

No Paired p-electrons

No Paired p-electrons

Select which of the following elements has $\it no$ paired $ m p$ electrons in a single uncombined atom of the element:						
	Neon					
	Oxygen					
	Magnesium					
	Silicon					
	Carbon					

Adapted with permission from UCLES, A Level Chemistry, June 1990, Paper 1, Question 6

Chemistry

Electron configurations (D1.3)

Electron configurations (D1.3)

Complete the following ground state electron configurations.

Part A K

What is the ground-state electron configuration of K?

Items:

Part B Sc

What is the ground-state electron configuration of Sc ?

 $[{
m Ar}]\, {
m 3d}$

Items:

3s 4s 3p 4p 1 2 3 4 5 6

Part C Cr

What is the ground-state electron configuration of Cr ?

 $[{
m Ar}]\, {
m 3d}$

Items:

Part D Co

What is the ground-state electron configuration of Co?

[Ar] 3d

Items:

Part E Cu

What is the ground-state electron configuration of Cu?

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d$$

Items:

Based on question D1.1 from Physical Chemistry book

Chemistry

Electron configurations (D1.6)

Electron configurations (D1.6)

Complete the following ground state electron configurations.

Part A ${\rm Ti}^{3+}$

What is the ground-state electron configuration of Ti^{3+} ?

Items:

Part B Fe²⁺

What is the ground-state electron configuration of Fe^{2+} ?

Items:

What is the ground-state electron configuration of Ni^{2+} ?

Items:

Part D Cu⁺

What is the ground-state electron configuration of Cu^+ ?

Items:

Part E ${
m Zn}^{2+}$

What is the ground-state electron configuration of ${\rm Zn}^{2+}$?

$$1s^2 2s^2 2p^6 3s^2$$

Items:

Based on question D1.6 from Physical Chemistry book

Orbital Basics

Orbital Basics

Part A 5f subshell
Give the number of f -orbitals that comprise the $5f$ subshell.
Part B Number of electrons
Give the maximum number of electrons that can occupy a single orbital.
Part C Electrons in the second shell
Give the maximum number of electrons that can occupy the second shell.
Part D 3d subshell
Give the maximum number of unpaired electrons that can occupy the $3\mathrm{d}$ subshell.
Part E Unpaired electrons Give the number of unpaired electrons in the ground state of an oxygen atom.

Part F Paired electrons

Give the number of paired electrons in the ground state of the $\mathrm{Na}^{\mathrm{+}}$ ion.

Based on questions D2.1 and D2.2 from Physical Chemistry book

<u>Home</u> Chemistry

Essential Pre-Uni Chemistry D2.3

Essential Pre-Uni Chemistry D2.3

Identify the subshell to which each of the orbitals below belongs.

Part A (a)

Figure 1: Unknown Orbital

14/1 (
vvnat	kind c	ot orbital	IS (depicted	above's	1

- () s
- (f
- O p
- () d

Figure 2: Unknown Orbital

What kind of orbital is depicted above?

- $\bigcirc \ \, d$

- \bigcirc r

Figure 3: Unknown Orbital

What kind of orbital is depicted above?

-) р
- () f
- ()
- () s

Figure 4: Unknown Orbital

What kind of orbital is depicted above?

- () i

First Configurations

First Configurations

Part A Unpaired electron

Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has an unpaired electron in its ground-state configuration

Part B Incomplete shell, no unpaired electrons

Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has an incomplete shell, but no unpaired electrons in its ground-state configuration

Part C Cation with unpaired electron

Specify the symbol of the element with the lowest atomic number that satisfies the following property: its singly-charged cation has an unpaired electron in its ground-state configuration

Part D Full shell configuration 2- anion

Specify the symbol of the element with the lowest atomic number that satisfies the following property: its doubly-charged anion has only full shells in its ground-state configuration

Part E Cation and anion

Specify the symbol of the element with the lowest atomic number that satisfies the following property: both its singly-charged cation and its singly-charged anion have two unpaired electrons in their ground-state configurations

Partially-filled p-orbital Part F Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a partially-filled p-orbital in its ground-state configuration. Fully-filled p-orbital Part G Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a fully-filled p-orbital in its ground-state configuration. Part H Six unpaired electrons Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has six unpaired electrons in its ground-state configuration. Part I Fully-filled d-orbital Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a fully-filled d-orbital in its ground-state configuration.

Fully-filled d-subshell

Part J

Specify the symbol of the element with the lowest atomic number that satisfies the following property: it has a fully-filled d-subshell in its ground-state configuration.

Created for isaacphysics.org by Andrea Chlebikova

Home Che

Chemistry

Essential Pre-Uni Chemistry D1.10

Essential Pre-Uni Chemistry D1.10

A 1^+ ion, in an excited state due to X-ray bombardment, is found to have an electron configuration $1s^2\,2s^1\,2p^6\,3s^2\,3p^6\,3d^6\,4s^2\,4p^1$ in the gas phase.

Name the element whose ion this is.

Home Second Shell Orbital

Second Shell Orbital

What kind of orbital must an electron in the second shell occupy?					
	A dumb-bell-shaped orbital				
	Either an s or p orbital				
	The orbital closest to the nucleus				
	A spherically-shaped orbital				

Adapted with permission from UCLES, A Level Chemistry, November 1995, Paper 4, Question 3

Four Unpaired Electrons

Four Unpaired Electrons

Select which of the following is the proton (atomic) number of an element that has four <i>unpaired</i> electrons in its g	round-state:
<u> </u>	
<u> </u>	
<u> </u>	
O 22	
<u> </u>	

Adapted with permission from UCLES, A Level Chemistry, June 1991, Paper 1, Question 4