Differentiation

Paolo Bettelini

\sim			
\mathbf{C}	nnt	Δr	1t c
•	<i>,</i> , , , ,		

1	Definition	:
2	Rules for differentiation	:

1 Definition

$$\lim_{h \to 0^+} f(x) = \frac{f(x+h) - f(x)}{h}$$

2 Rules for differentiation

$$\frac{d}{dx}(n) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}, \quad n \in \mathbb{R}^*$$

$$\frac{d}{dx}(n \cdot f(x)) = n\frac{d}{dx}(f(x))$$

$$\frac{d}{dx}(f+g) = f' + g'$$

$$\frac{d}{dx}(f \cdot g) = g'f + gf'$$

$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$

$$\frac{d}{dx}(f^g) = f^g\left(\frac{f'g}{f} + g'\ln f\right)$$