EPITA /	InfoS2

NOM : Prénom :

Février 2023 Groupe :

Contrôle Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Questions de cours	(4 points -	pas de	points	négatifs)
	Questions de cours	Questions de cours (4 points –	Questions de cours (4 points – pas de	Questions de cours (4 points – pas de points

Choisissez la ou les bonnes réponses :

- 1. Le théorème de Millman vient de :
 - (a.) La loi des nœuds

- b. La loi des mailles
- 2. Quelle est l'unité de la capacité C d'un condensateur ?
 - a. Ohm (Ω)
 - (b) Farad (F)

- c. Henry (H)
- d. Mathieu (M)
- 3. Quelle est l'unité de l'inductance L d'une bobine ?
 - a. Ohm (Ω)
 - b. Farad (F)

- (c) Henry (H)
- d. Mathieu (M)
- 4. En régime permanent continu (DC), on peut remplacer une bobine par :
 - a. un condensateur

(c.) un fil

b. un interrupteur ouvert

d. une résistance

Soit le circuit suivant, où E est une source de tension continue. Le condensateur est initialement déchargé. A t=0, on ferme l'interrupteur K

- 5. Que vaut u_c juste après avoir fermé K.
- (a.) 0

b. E

c. $\frac{E}{R}$

- d. *R.E*
- **6.** Que vaut u_C quand le régime permanent est atteint.
- a. 0

(b) E

c. $\frac{E}{R}$

d. R.E

Exercice 2. Les régimes transitoires (10 points)

Soit le circuit suivant. L'interrupteur est ouvert depuis suffisamment longtemps pour que tous les *E* courants soient nuls.

1. Remplir le tableau suivant :

	i	i_R	i_L	u_L
:= 0 ⁺	E 2R	E 2R	0	E
→ ∞	E	0	E	0

- 2. On souhaite déterminer l'équation de la tension $u_L(t)$ aux bornes de la bobine. Pour cela, on va chercher à simplifier le circuit, en utilisant les équivalences Thévenin/Norton.
 - a. Déterminer E_{th} et R_{th} afin que le circuit de la figure 2 soit équivalent à celui de la figure 1.

Figure 2

b. En utilisant les résultats précédents (schéma Figure 2), établir l'équation différentielle qui décrit l'évolution de u_L au cours du temps, et déterminer alors l'expression de $u_L(t)$. Vous donnerez cette équation en fonction de E, R et L. Quelle est la constante de temps τ de ce circuit ?

Exercice 3. Théorème de Millman (6 points)

1. Soit le montage ci-contre. En utilisant le théorème de $_{2E}$ Millman, déterminer l'expression de la tension U.

Théorème de Milleran appliquée au point A:

$$U = V_A = \frac{2E}{R} - \frac{E}{2R} + I$$
 $\frac{4E - E + 2RI}{2R + 4R} = \frac{4E - E + 2RI}{2 + 4 + 2R}$

$$= \int U = \frac{3E + 2RI}{5}$$

2. Soit le montage ci-contre. En utilisant le théorème de Millman, déterminer l'expression de la tension U.

Théorème de Villaian appliqué au point A:

$$U = VA = \frac{\frac{V_{c}}{2R} - 4I - \frac{QE}{4R} + I}{\frac{1}{2R} + \frac{1}{4R} + \frac{1}{4R}} = \frac{V_{c} - 6RI - E}{1 + 1}$$

$$= 0$$
 $V = \frac{-2E - 6RI - E}{2} = \frac{-3E - 6RI}{2}$