УДК 512.625

Явная классификация формальных групп над локальными полями¹

©2003 г. М. В. Бондарко², С. В. Востоков³

Поступило в ноябре 2002 г.

Дается явная классификация с точностью до изогении и изоморфизма формальных групп над кольцами целых локальных полей с помощью двух новых инвариантов.

ВВЕДЕНИЕ

Целью этой работы является явная классификация формальных групп над кольцами целых локальных полей (т.е. полных дискретно нормированных полей с совершенным полем вычетов) в терминах их логарифма как с точностью до изогении, так и с точностью до изоморфизма.

Мы вводим два инварианта формальных групповых законов. Первый классифицирует формальные группы с точностью до изогений некоторого вида, этот вид явно описан в этой работе. Второй инвариант принимает конечное число значений на формальных группах фиксированной размерности над заданным полем (с конечным полем вычетов). Два инварианта вместе задают формальную группу с точностью до строгого изоморфизма. Оба инварианта хорошо ведут себя при расширении основного поля и применении к нему автоморфизмов. Это свойство является важным преимуществом нашей классификации по сравнению с классификацией Броля (см. [1]).

Для простоты во введении мы сформулируем большинство результатов для случая одномерных формальных групп над вполне разветвленными расширениями \mathbb{Q}_p . Причина в том, что в случае, когда поле вычетов содержит более чем p элементов, приходится использовать некоммутативные кольца. Все перечисленные ниже результаты будут распространены в основном тексте работы на общий случай (произвольная размерность, произвольное локальное поле). Большинство результатов также могут быть распространены на произвольные многомерные поля.

Введем обозначения, которые будут использоваться во всей работе.

Пусть K — (обобщенное) локальное поле, т.е. полное дискретно нормированное поле с совершенным полем вычетов (во введении — вполне разветвленное расширение \mathbb{Q}_p), e — его индекс ветвления, π — некоторый униформизующий элемент K, \mathfrak{D}_K — кольцо целых K, k — его поле вычетов. F будет обозначать коммутативный m-мерный формальный групповой закон над \mathfrak{D}_K , \overline{F} — редукция F по модулю π . В настоящей работе мы не рассматриваем некоммутативные и бесконечномерные формальные групповые законы.

¹Работа выполнена при финансовой поддержке Министерства образования РФ (грант PD 02-1.1-37) и Российского фонда фундаментальных исследований (проект 03-01-06032).

 $^{^2}$ Математико-механический факультет, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.

E-mail: m@vbond.usr.pu.ru

³Математико-механический факультет, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.

E-mail: sergei@vostokov.usr.pu.ru

Перейдем к формулировке основных законов в простейшей ситуации. Хорошо известно, что каждая формальная группа строго изоморфна некоторой p-типической. Поэтому будем считать, что логарифм λ формальной группы F имеет вид $\Lambda(\Delta)(x)$, где $\Lambda(\Delta) \in K[[\Delta]]$, действие на многочленах определяется по формуле $\Delta(f(x)) = f(x^p)$.

Мы рассматриваем два кольца

$$R = \mathfrak{O}_K[[\Delta]] \otimes K = \mathfrak{O}_K[[\Delta]] \otimes \mathbb{Q}_p \subset K[[\Delta]], \qquad R_0 = \mathbb{Z}_p[[\Delta]] \otimes \mathbb{Q}_p = R \cap \mathbb{Q}_p[[\Delta]].$$

Заметим, что ряд f лежит в R тогда и только тогда, когда знаменатели его коэффициентов ограничены.

Предложение **A.** A1. А может быть представлено в виде v/u, где $v \in p + R\Delta$ $u = p - \sum u_i \Delta^i$; при этом $u_i \in \mathbb{Z}_p$, первый обратимый из u_i — это u_h , где h — высота F.

А2. $u(F') = u(F)\varepsilon$ для некоторого $\varepsilon \in 1 + \Delta \mathbb{Z}_p[[\Delta]]$ тогда и только тогда, когда редукции F и F' по модулю π равны.

Это утверждение можно считать обобщением классификации Хонды формальных групп над неразветвленным полем. Оно выполнено также и в общем случае, если в качестве u рассмотреть матрицу над некоторым некоммутативным кольцом.

В одномерном вполне разветвленном случае если группа F изогенна F', то $u(F') = u(F)\varepsilon$ для некоторого $\varepsilon \in 1 + \Delta \mathbb{Z}_p[[\Delta]]$.

Рассмотрим

$$\operatorname{res}(F) = v(\Delta) \mod u(\Delta) \in K \otimes \mathbb{Z}_p[[\Delta]]/(u(\Delta)).$$

Теорема В. Для конечных групп конечной высоты c фиксированным u выполняются следующие утверждения.

- В1. F изогенна F', если и только если существуют $a \in K$ и $\varepsilon \in R_0^*$ такие, что $av \equiv \varepsilon v' \mod u$.
- В2. F изогенна F', существует изогения $f(x) \equiv ap^s x \mod \deg 2$ между ними для фиксированного $a \in K$ и некоторого $s \in \mathbb{Z}$ тогда и только тогда, когда $av \equiv \varepsilon v' \mod u$ для некоторого $\varepsilon \in R_0^*$.
- ВЗ. Для фиксированного $a \in K$ и $m \in \mathbb{Z}$ мы имеем $av \equiv \varepsilon v' \Delta^m \mod u$ для некоторого $\varepsilon \in 1 + \Delta \mathbb{Z}_p[[\Delta]]$, если и только если для некоторого $s \in \mathbb{Z}$ существует изогения $f = \sum a_i x^i \equiv ap^s x \mod \deg 2$ из F в F' такая, что высота f равна sh + m и $a_{p^{sh+m}} \equiv u^s_h \mod \pi$.
- В4. r = r', если и только если существует изогения $f = \sum a_i x^i \equiv p^s x \mod \deg 2$ из F в F' для некоторого $s \in \mathbb{Z}$ такая, что $f(x) \equiv [p^s]_F(x) \mod \pi \mathfrak{O}_K[[x]]$.
- В5. Формальная группа F конечной высоты изогенна некоторой группе, определенной над полем $K' \subset K$, тогда и только тогда, когда $v \equiv av' \mod u$ для некоторых $a \in K^*$ и v' над K'.

Замечание С. С1. Таким образом, инвариант I(F) = (u(F), res(F)) классифицирует формальные группы с точностью до изогении, описанной в утверждении В4 ("строгой" изогении).

- С2. Мы можем заменить инвариант I(F) на некоторый элемент V(F) фактора $K\{\{\Delta\}\}\}$ mod R (т.е. по модулю положительных степеней). Определим V(F) как вычет по модулю R дроби v/u, рассматриваемой в двумерном поле $K\{\{\Delta\}\}$.
- С3. Все утверждения теоремы могут быть сформулированы также для формальных групп бесконечной высоты и морфизмов между ними.

C4. Утверждения В1 и В2 являются аналогами классификационных результатов Фонтена. Наш инвариант содержит больше информации, чем инвариант Фонтена. См. также замечание 4.5.2.

Определим

$$D_F = \{ f \in K[[\Delta]] : \exp_F(f(\Delta)(x)) \in \mathfrak{O}_K[[x]] \}.$$

Будем называть этот модуль инвариантным (p-типическим) модулем Картье—Дьедонне группы F. С помощью методов, описанных в этой работе, классификационные результаты Картье над локальными полями могут быть полностью передоказаны.

Предложение D. D1. F строго изоморфна F', если и только если $D_F = D_{F'}$.

- D2. Существует гомоморфизм $f(x)\equiv ax \mod \deg 2$ из F в F', если и только если $aD_F\subset D_{F'}.$
- $\mathrm{D3.}\ D_F$ свободный $\mathbb{Z}_p[[\Delta]]$ -модуль; для каждого базиса w_i кольца \mathfrak{O}_K над \mathbb{Z}_p элементы $\lambda_i(\Delta)\colon \lambda_i(\Delta)(x)=\lambda(w_ix)$ образуют его $\mathbb{Z}_p[[\Delta]]$ -базис.
- D4. Модуль $D \subset K[[\Delta]]$ равен D_F для некоторого закона F, если и только если он $\mathbb{Z}_p[[\Delta]]$ -свободен размерности e, $D \bmod \Delta = \mathfrak{O}_K$, $p\mathfrak{O}_K \subset \Delta$, $\langle \pi \rangle D \subset D$ стабилен, где $\langle \pi \rangle (f(\Delta))(x) = f(\Delta(y))$ для $y = \pi x$.
- D5. Для $f \in K[[\Delta]]$ ряд $f(\Delta)(x)$ является логарифмом формальной группы, строго изоморфной F, тогда и только тогда, когда $f \equiv 1 \mod \Delta$ и $f \in D_F$.

Утверждение D4 является аналогом классификационного результата Картье. Остальные утверждения являются совершенно новыми.

Поведение модуля D при расширении K, а также модули, соответствующие группам, определенным над некоторым $K' \subset K$, могут быть явно описаны.

Определим

$$M(F) = D_F \mathbb{Z}_p \{ \{ \Delta \} \} \subset K \{ \{ \Delta \} \}.$$

- **Теорема Е.** Е1. Пусть F и F' удовлетворяют условиям В2. Тогда существует изогения вида $ap^sx+\ldots$ из F в F', если и только если $ap^sM_F\subset M_{F'}$. В частности, M(F), u(F) и $\operatorname{res}(F)$ с точностью до множителей из \mathbb{Q}_p^* и R_0^* определяют F с точностью до строгого изоморфизма.
- Е2. Для групп бесконечной высоты (в общем случае групп аддитивной редукции) мы имеем $D_F = M_F \cap R$.
 - Е3. Обозначим через F_{π} формальную группу

$$F_{\pi}(X,Y) = \frac{F(\pi X, \pi Y)}{\pi}.$$

Eсли F — формальная группа конечной высоты, то $M_F = \pi M_{F_{\pi}}$.

 ${\rm E}4$. Для фиксированного K и фиксированной размерности группы количество различных πM_{F_π} конечно.

Замечание **F.** F1. Используя эти утверждения, можно легко получить алгоритм классификации всех формальных групп над фиксированным полем K. См. последний раздел.

 $F2.\ M$ -инвариант отвечает на вопрос, когда две (строго) изогенные формальные группы изоморфны.

Таким образом, модульный инвариант M решает проблему дополнения дробной части (а также функтора Фонтена) до полного описания группы F (это эквивалентно предъявлению D_F).

- F3. Используя E1, легко можно оценить сверху наименьшее возможное s в теореме B.
- F4. С помощью инвариантных модулей Картье—Дьедонне можно легко посчитать "обычный" модуль Картье—Дьедонне для ядра изогении (см. [5]). Поэтому можно зафиксировать класс (строгой) изоморфности формальной группы, зафиксировав V-инвариант и групповую схему, соответствующую некоторому (явным образом ограниченному сверху) уровню кручения формальной группы. Это утверждение может быть использовано для доказательства результатов о хорошей редукции абелевых многообразий.

В одномерном случае можно явным образом описать классы изогенности формальных групп. Следующее утверждение не будет доказано в этой работе.

Теорема G. G1. Каждая одномерная формальная группа изогенна группе, имеющей логарифм $(v(\Delta)/u(\Delta))(x),\$ где $v=p+\sum_{i=1}^{h-1}v_i\Delta^i\ u\ v_K(v_i)\geq e(1-\frac{i}{h}).$

 $G2.\$ Каждый ряд $(v(\Delta)/u(\Delta))(x),\$ где v такое, как в $G1,\$ является логарифмом формальной группы над \mathfrak{O}_K (назовем ее "хорошей" группой).

Замечание Н. Н1. Можно также показать, что если v' mod u имеет вид, описанный в теореме, то группа F' строго изоморфна F. Более того, все гомоморфизмы между "хорошими" формальными группами могут быть описаны в терминах V(F). Многоугольник Ньютона "хорошей" группы и "вычеты" элементов кручения $F(\mathfrak{O}_K^{\mathrm{alg}})$ могут быть легко посчитаны. С помощью них нетрудно также сосчитать многоугольники Ньютона и некоторые инварианты модуля Тэйта T(F) для всех групп, изогенных данной "хорошей" группе. К сожалению, трудно хорошо описать, какие из этих групп определены над \mathfrak{O}_K .

H2. Теорема G обобщает классический результат Лаффоля для алгебраически замкнутого поля вычетов.

Вероятно, эти результаты могут быть распространены на многомерные группы. Аналог G1 пока не вполне ясен.

В начале разд. 1 мы напоминаем понятие p-типической формальной группы. Для простоты в основном мы рассматриваем формальные группы этого типа, хотя наши методы работают и для произвольных формальных групп. Далее мы напоминаем классификацию Хонды формальных групп над кольцами целых неразветвленных полей. Обобщение результатов Хонды на более широкий класс колец (полученное Хазевинкелем) также будет применено в этой работе. Мы также вводим канонические представители в классах изоморфности формальных групп. Этот результат является новым. В конце раздела мы доказываем общий случай утверждения A1.

В разд. 2 мы описываем процедуру расширения скаляров для формальных групп над полными дискретно нормированными полями.

Целью разд. 3 является применение результатов Хонды (о классификации в неразветвленном случае) к классификации формальных групп над произвольными локальными полями. Основная идея состоит в замене с помощью ограничения скаляров m-мерной группы над \mathfrak{O}_K на me-мерную группу над неразветвленным кольцом \mathfrak{O} .

В разд. 4 мы определяем инвариант дробной части. Далее мы формулируем и доказываем обобщение первых четырех утверждений теоремы В и утверждения А2.

В разд. 5 мы определяем инвариантные модули Картье—Дьедонне для формальных групп. Отличие от определения Картье состоит в том, что мы рассматриваем логарифмы p-типических кривых. Это дает каноническое вложение нашего модуля в $K[[\Delta]]^m$. Чтобы продемонстрировать плодотворность такого определения, мы доказываем утверждение В5. В конце раздела мы распространяем определения и результаты раздела на не-p-типические группы.

В разд. 6 мы определяем модульный инвариант M_F . Далее мы доказываем, что вместе с V-инвариантом он классифицирует формальные группы с точностью до изоморфизма. Мы

доказываем базовые свойства M_F . В конце раздела мы используем наши методы для классификации формальных групп сначала для e < p, потом для одномерных групп высоты > 1 при $e \le p^2/2$.

Обозначения. Во всей работе $M_m(\mathfrak{A})$ будет обозначать кольцо матриц размера $m \times m$ над (возможно, некоммутативным) кольцом \mathfrak{A} , I_m обозначает единичную матрицу размера m; $e_i — m$ -вектор $(0,0,\ldots,1,0,\ldots,0)$ (1 находится на i-м месте).

 v_K — нормализованное нормирование на $K, e = v_K(p)$ — абсолютный индекс ветвления K, \mathfrak{M} — максимальный идеал K.

m — размерность формальной группы $F, X = (X_i) = X_1, \dots, X_m, x$ — формальные переменные.

Мы также будем использовать обозначения, приведенные в начале работы.

1. КЛАССИФИКАЦИЯ НАД НЕРАЗВЕТВЛЕННЫМИ КОЛЬЦАМИ И ДРУГИЕ ВОПРОСЫ

1.1. *p*-Типические группы. Так как в этой работе мы будем рассматривать только коммутативные формальные группы над кольцами нулевой характеристики, наши формальные группы будут иметь логарифмы. Следующее утверждение хорошо известно (см. [3, Theorem 16.4.14]).

Предложение 1.1.1. Пусть $\mathfrak A$ — коммутативная $\mathbb Z_p$ -алгебра. Тогда формальная группа с логарифмом $\lambda=(\lambda_i),\ 1\leq i\leq m,\$ где $\lambda_i=\sum a^i_{i_1...i_m}X^{i_1}_1\ldots X^{i_m}_m,\$ строго изоморфна формальной группе с логарифмом, равным $(\lambda'_i).\$ Здесь $\lambda'_i=\sum a'^i_{i_1...i_m}X^{i_1}_1\ldots X^{i_m}_m,\$ где $a'^i_{i_1...i_m}=a^i_{i_1...i_m},\$ если и только если $i_s=0$ для всех s, кроме одного, оставшийся $i_s\neq 0$ — степень p, для всех других мультииндексов коэффициенты $a'^i_{i_1...i_m}$ равны 0.

Таким образом, мы можем считать, что логарифм λ формальной группы F имеет вид $\Lambda(\Delta)(X)$, где $\Lambda(\Delta) = (\Lambda_i)$ лежит в матричном кольце $M_m(K[[\Delta]])$, при этом $\Delta(aX_i^b) = aX_i^{pb}$ для каждого $i, 1 \le i \le m$.

1.2. Классификация над σ -кольцами. Результаты Хонды. В книге [3] результаты Хонды по классификации формальных групп над кольцами целых неразветвленных локальных полей были обобщены на более широкий класс колец. Сформулируем этот результат.

Рассмотрим \mathbb{Z}_p -алгебру без кручения \mathfrak{A} с оператором σ , удовлетворяющим $\sigma(x)-x^p\in p\mathfrak{A}$ для каждого $x\in\mathfrak{A}$.

Для каждой такой пары \mathfrak{A} , σ мы рассматриваем (некоммутативное) кольцо $\mathfrak{A}[[\Delta]]'$, которое совпадает с $\mathfrak{A}[[\Delta]]$ как левый \mathfrak{A} -модуль и удовлетворяет соотношению $\Delta a = \sigma(a)\Delta$ для каждого $a \in \mathfrak{A}$.

Мы будем часто отождествлять $\mathfrak{A}[[\Delta]]'$ и $\mathfrak{A}[[\Delta]]$ как множества.

- **Теорема 1.2.1.** 1. $\Lambda(\Delta)(X)$, $\Lambda(\Delta) \in (\mathbb{Q}_p\mathfrak{A})[[\Delta]]$, является логарифмом формальной группы над \mathfrak{A} тогда и только тогда, когда $\Lambda = pU^{-1}$ для некоторой матрицы $U \in M_m(\mathfrak{A}[[\Delta]]')$, $U \equiv pI_m \mod (\Delta)$.
- 2. Λ и Λ' дают строго изоморфные формальные группы, если и только если $U' = \mathfrak{E}U$ для некоторой матрицы $\mathfrak{E} \in M_m(\mathfrak{A}[[\Delta]]')$, $\mathfrak{E} \equiv I_m \mod (\Delta)$.
- 3. Более того, существует гомоморфизм f из группы F размерности m в F' размерности m', $f \equiv AX \mod \deg 2$, A— некоторая $m' \times m$ -матрица над $\mathfrak A$, тогда и только тогда, когда существует $C \in M_{m' \times m}(\mathfrak A[[\Delta]]')$ такая, что CU = U'A.
- 4. Пусть $\Lambda \equiv \Lambda' \mod p$. Тогда $\Lambda'(X)$ является логарифмом формальной группы F' над \mathfrak{A} , если и только если $\Lambda(X)$ является таковым. В этом случае F' строго изоморфна F.

Так же как и Хонда, мы будем называть матрицы, удовлетворяющие требованиям на U в теореме, cnequaльными элементами $M_m(\mathfrak{A}[[\Delta]]')$.

Этот результат легко распространить на формальные модули. Подробнее см. в [3].

1.3. Канонические представители. Предыдущая теорема дает классификацию формальных групп над $\mathfrak A$ в терминах классов эквивалентности некоторых матриц U. В одномерном случае в каждом классе можно выбрать многочлен минимальной степени и получить канонический представитель. Этот метод нельзя распространить на многомерный случай. Тем не менее канонические представители могут быть выбраны, хотя и совершенно другим способом.

Зафиксируем систему представителей $\theta: \mathfrak{A}/p\mathfrak{A} \to \mathfrak{A}$.

Предложение 1.3.1. Каждый класс эквивалентности "специальных" матриц содержит единственный представитель U вида $U = pI_m + r\Delta$, где коэффициенты r лежат в $\theta(\mathfrak{A}/p\mathfrak{A})$.

Доказательство. 1. Мы построим нужный U последовательно по степеням Δ . Пусть U_s — специальная матрица, лежащая в данном классе эквивалентности, $U_s = pI_m + r_s\Delta$, где коэффициенты r_s при степенях Δ , меньших s-1 (здесь $s \geq 1$), лежат в $\theta(\mathfrak{A}/p\mathfrak{A})$. Пусть $U_s = \sum V_l \Delta^l$, возьмем

$$U_{s+1} = \left(I_m + \left(\frac{\theta(V_s) - V_s}{p}\right)\Delta^s\right)U_s;$$

здесь θ применяется к матрице V_s покоэффициентно. Очевидно, коэффициенты $U_{s+1} - pI_m\Delta$ при степенях Δ , меньших s+1, принадлежат $\theta(\mathfrak{A}/p\mathfrak{A})$. Предел U_s будет искомой U, он будет лежать в одном классе эквивалентности со всеми U_s .

2. Пусть U и U' эквивалентны, различны и удовлетворяют условиям предложения. Пусть s — наименьшее число такое, что $U' \not\equiv U \mod \Delta^{s+1}$. Тогда $U' = \mathfrak{E}U$, $\mathfrak{E} \equiv I_m \mod \Delta^s$. Так как $U' - U = (\mathfrak{E} - I_m)U$, мы имеем $U \equiv U' \mod (\Delta^{s+1}, p)$. Так как коэффициенты U и U' являются представителями, то $U' \equiv U \mod \Delta^{s+1}$. Полученное противоречие доказывает утверждение. \square

Естественный выбор для θ — система представителей Тейхмюллера. Этот выбор очень удобен для изучения редукции формальных групповых законов.

1.4. Общий вид предложения A1. Пусть N — подполе инерции (обобщенного) локального поля K, пусть $\mathfrak{O} = \mathfrak{O}_N$ — его кольцо целых. На кольце \mathfrak{O} определено естественное отображение Фробениуса σ . Мы имеем e = [K:N].

Обозначим через W кольцо $\mathfrak{O}[[\Delta]]'$, определенное, как в п. 1.2, пусть W' равно $N[[\Delta]]'$.

Эти обозначения будут использоваться во всей работе, кроме следующего раздела (где возможно произвольное полное дискретно нормированное поле N).

Кольцо $K[[\Delta]]$ имеет естественную структуру правого W-модуля. Заметим, что для ее определения нет необходимости распространять σ на K.

Мы рассматриваем кольцо $\mathfrak{A}=\mathfrak{O}[[t]]$ с $\sigma(t)=t^p$ и кольцо $\mathfrak{A}[[\Delta]]'$. Очевидно, \mathfrak{A} удовлетворяет условиям теоремы 1.2.1.

Предложение 1.4.1. Пусть $\Lambda \in M_m(K[[\Delta]])$ соответствует формальной группе F $(m.e.\ \Lambda(\Delta)(X)$ является логарифмом p-типической группы F). Тогда Λ можно представить в виде vu^{-1} , где $vp^l\pi^{-p^l}\in M_m(\mathfrak{O}_K[[\Delta]]),\ l=[\log_p(e/(p-1))],\ u$ — специальный элемент $M_m(W)$.

Доказательство. Зафиксируем эпиморфизм $g: \mathfrak{A} \to \mathfrak{O}_K$, считаем $g(t) = \pi$. Из существования универсального p-типического формального группового закона и его свойств (свободности соответствующей алгебры) следует, что существует p-типический формальный групповой

закон G над A такой, что $g_*(G)$ (т.е. групповой закон, полученный из G путем применения g к коэффициентам) равен F.

По теореме 1.2.1 существует специальная матрица U над $\mathfrak{A}[[\Delta]]'$ такая, что логарифм G равен $pU^{-1}(X)$.

Представим U в виде u-w, где $u \in M_m(W)$, $u \equiv pI_m \mod \Delta$, $w \in tM_m(\mathfrak{A}[[\Delta]]')\Delta$. Мы имеем

$$U^{-1} = (u - w)^{-1} = (I_m - u^{-1}w)^{-1}u^{-1} = \left(\sum_i (u^{-1}w)^i\right)u^{-1}.$$

Легко видеть, что $u^{-1} = \sum_{i=0}^{\infty} p^{-i-1} \Delta^i u_i$ для некоторых $u_i \in M_m(\mathfrak{O})$. Например, это следует из того, что набор $pu^{-1}(X)$ — логарифм формальной группы над \mathfrak{O}_N , поэтому его производные целые. Применяя равенство $\Delta t = t^p \Delta$, получаем, что матрица $u^{-1}w$ может быть представлена в виде $\sum_{i=0}^{\infty} p^{-i-1} t^{p^i} u_{1i} \Delta^{i+1}$ для некоторых $u_{1i} \in M_m(\mathfrak{A}[[\Delta]]')$. Легко также доказать по индукции, что матрицы $(u^{-1}w)^j$ могут быть представлены в виде

$$\sum_{i=0}^{\infty} p^{-i-j} t^{p^i + \dots + p^{i+j-1}} u_{ji} \Delta^{i+j}$$

для некоторых $u_{ji} \in M_m(\mathfrak{A}[[\Delta]]')$. Получаем, что

$$U^{-1} = \sum_{i=0} p^{-i-1} t^{p^i} w_i u^{-1} \tag{1}$$

для некоторых $w_i \in M_m(\mathfrak{A}[[\Delta]]')$ (так как p^i — наименьшая степень t при p^{-i-1}).

Проверим, что $p^{-l}\pi^{p^l} \mid p^{-i}\pi^{p^i}$ для каждого i. Действительно, нормирование v_i элемента $\pi^{p^i}p^{-i}$ равно p^i-ei . Разность v_i-v_{i+1} равна $(p-1)p^i-e$, следовательно, v_l минимальный из v_i . Получаем, что $v_i \geq p^l-el$.

Так как v получается подстановкой π в качестве t в (1), получаем требуемое. \square

Замечание 1.4.2. Заметим, что построенная выше матрица u может быть однозначно восстановлена по редукции закона F. См. более сильные результаты в этом направлении в разд. 4.

2. ОГРАНИЧЕНИЕ СКАЛЯРОВ И ДРУГИЕ ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

2.1. Ограничение скаляров. Чтобы применить результаты предыдущего раздела к разветвленным локальным полям, мы будем заменять m-мерную группу над \mathfrak{O}_K на me-мерную группу над \mathfrak{O} . Для этого нам понадобятся свойства вейлевского ограничения скаляров. Часть из них являются общими и хорошо известными, поэтому мы не будем их доказывать. Другие свойственны только формальным группам. Мы сформулируем результаты для произвольных расширений полных дискретно нормированных полей. Это позволит применять их в будущем как к формальным модулям, так и к формальным группам над многомерными полями.

Пусть K/N — расширение полных дискретно нормированных полей степени s, пусть $\mathfrak O$ — кольцо целых N. Как и во всей работе, характеристика K равна 0. Во всех последующих разделах N будет подполем инерции в K.

Рассмотрим категории C_N и C'_N формальных групп над \mathfrak{O}, C_K и C'_K — над \mathfrak{O}_K . Объекты C_N и C'_N — коммутативные конечномерные формальные групповые законы, морфизмы C_N — это гомоморфизмы формальных групп над $\mathfrak{O},$ морфизмы C'_N — гомоморфизмы над N. Категории C_K и C'_K определяются аналогично. Мы имеем $C_N \subset C'_N$ и $C_K \subset C'_K$.

4 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2003, т. 241

Зафиксируем базис $w = (w_1, \dots, w_s)$ кольца \mathfrak{O}_K над \mathfrak{O} .

Рассмотрим $S = S_w \colon N^s \to K$, переводящий (n_i) в $\sum n_i w_i$, и распространим его на различные кольца рядов над \mathfrak{O}_K и N.

Мы хотим построить функтор ϕ из C_K' в C_N' , переводящий C_K в C_N .

Пусть мы имеем m-мерный формальный групповой закон $F=(F_l)$ над \mathfrak{O}_K , т.е. набор из m рядов от $X_1,\ldots,X_m,Y_1,\ldots,Y_m$. Введем переменные X_l^r,Y_l^r для $1\leq l\leq m$ и $1\leq r\leq s$. Будем считать, что новые переменные "принимают значения в N" и удовлетворяют соотношениям $X_l=S((X_l^r)),\,Y_l=S((Y_l^r)).$ Тогда из стандартных свойств вейлевского ограничения скаляров следует, что существует единственный набор (F_l^r) из ms рядов от $X_l^r,Y_l^r,\,1\leq l\leq m,\,1\leq r\leq s,$ над \mathfrak{O}_r , удовлетворяющий

$$F_i(S((X_l^r)), S((Y_l^r))) = S_i((F_i^j(X_l^r, Y_l^r)))$$
(2)

для всех $i, 1 \leq i \leq m$. При этом $F_w = (F_l^r)$ — формальный групповой закон. Применяя аналогичный процесс к гомоморфизмам формальных групповых законов, мы получаем нужный функтор.

Замечание 2.1.1. 1. Логарифм формальной группы является ее строгим изоморфизмом с G_a^m (m-й степенью аддитивного группового закона), следовательно, $\phi(\lambda)$ является логарифмом F.

- 2. Матрица A размера $n \times m$ является гомоморфизмом из G_a^m в G_a^n . Таким образом, ей соответствует единственная матрица A' размера $ns \times ms$ над N, это соответствие функториально и согласовано с ϕ . A' будет целой, если и только если таковой является A (см. рассуждения в следующем предложении). Мы будем обозначать A' через $\phi(A)$.
- 3. Если C матрица замены базиса из (w) в (w'), т.е. C(w)=(w'), то $\phi'(F)(X_l^r,Y_l^r)=C^{\otimes m}\phi(F)((C^{\otimes m})^{-1}X_l^r,(C^{\otimes m})^{-1}Y_l^r)$ и $\phi'(f)(X_l^r)=C^{\otimes n}\phi(f)((C^{\otimes m})^{-1}X_l^r)$ для любой формальной группы F, f гомоморфизм из F в формальную группу размерности n.

Сформулируем основные свойства нашего функтора.

Предложение 2.1.2. 1. Пусть $f \in C_K'(F_1, F_2)$. Тогда $\phi(f) \in C_N(\phi(F_1), \phi(F_2))$, если и только если $f \in C_K(F_1, F_2)$.

- 2. Существует гомоморфизм f из F_1 размерности m_1 в F_2 размерности m_2 , $f \equiv AX \mod \deg 2$, A является $m_2 \times m_1$ -матрицей над \mathfrak{O}_K , тогда и только тогда, когда существует гомоморфизм $f' \in C_N(\phi(F_1), \phi(F_2))$, $f' \equiv A'X \mod \deg 2$.
 - 3. F_1 и F_2 строго изоморфны, если и только если $\phi(F_1)$ строго изоморфна $\phi(F_2)$.

Доказательство. 1. Предположим, что коэффициент $a^l((a_i))$ ряда f_l при $\prod X_i^{a_i}$ не является целым. Выберем j такое, что $w_j \in \mathfrak{O}_K^*$. Обозначим коэффициенты $\phi(f)$ через b. Согласно (2)

$$S((b_v^l((b_i^r)))) = w_j^{\sum_i a_i} a^l((a_i)),$$

где $b_i^r=0$ при $r \neq j$ и $b_j^j=a_j$. Таким образом, хотя бы один из $b_v^l((b_i^r))$ не является целым.

2. Если $f \equiv AX \mod \deg 2$, то $\phi(f) \equiv A'X \mod \deg 2$ согласно определению ϕ .

Обратное следствие. Хорошо известно, что существуют единственные $g \in C'_K(F_1, F_2)$, $g' \in C'_N(\phi(F_1), \phi(F_2))$, удовлетворяющие $g \equiv AX \mod \deg 2$, $g' \equiv A'X \mod \deg 2$. Таким образом, утверждение 2 следует из утверждения 1.

3. Это частный случай утверждения 2 с A, равной I_m . \square

2.2. Дробные части. Рассмотрим кольцо $R_X = \mathfrak{O}_K[[X_i]]\mathbb{Q}_p$, т.е. кольцо рядов с ограниченными знаменателями. Через DR_X обозначаем K-модуль рядов, частные производные которых лежат в R_X .

Определение 2.2.1. Обозначим вычет элемента $f \in K[[X_i]]$ по модулю R_X через $\{f\}$. Мы будем называть его дробной частью f.

Таким образом, $\{f\} = \{g\}$, если и только если $f - g \in R_X$.

Лемма 2.2.2. Пусть $f, g \in DR_X$, а $h_1, h_2 \in \mathfrak{O}_K[[X_i]]_0^m$ (т.е. свободные члены нулевые).

- 1. $Ec_{A}u\{f\} = \{g\} \ u \ h_1 \equiv h_2 \ \text{mod} \ (\pi), \ mo \ \{f(h_1)\} = \{g(h_2)\}.$
- 2. Пусть λ логарифм формальной группы конечной высоты. Если $\{\lambda(h_1)\} = \{\lambda(h_2)\}$, то $h_1 \equiv h_2 \mod (\pi)$.
 - 3. Введем естественным образом действие NW на K[[X]], m.е.

$$X^{p^sI}c\Delta^i = \sigma^s(c)X^{p^{s+i}I},$$

где I — мультииндекс, не кратный p. Тогда $\{fr\} = \{f\}r$ для каждого $r \in NW, f \in K[[X]]$.

Доказательство. 1. Равенство $\{f(h_1)\}=\{g(h_1)\}$ очевидно. Пусть теперь набор $h_2=(h_{2i})$ равен $(h_{1i})+\pi(r_i),\ r_i\in\mathfrak{O}_K[[X_i]]^m$.

Рассмотрим разложение

$$g(h_2) = g(h_1) + \sum_{(a_i)} g_{(a_i)} C_{(a_i)} \pi^{\sum_i a_i} r_1^{a_1} \dots r_m^{a_m},$$

где (a_i) — мультииндексы, $g_{(a_i)}$ — коэффициенты $g, C_{(a_i)}$ — полиномиальные коэффициенты. Легко доказать, что существует константа c (зависящая от индекса ветвления K) такая, что

$$\pi^{c}C_{(a_{i})}\pi^{\sum_{i}a_{i}}/\gcd(a_{i}) \in \mathfrak{O}_{K}.$$
(3)

Так как $g \in DR_X$, последовательность $g_{(a_i)} \gcd(a_i)$ имеет ограниченные знаменатели. Применяя (3), получаем $\{g(h_1)\} = \{g(h_2)\}$.

2. Мы имеем $\lambda(h_1) - \lambda(h_2) = \lambda(h_1 - h_2)$. Таким образом, достаточно доказать, что $\lambda(h) \in R_X^m \Rightarrow \pi \mid h$.

Пусть $\overline{h} = h \mod \pi \in k[[X_i]]^m \neq 0$. Так как группа F имеет конечную высоту, то для каждого s > 0 мы имеем $[p^s]_{\overline{F}}(\overline{h}) \neq 0$ (это следует из соображений размерности). С другой стороны, для некоторого s > 0 мы имеем $p \mid p^s \lambda(h)$. Получаем противоречие, так как λ является биекцией $p\mathfrak{O}_K[[X]]^m$ в себя.

3. Это очевидно, так как $R_X \cdot r \subset R_X$ для каждого $r \in NW$. \square

Введем нормирование v_X на R_X как минимум нормирования коэффициентов.

Замечание 2.2.3. Легко видеть из (3), что $v_X(g(h_1)-g(h_2)) \ge \min v_X(\frac{dg}{dX_i})-c$. Пользуясь этим, легко проверить, что отображение дробной части коммутирует с бесконечными суммами во всех наших рассуждениях.

3. ЛОГАРИФМИЧЕСКАЯ МАТРИЦА

Целью этого раздела является применение неразветвленной классификации Хонды к классификации формальных групп над произвольным локальным полем. Мы применяем функтор ϕ и рассматриваем матрицу, соответствующую логарифму $\phi(F)$.

3.1. Построение матрицы. Мы определяем оператор $\langle \alpha \rangle$ на $K[[\Delta]]$: $\langle \alpha \rangle (\sum c_i \Delta^i) = \sum c_i \alpha^{p^i} \Delta^i$.

Таким образом, для каждого $h \in K[[\Delta]]$ мы имеем

$$\langle \alpha \rangle(h)(x) = h(y);$$

здесь мы подставляем ax вместо y.

Начиная с этого места мы считаем, что N — подполе инерции в K, w — \mathfrak{O} -базис кольца \mathfrak{O}_K . Иногда нам потребуются дополнительные ограничения на w.

Определение 3.1.1. Для каждого m-набора $f=(f_i)$ p-типических рядов от X_i над K определим матрицу $T_w(f)$, состоящую из (t_j^i) , коэффициенты t_j^i равны $t_{jk}^{il} \in W'$, с помощью равенства

$$f(w_i x e_j)_k = \left(\sum_l w_l t_{jk}^{il}\right) (x e_j).$$

Таким образом, $S_l(t_{jk}^{il}) = \langle w_i \rangle \Lambda_j$.

Следующее утверждение очевидно.

Лемма 3.1.2. Пусть A — матрица размера $n \times m$ над K, пусть $A' = \phi(A)$ — $en \times em$ -матрица, определенная в замечании 2.1.1. Тогда T(Af) = A'T(F).

Если $\Lambda(X)$ — логарифм формальной группы F, мы будем называть $T_w(\Lambda)$ логарифмической матрицей F.

3.2. Основные свойства логарифмической матрицы. Исследуем связь $\phi(F)$ с формальной группой, полученной из $T(\Lambda)$.

Предложение 3.2.1. 1. Пусть $\Lambda \in M_m(K[[\Delta]])$. Тогда $\lambda = \Lambda(X)$ является логарифмом формальной группы F над \mathfrak{O}_K , если и только если $\lambda_e = T(\Lambda)((X_j^i))$ — логарифм формальной группы над \mathfrak{O} .

2. Если выполнены условия утверждения $1, \ mo\ T(\Lambda)((X^i_j))$ — логарифм формальной группы, строго изоморфной $\phi(F)$.

Доказательство. Очевидно, что $T(\Lambda)((X_j^i))$ является p-типической частью $\phi(\lambda)$. Поэтому из предложения 1.1.1 следуют все утверждения, кроме того, что λ является логарифмом формальной группы над \mathfrak{O}_K , если λ_e — логарифм формальной группы над \mathfrak{O} .

Предположим, что $\lambda \equiv \lambda' \mod \deg p^s$, где λ' — логарифм некоторой p-типической формальной группы над \mathfrak{O}_K . Заметим, что сравнение всегда выполнено для s=1. Тогда λ'_e (т.е. p-типическая часть $\phi(\lambda)$) — логарифм формальной группы над \mathfrak{O} , кроме того, $\lambda'_e \equiv \lambda_e \mod \deg p^s$. Используя вид универсального p-типического группового закона (см. [3]), мы получаем, что $\lambda'_e \equiv \lambda_e \mod (\deg p^{s+1}, 1/p)$. То же рассуждение, что и в доказательстве предложения 2.1.2, показывает, что $\lambda \equiv \lambda' \mod (\deg p^{s+1}, 1/p)$. Снова пользуясь видом универсального p-типического группового закона, получаем, что существует логарифм λ'' некоторой p-типической формальной группы над \mathfrak{O}_K такой, что $\lambda \equiv \lambda'' \mod \deg p^{s+1}$. Следовательно, для каждого l мы имеем $\lambda \equiv \lambda_l \mod \deg p^l$, где λ_l является некоторым "целым" логарифмом. Таким образом, λ дает целую формальную группу (так как полученный групповой закон является целым по модулю любой степени). \square

Выразим условие существования гомоморфизма в терминах логарифмической матрицы.

Предложение 3.2.2. Из группы F в группу F' размерностей m и m' соответственно существует гомоморфизм $f,\ f\equiv AX \mod \deg 2,\ A$ — некоторая $m'\times m$ -матрица над \mathfrak{O}_K , тогда и только тогда, когда существует матрица $C\in M_{m'e\times me}(W)$ такая, что $\phi(A)T(F)=T(F')C$.

Доказательство. Согласно предложению 2.1.2 нам нужно выяснить, когда существует гомоморфизм g из $\phi(F)$ в $\phi(F')$ такой, что $g \equiv \phi(A)X$ mod deg 2. Кроме того, мы можем заменить $\phi(F)$ и $\phi(F')$ на группы F_1 и F_1' , логарифмы которых равны $T(F)(X_i^j)$ и $T(F')(X_i^j)$.

Мы проверяем условия теоремы 1.2.1. Соответствующие F_1 и F_1' специальные матрицы равны $T(F)^{-1}$ и $T(F')^{-1}$. Умножая равенство $CT(F)^{-1} = T(F')^{-1}\phi(A)$ на T(F) справа и T(F') слева, получаем требуемое утверждение. \square

- **3.3.** Главная матричная лемма. Сформулируем лемму, которая позволит нам проверять условия теоремы 1.2.1. Мы будем применять ее (позднее) к разным кольцам \Re .
- **Лемма 3.3.1.** І. Пусть $\mathfrak{R}, \mathfrak{L}$ кольца (не обязательно коммутативные), $\mathfrak{R} \subset \mathfrak{L}, p$ простое число, пусть $T_1 \in \mathrm{Gl}_{m'}(\mathfrak{L}), T_2 \in M_{m' \times m}(\mathfrak{L}).$
 - 1. $T_1^{-1}T_2 \in M_{m' \times m}(\mathfrak{R})$, если и только если $T_2(\mathfrak{R}^m) \subset T_1(\mathfrak{R}^{m'})$.
 - $2. \ T_1^{-1}T_2 \in \mathrm{Gl}_m(\mathfrak{R})$ тогда и только тогда, когда m=m' и $T_2(\mathfrak{R}^m) \subset T_1(\mathfrak{R}^m)$.
 - II. Для матрицы $T \in \mathrm{Gl}_m(\mathfrak{L})$ мы имеем $pT^{-1} \in M_m(\mathfrak{R})$, если и только если $p\mathfrak{R}^m \subset T(\mathfrak{R}^m)$.

Доказательство. І.1. Если $T_1^{-1}T_2 \in M_{m' \times m}(\mathfrak{R})$, то $T_2(\mathfrak{R}^m) = T_1(T_1^{-1}T_2(\mathfrak{R}^{m'})) \subset T_1(\mathfrak{R}^m)$. Обратное следствие: для каждого i существует вектор $v_i \in \mathfrak{R}^{m'}$ такой, что $T_2e_i = T_1v_i$. Мы имеем $T_2 = T_2I_m = T_2(e_i)$, где (e_i) — матрица, состоящая из всех e_i . Следовательно, $T_1(v_i) = T_2$, где (v_i) — матрица, состоящая из всех v_i . Мы получаем требуемое.

- 2. Утверждение 2 следует непосредственно из утверждения 1, примененного к парам T_1, T_2 и T_2, T_1 .
 - II. Немедленно следует из I.1, если мы возьмем $T_1 = T$ и $T_2 = pI_m$. \square

Теперь применим эту лемму вместе с предложениями 3.2.1 и 3.2.2.

Предложение 3.3.2. 1. *p-Типический т-набор* $\lambda = \Lambda(X)$, $\Lambda \equiv I_m \mod \Delta$, является логарифмом формальной группы над \mathfrak{O}_K , если и только если $pR^m \subset T(\Lambda)W^{me}$.

2. Из группы F в группу F' размерностей m и m' соответственно существует гомоморфизм f, удовлетворяющий $f \equiv AX \mod \deg 2$, A — некоторая $m' \times m$ -матрица над \mathfrak{O}_K , тогда и только тогда, когда $\phi(A)T(F)(W^{me}) \subset T(F')(W^{m'e})$.

Доказательство. Так как $T(F) \equiv I_{me} \mod \Delta$ и $T(F') \equiv I_{m'e} \mod \Delta$, то матрицы T(F) и T(F') не вырождены.

- 1. Согласно предложению 3.2.1 нам нужно проверить, является ли матрица $pT(\lambda)^{-1}$ целочисленной (см. теорему 1.2.1). Применяя утверждение I.2 леммы 3.3.1 для $\mathfrak{R}=W,\,\mathfrak{L}=W',$ мы получаем требуемое утверждение.
- 2. Применяем предложение 2.1.2. Условия І.1 леммы 3.3.1, очевидно, выполнены для $\mathfrak{R}=W,\,\mathfrak{L}=W',\,T_1=T(F')$ и $T_2=\phi(A)T(F)$.

Предложение доказано.

4. ИНВАРИАНТ ДРОБНОЙ ЧАСТИ: КЛАССИФИКАЦИЯ С ТОЧНОСТЬЮ ДО СТРОГОЙ ИЗОГЕНИИ

4.1. Образ логарифмической матрицы на рациональном уровне. В этом разделе мы доказываем, что дробная часть логарифма классифицирует формальные группы с точностью до изогении некоторого сорта, который может быть явно описан.

Рассмотрим кольцо NW, которое равно $\bigcup_s p^{-s}W$. Обозначим через \overline{W} редукцию W по модулю p. Так как кольцо \overline{W} может быть естественным образом вложено в тело, то для матриц над \overline{W} есть каноническое понятие ранга.

Подсчитаем образ логарифмической матрицы, примененной к NW^{me} .

Лемма 4.1.1. Для каждой группы F мы имеем $S(T(F)(NW^{me})) = vu^{-1}(NW^m) + R^m$ (здесь u, v взяты из предложения 1.4.1).

Доказательство. Если w, w' — два базиса \mathfrak{O}_K над \mathfrak{O}, C — матрица замены базиса, то $C^{\otimes m}T_{w',F} = T_{w,F}C^{\otimes m}$, где $C^{\otimes m}$ — m-я тензорная степень C, т.е. матрица замены базиса с w^m на w'^m . Следовательно, $S(T(F)(NW^{me}))$ не зависит от выбора базиса.

Согласно предложению 3.3.2 мы имеем $R^m \subset S(T(F)(NW^{me}))$.

Возьмем $w_1=1, \pi\mid w_j$ для j>1. Тогда для j>1 мы имеем $\lambda(w_iX)\in R^m.$ Следовательно, $S(T(F)(e_i^j))\in R^m.$ Мы также имеем $S(T(F)(e_i^1))=\Lambda_i.$ Таким образом, $S(T(F)(NW^{me})) \mod R^m=vu^{-1}(NW^m).$

4.2. Главная теорема о "дробных частях". Для формальной группы F мы определяем r(F) как вычет $\Lambda \mod M_m(R)$. Мы имеем $r(F) \in M_m(R)u^{-1}/M_m(R)$, где $\Lambda = vu^{-1}$.

Инвариант r(F) можно заменить на некоторый инвариант V(F), лежащий в $M_m(K\{\{\Delta\}\} \mod R)$ (т.е. вычет по модулю положительных степеней). Определим V(F) как вычет по модулю R^m дроби vu^{-1} , рассмотренной в матричном кольце над двумерным полем $K\{\{\Delta\}\}$.

Обозначим через θ представитель Тейхмюллера k в $N,\,\theta$ применяется к матрице покоэффициентно.

- **Теорема 4.2.1.** 1. Существует гомоморфизм f из F в F', $f(X) \equiv Ap^s X$ mod deg 2 для фиксированной матрицы $A \in M_{m' \times m}(K)$ и некоторого $s \in \mathbb{Z}$, если и только если $Ar = r' \varepsilon$ для некоторой матрицы $\varepsilon \in M_{m' \times m}(NW)$. Здесь r = r(F), а r' = r(F').
- 2. Группы F и F' конечной высоты размерности m изогенны тогда и только тогда, когда существуют матрицы $A \in \mathrm{Gl}_m(K)$ и $\varepsilon \in M_m(NW)$ такие, что $Ar = r'\varepsilon$.
- 3. Пусть существует гомоморфизм f из F в F', $f \equiv AX \mod \deg 2$ для некоторой матрицы $A \in M_{m' \times m}(\mathfrak{O}_K)$. Тогда f можно представить в виде

$$f(X) = \sum_{(F'),i,j,l} (a_{ijl} X_i^{p^j} e_l)$$
(4)

для некоторых $a_{ijl} \in \mathfrak{O}_K$. Для этих a_{ijl} мы имеем равенство Ar = r'B, где $B_{il} = \sum \theta(\overline{a_{ijl}})\Delta^j$.

Доказательство. 1. Согласно лемме 4.1.1 условие на дробные части эквивалентно $AT(F)(NW^{me}) \subset T(F')(NW^{m'e})$. Поэтому предложение 3.3.2 дает утверждение 1.

- 2. Немедленно следует из утверждения 1.
- 3. Согласно определению гомоморфизма мы имеем

$$\lambda'(f(X)) = A\lambda(X). \tag{5}$$

Таким образом, нам нужно доказать, что $\{\lambda'(f(X))\} = r'B$.

Если θ — представитель Тейхмюллера, то для каждого s>0 и $1\leq i\leq m$ мы имеем $\lambda'(\theta x_i^{p^s})=\Lambda\theta\Delta^s e_i(X).$

Предположим, что гомоморфизм f(X) не может быть представлен в виде (4). Очевидно, что f(X) может быть представлен как

$$\sum_{(F'),i,J,l} (a_{iJl}X^J e_l),$$

где J пробегает все мультииндексы. Если J_0 — наименьший не-p-типический мультииндекс (т.е. $J_0 \neq e_i p^s$) такой, что $a_{iJ_0l} \neq 0$, то коэффициент $\lambda'(f(X)) = \sum_{i,J,l} f(a_{iJl} X^J e_l)$ при $X^{J_0} e_l$ не равен нулю. Получаем, что набор $A\lambda$ не-p-типичен, следовательно, λ не-p-типичен.

Следовательно, f(X) может быть представлен в виде (4). Мы имеем

$$\{\lambda'(f(X))\} = \sum_{i,l} \{\lambda'(a_{ijl}x_i^{p^j}e_l)\} = r'B$$

согласно утверждению 2 леммы 2.2.2.

Мы будем называть две формальные группы рационально изогенными, если они удовлетворяют условиям утверждения 1 теоремы 4.2.1 для $A = I_m$.

4.3. Следствия из теоремы. Теорему 4.2.1 можно использовать для явного вычисления инварианта дробной части. Опишем самые естественные следствия.

Теорема 4.3.1. 1. Группы F и F' конечной высоты удовлетворяют равенству r = r', где r = r(F) и r' = r(F'), если и только если существует гомоморфизм

$$f \equiv p^s I_m X \mod \deg 2 \tag{6}$$

из F в F' для некоторого $s \in \mathbb{Z}$, удовлетворяющий

$$f(x) \equiv [p^s]_F(X) \mod \pi \mathfrak{O}_K[[X]]^m. \tag{7}$$

Кроме того, любой гомоморфизм, удовлетворяющий (6), удовлетворяет также и (7).

- 2. Если группа F строго изоморфна F', то r=r', если и только если строгий изоморфизм между этими группами сравним с X по модулю π .
 - 3. Если F строго изоморфна F', то $r' = r\varepsilon$ для $\varepsilon \in I_m + M_m(W)\Delta$.

Доказательство. 1. Предположим, что r=r'. Согласно утверждению 1 теоремы 4.2.1 существует гомоморфизм $f\equiv p^sI_mX \mod \deg 2$ из F в F'. Мы имеем равенство

$$\lambda'(f(X)) = p^s \lambda(X) = p^s \lambda([p^s]_F(X)). \tag{8}$$

Согласно утверждению 1 леммы 2.2.2 мы получаем

$$\{\lambda(f(X))\} = \{p^s \lambda([p^s]_F(X))\}.$$

Таким образом, утверждение 2 леммы 2.2.2 немедленно дает нужное утверждение.

Обратное следствие еще проще: достаточно лишь приравнять дробные части в равенстве (8).

- 2. Немедленно следует из утверждения 1.
- 3. Частный случай теоремы 4.2.1 для $A = I_m$. \square

Мы называем две формальные группы *строго изогенными*, если они удовлетворяют условиям утверждения 1 теоремы 4.3.1.

4.4. Связь u с редукцией F. Согласно предложению 1.3.1 каждая специальная матрица u эквивалентна единственному каноническому представителю.

Предложение 4.4.1. 1. Пусть F — формальная группа конечной высоты, пусть $\Lambda = vu^{-1}$. Предположим, что $u = p - \sum_{i>0} \theta(d_i) \Delta^i$ для некоторых $d_i \in M_m(k)$. Тогда $[p]_{\overline{F}} = \sum_{\overline{F}} d_i \Delta^i(X)$.

2. Пусть редукция и по модулю р имеет наименьший возможный ранг над \overline{W} (т.е. Λ невозможно представить в виде $v'u'^{-1}$ так, что $\mathrm{rank}(\overline{u'}) < \mathrm{rank}(\overline{u}), \ v' \in M_m(R)$). Тогда высота F конечна в том и только том случае, если $\mathrm{rank}(\overline{u}) = m$ (т.е. \overline{u} не вырождена).

Доказательство. 1. Мы имеем

$$\lambda \left(\sum_{(F)} \theta(d_i) \Delta^i(X) \right) = \sum \lambda(\theta(d_i) \Delta^i(X)) = \Lambda \left(\sum \theta(d_i) \Delta^i \right) (X) =$$
$$= v(\Delta)(X) + p\lambda(X) \equiv p\lambda(X) \mod R_X^m.$$

С другой стороны, $\lambda([p]_F(X)) = p\lambda(X)$. Тогда из леммы 2.2.2 получаем

$$[p]_F(X) \equiv \sum_{(F)} \theta(d_i) \Delta^i(X) \mod \pi.$$

2. Пусть высота F конечна. Предположим, что $\Lambda = vu^{-1}$, где матрица \overline{u} не вырождена над \overline{W} . Мы имеем $p \mid uq$ для некоторого вектора $q \in W^m \setminus pW^m$. То же рассуждение, что и в доказательстве предложения 1.4.1, показывает, что существует единственный вектор $r \in W^m$ такой, что $u(q/p+r) = \sum s_i \Delta_i$, коэффициенты s_i — представители Тейхмюллера. Так как $p \nmid q$, то получаем $q/p+r \neq 0$. Далее имеем $u \equiv pI_m \mod \Delta$, $u(q/p+r) \neq 0$, а значит, $p \nmid u(q/p+r)$. Из теоремы 4.2.1 получаем

$$\left\{\lambda\left(\sum_{(F)}(s_i\Delta^i(X))\right)\right\} = \left\{vu^{-1}u(q/p+r)(X)\right\} = 0.$$

Получили противоречие с утверждением 2 леммы 2.2.2.

Пусть теперь высота F бесконечна. Тогда $[p]_{\overline{F}}$ имеет ненулевое ядро в формальном модуле $\overline{F}(k[[X]]_0^m)$. Следовательно, для некоторого набора $h \in \mathfrak{O}_K[[X]]^m$, $\pi \nmid h$, мы имеем $\pi \mid [p]_F(h)$. Таким образом,

$$\{p\lambda(f(X))\}=\{\lambda([p]_F(f(X)))\}=0,$$

а значит, $\{\lambda(f(X))\} = 0$.

Представим h как $\sum_{I,s,F} a_{p^s i_1,\dots,p^s i_m} \Delta^s(X^I)$, мультииндексы $I=(i_1,\dots,i_m)$ не делятся на p. Тогда для каждого I мы имеем $\{\lambda(\sum_{s,F} a_{p^s i_1,\dots,p^s i_m} \Delta^s(X^I))\}=0$ (так как значения этого выражения для разных I не могут взаимно уничтожаться). Поэтому мы можем считать, что набор h является "F-p-типическим", т.е. $a_{p^s i_1,\dots,p^s i_m}=0$ для $I\neq e_j$. Тогда так же, как в доказательстве утверждения 3 теоремы 4.2.1, мы получаем, что $\Lambda\Theta\in M_m(R)$ для некоторой NW-матрицы Θ , коэффициенты которой являются представителями Тейхмюллера.

Пусть $\Lambda q \in R^m$ для $q \in W^m \setminus ((p, \Delta)W)^m$ (в качестве q можно взять столбец Θ , поделенный на некоторую степень Δ). Предположим, что $\Lambda = vu^{-1}$. Возьмем пространство Q, являющееся \overline{W} -дополнением \overline{q} (т.е. Q \overline{W} -свободно, $Q \oplus \overline{q}\overline{W} = \overline{W}^m$). Тогда существуют единственные $a_i \in \overline{W}$ такие, что $\overline{u_i} - qa_i \in Q$. Так как $\Delta \mid \overline{u}, \ a_i = b_i \Delta$ для некоторых $b_i \in \overline{W}$. Матрица $\overline{u} - (\overline{q}a_i)$ не вырождена над \overline{W} . Выбрав $e_i \in W$, являющиеся представителями b_i , мы получаем, что $u' = u - (qe_i \Delta)$ имеет вырожденную редукцию. Матрица u' специальная, $\Lambda u' \in M_m(R)$, и мы получаем доказательство. \square

Предыдущее утверждение позволяет доказать, что класс эквивалентности u однозначно восстанавливается по \overline{F} .

Предложение 4.4.2. Пусть $\Lambda=vu^{-1},\ \Lambda'=v'u'^{-1},\ \emph{где}\ \emph{F}\ \emph{u}\ \emph{F}'$ — группы конечной высоты. Тогда $u=u'\varepsilon$ для $\varepsilon\in M_m(W),\ \emph{если}\ \emph{u}$ только если $\overline{\emph{F}}=\overline{\emph{F}}'.$

Доказательство. Достаточно доказать, что $u=u' \Leftrightarrow \overline{F}=\overline{F}'$ при условии, что u и u' — канонические представители.

Если $\overline{F} = \overline{F}'$, то мы можем сосчитать u, воспользовавшись предложением 4.4.1.

Теперь пусть u = u'. Мы используем универсальный p-типический формальный групповой закон (см. определение в [3] или в п. 6.3).

Докажем индукцией по s, что $\overline{F} \equiv \overline{F}' \mod \deg p^s$. Предположим, что сравнение выполнено по модулю $\deg p^t$, $t \geq 1$. Будем считать, что \overline{F} получается из универсального закона F_c при подстановке в него матриц c_i , а \overline{F}' соответствуют c_i' . Тогда мы получаем, что $c_i = c_i'$ для i < t. Мы хотим доказать, что $c_t = c_t'$.

Так как $\overline{F} \equiv \overline{F'}$ mod $\deg p^s$, то для d_i , определенных в предыдущем предложении, мы имеем

$$\sum_{\overline{F},i>0} d_i \Delta^i(X) \equiv \sum_{\overline{F}'} d_i \Delta^i(X) \mod \deg p^t.$$

Следовательно, $[p]_{\overline{F}} \equiv [p]_{\overline{F}'} \mod \deg p^t + 1$. Для некоторых многочленов s_{iJ} мы имеем

$$[p]_{F_c} \equiv \left(\sum_{J} s_{iJ}(c_1, \dots, c_{t-1})X^J\right) + (1 - p^{t-1})c_tX^{p^t} \mod \deg p^t + 1.$$

Таким образом, $c_t = c'_t$. \square

В частности, F имеет ту же редукцию, что и группа, логарифм которой равен $pu^{-1}(\Delta)(X)$.

Следствие 4.4.3. Пусть высота F' конечна. Тогда, фиксируя r-инварианты групп F и F', можно вычислить вычет f по модулю π , зная f mod deg 2.

Доказательство. Редукция гомоморфизма f удовлетворяет утверждению 3 теоремы 4.2.1. Так как матрица r' не вырождена, то дробные части определяют коэффициенты матрицы B (см. теорему 4.2.1). Так как мы знаем знаменатель r', то можем вычислить группу \overline{F}' . Зная ее, вычисляем редукцию f.

4.5. Гомоморфизмы одномерных групп. Согласно теореме 4.3.1 строгие изоморфизмы домножают r(F) на $\varepsilon \in I_m + M_m(W)\Delta$. Кроме того, всякий такой ε возможен (для каждого r). Поэтому кажется естественным описывать гомоморфизмы между F и F', фиксируя r и r' только по модулю $I_m + M_m(W)\Delta$. Мы сформулируем соответствующий результат для одномерных групп.

Разложим u как $p - \sum u_i \Delta^i, u_i \in \mathfrak{O}$. Мы имеем $u_h \in \mathfrak{O}^*, u_i \in p\mathfrak{O}$ для i < h, где h — высота F (см. замечание 4.5.2 ниже).

Предложение 4.5.1. Пусть F и F' — формальные группы конечной высоты, пусть $a \in K, b \in \mathfrak{D}, a \ m \in \mathbb{Z}.$ Тогда мы имеем

$$a\Lambda \equiv \Lambda' b\varepsilon \Delta^m \mod R\Delta^{\min(0,m)} \tag{9}$$

для некоторого $\varepsilon \in 1 + W\Delta$, если и только если существует изогения $f = \sum a_i x^i \equiv ap^s x \mod \deg 2$ из F в F' для некоторого $s \in \mathbb{Z}$ такая, что высота f равна sh + m и

$$a_{p^{sh+m}} \equiv b u_h^{\frac{p^{sh+m}-p^m}{p^h-1}} \ \operatorname{mod} \pi$$

(т.е. выполнено равенство в поле вычетов).

Доказательство. Пусть $\Lambda_F = v/u$, $\Lambda_{F'} = v'/u'$, r = r(F) и r' = r(F'). Мы можем считать, что $u \equiv p \mod \Delta^h$, так как замена u на канонический представитель не меняет h и вычет u_h . Предположим, что Λ и Λ' удовлетворяют условию (9). Очевидно, $b \varepsilon \Delta^m \equiv \alpha \mod u' N \Delta^{\min(0,m)}$ для некоторого $\alpha \in NW$. Поэтому согласно утверждению 1 теоремы 4.2.1 существует некоторая изогения $f = \sum a_i x^i \equiv a p^s x \mod \deg 2$ из F в F'. Пусть высота f равна H. Применяя теорему 4.2.1, мы получаем

$$ap^{s}r = r'\theta(a_H)\Delta^H \varepsilon',$$

 $\varepsilon' \in 1 + W\Delta$. С другой стороны, для $s \ge 0$ имеем

$$ap^{s}\{v/u\} = a\{v/u\}(p-u)^{s} = a\{v/u\}u_{h}\sigma^{h}(u_{h})\dots\sigma^{(s-1)h}u_{h}\varepsilon''\Delta^{sh} =$$
$$= r'b\varepsilon\Delta^{m}u_{h}^{1+p^{h}+\dots+p^{(s-1)h}}\varepsilon''\Delta^{sh}$$

для некоторого $\varepsilon'' \in 1 + W\Delta$. Получаем равенство

$$r'(\theta(a_H)\Delta^H \varepsilon' - b\varepsilon \Delta^m u_h \sigma^h(u_h) \dots \sigma^{(s-1)h}(u_h)\varepsilon''\Delta^{sh}) = 0.$$

Нетрудно проверить, что то же выполнено при s<0. Из утверждения 2 предложения 4.4.1 получаем

$$u' \mid d = \theta(a_H) \Delta^H \varepsilon' - b\varepsilon \sigma^m(u_h) \sigma^{h+m}(u_h) \dots \sigma^{(s-1)h+m}(u_h) \Delta^m \varepsilon'' \Delta^{sh}.$$

Тогда если $H \neq sh+m$ или $a_{p^{sh+m}} \not\equiv bu_h^{\frac{p^{sh+m}-p^m}{p^h-1}} \mod \pi$, то $d = \Delta^{\min(H,sh+m)} \varepsilon'''$ для некоторого $\varepsilon''' \in W^*$, следовательно, $u' \nmid d$.

Обратно, предположим, что f удовлетворяет условиям предложения. Согласно утверждению 1 теоремы 4.2.1 мы имеем $ar = r'\beta$ для некоторого $\beta \in NW^*$. Легко видеть, что $\beta \equiv b_1 \varepsilon_1 \Delta^{m_1} \mod u'$ в кольце $W[\Delta^{-1}]$ для некоторых $\varepsilon_1 \in 1 + W\Delta$, $b_1 \in \mathfrak{O}$ и $m_1 \in \mathbb{Z}$. Как мы только что доказали, $m_1 = m$ и $b_1 \equiv b \mod p$. Добавив к $b_1 \varepsilon_1 \Delta^{m_1}$ слагаемое вида $uc\Delta^{m_1}$, где $c \in \mathfrak{O}$, мы можем добиться равенства $b_1 = b$. \square

Замечание 4.5.2. 1. Применяя предложение к $f = [p]_F$, F' = F, мы получаем, что h, определенная по u, совпадает с высотой F.

- 2. К сожалению, для описания соответствующих многомерных результатов пришлось бы вводить много технических определений и результатов.
- 3. Некоторый инвариант, сходный с r(F), был определен Фонтеном (см. [2]). Наше определение гораздо более явное. Основным недостатком функтора Фонтена является то, что он определен в терминах модулей. Поэтому он дает r(F) только с точностью до множителя из $\mathrm{Gl}_m(W)$ вместо $I_m + \Delta M_m(W)$. Поэтому невозможно вычислить $a_{p^{sh+m}} \mod \pi$ по функтору Фонтена. Можно построить неизоморфные (даже нестрого) формальные группы, на которых функтор Фонтена принимает одинаковые значения, но r-инварианты которых неэквивалентны.

Утверждения 1 и 2 теоремы 4.2.1 и предложение 4.4.2 сходны с результатами Фонтена.

Утверждение 3 теоремы 4.2.1, предложение 4.4.1 и теорема 4.3.1 являются совершенно новыми.

Заметим также, что, фиксируя базис формальной группы, мы получаем больше информации, чем при инвариантном подходе.

5. ИНВАРИАНТНЫЕ МОДУЛИ КАРТЬЕ-ДЬЕДОННЕ

5.1. Категория D-модулей.

Определение 5.1.1. Обозначим через $\mathfrak D$ категорию правых W-подмодулей D модуля $K[[\Delta]]^m$, удовлетворяющих следующим условиям:

- 1) D свободный W-модуль ранга me;
- 2) $D \mod \Delta = \mathfrak{O}_K^m$;
- 3) $p\mathfrak{O}_K^m \subset D$.

Лемма 5.1.2. Элементы $v_1, \ldots, v_{me} \in D$ образуют W-базис модуля $D \in \mathfrak{D}$, если и только если $v_i \mod \Delta$ образуют \mathfrak{D} -базис \mathfrak{D}_K^m .

Доказательство. Утверждение "только если" очевидно.

Докажем теперь, что v_i , удовлетворяющие условиям леммы, образуют базис D.

Предположим, что v_i' — W-базис D, $1 \le i \le me$. Тогда мы имеем $(v_i) = P(v_i')$ для некоторой матрицы $P \in M_{me}(W)$. Так как $(v_i) \mod \Delta = (v_i') \mod \Delta$ и размерность $D \mod \Delta$ над $W \mod \Delta$ равна количеству v_i' , $P \mod \Delta$ обратима. Тогда P тоже обратима, следовательно, v_i тоже образуют базис D. \square

Лемма 5.1.3. Если $D \subset D'$ для $D, D' \in \mathfrak{D}$, то D = D'.

Доказательство. Выберем базис v_i модуля D. Так как $v_i \mod \Delta$ порождают \mathfrak{O}_K^m , то v_i также являются W-базисом D'. \square

Иногда бывает полезно несколько модифицировать аксиомы категории $\mathfrak D$ (особенно 1)).

Предложение 5.1.4. I. Если модуль D, удовлетворяющий условиям 2) u 3) определения 5.1.1, удовлетворяет также одному из следующих условий:

- 1) D порожден $\leq me$ элементами;
- 2) каждый $v \in (K[[\Delta]]\Delta)^m \cap D$ также принадлежит $D\Delta$,

то D принадлежит категории \mathfrak{D} .

II. Наоборот, каждый $D \in \mathfrak{D}$ удовлетворяет 1) и 2).

Доказательство. I.1) Пусть $v_i \in D$, $1 \le i \le s$, — порождающие элементы. Так как размерность $D \mod \Delta$ над $\mathfrak{O} = W \mod \Delta$ не меньше s, элементы v_i независимы над W. Так как эта размерность равна me, мы также получаем s = me.

- 2) Выберем v_i , $1 \leq i \leq me$, такие, что $v_i \mod \Delta$ порождают $D \mod \Delta$. Для $v \in D$ мы можем выбрать $c_i \in \mathfrak{O}$ такие, что $v \equiv \sum v_i c_i \mod \Delta$. Поэтому $v = \sum v_i c_i + v_1 \Delta$ для некоторого $v_1 \in D$. Аналогично $v_1 \equiv \sum v_i c_{i1} \mod \Delta$. Применяя последовательно этот процесс и переходя к пределу, мы получаем, что v лежит в W-оболочке v_i . Поэтому D удовлетворяет условию 1) данного предложения.
 - II. Условие 1) очевидно.

Пусть теперь v лежит в $(K[[\Delta]]\Delta)^m \cap D$. Выберем базис v_i модуля D; $v_i \mod \Delta$ линейно независимы над \mathfrak{D} . Мы имеем $v = \sum v_i w_i$. Рассмотрев это равенство по модулю Δ , мы получаем, что $w_i \in W\Delta$, поэтому $v \in D\Delta$. \square

5.2. Два определения D_F .

Определение 5.2.1. Для формальной группы F с логарифмом $\lambda = \Lambda(X)$ определим

$$D_F = S(T_F(W^{me})) = \langle \langle w_i \rangle \Lambda_i \rangle$$

(см. определение $\langle w_i \rangle$ в п. 3.1).

Как мы скоро увидим, D_F не зависит от выбора базиса w.

Предложение 5.2.2. Для формальных групп F_1 и F_2 размерности m_1 и m_2 , D-модули которых равны D_1 и D_2 соответственно, выполнены следующие утверждения.

- 1. Пусть A матрица размера $m_2 \times m_1$ над \mathfrak{O}_K . Существует гомоморфизм f из F_1 в F_2 , $F(X) \equiv AX \mod \deg 2$, тогда и только тогда, когда $AD_1 \subset D_2$.
 - 2. Для $m_1=m_2$ группы F_1 и F_2 строго изоморфны, если и только если $D_1=D_2$.
 - 3. Для каждой группы F мы имеем $D_F \in \mathfrak{D}$.

Доказательство. 1. Согласно утверждению 2 предложения 3.3.2 достаточно проверить, что $A'(T_1(W^{m_1e})) \subset T_2(W^{m_2e})$. Это равносильно условию предложения, так как S — биекция.

- 2. Немедленно следует из утверждения 1 для $A = I_{m_1}$.
- 3. Свойства 1) и 2) определения 5.1.1 очевидны (см. предложение 5.1.4). Свойство 3) следует из утверждения 1 предложения 3.3.2. \square

Докажем теперь, что D_F — логарифм модуля p-типических кривых (т.е. классического модуля Картье-Дьедонне).

Предложение 5.2.3. $D_F = D'_F$, $\epsilon \partial e$

$$D'_F = \{ f \in K[[\Delta]]^m : \exp_F(f(\Delta)(X)) \in \mathfrak{O}_K[[X]]^m \},$$

 \exp_F — обратное отображение к λ_F .

Доказательство. Проверим сначала, что $D_F \subset D'_F$.

Мы имеем $\exp_F(\langle w_i \rangle \Lambda(xe_i)) = w_i x e_i$, значит, модуль D_F' содержит некоторый W-базис D_F . Убедимся в том, что $D_F' - W$ -модуль. Для $c_i \in \mathbb{Z}_p$ и $h \in K[[\Delta]]^m$ мы имеем

$$\exp_F\left(h\sum c_i\Delta^i\right)(x) = \sum_{(F)}[c_i]_F \exp_F(h(X^{p^i})),$$

следовательно, D'_F является $\mathbb{Z}_p[[\Delta]]$ -модулем. Осталось проверить, что для каждого представителя Тейхмюллера θ мы имеем $D'F\theta \subset D'F$. Это утверждение немедленно следует из равенства $\exp_F(h\theta(x)) = \exp_F(h(y))$ (здесь $y = \theta x$), которое выполнено для каждого $h \in K[[\Delta]]^m$.

Теперь согласно лемме 5.1.3 достаточно проверить, что $D_F' \in \mathfrak{D}$. Мы имеем $\exp_F(h(x)) \equiv h(x) \mod \deg 2$, следовательно, $D_F' \mod \Delta \subset \mathfrak{D}_K^m$. Поэтому свойства 2) и 3) определения \mathfrak{D} следуют из того, что $D_F \subset D_F'$. Очевидно, D_F' также удовлетворяет условию 2) предложения 5.1.4. Следовательно, $D_F' \in \mathfrak{D}$ и предложение доказано. \square

Замечание 5.2.4. 1. Заметим, что D'_F не зависит от выбора базиса w, поэтому и D_F тоже не зависит. Это утверждение также может быть доказано методом, использованным в доказательстве леммы 4.1.1.

2. Сравнивая два определения D_F , мы получаем, что для каждого базиса t_i кольца \mathfrak{O}_K над \mathbb{Z}_p элементы $v_{ijl} = \langle w_i t_j \rangle \Lambda_l$ образуют $\mathbb{Z}_p[\Delta]$ -базис D_F .

Действительно, v_i лежат в D_F и $v_{ijl} \mod \Delta$ являются \mathbb{Z}_p -базисом $D_F \mod \Delta$.

5.3. Основные свойства D_F . Докажем, что модуль $D \in \mathfrak{D}$ соответствует формальной группе над \mathfrak{O}_K , если и только если он $\langle \pi \rangle$ -устойчив.

Предложение 5.3.1. Для $D \in \mathfrak{D}$ следующие условия равносильны.

- 1. $D = D_F$ для некоторой формальной группы F.
- 2. Для каждого $a \in \mathfrak{O}_K$ мы имеем $\langle a \rangle D \subset D$.
- 3. $\langle \pi \rangle D \subset D$.
- 4. Существуют элементы $\Lambda_i \in D$, $\Lambda_i \equiv e_i \mod \Delta$, такие, что $\langle w_j \rangle \Lambda_i \in D$, $1 \leq i \leq m$, $1 \leq j \leq e$, где (w_i) некоторый \mathfrak{D} -базис \mathfrak{D}_K .

Доказательство. $1 \Rightarrow 2$. Мы имеем $\exp_F(\langle a \rangle (f(\Delta))(x)) = \exp_F(f(\Delta)(y))$ для y = ax. Остается применить предложение 5.2.3.

- $2 \Rightarrow 3$. Очевидно.
- $3\Rightarrow 4$. Выберем $\Lambda_i\in D$: $\Lambda_i\equiv e_i \mod \Delta$. Мы имеем $\langle \pi^s\rangle\Lambda_i\in D$. Поэтому можно взять $w_j=\pi^{j-1}$.
- $4 \Rightarrow 1$. Имеем $\langle w_j \rangle \Lambda_i \equiv w_j e_i \mod \Delta$. Следовательно, согласно лемме 5.1.2 элементы $\langle w_j \rangle \Lambda_i$ порождают D.

Возьмем формальную группу F над K с логарифмом, равным $\sum \Lambda_i(X_i)$. Модуль D удовлетворяет свойству 3) определения 5.1.1. Поэтому согласно предложению 3.3.2 F — p-типическая формальная группа над \mathfrak{O}_K . Мы имеем $D \subset D_F$, поэтому $D = D_F$. \square

Вместо π можно взять любой другой порождающий элемент \mathfrak{O}_K над \mathfrak{O} , например $1+\pi$.

Теперь опишем логарифмы формальных групп, изоморфных F, в терминах модуля D_F .

Предложение 5.3.2. Для $f \in M_m K[[\Delta]]$ ряд $f(\Delta)(X)$ является логарифмом формальной группы, строго изоморфной F, тогда и только тогда, когда $f \equiv I_m \mod \Delta$ и $f(\Delta)(e_i) \in D_F$.

Доказательство. Если группа F' строго изоморфна F, то имеем $D_{F'} = D_F$ и все ясно. В обратную сторону: для набора $\Lambda_i \in D$: $\Lambda_i \equiv e_i \mod \Delta$ можно построить группу F' так же, как в предыдущем доказательстве. Мы снова имеем $D = D_F \subset D_{F'}$. \square

Таким образом, мы можем (независимо) выбирать любые $\Lambda_i \equiv e_i \mod \Delta$ в модуле D.

Заметим теперь, что пересечение D_F с K^m всегда содержит модуль, несколько больший $p\mathfrak{O}_K^m$.

Предложение 5.3.3. 1. Для s = -[e/(1-p)] мы имеем $\pi^s \mathfrak{O}_K W^m \subset D_F$.

2. Пусть $a\in \mathfrak{O}_K,\, v_K(a)=l,\, l\leq s.$ Тогда формальный групповой закон $F_a=a^{-1}F(aX,aY)$ удовлетворяет $\pi^{s-l}\mathfrak{O}_KW^m\subset D_{F_a}.$

Доказательство. 1. Это частный случай утверждения 2 при a=1.

2. Мы имеем

$$D_{F_a} = \{ f \in K[[\Delta]]^m : \exp_F(af(x)) \in a\mathfrak{O}_K[[x]] \}.$$

Значит, достаточно проверить, что $\pi^l \mid \exp_F(aX)$.

Так как все частные производные λ целые, коэффициенты λ при X^I , $I=(a_i)$, делятся на $\frac{1}{(a_i)}$. Индукцией по степени мономов легко проверить, что коэффициенты \exp_F при $\prod X_i^{a_i}$ делятся на $1/\prod a_i!$. Кроме того, $\exp_F(X)\equiv X \mod \deg p$. Получаем, что при $(a_i)\neq e_i$ нормирование коэффициентов \exp_F при $\prod X_i^{a_i}$ больше $-\frac{\sum a_i}{p-1}$. Поэтому при $(x_i)\in\pi^s\mathfrak{O}_K^m$ мы имеем $\min v(x_i)<\min v(\exp_F((x_iX_i))_i-x_iX_i)$. \square

5.4. Замена основного поля. Опишем, как ведет себя модуль D_F при замене K на $L\supset K$.

Обозначим кольцо целых поля L через \mathfrak{O}_L .

Предложение 5.4.1. Пусть F — формальная группа над \mathfrak{O}_K , s_i — \mathfrak{O}_K -базис кольца \mathfrak{O}_L . Тогда $D_L(F) = \langle \langle s_i \rangle D_K(F) \rangle$ (линейную оболочку можно понимать в смысле абелевых групп).

Доказательство. Из экспоненциального определения D_F (см. предложение 5.2.3) очевидно следует, что $\langle s_i \rangle D_K(F) \subset D_L(F)$ для всех i.

С другой стороны, $D' = \sum \langle s_i \rangle D_K(F)$ содержит $\langle s_i \rangle \Lambda_j w$ для всех i, j и всех $w \in W$. Применяя замечание 5.2.4 для $t_i = s_j w_l \theta_r$, где $\theta_r - \mathbb{Z}_p$ -базис \mathfrak{O} , состоящий из представителей Тейхмюллера, мы получаем, что D' содержит \mathbb{Z}_p -базис $D_L(F)$. \square

Предположим теперь, что K' — подполе K, π' — униформизующий элемент K'.

Предложение 5.4.2. Формальная группа F конечной высоты изогенна некоторой формальной группе над $\mathfrak{O}_{K'}$, если и только если $r(F) = Ar' \varepsilon$ для некоторой матрицы r' (из вычетов по модулю R^m), определенной над K', $A \in \mathrm{Gl}_m(K)$ и $\varepsilon \in \mathrm{Gl}_m(W)$.

Доказательство. Утверждение "только если" немедленно следует из теоремы 4.2.1.

Теперь предположим, что $r = Ar'\varepsilon$. Рассмотрим модуль $D_1 = A^{-1}D \cap K'[[\Delta]]^m$. Мы имеем $D_1 \mod \Delta \subset A^{-1}\mathfrak{D}_K^m \cap K'^m$ и $pA^{-1}\mathfrak{D}_K^m \cap K'^m \subset D'$. Поэтому если мы выберем $A' \in \mathrm{Gl}_m(K')$ такие, что $A'D_1 \mod \Delta = \mathfrak{D}_{K'}^m$, то модуль $A'D_1$ удовлетворяет свойствам 2) и 3) определения \mathfrak{D} (над K'). Очевидно, D' удовлетворяет условию 2) предложения 5.1.4. Значит, $D' \in \mathfrak{D}'$. Так как для каждого $a \in \mathfrak{D}_{K'}$ мы имеем $\langle a \rangle D' \subset D'$, модуль D' соответствует некоторой формальной группе F' над $\mathfrak{D}_{K'}$.

Осталось доказать, что F' изогенна F. Согласно предложению 5.4.1 мы имеем $AA'^{-1}D_{F'} \subset C$ $\subset D_F$. Следовательно, существует гомоморфизм $f \equiv AA'^{-1}X \mod \deg 2$ из F' в F.

С другой стороны, из условия на дробные части следует, что существует $s \in \mathbb{Z}$ такое, что для всех $i, 1 \le i \le m$, выполнено $p^s \Lambda_i \in AA'^{-1}D_{F'}$. Следовательно, гомоморфизм в обратную сторону с ненулевым якобианом также существует.

Заметим, что, когда условия предложения не выполнены, мы все же получаем (зафиксировав A) формальную группу F' над K' и канонический гомоморфизм из F' в F.

5.5. D_F для не-p-типических формальных групп. Как было сказано выше, каждая формальная группа строго изоморфна формальной группе, соответствующей p-типической части ее логарифма. Поэтому определим D_F для произвольной формальной группы как D_F для соответствующей ей p-типической группы F_p .

Предложение 5.5.1. 1. D_F удовлетворяет предложению 5.2.3.

- 2. Для произвольных формальных групп их модули D_F удовлетворяют утверждениям предложения 5.2.2.
- 3. $h(X) \in K[[X]]^m$ удовлетворяет $\exp_F(h) \in \mathfrak{O}_K[[X]]^m$, если и только если для каждого $i=(i_1,\ldots,i_m)$, не все i_j делятся на p, выполнено $\sum_s a_{p^s i_1,\ldots,p^s i_m} \Delta^s \in D_F$. Здесь $a_I ($ векторный) коэффициент λ при X^I для мультииндекса I.
- 4. λ' логарифм формальной группы, строго изоморфной F, тогда и только тогда, когда $\lambda \equiv X \mod \deg 2$ и λ' удовлетворяет условию на h в предыдущем утверждении.

Доказательство. 1. Пусть $l\colon F_p\to F$ — строгий изоморфизм. Тогда мы имеем $\exp_{F_p}(h(X))=l(\exp_F(h(X))).$ Поэтому $\exp_F(f(\Delta)(X))\in \mathfrak{O}_K[[X]]^m,$ если и только если $\exp_{F_p}(f(\Delta)(X))\in \mathfrak{O}_K[[X]]^m.$

- 2. Утверждение очевидно, так как F строго изоморфна группе F_p и $D_F = D_{F_p}$.
- 3. Если $h=\sum_{I,s}a_{p^si_1,\dots,p^si_m}\Delta^s(X^I)$ для некоторого множества мультииндексов I и $\sum_s a_{p^si_1,\dots,p^si_m}\Delta^s\in D_F$ для всех I, то

$$\exp_F(h(X)) = \sum_{(F),I} \exp_F\left(\sum_s a_{p^s i_1,...,p^s i_m}(X^{p^s I})\right) \in \mathfrak{O}_K[[X]]^m.$$

С другой стороны, пусть $H(X) = \exp_F(h(X)) \in \mathfrak{O}_K[[X]]^m$. Мы можем считать, что группа F p-типическая. Тогда $\lambda = \Lambda(X)$ для $\Lambda \in D_F^m$. Мы можем представить H как $\sum_{(F),I,s} b_{p^s i_1,\dots,p^s i_m} \Delta^s(X^I)$ для некоторых $b_I \in \mathfrak{O}_K^m$. Поэтому мы имеем

$$\sum_{s} a_{p^{s}i_{1},...,p^{s}i_{m}} \Delta^{s}(X^{I}) = \log_{F} \left(\sum_{(F),s} b_{p^{s}i_{1},...,p^{s}i_{m}} \Delta^{s}(X^{I}) \right).$$

Получаем нужное утверждение.

4. Предположим, что $l=\exp_F(\lambda')\in\mathfrak{O}_K[[X]]^m$. Так как $\exp_F(\lambda')\equiv X\mod\deg 2$, то l дает строгий изоморфизм λ' и λ , а значит, и F' с F.

С другой стороны, если группа F' строго изоморфна F, то $\lambda'\equiv X \mod \deg 2$ и $\exp_F(\lambda')\in \in \mathfrak{O}_K[[X]]^m$. \square

6. МОЛУЛЬНЫЙ ИНВАРИАНТ

Целью этого раздела является явное описание модульного инварианта M_F . Этот инвариант дополняет дробную часть логарифма до классификации формальных групп с точностью до строгого изоморфизма. Кроме того, мы докажем, что множество возможных M_F для формальной группы F конечной высоты фиксированной размерности над фиксированным полем K с конечным полем вычетов конечно.

6.1. Определение и основные свойства. Введем на $K\{\{\Delta\}\}$ естественное правое действие кольца

$$\Omega = \left\{ \sum_{i \in \mathbb{Z}} a_i \Delta^i, \ a_i \in \mathfrak{O}, \ a_i o 0 \ \mathrm{при} \ i o -\infty
ight\},$$

умножение в Ω , так же как в W, определяется равенством $\Delta a = \sigma(a)\Delta$ для каждого $a \in \mathfrak{O}$. Мы имеем $W \subset \Omega$.

Лемма 6.1.1. Для каждой группы F модуль D_F канонически вложен в $K\{\{\Delta\}\}^m$.

Доказательство. С помощью ограничения скаляров доказательство сводится к случаю K=N. Как было доказано выше, модуль D_F лежит в $(R^m)u^{-1}$. Поэтому для K=N мы имеем $D_F \subset NW^mu^{-1} \subset R'^m$, где R' — "тело частных" NW. Тело R' может быть канонически вложено в двумерное тело Ω , которое равно $K\{\{\Delta\}\}$ как множество. Поэтому мы можем вложить D_F в $K\{\{\Delta\}\}^m$. \square

Определение 6.1.2. Для формальной группы F мы определяем M_F как $D_F \Omega \subset K\{\{\Delta\}\}^m$. Таким образом, $M_F \longrightarrow \Omega$ -модуль.

Опишем основные свойства модуля M_F , которые позволяют использовать его в классификационных вопросах как дополнение инварианта r(F).

- **Теорема 6.1.3.** 1. Пусть F и F' удовлетворяют условиям утверждения 1 теоремы 4.2.1, т.е. для некоторых матриц $A \in M_{m' \times m}(K)$ и $\varepsilon \in M_{m' \times m}(NW)$ мы имеем $Ar = r' \varepsilon$. Тогда существует гомоморфизм f из F в F', $f(X) \equiv Ap^s X$ mod deg 2 для фиксированного $s \in \mathbb{Z}$, если и только если $Ap^s M_F \subset M_{F'}$.
- 2. Пусть F группа конечной высоты и для некоторых $A \in M_{m' \times m}(K)$ и $\varepsilon \in M_{m' \times m}(NW)$ мы имеем $Ar = r'\varepsilon$. Если $p^sA \in M_{m' \times m}(\mathfrak{M}^l)$, где $l = ee' p^{e'} [e/(1-p)]$, $e' = [\log_p(e/(p-1))]$, то существует гомоморфизм f из F в F', $f(X) \equiv p^sAX$ mod deg 2.
- 3. F и F' строго изоморфны тогда и только тогда, когда они рационально изогенны и $M_F = M_{F'}$.

Доказательство. 1. Если такой гомоморфизм f существует, то мы имеем $AD_F \subset D_{F'}$. Получаем, что $AD_FN \subset D_{F'}N$, а это равносильно условию на дробные части в утверждении 1 теоремы 4.2.1. Условие на M_F следует непосредственно из определения M_F .

Обратно, предположим, что условия на F и F' выполнены. Тогда W-модули $Y=AD_F$ и $Z=D_{F'}$ удовлетворяют YN=ZN и $Y\Omega=Z\Omega$. Пусть z_i — W-базис Z (вспомним, что $D_{F'}$ свободен над W). Для каждого $r\in Z\Omega N$ коэффициенты $r_i\in \Omega N$ такие, что $r=\sum z_i r_i$, единственны. Для $y\in Y,\ y=\sum z_i y_i$, мы имеем $y_i\in NW\cap\Omega=W$. Поэтому $Y\subset Z$ и предложение 5.2.2 доказывает искомое утверждение.

- 2. Достаточно проверить, что $p^sAM_F\subset M_{F'}$. Согласно предложению 5.3.3 мы имеем $(\mathfrak{M}^{-[e/(1-p)]}\Omega)^{m'}\subset M_{F'}$. Осталось доказать, что $M_F\subset (\mathfrak{M}^w\Omega)^m$ для $w=p^{e'}-ee'$. Достаточно проверить, что $\langle w_i\rangle\Lambda_i\in (\mathfrak{M}^w\Omega)^m$. Можно взять базис w_i такой, что $w_1=1$ и $w_i\in \mathfrak{M}$ для i>1. Так как $u\in \mathrm{Gl}_m(\Omega)$, то из предложения 1.4.1 получаем, что $\Lambda_i\in (\mathfrak{M}^w\Omega)^m$. Для $t\in \mathfrak{M}$ (в частности, для $t=w_i,\ i>1$) мы получаем $\lambda(txe_i)\in \mathfrak{M}^w[[X]]$ непосредственно из того факта, что частные производные λ целые. Таким образом, $\Lambda_{ij}=\sum l_k\Delta^k$ для $l_k\in \mathfrak{M}^w$.
 - 3. Это частный случай утверждения 1 при $A = I_m$. \square
- **6.2.** M_F для групп конечной высоты. Алгоритм для классификации формальных групп.

Предложение 6.2.1. 1. Если логарифм формальной группы F принадлежит R_X^m , то $D_F = M_F \cap R^m$.

- 2. Если F формальная группа конечной высоты, то $M_F = \pi M_{F_{\pi}}$, где F_{π} формальный групповой закон $\pi^{-1}F(\pi X, \pi Y)$.
 - 3. Если F формальная группа конечной высоты, то $D_F \cap R^m = \pi D_{F_{\pi}}$.

Доказательство. 1. Мы имеем $D_F = \langle \langle w_i \rangle \Lambda_i \rangle$. Следовательно, $M_F = \bigoplus v_i \Omega$, где $v_i = \langle w_i \Lambda_s \rangle \in R^m$, $1 \leq i \leq me$. Поэтому $D_F \subset M_F \cap R^m$.

С другой стороны, так как $p\mathfrak{O}_K^m \subset D_F \mod \Delta$, то v_i образуют NW-базис кольца R. Поэтому $\sum v_i r_i \in R^m$ для $r_i \in \Omega$ тогда и только тогда, когда $r_i \in NW$. Таким образом, для $v \in M_F \cap R^m$ мы имеем $v = \sum v_i u_i$ для $u_i \in \Omega \cap NW = W$.

2. Отображение πX является гомоморфизмом из F_{π} в F. Поэтому $\pi D_{F_{\pi}} \subset D_{F}$ и мы получаем $\pi M_{F_{\pi}} \subset M_{F}$.

Представим Λ как vu^{-1} . Так как F — группа конечной высоты, матрица u обратима в $M_m(\Omega)$. Следовательно, $M_F = \langle v(e_i) \rangle$. Так как $v(e_i) \in D_F$, то имеем $\exp_F(v(xe_i)) \in \mathfrak{D}[[x]]^m$. Так как $v(e_i) \in R^m$, то мы также получаем $\exp_F(v(xe_i)) \in \pi \mathfrak{D}[[x]]^m$. Таким образом, согласно предложению 5.2.3, примененному к группе F_π , мы имеем $\pi^{-1}v(e_i) \in D_{F_\pi}$. Поэтому $M_F \subset \pi M_{F_\pi}$.

3. Так как $D_{F_{\pi}} \in R^m$, то $\pi D_{F_{\pi}} \subset D_F \cap R^m$. С другой стороны, $D_F \cap R^m \subset M_F \cap R^m$. Остается применить утверждение 2.

Легко проверить, что $\lambda \in R_X^m$, если редукция формального группового закона F по модулю π равна G_a^m .

Теперь мы докажем результат, имеющий огромное значение для построения и классификации формальных групповых законов.

Пусть s = -[e/(1-p)].

Теорема 6.2.2. 1. $\lambda = \Lambda(X)$ — логарифм формального группового закона F над \mathfrak{O}_K , если и только если $\langle \pi \rangle \Lambda_i \in \pi D_{F'}$ для $1 \leq i \leq m$ и $(\Lambda u)_i \in \pi D_{F'}$ для некоторой специальной матрицы и и формальной группы F' над \mathfrak{O}_K , удовлетворяющей условию $\pi^{s-1}\mathfrak{O}_K W^m \subset D_{F'}$. Если это условие выполнено, то группа F' строго изоморфна F_{π} .

2. Пусть $a \in \mathfrak{O}_K$ и $v_K(a) = l \leq s$. Предположим, что для некоторой матрицы Λ , специальной матрицы и и формального группового закона F' над \mathfrak{O}_K , удовлетворяющего $a^{-1}\pi^s\mathfrak{O}_K W^m \subset D_{F'}$, мы имеем $\langle a \rangle \Lambda_i \in aD_{F'}$ и $(\Lambda u)_i \in aD_{F'}$. Тогда $\Lambda(X)$ — логарифм формальной группы F над \mathfrak{O}_K и F' строго изоморфна F_a .

Доказательство. 1. Согласно предыдущему утверждению мы имеем $\langle \pi \rangle \Lambda_i \in \pi D_{F_\pi}$ и $(\Lambda u(F))_i \in \pi D_{F_\pi}$. С другой стороны, предположим, что условия на Λ выполнены для некоторых F' и u. Элементы $v_{ij} = \langle \pi^j \rangle \Lambda_i$ для $1 \leq j \leq e$ образуют W-базис модуля πD_{F_π} . Так как v_{i1} принадлежит $\pi D_{F'}$, то v_{ij} принадлежат $\pi D_{F'}$ для всех j > 1. Таким образом, группа F' строго изоморфна F_π .

Значит, достаточно проверить утверждение 2 для $a=\pi.$

2. Согласно предложению 5.3.3 мы имеем $a^{-1}\pi^s\mathfrak{O}_KW^m\subset D_{F'}$. Далее для каждого $b\in\mathfrak{O}_K^*$ из предложения 5.2.3 мгновенно получаем равенство $D_{F_b}=b^{-1}D_F$. Поэтому можно считать, что $a=\pi^w,\,w>0$.

Докажем индукцией по $w \ge r \ge 0$, что модуль

$$D_r = \pi^{w-r} D_{F'} + \pi^{-r} \langle \langle \pi^i \rangle \Lambda_j \rangle W, \qquad i \ge r,$$

соответствует некоторой формальной группе.

Предположим, что утверждение выполнено для $r=n+1,\, n\geq 0.$ Мы имеем $\Lambda u=v\in aD_{F'}^m,$ где $u=pI_m-\sum u_i\Delta^i.$ Для n>0 получаем

$$p\langle \pi^n \rangle \Lambda = \sum \langle \pi^{p^i n} \rangle (\Lambda) u_i + \langle \pi^n \rangle v. \tag{10}$$

Следовательно, выполнено $\langle \pi^n \rangle \Lambda u' \in \pi^{n+1} D^m_{n+1}$ для специальной матрицы u'.

Согласно лемме 5.1.2 мы можем дополнить элементы $r_i = (\langle \pi^n \rangle \Lambda u')_i, \ 1 \leq i \leq m$, до W-базиса $r_j, \ 1 \leq j \leq me$, модуля $\pi^{n+1}D_{n+1}$. Получаем, что π^nD_n порожден над W элементами $\langle \pi^n \rangle \Lambda_i$ и r_j для j > m. Значит, $D_n \in D$, так как все остальные свойства очевидны. Модуль D_n содержит $\pi^{-n}\langle \pi^j \rangle \Lambda_i$ для $j \geq n$. Применяем предложение 5.3.1 для $w_j = \pi^{j-1}$ и получаем, что D_n равен D_{F_n} для некоторой группы F_n над \mathfrak{O}_K .

Теперь предположим, что условия на Λ выполнены для некоторых F' и u.

Как и в доказательстве утверждения 1, мы видим, что $v_{ij} = \langle \pi^j \rangle \Lambda_i \in \pi^s D_{F'}$ для $l \leq j < l + e$ образуют W-базис модуля πD_{F_π} . Следовательно, группа F' строго изоморфна F_{π^w} .

Замечание 6.2.3. В частности, условия утверждения 2 теоремы выполнены, если $\langle a \rangle \Lambda_i \in a\mathfrak{O}_K[[\Delta]]^m$ и $\Lambda u_i \in a\mathfrak{O}_K[[\Delta]]^m$, так как в этом случае можно взять F' равной m-й степени аддитивного формального группового закона.

С помощью этого утверждения можно получить все формальные группы Хонды (например, группы Любина—Тэйта). Канонические представители классов изогенности формальных групп, приведенные в [4] в случае алгебраически замкнутого поля вычетов, также могут быть построены (см. теорему G из введения).

Теперь опишем общий алгоритм для классификации формальных групповых законов размерности m над фиксированным полем K.

Сначала нужно описать все возможные πD_{F_π} . Можно воспользоваться универсальным p-типическим формальным групповым законом для построения логарифмов вида $\pi^{-1}\lambda(\pi X)$. Так как D_F зависит только от вычетов коэффициентов Λ по модулю π^l , где l=-[e/(1-p)], и только первые несколько коэффициентов $\langle \pi \rangle \Lambda$ могут не делить π^l , то в случае конечного поля вычетов количество различных πD_{F_π} конечно.

Потом при фиксированном модуле $\pi D_{F_{\pi}}$ для каждого u нужно описать Λ , удовлетворяющие условиям теоремы. Таким образом можно получить описание всех p-типических логарифмов формальных групповых законов.

Чтобы проверить, какие из них дают строго изоморфные формальные группы, нужно узнать, какие вычеты по модулю $R^m u$ дают элементы $(v_i) \in \pi M_{F_\pi}^m, v \equiv pI_m \mod \Delta$, такие, что

$$\langle \pi \rangle (v/u) \in \pi D_{F_{\pi}}^m. \tag{*}$$

Таким образом можно вычислить r(F). Далее можно посчитать M_F (используя предложение 6.2.1 для групп конечной высоты). В итоге получается пара r(F), M(F). К ней можно применять теорему 6.1.3.

Заметим, что условие (*) зависит только от первых нескольких коэффициентов u и v. Поэтому если в случае конечного поля вычетов выбирать u из конечных представителей, то классификация будет произведена за конечное число шагов.

6.3. Классификация для e < p. Чтобы проиллюстрировать метод, описанный в предыдущем пункте, мы расклассифицируем формальные группы для e < p.

Теорема 6.3.1. 1. $\lambda = \Lambda(\Delta)(X)$ — логарифм р-типической формальной группы, если и только если $\Lambda = vu^{-1}$ для некоторой матрицы $u \in M_m(W)$, $u \equiv pI_m \mod \Delta$, $u \in M_m(\mathfrak{O}_K[\Delta])$, $v \equiv pI_m \mod \pi \Delta$.

2. Пусть F, соответствующая Λ , — группа конечной высоты. Тогда F строго изоморфна F_1 , соответствующей Λ_1 , если и только если $\Lambda_1 = \Lambda \varepsilon + g$, где $\varepsilon \in I_m + \Delta M_m(W)$, $g \in \pi M_m(\mathfrak{O}_K[\Delta])\Delta$.

Доказательство. 1. Пусть F — группа конечной высоты.

5 ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2003, т. 241

Чтобы вычислить $\pi D_{F_{\pi}}$, воспользуемся универсальным p-типическим групповым законом F_c (см. [3]). F_c получается при обращении $u_c = I_m - \sum c_i \Delta^i p^{-i}$ в кольце $M_m(\mathfrak{A}[[\Delta]]')$ (см. п. 1.2), где $c_i = (c_{ijk})$, $\mathfrak{A} = \mathbb{Z}_p[c_{ijk}]$, i > 0, $\sigma(c_{ijk}) = c_{ijk}^p$, и применении результата к X.

Мы имеем

$$u_c^{-1} = I_m + \frac{c_1}{p} \Delta + \left(\frac{c_2}{p} + \frac{c_1(c_{1jk}^p)}{p^2}\right) \Delta^2 + \dots$$
 (11)

При переходе от F к F_{π} значения c_i домножаются на π^{p^i-1} . Поэтому для формальной группы λ_{π} мы имеем $\pi^{p^i-1} \mid c_i$. Следовательно, $\lambda_{\pi} \in \mathfrak{O}_K[[X]]^m$. Таким образом, F_{π} строго изоморфен F_+^m , где F_+ — аддитивный формальный групповой закон. Значит, $\pi D_{F_{\pi}} = \pi \mathfrak{O}_K[[\Delta]]^m$.

Пусть u — специальная матрица, пусть $v \in \pi \mathfrak{O}_K[[\Delta]]^m$, $v \equiv pI_m \mod \Delta$. Для $\Lambda = I_m + \sum_{i>0} c_i \Delta^i$ и каждого i>0 матрица $p^i c_i$ целая. Следовательно, все такие u,v удовлетворяют (*).

Доказательство для F бесконечной высоты может быть дано с помощью непосредственного рассмотрения матрицы T(F).

2. Мы имеем $M_F = M_{F_1}$. Согласно теореме 6.1.3 получаем, что F строго изоморфна группе F_1 тогда и только тогда, когда $r(F_1) = r(F)\varepsilon$ для некоторой матрицы $\varepsilon \in I_m + M_m(\Delta W)$. Это, очевидно, эквивалентно равенству $\Lambda_1 = \Lambda \varepsilon + g$ для некоторой матрицы $g \in M_m(R\Delta)$. Так как $g \in M_F + M_F' = M_F = \pi M_m(\mathfrak{O}_K\Omega)$, получаем, что $g \in \pi M_m(\mathfrak{O}_K\Omega) \cap M_m(R\Delta) = \pi M_m(\mathfrak{O}_K[[\Delta]]\Delta)$. Утверждение 2 теоремы доказано. \square

Замечание 6.3.2. 1. Сходным образом можно описать формальные группы высоты >1 для e=p (т.е. мы требуем, чтобы $u\equiv 0 \mod (p,\Delta^2)$). Прямое рассмотрение логарифмической матрицы (см. разд. 3) дает возможность расклассифицировать формальные группы для $e\leq 2p-2$. При этом достаточно учесть первые два столбца матрицы T.

- 2. Легко доказать результат о гомоморфизмах групп, аналогичный утверждению 3 теоремы 1.2.1. Так как M_F всегда "аддитивен", теорема 6.1.3 применяется очень легко.
- **6.4. Классификация формальных групп для** $e \le p^2/2$. Теперь расклассифицируем формальные группы высоты > 1 для $e \le p^2/2$. Этот результат легко может быть распространен на многомерные группы, если определить высоту как вектор (т.е. в данном случае нужно потребовать $u \equiv 0 \mod (p, \Delta^2)$).
- 6.4.1. Вычисление $\pi D_{F_{\pi}}$. Согласно предложению 5.3.3 достаточно вычислить $\lambda_{\pi} = \pi^{-1}\lambda(\pi x) = \Lambda_{\pi}(\Delta)(x)$ по модулю $\pi^{1-[e/(1-p)]}$.

Мы снова пользуемся универсальным законом F_c . Мы имеем $\pi^{p^i-1} \mid c_i$. Так как высота F больше 1, мы получаем также, что $\pi^p \mid c_1$. Тогда для $e \leq \frac{p^2}{2}$ мы получаем $\Lambda_\pi \equiv 1 + \frac{c}{p} \Delta \mod \pi^{1-[e/(1-p)]}, \, \pi^{p-1} \mid c = c_1$. Следовательно,

$$\pi D_{F_{\pi}} = \left\langle \pi^i + \frac{\pi^{(i-1)p+1}c\Delta}{p} \right\rangle, \quad i \ge 1.$$

Обозначим $v_K(c)$ через d.

Отсюда легко получаем, что $a \in \pi D_{F_{\pi}}$ (что равносильно утверждению $a\Delta \in \pi D_{F_{\pi}}$) для $a \in \mathfrak{M}$, если и только если $v_K(a) \geq 1 + \frac{e-d}{n-1}$.

 $6.4.2.\ \, \mathit{Проверкa}\ (*).\ \,$ Если h>1, то согласно предложению 1.3.1 можно считать, что $u\equiv p \mod \Delta^2.$ Для такого u и $e\leq \frac{p^2}{2}$ легко видеть, что

$$\langle \pi \rangle (v/u) \equiv \langle \pi \rangle (v/p) \mod \pi^{-[e/(p-1)]}.$$

Далее, модуль $\pi D_{F_{\pi}}$ был построен для

$$\Lambda = \sum_{i>0} \left(\frac{c}{\pi^{p-1}}\right)^{1+\ldots+p^{i-1}} \left(\frac{\Delta}{p}\right)^i.$$

Так как h>1, то имеем $\frac{c}{\pi^{p-1}}\in\mathfrak{M}$, следовательно, $v'=p+c\frac{\Delta}{p\pi^{p-1}}\in\pi D_{F_{\pi}}$, при этом v' удовлетворяет (*) для u=p. Мы получаем, что v удовлетворяет (*), если и только если $\langle\pi\rangle\frac{v-v'}{p}\in D_F$. С другой стороны, мы имеем $\langle\pi\rangle\frac{\Delta^2}{p}D_{F_{\pi}}\in D_{F_{\pi}}$. Таким образом, v удовлетворяет (*) для $v\in\pi D_{F_{\pi}}$, если и только если $v\equiv v'+v_1\Delta$ mod deg 2, где $v_1\in\mathfrak{M}$, $v_K(v_1)\geq e-p+1+\frac{e-d}{p-1}$. Кроме того, мы получаем

$$v_1 \Delta + \frac{v_1^p c \Delta^2}{p \pi^{p-1}} = \langle v/\pi \rangle v' \Delta \in \pi D_{F_{\pi}}.$$

Таким образом, окончательный ответ для e > p такой: $d \ge p$,

$$v = p + c\frac{\Delta}{p\pi} + v_1\Delta + \frac{v_1^p c\Delta^2}{p\pi^{p-1}} + v_2\Delta^2$$

для каждого $v_2 \in \pi D_{F_{\pi}}$ и $v_1 \in \mathfrak{M}$, удовлетворяющего $v_K(v_1) \geq e - p + 1 + \frac{e-d}{p-1}$. Можно легко сосчитать r(F).

Для группы конечной высоты имеем $M_F = \pi D_{F_\pi} \Omega$. Так как πD_{F_π} порожден над $W[\langle \pi \rangle]$ элементами $\pi + \frac{\pi c \Delta}{p}$, мы получаем, что $\pi D_{F_\pi} \Omega$, соответствующий c', совпадает с πD_{F_π} , соответствующим c, если и только если $v(c-c') \geq \max(e+1,e+1+\frac{e-d}{p-1})$ (см. п. 6.4.1). Для группы бесконечной высоты M_F можно подсчитать непосредственно, пользуясь $D_F \subset R$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Breuil C. Groupes p-divisibles, groupes finis et modules filtrés // Ann. Math. 2000. V. 152, N 2. P. 489–549.
- 2. Fontaine J.M. Groupes p-divisibles sur les corps locaux. Paris: Soc. Math. France, 1977. (Astérisque; V. 47, 48).
- 3. Hazewinkel M. Formal groups and applications. New York: Acad. Press, 1978.
- 4. Laffaille G. Construction de groupes p-divisibles: Le cas de dimension 1 // Astérisque. 1979. V. 65. P. 103–123.
- 5. Oort F. Dieudonne modules of finite local group schemes // Indag. Math. 1974. V. 36. P. 284-292.