

28 de Fevereiro de 2018

Simulações do campo magnético gerado pelos cabos das fontes de corrente do Sirius

Luana Vilela

Laboratótrio Nacional de Luz Síncrotron, Campinas, Brazil

Neste relatório são apresentados os resultados das simulações magnéticas para o campo gerado pelos cabos das fontes de corrente dos imãs na região em torno do feixe de elétrons tanto do Booster como do anel de armazenamento do Sirius.

Simulações magnéticas

As simulações magnéticas foram feitas com o software MagNet. O modelo utilizado nas simulações é mostrado na figura 1. O aço CR10 (Cold rolled 1010 steel) foi usado para os materiais das calhas e berços. Devido a distância entre os berços não há influência entre os campos gerados pelos cabos do anel e do Booster, por isso foram feitas simulações separadas para cada acelerador. Os valores de corrente utilizados para cada família de ímã são apresentados nas tabelas 1 e 2.

Figure 1: Modelo 2D dos componentes utilizados nas simulações.

Table 1: Corrente nominal de extração dos ímãs do Booster.

Família do ímã	Corrente [A]	
BD	1034.0	
BQF	114.0	
BQD	30.4	
BS	142.0	

Table 2: Corrente nominal dos ímãs do anel de armazenamento.

Família do ímã	Corrente [A]	
B1/B2	380.00	
QFA	122.45	
$_{ m QFB}$	139.81	
QFP	139.81	
QDA	-64.12	
QDB1	-79.34	
QDB2	-135.09	
QDP1	-79.34	
QDP2	-135.09	
Q1	96.49	
Q2	148.81	
Q3	110.88	
Q4	134.81	
SDA0	-53.38	
SDB0	-42.88	
SDP0	-42.88	
SFA0	34.71	
SFB0	48.69	
SFP0	48.69	
SDA1	-107.62	
SDA2	-58.67	
SDA3	-92.41	
SFA1	126.67	
SFA2	99.56	
SDB1	-93.52	
SDB2	-80.71	
SDB3	-114.77	
SFB1	150.47	
SFB2	130.62	
SDP1	-93.97	
SDP2	-80.74	
SDP3	-115.00	
SFP1	151.38	
SFP2	131.08	

Booster

As figuras 2 e 3 mostram a distribuição dos cabos de alimentação das fontes do Booster e os resultados das simulações magnéticas. A média do campo magnético campo vertical no eixo é de 0.28 G. Considerando esse valor constante ao longo de todo o comprimento do Booster obtemos um erro de deflexão de aproximadamente 1.4 mrad devido ao campo gerado pelos cabos de alimentação.

Figure 2: Distribuição de correntes nos cabos das fontes de alimentação do Booster.

Figure 3: Campo magnético gerado pelos cabos das fontes dos ímãs do Booster no plano da órbita dos elétrons.

Anel de armazenamento

Pior Caso

Inicialmente foi considerado o caso em que todas as corrente tem o mesmo sentido para testar a influência dos cabos no campo magnético em torno da posição de referência do feixe de elétrons. A soma total da corrente neste caso é de 3284A. Os resultados são apresentados na figura 4.

Figure 4: Campo magnético gerado pelos cabos das fontes dos ímãs do anel de armazenamento no caso em que todas as correntes tem o mesmo sentido (pior caso).

Caso Otimizado

O otimização do campo magnético na região próxima ao feixe foi feita escolhendo a distribuição de correntes que minimizava a soma total das correntes dos cabos. O valor mínimo obtido foi de 1.2 A. Os resultados para este caso otimizado são mostrados na figura 5 e a distribuição de correntes é apresentada na figura 6.

Figure 5: Campo magnético gerado pelos cabos das fontes dos ímãs do anel de armazenamento no caso otimizado.

Figure 6: Distribuição otimizada de correntes nos cabos das fontes do anel de armazenamento.

A tabela 3 mostra os valores médios do campo magnético na região [-12, 12] mm em torno do feixe para ambos os casos citados. A estimativa para o erro de deflexão total no anel de armazenamento é de 0.7 mrad para a distribuição otimizada de correntes.

Table 3: Campo magnético gerado pelos cabos da fonte de corrente do anel de armazenamento.

	$B_{x_{avg}}[G]$	$B_{y_{avg}}[G]$
Pior caso	-2.2	-7.5
Caso otimizado	-0.02	-0.14

Observação: Nas simulações do anel de armazenamento o suporte do berço foi considerado um bloco maciço de aço (conforme mostrado na figura 1). No entanto a parte interna do suporte será composta principalmente de concreto, assim, é esperado que o campo magnético próximo ao feixe de elétrons seja menor que os valores obtidos com este modelo.