- 1. A dipole \vec{p} is at a distance r from a point charge q and oriented so that \vec{p} makes an angle θ with the vector \vec{r} from q to \vec{p} .
 - (a) What is the force on \vec{p} ?
 - (b) What is the force on q?
- 2. \vec{p}_1 and \vec{p}_2 are perfect dipoles a distance r apart. \vec{p}_2 is along \vec{r} while \vec{p}_1 is orthogonal to \vec{r} . Calculate the torque on the dipoles. Are they equal and opposite?

- 3. A sphere of radius R carries a polarization $\vec{P}(\vec{r}) = k\vec{r}$
 - (a) Calculate the bound charges ρ_b and σ_b and the electric field caused due to them inside and outside the sphere.
 - (b) Find the electric field using the Gauss' law for the displacement vector \vec{D} given as $\oint_S \vec{D} \cdot \hat{n} da = Q_{f(enc)}$.
- 4. A point charge q is imbedded at the center of a sphere of linear dielectric material with susceptibility χ_e and radius R. Find the electric field, the polarization, and the bound charge densities, ρ_b and σ_b . What is the total bound charge on the surface? Where is the compensating negative bound charge located?
- 5. At the interface between one linear dielectric and another the electric field lines bend. Show that $\tan \theta_2 / \tan \theta_1 = \epsilon_2 / \epsilon_1$ assuming there is no free charge at the boundary. Refer to fig.1 below.
- 6. Suppose the field inside a large piece of dielectric is $\vec{\mathbf{E}}_0$, so that the electric displacement is $\vec{\mathbf{D}}_0 = \epsilon_0 \vec{\mathbf{E}}_0 + \vec{\mathbf{P}}$.
 - (a) If we have a narrow cylindrical(needle-like) cavity inside the material running parallel to \vec{P} find the field near the center of the cavity in terms of \vec{E}_0 and \vec{P} . Also find the

displacement at the center of the cavity in terms of $\vec{\mathbf{D}}_0$ and $\vec{\mathbf{P}}.$

(b) Do the same for a thin wafer shaped cavity perpendicular to \vec{P} .