3. Multiplication

■ Multiplication is much more complicated than addition and subtraction

\square Paper-and-pencil example (1000₁₀ x 1001₁₀):

Multiplicand	1000
Multiplier	1001
	1000
	0000
	0000
	1000
Product	1001000

□ Observation:

- Suppose we limit ourselves to using only digits 0 and 1
- If we ignore the sign bits (i.e., unsigned numbers), multiplying an N-bit multiplicand with an M-bit multiplier gives a product that is at most N+M bits long

- ☐ This version follows the flow of paper-and-pencil example
- □ One 64-bit ALU and three registers
 - 64-bit multiplicand register, 64-bit product register, 32-bit multiplier register
- **□** Operations:
 - The 32-bit multiplicand starts in the right half of the multiplicand register, and is shifted left 1 bit at each step
 - The multiplier register is shifted right 1 bit at each step
 - The product register is initialized to 0
 - Control decides when to shift the multiplicand and multiplier registers and when to write new values into the product register

Example for Multiplication Version 1

□ 4-bit unsigned integer multiplication: 0010 x 0011

	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 <u>0010</u>	0000 0000
	1a: 1→ Prod = Prod + Mcand	0011	0000 0010	0000 0010
1	2: Shift left Multiplicand	0011	000 <u>0 010</u> 0	0000 0010
	3: Shift right Multiplier	0 <u>001</u>	0000 0100	0000 0010
	1a: 1→ Prod = Prod + Mcand	0001	0000 0100	0000 0110
2	2: Shift left Multiplicand	0001	00 <u>00 10</u> 00	0000 0110
	3: Shift right Multiplier	00 <u>00</u>	0000 1000	0000 0110
	1: 0→ no operation	0000	0000 1000	0000 0110
3	2: Shift left Multiplicand	0000	0 <u>001 0</u> 000	0000 0110
	3: Shift right Multiplier	000 <u>0</u>	0001 0000	0000 0110
	1: 0→ no operation	0000	0001 0000	0000 0110
4	2: Shift left Multiplicand	0000	<u>0010</u> 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

[□] Color: initial value, recently changed, check bit

- Three basic steps needed for each bit
- If we need one clock cycle for each step then about 100 clock cycles are needed to multiply two 32-bit numbers
- Slow!

- □ Only half of the multiplicand register contains useful bit values
 - \circ Reduce multiplicand register size: 64-bit \rightarrow 32-bit
- ☐ A full 64-bit ALU is wasteful and slow
 - Because half of the adder bits add 0 to the intermediate sum
 - \circ Reduce ALU size: 64-bit \rightarrow 32-bit
- ☐ The multiplicand is shifted left with 0s inserted in the new positions
 - The multiplicand cannot affect the least significant bits of the product after they settle down

\square Paper-and-pencil example (1000₁₀ x 1001₁₀):

Multiplicand (4-bit)	1000	
Multiplier (4-bit)	1001	
Product (8-bit)	0000	0000
Add multiplicand	1000	
Product	1000	0000
Product (shift right)	0100	0000
Add 0	0000	
Product	0100	0000
Product (shift right)	0010	0000
Add 0	0000	
Product	0010	0000
Product (shift right)	0001	0000
Add multiplicand	1000	
Product	1001	0000
Product (shift right)	0100	1000
		=

Addition on upper 4 bits

- ☐ This version only needs a 32-bit multiplicand register and a 32-bit ALU
- This version shifts "product" instead of "multiplicand"

(changes made to previous version are highlighted in orange color)

- ☐ The number of used bits in the product register increases by 1 bit at each step, from the initial value of 32 to the final value of 64
- ☐ The number of used bits in the multiplier register decreases by 1 bit at each step, from the initial value of 32 to the final value of 0
- □ Hence, the unused bits of the multiplier register can be used for storing part of the product
 - More specifically, the right half of the product register can be combined with the multiplier register to save hardware

□ 32-bit ALU

☐ Two registers:

 Multiplicand register: 32 bits, Product register: 64 bits (right half also used for storing multiplier)

Operations:

- The right half of the product register is initialized to the multiplier, and its left half is initialized to 0
- The two right-shifts at each step for version 2 are combined into only a single right-shift because the product and multiplier registers have been combined

□ Multiplication of two 4-bit unsigned numbers (0110 and 0011)

Multiplier

Iteration	Multiplicand (M)	Product (P)	Remark
0		0000 0011	Initial state
1	0110	<u>0110</u> 0011	Left(P) = Left(P) + M
1		<u>0011 0</u> 001	P = P >> 1
2		<u>1001 0</u> 001	Left(P) = Left(P) + M
		<u>0100 10</u> 00	P = P >> 1
3		<u>0100 10</u> 00	No operation
3		<u>0010 010</u> 0	P = P >> 1
4		<u>0010 010</u> 0	No operation
		0001 0010	P = P >> 1

- ☐ If the multiplicand or multiplier is negative, we first negate it to get a positive number
- ☐ Use any one of the above methods to compute the product of two positive numbers
- ☐ The product should be negated if the original signs of the operands disagree
- **Booth's algorithm**: a more efficient and elegant algorithm for the multiplication of signed numbers (to be covered in tutorial)

- Moore's law implies more and more cheaper hardware resources available
- ☐ Unroll the for loop and use 31 adders instead of single adder 32 times
- This organization minimizes delay to do 1 Multiply in 5-add time

- ☐ Separate pair of 32-bit registers to contain 64-bit product, Hi and Lo
- □ mult (multiply) and multu (multiply unsigned)

```
O mult $s2, $s3 # Hi, Lo = $s2 \times $s3
```

- O multu \$s2, \$s3 # Hi, Lo = $$s2 \times $s3$
- Both MIPS multiply instructions ignore overflow
- O No overflow if Hi is 0 for multu or the replicated sign of Lo for mult
- ☐ Fetch the integer 32-bit product

 - O mfhi (move from hi) mfhi \$s1 # \$s1 = Hi
 - o mfhi can transfer Hi to a general-purpose register to test for overflow

4. Division

- ☐ Division is the reciprocal operation of multiplication
- \square Paper-and-pencil example (1001010_{ten} / 1000_{ten}):

Dividend = Quotient x Divisor + Remainder

 \square Paper-and-pencil 4-bit example (0111₂ / 0010₂):

Divisor 0010 00000111 Dividend -00100000 -00010000 -00001000 -0000011 -00000011 -00000011 -00000001 Remainder

□ 64-bit ALU, three registers:

Divisor register: 64 bits, Quotient register: 32 bits, Remainder register: 64 bits

Operations:

- o 32-bit divisor starts in the left half of divisor register; is shifted right 1 bit at each step
- Quotient register is initialized to 0; shifted left 1 bit at each step
- o Remainder register is initialized with the dividend
- Control decides
 - when to shift the divisor and quotient registers
 - when to write new values into the remainder register

Like the first version of the multiplication hardware

- At most half of the divisor register has useful information
 - Both the divisor register and ALU could potentially be cut in half
- ☐ Shift divisor register to right ⇒ Shift remainder register to left
 - Produce the same alignment
 - But, simplify hardware necessary for the ALU and divisor register
- □ Combine the remainder and quotient registers

(changes made to previous version are highlighted in orange color)

□ 32-bit ALU

- **☐** Two registers:
 - Divisor register: 32 bits
 - Remainder register: 64 bits
 (right half also used for storing quotient)

□ Operations:

- 32-bit divisor is always subtracted from the left half of remainder register
 - The result is written back to the left half of the remainder register
- The right half of the remainder register is initialized with the dividend
 - Left shift remainder register by one before starting
- The new order of the operations in the loop is that the remainder register will be shifted left one time too many
 - Thus, <u>final correction step:</u> must <u>right shift back only the</u> remainder in the left half of the remainder register

\square Paper-and-pencil example (0111₂ / 0010₂):

```
<del>0</del>0011
                                   Quotient
                   00000111
Divisor
          0010
                                   Dividend
                   -0010
                    00001110
                   -0010
                    00011100
                   -0010
                    00111000
                   -0010
                    00011000
                    00110000
                   -0010
                    0001
                              Remainder
```


□ Division of a 4-bit unsigned number (0111) by another one (0011)

Iteration	Divisor (D)	Remainder (R)	Remark
0		0000 0111	Initial state
U		0000 1110	R = R << 1
		<u>1101</u> 1110	Left(R) = Left(R) - D
1		<u>0000</u> 1110	Undo
		<u>0001_110</u> 0	$R = R << 1, R_0 = 0$
		<u>1110</u> 1100	Left(R) = Left(R) - D
2	0011	<u>0001</u> 1100	Undo
	0011	<u>0011_10</u> 00	$R = R << 1, R_0 = 0$
3		<u>0000</u> 1000	Left(R) = Left(R) - D
J		<u>0001 0</u> 001	$R = R << 1, R_0 = 1$
		<u>1110</u> 0001	Left(R) = Left(R) - D
4		<u>0001</u> 0001	Undo
		<u>0010</u> 0010	$R = R << 1, R_0 = 0$
extra		0001 0010	Left(R) = Left(R) >> 1
	Remainder /	Ψ	Quotient
		correction	

□ Similar to signed multiplication, the signs of the divisor and dividend are checked to determine whether the results (quotient and remainder) should be negated.

□ Two rules to follow:

- If the signs of the divisor and dividend are different, then the quotient should be negated.
- If the remainder is nonzero, then its sign should be the same as that of the dividend.

□ Example:

Dividend	Divisor	Quotient	Remainder
+7	+2	+3	+1
-7	+2	-3	-1
+7	-2	-3	+1
-7	-2	+3	-1

- □ div ('divide')
- ☐ divu ('divide unsigned')
- **□** Examples:

```
O div $s1, $s2  # Lo = $s1 / $s2; Hi = $s1 mod $s2
```

O divu \$s1, \$s2 # Lo = \$s1 / \$s2; Hi = \$s1 mod \$s2

Floating Point Arithmetic (optional)

Single precision:

Exponent Significand	0	1 - 254	255
0	0	g F_127	$(-1)^S \times (\infty)$
= 0	$(-1)^S \times (0.F) \times (2)^{-126}$	$(-1)^{S} \times (1.F) \times (2)^{E-127}$	non-numbers e.g. $0/0$, $\sqrt{-1}$

Double precision:

Exponent Significand	0	1 - 2046	2047
0	0	$(-1)^{S} \times (1.F) \times (2)^{E-1023}$	$(-1)^S \times (\infty)$
≠ 0	$(-1)^S \times (0.F) \times (2)^{-1022}$		non-numbers e.g. $0/0$, $\sqrt{-1}$

- □ Example: $9.999_{10} \times 10^1 + 1.610_{10} \times 10^{-1}$
- ☐ Assumptions:
 - Significand size = 4 decimal digits
 - Exponent size = 2 decimal digits

Algorithm:

- 1. Align the decimal point of the number that has the smaller exponent
 - \square e.g. $1.610_{10} \times 10^{-1}$ becomes $0.016_{10} \times 10^{1}$
- 2. Add the significands of the two numbers together
 - **e.g.** $9.999_{10} \times 10^1 + 0.016_{10} \times 10^1 = 10.015_{10} \times 10^1$
- 3. Normalize the sum
 - \Box e.g. $10.015_{10} \times 10^1$ becomes $1.0015_{10} \times 10^2$
- 4. Round the normalized sum
 - \Box e.g. $1.0015_{10} \times 10^2$ becomes $1.002_{10} \times 10^2$

- \square Add 0.5_{10} and -0.4375_{10} in binary using the above algorithm
- ☐ Assume for simplicity that we only keep 4 bits of precision

■ Answer:

- \rightarrow 0.5₁₀ = 1.000₂ x 2⁻¹
- \rightarrow -0.4375₁₀ = -1.110₂ x 2⁻²
- 1. $-1.110_2 \times 2^{-2} \Rightarrow -0.111_2 \times 2^{-1}$
- 2. $1.000_2 \times 2^{-1} + (-0.111_2 \times 2^{-1}) = 0.001_2 \times 2^{-1}$
- 3. $0.001_2 \times 2^{-1} \Rightarrow 1.000_2 \times 2^{-4}$ (no overflow/underflow)
- 4. 1.000_2 x 2^{-4} (fits in 4 bits, no need for rounding)

- □ Example: $(1.110_{10} \times 10^{10}) \times (9.200_{10} \times 10^{-5})$
- □ Assumptions:
 - Significand size = 4 decimal digits
 - Exponent size = 2 decimal digits

Algorithm:

- 1. Add the exponents together,
 - > new exponent = 10 + (-5) = 5
- 2. Multiply the significands together
 - \rightarrow new significand = $1.110_{10} \times 9.200_{10} = 10.212_{10}$
- 3. Normalize the product,
 - \rightarrow 10.212₁₀ x 10⁵ \Rightarrow 1.0212₁₀ x 10⁶
- 4. Round the product
 - \rightarrow 1.0212₁₀ x 10⁶ \Rightarrow 1.021₁₀ x 10⁶
- 5. Find the sign of the product
 - \rightarrow +1.021₁₀ x 10⁶

Floating-Point Multiplication

- \square Multiply 0.5_{10} and -0.4375_{10} in binary using the above algorithm
- Assume for simplicity that we only keep 4 bits of precision
- Answer:
- \rightarrow 0.5₁₀ = 1.000₂ x 2⁻¹
- \rightarrow -0.4375₁₀ = -1.110₂ x 2⁻²
- new exponent = -1 + (-2) = -3
- new significand = $1.000_2 \times 1.110_2 = 1.110_2$
- 1.110₂ x 2⁻³ remains unchanged (no overflow/underflow)
- 1.110₂ x 2⁻³ fits in 4 bits (no need for rounding)
- product = $-1.110_2 \times 2^{-3}$

- MIPS supports IEEE 754 single-precision and double-precision formats
- **□** Addition:
 - o add.s ('addition, single'), add.d ('addition, double')
- **□** Subtraction:
 - o sub.s ('subtraction, single'), sub.d ('subtraction, double')
- **Multiplication**:
 - o mul.s ('multiplication, single'), mul.d ('multiplication, double')
- **□** Division:
 - o div.s ('division, single'), div.d ('division, double')
- **□** Comparison:
 - O c.x.s ('comparison, single'), c.x.d ('comparison, double')
 - O where x may be eq, neq, 1t, le, gt, ge
- **□** Branch:
 - o bclt ('branch, true'), bclf ('branch, false')

- MIPS has a FP co-processor
 - Referred to as co-processor 1
 - Has its own floating-point (FP) registers: \$f0, \$f1, \$f2, ...
 - These registers are used for either single or double precision
- □ Separate loads and stores for FP registers: lwc1 and swc1
- ☐ Example:
 - load two single precision numbers from memory
 - then, add them and store the sum

```
lwc1  $f4, 4($sp)  # Load 32-bit f.p. number into F4
lwc1  $f6, 8($sp)  # Load 32-bit f.p. number into F6
add.s  $f2, $f4, $f6  # F2 = F4 + F6 single precision
swc1  $f2, 0($sp)  # Store 32-bit f.p. number from F2
```

- ☐ Floating-point numbers are normally approximations
 - An infinite variety of real numbers exists between 0 and 1
 - No more than 2⁵³ can be exactly represented in double precision
- □ Do the best we can
 - Get floating-point representation close to actual number
 - Keeps 2 extra bits on the right during intermediate additions
 - guard and round
 - O Example:
 - $2.56_{10} \times 10^0 + 2.34_{10} \times 10^2$, assume 3 significant decimal digits

With guard and round digits without
$$2.3400_{10}$$
 2.34_{10} $+ 0.0256_{10}$ $- 0.0256_{10}$ $- 0.0256_{10}$ $- 0.0210$ After rounding $2.37_{10} \times 10^2$

- □ 2's complement representation for signed numbers
- □ A 32-bit ALU can be built by connecting 32 1-bit ALUs together
 - Subtraction makes use of addition
 - SLT makes use of subtraction
 - A multiplexor is used in an ALU to select appropriate result
 - Carry lookahead adders better than ripple carry adders
- ☐ Multiplication: through a series of addition and shift operations
- □ **Division**: through a series of subtraction and shift operations
 - Make sure you understand how the hardware algorithms work
- □ Overflow (a type of exception)
 - A result of addition or subtraction
 - Detected by checking the signs of the operands and result

- □ Floating-point numbers
 - Representation follows closely the scientific notation
 - Almost all computers, including MIPS, follow IEEE 754 standard
- ☐ In MIPS,
 - Single-precision floating-point representation takes 32 bits
 - Double-precision floating-point representation takes 64 bits
 - Has a FP co-processor and separate FP registers
- □ Overflow (underflow) in floating-point representation occurs
 - When the exponent is too large (small) to be represented