МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИИ ОПТИКИ" ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Системы управления в электроприводе

Лабораторная работа №5

Параметрический синтез и исследование цифровой системы управления с объектом в виде двух последовательно включенных апериодических звеньев первого порядка из условия обеспечения заданного по качеству переходного процесса.

Выполнил студент группы R34352
Эргле Екатерина Артуровна
Преподаватель
Ловлин Сергей Юрьевич

Санкт-Петербург 2023

Содержание

1. Синтез системы с использованием "метода переоборудования"	2
Передаточная функция системы	
Расчёт регулятора скорости	3
Моделирование работы системы настроенной на технический оптимум при разных То	
T0 = 0.1Tu	
T0 = 0.5Tu	4
T0 = Tu	
2. Синтез системы из условия получения в ней стандартной настройки на "оптимум по модулю" с	
использованием эквивалентной непрерывной системы	6
Апроксимация апереодическим звеном	
Синтез цифрового ПИ-регулятора методом переоборудования	7
3. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с	
использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства	
цифрового регулятора для случая T1 >> T0, T2 >> T0 , ε = 0	8
Синтез регулятора скорости	
Моделирование работы системы, настроенной на "технический оптимум"	8
Апроксимация	
Синтез цифрового регулятора скорости методом переоборудования	. 10
4. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с	
использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства	
цифрового регулятора для случая T1 >> T0, T2 >> T0 , ε = T0	. 11
Синтез цифрового ПД ПИ регулятора скорости методом переоборудования	. 12
Моделирование работы системы настроенной на симметричный оптимум	
Апроксимация апереодическим звеном	
Синтез цифрового ПИ-регулятора методом переоборудования	. 15
Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с	
использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства	ł
цифрового регулятора для случая T1 >> T0, T2 >> T0 , ε = 0	16
Синтез регулятора скорости	.16
Моделирование работы системы настроенной на "технический оптимум"	.16
Апроксимация	
Синтез цифрового регулятора скорости методом переоборудования	18

1. Синтез системы с использованием "метода переоборудования"

Передаточная функция системы

$$\left(-\frac{R}{L}\right)$$
 ia $+\left(-\frac{Ce}{L}\right)w + \frac{ua}{L}$

$$\frac{\text{Ce}}{J}$$
 ia

$$\frac{\text{Ce}}{(J L) s^2 + (J R) s + \text{Ce}^2}$$

$$\frac{\text{Kob}}{(T_1 T_2) s^2 + (T_1 + T_2) s + 1}$$

ans =

$$\left(\frac{\frac{JR}{\text{Ce}^2} - \frac{\sqrt{-J (4 \text{Ce}^2 L - J R^2)} + JR}{2 \text{Ce}^2}}{\frac{\sqrt{-J (4 \text{Ce}^2 L - J R^2)} - JR}{2 \text{Ce}^2} + \frac{JR}{\text{Ce}^2}}\right)$$

ans =

$$\begin{pmatrix} \frac{\sqrt{-J (4 \operatorname{Ce}^{2} L - J R^{2})} + J R}{2 \operatorname{Ce}^{2}} \\ -\frac{\sqrt{-J (4 \operatorname{Ce}^{2} L - J R^{2})} - J R}{2 \operatorname{Ce}^{2}} \end{pmatrix}$$

ob = struct with fields:

R: 0.1279

L: 0.0132

J: 109.4119

Ce: 2

Cm: 2

T1: 0.1061

T2: 3.3922

kdw: 57.2958

Kob: 28.6479

Расчёт регулятора скорости

$$\frac{T_2 s + 1}{2 \text{ Kob Tu } s}$$

Моделирование работы системы настроенной на технический оптимум при разных To

T0 = 0.1Tu

Рисунок 1. Моделирование системы.

Время переходного процесса tp1 5% зоны: 4.0*Ти

Время переходного процесса tp2 5% зоны: 6.3*Tu

Перерегулирование: 5.0%

T0 = 0.5Tu

Рисунок 2. Моделирование системы.

Время переходного процесса tp1 5% зоны: 3.7*Tu

Время переходного процесса tp2 5% зоны: 7.4*Tu

Перерегулирование: 8.7%

T0 = Tu

Рисунок 3. Моделирование системы.

Время переходного процесса tp1 5% зоны: 3.4*Ти

Время переходного процесса tp2 5% зоны: 7.8*Ти

Перерегулирование: 15.2%

Таблица 1.

I doilliga I.			
T_0	t_{pl}, c	t _{p2} , c	∆y, %
$T_0=0, IT_{\mu}$	4	6,3	5
$T_0 = 0.5T_{\mu}$	3,7	7,4	8,7
$T_0 = T_\mu$	3,4	7,8	15,2

2. Синтез системы из условия получения в ней стандартной настройки на "оптимум по модулю" с использованием эквивалентной непрерывной системы.

Апроксимация апереодическим звеном

Рисунок 4. Функционал качества.

Синтез цифрового ПИ-регулятора методом переоборудования

Рисунок 5. Моделирование системы.

Время переходного процесса tp1 5% зоны: 3.5*Tu

Время переходного процесса tp2 5% зоны: 3.5*Tu

Перерегулирование: 4.5%

Таблица 2.

T ₀	T_{μ}	t _{pl} , c	t _{p2} , c	∆y, %
0.1947	0.2920	3.5	3.5	4.5

3. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая T1 >> T0, T2 >> T0, ε = 0.

Синтез регулятора скорости

$$\frac{(T_1 s + 1) (T_2 s + 1)}{2 \text{ Kob Tu } s (\text{Tu } s + 1)}$$

Моделирование работы системы, настроенной на "технический оптимум"

Рисунок 6. Моделирование системы.

Время переходного процесса tp1 5% зоны: 3.0*Tu Время переходного процесса tp2 5% зоны: 16.7*Tu

Перерегулирование: 40.6%

Апроксимация

Рисунок 7. Функционал качества

Синтез цифрового регулятора скорости методом переоборудования.

Рисунок 8. Моделирование системы.

Время переходного процесса tp1 5% зоны: 3.0*Tu

Время переходного процесса tp2 5% зоны: 3.0*Tu

Перерегулирование: 3.8%

Таблица 3.

			I dovii	raconna J.	
T_0	T_{μ}	t_{pl}, c	t _{p2} , c	∆y, %	
0.1168	0.1168	3.0	3.0	3.6	

4. Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая T1 >> T0, T2 >> T0, $\epsilon = T0$.

Рисунок 9. Функционал качества

Синтез цифрового ПД ПИ регулятора скорости методом переоборудования.

Рисунок 10. Моделирование системы.

Время переходного процесса tp1 5% зоны: 3.2*Tu

Время переходного процесса tp2 5% зоны: 3.2*Ти

Перерегулирование: 2.7%

Таблица 4.

T_0	T_{μ}	t _{pl} , c	t _{p2} , c	Ду, %
0.0389	0.0857	3.3	3.3	2.7

Моделирование работы системы настроенной на симметричный оптимум

Рисунок 11. Моделирование системы.

Время переходного процесса tp1 5% зоны: 2.9*Tu

Время переходного процесса tp2 5% зоны: 14.8*Ти

Перерегулирование: 45.4%

Апроксимация апереодическим звеном

Рисунок 12. Функционал качества

Синтез цифрового ПИ-регулятора методом переоборудования

Рисунок 13. Моделирование системы.

Время переходного процесса tp1 5% зоны: 2.5*Tu

Время переходного процесса tp2 5% зоны: 12.6*Tu

Перерегулирование: 46.2%

Синтез системы из условия получения в ней стандартной настройки на «оптимум по модулю» с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового регулятора для случая T1 >> T0, T2 >> T0, ϵ = 0.

Синтез регулятора скорости

$$\frac{(T_1 s + 1) (T_2 s + 1) (4 \text{ Tu } s + 1)}{8 \text{ Kob Tu}^2 s^2 (\text{Tu } s + 1)}$$

Моделирование работы системы настроенной на "технический оптимум"

Рисунок 14. Моделирование системы.

Время переходного процесса tp1 5% зоны: 3.0*Tu Время переходного процесса tp1 5% зоны: 16.7*Tu

Перерегулирование: 40.6%

Апроксимация

Рисунок 15. Функционал качества.

Синтез цифрового регулятора скорости методом переоборудования

Рисунок 16. Моделирование системы.

Вывод: Была синтезирована и исследована система управления с объектом в виде двух последовательно включенных апериодических звеньев первого порядка из условия обеспечения заданного по качеству переходного процесса: Технический и Симетричный отпимумы. Симетричный оптимум показал хуже по показателям, чем технический, это также подтверждает теорию. При увеличении Т0 параметры переходных процессов тоже растут.