最新事例紹介資料

2018/09/20 岐阜大学 加藤研究室 中塚俊介

目次

■ How good is my GAN?

Konstantin Shmelkov, Cordelia Schmid, Karteek Alahari https://arxiv.org/abs/1807.09499 (ECCV2018)

■ GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training

Samet Akcay, Amir Atapour-Abarghouei, Toby P. Breckon https://arxiv.org/abs/1805.06725

Deep Anomaly Detection Using Geometric Transformations

Izhak Golan, Ran El-Yaniv https://arxiv.org/abs/1805.10917 (NIPS2018)

■ Generative Probabilistic Novelty Detection with Adversarial Autoencoders

Stanislav Pidhorskyi, Ranya Almohsen, Donald A Adjeroh, Gianfranco Doretto https://arxiv.org/abs/1807.02588 (NIPS2018)

How good is my GAN?

- GAN-train (recall: diversity) と GAN-test (precision: quality) を提案
 - diversity と quality を別々に評価できる
 - Inception Network (with Imagenet) からの解放
- GANによるData Augmentation は識別精度が低下する可能性があることを示唆
 - P_g は P_r ほどの diversity と quality を持てない
 - Overfitting

2.5k, 5k, 10kのデータでGANを学習& Augmentation後

| 識別モデルを学習したときの精度

Num real images	real C10	real+GAN C10	real C100	real+GAN C100
2.5k	73.4	67.0	25.6	23.9
5k	80.9	77.9	40.0	33.5
10k	85.8	83.5	51.5	45.5

精度の低下精度の低下

GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training

- 仮定
 - □ 正常データのみで学習
 - \square G_E がx -> z のmapping を学習できても, G_D は完全な復元ができない
 - 要は異常データを入力すると、 z は異常ベクトルになっても、出力は正常データになってしまう
- 入出力の特徴ベクトルで異常度を算出
 - **D** Network E を付与して,差を取ることが新規性

- この仮定がそもそも正しいかを 示す実験がない
- この仮定が正しいなら,入出力もしくはzを見るだけで判定可能では?

異常度

$$\left|G_{E}(x)-E(G(x))\right|_{1}$$

Deep Anomaly Detection Using Geometric Transformations

- *K*個の幾何変換の集合 *T* = {T₁, T₂, ..., TK_{-1}}
 - □ 上下反転,平行移動,回転
- \blacksquare 正常画像に対して,何らかの幾何変換 T_i をする
- 何の幾何変換がされたかの*K*クラス分類するNNを学習する

正常度
$$\frac{1}{k} \sum_{j=0}^{k-1} \left[y \left(T_j(x) \right) \right]_j$$

正常画像なら何の変換か分類できるので、正常度が高くなる

Dataset		OC-	SVM	DAGMA	DCEDM	AD-	OUDG
	c_i	RAW	CAE	DAGMM	DSEBM	GAN	OURS
CIFAR-10 (32x32x3)	0	0.706	0.749	0.414±0.023	0.560±0.069	0.649	0.761±0.00
	1	0.513	0.517	0.571 ± 0.020	0.483 ± 0.018	0.390	0.911 ± 0.003
	2	0.691	0.689	0.538 ± 0.040	0.619 ± 0.001	0.652	0.799 ± 0.00
	3	0.524	0.528	0.512 ± 0.008	0.501 ± 0.004	0.481	0.738 ± 0.00
	4	0.773	0.767	0.522 ± 0.073	0.733 ± 0.002	0.735	0.871 ± 0.00
	5	0.512	0.529	0.493 ± 0.036	0.605 ± 0.003	0.476	0.873 ± 0.00
	6	0.741	0.709	0.649 ± 0.017	0.684 ± 0.003	0.623	0.831 ± 0.00
	7	0.526	0.531	0.553 ± 0.008	0.533 ± 0.007	0.487	0.949 ± 0.00
	8	0.709	0.710	0.519 ± 0.024	0.739 ± 0.003	0.660	0.907 ± 0.00
	9	0.506	0.506	0.542 ± 0.058	0.636 ± 0.031	0.378	0.876 ± 0.00
	$\bar{a}vg^{-}$	0.620	-0.624	0.531	0.609	0.553	0.852
	0	0.680	0.684	0.434±0.039	0.640±0.002	0.631	0.714±0.00
	1	0.631	0.636	0.495 ± 0.027	0.479 ± 0.001	0.549	0.684 ± 0.00
	2	0.504	0.520	0.661 ± 0.017	0.537 ± 0.041	0.413	0.706 ± 0.00
	3	0.627	0.647	0.526 ± 0.010	0.484 ± 0.005	0.500	0.791 ± 0.00
	4	0.597	0.582	0.569 ± 0.030	0.597 ± 0.063	0.406	0.754 ± 0.00
	5	0.535	0.549	0.524 ± 0.022	0.466 ± 0.016	0.428	0.630 ± 0.00
	6	0.559	0.572	0.550 ± 0.011	0.517 ± 0.008	0.511	0.837 ± 0.00
	7	0.644	0.629	0.528 ± 0.037	0.548 ± 0.016	0.554	0.617 ± 0.00
	8	0.667	0.656	0.532 ± 0.048	0.667 ± 0.002	0.592	0.790 ± 0.00
CIEAD 100	9	0.701	0.741	0.425 ± 0.025	0.712 ± 0.012	0.627	0.905 ± 0.00
CIFAR-100	10	0.830	0.841	0.527 ± 0.039	0.783 ± 0.011	0.798	0.858 ± 0.00
(32x32x3)	11	0.597	0.580	0.464 ± 0.024	0.627 ± 0.007	0.537	0.820 ± 0.00
	12	0.687	0.685	0.427 ± 0.031	0.668 ± 0.000	0.589	0.797 ± 0.00
	13	0.650	0.646	0.454 ± 0.007	0.526 ± 0.001	0.574	0.583 ± 0.00
	14	0.507	0.512	0.572 ± 0.013	0.440 ± 0.006	0.394	0.896 ± 0.00
	15	0.635	0.628	0.488 ± 0.015	0.568 ± 0.001	0.556	0.665 ± 0.00
	16	0.683	0.666	0.544 ± 0.031	0.631 ± 0.001	0.633	0.717 ± 0.00
	17	0.717	0.737	0.364 ± 0.023	0.730 ± 0.010	0.667	0.911 ± 0.00
	18	0.502	0.528	0.524 ± 0.014	0.577 ± 0.016	0.443	0.879 ± 0.00
	19	0.575	0.584	0.503 ± 0.010	0.555 ± 0.007	0.530	0.849 ± 0.00
	$\bar{a}vg^{-}$	0.626	0.631	0.505	0.588	0.547	0.77 0 -
Fashion- MNIST (32x32x1)	0	0.982	0.977	0.421±0.091	0.916±0.012	0.899	0.995±0.00
	1	0.903	0.899	0.551 ± 0.035	0.718 ± 0.005	0.819	0.954 ± 0.00
	2	0.907	0.914	0.504 ± 0.073	0.883 ± 0.002	0.876	0.854 ± 0.00
	3	0.942	0.907	0.570 ± 0.067	0.873 ± 0.036	0.912	0.860 ± 0.00
	4	0.894	0.891	0.269 ± 0.054	0.852 ± 0.009	0.865	0.884 ± 0.00
	5	0.918	0.885	0.705 ± 0.097	0.871 ± 0.000	0.896	0.924 ± 0.01
	6	0.834	0.817	0.483 ± 0.050	0.734 ± 0.041	0.743	0.801 ± 0.00
	7	0.988	0.987	0.835 ± 0.114	0.981 ± 0.000	0.972	0.975 ± 0.00
	8	0.919	0.906	0.499 ± 0.072	0.860 ± 0.032	0.890	0.889 ± 0.00
	9	0.990	0.986	0.340 ± 0.030	0.971 ± 0.003	0.971	0.974 ± 0.00
	\overline{avg}	0.928	0.917	0.518	0.866	0.884	0.917
CatsVsDogs	0	0.504	0.552	0.434 ± 0.005	0.471 ± 0.017	0.507	0.886±0.00
(64x64x3)	1	0.530	0.499	0.520 ± 0.019	0.561 ± 0.012	0.481	0.871 ± 0.00
(UTAUTAJ)	$\bar{a}vg^{-}$	0.517	-0.525	0.477	0.516	0.494	- 0.879 -

Generative Probabilistic Novelty Detection with Adversarial Autoencoders

- 観測されるデータは,Manifold $M \equiv f(z_i)$ 上のポイント x_i とノイズ ξ_i が加算されたものである
 - \Box i = 1, 2, ..., N, ...
 - \Box $f: \mathbb{R}^n \to \mathbb{R}^m$ (Encoder)
 - $\square g: \mathbb{R}^m \to \mathbb{R}^n \text{ (Decoder)}$
- ノイズはM に直行するようにポイントを動かす
- \blacksquare データをM の接ベクトル空間T での座標から確率密度を算出する

接ベクトル空間での座標でのpdf
$$p_X(\overline{X})=p_W(w)$$

$$=p_w(w^\parallel,w^\perp)$$
 互いに独立 $=p_w^\parallel(w^\parallel)p_{w^\perp}(w^\perp)$ T とparallel T とorthogonal (manifold) (noise)

