Zadanie 1. (regresja wieloraka liniowa)

W trakcie leczenia pewnej choroby kontrolowano czas pobytu pacjenta w klinice w zależności od wielkości dawek czterech różnych specyfików. Otrzymane dane dla 20 pacjentów są przedstawione w tabeli. Zmienna zależna czas informuje o liczbie dni spędzonych w klinice.

Lek1	Lek2	Lek3	Lek4	Czas	Lek1	Lek2	Lek3	Lek4	Czas
14	121	96	89	18	13	120	113	108	26
6	97	99	100	16	10,5	122	116	102	24
11	107	103	103	20	12	89	105	97	20
8	113	98	78	14	11	102	109	109	22
10	101	95	88	16	11	129	102	108	22
8	85	95	84	14	10	83	100	102	20
12	77	80	74	12	15	118	107	110	26
10	117	93	95	16	10	125	108	95	20
11	119	106	105	20	12	94	95	90	16
9	81	90	88	12	9	110	100	87	18

Określić zmienne, które najlepiej przewidują czas pobytu chorego w szpitalu, metodą regresji liniowej krokowej wstecznej. Przyjąć $\alpha=0.05$

Rozwiazanie:

STATISTICA: Postępujemy podobnie jak przy regresji wielomianowej według schematu:

Statystyka \rightarrow Zaawansowane modele liniowe i nieliniowe \rightarrow Ogólne modele regresji \rightarrow Kreator analizy \rightarrow Następuje ustalenie zmiennych: zmiennej zależnej (tutaj czas) i predykatorów ciągłych (tutaj lek1, lek2, lek3, lek4) \rightarrow OK.

Przechodzimy do zakładki : **Dostosowany układ międzygrupowy** → zaznaczamy wszystkie pozycje w okienku '**Ciągle**' → klikamy **Dodaj**. W okienku '**Efekty w układzie międzygrupowym**' pojawiają się nazwy zmiennych niezależnych (predykatorów ciągłych) → **OK** → **Wszystkie efekty**.

KROK 1

Interesują nas przede wszystkim wyniki weryfikacji hipotez:

 $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 2, 3, 4

W skoroszycie pojawia się między innymi tabela z wynikami:

	Oceny parametró	w (10 regr krokov	va.sta)								
	Parametryzacja z	sigma-ogranicze	niami								
czas pobytu w czas pobytu w czas pobytu w czas pobytu w -95,00% +95,0											
	szpitalu szpitalu szpitalu szpitalu Gr.ufn. Gr.ufn.										
Efekt	Param. Bł. std. t p										
Wyraz wolny	-28,3705	3,032099	-9,35671	0,000000	-34,8332	-21,9077					
"lek1"	0,6164	0,124555	4,94851	0,000175	0,3509	0,8818					
"lek2"	0,0126	0,019088	0,66139	0,518391	-0,0281	0,0533					
"le k3"	0,2679 0,050823 5,27045 0,000094 0,1595 0,376										
"le k4"	0,1273	0,037075	3,43349	0,003695	0,0483	0,2063					

Z tabeli odczytujemy, że nie odrzucamy tylko hipotezy zerowej dotyczącej współczynnika przy drugiej zmiennej, ponieważ $p=0.518391>\alpha=0.05$, stąd wnioskujemy, że zmienna niezależna lek2 nie jest istotna. Usuwamy ją z modelu i powtarzamy analizę regresji tylko dla pozostałych zmiennych istotnych.

KROK 2

W celu usunięcia zmiennej lek2 otwieramy ponownie okienko GRM-wyniki, klikamy **Zmień Dostosowany układ międzygr.** \rightarrow z 'Efekty w układzie międzygrupowym' usuwamy zmienną $lek2 \rightarrow Ok \rightarrow Wszystkie$ efekty. Ponownie weryfikujemy hipotezy:

$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 1, 3, 4$

Z poniższej tabeli odczytujemy, że wszystkie współczynniki są istotne (istotnie różnią się od zera), ponieważ wszystkie rozpatrywane hipotezy zerowe zostały odrzucone na przyjętym poziomie istotności.

	Oceny parametró Parametryzacja z												
	czas pobytu w szpitalu												
Efekt	Param.												
Wyraz wolny	-28,6202	2,955129	-9,68493	0,000000	-34,8848	-22,3556							
"lek1"	0,6331	0,119806	5,28404	0,000074	0,3791	0,8870							
"lek3"	0,2833	0,2833 0,044355 6,38684 0,000009 0,1893 0,3773											
"lek4"	0,1258	0,036347	3,46026	0,003223	0,0487	0,2028							

Otrzymujemy równanie regresji wielorakiej krokowej wstecznej:

$$y = -28,62 + 0,633x_1 + 0,283x_3 + 0,126x_4$$
.

Uwaga:

Jeżeli, w którymś z kroków nie odrzucimy hipotezy zerowej dotyczącej dwóch lub większej ilości zmiennych, to z modelu jednorazowo usuwamy tylko jedną zmienną, tę dla której wartość "p" jest największa.

Zadanie 2. (regresja wieloraka wielomianowa)

Obserwowano zawartość azotanów w wodach rzeki Raby i ich dopływach. W kolejnych 12 miesiącach uzyskano następujące zawartości:

Raba	7,8	6,5	8,1	5,8	5,9	5,3	5,1	4,6	4,4	5,0	4,6	4,9
Młynówka	7,6	6,0	7,7	4,7	4,6	3,9	4,2	3,8	3,2	3,4	3,1	3,2
Krzyworzeka	7,8	7,0	8,4	6,6	3,2	2,8	3,5	3,8	4,4	3,8	4,0	3,9
Niż. Potok	7,2	6,8	7,8	6,0	5,5	5,0	4,8	4,4	3,9	4,5	4,0	4,5
Lipnica	8,8	8,9	7,8	5,5	5,7	5,0	5,5	4,9	4,4	4,8	4,2	4,6
Stradomka	7,3	6,5	6,1	5,4	5,2	4,0	3,5	2,9	4,4	3,8	3,9	5,6

Utwórz model regresji wielomianowej wielorakiej przedstawiający związek między zawartością azotanów w wodach Raby a ich zawartością w dopływach Raby. Przyjmij α =0,05.

Rozwiazanie

STATISTICA: Statystyka \rightarrow Zaawansowane modele liniowe i nieliniowe \rightarrow Ogólne modele regresji \rightarrow Kreator analizy \rightarrow OK. Następuje ustalenie zmiennych: zmienna zależna (tutaj Raba) i predykatory ciągłe (tutaj pozostałe rzeki, dopływy Raby) \rightarrow OK.

W zakładce: **Dostosowany układ międzygr**. → klikamy na każdą pozycję w okienku 'Ciągłe'. Poniżej opcji 'Wielom. do st.' ustalamy stopień wielomianu (tutaj pozostawiamy 2) i klikamy → Wielom. do st.. W okienku 'Efekty w układzie międzygrupowym' pojawią się nazwy predykatorów w pierwszej i kolejnych potęgach do wybranego stopnia. → **OK** → **Wszystkie efekty**.

KROK 1

Interesują nas przede wszystkim wyniki weryfikacji 10 hipotez zerowych dla współczynników przy:

$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 1,...,10$

W skoroszycie wybieramy najpierw tabelkę Jednowymiarowe testy istotności

Efekt	Jednowym regresja.st	iarowe testy	/ istotności	dla Raba (F	Raba					
LIEKI	· ·	,		!!						
		Parametryzacja z sigma-ograniczeniami								
	Dekompoz	Dekompozycja efektywnych hipotez								
	SS	Stopnie	MS	F	Р					
		swobody								
Wyraz wolny	0,012161	1	0,012161	8,32100	0,212442					
Młynówka	0,055459	1	0,055459	37,94789	0,102451					
Młynówka^2	0,116296	0,116296 1 0,116296 79,57616 0,0710								
Krzyworzeka	0,028295	1	0,028295	19,36138	0,142265					
Krzyworzeka^2	0,031134	1	0,031134	21,30332	0,135830					
Niż.Potok	0,075173	1	0,075173	51,43751	0,088196					
Niż.Potok^2	0,030657	1	0,030657	20,97730	0,136849					
Lipnica	0,017793	1	0,017793	12,17511	0,177687					
Lipnica^2	0,018237	<mark>1</mark>	0,018237	12,47908	0,175619					
Stradomka	0,048104 1 0,048104 32,91531 0,109860									
Stradomka^2	0,047334 1 0,047334 32,38867 0,11073									
Błąd	0,001461 1 0,001461									

Nie mamy podstaw do odrzucenia żadnej z rozpatrywanych hipotez zerowych, (żaden z współczynników nie różni się istotnie od zera na zadanym poziomie istotności).

Można wybrać też Test SS dla pełnego modelu celem sprawdzenia istotności regresji.

	Test SS dla pełnego modelu względem SS dla reszt (Raba regresja.sta)											
Zależna	Wielokr.	/ielokr. Wielokr. Skorygow SS df MS SS df MS F p										
Zm.	R	R2	R2	Model	Model	Model	Reszta	Reszta	Reszta			
Raba	0,999956	0,999912	0,999032	16,60521	10	1,660521	0,001461	1	0,001461	1136,222	0,023083	

Z tabelki odczytujemy, że regresja dla pełnego modelu jest istotna, ponieważ $p=0.0231<\alpha=0.05$.

Usuwamy z modelu tę zmienną w najwyższej potędze, dla której wartość "p" jest największa (przyjmujemy zasadę że nie usuwamy najpierw zmiennej w niższej potędze pozostawiając tę samą zmienną w stopniu wyższym). Tutaj jest to *Lipnica*^2 i ponownie przeprowadzamy analizę.

KROK 2

W celu usunięcia zmiennej $Lipnica^2$ otwieramy ponownie okienko GRM-wyniki, klikamy **Zmień** \rightarrow **Dostosowany układ międzygr.** \rightarrow z '**Efekty w układzie międzygrupowym**' usuwamy zmienną $Lipnica^2 \rightarrow \mathbf{Ok} \rightarrow \mathbf{Wszystkie}$ **efekty**. Ponownie weryfikujemy hipotezy:

$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 1,...,9$

Regresja wieloraka liniowa i wielomianowa(metoda krokowa wsteczna)

Z poniższej tabeli odczytujemy, że wszystkie współczynniki są nadal nieistotne (nie różnią się istotnie od zera), ponieważ wszystkie rozpatrywane hipotezy zerowe nie zostały odrzucone na przyjętym poziomie istotności.

	Jednowym	iarowe testy	/ istotności	dla Raba (F	Raba					
Efekt	regresja.st	a)								
	Parametry	zacja z sigm	na-ogranicz	eniami						
	Dekompoz	Dekompozycja efektywnych hipotez								
	SS	SS Stopnie MS F p								
		swobody								
Wyraz wolny	0,011729	1	0,011729	1,19086	0,389091					
Młynówka	0,063529 1 0,063529 6,45005 0,126321									
Młynówka^2	0,106231	1	0,106231	10,78548	0,081538					
Krzyworzeka	0,013683	1	0,013683	1,38920	0,359774					
Krzyworzeka^2	0,015809	1	0,015809	1,60507	0,332748					
Niż.Potok	0,058149	1	0,058149	5,90376	0,135734					
Niż.Potok^2	0,022332	1	0,022332	2,26734	0,271080					
Lipnica	0,000031	1	0,000031	0,00311	<mark>0,960567</mark>					
Stradomka	0,033457 1 0,033457 3,39689 0,206643									
Stradomka^2	0,031523	1	0,031523	3,20051	0,215511					
Błąd	0,019699 2 0,009849									

	Test SS dla pełnego modelu względem SS dla reszt (Raba regresja.sta)											
Zależna	Wielokr.	elokr. Wielokr. Skorygow SS df MS SS df MS F p										
Zm.	R	R R2 R2 Model Model Reszta Reszta Reszta										
Raba	0,999407	0,998814	0,993476	16,58697	9	1,842996	0,019699	2	0,009849	187,1170	0,005327	

Ponieważ *Lipnica* okazała się "najmniej istotna" (największa wartość "p") usuwamy z modelu zmienną *Lipnica*.

KROK 3

W celu usunięcia zmiennej Lipnica postępujemy tak jak poprzednio: z '**Efekty w układzie międzygrupowym**' usuwamy zmienną $Lipnica \rightarrow \mathbf{Ok} \rightarrow \mathbf{Wszystkie}$ **efekty.** Uzyskujemy wyniki weryfikacji odpowiednich hipotez przedstawione w tabeli:

- () .		iarowe testy	/ istotności	dla Raba (F	Raba					
Efekt	regresja.st	,								
	Parametry	zacja z sigm	na-ogranicz	eniami						
	Dekompoz	Dekompozycja efektywnych hipotez								
	SS	Stopnie	MS	F	р					
		swobody								
Wyraz wolny	0,016084	1	0,016084	2,44562	0,215805					
Młynówka	0,079822	1	0,079822	12,13749	0,039943					
Młynówka^2	0,135298	1	0,135298	20,57287	0,020059					
Krzyworzeka	0,014958	1	0,014958	2,27442	0,228644					
Krzyworzeka^2	0,017824	1	<mark>0,017824</mark>	<mark>2,71024</mark>	0,198259					
Niż.Potok	0,099480	1	0,099480	15,12650	0,030136					
Niż.Potok^2	0,043911	1	0,043911	6,67700	0,081497					
Stradomka	0,063268 1 0,063268 9,62034 0,05322									
Stradomka^2	0,062750 1 0,062750 9,54149 0,053759									
Błąd	0,019730	3	0,006577							

	Test SS dla pełnego modelu względem SS dla reszt (Raba regresja.sta)											
Zależna	Wielokr.	ielokr. Wielokr. Skorygow SS df MS SS df MS F p										
Zm.	R	R R2 R2 Model Model Reszta Reszta Reszta										
Raba	0,999406	0,998812	0,995644	16,58694	8	2,073367	0,019730	3	0,006577	315,2683	0,000268	

Regresja wieloraka liniowa i wielomianowa(metoda krokowa wsteczna)

Na podstawie tych wyników z modelu usuwamy Krzyworzeka^2

KROK 4

W kroku 4 otrzymujemy:

Efekt	Jednowym regresja.st	niarowe testy	y istotności	dla Raba (F	Raba					
LICK	· ·	,	na paraniez	oniomi						
		Parametryzacja z sigma-ograniczeniami Dekompozycja efektywnych hipotez								
	SS	Stopnie	MS	F	р					
		swobody								
Wyraz wolny	0,003699	0,003699 1 0,003699 0,39395 0,564282								
Młynówka	0,075482	1	0,075482	8,03991	0,047083					
Młynówka^2	0,182816	1	0,182816	19,47256	0,011576					
Krzyworzeka	0,017374	<mark>1</mark>	0,017374	<mark>1,85058</mark>	0,245330					
Niż.Potok	0,084061	1	0,084061	8,95378	0,040247					
Niż.Potok^2	0,044171	1	0,044171	4,70488	0,095909					
Stradomka	0,049580	0,049580 1 0,049580 5,28105 0,083117								
Stradomka^2	0,046093 1 0,046093 4,90955 0,091042									
Błąd	0,037553 4 0,009388									

	Test SS dla pełnego modelu względem SS dla reszt (Raba regresja.sta)											
Zależna	Wielokr.	lokr. Wielokr. Skorygow SS df MS SS df MS F p										
Zm.	R	R R2 R2 Model Model Reszta Reszta Reszta										
Raba	0,998869	0,997739	0,993781	16,56911	7	2,367016	0,037553	4	0,009388	252,1221	0,000040	

Ponownie porównując wartości "p" usuwamy z zbioru zmiennych Krzyworzeka.

KROK 5

Po usunięciu Krzyworzeki uzyskujemy:

	Jednowymiarowe testy istotności dla Raba (Raba										
Efekt	regresja.sta)										
	Parametryzacja z sigma-ograniczeniami										
	Dekompoz	Dekompozycja efektywnych hipotez									
	SS	SS Stopnie MS F p									
		swobody			-						
Wyraz wolny	0,048278	1	0,048278	4,39468	0,090170						
Młynówka	0,090830	1	0,090830	8,26820	0,034772						
Młynówka^2	0,263071	1	0,263071	23,94712	0,004500						
Niż.Potok	0,221742	1	0,221742	20,18503	0,006442						
Niż.Potok^2	0,173510	1	0,173510	15,79450	0,010591						
Stradomka	0,100351	1 0,100351 9,13492 0,029									
Stradomka^2	0,107109	1	0,107109	9,75009	0,026178						
Błąd	0,054927										

	Test SS dla pełnego modelu względem SS dla reszt (Raba regresja.sta)											
Zależna	Wielokr.	Wielokr.	Skorygow	SS	df	MS	SS	df	MS	F	р	
Zm.	R	R2	R2	Model	Model	Model	Reszta	Reszta	Reszta			
Raba	0,998345	0,996692	0,992723	16,55174	6	2,758623	0.054927	5	0.010985	251,1154	0.000005	

Co oznacza istotność wszystkich analizowanych w tym kroku współczynników i kończy procedurę dopasowywania modelu metodą krokową wsteczną

Wniosek

Na zawartość azotanów w wodach Raby istotny wpływ ma zawartość azotanów w jej dopływach. Zawartość azotanów w Rabie można oszacować na podstawie pomiarów

Regresja wieloraka liniowa i wielomianowa(metoda krokowa wsteczna)

zawartości azotanów w wodach Młynówki, Niżn. Potoku i Stradomki. Dopasowanie modelu wynosi R²=99,7%.

Oszacowanie równania regresji wielorakiej wielomianowej otrzymujemy z tabeli oceny parametrów:

	Oceny parametrów (Raba regresja.sta) Parametryzacja z sigma-ograniczeniami											
	Raba	Raba	Raba	Raba	-95,00%	+95,00%	Raba	Raba	-95,00%	+95,00%		
Efekt	Param.	Bł. std.	t	р	Gr.ufn.	Gr.ufn.	Beta (ß)	Bł.Std.ß	Gr.ufn.	Gr.ufn.		
Wyraz wolny	-3,17450	1,514300	-2,09635	0,090170	-7,06713	0,718132						
Młynówka	-1,16811	0,406234	-2,87545	0,034772	-2,21237	-0,123847	-1,55625	0,541221	-2,94751	-0,165000		
Niż.Potok	2,73862	0,609562	4,49278	0,006442	1,17170	4,305551	2,90352	0,646264	1,24224	4,564791		
Stradomka	0,96515	0,319331	3,02240	0,029336	0,14428	1,786015	1,05431	0,348831	0,15761	1,951008		
Młynówka^2	0,17068	0,034879	4,89358	0,004500	0,08102	0,260341	2,47427	0,505616	1,17454	3,774000		
Niż.Potok^2	-0,21878	0,055050	-3,97423	0,010591	-0,36029	-0,077270	-2,69392	0,677846	-4,43637	-0,951457		
Stradomka/2	-0,10166	0,032557	-3,12251	0,026178	-0,18535	-0,017969	-1,13332	0,362951	-2,06631	-0,200324		

Ma ono postać:

$$y = -3,175 - 1,168x_1 + 0,171x_1^2 + 2,739x_3 - 0,219x_3^2 + 0,965x_5 - 0,102x_5^2$$

Zadanie 3.

Badano zależność odległości między najwyższym węzłem a kłosem żyta (Y w mm) od liczby kłosków w kłosie (X1), długości osłonki (X2), długości blaszki liścia flagowego (X3) i od szerokości blaszki liścia flagowego (X4). Metodą regresji liniowej wielorakiej krokowej wstecznej opisać tę zależność.

liczba kłosków w kłosie	długość osłonki kłosa	długość blaszki liścia flagowego	szerokość blaszki liścia flagowego	odległość między najwyższym węzłem a kłosem
37,9	109,05	20,916	1,43	38,333
38,25	103,1	22,195	1,54	34,4
40,2	117,55	19,92	1,33	36,9
6,118	42,451	4,231	0,016	19,02
36,2	100,1	20,3	1,42	38,3
38,7	104,2	23	1,6	35
41	118	20	1,4	37
9,3	40,2	5,3	0,1	19,6

Krok 1: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 2, 3, 4

Największe prawdopodobieństwo $p_1 = 0.890404 > \alpha = 0.05$ zatem zmienna X_1 -liczba kłosków w kłosie jest nieistotna i usuwamy ją z modelu.

Krok 2:
$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 2, 3, 4$

Największe prawdopodobieństwo $p_3=0.411595>\alpha=0.05$ zatem zmienna X_3 - długość blaszki liścia flagowego jest nieistotna i usuwamy ją z modelu.

Krok 3:
$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 2, 4$

Największe prawdopodobieństwo $p_4 = 0.252737 > \alpha = 0.05$ zatem zmienna X_4 - szerokość blaszki liścia flagowego jest nieistotna i usuwamy ją z modelu.

Krok 4:
$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 2$

Wszystkie współczynniki są istotne ($p_2 = 0.000061 < \alpha = 0.05$)

Odp. Zależność odległości między najwyższym węzłem a kłosem żyta (Y w mm) od długości osłonki jest postaci $y = 9,496933 + 0,248523 x_2$. Współczynnik determinacji $R^2 = 94,24\%$ zatem otrzymany model jest w 94,24 % dopasowany do danych.

Zadanie 4.

Suma opadów w okresie wegetatywnym od marca do października w niektórych miejscowościach (średnie z dwudziestu lat) oraz szerokość geograficzna, długość geograficzna i wzniesienie nad poziomem morza tych miejscowości są następujące (plik cw12.sta). Wyznaczyć równanie regresji wyrażające sumę opadów jako funkcję liniową szerokości, długości oraz wysokości nad poziomem morza.

Odp: Krok 1: dla szerokości p =0,538078 > α = 0,05

Krok 2: dla długości i wysokości współczynniki istotne, $y = 1013,12 - 32,64x_2 + 0,62x_3$

Zadanie 5.

W pewnym nadleśnictwie, badając kondycję sosny dokonano wielu pomiarów i otrzymane obserwacje zapisano w pliku sosna.sta. Utworzyć model regresji wielorakiej przedstawiający związek objętości bielu od wieku drzewa (X1), pierśnicy (X2), wysokości (X3), długości korony (X4), średnicy podstawy korony (X5), objętości korony (X6).

Odp.:
$$y = -0.395 - 0.001x_1 + 0.016x_2 + 0.018x_3 + 0.001x_6$$

Zadanie 6.

Opracuj przykład 8 (zadanie z lekami) drugą metodą tzn. według przykładu 9 próbując dopasować równanie regresji wielorakiej wielomianowej

Krok 1: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 2, 3, 4, 5, 6, 7, 8

Największe prawdopodobieństwo jest dla (lek3)² p₇ = 0,976961 > α = 0,05 zatem zmienna X_3^2 jest nieistotna i usuwamy ją z modelu.

Krok 2: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 2, 3, 4, 5, 6, 8.

Największe prawdopodobieństwo $p_1 = 0.948904 > \alpha = 0.05$ jest dla X_1 (lek1), ale usuwamy X_1^2 (lek1)².

Krok 3: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 2, 3, 4, 6, 8.

Największe prawdopodobieństwo $p_2 = 0,655289 > \alpha = 0,05$ jest dla X_2 (lek2), ale usuwamy X_2^2 (lek2)².

Krok 4: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 2, 3, 4, 8.

Największe prawdopodobieństwo $p_2 = 0.480359 > \alpha = 0.05$ jest dla zmiennej X_2 (lek2) i usuwamy ją z modelu.

Krok 5: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 3, 4, 8.

Największe prawdopodobieństwo p₄ = 0,227822 > α = 0,05 jest dla X₄ (lek4), ale usuwamy X_4^2 (lek4)².

Krok 6: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 3, 4.

Wszystkie zmienne są istotne, bo p_1 , p_3 i p_4 są mniejsze od $\alpha = 0.05$.

Odp. Zależność czasu pobytu w szpitalu od dawek leków jest postaci $y = -28,62 + 0,633x_1 + 0,283x_3 + 0,126x_4$. Współczynnik determinacji $R^2 = 94,72\%$, zatem otrzymany model jest w ponad 94 % dopasowany do danych.

Regresja wieloraka liniowa i wielomianowa(metoda krokowa wsteczna)

	Oceny parametrów (10 regr krokowa.sta) Parametryzacja z sigma-ograniczeniami										
	czas pobytu w szpitalu							-95,00% Gr.ufn.	+95,00% Gr.ufn.		
Efekt	Param.	Bł. std.	t	p			Beta (ß)				
Wyraz wolny	-28,6202	2,955129	-9,68493	0,000000	-34,8848	-22,3556					
"lek1"	0,6331	0,119806	5,28404	0,000074	0,3791	0,8870	0,320810	0,192104	0,449516		
"lek3"	0,2833	0,044355	6,38684	0,000009	0,1893	0,3773	0,570396	0,381071	0,759721		
"lek4"	0,1258	0,036347	3,46026	0,003223	0,0487	0,2028	0,319116	0,123612	0,514620		

	Test SS	Fest SS dla pełnego modelu względem SS dla reszt (10 regr krokowa.sta)										
	Wielokr	Wielokr	Skoryg	SS	df	MS	SS	df	MS	F	р	
Zależna			ow	Model	Model	Model	Reszta	Reszta	Reszta			
Zm.	R	R2	R2									
czas pobytu w szpitalu	,973231	,947179	,937274	11,4323	3	03,8108	7,36770	16	,085481	5,63569	,000000	

Odp.
$$y = -28,62 + 0,633 x_1 + 0,283 x_3 + 0,126 x_4$$

Współczynnik determinacji R²=94,72%

Zadanie 7.

Starorzecza należą do klasycznych elementów meandrujących cieków i są uważane za podstawowe składniki terenów zalewowych naturalnych rzek. Są to odcięte (stale lub okresowo) części dawnych koryt rzecznych. Porównywano starorzecza środkowej Warty latem pod względem temperatury na dnie. Otrzymano obserwacje w ⁰C:

Starorzecza				•						
Święte (X ₁)	21	20,3	18,2	19,8	20,3	19,9	18	19	20	20
Madałowe (X ₂)	20	21,5	20,8	19	22	21,8	20,8	19	23	21,8
Tarnowa (X ₃)	19	18	17	18	20	18	15	18	21	18
Trzykolne Młyny (X ₄)	15	12	11	16	16,3	15	12	16	17	15
Warta (Y)	14	12,7	11,5	12,6	14,5	12,6	9,9	12,8	16	12,8

- a) Utwórz model regresji wielomianowej wielorakiej przedstawiający związek między temperaturą wody na dnie Warty a temperaturą wody na dnie jej starorzeczy. Zacznij od stopnia drugiego. Przyjmij α =0,05.
- b) Określić zmienne, które najlepiej przewidują temperaturę wody w Warcie, metodą regresji liniowej krokowej wstecznej. Przyjąć $\alpha=0{,}05$. Odp.

Krok 1:
$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 1,...,8$

dla (Tarnowa)²:
$$p = 0.900417 > \alpha = 0.05$$

Krok 2:
$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 1,...,7$

dla (Trzykolne Młyny)²:
$$p = 0.129 > \alpha = 0.05$$

Krok 3:
$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 1,...,6$

dla Trzykolne Młyny:
$$p = 0.908414 > \alpha = 0.05$$

Krok 4:
$$H_0: \beta_k = 0$$
; przeciwko $H_1: \beta_k \neq 0$, gdzie $k = 1,...,5$

Wszystkie zmienne istotne

$$y = 156,43 - 8,61x_1 - 7,52x_2 + 0,84x_3 + 0,231x_1^2 + 0,18x_2^2$$
, R²=99%

b) Krok 1: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 2, 3, 4

dla Madałowe: $p = 0.824891 > \alpha = 0.05$

Krok 2: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 1, 3, 4

dla Święte: $p = 0.783524 > \alpha = 0.05$

Krok 3: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 3, 4

dla Trzykolne Młyny: $p = 0.650 > \alpha = 0.05$

Krok 4: $H_0: \beta_k = 0$; przeciwko $H_1: \beta_k \neq 0$, gdzie k = 3

Wszystkie zmienne istotne $y = -5.51 + 1.01x_3$, R²=99%