Recordemos del cálculo de una variable que si y = f(x) es una función de clase C^1 y $f'(x_0) \neq 0$, entonces, en un entorno de x_0 podemos despejar localmente x para obtener la función inversa: $x = f^{-1}(y)$. Sabemos que $(f^{-1})'(y) = 1/f'(x)$; es decir, dx/dy = 1/(dy/dx). Es razonable entonces pensar que y = f(x) se puede invertir porque $f'(x_0) \neq 0$ indica que la pendiente de y = f(x) es distinta de cero, por lo que la gráfica está subiendo o bajando en las proximidades de x_0 . Así, si reflejamos la gráfica con respecto a la recta y = x, sigue siendo una gráfica cerca de (x_0, y_0) , donde $y_0 = f(x_0)$. Por ejemplo, en la Figura 3.5.1, podemos invertir y = f(x) en el recuadro sombreado, de modo que $x = f^{-1}(y)$ está definida en este rango.

Figura 3.5.1 Si $f'(x_0) \neq 0$, entonces y = f(x) es localmente invertible.

Un resultado particular

A continuación vamos a ver el caso de funciones con valores reales de las variables x_1, \ldots, x_n y z.

Teorema 11 Caso particular del teorema de la función implícita Supóngase que $F: \mathbb{R}^{n+1} \to \mathbb{R}$ tiene derivadas parciales continuas. Denotamos los puntos en \mathbb{R}^{n+1} por (\mathbf{x}, z) , donde $\mathbf{x} \in \mathbb{R}^n$ y $z \in \mathbb{R}$ y suponemos que (\mathbf{x}_0, z_0) satisface

$$F(\mathbf{x}_0, z_0) = 0$$
 y $\frac{\partial F}{\partial z}(\mathbf{x}_0, z_0) \neq 0$.

Entonces existen una bola U que contiene \mathbf{x}_0 en \mathbb{R}^n y un entorno V de z_0 en \mathbb{R} tales que existe una única función $z = g(\mathbf{x})$ definida para \mathbf{x} en U y z en V que satisface

$$F(\mathbf{x}, g(\mathbf{x})) = 0.$$

Además, si \mathbf{x} en U y z en V satisfacen $F(\mathbf{x},z)=0$, entonces $z=g(\mathbf{x})$. Por último, $z=g(\mathbf{x})$ es continuamente diferenciable, con la derivada dada por

$$\mathbf{D}g(\mathbf{x}) = -\frac{1}{\frac{\partial F}{\partial z}(\mathbf{x}, z)} \left. \mathbf{D}_{\mathbf{x}} F(\mathbf{x}, z) \right|_{z=g(\mathbf{x})},$$