MATH 135 Honours Algebra

Sachin Kumar* University of Waterloo

Winter 2023[†]

^{*}skmuthuk@uwaterloo.ca

[†]Last updated: January 18, 2023

Contents

Chapter	r I Introduction to the Language of Mathematics
1	Sets and Mathematical Statements
2	Quantifiers and Nested Quantifiers
Chapte	TII Logical Analysis of Mathematical Statements
3	Truth Table
4	Conjuction and Disjunction
5	Logical Operators and Algebra
6	Implications
7	Converse and Contrapositive
8	If and Only if
Chapte	r III Proving Mathematical Statements
9	Proving Universally Quantified Statements

I. Introduction to the Language of Mathematics

1 Sets and Mathematical Statements

Definition. (Set) A set is a well-defined unordered (i.e., order does not matter) collection of distinct (unique) objects.

Example: Empty set = $\{\}$ = \emptyset

Note:

- $\{\emptyset\} \neq \emptyset$ and $\{a, \{a, b\}\}$ is a set since $a, \{a, b\}$ are distinct objects.
- $\in \rightarrow$ "is a member of"
- ∉→ "is not a member of"

Exercise 1 (True or false)

- 1. $\in \{A, \{A, B\}\} \rightarrow \text{false}$
- 2. $A \in \{A, \{A, B\}\} \rightarrow \text{true}$
- 3. $B \in \{A, \{A, B\}\} \rightarrow \text{false}$
- 4. $\{B, A\}$ ∈ $\{A, \{A, B\}\}$ → true

COMMON SETS

 $\mathbb{N} = \{1, 2, 3, ...\} \rightarrow \text{Natural Numbers}$

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \rightarrow \text{Integer Numbers}$

 $\mathbb{R} = \{ \text{ set of real numbers } \} \rightarrow \text{Real Numbers}$

 $\mathbb{P} = \{2, 3, 5, \dots\} \rightarrow \text{Prime Numbers}$

 $\mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \} \rightarrow \text{Rational Numbers}$

Exercise 1 (True or false)

- 1. $\mathbb{O} \in \mathbb{N} \to \text{false}$
- 2. $\sqrt{2} \in \mathbb{Q} \to \text{false}$
- 3. $-\infty \in \mathbb{Z} \to \text{false}$
- 4. $\pi \in \mathbb{R} \to \text{true}$
- 5. $\{\sqrt{2}, \sqrt{3}\} \subseteq \mathbb{R} \to \text{true}$

STATEMENTS

Definition. (statements) A statement is a sentence that has a definite state of being true or false. (It cannot be sometimes false or sometimes true). (i.e., it cannot be sometimes false or sometimes true)

P(a,b,c): $a^2 + b^2 = c^2$ is NOT a statement since for some values of a,b and c the statement may be true and false for some.

Examples:

- $P(3,4,5): 3^2 + 4^2 = 5^2 \rightarrow \text{true}$
- $P(1,2,3): 1^2 + 2^2 = 3^2 \rightarrow \text{false}$

Exercise 1 (Which of these are statements)

- 1. 18 is a prime number \rightarrow statement
- 2. $a^3 + b^3 = c^3 \rightarrow \text{not a statement}$
- 3. $\forall a, b, c \in \mathbb{R}, a^3 + b^3 = c^3 \rightarrow \text{statement}$
- 4. $\exists a, b, c \in \mathbb{R}$ such that $a^3 + b^3 = c^3 \rightarrow \text{statement}$

OPEN SENTENCE

Definition. (open sentence) An open sentence is a sentence with at least one variable that is not a statement but can become one when we give values.

P(a,b,c): $a^3 + b^3 = c^3$ is an open sentence since if we give values for a,b and c P(a,b,c) will become a statement.

Examples:

- $P(2,3,5): 2^3 + 3^3 = 5^3 \rightarrow \text{statement}$
- $\forall a, b, c \in \mathbb{R}, a^3 + b^3 = c^3 \rightarrow \text{statement}$

Exercise 4 (Which of these are open sentences or statements)

- 1. $P(2,3,5) \rightarrow \text{statement}$
- 2. $\forall a \in \mathbb{R}, P(a, b, c) \rightarrow \text{open sentence}$
- 3. $P(2,3,C) \rightarrow \text{open sentence}$
- 4. $\exists a, b \in \mathbb{N}$ and $c \in \mathbb{R}$ such that P(a, b, c) → sometimes considered as a statement or as an open sentence

NEGATION OF STATEMENTS

If *P* is a statement,

$$\neg P \rightarrow \text{not } P$$

Examples:

- $P \rightarrow$ There is a $x \in \mathbb{R}$ such that $x^2 = 2$
- $\neg P \rightarrow \forall x \in \mathbb{R}, x^2 \neq 2$
- $P \rightarrow \forall x \in \mathbb{R}, x^2 = 2$
- $\neg P \rightarrow \exists x \in \mathbb{R} \text{ such that } x^2 = 2$

 $\neg(\neg P)$ is logically equivalent to P, $\neg(\neg P) = P$

2 Quantifiers and Nested Quantifiers

QUANTIFIERS

 \forall = "for all" \rightarrow universal quantifier

 \exists = "there exists" \rightarrow Existential quantifier

Typically, we'll have a open sentence with at least one "free" variable, x.

Examples:

- $x^2 + 2 = z^3$
- $\forall x \in \mathbb{Z}, \exists z \in \mathbb{R}, x^2 + 2 = z^3 \rightarrow \text{ For all } x \in \mathbb{Z}, \text{ there exists } z \in \mathbb{R}, \text{ such that } x^2 + 2 = z^3$

P(x): $x^2 = 2$ (open sentence)

- $\exists x \in \mathbb{N}. x^2 = 2 \rightarrow \text{false}$
- $\exists x \in \mathbb{R}. x^2 = 2 \rightarrow \text{true}$
- $\forall x \in \mathbb{R}, x^2 \neq 2 \rightarrow \text{true}$
- $\forall x \in \mathbb{R}, x^2 \neq 2 \rightarrow \text{false}$

If Q(x): $\frac{m+1}{m+2} = 5$ is open sentence, then

$$\exists m \in \mathbb{Z}, \frac{m+1}{m+2} = 5 \rightarrow \text{ false}$$

We can make the above statement true by changing its domains, i.e.,

$$\exists m \in \mathbb{R}, \frac{m+1}{m+2} = 5 \qquad \exists m \in \mathbb{Q}, \frac{m+1}{m+2} = 5$$

HIDDEN QUANTIFIERS

Examples:

- 64 is a perfect square $\rightarrow \exists x \in \mathbb{Z}, x^2 = 64$ (true statement)
- $2^{2x-4} = 8$ has a integer solution $\rightarrow \exists x \in \mathbb{Z}, 2^{2x-4} = 8$ (false statement)
- The graph of $y = x^3 2x + 1$ has no x-intercept
 - \rightarrow There is no solution in $x \in \mathbb{R}$ such that $x^3 2x + 1 = 0$
 - \rightarrow For all $x \in \mathbb{R}$, $x^3 2x + 1 = 0$
 - $\rightarrow \forall x \in \mathbb{R}, x^3 2x + 1 = 0$ (false statement)

NEGATION OF QUANTIFIERS

P : Everyone in this room was born in or before 2013.

 $\neg P$: There exists someone in this room was born in or after 2013.

S: Set of people in this room, Q(x) = x is born in or before 2013, where x is a person in the room.

- $P: \forall x \in S, Q(x)$
- $\neg P: \exists x \in S, \neg O(x)$

Fact: If we have the statement of the form

$$P: \forall x \in S, Q(x)$$
$$\neg P: \exists x \in S, \neg Q(x)$$

Exercise 5 (Negate the statement)

- 1. $P: \forall x \in \mathbb{R}, |x| \geq 5$
- 2. $\neg P: \exists x \in \mathbb{R}, \neg(|x| \ge 5) \rightarrow \exists x \in \mathbb{R}, |x| < 5$

Nested Quantifiers

Examples: Let $Q(x, y) = x^3 - y^3 = 1$

- $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 y^3 = 1 \rightarrow \text{false}$
- $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 y^3 \rightarrow \text{true}$
- $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 y^3 \rightarrow \text{true}$
- $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 y^3 \rightarrow \text{false}$

Note: Switching the order of the quantifiers in a statement makes a difference. If we have an open sentence Q(x, y),

 $\exists x \in S, \forall y \in T, Q(x,y) \rightarrow \text{There is an } x \in S \text{ such that [for all } y \in T, Q(x,y)] \text{ is true.}$

NEGATING NESTED QUANTIFIERS

Examples: Let $Q(x, y, z) = x^5 + y^2 = 2^3$

$$P: \exists x \in \mathbb{Z}, \forall y \in \mathbb{Q}, \exists z \in \mathbb{R}, x^5 + y^2 = 2^3$$
$$\neg P: \forall x \in \mathbb{Z}, \exists y \in \mathbb{Q}, \forall z \in \mathbb{R}, x^5 + y^2 \neq 2^3$$

Fact:

- In order to negate a nested quantified statement, just flip \forall and \exists , and also negate the statement P(x)
- Also if the nested quantified statement is long, break it into shorter nested quantified statements and negate it.

II. Logical Analysis of Mathematical Statements

3 TRUTH TABLE

Let *p* be statement.

- 1. $\neg P = \text{"not } P$ "
- 2. $\neg P$ is true when P is false and false when P is true.

P	$\neg P$	$\neg(\neg P)$
T	F	T
F	T	F

- \neg is a logical operator, somethin take takes a statement and creates a new statements.
- $\neg P$ is a logical expression.

Notice: *P* and $\neg(\neg P)$ have the same truth value So *P* and $\neg(\neg P)$ are logically equivalent (\equiv) , i.e,

$$P \equiv \neg(\neg P)$$

4 Conjuction and Disjunction

- 1. Conjuction (\wedge) = "and"
- 2. Disjunction $(\lor) = "or"$

We can use conjunction and disjunction to create compound statements, that are built from two or more statement using things like \vee and \wedge .

Example: *A* and *B* are statements (statement variables)

A	В	$A \wedge B$	$A \vee B$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	F

• $A \wedge B$ and $A \vee B$ are called compound statements.

- ∨ → If one of the statements are true or both of them are, then the compound statement is true.
- $\wedge \rightarrow$ Even if one of the statement is false, then the compound statement is false.

Example: $\forall x \in \mathbb{R}, (x^2 \ge 0) \land (\sin^2(x) + \cos^2(x) = 1)$ is a true statement because both the statement variables are true. Therefore the compound statement is true.

5 LOGICAL OPERATORS AND ALGEBRA

De Morgan's Laws

A	В	$\neg(A \land B)$	$\neg (A \lor B)$	$\neg A \lor \neg B$	$\neg A \land \neg B$
T	T	F	F	F	F
T	F	T	F	T	F
F	T	T	F	T	F
F	F	T	T	T	T

1.
$$\neg (A \land B) \equiv (\neg A) \lor (\neg B)$$

2.
$$\neg (A \lor B) \equiv (\neg A) \land (\neg B)$$

Exercise: Negate the statement

Let L be a line and P be a parabola. Statement: The point (1,2) lies on L or on P

$$(1,2) \in L \lor (1,2) \in P$$

Sol:

$$\neg((1,2) \in L \lor (1,2) \in P)$$

$$\equiv (\neg(1,2) \in L \land \neg(1,2) \in P)$$

$$\equiv (1,2) \notin L \land (1,2) \notin P$$

Negated statement: The point (1,2) does not lie on L and does not lie on P.

OTHER LOGICAL OPERATORS LAWS

Commutative Laws: (order does not matter)

•
$$P \wedge Q \equiv Q \wedge P$$

•
$$P \lor Q \equiv Q \lor P$$

Associative Laws: (parentheses does not matter)

•
$$(P \land Q) \land R \equiv P \land (Q \land R)$$

•
$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$

Distributive Laws:

- $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$
- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

Exercise:

1. Prove without using the truth table

$$\neg (A \land (\neg B \land C)) \equiv \neg (A \land C) \lor B$$

Proof Lets consider the LHS,

$$\neg (A \land (\neg B \land C))$$

$$\equiv \neg A \lor (\neg (B \land C))$$
 [By De Morgan's Law]
$$\equiv \neg A \lor (\neg (\neg B) \lor \neg C)$$
 [By De Morgan's Law]
$$\equiv \neg A \lor (B \lor \neg C)$$
 [By Double Negation]
$$\equiv (\neg A \lor \neg C) \lor B$$
 [By Associative Law]
$$\equiv \neg (A \land C) \lor B$$
 [By De Morgan's Law]

- 2. True or false statement:
 - a) $\forall x \in \emptyset, x^2 = 1 \rightarrow \text{vacuously true}$
 - b) $\exists x \in \emptyset, x^2 = 1 \rightarrow \text{false}$

6 Implications

P and Q are statements \rightarrow If P, then Q

"If the statement *P* is true, then the statement *Q* is true"

Exercise:

- 1. If Alice is from Canada, then Alice is from North America \rightarrow True
- 2. If Alice if from North America, then Alice is from Canada \rightarrow False
- 3. If I am an animal, then I will give you \$10 \rightarrow True
- 4. If x > 3, then $x > 5 \rightarrow$ False
- 5. If x > 3, then $x \ge 1 \rightarrow \text{True}$

Note: If *P* is false, then it does not matter, if *Q* is false or true, the implication will be **true**. **Implication Law:** $(P \implies Q) \equiv (\neg P \lor Q)$

Exercise:

1. Prove using the implication law

$$\forall x \in \mathbb{R}, (x > 2) \implies (x^2 > 1)$$

PROOF Let A(x) = x > 2 and $B(x) = x^2 > 1$. Then for $(A(x) \Longrightarrow B(x))$ to be true. We need B(x) to be true or A(x) to be false. Notice B(x) is true for $x \in (1, \infty) \cup (-\infty, -1)$ and A(x) is false for $x \in (-\infty, 2]$. So B(x) is true or A(x) is false, holds for $x \in (1, \infty) \cup (-\infty, -1) \cup (-\infty, 2] = \mathbb{R}$.

So,
$$\forall x \in \mathbb{R}, B(x) \lor \neg A(x) \equiv \forall x \in \mathbb{R}, A(x) \Longrightarrow B(x)$$

2. Let \mathbb{P} be a set of prime numbers. Prove that

$$\forall p \in \mathbb{P}, (p > 2) \implies (p + 1) \text{ is even.}$$

PROOF If the hypothesis is true, then p is a prime greater than 2 and since p it prime it cannot be a multiple of 2, so by definition of even and odd, p is odd. so p+1 is even. Thus if the hypothesis is true, the conclusion is true. so $\forall p \in \mathbb{P}, (p > 2) \Longrightarrow (P+1)$ is even.

NEGATING IMPLICATION

What is $\neg (A \Longrightarrow B)$?

$$\neg (A \Longrightarrow B) \equiv \neg (B \lor (\neg A)) \quad [\text{we know } (A \Longrightarrow B) \equiv (B \lor (\neg A))]$$
$$\equiv \neg B \land \neg (\neg A) \quad [\text{By De Morgan's Law}]$$
$$\equiv \neg B \land A \qquad [\text{By Double Negation}]$$

Exercise: If \mathbb{P} are the set of prime numbers, then "There is at most one prime number less than 3".

$$\forall x \in \mathbb{P}, \forall y \in \mathbb{P}, ((x < 3) \land (y < 3) \Longrightarrow (x = y))$$

7 Converse and Contrapositive

Definition. (Converse) The implication $B \Longrightarrow A$ is called the converse of $A \Longrightarrow B$

Note: A common mistake is to think that the implication $A \implies A$ and its converse $B \implies A$ are logically equivalent. They are not!

Definition. (contrapositive) The implication $(\neg B) \Longrightarrow (\neg A)$ is called the contrapositive of $A \Longrightarrow B$.

Contrpositive equivalence Law: An Implication is logically equivalent to its contrapositive.

$$(P \Longrightarrow Q) \equiv ((\neg B) \Longrightarrow (\neg A))$$

Implication Law:

$$(A \Longrightarrow B) \equiv ((\neg A) \lor B) \qquad \neg (A \Longrightarrow B) \equiv (A \land (\neg B))$$

8 IF AND ONLY IF

Definition. (if and only if (iff)) The truth value for "A if and only if B", written symbolically as $A \iff B$ is true when A and B have the same truth values, and is false when they have opposite truth values.

More Laws:

- 1. $(A \iff B) \equiv ((A \implies B) \land (B \implies A))$
- 2. $(\forall x \in X, P(x) \iff Q(x)) \equiv ((\forall x \in X, P(x) \implies Q(x)) \land (\forall x \in X, Q(x) \implies P(x)))$

III. Proving Mathematical Statements

9 Proving Universally Quantified Statements

Example:

1. Prove that $\forall \theta \in \mathbb{R}$, $\sin(3\theta) = 3\sin\theta - 4\sin^3\theta$

Proof Let θ be an arbitrary real number.

We used the identity $\sin(a+b) = \sin a \cos b + \cos a \sin b$, with $a = \theta$ and $b = \theta$ to obtain.

$$\sin(3\theta) = \sin(\theta + 2\theta) = \sin\theta\cos(2\theta) + \cos\theta\sin(2\theta) \tag{9.1}$$

Now we substitute the double angle identities,

$$cos(2\theta) = cos^{2}\theta - sin^{2}\theta$$
$$sin(2\theta) = 2 sin\theta cos\theta$$

into the right hand side of 9.1, and we get

$$\sin(3\theta) = \sin\theta(\cos^2\theta - \sin^2\theta) + \cos\theta(2\sin\theta\cos\theta) \tag{9.2}$$

we substitute $\cos^2 \theta = 1 - \sin^2 \theta$, into the RHS of (9.2), we get

$$\sin 3\theta = \sin(1 - \sin^2 \theta - \sin^2 \theta) + 2\sin \theta (1 - \sin^2 \theta)$$
$$= \sin \theta - 2\sin^2 \theta + 2\sin \theta - 2\sin^2 \theta$$
$$= 3\sin \theta - 4\sin^3 \theta$$

so we've shown that $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$, $\forall \theta \in \mathbb{R}$, as desired.