GUI de Apoyo para el Preprocesamiento de Imágenes Mamográficas

Omar Trinidad Gutiérrez Méndez Juana Canul Reich

División Académica de Informática y Sistemas Congreso Nacional de Informática y Sistemas

Septiembre de 2013

Contenido

Introducción Cáncer de mama Preprocesamiento Mamogramas

Contenido

Introducción

Cáncer de mama

Preprocesamiento

Mamogramas

Desarrollo

Materiales y métodos

Reducción del área de trabajo

Conversión de la profundidad de bits

Eliminación de ruido

Mejora de contraste

Interfaz gráfica

Contenido

Introducción

Cáncer de mama

Preprocesamiento

Mamogramas

Desarrollo

Materiales y métodos Reducción del área de trabajo Conversión de la profundidad de bits Eliminación de ruido Mejora de contraste Interfaz gráfica

Conclusiones

- ► El cáncer de mama es un grave problema de salud pública
- ► El estudio de mamografías es la mejor forma de detectar oportunamente este padecimiento
- Existe un margen de error en la opinión de los radiólogos
- Es posible incrementar los diagnósticos exitosos al mejorar la calidad de la imagen

- ► El cáncer de mama es un grave problema de salud pública
- ► El estudio de mamografías es la mejor forma de detectar oportunamente este padecimiento
- Existe un margen de error en la opinión de los radiólogos
- Es posible incrementar los diagnósticos exitosos al mejorar la calidad de la imagen

- ► El cáncer de mama es un grave problema de salud pública
- ► El estudio de mamografías es la mejor forma de detectar oportunamente este padecimiento
- Existe un margen de error en la opinión de los radiólogos
- Es posible incrementar los diagnósticos exitosos al mejorar la calidad de la imagen

- ► El cáncer de mama es un grave problema de salud pública
- ► El estudio de mamografías es la mejor forma de detectar oportunamente este padecimiento
- Existe un margen de error en la opinión de los radiólogos
- ► Es posible incrementar los diagnósticos exitosos al mejorar la calidad de la imagen

- ► El preprocesamiento es la fase previa al procesamiento de imágenes *per se*
- ► El preprocesamiento es útil para:
 - ► Mejorar la calidad de la imagen al ojo humano
 - Preparar la imagen para ser usada en etapas posteriores

- ► El preprocesamiento es la fase previa al procesamiento de imágenes *per se*
- ► El preprocesamiento es útil para:
 - ► Mejorar la calidad de la imagen al ojo humano
 - ► Preparar la imagen para ser usada en etapas posteriores

- ► El preprocesamiento es la fase previa al procesamiento de imágenes *per se*
- ► El preprocesamiento es útil para:
 - ► Mejorar la calidad de la imagen al ojo humano
 - Preparar la imagen para ser usada en etapas posteriores

- ► El preprocesamiento es la fase previa al procesamiento de imágenes *per se*
- ► El preprocesamiento es útil para:
 - ► Mejorar la calidad de la imagen al ojo humano
 - ▶ Preparar la imagen para ser usada en etapas posteriores

Mamogram as

Mamogramas

- Los mamogramas o mamografías son radiografías de baja intensidad
- ► No son imágenes convencionales
- ► DICOM (Digital Imaging and COmmunications in Medicine) es el estándar de las imágenes médicas

Mamogramas

- Los mamogramas o mamografías son radiografías de baja intensidad
- ► No son imágenes convencionales
- ► DICOM (Digital Imaging and COmmunications in Medicine) es el estándar de las imágenes médicas

Mamogramas

- Los mamogramas o mamografías son radiografías de baja intensidad
- ► No son imágenes convencionales
- ► DICOM (Digital Imaging and COmmunications in Medicine) es el estándar de las imágenes médicas

► El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas *crudos*

- El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas crudos
- ► Se aplicó un enfoque híbrido consistente en los siguientes métodos:

- El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas crudos
- Se aplicó un enfoque híbrido consistente en los siguientes métodos:
 - ► Reducción del área de trabajo

- El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas crudos
- Se aplicó un enfoque híbrido consistente en los siguientes métodos:
 - Reducción del área de trabajo
 - ► Conversión de bits

- El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas crudos
- Se aplicó un enfoque híbrido consistente en los siguientes métodos:
 - Reducción del área de trabajo
 - Conversión de bits
 - ► Eliminación de ruido

- El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas crudos
- Se aplicó un enfoque híbrido consistente en los siguientes métodos:
 - Reducción del área de trabajo
 - Conversión de bits
 - Eliminación de ruido
 - ► Mejora de contraste

- El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas crudos
- Se aplicó un enfoque híbrido consistente en los siguientes métodos:
 - Reducción del área de trabajo
 - Conversión de bits
 - Eliminación de ruido
 - Mejora de contraste
- La implementación se realizó con el lenguaje de programación Matlab

- El Hospital Juan Graham Casasús dió acceso a un banco de mamogramas crudos
- Se aplicó un enfoque híbrido consistente en los siguientes métodos:
 - Reducción del área de trabajo
 - Conversión de bits
 - Eliminación de ruido
 - Mejora de contraste
- La implementación se realizó con el lenguaje de programación Matlab
- ► También se utilizó Python para ejecutar tareas de scripting

THE 2397^{TH} ACADEMIC AWARDS

THIS YEAR'S HONOREES FOR OUTSTANDING ACHIEVEMENTS IN THE ACADEMIC ARTS

BEST SUPPORTING **AUTHOR**

Charles Willard for most contribution by a third author.

BEST SPECIAL EFFECTS IN A GRAPH POWERPOINT SLIDE

Kristen Mechoso for her use of a 3D plot for 2D data.

BEST ANIMATED

Sanjay Rajagopalan for his innovative use of exploding clip art.

BEST ADAPTED RESEARCH

Jennifer Lee for applying someone else's method to somebody else's problem.

MY STUDENT COULD NOT BE HERE TO ACCEPT THIS (SHE'S IN THE LAB), SO ... I GUESS I'LL TAKE CREDIT FOR IT.

Las mamografías son imágenes de gran resolución

- Las mamografías son imágenes de gran resolución
- ► En esta etapa se elimina la región oscura de la imagen

- Las mamografías son imágenes de gran resolución
- ▶ En esta etapa se elimina la región oscura de la imagen
- ► Los pasos para reducir el área de trabajo son:

- Las mamografías son imágenes de gran resolución
- ▶ En esta etapa se elimina la región oscura de la imagen
- Los pasos para reducir el área de trabajo son:
 - ► Binarización

- Las mamografías son imágenes de gran resolución
- ► En esta etapa se elimina la región oscura de la imagen
- Los pasos para reducir el área de trabajo son:
 - Binarización
 - ► Eliminación de etiquetas

- Las mamografías son imágenes de gran resolución
- ► En esta etapa se elimina la región oscura de la imagen
- ► Los pasos para reducir el área de trabajo son:
 - Binarización
 - Eliminación de etiquetas
 - Dibujar los bordes

Reducción del área de trabajo

- Las mamografías son imágenes de gran resolución
- ▶ En esta etapa se elimina la región oscura de la imagen
- ► Los pasos para reducir el área de trabajo son:
 - Binarización
 - Eliminación de etiquetas
 - Dibujar los bordes
 - Corte

► La profundidad de una mamografía es por lo general 12 bits

- La profundidad de una mamografía es por lo general 12 bits
- ► Matlab está configurado para visualizar las imágenes a 8 ó 16 bits

- ► La profundidad de una mamografía es por lo general 12 bits
- Matlab está configurado para visualizar las imágenes a 8 ó 16 bits
- ► Al visualizar una mamografía de 12 bits como una imagen de 16 bits, esta luce oscura

► En el proceso de adquisición de los datos es posible obtener algún tipo de contaminación, conocida como ruido

- ► En el proceso de adquisición de los datos es posible obtener algún tipo de contaminación, conocida como ruido
- Un ruido común en las imágenes mamográficas es conocido como ruido impulsivo, o ruido de sal y pimienta

- ► En el proceso de adquisición de los datos es posible obtener algún tipo de contaminación, conocida como ruido
- Un ruido común en las imágenes mamográficas es conocido como ruido impulsivo, o ruido de sal y pimienta
- Se aplicó el Filtro Adaptativo de la Mediana para eliminar el ruido

► Se utilizó el algoritmo CLAHE (Contrast-Limited Adaptive Histogram Equalization)

- Se utilizó el algoritmo CLAHE (Contrast-Limited Adaptive Histogram Equalization)
- ► Con la ecualización de histogramas se distribuyen mejor los niveles de grises en la imagen

► Se está construyendo un banco de datos de mamogramas preprocesados

- Se está construyendo un banco de datos de mamogramas preprocesados
- ► El material será de dominio público

- Se está construyendo un banco de datos de mamogramas preprocesados
- El material será de dominio público
- ► El código fuente empleado es *open source* y puede encontrarse en https://github.com/omartrinidad/preprocessing