SUMMARY

USC ID/s: 2448443089, 1031572511

Datapoints

M+N	Time in MS	Time in MS	Memory in KB	Memory in KB
	(Basic)	(Efficient)	(Basic)	(Efficient)
16	0.04	0.109196	14272	14284
64	0.351	0.748158	14336	14420
128	1.652	3.051996	14532	14400
256	6.4487	10.4599	15060	14456
384	12.938	22.043228	15984	14376
512	20.354	38.407087	17176	14384
768	50.1482	85.232735	20500	14568
1024	91.5852	153.283119	25068	14528
1280	143.049	230.59392	30972	14432
1536	216.5642	326.365948	38080	14656
2048	389.9429	579.987049	56632	14484
2560	575.454	944.667816	79904	14676
3072	822.052	1309.22699	108776	14668
3584	1138.2751	1811.086893	134508	14800
3968	1441.1550	2168.390751	163280	14904

Insights

Graph1 – Memory vs Problem Size (M+N)

Nature of the Graph (Logarithmic/Linear/Polynomial/Exponential)

Basic: Polynomial Efficient: Linear

Explanation:

The basic algorithm increases memory usage polynomially with input size because it builds a full dynamic programming (DP) table of size $m \times n$, leading to O(mn) space complexity and memory usage that can reach tens or hundreds of megabytes for large inputs. In contrast, the efficient algorithm applies a divide-and-conquer approach that only computes and stores partial score rows during recursion, reducing its space complexity to O(n). As a result, its memory usage grows much more slowly and typically remains within a few megabytes, even as the input size scales significantly.

Graph2 – Time vs Problem Size (M+N)

Nature of the Graph (Logarithmic/Linear/Polynomial/Exponential)

Basic: Polynomial Efficient: Polynomial

Explanation:

The CPU time for both basic and efficient algorithms shows a polynomial increasing as the problem size increases. They both takes O(mn) time complexity, but the efficient algorithm based on divide and conquer does not reduce its time complexity due to more recursive calls. So, more calculations result in higher CPU time for efficient algorithm, making it slower than the basic algorithm when dealing with large inputs.

Contribution

(Please mention what each member did if you think everyone in the group does not have an equal contribution, otherwise, write "Equal Contribution")

<USC ID/s>: <Equal Contribution> 2448443089: Equal Contribution 1031572511: Equal Contribution