

Code-Switching as a Cross-Lingual Training Signal: an Example with Unsupervised Bilingual Embedding

Félix Gaschi^{2,3}. Ilias El Baamarani¹. Barbara Gendron¹. Parisa Rastin². Yannick Toussaint²

¹École des Mines de Nancy, ²LORIA, ³SAS Posos

3rd Multilingual Representation Learning Workshop @ EMNLP 2023

Code-switching (CS): words from **different languages** are found in the **same sentence**.

Language contamination (LC): **whole sentences** from other languages in a monolingual corpus.

Code-switching (CS): words from **different languages** are found in the **same sentence**.

Language contamination (LC): **whole sentences** from other languages in a monolingual corpus.

Code-switching (CS): words from **different languages** are found in the **same sentence**.

Language contamination (LC): **whole sentences** from other languages in a monolingual corpus.

(+) Always present in (supposedly) monolingual corpora [Blevins and Zettlemoyer, 2022]

Code-switching (CS): words from **different languages** are found in the **same sentence**.

Language contamination (LC): **whole sentences** from other languages in a monolingual corpus.

- (+) Always present in (supposedly) monolingual corpora [Blevins and Zettlemoyer, 2022]
- Support for cross-lingual generalization abilities in monolingual embeddings

Introduction

Code-switching (CS): words from **different languages** are found in the same sentence.

Language contamination (LC): whole sentences from other languages in a monolingual corpus.

- (+) Always present in (supposedly) monolingual corpora [Blevins and Zettlemoyer, 2022]
- (+) Support for cross-lingual generalization abilities in monolingual embeddings
- (-) No context sharing because no token/sentence pairs

CS in monolingual corpora

Introduction

Exemple 1: 1999年歐洲歌唱大賽(eurovision song contest 1999) 為歐洲歌唱大賽之第44屆 比賽

Exemple 2: as a result, "li"(遭), meaning "ritual" or "etiquette, "governed the conduct of the nobles, whilst "xing" (刑), the rules of punishment

Exemple 3: 是一款由鬼游(ghost town games) 公司, team 17 行的烹模游, 玩家通多人合作或 多角控制,控制多游角色挑各种房里的机

Figure 1: Examples of code-switching

Cross-lingual embeddings

Trade-off required ressources / alignment robustness:

- Supervised methods: BDI requires parallel corpora [Mikolov et al., 2013]
- Fully unsupervised embedding alignment [Conneau et al., 2017] often lacks of robustness [Søgaard et al., 2018]
- A weak supervision signal brings more stability [Søgaard et al., 2018]

Cross-lingual embeddings

Trade-off required ressources / alignment robustness:

- Supervised methods: BDI requires parallel corpora [Mikolov et al., 2013]
- Fully unsupervised embedding alignment [Conneau et al., 2017] often lacks of robustness [Søgaard et al., 2018]
- A weak supervision signal brings more stability [Søgaard et al., 2018]

 \longrightarrow CS would act as a weak supervision signal bilingual embedding learning.

CS-enhanced cross-lingual embedding learning

CS-powered cross-lingual mappings: tokens randomly replaced by their translation.

- Alleviate the amount of parallel data [Krishnan et al., 2021]
- Improve PLMs' cross-lingual generalization [Qin et al., 2020, Yang et al., 2020]
- → Artificially-generated CS

CS-powered cross-lingual mappings: tokens randomly replaced by their translation.

- Alleviate the amount of parallel data [Krishnan et al., 2021]
- Improve PLMs' cross-lingual generalization [Qin et al., 2020, Yang et al., 2020]

Methodology

→ Artificially-generated CS

Ours:

- Identifies CS situations in monolingual corpora
- (2) Uses **natural CS** to learn a bilingual embedding using orthogonal mapping across languages

Code-switching identification

No supervision: don't want to rely on a full bilingual dictionnary!

→ Use **regular expressions** to detect CS situations.

Code-switching identfication

No supervision: don't want to rely on a full bilingual dictionnary!

— Use **regular expressions** to detect CS situations.

Consequences:

- Scope reduction: languages written in different scripts (en-zh, en-ru, en-ar)
- ullet Code-switching detection o script-switching detection?

Code-switching identification

No supervision: don't want to rely on a full bilingual dictionnary!

→ Use **regular expressions** to detect CS situations.

Consequences:

- Scope reduction: languages written in different scripts (en-zh, en-ru, en-ar)
- ullet Code-switching detection o script-switching detection?

Code-switching pair: pair of words from different scripts found in the same context window.

Training procedure

Based on monolingual skip-gram loss [Mikolov et al., 2013]:

$$L = -\frac{1}{|C|} \sum_{w_i \in C} \sum_{w_j \in \mathcal{N}(w_i)} \log P(w_j | w_i)$$
 (1)

Training procedure

Based on monolingual skip-gram loss [Mikolov et al., 2013]:

$$L = -\frac{1}{|C|} \sum_{w_i \in C} \sum_{w_i \in \mathcal{N}(w_i)} \log P(w_i | w_i)$$
 (1)

Replace the original negative sampling:

$$\log P(w_j|w_i) = \log \sigma(\tilde{x}_j^\top x_i) + \sum_{w_k \sim P_V}^n \log \sigma(-\tilde{x}_k^\top x_i)$$
 (2)

Training procedure

Based on monolingual skip-gram loss [Mikolov et al., 2013]:

$$L = -\frac{1}{|C|} \sum_{w_i \in C} \sum_{w_i \in \mathcal{N}(w_i)} \log P(w_i | w_i)$$
 (1)

Replace the original negative sampling:

$$\log P(w_j|w_i) = \log \sigma(\tilde{x}_j^\top x_i) + \sum_{w_k \sim P_V}^n \log \sigma(-\tilde{x}_k^\top x_i)$$
 (2)

By computation on projected tokens in a CS pair (w_i^{src}, w_j^{tgt}) :

$$\log P(w_j^{\mathsf{tgt}}|w_i^{\mathsf{src}}) = \log \sigma(\tilde{x}_j^{\mathsf{tgt}} \top W x_i^{\mathsf{src}}) + \sum_{w_k^{\mathsf{tgt}} \sim \mathcal{U}_{V_{\mathsf{tgt}}}}^{n} \log \sigma(-\tilde{x}_k^{\mathsf{tgt}} \top W x_i^{\mathsf{src}})$$
(3)

Experimental setup

CS pairs extraction:

- Data is tokenized Wikipedia dumps
- FastText [Bojanowski et al., 2016] monolingual embeddings for 200,000 most frequent words
- Context window of width 5

Experimental setup

CS pairs extraction:

- Data is tokenized Wikipedia dumps
- FastText [Bojanowski et al., 2016] monolingual embeddings for 200,000 most frequent words
- Context window of width 5

Training pipeline:

- Modified skip-gram loss for model initialisation
- ullet Add **orthogonalization steps** so W preserves distances
- Refinement step using VecMap self-learning procedure [Artetxe et al., 2018]

Code-switching in monolingual corpora

- Check for script-switching with a dictionnary
- Differentiate CS and token contamination

pair	number
en-ar	7,848,024
en-ru	50,182,802
en-zh	23,097,625

Figure: Counts of CS pairs

		token contamination			code-switching		
lang	tokens	coverage (%)	count	count digits	coverage (%)	count	count digits
ar	229M	44.9	1,043,396	6,511,347	38.0	486,764	6,360,450
ru	685M	55.1	5,237,773	26,063,394	50.7	4,158,232	25,637,900
zh	319M	47.6	1,720,247	3,220,332	39.4	1,174,912	3,117,309

Figure: Presence of English words in non-English monolingual corpora. An example is considered code-switched if it is in the vicinity of a non-English word.

Results of CoSwitchMap

method	en-ar	en-ru	en-zh				
Methods with other self-learning procedures							
WP	$10.7_{\pm 9.9}$	$36.9_{\pm 1.4}$	$0.6_{\pm 0.8}$				
MUSE	$30.9_{\pm 3.3}$	$41.7_{\pm 2.9}$	$0.0_{\pm 3.3}$				
Different initializations for the same self-learning							
VecMap	$36.4_{\pm 1.8}$	49.1 _{±0.4}	$0.0_{\pm 0.0}$				
w/ MUSE init.	$37.4_{\pm 2.6}$	$48.3_{\pm 0.4}$	$0.0_{\pm0.1}$				
w/ WP init.	$38.6_{\pm 0.7}$	$45.8_{\pm 2.8}$	$0.1_{\pm0.0}$				
w/ identical init.	$39.8_{\pm 0.3}$	$48.9_{\pm 0.2}$	$36.8_{\pm0.8}$				
CoSwitchMap (ours)	39.9 $_{\pm 0.1}$	$49.0_{\pm 0.3}$	$37.9_{\pm 0.9}$				
supervised	43.0	52.7	43.3				

Figure: Comparison of CoSwitchMap with other unsupervised mapping-based methods. Top-1 accuracy of a nearest neighbout search with CSLS criterion for BLI.

Conclusion

Contributions:

- CoSwitchMap outperforms existing unsupervised mapping-based methods
- Natural CS constitutes a cross-lingual training signal for multilingual static embeddings
- Leverage naturally-occuring code-switching

Conclusion

Contributions:

- CoSwitchMap outperforms existing unsupervised mapping-based methods
- Natural CS constitutes a cross-lingual training signal for multilingual static embeddings
- Leverage naturally-occuring code-switching

Limitations:

- Only works with languages written in different scripts.
- Most of the CS situations are litteral translations of words in the vicinity.
- Demonstrates the utility of code-switching but still need for a more generalized method.

References I

- Min Xiao and Yuhong Guo (2014). Distributed word representation learning for cross-lingual dependency parsing. CoNLL 2014.
- Gouws and Søgaard (2015). Simple task-specific bilingual word embeddings. EMNLP 2018.
- Mikolov et al. (2013). Exploiting similarities among languages for machine translation. CoRR, abs/1309.4168.
- Conneau et al. (2017). Word translation withour parallel data. ICLR 2018.
- Søgaard et al. (2018). On the limitations of unsupervised bilingual dictionary induction. ACL 2018.
- Qin et al. (2020). Cosda-ml: Multi-lingual code-switching data augmentation for zero-shot cross-lingual NLP. IJCAI 2020.

References II

- Yang et al. (2020). Alternating language modeling for cross-lingual pre-training. AAAI 2020.
- Artetxe et al. (2018). A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. ACL 2018.