

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

SU 1696391

Pub. Date: 07/12/91

ABSTRACT

L1 ANSWER 1 OF 1 WPIX COPYRIGHT 2004 THOMSON DERWENT on STN
AN 1992-314435 [38] WPIX
DNC C1992-139754
TI Prodn. of petroleum oils - involves addn. of prescribed organic oxy-cpd.
to oil fraction, followed by contacting mixt. with reduced zeolite-contg.
catalyst at increased temp. and pressure.
DC E13 E14 H04
IN BOLDINOV, V A; ESIPKO, E A; VORONIN, A I
PA (GROZ-R) GROZN OIL IND RES INST
CYC 1
PI SU 1696391 A1 19911207 (199238)* 3 C10G047-20
ADT SU 1696391 A1 SU 1990-4797230 19900125
PRAI SU 1990-4797230 19900125
IC ICM C10G047-20
AB SU 1696391 A UPAB: 19931113
The method comprises adding 0.02-0.2 wt.% of furfuryl alcohol,
tetrahydrofuryl alcohol, furfural or phenol to the oil fraction, followed
by contacting the mixt. with reduced, zeolite-contg.
hydrodeparaffinisation catalyst. The process is carried out at 330-430
deg.C under the pressure of 3-15 MPa at vol. rate of 0.5-1.5/hr.
USE/ADVANTAGE - Petroleum oils are produced more efficiently. The
method increases the yield of the product from 68 to 73.2 wt.%.
Bul. 45/7.12.91
Dwg. 0/0
FS CPI
FA AB; DCN
MC CPI: E07-A01; E07-A02E; E10-E02E; H04-E; H04-F02E; N06-A

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

(19) SU (11) 1696391 A1

(31) 5 C 10 G 47/20

ВСЕСОВЕЙСКАЯ
ПАТЕНТНО-ТЕХНИЧЕСКАЯ
БИБЛИОТЕКА

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

- (21) 4797230/04
(22) 25.01.90
(46) 07.12.91, Бюл. № 45
(71) Грозненский нефтяной научно-исследовательский институт.
(72) В.А. Болдинов, А.И. Воронин, Е.А. Есипко, В.П. Прохорьев, А.А. Каменский, Г.Г. Хамитов и И.Х. Гайсин
(53) 665.644.26(088.8)
(56) Патент США № 4443327,
кл. 208-97, 1987.
Патент США № 4719003,
кл. 208-91, 1988.
(54) СПОСОБ ПОЛУЧЕНИЯ МАСЕЛ

2

(57) Изобретение касается нефтепереработки, в частности получения нефтяных масел. Цель – повышение выхода нефтяных масел. Для этого в исходную масляную фракцию добавляют кислородсодержащее соединение основного характера (фурфуриловый спирт, тетрагидрофурфуриловый спирт, фурфурол, фенол) в количестве 0,02–0,2 мас.% на сырье с последующим контактированием с восстановленным цеолитсодержащим катализатором гидродепарафинизации при нагревании и давлении. Эти условия позволяют выход целевого продукта от 68 до 73,2%.

Изобретение относится к способу получения нефтяных масел и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ получения нефтяных масел путем гидродепарафинизации углеводородного сырья, согласно которому для уменьшения скорости дезактивации цеолитного катализатора гидропарафинизации Ni-HZSM-5 при температуре 400°C и давлении 0,35–2,8 МПа перед введением сырья в контакт с катализатором в сырье вводят алкены (этилен, гексилен и другие), в количестве 0,25–2 мас.%.

Перед использованием в процессе катализатор обрабатывают водяным паром при 400–815°C в течение 12–24 ч, дегидратируют в токе воздуха или азота при 200–600°C, сульфидируют при 232–343°C.

Недостатком этого способа является необходимость использования специальных

реагентов для поддержания активности катализатора на первоначальном уровне, а также невысокая степень восстановления активности катализатора и вызванная этим необходимость повышения температуры процесса, в результате чего снижается выход депарафинизата за счет увеличения побочных реакций неселективного гидрокрекинга в области повышенных температур.

Наиболее близким к изобретению является способ получения нефтяных масел путем контактирования масляных фракций с восстановленным цеолитсодержащим катализатором гидродепарафинизации.

Согласно этому способу сырье перед катализитической и гидродепарафинизацией вводят в контакт с сорбентом ($Y = Al_2O_3$, глина и т.п.) для удаления компонентов, снижающих скорость диффузии прямоцепочных углеводородов в порах катализатора

(19) SU (11) 1696391 A1

(смолы, полициклические ароматические углеводороды) при температуре выше 175°C, давлении 0,1–21 МПа, объемной скорости подачи сырья 0,1–100 ч⁻¹. Очищенное сорбентом сырье подвергают гидродепарафинизации при 205–540°C и давлении 0,1–21 МПа в присутствии восстановленного катализатора. После стабилизации гидродепарафинизата получают депмасло с температурой застывания минус 27°C (выход 68 мас. %).

Однако известный способ имеет недостаточно высокий выход масел.

Целью изобретения является увеличение выхода масел.

Поставленная цель достигается способом получения масел путем ввода в масляные фракции кислородсодержащего соединения, выбранного из группы фурфуриловый спирт, тетрагидрофуриловый спирт, фурфурол, фенол, в количестве 0,02–0,2 мас. % от исходного сырья и последующего контактирования сырья в восстановленным цеолитсодержащим катализатором гидродепарафинизации при повышенных температуре и давлении.

Способ осуществляют следующим образом.

В сырье процесса гидродепарафинизации перед контактированием его с катализатором вводят кислородсодержащее соединение, выбранное из группы фурфуриловый спирт, тетрагидрофуриловый спирт, фурфурол, фенол, величина молекул которых больше размера пор катализатора (5,4–6,3 Å).

Гидродепарафинизацию проводят в присутствии восстановленного в токе водородсодержащего газа (ВСГ) катализатора КДМ-1 состава, мас. %: закись никеля 4,8; оксид молибдена 10,6; оксид натрия 0,19; цеолит НУ 7,4; цеолит NH₄ЦВК 50,0; γ-оксид алюминия – остальное.

Процесс ведут при 330–430°C, давлении 3,0–15,0 МПа, объемной скорости подачи сырья 0,5–1,5 ч⁻¹ и кратности циркуляции ВСГ 800–1200 мм³/м³ сырья.

Пример 1. Рафинат фракции 300–460°C западно-сибирской нефти: V₅₀=9,29 мм²/с; V₁₀₀=3,24 мм²/с; температура плавления 33°C и ρ²⁰=865,2 кг/м³, подвергают гидродепарафинизации в присутствии восстановленного в токе ВСГ катализатора КДМ-1 при 370°C, объемной скорости 1 ч⁻¹, давлении 4,0 МПа.

Перед контактом с катализатором в сырье вводят 0,2 мас. % фурфурилового спирта.

После стабилизации гидродепарафинизата получают депмасло температурой застывания минус 30°C (выход 72,9 мас. %) после 6 ч и минус 28°C (выход 73 мас. %) после 80 ч.

Пример 2. Сырье подвергают гидродепарафинизации на катализаторе и в условиях примера 1.

Перед контактом с катализатором в сырье вводят 0,1 мас. % фурфурола. После стабилизации гидродепарафинизата получают депмасло с температурой застывания минус 29°C (выход 73,1 мас. %) после 6 ч и минус 27°C (выход 73,2 мас. %) после 80 ч.

Пример 3. Сырье подвергают гидродепарафинизации на катализаторе и в условиях примера 1.

Перед контактом с катализатором в сырье вводят 0,02 мас. % фенола.

После стабилизации гидродепарафинизата получают депмасло с температурой застывания минус 27°C (выход 72,8 мас. %) после 6 ч и минус 26°C (выход 72,9 мас. %) после 80 ч.

Пример 4. Сырье подвергают гидродепарафинизации на катализаторе и в условиях примера 1.

Перед контактом с катализатором в сырье вводят 0,01 мас. % фурфурилового спирта.

После стабилизации гидродепарафинизата получают депмасло с температурой застывания минус 24°C (выход 70,2 мас. %) после 6 ч и минус 22°C (выход 70,8 мас. %) после 80 ч.

Пример 5 (сравнительный). Сырье подвергают гидродепарафинизации на катализаторе и в условиях примера 1. Однако в сырье добавки кислородсодержащих соединений не вводят.

После стабилизации гидродепарафинизата получают депмасло с температурой застывания минус 24°C (выход 69,8 мас. %) после 6 ч и минус 21°C (выход 68,1 мас. %) после 80 ч.

Пример 6. Сырье подвергают гидродепарафинизации на катализаторе и в условиях примера 1.

В сырье перед контактом с катализатором добавляют 0,25 мас. % фенола.

После стабилизации гидродепарафинизата получают депмасло с температурой застывания минус 29°C (выход 73,0 мас. %) после 6 ч и минус 27°C (выход 73,1 мас. %) после 80 ч.

Таким образом, предлагаемый способ позволяет повысить выход целевого продукта от 68,0 до 73,2 мас. %.

Введение добавки более 0,2 мас.% неэффективно, поскольку ведет к перерасходу растворителя (пример 6).

Введение добавки менее 0,02 мас.% на сырье не приводит к положительному эффекту (пример 4).

Формула изобретения

Способ получения масел путем контактирования масляных фракций с восстанов-

ленным цеолитсодержащим катализатором гидродепарафинизации при повышенных температуре и давлении, отличающимся тем, что, с целью повышения выхода целевых продуктов, в исходное сырье перед контактированием вводят кислородсодержащее соединение, выбранное из группы: фурфуриловый спирт, тетрагидрофурфуриловый спирт, фурфурол, фенол, в количестве 0,02 - 0,2 мас.% от исходного сырья.

Редактор Н. Рогулич

Составитель Н. Королева
Техред М.Моргентал

Корректор Т. Палий

Заказ 4272

Тираж

Подписано

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101