Claims

[1]

1. A Ziegler-Natta catalyst for olefin polymerization, which is produced by a method comprising a step of reacting a transition metal compound having a general formula of MX $_{p-(q+r)}$ (OAr $_{1-q}$ (OAr $_{2-r}$, with an organomagnesium compound having a general formula of MgX $_{2-m}$ R , wherein M represents a transition metal having an oxidation number of 4 or more, selected from Groups IV, V or VI of the Periodic table; X represents a halogen atom; Ar and Ar each represents substituted or unsubstituted aryl group of 6 to 30 carbon atoms, in which the Ar and Ar are not linked to each other; p represents the oxidation number of M of 4 or more; q and r satisfy $0 \le q \le p$, $0 \le r \le p$ and $2 \le q+r \le p$; R represents an alkyl group of 1 to 16 carbon atoms; and m satisfies $0 < m \le 2$.

[2]

2. The Ziegler-Natta catalyst for olefin polymerization according to claim 1, wherein the transition metal compound and the organomagnesium compound are reacted at 60-90 °C with a molar ratio of $0.1 \le$ the transition metal compound/the organomagnesium compound ≤ 0.5 .

[3]

3. A method for olefin polymerization, which comprises carrying out polymerization in the presence of a main catalyst which is a Ziegler-Natta catalyst produced by a method comprising a step of reacting a transition metal compound having a general formula of MX $_{p-(q+r)}$ (OAr) (OAr), with an organomagnesium compound having a general formula of MgX $_{2-m-m}$, wherein M represents a transition metal having an oxidation number of 4 or more, selected from Groups IV, V or VI of the Periodic table; X represents a halogen atom; Ar and Ar each represents substituted or unsubstituted aryl group of 6 to 30 carbon atoms, in which the Ar and Ar are not linked to each other; p represents the oxidation number of M of 4 or more; q and r satisfy $0 \le q \le p$, $0 \le r \le p$ and $2 \le q+r \le p$; R represents an alkyl group of 1 to 16 carbon atoms; and m satisfies $0 < m \le 2$, and

anu

a co-catalyst which is an alkyl aluminum compound having a general formula of $AlR \underset{n=(3-n)}{X}$, wherein R represents an alkyl group of 1 to 16 carbon atoms; X represents a halogen atom; and n satisfies $1 \le n \le 3$.

[4]

4. A method for olefin polymerization according to claim 3, wherein the alkyl aluminum compound is used with a molar ratio of $0.5 \le$ the alkyl aluminum compound /the transition metal compound ≤ 500 .