3D Video Coding

Thomas Wiegand wiegand@hhi.de

Outline

Stereo Video Coding

- Stereo High Profile of H.264/AVC
- Stereo SEI Message

Multi-view Video Coding

- Standardized MVC
- Why depth is necessary for autostereoscopic displays?

Depth-Enhanced Stereo

- Depth coding using MVC
- Depth coding using Platelets

slide 2

Stereo Video

- Standard format for 3D Cinema and consumer displays
- Only color pixel video data are involved, but no scene geometry information

Coding of Stereo Video

- Simulcast
- Multi-View Video Coding (Stereo High Profile H.264/AVC -> Blu-Ray)
- Stereo SEI Message in H.264/AVC (not backward compatible)

Coding Results - Dog: 1.7 dB Gain

Coding Results – Car: 1 dB Gain

Coding Results – Diving: 0.5 dB Gain

3DTV with Eye Glasses

Multi-View Video (MVV)

MVV

- Call for MVC in MPEG and JVT
- 8 responses to the Call for Proposals on MVC had been received:
 - 5 from industry(-cooperations),
 - 2 from research institutions,
 - 1 from a university
 - 2 from Korea, 2 from Japan,
 - 2 from USA, 2 from Germany

MVC Coding Results Summary

Thomas Wiegand: 3D Video Coding

H.264-based solution by HHI gave best performance – All proposed improvements performed worse

Temporal Coding Structure (Simulcast)

Temporal prediction using hierarchical B pictures

Inter-view Prediction for Key Pictures

Inter-view Prediction for All Pictures

Results for all Test Sequences

PSNR Difference Relative to Simulcast

■ Key picture prediction ■ Prediction for all pictures

View Distance Variation Experiment

- Experiment for Rena sequence
- Linear camera setup, parallel view axis
- 13 cameras
- Inter-view prediction with different camera distances
- Realization by omitting original views

Bit Rate Reduction Results

- Bit rate reduction for inter-view prediction
- Higher reduction for:
 - Smaller camera distance:
 - Lower reconstruction quality
- Linear dependency!
- Reduce number of views as much as possible

Interpolation Example: Varying Number of Views

- Linear camera setup, parallel view axis, 13 cameras
- No consideration of scene structure: bilinear view interpolation

7 views 2 views

Depth-Enhanced Stereo (DES)

- Can be extended to Multi-view video plus depth (MVD)
- Can be condensed to Layered Depth Video (LDV)
- Logarithmical depth quantization between z_{near} and z_{far} clipping plane

View Synthesis

Rendering arbitrary intermediate viewpoints of the scene

Multi-view or Stereo Plus Depth Coding

Depth-Map Coding Using MVC

slide 21

Depth Coding using Platelets

Depth 0

Depth 1

Quality Measurement

PSNR Results

Coding Results for Depth Maps

Original

MVC

Platelet

Subjective Quality

Original

MVC

Platelet

Thomas Wiegand: 3D Video Coding

Summary

- Stereo video will be introduced using Stereo High Profile of H.264/AVC
- Backwards compatible with 2D H.264/AVC High Profile
- Stereo High is derived from Multi-View Coding (MVC originally proposed by HHI)
- Bit rate is linearly proportional to number of views
- Depth-Enhanced Stereo allows for view generation at the receiver using depth information
- Efficient compression of depth maps and DES is future challenge

Acknowledgement

- JVT with its many experts
- HHI members and research associates
 - C. Hellge
 - H. Kirchhoffer
 - D. Marpe
 - P. Merkle
 - K. Mueller
 - P. Ndjiki-Nya
 - T. Schierl
 - H. Schwarz
 - K. Sühring
 - M. Winken

- G. Tech
- H. Brust
- H. Rhee
- A. Smolic (Disney)
- Y. Morvan (Eindhoven Uni)
- D. Farin (Eindhoven Uni)
- P.H.N. de With (Eindhoven Uni)

