

Stroke Prediction

Team2 SC1015 Project

Douglas Toh, Ivan Ong, Yeoh Yu Shyan

TABLE OF CONTENTS

- O1 Ideation and problem statement
- 02 Data preparation
 - Data Cleaning
- 03 Exploration Data Analysis
 - Logistic regression & Random forest classifier
 - Smote
 - Ada Boost

Outcome and conclusion

Ideation/Problem statement

- It has been noted that the growth rate of stroke has been increasing at an alarming rate in Singapore
- What are the highest factors that contributes to stroke.

Data set

Factors Affecting Stroke

- Gender
- Age
- Hypertension
- Heart-Disease
- Marriage status
- Work type
- Residence type
- Smoking status
- Average Glucose level
- BMI

Total of 11 Columns

Categorical: 8 Variables

Numerical: 3 Variables

5110 Rows of Data

Data Cleaning & Preparation

	Variable	Counts	(NotApplicable)
0	id		0
1	gender		0
2	age		0
3	hypertension		0
4	heart_disease		0
5	ever_married		0
6	work_type		0
7	Residence_type		0
8	avg_glucose_level		0
9	bmi		201
10	smoking_status		0
11	stroke		0

count	21	115.000	000
mean		28.635	745
std		7.278	764
min		11.500	000
25%		24.250	000
50%		28.400	000
75%		32.200	000
max		97.600	000
Name:	bmi,	dtype:	float64
count	29	994.000	000
mean		29.024	749
std		7.981	418
min		10.300	000
25%		23.425	000
50%		27.800	000
75%		33.300	000
max		78.000	000
Name:	bmi,	dtype:	float64

201 missing BMIs values

 Use medium value of male and female to replace the missing BMI values

1 instance of gender labeled 'others'

Removed

3117	39784 Female	72	0	0	Yes	Self-emplo	Urban	65.12	28.3	never smo	0
3118	56156 Other	26	0	0	No	Private	Rural	143.33	22.4	formerly s	0
3119	15230 Female	9	0	0	No	children	Rural	80.55	15.1	Unknown	0

Exploratory Data Analysis

Conduct a high-level Descriptive Statistical analysis on the dataset.

Patients with stroke are overlapping with patients without stroke which indicates that they are not clearly separated.

Exploratory Data Analysis

Scatterplot

- Age with Avg_glucose_level
 - Older age and higher avg_glucose level has higher stroke count
- Age with BMI
 - Older age and higher BMI has higher stroke count

Logistic Regression & Random Forest Classifier

Feature Importance Ranking using Deviance(LR)

- 1. Deviance Ranking
- 2. Random Forest Classifier

Note "age", "avg_glucose_level", "ever_married", "hypertension" & "heart disease"

"bmi" is a stronger factor than "ever_married" for our data study.

Applying SMOTE

Synthetic Minority Oversampling Technique

- To address imbalance of data
- K-nearest neighbour
- 4611 instances with stroke is generated

Synthetic Data was generated to the distribution of the original samples.

- Age >40 is seen to have more stroke cases.
- Small number of instance age 40<

(Deviance) Logistic Regression

	Mean F1 Train	Mean F1 Test	Mean Accuracy Train	Mean Accuracy Test
1	0.774362	0.774945	0.765143	0.765688
2	0.776160	0.775836	0.767200	0.766847
3	0.779217	0.778964	0.772537	0.772377
4	0.787539	0.787447	0.781154	0.781122
5	0.789152	0.788007	0.783533	0.782408
6	0.789693	0.789016	0.784015	0.783180
7	0.792175	0.791131	0.787905	0.786907
8	0.812637	0.812471	0.808738	0.808512
9	0.826383	0.826336	0.823302	0.823174
10	0.826271	0.826235	0.823206	0.823045
11	0.833682	0.831797	0.830568	0.828832
12	0.844065	0.841483	0.841950	0.839506
13	0.851477	0.848569	0.849987	0.847222
14	0.853957	0.853155	0.853009	0.852237
15	0.878959	0.877148	0.880433	0.878600

2 0.776315 0.776035 0.767297 0.766975 3 0.774599 0.773813 0.766075 0.765433 4 0.775179 0.774325 0.767747 0.766847 5 0.784018 0.783312 0.776492 0.775720 6 0.789366 0.789115 0.783726 0.783308 7 0.800781 0.799923 0.796361 0.795395 8 0.828489 0.827669 0.824653 0.823817 9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.852656 0.852109 13 0.853564 0.852902 0.852656 0.852109		Mean F1 Train	Mean F1 Test	Mean Accuracy Train	Mean Accuracy Test
3 0.774599 0.773813 0.766075 0.765433 4 0.775179 0.774325 0.767747 0.766847 5 0.784018 0.783312 0.776492 0.775720 6 0.789366 0.789115 0.783726 0.783308 7 0.800781 0.799923 0.796361 0.795395 8 0.828489 0.827669 0.824653 0.823817 9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	1	0.516340	0.516462	0.599473	0.599924
4 0.775179 0.774325 0.767747 0.766847 5 0.784018 0.783312 0.776492 0.775720 6 0.789366 0.789115 0.783726 0.783308 7 0.800781 0.799923 0.796361 0.795395 8 0.828489 0.827669 0.824653 0.823817 9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	2	0.776315	0.776035	0.767297	0.766975
5 0.784018 0.783312 0.776492 0.775720 6 0.789366 0.789115 0.783726 0.783308 7 0.800781 0.799923 0.796361 0.795395 8 0.828489 0.827669 0.824653 0.823817 9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	3	0.774599	0.773813	0.766075	0.765433
6 0.789366 0.789115 0.783726 0.783308 7 0.800781 0.799923 0.796361 0.795395 8 0.828489 0.827669 0.824653 0.823817 9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	4	0.775179	0.774325	0.767747	0.766847
7 0.800781 0.799923 0.796361 0.795395 8 0.828489 0.827669 0.824653 0.823817 9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	5	0.784018	0.783312	0.776492	0.775720
8 0.828489 0.827669 0.824653 0.823817 9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	6	0.789366	0.789115	0.783726	0.783308
9 0.834923 0.834368 0.832337 0.831919 10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	7	0.800781	0.799923	0.796361	0.795395
10 0.843254 0.841148 0.840889 0.838992 11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	8	0.828489	0.827669	0.824653	0.823817
11 0.841514 0.841223 0.839410 0.839250 12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	9	0.834923	0.834368	0.832337	0.831919
12 0.846926 0.845704 0.845165 0.843878 13 0.853564 0.852902 0.852656 0.852109	10	0.843254	0.841148	0.840889	0.838992
13 0.853564 0.852902 0.852656 0.852109	11	0.841514	0.841223	0.839410	0.839250
	12	0.846926	0.845704	0.845165	0.843878
14 0.875313 0.873523 0.876575 0.874741	13	0.853564	0.852902	0.852656	0.852109
	14	0.875313	0.873523	0.876575	0.874741
15 0.878959 0.877294 0.880433 0.878729	15	0.878959	0.877294	0.880433	0.878729

	Variables	Coef (Exp)
0	avg_glucose_level	1.005815
1	age	1.100145
2	bmi	1.018121
3	heart_disease	0.323312
4	hypertension	0.437892
5	ever_married_Yes	0.544334
6	work_type_Self-employed	0.002293
7	work_type_Private	0.008056
8	gender_Female	0.332729
9	smoking_status_formerly smoked	0.190535
10	smoking_status_smokes	0.301161
11	Residence_type_Urban	0.447486
12	smoking_status_Unknown	0.145455
13	work_type_Govt_job	0.001924
14	work_type_children	0.025163
15	intercept	0.855136

Deviance Ranking Table

Feature Ranking Table

Confusion Matrix & Coefficient Table

F1 Score for train: 87.84 F1 Score for test: 87.52

	Variables	Coef (Exp)
0	avg_glucose_level	1.005815
1	age	1.100145
2	bmi	1.018121
3	heart_disease	0.323312
4	hypertension	0.437892
5	ever_married_Yes	0.544334
6	work_type_Self-employed	0.002293
7	work_type_Private	0.008056
8	gender_Female	0.332729
9	smoking_status_formerly smoked	0.190535
10	smoking_status_smokes	0.301161
11	Residence_type_Urban	0.447486
12	smoking_status_Unknown	0.145455
13	work_type_Govt_job	0.001924
14	work_type_children	0.025163
15	intercept	0.855136

Decision Tree

age <= 49.01 gini = 0.5 samples = 7776 value = [3874, 3902] class = Yes

F1 Score for train: 81.95 F1 Score for test: 81.26

AdaBoost

Learning Rate → [0.2,0.4,0.8,1.0]

Best Parameter = 0.2

AdaBoost

F1 Score for train: 97.32

F1 Score for test: 95.17

AdaBoost

AdaBoost

How features affect the likelihood of a patient getting stroke

Logistic Regression

Conclusion

Logistic Regression

Conclusion

THANK YOU!

