Randomized Quasi-Monte Carlo: Theory, Choice of Discrepancy, and Applications featuring randomly-shifted lattice rules

Pierre L'Ecuyer and David Munger

Informatique et Recherche Opérationnelle, Université de Montréal

Basic Monte Carlo setting

Want to estimate

$$\mu = \mu(f) = \int_{[0,1)^s} f(\mathbf{u}) d\mathbf{u} = \mathbb{E}[f(\mathbf{U})]$$

where $f:[0,1)^s \to \mathbb{R}$ and \mathbf{U} is a uniform r.v. over $[0,1)^s$. Standard Monte Carlo:

- ▶ Generate *n* independent copies of **U**, say $U_1, ..., U_n$;
- estimate μ by $\hat{\boldsymbol{\mu}}_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{U}_i)$.

Randomized quasi-Monte Carlo (RQMC)

An RQMC estimator of μ has the form

$$\hat{\boldsymbol{\mu}}_{\boldsymbol{n},\mathrm{rqmc}} = \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{U}_i),$$

with $P_n = \{\mathbf{U}_0, \dots, \mathbf{U}_{n-1}\} \subset (0,1)^s$ an RQMC point set:

- (i) each point U_i has the uniform distribution over $(0,1)^s$;
- (ii) P_n as a whole is a low-discrepancy point set.

$$\mathbb{E}[\hat{\mu}_{n,\mathrm{rqmc}}] = \mu$$
 (unbiased).

Can perform m independent realizations X_1, \ldots, X_m of $\hat{\mu}_{n, \text{rqmc}}$, then estimate μ and $\text{Var}[\hat{\mu}_{n, \text{rqmc}}]$ by their sample mean \overline{X}_m and sample variance S_m^2 (also unbiased).

Temptation: assume that \bar{X}_m has the normal distribution.

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)]$$
$$= \frac{\operatorname{Var}[f(\mathbf{U}_i)]}{n} + \frac{2}{n^2} \sum_{i < j} \operatorname{Cov}[f(\mathbf{U}_i), f(\mathbf{U}_j)].$$

We want to make the last sum as negative as possible.

Special cases:

antithetic variates (n = 2), Latin hypercube sampling (LHS), randomized quasi-Monte Carlo (RQMC).

Integration lattice:

$$L_s = \left\{ \mathbf{v} = \sum_{j=1}^s z_j \mathbf{v}_j \text{ such that each } z_j \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1, \dots, \mathbf{v}_s \in \mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n = \{\mathbf{u}_0, \dots, \mathbf{u}_{n-1}\} = L_s \cap [0,1)^s$.

Integration lattice:

$$oldsymbol{\mathcal{L}_s} = \left\{ oldsymbol{v} = \sum_{j=1}^s z_j oldsymbol{v}_j \; ext{such that each} \; z_j \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n=\{\mathbf{u}_0,\ldots,\mathbf{u}_{n-1}\}=L_s\cap[0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1 \mod 1$ for $i = 0, \dots, n-1$, where $n\mathbf{v}_1 = \mathbf{z} = (z_1, \dots, z_s) \in \{0, 1, \dots, n-1\}$. Korobov rule: $\mathbf{z} = (1, a, a^2 \mod n, \dots)$.

Integration lattice:

$$oldsymbol{\mathcal{L}_s} = \left\{ oldsymbol{v} = \sum_{j=1}^s z_j oldsymbol{v}_j \; ext{such that each} \; z_j \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n=\{\mathbf{u}_0,\ldots,\mathbf{u}_{n-1}\}=L_s\cap[0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1 \mod 1$ for $i = 0, \dots, n-1$, where $n\mathbf{v}_1 = \mathbf{z} = (z_1, \dots, z_s) \in \{0, 1, \dots, n-1\}$. Korobov rule: $\mathbf{z} = (1, a, a^2 \mod n, \dots)$.

For any $\mathfrak{u} \subset \{1, \ldots, s\}$, the projection $L_s(\mathfrak{u})$ of L_s is also a lattice.

Integration lattice:

$$oldsymbol{\mathcal{L}_s} = \left\{ oldsymbol{v} = \sum_{j=1}^s z_j oldsymbol{v}_j \; ext{such that each} \; z_j \in \mathbb{Z}
ight\},$$

where $\mathbf{v}_1,\ldots,\mathbf{v}_s\in\mathbb{R}^s$ are linearly independent over \mathbb{R} and where L_s contains \mathbb{Z}^s . Lattice rule: Take $P_n=\{\mathbf{u}_0,\ldots,\mathbf{u}_{n-1}\}=L_s\cap[0,1)^s$.

Lattice rule of rank 1: $\mathbf{u}_i = i\mathbf{v}_1 \mod 1$ for $i = 0, \dots, n-1$, where $n\mathbf{v}_1 = \mathbf{z} = (z_1, \dots, z_s) \in \{0, 1, \dots, n-1\}$. Korobov rule: $\mathbf{z} = (1, a, a^2 \mod n, \dots)$.

For any $\mathfrak{u} \subset \{1,\ldots,s\}$, the projection $L_s(\mathfrak{u})$ of L_s is also a lattice.

Random shift modulo 1: generate a single point U uniformly over $(0,1)^s$ and add it to each point of P_n , modulo 1, coordinate-wise: $U_i = (\mathbf{u}_i + \mathbf{U}) \mod 1$. Each U_i is uniformly distributed over $[0,1)^s$.

Variance expression

Suppose *f* has Fourier expansion

$$f(\mathbf{u}) = \sum_{\mathbf{h} \in \mathbb{Z}^s} \hat{f}(\mathbf{h}) e^{2\pi\sqrt{-1}\mathbf{h}^t\mathbf{u}}.$$

For a randomly shifted lattice, the exact variance is (always)

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2,$$

where $L_s^* = \{ \mathbf{h} \in \mathbb{R}^s : \mathbf{h}^t \mathbf{v} \in \mathbb{Z} \text{ for all } \mathbf{v} \in L_s \} \subseteq \mathbb{Z}^s \text{ is the dual lattice.}$

From the viewpoint of variance reduction, an optimal lattice for f is one that minimizes $Var[\hat{\mu}_{n,rqmc}]$.

$$\mathrm{Var}[\hat{\mu}_{n,\mathrm{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2.$$

If f has square-integrable mixed partial derivatives up to order α , and the periodic continuation of its derivatives up to order $\alpha-2$ is continuous across the unit cube boundaries, then

$$|\hat{f}(\mathbf{h})|^2 = \mathcal{O}((\max(1,h_1),\ldots,\max(1,h_s))^{-2\alpha}).$$

Moreover, there is a $\mathbf{v}_1 = \mathbf{v}_1(n)$ such that

$$\mathcal{P}_{2\alpha} \stackrel{\text{def}}{=} \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} (\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha} = \mathcal{O}(n^{-2\alpha + \delta}).$$

This is the variance for a worst-case f having

$$|\hat{f}(\mathbf{h})|^2 = (\max(1, h_1), \dots, \max(1, h_s))^{-2\alpha}.$$

Thus, for a f that satisfies the above conditions, there are rank-1 lattices for which $Var[\hat{\mu}_{n,ramc}] = \mathcal{O}(n^{-2\alpha+\delta})$.

Warning: the hidden constant in \mathcal{O} can be large when s is large.

Want to make the periodic continuation continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

٠

Want to make the periodic continuation continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

.

Want to make the periodic continuation continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

.

Want to make the periodic continuation continuous.

If $f(0) \neq f(1)$, define \tilde{f} by $\tilde{f}(1-u) = \tilde{f}(u) = f(2u)$ for $0 \leq u \leq 1/2$. This \tilde{f} has the same integral as f and $\tilde{f}(0) = \tilde{f}(1)$.

For smooth f, can reduce the variance to $O(n^{-4+\delta})$ (Hickernell 2002). The resulting \tilde{f} also symmetric with respect to u=1/2.

In practice, we transform the points U_i instead of f.

Random shift followed by baker's transformation. Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by $\min[2U_j, 2(1-U_j)]$.

Random shift followed by baker's transformation. Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by $\min[2U_j, 2(1-U_j)]$.

Random shift followed by baker's transformation. Along each coordinate, stretch everything by a factor of 2 and fold. Same as replacing U_j by $\min[2U_j, 2(1-U_j)]$.

Random shift followed by baker's transformation.

Along each coordinate, stretch everything by a factor of 2 and fold.

Same as replacing U_j by min[2 U_j , 2(1 - U_j)].

Gives locally antithetic points in intervals of size 2/n.

Searching for a lattice that minimizes

$$\operatorname{Var}[\hat{\mu}_{n,\operatorname{rqmc}}] = \sum_{\mathbf{0} \neq \mathbf{h} \in L_s^*} |\hat{f}(\mathbf{h})|^2$$

is impractical, because:

- the Fourier coefficients are usually unknown,
- there are infinitely many,
- must do it for each f.

ANOVA decomposition

The Fourier expansion has too many terms to handle. As a cruder expansion, we can write $f(\mathbf{u}) = f(u_1, \dots, u_s)$ as:

$$f(\mathbf{u}) = \sum_{\mathbf{u} \subseteq \{1, \dots, s\}} f_{\mathbf{u}}(\mathbf{u}) = \mu + \sum_{i=1}^{s} f_{\{i\}}(u_i) + \sum_{i,j=1}^{s} f_{\{i,j\}}(u_i, u_j) + \cdots$$

where

$$f_{\mathfrak{u}}(\mathbf{u}) = \int_{[0,1)^{|\overline{\mathfrak{u}}|}} f(\mathbf{u}) d\mathbf{u}_{\overline{\mathfrak{u}}} - \sum_{\mathfrak{v} \subset \mathfrak{u}} f_{\mathfrak{v}}(\mathbf{u}_{\mathfrak{v}}),$$

and the Monte Carlo variance decomposes as

$$\sigma^2 = \sum_{\mathfrak{u} \subset \{1, \dots, s\}} \sigma_{\mathfrak{u}}^2,$$

where the $\sigma_{\mathfrak{u}}^2 = \operatorname{Var}[f_{\mathfrak{u}}(\mathbf{U})]$ can be estimated by MC or RQMC.

Heuristic intuition: Make sure the projections of P_n are very uniform for the important subsets \mathfrak{u} (i.e., with large $\sigma_{\mathfrak{u}}^2$).

Regrouping by projections: projection weights

$$\mathrm{Var}[\hat{\mu}_{n,\mathrm{rqmc}}] = \sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \mathrm{Var}[\hat{\mu}_{n,\mathrm{rqmc}}(f_{\mathfrak{u}})].$$

Denote $\mathfrak{u}(\mathbf{h}) = \mathfrak{u}(h_1, \dots, h_s)$ the set of indices j for which $h_j \neq 0$. We will search for a lattice that minimizes the weighted $\mathcal{P}_{2\alpha}$:

$$\begin{split} \mathcal{P}_{\gamma,2\alpha}(P_n^0) &= \sum_{\mathbf{0}\neq\mathbf{h}\in L_s^*} \gamma_{\mathfrak{u}(\mathbf{h})}(\max(1,h_1),\ldots,\max(1,h_s))^{-2\alpha} \\ &= \sum_{\emptyset\neq\mathfrak{u}\subseteq\{1,\ldots,s\}} \frac{1}{n} \sum_{i=0}^{n-1} \gamma_{\mathfrak{u}} \left[\frac{-(-4\pi^2)^{\alpha}}{(2\alpha)!} \right]^{|\mathfrak{u}|} \prod_{j\in\mathfrak{u}} B_{2\alpha}(u_{i,j}), \end{split}$$

where the projection-dependent weights $\gamma_{\mathfrak{u}}$ are positive real numbers, α is a positive integer, $\mathbf{u}_i = (u_{i,1}, \ldots, u_{i,s}) = i\mathbf{v}_1 \mod 1$, $|\mathfrak{u}|$ is the cardinality of \mathfrak{u} , and $B_{2\alpha}$ is the Bernoulli polynomial of order 2α .

How to select the weights?

ANOVA variance components for worst-case $f_{\mathfrak{u}}$, whose square Fourier coefficients are $|\hat{f}(\mathbf{h})|^2 = \max(1, h_1), \ldots, \max(1, h_s))^{-2\alpha}$:

$$\sigma_{\mathfrak{u}}^{2} = \gamma_{\mathfrak{u}} \left[|B_{2\alpha}(0)| \frac{(4\pi^{2})^{\alpha}}{(2\alpha)!} \right]^{|\mathfrak{u}|} \stackrel{\mathrm{def}}{=} \gamma_{\mathfrak{u}}(\kappa(\alpha))^{-|\mathfrak{u}|}$$

where $\kappa(\alpha)$ depends on α . We have

$$\kappa(1) = \frac{3}{\pi^2} \approx 0.30396, \quad \kappa(2) = \frac{45}{\pi^4} \approx 0.46197, \quad \kappa(3) \approx 0.49148,$$

and $\kappa(\alpha) \to 0.5$ when $\alpha \to \infty$.

Idea: estimate the variance components $\sigma^2_{\mathfrak{u}}$ and take the weights

$$\gamma_{\mathfrak{u}} = \sigma_{\mathfrak{u}}^2(\kappa(\alpha))^{|\mathfrak{u}|}.$$

Simplified choices of weights

Order-dependent weights:

 $\gamma_{\mathfrak{u}}$ depends only on $|\mathfrak{u}|$.

Special case: $\gamma_{\mathfrak{u}}=1$ for $|\mathfrak{u}|\leq d$ and $\gamma_{\mathfrak{u}}=0$ otherwise.

Simplified choices of weights

Order-dependent weights:

 $\gamma_{\mathfrak{u}}$ depends only on $|\mathfrak{u}|$.

Special case: $\gamma_{\mathfrak{u}}=1$ for $|\mathfrak{u}|\leq d$ and $\gamma_{\mathfrak{u}}=0$ otherwise.

Product weights:

 $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$ for some constants $\gamma_j \geq 0$.

Geometric weights:

Take $\gamma_j = a\beta^j$ for $a, \beta > 0$.

Searching for lattice parameters

Korobov lattices.

Search for $\mathbf{z} = (1, a, a^2, \dots, \dots)$ over all admissible integers a.

Searching for lattice parameters

Korobov lattices.

Search for $\mathbf{z} = (1, a, a^2, \dots, \dots)$ over all admissible integers a.

Component by component (CBC) construction.

Let $z_1 = 1$; For $j = 2, \ldots, s$, find z_j

For j = 2, ..., s, find $z_j \in \{1, ..., n-1\}$, $gcd(z_j, n) = 1$, such that $(z_1, ..., z_{j-1}, z_j)$ minimizes the selected discrepancy for the first j dimensions.

Searching for lattice parameters

Korobov lattices.

Search for $\mathbf{z} = (1, a, a^2, \dots, \dots)$ over all admissible integers a.

Component by component (CBC) construction.

```
Let z_1 = 1;
For j = 2, ..., s, find z_j \in \{1, ..., n-1\}, gcd(z_j, n) = 1, such that (z_1, ..., z_{j-1}, z_j) minimizes the selected discrepancy for the first j dimensions.
```

Partial randomized CBC construction.

```
Let z_1 = 1;
For j = 2, ..., s, try r random z_j \in \{1, ..., n-1\}, \gcd(z_j, n) = 1, and retain the one for which (z_1, ..., z_{j-1}, z_j) minimizes the selected discrepancy for the first j dimensions.
```

Example: stochastic activity network

Each arc j has random length $V_j = F_j^{-1}(U_j)$.

Let $T = f(U_1, ..., U_{13}) = \text{length of longest path from node 1 to node 9}.$

Want to estimate $q(x) = \mathbb{P}[T > x]$ for a given constant x.

To estimate q(x) by MC, we generate n independent realizations of T, say T_1, \ldots, T_n , and take $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the n realizations of (U_1, \ldots, U_{13}) by the n points of a randomly-shifted lattice.

To estimate q(x) by MC, we generate n independent realizations of T, say T_1, \ldots, T_n , and take $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

Illustration: $V_j \sim \text{Normal}(\mu_j, \sigma_j^2)$ for j = 1, 2, 4, 11, 12, and $V_j \sim \text{Exponential}(1/\mu_j)$ otherwise.

The μ_j : 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

To estimate q(x) by MC, we generate n independent realizations of T, say T_1, \ldots, T_n , and take $(1/n) \sum_{i=1}^n \mathbb{I}[T_i > x]$.

For **RQMC**, we replace the *n* realizations of (U_1, \ldots, U_{13}) by the *n* points of a randomly-shifted lattice.

Illustration: $V_j \sim \text{Normal}(\mu_j, \sigma_j^2)$ for j = 1, 2, 4, 11, 12, and $V_j \sim \text{Exponential}(1/\mu_j)$ otherwise.

The μ_j : 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.

CMC estimator. Generate the V_j 's only for the 8 arcs that do not belong to the cut $\mathcal{L} = \{5, 6, 7, 9, 10\}$, and replace $\mathbb{I}[T > x]$ by its conditional expectation given those V_j 's, $\mathbb{P}[T > x \mid \{V_j, j \notin \mathcal{L}\}]$. This makes the integrand continuous in the U_i 's.

ANOVA Variances for the Stochastic Activity Network

Random vs. Full CBC

Random vs. Full CBC

Random vs. Full CBC

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Prime vs. Power-of-2 Number of Points

Korobov vs. CBC

Solid: CBC.

Dashed: Korobov.

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Korobov vs. CBC

Solid: CBC. Dashed: Korobov.

Histograms, for n = 8191, $m = 10^4$ replications

Histograms

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$.

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a *c*-dimensional geometric Brownian motions (GMB) at *d* observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate **Y**: Decompose
$$\Sigma = AA^t$$
, generate $\mathbf{Z} = (Z_1, \dots, Z_s) = (\Phi^{-1}(U_1), \dots, \Phi^{-1}(U_s)) \sim N(\mathbf{0}, \mathbf{I})$ and return $\mathbf{Y} = AZ$.

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate **Y**: Decompose
$$\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^t$$
, generate $\mathbf{Z} = (Z_1, \dots, Z_s) = (\Phi^{-1}(U_1), \dots, \Phi^{-1}(U_s)) \sim N(\mathbf{0}, \mathbf{I})$ and return $\mathbf{Y} = \mathbf{A}\mathbf{Z}$. Choice of **A**?

Let
$$\mu = E[f(\mathbf{U})] = E[g(\mathbf{Y})]$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

For example, if the payoff of a financial derivative is a function of the values taken by a c-dimensional geometric Brownian motions (GMB) at d observations times $0 < t_1 < \cdots < t_d = T$, then we have s = cd.

To generate **Y**: Decompose
$$\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^t$$
, generate $\mathbf{Z} = (Z_1, \dots, Z_s) = (\Phi^{-1}(U_1), \dots, \Phi^{-1}(U_s)) \sim N(\mathbf{0}, \mathbf{I})$ and return $\mathbf{Y} = \mathbf{A}\mathbf{Z}$. Choice of **A**?

Cholesky factorization: **A** is lower triangular.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of Σ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s, \dots, \lambda_1)$ (eigenvalues of Σ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{\mathbf{X}(t), t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

at times $0 = t_0 < t_1 < \dots < t_d$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_3)$

Payoff depends on c-dimensional Brownian motion $\{\mathbf{X}(t),\ t\geq 0\}$ observed

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then $\mathbf{X}(t_3) - \mathbf{X}(t_2)$, etc.

Principal component decomposition (PCA):

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s,\ldots,\lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

Payoff depends on c-dimensional Brownian motion $\{\mathbf{X}(t),\ t \geq 0\}$ observed at times $0 = t_0 < t_1 < \cdots < t_d$.

Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$, then $\mathbf{X}(t_3) - \mathbf{X}(t_2)$, etc.

Brownian bridge (BB) sampling: Suppose $d = 2^m$.

Generate $\mathbf{X}(t_d)$, then $\mathbf{X}(t_{d/2})$ conditional on $(\mathbf{X}(0), \mathbf{X}(t_d))$, then $\mathbf{X}(t_{d/4})$ conditional on $(\mathbf{X}(0), \mathbf{X}(t_{d/2}))$, and so on.

The first few N(0,1) r.v.'s already sketch the path trajectory.

Principal component decomposition (PCA):

 $\mathbf{A} = \mathbf{P}\mathbf{D}^{1/2}$ where $\mathbf{D} = \mathrm{diag}(\lambda_s, \ldots, \lambda_1)$ (eigenvalues of $\mathbf{\Sigma}$ in decreasing order) and the columns of \mathbf{P} are the corresponding unit-length eigenvectors. With this \mathbf{A} , Z_1 accounts for the maximum amount of variance of \mathbf{Y} , then Z_2 for the maximum amount of variance conditional on Z_1 , and so on.

Function of a Brownian motion:

at times $0 = t_0 < t_1 < \dots < t_d$. Sequential (or random walk) method: generate $\mathbf{X}(t_1)$, then $\mathbf{X}(t_2) - \mathbf{X}(t_1)$,

Payoff depends on *c*-dimensional Brownian motion $\{X(t), t \geq 0\}$ observed

then $\mathbf{X}(t_3) - \mathbf{X}(t_2)$, etc.

Brownian bridge (BB) sampling: Suppose $d = 2^m$. Generate $\mathbf{X}(t_d)$, then $\mathbf{X}(t_{d/2})$ conditional on $(\mathbf{X}(0), \mathbf{X}(t_d))$, then $\mathbf{X}(t_{d/4})$ conditional on $(\mathbf{X}(0), \mathbf{X}(t_{d/2}))$, and so on.

The first few N(0,1) r.v.'s already sketch the path trajectory.

Each of these methods corresponds to some matrix \bf{A} . Choice has large impact on the ANOVA decomposition of f.

Example: Pricing an Asian option

Single asset, s observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rt_s} \max \left[0, \ \frac{1}{s} \sum_{j=1}^s S(t_j) - K\right]$$

and $\{S(t), t \geq 0\}$ is a geometric Brownian motion. We have $f(\mathbf{U}) = g(\mathbf{Y})$ where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$.

Example: Pricing an Asian option

Single asset, s observation times t_1, \ldots, t_s . Want to estimate $\mathbb{E}[f(\mathbf{U})]$, where

$$f(\mathbf{U}) = e^{-rt_s} \max \left[0, \ \frac{1}{s} \sum_{j=1}^s S(t_j) - K\right]$$

and $\{S(t), t \ge 0\}$ is a geometric Brownian motion.

We have
$$f(\mathbf{U}) = g(\mathbf{Y})$$
 where $\mathbf{Y} = (Y_1, \dots, Y_s) \sim N(\mathbf{0}, \mathbf{\Sigma})$.

Let S(0) = 100, K = 100, r = 0.05, $t_s = 1$, and $t_j = jT/s$ for $1 \le j \le s$. We consider $\sigma = 0.2$, 0.5 and s = 3, 6, 12.

ANOVA Variances for the Asian Option

Total Variance per Coordinate for the Asian Option

Histograms for the Asian option, s = 6, PCA

A down-and-in Asian option with barrier B

Same as for Asian option, except that payoff is zero unless

$$\min_{1\leq j\leq s}S(t_j)\leq 80.$$

ANOVA Variances for the down-and-in Asian Option

Total Variance per Coordinate for the down-and-in Asian Option

Call on the maximum of 6 assets

Each of 6 asset prices obeys a GBM with $s_0 = 100$, r = 0.05, $\sigma = 0.2$. The pairwise correlation between Brownian motions is 0.3.

The assets pay a dividend at rate 0.10, which means that the effective risk-free rate can be taken as r' = 0.05 - 0.10 = -0.05.

ANOVA variances for the maximum of 6 assets

Total Variance per Coordinate for max of 6 assets

