Math 2321 Fall 2015: Quiz 6 Solutions

Problem 1. Let S be the solid region between the half cones $z = \frac{1}{\sqrt{3}}\sqrt{x^2 + y^2}$ and $z = \sqrt{x^2 + y^2}$ and inside the sphere $x^2 + y^2 + z^2 = 1$. Compute the volume of S using spherical coordinates.

Solution. The cones $z=\sqrt{x^2+y^2}=r$ and $z=\frac{1}{\sqrt{3}}\sqrt{x^2+y^2}=\frac{1}{\sqrt{3}}r$ are given in spherical coordinates by the surfaces $\varphi=\frac{\pi}{4}$ and $\varphi=\frac{\pi}{3}$, respectively. The spherical surface $x^2+y^2+z^2=1$ is given by $\rho=1$. Thus, S is parameterized in spherical coordinates by

$$S = \left\{ (\rho, \varphi, \theta) : 0 \le \theta \le 2\pi, \ \tfrac{\pi}{4} \le \varphi \le \tfrac{\pi}{3}, \ 0 \le \rho \le 1 \right\},$$

and the volume is computed by the integral

$$\operatorname{Vol}(S) = \iiint_{S} dV = \int_{0}^{2\pi} \int_{\pi/4}^{\pi/3} \int_{0}^{1} \rho^{2} \sin \varphi \, d\rho \, d\varphi \, d\theta$$
$$= 2\pi \int_{\pi/4}^{\pi/3} \frac{1}{3} \sin \varphi \, d\varphi$$
$$= \frac{2\pi}{3} \left(-\cos \varphi \right) \Big|_{\pi/3}^{\pi/4}$$
$$= \frac{2\pi}{3} \left(-\frac{1}{\sqrt{2}} + \frac{1}{2} \right).$$

Problem 2. Let S be the solid region outside the cylinder $x^2 + y^2 = 1$ and inside the sphere $x^2 + y^2 + z^2 = 4$, with mass density given by $\delta(x, y, z) = x^2 + y^2$. Write an integral which computes the mass of S in cylindrical coordinates. You do not have to evaluate the integral.

Solution. The cylinder is given by the equation r=1 in cylindrical coordinates, while the sphere is given by $r^2+z^2=4$. Solving for z in terms of r, the latter becomes $z=\pm\sqrt{4-r^2}$. Alternatively, solving for r in terms of z, we have $r=\sqrt{4-z^2}$. Simultaneously solving r=1 and $z=\pm\sqrt{4-r^2}$ shows that the sphere and cylinder intersect in the planes $z=\pm\sqrt{3}$. We can write S in one of two ways:

$$S = \left\{ (r, \theta, z) : 0 \le \theta \le 2\pi, \ 1 \le r \le 2, \ -\sqrt{4 - r^2} \le z \le \sqrt{4 - r^2} \right\} \text{ or }$$

$$S = \left\{ (r, \theta, z) : 0 \le \theta \le 2\pi, \ -\sqrt{3} \le z \le \sqrt{3}, \ 1 \le r \le \sqrt{4 - z^2} \right\}.$$

The density $\delta(x, y, z) = x^2 + y^2$ is given in cylindrical coordinates by $\delta = r^2$, and $dV = r dz dr d\theta$ (or $dV = r dr dz d\theta$), so we have

$$\operatorname{Mass}(S) = \iiint_{S} \delta \, dV = \int_{0}^{2\pi} \int_{1}^{2} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} r^{3} \, dz \, dr \, d\theta, \quad \text{or}$$
$$= \int_{0}^{2\pi} \int_{-\sqrt{3}}^{\sqrt{3}} \int_{1}^{\sqrt{4-z^{2}}} r^{3} \, dr \, dz \, d\theta. \qquad \Box$$

Problem 3. Let E be the surface given by the portion of the graph $z = x^2 - y^2$ which lies over the disk of radius 5 in the x-y plane (centered at the origin). Write down a double integral which computes the surface area of E. You do not have to evaluate the integral.

Solution. We use the parameterization $\mathbf{r}(x,y) = (x,y,x^2-y^2)$. Either from the formula $dS = |\mathbf{r}_x \times \mathbf{r}_y| dx dy$ or from the formula $dS = \sqrt{f_x^2 + f_y^2 + 1} dx dy$ for a graph z = f(x,y), we find

$$dS = \sqrt{4x^2 + 4y^2 + 1} \, dx \, dy.$$

Thus the surface area is given by an integral

Area(E) =
$$\iint_E dS = \iint_R \sqrt{4x^2 + 4y^2 + 1} \, dx \, dy$$

where R is the disk of radius 5. We can either write this as

$$\iint_E dS = \int_{-5}^5 \int_{-\sqrt{25-y^2}}^{\sqrt{25-y^2}} \sqrt{4x^2 + 4y^2 + 1} \, dx \, dy,$$

or convert to polar coordinates, giving

$$\iint_{E} dS = \int_{0}^{2\pi} \int_{0}^{5} \sqrt{4r^{2} + 1} \, r \, dr \, d\theta.$$