Name: Point values are assigned for each question.			Date: / 64, %	
	a)	Draw the tree after a regular binary s	earch tree insertion. (3 points)	
	b)	Which property is violated? (3 points)		
		Case seen after regular binary search Steps taken to fix the tree: (3 points)	tree insertion: (3 points)	
		Draw the tree after taking the steps y	ou just described. (3 points)	
	c)	Which property is violated now? (3 po	pints)	
		Case seen after first fixup: (3 points)		
		Steps taken to fix the tree: (3 points)		

2	Dura	outho 2.2 trop ofter incerting each of the following keys. Dodrow the trop for each part
۷.		aw the 2-3 tree after inserting each of the following keys. Redraw the tree for each part. 50 (1 point)
	b)	76 (1 point)
	c)	23 (3 points)
	-1\	24 (2)
	a)	21 (3 points)
	e)	20 (3 points)
	f)	19 (3 points)
	g)	18 (3 points)

Draw the tree after taking the steps you just described. (3 points)

3.	Read pages 241-242 in the textbook. Using that information, write pseudocode for computing the
	LCM of an array A[1n] of integers. You may assume there is a working gcd() function. (6 points)

// Computes the least common multiple of all the integer in array A

4. Horner's method:

$$p(x) = 4x^4 + 5x^3 - 2x^2 - 4x + 7$$

- a. Repeatedly factor out x in the following polynomial so that you can apply Horner's method. Write your expression for p(x). (5 points)
- b. Show values of the array P[0..n] as needed to apply Horner's method. (3 points)
- c. Apply Horner's method to evaluate the polynomial at x=2. Make a table as we did in class showing the values x, p, n, and i, and then state your final answer for p(2). (5 points)

- d. Use **synthetic** (not long) **division** to divide p(x) by x-2 to check your work. Be sure to show your work. (5 points)
- 5. Rewrite the LeftRightBinaryExponentiation algorithm on page 237 in the textbook to work for n=0 as well as any positive integer. (6 points)

```
// Computes a<sup>n</sup>
```