Multilingual WSD-like Constraints for Paraphrase Extraction

Wilker Aziz¹ Lucia Specia²

¹University of Wolverhampton Wolverhampton, UK w.aziz@wlv.ac.uk

²University of Sheffield Sheffield, UK 1.specia@sheffield.ac.uk

August 9, 2013

Table of Contents I

Motivation

2 Approach

Results

4 Remarks

"Re-write some text preserving its meaning"

at phrase level

para hacer frente al cambio climático de **forma** mensurable, notificable y verificable

"Re-write some text preserving its meaning"

at phrase level

para hacer frente al cambio climático de **forma** mensurable, notificable y verificable

Maybe

the original phrase is OOV to an SMT system

"Re-write some text preserving its meaning"

at phrase level

para hacer frente al cambio climático de **forma** mensurable, notificable y verificable

Maybe

- the original phrase is OOV to an SMT system
- the paraphrase is easier to understand (targeted readers)

"Re-write some text preserving its meaning"

at phrase level

para hacer frente al cambio climático de **forma** mensurable, notificable y verificable

Maybe

- the original phrase is OOV to an SMT system
- the paraphrase is easier to understand (targeted readers)
- one needs to expand a query

Pivot through phrase-aligned parallel text [Bannard and Callison-Burch, 2005]

para hacer frente al cambio climático de $forma_{e_1}$ mensurable, notificable y verificable

Pivot through phrase-aligned parallel text [Bannard and Callison-Burch, 2005]

para hacer frente al cambio climático de $forma_{e_1}$ mensurable, notificable y verificable

to address climate change in a measurable, reportable and verifiable \mathbf{manner}_f

para hacer frente al cambio	to address climate change in a			
climático de forma e ₁ mensu-	measurable, reportable and ver-			
rable, notificable y verificable	ifiable manner _f			

para hacer frente al cambio	to address climate change in a				
climático de forma e ₁ mensu-	measurable, reportable and ver-				
rable, notificable y verificable	ifiable manner _f				
	everyone can participate and				
	contribute in an integrated				
	manner _f .				

para hacer frente al cambio	to address climate change in a				
climático de forma e ₁ mensu-	measurable, reportable and ver-				
rable, notificable y verificable	ifiable $manner_f$				
cada uno pueda participar y	everyone can participate and				
contribuir de manera _{e2} in-	contribute in an integrated				
tegrada.	manner _f .				

Pivot through phrase-aligned parallel text [Bannard and Callison-Burch, 2005]

para hacer frente al cambio	to address climate change in a				
climático de forma e ₁ mensu-	measurable, reportable and ver-				
rable, notificable y verificable	ifiable $manner_f$				
cada uno pueda participar y contribuir de manera _{e2} in-	everyone can participate and contribute in an integrated				
tegrada.	$manner_f$.				

Model

$$p(e_2|e_1) = \sum_{f \in F} p(f|e_1)p(e_e|f)$$

Illustration

- mix of valid senses of the input
- very low diversity
- unreachable paraphrases
- alignment noise

Illustration

WSD assumption

What if we could obtain "sense" annotation for free?

WSD assumption

What if we could obtain "sense" annotation for free?

para hacer frente al cambio climático de $forma_{e_1}$ mensurable, notificable y verificable

to address climate change in a measurable, reportable and verifiable \mathbf{manner}_q

WSD assumption

What if we could obtain "sense" annotation for free?

para hacer frente al cambio climático de $forma_{e_1}$ mensurable, notificable y verificable

to address climate change in a measurable, reportable and verifiable \mathbf{manner}_q

Different translations of a phrase discriminate different senses of the input

[Resnik and Yarowsky, 1999, Specia et al., 2006, Carpuat and Wu, 2007]

Pivoting through one phrase

$$p(e_2|e_1, f) = p(e_2|f)p(f|e_1)$$
 [Callison-Burch, 2007]

aspecto formal, impreso, formar,

Pivot through a single phrase ("label")

- reach new options
- more diversity
- waste evidence
- sensitive to ambiguity of the "label"
- unreachable paraphrases

Pivoting through one phrase

$$p(e_2|e_1, f) = p(e_2|f)p(f|e_1)$$
 [Callison-Burch, 2007]

Different translations of a phrase discriminate different senses of the input

[Resnik and Yarowsky, 1999, Specia et al., 2006, Carpuat and Wu, 2007]

$$p(e_2|e_1,q) = \frac{1}{z} \sum_{f \in F} p(e_2|f) p(q|f) p(f|e_1)$$

tipo, forma de, formas, modo, manera, especie, modalidad, formato, tipo de, medio, clase

- pivot through all available phrases
 - observing a constraint q in English

Different translations of a phrase discriminate different senses of the input

[Resnik and Yarowsky, 1999, Specia et al., 2006, Carpuat and Wu, 2007]

$$p(e_2|e_1,q) = \frac{1}{7} \sum_{f \in F} p(e_2|f) p(q|f) p(f|e_1)$$

- reach many more options
- quite diverse
- less categorial ambiguity
- requires additional parallel data

Different translations of a phrase discriminate different senses of the input

[Resnik and Yarowsky, 1999, Specia et al., 2006, Carpuat and Wu, 2007]

$$p(e_2|e_1,q) = \frac{1}{2} \sum_{f \in F} p(e_2|f) p(q|f) p(f|e_1)$$

tipo, forma de, formas, modo, manera, especie, modalidad, formato, tipo de, medio, clase

Paraphrasing in context

- LM is mostly responsible for fluency
- 49% *F*₁

Different translations of a phrase discriminate different senses of the input

[Resnik and Yarowsky, 1999, Specia et al., 2006, Carpuat and Wu, 2007]

$$p(e_2|e_1,q) = \frac{1}{2} \sum_{f \in F} p(e_2|f) p(q|f) p(f|e_1)$$

Experimental setup

Parallel data from Europarl

- input: Spanish
- annotation: English
- 9 pivot languages de, nl, da, sv, fi, fr, it, pt, el

Phrase alignment

- Giza++
- SMT symmetrisation heuristics

Test set

- 50 phrases (80% with 2 or more senses in Spanish WordNet)
- in context (2-6 contexts per input phrase)
- 258 sentences

Comparisons

Models

- ccb original formulation by [Bannard and Callison-Burch, 2005]
- ccb-wsd pivot through one phrase [Callison-Burch, 2007]
- multi proposed model

5-gram LM for re-ranking: simple product Labels

- HT human translation (from parallel corpus)
- MT machine translation (phrase-based SMT) in-domain (0.49 BLEU)

Evaluation

Annotator is given the original sentence and one paraphrase

- M meaning-preserving
- **G** grammatical
- C correct (M and G)

 κ Agreement (8 annotators)

- M 0.54 ± 0.15
- $G 0.63 \pm 0.16$
- 0.62 ± 0.2

Results

Human Translation			Machine Translation								
Method	d Top M		G	Correct		М	G	Correct			
Wiethou	тор	F ₁	F ₁	Р	R	F_1	F_1	F_1	Р	R	F ₁
CCB	1	32	28	25	25	25					
CCB-wsd	1	61	38	34	28	30	71	39	34	32	33
multi	1	62	55	59	42	49	69	55	50	45	48
CCB	2	41	37	33	33	33					
CCB-wsd	2	68	44	40	33	36	79	46	40	38	39
multi	2	71	64	66	47	55	82	69	63	57	60
CCB	3	46	42	37	37	37					
CCB-wsd	3	71	47	45	36	40	83	50	44	41	42
multi	3	74	67	71	50	59	85	74	69	62	65

SMT does better WSD than people?!

• most likely not, but it did offer more straightforward labels

No LM re-ranking

Human Translation Machine Translation

Method	М	G	Correct	М	G	Correct
CCB	33	23	22			
CCB-wsd	19	9	8	16	8	7
multi	64	43	37	63	40	35

For our model

- options are mostly meaning-preserving
- LM helps w.r.t. grammaticality

Applications

MT evaluation

 paraphrase the MT (source text becomes "annotation")

OOV in SMT

 paraphrase the source phrases (target phrases become "annotation")

Final remarks

Summary

- paraphrase extraction with WSD-like labels
- pivoting through multiple languages
- separate senses of the input
- reach more paraphrases
- produce less noise
- less LM dependent

Future work

couple related labelse.g. "way" and "means", or "form" and "forms"

Thanks!

Questions/comments?

Different families

1 pivot ELECTE

2 families *******

3 families

4 families

Germanic (1-4) ELECTIV

Romance (1-3) STUBER

Romance-All (4-9)

References I

Colin Bannard and Chris Callison-Burch. Paraphrasing with bilingual parallel corpora. In *Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics*, pages 597–604, Ann Arbor, Michigan, 2005. doi: 10.3115/1219840.1219914.

Chris Callison-Burch. Paraphrasing and Translation. PhD thesis, University of Edinburgh, Edinburgh, Scotland, 2007. URL http://cs.jhu.edu/~ccb/publications/callison-burch-thesis.pdf.

References II

Marine Carpuat and Dekai Wu. Improving statistical machine translation using word sense disambiguation. In *The 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning*, EMNLP-CoNLL '07, pages 61–72, Prague, Czech Republic, 2007.

Trevor Cohn and Mirella Lapata. Machine translation by triangulation: Making effective use of multi-parallel corpora. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic, 2007.

Philip Resnik and David Yarowsky. Distinguishing systems and distinguishing senses: new evaluation methods for word sense disambiguation. *Nat. Lang. Eng.*, 5(2):113–133, 1999.

References III

Lucia Specia, Mark Stevenson, Maria das Graças Volpe Nunes, and Gabriela C.B. Ribeiro. Multilingual versus monolingual WSD. In Proceedings of the EACL Workshop "Making Sense of Sense: Bringing Psycholinguistics and Computational Linguistics Together", pages 33–40, Trento, Italy, 2006.

Multilingual WSD-like Constraints for Paraphrase Extraction