ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Môn: TOÁN; Khối D (Đáp án - thang điểm gồm 04 trang)

Câu	Đáp án	Điểm
1	a) (1,0 điểm)	•
(2,0 điểm)	Khi $m=1$, hàm số trở thành $y=\frac{2}{3}x^3-x^2-4x+\frac{2}{3}$. • Tập xác định: $D=\mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y'=2x^2-2x-4$; $y'=0 \Leftrightarrow x=-1$ hoặc $x=2$.	0,25
	Các khoảng đồng biến: $(-\infty; -1)$ và $(2; +\infty)$; khoảng nghịch biến $(-1; 2)$. - Cực trị: Hàm số đạt cực đại tại $x = -1$, $y_{CD} = 3$, đạt cực tiểu tại $x = 2$, $y_{CT} = -6$. - Giới hạn: $\lim_{x \to -\infty} y = -\infty$, $\lim_{x \to +\infty} y = +\infty$,	0,25
	- Bằng biến thiên:	0,25
	• Đồ thị: 2 -1 0 x	0,25
	b) (1,0 điểm)	L
	Ta có $y' = 2x^2 - 2mx - 2(3m^2 - 1)$.	0,25
	Đồ thị hàm số có hai điểm cực trị khi và chỉ khi phương trình $y' = 0$ có hai nghiệm phân biệt $\Leftrightarrow 13m^2 - 4 > 0 \Leftrightarrow m > \frac{2\sqrt{13}}{13}$ hoặc $m < -\frac{2\sqrt{13}}{13}$.	0,25
	Ta có: $x_1 + x_2 = m$ và $x_1 x_2 = 1 - 3m^2$, do đó $x_1 x_2 + 2(x_1 + x_2) = 1 \Leftrightarrow 1 - 3m^2 + 2m = 1$	0,25
	$\Leftrightarrow m = 0$ hoặc $m = \frac{2}{3}$. Kiểm tra điều kiện ta được $m = \frac{2}{3}$.	0,25

Câu	Đáp án	Điểm
2	Phương trình đã cho tương đương với: $(2\sin x + 2\cos x - \sqrt{2})\cos 2x = 0$.	0,25
(1,0 điểm)	• $\cos 2x = 0 \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2} \ (k \in \mathbb{Z}).$	0,25
	• $2\sin x + 2\cos x - \sqrt{2} = 0 \Leftrightarrow \cos\left(x - \frac{\pi}{4}\right) = \frac{1}{2}$	0,25
	$\Leftrightarrow x = \frac{7\pi}{12} + k2\pi \text{ hoặc } x = -\frac{\pi}{12} + k2\pi (k \in \mathbb{Z}).$ Vậy các nghiệm của phương trình đã cho là:	0,25
	$x = \frac{\pi}{4} + \frac{k\pi}{2}, x = \frac{7\pi}{12} + k2\pi, x = -\frac{\pi}{12} + k2\pi \ (k \in \mathbb{Z}).$	
3 (1,0 điểm)	$x = \frac{\pi}{4} + \frac{k\pi}{2}, x = \frac{7\pi}{12} + k2\pi, x = -\frac{\pi}{12} + k2\pi \ (k \in \mathbb{Z}).$ Hệ đã cho tương đương với: $\begin{cases} xy + x - 2 = 0 & (1) \\ (2x - y + 1)(x^2 - y) = 0 & (2) \end{cases}$	0,25
	• $2x - y + 1 = 0 \Leftrightarrow y = 2x + 1$. Thay vào (1) ta được $x^2 + x - 1 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{5}}{2}$. Do đó ta được các nghiệm $(x; y) = \left(\frac{-1 + \sqrt{5}}{2}; \sqrt{5}\right)$ và $(x; y) = \left(\frac{-1 - \sqrt{5}}{2}; -\sqrt{5}\right)$.	0,25
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	• $x^2 - y = 0 \Leftrightarrow y = x^2$. Thay vào (1) ta được $x^3 + x - 2 = 0 \Leftrightarrow (x - 1)(x^2 + x + 2) = 0$	0,25
	\Leftrightarrow $x = 1$. Do đó ta được nghiệm $(x; y) = (1; 1)$. Vậy hệ phương trình đã cho có các nghiệm là:	0.25
	$(x; y) = (1; 1), (x; y) = \left(\frac{-1 + \sqrt{5}}{2}; \sqrt{5}\right), (x; y) = \left(\frac{-1 - \sqrt{5}}{2}; -\sqrt{5}\right).$	0,25
4 (1,0 điểm)	$I = \int_{0}^{\frac{\pi}{4}} x dx + \int_{0}^{\frac{\pi}{4}} x \sin 2x dx = \frac{x^{2}}{2} \Big _{0}^{\frac{\pi}{4}} + \int_{0}^{\frac{\pi}{4}} x \sin 2x dx = \frac{\pi^{2}}{32} + \int_{0}^{\frac{\pi}{4}} x \sin 2x dx.$	0,25
	Đặt $u = x$; $dv = \sin 2x dx$, suy ra $du = dx$; $v = -\frac{1}{2}\cos 2x$.	0,25
	Khi đó $\int_{0}^{\frac{\pi}{4}} x \sin 2x dx = -\frac{1}{2} x \cos 2x \Big _{0}^{\frac{\pi}{4}} + \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos 2x dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos 2x dx$	0,25
	$= \frac{1}{4}\sin 2x \Big _0^{\frac{\pi}{4}} = \frac{1}{4}. \text{ Do d\'o } I = \frac{\pi^2}{32} + \frac{1}{4}.$	0,25
5 (1,0 điểm)	Tam giác $A'AC$ vuông cân tại A và $A'C = a$ nên $A'A = AC = \frac{a}{\sqrt{2}}. \text{ Do dó } AB = B'C' = \frac{a}{2}.$	0,25
	$V_{ABB'C'} = \frac{1}{3}B'C'.S_{\Delta ABB'} = \frac{1}{6}B'C'.AB.BB' = \frac{a^3\sqrt{2}}{48}.$	0,25
	Gọi H là chân đường cao kẻ từ A của $\Delta A'AB$. Ta có $AH \perp A'B$ và $AH \perp BC$ nên $AH \perp (A'BC)$, nghĩa là $AH \perp (BCD')$. Do đó $AH = d(A, (BCD'))$.	0,25
	Ta có $\frac{1}{AH^2} = \frac{1}{AB^2} + \frac{1}{AA^{12}} = \frac{6}{a^2}$.	0,25
	Do đó $d(A,(BCD')) = AH = \frac{a\sqrt{6}}{6}$.	

Câu	Đáp án	Điểm
6 (1,0 điểm)	Ta có $(x-4)^2 + (y-4)^2 + 2xy \le 32 \Leftrightarrow (x+y)^2 - 8(x+y) \le 0 \Leftrightarrow 0 \le x+y \le 8.$	0,25
(1,0)	$A = (x+y)^3 - 3(x+y) - 6xy + 6 \ge (x+y)^3 - \frac{3}{2}(x+y)^2 - 3(x+y) + 6.$	
	Xét hàm số: $f(t) = t^3 - \frac{3}{2}t^2 - 3t + 6$ trên đoạn [0; 8].	0,25
	Ta có $f'(t) = 3t^2 - 3t - 3$, $f'(t) = 0 \Leftrightarrow t = \frac{1 + \sqrt{5}}{2}$ hoặc $t = \frac{1 - \sqrt{5}}{2}$ (loại).	
	Ta có $f(0) = 6$, $f\left(\frac{1+\sqrt{5}}{2}\right) = \frac{17-5\sqrt{5}}{4}$, $f(8) = 398$. Suy ra $A \ge \frac{17-5\sqrt{5}}{4}$.	0,25
	Khi $x = y = \frac{1 + \sqrt{5}}{4}$ thì dấu bằng xảy ra. Vậy giá trị nhỏ nhất của A là $\frac{17 - 5\sqrt{5}}{4}$.	0,25
7.a (1,0 điểm)	Tọa độ điểm A thỏa mãn hệ $\begin{cases} x+3y=0\\ x-y+4=0 \end{cases} \Rightarrow A(-3;1).$	0,25
	Gọi N là điểm thuộc AC sao cho MN//AD. Suy ra MN có	
	phương trình là $x - y + \frac{4}{3} = 0$. Vì N thuộc AC , nên tọa $AC = \frac{A}{3} = 0$ A	0,25
	độ của điểm N thỏa mãn hệ $\begin{cases} x - y + \frac{4}{3} = 0 \\ x + 3y = 0 \end{cases} \Rightarrow N\left(-1; \frac{1}{3}\right).$	
	Dường trung trực Δ của MN đi qua trung điểm của MN và vuông góc với AD , nên có phương trình là $x + y = 0$.	
	Gọi I và K lần lượt là giao điểm của Δ với AC và AD .	
	Suy ra tọa độ của điểm I thỏa mãn hệ $\begin{cases} x+y=0 \\ x+3y=0, \end{cases}$	0,25
	và tọa độ của điểm K thỏa mãn hệ $\begin{cases} x+y=0\\ x-y+4=0. \end{cases}$	
	$ \underline{\overrightarrow{AC}} = 2\overrightarrow{AI} \Rightarrow C(3;-1); \overrightarrow{AD} = 2\overrightarrow{AK} \Rightarrow D(-1;3); $	
	$\overrightarrow{BC} = \overrightarrow{AD} \Rightarrow B(1;-3).$ $\overrightarrow{BC} = \overrightarrow{AD} \Rightarrow B(1;-3).$	0,25
8.a (1,0 điểm)	Gọi H là hình chiếu vuông góc của I trên (P) . Suy ra H là tâm của đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (S) cần viết phương trình.	0,25
	Ta có $IH = d(I;(P)) = 3$.	0,25
	Bán kính của mặt cầu (S) là: $R = \sqrt{3^2 + 4^2} = 5$.	0,25
	Phương trình của mặt cầu (S) là: $(x-2)^2 + (y-1)^2 + (z-3)^2 = 25$.	0,25
9.a (1,0 điểm)	Ta có: $(2+i)z + \frac{2(1+2i)}{1+i} = 7 + 8i \Leftrightarrow (2+i)z = 4 + 7i$	0,25
	$\Leftrightarrow z = 3 + 2i$.	0,25
	Do đó $w = 4 + 3i$.	0,25
	Môđun của w là $\sqrt{4^2 + 3^2} = 5$.	0,25

Câu	Đáp án	Điểm
7.b (1,0 điểm)	Gọi I là tâm của đường tròn (C) cần viết phương trình. Do $I \in d$ nên tọa độ của I có dạng $I(t;2t+3)$.	0,25
(1,0 utcm)	$AB = CD \Leftrightarrow d(I,Ox) = d(I,Oy) \Leftrightarrow t = 2t+3 \Leftrightarrow t = -1 \text{ hoặc } t = -3.$	0,25
	• Với $t = -1$ ta được $I(-1;1)$, nên $d(I;Ox) = 1$. Suy ra, bán kính của (C) là $\sqrt{1^2 + 1^2} = \sqrt{2}$. Do đó (C) : $(x+1)^2 + (y-1)^2 = 2$.	0,25
	• Với $t = -3$ ta được $I(-3; -3)$, nên $d(I; Ox) = 3$. Suy ra, bán kính của (C) là $\sqrt{3^2 + 1^2} = \sqrt{10}$. Do đó (C) : $(x+3)^2 + (y+3)^2 = 10$.	0,25
8.b	Do $M \in d$ nên tọa độ của điểm M có dạng $M(1+2t;-1-t;t)$.	0,25
(1,0 điểm)	Ta có $\overrightarrow{AM} = (2t; -t; t-2), \overrightarrow{BM} = (-1+2t; -t; t).$	0,25
	Tam giác \overrightarrow{AMB} vuông tại $M \Leftrightarrow \overrightarrow{AM}.\overrightarrow{BM} = 0$	0,23
	$\Leftrightarrow 2t(-1+2t)+t^2+t(t-2)=0 \Leftrightarrow 6t^2-4t=0$	0,25
	$\Leftrightarrow t = 0 \text{ hoặc } t = \frac{2}{3}. \text{ Do đó } M(1;-1;0) \text{ hoặc } M(\frac{7}{3};-\frac{5}{3};\frac{2}{3}).$	0,25
9.b	Phương trình bậc hai $z^2 + 3(1+i)z + 5i = 0$ có biệt thức $\Delta = -2i$.	0,25
(1,0 điểm)	$=(1-i)^2$.	0,25
	Do đó nghiệm của phương trình là $z = \frac{-3(1+i)+(1-i)}{2} = -1-2i$	0,25
	hoặc $z = \frac{-3(1+i)-(1-i)}{2} = -2-i$.	0,25

----- HÉT-----