

Reinforcement Learning for NLP

Advanced Machine Learning for NLP Jordan Boyd-Graber

DEEP SHIFT-REDUCE PARSERS

What Makes NLP different from RL?

- Often, best actions are known
- · We're not just searching for high-reward
- Sometimes actions themselves are known

Roll In vs. Roll Out

- · Roll In: Which states does the algorithm see
- Roll Out: What states do you use for training

Known Policy vs. Exploration

$roll-out \rightarrow$	Reference	Mixture	Learned	
↓ roll-in	Reference	MARGIC		
Reference	Inconsistent			
Learned	Not locally opt.	Good	RL	

- RL only gets reward
- Roll-in with reference gives unrealistic trajectories
- How to incorporate knowledge of true actions?
- Train classifier as proxy for policy

Algorithm 1 Locally Optimal Learning to Search (LOLS)

```
Require: Dataset \{x_i, y_i\}_{i=1}^N drawn from \mathcal{D} and \beta \geq 0: a mixture parameter for roll-out.
 1: Initialize a policy \pi_0.
 2: for all i \in \{1, 2, ..., N\} (loop over each instance) do
         Generate a reference policy \pi^{ref} based on y_i.
         Initialize \Gamma = \emptyset.
 4:
         for all t \in \{0, 1, 2, \dots, T-1\} do
 5:
            Roll-in by executing \pi_i^{\text{in}} = \hat{\pi}_i for t rounds and reach s_t.
 6:
 7:
            for all a \in A(s_t) do
                Let \pi_i^{\text{out}} = \pi^{\text{ref}} with probability \beta, otherwise \hat{\pi}_i.
 ۸.
                Evaluate cost c_{i,t}(a) by rolling-out with \pi_i^{\text{out}} for T-t-1 steps.
 9:
10:
            end for
11:
            Generate a feature vector \Phi(\mathbf{x}_i, s_t).
12:
            Set \Gamma = \Gamma \cup \{\langle c_{i,t}, \Phi(\mathbf{x}_i, s_t) \rangle\}.
         end for
13:
         \hat{\pi}_{i+1} \leftarrow \text{Train}(\hat{\pi}_i, \Gamma) \text{ (Update)}.
15: end for
```

16: Return the average policy across $\hat{\pi}_0, \hat{\pi}_1, \dots \hat{\pi}_N$.

LOLS on Dependency Parsing

Policy is learning actions for shift-reduce parser

$roll-out \rightarrow \downarrow roll-in$	Reference	Mixture	Learned		
Reference is optimal					
Reference	87.2	89.7	88.2		
Learned	90.7	90.5	86.9		
Reference is suboptimal					
Reference	83.3	87.2	81.6		
Learned	87.1	90.2	86.8		
Reference is bad					
Reference	68.7	65.4	66.7		
Learned	75.8	89.4	87.5		

But what structure is best?

- RecNN not much better than DAN
- But syntax may not be optimal
- Can we learn structure?

But what structure is best?

- RecNN not much better than DAN
- But syntax may not be optimal
- Can we learn structure?
 - Policy learns shift-reduce parser
 - TreeLSTM with learned structure
 - Reward is performance on downstream task

Table 4: Classification accuracy on SNLI dataset.

Model	Acc.	# params.
100D-Right to left	79.1	2.3m
100D-Left to right	80.2	2.3m
100D-Bidirectional	80.2	2.6m
100D-Supervised syntax	78.5	2.3m
100D-Semi-supervised syntax	80.2	2.3m
100D-Latent syntax	80.5	2.3m

What structures?

Other places of NLP + RL

- Question answering
- Language games
- Dialog systems
- Human learning

Wrapup

- RL allows for algorithms to think about long-term rewards
- And to guide actions of a system
- Important for systems that interact with world
- Discrete action spaces often more difficult