14:17 2025年4月5日

冲激函数的抽样性质: $\int_{-\infty}^{+\infty} f(t) \cdot \delta(t-t_0) = f(t_0)$

 $\delta(t)$ 的尺度变换特性: $\delta(at) = \frac{1}{|a|}\delta(t)$

 $\begin{array}{c} \mathbf{e}(at+b) = \mathbf{e}(t) & \begin{array}{c} \overleftarrow{\mathbf{p}} \overleftarrow{\mathbf{E}} & \mathbf{e}(t+b) \\ & & \\ & & \\ \hline & & \\$

③ 平移t: $f_2(t-\tau)$ ④ 相乘 $f_1(t) \cdot f_2(t-\tau)$ ⑤ 积分 $\int_{-\infty}^{+\infty} f_1(t) \cdot f_2(t-\tau) d\tau$

解析法求卷积:使用门函数确定积分的上下限

例: 计算 $f_1(t) * f_2(t)$

(1) $f_1(t) = f_2(t) = u(t) - u(t-1)$
$$\begin{split} f_1(t)*f_2(t) &= \int_{-\infty}^{+\infty} [u(\tau) - u(\tau-1)] * [u(t-\tau) - u(t-\tau-1)] \, \mathrm{d}\tau \\ &= \int_0^t \mathrm{d}\tau \cdot u(t) - \int_0^{t-1} \mathrm{d}\tau \cdot u(t-1) - \int_1^t \mathrm{d}\tau \cdot u(t-1) + \int_1^{t-1} \mathrm{d}\tau \cdot u(t-2) \end{split}$$
 卷积的微分性质: $\frac{\mathrm{d}}{\mathrm{d}t} \big[f_1(t) * f_2(t) \big] = \left[\frac{\mathrm{d}}{\mathrm{d}t} f_1(t) \right] * f_2(t) = f_1(t) * \left[\frac{\mathrm{d}}{\mathrm{d}t} f_2(t) \right] \end{split}$

即: 微分的卷积等于卷积的微分

例:已知某线性非时变系统的初始储能为0,当系统激励为e1(t)时,系统响应为r1(t),画出系统激 励为e2(t)时的 系统响应 $r_2(t)$ 的波形。

判断系统的线性、非时变性、因果性:

线性: (齐次性: $e(t) \rightarrow r(t) \Rightarrow \alpha \cdot e(t) \rightarrow \alpha \cdot r(t)$ 看加性: $\alpha \cdot e_1(t) + \beta \cdot e_2(t) \rightarrow \alpha \cdot r_1(t) + \beta \cdot r_2(t)$

时不变性: $e(t-t_0) \rightarrow r(t-t_0)$

因果性: 系统输出是否依赖于未来的输入

例: $r(t) = \mathbf{e}(t) \cdot \mathbf{e}(t)$: $r_1(t) = e_1(t)^2$, $r_2(t) = e_2(t)^2$, 但 $r(t) = \left(\alpha \cdot e_1(t) + \beta \cdot e_2(t)\right)^2 \neq r_1(t) + r_2(t)$

:: 不满足线性 (叠加性)

例: $r(t) = t \cdot e(t)$: $r(t - t_0) = (t - t_0) \cdot e(t - t_0) \neq t \cdot e(t - t_0)$. 不满足时不变性