I. Path lifting lemma

Last time $\pi_1(S',1) \cong \mathbb{Z}$ \mathbb{Z} \mathbb{Z}

· Step 1 (path lifting) Given f: [0,17 -> 5' loop based at 1 $\exists ! \hat{f}: [0, 1] \rightarrow \mathbb{R}$ S.t. $\hat{f}(0) = 0$ and $p = \hat{f} = f$

- Step 2: define $\Phi: \pi(S', I) \rightarrow \mathbb{Z}$ by $\Phi(\Gamma F) = \widehat{f}(1)$. momorphism
 - · Step 3: \$\overline\$ bijective.

Prop (path lifting) Given
$$f: [0, \Pi] \rightarrow S'$$
 loop based at I
 $f: [0, \Pi] \rightarrow \mathbb{R}$ St. $\widehat{f}(0) = 0$ and $p = \widehat{f} = f$

from last week \exists partition $[o_1] = \bigcup_{i=1}^{k} [a_i, b_i]$ St. $f([a_i, b_i]) \subset open Senicirde U \subset S'$

observe that for $U = \begin{cases} 2i\pi + 1 & \theta_0 < t < \theta_0 + \pi \end{cases}$ $V = \begin{cases} e^{2i\pi + 1} & \theta_0 < t < \theta_0 + \pi \end{cases}$ $P^{-1}(U) = \bigsqcup_{N \in \mathbb{Z}} \left(\theta_0 + n, \ \theta_0 + \frac{1}{2} + n \right)$ · define f inductively suppose $\widetilde{f}(a_i)$ is defined. Then define \widehat{f} on $[a_i,b_i]$: (00+n, 00+\frac{1}{2}+n) - \frac{pl}{2} \ U . Write \ r: U -> (00+n, 00+\frac{1}{2}+n) $f(t) = V \circ f(t)$ for $t \in [ai,bi]$ $P \circ F(t) = P \circ V \circ f(t) = f(t)$ $F \circ F(t) = F \circ V \circ f(t) = f(t)$ $F \circ F(t) = F \circ V \circ f(t) = f(t)$

Note f(0) =0 Starts the Induction. · uniquencss: We didn't make any Unices. Rmk. The property of RP351 used above movitates: Detn Amap p: X -> Y it a covering map if YyEY \exists open $U \ni y$ So that $p'(U) \cong U \times \Delta$ where △ 15 discrete. (eg S2-1RP² is a covering map)

$$\frac{C_{or}}{T_{i}} + \frac{T_{i}}{T_{i}} = \mathbb{Z}^{2}$$

$$\underline{Pop} \quad \pi_{1}(X \times Y) \cong \pi_{1}(X) \times \pi_{1}(Y)$$

$$\left(\begin{array}{c} \overline{\pi}, (T^2) = \overline{\pi}, (S' \times S') \cong \overline{\pi}, (S') \times \overline{\pi}, (S') = \mathbb{Z} \times \mathbb{Z} \end{array}\right)$$

$$f = (f, f_2)$$
 Define $\pi_1(X \times Y) \longrightarrow \pi_1(X) \times \pi_1(Y)$

$$[(t^1t^2)] \longmapsto ([t]^2[t^3]) \square$$

$$f(t) = (e^{2\pi i t}, 1)$$

$$generate$$

$$g(t) = (1, e^{2\pi i t})$$

$$\pi_1(t^2)$$

Cor
$$\mathbb{R}^2 \not\equiv \mathbb{R}^n$$
 for $n > 2$.

(already proved $\mathbb{R}^2 \not\equiv \mathbb{R}^n$)

Proof For contradiction soppose $\mathbb{R}^2 \cong \mathbb{R}^n$ $n > 3$.

Then $\mathbb{R}^2 \setminus 0 \cong \mathbb{R}^n \setminus 0 \cong \mathbb{S}^{n-1} \times (0, \infty)$
 $S' \times (0, \infty)$
 $\Rightarrow \pi_1(S' \times (0, \infty)) \cong \pi_1(S^{n-1} \times (0, \infty)) \cong \pi_1(S^{n-1}) = 0$
 $= \mathbb{R}^n \setminus \mathbb$

|__

Rowk This argument can't show $\mathbb{R}^3 \neq \mathbb{R}^4$ (homology)

Cor (\mathbb{D}^2 retraction) There is no (continuous) map

(Such a map is called a retract)

id 7

S' CJ

Proof Suppose r exists.

Then $r \circ j = i d_{S'}$ $r_* \circ j_* = (r \circ j)_* = (i d_{S'})_* = i d_{\pi_i(S')}$

$$Z = \pi_{1}(S') \xrightarrow{j*} \pi_{1}(D^{2}) = 0$$

$$| T_{1}(S') = Z \qquad | J_{1} \circ T_{1} | S = 0.$$

$$| T_{1}(S') = Z \qquad | J_{1} \circ T_{2} | S = 0.$$

$$| J_{1} \circ T_{2} | S = 0.$$

$$| J_{2} \circ T_{3} | S = 0.$$

$$| J_{2} \circ T_{4} | S = 0.$$

$$| J_{3} \circ T_{4} | S = 0.$$

$$| J_{4} \circ T_{5} | S = 0.$$

$$| J_{5} \circ T_{4} | S = 0.$$

$$| J_{5} \circ T_{5} | S = 0.$$

$$| J_{5} \circ T_{5} | S = 0.$$

$$| J_{7} \circ T_{7} | S = 0.$$

Corto Cor (Browner fixed pt) Any map $f:D^2 \longrightarrow D^2$ has a fixed point, ie $\exists x \in \mathcal{V} \qquad f(x) = x.$ Proof Suppose If we no fixed pts. Define r.D2 -5 $r(x) = \text{intersection with } S^1 \text{ of ray}$ from f(x) + o xr I a retract