캡스톤 디자인 회의록 #2

회의안건	Surf Foil 아이디어 보완 및 초기 동력 문제 해결			
일시	2019년 3월 20일 수요일 13:00~14:00 2019년 3월 21일 목요일 11:00~12:00, 22 2019년 3월 24일 일요일 18:00~20:00 2019년 3월 25일 월요일 13:30~14:00(이동 2019년 3월 26일 화요일 18:30~23:00 2019년 3월 27일 수요일 10:00~11:00(이동 2019년 3월 28일 목요일 15:00~18:00 2019년 3월 29일 금요일 08:00~09:00, 11 2019년 3월 31일 일요일 13:00~19:00(Bex	승재 교수님 승재 교수님 :00~12:00	님 미팅) 님 미팅), 18:00~23:00	
회의장소	해과기대 2층 스터디룸	참석자	강현화, 이준현, 김민성 임지수, 최재환	
작성일	2019년 04월 01일	작성자	최 재 환	

진행방향 실현 가능성이 있고 우리가 직접 실험 가능한 아이디어로 선정.

❖ 3월 20일~24일

새로운 아이디어 찾기. 현실성 있는 아이디어 중심으로 몇 가지 선정. 가장 현실성 있는 아이디어 총 6개를 선정하였으며, 이후 지도교수님의 조언을 받을 예정.

1. 최적 항로 제시 프로그램

선박이 항해하는데 있어서 최적의 항로를 제시해주는 프로그래밍. 바다를 여러 구역으로 나눈 후 기상청을 통하여 실시간으로 해역별 파고, 풍속, 시정을 판단하여 최적이 경로를 제시해 주는 프로그램.

2. 충돌 방지 프로그램

센서를 이용하여 선박의 항해 중 충돌을 예측하여 일정 조건이 되면 자동적으로 엔진을 정지시키는 프로그램.

3. 에어포켓 생성 장치

선박 사고 시, 선내에 인공적으로 에어포켓을 생성할 수 있게 하는 장치 개발.

회의내용

4. 평형수 대체 설계

평형수로 인한 환경 문제 해결을 위해, 평형수를 가둬두는 것이 아닌 항해 중 계속해서 순환시킴. 의도적인 구획 침수로 부력을 잃음으로서 선박 흘수 유지.

5. 질량 이동형 운동 저감 장치

거주구와 같이 선체 내부 시설을 이동시켜 선체 안정성 및 운동 성능 향상. 레일 설치후 선박의 움직임에 따라 앞뒤 혹은 좌우로 이동시켜 GM의 변화로 상황에 따라 안정성을 확보함이 목적.

6. 초심자용 Surf Foil 설계 및 제작

새로운 Hydrofoil Surf Board를 설계하여 작은 힘으로도 추진이 가능한 레저용 Hydrofoil Surf Board를 실제로 제작.

❖ 3월 25일 ~ 29일

최종 아이디어 선정. (초심자용 Surf Foil 설계 및 제작)

초심자용 Surf Foil 설계 및 제작 이외의 아이디어들은 선행 연구 상당부분 진행되었음. 선행 연구와의 큰 차별성이 없고 현실성 부분에서 여러 문제점 발생.(평형수 대체, 질량 이동형 운동 저감의 경우 실험만 가능. 실제 테스트의 어려움)

● 초심자용 Surf Foil 설계 및 제작

선행 연구

해외의 경우 전문적인 Surf Foil 업체 다수 존재. 현재 Kite, Boat를 이용하여 타는 Foil Board와 직접 타는 Foil Board 3가지 경우의 Hydrofoil Surf Board 존재. 용도 및 사용자의 숙련도에 따라 Foil이 다름.

문제점

- 현재 시판중이 Hydrofoil Board의 경우 초보자가 타기에는 상당한 어려움이 존재.
- Foil의 가격이 100만원 정도의 고가의 제품.
- 국내의 경우 Hydrofoil Surf Board를 탈수 있을만한 공간의 부재.

차별화

기존의 제품과는 달리 Board와 Foil 사이에 각도 조절이 가능한 Hinge 적용으로 사용자의 체중별로 최적의 양항력 확보.

Pumping Type Board 와 Thrust 설계로 보다 쉬운 초기 동력 확보.(Pumping 편리한 Board의 형상 설계, 수직운동을 회전운동으로 전환하여 Thrust회전.ex.회전 밀대 탈수기)

현재 아이디어 개선방향

초기 동력원 설계 부족. 회전 밀대 탈수기 원리 이해 필요. 빠른 시일 내에 제품 구매후 원리 파악 및 적용 가능성 여부 판단. 부양 후 프로펠러 회전으로 인한 안전의 문제.

향후 계획

4월 7일 : 시장 조사 및 시제품 설계 마무리.

5월 5일 : 시제품 제작.

5월 19일 : 회류 수조 실험 및 시운전

● 초안 발표

팀 원	역 할
임지수, 최재환, 강현화	PPT 제작 및 아이디어 구상
이준현, 김민성	대본 작성 및 아이디어 구상

❖ 3월 31일

Bexco 제 6회 부산국제보트쇼

Pumping Type Thrust 부양 후 안전 문제, Waterjet으로 해결 가능성 확인. 초심자용 Board 조언 및 카본 적층 시 에폭시 문제에 대한 조언을 얻음. 전문 Surfer를 통한 국내 Foil Surf Board의 시장 조사. 이상적인 Board 형상 설계에 대해 구상.

회의결과	구체적인 초기 동력원 구상.(회전 밀대 탈수기 원리) 원리 조사를 위해 탈수기 구매 예정. 적합가능성 확인 여부 판단. 시제품 제작을 위한 재료 조사 및 시장 조사 완료.
향후계획	구체적인 동력원 설계 적용 및 Foil 단면 설계.