

		om et prénom, lisibles : Identifiant (de haut en bas) :					
	(GONCALYES 00 01 02 03 04 05 06 07 08					
			□9				
			□9				
2/2	répor restric de co pénal	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « 🏖 ». Noir tôt que cocher. Renseigner les champs d'identité. Les questions marquées par « 🍪 » peuvent avec onses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélection trictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est per corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les nalisent; les blanches et réponses multiples valent 0.	oir plusieurs oner la plus pas possible incorrectes				
	Q.2	Que vaut $L \cup L$?					
2/2		\square ε \square L \square \emptyset \square $\{\varepsilon\}$					
	Q.3	Pour tout langage L , le langage $L^+ = \bigcup_{i>0} L^i$					
2/2		\square ne contient pas ε \square peut contenir ε mais pas forcement \square contient toujo	ours ε				
	Q.4						
2/2	2	\square ε \square L \blacksquare \emptyset \square $\{\varepsilon\}$					
212	0.5						
	Q.5	Que vaut Fact(L) (l'ensemble des facteurs) :					
0/2							
	Q.6	Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$					
2/2			r)*				
	Q.7	Pour toutes expressions rationnelles e, f, g , on a $e(f + g) \equiv ef + eg$ et $(e + f)g \equiv eg + fg$.					
2/2		vrai					
	Q.8	Pour toutes expressions rationnelles e, f , on a $(e + f)^* \equiv (e^* f^*)^*$.					
2/2		■ vrai ☐ faux					
	Q.9						
2/2							
	Q.10	Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, on a $\forall n > 1$, $L^n = \{u^n u \in L\}$.					
0/2		⊠ faux □ vrai					
	Q.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :						
2/2		☐ '0+1+2+3+4+5+7+8+9'	EF'				
_							

2/2

2/2

2/2

+104/2/5+

Q.12 Combien d'états compte l'automate de Thompson d'une expression rationnelle composée de n opérations autres que la concaténation :

			:			
0/2	□ n	$\frac{n}{2}$	$\Box \underbrace{2^{2^{2^{\cdot}}}}_{n \text{ fois}}$	\square n^2	☐ 2 ⁿ	

- Q.13 Combien d'états a l'automate de Thompson de (abc)*[abcd]*.
- 0/2 \square Thompson ne s'applique pas ici. \square 22 \square $\frac{\sqrt{\pi}}{2}$ \square 26 \square 32 \boxtimes 24
 - Q.14 Combien d'états a l'automate de Thompson auquel je pense?

Quel est le résultat d'une élimination arrière des transitions spontanées?

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

☐ Aucune de ces réponses n'est correcte.

- **Q.17** Le langage $\{\mathfrak{S}^n \mid \forall n \in \mathbb{N}\}$ est
- ☐ fini ☐ non reconnaissable par automate fini ☐ vide rationnel
- Q.18 Un automate fini qui a des transitions spontanées...
- 2/2 \square accepte ε \square est déterministe \square n'est pas déterministe \square n'accepte pas ε
 - **Q.19** Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :
- 2/2 \square L_2 est rationnel \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1 est rationnel \square L_1, L_2 sont rationnels
 - Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle?
 Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation.
 - ☐ Thompson, déterminisation, Brzozowski-McCluskey.
 - ☐ Thompson, déterminimisation, évaluation.
 - ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation.
 - Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$

2/2

2/2 Quelle(s) opération(s) préserve(nt) la rationnalité? Intersection Union Différence symétrique 0/2Aucune de ces réponses n'est correcte. Q.23 Duelle(s) opération(s) préserve(nt) la rationnalité? ☑ Pref☑ Suff☑ Sous – mot☐ Aucune de ces réponses n'est correcte. Transpose Sous − mot 0/2Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles. \square Rec \supseteq Rat \square Rec \subseteq Rat \square Rec \subseteq Rat 2/2 \mathbb{R} Rec = Rat Si L_1, L_2 sont rationnels, alors: Q.25 $\Box \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2} \qquad \Box L_1 \subseteq L_2 \text{ ou } L_2 \subseteq L_1$ $\boxtimes (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \text{ aussi}$ $\square \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n$ aussi 0/2Q.26 On peut tester si un automate déterministe reconnaît un langage non vide. Oui ☐ Cette question n'a pas de sens 2/2 Seulement si le langage n'est pas rationnel On peut tester si un automate nondéterministe reconnaît un langage non vide. Q.27 0/2jamais souvent oui, toujours rarement Quel mot reconnait le produit de ces automates? O.28 □ (bab)²² (bab)4444 2/2 (bab)⁶⁶⁶⁶⁶⁶ (bab)³³³ Q.29 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$? 2/2 □ Il en existe plusieurs! ☐ 52 Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a,b\}^+$? 2/2 **2** ☐ Il en existe plusieurs! □ 3 □ 1 O.31 Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression

rationnelle équivalente à :

☐ (abc)*

Quels états peuvent être fusionnés sans changer le langage reconnu.

2/2

1 avec 2

3 avec 4 ☐ 1 avec 3

0 avec 1 et avec 2

2 avec 4

☐ Aucune de ces réponses n'est correcte.

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$

2/2

	Il existe	un NFA	A qui	reconnaiss	e I
Π	existe un	ε-NFA	qui 1	reconnaisse	P

 \square Il existe un DFA qui reconnaisse ${\cal P}$

 ${f Z}$ ne vérifie pas le lemme de pompage

0/2

0/2

2/2

Q.35

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

 $\boxtimes (ab^+ + a + b^+)(a(a + b^+))^*$

 \Box $(ab^* + a + b^*)a(a + b^*)$

Sur {a, b}, quel automate reconnaît le complémentaire du langage de

Fin de l'épreuve.