

$ADS - 1^{\circ}$

Matemática Discreta

sábados - 09:50 ~ 13:20

Aula 02 – Indução Matemática e Sequências Recursivas

Prof^a Carlota

Sentenças Abertas

Uma <u>sentença</u> <u>aberta</u>, P(n), é uma sentença definida sobre o conjunto dos números naturais \mathbb{N} que tornará verdadeira ou falsa quando substituímos n por algum número natural.

Exemplos:

- 1) P(n): " $n \not e$ impar." Esta afirmação e verdadeira para alguns valores de e falsa para outros.
- P(1) é verdadeira, pois 1 é ímpar.
- P(4) é falsa, pois 4 não é ímpar.

2) P(n): "2n + 6 é par."

Como 2n + 6 = 2(n + 3) para qualquer $n \in \mathbb{N}$, P(n) é verdadeira para todo $n \in \mathbb{N}$.

3)
$$P(n)$$
: "1 + 3 + 5 + ... + (2n + 1) = $(n + 1)^2$."

$$P(0): 1 = 1^{2}$$
 (V)
 $P(1): 1 + 3 = 4 = 2^{2}$ (V)

$$P(2)$$
: 1 + 3 + 5 = 9 = 3² (V)
 $P(3)$: 1 + 3 + 5 + 7 = 16 = 4² (V)

É possível encontrar algum m tal que P(m) seja falso? Se P(n) é verdadeiro para todo n, como poderíamos provar isso?

Princípio da Indução Matemática (PIM)

Seja P(n) uma sentença aberta sobre \mathbb{N} . Suponha que:

- 1. P(0) é verdadeira, e
- 2. P(k + 1) é verdadeira sempre que P(k) é verdadeira, para algum $k \in \mathbb{N}$.

Então P(n) é verdadeira para todo $n \in \mathbb{N}$.

Exemplo de demonstração por indução

Provar que, para todo $n \ge 0$:

$$1 + 3 + 5 + \cdots + (2n + 1) = (n + 1)^2$$

- 1) Base da Indução: P(0) é verdade: $1 = (0+1)^2$.
- 2) Hipótese de indução (HI): Suponhamos que para algum k, P(k) é verdade, isto é,

$$1 + 3 + 5 + \cdots + (2k + 1) = (k + 1)^2$$

3) Tese: Precisamos provar que P(k + 1) é verdade, isto é temos que mostrar que:

$$1 + 3 + 5 + ... + (2k + 1) + [2(k + 1) + 1]$$
$$= [(k + 1) + 1]^{2}$$

Continuação: Falta mostrar que 1 + 3 + 5 + ... + (2k + 1) + [2(k + 1) + 1]= $[(k + 1) + 1]^2$

A hipótese de indução é:

$$1 + 3 + 5 + \cdots + (2k + 1) = (k + 1)^2$$

Então:

$$1 + 3 + 5 + ... + (2k + 1) + [2(k + 1) + 1]$$

= $(k + 1)^2 + [2(k + 1) + 1]$ pela Hipótese de Indução
= $(k + 1)^2 + 2(k + 1) + 1$
= $[(k + 1) + 1]^2$ por Produtos Notáveis

Portanto, pelo PIM, a fórmula é válida para todo número natural *n*.

Generalização da Indução Matemática

Seja P(n) uma sentença aberta sobre \mathbb{N} .

Se

- 1. $P(n_0)$ é verdade, e
- 2. P(k + 1) é verdade sempre que P(k) é verdade, para todo $k \ge n_0$.

Então, P(n) é verdade para todo $n \in \mathbb{N}$ com $n \geq n_0$.

Exemplo: Prove que $n^2 > 3n$, para todo $n \in \mathbb{N}$ com $n \ge 4$.

- 1) Para n = 4 é verdade pois $4^2 = 16 > 3 \times 4 = 12$.
- 2) HI: Suponhamos que para algum $k \ge 4$, $k^2 > 3k$.
- 3) Precisamos provar que $(k+1)^2 > 3(k+1)$.

$$(k+1)^2$$

 $= k^2 + 2k + 1$ Produtos Notáveis
 $> 3k + 2k + 1$ HI
 $\geq 3k + 8 + 1$ porque se $k \geq 4k \geq 4$ então $2k \geq 8$
 $= 3k + 9$
 $> 3k + 3$ porque $9 > 3$
 $= 3(k+1)$ Lei distributiva

Portanto, $n^2 > 3n$, $\forall n \in \mathbb{N} \text{ com } n \ge 4$.

Exercício 1 Prove que, $\forall n \in \mathbb{N}$:

- a) $1+2+2^2+\cdots+2^n=2^{n+1}-1$
- b) $2^n > n$
- c) $2^0 + 2^{-1} + 2^{-2} + \dots + 2^{-n} \le 2$

Exercício 2 Prove que $2^n < n!$ $(\forall n \ge 4)$

Exercício 3 Mostre que a soma dos cubos de três números naturais consecutivos é divisível por 9.

$$n^3 + (n+1)^3 + (n+2)^3 = 9\alpha \ (\alpha \in \mathbb{Z})$$

Exercício 4 Prove que $\forall n \in \mathbb{N}, n \ge 1, 9^n-1$ é divisível por 8.

Exercício 5 Prove que $\forall n \in \mathbb{N}$, $n \ge 2$, vale:

a)
$$n^2 > n + 1$$

b)
$$1 + 2 + \dots + n < n^2$$

Exercício – Sequência 1 Escreva os oito primeiros valores da sequência de Fibonacci.

$$F(1) = 1, F(2) = 1$$
 e
 $F(n) = F(n-2) + F(n-1), \forall n > 2$

Exercício – Sequência 2 Escreva os cinco primeiros valores de cada sequência.

a)
$$A(1) = 2 e A(n) = \frac{1}{A(n-1)}$$
, para $n \ge 2$

b)
$$D(1) = 3$$
, $D(2) = 5$ e $D(n) = (n-1)D(n-1) + (n-2)D(n-2)$, $n > 2$

Lista de exercícios (em grupo ou individual)

Prove que

1.
$$2+6+10+\cdots+(4n-2)=2n^2, \forall n \ge 1$$
.

2.
$$1+5+9+\cdots+(4n-3)=n(2n-1), \forall n \geq 1$$
.

3.
$$4 + 10 + 16 + \dots + (6n - 2) = n(3n + 1), \forall n \ge 1$$
.

4. $7^n - 2^n$ é divisível por 5, $\forall n \ge 1$

Exercício 5

Considere os números de Fibonacci:

$$F(1) = 1,$$

 $F(2) = 1$ e
 $F(n) = F(n-2) + F(n-1), \forall n > 2$

Prove as propriedades a seguir, diretamente da definição:

a)
$$F(n + 1) + F(n - 2) = 2F(n)$$
, para $n \ge 3$.

b)
$$F(n + 6) = 4F(n + 3) + F(n)$$
, para $n \ge 1$.