표준모듈

❖ 임포트(import)

- ㅇ 다른 파일에 정의된 변수, 함수, 객체 등을 사용하기 전에 이를 알리는 것
- ㅇ 표준 모듈
 - 파이썬에서 제공하는 모듈

import 모듈 [as alias]

from 모듈 import 함수명

❖ 임포트(import)

```
import math
print(math.sqrt(2))
1.4142135623730951
from math import sqrt
print(sqrt(2))
1.4142135623730951
import math as {\tt m}
print(m.sqrt(2))
1.4142135623730951
from math import sqrt as sq
print(sq(2))
```

1.4142135623730951

❖ math 모듈

- ㅇ 상수
 - pi : 원주율 상수
 - tau : 원주율의 2배되는 상수
 - e : 자연 대수 상수
 - inf : 무한대 값
 - nan : 숫자가 아닌 값을 의미

❖ math 모듈

- o 함수
 - sqrt(x)
 - pow(x,y)
 - hypot(x,y)
 - factorial(x)
 - sin(x), cos(x), tan(x)
 - degrees(x)
 - radians(x)
 - ceil(x)
 - floor(x)
 - fabs(x)
 - trunc(x)
 - log(x, base)
 - log10(x)
 - gcd(a, b)

❖ 임포트(import)

```
import math

print(math.sin(math.radians(45)))
print(math.sqrt(2))
print(math.factorial(5))
```

0.70710678118654751.4142135623730951120

❖ 통계 모듈, statistics

- ㅇ 함수
 - mean() : 평균
 - harmonic_mean() : 조화평균
 - median() : 중앙값, 짝수인 경우 보간값 계산
 - median_low() : 중앙값을 구함, 집합 내의 낮은 값 선택
 - median_high() : 중앙값을 구함, 집합 내의 높은 값 선택
 - mdeian_grouped() : 그룹 연속 중앙값
 - mode(): 최빈값
 - pstdev() : 모표준편차
 - stddev() : 표준편차
 - variance() : 분산

❖ 통계 모듈, statistics

```
import statistics as st
score = [30, 40, 60, 70, 80, 90]
print(st.mean(score))
print(st.harmonic_mean(score))
print(st.median(score))
print(st.median low(score))
print(st.median_high(score))
61.66666666666664
53.14586994727592
65.0
60
70
```

❖ 시간조사, time 모듈

o 1970년 1월 1일 자정을 기준으로 경과한 시간을 초 단위로 표현 --> 에폭(Epoch) 시간 또는 유닉스 시간

import time
print(time.time())

1579487898.483571

❖ 시간조사, time 모듈

```
import time
t = time.time()
print(time.ctime(t))
Mon Jan 20 11:38:44 2020
import time
t = time.time()
print(time.localtime(t))
time.struct_time(tm_year=2020, tm_mon=1, tm_mday=20, tm_hour=11, tm_min=38,
tm sec=56, tm wday=0, tm yday=20, tm isdst=0)
```

11:42:2

❖ 시간조사, time 모듈

```
import time
now = time.localtime()
print("%d년 %d월 %d일" % (now.tm_year, now.tm_mon, now.tm_mday))
print("%d:%d:%d" % (now.tm hour, now.tm min, now.tm sec))
2020년 1월 20일
11:40:44
import datetime
now = datetime.datetime.now()
print("%d년 %d월 %d일" % (now.year, now.month, now.day))
print("%d:%d:%d" % (now.hour, now.minute, now.second))
2020년 1월 20일
```

❖ 실행 시간 측정

```
import time
start = time.time()
for a in range(1000):
    print(a)
end = time.time()
print(end - start)
0
999
0.1033775806427002
```

❖ 실행 멈춤

```
import time

print("안녕하세요")

time.sleep(1)

print("밤에 성시경이 두 명 있으면 뭘까요?")

time.sleep(5)

print('야간투시경입니다.')
```

안녕하세요 밤에 성시경이 두 명 있으면 뭘까요? 야간투시경입니다.

❖ 달력

```
import calendar as cal
print(cal.calendar(2018))
print(cal.month(2019, 1))
```

2018

January								February								March						
Мо						Su			We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su		
1	2	3	4	5	6	7				1	2	3	4				1	2	3	4		
8	9	10	11	12	13	14	5	6	7	8	9	10	11	5	6	7	8	9	10	11		
15	16	17	18	19	20	21	12	13	14	15	16	17	18	12	13	14	15	16	17	18		
22	23	24	25	26	27	28	19	20	21	22	23	24	25	19	20	21	22	23	24	25		
29	30	31					26	27	28					26	27	28	29	30	31			

:

❖ 달력

```
import calendar as cal

dates = ["월", "화", "수", "목", "금", "토", "일"]

day = cal.weekday(2020, 8, 15)
print("광복절은 %s요일입니다."%dates[day])
```

광복절은 토요일입니다.

❖ random 모듈

- o .random()
 - 0 ~ 1 사이의 난수 리턴(1은 미포함)

```
import random

for i in range(5):
    print(random.random())
```

- 0.9085194756407313
- 0.5157698060289099
- 0.6511156516629886
- 0.6844494104248139
- 0.07817243576575794

❖ random 모듈

- o .randint(begin, end)
 - begin ~ end 사이의 정수 난수를 리턴 (end도 포함)
- o .randrange(begin, end)
 - begin ~ end 사이의 정수 난수를 리턴 (end도 포함되지 않음)
- o .uniform(begin, end)
 - begin ~ end 사이의 실수 난수를 리턴 (end 미포함)

```
import random

for i in range(5):
    print(random.randint(1, 10))
```

4 5

10

3

❖ random 모듈

```
import random
for i in range(5):
    print(random.randrange(1, 10))
import random
for i in range(5):
    print(random.uniform(1, 10))
8.810192699010965
3.4528419150136185
9.062162080248966
9.674934682673284
9.667378503574168
```

❖ random 모듈

- o .choice(시퀀스)
 - 시퀀스에서 랜덤하게 요소 선택하여 리턴

```
import random

food = ["짜장면", "짬뽕", "탕수육", "군만두"]
print(random.choice(food))

탕수육

i = random.randrange(len(food))
print( food[i])
```

짜장면

❖ random 모듈

- o .shuffle(시퀀스)
 - 시퀀스의 내용을 랜덤하게 썩음

```
import random

food = ["짜장면", "짬뽕", "탕수육", "군만두"]
print(food)
random.shuffle(food)
print(food)
```

```
['짜장면', '짬뽕', '탕수육', '군만두']
['군만두', '탕수육', '짜장면', '짬뽕']
```

❖ random 모듈

[5, 6, 17, 22, 28, 36]

- o .sample(시퀀스, count)
 - 시퀀스에서 랜덤하게 count개의 요소 리턴

```
import random

food = ["짜장면", "짬뽕", "탕수육", "군만두"]
print(random.sample(food, 2))

['짬뽕', '짜장면']

import random

nums = random.sample(range(1, 46), 6)
nums.sort()
print(nums)
```

sys 모듈

❖ 시스템 정보

```
import sys

print("버전: ", sys.version)
print("플랫폼: ", sys.platform)
print("바이트 순서: ", sys.byteorder)
print("모듈 경로: ", sys.path)
sys.exit(0)

버전: 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0]
플랫폼: linux
바이트 순서: little
모듈 경로: [ ... ]
```

sys 모듈

❖ 명령형 인수

```
import sys

print(sys.argv)
# [파일경로, 인자1, 인자2, ...]

버전: 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0]
플랫폼: linux
```

바이트 순서: little