

SNP/genotype calling and estimation of allele frequencies from NGS data

Matteo Fumagalli

Intended Learning Outcomes

At the end of this session will be able to:

- appreciate the effect of sequencing depth and error to SNP/genotype calling
- calculate genotype and allele frequency likelihoods
- perform SNP/genotype calling from NGS data
- acknowledge the estimation of summary statistics from NGS data

Sanger sequencing

aka first/former generation sequencing

Qualitative assignment of genotypes

Next Generation Sequencing

A. Extracted gDNA

B. gDNA is fragmented into a library of small segments that are each sequenced in parallel.

C. Individual sequence reads are reassembled by aligning to a reference genome

D. The whole-genome sequence is derived from the consensus of aligned reads.

From genomes to variants

Genome (FASTA)

>ARPM2ref[NC_000001.10]:2938046-2939467 Homo sapiens chromosome 1, GRCh37 primary reference assembly TGGAAGAGGCCTAGCAGGCCAGCCTGGGGGAGAGCAGACCTGCGGCTGAGGATGCAGGGCTCC

CGGGCACGGTGCTAGCCCTTGAGACACCCCGAGAGCTGTGGGAAGAGCTGTGGGATCCCCTATTGC
ATCACAAAGCGGCCCTGGAGGGCTGGTCTTTATTTTGATGAGGCTGAGAAAGGGAAGGCTGCGGGCATGTT
TAATCCGCACGCTTTAGACTCCCCGGCTGTGATTTTTGACTATGGCTCGGGGTTCTGCAAAGCGGGCCTG
TCTGGGGAGTTTTGACCCCCGGC GACATGGTCAGCTCCATCGTGGGGCACCTGAAATTCCAGGCTCCCTCAG

Reads (FASTQ)

(CCAATGATTTTTTTCGGTGTTTCAGAATACGGTTAA
+SRR038845.41 HWI-EAS038.6:1:0:1474 length=36
BCCBAQeBBeBBBBABBB9B9=BABAQA:0693:0E=
@SRR038845.53 HWI-EAS038:6:1:1:360 length=36
GTTCAAAAAGAAACTAAATTGTGTCAATAGAAAACT
+SRR038845.53 HWI-EAS038:6:1:1:360 length=36

Mapped Reads (mpileup, BAM)

_	seq1 274 T 23	,\$,
	seq1 277 T 22	,,.,.C.,,,G. +7<;<<<<<&<=<<:;<<&<
	seq1 278 G 23 seq1 279 C 23	,

Variants (VCF)

	ormat=V0								
##fileD	ate=2014	10930							
##sourc	e=23andn	e2vcf.pl http	s://githu	b.com/arr	ogantrobo	t/23and	lne2vcf		
		e://23andme_v							
##FORMA	T= <id=gt< td=""><td>,Nunber=1,Typ</td><td>e=String,</td><td>Descripti</td><td>on="Genot</td><td>ype"></td><td></td><td></td><td></td></id=gt<>	,Nunber=1,Typ	e=String,	Descripti	on="Genot	ype">			
#CHROM	POS	ID REF	ALT	QUAL	FILTER	INFO	FORMAT	GENOT	YPE
chr1 /0	82154	rs4477212	a					GT	•
chr1	752566	rs3094315	q	A				GT	
/1	,52500	100001010	9	-					
chr1	752721	rs3131972	A	G				GT	- 1
/1									
chr1	798959	rs11240777	9					GT	(
/0									
chr1	800007	rs6681049	T	C				GT	1
/1									

Today's starting point

Data: collection of sequenced nucleotides in **one genomic position** for **one diploid individual**

is a nucleotide/base/allele with a certain quality score

From sequenced nucleotides to alleles

The library for an individual homozygous for the **A** allele will consist only of **A**s.

The library for a heterozygous individual at a site contains both **A**s and **G**s.

The library for an individual homozygous for the **G** allele consist only of **G**s.

(slide stolen from Tyler)

Sampling nucleotides

(slide stolen from Tyler)

Whiteboard + R

- What is the expected value of flipping a coin (sampling alleles)?
- What is the effect of depth?
- Any other factors affecting our sampling?

(Matteo: use whiteboard and R)

Given a possible genotype, what is the probability of observing this NGS data?

• is a nucleotide/base/allele with a certain quality score

How many genotypes likelihoods do we need to calculate for each each diploid individual at each site?

Genotype likelihoods - rationale

(Matteo: whiteboard)

Genotype likelihoods - calculation

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j, i}}{N}$$

- $\bullet \ L_{A_i,i} = P(D|A_G = A_j)$
- $A_i \in \{A, C, G, T\}$
- R is the depth (nr. of reads)
- N is the ploidy level (nr. of chromosomal copies)

is a nucleotide/base/allele with a certain quality score

A

4

G

with all with quality scores equal to 20 (in phred score)

· is a nucleotide/base/allele with a certain quality score

Δ

Α

Λ.

G

with all with quality scores equal to 20 (in phred score)

What is
$$P(D|G = AC) = ?$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^{R} \sum_{j=1}^{N} \frac{L_{A_j, i}}{N}$$

```
A
A
G
& Q=20
```

$$P(D|G = \{A, C\}) = ...$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^{R} \sum_{j=1}^{N} \frac{L_{A_j, i}}{N}$$

۸

G

& Q=20

N = 2; i = 1; $A_1 = A$; $A_2 = C$

$$P(D|G = \{A, C\}) = (\frac{L_{A,1}}{2} + \frac{L_{C,1}}{2}) \times ...$$

What are $L_{A,1}$ and $L_{C,1}$?

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

A A G

 $L_{C,1} =$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

A A G

$$L_{C,1} = \frac{\epsilon}{3}$$

$$L_{A,1} =$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^{R} \sum_{j=1}^{N} \frac{L_{A_j, i}}{N}$$

A A G

$$L_{C,1}=\frac{\epsilon}{3}$$

$$L_{A,1} = 1 - \epsilon$$

$$P(D|G = \{A, C\}) = (\frac{1-\epsilon}{2} + \frac{\epsilon}{6}) \times \dots$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

A A G

 $L_{C,4} =$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

A A G

$$L_{C,4} = \frac{\epsilon}{3}$$

$$L_{A,4} =$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j, i}}{N}$$

A A G

$$L_{C,4} = \frac{\epsilon}{3}$$

$$L_{A,4} = \frac{\epsilon}{3}$$

$$P(D|G = \{A,C\}) = \left(\frac{1-\epsilon}{2} + \frac{\epsilon}{6}\right)^3 \times \frac{\epsilon}{3}$$

What is ϵ ?

Genotype	Likelihood (log10)	
AA	-2.49	•
AC	-3.38	
AG	-1.22	Α
AT	-3.38	Α
CC	-9.91	Α
CG	-7.74	G
CT	-9.91	$\epsilon = 0.01$
GG	-7.44	
GT	-7.74	
TT	-9.91	

Genotype calling

Genotype	Likelihood (log10)
AA	-2.49
AC	-3.38
AG	-1.22
AT	-3.38
CC	-9.91
CG	-7.74
CT	-9.91
GG	-7.44
GT	-7.74
TT	-9.91

AAAG & $\epsilon = 0.01$

What is the genotype here?

Genotype calling

Likelihood (log10)
-2.49
-3.38
-1.22
-3.38
-9.91
-7.74
-9.91
-7.44
-7.74
-9.91

AAAG & $\epsilon = 0.01$ What is the genotype? AG.

Maximum Likelihood

The simplest genotype caller: choose the genotype with the highest likelihood.

Major and minor alleles

Likelihood function

$$\log P(D|G = A) = \sum_{i=1}^{R} \log L_{A_j,i}$$

AAAG & $\epsilon = 0.01$

Allele	Likelihood
Α	-2.49
C	-3.38
G	-1.22
T	-3.38

We can reduce the genotype space to 3 entries (from 10, for diploids).

Genotype calling

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood
AA	-5.73
AG	-2.80
GG	-17.12

At what extent is the data affecting the called genotype and its **confidence**? (Matteo: examples using ngsJulia in jupyter-notebook

Genotype likelihood ratio

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

i.e. t=1 meaning that the most likely genotype is 10 times more likely than the second most likely one Pros and cons?

• Yes:

Genotype likelihood ratio

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

i.e. t=1 meaning that the most likely genotype is 10 times more likely than the second most likely one Pros and cons?

- Yes: genotype are called with higher **confidence**
- No:

Genotype likelihood ratio

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

i.e. t=1 meaning that the most likely genotype is 10 times more likely than the second most likely one Pros and cons?

• Yes: genotype are called with higher confidence

• No: more missing data

Practical: genotype likelihoods

https://github.com/mfumagalli/Copenhagen

The monster dilemma

Figure 1: Nessie, the Loch Ness Monster. Truth or hoax?

"Eyes" thinking

What's "wrong"?

Our inference on N, our parameter, is driven solely by our observations, given by our likelihood function (data).

Figure 2: The eye: a "likelihood" organ.

"Blind Brain" thinking

In real life we take many decisions based not only on what we observe but also on some "blind" believes of ours*.

Figure 3: The brain: a "non-likelihood" organ.

* unfortunately in many cases

"Eyes + Blind Brain"thinking

The "belief" function is called **prior probability** and the joint product of the likelihood and the prior is proportional to the **posterior probability**.

The use of posterior probabilities for inferences is called Bayesian statistics.

Bayesian vs. Likelihoodist

- we obtain legitimate probability distributions of our parameters rather than point estimates
- a probability is assigned to a hypothesis rather than a hypothesis is tested
- we can "accept" the null hypothesis rather than "fail to reject" it

Bayesian inference

Bayes' Theorem

$$p(G|D) = \frac{f(D|G)\pi(G)}{\int f(D|G)\pi(G)dG}$$

- G is not a fixed parameter but a random quantity with prior distribution $\pi(G)$
- p(G|D) is the posterior probability distribution of G
- $\int p(G|D)dG = 1$

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73		

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	1/3	

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	1/3	0.05
AG	-2.80		•

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	1/3	0.05
AG	-2.80	1/3	0.95
GG	-17.12		

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	1/3	0.05
AG	-2.80	1/3	0.95
GG	-17.12	1/3	0

What is the called genotype? What's its confidence?

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	1/3	0.05
AG	-2.80	1/3	0.95
GG	-17.12	1/3	0

What is the called genotype? What's its confidence? Only call genotypes if the largest probability is above a certain threshold (e.g. 0.95).

"Eyes + non-Blind Brain" inference

Empirical Bayesian

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from the data itself

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73		

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from the data itself

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.04
AG	-2.80	0.42	0.96
GG	-17.12	0.09	0

- if the assumption of HWE(+-F) can be met (no population structure)
- if enough samples to have a robust estimate of the allele frequencies

Practical: genotype calling

https://github.com/mfumagalli/Copenhagen

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from the data itself

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.04
AG	-2.80	0.42	0.96
GG	-17.12	0.09	0

How can we estimate allele frequencies from NGS data?

Estimating allele frequencies

Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4

What is the simplest estimator of allele frequencies?

Estimating allele frequencies
Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

Estimating allele frequencies
Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{A,i}}{\sum_{i=1}^{N} (n_{A,i} + n_{G,i})}$$

Estimating allele frequencies
Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{A,i}}{\sum_{i=1}^{N} (n_{A,i} + n_{G,i})}$$

 $\hat{f} = 0.75$

What is wrong with this estimator? What improvements can we suggest?

Estimating allele frequencies

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g)P(G = g|f)$$

with N samples.

What are P(D|G = g) and P(G = g|f)?

Estimating allele frequencies

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g)P(G = g|f)$$

P(D|G=g) is the genotype likelihood and P(G=g|f) is given by HWE (for instance).

In our previous example, $\hat{f}=0.46$ which is much closer to the true value than previous estimators.

SNP calling (for low-coverage NGS data)

Challenges

SNP calling (for low-coverage NGS data)

Challenges

- If high levels of missing data, then genotypes can be lost.
- Rare variants are hard to detect.
- Trade off between false positive and false negative rates.

How to call SNPs (traditionally)?

- If at least one heterozygous genotype has been called.
- If the estimated allele frequency is above a certain threshold.

SNP calling procedures

Alignment-based caller

We completely rely on how reads have been mapped

Figure from Erik Garrison

SNP calling procedures

- Assembly-based caller (as in GATK)
- Local re-alignment around putative variants; better resolution for INDELs detection.
- Haplotype-based caller (as in freebayes)

Figure from Erik Garrison

SNP calling

Call a SNP if

$$\hat{f} \geq t$$

where t can be the minimum sample allele frequency detectable (e.g. t=1/2N with N diploids).

Likelihood Ratio Test

A Likelihood Ratio Test (LRT) compares the goodness of fit between the null and the alternative model:

- Null model: f = 0
- Alternative model: $f \neq 0$

Likelihood Ratio Test

A Likelihood Ratio Test (LRT) compares the goodness of fit between the null and the alternative model:

- Null model: f = 0
- Alternative model: $f \neq 0$

$$T = -2\log\frac{L(f=0)}{L(f=\hat{f}_{MLE})}$$

where T is χ^2 distributed with 1 degree of freedom.

Practical: allele frequencies and SNP calling https://github.com/mfumagalli/Copenhagen

- No reference panel information (no imputation/validation)
- No reference sequence (lower mappability?)
- No HWE assumption (inbred)
- Hyper/Hypovariability or polyploidy or huge genome
- No money (?)
- Your inferences will be wrong!

Theta, Pi Tajima's D F_{ST}, PBS...

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

If folded, *k+1* entries

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

Allele frequency likelihoods

	0	1	2	3	4	2n
Site1	0.00	-2.24	-4.53	-6.99	-9.63	-232.69
Site2	0.00	-2.24	-4.53	-6.99	-9.63	-232.69
Site3	-76.63	-37.87	-10.42	0.00	-9.59	-467.13
Site4	0.00	-2.24	-5.53	-6.99	-9.63	-237.55
Sitek	0.00	-8.62	-19.22	-30.67	-43.27	-626.78

Allele frequency likelihoods

Intended Learning Outcomes

At the end of this session you are now able to:

- appreciate the effect of sequencing depth and error to SNP/genotype calling
- calculate genotype and allele frequency likelihoods
- perform SNP/genotype calling from NGS data
- acknowledge the estimation of summary statistics from NGS data