f(y); e (ii) $f(x,y) = f(x) \cdot f(y)$, para todo $x,y \in K$. Mostre que:
 - (a) Para qualquer homomorfismo de corpos temos que $f(0_K) = 0_L$;
 - (b) Prove que se $f: K \to L$ é um homomorfismo de corpos então ou $f(x) = 0_L$, para todo $x \in K$, ou então $f(1_K) = 1_L$ e f é injetora.
 - (c) Se K = L e f é um homomorfismo de corpos injetor, mostre que f(x) = x, para todo $x \in K$.