# **COMP20050 - Software Engineering Project II**

#### **Module Introduction**

# Ravi Reddy Manumachu ravi.manumachu@ucd.ie



#### **Outline**

- Staff details.
- COMP20500 module descriptor.
- UCD policies.
- Software Engineering Project.



#### **Module Coordinator**

Ravi Reddy Manumachu (a.k.a **Ravi**)

Contact: ravi.manumachu@ucd.ie

- Assistant Professor, School of Computer Science, UCD.
- More about me below:

https://people.ucd.ie/ravi.manumachu



## **Queries and Troubleshooting**

- Please feel free to get in touch for all issues concerning this module in the following order:
  - Highly recommended to use the classroom lecture for Q&A.
  - Associate staff (TA and demonstrators).
  - o Email.
- If you use email, please include the following:
  - Your name and student ID.
  - Module Code (COMP20050).



# **Associate Staff and Support**

- Your Teaching Assistant (TA).
  - Maryam Gillani <maryam.gillani@ucdconnect.ie>
- Computer Science Support Centre: https://csintranet.ucd.ie/CSSC



# **COMP20050 Module Descriptor**



### COMP20050 Definition (1/2)

The module has two main goals.

#### • First goal:

- The first goal emphasizes students working in teams and applying a modern software engineering methodology called Scrum to deliver a working software application with complexity representative of a real-world software project.
- On completion of the module, the students are expected to understand how professional software developers practice **Scrum**.



### COMP20050 Definition (2/2)

#### Second goal:

- Focuses on evolving a student's knowledge and skills of the core software engineering concepts, principles of good software architecture, code quality, test quality and documentation.
- On completion of the module, the students are expected to understand sound software design principles and apply them in their software applications' design and implementation.



# Learning Outcomes (1/2)

- On successful completion of this module, you will be able to:
  - Design a high-level software architecture of the software application.
  - Formulate a Scrum project plan divided into sprints to develop the software application.



# Learning Outcomes (2/2)

- On successful completion of this module, you will be able to:
  - Create a fully functional prototype of the software application.
  - Compare software designs and implementations of the software application.



# **Programming and Project Management Tools**

**Programming languages** 



**Version Control** 



**Kanban Board** 



**IDE** 







#### How will I learn? (1/2)

- 24 lectures.
  - o Two 1 hour lectures each week.
- 24 lab sessions.
  - o Two 2 hour lab sessions each week.



#### How will I learn? (2/2)

 All the learning material will be provided on Brightspace.

- Lecture slides.
- Additional reading material for each and every lecture.
- Installation and user manuals for programming tools.
- o Discussion forums.





# Am I eligible to take this module?

#### Learning Requirements:

 Students must be able to program in Java. Students who have no previous experience of Java programming must obtain the permission of the lecturer to attend this module.

#### Learning Recommendations:

- It is strongly recommended that students take and pass Programming 1 and 2 and Software Engineering 1 in the first year before taking this module.
- It is strongly recommended that students take and pass Introduction to Java before taking this module.



# **Java Programming Language**

- Java is the module's main programming language.
- Polish your Java programming language skills using the reading material below on Brightspace:

https://brightspace.ucd.ie/d2l/le/content/297464/Home?itemIdentifier=TOC





# How will I be assessed? (Group Project 1)

| Assessment      | Description                                                                                                                          | Weightage |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Group Project 1 | Students work in teams employing problem-based Learning approach to research and propose a high-level software architectural design. | 15 %      |
|                 | Based on the high-level design, groups then propose a project plan comprising four sprints.                                          | 5 %       |



# **Group Project 1: Submission Deadlines**

| Assessment                               | Submission                                                                   | Weightage | Deadline |
|------------------------------------------|------------------------------------------------------------------------------|-----------|----------|
| GP1 High-Level<br>Architecture<br>Design | High-level architecture design (of the software application).                | 15 %      | Week 3   |
| GP1 Project Plan                         | Project plan<br>comprising product<br>features divided<br>into four sprints. | 5 %       | Week 3   |



# How will I be assessed? (Group Project 2)

| Assessment      | Description                                                                                                                                                             | Weightage |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Group Project 2 | Students work in teams of three to develop the software project.  The group work is broken into a number of sprint assignments (design and implementation of features). | 80 %      |



# **Group Project 2: Submission Deadlines**

| Assessment       | Submission                                            | Weightage | Deadline |
|------------------|-------------------------------------------------------|-----------|----------|
| GP2 Assignment 1 | Sprint Assignment 1<br>(Design and<br>Implementation) | 10 %      | Week 4   |
| GP2 Assignment 2 | Sprint Assignment 2<br>(Design and<br>Implementation) | 10 %      | Week 6   |
| GP2 Assignment 3 | Sprint Assignment 3<br>(Design and<br>Implementation) | 10 %      | Week 8   |



# **Group Project 2: Submission Deadlines**

| Continuous<br>Assessment | Description                                           | Weightage | Deadline |
|--------------------------|-------------------------------------------------------|-----------|----------|
| GP2 Assignment 4         | Sprint Assignment 4<br>(Design and<br>Implementation) | 10 %      | Week 10  |
| GP2 Final<br>Submission  | Final Submission                                      | 40 %      | Week 12  |



# Grading

- Understanding grades.

   https://www.ucd.ie/stu
   dents/exams/gradinga
   ndremediation/underst

   andinggrades/
- Alternative Linear Conversion Grade Scale 40% Pass.

| Alternative Linear Conversion Grade Scale 40% Pass (85% = A-) |         |         |
|---------------------------------------------------------------|---------|---------|
| Grades                                                        | Lower % | Upper % |
| A+                                                            | ≥95     | 100     |
| A                                                             | ≥90     | <95     |
| A-                                                            | ≥85     | <90     |
| B+                                                            | ≥80     | <85     |
| В                                                             | ≥75     | <80     |
| B-                                                            | ≥70     | <75     |
| C+                                                            | ≥65     | <70     |
| С                                                             | ≥60     | <65     |
| C-                                                            | ≥55     | <60     |
| D+                                                            | ≥50     | <55     |
| D                                                             | ≥45     | <50     |
| D-                                                            | ≥40     | <45     |
| E+                                                            | ≥35     | <40     |
| E                                                             | ≥30     | <35     |
| E-                                                            | ≥25     | <30     |
| F+                                                            | ≥20     | <25     |
| F                                                             | ≥15     | <20     |
| F-                                                            | ≥10     | <15     |
| G+                                                            | ≥5      | <10     |
| G                                                             | ≥0.02   | <5      |
| G-                                                            | ≥0.01   | <0.02   |
| NM                                                            | 0       | <0.01   |



# COMP20050 Indicative Content (1/3)

| Weeks  | Lecture Description                                                                              |
|--------|--------------------------------------------------------------------------------------------------|
| Week 1 | Module Introduction Software Project Description                                                 |
| Week 2 | Version Control<br>Software Architectural Design                                                 |
| Week 3 | Teamwork and Agile Software Engineering<br>Methodology<br>Scrum Software Engineering Methodology |



# COMP20050 Indicative Content (2/3)

| Weeks     | Lecture Description                      |
|-----------|------------------------------------------|
| Week 4-5  | JavaFX Framework                         |
| Weeks 5-6 | LibGDX Framework                         |
| Week 7    | Clean Testing<br>JUnit Testing Framework |



# COMP20050 Indicative Content (3/3)

| Weeks   | Lecture Description                                                      |
|---------|--------------------------------------------------------------------------|
| Week 8  | Clean Software Architecture<br>Clean Coding Principles: Functions, Names |
| Week 9  | Clean Coding Principles: Classes, Comments                               |
| Week 10 | Clean Coding Principles: Error Handling                                  |
| Week 11 | S.O.L.I.D Design Principles                                              |
| Week 12 | Component Principles Course Conclusion                                   |



## **Project Handbook**

 All you need to know about the project is provided in this handbook.

#### My Learning > Software Project Materials > Project Handbook

https://brightspace.ucd.ie/d2l/le/con tent/297464/viewContent/3490448/V iew

It is the definitive reference.





# **Reading Material**

Software Engineering

by Ian Sommerville

Publisher: Pearson; 10th edition

**Essential Scrum: A Practical Guide to the Most Popular Agile Process** 

By Kenneth S. Rubin

Publisher: Addison-Wesley Professional; 1st edition

Clean Code: A Handbook of Agile Software Craftsmanship

By Robert C. Martin

Publisher: Prentice Hall; 1st edition

Clean Architecture: A Craftsman's Guide to Software Structure and Design

By Robert C. Martin

Publisher: Addison-Wesley; 1st edition



# **UCD Policies**



#### **UCD Student Code of Conduct**

UCD student code of conduct.

https://brightspace.ucd.ie/d2l/le/content/249607/viewContent/2596877/View

 The Student Code of Conduct is established on three principles: respect, responsibility and academic integrity.





# UCD Plagiarism Policy (1/4)

Plagiarism policy - Student guide.

https://www.ucd.ie/secca/t4media/plagiarism\_studentguide.pdf

Plagiarism is a serious academic offence.

• It's important that you uphold your own academic integrity and

that of the University.



# UCD Plagiarism Policy (2/4)

#### Examples of plagiarism:

- Failing to cite and acknowledge sources properly.
- Making minor changes to text or paraphrasing from sources like the internet, journals and books, and presenting this as your own words.

Copying some/all of the work of another student and submitting it as

I will not plagiarize another's work I will not plagiarize another's work I will not plagiarize another's work

I will not plagiarize ano

I will not p'

your own work.



# UCD Plagiarism Policy (3/4)

- Our staff and demonstrators are proactive in looking for possible plagiarism.
- Suspected plagiarism is investigated by the CS Plagiarism subcommittee.
  - Usually includes an interview with the student(s) involved.
  - 1st offence: typically o or NM in the affected components.
  - o **2nd offence:** more serious consequences (UCD Disciplinary process).





# UCD Plagiarism Policy (4/4)

- Tips for avoiding plagiarism:
  - Acknowledge all sources.
  - Paraphrase correctly; express the information of others in your own words.

Quote correctly; when directly quoting from a text include appropriate

I will not plagiarize another's work I will not plagiarize another's work I will not plagiarize another's work

I will not plagiarize and

I will not p

quotation marks or indentation.



# **UCD Teaching and Learning and ChatGPT**

- Please read the following guide on Generative Artificial
   Intelligence in Learning and Assessment.
   <a href="https://www.ucd.ie/teaching/t4media/Generative\_Artificial\_Intelligence\_Quick\_Guide.pdf">https://www.ucd.ie/teaching/t4media/Generative\_Artificial\_Intelligence\_Quick\_Guide.pdf</a>
  - Designing in: Using and Acknowledging AI to enhance Student Learning.
  - Designing to Minimise: Discouraging the use of AI in Student Learning.
- Any essay/assignment submitted using generative AI tools will not be accepted.



## **UCD Late Submission of Coursework Policy**

- Please read the following UCD late submission of coursework policy document.
  - https://brightspace.ucd.ie/d2l/le/content/249607/viewContent/2586204/View
- No extensions to deadlines for any assignments/submissions.
- Please read Extenuating Circumstances policy if it applies to your late submissions.

https://hub.ucd.ie/usis/!W\_HU\_MENU.P\_PUBLISH?p\_tag=GD-DOC LAND&ID=126



# **Software Engineering Project Creating Groups and GitHub**



# **Software Engineering Project**

 You will be developing a software implementation of Hex Oust in Java Programming Language.
 https://mindeports.pl/inde

https://mindsports.nl/index.php/the-pit/614-hexoust

Detailed description of Hex
 Oust to follow in the next lecture.





# Form Your Group

- You will execute this project in a group of three members.
- Self-select your group at My Class > My Groups on Brightspace.
- Send your group details to our TA (user name: gillanimaryam).
- After the group selection expiry date (next week), any class members who have not self-selected will be automatically and randomly allocated to a group.



## Project Source Version Control (1/2)

- Git and GitHub will be the source code repo and version control for this project.
- Setup Git on your computer. Setup your GitHub account online.
- Setup a GitHub repo for the project. THIS REPO MUST BE PRIVATE.
- The repo name should include your Group numbers allocated on Brightspace.



## **Project Source Version Control (2/2)**

- Share the repo with your team members.
- Give repo access to our TA (user name: **gillanimaryam**) and the Module Coordinator (user name: **ravimanumachu**).
- GitHub must be used for source code control for the duration of the project.
- GitHub not used will result in 2 grade point deduction.



# Q&A





#### To follow...

# Software Engineering Project Description

