

МИРЭА – Российский технологический университет Институт радиотехнических и телекоммуникационных систем Кафедра телекоммуникаций

Построение беспроводных систем связи Лекция 2. Беспроводные технологии 802.11

E-mail: wlan@mirea.ru

Аудитория Д-321

Беспроводные технологии 802.11

FHSS 802.11 и DSSS 802.11b

OFDM 802.11a и 802.11g

Элементы WLAN

Беспроводные технологии 802.11

FHSS 802.11 и DSSS 802.11b

Беспроводные технологии LAN

Стандарт 802.11 использует модуляцию FHSS (1 и 2 mbps)

Стандарт 802.11b модуляцию DSSS (1, 2, 5,5 ,11 mbps)

Стандарты 802.11g/n, 802.11 a/ac/ax используют модуляцию OFDM (>54 mbps)

Модуляция сигнала в сетях 802.11

FHSS 802.11	Псевдослучайная перестройка рабочей частоты (FHSS, frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.
DSSS	Метод прямой последовательности для расширения спектра (DSSS direct
802.11b	sequence spread spectrum) — широкополосная модуляция с прямым расширением спектра, метод формирования широкополосного радиосигнала, при котором исходная последовательность битов преобразуется в псевдослучайную последовательность, используемую для модуляции несущей. Используется в сетях стандарта IEEE 802.11b
OFDM	OFDM (Orthogonal frequency-division multiplexing мультиплексирование с ортогональным частотным разделением каналов), цифровая схема модуляции, которая использует большое количество близко расположенных
802.11a	ортогональных поднесущих. Каждая поднесущая модулируется по обычной
802.11g/n	схеме модуляции (например, квадратурная амплитудная модуляция)
802.11ac/ax	

Техника модуляции

Каждый частотный канал имеет центральную частоту (частота несущей).

Если необходимо передавать данные по этому каналу, создается комбинация сигналов, которая может быть передана, принята и декодирована

Типы модуляции

Основные три характеристики несущей, которые могут быть промодулированы – амплитуда, частота и фаза

Амплитудная модуляция

AM

Частотная модуляция

FM

Фазовая модуляция

PM

Типы модуляции

Амплитудная модуляция АМ

Amplitude Shift Keying (ASK)

Повысить / понизить уровень сигнала

Частотная модуляция FM

Frequency Shift Keying (FSK)

Повысить / понизить частоту сигнала

Фазовая модуляция РМ Phase Shift Keying (PSK)

Изменить фазу сигнала на 180" (или на другое значение)

Технология FHSS

FHSS (Frequency Hopping Spread Spectrum) метод передачи, заключающийся в в частой смене несущей частоты канала

Несущая частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю.

FHSS в диапазоне 2,4 GHz использует 83 MHz спектра для передачи данных

79 каналов шириной 1 MHz 802.11 2,402 – 2,480 GHz

Технология FHSS

B FHSS системах несущая меняет частоту скачкообразно, согласно псевдослучайной последовательности (Hopping code)

Hopping code – список частот, по которым переключается несущая (1 hop в 0,4 секунды как минимум между шестью каналами).

Приемник и передатчик используют одинаковые Псевдослучайные последовательности (Hopping code)

Coгласование Hopping code производится при установлении соединения между приемником и передатчиком

Наборы Hopping Code отличаются для различных регионов

Hopping code для Европы и США

Набор	Схема скачкообразной перестройки частоты
1	0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75
2	1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67,70,73,76
3	2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77

Технология FHSS

B FHSS системах при передаче данных используется модуляция GFSK – Gaussian Frequency Shift Keying

GFSK с использованием двух уровней смещения частоты - передача 1 Mbps GFSK с использованием 4-х уровней смещения частоты – передача 2 Mbps Bluetooth также использует GFSK

Технология DSSS

Метод прямой последовательности для расширения спектра (DSSS - Direct Sequence Spread Spectrum) — широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра, используемых

Уширение спектра сигнала происходит вследствие применения техники фазовой модуляции.

Уширение спектра сигнала

При фазовой модуляции происходит искажение формы сигнала. Происходит расширение спектра сигнала и уменьшение амплитуды сигнала

Формирование широкополосного сигнала – применение фазовой модуляции

В технологии DSSS используется техники фазовой модуляции (Binary Phase Shift Keying – BPSK, Differential Binary Phase Shift Keying – DBPSK, Differential Quadrature Phase Shift Keying – DQPSK)

При манипуляции фазой сигнала ширина спектра сигнала увеличивается в N раз, где N – число бит «расширяющей последовательности»

Если кодировать 1 бит при помощи 11-символьной последовательности, ширина спектра сигнала увеличится в 11 раз

В технологии DSSS для передачи радиосигнала по одному каналу шириной 22 МГц без изменения частот используется метод, называемый 11-символьной последовательностью Баркера (Barker code, чиповая последовательность)

Основной смысл использования кодов Баркера заключается в том, чтобы, имея возможность передавать сигнал практически на уровне помех, гарантировать высокую степень достоверности принимаемой информации

Приемник считывает корреляцию последовательностей Баркера (прямой и инверсной) и входного сигнала и по пикам корреляционной функции определяет — где во входном сигнале закодированы нули, а где — единицы

Широкополосный сигнал

DSSS использует только один канал без каких-либо скачков между частотами. При DSSS-передаче задействуется большая полоса частот, но меньшая мощность, чем при FHSS.

Широкополосный сигнал более устойчив к узкополосным помехам

Передатчик DSSS

Мощность передаваемого сигнала – до 100 mW

США -11 каналов шириной 22 MHz 802.11b 2,401 – 2,473 GHz

Европа – 13 каналов шириной 22 MHz

802.11b 2,401–2,483 GHz

DSSS - IEEE 802.11 b

Каналы шириной 22 MHz следуют со смещением 5 MHz центральной частоты

Channel I	requencies	for 802.	11b (High	Rate PH	IY)			
		Regulatory Domains						
CHNL_ID	Frequency MHz	X'10' FCC	X'20' IC	X'30' ETSI	X'31' Spain	X'32' France	X'40' MKK	
1	2412	Х	X	X	-	-	-	
2	2417	Х	Х	Х	-	-	-	
3	2422	X	Х	X	-	-	-	
4	2427	X	Х	Х	-	-	-	
5	2432	X	Х	X	-	-	-	
6	2437	Х	Х	Х	-	-	-	
7	2442	X	Х	X	-	-	-	
8	2447	X	Х	Х	-	-	-	
9	2452	X	X'	Х	-	-	-	
10	2457	Х	Х	Х	Х	Х	-	
11	2462	Х	Х	Х	Х	Х	-	
12	2467	-	-	X	-	X	-	
13	2472	-	-	Х	-	Х	-	
14	2484	-	-	-	-	-	X	

Физический уровень 802.11 b

Каналы шириной 22 MHz следуют со смещением 5 MHz центральной частоты При данной конфигурации существует три неперекрывающихся канала

Техники фазовой модуляции 802.11b

Binary Phase Shift Keying (BPSK)

1 mbps

Кодирование за счет сдвига сигнала по фазе на 180 градусов (π)

0 = сдвиг на 0, 1 = сдвиг на π

Quadrature Phase Shift Keying (QPSK)

2 mbps

Кодирование за счет сдвига сигнала по фазе на 90 градусов (π /2)

00 = сдвиг на 0, 01 = сдвиг на $\pi/2$, 11 = сдвиг на π , 10 = сдвиг на $3\pi/2$

Differential Quadrature Phase Shift Keying (DQPSK)

5,5 mbps

Кодирование за счет сдвига сигнала по фазе на 45 градусов

11 mbps

DSSS 802.11b

	Spreading Code	Modulation Technology	Data Rate
2.4 GHz DSSS	Barker Code	DBPSK	1 Mbps
2.4 GHz DSSS	Barker Code	DQPSK	2 Mbps
2.4 GHz DSSS	CCK	DQPSK	5.5 Mbps
2.4 GHz DSSS	ССК	DQPSK	11 Mbps

США 11 каналов шириной 22 МНz

Мощность до 100 mW

Европа – 13 каналов шириной 22 MHz Мощность до 100 mW

Беспроводные сети 802.11

OFDM 802.11a и 802.11g

OFDM – Orthogonal Frequency Division Multiplexing

OFDM Orthogonal frequency-division multiplexing — мультиплексирование с ортогональным частотным разделением каналов) является цифровой схемой модуляции, которая использует большое количество близко расположенных ортогональных поднесущих.

Каждая поднесущая модулируется по амплитуде и фазе (квадратурная амплитудная модуляция, QAM)

OFDM – Orthogonal Frequency Division Multiplexing

OFDM использует схемы модуляции

используемые

OFDM использует каналы шириной 20 MHz. 20 MHz – канал разбивается на 64 sub- канала шириной около 300 KHz 48 каналов для данных, 4 – служебные для синхронизации и 12 – «нулевые», не

Техники модуляции в OFDM 802.11a и 802.11g

OFDM использует схемы фазовой и амплитудно-фазовой модуляции поднесущих

Binary Phase Shift Keying (BPSK)

Кодирование 125 / 187 Kbps на один sub-канал.

48 каналов x 125 Kbps = 6 mbps

Quadrature Phase Shift Keying (QPSK)

Кодирование 250 / 375 Kbps на канал

16-level Quadrature Amplitude Modulation (16-CAM)

Кодирование 500 / 750 Kbps на канал

64-level Quadrature Amplitude Modulation (64-CAM)

Кодирование 1000 / 1125 Kbps на канал

6 mbps

9 mbps

12 mbps

18 mbps

24 mbps

36 mbps

48 mbps

54 mbps

Quadrature Amplitude Modulation (CAM)

Для высоких скоростей передачи данных (более 18 mbps) OFDM использует схемы амплитудно-фазовой модуляции поднесущих

1024 CAM 802.11 ax

16-level Quadrature Amplitude Modulation (16-CAM)

Кодирование 500 / 750 Kbps на канал

Физический уровень 802.11 g

Каналы шириной 22 MHz следуют со смещением 5 MHz центральной частоты, аналогично 802.11 b. Максимальный битрейт 54 Mbps

Стандарт 802.11g обеспечивает обратную совместимость со стандартом 802.11b, который использует технологию DSSS

В случае же включения native режима 802.11 g – только OFDM без поддержки DSSS - устройства 802.11b не будут работать (другая преамбула фрейма и другой заголовок)

Физический уровень 802.11 а /ас/ ах

Каналы шириной 20 MHz следуют со смещением 20 MHz центральной частоты

4,920 – 5,835 GHz

		(/)																					
Frequency							DFS Channe	ls					1										
									TDWR														
Radio Band	U-NII-	-1		III-2a				U-NII-2c ((Extended)					U-NII-3									
Frequency	5.180	5.220	5.260	5.300	5.500	5.500 5.540 5.540 5.580 5.600 5.600 5.680 5.680					5.720	5.745	5.785	5.805	5.825	Qty							
20 MHz	36 40	44 48	52 56	60 64	100 10	04 108	112 110	120	124 1	128	132 1	36 140	144	149 15	3 157	161	165	25					
40 MHz	38	46	54	62	102	11	0	118	126		134		142	151	1	159		12					
80 MHz	42			8		106		1	22			138		155				6					
160 MHz		50					114								165 was	ISM, now	U-NII-3	2					
FCC - US	1,000 mW T Indoor & O No DFS no	Outdoor	Indoor 8	v w/6dBi Outdoor equired	250 mw w/6dBi 120, 124, 128 Indoor & Outdoor US - Allowed DFS Required						144 Now Allowed	w Indoor & Outdoor											
ISED - Canada	FCC - Except License Req.		Same	as FCC	Same as FCC TDWR Not Allowed			ì	Same as FCC			PtP :	Canad Illows Hig										
ACMA - Australia	200 mW Indoo		100 mW EIR	P - DFS & TPC P - DFS-Only door	1,000 mW - DFS & TPC 500 mW - DFS-Only - No TPC Indoor/Outdoor				1,000 mW - DFS & TPC 500 mW - DFS-Only Indoor/Outdoor			În	door & Oil lo DFS ne	utdoor									
ETSI - EU	100 mW No DFS/TPC Indoor		200 mW EIRP DFS/TPC Indoor		DFS/TPC No DFS/TPC						DFS/TPC No DF			DFS/TPC No DFS/TPC			DFS/TPC No				Outdoor		
	200 mW No DFS/TPC								-min TDWF C Scan Time				25mW SRD	25m	W - SRD -	No DFS							
20 MHz	36 40	44 48	52 56	60 64	100 10	04 108	112 116	120	124 1	128	132 1	36 140	144	149 15	3 157	161	165						
Frequency	5.200	5.220	5.260	5.320	5.500	5.520	5.560	2.600	5.620	5.640	5.660	5.700	5.720	5.745	5.785	5.805	5.825						

Физический уровень 802.11 а /ас/ ах

4,920 – 5,835 GHz

Особые группы каналов

US Public Safety (каналы: 184, 188, 192, 196)

4,920 – 4,980 GHz

Japan (каналы: 8, 12, 16)

5,040 – 5, 080 GHz

Terminal Doppler Weather Radar (TDWR) Используется в аэропортах США (120,124, 128 каналы)

5,600 - 5,650 GHz

ISM (канал 165)

5,825 GHz

Разрешенные диапазоны 5 GHz в РФ

Беспроводные сети

Элементы WLAN

IBSS – Independent Basic Service Set

IBSS (Basic Service Set) – станции взаимодействуют друг с другом без точки доступа, peer-to-peer network

Ad-Hoc network

Если необходима связь за пределами IBSS, то одна из станций должна выполнить функции шлюза (роутера)

BSS - Basic Service Set

BSS (Basic Service Set), «сота» – базовый элемент строительства сети IEEE 802.11 WLAN

BSS – «Single RF area». Точка доступа работает на одном из настроенных каналов

BSS требует настройки одного SSID (Service Set IDentifier)

ESS – Extended Service Set

ESS (Extended Service Set), - BSS (соты), объединенные распределительной системой (Distribution System, DS)

DS позволяет мобильным устройствам поддержку сервисов, необходимых для доставки фреймов адресату

Данные из BSS попадают в DS через AP (Access Point, точка доступа)

ESS – Extended Service Set

Соседние BSS (соты), объединенные распределительной системой (Distribution System, DS) должны использовать разные неперекрывающиеся каналы (частоты)

Соты должны перекрываться на 10-15 % чтобы обеспечить процесс роуминга без потери связи

Роуминг происходит в контексте одного SSID

Роуминг

Poymunr (Roaming) – процесс, обусловленный возможностью клиентских станций STA перемещаться из одной соты (cell, BSS) в другую, не теряя при этом соединения с сетью

Механизмы роуминга не определяются стандартами 802.11, но разрабатываются каждым производителем

Скорость передачи и зона покрытия

При ослаблении сигнала, точка доступа и клиенты переходят на более низкий bitrate (multi-rate shifting)

2.4 GHz A	2.4 GHz Antennas						
Client	AP						
0 dBi	2.2 dBi dipole						

5 GHz Antennas					
Client AP					
5 dBi	5 dBi Patch				

Скорость передачи и зона покрытия

При планировании зоны покрытия учитывается минимальная скорость, с которой клиент и АР должны работать при осуществлении роуминга

Репитеры

При необходимости расширения зоны покрытия, но в случае если доступ к проводной backbone затруднен применяются репитеры (точки доступа в качестве репитера)

Инсталляция репитеров требует перекрытия RF зон покрытия на 50% Репитер уменьшает полосу пропускания наполовину

Использование репитеров

Репитеры используют в случае, если клиенты не используют большую полосу пропускания

Для AP - репитера необходимо использовать всенаправленную (omnidirectional) антенну на корневой точке (Root AP) и на AP - репитере

Клиенты ассоциируются с root AP, а не с репитером

Благодарю за внимание!

Кафедра телекоммуникаций

Кампус на проспекте Вернадского 78

Аудитории: Д-321, Б-216-б

Телефон: +7 (495) 987-47-17

E-mail: wlan@mirea.ru