

Armazenamento e Processamento Analítico de Dados Mestrado em Engenharia Informática

Exame Época Normal 11 de Fevereiro de 2016

Departamento de Engenharia Informática

Exame sem consulta com duração de 1h30

Número:	Nome:		

Grupo I - Modelação Dimensional (6,5 valores)

Um determinado aeroporto possui um sistema operacional que armazena dados sobre os voos dos passageiros. Cada passageiro é caracterizado por: número que o identifica de forma única; nome; nacionalidade; tipo de documento de identificação (bilhete de identidade; cartão de cidadão; ou, passaporte); respetivo número do documento; data de nascimento; contato telefónico; e-mail; endereço; código postal; cidade; e, país de residência. Os voos são organizados por companhias de aviação, sendo que cada uma destas é caracterizada por: código companhia (identificador único); nome; contato telefónico; endereço; código postal; cidade; país; data de início de atividade da companhia para o aeroporto em questão; e, eventualmente, data de fim dessa atividade. A cada código postal, de cada país, corresponde a respetiva localidade.

Os voos são realizados nos aviões que as companhias de aviação possuem. Cada avião é ainda caracterizado pelo: identificador único; construtor (e.g.: Boeing; AirBus); modelo (e.g.: 737; A380); nome dado pela companhia; capacidade (em n.º de passageiro); e, peso (em toneladas). Os voos são organizados pelas companhias de aviação, a partir do aeroporto em questão para aeroportos de destino. Cada voo é ainda caracterizado por: código do voo (diferente para cada companhia); frequência de realização (e.g.: diário; semanal; 2ª-feira, 4ª-feira e 6ª-feira); hora prevista de partida; e, hora prevista de chegada (hora local). Cada aeroporto de destino é caracterizado por: código internacional de aeroporto (único para cada aeroporto); nome; cidade; país; e, fuso horário.

Sempre que um passageiro realiza um voo para um outro aeroporto de destino, o sistema operacional do aeroporto regista: o passageiro envolvido; o código do voo; a data em que ocorreu; a hora de partida (pode não ser a mesma que a prevista para o voo devido a algum motivo excecional); o avião utilizado da companhia de aviação; o n.º de bagagens de mão transportadas pelo passageiro para a cabine; o respetivo peso destas; o n.º de bagagens transportadas no porão do avião; e, o respetivo peso destas.

- 1. Seguindo a metodologia *Kimball*, desenvolva o processo de análise dimensional, a fim de definir e criar o modelo dimensional para um *data mart* que permita realizar análises multidimensionais de dados variadas aos voos realizados pelos passageiros, de acordo com a realidade que acabou de ser descrita. Apresente todos os factos, dimensões, granularidade e todos os aspectos relevantes para o projeto de *data mart*.
- 2. Admita que se pretendem realizar as seguintes análises de dados:

- Dado um código de voo (e.g., LH701), saber-se quais os dias em que o voo não se realizou (devido a algum motivo de força maior).
- Dada uma data, saber-se quais os voos que não se realizaram nessa data (devido a algum motivo de força maior).

O que acrescentaria ou alteraria a nível do modelo dimensional (tabelas de factos e/ou dimensões) para suportar a realização deste tipo de análises? Explique como poderia realizar as referidas consultas.

Grupo II - Múltipla Escolha (1 valor cada questão correcta/-0,5 cada questão errada)

Nas questões seguintes assinale apenas uma só alternativa correspondendo à que considera correcta.

1.	 Ralph Kimball (Bus Architecture) e Bill Inmon (CIF Architecture) defendem: ☐ Que os dados armazenados nos armazéns de dados devem estar sempre no nível mais atómico (elementar). ☐ Que o maior poder/flexibilidade que os dados oferecem encontra-se no nível mais atómico. ☐ Que o maior poder/flexibilidade que os dados oferecem resulta destes estarem agregados. ☐ Outras ideias/posições que não as referidas nas alíneas anteriores.
2.	Numa situação em que seja relevante poder continuar a efetuar análises de dados como se uma dada alteração não tivesse ocorrido, a estratégia de <i>Slowly Changing Dimension</i> (SCD) adequada é de: □ Tipo 1. □ Tipo 2. □ Tipo 3. □ Tipo 2 ou Tipo 3.
3.	A operação de <i>roll-up</i> suportada pelas ferramentas OLAP permite: ☐ Extrair um sub-cubo a partir do cubo de dados original. ☐ Visualizar os dados com igual nível de detalhe/granularidade, mas de diferentes perspetivas. ☐ Efetuar análises com um maior nível de detalhe/granularidade. ☐ Efetuar análises com um menor nível de detalhe/granularidade.
4.	 Uma mini-dimensão é utilizada em armazéns de dados para: Armazenar as combinações distintas dos valores dos atributos demográficos, sejam estes contínuos (e.g., peso) ou discretos (e.g., idade). Armazenar as combinações distintas dos valores dos atributos demográficos, desde que todos estes sejam discretos ou tenham sido transformados em discretos. Armazenar atributos do tipo flag e outros atributos que contêm um conjunto reduzido de valores discretos. Armazenar atributos do tipo flag e outros atributos que contêm um conjunto de valores contínuos e discretos.
5.	O particionamento horizontal é uma estratégia de otimização que pode ser usada em armazéns de dados em que: U os dados podem ser particionados por intervalos de valores ou listas de valores. Os dados apenas podem ser particionados por intervalos de valores. A estrutura das tabelas resultante são diferentes de particionamento para particionamento.

	Os	atributos	da	tabela	original	dão	origem	a	diferentes	tabelas,	repetindo-se	apenas	a	chave
primária da tabela original.														

Grupo III – Verdadeiros ou Falsos com Justificação (2 valores cada questão)

Indique se as seguintes afirmações são verdadeiras ou falsas, apresentando a respectiva justificação.
 A margem bruta ((valor_vendas - custo_vendas) / valor_vendas) obtida a partir de uma tabela de factos de um data mart de vendas constitui um facto semi-aditivo.
 Para além dos atributos que formam a chave primária, uma tabela de factos inclui sempre um conjunto de outros atributos numéricos cuja relevância é importante para a área de negócio em questão, sendo estes designados de factos/medidas.
 Para além do índice associado à chave primária de uma tabela de factos, não se justifica a criação de qualquer outro índice.

Grupo IV – Questão de Desenvolvimento (2,5 valores)

Uma das estratégias de otimização vulgarmente utilizada em armazéns de dados envolve a criação de agregações. Explique em que consiste esta estratégia de otimização, quais as vantagens e desvantagens, assim como as técnicas que podem ser adotadas para armazenar as agregações.