```
In [1]: import pandas as pd
         import numpy as np
In [2]: import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
In [3]:
        import statsmodels.formula.api as smf
         from sklearn.metrics import r2_score
In [4]: from sklearn.linear_model import LinearRegression
In [5]:
        from IPython.display import HTML
In [6]: import statsmodels.api as sm
        /Users/kcarnold/anaconda3/envs/py36/lib/python3.6/site-packages/statsmodels/comp
        at/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated a
        nd will be removed in a future version. Please use the pandas.tseries module ins
        tead.
          from pandas.core import datetools
In [7]:
        from textrec.paths import paths
In [8]:
        dataset = pd.read csv(paths.data / 'num details training set.csv')
In [9]: sns.distplot(dataset.num_details)
        /Users/kcarnold/anaconda3/envs/py36/lib/python3.6/site-packages/scipy/stats/stat
        s.py:1706: FutureWarning: Using a non-tuple sequence for multidimensional indexi
        ng is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future thi
        s will be interpreted as an array index, `arr[np.array(seq)]`, which will result
        either in an error or a different result.
          return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
Out[9]: <matplotlib.axes. subplots.AxesSubplot at 0x1c1afe02e8>
         0.200
         0.175
         0.150
         0.125
         0.100
         0.075
         0.050
         0.025
         0.000
                                      10
                              num details
```

Preprocessing

Strip off punctuation; it just throws off token counts and probs. (We get a few percent boost in r^2 because of this.)

Word Frequencies

```
In [18]: plt.scatter(dataset.min_freq, dataset.num_details)
Out[18]: <matplotlib.collections.PathCollection at 0x1c1de300f0>
```



```
In [19]: plt.scatter(dataset.mean_freq, dataset.num_details)
```

Out[19]: <matplotlib.collections.PathCollection at 0x1c1deae898>

Perplexity

The perplexity of a language model is a rough proxy for the amout of information that a text contains. The more details included, the more uncertainty the LM has; and redundant text doesn't get counted. It's not quite right for a few reasons:

- Typos, grammar errors, etc. also increase perplexity
- Unusual wording of the same concepts increases perplexity
- Using a word that's more common than expected increases perplexity.

But we'll try it anyway.

```
In [20]: from textrec import automated analyses
         from textrec import onmt_model_2
         /Users/kcarnold/anaconda3/envs/py36/lib/python3.6/site-packages/h5py/ init
         :36: FutureWarning: Conversion of the second argument of issubdtype from `float`
         to `np.floating` is deprecated. In future, it will be treated as `np.float64 ==
         np.dtype(float).type`.
           from . conv import register converters as register converters
         Loading ONMT models...
         coco_lm_adam_acc_46.00_ppl_16.32_e10_nooptim.pt
         Loading model parameters.
         coco cap adam acc 48.73 ppl 12.56 e10 nooptim.pt
         Loading model parameters.
         Ready.
         Loading SpaCy...done
In [21]: | automated analyses.eval logprobs unconditional(dataset.text.iloc[0])
Out[21]: 3.3479643
         example text = dataset.text.iloc[0]
In [22]:
         example text
Out[22]: 'families stand around by the water flying kites on a sunny day'
In [23]:
         tokens = onmt_model_2.tokenize(example_text)
         logprobs = onmt_model_2.models['coco_lm'].eval_logprobs('.', tokens, use_eos=True)
         logprobs
Out[23]: array([1.0859766e+01, 4.1381788e+00, 2.3187706e+00, 7.0211720e+00,
                1.5096430e+00, 2.1149969e+00, 5.2354274e+00, 3.4142053e-01,
                5.1307883e+00, 1.5549884e+00, 1.9299134e+00, 3.4333759e-03,
                1.3650393e+00], dtype=float32)
In [24]: dataset['num tokens'] = dataset.text.apply(lambda text: len(onmt model 2.tokenize(
         text)))
         dataset['mean logprob uncond'] = dataset.text.apply(lambda text: automated analyse
         s.eval_logprobs_unconditional(text))
         dataset['total_logprob_uncond'] = dataset.mean_logprob_uncond * (dataset.num_token
         s + 1
In [27]: plt.scatter(dataset.num_tokens, dataset.num_details)
Out[27]: <matplotlib.collections.PathCollection at 0x1c432d8d30>
          14
          12
          10
           8
           6
           4
           2
           0
                     10
                          15
                               20
                                    25
                                         30
                                              35
```

```
In [28]: plt.scatter(dataset.total_logprob_uncond, dataset.num_details)
Out[28]: <matplotlib.collections.PathCollection at 0x1c34f0da90>
```


Models

```
In [29]: dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 168 entries, 0 to 167
         Data columns (total 9 columns):
         image_id
                                  168 non-null int64
                                  168 non-null object
         text
         num_details
                                  168 non-null int64
                                  168 non-null int64
         num words
         min freq
                                  168 non-null float64
         mean_freq
                                  168 non-null float64
         num_tokens
                                  168 non-null int64
         mean logprob uncond
                                  168 non-null float64
         total_logprob_uncond
                                  168 non-null float64
         dtypes: float64(4), int64(4), object(1)
         memory usage: 11.9+ KB
```

In [50]: dataset[dataset.num_words != dataset.num_tokens][['text', 'num_words', 'num_tokens ']]

Out[50]:

	text	num_words	num_tokens
14	a man in a red shirt with two children are on a beach holding a multi-colored kite while other people fly kites in the background	26	25
19	a man in a red shirt is helping his children fly a large rainbow-colored kite	16	15
22	the image shows a railroad track with a train on it further out in the distance. multiple white buildings hug the side if the track, with some woo	30	31
35	a train passing a few small buildings, perhaps the station	10	11
41	a landscape of a train stop with an old-looking brownish train and a few brightly colored buildings to one side	21	20
43	a black-and-white picture of a young couple cutting the wedding cake with the help of a young photographer at the wedding event	24	22
45	a woman is standing next to a couple in front of a cake with a knife in it and holding the other woman's hands	24	25
56	a husband, bride and female all stand in front of a table holding a knife cutting a cake	18	19
80	a man-woman gracefully riding a wave using a surfboard	10	9
81	a surfer is riding a wave the water looks so refreshing it's a beautiful day	15	16
86	a double-decker bus drives through a busy city street in london	12	11
89	a busy city street with cars, a large red bus and pedestrians going about their day	16	17
91	the photo shows a downtown scene of a city. there are old buildings everywhere, and a red bus is prominent in the middle of the road. many people	32	33
97	a busy city street with cars and people along the streets with high-rise buildings on both sides	18	17
99	a red double-decker bus driving down a street next to tall buildings and a cloudy sky in london	19	18
101	a red double-decker bus passes a group of people to its left while a black car looks to pass	20	19
111	a curious cat sits perched upon a table, next to a glass of wine	14	15
118	a brownish-orange cat with yellow eyes is look to his left past a glass of red wine	18	17
128	sliding glass, frosted, shower doors with a tan towel hanging on the handle and a white toilet with a blue floor rug	22	24
141	someone is using a shower but it's hard to see due to the opaque glass	15	16
147	a toilet paper sits on top of a toilet next to the sink, in a plain bathroom	17	18
153	a toilet has a roll of toilet paper on it, and there is a sink that matches it to the right	21	22
155	a sink, mirror and toilet, all in white with a roll of toilet paper on the toilet	17	19

```
In [30]: dataset.mean_freq.describe()
```

```
Out[30]: count 168.000000
                   5.738019
         mean
         std
                    0.283893
         min
                    4.790000
         25%
                    5.579911
         50%
                    5.764444
         75%
                    5.942990
                    6.323333
         max
         Name: mean_freq, dtype: float64
```

Let's try including the interaction of mean_freq and tokens. That's sorta like the total word frequency.. if we invert frequency to make rarity, then it's total rarity, or something proportional to unigram perplexity.

```
In [31]: dataset['mean_rarity'] = (7 - dataset.mean_freq) / 7
    dataset['max_rarity'] = (7 - dataset.min_freq) / 7
    dataset['total_rarity'] = dataset['mean_rarity'] * dataset['num_words']
```

```
In [32]: | formulas = '''
         C(image_id) + min_freq + mean_freq
         C(image_id) + total_rarity
         C(image_id) + num_tokens + total_rarity
         C(image_id) + num_tokens + total_rarity + total_logprob_uncond + mean_logprob_unco
         nd
         C(image_id) + num_tokens + mean_rarity + max_rarity + total_rarity + total_logprob
          _uncond + mean_logprob_uncond + max_rarity*num_tokens
         C(image_id) + num_tokens + mean_rarity + max_rarity + total_rarity + max_rarity*nu
         m_tokens
         '''.split('\n')
         models = \{\}
         for formula in formulas:
             formula = formula.strip()
             if not formula:
                 continue
             formula_full = 'num_details ~ ' + formula
             models[formula] = model = smf.ols(formula_full, dataset).fit()
             display(HTML(f'<h1>r^2=\{model.rsquared:.3f\}: \{formula\}</h1>'))
             display(model.summary())
```

r^2=0.385: C(image_id) + min_freq + mean_freq

OLS Regression Results

Dep. Variable:		num_d	etails		R-se	quared:	0.38	B5
Model:			OLS	Adj	. R-sc	quared:	0.3	50
Method:		Least Sq	uares		F-st	tatistic:	10.9	98
Date:	We	d, 10 Oct	2018	Prob	(F-st	atistic):	3.40e-	13
Time:		09:4	49:30	Log	g-Like	lihood:	-378.	74
No. Observations:			168			AIC:	777	.5
Df Residuals:			158			BIC:	808	3.7
Df Model:			9					
Covariance Type:		nonre	obust					
		coef	std e	rr	t	P> t	[0.025	0.975]
Interd	cept	3.2883	3.93	9 0	.835	0.405	-4.492	11.068
C(image_id)[T.223	777]	-2.3113	0.80	2 -2	.882	0.005	-3.896	-0.727
C(image_id)[T.227	326]	-2.1374	0.75	2 -2	.841	0.005	-3.624	-0.651
C(image_id)[T.240	275]	-4.3229	0.73	6 -5	.877	0.000	-5.776	-2.870
C(image_id)[T.247	576]	1.4757	0.75	4 1	.956	0.052	-0.014	2.966
C(image_id)[T.275	449]	-1.2033	0.74	.9 -1	.607	0.110	-2.682	0.276
C(image_id)[T.396	295]	-1.1903	0.75	7 -1	.572	0.118	-2.686	0.305
C(image_id)[T.431	140]	0.1770	0.77	2 0	.229	0.819	-1.349	1.703
min_	freq	-1.5700	0.34	.2 -4	.595	0.000	-2.245	-0.895
mean_	freq	1.4900	0.74	0 2	.015	0.046	0.029	2.951
Omnibus:	17.29	4 Dur l	bin-Wa	tson:	;	2.051		
Prob(Omnibus):	0.00	0 Jarqu	e-Bera	(JB):	2	3.230		
Skew:	0.62	8	Prol	o(JB):	9.03	3e-06		
Kurtosis:	4.32	0	Cond	d. No.		148.		

r^2=0.713: C(image_id) + total_rarity

OLS Regression Results

Dep. Variable:		num_de	etails		R-sc	quared:	0.7	13	
Model:	OLS			Adj	R-sc	quared:	0.699		
Method:	Least Squares				F-st	atistic:	49.49		
Date:	Wed, 10 Oct 2018			Prob	(F-sta	atistic):	2.32e-39		
Time:		09:4	19:30	Log	-Like	lihood:	-314.5	55	
No. Observations:			168			AIC:	647	.1	
Df Residuals:			159			BIC:	675	.2	
Df Model:			8						
Covariance Type:		nonro	bust						
••									
		coef	std e	rr	t	P> t	[0.025	0.975]	
Interc	ept	2.2352	0.47	'3 4	.722	0.000	1.300	3.170	
C(image_id)[T.2237	77]	-3.6844	0.49	99 -7	.381	0.000	-4.670	-2.698	
C(image_id)[T.2273	26]	-3.6428	0.50	3 -7	.243	0.000	-4.636	-2.649	
C(image_id)[T.2402	75]	-3.6986	0.50	00 -7	.399	0.000	-4.686	-2.711	
C(image_id)[T.2475	76]	-0.1979	0.50)3 -0	.393	0.695	-1.192	0.796	
C(image_id)[T.2754	49]	-1.7292	0.49	9 -3	.464	0.001	-2.715	-0.743	
C(image_id)[T.3962	95]	-1.9313	0.49	99 -3	.868	0.000	-2.917	-0.945	
C(image_id)[T.4311	40]	-0.9063	0.50	00 -1	.813	0.072	-1.893	0.081	
total_ra	rity	1.9068	0.12	26 15	.109	0.000	1.658	2.156	
Omnibus:	1.608	Durb	in-Wa	tson:	1.87	7			
Prob(Omnibus):	0.447	Jarque	e-Bera	(JB):	1.22	7			
Skew: -	0.183		Prob	o(JB):	0.54	1			
Kurtosis:	3.204		Cond	l. No.	25.	2			

r^2=0.736: C(image_id) + num_tokens + total_rarity

OLS Regression Result	OLS	Regression	Result
-----------------------	-----	------------	--------

Dep. Variable:	num_d	etails	R-s	quared:	0.7	36
Model:		OLS	Adj. R-s	quared:	0.7	21
Method:	Least Squares		F-s	tatistic:	48.90	
Date: We	ed, 10 Oct	2018 P i	rob (F-st	atistic):	3.07e-	41
Time:	09:4	49:30	Log-Like	elihood:	-307.	73
No. Observations:		168		AIC:	635	5.5
Df Residuals:		158		BIC:	666	5.7
Df Model:		9				
Covariance Type:	nonro	obust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.0451	0.459	4.457	0.000	1.139	2.951
C(image_id)[T.223777]	-3.9423	0.486	-8.112	0.000	-4.902	-2.982
C(image_id)[T.227326]	-4.0243	0.496	-8.120	0.000	-5.003	-3.045
C(image_id)[T.240275]	-3.6838	0.482	-7.650	0.000	-4.635	-2.733
C(image_id)[T.247576]	-0.4408	0.489	-0.901	0.369	-1.407	0.526
C(image_id)[T.275449]	-1.8718	0.482	-3.880	0.000	-2.825	-0.919
C(image_id)[T.396295]	-1.9181	0.481	-3.988	0.000	-2.868	-0.968
C(image_id)[T.431140]	-1.3426	0.496	-2.707	0.008	-2.322	-0.363
num_tokens	0.1481	0.041	3.656	0.000	0.068	0.228
total_rarity	1.1980	0.229	5.236	0.000	0.746	1.650
Omnibus: 5.04	5 Durt	oin-Watso	on: 1.7	760		
Prob(Omnibus): 0.08	30 Jarque	e-Bera (J	B): 5.0	034		
Skew: -0.28	31	Prob(J	B): 0.08	307		
Kurtosis: 3.63	35	Cond. N	No. 1	40.		

r^2=0.743: C(image_id) + num_tokens + total_rarity + total_logprob_uncond + mean_logprob_uncond

OLS Regression Result	OLS	Regression	Result
-----------------------	-----	------------	--------

Dep. Variable:		num_de	tails	R-sq	uared:	0.743	
Model:		(OLS	Adj. R-sq	uared:	0.725	
Method:	L	east Squ	ares	F-sta	atistic:	41.00	
Date:	Wed	, 10 Oct 2	018 P i	rob (F-sta	tistic):	1.84e-40	
Time:		09:49	9:30	Log-Likel	ihood:	-305.41	
No. Observations:			168		AIC:	634.8	
Df Residuals:			156		BIC:	672.	3
Df Model:			11				
Covariance Type:		nonrol	oust				
		coef	std err	t	P> t	[0.025	0.975]
Inte	rcept	0.7258	1.160	0.625	0.533	-1.566	3.018
C(image_id)[T.22	3777]	-3.7699	0.490	-7.699	0.000	-4.737	-2.803
C(image_id)[T.227	7326]	-4.0356	0.493	-8.182	0.000	-5.010	-3.061
C(image_id)[T.240	0275]	-3.6715	0.478	-7.674	0.000	-4.617	-2.726
C(image_id)[T.247576]		-0.4646	0.486	-0.956	0.340	-1.424	0.495
C(image_id)[T.27	5449]	-1.8630	0.480	-3.878	0.000	-2.812	-0.914
C(image_id)[T.396	6295]	-1.7238	0.492	-3.502	0.001	-2.696	-0.751
C(image_id)[T.43	1140]	-1.3638	0.493	-2.768	0.006	-2.337	-0.391
num_to	kens	0.2491	0.081	3.091	0.002	0.090	0.408
total_i	rarity	1.3737	0.246	5.574	0.000	0.887	1.861
total_logprob_un	cond	-0.0292	0.018	-1.637	0.104	-0.064	0.006
mean_logprob_uncond 0.2810		0.2810	0.277	1.014	0.312	-0.266	0.828
Omnibus:	3.726	Durbi	n-Watso	on: 1.83	7		
Prob(Omnibus):	0.155	Jarque-	Bera (J	B): 3.77	4		
Skew:	-0.180		Prob(J	B): 0.15	2		
Kurtosis:	3.640		Cond. N	lo. 731			

r^2=0.745: C(image_id) + num_tokens + mean_rarity + max_rarity + total_rarity + total_logprob_uncond + mean_logprob_uncond + max_rarity*num_tokens

OLS	Regres	sion	Results
-----	--------	------	---------

Dep. Variable:		num_det	ails	R-squared:			0.745	
Model:		C	DLS	Adj	. R-squ	ıared:	0.722	
Method:	L	east Squa	ares	F-statistic:			31.92	
Date:	Wed,	, 10 Oct 2	018 P	Prob (F-statistic):			2.57e-38	
Time:		09:49:30			g-Likeli	hood:	-304.77	
No. Observations:			168			AIC:	639.5	
Df Residuals:			153			BIC:	686.4	
Df Model:			14					
Covariance Type:		nonrob	oust					
		coef	std ei	r	t	P> t	[0.025	0.975]
Inte	rcept	1.8745	2.09	6	0.894	0.372	-2.266	6.015
C(image_id)[T.223	3777]	-3.7092	0.55	1 -	-6.738	0.000	-4.797	-2.622
C(image_id)[T.22]	7326]	-4.0110	0.51	4 -	-7.803	0.000	-5.026	-2.996
C(image_id)[T.240	0275]	-3.6637	0.48	5 -	-7.551	0.000	-4.622	-2.705
C(image_id)[T.24]	7576]	-0.4367	0.51	3 -	-0.852	0.396	-1.450	0.576
C(image_id)[T.27	5449]	-1.8771	0.49	6 -	-3.784	0.000	-2.857	-0.897
C(image_id)[T.396	6295]	-1.7201	0.52	0 -	-3.308	0.001	-2.748	-0.693
C(image_id)[T.43	1140]	-1.3342	0.51	6 -	-2.584	0.011	-2.354	-0.314
num_to	kens	0.1609	0.12	6	1.274	0.204	-0.089	0.410
mean_i	rarity	-3.8772	8.36	1 -	-0.464	0.643	-20.394	12.640
max_i	rarity	-1.5791	3.46	3 -	-0.456	0.649	-8.421	5.263
total_ı	rarity	1.5233	0.54	5	2.796	0.006	0.447	2.600
total_logprob_un	cond	-0.0360	0.02	0 -	-1.797	0.074	-0.076	0.004
mean_logprob_un	cond	0.3996	0.33	2	1.205	0.230	-0.256	1.055
max_rarity:num_to	kens	0.1615	0.20	4	0.792	0.430	-0.241	0.564
Omnibus:	4.007	Durbir	า-Wats	on:	1.	867		
Prob(Omnibus):	0.135	Jarque-	Bera (J	JB):	4.	201		
Skew: -	0.183		Prob(JB):	0.	122		
Kurtosis:	3.683	•	Cond.	No.	4.92e	+03		

r^2=0.737: C(image_id) + num_tokens + mean_rarity + max_rarity + total_rarity + max_rarity*num_tokens

OLS Regression Results

Dep. Variable:		num_det	ails	R-squared:			0.737	
Model:		(DLS	Adj	j. R-squ	ıared:	0.716	
Method:	L	east Squa	ares	F-statistic:			36.13	
Date:	Wed	, 10 Oct 2	018 P	rob	(F-stat	istic):	7.70e-39	
Time:		09:49:30 Log -			g-Likeli	hood:	-307.47	
No. Observations:			168			AIC:	640.9	
Df Residuals:			155			BIC:	681.5	
Df Model:			12					
Covariance Type:		nonrobust						
		coef	std er	r	t	P> t	[0.025	0.975]
Inte	rcept	3.1419	2.03	0	1.548	0.124	-0.868	7.152
C(image_id)[T.22	3777]	-3.9445	0.54	5 -	-7.241	0.000	-5.021	-2.868
C(image_id)[T.22	7326]	-4.0215	0.51	9 -	-7.756	0.000	-5.046	-2.997
C(image_id)[T.24	0275]	-3.6782	0.48	9 -	-7.529	0.000	-4.643	-2.713
C(image_id)[T.24	7576]	-0.4441	0.51	8 -	-0.858	0.392	-1.467	0.578
C(image_id)[T.27	5449]	-1.9017	0.50	1 -	-3.799	0.000	-2.891	-0.913
C(image_id)[T.39	6295]	-1.9284	0.50	6 -	-3.813	0.000	-2.928	-0.929
C(image_id)[T.43	1140]	-1.3438	0.52	1 -	-2.578	0.011	-2.373	-0.314
num_to	kens	0.0734	0.12	1	0.608	0.544	-0.165	0.312
mean_	rarity	-1.7638	6.95	2 -	-0.254	0.800	-15.498	11.970
max_	rarity	-1.4324	3.49	2 -	-0.410	0.682	-8.331	5.466
total_	rarity	1.2691	0.49	2	2.581	0.011	0.298	2.241
max_rarity:num_to	kens	0.1159	0.20	5	0.567	0.572	-0.288	0.520
Omnibus:	4.893	Durbii	n-Wats	on:	1.	774		
Prob(Omnibus):	0.087	Jarque-	Bera (J	B):	4.	818		
Skew:	-0.279		Prob(J	B):	0.0	899		
Kurtosis:	3.614		Cond. I	No.	1.08e	+03		

Summary: num_details increases by 1.4 for each additional token of rarity.

Let's look at resids.

```
In [33]: model = models['C(image_id) + num_tokens + total_rarity']
In [34]: predicted = model.predict(dataset)
```

```
In [35]: plt.scatter(predicted, model.resid)
plt.axhline(0, color='r')
plt.xlabel('$\hat{y}$')
plt.ylabel('residual');
```

10

12

14

Ok, let's have a look at captions for which length and frequency don't predict num_details well.

ŷ

Ó

```
In [36]:
         dsr = dataset.copy()
In [37]: | dsr['resid'] = model.resid
         dsr['resid_mag'] = model.resid.abs()
         dsr['predicted'] = predicted
         dsr.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 168 entries, 0 to 167
         Data columns (total 15 columns):
         image id
                                  168 non-null int64
         text
                                  168 non-null object
         num_details
                                  168 non-null int64
         num_words
                                  168 non-null int64
         min_freq
                                  168 non-null float64
         mean_freq
                                  168 non-null float64
                                  168 non-null int64
         num_tokens
                                  168 non-null float64
         mean_logprob_uncond
         total_logprob_uncond
                                  168 non-null float64
         mean_rarity
                                  168 non-null float64
         max_rarity
                                  168 non-null float64
         total_rarity
                                  168 non-null float64
                                  168 non-null float64
         resid
                                  168 non-null float64
         resid mag
         predicted
                                  168 non-null float64
         dtypes: float64(10), int64(4), object(1)
         memory usage: 19.8+ KB
In [38]: pd.set_option('display.max_colwidth', 150)
```

In [39]: print("over-predicted:") dsr[dsr.predicted.between(4,8)]['image_id text num_tokens resid predicted total_lo

gprob_uncond num_details'.split()].sort_values('resid').iloc[:5]

over-predicted:

Out[39]:

	image_id	text	num_tokens	resid	predicted	total_logprob_uncond	num_details
3	200451	several multicolored kites with streamers are seen soaring above the heads of people	13	-3.965627	7.965627	54.609120	4
22	223777	the image shows a railroad track with a train on it further out in the distance. multiple white buildings hug the side if the track, with some woo	31	-3.901685	7.901685	180.252899	4
9	200451	one kite flying over four other kites on a blue sky	11	-2.645860	6.645860	43.533666	4
103	247576	a double decker bus traveling down the middle of the street in the city streets	15	-2.493046	6.493046	36.642353	4
164	431140	toilet paper roll is on top of the toilet in a mellow yellow painted bathroom	15	-2.422958	6.422958	75.009583	4

In [40]: | print("Under-predicted") dsr[dsr.predicted.between(4,8)]['image_id text num_tokens resid predicted total_lo gprob uncond num details'.split()].sort values('resid').iloc[-5:]

Under-predicted

Out[40]:

	image_id	text	num_tokens	resid	predicted	total_logprob_uncond	num_details
120	275449	a half full glass of red wine on a table in front of a calico cat	16	2.541694	5.458306	38.410653	8
145	396295	a tan towel is hanging from a chrome handle on a textured glass shower door	15	2.543200	6.456800	81.209793	9
2	200451	a man and his two children are flying multicolored kites on a sandy beach	14	2.646132	7.353868	39.750552	10
7	200451	a man flies a butterfly kite with his two daughters	10	3.061945	5.938055	37.889245	9
151	431140	a bathroom with a white sink and white toilet. a roll of unwrapped toilet paper sits on the bowl	19	3.144114	7.855886	97.487974	11

I notice:

- We can generally do surprisingly well on this task using total rarity. We can explain about 74% of the variance in details.
- Some of the over-predicts actually have more details than I gave them credit for. Some of the under-predicts are less detailed.
- Some of the over-predicted just have extra words ("there is" one kite; "a view of" a bathroom, "in the city streets"); I went back and stripped them off and the above reflects that. (we get a boost of about 0.01 R^2.)

Since this model has image only as a slope (should be random but alas I'm lazy), we can still get relative details measures.

Aside: random-effects model.

```
In [41]:
            md = smf.mixedlm("num_details ~ mean_rarity + num_tokens + total_rarity", dataset,
            groups=dataset["image_id"])
            md.fit().summary()
Out[41]:
                      Model: MixedLM
                                       Dependent Variable:
                                                         num_details
             No. Observations:
                                                 Method:
                                                               REML
                                  168
                 No. Groups:
                                    8
                                                   Scale:
                                                              2.4408
                                               Likelihood:
              Min. group size:
                                   21
                                                           -323.9069
              Max. group size:
                                   21
                                              Converged:
                                                                 Yes
             Mean group size:
                                 21.0
                          Coef. Std.Err.
                                                P>|z|
                                                        [0.025
                                                               0.975]
                          0.371
                                  1.431
                                          0.259
                                                0.795
                                                        -2.434
                                                                3.177
               Intercept
                         -2.535
                                  6.720
                                         -0.377 0.706
                                                       -15.707 10.636
             mean_rarity
             num_tokens
                          0.118
                                  0.085
                                         1.392
                                                0.164
                                                        -0.048
                                                                0.285
              total_rarity
                          1.360
                                  0.465
                                         2.924 0.003
                                                        0.449
                                                                2.272
              groups RE 2.372
                                  0.870
```

```
In [42]:
           md = smf.mixedlm("num details ~ total rarity", dataset, groups=dataset["image id"]
           mdf = md.fit()
           mdf.summary()
Out[42]:
                    Model: MixedLM Dependent Variable: num_details
            No. Observations:
                                168
                                              Method:
                                                           REML
                No. Groups:
                                                          2.6164
                                 8
                                               Scale:
             Min. group size:
                                            Likelihood:
                                                       -330.8710
                                 21
             Max. group size:
                                           Converged:
                                 21
                                                            Yes
            Mean group size:
                      Coef. Std.Err.
                                         z P>|z| [0.025 0.975]
             Intercept 0.251
                              0.641
                                     0.392
                                          0.695
                                                 -1.006
                                                         1.508
            total_rarity 1.911
                              0.126 15.161 0.000
                                                 1.664 2.158
            groups RE 2.295
                              0.817
In [43]: r2_score(dataset['num_details'], mdf.predict(dataset))
Out[43]: 0.4685851105546911
```

I don't understand why that R^2 score is much smaller than the fixed-effects version. Probably we have different parameters.

```
In [44]:
         model.params
Out[44]: Intercept
                                   2.045098
         C(image id)[T.223777]
                                  -3.942306
         C(image_id)[T.227326]
                                  -4.024281
         C(image_id)[T.240275]
                                  -3.683757
         C(image id)[T.247576]
                                  -0.440750
         C(image_id)[T.275449]
                                  -1.871804
         C(image_id)[T.396295]
                                  -1.918077
         C(image_id)[T.431140]
                                  -1.342626
         num_tokens
                                   0.148146
         total_rarity
                                   1.198048
         dtype: float64
In [45]: mdf.params
Out[45]: Intercept
                         0.251184
         total rarity
                          1.910701
                          0.877341
         groups RE
         dtype: float64
```

```
In [46]: re_params = pd.Series({k: v.iloc[0] for k, v in mdf.random_effects.items()})
         re_params
Out[46]: 200451
                 1.872634
                -1.622234
         223777
         227326 -1.584410
         240275
                -1.634757
         247576
                 1.683106
         275449
                0.232425
         396295
                0.041020
         431140
                  1.012215
         dtype: float64
In [47]: fixed_params = pd.Series({int(k[14:-1]): v for k, v in model.params.items() if k.s
         tartswith('C')})
         fixed_params
Out[47]: 223777 -3.942306
         227326 -4.024281
         240275 -3.683757
         247576 -0.440750
         275449
                -1.871804
         396295
                -1.918077
         431140 -1.342626
         dtype: float64
In [48]: d = pd.DataFrame(dict(fixed=fixed params + model.params['Intercept'], random=re pa
         rams + mdf.params['Intercept']))
         d['diff'] = d['fixed'] - d['random']
         d['absdiff'] = d['fixed'].abs() - d['random'].abs()
         d.mean(axis=0)
Out[48]: fixed
                 -0.415417
         random
                  0.251184
         diff
                  -0.399082
         absdiff
                  0.008690
         dtype: float64
```

The random-effects estimates are generally smaller.