Numerical Computation

Yen-Chi Chen

2018-10-18

Overflow & Underflow

The root of all evil

• IEEE 754

- value = $sign \times 1$. fraction $\times 2^{exponent}$
 - Except for 0
- For example:

$$-12345 = -1 \times 1.2345 \times 10^4$$

Memory is finite!!!

The root of all evil

• IEEE 754

- value = $sign \times 1$. fraction $\times 2^{exponent}$
 - Except for 0
- For example:

$$-12345 = -1 \times 1.2345 \times 10^4$$

Memory is finite!!!

Too close to zero

- Too close to zero
- Min of normal number
 - $\pm 2^{-126} \approx \pm 3.4 \times 10^{38}$

- Too close to zero
- Min of normal number (hardly)

•
$$\pm 2^{-126} \approx \pm 3.4 \times 10^{38}$$

- Too close to zero
- Min of normal number (hardly)
 - $\pm 2^{-126} \approx \pm 3.4 \times 10^{38}$
- Computation error (usually)
 - a + b a ,where a >>>> b 1000 + 0.05 - 1000= 1000.05 - 1000= $1.00005 \times 10^3 - 1000$ = $1.0000 \times 10^3 - 1000$ = 0

- Too close to zero
- Min of normal number (hardly)

•
$$\pm 2^{-126} \approx \pm 3.4 \times 10^{38}$$

Computation error (usually)

```
• a + b - a ,where a >>>> b

1000 + 0.05 - 1000

= 1000.05 - 1000

= 1.00005 \times 10^3 - 1000

= 1.0000 \times 10^3 - 1000

= 0
```

```
• a - a + b

1000 - 1000 + 0.05

= 0 + 0.05

= 0.05
```

Overflow

- numbers with large magnitude
 - -∞ & +∞
- Undefined: NaN (Not-a-number)
 - 0/0
 - $(\pm \infty)/(\pm \infty)$
 - $\infty \infty$
 - 0 * ∞
 - $\sqrt{-1}$ (non-real number
 - ...

Softmax

$$softmax(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}$$

• If
$$\forall i$$
, $x_i = c$, then $softmax(\mathbf{x})_i = \frac{1}{n}$

Softmax

$$softmax(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}$$

- If $\forall i$, $x_i = c$, then $softmax(\mathbf{x})_i = \frac{1}{n}$
- When c is very negative
 - $\exp(c) = 0 \leftarrow \text{underflow}$
 - $softmax(\mathbf{x})_i = 0/0 = NaN \leftarrow undefined$

Softmax

$$softmax(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}$$

- If $\forall i$, $x_i = c$, then $softmax(\mathbf{x})_i = \frac{1}{n}$
- When c is very negative
 - $\exp(c) = 0 \leftarrow \text{underflow}$
 - $softmax(x)_i = 0/0 = NaN \leftarrow undefined$
- When c is very large and positive
 - $\exp(c) = \infty$ \leftarrow overflow
 - $softmax(x)_i = \infty/\infty = NaN \leftarrow undefined$

Solution

$$softmax(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}$$

- Let $z = x \max_{i} x_{i}$
- Then $softmax(\mathbf{z})_i = softmax(\mathbf{x})_i$
 - Proof:
 - Let $m = \max_{i} x_i$

$$softmax(\mathbf{z})_i = \frac{\exp(x_i - m)}{\sum_{j=1}^n \exp(x_j - m)} = \frac{\exp(x_i) / \exp(m)}{\sum_{j=1}^n \exp(x_j) / \exp(m)} = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} = softmax(\mathbf{x})_i$$

Cross entropy

- $\log softmax(x)$
 - $\lim_{s\to 0^+} \log s = -\infty$

Cross entropy

- $\log softmax(x)$
 - $\lim_{s \to 0^+} \log s = -\infty$
- It will lead to NaN in the BP

•
$$(\ln s)' = \frac{1}{s} \to \frac{1}{0} \to NaN$$

Cross entropy

- $\log softmax(x)$
 - $\lim_{s \to 0^+} \log s = -\infty$
- It will lead to NaN in the BP

•
$$(\ln s)' = \frac{1}{s} \to \frac{1}{0} \to NaN$$

- Solution: set threshold
 - Given $\epsilon > 0$
 - $\log \max(\epsilon, softmax(x))$
- Tensorflow
 - tf.nn.softmax_cross_entropy_with_logits

Poor conditioning

Matrix norm

•
$$||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

- $\|\alpha A\| = |\alpha| \|A\|$
- $||A + B|| \le ||A|| + ||B||$
- $||A|| \geq 0$
- ||A|| = 0 iff A = 0
- $||AB|| \le ||A|| ||B||$

Matrix norm

•
$$||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

- $\|\alpha A\| = |\alpha| \|A\|$
- $||A + B|| \le ||A|| + ||B||$
- $||A|| \geq 0$
- ||A|| = 0 iff A = 0

 $\bullet \|AB\| \le \|A\| \|B\|$

If A is square Then $||A||_2 = \max_i |\lambda_i|$

Relative errors

- In math, *x*
- In computer, \bar{x}
- Relative error:

$$\bullet \ e_x = \frac{\|\bar{x} - x\|}{\|x\|}$$

Relative errors

- In math, x
- In computer, \bar{x}
- Relative error:
 - $e_x = \frac{\|\bar{x} x\|}{\|x\|} < ?$ —we want to know

Relative errors

- In math, x
- In computer, \bar{x}
- Relative error:
 - $e_x = \frac{\|\bar{x} x\|}{\|x\|} < ?$ —we want to know
- How many digits can we believe in the fraction?
 - $-\log e_x$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

1.
$$A(\overline{y} - y) = n$$

 $\overline{y} - y = A^{-1}n$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

1.
$$A(\bar{y} - y) = n$$

 $\bar{y} - y = A^{-1}n$

2.
$$||x|| = ||Ay||$$

 $||x|| \le ||A|| ||y||$
 $\frac{1}{||y||} \le \frac{||A||}{||x||}$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

•
$$e_y = \frac{\|\bar{y} - y\|}{\|y\|}$$

1.
$$A(\bar{y} - y) = n$$

 $\bar{y} - y = A^{-1}n$

2.
$$||x|| = ||Ay||$$

 $||x|| \le ||A|| ||y||$
 $\frac{1}{||y||} \le \frac{||A||}{||x||}$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

•
$$e_y = \frac{\|\bar{y} - y\|}{\|y\|} = \frac{\|A^{-1}n\|}{\|y\|}$$

1.
$$A(\bar{y} - y) = n$$

 $\bar{y} - y = A^{-1}n$

2.
$$||x|| = ||Ay||$$

 $||x|| \le ||A|| ||y||$
 $\frac{1}{||y||} \le \frac{||A||}{||x||}$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

•
$$e_y = \frac{\|\bar{y} - y\|}{\|y\|} = \frac{\|A^{-1}n\|}{\|y\|} \le \frac{\|A^{-1}\|\|n\|}{\|y\|}$$

1.
$$A(\bar{y} - y) = n$$

 $\bar{y} - y = A^{-1}n$

2.
$$||x|| = ||Ay||$$

 $||x|| \le ||A|| ||y||$
 $\frac{1}{||y||} \le \frac{||A||}{||x||}$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

1.
$$A(\bar{y} - y) = n$$

 $\bar{y} - y = A^{-1}n$

2.
$$||x|| = ||Ay||$$

 $||x|| \le ||A|| ||y||$
 $\frac{1}{||y||} \le \frac{||A||}{||x||}$

•
$$e_y = \frac{\|\bar{y} - y\|}{\|y\|} = \frac{\|A^{-1}n\|}{\|y\|} \le \frac{\|A^{-1}\|\|n\|}{\|y\|} \le \frac{\|A\|\|A^{-1}\|\|n\|}{\|x\|}$$

$$\bullet \ y = f(x) = A^{-1}x$$

- Let $\bar{x} = x + n$, and then we have
 - Ay = x
 - $A\bar{y} = \bar{x} = x + n$
- Relative errors

•
$$e_x = \frac{\|n\|}{\|x\|}$$
 , $e_y = \frac{\|\bar{y} - y\|}{\|y\|}$

1.
$$A(\bar{y} - y) = n$$

 $\bar{y} - y = A^{-1}n$

2.
$$||x|| = ||Ay||$$

 $||x|| \le ||A|| ||y||$
 $\frac{1}{||y||} \le \frac{||A||}{||x||}$

$$\bullet \ e_{\mathcal{Y}} = \frac{\|\bar{\mathcal{Y}} - \mathcal{Y}\|}{\|\mathcal{Y}\|} = \frac{\|A^{-1}n\|}{\|\mathcal{Y}\|} \le \frac{\|A^{-1}\|\|n\|}{\|\mathcal{Y}\|} \le \frac{\|A\|\|A^{-1}\|\|n\|}{\|\mathcal{X}\|} = \|A\|\|A^{-1}\|e_{\mathcal{X}}$$

Condition number cont.

•
$$y = f(x) = A^{-1}x$$

• $e_y \le ||A|| ||A^{-1}|| e_x$

- Condition number
 - $||A|| ||A^{-1}|| = \max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right|$
- Property
 - $||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| = 1$
 - y may have a larger error than x

Gradient-based Optimization

Target

- Minimize or maximize some function f(x)
 - $\min f(x)$
 - $\max f(x) = \min -f(x)$
- $\bullet f(x)$
 - Objective function
 - Criterion
 - Cost function
 - Loss function
 - Error function
- $x^* = \operatorname{argmin} f(x)$

Gradient descent

• Given $\epsilon > 0$

•
$$f(x + \epsilon) \approx f(x) + \epsilon f'(x)$$

• $f(x - \epsilon \operatorname{sign} f'(x))$

Critical point

Approximate minimization

Partial derivatives

Gradient

•
$$\nabla_{x} f(x) = \begin{bmatrix} \frac{\partial}{\partial x_{1}} f(x) \\ \frac{\partial}{\partial x_{2}} f(x) \\ \vdots \\ \frac{\partial}{\partial x_{n}} f(x) \end{bmatrix}$$

Directional derivative

• Given u with ||u|| = 1

•
$$D_u f(x) = \frac{\partial}{\partial \alpha} f(x + \alpha u) = \lim_{\alpha \to 0} \frac{f(x + \alpha u) - f(x)}{\alpha} = u^{\mathsf{T}} \nabla_x f(x)$$

Directional derivative

• Given u with ||u|| = 1

•
$$D_u f(x) = \frac{\partial}{\partial \alpha} f(x + \alpha u) = \lim_{\alpha \to 0} \frac{f(x + \alpha u) - f(x)}{\alpha} = u^{\mathsf{T}} \nabla_x f(x)$$

• Find *u* such that

$$\min_{u,u^{\mathsf{T}}u=1} u^{\mathsf{T}} \nabla_{x} f(x)$$

$$= \min_{u,u^{\mathsf{T}}u=1} ||u^{\mathsf{T}}||_{2} ||\nabla_{x} f(x)||_{2} \cos \theta$$

$$= \min_{u,u^{\mathsf{T}}u=1} \cos \theta$$

Optimization

Steepest descent

- $x' = x \epsilon \nabla_x f(x)$
 - ϵ : learning rate
 - Named gradient descent, too.

Optimization

Steepest descent

- $x' = x \epsilon \nabla_x f(x)$
 - ϵ : learning rate
 - Named gradient descent, too.

Line search

- Base on steepest descent
- Find the best ϵ
 - $\min_{\epsilon} f(x \epsilon \nabla_{x} f(x))$

Something else

Steepest descent

- We can solve the equation $\nabla_x f(x) = 0$ for x directly
 - w/o iteration i.e., $x' = x \epsilon \nabla_{x} f(x)$

Hill climbing

Ascending an objective function of discrete parameters

Jacobian matrix

- $f: \mathbb{R}^m \to \mathbb{R}^n$
- $J \in \mathbb{R}^{n \times m}$ of f is defined s.t.

$$J_{i,j} = \frac{\partial}{\partial x_i} f(x)_i$$

That is

$$J = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x)_1 & \cdots & \frac{\partial}{\partial x_m} f(x)_1 \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} f(x)_n & \cdots & \frac{\partial}{\partial x_m} f(x)_n \end{bmatrix}$$

Curvature

• In a single dimension

$$\bullet f''(x) = \frac{d^2}{dx^2} f$$

$$H(f)(x)_{i,j} = \frac{\partial^2}{\partial x_i \partial x_j} f(x)$$

- If the second partial derivatives are continuous
 - Then $\frac{\partial^2}{\partial x_i \partial x_j} f(x) = \frac{\partial^2}{\partial x_j \partial x_i} f(x)$
 - Imply that *H* is symmetric

- Given a unit vector d
- The second derivative is $d^{\mathsf{T}}Hd$

Recall: directional derivative $u^T \nabla_x f(x)$

- Given a unit vector d
- The second derivative is $d^{\mathsf{T}}Hd$
- When d is eigenvector of H
 - The value of 2^{nd} derivative equals its eigenvalue λ
 - Maximum eigenvalue → maximum 2nd derivative
 - Minimum eigenvalue → minimum 2nd derivative

- When g is the gradient and H is the Hessian at $x^{(0)}$
 - Second-order Taylor series

$$f(x) \approx f(x^{(0)}) + (x - x^{(0)})^{\mathsf{T}} g + \frac{1}{2} (x - x^{(0)})^{\mathsf{T}} H(x - x^{(0)})$$

• Let $x = x^{(0)} - \epsilon g$ (i.e., gradient descent)

$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^{\mathsf{T}}g + \frac{1}{2}\epsilon^2 g^{\mathsf{T}}Hg$$

•
$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^{\mathsf{T}} g + \frac{1}{2} \epsilon^2 g^{\mathsf{T}} H g$$

•
$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^{\mathsf{T}}g + \frac{1}{2}\epsilon^2 g^{\mathsf{T}}Hg$$

- If $g^T H g$ is too large
 - Then GD could move uphill

•
$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^{\mathsf{T}} g + \frac{1}{2} \epsilon^2 g^{\mathsf{T}} H g$$

- If $g^T H g$ is too large
 - Then GD could move uphill
- If $g^T H g$ is zero or negative
 - Then GD will decrease f forever

•
$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^{\mathsf{T}} g + \frac{1}{2} \epsilon^2 g^{\mathsf{T}} H g$$

- If $g^T H g$ is too large
 - Then GD could move uphill
- If $g^T H g$ is zero or negative
 - Then GD will decrease *f* forever
- When $g^T H g$ is positive
 - Choose $\epsilon^* = \frac{g^{\mathsf{T}}g}{g^{\mathsf{T}}Hg}$
 - Then $-\epsilon g^{\mathsf{T}}g + \frac{1}{2}\epsilon^2 g^{\mathsf{T}}Hg = -\frac{(g^{\mathsf{T}}g)^2}{g^{\mathsf{T}}Hg} + \frac{1}{2}\frac{(g^{\mathsf{T}}g)^2}{g^{\mathsf{T}}Hg} = -\frac{1}{2}\frac{(g^{\mathsf{T}}g)^2}{g^{\mathsf{T}}Hg} < 0$

•
$$f(x^{(0)} - \epsilon g) \approx f(x^{(0)}) - \epsilon g^{\mathsf{T}} g + \frac{1}{2} \epsilon^2 g^{\mathsf{T}} H g$$

• When $g^{\mathsf{T}}Hg$ is positive

• Choose
$$\epsilon^* = \frac{g^{\mathsf{T}}g}{g^{\mathsf{T}}Hg}$$

ullet In worst case, g is eigenvector of H with maximal eigenvalue

•
$$\epsilon^* = \frac{1}{\lambda_{max}}$$

• Condition number = 5

Recall: Critical point

2nd derivative test

- When f'(x) = 0, check f''(x)If f''(x) > 0
 - $f'(x \epsilon) < 0$ and $f'(x + \epsilon) > 0$
 - Local minimum

If ... (be omitted)

Saddle point

• Find root of f(x) i.e., f(x) = 0

$$\bullet \ x^* = x - \frac{f(x)}{f'(x)}$$

- Find root of f(x) i.e., f(x) = 0
 - $\bullet \ x^* = x \frac{f(x)}{f'(x)}$
- Find critical point i.e., f'(x) = 0
 - $\bullet \ x^* = x \frac{f'(x)}{f''(x)}$

• Find root of f(x) i.e., f(x) = 0

$$\bullet \ x^* = x - \frac{f(x)}{f'(x)}$$

• Find critical point i.e., f'(x) = 0

$$\bullet \ x^* = x - \frac{f'(x)}{f''(x)}$$

In multi-dimension

•
$$x^* = x^{(0)} - (H(f)(x^{(0)}))^{-1} \nabla_x f(x^{(0)})$$

Efficiency

- First-order optimization algorithms
 - Gradient descent
 - Bisection method
- second-order optimization algorithms
 - Newton's method

- Lipschitz continue
 - $\forall x, \forall y, |f(x) f(y)| \le \mathcal{L}||x y||_2$
- Convex optimization
 - Lack saddle points
 - All their local minima are necessarily global minima
 - However, most problems in deep learning are difficult to express in terms of convex optimization

Under construction

- Lipschitz continue
 - $\forall x, \forall y, |f(x) f(y)| \le \mathcal{L}||x y||_2$
- Convex optimization
 - Lack saddle points
 - All their local minima are necessarily global minima
 - However, most problems in deep learning are difficult to express in terms of convex optimization

Constrained Optimization

Karush-Kuhn-Tucker approach

- Let $S = \{x | \forall i, g^{(i)}(x) = 0 \text{ and } \forall j, h^{(j)}(x) \le 0\}$
- $\min f(x)$ subject to $x \in \mathbb{S}$

$$L(x,\lambda,\alpha) = f(x) + \sum_{i} \lambda_i g^{(i)}(x) + \sum_{j} \alpha_j g^{(j)}(x)$$

Karush-Kuhn-Tucker approach

- Let $S = \{x | \forall i, g^{(i)}(x) = 0 \text{ and } \forall j, h^{(j)}(x) \le 0\}$
- $\min f(x)$ subject to $x \in \mathbb{S}$

$$L(x,\lambda,\alpha) = f(x) + \sum_{i} \lambda_i g^{(i)}(x) + \sum_{j} \alpha_j g^{(j)}(x)$$

• Now $\min_{x \in \mathbb{S}} f(x) = \min_{x} \max_{\lambda} \max_{\alpha, \alpha \ge 0} L(x, \lambda, \alpha)$

Karush-Kuhn-Tucker approach

- Let $S = \{x | \forall i, g^{(i)}(x) = 0 \text{ and } \forall j, h^{(j)}(x) \le 0\}$
- $\min f(x)$ subject to $x \in \mathbb{S}$

$$L(x,\lambda,\alpha) = f(x) + \sum_{i} \lambda_i g^{(i)}(x) + \sum_{j} \alpha_j g^{(j)}(x)$$

- Now $\min_{x \in \mathbb{S}} f(x) = \min_{x} \max_{\lambda} \max_{\alpha, \alpha \ge 0} L(x, \lambda, \alpha)$
 - Satisfied: $\max_{\lambda} \max_{\alpha,\alpha \geq 0} L(x,\lambda,\alpha) = f(x)$
 - Violated: $\max_{\lambda} \max_{\alpha,\alpha \geq 0} L(x,\lambda,\alpha) = \infty$

Example: Linear Least Squares

Linear least squares

• Find the value of x that minimizes

•
$$f(x) = \frac{1}{2} ||Ax - b||_2^2$$

Gradient descent

- Find the value of x that minimizes
 - $f(x) = \frac{1}{2} ||Ax b||_2^2$
- First, gradient descent
 - $\nabla_{x} f(x) = A^{\mathsf{T}} (Ax b) = A^{\mathsf{T}} Ax A^{\mathsf{T}} b$
 - $x \leftarrow x \epsilon (A^{\mathsf{T}}Ax A^{\mathsf{T}}b)$

Gradient descent

- Find the value of x that minimizes
 - $f(x) = \frac{1}{2} ||Ax b||_2^2$
- First, gradient descent
 - $\nabla_x f(x) = A^{\mathsf{T}} (Ax b) = A^{\mathsf{T}} Ax A^{\mathsf{T}} b$
 - $x \leftarrow x \epsilon (A^{\mathsf{T}}Ax A^{\mathsf{T}}b)$

Algorithm 4.1 An algorithm to minimize $f(x) = \frac{1}{2} ||Ax - b||_2^2$ with respect to x using gradient descent, starting from an arbitrary value of x.

Set the step size (ϵ) and tolerance (δ) to small, positive numbers. while $||A^{\top}Ax - A^{\top}b||_2 > \delta$ do $x \leftarrow x - \epsilon (A^{\top}Ax - A^{\top}b)$ end while

For simple example

•
$$f(x) = \frac{1}{2}(3x - 2)^2 + 5 \rightarrow f'(x) = 9x - 6 \rightarrow f''(x) = 9$$

• In junior high school, we know $x^* = \frac{2}{3}$

- For simple example
 - $f(x) = \frac{1}{2}(3x 2)^2 + 5 \rightarrow f'(x) = 9x 6 \rightarrow f''(x) = 9$
 - In junior high school, we know $x^* = \frac{2}{3}$
- At x = 4
 - $f'(4) = 9 \times 4 6 = 30$
 - f''(4) = 9
 - $x^* = x \frac{f'(x)}{f''(x)} = 4 \frac{30}{9} = 4 \frac{10}{3} = \frac{2}{3}$
- Only one step!!!!

Karush-Kuhn-Tucker

- Find the value of x that minimizes
 - $f(x) = \frac{1}{2} ||Ax b||_2^2$ subjects to $x^T x \le 1$
- Lagrangian

•
$$L(x,\lambda) = f(x) + \lambda(x^{\mathsf{T}}x - 1)$$

- We can now solve the problem
 - $\min_{x} \max_{\lambda,\lambda \geq 0} L(x,\lambda)$

$$\frac{\partial}{\partial x}L(x,\lambda) = A^{\mathsf{T}}Ax - A^{\mathsf{T}}b + 2\lambda x = 0$$

$$x = (A^{\mathsf{T}}Ax + 2\lambda I)^{-1}A^{\mathsf{T}}b$$
i.e. Moore-Penrose pseudoinverse

$$\frac{\partial}{\partial \lambda} L(x, \lambda) = x^{\mathsf{T}} x - 1$$

Thanks