Лекция 9. Сигналы СРНС ГЛОНАСС с кодовым разделением. Частотные и спектральные характеристики сигналов. Дальномерные коды.

Открытый сигнал с кодовым разделением в диапазоне L3: L3OC

Количество компонент – 2 (Pilot, Data)

Уплотнение [Pilot+Data] - квадратурное

Вид модуляции — QPSK(10) (BPSK(10) – Pilot, BPSK(10) - Data)

Структура сигналов:

$$s_{\text{L3OC}}(t) = A \cdot G_{\text{P}}(t) \cdot G_{\text{NH}}(t) \cdot \sin(2\pi f_{L3}t + \varphi_{0L3}) + \leftarrow \text{L3OCp}$$

$$+ A \cdot G_{\text{D}}(t) \cdot G_{\text{K55}}(t) \cdot G_{\text{HC}}(t) \cdot \cos(2\pi f_{L3}t + \varphi_{0L3}) \leftarrow \text{L3OCd}$$

$$G_{xxx}(t) = \{\pm 1\}$$
 $f_{L3} = 1202,025 \text{ M}$ Гц – центральная частота.

Индексы:

NH – оверлейный код Неймана-Хоффмана (0000110101);

КБ5 – оверлейный 5-символьный код Баркера (00010);

НС – навигационное сообщение;

D,P – дальномерные коды в информационном и пилотном сигналах

Спектр сигнала L3OC

Характеристики модулирующих последовательностей сигнала L3OC

Бинарная	$G_{\mathrm{p}}(t), G_{\mathrm{D}}(t)$	$G_{ m NH}(t)$	$G_{ ext{KB5}}(t)$	$G_{ m HC}(t)$
последовательность	$O_{P}(\iota), O_{D}(\iota)$	$O_{\mathrm{NH}}(\iota)$	$O_{Kb5}(\iota)$	$O_{HC}(\iota)$
Длительность				
элементарного	1/10230 мс	1 мс	1 мс	5 мс
символа $\tau_{_9}$				
Период Т	1 мс	10 мс	5 мс	_

Как легко получить ширину спектра BPSK сигнала (главного лепестка) из длительности элементарного символа ДК:

$$\Delta f = \frac{2}{\tau_3}$$

Дальномерные коды L3OC - характеристики

Первичные (дальномерные) коды:

Тип ДК: коды Касами (усеченные)

Период первичных кодов: Тп = 1 мс

Длина первичных кодов L=10230 бит

Частота выборки символов: FT = 10,23 Мбит/с

Вторичный (оверлейный) код в информационном сигнале*:

Тип: код Баркера КБ=00010

Период Ткб = 5 мс

Частота выборки символов Fкб = 1 Кбит/с

Вторичный (оверлейный) код в пилотном сигнале*:

Тип: код Неймана-Хоффмана НХ=0000110101

Период Тнх = 10 мс

Частота выборки символов Fнх = 1 Кбит/с

^{*} L3OCp – пилотный сигнал; L3OCd – информационный сигнал.

Схема формирования L3ОС

АКФ дальномерных кодов L3OC

Навигационное сообщение в сигнале L3OC

Информационная скорость: 100 бит/с

Кодер: FEC(133,171)

Кодовая скорость: 200 бит/с

Символьная синхронизация и устранение инверсного приема: оверлейный код Баркера (00010)

Длина строки: 3 с, 300 бит

Контроль ошибок: циклический код (24 на 276 бит)

Строковая синхр-ция: метка времени 20 бит

Кадры и суперкадры: отсутствуют*

* Навигационное сообщение L3OCd передается в виде непрерывной последовательности строк, которая не имеет заранее определенной постоянной структуры.

Формат строки в НС L3ОС

Сигналы с кодовым разделением в диапазонах L1 и L2:

квадратурно-временное уплотнение

$$\begin{split} s_{\text{L1}}(t) &= A \cdot G_{\text{L1OC}}(t) \sin(2\pi f_{L1} t + \phi_0) \\ s_{\text{L1OC}}(t) &= A \cdot G_{\text{L1SC}}(t) \cos(2\pi f_{L1} t + \phi_{0L1}), \\ s_{\text{L2OC}}(t) &= A \cdot G_{\text{L2OC}}(t) \sin(2\pi f_{L2} t + \phi_0) \\ &= A \cdot G_{\text{L2SC}}(t) \cos(2\pi f_{L2} t + \phi_{0L2}). \end{split}$$

Открытый сигнал с кодовым разделением в диапазоне L1: L1OC

Количество компонент – 2 (Pilot, Data)

Уплотнение [Pilot+Data] - временное

Виды модуляции – BOC(1,1) – Pilot, BPSK(1) - Data

Структура огибающей сигналов:

$$G_{L1OC}(t) = \begin{cases} G_D(t) \cdot G_{\text{OK}}(t) \cdot G_{\text{HC}}(t), & \text{при } 0 \leq (t \bmod (2\tau_c)) < \tau_c, \leftarrow \text{L1OCd} \\ G_P(t) \cdot sc_{(1,1)}(t), & \text{при } \tau_c \leq (t \bmod (2\tau_c)) < 2\tau_c, & \leftarrow \text{L1OCp} \end{cases}$$

$$G_{xxx}(t) = \{\pm 1\}$$
 $\tau_c = 1/1023 \text{ MC}$

Индексы: ОК – оверлейный код (01) - меандр;

НС – навигационное сообщение;

sc(1,1) – цифровая поднесущая BOC(1,1);

D,P – дальномерные коды в информационном и пилотном сигналах

Временное уплотнение [Pilot+Data] в L10С

Спектр сигнала L10C

Уровень СПМ в дБ относительно максимума

Мощность сигнала у поверхности Земли: не менее -158,5 дБВт

(прием на линейно поляризованную антенну с Ку=3дБ, угол возвышения НКА над горизонтом > 5°)

Характеристики модулирующих последовательностей сигнала L1OC

Бинарная	$G_{\mathrm{D}}(t)$	$G_{\mathrm{p}}(t)$	$sc_{(1,1)}(t)$	$G_{ m OK}(t)$	$G_{ m HC}(t)$
последовательность	$O_{\mathrm{D}}(t)$	$O_{P}(\iota)$	50(1,1) (1)	$O_{OK}(\iota)$	$O_{HC}(\iota)$
Длительность					
элементарного	1/1023 мс	1/1023 мс	1/2046 мс	2 мс	_ 4 мс
символа $\tau_{_9}$					
Период Т	2 мс	8 мс	1/1022 242	4 мс	
	1023 бит	4092 бит	1/1023 мс	2 бит	-

Тип ДК L1OCd ($G_{
m D}(t)$): коды Голда

Тип ДК L10Cp ($G_{
m p}\left(t
ight)$): усеченные коды Касами

Оверлейный код $G_{
m OK}(t)$: 01 (обозн. ИКД – ОК1)

Формирование L10C

АКФ цифровых огибающих L10Cp и L10Cd

Навигационное сообщение в сигнале L10Cd

Информационная скорость: 125 бит/с

Кодер: FEC(133,171)

Кодовая скорость: 250 бит/с

Символьная синхронизация: оверлейный код ОК2 (01)

Длина строки: 2 с, 250 бит

Контроль ошибок: циклический код (16 на 184 бит)

Строковая синхр-ция и устранение инверсного приема: метка времени 12 бит

Кадры и суперкадры: отсутствуют*

* Навигационное сообщение сигнала L1OCd передается в виде непрерывной последовательности строк, которая не имеет заранее определенной постоянной структуры.

Открытый сигнал с кодовым разделением в диапазоне L2: L2OCp

Количество компонент – 1 (Pilot)

Уплотнение [L2OCp+L2КСИ] - временное

Вид модуляции L2OCp – ВОС(1,1)

Структура огибающей L2 (уплотнение с КСИ):

$$G_{L2OC}(t) = \begin{cases} G_{\text{КСИ}}(t), & \text{при } 0 \leq (t \bmod (2\tau_c)) < \tau_c, & \leftarrow \text{L2 КСИ} \\ G_P(t) \cdot sc_{(1,1)}(t) \cdot G_{\text{OK2}}(t), & \text{при } \tau_c \leq (t \bmod (2\tau_c)) < 2\tau_c, & \leftarrow \text{L2OCp} \end{cases}$$

$$G_{xxx}(t) = \{\pm 1\}$$

$$\tau_c = 1/1023 \text{ MC}$$

Индексы: ОК2 – оверлейный код;

КСИ – последовательность канала служебной информации;

sc(1,1) – цифровая поднесущая BOC(1,1);

Р – дальномерный код L2OCp.

Формирование L2OCp / КСИ

Характеристики модулирующих последовательностей L2OCp

Бинарная	$G_{\mathrm{p}}(t)$	$sc_{(1,1)}(t)$	$G_{ m OK2}(t)$
последовательность	$O_{P}(\iota)$	50(1,1) (1)	$O_{OK2}(\iota)$
Длительность			
элементарного	1/1023 мс	1/2046 мс	20 мс
символа $\tau_{_{9}}$			
Период Т	20 мс	1/1023 мс	1 c
	10230 бит	1/1023 MC	50 бит

Тип ДК L2OCp ($G_{
m p}(t)$): усеченные коды Касами

Служебный сигнал в диапазоне L2: L2 КСИ

Количество компонент – 1 (Data)

Вид модуляции – BPSK(1)

Длина ДК – 1023 бит

Информационная скорость НС – 250 бит/с

Кодовая скорость НС – 500 бит/с

* Доступ к L2 КСИ - санкционированный

Сигналы с санкционированным доступом L1SC и L2SC

Количество компонент – 2 (Data, Pilot)

Уплотнение [Data+Pilot] - временное

Вид модуляции – ВОС(5,2.5) (обе компоненты)

Информационная скорость НС – 125 бит/с

Кодовая скорость НС – 250 бит/с

Спектры сигналов L1SC, L2SC

Уровень СПМ в дБ относительно максимума

Мощность сигнала у поверхности Земли: не менее -158,5 дБВт

(прием на линейно поляризованную антенну с Ку=3дБ, угол возвышения НКА над горизонтом > 5°)