PCA Geometry

1D – Plot: Clear separation and depiction of data

One sample of data -

	Mouse	Mouse	Mouse	Mouse	Mouse	Mouse
	1	2	3	4	5	6
Gene 1	10	11	8	3	2	1

If we only measure 1 gene, we can plot the data on a number line...

	Mouse	Mouse	Mouse	Mouse	Mouse	Mouse
	1	2	3	4	5	6
Gene 1	10	11	8	3	2	1

Even though it's a simple graph, it shows us that mice 1, 2 and 3 are more similar to each other than they are to mice 4, 5 6.

2D - Plot: Clear separation and depiction of data

Two sample of data -

3D - Plot: Clear separation and depiction of data

Three sample of data -

4D - Plot: Not Possible

Introducing four sample of data -

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3	12	9	10	2.5	1.3	2
Gene 4	5	7	6	2	4	7

If we measured 4 genes, however, we can no longer plot the data - 4 genes require 4 dimensions.

:(

Need for PCA for representing high dimensional data in lower space (dimension)

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3	12	9	10	2.5	1.3	2
Gene 4	5	7	6	2	4	7

Example with two-dimensional data for illustrating PCA concept!!

PCA Functioning with 2D

Column standardization: - Shifting to the origin

Estimating a best fit line: -

Method for finding the best fit line: - Projection of data onto the line

Optimization 1: Minimize sum of distances of the projected data from the line

Optimization 2: Maximize the distance of projected data from the origin

Visualize by rotation – observe the shrinking of the distances from the line

- Optimization 1

Geometric proof - optimization 1 and 2 are equivalent

Optimization 1: Minimize sum of distances of the projected data from the line

Find: first principle component

Geometric interpretation of projected data on principle component

Projected line as a unit vector (eigen vector)

Percentage of variance explained for two samples in the direction of unit vector (line or eigen vector)

Eigen value interpretation

Deriving second principle components: -

Variance explained in the direction of projected line (eigen vector)

For the sake of the example, imagine that the Variation for **PC1** = **15**, and the variation for **PC2** = **3**.

That means that the total variation around both PCs is 15 + 3 = 18...

TERMINOLOGY ALERT!!!! A Scree

Plot is a graphical representation of the percentages of variation that each PC accounts for.

Principle components and variance explained for more than two features: -

NOTE: If the scree plot looked like this, where PC3 and PC4 account for a substantial amount of variation, then just using the first 2 PCs would not create a very accurate representation of the data.

