MA - 2018

EE24BTECH11064 - Harshil Rathan

- 1) Which of the following statements is true?
 - a) Every group of order 12 has non-trivial proper normal subgroup
 - b) Some group of order 12 does not have a non-trivial proper normal subgroup
 - c) Every grooup of order 12 has a subgroup of order 6
 - d) Every group of order 12 has an element of order 12
- 2) For an odd prime p, consider the ring $\mathbb{Z}[\sqrt{-p}] = \{a + b\sqrt{-p} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$. Then the element 2 in $\mathbb{Z}[\sqrt{-p}]$ is
 - a) a unit

c) a prime

b) a square

d) irreducible

- 3) Consider the following two statements:
 - P: The matrix $\begin{pmatrix} 0 & 5 \\ 0 & 7 \end{pmatrix}$ has infinitely many LU factorizations, where L is lower triangular with each diagonal entry 1, and U is upper triangular.
 - Q: The matrix $\begin{pmatrix} 0 & 0 \\ 2 & 5 \end{pmatrix}$ has no LU factorization, where L is lower triangular with each diagonal entry 1, and U is upper triangular.

Then which one of the following options is correct?

- a) P is TRUE and Q is FALSE
- b) Both P and Q are TRUE
- c) P is FALSE and Q is TRUE
- d) Both P and Q are FALSE
- 4) If the characteristic curves of the partial differential equation $xu_{xx} + 2x^2u_{xy} = u_x 1$ are $\mu(x, y) = c_1$ and $\nu(x, y) = c_2$, where c_1 and c_2 are constants, then

a)
$$\mu(x, y) = x^2 - y$$
, $\nu(x, y) = y$

b)
$$\mu(x, y) = x^2 + y$$
, $\nu(x, y) = y$

c)
$$\mu(x, y) = x^2 + y$$
, $\nu(x, y) = x^2$

d)
$$\mu(x, y) = x^2 - y$$
, $v(x, y) = x^2$

- 5) Let $f: X \to Y$ be a continuous map from a Hausdorff topological space X to a metric space Y. Consider the following two statements:
 - **P**: f is a closed map and the inverse image $f^{-1}(y) = \{x \in X : f(x) = y\}$ is compact for each $y \in Y$.

Q: For every compact subset $K \subset Y$, the inverse image $f^{-1}(K)$ is a compact subset of X.

Which one of the following is true?

- a) O implies P but P does NOT imply O
- b) P implies Q but Q does NOT imply P
- c) P and Q are equivalent
- d) neither P implies Q nor Q implies P
- 6) Let X denote \mathbb{R}^2 endowed with the usual topology. Let Y denote \mathbb{R} endowed with the co-finite topology. If Z is the product topological space $Y \times Y$, then
 - a) the topology of X is the same as the topology of Z
 - b) the topology of X is strictly coarser (weaker) than that of Z
 - c) the topology of Z is strictly coarser (weaker) than that of X
 - d) the topology of X cannot be compared with that of Z
- 7) Consider \mathbb{R}^n with the usual topology for n = 1, 2, 3. Each of the following options gives topological spaces X and Y with respective induced topologies. In which option is X home-omorphic to Y?
 - a) $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}, Y = \{(x, y, z) \in \mathbb{R}^3 : z = 0, x^2 + y^2 \neq 0\}$
 - b) $X = \{(x, y) \in \mathbb{R}^2 : y = \sin(1/x), 0 < x \le 1\} \cup \{(x, y) \in \mathbb{R}^2 : x = 0, -1 \le y \le 1\}$ 1}, $Y = [0, 1] \subseteq \mathbb{R}$
 - c) $X = \{(x, y) \in \mathbb{R}^2 : y = x \sin(1/x), 0 < x \le 1\}, Y = [0, 1] \subseteq \mathbb{R}$
 - d) $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}, \quad Y = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2 \neq 0\}$
- 8) Let $\{X_i\}$ be a sequence of independent Poisson(λ) variables and let $W_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then the limiting distribution of $\sqrt{n}(W_n - \lambda)$ is the normal distribution with zero mean and variance given by

(A) 1

(C) λ

(B) $\sqrt{\lambda}$

- (D) λ^2
- 9) Let X_1, X_2, \dots, X_n be independent and identically distributed random variables with probability density function given by

$$f_X(x; \theta) = \begin{cases} \theta e^{-\theta(x-1)}, & x \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

Also, let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then the maximum likelihood estimator of θ is

a) $\frac{1}{\overline{X}}$ b) $\frac{1}{\overline{Y}} - 1$

c) $\frac{1}{\overline{X}-1}$ d) \overline{X}

10) Consider the Linear Programming Problem (LPP):

Maximize
$$\alpha x_1 + x_2$$

Subject to

$$2x_1 + x_2 \le 6$$
, $-x_1 + x_2 \le 1$, $x_1 + x_2 \le 4$, $x_1 \ge 0$, $x_2 \ge 0$,

where α is a constant. If (3,0) is the only optimal solution, then

a) $\alpha < -2$

c) $1 < \alpha < 2$

b) $-2 < \alpha < 1$

- d) $\alpha > 2$
- 11) Let $M_2(\mathbb{R})$ be the vector space of all 2×2 real matrices over the field \mathbb{R} . Define the linear transformation $S: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by $S(X) = 2X + X^T$, where X^T denotes the transpose of the matrix X. Then the trace of S equals ______.
- 12) Consider \mathbb{R}^3 with the usual inner product. If d is the distance from (1, 1, 1) to the subspace span $(\{1, 1, 0\}, \{0, 1, 1\})$ of \mathbb{R}^3 , then $3d^2 =$
- 13) Consider the matrix $A = I_9 2uu^T$ with $u = \frac{1}{3}[1, 1, 1, 1, 1, 1, 1, 1, 1]^T$, where I_9 is the 9×9 identity matrix and u^T is the transpose of u. If λ and μ are two distinct eigenvalues of A, then $|\lambda \mu| = \frac{1}{3}[1, 1, 1, 1, 1, 1, 1, 1, 1]^T$, where I_9 is