

- Најчесто, од безбедносни причини, поврзувањето на Интернет се остварува преку firewall ("огнен ѕид") или Рутер
 - Компанијата интерно применува нерегистрирани адреси (приватни IP адреси)
 - Firewall-от или Рутерот се грижат за преведување на мрежните адреси (Network Address Translation – NAT), пресликувајќи ги внатрешните во надворешни

- A)
 - Компанијата поставува web-страница на серверот со приватна адреса 10.0.0.1
 - Јавната регистрирана адреса на серверот е 193.14.71.5
 - Оддалечен корисник пристапува до web-серверот испраќајќи IP пакет кој ги содржи IP адресата на корисникот (source address) и јавната регистрирана адреса на серверот (destination address)
 - Firewall-от го пресретнува пакетот и, пред да го проследи кон локалната мрежа, ја заменува јавната регистрирана адреса со приватната адреса на серверот
 - Кога серверот ќе одговори, firewall-от повторно ги модифицира IP пакетите, така што оддалечениот корисник добива впечаток дека одговорот доаѓа од јавната регистрирана адреса, а не од приватната

3.2 Преведување на мрежните адреси - ПРИМЕРИ

Б)

- Еден од вработените во компанијата, чија адреса е 10.0.0.101, пристапува на оддалечен web-сервер со адреса 133.19.70.61
- Firewall-от располага со одреден опсег од слободни, јавни адреси (193.14.71.100 – 193.14.71.200)
- Firewall-от ги пресретнува IP пакетите и на корисникот му доделува една од слободните јавни адреси (193.14.71.111) – истата информација ја запишува во табелата за преведување на адресите (address translation table)
- Firewall-от ја заменува приватната source адреса со јавната регистрирана адреса и ги проследува пакетите кон Интернет
- Кога оддалечениот сервер ќе одговори, firewall-от ја заменува јавната регистрирана адреса со приватната адреса (прочитана од табелата) и ги проследува пакетите кон локалната мрежа

3.2 Преведување на мрежните адреси - ПРИМЕРИ

3.2 Преведување на мрежните адреси - ПРИМЕРИ

- Но, што ако не постојат доволен број јавно регистрирани адреси (на пр. постои само една)?!
 - Секогаш кога IP пакет излегува од локалната мрежа, приватната адреса се заменува со јавна(та) регистрирана адреса
 - TCP Source port полето се заменува со покажувач (index) кон табелата за преведување на адреси
 - Во табелата за преведување се запишуваат приватната IP адреса и оригиналниот Source port
 - Сумите за проверка на ТСР и ІР заглавијата повторно се пресметуваат и се внесуваат во пакетот
 - Пакетот се проследува кон Интернет
 - Кога ќе пристигне одговор, се чита Destination port и се користи за пристап до табелата за преведување
 - Од табелата се читаат приватната IP адреса и оригиналниот Source port и се внесуваат во пакетот
 - Сумите за проверка на ТСР и ІР заглавијата повторно се пресметуваат и се внесуваат во пакетот
 - Пакетот се проследува кон локалната мрежа

3.3 Именување (naming)

- Голем број мрежни протоколи им овозможуваат на корисниците да им се обраќаат на host-овите со имиња, наместо со нумерички адреси
 - TCP/IP
 - WWW: http://ime.na.domen/imenastranica
 - E-mail: <u>nekoe.lice@ime.na.domen</u>
 - Во наједноставен случај, преведувањето на имињата во IP адреси може да се реализира со помош на табели содржани на страната на клиентот
 - Сепак, клиент системите се конфигурираат со IP адресата на DNS (Domain Name System) сервер, на кого му се обраќаат за преведување на имињата во IP адреси
 - NetBIOS (NetBEUI)
 - Не постои адресирање на мрежно ниво
 - На секој клиент или сервер во мрежата му е доделено единствено име
 - За поврзување со друга машина, корисникот испраќа name resolution broadcast, со цел да ја открие MAC адресата на одредиштето
 - Kaj Windows NT базирани мрежи, каде NetBIOS пакети се пренесуваат во рамките на TCP/IP сесии (NetBIOS over TCP/IP), за преведување од NetBIOS имињата во IP адреси служи т.н. WINS сервер (Windows Internet Name Service)

3.3 DNS – Domain Name System

- ПРОБЛЕМ: Иако програмите можат да пристапуваат до host-овите и до другите ресурси со посредство на нивните мрежни адреси (IP адреси), адресите се тешки за помнење
- Мрежата разбира само нумерички адреси затоа, потребен е механизам со кој имињата на машините ќе се пресликуваат во мрежни адреси
- <u>www.facebook.com</u> -> **IP:** 66 . 220 . 149 . 11

3.3 DNS – Domain Name System

- Концептуално, Интернет е разделен на повеќе од 200 домени од највисоко ниво (top-level domains), секој од нив со голем број host-ови
- Секој домен е партициониран на поддомени (subdomains), кои и понатаму се партиционираат
- За креирање на нов поддомен, потребна е дозвола од доменот во кој тој ќе биде вклучен

3.3 DNS простор на имиња

3.3 DNS разрешување

- Теоретски, еден единствен сервер
 на имиња (name server) може да ја
 содржи целата DNS база на податоци
 и да одговара на сите повици
- Просторот на имиња е разделен на зони кои не се преклопуваат
- Секоја зона може да биде Forward lookup zone или Reverse lookup zone.

Forward Lookup Zones

Reverse Lookup Zones

Forward или Reverse lookup зоните можат да бидат од следниве типови:

Primary

Secondary

Primary Zones

Примарната зона чува read/write копија од DNS зоната каде што записите се креираат и менаџираат. Само еден сервер може да ја чува мастер копијата од зоната.

Secondary Zones

Копија од зоната може да се чува на еден или повеќе сервери. Секундарната зона е read-only копија од примарната зона.

3.3 Записи за ресурсите

- На секој домен му е придружено множество записи за ресурсите (resource records)
 - За индивидуален host, вообичаен запис е неговата IP адреса
- Кога разрешувачот му доставува име на DNS, она што го добива назад се записите за ресурси придружени на тоа име

3.3 Записи за ресурсите

Start of Authority (SOA) Resource Record

Секоја зона содржи SOA запис. Тој содржи информација за целата спецификација на DNS серверот која се користи за поддршка на зоната. Тој е првиот запис кој се креира при креирање на зоната.

Name Server (NS) Resource Record

Name server (NS) resource record го идентификува DNS серверот кој е повластен за зоната.

Host Address (A) Resource Record

Host address (A) resource record содржи информација за а FQDN(fully qualified domain name) во IP адреса.

Пр: prodazba.com IN A 172.16.48.1

3.3 Пример

3.3 Пример

- MARNet Македонски регистратор
 на интернет поддомени управување
 со националниот DNS
- Domain: <u>www.fikt.edu.mk</u>
- Primary DNS: 209.191.122.80
- Secondary DNS: 209.191.122.70

3.3 Пример

