Sizhao Lu M.D., Ph.D.

RESEARCH ASSISTANT PROFESSOR

Aurora, CO | 402.957.2436 | sizhao.lu@cuanschutz.edu | https://sizhaolu.github.io/

Summary

- Extensive training in molecular biology, biochemistry, bioinformatics and genomics.
- Led multiple research projects investigating the pathogenesis of complex diseases leveraging my expertise in *in vivo* disease models and bioinformatics.
- Passionate about uncovering the genetic foundations of diseases and advancing personalized treatment approaches.

Career Objective

Molecular biologist and bioinformatician seeking to leverage advanced academic expertise in developing innovative genomic technologies and personalized therapeutic solutions. Committed to translating scientific knowledge into practical applications that advance healthcare outcomes.

Education

Medical College of Qingdao University, Qingdao, China M.D. in Medicine	August 2005 - June 2010
University of Nebraska Medical Center, Omaha, NE Ph.D. in Biochemistry and Molecular Biology	August 2010 - July 2015
University of Colorado Anschutz Medical Campus, Aurora, US	August 2024 - June 2025

Experience

Postdoctoral Fellow

October 2015 - December 2020

Dr. Weiser-Evans Laboratory University of Colorado Anschutz Medical Campus.

Key technical achievement: Quantitative imaging analysis of fibrosis

Certificate in Personalized and Genomic Medicine

Instructor

January 2021 - September 2023

Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus

<u>Key technical achievement</u>: Assembly of unbiased immunofluorescent image analysis workflow using Cellpose, FIJI, and Python.

Research Assistant Professor

October 2023 - present

Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus

<u>Key technical achievement</u>: Bioinformatics analysis of scRNA-seq and spatial transcriptomics data focusing on differential expression, enrichment, trajectory and cell-cell communication analysis and visualization using scverse packages.

Core Skills

Molecular Biology:	Python:	R:
RNA and DNA extraction	 Anaconda 	Tidyr
 PCR & qPCR 	 Jupyter 	• ggplot2
Western blotting	 Pandas 	• limma
Molecular cloning	 Anndata 	Seurat
Reporter assay	 Scanpy 	Linux/Unix:
 Immunoprecipitation 	 scvi-tools 	 Bash scripting
Immunofluorescent staining	 Scvelo 	 Slurm batch system
Flow cytometry	 Squidpy 	 RNA-seq aligner (STAR,
Omics Methods:	CellRank	HISAT2)
 RNA-seq 	 LIANA 	 Cell/Space Ranger
ATAC-seq	 PyDESeg2 	Git/GitHub
 scRNA-seq (10x Chromium) 	 Pytometry 	 Gene Expression Omnibus
Spatial Transcriptomics	 GPU acceleration (Cuda) 	(GEO) database submission
Metabolomics	• cellpose ` ´	and access

Honors/Awards and Funding

Graduate Studies Fellowship Scholarship University of Nebraska Medical Center	2012 - 2015
Postdoctoral Fellowship Award American Heart Association	2018 - 2020
ATVB Travel Award for Young Investigators American Heart Association	2019
Travel Award UCD Postdoctoral Association	2020
Career Development Award (under review) American Heart Association	2025 - 2028

Select Publications

Lu, S., Mott, J. L., & Harrison-Findik, D. D. (2015). Saturated Fatty Acids Induce Post-transcriptional Regulation of HAMP mRNA via AU-rich Element-binding Protein, Human Antigen R (HuR). Journal of Biological Chemistry, 290(40), 24178–24189. https://doi.org/10.1074/jbc.M115.648212

Lu, S., Jolly, A. J., Strand, K. A., Dubner, A. M., Mutryn, M. F., Moulton, K. S., Nemenoff, R. A., Majesky, M. W., & Weiser-Evans, M. C. M. (2020). Smooth muscle–derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis. JCI Insight, 5(23). https://doi.org/10.1172/jci.insight.139445

Lu, S., Jolly, A. J., Dubner, A. M., Strand, K. A., Mutryn, M. F., Hinthorn, T., Noble, T., Nemenoff, R. A., Moulton, K. S., Majesky, M. W., & Weiser-Evans, M. C. (2024). KLF4 in smooth muscle cell-derived progenitor cells is essential for angiotensin II-induced cardiac inflammation and fibrosis (p. 2024.06.04.597485). bioRxiv. https://doi.org/10.1101/2024.06.04.597485

d'Escamard, V., Kadian-Dodov, D., Ma, L., **Lu, S.**, King, A., Xu, Y., Peng, S., V'Gangula, B., Zhou, Y., Thomas, A., Michelis, K. C., Bander, E., Bouchareb, R., Georges, A., Nomura-Kitabayashi, A., Wiener, R. J., Costa, K. D., Chepurko, E., Chepurko, V., ... Kovacic, J. C. (2024). Integrative gene regulatory network analysis discloses key driver genes of fibromuscular dysplasia. Nature Cardiovascular Research, 3(9), 1098–1122. https://doi.org/10.1038/s44161-024-00533-w