杭州电子科技大学学生考试卷(A)卷

考试课程	线性代数 甲		考试日期] 日	成绩		
课程号		教师号		任课教师	姓名		
考生姓名		学号 (8 位)		年级		专业	

题	_	_		三		D	Ц	エ	<u></u>	L.	1/	总分
号		_	1	2	3	1	2	_Д.		⁻ L		
得												
分												

单项选择题 (每小题 3 分, 共 15 分)

1. [3分]

行列式
$$D_1 = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 2 & 3 \\ 3 & 1 & 5 \end{vmatrix}, D_2 = \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda \end{vmatrix}, \quad$$
若 $D_1 = D_2$,则 λ 的值为(

- (A) 0, 1;
- (B) 0, 2; (C) 1, -1;
 - (D) 2, -1

- 2. [3分]
 - 设A,B为n阶方阵,满足等式AB=0,则必有().
 - (A) A=0 $\not\equiv B=0$; (B) A+B=0; (C) |A|=0 $\not\equiv |B|=0$; (D) |A|+|B|=0.
- 3. [3分]

设
$$\begin{cases} x_1 + 2x_2 - x_3 + 3x_4 = 4 \\ x_1 + x_2 - 3x_3 + 5x_4 = 5 \end{cases}$$
, 当 λ 取()时, 方程组有解.
$$x_2 + 2x_3 - 2x_4 = 2\lambda$$

- (A) $-\frac{1}{2}$; (B) $\frac{1}{2}$; (C) -1;

- (D)1.

- 4. [3分]
- 二次型 $f(x_1,x_2,x_3) = x_1^2 + 6x_1x_2 + 4x_1x_3 + x_2^2 + 2x_2x_3 + tx_3^2$, 当 t = () 时,其秩为2.
- (A) 0;
- (B) 2; (C) $\frac{7}{8}$; (D)1.

5. [3分]

已知矩阵 $\begin{bmatrix} 22 & 30 \\ -12 & x \end{bmatrix}$, 有一个特征向量 $\begin{bmatrix} -5 \\ 3 \end{bmatrix}$, 则 x = ().

- (A) -18;
- (B) -16;
- (C) -14;
- (D) -12.

- 二、填空题 (每小题 3 分, 共 15 分)

设向量组 $\alpha_1 = [1,1,1]^T, \alpha_2 = [1,2,1]^T, \alpha_3 = [2,3,t]^T$ 则当 $t = _____$ 时, $\alpha_1,\alpha_2,\alpha_3$ 线性相

美.

2. [3分]

- 3. [3分] 设A为4阶方阵, A*为A的伴随矩阵, 且A的秩为2,则 A*的秩为__
- 4. [3分]

若 A 的阶数为 4×5, 而 A 的秩为 2, 则齐次线性方程组 AX=0 的基础解系所含解向量 个数为 .

5. [3分]

设
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
,则 A 的特征值为______.

三、试解下列各题(本题共3小题,每小题6分,共18分)

得分

1. [6 分] 计算行列式

[5 2 0 0]	四、、试解下列各题(本题共2小题,每小题6分,共12分)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	得分
$\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$	II: $\beta_1 = [1,2,1]^T$, $\beta_2 = [2,3,4]^T$, $\beta_3 = [3,4,3]^T$.试求: 从基 $\alpha_1,\alpha_2,\alpha_3$ 到基
	eta_1,eta_2,eta_3 的过渡矩阵.
3. $[6 分]$ 将向量 β 表示为向量组 $\alpha_1,\alpha_2,\alpha_3$ 的一个线	性组合,其中
$\beta = [3,5,-6], \ \alpha_1 = [1,0,1], \ \alpha_2 = [1,1,1], \ \alpha_3 = [0,-1,-1].$	[得分] 2. [6分] 若二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 2x_3^2 + 2tx_1x_2 + 2x_1x_3$ 是正定的
	确定参数 t .

得分

五、[本题8分]

设
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,而 B 满足关系式 AB=A+B,试求矩阵 B .

得分

六、[本题 12 分]

设有方程组
$$\begin{cases} x_1 + 4x_2 - 3x_3 = 0 \\ 3x_1 + 2x_2 + x_3 = 10b & 讨论当常数 a , b 取何值时方程组有唯一
$$x_2 + ax_3 = -2 \end{cases}$$$$

解,有无穷多解或无解?且在无穷多解时求出其通解.

得分

七、[本题 12 分]

已知矩阵
$$A = \begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
 与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,求 x 与 y 的值,并求可逆矩阵 P ,

使 $P^{-1}AP = B$.

得分

八、证明题(本题共2小题,每题4分,共8分)

1. $[4 \, \mathcal{G}]$ 若 n 阶方阵 A 满足关系式 $A^2 - 2A + 2E = 0$, 其中 E 为单位阵, 试证

A-E为可逆, 并求 $(A-E)^{-1}$.

2. [4分] 设线性方程组

得分
$$\begin{cases} x_1 + a_1 x_2 + a_1^2 x_3 = a_1^3 \\ x_1 + a_2 x_2 + a_2^2 x_3 = a_2^3 \\ x_1 + a_3 x_2 + a_3^2 x_3 = a_3^3 \\ x_1 + a_4 x_2 + a_4^2 x_3 = a_4^3 \end{cases}$$

证明: 若 a_1, a_2, a_3, a_4 两两不相等,则此线性方程组无解.