Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2020

Guía Práctica 1 Ejercicios entregables

Integrantes:

Risaro Daniela Belén LU: 666/09 Sturmer Eva Sylvia Juliet LU: 606/19

Ejercicio 5.h Determinar, utilizando tablas de verdad, si las siguientes fórmulas son tautologías, contradicciones o contingencias.

 $\bullet \ ((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$

Respuesta: Es una Tautología.

p	q	r	$(q \vee r)$	$p \wedge (q \vee r)$
V	V	V	V	V
F	F	F	F	F
V	F	V	V	V
F	V	F	V	F
V	F	F	F	F
F	V	V	V	F
V	V	F	V	V
F	F	V	V	F

p	q	r	$(p \wedge q)$	$(p \wedge r)$	$((p \land q) \lor (p \land r))$
V	V	V	V	V	V
F	F	F	F	F	F
V	F	V	F	V	V
F	V	F	F	F	F
V	F	F	F	F	F
F	V	V	F	F	F
V	V	F	V	F	V
F	F	V	F	F	F

$p \wedge (q \vee r)$	$((p \land q) \lor (p \land r))$	$p \wedge (q \vee r) \leftrightarrow ((p \wedge q) \vee (p \wedge r))$
V	V	V
F	F	V
V	V	V
F	F	V
F	F	V
F	F	V
V	V	V
F	F	V

 $^{^{\}ast}$ Lo dividimos en tres por cuestiones de legibilidad, tranquilamente puede ser escrito con una sola tabla que las incluya.

Ejercicio 16.d Determinar los valores de verdad de las siguientes proposiciones cuando el valor de verdad de byc es verdadero, el de a es falso y el de x e y es indefinido.

$$\bullet \ (\neg(c \ \lor L \ y) \leftrightarrow (\neg c \ \land L \ \neg y))$$

$$\begin{array}{c} (\neg(c \ \lor L \ y) \leftrightarrow (\neg c \ \land L \ \neg y)) \\ (\neg(V \ \lor L \ \bot) \leftrightarrow (\neg V \ \land L \ \neg \ \bot) \\ (\neg V \leftrightarrow (F \ \land L \ \bot)) \end{array}$$

$$(F \leftrightarrow F) \\ V$$

Respuesta: Es Verdadero.

Ejercicio 18.v Determinar para cada aparición de variables, si dicha aparición se encuentra libre o ligada. En caso de estar ligada, aclarar a qué cuantificador lo está.

 $\bullet \ (\forall j: \mathbb{Z}) (j \leq 0 \rightarrow (\forall j: \mathbb{Z}) (j > 0 \rightarrow j \neq 0))$

Respuesta: Cada J esta ligada al \forall que los antecede.

Ejercicio 20.h Escriba los siguientes predicados y funciones en el lenguaje de especificación:

• $pred\ mayor Primo\ Que Divide\ (x:\mathbb{Z},\,y:\mathbb{Z})$ que sea verdadero si y es el mayor primo que divide a x.

Respuesta:

pred esPrimo(x :
$$\mathbb{Z}$$
) { x > 1 \land (\forall n' : \mathbb{Z})(1 < n' < x \rightarrow L x mod n' \neq 0) }
pred mayorPrimoQueDivide (x : \mathbb{Z} , y : \mathbb{Z}) { esPrimo(y) \land L (x mod y = 0) \land (\forall n' : \mathbb{Z})((n' > y \land L (x mod n' = 0)) \rightarrow L \neg esPrimo(n')) }