MATH2211 SPRING 2022 PROBLEM SET 9

DUE FRIDAY, APRIL 15, 2022 AT 11:59 PM

Useful reading for Problems 1 and 2: Section 8.A of Axler.

Problem 1. A nilpotent linear operator is defined to be a linear operator $T: V \to V$ such that some power of T is equal to zero. In parts (b) to (d), let $N: V \to V$ be a nilpotent operator on a finite dimensional vector space V.

- (a) Give an example of a 2×2 real nilpotent matrix (i.e. a nilpotent linear operator from \mathbb{R}^2 to \mathbb{R}^2) none of whose entries are 0 (or prove they don't exist).
- (b) Now let N be a nilpotent operator on a finite dimensional vector space V. Prove that 0 is the only eigenvalue of N.
- (c) Let U be any nonzero subspace of V and suppose that $NU \subseteq U$. Prove that NU is strictly contained in U.
 - Hint: Use contradiction. Comment: A useful notation for strict containment is \subseteq .
- (d) Prove that $N^{\dim V} = 0$. Hint: Use the previous part iteratively starting with U = V.

Problem 2. Given a polynomial $p \in F[t]$ (note: F[t] just means the set of polynomials in the variable t with coefficients in F) and a linear operator $T \colon V \to V$ on a vector space V over F, the expression p(T) makes sense if we use powers and addition of linear operators, to give a linear operator $p(T) \colon V \to V$.

- (a) Let $V = F^2$ and $T(\frac{x}{y}) = (\frac{x+y}{y})$. For the polynomial $p(t) = t^2 2t$, find p(T).
- (b) Prove that for every linear operator $T: V \to V$ with dim V = n, there exists a polynomial $p \in F[t]$, of degree at most n^2 , such that p(T) = 0.

Note: Do not use the theory of minimal polynomials or any theorems named after multiple people.

Hint: Use linear dependence ideas.

(c) Let $J_{n,\lambda}$ be the $n \times n$ Jordan block (this is the standard name for what I called an "atomic Jordan matrix" in class) with λ 's on the diagonal and 1's above the diagonal. Prove that $p(J_{n,\lambda}) = 0$ for the polynomial $p(t) = (t - \lambda)^n$, but $q(J_{n,\lambda}) \neq 0$ for the polynomial $q(t) = (t - \lambda)^{n-1}$.

Comment (not a hint): This problem essentially says that $J_{n,\lambda} - \lambda I_n$ is a nilpotent operator and that n is the least power k that makes $(J_{n,\lambda} - \lambda I_n)^k = 0$.

Problem 3. A permutation matrix is a square matrix where in each column and each row, there is exactly one nonzero entry and that nonzero entry is a 1. The name is because an $n \times n$ permutation matrix times an $n \times 1$ vector is the same vector but with entries permuted. Let P be an $n \times n$ permutation matrix.

- (a) Prove that the product of two $n \times n$ permutation matrices is another permutation matrix.
- (b) Using part (a), prove that some positive power of P is equal to the identity.

Hint: Are there infinitely many $n \times n$ permutation matrices?

(c) Provide a counterexample to the claim that for all $n \in \mathbb{Z}^+$ and all $n \times n$ permutaion matrices P, there is some $1 \le k \le n$ such that P^k is the identity.

Hint: You will not find a counterexample by looking at $n \leq 4$.

Problem 4. Let P_3 be the space of real polynomials of degree at most 3, and define an inner product on P_3 by

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx.$$

Set $U = \operatorname{span}\{x, x^2\}.$

- (a) Find an orthonormal basis for U.
- (b) Write $x^3 = p(x) + q(x)$ with $p(x) \in U$ and $q(x) \in U^{\perp}$.