Indicator Columns

Learn about the indicator feature columns for the ML model's input layer.

Chapter Goals:

• Process the indicator feature columns used for the machine learning model's input layer

A. One-hot indicators

The remaining non-numeric features in the dataset are the categorical features. Each of these features contains values that can be separated into a fixed number of distinct categories. For example, the 'IsHoliday' feature contains the categories 0 and 1, while the 'Type' feature contains the categories A, B, and C.

These two features specifically ('IsHoliday' and 'Type') will be the indicator features for the dataset. Since indicator features are categorical, this means they will be represented by one-hot vectors when aggregated into the model's input layer.

Example one-hot vector representation for the 'Type' feature.

B. Categorical column base

When creating the indicator feature columns, we start off with a categorical column base. The categorical column specifies the distinct categories of the feature, as well as the feature's type. We'll use the

tf.feature_column.categorical_column_with_vocabulary_list list to create the categorical columns.

We can then convert the categorical column bases into indicator feature columns with the tf.feature_column.indicator_column function.

Time to Code!

In this chapter you'll be creating the indicator feature columns for the dataset by completing the add_indicator_columns function. We've already filled the function with skeleton code that iterates through the indicator features in the dataset.

When creating the indicator feature columns, we need to specify the correct datatype. The 'Type' feature column will have datatype tf.string, while the 'TsHoliday' feature column will have datatype tf.int64

ishoriday reactiff will have datatype criticor.

Set dtype equal to the correct datatype, depending on what feature_name is.

Each indicator feature column is built from a vocabulary list. The vocabulary list comes from the unique values of the feature in the final_dataset
DataFrame.

Set vocab_list equal to the unique values in final_dataset[feature_name],
cast as a list.

Using the vocabulary list and datatype of the feature, we'll create the categorical column for the feature.

```
Set vocab_col equal to
```

tf.feature_column.categorical_column_with_vocabulary_list with feature_name and vocab_list as the required arguments, as well as dtype for the dtype keyword argument.

After creating the categorical column, we can convert it into the required indicator feature.

Set feature_col equal to tf.feature_column.indicator_column applied to vocab_col. Then append feature_col to the end of the feature_columns list.

