3. Лабораторная работа №3. РЕШЕНИЕ НЕЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

3.1. Численные методы решения нелинейных уравнений

3.1.1. Локализация корней

Будем рассматривать задачу приближенного нахождения нулей функции одной переменной

$$f(x) = 0, (3.1)$$

где $f: R_1 \to R_1$ — алгебраическая или трансцендентная функция.

Теорема 1 (Больцано–Коши). Если непрерывная на [a, b] функция f(x) на концах его имеет противоположные знаки, т. е.

$$f(a) \cdot f(b) < 0, \tag{3.2}$$

то на интервале (a, b) она хотя бы один раз обращается в ноль.

Слабость теоремы:

- 1. Не дает ответа на вопрос о количестве корней на [a, b] в случае выполнения условия (3.2).
- 2. Если условие (3.2) не выполнено, то не позволяет утверждать, что корней на [a, b] нет.

Усиление теоремы.

Теорема 2. Непрерывная, строго монотонная функция f(x) имеет и при том единственный ноль на отрезке [a, b] тогда и только тогда, когда на его концах она принимает значения разных знаков.

Установить монотонность на данном отрезке можно для дифференцируемой функции, потребовав знакопостоянства ее производной на всем отрезке.

Теорема 3. Пусть $f \in C^1[a;b]$, тогда если f'(x) не меняет знак на интервале (a, b), то условие (3.2) является необходимым и достаточным для того, чтобы уравнение (3.1) имело и при этом единственный корень на отрезке [a, b].

3.1.2. Метод Ньютона

Рассмотрим f(x) = 0 и построим итерационный процесс:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}, \ n = 0,1,2,...$$
 (3.3)

Запишем уравнение касательной в точке x_0 : $y - f(x_0) = f'(x_0)(x - x_0)$.

Найдем точку пересечения касательной с осью абсцисс:

$$y = 0$$
, тогда $x_1 \approx x_0 - \frac{f(x_0)}{f(x_0)}$.

Затем проводим касательную в x_1 и находим x_2 и так далее.

Поэтому метод Ньютона так же называют методом касательных.

Рис. 3.1. Метод Ньютона (касательных)

Необходимые условия сходимости метода Ньютона:

- 1. Функция f(x) должна быть дважды дифференцируема и непрерывна, должна иметь непрерывную первую производную, а $\left|f^{"}(x)\right| < M$.
- 2. $f'(x) \neq 0$ на всем промежутке, содержащем корень $\forall x \in [a,b]: x^* \in [a,b]$.
- 3. f''(x) сохраняет знак на [a,b], f''(x) < 0 функция выпукла вверх, f''(x) > 0 функция выпукла вниз.

4. Начальное приближение $x_0 : f(x_0) f''(x_0) > 0$.

Теорема. При выполнении необходимых условий 1-4, итерационный процесс Ньютона (3.3) сходится к решению x^* уравнения (3.1) с квадратичной скоростью в окрестности корня x^* .

3.1.3. Модификации метода Ньютона

І. Разностный метод с постоянным шагом.

Пусть для *Қ* і построен итерационный процесс метода Ньютона

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n = 0,1,2,...$$
 (3.4)

Для сложных функций вычисление f'(x) достаточно трудоемко, поэтому заменим в (3.4) производную по определению

$$f'(x_n) = \lim_{h \to 0} \frac{f(x_n + h) - f(x_n)}{h}$$
.

При малых значениях шага h получим приближенное равенство

$$x_{n+1} = x_n - \frac{f(x_n) \cdot h}{f(x_n + h) - f(x_n)}.$$
 (3.5)

II. Разностный метод с переменным шагом.

Шаг h можно изменять на каждой итерации либо проводить несколько итераций с одним шагом, затем его изменить (в зависимости от свойств функции). Тогда получим набор $h_1, h_2,...$

Тогда (3.5) примет вид

$$x_{n+1} = x_n - \frac{f(x_n) \cdot h_k}{f(x_n + h_k) - f(x_n)}, n \neq k.$$
(3.6)

Преимуществом методов этой группы является отсутствие производной. Недостатком – низкая скорость сходимости.

3.1.4. Метод Стеффенсена

Если учесть, что функция $f(x_n) \to 0$ с той же скоростью, что и $x_n \to x^*$, то есть смысл полагать, что $h_k = f(x_n)$. Это можно сделать на той стадии итерационного процесса, когда значения функции $|f(x_n)|$ уже достаточно малы. При таких h_k итерационный процесс пронимает вид:

$$x_{n+1} = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}.$$
(3.7)

Метод имеет сугубо локальный характер сходимости, но зато сходимость квадратичная.

3.1.5. Метод секущих

Пусть в (3.6) $h_k = x_{n-1} - x_n$, тогда $x_{n-1} = x_n + h_k$.

$$x_{n+1} = x_n - \frac{f(x_n) \cdot (x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)},$$
(3.8)

где \mathcal{X}_0 и \mathcal{X}_1 задаются.

Формула (3.8) определяет новый метод как двухшаговый.

Рис. 3.2. Метод секущих

Из геометрических соображений легко понять, что x_{n+1} есть абсцисса точки пересечения с осью Ох прямой, проведенной через точки $(x_{n-1}; f(x_{n-1}))$ и $(x_n; f(x_n))$, т. е. секущей.

3.1.6. Задача «лоцмана»

Наряду с уравнением f(x) = 0 рассмотрим уравнение $e^{kx} f(x) = 0$.

Тогда у $\Phi(x) = e^{kx} f(x)$ корни совпадают с корнями функции f(x).

$$\Phi'(x) = e^{kx} [kf(x) + f'(x)],$$

$$x_{n+1} = x_{n-1} - \frac{f(x_n)}{kf(x_n) + f'(x_n)},$$
(3.9)

Идея метода: Используем свободный параметр k для повышения скорости сходимости процесса Ньютона.

Так как x^* — корень, заранее известное точное решение, то на каждой итерации можно принять $k = -\frac{f''(x_n)}{2f'(x_n)}$. Тогда из (3.9) следует,

что

$$x_{n+1} = x_n - \frac{2f(x_n)f'(x_n)}{2f'^2(x_n) - f(x_n)f''(x_n)}.$$
(3.10)

Итерационный процесс метода «лоцмана» (3.10) в окрестности корня имеет кубическую скорость сходимости (при условии выполнения необходимых условий метода Ньютона). К недостаткам формулы (3.10) можно отнести наличие второй производной.

3.1.7. Метод хорд

Пусть f(x) — непрерывная функция на [a;b] и выполняется условие (3.2). Запишем уравнение прямой через две точки — уравнение хорды, где $x_0 = a$ и $x_1 = b$.

$$\frac{y - f(x_0)}{f(x_1) - f(x_0)} = \frac{x - x_0}{x_1 - x_0}.$$

Рассмотрим пересечение хорды с осью Ox, получим точку x_2 .

Рис. 3.3. Метод хорд

Выбираем две новые точки таким образом, чтобы на данном отрезке выполнялось условие (3.2).

Опять ищем пересечение с осью Ox, то есть $x_2 = x \Big|_{y=0}$

$$x_2 = x_0 - \frac{f(x_0)}{f(x_1) - f(x_0)} (x_1 - x_0).$$

И так далее.

Пусть на *n*-м шаге выполнено условие $f(x_n)f(x_{n-1}) < 0$.

Итерационный процесс метода хорд можно записать:

$$x_{n+1} = x_{n-1} - \frac{f(x_{n-1})}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1}).$$
(3.11)

3.1.8. Метод простой итерации

Пусть решается уравнение f(x) = 0. Заменим его равносильным $x = \varphi(x)$. (3.12)

Выберем начальное приближение x_0 и подставим в правую часть уравнения (3.12) и получим $x_1 = \varphi(x_0)$. (3.13)

Подставляя в правую часть уравнения (3.13) x_1 вместо x_0 получим $x_2 = \varphi(x_1)$. Повторяя этот процесс, будем иметь последовательность чисел

$$x_n = \varphi(x_{n-1}), \ n = 1, 2, \dots$$
 (3.14)

Если эта последовательность сходящаяся, т. е. $\exists \lim_{n \to \infty} x_n = x^*$, то, переходя к пределу в уравнении (3.14), получим $\lim_{n \to \infty} x_n = \varphi(\lim_{n \to \infty} x_{n-1})$.

Предполагая $\varphi(x)$ непрерывной, получим

$$x^* = \varphi(x^*). \tag{3.15}$$

Теорема (о простых итерациях). Пусть $\varphi(x)$ определена и дифференцируема на [a;b], причем все ее значения принадлежат [a;b]. Тогда, если $\exists q$ — правильная дробь: $|\varphi'(x)| \le q < 1$, то при a < x < b:

- 1) процесс итерации $x_{n}=\varphi(x_{n-1}),\ n=1,2,...$ сходится независимо от начального значения $x_{0}\in [a;b]$;
- 2) предельное значение $x^* = \lim_{n \to \infty} x_n$ является единственным корнем уравнения $x = \varphi(x)$ на [a;b].

Погрешность метода: Метод итераций обеспечивает на n-м шаге абсолютную погрешность приближения к корню уравнения (3.1), не превосходящую длины n-го отрезка, умноженной на дробь

$$\frac{q}{1-q}$$
: $|x^*-x_n| \le \frac{q}{1-q}|x_n-x_{n-1}|$, где $q = \max_{x \in [a,b]} |\varphi'(x)|$.

Чтобы функция $\varphi(x)$ обеспечивала сходимость последовательности (3.14), она должна иметь вид

$$\varphi(x) = x - \frac{f(x)}{k},\tag{3.16}$$

где $|k| \ge \frac{Q}{2}$, $Q = \max_{x \in [a,b]} |f'(x)|$, знак k совпадает со знаком f'(x) на [a,b].

3.2. Пример выполнения лабораторной работы

3.2.1. Задание к лабораторной работе

1. Локализуйте корень уравнения f(x) = 0 на начальном промежутке длиной не менее 1 графическим методом.

- 2. Выбрав в качестве начального приближения один из концов начального отрезка, уточните корень методом простых итераций с точностью $\varepsilon = 0{,}001.$
- 3. Найдите с точностью 10^{-6} корень уравнения методом Ньютона.
- 4. Найдите методом по варианту корень уравнения с точностью 10^{-6} .

Метод по вариантам:

- 1, 6, 11, 16, 21, 26, 31 разностный метод Ньютона с постоянным шагом,
 - 2, 7, 12, 27, 22, 27, 32 метод Стеффенсена,
 - 3, 8, 13, 18, 23, 28, 33 метод секущих,
 - 4, 9, 14, 19, 24, 29, 34 метод «лоцмана»,
 - 5, 10, 15, 20, 25, 30, 35 метод хорд.

3.2.2. Решение типового примера

1. Локализуем корень уравнения $f(x) = 2x^2 - x^3 - e^x = 0$ на начальном промежутке длиной не менее 1 графическим методом.

Преобразуем уравнение к виду $2x^2 - x^3 = e^x$, и построим графики полученных функций (рис. 3.4).

Рис. 3.4. Графическая локализация корня уравнения

Уравнение имеет один действительный корень на отрезке единичной длины $x \in [-1;0]$.

2. Выбрав в качестве начального приближения один из концов начального отрезка, уточним корень методом простых итераций с точностью $\varepsilon = 0.001$.

Для этого предварительно найдем $f'(x) = 4x - 3x^2 - e^x$. Нарисуем график полученной функции на отрезке $x \in [-1;0]$ (рис. 3.5).

Рис. 3.5. График производной функции f(x)

Отсюда находим $Q = \max_{x \in [-1,0]} |f'(x)| = f'(-1) = 7,36$.

Выберем k, удовлетворяющее условию (3.16). Так как f'(x) < 0 на отрезке $x \in [-1;0]$, следовательно, выберем k = -4.

Тогда функция $\varphi(x)$ будет иметь вид:

$$\varphi(x) = x - \frac{f(x)}{k} = \frac{4x + 2x^2 - x^3 - e^x}{4}.$$

Найдем производную функции $\varphi(x)$ и построим график этой функции на отрезке $x \in [-1;0]$ (рис. 3.6).

$$\varphi'(x) = x - \frac{f(x)}{k} = \frac{4 + 4x - 3x^2 - e^x}{4}.$$

Тогда $q=\max_{x\in[-1,0]}\!\!\left|\varphi'(x)\right|=\varphi'(-1)=0,\!84<\!1$. Возьмем за $x_{_0}$ левый конец отрезка -1. Вычисления будем выполнять до выполнения условия

$$|x_n - x_{n-1}| \le \frac{q}{1-q} \varepsilon = \frac{0.84}{1-0.84} 0.001 \approx 0.0002.$$

Рис. 3.6. График производной функции $\varphi(x)$

Выполним первую итерацию

$$x_1 = \varphi(x_0) = \frac{4x_0 + 2x_0^2 - x_0^3 - e^{x_0}}{4} = -0.3420.$$

Вычисления занесем в таблицу.

n	\mathcal{X}_n	$\varphi(x_{n})$	$\left x_{n} - x_{n-1} \right $
0	-1,0000	-0,3420	
1	-0,3420	-0,4511	0,6580
2	-0,4511	-0,4856	0,1091
3	-0,4856	-0,4929	0,0345
4	-0,4929	-0,4942	0,0073
5	-0,4942	-0,4944	0,0013
6	-0,4944	-0,4945	0,0002

Поскольку $|x_6-x_5| \le 0{,}0002$, считаем, что корень уравнения $x^* \approx -0{,}494$ с точность $\varepsilon = 0{,}001$.

3. Найдем с точностью 10⁻⁶ корень уравнения методом Ньютона. Вычислим вторую производную функции:

$$f'(x) = 4x - 3x^2 - e^x$$
, $f''(x) = 4 - 6x - e^x$.

Возьмем начальное приближение $x_0 = -1$, так как f(-1)f''(-1) > 0.

Образуем итерационный процесс метода Ньютона

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{2x_n^2 - x_n^3 - e^{x_n}}{4x_n - 3x_n^2 - e^{x_n}}.$$

Выполняем вычисления до выполнения условия $|x_{n}-x_{n-1}| \le \varepsilon = 10^{-6}$.

Расположим все вычисления в таблице.

n	\mathcal{X}_n	$f(x_n)$	$f'(x_n)$	$\left x_{n}-x_{n-1}\right $
0	-1,000 000	2,632 121	-7,367 879	
1	-0,642 757	0,565 981	-4,336 281	0,357 243
2	-0,512 235	0,060 018	-3,435 251	0,130 522
3	-0,494 764	0,000 982	-3,323 145	0,017 471
4	-0,494 468	0,000 000 3	-3,321 266	0,000 295
5	-0,494 468	0	-3,321 266	0

На пятой итерации достигаем необходимой точности $|x_5-x_4| \le 10^{-6}$, следовательно, искомый корень уравнения $x^* \approx -0.494468$.

4. Найдите методом по варианту корень уравнения с точностью 10^{-6} .

1) Разностный метод Ньютона с постоянным шагом

Построим итерационный процесс разностного метода Ньютона с постоянным шагом h= 0,001

$$x_{n+1} = x_n - \frac{f(x_n) \cdot h}{f(x_n + h) - f(x_n)}.$$

Будем выполнять вычисления до выполнения условия $|x_{\scriptscriptstyle n} - x_{\scriptscriptstyle n\!-\!1}| \leq \varepsilon = 10^{\text{--6}} \, .$

Сведем все вычисления в таблицу.

n	\mathcal{X}_n	$f(x_n)$	$\left x_{n}-x_{n-1}\right $
0	-1,000 000	2,632 121	
1	-0,642 524	0,564 968	0,357 476
2	-0,512 074	0,059 462	0,130 450
3	-0,494 742	0,000 910	0,017 331
4	-0,494 468	-0,000 001	0,000 274
5	-0,494 468	0	0

На пятой итерации достигаем необходимой точности $|x_5-x_4| \le 10^{-6}$, следовательно, искомый корень уравнения $x^* \approx -0,494468$.

2) Метод Стеффенсена

Построим итерационный процесс метода Стеффенсена

$$x_{n+1} = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}.$$

Будем выполнять вычисления до выполнения условия $|x_{_{n}}-x_{_{n-1}}| \leq \varepsilon = 10^{^{-6}} \,. \, \text{Сведем все вычисления в таблицу}.$

n	X_n	$f(x_n)$	$\left x_{n}-x_{n-1}\right $
0	-1,000 000	2,632 121	
1	0,023 821	-1,022 985	1,023 821
2	-0,262 973	-0,612 266	0,286 794
3	-0,419 295	-0,232 177	0,156 322
4	-0,483 759	-0,035 206	0,064 464
5	-0,494 219	-0,000 827	0,010 461
6	-0,494 468	-0,000 000 5	0,000 249
7	-0,494 468	0	0

На седьмой итерации достигаем необходимой точности $|x_7 - x_6| \le 10^{-6}$, следовательно, искомый корень уравнения $x^* \approx -0,494468$.

3) Метод секущих

Построим итерационный процесс метода секущих

$$x_{n+1} = x_n - \frac{f(x_n) \cdot (x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}.$$

Зададим $x_0=-1$ и $x_1=0$. Будем выполнять вычисления до выполнения условия $\left|x_n-x_{n-1}\right|\leq \varepsilon=10^{-6}$. Сведем все вычисления в таблицу.

n	X_n	$f(x_n)$	$\left x_{n}-x_{n-1}\right $
0	-1,000 000	2,632 121	
1	0,000 000	-1,000 000	1,000 000
2	-0,275 321	-0,586 855	0,275 321
3	-0,666 403	0,670 578	0,391 082
4	-0,457 842	-0,117 435	0,208 561
5	-0,488 924	-0,018 319	0,031 081
6	-0,494 668	-0,000 663	0,005 744
7	-0,494 467	-0,000 004	0,000 201
8	-0,494 468	0	0,000 001

На восьмой итерации достигаем необходимой точности $|x_8-x_7| \le 10^{-6}$, следовательно, искомый корень уравнения $x^* \approx -0.494468$.

4) Метод «лоимана»

Построим итерационный процесс метода «лоцмана»

$$x_{n+1} = x_n - \frac{2f(x_n)f'(x_n)}{2f'^2(x_n) - f(x_n)f''(x_n)}.$$

Будем выполнять вычисления до выполнения условия $|x_{_{n}}-x_{_{n-1}}| \leq \varepsilon = 10^{-6}$. Сведем все вычисления в таблицу.

n	\mathcal{X}_{n}	$f(x_n)$	$\left x_{n}-x_{n-1}\right $
0	-1,000 000	2,632 121	
1	-0,533 922	0,136 050	0,466 078
2	-0,494 503	0,000 114	0,039 419
3	-0,494 468	0	0,000 034
4	-0,494 468	0	0

На четвертой итерации достигаем необходимой точности $|x_4-x_3| \le 10^{-6}$, следовательно, искомый корень уравнения $x^* \approx -0,494468$.

5) Memod xopd

Построим итерационный процесс метода хорд

$$x_{n+1} = x_{n-1} - \frac{f(x_{n-1})}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1}).$$

Зададим $x_{_0}=-1$ и $x_{_1}=0$. Будем выполнять вычисления до выполнения условия $\left|x_{_n}-x_{_{n-1}}\right| \le \varepsilon = 10^{-6}$. Сведем все вычисления в таблицу.

n	\mathcal{X}_n	$f(x_n)$	$\left x_{n}-x_{n-1}\right $
0	-1,000 000	2,632 121	
1	0,000 000	-1,000 000	1,000 000
2	-0,275 321	-0,586 855	0,275 321
3	-0,666 403	0,670 578	0,391 082
4	-0,457 842	-0,117 435	0,208 561
5	-0,488 924	-0,018 319	0,031 081
6	-0,494 668	0,000 663	0,005 744
7	-0,494 467	-0,000 004	0,000 201
8	-0,494 468	0	0,000 001

На восьмой итерации достигаем необходимой точности $|x_8-x_7| \le 10^{-6}$, следовательно, искомый корень уравнения $x^* \approx -0.494468$.

3.2.3. Варианты заданий

No	Уравнение	No	Уравнение
1	$f(x) = \sqrt{x} - x^{-1} \ln x + 4 - 1,5$	16	$f(x) = \exp(-0.5x) - 0.2x^2 + 1$
2	$f(x) = \cos x - \exp(-x) + 0.5$	17	$f(x) = \exp(-0.4x^2) - 0.5x^2 + 1$
3	$f(x) = 1.5 - 0.4\sqrt{x^3} - 0.5 \ln x$	18	$f(x) = 1.5 - 0.4\sqrt{x^3} - e^{-x^2} \sin x$
4	$f(x) = 2 - \sqrt{x^3} - 2\ln x$	19	$f(x) = 2 - 0.5x^{2} - 0.5x^{-1} \sin x - x$
5	$f(x) = 1 - 0.5x^2 \ln x + 0.3\sqrt{x}$	20	$f(x) = 0.3 \exp(x) - \cos^2 x + 2$
6	$f(x) = 1 - x \ln x + 0.3\sqrt{x}$	21	$f(x) = 0.5 \exp(-x^2) + x \cos x$
7	$f(x) = 3 - 0.5\sqrt{x} - \exp(-0.5x^2)$	22	$f(x) = \cos^2 x - 0.8x^2$
8	$f(x) = 3 - \sqrt{x^3} + 0.5 \ln x$	23	$f(x) = 1 + \exp(-\sqrt{x}) - \ln(x)$
9	$f(x) = 0.3 \exp(-0.7\sqrt{x}) - 2x^2 + 4$	24	$f(x) = x \ln x - \exp(-0.5x^2)$
10	$f(x) = 0.5 \exp(-\sqrt{x}) - 0.2\sqrt{x^3} + 2$	25	$f(x) = \sin(0.5x) + 1 - x^2$
11	$f(x) = \exp(-0.7x) - 0.3\sqrt{x} + 1$	26	$f(x) = \cos(0.5x) - 0.4 \ln x$
12	$f(x) = 3 - \sqrt{x} - 0.5 \ln x$	27	$f(x) = \exp(-0.3x^2) - \sqrt{x} + 1$
13	$f(x) = 0.2 \exp(-x^2) - \sqrt{x} + 3$	28	$f(x) = \cos^2 x - 0.1 \exp(x)$
14	$f(x) = 0.3\cos^2 x - \ln x + 2$	29	$f(x) = x^2 - \exp(-x^2)$
15	$f(x) = \exp(-0.5x^2) - x^3 + 0.2$	30	$f(x) = x - \sin x - 0.25$