

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2015-II

PRÁCTICA CALIFICADA Nro 2 DE ANÁLISIS NUMÉRICO II

Problema 1 (5 puntos). Considere la fórmula de cuadratura de Gauss-Legendre de n puntos. ¿Cuál es su grado de precisión?. Demostrar su afirmación.

Problema 2 (5 puntos). Consideremos dos reglas del trapecio sobre el intervalo $[x_0, x_3]$: la primera $T(f, 3h) = (3h/2)(f_0 + f_3)$ con incremento 3h y, la segunda $T(f, h) = (h/2)(f_0 + 2f_1 + 2f_2 + f_3)$ con incremento h. Pruebe que la combinación lineal (9T(f, h) - T(f, 3h)/8 coincide con la regla 3/8 de Simpson.

Problema 3 (5 puntos). Los polinomios ortogonales de Hermite son definidos por:

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x), \quad n \ge 1$$

donde $H_0(x) = 1$, $H_1(x) = 2x$. Definimos la fórmula de Cuadratura de Gauss-Hermite de n + 1 puntos del modo siguiente:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) \, dx = \sum_{i=0}^{n} w_i f(x_i),$$

donde los x_i son las raíces del polinomio de Hermite de grado n+1.

- a) Calcule los pesos w_i para la cuadratura de Gauss-Hermite de 2 puntos.
- b) Con la fórmula obtenida en el inciso anterior, calcular la aproximación de la siguiente integral:

$$I = \int_{-\infty}^{\infty} e^{-x^2} \frac{x^2}{2} dx.$$

Problema 4 (5 puntos). Considere la integral $\int_0^1 e^{-x^2} dx$.

- a) Determine el valor aproximado considerando 4 subintervalos utilizando la regla trapezoidal compuesta y la regla de Simpson compuesta.
- b) Calcule una estimativa del número mínimo de subintervalos que se deberían considerar si se pretendiese calcular la integral anterior con un error inferior a 10⁻⁴ utilizando la regla de Simpson.

La profesora. Lima, 18 de Setiembre del 2015.