Sub Code: BMET – 504 (A) ROLL NO......

SEMESTER EXAMINATION, 2022 – 23 3rd Year, B. Tech Mechanical Engineering Internal Combustion Engines

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any four parts of the following.	5x4=20
	a) Explain the valve timing diagram of a 4-stroke petrol engine.	
	b) Elucidate the phenomenon of knocking in the SI engine with the help of a neat sketch?	
	c) List the different types of injection systems? Describe MPFI.	
	d) List down the qualities of engine fuel.	
	e) What is a supercharged engine? Explain different types of supercharging arrangements.	
	f) Determine the diameter of a fuel orifice for a 4-stroke engine developing 15kW	
	per cylinder at 2000 rpm, using 0.272 kg/kW-hr fuel of 32° API. The duration of	
	injection is 30° of crank travel. The fuel injection pressure is 120 bar, and the	
	combustion chamber pressure is 30 bar. Take the coefficient of velocity as 0.9 and	
	$SG = 141.5/(131.5 + {}^{\circ}API).$	
Q 2.	Answer any four parts of the following.	5x4=20
	a) What are the important considerations in selecting fuels for a CI Engine?	
	b) Derive an expression for determining the air-fuel ratio in a carburetor by considering air compressibility.	
	c) Draw the characteristic curves for the SI engine.	
	d) Discuss the characteristics of nozzles used in CI engines.	
	e) "Supercharging increases the power output of the engine, it does not increase the fuel consumption" Explain the preceding sentence.	
	f) Discuss the various stages of combustion of a spark Ignition engine with the help	
	of a pressure crank angle diagram.	
Q 3.	Answer any two parts of the following.	10x2 = 20
	a) A simple jet carburetor is required to supply 5 kg of air and 0.5 kg of fuel per	
	minute. The fuel specific gravity is 0.75. The air is initially at 1 bar and 300 K.	
	Calculate the throat diameter of the choke for a flow velocity of 100 m/s.	
	Velocity coefficient is 0.8. If the pressure drop across the fuel metering orifice	
	is 0.8 of that of choke, calculate orifice diameter assuming $C_d = 0.6$ and $\gamma = 1.4$.	
	b) In a trial of a single-cylinder oil engine working on dual cycle, the following	
	observations were made:	
	Compression ratio = 15, Oil consumption= 10.2kg/h, Calorific value of	
	fuel= 43890 kJ/kg, Air consumption = 3.8 kg/min, Speed= 1900 r.p.m.,	
	Torque on the brake drum= 186 N-m, Quantity of cooling water used = 15.5	
	kg/min, Temperature rise= 36°C, Exhaust gas temperature= 410°C, Room temperature = 20°C, C _p for exhaust gases = 1.17kJ/kg-K	

		I
	Calculate:	
	Brake power, (ii) Brake specific fuel consumption, and, (iii) Brake thermal	
	efficiency, (iv) Draw heat balance sheet on minute basis.	
	c) Discuss the stages combustion, knocking and factors affecting ignition delay in	
	CI engines.	
Q 4.	Answer any two parts of the following.	10x2 = 20
	a) Explain the phenomenon of knocking in SI engine with the help of a neat sketch? What is the effect of compression ratio, engine speed and retardation of spark timing on knocking?	
	b) Discuss the IC engine fuels classification and write a short note on any alternative fuel used in SI engines.	
	c) Explain the reasons for cooling an engine and the working of thermosiphon and evaporative cooling systems used in IC engines.	
Q 5.	Answer any two parts of the following.	10x2=20
	a) Why the actual cycle efficiency is much lower than the air standard cycle efficiency? List the major losses and differences in actual engine and air standard cycles.	
	b) Briefly explain the working of the following:	
	(i) Centrifugal supercharger, (ii) Vane type supercharger	
	Compare the above superchargers.	
	c) Explain the method of generating air swirl in CI engine and discuss the direct, indirect injection designs in contrast to CI engine.	
