Algebraic manipulations in maintaining indyset Joel Shapiro, April 21, 2001

Algebraic explanation of what's happening:

- The n'th basis vector: $B_n = basis[n][.], B_{nr} = basis[n][r], B_{nP_r} = 0 \text{ for } n > r.$
- the matrix to expand the basis vectors in terms of input vectors: $D_{nr} = basexpand[n][r], D_{np} = 0 \text{ for } n < p$
- the permutation of the columns: $P_r = \text{ordervar}[r]$
- the input gradients: $E_{nr} = n$ 'th candval->gradient[r]
- the candleft: $C_{nr} = n$ 'th candleft[r] at end of isindy. Note $C_{nP_r} = 0$ for n > r
- the candexpand: $K_{nr} = n$ 'th candexpand[r] at end of isindy. This is the coefficient of B_r in the expansion of E_n , so $K_{nr} = 0$ for $n \le r$

The n'th isindy (counting only those subsequently placelast'ed) calculates K_{nk} so that

$$C_{nr} = E_{nr} - \sum_{k} K_{nk} B_{kr}$$

will have no components in the columns $r = P_q$ for the first n q's (start n at 0), or

$$C_{nP_r} = 0 \text{ for } r < n.$$

Note as B_{k,P_r} is guaranteed 0 for k > r, this can be done by successive subtractions, with K_{nk} given by the P_k 'th component of what is left, divided by B_{k,P_k} .

So $E_{nr} = B_{nr} + \sum_{r=0}^{n-1} K_{nk} B_{kr}.$

For discussion, introduce $\tilde{K}_{nq} = K_{nq}$ for $n \neq q$, $\tilde{K}_{nq} = 1$ for n = q. \tilde{K} does not appear in the program. Then if a new gradient E_n has been placelast'ed,

$$E_{nr} = \sum_{q} \tilde{K}_{nq} B_{qr}.$$

When it is decided to placelast, the C_{nr} becomes B_{nr} , and the matrix D_{nr} has its n'th row entered as

$$D_{nr} = \begin{cases} 0 & \text{for } r > n \\ 1 & \text{for } r = n \\ -\sum_{q} K_{nq} D_{qr} & \text{for } r < n \end{cases}.$$

This matrix is the inverse of \tilde{K} , for consider

$$M_{\alpha\beta} = (\tilde{K}D)_{\alpha\beta} = \sum_{q} \tilde{K}_{\alpha q} D_{q\beta}.$$

As the matrix elements are 0 if $\alpha < q$ or $q < \beta$, there are no terms in the sum for $\alpha < \beta$, and then $M_{\alpha\beta} = 0$. When $\alpha = \beta$ there is only the $q = \alpha$ term and it is one. For $\alpha > \beta$, explicitly writing the $q = \alpha$ term separately, we have

$$M_{\alpha\beta} = D_{\alpha\beta} + \sum_{q=\beta}^{\alpha-1} K_{\alpha q} D_{q\beta} = 0$$

by the recursive definition of D. The purpose of this is that we can then convert an expansion for a new candidate gradient G, which we know in terms of the basis vectors B_k , into an expansion in terms of the original equations. As $E = \tilde{K} \cdot B$, we have $B = D \cdot E$, and

$$G_r = \sum_k K_k B_{kr} = \sum_k K_k \sum_q D_{kq} E_{qr} = \sum_q \left(\sum_k K_k D_{kq} \right) E_{qr}$$
$$= \sum_q R_q E_{qr},$$

the coefficients $R_q = \sum_k K_k D_{kq}$ are the expansion coefficients we need.