Privacy-preserving Generative Deep Neural Networks Support Clinical Data Sharing

Yianni Laloudakis David Morales Caleb Geniesse Arjun Balasingam

CS 273B, Group 2, Paper Review

About the Paper

- Title: "Privacy-preserving generative deep neural networks support clinical data sharing"
- Who: B. Jones, Z. Wu, C. Williams, C. Greene @ UPenn
- Submitted to BioRxiv in July 2017

 Claim: "Deep neural networks can generate shareable biomedical data to allow reanalysis while preserving the privacy of study participants."

Introduction & Background

Challenges

- Lots of research showing potential in data-driven medicine
- Many rich datasets, with lots of personal information

- Sharing datasets is challenging
 - Many steps to establish formal collaboration and agree on usage requirements

Prior Work

- Evaluation of benefits of clinical trial data sharing
 - SPRINT Trial Data Challenge lead to personalized treatment and decision support systems
 - Analysis was still screened by data analysis agreements and privacy protection

SPRINT Challenge

- Data from trial comparing different strategies to manage systolic blood pressure
- Published in NEJM in Nov 2015
- Challenge participants must apply for data

Proposed Approach

- Eliminate technical barriers that hinder data sharing
- Leverage techniques from deep neural networks

- Generative Adversarial Networks (GANs)
 - Two deep NNs (generator + discriminator) trained against each other to generate simulated yet realistic patient information
 - Generator creates a participant from a set of random numbers
 - Discriminator labels generator output as 'real' or 'generated'
 - Over training epochs, generator learns how to create samples that fool discriminator

Differential Privacy

- Incorporated as a constraint on the GANs
 - Limit effect that any particular datapoint has on training
 - Add random noise to participant data

- Generates new individuals without revealing information about any single participant
- Train discriminator with this constraint

Methods

Model Architecture

Model Training Process

Data Sampling

Model Evaluation

Results

Usefulness Evaluation

- Compare variable distributions between real and simulated data
 - Are simulate variable values consistent with real values?
- Compare correlation structure between variables in real and simulated data
 - Are any relationships between variables maintained?
- Compare machine learning classifiers constructed on real vs. simulated data
 - Can simulated data be used to make classifications on real data?

Variable Distribution

Correlation Between Variables

Transfer Learning Task

Transfer Learning Task (cont'd)

Critique

Technical Issues

Differential Privacy

- Offers plausible deniability
- Losses converge to a noisy equilibrium
- Shrinking gradients may reduce the quality of samples generated

Features

- Discrepancy in the comparison of features
 - Distribution
 - Importance
- Unclear how additional features will affect generated data

General Concerns

Simulated and shareable data may make biomedical analysis easier.

Concerns

- 1. Does it actually remove a technology barrier?
- 2. Does it actually reduce privacy risks?
 - If so, will patients trust it enough to relinquish rights?
- 3. Does it actually produce useful data?
 - If so, will researchers trust the data blindly?
- 4. How well does the model generalize to other datasets?

Questions? Comments?