SCHOOL OF MATHEMATICS AND PHYSICS

$\begin{array}{c} {\rm MATH1072} \\ {\rm Assignment} \ 4 \\ {\rm Semester} \ {\rm Two} \ 2024 \end{array}$

Submit your answers - along with this sheet - by 1pm on the 21st of October, using the black-board assignment submission system. Assignments must consist of a single PDF.

You may find some of these problems challenging. Attendance at weekly tutorials is assumed.

V	•		V	
Family name:				
Given names:				
Student number:				
Marker's use only				
Each question marked o	ut of 3.			
• Mark of 0: You had in your submission		relevant answer, or	you have no strategy p	oresent
	ıbmission has some i mathematical techni	· ·	not demonstrate deep	under-
• Mark of 2: You h calculations.	ave the right approa	ach, but need to fin	e-tune some aspects o	of your
	ave demonstrated a -executed calculation		g of the topic and tech	niques
Q1a	Q1b:	Q1c:	Q2a:	
Q2b:	Q2c:	Q2d:	Q2e:	
Q3:	-	-	-	

Total (out of):

1 Consider the spring-mass system described by the following image,

- a) Derive the system of second order ordinary differential equations that describes the spring-mass system.
- b) Write out the reduced system of ordinary differential equations in **vector form** that can be used to solve your system from part a).
- c) Use the MATLAB function ode45.m to solve your system from part b) over time [0, 200], with the following parameters:

$$F_1(t) = \sin(t), \ F_2(t) = e^{-t}$$

 $k_1 = 2, \ k_2 = 0.5$
 $m_1 = 3, \ m_2 = 1$

- 2 We will explore what it means for the linear combination of solutions to a second-order differential equation, resulting from an application of the *superposition principle*, to be a general solution to the corresponding initial value problem. That is, we will explore what it means for a set of solutions to form a **fundamental set of solutions**.
 - a) Suppose $y_1(t)$ and $y_2(t)$ are solutions to the second-order differential equation,

$$p(t)y'' + q(t)y' + r(t)y = 0.$$

Use the superposition principle to find a general solution in terms of constant coefficients c_1 and c_2 .

b) Consider the initial conditions for the second-order differential equation given by,

$$y(t_0) = y_0, \quad y'(t_0) = y_0'.$$

Apply these initial conditions to your solution from a) and solve for the constants c_1 and c_2 using Cramer's rule.

Cramer's Rule: Given the system of linear equations, $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y'_0 \end{bmatrix}$, then

$$c_1 = \begin{vmatrix} y_0 & b_1 \\ y'_0 & b_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \quad c_2 = \begin{vmatrix} a_1 & y_0 \\ a_2 & y'_0 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

where $|\cdot|$ denotes the determinant of the matrix.

The quantity in the denominator is called the Wronskian.

- c) Use the Wronskian for c_1 and c_2 to develop a condition required for this initial value problem to be solvable. The set of solutions that satisfy this condition are called a fundamental set of solutions.
- d) Consider the second-order differential equation given by,

$$2t^2y'' + ty' - 3y = 0, \ t > 0.$$

Given that $y_1(t) = t^{-1}$ is a solution to the second-order differential equation, find another solution $y_2(t)$ using the reduction of order method by assuming $y_2(t) = u(t)y_1(t)$. For ease of exposition, require that u(1) = 0 and $u'(1) = \frac{5}{2}$.

e) Show that the solutions $y_1(t)$ and $y_2(t)$ form a fundamental set of solutions.

Solve the following initial value problem for the second-order inhomogeneous differential equation,

$$y'' - 4y' - 12y = 2e^{5t}, \ y(0) = \frac{8}{7}, \ y'(0) = -\frac{1}{7}.$$