# **EXPERIMENT** 3

#### $A_{\text{IM}}$

To find the downward force, along an inclined plane, acting on a roller due to gravity and study its relationship with the angle of inclination by plotting graph between force and  $\sin \theta$ .

#### APPARATUS AND MATERIAL REQUIRED

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread.



**Fig. E 8.1:** Experimental set up to find the downward force along an inclined plane

#### PRINCIPLE



Fig. E 8.2: Free body diagram

Consider the set up shown in Fig. E 8.1. Here a roller of mass  $M_1$  has been placed on an inclined plane making an angle  $\theta$  with the horizontal. An upward force, along the inclined plane, could be applied on the mass  $M_1$  by adjusting the weights on the pan suspended with a string while its other end is attached to the mass through a pulley fixed at the top of the inclined plane. The force on the the mass  $M_1$  when it is moving with a constant velocity v will be

$$W = M_{1}g \sin \theta - f_{r}$$

where  $f_r$  is the force of friction due to rolling,  $M_{\scriptscriptstyle I}$  is mass of roller and W is the total tension in the string

(W = weight suspended). Assuming there is no friction between the pulley and the string.

#### ROCEDURE

- 1. Arrange the inclined plane, roller and the masses in the pan as shown in Fig. E. 8.1. Ensure that the pulley is frictionless. Lubricate it using machine oil, if necessary.
- 2. To start with, let the value of W be adjusted so as to permit the roller to stay at the top of the inclined plane at rest.
- 3. Start decreasing the masses in small steps in the pan until the roller just starts moving down the plane with a constant velocity. Note W and also the angle  $\theta$ . Fig. E 8.2 shows the free body diagram for the situation when the roller just begins to move downwards.
- 4. Repeat steps 2 and 3 for different values of  $\theta$ . Tabulate your observations.

## **O**BSERVATIONS

Acceleration due to gravity,  $g = \dots \text{ms}^{-2}$ Mass of roller,  $m = (M_1) g$ Mass of the pan  $= (M_2) g$ 

Table E 8.1

| S. No. | θ° | $\sin \theta$ | Mass added to pan $M_{_{ m S}}$ | Force $W = (M_2 + M_3) g (N)$ |
|--------|----|---------------|---------------------------------|-------------------------------|
| 1      |    |               |                                 |                               |
| 2      |    | <i>)</i> )    |                                 |                               |
| 3      |    |               |                                 |                               |

## PLOTTING GRAPH

Plot graph between  $\sin \theta$  and the force W (Fig. E 8.3). It should be a straight line.

**Fig. E 8.3:** Graph between W and  $\sin \theta$ 



#### RESULT

Therefore, within experimental error, downward force along inclined plane is directly proportional to  $\sin \theta$ , where  $\theta$  is the angle of inclination of the plane.

#### P RECAUTIONS

- 1. Ensure that the inclined plane is placed on a horizontal surface using the spirit level.
- 2. Pulley must be frictionless.
- 3. The weight should suspend freely without touching the table or other objects.
- 4. Roller should roll smoothly, that is, without slipping.
- 5. Weight, W should be decreased in small steps.

### Sources of error

- 1. Error may creep in due to poor judgement of constant velocity.
- 2. Pulley may not be frictionless.
- 3. It may be difficult to determine the exact point when the roller begins to slide with constant velocity.
- 4. The inclined surface may not be of uniform smoothness/roughness.
- 5. Weights in the weight box may not be standardised.

#### DISCUSSION

As the inclination of the plane is increased, starting from zero, the value of  $mg \sin \theta$  increases and frictional force also increases accordingly. Therefore, till limiting friction W = 0, we need not apply any tension in the string.

When we increase the angle still further, net tension in the string is required to balance  $(mg\sin\theta - f_r)$  or otherwise the roller will accelerate downwards.

It is difficult to determine exact value of W. What we can do is we find tension  $W_1$  (< W) at which the roller is just at the verge of rolling down and  $W_2$  (> W) at which the roller is just at the verge of moving up. Then we can take

$$W = \frac{\left(W_1 + W_2\right)}{2}$$

# SELF ASSESSMENT

- 1. Give an example where the force of friction is in the same direction as the direction of motion.
- 2. How will you use the graph to find the co-efficient of rolling friction between the roller and the inclined plane?
- 3. What is the relation between downward force and angle of inclination of the plane?
- 4. How will you ensure that the roller moves upward/downward with constant velocity?

#### SUGGESTED ADDITIONAL EXPERIMENTS/ACTIVITIES

- 1. From the graph, find the intercept and the slope. Interpret them using the given equation.
- 2. Allow the roller to move up the inclined plane by adjusting the mass in the pan. Interpret the graph between W' and  $\sin \theta$  where W' is the mass in pan added to the mass of the pan required to allow the roller to move upward with constant velocity.