

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 7: Uncertainty, heterogeneity and VOI

7.3: Reporting uncertainty in results

Susan Griffin, PhD Professor, CHE

Course structure – where are we up to?

Objectives

- Understand how to interpret the uncertainty captured with probabilistic sensitivity analysis
- Appreciate the limitations of the ICER, and the utility of net benefit statistics
- Understand common methods of display
 - Cost effectiveness planes
 - Cost effectiveness acceptability curves and frontiers

Reporting results

- Distribution of outcomes for each strategy
 - Cost-effectiveness plane informed by output of Monte Carlo simulation
- Confidence intervals for the expected outcome
 - Problems with ICER as ratio statistic
 - Can be used for incremental net benefit
 - Focus on pair-wise comparisons
- Probability that a particular intervention is optimal
 - Cost-effectiveness acceptability curve
 - Cost-effectiveness acceptability frontier

Cost-effectiveness plane

Distribution of ICER

Net Benefit Framework

- Reformulate the traditional decisional rule in terms of
 - Incremental Net Benefit = $(\Delta Q)\lambda$ $(\Delta C)>0$
 - Net Benefit = Max $(Q_i \cdot \lambda C_i)$
- Easy to calculate and avoids problems with ICER
 - Negative INB has one interpretation
 - Maximising NB simplifies multiple treatment comparisons
- NB is function of the unknown value λ
 - Not necessarily a weakness of this approach
 - Forced to explicitly consider the value λ

CEACs: Multiple treatment options

- Standard acceptability curve has a complement that represents the comparator alternative
- In the multiple option case, only one treatment can be costeffective given a particular cost-effectiveness threshold and in any one simulation
- For each option and for each simulation formulate an indicator of whether that option is optimal
- Average across all simulations to find the proportion of times each option is optimal for a given threshold
- Repeat process varying the threshold and plot the results

How uncertain is a decision?

■ Calculate net benefit for λ=£30,000

Simulation	Treat X	Treat Y	Treat Z	Optimal choice
Simulation 1	11	12	13	Z
Simulation 2	12	10	9	Χ
Simulation 3	13	18	15	Υ
Simulation 4	14	16	17	Z
Simulation 5	15	14	11	Χ
Expectation	13	14	13	

- Probability X is cost-effective = 40%
- Probability Y is cost-effective = 20%
- Probability Z is cost-effective = 40%

Choose Y and expect 14 QALYs
But we are not always right
Probability of error = 0.8

Cost-effectiveness acceptability curve (CEAC)

- Illustrates the uncertainty around the estimate of cost-effectiveness
- Shows the probability that one treatment is cost-effective relative to the alternative treatments for a range of threshold values

Multiple CEACs: GERD management example

Cost-effectiveness acceptability frontier (CEAF)

Summary

- Heterogeneity
- Structural uncertainty
- Policy choices
- Parameter uncertainty
- Distributions
 - fitted
 - assigned
 - elicited
- Outcomes summarised
 - cost-effectiveness plane
 - CEAC, CEAF

scenario/deterministic SA

probabilistic SA

Reading list

- Briggs AH. Handling uncertainty in cost-effectiveness models. *PharmacoEconomics* 2000; 17(5): 479-500.
- Briggs AH, Goeree R, Blackhouse G, O'Brien BJ. Probabilistic analysis of costeffectiveness models: choosing between treatment strategies for gastroesophageal reflux disease. *Medical Decision Making* 2002; 22: 290-308.
- Briggs A, Claxton K, Sculpher MJ. Decision modelling for health economic evaluation.
 Oxford University Press, 2006.
- Claxton K. Characterising, reporting, and interpreting uncertainty. In: Drummond, Sculpher, Claxton, Stoddart and Torrance eds. Methods for the Economic Evaluation of Health Care Programmes. Oxford, UK. Oxford University Press, 2015.
- Fenwick E, O'Brien B, Briggs AH. Cost-effectiveness acceptability curves facts, fallacies and frequently asked questions. *Health Economics* 2004; 13: 405-415.
- van der Bles AM, van der Linden S, Freeman ALJ, et al. Communicating uncertainty about facts, numbers and science. Royal Society Open Science 2019;6: 181870