EDA016 Programmeringsteknik för D Läsvecka 1: Introduktion

Björn Regnell

Datavetenskap, LTH

Lp1-2, HT 2015

└ Vecka 1: Introduktion

1 Introduktion

- Om denna kurs
- Vad är programmering?
- Vårt första Java-program
- Grundläggande programkonstruktioner i Java
- Sammanfattning
- Meddelande från Code@LTH

Om denna kurs

Om denna kurs

Vad och hur?

└Om denna kurs

- Vad ska du lära dig?
 - Grundläggande principer för programmering
 - Konstruktion av enkla algoritmer
 - Tänka i abstraktioner
 - Imperativ och objektorienterad programmering
 - Programspråket Java
 - Utvecklingsmiljön Eclipse: implementera, testa, felsöka
- Hur ska du lära dig?
 - Genom praktiskt eget arbete: Lära genom att göra!
 - Genom studier av kursens teori: Skapa förståelse!
 - Genom samarbete med dina kurskamrater: Gå djupare!

Kurslitteratur

- "Objektorienterad programmering och Java" av Per Holm
- Kurskompendium med övningar och laborationer
- Bokpaket säljs på KFS John Ericssons väg 4 http://www.kfsab.se/

Om denna kurs

Personal

Kursansvarig:

Björn Regnell, bjorn.regnell@cs.lth.se

Kurssekreterare:

Lena Ohlsson

Exp.tid 09.30 - 11.30 samt 12.45 - 13.30

Handledare:

Maj Stenmark, Tekn. Lic., Doktorand

Gustav Cedersjö, Doktorand

Anton Klarén, D09

Maria Priisalu, D11

Anders Buhl, D13

Erik Bjäreholt, D13

Fatima Abou Alpha, D13

Cecilia Lindskog, D14

Emma Asklund, D14

└Om denna kurs

Kursmoment — varför?

- Föreläsningar: skapa översikt, ge struktur, förklara teori, svara på frågor, motivera varför
- Övningar: bearbeta teorin med avgränsade problem som mestadels löses med papper & penna, förberedelse inför laborationerna
- Laborationer: lösa programmeringsproblem praktiskt, obligatoriska uppgifter; lösningar redovisas för handledare
- Resurstider: få hjälp med övningar och laborationsförberedelser av handledare
- Samarbetsgrupper: grupplärande genom samarbete och dialog
- Kontrollskrivning: obligatorisk, diagnostisk, kamraträttad; kan ge samarbetsbonuspoäng till tentan
- Inlämningsupgift: du visar att du kan skapa ett större program självständigt; redovisas för handledare
- Tenta: Skriftlig tentamen utan hjälpmedel, förutom snabbreferens.

∟_{Om denna kurs} Nytt för i år

Årets kurs är i flera avseende väsentligt annorlunda and förra årets upplaga, så lita inte på allt som era äldre kursare säger :)

- Övningar blir resurstider i datorsal
- Inlämningsuppgift utan skriftlig rapport
- Samarbetskultur och grupplärande
- Nya övningar
- Nya laborationer
- Nya föreläsningar

Ändringarna är framtagna i samråd med studierådet. Mer om bakgrunden här: http://fileadmin.cs.lth.se/cs/Education/EDA016/2015/update.pdf

└Om denna kurs

Detta är bara början...

Exempel på efterföljande kurser som bygger vidare på denna:

- Arskurs 1
 - Programmeringsteknik fördjupningskurs
 - Utvärdering av programvarusystem
 - Diskreta strukturer
- Arskurs 2
 - Objektorienterad modellering och design
 - Programvaruutveckling i grupp
 - Algoritmer, datastrukturer och komplexitet
 - Funktionsprogrammering

Utveckling av mjukvara i praktiken

- Inte bara kodning: kravbeslut, releaseplanering, design, test, versionshantering, kontinuerlig integration, driftsättning, återkoppling från dagens användare, ekonomi & investering, gissa om morgondagens användare, ...
- Teamwork: Inte ensamma hjältar utan autonoma team i decentraliserade organisationer med innovationsuppdrag
- Snabbhet: Att koda innebär att hela tiden uppfinna nya "byggstenar" som ökar organisationens förmåga att snabbt skapa värde med hjälp av mjukvara. Öppen källkod. Skapa kraftfulla API.
- Livslångt lärande: Lär nytt och dela med dig hela tiden. Exempel på pedagogisk utmaning: hjälp andra förstå och använda ditt API ⇒ Sammarbetskultur

└─Vecka 1: Introduktion └─Om denna kurs

Att skapa koden som styr världen

I stort sett alla delar av samhället styrs av mjukvara:

- kommunikation
- transport
- byggsektorn
- statsförvaltning
- finanssektorn
- media
- sjukvård
- övervakning
- integritet
- upphovsrätt
- miljö & energi
- sociala relationer
- utbildning

Hur blir ditt framtida yrkesliv som systemutvecklare?

 Redan nu är det en skriande brist på utvecklare och bristen blir bara värre och värre...
 CS 2015-08-17

Global kompetensmarknad
 CS 2015-06-14
 CS 2015-08-15

- Fokus på innovation, tid-till-marknad
- Autonoma utvecklingsteam i decentraliserade organisationer
- Öppen källkod

└Om denna kurs

Förkunskaper

- Förkunskaper ≠ Förmåga
- Varken kompetens eller personliga egenskaper är statiska
- "Programmeringskompetens" är inte en enda enkel förmåga utan en komplex sammansättning av flera olika förmågor som utvecklas genom hela livet
- Ett innovativt utvecklarteam behöver många olika kompetenser för att vara framgångsrikt

Stor spridning i programmeringsförkunskaper bland D-are (enl. enkätsvar 2010-2014)

└Om denna kurs

Förkunskapsenkät

Fyll i denna enkät idag: http://cs.lth.se/eda016/survey

Ligger till grund för randomiserad gruppindelning, så att det blir en spridning av förkunskaper inom gruppen.

└Om denna kurs

Varför samarbetsgrupper?

Huvudsyfte: Djupinlärning!

- Pedagogisk forskning stödjer tesen om att lärandet fördjupas om det sker i utbyte med andra
- Ett studiesammanhang med höga ambitioner och respektfull gemenskap gör att vi når mycket längre
- Varför ska du som redan kan mycket aktivt dela med dig av dina kunskaper?
 - Förstå bättre själv genom att förklara för andra
 - Träna din pedagogiska förmåga
 - Förbered dig för inför ditt kommande yrkesliv som mjukvaruutvecklare

Om denna kurs

Samarbetskontrakt

Gör ett skriftligt samarbetskontrakt med dessa och ev. andra punkter som ni också tycker bör ingå:

- Kom i tid till gruppmöten
- Var väl förberedd genom självstudier inför gruppmöten
- 3 Hjälp varandra att förstå, men ta inte över och lös allt
- Ha ett respektfullt bemötande även om ni har olika åsikter
- 5 Inkludera alla i gemenskapen

Diskutera hur ni ska uppfylla dessa innan alla skriver på. Ta med samarbetskontraktet och visa för handledare på labb 1.

Om arbetet i samarbetsgruppen inte fungerar ska ni mejla kursansvarig och boka mötestid!

└Om denna kurs

Bestraffa inte frågor!

- Det finns bättre och sämre frågor vad gäller hur mycket man kan lära sig av svaret, men all undran är en chans att i dialog utbyta erfarenheter och lärande
- Den som frågar vill veta och berättar genom frågan något om nuvarande kunskapsläge
- Den som svarar får chansen att reflektera över vad som kan vara svårt och olika vägar till djupare förståelse
- I en hälsosam lärandemiljö är det helt tryggt att visa att man ännu inte förstår, att man gjort "fel", att man har mer att lära, etc.
- Det är viktigt att våga försöka även om det blir "fel": det är ju då man lär sig!

Plagiatregler

Om denna kurs

Läs dessa regler noga och diskutera i samarbetsgrupperna:

- http://cs.lth.se/utbildning/samarbete-eller-fusk/
- http://cs.lth.se/utbildning/ foereskrifter-angaaende-obligatoriska-moment/

Ni ska lära er genom **eget arbete** och genom **bra samarbete**. Samarbete gör att man lär sig bättre, men man lär sig inte av att bara kopiera andras lösningar. Plagiering är förbjuden och kan medföra disciplinärende och avstängning.

Kursombud

Om denna kurs

- Alla LTH-kurser ska utvärderas under kursens gång och efter kursens slut.
- Till det behövs kursombud ungefär 2 D-are och 2 W-are.
- Ni kommer att bli kontaktade av studierådet.
- Anmäl er på rasten!

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Om denna kurs

Samarbetsbonus

En typisk kursvecka

- Gå på föreläsningar måndag–tisdag
- Jobba själv med boken, övningar, labbförberedelser
- Träffas i samarbetsgruppen och hjälp varandra att förstå mer och fördjupa lärandet
- Gå till resurstider och få hjälp och tips av handledare, onsdag-torsdag
- Genomför obligatorisk laboration på fredagen

Se detaljerna och undantagen i schemat i TimeEdit

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Om denna kurs

Resurstider

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Om denna kurs

Laborationer

Att göra i Vecka 1: Rivstarta

- 1 Läs följande kapitel i kursboken: 1, 3.1-3.3, 5.1-5.3, 6.1-6.2, 7.1-7.3, 7.5-7.6, 7.8-7.9
- Gör övning 1: Hello World, Hello Args, javac, editera-kompilera-exekvera-felsök, värden, uttryck variabler och tilldelning
- Gör förberedelserna till laboration 1: skapa textfil, etc.
- 4 Träffas i samarbetsgrupper och hjälp varandra att förstå
- 5 Kom till **resurstiderna** och få hjälp och tips
- Genomför laboration 1: Quiz träna på att editera, läsa, ändra och felsöka i färdig programkod while, for, Scanner

Vad är programmering?

Programming unplugged: Två frivilliga?

Editera och exekvera ett program

Världens första programmerare

Ada Lovelace skrev världens första datorprogram på 1800-talet.

Programmet skulle köra på en kugghjulsdator som hennes kompis Charles Babbage försökte bygga.

Vad är en delor?

Vad är en kompilator?

Grace Hopper uppfann första kompilatorn 1952.

Lättare för

människor

Exempel på vanliga programspråk

- Java
- 2
- 3 C++
- 4 C#
- 5 Python
- 6 Objective-C
- 7 PHP
- 8 Visual Basic .NET
- 9 JavaScript
- 10 Perl

TIOBE Programming Community Index Augusti 2015

De 10 "vanligaste"?

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Vad är programmering?

Vad är Java?

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Vad är programmering?

Utvecklingsverktyg

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Vad är programmering?

Vad är objektorientering?

- Det finns många olika programmeringsparadigm (sätt att programmera på), till exempel:
 - imperativ programmering: programmet är uppbyggt av sekvenser av olika satser som påverkar systemets tillstånd
 - objektorienterad programmering: en sorts imperativ programmering där programmet består av objekt som sammanför data och operationer på dessa data
 - funktionsprogrammering: programmet är uppbyggt av samverkande (matematiska) funktioner som undviker föränderlig data och tillståndsändringar
 - logikprogrammering: programmet är uppbyggt av logiska uttryck som beskriver olika fakta eller villkor och exekveringen utgörs av en bevisprocedur som söker efter värden som uppfyller fakta och villkor

L Vad är programmering?

Grundläggande principer i imperativ programmering

- **Sekvens**: Ett program innehåller sekvenser av *satser*. Ordningen mellan dessa har helt avgörande betydelse.
- Alternativ: Systemet reagerar på vad som händer och kan välja olika vägar genom programmet beroende på variablers värde Java: if-sats, switch-sats
- Repetition: Göra saker om och om igen Java: while-loop, for-loop
- Abstraktion: Kapsla in (komplexa) programdelar och sätta namn på dessa så att de enkelt går att återanvända utan att att vi behöver "rota i inanndömet".

Java: klasser och metoder

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Vårt första Java-program

Hello World!

Vårt första Java-program i filen HelloWorld.java

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hej och välkomna!");
    }
}
```

Kompilera och kör:

```
> javac HelloWorld.java
> java HelloWorld
Hej och välkomna!
>
```

Ovan ingår i övning 1.

Hello World! - Vad betyder egentligen allt detta?

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hej och välkomna!");
    }
}
```

- **public** Denna programdel är synlig "utåt" och kan användas av andra delar.
- class Ett slags "kodbyggblock" som samlar olika programdelar. All java-kod måste finnas i en klass. Det finns tusentals färdiga klasser att använda direkt i Java och man kan lätt skapa egna klasser. Klammerpar { } anger början och slut.
- static Denna programdel skapas direkt vid programmets start och det finns exakt en sådan här per klass.
- void Berättar för kompilatorn att inget värde returneras från denna programdel.
- main Berättar var exekveringen av programmet börjar.
- () Parentespar berättar för kompilatorn att vi här kan ha parametrar.
- String[] args Möjliggör indata till programmet i form av flera textsträngar.
 Parametern args måste finnas i main, men vi använder den inte i detta program.
- System.out.println Den f\u00e4rdiga klassen System kan bl.a. skriva ut text.
 Textstr\u00e4ngar avgr\u00e4nsas av citationstecken. Semikolon avgr\u00e4nsar satser.

Grundläggande programkonstruktioner i Java

Några grundläggande delar i ett Javaprogram

- värde (value): data som programmet kan använda 42 "hej" 42.0 true
- uttryck (expression): data kombineras med operatorer och ger nya värden 41+1 "h"+"ej" 43.5-1.5 !false
- deklaration av variabel (variable declaration): skapa plats i minnet f\u00f6r data
 int x = 42;
- tilldelningssats (assignment): ändra värdet på variabler
 x = 43:
- alternativ (choice): välj väg beroende på variablers värde if switch
- repetition (loop): upprepa om och om igen while for

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Grundläggande programkonstruktioner i Java

Värden och uttryck

Föreläsningsanteckningar EDA016, 2015

Vecka 1: Introduktion

Grundläggande programkonstruktioner i Java

Alternativ

Välj väg genom programmet med **if**-sats.

```
public class Alternative {
    public static void main(String[] args){

        if (true) {
            System.out.println("Sant!");
        } else {
                System.out.println("Falskt!");
        }
    }
}
```

En if-sats gör så att exekveringen av programmet kan delas upp i olika grenar; vilken gren som görs beror värdet av ett villkorsuttrycket: **true** eller **false**

└Vecka 1: Introduktion

Grundläggande programkonstruktioner i Java

Alternativ med variabel

Det blir roligare om vi har en variabel:

```
public class AlternativeWithVariable {
   public static void main(String[] args){

    int x = 42;
    if (x >= 42) {
       System.out.println("Sant!");
    } else {
       System.out.println("Falskt!");
    }
}
```

└ Vecka 1: Introduktion

Grundläggande programkonstruktioner i Java

Alternativ med variabel som kan ändra sig

Det blir ännu roligare om vi har en variabel som kan anta olika värden beroende på vad som händer under exekveringens gång:

```
import java.util.Scanner;
public class AlternativeWithVariableThatCanChange {
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        System.out.print("Skriv heltal: ");
        int x = scan.nextInt();
        if (x == 42) { // OBS! dubbla likhetstecken
            System.out.println("Sant!");
        } else {
            System.out.println("Falskt!");
```

Vad är egentligen en variabel?

- En variabel har ett **namn** och kan lagra ett **värde** av en viss **typ**
- Variabler måste deklareras och då får kompilatorn reda på vilket namnet är och vilken typ av värden som variabeln kan lagra: int x;
- När variabler deklareras är det oftast bäst att direkt ge dem ett initialvärde:
 int x = 42;
- En variabeldeklaration medför att plats i datorns minne reserveras. Vi ritar detta såhär:

Dessa deklarationer...

... ger detta innehåll någonstans i minnet:

Regler för namn i Java

När kompilatorn "läser" ¹ koden och och försöker hitta variabelnamn, antar den att du följer de entydiga syntaktiska reglerna för språket.

För namn i Java gäller följande regler:

- Namn får inte vara reserverade ord
- Stora och små bokstäver spelar roll (eng. case sensistive)
 int highScore; och int highscore; ger alltså två olika variabler
- Namnet måste börja med en bokstav, ett understreck _ eller ett dollartecken \$
- Namn får inte innehålla blanktecken
- Namn får innehålla bokstäver, siffror, understreck _ och dollartecken \$, men inte andra specialtecken (alltså inte % @! {(})/+-* etc.)

¹man säger ofta "parsa" i stället för "läsa" när kompilatorn tolkar koden

Vecka 1: Introduktion

Grundläggande programkonstruktioner i Java

Vad händer vid en tilldelning?

Med en tilldelningssats kan vi ge en tidigare deklarerad variabel ett nytt värde:

Det gamla värdet försvinner för alltid och det nya värdet lagras istället:

Likhetstecknet används alltså för att ändra variablers värden och det är ju inte samma sak som matematisk likhet. Vi kan till exempel skriva denna tilldelningssats:

```
x = x + 1; //Vad händer här?
```

Grundläggande programkonstruktioner i Java

Vår första algoritmkluring: SWAP

```
public class SwapQuest {
    public static void main(String[] args){
        int x = 42;
        int y = 21;
        System.out.println("x: " + x + " y: " + y);

        // ??? skriv satser som byter värden mellan x och y

        System.out.println("x: " + x + " y: " + y);
    }
}
```

Varför kan det vara bra att kunna byta plats på olika värden?

Meddelande från Code@LTH