# Type-Reduction of General Type-2 Fuzzy Sets: The Type-1 OWA Approach

Francisco Chiclana, 1,\* Shang-Ming Zhou<sup>2,†</sup>

<sup>1</sup>Centre for Computational Intelligence, DMU Interdisciplinary Group in Intelligent Transport Systems, Faculty of Technology, De Montfort University, LE1 9BH, UK

<sup>2</sup>Health Information Research Unit, College of Medicine, Swansea University, SA2 8PP, UK

For general type-2 fuzzy sets, the defuzzification process is very complex and the exhaustive direct method of implementing type-reduction is computationally expensive and turns out to be impractical. This has inevitably hindered the development of type-2 fuzzy inferencing systems in real-world applications. The present situation will not be expected to change, unless an efficient and fast method of deffuzzifying general type-2 fuzzy sets emerges. Type-1 ordered weighted averaging (OWA) operators have been proposed to aggregate expert uncertain knowledge expressed by type-1 fuzzy sets in decision making. In particular, the recently developed alpha-level approach to type-1 OWA operations has proven to be an effective tool for aggregating uncertain information with uncertain weights in real-time applications because its complexity is of linear order. In this paper, we prove that the mathematical representation of the type-reduced set (TRS) of a general type-2 fuzzy set is equivalent to that of a special case of type-1 OWA operator. This relationship opens up a new way of performing type reduction of general type-2 fuzzy sets, allowing the use of the alpha-level approach to type-1 OWA operations to compute the TRS of a general type-2 fuzzy set. As a result, a fast and efficient method of computing the centroid of general type-2 fuzzy sets is realized. The experimental results presented here illustrate the effectiveness of this method in conducting type reduction of different general type-2 fuzzy sets. © 2013 Wiley Periodicals, Inc.

#### 1. INTRODUCTION

Type-2 fuzzy sets initially proposed by Zadeh in 1975<sup>1</sup> offer the advantage of modeling higher level uncertainty in human decision-making process than using type-1 fuzzy sets. In a type-2 fuzzy inference system (FIS), type-2 fuzzy sets are used in the antecedent and/or consequent parts of all or some of its fuzzy rules. Type-2 FISs have gained successful applications in various areas where uncertainties occur, such as in diagnostic medicine<sup>2,3</sup> and in intelligent signal processing.<sup>4,5</sup>

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 28, 505–522 (2013) © 2013 Wiley Periodicals, Inc.

View this article online at wileyonlinelibrary.com. • DOI 10.1002/int.21588

<sup>\*</sup>Author to whom all correspondence should be addressed: e-mail: chiclana@dmu.ac.uk. †e-mail: smzhou@ieee.org.



Figure 1. Type-2 FIS.<sup>16</sup>

Generally speaking, there are five stages in any FIS: *fuzzification*, *antecedent computation*, *implication*, *aggregation*, and *defuzzification*. The defuzzification process becomes necessary and important because as Zadeh<sup>6</sup> pointed out, fuzzy sets might need to be defuzzified in those situation in which a person is presented with a fuzzy statement but its implementation or execution is to be done via the use of a single real value. The defuzzification of a type-1 fuzzy set does not present any challenges from a mathematical point of view; however, this is not true in the case of a type-2 fuzzy set. The defuzzification of a type-2 fuzzy set consists of two steps (see Figure 1):<sup>7</sup>

- (a) Type-reduction of type-2 fuzzy set: The procedure by which a type-2 fuzzy set is converted to a type-1 fuzzy set, known as the type-reduced set (TRS); and
- (b) Defuzzification of type-1 fuzzy set: The TRS is defuzzified to give a crisp number, known as the *centroid* of the type-2 fuzzy set.

The computation of the TRS is a very challenging step in type-2 FIS modeling. The consequence is that most researchers concentrate exclusively on the development of theoretical results and practical applications of interval type-2 fuzzy sets. <sup>4,5,8–13</sup> The defuzzification of an interval type-2 fuzzy set has been greatly simplified in recent years with the development of novel, accurate, and fast interval methods such as the *Greenfield–Chiclana collapsing defuzzifier* <sup>10</sup> and the *enhance iterative algorithm with stop condition* <sup>11,14</sup> variant of the *Karnik–Mendel Iterative procedure*. <sup>15</sup>

For general type-2 fuzzy sets, the direct method of implementing type reduction is computationally expensive and inefficient, because it involves identifying the centroids of an extraordinarily large number of type-1 fuzzy sets, called embedded type-2 fuzzy sets. This has inevitably hindered the development of general type-2 FISs in real-world applications. The present situation will not be expected to change, unless an efficient and fast method to deffuzzify general type-2 fuzzy sets emerges.

The idea of developing such a method of defuzzifying general type-2 fuzzy sets turns out to be possible while we investigate a seemingly different research

problem—aggregation of uncertain information based on type-1 OWA operator.<sup>17</sup> Type-1 OWA operators provide us with a new technique for directly aggregating uncertain information modeled by type-1 fuzzy sets via OWA mechanism in soft decision making and data mining.

It is known that aggregation is a necessary step in many applications, in particular the multiexpert decision making, multicriteria decision making. <sup>18–20</sup> type-1 OWA operators can be used to aggregate expert knowledge expressed by type-1 fuzzy sets in decision making and they also have the potential of merging fuzzy sets in fuzzy modeling to improve model interpret ability and transparency. 21-23 However, the direct approach to performing type-1 OWA operation involves high computational load, <sup>17</sup> which inevitably curtailed further applications of type-1 OWA operator to real-world decision making. To overcome this issue, a new approach to type-1 OWA operations, called the *alpha-level approach*, has been developed based on the  $\alpha$ -cuts of fuzzy sets.<sup>24</sup> This approach benefits from the so-called representation theorem of type-1 OWA operators.<sup>24</sup> This representation theorem states that a type-1 OWA operator can be decomposed into a series of its  $\alpha$ -level type-1 OWA operators. The alpha-level approach has proven to be an effective tool for performing type-1 OWA operations. Indeed, the complexity of this alpha-level approach is of linear order, so it can be used in real-time soft decision making, database integration, and information fusion that involve aggregation of uncertain information.

The aggregation of crisp information via an OWA operator<sup>25</sup> and the defuzzification of a type-1 fuzzy set<sup>6</sup> have up to now being treated as different and unconnected problems in fuzzy set theory research. A similar situation applies to the aggregation of uncertain information via a type-1 OWA operator<sup>17,24</sup> and the defuzzification of a type-2 fuzzy set.<sup>7</sup> However, a close inspection of their mathematical representation suggests that the centroid of a type-1 fuzzy set and the TRS of a type-2 fuzzy set could be seen as a special case of an OWA operator and type-1 OWA operator, respectively.

Mathematically, the centroid of a type-1 fuzzy set can be seen as the output of an OWA operator applied to a set of crisp values. This means that in practice, the computation process of the TRS of a type-2 fuzzy sets could be carried out by applying its equivalent OWA computation process. The TRS of a type-2 fuzzy set and the type-1 OWA operator were both developed via the application of Zadeh's extension principle. We hypothesize that a result connecting the mathematical representation of the TRS of a type-2 fuzzy set and the representation of a type-1 OWA operator can be proved. Indeed, in this paper, we will prove that the TRS of a type-2 fuzzy set, as defined in Ref. 7 is equivalent to that of a type-1 OWA operator, as defined in Ref. 17. We extend this equivalent mathematical representation to the TRS of interval type-2 fuzzy sets and the  $\alpha$ -level type-1 OWA operators.

In summary, the main contribution of this paper is that the link between the type reduction of general type-2 fuzzy sets and type-1 OWA aggregation is established. As a result, a fast and efficient method for computing the TRS of a general type-2 fuzzy set emerges via the *alpha-level approach* to type-1 OWA aggregation.

#### 2. TYPE-2 FUZZY SETS AND TYPE-REDUCED SETS

Let X be a universe of discourse. A fuzzy set A on X is characterized by a membership function  $\mu_A: X \to [0, 1]$ , and is expressed as follows:

$$A = \{(x, \mu_A(x)) | \mu_A(x) \in [0, 1] \, \forall x \in X\}. \tag{1}$$

Note that

- (1) The membership grades of A are crisp numbers. This type of fuzzy set is also referred to as a type-1 fuzzy set. In the following, we will use the notation U = [0, 1].
- (2) A crisp number a can also be represented as a type-1 fuzzy set  $\hat{a}$  with the following membership function:  $\mu_{\hat{a}}(x) = 1$  if x = a; and  $\mu_{\hat{a}}(x) = 0$  if  $x \neq a$ . This special type-1 fuzzy set  $\hat{a}$  is called the *singleton fuzzy set*.

The *representation theorem* of type-1 fuzzy sets provides an alternative and convenient way to define type-1 fuzzy sets via their corresponding family of crisp  $\alpha$ -level sets. The  $\alpha$ -level set of a type-1 fuzzy set A is defined as

$$A_{\alpha} = \{ x \in X | \mu_A(x) \ge \alpha \} \tag{2}$$

The set of crisp sets  $\{A_{\alpha}|0<\alpha\leq 1\}$  is said to be a representation of the type-1 fuzzy set A. Indeed, the type-1 fuzzy set A can be represented as

$$A = \bigcup_{0 < \alpha \le 1} \alpha A_{\alpha} \tag{3}$$

109811 1, 2013. 5. Dowloaded from https://oininelibrary.wile.co.m/doi/10.1002 int. 21588 by <Shibbleth>-member@man.c. ak, Wiley Online Library on [22032024], See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library on rules of use; OA articles are governed by the applicable Creative Commons License

with membership function

$$\mu_A(x) = \bigvee_{\alpha: x \in A_\alpha} \alpha \tag{4}$$

This is the so-called "horizontal" representation of a type-1 fuzzy set.

The definition of the *centroid* of a type-1 fuzzy set A in X, also referred to as the *center of gravity* or *center of mass*, requires the universe of discourse to be a subset of the set of real numbers. Therefore, from now on we will assume that the domain of the type-1 fuzzy set is of such type.

The centroid for a continuum universe of discourse X is defined as

$$C_A = \frac{\int_x x \cdot \mu_A(x) dx}{\int_x \mu_A(x) dx},\tag{5}$$

while when the domain X is discretized into n points is

$$C_A = \frac{\sum_{i=1}^n x_i \cdot \mu_A(x_i)}{\sum_{i=1}^n \mu_A(x_i)}$$
 (6)

Note that in this discrete form of the centroid of a type-1 fuzzy set it is true that  $x_1 < x_2 < \cdots < x_n$ .

#### 2.1. Definition of a Type-2 Fuzzy Set

A type-2 fuzzy set  $\tilde{A}$  on X is a fuzzy set whose membership grades are themselves fuzzy, i.e.,  $\mu_{\tilde{A}}(x)$  is a type-1 fuzzy set on U for all x, i.e.,

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | \mu_{\tilde{A}}(x) \in \tilde{P}(U) \, \forall x \in X\}. \tag{7}$$

where  $\tilde{P}(U)$  is the set of fuzzy sets on U.

This implies that for all  $x \in X$  there exists a subset of U,  $J_x$ , such that  $\mu_{\tilde{A}}(x)$ :  $J_x \to U$ . Applying (1), we have

$$\mu_A(x) = \{ (u, \mu_{\tilde{A}}(x)(u)) | \mu_{\tilde{A}}(x)(u) \in U \forall u \in J_x \subseteq U \}.$$
 (8)

where X is called the primary domain of  $J_x$  the primary membership of x while U is known as the secondary domain and  $\mu_{\tilde{A}}(x)$  is called the secondary membership of x.

Putting (7) and (8) together, we have

$$\tilde{A} = \{(x, (u, \mu_{\tilde{A}}(x)(u))) | \mu_{\tilde{A}}(x)(u) \in U, \forall x \in X, \forall u \in J_x \subseteq U\}.$$
(9)

Geometrically, a type-2 fuzzy set may be viewed as a surface in space represented by (x, u, z) coordinates. The *footprint of uncertainty (FOU)* of a type-2 fuzzy set is the projection of the set onto the x-u plane. Figure 2 shows the FOU of a general type-2 fuzzy set with Gaussian primary membership function and triangular secondary membership functions. Note that in this example, both primary and secondary domains are the unit interval; however, in general, the primary domain although numeric in nature may be different to the secondary domain (see Section 5). The *lower (upper) membership function* of a type-2 fuzzy set is the type-1 membership function associated with the lower (upper) bound of the FOU.

*Interval Type-2 Fuzzy Set.* An interval type-2 fuzzy set is a type-2 fuzzy set with constant secondary membership function 1, i.e.,  $\mu_{\tilde{A}}(x)(u) = 1$ ,  $\forall u \in J_x$ . The intersection of a plane parallel to the x - u plane at a height  $\alpha \in U$  with a general



Figure 2. Type-2 fuzzy set: Gaussian primary MF and triangular secondary MFs. 16

type-2 fuzzy sets produces an interval type-2 fuzzy set. This is known as a horizontal slice of a type-2 fuzzy set or  $\alpha$ -plane.<sup>26</sup> In particular, the FOU of a general type-2 fuzzy set is obtained using the strong  $\alpha$ -plane with  $\alpha = 0$ .

#### 2.2. Type Reduced Set of a Type-2 Fuzzy Set

An mentioned before, for type-2 fuzzy sets the defuzzification process has two steps. First, through a procedure known as *type reduction*, a type-1 set is derived. This set is known as the *type-reduced set (TRS)*. Defuzzifying the type-1 TRS is relatively straightforward, and this is the second step of type-2 defuzzification.

Type reduction is dependent on the concept of an *embedded type-2 set*. An embedded type-2 set (or "set" for short) is a special kind of type-2 fuzzy set. It relates to the type-2 fuzzy set in which it is embedded in this way: For every primary domain value, x, there is a unique secondary domain value, u, plus the associated secondary membership grade that is determined by the primary and secondary domain values,  $\mu_{\bar{A}}(x)(u)$ .

DEFINITION 1(Embedded Set). Let  $\tilde{A}$  be a type-2 fuzzy set in X. For discrete universes of discourse X and U, an embedded type-2 set  $\tilde{A}_e$  of  $\tilde{A}$  is defined as the following type-2 fuzzy set:

$$\tilde{A}_e = \{ (x_i, (u_i, \mu_{\tilde{A}}(x_i)(u_i))) | \forall i \in \{1, \dots, n\} : x_i \in X \ u_i \in J_{x_i} \subseteq U \}.$$
 (10)

where  $\tilde{A}_e$  contains exactly one element from  $J_{x_1}$ ,  $J_{x_2}$ , ...,  $J_{x_N}$ , namely  $u_1$ ,  $u_2$ , ...,  $u_N$ , each with its associated secondary grade, namely  $\mu_{\tilde{A}}(x_1)(u_1)$ ,  $\mu_{\tilde{A}}(x_2)(u_2)$ , ...,  $\mu_{\tilde{A}}(x_N)(u_N)$ .

The TRS is defined via the application of Zadeh's extension principle, and only after the primary domain X has been discretized.

109811 1x, 2013. 5. Downloaded from https://oininelibrary.wile.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/int.21588 by -Shibboleth>-member@dmua.c.uk, Wiley Online Library on [22032024]. See the Terms and Conditions (https://o

Definition 2. The TRS associated with a type-2 fuzzy sets  $\tilde{A}$  with domain X discretized into n points is

$$C_{\tilde{A}} = \left\{ \left( \frac{\sum_{i=1}^{n} x_i \cdot u_i}{\sum_{i=1}^{n} u_i}, \mu_{\tilde{A}}(x_1)(u_1) * \cdots * \mu_{\tilde{A}}(x_n)(u_n) \right) \right.$$

$$\times \left| \forall i \in \{1, \dots, n\} : x_i \in X \ u_i \in J_{x_i} \subseteq U \right\}. \tag{11}$$

Note that the TRS is a type-1 fuzzy set in U. Again in this case, we have  $x_1 < x_2 < \cdots < x_n$ . The type reduction stage requires the application of a t-norm (\*) to the secondary membership grades. Because the product t-norm does not produce meaningful results for type-2 fuzzy sets with general secondary membership functions, the minimum t-norm ( $\wedge$ ) is used.

**TRS of an Interval Type-2 Fuzzy Sets.** In the case of  $\tilde{A}$  being an interval type-2 fuzzy set, i.e.,  $\mu_{\tilde{A}}(x)(u) = 1 \ \forall x, u$ , we have that the TRS is the crisp set

$$C_{\tilde{A}} = \left\{ \left( \frac{\sum_{i=1}^{n} x_i \cdot u_i}{\sum_{i=1}^{n} u_i}, 1 \right) \middle| \forall i \in \{1, \dots, n\} : x_i \in X \ u_i \in J_{x_i} \subseteq U \right\}.$$
 (12)

#### 2.3. Type-Reduction Algorithm

The TRS is a type-1 fuzzy set in U, and its computation in practice requires the secondary domain U to be discretized as well. Algorithm 1, adapted from Mendel, is used to compute the TRS of a type-2 fuzzy sets. This stratagem has become known as the *exhaustive method*, as every embedded set is processed.  $^{10,16}$ 

Algorithm 1: Type-reduction of a discretized type-2 fuzzy set to a type-1 fuzzy set.

Input: a discretized generalized type-2 fuzzy set

Output: a discrete type-1 fuzzy set

forall the embedded sets do

find the minimum secondary membership grade (z);

calculate the primary domain value (x) of the type-1 centroid of the type-2 embedded set;

pair the secondary grade (z) with the primary domain value (x) to give set of ordered pairs (x, z) {some values of x may correspond to more than one value of z};

end

**forall the** *primary domain* (x) *values* **do** 

select the maximum secondary grade  $\{\text{make each }x\text{ correspond to a unique secondary domain value}\};$ 

The exhaustive method direct implementation is slow and inefficient, because of the extraordinarily large number of embedded sets into which the type-2 fuzzy set is decomposed. <sup>7,16</sup> This has inevitably hindered the development of type-2 FISs for real applications, a situation that will not be expected to change, unless an efficient and fast method to deffuzzify general type-2 fuzzy sets is developed. Indeed, as it was mentioned before, a consequence of this being that most researchers concentrate exclusively on the development of theoretical results and practical applications for interval type-2 fuzzy sets.

#### 3. TYPE-1 OWA OPERATORS

In 1988, Yager introduced an aggregation technique based on the OWA scheme.  $^{25}$ 

DEFINITION 3. An OWA operator of dimension n is a mapping  $\phi : \mathbb{R}^n \to \mathbb{R}$ , which has an associated set of weights  $W = (w_1, \dots, w_n)^T$  to it, so that  $w_i \in [0, 1]$ ,  $\sum_{i=1}^n w_i = 1$ ,

$$\phi(a) = \phi(a_1, \dots, a_n) = \sum_{i=1}^{n} w_i a_{\sigma(i)}$$
(13)

and

$$\sigma: \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$$

is a permutation function such that  $a_{\sigma(i)} \ge a_{\sigma(i+1)}$ ,  $\forall i = 1, ..., n-1$ , i.e.,  $a_{\sigma(i)}$  is the ith highest element in the set  $\{a_1, ..., a_n\}$ .

Generally speaking, the OWA operator based aggregation process consists of three steps: (i) the first step is the reordering the input arguments in a descending order. In this way, a particular element to aggregate is not associated with a particular weight, but rather a weight is associated with a particular ordered position of an aggregated object; (ii) the second step is to determine the weights for the operator in a proper way; (iii) finally, the OWA weights are used to aggregate the reordered arguments.

#### 3.1. Definition of Type-1 OWA Operators Based on the Extension Principle

Unlike Yager's OWA operator that aggregates crisp values, the type-1 OWA operator is able to aggregate type-1 fuzzy sets with uncertain weights, with these uncertain weights being also modeled as type-1 fuzzy sets. As a generalization of Yager's OWA operator, and based on Zadeh's extension principle, 1 a type-1 OWA operator is defined as follows: 17

DEFINITION 4. Given n linguistic weights  $\{W^i\}_{i=1}^n$  in the form of type-1 fuzzy sets defined on the domain of discourse U, a type-1 OWA operator is a mapping,  $\Phi$ ,

$$\Phi: \tilde{P}(\mathbb{R}) \times \ldots \times \tilde{P}(\mathbb{R}) \longrightarrow \tilde{P}(\mathbb{R})$$

$$(A^1, \ldots, A^n) \mapsto Y$$

International Journal of Intelligent Systems DOI 10.1002/int

109811 1, 2013. 5. Dowloaded from https://oininelibrary.wile.co.m/doi/10.1002 int. 21588 by <Shibbleth>-member@man.c. ak, Wiley Online Library on [22032024], See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library on rules of use; OA articles are governed by the applicable Creative Commons License

such that

$$\mu_{Y}(y) = \sup_{n} \left( \mu_{W^{1}}(w_{1}) \wedge \dots \wedge \mu_{W^{n}}(w_{n}) \wedge \mu_{A^{1}}(a_{1}) \wedge \dots \wedge \mu_{A^{n}}(a_{n}) \right)$$

$$\sum_{k=1}^{n} \bar{w}_{i} a_{\sigma(i)} = y$$

$$w_{i} \in U, a_{i} \in X$$
(14)

where

$$\bar{w}_i = \frac{w_i}{\sum_{i=1}^n w_i},$$

and

$$\sigma: \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$$

is a permutation function such that  $a_{\sigma(i)} \ge a_{\sigma(i+1)}$ ,  $\forall i = 1, ..., n-1$ , i.e.,  $a_{\sigma(i)}$  is the *i*th highest element in the set  $\{a_1, ..., a_n\}$ .

A direct approach to performing type-1 OWA operation was suggested in Ref.17. However, this approach is computationally expensive, which inevitably curtails further applications of the type-1 OWA operator to real-world decision making. A fast approach to type-1 OWA operations has been developed based on the  $\alpha$ -cuts of fuzzy sets.<sup>24</sup>

#### 3.2. Definition of Type-1 OWA Operators Based on the $\alpha$ -Cuts of Fuzzy Sets

DEFINITION 5. Given the n linguistic weights  $\left\{W^i\right\}_{i=1}^n$  in the form of type-1 fuzzy sets defined on the domain of discourse U, then for each  $\alpha \in U$ , an  $\alpha$ -level type-1 OWA operator with  $\alpha$ -cuts of weight sets  $\left\{W^i_\alpha\right\}_{i=1}^n$  to aggregate the  $\alpha$ -cuts of type-1 fuzzy sets  $\left\{A^i\right\}_{i=1}^n$  is given as

$$\Phi_{\alpha}\left(A_{\alpha}^{1},\ldots,A_{\alpha}^{n}\right) = \left\{\frac{\sum_{i=1}^{n} w_{i} a_{\sigma(i)}}{\sum_{i=1}^{n} w_{i}}\middle| \forall i \in \{1,\ldots,n\} : w_{i} \in W_{\alpha}^{i} \wedge a_{i} \in A_{\alpha}^{i}\right\}$$

$$\tag{15}$$

where  $W_{\alpha}^{i} = \{w | \mu_{W_{i}}(w) \geq \alpha\}$ ,  $A_{\alpha}^{i} = \{x | \mu_{A_{i}}(x) \geq \alpha\}$ , and  $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$  is a permutation function such that  $a_{\sigma(i)} \geq a_{\sigma(i+1)}$ ,  $\forall i = 1, \ldots, n-1$ , i.e.,  $a_{\sigma(i)}$  is the ith largest element in the set  $\{a_{1}, \ldots, a_{n}\}$ .

According to the representation theorem of type-1 fuzzy sets, the  $\alpha$ -level sets  $\Phi_{\alpha}\left(A_{\alpha}^{1},\ldots,A_{\alpha}^{n}\right)$  obtained via Definition 5. can be used to construct the following type-1 fuzzy set on  $\mathbb{R}$ 

$$\Phi\left(A^{1}, \dots, A^{n} | W^{1}, \dots, W^{n}\right) = \bigcup_{0 < \alpha < 1} \alpha \Phi_{\alpha}\left(A_{\alpha}^{1}, \dots, A_{\alpha}^{n}\right) \tag{16}$$

$$\mu_{\Phi}(x) = \bigvee_{\alpha: x \in \Phi_{\alpha}(A_{\alpha}^{1}, \dots, A_{\alpha}^{n})_{\alpha}} \alpha \tag{17}$$

#### 3.3. Representation Theorem of Type-1 OWA Operators

The two apparently different aggregation results in (14) and (16) obtained according to Zadeh's extension principle and the  $\alpha$ -level of type-1 fuzzy sets, respectively, are equivalent as proved in Ref. 24:

THEOREM 1. Given the n linguistic weights  $\{W^i\}_{i=1}^n$  in the form of type-1 fuzzy sets defined on the domain of discourse U, and the type-1 fuzzy sets  $A^1, \ldots, A^n$ , then we have that

$$Y(A^{1},...,A^{n}|W^{1},...,W^{n}) = \Phi(A^{1},...,A^{n}|W^{1},...,W^{n})$$

where  $Y(A^1, ..., A^n | W^1, ..., W^n)$  is the aggregation result defined in (14) and  $\Phi(A^1, ..., A^n | W^1, ..., W^n)$  is the result defined in (16).

Theorem 1. is called the *representation theorem of type-1 OWA operators*. Therefore, an effective and practical way of carrying out type-1 OWA operations is to decompose the type-1 OWA aggregation into the  $\alpha$ -level type-1 OWA operations and then reconstruct it via the above representation theorem. This  $\alpha$ -level approach has been proved to be much faster than the direct approach,<sup>24</sup> so it can be used in real time decision making and data mining applications.

#### 3.4. Alpha-Level Type-1 OWA Operators of Fuzzy Numbers

When the linguistic weights and the aggregated sets are fuzzy number, the alpha-level type-1 OWA operator produces closed intervals:<sup>24</sup>

THEOREM 2. Let  $\{W^i\}_{i=1}^n$  be fuzzy numbers on U and  $\{A^i\}_{i=1}^n$  be fuzzy numbers on  $\mathbb{R}$ . Then for each  $\alpha \in U$ ,  $\Phi_{\alpha}(A^1_{\alpha}, \ldots, A^n_{\alpha})$  is a closed interval.

Based on this result, the computation of the type-1 OWA output according to, (16), G, reduces to compute the left end-points and right end-points of the intervals  $\Phi_{\alpha}(A_{\alpha}^{1}, \ldots, A_{\alpha}^{n})$ :

$$\Phi_{\alpha}\left(A_{\alpha}^{1},\ldots,A_{\alpha}^{n}\right)_{-}$$
 and  $\Phi_{\alpha}\left(A_{\alpha}^{1},\ldots,A_{\alpha}^{n}\right)_{+}$ ,

where 
$$A^i_{\alpha}=[A^i_{\alpha-},A^i_{\alpha+}],\,W^i_{\alpha}=[W^i_{\alpha-},W^i_{\alpha+}].$$

109811 1. 2013. 5. Downloaded from https://oininelibrary.wie.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.com/doi/10.1002/m.21588 by -Shibboleth:-member@dmua.c.uk, Wiley Online Library on [22:032024]. See the Terms and Conditions (https://oininelibrary.wie.ye.c.uk) (https://oininelibrary.wie.ye.c.uk) (https://oininelibrary.wie.ye.c.uk) (https://oininelibrary.wie.ye.c.uk) (https://oininelibrary.

$$\Phi_{\alpha}(A_{\alpha}^{1}, \dots, A_{\alpha}^{n})_{-} = \min_{\substack{W_{\alpha-}^{i} \leq w_{i} \leq W_{\alpha+}^{i} \\ A_{\alpha-}^{i} \leq a_{i} \leq A_{\alpha+}^{i}}} \sum_{i=1}^{n} w_{i} a_{\sigma(i)} / \sum_{i=1}^{n} w_{i}$$
(18)

while for the right end-points, we have

$$\Phi_{\alpha}\left(A_{\alpha}^{1},\ldots,A_{\alpha}^{n}\right)_{+} = \max_{\begin{subarray}{c}W_{\alpha-}^{i} \leq w_{i} \leq W_{\alpha+}^{i} \\ A_{\alpha-}^{i} \leq a_{i} \leq A_{\alpha+}^{i}\end{subarray}} \sum_{i=1}^{n} w_{i} a_{\sigma(i)} \bigg/ \sum_{i=1}^{n} w_{i}$$

$$(19)$$

It can be seen that (18) and (19) are programming problems. Solutions to these problems, so that the type-1 OWA aggregation operation can be performed efficiently, are available from Ref. 24.

#### Alpha-Level Approach to Type-1 OWA Aggregation Algorithm

Given *n* linguistic weights  $\{W^i\}_{i=1}^n$ , the procedure to aggregate  $\{A^i\}_{i=1}^n$  by a type-1 OWA operator via the  $\alpha$ -level aggregation scheme is given in Algorithm 2.<sup>24</sup>

Algorithm 2: Procedure of the Alpha-Level Approach to type-1 OWA operation.

```
Input: a set of linguistic weights and a set of type-1 fuzzy sets to aggregate
Output: a type-1 fuzzy set
Step 1 To set up the \alpha- level resolution in [0, 1];
Step 2 For each \alpha \in [0, 1];
   Step 2.1. To calculate \rho_{\alpha+}^{i_0^*};
    1 Let i_0 = 1;
   2 If \rho_{\alpha+}^{i_0} \geq A_{\alpha+}^{\sigma(i_0)} then \rho_{\alpha+}^{i_0} is the solution, stop; else go to 2.1-3; 3 i_0 \leftarrow i_0 + 1, go to 2.1-2;
    Step 2.2. To calculate \rho_{\alpha}^{i_0^*};
    1 Let i_0 = 1;
   2 If \rho_{\alpha-}^{i_0} \geq A_{\alpha-}^{\sigma(i_0)} then \rho_{\alpha-}^{i_0} is the solution, stop; else go to 2.2-3; 3 i_0 \leftarrow i_0 + 1, go to step 2.2-2;
Step 3 To construct the aggregation resulting fuzzy set \Phi based on all the available intervals \left[\rho_{\alpha}^{i_0^*}, \rho_{\alpha}^{i_0^*}\right]:
```

In this approach, the  $\alpha$  values are required to cover all the available membership grades  $\{\mu_{W^i}(w_i)\}$  and  $\{\mu_{A^i}(a_i)\}$ , and  $\rho_{\alpha-}^{i_0}$  and  $\rho_{\alpha+}^{i_0}$  are defined as

$$\rho_{\alpha-}^{i_0} \stackrel{\Delta}{=} \frac{\sum_{i=1}^{i_0-1} W_{\alpha-}^i A_{\alpha-}^{\sigma(i)} + \sum_{i=i_0}^n W_{\alpha+}^i A_{\alpha-}^{\sigma(i)}}{J_{i_0}}$$
(20)

where

$$J_{i_0} \stackrel{\Delta}{=} \sum_{i=1}^{i_0-1} W_{\alpha-}^i + \sum_{i=i_0}^n W_{\alpha+}^i$$
 (21)

and

$$\rho_{\alpha+}^{i_0} \stackrel{\Delta}{=} \frac{\sum_{i=1}^{i_0-1} W_{\alpha+}^i A_{\alpha+}^{\sigma(i)} + \sum_{i=i_0}^n W_{\alpha-}^i A_{\alpha+}^{\sigma(i)}}{H_{i_0}}$$
(22)

where

$$H_{i_0} \stackrel{\Delta}{=} \sum_{i=1}^{i_0-1} W_{\alpha+}^i + \sum_{i=i_0}^n W_{\alpha-}^i$$
 (23)

### 4. TYPE-1 OWA APPROACH TO TYPE REDUCTION OF GENERAL TYPE-2 FUZZY SETS

The following theorem establishes the relationship between the TRS of a type-2 fuzzy set and the type-1 OWA operator.

THEOREM 3. Given a general type-2 fuzzy set  $\tilde{A}$ , with domain X discretized in a set of n points such that  $x_1 < x_2 < \cdots < x_n$ , the TRS of  $\tilde{A}$  is

$$C_{\tilde{A}} = \Phi\left(\hat{x_1}, \dots, \hat{x_n} | W^1, \dots, W^n\right)$$

where  $\Phi$  is a type-1 OWA operator with set of uncertain weights defined by  $\tilde{A}s$  secondary membership functions as  $W^1 = \mu_{\tilde{A}}(x_n), \ldots, W^n = \mu_{\tilde{A}}(x_1)$  to aggregate the singleton type-1 fuzzy sets  $\hat{x_1}, \ldots, \hat{x_n}$ .

*Proof.* We note that the type-1 fuzzy set derived after the application of a type-1 OWA operator can be rewritten as follows:

$$Y = \left\{ \left( \frac{\sum_{i=1}^{n} w_{i} a_{\sigma(i)}}{\sum_{i=1}^{n} w_{i}}, \ \mu_{W^{1}}(w_{1}) \wedge \dots \wedge \mu_{W^{n}}(w_{n}) \wedge \mu_{A^{1}}(a_{1}) \wedge \dots \wedge \mu_{A^{n}}(a_{n}) \right) \right|$$

$$\times \forall i \in \{1, ..., n\}: w_i \in S(W^i), a_i \in S(A^i)$$
 (24)

International Journal of Intelligent Systems DOI 10.1002/int

10.23.25. Dowloaded from https://oininelthary.wiley.com/doi/ 10.1002 int. 121588 by <Shibbdelth>-member@dmua.cu. K. Wiley Online Library or [22032024], See the Terms and Conditions (https://onlinelthary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

where  $S(W^i)$  and  $S(A^1)$  are the support sets of  $W^i$  and  $A^i$ , respectively, for all i = 1, ..., n, i.e.

$$S(W^i) = \{ w \in U | \mu_{W^i}(w) > 0 \};$$

and

$$S(A^i) = \{a \in X | \mu_{A^i}(a) > 0\}.$$

Because  $x_1 < x_2 < \dots < x_n$ , it is clear that expression (24) with  $A^1 = \hat{x_1}, \dots, A^n = \hat{x_n}$ , and  $W^1 = \mu_{\tilde{A}}(x_n), \dots, W^n = \mu_{\tilde{A}}(x_1)$  reduces to

$$Y = \left\{ \left( \frac{\sum_{k=1}^{n} w_{i} x_{\sigma(i)}}{\sum_{i=1}^{n} w_{i}}, \ \mu_{W^{1}}(w_{1}) \wedge \dots \wedge \mu_{W^{n}}(w_{n}) \right) \right.$$

$$\times \left| \forall i \in \{1, \dots, n\} : \ x_{i} \in X, w_{i} \in J_{x_{n-i+1}} \right\}. \tag{25}$$

Considering  $x_1 < x_2 < \cdots < x_n$ , i.e.,  $x_{\sigma(i)} = x_{n-i+1}$ , and using the notation  $w_i = u_{n-i+1}$ , then the (25) can be written as

$$Y = \left\{ \left( \frac{\sum_{k=1}^{n} x_i u_i}{\sum_{i=1}^{n} u_i}, \ \mu_{\tilde{A}}(x_1)(u_1) \wedge \cdots \wedge \mu_{\tilde{A}}(x_n)(u_n) \right) \right.$$

$$\times \left| \forall i \in \{1, \dots, n\} : \ x_i \in X, u_i \in J_{x_i} \right\}. \tag{26}$$

This expression just coincides with the TRS associated with a type-2 fuzzy sets  $\tilde{A}$  with domain X discretized into n points as per the expression (11) given in Definition 2.

In the case of an interval type-2 fuzzy set  $\tilde{A}$  with domain X discretized into n points  $x_i$ , the primary membership of  $x_i$ ,  $J_{x_i}$ , is a closed interval and therefore  $C_{\tilde{A}}$  is also closed. On the other hand, when the inputs of an  $\alpha$ -level type-1 OWA operator  $A_{\alpha}^1, \ldots, A_{\alpha}^n$  reduce to singleton points, the aggregation result (15) reduces to (27). Therefore, in this case, both mathematical representations (15) and (27) are equivalent. We have the following corollary:

COROLLARY 1. Given an interval type-2 fuzzy set  $\tilde{A}$ , with domain X discretized in a set of n points such that  $x_1 < x_2 < \cdots < x_n$ , the TRS of  $\tilde{A}$  is

$$C_{\tilde{A}} = \Phi_1\left(x_1,\ldots,x_n|J_{x_n},\ldots,J_{x_1}\right)$$

where  $\Phi_1$  is a special type-1 OWA operator with weights  $J_{x_n}, \ldots, J_{x_1}$  to aggregate the crisp points  $x_1, \ldots, x_n$ .



Figure 3. Case study 1: (a) FOU; (b) example of secondary MF; and (c) TRS.

In this way, the TRS of an interval type-2 fuzzy set reduces to

$$C_{\tilde{A}} = \left\{ \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} \middle| \forall i \in \{1, \dots, n\} : w_i \in J_{x_{n-i+1}} \right\}$$
 (27)

In other words, the TRS of an interval type-2 fuzzy set can be computed via the application of the  $\alpha$ -level type-1 OWA operator as per Definition 5. where the value of  $\alpha$  is set to be 1. So a special *alpha-level approach* with only considering  $\alpha=1$  is used to compute the centroid of an interval type-2 fuzzy set, and more generally to aggregate conventional intervals values with intervals weights.

#### 5. EXPERIMENTAL RESULTS

In this section, we provide some case studies to show the application of the type-1 OWA operators to computing the TRS of different type-2 fuzzy sets, and ultimately their centroid as per expression (6).

# 5.1. Case Study 1: General Type-2 Fuzzy Set with Trapezoidal FOU and Triangular Secondary Membership Functions

In this case study, a general type-2 fuzzy set is defined with trapezoidal FOU and triangular secondary membership functions as per Figure 3a. More specifically, the upper membership function of the FOU, u(x), is a trapezoidal function

$$u(x) = \begin{cases} \frac{(u_1 - x) \cdot e}{u_1 - u_2}, & u_1 \le x \le u_2 \\ e, & u_2 \le x \le u_3 \\ \frac{(u_4 - x) \cdot e}{u_4 - u_3}, & u_3 \le x \le u_4 \\ 0, & \text{otherwise.} \end{cases}$$

with apexes  $(u_1, u_2, u_3, u_4)$  chosen as

$$(u_1, u_2, u_3, u_4) = (150, 165, 215, 230)$$

International Journal of Intelligent Systems DOI 10.1002/int



Figure 4. Case study 2: (a) FOU; (b) example of secondary MF; and (c) TRS.

and the maximum value of u(x) set to be e = 1. The lower membership function of the FOU, l(x), is set as a trapezoidal functions with apexes

$$(l_1, l_2, l_3, l_4) = (165, 180, 200, 215)$$

and the maximum value of l(x) set to be e = 0.8. For any  $x \in X$ , the associated secondary membership function is defined as a triangular function with apexes  $(tr_1, tr_2, tr_3)$  defined as follows:

$$tr_1 = l(x)$$
  
 $tr_2 = [l(x) + u(x)]/2$   
 $tr_3 = u(x)$ 

Figure 3b shows an example of such secondary MF at x = 174.75. Note that this type-2 fuzzy set is symmetrical with respect to the value x = 190, which is its centroid. Then application of the *alpha-level approach* to type-1 OWA aggregation to calculate the TRS of this general type-2 fuzzy set results in the following type-1 fuzzy set depicted in Figure 3c. This TRS is symmetrical with respect to the value x = 190, which is its centroid and coincides with the observation made above for the type-2 fuzzy set from which it was derived.

# 5.2. Case Study 2: General Type-2 Fuzzy Set with Mixed Gaussian FOU and Trapezoidal Secondary Membership Functions

In this case study, the FOU of a general type-2 fuzzy set is shown in Figure 4a. The upper membership function of the FOU, u(x), is defined as  $u(x) = \max\{u_1(x), u_2(x)\}$  with  $u_1(x)$  and  $u_2(x)$  being the following Gaussian membership functions:

$$u_1(x) = \exp\left(-\frac{(x - 60)^2}{500}\right)$$

$$u_2(x) = \exp\left(-\frac{(x - 80)^2}{500}\right)$$

The lower membership function, l(x), is defined similarly  $l(x) = \max\{l_1(x), l_2(x)\}$  using the following two Gaussian functions:

$$l_1(x) = 0.6 \exp\left(-\frac{(x - 60)^2}{100}\right)$$

$$l_2(x) = 0.7 \exp\left(-\frac{(x-80)^2}{100}\right)$$

For any  $x \in X$ , the associated secondary membership function is defined as a trapezoidal function with following apexes  $(tr_1, tr_2, tr_3, tr_4)$ :

$$tr_1 = l(x)$$
  
 $tr_2 = (l(x) + mid(x))/2$   
 $tr_3 = (mid(x) + u(x))/2$   
 $tr_4 = u(x)$ 

where mid(x) = (l(x) + u(x))/2. Figure 4b shows an example of such secondary MF. The TRS of this general type-2 fuzzy set obtained by applying the *Alpha-Level Approach* to type-1 OWA aggregation is illustrated in Figure 4c.

#### 5.3. Case Study 3: Interval Type-2 Fuzzy Set with Gaussian FOU

In here, we consider an interval type-2 fuzzy set with Gaussian upper and lower membership functions

$$u(x) = \exp\left(-\frac{(x-70)^2}{500}\right)$$

and

$$l(x) = 0.6 \exp\left(-\frac{(x - 70)^2}{100}\right)$$

as illustrated in Figure 5.

Note that this interval type-2 fuzzy set is symmetrical with respect to the value x=70, which is its centroid. We use the special the *alpha-level approach* to type-1 OWA aggregation with only  $\alpha=1$  to generate its TRS. In this case, the TRS will be a closed interval with the centroid of this fuzzy set as midpoint. For any  $x \in X$ , the intervals [l(x), u(x)] are used as weights in the type-1 OWA aggregation to generate the TRS of this interval type-2 fuzzy set, which is TRS = [61, 79] with 70 as its midpoint.

#### 6. CONCLUSIONS

In this paper, we have shown that the apparent disparate problems consisting of the computation of the TRS of a type-2 fuzzy set and the type-1 OWA aggregation



Figure 5. Case study 3: Interval type-2 fuzzy set.

of type-1 fuzzy sets are closely related. In essence, both problems are aggregation problems. Based on the *type-1 OWA representation theorem*, we have proved that the TRS of a type-2 fuzzy sets is a special case of a type-1 OWA operator. In particular, the centroid of an interval type-2 fuzzy sets is a particular case of an  $\alpha$ -level type-1 OWA operator.

The main contribution of this paper is the realization of a fast and efficient method to compute the centroid of a general type-2 fuzzy set via the type-1 OWA operator. This could inspire an increase use of general type-2 fuzzy sets in real-world applications.

#### References

- Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning

   I. Inform Sci 1975;8:199–249.
- John RI, Innocent PR. Modeling uncertainty in clinic diagnosis using fuzzy logic. IEEE Trans Syst Man Cybernet B 2005;35:1340–1350.
- 3. Di Lascio L, Gisolfi A, Nappi A. Medical differential diagnosed through type-2 fuzzy sets. In: Proc FUZZ–IEEE 2005, Reno NV; May 2005. pp 371–376.
- Jammeh EA, Fleury M, Wagner C, Hagras H, Ghanbari M. Interval type-2 fuzzy logic congestion control for video streaming across ip networks. IEEE Trans Fuzzy Syst 2009;17:1123–1142.
- Kayacan E, Kaynak O, Abiyev R, Törresen J, Hövin M, Glette K. Design of an adaptive interval type-2 fuzzy logic controller for the position control of a servo system with an intelligent sensor. In: Proc FUZZ-IEEE 2010, Barcelona, Spain; 2010. pp 1125–1132.
- Zadeh LA. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Systems Man Cybernet 1973;3:28–44.
- 7. Mendel JM. Uncertain rule-based fuzzy logic systems: Introduction and new directions. Singapore:Prentice-Hall;2001.

- 8. Mendel JM, Wu H. New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule. Inform Sci 2007;17:360–377.
- 9. Starczewski JT. On defuzzification of interval type-2 fuzzy sets. In Proc 9th Int Conf on Artificial Intelligence and Soft Computing (ICAISC 2008). Lecture Notes in Computer Science vol 5097. Berlin: Springer-Verlag;2008. pp 333–340.
- 10. Greenfield S, Chiclana F, Coupland S, John RI. The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Inform Sci 2009;179(13):2055–2069.
- 11. Wu D, Mendel JM. Enhanced karnik-mendel algorithms. IEEE Trans Fuzzy Syst 2009;17:923–934.
- Leottau L, Melgarejo M. Implementing an interval type-2 fuzzy processor onto a DSC 56F8013. In: Proc FUZZ-IEEE 2010, Barcelona, Spain;2010. pp 1939–1942.
- 13. Leal-Ramirez C, Castillo O, Melin P, Rodriguez-Diaz A. Simulation of the bird agestructured population growth based on an interval type-2 fuzzy cellular structure. Inform Sci 2011;181(3):519–535.
- Wu D, Nie M. Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. In: Proc FUZZ-IEEE 2011, Taiwan;2011. pp 2131–2138.
- 15. Karnik NN, Mendel JM. Centroid of a type-2 fuzzy set. Inform Sci 2001;132:195–220.
- Greenfield S, Chiclana F, John R, Coupland S. The sampling method of defuzzification for type-2 fuzzy sets: experimental evaluation. Inform Sci 2012;189:77–92.
- 17. Zhou S-M, Chiclana F, John RI, Garibaldi JM. Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets Syst 2008;159(24):3281–3296.
- Herrera F, Herrera-Viedma E, Chiclana F. A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making. Int J Intell Syst 2003;18(6):689–707.
- Chiclana F, Herrera-Viedma E, Herrera F, Alonso S. Induced ordered weighted geometric operators and their use in the aggregation of multiplicative preference relations. Int J Intell Syst 2004;19(3):233–255.
- 20. Chiclana F, Herrera-Viedma E, Herrera F, Alonso S. Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations. Eur J Oper Res 2007;182(1):383–399.
- Zhou S-M, Gan JQ. Constructing accurate and parsimonious fuzzy models with distinguishable fuzzy sets based on an entropy measure. Fuzzy Sets Syst 2006;157(8):1057–1074.
- 22. Zhou S-M, Gan JQ. Constructing L2-SVM-based fuzzy classifiers in high-dimensional space with automatic model selection and fuzzy rule ranking. IEEE Trans Fuzzy Syst 2007;15(3):398–409.
- Zhou S-M, Gan JQ. Extracting Takagi-Sugeno fuzzy rules with interpretable submodels via regularization of linguistic modifiers. IEEE Trans Knowl Data Eng 2009;21(8):1191–1204.
- 24. Zhou S-M, Chiclana F, John RI, Garibaldi JM. Alpha-Level aggregation: a practical approach to type-1 OWA operation for aggregating uncertain information with applications to breast cancer treatments. IEEE Trans Knowl Data Eng 2011;23(10):1455–1468.
- 25. Yager RR. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans Syst Man Cybernet 1988;18:83–190.
- Greenfield S, Chiclana F. Combining the α-plane representation with an interval defuzzication method In: Proc EUSFLAT-FLA 2011, Aix-les-Bains, France;2011. pp 920–927.