Information Theory

Additional mini-project in deeplearning math

03-1. 정보 엔트로피(entropy) 개념, 표기, 연산 - 이론

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

Course Overview

Торіс	Contents	
01. Orientation	Motivations & Course introduction	
오리엔테이션	동기부여, 과정 소개	
02. Information	What is the information? Concept & definition	
정보	정보란 무엇인가? 개념과 정의	
03. Information Entropy	Concepts, notation, and operations on information entropy	
정보 엔트로피	정보 엔트로피의 개념, 표기, 연산	
04. Entropy in Deeplearning	How to apply the information entropy into Deeplearning?	
딥러닝에서의 엔트로피	어떻게 정보 엔트로피를 딥러닝에 적용하는가?	
05. Entropy Loss	Loss function using entropy, BCE, and cross entropy	
엔트로피 손실	엔트로피를 이용한 손실 함수, BCE, 크로스 엔트로피	
06. KL Divergence	Concept & definition of KL divergence	
KL 발산	KL 발산의 개념과 정의	
07. Summary & Closing	Summary & closing on this project, 'Information Theory'	
요약 및 마무리	정보 이론 요약 및 마무리	

엔트로피의 등장

Claude Shannon (1916~2001) 새넌에 의해 제안되어 '새넌 엔트로피'라고 불리기도 함

여러 개 정보들이 있을 때, 평균 정보량은 얼마일까?

Information Entropy

평균 공식과 기댓값을 생각해 보면 쉽다~

이전 강의를 참고하세요 ^^.

[Probability]_01. Random Variables (확률변수)... 이게 뭔가요? https://youtu.be/iTxTGB0hzCA

[Probability]_02. Expected Value (기댓값)... 이게 뭔가요? https://youtu.be/nvHyIScyQxs

Recap: Random variable & expectation

기댓값 공식: 확률변수 값에 확률을 곱하여 모두 더한다.

$$E[X] = x_1 p_1 + x_2 p_2 + \dots + x_n p_n = \sum_{i=1}^{n} x_i p_i$$

- *X*: a random variable
- x_i : possible outcome of X
- p_i : probability of x_i

가능한 점수

Ω _	X	Е	확률
100 -		100	1/6
90 –		90	1/6
80 -		80	1/6
70 -		7 0	1/6
60 –		6 0	1/6

$$E[X] = \sum_{i=1}^{n} x_i \times p(x_i)$$

$$= 100 \cdot \frac{1}{6} + 90 \cdot \frac{1}{6} + 80 \cdot \frac{1}{6} + 70 \cdot \frac{1}{6} + 60 \cdot \frac{1}{6} + 50 \cdot \frac{1}{6}$$

$$= \frac{100 + 90 + 80 + 70 + 60 + 50}{6} = \frac{450}{6} = 75$$

Entropy formulation

$$H(P) = H(x) = E_{X \sim P}[I(x)] = E_{X \sim P}[-\log P(X = x)]$$
 좀 더 간략하게
$$= E_x[-\log P(x)]$$

$$H(x) = \sum_{i=1}^n -p \log P(x_i) = -\sum_{i=1}^n p \log P(x_i)$$

참고: 일반적으로 정보의 표현은 비트(bit, 0과 1)로 하기 때문에 대부분 밑(base)이 2인 로그를 사용 → 하지만 밑(base)는 어떤 것을 사용해도 문제되지 않습니다.

로그의 밑 변환 공식을 이용하면 쉽게 변환 가능 (증명은 생략)

Information Entropy 값의 범위

Probability axioms

1.
$$P(x) \in \mathbb{R} \land P(x) \ge 0$$

2.
$$P(\Omega) = 1$$

3.
$$P\left(\bigcup_{i=1}^{\infty} x_i\right) = \sum_{i=1}^{\infty} P(x_i)$$

따라서,

$$0 \le p(x) \le 1$$

$$0 \le I(x) \le \infty$$

$$0 \le H(x) \le \infty$$

동전 던지기에서 Information Entropy

Binary Case...

Random variable

동전 앞면 (head)
$$X \to p$$
 동전 뒷면 (tail) $Q = 1 - p$

이미시 서삭사: FLATICON 이미지 출처: <u>https://www.flaticon.com/kr/free-icon/coin-toss_2471534</u>

$$p = q = \frac{1}{2} \qquad H(X) = \left(-\frac{1}{2}\log\frac{1}{2}\right) + \left(-\frac{1}{2}\log\frac{1}{2}\right) = \left(-\frac{1}{2}\log 2^{-1}\right) + \left(-\frac{1}{2}\log 2^{-1}\right) = \frac{1}{2} + \frac{1}{2} = 1$$

$$p = \frac{1}{4}, q = \frac{3}{4} \qquad H(X) = \left(-\frac{1}{4}\log\frac{1}{4}\right) + \left(-\frac{3}{4}\log\frac{3}{4}\right) = -\frac{1}{4} \times (-2) + \left(-\frac{3}{4}\right) \times (-0.415) = 0.811$$

$$p = 1, q = 0$$
 $H(X) = (-1 \log 1) + (-0 \log 0) = 0$

교수님 ~~

모든 p에 대한 엔트로피는 어떻게 되나요?

Random variable

Head \xrightarrow{X} 1

예제로 이해하는 Information Entropy

$$X = \begin{cases} a & with & probability & p_1 = \frac{1}{2} \\ b & with & probability & p_2 = \frac{1}{4} \\ c & with & probability & p_3 = \frac{1}{8} \\ d & with & probability & p_4 = \frac{1}{8} \end{cases}$$

$$H(X) = -\sum_{t} p_t \log p_t = \left(-\frac{1}{2}\log\frac{1}{2}\right) + \left(-\frac{1}{4}\log\frac{1}{4}\right) + \left(-\frac{1}{8}\log\frac{1}{8}\right) + \left(-\frac{1$$

주사위를 동시에 던지는 경우?

Random variable: n 개 주사위를 동시에 던졌을 때 나온 값의 합

Entropy???

경우의 수가 많아서.... ㅠㅠ

Python으로 실습해 보겠습니다~~ (실습 동영상은 별도로 구성)

수고하셨습니다 ..^^..