Organic Chemistry

	1			1	T
Class of Compound	Structural Formula	Semi- Structural Formula	Suffix	Prefix	Polarity
Alkene	H $C = C$ H	-CHCH-	-ene		Slightly polar - Weak Dipole- Dipole -Dispersion
Haloalkane	R-F	-F -Cl -Br -I		-Fluoro -Chloro -Bromo -lodo	Polar -H-Bonding only if another molecule has H-FON -Dipole-Dipole -Dispersion forces
Alcohol	R-Q H	-OH	-(an)ol	Hydroxy-	Very Polar -H-Bonding -Dipole-Dipole -Dispersion forces
Aldehyde	O II C H	-СНО	-(an)ane	Охо-	Polar -H-Bonding only if another molecule has H-FON -Dipole-Dipole -Dispersion
Ketone	R R'	-CO-	-(an)one	Охо-	Polar -H-Bonding if another molecule has H-FON -Dipole-Dipole -Dispersion
Carboxylic Acid	O R OH	-COOH	-(an)oic acid		Very Polar -H-Bonding -Dipole-Dipole -Dispersion
Ester	O R-C-O-R'	-COO-	-(an)oate		Very Polar -H-Bonding if- another has H-FON -Dipole-Dipole -Dispersion
Amine	H N H	-NH ₂	-amine	amino	-Very Polar -H-Bonding -Dipole-Dipole -Dispersion

0	-CONH ₂	-amide		Very Polar
Ĭ				-H-Bonding
				-Dipole-Dipole
$R' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				-Dispersion
	NH ₂	R NH ₂ -CONH ₂	-CONH ₂ -amide	-CONH ₂ -amide

Functional Groups

- As size of any molecule increases, dispersion forces become increasingly significant ⇒
 interact primarily through dispersion ⇒ Soluble in non-polar molecules ⇒ Less soluble in
 Polar substances
- Side chains go in brackets:
 - o Ex. methyl-propane: CH₃CH(CH₃)CH₃
- Alphabetical order for functional group prefixes (Ethyl named and numbered before methyl)
- DON'T use di/tri prefixes for alphabetical ordering
- Isomers have same molecular formula but different structural formula

Cycloalkanes (cyclo-R)

- General formula: C_nH_{2n}
- Ring structure with no double bonds
- Properties similar to alkanes
- Numbering of attached functional groups need to add up to lowest possible number

Cycloalkene (cyclo-R-ene-R')

- Same as cycloalkane but only one is hydrogen attached to carbons involved in double bond
- General formula: C_nH_{2n-2x} where x is number of double bonds
- Double bond needs to be between 1 and 2 in numbering (start at double bond)

Alcohol (-OH)

- Alcohols can be described as primary, secondary or tertiary alcohols
 - O Primary \Rightarrow -OH group at the end (bonded carbon only bonded to 1 other carbon atom)
 - o Secondary ⇒ -OH group in middle (bonded carbon bonded to 2 other carbon atoms
 - O Tertiary \Rightarrow -OH group in middle (bonded carbon bonded to 3 other carbon atoms)
- Primary and secondary alcohols can be oxidised to form other substance; tertiary alcohols cannot be oxidised:

Properties

- BP of any alcohol is much higher than parent hydrocarbon ⇒ -OH capable of H-Bonding and dipole-dipole and increases mass, hence higher dispersion forces
- Soluble in any other substance capable of H-bonding or dipole-dipole forces ⇒ Solute-Solvent forces overcome constituent Solute-Solute and Solvent-Solvent forces
 - O Completely miscible in H2O
- When 2+ functional groups are present, principal functional group is given priority (high to low):
 - 1. Ester (-COO-)
 - 2. Carboxylic acid (-COOH)
 - 3. Amide (-CONH2)
 - 4. Aldehyde (-CHO)
 - 5. Ketone (-CO-)
 - 6. Alcohol (-OH)
 - 7. Amine (-NH2)
 - 8. Aromatics
 - 9. Alkene (-C=C-)
 - 10. Alkyne (-C≡C-)

Benzene

- C₆H₆, flat hexagonal structure
- C-C bonds are identical, intermediate in length
- C bonds alternatively double bonded to neighbouring C atoms

• Shorthand notations:

- Aromatic compounds are benzene based ⇒ H replaced with atoms or molecules
- Carcinogen

Aldehyde (-CHO)

- Polar molecule but unable to bond through H-Bonding (lacks hydrogen atom bonded to FON)
 - O Can bond with other molecules with H-FON with lone electron pair on O atom
- Higher BP than parent alkane but lower BP than alcohols of same size
- Soluble in compounds with molecules capable of dipole-dipole interaction
- Carbonyl group:

Ketones (-ROR₁-)

- Polar molecule and will interact primarily through dipole-dipole interactions
- Similar BP to Aldehyde of same mass
- Product of 2nd degree alcohol oxidation

Carboxylic Acid (-COOH)

- Short chain carboxylic acids have a pungent vinegary odour
- Contains -COOH, the Carboxyl functional group (Carbonyl + Hydroxyl)
- Polar molecule and will interact primarily through H-Bonding
- BP much higher than any other hydrocarbon of similar molecule size
- BP slightly higher than corresponding main-chain alcohol
- Soluble in polar solvents, especially those with H-Bonds
- As length of carboxylic acid increases greater than hexanoic acid, substance becomes virtually immiscible
- Long carboxylic acid molecules are known as fatty acids
 - o Soft, greasy feel
 - o Insoluble in water
- Fatty acids occur in many living systems

- Carbon chain in plant fatty acids are unsaturated (contain alkene and alkyne functional groups) and double bonds form *cis* configuration
- Animal fatty acids are saturated (contain no alkene or alkyne functional group)
- Fatty acids are related to, but not the same as fats and oils
- In plants and animals, fatty acids are converted to triglycerides (fats and oils)
 - O Fats and oils are important for energy storage

Amines (-NH₂)

- Polar and capable of H-Bonding ⇒ BPs higher than hydrocarbons but lower than alcohols of similar molecular size
- Weaker H-bonding of amine than alcohol occurs due to lower electronegativity of nitrogen
 (3.0) compared to oxygen (3.5) ⇒ weaker dipole and H-Bond
- Soluble in polar solvents, especially those with H-bonds

Amides (-CONH₂)

- Individual H-Bonding strength is greater than similar amines or carboxylic acids:
 - O Greater number of suitable lone electron pairs and H atoms available for H-bonding in amide (2 H-atoms and 3 lone pairs) than similar amine or carboxylic acid
 - O Close proximity of highly electronegative O atom causes H atoms from NH₂ group to develop larger dipole than normal
- Therefore, BP of amides are higher than amines, alcohols, and carboxylic acid
- Soluble in other solvents which interact strongly through H-bonds

Esters (-COO-)

- Ester group creates a degree of polarity at centre of ester molecule
 - O Allows for dipole-dipole and dispersion interactions
 - o H-Bonding?
- Therefore, BP is similar to aldehydes and ketones but lower than alcohols and carboxylic acids of similar molar mass
- Pleasant fruity odours for small molar mass esters
- High molar mass esters are solid with a waxy feel
- Lower molar mass esters are volatile
- Used as solvents
- Useful for adding fruity and floral odours in foods and cosmetics
- Leaves of most plants have protective wax coating of high molar mass esters
- Esterification:

- Reverse reaction occurs when acid is added to ester
- Base added ⇒ Ethanoate Salt + alcohol

Fats and Oils

- Triglycerides ⇒ fats and oils (type of ester)
- Triglycerides contain fatty acid molecules attached to a main ester group
- Vegetable oils are unsuitable for cooking because they remain a liquid when heated
 - O Unsaturated fats from plants also tend to spoil quicker (due to more reactive double bounds, capable of addition reactions)
 - O Hydrogenation is solution ⇒ converts unsaturated liquid vegetable oils into more versatile solid products (ex. shortening, margarine)
 - Addition reaction where H atoms add to some double bonds in triglyceride carbon chains
 - Reduces degree of unsaturation and produces solid fat
 - Hydrogenation can produce an undesirable side reaction which converts some cis double bonds in triglyceride carbon chain into trans form
 - Trans isomers are unsaturated but their linear geometry increases dispersion forces and allows molecules to pack more efficiently than cis form
 - Trans fats solidify more readily than cis ⇒ poses a risk to cardiovascular system

IMFs

- Intermolecular forces ⇒ forces between molecules
- Dispersion forces ⇒ a temporary dipole that exists as a result of fluctuations in the electron cloud
 - O Constantly moving electrons form a **temporary dipole**
 - O All molecules with electrons exhibit dispersion forces
 - o Packing density (**Steric Hinderance**) ⇒ Straight carbon chain molecules exhibit stronger dispersion forces (bent exhibit weaker)
- Dipole-dipole forces ⇒ permanent dipoles
 - O Two requirements for molecules to exhibit dipole-dipole:
 - Have to be polar bonds
 - Bonds involving elements with differences in electronegativity
 - Non-symmetrical molecule
 - o $\delta^+ \Rightarrow$ positive dipole
 - o $\delta^+ \Rightarrow$ negative dipole
- Hydrogen-Bonding ⇒ Extreme dipole-dipole bond between very electronegative ion and hydrogen attached to very electronegative ion
 - H-FON (H bonded to F, O or N)
- Mention **SUM OF ALL IMFS** in answers
- Substitution reactions ⇒ one atom is swapped for another
- Addition reactions ⇒ double bond is broken, creating two reactive sites available for other atoms/molecules to bond
- Types:
 - O Halogenation (+ Halogen F₂, Cl₂ etc)
 - O Hydrohalogenation (+ Hydrohalogen HCl, HF etc)
 - O Hydrogenation (+ Hydrogen H₂)
 - O Hydration (+ Water H₂O)

- Addition reaction with alkene creates an alcohol (H⁺ and OH⁻ bonds separately)
- Long chain carboxylic acids ⇒
 - O Plant fatty acid, unsaturated (oleic acid) in cis configuration
 - O Animal fatty acid, saturated (stearic acid)

Model Answer (solubility)

- Detail cohesive forces in solute and how much solute-solute interactions resist mixing
- Detail cohesive forces in potential solvent and how much solvent-solvent interactions resist mixing
- Detail nature of any potential solute-solvent interactions and how much they assist mixing
- If it is soluble, solute-solvent interactions outweigh solute-solute and solvent-solvent forces

Mistakes

• prefixes always in alphabetical order \Rightarrow only suffixes require priorities

The boiling points and molar masses of three organic compounds are shown in the table.

+				
	Compound	Boiling Point (°C)	Molar Mass (g.mol ⁻¹)	
	Ethanoic Acid	118	60	
	Butan-1-ol	117	74	
	Butyl ethanoate	116	116	
	2-Methylheptane	116	114	

Ethanoic acid, butan-1-ol and butyl ethanoate have very different molar masses but similar boiling points. Explain why in terms of the structure and bonding of the three compounds.

(6 marks)

Ethanoic acid, butan-1-ol and butyl ethanoate have very different molar masses but similar boiling points. Explain why in terms of the structure and bonding of the three compounds.

(6 marks)

- Despite having different molar masses, all four molecules have similar boiling points due to their different structures and resulting total sum of intermolecular forces.
- 2-methylheptane is a branched chain alkane. Its only has dispersive forces operating between its molecules however, due to the large number of atoms (and as a result electrons) has a relatively high boiling point.
- Butyl ethanoate has the largest molar mass and therefore greatest dispersion forces but it is also slightly polar, so has dipole-dipole forces, but is unable to hydrogen bond.
- Butan-1-ol has lower molar mass than butyl ethanoate and 2-methylheptane and therefore smaller dispersion forces but it is polar and contains a hydrogen covalently bound to an oxygen. Therefore, it exhibits hydrogen bonding between particles resulting in strong intermolecular forces.
- Ethanoic acid has the lowest molar mass and so the weakest dispersion <u>forces</u> but it is polar and contains a hydrogen bound to an oxygen allowing the formation of hydrogen bonds between molecules.
- The presence of a second oxygen (with <u>it's</u> lone pairs of electrons) in ethanoic acid increases the hydrogen bonding compared with butan-1-ol.