Homework 4 - Pipelined MIPS CPU

Due Dec. 13, 2016

Refer to the MIPS instruction reference data for details on the MIPS instructions and their encoding. MIPS has three instruction formats: R, I, J, as shown below.

R	opcode	rs	rt	rd	shamt	funct	
	31 26	25 21	20 16	15 11	10 6	5 0	
I	opcode	rs	rt		immediate	2	
	31 26	25 21	20 16	15		0	
J	opcode		address				
	31 26	25				0	

Below are some MIPS instructions (add, addi, beq, lw, slt, sw) and their instruction encodings.

CORE INSTRUC	TION SE	ĒΤ			OPCODE
		FOR-	-		/ FUNCT
NAME, MNEM	ONIC	MAT OPERATION (in Verilog			(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	Ι	R[rt] = R[rs] + SignExtImm	(1,2)	$8_{ m hex}$
Branch On Equal	beq	Ι	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Load Word	lw	Ι	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]		(2) 2b _{hex}

The following shows examples of machine codes for some MIPS instructions.

rt

rs

Name	Format	Example						Comments	
add	R	0	18	19	17	0	32	add \$s1,\$s2,\$s3	
sub	R	0	18	19	17	0	34	sub \$s1,\$s2,\$s3	
addi	I I	8	18	17	100			addi \$s1,\$s2,100	
lw	1	35	18	17	100			lw \$s1,100(\$s2)	
sw	ı	43	18	17	100			sw \$s1,100(\$s2)	
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS instructions are 32 bits long	

shamt

address

funct

Arithmetic instruction format

Data transfer format

MIPS machine language

- 1. Use Verilog to model the standard 5-stage MIPS pipeline (IF, ID, EX, ME, WB) for the above MIPS instructions.
- 2. Write testbench to verify the RTL code.

R-format

I-format

- 3. Use Synopsys Design Compiler to synthesize the RTL code into gate-level netlist based on TSMC 90nm standard cell library.
- 4. Re-simulate the synthesized gate-level netlist using the same testbench as in the RTL simulation.
- 5. Identify the critical path and determine the maximum working frequency.

6. (optional for undergraduate) Redo the synthesis and gate-level simulation using FPGA tools.

References:

1. D. A. Patterson and J. L. Hennessy, *Computer Organization and Design, The Hardware/Software Interfac*, , 5th ed., Elsevier, 2013.