Introduction to embedded programming on STM32

RCC, Timers

STM32F0 SoC overview

STM32F0 SoC overview

RCC (Reset and clock control). Reset

- Power reset
- System reset
- RTC domain reset

The RESET service routine vector is fixed at address 0x0000004 in the memory map

RCC (Reset and clock control). Reset

Figure 10. Clock tree (STM32F03x and STM32F05x devices)

RCC (Reset and clock control). Clock Control

Various main clock sources:

- HSI 8 MHz RC oscillator clock
- HSE oscillator clock
- PLL clock

Additional clock sources:

- 40 kHz low speed internal RC (LSI RC)
- 32.768 kHz low speed external crystal (LSE crystal)
- 14 MHz high speed internal RC (HSI14) dedicated for ADC

Timers

- 16-bit up, down, up/down auto-reload counter
- 16-bit programmable prescaler
- Up to 4 independent channels for
 - Input Capture
 - Output Compare
 - PWM (Edge- and Center-aligned modes)
 - One-pulse mode output

Interrupts

- Counter overflow/underflow
- Trigger event (counter start, stop)
- Input capture
- Output compare

Time Base Unit

Main Timer Registers

- Counter register (TIMx_CNT)
- Prescaler register (TIMx_PSC)
- Auto-reload register (TIMx_ARR)
- Counter mode register (UP/DOWN/CENTER)

Clock sources

- Internal
 - Time counting
 - PWM generation
- External
 - Counts at each rising or falling edge on a selected pin
 - Measure time between two consecutive impulses
 - Encoder mode
 - Measure PWM duty cycle

Up-counting mode

= 7 * Clock Period

Down-counting mode

Center-aligned mode

ARR = 6, RCR = 0

Period = 2 * ARR * Clock Period = 12 * Clock Period

Auto-Reload Register

Auto-Reload Preload Enable (ARPE) bit in TIMx_CR1

Triggered by Update Event (UEV)

Repetition Counter Register

Input capture mode

Encoder mode

Figure 100. Example of counter operation in encoder interface mode.

Introduction to embedded programming on STM32

Timers, UART

Skoltech, 2019

PWM Signal

PWM Signal

Key parameters:

- 1. Amplitude
- 2. Frequency
- 3. Duty Cycle

Main Timer Registers

- Counter register (TIMx_CNT)
- Prescaler register (TIMx_PSC)
- Auto-reload register (TIMx_ARR)

Counter mode register (UP/DOWN/CENTER)

Time Base Unit

Up-counting mode

= 7 * Clock Period

Output compare mode

PWM Mode 1 (Low-True)

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Duty Cycle =
$$\frac{CCR}{ARR + 1}$$
$$= \frac{3}{7}$$

Period = (1 + ARR) * Clock Period = 7 * Clock Period

Edge-aligned PWM

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

PWM Mode 2 (High-True)

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Duty Cycle = 1 -
$$\frac{CCR}{ARR + 1}$$

$$= \frac{4}{7}$$

Period = (1 + ARR) * Clock Period = 7 * Clock Period

Edge-aligned PWM

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

All falling edges occur at the same time!

PWM Period

Center-aligned PWM Mode 2 (High-True)

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

Period = 2 * ARR * Clock Period = 12 * Clock Period

Center-aligned PWM Mode 2 (High-True)

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

PWM Output Polarity

Mode	Counter < CCR	Counter ≥ CCR
PWM mode I (Low True)	Active	Inactive
PWM mode 2 (High True)	Inactive	Active

Output Polarity:

• Software can program the CCxP bit in the TIMx_CCER register

	Active	Inactive
Active High	High Voltage	Low Voltage
Active Low	Low Voltage	High Voltage

Code exercise. PWM configuration

- 1. Configure output pin
- 2. Set alternate mode
- 3. Set up Time Base Unit
- 4. Set up Output Compare Unit
- 5. Enable Counter

See examples/pwm.c

GPIO configuration

Set clocking for Port C

LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOC);

Set pin to alternate mode

LL_GPIO_SetPinMode(GPIOC, LL_GPIO_PIN_8, LL_GPIO_MODE_ALTERNATE);

Set alternate function (number from documentation)

LL_GPIO_SetAFPin_8_15(GPIOC, LL_GPIO_PIN_8, LL_GPIO_AF_1);

Set push/pull output type

LL_GPIO_SetPinOutputType(GPIOC, LL_GPIO_PIN_8, LL_GPIO_OUTPUT_PUSHPULL);

Timer configuration

```
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3); Set clocking for timer
LL TIM CC EnableChannel(TIM3, LL TIM CHANNEL CH3);
                                                                Enable capture/compare module 3rd channel
LL_TIM_SetCounterMode(TIM3, LL_TIM_COUNTERMODE_UP);
                                                                Set counting mode
LL TIM SetAutoReload(TIM3, 48000);
                                                          Set ARR register
LL TIM SetPrescaler(TIM3, 1);
                                                          Set PCS register
LL_TIM_OC_SetMode(TIM3, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_PWM1); Set PWM mode
LL TIM OC EnablePreload(TIM3, LL TIM CHANNEL CH3);
                                                                Enable preload for synchronous mode
LL TIM OC SetCompareCH3(TIM3, 4800);
                                                                Set CCR register
LL TIM GenerateEvent_UPDATE(TIM3);
                                                                Generate update event to update registers
LL TIM EnableCounter(TIM3);
                                                          Start counting
```