Biscayne Bay Southeastern Everglades Ecosystem Restoration (WQ Subteam)

DRAFT - Water Quality Planning Targets

Paul Julian, Ph.D. | December 21, 2020 (Updated: May 10, 2021)

Objective

• Evaluate the potential for developing planning level water quality targets from project areas to downstream OFW

Approach

- Rescale existing water quality at discharge locations to established downstream Numeric Nutrient Criteria (62-302.532 FAC).
- Similar approach to Everglades Stormwater Treatment Area WQBEL (<u>Technical</u> Support Document).

Biscayne Bay Numeric Nutrient Criteria

As acknowledged in the NNC technical support document watershed development has led to adverse effects in Biscayne Bay including:

- hypersalinity
- algal blooms
- benthic community (seagrass and coral) loss
- loss of some fish species.

Water Quality is related to land use and differs among North, Central and South regions

Nutrients exhibits a declining gradient from land to open water.

The established NNC is based on a "maintain existing conditions" approach using water quality monitoring data collected from 1995 to 2009.

• For the "maintain existing conditions" approach, it must be concluded that the observed nutrient regime was inherently protective of the system under the conditions unique to that system.

Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion

62-302.532(1) FAC. Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion.

Estuary	Segement	Total Phosphorus (mg L ⁻¹) ^A	Total Nitrogen (mg L ⁻¹) ^A	Chlorophyll-a (µg L ⁻¹) ^A
(h) Biscayne	1. Card Sound	0.008	0.33	0.5
Bay	2. Manatee Bay - Barnes Sound	0.007	0.58	0.4
	3. North Central Inshore	0.007	0.31	0.5
	4. North Central Outer-Bay	0.008	0.28	0.7
	5. Northern North Bay	0.012	0.30	1.7
	6. South Central Inshore	0.007	0.48	0.4
	7. South Central Mid-Bay	0.007	0.35	0.2
	8. South Central Outer-Bay	0.006	0.24	0.2
	9. Southern North Bay	0.010	0.29	1.1

^A Criteria expressed as annual geometric means (AGM) are not to be exceeded more than once in a three year period.

STA WQBEL

Table 4. Derivation of the WQBEL for TP in discharges to the EPA.

Parameter	Value	Description
Number of STAs	6	k
Number of STA Years	38	N
Degrees of Freedom	32	df = N-k
LTFWM for LTGM = 10	12.8	Average rescaled LTFWM across STAs and years equivalent to $GM = 10 \text{ ppb}$
Standard Error of LTFWM	0.6	Standard error of rescaled LTFWM across STAs and years
Annual Ln Mean FWM	2.48	$m = mean (Ln \ rescaled \ FWM)$
Annual Ln Standard Deviation FWM	0.325	std = standard deviation (Ln rescaled FWM)
Annual Pooled Ln Standard Deviation FWM	0.350	s = pooled standard deviation (Ln rescaled FWM)
Assumed Tail Probability	0.1	$p_{0.1} = probability for 90\% prediction$
Students-t	1.31	$t_{0.1} = (p_{0.1}, DOF), 1$ -tailed
Annual Maximum FWM Limit (AWFM)	18.9	$Limit = exp(m + s*t_{0.1})$
Mean Ratio FWM/GM	1.25	Mean of FWM/GM

Everglades WQBEL

- 13 $\mu g \ L^{\scriptscriptstyle -1}$ as an annual FWM in more than three out of five years and;
- 19 μ g L^{-1} as an annual FWM.

(Source)

Methods

Data Sources

- Water quality data was retrieved from FDEP STORET ¹, WIN ² and SFWMD DBHYDRO ³.
- Daily discharge data retrieved from SFWMD DBHYDRO ³.
- Period of record considered May 1999 May 2019 (Florida WY2000 2020).

Data Handling

- Fatally qualified data were removed prior to analysis.
- Values reported less than the minimum detection limit (MDL) were set to $\frac{1}{2}$ the MDL.
- Annual (Florida WY) geometric mean (GM) concentrations were computed on days of flow with greater than four samples per year and atleast one in the dry and wet season.
- Flow-weighted mean (FWM) concentrations were calculated using paired WQ and flow data.

¹ STORET; ² WIN; ³ DBHYDRO

Methods

Data Rescaling

$$RF = rac{NNC}{\overline{GM}}$$
 $\overline{GM} = rac{\sum_{i=1}^{n}GM}{n}$ $FWM_{RF} = FWM imes RF$

Where,

NNC = long-term numeric nutrient criterion limit for specific region

GM = geometric mean for each year at each station

 \overline{GM} = arithmetic mean of geometric mean at each station for n years

n = number of years per site

FWM = annual FWM calculated for each site

Statistical Analysis

$$y_{ij} = ln(C_{ij})$$
 $m = rac{\sum_{i=1}^k \sum_{i=1}^{n_i} y_{ij}}{N}$
 $S_y = \sqrt{rac{\sum_{i=1}^k \left[\sum_{j=1}^{n_i} \left(y_{ij} - ar{y_i}
ight)^2
ight]}{N-k}}$
 $df = N-k$
 $L_
ho = rac{m+S_y imes t_
ho}{\sqrt{N}}$

Where,

 C_{ij} = FWM for year j and site i, rescaled to NNC

 \bar{y}_i = mean ln(FWM) for site *i* across years

N = total number of site years

k = number of sites

m = mean of log nutrient data across sites and years (rescaled FWM)

 S_y = pooled year-to-year standard deviation

df = degrees of freedom in s

 L_p = long-term limit FWM concentration with exceedance probability ρ

 t_n = 1-tailed t-statistic, significance level ρ and df

Total Phosphorus

Total Nitrogen

ENRH5 Northern North Bay

Total	Total
Phosphorus	Nitrogen
$(\mu g L^{-1})$	$(mg L^{-1})$

Parameter	Value	Value
Downstream NNC	12	0.30
Number of Sites; k	2	2
Number of Site Years; N	35	4
Degree of Freedom; df	33	2
Mean Rescaled FWM; LTFWM	14.20	0.41
SE of Rescaled FWM; SE LTFWM	0.90	0.04
Annual Ln Mean FWM; m	2.60	-0.91
Annual Ln SD FWM; std	0.316	0.200
Pooled Ln SD FWM; s	0.056	0.041
Assumed Probability; p	0.1	0.1
Students-t; Tp	1.31	1.89
Long Term FWM Limit	14	0.45

LIMITED TN DATA

ENRH9 Southern North Bay

Total	Total
Phosphorus	Nitrogen
$(\mu g L^{-1})$	$(mg L^{-1})$

Parameter	Value	Value
Downstream NNC	10	0.29
Number of Sites; k	2	2
Number of Site Years; N	42	20
Degree of Freedom; df	40	18
Mean Rescaled FWM; LTFWM	12.56	0.39
SE of Rescaled FWM; SE LTFWM	0.79	0.04
Annual Ln Mean FWM; m	2.48	-1.03
Annual Ln SD FWM; std	0.302	0.419
Pooled Ln SD FWM; s	0.048	0.101
Assumed Probability; p	0.1	0.1
Students-t; Tp	1.30	1.33
Long Term FWM Limit	13	0.42

ENRH3 North Central Inshore

Total	Total
Phosphorus	Nitrogen
$(\mu g L^{-1})$	$(mg L^{-1})$

Parameter	Value	Value
Downstream NNC	7	0.31
Number of Sites; k	2	1
Number of Site Years; N	17	4
Degree of Freedom; df	15	3
Mean Rescaled FWM; LTFWM	9.05	0.42
SE of Rescaled FWM; SE LTFWM	1.14	0.02
Annual Ln Mean FWM; m	2.10	-0.88
Annual Ln SD FWM; std	0.445	0.074
Pooled Ln SD FWM; s	0.118	0.043
Assumed Probability; p	0.1	0.1
Students-t; Tp	1.34	1.64
Long Term FWM Limit	9	0.45

LIMITED TN DATA

ENRH6 South Central Inshore

Total	Total
Phosphorus	Nitrogen
$(\mu g L^{-1})$	(mg L ⁻¹)

Parameter	Value	Value
Downstream NNC	7	0.48
Number of Sites; k	4	4
Number of Site Years; N	76	30
Degree of Freedom; df	72	26
Mean Rescaled FWM; LTFWM	9.49	0.61
SE of Rescaled FWM; SE LTFWM	0.70	0.02
Annual Ln Mean FWM; m	2.10	-0.52
Annual Ln SD FWM; std	0.502	0.226
Pooled Ln SD FWM; s	0.059	0.042
Assumed Probability; p	0.1	0.1
Students-t; Tp	1.29	1.31
Long Term FWM Limit	9	0.62

Inital Thoughts

- Structure/canal specific water quality planning limits based on downstream NNC
- Total Nitrogen data limitations
 - ENRH5 and ENRH3
 - Alternate sites for Snake Creek, Biscayne Canal, Snapper Creek and Cutler Drain?

Acknowledgements

Data

South Florida Water Management District (DBHYDRO)

Miami-Dade Department of Environmental Resources Management via FDEP STORET/WIN

Slides

- Slide deck HTML | PDF | © Julian (2020)
- RMarkdown Source

Draft Work Product
In support of BBSEER planning