A First Course in LINEAR ALGEBRA

Lecture Notes for Math 1503

Linear Transformations: One to One and Onto

Creative Commons License (CC BY-NC-SA)

Linear Transformations: One to One and Onto

Page 1/8

A First Course in Linear Algebra

Lecture Slides

These lecture slides were originally developed by Karen Seyffarth of the University of Calgary. Edits, additions, and revisions have been made to these notes by the editorial team at Lyryx Learning to accompany their text A First Course in Linear Algebra based on K. Kuttler's original text.

In addition we recognize the following contributors. All new content contributed is released under the same license as noted below.

- Tim Alderson, University of New Brunswick
- Ilijas Farah, York University
- Ken Kuttler, Brigham Young University
- Asia Weiss, York University

License

Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)
This license lets others remix, tweak, and build upon your work non-commercially, as long as they credit you and license their new creations under the identical terms.

Injections

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let \vec{x}_1 and \vec{x}_2 be in \mathbb{R}^n . We say that T is an injection or is one-to-one (sometimes written as 1-1) if $\vec{x}_1 \neq \vec{x}_2$ implies that

$$T(\vec{x}_1) \neq T(\vec{x}_2)$$
.

Equivalently, if $T(\vec{x}_1) = T(\vec{x}_2)$, then $\vec{x}_1 = \vec{x}_2$. Thus, T is one-to-one if two distinct vectors are never transformed into the same vector.

Theorem

Let A be an $m \times n$ matrix and let \vec{x} be a vector of length n. Then the transformation induced by A, T_A , is one-to-one if and only if $A\vec{x} = 0$ implies $\vec{x} = 0$.

Since every linear transformation is induced by a matrix A, in order to show that T is one to one, it suffices to show that $A\vec{x} = 0$ has a unique solution.

Linear Transformations: One to One and Onto

One to One

Page 3/8

Problem

Show that the transformation defined by

$$T \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$$

is one-to-one.

Solution

Since T is a matrix transformation induced by $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, it follows from the previous theorem that all we need to show is that $A\vec{x} = 0$ has the unique solution $\vec{x} = 0$. We do this in the standard way, by taking the augmented matrix of the system $A\vec{x} = 0$ and putting it in reduced row-echelon form.

$$\left[\begin{array}{cc|c} 1 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right].$$

From this we see that the system has unique solution $\vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and therefore T is a one-to-one.

Not one-to-one

Problem

Let T be the linear transformation induced by $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 5 & 0 \end{bmatrix}$. Show that T_A is not one-to-one.

Solution

Let R be a row-echelon form of A.

$$A = \left[\begin{array}{ccc} 1 & 2 & -1 \\ 3 & 5 & 0 \end{array} \right] \rightarrow \left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & -3 \end{array} \right] = R$$

Since A has rank two, $A\vec{x}=0$ has infinitely many solutions, so $\vec{x}=0$ is not the only solution. Therefore, T_A is not one-to-one.

Linear Transformations: One to One and Onto

Examples

Page 5/8

One-to-one

Problem

Let T be the linear transformation induced by $A=\begin{bmatrix} 1 & -1 \\ 2 & 2 \\ -1 & 2 \end{bmatrix}$. Show that T_A is one-to-one.

Solution

Let R be a row-echelon form of A.

$$A = \left[\begin{array}{cc} 1 & -1 \\ 2 & 2 \\ -1 & 2 \end{array} \right] \rightarrow \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{array} \right] = R$$

Since A has rank two, every variable in $A\vec{x} = 0$ is a leading variable, so $\vec{x} = 0$ is the unique solution. Therefore, T_A is one-to-one.

One-to-one and onto

Problem

Let T be the linear transformation induced by $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$. Show that T_A is one-to-one and onto.

Solution

Let R be a row-echelon form of A.

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = R$$

In this case, A is invertible, so $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for every \vec{b} in \mathbb{R}^2 . Therefore T_A is both one-to-one and onto.

Linear Transformations: One to One and Onto

Examples

Page 7/8

Neither one-to-one nor onto

Problem

Let T be the linear transformation induced by $A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$. Show that T_A is neither one-to-one nor onto.

Solution

Let R be a row-echelon form of A.

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} = R$$

Since A has rank two, the augmented matrix $[A|\vec{b}]$ will have rank three for some choice of $\vec{b} \in \mathbb{R}^3$, resulting in $A\vec{x} = \vec{b}$ being inconsistent. Therefore, T_A is not onto.

The augmented matrix [A|0] has rank two, so the system $A\vec{x}=0$ has a non-leading variable, and hence does not have unique solution $\vec{x}=0$. Therefore, T_A is not one-to-one.

