

Vishay Vitramon

HALOGEN

FREE

Surface Mount Multilayer Ceramic Chip Capacitors for Non-Magnetic Applications

FEATURES

- Manufactured with non-magnetic materials
- · Safety screened for magnetic properties
- C0G (NP0) and X7R / X5R dielectrics
- Wide range of case sizes, voltage ratings, and capacitance values
- Suitable for reflow assembly methods
- · Wet built process

APPLICATIONS

- Reliable Noble Metal Electrode (NME) system
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

- Magnetic Resonance Imaging (MRI)
- · Medical test and diagnostic equipment
- · Laboratory analysis systems
- Navigation and electronic test equipment
- Audio amplifiers

LINKS TO ADDITIONAL RESOURCES

ELECTRICAL SPECIFICATIONS

NON-MAGNETIC COG (NPO)

GENERAL SPECIFICATION

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 1.0 pF to 39 nF Voltage Range: 10 V_{DC} to 3000 V_{DC}

Temperature Coefficient of Capacitance (TCC):

0 ppm/°C ± 30 ppm/°C from -55 °C to +125 °C

Dissipation Factor (DF):

0.1 % maximum at 1.0 \acute{V}_{RMS} and 1 MHz for values \leq 1000 pF 0.1 % maximum at 1.0 V_{RMS} and 1 kHz for values > 1000 pF

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging: 0 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.

Applied test voltages

 $\begin{array}{lll} \leq 200 \; V_{DC}\text{-rated:} & 250 \; \% \; \text{of rated voltage} \\ 500 \; V_{DC}\text{-rated:} & 200 \; \% \; \text{of rated voltage} \\ 630 \; V_{DC}, \; 1000 \; V_{DC}\text{-rated:} & 150 \; \% \; \text{of rated voltage} \\ 1500 \; V_{DC} \; \text{to } 3000 \; V_{DC}\text{-rated:} & 120 \; \% \; \text{of rated voltage} \\ \end{array}$

NON-MAGNETIC X7R / X5R

GENERAL SPECIFICATION

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 100 pF to 6.8 μF

Voltage Range: 6.3 V_{DC} to 3000 V_{DC}

Temperature Coefficient of Capacitance (TCC):

X5R: \pm 15 % from -55 °C to +85 °C, with 0 V_{DC} applied X7R: \pm 15 % from -55 °C to +125 °C, with 0 V_{DC} applied

Dissipation Factor (DF):

 \leq 6.3 $\dot{\text{V}}$, 10 V ratings: $\dot{\text{5}}$ % maximum at 1.0 V_{RMS} and 1 kHz 16 V, 25 V ratings: 3.5 % maximum at 1.0 V_{RMS} and 1 kHz \geq 50 V ratings: 2.5 % maximum at 1.0 V_{RMS} and 1 kHz

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging Rate: 1 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.

Applied test voltages

Vishay Vitramon

QUICK REFEREN	CE DATA			
	0.05	MAXIMUM VOLTAGE	CAPAC	ITANCE
DIELECTRIC	CASE	(V)	MINIMUM	MAXIMUM
	0402	100	1.0 pF	180 pF
	0603	200	1.0 pF	1.5 nF
	0805	500	1.0 pF	3.3 nF
	1206	600	1.0 pF	10 nF
COC (NIDO)	1210	500	1.0 pF	12 nF
COG (NP0)	1808	3000	27 pF	10 nF
	1812	3000	27 pF	22 nF
	1825	1000	15 pF	33 nF
	2220	1000	100 pF	33 nF
	2225	1000	120 pF	39 nF
VED	0402	16	27 nF	47 nF
X5R	0603	6.3	120 nF	150 nF
	0402	100	100 pF	22 nF
	0603	100	270 pF	100 nF
	0805	200	390 pF	390 nF
	1206	500	680 pF	1.0 μF
	1210	500	1.0 nF	1.0 µF
X7R	1808	3000	220 pF	270 nF
	1812	3000	270 pF	1.0 µF
	1825	1000	10 nF	2.7 μF
	2220	3000	1.0 nF	2.2 μF
	2225	2000	5.6 nF	4.7 μF
	3640	500	15 nF	6.8 μF

Note

• Detail ratings see "Selection Chart"

Vishay Vitramon

Notes

- (1) DC voltage rating should not be exceeded in application
- (2) Selected values for X5R, see dielectric selection chart
- (3) For soldering conditions see Vishay Soldering Recommendations www.vishay.com/doc?45034

Vishay Vitramon

SELECTIO	ON CHA	RT																		
DIELECTRIC										C	G (NF	20)								
STYLE			1	/J040	2				1	/J060						1	/J080	5		
CASE CODE				0402						0603							0805			
VOLTAGE (V	DC)	10	16	25	50	100	10	16	25	50	100	200	250	10	16	25	50	100	200	500
VOLTAGE CO	ODE	Q	J	Х	Α	В	Q	J	Х	Α	В	С	Р	Q	J	Х	Α	В	С	E
CAP. CODE	CAP.																			
1R0	1.0 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1R2	1.2 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1R5	1.5 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1R8	1.8 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
2R2	2.2 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
2R7	2.7 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
3R3 3R9	3.3 pF 3.9 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
4R7	4.7 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
5R6	5.6 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
6R8	6.8 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
8R2	8.2 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
100	10 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
120	12 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
150	15 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
180	18 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
220	22 pF	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
270	27 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
330	33 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
390 470	39 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
560	47 pF 56 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
680	68 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
820	82 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
101	100 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
121	120 pF	••	••	••	••	••	•	•	•	•	•	•		•	•	•	•	•	•	•
151	150 pF	••	••	••	••		•	•	•	•	•	•		•	•	•	•	•	•	•
181	180 pF	••	••	••	••		•	•	•	•	•	•		•	•	•	•	•	•	•
221	220 pF	••	••				•	•	•	•	•	•		•	•	•	•	•	•	•
271	270 pF						•	•	•	•	•	•		•	•	•	•	•	•	•
331	330 pF						•	•	•	•	•			•	•	•	•	•	•	•
391	390 pF						•	•	•	•	•			•	•	•	•	•	•	•
471 561	470 pF						•	•	•	•				•	•	•	•	•	•	•
561 681	560 pF 680 pF						•	•	•	•				•	•	•	•	•	•	<u> </u>
821	820 pF						•	•	•	•				•	•	•	•	•	•	<u> </u>
102	1.0 nF						•	•	•	•		1		•	•	•	•	•	•	
122	1.2 nF						•	•						•	•	•	•	•		\vdash
152	1.5 nF						•	•						•	•	•	•	•		
182	1.8 nF													•	•	•	•			
222	2.2 nF													•	•	•	•			
272	2.7 nF													•	•	•	•			
332	3.3 nF													•	•	•	•			
392	3.9 nF													•	•	•	•			<u> </u>
472	4.7 nF													•	•	•	•			<u> </u>
562	5.6 nF																			-
682	6.8 nF																			
822 103	8.2 nF 10 nF																			-
123	10 nF																			\vdash
120	14 HF		1	1				1	1	1	1		1		1	1	1	1		

Notes

RoHS-compliant

Vishay Vitramon

SELECTIO	N CHAR	Т											
DIELECTRIC		1					COG	(NP0)					
STYLE					VJ1206			(/			VJ1210		
CASE CODE					1206						1210		
VOLTAGE (VD	с)	16	25	50	100	200	500	600	25	50	100	200	500
VOLTAGE CO	DE	J	Х	Α	В	С	E	N	Х	Α	В	С	E
CAP. CODE	CAP.												
1R0	1.0 pF	•	•	•	•	•	•	•	•	•	•	•	•
1R2	1.2 pF	•	•	•	•	•	•	•	•	•	•	•	•
1R5	1.5 pF	•	•	•	•	•	•	•	•	•	•	•	•
1R8	1.8 pF	•	•	•	•	•	•	•	•	•	•	•	•
2R2	2.2 pF	•	•	•	•	•	•	•	•	•	•	•	•
2R7	2.7 pF	•	•	•	•	•	•	•	•	•	•	•	•
3R3	3.3 pF	•	•	•	•	•	•	•	•	•	•	•	•
3R9	3.9 pF	•	•	•	•	•	•	•	•	•	•	•	•
4R7	4.7 pF	•	•	•	•	•	•	•	•	•	•	•	•
5R6	5.6 pF			•	•	•	•						•
6R8 8R2	6.8 pF 8.2 pF	•	•	•	•	•	•	•	•	•	•	•	•
8R2 100	8.2 pF 10 pF	•	•	•	•	•	•	•	· ·	•	•	•	•
120	12 pF	•	•	•	•	•	•	•	•	•	•	•	•
150	12 pF 15 pF	•	•	•	•	•	•	•	•	•	•	•	•
180	18 pF	•	•	•	•	•	•	•	•	•	•	•	•
220	22 pF	•	•	•	•	•	•	•	•	•	•	•	•
270	27 pF	•	•	•	•	•	•	•	•	•	•	•	•
330	33 pF	•	•	•	•	•	•	•	•	•	•	•	•
390	39 pF	•	•	•	•	•	•	•	•	•	•	•	•
470	47 pF	•	•	•	•	•	•	•	•	•	•	•	•
560	56 pF	•	•	•	•	•	•	•	•	•	•	•	•
680	68 pF	•	•	•	•	•	•	•	•	•	•	•	•
820	82 pF	•	•	•	•	•	•	•	•	•	•	•	•
101	100 pF	•	•	•	•	•	•	•	•	•	•	•	•
121	120 pF	•	•	•	•	•	•	•	•	•	•	•	•
151	150 pF	•	•	•	•	•	•	•	•	•	•	•	•
181	180 pF	•	•	•	•	•	•	•	•	•	•	•	•
221	220 pF	•	•	•	•	•	•	•	•	•	•	•	•
271	270 pF	•	•	•	•	•	•	•	•	•	•	•	•
331	330 pF	•	•	•	•	•	•	•	•	•	•	•	•
391	390 pF	•	•	•	•	•	•	•	•	•	•	•	•
471	470 pF	•	•	•	•	•	•	•	•	•	•	•	•
561	560 pF	•	•	•	•	•	•	•	•	•	•	•	•
681	680 pF 820 pF	•	•	•	•	•	•	•	•	•	•	•	•
821 102	820 pF 1.0 nF	•	•	•	•	•	•	•	•	•	•	•	•
102	1.0 nF 1.2 nF	•	•	•	•	•	•	•	•	•	•	•	•
152	1.2 nF	•	•	•	•	•		 	•	•	•	•	•
182	1.8 nF	•	•	•	•	•			•	•	•	•	•
222	2.2 nF	•	•	•	•	•		 	•	•	•	•	
272	2.7 nF	•	•	•	•	•		<u> </u>	•	•	•	•	
332	3.3 nF	•	•	•	•			<u> </u>	•	•	•	•	
392	3.9 nF	•	•	•	•				•	•	•	•	
472	4.7 nF	•	•	•	•				•	•	•	•	
562	5.6 nF	•	•	•					•	•	•	•	
682	6.8 nF	•	•	•		1	İ	1	•	•	•		
822	8.2 nF	•	•	•					•	•			
103	10 nF	•	•	•					•	•			
123	12 nF								•	•			

Notes

RoHS-compliant

Vishay Vitramon

SELECTIO	ON CHA	RT																			
DIELECTRIC											C0G (I	NP0))								
STYLE						,	VJ180	18			•						VJ18	12			
CASE CODE							1808										181				
VOLTAGE (V	20)	25	50	100	200	500	630	1000	1500	2000	3000	25	50	100	200	500		1000	1500	2000	3000
VOLTAGE CO		X	A	В	C	E	L	G	R	F	Н	X	A	В	C	E	L	G	R	F	Н
CAP. CODE	CAP.	 ^			_	_	_			•		_				_	-	_ ~	••	•	L
100	10 pF		l						1					1	1			I			T
120	12 pF																				
150	15 pF																				
180	18 pF																				
220	22 pF																				
270		•	_	•	•	•	•	•	•	•	•						•	•	•	•	•
330	27 pF	•	•	•		•		•	•	•	•						•	•	•	•	•
	33 pF		•		•		•														
390	39 pF	•	•	•	•	•	•	•	•	•	•			_	_		•	•	•	•	•
470	47 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
560	56 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
680	68 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
820	82 pF	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
101	100 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
121	120 pF	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
151	150 pF	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
181	180 pF	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
221	220 pF	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
271	270 pF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•
331	330 pF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•
391	390 pF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	
471	470 pF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	
561	560 pF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	
681	680 pF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	
821	820 pF	•	•	•	•	•	•	•				•	•	•	•	•	•	•			
102	1.0 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•			
122	1.2 nF	•	•	•	•	•						•	•	•	•	•	•	•			
152	1.5 nF	•	•	•	•	•						•	•	•	•	•	•	•			
182	1.8 nF	•	•	•	•	•						•	•	•	•	•	•	•			
222	2.2 nF	•	•	•	•							٠	•	•	•	•	٠	•			
272	2.7 nF	•	•	•	•							•	•	•	•	•					
332	3.3 nF	•	•	•	•							•	•	•	•	•					
392	3.9 nF	•	•	•	•							•	•	•	•	•					
472	4.7 nF	•	•	•	•							•	•	•	•						
562	5.6 nF	•	•	•	•							•	•	•	•						
682	6.8 nF	•	•	•	•							٠	•	•	•						
822	8.2 nF	•	•	•								٠	•	•	•						
103	10 nF	•	•									•	•	•	•						
123	12 nF											•	•	•	•						
153	15 nF											٠	•	•							
183	18 nF											•	•								
223	22 nF											•	•								
273	27 nF																				
333	33 nF																				
393	39 nF																				
473	47 nF																				
563	56 nF																				
683	68 nF																				
					•				•											•	

Notes

RoHS-compliant

Vishay Vitramon

SELECTIO	ON CHA	RT																				
DIELECTRIC											(COG ((NP0)									
STYLE					V J18	325						VJ22	220						VJ22	25		
CASE CODE					182	25						222	20						222	:5		
VOLTAGE (V	DC)	25	50	100	200	500	630	1000	25	50	100	200	500	630	1000	25	50	100	200	500	630	1000
VOLTAGE CO	DDE	Х	Α	В	С	Е	L	G	Х	Α	В	С	Е	L	G	Х	Α	В	С	Е	L	G
CAP. CODE	CAP.																					
100	10 pF																					
120	12 pF																					
150	15 pF						•	•														
180	18 pF						•	•														
220	22 pF						•	•														
270	27 pF						•	•														
330	33 pF						•	•														
390	39 pF						•	•														
470	47 pF						•	•														
560	56 pF						•	•														
680	68 pF						•	•														
820	82 pF						•	•														
101	100 pF	•	•	•	•	•	•	•	•	•	•	•	•									
121	120 pF	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		
151	150 pF	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		
181	180 pF	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		
221	220 pF	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		
271	270 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
331	330 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
391	390 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
471	470 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
561	560 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
681	680 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
821	820 pF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
102	1.0 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
122	1.2 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
152	1.5 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
182	1.8 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
222	2.2 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
272	2.7 nF	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•
332	3.3 nF	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•
392	3.9 nF	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•
472	4.7 nF	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•
562	5.6 nF	•	٠	•	•	•			•	•	٠	٠	•			٠	•	•	•	٠		
682	6.8 nF	•	•	•	•	•			•	•	•	•				•	•	•	•	•		
822	8.2 nF	•	•	•	•	•			•	•	•	•				•	•	•	•	•		
103	10 nF	•	•	•	•	•			•	•	•	•				•	•	•	•	•		
123	12 nF	•	•	•	•				•	•	•	•				٠	•	•	•	•		
153	15 nF	•	•	•	•				•	•	•	•				•	•	•	•			
183	18 nF	•	•	•	•				•	•	•					•	•	•	•			
223	22 nF	•	•	•	•				•	•	•					٠	•	•	•			
273	27 nF	•	•	•	•				•	•	•					•	•	•	•			
333	33 nF	•	•	•	•				•	•	•					٠	•	•	•			
393	39 nF															•	•	•	•			
473	47 nF																					
563	56 nF																					
683	68 nF																					

Notes

RoHS-compliant

Vishay Vitramon

SELECTIO	ON CHA	RT																	
DIELECTRIC									X7R	/ X5F	? ⁽¹⁾								
STYLE				/J0402						VJ06						V.I	0805		
CASE CODE			•	0402						060							805		
	`	6.3	10	16	25	50	100	6.3	10	16	25	50	100	10	16	25	50	100	200
VOLTAGE (V															-				
VOLTAGE CO		Υ	Q	J	X	Α	В	Υ	Q	J	X	Α	В	Q	J	X	Α	В	С
CAP. CODE	-								1			1	1		ı		ı		
101	100 pF	••	••	••	••	••	••												
121	120 pF	••	••	••	••	••	••												
151	150 pF	••	••	••	••	••	••												
181	180 pF	••	••	••	••	••	••												
221	220 pF	••	••	••	••	••	••												
271	270 pF	••	••	••	••	••	••	•	•	•	•	•	•						
331	330 pF	••	••	••	••	••	••	•	•	•	•	•	•						
391	390 pF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
471	470 pF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
561	560 pF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
681	680 pF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
821	820 pF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
102	1.0 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
122	1.2 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
152	1.5 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
182	1.8 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
222	2.2 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
272	2.7 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
332	3.3 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
392	3.9 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
472	4.7 nF	••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•	•
562	5.6 nF	••	••	••	••	••		•	•	•	•	٠	•	•	•	•	•	•	•
682	6.8 nF	••	••	••	••	••		•	•	•	•	•	•	•	•	•	•	•	•
822	8.2 nF	••	••	••	••	••		•	•	•	•	•	•	•	•	•	•	•	•
103	10 nF	••	••	••	••	••		•	•	•	•	•	•	•	•	•	•	•	•
123	12 nF	••	••	••	••			•	•	•	•	•	•	•	•	•	•	•	•
153	15 nF	••	••	••	••			•	•	•	•	•	•	•	•	•	•	•	•
183	18 nF	••	••	••				•	•	•	•	•	•	•	•	•	•	•	•
223	22 nF	••	••	••				•	•	•	•	•	•	•	•	•	•	•	•
273	27 nF	X5R ••	X5R ••	X5R ••				•	•	•	•	•		•	•	•	•	•	•
333	33 nF	X5R ••	X5R ••	X5R ••				•	•	•	•	•		•	•	•	•	•	
393	39 nF	X5R ••						•	•	•	•	•		•	•	•	•	•	
473	47 nF	X5R ••						•	•	•	•	•		•	•	•	•	•	
563	56 nF							•	•	•	•	•		•	•	•	•	•	
683	68 nF							•	•	•	•	•		•	•	•	•	•	
823	82 nF							•	•	•	•	•		•	•	•	•	•	
104	100 nF							•	•	•	•	•		•	•	•	•	•	
124	120 nF							X5R ●						•	•	•	•		
154	150 nF							X5R •						•	•	•	•		
184	180 nF													•	•	•			
224	220 nF													•	•	•			
274	270 nF													•	•	•			
334	330 nF													•	•	•			
394	390 nF													•					
474	470 nF																		
564	560 nF																		
684	680 nF																		
			1	1											1				
824	820 nF																		
	820 nF 1.0 μF																		

Notes

RoHS-compliant

[•] Paper tape • Plastic tape

⁽¹⁾ See selection chart for values only available as X5R. All other values X7R

Vishay Vitramon

SELECTION	CHART													
DIELECTRIC								X7R						
STYLE				VJ1	206						VJ1210			
CASE CODE				12	206						1210			
VOLTAGE (V _{DC})		16	25	50	100	200	500	16	25	50	75	100	200	500
VOLTAGE COD	E	J	Х	Α	В	С	Е	J	Х	Α	K	В	С	Е
CAP. CODE	CAP.												•	•
101	100 pF													
121	120 pF													
151	150 pF													
181	180 pF													
221	220 pF													
271	270 pF													
331	330 pF													
391	390 pF													
471	470 pF													
561	560 pF													
681	680 pF	•	•	•	•	•	•							
821	820 pF	•	•	•	•	•	•							
102	1.0 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
122	1.2 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
152	1.5 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
182	1.8 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
222	2.2 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
272	2.7 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
332	3.3 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
392	3.9 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
472	4.7 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
562	5.6 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
682	6.8 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
822	8.2 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
103	10 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
123	12 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
153	15 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
183	18 nF	•	•	•	•	•	•	•	•	•	•	•	•	•
223	22 nF	•	•	•	•	•		•	•	•	•	•	•	•
273	27 nF	•	•	•	•	•		•	•	•	•	•	•	•
333	33 nF	•	•	•	•	•		•	•	•	•	•	•	•
393	39 nF	•	•	•	•	•		•	•	•	•	•	•	•
473	47 nF	•	•	•	•	•		•	•	•	•	•	•	•
563	56 nF	•	•	•	•	•		•	•	•	•	•	•	
683	68 nF	•	•	•	•	•		•	•	•	•	•	•	
823	82 nF	•	•	•	•	•		•	•	•	•	•	•	
104	100 nF	•	•	•	•	•		•	•	•	•	•	•	
124	120 nF	•	•	•	•			•	•	•	•	•	•	
154	150 nF	•	•	•	•			•	•	•	•	•	•	ļ
184 224	180 nF	•	•	•	•		1	•	•	•	•	•		
224 274	220 nF 270 nF	•	•	•	•		1	•	•	•	•	•		
334	330 nF	•	•	•	_		-	•		•	•	•		
394	330 nF 390 nF	•	•	•			-	•	•	•	•	•		
474	470 nF	•	•	•			-	•	•	•	•	•		
564		•	•		-		-	•	•	•	•	•		
684	560 nF 680 nF	•	•		-		-	•	•	•	•			
824	820 nF	•	•				-	•	•	•	•			
105	820 nF 1.0 μF	•	•				-	•	•	•	_		<u> </u>	1
125	1.0 µF	•	•				-	•	•	•				
120	1.2 µF				1		l					<u> </u>	l	<u> </u>

Notes

RoHS-compliant

Vishay Vitramon

SELECTION	ON CHA	۱R۱	RT																				
DIELECTRIC												Х	7R										
STYLE							V J180	08				T						VJ18	312				
CASE CODE							1808											18					
VOLTAGE (V	\	25	50	100	200	500		1000	1500	2000	3000	25	EΩ	75	100	200	250	500		1000	1500	2000	3000
VOLTAGE (V										2000 F		X											
		Х	Α	В	С	Е	L	G	R	F	Н	Χ	Α	K	В	С	Р	Ε	L	G	R	F	Н
CAP. CODE	CAP.								1													ı	
221	220 pF										•									_			
271	270 pF						_	_	•	•	•								•	•	•	•	•
471 561	470 pF 560 pF						•	•	•	•	•									•	•		•
561 681	680 pF						•	•	•	•	•								•		•		•
821	820 pF						•	•	•	•	•								•	•	•		•
102	1.0 nF	•	•	•	•	•	•	•	•	•	•	-							•	•	•	•	•
122	1.0 nF	•	•	•	•	•	•	•	•	•	•								•	•	•	•	•
152	1.5 nF	•	•	•	•	•	•	•	•	•	•								•	•	•	•	•
182	1.8 nF	•	•	•	•	•	•	•	•	•		\vdash							•	•	•	•	•
222	2.2 nF	•	•	•	•	•	•	•	•	•									•	•	•	•	•
272	2.7 nF	•	•	•	•	•	•	•	•	•									•	•	•	•	
332	3.3 nF	•	•	•	•	•	•	•	•	•									•	•	•	•	
392	3.9 nF	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	
472	4.7 nF	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	
562	5.6 nF	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	
682	6.8 nF	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	
822	8.2 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•		
103	10 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•		
123	12 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•			
153	15 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•			
183	18 nF	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•			
223	22 nF	•	•	•	•	•						•	•	•	•	•	•	•	•	•			
273	27 nF	٠	•	•	•	•						•	•	•	•	•	•	•	•	•			
333	33 nF	•	•	•	•							•	•	٠	•	•	•	•	•				
393	39 nF	•	•	•	•							•	•	•	•	•	٠	•	•				
473	47 nF	•	•	•	•							•	•	•	•	•	•	•	•				
563	56 nF	•	•	•	•							•	•	•	•	•	•	•	•				
683	68 nF	•	•	•	•							•	•	•	•	•	•	•	•				
823	82 nF	•	•	•	•							•	•	•	•	•	•	•	•				
104	100 nF	•	•	•	•							•	•	•	•	•	•	•	•				
124	120 nF	•	•	•								•	•	•	•	•	•	•					
154	150 nF	•	•	•								•	•	•	•	•	•						
184 224	180 nF 220 nF	•	•	•								•	•	•	•	•	•						
274	270 nF	•	•									•	•	•	•	•	•						
334	330 nF											•	•	•	•	•	•						
394	390 nF											•	•	•	•	•							
474	470 nF											•	•	•	•	•		 					
564	560 nF											•	•	•	•								
684	680 nF											•	•	•	•								
824	820 nF											•	•	•	•								
105	1.0 µF											•	•										
125	1.2 µF																						
155	1.5 µF																						
185	1.8 µF																						
225	2.2 µF																						
275	2.7 µF																						
335	3.3 µF																						
395	3.9 µF																						
475	4.7 µF																						
565	5.6 µF																						
685	6.8 µF																						
825	8.2 µF																						

Notes

RoHS-compliant

Vishay Vitramon

VOLTAGE CODE CAP. CAP. CAP. C	SELECTIO	N CHART																
STYLE (OSE CODE 1825	DIELECTRIC									X	7R							
CASE CODE VOLTAGE (Noc) VOLTAGE (N	STYLE					VJ182	5							VJ2220)			
VOLTAGE (CODE CAP. VOLTAGE CODE CAP. VOLTAGE CODE CAP. CAP CODE CAP. 221 220 pF 471 470 pF 881 580 pF 881 580 pF 881 180 pF 182 1 180 pF 182 1 180 pF 183 18 nF 582 5 6 nF 682 682 6 8 nF 682 6 8 nF 682 8 18 nF 682 8 18 nF 683 18 nF 684 18 nF 685 18 nF 686 18 nF 686 18 nF 687 18 nF 688														2220				
VOLTAGE CODE CAP. 221		-)	25	50	100		500	630	1000	25	50	100	200		630	1000	2000	3000
CAP. CODE CAP. 221 220 pF 271 270 pF 471 470 pF 461 560 pF 661 560 pF 681 680 pF 8821 820 pF 1022 1.0 nF 1122 1.2 nF 1132 1.8 nF 1222 2.2 nF 1332 3.3 nF 1333 3.3 nF 1333 1.8 nF 1434 1.8 nF 1554 1.8 nF 1555 1.8 nF 1555 1.8 nF 1556 1.8 nF 1556 1.8 nF 1557 1.8 nF 1558 1.8																		
221 220 pF 271 270 pF 471 470 pF 561 560 pF 681 680 pF 821 820 pF 102 1.0 nF 102 1.0 nF 1122 1.5 nF 1182 1.5 nF 1182 1.8 nF 122 2.2 nF 222 2.2 nF 222 2.2 nF 223 3.3 nF 332 3.3 nF 333 10 nF 3472 4.7 nF 562 6.8 nF 822 8.2 nF 823 8.2 nF 824 8.2 nF 825 8.2 nF 825 8.3 nF 826 8.3 nF 827 8.3 nF 828 8.3 nF 828 8.3 nF 828 8.3 nF 828 8.3 nF 829 8.3 nF 829 8.2 nF 820 8.3 nF 821 8.3 nF 822 8.3 nF 823 8.3 nF 833 30 nF 833 30 nF 833 30 nF 834 30 nF 835 30 nF 835 30 nF 836 30 nF 837 30 nF 838 30 nF 848 470 nF 848 480 nF 848 480 nF 848 480 nF 849 470 nF 849																		+
271																		†
### ### ### ### ### ### ### ### ### ##																		1
Set																		
681 680 pF 820 pF 821 102 1.0 nF																		
821 820 pF	681																	
122	821																	
152		1.0 nF																•
182	122	1.2 nF																•
222 2.2 nF	152	1.5 nF																•
2772 2.7 nF		1.8 nF																•
332 3.3 nF																		•
392 3.9 nF 472 4.7 nF 562 5.6 nF 682 6.8 nF																		
### ### ### ### ### ### ### ### ### ##																		
5682 5.6 nF																		
822 8.2 nF 103 10 nF 123 12 nF 153 15 nF 183 18 nF 223 22 nF 277 27 nF 333 33 9 nF 477 47 nF 104 100 nF 104 100 nF 105 1.0 nF 124 220 nF 274 270 nF 275 2.7 nF 276 2.2 nF 277 2.2 nF 277 2.2 nF 278 2.2 nF 279 2.2 nF																		
822 8.2 nF									ļ									
103																		
123																		
153																		
183								 					-	1				
223								1					1					
273					1	_	1	1					1	1				
333 33 nF																		
393							1										•	-
473					1		1	1					1	1				+
563 56 nF • • • • • • • • • • • • • • • • • • •																		+
683 68 nF																		+
823 82 nF				•	•	•	•	•			•		•		•	•		+
104 100 nF					•	•	•	•		•	•		1		•	•		+
124			•	•	•	•	•			•	•	•	•	•	•			†
184 180 nF	124	120 nF	•	•	•	•	•			•	•	•	•	•	•			
224	154	150 nF	•	•	•	•	•			•	•	•	•	•	•			
274	184	180 nF	•	•	•	•	•			•	•	•	•	•	•			
334 330 nF	224	220 nF	•	•	•	•	•			•	•	•	•	•	•			
394 390 nF			•	•	•	•				•	•	•	•					
474 470 nF			•	•	•	•				•	•	•	•					
564 560 nF • • • • • • • • • • • • • • • • • • •																		
684 680 nF																		1
824 820 nF																		
105						•												1
125																		<u> </u>
155													•					
185	125								1			•				1		
225 2.2 µF • • • • • • • • • • • • • • • • • •					•				 									
275 2.7 μF •									1							1		
335 3.3 µF	225				<u> </u>		<u> </u>		 					<u> </u>				+
395 3.9 μF 475 4.7 μF 565 5.6 μF 685 6.8 μF																		+
475 4.7 μF 565 5.6 μF 685 6.8 μF																		+
565 5.6 μF 685 6.8 μF			1															
685 6.8 µF																		
																		†
		8.2 µF																

Notes

RoHS-compliant

Vishay Vitramon

SELECTION	CHART														
DIELECTRIC								X	7R						
STYLE						VJ2225	j						VJ3640		
CASE CODE						2225							3640		
VOLTAGE (V _{DC})		25	50	100	200	500	630	1000	1500	2000	25	50	100	200	500
VOLTAGE COD	E	Х	Α	В	С	E	L	G	R	F	Х	Α	В	С	Е
CAP. CODE	CAP.		•	•	•	•	•	•	•	•		•	•	•	•
102	1.0 nF														
122	1.2 nF														
152	1.5 nF														
182	1.8 nF														
222	2.2 nF														
272	2.7 nF														
332	3.3 nF														
392	3.9 nF														
472	4.7 nF														
562	5.6 nF								•	•					
682	6.8 nF								•	•					
822	8.2 nF								•	•					
103	10 nF	•	•	•	•	•	•	•	•	•					
123	12 nF	•	•	•	•	•	•	•	•	•					
153	15 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
183	18 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
223	22 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
273	27 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
333	33 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
393	39 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
473	47 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
563	56 nF	•	•	•	•	•	•	•			•	•	•	•	•
683	68 nF	•	•	•	•	•	•	•			•	•	•	•	•
823	82 nF	•	•	•	•	•	•	•			•	•	•	•	•
104	100 nF	•	•	•	•	•	•	•			•	•	•	•	•
124	120 nF	•	•	•	•	•					•	•	•	•	•
154	150 nF	•	•	•	•	•					•	•	•	•	•
184	180 nF	•	•	•	•	•					•	•	•	•	•
224	220 nF	•	•	•	•	•					•	•	•	•	•
274	270 nF	•	•	•	•	•					•	•	•	•	•
334	330 nF	•	•	•	•	•					•	•	•	•	•
394	390 nF	•	•	•	•						•	•	•	•	•
474	470 nF	•	•	•	•						•	•	•	•	•
564	560 nF	•	•	•	•						•	•	•	•	•
684	680 nF	•	•	•	•						•	•	•	•	•
824	820 nF	•	•	•	•						•	•	•	•	
105	1.0 µF	•	•	•	•				<u> </u>	1	•	•	•	•	
125	1.2 µF	•	•	•	•						•	•	•	•	
155	1.5 µF	•	•	•							•	•	•	•	
185	1.8 µF	•	•	•							•	•	•	•	
225	2.2 µF	•	•								•	•	•		
275	2.7 µF	•	•								•	•	•		
335	3.3 µF	•									•	•	•		
395	3.9 µF	•									•	•	•		
475	4.7 µF	•		İ	İ						•	•			
565	5.6 µF										•				
685	6.8 µF	1		<u> </u>	<u> </u>						•				
825	8.2 µF	1													

Notes

RoHS-compliant

Vishay Vitramon

Vishay Vitramon

VJ Non-Magnetic Series

Vishay Vitramon

STAND	ARD PA	CKAGING QUAN	TITIES (1)(2)(3)			
			7" REEL QUANTITIES	·	11 1/4" AND 13" F	REEL QUANTITIES
CASE	TAPE SIZE	PAPER TAPE PACKAGING CODE "C"	PLASTIC TAPE PACKAGING CODE "T"	LOW QUANTITY PACKAGING CODE "J" (5)	PAPER TAPE PACKAGING CODE "P"	PLASTIC TAPE PACKAGING CODE "R"
0402	8 mm	5000	n/a	1000	10 000	n/a
0603 (4)	8 mm	n/a	4000	1000	n/a	10 000
0805 (4)	8 mm	n/a	3000	1000	n/a	10 000
1206 ⁽⁴⁾	8 mm	n/a	3000 / 2500	1000	n/a	10 000 / 9000
1210	8 mm	n/a	3000 / 2500 / 2000	1000	n/a	10 000 / 9000
1808	12 mm	n/a	2000	500	n/a	10 000
1812	12 mm	n/a	1000	500	n/a	4000
1825	12 mm	n/a	500	250	n/a	4000
2220	12 mm	n/a	1000	500	n/a	4000
2225	12 mm	n/a	500	250	n/a	4000
3640	16 mm	n/a	500	n/a	n/a	n/a

Notes

- (1) Vishay Vitramon uses embossed plastic carrier tape
- (2) Reference: EIA standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- (3) n/a = not available
- (4) Packaging code "T/R" and lower quantities can depend on product thickness
- (5) Paper / plastic tape used by availability

STORAGE AND HANDLING CONDITIONS

- (1) Store the components at +5 °C to +40 °C ambient temperature and ≤ 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.
- (3) For soldering conditions see Vishay Soldering Recommendations www.vishay.com/doc?45034.

Precautions:

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt, or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight, and so on.

Vishay Vitramon

Solder Pad Dimensions for Vishay Surface-Mount Multilayer Ceramic Chip Capacitors

Notes

⁽¹⁾ For safety capacitors and voltages above 3000 V, corner rounding (R) of 0.5 mm is recommended to suppress arcing

⁽²⁾ Add a 1 mm slot in PCB between pads to allow cleaning and coating under MLCC

⁽³⁾ For VJ HiFREQ Series, this dimension is 0.6 mm

⁽⁴⁾ For safety capacitors, the A dimension should be 5.80 mm

VISHAY.

Guidelines for MLCC Solder Pads and PCBs

www.vishay.com

Vishay Vitramon

PRINTED CIRCUIT BOARD PCB DESIGN CONSIDERATIONS FOR HIGH VOLTAGE SURFACE-MOUNT MLCCS

Special assembly process and design considerations should be employed for today's high voltage rating MLCCs. As case sizes remain the same and voltage ratings increase, MLCC manufacturers must design, evaluate, and qualify their capacitors using methods that reduce the occurrence of corona discharge and arcover events. To meet similar capability in high voltage applications, users should employ similar cautionary design and assembly methods.

MLCC PAD LAYOUT

A capacitor's arcover inception point can degrade due to factors such as the MLCC termination, PCB pad design, PCB cleanliness, solder flux residue, surface contamination / deposits and environmental conditions. PCB pads and their design affect the air gap distance between the opposing polarities of the MLCC termination. For voltage rating greater than 1500 V_{DC} add a corner radius to the inward facing edge of the MLCC pads and as large a gap as possible between the pads. Too small of a pad gap distance will reduce the capacitor's own arcover inception voltage level. Refer to the Figure and Table Figure 1.0, MLCC Pad Layout and Table 1.0, Vishay MLCC Solder Pad Dimensions for the recommended MLCC solder pad dimensions.

SLOT OR TRENCH BETWEEN PADS

PCB assembly can deposit dust, trap solder balls, or flux residue underneath the capacitors. These contaminants will reduce conductive clearances and the arcover inception level. Assembly methods must include a final PCB cleaning process. A slot or trench can be cut into the PCB in between the pads to allow cleaners to penetrate underneath the MLCC. The slot will also allow conformal or epoxy coatings to flow underneath the MLCC and build an insulative barrier between pads. Refer to Figure 1.0 MLCC Pad Layout for slot reference location.

COATING PRINTED CIRCUIT BOARD

Coating a printed circuit board with materials such as acrylic, silicone and urethane resins provide a protective dielectric barrier that is non-conductive and will enhance the resistance to arcing. Various processes exist which include dipping, brushing, and spaying. Optimal performance will come from coating the MLCC on all sides, top and bottom. The PCB slot in between the pads should extend slightly beyond the width of the MLCC. Refer to Figure 1.0 MLCC Pad Layout for slot reference location.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.