$$A=0 \rightarrow 2 \ 4 \ 6 \ 7 \ A=1 \rightarrow 7 \ 4 \ 1 \ 6$$

2) Suponha uma entrada A de 1 bit e uma saída S de 3 bits. Se A=0, a saída gera o ciclo $0,3,2,4 \rightarrow$

0,3,2,4... Se A=1, a saída gera o ciclo $4,3,5,2 \rightarrow 4,3,5,2,...$ Matrícula em octal: 92558 => 264616

 $q_0 = 2 (010)$

 $q_2 = 6 (110)$

 $q_3 = 4 (100)$

 $q_4 = 7 (111)$

 $q_5 = 1 (001)$

tabela

Α	Estado	Próximo	Saída	Dec
0	000 x	X	x	Х
0	001 q ₅	q ₂ (110)	(001)	49
0	010 q ₀	q ₃ (100)	(010)	34
0	011	Х	Х	Х
0	100 q ₃	q ₂ (110)	(100)	52
0	101	X	Х	Х
0	110 q ₂	q ₄ (111)	(110)	62
0	111 q ₄	q ₀ (010)	(111)	23
1	000	Х	Х	Х
1	001 q ₅	q ₂ (110)	(001)	49
1	010 q ₀	q ₃ (100)	(010)	34
1	011 q ₂	q ₄ (111)	(011)	59
1	100 q ₃	q ₅ (001)	(100)	12
1	101	Х	Х	Х
1	110	Х	Х	Х
1	111 q ₄	q ₃ (100)	(111)	39

Diagrama de Estados

Voce deve entregar a três implementações no mesmo código, com estados e

case, com memória e com portas lógicas. Medir quantos operadores AND, OR, NOT terão as

equações para próximo estado e saídas. Por exemplo, $S1 = a \& b \mid ! c$. Esta equação tem 3 operadores. $S2 = a \& b \& ! c \mid b \& !a$, terá 6 operadores, $S1 = a \& b \& !c \mid b \& !a$, terá 6 operadores, $S1 = a \& b \& !c \mid b \& !a$, terá 6 operadores, $S1 = a \& b \& !c \mid b \& !a$, terá 6 operadores, $S1 = a \& b \& !c \mid b \& !a$, terá 6 operadores, $S1 = a \& b \& !c \mid b \& !a$, terá 6 operadores, $S1 = a \& b \mid e \land b \mid b \land b \mid e \land b \mid e \land b \mid e \land b \mid e \land b \mid b \mid e \land b$