Lecture Notes 2: PLD

Contents

1	Overview	2
2	Implement using PLA	2
3	PAL 3.1 PAL chips 3.2 GAL chips 3.3 Implement using PAL	3
4	FPGA	4

1 Overview

PLD stands for Programmable Logic Device, and it can be classified into:

• ROM:

- Consists of OR gates and a decoder
- Programmable OR gates and fixed AND gates
- if I have n inputs, then I need 2^n AND gates
- OR gates are programmed using fuses.

• PLA (Programmable Logic Array):

- Programmable AND gates
- Programmable OR gates (using fues)
- Slower compared to PAL

• PAL (Programmable Array Logic):

- Programmable AND gates
- Fixed OR gates

• FPGA (Field Programmable Gate Array)

2 Implement using PLA

$$f_1 = AB' + AC + A'BC'$$

$$f_2 = (AC + AB)'$$

Using XOR at the end to allow a complement output

3 PAL

3.1 PAL chips

Examples

- 16L8:
 - up to 16 inputs
 - up to 8 outputs
 - active low
- 16H8: active high
- 16R8: uses register
- 16A8: arithmetic (uses XOR)

Note 1

16 and 8 aren't constants, they are just used as examples

3.2 GAL chips

GAL (Generic Array Logic): It contains a macro-cell, which allows you to control whether your PAL should act as (L),(H),(R),(A)

- To act as R: using the D flip-flop
- To act as L or H: using (10), (11) in the 4 to 1 MUX
- The 2 to 1 MUX: To allow a feedback from the function, or to use the output as an input

3.3 Implement using PAL

$$W = ABC' + A'B'CD'$$

$$X = A + BCD$$

$$Y = A'B + CD + B'D'$$

$$Z = W + AC'D' + A'B'C'D$$

4 FPGA

• CLB (Configurable Logic Block): Implement combinatorial and sequential logic Based on LUT and DFF

- Programmable I/O blocks (IOB):
 - Configurable I/Os for external connections.
 - Supports various voltages and tri-states
- Programmable Interconnects

- Switches
- Horizontal/vertical lines
- allow logic blocks to be connected to each other and to the I/O pins

\mathbf{LUT}

LUT: A ram with width of 1 bit

- Block of bits entering the MUX:It's a register that contains the truth table of each function
- Number of functions: It can represent 2^n functions, where n is the number of bits in each register.