Integrability Lecture 12

Mathematics - 1st year, English

Faculty of Computer Science Alexandru Ioan Cuza University of Iasi

e-mail: corina.forascu@gmail.com

facebook: Corina Forăscu

January 8, 2019

Integral

The notion of integral is central not only in mathematics, serving to:

- the determination of the state of a dynamical process whose speed of evolution is known;
- the computation of: numeric characteristics of geometric shapes (length, area, volume, position coordinates, center of mass);
- of physical quantities (momentum, potential or work);
- numeric characteristics of random variables in probability (distribution function, mean and variance).

Outline of the lecture

- Antiderivatives
- Riemann Integral
- Improper integrals
- Integrals with parameters
 - Gamma and Beta functions

Antiderivatives

Definition

Let $I \subseteq \mathbb{R}$ with $\mathring{I} \neq \emptyset$ and $f: I \to \mathbb{R}$.

- A function $F: I \to \mathbb{R}$ is called an *antiderivative* of f if F is derivable on I and $F'(x) = f(x), \forall x \in I$.
- If f has at least an antiderivative on I, then the set of all antiderivatives of f is called the *indefinite integral* of f and is denoted $\int f(x)dx$.

Remarks.

1. If $F: I \to \mathbb{R}$ is antiderivative of a function $f: I \to \mathbb{R}$, then any other antiderivative of f has the form F + c, where c is a real constant.

- By denoting $\mathcal C$ the set of all constant functions on I, we have $\int f(x)dx = F + \mathcal C$.
- By language abuse, we can write $\int f(x)dx = F(x) + c$, $\forall x \in I$.
- **2.** If $f: I \to \mathbb{R}$ is a derivable function on I, then f is an antiderivative of f'.

- **3.** Any antiderivative of a function $f:I\to\mathbb{R}$ is continuous, because any derivable function is continuous.
- **4.** The space $\mathcal{P}(I)$ of all functions $f:I\to\mathbb{R}$ which admit antiderivatives is a linear space (subspace of $\mathscr{F}(I;\mathbb{R})$), because

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx, \ \forall \alpha, \beta \in \mathbb{R}.$$

5. Any function $f:I\to\mathbb{R}$ admiting antiderivatives has the so called *Darboux property*: for any $x_1,x_2\in I$ and any λ between $f(x_1)$ and $f(x_2)$, there exists \tilde{x} between x_1 and x_2 such that $f(\tilde{x})=\lambda$.

List of usual indefinite integrals:

- $\int \sin x dx = -\cos x + c$; $\int \cos x dx = \sin x + c$;
- $\int \sinh x \, dx = \int \frac{e^x e^{-x}}{2} \, dx = \cosh x + c;$ $\int \cosh x \, dx = \int \frac{e^x + e^{-x}}{2} \, dx = \sinh x + c,$

where $c \in \mathbb{R}$.

Integration by parts

Let $f, g: I \to \mathbb{R}$ two derivabile functions, with f' and g' continuous on I. Then

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx, \ x \in I,$$

We can apply this formula in order two complete the list of indefinite integrals:

•
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{|a|} + c$$
, $a \in \mathbb{R}_+^*$;

•
$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2}| + c$$
, $a \in \mathbb{R}^*$;

Integration by parts is recommended for integrals of the form

$$\int P(x)f(x)dx,$$

where $P \in \mathbb{R}[X]$ and f is an elementary function: e^x , $\ln x$, $\arcsin x$, $\arccos x$, $\arctan x$, $\arg x$, etc. By applying this method, one can reduce by one unit the degree of the polynomial function P.

Method of algebraic transformations

- It is mostly used for computing the antiderivatives of *rational functions* of the form $f(x) = \frac{P(x)}{Q(x)}$, where $P, Q \in \mathbb{R}[X]$, defined on an interval $I \subseteq \mathbb{R}$ such that $\mathring{I} \neq \emptyset$ and $Q(x) \neq 0$ on I.
- It is well-known (from algebra) that f can be uniquely decomposed as a sum of "simple" rational functions

$$f(x) = G(x) + \frac{H(x)}{Q(x)} = G(x) + \sum_{1} \frac{A_{k,m}}{(x - x_k)^m} + \sum_{2} \frac{B_{k,m}x + C_{k,m}}{(x^2 + p_k x + q_k)^m},$$

where:

- G is a polynomial function (equal to 0 when deg $P < \deg Q$),
- H still a polynomial function with deg $H < \deg Q$,
- ullet Σ_1 is a finite sum with respect to all real roots x_k of Q and
- \sum_2 is a finite sum with respect to all complex roots of Q (with $p_k, q_k \in \mathbb{R}$ such that $p_k^2 4q_k < 0$).
- The integration of f is then reduced to computing the antiderivatives of all components of the above decomposition.

If Q has multiple roots, computing the antiderivative of $\frac{P(x)}{Q(x)}$ can be also done by *Gauss-Ostrogradski method*, based on the formula

$$(*) \qquad \int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx, \ x \in I,$$

where

- ullet $Q_1 \in \mathbb{R}[X]$ is the greatest common divisor of Q and Q',
- $Q_2 = \frac{Q}{Q_1}$ and
- P_1 , P_2 are polynomials having the degree one unit smaller than deg Q_1 , respectively deg Q_2 .

Finding P_1 and P_2 can be realized by derivating relation (*), i.e.

$$\frac{P(x)}{Q(x)} = \frac{P_1'(x)Q_1(x) - P_1(x)Q_1'(x)}{Q_1^2(x)} + \frac{P_2(x)}{Q_2(x)}, \ x \in I.$$

Method of trigonometric transformations

It is often combined with the *substitution method* and is used for computing the antiderivatives of functions expressed with the help of trigonometric functions.

• For trigonometric integrals of the form

$$\int E(\sin x, \cos x) dx, \ x \in I = (-\pi, \pi),$$

where E is a rational function of two variabiles: substitution $tg \frac{x}{2} = t$.

- Since $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$, $x = 2 \arctan t$, $dx = \frac{2dt}{1+t^2}$: transformation into a rational function in the new variable t.
- There are some cases in which the computations can be simplified, by avoiding the standard substitution $tg \frac{x}{2} = t$:
 - i) if $E(-\sin x, \cos x) = -E(\sin x, \cos x)$, i.e. E is odd in $\sin x$, then the substitution $\cos x = t$ is recommended;
 - ii) if $E(\sin x, -\cos x) = -E(\sin x, \cos x)$, *i.e.* E is odd in $\cos x$, then the substitution $\sin x = t$ is recommended;
 - iii) if $E(-\sin x, -\cos x) = E(\sin x, \cos x)$, *i.e.* E is even in $\sin x$ and $\cos x$, then the substitution $\operatorname{tg} x = t$ is recommended.

Irrational integrals

We still apply the substitution method for computing the so-called *irrational integrals*, in order to reduce them to integrals of rational functions.

We use the *Euler substitutions* for integrals of the form

$$\int E\left(x,\sqrt{ax^2+bx+c}\right)dx,\ x\in I,$$

with $a, b, c \in \mathbb{R}$ and E a rational function of two variables. The change of variable is done according to each of the following case:

i)
$$\sqrt{ax^2 + bx + c} = \pm x\sqrt{a} \pm t$$
, when $a > 0$;

ii)
$$\sqrt{ax^2 + bx + c} = \pm tx \pm \sqrt{c}$$
, when $c > 0$;

iii) $\sqrt{ax^2 + bx + c} = t(x - x_0)$, when $b^2 - 4ac > 0$, where x_0 is a real root of the equation $ax^2 + bx + c = 0$.

For irrational integrals of the form

$$\int E\left(x, \left(\frac{ax+b}{cx+d}\right)^{p_1/q_1}, \ldots, \left(\frac{ax+b}{cx+d}\right)^{p_k/q_k}\right) dx, \ x \in I,$$

where E is a rational function of k+1 ($k\in\mathbb{N}^*$) real variables, $a,b,c,d\in\mathbb{R}$, $a^2+b^2+c^2+d^2\neq 0$, $cx+d\neq 0$, $\forall x\in I$, $\frac{ax+b}{cx+d}>0$, $\forall x\in I$, $p_i\in\mathbb{Z}$, $q_i\in\mathbb{N}^*$, $\forall i=\overline{1,k}$, we use the substitution $\frac{ax+b}{cx+d}=t^{q_0}$, where q_0 is the least common multiple of q_1,q_2,\ldots,q_k .

Chebyshev substitutions are used for the calculus of bynomial integrals, having the form

$$\int x^p (ax^q + b)^r dx, \ x \in I,$$

where $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ and $p, q, r \in \mathbb{Q}$. The computation of such integrals is reduced to that of the antiderivatives of irrational functions only in the following three cases:

- i) $r \in \mathbb{Z}$: the substitution $x = t^m$, with m being the least common multiple of p and q;
- ii) $\frac{p+1}{q} \in \mathbb{Z}$: the substitution $ax^q + b = t^\ell$, where ℓ is the denominator of r.
- iii) $\frac{p+1}{q} + r \in \mathbb{Z}$: the substitution $a + bx^{-q} = t^{\ell}$, ℓ being the denominator r.

Computing integrals of the form

$$\int E\left(a^{r_1x}, a^{r_2x}, \ldots, a^{r_nx}\right) dx,$$

where $a \in \mathbb{R}_+^* \setminus \{1\}$, $r_1, r_2, \ldots, r_n \in \mathbb{Q}$ and E is a rational functions of n $(n \in \mathbb{N}^*)$ real variables can be done by the substitution $a^x = t^{\nu}$, where t > 0 and ν is the least common multiple of the denominators of r_1, r_2, \ldots, r_n .

Elementary functions that do not possess elementary antiderivatives:

elliptic integrals

$$\int \sqrt{(1-a^2\sin^2 x)^{\pm 1}} dx, \ a \in (0,1),$$

- $\int \frac{dx}{\ln x}$, $\int \frac{e^x}{x} dx$;
- $\int e^{-x^2} dx$ (Poisson antiderivative);
- $\int \cos(x^2) dx$, $\int \sin(x^2) dx$ (Fresnel antiderivatives).

Riemann Integral

Let $a, b \in \mathbb{R}$, a < b and $f : [a, b] \to \mathbb{R}$.

Definition

- We call a partition of the interval [a, b] a finite set $\Delta = \{x_0, x_1, \ldots, x_n\}$ such that $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. The intervals $[x_i, x_{i+1}]$ $(i = \overline{0, n-1})$ are called *subintervals* of the partition Δ .
- The number

$$\|\Delta\| = \max_{1 \le i \le n} \left\{ x_i - x_{i-1} \right\}$$

(denoted also by $\nu(\Delta)$) is called the *mesh* or *norm* of the partition Δ .

- A partition Δ of the interval [a,b] is called equidistant if $x_i x_{i-1} = \frac{b-a}{n}$, $\forall i = \overline{1,n}$; in this case we have $\|\Delta\| = \frac{b-a}{n}$ and $x_i = a+i\frac{b-a}{n}$, $\forall i = \overline{0,n}$.
- We will denote by $\mathcal{D}[a, b]$ the set of all partitions of a compact interval [a, b].
- If $\Delta_1, \Delta_2 \in \mathcal{D}[a, b]$ and $\Delta_1 \subseteq \Delta_2$, we say that Δ_2 is *finer* than Δ_1 and we denote $\Delta_1 \preceq \Delta_2$.

Definition

Let $\Delta = \{x_0, x_1, ..., x_n\}$ with $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$ be a partition of [a, b].

- An n-uple $\xi_{\Delta} = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$ is called an *intermediary point system* of Δ if $\xi_i \in [x_{i-1}, x_i]$, $\forall i = \overline{1, n}$. The set of all intermediary point systems of Δ is denoted Ξ_{Δ} .
- We call the *Riemann sum* of the function $f:[a,b]\to\mathbb{R}$ with respect to Δ and an intermediary point system $\xi_\Delta=(\xi_1,\xi_2,\ldots,\xi_n)$ the number

$$\sigma_f(\Delta, \xi_{\Delta}) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}).$$

Definition

The function $f:[a,b]\to\mathbb{R}$ is called *Riemann integrable* (or \mathcal{R} -integrable) if there exists a real number I, called the *Riemann integral* of f, such that for any $\varepsilon>0$, there exists $\delta_{\varepsilon}>0$ such that for any partition $\Delta\in\mathcal{D}[a,b]$ with $\|\Delta\|<\delta_{\varepsilon}$ and any $\xi_{\Delta}\in\Xi_{\Delta}$ we have $|\sigma_f(\Delta,\xi_{\Delta})-I|<\varepsilon$.

The Riemann integral (which is unique) is denoted by

$$\int_{a}^{b} f(x) dx \quad \text{or} \quad (\mathcal{R}) \int_{[a,b]} f(x) dx.$$

The set of all \mathcal{R} -integrable functions on [a, b] is denoted $\mathcal{R}[a, b]$.

Proposition

If a function $f:[a,b] \to \mathbb{R}$ is Riemann integrable, then it is bounded.

Remark. If we denote $\mathcal{B}([a,b])$ the set of all bounded functions $f:[a,b]\to\mathbb{R}$, then $\mathcal{R}[a,b]\subseteq\mathcal{B}([a,b])$.

- ullet The inclusion is strict, because there exist bounded functions which are not $\mathcal{R}\text{-integrable}.$
- An example is the Dirichlet function, $f:[a,b] \to \mathcal{R}$, defined by $f(x) = \begin{cases} 1, & x \in [a,b] \cap \mathbb{Q}; \\ 0, & x \in [a,b] \setminus \mathbb{Q}. \end{cases}$

Theorem (Cauchy criterion of Riemann integrability)

The function $f:[a,b] \to \mathbb{R}$ is \mathcal{R} -integrable if and only if

$$\begin{split} \forall \varepsilon > 0, \ \exists \delta_{\varepsilon} > 0, \ \forall \Delta \in \mathcal{D}[\textbf{a},\textbf{b}], \ \forall \xi_{\Delta}', \xi_{\Delta}'' \in \Xi_{\Delta} : \|\Delta\| < \delta_{\varepsilon} \\ \Rightarrow \left| \sigma_f(\Delta,\xi_{\Delta}') - \sigma_f(\Delta,\xi_{\Delta}'') \right| < \varepsilon. \end{split}$$

Properties

Proposition

- i) If $f \in \mathcal{R}[a, b]$, then $f|_{[c,d]} \in \mathcal{R}[c, d]$, for any interval $[c, d] \subseteq [a, b]$.
- ii) Let $f:[a,b] \to \mathbb{R}$ and $c \in (a,b)$. If $f|_{[a,c]} \in \mathcal{R}[a,c]$ and $f|_{[c,b]} \in \mathcal{R}[c,b]$, then $f \in \mathcal{R}[a,b]$ and

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

iii) If $f \in \mathcal{R}[a, b]$, then $|f| \in \mathcal{R}[a, b]$ and

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

Proposition (continuation)

iv) If $f, g \in \mathcal{R}[a, b]$, then $f \cdot g \in \mathcal{R}[a, b]$ and the following Cauchy-Schwarz inequality for \mathcal{R} -integrable functions holds:

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \left(\int_a^b f^2(x)\,dx\right)\left(\int_a^b g^2(x)\,dx\right).$$

- v) If $f \in \mathcal{R}[a, b]$ and $|f(x)| \ge \mu > 0$, $\forall x \in [a, b]$, then $\frac{1}{f} \in \mathcal{R}[a, b]$.
- vi) If $f,g\in\mathcal{R}[a,b]$ and $lpha,eta\in\mathbb{R}$, then $lpha f+eta g\in\mathcal{R}[a,b]$ and

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

(in other words, $\mathcal{R}[a,b]$ is a linear subspace of $\mathscr{F}([a,b];\mathbb{R})$).

vii) If $f \in \mathcal{R}[a, b]$ and $f(x) \ge 0$, $\forall x \in [a, b]$, then $\int_a^b f(x) dx \ge 0$.

Remarks.

1. A generalization of Cauchy-Schwarz inequality is, similar to finite sums of real numbers, $H\ddot{o}lder's$ inequality pentru for \mathcal{R} -integrable functions:

$$\left| \int_a^b f(x)g(x)dx \right| \le \left(\int_a^b |f(x)|^p dx \right)^{\frac{1}{p}} \left(\int_a^b |g(x)|^q dx \right)^{\frac{1}{q}},$$

where $f, g \in \mathcal{R}[a, b]$, $p, q \in (1, +\infty)$, with $\frac{1}{p} + \frac{1}{q} = 1$.

2. The Riemann integral is a monotone functional, *i.e.* if f, $g \in \mathbb{R}[a, b]$ such that $f(x) \leq g(x)$, $\forall x \in [a, b]$, then

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

3. If $f \in \mathcal{R}[a, b]$, we define $\int_b^a f(x) dx := -\int_a^b f(x) dx$ and $\int_a^a f(x) dx := 0$.

4. Let $f \in \mathcal{R}[a,b]$ and $m = \inf_{x \in [a,b]} f(x) \in \mathbb{R}$, $M = \sup_{x \in [a,b]} f(x) \in \mathbb{R}$. By the monotonicity of the Riemann integral, we have

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Moreover, if $f \in C([a,b])$ (i.e., f is continuous on [a,b]), then there exists $x_1, x_2 \in [a,b]$ such that $f(x_1) = m$, $f(x_2) = M$; it follows that

$$f(x_1) \le \frac{1}{b-a} \int_a^b f(x) dx \le f(x_2)$$

Since f has the Darboux property (implied by the continuity of f), there exists c between x_1 and x_2 (with possibility of equality) such that

 $f(c) = \frac{1}{h-a} \int_a^b f(x) dx$, i.e. the following mean equality holds:

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Darboux sums

If $f:[a,b] \to \mathbb{R}$ is a bounded function and $\Delta = \{x_0,x_1,\ldots,x_n\}$ with $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$ is a partition of [a,b], we can define the lower and upper Darboux sums associated with Δ by

$$s_f(\Delta) := \sum_{i=1}^n m_i(x_i - x_{i-1});$$

 $S_f(\Delta) := \sum_{i=1}^n M_i(x_i - x_{i-1}),$

where
$$m_i := \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 and $M_i := \sup_{x \in [x_{i-1}, x_i]} f(x)$, $\forall i = \overline{1, n}$.

Definition

The number $\underline{I}:=\sup_{\Delta\in\mathcal{D}[a,b]}s_f(\Delta)$ is called the *lower Darboux integral*, while the

number $\bar{I}:=\inf_{\Delta\in\mathcal{D}[a,b]}S_f(\Delta)$ is called the *upper Darboux integral*.

We always have $\underline{I} \leq \overline{I}$.

Theorem (Darboux criterion of Riemann integrability)

Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then f is Riemann integrable if and only if $\underline{I}=\overline{I}$, condition which is equivalent to

$$\forall \varepsilon > 0, \ \exists \Delta_{\varepsilon} \in \mathcal{D}[a,b] : S_f(\Delta_{\varepsilon}) - s_f(\Delta_{\varepsilon}) < \varepsilon.$$

In this case, $\underline{I} = \overline{I} = \int_a^b f(x) dx$.

Using the Cauchy or Darboux criteria, one can highlight some important categories of functions which are Riemann integrable.

Theorem

Let $f : [a, b] \to \mathbb{R}$ be a function.

- i) If $f \in C([a, b])$, then $f \in \mathcal{R}[a, b]$.
- ii) If f is monotone on [a, b] (or, more generally, piecewise monotone on [a, b], i.e., $f|_{[c_{i-1}, c_i]}$ is monotone for each $i = \overline{1, n}$, where $a = c_0 < c_1 < \ldots < c_{n-1} < c_n = b$), then $f \in \mathcal{R}[a, b]$.

Leibniz-Newton formula

Theorem

Let $f:[a,b] o \mathbb{R}$ be a Riemann integrable function. We define $F:[a,b] o \mathbb{R}$ by

$$F(x) = \int_a^x f(t) dt, \ x \in [a, b].$$

Then:

i) $F \in C([a, b])$; moreover, there exists L > 0 such that

$$|F(x) - F(\tilde{x})| \le L|x - \tilde{x}|, \ \forall x, \tilde{x} \in [a, b];$$

- ii) if f is continuous in some $x_0 \in [a, b]$, then F is derivable in x_0 and $F'(x_0) = f(x_0)$.
- if $f \in C([a, b])$, then F is an antiderivative of f;
- if $f \in C([a, b])$ and F' = f, then the *Leibniz-Newton* formula holds:

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} := F(b) - F(a).$$

• In order to compute the Riemann integral of a function $f \in C([a, b])$, we can use the *change of variables*, by the formula

$$\int_{\alpha}^{\beta} (f \circ \varphi)(t) \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx,$$

if $\varphi : [\alpha, \beta] \to [a, b]$ is a C^1 -function.

A second change of variables formula, equivalent to the first one, is

$$\int_{a}^{b} f(x) dx = \int_{\psi^{-1}(a)}^{\psi^{-1}(b)} (f \circ \psi)(t) \psi'(t) dt,$$

 $\psi: [a, b] \to [\alpha, \beta]$ is a bijective, C^1 -function.

 Another way of computing Riemann integrals is the integration by parts method, given by the formula

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx,$$

for $f, g : [a, b] \to \mathbb{R}$ derivable on [a, b] with $f', g' \in \mathcal{R}[a, b]$ (in particular, $f, g \in C^1[a, b]$).

The uniform convergence of functions preserves the Riemann integrablity, as the following result asserts:

Proposition

Let $(f_n)_{n\in\mathbb{N}^*}\subseteq \mathcal{R}[a,b]$ be a uniformly convergent sequence of functions to $f:[a,b]\to\mathbb{R}$. Then $f\in\mathcal{R}[a,b]$ and

$$\int_{a}^{b} f(x)dx \left(= \int_{a}^{b} \lim_{n \to \infty} f_{n}(x)dx \right) = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx.$$

Improper integrals

A natural extension of the Riemann integral:

- the function to be integrated is unbounded or
- the interval of integration is unbounded.

Both cases can be reduced to the case where the interval of integration is not compact, when deal with the so-called *improper integrals*.

We will give the definition of improper integrals only on intervals of the form [a,b) with $a\in\mathbb{R},\ b\in\overline{\mathbb{R}},\ a< b$, the case of intervals (a,b] or (a,b) (or even the case $(a,b)\setminus\{\gamma_1,\ldots,\gamma_n\}$ with $\gamma_1,\ldots,\gamma_n\in(a,b)$) being treated in a similar manner.

Definition

Let $f:[a,b)\to\mathbb{R}$ such that f is locally Riemann integrable on [a,b), i.e. $f\in\mathcal{R}[a,c]$ for any $c\in(a,b)$.

• If there exists the limit

$$I := \lim_{c \nearrow b} \int_{a}^{c} f(x) dx \in \overline{\mathbb{R}},$$

we call I the (generalized) Riemann integral of f on [a,b), denoted $\int_a^{b-0} f(x) dx$ (or $(\mathcal{R}) \int_{[a,b)} f(x) dx$). If $b=+\infty$, I can be simply denoted $\int_a^{+\infty} f(x) dx$.

- If $I \in \mathbb{R}$, we say that f is improperly Riemann integrable on [a, b) or the integral $\int_a^b f(x)dx$ is convergent (shortly, $\int_a^b f(x)dx$ (C)).
- If $I \in \{-\infty, +\infty\}$ or the limit $\lim_{c \nearrow b} \int_a^c f(x) dx$ does not exist, we say that the integral $\int_a^b f(x) dx$ is divergent (shortly, $\int_a^b f(x) dx$ (D)).

Similar notations can be established in the case of intervals (a, b] or (a, b): $\int_{a-0}^{b} f(x) dx$, (or (\mathcal{R})) $\int_{(a,b]}^{b} f(x) dx$), $\int_{-\infty}^{b} f(x) dx$, respectively $\int_{a+0}^{b-0} f(x) dx$ (or

Principal value

Suppose that $f:[a,b]\setminus\{c\}\to\mathbb{R},\ c\in(a,b)$ such that f is locally Riemann integrable function on $[a,b]\setminus\{c\}$. If the limit

$$\lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right)$$

exists, we call it the *principal value* of the integral $\int_a^b f(x) dx$. If, moreover, this limit is finite, we say that f is integrable on [a, b] in the sense of the principal value.

This is a weaker notion than the improper integrability, since $\int_a^b f(x)dx$ (C) is equivalent to the existence of both limits $\lim_{\epsilon\searrow 0}\int_a^{c-\epsilon}f(x)dx$ and $\lim_{\epsilon\searrow 0}\int_{c+\epsilon}^b f(x)dx$.

Example

Let $p \in \mathbb{R}$. Then we have:

• $\int_0^1 x^p dx$ (C) if and only if p > -1; $\int_1^{+\infty} x^p dx$ (C) if and only if p < -1.

Proposition (Cauchy's criterion of convergence)

The integral $\int_a^{b-0} f(x) dx$ is convergent if and only if for every $\varepsilon > 0$ there exists $a_{\varepsilon} \in (a,b)$ such that for any $a',a'' \in (a_{\varepsilon},b)$ we have $\left| \int_{a'}^{a''} f(x) dx \right| < \varepsilon$.

Definition

Let $f:[a,b)\to\mathbb{R}$ such that f is locally Riemann integrable on [a,b).

- If the integral $\int_a^b |f(x)| dx$ is convergent, we say that the integral $\int_a^b f(x) dx$ is absolutely convergent, denoting $\int_a^b f(x) dx$ (AC)
- If the integral $\int_a^b f(x)dx$ is convergent, but $\int_a^b |f(x)|dx$ is divergent, we say that $\int_a^b f(x)dx$ is semiconvergent.

Cauchy's criterion of convergence: if $\int_a^b f(x) dx$ (AC), then $\int_a^b f(x) dx$ (C).

Similar with the criteria of convergence for series, we have the following *comparison criterion*:

Proposition

Let $f,g:[a,b)\to\mathbb{R}$ be locally Riemann integrable functions on [a,b). If $|f(x)|\leq g(x),\ \forall x\in[a,b)$ and $\int_a^b g(x)dx$ (C), then $\int_a^b f(x)dx$ (AC).

Improper integrals on unbounded intervals.

We will consider only integrals of the form $\int_a^{+\infty} f(x) dx$ with $a \in \mathbb{R}$, since the cases $\int_{-\infty}^a f(x) dx$ and $\int_{-\infty}^{+\infty} f(x) dx$ can be reduced to this one.

Necessary criterion of integrability: Suppose that the limit $\ell = \lim_{x \nearrow +\infty} f(x)$ exists. If $\int_{2}^{+\infty} f(x) dx$ (C), then $\ell = 0$.

Theorem (β -criterion)

Let $\beta \in \mathbb{R}$. Suppose that there exists $\ell = \lim_{x \to +\infty} x^{\beta} |f(x)|$. Then:

- i) $\int_{a}^{+\infty} f(x) dx$ (AC) if $\beta > 1$ and $\ell < +\infty$;
- ii) $\int_a^{+\infty} |f(x)| dx$ (D) if $\beta \le 1$ and $0 < \ell$.

Proposition (Integral criterion of Cauchy)

If the function $f:[1,+\infty)\to\mathbb{R}_+$ is decreasing, then the improper integral $\int_1^{+\infty}f(x)\,dx$ has the same nature with the series $_{n=1}^\infty f(n)$.

Integrals of unbounded functions on bounded intervals.

Let $a, b \in \mathbb{R}$ with a < b.

Theorem (α -criterion)

Let $\alpha \in \mathbb{R}$ and $f:[a,b) \to \mathbb{R}$ (respectively $f:(a,b] \to \mathbb{R}$) a locally Riemann integrable function. Suppose that there exists the limit $L = \lim_{x \nearrow b} \left[(b-x)^{\alpha} \left| f(x) \right| \right]$ (respectively $L = \lim_{x \searrow a} \left[(x-a)^{\alpha} \left| f(x) \right| \right]$). Then:

- i) $\int_{a}^{b} f(x) dx$ (AC) if $\alpha < 1$ and $L < +\infty$;
- ii) $\int_a^b f(x) dx$ (D) if $\alpha \ge 1$ and L > 0.

Integrals with parameters

• Let $A \subseteq \mathbb{R}^k$ be a non-empty set, $a,b \in \mathbb{R}$ such that a < b and $f: [a,b] \times A \to \mathbb{R}$ such that for every $\mathbf{y} \in A$, arbitrarily fixed, the function $f(\cdot,\mathbf{y})$ is Riemann integrable on [a,b]. We can define then $F:A \to \mathbb{R}$ by

$$F(\mathbf{y}) = \int_{a}^{b} f(x, \mathbf{y}) dx, \ \mathbf{y} = (y_1, y_2, \dots, y_k) \in A,$$

called the *Riemann integral* of f on [a, b], of parameters y_1, y_2, \ldots, y_k .

• More generally, the limits of integration can also depend on parameters: if the functions $p, q: A \to [a, b]$ are given, we can define the function $G: A \to \mathbb{R}$ by

$$G(y) = \int_{p(\mathbf{y})}^{q(\mathbf{y})} f(x, \mathbf{y}) dx, \ \mathbf{y} \in A.$$

Transfer of properties by integrability

It is clear that only the existence of the limit $\lim_{\mathbf{y}\to\mathbf{y}_0} f(x,\mathbf{y})$, for every $x\in[a,b]$ in some point $\mathbf{y}_0\in\mathcal{A}'$ is not enough to infer the existence of $\lim_{\mathbf{y}\to\mathbf{y}_0} F(\mathbf{y})$ or, in the affirmative case, the equality

$$\lim_{\mathbf{y}\to\mathbf{y}_0} F(\mathbf{y}) \left(= \lim_{\mathbf{y}\to\mathbf{y}_0} \int_a^b f(x,\mathbf{y}) dx \right) = \int_a^b \lim_{\mathbf{y}\to\mathbf{y}_0} f(x,\mathbf{y}) dx.$$

A solution to this issue, again by similarity, is to demand that the limit is uniform.

Definition

For $\mathbf{y}_0 \in A'$, we say that the function $f:[a,b] \times A \to \mathbb{R}$ converges to $g:[a,b] \to \mathbb{R}$ as $\mathbf{y} \to \mathbf{y}_0$ (i.e., $g(x) = \lim_{\mathbf{y} \to \mathbf{y}_0} f(x,\mathbf{y})$), uniformly with respect to $x \in [a,b]$, if

$$\forall \varepsilon > 0, \ \exists V_{\varepsilon} \in \mathcal{V}(\mathbf{y}_0), \ \forall x \in [a, b], \ \forall \mathbf{y} \in V_{\varepsilon} \setminus \{\mathbf{y}_0\} : |f(x, \mathbf{y}) - g(x)| < \varepsilon.$$

Proposition

If $f:[a,b]\times A\to \mathbb{R}$ is Riemann integrable on [a,b] for every $\mathbf{y}\in A$ and for $\mathbf{y}_0\in A'$, we have $\lim_{\mathbf{y}\to\mathbf{y}_0}f(x,\mathbf{y})=g(x)$, uniformly with respect to $x\in [a,b]$, then g is Riemann integrable on [a,b] and

$$\lim_{\mathbf{y}\to\mathbf{y}_0} \int_a^b f(x,\mathbf{y}) dx = \int_a^b g(x) dx \left(= \int_a^b \lim_{\mathbf{y}\to\mathbf{y}_0} f(x,\mathbf{y}) dx \right).$$

The following result concerns the transfer of continuity for the function G (the most general case):

Proposition

Suppose that $A \subseteq \mathbb{R}^k$ is a compact set, $f \in C([a,b] \times A)$ and $p,q:A \to [a,b]$ are continuous functions such that $p \leq q$. Then $G \in C(A)$. In particular, if $p \equiv a$ and $q \equiv b$, we obtain $F \in C(A)$.

In applications, the most useful transfer property is that with respect to the derivability:

Proposition

Suppose that $A = [a_1, b_1] \times \cdots \times [a_k, b_k]$ is a compact parallelipiped in \mathbb{R}^k , $f: [a, b] \times A \to \mathbb{R}$ a continuous function on $[a, b] \times A$ admiting partial derivatives $\frac{\partial f}{\partial y_i}$, $i = \overline{1, k}$, continuous on $[a, b] \times A$, and $p, q: A \to [a, b]$ such that $p \le q$ admit partial derivatives on A, $\frac{\partial p}{\partial y_i}$, $\frac{\partial q}{\partial y_i}$, $i = \overline{1, k}$. Then G (and therefore F, for the particular case where p and q are constants) has partial derivatives on A and the Leibniz formula takes place:

$$\frac{\partial G}{\partial v_i}(\mathbf{y}) = f(q(\mathbf{y}), \mathbf{y}) \frac{\partial q}{\partial v_i}(\mathbf{y}) - f(p(\mathbf{y}), \mathbf{y}) \frac{\partial p}{\partial v_i}(\mathbf{y}) + \int_{p(\mathbf{y})}^{q(\mathbf{y})} \frac{\partial f}{\partial v_i}(x, \mathbf{y}) dx, \ \forall \mathbf{y} \in A.$$

Concerning the \mathcal{R} -integrability of parameter integrals, we mention the following result:

Proposition

If $A = [c, d] \subseteq \mathbb{R}$ with c < d and $f \in C([a, b] \times [c, d])$, then the function $F : [c, d] \to \mathbb{R}$ (given by $F(y) = \int_a^b f(x, y) dx$, $y \in [c, d]$) is \mathcal{R} -integrable [c, d] and

$$\int_{c}^{d} F(y) dy \left(= \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy \right) = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Improper integrals with parameters

When the compact domain [a, b] or $[p(\mathbf{y}), q(\mathbf{y})]$ in the definition of F, respectively G, is replaced by a non-compact set, we talk about *improper integrals* with parameters.

Definition

Let $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$ with a < b, $A \subseteq \mathbb{R}^k$ a non-empty set and $f : [a,b) \times A \to \mathbb{R}$ a function such that $f(\cdot,\mathbf{y})$ is Riemann integrable on each compact interval [a,c] with c < b for each $\mathbf{y} \in A$.

- The improper integral $\int_a^b f(x, \mathbf{y}) dx$, $\mathbf{y} \in A$, is called *pointwise convergent* on A to $F: A \to \mathbb{R}$ if $\lim_{c \nearrow b} \int_a^c f(x, \mathbf{y}) dx = F(\mathbf{y})$, $\forall \mathbf{y} \in A$.
- We say that $\int_a^b f(x, \mathbf{y}) dx$ is uniformly convergent on A to $F: A \to \mathbb{R}$ if $\lim_{c \nearrow b} \int_a^c f(x, \mathbf{y}) dx = F(\mathbf{y})$, uniformly with respect to $\mathbf{y} \in A$.

Let us state the result concerning the derivability transfer with respect to integrability.

Proposition

Let $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$ with a < b, c, $d \in \mathbb{R}$ with c < d and $f : [a, b) \times [c, d] \to \mathbb{R}$ a continuous function such that $\frac{\partial f}{\partial y}$ exists and is continuous on $[a, b) \times [c, d]$. Suppose that:

- (i) the improper integral $\int_a^b f(x,y)dx$ is pointwise convergent to F(y), for $y \in [c,d]$:
- (ii) the improper integral $\int_a^b \frac{\partial f}{\partial y}(x,y) dx$ is uniformly convergent with respect to $y \in [c,d]$.

Then the function F is derivable for each $y \in [c, d]$ and

$$F'(y) = \int_a^{b-0} \frac{\partial f}{\partial y}(x, y) dx, \ \forall y \in [c, d].$$

Gamma and Beta functions

Among the improper integrals with parameters worth to be mentionned, we recall:

- the Dirichlet integral $\int_0^{+\infty} \frac{\sin x}{x^{\alpha}}$, $\alpha > 0$,
- Euler-Poisson integral $\int_0^{+\infty} e^{-ax^2} dx$, $a \in \mathbb{R}$ and
- Euler integrals (functions): the Gamma function and the Beta function:

Gamma function

This function is defined as the improper integral

$$\Gamma(p) := \int_0^{+\infty} x^{p-1} e^{-x} dx, \ p \in \mathbb{R}_+^*.$$

It is convergent for any $p \in (0, +\infty)$, from the application of β and α -criteria.

Properties of the Gamma function

- 1. $\Gamma(p+1) = p\Gamma(p), \forall p > 0;$
- 2. $\Gamma(1) = 1$;
- 3. $\Gamma(n+1) = n!, \forall n \in \mathbb{N};$
- 4. $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$;
- 5. $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(p\pi)}, \ \forall p \in (0,1);$
- 6. $\Gamma(p) = \lim_{n \to \infty} \frac{n! n^p}{p(p+1)(p+2)\cdots(p+n)}, \ \forall p > 0;$
- 7. $(\Gamma(p))^{-1} = p e_{n=1}^{\gamma p} {}^{\infty} \left(1 + \frac{p}{n}\right) e^{-p/n}$, $\forall p > 0$ (*Weierstrass*), where $\gamma = 0,5772...$ is Euler's constant.

Beta function

It is defined by

$$B(p,q) := \int_0^1 x^{p-1} (1-x)^{q-1} dx, \ p > 0, \ q > 0$$

and satisfies the relations:

1.
$$B(p,q) = \int_0^{+\infty} \frac{t^{p-1}}{(1+t)^{p+q}} dt$$
, $\forall p, q > 0$;

2.
$$B(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta$$
, $\forall p, q > 0$;

3.
$$B(p, q) = B(q, p), \forall p, q > 0;$$

4.
$$B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{\Gamma(p+q)}, \ \forall p,q > 0;$$

5.
$$B(p, q+1) = \frac{q}{p+q} B(p, q) = \frac{q}{p} B(p+1, q), \ \forall p, q > 0;$$

6.
$$B(p,q) = B(p+1,q) + B(p,q+1), \forall p,q > 0;$$

7.
$$B(p, n+1) = \frac{n!}{p(p+1)\cdots(p+n)}, \ \forall p > 0, \ \forall n \in \mathbb{N}.$$

- G. Apreutesei, N. A. Dumitru, *Introducere în teoria integrabilității*, Editura "Performantica", Iași, 2005.
- D. Cioroboiu, A. Pitea, M. Postolache, *Calcul integral*, Editura "Fair Partners", București, 2010.
- T. de Cepeda, M. Delgado, Calculus II, Unit 3: Integrals Depending on a Parameter, Universidad Carlos III de Madrid, 2016.
- M. Gorunescu, F. Gorunescu, A. Prodan, *Matematici superioare. Biostatistică și Informatică (Cap. 8)*, Editura Albastră, Cluj-Napoca, 2002.
- P. B. laval, *Improper Integrals*, Kennesaw State University, 2015.
- 📡 L. Larson, Introduction to Real Analysis, Univ of Louisville Publ., 2014.
- G. Mocică, Probleme de funcții speciale, Editura Didactică și Pedagogică, București, 1988.
- S. A. Popescu, Mathematical Analysis II. Integral Calculus, Conspress, Bucharest, 2011.
- 📡 H. Tudor, *Analiză matematică,* Editura Albastră, Cluj-Napoca, 2008.