기계학습 활용 (10주차)

2019. 11. 15. Prof. Seung Ho Lee

강의 주제 : 딥러닝 활용(모델 설계)

- 이론
 - 딥러닝 모델 설계하기
- 실습
 - 딥러닝 모델 설계하기 (폐암 수술 환자의 생존율 예측하기)

지난 강의 요약

- **벡ሬ트론**Perceptron
 - 딥러닝의 기본 구성요소인 퍼셉트론의 동작 원리 이해
 - 퍼셉트론을 다충 구조로 쌓음으로써 XOR 문제와 같이 선형적 으로 해결할 수 없는 문제 해결을 보임
 - 다츙 퍼셉트론의 학습 원리 소개
 - ✓ 경사 하강법에 기반한 오차 역전파 알고리즘

오늘 강의 요약

■ 목표

- 딥러닝의 신경망 구쪼 이해
- 실제 활용할 데이터 셋 형태 이해
- 파이썬과 케라스로 딥러닝의 신경망 모델 생성 및 평가

■ 문제

• "기존 환자의 데이터를 이용하여 새로운 환자의 생사를 예측하는 프로그램을 짜보이라."

• 일반 프로그래밍: 규칙을 사람이 직접 입력하여 답을 구한다.

• **머신러닝 :** 데이터와 답을 입력해서 <u>규칙</u>을 찾음. 이 규칙을 새로운 데이터에 적용! (예측)

- 머신러닝 적용 순서
 - 의사가 그 동안 집도한 수술 환자의 수술 전 상태(=속성)와 수술 후 의 생존여부(=정답)를 포함한 데이터를 준비

- 머신러닝 적용 순서
 - 기존 환자의 데이터가 머신러닝 알고리즘에 입력되는 순간 규칙 (=패턴)이 분석됨

- 머신러닝 적용 순서
 - 분석된 규칙을 새로운 환자 데이터에 적용하여 생존 여부 예측

딥러닝 모델

0층 1층 2층

0층

1층 2층

3층

4층

입력층 은닉층

출력층

입력층

은닉층 은닉층 은닉층

출력층

Input layer

Hidden layer

Output layer

더 깊게

hidden layer 1 hidden layer 2 hidden layer 3

Neural Network (신경망)

Deep Neural Network (심층 신경망) → 심층 신경망을 학습하는 것이 딥러닝

: 노드 또는 뉴런이라고 함

- 입력충 노드 개수 설정
 - 데이터 속성 개수에 의해 결정됨

- 출력충 노드 개수 설정
 - 회귀: 1개
 - 이진 분류(클래스 2개) : 1개
 - ・ 다중 분류(클래스 3개 이상) : 클래스가 N개이면 노드도 N개

■ 입력충, 출력충 노드 개수 설정 예시

출력: 26개(=알파벳 개수)의 확률값(0~1)

A: 0.9

B: 0.001

C: 0.002

D: 0.002

• • •

Z: 0.001

- 은닉츙 개수 설정
 - 사용자가 임의로 설정 가능 ✓ 이래 그림에서는 충이 3개
- 은닉츙 별 노드 개수 설정
 - 사용자가 임의로 설정 가능
 ✓ 아래 그림에서는 9개씩

- 오차함수 설정
 - 대표적인 오차함수 : 평균 제곱근 오차
 - 그 밖에 : 평균 절대 오차, 이항 교차 엔트로피 등

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해

예측단계 (수능)

그림 출처 : 구글 검색

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해

문제지	문제1	문제2	문제3	문제4	문제5	문제6	 문제100
해답지	정답1	정답2	정답3	정답4	정답5	정답6	 정답100

먼저 모의고사 1회분을 가지고 학습해봅시다. 이 1회분은 100문항이 있고, 해답지도 제공합니다. 문제를 푼 뒤 해답지와 맞춰보면서 학습이 이루어지기 때문에 해답지가 없으면 학습이 안 됩니다.

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해 배치사이즈

비교 후 가중치 갱신

배치사이즈는 몇 문항을 풀고 해답을 맞추는 지를 의미합니다. 100문항일 때, 배치사이즈가 100이면 전체를 다 풀고 난 뒤에 해답을 맞춰보는 것입니다. 우리가 해답을 맞춰볼 때 '아하, 이렇게 푸는구나'라고 느끼면서 학습하는 것처럼 모델도 이러한 과정을 통해 가중치가 갱신됩니다. 전체 문제를 푼 뒤 해답과 맞추므로 이 때 가중치 갱신은 한 번만 일어납니다.

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해 배치사이즈

배치사이즈가 10이면 10문제씩 풀어보고 해 답을 맞춰봅니다.

100문항을 10문제씩 나누어서 10번 해답을 맞추므로 가중치 갱신 은 10번 일어납니다.

비교 후 가중치 갱신

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해 배치사이즈

배치사이즈가 1이면 한 문제 풀고 해답 맞춰보고 또 한 문제 풀고 맞춰보고 하는 것입니다. 한 문제를 풀 때마다 가중치 갱신이 일어 나므로 횟수는 100번입니다.

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해 배치사이즈

100문제 다 풀고 해답을 맞히는 것과 1문제씩 풀고 해답을 맞히는 것은 어떤 차이가 있을까?

모의고사 1회분에 비슷한 문항이 있다고 가정했을 때, 배치사이즈가 100일 때는다 풀어보고 해답을 맞춰보기 때문에 한 문제를 틀릴 경우 이후 유사 문제를 모두 틀릴 가능성이 높음

배치사이즈가 1인 경우에는 한 문제씩 풀어보고 해답을 맞춰보기 때문에 유사문 제 중 첫 문제를 틀렸다고 하더라도 해답을 보면서 학습하게 되므로 나머지 문제 는 맞출 수도 있음

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해 에포크

에포크는 모의고사 1회분을 몇 번 풀어볼까 입니다. 즉 100문항의 문제들을 몇 번이나 반복해서 풀어보는 지 정하는 것입니다.

에포크가 20이면 모의고사 1회분을 20번 푸는 것입니다. 처음에는 같은 문제를 반복적으로 풀어보는 것이 무슨 효과가 있는 지 의문이 들었지만 우리가 같은 문제집을 여러 번 풀면서 점차 학습되듯이 모델도 같은 데이터셋으로 반복적으로 가중치를 갱신하면서 모델이 학습됩니다. 같은 문제라도 이전에 풀었을 때와 지금 풀었을 때가 학습상태(가중치)가 다르기 때문에 추가적인 학습이 일어납니다.

- 배치사이즈Batch size와 에포크Epoch 설정
 - 개념 이해 에포크

• 필요한 라이브러리와 함수를 불러오기

딥러닝을 구동하는 데 필요한 케라스 함수를 불러옵니다.

from keras.models import Sequential from keras.layers import Dense

필요한 라이브러리를 불러옵니다.

import numpy

• 'ThoraricSurgery.csv' 파일 : 폴란드의 브로츠와프 의과대학에서 2013년 공개한 폐암 수술 환자의 수술 전 진단 데이터와 수술 후 생존 결과를 기록한 실제 의료 기록 데이터

출처:

https://archive.ics.uci.edu/ml/datasets/Thoracic+Surgery+Data

준비된 수술 환자 데이터를 불러들입니다.

Data_set = numpy.loadtxt("ThoraricSurgery.csv", delimiter=",")

- 'ThoraricSurgery.csv' 파일 틀여다 보기
 - ✓ 모두 47○라인으로 이루어져 있고, 각 라인은 18개 항목으로 구분

- 모두 470라인으로 이루어져 있고, 각 라인은 18개 항목으로 구분
 - ✓ 1~17번 항목 : 속성 (종양 유형, 폐활량, 호흡 곤란 여부, 고통 정도, 기침, 흡연, 천식 여부 등)
 - ✓ 18번 : 클래스 (1: 사망, O: 생존)

		<mark>속성</mark>					클래스
		정보 1	정보 2	정보 3		정보 17	생존 여부
	1번째 환자	293	1	3.8		62	0
	2번째 환자	1	2	2,88		60	0
샘플 -	3번째 환자	8	3	3,19		66	1
	470번째 환자	447	8	5,2		49	0

• 환자의 기록과 생존 여부를 X와 Y로 구분하여 저장

속성 클래스 293 1 3.8 2.8 2 2,88 2,16 2 3.19 2.5 5.2 4.1

X = Data_set[:,0:17] # 속성

Y = Data_set[:,17] # 클래스

- 딥러닝 구조 설계 : 퍼셉트론 츙을 차곡차곡 추가
 - ✓ Sequential() 함수로 모델 선언
 - ✓ model.add()라는 라인을 추가하면 새로운 층이 만들어짐
 - ✓ 각 충은 Dense()라는 함수를 통해 구체적으로 구조가 결정됨

```
model = Sequential() # 모델 선언
model.add(Dense(30, input_dim=17, activation='relu')) # 입력층과 은닉층 설계
model.add(Dense(1, activation='sigmoid')) # 출력층 설계
```



```
model = Sequential() #모델 선언
model.add(Dense(30, input_dim=17, activation='relu')) # 입력층과 은닉층 설계
model.add(Dense(1, activation='sigmoid')) # 출력층 설계
```


model = Sequential() # 모델 선언

model.add(Dense(30, input_dim=17, activation='relu'))

입력층과 은닉층 설계: 데이터에서 17개의 값을 받아 은닉층의 30개 노드로 보낸다는 뜻

렐루(relu) 함수를 활성화 함수로 사용

model.add(Dense(1, activation='sigmoid'))

출력층 설계 : 출력층의 노드 수는 1개, 시그모이드 함수를 활성화 함수로 사용

렐루(ReLU) 함수

model = Sequential() # 모델 선언
model.add(Dense(30, input_dim=17, activation='relu'))

입력층과 은닉층 설계: 데이터에서 17개의 값을 받아 은닉층의 30개 노드로 보낸다는 뜻

렐루(relu) 함수를 활성화 함수로 사용

model.add(Dense(1, activation='sigmoid'))

출력층 설계: 출력층의 노드 수는 1개, 시그모이드 함수를 활성화 함수로 사용

- model.compile(): 앞서 지정한 모델에 대해 구체적인 학습 조건 설정
 - ✓ loss ^{옵션}: 신경망의 오차함수(=손실함수)의 종류를 설정
 - 여기서는 평균 제곱근 오차 사용
 - ✓ optimizer 옵션: 설정한 오차함수의 값을 줄여나가는 최적화 알고리즘의 종류
 - sgd : stochastic gradient descent (기본적인 경시 이강법)
 - ✓ metric ^{옵션}: 모델의 성능을 평가하는 척도 설정
 - 여기서는 정확도Accuracy를 성능 평가 척도로 사용

model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['accuracy'])

• [참고] 케라스에서 사용되는 대표적인 오차함수

* 실제 값을 yt, 예측 값을 yo라고 가정할 때

	mean_squared_error	평균 제곱 오차			
평균 제곱 계열 교차 엔트로피 계열		계신: mean(square(yt — yo))			
	mean_absolute_error	평균 절대 오차(실제 값과 예측 값 차이의 절댓값 평균)			
		계산: mean(abs(yt — yo))			
	mean_absolute_percentage_error	평균 절대 백분율 오차(절댓값 오차를 절댓값으로 나눈 후 평균)			
		계산: mean(abs(yt - yo)/abs(yt) (단, 분모 ≠ 0)			
	mean_squared_logarithmic_error	평균 제곱 로그 오차(실제 값과 예측 값에 로그를 적용한 값의 차이를			
		제곱한 값의 평균)			
		계산: mean(square((log(yo) + 1) - (log(yt) + 1)))			
	categorical_crossentropy	범주형 교차 엔트로피(일반적인 분류)			
	binary_crossentropy	이항 교차 엔트로피(두 개의 클래스 중에서 예측할 때)			

model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['accuracy'])

- model.fit(): 모델을 실행하는 함수
 - ✓ epoch=30 : 모든 샘플이 3O번 재사용될 때까지 실행을 반복하라는 뜻 (모든 샘플 47O개 x 3O번 재사용)
 - ✓ batch_size=10 : 모든 샘플 470개를 10개씩 끊어서 넣으라는 뜻

model.fit(X, Y, epochs=30, batch_size=10)

• 딥러닝 모델 평가 결과를 출력

print("\n Accuracy: %.4f" % (model.evaluate(X, Y)[1]))

In: model.evaluate(X, Y)

Out: [0.14480824178837715, 0.8510638285190502]

학습된 딥러닝 모델의 손실(오차함수 값) 학습된 딥러닝 모델의 정확도

• 최종 소스코드

딥러닝을 구동하는 데 필요한 케라스 함수를 불러옵니다.

from keras.models import Sequential from keras.layers import Dense

필요한 라이브러리를 불러옵니다.

import numpy


```
# 준비된 수술 환자 데이터를 불러들입니다.
Data_set = numpy.loadtxt("ThoraricSurgery.csv", delimiter=",")
# 환자의 기록과 수술 결과를 X와 Y로 구분하여 저장합니다.
X = Data_set[:,0:17]
Y = Data_set[:,17]
# 딥러닝 구조를 결정합니다(모델을 설정하고 실행하는 부분입니다).
model = Sequential()
model.add(Dense(30, input_dim=17, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```


딥러닝을 실행합니다.

model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['accuracy']) model.fit(X, Y, epochs=30, batch_size=10)

결과를 출력합니다.

print("\n Accuracy: %.4f" % (model.evaluate(X, Y)[1]))

• 실행 결과

✓ 85.11% : 예측 정확도

✓ 기존 폐암 환자의 데이터를 딥러닝에 넣고 학습시킨 결과, 새로운 환자의 수술 후 생존을 100번 중 약 85번은 맞힐 수 있다는 것을 의미

