

Data Science for Assistive Health Technologies

Dr. Muhammad Adeel Nisar

Assistant Professor – Department of IT, Faculty of Computing and Information Technology, University of the Punjab, Lahore

Contents

- Recap
- Introduction to Feature Generation
- Feature Learning Principal Component Analysis
- Feature Learning Codebook Approach
- Conclusion

Recap – Sensor Data Acquisition System

Lukas Köping, Kimiaki Shirahama, Marcin Grzegorzek,

A general framework for sensor-based human activity recognition, Computers in Biology and Medicine, Volume 95, 2018, Pages 248-260, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2017.12.025.

Basic Stages of Pattern Analysis

Feature Generation – Introductory Statements

- Given a set of measurements, the goal is to discover compact and informative representations of the obtained data features.
- The representations are generated after processing a large amount of sensory data.
- Measurements are transformed to a new set of features.
- In good features, the classification-related information is "squeezed" in a relatively small number of features.

Feature Generation – Introductory Statements

- Appropriately chosen feature transform can exploit and remove information redundancies.
- For example, using image pixels as features would be highly inefficient as pixels have a large degree of correlation.
- However, for instance, the Fourier transform turns out to be much more efficient for feature extraction.
- Fourier transform is just one of the tools from a palette of possible transforms.

Manual Feature Engineering vs. Feature Learning

• Manual Feature Engineering: features manually selected by experts from a certain application domain.

• **Feature Learning:** a set of techniques allowing a system to automatically discover the raw data representation needed for classification.

Manual Feature Engineering

Hand-Crafted Features					
Maximum	Percentile 50	First-order mean			
Minimum	Percentile 80	Norm of the first-order mean			
Average	Interquartile	Second-order mean			
Standard-deviation	Skewness	Norm of the second-order mean			
Zero-crossing	Kurtosis	Spectral energy			
Percentile 20	Auto-correlation	Spectral entropy			

Li, F.; Shirahama, K.; Nisar, M.A.; Köping, L.; Grzegorzek, M. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors. *Sensors* **2018**, *18*, 679. https://doi.org/10.3390/s18020679

Supervised vs. Unsupervised Feature Learning

• In **supervised feature learning**, features are learned using labelled input data. Examples include supervised neural networks, multilayer perceptron and (supervised) dictionary learning.

• In unsupervised feature learning, features are learned with unlabeled input data. Examples include dictionary learning, independent component analysis, autoencoders, matrix factorization and various forms of clustering.

PCA – Introductory Statements

 The Principal Component Analysis (PCA) is one of the most popular methods for feature generation and dimensionality reduction in pattern recognition.

• The computation of the transformation matrix exploits the statistical information describing the data.

The labels of the training samples are not used (unsupervised mode).

Reduce data from 2D to 1D

Reduce data from 2D to 1D

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^{2} \longrightarrow z^{(1)} \in \mathbb{R}$$

$$x^{(2)} \in \mathbb{R}^{2} \longrightarrow z^{(2)} \in \mathbb{R}$$

$$\vdots$$

$$x^{(m)} \in \mathbb{R}^{2} \longrightarrow z^{(m)} \in \mathbb{R}$$

1000D -> 100D

Reduce data from 3D to 2D

Data Visualization

×ε	Rzo
	11

X6

					•	C 🗳	
	X	×2	\		Xs	Mean	
	•	Per capita	Human	X4	Poverty	household	
	GDP	GDP	Develop-	X y Life	Index	income	
	(trillions of	(thousands	ment	expectanc	(Gini as	(thousands	
Country	US\$)	of intl. \$)	Index	У	percentage)	of US\$)	•••
Canada	1.577	39.17	0.908	80.7	32.6	67.293	•••
China	5.878	7.54	0.687	73	46.9	10.22	•••
India	1.632	3.41	0.547	64.7	36.8	0.735	•••
Russia	1.48	19.84	0.755	65.5	39.9	0.72	•••
Singapore	0.223	56.69	0.866	80	42.5	67.1	•••
USA	14.527	46.86	0.91	78.3	40.8	84.3	•••
•••	•••	•••	•••	•••	•••	•••	

[resources from en.wikipedia.org]

Data Visualization

			Z (i) EIR2
Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	Reduce data from 500
India	1.6	0.2	from SOD
Russia	1.4	0.5	to 2D
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Machine Learning

Dimensionality Reduction

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$

If different features on different scales (e.g., $x_1 = \text{heart rate}$, x_2 =skin conductance), scale features to have comparable range of values.

Principal Component Analysis (PCA) algorithm

Reduce data from 2D to 1D

Reduce data from 3D to 2D

$$X_{(i)} \in \mathbb{K}_3 \longrightarrow S_{(i)} \in \mathbb{K}_3$$

Principal Component Analysis (PCA) algorithm

Reduce data from η -dimensions to k-dimensions

Compute "covariance matrix":

$$\sum = \frac{1}{m} \sum_{i=1}^{n} \underbrace{(x^{(i)})(x^{(i)})^{T}}_{\text{nxn}} \qquad \text{Sigma}$$

Compute "eigenvectors" of matrix Σ :

mpute "eigenvectors" of matrix
$$\Sigma$$
:

Singular value decomposition

Singular value decomposition

P(U,S,V) = svd(Sigma);

Nxn matrix:

$$U = \begin{bmatrix} u^{(1)} & u^{(2)} & u^{(3)} & \dots & u^{(M)} \\ \vdots & \ddots & \ddots & \ddots & u^{(N)} \end{bmatrix}$$

$$V \in \mathbb{R}^{N \times N}$$

$$V^{(N)} = \begin{bmatrix} u^{(1)} & u^{(2)} & u^{(3)} & \dots & u^{(N)} \\ \vdots & \ddots & \ddots & \ddots & u^{(N)} \end{bmatrix}$$

Principal Component Analysis (PCA) algorithm

From[U,S,V] = svd(Sigma) we get:

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$

$$\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});$$

$$\Rightarrow \text{Ureduce} = U(:,1:k);$$

$$\Rightarrow z = \text{Ureduce}' *x;$$

Machine Learning

Dimensionality Reduction

Reconstruction from compressed representation

Reconstruction from compressed representation

Machine Learning

Dimensionality Reduction

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} = \frac{1}{m} =$

Typically, choose k to be smallest value so that

→"99% of variance is retained"

Choosing k (number of principal components)

Algorithm:

Try PCA with k=1

Compute $U_{reduce}, \underline{z}^{(1)}, z_{-}^{(2)},$

$$\ldots, z_{approx}^{(m)}, x_{approx}^{(1)}, \ldots, x_{approx}^{(m)}$$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

Choosing k (number of principal components)

 \rightarrow [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(2100

(99% of variance retained)

Machine Learning

Dimensionality Reduction

Advice for applying PCA

Supervised learning speedup

Extract inputs:

Unlabeled dataset:

$$\underline{x^{(1)}, x^{(2)}, \dots, x^{(m)}} \in \underline{\mathbb{R}^{10000}} \subseteq$$

$$z^{(1)}, \underline{z^{(2)}}, \dots, \underline{z^{(m)}} \in \mathbb{R}^{1000} \subseteq$$

New training set:

$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)}) \qquad h_{\Theta}(z) = \frac{1}{1 + e^{-\Theta^{T} z}}$$

Note: Mapping $x^{(i)} \rightarrow z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets.

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 Speed up learning algorithm —

 Choose k by % of vorce retain

- Visualization

Codebook Approach

Clustering

K-means algorithm

K-means algorithm

Input:

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$ Repeat {

Repeat {
Cluster for =i1 to
$$m$$
clister (from 1 to) of cluster centroid
closest to $x^{(i)}$

for ± 1 to K

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to cluster} k$$

$$\Rightarrow \#_k \text{average (mean) of points assigned to clust}$$

$$U_2 = \frac{1}{4} \left[\chi^{(1)} + \chi^{(5)} + \chi^{(6)} + \chi^{(6)} \right] \in \mathbb{R}^n$$

K-means for non-separated clusters

S,M,L

Machine Learning

Clustering

Optimization objective

K-means optimization objective

 $ightharpoonup c^{(i)} = {\rm index\ of\ cluster\ (1,2,...,}K)}$ to which example $x^{(i)}$ is currently assigned

 $\rightarrow \mu_k$ = cluster centroid \underline{k} ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned $x^{(i)} \rightarrow 5$ $x^{(i)} = 5$ $x^{(i)} = 5$

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{> c^{(1)}, \dots, c^{(m)}, \\ \Rightarrow \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

$$\sum_{\substack{> c^{(1)}, \dots, c^{(m)}, \\ \Rightarrow \mu_1, \dots, \mu_K}} D_{istoction}$$

K-means algorithm

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n cluster assignment step Ninimize \mathbb{K}(n) with \mathbb{K}(n) \mathbb{K}(n) Repeat \mathbb{K}(n) with \mathbb{K}(n) \mathbb{K}
                                                                                                                                                           c^{(i)}index (from 1 to ) \Deltaf cluster centroid
                                                                                                                                                                                                closest to x^{(i)}
                                                                                                                                                                 #kaverage (mean) of points assigned to cluster
                                                                                                                                                                                                                                             minimize J(...) wat Mi, ..., HK
```


Machine Learning

Clustering

Random initialization

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$

```
Repeat {
     for \neq 1 to m
          c^{(i)} index (from 1 to ) \Deltaf cluster centroid
                        x^{(i)}
             closest to
     for #1 to K
           Property average (mean) of points assigned to cluster
```

Random initialization

Should have K < m

Randomly pick \underline{K} training examples.

Set μ_1, \ldots, μ_K equal to these K examples. $\mu_{i} = \kappa^{(i)}$

Local optima

Random initialization

```
For i = 1 to 100 {  \text{Randomly initialize K-means.}   \text{Run K-means. Get } c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K   \text{Compute cost function (distortion)}   J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K)   \text{I}
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Machine Learning

Clustering

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

Codebook - Construction

Clustering of Time Series subsequences

Codeword-Assignment

Assignment of Codewords to the Constructed Clusters

Histogram Generation

• Time Series Sequence Representation by a Histogram

Fusion and Classification

Early Fusion

Late Fusion

Dynamic Late Fusion

Final Statements

• Feature learning delivers an optimum representation of the data, however, the semantic meaning of single feature dimensions gets often lost.

 Although feature learning algorithms seem to take over, manual feature engineering will remain important in the future, especially in the medical domain.

• Deep Neural Networks are a very powerful technique to automatically learn discriminative data representation in a supervised scenario.

Reading Homework

Article

Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors