1. In terms of the spherical coordinates ρ, φ, θ , we have:

$$x = \rho \sin \varphi \cos \theta$$
$$y = \rho \sin \varphi \sin \theta$$
$$z = \rho \cos \varphi$$

2. Evaluate $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sin(x^2+y^2) dy dx$ by converting to polar coordinates.

The bounds $-1 \le x \le 1$, $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$ describe the entire disc $x^2+y^2 \le 1$. In polar coordinates, we have

$$\int_0^{2\pi} \int_0^1 \sin(r^2) r \, dr \, d\theta = \int_0^{2\pi} \left(-\frac{1}{2} \cos(r^2) \Big|_0^1 \right) \, d\theta = \pi (1 - \cos(1)).$$

3. Describe the surface given in spherical coordinates by $\varphi = \pi/4$.

This surface is the upper half $(z \ge 0)$ of the cone $x^2 + y^2 = z^2$. To see this, note that when $\varphi = \pi/4$, we have $x = \rho \cos \theta/\sqrt{2}$ and $y = \rho \sin \theta/\sqrt{2}$, so $x^2 + y^2 = \frac{\rho^2}{2}$, and $z = \rho/\sqrt{2}$, so $z^2 = x^2 + y^2$. Since φ is measured from the positive z-axis, if $\varphi \in [0, \pi/2]$, we must be above the xy-plane.

4. Convert the following integral to polar coordinates:

$$\int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} xy \, dy \, dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xy \, dy \, dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xy \, dy \, dx$$

The trick here is to notice the three variable limits: $y = \sqrt{1-x^2}$, $y = \sqrt{4-x^2}$, and y = x. The first two describe cicles, of radius 1 and 2, respectively. If we plot these circles in the first quadrant, along with the line y = x, we see that y = x intersects $y = \sqrt{1-x^2}$ when $x = 1/\sqrt{2}$. The first integral thus involves the region above the circle $x^2 + y^2 = 1$, but below the line y = x. The line y = x intersects $y = \sqrt{4-x^2}$ when $x = \sqrt{2}$. The second integral involves the region between the x-axis and y = x, for $1 \le x \le \sqrt{2}$. The third is the region above the x-axis and below the circle $x^2 + y^2 = 4$.

In polar coordinates, this becomes $1 \le r \le 2$, where $0 \le \theta \le \pi/4$, so our integral is simply $\int_0^{\pi/4} \int_1^2 (r\cos\theta)(r\sin\theta)r \, dr \, d\theta$.