CSC334/424: Assignment #2

Due: Thursday, February 7th, 2013, by 11:59pm

Total: 65 points (no late assignments for this assignment)

Problem #1 (Regression analysis - 20 points) The Housing dataset (under the course documents for week 3) contains housing values in the suburbs of Boston. The detailed explanation concerning the input and output variables can be fetched from the UCI machine learning repository http://archive.ics.uci.edu/ml/datasets/Housing:

- 1. CRIM: per capita crime rate by town
- 2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. INDUS: proportion of non-retail business acres per town
- 4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- 5. NOX: nitric oxides concentration (parts per 10 million)
- 6. RM: average number of rooms per dwelling
- 7. AGE: proportion of owner-occupied units built prior to 1940
- 8. DIS: weighted distances to five Boston employment centres
- 9. RAD: index of accessibility to radial highways
- 10. TAX: full-value property-tax rate per \$10,000
- 11. PTRATIO: pupil-teacher ratio by town
- 12. B: 1000(Bk 0.63)^2 where Bk is the proportion of African Americans by town
- 13. LSTAT: % lower status of the population
- 14. MEDV: Median value of owner-occupied homes in \$1000's (output variable)
- a. Fit a linear regression model and report goodness of fit, the utility of the model, the estimated coefficients, their standard errors, and statistical significance. Use the default method for running regression analysis in SPSS and interpret your results.

Model Summaryb

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.861 ^a	.741	.734	4.7453

a. Predictors: (Constant), LSTAT, CHAS, B, PTRATIO, ZN, CRIM, RM, INDUS, AGE, RAD, DIS, NOX, TAX

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	31637.511	13	2433.655	108.077	.000b
	Residual	11078.785	492	22.518		
	Total	42716.295	505			

a. Dependent Variable: MEDV

b. Dependent Variable: MEDV

b. Predictors: (Constant), LSTAT, CHAS, B, PTRATIO, ZN, CRIM, RM, INDUS, AGE, RAD DIS NOX TAX

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	36.459	5.103		7.144	.000
	CRIM	108	.033	101	-3.287	.001
	ZN	.046	.014	.118	3.382	.001
	INDUS	.021	.061	.015	.334	.738
	CHAS	2.687	.862	.074	3.118	.002
	NOX	-17.767	3.820	224	-4.651	.000
	RM	3.810	.418	.291	9.116	.000
	AGE	.001	.013	.002	.052	.958
	DIS	-1.476	.199	338	-7.398	.000
	RAD	.306	.066	.290	4.613	.000
	TAX	012	.004	226	-3.280	.001
	PTRATIO	953	.131	224	-7.283	.000
	В	.009	.003	.092	3.467	.001
	LSTAT	525	.051	407	-10.347	.000

a. Dependent Variable: MEDV

$$\hat{y} = 36.45 - 0.108x_1 + 0.046x_2 + 0.021x_3 + 2.687x_4 - 17.767x_5 + 3.81x_6 + 0.001x_7 - 1.476x_8 \\ + 0.306x_9 - 0.012x_{10} - 0.953x_{11} + 0.009x_{12} - 0.525x_{13}$$

where
$$y = \text{MEDV}$$
 $x_1 = \text{CRIM}$ $x_2 = \text{ZN}$ $x_3 = \text{INDUS}$ $x_4 = \text{CHAS}$ $x_5 = \text{NOX}$ $x_6 = \text{RM}$ $x_7 = \text{AGE}$ $x_8 = \text{DIS}$ $x_9 = \text{RAD}$ $x_{10} = \text{TAX}$ $x_{11} = \text{PTRATIO}$ $x_{12} = \text{B}$ $x_{13} = \text{LSTA}$

The overall model was statistically significant and had an adjusted R^2 of .734, meaning over 73% of the variance is accounted for by the model. All the predictors except INDUS and AGE are significant.

b. Perform a feature selection on this data by using the forward selection method of the regression analysis. Analyze the output in terms of the order in which the variables are included in the regression model.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.738ª	.544	.543	6.2158
2	.799 ^b	.639	.637	5.5403
3	.824°	.679	.677	5.2294
4	.831 ^d	.690	.688	5.1386
5	.841 ^e	.708	.705	4.9939
6	.846 ^f	.716	.712	4.9326
7	.850 ^g	.722	.718	4.8818
8	.852 ^h	.727	.722	4.8474
9	.854 ⁱ	.729	.724	4.8326
10	.857 ^j	.734	.729	4.7895
11	.861 ^k	.741	.735	4.7362

ANOVA^a

Modo	ı	Sum of Squares	df	Mean Square	F	Sig.
Mode 1	Regression	23243.914	1	23243.914	601.618	.000b
`	Residual	19472.381	504	38.636		
	Total	42716.295	505			
2	Regression	27276.986	2	13638.493	444.331	.000°
	Residual	15439.309	503	30.694		
	Total	42716.295	505			
3	Regression	28988.310	3	9662.770	353.345	.000 ^d
	Residual	13727.985	502	27.347		
	Total	42716.295	505			
4	Regression	29487.388	4	7371.847	279.184	.000°
	Residual	13228.908	501	26.405		
	Total	42716.295	505			
5	Regression	30246.951	5	6049.390	242.571	.000 ^f
	Residual	12469.344	500	24.939		
	Total	42716.295	505			
6	Regression	30575.223	6	5095.870	209.441	.000 ^g
	Residual	12141.073	499	24.331		
	Total	42716.295	505			
7	Regression	30848.060	7	4406.866	184.915	.000h
	Residual	11868.236	498	23.832		
	Total	42716.295	505			
8	Regression	31037.996	8	3879.749	165.113	.000i
	Residual	11678.299	497	23.498		
	Total	42716.295	505			
9	Regression	31132.708	9	3459.190	148.120	.000 ^j
	Residual	11583.588	496	23.354		
	Total	42716.295	505			1.
10	Regression	31361.312	10	3136.131	136.714	.000 ^k
	Residual	11354.983	495	22.939		
	Total	42716.295	505			
11	Regression	31634.931	11	2875.903	128.206	.000
	Residual	11081.364	494	22.432		
	Total	42716.295	505			

Coefficients^a

		Unstandardize	Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	34.554	.563		61.415	.000
	LSTAT	950	.039	738	-24.528	.000
2	(Constant)	-1.358	3.173		428	.669
	LSTAT	642	.044	499	-14.689	.000
	RM	5.095	.444	.389	11.463	.000
3	(Constant)	18.567	3.913		4.745	.000
	LSTAT	572	.042	444	-13.540	.000
	RM	4.515	.426	.345	10.603	.000
	PTRATIO	931	.118	219	-7.911	.000
4	(Constant)	24.471	4.078		6.001	.000
	LSTAT	665	.047	517	-14.233	.000
	RM	4.224	.424	.323	9.966	.000
	PTRATIO	974	.116	229	-8.391	.000
	DIS	552	.127	126	-4.348	.000
5	(Constant)	37.499	4.613		8.129	.000
	LSTAT	581	.048	451	-12.122	.000
	RM	4.163	.412	.318	10.104	.000
	PTRATIO	-1.046	.114	246	-9.212	.000
	DIS	-1.185	.168	271	-7.034	.000
	NOX	-17.997	3.261	227	-5.519	.000

				I.	1	
6	(Constant)	36.923	4.559		8.099	.000
	LSTAT	570	.047	442	-12.010	.000
	RM	4.112	.407	.314	10.097	.000
	PTRATIO	-1.003	.113	236	-8.895	.000
	DIS	-1.145	.167	262	-6.865	.000
	NOX	-18.740	3.227	236	-5.807	.000
	CHAS	3.244	.883	.090	3.673	.000
7	(Constant)	30.412	4.905		6.200	.000
	LSTAT	537	.048	417	-11.204	.000
	RM	4.294	.407	.328	10.561	.000
	PTRATIO	974	.112	229	-8.701	.000
	DIS	-1.123	.165	257	-6.804	.000
	NOX	-16.677	3.252	210	-5.129	.000
	CHAS	3.052	.876	.084	3.484	.001
	В	.009	.003	.089	3.384	.001
8	(Constant)	30.317	4.871		6.224	.000
	LSTAT	543	.048	422	-11.398	.000
	RM	4.116	.409	.314	10.074	.000
	PTRATIO	882	.116	208	-7.621	.000
	DIS	-1.383	.188	317	-7.370	.000
	NOX	-16.687	3.229	210	-5.168	.000
	CHAS	3.111	.870	.086	3.576	.000
	В	.009	.003	.093	3.563	.000
	ZN	.038	.013	.096	2.843	.005

9 (Constant) 29.508 4.873 6.056 .000 RM 4.150 .408 408 -10.858 .000 PTRATIO 839 .117 197 -7.147 .000 NOX -16.089 3.233 203 -4.977 .000 CHAS 3.030 .868 .084 3.489 .001 B .008 .003 .082 3.084 .002 ZN .042 .013 .107 3.131 .002 CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 PTRATIO -1.015 .129 239 -7.867 .000 PTRATIO -1.015 .129 239 -7.647 .000 DIS -1.429 .187 327 -7.647 .000							
RM 4.150 .408 .317 10.179 .000 PTRATIO 839 .117 197 -7.147 .000 DIS -1.432 .189 328 -7.591 .000 NOX -16.089 3.233 203 -4.977 .000 CHAS 3.030 .868 .084 3.489 .001 B .008 .003 .082 3.084 .002 ZN .042 .013 .107 3.131 .002 CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX	9	(Constant)	29.508	4.873		6.056	.000
PTRATIO 839 .117 197 -7.147 .000 DIS -1.432 .189 328 -7.591 .000 NOX -16.089 3.233 203 -4.977 .000 CHAS 3.030 .868 .084 3.489 .001 B .008 .003 .082 3.084 .002 ZN .042 .013 .107 3.131 .002 CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20314 3.472 256 -5.850 .000 CHAS		LSTAT	525	.048	408	-10.858	.000
DIS -1.432 1.89 328 -7.591 .000 NOX -16.089 3.233 203 -4.977 .000 CHAS 3.030 .868 .084 3.489 .001 B .008 .003 .082 3.084 .002 ZN .042 .013 .107 3.131 .002 CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B		RM	4.150	.408	.317	10.179	.000
NOX -16.089 3.233 203 -4.977 .000 CHAS 3.030 .868 .084 3.489 .001 B .008 .003 .082 3.084 .002 ZN .042 .013 .107 3.131 .002 CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .007 CRIM <		PTRATIO	839	.117	197	-7.147	.000
CHAS 3.030 .868 .084 3.489 .001 B .008 .003 .082 3.084 .002 ZN .042 .013 .107 3.131 .002 CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 10		DIS	-1.432	.189	328	-7.591	.000
B		NOX	-16.089	3.233	203	-4.977	.000
ZN .042 .013 .107 3.131 .002 CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (C		CHAS	3.030	.868	.084	3.489	.001
CRIM 061 .030 057 -2.014 .045 10 (Constant) 34.712 5.103 6.803 .000 LSTAT 528 .048 410 -11.019 .000 RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 RM		В	.008	.003	.082	3.084	.002
10		ZN	.042	.013	.107	3.131	.002
LSTAT		CRIM	061	.030	057	-2.014	.045
RM 3.977 .408 .304 9.754 .000 PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 NOX <	10	(Constant)	34.712	5.103		6.803	.000
PTRATIO -1.015 .129 239 -7.867 .000 DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 CHAS		LSTAT	528	.048	410	-11.019	.000
DIS -1.429 .187 327 -7.647 .000 NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .		RM	3.977	.408	.304	9.754	.000
NOX -20.314 3.472 256 -5.850 .000 CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B <td< td=""><td></td><td>PTRATIO</td><td>-1.015</td><td>.129</td><td>239</td><td>-7.867</td><td>.000</td></td<>		PTRATIO	-1.015	.129	239	-7.867	.000
CHAS 2.968 .861 .082 3.448 .001 B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 </td <td></td> <td>DIS</td> <td>-1.429</td> <td>.187</td> <td>327</td> <td>-7.647</td> <td>.000</td>		DIS	-1.429	.187	327	-7.647	.000
B .010 .003 .096 3.591 .000 ZN .037 .013 .093 2.731 .007 CRIM105 .033098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067		NOX	-20.314	3.472	256	-5.850	.000
ZN .037 .013 .093 2.731 .007 CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .3		CHAS	2.968	.861	.082	3.448	.001
CRIM 105 .033 098 -3.164 .002 RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		В	.010	.003	.096	3.591	.000
RAD .129 .041 .122 3.157 .002 11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		ZN	.037	.013	.093	2.731	.007
11 (Constant) 36.341 5.067 7.171 .000 LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		CRIM	105	.033	098	-3.164	.002
LSTAT 523 .047 406 -11.019 .000 RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		RAD	.129	.041	.122	3.157	.002
RM 3.802 .406 .290 9.356 .000 PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000	11	(Constant)	36.341	5.067		7.171	.000
PTRATIO 947 .129 223 -7.334 .000 DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		LSTAT	523	.047	406	-11.019	.000
DIS -1.493 .186 342 -8.037 .000 NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		RM	3.802	.406	.290	9.356	.000
NOX -17.376 3.535 219 -4.915 .000 CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		PTRATIO	947	.129	223	-7.334	.000
CHAS 2.719 .854 .075 3.183 .002 B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM 108 .033 101 -3.307 .001 RAD .300 .063 .284 4.726 .000		DIS	-1.493	.186	342	-8.037	.000
B .009 .003 .092 3.475 .001 ZN .046 .014 .116 3.390 .001 CRIM108 .033101 -3.307 .001 RAD .300 .063 .284 4.726 .000		NOX	-17.376	3.535	219	-4.915	.000
ZN .046 .014 .116 3.390 .001 CRIM108 .033101 -3.307 .001 RAD .300 .063 .284 4.726 .000		CHAS	2.719	.854	.075	3.183	.002
CRIM108 .033101 -3.307 .001 RAD .300 .063 .284 4.726 .000		В	.009	.003	.092	3.475	.001
RAD .300 .063 .284 4.726 .000		ZN	.046	.014	.116	3.390	.001
		CRIM	108	.033	101	-3.307	.001
TAX012 .003216 -3.493 001		RAD	.300	.063	.284	4.726	.000
		TAX	012	.003	216	-3.493	.001

$$\hat{y} = 36.341 - 0.108x_1 + 0.046x_2 + +2.719x_4 - 17.376x_5 + 3.802x_6 + -1.493x_8 + 0.3x_9 \\ -0.012x_{10} - 0.947x_{11} + 0.009x_{12} - 0.523x_{13}$$

The final model included only 11 of the original 13 independent variables, leaving out INDUS (proportion of non-retail business) and AGE (proportion of owner-occupied units built prior to 1940). These turn out to be the two variables which were not significant in the original model, so forward selection took care of that. All the models were significant and the R Square value improved each time (see graph below). The variables were added using forward selection, which means the best single variable model was

created first, using LSTAT, the percentage of the population in lower income status. They followed in order with variables about rooms per dwelling, pupil-teacher ratio in schools, distances to jobs, air pollution, river-adjacency, ethnic minority, availability of large lots, crime, highway accessibility and property tax. While the R Squared value kept improving, the variables as they are added do not have increasingly small coefficients. In fact, PTRATIO, the third added, has a middling coefficient in the original model and RAD has a moderate coefficient originally but gets added near the end.

Problem #2 (Canonical Correlation Analysis – 20 points): Water, soil, and mosquito fish samples were collected at n = 165 sites/stations in the marshes of southern Florida. The following water variables were measured:

MEHGSWB Methyl Mercury in surface water, ng/L

TURB in situ surface water turbidity

DOCSWD Dissolved Organic Carbon in surface water, mg/L

SRPRSWFB Soluble Reactive Phosphorus in surface water,mg/L or ug/L

Total Mercury in mosquitofish (Gambusia affinis), average of 7 individuals,

THGFSFC ug/kg

In addition, the following soil variables were measured:

THGSDFC Total Mercury in soil, ng/g
TCSDFB Total Carbon in soil, %
TPRSDFB Total Phosphorus in soil, ug/g

Perform a canonical correlation analysis, describing the relationships between the soil and water variables using the data¹ found in data_marsh_cleaned_homework#2 (both xls and spss files under the course documents for week 3).

- 1. Answer the following questions regarding the canonical correlations.
 - a. Test the null hypothesis that the canonical correlations are all equal to zero. Give your test statistic, d.f., and p-value.

EFFECT .. WITHIN CELLS Regression Multivariate Tests of Significance (S = 3, M = 1/2, N = $77 \ 1/2$)

Test Name	Value	Approx. F	Hypoth. DF	Error DF	Sig. of F
Pillais	.33929	4.05512	15.00	477.00	.000
Hotellings	.38686	4.01473	15.00	467.00	.000
Wilks	.69630	4.05200	15.00	433.81	.000
Roys	.14868				
Dimension Redu	ction Analysis				
Roots	Wilks L.	F	Hypoth. DF	Error DF	Sig. of F
1 TO 3	.69630	4.05200	15.00	433.81	.000
2 TO 3	.81790	4.17630	8.00	316.00	.000
3 TO 3	.92841	4.08707	3.00	159.00	.008

¹ http://www.epa.gov/region4/sesd/reports/epa904r07001.html

The first entry of the table (in blue box) tests whether all 3 variates combined are equal to 0. We see by the last column that the p-value is significant indicating that we reject the null hypothesis that all canonical correlations are equal to 0. Note the two degrees-of-freedom values for the F test parameters. I accepted just one since we didn't discuss this in this context.

b. Test the null hypothesis that the second and third canonical correlations equal zero. Give your test statistic, d.f., and p-value.

Dimension	Reduction	Analysis

Roots	Wilks L.	F	Hypoth. DF	Error DF	Sig. of F
1 TO 3	.69630	4.05200	15.00	433.81	.000
2 TO 3	.81790	4.17630	8.00	316.00	.000
3 TO 3	.92841	4.08707	3.00	159.00	.008

The area in the blue box indicates the test for whether the 2nd and 3rd variates combined are significantly different from 0. We see by the last column that the p-value is significant for each of the tests indicating that we reject the null hypothesis that the 2nd and 3rd canonical correlations are equal to 0.

c. Test the null hypothesis that the third canonical correlation equals zero. Give your test statistic, d.f., and p-value.

Dimension Reduction Analysis

Roots	Wilks L.	F	Hypoth. DF	Error DF	Sig. of F
1 TO 3	.69630	4.05200	15.00	433.81	.000
2 TO 3	.81790	4.17630	8.00	316.00	.000
3 TO 3	.92841	4.08707	3.00	159.00	.008

The line in the blue box shows the test results for the final variate by itself.

d. Present the three canonical correlations

Eigenvalues and Canonical Correlations

Root No.	Eigenvalue	Pct.	Cum. Pct.	Canon Cor.	Sq. Cor
1	.17464	45.14311	45.14311	.38558	.14868
2	.13510	34.92338	80.06649	.34500	.11902
3	.07711	19.93351	100.00000	.26757	.07159

e. What can you conclude from the above analyses?

All three canonical correlations are statistically significant and they are all larger than about 0.2. Therefore they may all be useful.

- 2. Answer the following questions regarding the canonical variates.
 - a. Give the formulae for the significant canonical variates for the soil and water variables.

EFFECT .. WITHIN CELLS Regression (Cont.) Univariate F-tests with (5,159) D. F.

Variable	Sq. Mul. R	Adj. R-sq.	Hypoth. MS	Error MS	F	Sig. of F
THGSDFC	.10864	.08060	14869.32167	3836.62128	3.87563	.002
TCSDFB	.13107	.10375	651.81285	135.88601	4.79676	.000
TPRSDFB	.11193	.08400	128509.30137	32062.97794	4.00803	.002

 $\ensuremath{\mathtt{Raw}}$ canonical coefficients for DEPENDENT variables $\ensuremath{\mathtt{Function}}\ \ensuremath{\mathtt{No}}\ .$

Variable	1	2	3
THGSDFC	01142	01017	.01411
TCSDFB	.07756	03772	07279
TPRSDFB	.00297	.00227	.00422

Standardized canonical coefficients for DEPENDENT variables $\mbox{Function No.}$

Variable	1	2	3
THGSDFC	73743	65693	.91123
TCSDFB	.95497	46446	89625
TPRSDFB	.55554	.42444	.79002

 $\ensuremath{\mathtt{Raw}}$ canonical coefficients for COVARIATES $\ensuremath{\mathtt{Function}}\ \ensuremath{\mathtt{No.}}$

COVARIATE	1	2	3
MEHGSWB	72057	61331	44282
TURB	01490	.00395	04659
DOCSWD	.12290	04565	.03831
SRPRSWFB	15.97272	77.86417	98.95910
THGFSFC	00412	00985	.00949

Standardized canonical coefficients for COVARIATES CAN. VAR.

COVARIATE	1	2	3
MEHGSWB	32611	27757	20041
TURB	16111	.04268	50364
DOCSWD	1.05314	39118	.32826
SRPRSWFB	.10646	.51898	.65958
THGFSFC	26750	63876	.61571

Formulas:

$$SoilVariate1 = -.011*THGSDFC + .078*TCSDFB + .003*TPRSDFB$$

$$SoilVariate2 = -.010*THGSDFC - .038*TCSDFB + .002*TPRSDFB$$

$$SoilVariate3 = .014*THGSDFC - .073*TCSDFB + .004*TPRSDFB$$

WaterVariate1

$$= -.721 * MEHGSWB - .015 * TURB + 0123 * DOCSWD + 15.97 * SRPRSWFB - .004 * THGFSFC$$

WaterVariate2

$$= -.613 * MEHGSWB + .004 * TURB - .046 * DOCSWD + 77.86 * SRPRSWFB - .010 * THGFSFC$$

WaterVariate3

$$= -.443 * MEHGSWB - .047 * TURB + .038 * DOCSWD + 98.96 * SRPRSWFB + .009 * THGFSFC$$

 Give the correlations between the significant canonical variates for soils and the soil variables, and the correlations between the significant canonical variates for water and the water variables. (The water variables are called COVARIATES in this case by SPSS)

Correlations between DEPENDENT and canonical variables $\mbox{Function No.}$

Variable	1	2	3
THGSDFC	.00951	88365	.46806
TCSDFB	.63909	76826	03666
TPRSDFB	.71407	.14767	.68433

Correlations between COVARIATES and canonical variables CAN. VAR.

Covariate	1	2	3
MEHGSWB	.21383	54424	05581
TURB	.12070	03436	49853
DOCSWD	.89202	39006	02465
SRPRSWFB	.17194	.58138	.63984
THGFSFC	49143	62010	.52590

c. What can you conclude from the above analyses?

For the top conical correlation, the Water variables that contribute most to the Water Cononical Variate are Docswd and Thgfsfc. The Soil variables that contribute most to the Soil Cononical variate are Tcsdfb and Tprsdfb. The correlation between the variates is not very high, but we may want to look into this relationship which suggests that the carbon and phosphorous content of the soil are correlated to the carbon in the water and negatively correlated to the mercury in the water.

In the second variate pair, we see a potential relationship with mercury in water and mercury in fish together being negatively correlated with mercury in the soil and carbon in the soil.

Problem 3 (Principal Component Analysis - 20 points): The data given in the file 'problem3.txt'² (under course documents for week 3) is the percentage employed in different industries in Europe countries during 1979. Techniques such as Principal Component Analysis (PCA) can be used to examine which countries have similar employment patterns. There are 26 countries in the file and 10 variables as follows:

Variable Names:

- 1. Country: Name of country
- 2. Agr: Percentage employed in agriculture
- 3. Min: Percentage employed in mining
- 4. Man: Percentage employed in manufacturing
- 5. PS: Percentage employed in power supply industries
- 6. Con: Percentage employed in construction
- 7. SI: Percentage employed in service industries
- 8. Fin: Percentage employed in finance
- 9. SPS: Percentage employed in social and personal services

² http://lib.stat.cmu.edu/DASL/Datafiles/EuropeanJobs.html

10. TC: Percentage employed in transport and communications.

Perform a principal component analysis using the covariance matrix:

a. How many principal components are required to explain 90% of the total variation for this data?

Total Variance Explained

			Initial Eigenvalues ^a		Extraction	n Sums of Square	ed Loadings
	Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
Raw	1	303.458	81.578	81.578	303.458	81.578	81.578
	2	43.702	11.748	93.327	43.702	11.748	93.327
	3	15.207	4.088	97.415			
	4	5.639	1.516	98.931			
	5	2.443	.657	99.588			
	6	1.046	.281	99.869			
	7	.421	.113	99.982			
	8	.065	.017	99.999			
	9	.002	.001	100.000			

You would need 2 principal components to explain 90% of the total variation

b. For the number of components in part a, give the formula for each component and a brief interpretation.

Component Score Coefficient Matrix ^a						
	Comp	onent				
	1	1 2				
Agr	796	016				
Min	.000	.014				
Man	.109	.817				
PS	.000 .001					
Con	.005 .017					
SI	.050	162				
Fin	.005055					
SPS	.117586					
TC	.004	002				

Extraction Method: Principal Component Analysis. Component Scores.

 a. Coefficients are standardized.

Equations:

$$Comp.\ 1 = -.796 Agr + .000 Min + .109 Man + .000 PS + .005 Con - .050 Sl - .005 Fin \\ - .117 SPS + .004 TC$$

$$Comp.\ 2 = -.016 Agr - .014 Min - .817 Man + .001 PS - .017 Con - .162 Sl + .055 Fin \\ + .586 SPS - .002 TC$$

The first component is dominated by a negative component in agricultural employment. The second component corresponds highly to manufacturing employment but negatively to social and personal services jobs.

c) What countries have the highest and lowest values for each principal component (only include the number of components specified in part a). For each of those countries, give the principal component scores (again only for the number of components specified in part a).

Country	FAC1_1	FAC2_1
Belgium	1.00555	74519
Denmark	.65997	-1.76407
France	.52403	32799
W. Germany	.82626	.76353
Ireland	25592	92752
Italy	.23115	05883
Luxembourg	.69401	.35282
Netherlands	.79796	-1.47088
United Kingdom	1.07512	50400
Austria	.37149	.50776
Finland	.39248	60150
Greece	-1.45964	27299
Norway	.62985	-1.34006
Portugal	53983	01296
Spain	33151	.93162
Sweden	.87899	-1.28984
Switzerland	.72812	1.47929
Turkey	-2.99170	-1.30722
Bulgaria	23862	1.01454
Czechoslovakia	.18634	1.39692
E. Germany	.99974	1.62347
Hungary	18001	.75437
Poland	76439	.44546
Rumania	97654	1.38037
USSR	26332	13190
Yugoslavia	-1.99957	.10479

These come from the data table. Under *scores* in the options for dimension reduction, select the option to save scores, and these will be added as columns in the data window.

c. Include and interpret the scatter plot of the data using the first two principal components.

There is little correlation between the first two principle components. This is the idea behind a principle components analysis. You can see the core vs outer edge of the data, but tighter clusters are not apparent.

Problem 4 (overview – 5 points): Briefly describe the similarities and differences between:

a. Linear regression and canonical correlation

A linear regression has only 1 dependent variable and multiple independent variables while a canonical correlation has multiple dependent variables as well as multiple independent variables. Regression is a special case of canonical correlation when there is only one dependent variable.

b. Canonical correlation and principal component analysis

Both help to find relationships between sets of variables, but with PCA it is within a single group and with CCA it is across two groups.

PCA can be used in Canonical correlation on the variables in the dataset to remove the correlation between the variables before running the CCA.

PCA is mainly concerned with reducing the number of features in a dataset