Mathematics 554H/701I Homework

Contents

1.	Continuous functions.	1
1.1.	Continuity of a function at a point and some examples.	1
1.2.	Some examples of discontinuous functions.	3
1.3.	Sums, products, and quotients of real valued continuous	
	functions are continuous.	4
1.4.	Conditions equivalent to a function being continuous at a point.	6
1.5.	Conditions equivalent to a function being continuous at all	
	points.	9

1. Continuous functions.

1.1. Continuity of a function at a point and some examples. We now start the last big topic we will cover this term, which is continuous maps between metric spaces.

Definition 1. Let E and E' be metric spaces and $f: E \to E'$ a function from E to E'. Let $p_0 \in E$. Then f is **continuous** at p_0 if and only if for all $\varepsilon > 0$ there is a $\delta > 0$ such that for $p \in E$

$$d(p, p_0) < \delta$$
 implies $d(f(p), f(p_0)) < \varepsilon$.

Example 2. Here is an example of showing something is continuous. Let $f: \mathbb{R} \to \mathbb{R}$ be the function

$$f(x) = 3x + 5$$

Then f is continuous at every point of \mathbb{R} . To see this let $x_0 \in \mathbb{R}$ and let $\varepsilon > 0$. Let $\delta = \varepsilon/3$. Then if $|x - x_0| < \delta$ we have

$$|f(x) - f(x_0)| = |3x + 5 - (3x_0 + 5)|$$

$$= |3(x - x_0)|$$

$$= 3|x - x_0|$$

$$< 3\delta$$

$$= \varepsilon.$$

Proposition 3. Let E be a metric space and $f: E \to E$ the identity map, that is f(p) = p for all $p \in E$. Then f is continuous at all points of E.

Problem 1. Prove this. \Box

Problem 2. Let E be a metric space.

(a) Let $p, x_0, q \in E$ show that

$$|d(q, x_0) - d(p, x_0)| < d(p, q).$$

(b) Let $x_0 \in E$ and define f(p) to be the distance of p from x_0 , that is $f(p) = d(p, x_0)$. Show that f is continuous at all points of E. Hint: Use part (a) to show $|f(p) - f(q)| \le d(p, q)$.

Recall that a map $f: E \to E'$ between metric spaces is Lipschitz if and only if there is a constant $M \ge 0$ such that

for all $p, q \in E$.

Proposition 4. Let $f: E \to E'$ be a Lipschitz map between metric space. Then f is continuous at all points of E.

Problem 3. Prove this. Hint: Set
$$\delta = \frac{\varepsilon}{M}$$
.

Recall that on \mathbb{R}^n we have defined the inner product

$$\mathbf{a} \cdot \mathbf{b} = \sum_{j=1}^{n} a_j b_j$$

where $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$. This was used to define the norm on \mathbb{R}^n as

$$\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}}.$$

This in turn was used to define the distance function on \mathbb{R}^n by

$$d(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|.$$

Also recall that we have the Cauchy-Schwartz inequality:

$$|\mathbf{a} \cdot \mathbf{b}| \le ||\mathbf{a}|| ||\mathbf{b}||.$$

Problem 4. Let $\mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Define the function $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + b.$$

Show that f is continuous at all points of \mathbb{R}^n . Hint: Let $\mathbf{p}, \mathbf{q} \in \mathbb{R}^n$ then show

$$f(\mathbf{p}) - f(\mathbf{q}) = \mathbf{a} \cdot (\mathbf{p} - \mathbf{q}).$$

Use the Cauchy-Schwartz inequality to show $|f(\mathbf{p}) - f(\mathbf{q})| \le ||\mathbf{a}|| ||\mathbf{p} - \mathbf{q}||$ and therefore f is Lipschitz with Lipschitz constant $M = ||\mathbf{a}||$.

Problem 5. Define the functions $f, g: \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = x and g(x, y) = y. Show that f and g are continuous. *Hint:* As the two proofs are the same, it is enough to show that f is continuous. Let $\mathbf{a} = (1,0)$ and b = 0 then $f(x,y) = (x,y) \cdot \mathbf{a}$ so one way to do this is to reduce it to the previous problem.

1.2. Some examples of discontinuous functions. We now give examples of some functions that are not continuous. We first record what it means for a function to not be continuous at a point.

Negation of Definition of Continuity. Let $f: E \to E'$ be a map between metric spaces. Let $p_0 \in E$. Then f is **discontinuous** at p_0 if and only if there is a $\varepsilon > 0$ such that for all $\delta > 0$ there is a $p \in E$ with $d(p, p_0) < \delta$ and $d'(f(p), f(p_0)) \ge \varepsilon$.

We now look at the function

$$f(x) = \begin{cases} 0, & x \le 0; \\ 1, & 0 < x. \end{cases}$$

which has the graph:

We now show this is discontinuous at x=0. Let $\varepsilon=1/2$. Then for any $\delta>0$ there is an x>0 with $0< x<\delta$. Then x>0 and so f(x)=1. As f(0)=0 we have $|f(x)-f(0)|=|1-0|=1>\varepsilon$ as required. Here is a more exotic example.

Problem 6. Define a function by

$$f(x) = \begin{cases} 0, & x \in \mathbb{Q}; \\ 1, & x \notin \mathbb{Q}. \end{cases}$$

That is f(x) is zero with x is a rational number, and f(x) is one when x is irrational. Show that f is discontinuous at all points of \mathbb{R} .

Problem 7 (Optional). Define a function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q} \text{ is rational in lowest terms;} \\ 0, & x \text{ is irrational.} \end{cases}$$

Here is the graph for rationals in (0,1) with denominators less than 100.

Show that f is continuous at all irrational points and discontinuous at all rational points.

1.3. Sums, products, and quotients of real valued continuous functions are continuous.

Problem 8. Let $f:(0,\infty)\to\mathbb{R}$ be defined by

$$f(x) = \sqrt{x}$$

then show f is continuous at x = 1.

Solution: We first note that

$$|f(x) - f(1)| = |\sqrt{x} - 1| = \left| \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{(\sqrt{x} + 1)} \right| = \left| \frac{x - 1}{\sqrt{x} + 1} \right| \le \left| \frac{x - 1}{0 + 1} \right| = |x - 1|.$$

Now let $\varepsilon > 0$ and let $\delta = \varepsilon$. Then if $|x - 1| < \delta$ implies

$$|f(x) - f(1)| \le |x - 1| < \delta = \varepsilon$$

which is just what is needed to show that f(x) is continuous at x = 1.

Problem 9. Let $f:(0,\infty)\to\mathbb{R}$ be defined by

$$f(x) = \sqrt{x}$$
.

Show f is continuous at x = a for any a > 0.

Theorem 5. Let E be a metric space and $f, g: E \to \mathbb{R}$ be functions and $c_1, c_2 \in \mathbb{R}$ constants. Assume f and g are continuous at p_0 . Then

- (a) $c_1f + c_2g$ is continuous at p_0 .
- (b) The product fg is continuous at p_0 .
- (c) If $g(p_0) \neq 0$, then quotient $\frac{f}{g}$ is continuous at p_0 .

Problem 10. (a) Prove part (a) of the Theorem.

(b) Prove part (b) of the Theorem. *Hint:* Note that by our standard adding and subtracting trick

$$|f(p)g(p) - f(p_0)g(p_0)| = |f(p)g(p) - f(p)g(p_0) + f(p)g(p_0) - f(p_0)g(p_0)|$$

$$\leq |f(p)||g(p) - g(p_0)| + |f(p) - f(p_0)||g(p_0)|$$

By the continuity of f there is a $\delta_1 > 0$ such that

$$d(p, p_0) < \delta_1$$
 implies $|f(p) - f(p_0)| < 1$.

Show

$$d(p, p_0) < \delta_1$$
 implies $|f(p)| < |f(p_0)| + 1$.

Again by the continuity of f there is a $\delta_2 > 0$ such that

$$d(p, p_0) < \delta_2$$
 implies $|f(p) - f(p_0)| < \frac{\varepsilon}{2|g(p_0| + 1)}$.

The continuity of g gives us a $\delta_3 > 0$ such that

$$d(p, p_0) < \delta_3$$
 implies $|g(p) - g(p_0)| < \frac{\varepsilon}{2(|f(p_0)| + 1)}$

Now set $\delta = \min\{\delta_1, \delta_2, \delta_3\}$ and show

$$d(p, p_0) < \delta$$
 implies $|f(p)g(p) - f(p_0)g(p_0)| < \varepsilon$

Lemma 6. Let E be a metric space and $g: E \to \mathbb{R}$ a function that is continuous at $p_0 \in E$ and with $g(p_0) \neq 0$. Then $\frac{1}{g}$ is also continuous at p_0 .

Problem 11. Prove this. *Hint:* As g is continuous at p_0 and $g(p_0) \neq 0$, there is a $\delta_1 > 0$ such that

$$d(p, p_0) < \delta_1$$
 implies $|g(p) - g(p_0)| < \frac{|g(p_0)|}{2}$.

Use this to show

$$d(p, p_0) < \delta_1$$
 implies $\frac{1}{|q(p)|} < \frac{2}{|q(p_0)|}$,

and therefore

$$d(p, p_0) < \delta_1$$
 implies $\left| \frac{1}{g(p)} - \frac{1}{g(p_0)} \right| \le \frac{2|g(p_0) - g(p)|}{|g(p_0)|^2}$

The continuity of g at p_0 implies there is a $\delta_2 > 0$ such that

$$d(p, p_0) < \delta_2$$
 implies $|g(p) - g(p_0)| < \frac{|g(p_0)|^2 \varepsilon}{2}$.

And you should be able to take it from here.

Problem 12. Use Lemma 6 and part (b) of Theorem 5 to prove part (c) of Theorem 5. \Box

Proposition 7. Let $f: \mathbb{R} \to \mathbb{R}$ be the polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Then f is continuous at all points of \mathbb{R} .

Problem 13. Prove this. *Hint:* Probably the easiest way is by induction on n. The base of the induction is n = 0 in which case $f(x) = a_0$ is a constant which is clearly continuous. Or we can use the base case of n = 1 in which case $f(x) = a_1x + a_0$ is Lipschitz and therefore continuous.

Here is what the induction step from n=4 to n=5 looks like. Assume that we know that all polynomials of degree 4 are continuous and let

$$f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

be a polynomial of degree 5. Write it as

$$f(x) = x(a_5x^4 + a_4x^3 + a_3x^2 + a_2x + a_1) + a_0$$

= $xg(x) + a_0$

where $g(x) = a_5x^4 + a_4x^3 + a_3x^2 + a_2x^1 + a_1$ is a polynomial of degree 4. By the induction hypothesis g(x) is continuous and the function x is continuous. Whence f is of the form

$$f = (\text{continuous function}) \times (\text{continuous function}) + (\text{constant})$$

and therefore f is continuous. Use this idea to do the general induction step.

Theorem 8. Let $f: E \to E'$ and $g: E' \to E''$ be maps between metric spaces. Let $p_0 \in E$ and assume that f is continuous at p_0 and g is continuous at $f(p_0)$. Then the composition $g \circ f$ is continuous at p_0 .

Problem 14. Prove this. *Hint:* Let $\varepsilon > 0$. By the definition of g being continuous at $f(p_0)$ there is a $\delta_1 > 0$ such that $d(q, f(p_0)) < \delta_1$ implies $d(g(q), g(f(p_0))) < \varepsilon$. By the definition of f being continuous at p_0 there is $\delta > 0$ such that $d(p, p_0) < \delta$ implies $d(f(p), f(p_0)) < \delta_1$. Now show $d(p, p_0) < \delta$ implies $d(g(p), f(p_0)) < \varepsilon$.

1.4. Conditions equivalent to a function being continuous at a **point.** We are going to give other conditions that imply a function is continuous, but first we review a bit of set theory from the beginning of the term.

Let $f: E \to E'$ be a map between sets. Recall that if $A \subseteq E$, then the *image* of A under f is

$$f[S] = \{f(x) : x \in A\}.$$

And if $B \subseteq E'$ the **preimage** of B under f is

$$f^{-1}[B] = \{x \in E : f(x) \in B\}.$$

We recall that taking preimages behaves well with respect to taking unions and intersections.

Proposition 9. Let $f: E \to E'$ be a map between sets and let $\{S_{\alpha}\}_{{\alpha} \in I}$ be a collections of subsets of E'. (That is for each ${\alpha} \in A$ the $S_{\alpha} \subseteq E'$.) Then

$$f^{-1}\Big[\bigcup_{\alpha \in I} S_{\alpha}\Big] = \bigcup_{\alpha \in I} f^{-1}[S_{\alpha}] \quad and$$

$$f^{-1}\Big[\bigcap_{\alpha \in I} S_{\alpha}\Big] = \bigcap_{\alpha \in I} f^{-1}[S_{\alpha}],$$

Proof. To prove the first equality:

$$x \in f^{-1} \Big[\bigcup_{\alpha \in I} S_{\alpha} \Big] \iff f(x) \in \bigcup_{\alpha \in I} S_{\alpha}$$

$$\iff f(x) \in S_{\alpha} \quad \text{for at least one } \alpha \in I$$

$$\iff x \in f^{-1} [S_{\alpha}] \quad \text{for at least one } \alpha \in I$$

$$\iff x \in \bigcup_{\alpha \in I} f^{-1} [S_{\alpha}].$$

This shows that $f^{-1}\left(\bigcup_{\alpha\in I}S_{\alpha}\right)$ and $\bigcup_{\alpha\in I}f^{-1}(S_{\alpha})$ have the same elements and therefore are equal.

Likewise

$$x \in f^{-1} \Big[\bigcap_{\alpha \in I} S_{\alpha} \Big] \iff f(x) \in \bigcap_{\alpha \in I} S_{\alpha}$$

$$\iff f(x) \in S_{\alpha} \quad \text{for all } \alpha \in I$$

$$\iff x \in f^{-1} [S_{\alpha}] \quad \text{for all } \alpha \in I$$

$$\iff x \in \bigcap_{\alpha \in I} f^{-1} [S_{\alpha}].$$

and therefore $f^{-1} \Big[\bigcap_{\alpha \in I} S_{\alpha} \Big] = \bigcap_{\alpha \in I} f^{-1} [S_{\alpha}].$

We recall that in the book's notation if S is a subset of some set E then the **compliment** of S in E is

$$\mathcal{C}(S) = \{ x \in E : x \notin S \}.$$

That is C(S) is the set of points of E that are not in S. Taking compliments is also well behaved with respect to taking preimages.

Proposition 10. Let $f: E \to E'$ be a map between sets and let $S \subseteq E'$. Then

$$f^{-1}[\mathcal{C}(S)] = \mathcal{C}(f^{-1}[S]).$$

(Here C(S) is the compliment of S in E' and $C(f^{-1}[S])$ is the compliment of $f^{-1}[S]$ in E.)

Proof. For $x \in E$ we have

$$x \in \mathcal{C}(f^{-1}[S]) \iff x \in f^{-1}[S]$$

$$\iff f(x) \notin S$$

$$\iff f(x) \in \mathcal{C}(S)$$

$$\iff x \in f^{-1}[\mathcal{C}(S)].$$

Therefore $C(f^{-1}[S])$ and $f^{-1}[C(S)]$ have the same elements and thus are equal.

We summarize this as

Taking preimages preserves unions, intersections, and compliments.

Theorem 11. Let $f: E \to E'$ be a function between metric spaces and let p_0 . Then the following conditions are equivalent:

- (a) f is continuous at p_0 .
- (b) f does the right thing to sequences converging to p_0 . Explicitly: If p_1, p_2, p_3, \ldots is a sequence in E with $\lim_{n\to\infty} p_n = p_0$, then

$$\lim_{n \to \infty} f(p_n) = f(p_0).$$

(c) For any open ball $B(f(p_0), r)$ about $f(p_0)$, the preimage $f^{-1}[B(f(p_0), r)]$ contains a open ball about p_0 . (That is there is a $\delta > 0$ such that $B(p_0, \delta) \subseteq f^{-1}[B(f(p_0), r)]$.)

Problem 15. In Theorem 11 prove (a) implies (b). *Hint*: Let $\varepsilon > 0$. Then the continuity of f at p_0 implies there is a $\delta > 0$ such that $d(p, p_0) < \delta$ implies $d(f(p), f(p_0))$. Let $\lim_{n \to \infty} p_n = p_0$. Then there is a N such that $n \ge N$ implies $d(p_n, p_0) < \delta$. Now show that $n \ge N$ implies $d(f(p_n), f(p_0)) < \varepsilon$. \square

Problem 16. In Theorem 11 prove (b) implies (a). *Hint:* It is easier to prove the contrapositive: \sim (a) implies \sim (b). That is we assume that (a) is false and prove that (b) is false. If (a) is false there is $\varepsilon > 0$ such that for all $\delta > 0$ there is a $p \in E$ with $d(p, p_0)\delta$ and $d(f(p), f(p_0)) \geq \varepsilon$. Letting $\delta = 1/n$ shows there is a point p_n with $d(p_n, p_0) < 1/n$ and $d(f(p_n), f(p_0)) \geq \varepsilon$. Show that $\lim_{n\to\infty} p_n = p_0$, but $\lim_{n\to\infty} f(p_n) \neq f(p_0)$.

Problem 17. In Theorem 11 prove (a) implies (c). *Hint:* Assume that f is continuous at p_0 and let r > 0. Letting $\varepsilon = r$ in the definition of f being continuous at p_0 gives a $\delta > 0$ such that $d(p, p_0) < \delta$ implies $d(f(p), f(p_0)) < r$. If $p \in B(p_0, \delta)$, then $d(p, p_0) < \delta$ and therefore $d(f(p), f(p_0)) < r$. That is $p \in B(p_0, \delta)$ implies $f(p) \in B(f(p_0), r)$. Now use the definition of the preimage $f^{-1}[B(f(p_0), r)]$ to show this implies $B(p_0, \delta) \subseteq f^{-1}[B(f(p_0), r)]$.

Problem 18. In Theorem 11 prove (c) implies (a). *Hint:* Assume that (c) holds and let $\varepsilon > 0$. Then in the statement of (c) let $r = \varepsilon$. As (c)

holds, then is $\delta > 0$ such that $B(p_0, \delta) \subseteq f^{-1}[B(f(p_0), \varepsilon)]$. Let $p \in E$ with $d(p_0, p) < \delta$, then $p \in B(p > \delta) \subseteq f^{-1}[B(f(p_0), \varepsilon)]$. Then, by the definition of the $f^{-1}[B(f(p_0), \varepsilon)]$, this implies $f(p) \in B(f(p_0), \varepsilon)$. And you should be able to finish from here.

Proof of Theorem 11. Combining Problems 15, 16, 17, and 18 we have

$$(b) \iff (a) \iff (c)$$

which shows the three conditions are equivalent.

1.5. Conditions equivalent to a function being continuous at all points.

Definition 12. A map $f: E \to E'$ is *continuous* if and only if it is continuous at every point of E.

Theorem 13. Let $f: E \to E'$ be a map between metric spaces. Then the following are equivalent.

- (a) f is continuous.
- (b) f does the right thing to convergent sequences in E. That is if $\langle p_n \rangle_{n=1}^{\infty}$ is a convergent sequence in E, then

$$\lim_{n \to \infty} f(p_n) = f\Big(\lim_{n \to \infty} p_n\Big).$$

- (c) If U is an open set in E', then the preimage $f^{-1}[U]$ is an open set in E. (That is preimages of open sets are open.)
- (d) If F is a closed set in E', then the preimage $f^{-1}[F]$ is a closed set in E. (That is the preimages of closed sets are closed.)

Problem 19. Prove this. *Hint*: Note that Theorem 11 easily implies

$$(a) \iff (b) \iff (c)$$

and you can assume these equivalences. So all you have to do is prove $(c) \iff (d)$.

Now let us do some practice in using these equivalences.

Proposition 14. Let $f: E \to E'$ and $g: E' \to E''$ be continuous maps between metric spaces. Then the composition $g \circ f: E \to E''$ is continuous.

Problem 20. This is a special case of Theorem 8. In Problem 14 you gave a ε - δ proof. Now give a proof using that continuity is equivalent to doing the right thing by convergent sequences. *Hint*: It is enough to show that if f and g are continuous, and $\lim_{n\to\infty} p_n = p_0$ in E that $\lim_{n\to\infty} g(f(p_n)) = g(f(p_0))$ in E''.

Lemma 15. Let $f: E \to E'$ and $g: E' \to E''$ be functions. Show that for and $S \subseteq E''$ that

$$(g \circ f)^{-1}[S] = f^{-1}[g^{-1}[S]].$$

Problem 21. Give anther proof of Proposition 14 using that continuity is equivalent to the preimages of open sets being open. *Hint:* Let f and g be continuous and $U \subseteq E''$ be open. All you need to show is that $(g \circ f)^{-1}[U]$ is open and the last lemma should make this easy.