HOMEWORK PROBLEMS 03, ANLY 561, FALL 2018 DUE 09/29/18

Readings: Continue reading Lecture 01 Notes; Goodfellow and Bengio, Chapter 2; and Chapter 2 from https://jakevdp.github.io/PythonDataScienceHandbook/

Exercises:

- 1. For the next two parts, consider the function $f(x) = \frac{1}{4}x^2$ and the constrained program min f(x) subject to $x \in [0,3]$.
 - (a) Show that the optimal solution to the centering step for the log-barrier method is $x^{(0)} = 1$ by solving

$$\min f(x) - \log(x) - \log(3 - x)$$

and assuming $\log(y) = \infty$ when $y \leq 0$.

(b) Using the optimal centering initialization, compute (by hand and showing your work) $x_{\text{outer}}^{(1)}$ and $x_{\text{outer}}^{(2)}$ from the log-barrier method using $\frac{2}{3}$ inner backtracking iterations with steepest descent increments for $f(x) = \frac{1}{4}x^2$ with $\alpha = \beta = 1/2$. This means that you will compute 4 backtracking steps by hand. Use M = 2 so that $x_{\text{outer}}^{(1)}$ is a numerical approximation to the solution of

$$\min f(x) - \frac{1}{2}\log(x) - \frac{1}{2}\log(3-x)$$

and then $x^{(2)}$ is a numerical approximation to the solution of

$$\min f(x) - \frac{1}{4}\log(x) - \frac{1}{4}\log(3-x)$$

You may use the Python implementations of the log-barrier method and backtracking to check your work and that inequalities hold, but your answers should be exact.

2. Suppose you are give the data

i										
$\overline{x_i}$	-1	-1	-1	0	0	0	1	1	1	1
y_i	-1	-1	-1	1	-1	1	1	1	1	-1

with the goal of fitting a model $P(y=1|x;\alpha)=\operatorname{logit}(\alpha xy)=\frac{1}{1+e^{-\alpha xy}}$ using the maximum likelihood principle. For the negative log likelihood, compute two steps of "stochastic gradient descent" by hand using the "random" subsets of indices $Q_1=\{2,5,7,8\},\ Q_2=\{1,2,4,10\}$ and step sizes $\gamma^{(0)}=\frac{1}{2},\ \gamma^{(1)}=\frac{2}{5},$ and using $\alpha^{(0)}=1$. That is,

$$\alpha^{(1)} = \alpha^{(0)} - \gamma^{(0)} \Phi'_{Q_1}(\alpha^{(0)})$$

and

$$\alpha^{(2)} = \alpha^{(1)} - \gamma^{(1)} \Phi'_{Q_2}(\alpha^{(1)}),$$

where Φ_Q is as defined in the lecture notes.