

# 《数学建模》中期大作业

## 基于 SIR 模型对武汉新型冠状病毒疫情分析

| 姓名 | 张世琛        | 李选         | 曹佳慧        | 张子锜        |
|----|------------|------------|------------|------------|
| 学号 | 1804030401 | 1808010202 | 1808010203 | 1808010201 |
| 班级 | 计科 1802    | 计科 1802    | 计科 1802    | 计科 1802    |

## 基于 SIR 模型对武汉新型冠状病毒疫情分析

#### 摘要

本文首先采用抽样检测法对 2019-nCoV 早期的模型的合理性及实用性进行了评价,然后我们通过对传染病的 共性及 2019-nCoV 的特性的分析。得出三个基本假设并且把人群理想化为三类 (S 类, I 类, R 类),建立起基本的 SIR 模型,再对 SIR 模型中的三类人群间的相互转化关系的分析,由于 2019-nCoV 的特性,可知 SIR 模型中的两个参数 a(t),b(t) 是以时间为变量的函数。我们根据武汉疫情的数据,通过多现实的数据拟合法分别得到 a(t),b(t) 及 T 结合,从而建立出模型。由于医疗条件的逐步改善,一定会制定出一套有效的治疗方案,甚至到后期的 2019-nCoV 疫苗的研发。

本文利用数学软件 (MATLAB) 很好的实现了模型运算,并结合实际数据得出了人群与实践的关系图。从图中可以很好的反映出各类人群的变化规律,他们的变化规律与实际变化相吻合,从而证明了我们的模型基本符合要求。

## 1 问题重述

2019 年底湖北省武汉市出现不明原因肺炎,于 2020 年初被世界卫生组织命名为新型冠状病毒,同期在全国范围内大面积爆发,对全国人民的日常生活造成巨大干扰,目前疫情在国内还未完全控制。基于此情况,我们认为有必要根据该病的特点,建立合适的数学模型,分析合理的控制策略,预测疾病未来一段时间的发展趋势。

## 2 问题的分析

主要通过分析湖北(武汉)地区的受感染人数的变化规律,我们对该地区预测流行病的变化趋势提出以下模型假设:

- 1. 将人群分为三类:
  - (a) 易感染人数 (疑似病例): 用 S 表示;
  - (b) 病人数 (已受感染者,即确诊者):用 I表示;
  - (c) 移出者人数 (包括"被治愈者"和"死亡者"", 这部分人不再参与感染和被感染过程): 用 R 表示。在 SIR 模型中以上三类人群之间存在两个转换的关系:



- 2. 该地区人口不流动 (考虑到武汉已经封城,该假设是合理的),设最初易感染人数为 N 此时 I R 均为 0.
- 3. 被隔离人群完全断绝与外界接触,不再具有传染性 (考虑到现有的医疗条件,该假设也是合理的)。

## 3 模型的分析与建立

#### 3.1 初期数据的模拟

传染病早期可以采用指数模型进行模拟: $N(t) = N_0(1+k)^t$ ,当然,此情况是在社会来不及防备以及群众不重视的基础上导致的。由于前期武汉市政府的不重视、人民对本次疫情的忽视以及春节带来的附加作用,我们可以认为,新型冠状病毒前期是可以满足该指数模型的。 1

|        | 7/2 \ | TT->- |
|--------|-------|-------|
|        | 确诊人数  | 死亡    |
| 12月31日 | 27    |       |
| 1月1日   | 27    |       |
| 1月2日   | 27    |       |
| 1月3日   | 44    |       |
| 1月4日   | 44    |       |
| 1月5日   | 59    |       |
| 1月6日   | 59    |       |
| 1月7日   | 59    |       |
| 1月8日   | 51    |       |
| 1月9日   | 51    |       |
| 1月10日  | 41    | 1     |
| 1月11日  | 41    | 1     |
| 1月12日  | 41    | 1     |
| 1月13日  | 41    | 1     |
| 1月14日  | 41    | 1     |
| 1月15日  | 41    | 2     |
| 1月16日  | 47    | 2     |
| 1月17日  | 64    | 2     |
| 1月18日  | 123   | 3     |
| 1月19日  | 198   | 2     |
| 1月20日  | 270   | 6     |
| 1月21日  | 375   | 9     |
| 1月22日  | 444   | 17    |
| 1月23日  |       |       |
| 1月24日  | 549   | 24    |
| 1月25日  | 1052  | 52    |
| 1月26日  | 2714  | 76    |
|        |       |       |





由 MATLAB 拟合出的人数曲线如上所示。武汉未在 23 日提供确诊人数,故将该点去除后拟合。此外,MATLAB 给出的拟合结果如下: 增长模型:  $f(x) = a(1+b)^x$ 

x =
0.7421 0.3169
resnorm =
6.7711e+04

显然, 此模型只能适用于早期的预测。

## 4 模型的建立、求解

建立 SIR 模型

易感染者, 感染者, 移出者之和是个恒量即 N = S + I + R. 假设病人康复后具有免疫力, 人与人之间有相同的接触率. 最终由如下两种假设决定状态之间的转变率:

- 1. 感染者的增长率是和感染者 I 与易感染者 S 的乘积成正比的
- 2. 感染者 I 到移出者 R 的变化率是与感染者 I 成正比。

基于以上两条得出模型的微分方程

$$\begin{cases} \frac{dS}{dt} = -\alpha SI \\ \frac{dI}{dt} = \alpha SI - \gamma I \end{cases}$$

$$\frac{dR}{dt} = \gamma I$$
(1)

其中, $\alpha$   $\gamma$ , 都是以时间为变量的参数, $\alpha(t)$  为日感染率, $\gamma(t)$  为日移出率. 但是因为此疫情目前仍处于上升期,且相关数据较少,故按照以上微分方程组无法求出  $\alpha(t)$ , $\gamma(t)$  的解析解,因此我们先作数值计算。参考多方资料后,我们设  $\alpha$ =0.0000003, $\gamma$ =0.0077266,I(0)=1,S(0)=1000000 (其中感染率  $\alpha$  和移出率  $\gamma$  都是根据官方所提供的数据估算出; 武汉市人口共有一千万,我们假设十分之一受到此次疫情的影响)

用 MATLAB 进行编程:

```
function y = ill(t,x)

a=0.0000003;

b=0.0077266;

y=[a*x(1)*x(2)-b*x(1),-a*x(1)*x(2)]';

end

ts=[0:150];

x0=[1,1000000];

[t,x]=ode45('ill',ts,x0);

plot(t,x(:,1),t,x(:,2));

xlabel("天数")

ylabel("人数")

title("武汉省肺炎疫情人数预测图")
```



上图是由 MATLAB 求解微分方程后得出的结果。可以看到,21 天到 25 天的数据,也就是截止到 1 月 26 日 24 时,预测的数据都是符合实际情况的。

| 武汉疫情数据   |       |       |       |       |       |       |       |     |     |
|----------|-------|-------|-------|-------|-------|-------|-------|-----|-----|
| 数<br>据时间 | 新增确诊数 | 新增疑似数 | 累计确诊数 | 现有确诊数 | 现有疑似数 | 累计死亡数 | 累计治愈数 | 死亡率 | 治愈率 |
| 1.18     |       |       | 45    | 28    |       | 2     | 15    |     |     |
| 1.19     |       |       | 62    | 41    |       | 2     | 19    |     |     |
| 1.2      |       |       | 198   | 169   |       | 4     | 25    |     |     |
| 1.21     |       |       | 258   | 227   |       | 6     | 25    |     |     |
| 1.22     |       |       | 425   | 380   |       | 17    | 28    |     |     |
| 1.23     |       |       | 495   | 441   |       | 23    | 31    |     |     |
| 1.24     |       |       | 572   | 502   |       | 38    | 32    |     |     |
| 1.25     |       |       | 618   | 533   |       | 45    | 40    |     |     |
| 1.26     |       |       | 698   | 593   |       | 63    | 42    |     |     |

但是,预测数据给出的结果显然是不符合实际情况的,随着疫情的扩张,感染率势必降低,移出率势必提高。因此,感染率  $\alpha$  和移出率  $\gamma$  不会是一个常数,该模型仍然有需要改进的地方。

## 5 模型检验与分析

#### 5.1 相轨线分析

定义  $\sigma = \frac{\alpha}{\gamma}$  将原微分方程组化简:

$$\frac{dI}{dS} = \frac{1}{\sigma S} - 1, I_{S=S_0} = I_0$$

容易求出此微分方程的解为:

$$I = (S_0 + I_0) - S + \frac{1}{\sigma} ln \frac{S}{S_0}$$

显然当  $S=\frac{1}{\sigma}$  时 I 最大。对于基本模型来说,其  $\frac{1}{\sigma}=\frac{0.0077266}{0.0000003}=25755$ 



由相图可知,,1/ 所代表的是一个阈值,当  $S>frac1\sigma$  时,传染病在蔓延;当  $S<frac1\sigma$  时,传染病则不会蔓延

#### 5.2 模型的改进

由前面分析可知,此模型对于前期疫情的预测比较准确,但是对于后期疫情的发展则显然不符合实际结果。其原因是因为感染率  $\alpha$  和移出率  $\gamma$  不会是一个常数。后期传染率应呈指数型下降。并将移出率用 sigmoid 函数进行优化。

1. 首先保持移出率不变,优化感染率函数

$$\alpha = 0.0000003*((stepfun(t,0) - stepfun(t,25)) + stepfun(t,25) * e^{-0.02*(t-25)})$$



感染率曲线 (第 25 天时武汉市采取响应措施,故从该日起感染率下降)由改进后的模型建立的预测图,前期预测仍然符合预期,且大大缓解了高峰时期患病的人数。



下面改变感染率函数下降的斜率,由 MATLAB 拟合出结果:



增大感染率下降的梯度, 可以有效的降低感染人数。

#### 2. 在(1)的基础上改进移出率函数

$$\alpha = 0.0000003*((stepfun(t,0) - stepfun(t,25)) + stepfun(t,25)*e^{-0.05*(t-25)})$$
 
$$\gamma = 0.0077266*(stepfun(t,0) + stepfun(t,25)*(\frac{5}{1+e^{-(t-28)}})$$



在改进模型的情况下,我们发现,相比于 (1) 的结果,肺炎疫情在 60 天左右即得到了有效的控制, 且感染人数呈数十倍的下降。当然,预测的数据仍然具有一定的问题.

#### 3. 灵敏度分析

#### (a) 对 α 做灵敏度分析

$$\begin{split} \alpha_1 &= 0.0000003*((stepfun(t,0) - stepfun(t,25)) + stepfun(t,25) * e^{-0.05*(t-25)}) \\ \gamma_1 &= 0.0077266*(stepfun(t,0) + stepfun(t,25) * (\frac{5}{1+e^{-(t-28)}}) \\ \alpha_2 &= 0.0000003*((stepfun(t,0) - stepfun(t,25)) + stepfun(t,25) * e^{-0.045*(t-25)}) \\ \gamma_2 &= 0.0077266*(stepfun(t,0) + stepfun(t,25) * (\frac{5}{1+e^{-(t-28)}}) \\ \alpha_3 &= 0.0000003*((stepfun(t,0) - stepfun(t,25)) + stepfun(t,25) * e^{-0.055*(t-25)}) \\ \gamma_3 &= 0.0077266*(stepfun(t,0) + stepfun(t,25)) * (\frac{5}{1+e^{-(t-28)}}) \end{split}$$



如图可见,感染人数对 a 的变化还是比较灵敏的。这对于现实中的疫情防控具有很好的指导作用, 尤其是控后,如何快速的降低感染率以便快速的控制疫情是防止疫情蔓延的重点。

#### (b) 对 γ 做灵敏度分析

$$\begin{split} \alpha_1 &= 0.0000003* \left( (stepfun(t,0) - stepfun(t,25)) + stepfun(t,25) * e^{-0.05*(t-25)} \right) \\ \gamma_1 &= 0.0077266* \left( stepfun(t,0) + stepfun(t,25) * \left( \frac{5}{1 + e^{-(t-28)}} \right) \right) \\ \alpha_2 &= 0.0000003* \left( (stepfun(t,0) - stepfun(t,25)) + stepfun(t,25) * e^{-0.05*(t-25)} \right) \\ \gamma_2 &= 0.0077266* \left( stepfun(t,0) + stepfun(t,25) * \left( \frac{4.5}{1 + e^{-(t-28)}} \right) \right) \\ \alpha_3 &= 0.0000003* \left( (stepfun(t,0) - stepfun(t,25)) + stepfun(t,25) * e^{-0.05*(t-25)} \right) \\ \gamma_3 &= 0.0077266* \left( stepfun(t,0) + stepfun(t,25) * \left( \frac{5.5}{1 + e^{-(t-28)}} \right) \right) \end{split}$$



同样,如何提高移出率 (主要是指治愈率) 也是疫情防控后的重点。

#### 5.3 模型分析

虽然改进后的模型能够对疫情做出比较理想的趋势分析,但是对于疫情后期的处理仍然与真实情况有所偏差。主要是由三个原因导致的,

- 1. SIR 模型过于精简,将真实情况过度理想化。本次疫情的感染不光是由感染者传染的,对于一部分易感人群,只要携带病原体,均可以作为传染源,但是该部分人群在模型的建立当中并没有体现出来。
- 2. 本次疫情仍处于上升期,且真实数据不足,加上湖北省政府前期的怠慢导致的数据异常,我们没有办法对控前做一个很好的拟合,同样,对控后亦无从而知。
- 3. 武汉市人口基数众多,且正逢春节按照官方的说法,在武汉封城之前,有约 500 万人离开武汉。这对于模型的建立是一个极大的挑战,因为一般的模型都要求人口固定且无人口交流。

### 6 参考文献

- 1. 姜启源谢金星叶俊,《数学模型》(第三版),北京;高等教育出版社
- 2. 基于 SIR 模型和基本再生数的浙江省新型冠状病毒肺炎防控效果分析 [J]. 李承倬, 武文韬, 潘振宇, 邓玉皎, 李筱, 代志军, 吕军. 浙江医学.
- 3. 传染病传播模型综述 [J]. 张发, 李璐, 宣慧玉. 系统工程理论与实践.
- 4. SARS 流行病的 SEIR 动力学模型及其参数辨识 [J]. 徐恭贤, 冯恩民, 王宗涛, 谭欣欣, 修志龙. 黑龙江大学自然科学学报. 2005(04)
- 5. 传染病传播模型研究 [J]. 余雷, 薛惠锋, 李刚. 计算机仿真. 2007(04)

## 7 工作分工情况

| 姓名  | 分工      | 打分 |
|-----|---------|----|
| 张世琛 | 編程 + 写作 | 10 |
| 李选  | 建模      | 10 |
| 曹佳慧 | 写作      | 10 |
| 张子锜 | 写作      | 10 |