11 - Exercícios – Lançamento Oblíquo			Ensino Médio	
Nome				Nº
1º série	Física -	- βeth	Data /	/2019
Responda as ques Adote sen 37° = 0,6 e	ão inicial, posicionando as referê	a resistência do ar e	adotando g	= 10 m
b) Qual é o tipo de lanç	amento?	Qual é valor d	le g?	
	onentes horizontal (V _{0x}) e vertical vetores e calcule seus módulos);	(V_{0y}) da velocidade no instante	do lançamento).
d) Determine as funçõe	es horárias da posição e da velocio Referência x	dade do movimento do corpo p Referência y		ència;
	S _x = V _x =	S _y = V _y =		
	e em que o corpo atinge o <u>ponto</u>			
			$t_{subida} = _{-}$	
f) Determine o tempo t	otal do movimento (t _{vôo});		t _{vôo} =	
g) Represente no desei	nho acima a <u>velocidade no ponto</u>	mais alto (altura máxima) e det		
			Resp:_	
h) Determine a altura r	náxima atingida pelo corpo. Leml	ore-se que a altura máxima é S _y	quando t = t _{sub}	ida ;
			Resp.: _	
i) Determine o alcance	que o corpo atinge. Lembre-se q	ue o alcance é S_x quando t = $t_{v\hat{o}c}$;	
	de do corpo ao atingir o solo (Dic	an waawaanta a wata wa asila la		

Resp.: _____

Represente a velocidade final no desenho acima.

k) Preencha a tabela abaixo e construa os esboços dos gráficos **Sxt, Vxt** e **axt** do movimento da **referência y**, explicitando os **instantes** onde a **velocidade é nula** e onde o corpo **toca o chão**.

t (s)	S (m)	V (m/s)	a (m/s²)	

EXERCÍCIOS: Para todos os exercícios, despreze a resistência do ar e adote $g = 10 \text{ m/s}^2$.

- **1.** Um projétil foi lançado de sua plataforma com uma inclinação de 60° em relação ao plano do solo, até atingir a altura máxima de 1,08 **km**.
- a) Represente a situação inicial, posicionando as referências y e x, a aceleração da gravidade, o corpo com o vetor $\vec{V_0}$ e o ângulo com a horizontal.
- b) Calcule a velocidade de lançamento V₀ do projétil.
- **2.** Um canhão dispara projéteis de 20 kg com ângulo de tiro de 30° com a horizontal e com módulo de velocidade V_0 de 720 km/h.
- a) Represente a situação inicial, posicionando as referências y e x, a aceleração da gravidade, o corpo com o vetor $\vec{V_0}$ e o ângulo com a horizontal.
- b) Determine a altura máxima H atingida e o alcance A dos projéteis.
- c) Determine a velocidade na altura máxima e represente-a no desenho do item a.
- d) Construa os esboços dos gráficos **Sxt, Vxt** e **axt** do movimento da **referência y**, explicitando os instantes onde a velocidade é nula e onde a pedra toca o chão.
- **3.** (Fuvest-adapt.) Um gato de 1 kg de massa dá um pulo, atingindo uma altura de 1,25 m e caindo a uma distância de 1,5 m do local do pulo.
- a) Represente a situação inicial, posicionando as referências y e x.
- b) Calcule a componente vertical de sua velocidade inicial.
- c) Calcule a velocidade horizontal do gato.
- d) Qual a aceleração que atua sobre o gato no ponto mais alto do pulo?

4. Um jogador de basquete se encontra a 9,0 m da cesta. Ele posiciona a bola a 2 velocidade inicial de 36 km/h numa direção que forma com a horizontal um ângulo A bola passa pelo aro sem tocar na tabela.	
a) Represente a situação inicial, posicionando as referências y e x, a aceleração da grav	vidade, o corpo com $ec{V_0}$.
b) Determine as componentes horizontal e vertical da velocidade no instante do lança	mento.
	V _{0x} =
	V _{0y} =
c) Calcule o tempo de subida até a altura máxima.	
	t =
d) Calcule o alcance até a altura máxima.	
	S _x =
e) Determine a velocidade na altura máxima e represente-a no desenho acima;	
	Resp.:
f) Determine o tempo que a bola permanece no ar até chegar na cesta;	
	t =
g) Determine a altura da cesta em relação ao solo ;	
	Resp.:
Respostas:	

1. $V_0 = 173 \text{ m/s}$.

2. A = 3400 m; $H_{máx}$ = 500 m; V = 170 m/s.

3. b) 5 m/s; c) 1,5 m/s; d) em módulo 10 m/s 2 .

4. 1.f) 1,5 s; g) 2,9 m.