SISTEMAS MULTI-AGENTE

Luís Morgado

ISEL-DEETC

Inteligência Colectiva

- Desempenho colectivo superior ao desempenho individual
- Inteligência de enxame (swarm intelligence)
 - Ausência de controlo ou coordenação centralizada
 - Interacção reactiva
 - Comportamento emergente

Inteligência social

- Coordenação centralizada ou distribuída
- Interacção deliberativa
- Comportamento intencional

Operação em Conjunto (Multi-Agente)

Motivação

- Capacidades e recursos distribuídos
 - Os agentes podem ter diferentes capacidades, e recursos

Eficiência

- Mesmo em situações onde os agentes possam operar de forma independente, a sua operação em conjunto pode permitir grandes ganhos de eficiência na realização das respectivas tarefas
- Por exemplo, o conhecimento pertencente a um determinado agente pode ajudar outros agentes a concretizar os seus objectivos com maior eficiência

Satisfação de restrições globais

• É normal que em sociedades de agentes existam restrições globais que os agentes da sociedade devem ter em conta, por exemplo, em termos da utilização de determinados recursos

Sistema Multi-Agente

- Conjunto de entidades (agentes) que actuam em conjunto no sentido de resolver problemas que estão para além das suas capacidades individuais [Durfee et. al., 1989]
- Quando comparados com sistemas centralizados, os SMA apresentam vantagens importantes [Moulin & Cloutier, 1994]
 - Maior eficiência na resolução de problemas através da exploração de paralelismo
 - Maior flexibilidade na resolução de problemas, permitindo que agentes com diferentes capacidades se coliguem dinamicamente
 - Maior robustez, na medida em que é possível, em caso de falha de um, ou vários, agentes, outros assumirem as suas responsabilidades de forma dinâmica

Sistemas Multi-Agente

SISTEMAS MULTI-AGENTE

- Nível intra-agente
 - Organização dos agentes individuais
- Nível inter-agente
 - Organização da sociedade de agentes
 - Duas vertentes principais
 - Comunicação
 - Suporte de interacção entre agentes
 - Coordenação
 - Coerência, cooperação, competição

Comunicação entre Agentes

- Linguagem comum
 - Linguagem de comunicação entre agentes
 (ACL Agent Communication Language)
- Simbólica
 - Nível de conhecimento
 - Representações simbólicas do mundo
- Actos de comunicação
 - Produzidos para satisfazer objectivos ou intenções
 - Propósito de mudar o estado do mundo
 - Modelados como acções
- Teoria dos actos de discurso (Searle, 1960)

Teoria dos Actos de Discurso

- Expressões são vistas como acções, no mesmo sentido das acções realizadas sobre o mundo físico
- Aspectos das expressões

Locução

Refere-se à forma da expressão

– Ilocução

 Refere-se ao tipo da expressão, por exemplo uma expressão pode ser um pedido, uma informação, etc.

Perlocução

 Refere-se ao efeito de uma expressão, ou seja, à forma como a expressão influencia o receptor

Actos de Discurso (Speech Acts)

- Alguns tipos de expressões (ilocuções)
 - Assertivas, que informam
 - Promissivas, que prometem algo
 - Permissivas, que dão permissão
 - Proibitivas, que proíbem algo
 - Declarativas, que causam os próprios eventos, por exemplo dar o nome a algo
 - Expressivas, que expressam algo, por exemplo avaliações ou emoções

Exemplo:

```
informação [de: ag1, para: ag2, disponibilidade: 1-100]
```

Actos de Discurso

- Componentes de um acto de discurso
 - Verbo executivo (performative)
 - Pedir, informar, prometer, etc.
 - Conteúdo proposicional (content)
 - "A tarefa está concluída"

Exemplo

Verbo: Informar

conteúdo: "A tarefa está concluída"

Acto de discurso: "Informo que a tarefa está concluída"

Semântica dos Actos de Discurso

- Definição baseada no formalismo de planeamento automático (Cohen & Perrault, 1979)
 - Operadores
 - Pré-condições
 - Efeitos
- No entanto, o emissor pode n\u00e3o ser capaz de for\u00e7ar o receptor a aceitar um determinado estado mental
 - Separação entre
 - Ilocução
 - Perlocução
 - O efeito pode n\u00e3o ser concretizado

Semântica dos Actos de Discurso

Exemplo

```
request(s, h, \phi)
```

pre-conditions:

- s believe h can do ϕ (you don't ask someone to do something unless you think they can do it)
- s believe h believe h can do ϕ (you don't ask someone unless *they* believe they can do it)
- s believe s want ϕ (you don't ask someone unless you want it!)

post-conditions:

h believe s believe s want φ
 (the effect is to make them aware of your desire)

Linguagem KQML

- Knowledge Query and Manipulation Language
- Especifica um conjunto de ilocuções
 (performatives) que definem os actos de
 comunicação que os agentes podem utilizar
- A linguagem KQML pode ser caracterizada com base em três níveis:
 - Nível de conteúdo ("content layer")
 - Nível de mensagem ("message layer")
 - Nível de comunicação ("communication layer")

Exemplo de acto de comunicação em KQML

```
:content disponibilidade(1-100)
:language prolog
:ontology sistema-cads
:in-reply-to pedido-ag1-1
:receiver ag1
:sender ag2
```

Acto de comunicação: tell

-Informação ao agente ag1 da disponibilidade do agente ag2

linguagem de conteúdo: Prolog

Ontologia: sistema-cads

Linguagem KQML

Nível de mensagem

Define os verbos executivos (performatives)
 que são admissíveis para comunicação

Exemplo

```
ask-if ("is it true that...")
perform ("perform the following action...")
tell ("it is true that...")
reply ("the answer is...")
```

Linguagem KQML

Nível de conteúdo

- Especifica o conteúdo efectivo da mensagem
- A norma KQML nada impõe a este nível
- Linguagens de conteúdo
 - Prolog
 - KIF Knowledge Interchange Format
 - . . .

Nível de comunicação

 Especifica informação de transporte, e.g. parâmetros de comunicação

Linguagem KQML/KIF

Exemplo de um diálogo em KQML/KIF

```
A to B: (ask-if (> (size chip1) (size chip2)))
B to A: (reply true)
B to A: (inform (= (size chip1) 20))
B to A: (inform (= (size chip2) 18))
```

- Para ser possível a comunicação entre os agentes estes devem partilhar uma definição comum de conceitos do domínio do problema
 - Ontologia

Coordenação

Motivação

Prevenir a anarquia ou o caos

 Com a descentralização inerente aos sistemas baseados em agentes, situações de anarquia ou caos podem surgir com facilidade uma vez que nenhum agente possui uma visão global da sociedade

Capacidades e recursos distribuídos

 Os agentes de uma sociedade podem ter diferentes capacidades, e disponibilidade de recursos

Dependências entre agentes

 Os objectivos dos agentes são frequentemente interdependentes, ou seja, para a concretização de um dado objectivo um agente pode estar dependente de outros agentes da sociedade

Eficiência

 Mesmo que os agentes possam operar de forma independente, a sua operação em conjunto de forma coordenada, pode permitir grandes ganhos de eficiência na realização das respectivas tarefas

Métodos de Coordenação

Raciocínio social

Planeamento multi-agente

Planeamento centralizado

- Agentes geram planos individuais, enviando-os posteriormente a um agente coordenador
- O agente coordenador detecta eventuais inconsistências ou situações de conflito

Planeamento distribuído

- Não existe um agente coordenador central
- Os agentes comunicam de forma a gerar e actualizar os seus planos locais, bem como os modelos dos outros agentes, até que os possíveis conflitos sejam eliminados

Estruturas organizacionais

- Definem a configuração de relações de controlo e troca de informação
- Definem as capacidades e responsabilidades dos agentes, bem como as respectivas formas de interacção
- Definem os papéis dos agentes participantes e os tipos de interacção social que podem ocorrer

Contratação

Contratação

- Neste tipo de coordenação, se um agente não tem capacidade para resolver um dado problema, deve:
 - Decompor esse problema em sub-problemas
 - Tentar encontrar outros agentes, com as capacidades necessárias à resolução dos diversos sub-problemas, dispostos a com ele cooperar
 - Delegar noutros agentes a realização de tarefas necessárias á resolução dos sub-problemas

Contratação

 É assumida uma estrutura do tipo mercado descentralizado, onde os agentes podem assumir dois papeis:

Gestor

- Decompõe o problema a resolver em sub-problemas e procura agentes a quem possa adjudicar as tarefas
- Monitoriza a realização das tarefas de forma a garantir a resolução do problema

– Contratado

- Realiza as tarefas que lhe sejam adjudicadas
- Um contratado pode de igual forma ser um gestor, através da decomposição da tarefa adjudicada em sub-tarefas que adjudica a outros agentes

Exemplo: Contract Net Protocol [Smith, 1980]

Protocolo de Contratação

- A atribuição de tarefas é feita através de um mecanismo de contratação que, em termos gerais, consiste no seguinte:
 - O agente gestor anuncia as tarefas que deseja contratar
 - Em resposta ao anúncio, os agentes interessados submetem as respectivas propostas
 - O agente gestor, ao receber as respostas, analisa-as, adjudicando cada tarefa a um ou vários agentes contratados, de acordo com a avaliação feita das propostas recebidas
 - O agente gestor espera os resultados das tarefas adjudicadas
 - O resultado deste processo é o estabelecimento de um conjunto de contratos entre o agente gestor e os agentes contratados

Protocolo Contract-Net

Sistemas Multi-Agente

(Composição pré-definida de partes)

Arquitectura multi-agente

(Sociedade de entidades computacionais autónomas)

Comparação de abordagens na concepção de sistemas computacionais

Agente como suporte de abstracção na concepção de um sistema

Elemento de Arquitectura	Abordagem Clássica	Abordagem Baseada em Agentes	
Sub-sistema	Conjunto de módulos organizados de forma estática	Conjunto (sociedade) de agentes que interagem de forma dinâmica	
Módulo	Mecanismo/colaboração (e.g. conjunto de classes)	Agente	
Relação entre módulos	Relações estáticas Evocação directa de funcionalidade	Relações dinâmicas Coordenação dinâmica para concretização de objectivos individuais e globais	

Comparação de abordagens na concepção de sistemas computacionais

Características das unidades básicas	Programação Monolítica	Programação Modular	Programação Orientada por Objectos	Programação Baseada em Agentes
Comportamento	Não modular	Modular	Modular	Modular
Estado	Externo	Externo	Interno	Interno
Evocação	Externa	Externa (Chamada)	Externa (Mensagem)	Interna (Objectivos)

[Odell 2002]

Integração de Níveis de Abstracção

Aspectos importantes:

- Independência de linguagens de programação
- Integração com sistemas não baseados em agentes

implementação

Sistemas Multi-Agente

Integração de Níveis de Abstracção

Bibliografia

[Wooldridge, 2002]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002

[Smith, 1980]

R. Smith, *The Contract Net Protocol*, IEEE Transactions on Computers, 1980

[Conte & Castelfranchi, 1995]

R. Conte, C. Castelfranchi, Cognitive and Social Action, UCL Press, 1995