Theorem (Cauchy Test or Cauchy condensation test):

If $a_n \ge 0$ and $a_{n+1} \le a_n \forall$ n, then

 $\sum_{n=1}^{\inf} a_n$ converges if and only if $\sum_{k=0}^{\inf} 2^k a_{2k}$ converges.

Proofs:-

Let
$$S_n = a_1 + a_2 + \dots + a_n$$

and $T_k = a_1 + 2a_2 + \dots + 2^k a_{2^k}$

Suppose (T_k) converges. For a fixed n, choose k such that $2^k \ge n$. Then

$$S_n = a_1 + a_2 + \dots + a_n$$

$$\leq a_1 + (a_2 + a_3) + \dots + (a_{2^k} + \dots + a_{2^{k+1}-1})$$

$$\leq a_1 + 2a_2 + \dots + 2^k a_{2^k}$$

$$= T_k$$

This shows that (S_n) is bounded above; hence (S_n) converges.

Suppose (S_n) converges. For a fixed k, choose n such that $n > 2^k$ Then

$$S_n = a_1 + a_2 + \dots + a_n$$

$$\geq a_1 + a_2 + (a_3 + a_4) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k})$$

$$\geq \frac{1}{2}a_1 + a_2 + 2a_4 + \dots + 2^{k-1}a_{2^k}$$

$$= T_k$$

This shows that (T_k) is bounded above; hence (T_k) converges.