PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

51) International Patent Classification 6:		11) International Publication Number: WO 99/0154:									
C12N 9/12, C12Q 1/48	A1	43) International Publication Date: 14 January 1999 (14.01.99									
	rporate Driv orporate Driv AO, Zhaoda San Francisc arik Inc., Tv 4080 (US). chnology La	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GE GH, GM, GW, HR, HU, L, IS, P., KŁ, KG, KP, KE LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, S TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, L U, MC, NL, PT, SB, OAPI patent (BF, BJ, CF, C) (Ve, OC) Published With international search report.									
(54) Title: IKK-α PROTEINS, NUCLEIC ACIDS A	AND METI	DDS									
(57) Abstract											
The invention provides methods and compositing be produced recombinantly from transformed heals. The invention provides isolated IKK-v hybridization provides isolated IKK-v hybridization.	ost cells fro	o an Ix B kinase, IKK $-\alpha$, and related nucleic acids. The polypeptid the disclosed IKK $-\alpha$ encoding nucleic acids or purified from hum and primers capable of specifically hybridizing with the disclosed IKK-nid methods of making and using the subject compositions in diagnos									
		*									
÷											

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia.	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinca	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	MIL	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belanus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	· Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NŁ	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Lì	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

IKK-α Proteins, Nucleic Acids and Methods

INTRODUCTION

Field of the Invention

The field of this invention is proteins involved in transcription factor activation.

Background

5

10

15

Cytokines trigger changes in gene expression by modifying the activity of otherwise latent transcription factors (Hill and Treisman, 1995). Nuclear factor KB (NF-KB) is a prominent example of how such an external stimulus is converted into an active transcription factor (Verma et al., 1995). The NF-xB system is composed of homo- and heterodimers of members of the Rel family of related transcription factors that control the expression of numerous immune and inflammatory response genes as well as important viral genes (Lenardo and Baltimore, 1989; Baeuerle and Henkel, 1994). The activity of NF-KB transcription factors is regulated by their subcellular localization (Verma et al., 1995). In most cell types, NF-kB is present as a heterodimer comprising of a 50 kDa and a 65 kDa subunit. This heterodimer is sequestered in the cytoplasm in association with IκΒα a member of the IkB family of inhibitory proteins (Finco and Baldwin, 1995; Thanos and Maniatis, 1995; Verma et al., 1995). IκBα masks the nuclear localization signal of NF-κB and thereby prevents NF-kB nuclear translocation. Conversion of NF-kB into an active transcription factor that translocates into the nucleus and binds to cognate DNA sequences requires the phosphorylation and subsequent ubiquitin-dependent degradation of IkBa in the 26s proteasome. Signal-induced phosphorylation of IkBa occurs at serines 32 and 36. Mutation of one or both of these serines renders IKBa resistant to ubiquitination and proteolytic degradation (Chen et al., 1995).

25

20

The pleiotropic cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) are among the physiological inducers of IkB phosphorylation and subsequent NF-kB activation (Osborn et al., 1989; Beg et al., 1993). Although TNF and IL-1 initiate signaling cascades leading to NF-kB activation via distinct families of cell-surface receptors (Smith et al., 1994; Dinarello, 1996), both pathways utilize members of the TNF receptor-associated factor (TRAF) family of adaptor proteins as signal transducers (Rothe et al., 1995; Hsu et al., 1996; Cao et al., 1996b). TRAF proteins were originally found to

associate directly with the cytoplasmic domains of several members of the TNF receptor family including the 75 kDa TNF receptor (TNFR2), CD40, CD30, and the lymphotoxin-β receptor (Rothe et al., 1994; Hu et al., 1994; Cheng et al., 1995; Mosialos et al., 1995; Song and Donner, 1995; Sato et al., 1995; Lee et al., 1996; Gedrich et al., 1996; Ansieau et al., 1996). In addition, TRAF proteins are recruited indirectly to the 55 kDa TNF receptor (TNFR1) by the adaptor protein TRADD (Hsu et al., 1996). Activation of NF-κB by TNF requires TRAF2 (Rothe et al., 1995; Hsu et al., 1996). TRAF5 has also been implicated in NF-κB activation by members of the TNF receptor family (Nakano et al., 1996). In contrast, TRAF6 participates in NF-κB activation by IL-1 (Cao et al., 1996b). Upon IL-1 treatment, TRAF6 associates with IRAK, a serine-threonine kinase that binds to the IL-1 receptor complex (Cao et al., 1996a).

10

15

5

The NF-kB-inducing kinase (NIK) is a member of the MAP kinase kinase kinase (MAP3K) family that was identified as a TRAF2-interacting protein (Malinin et al., 1997). NIK activates NF-kB when overexpressed, and kinase-inactive mutants of NIK comprising its TRAF2-interacting C-terminal domain (NIK₍₆₂₄₋₉₄₇₎) or lacking two crucial lysine residues in its kinase domain (NIK_(KK429-430AA)) behave as dominant-negative inhibitors that suppress TNF-, IL-1-, and TRAF2-induced NF-kB activation (Malinin et al., 1997). Recently, NIK was found to associate with additional members of the TRAF family, including TRAF5 and TRAF6. Catalytically inactive mutants of NIK also inhibited TRAF5- and TRAF6-induced NF-kB activation, thus providing a unifying concept for NIK as a common mediator in the NF-kB signaling cascades triggered by TNF and IL-1 downstream of TRAFs.

20

25

Here, we disclose a novel human kinase IκB Kinase, IKK-α, as a NIK-interacting protein. IKK-α has sequence similarity to the conceptual translate of a previously identified open reading frame (SEQ ID NO:5) postulated to encode a serine-threonine kinase of unknown function (Conserved Helix-loop-helix Ubiquitous Kinase or CHUK, Connelly and Marcu, 1995; Mock et al., 1995). Catalytically inactive mutants of IKK-α are shown to suppress NF-κB activation induced by TNF and IL-1 stimulation as well as by TRAF and NIK overexpression; transiently expressed IKK-α is shown to associate with the endogenous IκBα complex; and IKK-α is shown to phosphorylate IκBα on serines 32 and 36.

SUMMARY OF THE INVENTION

The invention provides methods and compositions relating to isolated IKK- α polypeptides, related nucleic acids, polypeptide domains thereof having IKK- α -specific structure and activity and modulators of IKK- α function, particularly IkB kinase activity. IKK- α polypeptides can regulate NFkB activation and hence provide important regulators of cell function. The polypeptides may be produced recombinantly from transformed host cells from the subject IKK- α polypeptide encoding nucleic acids or purified from mammalian cells. The invention provides isolated IKK- α hybridization probes and primers capable of specifically hybridizing with the disclosed IKK- α gene, IKK- α -specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis (e.g. genetic hybridization screens for IKK- α transcripts), therapy (e.g. IKK- α kinase inhibitors to inhibit TNF signal transduction) and in the biopharmaceutical industry (e.g. as immunogens, reagents for isolating other transcriptional regulators, reagents for screening chemical libraries for lead pharmacological agents, etc.).

15

20

25

10

5

DETAILED DESCRIPTION OF THE INVENTION

The nucleotide sequence of a natural cDNA encoding a human IKK-α polypeptide is shown as SEQ ID NO:3, and the full conceptual translate is shown as SEQ ID NO:4. The IKK-α polypeptides of the invention include incomplete translates of SEQ ID NO:3, particularly of SEQ ID NO:3, residues 1-638, which translates and deletion mutants of SEQ ID NO:4 have human IKK-α-specific amino acid sequence, binding specificity or function and comprise at least one of Cys30, GluLeu604, Thr679, Ser680, Pro684, Thr686, and Ser678. Preferred translates/deletion mutants comprise at least a 6 residue Cys30, Glu543, Leu604, Thr679, Ser680, Pro684, Thr686 or Ser687-containing domain of SEQ ID NO:4, preferably including at least 8, more preferably at least 12, most preferably at least 20 contiguous residues which immediately flank said residue, with said residue preferably residing within said contiguous residues, see, e.g. Table I; which mutants provide hIKK-α specific epitopes and immunogens.

30

TABLE 1. Exemplay IKK-α polypeptides having IKK-α binding specificity

hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 1-30) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 686-699) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 22-31) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 312-345) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 599-608) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 419-444) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 601-681) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 495-503) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 604-679) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 655-590) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 670-687) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 679-687) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 715-740) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 680-690) hIKK- $\alpha\Delta$ 1 (SEQ ID NO:4, residues 737-745)

10

5

The subject domains provide IKK- α domain specific activity or function, such as IKK- α -specific kinase or kinase inhibitory activity, NIK-binding or binding inhibitory activity, IKB-binding or binding inhibitory activity, NFKB activating or inhibitory activity or antibody binding. Preferred domains phosphorylate at least one and preferably both the serine 32 and 36 of IKB (Verma, I. M., et al. (1995)). As used herein, Ser32 and Ser36 of IKB refers collectively to the two serine residues which are part of the consensus sequence DSGL/IXSM/L (e.g. ser 32 and 36 in IKB α , ser 19 and 23 in IKB β , and ser 157 and 161, or 18 and 22, depending on the usage of methionines, in IKB α , respectively.

20

15

IKK-α-specific activity or function may be determined by convenient *in vitro*, cellbased, or *in vivo* assays: e.g. *in vitro* binding assays, cell culture assays, in animals (e.g. gene therapy, transgenics, etc.), etc. Binding assays encompass any assay where the molecular interaction of an IKK-α polypeptide with a binding target is evaluated. The binding target may be a natural intracellular binding target such as an IKK-α substrate, a IKK-α regulating protein or other regulator that directly modulates IKK-α activity or its localization; or non-natural binding target such a specific immune protein such as an antibody, or an IKK-α specific agent such as those identified in screening assays such as described below. IKK-α-binding specificity may assayed by kinase activity or binding equilibrium constants (usually at least about 10⁷ M⁻¹, preferably at least about 10⁸ M⁻¹, more preferably at least about 10⁹ M⁻¹), by the ability of the subject polypeptide to function as negative mutants in IKK-α-expressing cells, to elicit IKK-α specific antibody in a heterologous host (e.g. a rodent or rabbit), etc. In any event, the IKK-α binding specificity

30

5

10

15

20

25

30

of the subject IKK- α polypeptides necessarily distinguishes the murine and human CHUK sequences of Connelly and Marcu (1995) as well as IKK- β (SEQ ID NO:4).

The claimed IKK-α polypeptides are isolated or pure: an "isolated" polypeptide is unaccompanied by at least some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, and more preferably at least about 5% by weight of the total polypeptide in a given sample and a pure polypeptide constitutes at least about 90%, and preferably at least about 99% by weight of the total polypeptide in a given sample. In a particular embodiments, IKK-α polypeptides are isolated from a MKP-1 precipitable complex, isolated from a IKK complex, and/or isolated from IKK-β. The IKK-α polypeptides and polypeptide domains may be synthesized, produced by recombinant technology, or purified from mammalian, preferably human cells. A wide variety of molecular and biochemical methods are available for biochemical synthesis, molecular expression and purification of the subject compositions, see e.g. Molecular Cloning, A Laboratory Manual (Sambrook, et al. Cold Spring Harbor Laboratory), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY) or that are otherwise known in the art.

The invention provides binding agents specific to IKK polypeptides, preferably the claimed IKK-a polypeptides, including substrates, agonists, antagonists, natural intracellular binding targets, etc., methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. For example, specific binding agents are useful in a variety of diagnostic and therapeutic applications, especially where disease or disease prognosis is associated with improper utilization of a pathway involving the subject proteins, e.g. NF-kB activation. Novel IKK-specific binding agents include IKK-specific receptors, such as somatically recombined polypeptide receptors like specific antibodies or T-cell antigen receptors (see, e.g Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory) and other natural intracellular binding agents identified with assays such as one-, two- and three-hybrid screens, nonnatural intracellular binding agents identified in screens of chemical libraries such as described below, etc. Agents of particular interest modulate IKK function, e.g. IKKdependent transcriptional activation. For example, a wide variety of inhibitors of IKK IKB kinase activity may be used to regulate signal transduction involving IkB. Exemplary IKK IxB kinase inhibitors include known classes of serine/threonine kinase (e.g. PKC)

inhibitors such as competitive inhibitors of ATP and substrate binding, antibiotics, IKK-derived peptide inhibitors, etc., see Tables II and III. IKK specificity and activity are readily quantified in high throughput kinase assays using panels of protein kinases (see cited references and Examples).

Preferred inhibitors include natural compounds such as staurosporine (Omura S, et al. J Antibiot (Tokyo) 1995 Jul;48(7):535-48), produced by a marine organism, and synthetic compounds such as PD 153035, which also potently inhibits the EGF receptor protein kinase (Fry DW et al. Science 1994 Aug 19;265(5175):1093-5). Members of the tyrphostin family of synthetic protein kinase inhibitors are also useful; these include compounds which are pure ATP competitors, compounds which are pure substrate competitors, and compounds which are mixed competitors: compete with both ATP and substrate (Levitzki A and Gazit A, Science 1995 Mar 24;267(5205):1782-8). Additional IKK inhibitors include peptide-based substrate competitors endogenously made by the mammalian cell, e.g. PKI (protein kinase inhibitor, Seasholtz AF et al., Proc Natl Acad Sci USA 1995 Feb 28;92(5):1734-8), or proteins inhibiting cdc kinases (Correa-Bordes J and Nurse P. Cell 1995 Dec 15;83(6):1001-9). Additional small peptide based substrate competitive kinase inhibitors and allosteric inhibitors (inhibitory mechanisms independent of ATP or substrate competition) are readily generated by established methods (Hvalby O, et al. Proc Natl Acad Sci USA 1994 May 24;91(11):4761-5; Barja P, et al., Cell Immunol 1994 Jan; 153(1):28-38; Villar-Palasi C, Biochim Biophys Acta 1994 Dec 30;1224(3):384-8; Liu WZ, et al., Biochemistry 1994 Aug 23;33(33):10120-6).

TABLE II. Selected Small Molecule IKK Kinase Inhibitors

HA-1001	Iso-H7 ¹²	A-3 ¹⁸
Chelerythrine ²	PKC 19-31	HA1004 ^{19,26}
Staurosporine ^{3,4,5}	H-7 ^{13,3,14}	K-252a16,5
Calphostin C ^{6,7,8,9}	H-89 ¹⁵	KT582316
K-252b ¹⁰	KT572016	$ML-9^{21}$
PKC 19-36 ¹¹	cAMP-depPKinhib ¹⁷	KT5926 ²²

Citations

5

10

15

20

- 1. Hagiwara, M,. et al. Mol. Pharmacol. 32: 7 (1987)
- 30 2. Herbert, J. M., et al. Biochem Biophys Res Com 172: 993 (1990)
 - 3. Schachtele, C., et al. Biochem Biophys Res Com 151: 542 (1988)

- 4. Tamaoki, T., et al. Biochem Biophys Res Com 135: 397 (1986)
- 5. Tischler, A. S., et al. J. Neurochemistry 55: 1159 (1990)
- 6. Bruns, R. F., et al. Biochem Biophys Res Com 176: 288 (1991)
- 7. Kobayashi, E., et al. Biochem Biophys Res Com 159: 548 (1989)
- 8. Tamaoki, T., et al Adv2nd Mass Phosphoprotein Res 24:497(1990)
- 9. Tamaoki, T., et al. Biotechnology 8: 732 (1990)

5

10

30

- 10. Yasuzawa, T. J. Antibiotics 39: 1972 (1986)
- 11. House, C., et al. Science 238: 1726 (1987)
- 12. Quick, J., et al. Biochem. Biophys. Res. Com. 167: 657 (1992)
- 13. Bouli, N. M. and Davis, M. Brain Res. 525: 198 (1990)
- 14. Takahashi, I., et al. J. Pharmacol. Exp. Ther. 255: 1218 (1990)
 - 15. Chijiwa, T., et al. J. Biol. Chem. 265: 5267 (1990)
 - 16. Kase, H., et al. Biochem. Biophys. Res. Com. 142: 436 (1987)
 - 17. Cheng, H. C., et al. J. Biol. Chem. 261: 989 (1986)
 - 18. Inagaki, M., et al. Mol. Pharmacol. 29: 577 (1986)
- 19. Asano, T. and Hidaka, H. J Pharmaco. Exp Ther 231:141 (1984) 15
 - 20. Hidaka, H., et al. Biochemistry 23: 5036 (1984)
 - 21. Nagatsu, T., et al. Biochem Biophys Res Com 143:1045 (1987)
 - 22. Nakanishi, S., et al. Mol. Pharmacol. 37: 482 (1990)
- TABLE III. Selected Peptidyl IKK Kinase Inhibitors 20

hIκBα, residues 24-39, 32Ala	hIKK- α , $\Delta 5$ -203
hIκBα, residues 29-47, 36Ala	hIKK-α, Δ1-178
hIκBa, residues 26-46, 32/36Ala	hΙΚΚ-α, Δ368-756
hIκBβ, residues 25-38, 32Ala	hIKK-α, Δ460-748

hIKK-α, Δ1-289 25 hIκBβ, residues 30-41, 36Ala hIκBβ, residues 26-46, 32/36Ala hIKK-α, Δ12-219

hIκBe, residues 24-40, 32Ala hIKK-α, Δ307-745

hIKK-α, Δ319-644 hIxBe, residues 31-50, 36Ala

hIκBe, residues 27-44, 32/36Ala

Accordingly, the invention provides methods for modulating signal transduction

5

10

15

20

25

30

involving InB in a cell comprising the step of modulating IKK kinase activity, e.g. by contacting the cell with a serine/threonine kinase inhibitor. The cell may reside in culture or in situ, i.e. within the natural host. Preferred inhibitors are orally active in mammalian hosts. For diagnostic uses, the inhibitors or other IKK binding agents are frequently labeled, such as with fluorescent, radioactive, chemiluminescent, or other easily detectable molecules, either conjugated directly to the binding agent or conjugated to a probe specific for the binding agent.

The amino acid sequences of the disclosed IKK-α polypeptides are used to back-translate IKK-α polypeptide-encoding nucleic acids optimized for selected expression systems (Holler et al. (1993) Gene 136, 323-328; Martin et al. (1995) Gene 154, 150-166) or used to generate degenerate oligonucleotide primers and probes for use in the isolation of natural IKK-α-encoding nucleic acid sequences ("GCG" software, Genetics Computer Group, Inc, Madison WI). IKK-α-encoding nucleic acids used in IKK-α-expression vectors and incorporated into recombinant host cells, e.g. for expression and screening, transgenic animals, e.g. for functional studies such as the efficacy of candidate drugs for disease associated with IKK-α-modulated cell function, etc.

The invention also provides nucleic acid hybridization probes and replication /

amplification primers having a IKK-α cDNA specific sequence comprising at least 12, preferably at least 24, more preferably at least 36 and most preferably at least contiguous 96 bases of a strand of SEQ ID NO:3, particularly of SEQ ID NO:2, nucleotides 1-1913, and preferably including at least one of bases 1-92, 1811, 1812, 1992, 1995, 2034, 2035, 2039, 2040, 2050, 2055 and 2060, and sufficient to specifically hybridize with a second nucleic acid comprising the complementary strand of SEQ ID NO:3 in the presence of a third nucleic acid comprising (SEQ ID NO:5). Demonstrating specific hybridization generally requires stringent conditions, for example, hybridizing in a buffer comprising 30% formamide in 5 x SSPE (0.18 M NaCl, 0.01 M NaPO₄, pH7.7, 0.001 M EDTA) buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE; preferably hybridizing in a buffer comprising 50% formamide in 5 x SSPE buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2 x SSPE buffer at 42°C. IKK-α nucleic acids can also be distinguished using alignment algorithms, such as BLASTX (Altschul *et al.* (1990) Basic Local Alignment

Search Tool, J Mol Biol 215, 403-410).

5

10

15

20

25

30

The subject nucleic acids are of synthetic/non-natural sequences and/or are isolated, i.e. unaccompanied by at least some of the material with which it is associated in its natural state, preferably constituting at least about 0.5%, preferably at least about 5% by weight of total nucleic acid present in a given fraction, and usually recombinant, meaning they comprise a non-natural sequence or a natural sequence joined to nucleotide(s) other than that which it is joined to on a natural chromosome. Recombinant nucleic acids comprising the nucleotide sequence of SEQ ID NO:3, or requisite fragments thereof, contain such sequence or fragment at a terminus, immediately flanked by (i.e. contiguous with) a sequence other than that which it is joined to on a natural chromosome, or flanked by a native flanking region fewer than 10 kb, preferably fewer than 2 kb, which is at a terminus or is immediately flanked by a sequence other than that which it is joined to on a natural chromosome. While the nucleic acids are usually RNA or DNA, it is often advantageous to use nucleic acids comprising other bases or nucleotide analogs to provide modified stability, etc.

The subject nucleic acids find a wide variety of applications including use as translatable transcripts, hybridization probes, PCR primers, diagnostic nucleic acids, etc.; use in detecting the presence of IKK- α genes and gene transcripts and in detecting or amplifying nucleic acids encoding additional IKK- α homologs and structural analogs. In diagnosis, IKK- α hybridization probes find use in identifying wild-type and mutant IKK- α alleles in clinical and laboratory samples. Mutant alleles are used to generate allele-specific oligonucleotide (ASO) probes for high-throughput clinical diagnoses. In therapy, therapeutic IKK- α nucleic acids are used to modulate cellular expression or intracellular concentration or availability of active IKK- α .

The invention provides efficient methods of identifying agents, compounds or lead compounds for agents active at the level of a IKK modulatable cellular function.

Generally, these screening methods involve assaying for compounds which modulate IKK interaction with a natural IKK binding target, in particular, IKK phosphorylation of IkB-derived substrates, particularly IkB and NIK substrates. A wide variety of assays for binding agents are provided including labeled *in vitro* protein-protein binding assays, immunoassays, cell based assays, etc. The methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Identified reagents find use in the pharmaceutical industries for animal and human trials; for example,

the reagents may be derivatized and rescreened in *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development.

In vitro binding assays employ a mixture of components including an IKK polypeptide, which may be part of a fusion product with another peptide or polypeptide, e.g. a tag for detection or anchoring, etc. The assay mixtures comprise a natural intracellular IKK binding target. In a particular embodiment, the binding target is a substrate comprising IκB serines 32 and/or 36. Such substrates comprise a IκBα. B or ε peptide including the serine 32 and/or 36 residue and at least 5, preferably at least 10, and more preferably at least 20 naturally occurring immediately flanking residues on each side (e.g. for serine 36 peptides, residues 26-46, 22-42, or 12-32 or 151-171 for IkB α , β or ϵ derived substrates, respectively). While native full-length binding targets may be used. it is frequently preferred to use portions (e.g. peptides) thereof so long as the portion provides binding affinity and avidity to the subject IKK polypeptide conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent. Candidate agents encompass numerous chemical classes, though typically they are organic compounds; preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. A variety of other reagents may also be included in the mixture. These include reagents like ATP or ATP analogs (for kinase assays), salts, buffers, neutral proteins, e.g. albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc. may be used.

20

15

5

10

The resultant mixture is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the IKK polypeptide specifically binds the cellular binding target, portion or analog with a reference binding affinity. The mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding. Incubation periods are likewise selected for optimal binding but also minimized to facilitate rapid, high-throughput screening.

25

After incubation, the agent-biased binding between the IKK polypeptide and one or more binding targets is detected by any convenient way. For IKK kinase assays, 'binding' is generally detected by a change in the phosphorylation of a IKK-α substrate. In this embodiment, kinase activity may quantified by the transfer to the substrate of a labeled phosphate, where the label may provide for direct detection as radioactivity, luminescence,

optical or electron density, etc. or indirect detection such as an epitope tag, etc. A variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g. through optical or electron density, radiative emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, etc.

A difference in the binding affinity of the IKK polypeptide to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the IKK polypeptide to the IKK binding target. Analogously, in the cell-based assay also described below, a difference in IKK- α -dependent transcriptional activation in the presence and absence of an agent indicates the agent modulates IKK function. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.

The following experimental section and examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL.

Identification of IKK-α

5

10

15

20

25

30

To investigate the mechanism of NIK-mediated NF-κB activation, we identified proteins that associate directly with NIK by yeast two-hybrid protein interaction cloning (Fields and Song, 1989). An expression vector was generated that encodes NIK fused to the DNA-binding domain of the yeast transcription factor GAL4. This vector was used as bait in a two-hybrid screen of a human B cell cDNA library. From approximately six million transformants, eight positive clones were obtained, as determined by activation of his and lacZ reporter genes. Of these clones, three encoded a member of the TRAF family, TRAF3 (Hu et al., 1994; Cheng et al., 1995; Mosialos et al., 1995; Sato et al., 1995) and one encoded a novel protein we call IKK-α. Retransformation into yeast cells verified the interaction between NIK and IKK-α. A full-length human IKK-α clone was isolated by screening a Jurkat cDNA library with a probe generated from the 5'-end of the IKK-α two-hybrid clone. IKK-α comprises an N-terminal serine-threonine kinase catalytic domain, a C-terminal helix-loophelix domain and a leucine zipper-like amphipathic α-helix juxtaposed in between the helix-loop-helix and kinase domain.

Interaction of IKK-α and NIK in Human Cells

The interaction of IKK-α with NIK was confirmed in mammalian cell

coimmunoprecipitation assays. Human IKK- α containing an N-terminal Flag epitope tag was transiently coexpressed in 293 human embryonic kidney cells with Myc epitope-tagged NIK or HA epitope-tagged TRAF proteins. Cell lysates were immunoprecipitated using a monoclonal antibody against the Flag epitope, and coprecipitating NIK or TRAF proteins were detected by immunoblot analysis with an anti-Myc or anti-HA monoclonal antibodies. In this assay, IKK- α was able to coprecipitate NIK confirming the interaction between both proteins as detected for IKK- α by yeast two-hybrid analysis. Also, a deletion mutant IKK- α protein lacking most of the N-terminal kinase domain (IKK- α (307-745)) was able to associate with NIK, indicating that the α -helical C-terminal half of IKK- α mediates the interaction with NIK. In contrast to NIK, IKK- α failed to associate with either TRAF2 or TRAF3. However, when NIK was coexpressed with IKK- α and TRAF2, strong coprecipitation of TRAF2 with IKK- α was detected, indicating the formation of a ternary complex between IKK- α , NIK and TRAF2.

Effect of IKK-α and IKK-α Mutants on NF-κB Activation

5

10

15

20

25

30

To investigate a possible role for IKK- α in NF- κ B activation, we examined if transient overexpression of IKK- α might activate an NF- κ B-dependent reporter gene. An E-selectin-huciferase reporter construct (Schindler and Baichwal, 1994) and a IKK- α expression vector were cotransfected into HeLa cells. IKK- α expression activated the reporter gene in a dose-dependent manner, with a maximal induction of huciferase activity of about 6 to 7-fold compared to vector control. Similar results were obtained in 293 cells, where IKK- α overexpression induced reporter gene activity approximately 4-fold. TNF treatment did not stimulate the weak NF- κ B-inducing activity of overexpressed IKK- α in reporter gene assays. Thus, IKK- α induces NF- κ B activation when overexpressed.

We next determined the effect of overexpression of kinase-inactive IKK- $\alpha_{(307-745)}$ that still associates with NIK on signal-induced NF- κ B activation in reporter gene assays in 293 cells. Overexpression of IKK- $\alpha_{(307-745)}$ blocked TNF- and IL-1-induced reporter gene activation similar to overexpression of NIK(624-947). IKK- $\alpha_{(307-745)}$ was also found to inhibited NF- κ B-dependent reporter gene activity elicited by overexpression of TRAF2, TRAF6 and NIK. Taken together these results demonstrate that a catalytically inactive IKK- α mutant is a dominant-negative inhibitor of TNF-, IL-1, TRAF- and NIK-induced NF- κ B activation. This indicates that IKK- α functions as a common mediator of NF- κ B activation by TNF and IL-1 downstream of NIK.

Parenthetical References

Ansieau, S., et al. (1996). Proc. Natl. Acad. Sci. USA 93, 14053-14058.

Baeuerle, P. A., and Henkel, T. (1994). Annu. Rev. Immunol. 12, 141-179.

Beg, A. A., et al. (1993). Mol. Cell. Biol. 13, 3301-3310.

Cao, Z., Henzel, W. J., and Gao, X. (1996a). Science 271, 1128-1131.

5 Cao, Z., et al. (1996b). Nature 383, 443-446.

Chen, Z., et al.. (1995). Genes Dev. 9, 1586-1597.

Cheng, G., et al. (1995). Science 267, 1494-1498.

Connelly, M. A., and Marcu, K. B. (1995). Cell, Mol. Biol. Res. 41, 537-549.

Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease. Blood 87, 2095-2147.

10 Fields, S., and Song, O.-k. (1989). Nature 340, 245-246.

Finco, T. S., and Baldwin, A. S. (1995). Immunity 3, 263-272.

Gedrich, R. W., et al. (1996). J. Biol. Chem. 271, 12852-12858.

Hill, C. S., and Treisman, R. (1995). Cell 80, 199-211.

Hsu, H., Shu, H.-B., Pan, M.-P., and Goeddel, D. V. (1996). Cell 84, 299-308.

15 Hu, H. M., et al. (1994). J. Biol. Chem. 269, 30069-30072.

Lee, S. Y., et al. (1996). Proc. Natl. Acad. Sci. USA 93, 9699-9703.

Lenardo, M., and Baltimore, D. (1989). Cell 58, 227-229.

Malinin, N. L., et al., (1997). Nature 385, 540-544.

Mock et al. (1995). Genomics 27, 348-351.

20 Mosialos, G., et al. (1995). Cell 80, 389-399.

Nakano, H., et al. (1996), J. Biol. Chem. 271, 14661-14664.

Osborn, L., Kunkel, S., and Nabel, G. J. (1989). Proc. Natl. Acad. Sci. USA 86, 2336-2340.

Rothe, M., Sarma, V., Dixit, V. M., and Goeddel, D. V. (1995). Science 269, 1424-1427.

Rothe, M., Wong, S. C., Henzel, W. J., and Goeddel, D. V. (1994). Cell 78, 681-692.

25 Sato, T., Irie, S., and Reed, J. C. (1995). FEBS Lett. 358, 113-118.

Schindler, U., and Baichwal, V. R. (1994). Mol. Cell. Biol. 14, 5820-5831.

Smith, C. A., Farrah, T., and Goodwin, R. G. (1994). Cell 76, 959-962.

Song, H. Y., and Donner, D. B. (1995). Biochem, J. 809, 825-829.

Thanos, D., and Maniatis, T. (1995), Cell 80, 529-532.

30 Verma, I. M., et al. (1995). Genes Dev. 9, 2723-2735.

10

15

20

EXAMPLES

- Protocol for at IKK-α IκBα phosphorylation assay.
- A. Reagents:
 - Neutralite Avidin: 20 μg/ml in PBS.
 - kinase: 10^{-8} 10^{-5} M IKK- α (SEQ ID NO:4) at 20 μ g/ml in PBS.
- 5 substrate: 10⁻⁷ 10⁻⁴ M biotinylated substrate (21 residue peptide consisting of residues 26-46 of human IrBα) at 40 μg/ml in PBS.
 - Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
 - Assay Buffer: 100 mM KCl, 10 mM MgCl₂, 1 mM MnCl₂, 20 mM HEPES pH 7.4,
 0.25 mM EDTA, 1% glycerol, 0.5% NP-40, 50 mM BME, 1 mg/ml BSA, cocktail of protease inhibitors.
 - $-\underline{I^{32}P]\gamma\text{-ATP 10x stock: }}2\times10^{5}\text{M cold ATP with }100~\mu\text{Ci }[^{32}P]\gamma\text{-ATP. Place in the }4^{\circ}\text{C microfridge during screening.}$
 - Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVo₃ (Sigma # S-6508) in 10 ml of PBS.
 - B. Preparation of assay plates:
 - Coat with 120 µl of stock N Avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 µl PBS.
 - C. Assay:
 - Add 40 µl assay buffer/well.
 - Add 40 µl biotinylated substrate (2-200 pmoles/40 ul in assay buffer)
- 25 Add 40 µl kinase (0.1-10 pmoles/40 ul in assay buffer)
 - Add 10 µl compound or extract.
 - Add 10 μl [32P]γ-ATP 10x stock.
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.
- 30 Stop the reaction by washing 4 times with 200 μl PBS.
 - Add 150 µl scintillation cocktail.

WO 99/01541

10

15

- Count in Topcount.
- D. Controls for all assays (located on each plate):
 - a. Non-specific binding
 - b. cold ATP at 80% inhibition.
- Protocol for high throughput IKK-α-NIK binding assay.
 - A. Reagents:
 - Neutralite Avidin: 20 µg/ml in PBS.
 - Blocking buffer: 5% BSA, 0.5% Tween 20 in PBS; 1 hour at room temperature.
 - Assay Buffer: 100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl₂, 1% glycerol,
 0.5% NP-40, 50 mM β-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors.
 - ³³P IKK-α polypeptide 10x stock: 10⁻⁸ 10⁻⁶ M "cold" IKK-α supplemented with 200,000-250,000 cpm of labeled IKK-α (Beckman counter). Place in the 4°C microfridge during screening.
 - Protease inhibitor cocktail (1000X): 10 mg Trypsin Inhibitor (BMB # 109894), 10 mg Aprotinin (BMB # 236624), 25 mg Benzamidine (Sigma # B-6506), 25 mg Leupeptin (BMB # 1017128), 10 mg APMSF (BMB # 917575), and 2mM NaVO₃ (Sigma # S-6508) in 10 ml of PBS.
 - -NIK: 10-7 10-5 M biotinylated NIK in PBS.
- B. Preparation of assay plates:
 - Coat with 120 µl of stock N-Avidin per well overnight at 4°C.
 - Wash 2 times with 200 µl PBS.
 - Block with 150 µl of blocking buffer.
 - Wash 2 times with 200 ul PBS.
 - C. Assay:
- 25 Add 40 μl assay buffer/well.
 - Add 10 µl compound or extract.
 - Add 10 μ l ³³P-IKK- α (20-25,000 cpm/0.1-10 pmoles/well =10-9-10-7 M final conc).
 - Shake at 25°C for 15 minutes.
 - Incubate additional 45 minutes at 25°C.
- Add 40 μM biotinylated NIK (0.1-10 pmoles/40 ul in assay buffer)
 - Incubate 1 hour at room temperature.

WO 99/01541

5

10

- Stop the reaction by washing 4 times with 200 µM PBS.
- Add 150 µM scintillation cocktail.
- Count in Topcount.
- D. Controls for all assays (located on each plate):
 - a. Non-specific binding
 - b. Soluble (non-biotinylated NIK) at 80% inhibition.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

- 1. An isolated polypeptide comprising SEQ ID NO:4, or at least a 10 residue domain thereof comprising at least one of Cys30, Leu604, Thr679, Ser680, Pro684, Thr686 and Ser678.
- An isolated polypeptide according to claim 1, wherein said polypeptide has an activity selected from at least one of: a kinase or kinase inhibitory activity, a NIK-binding or binding inhibitory activity, an IkB-binding or binding inhibitory activity and an NFkB activating or inhibitory activity.
- 3. An isolated or recombinant first nucleic acid comprising a strand of SEQ ID NO:3, or a portion thereof having at least 24 contiguous bases of SEQ ID NO:3 and including at least one of bases 1-92, 1811, 1812, 1992, 1995, 2034, 2035, 2039, 2040, 2050, 2055 and 2060, sufficient to specifically hybridize with a second nucleic acid comprising the complementary strand of SEQ ID NO:3 in the presence of a third nucleic acid comprising 15 (SEQ ID NO:5).
 - 4. A recombinant nucleic acid encoding a polypeptide according to claim 1.
 - 5. A cell comprising a nucleic acid according to claim 4.

20

- 6. A method of making an isolated polypeptide according to claim 1, said method comprising steps: introducing a nucleic acid according to claim 4 into a host cell or cellular extract, incubating said host cell or extract under conditions whereby said nucleic acid is expressed as a transcript and said transcript is expressed as a translation product comprising said polypeptide, and isolating said translation product.
- A method of screening for an agent which modulates the interaction of an IKK
 polypeptide to a binding target, said method comprising the steps of:

incubating a mixture comprising:

30

25

an isolated polypeptide according to claim 1, a binding target of said polypeptide, and 5

10

15

20

a candidate agent;

under conditions whereby, but for the presence of said agent, said polypeptide specifically binds said binding target at a reference affinity,

detecting the binding affinity of said polypeptide to said binding target to determine an agent-biased affinity, wherein a difference between the agent-biased affinity and the reference affinity indicates that said agent modulates the binding of said polypeptide to said binding target.

- 8. A method according to claim 7, wherein said binding target is a natural intracellular substrate and said reference and agent-biased binding affinity is detected as phosphorylation of said substrate.
- 9. A method of screening for an agent which modulates the interaction of an IKK polypeptide to a binding target, said method comprising the steps of:

incubating a mixture comprising: an isolated polypeptide comprising SEQ ID NO: 2 or 4, or a deletion mutant thereof retaining IkB kinase activity, an IkB polypeptide comprising at least a six residue domain of a natural IkB comprising at least one of Ser32 and Ser 36, and a candidate agent;

under conditions whereby, but for the presence of said agent, said polypeptide specifically phosphorylates said IkB polypeptide at at least one of said Ser32 and Ser36 at a reference activity;

detecting the polypeptide-induced phosphorylation of said InB polypeptide at at least one of said Ser32 and Ser36 to determine an agent-biased activity, wherein a difference between the agent-biased activity and the reference activity indicates that said agent modulates the ability of said polypeptide to specifically phosphorylate a InB polypeptide.

25

- 10. A method for modulating signal transduction involving I κB in a cell, said method comprising the step of modulating IKK- α (SEQ ID NO:4) kinase activity.
- 11. The method of claim 10, wherein said modulating step comprises contacting the cell with a serine/threonine kinase inhibitor.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Rothe, Mike
Cao, Zhaodan
Régnier, Catherine

(ii) TITLE OF INVENTION: IKK- Proteins, Nucleic Acids and Methods

10 (iii) NUMBER OF SEQUENCES: 5

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: SCIENCE & TECHNOLOGY LAW GROUP
- (B) STREET: 268 BUSH STREET, SUITE 3200
- 15 (C) CITY: SAN FRANCISCO
 - (D) STATE: CALIFORNIA
 - (E) COUNTRY: USA
 - (F) ZIP: 94104
- 20 (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

25
(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: OSMAN, RICHARD A
- (B) REGISTRATION NUMBER: 36,627
- (C) REFERENCE/DOCKET NUMBER: T97-006-1

35

30

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 343-4341
 - (B) TELEFAX: (415) 343-4342

- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2268 base pairs

PCT/US98/13782

WO 99/01541

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

	*****	_ ~		SEQ ID NO:1:			
	ATGAGCTGGT	CACCTTCCCT	GACAACGCAG	ACATGTGGGG	CCTGGGAAAT	GAAAGAGCGC	60
				CGATGGCACA			120
				AGCCCCCGGA			180
10				CCCAATGTGG			240
	GAGGGGATGC	AGAACTTGGC	GCCCAATGAC	CTGCCCCTGC	TGGCCATGGA	GTACTGCCAA	300
				TTTGAGAACT			360
	GCCATCCTCA	CCTTGCTGAG	TGACATTGCC	TCTGCGCTTA	GATACCTTCA	TGAAAACAGA	420
				ATCGTCCTGC			480
15	ATACACAAAA	TTATTGACCT	AGGATATGCC	AAGGAGCTGG	ATCAGGGCAG	TCTTTGCACA	540
	TCATTCGTGG	GGACCCTGCA	GTACCTGGCC	CCAGAGCTAC	TGGAGCAGCA	GAAGTACACA	600
				CTGGCCTTTG			660
	CCCTTCCTCC	CCAACTGGCA	GCCCGTGCAG	TGGCATTCAA	AAGTGCGGCA	GAAGAGTGAG	720
	GTGGACATTG	TTGTTAGCGA	AGACTTGAAT	GGAACGGTGA	AGTTTTCAAG	CTCTTTACCC	780
20				GAGCGACTGG			840
	CTGATGTGGC	ACCCCCGACA	GAGGGGCACG	GATCCCACGT	ATGGGCCCAA	TGGCTGCTTC	900
				CTGGTTCATA			960
				GAGAGTCTGC			1020
				CAGGAGCTGC			1080
25				ATTTCAGACG			1140
				GACAACAGTA			1200
				AGCTGTATCC			1260
				GGCCAGGTCT			1320
				CAGCGAGCCG			1380
30				TCCATGGCTT			1440
	GCCAAGTTGG	ATTTCTTCAA	AACCAGCATC	CAGATTGACC	TGGAGAAGTA	CAGCGAGCAA	1500
				CTGCTGGCCT			1560
				AAACTCCTGG			1620
						GGGAACGCTG	1680
35				TACAGGAGAC			1740
	CAGCGAACTG	AGGGTGACAG	TCAGGAAATG	GTACGGCTGC	TGCTTCAGGC	AATTCAGAGC	1800
	TTCGAGAAGA	AAGTGCGAGT	GATCTATACG	CAGCTCAGTA	AAACTGTGGT	TTGCAAGCAG	1860
	AAGGCGCTGG	AACTGTTGCC	CAAGGTGGAA	GAGGTGGTGA	GCTTAATGAA	TGAGGATGAG	1920
	AAGACTGTTG	TCCGGCTGCA	GGAGAAGCGG	CAGAAGGAGC	TCTGGAATCT	CCTGAAGATT	1980
40				GGAAGCCCGG			2040
	CTTAGCCAGC	CTGGGCAGCT	GATGTCTCAG	CCCTCCACGG	CCTCCAACAG	CTTACCTGAG	2100
						CCTGCTAGAA	2160
	AATGCCATAC	AGGACACTGT	GAGGGAACAA	GACCAGAGTT	TCACGGCCCT	AGACTGGAGC	2220
	TGGTTACAGA	CGGAAGAAGA	AGAGCACAGC	TGCCTGGAGC	AGGCCTCA		2268

(2) INFORMATION FOR SEQ ID NO:2:

5

141	CECTIENCE	CUADACTEDISTICS.

- (A) LENGTH: 756 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

10		(xi)	SEO	UENC	E DE	SCRI	PTIO	N: 51	EQ II	о ио	:2:						
												Thr	Cys	Gly	Ala	Trp	Glu
		1		_		5					10					15	
		Met	Lys	Glu	Arg	Leu	Gly	Thr	Gly	Gly	Phe	Gly	Asn	Val	Ile	Arg	Trp
					20					25					30		
15		His	Asn	Gln	Glu	Thr	Gly	Glu	Gln	Ile	Ala	Ile	Lys	Gln	Cys	Arg	Gln
				35					40					45			
		Glu	Leu	Ser	Pro	Arg	Asn	Arg	Glu	Arg	Trp	Cys	Leu	Glu	Ile	Gln	Ile
			50					55	2				60				
		Met	Arg	Arg	Leu	Thr	His	Pro	Asn	Val	Val	Ala	Ala	Arg	Asp	Val	Pro
20		65					70					75					во
		Glu	Gly	Met	Gln		Leu	Ala	Pro	Asn	_	Leu	Pro	Leu	Leu		Met
						85					90					95	
		Glu	Tyr	Cys		Gly	Gly	Asp	Leu	_	Lys	Tyr	Leu	Asn		Phe	Glu
25			a	۵	100	T	3	a 1	<i>a</i> 1	105	T10	T 011	The	T 011	110	Com	n am
23		ASII	CAR	115	GIY	neu	Arg	Glu	120	ALG	me	ьeu	THE	125	Leu	261	АВР
		Tle	Δla		Δla	T.en	Δτα	Tyr		His	Glu	Agn	Ara		Tle	His	Δητ
		110	130	501	1114		****	135	Lou				140				
		Aso		Lvs	Pro	Glu	Asn	Ile	Val	Leu	Gln	Gln		Glu	Gln	Ara	Leu
30		145					150					155	-			_	160
		Ile	His	Lys	Ile	Ile	Asp	Leu	Gly	Tyr	Ala	Lys	Glu	Leu	Asp	Gln	Gly
						165					170					175	
	,	Ser	Leu	Cys	Thr	Ser	Phe	Val	Gly	Thr	Leu	Gln	Tyr	Leu	Ala	Pro	Glu
					180					185					190		
35		Leu	Leu	Glu	Gln	Gln	Lys	Tyr	Thr	Val	Thr	Val	Asp	Tyr	Trp	Ser	Phe
				195					200					205			
		Gly		Leu	Ala	Phe	Glu	Cys	Ile	Thr	Gly	Phe	-	Pro	Phe	Leu	Pro
			210					215					220				
			Trp	Gln	Pro	Val		Trp	His	Ser	Lys		Arg	Gln	Lys	Ser	
40		225					230					235					240
		Val	Asp	Ile	Val		Ser	Glu	Asp	Leu		GIY	Thr	Val	Lys		ser
				0		245	_			.	250	a				255	
		ser	ser	ьeu		ïyr	Pro	Asn	ASN		ASN	ser	vaı	neu		GTI	arg
					260					265					270		

	Leu	Glu	Lys	Trp	Leu	Gln	Leu	Met	Leu	Met	Trp	His	Pro	Arg	Gln	Arg
			275					280					285			
	Gly	Thr	Asp	Pro	Thr	Tyr	Gly	Pro	Asn	Gly	Cys	Phe	Lys	Ala	Leu	Asp
	_	290					295					300				
	Asp	Ile	Leu	Asn	Leu	Lys	Leu	Val	His	Ile	Leu	Asn	Met	Val	Thr	Gly
5 .	305					310					315					320
	Thr	Ile	His	Thr	Tyr	Pro	Val	Thr	Glu	Asp	Glu	Ser	Leu	Gln	Ser.	Leu
					325					330					335	
	Lys	Ala	Arg	Ile	Gln	Gln	Asp	Thr	Gly	Ile	Pro	Glu	Glu	Asp	Gln	Glu
	-			340					345					350		
10	Leu	Leu	Gln	Glu	Ala	Gly	Leu	Ala	Leu	Ile	Pro	Asp	Lys	Pro	Ala	Thr
			355					360					365			
	Gln	Cys	Ile	Ser	Asp	Gly	Lys	Leu	Asn	Glu	Gly	His	Thr	Leu	Asp	Met
		370			-		375					380				
	asp	Leu	Val	Phe	Leu	Phe	Asp	Asn	Ser	Lys	Ile	Thr	Tyr	Glu	Thr	Gln
15	385					390	-				395					400
		Ser	Pro	Arg	Pro	Gln	Pro	Glu	Ser	Val	Ser	Cys	Ile	Leu	Gln	Glu
				-	405					410					415	
	Pro	Lvs	Arq	Asn	Leu	Ala	Phe	Phe	Gln	Leu	Arg	Lys	Val	Trp	Gly	Gln
		-	_	420					425					430		
20	Val	Trp	His	Ser	Ile	Gln	Thr	Leu	Lys	Glu	Asp	Сув	Asn	Arg	Leu	Gln
			435					440					445			
	Gln	Glv	Gln	Arg	Ala	Ala	Met	Met	Asn	Leu	Leu	Arg	Asn	Asn	Ser	Сув
		450					455					460				
	Leu	Ser	Lys	Met	Lys	Asn	Ser	Met	Ala	Ser	Met	Ser	Gln	Gln	Leu	Lys
25	465		-			470					475					480
	Ala	Lys	Leu	Asp	Phe	Phe	Lys	Thr	Ser	Ile	Gln	Ile	qeA	Leu	Glu	Lys
		-			485					490					495	
	Tyr	Ser	Glu	Gln	Thr	Glu	Phe	Gly	Ile	Thr	Ser	Asp	Lys	Leu	Leu	Leu
	_			500					505					510		
30	Ala	Trp	Arg	Glu	Met	Glu	Gln	Ala	Val	Glu	Leu	Cys	Gly	Arg	Glu	Asn
			515					520					525			
	Glu	Val	Lys	Leu	Leu	Val	Glu	Arg	Met	Met	Ala	Leu	Gln	\mathtt{Thr}	Asp	Ile
		530					535					540				
	Val	Asp	Leu	Gln	Arg	Ser	Pro	Met	Gly	Arg	Lys	Gln	Gly	Gly	Thr	Leu
35	545					550					555					560
	Asp	Asp	Leu	Glu	Glu	Gln	Ala	Arg	Glu	Leu	Tyr	Arg	Arg	Leu	Arg	Glu
	-				565					570					575	
	Lys	Pro	Arg	Asp	Gln	Arg	Thr	Glu	Gly	Asp	Ser	Gln	Glu	Met	Val	Arg
	-			580					585					590		
40	Leu	Leu	Leu	Gln	Ala	Ile	Gln	Ser	Phe	Glu	Lys	Lys	Val	Arg	Val	Ile
			595					600					605			
	Tyr	Thr	Gln	Leu	Ser	Lys	Thr	Val	Val	Cys	Lys	Gln	Lys	Ala	Leu	Glu
		610					615					620				
	Leu		Pro	Lys	Val	Glu	Glu	Val	Val	Ser	Leu	Met	Asn	Glu	Asp	Glu

	WO 99/01541]	PCT/I	US98/	13782	
	625					630					635					640	
	Lys	Thr	Val	Val	Arg	Leu	Gln	Glu	Lys	Arg	Gln	Lys	Glu	Leu	Trp	Asn	
	• -				645					650					655		
	Leu	Leu	Lys	Ile	Ala	Суз	Ser	Lys	Val	Arg	Gly	Pro	Val	Ser	${\tt Gly}$	Ser	
				660					665					670			
5	· Pro	Asp	Ser	Met	Asn	Ala	Ser	Arg	Leu	Ser	Gln	Pro	Gly	Gln	Leu	Met	
			675					680					685				
	Ser	Gln	Pro	Ser	Thr	Ala	Ser	Asn	Ser	Leu	Pro	Glu	Pro	Ala	FAR	Lys	
		690					695					700					
	Ser	Glu	Glu	Leu	Val	Ala	Glu	Ala	His	Asn	Leu	CAa	Thr	Leu	Leu	Glu	
10	705					710					715					720	
	Asn	Ala	Ile	Gln	Asp	Thr	Val	Arg	Glu	Gln	Asp	Gln	Ser	Phe	Thr	Ala	
					725					730					735		
	Leu	Asp	Trp	Ser	Trp	Leu	Gln	Thr	Glu	Glu	Glu	Glu	His		Cys	Leu	
				740					745					750			
15	Glu	Gln		Ser													
			75 5														
	(2) INFO	RMAT:	ION	FOR :	SEQ :	ID N	0:3:										
20	/21	CEC	TIME CO	- CII	איז א ניד א	יי מימיי	STIC	5.									
20	(1)						ase j										
							acid		-								
							loub	le									
					3Y: :												
25																	
	(ii)	MOLI	ECUL	E TY	PE: 0	CDNA											
	(xi)																
	ATGGAGCGG																60
30	CIGGGCACC																120
	ATAGCAATT																180
	GAAATCCAC	A TI	ATGA	AGAA	GTT	GAAC	CAT	GCCA	ATGT	TG T	AAAG	GCCT	G TG	ATGT	TCCT		240
	GAAGAATTO																300
	GGAGATCT																360
35	ATACTTTC																420
	ATACATCG																540
	CATAAAATA																600
	TTTGTGGG																660
40	ACTGTTGAT																720
40	TTTTTGCAT TGTATATT																780
																	840
	CCAAATAG(AATTGGGA(900
							CCI										960

	WO 99/01541					PCT/US98/13	3782
	GCAAAGATAA	TTTCTTTTCT	GTTACCACCT	GATGAAAGTC	TTCATTCACT	ACAGTCTCGT	1020
	ATTGAGCGTG	AAACTGGAAT	AAATACTGGT	TCTCAAGAAC	TTCTTTCAGA	GACAGGAATT	1080
	TCTCTGGATC	CTCGGAAACC	AGCCTCTCAA	TGTGTTCTAG	ATGGAGTTAG	AGGCTGTGAT	1140
	AGCTATATGG	TTTATTTGTT	TGATAAAAGT	AAAACTGTAT	ATGAAGGGCC	ATTTGCTTCC	1200
	AGAAGTITAT	CTGATTGTGT	AAATTATATT	GTA;CAGGACA	GCAAAATACA	GCTTCCAATT	1260
5	ATACAGCTGC	GTAAAGTGTG	GGCTGAAGCA	GTGCACTATG	TGTCTGGACT	AAAAGAAGAC	1320
	TATAGCAGGC	TCTTTCAGGG	ACAAAGGGCA	GCAATGTTAA	GTCTTCTTAG	ATATAATGCT	1380
	- AACTTAACAA	AAATGAAGAA	CACTTTGATC	TCAGCATCAC	AACAACTGAA	AGCTAAATTG	1440
	GAGTTTTTTC	ACAAAAGCAT	TCAGCTTGAC	TTGGAGAGAT	ACAGCGAGCA	GATGACGTAT	1500
	GGGATATCTT	CAGAAAAAAT	GCTAAAAGCA	TGGAAAGAAA	TGGAAGAAAA	GGCCATCCAC	1560
10	TATGCTGAGG	TTGGTGTCAT	TGGATACCTG	GAGGATCAGA	TTATGTCTTT	GCATGCTGAA	1620
	ATCATGGAGC	TACAGAAGAG	CCCCTATGGA	AGACGTCAGG	GAGACTTGAT	GGAATCTCTG	1680
	GAACAGCGTG	CCATTGATCT	ATATAAGCAG	TTAAAACACA	GACCTTCAGA	TCACTCCTAC	1740
	AGTGACAGCA	CAGAGATGGT	GAAAATCATT	GTGCACACTG	TGCAGAGTCA	GGACCGTGTG	1800
	CTCAAGGAGC	TGTTTGGTCA	TTTGAGCAAG	TTGTTGGGCT	GTAAGCAGAA	GATTATTGAT	1860
15	CTACTCCCTA	AGGTGGAAGT	GGCCCTCAGT	AATATCAAAG	AAGCTGACAA	TACTGTCATG	1920
	TTCATGCAGG	GAAAAAGGCA	GAAAGAAATA	TGGCATCTCC	TTAAAATTGC	CTGTACACAG	1980
	AGTTCTGCCC	GGTCCCTTGT	AGGATCCAGT	CTAGAAGGTG	CAGTAACCCC	TCAGACATCA	2040
	GCATGGCTGC	CCCCGACTTC	AGCAGAACAT	GATCATTCTC	TGTCATGTGT	GGTAACTCCT	2100

CAAGATGGGG AGACTTCAGC ACAAATGATA GAAGAAAATT TGAACTGCCT TGGCCATTTA

AGCACTATTA TTCATGAGGC AAATGAGGAA CAGGGCAATA GTATGATGAA TCTTGATTGG

2160

2220

2238

(2) INFORMATION FOR SEQ ID NO:4:

25 (i) SEQUENCE CHARACTERISTICS:

AGTTGGTTAA CAGAATGA

- (A) LENGTH: 745 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

20

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Met Glu Arg Pro Pro Gly Leu Arg Pro Gly Ala Gly Gly Pro Trp Glu

 1 5 10 15

 Met Arg Glu Arg Leu Gly Thr Gly Gly Phe Gly Asn Val Cys Leu Tyr

 20 25 30

 Gln His Arg Glu Leu Asp Leu Lys Ile Ala Ile Lys Ser Cys Arg Leu

 40 35 40 45

 Glu Leu Ser Thr Lys Asn Arg Glu Arg Trp Cys His Glu Ile Gln Ile

 50 55 60

 Met Lys Lys Leu Asn His Ala Asn Val Val Lys Ala Cys Asp Val Pro

et Lys Lys Leu Ash His Ala Ash vai vai Lys Ala Cys Asp vai Pro

	Glu	Glu	Leu	Asn	Ile 85	Leu	Ile	His	Asp	Val 90	Pro	Leu	Leu	Ala	Met 95	
	Tyr	Cys	Ser	Gly	Gly	Asp	Leu	Arg	Lys 105		Leu	Asn	Lys	Pro		Asn
5	Cys	Суз	Gly	Leu	rys	Glu	Ser	Gln 120	Ile		Ser	Leu	Leu 125	Ser		Ile
	Gly	Ser	Gly	Ile	Arg	Tyr	Leu 135			Asn	ГÀЗ	Ile 140	Ile		Arg	Asp
	Leu			Glu	Asn	Ile		Leu	Gln	Asp	Val			Lys	Ile	Ile
	145					150					155	Ī	-	_		160
10	His	Lys	Ile	Ile	Asp 165	Leu	Gly	Tyr	Ala	Lys 170	Asp	Val	Asp	Gln	Gly 175	
	Leu	Cys	Thr	Ser 180	Phe	Va1	Gly	Thr	Leu 185	Gln	Tyr	Leu	Ala	Pro 190	Glu	Leu
15	Phe	Glu	Asn 195	Lys	Pro	Tyr	Thr	Ala 200	Thr	Val	Asp	Tyr	Trp 205	Ser	Phe	Gly
	Thr	Met 210	Val	Phe	Glu	Сув	Ile 215	Ala	Gly	Tyr	Arg	Pro 220	Phe	Leu	His	His
	Leu	Gln	Pro	Phe	Thr	Trp	His	Glu	Lys	Ile	Lys	Lys	Lys	Asp	Pro	Lys
	225					230					235					240
20	Cys	Ile	Phe	Ala	Cys 245	Glu	Glu	Met	Ser	Gly 250	Glu	Val	Arg	Phe	Ser 255	Ser
	His	Leu	Pro	Gln 260	Pro	Asn	Ser	Leu	Cys 265	Ser	Leu	Ile		Gl u 270	Pro	Met
25	Glu	Asn	Trp 275	Leu	Gln	Leu	Met	Leu 280	Asn	Trp	Asp	Pro	Gln 285	Gln	Arg	Gly
	Gly	Pro 290	Val	Asp	Leu	Thr	Leu 295	ГÀЗ	Gln	Pro	Arg	Сув 300	Phe	Val	Leu	Met
	Asp	His	Ile	Leu	Asn	Leu	Lys	Ile	Val	His	Ile	Leu	Asn	Met	Thr	Ser
	305					310					315					320
30		-			325					330					335	
				Arg 340					345	_				350		
35	Glu	Leu	Leu 355	Ser	Glu	Thr	Gly	Ile 360	Ser	Leu	Asp	Pro	Arg 365	Lys	Pro	Ala
	Ser	Gln 370	Cys	Val	Leu		Gly 375	Val	Arg	Gly	CAs	380 Asp	Ser	Tyr	Met	Val
	Tyr	Leu	Phe	Asp	Lys	Ser	Lys	Thr	Val	Tyr	Glu	Gly	Pro	Phe	Ala	Ser
	385					390					395					400
40	Arg	Ser	Leu	Ser	Asp 405	Cys	Val	Asn	Tyr	Ile 410	Val	Gln	Asp		Lys 415	lle
	Gln	Leu	Pro	Ile 420	Ile	Gln	Leu	Arg	Lys 425	Val	Trp	Ala	Glu	Ala 430	Val	His
	Tyr	Val	Ser	Gly	Leu	Lys	Glu	Asp	Tyr	Ser	Arg	Leu	Phe	Gln	Gly	Gln

			435					440					445			
	Arg	Ala	Ala	Met	Leu	Ser	Leu	Leu	Arg	Tyr	Asn	Ala	Asn	Leu	Thr	Lys
		450					455					460				
	Met	Lys	Asn	Thr	Leu	Ile	Ser	Ala	Ser	Gln	Gln	Leu	Lys	Ala	Lys	Let
	465					470					475					480
5	Glu	Phe	Phe	His	Lys	Ser	Ile	Gln	Leu	Asp	Leu	Glu	Arg	Tyr	Ser	Glu
					485					490					495	
	Gln	Met	Thr	Tyr	Gly	11e	Ser	Ser	Glu	Lys	Met	Leu	Lys	Ala	Trp	Lys
				500					505					510		
	Glu	Met	Glu	Glu	Lys	Ala	Ile	His	Tyr	Ala	Glu	Val	Gly	Val	Ile	Gly
10			515					520					525			
	Tyr	Leu	Glu	Asp	Gln	Ile	Met	Ser	Leu	His	Ala	Glu	Ile	Met	Glu	Leu
		530					535					540				
	Gln	Lув	Ser	Pro	Tyr	Gly	Arg	Arg	Gln	Gly	Asp	Leu	Met	Glu	Ser	Leu
	545					550					555					560
15	Glu	Gln	Arg	Ala	Ile	Asp	Leu	Tyr	Lys	${\tt Gln}$	Leu	Lys	His	Arg	Pro	Ser
					565					570		٠			575	
	Asp	His	Ser	Tyr	Ser	Asp	Ser	Thr	Glu	Met	Val	Lys	Ile	Ile	V al	His
				580					585					590		
	Thr	Va1	Gln	Ser	Gln	Asp	Arg	Val	Leu	Lys	Glu	Leu	Phe	Gly	His	Leu
20			595					600					605			
	Ser	ГЛЗ	Leu	Leu	Gly	Cys	ГÀЗ	Gln	Lys	Ile	Ile	qaA	Leu	Leu	Pro	ГÀв
		610					615					620				
	Val	Glu	Val	Ala	Leu	Ser	Asn	Ile	Lys	Glu	Ala	Asp	Asn	Thr	Val	Met
	625					630					635					640
25	Phe	Met	Gln	Gly	Lys	Arg	Gln	Lys	Glu	Ile	Trp	His	Leu	Leu	Lys	Ile
					645					650					655	
	Ala	Суз	Thr		Ser	Ser	Ala	Arg		Leu	Val	Gly	Ser		Leu	Glu
				660					665					670		
	Gly	Ala		Thr	Pro	Gln	Thr		Ala	Trp	Leu	Pro		Thr	Ser	Ala
30			675					680					685			
	Glu		Asp	His	Ser	Leu		Cys	Val	Val	Thr		Gln	Asp	Gly	Glu
		690					695					700				
		Ser	Ala	Gln	Met		Glu	Glu	Asn	Leu		Cys	Leu	Gly	His	
	705					710					715					720
35	Ser	Thr	Ile	Ile		Glu	Ala	Asn	Glu	Glu	Gln	Gly	Asn			Met
					725					730					735	
	Asn	Leu	Asp		Ser	Trp	Leu	Thr								
				740					745							

- 40 (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2146 base pairs
 - (B) TYPE: nucleic acid

PCT/US98/13782

WO 99/01541

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	GTACCAGCAT CGGGAACTTG ATCTCAAAAT AGCAATTAAG TCTTGTCGCC TAGAGCTAAG	60
	TACCAAAAAC AGAGAACGAT GGTGCCATGA AATCCAGATT ATGAAGAAGT TGAACCATGC	120
	CAATGTTGTA AAGGCCTGTG ATGTTCCTGA AGAATTGAAT ATTTTGATTC ATGATGTGCC	180
	TCTTCTAGCA ATGGAATACT GTTCTGGAGG AGATCTCCGA AAGCTGCTCA ACAAACCAGA	240
10	AAATIGTIGI GGACTTAAAG AAAGCCAGAT ACTITCTITA CTAAGTGATA TAGGGFCTGG	300
	GATTOGATAT TTGCATGAAA ACAAAATTAT ACATCGAGAT CTAAAAACCTG AAAACATAGT	360
	TCTTCAGGAT GTTGGTGGAA AGATAATACA TAAAATAATT GATCTGGGAT ATGCCAAAGA	420
	TGTTGATCAA GGAAGTCTGT GTACATCTTT TGTGGGAACA CTGCAGTATC TGGCCCCAGA	480
	GCTCTTGAG AATAAGCCTT ACACAGCCAC TGTTGATTAT TGGAGCTTTG GGACCATGGT	540
15	ATTIGAATGI ATTIGCIGGAT ATAGGCCTTT TTTGCATCAT CTGCAGCCAT TTACCTGGCA	600
	TGAGAAGATT AAGAAGAAGG ATCCAAAGTG TATATTTGCA TGTGAAGAGA TGTCAGGAGA	660
	AGTTCGGTTT AGTAGCCATT TACCTCAACC AAATAGCCTT TGTAGTTTAA TAGTAGAACC	720
	CATGGAAAAC TGGCTACAGT TGATGTTGAA TTGGGACCCT CAGCAGAGAG GAGGACCTGT	780
	TGACCITACI TIGAAGCAGC CAAGAIGITI TGTATTAAIG GAICACAITI TGAATTIGAA	840
20	GATAGTACAC ATCCTAAATA TGACTTCTGC AAAGATAATT TCTTTTCTGT TACCACCTGA	900
	TGAAAGTCTT CATTCACTAC AGTCTCGTAT TGAGCGTGAA ACTGGAATAA ATACTGGTTC	960
	TCAAGAACTT CTTTCAGAGA CAGGAATTTC TCTGGATCCT CGGAAACCAG CCTCTCAATG	1020
	TGTTCTAGAT GGAGTTAGAG GCTGTGATAG CTATATGGTT TATTTGTTTG ATAAAAGTAA	1080
	AACTGTATAT GAAGGGCCAT TTGCTTCCAG AAGTTTATCT GATTGTGTAA ATTATATTGT	1140
25	ACAGGACAGC AAAATACAGC TTCCAATTAT ACAGCTGCGT AAAGTGTGGG CTGAAGCAGT	1200
	GCACTATGTG TCTGGACTAA AAGAAGACTA TAGCAGGCTC TTTCAGGGAC AAAGGGCAGC	1260
	AATGTTAAGT CTTCTTAGAT ATAATGCTAA CTTAACAAAA ATGAAGAACA CTTTGATCTC	1320
	AGCATCACAA CAACTGAAAG CTAAATTGGA GTTTTTTCAC AAAAGCATTC AGCTTGACTT	1380
	GGAGAGATAC AGCGAGCAGA TGACGTATGG GATATCTTCA GAAAAAATGC TAAAAGCATG	1440
30	GAAAGAAATG GAAGAAAAGG CCATCCACTA TGCTGAGGTT GGTGTCATTG GATACCTGGA	1500
	GGATCAGATT ATGTCTTTGC ATGCTGAAAT CATGGAGCTA CAGAAGAGCC CCTATGGAAG	1560
	ACGTCAGGGA GACTTGATGG AATCTCTGGA ACAGCGTGCC ATTGATCTAT ATAAGCAGTT	1620
	AAAACACAGA CCTTCAGATC ACTCCTACAG TGACAGCACA GAGATGGTGA AAATCATTGT	1680
	GCACACTGTG CAGAGTCAGG ACCGTGTGCT CAAGGAGCGT TTTGGTCATT TGAGCAAGTT	1740
35	GTTGGGCTGT AAGCAGAAGA TTATTGATCT ACTCCCTAAG GTGGAAGTGG CCCTCAGTAA	1800
	TATCAAAGAA GCTGACAATA CTGTCATGTT CATGCAGGGA AAAAGGCAGA AAGAAATATG	1860
	GCATCTCCTT AAAATTGCCT GTACACAGAG TTCTGCCCGC TCTCTTGTAG GATCCAGTCT	1920
	AGAAGGTGCA GTAACCCCTC AAGCATACGC ATGGCTGGCC CCCGACTTAG CAGAACATGA	1980
	TCATTCTCTG TCATGTGTGG TAACTCCTCA AGATGGGGAG ACTTCAGCAC AAATGATAGA	2040
40	AGAAAATTIG AACTGCCTIG GCCATTTAAG CACTATTATT CATGAGGCAA ATGAGGAACA	2100
	GGGCAATAGT ATGATGAATC TTGATTGGAG TTGGTTAACA GAATGA	2146