Outline

Classic networks:

- LeNet-5 <
- AlexNet <
- VGG ←

ResNet (152)

[He et al., 2015. Deep residual networks for image recognition]

Andrew Ng

[He et al., 2015. Deep residual networks for image recognition]

Andrew Ng

Why do residual networks work?

ResNet

Why does a 1×1 convolution do?

Using 1×1 convolutions

Motivation for inception network

| Sant | S

The problem of computational cost

[Szegedy et al. 2014. Going deeper with convolutions]

Andrew Ng

Andrew Ng

Common augmentation method

Implementing distortions during training

Data vs. hand-engineering

Little

Jots of John Maga Speech Simpler algorithms

engineering

Two sources of knowledge

Labeled data (xy)

Hand engineered features/network architecture/other components

Tips for doing well on benchmarks/winning competitions

Train several networks independently and average their outputs

Multi-crop at test time

Run classifier on multiple versions of test images and average results

Use open source code

- · Use architectures of networks published in the literature
- · Use open source implementations if possible
- · Use pretrained models and fine-tune on your dataset

Andrew Ng