Use of Chemical Transport Models to Motivate and Inform Air Quality Policies at Local, National and Global Scales

Eloïse Marais

ERC HEAL Workshop

7 July 2022

e.marais@ucl.ac.uk

Lab: https://maraisresearchgroup.co.uk/; Profile: https://www.geog.ucl.ac.uk/people/academic-staff/eloise-marais

The GE@S-Chem Chemical Transport Model

3D global/regional atmospheric concentrations

GEOS-Chem website home page: https://geos-chem.seas.harvard.edu/

Global Distribution of Fine Particles (PM_{2.5})

PM_{2.5} derived with satellite and surface observations and a model

Dominant sources include a range of natural and anthropogenic sources that vary spatially and seasonally

Challenging to isolate sources using observations

Satellite products (left) and surface measurements (right) provide total PM_{2.5}

Even with measurements of individual $PM_{2.5}$ components, it is challenging to tease out the contribution from fossil fuels, **so we use a model**.

Particles are a Mix of Components that Persist for Days

PM_{2.5} includes local and distant sources (long atmospheric lifetime)

Stricter World Health Organization (WHO) Guideline

(https://apps.who.int/iris/handle/10665/345329)

Source: WHO Facebook page

Sources of Fine Particles (PM_{2.5}) in UK Cities

Jamie Kelly (postdoc)

Jordan White Roland J. Leigh

Leicester Jolanta Obszynska City Council Matthew Mace

Simulate PM_{2.5} and Sources with GEOS-Chem

GEOS-Chem manual: http://acmg.seas.harvard.edu/geos/

Simulate PM_{2.5} and Sources with GEOS-Chem

GEOS-Chem manual: http://acmg.seas.harvard.edu/geos/

Test Contribution of Potentially Influential Sources

Local

City

County

National

Nearby large cities

Transport

Agriculture

Regional

Mainland Europe

Global

Desert Dust

Assess Model using Reference Monitors

Observations of total PM_{2.5} from the Automatic Urban and Rural Network (AURN)

Comparison of annual mean surface concentrations of PM_{2.5} for 2019

Consistent spatial pattern (**R = 0.66**) and variance (**slope = 1.0**). Model **16% less** than observations

75% of UK exceeds updated WHO guideline

Assess Validity of Model using Reference Monitors

Use PM_{2.5} composition measurements from UKEAP and EMEP sites to assess model

Model underpredicts observed (sulfate, nitrate, ammonium) and possibly overpredicts unobserved (dust) components. Model captures variance of components from NO_x (nitrate) and ammonia (ammonium)

Assess Validity of Model using Reference Monitors

Also evaluate model skill at reproducing observed seasonality in total and components PM_{2.5}

Interpret results with GEOS-Chem:

Cold season enhancements due to combined effect of pollution transport from Europe and agricultural emissions of ammonia

Contribution of Sources to annual PM_{2.5} in Leicester

Corroborating Evidence from Low-Cost Sensors

Low-cost network of sensors distributed throughout Leicester from Dec 2020 to Feb 2021

Corroborating Evidence from Low-Cost Sensors

According to low-cost sensors, local sources contribute 7%. Model similarly low (2%)

Results for Large Cities like London and Birmingham

London: 1,600 km²

Birmingham: 270 km²

Leicester: 70 km²

Local sources compete with rural agriculture in anomalously large London

Generalizable expression for estimating PM_{2.5} from local sources and agriculture:

$$PM_{2.5,local} = +0.8 \times ln(Area) - 2.6 \quad (R^2 = 0.89)$$

$$PM_{2.5,agriculture} = -0.3 \times In(Area) + 4.9;$$
 (R² ~ 1)

Conclusions and Acknowledgements

- Under-regulated agricultural sector dominates PM_{2.5} year-round
- Mainland Europe makes large cold-season contribution to PM_{2.5}
- Policies targeting local sources only likely to have an effect in large cities
- Results reinforce the need for continued and strengthened international agreements and measures to control ammonia emissions from agriculture
- Agriculture also a prominent source of greenhouse gases (methane, nitrous oxide), so potential for climate and air quality co-benefits

Support provided by Leicester City Council from a Defra-funded Air Quality Grant

Global premature mortality due to exposure to air pollution from fossil fuels

K. Vohra, A. Vodonos, J. Schwartz, E. A. Marais, M. P. Sulprizio, L. J. Mickley, https://doi.org/10.1016/j.envres.2021.110754

Karn Vohra (postdoc) **⋰**@kohra_thefog

UNIVERSITY^{OF} BIRMINGHAM

PM_{2.5} from Burning Fossil Fuels

PM_{2.5} precursors emitted from a range of activities that combust fossil fuels

Combustion for transport, industry, energy generation, and domestic heating, lighting and cooking

Simulate Surface PM_{2.5} with GEOS-Chem

GEOS-Chem Estimate of Fossil Fuel PM_{2.5}

Difference between model simulations with and without fossil fuel PM_{2.5}

Hotspots are in China, Bangladesh, India, and central Europe

Standard and Widely used Risk Assessment Models

Integrated Exposure-Response (IER)

[Burnett et al., 2014]

Data includes active and passive smoking to address outdoor $PM_{2.5} > 40 \mu g m^{-3}$

Global Exposure Mortality Model (GEMM)

[Burnett et al., 2018]

41 cohort studies and model constrained using 4 parameters

Updated Risk Assessment Model used in our Study

- Flexible shape of concentration-response function
- More cohort studies, and wider concentration and age range than previous approaches
- Includes death from allcauses

Approach used to Calculate Health Impact

Fossil-fuel PM_{2.5} from GEOS-Chem

Baseline mortality from Global Burden of Disease

Meta-analysis concentration-response function from cohort studies

Global premature mortality

We use the derived fossil-fuel PM_{2.5} with baseline mortality in the meta-analysis concentration-response function to estimate global premature mortality

Global Premature Mortality from Fossil Fuel combustion

10.2 million premature deaths attributed to fossil-fuel PM_{2.5} in 2012

[-47 million, 17 million]

[Vohra et al., 2021]

Regional Premature Mortality from Fossil Fuel Combustion

Policies Help Mitigate Premature Deaths

1.5 million fewer deaths in 2018 than 2012 due to policy-driven decline in PM_{2.5} pollution in China

Response to Findings

We calculate global premature mortality that is much greater than previous estimates (updated risk assessment model, higher spatial resolution PM_{2.5})

Swell of media attention from leading news agencies and advocacy groups

Translated into many languages for audiences in France, Spain, India, Canada, China, Central and South America

https://www.theguardian.com/environment/2021/feb/09/fossil-fuels-pollution-deaths-research

General Comments and Conclusions

Central to success of using models is ability validate with reliable and representative observations.

Persistent uncertainties in relative risk at extreme low and high concentrations of PM_{2.5}.

Controls on agriculture would be most effective at addressing $PM_{2.5}$ pollution in the UK, Europe and likely also other parts of the world that have already implemented successful measures targeting point sources.

Enhanced success of our projects resulted from working directly with policy- and decision-makers at local and national scales.

Greater synergies needed between air quality and climate agencies, due to co-benefits of targeting sources that emit air pollutants and precursors and greenhouse gases.

Additional Resources

The Conversation pieces on health and air quality:

https://theconversation.com/ditching-fossil-fuels-will-have-immediate-health-benefits-for-millions-world-leaders-must-seize-the-chance-171015

https://theconversation.com/air-pollution-in-fast-growing-african-cities-presents-a-risk-of-premature-death-183944

Datasets derived using GEOS-Chem:

Global premature mortality from fossil fuel air pollution: https://doi.org/10.5522/04/14595714

Visualization of results on Tableau dashboard:

https://public.tableau.com/app/profile/karn.vohra/viz/Globalmortalitylinkedtoairpollutionfromfossilfuelcombust ion/Global_mortality_fossil-fuelPM2_5

https://public.tableau.com/app/profile/karn.vohra/viz/Trendsinairqualityinfast-growingtropicalcities/Dashboard1

Research group website:

https://maraisresearchgroup.co.uk/