Section 10.3 The Complex Plane; De Moivre's Theorem

1 Plot Points in the Complex Plane

Complex plane

Plotting a Point in the Complex Plane

Plot the point corresponding to $z = \sqrt{3} - i$ in the complex plane.

Let z = x + yi be a complex number. The **magnitude** or **modulus** of z, denoted by |z|, is defined as the distance from the origin to the point (x, y). That is,

$$|z| = \sqrt{x^2 + y^2} \tag{1}$$

If $r \ge 0$ and $0 \le \theta < 2\pi$, the complex number z = x + yi may be written in **polar form** as

$$z = x + yi = (r\cos\theta) + (r\sin\theta)i = r(\cos\theta + i\sin\theta)$$
 (4)

Writing a Complex Number in Polar Form

Write an expression for $z = \sqrt{3} - i$ in polar form.

$$r = \sqrt{x^2 + y^2} = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$$

$$\sin \theta = \frac{y}{r} = \frac{-1}{2}, \qquad \cos \theta = \frac{x}{r} = \frac{\sqrt{3}}{2}, \qquad 0 \le \theta < 2\pi$$

The angle θ , $0 \le \theta < 2\pi$, that satisfies both equations is $\theta = \frac{11\pi}{6}$. With $\theta = \frac{11\pi}{6}$ and r = 2, the polar form of $z = \sqrt{3} - i$ is

ight © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Plotting a Point in the Complex Plane and Converting from Polar to Rectangular Form

Plot the point corresponding to $z = 2(\cos 30^{\circ} + i \sin 30^{\circ})$ in the complex plane, and write an expression for z in rectangular form.

$$z = 2(\cos 30^{\circ} + i \sin 30^{\circ}) = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \sqrt{3} + i$$

THEOREM

Let $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ be two complex numbers. Then

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$
 (5)

If $z_2 \neq 0$, then

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)]$$
 (6)

Finding Products and Quotients of **Complex Numbers in Polar Form**

If
$$z = 4(\cos 35^{\circ} + i \sin 35^{\circ})$$
 and $w = 2(\cos 80^{\circ} + i \sin 80^{\circ})$ find

(b)
$$\frac{z}{w}$$

(b) $\frac{2}{}$ Leave answer in polar form.

(a)
$$zw = \left[4\left(\cos 35^{\circ} + i\sin 35^{\circ}\right)\right] \left[2\left(\cos 80^{\circ} + i\sin 80^{\circ}\right)\right]$$

$$= (4 \cdot 2) \left[\cos (35^{\circ} + 80^{\circ}) + i \sin (35^{\circ} + 80^{\circ}) \right] = 8 \cos 115^{\circ} + i \sin 115^{\circ}$$

(b)
$$\frac{z}{w} = \frac{4(\cos 35^\circ + i \sin 35^\circ)}{2(\cos 80^\circ + i \sin 80^\circ)} = \frac{4}{2} \left[\cos(35^\circ - 80^\circ) + i \sin(35^\circ - 80^\circ) \right]$$

$$=2\left[\cos(-45^{\circ})+i\sin(-45^{\circ})\right]=2\left(\cos 45^{\circ}-i\sin 45^{\circ}\right)$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)] \left[z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)] \right]$$

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$

4 Use De Moivre's Theorem

THEOREM

De Moivre's Theorem

If $z = r(\cos \theta + i \sin \theta)$ is a complex number, then

$$z^n = r^n[\cos(n\theta) + i\sin(n\theta)]$$

where $n \ge 1$ is a positive integer.

Using De Moivre's Theorem

Write $\left[2(\cos 15^{\circ} + i \sin 15^{\circ})\right]^{4}$ in standard form a + bi.

$$[2(\cos 15^{\circ} + i \sin 15^{\circ})]^{4} = 2^{4}(\cos(4.15^{\circ}) + i \sin(4.15^{\circ}))$$

$$16(\cos 60^{\circ} + i \sin 60^{\circ})$$

$$16\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 8 + 8\sqrt{3}i$$

$$z^n = r^n[\cos(n\theta) + i\sin(n\theta)]$$

Using De Moivre's Theorem

Write $(2+2i)^6$ in standard form a+bi.

First we need 2 + 2i in polar form.

$$r = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$$
 This is in quadrant I. $\theta = \tan^{-1} \frac{2}{2} = \frac{\pi}{4}$

$$(2+2i)^6 = \left[2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^6 = \left(2\sqrt{2}\right)^6 \left(\cos\left(6\cdot\frac{\pi}{4}\right) + i\sin\left(6\cdot\frac{\pi}{4}\right)\right)$$

$$=512\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right) = 512(0-1i) = -512i$$

$$z^n = r^n[\cos(n\theta) + i\sin(n\theta)]$$

5 Find Complex Roots

THEOREM

Finding Complex Roots

Let $w = r(\cos \theta_0 + i \sin \theta_0)$ be a complex number and let $n \ge 2$ be an integer. If $w \ne 0$, there are n distinct complex roots of w, given by the formula

$$z_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) \right]$$
 (8)

where k = 0, 1, 2, ..., n - 1.

Finding Complex Cube Roots

Find the complex cube roots of $-1 + \sqrt{3}i$. Leave your answers in polar form, with the argument in degrees.

$$-1 + \sqrt{3}i = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2(\cos 120^{\circ} + i\sin 120^{\circ})$$

$$z_{k} = \sqrt[3]{2}\left[\cos\left(\frac{120^{\circ}}{3} + \frac{360^{\circ}k}{3}\right) + i\sin\left(\frac{120^{\circ}}{3} + \frac{360^{\circ}k}{3}\right)\right]$$

$$= \sqrt[3]{2}\left[\cos(40^{\circ} + 120^{\circ}k) + i\sin(40^{\circ} + 120^{\circ}k)\right] \qquad k = 0, 1, 2$$

$$z_{0} = \sqrt[3]{2} \left[\cos(40^{\circ} + 120^{\circ} \cdot 0) + i \sin(40^{\circ} + 120^{\circ} \cdot 0) \right] = \sqrt[3]{2} \left(\cos 40^{\circ} + i \sin 40^{\circ} \right)$$

$$z_{1} = \sqrt[3]{2} \left[\cos(40^{\circ} + 120^{\circ} \cdot 1) + i \sin(40^{\circ} + 120^{\circ} \cdot 1) \right] = \sqrt[3]{2} \left(\cos 160^{\circ} + i \sin 160^{\circ} \right)$$

$$z_{2} = \sqrt[3]{2} \left[\cos(40^{\circ} + 120^{\circ} \cdot 2) + i \sin(40^{\circ} + 120^{\circ} \cdot 2) \right] = \sqrt[3]{2} \left(\cos 280^{\circ} + i \sin 280^{\circ} \right)$$

$$z_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\theta_0}{n} + \frac{2k\pi}{n} \right) \right]$$

Finding Complex Cube Roots

Find the complex cube roots of $-1 + \sqrt{3}i$. Leave your answers in polar form, with the argument in degrees.

