IBM Advanced Data Science Specialization

Capstone Project

Manchala Krishna Kumar

Date: 29.04.2024

Data set-fraud detection

Data set is on auto insurance claims (link).

- ▶ Q1 2015
- ▶ 1000 claims (only)
- ▶ 1 record per claim
- 40 features
- Fraud is labeled

Data set provides details about customer, insurance policy, incident and cost.

Use case -binary classification

Early detection of fraudulent claims enables company to act.

- Improve efficiency in handling claims.
- Reduce cost of fraud.

Scientific approach can help the insurance company to:

- **Explore influential factors** that correlate with fraudulent claims.
- Predict fraudulent claims in automated way using Machine Learning algorithms.

Technology

- ▶ **IBM Watson Cloud** with jupyter notebooks
- Python with with data science libraries (numpy, pandas, seaborn, scikit-learn and keras)

Data assessment-target variable

Historical data shows that 24.7% of claims are frauds.

Total claim amount follows a normal distribution

Data assessment-incident type

- Collisions fraud is more frequent and costs are higher
- Vehicle claim amount is major contributor to total claim amount

Data assessment – incident severity

Distribution of regular and fraud claims per incident severity

Data assessment – insured occupation

Distribution of regular and fraud claims per customer occupation

Data quality assessment

Numerical analysis + visualizations with **pandas** and **seaborn**.

Data Types

Conversion and validation of Datetime fields, object to categories

Ranges

Numerical variables range check with *df.describe()*. Non-negative claim amounts, valid age ranges, valid auto years, ...

Emptiness

Checking for null entries, dropping columns or rows, identifying unknown vs. missing values.

Uniqueness

Are duplicates present where undesired? E.g. incident IDs

Set memberships

Are only allowed values chosen for categorical or ordinal fields? E.g. gender, occupation, hobbies, relationship, state, city, ...

Regular Expressions

State abbreviation must have 2 letters only

Feature correlations

Between variable correlation analysis

Pearson, Cramer's V

Within variable distribution to target correlation

Histograms, scatterplots, boxplots, violinplots

number of vehicles involved

Performance metric

We are dealing with binary classification and an <u>unbalanced dataset</u>, so the chosen evaluation metric is **f1-score**.

$$F_1 = \ 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

robust measure which penalizes false positives and false negatives

70/30 split to **Train** and **Test** dataset

- Models are trained using cross-validation with goal to optimize val_f1score.
- Final performance is measured on test dataset and f1score for positive values (detecting fraud)

Tested algorithms

Model	CV val_f1-score	Comment
Majority class prediction	0.00	Predicting all claims as not fraud. No value from this model.
Logistic Regresion	0.03	Poor results. Not very useful.
Decision Tree	0.56	This class of models is well suited for the problem. Bias toward training set.
Random Forests	0.32	Too much noise from week learners.
LightGMB	0.65	Big step forward. Generalizes really well. f1- score on unseen data 0.64
XGBoost	0.64	Similar performance. Generalizes really well.
Neural Network, no tuning	0.51	1 hidden layer, # neurons (95 or 45), no Dropout
Neural Network, tuned	0.72	1 hidden layer, 80 neurons, Dropout (0.1), uniform initializer, logcosh loss, Nadam optimizer f1-score on unseen data 0.63

LightGBM

Summary

Best performing model is **LightGBM** with **f1-score 0.64** for detecting fraud on unseen data.

'boosting': 'gbdt',

'num_leaves': 30,

'feature_fraction': 0.5,

'bagging_fraction': 0.5,

'bagging_freq': 20,

'learning_rate': 0.05,

Model is trained with clean dataset with most influential features extracted.

Classification report

	precision	recall	f1-score	support
0	0.88	0.86	0.87	220
1	0.63	0.66	0.65	80
micro avg	0.75	0.81	0.81	300
macro avg		0.76	0.76	300
weighted avg		0.81	0.81	300

Confusion matrix:

[[189 31] [27 53]]

LightGBM Performance curve and important features

Area under the curve is **0.76**

Most important features

Neural Network Summary

2nd best performing model is a **fully connected**, **single hidden layer NN** with **f1-score 0.63** for detecting fraud on unseen data.

'learning rate': 1.5

'first_neuron': 80

'batch_size': 23

'epochs': 250

'dropout': 0.1,

'kernel_initializer': uniform

'optimizer': Nadam

'losses': logcosh

'activation': elu,

'last_activation': sigmoid

Classification report

	precision	recall	f1-score	support
0	0.86	0.87	0.87	220
1	0.64	0.62	0.63	80
micro avg	0.81	0.81	0.81	300
macro avg	0.75	0.75	0.75	300
weighted avg	0.81	0.81	0.81	300

Confusion matrix:

[[192 28] [30 50]]

Neural Network Performance curve

Area under the curve is 0.75

Using the model

Trained model can be used when new insurance claim is received.

- 1. Raw data is collected for new claim.
- 2. Raw data enters data cleaning and transformation pipeline.
- 3. Prepared data is fed into the pre-trained model.
- 4. Model returns a probability that the claim is fraudulent.
- 5. This information can be used to adjust further steps in processing the claim.

Further resources

- Kaggle dataset https://www.kaggle.com/buntyshah/auto-insurance- claims-data
- ► Talos framework https://github.com/autonomio/talos
- Jupyter notebooks on IBM Cloud