

# L76K AGNSS 应用指导

# GNSS 模块系列

版本: 1.0

日期: 2021-05-24

状态: 受控文件



上海移远通信技术股份有限公司始终以为用户提供最及时、最全面的服务为宗旨。如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司

上海市闵行区田林路 1016 号科技绿洲 3 期(B区)5号楼 邮编: 200233

电话: +86 21 51086236 邮箱: info@guectel.com

或联系我司当地办事处,详情请登录: http://www.quectel.com/cn/support/sales.htm。

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/cn/support/technical.htm 或发送邮件至: support@quectel.com。

#### 前言

上海移远通信技术股份有限公司提供该文档内容用以支持其用户的产品设计。用户须按照文档中提供的规范、参数来设计其产品。因未能遵守有关操作或设计规范而造成的损害,上海移远通信技术股份有限公司不承担任何责任。在未声明前,上海移远通信技术股份有限公司有权对该文档进行更新。

### 免责声明

上海移远通信技术股份有限公司尽力确保开发中功能的完整性、准确性、及时性或效用,但不排除上述功能错误或遗漏的可能。除非其他有效协议另有规定,否则上海移远通信技术股份有限公司对开发中功能的使用不做任何暗示或明示的保证。在适用法律允许的最大范围内,上海移远通信技术股份有限公司不对任何因使用开发中功能而遭受的损失或损害承担责任,无论此类损失或损害是否可以预见。

# 保密义务

除非上海移远通信技术股份有限公司特别授权,否则我司所提供文档和信息的接收方须对接收的文档和信息保密,不得将其用于除本项目的实施与开展以外的任何其他目的。未经上海移远通信技术股份有限公司书面同意,不得获取、使用或向第三方泄露我司所提供的文档和信息。对于任何违反保密义务、未经授权使用或以其他非法形式恶意使用所述文档和信息的违法侵权行为,上海移远通信技术股份有限公司有权追究法律责任。

# 版权申明

本文档版权属于上海移远通信技术股份有限公司,任何人未经我司允许而复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2021, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2021.



# 关于文档

| 文档信息 |                 |
|------|-----------------|
| 标题   | L76K AGNSS 应用指导 |
| 副标题  | GNSS 模块系列       |
| 文档类型 | AGNSS 应用指导      |
| 文档状态 | 受控版本            |

# 修订历史

| 版本  | 日期         | 描述   |
|-----|------------|------|
| -   | 2021-04-02 | 文档创建 |
| 1.0 | 2021-05-24 | 受控版本 |



# 目录

| 关于 | 文档.   |            | 2  |
|----|-------|------------|----|
| 目录 |       |            | 3  |
| 表格 | 索引.   |            | 4  |
| 图片 | 索引.   |            | 5  |
| 1  | 引言.   |            | 6  |
| 2  | AGN   | SS 操作流程    | 7  |
|    | 2.1.  | 卫星数据下载     |    |
|    | 2.2.  | 卫星数据格式     | 7  |
|    | 2.3.  | AGNSS 测试流程 | 8  |
| 3  | AGN:  | SS 相关指令    | 10 |
| ;  | 3.1.  | 数据格式       | 10 |
| ;  | 3.2.  | AID-INI    | 10 |
| ;  | 3.3.  | MSG_BDSUTC | 12 |
| ;  | 3.4.  | MSG_BDSION | 12 |
| ;  | 3.5.  | MSG_BDSEPH | 12 |
| ;  | 3.6.  | MSG_GPSUTC |    |
| ;  | 3.7.  | MSG_GPSION | 13 |
| ;  | 3.8.  | MSG_GPSEPH | 13 |
| ;  | 3.9.  | ACK        | 13 |
| ;  | 3.10. | NACK       | 14 |
| 4  | 附录    | 参考文档及术语缩写  | 15 |



# 表格索引

| 表 1: | 标志掩码 | .11 |
|------|------|-----|
| 表 2: | 参考文档 | 15  |
| 表 3: | 术语缩写 | 15  |



# 图片索引

| 图 1: | 卫星数据格式 | 7 |
|------|--------|---|
| 图 2: | 发送流程   | 8 |



# 1 引言

本文档主要介绍移远通信 L76K 模块 AGNSS 功能的操作流程及相关指令。

AGNSS 功能主要用于缩短 L76K 模块的 TTFF。在使用该功能时需要在相关服务器上下载卫星数据 (EPH),并通过串口注入到模块当中。



# **2** AGNSS 操作流程

本章节主要介绍 AGNSS 卫星数据下载、卫星数据格式及 AGNSS 测试流程。

## 2.1. 卫星数据下载

用户可通过 FTP 协议进行卫星数据文件下载,文件名为 *eph.dat*。卫星数据文件的 FTP 地址为 <u>ftp://agnss.queclocator.com</u>。

#### 备注

- 1. 移远通信服务器会实时下载卫星数据,此时需要用户创建自己的服务器用于从移远通信服务器下载并存储卫星数据,建议每1小时更新一次数据,进而实现终端设备上卫星数据的注入。
- 2. 需联系移远通信技术支持获取接入移远通信服务器的账户。

# 2.2. 卫星数据格式

卫星数据是由多个 CASIC 指令组成,与卫星数据相关的 CASIC 指令请参考*第3章*,卫星数据格式如下图所示:

| Offset   | 0  | 1  | 2          | 3          | 4                      | 5  | 6          | 7   | 8   | 9                        | A          | В          | С   | D          | E   | F          | 10 | 11 | 12              | 13         | 14         | 15  | 16  | 17 | 18         | 19         | 1A            | 1B         | 1C         | 1D | 1E  |
|----------|----|----|------------|------------|------------------------|----|------------|-----|-----|--------------------------|------------|------------|-----|------------|-----|------------|----|----|-----------------|------------|------------|-----|-----|----|------------|------------|---------------|------------|------------|----|-----|
| 00000000 | 41 | 47 | 4E         | 53         | 53                     | 20 | 64         | 61  | 74  | 61                       | 20         | 66         | 72  | 6F         | 6D  | 20         | 43 | 41 | 53              | 49         | 43         | 2E  | 0 A | 44 | 61         | 74         | 61            | 4C         | 65         | 6E | 67  |
| 0000001F | 74 | 68 | ЗА         | 20         | 32                     | 35 | 39         | 38  | 2E  | 0A                       | 4C         | 69         | 6D  | 69         | 74  | 61         | 74 | 69 | 6F              | 6E         | 3A         | 20  | 31  | 31 | 33         | 2F         | 31            | 30         | 30         | 30 | 2E  |
| 0000003E | 0A | BA | CE         | 48         | 00                     | 08 | 07         | 16  | C8  | E2                       | ED         | 1F         | 80  | 0D         | A1  | 87         | D9 | 64 | 05              | A8         | 85         | 7B  | 21  | 90 | 85         | 06         | ED            | 00         | 5F         | 12 | 28  |
| 0000005D | CD | 6B | FA         | A6         | 2F                     | A9 | FF         | FF  | 2B  | 20                       | 64         | 05         | В6  | 04         | 46  | 15         | DC | 18 | 16              | 05         | 10         | 00  | 58  | 00 | 38         | 31         | 65            | 00         | 38         | 31 | 00  |
| 0000007C | 00 | 32 | 40         | 18         | 00                     | B2 | FF         | 00  | OA. | 1A                       | 00         | 00         | 00  | 01         | 03  | <b>4</b> B | 3F | 74 | 90              | CD         | E2         | ВА  | CE  | 48 | 00         | 08         | 07            | C5         | 8D         | 52 | 67  |
| 0000009B | 77 | 0F | 0D         | A1         | 16                     | CF | 67         | 0A  | FA  | 91                       | 84         | C1         | E7  | E8         | 3D  | F7         | 5B | 3E | 35              | 27         | 91         | D9  | 9F  | A3 | F5         | <b>A4</b>  | FF            | FF         | ВО         | 31 | 75  |
| 000000BA | 05 | 67 | 02         | E1         | 15                     | 4F | 17         | 2E  | 03  | 5A                       | FF         | 23         | 00  | 38         | 31  | 65         | 00 | 38 | 31              | 00         | 00         | 59  | C7  | EC | FF         | ΕO         | FF            | 00         | DA         | 0B | 00  |
| 000000D9 | 00 | 00 | 02         | 03         | <b>4</b> B             | 3F | D2         | 1B  | AD  | D5                       | BA         | CE         | 48  | 00         | 08  | 07         | 9F | F1 | D7              | C9         | 6E         | 04  | OD  | A1 | 40         | 27         | В2            | 01         | 71         | 65 | E1  |
| 000000F8 | 21 | 53 | ЗА         | В5         | BF                     | В4 | 8A         | 73  | 27  | 5F                       | СВ         | <b>4</b> B | D1  | 00         | A5  | FF         | FF | 12 | 36              | ${\tt FC}$ | 00         | 9В  | FF  | AF | 08         | 23         | 26            | 70         | FF         | 23 | 00  |
| 00000117 | F9 | FF | 37         | 31         | 65                     | 00 | 37         | 31  | 00  | 00                       | D6         | 69         | FC  | FF         | AЗ  | FF         | 00 | 04 | 3D              | 00         | 00         | 00  | 03  | 03 | <b>4</b> B | 3F         | 86            | E3         | В7         | 9A | BA  |
| 00000136 | CE | 48 | 00         | 80         | 07                     | 6A | 65         | 0A  | C0  | 5C                       | 34         | 0E         | A1  | F9         | 56  | 94         | 00 | 78 | E9              | 9D         | 85         | D5  | 20  | 9B | 32         | <b>4</b> B | 03            | 26         | 27         | 13 | 8B  |
| 00000155 | 4F | FD | DA         | A7         | FF                     | FF | ${\tt AC}$ | 31  | 9D  | ${\mathbb F}{\mathbb A}$ | <b>E</b> 3 | FΒ         | A3  | 15         | 44  | 16         | DD | FA | 36              | 00         | F0         | FF  | 38  | 31 | 65         | 00         | 38            | 31         | 00         | 00 | D4  |
| 00000174 | E3 | F9 | FF         | EC         | FF                     | 00 | F7         | 53  | 00  | 00                       | 00         | 04         | 03  | <b>4</b> B | 3F  | 1C         | СВ | 10 | 87              | ${\tt BA}$ | CE         | 48  | 00  | 80 | 07         | 31         | C9            | 1D         | <b>4</b> F | 46 | A2  |
| 00000193 | 0E | A1 | 97         | 4A         | 11                     | 03 | 7B         | 71  | D8  | 23                       | 28         | 9E         | 5F  | 5E         | 05  | 39         | EΒ | 26 | 24              | 5C         | D5         | CF  | 6B  | A4 | FF         | FF         | C9            | 38         | 59         | 01 | 6E  |
| 000001B2 | 00 | A5 | 08         | <b>4</b> B | 25                     | 9B | 00         | D9  | FF  | ВВ                       | FF         | 38         | 31  | 65         | 00  | 38         | 31 | 00 | 00              | 07         | ${\tt CF}$ | FE  | FF  | F7 | FF         | 00         | E8            | <b>4</b> F | 00         | 00 | 00  |
| 000001D1 | 05 | 03 | <b>4</b> B | 3F         | $\mathtt{A}\mathtt{A}$ | 92 | 43         | A5  | BA  | CE                       | 48         | 00         | 80  | 07         | 48  | E5         | 92 | A6 | ${\rm DC}$      | D2         | OD         | A1  | 74  | В2 | 30         | 01         | A8            | 30         | FC         | D5 | 8C  |
| 00000180 | 75 | 20 | RΟ         | 20         | mл                     | 00 | 00         | A.F | Г1  | A A                      | * 0        | mΩ         | A A | ਜਾਜ        | ਜਾਜ | 00         | OD | 00 | $\wedge \vdash$ | 4 4        | 00         | ¥ F | 4 [ | 00 | 17         | 00         | $^{\wedge A}$ | ਜਾਜ        | ਜਜ         | тæ | ਜਾਜ |

图 1: 卫星数据格式



#### 2.3. AGNSS 测试流程

终端设备主控获取到卫星数据后,需要与模块之间通过串口进行交互通信,以完成卫星数据的注入。 数据传输流程如下,有关命令详细信息请参考**第3章**。

- 1. 终端设备主控发送 AID-INI 至模块。
- 2. 模块收到命令后,发送 ACK 至主控。若接收失败,模块会发送 NACK 至主控。
- 3. 终端设备主控收到 ACK 后,发送卫星数据至模块(数据发送过程由用户定义并实现)。由于卫星的数据是 CASIC 指令的格式,所以建议发送卫星数据的时候参照指令进行发送流程。
- 4. 模块收到卫星数据后会将数据存储到 RAM 中,同时发送 ACK 至主控。若数据接收失败,模块会发送 NACK,此时主控需重新发送卫星数据包。



图 2: 发送流程



#### 示例:

蓝色: 数据发送 红色: ACK 信息 黑色: NMEA 数据

\$GPTXT,01,01,02,MA=CASIC\*27

\$GPTXT,01,01,02,IC=AT6558-5N-32-1C510800\*48

\$GPTXT,01,01,02,SW=URANUS5,V5.1.0.0\*1F

\$GPTXT,01,01,02,TB=2018-04-18,10:28:16\*40

\$GPTXT,01,01,02,MO=GB\*77

\$GNGGA,,,,,0,00,25.5,,,,,\*64

\$GNGLL,,,,,V,N\*7A

\$BDGSV,3,1,10,02,37,229,36,03,51,192,37,04,31,119,37,05,17,251,33,0\*7A \$BDGSV,3,2,10,06,39,190,38,07,68,352,41,09,56,221,39,10,56,301,38,0\*79

//AID-INI 指令发送:

\$GNRMC,063040.000,A,3419.32306,N,11706.92160,E,0.00,0.00,030321,,,A,V\*0E \$GNVTG,0.00,T,M,0.00,N,0.00,K,A\*23

. . . . . .

//AID-INI ACK:

BA CE 04 00 05 01 0B 01 00 00 0F 01 05 01

\$GNGGA,063041.000,3149.32307,N,11706.91259,E,1,19,0.8,56.8,M,-5.0,M,,\*6C \$GNGLL,3149.32307,N,11706.91259,E,063041.000,A,A\*4A

#### //发送星历数据:

BA CE 48 00 08 07 CD CD 9A 10 E5 7D 0D A1 A0 03 59 05 58 30 63 21 98 4B 91 03 DA 64 0F 28 EC 77 2E B1 4C A8 FF FF EC 2C 81 05 12 05 85 14 DB 19 9C 05 0C 00 40 00 FA 32 63 00 FA 32 00 00 8E 96 18 00 B7 FF 00 0A 27 00 00 00 01 03 A3 41 E2 9B 3D 28 BA CE 48 00 07 F3 E1 31 8C 1E FC 0C A1 8D A9 6D 0A 3B F5 4C C1 28 F5 A4 0D 0A 5C 32 27 C1 AD D6 AD AB A3 FF FF E0 31 8F 04 DA 05 7F 15 26 17 08 07 57 FF B1 FF FA 32 63 00 FA 32 00 00 39 ED EC FF DF FF 00 DA 2A 00 00 00 02 03 A3 41 2E C4 6B 1F

...

\$GNVTG,0.00,T,,M,0.00,N,0.00,K,A\*23

//星历数据 ACK:

BA CE 04 00 05 01 08 07 00 00 0C 07 05 01 BA CE 04 00 05 01 08 07 00 00 0C 07 05 01

•••



# 3 AGNSS 相关指令

相关的数据格式请参考文档 [2]的 CASIC 格式。

# 3.1. 数据格式

| 缩写 | 类型          | 长度 (字节) | 备注 |
|----|-------------|---------|----|
| U1 | 无符号字符       | 1       |    |
| l1 | 有符号字符       | 1       | 补码 |
| U2 | 无符号短整型      | 2       |    |
| 12 | 有符号短整型      | 2       | 补码 |
| U4 | 无符号长整型      | 4       |    |
| 14 | 有符号长整型      | 4       | 补码 |
| R4 | IEEE754 单精度 | 4       |    |
| R8 | IEEE754 双精度 | 8       |    |

#### 3.2. AID-INI

该命令用于发送辅助位置、时钟等信息。由终端设备主控发送,模块收到该命令会有一个 ACK 返回。

#### 格式:

| 头         | 长度 (字节) | 标识符       | 有效载荷 | 校验和  |  |
|-----------|---------|-----------|------|------|--|
| 0xBA 0xCE | 56      | 0x0B 0x01 | 见下表  | 4 字节 |  |



| 字符偏移 | 数据类型 | 比例缩放  | 名称          | 单位    | 描述                     |
|------|------|-------|-------------|-------|------------------------|
| 0    | R8   | -     | Lat         | 度     | 纬度                     |
| 8    | R8   | -     | Lon         | 度     | 经度                     |
| 16   | R8   | -     | Alt         | 米     | 高度。通常为0                |
| 24   | R8   | -     | TOW         | 秒     | GPS 周内秒                |
| 32   | R4   | 300   | FreqBias    | ppm   | 时钟频率偏移。通常为0            |
| 36   | R4   | -     | рАсс        | m^2   | 3D 位置的估计误差的方差。通常为<br>0 |
| 40   | R4   | C^2   | tAcc        | S^2   | 时间的估计误差的方差。通常为0        |
| 44   | R4   | 300^2 | fAcc        | ppm^2 | 时间频率漂移误差的方差            |
| 48   | U4   | -     | Res         | -     | 保留                     |
| 52   | U2   | -     | WN          | -     | GPS 周                  |
| 54   | U1   | -     | TimerSource | -     | 时间源                    |
| 55   | U1   | -     | Flags       | -     | 标志掩码。详细请参考 <b>表1</b>   |

### 有效载荷:

#### 表 1: 标志掩码

| 位  | 描述             |
|----|----------------|
| В0 | 1 = 位置有效       |
| B1 | 1 = 时间有效       |
| B2 | 1 = 时钟频率漂移数据有效 |
| B3 | 保留             |
| B4 | 1 = 时钟频率数据有效   |
| B5 | 1 = 位置是 LLA 格式 |
| B6 | 1 = 高度无效       |
| B7 | 保留             |



#### 示例:

#### //发送:

BA CE 04 00 05 01 0B 01 00 00 0F 01 05 01

## 3.3. MSG\_BDSUTC

BDS 定点 UTC 数据(与 UTC 时间同步参数)。

#### 格式:

| 头         | 长度(字节) | 标识符        | 有效载荷 | 校验和  |
|-----------|--------|------------|------|------|
| 0xBA 0xCE | 20     | 00x08 0x00 | -    | 4 字节 |

## 3.4. MSG\_BDSION

BDS 电离层数据。

#### 格式:

| 头         | 长度 (字节) | 标识符       | 有效载荷 | 校验和  |  |
|-----------|---------|-----------|------|------|--|
| 0xBA 0xCE | 16      | 0x08 0x01 | -    | 4 字节 |  |

# 3.5. MSG\_BDSEPH

BDS 星历。

#### 格式:

| 头         | 长度 (字节) | 标识符       | 有效载荷 | 校验和  |  |
|-----------|---------|-----------|------|------|--|
| 0xBA 0xCE | 92      | 0x08 0x02 | -    | 4 字节 |  |



### 3.6. MSG\_GPSUTC

GPS 定点 UTC 数据(与 UTC 时间同步参数)。

#### 格式:

| 头         | 长度(字节) | 标识符       | 有效载荷 | 校验和  |  |
|-----------|--------|-----------|------|------|--|
| 0xBA 0xCE | 20     | 0x08 0x05 | -    | 4 字节 |  |

## 3.7. MSG\_GPSION

GPS 电离层参数。

#### 格式:

| 头         | 长度(字节) | 标识符       | 有效载荷 | 校验和  |  |
|-----------|--------|-----------|------|------|--|
| 0xBA 0xCE | 16     | 0x08 0x06 | -    | 4 字节 |  |

### 3.8. MSG\_GPSEPH

GPS 星历。

#### 格式:

| 头         | 长度 (字节) | 标识符       | 有效载荷 | 校验和  |  |
|-----------|---------|-----------|------|------|--|
| 0xBA 0xCE | 72      | 0x08 0x07 | -    | 4 字节 |  |

#### 3.9. ACK

该响应信息用于回应正确接收的信息。若成功接收到终端设备主控发送的 AID-INI 或者卫星数据, L76K 模块将发送 ACK 信息用于告知主控已成功接收。



#### 格式:

| 头         | 长度 (字节) | 标识符       | 有效载荷 | 校验和  |
|-----------|---------|-----------|------|------|
| 0xBA 0xCE | 4       | 0x05 0x01 | 见下表  | 4 字节 |

#### 有效载荷:

| 字符偏移 | 数据类型 | 比例缩放 | 名称    | 单位 | 描述        |
|------|------|------|-------|----|-----------|
| 0    | U1   | -    | ClsID | -  | 正确接收信息的类型 |
| 1    | U1   | -    | MsgID | -  | 正确接收信息的编号 |
| 2    | U2   | -    | Res   | -  | 保留        |

# 3.10. NACK

该响应信息用于回应未正确接收的信息。若未接收到终端设备主控发送的 AID-INI 或者卫星数据,L76K 模块将发送 NACK 信息用于告知主控未成功接收。

#### 格式:

| 头         | 长度 (字节) | 标识符       | 有效载荷 | 校验和 |
|-----------|---------|-----------|------|-----|
| 0xBA 0xCE | 4       | 0x05 0x00 | 见下表  | 4字节 |

#### 有效载荷:

| 字符偏移 | 数据类型 | 比例缩放 | 名称    | 单位 | 描述         |
|------|------|------|-------|----|------------|
| 0    | U1   | -    | CIsID | -  | 未正确接收信息的类型 |
| 1    | U1   | -    | MsgID | -  | 未正确接收信息的编号 |
| 2    | U2   | -    | Res   | -  | 保留         |



# 4 附录 参考文档及术语缩写

#### 表 2:参考文档

| 序号  | 文档名称                        | 描述                  |
|-----|-----------------------------|---------------------|
| [1] | Quectel_L76K_硬件设计手册         | L76K 硬件设计手册         |
| [2] | Quectel_L76K&L26K_GNSS_协议规范 | L76K、L26K GNSS 协议规范 |
| [3] | Quectel_L76K_参考设计手册         | L76K 参考设计手册         |

#### 表 3: 术语缩写

|                             | 中文解释                                                                                                                                                                                            |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| edge Character              | 确认消息                                                                                                                                                                                            |
| GNSS                        | 辅助式全球卫星导航系统                                                                                                                                                                                     |
| lavigation Satellite System | 北斗卫星导航系统                                                                                                                                                                                        |
| is                          | 星历                                                                                                                                                                                              |
| sfer Protocol               | 文件传输协议                                                                                                                                                                                          |
| avigation Satellite System  | 全球导航卫星系统                                                                                                                                                                                        |
| ositioning System           | 全球定位系统                                                                                                                                                                                          |
| e, Latitude, Altitude       | 经度、纬度、高度                                                                                                                                                                                        |
| Acknowledgement             | 否定消息                                                                                                                                                                                            |
| Access Memory               | 随机存储器                                                                                                                                                                                           |
| irst Fix                    | 首次定位时间                                                                                                                                                                                          |
| ted Universal Time          | 协调世界时                                                                                                                                                                                           |
|                             | edge Character GNSS  Javigation Satellite System is sfer Protocol avigation Satellite System ositioning System e, Latitude, Altitude Acknowledgement Access Memory First Fix ted Universal Time |