

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-68816

(43)公開日 平成10年(1998) 3月10日

(51) Int.Cl.⁶

G 0 2 B 5/30

識別記号

庁内整理番号

FΙ

G 0 2 B 5/30

技術表示箇所

-

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号

特願平8-228023

(22)出顧日

平成8年(1996)8月29日

(71) 出顧人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 山中 篾

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 弁理士 梅田 勝

(54) 【発明の名称】 位相差板及び円偏光板

(57)【要約】

【課題】 入射光線の波長に対して、均一な位相差特性 の波長板を提供し、この波長板を用いた液晶ディスプレ イ等の光学システムの特性を改善する。

「解決手段」 1/4波長板と1/2波長板とを予め設計した角度で貼り合わせた位相差板を用いることにより、レタデーションの波長分散を制御でき、特に入射光線の波長(λ)に対するレタデーションの比(Δnd/λ)をほぼ一定にすることができる。

(b)

(c)

【特許請求の範囲】

【請求項1】 複屈折光の位相差が1/4波長である1 /4波長板と、複屈折光の位相差が1/2波長である1 /2波長板とを、それらの光軸が交差した状態で貼り合 わせたことを特徴とする位相差板。

【請求項2】 前記請求項1に記載の位相差板において、

前記1/4波長板と前記1/2波長板とが同一の材料からなり、且つ、少なくとも一方の波長板が、波長板平面内の直交軸方向とフィルムの厚さ方向とにおける屈折率 10をそれぞれnx、ny、nzとした場合に、nx>ny、及び(nx-nz)/(nx-ny)<1を満足するものであることを特徴とする位相差板。

【請求項3】 請求項1又は2に記載の位相差板において、

前記1/4波長板と前記1/2波長板との光軸のなす角をpとした場合に、50度<p<70度を満足するものであることを特徴とする位相差板。

【請求項4】 請求項1乃至3に記載の波長板と偏光板とを貼り合わせて形成したことを特徴とする円偏光板。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複屈折光の位相差 の波長分散を制御した位相差板、及びそれを用いた円偏 光板に関するものである。

[0002]

【従来の技術】従来から、この種の波長板は、反射防止シート、液晶ディスプレイ、液晶プロジェクター等に使用されているが、いずれの用途においても変色を防ぐために位相差の波長分散を制御すること、つまり波長板の 30 特性が波長によらず一定であることが求められている。

【0003】この課題を解決する方法として、特開平5 -27118号公報及び特開平5-27119号公報に て提案された技術がある。この技術は、複屈折光の位相 差の波長分散の大きい材料と小さい材料で製作したシートを直交して貼り合わせることによって、波長分散を打 ち消し合わせて、波長分散の少ない波長板を得るもので ある。

[0004]

【発明が解決しようとする課題】上述した従来の技術に 40 おいては、その原理上、うまく波長分散を打ち消し合う ような2種類の複屈折材料を必要とするが、そのような 材料が常に適当なコストで入手可能であるとは限らないので、事実上設計の自由度が制限されるという問題がある。

【0005】本発明は、このような点に鑑みてなされた もので、入手容易な1種類の複屈折材料のみでも、波長 による位相差の変化が少なく、その一定性に優れる位相 差板を提供し、例えば可視光全域に渡って1/4波長板 としてほぼ機能する位相差板を実現できるようにしたも 50 のである。

[0006]

【課題を解決するための手段】本発明の位相差板は、1 /4波長板(複屈折光の位相差が1/4波長である複屈 折性フィルム)と、1/2波長板(複屈折光の位相差が 1/2波長である複屈折性フィルム)とを、それらの光 軸を予め設計した角度に交差した状態で貼り合わせてな るものである。

【0007】また、その位相差板を構成する波長板の少なくとも一方が、波長板平面内の直交軸方向とファルムの厚さ方向とにおける屈折率をそれぞれnx、nを、nzとした場合に、nx>ny、及び(nx-nz)/(nx-ny) <1を満足するように構成している。

【0008】すなわち、複屈折光の屈折率差(Δn)と厚さ(d)の積(Δnd)で定義されるレタデーションが、設計波長(λo)の1/4である1/4波長板と、1/2である1/2波長板を予め設計した角度で貼り合わせた位相差板を用いることにより、レタデーションの波長分散を制御でき、特に入射光線の波長(λ)に対するレタデーションの比(Δnd/λ)をほぼ一定にでき、この位相差板を用いた光学システムの特性を改善することができる。

[0009]

20

【発明の実施の形態】本発明の位相差板及び楕円偏光板の実施形態を図面に従って以下説明する。図1に本発明の位相差板の第1実施形態を示す。座標軸を、図2

(a) に示すように定義し、光学素子はyz平面内に配置し、光線はx軸に沿って進行するものとする。また光学素子の軸の方向は図2(b) に示すようにyz平面内でy軸から右向きを正とした角度で計るものとする。以下の説明においても同じ定義を用いる。

【0010】図1(a)中、11は1/2波長板、12は接着材、13は1/4波長板である。1/2波長板11は、図1(b)に示すように延伸軸が-15度、1/4波長板13は、図1(c)に示すように延伸軸が-75度の方向に配置されている。この1/2波長板11や1/4波長板13は高分子フィルムを延伸処理して作成されるが、本実施形態では、波長板材料としてよく使用されるポリカーボネイトを材料として選択している。

【0011】この位相差板は、鉛直方向(0度方向)の 直線偏光を1/2波長板側11から入射させた場合に波 長分散特性が改善された1/4波長板として機能するよ うに設計されており、可視光の範囲(400nm~70 0nm)において波長によらずほぼ完全な円偏光に変換 することができる。

【0012】以下に、この位相差板の機能を単純な1/ 4被長板と比較しながら、ポアンカレ球を用いて説明する。ポアンカレ球とは球上の点によって光線の偏光状態を表す方式である。図3にその概観図を示す。この球を地球に見立てると北極31と南極32の点は、各々左周 10

り円偏光とに右周り円偏光を示し、赤道上33の点は直 線偏光を示していて、赤道上33の経度は直線偏光の角 度の2倍に対応している。

【0013】従って、-x軸方向を経度0度と定義すれば、この方向の赤道上の点38は、垂直方向の直線を表し、-z軸方向38は45度の直線偏光を表している。以下同様に、x軸方向35は水平方向の、z軸方向36は-45度方向の直線偏光を表している。また、赤道と極の間34は、楕円偏光を示している。このようにして如何なる偏光状態もポアンカレ球上の1点として表現される。

【0014】また、波長板の機能は角度で計ったレタデーションの大きさだけポアンカレ球を回転させる作用として表現される。このとき、回転軸はポアンカレ球中心と波長板光軸方向の2倍の経度に対応した赤道上の対応点を結ぶ直線として定義される。

【0015】比較例1として、ポリカーボネイトを延伸して製作した単純な1/4波長板41を分析する。図4に示すように1/4波長板41の延伸軸は-45度方向に配置され、可視光(400nm~700nm)の範囲 20において、鉛直方向の直線偏光を入射して左向き円偏光を得る事が目的である。レタデーションの大きさが入射光線の波長に対して常に1/4波長であれば、この目的を達成することができるが、実際にポリカーボネイト製の波長板のレタデーションを測定すると図5のようなグラフが得られる。

【0016】すなわち、設計波長(550nm)では1 /4波長のレタデーションを示すが、設計波長より短波 長ではレタデーションが過剰となり、長波長では不足し てしまう。同じことを図6に示すポアンカレ球を用いて 30 説明する。入射光の鉛直方向に偏光した光線は点Aで表 され、1/4波長板の光軸は直線Bであり、その作用は 直線Bを軸としてポアンカレ球をレタデーションに応じ て回転させる事で表現される(1/4波長の場合90 度)。

【0017】従って、設計波長では、点Aは北極の点C に移されるので、完全な円偏光になるが、短波長の光線 に対してはレタデーションが過剰になるので点Dに移り、長波長の光線に対してはレタデーションが不足する ので点Eに移る。以上の分析から設計波長以外では、楕 40 円偏光に変換されてしまうことが分かる。

【0018】本発明は、以上説明したような不具合を解決するためになされた方式であり、再び本発明の第1実施形態に戻ってその働きを図7に示すポアンカレ球を用いて説明する。本実施形態の位相差板は、延伸軸が-15度の1/2波長板11と-75度の1/4波長板13とからなっているが、ポアンカレ球上では1/2波長板11の延伸軸は直線Fで、1/4波長板13の延伸軸は直線Gで表わされる。

【0019】そして、各々の作用は1/2波長板11は 50

180度の回転、1/4波長板13は90度の回転である。比較例1と同じ鉛直方向の直線偏光を入射すると、入射光は点Aに対応している。まず、基準波長の場合は、1/2波長板11によって点Hへ移され、さらに1/4波長板13によって点C(北極)に移されるので、比較例1と同様に完全な左向き円偏光に変換できることが分かる。

【0020】次に、基準波長より短波長の場合は1/2 波長板11のレタデーションが過剰になるので点かに移されるが、この点Hとのずれが次の1/4波長板13のレタデーションの過剰分と打ち消し合い、最終的に点Cの近くに移される。同様に基準波長より長波長の場合は、1/2波長板11のレタデーションが不足するので点Kに移されるが、この点Hとのずれが次の1/4波長板13のレタデーションの不足分を補って最終的にはやはり点Cの近くに移される。このようにして、どの波長においてもはぼ完全な左向き円偏光が得られる。

【0021】上述の比較例1と本実施形態の特性の違いを、出力光線中の円偏光の割合によって分析すると、図8に示すようになる。図8から明らかなように、本実施形態のグラフ81は比較例1のグラフ82に比べてはるかに均一な波長分散特性を示している。また、本実施形態の波長板は1/2波長板11と1/4波長板13との角度を変更することによってさらに波長分散特性を改善できる。

【0022】図8には1/2波長板11と1/4波長板13との角度を55度に変更した場合のグラフ83を示している。可視光の範囲(400nm~700nm)での均一性から評価すれば、1/2波長板11と1/4波長板13の角度を55度にする方が60度の場合より優れている。しかし、この例に限らず、必要な波長範囲等の要求仕様に応じて角度を調整することによって適切な特性を選択することができる。

【0023】次に、本発明の第2実施形態について以下 説明する。本実施形態は、上記第1実施形態において波 長板として以下の条件を満たすものを使用している。波 長板平面内の直交軸方向とフィルムの厚さ方向とにおけ る屈折率を、それぞれnx、ny、nzとした場合に、 nx>ny、及び(nx-nz)/(nx-ny)<1 を満足する。この特性を持つ波長板の特長は、光線が波 長板の垂線方向ではなく、傾いた角度で入射した場合に レタデーションの変化が少ないことである。

【0024】従って、この特性を持つ波長板を用いて位相差板を製作すると、広い入射角の範囲において波長分散特性を制御できることになり、本発明の有用性を一層高めることができる。

【0025】次に、本発明の第3実施形態について以下 説明する。図9に本発明の第3実施形態の構造を示す。 図9(a)中、91は1/4波長板、92は接着剤、9 3は1/2波長板、94は偏光板である。1/4波長板 91の延伸軸は、図9 (b) に示すように20度、1/2波長板93の延伸軸は、図9 (c) に示すように75度の方向に配置され、偏光板94は、図9 (d) に示すように透過軸が水平(90度方向)に配置されているものとする。

【0026】この素子に1/4波長板91の側から光線を入射すると、左向き円偏光は偏光板で吸収され、右向き円偏光だけが透過するように設計されている。本実施形態の円偏光板は、上記第1実施形態で詳しく説明したように、1/4波長板91のレタデーションの波長分散 10特性を1/2波長板93の特性で打ち消すように配置しているので、可視光の範囲で円偏光板としてほぼ一定の特性を示すことができる。

【0027】比較例3として、図10に示すように、1 /4波長板101の延伸軸を45度、偏光板103の透 過軸を水平にして貼り合わせた円偏光板を用い、本実施 形態と比較例3との特性を比較するために、1/4波長 板91、101の側にアルミ蒸着全反射ミラーを配置し てその反射防止効果を比較した。その結果は図11に示 すとおりである。図11から明らかなように、本実施形 態のグラフ112の方が比較例3のグラフ111より反 射防止効果が高いことが分かる。この結果は円偏光板と して本実施形態の方が優れていることを示している。 【0028】

【発明の効果】本願請求項1に記載の発明に係る位相差板は、1/4波長板と1/2波長板とを同じ材料にて形成することが可能であり、且つ、各々の波長板の貼り合わせ角度を変えることにより、特性を調整することが可能であるので、設計の自由度を拡大することができる。

【0029】本願請求項2に記載の発明に係る位相差板 30 は、光線の入射角度に対する波長板の特性を一定にすることができるので、光軸に対して斜めに光線が進行する光学システムに使用することが可能になる。

【0030】本願請求項3に記載の発明に係る位相差板は、予め設計した角度で貼り合わせて構成しているので、1/4波長板の波長に対するレタデーション特性を均一にでき、この位相差板を用いた液晶ディスプレイ、液晶プロジェクター等の光学システムの特性を改善することができる。

【0031】本願請求項4に記載の発明に係る円偏光板は、入射光線の波長と角度に対する円偏光選択特性の変動が少なく、この円偏光板を用いた液晶ディスプレイ、液晶プロジェクター、反射防止膜等の光学システムの特性を改善することができる。

【図面の簡単な説明】

【図1】本発明の位相差板の第1実施形態を示す説明図である。

【図2】座標軸の定義を示す説明図である。

【図3】 ポアンカレ球を示す説明図である。

【図4】本発明の位相差板の第1実施形態と比較分析するための比較例1を示す説明図である。

【図5】比較例1におけるレタデーション特性を示す説 明図である。

【図6】比較例1におけるポアンカレ球を示す説明図である。

【図7】本発明の位相差板の第1実施形態におけるポアンカレ球を示す説明図である。

【図8】本発明の位相差板の第1実施形態及び比較例1 における波長分散特性を示す説明図である。

【図9】本発明の位相差板の第3実施形態を示す説明図である。

【図10】本発明の位相差板の第3実施形態と比較分析 するための比較例3を示す説明図である。

【図11】本発明の位相差板の第3実施形態及び比較例 3における反射防止特性を示す説明図である。

【符号の説明】

- 11 1/2波長板
- 12 接着剤
- 0 13 1/4波長板
 - 41 1/4波長板
 - 91 1/4波長板
 - 92 接着剤
 - 93 1/2波長板
 - 94 偏光板
 - 101 1/4波長板
 - 102 接着剤
 - 103 偏光板 "

[図1]

[図3]

[図2]

【図4】

[図5]

【図6】

【図7】

【図8】

【図11】

【図9】

【図10】

THIS PAGE BLANK (USPTO)