Exercices sur moteurs à courant continu

Exercice 1:

Un moteur à excitation indépendante fonctionne sous la tension d'induit U=230 V. En fonctionnement nominal, l'induit est parcouru par un courant d'intensité I= 40 A. La résistance de l'induit est : R=0,3 Ω et celle de l'inducteur est r = 120 Ω . Un essai à vide à la fréquence de rotation nominale donne les résultats suivants : U_0 = 225 V ; I_0 = 1,2 A. Sachant que la tension d'alimentation de l'inducteur est : U_e = 140 V calculer le rendement du moteur.

Corrigé:

Puissance (W) absorbée par l'induit : UI = 230x40 = 9200 W.

Puissance absorbée par l'inducteur : $U^2/r = 140^2/120 = 163,3 \text{ W}.$

Perte mécanique + perte fer sont calculées à partir de l'essai à vide :

 $U_0I_0 = RI_0^2 + Pm + Pf soit Pm + Pf = U_0I_0 - RI_0^2$

 $Pm + Pf = 225x1, 2 - (0,3 x1, 2^2) = 269,6 W.$

Pertes par effet joule dans l'induit : $Pi = RI^2 = 0.3 \times 40^2 = 480 \text{ W}.$

Pertes totales : 269,6 + 480 = 749,6 W

Total puissance reçue : 9200 + 163,3 = 9363,3Puissance utile Pu = 9200-749,6 = 8450,4 W Rendement : 8450,4 / 9363,3 = 0,90 (90%)

Exercice 2:

L'essai d'une machine à courant continu en générateur à vide à excitation indépendante a donné les résultats suivants : fréquence de rotation : n_G = 1500 tr/min ; intensité du courant d'excitation I_e = 0,52 A ; tension aux bornes de l'induit : U_{G0} = 230 V.

La machine est utilisée en moteur. L'intensité d'excitation est maintenue constante quelle que soit le fonctionnement envisagé. La résistance de l'induit est $R = 1,2 \Omega$.

- 1. le moteur fonctionne à vide; l'intensité du courant dans l'induit est I_0 = 1,5 A et la tension à ces bornes est U_0 = 220 V Calculer :
- la force électromotrice.
- les pertes par effet joule dans l'induit.
- la fréquence de rotation.
- la somme des pertes mécaniques et des pertes fer.
- le moment du couple de pertes correspondant aux pertes mécaniques et pertes fer. Ce moment sera supposé constant par la suite.
- 2. Le moteur fonctionne en charge. La tension d'alimentation de l'induit est U=220 V et l'intensité du courant qui le traverse est I=10 A. Calculer :
- la force électromotrice
- la fréquence de rotation.
- le moment du couple électromagnétique.
- le moment du couple utile.
- la puissance utile.

Corrigé :

- 1. $-U_0 = E + RI_0$ soit $E = U_0 RI_0 = 220 (1,2 \times 1,5) = 218,2 \text{ V}.$
 - *Perte joule induit* : $RI_{0}^{2} = 1.2 \times 1.5^{2} = 2.7 \text{ W}$.
 - La fréquence de rotation est proportionnelle à la fem : $E=k\Omega$ soit $k=E/\Omega$ Dans le fonctionnement en générateur E=230 V et $\Omega=2\pi$ (1500/60) =157 rad/s d'où k=1,465Lors du fonctionnement en moteur à vide : $\Omega=E/k=218,2/1,465=148,9$ rad/s soit $n_0=1423$ tr/min.
 - Puissance absorbée à vide = puissance joule à vide + pertes mécaniques + pertes fer $U_0I_0 = RI^2_0 + Pm + Pf$ d'où $Pm+Pf = U_0I_0 RI^2_0 = 327,3$ W.
 - Le moment du couple Cp (Nm) est égal à la puissance divisée par la vitesse de rotation (rad/s) $(Pm+Pf)/\Omega$ Cp = 327,3 / 148,9 = 2,2 Nm.
- 2. -U = E + RI soit E = U RI = 220 (1,2x10) = 208 V
 - La fréquence de rotation est proportionnelle à la fem : $E = k \Omega$ soit $\Omega = E/k = 208/1,465 = 141,98$ rad/s soit n = 1356 tr/mn.

- Moment du couple électromagnétique (Nm) : $Ce = EI / \Omega = (208x10)/141,98 = 14,65 \text{ Nm}$.
- Moment du couple utile Cu = Ce Cp = 14,65-2,2 = 12,45 Nm.
- Puissance utile $Pu = Cu \Omega = 12,45 \times 141,98 = 1767,5 W$.

Exercice 3:

On dispose d'un moteur à courant continu à excitation indépendante. Ce moteur fonctionne à flux constant. L'induit du moteur a une résistance égale à 1 Ω .

- I. A $n_1 = 1200$ tr/min, le moteur développe un couple électromagnétique de moment $C_1 = 60$ N.m et l'intensité I_1 du courant dans l'induit est égale à 26 A.
- 1. Démontrer que la force électromotrice du moteur est $E_1 = 290 \text{ V}$.
- 2. Calculer la tension U₁ aux bornes de l'induit.
- II. La tension appliquée à l'induit est $U_2 = 316$ V. Le moment du couple électromagnétique prend la valeur $C_2 = 100$ N.m. On rappelle que pour ce type de moteur, le moment du couple électromagnétique est proportionnel à l'intensité du courant dans l'induit et que la force électromotrice est proportionnelle à la fréquence de rotation. Calculer :
- 1. l'intensité I₂ du courant dans l'induit,
- 2. la f.e.m. E₂ du moteur, et la fréquence de rotation n₂ du rotor.

Réponses : I. 1. $E_1 = C_1 \Omega_1/I_1 = 289,99V$ 2. $U_1 = 316V$ II. 1. $I_2 = 43,33A$ 2. $E_2 = 272,66V$ n2 = 1128 tr/min.

Exercice 4:

Le moteur est à excitation indépendante et constante. On néglige sa réaction d'induit. L'induit a une résistance $r = 0,20 \Omega$. Il est alimenté sous une tension constante U = 38 V.

- 1. A charge nominale, l'induit est parcouru par une intensité I=5 A et il tourne à la fréquence de rotation de $1000\ tr/min$.
- 1.1 Représenter le modèle équivalent de l'induit, en fléchant la tension et le courant.
- 1.2 Calculer la force électromotrice E de l'induit.
- 1.3 Calculer le moment du couple électromagnétique C.
- 1.4 Montrer que l'on peut exprimer E en fonction de la fréquence de rotation n suivant la relation : E = k.n.
- 2. Par suite d'une variation de l'état de charge, l'intensité à travers l'induit devient I' = 3,8 A, calculer :
- 2.1 Le nouveau moment du couple électromagnétique C',
- 2.2 La nouvelle fréquence de rotation n'. Comparer n et n'.

Réponses : 1. 1.2 E = 37V 1.3 C = 1,76 Nm 2. 2.1 C' = 1,34 Nm 2.2 n' = 1006 tr/min

Exercice 5:

On dispose d'un moteur à courant continu, à excitation indépendante. L'induit, de résistance $R = 0.50 \Omega$, est alimenté par une tension continue U = 220 V.

L'inducteur absorbe un courant d'excitation i constant.

- 1- Le moteur fonctionne en charge. L'induit absorbe un courant I=10~A. Le moteur fournit une puissance utile Pu=1,8~kW. Il tourne à une fréquence de rotation de 1200~tr/min.
- a- Calculer la f.é.m du moteur.
- b- Calculer le moment du couple utile.
- 2- Le moteur fonctionne à couple constant. L'induit absorbe toujours I = 10 A. Pour régler la vitesse, on modifie la tension U.
- a- Citer un dispositif électronique qui permet de faire varier cette vitesse.
- b- La tension U prend la valeur $U=110\ V$: calculer la nouvelle f.é.m et la fréquence de rotation correspondante.

Réponses : 1- a- E = 215V b- Cu = 14,32 Nm 2- a- hacheur serie b- E' = 105V n' = 586 tr/min.