

Autonomous Networking

Gaia Maselli

Dept. of Computer Science

Today's plan

- Q-learning based MAC for sensor networks
- Practical exercises

ALOHA protocol

- Contention based protocol
- Time is slotted
- Each node randomly transmits in a slot
- Framed slotted aloha groups slots into frames
- Is it possible an intelligent transmission strategy to avoid as much as possible collisions?
- Goal: Can nodes find unique transmission slots in a distributed manner?

ALOHA and Q-learning: ALOHA-Q

- ALOHA-Q divides time into repeating frames where a certain number of slots are included in each frame for data transmission
- Each slot is initiated with a Q-value to represent the willingness of this slot for reservation, which is initialised to 0 on start-up
- Upon a transmission, the Q-value of corresponding slot is updated, using the Q-learning update rule

$$Q_{t+1}(i, s) = Q_t(i, s) + \alpha (R - Q_t(i, s))$$

• where *i* indicates the present node, *s* is the slot identifier, *R* is the current reward and α is the learning rate

ALOHA and Q-learning: ALOHA-Q

- Upon a successful transmission, R takes a value of r = +1 which constitutes a reward
- Upon a failed transmission, R takes a punishment value of p = -1
- Nodes always select the slots with maximum Q-values
- Nodes are restricted to access only one slot per frame for their generated packets and they can use multiple slots in a frame for relaying the received packets

Example

- Updating the Q-values for 10 slots per frame
- A node is allowed to send a maximum of 3 packets in each frame.

Aloha-Q with decreasing-E greedy method: Aloha-Q-DEPS

 A decreasing-E method is developed to allow nodes to explore more until they achieve a certain level of exploration

$$\epsilon = \begin{cases}
1 - Q_{value} & \text{before convergence} \\
1 - Q_{convergence} & \text{after convergence}
\end{cases}$$

- In ALOHA-Q, the term convergence in a slot occurs when the Q-value of this slot approaches to 1
- $\mathbf{Q}_{\text{convergence}} = 0.9$

Exercise

- Consider the MDP with discount factor γ=0.5
- A, B, C are states
- ab, bc, ba, ca, cb, represent actions
- Signed integers represents rewards
- Fractions represent transition probabilities
- Define the state-value function

Question 1

■ Define the state-value function $V\pi(s)$ for a discounted MDP

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

Question 2

Write down the Bellman exectation equation for state-value functions

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

Bellman Expectation Equation for V^{π}

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

Bellman Expectation Equation for Q^{π}

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Bellman Expectation Equation for v_{π} (2)

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\pi}(s') \right)$$

SAPIENZA UNIVERSITÀ DI ROMA

Question 3

- Consider the uniform random policy $\pi_1(s,a)$ that takes all actions from state s with equal probability. Starting with an initial value function of $V_1(A) = V_1(B) = V_1(C) = 2$ apply one synchronous iteration of iterative policy evaluation to compute a new value function $V_2(s)$
- V₂(A)=?, V₂(B)=?, V₂(C)=?

$$V_2(A) = -8 + 0.5V_1(B) = -7$$

$$V_2(B) = 0.5(2 + 0.5V_1(A)) + 0.5(-2 + 0.5V_1(C)) = 1$$

$$V_2(C) = 0.5(8 + 0.5V_1(B)) + 0.5(4 + 0.5(1/4V_1(A) + 3/4V_1(C))) = 7$$

