

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB203T- Probability and Stochastic Processes

Module – V Tutorial Sheet - 15

		Tutorial Sheet - 15	
Sl.No.		Questions	Answer
Part – B			
1	If X(t) is the input voltage to a circuit and Y(t) is the output voltage, $\{X(t)\}$ is a stationary random process with $\mu_x = 0 \& R_{XX}(\tau) = e^{-2 \tau }$. Find $\mu_y, S_{XX}(\omega), S_{YY}(\omega) \& R_{YY}(\tau)$ if the		(i) 0 (ii) $\frac{4}{\omega^2 + 4}$ (iii) $S_{YY}(\omega) = \frac{4}{\left(4 + \omega^2\right)^2}$
	system function is given by $H(\omega) = \frac{1}{2 + i\omega}$		$R_{YY}(\tau) = \frac{e^{-2 \tau }}{8} \left(1 + 2 \tau \right)$
2	A Circuit h $h(t) = \begin{cases} \frac{1}{T} & 0 \le t \\ 0 & oth \end{cases}$ Evaluate $S_{YY}(\omega)$		$S_{YY}(\omega) = \left(\frac{\sin(\omega T/2)}{\omega T/2}\right)^2 S_{XX}(\omega)$
3	A system has an impulse response $h(t) = e^{-\beta t}U(t)$. Find the power spectral density of the output Y(t) corresponding to the input X(t).		$S_{YY}(\omega) = \frac{1}{\beta^2 + \omega^2} S_{XX}(\omega)$
4	autocorrelation	ut power density spectrum and output function for a system with $h(t) = e^{-t}$ $t \ge 0$, for	$R_{\gamma\gamma}(\tau) = \frac{\eta_0}{4} e^{- \tau }$, $-\infty < \tau < \infty$.
	an input with po	wer density spectrum $\frac{\eta_0}{2}$ $-\infty < f < \infty$.	