

Theoretische Informatik

Bearbeitungszeit: 06.05.2024 bis 13.05.2024, 16:00 Uhr Besprechung: 14.05.2024, 10:30 Uhr in Hörsaal 5E

> Abgabe: als PDF über das ILIAS Gruppenabgaben möglich und erwünscht

Aufgabe 1 (Pumping-Lemma)20 Punkte

Zeigen Sie mit Hilfe des Pumping-Lemmas, dass die folgenden Sprachen nicht regulär sind.

(a)
$$L_1 = \{0^n 1^m \mid n, m \ge 0, n < m\}$$
 über $\Sigma = \{0, 1\}$

(b)
$$L_2 = \{a^{2^k} \mid k \ge 0\}$$
 über $\Sigma = \{a\}$

Hinweise: Achten Sie dabei auf eine gut ersichtliche Beweisstruktur (Was ist zu zeigen, was wird zu einem Widerspruch geführt, etc.), darauf, dass alle Einzelschritte nachvollziehbar sind (Führen Sie verwendete Regeln auf, begründen Sie, warum Sie mit diesem Wort/dieser Zahl argumentieren dürfen, welche Eigenschaften eine Variable hat, etc.) und definieren Sie alle verwendeten Variablen.

Lösungsvorschlag:

(a) **z.z.**: $L_1 = \{0^n 1^m \mid n, m \ge 0, n < m\} \notin REG$

Beweis: Wir beweisen die Nichtregularität der Sprache L anhand Widerspruchsbeweis. Wir nehmen an, dass L_1 eine reguläre Sprache ist. Sei $k \geq 1$ die Zahl, die nach dem Pumping-Lemma für L_1 existiert. Betrachte das Wort $x = 0^k 1^{k+1} \in L_1$ mit $|x| = |0^k 1^{k+1}| = 2k + 1 \geq k$. Da $0^k 1^{k+1}$ ein Wort aus L_1 ist, lässt sich dieses so zerlegen $(x = uvw = 0^k 1^{k+1})$, dass die Bedingungen (1) - (3) aus dem Pumping-Lemma für reguläre Sprachen gelten. Aus (1) und (2) folgt:

- 1. $|uv| \le k$, d.h. $uv = 0^l$ für $l \le k$.
- 2. $|v| \ge 1$, d.h. $v = 0^s$ mit $s \ge 1$.
- $3. \ (\forall i \geq 0)[uv^iw \in L].$

Insbesondere gilt für i = 2 nach (3):

$$uv^2w = 0^{l-s}0^{2s}0^{k-l}1^{k+1} = 0^{l-s+2s+k-l}1^{k+1} = 0^{k+s}1^{k+1} \in L_1$$

Andererseits gilt:

$$k + s > k + 1$$
.

Folglich ist die Anzahl der 1 Symbole im Wort $0^{k+s}1^{k+1}$ nicht größer der Anzahl der 0 Symbole (k+s>k+1). Das hat zur Folge, dass $0^{k+s}1^{k+1} \notin L_1$, was bedeuten würde, dass die Annahme, dass die Sprache $\{0^n1^m \mid n,m\geq 0,n< m\}$ regulär ist, falsch ist.

(b)
$$L_2 = \{a^{2^k} \mid k \ge 0\}$$

Beweis:

Hier zeigen wir ebenfalls durch Widerspruch, dass L_2 keine reguläre Sprache ist. Angenommen, sei $L_2 \in \text{REG}$. Sei $n \geq 1$ die Zahl, die nach dem Pumping-Lemma für L_2 existiert. Wir betrachten das Wort $x = a^{2^n} \in L_2$ mit $|x| = 2^n$. Das Wort x lässt sich dann in x = uvw zerlegen, so dass die folgenden drei Bedingungen erfüllt sind:

- 1. $|uv| \leq n$;
- 2. $|v| \ge 1$;
- 3. $(\forall i \geq 0)[uv^iw \in L_2]$.

Insbesondere gilt für i=2, dass $uv^2w \in L_2$. Aus 1. und 2. können wir folgern, dass v aus mindestens einem Symbol besteht und maximal n. Also $v=a^k$ mit $1 \le k \le n$. Dann gilt:

$$|uvw| = 2^n < |uv^2w| = |uvw| + |v| = 2^n + \underbrace{k}_{\leq n < 2^n} < 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}.$$

Da $2^n < |uv^2w| < 2^{n+1}$ gilt, ist die Länge des Wortes uv^2w eine Zahl, die offensichtlich nicht gleich 2^i für $i \geq 1$ ist. Daher liegt das Wort nicht in L_2 und somit haben wir einen Widerspruch zur Annahme, dass L_2 regulär ist (da 3. nicht für alle i gilt). Also folgern wir daraus, dass L_2 keine reguläre Sprache ist.

Aufgabe 2 (Kriterium von Myhill-Nerode und Minimalautomaten) 10 Punkte

(a) Zeigen Sie mit Hilfe des Kriteriums von Myhill-Nerode, welche der folgenden Sprachen über $\Sigma = \{0, 1\}$ regulär sind und welche nicht.

(i)
$$L_1 = \{0w \mid w \in \Sigma^*\}$$

(ii)
$$L_2 = \{ w0 \mid w \in \Sigma^* \}$$

(b) Gegeben sei folgender DFA $M = (\{0,1\}, \{z_0, z_1, \dots, z_7\}, \delta, z_0, \{z_2\})$:

Konstruieren Sie den Minimalautomaten von M und geben Sie die Äquivalenzklassen der Zustände vom entstandenen DFA an.

Lösungsvorschlag:

- (a) Im Folgenden sei $\Sigma = \{0, 1\}$. Es sind folgende Behauptungen mit Hilfe des Kriteriums von Myhill-Nerode zu zeigen:
- (i) **z.z.:** $L_1 = \{0w \mid w \in \Sigma^*\} \in REG$

Beweis: Die Äquivalenzklassen von L_1 bzgl. R_{L_1} sind folgende:

$$[\lambda] = \{\lambda\},\$$

$$[0] = \{0, 01, 00, 011, 010, \ldots\} = \{0w \mid w \in \Sigma^*\} = L_1,$$

$$[1] = \{1, 10, 11, 101, 111, \ldots\} = \{1w \mid w \in \Sigma^*\} = \Sigma^+ \setminus L_1.$$

Da $[\lambda] \cup [0] \cup [1] = {\lambda} \cup L_1 \cup (\Sigma^+ \setminus L_1) = \Sigma^*$ gilt, ist Index $(R_{L_1}) = 3 < \infty$ und nach Satz von Myhill und Nerode folgt, dass L_1 eine reguläre Sprache ist.

(ii) **z.z.**: $L_2 = \{ w0 \mid w \in \Sigma^* \} \in REG$

Beweis: Die Äquivalenzklassen von L_2 bzgl. R_{L_2} sind folgende:

$$[\lambda] = \{\lambda, 1, 01, 11, 101, 001, \ldots\} = \{\lambda\} \cup \{w1 \mid w \in w \in \Sigma^*\} = \Sigma^* \setminus L_2,$$

$$[0] = \{0, 10, 00, 010, 100, 110, \ldots\} = \{w0 \mid w \in \Sigma^*\} = L_2.$$

Es gibt insgesamt 2 Äquivalenzklassen von L_2 bzgl. R_{L_2} , weil $\Sigma^* = (\Sigma^* \backslash L_2) \cup L_2 = [\lambda] \cup [0]$ gilt, und somit Index $(R_{L_2}) = 2 < \infty$ gilt. Es folgt also nach Satz von Myhill und Nerode, dass die Sprache L_2 regulär ist.

(b) Nach Anwendung des Algorithmus zum Minimieren von DFAs gemäß dem Satz von Myhill und Nerode auf $M = (\{0,1\}, \{z_0, z_1, \ldots, z_7\}, \delta, z_0, \{z_2\})$ bekommen wir folgende Paare von äquivalenten Zuständen: z_0 und z_4 , z_1 und z_7 , z_3 und z_5 . Diese Paare von Zuständen können wir zu einem Zustand in den neuen minimalen DFA zusammenfassen und wir bekommen folgenden Minimalautomaten M_{min} von M:

Die Äquivalenzklassen der Zustände eines Minimalautomaten entsprechen der Mengen der Wörter die vom Startzustand bis zum jeweiligen Zustand generiert werden können. Die Äquivalenzklassen der Zustände vom entstandenen Minimalautomaten kann man wie folgt angeben:

$$\begin{aligned} &[\{z_0, z_4\}] = [\lambda] = \{\lambda, 010, 111, 0110, \ldots\} \\ &[\{z_1, z_7\}] = [0] = \{0, 0100, 0010, 01100, 00010, \ldots\} \\ &[z_5] = [1] = \{1, 1111, 1001, 11011, 11011, \ldots\} \\ &[z_2] = [01] = L(M) \\ &[z_6] = [11] = \{11, 11111, 110111, 11100, \ldots\} \end{aligned}$$

Aufgabe 3 (Abschlusseigenschaften)10 Punkte

Zeigen Sie mit Hilfe der Abschlusseigenschaften von regulären Sprachen, dass die Sprachen L_1 und L_2 nicht regulär sind. Verwenden Sie dabei weder das Pumping Lemma noch den

Satz von Myhill und Nerode. Geben Sie dabei an, welche Abschlusseigenschaften Sie verweden.

(a) (a)
$$L_1 = \{a^m b^m \mid m \ge 0\} \subseteq \{a, b\}^*$$

(b) (b)
$$L_2 = \{0^m 1^n \mid 0 \le m < n\} \subseteq \{0, 1\}^*$$

Hinweise: Die zu L_1 sehr ähnliche (aber nicht exakt gleiche) Sprache $L'_1 = \{a^m b^m \mid m \geq 1\}$ dürfen Sie als bekannt nicht regulär vorraussetzen. Dies ist eventuell nützlich.

Lösungsvorschlag:

 $L_1: L_1 = \{a^m b^m \mid m \ge 0\} \subseteq \{a, b\}^*$

 $L_1' = \{a^m b^m \mid m \geq 1\}$ ist als nicht regulär bekannt und

 $\{\lambda\} \in REG$, da die Sprache endlich ist.

Annahme: $L_1 \in \text{REG}$. Da REG unter Differenz abgeschlossen ist gilt demnach $L_1 \setminus \{\lambda\} = \{a^nb^n \mid n \geq 1\} = L_1' \in \text{REG}$. Dies ist ein Widerspruch zu der bekannten Tatsache, dass $L_1' \notin \text{REG}$. Demnach war die Annahme falsch und $L_1 \notin \text{REG}$.

 L_2 : $L_2 = \{0^m 1^n \mid 0 \le m < n\}$

Annahme: $L_2 \in REG$.

 $\{0\}$ ist regulär, da endlich. Da REG unter Konkatenation abgeschlossen ist, ist auch $\{0\}L_2 = \{0^{m+1}1^n \mid 0 \le m < n\} = \{0^m1^n \mid 1 \le m \le n\} =: L_h \in REG.$

Durch Änderung des Alphabets und Spiegelung erhalten wir die dann ebenfalls reguläre Sprache

 $L_k := \{0^n 1^m \mid 1 \le m \le n\}.$

Da REG unter Schnittbildung abgeschlossen ist, ist auch

 $L_h \cap L_k = \{0^p 1^p \mid 1 \leq p\}$ eine reguläre Sprache.

Dies ist ein Widerspruch zu der Tatsache, dass diese Sprache als nicht regulär bekannt ist. Also war die Annahme falsch und es gilt $L_2 \notin REG$.