MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2019-20. Semestre de tardor

Pràctica 2: Àlgebra lineal numèrica

1 Escriviu en un fitxer de nom triang.c una funció:

que resol un sistema no singular de dimensió n amb matriu matA i terme independent b. La variable tipus indica el tipus de sistema: si val 0 és triangular inferior, si val 1 és triangular superior i si val -1 és triangular inferior amb 1's a la diagonal. El vector solució s'ha de guardar en b.

Escriviu una funció main per comprovar que la funció anterior funciona.

Aplicació: Resoleu el sistema triangular superior $K_n(\theta)x = e^{(n)}$, per a diferents valors de $\theta \in [5\pi/16, \pi/2]$, on $e^{(n)}$ és el vector n-èssim de la base canònica i

$$K_n(\theta) = \left(egin{array}{ccccc} 1 & -c & -c & \cdots & -c & -c \ & s & -sc & \cdots & -sc & -sc \ & s^2 & \cdots & -s^2c & -s^2c \ & & \ddots & \vdots & \vdots \ & & s^{n-2} & -s^{n-2}c \ & & & s^{n-1} \end{array}
ight),$$

sent $c = \cos(\theta)$ i $s = \sin(\theta)$. Feu gràfiques dels temps d'execució en funció de l'angle θ , per a diferents valors de n : 50, $60, \ldots, i$ compareu amb els resultats de teoria.

Feu el mateix pel sistema triangular inferior $K(\theta)^{\top}x = e^{(1)}$.

Nota: És fàcil trobar la inversa d'aquesta matriu.

2 Escriviu una funció:

```
int lu(double **a, int n, int *perm, double tol)
```

que calculi la factorització PA=LU d'una matriu donada A de dimensió $n \times n$, usant eliminació gaussiana amb pivotatge maximal per columnes. Els paràmetres són:

- a Matriu $n \times n$, coneguda a l'entrada. A la sortida, contindrà els elements essencials de la factorització LU: part de sota la diagonal de L (multiplicadors) i elements de U.
- n Dimensió de la matriu.

perm Vector on es retorna la permutació de files de A: $\forall i=0,1,\ldots,n-1$, la fila i de PA és la fila perm[i] de A.

tol Tolerància per a decidir si un pivot és zero o no.

Com a valor de la funció es retorna:

- El nombre d'intercanvis de files de la permutació final, si s'ha pogut fer la factorització.
- -1, si no s'ha pogut fer la factorització.

Escriviu una funció main per llegir de fitxer la la matriu $n \times n$ dels sistemes lineals i una altra matriu $n \times m$ de termes independents, i que escrigui la matriu solució $n \times m$, el nombre d'intercanvis de files usats en el pivotatge, la norma del suprem de la matriu del sistema, i la norma del suprem de la matriu solució en un altre fitxer. Caldrà usar la funció triang de l'Exercici 1. **Nota:** Donada una matriu $A = (a_{i,j})_{1 \le i \le n, 1 \le j \le m}$, la seva norma del suprem és $\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{m} |a_{ij}|$.

Aplicacions:

- Considerem la matriu $A = (a_{ij})_{1 \le i,j \le n}$, tal que $a_{ij} = 1/(i+j-1)$. Calculeu la inversa de A per n = 2,3,4,5... i el nombre de condició $\kappa_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}$. En vista de la teoria, quin error es pot esperar en la solució d'un sistema amb matriu A?
- Considerem la matriu $A = (a_{ij})_{1 \le i,j \le n}$, tal que $a_{ij} = \min(i,j)/\max(i,j)$. Resoleu el sistema Ax = b, per n = 10 i b el darrer vector de la base canònica. Si considerem la matriu $A(\lambda) = A \lambda I$, estudieu l'evolució del nombre d'intercanvis de files en funció de λ .