CP decomposition with alignment

Geonwoo Ban

Pusan National University Department of Statistics

2022 3/10

List

CP decomposition

- Resize image to lower dimension → Check
- ullet Compare the alignment effect o Check
- Find rotation effect in CP decomposition → Check

Data

Sets

- Left side
- Two brands; Nike, Adidas
- Four sample; A(Nike), B(Nike), C(Adidas), D(Adidas)
- Two images for one sample; A1, A2, B1, ..., D1, D2
- Rank 1 CP-decomposition after alignment

Additinal options

- Alignment : SHIFT(80 descriptors)
- \bullet Resize to 224 imes 224

A images before alignment and resizing

A images after alignment and resizing

C images before alignment and resizing

C images after alignment and resizing

Decomposed vector

Result table

	$mean(d_1)$	$mean(d_2)$	$mean(d_3)$	mean(TW)
Matching	0.0669	0.0395	0	0.1064
Non-matching (same brand)	0.0793	0.0544	0	0.1189
Non-matching (different brand)	0.0668	0.0468	0	0.1135

- $mean(d_1)$: Mean of the height-axis distance
- mean(d₂): Mean of the width-axis distance
- $mean(d_3)$: Mean of the color-axis distance
- mean(TW): Mean of the total weight $(d_1 + d_2 + d_3)$

Decomposed vector

Result table

Alignment	$mean(d_1)$	$mean(d_2)$	$mean(d_3)$	mean(TW)
Matching	0.0206	0.0129	0	0.0335
Non-matching (same brand)	0.0853	0.0571	0	0.1381
Non-matching (different brand)	0.0612	0.0412	0	0.1024

- $mean(d_1)$: Mean of the height-axis distance
- $mean(d_2)$: Mean of the width-axis distance
- $mean(d_3)$: Mean of the color-axis distance
- mean(TW): Mean of the total weight $(d_1 + d_2 + d_3)$

For large dataset

Dataset

- Aligned images
- 2,000 match pairs vs 2,000 non-match pairs
- Resized to 224 × 224
- Rank 1 CP-decomposition

Histograms

Height axis distance(d_1)

Histograms

Width axis distance (d_2)

Histograms

Total weight (TW)

Result

Distance mean table

2000 mat 2000 non-mat	$mean(d_1)$	$mean(d_2)$	$mean(d_3)$	mean(TW)
Matching	0.0321	0.0250	0	0.0571
Non-matching	0.0996	0.0809	0	0.1805

Next to do

- Calculate the distance for:
 - ▶ 2,000 train, 2,000 validation and 2,000 test
- Matching algorithm modeling
 - ▶ logistic, randomforest, etc.
 - deep learning methods