一阶逻辑(一

一阶逻辑 (一) 第三章 - 一阶语言

姚宁远

复旦大学哲学学院

September 27, 2021

目录

- 1 一阶逻辑的公理系统
- 2 推理与元定理
- 3 其他元定理
- 4 前束范式

一阶逻辑的公理集合为以下公式的全称化(记作 A)

- 1 A(1), A(2), A(3); (A1) $\alpha \to (\beta \to \alpha)$; (A2) $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$; (A3) $(\neg \beta \to \neg \alpha) \to ((\neg \beta \to \alpha) \to \beta)$
- 2 $\forall x \alpha \rightarrow \alpha_t^x$, 其中 t 在 α 中可以替换 x;
- $\forall \mathbf{X}(\alpha \to \beta) \to (\forall \mathbf{X}\alpha \to \forall \mathbf{X}\beta);$
- 4 $\alpha \rightarrow \forall x \alpha$,其中 x 不在 α 中自由出现;
- 5 X = X;
- 6 $(x = y) \rightarrow (\alpha \rightarrow \alpha')$,其中 α 为原子公式,并且 α' 是将 α 中的若干个 x 的自由出现替换为 y 而得到;

推理规则丨

分离规则

- 一阶逻辑(一)
- 一一阶逻辑的公理系统

证明与内定理

- $\Gamma \vdash \phi$
- $\vdash \phi_{\circ}$

一阶重言式

素公式

- 1 原子公式是素公式;
- 2 全称公式 $\forall x \alpha$ 是素公式

与模态重言式类似,对每个素公式指定一个命题符号,可以定义 一阶重言式。

定理

如果 ϕ 是一阶重言式,则 ϕ 是内定理。

项的替换 I

例

令
$$\alpha$$
 为公式 $\exists yx \neq y$, 则 $\forall x\alpha \rightarrow \alpha_z^x$ 为

$$\forall x \exists yx \neq y \rightarrow \exists y \ z \neq y;$$

而 $\forall x \alpha \rightarrow \alpha_v^x$ 则成为

$$\forall x \exists yx \neq y \rightarrow \exists y \ y \neq y$$
.

- 替换 x 的 z 没有被 α 中的量词约束;
- 替换 x 的 y 被 α 中的量词约束;

项的替换Ⅱ

■ 被约束的变元不再是"变元",不能被项替换。

定义

"t 在 α 中可以替换 x" 递归定义如下

- **1** 对原子公式 α , t 总是可以在 α 中替换;
- **2** t 在公式 $\neg \beta$ 中可以替换 x 当且仅当 t 在 β 中可以替换 x;
- 3 t 在公式 $\beta \rightarrow \gamma$ 可以替换 x 当且仅当 t 在 β 和 γ 中都可以替换 x。
- 4 t 在公式 $\forall y\beta$ 中可以替换 x 当且仅当
 - (a) x 不在 $\forall y\beta$ 中自由出现;或者
 - (b) y 不在 t 中出现并且 t 在 β 中可以替换 x。

项的替换 Ⅲ

例

变元 x 在公式 α 中都可以替换为自己。从而总是有 $\forall x \phi \rightarrow \phi$ 。

例

如果变元 y 不在 α 中约束出现,则 y 可以替换公式 α 的任何变元。从而总是有 $\forall x\phi \rightarrow \phi_y^x$ 。

例

不在公式 α 中出现的变元 y 可以替换公式 α 的任何变元。从而总是有 $\forall x \phi \to \phi_y^x$ 。

概括定理 l

概括定理

如果 $\Gamma \vdash \phi$ 并且 X 不在 Γ 的任何公式中自由出现,则 $\Gamma \vdash \forall X \phi$ 。

证明:

- 1 对证明长度归纳证明;
- ② 设 $(\phi_0,...,\phi_n)$ 是 Γ 的一个证明;
- $\phi_0 \in \Gamma \cup \Lambda$;
- 4 若 $\phi_0 \in \Gamma$,则 $\phi_0 \to \forall x \phi_0 \in \Lambda$;
- 5 若 $\phi_0 \in \Lambda$,则 $\forall x \phi_0 \in \Lambda$;
- ⑥ 设对每个 i < k 有 $\Gamma \vdash \forall x \phi_i$;
- **7** 若 ϕ_k ∈ $\Gamma \cup \Lambda$,则显然 $\Gamma \vdash \forall x \phi_k$;
- 8 设 ϕ_k 由 ϕ_i 和 $\phi_i = \phi_i \rightarrow \phi_k$ 通过分离规则而得到;

概括定理Ⅱ

9 由于 $\{\forall x(\phi_i \to \phi_k), \forall x\phi_i\} \vdash \forall x\phi_k$,故 $\Gamma \vdash \forall x\phi_k$.

注

如果 $\Gamma \vdash \phi$,并且 x 不在 Γ 的任何公式中自由出现,设 $(\phi_0,...,\phi_n)$ 是 Γ 到 ϕ 的一个证明。则存在有 Γ 到 $\forall x \phi$ 的一个仅含有符号 $\bigcup_{i \leq n} \phi_i \cup \{x, \forall, (,)\}$ 的证明。

证明

 $\forall x \forall y \alpha \vdash \forall y \forall x \alpha$.

- 1 $\forall x \forall y \alpha \rightarrow \alpha$, $\forall x \forall y \alpha \vdash \alpha$;
- 2 $\forall x \forall y \alpha \vdash \forall x \alpha$ (概括定理);
- **3** $\forall x \forall y \alpha \vdash \forall y \forall x \alpha$ (概括定理)。

目录

- 1 一阶逻辑的公理系统
- 2 推理与元定理
- 3 其他元定理
- 4 前束范式

重言规则

引理(重言规则)

如果 $\Gamma \vdash \alpha_i$, i = 1, ..., n 并且 $\alpha_1 \to ... \to \alpha_n \to \beta$ 是一阶重言式,则 $\Gamma \vdash \beta$.

注

$$lpha_1 o ... o lpha_n o eta$$
 是一阶重言式当且仅当 $\{lpha_1,...,lpha_n\}$ 重言蕴涵 eta 。

例

 $\{\alpha \to \beta, \beta \to \alpha\}$ 重言蕴涵 $\alpha \leftrightarrow \beta$,故要证明 $\Gamma \vdash \alpha \leftrightarrow \beta$,只需证明 $\Gamma \vdash \alpha \to \beta$ 和 $\Gamma \vdash \beta \to \alpha$ 。

一阶演绎定理

定理 (一阶演绎定理)

$$\Gamma \cup \{\gamma\} \vdash \phi \ \mathbf{ 当且仅当} \ \Gamma \vdash (\gamma \to \phi) \, .$$

一阶逻辑(一) 上 推理与元定理

逆否命题

推论 (逆否命题)

$$\Gamma \cup \{\psi\} \vdash \neg \phi$$
 当且仅当 $\Gamma \cup \{\phi\} \vdash \neg \psi$ 。

一阶逻辑(一) └ __推理与元定理

反证法

不一致

称一阶公式集 Γ 是不一致的,如果存在一阶公式 ψ 使得 $\Gamma \vdash \psi$ 且 $\Gamma \vdash \neg \psi$ 。

推论(反证法)

如果 $\Gamma \cup \{\phi\}$ 不一致,则 $\Gamma \vdash \neg \phi$ 。

例 l

例

证明: $\vdash \exists x \forall y \phi \rightarrow \forall y \exists x \phi$ 。

Proof.

- 只需证明 $\exists x \forall y \phi \vdash \forall y \exists x \phi$;
- 只需证明 $\exists x \forall y \phi \vdash \exists x \phi$;
- 只需证明 $\forall x \neg \phi \vdash \forall x \neg \forall y \phi$;
- 只需证明 $\forall x \neg \phi \vdash \neg \forall y \phi$;
- 只需证明 $\{\forall x \neg \phi, \forall y \phi\}$ 不一致;
- $\blacksquare \{ \forall x \neg \phi, \forall y \phi \} \vdash \phi , \{ \forall x \neg \phi, \forall y \phi \} \vdash \neg \phi \}$

例Ⅱ

例

证明: $\vdash \forall x(\alpha \to \beta) \to (\exists x\alpha \to \exists x\beta)$ 。

证明:

- 只需证明 $\forall x(\alpha \rightarrow \beta) \vdash (\exists x\alpha \rightarrow \exists x\beta)$;
- 只需证明 $\forall x(\alpha \rightarrow \beta)$, $\exists x\alpha \vdash \exists x\beta$;
- 只需证明 $\forall x(\alpha \rightarrow \beta), \forall x \neg \beta \vdash \forall x \neg \alpha;$
- 只需证明 $\forall x(\alpha \rightarrow \beta), \forall x \neg \beta \vdash \neg \alpha$;
- $\blacksquare \forall x(\alpha \to \beta), \ \forall x \neg \beta \vdash \alpha \to \beta, \ \neg \beta;$
- $\blacksquare \alpha \rightarrow \beta, \ \neg \beta \vdash \neg \alpha.$

否定式的证明

设 ϕ 是一个否定式,想要证明 $\Gamma \vdash \phi$ 。

- **1** 如果 ϕ 是 $\neg(\psi \rightarrow \theta)$, 则只需证明 $\Gamma \rightarrow \psi$ 且 $\Gamma \rightarrow \neg \theta$;
- **2** 如果 ϕ 是 $\neg\neg\psi$,则只需证明 $\Gamma \vdash \psi$;
- 3 如果 ϕ 是 $\neg \forall x \psi$,则只需要证明存在一个项 t 使得 $\Gamma \vdash \neg \psi_t^{\mathsf{x}}$ 。

目录

- 1 一阶逻辑的公理系统
- 2 推理与元定理
- 3 其他元定理
- 4 前束范式

常数概括定理

定理

假设 $\Gamma \vdash \phi$,而 c 是不在 Γ 中出现的常数符号,则存在变元 y,它不在 ϕ 中出现,使得 $\Gamma \vdash \phi_y^c$ 。 <mark>更进一步</mark>,存在 Γ 到 $\forall y \phi_y^c$ 的不含 c 的推演。

证明

对证明序列的长度归纳证明: 如果 $(\alpha_0,....,\alpha_n)$ 是证明序列,则 $((\alpha_0)_v^c,....,(\alpha_n)_v^c)$ 也是证明序列,其中 y 不出现在 α_i 中。

循环替换引理

引理

如果变元 y 不在公式 ϕ 中出现,则变元 x 可以在公式 ϕ_y^x 中替换 y,并且 $(\phi_y^x)_x^y = \phi$ 。

证明

- 对 ϕ 的长度归纳证明。
- **2** 我们仅讨论 $\phi := \forall z \psi$ 的情形;
- 3 若 x = z,则 $\phi_y^x := \phi$,结论显然成立;
- 4 若 $\mathbf{X} \neq \mathbf{Z}$,则 $\phi_{\mathbf{V}}^{\mathbf{X}} := \forall \mathbf{Z}(\psi_{\mathbf{V}}^{\mathbf{X}})$;
- **5** 由定义, $(\forall z(\psi_y^x))_x^y := \forall z((\psi_y^x)_x^y);$
- 6 而根据归纳假设,总有 $((\psi_{\nu}^{x})_{x}^{y}) := \psi$.

循环替换引理的推论

推论

假定 $\Gamma \vdash \phi_c^X$, 其中常数符号 c 不在 Γ 和 ϕ 出现。则 $\Gamma \vdash \forall x \phi$, 并且有一个 c 完全不出现的从 Γ 到 $\forall x \phi$ 的证明。

证明

- **1** 令 ϕ 为 $\phi(x)$ 。则 $\Gamma \vdash \phi(c)$;
- **2** 根据常数概括定理,有 Γ ⊢ $\forall y \phi(y)$,且 c 不出现在证明中。
- **3** 不妨设 y 是新变元,由于 c 是新常数, $\phi(y) = \phi(x)_y^x$,故根据循环替换引理,有 $\phi(x) = \phi(y)_x^y$;
- **4** 从而 $\vdash \forall y \phi(y) \rightarrow \phi(x)$
- **5** 由演绎定理, $\forall y \phi(y) \vdash \phi(x)$;
- **6** 根据概括定理, $\forall y \phi(y) \vdash \forall x \phi(x)$;

约束变元的替换定理I

定理

设 ϕ 是一个公式,t 是一个项,x 是一个变元。我们总是可以找到公式 ϕ' 使得 ϕ 与 ϕ' 的差别仅在于约束变元,并且

- 1 $\phi \vdash \phi'$ 且 $\phi' \vdash \phi$;
- 2 t 可以在 ϕ' 中替换 x。

证明

- 1 对 ϕ 的长度归纳证明。
- **2** 我们只考虑 ϕ 形如 $\forall z\psi$;
- **3** 由归纳假设,存在满足条件的 ψ' ;
- 4 取一个新变元 u, 令 ϕ' 为 $\forall u(\psi'_u{}^z)$;
- **5** 显然, t 可在 ψ' 中替换 x, 故而可在 $\forall u(\psi'_u{}^z)$ 中替换 x;

约束变元的替换定理 ||

- **6** $\forall u(\psi'_u{}^z) \vdash (\psi'_u{}^z)^u_z = \psi', 故 \forall u(\psi'_u{}^z) \vdash \psi;$
- **7** 由概括定理, $\forall u(\psi'_{\mu}^{\prime})$ ⊢ $\forall z\psi$;
- 8 同理, $\forall z\psi \vdash \psi$, 从而 $\forall z\psi \vdash \psi'$;
- 9 由概括定理, $\forall z\psi \vdash \forall z\psi'$;
- 10 而 $\vdash \forall z \psi' \rightarrow \psi'_{\mu}{}^{z}$,故 $\forall z \psi \vdash \psi'_{\mu}{}^{z}$;
- **11** 由概括定理, $\forall z\psi \vdash \forall u(\psi'_{\mu}{}^{z});$
- 12 即 $\vdash \phi \leftrightarrow \phi'$.

与等词相关的内定理

(Eq1) $\forall xx = x$;

```
(Eq2) \forall x \forall y (x = y \rightarrow y = x);

(Eq3) \forall x \forall y \forall z (x = y \rightarrow y = z \rightarrow x = z);

(Eq4) \forall x_1 ... \forall x_n \forall y_1 ... \forall y_n (x_1 = y_1 \rightarrow ... \rightarrow x_n = y_n \rightarrow Px_1 ... x_n \rightarrow Py_1 ... y_n), 其中 P \in \mathbb{R} n-元谓词符号;

(Eq5) \forall x_1 ... \forall x_n \forall y_1 ... \forall y_n (x_1 = y_1 \rightarrow ... \rightarrow x_n = y_n \rightarrow y_n \rightarrow y_n)
```

 $fx_1...x_n = fy_1...y_n$),其中 $f \in \mathbb{R}$ n-元函数符号。

目录

- 1 一阶逻辑的公理系统
- 2 推理与元定理
- 3 其他元定理
- 4 前束范式

前束范式

定义

形如

$$Q_1 x_1 \dots Q_n x_n \alpha$$

的公式称为<mark>前束范式</mark>,其中 n 是自然数, Q_i 是量词 \forall 或 \exists , x_i 是变元, α 是不含量词的公式。

定理

任何一个公式都可以找到与之等价的前束范式。

一阶逻辑(一 上_{前束范式}

Thanks!