GENE638 - Homework 2

Daniel Osorio - dcosorioh@tamu.edu Department of Veterinary Integrative Biosciences Texas A&M University

1. For this system of equations:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 20 \\ 25 \end{bmatrix}$$

- (a) Determine the rank of the coefficient matrix
 - > as.numeric(Matrix::rankMatrix(coefficientMatrix))

[1] 2

- (b) Express any linearly dependent columns in the matrix form $\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} \\ A'_{12} \end{bmatrix} L$
- (c) Find a generalized inverse of the coefficient matrix. Prove that it is a generalized inverse
 - > gInverse <- MASS::ginv(coefficientMatrix)</pre>
 - > gInverse

> round(gInverse %*% coefficientMatrix)

$$[1,]$$
 1 0 0

> round(coefficientMatrix %*% gInverse %*% coefficientMatrix)

$$[1,]$$
 1 0 1

- (d) Using the inverse from part (c), solve for x. Prove your solution satisfies the equations
 - > x <- gInverse %*% c(5, 20, 25)
 - > round(x)

[1,] 0

[2,] 5

[3,] 5

> coefficientMatrix %*% x

- (e) What do your solutions estimate?
- (f) Based in what you did in part (e): Can you estimate x_1 ? Can you estimate $x_1 x_2$?
- 2. Using the partitioned matrix inverse procedure on page 14 in the notes
 - (a) Find the inverse of: $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}$
 - (b) Prove that your answer in (a) is an inverse

(c) Solve
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

- (d) What is the solution in (c) an estimate of?
- (e) Can you estimate x_3 ? With what? Can you estimate $6x_1 + 4x_2 8x_3$? With what?
- 3. Assuming the linear model $y_i = \mu + \epsilon_i$ where y_i is and observed first lactation milkfat production, μ is the population mean milkfat production, and ϵ_i is the deviation of an individual cow's production from the mean. Write this model as

$$y = 1\mu + \underline{\epsilon}$$

Cow	1^{st} lactation milkfat (lb)
1	300
2	290
3	405
4	360
5	315

(a) Calculate:

(b) Solve $\hat{\mu} = (X'X)^{-1}X'\underline{y}$

> muHat <- as.numeric(solve(t(X)
$$%*%$$
 X) $%*%$ X $%*%$ y) > muHat

```
[1] 334
```

```
(c) Show that \hat{\mu} = \overline{y}
```

```
> meanY <- mean(y)</pre>
```

- > meanY
- [1] 334
- > all.equal(muHat, meanY)
- [1] TRUE
- (d) Find the predicted deviations $\hat{\underline{\epsilon}} = y \underline{1}\hat{\mu}$
 - > epsilonHat <- (y muHat)
 - > epsilonHat
 - [1] -34 -44 71 26 -19
- (e) Find $\frac{\hat{\underline{\epsilon}}'\hat{\underline{\epsilon}}}{n-rank(X)}$ and show that this is s^2 the sample variance.
 - > s2Hat <- as.numeric((t(epsilonHat) %*% epsilonHat) / (length(y) 1))</pre>
 - > s2Hat
 - [1] 2292.5
 - > var(y)
 - [1] 2292.5
 - > all.equal(s2Hat, var(y))
 - [1] TRUE