

Pronóstico con regresión lineal múltiple

Enfoque de aprendizaje supervisado

Práctica 8

Guillermo Molero-Castillo

guillermo.molero@ingenieria.unam.edu

Full Dataset					
Training Set	Test Set				
75%	25%—				

Fuente de datos

Estudios clínicos a partir de imágenes digitalizadas de pacientes con cáncer de mama de Wisconsin (WDBC, Wisconsin Diagnostic Breast Cancer).

Variable	Descripción	Tipo
ID number	Identifica al paciente	Discreto
Diagnosis	Diagnostico (M=maligno, B=benigno)	Booleano
Radius	Media de las distancias del centro y puntos del perímetro	Continuo
Texture	Desviación estándar de la escala de grises	Continuo
Perimeter	Valor del perímetro del cáncer de mama	Continuo
Area	Valor del área del cáncer de mama	Continuo
Smoothness	Variación de la longitud del radio	Continuo
Compactness	Perímetro ^ 2 /Area - 1	Continuo
Concavity	Caída o gravedad de las curvas de nivel	Continuo
Concave points	Número de sectores de contorno cóncavo	Continuo
Symmetry	Simetría de la imagen	Continuo
Fractal dimension	"Aproximación de frontera" - 1	Continuo

Fuente: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Fuente de datos

Registros clínicos de cáncer de mama a partir de imágenes digitalizadas.

Benigno Maligno

1. Importar las bibliotecas y los datos

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import seaborn as sns
import seaborn as sns
# Para la manipulación y análisis de datos
# Para crear vectores y matrices n dimensionales
# Para la generación de gráficas a partir de los datos
# Para la visualización de datos basado en matplotlib
# Para la visualización de datos basado en matplotlib
```

1. Importar las bibliotecas y los datos

```
BCancer = pd.read_csv('WDBCOriginal.csv')
BCancer
```

₽		IDNumber	Diagnosis	Radius	Texture	Perimeter	Area	Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	FractalDimension
	0	P-842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871
	1	P-842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667
	2	P-84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999
	3	P-84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744
	4	P-84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883
	564	P-926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623
	565	P-926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533
	566	P-926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648
	567	P-927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016
	568	P-92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884

569 rows x 12 columns

2) Gráfica del área del tumor por paciente

```
plt.figure(figsize=(20, 5))
plt.plot(BCancer['IDNumber'], BCancer['Area'], color='green', marker='o', label='Area')
plt.xlabel('Paciente')
plt.ylabel('Tamaño del tumor')
plt.title('Pacientes con tumores cancerígenos')
plt.grid(True)
plt.legend()
plt.show()
```


3. Selección de características

Varibles seleccionadas:

- 1) Textura [Posición 3]
- 2) Area [Posición 5]
- 3) Smoothness [Pos. 6]
- 4) Compactness [Pos. 7]
- 5) Symmetry [Posición 10]
- 6) FractalDimension [Pos. 11]
- *7) Perimeter [Posición 4] -Para calcular el área del tumor -

4. Aplicación del algoritmo

```
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, max_error, r2_score
from sklearn import model_selection
```

Se seleccionan las variables predictoras (X) y la variable a pronosticar (Y)

```
Y = np.array(BCancer[['Area']])
pd.DataFrame(Y)
```

4. Aplicación del algoritmo

Se seleccionan las variables predictoras (X) y la variable a pronosticar (Y)

	pd.DataFrame(X)					
	0	1	2	3	4	5
0	10.38	122.80	0.11840	0.27760	0.2419	0.07871
1	17.77	132.90	0.08474	0.07864	0.1812	0.05667
2	21.25	130.00	0.10960	0.15990	0.2069	0.05999
3	20.38	77.58	0.14250	0.28390	0.2597	0.09744
4	14.34	135.10	0.10030	0.13280	0.1809	0.05883

4. Aplicación del algoritmo

Se hace la división de los datos

0	<pre>pd.DataFrame(X_train) #pd.DataFrame(X_test)</pre>	
---	--	--

}		0	1	2	3	4	5
	0	18.22	84.45	0.12180	0.16610	0.1709	0.07253
	1	22.44	71.49	0.09566	0.08194	0.2030	0.06552
	2	20.76	82.15	0.09933	0.12090	0.1735	0.07070
	3	23.84	82.69	0.11220	0.12620	0.1905	0.06590
	4	18.32	66.82	0.08142	0.04462	0.2372	0.05768

	0	pd.DataFrame(Y_train)
		<pre>#pd.DataFrame(Y_test)</pre>

0	
493.1	
378.4	
480.4	
499.0	
340.9	
	493.1 378.4 480.4 499.0

4. Aplicación del algoritmo

Se entrena el modelo a través de Regresión Lineal Múltiple

```
RLMultiple = linear_model.LinearRegression()
RLMultiple.fit(X_train, Y_train) #Se entrena el modelo
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

4. Aplicación del algoritmo

Se genera el pronóstico

```
#Se genera el pronóstico
Y_Pronostico = RLMultiple.predict(X_test)
pd.DataFrame(Y_Pronostico)
```

₽		0
	0	405.607887
	1	334.291077
	2	505.762398
	3	207.726058
	4	604.229256
	109	394.439214
	110	1107.202694
	111	541.131191
	112	570.702628
	113	2044.635054
	114 ro	ws x 1 columns

14

5. Obtención de los coeficientes, intercepto, error y Score

```
print('Coeficientes: \n', RLMultiple.coef )
print('Intercepto: \n', RLMultiple.intercept_)
print("Residuo: %.4f" % max_error(Y_test, Y_Pronostico))
print("MSE: %.4f" % mean squared error(Y test, Y Pronostico))
print("RMSE: %.4f" % mean squared error(Y test, Y Pronostico, squared=False))
                                                                                #True devuelve MSE, False devuelve RMSE
print('Score (Bondad de ajuste): %.4f' % r2 score(Y test, Y Pronostico))
Coeficientes:
[[ 6.86261446e-01 1.63885604e+01 2.50787388e+01 -1.40602548e+03
   1.46803422e+02 6.23269303e+03]]
Intercepto:
 [-1140.33616115]
Residuo: 456.3649
MSE: 3083.2634
RMSE: 55.5271
Score (Bondad de ajuste): 0.9769
```

$$Y = a + b_1 X_1 + b_2 X_2 \dots + b_n X_n + u$$

Y = -1140.34 + 0.69(Texture) + 16.39(Perimeter) + 25.08(Smoothness) - 1406.03(Compactness) + 146.80(Symmetry) + 6232.69(FractalDimension) + 456.36

6. Conformación del modelo de pronóstico

$$Y = a + b_1 X_1 + b_2 X_2 ... + b_n X_n + u$$

Y = -1140.34 + 0.69(Texture) + 16.39(Perimeter) + 25.08(Smoothness) - 1406.03(Compactness) + 146.80(Symmetry) + 6232.69(Fractal Dimension) + 456.36

- Se tiene un Score de 0.9769, el cual indica que el pronóstico del Area del tumor se logrará con un 97.69% de efectividad.
- Además, los pronósticos del modelo final se alejan en promedio 3083.26 y 55.53 unidades del valor real, esto es, MSE y RMSE, respectivamente.

7. Nuevos pronósticos