Logika Tételkidolgozás

Aradi Patrik June 2, 2018

1 Az ítéletkalkulus szintaxisa és szemantikája. Kielégíthetőség, logikai következmény, alap összefüggések.

Az ítéletlogikában a változók a 0, 1 halmazból kapnak értéket. A formulák változókból épülnek fel, melyeket össekötő jelek alkalmazásával kapunk. Pl.: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$

Szintaxis A logikában meghatározza, hogy hogy néz ki egy formula. Pl.: $(p \lor q)$

Szemantika Megmondja, hogy a leírt formulának mi a jelentése. Mi az adott formulának az értéke egy adott változó értékadás esetén

1.1 Szintaxis

Változók p, q, r -el jelöjük, melyek 0, 1 értéket vehetnek fel.

Logikai konstansjelek (0 aritású függvényjelek) az "igaz" \uparrow és a "hamis" \downarrow jelek

Konnektívák Velük tudjuk összekötni a formulákat, lehetséges értékeik: $\land,\lor,\neg,\rightarrow,\leftrightarrow$

Formulák Deffiníciója

- Minden változó és minden logikai konstans formula
- Ha F formula, akkor $(\neg F)$ is formula
- Ha F és G formulák, akkor $(F \wedge G), (F \vee G), (F \to G), (F \leftrightarrow G)$ is formulák
- Más forumla nincs

Műveleti sorrend A \land és \lor műveletek asszociatívak, pl.: $(F \lor G) \lor H$ helyett $F \lor G \lor H$ -t írhatunk. A \rightarrow művelet jobb-asszociatív, $F \to G \to H = F \to (G \to H)$ zárójelezést jelenti

1.2 Szemantika

Boole-függvény Hogy a konnektívák szemantikájáról tudjunk beszélni, mindhez rendelünk egy Boole-függvényt. A Bool-függvény bitvektort egy bitbe képző függvény: $f:\{0,1\}^n \to \{0,1\}$.

Az f|n jelzi, hogy f egy n-változós függvény. A ¬ unáris Boole függvény. A bináris konnektívákhoz rendelt Boole-függvényekhez készíthető igazságtábla. Egy n változós Boole-függvény 2^n soros

Értékadás Egy \mathcal{A} függvény, mely minden változóhoz egy igazságértéket (bitet: 0 vagy 1) rendel. Egy formula kiértékeléshez szükség van egy értékadásra.

Az \mathcal{A} értékadás mellet az F formula értékét $\mathcal{A}(F)$ jelöli.

- Ha a formula a p változó, akkor értéke $\mathcal{A}(p)$
- $\mathcal{A}(\uparrow) = 1$
- $\mathcal{A}(\downarrow) = 0$
- $\mathcal{A}(\neg F) = \neg \mathcal{A}(F)$
- $\mathcal{A}(F \vee G) = \mathcal{A}(F) \vee \mathcal{A}(G)$
- $\mathcal{A}(F \wedge G) = \mathcal{A}(F) \wedge \mathcal{A}(G)$
- $\mathcal{A}(F \to G) = \mathcal{A}(F) \to \mathcal{A}(G)$
- $\mathcal{A}(F \leftrightarrow G) = \mathcal{A}(F) \leftrightarrow \mathcal{A}(G)$

Tehát rekurzívan kiértékeljük az "eggyel egyszerűbb" formulákat és a legkülső konnektívának megfelelően kombináljuk az értékeket.

Közvetlen részformula Egy formula közvetlen részformulái az "eggyel lentebbi szinten lévő részei".

- Változóknak és a logikai konstansoknak nincs közvetlen részforulája.
- \bullet A $(\neg F)$ alakú formulák közvetlen részformulája F
- Az $(F\vee G), (F\wedge G), (F\to G), (F\leftrightarrow G)$ alakú formulák közvetlen részformulái Fés G

A formulák kiértékelését úgy végeztük el, hogy rekurzívan kiértékeljük a közvetlen részformulákat, majd az eredményekből és a külső konnektivitásból számítjuk az egész formula értékét. Az ilyen rendszerű definíciókat és bizonyításokat a formula felépítése szerinti teljes indukciónak nevezzük.

Felépítés szerinti indukció Deffiníciókban csak meg kell mondjuk, hogy aktuálisan a formulához rendelt objektumot hogyan számítjuk ki a részformuláihoz rendelt objektumokból, ügyelve arra, hogy minden esetet pontosan egyszer vegyünk sorra.

Bizonyításokban minden esetre meg kell mutatnunk, hogy ha az állítás igaz a formula összes közvetlen részformulájára, akkor miért igaz az egész formuára is. (teljes indukció is így működik)

Kielégíthetőség Ha az \mathcal{A} értékadásra és az F formuálra $\mathcal{A}(F) = 1$, azt úgy is írjuk, hogy $\mathcal{A} \models F$ és úgy is mondjuk, hogy \mathcal{A} kielégíti F-et, vagy \mathcal{A} egy modellje F-nek. Ha egy formulának van modellje, akkor azt mondjuk, kielégíthető, ha nincs, kielégíthetetlen. Ha az F formulának minden kiértékelés modellje, akkor tautológia, ennek jele pedig $\models F$.

Modellek halmaza Ha F egy formula, akkor Mod(F) az F összes modelljének halmaza. Tehát azt hogy $\mathcal{A}(F) = 1$, vagy $\mathcal{A} \models F$, úgy is írhatjuk, hogy $\mathcal{A} \in Mod(F)$. F pontosan akkor kielégíthetetlen, ha $Mod(F) = \emptyset$. Ha Σ formulák egy halmaza és \mathcal{A} egy értékadás, akkor $\mathcal{A} \models \Sigma$ azt jelenti, hogy \mathcal{A} kielégíti Σ összes elemét. F formula pontosan akkor tautológia, ha $\neg F$ kielégíthetetlen.

Logikai következmény Ha F és G formulák, akkor $F \models G$ ("F-nek következménye G") azt jelöli, hogy minden A-ra ha A(F) = 1, akkor A(G) = 1. Tehát, ha F igaz akkor G is igaz, és $Mod(F) \subseteq Mod(G)$ Ugyanígy használhatjuk a $\Sigma \models F, \Sigma \models \Gamma$ jelöléseket is, ahol Σ, Γ formulahalmazok. Pl.: $\Sigma \models F$ akkor áll fenn, ha Σ minden modellje, modellje F-nek is. $F \equiv G$ jelölés azt jelenti, hogy Mod(F) = Mod(G)

Tétel $Mod(\Sigma \cup \Gamma) = Mod(\Sigma) \cap Mod(\Gamma)$ Hiszen a bal oldalon szereplő halmazban azok az értékadások vannak, melyek kielégítik $\Sigma \cup \Gamma$ összes elemét, azaz Σ összes elemét is és Γ összes elemét is, azaz melyek benne vannak $Mod(\Sigma)$ -ban is és $Mod(\Gamma)$ -ban is, ez pedig épp a jobb oldal.

Fenti bizonyítható indirekt módon is

2 Boole-függvények. Shannon-expanzió. Boolefüggvények teljes rendszerei

Boole-függvény A Bool-függvény bitvektort egy bitbe képző függvény: $f: \{0,1\}^n \to \{0,1\}$. Ha az F formulában csak a $\{p_1,\ldots,p_n\}$ változók szerepelnek, akkor F indukál egy n változós Boole-függvényt, melyet szintén F-fel jelölünk. Például, ha a formula $p_i(x_1,\ldots,x_n)$ akkor egy olyan Boole-függvényt fog indukálni, hogy n darab bit bejön, és kiválasztja az i. bitet.

- $p_i(x_1, \ldots, x_n) = x_i$ (ezt projekciónak hívjuk)
- $(\neg F)(x_1,\ldots,x_n) = \neg (F(x_1,\ldots,x_n))$
- $(F \vee G)(x_1,\ldots,x_n) = F(x_1,\ldots,x_n) \vee G(x_1,\ldots,x_n)$
- ...

Boole-függvények megszorításai Legyen f|n Boole-függvény, n>0. Ha $b\in\{0,1\}$ igazságérték, úgy hogy $f|_{x_n=b}$ jelöli azt az (n-1)-változós Boole-függvényt, melyet úgy kapunk, hogy f inputjában x_n értékét b-re rögzítjük. Formálisan:

$$f|_{x_n=b}(x_1,\ldots,x_{n-1})=f(x_1,\ldots,x_{n-1},b)$$

Példák:

- $\vee|_{x_2=1}$ a konstans 1 függvény: $\vee|_{x_2=1}(x_1)=\vee(x_1,1)=1$.
- $\wedge|_{x_2=0}$ a konstans 0 függvény
- $\wedge|_{x_2=1}$ az identikus $(x_1 \to x_1)$ függvény

Shannon expanzió Lényege, hogy egy n változós Boole-függvényt ki tudunk fejezni két n-1 változós Boole-függvény segítségével. Bejön az $f(x_1, \ldots, x_n)$, két eset lehetséges: az x_n vagy 1 vagy 0. Az alábbi képlet esetén:

$$f(x_1, \dots, x_n) = (x_n \wedge f|_{x_n = 1}(x_1, \dots, x_{n-1})) \vee (\neg x_n \wedge f|_{x_n = 0}(x_1, \dots, x_{n-1}))$$

Ha az $x_n=1$, akkor a jobb oldali tag hamis lesz, a bal oldal pedig: $f|_{x_n=1}(x_1,\ldots,x_{n-1})=f(x_1,\ldots,x_{n-1},1)$, ami megegyezik $f(x_1,\ldots,x_n)$ -nel ez esetben. Minden Boolefüggvény előáll a projekciók és a $\{\neg,\vee,\wedge\}$ Boole-függvények alkalmas kompozíciójaként. Ezt úgy is mondjuk, hogy $\{\neg,\vee,\wedge\}$ rendszer teljes.

Bizonyítás n szerinti teljes indukciót alkalmazunk. Ha n=0, akkor f|0 függvény vagy konstans 0, vagy a konstans 1, mindkettő előállítható így. Ha n>0, akkor az indukciós feltevés zserint az $f|_{x_n=b}(x_1,\ldots,x_{n-1})$ Boole-függvények $b\in\{0,1\}$ -re előállnak ilyen alakban, a Shannon expanzióban pedig szintén csak ezt a három műveletet alkalmazzuk.

Következmény Minden Boole-függvény indukálható olyan formulával, melyben csak $\{\neg, \lor, \land\}$ konnektívák szerepelnek.

3 Konjunktív normálforma. A DPLL algoritmus

Konjunktív normálforma Az egyik leggyakrabban alkalmazott normálforma a konjuktív normálform. Az ítéletváltozókat és negáltjaikat literáloknak nevezzük. Véges sok literál diszjunkcióját klóznak nevezzük. Véges sok klóz konjunkcióját pedig konjunktív normálformának, CNF-nek.