Hogenda

- D'Adric intrinton of Classificar
- 2) Searching Algorithm: Wid Search
- 3) Obtimisation beoplew: Obica
- a) Clarsification problem: Mathy
- 3) Relationship between gain Junction Distance
- 2 Domain and Range
 2 Denits and Continuity

 - B Honework , Some important t'(x)'s

Basic isorcition y a Classifier

Simple - Searching Algorithm

geature & X, and N2 baranegers o 1212 052 200 (100+001) 9.9, 10 0 201 _-10, -9.9, -9.7 _ -0, 0.1 9.9, 10 0 0 0 0 0 _-10,-9.9,-9.7_ --0,01 G, 0 -10, -9.9, -9.7 - - 0, 011 ه م (c), o, o), o):

M, N 2 N 3 W 1 W2 W3 60 Day met biog

Optimization with Calculus

Calculus Lased optionization technique to Jind)

Optimal Volues

Minima and Maxima

Calculus (Multi Vaniate)

Next

Seasion

Slope , Tangents and Derivatives

today & Livent, Continualty and Differentiability

Finaltics

Defining Clarrification problem Mathematically

Clines I			72	3	
	xi, yi):	$x_i \in \mathbb{N}$	2, 7; ∈ 8	-1'13 S	
	puts outpus	1-041	Fato	1= 1	
	both Office	21, 22	y 9 7 -1		
			+1 +(
(noal:	Find a	Junction	n Jan	Such that	
		9(20) =	9:	18,24	du c
	ها	وصا و ا	, 5 8C	7 sarel	(وم
			(=/		
Metric	⇒ G	تى، رك _ى ا	$(\omega_{o})^{2}$	SOD/ Accura	نع:
		~	Paramet		
~ %	= = Ongr				
		\bigcirc			

، وصوت

Distance Function

$$\frac{1}{2} \left(\frac{1}{2} \right)^{2}, \frac{1}{2} \left(\frac{1}{2} \right)^{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{$$

Definitions

optimal Value of and constant

anguments I and we Soto

Chain Junction is maximized

Ouestion: Relationship between Gain Jenction and Distance

$$\mathcal{O}\left(\mathcal{J},\mathcal{Z},\omega_{0}\right) = \sum_{i=1}^{\infty} \mathcal{J}\left(\mathcal{X}^{i},\mathcal{Y}^{i},\mathcal{Z}^{i},\omega_{0}\right)$$

$$\mathcal{D}(\mathcal{G}(\mathcal{D},\mathcal{Z},\omega)) = \mathcal{T}(\mathcal{Z},\mathcal{Z},\omega)$$

Functions

Jos = g - 3 g(input) = 0 estad

A mapping between input and output

(testail spiessed sur 114)

(All the porrible)
outputs

Ex÷ g(x) > x

Domain D (- a, a)

Range D (- a, a)

 $f(x) = x^2$

Domain D (- a, a)

Ranges (0,0)

for a volve of x, Junction can return only one y

Quiz time!

Which condition must a relation satisfy to be considered a function?

23 users have participated For every y, there must exist multiple x values. 9% For every x, there must exist multiple y values. 13% For every x, there must exist only one y value. 70% 9% For every y, there must exist only one x value.

L 3000 0 2000 0 2000 0

-011 -0.01, -0001

R.H.L

 $gw = x^{2}$ $D \int_{x \to 3} f(x) = 9$ $x \to 3$ 3.1, 3.01, 3.000

2 L 200 9 1 → 2+

3 L JW 9 1 ~>ot o.1,001,0001,00001

If Lott. $C = = R \cdot H \cdot L = J(R)$ at some

D=X @ apporition &1' ask

90=1-21 -> +

4.W

Domain Plange

Continous

@ S'120

@ y= Cox 0

9 y= tano