Building a Model to Predict Classe

Maria Lauve August 18, 2017

Assignment

Six subjects are asked to repeatedly perform an activity five different ways. Each of the five ways of performing the task is assigned to a "classe" (A, B, C, D, or E).

For each repetition of the activity, a number of metrics are recorded from accelerometers placed on the belt, arm, dumbbell, and forearm of the subjects.

The purpose of this assignment is to build a model that is able to predict which of the five methods for performing a task a subject is using based on the recorded accelerometer measurements.

Setting up the data and environment

The first thing I do is call on the necessary libraries and import the test and training sets.

```
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2

library(rpart.plot)

## Loading required package: rpart

train = read.csv("./pml-training.csv")
test = read.csv("./pml-testing.csv")
```

Data exploration

The next thing I do is some data exploration to better understand the nature of the data.

I confirm that there are five classes: A, B, C, D, E. And that there are six subjects: adelmo, charles, eurico, jeremy, pedro.

I also run some trellis plots to see how the reported accelerometer measurements vary by user_name (subject) and classe.

```
unique(train$classe)
```

```
## [1] A B C D E
## Levels: A B C D E
```

```
unique(train$user_name)
```

```
## [1] carlitos pedro adelmo charles eurico jeremy
## Levels: adelmo carlitos charles eurico jeremy pedro
```

```
#Example trellis plot by user_name, classe
xyplot(roll_belt ~ X | classe * user_name, train)
```


Building a model

As a first attempt at builing a model, I decide to try a model that includes all accelerator measurements that appear to be populated in the dataset.

Using these features, I first attempt to run a single decision-tree model using the rpart function. To save on computing power, I use a 10-fold cross-validation model that repeats one time.

The results of the cross-validation suggest that the predictive power of this initial model is not very good.

```
# Display the results of the cross validation run rpart.cv
```

```
## CART
##
## 19622 samples
##
      52 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 17661, 17660, 17659, 17662, 17659, 17659, ...
## Resampling results across tuning parameters:
##
##
     ср
                Accuracy
                           Kappa
##
    0.02001139 0.6432615 0.55146076
##
    0.02008261 0.6418343 0.54975513
    0.02193420 0.5563640 0.42548694
##
##
    0.02983905 0.5308861 0.38828876
    0.03567868 0.5092778 0.35925176
##
    0.05998671 0.4165795 0.20896217
##
##
     0.11515454 0.3235575 0.05970544
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.02001139.
```

```
##
## Cross validation standard deviation: 0.0209450932990245
```

Finally, I run the same model, but use a random forest in place of rpart. Again, I save on computing power by using a 5-tree model even though using many more trees may have improved the predicting power.

```
Building a Model to Predict Classe
caret.control <- trainControl(method = "repeatedcv",</pre>
                                number = 10,
                                repeats = 1)
# For random forest
rf.cv <- train(classe ~ .,</pre>
                data = train[, features],
                method = "rf",
                trControl = caret.control,
                tuneLength = 7,
                ntree = 5,
                importance = TRUE)
## Loading required package: randomForest
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
# Display the results of the cross validation run
rf.cv
```

```
## Random Forest
##
## 19622 samples
##
      52 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 17659, 17659, 17661, 17660, 17659, 17659, ...
  Resampling results across tuning parameters:
##
##
     mtry Accuracy
                      Kappa
##
     2
           0.9684551 0.9600940
##
    10
           0.9856293 0.9818218
           0.9859855 0.9822716
##
    18
##
    27
           0.9860874 0.9824004
           0.9862911 0.9826607
##
     35
##
    43
           0.9837450 0.9794413
     52
##
           0.9816531 0.9767951
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 35.
```

```
##
## Cross validation standard deviation: 0.00354101833428266
```

Interpreting the results

The model output indicates that, within the training set, the model has 99 percent accuracy using the model's "best" parameters.

We can further tell which variables had the most explanator power by graphing the "importance" of variables using the "importance" function.

Bigger values indicate more powerful predictors.

```
# Pull out the trained model using the best parameters
rf.best <- rf.cv$finalModel

# Show variable importance
importance(rf.best)</pre>
```

```
##
                                                       C
                                                                  D
                                  Α
                                            В
                                                                             Ε
## roll belt
                        10.0112860 11.155012 19.2114658 11.262294 12.0237432
## pitch belt
                         4.6604590 23.235911 10.2222641
                                                          5.326815
                                                                     4.4586969
## yaw belt
                         19.1863305
                                     5.940858
                                               7.5152305 14.343930 11.4188974
## total_accel_belt
                                                          1.537276
                         1.2498354
                                     2.268302
                                               1.3328078
                                                                     1.4932911
## gyros belt x
                                               2.8907626
                         2.0326503
                                     1.976972
                                                          2.886063
                                                                     1.0935035
## gyros_belt_y
                         0.4887558
                                    2.320403
                                               3.0755732
                                                          1.586925
                                                                     1.7046345
## gyros belt z
                         2.7013938 11.630871
                                               3.0086589
                                                          4.158167
                                                                     5.2387276
## accel belt x
                                     1.465724
                         4.2152368
                                               1.3729866
                                                          2.520920
                                                                     2.4221116
## accel_belt_y
                         1.1180340
                                    1.324670
                                               1.1689249
                                                          1.295170
                                                                     1.2585249
## accel belt z
                         1.3011438
                                     2.672514
                                               3.6762308
                                                          1.935474
                                                                     1.9560518
## magnet_belt_x
                         4.7034118
                                     3.955776
                                               2.5249656
                                                          3.067071
                                                                     3.7572555
## magnet belt y
                          3.1110489
                                     3.149594
                                               8.3391763
                                                          2.391106 10.1136793
## magnet_belt_z
                         2.7151496
                                    3.147575
                                               3.3265723
                                                          3.459628
                                                                     2.8364995
## roll arm
                         2.9813920
                                    1.747335
                                               4.3233271
                                                          4.167569 13.2263631
                                                                     1.2719304
## pitch_arm
                         2.5866949
                                    5.487693
                                               2.3943390
                                                          3.628115
## yaw arm
                         4.2044197
                                     3.023585
                                               1.3835213
                                                          4.338914
                                                                     3.9596633
## total_accel_arm
                         1.4821358
                                    3.453693
                                               3.6910458
                                                          2.297952
                                                                     1.5886649
## gyros arm x
                         2.7402076
                                    5.553777
                                               4.0657912
                                                          3.495831
                                                                     1.9079051
## gyros arm y
                         7.0960839
                                    4.569347
                                               1.8800873
                                                          3.103405
                                                                     1.8027780
## gyros_arm_z
                         0.8992785
                                     1.863899
                                               1.9302598
                                                          2.740422 -0.4231080
## accel arm x
                         1.4761255
                                     2.837662
                                               3.1392036
                                                          3.165073
                                                                     2.6221510
## accel_arm_y
                         3.9772426
                                     9.220143
                                               0.8744618
                                                          1.954918
                                                                     3.1360939
## accel arm z
                         1.0519274
                                    3.256515
                                               1.7394232
                                                          4.403754
                                                                     3.1418853
                         3.1952916
                                    6.615258
                                               2.0599715
                                                          2.519611
                                                                     2.1317636
## magnet_arm_x
## magnet arm y
                         3.6532203
                                    2.952236
                                               3.0202157
                                                          5.736481
                                                                     3.1932554
## magnet_arm_z
                          2.3506801
                                    5.160069
                                               2.1529336
                                                          2.515822
                                                                     1.9208218
## roll dumbbell
                         3.1055614
                                    8.794504
                                               2.6194676
                                                          4.013568
                                                                     7.3500040
## pitch dumbbell
                         2.4986241
                                     3.168350
                                               2.6458930
                                                          1.924506
                                                                     2.9878071
## yaw dumbbell
                          4.1823653
                                    7.420693
                                               3.7942619
                                                          3.732768
                                                                     2.5824465
## total accel dumbbell
                         2.6192728
                                    7.803162
                                               2.3160473
                                                          4.525199
                                                                     3.3301254
## gyros_dumbbell_x
                         1.3263371
                                    7.125632
                                               3.3321631
                                                          2.412832
                                                                     1.8246927
## gyros dumbbell y
                         4.0038698
                                    7.491825
                                               2.4284424
                                                          3.340041
                                                                     4.8761175
## gyros_dumbbell_z
                                     2.547050
                                               2.2538632
                         2.5685936
                                                          2.045071
                                                                     2.1007167
## accel dumbbell x
                         2.0733906
                                    1.393371
                                               3.8907018
                                                          2.717914
                                                                     1.3585605
## accel_dumbbell_y
                         6.6234572 14.464112 19.5539481
                                                          5.075800
                                                                     3.3711513
## accel dumbbell z
                         4.3186073 17.174480
                                               2.7826700
                                                          5.447742
                                                                     6.9884523
## magnet dumbbell x
                         1.9693369
                                     1.333045
                                               2.7549040
                                                          3.725825
                                                                     3.6319404
## magnet dumbbell y
                         20.8510219 20.982583 42.6284670 29.823841 20.0868210
## magnet dumbbell z
                         32.3975077 12.934311
                                              9.6286779 14.892744 10.4668113
## roll_forearm
                         55.9915211 15.706881 35.9802260 23.736525 17.1358449
## pitch forearm
                         6.8356324 17.220965 19.6010810
                                                          5.534631 14.6555414
## yaw_forearm
                         4.5664793
                                    4.037091
                                               3.2032674
                                                          5.648517
                                                                     2.4818038
## total accel forearm
                         3.1104045
                                    2.003408
                                               2.1754283
                                                          2.351627
                                                                     0.4330661
## gyros_forearm_x
                         1.2959609
                                     1.118034
                                               1.7499725
                                                          1.696984
                                                                     1.1180340
## gyros forearm y
                         1.6346410
                                    4.668897
                                               3.0939322
                                                          3.374281
                                                                     6.7518474
## gyros forearm z
                          2.1938784
                                    8.670422
                                               2.2978830
                                                          3.694709
                                                                     1.9483519
## accel forearm x
                         2.4202247
                                     8.055920
                                               3.9038841
                                                          7.421877
                                                                     4.4572284
## accel forearm y
                                     2.960973
                                               4.2230785
                                                          2.090014
                                                                     2.4922855
                         1.9263657
## accel forearm z
                         2.3385450
                                    2.311397
                                               2.4018839
                                                          2.474047
                                                                     2.6589563
                                     3.213820
                                                                     3.3860996
## magnet_forearm_x
                         3.7596477
                                               4.1546116
                                                          3.920283
## magnet forearm y
                                     4.719831
                         4.6738422
                                               2.8221295
                                                          6.737079
                                                                     3.7387159
## magnet_forearm_z
                         3.2272325
                                     4.026585
                                               8.3344673
                                                          3.742252
                                                                     6.1970255
```

		244.	ing a model to i redict class
##		MeanDecreaseAccuracy	MeanDecreaseGini
##	roll_belt	23.628062	2263.63552
##	pitch_belt	12.606964	1020.30902
##	yaw_belt	13.059978	994.65061
##	total_accel_belt	2.045747	64.18686
##	gyros_belt_x	2.955301	51.78873
##	gyros_belt_y	2.913048	40.48342
##	gyros_belt_z	5.791810	326.28750
	accel_belt_x	3.056224	
	accel_belt_y	2.521560	
	accel_belt_z	2.390425	263.68272
	magnet_belt_x	4.003649	206.89614
	magnet_belt_y	4.846743	177.39443
	magnet_belt_z	5.284921	344.63749
	roll_arm	5.782061	150.64996
	pitch_arm	4.824403	90.59872
	yaw_arm	3.305696	269.81211
	· —		
	total_accel_arm	3.604546	33.85844
	gyros_arm_x	4.104294	76.60414
	gyros_arm_y	7.488216	137.15251
	gyros_arm_z	3.147563	21.29092
	accel_arm_x	3.990271	101.57335
	accel_arm_y	14.976388	63.02913
	accel_arm_z	2.254164	31.78909
	magnet_arm_x	3.779117	70.78573
	magnet_arm_y	4.950572	226.96901
##	magnet_arm_z	5.647479	88.34181
##	roll_dumbbell	18.694985	287.60895
##	pitch_dumbbell	4.923860	72.54743
##	yaw_dumbbell	13.208141	108.12882
##	total_accel_dumbbell	4.812328	381.25719
##	gyros_dumbbell_x	4.299986	89.52883
##	gyros_dumbbell_y	5.809181	145.51035
	gyros_dumbbell_z	3.390292	43.37404
	accel_dumbbell_x	4.973432	42.89375
	accel_dumbbell_y	10.313063	653.20094
	accel_dumbbell_z	8.312017	335.85898
	magnet dumbbell x	2.624074	263.71836
	magnet_dumbbell_y	66.528743	1002.46372
	magnet_dumbbell_z	33.435837	862.77332
	roll_forearm	48.023706	1129.69000
	_		
	pitch_forearm	16.375275	1387.40072
	yaw_forearm	6.695464	199.32395
	total_accel_forearm	4.569093	47.02584
	gyros_forearm_x	1.606955	11.41102
	gyros_forearm_y	4.300857	106.87737
	gyros_forearm_z	6.327247	48.74721
	accel_forearm_x	6.123088	371.95707
##	accel_forearm_y	4.047467	73.74942
##	accel_forearm_z	6.737785	76.57387
##	magnet_forearm_x	7.669448	167.66015
##	magnet_forearm_y	7.701459	141.54185
##	magnet_forearm_z	6.741495	287.50841
	<u>-</u>		

varImpPlot(rf.best)

rf.best

Conclusion

No further adjustments to the model were made given that this model managed to correctly predict 20/20 of the test set.