

Adaptive Software Systems GS/EECS 6432

Marin Litoiu

Department of Electrical Engineering and Computer Science
York University
mlitoiu@yorku.ca
http://www.ceraslabs.com

Syllabus Overview

- Introduction to Adaptive Software
- Requirements of Cyber-Physical Systems, Ultra Large Scale Systems, Internet of Things
- Adaptive Architectures
- Feedback Loops
- MAPE-K: Monitoring, Analysis, Planning, Execution
- MIAC, MRAC, Hierarchical Architectures
- Software Defined Infrastructures
- Cloud Computing, Big Data, Containers
- Runtime Models for Elastic Applications
- Machine Learning, Queuing, Control Theory Linear Models
- Analysis and Planning
- Searched Based, Proportional, Integrative, Derivative Controllers, Control Theory
- Engineering Adaptive Applications
- Policy Languages, Utility Functions
- <u>Case Studies</u>

Summary

We looked at two different domains

- IOT systems are software intensive
- What is adapted is the "thing," a car, a city, a factory
- Software systems(autonomic): what is adapted is the software itself
- You can adapt its performance, security, configuration
- To adapt (change structure or behavior), need to
- Monitor/sense the environment
- Analyze the context and state
- Perform changes as the system runs

Summary: Feedback Systems

 Merriam-Webster's Online Dictionary the return to the input of a part of the output of a machine, system, or process

- The main goal: compensates for uncertainties (p) at design time
- At design time, it is important to know the direction of the disturbances, not the magnitude
- It simplifies the design of the system (avoids feedforward)
- The system is the best model
- It is universal and effective, works the same for cruise control, direction control, distance control, etc..

Summary: Autonomic Computing

- An approach to self-managed computing systems with a minimum of human interference.
- The term derives from the body's autonomic nervous system, which controls key functions without conscious awareness or involvement.
- Means
- Self configuring
- Self healing
- Self optimizing
- Self protecting

Architectures

Slides based on

[1] Y Brun, GDM Serugendo, C Gacek, H Giese, H Kienle... - Engineering self-adaptive systems through feedback loops in Software engineering for self-adaptive systems, 2009

[2] Kramer, J., Magee, J.: Self-managed Systems: An Architectural Challenge. In: Future of Software Engineering (FoSE 2007), pp. 259-268, IEEE Computer Society, Washington, DC, USA (2007)

[3] J. O. Kephart and D. M. Chess, "The vision of autonomic computing," in *Computer*, vol. 36, no. 1, pp. 41-50, Jan 2003.

Feedback in Autonomic Computing: MAPE-K Loop[3]

Just another representation of the feedback loop

Focus of on the software architecture

Different terminology

autonomic/adaptive manager replaces the controller

Allows for Hierarchical Control

AC Architecture: Autonomic Manager, Managed Element

Autonomic manager

Managed Element

Autonomic Element as a Feedback Loop

- •Managed Element:
- an object, a process a server, a database
- Provides services
- Is traceable, observable, controllable, comprehensible
- Has sensors and effectors

- •Autonomic Manager:
- Analyzes
- Plans
- Executes

- Monitor:
- logs, traces
- etc

Quality of Autonomic Computing/Feedback Control

- short rise time
- short settling time
- small overshoot
- no oscillations
- stability
- tolerance to perturbations

Autonomic Systems

- An autonomic system= a collection of autonomic elements (sometimes with conflicting individual goals)
- requires conflict resolution
- resource and goal negotiations
- autonomic hardware and middleware

The Road to AC adoption (Maturity Level)

Evolving to Autonomic Computing: Basic

	Basic	Managed	Predictive	IT Autonomic	Business
	Level 1	Level 2	Level 3	Level 4	Autonomic
С					Level 5
h	Multiple sources of				
ar a	system				
ct	generated data				
er		0.41			
.63 .ki	Requires extensive,	Get by			
Kti F	highly skilled IT				
§	staff				
В					
е					
n ef					
it	Manual Autonomic				
S	Manual Autonomic				

Evolving to Autonomic Computing: Managed

ſ	Basic	Managed	Predictive	IT Autonomic	Business
١	Level 1	Level 2	Level 3	Level 4	
١					
	Multiple	Consolidation			
١	sources of system	of data and			
	generated data	actions through management			
١		tools	Take control		
	Requires	IT staff			
١	extensive, highly skilled	analyzes and			
	IT staff	takes actions			
		Greater system awareness			
		Improved productivity			
	Manual				Autonomic

ar a ct er still find B e n ef it

S

e Marin Litolu

Evolving to Autonomic Computing: Predictive

Basic	Managed	Predictive	IT	Business
Level 1	Level 2	Level 3	Autonomic	Autonomic
			Level 4	Level 5
Multiple	Consolidation	System		
sources of system	of data and	monitors,		
generated data	actions through management	correlates and recommends actions		
	tools			
Requires	IT staff	IT staff approves Built-in analysis		sis
extensive, highly skilled	analyzes and	and initiates actions	•	
IT staff	takes actions	a a a a a a a a a a a a a a a a a a a		
	Greater system awareness Improved productivity	Reduced dependency on deep skills Faster/better		
		decision making		

ar a ct er ef it

Manual

Autonomic

Evolving to Autonomic Computing: IT Autonomic

Basic	Managed	Predictive	IT	Business
Level 1	Level 2	Level 3	Autonomic	Autonomic
			Level 4	Level 5
Multiple	Consolidation	System	System	
sources of system	of data and	monitors,	monitors, correlates	
generated	ao ti tll-	correlates and	and takes	
data	n		action	
	Dynamic res	ponse		
Requires				
extensive, highly skilled	analyzes and	approves and	manages performance	
IT staff	takes actions	initiates actions	against	
			ŠLAs	
	Greater system	Reduced	Balanced	
	awareness	dependency on deep skills	human/syste m interaction	
	Improved	ucep skills	III IIILEI ACIIOII	
Manual Autonomic				

ar a er ef it

Autonomic

Evolving to Autonomic Computing: Business Autonomic

Basic	Managed	Predictive	IT	Business
Level 1	Level 2	Level 3	Autonomic	Autonomic
			Level 4	Level 5
Multiple sources of system	Consolidation of data and	System monitors,	System monitors, correlates and	Integrated components dynamically
generated data	actions too Business impact			managed by business rules/policies
Requires extensive, highly skilled IT staff	IT standard analyzes and takes actions	approves and initiates actions	performance against SLAs	IT staff focuses on enabling business needs
	Greater system awareness Improved	Reduced dependency on deep skills	Balanced human/system interaction	Business policy drives IT management
	productivity	Faster/better decision making	IT agility and resiliency	Business agility and resiliency

ar a ct er is ki f ef it

Manual

Evolution; Not Revolution

Managed **Predictive** IT **Business** Basic Level 1 Level 2 **Autonomic** Level 3 **Autonomic** Level 4 Level 5 Consolidation Multiple System System Integrated sources of monitors. components of data and monitors, correlates and system dynamically correlates and generated actions through takes action managed by recommends business data management actions rules/policies tools Requires IT staff IT staff IT staff IT staff focuses extensive. manages analyzes and approves and on enabling highly skilled performance initiates actions business needs IT staff takes actions against SLAs Greater system Reduced Balanced **Business policy** dependency on human/system drives IT awareness deep skills interaction management **Improved** productivity Faster/better IT agility and **Business agility**

er Siki FSBenef

it

S

C

h

ar

a

ct

Manual

Autonomic

Autonomic Computing Adoption Moder Adoption Moder I and Adoption Moder I

AC Reference Architecture

- An Autonomic System (AS) consists of a collection of Autonomic Elements
- An Autonomic Element (AE)
- Contains resources and delivers services to humans or other autonomic elements
- Manages its behaviour in accordance with policies that humans or other AEs have established
- Acts like an agent
- Autonomous, proactive, goal-directed
- Interacts with environment

Kephart, Chess: IEEE Computer, 36(1):41-50, Jan. 2003

Autonomic Manager is a Managed Element

AM's Manageability Endpoint (ME)

AC Hierarchical Reference Architecture

Hierarchical MAPE Architecture [2]

Figure 1 – Three Layer Architecture Model for Self-Management.

Architectures inspired by control theory [1]

- Model Reference Adaptive Controllers—MRAC
 Also referred to as Model Reference Adaptive System (MRAS)
 - Closed loop controller with parameters that can be updated to change the response of the system
 - The output of the system is compared to a desired response from a reference model (e.g., simulation model)
 - The control parameters are updated based on this error
 - The goal is for the parameters to converge to ideal values that cause the managed system response to match the response of the reference model.

Model Reference Adaptive Controllers—MRAC

- Model Identification Adaptive Controllers—MIAC
 Perform system identification while system is running to modify the control laws
- Create model structure and perform parameter estimation using the Least Squares method
- Cautious adaptive controllers
- Use current system identification to modify control law, allowing for system identification uncertainty
- Certainty equivalent adaptive controllers
- Take current system identification to be the true system, assume no uncertainty
- Nonparametric adaptive controllers
- Parametric adaptive controllers

Model Identification Adaptive Controllers—MIAC

Feedback in CPS/IoT can be Hierarchical, too1,2

Hierarchical Autonomic Manager

Managed Thing

Computes paths from A to B; reasons about the cost (risk and time);ranks the paths

Sequence of states: "Drive-down-road", "handle intersection," etc..

Controls speed, direction

Sensors and Actuators

1.Tartan Racing: A Multi-Modal Approach to the DARPA Urban Challenge, 2007 2.Rod Brookes, Elephants Don't Play Chess, 1990

Feedback loops for Smart IoT

Hierarchical Control for PS

Autonomic Control for Software

Further readings (mandatory)

- Y Brun, GDM Serugendo, C Gacek, H Giese, H
 Kienle... Engineering self-adaptive systems
 through feedback loops in Software engineering
 for self-adaptive systems, 2009
- Kramer, J., Magee, J.: Self-managed Systems: An Architectural Challenge. In: Future of Software Engineering (FoSE 2007), pp. 259-268, IEEE Computer Society, Washington, DC, USA (2007)

- Conclusions

 Autonomic computing is about self-managed systems
- Increase resilience and improve QoS
- Increase the Return On Investment (skills, maintenance)
- Autonomic computing is rather evolutionary than revolutionary
- **Architecture**
- MAPE-K
- Can be decentralized or centralized
- Can be hierarchical
- In essence is a feedback, but the focus is on components
- IoT Complex Systems have two main feedback (MAPE-k) loops
- PS loop controls the "thing"
- CS loop controls the software
- How would we manage loop interactions?