1 Частичные порядки

1.1 Отношение частичного порядка

Определение

Бинарное отношение $r\subseteq A^2$ называется отношением **частичного порядка**, или просто **частичным порядком**, если оно рефлексивно, антисимметрично и транзитивно. Другими словами, оно должно удовлетворять следующим свойствам:

- 1. рефлексивность: $\forall a \in A \ (a, a) \in r$
- 2. антисимметричность: $\forall a, b \in A \ (a, b) \in r, (b, a) \in r \Rightarrow a = b$
- 3. транзитивность: $\forall a, b, c \in A \ (a, b) \in r, \ (b, c) \in r \Rightarrow (a, c) \in r$

Для обозначения отношения частичного порядка обычно используются следующие символы: \leq , \subseteq , \preceq , \sqsubseteq , Если такой символ используется в качестве r, то вместо $(a,b) \in \leq$ можно использовать более общие обозначения $a \leq b$ и называть \leq просто частичным порядком.

1.2 Линейный порядок

Важный частный случай частичного порядка, также называемый линейным порядком..

Определение

Частичный порядок \leq на множестве A называется **линейным поряд-** ком, если выполняется следующее свойство:

$$\forall a,b \in A \ (a,b) \in r$$
 или $(b,a) \in r$

1.3 Примеры частичных порядков

Пример 1

Обычное отношение \leq на действительных числах $\mathbb R$ является линейным порядком.

Пример 2

Пусть A - множество. Тогда бинарное отношение \subseteq_A на множестве $\mathcal{P}(A)$ будет частичным порядком, но не линейным в общем случае.

Пример 3

Определим отношение делимости | на множестве натуральных чисел $\mathbb{N} = \{1, 2, 3, \ldots\}$ как:

$$n|m \Leftrightarrow n$$
 делит m

Тогда | является частичным порядком на N.

1.4 Наибольшие и наименьшие элементы

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент $a \in X$ называется

- наибольшим в X, тогда и только тогда, когда для любого $b \in X$ верно, что $a \le b$
- \bullet наименьшим в X, тогда и только тогда, когда для любого $b \in X$ верно, что $b \leq a$

Замечание

Наибольший элемент может не существовать. пример: рассмотрим натуральные числа N. Не существует наибольшего элемента из N. Кроме того, не существует наименьшего элемента из множества всех целых чисел.

1.5 Единственность наибольшего/наименьшего элемента

Предложение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Тогда, если наименьший элемент из X существует, то он единственен. То же верно и для наибольшего элемента.

Доказательство

Пусть $a_1, a_2 \in X$ - два наименьших элемента из X. Тогда по определению $a_1 \leq a_2$ и $a_2 \leq a_1$. Отношение частичного порядка антисимметрично, поэтому $a_1 = a_2$.

- Если существует наименьший элемент из X, то он обозначается как $\min(X)$
- Если существует наибольший элемент из X, то он обозначается как $\max(X)$

1.6 Минимальные и максимальные элементы

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент $a \in X$ называется

- минимальным из X, тогда и только тогда, когда $\forall b \in X (b \le a \Rightarrow b = a)$
- максимальным из X, тогда и только тогда, когда $\forall b \in X (a \leq b \Rightarrow b = a)$

Замечание

Минимальный/максимальный элемент может не существовать, и даже если он существует, он может не быть единственным.

1.7 Верхняя и нижняя границы

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент $a \in A$ называется

- верхней границей X из A, тогда и только тогда, когда для любых $b \in X, \ b \le a$
- нижней границей X из A, тогда и только тогда, когда для любых $b \in X, \ a < b$

Введем следующие обозначения:

- $X \uparrow A \rightleftharpoons \{b|b \in A, b$ верхняя граница X из $A\}$ множество всех верхних границ X из A
- $X\downarrow A \rightleftharpoons \{b|b\in A,b$ нижняя граница X из $A\}$ множество всех нижних границ X из A,

Отметим, что множества $X \uparrow A$ и $X \downarrow A$ всегда существуют, но могут быть пустыми.

1.8 Верхняя и нижняя грани множества

Определение

Пусть \leq - частичный порядок на множестве $A, X \subseteq A$. Элемент a называется

- точной верхней границей или **супремум** X из A, тогда и только тогда, когда $a = \min(X \uparrow A)$
- точной нижней границей или **инфимум** X из A, тогда и только тогда, когда $a = \max(X \downarrow A)$

Отметим, что супремум и инфимум не всегда существуют. Если супремум существует, он единственен. То же верно и для инфимума. Теперь введём следующие обозначения

- $\sup_A(X)$ супремум множества X из A, если он существует
- ullet inf $_A(X)$ инфимум множества X из A, если он существует

Если из контекста понятно, какой A имеется в виду, можно просто писать $\sup(X)$ и $\inf(X)$ вместо $\sup_A(X)$ и $\inf_A(X)$.

1.9 Примеры верхних и нижних граней

Пример 1

Пусть \leq - обычный линейный порядок на множестве действительных чисел \mathbb{R} . Рассмотрим множество $X=\{\frac{1}{n}|n\in\mathbb{N}\}$. Тогда $X\downarrow\mathbb{R}=\{a|a\in\mathbb{R},a\leq 0\}$, и $\inf_{\mathbb{R}}(X)=\max(X\downarrow\mathbb{R})=0$.

Пример 2

Пусть \leq - линейный порядок на \mathbb{R} . Рассмотрим множества $X=\{1-\frac{1}{n}|n\in\mathbb{N}\}$ и $Y=\{a|a\in\mathbb{R},0< a<1\}$. Тогда

- $X \uparrow \mathbb{R} = \{a | a \in \mathbb{R}, a \ge 1\}$
- $X \uparrow Y = \emptyset$

следовательно,

- $\sup_{\mathbb{R}}(X) = 1$
- $\sup_{Y}(X)$ не существует и $X \subseteq Y$

1.10 Лемма о sup и inf

 Π емма (о sup и inf)

Пусть \leq - частичный порядок на $A, X \subseteq A$. Тогда

- если существует $a = \max(X)$, то $\sup_A(X) = a$
- если существует $b = \min(X)$, то $\inf_A(X) = b$

Доказательство

Докажем первое утверждение. Пусть $a=\max(X)$. Это означает, что $\forall c\in X$ верно, что $c\leq a$, т.е. $a\in (X\uparrow A)$. Предположим, что $a\neq b=\sup_A(X)=\min(X\uparrow A)$. Тогда b< a. Так как b - верхняя граница X, $a\leq b$ - противоречие. Второе утверждение доказывается аналогично.

1.11 Частично упорядоченные множества

Определение

Пусть \leq - частичный порядок на множестве A. Тогда пара (A, \leq) называется **частично упорядоченным множеством**, сокращённо **чум**.

Определение

Пусть $\mathcal{A}(A, \leq)$ - чум. Если \leq - линейный порядок на A, то \mathcal{A} называется линейно упорядоченным множеством, сокращённо лум.

1.12 Решётки

Определение

Пусть $\mathcal{A} = (A, \leq)$ - чум. Тогда \mathcal{A} называется **решёткой**, тогда и только тогда, когда для любых двух элементов $a, b \in A$ существуют $\sup_A (\{a, b\})$ и $\inf_A (\{a, b\})$.

Определение

Если $\mathcal{A} = (A, \leq)$ - решётка, тогда для любых двух $a, b \in A$

- $a \cup^{\mathcal{A}} b \rightleftharpoons \sup_{A} (\{a, b\})$
- $a \cap^{\mathcal{A}} b \rightleftharpoons \inf_{A}(\{a,b\})$

Если из контекста понятно, какая решётка имеется в виду, верхний индекс \mathcal{A} можно опустить: вместо $\cup^{\mathcal{A}}$ можно писать \cup , а вместо $\cap^{\mathcal{A}}$ - \cap .

1.13 Линейно упорядоченные множества - это решётки

Предложение

Любой лум является решёткой.

Доказательство

Пусть (A, \leq) - лум, возьмём два элемента $a, b \in A$. Так как \leq - линейный порядок, $a \leq b$ или $b \leq a$. В первом случае $\min(\{a,b\}) = a$ и $\max(\{a,b\}) = b$, во втором случае $\min(\{a,b\}) = b$ и $\max(\{a,b\}) = a$. В обоих случаях для $X = \{a,b\}$ существуют min и max, следовательно, по лемме о sup и inf, sup и inf существуют.

1.14 Дистрибутивные решётки и булевы алгебры

Определение

Пусть $\mathcal{A} = (A, \leq)$ - решётка. Тогда \mathcal{A} называется **дистрибутивной** решёткой, тогда и только тогда, когда для любых $a, b, c \in A$ верно, что

$$a \cup^{\mathcal{A}} (b \cap^{\mathcal{A}} c) = (a \cup^{\mathcal{A}} b) \cap^{\mathcal{A}} (a \cup^{\mathcal{A}} c)$$

$$a \cap^{\mathcal{A}} (b \cup^{\mathcal{A}} c) = (a \cap^{\mathcal{A}} b) \cup^{\mathcal{A}} (a \cap^{\mathcal{A}} c)$$

Определение

Дистрибутивная решётка $\mathcal{A}=(A,\leq)$ называется **булевой алгеброй**, тогда и только тогда, когда

- ullet существует наибольший элемент $1^{\mathcal{A}}$ из A
- существует наименьший элемент $0^{\mathcal{A}}$ из A
- для любого элемента $a\in A$ существует такой $\bar a\in A$, что $a\cup^{\mathcal A}\bar a=1^{\mathcal A}$ и $a\cap^{\mathcal A}\bar a=0^{\mathcal A}$

1.15 Пример булевой алгебры

пример

Рассмотрим частичный порядок \subseteq_A на множестве $A: \subseteq_A \subseteq \mathcal{P}(A)$. Тогда чум $(\mathcal{P}(A), \subseteq_A)$ является булевой алгеброй.

Доказательство

Для доказательства этого утверждения достаточно заметить, что для любых $X,Y\subseteq A$

- \bullet sup $(X,Y)=X\cup Y$ всегда существует
- \bullet $\inf(X,Y)=X\cap Y$ всегда существует
- $1 = A, 0 = \emptyset$
- $\bullet \ \bar{X} = A \setminus X$

Дистрибутивность следует из дистрибутивности операций \cap и \cup на множествах.