Chapitre 9: Applications linéaires

Dans tout le chapitre, E et F désigneront des espaces vectoriels et on notera + et \cdot les lois de composition interne et externe associées (cette notation ne fait pas la distinction entre les lois de E et les lois de E).

1 Applications linéaires

1.1 Généralités

Définition 1 (Application linéaire)

Soient E, F deux espaces vectoriels et $f: E \to F$ une application de E dans F. On dit que f est **linéaire** si

- $\forall (u, v) \in E^2$, f(u + v) = f(u) + f(v),
- $\forall u \in E, \forall \lambda \in \mathbb{R}, f(\lambda \cdot u) = \lambda \cdot f(u).$

Une application linéaire de E dans E est appelé un **endomorphisme** de E.

Remarque 1

Une application linéaire est donc une application qui respecte la structure d'espace vectoriel.

Notation 1

Soient E et F deux espaces vectoriels.

- On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.
- On note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.

Exemple 1

1.	L'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f: x \to 3x$ est une application linéaire de \mathbb{R} dans \mathbb{R} (c'est un endomorphisme de \mathbb{R}).

2. Soient E et F deux espaces vectoriels, l'application nulle de E dans F définie par

$$f: \mathbf{E} \longrightarrow \mathbf{F}$$
$$u \longmapsto \mathbf{0}_{\mathbf{F}}$$

est linéaire.

3. Soit E un espace vectoriel. L'application identité de E, notée idE, définie par

$$id_E : E \longrightarrow E$$

 $u \longmapsto u$

est un endomorphisme de E.

Contre-exemple 1

L'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f: x \mapsto 3x + 1$ n'est pas linéaire. En effet,

Proposition 1 (Caractérisation des applications linéaires)

Soient E, F deux espaces vectoriels et $f: E \to F$ une application de E dans F. Alors f est linéaire si et seulement si pour tout $(u, v) \in E^2$ et pour tout $\lambda \in \mathbb{R}$ on a

$$f(u + \lambda \cdot v) = f(u) + \lambda \cdot f(v)$$
.

Méthode 1

- 1. En pratique, pour montrer qu'une application est linéaire, on utilise souvent cette caractérisation car elle nécessite moins de vérifications que la définition. À cet effet, la première étape est toujours d'écrire ce que
- 2. Pour montrer qu'une application f est un endomorphisme d'un espace vectoriel E, il vaut vérifier deux

Ex

<u>le 2</u>		
1. L'application		
	$o: \mathbb{R}^2 \longrightarrow \mathbb{R}$	
	$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(x, y) \longmapsto 2x - 3y$	
est linéaire.		
est inteane.		
2. L'application		
	$\phi:\mathscr{C}([0,1],\mathbb{R})\longrightarrow\mathbb{R}$	
	$f \longmapsto \int_0^1 f(t) dt$	
est linéaire.	- •	
cot inicano.		
3. L'application		
	$\phi:\mathbb{R}[X] \longrightarrow \mathbb{R}[X]$	
	$P \longmapsto P'$	
est linéaire.		
est iineaire.		

Test 1 (Voir solution.)

Dans chaque cas, montrer que l'application considérée est linéaire et préciser s'il s'agit ou non d'un endomorphisme.

1. L'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ telle que

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = (x - z, x + y).$$

2. L'application

$$t: \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{p,n}(\mathbb{R})$$

$$M \longmapsto^{t} M$$

3. L'application

$$\Delta: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

$$P \longmapsto P(X+1)$$

4. Soit $A \in \mathcal{M}_n(\mathbb{R})$. L'application

$$m_{\mathbf{A}}: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$$

$$\mathbf{M} \longmapsto \mathbf{A}\mathbf{M}$$

Test 2 (Voir solution.)

Dans \mathbb{R}^3 , on considère la famille \mathscr{B} formée des vecteurs

$$u = (1, 1, 1)$$
 ; $v = (0, 2, -1)$; $w = (-2, 3, 1)$

- 1. Montrer que \mathscr{B} est une base de \mathbb{R}^3 .
- 2. Déterminer les coordonnées du vecteur (3, -5,2) dans cette base.
- 3. On considère une application linéaire $f: \mathbb{R}^3 \to \mathbb{R}$ telle que

$$f(u) = 2$$
 ; $f(v) = -1$; $f(w) = 0$.

Calculer f((3, -5, 2)).

Proposition 2

Soient E, F deux espaces vectoriels et $f: E \to F$ une **application linéaire** de E dans F. Alors

- 1. $f(0_E) = 0_F$.
- 2. $\forall n \in \mathbb{N}^*, \forall (u_1, \dots, u_n) \in \mathbb{E}^n, \forall (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n, f\left(\sum_{k=1}^n \lambda_k \cdot u_k\right) = \sum_{k=1}^n \lambda_k \cdot f(u_k).$

Démonstration:

1.2 L'ensemble $\mathcal{L}(E, F)$

Proposition 3 (Structure de $\mathcal{L}(E,F)$)

Soient E et F deux espaces vectoriels. Alors les ensembles $\mathcal{L}(E,F)$ et $\mathcal{L}(E)$ sont des espaces vectoriels.

En particulier, la somme de deux applications linéaires de E dans F est une application linéaire de E dans F et le produit d'une application linéaire de E dans F par un nombre réel est une application linéaire de E dans F.

Démonstration:

Exemple 3

L'application

$$f: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

 $P \longmapsto P' + 2P(X+1)$

est linéaire car c'est une combinaison linéaire des applications linéaires rencontrées à l'exemple 2 et au test 1.

Proposition 4 (Composition)

Soient E, F et G trois espaces vectoriels. Si $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$ alors $g \circ f \in \mathcal{L}(E,G)$. En particulier, si $f \in \mathcal{L}(E)$ et $g \in \mathcal{L}(E)$ alors $g \circ f \in \mathcal{L}(E)$.

Exemple 4

L'application

$$f: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

 $P \longmapsto P(X+2)$

est <u>linéaire car</u>

Définition 2 (Puissance d'un endomorphisme)

Soient E un espace vectoriel et $f \in \mathcal{L}(E)$. On définit les puissances de f par récurrence par

$$\begin{cases} f^0 = id_{\mathbf{E}} \\ \forall n \in \mathbb{N}, \ f^{n+1} = f \circ f^n \end{cases}$$

Ainsi, pour tout $n \in \mathbb{N}^*$ on a

$$f^n = \underbrace{f \circ \cdots \circ f}_{n \text{ fois}}$$

Exemple 5

On considère l'application f définie par

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x, y) \longmapsto (2x, 2y)$$

1. Vérifions que f est linéaire :

2.	Déterminons	f^2	et	f^3
----	-------------	-------	----	-------

3. Pour tout $n \in \mathbb{N}^*$, déterminer f^n .

Test 3 (Voir solution.)

Pour chaque application linéaire φ ci-dessous, déterminer φ^2 et φ^3 .

1.

$$\phi: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$
$$P \longmapsto P(X+3)$$

2.

$$\varphi \colon \mathscr{C}^{\infty}([0,1],\mathbb{R}) \longrightarrow \mathscr{C}^{\infty}([0,1],\mathbb{R})$$
$$f \longmapsto f'$$

Test 4 (Voir solution.)

Soient E un espace vectoriel et u, v deux endomorphismes de E qui commutent, ie :

$$u \circ v = v \circ u$$
.

1. Montrer que pour tout $k \in \mathbb{N}$, $u^k \circ v = v \circ u^k$.

2. Montrer que pour tout entier naturel n:

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k}.$$

1.3 Isomorphismes, automorphismes

Rappel(s) 1

Soit f une application de E dans F

- 1. On dit que f est **injective** si tout élément de F admet au plus un antécédent par f.
- 2. On dit que f est **surjective** si tout élément de F admet au moins un antécédent par f.
- 3. On dit que *f* est **bijective** si tout élément de F admet exactement un antécédent par *f* (autrement dit si *f* est injective et surjective).

Si f est bijective, on note f^{-1} sa bijection réciproque. On a alors

$$f \circ f^{-1} = \mathrm{id}_{\mathrm{F}}$$
 et $f^{-1} \circ f = \mathrm{id}_{\mathrm{E}}$.

Définition 3 (Isomorphisme, automorphisme)

Soient E et F deux espaces vectoriels.

- On appelle **isomorphisme** de E dans F tout application linéaire bijective de E dans F. L'ensemble des isomorphismes de E dans F est noté GL(E, F).
- On appelle **automorphisme** de E tout endomorphisme bijectif de E. L'ensemble des automorphismes de E est noté GL(E).

S'il existe un isomorphisme entre E et F, on dit que E et F sont isomorphes.

Exemple 6

Soit φ l'application définie par

$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}_1[X]$$
$$(a,b) \mapsto aX + b$$

 $(a,b)\mapsto aX+b$ 1. Vérifions que ϕ est linéaire.

2. Montrons que ϕ est un isomorphisme.

Proposition	5
1 10position	J

Soient E, F deux espaces vectoriels et $f \in GL(E, F)$. Alors f^{-1} est linéaire. En particulier, $f^{-1} \in GL(F, E)$.

2 Noyau et image d'une application linéaire

2.1 Noyau

Définition 4 (Noyau d'une application linéaire)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E,F)$. On appelle **noyau** de f et on note $\ker(f)$, l'ensemble :

$$\ker(f) = \left\{ u \in \mathcal{E} \mid f(u) = 0_{\mathcal{F}} \right\}$$

Remarque 2

D'après la proposition 2, on a toujours $0_E \in \ker(f)$.

Proposition 6

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Alors, le noyau de f est un sous-espace vectoriel de E.

Méthode 2

- 1. Pour déterminer le noyau d'une application linéaire f, il faut résoudre l'équation $f(u) = 0_F$ qui se traduit par un système linéaire.
- 2. La proposition précédente fournit une nouvelle méthode pour montrer qu'un ensemble est un (sous)-espace vectoriel : en montrant que c'est le noyau d'une application linéaire.

Exemple 7

On reprend les applications linéaires de l'exemple 2.

1. Déterminons le noyau de

$$\varphi_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x, y) \longmapsto 2x - 3y$$

2. Déterminons le noyau de

$$\phi_2:\mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

$$P \longmapsto P'$$

Exemple 8

1. L'ensemble $\{(x, y) \in \mathbb{R}^2 \mid 2x - 3y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 car

2. L'ensemble $\big\{P\in\mathbb{R}[X]\mid P'=0\big\}$ est un sous-espace vectoriel de $\mathbb{R}[X]$ car

Test 5 (Voir solution.)

Dans chaque cas, déterminer le noyau de l'application linéaire (base du noyau et dimension).

1. L'application $f: \mathbb{R}^3 \to \mathbb{R}^2$ telle que

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = (x - z, x + y).$$

2. L'application

$$t: \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{p,n}(\mathbb{R})$$

$$M \longmapsto^{t} M$$

3. L'application

$$m_{\mathbf{A}}: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$\mathbf{M} \longmapsto \mathbf{A}\mathbf{M}$$

$$o\grave{u} A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}.$$

Proposition 7 (Noyau et injectivité)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Alors f est injective si et seulement si $\ker(f) = \{0_E\}$.

Remarque 3

En général, pour montrer qu'une application f de E dans F est injective, il faut vérifier que pour tout $v \in F$ l'équation f(u) = v possède **au plus** une solution. La proposition précédente assure que, lorsque f est **linéaire**, il suffit de le vérifier pour $v = 0_F$ (on a toujours $0_E \in \ker(f)$ d'après la proposition 2).

Démonstration:

Exemple 9

Parmi les applications linéaires de l'exemple 7, aucune n'est injective.

Test 6 (Voir solution.)

Parmi les applications linéaires du test 5, lesquelles sont injectives?

2.2 Image

Définition 5 (Image d'une application linéaire)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E,F)$. On appelle **image** de f et on note Im(f), l'ensemble :

$$Im(f) = \{ f(u), u \in E \}$$

Proposition 8

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Alors, l'image de f est un sous-espace vectoriel de F.

Remarque 4

Une autre façon de décrire l'image de $f \in \mathcal{L}(E,F)$ est

$$\operatorname{Im}(f) = \{ v \in F \mid \exists u \in E \ f(u) = v \}$$

Exemple 10

1. Déterminons l'image de

$$\varphi_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x, y) \longmapsto 2x - 3y$$

2. Déterminons l'image de

$$\varphi_2: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$M \longmapsto M - {}^t M$$

Test 7 (Voir solution.)

Déterminer l'image de l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^2$ telle que

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f((x, y, z)) = (x - z, x + y).$$

Proposition 9 (Image et surjectivité)

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Alors f est surjective si et seulement si Im(f) = F.

Test 8 (Voir solution.)

On considère l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par $f: (x, y) \mapsto (2x - y, 2y - 3x)$.

- 1. Montrer que f est une application linéaire.
- 2. Déterminer le noyau de f et l'image de f.
- 3. f est-elle injective? Surjective?

3 Applications linéaires en dimension finie

3.1 Rang d'une application linéaire

Définition 6 (Rang d'une application linéaire)

Soient E, F deux espaces vectoriels de dimensions finies et $f \in \mathcal{L}(E,F)$. On appelle **rang** de f et on note rg(f) la dimension de Im(f).

Remarque 5

Comme Im(f) est un sous-espace vectoriel de F et que F est de dimension finie, Im(f) est bien de dimension finie et $rg(f) \le dim(F)$ avec égalité si et seulement si f est surjective.

Proposition 10

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E,F)$. On suppose que E est de dimension finie et soit (e_1,\ldots,e_n) une base de E. Alors

$$\operatorname{Im}(f) = \operatorname{Vect}(f(e_1), \dots, f(e_n))$$

En particulier, $rg(f) \leq dim(E)$.

Méthode 3

Ainsi pour déterminer le rang d'une application linéaire $f \in \mathcal{L}(E,F)$ il suffit de déterminer le rang de la famille $(f(e_1),\ldots,f(e_n))$ où (e_1,\ldots,e_n) est une base de E

Exemple 11

Déterminer le rang de l'application linéaire f définie par

$$f: \mathcal{M}_{3,1}(\mathbb{R}) \longrightarrow \mathcal{M}_{2,1}(\mathbb{R})$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} 3x + 2y \\ x + 2y + z \end{pmatrix}$$

Exemple 12

$$\varphi: \mathscr{M}_2(\mathbb{R}) \longrightarrow \mathscr{M}_2(\mathbb{R})$$

$$M \longmapsto M + {}^t M$$

Déterminer son rang.

Théorème 1 (Théorème du rang)

Soient E, F deux espaces vectoriels de dimensions finies et $f \in \mathcal{L}(E,F)$. Alors

$$\dim(E) = \dim(\ker(f)) + \operatorname{rg}(f)$$

autrement dit

$$\dim(E) = \dim(\ker(f)) + \dim(\operatorname{Im}(f))$$

Exemple 13

Soit φ l'application définie par

$$\phi: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_2[X]$$
$$P \longmapsto P'$$

Déterminons son rang.

Test 10 (Voir solution.)

Soit φ l'application définie par

$$\phi: \mathbb{R}_3[X] \longrightarrow \mathbb{R}^2$$

$$P \longmapsto (P(1), P(2))$$

- 1. Montrer que φ est linéaire.
- 2. Déterminer $Im(\phi)$ et en déduire le rang de ϕ .
- 3. En déduire la dimension de $ker(\phi)$.
- 4. L'application φ est-elle injective? surjective? bijective?

Conséquences 1

Soient E, F deux espaces vectoriels de dimensions finies et $f \in \mathcal{L}(E, F)$.

- 1. Si dim(E) < dim(F) alors f n'est pas surjective.
- 2. Si dim(E) > dim(F) alors f n'est pas injective.

En particulier, si $dim(E) \neq dim(F)$, il n'existe pas d'isomorphisme entre E et F.

Conséquences 2

Soient E, F deux espaces vectoriels de **même** dimension finie et $f \in \mathcal{L}(\mathsf{E},\mathsf{F})$. Alors

f est injective \iff f est surjective \iff f est bijective

Remarque 6

En particulier, si f est un endomorphisme d'un espace vectoriel E de dimension finie on a donc

f est injective \iff f est surjective \iff f est bijective

Exemple 14

1. L'application linéaire

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_{n-1}[X]$$

 $P \longmapsto P'$

est-elle injective?

2. L'application linéaire

$$f: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}^4$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto (a+b, a-b, c+d, c-d)$$

est-elle un isomorphisme?

Test 11 (Voir solution.)

Soit f l'application définie par

$$f: \mathcal{M}_{3,1}(\mathbb{R}) \longrightarrow \mathcal{M}_{3,1}(\mathbb{R})$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} 2x + y \\ z \end{pmatrix}$$

Montrer que f est un automorphisme de $\mathcal{M}_{3,1}(\mathbb{R})$.

Conséquences 3

Soient E, F deux espaces vectoriels de dimensions finies. S'il existe un isomorphisme de E dans F alors $\dim(E) = \dim(F)$.

On s'intéresse à la réciproque : deux espaces vectoriels de même dimension finie sont-ils isomorphes?

Proposition 11

Soient E, F deux espaces vectoriels de dimensions finies. On considère une base $\mathscr{B} = (e_1, \dots, e_n)$ de E. Une application linéaire $f \in \mathcal{L}(E,F)$ est entièrement déterminée par la donnée des vecteurs $(f(e_1),...,f(e_n))$. Cela signifie que pour toute famille $(u_1,...,u_n) \in \mathbb{F}^n$ il existe une unique application linéaire $f \in \mathcal{L}(E,F)$ telle que

$$\forall i \in [1, n], f(e_i) = u_i$$

Remarque 7

En particulier, si une base $\mathcal{B} = (e_1, \dots, e_n)$ de E et que l'on a deux applications linéaires f et g de E dans F telles

$$\forall i \in [1, n], \ f(e_i) = g(e_i)$$

alors f = g.

Exemple 15

1. Soient (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 tel que

$$f(e_1) = e_1 + 2e_2$$
; $f(e_2) = e_1$; $f(e_3) = e_1 - 2e_2 + e_3$

Déterminons l'expression de f.

(a) Soit $(x, y, z) \in \mathbb{R}^3$. On commence par déterminer les coordonnées de (x, y, z) dans la base (e_1, e_2, e_3) :

(b) On détermine f((x, y, z)) par linéarité :

	2. §	ent $u = (0,6,-1)$ et $v = (2,2,0)$. Déterminons $Mat_{\mathscr{B}}(u)$, $Mat_{\mathscr{B}}(v)$ et $Mat_{\mathscr{B}}(u,v)$.	
Exe	mple 1		
$\overline{}$		X] on considère la base canonique \mathscr{B}_{can} et le polynôme $P = 2(X-1)^2 - 3(X-1) - 4$.	
		uver la matrice de P dans la base canonique.	
	Γ.	aver in manifecture 1 dans in successful.	
	2. (considère la famille $\mathcal{B}_1 = (1, (X-1), (X-1)^2)$.	
) La famille \mathscr{B}_1 est une base de $\mathbb{R}_2[\mathrm{X}]$:	
) $D\acute{e}terminons \operatorname{Mat}_{\mathscr{B}_1}(P)$.	
L			
Tes	t 13 (<mark>V</mark>	solution.)	
	Dans 🛭	X] on considère la famille $\mathscr{B} = (1, X + 1, X^2 + 1)$ et les polynômes $P = 3X^2$, $Q = 2 + X - X^2$.	
		tifier que ${\mathscr B}$ est une base de ${\mathbb R}_2[{\mathrm X}]$.	
	2. 1	terminer $\operatorname{Mat}_{\mathscr{B}}(P,Q)$.	
L			
	_ Défi	tion 8 (Matrice d'une application linéaire)	
	Den	ion o (maniec a une appreciation infeatie)	
	Soie	E et F deux espaces vectoriels de dimensions finies. On note $p \in \mathbb{N}^*$ la dimension de E et $n \in \mathbb{N}^*$ la	
		sion de F et on considère $\mathscr{B}_{\rm E}=(e_1,\ldots,e_p)$ une base de E et $\mathscr{B}_{\rm F}$ une base de F.	
		$\mathscr{L}(E,F)$. On appelle matrice de f dans les bases \mathscr{B}_E et \mathscr{B}_F la matrice notée $\mathrm{Mat}_{\mathscr{B}_E,\mathscr{B}_F}(f)$ définie	
	par:	$\operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(f) = \operatorname{Mat}_{\mathscr{B}_{F}}(f(e_1),\ldots,f(e_p)).$	
		L/	

Notation 2

Il s'agit d'une matrice de taille $n \times p$.

 $\overline{\text{Pour un endomorphisme } f \in \mathscr{L}(\mathsf{E}) \text{ on notera } \mathsf{Mat}_{\mathscr{B}_\mathsf{E}}(f) \text{ pour désigner } \mathsf{Mat}_{\mathscr{B}_\mathsf{E},\mathscr{B}_\mathsf{E}}(f).$

Méthode 4

Pour déterminer la matrice $\mathrm{Mat}_{\mathscr{B}_{\mathrm{E}},\mathscr{B}_{\mathrm{F}}}(f)$ d'une application linéaire :

- 1. on commence par calculer l'image par f de chaque élément de la base \mathcal{B}_{E} ;
- 2. on détermine les coordonnées dans la base \mathscr{B}_F des vecteurs images déterminés à l'étape précédente;
- 3. la matrice $\operatorname{Mat}_{\mathscr{B}_E,\mathscr{B}_F}(f)$ est la matrice dont les colonnes sont les coordonnées dans \mathscr{B}_F des images par f des éléments de \mathscr{B}_E .

Exemple	18

On considère l'application linéaire $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ définie par
$\forall (x,y) \in \mathbb{R}^2, f((x,y)) = (2x - 2y, 2x + 4y, -y).$
1. Déterminons la matrice de f dans les bases \mathcal{B}_2 et \mathcal{B}_3 où \mathcal{B}_2 et \mathcal{B}_3 sont les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 respectivement.
2. Déterminons la matrice de f dans les bases $\mathcal{B} = ((1,1),(1,0))$ et $\mathcal{B}' = ((1,1,1),(1,1,0),(1,0,0))$.
2. Determinons a matrice de f dans les bases $\mathscr{D} = ((1,1),(1,0))$ et $\mathscr{D} = ((1,1,1),(1,1,0),(1,0,0))$.
emple 19
On considère l'application linéaire $f: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_2[X]$ définie par
$\forall P \in \mathbb{R}_3[X], f(P) = P'.$
Déterminons la matrice de f dans les bases \mathcal{B}_3 et \mathcal{B}_2 où \mathcal{B}_2 et \mathcal{B}_3 sont les bases canoniques de $\mathbb{R}_2[X]$ et $\mathbb{R}_3[X]$
respectivement.

Test 14 (Voir solution.)

Dans $\mathcal{M}_2(\mathbb{R})$, on considère la base canonique \mathscr{B} et l'endomorphisme ϕ défini par

$$\forall M \in \mathcal{M}_2(\mathbb{R}), \quad \varphi(M) = {}^t M.$$

Déterminer $Mat_{\mathscr{B}}(\varphi)$.

Proposition 12 (Isomorphisme entre $\mathcal{L}(E,F)$ et $\mathcal{M}_{n,p}(\mathbb{R})$)

Soient E et F deux espaces vectoriels de dimensions finies. On note $p \in \mathbb{N}^*$ la dimension de E et $n \in \mathbb{N}^*$ la dimension de F et on considère \mathscr{B}_E une base de E et \mathscr{B}_F une base de F. L'application

$$\varphi: \mathcal{L}(E, F) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$$
$$f \longmapsto \operatorname{Mat}_{\mathscr{B}_{E}, \mathscr{B}_{F}}(f)$$

est un isomorphisme.

Remarque 9

En particulier, une fois les bases \mathscr{B}_E et \mathscr{B}_F fixées :

- 1. toutes application linéaire possède une unique représentation matricielle dans ces bases,
- 2. toute matrice $\mathcal{M}_{n,p}(\mathbb{R})$ est l'unique représentation matricielle dans ces bases d'une unique application $f \in \mathcal{L}(E,F)$.
- 3. pour tout $f, g \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{R}$

$$\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f+g) = \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f) + \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(g) \quad et \quad \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(\lambda f) = \lambda \cdot \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)$$

Exemple 20

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 3 & 4 & -2 \end{pmatrix}$. Déterminons f.

Test 15 (Voir solution.)

Soit f l'endomorphisme de $\mathbb{R}_2[X]$ dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 3 & 2 & 3 \end{pmatrix}$$

Déterminer f.

Conséquences 4

Soient E et F deux espaces vectoriels de dimensions finies. Alors

$$\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$$
 et $\dim(\mathcal{L}(E)) = \dim(E)^2$.

3.3 Lien entre applications linéaires et matrices associées

Proposition 13

Soient E et F deux espaces vectoriels de dimensions finies. On considère \mathscr{B}_{E} une base de E et \mathscr{B}_{F} une base de F. Soient $f \in \mathscr{L}(E,F)$, $u \in E$ et $v \in F$. Alors :

$$v = f(u) \iff \operatorname{Mat}_{\mathscr{B}_{F}}(v) = \operatorname{Mat}_{\mathscr{B}_{F}}(f(u)) \iff \operatorname{Mat}_{\mathscr{B}_{F}}(v) = \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(f)\operatorname{Mat}_{\mathscr{B}_{F}}(u).$$

Conséquences 5 (Coordonnées de l'image d'un vecteur)

Soient E et F deux espaces vectoriels de dimensions finies. On considère \mathscr{B}_{E} une base de E et \mathscr{B}_{F} une base de F. Soient $f \in \mathscr{L}(E,F)$, $u \in E$.

Si les coordonnées de u dans la base \mathscr{B}_{E} sont $(x_1,...,x_p)$ alors les coordonnées de f(u) dans la base \mathscr{B}_{F}

sont données par le vecteur colonne
$$\operatorname{Mat}_{\mathscr{B}_{\mathbb{E}},\mathscr{B}_{\mathbb{F}}}(f) \times \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$

Conséquences 6

Soient E et F deux espaces vectoriels de dimensions finies. On considère \mathscr{B}_{E} une base de E et \mathscr{B}_{F} une base de F. Soient $f \in \mathscr{L}(E,F)$, $u \in E$.

Alors $u \in \ker(f)$ si et seulement si $\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)\operatorname{Mat}_{\mathscr{B}_{E}}(u) = 0$.

Exemple 21

1. Soit f l'endomorphisme de $\mathbb{R}_2[X]$ dont la matrice dans la base canonique est

$$B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 0 & -1 & 0 \end{pmatrix}$$

Déterminons l'image de $X^2 + 1$ par f.

st 16 (<i>Voir solution.</i>)	
Soit f l'endomorph	hisme de \mathbb{R}^3 dont la matrice dans la base canonique est
	$\begin{pmatrix} 1 & 1 & 2 \end{pmatrix}$
	$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & -1 & 1 \end{pmatrix}$
Déterminer $ker(f)$	()
——————————————————————————————————————	et mi(f).
Proposition 14 ((Composition et représentation matricielle)
Soiont E E at C tr	rais concess vactorials de dimensions finies. On considère @ una base de E @ una base
	ois espaces vectoriels de dimensions finies. On considère \mathscr{B}_E une base de E, \mathscr{B}_F une base ase de G. Soient $f \in \mathscr{L}(E,F)$ et $g \in \mathscr{L}(F,G)$. Alors
	$\operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{G}}(g \circ f) = \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{G}}(g) \times \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(f)$
	$\operatorname{Mat}_{\mathcal{B}_E,\mathcal{B}_G}(g \circ f) = \operatorname{Mat}_{\mathcal{B}_F,\mathcal{B}_G}(g) \wedge \operatorname{Mat}_{\mathcal{B}_E,\mathcal{B}_F}(f)$
Conséquences 7	
Soient E, F deux de F.	espaces vectoriels de dimensions finies. On considère \mathscr{B}_{E} une base de E et \mathscr{B}_{F} une base
1. Soit $f \in \mathcal{L}($	(E). Pour tout $k \in \mathbb{N}$
	$\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{E}}(f^k) = \left(\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{E}}(f)\right)^k.$
2. Soit $f \in \mathcal{L}($	(E, F). Alors f est inversible si et seulement si $\mathrm{Mat}_{\mathscr{B}_{\mathrm{E}},\mathscr{B}_{\mathrm{F}}}(f)$ est inversible. Dans ce cas
	$\operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{E}}(f^{-1}) = \left(\operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(f)\right)^{-1}.$
	$\mathcal{M}_{\mathcal{S}_{F},\mathcal{S}_{E}}(\mathcal{G}) = \{\mathcal{M}_{\mathcal{S}_{E},\mathcal{S}_{F}}(\mathcal{G})\}$
a	
Ethode 5 Pour montrer au'u	ne application linéaire f entre deux espaces vectoriels de dimensions finies est inversible, on
	qu'une matrice représentative de f est inversible (en calculant son rang par exemple).
emple 22	
Soit Soit	
	$h: \mathbb{R}_2[\mathrm{X}] o \mathbb{R}_2[\mathrm{X}]$
	$P \mapsto P'(X+1)$
Déterminons la ma	atrice de h dans la base canonique.

2. Soient \mathcal{B} la base canonique de $\mathbb{R}_2[X]$ et $\mathcal{B}' = (1, X+1, X^2+X+1)$. On considère g l'endomorphisme de $\mathbb{R}_2[X]$ dont la matrice dans les bases \mathcal{B} et \mathcal{B}' est B.

Déterminons $g(X^2 + 1)$.

mple 23			
Soit Soit			
	J	$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$	
		$P \mapsto P(X+1)$	
Montrons aue f est ir	versible et déterminons so	n inverse.	

On considère les applications f et g suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad \qquad g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(x, y) \longmapsto (x - y, x + y) \qquad \qquad (x, y) \longmapsto (3x + y, 2x, 3y)$$

- 1. On note A et B les matrice de f et de g dans les bases canoniques. Déterminer A et B.
- 2. Déterminer l'expression de $g \circ f$ et en déduire la matrice C de $g \circ f$ dans les bases canoniques.
- 3. Vérifier qu'on a bien C = BA.

Proposition 15 (Rang)

Soient E, F deux espaces vectoriels de dimensions finies et $f \in \mathcal{L}(E,F)$. On considère \mathscr{B}_E une base de E et \mathscr{B}_{F} une base de F.

On a

$$\operatorname{rg}(f) = \operatorname{rg}(\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)).$$

3.4 Changement de base

Définition 9 (Matrice de passage)

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $\mathscr{B}, \mathscr{B}' = (e'_1, \dots, e'_n)$ deux bases de E. On appelle **matrice de passage de** \mathscr{B} **à** \mathscr{B}' et on note $P_{\mathscr{B},\mathscr{B}'}$ la matrice de la famille \mathscr{B}' dans la base \mathscr{B} :

$$P_{\mathscr{B},\mathscr{B}'} = \operatorname{Mat}_{\mathscr{B}}(e'_1, \dots, e'_n)$$

Remarque 10

La matrice de passage	de B à B'	et la matrice de ide	dans les base de \mathscr{B}'	et B

$$P_{\mathcal{B},\mathcal{B}'}=Mat_{\mathcal{B}',\mathcal{B}}(id_E)$$

 $(\underline{\wedge} Attention à l'ordre des bases!)$

Exemple 2	4
-----------	---

1. Si B est la b	ase canonique de \mathbb{R}^3 ϵ	$et \mathscr{B}' = ((1,2,0),(0))$), 1, 1), (2, 0, 2)) alo	rs	
. Si B est la b	ase canonique de \mathbb{R}_3 [3	$X] et \mathscr{B}' = (1, (X -$	$(1), (X-1)^2, (X-1)^2$	1) ³) alors	
_					
roposition 16)				
oit E un genace	vectoriel de dimensio	on finie n∈N* et	· Ø Ø' dauv basa	s de F	
	γ est inversible et son			s uc E.	
30,36					
		$\left(\mathrm{P}_{\mathscr{B},\mathscr{B}'}\right)^{-1}$:	$= P_{\mathscr{B}',\mathscr{B}}$		

Exemple 25

_								
	On repres	On reprend l'exemple précédent où \mathscr{B} est la base canonique de $\mathbb{R}_3[X]$ et $\mathscr{B}' = (1, (X-1), (X-1)^2, (X-1)^3)$. Déterminons les coordonnées de X^3 dans la base \mathscr{B}' .						

Proposition 17 (Formules de changement de base)

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et \mathscr{B} , \mathscr{B}' et \mathscr{B}'' trois bases de E.

- 1. $P_{\mathscr{B},\mathscr{B}''} = P_{\mathscr{B},\mathscr{B}'}P_{\mathscr{B}',\mathscr{B}''}$.
- 2. Soit $u \in E$.

$$Mat_{\mathscr{B}}(u) = P_{\mathscr{B},\mathscr{B}'}Mat_{\mathscr{B}'}(u).$$

Autrement dit, la multiplication à gauche par la matrice de passage $P_{\mathscr{B},\mathscr{B}'}$ permet de déterminer les coordonnées de u dans "l'ancienne" base \mathscr{B} à partir de ses coordonnées dans la "nouvelle" base \mathscr{B}' .

3. Soit $f \in \mathcal{L}(E)$.

$$\operatorname{Mat}_{\mathscr{B}'}(f) = \operatorname{P}_{\mathscr{B},\mathscr{B}'}^{-1} \operatorname{Mat}_{\mathscr{B}}(f) \operatorname{P}_{\mathscr{B},\mathscr{B}'}$$

Remarque 11

En se souvenant que $P_{\mathscr{B},\mathscr{B}'} = Mat_{\mathscr{B}',\mathscr{B}}(id_E)$, la proposition ci-dessus est une conséquence des propositions 13 et 14 :

- 1. la composition $(E, \mathcal{B}'') \xrightarrow{id_E} (E, \mathcal{B}') \xrightarrow{id_E} (E, \mathcal{B})$ donne le premier point grâce à la proposition 14;
- 2. le deuxième point est une conséquence directe de la proposition 13
- 3. la composition $(E, \mathcal{B}') \xrightarrow{id_E} (E, \mathcal{B}) \xrightarrow{f} (E, \mathcal{B}) \xrightarrow{id_E} (E, \mathcal{B}')$ donne le dernier point grâce à la proposition 14.

Exemple 26

Exemple 27

Soit f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base $\mathscr{B}' = ((1,1),(1,-1))$ est $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Déterminons la matrice B de f dans la base canonique.

Test 18 (Voir solution.)

Soit $v_1 = (1,0,0)$, $v_2 = (5,-2,2)$ *et* $v_3 = (-1,1,2)$.

- 1. On note $\mathcal{B}_1 = (v_1, v_2, v_3)$.
 - (a) Montrer que \mathcal{B}_1 est une base de \mathbb{R}^3 .
 - (b) Donner la matrice de passage P de la base canonique à \mathcal{B}_1 .
 - (c) Donner la matrice de passage de la base \mathcal{B}_1 à la base canonique.
- 2. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 3 & -2 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}.$$

- (a) Déterminer la matrice B de f dans la base \mathcal{B}_1 .
- (b) Calculer $f(v_1)$, $f(v_2)$ et $f(v_3)$ et retrouver l'expression de B.

Définition 10 (Matrices semblables)

Deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ sont dites **semblables** s'il existe une matrice inversible P telle que A = $P^{-1}BP$.

Proposition 18

Deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ sont semblables si et seulement si elles représentent le même endomorphisme (dans des bases éventuellement différentes).

4 Objectifs et erreurs à éviter

4.1 Objectifs

- 1. Savoir déterminer si une application est linéaire, est un endomorphisme.
- 2. Savoir déterminer le noyau et l'image d'une application linéaire et en déduire si elle est injective ou surjective.
- 3. Savoir calculer le rang d'une application linéaire (avec la définition ou à partir d'une représentation matricielle).
- 4. Savoir et savoir utiliser le théorème du rang et ses conséquences.
- 5. Savoir déterminer la matrice d'une application linéaire dans des bases données.
- 6. Savoir, à partir de la matrice d'une application linéaire, déterminer son noyau, son image, son rang.
- 7. Savoir déterminer une matrice de changement de bases.
- 8. Savoir utiliser les formules de changement de bases.

4.2 Erreurs à éviter

- 1. Il ne faut pas confondre la caractérisation des sous-espaces vectoriels et la caractérisation des applications linéaires. En particulier, si ϕ est une application linéaire, les assertions du type « ϕ est non vide » ou « ϕ est stable par combinaison linéaire » n'ont pas de sens!
- 2. Si φ est un endomorphisme d'un espace vectoriel, φ^n désigne une composition et non une multiplication!
- 3. Le noyau ker(f) d'une application linéaire est un ensemble. En particulier, écrire $ker(f) = 0_E$ n'a pas de sens!

5 Correction des tests

Correction du test 1 (Retour à l'énoncer.)

1. Soient $(x, y, z) \in \mathbb{R}^3$, $(x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$. Alors

$$f((x, y, z) + \lambda(x', y', z')) = f((x + \lambda x', y + \lambda y', z + \lambda z'))$$

$$= (x + \lambda x' - (z + \lambda z'), x + \lambda x' + y + \lambda y')$$

$$= (x - z + \lambda(x' - z'), x + y + \lambda(x' + y'))$$

$$= (x - z, x + y) + \lambda(x' - z', x' + y')$$

$$= f((x, y, z)) + \lambda f((x', y', z')).$$

Comme $(x, y, z) \in \mathbb{R}^3$, $(x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$ sont quelconques, on a montré que

$$\forall ((x, y, z), (x', y', z')) \in (\mathbb{R}^3)^2, \ \forall \lambda \in \mathbb{R}, \quad f((x, y, z) + \lambda(x', y', z')) = f((x, y, z)) + \lambda f((x', y', z')).$$

Ainsi f est linéaire. Ce n'est pas un endomorphisme car l'ensemble de départ et d'arrivée ne sont pas égaux.

2. Soient $(M, N) \in (\mathcal{M}_{n,p}(\mathbb{R}))$ et $\lambda \in \mathbb{R}$. Alors

$$t (M + \lambda N) = {}^{t} (M + \lambda N)$$
$$= {}^{t} M + {}^{t} (\lambda N)$$
$$= {}^{t} M + \lambda^{t} N$$
$$= t(M) + \lambda t(N)$$

Comme $(M, N) \in (\mathcal{M}_{n,p}(\mathbb{R}))$ et $\lambda \in \mathbb{R}$ sont quelconques, on a montré que

$$\forall (M, N) \in (\mathcal{M}_{n,p}(\mathbb{R})), \ \forall \lambda \in \mathbb{R}, \quad t(M + \lambda N) = t(M) + \lambda t(N).$$

Ainsi t est linéaire. C'est un endomorphisme si $\mathcal{M}_{n,p}(\mathbb{R}) = \mathcal{M}_{p,n}(\mathbb{R})$ c'est-à-dire si n = p.

3. Soient $(P,Q) \in (\mathbb{R}[X])^2$ et $\lambda \in \mathbb{R}$. Alors

$$\Delta(P + \lambda Q) = (P + \lambda Q)(X + 1) = P(X + 1) + \lambda Q(X + 1) = \Delta(P) + \lambda \Delta(Q).$$

Comme $(P,Q) \in (\mathbb{R}[X])$ et $\lambda \in \mathbb{R}$ sont quelconques, on a montré que

$$\forall (P,Q) \in (\mathbb{R}[X]), \ \forall \lambda \in \mathbb{R}, \quad \Delta(P + \lambda Q) = \Delta(P) + \lambda \Delta(Q).$$

Ainsi Δ est un endomorphisme de $\mathbb{R}[X]$.

4. Soient $(M, N) \in (\mathcal{M}_n(\mathbb{R}))$ et $\lambda \in \mathbb{R}$. Alors

$$m_{A}(M + \lambda N) = A(M + \lambda N)$$

= $AM + \lambda AN$
= $m_{A}(M) + \lambda m_{A}(N)$.

Comme $(M, N) \in (\mathcal{M}_n(\mathbb{R}))$ et $\lambda \in \mathbb{R}$ sont quelconques, on a montré que

$$\forall (M, N) \in (\mathcal{M}_n(\mathbb{R})), \ \forall \lambda \in \mathbb{R}, \quad m_A(M + \lambda N) = m_A(M) + \lambda m_A(N).$$

Ainsi m_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

Correction du test 2 (Retour à l'énoncer.)

1. Montrons que c'est une famille libre de \mathbb{R}^3 . Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$.

$$\lambda_{1}u + \lambda_{2}v + \lambda_{3}w = 0 \iff \begin{cases} \lambda_{1} & -2\lambda_{3} = 0 \\ \lambda_{1} + 2\lambda_{2} + 3\lambda_{3} = 0 \iff \begin{cases} \lambda_{1} & -2\lambda_{3} = 0 \\ 3\lambda_{1} & + 5\lambda_{3} = 0 \end{cases} & L_{2} \to L_{2} + 2L_{3} \\ \lambda_{1} - \lambda_{2} + \lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} & -2\lambda_{3} = 0 \\ \lambda_{1} - \lambda_{2} + \lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} & -2\lambda_{3} = 0 \\ \lambda_{1} - \lambda_{2} + \lambda_{3} = 0 \end{cases} & L_{2} \to L_{2} - 3L_{1} \\ \lambda_{1} - \lambda_{2} + \lambda_{3} = 0 \end{cases}$$

$$\iff \lambda_{1} = \lambda_{3} = \lambda_{2} = 0.$$

Ainsi, la famille (u, v, w) est libre. De plus, elle est de cardinal $3 = \dim(\mathbb{R}^3)$: c'est donc une base de \mathbb{R}^3 .

2. On a

$$(3, -5, 2) = \frac{13}{11}u - \frac{19}{11}v - \frac{10}{11}w$$

et les coordonnées de (3,-5,2) dans la base (u,v,w) sont donc $(\frac{13}{11},-\frac{19}{11},-\frac{10}{11})$.

3. On considère une application linéaire $f: \mathbb{R}^3 \to \mathbb{R}$ telle que

$$f(u) = 2$$
 ; $f(v) = -1$; $f(w) = 0$.

Par linéarité de f, on trouve :

$$f((3,-5,2)) = f\left(\frac{13}{11}u - \frac{19}{11}v - \frac{10}{11}w\right) = \frac{13}{11}f(u) - \frac{19}{11}f(v) - \frac{10}{11}f(w) = \frac{45}{11}.$$

Correction du test 3 (Retour à l'énoncer.)

Pour chaque application linéaire f ci-dessous, déterminer f^2 et f^3 .

1. Soit $P \in \mathbb{R}[X]$. On a

$$f^{2}(P) = f(f(P)) = f(P(X+3)) = P(X+3+3) = P(X+6)$$

et

$$f^{3}(P) = f(f^{2}(P)) = f(P(X+6)) = P(X+3+6) = P(X+9).$$

Ainsi $f^2: P \mapsto P(X+6)$ et $f^3: P \mapsto P(X+9)$.

2. Soit $f \in \mathscr{C}^{\infty}([0,1],\mathbb{R})$. On a

$$\varphi^{2}(f) = \varphi(\varphi(f)) = \varphi(f') = f''$$

et

$$\varphi^3(f) = \varphi(\varphi^2(f)) = \varphi(f'') = f^{(3)}.$$

Ainsi, $\varphi^2: f \mapsto f''$ et $\varphi^3: f \mapsto f^{(3)}$.

Correction du test 4 (Retour à l'énoncer.)

1. Par récurrence :

• Initialisation : le cas k = 0 est évident.

• Hérédité: supposons que $u^k \circ v = v \circ u^k$ pour un certain $k \in \mathbb{N}$ et montrons que

$$u^{k+1} \circ v = v \circ u^{k+1}$$
.

On a

$$u^{k+1} \circ v = u \circ u^k \circ v = u \circ v \circ u^k$$
 par hypothèse de récurrence
$$= v \circ u \circ u^k \quad \text{car } u \text{ et } v \text{ commutent}$$

$$= v \circ u^{k+1}$$

Ainsi la propriété est vraie au rang k + 1.

• Conclusion : par le principe de récurrence, on a montrer que

$$\forall k \in \mathbb{N}$$
, $u^k \circ v = v \circ u^k$.

2. Par récurrence :

• Initialisation : le cas n = 0 est évident.

• Hérédité : supposons la propriété vrai pour un certain $n \in \mathbb{N}$ et montrons qu'elle est vraie au rang n+1. On a

$$(u+v)^{n+1} = (u+v) \circ (u+v)^n$$

$$= (u+v) \circ \left(\sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k}\right) \quad \text{par hypothèse de récurrence}$$

$$= u \circ \left(\sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k}\right) + v \circ \left(\sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k}\right) \quad \text{par définition de } u+v$$

$$= \sum_{k=0}^n \binom{n}{k} u \circ u^k \circ v^{n-k} + \sum_{k=0}^n \binom{n}{k} v \circ u^k \circ v^{n-k} \quad \text{par linéarité de } u \text{ et de } v$$

En utilisant la question précédente dans la deuxième somme, on obtient :

$$(u+v)^{n+1} = \sum_{k=0}^{n} \binom{n}{k} u^{k+1} \circ v^{n-k} + \sum_{k=0}^{n} \binom{n}{k} u^{k} \circ v \circ v^{n-k}$$

$$= \sum_{i=1}^{n+1} \binom{n}{i-1} u^{i} \circ v^{n+1-i} + \sum_{k=0}^{n} \binom{n}{k} u^{k} \circ v^{n+1-k} \quad \text{en faisant le changement de variable } i = k+1$$

$$= \binom{n}{n} u^{n+1} \circ v^{0} + \sum_{i=1}^{n} \binom{n}{i-1} u^{i} \circ v^{n+1-i} + \sum_{k=1}^{n} \binom{n}{k} u^{k} \circ v^{n+1-k} + \binom{n}{0} u^{0} \circ v^{n+1}$$

$$= u^{n+1} \circ v^{0} + \sum_{i=1}^{n} \binom{n}{i-1} + \binom{n}{i} u^{i} \circ v^{n+1-i} + u^{0} \circ v^{n+1}$$

$$= u^{n+1} \circ v^{0} + \sum_{i=1}^{n} \binom{n+1}{i} u^{i} \circ v^{n+1-i} + u^{0} \circ v^{n+1}$$

$$= \sum_{i=0}^{n+1} \binom{n+1}{i} u^{i} \circ v^{n+1-i}$$

$$= \sum_{i=0}^{n+1} \binom{n+1}{i} u^{i} \circ v^{n+1-i}$$

Ainsi la propriété est vraie au rang n + 1.

• Conclusion : par le principe de récurrence, on a montrer que

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} \binom{n}{k} u^k \circ v^{n-k} = v \circ u^k.$$

Correction du test 5 (Retour à l'énoncer.)

1. Soit $(x, y, z) \in \mathbb{R}^3$. Alors

$$f((x, y, z)) = (0, 0) \iff x - z = 0$$
 et $x + y = 0 \iff x = z$ et $y = -x$.

Ainsi,

$$\ker(f) = \{(x, -x, x), x \in \mathbb{R}\} = \text{Vect}((1, -1, 1)).$$

Donc une base de ker(f) est (1, -1, 1) et sa dimension est égale à 1.

2. On voit facilement que $ker(t) = \{0\}$.

3. Soit
$$M = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
. Alors

$$\begin{aligned} \mathbf{M} \in \ker(m_{\mathbf{A}}) &\iff \mathbf{A}\mathbf{M} = \mathbf{0}_{\mathcal{M}_{3}(\mathbb{R})} &\iff \begin{pmatrix} x+z & y+t \\ 2(x+z) & 2(y+t) \end{pmatrix} = \mathbf{0}_{\mathcal{M}_{3}(\mathbb{R})} \\ &\iff \begin{cases} x + z &= 0 \\ y + t &= 0 \end{cases} \\ &\iff \begin{cases} x &= -z \\ y &= -t \end{cases} \\ &\iff \mathbf{M} = \begin{pmatrix} -z & -t \\ z & t \end{pmatrix} = z \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} + t \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \end{aligned}$$

 $\begin{aligned} & Donc \ker(m_{\mathbf{A}}) = \mathrm{Vect}\left(\begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}\right). \ Comme \ les \ matrices \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \ et \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \ sont \ non \ colinéaires, \ la \\ & famille \left(\begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}\right) \ est \ une \ base \ de \ \ker(m_{\mathbf{A}}) \ et \ dim(\ker(m_{\mathbf{A}})) = 2. \end{aligned}$

Correction du test 6 (Retour à l'énoncer.)

Seule l'application t est injective.

Correction du test 7 (Retour à l'énoncer.)

$$\operatorname{Im}(f) = \left\{ (x - z, x + y), (x, y, z) \in \mathbb{R}^3 \right\} = \left\{ (x, x) + (-z, 0) + (0, y), (x, y, z) \in \mathbb{R}^3 \right\}$$
$$= \left\{ x(1, 1) + z(-1, 0) + y(0, 1), (x, y, z) \in \mathbb{R}^3 \right\}$$
$$= \operatorname{Vect}((1, 1), (-1, 0), (0, 1)) = \mathbb{R}^2.$$

Correction du test 8 (Retour à l'énoncer.)

On considère l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par $f: (x, y) \mapsto (2x - y, 2y - 3x)$.

1. Soient $((x, y), (x', y')) \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$. Alors

$$\begin{split} f((x,y) + \lambda(x',y')) &= f((x + \lambda x', y + \lambda y')) \\ &= (2(x + \lambda x') - (y + \lambda y'), 2(y + \lambda y') - 3(x + \lambda x')) \\ &= (2x - y + \lambda(2x' - y'), 2y - 3x + \lambda(2y' - 3x')) \\ &= (2x - y, 2y - 3x) + \lambda(2x' - y', 2y' - 3x') \\ &= f((x,y)) + \lambda f((x',y')). \end{split}$$

Comme $(x, y) \in \mathbb{R}^2$, $(x', y') \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$ sont quelconques, on a montré que

$$\forall ((x, y), (x', y')) \in (\mathbb{R}^2)^2, \ \forall \lambda \in \mathbb{R}, \quad f((x, y) + \lambda(x', y')) = f((x, y)) + \lambda f((x', y')).$$

Donc f est linéaire.

2. Soit $(x, y) \in \mathbb{R}^2$.

$$(x,y) \in \ker(f) \iff f((x,y)) = 0 \iff \begin{cases} 2x - y = 0 \\ -3x + 2y = 0 \end{cases}$$

$$\iff \begin{cases} 2x - y = 0 \\ x = 0 \end{cases}$$

$$L_2 \to L_2 + 2L_1$$

$$\iff x = y = 0$$

Ainsi $\ker(f) = \{(0,0)\}.$

De plus,

$$\begin{split} \operatorname{Im}(f) &= \left\{ (2x - y, 2y - 3x), (x, y) \in \mathbb{R}^2 \right\} = \left\{ (2x, -3x) + (-y, 2y), (x, y) \in \mathbb{R}^2 \right\} \\ &= \left\{ x(2, -3) + y(-1, 2), (x, y) \in \mathbb{R}^2 \right\} \\ &= \operatorname{Vect}((2, -3), (-1, 2)) \\ &= \operatorname{Vect}((1, -1), (-1, 2)) \\ &= \operatorname{Vect}((1, -1), (0, 1)) \\ &= \operatorname{Vect}((1, 0), (0, 1)) = \mathbb{R}^2 \end{split}$$

3. f est surjective et injective.

Correction du test 9 (Retour à l'énoncer.)

Comme la famille $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ est une base de $\mathcal{M}_2(\mathbb{R})$ on a

$$\begin{split} Im(\phi) &= \mathrm{Vect}\left(\phi\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right), \phi\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right), \phi\left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right), \phi\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\right) \\ &= \mathrm{Vect}\left(\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}\right) \\ &= \mathrm{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right) \end{split}$$

On vérifie sans mal que la famille $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ est libre, donc $rg(\phi) = 3$.

Correction du test 10 (Retour à l'énoncer.)

1. Soient $(P,Q) \in (\mathbb{R}_3[X])^2$ et $\lambda \in \mathbb{R}$. Alors

$$\phi(P + \lambda Q) = ((P + \lambda Q)(1), (P + \lambda Q)(2)) = (P(1) + \lambda Q(1), P(2) + \lambda Q(2)) = \phi(P) + \lambda \phi(Q).$$

Ainsi,

$$\forall (P,Q) \in (\mathbb{R}_3[X])^2, \ \forall \lambda \in \mathbb{R}, \quad \varphi(P+\lambda Q) = \varphi(P) + \lambda \varphi(Q).$$

Donc φ est linéaire.

2. Comme $(1,X,X^2,X^3)$ est une base de $\mathbb{R}_3[X]$, on a

$$\begin{split} Im(\phi) &= Vect(\phi(1), \phi(X), \phi(X^2), \phi(X^3)) \\ &= Vect((1,1), (1,2), (1,4), (1,8)) \\ &= Vect((1,1), (0,1)) \\ &= \mathbb{R}^2 \end{split}$$

Ainsi $\operatorname{rg}(\varphi) = \dim(\mathbb{R}^2) = 2$.

3. D'après le théorème du rang, on a

$$\dim(\mathbb{R}_3[X]) = \dim(\ker(\varphi)) + \operatorname{rg}(\varphi)$$

c'est-à-dire

$$4 = \dim(\ker(\varphi)) + 2.$$

 $Ainsi \dim(\ker(\varphi)) = 2.$

4. D'après la question précédente, $\ker(\phi) \neq \{0\}$ donc ϕ n'est pas injective (donc pas bijective). D'après la question 2, $\operatorname{Im}(\phi) = \mathbb{R}^2$ donc ϕ est surjective.

Correction du test 11 (Retour à l'énoncer.)

Soit f l'application définie par

$$f: \mathcal{M}_{3,1}(\mathbb{R}) \longrightarrow \mathcal{M}_{3,1}(\mathbb{R})$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} 2x + y \\ z \\ y \end{pmatrix}$$

Montrer que f est un automorphisme de $\mathcal{M}_{3,1}(\mathbb{R})$.

 $1. \ \ Montrons \ que \ f \ est \ une \ application \ lin\'eaire:$

$$\forall \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \right) \in \left(\mathcal{M}_{3,1}(\mathbb{R}) \right)^2, \ \forall \lambda \in \mathbb{R}, \quad f \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} + \lambda \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \right) = \begin{pmatrix} 2(x + \lambda x') + y + \lambda y' \\ z + \lambda z' \\ y + \lambda y' \end{pmatrix} = \begin{pmatrix} 2x + y \\ z \\ y \end{pmatrix} + \lambda \begin{pmatrix} 2x' + y' \\ z' \\ y' \end{pmatrix} = f \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) + \lambda f \left(\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \right) = \begin{pmatrix} x + \lambda x' \\ y + \lambda y' \\ y + \lambda y' \end{pmatrix} = \begin{pmatrix} x + \lambda x' \\ y \\ y' \end{pmatrix} + \lambda \begin{pmatrix} x' \\ y \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} = f \begin{pmatrix} x \\ y \\ z' \end{pmatrix} + \lambda f \begin{pmatrix} x \\ y \\ z'$$

Ainsi f est linéaire. C'est un endomorphisme de $\mathcal{M}_{3,1}(\mathbb{R})$.

2. Comme $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ forment une base de $\mathcal{M}_{3,1}(\mathbb{R})$ on a

$$\operatorname{Im}(f) = \operatorname{Vect}\left(f\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right), f\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right), f\left(\begin{pmatrix} 0\\0\\1 \end{pmatrix}\right)\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right)$$

$$= \mathcal{M}_{3,1}(\mathbb{R})$$

3. f est un endomorphisme de $\mathcal{M}_{3,1}(\mathbb{R})$ surjectif donc bijectif car $\mathcal{M}_{3,1}(\mathbb{R})$ est de dimension finie. Ainsi c'est un automorphisme.

28

Correction du test 12 (Retour à l'énoncer.)

Soient (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et f l'application linéaire de \mathbb{R}^3 dans $\mathbb{R}_2[X]$ telle que

$$f(e_1) = 1$$
 ; $f(e_2) = X - 2$; $f(e_3) = X^2 + X - 1$

1. Soit $(x, y, z) \in \mathbb{R}^3$. On a

$$(x, y, z) = xe_1 + ye_2 + ze_3$$

donc par linéarité de f on trouve

$$\begin{split} f((x,y,z)) &= f(xe_1 + ye_2 + ze_3) = xf(e_1) + yf(e_2) + zf(e_3) \\ &= x + y(X-2) + z(X^2 + X - 1) \\ &= x - 2y - z + (y+z)X + zX^2 \end{split}$$

Ainsi,

$$\forall (x,y,z) \in \mathbb{R}^3, \quad f((x,y,z)) = x - 2y - z + (y+z)X + zX^2.$$

2. On sait que

$$Im(f) = Vect(1, X - 2, X^2 + X - 1).$$

Or la famille $(1, X-2, X^2+X-1)$ est formée de polynômes non nuls de $\mathbb{R}_2[X]$ de degrés distincts donc c'est une famille libre de $\mathbb{R}_2[X]$. Comme elle est de cardinal $3 = \dim(\mathbb{R}_2[X])$, c'est une base de $\mathbb{R}_2[X]$. Ainsi,

$$Im(f) = Vect(1, X - 2, X^2 + X - 1) = \mathbb{R}_2[X]$$

 $donc \operatorname{Im}(f) = \dim(\mathbb{R}_2[X]) = 3.$

3. D'après la question précédente, f est surjective. Comme $dim(\mathbb{R}^3) = 3 = dim(R_2[X])$, c'est donc un isomorphisme.