Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

КУРСОВАЯ РАБОТА ПО ДИСЦИПЛИНЕ "МОДЕЛИРОВАНИЕ"

Творческая работа: Моделирование многопроцессорного планировщика задач

Выполнили: Айтуганов Д. А.

Чебыкин И. Б.

Группа: Р3301

Проверяющий: Муравьева-Витковская Л. А.

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

Содержание

1	Цел	ь раб	оты	2
2	Эта	п 1. В	ыбор объекта исследования и описание концептуальной модели	2
	2.1	Описа	ание объекта исследования	2
	2.2	Разра	ботка концептуальной модели	2
3	Имі	итацис	онная модель	3
		3.0.1	Результаты имитационного моделирования	3
		3.0.2	Anylogic	3
		3.0.3	GPSS	4
		3.0.4	Результаты Anylogic	5
		3.0.5	Результаты GPSS	5
	3.1	Графі	ические представления	6
		3.1.1	Доверительные интервалы	6
		3.1.2	Выводы	9
4	Ана	алитич	иеская модель	10
	4.1			10
		_	-	10

1 Цель работы

Комплексное исследование характеристик функционирования дискретных систем, моделируемых в виде разомкнутой системы массового обслуживания с использованием имитационных свойств и аналитических методов и изучение свойств и закономерностей, присущих процессам, протекающим в них.

2 Этап 1. Выбор объекта исследования и описание концептуальной модели

2.1 Описание объекта исследования

В качестве объекта исследования был выбран планировщик задач современных операционных систем, работающий в системе с симметричной многопроцессорностью. (SMP) Алгоритм работы планировщика состоит в следующем:

- Процесс отрабатывает данный ему квант времени, затем либо завершается, либо возвращается в очередь.
- Периодически проверяется загрузка процессора, и, в случае дисбаланса задачи из очереди перемещаются в менее загруженный процессор.
- Процессы с меньшим приоритетом могут быть вытеснены

Рис. 1: Схема многопроцессорной системы

В рамках курсовой работы будет производиться исследование функционирования системы, состоящей из данного числа процессоров, постоянно принимающих задачи.

Задача курсовой работы состоит в исследовании данной системы при данных параметрах процессоров и определения на основе параметров лучшей конфигурацию системы.

2.2 Разработка концептуальной модели

В рамках исследования будут использоваться следующие предположения и допущения:

- 1. Задачи поступают и уходят из очереди мгновенно.
- 2. Очередь имеет ограниченный размер, дисциплина обслуживания: roundrobin.

Рис. 2: Схема исследуемой системы

- 3. Задачи делятся на два класса приоритетов, основанных на абсолютных приоритетах, во время выполнения процесса, его приоритет уменьшается с каждым тактом.
- 4. Дисциплина прерывания прерванная задача возвращается в очередь.
- 5. Задачи имеют два состояния: выполнение на процессоре, готовность.

Рис. 3: Модель исследуемой системы

На вход поступают задачи, которые тут же попадают в свободные очереди для процессоров. Процессор выделяет определенный квант на процесс, по истечении которого процесс либо завершается, либо направляется в очередь того, процесса, который меньше всего нагружен.

3 Имитационная модель

3.0.1 Результаты имитационного моделирования

За параметр варьирования было решено взять время между поступлениями процессов, а также размер кванта. Были проведены замеры для интервалов между поступлениями процессов для 100 мс, 200 мс, 300 мс. При изменении размера кванта интервал был задан 100 мс.

3.0.2 Anylogic

Рис. 4: Модель Anylogic

3.0.3 GPSS

```
* Область описания
Cpu STORAGE 2; 2 CPU
Tw QTABLE 1,2,2,40
Tu_1 TABLE M1,50,4,40
Tu_2 TABLE M1,7,7,40
***********
GENERATE (Exponential (1,0,100)); формирование простейшего потока
TEST L Q1,1000, Drop_1; проверка длины очереди
CL1_RUNQ QUEUE 1; регистрация момента поступления заявки в очередь 1
DEPART 1; регистрация момента покидания заявки очереди 1
ADVANCE (Exponential(2,0,100)); задержка заявки на 50 единиц модельного времени
LEAVE cpu
TRANSFER 0.5,,CL1_RUNQ
TABULATE Tu_1
TERMINATE 1; удаление из модели обслуженной заявки 1- го класса
Drop_1 TERMINATE 1; удаление не обслуженной заявки 1- го класса
* second cpu
GENERATE (Exponential(2,0,100)); формирование равномерно распределенного потока
TEST L Q1,1000,Drop_2; проверка длины очереди
\mathtt{CL2\_RUNQ} QUEUE 1; регистрация момента поступления заявки в очередь 1
PREEMPT cpu
DEPART 1; регистрация момента покидания заявки очереди 1
ADVANCE (Exponential(3,0,100)); задержка заявки 2- го класса
RETURN cpu
TRANSFER 0.5,, CL2_RUNQ
TABULATE Tu_2
TERMINATE 1; удаление из модели обслуженной заявки 2- го класса
```

Drop_2 TERMINATE 1; удаление не обслуженной заявки 2- го класса

START 10000; запуск модели

Листинг 1: src/smo.gps.txt

3.0.4 Результаты Anylogic

Время между поступлениями	Длина очереди	Загрузка прибора 1	Загрузка прибора 2
100	898,935	0,614	0,609
	892,422	0,613	0,611
	892,987	0,613	0,611
	888,446	0,613	0,611
200	4,871	0,497	0,51
	4,875	0,492	0,497
	4,755	0,492	0,495
	4,896	0,498	0,501
300	0,944	0,341	0,338
	0,953	0,34	0,339
	0,946	0,34	0,339
	0,954	0,34	0,339

Размер кванта	Длина очереди	Загрузка прибора 1	Загрузка прибора 2		
100	879,948	0,612	0,611		
	892,422	0,611	0,61		
	892,987	0,611	0,61		
	888,446	0,611	0,61		
50	2,113	0,511	0,498		
	2,159	0,509	0,495		
	2,16	0,51	0,496		
	2,172	0,52	0,497		
10	0,029	0,108	0,109		
	0,028	0,107	0,108		
	0,03	0,108	0,109		
	0,029	0,108	0,109		

3.0.5 Результаты GPSS

Время между поступлениями	Длина очереди	Загрузка прибора 1	Загрузка прибора 2
100	909,829	0,657	0,657
	913,914	0,578	0,578
	917,51	0,562	0,562
	920,854	0,556	0,556
200	17,305	0,514	0,514
	16,244	0,513	0,513
	17,135	0,514	0,514
	16,984	0,513	0,513
300	0,967	0,337	0,337
	0,949	0,332	0,332
	0,937	0,335	0,335
	0,948	0,336	0,336

Размер кванта	Длина очереди	Загрузка прибора 1	Загрузка прибора 2
100	909,829	0,657	0,657
	913,914	0,596	0,588
	917,51	0,597	0,597
	920,854	0,554	0,554
50	21,133	0,511	0,511
	18,514	0,513	0,513
	19,641	0,512	0,512
	17,485	0,511	0,511
10	0,014	0,099	0,099
	0,012	0,101	0,101
	0,012	0,102	0,102
	0,013	0,1	0,1

3.1 Графические представления

3.1.1 Доверительные интервалы

Anylogic

Время между поступлениями	Длина очереди	Загрузка прибора 1	Загрузка прибора 2
100	19,76092	0,00143	0,00287
200	0,59952	0,00717	0,02023
300	0,01174	0,00143	0,00143

Anylogic

Размер кванта	Длина очереди	Загрузка прибора 1	Загрузка прибора 2
100	18,30905	0,00143	0,00143
50	0,06670	0,00248	0,00379
10	0,00248	0,00143	0,00143

GPSS

Время между поступлениями	Длина очереди	Загрузка прибора 1	Загрузка прибора 2
100	9,54677	0,12635	0,12635
200	1,41563	0,00143	0,00143
300	0,03751	0,00625	0,00625

GPSS

OI DD			
Размер кванта	Длина очереди	Загрузка прибора 1	Загрузка прибора 2
100	9,54677	0,08678	0,09318
50	3,26349	0,00248	0,00248
10	0,00287	0,00379	0,00379

Рис. 5: Варьирование времени между процессами

Рис. 6: Варьирование кванта

3.1.2 Выводы

Результаты моделирования в разных программных продуктах показали хоть и различные, но близкие, с учетом доверительного интервала, к друг другу результаты. Вероятно, различия обусловлены разными реализациями генераторов случайных чисел в каждой из программ.

По результатам моделирования видно, что при уменьшении времени между послуплениями процессов, очередь начинает постоянно заполняться, так как помимо быстро приходящих новых процессов, в очередь возвращаются процессы, отработавшие свой квант.

Для устранения этой проблемы можно как увеличивать время между поступлениями процессов, так и изменять размер кванта, который выделяется на процесс. Однако, как следует из результатов, при слишком маленьком кванте загрузка очень сильно снижается, что приведет к слишком большим затратам на смену контекста в реальной модели.

Время между поступлениями процессов равное 200 мс можно назвать критическим, т.к. при его уменьшении наблюдается постоянное увеличение размера очереди.

Подобрав наиболее удачные параметры кванта и времени поступления, можно сказать, что данная система будет вести себя стабильно и при больших количествах процессов, сохраняя высокую загрузку и малую длину очереди.

4 Аналитическая модель

С помощью заданных допущений была составлена СМО с неоднородным потоком заявок, ввиду того, что нагрузку нельзя свести к однородной из-за наличия приоритетов.

4.1 Характеристики модели

	Характеристики обслуживания класса заявок в СМО															
				Ср. в	ремя ож	идания	Ср. вр	ремя преб	бывания	вания Ср. длина в очереди			Ср. ч	вок в системе		
K	Класс Загрузка БП ОП АП		БП	ОП	АΠ	БП	OI	ОП АП		БП	ОП	АΠ				
	1 0,05 0,001 0,001 0,0003		0,301	0,301	0,3003	0,001	0,00)1	0,0003	0,101	0,101	0,1003				
2			0,05	0,001	0,0011	0,0018	0,301	0,3011	0,3018	0,001	0,00	11	0,0018	0,101	0,1011	0,1018
$\overline{}$				·	Харан	теристик	и обслу	живания (бъединен	ного пот	ока за	аяво	к в СМО			
l	1 R b ДО Ср. время ожидания Ср. время пребы		ебывания	Ср. длина в очереди Ср. число з			. число за	аявок в	Константа ВО							
2	0,1	0,1	БП 0,001 0,301			0,002		(0,202		0,00010					
		ОП 0,001 0,301			0,002			0,202			0,00011					
	AΠ 0,001		0,30	1		0,002		0,202			0,00011					

4.1.1 Графики варьирования длительности обслуживания

Рис. 7: Без приоритетов

Исходя из графиков видно, что приоритеты влияют на

Рис. 8: Относительные приоритеты

Рис. 9: Абсолютные приоритеты