Uma Proposta de Sistema de Controle de Acesso a Múltiplos Ambientes Baseada em Internet das Coisas

Defesa do Trabalho de Conclusão de Curso II

Letícia da Silva Mota

Orientadora: Elloá B. Guedes

{ledsm.eng,ebgcosta}@uea.edu.br

Grupo de Pesquisa em Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

17 de junho de 2019

Agenda

- Introdução
- Objetivos
- Solução Proposta
- Resultados e Discussão
- Considerações Finais
- Referências

Agenda - Seção 1

- Introdução
- Objetivos
- Solução Proposta
- Resultados e Discussão
- Considerações Finais
- Referências

Internet das Coisas e Controle de Acesso

A Internet das Coisas (IoT, do inglês Internet of Things) está mudando a forma como as pessoas vivem e representa um dos maiores desafios a serem enfrentados pela indústria. (SCHWARTZ, 2016)

- Internet das Coisas
 - Manter objetos conectados à internet
 - Permitir a interação de objetos à rede a qual estão relacionados
 - Estabelecer serviços e proporcionar armazenamento em nuvem
- Controle de Acesso
 - Problemática comum a ambientes de alta rotatividade
 - Necessidade de estabelecer regras para acesso
 - Difícil gerenciamento de múltiplos ambientes

Agenda - Seção 2

- Introdução
- Objetivos
- Solução Proposta
- Resultados e Discussão
- Considerações Finais
- Referências

Objetivos

Objetivo Geral

Conceber um projeto aberto e gratuito de sistema de controle de acesso a múltiplos ambientes baseado em Internet das Coisas.

Objetivos Específicos

- Realizar a fundamentação teórica dos conceitos de Internet das Coisas;
- Efetuar o levantamento de tecnologias para implementação dos projetos de hardware e software;
- Conceber, implementar e documentar os projetos de hardware e software
- Avaliar a solução desenvolvida.

Objetivos

Objetivo Geral

Conceber um projeto aberto e gratuito de sistema de controle de acesso a múltiplos ambientes baseado em Internet das Coisas.

Objetivos Específicos

- Realizar a fundamentação teórica dos conceitos de Internet das Coisas;
- Efetuar o levantamento de tecnologias para implementação dos projetos de hardware e software;
- Conceber, implementar e documentar os projetos de hardware e software;
- Avaliar a solução desenvolvida.

Agenda - Seção 3

- Introdução
- Objetivos
- Solução Proposta
- Resultados e Discussão
- Considerações Finais
- Referências

Sistema de Controle de Acesso

Figura 1: Ideia geral da solução proposta.

Sistema de Controle de Acesso

Objeto inteligente

Hardware

- Aquisição de informações externas
- Liberação de acesso
- Inspeção visual para usuários

Software

- Interação entre componentes
- Conexão à rede
- Padrão de tópicos

Aplicação Web

- Gerenciamento de Salas
- Gerenciamento de Usuários e Tags
- Gerenciamento de Agendamentos
- Gerenciamento de Relatórios

- Event Listener do sistema
- Conexão à rede
- Padrão de tópicos
- Acesso ao banco de dados

Objeto Inteligente - Projeto de Hardware

Figura 2: Diagrama esquemático do projeto de hardware do protótipo do objeto inteligente.

Tabela 1: Relação de elementos elencados para elaboração do protótipo do objeto inteligente.

Descrição do Componente

Microcontrolador NodeMCU Display LCD 16×2 Módulo serial I2C para LCD 16×2 Módulo RFID MFRC-522 Módulo relé 2 canais Protoboard 400 furos Protoboard 830 furos Kit Jumpers 60 unidades LEDs Ultra Brilho 3mm resistores 220 Ω Adaptador Tomada Plug Fonte USB

Objeto Inteligente - Projeto de Software Embarcado

- Desenvolvido na IDE do Arduino
- Consolidado para realizar a conexão lógica dos elementos físicos do hardware do objeto
- Estabelece a interação do objeto aos usuários e aos outros módulos do sistema
- Utilização do padrão de tópicos para correto envio e recebimento de mensagens distribuídas pelo broker

Sistema de Controle de Acesso

Objeto inteligente

Hardware

- Aquisição de informações externas
- Liberação de acesso
- Inspeção visual para usuários

Software

- Interação entre componentes
- Conexão à rede
- Padrão de tópicos

Aplicação Web

- Gerenciamento de Salas
- Gerenciamento de Usuários e Tags
- Gerenciamento de Agendamentos
- Gerenciamento de Relatórios

- Event Listener do sistema
- Conexão à rede
- Padrão de tópicos
- Acesso ao banco de dados

- Desenvolvida com o framework Web2py
- Utiliza o padrão MVC para desenvolvimento ágil
- Realiza a estruturação do Banco de Dados do sistema
- Funcionalidades desenvolvidas para gerenciamento de ambientes, pessoas e permissões
- Dispõe de outras funcionalidades, endereçadas aos usuários, como gerenciamento de relatórios de pontualidade e taxa de frequência
- Detalhamento de funcionalidades apresentadas por casos de uso

Sistema de Controle de Acesso

Objeto inteligente

Hardware

- Aquisição de informações externas
- Liberação de acesso
- Inspeção visual para usuários

Software

- Interação entre componentes
- Conexão à rede
- Padrão de tópicos

Aplicação Web

- Gerenciamento de Salas
- Gerenciamento de Usuários e Tags
- Gerenciamento de Agendamentos
- Gerenciamento de Relatórios

- Event Listener do sistema
- Conexão à rede
- Padrão de tópicos
- Acesso ao banco de dados

- Software desenvolvido em Python para atuar como Event Listener
- Funções principais:
 - Realizar conexão lógica com o MQTT broker
 - Identificar padrões de tópicos por meio de consulta ao Banco de Dados
 - Estabelecer funções para validação de agendamento e cadastro de novas tags de acordo com tópico de recebimento
 - Realizar o processamento de dados mais pesados para uma comunicação leve com o objeto inteligente

Sistema de Controle de Acesso

Objeto inteligente

Hardware

- Aquisição de informações externas
- Liberação de acesso
- Inspeção visual para usuários

Software

- Interação entre componentes
- Conexão à rede
- Padrão de tópicos

Aplicação Web

- Gerenciamento de Salas
- Gerenciamento de Usuários e Tags
- Gerenciamento de Agendamentos
- Gerenciamento de Relatórios

- Event Listener do sistema
- Conexão à rede
- Padrão de tópicos
- Acesso ao banco de dados

Agenda - Seção 4

- Introdução
- Objetivos
- Solução Proposta
- Resultados e Discussão
- Considerações Finais
- Referências

Padronização de Tópicos

Tópicos de Entrada

- topicoEntrada/A21/associarTagUser
- topicoEntrada/A21/associarTagMaster
- topicoEntrada/A21/confirmarAgendamento

Tópicos de Saída

- topicoSaida/A21/salvarTagUser
- topicoSaida/A21/salvarTagMaster
- topicoSaida/A21/validarAgendamento

Implementação de Projeto de Hardware

Tabela 2: Custo total dos componentes para implementação de um protótipo do objeto inteligente. Estes preços foram praticados em Manaus no mês de Setembro de 2018.

Quantidade	Descrição do Componente	Custo (R\$)
1	Microcontrolador NodeMCU	50,00
1	Display LCD 16×2	24,00
1	Módulo serial I2C para LCD 16×2	15,00
1	Módulo RFID MFRC-522	28,00
1	Módulo relé 2 canais	22,00
1	Protoboard 400 furos	18,00
1	Protoboard 830 furos	25,00
1	Kit Jumpers 60 unidades	21,00
2	LEDs Ultra Brilho 3mm	0,50
2	resistores 220 Ω	0,60
1	Adaptador Tomada Plug Fonte USB	10,00
Custo Total		214,10

Implementação de Projeto de Hardware

Figura 3: Protótipo do hardware do objeto inteligente.

Implementação de Projeto de Software

- Permite a interação entre os elementos físicos do objeto inteligente por meio do uso de bibliotecas específicas
 - ArduinoJson
 - PubSubClient
 - LiquidCrystal_I2C
 - ESP8266Wifi
 - e outras.
- São estabelecidas rotinas de leitura de tag e envio de informações para fluxo de controle de acesso
- Enfatiza-se o uso do padrão de tópicos, importante para que não haja problemas ao escalar novos objetos inteligentes à rede

Implementação de Aplicação Web

Funcionalidades Desenvolvidas

- Cadastro e listagem de salas
- Cadastro e listagem de usuários
- Cadastro e listagem de agendamentos
- Associação de tag a perfil master
- Associação de tag a usuários
- Relatório de pontualidade e frequência
- Estatísticas de pontualidade e frequência

Figura 4: Página principal da aplicação web após autenticação do usuário.

Figura 5: Página de cadastro de usuários.

Figura 6: Página de associação de tag a perfil master.

Figura 7: Página de associação de tag a perfil usuário.

Figura 8: Listagem de usuários cadastrados.

Figura 9: Estatística de pontualidade e frequência.

Implementação de Orquestrador

- Designado a atender instantaneamente a requisições de objetos inteligentes
- Foram definidas funções para envio e recebimento de mensagens distribuídas pelo MQTT broker
- Implementou-se função para recebimento de Tags e consulta ao banco de dados para validação de informação cadastrada
- Enfatiza-se o desenvolvimento deste software na linguagem Python, em que faz-se uso de bibliotecas para auxilio à conexão com broker e sqlite, banco de dados utilizado neste sistema

Implementação de Orquestrador

Figura 10: Diagrama de classes do módulos orquestrador.

Análise Comparativa

Tabela 3: Tabela comparativa da solução proposta em relação a outras alternativas existentes.

Duciata	Características					
Projeto	Plataforma embarcada	Padrão de comunicação	Gerenciamento de dados Web	Aplicação Web		
Solução Proposta	NodeMCU	MQTT	Sim	Sim		
[Araújo et al. 2016]	PIC	Serial (Tx de Freq. 9600)	Sim	Não		
[Teixeira 2011]	Microcomputador	Serial (RS-232)	Não	Não		
[Fonseca et al. 2017]	Arduino	TCP-IP (Ethernet Shield W5100)	Sim	Não		
[de Almeida et al. 2018]	Arduino	Web-service	Sim	Sim		

Projeto	Características			
	Inspeção visual por LCD	Escalável à múltiplos ambientes	Código aberto para reprodução	
Solução Proposta	Sim	Sim	Sim	
[Araújo et al. 2016]	Sim	Não especificado	Não	
[Teixeira 2011]	Não	Sim	Não	
[Fonseca et al. 2017]	Não	Não especificado	Não	
[de Almeida et al. 2018]	Não	Sim	Não	

Agenda - Seção 5

- Introdução
- Objetivos
- Solução Proposta
- Resultados e Discussão
- Considerações Finais
- Referências

- Diante da problemática de controle de acesso a ambientes com múltiplos usuários e horários agendados, a solução proposta é endereçada para a automatização da atividade baseando-se no conceito de Internet das Coisas
- Projetou-se e desenvolveu-se um sistema de controle de acesso composto por objetos inteligentes, com projeto de hardware e software associado, um painel administrativo em forma de aplicação web e também um orquestrador de dados para administrar a saída de dados do protótipo
- Desenvolveu-se um padrão de tópicos para a comunicação entre as partes mediante protocolo MQTT, evitando colisão de informações que trafegam no sistema

 Em relação o caráter de código aberto e de livre reprodução, o repositório do projeto contempla instruções para configuração do ambiente e execução dos módulos:
 https://github.com/leticiamota-tcc/leticiamota-tcc.

Figura 11: Fragmento de apresentação do diretório GitHub.

 Alguns resultados obtidos no decorrer deste trabalho foram compartilhados em um artigo completo publicado no VIII Encontro Regional de Computação e Sistemas de Informação (MOTA; GUEDES, 2019).

Figura 12: Banner do VIII Encontro Regional de Computação e Sistemas de Informação .

- Em trabalhos futuros sugere-se a adição de regras de negócio que permitam aos usuários realizarem seus próprios agendamentos
- Sugere-se também a evolução do design do protótipo do objeto, por exemplo, por meio de impressão 3D, para melhor encapsular seus componentes
- O desenvolvimento deste trabalho considerou um problema prático e permitiu a aplicação de tecnologias de vanguarda relacionadas à Internet da Coisas e de conceitos adquiridos ao longo do curso de graduação

Agenda - Seção 6

- Introdução
- Objetivos
- Solução Proposta
- Resultados e Discussão
- Considerações Finais
- 6 Referências

Referências

- FRITZING. Fritzing Electronics made easy. 2018. Disponível em: http://fritzing.org/download/>.
- IEEE. Towards a definition of the Internet of Things (IoT). 2015. Disponível em https://iot.ieee.org/.
 Acessado em 26 de novembro de 2018.
- PIERRO, M. di. Web2py Enterprise Web Framework. Estados Unidos: Lulu.com, 2010.
- SAHOO, S. S. MQTT A Practical Guide. 2018. Disponível em hhttps://goo.gl/o4xHUFi. Acessado em 26 de novembro de 2018.
- SCHWARTZ, M. Internet of Things with Arduino. Reino Unido: Packt Publishing, 2016.

Uma Proposta de Sistema de Controle de Acesso a Múltiplos Ambientes Baseada em Internet das Coisas

Defesa do Trabalho de Conclusão de Curso II

Letícia da Silva Mota

Orientadora: Elloá B. Guedes

{ledsm.eng,ebgcosta}@uea.edu.br

Grupo de Pesquisa em Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

17 de junho de 2019