Lista de Exercícios - Métodos de Otimização - PNL (Irrestrita e Restrita) 2023.Q2 - UFABC

1. Dada função $f: \mathbb{R}^n \to \mathbb{R}$, quais são as condições necessárias e suficientes para x^* ser um mínimo local da função f? Explique como as condições necessárias podem ser obtidas.

Gabarito: Veja isso nas notas de aula.

2. Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função convexa e x^\star um ponto mínimo local da f. Prove que x^* é o mínimo global da f. Escreva as condições necessárias para x^{\star} .

Gabarito: Veja isso nas notas de aula.

3. Encontre um mínimo local das funções abaixo (se houver) usando as condições necessárias e suficientes.

1)
$$f(x, y) = x^2 + 4y^2 + 3xy$$

1)
$$f(x, y) = x^2 + 4y^2 + 3xy$$
 2) $f(x, y) = x^3 + 3y^2 + 2xy$

3)
$$f(x, y) = x^3 - 3xy^2 + 4xy$$

4)
$$f(x, y) = x^3 + 3xy^2 + 4xy$$

5)
$$f(x, y) = 5xy + x^2y + xy^2 + 5x^2 + 5y^2$$

Gabarito:

- 1. Ponto mínimo: (0,0)

- 2. Ponto de sela: (0,0) e ponto mínimo: $\frac{1}{9}(2,-\frac{2}{3})$ 3. Ponto de sela: $(0,0),(0,\frac{4}{3})$, ponto mínimo: Não tem! 4. Ponto de sela: $(0,0),\frac{1}{3}(0,-4)$, ponto mínimo: $\frac{1}{3}(2,-2)$, ponto máximo:
- 5. Ponto de sela: 5(-1,2), ponto mínimo: (0,0)

4. Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função, $x \in \mathbb{R}^n$ um ponto qualquer, e $\alpha \in \mathbb{R}^+$ um número real suficiente pequeno. Qual condição na direção do vetor $\mathbf{d} \in \mathbb{R}^n$ garanta que a direção é decrescente no ponto x, ou seja $f(x + \alpha \mathbf{d}) < f(x)$? Justifique sua resposta.

Gabarito: Veja isso nas notas de aula.

5. Descreva os métodos de gradientes; 1- método de descida mais íngreme e 2- método de Newton. Escreva um ponto bom e um ponto ruim sobre cada método.

Gabarito: Veja isso nas notas de aula.

6. Descreva duas stratégias para calcular o tamanho do passo nos métodos de gradientes.

Gabarito: Veja isso nas notas de aula.

7. Quais matrizes dadas abaixo são definida positiva?

Gabarito: Sim - Não - Não - Não - Não - Não - Sim

8. Faça uma iteração dos métodos de gradiente; 1- método da descida mais íngreme e 2- método de Newton, para os problemas dados na questão 3 usando a solução inicial e o tamanho do passo dados abaixo para cada problema. Se isso não for possível (houve um problema), explique o motivo e altere a solução inicial ou o tamanho do passo para resolver o problema e, em seguida, faça a iteração do método.

1.
$$(x_0, y_0) = (1, -1), \ \alpha = 1$$
 2. $(x_0, y_0) = (0, -\frac{2}{27}), \ \alpha = 0.1$

3.
$$(x_0, y_0) = (1, 1), \ \alpha = 0.2$$
 4. $(x_0, y_0) = \frac{2}{3}(-1, -1), \ \alpha = 0.1$

5.
$$(x_0, y_0) = (-5, 5), \ \alpha = 0.1$$

Gabarito. 1. $\nabla f(x,y) = (2x+3y,8y+3x) \in \nabla^2 f(x,y) = \begin{bmatrix} 2 & 3 \\ 3 & 8 \end{bmatrix}$ precisamos alterar α .

- **2.** $\nabla f(x,y) = (3x^2 + 2y, 6y + 2x)$ e $\nabla^2 f(x,y) = \begin{bmatrix} 6x & 2 \\ 2 & 6 \end{bmatrix}$ precisamos alterar a solução inicial para método de Newton pois a matriz hessiana não é definida positiva no ponto dado.
 - 3-5 são parecidos.

9. Descreva o método de função de penalidade para o seguinte problema de ótimização.

$$\max f(x)$$

$$s.a \quad g_j(x) \le 0, \qquad j = 1, 2, \cdots, m$$

$$h_j(x) = 0, \qquad j = 1, 2, \cdots, p$$

$$x \in \mathbb{R}^n$$

Gabarito: Veja isso nas notas de aula.

10. Explique porque o multiplicador μ no método de função de penalidade deve ser suficiente grande mas no método de função de barreira deve ser suficiente pequeno. Também, explique porque μ não pode ser muito grande no primeiro caso ou muito pequeno no segundo caso? Como pode resolver estes problemas na prática?

Gabarito: Veja isso nas notas de aula.

11. Descreva o método de função de barreira para o seguinte problema de ótimização.

$$\max f(x)$$

$$s.a \quad g_j(x) \le 0, \qquad j = 1, 2, \dots, m$$

$$x \in \mathbb{R}^n$$

Gabarito: Veja isso nas notas de aula.

12. Determine a função de penalidade e a função de barreira para problemas a seguir. Se for necessário, pode desconsiderar algumas restrições para caso de função de barreira.

1) min
$$x_1 + x_2^2 + 3x_3$$

 $s.a$ $x_1^2 - 3x_1x_2 \le 1 - x_3$,
 $-2x_1^2x_3 + 2x_2^2x_3 \ge 2$,
 $x_3^2 - 3x_2^2 + x_1x_3 = x_2$,
 $x_i \in \mathbb{R}, \ i = 1, 2, 3$.

2) min
$$x_1^2 - x_2 + 3\ln(x_3 - 1)$$

 $s.a$ $x_3\sqrt{x_1^2 + 1} - x_2^2 = 1 - x_3,$
 $x_3 \ge 2,$
 $4x_1^2 - 3x_3^2 \ge x_1x_3 - x_2,$
 $x_i \in \mathbb{R}, i = 1, 2, 3.$

Gabarito: Não esqueça de reescrever o problema em forma padrão. Pode desconsiderar as restrições igualdades para caso de função de penalidade. O resto é direto (dá uma olhada nas notas de aulas e exemplos resolvidos).

13. Determine a função lagrangeana para problemas dados na questão 12. Gabarito: Não esqueça de reescrever o problema em forma padrão. O resto é direto (dá uma olhada nas notas de aulas e exemplos resolvidos).

14. Para problemas a seguir, calcule a solução óptima recorrendo exclusivamente ás condições KKT.

1) min
$$-3x_1 - x_2$$

 $s.a$ $x_1^2 + x_2^2 \le 5$,
 $x_1 - x_2 \le 1$,
 $x_i \in \mathbb{R}, i = 1, 2$.

2) min
$$x_1^2 + 2x_1 + x_2^2 - 4x_2 + 5$$

s.a $0 \le x_1 \le 2$,
 $0 \le x_2 \le 1$,
 $x_i \in \mathbb{R}, i = 1, 2$.

Gabarito: Primeira determine a função lagrangeana para o problema dada e depois verifique casos diferentes para ver qual casos tem solução ótima.

1. Hip $\lambda_1=0$ leva a dois valores diferentes para λ_2 que é impossível. Hip $\lambda_1\neq 0$ e $\lambda_2=0$ leva a soluções para x_1 e x_2 que não satisfazem a segunda restrição. Hip $\lambda_1\neq 0, <\lambda_2\neq 0$ leva a duas soluções $x_1=-1; x_2=-2$ e $x_1=2; x_2=1$. A primeira solução leva a valor impossível para λ_1 , mas a segunda solução vai satisfazer todas as condições KKT, e etnão é a solução ótima do problema.

2. Solução ótima:
$$(x_1^*, x_2^*) = (0, 1)$$
 e $(\lambda_1^*, \lambda_2^*, \lambda_3^*, \lambda_4^*) = (0, -2, -2, 0)$

15. Resolvi o problema dada na questão 14 pelo gráfico das restrições e a função objetiva.

16. Resolvi os seguintes problemas pelo métodos de função de penalidade e função de barreira.

1) min
$$2x_1 + x_2^3 + x_3^2$$

 $s.a$ $x_1^2 + 2x_2^2 + x_3^2 \ge 4$,
 $x_i \ge 0$, $x_i \in \mathbb{R}$, $i = 1, 2, 3$.

2) min
$$x_1^2 + 2x_1 + 2x_1x_2 + 4x_2^2$$

 $s.a$ $2x_1 + x_2 \ge 10$,
 $x_1 + 2x_2 \ge 10$,
 $x_i \in \mathbb{R}, i = 1, 2$.

17. Resolvi o PNL a seguir usando o método de direção factível usando $x^0=(0,0)$ na primeira e $x^0=(3,4)$ na segunda.

1) min
$$2x_1^2 - 4x_1 - 2x_1x_2 - 6x_2 + x_2^2$$

 $s.a$ $x_1 + x_2 \le 8$,
 $-x_1 + 2x_2 \le 10$,
 $x_i \ge 0$, $x_i \in \mathbb{R}$, $i = 1, 2$.

2) min
$$x_1^2 + 2x_1 + 2x_1x_2 + 4x_2^2$$

 $s.a$ $2x_1 + x_2 \ge 10$,
 $x_1 + 2x_2 \ge 10$,
 $x_i \in \mathbb{R}, i = 1, 2$.