# Spooky Boundaries at a Distance: Inductive Bias, Dynamic Models, and Behavioral Macro

Mahdi Ebrahimi Kahou<sup>1</sup> Jesús Fernández-Villaverde<sup>2</sup> Sebastián Gómez-Cardona<sup>3</sup> Jesse Perla<sup>4</sup> Jan Rosa<sup>4</sup>

Conference on Frontiers in Machine Learning and Economics, Federal Reserve Bank of Philadelphia

<sup>&</sup>lt;sup>1</sup>Bowdoin College

<sup>&</sup>lt;sup>2</sup>University of Pennsylvania

<sup>&</sup>lt;sup>3</sup>Morningstar, Inc.

<sup>&</sup>lt;sup>4</sup>University of British Columbia

## Motivation, Question, and

**Contribution** 

#### **Motivation**

#### In the long run, we are all dead—J.M. Keynes, A Tract on Monetary Reform (1923)

- Numerical solutions to dynamical systems are central to many quantitative fields in economics.
- Dynamical systems in economics are **boundary value** problems:
  - 1. The boundary is at **infinity**.
  - 2. The values at the boundary are potentially unknown.
- Resulting from forward looking behavior of agents.
- Examples include the *transversality* and the *no-bubble* condition.
- Without them, the problems are ill-posed and have infinitely many solutions:
  - The problems are ill-posed in the Hadamard sense, meaning the solutions are not unique.
  - These forward-looking boundary conditions are a key limitation on increasing dimensionality.

1

#### Question

#### Question:

Can we (economists and agents) **ignore** these long-run boundary conditions and still have accurate short/medium-run dynamics disciplined by these long-run conditions?

#### Contribution

- 1. **Yes**, it is possible to meet long-run boundary conditions **without** strictly enforcing them as a constraint on the model's dynamics.
  - We show how using Machine Learning (ML) methods achieve this method.
  - This is due to the **inductive bias** of ML methods.
  - In this paper focusing on deep neural networks
- 2. We argue how inductive bias can serve as a micro-foundation for modeling forward-looking behavioral agents.
  - Easy to compute.
  - Provides short-run accuracy.
  - Satisfies the necessary long-run constraints.

# Background: Economic Models, Deep learning and inductive bias

#### **Economic Models: functional equations**

Many theoretical models can be written as functional equations:

- Economic object of interest: f where  $f: \mathcal{X} \to \mathcal{R} \subseteq \mathbb{R}^N$ 
  - e.g., asset price, investment choice, best-response, etc.
- Domain of  $f: \mathcal{X}$ 
  - e.g. space of dividends, capital, opponents state or time in sequential models.
- The "model" error:  $\ell(x, f) = \mathbf{0}$ , for all  $x \in \mathcal{X}$ 
  - e.g., Euler and Bellman residuals, equilibrium FOCs.

Then a **solution** is an  $f^* \in \mathcal{F}$  where  $\ell(x, f^*) = \mathbf{0}$  for all  $x \in \mathcal{X}$ .

## Approximate solution: deep neural networks

- 1. Sample  $\mathcal{X}$ :  $\mathcal{D} = \{x_1, \cdots, x_N\}$
- 2. Pick a deep neural network  $f_{\theta}(\cdot) \in \mathcal{H}(\theta)$ :
  - $\theta$ : parameters for optimization (i.e., weights and biases).
- 3. To find an approximation for f solve:

$$\min_{\theta} \frac{1}{N} \sum_{\mathbf{x} \in \mathcal{D}} \|\ell(\mathbf{x}, f_{\theta})\|_{2}^{2} \tag{1}$$

- Deep neural networks are highly over-parameterized.
- Formally,  $|\theta| \gg N$

## Over-parameterized interpolation

- Over-parameterized ( $|\theta| \gg N$ ), the optimization problem can have many solutions.
- ullet Since individual heta are irrelevant it is helpful to think of optimization directly within  ${\cal H}$

$$\left( \min_{f_{\theta} \in \mathcal{H}} \sum_{x \in \mathcal{D}} \|\ell(x, f_{\theta})\|_{2}^{2} \right)$$

- But which  $f_{\theta}$ ?
- ullet Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm  $\psi$

```
egin{aligned} \min_{\hat{f} \in \mathcal{H}} & \|f_{	heta}\|_{\psi} \ & 	ext{s.t.} \ \ell(x, f_{	heta}) = 0, \quad 	ext{ for all } x \in \mathcal{D} \end{aligned}
```

- That is what we mean by **inductive bias** (see Belkin, 2021 and Ma and Yang, 2021).
- Characterizing *S* (e.g., sobolev norms or semi-norms?) is an active research area in ML.

## **Smooth interpolation**

• Intuition: biased toward solutions which are flattest and have smallest derivatives

#### Intuition

#### Minimum-norm implicit bias:

- Over-parameterized models (e.g., large neural networks) have more parameters than data points and potentially interpolate the data.
- They are biased towards interpolating functions with smallest norm.

#### Violation of economic boundary conditions:

- Sub-optimal solutions diverge (explode) over time.
- They have large or explosive norms.
- This is due to the saddle-path nature of econ problems.



The Problem

#### The class of problems

 $\mathbf{x}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{y}(t))$ 

$$\dot{\mathsf{x}}(t) = \mathsf{F}(\mathsf{x}(t),\mathsf{y}(t))$$

$$\dot{\mathbf{y}}(t) = \mathbf{G}(\mathbf{x}(t), \mathbf{y}(t))$$

A differential-algebraic system of equations, coming from an economic optimization problem:

$$\mathbf{0} = \mathbf{H}(\mathbf{x}(t), \mathbf{y}(t))$$
  $\mathbf{x} \in \mathbb{R}^{N_x}$ : state variables,  $\mathbf{y} \in \mathbb{R}^{N_y}$ : jump variables. Initial value  $\mathbf{x}(0) = \mathbf{x}_0$  and boundary conditions (at

 $\mathbf{0} = \mathsf{lim}$ 

$$\mathbf{0} = \lim_{t \to \infty} \mathbf{B}(t, \mathbf{x}(t), \mathbf{y}(t)) \tag{5}$$

**Goal**: finding an approximation for x(t) and y(t).

#### What is the problem?

•  $\mathbf{y}_0$  is unknown.

infinity)

• The optimal solutions is a **saddle-path**: unstable nature

(2)

(3)

(4)

## Method

#### Method

- Pick a set of points  $\mathcal{D} \equiv \{t_1, \cdots, t_N\}$  for some fixed interval [0, T]
- Large machine learning models to learn  $\hat{\mathbf{x}}(t)$  and  $\hat{\mathbf{y}}(t)$

$$\begin{split} \min_{\hat{\mathbf{x}}, \hat{\mathbf{y}}} \sum_{t_i \in \mathcal{D}} \left[ \eta_1 \underbrace{\left\| \hat{\dot{\mathbf{x}}}(t_i) - \mathbf{F}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)(t_i)) \right\|_2^2}_{\text{Residuals}^2: \text{ state variables}} + \eta_2 \underbrace{\left\| \hat{\dot{\mathbf{y}}}(t_i) - \mathbf{G}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2}_{\text{Residuals}^2: \text{ jump variables}} + \eta_3 \underbrace{\left\| \mathbf{H}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2}_{\text{Residuals}^2: \text{ algebraic constraint}} + \eta_4 \underbrace{\left\| \hat{\mathbf{x}}(0) - \mathbf{x}_0 \right\|_2^2}_{\text{Residuals}^2: \text{ initial conditions}}. \end{split}$$

- This optimization **ignores** the boundary conditions.
- The implicit bias automatically satisfy the boundary conditions.
- Recent works suggest the implicit bias is toward smallest Sobolev semi-norms.

## Ridgeless kernel regression

$$\hat{\mathbf{x}}(t) = \sum_{j=1}^N oldsymbol{lpha}_j^{ imes} \mathcal{K}(t,t_j), \quad \hat{\mathbf{y}}(t) = \sum_{j=1}^N oldsymbol{lpha}_j^{ imes} \mathcal{K}(t,t_j)$$
 $\hat{\mathbf{x}}(t) = \mathbf{x}_0 + \int_0^t \hat{\mathbf{x}}( au) d au, \quad \hat{\mathbf{y}}(t) = \hat{\mathbf{y}}_0 + \int_0^t \hat{\mathbf{y}}( au) d au$ 

- $\mathbf{x}_0$  is given.
- $\hat{\mathbf{y}}_0$ ,  $\boldsymbol{\alpha}_j^{\mathsf{x}}$ , and  $\boldsymbol{\alpha}_j^{\mathsf{y}}$  are learnable parameters.
- $K(\cdot,\cdot)$ : Matérn Kernel, with smoothness parameter  $\nu$  and length scale  $\ell$ .

## Ridgeless kernel regression: minimum Sobolev seminorm solutions

We also solve the ridgeless kernel regression

$$\lim_{\lambda \to 0} \min_{\hat{\mathbf{x}}, \hat{\mathbf{y}}} \sum_{t_i \in \mathcal{D}} \left[ \eta_1 \left\| \hat{\mathbf{x}}(t_i) - \mathbf{F}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)(t_i)) \right\|_2^2 + \eta_2 \left\| \hat{\mathbf{y}}(t_i) - \mathbf{G}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2 \right] \\ + \eta_3 \left\| \mathbf{H}(\hat{\mathbf{x}}(t_i), \hat{\mathbf{y}}(t_i)) \right\|_2^2 + \eta_4 \left\| \hat{\mathbf{x}}(0) - \hat{\mathbf{x}}_0 \right\|_2^2 + \lambda \underbrace{\left[ \sum_{m=1}^{N_x} \| \hat{\mathbf{x}}^{(m)} \|_{\mathcal{H}}^2 + \sum_{m=1}^{N_y} \| \hat{\mathbf{y}}^{(m)} \|_{\mathcal{H}}^2 \right]}_{\text{The Sobolev semi-norm}}$$

- Targeting Sobolev semi-norm.
- This choice is very natural: it solves the instability issues of the classical algorithm.

# Applications

## Linear asset pricing

$$\dot{\mathbf{x}}(t) = c + g\mathbf{x}(t) \tag{6}$$

$$\dot{\mathbf{y}}(t) = r\mathbf{y}(t) - \mathbf{x}(t) \tag{7}$$

$$0 = \lim_{t \to \infty} e^{-rt} \mathbf{y}(t) \tag{8}$$

- $\mathbf{x}(t) \in \mathbb{R}$ : dividends,  $\mathbf{y}(t) \in \mathbb{R}$ : prices, and  $\mathbf{x}_0$  given.
- Equation (6): how the dividends evolve in time.
- Equation (7): how the prices evolve in time.
- Equation (8): "no-bubble" condition, the boundary condition at infinity.

## Why do we need the boundary condition?

$$\dot{\mathbf{x}}(t) = c + g\mathbf{x}(t)$$
  
 $\dot{\mathbf{y}}(t) = r\mathbf{y}(t) - \mathbf{x}(t)$ 

• The solutions:

$$\mathbf{y}(t) = \mathbf{y}_f(t) + \zeta e^{rt}$$

- $\mathbf{y}_f(t) = \int_0^\infty e^{-r\tau} \mathbf{x}(t+s) ds$ : price based on the fundamentals.
- $\zeta e^{rt}$ : explosive bubble terms, it has to be **ruled out** by the boundary condition.
- Triangle inequality:  $\|\mathbf{y}_f\| < \|\mathbf{y}\|$ .
- The price based on the fundamentals has the lowest norm.

#### **Conclusion**

- Long-run (global) conditions can be replaced with appropriate regularization (local) to achieve the optimal solutions.
- The minimum-norm implicit bias of large ML models aligns with optimality in economic dynamic models.
- Both kernel and neural network approximations accurately learn the right steady state(s).
- Proceeding with caution: can regularization be thought of as an equilibrium selection device?

# Appendix