Machine Learning Operations (MLOps) Assignment 2

Task 2 – Model Selection, Training, and Hyperparameter Tuning

Group Number 76

CHAUDHARI AAKASH VINAYAK (2022ac05607)
AATIF HUSSAIN WAZA (2022ac05405)
AJIT KUMAR YADAV (2022ac05720)
MOHAMMAD ZUBAIR (2022ac05121)

Contents

1. Introduction	3
1.1 Objective	3
1.2 Tools Used	3
2. Dataset	3
2.1 Description	3
2.2 Data Preparation	3
3. Model Selection	3
3.1 AutoML Setup	3
3.1.1 Tool Configuration	3
3.1.2 Experimentation Process	4
3.2 Model Evaluation	4
3.2.1 Performance Metrics	4
3.2.2 Model Leaderboard	4
3.3 Model Selection Justification	5
4. Hyperparameter Tuning	5
4.1 Tuning Process	5
4.2 Model Performance After Tuning	
5. Conclusion	

1. Introduction

1.1 Objective

This document provides a comprehensive explanation of the model selection and hyperparameter tuning process using H2O AutoML. It covers the experimentation process, performance evaluation, and model explanations for the Iris dataset.

1.2 Tools Used

• **AutoML Tool**: H2O AutoML

• Libraries: h2o, matplotlib, seaborn, pandas

2. Dataset

2.1 Description

The Iris dataset is used for this experimentation. It includes measurements of iris flowers and their species classification.

Dataset Name: Iris

• Features: Sepal Length, Sepal Width, Petal Length, Petal Width

• Target Variable: Species

• Size: 150 instances, 4 features

2.2 Data Preparation

The dataset is split into training and validation sets to ensure the model's generalizability.

Split data into training and validation sets

train, valid = h2o.train test split(frame=iris h2o, ratio=0.8)

3. Model Selection

3.1 AutoML Setup

3.1.1 Tool Configuration

H2O AutoML was configured to run for a specified time limit and to explore various model types.

Tool Used: H2O AutoML

• Configuration:

o **Time Limit**: 300 seconds

o Models Considered: GBM, Random Forest, XGBoost, etc.

o Other Parameters: Number of folds for cross-validation

```
# Initialize H2O AutoML

aml = H2OAutoML(max_runtime_secs=300, seed=1)

aml.train(y='Species', training_frame=train, validation_frame=valid)
```

3.1.2 Experimentation Process

The AutoML process involved training various models and selecting the best-performing one based on validation metrics.

• Training Data: train dataset

• Validation Data: valid dataset

• **Hyperparameter Tuning**: Automatically handled by H2O AutoML

3.2 Model Evaluation

3.2.1 Performance Metrics

The performance of the models was evaluated using various metrics.

• Metrics Used: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Log Loss, Mean Per-Class Error, AUC, and Confusion Matrix

```
# Retrieve the best model

best_model = aml.leader

# Evaluate the model

performance = best_model.model_performance(valid)

print(performance)
```

3.2.2 Model Leaderboard

The leaderboard provides a summary of model performance.

```
leaderboard = aml.leaderboard
print(leaderboard)
                                                          mean_per_class_error
                                                                                   logloss
                                                                     0.0391844 0.0802971 0.159766 0.0255252
GLM_1_AutoML_1_20240917_160308
                                                                     0.0391844 0.211914 0.2213 0.0489739
0.0404255 0.181516 0.208931 0.0436521
XGBoost grid 1 AutoML 1 20240917 160308 model 15
GBM_grid_1_AutoML_1_20240917_160308_model_41
XGBoost_grid_1_AutoML_1_20240917_160308_model_16
                                                                     0.0404255 0.16196
                                                                                            0.195353 0.0381627
                                                                     0.0404255 0.182995
0.0404255 0.275401
XGBoost_grid_1_AutoML_1_20240917_160308_model_29
                                                                                            0.210106 0.0441444
XGBoost_grid_1_AutoML_1_20240917_160308_model_22
                                                                                            0.262996
                                                                     0.0404255 0.167819
XGBoost_grid_1_AutoML_1_20240917_160308_model_14
                                                                                            0.199234
                                                                                                      0.039694
XGBoost_grid_1_AutoML_1_20240917_160308_model_1
                                                                     0.0404255 0.227903
                                                                                            0.233957 0.054736
XGBoost_2_AutoML_1_20240917_160308
                                                                     0.0404255 0.213217
                                                                                            0.223011 0.0497338
StackedEnsemble AllModels 3 AutoML 1 20240917 160308
                                                                     0.0462766 0.121373
                                                                                            0.188207 0.0354217
[89 rows x 5 columns]
```

Figure 1 Insert Model Leaderboard

3.3 Model Selection Justification

The final model was selected based on its superior performance metrics.

- Selected Model: GBM (Gradient Boosting Machine)
- Justification:
 - o **Performance**: Best metrics among the evaluated models
 - o Complexity: Optimal balance between complexity and performance
 - o Other Factors: Model interpretability and generalizability

4. Hyperparameter Tuning

4.1 Tuning Process

Hyperparameter tuning was managed by H2O AutoML, which optimally adjusted parameters for each model.

- **Tuning Method**: AutoML handles hyperparameter tuning internally.
- Hyperparameters Tuned: Various parameters for each model type
- Final Hyperparameters: Selected automatically by H2O AutoML

4.2 Model Performance After Tuning

Performance metrics of the best model after hyperparameter tuning.

• Metrics: MSE: 0.058, RMSE: 0.241, Log Loss: 0.197, Mean Per-Class Error: 0.144

Figure 2 Confusion Matrix

5. Conclusion

Summarize the findings from the model selection and hyperparameter tuning process.

- Chosen Model: GBM (Gradient Boosting Machine)
- **Key Findings**: GBM performed the best in terms of accuracy and error metrics. The model's feature importance and partial dependence plots provide insights into the key features affecting predictions.
- **Future Work**: Explore additional features or advanced hyperparameter tuning techniques to further improve model performance.

GitHub Link:

https://github.com/AakashChaudhari03/MLOPS ASSIGNMENT 2 GRP NO 76