Models in Sparse Coding

Zach Siegel
Advised by Deanna Needell and Guangliang Chen

April 4, 2014

$$v_1 \rightarrow \mathsf{radius} = 1$$

 $v_2 \rightarrow \mathsf{radius} = 2$
 $v_3 \rightarrow \mathsf{radius} = 0.5$

$$v_1 \rightarrow \mathsf{radius} = 1$$

 $v_2 \rightarrow \mathsf{radius} = 2$
 $v_3 \rightarrow \mathsf{radius} = 0.5$

Here's another way:

$$v_1
ightarrow \left(egin{array}{c} {
m radius} = 1 \\ {
m diameter} = 2 \\ {
m circumference} = 2\pi \\ {
m area} = \pi \end{array}
ight)
ightarrow \left(egin{array}{c} 1 \\ 2 \\ 2\pi \\ \pi \end{array}
ight),$$
 $v_2
ightarrow \left(egin{array}{c} 2 \\ 4 \\ 4\pi \\ 4\pi \end{array}
ight)$ $v_3
ightarrow \left(egin{array}{c} .5 \\ 1 \\ \pi \end{array}
ight)$

$$\begin{cases} \overbrace{\bigcirc}^{v_1}, \quad \overbrace{\bigcirc}^{v_2}, \quad \overbrace{\bigcirc}^{v_4}, \quad \overbrace{\bigcirc}^{v_5} \end{cases}$$

$$\begin{array}{c} \downarrow \\ \text{radius/side} = \\ \text{diameter/diagonal} = \\ \text{circumference/perimeter} = \begin{pmatrix} 1 \\ 2 \\ 2\pi \\ \pi \end{pmatrix} \begin{pmatrix} .5 \\ 1 \\ \pi \\ .25\pi \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 4\pi \\ 4\pi \end{pmatrix} \begin{pmatrix} .5 \\ \sqrt{2} \\ 2 \\ 2 \\ .25 \end{pmatrix}$$

$$\begin{array}{c} 1 \\ \sqrt{2} \\ 4 \\ 4\pi \end{pmatrix} \begin{pmatrix} .5 \\ \sqrt{2} \\ 2 \\ 2 \\ .25 \end{pmatrix}$$

To represent all these different shapes, we need a large collection of bases, and they may not be linearly independent.

- v_1, \ldots, v_N represent shapes
- $\mathcal{B} = \{b_1, \dots, b_K\}$ each help describe the shapes

- v_1, \ldots, v_N represent shapes
- $\mathcal{B} = \{b_1, \dots, b_K\}$ each help describe the shapes

For example, a square might be represented

$$v_i = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 4 \\ 1 \end{pmatrix} = \left(\text{side length} \right) \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 4 \\ 0 \end{pmatrix}}_{b_1} + \left(\text{side length} \right)^2 \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}}_{b_2} \left(= \begin{array}{c} \text{side} \\ \text{diagonal} \\ \text{perimeter} \\ \text{area} \end{array} \right)$$

A square

- v_1, \ldots, v_N represent shapes
- $\mathcal{B} = \{b_1, \dots, b_K\}$ each help describe the shapes

For example, a square might be represented

$$v_i = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{4}{1} \end{pmatrix} = \left(\text{side length} \right) \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{4}{0} \\ b_1 \end{pmatrix}}_{b_1} + \left(\text{side length} \right)^2 \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}}_{b_2} \left(= \begin{array}{c} \text{side} \\ \text{diagonal} \\ \text{perimeter} \\ \text{area} \end{array} \right)$$

A square

...and we know it's a square because of the choice of bases!!!

Problem

$$V_i = \left(egin{array}{c} rac{1}{\sqrt{2}} \\ 4 \\ 1 \end{array}
ight) = \left(ext{side length}
ight) \underbrace{\left(egin{array}{c} 1 \\ \sqrt{2} \\ 4 \\ 0 \end{array}
ight)}_{b_1} + \left(ext{side length}
ight)^2 \underbrace{\left(egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight)}_{b_2} \left(=egin{array}{c} ext{side} \\ ext{diagonal} \\ ext{perimeter} \\ ext{area} \end{array}
ight)}_{b_2}$$

- The support classifies the square
- We know we can represent every shape as a linear combination of a few of the many bases in \mathcal{B} .
- How do we find the correct support?

We know each shape's description is a linear combination of the bases in $\mathcal{B} = \{b_1, \dots, b_K\}$:

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{4}{1} \end{pmatrix} = v_i = a_1 b_1 + \ldots + a_K b_K = (b_1 | \ldots | b_K) \begin{pmatrix} a_1 \\ \vdots \\ a_K \end{pmatrix}$$

The "basis" is "overcomplete" - there may be no unique representation

We know each shape's description is a linear combination of the bases in $\mathcal{B} = \{b_1, \dots, b_K\}$:

The "basis" is "overcomplete" - there may be no unique representation

How do we find the representation that tells us v_i is a square?

WANT:
$$= a_1b_1 + a_2b_2$$

SPARSE CODING!

HAVE:

- $B = (b_1 | \dots | b_K)$ overcomplete basis matrix for $\mathcal{B} = \{b_1, \dots, b_K\}$
- $\mathbf{v}_i = \text{description of shape}$

$$\bullet \vec{a_i} = \begin{pmatrix} a_1 \\ \vdots \\ a_K \end{pmatrix}$$

SOLVE:
$$\vec{v_i} = B\vec{a_i} \text{ s.t } ||\vec{a_i}||_0 = 2$$

SPARSE CODING!

HAVE:

- $B = (b_1 | \dots | b_K)$ overcomplete basis matrix for $\mathcal{B} = \{b_1, \dots, b_K\}$
- $\mathbf{v}_i = \mathsf{description}$ of shape

$$\bullet \ \vec{a_i} = \left(\begin{array}{c} a_1 \\ \vdots \\ a_K \end{array}\right)$$

$$\mathsf{WANT} : \bigsqcup = a_1b_1 + a_2b_2$$

SOLVE:
$$\vec{v_i} = B\vec{a_i} \text{ s.t } ||\vec{a_i}||_0 = 2 \rightarrow \min_{\vec{a_i}} ||v_i - B\vec{a_i}||_2 \text{ s.t. } ||\vec{a_i}||_0 \le 2$$

SOLVE:

$$\min_{\vec{a_i}} ||v_i - B\vec{a_i}||_2 \text{ s.t. } ||\vec{a_i}||_0 = 2 \text{ or } \le 2$$

SOLVE:

$$\min_{\vec{a_i}} ||v_i - B\vec{a_i}||_2 \text{ s.t. } ||\vec{a_i}||_0 = 2 \text{ or } \le 2$$

or

$$\min_{\vec{a_i}} ||v_i - B\vec{a_i}||_2^2 + \lambda ||\vec{a_i}||_0$$

SOLVE:

$$\min_{\vec{a_i}} ||v_i - B\vec{a_i}||_2 \text{ s.t. } ||\vec{a_i}||_0 = 2 \text{ or } \le 2$$

or

$$\min_{\vec{a}_i} ||v_i - B\vec{a}_i||_2^2 + \lambda ||\vec{a}_i||_0$$

This $||\cdot||_0$ is non-linear!

$$\min_{\vec{a}_i} ||v_i - B\vec{a}_i||_2^2 + \lambda ||\vec{a}_i||_0$$

- Finding $v_i \approx B\vec{a}_i$ is easy, \mathcal{B} is overcomplete (underdetermined)
- Finding a *sparse* solution is difficult, non-linear

But the sparse solution allows us to classify data!!!

Definition

The *support* of a vector is the indices of its nonzero entries

Definition

The support vector of
$$\vec{v}$$
 is \vec{s} s.t. $\vec{s_i} = \begin{cases} 0 : v_i = 0 \\ 1 : \text{ otherwise} \end{cases}$

MATLAB:
$$s = (abs(v) > 0)$$

So sparse representations are hard to find, but allow data classification - "SQUARE" ness was all in the support

Geometric Interpretation

Sparse representations constrain representation to union of planes spanned by a few bases in \mathcal{B} .

On the other hand, the SPAN of \mathcal{B} is the entire ambient space

Sparse Data

We only want to think about data as sparse if it is ACTUALLY on the union of some planes in its ambient space.

What other data is sparse?

Sparse Data

We only want to think about data as sparse if it is ACTUALLY on the union of some planes in its ambient space.

What other data is sparse?

A TON OF STUFF!

Divide an image into patches:

Turn patches into vectors in a point cloud:

Divide an image into patches:

Turn patches into vectors in a point cloud:

Why would these vectors lie on a union of planes??? Couldn't they lie "anywhere"?

Small natural image patches DO lie on a union of subspaces! Structure is low-dimensional.

(Argument using hands [about corners, etc]) (Argument using pictures [examples])

So, image patches are inherently 'sparse' (live on a union of low-dimensional subspaces).

In the same way as the shapes, image patches can be classified by feature!

(Not true of non-sparse representations)

So, image patches are inherently 'sparse' (live on a union of low-dimensional subspaces).

In the same way as the shapes, **image patches can be classified** by feature!

(Not true of non-sparse representations)

How can we partition the space in which image patches lie to classify the patches?

Structured Sparsity

Block Sparsity

- Animal image subspace
- Foliage image subspace
- Cartoon image subspace

Like the shapes example!

Structured Sparsity

Hierarchical Sparsity

- Cartoon subspace
- baby, cat, dog subspaces ⊆ animal subspace
- animal, foliage subspaces ⊆ natural image subspace

How can we induce this kind of structure in our sparsity?

Recall the objective function:

$$\min_{\vec{a}} ||v - B\vec{a}||_2^2 + \lambda ||\vec{a}||_0$$

How can we induce this kind of structure in our sparsity?

Recall the objective function:

$$\min_{\vec{a}} ||\underbrace{v} - \underbrace{B}_{\substack{\text{overcomplete} \\ \text{basis} \\ \text{matrix}}} \times \underbrace{\vec{a}}_{\substack{\text{representation} \\ \text{sparsity} \\ \text{penalty}}} ||_2^2 + \underbrace{\lambda ||\vec{a}||_0}_{\substack{\text{sparsity} \\ \text{penalty}}}$$

How can we induce this kind of structure in our sparsity?

Recall the objective function:

$$\min_{\vec{a}} ||\underbrace{v} - \underbrace{\mathcal{B}}_{\substack{\text{data point} \\ \text{basis} \\ \text{matrix}}} \times \underbrace{\vec{a}}_{\substack{\text{representation} \\ \text{penalty}}} ||_2^2 + \underbrace{\lambda ||\vec{a}||_0}_{\substack{\text{sparsity} \\ \text{penalty}}}$$

Question: How can we favor block sparsity or hierarchical sparsity?

$$\min_{\vec{a}} ||\vec{v} - B\vec{a}||_2^2 + \lambda ||\vec{a}||_0$$

$$\downarrow$$

 $P(\vec{a} \text{ is the best solution}|v)$ decreases $w/r/t ||v - B\vec{a}||_2^2$ and $||\vec{a}||_0$

$$\min_{\vec{a}} ||\vec{v} - B\vec{a}||_2^2 + \lambda ||\vec{a}||_0$$

$$\downarrow$$

New objective f'n

$$\max_{\vec{a}} \underbrace{P(\vec{a} \text{ is the best solution}|v)}_{\text{posterior!}} \text{ decreases } w/r/t ||v-B\vec{a}||_2 \text{ and } ||\vec{a}||_0$$

(Note that \vec{a} is a parameter of v)

$$\min_{\vec{a}} ||\vec{v} - B\vec{a}||_2^2 + \lambda ||\vec{a}||_0$$

$$\downarrow$$

$$\max_{\vec{a}} \underbrace{P(\vec{a} \text{ is the best solution}|v)}_{\text{posterior!}} \text{ decreases } w/r/t ||v-B\vec{a}||_2 \text{ and } ||\vec{a}||_0$$

(Note that \vec{a} is a parameter of v)

Can we define a prior $P(\vec{a})$? And add structure to favor block/hierarchical sparsity?

$$\min_{\vec{a}} ||\vec{v} - B\vec{a}||_2^2 + \lambda ||\vec{a}||_0$$

New objective f'n

$$\max_{\vec{a}} \underbrace{P(\vec{a} \text{ is the best solution}|v)}_{\text{posterior!}} \text{ decreases } w/r/t ||v-B\vec{a}||_2 \text{ and } ||\vec{a}||_0$$

(Note that \vec{a} is a parameter of v)

Can we define a prior $P(\vec{a})$? And add structure to favor block/hierarchical sparsity? Can we then define the likelihood $P(\vec{v}|\vec{a})$?

$$\min_{\vec{a}} ||\vec{v} - B\vec{a}||_2^2 + \lambda ||\vec{a}||_0$$

$$\downarrow$$

$$\max_{\vec{a}} \underbrace{P(\vec{a} \text{ is the best solution}|v)}_{\text{posterior!}} \text{ decreases } w/r/t ||v-B\vec{a}||_2 \text{ and } ||\vec{a}||_0$$

(Note that \vec{a} is a parameter of v)

simpler objective function)?

Can we define a prior $P(\vec{a})$? And add structure to favor block/hierarchical sparsity? Can we then define the likelihood $P(\vec{v}|\vec{a})$? Can we maximize the posterior $P(\vec{a}|\vec{v})$ (like we minimized the

$$\min_{\vec{a}} ||\vec{v} - B\vec{a}||_2^2 + \lambda ||\vec{a}||_0$$

$$\max_{\vec{a}} \underbrace{P(\vec{a} \text{ is the best solution}|v)}_{\text{New objective f'n}} \text{ decreases } w/r/t ||v-B\vec{a}||_2 \text{ and } ||\vec{a}||_0$$

(Note that \vec{a} is a parameter of v)

posterior!

Can we define a prior $P(\vec{a})$? And add structure to favor block/hierarchical sparsity?

Can we then define the likelihood $P(\vec{v}|\vec{a})$?

Can we maximize the posterior $P(\vec{a}|\vec{v})$ (like we minimized the simpler objective function)?

Prior for Support

```
\vec{s} is support vector of \vec{a}: \vec{s_i} = \begin{cases} 0 : a_i = 0 \\ 1 : \text{ otherwise} \end{cases}
\vec{v} \approx B\vec{a}
P(\vec{a}|\vec{v}) \propto P(\vec{v}|\vec{a}) \underbrace{P(\vec{a}|\vec{s})P(\vec{s})}_{P(a)}
```

Prior for Support

$$\vec{s}$$
 is support vector of \vec{a} : $\vec{s_i} = \begin{cases} 0 : a_i = 0 \\ 1 : \text{ otherwise} \end{cases}$

$$\vec{v} \approx \vec{B}\vec{a}$$

$$P(\vec{a}|\vec{v}) \propto P(\vec{v}|\vec{a}) \underbrace{P(\vec{a}|\vec{s})P(\vec{s})}_{P(a)}$$

- $P(\vec{s}) = P(\text{support}(\vec{a}))$ Decreases with $||\vec{s}||_0 = ||\vec{a}||_0$ and with lack-of-structure
- $P(\vec{a}|\vec{s}) = P(\vec{a}|\text{support}(\vec{a}))$ $(\vec{a}_i|\vec{s}_i = 1) \sim N(0, \sigma)$ (remember - this is not so important)

Prior for Support

$$\vec{s}$$
 is support vector of \vec{a} : $\vec{s_i} = \begin{cases} 0 : a_i = 0 \\ 1 : \text{ otherwise} \end{cases}$

$$\vec{v} \approx \vec{B}\vec{a}$$

$$P(\vec{a}|\vec{v}) \propto P(\vec{v}|\vec{a}) \underbrace{P(\vec{a}|\vec{s})P(\vec{s})}_{P(a)}$$

- $P(\vec{s}) = P(\text{support}(\vec{a}))$ Decreases with $||\vec{s}||_0 = ||\vec{a}||_0$ and with lack-of-structure
- $P(\vec{a}|\vec{s}) = P(\vec{a}|\text{support}(\vec{a}))$ $(\vec{a}_i|\vec{s}_i = 1) \sim N(0, \sigma)$ (remember - this is not so important)
- $P(\vec{v}|\vec{a})$ decreases with $||\vec{v} B\vec{a}||_2^2$

Penalize $||\vec{s}||_0 = ||\vec{a}||_0$ and Reward Structure

$$|\vec{s}| = \underbrace{(1,\ldots,1)}_{K} \cdot \begin{pmatrix} s_{i} \\ \vdots \\ s_{K} \end{pmatrix} \rightarrow \underbrace{(bias_{1},\ldots,bias_{K})}_{b\vec{i}as} \cdot \begin{pmatrix} s_{i} \\ \vdots \\ s_{K} \end{pmatrix}$$

Multiplication by penalty vector \overrightarrow{bias} in place of $||\cdot||_0$.

Penalize $||\vec{s}||_0 = ||\vec{a}||_0$ and Reward Structure

$$|\vec{s}| = \underbrace{(1,\ldots,1)}_{\mathcal{K}} \cdot \begin{pmatrix} s_i \\ \vdots \\ s_{\mathcal{K}} \end{pmatrix} \rightarrow \underbrace{(\text{bias}_1,\ldots,\text{bias}_{\mathcal{K}})}_{\text{bias}} \cdot \begin{pmatrix} s_i \\ \vdots \\ s_{\mathcal{K}} \end{pmatrix}$$

Multiplication by penalty vector \vec{bias} in place of $||\cdot||_0$.

To penalize 'second-order' structure (like blocks/hierarchy),

$$\vec{s}^T W \vec{s} = \sum_i \sum_j w_{ij} s_i s_j$$

SO the support's structure encoded in \vec{bias} and interactions matrix W!!!

Penalize $||\vec{s}||_0 = ||\vec{a}||_0$ and Reward Structure

$$|\vec{s}| = \underbrace{(1,\ldots,1)}_{\mathcal{K}} \cdot \begin{pmatrix} s_i \\ \vdots \\ s_{\mathcal{K}} \end{pmatrix} \rightarrow \underbrace{(\text{bias}_1,\ldots,\text{bias}_{\mathcal{K}})}_{\text{bias}} \cdot \begin{pmatrix} s_i \\ \vdots \\ s_{\mathcal{K}} \end{pmatrix}$$

Multiplication by penalty vector \vec{bias} in place of $||\cdot||_0$.

To penalize 'second-order' structure (like blocks/hierarchy),

$$\vec{s}^T W \vec{s} = \sum_i \sum_j w_{ij} s_i s_j$$

SO the support's structure encoded in \vec{bias} and interactions matrix W!!!

$$P(s) \propto e^{b\vec{i}as\cdot\vec{s}+\vec{s}^TW\vec{s}}$$

BOLTZMANN MACHINE DISTRIBUTION

$$P(s) \propto e^{b\vec{i}as\cdot\vec{s}+\vec{s}^TW\vec{s}}$$

This is the Boltzmann Matchine distribution, and now you get what it's all about!

$$P(\vec{a}|\vec{v}) \propto P(\vec{s}) \times P(\vec{a}|\vec{s}) \times P(\vec{v}|\vec{a})$$

$$P(\vec{a}|\vec{v}) \propto \underbrace{P(\vec{s})}_{\propto e^{b\vec{i}as \cdot \vec{s} + \vec{s}^T W \vec{s}}} \times P(\vec{a}|\vec{s}) \times P(\vec{v}|\vec{a})$$

$$P(\vec{a}|\vec{v}) \propto \underbrace{P(\vec{s})}_{\propto e^{b\vec{i}as \cdot \vec{s} + \vec{s}^T W \vec{s}}} \times \underbrace{P(\vec{a}|\vec{s})}_{\sim N(0,\sigma)} \times P(\vec{v}|\vec{a})$$
(not important)

$$P(\vec{a}|\vec{v}) \propto \underbrace{P(\vec{s})}_{\text{$\propto e^{b\vec{i}as \cdot \vec{s} + \vec{s}^T W \vec{s}}} \times \underbrace{P(\vec{a}|\vec{s})}_{\text{$(\text{not important})}} \times \underbrace{P(\vec{v}|\vec{a})}_{\text{$with}}$$

$$\underbrace{P(\vec{a}|\vec{v})}_{\mbox{Objective function}} \propto \underbrace{P(\vec{s})}_{\mbox{\sim} e^{b\vec{i}as\cdot\vec{s}+\vec{s}^TW\vec{s}$}} \times \underbrace{P(\vec{a}|\vec{s})}_{\mbox{\sim} N(0,\sigma)} \times \underbrace{P(\vec{v}|\vec{a})}_{\mbox{\sim} N(0,\sigma)} \\ \underbrace{P(\vec{v}|\vec{a})}_{\mbox{\sim} N(0,\sigma)} \times \underbrace{P(\vec{v}|\vec{a})}_{\mbox{\sim} N(0,\sigma)}$$

$$\underbrace{P(\vec{a}|\vec{v})}_{\text{Objective function}} \propto \underbrace{\frac{P(\vec{s})}{P(\vec{s})} \times \underbrace{P(\vec{a}|\vec{s})}_{\text{(not important)}} \times \underbrace{P(\vec{v}|\vec{a})}_{\text{Decreases with } ||\vec{v} - B\vec{a}||_2}$$

Moral: We now have a wonderful new objective function whose optimization entails structured sparsity thanks to the interactions matrix W.

