CLAIMS

1	1. A method of selecting the tap weights W_N for an adaptive multi-tap frequency domain
2	digital filter that processes an input signal vector X from a plurality of spatially separated
3	transducers that detect energy from a plurality of sources including a target energy source and at
4	least one non-target energy source, wherein the filter receives and processes the input signal vector
5	X to attenuate noise from non-target sources and provides an output signal vector Y, the method
6	comprising the steps of:
7	parameterizing each of the tap weights W_N such that each of the tap weights W_N is
8	characterized by a vector of parameters $\underline{\beta}_{opt}$;
9	solving for each parameter of the vector $\underline{\beta}_{opt}$ by minimizing the expected power of the array
10	output signal Y;
11	applying a robustness-control transformation to the vector $\underline{\beta}_{opt}$ to provide a robust vector
12	$\underline{\beta}_{rob}$, wherein the robustness-control transformation identifies and reduces target canceling
13	components of the vector $\underline{\beta}_{opt}$ that arise from incomplete target location knowledge while
14	preserving non-target canceling components; and
15	forming the weight vector indicative of the filter tap weights as a function of the vector
16	${m eta}_{rob}$.
1	2. A signal processing apparatus that receives an input signal vector X from a plurality of
2	spatially separated transducers that detect energy from a plurality of sources including a target
3	energy source and at least one non-target energy source, wherein the apparatus processes the input

noise from non-target sources and provide a resultant output signal vector Y, said apparatus comprising: 6

4

5

means for parameterizing each of said tap weights W_N such that each of said tap weights

signal vector X with a digital filter comprising a plurality of tap weights W_N to attenuate signal

ō	W_N is characterized by a vector of parameters $\underline{\beta}_{opt}$;
9	means for solving for each parameter of the vector $\underline{\beta}_{opt}$ by seeking a minimum for the
10	expected power of the output signal Y;
11	means for applying a robustness-control transformation to the vector $\underline{\beta}_{opt}$ to provide a
12	robust vector $\underline{\beta}_{rob}$, wherein the robustness-control transformation identifies and reduces target
13	canceling components of the vector $\underline{\beta}_{opt}$ that arise from incomplete target location knowledge while
14	preserving non-target canceling components; and
15	means for forming a weight vector indicative of the tap weights as a function of the vector
16	${m eta}_{rob}$.