Advanced Machine Learning

Likhit Nayak

Transformer Network

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Self-attention

RNN Attention

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{\mathcal{X}}} \exp(e^{< t, t'>})}$$

Transformers Attention

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k^{\langle i \rangle})}{\sum_{j} \exp(q \cdot k^{\langle j \rangle})} v^{\langle i \rangle}$$

Self-attention

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-head attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Transformer Network

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformer Network

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)