

INSTITUT SUPERIEUR DES SCIENCES, DE TECHNOLOGIE ET DE COMMERCE

ACCORD DE CREATION N°12/0366/MINESUP DU 16 AUG 2012 / AUTORISATION D'OUVERTURE N°12/0370/MINESUP DU 16 AUG 201

ANNEE ACADEMIQUE 2018/2019

CONTROLE CONTINU 1

Matière: MATHEM ATIQUES INDUSTRIELLE <u>Durée</u>: 2h

Specialité: TC INDUSTRIEL Niveau: 2 Enseignant: M. NAMEKONG

EXERCICE 1

1) On considère les fonctions f, g et h telles que définies comme suit

$$F(x) = \sqrt{\frac{x^2 - 1}{2x^2 - 4x}}, \ g(x) = x \ln(x^2 - 1)et \ h(x) = 2x^3 + 4$$

Déterminer le domaine de définition de chacune de ces fonctions

On donne $k(x) = -\frac{1}{x+2}$ et on pose $\theta(x) = (koh)(x)$. Donner l'expression de $\theta(x)$ et ensuite son domaine de définition

Parmi ces fonctions quelles sont celles qui sont paires ou impaires ?

2) On donne les fonctions suivantes $q(x) = \frac{2}{x^2-1} - \frac{3}{x^3-1}$ et

 $v(x) = \sqrt{x + \sqrt{x}} - \sqrt{x}$. Calculer les limites respectives de q et v aux point 1 et $+\infty$

3) On pose $l(x) = \frac{x^3 - 1}{x^2 - 1}$. Montrer que l admet un prolongement par continuité en $x_o = 1$

4) On donne la fonction
$$\frac{x^2}{x-1}$$
, utiliser la formule $(u,v)' = \sum_{k=0}^n C_n^k U^{n-k} V^k$ pour montrer que $l(x)^n = \frac{(-1)^n}{(x+1)^{n+1}} n!$

- 5) Etudier et représenter la fonction Arcsinx
- 6) Donner le développement limité de la fonction ln(x + 1) au voisinage de 0
- 7) En utilisant le développement limité au voisinage de 0, déduire $\lim_{x\to 0} \frac{\ln{(x+1)}}{x}$

EXERCICE 2

1) Soient IR² et IR³ deux espaces vectoriels munis de leurs bases canoniques. On définit f de IR² vers IR³ par f(x,y) = (x + y, x, 2x - 3y)

Montrer que f est une application linéaire

2) Soit E un plan vectoriel et φ un endomorphisme de E dont la matrice dans la base $(\vec{\imath}, \vec{\jmath})$ est

$$M = \begin{pmatrix} -5 & -3 \\ 10 & 6 \end{pmatrix}$$

- a) Déterminer le noyau E₁et l'image E₂ de φ
- b) Démontrer que E₁ et E₂ sont supplémentaires
- 3) On donne les Matrices

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -2 & -1 & 2 \end{pmatrix} B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ 1 & 2 & 1 \end{pmatrix} C = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 4 & 0 \\ 3 & 5 & -2 \end{pmatrix}$$

Calculer AB, 3B, B+C