

Skript: Tabellenkalkulation

- 1. Öffne drive.bycs.de im Internetbrowser und melde dich mit deinen BYCS/Mebis Logindaten an.
 - **1** Internetbrwoser zeigen Websites an und sind unser üblicher Zugang zum Internet. Bekannte Browser sind **Mozilla Firefox**, Google Chrome oder Microsoft Edge.
- 2. Erstelle einen in deinem persönlichen Bereich einen neuen Ordner mit Name Informatik_09
- Wenn du in diesem Ordner auf +Neu klickst kannst du neue Dateien (z.B. Kalkulationstabellen) erstellen.
 WICHTIG: Achte darauf, die Dateiendung (nach dem Punkt, z.B. .xlsx), nicht zu verändern!

- 1. Schau das Video unter: mebis.link/inf9_excel-werbung
- Erstelle in BYCS-Drive eine neue Kalkulationstabelle 01_ExcelWerbung.xlsx
 Es gibt verschiedene Systeme zur Wahl von Dateinamen. Hier ist einem Nummerierung am Anfang gewählt; möglich wäre auch ein Datum am Anfang (z.B. 2025-09-25_ExcelWerbung.xlsx)
- 3. Baue die Tabelle aus dem Video mit den exakt gleichen Schritten in BYCS-Drive nach!
- 4. Füge deiner Tabelle ein Diagramm hinzu, das die Quartalszahlen grafisch darstellt.
- 5. Stellt die Tabelle tatsächlich eine Wachstumsrate von 10% von Quartal zu Quartal dar? 10% von 1000€ sind etwas anderes als 10% von 1100€
- 6. Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumsrate berechnet werden?

1 Tabellenkalkulation

In Tabellenkalkulationsprogrammen können Daten in den Zellen der Tabellenblätter erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben (Spalten) und Zahlen (Zeilen). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice Calc oder Google Spreadsheets.

2 Formeln und Parameter

tisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert).

Die Grundrechenarten werden dargestellt als: + , - , * , /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung

der Formel und läuft so ab:

Excel-Werbung erweitert mit Formeln

- 1. Öffne deine Excel-Datei von letzter Stunde und lege mit dem + am unteren Rand ein neues Tabellenblatt an.
- 2. Führt die Schritte wie im Video aus, jedoch nur bis zu den Werten der 1. Spalte
- 3. Vervollständigt die Tabelle so, dass die Wachstumsrate (bisher 10%) in einer eigenen Zelle gespeichert und von euren Formeln verwendet wird.
- 4. Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben und setzt dies in eurer Tabelle um. Tragt hierfür zunächst jede Art in eine eigene Zelle ein und hebt auch diese Zellen entsprechend hervor. Die Tabelle hat diese Zellarten: Beschriftung, Eingabewert, automatische Berechnung (=Formel)

3 Absolute und relative Zellbezüge

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändern sich die Adressen entsprechend der veränderten Zellposition. Man spricht von einem relativen Zellbezug.

Möchte man dies verhindern, setzt man ein **\$-Symbol** vor den entsprechenden Teil (Zeile oder Spalte) der Adresse und spricht von einem **absoluten Zellbezug**. Dies ist auch für Spalte oder Zeile einzeln möglich.

	Beispiel:			
Art des Bezugs von A1	Original Formel	2 nach unten + 1 nach rechts verschoben		
relativ	= A1 + C3	=B3 + D5		
Spalte absolut Zeile relativ	= \$A1 + C3	=\$A3 + D5		
Spalte relativ Zeile absolut	= A\$1 + C3	=B\$1 + D5		
absolut	= \$A\$1 + C3	=\$A\$1 + D5		

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso? Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

4 Exkurs: Abstraktionsebenen

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung).

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

Mögliche Abstraktionsebenen einer Zelle unserer Tabelle (es gibt mehr!):

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€	=E5 * \$ <i>C</i> \$3	=GolfQ2 * Wachstumsfak.	Umsatz Golf Q3

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- 2. Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Ein paar Beispiele für eine Zelle. Es gibt natürlich seehr viele Möglichkeiten.

5 Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Werte (Eingaben)

Funktionen

Datenflüsse: -->

Schema eines DFDs mit Platzhaltern:

6 Funktionen und Stelligkeit

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (= Parameter) und genau eine Ausgabe (= Rückgabewert).

Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern zweistellig usw.

Gewöhnliche Rechenoperationen sind zweistellige Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

= A1 + B1 + C1 + D1 = SUMME(A1;B1;C1;D1) = SUMME(A1:D1)

Getränkekalkulation

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft (oben als Dateianhang)
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
 - 1 Hohe Abstraktion bedeutet keine konkreten Rechnungen, sondern beschreibende Funktionsnamen.
 - 1 Wenn die gleiche Berechnung für mehrere Getränke gemacht wird, zeichnet hierfür mehrere Diagramme.
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

z.B. Besserer Überblick, Aufbau einer Intuition für den Kontext, geringere Gefahr vor lauter Syntax den Überblick zu verlieren, 'Divide-and-Conquer', erst Planen, dann Umsetzen reduziert Fehler

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter? aussagekräftige Namen für Werte auch ohne den Kontext zu kennen, beschreibende Funktionsnamen statt nur Rechenoperationen, ...

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
 Datenblöcke zwischen 2 Funktionen (aber nur wenn Funktionsname aussagekräftig genug ist, um trotzdem zu verstehen, was gerechnet wird)
- 4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Gruppe B vereinfacht

7 Verkettung von Funktionen

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Verkettung von Funktionen. In Datenflussdiagrammen können Datenblöcke zwischen 2 Funktionen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem Verteiler kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Übung: Funktionale Modellierung

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines auf höchster Abstraktionsebene für Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf höchster Abstraktionsebene.

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- Möglichkeit 1: Einfach untereinander Eingaben und berechnete Werte etwa in Reihenfolge des 'Auftretens'
- Möglichkeit 2: Strukturell am DFD orientiert, wird ähnlich einer Pyramide
- weitere Möglichkeiten: ...

Zeichne eine grobe Skizze deiner Tabelle:

⊿ A	В	С	D	Е	F	G	Н	I	J	K
1										
2	Lösungmöglichl	keit 1		Lösungmöglichkeit 2						
3	Einnahmen Getränke	400,00€				Einnahm	en Tickets	Preis pro Ticket		
4	Ausgaben Getränke	100,00€				600	,00€	5		
5	Gewinn Getränke	300,00€					Anzah	Gäste pro nzahl Gäste Security		
6	Einnahmen Tickets	600,00€					12	20	80	
7	Preis pro Ticket	5		Einnahmen Getränke	Ausgaben Getränke			Anzahl	Security	Kosten pro Secu-Person
8	Anzahl Gäste	120		400,00€	100,00€			2	2	250,00€
9	Gäste pro Security	80		Gewinn Getränke Securitykoste		ten				
10	Anzahl Security	2		300,00€ 500,00€						
11	Kosten pro Secu-Person	250,00€		Gewinn pro Gaste						
12	Kosten Security gesamt	500,00€		3,33€						
13	Durchn. Gewinn pro Gast	3,33€								

- 1. Öffne Studyflix: bycs.link/studyflix-excel-if
- 2. Schaue das Video und baue die beschriebene Tabelle in BYCS Drive nach.
- 3. Fasse den Artikel/das Video in einem kurzen Hefteintrag zusammen.
- 4. Ergänze mit Hilfe deines Buchs, die Darstellung der Wenn-Dann-Funktion im Datenflussdiagramm.

8 Wenn-Dann-Funktion

Mit der Wenn-Dann-Funktion können anhand einer Bedingung verschiedene Werte verwendet werden.

Eine Bedingung kann z.B.

- Gleichheit zweier Werte (=) oder
- eine Größer-/Kleiner-Bedingung (<,>,<=,>=)

prüfen.

Wenn die Bedingung als wahr ausgewertet (=er-füllt) wird, wird der Dann-Teil in die Zelle eingefügt, ansonsten der Sonst-Teil.

In Excel gibt man die Funktion so ein:

```
Schema: =WENN(Bedingung; Dann; Sonst)
Beispiel: =WENN(D5 < 10; "kleiner als 10";
"größer oder gleich 10")
```

Bei der Darstellung im Datenflussdiagramm ist die Reihenfolge (von links nach rechts), mit der die Pfeile an der Funktion ankommen, wichtig:

Einkaufstabelle filtern

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle? 14.01.2006, Haargummi
 - Was ist der Name der alphabetisch ersten weibliche Person? Alicia Solis
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde? Milch

9 Daten filtern

Verwaltet man große Datenmengen, ist es hilfreich, Filter zu verwenden. Mit diesen kann man:

- nur Zeilen mit bestimmten Werten in einer Spalte anzeigen.
- die **Zeilen** nach den Werten einer bestimmten **Spalte** sortieren.
- Mehrere Filter können miteinander kombiniert werden.

Optional: Übung Notentabelle

Frau Knust möchte die Noten ihrer Klasse übersichtlich verwalten.

Hierfür benötigt sie eine Tabelle, in der die Gesamtnoten der einzelnen Fächer pro Schüler:in eingetragen werden, der Durchschnitt berechnet wird und in der letzten Spalte angezeigt wird, ob eine Person in mindestens zwei Fächern eine Note schlechter als 4 hat.

Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Tabelle soll außerdem optisch ansprechend sein.

Erstelle in BYCS-Drive eine solche Kalkulationstabelle

Temporary page! LTEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have added to the final page this extra page has been added to receive it.
If you rerun the document (without altering it) this surplus page will go away, because LTEX now knows how many pa to expect for this document.