Building a Semantic Representation for German

Midterm Presentation

University of Bonn

12.06.2018

Motivation

- ▶ preparation for a bachelor thesis related to machine translation
- ▶ build a graph-based meaning representation (MR)
 - ► as 'interlingua' for machine translation
 - ▶ to allow more sophisticated search in texts
- ▶ build a basic framework
 - ▶ to parse german sentences into the MR
 - ▶ to generate german sentences from MR graphs
- ▶ in the bachelor thesis:
 - ▶ extend the framework to another language
 - build a basic machine translation system which uses the intermediate MR

Example

(1) The man who is tall is happy.

Semantic Representations

- ▶ one of the first approaches was the Montague grammar
 - ▶ developed in the 60s and early 70s
 - ▶ based on formal logic
- ▶ a lot of other representations have been developed:
 - ► conceptual meaning representation
 - ▶ thematic role representations
 - ► first order logic
 - ▶ discourse representation theory
 - ▶ semantic networks

My Semantic Representation

- ▶ graph structure (labeled nodes and edges)
- ▶ it should indicate verbs and their arguments
- ▶ it should indicate to what a prepositional phrase refers
- ▶ it should indicate which parts are expressed in independent clauses/dependent clauses
 - ▶ e.g. to which noun does a relative clause refer?
- ▶ it should be as expressive as the natural language sentence
 - ▶ all information expressed has to be represented
 - ▶ should be possible to generate at least 'an equivalent' (or better: the same) sentence from the graph

Better Example

(1) The man who is tall is happy.

Standard Approach
Source/Target Language Pairs

lacktriangle for n languages one has n(n-1) source/target language pairs

Interlingual Approach
Source/Target Language Pairs

 \blacktriangleright for *n* languages one has 2n source/target language pairs

Interlingual Approach

Advantages and Problems

- ► Advantages:
 - ▶ obviously less source/target language pairs
 - ► therefore allows more sophisticated, even (partly) hand-coded rule-based models
 - ▶ no need for parallel corpora to train
 - ▶ therefore translation for fancy pairs would be possible
- ► Problems:
 - ▶ how 'universal' can a representation be without losing expressivity?
 - ► a model for a interlingua is likely to be strongly influenced by the authors native language

Ambition

- ▶ will this project result in a state-of-the-art representation for interlingual machine translation that will be widely used?
 - ▶ probably not
 - ▶ rather it will (hopefully) be useful as an imperfect representation for German, English, Romance languages and maybe some other Indo-European languages
 - ► furthermore, it is an interesting project to explore a wide variety of machine translation problems, such as
 - ► lemmatization/stemming
 - ► POS tagging
 - ► syntactical analysis
 - ► semantic analysis of sentences

Tentative Roadmap

- ▶ write a lemmatizer/stemmer for german
 - ▶ the NLTK 'Snowball Stemmer' is horrible
 - ▶ spaCy is better, but still insufficient
- ▶ train a POS tagger/syntax parser using the lemmatization tool on the TIGER Corpus
- ▶ build semantic representation graphs from the syntax trees
 - ▶ will probably work rule based
- ▶ build sentences from semantic representation graphs
 - ▶ will probably work rule based as well
 - ▶ I will focus on 'simple sentences' first and try to get as far as possible

References

- Schubert, Lenhart: Semantic Representation. In: Proceedings of the Twenty-Ninth (AAAI) Conference on Artificial Intelligence, p. 4132-4139 (2015)
- ▶ Jurafsky and Martin: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Upper Saddle River, New Jersey: Prentice Hall, 2000. Print (Chapter on Machine Translation: p.799-831)