Iris Classification

Model

Prediction or Interpretation

- This model will be focussed on Prediction rather Interpretaion
- Model will have more explanation over the model prediction performance using performance metrics

```
In [15]:
           # Importing libraries
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
           import numpy as np
           from sklearn.datasets import load_iris
           # will import regression models later while building it
In [16]:
           # importing iris dataset and creating dataframe
           iris = load iris()
           df = pd.DataFrame(iris.data, columns=iris.feature names)
           df.head()
Out[16]:
             sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
          0
                         5.1
                                        3.5
                                                         1.4
                                                                        0.2
```

1 4.9 3.0 0.2 1.4 4.7 0.2 2 3.2 1.3 3 4.6 3.1 1.5 0.2 5.0 3.6 1.4 0.2

Dataset Description and Attributes summary

```
In [17]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 4 columns):
         # Column
                              Non-Null Count Dtype
                              _____
            sepal length (cm) 150 non-null
                                             float64
         0
             sepal width (cm) 150 non-null float64
             petal length (cm) 150 non-null float64
             petal width (cm)
                              150 non-null
                                             float64
         dtypes: float64(4)
        memory usage: 4.8 KB
```

Out[19]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333
	std	0.828066	0.435866	1.765298	0.762238
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

- Dataset has 4 features all are dimensions of a flower(outer layer sepal, inner layer
 Petal)
- sepal length length of the outer layer of the petal
- sepal width width of the outer layer of the petal
- petal length length of the inner layer of the flower
- petal width width of the inner layer of the flower
- all features has float values
- Our aim is to find out the flower category with given features

Data Cleaning

This dataset is pretty clean. Since our concern is on the model performance we dive into the next section.

Feature Engineering

Determine if the floating point values need to be scaled

```
In [24]:
           df.dtypes.tail()
                                 float64
          sepal length (cm)
Out[24]:
          sepal width (cm)
                                 float64
                                 float64
          petal length (cm)
          petal width (cm)
                                 float64
          dtype: object
          The data are all scaled from -1.0 to 1.0
          Feature Correlation
 In [ ]:
           np.round(df.corr(),2)
                           sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
          sepal length (cm)
                                       1.00
                                                       -0.12
                                                                         0.87
                                                                                         0.82
           sepal width (cm)
                                       -0.12
                                                        1.00
                                                                        -0.43
                                                                                         -0.37
          petal length (cm)
                                       0.87
                                                       -0.43
                                                                         1.00
                                                                                         0.96
           petal width (cm)
                                       0.82
                                                       -0.37
                                                                         0.96
                                                                                         1.00
In [25]:
           feature cols = df.columns[:]
           corr values = df[feature cols].corr()
           # Simplify by emptying all the data below the diagonal
           tril index = np.tril indices from(corr values)
           # Make the unused values NaNs
           for coord in zip(*tril index):
                corr_values.iloc[coord[0], coord[1]] = np.NaN
           # Stack the data and convert to a data frame
           corr values = (corr values
                            .stack()
                            .to_frame()
                            .reset index()
                            .rename(columns={'level_0':'feature1',
                                               'level 1':'feature2',
                                               0:'correlation'}))
           # Get the absolute values for sorting
           corr_values['abs_correlation'] = corr_values.correlation.abs()
           corr_values
Out[25]:
                    feature1
                                    feature2 correlation abs correlation
          0 sepal length (cm) sepal width (cm)
                                               -0.117570
                                                               0.117570
          1 sepal length (cm) petal length (cm)
                                               0.871754
                                                               0.871754
          2 sepal length (cm) petal width (cm)
                                               0.817941
                                                               0.817941
              sepal width (cm) petal length (cm)
                                               -0.428440
                                                               0.428440
```

-0 366126

netal width (cm)

0366126

senal width (cm)

```
5 petal length (cm) petal width (cm) 0.962865 0.962865
```

```
In [30]: # Histogram representation of correlation
    sns.set_context('talk')
    sns.set_style('white')

ax = corr_values.abs_correlation.hist(bins=50, figsize=(12, 8))
    ax.set(xlabel='Absolute Correlation', ylabel='Frequency');
```



```
In [29]:  # the most correlated features
    corr_values.sort_values('correlation', ascending=False).query('abs_correlation>
```

Out[29]:		feature1	feature2	correlation	abs_correlation
	5	petal length (cm)	petal width (cm)	0.962865	0.962865
	1	sepal length (cm)	petal length (cm)	0.871754	0.871754
	2	sepal length (cm)	petal width (cm)	0.817941	0.817941

Model Creation

Train Test Split

```
In [31]:
    from sklearn.model_selection import train_test_split
    xtrain, xtest, ytrain, ytest = train_test_split(iris.data, iris.target, random_
```

Stock Logistic Regression

```
In [36]:
          from sklearn.linear model import LogisticRegression
          stockmodel = LogisticRegression()
          stockmodel.fit(xtrain, ytrain)
          stockypred = stockmodel.predict(xtest)
         SVM Classifier
In [39]:
          from sklearn.svm import SVC
          svcmodel = SVC()
          svcmodel.fit(xtrain, ytrain)
          svcypred = svcmodel.predict(xtest)
         Random Forest Classifier
In [41]:
          from sklearn.ensemble import RandomForestClassifier
          rfmodel = RandomForestClassifier()
          rfmodel.fit(xtrain, ytrain)
          rfypred = rfmodel.predict(xtest)
         Best Model
In [64]:
          from sklearn.metrics import confusion matrix, accuracy score, roc auc score
          from sklearn.metrics import precision recall fscore support as score
         Stock LR
In [61]:
          precision, recall, fscore, = score(stockypred, ytest)
          print('Stock LR')
          print('Accuracy', accuracy_score(ytest, stockypred))
          print('Precision : {}, Recall : {}, fscore : {}'.format(precision, recall, fsco
         Stock LR
         Accuracy 1.0
         Precision: [1. 1. 1.], Recall: [1. 1. 1.], fscore: [1. 1. 1.]
         SVM Classifier
In [62]:
          precision, recall, fscore, _ = score(svcypred, ytest)
          print('SVM')
          print('Accuracy', accuracy_score(ytest, svcypred))
          print('Precision : {}, Recall : {}, fscore : {}'.format(precision, recall, fscore);
         SVM
         Accuracy 0.966666666666667
         Precision : [1.
                                 0.92307692 1.
                                                      ], Recall : [1. 1. 0.875], f
         score : [1.
                             0.96
                                        0.93333333]
         Random Forest Claasifier
```

Insights on my models

- According to my dataset Stock LR performs the best with maximum accuracy, precision and fscore
- On the other hand SVM and Random Forest score same scores

Next Step Analysis

- Since the dataset is so simple we can achive good performance with slight tunning.
- Going forward will try this techniques in larger complex dataset and record the performance

----- Thank you by Shankesh Raju MS-----