Experiment and Formulation

2018 12.27

- Topology with 100 nodes, 4 T type nodes (at the top). Set capacity of T-T peer links to be large enough so that they won't be too crowded.
- When inject about 2000 flows into the topology: (dense)

• When inject 1000 flows into the topology:

When inject 400 flows into the topology: (sparse)

Optimal Routing Formulation

• Network topology has flow $f \in F$, each with end-to-end rate v^f , source node s^f and destination node t^f .

The goal is to maximize optimization variable $\max(\sum_{f \in F} v^f)$

With constrains:

$$\sum_{j:(i,j)\in E} x_{ij}^f - \sum_{i:(j,i)\in E} x_{ji}^f = \begin{cases} 0, \\ -v^f, \\ v^f, \end{cases}$$

$$0 \le \sum_{f \in F} x_{ij}^f \le u_{ij}$$
 , $(i,j) \in E$

for all
$$i \in V - s^f - t^f$$

for $i = t^f$
for $i = s^f$

Using Linear Programming

Change the formulation to relaxation format:

$$\begin{cases}
\min c^T x \\
Ax = b \\
x \ge 0
\end{cases}$$

Change the model and introduce relaxation variables L to it:

$$\begin{cases} \min -\sum_{f \in F, (s^f, i) \in E} x_{s^f i}^f, & for \ \forall f \in F, \ (s^f, i) \in E \\ \sum_{j:(i,j) \in E} x_{ij}^f - \sum_{i:(j,i) \in E} x_{ji}^f = 0, & for \ \forall f \in F, i \in V - s^f - t^f \\ \sum_{(i,j) \in E} x_{ij}^f + L^f = u_{ij}, & for \ \forall f \in F, (i,j) \in E \end{cases}$$

- Applying simplex algorithm to it:
- Find first basic solution based on relaxation formulation. Assume relaxation variables as base variables, others as non-base.
- 2. Following Bland rule:
 - In the objective function, select the first non-base variable with a negative coefficient to be substituted
 - In the constraint set, select the first base variable that is the tightest constraint to substitute.
 - Do pivot operation.
- 3. Repeat step2 until no non-base variable with a negative coefficient can be found in the objective function.
- Using python library pulp to solve.