Large deviations of affine processes

Matthew Varble

September 2, 2022

Abstract

This is an abstract of the entire dissertation; summarize a history of large deviations and affine processes, then abstractly summarize our large deviations result.

Acknowledgment

This is where I acknowledge how I am useless without others.

Contents

Abstract Acknowledgment			i
			iii
In	trod	uction	vi
Ι	Affine processes I.1 Formulation		
	I.2	Existence of real moments	12
II	I.4 Lar	Jump diffusions	12 13
		np-Diffusions	15

CONTENTS CONTENTS

Introduction

This is where I give the reader a little more history and detail regarding affine processes and large deviations, should they read this paper without already being well-versed in the subject.

Notation and conventions

I want this section to clear up notational similarities and differences with literature. Namely

- All the objects one needs for stochastic processes and their stochastic integration.
- All the spaces one often sees in real analysis.
- The space, functions, and parameters associated with a given affine process.

Chapter I

Affine processes

Here I put a summary of chapter, along with a short history. It will include the following important notes.

- Chapter addresses important fundamental results of affine processes.
- Chapter addresses consequences of results that are important for us, though not specified exactly in any of the literature.
- Chapter presents the information in an order of increasing complexity of concepts (versus the order in which it is typically proven).

I.1 Formulation

We start by specifying a state space on which our stochastic processes live. Let \mathbb{V} be a finite-dimensional real vectorspace with inner-product $\langle \cdot, \cdot \rangle$. Equip \mathbb{V} with the canonical topology and Borel algebra from $\langle \cdot, \cdot \rangle$. Denote the dimension $d := \dim \mathbb{V}$ and establish the canonical isometric isomorphism $\mathbb{V} \equiv \mathbb{R}^d$ by specifying an orthonormal basis $e_1, \ldots, e_d \in \mathbb{V}$, so that we may identify components of vectors in \mathbb{V} .

$$v \in \mathbb{V} \longleftrightarrow v^i := \langle v, e_i \rangle, \quad i = 1, \dots, d$$

Similarly identify any map $f: \mathbb{A} \to \mathbb{V}$ with component maps $f_1, \ldots, f_d: \mathbb{A} \to \mathbb{R}$.

$$f: \mathbb{A} \to \mathbb{V} \quad \longleftrightarrow \quad (f_1, \dots, f_d): \mathbb{A} \to \mathbb{R}^d; \ f_i(a) = \langle f(a), e_i \rangle$$

Extend the inner-product symmetrically to a bilinear form on $\mathbb{V} \oplus i\mathbb{V}$.

$$\langle v_1 + \mathrm{i}w_1, v_2 + \mathrm{i}w_2 \rangle = (\langle v_1, v_2 \rangle - \langle w_1, w_2 \rangle) + \mathrm{i}(\langle v_1, w_2 \rangle + \langle w_1, v_2 \rangle)$$

Fix a convex and closed $\mathbb{X} \subseteq \mathbb{V}$ satisfying $0 \in \mathbb{X}$ and span $\mathbb{X} = \mathbb{V}$. Associate this space with the finite exponentials.

$$\mathcal{U}_{\mathbb{X}} \coloneqq \left\{ u \in \mathbb{V} \oplus \mathrm{i} \mathbb{V} : \sup_{x \in \mathbb{X}} \exp \left\langle \Re(u), x \right\rangle < \infty \right\}$$

We may now define the notion of an affine process on \mathbb{X} .

Definition I.1. For a probability space (Ω, Σ, P) with filtration $\mathscr{F} = (\mathscr{F}_t)_{t\geq 0}$, an affine process X on X is a stochastically continuous, time-homogeneous (P, \mathscr{F}) -Markov process on X in which the bounded moments have the following log-affine dependence on the initial state.

(I.1)
$$\begin{aligned} \mathbf{E}_{\mathbf{P}_x} \exp \langle u, X_t \rangle &= \exp \Psi(t, u, x) \\ \Psi(t, u, x) &= \psi_0(t, u) + \langle \psi(t, u), x \rangle, \end{aligned} \qquad t \geq 0, \ u \in \mathcal{U}_{\mathbb{X}}$$

Above, we are denoting $(P_x)_{x \in \mathbb{X}}$ the conditional distributions of X factored through the initial state (see Appendix ?? for further specification and notation).

Remark I.2. Our definitions of X and Ψ include the following conventions and motivations.

- (a) why we denote ψ_0, ψ instead of KM φ, ψ or Cuchiero Φ, Ψ
- (b) how assumptions $0 \in \mathbb{X}$, span $\mathbb{X} = \mathbb{V}$ are nonrestrictive
- (c) how (I.1) decides the distribution of X and how the distribution of the affine process decides Ψ
- (d) If we have a vectorspace \mathbb{A} and affine map $\alpha: \mathbb{X} \to \mathbb{A}$ determined by $a_0, \ldots, a_d \in \mathbb{A}$ via $\alpha(x) = a_0 + \sum_{i=1}^d x^i a_i$, then our linear assumptions $0 \in \mathbb{X}$ and span $\mathbb{X} = \mathbb{V}$ uniquely determine $a_0, \ldots, a_d \in \mathbb{A}$. In particular, the map Ψ uniquely identifies its parts $\psi_i: \mathbb{R}_+ \times \mathcal{U}_{\mathbb{X}} \to \mathbb{C}$ for $i = 0, \ldots, d$.
- (e) In [Cuc11, Theorem 1.2.7], it is shown that, without loss of generality on conditional distributions (P_x)_{x∈X}, an affine process X can be chosen to have càdlàg paths. Thus, each distribution P_x may (and will) be recognized as a measure on the Borel algebra associated with the space D([0,∞),X) of càdlàg functions equipped with the Skorokhod topology (see Appendix ??).

While the tuple (ψ_0, ψ) in (I.1) is a simpler object than the distributions $(P_x)_{x \in \mathbb{X}}$, selecting an admissible tuple—one (ψ_0, ψ) which actually can appear in (I.1)—is seemingly prohibitive. The following result is incredibly useful at demonstrating primitive affine objects which determine the time-dynamics of $(\psi_0(\cdot, u), \psi(\cdot, u))$ for each $u \in \mathcal{D}_{\Psi}$. These implicitly depend on a truncation function χ , which we select as follows.

(I.2)
$$\chi: \mathbb{V} \to \mathbb{V}, \quad \chi(v) \coloneqq \begin{cases} v, & |v| \leq 1 \\ 0, & |v| > 1 \end{cases}$$

The importance of this function is for local integrability properties—the details of which we defer until Section I.4.

Theorem I.3. Fix an affine process X on \mathbb{X} . There exist $b_0^{\chi}, \ldots, b_d^{\chi} \in \mathbb{V}$, $a_0, \ldots, a_d \in \mathbb{L}(\mathbb{V})$, and $m_0, \ldots, m_d \in \mathbb{M}_s(\mathcal{B}(\mathbb{V}))$ such that the following maps $L_0, \ldots, L_d : \mathcal{U}_{\mathbb{X}} \to \mathbb{R}$,

$$L_i(u) := \left\langle u, b_i^{\chi}(x) \right\rangle + \frac{1}{2} \left\langle u, a_i(x)u \right\rangle + \int_{\mathbb{T}} \left(e^{\langle u, v \rangle} - 1 - \left\langle u, \chi(v) \right\rangle \right) m_i(x, dv),$$

determine the dynamics of each $(\psi_0(\cdot, u), \psi(\cdot, u))$.

$$\begin{cases} \psi_0(t,u) = L_0(\psi(t,u)) & t \ge 0 \\ \psi(t,u) = L(\psi(t,u)) & t \ge 0 \\ \psi_0(0,u) = 0 \\ \psi(0,u) = u \end{cases}$$

Proof. This is simply a restatement of [Cuc11, Theorem 1.5.4].

Remark I.4. By Remark I.2(d), Theorem I.3 is equivalent to the existence of maps

$$\beta^{\chi}(x) := b_0^{\chi} + \sum_{i=1}^d x^i b_i^{\chi},$$

$$\alpha(x) := a_0 + \sum_{i=1}^d x^i a_i,$$

$$(I.3) \qquad \mu(x, dv) := m_0(dv) + \sum_{i=1}^d x^i m_i(dv)$$

$$\Lambda(u, x) = L_0(u) + \sum_{i=1}^d x^i L_i(u)$$

$$:= \langle u, \beta^{\chi}(x) \rangle + \frac{1}{2} \langle u, \alpha(x)u \rangle + \int_{\mathbb{R}} \left(e^{\langle u, v \rangle} - 1 - \langle u, \chi(v) \rangle \right) \mu(x, dv)$$

which specify the dynamics of Ψ .

(I.4)
$$\forall x \in \mathbb{X}, \qquad \begin{cases} \dot{\Psi}(t, u, x) = \Lambda(\psi(t, u), x) & t \ge 0\\ \Psi(0, u, x) = \langle u, x \rangle \end{cases}$$

Indeed, this is also because differentiability and our initial condition in (I.4) are linear.

Remark I.5. In [Cuc11] there are immediate results on our functions β^{χ} , α , μ which are readily apparent in Section I.4, such as, for all $x \in \mathbb{X}$, the following are true.

(I.5)
$$\alpha(x) \text{ is positive semidefinite}$$

$$\int_{\mathbb{V}} \left(1 \wedge |v|^2\right) \mu(x, dv) < \infty$$

$$\mu(x, \{0\}) = 0$$

discuss how other papers try to clearly specify which other conditions on β^{χ} , α , μ parameterize all admissible (ψ_0, ψ) , depending on the definition of \mathbb{X} .

Henceforth, we fix X a càdlàg affine process with conditional distributions $(P_x)_{x \in \mathbb{X}}$, induced filtration $\mathscr{F} = (\mathscr{F}_t)_{t \geq 0}$, and moment function Ψ as in Definition I.1. Also fix the parameters $(b_i^{\chi}, a_i, m_i, L_i)_{i=0}^d$ from Theorem I.3 and the associated functions $\beta^{\chi}, \alpha, \mu, \Lambda$ from Remark I.4.

I.2 Existence of real moments

This elaborates upon the extension of the transform formula in (I.1) and dynamics in (I.4) to real moments $u \in \mathbb{V}$. Clearly, should any extension exist for some $u \in \mathbb{V}$, the value $\Lambda(u,x) = \dot{\Psi}(0,u,x)$ should be well-defined. That said, we henceforth denote the following set.

 $\mathcal{D}_{\Lambda} := \left\{ u \in \mathbb{V} : \Lambda(u, x) \text{ is well-defined for all } x \in \mathbb{X} \right\}$

Quick inspection of $\Lambda(u,x)$ in (I.3) indicates that well-definition should depend solely on the integral term. The following results will perform the careful analysis to show that Λ has nice regularity on the finite moments of its associated jump kernel $\mu(\cdot, dv)$.

Lemma I.6. We have $u \in \mathcal{D}_{\Lambda}$ if and only if each $x \in \mathbb{X}$ is such that

$$\int_{|v|>1} e^{\langle u,v\rangle} \mu(x,\mathrm{d}v) < \infty$$

Proof. To each $u, v \in \mathbb{V}$, Taylor's theorem gives us $\gamma_{u,v} \in [0,1]$ such that

$$e^{\langle u,v\rangle} = 1 + \langle u,v\rangle + \frac{1}{2}e^{\gamma_{u,v}\langle u,v\rangle}\langle u,v\rangle^2.$$

This allows us to see that, for each $x \in \mathbb{X}$, $\Lambda(u,x)$ and $\int_{|v|>1} e^{\langle u,v \rangle} \mu(x,dv)$ differ by finite expressions.

$$\begin{split} &\left| \Lambda(u,x) - \int_{|v|>1} e^{\langle u,v \rangle} \mu(x,\mathrm{d}v) \right| \\ &= \left| \langle u, \beta^\chi(x) \rangle + \frac{1}{2} \langle u, \alpha(x)u \rangle + \int_{|v| \le 1} \left(e^{\langle u,v \rangle} - 1 - \langle u,v \rangle \right) \mu(x,\mathrm{d}v) - \int_{|v|>1} \mu(x,\mathrm{d}v) \right| \\ &\le \left| \langle u, \beta^\chi(x) \rangle + \frac{1}{2} \langle u, \alpha(x)u \rangle \right| + \left| \int_{|v| \le 1} \frac{1}{2} e^{\gamma_{u,v} \langle u,v \rangle} \langle u,v \rangle^2 \mu(x,\mathrm{d}v) \right| + \int_{|v|>1} \mu(x,\mathrm{d}v) \\ &\le \left| \langle u, \beta^\chi(x) \rangle + \frac{1}{2} \langle u, \alpha(x)u \rangle \right| + \left(\frac{1}{2} e^{|u|} + 1 \right) \int_{\mathbb{V}} \left(1 \wedge |v|^2 \right) \mu(x,\mathrm{d}v) \end{split}$$

Thus, one can be defined as a finite displacement of the other.

Lemma I.7. \mathcal{D}_{Λ} is convex.

Proof. We use the characterization of \mathcal{D}_{Λ} from Lemma I.6. Let $u, u' \in \mathcal{D}_{\Lambda}$, $\gamma \in (0, 1)$, and use Hölder's inequality to see the following.

$$\begin{split} & \int_{|v|>1} e^{\langle u'+\gamma(u-u'),v\rangle} \mu(x,\mathrm{d}v) \\ & = \int_{|v|>1} \left| (e^{\langle u,v\rangle})^{\gamma} \cdot (e^{\langle u',v\rangle})^{1-\gamma} \right| \mu(x,\mathrm{d}v) \\ & \leq \left(\int_{|v|>1} \left| (e^{\langle u,v\rangle})^{\gamma} \right|^{\frac{1}{\gamma}} \mu(x,\mathrm{d}v) \right)^{\gamma} \left(\int_{|v|>1} \left| (e^{\langle u',v\rangle})^{1-\gamma} \right|^{\frac{1}{1-\gamma}} \mu(x,\mathrm{d}v) \right)^{1-\gamma} \end{split}$$

$$= \left(\int_{|v|>1} e^{\langle u,v \rangle} \mu(x, dv) \right)^{\gamma} \left(\int_{|v|>1} e^{\langle u',v \rangle} \mu(x, dv) \right)^{1-\gamma}$$

An arbitrary convex combination now satisfies $\gamma u + (1 - \gamma)u' \in \mathcal{D}_{\Lambda}$.

Lemma I.8. For each $x \in \mathbb{X}$, the map $\Lambda(\cdot, x)$ is continuously differentiable on $\mathcal{D}_{\Lambda}^{\circ}$, with derivative $D\Lambda(\cdot, x) : \mathcal{D}_{\Lambda}^{\circ} \to \mathbb{L}(\mathbb{V}, \mathbb{R})$ as follows.

(I.6)
$$D\Lambda(u,x)w = \left\langle \beta^{\chi}(x) + \alpha(x)u + \int_{\mathbb{T}} \left(e^{\langle u,v \rangle}v - \chi(v) \right) \mu(x,\mathrm{d}v), w \right\rangle, \quad u \in \mathcal{D}_{\Lambda}^{\circ}$$

Proof. Fix $x \in \mathbb{X}$, $u \in \mathcal{D}_{\Lambda}^{\circ}$. Let $\epsilon > 0$ such that $B(u, \epsilon) \subseteq \mathcal{D}_{\Lambda}$. For all $0 < \delta < \epsilon$ and $i = 1, \ldots, d$, we now have the following identity

(I.7)
$$\frac{\Lambda(u+\delta e_{i},x)-\Lambda(u,x)}{\delta} = \langle e_{i},\beta^{\chi}(x)\rangle + \langle e_{i},\alpha(x)u\rangle + \frac{1}{2}\langle \delta e_{i},\alpha(x)u\rangle + \int_{|v|\leq 1} \frac{1}{\delta} \left(e^{\langle u+\delta e_{i},v\rangle} - e^{\langle u,v\rangle} - \langle \delta e_{i},v\rangle\right) \mu(x,\mathrm{d}v) + \int_{|v|>1} \frac{1}{\delta} \left(e^{\langle u+\delta e_{i},v\rangle} - e^{\langle u,v\rangle}\right) \mu(x,\mathrm{d}v)$$

Evaluating the limit of (I.7) as $\delta \to 0$ is now a matter of exchanging the limit with integration; we will do this by using the dominated convergence theorem.

For the first integral, Taylor's theorem provides us $\gamma_0, \gamma_1 \in [0, 1]$ such that the following hold.

$$\begin{split} e^{\langle u+\delta e_i,v\rangle} &= 1+\langle u+\delta e_i,v\rangle + \frac{1}{2}\langle u+\delta e_i,v\rangle^2 e^{\gamma_0\langle u+\delta e_i,v\rangle} \\ e^{\langle u,v\rangle} &= 1+\langle u,v\rangle + \frac{1}{2}\langle u,v\rangle^2 e^{\gamma_1\langle u,v\rangle} \end{split}$$

This shows us that, for all $0 < \delta < \epsilon$ and $|v| \le 1$,

$$\left| \frac{1}{\delta} \left(e^{\langle u + \delta e_i, v \rangle} - e^{\langle u, v \rangle} - \langle \delta e_i, v \rangle \right) \right| = \left| \frac{1}{2} \langle u + \delta e_i, v \rangle^2 e^{\gamma_0 \langle u + \delta e_i, v \rangle} + \frac{1}{2} \langle u, v \rangle^2 e^{\gamma_1 \langle u, v \rangle} \right| \\
\leq \left(\left(|u| + \epsilon \right)^2 e^{|u| + \epsilon} \right) |v|^2.$$

This dominating function is integrable (recall the finiteness in (I.5) of Remark I.5),

$$\int_{|v| < 1} \left(\left(|u| + \epsilon \right)^2 e^{|u| + \epsilon} \right) |v|^2 \mu(x, \mathrm{d}v) \le \left(\left(|u| + \epsilon \right)^2 e^{|u| + \epsilon} \right) \int_{\mathbb{V}} (1 \wedge |v|^2) \mu(x, \mathrm{d}v) < \infty,$$

so we may apply the dominated convergence theorem.

$$\begin{split} &\lim_{\delta \to 0} \int_{|v| \le 1} \frac{1}{\delta} \Big(e^{\langle u + \delta e_i, v \rangle} - e^{\langle u, v \rangle} - \langle \delta e_i, v \rangle \Big) \mu(x, \mathrm{d}v) \\ &= \int_{|v| \le 1} \lim_{\delta \to 0} \frac{1}{\delta} \Big(e^{\langle u + \delta e_i, v \rangle} - e^{\langle u, v \rangle} - \langle \delta e_i, v \rangle \Big) \mu(x, \mathrm{d}v) \end{split}$$

(I.8)
$$= \int_{|v| < 1} \left(e^{\langle u, v \rangle} v_i - v_i \right) \mu(x, dv)$$

For the second integral, we again use Taylor's theorem to establish for each $0 < \delta < \epsilon/2$, some $\gamma_{\delta} \in [0, \delta]$ such that

$$e^{\langle u+\delta e_i,v\rangle} = e^{\langle u,v\rangle} + \langle \delta e_i,v\rangle e^{\langle u+\gamma_\delta e_i,v\rangle}$$

This way, we have the following dominating function.

$$\left|\frac{1}{\delta}\left(e^{\langle u+\delta e_i,v\rangle}-e^{\langle u,v\rangle}\right)\right|\leq \left|\langle e_i,v\rangle e^{\langle u+\gamma_\delta e_i,v\rangle}\right|\leq |v_i|e^{\langle u,v\rangle+\epsilon|v_i|/2}$$

The claim is that this dominating function is integrable. To see this, first note that because we have the following limit,

$$\lim_{|v|\to\infty}\frac{|v_i|e^{\langle u,v\rangle+\epsilon|v_i|/2}}{e^{\langle u,v\rangle+2\epsilon|v_i|/3}}=\lim_{|v|\to\infty}\frac{|v_i|}{e^{\epsilon|v_i|/6}}=0$$

There exists M > 0 such that for all |v| > M,

$$|v_i|e^{\langle u,v\rangle+\epsilon|v_i|/2} < e^{\langle u,v\rangle+2\epsilon|v_i|/3}$$

We now see that

$$\int_{|v|>1} |v_i| e^{\langle u,v\rangle + \epsilon |v_i|/2} \mu(x, dv)
= \int_{1<|v|\leq M} |v_i| e^{\langle u,v\rangle + \epsilon |v_i|/2} \mu(x, dv) + \int_{|v|>M} |v_i| e^{\langle u,v\rangle + \epsilon |v_i|/2} \mu(x, dv)
\leq \int_{1<|v|\leq M} M e^{(|u|+\epsilon/2)M} \mu(x, dv) + \int_{|v|>M} e^{\langle u,v\rangle + 2\epsilon |v_i|/3} \mu(x, dv)
\leq M e^{(|u|+\epsilon/2)M} \int_{\mathbb{V}} (1 \wedge |v|^2) \mu(x, dv) + \sum_{\ell=0}^{1} \int_{|v|>1} e^{\langle u+2\epsilon e_i/3, v\rangle} \mu(x, dv)
\leq \infty$$

We again use the dominated convergence theorem to deduce the following.

(I.9)
$$\lim_{\delta \to 0} \int_{|v| > 1} \frac{1}{\delta} \left(e^{\langle u + \delta e_i, v \rangle} - e^{\langle u, v \rangle} \right) \mu(x, dv)$$
$$= \int_{|v| > 1} \lim_{\delta \to 0} \frac{1}{\delta} \left(e^{\langle u + \delta e_i, v \rangle} - e^{\langle u, v \rangle} \right) \mu(x, dv)$$
$$= \int_{|v| > 1} e^{\langle u, v \rangle} v_i \mu(x, dv)$$

Combining equations (I.7), (I.8), and (I.9) now yields our desired identity.

$$\frac{\partial}{\partial u_i} \Lambda(u, x) = \left\langle e_i, \beta^{\chi}(x) + \alpha(x)u + \int_{\mathbb{V}} \left(e^{\langle u, v \rangle} v - \chi(v) \right) \mu(x, dv) \right\rangle$$

Continuity of $\frac{\partial}{\partial u_i}\Lambda(u,x)$ for $u\in\mathcal{D}_{\Lambda}^{\circ}$ involves very similar dominated convergence theorem arguments as above. From here, it is clear that Λ is continuously differentiable with the form in (I.6).

Lemma I.9. If $0 \in \mathcal{D}_{\Lambda}^{\circ}$, then for each $x \in \mathbb{X}$, we have the following integrability.

$$\int_{\mathbb{T}} |v - \chi(v)| \mu(x, \mathrm{d}v) < \infty$$

This allows us to define the following function $\beta : \mathbb{X} \to \mathbb{V}$ and rewrite Λ .

$$\beta(x) := \beta^{\chi}(x) + \int_{\mathbb{V}} \left(v - \chi(v) \right) \mu(x, dv)$$

$$(I.10) \qquad \Lambda(u, x) = \langle u, \beta(x) \rangle + \frac{1}{2} \langle u, \alpha(x)u \rangle + \int_{\mathbb{V}} \left(e^{\langle u, v \rangle} - 1 - \langle u, v \rangle \right) \mu(x, dv)$$

$$D\Lambda(u, x)w = \left\langle w, \beta(x) + \alpha(x)u + \int_{\mathbb{V}} v \left(e^{\langle u, v \rangle} - 1 \right) \mu(x, dv) \right\rangle$$

Proof. If $0 \in \mathcal{D}_{\Lambda}^{\circ}$, then there exists some $\delta > 0$ such that each $v \in \mathbb{V}$ with $|v| \leq \delta$ also satisfies $v \in \mathcal{D}_{\Lambda}$. Observe the following implication of this fact, for each $x \in \mathbb{X}$.

$$\begin{split} \int_{\mathbb{V}} |v - \chi(v)| \mu(x, \mathrm{d}v) &= \int_{|v| > 1} |v| \mu(x, \mathrm{d}v) \\ &\leq \int_{|v| > 1} \frac{\sqrt{d}}{\delta} \exp\left(\frac{\delta |v|}{\sqrt{d}}\right) \mu(x, \mathrm{d}v) \\ &\leq \frac{\sqrt{d}}{\delta} \int_{|v| > 1} \exp\left(\max_{i=1}^{d} \max_{\ell=0}^{1} \left\langle (-1)^{\ell} \delta e^{i}, v \right\rangle\right) \mu(x, \mathrm{d}v) \\ &\leq \frac{\sqrt{d}}{\delta} \sum_{i=1}^{d} \sum_{\ell=0}^{1} \int_{|v| > 1} \exp\left((-1)^{\ell} \delta e^{i}, v \right) \mu(x, \mathrm{d}v) \\ &\leq \infty \end{split}$$

From here, the rest of the proof is simple algebra.

Now that we have elaborated upon the relevant results of Λ as a scalar field, we proceed to show the existence of a solutions to the dynamical system it imposes. These tighly coincide with the moments of our affine process.

Definition I.10. For each $\tau \geq 0$ and $u \in \mathcal{D}_{\Lambda}$, we say a function $Q^u : [0,\tau] \times \mathbb{X} \to \mathbb{R}$ satisfies system (Λ, τ, u) if the following hold.

$$\begin{split} \forall\,t\in[0,\tau],\ x\in\mathbb{X},\quad Q^u(t,x)&=q^u_0(t)+\langle q^u(t),x\rangle,\\ \forall\,x\in\mathbb{X},\quad \begin{cases} \dot{Q}^u(t,x)&=\Lambda\big(q^u(t),x\big),\quad t\in[0,\tau]\\ Q^u(0,x)&=\langle u,x\rangle \end{cases} \end{split}$$

Now define the following sets.

$$\mathcal{D}_{\Psi}(\tau) := \left\{ u \in \mathcal{D}_{\Lambda} : \text{there exists a solution to system}(\Lambda, \tau, u) \right\}$$
$$\mathcal{D}_{\Psi} := \bigcup_{\tau \geq 0} \left(\{\tau\} \times \mathcal{D}_{\Psi}(\tau) \right)$$

Theorem I.11. (a) There exists a map $\Psi : \mathcal{D}_{\Psi} \times \mathbb{X} \to \mathbb{R}$ of the form

$$\Psi(t, u, x) = \psi_0(t, u) + \langle \psi(t, u), x \rangle$$

such that, for each $(\tau, u) \in \mathcal{D}_{\Psi}$, $\Psi(\cdot, u, \cdot)$ is a solution to system (Λ, τ, u) dominated by all other such solutions. Moreover, this map satisfies the following for each $(\tau, u) \in \mathcal{D}_{\Psi}$ and $x \in \mathbb{X}$.

(I.11)
$$\operatorname{E}_{\mathrm{P}_{x}} \exp \langle u, X_{t} \rangle = \exp \Psi(t, u, x), \quad t \in [0, \tau]$$

(b) If $\tau \geq 0$, $u \in \mathbb{V}$, and $x \in \mathbb{X}^{\circ}$ are such that $E_{P_x} \exp \langle u, X_{\tau} \rangle < \infty$, then $(\tau, u) \in \mathcal{D}_{\Psi}$.

Proof. With Remark I.4, this is the same as [KRM15, Theorem 2.14].

Now that we have two characterizations for the space \mathcal{D}_{Ψ} , we seek to understand properties of it and the associated moment map $\Psi : \mathcal{D}_{\Psi} \times \mathbb{X} \to \mathbb{R}$.

Proposition I.12. (a) For each $\tau > 0$, $\mathcal{D}_{\Psi}(\tau)$ is open in $\mathcal{D}_{\Lambda}^{\circ}$,

- (b) For each $\tau > 0$ and $u \in \mathcal{D}_{\Psi}(\tau) \cap \mathcal{D}_{\Lambda}^{\circ}$, $\Psi(\cdot, u, \cdot)$ from Theorem I.11 is the unique solution to system (Λ, τ, u) .
- (c) Ψ is continuously differentiable on $\mathcal{D}_{\Psi}^{\circ} \times \mathbb{X}$.

Proof. Fix $\tau > 0$ and $u \in \mathcal{D}_{\Psi}(\tau) \cap \mathcal{D}_{\Lambda}^{\circ}$. Because $u \in \mathcal{D}_{\Psi}(\tau)$, $\Psi(\cdot, u, \cdot)$ exists on $[0, \tau] \times \mathbb{X}$ as a solution to system (Λ, τ, u) . As mentioned in Remark I.4, the function $\psi(\cdot, u)$ associated with $\Psi(\cdot, u, \cdot)$ is a solution to the following equation,

(I.12)
$$\begin{cases} \dot{\psi}(t,u) = f(t,\psi(t,u)) & t \in [0,\tau] \\ \psi(0,u) = u \end{cases}$$

where $f: \mathbb{R} \times \mathcal{D}_{\Lambda}^{\circ} \to \mathbb{V}$ is defined by $f(t, u) \coloneqq L(u)$. Seeing as f is continuously differentiable on $\mathbb{R} \times \mathcal{D}_{\Lambda}^{\circ}$ by Lemma I.8, we may use [Wal98, III.13 Theorem X] to ensure some $\epsilon > 0$ such that the band

$$S_{\epsilon} \coloneqq \Big\{ (t,v) \in [0,\tau] \times \mathbb{V} : |v - \psi(t,u)| \leq \epsilon \Big\}$$

is contained in $\mathbb{R} \times \mathcal{D}_{\Lambda}^{\circ}$ and provides us to each $(t_0, v) \in S_{\epsilon}$ a unique solution $q(\cdot, t_0, v)$ to the following initial value problem,

$$\begin{cases} \dot{q}(t,t_0,v) = f(t,q(t,t_0,v)) & t \in [t_0,\tau] \\ q(t_0,t_0,v) = v \end{cases}$$

which is continuously differentiable with derivatives $\partial_{t_0} q(t, t_0, v) \in \mathbb{V}$ and $Dq(t, t_0, v) \in \mathbb{L}(\mathbb{V})$ satisfying the following equations.

$$\partial_{t_0} q(t, t_0, v) = -f(t_0, u) + \int_{t_0}^t Df(s, q(s, t_0, v)) \partial_{t_0} q(s, t_0, v) ds$$

$$Dq(t, t_0, v) = id_{\mathbb{V}} + \int_{t_0}^t Df(s, q(s, t_0, v)) Dq(s, t_0, v) ds$$

In particular, for each $v \in B(u, \epsilon)$, we have $|v - \psi(0, u)| = |v - u| < \epsilon$, and so $(0, v) \in S_{\epsilon}$; this allows us to disregard the middle coordinate and have $q : [0, \tau] \times B(u, \epsilon) \to \mathbb{V}$ such that $q(\cdot, v)$ is the unique solution to

$$\left\{ \begin{array}{l} \dot{q}(t,v) = L\big(q(t,v)\big), \quad t \in [0,\tau] \\ q(0,v) = v \end{array} \right.$$

and the derivative in the second coordinate $Dq(t,v) \in \mathbb{L}(\mathbb{V})$ satisfies the following equation.

$$Dq(t,v) = id_{\mathbb{V}} + \int_{0}^{t} DL(q(s,v))Dq(s,v)ds$$

From here, we may define $Q:[0,\tau]\times B(u,\epsilon)\times \mathbb{X}\to \mathbb{R}$ as follows.

$$Q(t, v, x) := q_0(t, v) + \langle q(t, v), x \rangle$$
$$q_0(t, v) := \int_0^t L_0(q(s, v)) ds$$
$$L_0(v) := \Lambda(v, 0)$$

Because the image of $q(\cdot, v)$ on $[0, \tau]$ remains in $\mathcal{D}_{\Lambda}^{\circ}$, on which L is continuously differentiable, q_0 is continuously differentiable with derivatives \dot{q}_0 and Dq_0 satisfying the following.

$$\dot{q}_0(t,v) = L_0(q(s,v))$$

$$Dq_0(t,v) = \int_0^t DL_0(q(s,v))Dq(s,v)ds$$

By linearity, $Q(\cdot, v, \cdot)$ is a solution to system (Λ, τ, v) and so $v \in \mathcal{D}_{\Psi}(\tau)$. We now have $B(u, \epsilon) \subseteq \mathcal{D}_{\Psi}(\tau)$, concluding part (a). Meanwhile, any solution Q^u to system (Λ, τ, u) is such that the associated q^u solves (I.12) and so $q^u = q(\cdot, u)$. From here, it is thus the case that $Q^u = Q(\cdot, u, \cdot)$. This means Ψ from Theorem I.11 is such that $\Psi(\cdot, u, \cdot)$ is the unique solution to system (Λ, u, τ) , concluding part (b). Lastly, for each $x \in \mathbb{X}$, linearity also shows us that $\Psi(\cdot, \cdot, x)$ is continuously differentiable in a neighborhood of (t, u), with derivative in the second coordinate $D\Psi(\cdot, \cdot, x)$ satisfying the following.

$$D\Psi(t, u, x) = D\psi_0(t, u) + D\psi(t, u) \cdot x$$

$$= Dq_0(t, u) + Dq(t, u) \cdot x$$

$$= \int_0^t DL_0(q(s, u))Dq(s, u)ds + \left(id_{\mathbb{V}} + \int_0^t DL(q(s, u))Dq(s, u)ds\right) \cdot x$$

$$= x + \int_0^t \left(DL_0(q(s, u))Dq(s, u) + \sum_{i=1}^d x_i DL_i(q(s, u))Dq(s, u)\right)ds$$

$$= x + \int_0^t D\left(L_0 + \sum_{i=1}^d x_i L_i\right) (q(s, u))Dq(s, u)ds$$

$$= x + \int_0^t D\Lambda(q(s, u), x)Dq(s, u)ds$$

$$= x + \int_0^t D\Lambda(\psi(s, u), x)D\psi(s, u)ds$$

This concludes part (c).

Corollary I.13. Suppose $0 \in \mathcal{D}^{\circ}_{\Lambda}$. For each $\tau > 0$, there exists $\gamma > 0$ with $B(0, \gamma) \subseteq \mathcal{D}_{\Psi}(\tau)$.

Proof. Suppose $0 \in \mathcal{D}_{\Lambda}^{\circ}$ and fix $\tau > 0$. Theorem I.11(b) tells us $0 \in \mathcal{D}_{\Psi}(\tau)$. Thus, $0 \in \mathcal{D}_{\Psi}(\tau) \cap \mathcal{D}_{\Lambda}^{\circ}$ and so we may use Proposition I.12(a) to ensure $0 \in \mathcal{D}_{\Psi}(\tau)^{\circ}$. This means there is some $\gamma > 0$ such that $B(0, \gamma) \subseteq \mathcal{D}_{\Psi}(\tau)$.

Proposition I.14. For each compact set $K \subseteq \mathcal{D}_{\Lambda}^{\circ}$, there exists $\delta > 0$ such that $K \subseteq \mathcal{D}_{\Psi}(\delta)$. Moreover, $\Psi(\cdot, u, \cdot)$ from Theorem I.11 is the unique solution to system (Λ, δ, u) for each $u \in K$.

Proof. Firstly, we recognize that by virtue of $K \subseteq \mathcal{D}_{\Lambda}^{\circ}$ being compact, we have some $\epsilon > 0$ such that the associated open set

$$K^{\epsilon} \coloneqq \left\{ u \in \mathbb{V} : \inf_{u' \in K} |u - u'| < \epsilon \right\}$$

has closure $\overline{K^{\epsilon}}$ contained in $\mathcal{D}^{\circ}_{\Lambda}$. Note in particular that this provides us with a buffer of radius ϵ around each point in $\mathcal{D}^{\circ}_{\Lambda}$.

$$\overline{B}(u,\epsilon) := \left\{ u' \in \mathbb{V} : |u' - u| \le \epsilon \right\}$$

$$\bigcup_{u \in \mathcal{D}_{\Lambda}} \overline{B}(u,\epsilon) \subseteq \overline{K^{\epsilon}} \subseteq \mathcal{D}_{\Lambda}^{\circ}$$

With these sets established, we mitigate the task of finding a solution Q^u to system (Λ, δ, u) to that of finding a solution q^u to the related equation.

(I.13)
$$\begin{cases} \dot{q}^u(t) = L(q^u(t)) & t \in [0, \delta] \\ q^u(0) = u \end{cases}$$

For a fixed $u \in \mathcal{D}_{\Lambda}^{\circ}$, the existence of some $\delta_u > 0$ and solution q^u to (I.13) may be obtained from the usual fixed-point method (see [Wal98, II.6 Theorem III]). Indeed, Remark I.2(d) and Lemma I.8 provide us a Lipschitz property for L on $\overline{B}(u, \epsilon)$,

$$|L(v) - L(w)| \le |v - w| C_{u,\epsilon}, \qquad v, w \in \overline{B}(u,\epsilon)$$

$$C_{u,\epsilon} := \sup_{u' \in \overline{B}(u,\epsilon)} |DL(u',x)|$$

and so a Banach space $(\mathbb{B}_u, \|\cdot\|_{\mathbb{B}_u})$ defined by

$$\begin{split} \delta_u &\coloneqq 1 \wedge \frac{\epsilon}{\sup_{u' \in \overline{B}(u,\epsilon)} |L(u')|} \\ \mathbb{B}_u &\coloneqq \mathbb{C}([0,\delta_u], \mathbb{V}) \\ \|f\|_{\mathbb{B}_u} &\coloneqq \sup_{t \in [0,\delta_u]} |f(t)| e^{-2C_{u,\epsilon}t} \end{split}$$

is partially equipped with a map $T: \mathbb{C}([0,\delta_u],K) \to \mathbb{C}([0,\delta_u],\overline{K^{\epsilon}})$ defined by

$$Tf(t) := u + \int_0^t L(f(s)) ds,$$

satisfying a contraction property,

$$||Tf - Tg||_{\mathbb{B}_u} \le \frac{1}{2} ||f - g||_{\mathbb{B}_u},$$

which induces a unique solution $q^u \in \mathbb{C}([0, \delta_u], \overline{K^{\epsilon}})$ to the associated fixed-point equation, $Tq^u = q^u$. This solution q^u is thus a unique solution to (I.13).

From here, we define the following positive δ ,

$$\delta := \inf_{u \in K} \delta_u \ge 1 \wedge \inf_{u \in K} \frac{\epsilon}{\sup_{u' \in \overline{B}(u,\epsilon)} |L(u')|} \ge 1 \wedge \frac{\epsilon}{\sup_{u' \in \overline{K}^{\epsilon}} |L(u')|} > 0$$

so that each $u \in K$ has a unique solution q^u to (I.13). This induces the following map $Q^u : [0, \delta] \times \mathbb{X} \to \mathbb{R}$ for each $u \in K$.

$$Q^{u}(t,x) := q_0^{u}(t) + \langle q^{u}(t), x \rangle$$
$$q_0^{u}(t) := \int_0^t L_0(q^{u}(s)) ds$$

By linearity, Q^u is a solution to system (Λ, δ, u) for each $u \in K$, and so $K \subseteq \mathcal{D}_{\Psi}(\delta)$. For each $u \in K \subseteq \mathcal{D}_{\Psi}(\delta)$, a solution \tilde{Q}^u to system (Λ, δ, u) is such that the associated \tilde{q}^u solves (I.13) and so $\tilde{q}^u = q^u$. From here, it is thus the case that $\tilde{Q}^u = Q^u$. This means Ψ from Theorem I.11 is such that $\Psi(\cdot, u, \cdot)$ is the unique solution to system (Λ, u, δ) for all $u \in K$.

Proposition I.15. For any compact subset $K \subseteq \mathcal{D}_{\Psi}^{\circ}$, there exists $C_K > 0$ such that the following holds for all $(t, u) \in K$.

$$|\Psi(t, u, x) - \Psi(0, u, x)| \le C_K \cdot t \cdot (1 + |x|)$$

Proof (Proposition I.15). Let $K \subseteq \mathcal{D}_{\Psi}^{\circ}$ be compact. By Remark I.4 and Proposition I.12(c), we have that the functions ψ_i for $i = 0, \ldots, d$ are continuously differentiable on $\mathcal{D}_{\Psi}^{\circ}$. Thus, we may define the following positive numbers.

$$C_{K,i} := \sup_{(t,u)\in K} |\dot{\psi}_i(t,u)|, \quad i = 0,\dots, d$$
$$C_K := \max \left\{ C_{K,0}, C_{K,1}\sqrt{d}, \dots, C_{K,d}\sqrt{d} \right\} < \infty$$

Using the fundamental theorem of calculus and that $\Psi(\cdot, u, \cdot)$ solves system (Λ, τ, u) , we produce the following bound for all $(t, u) \in K$.

$$\begin{aligned} |\Psi(t, u, x) - \Psi(0, u, x)| &= \left| \psi_0(t, u) + \left\langle \psi(t, u) - u, x \right\rangle \right| \\ &\leq \left| \psi_0(t, u) \right| + \left| \psi(t, u) - u \right| \cdot |x| \\ &= \left| \int_0^t \dot{\psi}_0(s, u) ds \right| + \left| \int_0^t \dot{\psi}_i(s, u) ds \right| \cdot |x| \\ &\leq C_{K,0} \cdot t + \left(\sum_{i=1}^d C_{K,i}^2 \right)^{1/2} \cdot t \cdot |x| \\ &\leq C_K \cdot t \cdot \left(1 + |x| \right) \end{aligned}$$

- I.3 Finite-dimensional distributions
- I.4 Jump diffusions

Chapter II

Large deviations of affine processes

Appendix A Jump-Diffusions

Bibliography

- [Cuc11] Christina Cuchiero. Affine and polynomial processes, 2011.
- [KRM15] Martin Keller-Ressel and Eberhard Mayerhofer. Exponential moments of affine processes. *The Annals of Applied Probability*, 25(2):714–752, apr 2015.
- [Wal98] Wolfgang Walter. Ordinary Differential Equations, volume 182. Springer New York, 1998.