Disclaimer I wrote this to my best knowledge, however, no guarantees are given whatsoever.	

Sources

If not noted differently, the source is the lecture slides and/or the accompanying book.

1 Approximate Retrieval

Nearest-Neighbor Find $x^* = \operatorname{argmin}_{x \in X} d(x, y)$ given $S, y \in$ $S, X \subseteq S$.

Near-Duplicate detection Find all $x,x' \in X$ with $d(x,x') \le \epsilon$.

1.1 k-Shingling

Documents (or videos) as set of k-shingles (a. k. a. k-grams). Tradeoff FP/FN Favor FP (work) over FN (wrong). Filter FP by k-shingle is consecutive appearance of k chars/words.

Binary shingle matrix $M \in \{0,1\}^{C \times N}$ where $M_{i,j} = 1$ iff document 2 Supervised Learning j contains shingle i, N documents, C k-shingles.

1.2 Distance functions

Def. $d: S \times S \to \mathbb{R}$ is distance function iff pos. definite except d(x,x) = 0 $(d(x,x') > 0 \iff x \neq x')$, symmetric (d(x,x') = d(x',x))and triangle inequality holds $(d(x,x'') \le d(x,x') + d(x',x''))$.

Euclidean
$$L_r$$
 $d_r(x,y) = ||x-y||_r = (\sum_i |x_i-y_i|^r)^{1/r}$.

Cosine
$$\operatorname{Sim}_c(A,B) = \frac{A \cdot B}{\|A\| \cdot \|B\|}, \ d_c(A,B) = \frac{\cos^{-1}(\operatorname{Sim}_c(A,B))}{\pi}.$$

Jaccard sim., d.
$$\operatorname{Sim}_{J}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$
, $d_{J}(A,B) = 1 - \operatorname{Sim}_{J}(A,B)$. H -strongly convex f H -strongly convex iff $f(x') \geq f(x) + Performance \epsilon$ -accurate sol. with prob. $\geq 1 - \delta$ in runtime $O^{*}(\frac{d \cdot \log \frac{1}{\delta}}{\lambda \epsilon})$.

1.3 LSH – local sensitive hashing

Key Idea: Similiar documents have similiar hash.

Note: Trivial for exact duplicates (hash-collision \rightarrow candidate pair).

Min-hash-family $h_{\pi}(C)$ for Jaccard Hash is the min (i.e. first) non-zero permutated row index: $h_{\pi}(C) = \min_{i \in C(i)=1} \pi(i)$, bin. vec. C, rand. perm. π .

Note:
$$\Pr_{\pi}[h_{\pi}(C_1) = h_{\pi}(C_2)] = \operatorname{Sim}_J(C_1, C_2)$$
 if $\pi \in_{\text{u.a.r.}} S_{|C|}$.

Min-hash L_r -norm: Fix $a \in \mathbb{R}$. Random line \boldsymbol{w} paritioned in buckets of length a. Project x, y onto w, if in same bucket, $h_{w}(x) = h_{w}(y)$ there exists a (d1,d2,p1,p2)-sensitive family $\forall d1 < d2$ with p1 > p2. prediction becomes $y = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i y_i k(\boldsymbol{x}_i,\boldsymbol{x}))$.

Min-hash cos.
$$h_{\boldsymbol{w}}(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x})$$
. $\Pr_{\boldsymbol{w}}[h_{\boldsymbol{w}}(\boldsymbol{x}) = h_{\boldsymbol{w}}(\boldsymbol{y})] = 1 - \frac{\theta_{\boldsymbol{x},\boldsymbol{y}}}{\pi}$. 2.2 Convex Programming

Min-hash signature matrix $M_S \in [N]^{n \times C}$ with $M_S(i,c) = h_i(C_c)$ Convex program $\min_{\boldsymbol{x}} f(\boldsymbol{x})$, s. t. $\boldsymbol{x} \in S$, f convex. given n hash-fns h_i drawn randomly from a universal hash family.

Pseudo permutation h_{π} with $\pi(i) = (a \cdot i + b) \mod p \mod N$, Nnumber of shingles, $p \ge N$ prime and $a,b \in_{\text{u.a.r.}} [p]$ with $a \ne 0$. Use as universal hash family. Only store a and b. Much more efficient.

Compute signature matix M_S For column $c \in [C]$, row $r \in [N]$ with $C_c(r) = 1$, $M_S(i,c) \leftarrow \min\{h_i(C_c), M_S(i,c)\}$ for all h_i .

$$(d_1,d_2,p_1,p_2)$$
-sensitivity of $F=\{h_1,\ldots,h_n\}: \ \forall x,y\in S: d(x,y)\leq d_1\Longrightarrow P[h(x)=h(y)]\geq p_1 \ \text{and} \ d(x,y)\geq d_2\Longrightarrow P[h(x)=h(y)]\leq p_2.$
 r -way AND $h=[h_1,\ldots,h_r],\ h(x)=h(y)\Leftrightarrow \forall i\ h_i(x)=h_i(y)$ is (d_1,d_2,p_1^r,p_2^r) -sensitive. Decreases FP.

b-way OR
$$h = [h_1, ..., h_b], h(x) = h(y) \Leftrightarrow \exists i \ h_i(x) = h_i(y) \ i \ (d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b)$$
-sensitive. Decreases FN.

Boosting by composition b-way OR after r-way AND. Group sig. Online proj. gradient descent (OPGD) Update for online SVM: matrix into b bands of r rows. CP match in at least one band (check $w_{t+1} = \text{Proj}_S(w_t - \eta_t \nabla f_t(w_t))$ with $\text{Proj}_S(w) = \operatorname{argmin}_{w' \in S} ||w' - \eta_t \nabla f_t(w_t)||$ by hashing). Result is $(d_1, d_2, 1 - (1 - p_1^r)^b, 1 - (1 - p_2^r)^b)$ -sensitive. r pulls stronger than b. r pulls down.

r-way AND after b-way OR. Result is $(d_1,d_2,(1-(1-p_1)^b)^r,(1-p_1)^b)^r$ $(1-p_2)^b$ -sensitive. b pulls stronger than r. b pulls up.

checking signature matrix, shingles or even whole documents.

Homogeneous transform $\tilde{\boldsymbol{x}} = [\boldsymbol{x}, 1]; \tilde{\boldsymbol{w}} = [\boldsymbol{w}, b], \text{ now } \boldsymbol{w} \text{ passes origin.}$ **Kernel** k is inner product in high-dim. space: $k(x,y) = \langle \phi(x), \phi(y) \rangle$ shift-invariance $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$.

Gaussian $k(\boldsymbol{x}-\boldsymbol{y}) = \exp(-||\boldsymbol{x}-\boldsymbol{y}||_2^2/h^2)$.

Convex function $f: S \to \mathbb{R}$ is convex iff $\forall x, x' \in S, \lambda \in$ $[0,1], \lambda f(x) + (1-\lambda)f(x') \ge f(\lambda x + (1-\lambda)x'), \text{ i. e. every segment lies } \min_{\boldsymbol{w}} \sum_{t=1}^{T} g_t(\boldsymbol{w}), \text{ s.t. } ||\boldsymbol{w}||_2 \le \frac{1}{\sqrt{t}}, g_t(\boldsymbol{w}) = \frac{\lambda}{2} ||\boldsymbol{w}||_2^2 + f_t(\boldsymbol{w}).$ above function. Equiv. bounded by linear fn. at every point.

 $\nabla f(x)^T (x'-x) + \frac{H}{2} ||x'-x||_2^2$, i. e. bounded by quadratic fn (at every point).

2.1 Support vector machine (SVM)

SVM primal

Quadratic $\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{w} + C \sum_i \xi_i$, s.t. $\forall i: y_i \boldsymbol{w}^T \boldsymbol{x}_i \ge 1 - \xi_i$, $\forall i: \xi_i \ge 0$. Hinge loss $\min_{\boldsymbol{w}} \lambda \boldsymbol{w}^T \boldsymbol{w} + \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ with $\lambda = \frac{1}{C}$. Norm-constrained $\min_{\boldsymbol{w}} \sum_{i} \max(0,1-y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ s.t. $||\boldsymbol{w}||_2 \leq \frac{1}{\sqrt{2}}$.

Lagrangian dual $\max_{\alpha} \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}, \ \alpha_{i} \in [0,C].$

In 2-dim. forms a $(a/2, 2 \cdot a, 1/2, 1/3)$ -sensitive hash-family. In d-dim. Apply kernel trick: $\max_{\alpha} \sum_{i} \alpha_i + \frac{1}{2} \sum_{i} \alpha_i \alpha_i y_i y_i k(\boldsymbol{x}_i, \boldsymbol{x}_i), \alpha_i \in [0, C]$

Online convex program (OCP) $\min_{\boldsymbol{w}} \sum_{t=1}^{T} f_t(\boldsymbol{w})$, s. t. $\boldsymbol{w} \in S$.

General regularized form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i) + \lambda R(\boldsymbol{w})$, where lis a (convex) loss function and \overline{R} is the (convex) regularizer.

General norm-constrained form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i)$, s. t. $\boldsymbol{w} \in$ S_{λ} , l is loss and S_{λ} some (norm-)constraint. Note: This is an OCP.

Solving OCP Feasible set $S \subseteq \mathbb{R}^d$ and start pt. $w_0 \in S$, OCP (as approximate $K = K_{XS}K_{SS}^{-1}K_{SX}, K_{SS} = VDV^T$. above). Round $t \in [T]$: pick feasible pt. \mathbf{w}_t , get convex fn. f_t , incur $l_t = f_t(\boldsymbol{w}_t)$. Regret $R_T = (\sum_{t=1}^T l_t) - \min_{\boldsymbol{w} \in S} \sum_{t=1}^T f_t(\boldsymbol{w})$.

Online SVM $||w||_2 \le \frac{1}{7}$ (norm-constr.). For new pt. x_t classify Uncertainty sampl. Until all labels can be inferred (or until a Best $L^* = \min_{\boldsymbol{w}} \sum_{t=1}^T \max(0, 1 - y_t \boldsymbol{w}^T \boldsymbol{x}_t)$, regret $R_t = \sum_{t=1}^T l_t - L^*$. argmax_{\boldsymbol{x}} $U_t(\boldsymbol{x})$. SVM: $x_t = \operatorname{argmin}_{x_t} |\boldsymbol{w}^T \boldsymbol{x}_t|$, i.e. $U_t(\boldsymbol{x}) = \frac{1}{|\boldsymbol{w}_t^T \boldsymbol{x}_t|}$

 $|w|_{2}$, gives regret bound $\frac{R_{T}}{T} \leq \frac{1}{\sqrt{T}}(||w_{0} - w^{*}||_{2}^{2} + ||\nabla f||_{2}^{2}),$ $\nabla f_t(\boldsymbol{w}_t) = -y_t \boldsymbol{x}_t$, if $y_t \boldsymbol{w}_t^T \boldsymbol{x}_t \leq 1$, else 0; $\eta_t = \frac{1}{\sqrt{4}}$ and $\operatorname{Proj}_{s}(\boldsymbol{w}') = \boldsymbol{w}' \cdot \min \left(1, 1/(\sqrt{\lambda}||\boldsymbol{w}'||_{2}) \right).$

For H-strongly convex fn, $\eta_t = \frac{1}{H_t}$ gives $R_t \leq \frac{\|\nabla f\|^2}{2H} (1 + \log T)$.

Stochastic Gradient Descent (SGD) Convex program is unconstrained and decomposes $f(w) = \sum_{i=1}^{n} g(w;i)$. In SVM **Linear classifier** $y_i = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}_i)$ assuming \boldsymbol{w} goes through origin. $g(w;i) = \frac{\lambda w^T w}{n} + l_h(w;x_i,y_i)$. Algo: $w \leftarrow 0$ and choose β_t . until convergence: $(x_i, y_i) \in_{u.a.r} X$. $w \leftarrow w - \beta_t \cdot \nabla_w(g(w; i))$.

> Stochastic PGD (SPGD) Online-to-batch. Compute $\tilde{\boldsymbol{w}} =$ $\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}$. If data i. i. d.: exp. $error (risk) \mathbb{E}[L(\tilde{\boldsymbol{w}})] \leq L(\boldsymbol{w}^{*}) + R_{T}/T, L(\boldsymbol{w}^{*})$ is best error (risk) possible.

> **PEGASOS** OPGD w/ mini-batches on strongly convex SVM form. g_t is λ -strongly convex, $\nabla g_t(\mathbf{w}) = \lambda \mathbf{w} + \nabla f_t(\mathbf{w})$.

> **ADAGrad** Adapt to geometry. *Mahalanobis norm* $||w||_G = ||Gw||_2$. $w_{t+1} = \operatorname{argmin}_{w \in S} ||w - (w_t - \eta G_t^{-1} \nabla f_t(w))||_{G_t}$. Min. regret with

> $G_t = (\sum_{\tau=1}^t \nabla f_{\tau}(\boldsymbol{w}_{\tau}) \nabla f_{\tau}(\boldsymbol{w}_{\tau})^T)^{1/2}$. Easily invable matrix with $G_t = \operatorname{diag}(...)$. $R_t \in O(\frac{\|\boldsymbol{w}^*\|_{\infty}}{\sqrt{T}} \sqrt{d})$, even better for sparse data.

> **ADAM** Add 'momentum' term: $\mathbf{w}_{t+1} = \mathbf{w}_t - \mu \bar{g}_t$, $g_t = \nabla f_t(\mathbf{w})$, $\bar{g}_t = (1-\beta)g_t + \beta \bar{g}_{t-1}, \ \bar{g}_0 = 0.$ Helps for dense gradients.

> **Parallel SGD (PSGD)** Randomly partition to k (indep.) machines. Comp. $\mathbf{w} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{w}_i$. $\mathbb{E}[\text{err}] \in O(\epsilon(\frac{1}{k\sqrt{\lambda}} + 1))$ if $T \in \Omega(\frac{\log \frac{k\lambda}{\epsilon}}{\epsilon \lambda})$. Suitable for MapReduce cluster, multi, passes possible.

Hogwild! Shared mem., no sync., sparse data. [...]

Implicit kernel trick Map $x \in \mathbb{R}^d \to \phi(x) \in \mathbb{R}^D \to z(x) \in \mathbb{R}^m$, $d \ll$ $D,m \ll D$. Where $\phi(x)$ corresponds to a kernel $k(x,x') = \phi(x)^T \phi(x')$.

Random fourier features Given shift-invariant kernel k.

$$p(\omega) = \frac{1}{2\pi} \int e^{-j\omega'\delta} k(\delta) d\Delta$$

$$\omega_i \sim p = \text{eg Gaussian}, \ b_i \sim U(0,2\pi)$$

$$z(\mathbf{x}) \equiv \sqrt{2/m} [\cos(\omega_1' \mathbf{x} + b_1) ... \cos(\omega_m' \mathbf{x} + b_m)]$$

Nyström features (need entire dataset) In practice: pick random samples $S = \{\hat{x}_1 ... \hat{x}_n\} \subseteq X$

 $K_{SXi,j} = k(\hat{\boldsymbol{x}}_i, \hat{\boldsymbol{x}}_j), K_{SSi,j} = k(\hat{\boldsymbol{x}}_i, \hat{\boldsymbol{x}}_j)$ new point x': $z(x') = D^{-1/2}V^T[k(x',\hat{x}_1),...,k(x',\hat{x}_m)]$

3 Pool-based active Learning (semi-supervised)

b-way OR $h = [h_1, \dots, h_b], h(x) = h(y) \Leftrightarrow \exists i \ h_i(x) = h_i(y) \text{ is } y_t = \operatorname{sgn}(\boldsymbol{w}_t^T \boldsymbol{x}_t), \text{ incur } l_t = \max(0, 1 - y_t \boldsymbol{w}_t^T \boldsymbol{x}_t), \text{ update } \boldsymbol{w}_t \text{ (see later)}. \ label \ budget); \ U_t(x) = U(x|x_{1:t-1}, y_{1:t-1}), \text{ request } y_t \text{ for } x_t = y_t \text{ for } x_t = y_t \text{ or } x_t = y$

Sub-linear time w/ LSH $|w^Tx_i|$ small if $\angle_{w.x_i}$ close to $\frac{\pi}{2}$ (90°). ϵ -greedy Explore u.a.r. with prob. ϵ_t , exploit with prob. $1-\epsilon_t$: Lazy Greedy: Observation: Submodularity implies $\Delta(s|A_i) \geq 1$ Hash hyperplane: $h_{u,v}(a,b) = [h_u(a), h_v(b)] = [\operatorname{sgn}(u^T a), \operatorname{sgn}(v^T b)]$. choose $\operatorname{argmax}_i \hat{\mu}_i$. Suitable $\epsilon_t \in O(1/t)$ gives $R_T \in O(k \log T)$. $\Delta(s|A_{i+1})$. Algo.: $A_0 \leftarrow \{\}$; first iteration as usual. Then keep LSH hash family: $h_H(z) = h_{u,v}(z,z)$ if z datapoint, $h_H(z) =$ Clearly unoptimal. $h_{u,v}(\boldsymbol{z},-\boldsymbol{z})$ if z query hyperplane. $\Pr[h_H(\boldsymbol{w}) = h_H(\boldsymbol{x})] =$

Informativeness Metric of "information" gainable; \neq uncertainty. Update $n_{i_t} \leftarrow n_{i_t} + 1, \hat{\mu}_{i_t} \leftarrow \hat{\mu}_{i_t} + \frac{y_t - \mu_{i_t}}{n_{i_t}}$.

Version Space $V(D) = \{ \boldsymbol{w} \mid \forall (\boldsymbol{x}, y) \in D \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = y \}$

 $\tilde{\mathcal{V}}(D;U) = \{h: U \to \{\pm 1\} \mid \exists \boldsymbol{w} \in \mathcal{V}(D) \ \forall x \in U \ \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = h(\boldsymbol{x})\}.$

 $v^{\pm}(x) = |\tilde{\mathcal{V}}(D \cup \{(x,\pm)\}; U)|, \text{ label of argmin}_{x} \max\{v^{-}(x), v^{+}(x)\}.$

Approx. $|\mathcal{V}|$ Margins of SVM $m^{\pm}(x)$ for labels $\{+,-\}, \forall x$. Max-min $\max_x \min\{m^+(x), m^-(x)\}\$ or ratio $\max_x \min\{\frac{m^+(x)}{m^-(x)}, \frac{m^-(x)}{m^+(x)}\}\$.

4 Model-based clustering - Unsupervised learning

k-means problem $\min_{\mu} L(\mu)$ with $L(\mu) = \sum_{i=1}^{N} \min_{j} ||\boldsymbol{x}_i - \mu_j||_2^2$ and cluster centers $\mu = \mu_1, ..., \mu_k$. Non-convex! NP-hard in general!

LLoyd's Init $\mu^{(0)}$ (somehow/randomly). Assign all x_i to closest center $z_i \leftarrow \operatorname{argmin}_{i \in [k]} ||x_i - \mu_i^{(t-1)}||_2^2$, Update to mean: $\mu_i^{(t)} \leftarrow \frac{1}{n_i} \sum_{i:z_i=j} \boldsymbol{x}_i$. Always converge to local minimum.

Online k-means Init μ somehow/randomly. For $t \in [n]$ find $c = \operatorname{argmin}_i ||\mu_i - \boldsymbol{x}_t||_2$, set $\mu_c \leftarrow \mu_c + \eta_t (\boldsymbol{x}_t - \mu_c)$. For local optimum: $\sum_{t} \eta_{t} = \infty \wedge \sum_{t} \eta_{t}^{2} < \infty$ suffices, e.g. $\eta_{t} = \frac{c}{t}$, $c \in \mathbb{R}$.

Weighted rep. C $L_k(\mu;C) = \sum_{(w,x) \in C} w \cdot \min_j ||\mu_j - x||_2^2$.

 (k,ϵ) -coreset iff $\forall \mu: (1-\epsilon)L_k(\mu;D) \leq L_k(\mu;C) \leq (1+\epsilon)L_k(\mu;D)$.

 D^2 -sampling Sample prob. $p(x) = \frac{d(x,B)^2}{\sum_{x \in X} d(x',B)^2}$

Merge coresets union of (k,ϵ) -coreset is also (k,ϵ) -coreset.

Compress a (k,δ) -coreset of a (k,ϵ) -coreset is a $(k,\epsilon+\delta+\epsilon\delta)$ -coreset.

Coresets on streams Bin. tree of merge-compress. Error \propto height.

Mapreduce k-means Construct (k,ϵ) -coreset C, solve k-means (w/ϵ) many restarts) on coreset. (Repeat.) Near-optimal solution.

5 *k*-armed bandits as recommender systems

k-armed bandit k arms with diff. prob. dist. For $t \in [T]$ rounds, Marginal gain: $\Delta_F(s|A) = F(\{s\} \cup A) - F(A)$ pick $i_t \in [k]$, sample $y_t \in P_i$ (indep. of other rounds). Max. $\sum_{t=1}^T y_t$.

Regret μ_i mean of P_i (arm i), $\mu^* = \max_i \mu_i$. Regret $r_t = \mu^* - \mu_{i_t}$. Total regret $R_T = \sum_{t=1}^T r_t$.

UCB1 Init $\hat{\mu}_i \leftarrow 0$; try all arms once. Following $t \in [T-k]$ rounds: $\Pr[h_{\boldsymbol{u}}(\boldsymbol{w}) = h_{\boldsymbol{u}}(\boldsymbol{x})] \Pr[h_{\boldsymbol{v}}(-\boldsymbol{w}) = h_{\boldsymbol{v}}(\boldsymbol{x})] = \frac{1}{4} - \frac{1}{\pi^2} (\angle_{\boldsymbol{x}, \boldsymbol{w}} - \frac{\pi}{2})^2.$ Hash all unlabeled. Loop: Hash \boldsymbol{w} , req. labels for hash-coll., update. $UCB(i) \leftarrow \hat{\mu}_i + \sqrt{\frac{2\log t}{n_i}}$, pick $i_t \leftarrow \operatorname{argmax}_i UCB(i)$, observe y_t . 7 Tips

Relevant version space given unlabeled pool $U = \{x'_1, ..., x'_n\}$. recommend $x_t \in \mathcal{A}_t$. Reward $y_t = f(x_t, z_t) + \epsilon_t$. Regret $\tilde{\mathcal{V}}(D;U) = \{h: U \to \{\pm 1\} \mid \exists w \in \mathcal{V}(D) \ \forall x \in U \ \operatorname{sgn}(w^Tx) = h(x)\}$. $r_t = \max_x f(x,z_t) - f(x_t,z_t)$. Often $f(x,z) = w_x^Tz$ linear.

Generalized binary search Init $D \leftarrow \{\}$. While $|\tilde{\mathcal{V}}(D;U)| > 1$, comp. Idea behind LinUCB Estimate $\hat{\boldsymbol{w}}_i = \operatorname{argmin}_{\boldsymbol{w}} \sum_{t=1}^m (y_t - \boldsymbol{w}^T \boldsymbol{z}_t) + 1$ $||\boldsymbol{w}||_2^2$. Closed form: $\hat{\boldsymbol{w}}_i = M_i^{-1} D_i^T \boldsymbol{y}_i, M_i = D_i^T D_i + I$ $D_i = [z_1|...|z_m], y_i = (y_1|...|y_m)^T.$

Confidence If $\alpha = 1 + \sqrt{\ln(\frac{2}{\delta})/2}$:

$$\Pr\left[|\hat{\boldsymbol{w}}_i^T \boldsymbol{z}_t - \boldsymbol{w}_i^T \boldsymbol{z}_t| \le \alpha \sqrt{\boldsymbol{z}_t^T M_i^{-1} \boldsymbol{z}_t}\right] \ge 1 - \delta.$$

LinUCB (Algorithm) For t = [T] receive action set A_t and features z_t . For all $x \in A_t$: if x new, set $M_x \leftarrow \mathbb{I}$ and $b_x \leftarrow 0$; set $\hat{w}_{x} \leftarrow M_{x}^{-1}b_{x}$; set $UCB_{x} \leftarrow \hat{w}_{x}^{T}z_{t} + \alpha\sqrt{z_{t}^{T}M_{x}^{-1}z_{t}}$. Recommend action $x_t = \operatorname{argmax}_{x \in A_t} UCB_x$; observe y_t . Set $M_x \leftarrow M_x + z_t z_t^T$ and $b_x \leftarrow b_x + y_t z_t$.

Hybrid Model $y_t = \boldsymbol{w}_i^T \boldsymbol{z}_t + \beta^T \phi(\boldsymbol{x}_i, \boldsymbol{z}_t) + \epsilon_t$ captures sep. and

Rejection Sampling Evaluate bandit: For $t \in \mathbb{N}$ read log $(\boldsymbol{x}_1^{(t)},\ldots,\boldsymbol{x}_k^{(t)},\boldsymbol{z}_t,a_t,y_t)$. Pick a_t' by algo. If $a_t'=a_t$ feed y_t to algo., else ignore line. Stop after T feedbacks.

6 Submodularity

 $F: 2^V \to \mathbb{R}$ subm. iff $F(A \cup \{s\}) - F(A) > F(B \cup \{s\}) - F(B)$, $\forall A \subseteq B \subseteq V, s \in V \text{ with } s \notin B.$

Closedness of non-negative linear combination: If $F_{1,...,m}(A)$ subm. then $\lambda_i \ge 0$: $F'(A) := \sum_i \lambda_i F_i(A)$ subm.

Other closedness: If F(S) is subm. on V and $W \subseteq V$, then Restriction $F(S \cap W)$, Conditioning $F(S \cup W)$, Reflection $F(V \setminus S)$ are submodular.

Greedy algo: In round i+1, previously picked $A_i = \{s_1,...,s_i\}$; pick $s_{i+1} = \operatorname{argmax}_{c} \Delta_{F}(s|A_{i}) = \operatorname{argmax}_{c}(F(\{s\} \cup A_{i}) - F(A_{i})).$ This gives a $(1-1/e) \approx 0.63$ -approximation.

ordered list of Δ_i from prev. iteration. For $i \in [k]$ do: $\Delta_i = F(A_{i-1} \cup A_i)$ $\{s^*\}$), $s^* = \operatorname{argmax}_s \Delta_F(s|A_{i-1})$ (top element). If s^* is still top, then $A_i \leftarrow A_{i-1} \cup \{s^*\}$ else resort and pick top element (as in Greedy).

$$\sum ||y_i - w^T x_i||^2 = \sum (y_i - w^T x_i)^T (y_i - w^T x_i) = (y - Xw)^T (y - Xw)$$

Contextual bandits Round t: Obs. context $z_t \in \mathcal{Z} \subseteq \mathbb{R}^d$; Showing active learning needs n labels Assume points are all distinct and algo has returned -1 for the first n-1 labels. Choose x s.t. algo can not distinguish between -1,+1.

> **Sublinear strategy approach** Sort and rename points. Cleverly search witnesses (points determining interval).

> **Deriving Dual** Start with quadratic. Rewrite constraints $c_{1,i},c_{2,i}$ s.t. $c_i(w) \ge 0$. Get Lagrangian $L(w,\xi,\alpha,\gamma)$: $f(w) - \sum_i \alpha_i c_{1,i} - \sum_i \gamma_i c_{2,i}$. Set derivatives $\frac{\partial L}{\partial w}$ and $\frac{\partial L}{\partial \varepsilon}$ to 0 and get w, C. Insert into L(w). Result is max. qp with constraint $\alpha_i \in [0,C]$

8 Probability

$$\mathbb{E}[X] = \sum_{x} \Pr(x) \cdot x$$

$$\mathbb{E}[aX + aY] = a \cdot \mathbb{E}[x] + b \cdot \mathbb{E}[y]$$

$$\operatorname{Var}[X] = \sum_{x} p(x) \cdot (x - \mathbb{E}[X])^{2}$$

$$= \mathbb{E}[(X - \mathbb{E}[X])^{2}] = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

$$\operatorname{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

$$\operatorname{Var}[\alpha X + \beta Y] = \alpha \operatorname{Var}[X] + 2\alpha \beta \operatorname{Cov}[X, Y] + \beta \operatorname{Cov}[Y]$$

$$\operatorname{Cov}[X, X] = \operatorname{Var}[X]$$

$$\operatorname{Cov}[A + B, X] = \operatorname{Cov}[A, X] + \operatorname{Cov}[B, X]$$

$$\operatorname{Pr}(A \cup B) = \operatorname{Pr}(A) + P(B) - \operatorname{Pr}(A \cap B)$$

$$\operatorname{Pr}(A \cup B) = \operatorname{Pr}(A) + P(B) \quad \text{if A, B mutually exclusive}$$

$$\operatorname{Pr}(A \cap B) = \operatorname{Pr}(A \mid B) P(B) = \operatorname{Pr}(B \mid A) P(A)$$

$$\operatorname{Pr}(A \cap B) = \operatorname{Pr}(A) P(B) \quad \text{if A, B independent}$$

$$\operatorname{Pr}(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A) P(A)}{P(B)}$$

Hoeffding's Inequality

$$\Pr(\overline{X} - \operatorname{E}[\overline{X}] \ge t) \le \exp\left(-\frac{2n^2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

$$\Pr(|\overline{X} - \operatorname{E}[\overline{X}]| \ge t) \le 2\exp\left(-\frac{2n^2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Markov's Inequality $\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$

Gaussian
$$\mathcal{N}(\mu, \sigma^2)$$
: $\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$