1 KCL

Consider the circuit shown below:

Figure 1: Adapted from Ulaby, Maharbiz, Furse. Circuits. Third Edition

Determine the voltage V_x at steady state.

2 KVL

Consider the circuit shown below:

Figure 2: Adapted from Ulaby, Maharbiz, Furse. Circuits. Third Edition.

Using KVL, determine the amount of power supplied by the voltage source. Do not use superposition.

3 Op-Amp Review

Consider the circuit below:

a) Calculate V_o if V_i if $V_i = 0.5 \,\mathrm{V}$.

b) Sketch V_o if V_i is a square wave with $V_{pp} = 1 \text{ V}$.

c) Use **superposition** to sketch V_o if V_i is a 1 V_{pp} square wave with a 0.5 V DC offset.

d) Consider the non-inverting input. What value could we replace ground with to make the output from part (c) centered around $0\,\mathrm{V}$?

e) Suppose we only have a $1\,\mathrm{V}$ source, but still wish to center the output from (c) about $0\,\mathrm{V}$. What circuit block should we place at the noninverting input to accomplish this goal?