Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN)

http://www.stat.ucla.edu/~junhua.mao/m-RNN.html

Junhua Mao^{1,2}, Wei Xu¹, Yi Yang¹, Jiang Wang¹, Zhiheng Huang¹, Alan Yuille²

¹Baidu Research

²University of California, Los Angeles

a close up of a bowl of food on a table

a train is traveling down the tracks in a city

a pizza sitting on top of a table next to a box of pizza

Abstract

- Three Tasks:
 - Image caption generation
 - Image retrieval (given query sentence)
 - Sentence retrieval (given query image)
- One model (m-RNN):
 - A deep Recurrent NN (RNN) for the sentences
 - A deep Convolutional NN (CNN) for the images
 - A multimodal layer connects the first two components
- State-of-the-art Performance:
 - For three tasks
 - On four datasets: IAPR TC-12 [Grubinger et al. 06'], Flickr 8K [Rashtchian et al. 10'], Flickr
 30K [Young et al. 14'] and MS COCO [Lin et al. 14']

 $w_1, w_2, ..., w_L$ is the sentence description of the image w_{start}, w_{end} is the start and end sign of the sentence

Detailed calculation for recurrent r(t) and multimodal layer m(t)

- $\mathbf{r}(t) = f(\mathbf{U}_r \cdot \mathbf{r}(t-1) + \mathbf{w}(t))$, $\mathbf{w}(t)$ is the activation of embedding layer II for the word w_t
- $\mathbf{m}(t) = g(\mathbf{V}_w \cdot \mathbf{w}(t) + \mathbf{V}_r \cdot \mathbf{r}(t) + \mathbf{V}_l \cdot \mathbf{I})$, I is the image representation
- "+" here means element-wise plus

Non-linear activation functions:

- For the recurrent layer: ReLU [Nair and Hinton 10'] $f(x) = \max(0, x)$
- For the word embedding layers and the multimodal layer: S-tanh [LeCun et.al 12']: $g(x) = 1.72 \cdot \tanh(\frac{2}{3}x)$

The output of the trained model:

$$P(w_n|w_{1:n-1},\mathbf{I})$$

- Image caption generation:
 - o Begin with the start sign w_{start}
 - Sample next word from $P(w_n|w_{1:n-1}, \mathbf{I})$
 - \circ Repeat until the model generates the end sign w_{end}

- Image caption generation:
 - \circ Begin with the start sign w_{start}
 - Sample next word from $P(w_n|w_{1:n-1}, \mathbf{I})$
 - \circ Repeat until the model generates the end sign w_{end}
- Image retrieval given query sentence:
 - o Ranking score: $P(w_{1:L}^{Q}|\mathbf{I}^{D}) = \prod_{n=2}^{L} P(w_{n}^{Q}|w_{1:n-1}^{Q},\mathbf{I}^{D})$
 - Output the top ranked images

- Image caption generation:
 - \circ Begin with the start sign w_{start}
 - Sample next word from $P(w_n|w_{1:n-1}, \mathbf{I})$
 - \circ Repeat until the model generates the end sign w_{end}
- Image retrieval given query sentence:
 - Ranking score: $P\left(w_{1:L}^{Q}\middle|\mathbf{I}^{D}\right) = \prod_{n=2}^{L} P\left(w_{n}^{Q}\middle|w_{1:n-1}^{Q},\mathbf{I}^{D}\right)$
 - Output the top ranked images
- Sentence retrieval given query image:
 - o Problem: Some sentences have high probability for any image query
 - Solution: Normalize the probability. I' are images sampled from the training set: $P(w_{1:L}^D|\mathbf{I}^Q)$

aining set:
$$\frac{P(w_{1:L}^D|\mathbf{I}^Q)}{P(w_{1:L}^D)} \qquad P(w_{1:L}^D) = \sum_{\mathbf{I}'} P(w_{1:L}^D|\mathbf{I}') \cdot P(\mathbf{I}')$$

- Image caption generation:
 - \circ Begin with the start sign w_{start}
 - Sample next word from $P(w_n|w_{1:n-1}, \mathbf{I})$
 - \circ Repeat until the model generates the end sign w_{end}
- Image retrieval given query sentence:
 - o Ranking score: $P\left(w_{1:L}^{Q}\middle|\mathbf{I}^{D}\right) = \prod_{n=2}^{L} P\left(w_{n}^{Q}\middle|w_{1:n-1}^{Q},\mathbf{I}^{D}\right)$
 - Output the top ranked images
- Sentence retrieval given query image:
 - o Problem: Some sentences have high probability for any image query
 - Solution: Normalize the probability. I' are images sampled from the training set: $P(w_{1:I}^D | \mathbf{I}^Q)$

$$\frac{P(w_{1:L}^D|\mathbf{I}^Q)}{P(w_{1:L}^D)} \qquad P(w_{1:L}^D) = \sum_{\mathbf{I}'} P(w_{1:L}^D|\mathbf{I}') \cdot P(\mathbf{I}')$$

Equivalent to using a ranking score: $P(\mathbf{I}^Q | w_{1:L}^D) = \frac{P(w_{1:L}^D | \mathbf{I}^Q) \cdot P(\mathbf{I}^Q)}{P(w_{1:L}^D)}$

Experiment: Retrieval

Table 1. Retrieval results on Flickr 30K and MS COCO

	Sentence Retrival (Image to Text)				Image Retrival (Text to Image)					
	R@1	R@5	R@10	Med r	R@1	R@5	R@10	Med r		
Flickr30K										
Random	0.1	0.6	1.1	631	0.1	0.5	1.0	500		
DeepFE-RCNN (Karpathy et al. 14')	16.4	40.2	54.7	8	10.3	31.4	44.5	13		
RVR (Chen & Zitnick 14')	12.1	27.8	47.8	11	12.7	33.1	44.9	12.5		
MNLM-AlexNet (Kiros et al. 14')	14.8	39.2	50.9	10	11.8	34.0	46.3	13		
MNLM-VggNet (Kiros et al. 14')	23.0	50.7	62.9	5	16.8	42.0	56.5	8		
NIC (Vinyals et al. 14')	17.0	56.0	/	7	17.0	57.0	/	7		
LRCN (Donahue et al. 14')	14.0	34.9	47.0	11	/	/	/	/		
DeepVS-RCNN (Karpathy et al. 14')	22.2	48.2	61.4	4.8	15.2	37.7	50.5	9.2		
Ours-m-RNN-AlexNet	18.4	40.2	50.9	10	12.6	31.2	41.5	16		
Ours- m-RNN -VggNet	35.4	63.8	73.7	3	22.8	50.7	63.1	5		
MS COCO										
Random	0.1	0.6	1.1	631	0.1	0.5	1.0	500		
DeepVS-RCNN (Karpathy et al. 14')	29.4	62.0	75.9	2.5	20.9	52.8	69.2	4		
Ours- m-RNN -VggNet	41.0	73.0	83.5	2	29.0	42.2	77.0	3		

R@K: The recall rate of the groundtruth among the top K retrieved candidates

Med r: Median rank of the top-ranked retrieved groundtruth

^(*) Results reported on 04/10/2015. The deadline for our camera ready submission.

Experiment: Captioning

Table 2. Caption generation results on Flickr 30K and MS COCO

	Flickr30K					MS COCO				
	PERP	B-1	B-2	B-3	B-4	PERP	B-1	B-2	B-3	B-4
RVR (Chen & Zitnick 14')	_	-	-	-	0.13	-	-	-	-	0.19
DeepVS-AlexNet (Karpathy et al. 14')	_	0.47	0.21	0.09	-	-	0.53	0.28	0.15	_
DeepVS-VggNet (Karpathy et al. 14')	21.20	0.50	0.30	0.15	-	19.64	0.57	0.37	0.19	-
NIC (Vinyals et al. 14')	_	0.66	-	-	-	_	0.67	_	-	_
LRCN (Donahue et al. 14')	_	0.59	0.39	0.25	0.16	-	0.63	0.44	0.31	0.21
DMSM (Fang et al. 14')	<u> -</u>	_	_	-	-	<u>-</u>	_	_	-	0.21
Ours-m-RNN-AlexNet	35.11	0.54	0.36	0.23	0.15	_	-	_	_	_
Ours-m-RNN-VggNet	20.72	0.60	0.41	0.28	0.19	13.60	0.67	0.49	0.34	0.24

B-K: BLEU-K score

PERP: Perplexity
$$\mathcal{PPL}$$
 $\log_2 \mathcal{PPL}(w_{1:L}|\mathbf{I}) = -\frac{1}{L} \sum_{n=1}^{L} \log_2 P(w_n|w_{1:n-1}, \mathbf{I})$

^(*) Results reported on 04/10/2015. The deadline for our camera ready submission.

Experiment: Captioning

Table 4. Results on the MS COCO test set

	B1	B2	B3	B4	CIDEr	ROUGE _L	METEOR
Human-c5 (**)	0.663	0.469	0.321	0.217	0.854	0.484	0.252
m-RNN-c5	0.668	0.488	0.342	0.239	0.729	0.489	0.221
m-RNN-beam-c5	0.680	0.506	0.369	0.272	0.791	0.499	0.225
Human-c40 (**)	0.880	0.744	0.603	0.471	0.910	0.626	0.335
m-RNN-c40	0.845	0.730	0.598	0.473	0.740	0.616	0.291
m-RNN-beam-c40	0.865	0.760	0.641	0.529	0.789	0.640	0.304

c5 and c40: evaluated using 5 and 40 reference sentences respectively.

(***) We evaluate it on the MS COCO evaluation server: https://www.codalab.org/competitions/3221

[&]quot;-beam" means that we generate a set of candidate sentences, and then selects the best one. (beam search)

^(**) Provided in https://www.codalab.org/competitions/3221#results

Other language: Chinese

一个年轻的男孩坐在长椅上。

一列火车在轨道上行驶。

一辆双层巴士停在一个城市街道上。

We acknowledge Haoyuan Gao and Zhiheng Huang from Baidu Research for designing the Chinese image captioning system

Other language: Chinese

一个年轻的男孩坐在长椅上。

A young boy sitting on a bench.

一列火车在轨道上行驶。

A train running on the track.

一辆双层巴士停在一个城市街道上。

A double decker bus stop on a city street.

We acknowledge Haoyuan Gao and Zhiheng Huang from Baidu Research for designing the Chinese image captioning system

Can we design a system that learns to describe new visual concepts from a few examples?

Can we design a system that learns to describe new visual concepts from a few examples?

Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images, arXiv 1504.06692

- Efficiently enlarge the vocabulary
- Needs only a few images with only a few minutes
- Datasets for evaluation

Thank you

For more details, please visit the project page: http://www.stat.ucla.edu/~junhua.mao/m-RNN.html

The updated version of our paper: http://arxiv.org/abs/1412.6632
J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, A. Yuille, "Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN)", arXiv:1412.6632.

The novel visual concept learning paper: http://arxiv.org/abs/1504.06692
J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, A. Yuille, "Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images", arXiv:1412.6632.

a group of people flying kites in a field

a young girl brushing his teeth with a toothbrush

a man is doing a trick on a skateboard

Appendix

Performance comparison with different word-embedding configuration

Appendix

Performance comparison with different image representation input methods

Table 3. Recurrent layer size and whether LSTM is used

	MNLM	NIC	LRCN	RVR	DeepVS	Our m-RNN
Size	300	512	1000 (x4)	100	300-600	256
LSTM	Yes	Yes	Yes	No	No	No