

Machine Learning

Lecture 10: Bayesian belief networks

Statistical independence

- The naïve Bayesian classifier assumed that all features are independent
- This allowed to compute the likelihood as a product of the individual feature likelihoods

$$P[x_1, \dots, x_n | \omega] = \prod_{i=1}^n P[x_i | \omega]$$

- In many applications this is not the case, which is why we called this assumption and hence the classifier "naïve"

Statistical independence

- For example we could observe two features:
 - If there is rain or not
 - If the grass is wet or not
- Now let's assume we determine it rains on half of all days
- We also observe that the grass is wet on half of all days
- Therefore, the probability of rain is 50% and the chance of the grass being wet is also 50%
- But does this mean that the chance of the grass being wet and there to be rain at the same time is $50\% \times 50\% = 25\%$?
- Obviously not, because these two observations are not independent of each other
- We cannot simply multiply probabilities of two correlated variables to obtain the joint probability of the two variables

Conditional independence

- One solution to this issue is Bayesian belief networks, which are based on the notion of conditional independence
- Assume the two variables x_1 and x_2 are correlated, i.e. we cannot multiply them as we did in the naïve classifier

$$P[x_1, x_2] \neq P[x_1]P[x_2]$$

Sometimes we can identify a third variable y that makes the two variables x_1 and x_2 conditional independent, i.e.

$$P[x_1, x_2|y] = P[x_1|y]P[x_2|y]$$

For example consider the observation of the following three events

 x_1 Rain x_2 Thunder y Lightning

- Obviously rain and thunder are not in general independent
- However, as soon as we definitely know that a lightning strike occurred the probabilities of rain and thunder become independent
- While the fact that it was raining contains some information about thunder, that information is subsumed by the information about lightning

Conditional independence

- The information about what variables are conditional independent is domain knowledge we can add to our classifier
- To enable the description of the probabilistic structure of a problem domain we can use graphical models to represent the mutual relationships between the variables
- A **Bayesian network** is a directed acyclic graph that helps us factorise the joint probability distribution of a problem domain

Each vertex represents a variable, each edge represents a dependence

Bayesian network

- The structure of the network encodes the knowledge that each node is conditionally independent given all its parent nodes
- It is a graphical notation to describe the structure of the joint probability distribution based on the structure of the graph

$$P[x_1, x_2, x_3, x_4, x_5, x_6] = P[x_1]P[x_2|x_1, x_4]P[x_3|x_1]P[x_4|x_1]P[x_5|x_3, x_4]P[x_6]$$

- Note, that the naïve Bayesian classifier relied on the assumption that there are no edges (i.e. dependencies) between the variables

Let's assume we want to distinguish

 ω_1 : salmon

 ω_2 : sea bass

We know that the fish population depends on season

 a_1 : winter

 a_2 : spring

 a_3 : summer

 a_4 : autumn

as well as the fishing waters

 b_1 : north

 b_2 : south

- The colouring of the fish depends on the type of fish

 c_1 : light

 c_2 : medium

 c_3 : dark

- As does its thickness

 d_1 : wide

 d_2 : thin

 A fishing expert (or learning algorithm) tells us that the conditional probabilities of catching a fish depending on the season is

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

- And that the probabilities of catching a fish depending on the waters is

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

- Note, that the conditional probabilities add up to 1 in each row

 Further to that the fishing expert (or learning algorithm) determines that colours are distributed as follows

$P[c \omega]$	Light	Medium	Dark
Salmon	.33	.33	.34
Sea bass	.8	.1	.1

And that the thickness is distributed as

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

- The structure of the problem domain is visualised in the graphical representation, which is easy to derive for a domain expert
- It can be translated into a probabilistic model by multiplying one conditional probability term per node
- Each conditional probability term represents the probability of the variable having a value, given that its immediate predecessors are known
- The resulting joint probability of all variables for the example is then

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- The reason why we can use this simplified product is the additional structural domain knowledge we put in exploiting conditional independences between variables
- The model can still be more complex than the naïve Bayesian model where everything is independent

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 1: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$\begin{split} P[\omega_1] &= \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l] \\ &= \sum_{i,j,k,l} P[a_i] P[b_j] P[c_k | \omega_1] P[d_l | \omega_1] P[\omega_1 | a_i, b_j] \end{split}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 1</u>: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 1</u>: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

$$= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 1</u>: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[\underline{b_j}] P[\omega_1 | a_i, b_j]$$

 $= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$

South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

 $P[\omega|b]$

North

There are 4 seasons and 2 potential fishing waters

$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.8)(.65)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac$$

$$P[\omega|a]$$
SalmonSea bassWinter.9.1Spring.3.7Summer.4.6Autumn.8.2

Salmon

.65

Sea

bass

.35

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 1: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$$= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$$
There are 4 seasons and 2 potential fishing waters
$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.25)}{(.4)(.65)} + \frac{(.3)(.25)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac{(.8)(.25)}{(.8)(.25)} \right) = .56$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 1</u>: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

$$= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

_ (25)((.9)	.65)	(.3)(.	65)	(.4)(.6	65)	
= (.25)($(5)\left(\frac{(.9)(.65)}{(.9)(.65)}\right)$	(.1)(.35)	$\overline{(.3)(.65)}$ +	(.7)(.35)	$\overline{(.4)(.65)}$ +	(.6)(.35)	
(.8)(.65)	(.9)	(.25)	(.3)	(.25)	(.4)(.25))
, , ,	, , , , , , , , , , , , , , , , , , , ,	(.9)(.25)	+ (.1)(.75)	$\overline{(.3)(.25)}$ -	+ (.7)(.75)	$\overline{(.4)(.25)+(.6)}$	(.75)
	.8)(.25)	= .56					
(.8)(.2	(5) + (.2)(.75)	50					

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 1</u>: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

 $= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2
$P[\omega b]$	Salmon	Sea

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.65)(.65)}{(.4)(.65)} + \frac{(.9)(.25)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.25)}{(.4)(.25)} +$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 1: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

$$= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$$

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.6)(.35)}{(.4)(.65)} + \frac{(.8)(.65)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac{(.6)(.75)}{(.9)(.25)} + \frac{(.2)(.75)}{(.9)(.25)} \right) = .56$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 1</u>: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[\underline{b_j}] P[\omega_1 | a_i, b_j]$$

 $= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.8)(.65)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

$$= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$$

$P[c_k \omega]$ and $P[d_l \omega]$ add up to 1

P	$[\omega,a,b]$,c,a]	= P	'[a]I	$^{D}[D]$	P[C]	$ \omega I$	P[a]	ωP	$\lfloor \omega vert$	a,b	J

-	Case 1	<u>l</u> : we do	not	have	any	additional	informat	ion

$$P[\omega|b]$$
SalmonSea bassNorth.65.35South.25.75

Salmon

.3

8.

 $P[\omega|a]$

Winter

Spring

Summer

Autumn

Sea

bass

.1

.6

.2

$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.8)(.65)}{(.4)(.65)} + \frac{(.9)(.25)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.3)(.25)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 1: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[\underline{b_j}] P[\omega_1 | a_i, b_j]$$

$$= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$$

There are 4	seasons and	2 potential	fishing waters

	$P[c_k \omega]$ and $P[d_l \omega]$ add up to 1
There are 4 seasor	ns and 2 potential fishing waters
(.3)(.65)	(.4)(.65)

 $P[\omega|b]$

North

South

$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.8)(.65)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.4)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac$$

$$P[\omega|a]$$
SalmonSea bassWinter.9.1Spring.3.7Summer.4.6Autumn.8.2

Salmon

.65

.25

Sea

bass

.35

.75

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 1: we do not have any additional information
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i]P[b_j]P[c_k|\omega_1]P[d_l|\omega_1]P[\omega_1|a_i,b_j]$$

$$= \sum_{i,j} P[a_i] P[\underline{b_j}] P[\omega_1 | a_i, b_j]$$

$$= \sum_{i,j} \frac{1}{4} \frac{1}{2} P[\omega_1 | a_i, b_j]$$

There are 4 seasons and 2 potential fishing waters

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	8.	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$$= \sum_{i,j} \frac{1}{42} P[\omega_1 | a_i, b_j]$$

$$= (.25)(.5) \left(\frac{(.9)(.65)}{(.9)(.65)} + \frac{(.3)(.65)}{(.3)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.4)(.65)}{(.4)(.65)} + \frac{(.8)(.65)}{(.8)(.65)} + \frac{(.9)(.25)}{(.9)(.25)} + \frac{(.3)(.25)}{(.3)(.25)} + \frac{(.4)(.25)}{(.4)(.25)} + \frac{(.4)(.25)}{($$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 2</u>: we know it is winter
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 2: we know it is winter
- Then the probability of catching salmon is

$$\begin{split} P[\omega_1] &= \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l] \\ &= \sum_{i,j,k,l} P[a_i] P[b_j] P[c_k | \omega_1] P[d_l | \omega_1] P[\omega_1 | a_i, b_j] \end{split}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 2</u>: we know it is winter
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i] P[b_j] P[c_k | \underline{\omega_1}] P[d_l | \underline{\omega_1}] P[\omega_1 | a_i, b_j]$$

$$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 | a_i, b_j]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 2: we know it is winter
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i] P[b_j] P[c_k | \omega_1] P[d_l | \omega_1] P[\omega_1 | a_i, b_j]$$

$= \sum_{i,j} P[a_i] P[b_j] P[\omega_1 a_i, b_j]$	[j]
---	-----

$$= \sum_{i} \frac{1}{2} P[\omega_1 | a_1, b_j]$$

$$= (.5) \left(\frac{(.9)(.65)}{(.9)(.65) + (.1)(.35)} + \frac{(.9)(.25)}{(.9)(.25) + (.1)(.75)} \right) = .85$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

We only sum over the winter terms now

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 2</u>: we know it is winter
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i] P[b_j] P[c_k | \omega_1] P[d_l | \omega_1] P[\omega_1 | a_i, b_j]$$

$=\sum_{i=1}^{N} A_i$	$P[a_i]P[b_j]P[\omega_1 a_i,b_j]$
i,j	$\frac{1}{2}P[\omega_1 a_1,b_j]$

$$= (.5) \left(\frac{(.9)(.65)}{(.9)(.65) + (.1)(.35)} + \frac{(.9)(.25)}{(.9)(.25) + (.1)(.75)} \right) = .85$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[d_l|\omega]$ add up to 1

We only sum over the winter terms now

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 2</u>: we know it is winter
- Then the probability of catching salmon is

$$P[\omega_1] = \sum_{i,j,k,l} P[\omega_1, a_i, b_j, c_k, d_l]$$

$$= \sum_{i,j,k,l} P[a_i] P[b_j] P[c_k | \underline{\omega_1}] P[d_l | \omega_1] P[\omega_1 | a_i, b_j]$$

$= \sum P[a_i]P[b_j]P[\omega]$	$a_1 a_i,b_j]$
$= \sum_{i} \frac{1}{2} P[\omega_1 a_1, b_j]$	
$\frac{1}{i}$ 2 $\frac{1}{i}$ $\frac{1}{i}$	

$$= (.5) \left(\frac{(.9)(.65)}{(.9)(.65) + (.1)(.35)} \left(\frac{(.9)(.25)}{(.9)(.25) + (.1)(.75)} \right) = .8$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	8	2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

 $P[c_k|\omega]$ and $P[c_k|\omega]$ add up to 1

We only sum over the winter terms now

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- Then the probability of the fish being salmon is then

$$P[\omega_1|d_2] = \frac{P[\omega_1, d_2]}{P[d_2]}$$
$$= \frac{\sum_{i,j,k} P[\omega_1, a_i, b_j, c_k, d_2]}{P[d_2]}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- Then the probability of the fish being salmon is then

$$\begin{split} P[\omega_{1}|d_{2}] &= \frac{P[\omega_{1},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[\omega_{1},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{1}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]} \end{split}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- Then the probability of the fish being salmon is then

$$\begin{split} P[\omega_{1}|d_{2}] &= \frac{P[\omega_{1},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[\omega_{1},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{1}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]} \end{split}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- Then the probability of the fish being salmon is then

$$\begin{split} P[\omega_{1}|d_{2}] &= \frac{P[\omega_{1},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[\omega_{1},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{1}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]} \\ &= \frac{\sum_{j} \frac{1}{2} P[d_{2}|\omega_{1}]P[\omega_{1}|a_{1},b_{j}]}{P[d_{2}]} \quad \text{winter} \end{split}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- Then the probability of the fish being salmon is then

$$P[\omega_{1}|d_{2}] = \frac{P[\omega_{1},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[\omega_{1},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{1}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{j} \frac{1}{2} P[d_{2}|\omega_{1}]P[\omega_{1}|a_{1},b_{j}]}{P[d_{2}]}$$
 winter
$$= \frac{\sum_{j} \frac{1}{2} P[d_{2}|\omega_{1}]P[\omega_{1}|a_{1},b_{j}]}{P[d_{2}]}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$= (.5)(.6) \left(\frac{(.9)(.65)}{(.9)(.65) + (.1)(.35)} + \frac{(.9)(.25)}{(.9)(.25) + (.1)(.75)} \right) / P[d_2] = .51 / P[d_2]$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 3</u>: we know it is winter and that the fish we caught is thin
- Then the probability of the fish being salmon is then

$$\begin{split} P[\omega_{1}|d_{2}] &= \frac{P[\omega_{1},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[\omega_{1},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{1}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]} \\ &= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{1}]P[\omega_{1}|a_{i},b_{j}]}{P[d_{2}]} \\ &= \frac{\sum_{j} \frac{1}{2} P[d_{2}|\omega_{1}]P[\omega_{1}|a_{1},b_{j}]}{P[d_{2}]} \quad \text{winter} \end{split}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$= (.5)(.6) \underbrace{\frac{P[d_2]}{(.9)(.65)}}_{P[d_2]} + \underbrace{\frac{(.9)(.25)}{(.9)(.25)}}_{P[d_2]} / P[d_2] = .51/P[d_2]$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- To determine $P[d_2]$ we do the same for the sea bass

$$P[\omega_{2}|d_{2}] = \frac{P[\omega_{2}, d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[\omega_{2}, a_{i}, b_{j}, c_{k}, d_{2}]}{P[d_{2}]}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- To determine $P[d_2]$ we do the same for the sea bass

$$P[\omega_{2}|d_{2}] = \frac{P[\omega_{2},d_{2}]}{P[d_{2}]}$$
South .25
$$= \frac{\sum_{i,j,k} P[\omega_{2},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{2}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$
Salmon .4
$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{j} \frac{1}{2} P[d_{2}|\omega_{2}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= (.5)(.05) \left(\frac{(.1)(.35)}{(.9)(.65) + (.1)(.35)} + \frac{(.1)(.75)}{(.9)(.25) + (.1)(.75)}\right) / P[d_{2}] = .008 / P[d_{2}]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- To determine $P[d_2]$ we do the same for the sea bass

$$P[\omega_{2}|d_{2}] = \frac{P[\omega_{2},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[\omega_{2},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{2}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} \frac{1}{2}P[d_{2}|\omega_{2}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= (.5)(.05)\left(\frac{(.1)(.35)}{(.9)(.65) + (.1)(.35)} + \frac{(.1)(.75)}{(.9)(.25) + (.1)(.75)}\right)/P[d_{2}] = .008/P[d_{2}]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- To determine $P[d_2]$ we do the same for the sea bass

$$P[\omega_{2}|d_{2}] = \frac{P[\omega_{2},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[\omega_{2},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{2}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= (.5)(.05)(\frac{(.1)(.35)}{(.9)(.65) + (.1)(.35)}) \frac{(.1)(.75)}{(.9)(.25) + (.1)(.75)})/P[d_{2}] = .008/P[d_{2}]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- Case 3: we know it is winter and that the fish we caught is thin
- To determine $P[d_2]$ we do the same for the sea bass

$$P[\omega_{2}|d_{2}] = \frac{P[\omega_{2},d_{2}]}{P[d_{2}]}$$
South .25
$$= \frac{\sum_{i,j,k} P[\omega_{2},a_{i},b_{j},c_{k},d_{2}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j,k} P[a_{i}]P[b_{j}]P[c_{k}|\omega_{2}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$
Salmon .4
$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[d_{2}|\omega_{2}]P[\omega_{2}|a_{i},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{i,j} P[a_{i}]P[b_{j}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= \frac{\sum_{j} \frac{1}{2} P[d_{2}|\omega_{2}]P[\omega_{2}|a_{1},b_{j}]}{P[d_{2}]}$$

$$= (.5)(.05) \left(\frac{(.1)(.35)}{(.9)(.65) + (.1)(.35)}\right) P[d_{2}] = .008/P[d_{2}]$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$YP[d_2] = .008/P[d_2]$$

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 3</u>: we know it is winter and that the fish we caught is thin
- We now determined the two probabilities up to $P[d_2]$

$$P[\omega_1|d_2] = \frac{.51}{P[d_2]}$$

$$P[\omega_2|d_2] = \frac{.008}{P[d_2]}$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

$$P[\omega, a, b, c, d] = P[a]P[b]P[c|\omega]P[d|\omega]P[\omega|a, b]$$

- <u>Case 3</u>: we know it is winter and that the fish we caught is thin
- We now determined the two probabilities up to $P[d_2]$

$D[\alpha \mid A \mid] =$.51
$P[\omega_1 d_2] =$	$\overline{P[d_2]}$
$D[\alpha \mid d] =$.008
$P[\omega_2 d_2] =$	$\overline{P[d_2]}$

We also know that they normalise as follows:

$$P[\omega_1|d_2] + P[\omega_2|d_2] = 1$$

$P[\omega a]$	Salmon	Sea bass
Winter	.9	.1
Spring	.3	.7
Summer	.4	.6
Autumn	.8	.2

$P[\omega b]$	Salmon	Sea bass
North	.65	.35
South	.25	.75

$P[d \omega]$	wide	thin
Salmon	.4	.6
Sea bass	.95	.05

- We can now determine that $P[d_2] = .51 + .008$ to normalise the probabilities
- Finally, the probability of having caught a salmon in case the fish is thin and was caught in winter is

$$P[\omega_1|d_2] = \frac{.51}{.51 + .008} = .99$$

Summary

- Bayesian believe networks allow to graphically capture the structure of a problem domain by identifying mutual dependences/independences
- The graphical representation translates into a joint probability function, which can be efficiently computed in case most variables are conditionally independent
- Additional knowledge (sometimes called evidence) can be added bit by bit to refine the results
- This also allows to substitute missing values using the input derived from the domain knowledge, both on the structure as well as on conditional dependences

Thank you for your attention