Lecture 9

Principle Components Analysis

Reading: Zelterman Chapter 8.1-8.4; DSA 8020 Lecture 12 [Link]

DSA 8070 Multivariate Analysis October 11-October 15, 2021

> Whitney Huang Clemson University

Agenda

- Background
- 2 Finding Principal Components
- Principal Components Analysis in Practice

Notes

History

 First introduced by Karl Pearson (1901) as a procedure for finding lines and planes which best fit a set of points in p-dimensional space

[31] On Live on Flower Chant Fro Spinson of Philadellian of Joseph S. And Theory Change (College Change) College (Coll

 Harold Hotelling (1933) published a paper on PCA to find a smaller "fundamental set of independent variables" that determines the values of the original set of p variables

Principle Components Analysis
CLEMS N

Background
Finding Principal
Components
Principal
Components

Notes			

Basic Idea

Reduce the dimensionality of a data set in which there is a large number (i.e., p is "large") of inter-related variables while retaining as much as possible the variation in the original set of variables

- The reduction is achieved by transforming the original variables to a new set of variables, "principal components", that are uncorrelated
- These principal components are ordered such that the first few retains most of the variation present in the data
- Goals/Objectives
 - Reduction and summary
 - Study the structure of covariance/correlation matrix

Some Applications

- Interpretation (by studying the structure of covariance/correlation matrix)
- Select a sub-set of the original variables, that are uncorrelated to each other, to be used in other multivariate procedures (e.g., multiple regression, classification)
- Detect outliers or clusters of multivariate observations

Notes

Finding Principal Components Principal

Multivariate Data

We display a multivariate data that contains n units on p variables using a matrix

$$\boldsymbol{X} = \begin{pmatrix} X_{1,1} & X_{2,1} & \cdots & X_{p,1} \\ X_{1,2} & X_{2,2} & \cdots & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{1,n} & X_{2,n} & \cdots & X_{p,n} \end{pmatrix}$$

Summary Statistics

- ullet Mean Vector: $ar{m{X}}=(ar{X}_1,ar{X}_2,\cdots,ar{X}_p)^T$
- Covariance Matrix: $\Sigma = \{\sigma_{ij}\}_{i,j=1}^p$, where $\sigma_{ii} = \operatorname{Var}(X_i), \ i=1,\cdots,p$ and $\sigma_{ij} = \operatorname{Cov}(X_i,X_j), \ i \neq j$

Next, we are going to discuss how to find **principal components**

Finding Principal Components Principal Components

Notes			

Finding Principal Components

Principal Components (PCs) are uncorrelated linear **combinations** $\tilde{X}_1, \tilde{X}_2, \cdots, \tilde{X}_p$ determined sequentially, as follows:

- The first PC is the linear combination $\tilde{X}_1=\boldsymbol{c}_1^T\boldsymbol{X}=\sum_{i=1}^pc_{1i}X_i$ that maximize $\mathrm{Var}(\tilde{X}_1)$ subject to $\boldsymbol{c}_1^T\boldsymbol{c}_1=1$
- The second PC is the linear combination $ilde{X}_2 = oldsymbol{c}_2^T oldsymbol{X} = \sum_{i=1}^p c_{2i} X_i$ that maximize $\mathrm{Var}(ilde{X}_2)$ subject to $\boldsymbol{c}_2^T \boldsymbol{c}_2 = 1$ and $\boldsymbol{c}_2^T \boldsymbol{c}_1 = 0$

① The p_{th} PC is the linear combination $\tilde{X}_p = c_p^T X = \sum_{i=1}^p c_{pi} X_i$ that maximize $\mathrm{Var}(\tilde{X}_p)$ subject to $c_p^T c_p = 1$ and $c_p^T c_k = 0$, $\forall k < p$

Finding Principal Components by Decomposing Covariance Matrix

• Let Σ , the covariance matrix of X, have eigenvalue-eigenvector pairs $(\lambda_i, e_i)_{i=1}^p$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ Then, the k_{th} principal component is given by

$$\tilde{X}_k = \boldsymbol{e}_k^T \boldsymbol{X} = e_{k1} X_1 + e_{k2} X_2 + \cdots + e_{kp} X_p$$

⇒ we can perform a single matrix operation to get the coefficients to form all the PCs!

Then,

$$\mathrm{Var}(\tilde{X}_i) = \lambda_i, \quad i=1,\cdots,p$$
 Moreover $\mathrm{Var}(\tilde{X}_1) \geq \mathrm{Var}(\tilde{X}_2) \geq \cdots \geq \mathrm{Var}(\tilde{X}_p) \geq 0$ $\mathrm{Cov}(\tilde{X}_j,\tilde{X}_k) = 0, \quad \forall j \neq k$

⇒ different PCs are uncorrelated with each other

N١	otoe	
N	otes	

Notes	
	_
	_
	_

PCA and Proportion of Variance Explained

It can be shown that

$$\sum_{i=1}^p \operatorname{Var}(\tilde{X}_i) = \lambda_1 + \lambda_2 + \dots + \lambda_p = \sum_{i=1}^p \operatorname{Var}(X_i)$$

• The proportion of the total variance associated with the \dot{k}_{th} principal component is given by

$$\frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

• If a large proportion of the total population variance (say 80% or 90%) is explained by the first k PCs, then we can restrict attention to the first k PCs without much loss of information ⇒ we achieve dimension reduction by considering k < puncorrelated components rather than the original \boldsymbol{p} correlated variables

Principle Components Analysis
LEMS & N

Notes			

Toy Example 1

Suppose we have $\pmb{X}=(X_1,X_2)^T$ where $X_1\sim \mathrm{N}(0,4)$, $X_2\sim \mathrm{N}(0,1)$ are independent

- Total variation = $Var(X_1) + Var(X_2) = 5$
- ullet X_1 axis explains 80% of total variation
- ullet X_2 axis explains the remaining 20% of total variation

Toy Example 2

Suppose we have $X=(X_1,X_2)^T$ where $X_1\sim \mathrm{N}(0,4)$, $X_2\sim \mathrm{N}(0,1)$ and $\mathrm{Cor}(X_1,X_2)=0.8$

- Total variation
 - $= \operatorname{Var}(X_1) + \operatorname{Var}(X_2) = \operatorname{Var}(\tilde{X}_1) + \operatorname{Var}(\tilde{X}_2) = 5$
- $\tilde{X}_1 = .9175X_1 + .3975X_2$ explains 93.9% of total variation
- $\tilde{X}_2 = .3975X_1 .9176X_2$ explains the remaining 6.1% of total variation

Notes

PCs of Standardized versus Original Variables

If we use standardized variables, i.e., $Z_j = \frac{X_j - \mu_j}{\sqrt{\sigma_{ij}}} \ j = 1, \cdots, p$ ("z-scores"). Then we are going to work with the correlation matrix instead of the covariance matrix of $(X_1, \cdots, X_p)^{\mathrm{T}}$

- We can obtain PCs of standardized variables by applying spectral decomposition of the correlation matrix
- However, the PCs (and the proportion of variance explained) are, in general, different than those from original variables
- If units of p variables are comparable, covariance PCA may be more informative, if units of p variables are incomparable, correlation PCA may be more appropriate

Principle Components Analysis CLEMS®N
UNIVERSITI
Finding Principal Components

Notes			

Example: Men's 100k Road Race

The data consists of the times (in minutes) to complete successive 10k segments (p=10) of the race. There are 80 racers in total (n=80)

Notes			

Eigenvalues of $\hat{\Sigma}$

	Eigenvalue	Proportion	Cumulative
PC1	735.77	0.75	0.75
PC2	98.47	0.10	0.85
PC3	53.27	0.05	0.90
PC4	37.30	0.04	0.94
PC5	26.04	0.03	0.97
PC6	17.25	0.02	0.98
PC7	8.03	0.01	0.99
PC8	4.25	0.00	1.00
PC9	2.40	0.00	1.00
PC10	1.29	0.00	1.00

Much of the total variance can be explained by the first three PCs

Notes			

How Many Components to Retain?

A scree plot displays the variance explained by each component

Principle Components Analysis CLEMS UNIVERSITY
Principal Components Analysis in Practice

Notes			

Men's 100k Road Race Component Weights

	Comp.1	Comp.2	Comp.3
0-10 time	0.13	0.21	0.36
10-20 time	0.15	0.25	0.42
20-30 time	0.20	0.31	0.34
30-40 time	0.24	0.33	0.20
40-50 time	0.31	0.30	-0.13
50-60 time	0.42	0.21	-0.22
60-70 time	0.34	-0.05	-0.19
70-80 time	0.41	-0.01	-0.54
80-90 time	0.40	-0.27	0.15
90-100 time	0.39	-0.69	0.35

What these numbers mean?

Notes		

Visualizing the Weights to Gain Insight

First component: overall speed Second component: contrast long and short races

	Notes			
-				
-				
_				
-				

Looking for Patterns

Mature runners: Age <40 (M); Senior runners: Age >= 40 (S)

Principle Components Analysis CLEMS IN Y Y R S I T Y	
Principal Components Analysis in Practice	

Notes			

Relating to Original Data: Profile Plot

Notes			

Correlation PCA versus Covariance PCA

Notes			

Notes			