线性代数经济学双学位 2015 秋期中试题

_____ 学院 ____ 系 姓名 _____ 学号_____ 分数

分数	 <u></u>	111	四	总分

2015年11月8日

请注意所有答案和解答写在空白答题纸上,标明大题号和小题号一、填空题(本题共10小题,每小题2分,满分20分。

$$(1)^{\frac{1}{12}}\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \mathbf{1}, \parallel \begin{vmatrix} a_{41} & a_{42} & a_{43} & a_{44} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{vmatrix} = \underline{\qquad}.$$

- (2)设A是四阶方阵, $|A^*|=1/8$,则 $|A^{-1}|=$ _____。
- (3)若向量组 α_1 =(1,0,0), α_2 =(9,2,4), α_3 =(1,3,t)线性相关,则t=
- (4)设 $\alpha_1, \alpha_2, \alpha_3$ 是3维列向量,并且行列式 $|(\alpha_1 \alpha_2 \alpha_3)|=1$,则 $|3(\alpha_3, -\alpha_2, \alpha_1)|=$ ____。
- (5)设矩阵 $A = \begin{pmatrix} 2 & 4 \\ 4 & 5 \end{pmatrix}$,则 $|AA^{T}| =$ _____。

(6)
$$\begin{vmatrix} a & b & c \\ a+2 & b+2 & c+2 \\ a+3 & b+3 & c+3 \end{vmatrix} = \underline{\hspace{1cm}}$$

(7)若矩阵
$$B$$
满足 $B\begin{pmatrix} 1/2 & 0 \\ 0 & 1/3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$,则 $B = \underline{\qquad}$ 。

(8)齐次方程组
$$\begin{pmatrix} -3 & -6 & 6 \\ 2 & 4 & -4 \\ 1 & 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
的基础解系所含向量个数

为____。

(9)设
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$
, E 为二阶单位矩阵,2 阶矩阵 B 满足

$$BA = B + 2E$$
,则 $B \models$ ____。

$$(10) 若 A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad 则 r(A^3) = \underline{\hspace{1cm}}$$

二、选择题(本题共10小题,每小题2分,满分20分。每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若方程组
$$\begin{cases} 8x_1 + 9x_2 + 10x_3 = 0, \\ -x_2 + 2x_3 = 0, \text{ 存在非零解,则常数} t = \\ 2x_2 + tx_3 = 0, \end{cases}$$
(A)-4 (B)4 (C)-2 (D)2

(2)设有矩阵 $A_{3\times2}$, $B_{4\times3}$, $C_{2\times3}$,	则下列运算有意义的是		
$(\mathbf{A})(\mathbf{A}+\mathbf{B})\mathbf{C} (\mathbf{B})\mathbf{B}(\mathbf{C}^{\mathrm{T}}+\mathbf{A})$	$) (\mathbf{C})CBA (\mathbf{D})(ABC)^{\mathrm{T}}$	[]
(3)设 A , B 是两个 n 阶矩阵,	满足 $(AB)^2 = E$,则		
$(\mathbf{A}) AB = E \otimes AB = -E \qquad ($	$\mathbf{B}) \mid A \mid \mid B \mid = 1$		
$(\mathbf{C}) AB = BA $	$\mathbf{(D)} (BA)^2 = E$	[]
(4)设向量组 $\alpha_1, \dots, \alpha_s$ 可用向	量组 β_1, \dots, β_t 线性表示,并且 α_1, \dots	\cdot, α_s	线
性无关,则必定成立的是			
$(\mathbf{A})s > t (\mathbf{B})s < t (\mathbf{C})s \le t$	$(\mathbf{D})s = t$	[]
(5) 设 A 是3阶矩阵,将 A 的	的第二行加到第一行得 B ,将 B 的	J第-	-
列-1 倍加到第二列上得(C 。记 $P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则		
(A) $C = P^{-1}AP$ (B) $C = PA$	P^{-1} (C) $C = P^{\mathrm{T}}AP$ (D) $C = PAP^{\mathrm{T}}$	[]
(6)若方阵 A,B,C 满足 ABC :	=E,则必定成立		
$(\mathbf{A})BAC = E (\mathbf{B})ACB = E$	$(\mathbf{C})CBA = E (\mathbf{D})BCA = E$	[]
(7) 设 $r(A_{m \times n}) = r < m$,则在	A的行向量组中		
(A)任意 r 个向量线性无关	(B)存在 r 个向量线性	无き	Ė
(C)任意 r 个向量都是其极大	大线性无关组(D) $r < n$	[]
(8)齐次方程组 $A_{m\times n}X = O$ 存	在非零解的充分必要条件是		
(A) A 的行向量组线性相关((B)A的列向量组线性相关		
$(\mathbf{C}) r(A_{m \times n}) < m $	$\mathbf{D}) m < n $	-]
(9) 设 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 是 \boldsymbol{n} 维想	列向量, A 是 $m \times n$ 矩阵,则		
(A) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关	,则 $Alpha_1,Alpha_2,\cdots,Alpha_s$ 线性相关		

- (B) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性无关
- (C) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 线性相关
- (**D**) 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,则 $A\alpha_1, A\alpha_2, \dots, A\alpha_s$ 线性无关 []

1

(10)若二阶对角矩阵A不是数量矩阵,并且满足方程

 $A^2 - A - 6E = 0$,则A的所有元素的和是

$$(A)1$$
 $(B)-1$ $(C)6$ $(D)-4$

三、计算题(本题共5小题,每小题10分,满分为50分)

- (3) 给定向量组 I: α_1 =(1,2,7,6), α_2 =(-1,1,5,3), α_3 =(0,-1,-4,-3), α_4 =(1,0,-2,-1), α_5 =(1,2,9,8)。求 I 的一个极大无关组 II,并且用 II 表示 I 的其余向量。
- (4)讨论p,t为何值时,方程组

I:
$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 0, \\ 2x_1 + x_2 - 6x_3 + 4x_4 = -1, \\ 3x_1 + 2x_2 + px_3 + 7x_4 = -1, \\ x_1 - x_2 - 6x_3 - x_4 = t \end{cases}$$

无解?有解?如果I有无穷个解,用I的特解和I的导出组的基础解系表示I的全部解。

$$(5)$$
 求 $A = \begin{pmatrix} 2 & 3 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$ 的逆矩阵和伴随矩阵。

四、证明题(本题共2小题,每小题5分,满分为10分

(1)证明:如果 $\alpha_1, \dots \alpha_s$ 可以用 β_1, \dots, β_t 线性表示,并且s > t,则 $\alpha_1, \dots \alpha_s$ 线性相关。

(2) 证明行列式
$$\begin{vmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2^{-1} & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3^{-1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & (n-1)^{-1} \\ n^{-1} & 0 & 0 & 0 & \cdots & 0 \end{vmatrix}$$
 $(n > 1)$ 的所有代数余

子式的和是
$$\frac{(-1)^{n+1}(n+1)}{2(n-1)!}$$
。