

Universidade Federal de Roraima Departamento de Matemática Álgebra Linear I - Prova 3

Data: 15/12/2020 Semestre 2020.1 Turma 1 Prof. Jairo

Responda três, dentre as seis questões abaixo.

Questão 1. (2,5 Pontos) Verifique se o operador $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por T(x,y,z) = (2x,3y,7z) é diagonalizável. Justifique.

Questão 2. (2,5 Pontos) Considere o operador $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por T(x,y,z) = (x,y+z,7z).

- (a) Encontre os autovalores e os autovetores correspondentes.
- (b) Verifique se T é diagonalizável. Justifique.

Questão 3. (2,5 Pontos) Verifique se o operador $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x,y) = (x+y,x+y) é uma isometria. Considere o produto interno canônico em \mathbb{R}^2 .

Questão 4. (2,5 Pontos) Seja $T: V \to V$ um operador simétrico, onde V é um espaço vetorial real com produto interno. Se $\langle T(u), u \rangle = 0$, para todo $u \in V$, mostre que $T = \mathbf{0}$.

Questão 5. (2,5 Pontos) Dê exemplo de operador linear $T:V\to V$, onde V é um espaço vetorial real com produto interno tal que $\langle T(u),u\rangle=0$, para todo $u\in V$, mas $T\neq \mathbf{0}$.

Questão 6. (2,5 Pontos) Mostre que, autovetores associados a autovalores distintos de um operador simétrico, são ortogonais. Em outras palavras, mostre que, se u e v são autovetores do operador simétrico $T: V \to V$, com $T(u) = \lambda_1 u$, $T(v) = \lambda_2 v$ e $\lambda_1 \neq \lambda_2$, então $\langle u, v \rangle = 0$.

Observações:

- i) Resolva as questões (escreva as soluções em uma folha branca, de preferência papel A4, para facilitar a visibilidade), em seguida digitalize as folhas com as soluções e rena-as em um (único) arquivo no formato PDF.
- ii) assine em todas as folhas.
- iii) o arquivo com as soluções deve ser enviado até às 23hs.