Le Réseau neuronal convolutif

Chaolei CAI

Paris VIII

April 28, 2020

- Le néocognitron
 - Inspiration biologique
 - Lien avec Hubel et Wiesel
 - Formule de la sortie d'une cellule S
 - Exemple de detection numérique
- Réseau neuronal convolutif
 - Architecture du réseau
 - Rectified Linear Unites ReLUs
 - Couches de convolution
 - Couches de pooling
 - Présentation des résultats
- Elphant in the room
 - Présentation de l'expérience
- 4 bibiographie

Le modèle vivant

Correspondance avec le modèle de Hubel et Wiesel et le Néocognitron

Formule de la sortie d'une cellule S

$$u_{Sl}(k_{l}, \mathbf{n}) = r_{l} \cdot \varphi \left[\frac{1 + \sum_{k_{l-1}=1}^{K_{l-1}} \sum_{\mathbf{v} \in S_{l}} a_{l}(k_{l-1}, \mathbf{v}, k_{l}) \cdot u_{Cl-1}(k_{l-1}, \mathbf{n} + \mathbf{v})}{1 + \frac{2r_{l}}{1 + r_{l}} \cdot b_{l}(k_{l}) \cdot v_{Cl-1}(\mathbf{n})} - 1 \right],$$

Auto-organisation du réseau

Auto-organisation du réseau

Auto-organisation du réseau

Exemple de detection numérique

Exemple de detection numérique

Architecture du réseau

Architecture du réseau | modèle initial

Rectified Linear Unites ReLUs

Couches de convolution

Produit de convolution

Chaolei CAI (Paris 8)

Produit de convolution

Couches de pooling

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. **Left:** In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume depth is preserved. **Right:** The most common downsampling operation is max, giving rise to **max pooling**, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

Présentation des résultats

Présentation des résultats

Et après...

Image initial

Image initial

[2] [3] [4] [6] [7] [5] [1]

Danfei Xu Fei-Fei Li Ranjay Krishnam. CS231n: Convolutional Neural Networks for Visual Recognition. URL: http://cs231n.stanford.edu/.

Kunihiko Fukushima. "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position". In: Biological Cybernetics (Apr. 1980). URL: https://lrn.no-ip.info/other/books/neural/Neocognitron/1980_Neocognitron%20A%20Self-organizing%20Neural%20Network%20Model%20for%20a%20Mechanism%20of%20Pattern%20Recognition%20Unaffected%20by%20Shift%20in%20Position.pdf.

Hubel and Wiesel. "Receptive fields of single neurones in the cat's striate cortex.". In: *MEDLINE* (Oct. 1959).

- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105. URL: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
- Hugo Larochelle. Support de cours Master Informatique. URL: https://sites.google.com/view/ift-6135h2020/lectures?authuser=0.
- V. Nair and G. E. Hinton. "Rectified linear units improve restricted boltzmann machines". In: ed. by F. Pereira et al. 27th International Conference on Machine Learning, 2010.
- Amir Rosenfeld, Richard Zemel, and John K. Tsotsos. *The Elephant in the Room.* 2018. arXiv: 1808.03305 [cs.CV].