FedTGP: Trainable Global Prototypes with Adaptive-Margin-Enhanced Contrastive Learning for Data and Model Heterogeneity in Federated Learning

Jianqing Zhang¹

Yang Liu²

Yang Hua³

Jian Cao¹

Federated Learning (FL)

• FL allows multiple clients to train their models collaboratively without exposing data.

Data Heterogeneity

• Client-specific private data has its *unique* distribution

Communication Overhead

- In the era of large models, typical FL suffers huge communication overhead, as
- it transmits model parameters

Communication Overhead

- In the era of large models, typical FL suffers huge communication overhead, as
- it transmits model parameters

Intellectual Property Protection

- Client model parameters are unique and require substantial effort to obtain,
- representing a form of *intellectual property (IP)* that should be protected

Intellectual Property Protection

- Client model parameters are unique and require substantial effort to obtain,
- representing a form of *intellectual property (IP)* that should be protected

Resource Diversity

- Clients using different devices suffer from *resource diversity* when
- training homogeneous (same architectures) local models

Resource Diversity

- Clients using different devices suffer from *resource diversity*
- when training homogeneous (same architectures) local models

Personal Requirements

• Clients' *local tasks* require tailored model designs

Personal Requirements

• Clients' *local tasks* require tailored model designs

Heterogeneous Federated Learning (HtFL)

- HtFL considers both data and model heterogeneity, and
- Transmits *lightweight knowledge carriers* instead of exposing model parameters

• A typical method that is applicable in HtFL

• Transmit *lightweight prototypes (i.e., class representatives)* instead of model parameters

• Obtain *global prototypes* through *weighted-averaging*

Guide local training with global prototypes

• However, weighted-averaging is not suitable in HtFL as

- However, weighted-averaging is not suitable in HtFL as
- Prototypes are generated on heterogeneous datasets and models

- However, weighted-averaging is not suitable in HtFL as
- Prototypes of the same class but from different clients may not cluster together

- However, weighted-averaging is not suitable in HtFL as
- Prototypes of the same class but from different clients may not cluster together

- Define: *prototype margin* is the *minimum* Euclidean distance between the prototype of a specific class and the prototypes of other classes
- Consider three prototypes on a client:

Client 1

- Define: maximum margin is the maximum prototype margin among all clients for each class
- Consider two clients:

• Global prototype (\triangle) margin *shrinks* after weighted-averaging

• Global prototype (\triangle) margin *shrinks* after weighted-averaging

Our FedTGP: Trainable Global Prototypes

- Remove weighted-averaging
- Consider the uploaded client prototypes as data
- *Enlarge* the global prototype margin

Trainable Global Prototype (TGP)

Our FedTGP: Trainable Global Prototypes

- Remove weighted-averaging
- Consider the uploaded client prototypes as data
- *Enlarge* the global prototype margin

Our FedTGP: Trainable Global Prototypes

- Remove weighted-averaging
- Consider the uploaded client prototypes as data
- *Enlarge* the global prototype margin

** Trainable Global Prototype (TGP)

• Server objective: train TGP using contrastive learning

$$\min_{\hat{\mathcal{P}}} \sum_{c=1}^{C} \mathcal{L}_{P}^{c},$$

$$\mathcal{L}_{P}^{c} = \sum_{i \in \mathcal{I}^{t}} -\log \frac{e^{-\phi(P_{i}^{c}, \hat{P}^{c})}}{e^{-\phi(P_{i}^{c}, \hat{P}^{c})} + \sum_{c'} e^{-\phi(P_{i}^{c}, \hat{P}^{c'})}}$$

$$\hat{\mathcal{P}} = \{\hat{P}^c\}_{c=1}^C$$

 ϕ measures the Euclidean distance

 \mathcal{I}^t is the participating client set

 \hat{P}^c : A TGP of class c

 $\widehat{\mathcal{P}}$: All TGP

 \bigcirc P_i^c : A prototype of class c from client i

• Server objective: train TGP using margin-enhanced contrastive learning

$$\begin{split} \min_{\hat{\mathcal{P}}} \ \sum_{c=1}^{C} \mathcal{L}_{P}^{c}, \\ \mathcal{L}_{P}^{c} = \sum_{i \in \mathcal{I}^{t}} -\log \frac{e^{-(\phi(P_{i}^{c}, \hat{P}^{c}) + \delta)}}{e^{-(\phi(P_{i}^{c}, \hat{P}^{c}) + \delta)} + \sum_{c'} e^{-\phi(P_{i}^{c}, \hat{P}^{c'})}}, \end{split}$$

 \hat{P}^c : A TGP of class c

 $\widehat{\mathcal{P}}$: All TGP

 \bigcap P_i^c : A prototype of class c from client i

• Server objective: train TGP using margin-enhanced contrastive learning

$$\begin{split} \min_{\hat{\mathcal{P}}} \ \sum_{c=1}^{C} \mathcal{L}_{P}^{c}, \\ \mathcal{L}_{P}^{c} = \sum_{i \in \mathcal{I}^{t}} -\log \frac{e^{-(\phi(P_{i}^{c}, \hat{P}^{c}) + \delta)}}{e^{-(\phi(P_{i}^{c}, \hat{P}^{c}) + \delta)} + \sum_{c'} e^{-\phi(P_{i}^{c}, \hat{P}^{c'})}}, \end{split}$$

$$\mathcal{L}_P^c \propto \tilde{\mathcal{L}}_P^c := \sum_{i \in \mathcal{I}^t} \sum_{c'} e^{\phi(P_i^c, \hat{P}^c) - \phi(P_i^c, \hat{P}^{c'}) + \delta},$$

 \hat{P}^c : A TGP of class c

 $\widehat{\mathcal{P}}$: All TGP

 \bigcirc P_i^c : A prototype of class c from client i

Server objective: train TGP using Adaptive-margin-enhanced Contrastive Learning (ACL)

maximum cluster margin

$$\begin{split} \min_{\hat{\mathcal{P}}} \sum_{c=1}^{C} \mathcal{L}_{P}^{c}, \\ \mathcal{L}_{P}^{c} &= \sum_{i \in \mathcal{I}^{t}} -\log \frac{e^{-(\phi(P_{i}^{c}, \hat{P}^{c}) + \delta(t))}}{e^{-(\phi(P_{i}^{c}, \hat{P}^{c}) + \delta(t))} + \sum_{c'} e^{-\phi(P_{i}^{c}, \hat{P}^{c'})}} \\ \delta(t) &= \min(\max_{c \in [C], c' \in [C], c \neq c'} \phi(Q_{t}^{c}, Q_{t}^{c'}), \tau), \\ Q_{t}^{c} &= \frac{1}{|\mathcal{P}_{t}^{c}|} \sum_{i \in \mathcal{I}^{t}} P_{i}^{c}, \forall c \in [C] \end{split}$$

 τ is a margin threshold

 \hat{P}^c : A TGP of class c

 $\widehat{\mathcal{P}}$: All TGP

 \bigcirc P_i^c : A prototype of class c from client i

• We evaluate FedTGP on scenarios with 12 widely-used model architectures on 20 \sim 100 clients

Table 8: The forward FLOPs of all architectures"B" is short for billion.

	FLOPs	References
4-layer CNN	0.013B	None
GoogleNet	1.530B	Chang et al. (2023); Lin et al. (2022)
MobileNet_v2	0.314B	Zhao et al. (2022)
ResNet4		Zhong et al. (2017)
ResNet6		Zhong et al. (2017)
ResNet8		Zhong et al. (2017)
ResNet10		Zhong et al. (2017)
ResNet18	0.117B	Zhao and Wang (2022)
ResNet34	0.218B	Zhao and Wang (2022)
ResNet50	1.305B	Li et al. (2022a)
ResNet101	2.532B	Li et al. (2022a); Leroux et al. (2018)
ResNet152	5.330B	Bakhtiarnia, Zhang, and Iosifidis (2022)

- Only 6 baselines are available in our data-free scenarios (no additional public data)
- Our FedTGP surpasses counterparts by up to 9.08%

Table 1: The test accuracy (%) on four datasets in the pathological and practical settings using the HtFE₈ model group.

Settings	Pathological Setting			Practical Setting				
Datasets	Cifar10	Cifar100	Flowers102	Tiny-ImageNet	Cifar10	Cifar100	Flowers 102	Tiny-ImageNet
LG-FedAvg	86.82±0.26	57.01±0.66	58.88 ± 0.28	32.04 ± 0.17	84.55±0.51	40.65 ± 0.07	45.93 ± 0.48	24.06 ± 0.10
FedGen	82.83 ± 0.65	58.26 ± 0.36	59.90 ± 0.15	29.80 ± 1.11	82.55 ± 0.49	38.73 ± 0.14	45.30 ± 0.17	19.60 ± 0.08
FML	87.06 ± 0.24	55.15 ± 0.14	57.79 ± 0.31	31.38 ± 0.15	85.88 ± 0.08	39.86 ± 0.25	46.08 ± 0.53	24.25 ± 0.14
FedKD	87.32 ± 0.31	56.56 ± 0.27	54.82 ± 0.35	32.64 ± 0.36	86.45 ± 0.10	40.56 ± 0.31	48.52 ± 0.28	25.51 ± 0.35
FedDistill	87.24 ± 0.06	56.99 ± 0.27	58.51 ± 0.34	31.49 ± 0.38	86.01 ± 0.31	41.54 ± 0.08	49.13 ± 0.85	24.87 ± 0.31
FedProto	83.39 ± 0.15	53.59 ± 0.29	55.13 ± 0.17	29.28 ± 0.36	82.07 ± 1.64	36.34 ± 0.28	41.21 ± 0.22	19.01 ± 0.10
FedTGP	90.02±0.30	61.86±0.30	68.98±0.43	34.56±0.27	88.15±0.43	46.94±0.12	53.68±0.31	27.37±0.12

• Our FedTGP also surpasses FedProto by up to 13.85%

Table 1: The test accuracy (%) on four datasets in the pathological and practical settings using the HtFE₈ model group.

Settings	Pathological Setting			Practical Setting				
Datasets	Cifar10	Cifar100	Flowers 102	Tiny-ImageNet	Cifar10	Cifar100	Flowers102	Tiny-ImageNet
LG-FedAvg	86.82±0.26	57.01 ± 0.66	58.88 ± 0.28	32.04 ± 0.17	84.55±0.51	40.65 ± 0.07	45.93 ± 0.48	24.06 ± 0.10
FedGen	82.83 ± 0.65	58.26 ± 0.36	59.90 ± 0.15	29.80 ± 1.11	82.55 ± 0.49	38.73 ± 0.14	45.30 ± 0.17	19.60 ± 0.08
FML	87.06 ± 0.24	55.15 ± 0.14	57.79 ± 0.31	31.38 ± 0.15	85.88 ± 0.08	39.86 ± 0.25	46.08 ± 0.53	24.25 ± 0.14
FedKD	87.32 ± 0.31	56.56 ± 0.27	54.82 ± 0.35	32.64 ± 0.36	86.45 ± 0.10	40.56 ± 0.31	48.52 ± 0.28	25.51 ± 0.35
FedDistill	87.24 ± 0.06	56.99 ± 0.27	58.51 ± 0.34	31.49 ± 0.38	86.01 ± 0.31	41.54 ± 0.08	49.13 ± 0.85	24.87 ± 0.31
FedProto	83.39 ± 0.15	53.59 ± 0.29	55.13 ± 0.17	29.28 ± 0.36	82.07 ± 1.64	36.34 ± 0.28	41.21 ± 0.22	19.01 ± 0.10
FedTGP	90.02±0.30	61.86±0.30	68.98±0.43	34.56±0.27	88.15±0.43	46.94±0.12	53.68±0.31	27.37±0.12

- We study the influence of increasing model heterogeneity
- Our FedTGP is more resilient and less impacted by model heterogeneity

Table 2: The test accuracy (%) on Cifar100 in the practical setting using heterogeneous feature extractors.

Settings	Heterogeneous Feature Extractors							
	HtFE ₂	$HtFE_3$	$HtFE_4$	HtFE ₉				
LG-FedAvg	46.61±0.24	45.56 ± 0.37	43.91 ± 0.16	42.04 ± 0.26				
FedGen	43.92 ± 0.11	43.65 ± 0.43	40.47 ± 1.09	40.28 ± 0.54				
FML	45.94±0.16	43.05 ± 0.06	43.00 ± 0.08	42.41 ± 0.28				
FedKD	46.33 ± 0.24	43.16 ± 0.49	43.21 ± 0.37	42.15 ± 0.36				
FedDistill	46.88 ± 0.13	43.53 ± 0.21	43.56 ± 0.14	42.09 ± 0.20				
FedProto	43.97 ± 0.18	38.14 ± 0.64	34.67 ± 0.55	32.74 ± 0.82				
FedTGP	49.82±0.29	49.65±0.37	46.54±0.14	48.05±0.19				

Take away

- We enhance the typical heterogeneous federated learning method FedProto with TGP and ACL,
- Making it more versatile and resilient to various model heterogeneities

FedTGP: Trainable Global Prototypes with Adaptive-Margin-Enhanced Contrastive Learning for Data and Model Heterogeneity in Federated Learning

Paper with code: https://github.com/TsingZ0/FedTGP

E-mail: tsingz@sjtu.edu.cn

Thanks!