

FIRST SEMESTER 2021-2022 Course Handout Part II

Date: 20/08/2021

In addition to Part I (General Handout for all courses appended to the time table), this portion gives farther details regarding the course:

Course No. : CHEM F213

Course Title : Physical Chemistry-II

Instructor-in charge : K. Sumithra

Scope and Objective: The principles of quantum mechanics will be introduced, and application to problems in electronic structure of atoms, chemical bonding and spectroscopy will be discussed.

Text Books: 'Quantum Chemistry', Donald A. McQuarrie, University Science Books (First Indian Edition 2003, Viva Books Private Limited).

Reference Books:

- (a) 'Quantum Chemistry', Ira N Levine, 5th ed., PHI (2008).
- (b) Physical Chemistry', P W Atkins & Julio de Paula, 8th ed., OUP (2006).
- (c) 'Introduction to Quantum Mechanics with applications to Chemistry', Linus Pauling and E. Bright Wilson, Jr., Dover (1962).

Course Plan:

Lect. No.	Topics to be covered	Learning Objectives	Chapter in the Text Book		
	Development of Quantum Theory				
1-2	Origins of Quantum	Blackbody Radiation, Photoelectric Effect, Atomic	1.1-1.10		
	Theory	Vibration in Crystals, Line Spectra & Bohr Model of H			
		Atom.			
3	Wave-Particle	De Broglie's postulate, Heisenberg Uncertainty Principle	1.11-1.14		
	Duality				
4-5	The Wave Equation	Normal modes, superposition, Fourier series	2.1-2.5		
6-8	Postulates of	Wave function,, Operators and Observables, Schrodinger	3.1-3.4,		
	Quantum	equation, Time Evolution and Stationary States,	3.7,8,11,		
	Mechanics	Uncertainty	4.1-4.9		
	Some Exactly Solvable Problems				
9-10	Particle in a Box	Bound States, Zero Point Energy, Symmetry,	3.4-3.11,		
		Superposition States, Degeneracy in 2 and 3 dimensions	6.1-6.2		
11-12	Finite Potential	Bound States in Wells, Probability Current, Reflection and	Class		
	Wells and Barriers	Tunneling	Notes, Ref		
			(b) 12.3		

			T = 1 = 1 = -	
13-15	Harmonic Oscillator	Eigenstates, Molecular Vibration	5.1-5.13	
16-18	Angular Momentum	Energy levels, Commutation Relations and	6.3-6.7,	
	and Rigid Rotator	Wavefunctions, Molecular Rotation	6.10	
19-20	The Hydrogen atom	Energy levels, Wavefunctions – Angular and Radial Parts, Orbitals	6.8-6.11	
	Approximation Methods			
21-23	Variation Method	Variation theorem, application including Linear Variation	6.12, 7.3- 7.7, 8.1,2	
24-25	Stationary State	Systematic Correction of Wavefunctions and Energies,	7.1,2, 8.2	
Perturbation Theory		Treatment of Degenerate States	Ref (a) 9.1-	
	Many Electron Atoms			
26-27	Many Electron	Systems of Identical Particles, Spin & Permutation	8.4-6	
	Wavefunctions	Symmetry, Pauli Principle, Slater Determinants		
28	Atomic Terms and	Addition of Angular Momenta (S.S), Spin-Orbit	8.9-8.12	
	Spectra	Interaction (S.S), Selection Rules		
	Molecules			
29	Born-Oppenheimer Approximation	Separation of nuclear and electronic motion	9.1	
30-31	Valence Bond Theory – H ₂	Localized Electron Pair Bonds	9.2-9.5	
32-33	Molecular Orbital Theory – H ₂ ⁺ , H ₂	Linear Combination of Atomic Orbitals, Comparison to VB Picture	9.6-9.8	
34-35	Homonuclear Diatomic Molecules	Molecular Electronic Configuration, SCF-LCAO-MO		
36-37	Hückel MO theory	-electron approximation for conjugated systems, energies and delocalization, charge distribution and bond orders	9.21-9.24	
38-40	Molecular	Vibration-Rotation Spectra, Selection Rules, Electronic	10.1-10.18	
	Spectroscopy	Spectra and the Franck-Condon Principle		

Expected Learning outcomes:

Lectures	Learning outcome			
1-2	Relate the need for quantum theory, Spell the mathematical background for quantum theory			
3-5	Define and consolidate new concepts to be used in quantum mechanics			
6-8	Define the quantum mechanical postulates to make use of in application			
9-10	Apply quantization of states and zero point energy in very simple systems, like, PIAB			
11-12	Solve bound states in potential wells and Identify the working principle of STM			
13-15	Define and interpret vibrational spectroscopy of molecules.			
16-18	Define and solve rigid rotator as model for rotating diatomic molecules			
19-20	Identify atomic orbital picture of H-atom from quantum mechanics.			
21-23	Evaluate the upper bound to the ground state energy of a system employing model systems.			
24-25	Estimate ground state energy of various systems from the unperturbed state of the system			
26	Identify spin as another coordinate.			
27-28	Examine the allowed and forbidden transition in atoms			
29	Express molecular wavefunction as product of nuclear and electronic wavefunctions			

30-31	Demonstrate successful description of chemical bond			
32-33	Examine the application of molecular orbital theory to diatomic molecules			
34-35	Compare experimental observations along with theoretical prediction for diatomic molecules			
36-37	Explore the quantum chemical approximation of aromatic systems.			
38	Discuss quantum-mechanical approach for spectroscopy. Explain rotational and vibrational			
	spectroscopy			
39	Recognize the fundamentals of electronic spectroscopy.			
40	Formulate the allowed and forbidden transition.			

Evaluation Scheme:

Component	Duration	Weightage	Date and Time	Nature of
	(min)	(%)		Component
Midsem	90	30	22/10/2021 9.00 -	Open book
			10.30AM	
Assignment/Class Tests	-	30	continuous	Open book
Comprehensive	120	40	22/12 AN	Closed book
Examination				

Note: Active and regular participation in the class discussions is expected from each student.

Chamber consultation hour: To be announced through a notice.

Make-up policy: for genuine cases only.

Notices concerning the course will be displayed in **CMS**.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge CHEM F213

