CS/B.TECH(ECE-NEW)/SEM-7/EC-701/08/(09)

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 RF & MICROWAVE ENGINEERING

SEMESTER - 7

Time: 3 Hours]	1 4		[Full Marks	: 70
		the state of the s		

	(Multiple Cho	ice Type	Questions)	
Cho	pose the correct alternatives for an	ny <i>ten</i> of t	he following :	
1)	A hollow waveguide behaves as			
	a) Low Pass Filter	b)	Band Pass Filter	
	c) High Pass Filter	d)	All Pass Filters.	
ti)	If the height of the rectangula	r wavegu	ide is halved, its cut-	off wavelength for
	the dominant mode will	•		
	a) be halved			
	b) remain unchanged			
	c) be doubled			
	d) be $\frac{1}{4}$ of its previous value	•		
iii)	The dominant mode of propaga	tion in a c	ircular waveguide is	
	a) TE ₁₁	b)	TE 10	
	c) TM ₁₁	d)	TM 10.	· · · ·
iv)	In transmission through a wa	1 1 m		inimum values of
	a) 1 and 0	b)	Infinity and zero	
	c) Infinity and 1	d)	- 1 and + 1.	

77103 (4/12)

	(202-N2W)/ GEER-1/20-101/00/(00)	· · · · · · · · · · · · · · · · · · ·					
v)	A disadvantage of microstrip com						
	a) does not lend itself rapidly	to printe	d circuit technique				
	b) is more likely to radiate						
	c) is more complex to manufactd) is bulkier.	cture					
vi)	Microwave components are gener	ally cha	racterized by				
	a) h-parameter	b)	z-parameter				
	c) s-parameter	d)	<i>y</i> -parameter.				
vii)	A Travelling Wave Tube (TWT) is basically						
	a) an oscillator	b)	a tuned amplifier				
	c) a wideband amplifier	d)	a transmission line.				
viii)	P-I-N diode is used as						
	a) a phase shifter	b)	an amplifier				
	c) an oscillator	d)	an isolator.	,			
ix)	In a VSWR measurement, a squ	uare law	detector is used to detect	the signa			
	level. The current meter connec	ted to the	he circuit reads 64 mA and	16 mA a			
	maximum and minimum currents	s respect	tively, the VSWR is				
	a) 4	b)	2				
•	c) 0·25	d)	zero.				
x)	Large mirowave power can be me	asured l	b y				
	a) VSWR meter	b)	Bolometer				
	c) Calorimeter-wattmeter	d)	Thermistor.				
xd)	aseagrain Feed is used with a parabolic reflector to						
	a) increase the beam width of	the syst	em				
	b) increase the gain of the syst	em	${\cal M}_{i}$				
	c) allow the feed to be placed at a convenient point						
	d) reduce the size of the main	reflector					
xii)	The uplink and downlink frequencies of satellite communication are						
	a) 6 GHz, 4 GHz	, b)	4 GHz, 6 GHz				
	c) 6 GHz, 6 GHz	d)	3 GHz, 5 GHz.				

77103 (4/12)

Ę

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. An air filled rectangular waveguide of inside dimensions $7.0 \text{ cm} \times 3.5 \text{ cm}$ operates in the dominant mode.
 - a) Find the cut-off frequency
 - b) Determine the guided wavelength at $1.5 f_c$, where f_c is the cut-off frequency.
- 3. From the properties of a Magic T, derive the S matrix of the ideal magic T.
- 4. Distinguish between the basic principles of working of
 - a) a Gunn diode and
 - b) an Impatt diode.
- 5. Derive the Radar Range Equation.
- 6. Describe the operating principle of a precision type variable attenuator.

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3\times15=45$

- 7. a) Define the term 'Dominant Mode' and explain why wave propagation in a hollow metallic waveguide is preferred in this mode.
 - b) Given for propagating TE $_{10}$ mode in a rectangular waveguide ($a \times b$),
 - $H_z = A \cos \frac{\pi x}{a} e^{-\beta z}$ A/m, where symbols have their usual meanings, find the expressions of E_y and H_x . Hence, determine the expression of the wave impedance.
 - c) Explain why a pure TEM mode is not supported by hollow rectangular wave guide.
 - d) Explain why a rectangular waveguide is preferred over a square waveguide for usual microwave transmission. 4 + 6 + 2 + 3
- B. a) Derive an expression for the resonance frequency of a rectangular cavity $(a \times b \times l)$, made of a rectangular waveguide with I.D. $(a \times b)$ in TE 101 mode.
 - b) Define 'Quality Factor' of a cavity resonator. Discuss the steps involved in finding an expression for 'Q-factor' of the cavity.
 - c) Discuss how such a cavity is excited using a co-axial line. 5 + 2 + 6 + 2 = 15

77103 (4/12)

CS/B.TECH(ECE-NEW)/SEM-7/EC-701/08/(09)

- 9. a) Describe an ideal 'Directional coupler'. Define 'Coupling' and 'Directivity' in the context of a directional coupler.
 - b) Explain the design of a 2-hole directional coupler in rectangular waveguide version for a given coupling. Mention the principal shortcoming of such a directional coupler. Discuss how this shortcoming can be overcome.
 - c) A directional coupler has a coupling factor of 15 dB and directivity of 30 dB. If the power in the coupled port is 32 microwave, find the power in the input port and insertion loss. 5+5+5
- 10. a) Explain the working principle of a reflex klystron oscillator.
 - b) Explain what is meant by 'velocity modulation' and how this phenomenon is used in the operation of a klystron tube.
 - c) Draw the power vs repeller voltage and frequency vs repeller voltage characteristics of a reflex kystron. Explain qualitatively. 5 + 5 + 5
- 11. a) Discuss the various means of providing fixed and variable susceptances in rectangular waveguide circuits.
 - b) Describe the working principle of a Faraday Rotation Isolator.
 - c) In microwave measurements, discuss the role of a slotted line.

6 + 6 + 3

Write short notes on any three of the following:

 3×5

- a) Industrial Application of microwaves
- b) Operating Principles of MTI radar
- c) Optimum length and Flare angle of a horn antenna
- d) Structural Characteristics of Microwave Transistors
- e) Tunnel Diode.

END

12.