ACTU PS5841 Data Science in Finance & Insurance - Spring 2022 (Y. Wang)

Assignment - 6

Assigned 2/24/22, Due 3/6/22 (Sun)

Problem 1. LASSO

The date file, data.csv, contains observations generated by

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \epsilon_i$$

You decide to investigate three regression models:

a null model $E(y_i|x_i) = \beta_0$ with the least squares loss

a full model $E(y_i|x_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5}$ with the least squares loss a LASSO model $E(y_i|x_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5}$ with the LASSO loss

You also decide to fit these models using *centered-and-normalized features* with each feature having a zero mean and a unit L2-norm.

Please code to calculate and report the following in your writeup (see the report template):

Model	λ_{best}	$ \hat{m{eta}} $	$RMSE_{fit}$	R_{fit}^2	$E(RMSE_{test})$	$E(R_{test}^2)$
Null	na	na				
Full	na					
LASSO at λ_{best} by LassoCV						
LASSO at λ_{best} by YourCV w. rescaling						
LASSO at λ_{best} by YourCV w/o rescaling						

Model		β_1	β_2	β_3	β_4	β_5
Null						
Full						
LASSO at λ_{best} by LassoCV						
LASSO at λ_{best} by YourCV w. rescaling						
LASSO at λ_{best} by YourCV w/o rescaling						

For convenience of grading,

A. Please use a 10-fold CV when estimating $E(RMSE_{test})$ and $E(R_{test}^2)$ for the Null model and the Full model.

B. $|\hat{\beta}| = \sum_{j=1}^{5} |\beta_j|$ does NOT include the intercept.

C. λ_{best} by LassoCV is obtained by

LassoCV(alphas = lambdas, cv = KFold(n_splits = 10, shuffle = True, random_state = 10))

D. λ_{best} by YourCV is obtained by identifying the λ from $\lambda = \text{np.linspace}(0, 0.1, 101)$ that has the smallest estimated test RMSE, using a 10-fold cross validation approach. Please use

KFold(n_splits = 10, shuffle = True, random_state = 10)

You may find the following resources useful.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html