

Vector Space Model: Distance Functions

(Teaching Inspired by Research)

Prof. Dr. Marcin Grzegorzek and the Medical Data Science Team

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR MEDIZINISCHE INFORMATIK

- 1 Introduction
- 2 Distance Functions for Real Points
- 3 Distance Functions for Binary Points
- 4 Distance Functions for Sequences
- **5** Conclusion

- 1 Introduction
- 2 Distance Functions for Real Points
- 3 Distance Functions for Binary Points
- 4 Distance Functions for Sequences
- 5 Conclusion

Contents of the Course

Week	Lecture	Practical Exercises
1	(05/04) Introduction to Medical Information Retrieval (MIR)	(05/04) Introduction to Python
2	(12/04) Main Components and Classification of MIR Systems	(12/04) Introduction to Python
3	(19/04) Metadata in Medical Information Retrieval Systems	(19/04) CBIR in Medical Applications
4	(26/04) No Lecture due to a Business Trip	(26/04) CBIR in Medical Applications
5	(03/05) Set Theoretic Model: Boolean Retrieval	(03/05) CBIR in Medical Applications
6	(10/05) Set Theoretic Model: Fuzzy Retrieval	(10/05) Flask Tutorial
7	(17/05) Vector Space Model: Similarity Measures	(17/05) Flask Tutorial

Contents of the Course

8	(24/05) Vector Space Model: Distance Functions	(24/05) HTML	
9	(31/05) Vector Space Model: Latent Semantic Indexing	(31/05) HTML	
10	(07/06) Probabilistic Model	(07/06) HTML	
11	(14/06) Text-based Retrieval of Medical Information	(14/06) Deep Learning	
12	(21/06) Audio-based Retrieval of Medical Information	(21/06) Deep Learning	
13	(28/06) Image-based Retrieval of Medical Information	(28/06) Relevance Feedback	
14	(05/07) Demonstrators from Current Research Projects	(05/07) Relevance Feedback	
15	(12/07) Summary and Conclusions	(12/07) Evaluation	

Generally about Distance Functions

A metric on a set \mathbb{R}^l is a distance function

$$d: \mathbb{R}^I \times \mathbb{R}^I \longrightarrow [0, \infty)$$
,

if for all $x, y, z \in \mathbb{R}^{I}$ all of the following conditions are satisfied:

(1)
$$d(x, y) \ge 0$$
;

(2)
$$d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$$
;

(3)
$$d(x, y) = d(y, x)$$
;

(4)
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

- 1 Introduction
- 2 Distance Functions for Real Points
- 3 Distance Functions for Binary Points
- 4 Distance Functions for Sequences
- **5** Conclusion

Minkowski Distance – General Form

A popular metric extensively used for IR is the Minkowski distance:

$$d(\boldsymbol{x},\boldsymbol{y}) = \left(\sum_{i=1}^{l} \omega_i |x_i - y_i|^p\right)^{\frac{1}{p}} .$$

Minkowski Distance – Examples

Selected examples of the Minkowski distance for different values of p and $\omega_{i=1,...,l} = 1$:

$$p = 1 \quad \Rightarrow \quad \sum_{i=1}^{l} |x_i - y_i|$$

$$\lim_{p \to \infty} \left(\sum_{i=1}^{l} |x_i - y_i|^p \right)^{\frac{1}{p}} = \max_{i=1,\dots,l} |x_i - y_i|$$

$$\lim_{p \to -\infty} \left(\sum_{i=1}^{l} |x_i - y_i|^p \right)^{\frac{1}{p}} = \min_{i=1,\dots,l} |x_i - y_i|$$

Minkowski Distance - Unit Circles

Minkowski Distance - Unit Circles

Minkowski Distance – Unit Circles

Minkowski Distance - Unit Circles

- 1 Introduction
- 2 Distance Functions for Real Points
- 3 Distance Functions for Binary Points
- 4 Distance Functions for Sequences
- **5** Conclusion

General Information

- Binary points store information about fulfilling or not fulfilling of properties.
- Graphically, such points can be represented as corner of a hypercube.

Comparison of Properties

$p \in P$	p fulfilled for x_1	p not fulfilled for x_1
p fulfilled for x_2	$n_{1/1}$	$n_{0/1}$
p not fulfilled for x_2	$n_{1/0}$	$n_{0/0}$

Example:

$$\mathbf{x}_1 = (0,0,0,0,1,1,1,1)^{\mathrm{T}}$$
 $\mathbf{x}_2 = (1,1,0,1,1,1,0,0)^{\mathrm{T}}$

$$\Downarrow$$

$$n_{0/0} = 1 \quad n_{0/1} = 3 \quad n_{1/0} = 2 \quad n_{1/1} = 2$$

Minkowski Distance for Binary Points

General form assuming $\omega_{i=1,...,l} = 1$:

$$d(\mathbf{x}_1,\mathbf{x}_2) = \left(\sum_{i=1}^{l} |x_{1,i} - x_{2,i}|^p\right)^{\frac{1}{p}} .$$

For binary points:

$$d = (n_{1/0} + n_{0/1})^{1/p}$$

- Introduction
- 2 Distance Functions for Real Points
- 3 Distance Functions for Binary Points
- 4 Distance Functions for Sequences
- **5** Conclusion

General Information

- A sequence is just a list of data elements of the same type.
- The number of data elements describing a document can vary.

Earth Mover's Distance – Data Format

- The following data type is considered here: $tuple(\mathbf{x}_i : array[1...l](real) ; \mathbf{w}_{\mathbf{x}_i} : real).$
- It describes the *i*-th element of the sequence **X**.

Earth Mover's Distance – Story Behind

- Computing the distance between the sequence X with m elements and the sequence Y with n elements, we consider the elements of X to be mounds and the elements of Y to be holes in the ground.
- The points x_i and y_j can be interpreted as the positions of the mounds and the holes in a l-dimensional space.
- The volumes of the mounds/holes are given by w_{x_i} and w_{y_j} respectively.
- The distance between X and Y is defined as the minimum cost of transporting the earth from the mounds to the holes.

Earth Mover's Distance – Minimisation of Costs

- Thus, the goal is to minimise the transportation costs.
- A particular constellation of the whole earth transportation process between mounds and holes can be described by a matrix $F = [f_{ij}]$ with f_{ij} standing for the earth volume moved from the mound \mathbf{x}_i into the hole \mathbf{y}_j .
- The overall transportation costs can be now computed as follows:

$$T_{\text{costs}}(\boldsymbol{X}, \boldsymbol{Y}, F) = \sum_{i=1}^{m} \sum_{j=1}^{n} d(\boldsymbol{x}_i, \boldsymbol{y}_j) f_{ij}$$

Earth Mover's Distance – Final Result

The final distance value:

$$d_{\text{EMD}}(\boldsymbol{X}, \boldsymbol{Y}) = \frac{\min\limits_{|f_{ij}|} \left(\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n} d(\boldsymbol{x}_i, \boldsymbol{y}_j) f_{ij}\right)}{\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n} f_{ij}}$$

Earth Mover's Distance

- Introduction
- 2 Distance Functions for Real Points
- 3 Distance Functions for Binary Points
- 4 Distance Functions for Sequences
- **5** Conclusion

Final Statements

- Most frequently, documents to be compared with each other for retrieval are described by feature vectors of the same dimensionality. In this case, well-known distance functions defined for real points, e.g., the Minkowski distance, can be applied.
- In more heterogeneous IR scenarios, the documents are represented by data structures with less consistency. In this case other methods (e.g., distance functions for sequences) are necessary for their comparison.