Γ.		Cognom	ie:		Nome:	
		0		Matricola:		
	⊥ Gra	afica Co	mputazionale	3 giugno	2015	Ingegneria Informatica
1 1Ri			a generazione di ale delle superfici			e curva polinomiale di grado rma di B'ezier
2	Scrivere le nove	funzioni d	li una base biquad	dratica (bivariata	a) di B'ezier	
3	Fornire la matri	ce window	$\gamma \to { m viewport~che}$	mappi (0, 0, 10, 2	20) in (0.2, 0.	.2, 0.5, 0.5)
	Ricavare l'espre	ssione vett	toriale della norm	nale $n(u, v)$ ad un	na superficie	bilineare definita da quattro
5	Calcolare la son	ıma dei pr	rimi 30 termini de	ella serie $1 - \frac{1}{2^4} + \frac{1}{2^4}$	$+\frac{1}{3^4}-\frac{1}{4^4}+$	$\cdots \pm \frac{1}{n^4} \mp \cdots = \frac{7\pi^4}{720}$

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
G	
6	Descrivere le rappresentazioni procedurali dei solidi
7	Descrivere sinteticamente la presentazione front-to-back
·	2 control of sinconcumente in procentialism from to such
8	Fornire il modello di vista della assonometria cavaliera isometrica sinistra (30/60)
9	Si fornisca l'espressione della base polinomiale di Bezier di grado generico
Э	of formsca respressione dena base polinonnaie di Bezier di grado generico
10	Definire il volume canonico nel caso parallelo

	Cognome:	Nome:	
	•)	Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Descrivere il concetto di schema di rapprese	entazione, e specificare quar	ndo sia "completo"
2	Scrivere una funzione Plasm che generi il gr	rafico della base di Bezier d	i grado 2 in [0, 1]
3	Calcolare la somma dei primi 30 termini de	lla serie $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$	$\cdots \pm \frac{1}{n} \mp \cdots = \ln 2$
4	Descrivere la trasformazione VRC \rightarrow NPC	di PHIGS	
5	Descrivere sinteticamente l'algoritmo di Nev	well	

Cognome:	Nome:	
•)	Matricola:	
Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Ricavare la forma geometrica di Hermite de	ella curva polinomiale di gra	ado 3
7 Ricavare le eq. param. $S(u,v,w)$ del $cilindre$ e' la coordinata radiale e $w\in [0,H]$ è la quota	o $pieno$, dove $u \in [0, 2\pi]$ è la	a coordinata angolare, $v \in [0, R]$
8 Fornire il modello di vista della proiezione d	ortografica verticale	
9 Ricavare l'equazione vettoriale della strisci parametrica $fc(u)$	a di superficie di spessore	costante definita da una curva
10 Fornire la matrice window \rightarrow viewport ch	e mappi (0, 0, 10, 20) in (0.2	2, 0.2, 0.5, 0.5)
•		, , ,

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
$\frac{1}{R}$	Ricavare le funzioni coord. della superficie torica (centro l'origine) di raggio minore r e raggio maggiore
2	fornire la rappresentazione spigolo-alata di un tetraedro
3	Illustrare una interfaccia grafica per gestire la continuita tra segmenti di spline fatti da curve di
	rmite.
	Carinara la funcioni accada della cuma di Daniara definita del policiona di controlla (4.1.42.60.00.00.00.00.00.00.00.00.00.00.00.00.
4	Scrivere le funzioni coord. della curva di Bezier definita dal poligono di controllo <1,1>,<0,0>,<2,0>>
5	Calcolare la somma dei primi 30 termini della serie $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots \pm \frac{1}{2^{n}-1} \mp \cdots = \frac{\pi}{4}$

	Cognome:	Nome:	
	1	ricola:	
	Grafica Computazionale	giugno 2015	Ingegneria Informatica
6	6 Illustrare il calcolo della quantità Δz del pixel nell	'algoritmo z-buffer	
	7 G · C · Dl l · · · l C l	11 1 1: 4	1. 1.0. [0.1]
7	7 Scrivere una funzione Plasm che generi il grafico d	ella base di potenze d	11 grado 2 in [0, 1]
8	8 Descrivere la trasformazione MC \rightarrow WC3 di PHIG	S	
9	9 Fornire il modello di vista della assonometria caval	iera isometrica sinist	ra (30/60)
			- (00)
	10 Fornire la matrice window \rightarrow viewport che $(0.2, 0.2, 0.5, 0.5)$ in $(0, 0, 1000, 1000)$	mappi $(0, 0, 10, 20)$	in $(0.2, 0.2, 0.5, 0.5)$ e poi
•			

	Cognome:	Nome:_	
	/	Matricola:	
,	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Calcolare la somma dei primi 30 termini d	lella serie $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{3!}$	$+\cdots + \frac{1}{n!} + \cdots = e$
2	Scrivere una funzione Plasm che generi il g	grafico della base di potenze	e di grado 1 in $[0,1]$
3	Fornire il modello di vista della assonomet	ria cavaliara isometrica con	tralo (45/45)
•	Torinic ir modeno di vista della assonomet	ira cavanera isometrica cen	traic (40/40)
4	Illustrare la relazione tra numero di spigol	i e numero di triangoli di b	ordo di un poliedro
5	Scrivere le equazioni parametriche del pian i poli.	to tangente ad un punto $S(u)$	(u,v) della sfera, supposto diverso
ua	i pon.		

	Cognome:	Nome:	
		Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Fornire l'equazione vettoriale di una superfi	cie che modelli un semplice	e vaso da fiori
7	Descrivere la trasformazione NPC \rightarrow DC3 o	li PHIGS	
8	Si ricavi la matrice della trasformazione tr rve cubiche	a la forma geometrica di E	Bezier e quella di Hermite delle
9	Fornire un esempio 2-dimensionale di albero	BSP definito da un poligo	no chiuso non convesso di 5 lati
10		indow → Viewport isomorfi	ca nella ipotesi che lo spazio di
ar	ivo abbia l'asse y orientato verso il basso		

	Cognome:Nome:
	Matricola:
,	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1 e']	Ricavare le eq. param. $S(u,v,w)$ del $cilindro\ pieno$, dove $u\in[0,2\pi]$ è la coordinata angolare, $v\in[0,R]$ la coordinata radiale e $w\in[0,H]$ è la quota
2	Illustrare il calcolo della quantità Δz del pixel nell'algoritmo z-buffer
-	
3	Illustrare come la superficie sferica 3D sia un caso particolare di superficie prodotto profilo
4	Fornire il modello di vista di una assonometria cavaliera che non deformi piante e viste frontali
5	Descrivere la rappresentazione spigolo-alata dei solidi

	Cognome:Nome:
	Matricola:
•	J Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
	Si ricavi la matrice della trasformazione tra la forma geometrica di Bezier e quella di Hermite delle ve cubiche
7	Descrivere la pipeline 3D di PHIGS
8	Fornire la matrice window \rightarrow viewport che mappi $(0,0,10,20)$ in $(0.2,0.2,0.5,0.5)$
9	Scrivere una funzione Plasm che generi il grafico della funzione sin u nell'intervallo $[-\pi,\pi]$
10	Calcolare la somma dei primi 30 termini della serie $1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots \pm \frac{1}{n!} \mp \cdots = \frac{1}{e}$

	Cognome:Nome:
	Matricola:
1	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1	Descrivere il sistema WC di GKS
2	Elencare i diversi tipi di culling
3	Fornire il modello di vista della assonometria cavaliera isometrica destra (60/30)
4	Calcolare la somma dei primi 30 termini della serie $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n\cdot (n+1)} + \dots = 1$
5	Descrivere le equazioni di Eulero ed Eulero-Poincare per solidi poliedrici

~		
Cognome:		
	Matricola:	
U Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Scrivere una funzione Plasm che generi il gra 7 Scrivere le equazioni parametriche del piano dai poli.	afico della base di potenze	di grado 2 in $[0,1]$
8 Ricavare l'equazione matriciale delle superfic	si paramotricho biquodusti	che in forma di R'avier
	•	
9 Ricavare l'espressione vettoriale della norma	le $fn(u)$ ad una curv \overline{a} cub	oica piana di B'ezier
10 Fornire la matrice della trasformazione Winarrivo abbia l'asse y orientato verso il basso	$\operatorname{ndow} o \operatorname{Viewport}$ isomorfi	ica nella ipotesi che lo spazio di

	Cognome: Nome:
	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1	Descrivere la trasformazione MC \rightarrow WC3 di PHIGS
2	Descrivere sinteticamente l'algoritmo BSP
-	Descrivere sincercamence i algoritmo del
3	Ricavare la matrice base delle spline cubiche cardinali
Ü	racavare la marrice base delle sprine editene cardinan
4	Fornire la matrice window \rightarrow viewport che mappi $(0, 0, 10, 20)$ in $(0.2, 0.2, 0.5, 0.5)$
5	Ricavare le eq. param. $S(u, v, w)$ del cilindro pieno, dove $u \in [0, 2\pi]$ è la coordinata angolare, $v \in [0, R]$
e'	la coordinata radiale e $w \in [0, H]$ è la quota

	Cognome: Nome:
	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
6	Scrivere una funzione Plasm che generi il grafico della funzione $\cos u \sin u$ nell'intervallo $[-\pi, \pi]$
6	Scrivere una funzione riasm che generi il granco dena funzione $\cos u \sin u$ nen intervano $[-\pi,\pi]$
7	Fornire la definizione di superficie parametrica per prodotto tensore
8	Discutere una rappresentazione decompositiva simpliciale
9	Calcolare la somma dei primi 30 termini della serie $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \pm \frac{1}{n} \mp \cdots = \ln 2$
10	Fornire il modello di vista della assonometria cavaliera dimetrica standard

	Cognome:	None	e:
	Ognome:	Nome Matricola:	ಪ.
(Grafica Computazionale		Ingegneria Informatica
1	Illustrare il significato del tensore di contro	llo di una superficie bic	ubica in forma di B'ezier
2	Esemplificare la rappr. minimale al contorn	o per un poliedro cubic	
3	Descrivere il sistema DC di GKS		
4	Fornire il modello di vista della assonometr	ia ortogonale isometrica	à
5	Descrivere sinteticamente i criteri geometric	si usati per studiare la	"coerenza" della scena

Cognome:	Nome:	
Q	Matricola:	
Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Ricavare la forma geometrica di Lagrange (di grado 2	passaggio per i punti di con	trollo) della curva polinomiale
7 Scrivere i polinomi della base di Hermite di	i mada 2 a una funciana al	
polinomio	grade of e and rangione pro	
8 Illustrare le funzioni del volume di vista		
9 Calcolare la somma dei primi 30 termini de	lla serie $\frac{1}{44} + \frac{1}{24} + \frac{1}{44} + \cdots$	$+\frac{1}{(2+1)^4}+\cdots=\frac{\pi^4}{26}$
10 Scrivere le equazioni parametriche del piar di B'ezier.	no tangente ad un punto $S(a)$	(u, v) di una superficie bicubica

	Cognome:	No	ome.	
	Grafica Computazionale	3 giugno 2	2015	Ingegneria Informatica
1	1 Ricavare l'equazione matriciale delle superfici pa	rametriche bili	ineari	
2	2 Calcolare la somma dei primi 30 termini della ser	rie 1 + 1 + 1	1 + 1 +	$\cdots + \frac{1}{2} + \cdots = \frac{\pi^2}{2}$
_	2 Calcolate la somma dei primi do termini dena ser	22 3	32 42	$\frac{1}{n^2}$
3	3 Discutere la cardinalità delle relazioni topolog	iche tra le ti	re fondam	entali entità di bordo delle
	rappresentazioni al contorno			
4	4 Descrivere cosa si intende per modello di vista			
-	2 Descrivere cosa si intende per inodeno di vista			
5	E Forming la matrice della treaformazione Window) Wissessent is		an makada dinakka
3	5 Fornire la matrice della trasformazione Window	→ viewport is	somornea	con metodo diretto

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
6	Fornire il modello di vista della assonometria ortogonale isometrica
7	Scrivere una funzione Plasm che generi il grafico della base di Bezier di grado 2 in [0,1]
•	betweet that runzione I rashi che generi ii granco della base di Beziei di grado 2 in [0,1]
8	Descrivere sinteticamente i criteri geometrici usati per studiare la "coerenza" della scena
9	Ricavare l'espressione vettoriale della tangente $ft(u)$ ad una curva piana quadratica di B'ezier
10	Scrivere la matrice della trasformazione piana che mappa il triangolo standard $((0,0),(1,0),(0,1))$ nel
	angolo per tre punti v_1, v_2, v_3

1	Cognome:		Nome:	
		Matricola:		
1	Grafica Computazio	onale 3 giug	no 2015	Ingegneria Informatica
1	Fornire una definizione di curva splir	ne e un esempio grafic	co	
	Fornire la matrice window \rightarrow v 2, 0.2, 0.5, 0.5) in (0, 0, 1000, 1000)	iewport che mappi	(0,0,10,20)	in $(0.2, 0.2, 0.5, 0.5)$ e poi
3	Ricavare le funzioni coord. della supe	rficie torica (centro l'	origine) di ragg	gio minore r e raggio maggiore
R				
4	Scrivere una funzione Plasm che gene	eri il grafico della fur	zione $\sin u$ nel	l'intervallo $[-\pi, \pi]$
5	Descrivere sinteticamente le rapprese	entazioni al contorno	dei solidi	
3	2 33311 voto simeoroamente te rapprese		aci bondi	

10	Cognome:	Nome:	
	I	Matricola:	
TO	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Fornire	il modello di vista della assonometria		stra (30/60)
7 Descriv	rere sinteticamente la presentazione fro	nt-to-back	
$m{8}$ Illustra $S(u,v)$	are l'equazione vettoriale del solido sot	tile di spessore costant	e w prodotto da una superficie
9 Descriv	vere i parametri vettoriali del modello c	li vista	
10 Calco	lare la somma dei primi 30 termini del	la serie $1 - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4}$	$\frac{1}{4} + \dots \pm \frac{1}{n^4} \mp \dots = \frac{7\pi^4}{720}$

	Cognome:	Nome:	
		Matricola:	
TT	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
polinomio	i polinomi della base di B'ezier di	grado 3, e una funzione p	lasm che esegua il grafico di un
	a matrice della trasformazione Wind itato verso il basso	dow → Viewport nella ipo	tesi che lo spazio di arrivo abbia
4 Illustrare	e come la superficie sferica 3D sia u	n caso particolare di super	rficie prodotto profilo
5 Descrive	re sinteticamente l'algoritmo di Nev	well	

1	Cognome:	Nome:_	
- 1		Matricola:	
T	_ _ Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Illustrare le rappresentazioni solide enumera	tive	
			\ 1.11 C
7 dai	Scrivere le equazioni parametriche del piano i poli.	tangente ad un punto $S(u)$	(v,v) della stera, supposto diverso
8	Calcolare la somma dei primi 30 termini del	la serie $\frac{1}{14} + \frac{1}{24} + \frac{1}{54} + \cdots$	$\cdots + \frac{1}{(2n+1)^4} + \cdots = \frac{\pi^4}{96}$
		1. 3. 5.	$(2n+1)^{2}$ 30
9	Descrivere i parametri non vettoriali del mo-	dello di vista	
1.0	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
10	Fornire il modello di vista della assonomet	ria ortogonale trimetrica	

	Cognome:	Nome:	
	Grafica Computazionale	Matricola:	
٦	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Fornire il modello di vista della assonometri	ia cavaliera isometrica desti	ra (60/30)
	Fornire le eq. param. della superficie cilindr	ica a base circolare di raggi	o 2, altezza 3, asse di direzione
(1	(2,3) e centro della base nel punto $(1,0,0)$.		
3	Calcolare la somma dei primi 30 termini de	lla serie $1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} +$	$\cdots \pm \frac{1}{n!} \mp \cdots = \frac{1}{e}$
1	Scrivere la matrice della trasformazione p	iana cho manna il triango	lo por tro punti al al- al- nol
	angolo standard $((0,0),(1,0),(0,1))$	iana ene mappa n' iriango	to per the panti v ₁ , v ₂ , v ₃ her
5	Descrivere sinteticamente i criteri geometric	ci usati per studiare la "coe	renza" della scena

	Cognome:	Nome:	
10	cognome	Matricola:	
12	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Fornire	la matrice della trasformazione Winentato verso il basso		
,			
7 Descrive	ere il sistema NDC di GKS		
8 Scrivere polinomio	e i polinomi della base di Hermite d	i grado 3, e una funzione pl	asm che esegua il grafico di un
F			
9 Ricavar	e l'equazione matriciale delle superf	ici parametriche biquadratio	che in forma di B'ezier
10 Illustr	are una rappresentazione decomposi	tiva gerarchica	

	Cognome:Nome:
1	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
2	Discutere lo spazio occupato dalla rappr. triango-alata, e confrontarla con la rappr. spigolo-alata. Ricavare le eq. param. $S(u, v, w)$ del cilindro pieno, dove $u \in [0, 2\pi]$ è la coordinata angolare, $v \in [0, R]$ la coordinata radiale e $w \in [0, H]$ è la quota
3	Scrivere una funzione Plasm che generi il grafico della funzione sin u nell'intervallo $[-\pi,\pi]$
4	Descrivere cosa si intende per modello di vista
5	Descrivere sinteticamente il test di Newell

4 0	Cognome:	Nome:	
1 2	00811011101	Matricola:	
TO	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
	re la matrice della trasformazione Win Dia l'asse y orientato verso il basso		
7 D ·			
7 Fornii	e il modello di vista della assonometr	na ortogonale trimetrica	
8 Ricava	are l'equazione matriciale delle superf	ici parametriche biquadrati	
9 Ricava	are la forma geometrica di Bezier della	a curva polinomiale di grado) 1
10 Calc	olare la somma dei primi 30 termini d	lella serie $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$	$\cdots \pm \frac{1}{n} \mp \cdots = \ln 2$

1	1 1	Cognome:		
			Matricola:	-
L		Grafica Computaziona	ale 3 giugno 2015	Ingegneria Informatica
1	Calcolare	la somma dei primi 30 termin	i della serie $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2}$	$\frac{1}{2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$
_				
2	Fornire il	modello di vista della assonon	netria cavaliera isometrica sin	istra (30/60)
3	Descrivere	e sinteticamente il test di New	ell	
	D obolivor	s sincerioaniente ir vest ar ivew		
4	Calcolare	il genere topologico di un cub	o con due fori passanti.	
5	Illustrare	come la superficie sferica 3D s	ia un caso particolare di supe	erficie prodotto profilo

1	Cognome:	Nome:	
	/	Matricola:	
上	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 F	cicavare le eq. param. $S(u,v)$ della curva a	d elica, intorno all' asse x ,	raggio 1/2 e passo 2
	ornire la matrice della trasformazione Wir o abbia l'asse y orientato verso il basso	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	a nella ipotesi che lo spazio di
	-		
8 S	crivere una funzione plasm che esegua il g	rafico sovrapposto dei polin	omi di una base di grado n
9 F	cicavare le funzioni base delle spline cubich	e cardinali	
10	Descrivere il sistema NDC di GKS		
10	beservere it sistema NDC di GNS		

1	Cognome:	Nome:	
	Grafica Computazionale	Matricola:	T
		3 giugno 2015	Ingegneria Informatica
1	Fornire il modello di vista della assonometri	ia ortogonale trimetrica	
2	Scrivere le equazioni della superfici biquadra	atica passante per 3x3 pun	ti assegnati
3	Descrivere sinteticamente cosa si intende pe	r shading	
4	Calcolare la somma dei primi 30 termini del	lla serie $\frac{1}{1.2} + \frac{1}{2.2} + \frac{1}{2.4} + \frac{1}{2.4}$	$\cdots + \frac{1}{\sqrt{112}} + \cdots = 1$
		1.2 . 2.3 . 3.4 .	$n \cdot (n+1)$
5	Descrivere sinteticamente la presentazione b	pack-to-front	
0	Descrivere sintericaniente la presentazione s	ack to from	

		Cognome:	Nome:_	
1		00811011101	Matricola:	
ل	\mathbf{c}	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descriver	e la trasformazione MC \rightarrow WC3 d		
7	Descriver	e sinteticamente le rappresentazion	ni al contorno dei solidi	
		••		
8	Scrivere 1	una funzione Plasm che produca il	segmento di parabola per	tre punti dello spazio 3D
9 pe	Scrivere l r p.ti di co	l'equazione delle superfici biquadra	atiche di B'ezier come som	nma di prodotti di funzioni base
F	- p			
1.0	N D .			
10	Descrive	ere i principali vantaggi della rappi	r. parametrica delle curve	

	Cognome:	Nome:	
1	6	Matricola:	
T	U Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1 S	Scrivere una funzione Plasm che produca il se		
2 F	Fornire la definizione e l'equazione vettoriale	generale di una superficie	di rivoluzione
3 II	llustrare l'equazione vettoriale del solido so	ttile di spessore costante	w prodotto da una superficie
$S(u, \cdot)$		appi (0, 0, 10, 20) in (0, 2, () 2 0 5 0 5)
4 F	Fornire la matrice window \rightarrow viewport che m	appi $(0, 0, 10, 20)$ in $(0.2, 0)$	0.2, 0.5, 0.5)
5 D	Descrivere la trasformazione WC3 \rightarrow VRC di	PHIGS	

1	Cognome:	Nome:	
	6	Matricola:	
L	L U Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Calcolare la somma dei primi 30 termini dell	a serie $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots$	$\dots + \frac{1}{n \cdot (n+1)} + \dots = 1$
7	Ricavare la matrice base delle spline cubiche	cardinali	
8	Fornire il modello di vista della assonometria	ortogonale trimetrica	
Ü	Torinie ir modelio di vista della assonometria	ortogonale trimetrica	
9	Descrivere sinteticamente l'algoritmo z-buffer	٢	
10	m		
10	Illustrare una rappresentazione enumerativa	a gerachica	

Cognome:		Nome:	
' /	Mat	ricola:	
<u> </u>		3 giugno 2015	
1 Scrivere la triangolo stan	la matrice della trasformazione piana c ndard $((0,0),(1,0),(0,1))$	he mappa il triangol	o per tre punti v_1, v_2, v_3 nel
2 Calcolare	la somma dei primi 30 termini della seri	$e \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots$	$\cdot + \frac{1}{n \cdot (n+1)} + \dots = 1$
3 Si ricavi la curve cubiche	la matrice della trasformazione tra la fo	rma geometrica di He	ermite e quella di Bezier delle
			. (47 (47)
4 Fornire il	modello di vista della assonometria cava	diera isometrica centra	ale (45/45)
5 Descrivere	e il sistema DC di GKS		

_	Cognome:	Nome:	
	Grafica Computazionale	Matricola:	
L	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Illustrare sinteticamente il modello della illu	ıminazione diffusa	
7	Scrivere i polinomi della base di Hermite di	grado 3, e una funzione pl	asm che esegua il grafico di un
po	linomio		
8	Fornire la definizione di superficie parametri	ica per prodotto tensore	
9	Fornire un esempio 2-dimensionale di albero	BSP definito da un poligo	no chiuso non convesso di 5 lati
10	Discutere la cardinalità delle relazioni to	onelogishe tra le tre fond	amontali antità di barda dalla
	ppresentazioni al contorno	opologiche tra le tre lond	amentan china di bordo dene

		~	7.7	
1	\bigcirc	Cognome:		
	X		Matricola:	
ı	- Gra	afica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Illustrare come s	i possa imporre il passaggio	per i p.ti di controllo estre	emi di una spline cardinale
2			cie rigata definita da due sp	oirali (2D) concentriche e punti
iniz	ziali allineati con	il centro (nell'origine)		
3	Fornire la matrie	ce della trasformazione Wine	$dow \rightarrow Viewport non-isome$	orfica con metodo diretto
4	Scrivere le nove	funzioni di una base biquad	ratica (bivariata) di B'ezier	r
5	Descrivere sintet	icamente la presentazione fi	ront-to-back	
J	Descrivere sinter	icamente la presentazione n	Ont-to-back	

1	Cognome:	Nome:	
	X	Matricola:	
L	_ Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Scrivere una funzione Plasm che generi il gra	afico della base di Bezier di	grado 2 in [0, 1]
7	Fornire il modello di vista della assonometria	a ortogonale isometrica	
8	Calcolare la somma dei primi 30 termini dell	la serie $1 - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4^4} + \frac{1}{4^4}$	$+\cdots \pm \frac{1}{n^4} \mp \cdots = \frac{7\pi^4}{720}$
9	Esemplificare la rappr. triango-alata per un	tetraedro	
10	Definire il volume canonico nel caso prospe	ettico	
	Dominio in volume canomico nei caso prospe		

_	Cognome:	Nome:	
		Matricola:	
L	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Fornire la definizione di superficie paramet	rica per prodotto tensore	
2	Illustrare sinteticamente il modello della ill	luminazione diffusa	
3	Descrivere sinteticamente la presentazione	back-to-front	
4	Esemplificare la rappr. minimale al contorn	no per un poliedro cubico	
5	Calcolare la somma dei primi 30 termini de	ella serie $1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!}$	$\cdots \pm \frac{1}{n!} \mp \cdots = \frac{1}{e}$

	Cognome:	Nome:	
	\mathbf{Q}	Matricola:	
	Grafica Computaziona	le 3 giugno 2015	Ingegneria Informatica
6	Scrivere una funzione Plasm che generi i	l grafico della base di Bezier d	li grado 2 in $[0,1]$
7	Fornire una definizione di curva spline e		
8 e'	Ricavare le eq. param. $S(u, v, w)$ del $cili:$ la coordinata radiale e $w \in [0, H]$ è la que	$ndro\ cavo,\ { m dove}\ u\in [0,2\pi]\ { m è}\ { m la}$ ta	a coordinata angolare, $v \in [r, R]$
9	Descrivere cosa si intende per modello d	i vista	
10	Fornire il modello di vista della assono	metria ortogonale trimetrica	

	Cognome:	Nome:	
1.7()		Matricola:	
40	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1 Ricavare	l'espressione vettoriale della norma	ale $fn(u)$ ad una curva cul	oica piana di B'ezier
	l volume canonico nel caso prospet		
3 Discutere	una rappresentazione decomposit	iva simpliciale	
	la matrice della trasformazione p ndard $((0,0),(1,0),(0,1))$	iana che mappa il triang	olo per tre punti v_1, v_2, v_3 nel
5 Scrivere i polinomio	polinomi della base di B'ezier di	grado 3, e una funzione p	lasm che esegua il grafico di un

	Cognome:Nome:
6	Matricola:
_	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
6	Descrivere sinteticamente i criteri geometrici usati per studiare la "coerenza" della scena
7 par	Ricavare l'equazione vettoriale della striscia di superficie di spessore costante definita da una curva ametrica $fc(u)$
8	Fornire il modello di vista della assonometria cavaliera isometrica sinistra (30/60)
9	Fornire la matrice della trasformazione Window $ o$ Viewport non-isomorfica con metodo diretto
10	Calcolare la somma dei primi 30 termini della serie 1 – $\frac{1}{2^4}$ + $\frac{1}{3^4}$ – $\frac{1}{4^4}$ + \cdots ± $\frac{1}{n^4}$ ∓ \cdots = $\frac{7\pi^4}{720}$

Cognome:Nome:
Matricola:
Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
${f 1}$ Descrivere una generalizzazione della rappr. spigolo-alata per la descrizione di solidi con faccie policicliche
2 Ricavare la forma geometrica di Lagrange (passaggio per i punti di controllo) della curva polinomiale di grado 1
3 Illustrare il significato del tensore di controllo di una superficie bicubica in forma di B'ezier
f 4 Descrivere la trasformazione WC3 $ ightarrow$ VRC di PHIGS
5 Descrivere sinteticamente la presentazione front-to-back

	Cognome: Nome:
• /	Matricola:
	✓
6	Scrivere le nove funzioni di una base biquadratica (bivariata) di B'ezier
7	Scrivere una funzione plasm che esegua il grafico sovrapposto dei polinomi di una base di grado n
8	Calcolare la somma dei primi 30 termini della serie $1 - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4^4} + \dots \pm \frac{1}{n^4} \mp \dots = \frac{7\pi^4}{720}$
	$2^4 \cdot 3^4 \cdot 4^4 \cdot - n^4 \cdot 720$
9	Descrivere sinteticamente cosa si intende per shading
	, v
10	Fornire il modello di vista della assonometria cavaliera dimetrica standard

_	Cognome:		
•	Grafica Computazionale	Matricola:	T . T.C
		3 giugno 2015	Ingegneria Informatica
1	Descrivere sinteticamente cosa si intende pe	er shading	
2	Fornire il modello di vista di una assonome	etria cavaliera che non deform	ni piante e viste frontali
3	Descrivere sinteticamente l'algoritmo BSP		
4	Scrivere i polinomi della base di Hermite d linomio	i grado 3, e una funzione pla	asm che esegua il grafico di un
pc	monio		
5	Calcolare la somma dei primi 30 termini de	ella serie $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$	$\cdot + \frac{1}{2^n} + \dots = 2$

	Cognome:		
•		Matricola:	T . T C
_	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Ricavare la forma geometrica di Hermite de	lla curva polinomiale di gr	ado 3
7	Ricavare l'equazione matriciale delle superfi	ci parametriche biquadrat	iche in forma di B'ezier
	·		
8	Descrivere i parametri non vettoriali del mo	odello di vista	
9	Descrivere il concetto di schema di rapprese	entazione dei solidi e specif	ficare quando sia "unico"
10 [0,	Ricavare le eq. param. $S(u,v,w)$ del $cilin$ $R]$ e' la coordinata radiale e $w\in [0,H]$ è la c	ndro pieno, dove $u \in [0, 2\tau]$ quota	$[\tau]$ è la coordinata angolare, v

_	Cognome:Nome:
6	Matricola:
_	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
	Fornire l'equazione vettoriale delle superfici prodotto profilo di due curve piane disposte in piani ordinati perpendicolari.
2	Definire il volume canonico nel caso prospettico
-	Bonnine in volume canonico nel caso prospetivico
3	Scrivere una funzione Plasm che generi il grafico della funzione sin u nell'intervallo $[-\pi,\pi]$
4	Fornire il modello di vista della proiezione ortografica laterale
5	Calcolare la somma dei primi 30 termini della serie $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\pm\frac{1}{n}\mp\cdots=\ln 2$

~~	Cognome:	Nome:	
')'\		Matricola:	
40	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Elenc	are i diversi tipi di preprocessing prim	a di rimuovere le parti nasc	coste
7 a ·		1 1 7	\ 1.11 C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7 Scrive dai poli.	ere le equazioni parametriche del piano	tangente ad un punto $S(u,$	v) della siera, supposto diverso
8 Descr	ivere sinteticamente cosa si intende pe	er shading	
9 Illust:	rare una interfaccia grafica per gestin	re la continuita tra segme	nti di spline fatti da curve di
Hermite.			
10.5			
10 Desc	crivere la rappresentazione minimale a	al contorno	

\bigcirc \downarrow	Cognome:	Nome:	
')/I		Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1 Scrivere un	a funzione Plasm che generi il gr	afico della funzione $\cos u$ ne	ell'intervallo $\left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$
curve cubiche	matrice della trasformazione tra		
3 Fornire il n	nodello di vista della assonometri	a cavaliera dimetrica stand	ard
	natrice della trasformazione Wine to verso il basso	$\mathrm{dow} o \mathrm{Viewport}$ nella ipot ϵ	esi che lo spazio di arrivo abbia
5 Descrivere	sinteticamente la presentazione b	oack-to-front	

	Cognome:	Nome:	
6) /	Matricola:	
_	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Scrivere le funzioni coord. della curva di Bez	zier definita dal poligono di c	ontrollo <<-1,1>,<2,-1>,<4,3>>
7	Calcolare la somma dei primi 30 termini de	ella serie $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots$	$\dots + \frac{1}{n \cdot (n+1)} + \dots = 1$
	Mustana la nonnecentarioni calida como con	a.t.i	
8	Illustrare le rappresentazioni solide enumer	auve	
9	Descrivere la pipeline 3D di PHIGS		
10	Ricavare l'equazione matriciale delle supe	rfici parametriche biquadrat	i

	Cognome:		
•	Grafica Computazionale	Matricola:	T . T.C
	- Granea comparazionare	3 giugno 2015	Ingegneria Informatica
1	Descrivere la trasformazione WC3 \rightarrow VRC	di PHIGS	
2	Ricavare l'espressione vettoriale della tange	ente $ft(u)$ ad una curva piar	na quadratica di B'ezier
3	Fornire il modello di vista della assonometr	ia ortogonale isometrica	
4	Descrivere il concetto di schema di rapprese	entazione dei solidi e specifi	care quando sia "unico"
			. 1
5	Calcolare la somma dei primi 30 termini de	ella serie $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$	$\cdot \pm \frac{1}{n} \mp \cdots = \ln 2$

	Cognome:Nome:	
6	Matricola:	
_	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica	i
6	Fornire la matrice della trasformazione Window $ o$ Viewport non-isomorfica con metodo diretto	
7	Fornire la definizione e l'equazione vettoriale generale di una superficie cilindrica	
8	Scrivere una funzione Plasm che produca il segmento di parabola per tre punti dello spazio 3D	
9	Descrivere sinteticamente il test di Newell	
10 def	Scrivere le equazioni parametriche del piano tangente ad un punto $S(u,v)$ della superficie bilineare nita da quattro punti estremi	,

	Cognome:		
· /	Crofice Commutationals	Matricola:	
_	Granca Computazionale	3 giugno 2015	Ingegneria Informatica
1	Descrivere sinteticamente l'algoritmo z-buff	er	
2	Fornire la matrice window \rightarrow viewport che	mappi $(0, 0, 10, 20)$ in $(0.2,$	0.2, 0.5, 0.5)
3	Ricavare l'equazione vettoriale della strisci metrica $fc(u)$	a di superficie di spessore	costante definita da una curva
pare	morried je(u)		
4	Descrivere il sistema DC di GKS		
5	Fornire il modello di vista della assonometr	ia cavaliera isometrica destr	ra (60/30)

	Cognome:	Nome:	
•	<u>'</u> 0	Matricola:	
_	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Scrivere una funzione Plasm che generi il gr	afico della funzione $\cos u$ s	in u nell'intervallo $[-\pi,\pi]$
7	Illustrare la relazione tra numero di spigoli	e numero di triangoli di be	ordo di un poliedro
8	Scrivere le equazioni della superfici biquadra	atica passante per 3x3 pur	nti assegnati
9	Calcolare la somma dei primi 30 termini del		
cui	Si ricavi la matrice della trasformazione treve cubiche	ra la forma geometrica di	Bezier e quella di Hermite delle

Cognome:	Nome:	
•)'/	Matricola:	
Grafica Computazionale	a giugno 2015	Ingegneria Informatica
1 Fornire la matrice window \rightarrow viewpo $(0.2, 0.2, 0.5, 0.5)$ in $(0, 0, 1000, 1000)$	ort che mappi $(0, 0, 10, 20)$	in (0.2, 0.2, 0.5, 0.5) e poi
2 Scrivere una funzione Plasm che produca		
${f 3}$ Scrivere la matrice della trasformazione p triangolo per tre punti v_1,v_2,v_3	iana che mappa il triangolo s	tandard $((0,0),(1,0),(0,1))$ nel
4 Descrivere il sistema WC di GKS		
5 Fornire il modello di vista della assonomet	tria ortogonale trimetrica	

	Commons	N	0.000.00	
6	Cognome:	Matricola:	ome:	
_	Grafica Computazionale	3 giugno 2	2015	Ingegneria Informatica
6				0-0
	Descrivere la rappresentazione monumente ai e	comocino		
7	Fornire l'equazione vettoriale di una superfic	ie che modelli un	semplice v	vaso da fiori
8	Si ricavi la matrice della trasformazione tra	la forma geometr	rica di He	rmite e quella di Bezier delle
	ırve cubiche			1
9	Calcolare la somma dei primi 30 termini dell	a serie $1 - \frac{1}{1!} + \frac{1}{2!}$	$\frac{1}{1} - \frac{1}{3!} + \cdots$	$\cdots \pm \frac{1}{n!} \mp \cdots = \frac{1}{e}$
10	0 Elencare i diversi tipi di culling			
1				

Cognome:		nome:	Nome:		
•	$\prime \times$			Matricola:	
_			Computazionale		Ingegneria Informatica
1	Calcolare l	a somma d	lei primi 30 termini de	lla serie $1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots$	$\cdots \pm \frac{1}{n!} \mp \cdots = \frac{1}{e}$
2	Si fornisca	l'espressio	ne della base polinomi	ale di Bezier di grado generi	co
3	Doscrivoro	la trasform	nazione $VRC \rightarrow NPC$	di phics	
•	Descrivere	14 (14310111	nazione vite 7 mi o	di 1 11100	
4	Ricavare l'	equazione :	matriciale delle superfi	ici parametriche bicubiche ir	ı forma di Hermite
5	Fornire la	matrice wi	$ndow \rightarrow viewport che$	mappi $(0, 0, 10, 20)$ in $(0.2, 0)$	0.2, 0.5, 0.5

	Cognome:		
•/	Grafica Computazionale	Matricola:	Ingegneria Informatica
6	Fornire il modello di vista della assonometr	3 giugno 2015	Ingegneria imormatica
Ū	Torme if modello di visua della assonomen	ia ortogonaie isometrica	
7	Scrivere le equazioni della superfici biquadr	atica passante per 3x3 pund	ti assegnati
8	Ricavare la forma geometrica di Hermite de	ella curva polinomiale di gra	ado 3
9	Descrivere la rappresentazione triango-alat	a dei solidi	
10	Elencare i diversi tipi di preprocessing pri	ma di rimuovere le parti na	scoste

_	Cognome:	Nome:	
_	Grafica Computazionale	Matricola: 3 giugno 2015	Ingegneria Informatica
1	Descrivere la trasformazione NPC → DC3 d		Ingegneria informatica
1	Descrivere la trasionnazione NFC \rightarrow DC3 d	i rnigs	
2	Fornire la matrice window \rightarrow viewport che r	mappi il box (2, 3, 20, 20) ne	el box (0.1, 0.2, 0.6, 0.5)
3	Calcolare la somma dei primi 30 termini del	la serie $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{4^2}$	$\cdots + \frac{1}{n^2} + \cdots = \frac{\pi^2}{6}$
4	Scrivere la matrice della trasformazione pi	ana che mappa il triangol	o per tre punti v_1, v_2, v_2 nel
	iangolo standard $((0,0),(1,0),(0,1))$	6.1.	- P P
5	Descrivere sinteticamente l'algoritmo BSP		

	Cognome:	Nome:	
Ω	00811011101	Matricola:	
$\angle \mathcal{I}\mathcal{I}$	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Fornire il	modello di vista della assonometri	ia cavaliera dimetrica stand	ard
7 Descrivere	e le equazioni di Eulero ed Eulero-	Poincare per solidi poliedri	ci
	tare in Plasm la generazione di luazione matriciale delle superfici		
9 Scrivere u	na funzione Plasm che produca il	segmento di parabola per t	re punti dello spazio 3D
	F	O F	
10 Ricavare	le funzioni coord. della sfera star	ndard $(r = 1, \text{ centro l'origin})$	e)

	Cognome:	Nome:	
6 ~	2()	Matricola:	
O	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Calcolare la somma dei primi 30 termini del	lla serie $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$	$\pm \frac{1}{2^{n}-1} \mp \dots = \frac{\pi}{4}$
2	Scrivere una funzione Plasm che generi il gr	afico della funzione $\cos u \sin u$	u nell'intervallo $[-\pi,\pi]$
3	Ricavare le eq. param. $S(u,v)$ della curva a	d elica, intorno all' asse x , r	aggio 1/2 e passo 2
4	Ricavare la forma geometrica di Hermite de	lla curva polinomiale di grad	do 3
5	Descrivere la trasformazione VRC \rightarrow NPC o	di PHIGS	

	Cognome:	N	Nome:	
_	K()	Matricola:		T
_	Grafica Computazionale	3 giugno		Ingegneria Informatica
6	Fornire il modello di vista della assonometri	ia ortogonale ison	netrica	
7	Illustrare come la superficie sferica 3D sia u	n caso particolare	e di superfi	cie prodotto profilo
8	Descrivere sinteticamente l'algoritmo z-buffe	er		
9	Descrivere sinteticamente le rappresentazion	ni al contorno dei	solidi	
10	For nire la matrice window \rightarrow viewport che	e mappi il box (2,	3, 20, 20) r	nel box $(0.1, 0.2, 0.6, 0.5)$

	Cognome:		
_		Matricola:	T T
<u></u>	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Scrivere una funzione Plasm che generi il g	rafico della funzione $\cos u$ si	n u nell'intervallo $[-\pi,\pi]$
2	Fornire l'equazione vettoriale delle superfi rdinati perpendicolari.	ici <i>prodotto profilo</i> di due	curve piane disposte in piani
3	Discutere una rappresentazione decomposit	iva simpliciale	
4	Illustrare sinteticamente il modello della ill	uminazione diffusa	
5	Calcolare la somma dei primi 30 termini de	ella serie $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$	$ + \frac{1}{(2n+1)^4} + \dots = \frac{\pi^4}{96} $

<u>01</u>	Cognome:Nome:
.31	Matricola: Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
6 Si ricavi la	u matrice della trasformazione tra la forma geometrica di Hermite e quella di Bezier della
curve cubiche	i matrice dena trasiorniazione tra la forma geometrica di Herinite e quena di Dezier deno
7 Descrivere	la trasformazione MC \rightarrow WC3 di PHIGS
8 Illustrare l	'equazione vettoriale del solido sottile di spessore costante w prodotto da una superfici
S(u,v)	equazione vertoriale dei sondo sottile di spessore costante w prodotto da dha superiich
9 Fornire il r	nodello di vista della assonometria ortogonale isometrica
10 Descriver	e sinteticamente l'algoritmo BSP
10 Descriver	e sintericamente i algoritmo 1531

_	Cognome:	Nome:	
	<i>(')</i>	Matricola:	
و	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1 e'	Ricavare le eq. param. $S(u,v,w)$ del $cilind$ la coordinata radiale e $w\in [0,H]$ è la quota	$ro\ cavo,\ { m dove}\ u\in [0,2\pi]\ { m e}\ { m la}$	a coordinata angolare, $v \in [r,R]$
2	Fornire la matrice della trasformazione Wi		
3	Calcolare la somma dei primi 30 termini de	ella serie $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$	$\cdots + \frac{1}{2^n} + \cdots = 2$
4	Illustrare come si possa imporre il passaggi	io per i p.ti di controllo estr	remi di una spline cardinale
5	Ricavere le funzioni coord. della superficie	rigata definita da due curve	e estreme $fb_1(u)$ e $fb_2(u)$

	G	N	
9	Cognome:	Nome:_ Matricola:	
$\overline{}$	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descrivere il sistema DC di GKS		
_			
7	Fornire il modello di vista della assonometr	ia ortogonale trimetrica	
8	Descrivere sinteticamente i criteri geometrio	ci usati per studiare la "co	erenza" della scena
9	Descrivere sinteticamente la tassonomia di	Requicha	
10	Scrivere una funzione Plasm che generi il	grafico della funzione cos i	$u \sin u$ nell'intervallo $[-\pi, \pi]$

	Composition	No maga.	
•	Cognome:	Nome: Matricola:	
•) Grafica Computazionale		Ingagnaria Informatica
_		3 giugno 2015	Ingegneria Informatica
1	Scrivere una funzione Plasm che generi il g	rafico della funzione $\cos u$ n	ell'intervallo $\left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$
2	Calcolare la somma dei primi 30 termini de	ella serie $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$	$\cdots + \frac{1}{2^n} + \cdots = 2$
3	Descrivere sinteticamente la presentazione	back-to-front	
4	Fornire la matrice della trasformazione Win	ndow → Viewport isomorfic	a con metodo diretto
5	Scrivere le funzioni coord. della curva di Be	zier definita dal poligono di	controllo <<-1,1>,<0,0>,<2,0>>

	Cognome:	Nome:	
•_		Matricola:	
C	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descrivere la trasformazione NPC \rightarrow DC3 di	PHIGS	
7	Fornire il modello di vista della assonometria	a cavaliera isometrica centi	rale (45/45)
•	Tornic ii modello di vista della assoliolilettia	cavanera isometrica centi	taic (40/40)
8	Ricavare la forma geometrica di Bezier della	curva polinomiale di grade	0 3
9	Discutere la cardinalità delle relazioni top	ologiche tra le tre fonda	mentali entità di bordo delle
гар	ppresentazioni al contorno		
10	Ricavare l'equazione matriciale delle superfi	ici parametriche bicubiche	in forma di Hermite

9	1
\mathbf{C}	4

Cognome:______Nome:_____

Grafica Computazionale

Matricola:____

3 giugno 2015 — Ingegneria Informatica

1 Calcolare la somma dei primi 30 termini della serie $1 - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4^4} + \dots \pm \frac{1}{n^4} \mp \dots = \frac{7\pi^4}{720}$

2 Scrivere una funzione Plasm che generi il grafico della funzione $\cos u$ nell'intervallo $\left[-\frac{\pi}{3},\frac{2\pi}{3}\right]$

3 Scrivere le equazioni parametriche del piano tangente ad un punto S(u,v) di una superficie bicubica di B'ezier.

Fornire la matrice della trasformazione Window \rightarrow Viewport non-isomorfica con metodo diretto

Descrivere il sistema WC di GKS

6	Cognome:Nome:
_	Matricola:
•	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
6	Descrivere sinteticamente l'algoritmo BSP
7	Ricavare le funzioni base delle spline cubiche cardinali
8	Illustrare una rappresentazione decompositiva gerarchica
9	Fornire il modello di vista di una assonometria cavaliera che non deformi piante e viste frontali
10	Fornire l'equazione vettoriale delle superfici prodotto profilo di due curve piane disposte in piani
	rdinati perpendicolari.

	Cognome:	Nome:	
' ')	Matricola:	
O	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1 Scri- triangol	vere la matrice della trasformazione pi o standard $((0,0),(1,0),(0,1))$	iana che mappa il triang	olo per tre punti v_1, v_2, v_3 nel
2 Desc	crivere la trasformazione WC3 \rightarrow VRC o	di PHIGS	
3 Illus	trare sinteticamente il modello della illu	ıminazione diffusa	
4 Calc	colare la somma dei primi 30 termini del	la serie $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$	$\cdots \pm \frac{1}{2^n - 1} \mp \cdots = \frac{\pi}{4}$
5 Eser	nplificare la rappr. triango-alata per un	tetraedro	

	Cognome:	Nome:	
9	Ognome	Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Scrivere una funzione Plasm che generi il gi		
	converse and raminone 1 mem one general in gr	ance della sase di perenze	ar grado i m [0,1]
7	Descrivere sinteticamente l'algoritmo BSP		
8	Ricavare l'espressione vettoriale della tange	nte $ft(u)$ ad una curva piar	na cubica di Hermite
9 pu	Ricavare l'espressione vettoriale della norma nti estremi	ale $fn(u, v)$ ad una superfic	ie bilineare definita da quattro
•			
10	Fornire il modello di vista della assonomet	ria ortogonale dimetrica	
10	Tornire ii modello di vista della assonomen	ira ortogonaie dimetrica	

	Cognome:	Nome:	
•_	26	Matricola:	
•	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Ricavare l'equazione matriciale delle superf	ici parametriche bicubiche i	n forma di Hermite
2	Scrivere una funzione Plasm che generi il g	rafico della funzione $\cos u$ n	ell'intervallo $\left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$
3	Fornire il modello di vista della assonometr	ia cavaliera dimetrica stand	ard
4	Descrivere sinteticamente l'algoritmo BSP		
5	Descrivere in quali spazi di coordinate siano	o forniti i parametri, vettori	ali e non, del modello di vista

	Compose	Nome	
ΩC	Cognome:		
30		Matricola:	
\mathcal{O}	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Scrivere dai poli.	le equazioni parametriche del piano	o tangente ad un punto $S(u, \cdot)$	v) della sfera, supposto diverso
7 Descrive	re i principali vantaggi della rappr	. parametrica delle curve	
	a matrice della trasformazione Wi l'asse y orientato verso il basso	ndow → Viewport isomorfic	a nella ipotesi che lo spazio di
9 Descrive	re le equazioni di Eulero ed Eulero	-Poincare per solidi poliedric	ei
			. 2
10 Calcola	re la somma dei primi 30 termini o	della serie $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2}$	$+\cdots + \frac{1}{n^2} + \cdots = \frac{\pi^2}{6}$

	Commona	N	ome:	
	Ognome:		юше:	
و	Grafica Computazionale	3 giugno 2	2015	Ingegneria Informatica
1	Descrivere la trasformazione VRC \rightarrow NPC di	i PHIGS		
2	Descrivere sinteticamente il test di Newell			
3	Implementare in Plasm la generazione di u	ın segmento di r	etta come	curva polinomiale di grado
1B	Ricavare l'equazione matriciale delle superfici p	arametriche bicul	biche in forn	na di B'ezier
4	Calcolare la somma dei primi 30 termini della	a serie 1 ⊥ <u>1</u> ⊥ .	1 1 1 1.	$1 + 1 + \dots + \frac{\pi^4}{4}$
•	Calcolate la somma dei primi so termini della	a serie 1 2 ⁴ ;	34 44 1	$n^4 + \dots = 90$
5	Fornire la definizione e l'equazione vettoriale	generale di una s	superficie cil	indrica

Cognome:		Nome:	
4 7	Matric		
Grafica Computa		giugno 2015	Ingegneria Informatica
6 Fornire la matrice della trasforma l'asse y orientato verso il basso			
7 Fornire il modello di vista della a	ssonometria cavalie	ra isometrica destra	a (60/30)
8 Scrivere una funzione Plasm che	generi il grafico dell	a base di potenze d	li grado 1 in [0, 1]
9 Esemplificare la rappr. minimale	al contorno per un	poliedro cubico	
$oldsymbol{10}$ Illustrare l'equazione vettoriale $S(u,v)$	del solido sottile d	i spessore costante	\boldsymbol{w} prodotto da una superficie
~ (···, ··)			

	Cognome:	Nome:_	
•-	{ ×	Matricola:	
و	Grafica Computaziona	de 3 giugno 2015	Ingegneria Informatica
1 dai	Scrivere le equazioni parametriche del più poli.	ano tangente ad un punto $S(u$, $v)$ della sfera, supposto diverso
	Implementare in Plasm la generazione icavare l'equazione matriciale delle superf	fici parametriche bicubiche in	forma di B'ezier
3	Fornire il modello di vista di una assono	metria cavaliera che non defoi	rmi piante e viste frontali
4	Fornire la definizione di superficie param	netrica per prodotto tensore	
5	Descrivere in quali spazi di coordinate si	iano forniti i parametri, vettoi	riali e non, del modello di vista

9	O
\mathbf{C}	\bigcirc

Cognome:______Nome:_____

Matricola:____

Grafica Computazionale

3 giugno 2015 — Ingegneria Informatica

6 Calcolare la somma dei primi 30 termini della serie $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots + \frac{1}{(2n+1)^4} + \dots = \frac{\pi^4}{96}$

Descrivere sinteticamente la presentazione back-to-front

Scrivere una funzione Plasm che produca il segmento di parabola per tre punti dello spazio 3D

Illustrare sinteticamente il modello della illuminazione diffusa

10 Illustrare la relazione tra numero di spigoli e numero di triangoli di bordo di un poliedro

	- C	NT.	
•	Cognome:		
~	34	Matricola:	
)	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Calcolare la somma dei primi 30 termini de	ella serie $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$	$\cdots + \frac{1}{2^m} + \cdots = 2$
2	Ricavere le funzioni coord. della superficie	rigata definita da due curve	estreme $fb_1(u)$ e $fb_2(u)$
3	Descrivere sinteticamente l'algoritmo z-buff	fer	
4	Scrivere le funzioni coord. della curva di Be	zier definita dal poligono di c	ontrollo <<-1,1>,<0,0>,<2,0>>
5	Ricavare l'espressione vettoriale della tange	ente $\overline{ft(u)}$ ad una curva pian	a quadratica di B'ezier

	Cognome:	Nome:	
ા '≺	\mathbf{Q}	Matricola:	
\mathbf{O}	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 I	Definire il volume canonico nel caso paralle	lo	
7 8	i fornisca l'espressione della base polinomi	ale di Bezier di grado gener	rico
	. Tormood 1 espressione dend sale permoni	and an Beller an grade gener	100
8 I l'ass	'ornire la matrice della trasformazione Win e y orientato verso il basso	.dow → Viewport nella ipot	esi che lo spazio di arrivo abbia
9 I	'ornire il modello di vista della assonometr	ia cavaliera dimetrica stand	lard
10	Discutere una rappresentazione decomposi	itiva simpliciale	

/	1 (Cognome:		
\angle	[[Grafica Computazionale	Matricola:	T
1				Ingegneria Informatica
1	Illust	rare le rappresentazioni solide enumer	rative	
2	Color	plane la comma dei primi 20 termini d	alla corio 1 1 1 1 1	1 μ _ π ⁴
	Carco	olare la somma dei primi 30 termini de	ena serie $1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{4^4}$	$\cdots + \frac{1}{n^4} + \cdots - \frac{1}{90}$
3	Descr	rivere sinteticamente l'algoritmo di Ne	ewell	
4	Ricav	vare la forma geometrica di Hermite d	ella curva polinomiale di grad	lo 3
5	Forni	re il modello di vista della assonomet	ria ortogonale isometrica	
3	rorm	re ii modeno di vista dena assonomet	ria ortogonale isometrica	

	Cognome:	Nome:	
	1()	Matricola:	
_	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descrivere il sistema WC di GKS		
7	Control la control la la control	-1:	/:/:
7	Scrivere le equazioni della superfici biquadr	atica passante per 3x3 pun	ti assegnati
8	Scrivere una funzione Plasm che produca il	segmento di parabola per t	tre punti dello spazio 3D
9	Illustrare le funzioni del volume di vista		
10	Ricavare l'equazione matriciale delle super	rfici parametriche bilineari	
		•	

1 1	Cognome:	Nome:	
/1 1		Matricola:	
+	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1 Ricavare e' la coordina	le eq. param. $S(u,v,w)$ del $cilindr$ nta radiale e $w \in [0,H]$ è la quota	$o\ cavo,\ { m dove}\ u\in [0,2\pi]$ è la	a coordinata angolare, $v \in [r, R]$
iniziali alline	l'equazione vettoriale della superfi ati con il centro (nell'origine)		
3 Si ricavi i curve cubiche	la matrice della trasformazione tr	a la forma geometrica di E	Bezier e quella di Hermite delle
4 Calcolare	la somma dei primi 30 termini de	lla serie $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots$	$\dots + \frac{1}{n \cdot (n+1)} + \dots = 1$
5 Fornire il	modello di vista della assonometr	ia cavaliera dimetrica stanc	lard

	Cognome:	Nome:_	
	1 Cognome	Matricola:	
\vdash	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descrivere la rappresentazione CSG dei solid	di	
7	Definire il volume canonico nel caso parallel	O	
8	Descrivere sinteticamente i criteri geometric	i usati per studiare la "co	erenza" della scena
9	Forming to make in a mind on the signment of the	: (0, 0, 10, 20) i (0, 2	0.2.0.5.0.5)
9	Fornire la matrice window \rightarrow viewport che i	mappi (0, 0, 10, 20) iii (0.2	, 0.2, 0.3, 0.3)
10	Scrivere una funzione Plasm che generi il g	grafico della base di poten	ze di grado 2 in $[0,1]$

	Cognome:	Nome:	
	(1)	Matricola:	
_	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Elencare i diversi tipi di culling		
2	Fornire la matrice window \rightarrow viewport che	mappi (0, 0, 10, 20) in (0.2,	0.2, 0.5, 0.5)
3	Scrivere una funzione Plasm che generi il gr	afico della funzione $\cos u$ si	n u nell'intervallo $[-\pi, \pi]$
4	Implementare in Plasm la generazione di		
110	icavare l'equazione matriciale delle superfici	parametriche bicubiche in i	forma di b ezier
5	Scrivere l'equazione della superficie bilinear	e per quattro punti assegna	nti

	Cognomo	Nome:	
/	Cognome:	Matricola:	
<u>_</u>	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Fornire il modello di vista della assonometri		
_			(-0)
7	Illustrare l'equazione vettoriale del solido s	sottile di spessore costante	e w prodotto da una superficie
	(u,v)	•	
8	Calcolare la somma dei primi 30 termini del	la serie $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$	$\cdots + \frac{1}{2^n} + \cdots = 2$
		2 1 0	-
9	Descrivere in quali spazi di coordinate siano	forniti i parametri, vettor	iali e non, del modello di vista
	Descrivere una generalizzazione della rapilicicliche	pr. spigolo-alata per la	descrizione di solidi con faccie

4.0	Cognome:	Nome:	
∕1 '2	-	Matricola:	
40	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1 Fornire l'coordinati pe	equazione vettoriale delle superf erpendicolari.	ici <i>prodotto profilo</i> di due	curve piane disposte in piani
2 Elencare	i diversi tipi di preprocessing prin	na di rimuovere le parti nas	coste
		•	
3 Illustrare	sinteticamente il modello della ill	luminazione riflessa	
4 Scrivere i polinomio	polinomi della base di B'ezier di	grado 3, e una funzione pl	asm che esegua il grafico di un
	la matrice della trasformazione pudard $((0,0),(1,0),(0,1))$	piana che mappa il triango	olo per tre punti v_1, v_2, v_3 nel

/	Cognome:	Nome:	
\angle	Crafice Computationals	Matricola: 3 giugno 2015	Ingegneria Informatica
6	Grafica Computazionale		
6	Calcolare la somma dei primi 30 termini de	ella serie $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$	$\cdot \pm \frac{\cdot}{n} \mp \cdots = \ln 2$
7	Fornire il modello di vista della assonometr	ia cavaliera isometrica destr	a (60/30)
8	Descrivere la trasformazione NPC \rightarrow DC3 e	di PHIGS	
9	Si ricavi la matrice della trasformazione tr	ra la forma geometrica di Be	ezier e quella di Hermite delle
cui	ve cubiche		
10	Esemplificare la rappr. minimale al conto	rno per un poliedro cubico	

,	4 4	Cognome:	Nome:	
	/		Matricola:	
_	t't	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Fornire la	a matrice della trasformazione Wind		
_	1 0111110 10	maurice della tradicimazione vime	ion , viempore non ibon	iornea con messas anesse
2	Descriver	e la pipeline 3D di PHIGS		
3	Scrivere le	e funzioni coord. della curva di Bezi	er definita dal poligono di	controllo <<-1,1>,<0,0>,<2,0>>
4	Calcalara	la comma doi primi 20 tormini dell	o corio 1 1 1 1	1 1 1
-	Calculate	la somma dei primi 30 termini dell	a serie $\frac{1\cdot 2}{1\cdot 2}$ + $\frac{1\cdot 3\cdot 4}{2\cdot 3}$ + $\frac{1\cdot 4}{3\cdot 4}$ +	$\cdots + \frac{1}{n \cdot (n+1)} + \cdots = 1$
	- ·		DOD 1 G to 1	
5	Fornire u	n esempio 2-dimensionale di albero	BSP definito da un poligo	ono chiuso non convesso di 5 lati
1				

		Cognome:	Nome:	
/	1 /1	0.0811011101	Matricola:	
_	t ′ t	${\bf Grafica\ Computazionale}$	3 giugno 2015	Ingegneria Informatica
6	Scrivere un	a funzione Plasm che generi il g	rafico della base di Bezier d	li grado 2 in [0, 1]
7	Illustrare la	a relazione tra numero di spigoli	e numero di triangoli di bo	ordo di un poliedro
8 e a	Ricavare le apice in $(0,0)$	funzioni coord. della superficie (-1)	conica con base il cerchio st	andard $(r = 1, \text{ centro l'origine})$
			1. 1.	
9	Ricavare le	funzioni base delle spline cubich	e cardinali	
10	Fornire il	modello di vista della assonome	tria cavaliera isometrica de	stra (60/30)
		modello di vibia della appolicime		(00,00)

	Cognome:	Nome:	
	Cognome.	Matricola:	
\subseteq	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Ricavare le funzioni base delle spline cubici	he cardinali	
2	Discourse Programme and Asia Laboratory of	Cot and a second of the latter cont	
2	Ricavare l'equazione matriciale delle superf	nci parametriche bilineari	
3	Elencare i diversi tipi di culling		
4	Descrivere la trasformazione $VRC \rightarrow NPC$	di PHIGS	
	Tillian and the state of the st	t	
5	Illustrare sinteticamente il modello della ill	uminazione diffusa	

	Cognome:	Nome:	
		Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Scrivere una funzione Plasm che generi il gra	ufico della base di Bezier di	i grado 2 in [0, 1]
7	Calcolare la somma dei primi 30 termini dell	a serie $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$	$\cdots + \frac{1}{n!} + \cdots = e$
8	Fornire il modello di vista della assonometria	a cavaliera isometrica sinist	tra (30/60)
9 det	Scrivere le equazioni parametriche del piano finita da quattro punti estremi	tangente ad un punto S	(u,v) della superficie bilineare
10	Descrivere le rappresentazioni decompositiv	re dei solidi	

	Cognome:	Nome:	
	16	Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Fornire una definizione di curva spline e un	esempio grafico	
2	Calcolare la somma dei primi 30 termini de	lla serie $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{4^2}$	$-\cdots + \frac{1}{n^2} + \cdots = \frac{\pi^2}{6}$
9	Si farnicae l'agressione delle base polinemi	ala di Pariar di grada ganari	ino
3	Si fornisca l'espressione della base polinomi	are di Deziei di grado generi	ico
4		sottile di spessore costante	w prodotto da una superficie
$S(\cdot$	(u,v)		
5	Illustrare il significato del tensore di contro	llo di una superficie bicubica	a in forma di B'ezier

	Cognome:	Nome:	
	16 cognome	Matricola:	
\mathcal{L}	to Grafica Computaziona		Ingegneria Informatica
6	Descrivere i parametri non vettoriali del		
	•		
7	Fornire la matrice window \rightarrow viewport c	the mappi $(0, 0, 10, 20)$ in $(0.2, 0.2)$	0.2, 0.5, 0.5)
8	Fornire un esempio 2-dimensionale di alb	ero BSP definito da un poligor	no chiuso non convesso di 5 lati
9	Discutere gli aspetti essenziali delle rapp	procentazioni al contenno	
9	Discutere gii aspetti essenzian dene rapp	resentazioni ai contorno	
10	Fornire il modello di vista della assono	metria cavaliera isometrica sin	istra (30/60)

	Cognome:	Nome:	
/	17	Matricola:	
_	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Ricavare le funzioni base delle spline cubich	e cardinali	
2	Fornire il modello di vista della assonometr	ia ortogonale isometrica	
	g · · · · · · · · · · · · · · · · · · ·	. 1. 1.1	4: 1 II
3	Scrivere una funzione Plasm che produca il	segmento di parabola per 1	tre punti dello spazio 3D
4	Calcolare la somma dei primi 30 termini de	lla serie 1 + 1 + 1 + 1 + 1	$+\cdots+\frac{1}{2}+\cdots-\frac{\pi^4}{2}$
1	calcolate la somma dei primi 60 termini de	24 34 44	n4 - 90
5	Illustrare sinteticamente il modello della illu	uminazione diffusa	

1	Cognome:	Nome:	
		Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Fornire un esempio 2-dimensionale di albero	BSP definito da un poligono	chiuso non convesso di 5 lati
7	Descrivere in quali spazi di coordinate siano	o forniti i parametri, vettoria	li e non, del modello di vista
8	Ricavare le funzioni coord. della superficie to	orica (centro l'origine) di ragg	rio minore r e raggio maggiore
R			
9	Descrivere le rappresentazioni procedurali d	ei solidi	
10		o tangente ad un punto $S(u, v)$) della sfera, supposto diverso
dai	poli.		

	Cognome:	Nome:	
\angle	LX	Matricola:	
_	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Scrivere una funzione Plasm che produca il		re punti dello spazio 3D
2	Descrivere sinteticamente l'algoritmo z-buff	er	
3	Calcolare la somma dei primi 30 termini de	lla serie $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$	$\cdot + \frac{1}{(2n+1)^4} + \dots = \frac{\pi^4}{96}$
4	Illustrare una rappresentazione enumerativa	a gerachica	
5 tri	Scrivere la matrice della trasformazione più angolo per tre punti v_1, v_2, v_3	ana che mappa il triangolo	standard $((0,0),(1,0),(0,1))$ nel

1	Cognome:		
	×	Matricola:	
	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descrivere i parametri vettoriali del modello	o di vista	
	•		
7	Fornire il modello di vista della assonometr	ia cavaliera isometrica sinis	tra (30/60)
	D: 11		1. 1. 17
8	Ricavare l'espressione vettoriale della tange	inte $ft(u)$ ad una curva piai	na cubica di Hermite
9	Fornire la matrice della trasformazione Win	ndow → Viewport isomorfic	a con metodo diretto
10	Thereto Demonstrate (1997)	.C. d 1 112 11	
10	Fornire l'equazione vettoriale di una super	rficie che modelli un semplio	ce vaso da fiori

	Cognome:Nome:
	Matricola:
\subseteq	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1	Descrivere in quali spazi di coordinate siano forniti i parametri, vettoriali e non, del modello di vista
2	Fornire il modello di vista della assonometria ortogonale dimetrica
3	Illustrare come si possa imporre il passaggio per i p.ti di controllo estremi di una spline cardinale
4	Ricavare l'espressione vettoriale della normale $fn(u, v)$ ad una superficie bilineare definita da quattro ati estremi
pu	
	Fornire la matrice della trasformazione Window \rightarrow Viewport nella ipotesi che lo spazio di arrivo abbia se y orientato verso il basso
. di	

	Cognome:	Nome:	
		Matricola:	
<u>_</u>	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Calcolare la somma dei primi 30 termini del	Ila serie $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$	$\pm \frac{1}{n} \mp \cdots = \ln 2$
7	Descrivere sinteticamente l'algoritmo di Nev	zoll .	
•	Descrivere sinteticamente i algoritmo di Nev	well	
8	Scrivere una funzione Plasm che generi il gr	afico della base di potenze d	di grado 1 in [0, 1]
9	Scrivere le funzioni coord. della curva di Bez	zier definita dal poligono di c	ontrollo <<-1,1>,<0,0>,<2,0>>
10	Discutore la cresia accurate della comp	tuian na alata a aanfuantanla	on la nome opinale elete
10	Discutere lo spazio occupato dalla rappr.	triango-aiata, e comrontaria	con la rappr. spigolo-alata.

	Cognome:Nome:
	Matricola:
J)	Grafica Computazionale 3 giugno 2015 — Ingegneria Informatica
1	Fornire la matrice window \rightarrow viewport che mappi $(0,0,10,20)$ in $(0.2,0.2,0.5,0.5)$
2	Illustrare una rappresentazione enumerativa gerachica
3	Ricavare l'equazione matriciale delle superfici parametriche biquadratiche in forma di B'ezier
4	Descrivere i parametri vettoriali del modello di vista
5	Descrivere sinteticamente l'algoritmo di Newell

	Cognome:	Nome:	
<u>ا</u>		icola:	
<u> </u>	Grafica Computazionale 3	giugno 2015	Ingegneria Informatica
6	${f 3}$ Ricavare la forma geometrica di Bezier della curva	polinomiale di grado	1
	7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(40 (90)
7	7 Fornire il modello di vista della assonometria caval:	era isometrica destr	a (60/30)
8	3 Calcolare la somma dei primi 30 termini della serie	1 + 1 + 1 + 1 + 1 +	$-\cdots + \frac{1}{4} + \cdots = \frac{\pi^4}{22}$
	1	24 34 44	n^4 90
9	9 Scrivere le funzioni coord. della curva di Bezier defin	ita dal poligono di co	ontrollo <<-1,1>,<2,-1>,<4,3>>
10	10 Scrivere una funzione Plasm che generi il grafico o	lella base di potenze	di grado 1 in [0,1]

	Cognome:Nome:
	Matricola:
•	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1	Discutere una rappresentazione decompositiva simpliciale
2	Ricavare la forma geometrica di Bezier della curva polinomiale di grado 1
3	Fornire il modello di vista della assonometria cavaliera isometrica destra (60/30)
4	Scrivere una funzione Plasm che generi il grafico della base di Bezier di grado 2 in [0, 1]
5	Descrivere sinteticamente l'algoritmo z-buffer

	- 1	Cognome:	Nome:	
		Ü	Matricola:	
•	ノエ	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descriver	e il sistema DC di GKS	0 0	0.0
7	Ricavare	le funzioni coord. del tronco di cond	o tra due circonferenze di	raggi r_1 e r_2 appartenenti a due
	ani $z = c_1$	$e z = c_2$		00 1 12 11
8	Descriver	e sinteticamente cosa si intende per	shading	
9	Calcolare	la somma dei primi 30 termini dell	la serie $1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{4}$	$+\cdots+\frac{1}{2}\pm\cdots=\frac{7\pi^4}{2}$
Ü	Carcolaro	as somme der primi de termini den	24 34 44	$\frac{1}{n^4}$ 1 720
	.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1
[0,		e le eq. param. $S(u, v, w)$ del <i>ciline</i> cordinata radiale e $w \in [0, H]$ è la q		$[\cdot]$ è la coordinata angolare, $v \in$

_	Cognome:Nome:
	Matricola:
<u></u>	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
	Scrivere i polinomi della base di B'ezier di grado 3, e una funzione plasm che esegua il grafico di un linomio
3	Descrivere la trasformazione VRC \rightarrow NPC di PHIGS
4	Esemplificare la rappr. minimale al contorno per un poliedro cubico
5	Fornire la matrice window \rightarrow viewport che mappi $(0,0,10,20)$ in $(0.2,0.2,0.5,0.5)$

		27
	Cognome:	
		Matricola:
6	Fornire il modello di vista della assonometria	a cavaliera isometrica sinistra (30/60)
7	Ricavare la forma geometrica di Bezier della	curva polinomiale di grado 3
8	Ricavare l'equazione matriciale delle superfic	ci parametriche biquadrati
9	Descrivere sinteticamente la presentazione fr	cont-to-back
10	Scrivere le equazioni della superfici biquadi	ratica passante per 3x3 punti assegnati
	~	

	Cognome:Nome:
5	Matricola:
\cup	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1 F	ornire il modello di vista della assonometria ortogonale dimetrica
2 I	llustrare come si possa imporre il passaggio per i p.ti di controllo estremi di una spline cardinale
	nustrare come si possa importe ii passaggio per i p.si di controllo estremi di dila spinie cardinale
3 (Calcolare la somma dei primi 30 termini della serie $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$
4 S dai p	crivere le equazioni parametriche del piano tangente ad un punto $S(u, v)$ della sfera, supposto diverso poli
dar p	
5 I	Descrivere sinteticamente l'algoritmo di Newell

_	Cognome:	Nome:	
<u>ا</u>	Grafica Computazionale	Matricola:	
<u> </u>	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descrivere la trasformazione VRC \rightarrow NPC o	di PHIGS	
7	Ricavare le funzioni coord. della sfera stand	(r = 1, centro l'origine)	
•	The arms of tank on the state of the state o	iora (/ I, contro l'origino)	
8	Scrivere una funzione Plasm che generi il gr	afico della base di potenze d	i grado 1 in [0, 1]
9	Illustrare le rappresentazioni solide enumera	ative	
10 (0.	Fornire la matrice window \rightarrow viewpoi 2, 0.2, 0.5, 0.5) in $(0, 0, 1000, 1000)$	rt che mappi $(0, 0, 10, 20)$	in $(0.2, 0.2, 0.5, 0.5)$ e poi

_	Cognome:	Nome:	
 -	\	Matricola:	
٠	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1	Calcolare la somma dei primi 30 termini de	ella serie $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$	$\cdots + \frac{1}{n!} + \cdots = e$
2	Ricavare la forma geometrica di Bezier dell	a curva polinomiale di grado	3
	Ŭ.		
3	Descrivere sinteticamente l'algoritmo z-buf	for	
Ü	Descrivere sinteticamente i algoritino 2-ban	ici	
_			
4	Scrivere una funzione Plasm che produca il	segmento di parabola per ti	re punti dello spazio 3D
5	Descrivere sinteticamente la tassonomia di	Requicha	
1			

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
6	Descrivere la trasformazione MC \rightarrow WC3 di PHIGS
7	Fornire la matrice della trasformazione Window \rightarrow Viewport non-isomorfica con metodo diretto
8	Scrivere le nove funzioni di una base biquadratica (bivariata) di B'ezier
	- · · · · · · · · · · · · · · · · · · ·
9	Fornire la definizione e l'equazione vettoriale generale di una superficie cilindrica
10	Fornire il modello di vista della assonometria cavaliera dimetrica standard

-	_	Cognome:		
-	\mathbf{h}		Matricola:	
.	55	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1		espressione vettoriale della tanger		
_	Teleavare 1	espressione vevioriale della tangel	ine jo(u) ad ana carva pia	na cablea di Herimie
_	D :	The Dorling Res		
2	Descrivere	il sistema DC di GKS		
9	Daganiana	il consette di coherce di commune		icana mucada sia "maisa"
3	Descrivere	il concetto di schema di rapprese	ntazione dei sondi e specii	icare quando sia unico
4	Scrivere le	equazioni parametriche del pian	o tangente ad un punto S	S(u, v) della superficie bilineare
det	finita da qua	attro punti estremi	o tangente au un punto s	(w, c) dend supernete sinneare
5	Ricavare l'e	equazione vettoriale della superfic	rie rigata definita da due s	pirali (2D) concentriche e punti
		i con il centro (nell'origine)	310 118400 401111104 44 440 5	priori (22) concentrate e paner

-		Cog	nome:			_ Nome:		
\ •	(\cdot, \cdot)	Crafica	Computa		Matricola:		In mama ania	Information
-	Famina							Informatica
6 (0.	Formire $.2, 0.2, 0.5$	(0.5) in $(0, 0)$	0.00000000000000000000000000000000000	viewport	che mappi	(0, 0, 10, 20)	in (0.2, 0.2, 0	.5, 0.5) e poi
7	Fornire i	l modello di	vista della as	ssonometria	a cavaliera iso	metrica centra	ale (45/45)	
8	Elencare	i diversi tipi	di preproces	ssing prima	di rimuovere	le parti nasco	oste	
9	Calcolar	e la somma d	lei primi 30 t	ermini dell	a serie 1 – <u>1</u>	+1-1+.	$\cdots \pm \frac{1}{n!} \mp \cdots =$. 1
	Carcolar	, 10 50 111110 0	.o. p 00 0	011111111 (1011	1!	2! 3!	$\perp n!$	e
10	Scriver linomio	e i polinomi	della base di	Hermite di	grado 3, e un	a funzione pla	ısm che esegua	il grafico di un
ро	miomio							

	Cognome:Nome:
	Matricola:
C	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1	Scrivere una funzione Plasm che generi il grafico della base di potenze di grado 2 in [0,1]
2 (0,	Scrivere le funzioni coord. della curva di Hermite definita dai punti $(-1,1)$, $(0,2)$ e dai vettori $(-1,0)$,
(- ,	-/
3	llustrare una rappresentazione enumerativa non gerarchica
Ū	nativate and rappresentations characteristic non-gorial energy
4	Fornire la matrice della trasformazione Window \rightarrow Viewport non-isomorfica con metodo diretto
	Provide the Lille Protect Lille consensation of control to the Control to
5	Fornire il modello di vista della assonometria ortogonale isometrica

_		Cognome:				
	\mathbf{h}		Matricola:			
C		Grafica Computazionale	3 giugno	2015	Ingegneria Informatica	
6	Calcolare la	a somma dei primi 30 termini de	ella serie $1 - \frac{1}{2^4} +$	$-\frac{1}{3^4} - \frac{1}{4^4} +$	$\cdots \pm \frac{1}{n^4} \mp \cdots = \frac{7\pi^4}{720}$	
7	Descrivere	cosa si intende per modello di v	ista			
8	Ricavare l'e	equazione vettoriale della strisc	ia di superficie di	spessore co	stante definita da una curva	
	rametrica fo					
	Illustrare u rmite.	ına interfaccia grafica per gesti	ire la continuita	tra segment	i di spline fatti da curve di	
10	Descrivere	e sinteticamente l'algoritmo di N	Vewell			

	Cognome:Nome:
	Matricola:
	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1	Discutere gli aspetti essenziali delle rappresentazioni al contorno
2	Scrivere i polinomi della base di B'ezier di grado 3, e una funzione plasm che esegua il grafico di un linomio
P	
3	Scrivere le equazioni della superfici biquadratica passante per 3x3 punti assegnati
4	Descrivere sinteticamente l'algoritmo di Newell
5	Fornire il modello di vista della assonometria ortogonale isometrica

)	—	Cognome:	Nome:	
 -	\ \		Matricola:	
\mathcal{O}) (Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6	Descriver	e il sistema DC di GKS		
7	Ricavare	l'equazione matriciale delle superfic	ci parametriche biquadrati	iche in forma di B'ezier
8	Fornire u	na definizione di curva spline e un	esempio grafico	
9	Eaunina la	ι matrice window \to viewport che i	: :1 h (2, 2, 20, 20) -	and hore (0.1.0.2.0.6.0.5)
9	romme ia	i matrice window → viewport che i	11appi 11 box (2, 3, 20, 20) 1	ner box (0.1, 0.2, 0.0, 0.3)
10	Calcolar	re la somma dei primi 30 termini de	ella serie $1 - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4^4}$	$\frac{1}{4} + \dots \pm \frac{1}{n^4} \mp \dots = \frac{7\pi^4}{720}$

1	Cognome:		
 -) Grafica Computazionale	Matricola:	T mammania Information
1		3 giugno 2015	Ingegneria Informatica
1	Scrivere una funzione Plasm che generi il gr	anco della base di potenze	di grado 2 in [0, 1]
2	Calcolare la somma dei primi 30 termini de	lla serie 1 ± 1 ± 1 ± 1 .	$\perp \ldots \perp \perp \perp \perp \ldots = \pi^2$
_	Calcolare la somma dei primi 30 termini de	11a serie 1 2 ² 3 ² 4 ²	$\frac{1}{n^2}$
3	Ricavare l'equazione matriciale delle superfi	ici parametriche bicubiche i	n forma di Hermite
			11. (04.00.00.00)
4	For nire la matrice window \rightarrow viewport che	mappi il box $(2, 3, 20, 20)$ n	el box $(0.1, 0.2, 0.6, 0.5)$
5	Illustrare il calcolo della quantità Δz del pi	xel nell'algoritmo z-buffer	

	Cognome:	Nome:	
5		Matricola:	
0	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Des	crivere il concetto di schema di rapprese	entazione dei solidi e specifi	care quando sia "unico"
7 Illus	trare come si possa imporre il passaggio	o per i p.ti di controllo estr	emi di una spline cardinale
8 For	ire il modello di vista della assonometr	ia cavaliera dimetrica stand	ard
	were la matrice della trasformazione pia o per tre punti v_1,v_2,v_3	una che mappa il triangolo	standard $((0,0),(1,0),(0,1))$ nel
10 De	scrivere il sistema DC di GKS		

	Cognome:Nome:
	Matricola:
C	Grafica Computazionale 3 giugno 2015 Ingegneria Informatica
1	Elencare i diversi tipi di culling
	Discourse Proposition and the Laboratory of the North Company of the Little of the Company of the Little of the Company of the
2	Ricavare l'espressione vettoriale della tangente $ft(u)$ ad una curva piana cubica di Hermite
3	Scrivere una funzione Plasm che generi il grafico della funzione $\cos u$ nell'intervallo $\left[-\frac{\pi}{3},\frac{2\pi}{3}\right]$
4	Fornire la matrice della trasformazione Window \rightarrow Viewport isomorfica nella ipotesi che lo spazio di
arı	ivo abbia l'asse y orientato verso il basso
5	Fornire il modello di vista della assonometria ortogonale isometrica

-	Cognome:	Nome:	
-	10	Matricola:	
<u> </u>	Grafica Computazionale		Ingegneria Informatica
6	Calcolare la somma dei primi 30 termini de	lla serie $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$	$\cdot + \frac{1}{(2n+1)^4} + \dots = \frac{\pi^4}{96}$
7	Ricavare l'equazione matriciale delle superfi	ici parametriche bicubiche	in forma di Hermite
8	Descrivere le rappresentazioni procedurali d	lei solidi	
9	Descrivere i parametri non vettoriali del mo	odello di vista	
10	P' (1		
e'	Ricavare le eq. param. $S(u, v, w)$ del $cilind$ a coordinata radiale e $w \in [0, H]$ è la quota	ro cavo, dove $u \in [0, 2\pi]$ é \mathbb{R}	a coordinata angolare, $v \in [r, R]$

	Cognome:	Nome:	
		Matricola:	
l	JU Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
1		garia 1 1 1 1 1 1	_ 1 _ π
1	Calcolare la somma dei primi 30 termini della	serie $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$	$1 \pm \frac{1}{2} = \frac{1}{4} + \cdots - \frac{1}{4}$
2	Ricavare le eq. param. $S(u, v)$ della curva ad e	elica, intorno all' asse x , r	aggio 1/2 e passo 2
3	Elencare i diversi tipi di culling		
4	Fornire il modello di vista della assonometria	ortogonale isometrica	
5	Scrivere una funzione Plasm che generi il grafi	co della base di potenze d	li grado 2 in [0, 1]

00	Cognome:	Nome:	
60	-	Matricola:	
00	Grafica Computazionale	3 giugno 2015	Ingegneria Informatica
6 Definire	il volume canonico nel caso prospet	tico	
7 Ricavare	e l'espressione vettoriale della norma	$f_n(u)$ ad una curva cu	bica piana di R'azier
1 Iticavare	r espressione vettoriale dena norma	$n \in f^n(u)$ ad una curva cur	bica piana di B eziei
8 Scrivere per p.ti di c	l'equazione delle superfici biquadra	tiche di B'ezier come som	ama di prodotti di funzioni base
per p.tr di c	ontrono		
O III		1. (T	
9 Illustrare	e sinteticamente il modello della illu	iminazione diffusa	
10 Descriv	vere sinteticamente le rappresentazio	oni al contorno dei solidi	