LEC3. Sets and Sorting

Problem Session 2 3.18

MASTER THM:
$$I(n): \alpha T(n/b) + f(n)$$
 $O f(n) = O(n \frac{\log b \alpha - \epsilon}{2}) \text{ for some } \epsilon > 0$
 $\Rightarrow I(n) = O(n \frac{\log b \alpha}{2})$

(2) $f(n) = O(n \frac{\log b \alpha}{2}) \log^k n$, $k \text{ of ten } b \in O$
 $for some k \ge 0$
 $\Rightarrow I(n) = O(n \frac{\log b \alpha}{2} \cdot \log^{k+1} n)$

(3) $f(n) = S(n \frac{\log b \alpha}{2} \cdot \log^{k+1} n)$

(3) $f(n) = S(n \frac{\log b \alpha}{2} \cdot \log^{k+1} n)$
 $G(n) = S(n \frac{\log b \alpha}{2} \cdot \log^{k+1} n)$
 $G(n) = S(n) = S(n \frac{\log b \alpha}{2} \cdot \log^{k+1} n)$
 $G(n) = S(n) = S(n)$

(a)
$$T(n) = 2T(n/2) + O(Jn)$$
 (method 1)

$$\alpha = 1$$
, $\beta = 2$, $f(n) = O(\sqrt{n})$
 $n^{\log b\alpha} = n^{\log 2^2} = n$
 $f(n) = O(\sqrt{n}) = O(\sqrt{n})$

$$f(m = O(n^{\frac{1}{2}}) = O(n^{1-\frac{1}{2}}) = O(n^{\frac{1}{3}LQ-\frac{2}{2}}) \Rightarrow z = \frac{1}{2}$$

$$= O(n^{\frac{1}{3}LQ-\frac{2}{2}})$$

Mo Tu We Th Fr Sa Su	Memo No
so the problem @ is a	isse 1=) [(n) = 0(n) /
(method) draw a on	npar recursion tree
(2°)	a=2, $b=2$ =) $a=dyes$ b vetrics
Inde (17/2)	b vetrics.
trate In/4 In/4 In/4 In/4	
(2^3) $log_2 n levels,$	each level & has pt
Then the stal work:	$\frac{10950}{100}$ (sum of work runtime
$= \sqrt{n}, \frac{\log n}{\ell = 0}$ $= \sqrt{n}, \frac{1}{\ell = 0}$	$= \int_{\overline{\Omega}} \cdot \frac{(\sqrt{2})^{\log_2 n+1} - 1}{\sqrt{2}} \left(\frac{a_i c_{i-2}^{n+1}}{\sqrt{2}} \right)$
X-1 Just simply	
$= 5n \cdot \frac{1}{52} \cdot (2 \frac{1692}{12} + 1/2)$ $= (9 (n))$	this expression $\frac{1}{2}$ ogenth $\frac{1}{$

[Mo Tu We Th Fr Sa Su	Memo No/	
(B T(n) = 8 T(n/4) +_	$O(nJ_n)$	
	n ¹⁹⁶⁰ = n ¹⁹⁴⁸ =	$n^{\frac{3}{2}}$ mester thm	
	1s case 2 k=0 =	$=) T(n) = \Re(n^{3/2} \log n)$	
	,	1 also can be 0	
•	allse realmence	, , , ,	
****	Tree	level ℓ : 8^{-1} nodes wrk each node = $(n, 4^{-1})$	3
	#	levels: 1594 h	
****	134n	(n, 4-1, 3/2	
	Work & C. 7=0	= CI 1 3/2	`
		= C · n 2 · Clog4n+1)
	the good way to visual	lize a recursive alg $=0$ ($n^{3/2}$)	59
	$\log_{n} = \frac{\log_{n} n}{\log_{n} n}$		
2	594 N = 1595 N = 159670?	10960 = 109,0/109,1b	
42	$\sqrt{3417} = \frac{10927}{1}$	basis doesn't matte	r
-	Jr. 6924		