Validity and reliability of wrist sensor-based measures of the arm swing during free-living gait in Parkinson's disease

E. Post^{1,2}, T. M. van Laarhoven², Y. P. Raykov³, M. A. Little⁴, J. Nonnekes¹, T. M. Heskes², B. R. Bloem¹, L. J. W. Evers^{1,2}

¹ Center for Expertise for Parkinson and Movement Disorders, department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; ² Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands; ³ University of Nottingham, United Kingdom; ⁴ University of Birmingham, United Kingdom

Introduction

- Reduced arm swing is an early and progressive motor sign in Parkinson's Disease (PD), making it a potential digital biomarker.
- Reliable estimations of arm swing can therefore serve as endpoints in clinical trials, aiding in the evaluation of disease progression and therapeutic effects.
- Building on this potential, our study longitudinally validates a previously developed modular pipeline for detecting gait and measuring arm swing in free-living conditions.

Objective

• To assess the (1) construct validity, (2) reliability and (3) sensitivity to disease progression of the median and 95th percentile arm swing range of motion in a larger, free-living PD cohort.

Study design

- Population: 256 ambulatory early-stage PD participants, Hoehn & Yahr stages 1-3 (9% in stage 1, 81% in stage 2, 10% in stage 3).
- Data: continuous smartwatch data of the preferred wrist (median 21 hours/day) of two consecutive weeks at the start of the study, and one week approximately two years later¹.

Methods

For participants wearing the watch on the most affected side (MAS) or the least affected side, we assess:

- 1. Construct validity: correlation with the sum of unilateral non-tremor items of the MDS-UPDRS part III (hypokinesia score).
- 2. Test-retest reliability: intra-class correlation between two consecutive weeks.
- 3. Sensitivity to disease progression: absolute progression and standardized response mean (SRM) over two years.

Results

1. Construct validity

2. Test-retest reliability

3. Sensitivity to disease progression

Conclusions

- Both arm swing measures align with clinical observations, show high reliability, and are sensitive to disease progression.
- To measure disease progression over time, estimating the median or 95th percentile range of motion on the least affected side may be most effective.

References

1. Bloem et al. The Personalized Parkinson Project: examining disease progression through broad biomarkers in early Parkinson's disease. BMC Neurol. 2019 Jul 17;19(1):160.

Contact: erik.post@radboudumc.nl

