Matrix Product State Methods for Excitations

Jesse Osborne

University of Queensland School of Mathematics and Physics

24 August 2023

jesseosborne.com

Introduction: Quantum many-body physics

Consider an *N*-body system:

Classical: $\propto N$ DOFs.

Quantum: $\propto \exp N$ DOFs.

Introduction: Matrix product states

General pure state:

$$|\Psi\rangle = \underbrace{\begin{array}{c} c^{s_1\cdots s_N} \\ |\Psi\rangle = \underbrace{\begin{array}{c|cccc} & & & \\ & \downarrow & \downarrow & \cdots & \downarrow \\ s_1 & s_2 & s_3 & & s_N \end{array}}_{S_N}, \quad \mathcal{O}(\exp N) \text{ DOFs.}$$

Compress as a matrix product state:

$$|\Psi\rangle = \bigcirc \begin{matrix} \stackrel{m \times m \text{ matrix}}{A_1^{S_1}} & A_2^{S_2} & A_3^{S_3} & A_N^{S_4} \\ \downarrow & & & & & & \\ \downarrow s_1 & s_2 & s_3 & s_N \end{matrix}, \qquad \mathscr{O}(Nm^2) \text{ DOFs.}$$

Good at representing locally-entangled ('physical') states. Controlled by m.

Introduction: 'Local entanglement'

Low-temperature/energy physics

Low-temperature/energy physics

Static vs dynamic methods

Obtain ground states using standard methods (e.g. DMRG).

Two methods for analysing excitations:

1 Static: Solve for the stationary states of the excitations.

Dynamic: Time evolution of non-stationary excitations.

Versatility: Lattice models

Spin chains

■ Bose-Hubbard models

Lattice gauge theories

(Fermi-)Hubbard model

$$\cdots \qquad \diamondsuit \qquad \qquad \cdots$$

$$H = -t \sum_{\sigma,j} \left(c_{\sigma,j} c_{\sigma,j+1}^{\dagger} + \text{H.c.} \right) + U \sum_{j} n_{\uparrow,j} n_{\downarrow,j}.$$

Exactly solvable using the Bethe ansatz.

We look at the unpolarised state at half filling:

Remove a fermion from the lattice:

Move hole left: spin domain wall remains fixed.

Move hole left: spin domain wall remains fixed.

Move hole left: spin domain wall remains fixed.

Move the domain wall right by spin exchange.

Move the domain wall right by spin exchange.

Elementary excitations are isolated spin and charge DOFs.

Example of **fractionalisation**.

Related to topological order and anyons (fractionalised statistics).

Static method: Excitation ansatz

Start with a translation-invariant infinite MPS of the ground state:

$$|\Psi\rangle = \cdots - A \quad \cdots$$

Form a Bloch wave with momentum k:

$$|\Phi_k[B]\rangle = \sum_n e^{ikn} \cdots \xrightarrow{A} \xrightarrow{A} \xrightarrow{B} \xrightarrow{A} \xrightarrow{A} \cdots$$

$$= \sum_n e^{ikn} \xrightarrow{\qquad \qquad } \nearrow$$

Optimisation of B for each k gives the low-lying excitation spectrum. Can specify the quantum numbers of B (spin projection, particle no).

J. Haegeman et al., Phys. Rev. B 85, 100408(R) (2012).

Aside: Topologically nontrivial excitations

We use a symmetric MPS with fixed particle no and spin projection.

The unpolarised state at half filling needs a unit cell of two sites:

The reason is purely numeric:

- Spin-1/2 particles have a particle QN 1 and spin proj. QN ± 0.5 .
- We need a particle QN 1 and spin proj. QN 0 per site.

This leads to numerical breaking of translation symmetry.

Aside: Topologically nontrivial excitations

Topologically trivial excitations:

Can only have integer combinations of underlying particle QNs.

V. Zauner-Stauber et al., Phys. Rev. B 97, 235155 (2018).

Aside: Topologically nontrivial excitations

Topologically **non**trivial excitations:

We can now represent fractional excitations (i.e. spinons, chargons).

V. Zauner-Stauber et al., Phys. Rev. B 97, 235155 (2018).

Hubbard model: Spin energies

Compare V. Zauner-Stauber et al., Phys. Rev. B 97, 235155 (2018).

Aside: Expectation values of the excitation ansatz

For system size *L*:

$$\langle \Phi | \Phi \rangle = L,$$
 $\langle \Phi | H | \Phi \rangle = EL^2 + \Delta L.$
$$\Rightarrow \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = EL + \Delta.$$

(E: background state energy density, Δ : excitation energy.)

Aside: Expectation values of the excitation ansatz

Can also apply to higher powers:

$$\frac{\left\langle \Phi|H^2|\Phi\rangle - \left\langle \Phi|H|\Phi\rangle \right\rangle^2}{\left\langle \Phi|\Phi\rangle \right\rangle} = \sigma_E^2 L + \sigma_\Delta^2.$$

 $(\sigma_E^2$: background state variance density, σ_Λ^2 : excitation variance.)

The excitation ansatz is *not* a variational ansatz:

- The excitation energy Δ may be smaller than the true value.
- The excitation variance σ_{Δ}^2 can be negative!

Hubbard model: Charge energies

Minimising energy variance

Minimising energy variance

Increasing accuracy

There are two main factors which affect the accuracy of the EA:

- The accuracy of the background wavefunction.

 Can be improved by using a larger bond dimension.
- 2 The size of the 'window':

We can optimise the window one site at a time, like DMRG.

Usually (1) will be the limiting factor, and a 1-site window is enough (unless the excitation is 'broader' than the correlation length).

Multi-particle stationary states?

$$\begin{split} |\mathbf{Y}_{k_1,k_2}\rangle &= \sum_n \left[q_1 \sum_{m>n} \mathrm{e}^{\mathrm{i}(k_1 n + k_2 m)} \, \cdots \, - \cdots \, -$$

Need to solve for q_1 , q_2 and the correction window.

L. Vanderstraeten et al., Phys. Rev. B 92, 125136 (2015).

Time evolution

Time evolution described by Schrödinger's equation:

$$\frac{\mathrm{d}}{\mathrm{d}t} |\Psi(t)\rangle = -\mathrm{i}H |\Psi(t)\rangle.$$

Approximate using time-dependent variational principle (TDVP):

$$\frac{\mathrm{d}}{\mathrm{d}t}A_n(t) = -\mathrm{i}H_n^{\mathsf{eff}}A_n(t), \qquad n = 1, \dots, N.$$

Sweep across evolving each A-matrix at a time: similar to DMRG.

J. Haegeman et al., Phys. Rev. B 94, 165116 (2016).

Infinite boundary conditions

Usual procedure:

$$|\Psi(t=0)\rangle = \ \cdots \ \longrightarrow \ \ \text{Time evolve}.$$

Breaks translation invariance.

We could use a finite system size.

Or we can use a finite window with **infinite boundary conditions**.

$$|\Psi(t)\rangle = \cdots - A A W_1 W_2 W_3 A A \cdots$$

Only evolve the window: the boundaries remain fixed.

H. N. Phien et al., Phys. Rev. B 86, 245107 (2012).

Dynamical window expansion

We can expand the window as the wavefront spreads out:

H. N. Phien et al., Phys. Rev. B 88, 035103 (2013).

Two-point correlation functions

Can obtain two-point correlation function:

$$C(x,t) = \langle \Psi | c_{\uparrow,x} e^{-iHt} c_{\uparrow,0}^{\dagger} | \Psi \rangle = \langle \Psi(0) | T^{-x} | \Psi(t) \rangle.$$

(T^x : translation operator by x sites.)

Spectral functions

(Can use smoothing/extrapolation to reduce finite-time effects.)

Spectral function vs excitation ansatz

Real-space wavepackets

Solve excitation ansatz:

Form real-space wavepackets:

$$|\Psi\rangle = \int_0^{2\pi} e^{-ikx_0} f(k) |\Psi_k(B_k)\rangle dk.$$

Choose f(k) to localise wavepacket.

M. Van Damme et al., Phys. Rev. Research 3, 013078 (2021).

Coherent wavepackets

Select components around a certain momentum:

$$f(k) \to e^{-(k-k_0)/2\sigma^2} f(k)$$
.

Group velocity is proportional to slope of dispersion relation.

Need to balance wavepacket size and dispersion over time (uncertainty principle).

M. Van Damme et al., Phys. Rev. Research 3, 013078 (2021).

Real-space wavepackets: Hubbard model

Outlook: 2D?

Conclusion

