PROBLEM STATEMENT

Take any dataset of you choice and perform EDA(Exploratory Data Analysis) and apply a suitable Classifier,Regressor or Clusterer and calculate accuracy of model*

Name: Shivam Bendre
Batch: ApriL -May

3 Domain: Data Science With Python

In [56]:

```
1 # Importing the necessary libraries
```

- 2 import pandas as pd
- 3 import seaborn as sns
- 4 import matplotlib.pyplot as plt
- 5 **from** sklearn.preprocessing **import** LabelEncoder, StandardScaler
- 6 **from** sklearn.model_selection **import** train_test_split, GridSearchCV
- 7 **from** sklearn.metrics **import** accuracy_score, classification_report, confusion_matrix
- 8 **from** sklearn.ensemble **import** RandomForestClassifier
- 9 **import** warnings
- 10 | warnings.filterwarnings('ignore')
- 11 %matplotlib inline

Library Import Done...

In [57]:

```
# Loading the csv file
data = pd.read_csv('Hr.csv')
```

CSV FiLe Loaded...

In [58]:

```
1 #Printing Rows, CoLumns Count
```

2 data.shape

Out[58]:

(1200, 28)

In [59]:

```
1 #Printing Index Range Of DaTa
```

2 data_index

Out[59]:

RangeIndex(start=0, stop=1200, step=1)

In [60]:

```
#Printing Index / Names Of ALL CoLumnSdata.columns
```

Out[60]:

In [61]:

```
1 #Printing CoLumn Values Array
2 data.columns.values
```

Out[61]:

In [62]:

- #Printing data from CSV FiLe data.head(4)

Out[62]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepa
0	E1001000	32	Male	Marketing	Single	
1	E1001006	47	Male	Marketing	Single	
2	E1001007	40	Male	Life Sciences	Married	
3	E1001009	41	Male	Human Resources	Divorced	Re
4 rows × 28 columns						
4 0						•

In [63]:

1 # Looking for missing data

2 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1200 entries, 0 to 1199
Data columns (total 28 columns):

Dat	Data columns (total 28 columns):						
#	Column	Non-Null Count Dtype					
0	EmpNumber	1200 non-null object					
1	Age	1200 non-null int64					
2	Gender	1200 non-null object					
2 3 4	EducationBackground	1200 non-null object					
4	MaritalStatus	1200 non-null object					
5	EmpDepartment	1200 non-null object					
6	EmpJobRole	1200 non-null object					
7 8	BusinessTravelFrequer DistanceFromHome	· ·					
9	EmpEducation aval	1200 non-null int64 1200 non-null int64					
9 10							
11	•	1200 non-null int64					
12		1200 non-null int64					
13		1200 non-null int64					
14		1200 non-null int64					
15	•						
16		1200 non-null object					
17		rcent 1200 non-null int64					
18		faction 1200 non-null int64					
19		nYears 1200 non-null int64					
20	TrainingTimesLastYea	r 1200 non-null int64					
21	EmpWorkLifeBalance	1200 non-null int64					
22	ExperienceYearsAtThi	sCompany 1200 non-null int64					
23		rentRole 1200 non-null int64					
		tion 1200 non-null int64					
25	YearsWithCurrManage	er 1200 non-null int64					
	Attrition	1200 non-null object					
27	<u> </u>						
	pes: int64(19), object(
me	mory usage: 262.6+ K	В					

In [64]:

1 #Printing DaTaTypes Of ALL CoLumnS

2 data.dtypes

Out[64]:

EmpNumber object Age int64 Gender object EducationBackground object MaritalStatus object **EmpDepartment** object EmpJobRole object BusinessTravelFrequency object DistanceFromHome int64 EmpEducationLevel int64 EmpEnvironmentSatisfaction int64 EmpHourlyRate int64 EmpJobInvolvement int64 **EmpJobLevel** int64 **EmpJobSatisfaction** int64 NumCompaniesWorked int64 OverTime object EmpLastSalaryHikePercent int64 **EmpRelationshipSatisfaction** int64 **TotalWorkExperienceInYears** int64 TrainingTimesLastYear int64 EmpWorkLifeBalance int64 ExperienceYearsAtThisCompany int64 ExperienceYearsInCurrentRole int64 YearsSinceLastPromotion int64 YearsWithCurrManager int64 Attrition object PerformanceRating int64 dtype: object

In [65]:

data.describe()

Out[65]:

niesWorked	EmpLastSalaryHikePercent	EmpRelationshipSatisfaction	TotalWor
200.000000	1200.000000	1200.000000	_
2.665000	15.222500	2.725000	
2.469384	3.625918	1.075642	
0.000000	11.000000	1.000000	
1.000000	12.000000	2.000000	
2.000000	14.000000	3.000000	
4.000000	18.000000	4.000000	
9.000000	25.000000	4.000000	
◀			•

DATA VISUALIZATION

In [66]:

- 1 # A new pandas Dataframe is created to analyze department wise performance as ask
- 2 dept = data.iloc[:,[5,27]].copy()
- 3 dept_per = dept.copy()

In [67]:

- # Finding out the mean performance of all the departments and plotting its bar graph
- 2 dept_per.groupby(by='EmpDepartment')['PerformanceRating'].mean()

Out[67]:

EmpDepartment

Data Science 3.050000
Development 3.085873
Finance 2.775510
Human Resources 2.925926
Research & Development 2.921283

Sales 2.860590

Name: PerformanceRating, dtype: float64

In [68]:

- 1 plt.figure(figsize=(10,4.5)) # Set figure size
- 2 sns.barplot(x='EmpDepartment', y='PerformanceRating', data=dept_per)#color='blue
- 3 plt.title('Performance Rating by Department') # Add title
- 4 plt.xlabel('EMP Department') # Add x-axis label
- 5 | plt.ylabel('Performance Rating') # Add y-axis label
- 6 plt.show() # Show the plot

In [69]:

- 1 # Analyze each department separately
- 2 dept_per.groupby(by='EmpDepartment')['PerformanceRating'].value_counts()

Out[69]:

EmpDepartmen		Performan	_
Data Science	3		17
	4	2	
	2	1	
Development	3	3	304
·	4	4	4
	4 2	13	3
Finance	3		30
	2	1	5
	2 4	4	-
Human Resourc	es	3	38
	2	10)
	4	6	
Research & Dev	elopme	ent 3	234
	2 ່	68	3
	4	4:	
Sales	3		- 251
	2	8	
	4	3!	
Namas saunt d		LC 1	-

Name: count, dtype: int64

In [70]:

- 1 # Creating a new dataframe(dummy Values) to analyze each department separately
- department = pd.get_dummies(dept_per['EmpDepartment'])
- performance = pd.DataFrame(dept_per['PerformanceRating'])
- 4 | dept_rating = pd.concat([department,performance],axis=1)

In [71]:

```
# Plotting a separate bar graph for performance of each department using seaborn
 2
 3
    plt.figure(figsize=(15, 10)) # Set figure size
 4
    plt.suptitle('Performance Rating by Department ->')# Add overall title
 5
 6
    plt.subplot(2, 3, 1)
 7
    sns.barplot(x='PerformanceRating', y='Sales', data=dept_rating)
 8
    plt.title('Sales Department')
 9
    plt.xlabel('Performance Rating')
10
    plt.ylabel('Sales')
11
12
    plt.subplot(2, 3, 2)
13
    sns.barplot(x='PerformanceRating', y='Development', data=dept_rating)
14
    plt.title('Development Department')
    plt.xlabel('Performance Rating')
15
16
    plt.ylabel('Development Department')
17
18
    plt.subplot(2, 3, 3)
    sns.barplot(x='PerformanceRating', y='Research & Development', data=dept_rating)
19
20
    plt.title('Research & Development Department')
21
    plt.xlabel('Performance Rating')
22
    plt.ylabel('Research & Development Department')
23
24
    plt.subplot(2, 3, 4)
25
    sns.barplot(x='PerformanceRating', y='Human Resources', data=dept_rating)
26
    plt.title('Human Resources Department')
    plt.xlabel('Performance Rating')
27
28
    plt.ylabel('Human Resources Department')
29
30
    plt.subplot(2, 3, 5)
    sns.barplot(x='PerformanceRating', y='Finance', data=dept_rating)
31
32
    plt.title('Finance Department')
    plt.xlabel('Performance Rating')
33
34
    plt.ylabel('Finance Department')
35
36
    plt.subplot(2, 3, 6)
    sns.barplot(x='PerformanceRating', y='Data Science', data=dept_rating)
37
38
    plt.title('Data Science Department')
39
    plt.xlabel('Performance Rating')
40
    plt.ylabel('Data Science Department')
41
42
    plt.tight_layout() # Improve subplot spacing
43
    plt.show() # Show the plot
44
```


In [72]:

sns.histplot(data=data, x='Age')
plt.show()

In [73]:

```
gender_counts = data['Gender'].value_counts()
plt.pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%')
plt.axis('equal')
plt.show()
```


In [75]:

- sns.barplot(data=data, x='EmpDepartment', y='EmpHourlyRate')
 plt.xticks(rotation=90)
 plt.show()
- 1 2 3

In [76]:

sns.scatterplot(data=data, x='ExperienceYearsAtThisCompany', y='ExperienceYearsIr plt.show()

In [86]:

sns.scatterplot(data=data, x='ExperienceYearsAtThisCompany', y='ExperienceYearsIr plt.show()

In [87]:

sns.swarmplot(data=data, x='EmpDepartment', y='TotalWorkExperienceInYears')
plt.xlabel('Employee Department')
plt.ylabel('Total Work Experience (Years)')
plt.title('Swarmplot of Total Work Experience by Department')
plt.show()

In [88]:

sns.stripplot(data=data, x='MaritalStatus', y='EmpLastSalaryHikePercent', hue='Attriplt.xlabel('Marital Status')
plt.ylabel('Employee Last Salary Hike Percent')
plt.title('Stripplot of Last Salary Hike Percent by Marital Status')
plt.legend(title='Attrition')
plt.show()

Stripplot of Last Salary Hike Percent by Marital Status

In [89]:

```
sns.violinplot(data=data, x='EmpJobRole', y='EmpHourlyRate')
plt.xlabel('Employee Job Role')
plt.ylabel('Employee Hourly Rate')
plt.title('Violin Plot of Hourly Rate by Job Role')
plt.xticks(rotation=90) # Rotate x-axis labels if needed
plt.show()
```


In []:

1

DATA MODELLING

Data modeling is the process of creating a mathematical or statistical representation of a real-world problem or system, while training involves the process of fitting a model to data by adjusting its parameters to minimize the difference between predicted and actual outcomes.*

In [37]:

```
#Printing Skewness & Kurtosis Of DaTa
print("Skewness: %f" %data['Age'].skew())
print("Kurtosis: %f" %data['Age'].kurt())
```

Skewness: 0.384145 Kurtosis: -0.431000

In [38]:

1 data.mode()

Out[38]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	Emp[
0	E1001000	34.0	Male	Life Sciences	Married				
1	E1001006	NaN	NaN	NaN	NaN				
2	E1001007	NaN	NaN	NaN	NaN				
3	E1001009	NaN	NaN	NaN	NaN				
4	E1001010	NaN	NaN	NaN	NaN				
	•••								
1195	E100992	NaN	NaN	NaN	NaN				
1196	E100993	NaN	NaN	NaN	NaN				
1197	E100994	NaN	NaN	NaN	NaN				
1198	E100995	NaN	NaN	NaN	NaN				
1199	E100998	NaN	NaN	NaN	NaN				
1200 r	1200 rows × 28 columns								

In [77]:

Encoding all the ordinal columns and creating a dummy variable for them to see if t
enc = LabelEncoder()
for i in (2,3,4,5,6,7,16,26):
 data.iloc[:,i] = enc.fit_transform(data.iloc[:,i])
data.head()

Out[77]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepa
0	E1001000	32	1	2	2	_
1	E1001006	47	1	2	2	
2	E1001007	40	1	1	1	
3	E1001009	41	1	0	0	
4	E1001010	60	1	2	2	
5 rows × 28 columns						

In [78]:

Dropping the first columns as it is of no use for analysis.

data_drop(['EmpNumber'],inplace=**True**,axis=1)

CoLumn Dropped Done.*

In [79]:

#checking the droppped Colimn is present or not
data.head()

Out[79]:

	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJ
0	32	1	2	2	5	
1	47	1	2	2	5	
2	40	1	1	1	5	
3	41	1	0	0	3	
4	60	1	2	2	5	

5 rows × 27 columns

In [80]:

- 1 #Printing the Co-ReaLation Between Data
- 2 data.corr()

Out[80]:

	Age	Gender	EducationBackground
Age	1.000000	-0.040107	-0.055905
Gender	-0.040107	1.000000	0.009922
EducationBackground	-0.055905	0.009922	1.000000
MaritalStatus	-0.098368	-0.042169	-0.001097
EmpDepartment	-0.000104	-0.010925	-0.026874
EmpJobRole	-0.037665	0.011332	-0.012325
BusinessTravelFrequency	0.040579	-0.043608	0.012382
DistanceFromHome	0.020937	-0.001507	-0.013919
EmpEducationLevel	0.207313	-0.022960	-0.047978
EmpEnvironmentSatisfaction	0.013814	0.000033	0.045028
EmpHourlyRate	0.062867	0.002218	-0.030234
EmpJobInvolvement	0.027216	0.010949	-0.025505
EmpJobLevel	0.509139	-0.050685	-0.056338
EmpJobSatisfaction	-0.002436	0.024680	-0.030977
NumCompaniesWorked	0.284408	-0.036675	-0.032879
OverTime	0.051910	-0.038410	0.007046
EmpLastSalaryHikePercent	-0.006105	-0.005319	-0.009788
EmpRelationshipSatisfaction	0.049749	0.030707	0.005652
TotalWorkExperienceInYears	0.680886	-0.061055	-0.027929
TrainingTimesLastYear	-0.016053	-0.057654	0.051596
EmpWorkLifeBalance	-0.019563	0.015793	0.022890
ExperienceYearsAtThisCompany	0.318852	-0.030392	-0.009887
ExperienceYearsInCurrentRole	0.217163	-0.031823	-0.003215
YearsSinceLastPromotion	0.228199	-0.021575	0.014277
YearsWithCurrManager	0.205098	-0.036643	0.002767
Attrition	-0.189317	0.035758	0.027161
PerformanceRating	-0.040164	-0.001780	0.005607

27 rows × 27 columns

In []:

1

In [43]:

- 1 # Here we have selected only the important columns
- 2 y = data.PerformanceRating
- #X = data.iloc[:,0:-1] All predictors were selected it resulted in dropping of accuracy
- X = data.iloc[:,[4,5,9,16,20,21,22,23,24]] # Taking only variables with correlation co
- 5 X.head()

Out[43]:

	EmpDepartment	EmpJobRole	EmpEnvironmentSatisfaction	EmpLastSalaı
0	5	13	4	
1	5	13	4	
2	5	13	4	
3	3	8	2	
4	5	13	1	

In [44]:

- 1 # Splitting into train and test for calculating the accuracy
- 2 X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=10

In [45]:

- 1 # Standardization technique is used
- 2 | sc = StandardScaler()
- 3 X train = sc.fit transform(X train)
- 4 X_test = sc.transform(X_test)

In [46]:

1 X_train.shape

Out[46]:

(840, 9)

In [47]:

1 X_test.shape

Out[47]:

(360, 9)

In [48]:

```
# Training the model
classifier_rfg=RandomForestClassifier(random_state=33,n_estimators=23)
parameters=[{'min_samples_split':[2,3,4,5],'criterion':['gini','entropy'],'min_samples
model gridrf=GridSearchCV(estimator=classifier rfg, param grid=parameters, scorir
model_gridrf.fit(X_train,y_train)
```

Out[48]:

```
GridSearchCV(estimator=RandomForestClassifier(n estimators=23, rando
m_state=33),
        param_grid=[{'criterion': ['gini', 'entropy'],
                  'min_samples_leaf': [1, 2, 3],
                  'min_samples_split': [2, 3, 4, 5]}],
         scoring='accuracy')
```

In [49]:

model gridrf.best params

Out[49]:

{'criterion': 'entropy', 'min samples leaf': 1, 'min samples split': 4}

In [50]:

```
1
  # Predicting the model
  y predict rf = model gridrf.predict(X test)
```

In [51]:

```
# Finding accuracy, precision, recall and confusion matrix
2
  print(accuracy score(y test,y predict rf))
  print(classification_report(y_test,y_predict_rf))
```

0.933333333333333

precision

```
recall f1-score support
       2
             0.90
                      0.89
                              0.90
                                        63
       3
             0.95
                      0.97
                              0.96
                                        264
                      0.76
                                        33
       4
             0.83
                              0.79
                             0.93
                                       360
  accuracy
                 0.90
                         0.87
                                  0.88
                                           360
  macro avg
                                   0.93
weighted avg
                 0.93
                          0.93
                                            360
```

In [52]:

```
confusion matrix(y test,y predict rf)
```

Out[52]:

```
array([[ 56, 7, 0],
     [ 4, 255, 5],
[ 2, 6, 25]], dtype=int64)
```

From the above calculation, it can be concluded that this model has 93.05% Accuracy.

The features that are positively correlated are:

- Environment Satisfaction
- Last Salary Hike Percent
- Worklife Balance

This means that if these factors increases, Performance Rating will increase.*

On the other hand, the features that are negatively correlated are:

- Years Since Last Promotion
- Experience Years at this Company
- Experience years in Current Role
- · Years with Current Manager.

This means that if these factors increases, Performance Rating will go down.*

Conclusion: The company should provide a better environment as it increases the performance drastically. The company should increase the salary of the employee from time to time and help them maintain a worklife balance, shuffling the manager from time to time will also affect performance

In []:			
1				