

LDR6321 PD+QC+AFC 通信芯片

REV1.5

版本记录

REV1.0	初始版本	2018-08-02
REV1.1	修改性能参数部分	2018-09-10
REV1.2	1、增加了引脚下拉配置,输出 12v、15v 的功能 2、VBUS 端增加了 MOS 管的隔离	2018-12-13
REV1.3	修改了特点描述	2019-03-21
REV1.4	修改了典型应用方案的 LDO	2019-07-11
REV1.5	1、增加了对 AFC 协议的支持; 2、LDR6321 配置电压的引脚由 1 个 变为了 3 个; 3、典型应用方案中与电源连接的 10 欧姆电阻改为了肖特基二极管	2020-04-23

深圳市乐得瑞科技有限公司 www.legendary.net.cn

PD+QC+AFC 通信芯片

目 录

1、	概述	3
2、	特点	3
3、	应用	3
4、	功能说明	4
	4.1 LDR6321 脚位图	4
	4.2 LDR6321 引脚功能说明	4
	4.3 LDR6321 配置电压说明	5
	4.4 LDR6321 的应用简图	e
5、	性能参数	6
	5. 1 极限参数	6
	5. 2 建议工作条件	6
6、	典型应用方案	7
	封装尺寸	

1、概述

LDR6321 是乐得瑞科技有限公司针对 USB PD 协议、Quick Charge (简称 QC)协议和 AFC 协议开发的一款兼容 USB PD、QC 和 AFC 的通信芯片。输入端主要接 PD、QC 和 AFC 的适配器,输出端配置输出固定的电压。LDR6321 从支持 USB PD、QC 和 AFC 协议的适配器取电,然后供电给设备。比如可以配置适配器输出需要的功率,给无线充电器设备供电。

2、特点

- ◇ 兼容 USB PD 3.0 规范, 支持 USB PD 2.0
- ◇ 兼容 QC 3.0 规范, 支持 QC 2.0
- ◇ 支持 AFC 协议
- ◇ 可配置输出 5V、9V、12V、15V、20V 等电压
- ◇ 可自动选择输出 9V、12V、15V、20V 电压以内的最高电压

3、应用

◇ 所有需要适配器 (支持 USB PD、QC 和 AFC 协议) 供电的设备

4、功能说明

4.1 LDR6321 脚位图

图 1 LDR6321 脚位图

4.2 LDR6321 引脚功能说明

序号	名称	类型	功能描述
1	VSS	地	芯片地
2	Vcon0	输入	悬空最大请求 9V 电压,接 10K 电阻到地最大请求 12V 电压,详细配置参考 4.3 部分表 2
3	Vcon1	输入	接 10K 电阻到地最大请求 15V 电压,详细配置参考表 2
4	Vcon2	输入	接 10K 电阻到地最大请求 20V 电压,详细配置参考 4.3 部分表 2
5	EN_D+	输入/输出	EN_D+、QC_EN+和 DOWN_D+用于调节 USB Type-c □ D+的电压。EN_D+和 QC_EN+配合设置 D+电压为 3.3V,DOWN_D+和 QC_EN+配合设置 D+电压为 0.6V。
6	QC_EN+	输出	同上
7	DOWN_D+	输入/输出	同上
8	QC_EN-	输出	QC_EN-、ADC_D-和 UP_D-用于调节 USB Type-c □ D-的 电压。ADC_D-和 QC_EN-配合设置 D-电压为 0.6V, UP_D- 和 QC_EN-配合设置 D-电压为 3.3V。
9	ADC_D-	输入/输出	同上,其中 ADC_D-检测 D-的电压,从而判断适配器是否支持 QC 协议。
10	UP_D-	输入/输出	同上
11	VBUSEN	输出	隔离输入端和输出端的 VBUS,防止输入端受到输出端的影响,造成适配器握手失败。
12	CC2	输入/输出	C1 □ CC2 通道电平检测

PD+QC+AFC 通信芯片

13	CC1	输入/输出	C1 □ CC1 通道电平检测
14	VREF	输入	预留检测 VBUS 的电压
15	PDLD0	输出	USB PD 通信用 LDO 外接电容接口
16	VDD	电源	芯片供电电源

表 1 LDR6321 引脚功能说明

4.3 LDR6321 配置电压说明

配置引脚			功能
Vcon2	Vcon1	Vcon0	USB PD + QC + AFC
NC	NC	NC	最大 9V
NC	NC	下拉	最大 12V
NC	下拉	NC	最大 15V
下拉	NC	NC	最大 20V

表 2 LDR6321 配置电压说明

说明: NC 表示引脚悬空,下拉表示下拉 10K 电阻到地,最大电压表示优先请求最大电压,如果适配器不支持这个电压,就请求火最大电压,直到请求到支持的电压。Vcon0、Vcon1、Vcon2 分别对应 LDR6321 的第 2、3、4 引脚。

例如, Vcon2 引脚接 10K 下拉电阻, Vcon1 和 Vcon0 引脚悬空,则配置输出的电压最大为 20V。

如果插入的适配器支持 5V、9V、12V、15V 和 20V 电压, 就会输出 20V。

如果插入的适配器支持 5V、9V、12V、15V 电压, 就会输出 15V。

如果插入的适配器支持 5V、9V、12V 电压, 就会输出 12V。

如果插入的适配器支持 5V、9V 电压, 就会输出 9V。

其他配置方式的最大电压依此类推。

4.4 LDR6321 的应用简图

如图 2 所示, LDR6321 的输入端为 USB Type-c 母座, 连接适配器。CC1 和 CC2 用于 USB PD 协议通信, D+和 D-用于 QC 和 AFC 通信。LDR6321 也可用于不支持 USB PD、QC 和 AFC 协议的适配器。

快充协议优先级为 PD>QC>AFC, 即首选 PD, 如果不支持 PD 就选择 QC, 再没有就选择 AFC。

图 2 LDR6321 的应用简图

5、性能参数

5.1 极限参数

参数	描述	最小/最大	单位
VDD	电源供电	-0.3/6.0	V
V_{I}	输入电压	-0.3/VDD+0.3	V
V_0	输出电压	-0.3/VDD	V
$T_{ m stg}$	储存温度	-55/+150	\mathbb{C}

5.2 建议工作条件

参数	描述	最小/最大	单位
VDD	电源供电	3. 3/5	V
Ta	环境温度	-40/+85	С

6、典型应用方案

图 3 LDR6321 最简应用原理图

控制 QC 和 AFC 通信的 D+和 D-的输出电压 VD+和 VD-有 3.3V 和 0.6V 两种,通过分压电阻方式实现,R3、R4、R5、R6、R9 应满足如下条件:

D+的电压 VD+

$$VD+ = [R9 \times (V0 - V1)]/(R3 + R9) = 3.3V$$

$$VD+ = [R9 \times (V2 - V1)]/(R4 + R9) = 0.6V$$

D-的电压 VD-

$$VD- = [R10 \times (V3 - V4)]/(R5 + R10) = 0.6V$$

$$VD- = [R10 \times (V5 - V4)]/(R6 + R10) = 3.3V$$

图 4 LDR6321 扩展应用原理图

扩展应用原理图完全向下兼容最简应用原理图,主要增加了两个部分:

- 一、增加了3个配置引脚,可以分别配置输出的最大电压为9V、12V、15V和20V;
- 输入端和输出端之间增加了 MOS 管的隔离,防止输入端受到输出端接有大容量电容等大负载,造成适配 器握手失败。如果没有这些影响,可以不需要这部分电路,像最简应用原理图一样,直接短接过去。 如有其他电压输出需求, 可以进行沟通, 进行功能定制。

7、封装尺寸

C1	Dimensions I	n Millimeters	Dimensions In Inches		
Symbo1	Min	Max	Min	Max	
D	4.900	5. 100	0.193	0.201	
E	4. 300	4.500	0.169	0.177	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
E1	6. 250	6.550	0. 246	0. 258	
A		1.100		0.043	
A2	0.800	1.000	0. 031	0. 039	
Al	0.020	0.150	0.001	0.006	
e	0.65	0.65 (BSC)		0.026 (BSC)	
L	0.500	0.700	0.020	0. 028	
Н	0. 25	0. 25 (TYP)		0. 01 (TYP)	
θ	1°	7°	1°	7°	

图 5 LDR6321 封装尺寸(SSOP-16)