(Representation Theory) Notes on Representations

George McNinch

2024-01-22

Let G be a finite group, let F be a field (algebraically closed, char. 0).

A representation of G is a vector space V together with a group homomorphism

$$\rho: G \to \mathrm{GL}(V)$$
.

If we choose a basis \mathcal{B} of V, we obtain from ρ an assignment $g \mapsto [\rho(g)]_{\mathcal{B}}$ which is a group homomorphism $G \to \mathrm{GL}_n(F)$.

First example

Consider the finite cyclic group $G = \mathbb{Z}/n\mathbb{Z}$ for a natural number n > 0.

Suppose that M is an $m \times m$ matrix for which $M^n = I$. Using M, we get a representation

$$\rho_M: \mathbb{Z}/n\mathbb{Z} \to \mathrm{GL}_m(F)$$

by the rule

$$\rho_M(i+n\mathbb{Z}) = M^i.$$

One might consider the question: If M and M' are two $m \times m$ matrices for which $M^n = (M')^n = \mathbf{I}$, when are the representations ρ_M and $\rho_{M'}$ "the same"??

Consider the following 3×3 matrices, each of which satisfies $M^3=\mathbf{I}$:

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta & 0 \\ 0 & 0 & \zeta^2 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -2 \\ 3/2 & 0 & 0 \\ 0 & -1/3 & 0 \end{pmatrix}.$$

where ζ is a root of $\frac{T^3-1}{T-1}=T^2+T+1$.

In fact, all three of these matrices have eigenvalues $1,\zeta,\zeta^2$ each with multiplicity 1.

Example: two commuting matrices

Suppose that M, N are $m \times m$ matrices for which $M^n = \mathbf{I}$, $N^k = \mathbf{I}$ and MN = NM.

We get a representation

$$\rho: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/k\mathbb{Z} \to \mathrm{GL}_m(F)$$

by the rule

$$\rho(i+n\mathbb{Z}, j+k\mathbb{Z}) = M^i N^j.$$

Remark Let μ be an eigenvalue of the matrix M, and let $V_{\mu} \subset F^m$ be the corresponding eigenspace.

Since M and N commute, a homework exercise shows that V_{μ} is *invariant* under the action of N.

Then

$$N_{|V_\mu}:V_\mu\to V_\mu$$

If $F = \mathbb{C}$ then we can take $\zeta = e^{2\pi i/3}$.

is a linear transformation satisfying $(N_{\mid V_u})^k=\operatorname{id}$.

In particular, we may choose a basis of V_{μ} of eigenvectors for $N_{|V_{\mu}}$

In this way, we see that $V = F^m$ has a basis consisting of vectors which are simultaneously eigenvectors for N and for M.

Construction of representations from group actions

Suppose that the (finite) group G acts on the (finite) set Ω . We are going to use this action to define a representation of G.

We consider the vector space $F[\Omega]$ of all F-valued functions on Ω .

For $g \in G$, we consider the linear transformation

$$\rho(g): F[\Omega] \to F[\Omega]$$

defined for $f \in F[\Omega]$ by the rule

$$\rho(g)(f)(\omega)=f(g^{-1}\omega).$$

Proposition: (a). $\rho(g)$ is an F-linear map.

(b).
$$\rho(gh) = \rho(g)\rho(h)$$
 for $g, h \in G$.

(c).
$$\rho(g): F[\Omega] \to F[\Omega]$$
 is invertible.

Proof of (b): Let $f \in F[\Omega]$. For $\tau \in \Omega$ we have

$$\rho(gh)f(\tau) = f((gh)^{-1}\tau) = f(h^{-1}g^{-1}\tau) = \rho(h)f(g^{-1}\tau) = \rho(g)\rho(h)f(\tau).$$

Since this holds for all τ , conclude that

$$\rho(gh)f = \rho(g)\rho(h)f.$$

Since this holds for all f, conclude that $\rho(gh) = \rho(g)\rho(h)$ as required.

The Proposition shows that

$$\rho: G \to \mathrm{GL}(F[\Omega])$$

is a representation of G.

Here is an alternate perspective on $F[\Omega]$ and the action of G.

For $\omega \in \Omega$, consider the Dirac function $\delta_\omega \in F[\Omega]$ defined by

$$\delta_{\omega}(\tau) = \begin{cases} 1 & \omega = \tau \\ 0 & \text{else} \end{cases}$$

Proposition: The collection δ_{ω} forms a *basis* for the *F*-vector space $F[\Omega]$.

Sketch: For $f \in F[\Omega]$, we have

$$f = \sum_{\omega \in \Omega} f(\omega) \delta_{\omega}.$$

This shows that the δ_{ω} span $F[\Omega]$.

Now, suppose $0=\sum_{\omega\in\Omega}a_{\omega}\delta_{\omega}$ for $a_{\omega}\in F$ for each $\omega\in\Omega.$

To prove linear independence, we must argue that $a_{\omega}=0$ for every $\omega.$

Set $f = \sum_{\omega \in \Omega} a_{\omega} \delta_{\omega}$. For $\tau \in \Omega$, the function f satisfies

$$f(\tau) = \sum_{\omega \in \Omega} a_{\omega} \delta_{\omega}(\tau) = a_{\tau}.$$

Since f=0 - i.e. "f is the function which is takes value zero at every argument" – we conclude that $a_{\tau}=0$ for each τ . This proves linear independence.

Let's consider the action of G on these basis vectors.

Proposition: For $g \in G$ and $\omega \in \Omega$, we have

$$\rho(g)\delta_{\omega}=\delta_{a\omega}.$$

Proof: For $\tau \in \Omega$ we have

$$\rho(g)\delta_{\omega}(\tau) = \delta_{\omega}(g^{-1}\tau) = \begin{cases} 1 & \omega = g^{-1}\tau \\ 0 & \text{else} \end{cases} = \begin{cases} 1 & g\omega = \tau \\ 0 & \text{else} \end{cases}$$

This shows that $\rho(g)\delta_{\omega}(\tau)=\delta_{q\omega}(\tau)$; since this holds for all τ we conclude $\rho(g)\delta_{\omega}=\delta_{q\omega}$ as required.

Remark: Viewing $F[\Omega]$ as the vector space with basis δ_{ω} gives us a perhaps simpler proof that $\rho(gh) = \rho(g)\rho(h)$.

Indeed, for $\omega \in \Omega$ we have

$$\rho(gh)\delta_{\omega} = \delta_{gh\omega} = \rho(g)\delta_{h\omega} = \rho(g)(\rho(h)\delta_{\omega}) = \rho(g)\rho(h)\delta_{\omega}.$$

Homomorphisms

Let (ρ, V) and (ψ, W) be representations of G. a linear mapping $\Phi: V \to W$ is a homomorphism of G-representations provided that for every $v \in V$ and for every $g \in G$ we have

$$\Phi(\rho(g)v) = \psi(g)\Phi(v).$$

The G-representations (ρ, V) and (ψ, W) are isomorphic is there is a homomorphism of G-representations which is *invertible*.

Example

For any G one has the so-called *trivial representation* $\mathbb{1}$. This representation has vector space V = F (it is 1 dimensional!) and the mapping

$$G \to \operatorname{GL}(V) = \operatorname{GL}_1(F) = F^{\times}$$

is just the trivial homomorphism $g \mapsto 1$.

One often writes $\mathbb{1}$ for the *underlying vector space* F.

Let G act on the (finite) set Ω . Then there is a homomorphism of G-representations

$$\mathbb{1} \to F[\Omega].$$

Viewing $\mathbb{1} = F$, the scalar c is mapped to the constant function with value c.

Put another way, the scalar c is mapped to the vector

$$c\sum_{\omega\in\Omega}\delta_{\omega}.$$

Bibliography