Machine Learning para Inteligencia Artificial

Ensembles: Boosting

Universidad ORT Uruguay

7 de Mayo, 2025

Índice

Introducción a boosting

AdaBoost

Gradient Boosting

Ensemble: Boosting

Apunta a reducir el sesgo en modelos con alto sesgo

■ Boosting genera secuencialmente predictores

Corrigiendo errores del modelo anterior en cada iteración

■ La predicción final proviene de un promedio ponderado o voto ponderado.

Ensemble: Boosting

https://en.wikipedia.org/wiki/Boosting_(machine_learning)

Boosting a alto nivel

- El conjunto de entrenamiento T_1 es T
- \blacksquare El conjunto T_{k+1} se obtiene modificando T_k de acuerdo al error de h_k
- El predictor final se obtiene a partir de la suma *pesada* de los predictores

$$h(x) = FUNCIÓN\left(\sum_{k=1}^{K} \alpha_k h_k(x)\right)$$

- Adaboost: El coeficiente α_k representa el voto de h_k en el ensemble
- Gradient boost: $\alpha_k = \lambda$ son constantes (shrinkage/learning rate)

AdaBoost: Adaptive Boosting (etiquetas en $\{-1,1\}$)

- Primera implementación exitosa de la idea de boosting (1995).
- Construye una secuencia de K clasificadores binarios (débiles)

$$A_1(\mathbf{x}), A_2(\mathbf{x}), \ldots, A_K(\mathbf{x})$$

- Sólo usa la predicción final de los modelos base, y no sus probabilidades.
- Las predicciones individuales no son tratadas por igual:

$$A_{\text{boost}}(x) = \mathsf{Signo}\left\{\sum_{k=1}^K \alpha_k A_k(x)\right\}.$$

El coeficiente α_k puede considerarse como un grado de confianza en las predicciones realizadas por el miembro k del ensemble.

AdaBoost: Adaptive Boosting (binario $\{-1,1\}$)

Algoritmo Adaboost

- Sea K el número de rondas/iteraciones
- Inicializar los pesos $w_i^{(1)} = 1/N$ para todo i = 1, ..., N
- 3: Inicializar A=0

4:

- 5. Para k=1 a K repetir
- Para todo i: $w_i^{(k)} = w_i^{(k)} / \sum_i w_i^{(k)}$ 6:
- $A_k = \text{EntrenarWeakLerner}(T, \boldsymbol{w}^{(k)})$
- 8: Determinar voto de A_k en el ensemble:
- $\varepsilon_{k} = \sum_{i} w_{i}^{(k)} \mathbb{1}(A_{k}(\mathbf{x}_{i}) \neq \mathbf{v}_{i})$ 9:
- 10: $\alpha_k = \frac{1}{2} \ln \left[(1 - \varepsilon_k) / \varepsilon_k \right]$
- $w_i^{(k+1)} = w_i^{(k)} \times \begin{cases} e^{-\alpha_k} & \text{si } A_k(x_i) = y_i \\ e^{\alpha_k} & \text{si } A_k(x_i) \neq y_i \end{cases}$ 11:
- 12: Actualizar $A \leftarrow A + \alpha_{\nu} A_{\nu}$
- Devolver clasificador signo(A)13:

Normalizar pesos

Calcular error

Calcular voto

Nuevos pesos

Ejemplo: Dataset inicial

Dado un dataset: $\{(\pmb{x}_i, y_i) \mid \pmb{x}_i \in \mathbb{R}^2, y_i \in \{+1, -1\}, i \in [1, N]\}$

Todos tienen el mismo peso: $w_i = \frac{1}{N}, i \in [1, N]$

Ejemplo: Primera ronda

Ejemplo: Segunda ronda

Ejemplo: Tercera ronda

Ejemplo: Modelo final

Boosting vs Random forest

Gradient Boosting

Algoritmo Gradient boosting (vanilla para regresión)

- 1. K número de rondas
- 2: $(h(x) y)^2$ pérdida cuadrática
- 3: λ tasa de aprendizaje
- 4: $h(x) = \bar{y}$
- Repetir K veces
- Calcular residuos $r_i = y_i h(x_i)$ 6:
- 7: Entrenar árbol A con para predecir residuos $\{(x_i, r_i)\}$
- 8: Actualizar $h(x) \leftarrow h(x) + \lambda A(x)$
- Devolver regresor h

arg min_c $\sum_{i} \ell(c, y)$

 $-\frac{\partial \ell}{\partial h(\mathbf{x})}(h(\mathbf{x}),y)$

Ejemplo: Primera ronda

$$h(x) = 66.7$$

Sexo	Altura	Mano	Peso	
M	179	26	75	
M	163	21	59	
F	163	20	53	
M	175	24	94	
F	170	19	57	
F	154	19	62	

Sexo	Altura	Mano	Residuo
M	179	26	8.3
M	163	21	-7.7
F	163	20	-13.7
M	175	24	27.3
F	170	19	-9.7
F	154	19	-4.7

Ejemplo: segunda ronda

$$h(x) = 66.7 + 0.1 \times$$
Altura < 172.5

17.8

Sexo	Altura	Mano	Residuo	Sexo	Altura	Mano	Residuo
M	179	26	8.3	M	179	26	6.5
М	163	21	-7.7	M	163	21	-6.8
F	163	20	-13.7	F	163	20	-12.8
М	175	24	27.3	M	175	24	25.5
F	170	19	-9.7	F	170	19	-8.8
F	154	19	-4.7	F	154	19	-3.8

Bibliografía

- An introduction to statistical learning with applications in Python. Cap 8.
- Machine Learning A First Course for Engineers and Scientists. Capítulo 7.
- Raschka, S. Introduction to Machine Learning. Lecture 7. (2021)
- M. Stamp. Introduction to ML with Applications to Information Security, 7.4 y 7.5.
- Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms.