PROBABILITY

PROBLEM SHEET 8

1. (a)
$$f_{x,y}(x,y) = C_A(x^2 + \frac{1}{3}xy)$$
, $x \in (0,1)$, $y \in (0,2)$
(b) $f_{x,y}(x,y) = C_2 e^{-x-y}$, $0 < x < y < \infty$

(a)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x,y}(x,y) \, dy \, dx = 1 \iff \int_{0}^{1} \int_{0}^{2} c_{1}(x^{2} + \frac{1}{3} \times y) \, dy \, dx = 1 \iff 0$$

$$= \int_{0}^{1} \left[C_{4} x^{2} y + C_{4} x \frac{y^{2}}{6} \right]_{0}^{2} dx = 1$$

$$= \int_{0}^{1} \left(2 C_{4} x^{2} + \frac{2}{3} C_{4} x \right) dx = 1$$

$$= 1$$

$$= \sum_{\alpha=1}^{\infty} \frac{1}{3} c_{\alpha} x^{3} + \frac{1}{3} c_{\alpha} x^{2} \Big]_{0}^{1} = 1$$

$$= \sum_{\alpha=1}^{\infty} \frac{1}{3} c_{\alpha} + \frac{1}{3} c_{\alpha} = 1$$

$$= \sum_{\alpha=1}^{\infty} \frac{1}{3} c_{\alpha} + \frac{1}{3} c_{\alpha} = 1$$

$$\langle = \rangle \frac{1}{2} C_2 = 1 \langle = \rangle C_2 = 2$$

(a)
$$f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{2} (x^{2} + \frac{1}{3}xy) dy = \left[x^{2}y + \frac{1}{6}xy^{2}\right]_{0}^{2} = 2x^{2} + \frac{2}{3}x$$

 $f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{1} (x^{2} + \frac{1}{3}xy) dx = \left[\frac{1}{3}x^{3} + \frac{1}{6}x^{2}y\right]_{0}^{1} = \frac{1}{3} + \frac{1}{6}y$

$$f_{X}(x)f_{Y}(y) = (2x^{2} + \frac{2}{3}x)(\frac{1}{3} + \frac{1}{6}y) = \frac{2}{3}x^{2} + \frac{2}{9}x + \frac{1}{3}x^{2}y + \frac{1}{9}xy \neq f_{X,Y}(x,y) = 0$$

(b)
$$f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{X}^{\infty} 2e^{-x-y} dy = \left[-2e^{-x-y}\right]_{X}^{\infty} = 2e^{-2x}$$

 $f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{\infty} 2e^{-x-y} dy = \left[-2e^{-x-y}\right]_{0}^{\infty} = 2e^{-y}$

$$f_X(x) f_Y(y) = 2e^{-2x}$$
. $2e^{-y} = 4e^{-2x-y} \neq f_{X,Y}(x,y) = X$ and Y are Not independent find the manginal probability density functions of X and of Y

(a)
$$f_X(x) = 2x^2 + \frac{2}{3} \times \text{ and } f_Y(y) = \frac{1}{3} + \frac{1}{6}y$$
 (from above)

(b)
$$f_X(x) = 2e^{-2x}$$
 and $f_Y(y) = 2e^{-y}$ (from above)

find
$$P(X \le \frac{1}{2}, Y \le 1)$$

(a)
$$P(X \le \frac{1}{2}, Y \le 1) = \int_{-\infty}^{\frac{1}{2}} \int_{0}^{1} f_{X,Y}(x,y) dy dx = \int_{0}^{\frac{1}{2}} \int_{0}^{1} (x^{2} + \frac{1}{3}xy) dy dx =$$

$$= \int_{0}^{\frac{1}{2}} \left[x^{2}y + \frac{1}{6}xy^{2} \right]_{0}^{1} dx = \int_{0}^{\frac{1}{2}} (x^{2} + \frac{1}{6}x) dx = \left[\frac{1}{3}x^{3} + \frac{1}{12}x^{2} \right]_{0}^{\frac{1}{2}} = \frac{1}{21} + \frac{1}{18} = \frac{3}{16} = \frac{1}{16}.$$

(b)
$$P(x \in \frac{1}{2}, y \in 1) = \int_{-\infty}^{\frac{1}{2}} \int_{-\infty}^{1} f_{x,y}(x,y) dy dx = \int_{0}^{\frac{1}{2}} \int_{\frac{1}{2}}^{1} 2e^{-x-y} dy dx = \int_{0}^{\frac{1}{2}} \left[-2e^{-x-y}\right]_{\frac{1}{2}}^{1} dx =$$

$$= \int_{0}^{\frac{1}{2}} \left(2e^{-X-\frac{1}{2}} - 2e^{-X-1} \right) dX = \left[-2e^{-X-\frac{1}{2}} + 2e^{-X-1} \right]_{0}^{\frac{1}{2}} = 2e^{-\frac{3}{2}} - 4e^{-1} + 2e^{-\frac{1}{2}}.$$

In case (b), if we had o < x, y < oo as the negion, then:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x,y}(x,y) \, dy \, dx = 1 \iff \int_{0}^{\infty} \int_{0}^{\infty} c_{3} e^{-x-y} \, dy \, dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]_{0}^{\infty} dx = 1 \iff \int_{0}^{\infty} \left[-c_{3} e^{-x-y} \right]$$

$$\begin{cases}
c_{3} e^{-x} d x = 1 & c_{7} = 1 \\
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^{-x} d x = 1
\end{cases} = \begin{cases}
c_{3} e^$$

$$f_X(x) f_Y(y) = e^{-x} e^{-y} = e^{-x-y} = f_{x,y}(x,y) = x$$
 and y are now independent.

2. Ti denotes the time (in hours) at which we see a creature of type i, for 15isn. We suppose that T1, T2,..., Tm are independent and that TiN Exp (1i), i ∈ {1,2,..., m}.

(a) Let X = min { T1, T2, ..., Tm} be the time at which we see the first creature. Firstly, we know that:

$$f_{T_i}(x)=1$$
, $e^{-\lambda_i x}$, $x\geqslant 0$ and $F_{T_i}(x)=1-e^{-\lambda_i x}$, $x>0$ for all $1\leqslant i\leqslant n$.

We then have:

 $independence$
 $f_{T_i}(x)=1$, $f_{T_i}(x)=1-e^{-\lambda_i x}$, $f_{T_i}(x)=1$, $f_{T_i}(x)=1$.

 $f_{T_i}(x)=1$, $f_{T_i}(x)=1$, $f_{T_i}(x)=1$, $f_{T_i}(x)=1$, $f_{T_i}(x)=1$, $f_{T_i}(x)=1$.

$$P(x>t) = P(\min \{T_1, T_2, ..., T_m\} > t) = P(\{T_1>t\} \cap \{T_2>t\} \cap ... \cap \{T_m>t\}) = P(T_1>t) \cdot P(T_2>t) \cdot ... \cdot P(T_m>t) = (1 - P(T_1 \le t)) \cdot (1 - P(T_2 \le t)) \cdot ... \cdot (1 - P(T_m \le t)) = e^{-\lambda_1 t} \cdot e^{-\lambda_2 t} \cdot ... \cdot e^{-\lambda_m t} \Rightarrow$$

=>
$$P(x>t) = e^{-(1_1+1_2+...+1_n)t}$$
 => $P(xt) = 1 - e^{-(1_1+1_2+...+1_n)t}$ =>

$$P(x>t) = e^{-(A_1 + A_2 + \dots + A_n)t} \Rightarrow P(x \leq t) = 1 - P(x > t) = 1 - e^{-(A_1 + A_2 + \dots + A_n)t} = 1$$

=)
$$F_X(t) = 1 - e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_n)t}$$
 =) $X \sim Exp(\lambda_1 + \lambda_2 + \dots + \lambda_n)$

(b) For each n. v. Ti we choose the indicator li: i = { o , if we have met the ith type of creature by time 1

$$P(i_{i=0}) = P(T_{i \leq 1}) = F_{T_{i}}(1) = 1 - e^{-1i}$$

 $P(\hat{j}_{i}=1) = P(T_{i}>1) = 1 - P(T_{i}<1) = 1 - P(\hat{j}_{i}=0) = 1 - 1 + e^{-\lambda i} = e^{-\lambda i}$ We deduce that i; ~ Ber (e-1i) and let A denote the number of creatures we have

mot met by time 1.

Then,
$$A = i_1 + i_2 + ... + i_m = 1$$
 $E(A) = E(i_1 + i_2 + ... + i_m) = E(i_1) + E(i_2) + ... + E(i_m)$

$$E(i_1) = 0 \cdot (1 - e^{-\lambda i}) + 1 \cdot e^{-\lambda i} = e^{-\lambda i}$$

 $= \sum_{i=1}^{n} e^{-\lambda_i}$

(c) Let M = max {T1, T2, ..., Tm} be the time until we have met all m different types of creature. Now, we suppose that 1=1=====1==1. independence $P(M \leq t) = P(\max \{T_1, T_2, ..., T_m\} \leq t) = P(\{T_1 \leq t\} \cap \{T_2 \leq t\} \cap ... \cap \{T_m \leq t\}) = P(T_1 \leq t) \cdot P(T_2 \leq t) :...$ $P(T_n(t) = F_{T_n}(t) \cdot F_{T_n}(t) \cdot \dots \cdot F_{T_n}(t) = (1 - e^{-t})^n = 0$ =) $F_{M}(t) = (1 - e^{-t})^{1/2}$. We want to find the median of the distribution of M i.e. the number on that satisfies: $P(M \le m) \ge \frac{1}{2}$ and $P(M \ge m) \ge \frac{1}{2}$ and as $P(M \le x) + P(M \ge x) = 1$ (i) $x \in \mathbb{R}$, we then have $P(M \leq m) = \frac{1}{2}$. That means $F_{M}(m) = \frac{1}{2} \Rightarrow (1 - e^{-m})^{m} = \frac{1}{2} \Rightarrow 1 - e^{-m} = \left(\frac{1}{2}\right)^{\frac{1}{m}} \Rightarrow e^{-m} = 1 - \left(\frac{1}{2}$ => -m = $\log \left(1 - \left(\frac{1}{2}\right)^{\frac{1}{m}}\right) => m = -\log \left(1 - \left(\frac{1}{2}\right)^{\frac{1}{m}}\right)$ As m becomes large, we can use the estimation of 1-1= et log of 1 = 1 = log of , so m becomes: $m = -\log(1 - e^{\frac{1}{m}\log\frac{1}{2}}) \approx -\log(-\frac{1}{m}\log\frac{1}{2}) = -\log(\frac{1}{m}\log 2) = -\log\frac{1}{m} - \log(\log 2)$ m = log m - log (log 2)), which we can write as m = log m + c, where c is a constant equal to-log (log 2)). Therefore, m grows as fast as log m does as m becomes large (we can ignore the constant c). 3. Let U and V be independent n. vs. with U, V ~ U [0,1]. Tham, $f_{U}(x) = f_{V}(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$ $F_U(x) = F_V(x) = \begin{cases} x & , & 0 \le x \le 1 \\ 0 & , & \text{otherwise} \end{cases}$ The quadratic equation $x^2 + 2Ux + V = 0$ has two real solutions if $\Delta = 4U^2 - 4V \ge 0 \Rightarrow 0$ =) $U^2 - V \ge 0 =$) $U^2 \ge V =$) - $U \le V \le U$. We have: $P(\text{two neal solutions}) = P(-U \le V \le U) = P(V \le U) - P(V \le -U) = F_V(U) - F_V(-U).$ $F_{V}(U) = \begin{cases} U, & \text{if } 0 \le U \le 1 \\ 0, & \text{otherwise} \end{cases} = U \text{ (as } U \sim U[0,1], so the probability that } 0 \le U \le 1 \text{ is } 1)$ $F_V(-U) = \begin{cases} -U, & \text{if } 0 \le -U \le 1 \le 0 \end{cases}$ = 0

Then, \(\mathbb{P} (\frac{1}{2} wo near solutions) = U \) (if \(U = \kappa \), with \(\kappa \) [0,1] => \(\mathbb{P} (\frac{1}{2} wo near solutions) = \kappa \)

4. A fair die is thrown in times. Let X denote the number of times we obtain a 6 from the throw. Therefore, as each throw X;, ie 41,2,..., m) has a Bernoulli distribution with parameter of (x: ~ Bu(1/6)), them, as $X = X_A + X_L + \dots + X_m$, $X \sim \text{Bim}(m, \frac{1}{6})$.

Then $\mathbb{E}(x) = \frac{m}{6}$ and $Van(x) = m \cdot \frac{1}{6} \cdot (1 - \frac{1}{6}) = Van(x) = \frac{5m}{36}$.

From Chebyshev's inequality, we have:

$$\mathbb{P}\left(\left|X-\mathbb{E}(X)\right|>\sqrt{m}\right)\leqslant\frac{\mathrm{Van}(X)}{m}\Rightarrow\mathbb{P}\left(\left|X-\frac{6}{m}\right|>\sqrt{m}\right)\leqslant\frac{2}{36}\Rightarrow$$

$$\Rightarrow P(|X-\frac{n}{6}| \le \sqrt{n}) = 1 - P(|X-\frac{n}{6}| > \sqrt{n}) \ge 1 - \frac{5}{36} = \frac{31}{36} \Rightarrow$$

=)
$$P\left(-\sqrt{n} \le x - \frac{m}{6} \le \sqrt{n}\right) = \frac{31}{36} =) P\left(\frac{m}{6} - \sqrt{n} \le x \le \frac{m}{6} + \sqrt{n}\right) \ge \frac{31}{36}$$

5. Let $X_1, X_2, ..., X_m$ be i.i.d. 1. vs. from a distribution with mean μ and variance T^2 . Then, we have the sample mean $\overline{X}_m = \frac{1}{m} \sum_{i=1}^m X_i$ with $\mathbb{E}(\overline{X}_n) = \mu$ and $\mathbb{V}(\overline{X}_n) = \frac{\sigma^2}{m}$. We want to find m such that

$$P(|\bar{X}_{m} - M| < 2\pi) > 0.99$$
The probability in a Specific point is o
$$P(|\bar{X}_{n} - M| < 2\pi) = 1 - P(|\bar{X}_{n} - M| > 2\pi) = 1 - P(|\bar{X}_{n} - E(\bar{X}_{n})| > 2\pi) > 1 - \frac{Van(\bar{X}_{n})}{4\pi^{2}} = \pi^{2}$$

$$= 1 - \frac{T^2}{4mT^2} = 1 - \frac{1}{4m}.$$

if we have
$$1-\frac{1}{4m} \ge 0.99 \iff 1-\frac{1}{4m} \ge \frac{99}{100} \iff 100n-25 \ge 99m \iff m \ge 25$$
, them $P(|\bar{X}_n-\mu|<27) \ge 1-\frac{1}{4m} \ge 0.99$, so for our inequality to hold, we need that $m \ge 25$.

6. A fair coin is tossed (m+1) times => P(Heads) = P(Tails) = 1.

Let A = { 1 , if the ith and (i+1)st outcomes are both H , for 1 sism.

(a)
$$P(A_i = 1) = \frac{1}{5}$$
 (HH)
 $P(A_i = 0) = \frac{3}{5}$ (HT, TH, TT)

$$E(A_i) = 0$$
. $P(A_i = 0) + 1$. $P(A_i = 1) = > E(A_i) = \frac{1}{4}$, for all $1 \le i \le m$

$$\mathbb{E}(A_i^2) = o^2 \cdot \Re(A_i = 0) + 1^2 \cdot \Re(A_i = 1) = 0$$
 $\mathbb{E}(A_i^2) = \frac{1}{4}$

$$Von (A_i) = \mathbb{E}(A_i^2) - \mathbb{E}^2(A_i^2)$$

$$\mathbb{E}^{2}(A_{i}) = \frac{1}{16}$$

$$\operatorname{Van}(A_{i}) = \mathbb{E}(A_{i}^{2}) - \mathbb{E}^{2}(A_{i})$$

$$=) \quad \operatorname{Van}(A_{i}) = \frac{3}{16}, \text{ for all } 1 \le i \le m.$$

(b) We want to find cov (Ai, Aj), for i, je {1,2,..., m}, i = j Case 1: |i-j|=1 => A; and A; one mot independent $Cov(A_i, A_j) = \mathbb{E}(A_i A_j) - \mathbb{E}(A_i) \mathbb{E}(A_j)$ $\mathbb{E}(A_i A_j) = 0.0. P(A_i = 0, A_j = 0) + 0.1. P(A_i = 0, A_j = 1) + 1.0. P(A_i = 1, A_j = 0) + 1.1. P(A_i = 1, A_j = 1)$ E (Ai Aj) = P (Ai = 1, Aj = 1) (HHH is the only configuration that satisfies this) $\mathbb{E}(A_i) = \mathbb{E}(A_j) = \frac{1}{2} = \sum_{i=1}^{\infty} \operatorname{Cov}(A_i, A_j) = \frac{1}{16}$ Case 2: |i-j|>1 => A; and A; are independent => cov(Ai, Aj)=0 (c) Let M = A1+A2+...+Am denote the number of occurrences of the motif HH in the sequence. $\mathbb{E}(M) = \mathbb{E}(A_1 + A_2 + ... + A_m) = \mathbb{E}(A_1) + \mathbb{E}(A_2) + ... + \mathbb{E}(A_m) = > \mathbb{E}(M) = \frac{m}{4}$ Now, we'll prove by induction that Van (m) = \(\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \cov(Ai, Aj) \), for all m \(\alpha_1 \). Base case: P(1): van (A1) = cov (A1, A1) = E(A1) - E2(A1), the Inductive stap iH: We know that P(n): Van (A++++++++ Am) = \sum_{i=1}^{n} \sum_{i=1}^{n} \cov (Ai, Aj) and we want to prove P(n+1): $Van(A_1+A_2+...+A_{n+1}) = \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} cov(A_i, A_j)$ $Van\left(A_{1}+A_{2}+...+A_{m}+A_{m+1}\right) = van\left(A_{1}+A_{2}+...+A_{m}\right)+Van\left(A_{m+1}\right)+2 cov\left(A_{1}+A_{2}+...+A_{m}, A_{m+1}\right) = (ih)$ = \sum_{i=1} \cov (A_1, A_1) + \cov (A_{n+1}, A_{n+1}) + 2 \times, where \times \cov (A_1 + A_2 + \dots + A_m, A_{n+1}) X = E (A1 An+1 + A2 An+1 + ... + An An+1) - (E (A1) + E (A2) + ... + E (An)) E (An+1) = = COV (A1, An+1) + COV (A2, An+1) + ... + COV (An, An+1) Therefore, $Var(A_{1}+A_{2}+...+A_{n+1}) = \sum_{i=1}^{n} \sum_{j=1}^{n} cov(A_{i},A_{j}) + cov(A_{n+1},A_{n+1}) + 2\left(\sum_{i=1}^{n} cov(A_{i},A_{n+1})\right) =$ = \sum_{int} \sum_{int} \cov (Ai, Aj) => the inductive step is proven

Therefore, We proved that $Van(M) = \sum_{i=1}^{m} \sum_{j=1}^{m} Cov(A_i, A_j) = \sum_{i=1}^{m} Van(A_i) + 2(n-1) \cdot \frac{1}{16} = \frac{3m}{16} + \frac{m-1}{8} = Van(M) = \frac{5m-2}{16}$

(d) Let
$$B_i = \begin{cases} 1 & \text{if the } i^{th} \text{ is } T \text{ and the } (i+4)^{2} \text{ is } T \end{cases}$$

We observe that $E(B_i) = \frac{1}{4}$, $Van(B_i) = \frac{3}{16}$ (similar to A_i)

 $E(B_iB_j) = 0$ if $|i-j| = 1$ (as we cannot two TH in a sequence of 3 consecutive outcomes) \Rightarrow
 $cov(B_i,B_j) = -E(B_i)E(B_j) = -\frac{1}{16}$, if $|i-j| = 1$
 $cov(B_i,B_j) = 0$ if $|i-j| > 1$, as B_i and B_j are independent.

Let $N = B_i + B_2 + \dots + B_m$ denote the number of occurrences of the motifith in the sequence. Thum, $E(N) = E(B_1 + B_2 + \dots + B_m) = E(B_n) + E(B_n) + \dots + E(B_n) \Rightarrow E(N) = \frac{m}{1}$

Van $(N) = \sum_{i=1}^{m} \sum_{j=1}^{m} cov(B_i,B_j) = \sum_{i=1}^{m} Van(B_i) - 2 \cdot (u-1) \cdot \frac{1}{16} = \frac{3m}{16} - \frac{2u-2}{16} \Rightarrow Van(N) = \frac{m+2}{16}$

7. Let $a_ib_ip_ie(0,1)$.

Let $Y = X_{i+1}X_{i+1} + X_{i+1}X_{i+1} + X_{i+1}X_{i+1}X_{i+1}X_{i+1} + X_{i+1}X_{i+$

 $L = \lim_{n \to \infty} \mathbb{P}\left(a - p \leqslant \frac{y}{n} - p \leqslant b - p\right) \geqslant \lim_{n \to \infty} \mathbb{P}\left(-\mathcal{E} \leqslant \frac{y}{n} - p \leqslant \mathcal{E}\right) = \lim_{n \to \infty} \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} x_{i} - p\right| \leqslant \mathcal{E}\right) = 0$

L= lim
$$P(a-b-\varepsilon, \frac{y}{n}-p, \varepsilon-\varepsilon) \leq \lim_{n\to\infty} P(\frac{y}{n}-p, \varepsilon-\varepsilon) \leq \lim_{n\to\infty} P(|\frac{1}{n}\sum_{i=1}^{n}x_{i}-p|\geq \varepsilon) = 0$$

We switched from strict signs (>, <) to (\geq , <) and vice-vess throughout the proof as we work with continuous probabilities and functions, so in every point the probability is 0.

Therefore,

$$L = \lim_{M \to \infty} \sum_{1 \in IN: \\ an< n < bn} {m \choose n} p^n (1-p)^{m-n} = \begin{cases} 1, & \text{if } a < p < b \\ 0, & \text{if } p < a \text{ on } b < p \end{cases}.$$