Delta method

Emanuele

[2023-06-10 Sat]

Intro

The delta method is a trick by which one can calculate mean and variance of a function of a random variable (see eg [1] for a rigorous definition). It works by writing the Taylor expansion of the function (say g(X)) around $E[X] = \mu$.

To compute the mean of g(X) one does

$$E[g(X)] \approx E[g(\mu) + g'(\mu)(X - \mu)] = g(\mu)$$

. For the variance one has

$$Var[g(X)] = E[(g(X) - E[g(X)])^{2}] \approx E[(g(X) - g(\mu))^{2}]$$

$$= E[(g(\mu) + g'(\mu)(X - \mu) - g(\mu))^{2}] = (g'(\mu))^{2}E[(X - \mu)^{2}]$$

$$= (g'(\mu))^{2}Var[X]$$

Example: arcin transform of binomial random variable

Let's consider $Y \sim \text{Binomial}(N, \mu)$; hence $E[Y] = \mu$ and $\text{Var}[Y] = N\mu(1-\mu)$. We also consider the transformed variable $Z = g(Y) = \arcsin(2Y/N - 1)$. Using the delta method as in the formulae above one has

$$E[Z] \approx \arcsin(2\mu - 1)$$
. For the variance, $g'(\mu) = \frac{1}{\sqrt{1 - (2\mu - 1)^2}}$ hence

$$Var[Z] \approx 4 \frac{1}{N^2 (1 - (2\mu - 1)^2)} \mu (1 - \mu) = \frac{1}{N}$$
 (1)

 $\operatorname{Var}[Z]$ does not depend on μ hence arcsin is said to stabilize the variance of Y (this is a known result, [2]).

We can plot 1 against the variance of Z computed using the definition:

$$Var[Z] = \sum_{i=0}^{n} (Z_i - E[Z])^2 P(Z_i)$$

where $Z_i = g(i)$ and $P(Z_i) = P(Y = i) = \text{Binomial}(i|N, \mu)$, and

$$E[Z] = \sum_{i=0}^{n} Z_i P(Z_i)$$

The agreement between the variance computed with the delta method as in 1 and the exact variance can be seen in the figure below:

References

- [1] L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. Springer New York, 2013.
- [2] Guan Yu. Variance stabilizing transformations of poisson, binomial and negative binomial distributions. Statistics & Probability Letters, 79(14):1621–1629, 2009.