Theorem 1: It p is an odd prime and g is a primitive root modulo p^{α} , then g is a primitive root modulo p^{α} for $\alpha=3,4,5,...$ modulo p, then g in a primitive root modulo 2 p. Theorem 2: It p in our odd prime and g in a primitive root

Park: Suppose that g in odd.

The numbers $g, g', \ldots, g p(p^n)$ form a Reduced Reviolate system mod p^n . Note that $\phi(2p^n) = \phi(p^n)$ kince p in odd.

They also form a Reduced reviolate system mod $2p^n$

This proves that g is a primitive root modulo 2p.

Theorem 3 (Gauss): There exists a primitive root modulo m ← m = 1, 2, 4, p on 2p, where p in an odd prime and < >1.

Proof: We have already seen that, if m=1, 2,4, b or 2b, then there exists a primitive root modulo m.

module 2 for dy 3. root modulo m, then $m = 1, 2, 4, \beta$ or 2β , where β in odd. To complete the proof, we prove that if there exists a primitive

Let $l = l.c.m. (\phi(m_i), \phi(m_2))$. power. Them in can be expressed as a product Suppose now that in is not a prime power or twice a prime $m = m_1 \cdot m_2$ with $gcd(m_1, m_2) = 1, m_1 > 2, m_2 > 2.$

let a be such that gcd(e, m)=1, (that in, a & U(Zm))

Thus, $gcd(\alpha, m_1) = gcd(\alpha, m_2) = 1$.

 $a^{\ell} \equiv 1 \pmod{m_1}$ and $a^{\ell} \equiv 1 \pmod{m_2}$

> a = 1 (mod (m, m, m2)) => a = 1 (mod m)

Since $m_1 > 2$, so $2 | \varphi(m_1) | M_{\infty}, m_2 > 2 \Rightarrow 2 | \varphi(m_2) |$ Now, $l = lcm(\varphi(m_1), \varphi(m_2))$ > \(\phi(m) \) \Rightarrow $o(a) \leq l \quad \forall \quad a$. 2 gcd(\phi(m_1), \phi(m_2)). [[$gcd(\phi(m_1), \phi(m_2))$ $\phi(m_1) \phi(m_2)$ $\in (\mathbb{Z}_m)$ $\eta cd(\phi(m_1),\phi(m_2))$ (m)

(1) & (2) \Rightarrow & $\leq \varphi(m)$. Hence, every $\alpha \in U(\mathbb{Z}_m)$ has order. less than $\varphi(m) = |U(\mathbb{Z}_m)|$.

 $\gcd(\phi(m_1),\phi(m_2)) < \phi(m) \rightarrow (2)$

This proves that U(Zm) is not cyclic 3 there does not exist primitive root modulo m.

This completes the proof.

> Quadratic residues/ nonresidues:

Definition: Let m > 1 and 'a' be such that gcd(a, m)=1. If it has no solution, then 'a' is called a quadratic nonresidue the congruence x=a (mod m) has a solution. Then, ia in called a quadratic residue modulo in if modulo m.

... 3, 5, and 7 are all quadratic nonnesidues modulo 8 Let m = 8. Then, $U(\mathbb{Z}_8) = \{1, 3, 5, 7\}$. we have 3=9=1(mod 8), 5=1(mod 8), 7=1 (mod 8). 1 in the only quadratic residue mod 8.

tresidues of nontresidues only which are distinct modulo m. according as a in or is not, we convider as distinct Kemark: Since a+m in a gnadratic residue or nonresidue med m

So, are comider elements of U(Zm) while studying quadratic residues/ non tesidues.

$N6m, \frac{b-1}{a^2} = (b^2)^{\frac{b-1}{2}} = b = 1 \pmod{b}$	Then, a = b (mod p) for some b & U(Zp)	Proof: Let 'a' be a quadratic residue mod p.	$\Leftrightarrow \alpha^{\frac{b-1}{2}} = -1 \pmod{b},$	2,0	←) a = 1 (mod þ)	Thun, a in a grandratic Residue modulo b	Therem4: Let b be an odd prime. Let gcd/
		(mod b)	$\frac{b-1}{2} = 1 0x = 1$	robution of 22 = 1(mod)	-	$\begin{pmatrix} p-1 \\ a \end{pmatrix} = a = 1 \pmod{b}$	gcd(x, p)=1.

conversely, suppose that $a^{\frac{b-1}{2}} \equiv 1 \pmod{b}$

Let of be a primitive root med b.

| Nam, $a \equiv g^k \pmod{b}$.

Now, a = 1 (mod p) => 9

= 1 (mod b)

=> 0(8) | R. 1/2 => p-1 | R. 1/2 => R in even.

 $\alpha = g^{k} \pmod{p} \Rightarrow \alpha = \left(g^{k/2}\right)^{k} \pmod{p}$ is a in a quadratic residue med b.

Symbol (a) in defined as follows: Definition: If p denotes an odd prime, then the Legendre

 $(\frac{a}{b}) = \begin{cases} 0 & \text{if } b \mid a \end{cases}$ and 'ain a quadratic residue mode (-1 if p/a, and is in a greatratic nonresidue, mod b

Theorem 5. Let be on odd prime. Then, (1) $\left(\frac{a}{b}\right) \equiv a^{\frac{b-1}{2}} \pmod{b}$

$$(2) \left(\frac{a}{b}\right)\left(\frac{b}{b}\right) = \left(\frac{ab}{b}\right)$$

(3)
$$a \equiv b \pmod{b} \Rightarrow \left(\frac{a}{b}\right) = \left(\frac{b}{b}\right)$$

(3)
$$a = b \pmod{b} \Rightarrow \left(\frac{a}{b}\right) = \left(\frac{b}{b}\right)$$
.
(4) It $\gcd(a, b) = 1$, then $\left(\frac{a^{2}}{b}\right) = 1$, $\left(\frac{a^{2}b}{b}\right) = \left(\frac{b}{b}\right)$.
(5) $\left(\frac{1}{b}\right) = 1$, $\left(\frac{-1}{b}\right) = (-1)^{\frac{b-1}{2}}$.

quadratic ravidues med p and there are by quadratic Theorems: Let b be an odd prime. Thun, there are b-1 nonnesidues med b.

Proof: Let g be a primitive root mod p.

Then, $U(\mathbb{Z}_p) = \{1, 2, \dots, p-1\} = \{g, g^2, \dots, g^{p-1}\}$.

Since, gin a generator of $U(Z_p)$, so o(z) = p-1. We first show that of in a quadratic nonresidue med b. 1 in a quadratic nonresidue mod p. g 2 = -1 (mod b) П $\begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} = -1$ **b-2** are all guadratic protesidre mod p 1 - Thm 5 (4)

Agenin, 3, 3, ..., g b-1 are all quadratic residues mode b.

This completes the proof. #