Linear Regression for Boston House Price Prediction

```
In [1]: # Importing necessary libraries
        import pandas as pd
        import numpy as np
        from sklearn.datasets import load_boston
        from sklearn.model_selection import train_test_split
        import matplotlib.pyplot as plt
        boston = load_boston()
In [2]: print(boston.data.shape)
        (506, 13)
In [3]: print(boston.feature_names)
        ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
         'B' 'LSTAT']
In [4]: | print(boston.target)
        [24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
         18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8
         18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21. 24.7 30.8 34.9 26.6
         25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25. 23.4 18.9 35.4
         24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4 22. 17.4 20.9
         24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28. 23.9 24.8 22.9
         23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6 28.4 21.4 38.7
         43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8 19.4 21.7 22.8
         18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5 17.3 18.8 21.4
         15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4 17.1 13.3 17.8
         14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
         17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
         23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
         37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.
         33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50.
                                                     22.6 24.4 22.5 24.4 20.
         21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
         44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5
         23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
         29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8
         30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1
         45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
         21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2
         22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1
         20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
         19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
         22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8
         21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3
         13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2
                                            6.3 5.6 7.2 12.1 8.3 8.5 5.
         9.7 13.8 12.7 13.1 12.5 8.5 5.
         11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7.
                                                     7.2 7.5 10.4 8.8 8.4
         16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11.
                                                      9.5 14.5 14.1 16.1 14.3
         11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
         14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7
         19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2 29.8 13.8 13.3
         16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7.
          8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
         22. 11.9]
```

```
Linear Regression for Boston House Price Prediction
In [5]: print(boston.DESCR)
        Boston House Prices dataset
        Notes
        Data Set Characteristics:
            :Number of Instances: 506
            :Number of Attributes: 13 numeric/categorical predictive
            :Median Value (attribute 14) is usually the target
            :Attribute Information (in order):
                - CRIM
                           per capita crime rate by town
                - ZN
                           proportion of residential land zoned for lots over 25,000 sq.ft.
                - INDUS
                           proportion of non-retail business acres per town
                           Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
                - CHAS
                - NOX
                           nitric oxides concentration (parts per 10 million)
                - RM
                           average number of rooms per dwelling
                - AGE
                           proportion of owner-occupied units built prior to 1940
                           weighted distances to five Boston employment centres
                - DIS
                - RAD
                           index of accessibility to radial highways
                - TAX
                           full-value property-tax rate per $10,000
                - PTRATIO pupil-teacher ratio by town
                           1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
                - B
                - LSTAT
                           % lower status of the population
                - MEDV
                           Median value of owner-occupied homes in $1000's
            :Missing Attribute Values: None
            :Creator: Harrison, D. and Rubinfeld, D.L.
        This is a copy of UCI ML housing dataset.
        http://archive.ics.uci.edu/ml/datasets/Housing
        This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
        The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
        prices and the demand for clean air', J. Environ. Economics & Management,
        vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
        ...', Wiley, 1980. N.B. Various transformations are used in the table on
        pages 244-261 of the latter.
        The Boston house-price data has been used in many machine learning papers that address regression
        problems.
        **References**
           - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wile
        y, 1980. 244-261.
           - Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International
        Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
           - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)
```

```
In [6]: # Loading data into pandas dataframe
        bos = pd.DataFrame(boston.data)
        print(bos.head())
```

```
0
                 2
                     3
                            4
                                  5
                                              7
                                                   8
                                                         9
                                                              10 \
            1
                                       6
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3
          0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8
2 0.02729
           0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8
               2.18 0.0 0.458 6.998
                                     45.8 6.0622 3.0 222.0 18.7
  0.03237
           0.0
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7
     11
           12
0 396.90 4.98
1 396.90 9.14
2 392.83 4.03
3 394.63 2.94
4 396.90 5.33
```

```
In [7]: bos['PRICE'] = boston.target
        X = bos.drop('PRICE', axis = 1)
        Y = bos['PRICE']
```

```
In [8]: # Split data into train and test
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 5)
         print(X_train.shape)
         print(X_test.shape)
         print(Y_train.shape)
         print(Y_test.shape)
         (404, 13)
         (102, 13)
         (404,)
         (102,)
In [10]: # Standardization
         from sklearn.preprocessing import StandardScaler
         std = StandardScaler()
         X_train = std.fit_transform(X_train)
         X_test = std.transform(X_test)
In [11]: import warnings
         warnings.filterwarnings('ignore')
         from sklearn.linear_model import SGDRegressor
         from sklearn.metrics import mean_squared_error, r2_score
         clf = SGDRegressor()
         clf.fit(X_train, Y_train)
         Y_pred = clf.predict(X_test)
         print("Coefficients: \n", clf.coef_)
         print("Y_intercept", clf.intercept_)
         Coefficients:
          -0.34713416 \ -2.15542918 \ \ 0.85903213 \ -0.3325135 \ \ -1.75839589 \ \ 1.06975581
          -3.63978981]
         Y_intercept [22.26755422]
```

Stochastic Gradient Decent(SGD) for Linear Regression

```
In [12]: # Imported necessary libraries
    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split
    import pandas as pd
    import numpy as np
```

```
In [13]: # Data Loaded
bostan = load_boston()
# Convert it into pandas dataframe
data = pd.DataFrame(bostan.data, columns = bostan.feature_names)
data.head()
```

Out[13]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

```
In [14]: # Summary
data.describe()
```

Out[14]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	P1
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.
mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.4
std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.16
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.6
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.4
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.0
75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.2
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.0

•

```
In [15]: #standardize for fast convergence to minima
data = (data - data.mean())/data.std()
data.head()
```

Out[15]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	L
0	-0.417300	0.284548	-1.286636	-0.272329	-0.144075	0.413263	-0.119895	0.140075	-0.981871	-0.665949	-1.457558	0.440616	-1.07
1	-0.414859	-0.487240	-0.592794	-0.272329	-0.739530	0.194082	0.366803	0.556609	-0.867024	-0.986353	-0.302794	0.440616	-0.49
2	-0.414861	-0.487240	-0.592794	-0.272329	-0.739530	1.281446	-0.265549	0.556609	-0.867024	-0.986353	-0.302794	0.396035	-1.20
3	-0.414270	-0.487240	-1.305586	-0.272329	-0.834458	1.015298	-0.809088	1.076671	-0.752178	-1.105022	0.112920	0.415751	-1.36
4	-0.410003	-0.487240	-1.305586	-0.272329	-0.834458	1.227362	-0.510674	1.076671	-0.752178	-1.105022	0.112920	0.440616	-1.02

In [16]: # MEDV(median value is usually target), change it to price
 data["PRICE"] = bostan.target
 data.head()

Out[16]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	L
0	-0.417300	0.284548	-1.286636	-0.272329	-0.144075	0.413263	-0.119895	0.140075	-0.981871	-0.665949	-1.457558	0.440616	-1.07
1	-0.414859	-0.487240	-0.592794	-0.272329	-0.739530	0.194082	0.366803	0.556609	-0.867024	-0.986353	-0.302794	0.440616	-0.49
2	-0.414861	-0.487240	-0.592794	-0.272329	-0.739530	1.281446	-0.265549	0.556609	-0.867024	-0.986353	-0.302794	0.396035	-1.20
3	-0.414270	-0.487240	-1.305586	-0.272329	-0.834458	1.015298	-0.809088	1.076671	-0.752178	-1.105022	0.112920	0.415751	-1.36
4	-0.410003	-0.487240	-1.305586	-0.272329	-0.834458	1.227362	-0.510674	1.076671	-0.752178	-1.105022	0.112920	0.440616	-1.02

In [17]: # Target and features
Y = data["PRICE"]
X = data.drop("PRICE", axis = 1)

In [18]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

(404, 13) (102, 13) (404,) (102,)

```
In [19]: x_train["PRICE"] = y_train
#x_test["PRICE"] = y_test
```

```
In [20]: def cost_function(b, m, features, target):
    totalError = 0
    for i in range(0, len(features)):
        x = features
        y = target
        totalError += (y[:,i] - (np.dot(x[i] , m) + b)) ** 2
    return totalError / len(x)
```

```
In [21]: # The total sum of squares (proportional to the variance of the data)i.e. ss_tot
# The sum of squares of residuals, also called the residual sum of squares i.e. ss_res
# the coefficient of determination i.e. r^2(r squared)
def r_sq_score(b, m, features, target):
    for i in range(0, len(features)):
        x = features
        y = target
        mean_y = np.mean(y)
        ss_tot = sum((y[:,i] - mean_y) ** 2)
        ss_res = sum(((y[:,i]) - (np.dot(x[i], m) + b)) ** 2)
        r2 = 1 - (ss_res / ss_tot)
    return r2
```

```
In [22]: def gradient_decent(w0, b0, train_data, x_test, y_test, learning_rate):
             n_{iter} = 1000
             partial_deriv_m = 0
             partial_deriv_b = 0
             cost_train = []
             cost_test = []
             for j in range(1, n_iter):
                  # Train sample
                 train_sample = train_data.sample(160)
                 y = np.asmatrix(train_sample["PRICE"])
                 x = np.asmatrix(train_sample.drop("PRICE", axis = 1))
                 for i in range(len(x)):
                      partial\_deriv\_m += np.dot(-2*x[i].T , (y[:,i] - np.dot(x[i] , w0) + b0))
                      partial\_deriv\_b += -2*(y[:,i] - (np.dot(x[i] , w0) + b0))
                 w1 = w0 - learning_rate * partial_deriv_m
                  b1 = b0 - learning_rate * partial_deriv_b
                  if (w0==w1).all():
                      #print("W0 are\n", w0)
                      #print("\nW1 are\n", w1)
                      \#print("\n X are\n", x)
                      \#print("\n y are\n", y)
                      break
                  else:
                      w0 = w1
                      b0 = b1
                      learning_rate = learning_rate/2
                  error_train = cost_function(b0, w0, x, y)
                  cost_train.append(error_train)
                  error_test = cost_function(b0, w0, np.asmatrix(x_test), np.asmatrix(y_test))
                  cost_test.append(error_test)
             #print("After {0} iteration error = {1}".format(j, error_train))
                  #print("After {0} iteration error = {1}".format(j, error_test))
             return w0, b0, cost_train, cost_test
```

```
In [23]: # Run our model
         learning_rate = 0.001
         w0_random = np.random.rand(13)
         w0 = np.asmatrix(w0_random).T
         b0 = np.random.rand()
         optimal_w, optimal_b, cost_train, cost_test = gradient_decent(w0, b0, x_train, x_test, y_test, learning_rate)
         print("Coefficient: {} \n y_intercept: {}".format(optimal_w, optimal_b))
         # Plot train and test error in each iteration
         plt.figure()
         plt.plot(range(len(cost_train)), np.reshape(cost_train,[len(cost_train), 1]), label = "Train Cost")
         plt.plot(range(len(cost_test)), np.reshape(cost_test, [len(cost_test), 1]), label = "Test Cost")
         plt.title("Cost/loss per iteration")
         plt.xlabel("Number of iterations")
         plt.ylabel("Cost/Loss")
         plt.legend()
         plt.show()
         Coefficient: [[ 3.93816973e-01]
```

```
Coefficient: [[ 3.93816973e-01]
  [-1.97545126e-03]
  [-6.49377910e-01]
  [ 4.31315251e-01]
  [-1.51670156e+00]
  [ 3.91016564e+00]
  [ 3.47536552e-01]
  [-1.03333789e+00]
  [ 4.13280615e-01]
  [ 1.68738667e-01]
  [-2.54908057e+00]
  [ 3.92544621e-01]
  [-2.32710738e+00]]
  y_intercept: [[21.28452626]]
```


Comparison: - sklearn SGD and SGD implementation in python

```
In [24]: # The mean squared error
    print("Mean squared error: %.2f" % mean_squared_error(Y_test, Y_pred))
    # Explained variance score: 1 is perfect prediction
    print("Variance score: %.2f" % r2_score(Y_test, Y_pred))

Mean squared error: 19.70
    Variance score: 0.75

In [25]: # Implemented SGD
    # The mean squared error
    error = cost_function(optimal_b, optimal_w, np.asmatrix(x_test), np.asmatrix(y_test))
    print("Mean squared error: %.2f" % (error))
    # Explained variance score: 1 is perfect prediction
    r_squared = r_sq_score(optimal_b, optimal_w, np.asmatrix(x_test), np.asmatrix(y_test))
    print("Variance score: %.2f" % r_squared)

Mean squared error: 21.69
    Variance score: -0.84
```

```
In [26]: # Scatter plot of test vs predicted
         # sklearn SGD
         plt.figure(1)
         plt.subplot(211)
         plt.scatter(Y_test, Y_pred)
         plt.xlabel("Prices: $Y_i$")
         plt.ylabel("Predicted prices: $\hat{Y}_i$")
         plt.title("Prices vs Predicted prices: Sklearn SGD")
         plt.show()
         # Implemented SGD
         plt.subplot(212)
         plt.scatter([y_test], [(np.dot(np.asmatrix(x_test), optimal_w) + optimal_b)])
         plt.xlabel("Prices: $Y_i$")
         plt.ylabel("Predicted prices: $\hat{Y}_i$")
         plt.title("Prices vs Predicted prices: Implemented SGD")
         plt.show()
```



```
In [27]: # Distribution of error
    delta_y_im = np.asmatrix(y_test) - (np.dot(np.asmatrix(x_test), optimal_w) + optimal_b)
    delta_y_sk = Y_test - Y_pred
    import seaborn as sns;
    import numpy as np;
    sns.set_style('whitegrid')
    sns.kdeplot(np.asarray(delta_y_im)[0], label = "Implemented SGD", bw = 0.5)
    sns.kdeplot(np.array(delta_y_sk), label = "Sklearn SGD", bw = 0.5)
    plt.title("Distribution of error: $y_i$ - $\hat{y}_i$")
    plt.xlabel("Error")
    plt.ylabel("Density")
    plt.legend()
    plt.show()
```



```
In [28]: # Distribution of predicted value
    sns.set_style('whitegrid')
    sns.kdeplot(np.array(np.dot(np.asmatrix(x_test), optimal_w) + optimal_b).T[0], label = "Implemented SGD")
    sns.kdeplot(Y_pred, label = "Sklearn SGD")
    plt.title("Distribution of prediction $\hat{y}_i$")
    plt.xlabel("predicted values")
    plt.ylabel("Density")
    plt.show()
```


Conclusions

- 1. MSE should be zero as this is our goal, but as observed the Regression output lines are not fitting the data up to that extent. It is just fine.
- 2. As Comparison between SKlearn SGD Linear Regression and SGD implemented in python are almost similar, but SKlearn SGD Linear Regression performed slightly better.
- 3. Both the Models performed fine but they are not the best models.