Reduced Residues and Euler's phi

Reading

• Section 9.2

Practice Problems

9.2 1, 3, 4, 5, 8, 10, 11, 18, 21, 22

Notes

Before we extend Fermat's theorem to non-primes, we will need some preliminary work.

Reduced Residues

 \bar{a} is a reduced residue if gcd(a, n) = 1.

The reduced residues are exactly those numbers that have a multiplicative inverse modulo n.

Reduced residues are also called "units". The set of all reduced residues is some times denoted by \mathbb{Z}_n^* .

In simple terms, a number is a reduced residue if it has no common prime factors with the modulus n.

Euler's phi function is: $\phi(n) = \text{the number of reduced residues modulo } n$, i.e. the size of \mathbb{Z}_n^* .

This is well defined: If $\bar{a} = \bar{b}$ and $\gcd(a, n) = 1$, then it is also the case that $\gcd(b, n) = 1$. To see this, note that b = a + nk for some integer k. And we already know $\gcd(a + nk, n) = \gcd(a, n)$.

What are the reduced residues in \mathbb{Z}_{10} , \mathbb{Z}_{12} , \mathbb{Z}_{15} ?

Here is a crucial property of reduced residues:

If \bar{a} and \bar{b} are two reduced residues in \mathbb{Z}_n , then their product $\bar{a} \cdot \bar{b}$ is also a reduced residue.

In other words the set \mathbb{Z}_n^* of residues is closed under the operation of multiplication. And as we also know, all elements there also have inverses.

In algebraic systems language, we say that \mathbb{Z}_n^* is a **group** under multiplication.

Some standard results about Euler's phi function:

- If p is prime, then $\phi(p) = p 1$.
- If p is prime and a > 0 then $\phi(p^a) = (p-1)p^{a-1}$.
- If p, q are distinct primes, then $\phi(pq) = (p-1)(q-1)$.
- In general if m, n are relatively prime, then $\phi(mn) = \phi(m)\phi(n)$.
- If $p_1, p_2, \dots p_k$ are distinct primes and $a_1, a_2, \dots a_k$ are nonnegative, then:

$$\phi(p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}) = (p_1-1)p_1^{a_1-1}\cdots (p_k-1)p_k^{a_k-1}$$

Let us discuss the proofs of some of the above, starting with the second one, $\phi(p^a) = (p-1)p^{a-1}$:

- We need to count all the numbers from 1 to $p^a 1$ that are relatively prime to p^a , or simply relatively prime to p.
- Since p is prime, we need to exclude all multiples of p.
- The first such multiple is 0, the last is $p^a p = p(p^{a-1} 1)$.
- There are exactly p^{a-1} such numbers.
- There is a total of p^a numbers.
- So there are $p^a p^{a-1}$ numbers that are relatively prime to p^a .

The next key thing to prove is the fourth case: If m,n are relatively prime, then $\phi(mn)=\phi(m)\cdot\phi(n)$. This will turn out to be related to the Chinese Remainder Theorem. For this we will need the following:

Consider m, n relatively prime. Then there is a function:

$$I: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$$

that sends the conguence class \bar{x} in \mathbb{Z}_{mn} to the pair $(\bar{x}, \bar{x}) \in \mathbb{Z}_m \times \mathbb{Z}_n$

This function is 1-1 and onto (this is effectively the Chinese Remainder Theorem).

Further, this function respects addition and multiplication: I(x+y) = I(x) + I(y) and I(xy) = I(x)I(y).

A class $\bar{x} \in \mathbb{Z}_{mn}$ is a reduced residue if and only if the corresponding \bar{x} in \mathbb{Z}_m and \mathbb{Z}_n are reduced residues.

Let us discuss the 1-1 / onto statement:

- Suppose $I(\bar{x}) = I(\bar{y})$.
 - This means that $x \equiv y \mod m$ and also $x \equiv y \mod n$.
 - By the Chinese Remainder Theorem, the common solution to $x = a \mod m$ and $x = b \mod n$ is unique modulo mn.
 - Therefore x and y must be equal modulo mn.

- Suppose (\bar{a}, \bar{b}) is an element in $\mathbb{Z}_m \times \mathbb{Z}_n$.
 - The Chinese Remainder Theorem says that there is an x such that $x \equiv a \mod m$ and $x \equiv b \mod n$.
 - We just showed that $I(\bar{x}) = (\bar{a}, \bar{b})$.

Now we consider the last part, about reduced residues.

- If \bar{x} has an inverse, i.e. there is a y such that $\bar{x}\bar{y}=\bar{1}$ in \mathbb{Z}_{mn} , then the same formula holds in \mathbb{Z}_m and in \mathbb{Z}_n .
- So if a number is invertible (hence reduced residue) in \mathbb{Z}_{mn} , then it is also invertible (reduced residue) in \mathbb{Z}_m and in \mathbb{Z}_n .
- Conversely, suppose \bar{x} is invertible in \mathbb{Z}_m and in \mathbb{Z}_n . Then there are y_1 and y_2 such that:

$$xy_1 = 1 \bmod m$$
$$xy_2 = 1 \bmod n$$

• The Chinese Remainder Theorem (onto property of I) essentially says that there is a y that is both equal to $y_1 \mod m$ and equal to $y_2 \mod n$.

Then
$$I(\bar{x}\bar{y}) = (\bar{1},\bar{1})$$
.

• Again by the Chinese Remainder Theorem (1-1 property of I), it follows that $\bar{x}\bar{y}=\bar{1}$ in \mathbb{Z}_{mn} . So \bar{x} is a reduced residue.