ADVI: Taxi Routes experiment

Release 2024

Nafissa Benali, Laura Fuentes, Rita Maatouk

CONTENTS:

1	df_processing module	1
2	advi_fcts module	3
3	clustering module	7
4	figs module	9
5	Indices and tables	11
Ру	thon Module Index	13
Index		15

DF_PROCESSING MODULE

df_processing.extract_traj(df)

Extracts the trajectories stored (as strings) in a dataframe.

Parameters

df (*pd.DataFrame*) – Dataframe gathering trajectories information

Returns

list of processed trajectories (as np.array instead of str elements)

Return type

list_trips (list)

df_processing.interpolation(ls, num_points)

Linear interpolation of the given data points.

Parameters

- **x** (*1ist*) List of x-coordinates.
- **y** (list) List of y-coordinates.
- **num_points** (*int*) Number of points for interpolation.

Returns

Tuple containing the interpolated x and y coordinates.

Return type

tuple

df_processing.new_df(trips, nb_points, mask, newlist)

Create a new dataframe with the new interpolated version of trajectories (50 coordinates) and saves it outside gitHub

Parameters

- **trips** (*pd.DataFrame*) Dataframe with a fixed row length containing: trajectory id and trajectories
- **nb_points** (*int*) Number of rows selected on dataframe trips
- mask (np. array) matrix indicating whether trajectories have more than one coordinate or not
- **newlist** (*list*) interpolated trajectories

df_processing.plot_trajectories_list(ls)

Plot all trajectories from a list of coordinates

Parameters

ls (*list*) – contains a group of coordinates (x,y)

ADVI_FCTS MODULE

class advi_fcts.ADVI_algorithm(data_dim, latent_dim, num_datapoints, dataset, nb_samples, lr)

Bases: Model

T_inv(theta)

Computes the inverse transform of zeta, allowing to go from R^{dim} into support of \$ heta\$. In this case, z_prior and w_prior values are in the same space support as theta, hence no transformation is needed. Regarding alpha_prior and sigma_prior, they return only positive values, hence, computing the probability of alpha_sample<0 or sigma_sample<0 would give a nan. To solve such a problem, we consider for those two parameters the exponential transformation.

Parameters

theta (*tf.Tensor*) – Vector gathering the parameters to extract (z, w, sigma, alpha)

Returns

tf.concat([first_part, last_n_elements], axis=0) has same support as all prior variables

Return type

T^1(theta) (tf.Tensor)

Tinv_jac(theta)

Computes the log absolute value of the determinant of the jacobian matrix of $T^{(-1)}$

Parameters

theta (tf. Tensor) – Vector gathering the parameters to extract (z, w, sigma, alpha)

Returns

log-absolute value of the determinant of the jacobian of T^(-1)

Return type

det (tf.Tensor value)

fct_obj(nb_samples)

Computes by Monte Carlo (MC) integration: nabla_mu and nabla_omega (for mu and omega update) and elbo. :param nb_samples: Number of samples for MC integration :type nb_samples: int

Returns

estimation of nabla_mu by MC integration nabla_omega/nb_samples: estimation of nabla_omega by MC integration elbo/ nb_samples + entropy: estimation of elbo by MC integration

Return type

nabla_mu/ nb_samples

gradient_Tinv(zeta)

Compute the gradient of Tinv $(T^{\wedge}(-1))$ and the log-abs value of determinant of jacobian

Parameters

zeta (*tf.Tensor*) – Vector gathering the parameters to extract (z, w, sigma, alpha) before transformation (T inv)

Returns

gradient of T_inv grad_log_jac_Tinv (tf.Tensor): gradient of log-abs value of determinant of jacobian

Return type

grad_Tinv (tf.Tensor)

gradient_log_joint(theta)

Compute the gradient of log-joint probability

Parameters

theta (*tf. Tensor*) – Vector gathering the parameters to extract (z, w, sigma, alpha)

Returns

gradient of log-joint value

Return type

grad (tf.Tensor)

run_ADVI()

Run the whole ADVI algorithm

Returns

estimated parameter of the distributional distribution: mu self.omega.numpy(): estimated parameter of the distributional distribution: omega

Return type

self.mu.numpy()

```
step\_size(i\_value, lr, s, grad, tau=1, alpha=0.1)
```

Computes the step-size for updating mu and omega

Parameters

- i_value (int) iteration number
- **lr** (*float*) learning rate
- **s** (tf.tensor) Value
- grad (tf.tensor) _description_
- tau (int, optional) Defaults to 1.
- alpha (int, optional) Defaults to 0.1.

Returns

estimation of step-size parameters

Return type

rho, s

 ${\tt class} \ \, {\tt advi_fcts.} \\ {\tt Model} ({\it data_dim}, {\it latent_dim}, {\it num_datapoints}, {\it dataset}) \\$

Bases: object

z ~ Normal(0, I) w ~ Normal(0, I) sigma ~ LogNormal(1, 1) alpha ~ InvGamma(1, 1)

log_joint(theta)

Compute log-joint probability of z, w, alpha, sigma, data according to the precised model

Parameters

theta (*tf. Tensor*) – Vector gathering the parameters to extract (z, w, sigma, alpha)

Returns

 $tf.reduce_sum(log_lik) + tf.reduce_sum(w_log_prior) + tf.reduce_sum(z_log_prior) + tf.reduce_sum(sigma_log_prior) \\$

Return type

Value (tf.Tensor)

params(theta)

Extracts the samples from $\theta = (z, w, sigma, alpha)$

Parameters

theta (tf.Tensor) – tensor of dimension (self.dim) in R^{self.dim} gathering all parameters to extract (z, w, sigma, alpha)

Returns

extracted parameters

Return type

sigma, alpha, z, w (tf.Tensors)

CHAPTER

THREE

CLUSTERING MODULE

clustering.extract_from_VI(mu, omega, advi_model)

Extracts model parameters from output of PPCA (variational distribution results)

Parameters

- mu (tf. Tensor) mean of variational distribution q
- **omega** (tf. Tensor) standard deviation of variational distribution q
- advi_model (class) model used for dimension reduction

Returns

model parameters

Return type

z, w, sigma (tf.Tensors)

clustering.perform_BGMM(n_clusters, trajectories, x)

Function that performs Bayesian GMM over a set of reduced dimension trajectories for a predefined number of clusters

Parameters

- n_clusters (int) number of clusters
- **trajectories** (*np.array*) projected trajectories of shape (num_datapoints, latent_dim)
- \mathbf{x} (pd.DataFrame) dataset with trajectories and IDs

Returns

description

Return type

type

FOUR

FIGS MODULE

figs.ELBO_fig(elbo_evol)

Function that creates the figure of ELBO evolution

Parameters

elbo_evol (np.array) - array containing ELBO values over iterations

figs.clusters_fig(reshaped, num_datapoints, nb_clusters, colors_nclusters, cm)

Function that produces an image that will be saved in images/

Parameters

- **reshaped** (*np.array*) reshaped trajectories (vector format)
- **num_datapoints** (*int*) number of datapoints in dataset
- **nb_clusters** (*list of integers*) list of 3 elements containing the number of produced clustering
- **colors_nclusters** (*list*) list of color palettes for presenting clusters
- cm (list) list containing cluster memberships for each element in dataset for each predefined number of clusters

figs.generate_colors(n)

Function that generates a palette of n colors for labeling in final figure

Parameters

n (int) – number of clusters for generating a palette

Returns

color palette

Return type

sns.color_palette("Spectral", n)

CHAPTER

FIVE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
a
advi_fcts, 3
C
clustering, 7
d
df_processing, 1
f
figs, 9
```

14 Python Module Index

INDEX

```
Α
                                                          clustering, 7
                                                          df_processing, 1
ADVI_algorithm (class in advi_fcts), 3
                                                          figs, 9
advi_fcts
    module, 3
                                                     Ν
C
                                                     new_df() (in module df_processing), 1
clustering
                                                     Р
    module, 7
clusters_fig() (in module figs), 9
                                                     params() (advi_fcts.Model method), 5
                                                     perform_BGMM() (in module clustering), 7
D
                                                     plot_trajectories_list()
                                                                                                  module
                                                              df_processing), 1
df_processing
    module, 1
                                                     R
Ε
                                                     run_ADVI() (advi_fcts.ADVI_algorithm method), 4
ELBO_fig() (in module figs), 9
extract_from_VI() (in module clustering), 7
extract_traj() (in module df_processing), 1
                                                     step_size() (advi_fcts.ADVI_algorithm method), 4
                                                     Т
F
fct_obj() (advi_fcts.ADVI_algorithm method), 3
                                                     T_inv() (advi_fcts.ADVI_algorithm method), 3
figs
                                                     Tinv_jac() (advi_fcts.ADVI_algorithm method), 3
    module, 9
G
generate_colors() (in module figs), 9
gradient_log_joint()
                          (advi_fcts.ADVI_algorithm
        method), 4
gradient_Tinv() (advi_fcts.ADVI_algorithm method),
interpolation() (in module df_processing), 1
L
log_joint() (advi_fcts.Model method), 4
M
Model (class in advi_fcts), 4
module
    advi_fcts, 3
```