### Universidade Federal de Uberlândia - UFU

### Faculdade de Computação - FACOM

Bacharelado em Sistemas de Informação

FACOM32504 - Redes de Computadores

Prof. Thiago Pirola Ribeiro

### Base

• As imagens e textos dos slides foram obtidas, em sua grande maioria, dos livros contantes da bibliografia da disciplina e modificadas para esta disciplina.

## Tópicos

- O que é a Internet?
- A periferia da Internet
- O núcleo da rede
- Atraso, perda e vazão em redes de comutação de pacotes
- Camadas de protocolo e seus modelos de serviço
- Redes sob ameaça
- História das redes de computadores e da Internet

Camadas de protocolo e seus modelos de serviço

### Camada de Protocolos e Modelos de Referência

- A Internet é um sistema muito complicado;
- Possui inúmeros componentes:
  - hosts
  - roteadores
  - link diversificados
  - aplicações
  - protocolos
  - hardware e software

Dada essa enorme complexidade, é possível organizar a arquitetura/estrutura da Internet?

• Analogia: uma viagem de avião (ações)



• Analogia: uma viagem de avião (ações)

ticket (purchase) baggage (check) gates (load) runway takeoff airplane routing airplane routing

• Analogia: uma viagem de avião (ações)



- Função referente à passagem em cada ponta;
- Função de bagagem para passageiros que já apresentaram o bilhete e uma de portão de embarque para os que já apresentaram o tíquete e despacharam as malas;
- Examinar as funcionalidades na horizontal...

• Camadas horizontais da funcionalidade de linha aérea

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

• Camadas horizontais da funcionalidade de linha aérea

| ticket (purchase) |          |           | ticket (complain) |  |
|-------------------|----------|-----------|-------------------|--|
| baggage (check)   |          |           | baggage (claim)   |  |
| gates (load)      |          |           | gates (unload)    |  |
| runway takeoff    |          |           | runway landing    |  |
| airplane routing  | airplane | e routing | airplane routing  |  |

• Camadas horizontais da funcionalidade de linha aérea

| ticket (purchase) | ticketing service | ticket (complain) |  |
|-------------------|-------------------|-------------------|--|
| baggage (check)   | baggage service   | baggage (claim)   |  |
| gates (load)      | gate service      | gates (unload)    |  |
| runway takeoff    | runway service    | runway landing    |  |
| airplane routing  | routing service   | airplane routing  |  |

- A segunda figura dividiu a funcionalidade da linha aérea em camadas, provendo uma estrutura com a qual podemos discutir a viagem aérea.
- Note que cada camada, combinada com as que estão abaixo dela, implementa alguma funcionalidade, algum serviço;
  - Cada camada provê o seu serviço e utiliza os serviços da camada imediatamente inferior.
- Uma arquitetura de camadas nos permite discutir uma parcela específica e bem definida de um sistema grande e complexo.
- Essa simplificação fornece modularidade, tornando mais fácil modificar a execução do serviço prestado pela camada.

### Camadas de Protocolo

- Uma camada de protocolo pode ser executada em software, em hardware, ou em uma combinação dos dois.
- O sistema de camadas de protocolos tem vantagens conceituais e estruturais.
- A divisão em camadas proporciona um modo **estruturado** de discutir componentes de sistemas.
- A modularidade facilita a atualização de componentes de sistema.

## Camadas de Protocolo - Serviços

- Estamos interessados nos serviços que uma camada oferece à camada acima dela modelo de serviço;
- Cada camada:
  - Provê seu serviço, executando certas ações dentro dela;
  - Utiliza os serviços da camada diretamente abaixo dela.
- A pilha de protocolos da Internet é formada por **cinco** camadas: física, enlace, rede, transporte e aplicação.

### Camada de Aplicação

- A camada de aplicação é onde residem aplicações de rede e seus protocolos (HTTP, SMTP, DNS);
- Pacotes = mensagens;

### Camada de Aplicação

- A camada de aplicação é onde residem aplicações de rede e seus protocolos (HTTP, SMTP, DNS);
- Pacotes = mensagens;

### Camada de Transporte

- A camada de transporte da Internet carrega mensagens da camada de aplicação entre os lados do cliente e servidor de uma aplicação - segmento.
- Há dois protocolos de transporte na Internet:
  - TCP serviços orientados a conexão;
  - 2 UDP serviços não orientados a conexão

#### Camada de Rede

• A camada de rede da Internet é responsável pela movimentação, de um hospedeiro para outro, de pacotes da camada de rede, conhecidos como **datagramas** (IP, Protocolos de Roteamento).

#### Camada de Rede

• A camada de rede da Internet é responsável pela movimentação, de um hospedeiro para outro, de pacotes da camada de rede, conhecidos como **datagramas** (IP, Protocolos de Roteamento).

#### Camada de Enlace

• Em especial, em cada nó, a camada de rede passa o datagrama para a de enlace, que o entrega, ao longo da rota, ao nó seguinte, no qual o datagrama é passado da camada de enlace para a de rede - **quadros** (Ethernet, 802.11 (WiFi), PPP).

#### Camada de Rede

• A camada de rede da Internet é responsável pela movimentação, de um hospedeiro para outro, de pacotes da camada de rede, conhecidos como **datagramas** (IP, Protocolos de Roteamento).

#### Camada de Enlace

• Em especial, em cada nó, a camada de rede passa o datagrama para a de enlace, que o entrega, ao longo da rota, ao nó seguinte, no qual o datagrama é passado da camada de enlace para a de rede - **quadros** (Ethernet, 802.11 (WiFi), PPP).

#### Camada Física

• A tarefa da camada física é movimentar os bits individuais que estão dentro do quadro de um nó para o seguinte.

### O modelo OSI

• O modelo OSI tomou forma quando os protocolos que iriam se tornar protocolos da Internet estavam em sua infância e eram um dos muitos conjuntos em desenvolvimento (1970).

• As sete camadas do modelo de referência OSI são:

| Aplicação    |  |  |  |  |
|--------------|--|--|--|--|
| Apresentação |  |  |  |  |
| Sessão       |  |  |  |  |
| Transporte   |  |  |  |  |
| Rede         |  |  |  |  |
| Enlace       |  |  |  |  |
| Físico       |  |  |  |  |
|              |  |  |  |  |

- Uma mensagem da camada de aplicação na máquina emissora é passada para a camada de transporte (M + Informações do cabeçalho da camada de transporte);
  - Cabeçalho + cargo útil (em geral um pacote da camada acima).
- A mensagem da camada de aplicação e as informações de cabeçalho da camada de transporte constituem o segmento da camada de transporte e assim sucessivamente encapsulamento;



application transport network link physical

destination





















## Encapsulamento - Visão fim-a-fim





# Redes sob Ameaça

### Segurança de Redes

- Campos da segurança de redes
  - como as redes podem ser atacadas
  - como se pode defender as redes de ataques
  - como criar uma arquitetura que seja imune à ataques
- A Internet não foi originalmente criada para ser segura
  - Versão original: "um grupo de usuários mutuamente confiáveis conectados a uma rede transparente"
  - Considerações de segurança em todas as camadas.

#### Malware

- Malware pode entrar na máquina por meio:
  - vírus: infecção auto-replicante ao receber/executar objetos (anexos de e-mails)
  - worm: infecção auto-replicante ao receber passivamente o objeto que é executado.
- Spyware Malware pode registrar pressionamentos de tecla, sites visitados, enviar informações para o site de coleta
- Host infectado pode ser inscrito em **botnet**, usado para spam ou ataques distribuídos de negação de serviço (DDoS)

Negação de serviço (*Denial of Service* - DoS): os invasores tornam os recursos (servidor, largura de banda) indisponíveis para o tráfego legítimo, sobrecarregando os recursos com tráfego falso



Negação de serviço (*Denial of Service* - DoS): os invasores tornam os recursos (servidor, largura de banda) indisponíveis para o tráfego legítimo, sobrecarregando os recursos com tráfego falso

• Seleciona-se o alvo



Negação de serviço (*Denial of Service* - DoS): os invasores tornam os recursos (servidor, largura de banda) indisponíveis para o tráfego legítimo, sobrecarregando os recursos com tráfego falso

- Seleciona-se o alvo
- Invadir hosts da rede (ver botnet)



Negação de serviço (*Denial of Service* - DoS): os invasores tornam os recursos (servidor, largura de banda) indisponíveis para o tráfego legítimo, sobrecarregando os recursos com tráfego falso

- Seleciona-se o alvo
- Invadir hosts da rede (ver botnet)
- Enviar pacotes para o alvo por meio de hosts comprometidos



#### Interceptação de Pacotes

#### packet "sniffing":

- mídia de transmissão (Ethernet compartilhada, sem fio)
- interface de rede promíscua lê/registra todos os pacotes (ex: senhas) que passam



#### Interceptação de Pacotes

#### packet "sniffing":

- mídia de transmissão (Ethernet compartilhada, sem fio)
- interface de rede promíscua lê/registra todos os pacotes (ex: senhas) que passam



#### Interceptação de Pacotes

#### packet "sniffing":

- mídia de transmissão (Ethernet compartilhada, sem fio)
- interface de rede promíscua lê/registra todos os pacotes (ex: senhas) que passam



#### Identidade False

 ${\it IP~spoofing}\colon$ envia pacotes com endereço de origem falso



#### Identidade False

 $IP\ spoofing$ : envia pacotes com endereço de origem falso



# Histórias das Redes de Computadores e da

Internet



- Os primeiros passos da disciplina de redes de computadores e da Internet podem ser traçados desde o início da década de 1960.
  - Como interligar computadores para que pudessem ser compartilhados entre usuários geograficamente dispersos?
  - MIT, Rand Institute, National Physical Laboratory.
- Na imagem ao lado, um dos primeiros comutadores de pacotes.

- J.C.R. Licklider e Lawrence Roberts (MIT) iniciaram o programa de pesquisa em redes de computadores por comutação de pacotes;
- Em 1967, a ARPAnet foi concebida pela Advanced Research Projects Agency
- 1969: o primeiro nó operacional da ARPAnet
- Do início a meados de 1970, surgiram novas redes independentes de comutação de pacotes (ALOHAnet, Cyclades...).
- Em 1972:
  - a ARPAnet tinha cerca de 15 nós e foi apresentada publicamente pela primeira vez por Robert Kahn.
  - Primeiro protocolo fim-a-fim NCP (Network Control Protocol)
  - Primeiro programa de e-mail

- A ARPAnet inicial era uma rede isolada, fechada.
- O trabalho pioneiro de interconexão de redes, sob o patrocínio da DARPA, criou basicamente uma rede de redes e o termo internetting foi cunhado para descrever esse trabalho (Vinton Cerf e Robert Kahn).
- 1979: ARPAnet tinha 200 nós
- 1983: desenvolvimento do TCP/IP
- Ao final da década de 1980, o número de máquinas ligadas à Internet pública alcançaria cem mil.

- início da década de 1990: ARPAnet desativada
- 1991: NSF levanta restrições sobre o uso comercial de NSFnet (desativado, 1995)
- O principal evento da década de 1990, no entanto, foi o surgimento da  $World\ Wide\ Web$  (servidores Web + HTTP), que levou a Internet para os lares e as empresas de milhões de pessoas no mundo inteiro.
- A segunda metade da década de 1990 foi um período de tremendo crescimento e inovação.
  - mais aplicativos: mensagens instantâneas, compartilhamento de arquivos P2P
  - segurança de rede para a vanguarda
  - 50 milhões de hosts, mais de 100 milhões de usuários
  - links de backbone em execução a Gbps

#### 2005 até o momento:

- implantação agressiva de acesso de banda larga (10-100 Mbps)
- 2008: Software-Defined Networking (SDN)
- $\bullet$  aumentando a onipresença do acesso sem fio de alta velocidade: 4G/5G, WiFi
- surgimento de redes sociais online: Facebook: cerca de 2,5 bilhões de usuários
- provedores de serviços (Google, FB, Microsoft) criam suas próprias redes
  - contornar a Internet comercial para se conectar "perto" do usuário final, fornecendo acesso "instantâneo" à pesquisa, conteúdo de vídeo, etc
- as empresas executam seus serviços na "nuvem" (ex: Amazon Web Services, Microsoft Azure)
- $\bullet$ cerca de 18 bilhões de dispositivos conectados à Internet (2017)



https://www.statista.com/statistics/512650/worldwide-connected-devices-amount



https://www.statista.com/statistics/512650/worldwide-connected-devices-amount



https://www.statista.com/statistics/512650/worldwide-connected-devices-amount



https://www.statista.com/statistics/512650/worldwide-connected-devices-amount

#### Top significant moments from the Internet history



Created by João Bordalo, based on the work of builderau.com.au, some rights reserved

## Atividades para o próximo encontro...

KUROSE, J.; ROSS, K. Redes de Computadores e a Internet. 5a ed. Pearson, 2010.

- Ler Capítulo 1 seções: 1.5, 1.6 e 1.7
- Assistir o vídeo *History of the Internet* 
  - https://www.youtube.com/watch?v=9hIQjrMHTv4 ou
  - http://www.lonja.de/the-history-of-the-internet/

#### Universidade Federal de Uberlândia - UFU

Faculdade de Computação - FACOM

Bacharelado em Sistemas de Informação

Prof. Thiago Pirola Ribeiro