Tópicos de Pontos Interiores

Porfirio Suñagua Salgado

Campinas-SP, Maio 2013

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- Solução de Sistemas no MPI

- Métodos diretos e iterativos
- Problema *PL* penalizado

 Parâmetro de penalização
- Resultados Numéricos
- Conclusões
- Bibliografia
- Agradecimento

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

- 3 Problema PL penalizado
- Resultados Numéricos
 - PC
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

- **3** Problema *PL* penalizado Parâmetro de penalização
- Resultados Numéricos
- Conclusões
- 6 Bibliografia
- Agradecimento

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos PCx
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos PCx
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos PCx
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

- **3** Problema *PL* penalizado Parâmetro de penalização
- 4 Resultados Numéricos PCx
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

1 Programação Linear Região Factível

Pontos Interiores
Precondicionadores
Método de Pontos Interiores
Método Preditor-Corretor

Solução de Sistemas no MPI

Métodos diretos e iterativos

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

3 / 39

Solução Factível

1 Programação Linear

Pontos Interiores

Pontos Interiores

Método de Pontos Interiores

Método Preditor-Corretor

Solução de Sistemas no MPI

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

• 1967 Primeiro método de pontos interiores, Dikin

- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

4 日 × 4 周 × 4 至 × 4 至 ×

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarka
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 🔹 1992 Convergência superlinear de Primal-Dual, Tapia
- 🔹 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNI
- Evolução do Método Simplex como também de MPI

4 日 × 4 周 × 4 至 × 4 至 ×

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarka
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNI
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNI
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- 1 Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- 1 Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- 1 Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- 1967 Primeiro método de pontos interiores, Dikin
- 1985 Primeiro método de Pontos Interiores Polinomial, Karmarkar
- 1986 Método Primal afim escala, redescoberto por varios autores
- 1989 Método Dual afim escala, Adler, Rezende, Veiga, Kamarkar
- 1989 Método Primal-Dual afim escala, Kojima, Mizuno e Yoshise
- 1992 Método Preditor-Corretor, Mehrotra
- 1992 Convergência superlinear de Primal-Dual, Tapia
- 1993 Convergência quadrática de Primal-Dual, Mehrotra
- 1992 Convergência quadrática de Preditor-Corretor, Mehrotra;
 1993 Ye e 1994 Potra
- 1996 Método de Múltiplas Correções, Gondzio
- ↓ Método de Pontos Interiores para PNL
- Evolução do Método Simplex como também de MPI

- Ambos métodos são eficientes na prática
- Simplex: Muitas iterações para convergir, mas elas são baratas
- Pontos Interiores: Poucas iterações, mas eles são caras
- O método de Karmarkar só tem interesse na história

- Ambos métodos são eficientes na prática
- Simplex: Muitas iterações para convergir, mas elas são baratas
- Pontos Interiores: Poucas iterações, mas eles são caras
- O método de Karmarkar só tem interesse na história

- Ambos métodos são eficientes na prática
- Simplex: Muitas iterações para convergir, mas elas são baratas
- Pontos Interiores: Poucas iterações, mas eles são caras
- O método de Karmarkar só tem interesse na história

- Ambos métodos são eficientes na prática
- Simplex: Muitas iterações para convergir, mas elas são baratas
- Pontos Interiores: Poucas iterações, mas eles são caras
- O método de Karmarkar só tem interesse na história

Problema PL (Primal-Dual)

• Primal - Dual

Min
$$c^T x$$
 Max $b^T y$
s.a. $Ax = b$ \Leftrightarrow s.a. $A^T y + z = c$ (1)
 $x \ge 0$

 Para este problema, as condições de otimalidade KKT de primeira ordem são um sistema não linear de equações

$$Ax = b, \quad A^T y + z = c, \quad XZe = 0 \tag{2}$$

 $X = \operatorname{diag}(x), Z = \operatorname{diag}(z), e \in \mathbb{R}^n \text{ \'e o vetor de uns, } x \ge 0 \text{ e } z \ge 0.$

Sistema Aumentado - Sistema Normal

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}, \quad ADA^T dy = r \quad (3)$$

 $D = Z^{-1}X e dx$, dy direções de Newton

Problema PL (Primal-Dual)

• Primal - Dual

Min
$$c^T x$$
 Max $b^T y$
s.a. $Ax = b$ \Leftrightarrow s.a. $A^T y + z = c$ (1)
 $x \ge 0$

 Para este problema, as condições de otimalidade KKT de primeira ordem são um sistema não linear de equações

$$Ax = b, \quad A^T y + z = c, \quad XZe = 0 \tag{2}$$

 $X = \operatorname{diag}(x)$, $Z = \operatorname{diag}(z)$, $e \in \mathbb{R}^n$ é o vetor de uns, $x \ge 0$ e $z \ge 0$.

Sistema Aumentado - Sistema Normal

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}, \quad ADA^T dy = r$$
 (3)

 $D = Z^{-1}X$ e dx, dy direções de Newton

Problema PL (Primal-Dual)

• Primal - Dual

Min
$$c^T x$$
 Max $b^T y$
s.a. $Ax = b$ \Leftrightarrow s.a. $A^T y + z = c$ (1)
 $x \ge 0$

 Para este problema, as condições de otimalidade KKT de primeira ordem são um sistema não linear de equações

$$Ax = b, \quad A^T y + z = c, \quad XZe = 0 \tag{2}$$

 $X = \operatorname{diag}(x), Z = \operatorname{diag}(z), e \in \mathbb{R}^n \text{ \'e o vetor de uns, } x \ge 0 \text{ e } z \ge 0.$

• Sistema Aumentado - Sistema Normal:

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}, \qquad ADA^T dy = r$$
 (3)

 $D = Z^{-1}X$ e dx, dy direções de Newton

1 Programação Linear

Região Factível Pontos Interiores

Precondicionadores

Método de Pontos Interiores Método Preditor-Corretor

Solução de Sistemas no MP

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos
- Conclusões
- 6 Bibliografia
- Agradecimento

Precondicionador Gondzio et al

• A = [B, N], $D = \operatorname{diag}(D_B, D_N)$, supondo que $D_B^{-1} \approx 0$ e $D_N \approx 0$

$$K = \begin{bmatrix} D_B^{-1} & B^T \\ D_N^{-1} & N^T \\ B & N \end{bmatrix} \approx \begin{bmatrix} B^T \\ D_N^{-1} & N^T \\ B & N \end{bmatrix}$$
$$ADA^T = BD_BB^T + ND_NN^T \approx BD_BB^T$$

Precondicionador proposto para o sistema aumentado é

$$P = \begin{bmatrix} & B^T \\ D_N^{-1} & N^T \\ B & N \end{bmatrix}$$

• Para resolver aplica métodos iterativos alternativos MGC

Precondicionador Gondzio et al

• A = [B, N], $D = \operatorname{diag}(D_B, D_N)$, supondo que $D_B^{-1} \approx 0$ e $D_N \approx 0$

$$K = \begin{bmatrix} D_B^{-1} & B^T \\ D_N^{-1} & N^T \\ B & N \end{bmatrix} \approx \begin{bmatrix} B^T \\ D_N^{-1} & N^T \\ B & N \end{bmatrix}$$
$$ADA^T = BD_BB^T + ND_NN^T \approx BD_BB^T$$

Precondicionador proposto para o sistema aumentado é

$$P = \begin{bmatrix} & & B^T \\ & D_N^{-1} & N^T \\ B & N & \end{bmatrix}$$

Para resolver aplica métodos iterativos alternativos MGC

Precondicionador Gondzio et al

• A = [B, N], $D = \operatorname{diag}(D_B, D_N)$, supondo que $D_B^{-1} \approx 0$ e $D_N \approx 0$

$$K = \begin{bmatrix} D_B^{-1} & B^T \\ D_N^{-1} & N^T \\ B & N \end{bmatrix} \approx \begin{bmatrix} B^T \\ D_N^{-1} & N^T \\ B & N \end{bmatrix}$$
$$ADA^T = BD_BB^T + ND_NN^T \approx BD_BB^T$$

Precondicionador proposto para o sistema aumentado é

$$P = \begin{bmatrix} & & B^T \\ & D_N^{-1} & N^T \\ B & N & \end{bmatrix}$$

• Para resolver aplica métodos iterativos alternativos MGC

Precondicionador Bergamaschi et al

• Considera problema quadrático $+\frac{1}{2}x^TQx$ na funcção objetivo $E=-(\operatorname{diag}(Q)+D^{-1})$, Cholesky $AE^{-1}A^T=L_0D_0L_0^T$

$$P_{2} = \begin{bmatrix} E & A^{T} \\ A & 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ AE^{-1} & I \end{bmatrix} \begin{bmatrix} E & 0 \\ 0 & -AE^{-1}A^{T} \end{bmatrix} \begin{bmatrix} I & E^{-1}A^{T} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} I & 0 \\ AE^{-1} & L_{0} \end{bmatrix} \begin{bmatrix} E & 0 \\ 0 & -D_{0} \end{bmatrix} \begin{bmatrix} I & E^{-1}A^{T} \\ 0 & L_{0}^{T} \end{bmatrix}$$

• Precondicionador é a inversa de P₂

11 / 39

Precondicionador Bergamaschi et al

• Considera problema quadrático $+\frac{1}{2}x^TQx$ na funcção objetivo $E=-(\operatorname{diag}(Q)+D^{-1})$, Cholesky $AE^{-1}A^T=L_0D_0L_0^T$

$$P_{2} = \begin{bmatrix} E & A^{T} \\ A & 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ AE^{-1} & I \end{bmatrix} \begin{bmatrix} E & 0 \\ 0 & -AE^{-1}A^{T} \end{bmatrix} \begin{bmatrix} I & E^{-1}A^{T} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} I & 0 \\ AE^{-1} & L_{0} \end{bmatrix} \begin{bmatrix} E & 0 \\ 0 & -D_{0} \end{bmatrix} \begin{bmatrix} I & E^{-1}A^{T} \\ 0 & L_{0}^{T} \end{bmatrix}$$

• Precondicionador é a inversa de P_2 .

Precondicionador Joo-Siong Chai e Kim-Chuan Toh

• PL canalizado: $D = X^{-1}Z + V^{-1}W$

$$\begin{bmatrix} -D & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} g \\ r_p \end{bmatrix}$$

Pontos Interiores

• Sistema Reduzido: $E_1 > 0$ (diagonal), $\Delta x_2 = D_2^{-1}(A_2^T \Delta y - g_2)$.

$$K = \begin{bmatrix} H & B \\ B^T & -\Psi \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \tilde{x}_1 \end{bmatrix} = \begin{bmatrix} h \\ F_1^{-1} g_1 \end{bmatrix}$$

$$F_1 = E_1 + D_1$$
, e

$$\Delta \tilde{x}_1 = F_1^{-1} E_1 \Delta x_1$$

$$H = A \operatorname{diag}(F_1^{-1}, D_2^{-1}) A^T$$

$$h = r_p + A \operatorname{diag}(F_1^{-1}, D_2^{-1}) g$$

$$\Psi = D_1 E_1^{-1}$$

$$B = A_1 F_1^{-1/2}$$

12 / 39

<ロト 4回ト 4 至ト 4 至ト

Precondicionador Joo-Siong Chai e Kim-Chuan Toh

• PL canalizado: $D = X^{-1}Z + V^{-1}W$

$$\begin{bmatrix} -D & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} g \\ r_p \end{bmatrix}$$

- Seja $D = \text{diag}(D_1, D_2)$, tal que $D_1/\mu = \mathcal{O}(1)$, $\mu D_2 = \mathcal{O}(1)$, $\mu \ll 1$. Partição $A = [A_1, A_2], \Delta x = [\Delta x_1, \Delta x_2]^T, g = [g_1, g_2]^T.$
- Sistema Reduzido: $E_1 > 0$ (diagonal), $\Delta x_2 = D_2^{-1}(A_2^T \Delta y g_2)$.

$$K = \begin{bmatrix} H & B \\ B^T & -\Psi \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \tilde{x}_1 \end{bmatrix} = \begin{bmatrix} h \\ F_1^{-1} g_1 \end{bmatrix}$$

$$F_1 = E_1 + D_1$$
, e

$$\Delta \tilde{x}_1 = F_1^{-1} E_1 \Delta x_1$$

$$H = A \operatorname{diag}(F_1^{-1}, D_2^{-1}) A^T$$

$$h = r_p + A \operatorname{diag}(F_1^{-1}, D_2^{-1}) g$$

$$\Psi = D_1 E_1^{-1}$$

$$B = A_1 F_1^{-1/2}$$

Precondicionador Joo-Siong Chai e Kim-Chuan Toh

• PL canalizado: $D = X^{-1}Z + V^{-1}W$

$$\begin{bmatrix} -D & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} g \\ r_p \end{bmatrix}$$

- Seja $D = \text{diag}(D_1, D_2)$, tal que $D_1/\mu = \mathcal{O}(1)$, $\mu D_2 = \mathcal{O}(1)$, $\mu \ll 1$. Partição $A = [A_1, A_2], \Delta x = [\Delta x_1, \Delta x_2]^T, g = [g_1, g_2]^T.$
- Sistema Reduzido: $E_1 > 0$ (diagonal), $\Delta x_2 = D_2^{-1}(A_2^T \Delta y g_2)$.

$$K = \begin{bmatrix} H & B \\ B^T & -\Psi \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta \tilde{x}_1 \end{bmatrix} = \begin{bmatrix} h \\ F_1^{-1} g_1 \end{bmatrix}$$

$$F_1 = E_1 + D_1$$
, e

$$\Delta \tilde{x}_1 = F_1^{-1} E_1 \Delta x_1 \qquad \qquad \Psi = D_1 E_1^{-1}$$

$$H = A \operatorname{diag}(F_1^{-1}, D_2^{-1}) A^T \qquad \qquad B = A_1 F_1^{-1/2}$$

$$h = r_p + A \operatorname{diag}(F_1^{-1}, D_2^{-1}) g$$

Cont. Precondicionador de Chai-Toh

A inversa da matriz de coeficientes do sistema reduzido é

$$K^{-1} = \begin{bmatrix} H^{-1/2}(I - P)H^{-1/2} & H^{-1}BS^{-1} \\ S^{-1}B^{T}H^{-1} & -S^{-1} \end{bmatrix}$$

$$S = B^T H^{-1} B + \Psi$$
, e $P = H^{-1/2} B S^{-1} B^T H^{-1/2}$ satisfaz $0 \le P \le I$.

Precondicionador proposto baseado em sua inversa é

$$P_c^{-1} = \begin{bmatrix} \hat{H}^{-1} - \hat{H}^{-1}B\hat{S}^{-1}B^T\hat{H}^{-1} & \hat{H}^{-1}B\hat{S}^{-1} \\ \hat{S}^{-1}B^T\hat{H}^{-1} & -\hat{S}^{-1} \end{bmatrix}$$

Cont. Precondicionador de Chai-Toh

A inversa da matriz de coeficientes do sistema reduzido é

$$K^{-1} = \begin{bmatrix} H^{-1/2}(I - P)H^{-1/2} & H^{-1}BS^{-1} \\ S^{-1}B^{T}H^{-1} & -S^{-1} \end{bmatrix}$$

$$S = B^T H^{-1} B + \Psi$$
, e $P = H^{-1/2} B S^{-1} B^T H^{-1/2}$ satisfaz $0 \le P \le I$.

Precondicionador proposto baseado em sua inversa é

$$P_c^{-1} = \begin{bmatrix} \hat{H}^{-1} - \hat{H}^{-1}B\hat{S}^{-1}B^T\hat{H}^{-1} & \hat{H}^{-1}B\hat{S}^{-1} \\ \hat{S}^{-1}B^T\hat{H}^{-1} & -\hat{S}^{-1} \end{bmatrix}$$

 \hat{H} e \hat{S} são definidas positivas como aproximações de H e Srespectivamente tal que $\hat{S} = B^T \hat{H}^{-1} B + \Psi$.

- Ordena colunas pela norma de AD, logo obter base por fatoração LU rectangular
- Precondicionador Separador

$$M^{-1} = \begin{pmatrix} D_B^{1/2} & 0 & D_B^{-1/2}B^{-1} \\ 0 & D_N^{1/2} & 0 \\ D_B^{1/2} & 0 & 0 \end{pmatrix}$$

- Resolver um sistema com matriz de coeficientes $T = I + D_R^{-1/2} B^{-1} N D_N N^T B^{-T} D_R^{-1/2} \approx I$
- Método de Gradientes Conjugados

- Ordena colunas pela norma de AD, logo obter base por fatoração LU rectangular
- Precondicionador Separador

$$M^{-1} = \begin{pmatrix} D_B^{1/2} & 0 & D_B^{-1/2}B^{-1} \\ 0 & D_N^{1/2} & 0 \\ D_B^{1/2} & 0 & 0 \end{pmatrix}$$

- Resolver um sistema com matriz de coeficientes $T = I + D_B^{-1/2} B^{-1} N D_N N^T B^{-T} D_B^{-1/2} \approx I$
- Método de Gradientes Conjugados

- Ordena colunas pela norma de AD, logo obter base por fatoração LU rectangular
- Precondicionador Separador

$$M^{-1} = \begin{pmatrix} D_B^{1/2} & 0 & D_B^{-1/2}B^{-1} \\ 0 & D_N^{1/2} & 0 \\ D_B^{1/2} & 0 & 0 \end{pmatrix}$$

- Resolver um sistema com matriz de coeficientes $T = I + D_B^{-1/2} B^{-1} N D_N N^T B^{-T} D_B^{-1/2} \approx I$
- Método de Gradientes Conjugados

- Ordena colunas pela norma de AD, logo obter base por fatoração LU rectangular
- Precondicionador Separador

$$M^{-1} = \begin{pmatrix} D_B^{1/2} & 0 & D_B^{-1/2}B^{-1} \\ 0 & D_N^{1/2} & 0 \\ D_B^{1/2} & 0 & 0 \end{pmatrix}$$

- Resolver um sistema com matriz de coeficientes $T = I + D_B^{-1/2} B^{-1} N D_N N^T B^{-T} D_B^{-1/2} \approx I$
- Método de Gradientes Conjugados

Conteúdo:

- 1 Programação Linear
 - Região Factível
 Pontos Interiores
 Presendicionador
 - Método de Pontos Interiores
 - Método Preditor-Corretor
- Solução de Sistemas no MP

- Métodos diretos e iterativos
- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos
- Conclusões
- 6 Bibliografia
- Agradecimento

- Dado $\mathbf{F}: D_F \subset \mathbb{R}^n \to \mathbb{R}^n$. Equação a resolver $\mathbf{F}(\mathbf{x}) = \mathbf{0}$
- Taylor:

$$\mathbf{F}(\mathbf{x}) pprox \mathbf{F}(\mathbf{x}^0) + \mathbf{J}(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0), \qquad \mathbf{J}(\mathbf{x}) = \nabla F(\mathbf{x}) \quad (\text{Jacobiana de } \mathbf{F})$$

- $x^1 = x^0 + d$, $d = -J(x^0)F(x^0)$

- Dado $\mathbf{F}: D_F \subset \mathbb{R}^n \to \mathbb{R}^n$. Equação a resolver $\mathbf{F}(\mathbf{x}) = \mathbf{0}$
- Taylor:

$$\mathbf{F}(\mathbf{x}) pprox \mathbf{F}(\mathbf{x}^0) + \mathbf{J}(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0), \qquad \mathbf{J}(\mathbf{x}) = \nabla F(\mathbf{x}) \quad (\text{Jacobiana de } \mathbf{F})$$

- Dado $\mathbf{F}: D_F \subset \mathbb{R}^n \to \mathbb{R}^n$. Equação a resolver $\mathbf{F}(\mathbf{x}) = \mathbf{0}$
- Taylor:

$$\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{x}^0) + \mathbf{J}(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0), \qquad \mathbf{J}(\mathbf{x}) = \nabla F(\mathbf{x}) \quad (\text{Jacobiana de } \mathbf{F})$$

- $x^1 = x^0 + d$, $d = -J(x^0)F(x^0)$

- Dado $\mathbf{F}: D_F \subset \mathbb{R}^n \to \mathbb{R}^n$. Equação a resolver $\mathbf{F}(\mathbf{x}) = \mathbf{0}$
- Taylor:

$$\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{x}^0) + \mathbf{J}(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0), \qquad \mathbf{J}(\mathbf{x}) = \nabla F(\mathbf{x}) \quad (\text{Jacobiana de } \mathbf{F})$$

- $x^1 = x^0 + d$, $d = -J(x^0)F(x^0)$
- $J(x_0)d = -F(x_0)$

Resolvendo Sistema KKT:

$$r_{p} = b - Ax^{0}, \quad r_{d} = c - A^{T}y^{0} - z^{0}, \quad r_{a} = -X^{0}Z^{0}e$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} r_{p} \\ r_{d} \\ r_{a} \end{bmatrix} \begin{bmatrix} Adx = r_{p} \\ A^{T}dy + dz = r_{d} \\ Zdx + Xdz = r_{a} \end{bmatrix}$$
(4)

- $\bullet A^{T}dy + X^{-1}r_{a} X^{-1}Zdx = r_{d} \Rightarrow A^{T}dy X^{-1}Zdx = r_{d} X^{-1}r_{a}$

$$A^{T}dy - X^{-1}Zdx = r_d - X^{-1}r_a$$

$$Adx = r_p$$
(5)

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_d - X^{-1}r_a \\ r_p \end{pmatrix}, \quad D = Z^{-1}X \quad (6)$$

Campinas - 2013

• Resolvendo Sistema KKT:

$$r_p = b - Ax^0, \quad r_d = c - A^T y^0 - z^0, \quad r_a = -X^0 Z^0 e$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} r_p \\ r_d \\ r_a \end{bmatrix} \begin{bmatrix} Adx & = r_p \\ A^T dy + dz & = r_d \\ Zdx + Xdz & = r_a \end{bmatrix}$$
(4)

- $A^{T}dy + X^{-1}r_{a} X^{-1}Zdx = r_{d}$ \Rightarrow $A^{T}dy X^{-1}Zdx = r_{d} X^{-1}r_{a}$
- Sistema Aumentado

$$A^{T}dy - X^{-1}Zdx = r_d - X^{-1}r_a$$

$$Adx = r_p$$
(5)

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_d - X^{-1}r_a \\ r_p \end{pmatrix}, \quad D = Z^{-1}X \quad (6)$$

• Sistema Normal $ADA^{T}dy = r_p + AD(r_d - X^{-1}r_a)$

Resolvendo Sistema KKT:

$$r_{p} = b - Ax^{0}, \quad r_{d} = c - A^{T}y^{0} - z^{0}, \quad r_{a} = -X^{0}Z^{0}e$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} r_{p} \\ r_{d} \\ r_{a} \end{bmatrix} \begin{bmatrix} Adx = r_{p} \\ A^{T}dy + dz = r_{d} \\ Zdx + Xdz = r_{a} \end{bmatrix}$$
(4)

- $Zdx + Xdz = r_a$ \Rightarrow $dz = X^{-1}(r_a Zdx)$
- $A^{T}dy + X^{-1}r_{a} X^{-1}Zdx = r_{d} \Rightarrow A^{T}dy X^{-1}Zdx = r_{d} X^{-1}r_{a}$

$$A^{T}dy - X^{-1}Zdx = r_d - X^{-1}r_a$$

$$Adx = r_p$$
(5)

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_d - X^{-1}r_a \\ r_p \end{pmatrix}, \quad D = Z^{-1}X \quad (6)$$

• Sistema Normal $ADA^{T}dy = r_p + AD(r_d - X^{-1}r_a)$

17 / 39

• Resolvendo Sistema KKT:

$$r_{p} = b - Ax^{0}, \quad r_{d} = c - A^{T}y^{0} - z^{0}, \quad r_{a} = -X^{0}Z^{0}e$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} r_{p} \\ r_{d} \\ r_{a} \end{bmatrix} A^{T}dy + dz = r_{d} \quad (4)$$

$$Zdx + Xdz = r_{a}$$

- $A^{T}dy + X^{-1}r_{a} X^{-1}Zdx = r_{d}$ \Rightarrow $A^{T}dy X^{-1}Zdx = r_{d} X^{-1}r_{a}$
- Sistema Aumentado

$$A^{T}dy - X^{-1}Zdx = r_d - X^{-1}r_a$$

$$Adx = r_p$$
(5)

$$\begin{pmatrix} -D^{-1} & A^{T} \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_{d} - X^{-1}r_{a} \\ r_{p} \end{pmatrix}, \quad D = Z^{-1}X \quad (6)$$

• Sistema Normal $ADA^{T}dy = r_p + AD(r_d - X^{-1}r_{\underline{a}})$

Resolvendo Sistema KKT:

$$r_{p} = b - Ax^{0}, \quad r_{d} = c - A^{T}y^{0} - z^{0}, \quad r_{a} = -X^{0}Z^{0}e$$

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix} = \begin{bmatrix} r_{p} \\ r_{d} \\ r_{a} \end{bmatrix} \begin{bmatrix} Adx & = r_{p} \\ A^{T}dy + dz & = r_{d} \\ Zdx + Xdz & = r_{a} \end{bmatrix}$$
(4)

- $Zdx + Xdz = r_a$ \Rightarrow $dz = X^{-1}(r_a Zdx)$
- $A^{T}dy + X^{-1}r_{a} X^{-1}Zdx = r_{d} \Rightarrow A^{T}dy X^{-1}Zdx = r_{d} X^{-1}r_{d}$
- Sistema Aumentado

$$A^{T}dy - X^{-1}Zdx = r_d - X^{-1}r_a$$

$$Adx = r_p$$
(5)

$$\begin{pmatrix} -D^{-1} & A^{T} \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_{d} - X^{-1}r_{a} \\ r_{p} \end{pmatrix}, \quad D = Z^{-1}X \quad (6)$$

• Sistema Normal $ADA^{T}dy = r_p + AD(r_d - X^{-1}r_a)$

17 / 39

Require: x^0 , y^0 , z^0 tal que $x^0 > 0$, $z^0 > 0$

Require: x^0 , y^0 , z^0 tal que $x^0 > 0$, $z^0 > 0$ $\tau = 0.99995$, Maxit = 100


```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995, Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995, Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
    r_v = b - Ax
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995, Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
    r_v = b - Ax
    r_d = c - A^T y - z
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995, Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
    r_p = b - Ax
    r_d = c - A^T y - z
    r_a = XZe
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995, Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
    r_v = b - Ax
    r_d = c - A^T y - z
    r_a = XZe
     D = Z^{-1}X
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995. Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     r_p = b - Ax
    r_d = c - A^T y - z
     r_a = XZe
     D = Z^{-1}X
     Resolver ADA^{T}dy = r_{v} + AD(r_{d} - X^{-1}r_{a})
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995. Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
    r_v = b - Ax
    r_d = c - A^T y - z
     r_a = XZe
     D = Z^{-1}X
     Resolver ADA^{T}dy = r_{v} + AD(r_{d} - X^{-1}r_{a})
     dx = D(A^T dy - r_d + X^{-1} r_a)
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995. Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
    r_v = b - Ax
    r_d = c - A^T y - z
    r_a = XZe
     D = Z^{-1}X
     Resolver ADA^{T}dy = r_p + AD(r_d - X^{-1}r_a)
    dx = D(A^T dy - r_d + X^{-1} r_a)
    dz = X^{-1}(r_a - Zdx)
```


Require:
$$x^0$$
, y^0 , z^0 tal que $x^0 > 0$, $z^0 > 0$
 $\tau = 0.99995$, $Maxit = 100$
while $k = 0, 1, 2, \cdots$, $Maxit$ e Condição de Parada **do**
 $r_p = b - Ax$
 $r_d = c - A^T y - z$
 $r_a = XZe$
 $D = Z^{-1}X$
Resolver $ADA^T dy = r_p + AD(r_d - X^{-1}r_a)$
 $dx = D(A^T dy - r_d + X^{-1}r_a)$
 $dz = X^{-1}(r_a - Zdx)$
Calcular o tamanho de paso α
 $x^{k+1} \leftarrow x^k + \alpha dx$, $y^{k+1} \leftarrow y^k + \alpha dy$, $z^{k+1} \leftarrow z^k + \alpha dz$
Avaliar/Testar Condição de Parada
 $k \leftarrow k + 1$
end while

Require:
$$x^0$$
, y^0 , z^0 tal que $x^0 > 0$, $z^0 > 0$
 $\tau = 0.99995$, $Maxit = 100$
while $k = 0, 1, 2, \cdots$, $Maxit$ e Condição de Parada **do**
 $r_p = b - Ax$
 $r_d = c - A^Ty - z$
 $r_a = XZe$
 $D = Z^{-1}X$
Resolver $ADA^Tdy = r_p + AD(r_d - X^{-1}r_a)$
 $dx = D(A^Tdy - r_d + X^{-1}r_a)$
 $dz = X^{-1}(r_a - Zdx)$
Calcular o tamanho de paso α
 $x^{k+1} \leftarrow x^k + \alpha dx$, $y^{k+1} \leftarrow y^k + \alpha dy$, $z^{k+1} \leftarrow z^k + \alpha dz$
Avaliar/Testar Condição de Parada
 $k \leftarrow k + 1$


```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995. Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     r_v = b - Ax
     r_d = c - A^T y - z
     r_a = XZe
     D = Z^{-1}X
     Resolver ADA^{T}dy = r_{v} + AD(r_{d} - X^{-1}r_{a})
     dx = D(A^T dy - r_d + X^{-1} r_a)
     dz = X^{-1}(r_a - Zdx)
     Calcular o tamanho de paso \alpha
     x^{k+1} \leftarrow x^k + \alpha dx, y^{k+1} \leftarrow y^k + \alpha dy, z^{k+1} \leftarrow z^k + \alpha dz
     Avaliar/Testar Condição de Parada
```

```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995. Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     r_v = b - Ax
     r_d = c - A^T y - z
     r_a = XZe
     D = Z^{-1}X
     Resolver ADA^{T}dy = r_{v} + AD(r_{d} - X^{-1}r_{a})
     dx = D(A^T dy - r_d + X^{-1} r_a)
     dz = X^{-1}(r_a - Zdx)
     Calcular o tamanho de paso \alpha
     x^{k+1} \leftarrow x^k + \alpha dx, y^{k+1} \leftarrow y^k + \alpha dy, z^{k+1} \leftarrow z^k + \alpha dz
     Avaliar/Testar Condição de Parada
     k \leftarrow k + 1
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995. Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     r_v = b - Ax
     r_d = c - A^T y - z
     r_a = XZe
     D = Z^{-1}X
     Resolver ADA^{T}dy = r_{v} + AD(r_{d} - X^{-1}r_{a})
     dx = D(A^T dy - r_d + X^{-1} r_a)
     dz = X^{-1}(r_a - Zdx)
     Calcular o tamanho de paso \alpha
     x^{k+1} \leftarrow x^k + \alpha dx, y^{k+1} \leftarrow y^k + \alpha dy, z^{k+1} \leftarrow z^k + \alpha dz
     Avaliar/Testar Condição de Parada
     k \leftarrow k + 1
  end while
```


Conteúdo:

1 Programação Linear

Região Factível Pontos Interiores Precondicionadores Método de Pontos Interiores

Método Preditor-Corretor

Solução de Sistemas no MP

Métodos diretos e iterativos

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

- Direção Afim Escala: É a direção de Newton como direção preditora.
- Direção de Correção: Que compensa a aproximação linear do Método de Newton
- Direção de Centragem: Uma vez que existe uma direção de correção vamos perturbar o problema com um parâmetro μ escolhido de forma mais inteligente que no método de seguidor de caminho.
- $\alpha = 1, \Rightarrow r_p^{k+1} = b A(x + dx) = b Ax Adx = r_p^k Adx = 0$
- $(X + D_X)(Z + D_Z)e = (XZ + ZD_X + XD_Z + D_XD_Z)e = -r_a + r_a + D_XD_Ze = D_XD_Ze$

- Direção Afim Escala: É a direção de Newton como direção preditora.
- Direção de Correção: Que compensa a aproximação linear do Método de Newton
- Direção de Centragem: Uma vez que existe uma direção de correção vamos perturbar o problema com um parâmetro μ escolhido de forma mais inteligente que no método de seguidor de caminho.
- $\alpha = 1, \Rightarrow r_p^{k+1} = b A(x + dx) = b Ax Adx = r_p^k Adx = 0$
- $(X + D_X)(Z + D_Z)e = (XZ + ZD_X + XD_Z + D_XD_Z)e = -r_a + r_a + D_XD_Ze = D_XD_Ze$

- Direção Afim Escala: É a direção de Newton como direção preditora.
- Direção de Correção: Que compensa a aproximação linear do Método de Newton
- Direção de Centragem: Uma vez que existe uma direção de correção vamos perturbar o problema com um parâmetro μ escolhido de forma mais inteligente que no método de seguidor de caminho.
- $\alpha = 1, \Rightarrow r_p^{k+1} = b A(x + dx) = b Ax Adx = r_p^k Adx = 0$
- $(X + D_X)(Z + D_Z)e = (XZ + ZD_X + XD_Z + D_XD_Z)e = -r_a + r_a + D_XD_Ze = D_XD_Ze$

- Direção Afim Escala: É a direção de Newton como direção preditora.
- Direção de Correção: Que compensa a aproximação linear do Método de Newton
- Direção de Centragem: Uma vez que existe uma direção de correção vamos perturbar o problema com um parâmetro μ escolhido de forma mais inteligente que no método de seguidor de caminho.
- $\alpha = 1, \Rightarrow r_p^{k+1} = b A(x + dx) = b Ax Adx = r_p^k Adx = 0$
- $(X + D_X)(Z + D_Z)e = (XZ + ZD_X + XD_Z + D_XD_Z)e = -r_a + r_a + D_XD_Ze = D_XD_Ze$

Campinas - 2013

- Direção Afim Escala: É a direção de Newton como direção preditora.
- Direção de Correção: Que compensa a aproximação linear do Método de Newton
- Direção de Centragem: Uma vez que existe uma direção de correção vamos perturbar o problema com um parâmetro μ escolhido de forma mais inteligente que no método de seguidor de caminho.
- $\alpha = 1, \Rightarrow r_p^{k+1} = b A(x + dx) = b Ax Adx = r_p^k Adx = 0$
- $(X + D_X)(Z + D_Z)e = (XZ + ZD_X + XD_Z + D_XD_Z)e = -r_a + r_a + D_XD_Ze = D_XD_Ze$

Preditor

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} \widetilde{dx} \\ \widetilde{dy} \\ \widetilde{dz} \end{pmatrix} = \begin{pmatrix} r_{p} \\ r_{d} \\ r_{a} \end{pmatrix}$$
 (7)

Corretor

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -\widetilde{D}_{X}\widetilde{D}_{Z}e \end{pmatrix}$$
(8)

Parâmetro de Perturbação

$$\mu = \sigma \frac{\gamma}{n}, \qquad \sigma = \left(\frac{\tilde{\gamma}}{\gamma}\right)^p, \quad \tilde{\gamma} = (x + \tilde{\alpha}_p \tilde{d}x)^T (z + \tilde{\alpha}_d \tilde{d}z), \quad p = 2 \text{ ou } 3.$$

Preditor

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} \widetilde{dx} \\ \widetilde{dy} \\ \widetilde{dz} \end{pmatrix} = \begin{pmatrix} r_{p} \\ r_{d} \\ r_{a} \end{pmatrix}$$
 (7)

Corretor

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -\widetilde{D_{X}}\widetilde{D_{Z}}e \end{pmatrix}$$
(8)

Parâmetro de Perturbação

$$\mu = \sigma \frac{\gamma}{n}, \quad \sigma = \left(\frac{\tilde{\gamma}}{\gamma}\right)^p, \quad \tilde{\gamma} = (x + \tilde{\alpha}_p \tilde{d}x)^T (z + \tilde{\alpha}_d \tilde{d}z), \quad p = 2 \text{ ou } 3.$$

Preditor

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} \widetilde{dx} \\ \widetilde{dy} \\ \widetilde{dz} \end{pmatrix} = \begin{pmatrix} r_{p} \\ r_{d} \\ r_{a} \end{pmatrix}$$
 (7)

Corretor

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -\widetilde{D_{X}}\widetilde{D_{Z}}e \end{pmatrix}$$
(8)

Parâmetro de Perturbação

$$\mu = \sigma \frac{\gamma}{n}, \qquad \sigma = \left(\frac{\tilde{\gamma}}{\gamma}\right)^p, \quad \tilde{\gamma} = (x + \tilde{\alpha}_p \tilde{dx})^T (z + \tilde{\alpha}_d \tilde{dz}), \quad p = 2 \text{ ou } 3.$$

 Utilizamos a perturbação na direção de correção ao mesmo tempo que fazemos a correção não linear

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} \widehat{dx} \\ \widehat{dy} \\ \widehat{dz} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \mu e - \widetilde{D_{X}} \widetilde{D_{Z}} e \end{pmatrix}$$
(10)

• A direção final é a soma das direções \hat{d} e \hat{d} .

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} r_p \\ r_d \\ r_s \end{pmatrix}, \begin{array}{l} r_a = -XZe \\ r_c = \mu e - XZe = \mu e + r_a \\ r_s = \mu e - XZe - \widetilde{D}_X \widetilde{D}_Z e \end{array}$$

$$r_s = r_c - \widetilde{D_X} \widetilde{D_Z} \epsilon$$

 Utilizamos a perturbação na direção de correção ao mesmo tempo que fazemos a correção não linear

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} \widehat{dx} \\ \widehat{dy} \\ \widehat{dz} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \mu e - \widetilde{D_{X}} \widetilde{D_{Z}} e \end{pmatrix}$$
(10)

• A direção final é a soma das direções \tilde{d} e \hat{d} .

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Z & 0 & X \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \begin{pmatrix} r_{p} \\ r_{d} \\ r_{s} \end{pmatrix}, \begin{array}{l} r_{a} = -XZe \\ r_{c} = \mu e - XZe = \mu e + r_{a} \\ r_{s} = \mu e - XZe - \widetilde{D}_{X}\widetilde{D}_{Z}e \end{pmatrix}$$

$$r_s = r_c - \widetilde{D_X} \widetilde{D_Z} e$$

Campinas - 2013

Require: x^0 , y^0 , z^0 tal que $x^0 > 0$, $z^0 > 0$

 $\tau = 0.99995$

Maxit = 100

while $k = 0, 1, 2, \cdots$, Maxit e Condição de Parada do

IMECC

end while

Require: x^0 , y^0 , z^0 tal que $x^0 > 0$, $z^0 > 0$ $\tau = 0.99995$

Maxit = 10

while $k = 0, 1, 2, \cdots, Maxit$ e Condição de Parada do

end while

Require: x^0 , y^0 , z^0 tal que $x^0 > 0$, $z^0 > 0$ $\tau = 0.99995$ Maxit = 100

while $k = 0, 1, 2, \dots, Maxit$ e Condição de Parada **d**o

Calcule a direção afim escala: dx, dy e a

IMECC


```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995
  Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995
  Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
    Calcule a direção afim escala: dx, dy e dz
```

```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995
  Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     Calcule a direção afim escala: dx, dy e dz
     Calcule o tamanho de passo \widetilde{\alpha}_n e \widetilde{\alpha}_d
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995
  Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     Calcule a direção afim escala: dx, dy e dz
     Calcule o tamanho de passo \widetilde{\alpha}_n e \widetilde{\alpha}_d
      Calcule \tilde{\gamma}, \sigma e \mu
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995
  Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     Calcule a direção afim escala: dx, dy e dz
     Calcule o tamanho de passo \widetilde{\alpha_v} e \widetilde{\alpha_d}
     Calcule \tilde{\gamma}, \sigma e \mu
     Calcule a direção final usando (11)
```

```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995
  Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     Calcule a direção afim escala: dx, dy e dz
     Calcule o tamanho de passo \widetilde{\alpha_v} e \widetilde{\alpha_d}
     Calcule \tilde{\gamma}, \sigma e \mu
     Calcule a direção final usando (11)
     Calcule o tamanho de passo \alpha_p e \alpha_d
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
  \tau = 0.99995
  Maxit = 100
  while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
     Calcule a direção afim escala: dx, dy e dz
     Calcule o tamanho de passo \widetilde{\alpha_v} e \widetilde{\alpha_d}
      Calcule \tilde{\gamma}, \sigma e \mu
      Calcule a direção final usando (11)
     Calcule o tamanho de passo \alpha_p e \alpha_d
     x^{k+1} \leftarrow x^k + \alpha_p dx
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
   \tau = 0.99995
   Maxit = 100
   while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
      Calcule a direção afim escala: dx, dy e dz
      Calcule o tamanho de passo \widetilde{\alpha_v} e \widetilde{\alpha_d}
      Calcule \tilde{\gamma}, \sigma e \mu
      Calcule a direção final usando (11)
      Calcule o tamanho de passo \alpha_p e \alpha_d
     x^{k+1} \leftarrow x^k + \alpha_p dx
      y^{k+1} \leftarrow y^k + \alpha_d dy
      z^{k+1} \leftarrow z^k + \alpha_d dz
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
   \tau = 0.99995
   Maxit = 100
   while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
      Calcule a direção afim escala: dx, dy e dz
      Calcule o tamanho de passo \widetilde{\alpha}_n e \widetilde{\alpha}_d
      Calcule \tilde{\gamma}, \sigma e \mu
      Calcule a direção final usando (11)
      Calcule o tamanho de passo \alpha_p e \alpha_d
     x^{k+1} \leftarrow x^k + \alpha_p dx
     y^{k+1} \leftarrow y^k + \alpha_d dy
      z^{k+1} \leftarrow z^k + \alpha_d dz
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
   \tau = 0.99995
   Maxit = 100
   while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
      Calcule a direção afim escala: dx, dy e dz
      Calcule o tamanho de passo \widetilde{\alpha}_n e \widetilde{\alpha}_d
      Calcule \tilde{\gamma}, \sigma e \mu
      Calcule a direção final usando (11)
      Calcule o tamanho de passo \alpha_p e \alpha_d
     x^{k+1} \leftarrow x^k + \alpha_p dx
     y^{k+1} \leftarrow y^k + \alpha_d dy
      z^{k+1} \leftarrow z^k + \alpha_d dz
```

Avaliar/Testar Condição de Parada

 $k \leftarrow k + 1$ nd while


```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
   \tau = 0.99995
   Maxit = 100
   while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
      Calcule a direção afim escala: dx, dy e dz
      Calcule o tamanho de passo \widetilde{\alpha}_n e \widetilde{\alpha}_d
      Calcule \tilde{\gamma}, \sigma e \mu
      Calcule a direção final usando (11)
      Calcule o tamanho de passo \alpha_p e \alpha_d
     x^{k+1} \leftarrow x^k + \alpha_p dx
     y^{k+1} \leftarrow y^k + \alpha_d dy
      z^{k+1} \leftarrow z^k + \alpha_d dz
      Avaliar/Testar Condição de Parada
      k \leftarrow k + 1
```



```
Require: x^0, y^0, z^0 tal que x^0 > 0, z^0 > 0
   \tau = 0.99995
   Maxit = 100
   while k = 0, 1, 2, \dots, Maxit e Condição de Parada do
      Calcule a direção afim escala: dx, dy e dz
      Calcule o tamanho de passo \widetilde{\alpha}_n e \widetilde{\alpha}_d
      Calcule \tilde{\gamma}, \sigma e \mu
      Calcule a direção final usando (11)
      Calcule o tamanho de passo \alpha_p e \alpha_d
     x^{k+1} \leftarrow x^k + \alpha_p dx
     y^{k+1} \leftarrow y^k + \alpha_d dy
      z^{k+1} \leftarrow z^k + \alpha_d dz
      Avaliar/Testar Condição de Parada
      k \leftarrow k + 1
   end while
```


- É necessário resolver dois sistemas lineares por iteração com a mesma matriz de coeficientes.
- O esforço por iteração é maior
- Na pratica o número de iterações do método Preditor-Corretor é pouco mais que a metade em relação ao método Seguidor de Caminho.
- É possível provar convergência quadrática para esse método, se consideramos que os dois sistemas lineares constituem uma iteração.
- Este método poderia ser chamado *Método de Newton Perturbado* (μ) *Modificado* ((x, z) > 0) de ordem 1 (1 correção linear).
- Este método é a base de todas implementações atuais de pontos interiores.

- É necessário resolver dois sistemas lineares por iteração com a mesma matriz de coeficientes.
- O esforço por iteração é maior
- Na pratica o número de iterações do método Preditor-Corretor é pouco mais que a metade em relação ao método Seguidor de Caminho.
- É possível provar convergência quadrática para esse método, se consideramos que os dois sistemas lineares constituem uma iteração.
- Este método poderia ser chamado *Método de Newton Perturbado* (μ , *Modificado* ((x, z) > 0) de ordem 1 (1 correção linear).
- Este método é a base de todas implementações atuais de pontos interiores.

- É necessário resolver dois sistemas lineares por iteração com a mesma matriz de coeficientes.
- O esforço por iteração é maior
- Na pratica o número de iterações do método Preditor-Corretor é pouco mais que a metade em relação ao método Seguidor de Caminho.
- É possível provar convergência quadrática para esse método, se consideramos que os dois sistemas lineares constituem uma iteração.
- Este método poderia ser chamado *Método de Newton Perturbado* (μ), *Modificado* ((x, z) > 0) de ordem 1 (1 correção linear).
- Este método é a base de todas implementações atuais de pontos interiores.

- É necessário resolver dois sistemas lineares por iteração com a mesma matriz de coeficientes.
- O esforço por iteração é maior
- Na pratica o número de iterações do método Preditor-Corretor é pouco mais que a metade em relação ao método Seguidor de Caminho.
- É possível provar convergência quadrática para esse método, se consideramos que os dois sistemas lineares constituem uma iteração.
- Este método poderia ser chamado *Método de Newton Perturbado* (μ , *Modificado* ((x, z) > 0) de ordem 1 (1 correção linear).
- Este método é a base de todas implementações atuais de pontos interiores.

- É necessário resolver dois sistemas lineares por iteração com a mesma matriz de coeficientes.
- O esforço por iteração é maior
- Na pratica o número de iterações do método Preditor-Corretor é pouco mais que a metade em relação ao método Seguidor de Caminho.
- É possível provar convergência quadrática para esse método, se consideramos que os dois sistemas lineares constituem uma iteração.
- Este método poderia ser chamado *Método de Newton Perturbado* (μ) *Modificado* ((x, z) > 0) de ordem 1 (1 correção linear).
- Este método é a base de todas implementações atuais de pontos interiores.

- É necessário resolver dois sistemas lineares por iteração com a mesma matriz de coeficientes.
- O esforço por iteração é maior
- Na pratica o número de iterações do método Preditor-Corretor é pouco mais que a metade em relação ao método Seguidor de Caminho.
- É possível provar convergência quadrática para esse método, se consideramos que os dois sistemas lineares constituem uma iteração.
- Este método poderia ser chamado *Método de Newton Perturbado* (μ) *Modificado* ((x, z) > 0) de ordem 1 (1 correção linear).
- Este método é a base de todas implementações atuais de pontos interiores.

Conteúdo:

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

Métodos diretos e iterativos

- 3 Problema PL penalizado Parâmetro de penalização
- 4 Resultados Numéricos PCx
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

Propriedades dos Sistemas

• Qual sistema resolver?

Equação Normal

Sistema Aumentado

$$ADA^{T}dy = r$$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$
 (12)

Equações Normai Definida Positiva Simétrica posto m

Perda da estrutura esparsa Somente *D* altera na matriz Muito mais mal-condicionado Cholesky (Precondicionado) Gradientes Conjugados (Prec.) Sistema Aumentado

Indefinida Simétrica

posto m + n

Utiliza matrizes originais Somente *D* altera na matri: mal-condicionado Bunch–Parlet

Propriedades dos Sistemas

• Qual sistema resolver?

Equação Normal

Sistema Aumentado

$$ADA^{T}dy = r$$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$
 (12)

Equações Normais

Definida Positiva Simétrica posto *m*

 Perda da estrutura esparsa Somente D altera na matriz Muito mais mal-condicionado Cholesky (Precondicionado) Gradientes Conjugados (Prec.)

Sistema Aumentado

Indefinida Simétrica posto m + n Utiliza matr

posto m + nUtiliza matrizes originais
Somente D altera na matriz
mal-condicionado
Bunch-Parlet
Varios Métodos iterativos

Decomposição de Cholesky para matrizes esparsas

•
$$\mathbb{B} = ADA^T$$
, $B_{ij} = \sum_{k=1}^{n} D_{kk} A_{ik} A_{kj}^T = \sum_{k=1}^{n} D_{kk} A_{ik} A_{jk}$

$$\begin{pmatrix} * & * & * & * & * \\ * & * & . & . & . \\ * & . & * & . & . \\ * & . & . & * & . \\ * & . & . & * & . \end{pmatrix} \quad \Rightarrow \quad L = \begin{pmatrix} * & * & * & * & * \\ . & * & * & * & * \\ . & . & * & * & * \\ . & . & . & * & * \end{pmatrix}$$

Decomposição de Cholesky para matrizes esparsas

•
$$\mathbb{B} = ADA^T$$
, $B_{ij} = \sum_{k=1}^{n} D_{kk} A_{ik} A_{kj}^T = \sum_{k=1}^{n} D_{kk} A_{ik} A_{jk}$

Enchimento

$$\begin{pmatrix} * & * & * & * & * \\ * & * & . & . & . \\ * & . & * & . & . \\ * & . & . & * & * \end{pmatrix} \quad \Rightarrow \quad L = \begin{pmatrix} * & * & * & * & * \\ . & * & * & * & * \\ . & . & * & * & * \\ . & . & . & * & * \end{pmatrix}$$

Reordenado

$$\Rightarrow L = \begin{pmatrix} * & . & . & . & * \\ . & * & . & . & * \\ . & . & * & . & * \\ . & . & . & * & * \\ . & . & . & . & * \end{pmatrix}$$

Decomposição de Cholesky para matrizes esparsas

•
$$\mathbb{B} = ADA^T$$
, $B_{ij} = \sum_{k=1}^{n} D_{kk} A_{ik} A_{kj}^T = \sum_{k=1}^{n} D_{kk} A_{ik} A_{jk}$

Enchimento

Reordenado

$$\begin{pmatrix} * & . & . & . & * \\ . & * & . & . & * \\ . & . & * & . & * \\ . & . & . & * & * \\ * & * & * & * & * \end{pmatrix} \quad \Rightarrow \quad L = \begin{pmatrix} * & . & . & * \\ . & * & . & . & * \\ . & . & . & * & * \\ . & . & . & * & * \\ . & . & . & * & * \end{pmatrix}$$

Conteúdo:

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- Solução de Sistemas no MP

Métodos diretos e iterativos

- **3** Problema *PL* penalizado Parâmetro de penalização
 - 4 Resultados Numéricos
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

PL Penalizado

• Problema PL canalizado misto

(P) Min
$$c^T x$$

s.a. $Ax = b$ (13)
 $Ex + v = u$
 $(x, v) \ge 0$

ullet Sub-Problema, ho parâmetro de penalização

$$(P_{\rho})$$
 Min $c^{T}x + \frac{\rho}{2} \left(\|b - Ax\|^{2} + \|u - Ex - v\|^{2} \right)$
s.a. $(x, v) \ge 0$ (14)

Função de penalização
$$\mathcal{P}(x,v) = \frac{\rho}{2} \left(\|b - Ax\|^2 + \|u - Ex - v\|^2 \right)$$

Campinas - 2013

PL Penalizado

Problema PL canalizado misto

(P) Min
$$c^T x$$

s.a. $Ax = b$ (13)
 $Ex + v = u$
 $(x, v) \ge 0$

Sub-Problema, ρ parâmetro de penalização

$$(P_{\rho})$$
 Min $c^{T}x + \frac{\rho}{2} \left(\|b - Ax\|^{2} + \|u - Ex - v\|^{2} \right)$
s.a. $(x, v) \ge 0$ (14)

Função de penalização
$$\mathcal{P}(x,v) = \frac{\rho}{2} \left(\|b - Ax\|^2 + \|u - Ex - v\|^2 \right)$$

29 / 39

KKT

Sistema KKT perturbado

$$Ax + \delta y = b$$

$$Ex + v - \delta w = u$$

$$A^{T}y + z - E^{T}w = c$$

$$XZe = \mu e$$

$$VWe = \mu e$$
(15)

$$Adx + \delta dy = r_p, \quad r_p = b - Ax - \delta y$$

$$Edx + dv - \delta dw = r_u, \quad r_u = u - Ex - v + \delta w$$

$$A^T dy + dz - E^T dw = r_d, \quad r_d = c - A^T y - z + E^T w$$

$$Zdx + Xdz = r_s, \quad r_s = -XZe + \mu e$$

$$Wdv + Vdw = r_r, \quad r_r = -VWe + \mu e$$

KKT

Sistema KKT perturbado

$$Ax + \delta y = b$$

$$Ex + v - \delta w = u$$

$$A^{T}y + z - E^{T}w = c$$

$$XZe = \mu e$$

$$VWe = \mu e$$
(15)

Sistema Newton

$$Adx + \delta dy = r_p, \quad r_p = b - Ax - \delta y$$

$$Edx + dv - \delta dw = r_u, \quad r_u = u - Ex - v + \delta w$$

$$A^T dy + dz - E^T dw = r_d, \quad r_d = c - A^T y - z + E^T w$$

$$Zdx + Xdz = r_s, \quad r_s = -XZe + \mu e$$

$$Wdv + Vdw = r_r, \quad r_r = -VWe + \mu e$$

$$(16)$$

Sistema Aumentado e Normal

•
$$D = (X^{-1}Z + E^{T}S^{-1}WE)^{-1} e r_1 = r_d - X^{-1}r_s + E^{T}S^{-1}r_r - E^{T}S^{-1}Wr_u$$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(17)

$$(ADA^{T} + \delta I)dy = r_{p} + AD(r_{d} - X^{-1}r_{s} + E^{T}S^{-1}r_{r} - E^{T}S^{-1}Wr_{u}) = r_{p} + ADr_{1}$$
(18)

$$(P_{\delta}) \quad \text{Min} \quad c^{T}x + \frac{\delta}{2}y^{T}y + \frac{\delta}{2}w^{T}w$$
s.a.
$$Ax + \delta y = b$$

$$Ex + v - \delta w = u$$

$$(x, v) \ge 0, \ y \text{ livre}, \ w \ge 0$$

Sistema Aumentado e Normal

•
$$D = (X^{-1}Z + E^{T}S^{-1}WE)^{-1} e r_1 = r_d - X^{-1}r_s + E^{T}S^{-1}r_r - E^{T}S^{-1}Wr_u$$

$$\begin{pmatrix} -D^{-1} & A^T \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_1 \\ r_p \end{pmatrix}$$
(17)

Sistema Normal

$$(ADA^{T} + \delta I)dy = r_{p} + AD(r_{d} - X^{-1}r_{s} + E^{T}S^{-1}r_{r} - E^{T}S^{-1}Wr_{u}) = r_{p} + ADr_{1}$$
(18)

$$(P_{\delta}) \quad \text{Min} \quad c^{T}x + \frac{\delta}{2}y^{T}y + \frac{\delta}{2}w^{T}w$$
s.a.
$$Ax + \delta y = b$$

$$Ex + v - \delta w = u$$

$$(x, v) \ge 0, \ y \text{ livre, } w \ge 0$$

Sistema Aumentado e Normal

•
$$D = (X^{-1}Z + E^{T}S^{-1}WE)^{-1} e r_{1} = r_{d} - X^{-1}r_{s} + E^{T}S^{-1}r_{r} - E^{T}S^{-1}Wr_{u}$$

$$\begin{pmatrix} -D^{-1} & A^{T} \\ A & \delta I \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} r_{1} \\ r_{p} \end{pmatrix}$$
(17)

Sistema Normal

$$(ADA^{T} + \delta I)dy = r_{p} + AD(r_{d} - X^{-1}r_{s} + E^{T}S^{-1}r_{r} - E^{T}S^{-1}Wr_{u}) = r_{p} + ADr_{1}$$
(18)

Equivalência a Sub-Problema

$$(P_{\delta}) \quad \text{Min} \quad c^T x + \frac{\delta}{2} y^T y + \frac{\delta}{2} w^T w$$
 s.a.
$$Ax + \delta y = b$$

$$Ex + v - \delta w = u$$

$$(x, v) \ge 0, \ y \text{ livre}, \ w \ge 0$$

Conteúdo:

- Programação Linear
 Região Factível
 Pontos Interiores
 Precondicionadores
 Método de Pontos Interiores
 Método Preditor-Corretor
- 2 Solução de Sistemas no MPI

Métodos diretos e iterativos

- **3** Problema *PL* penalizado Parâmetro de penalização
- 4 Resultados Numéricos PCx
- 6 Conclusões
- 6 Bibliografia
- Agradecimento

Nova abordagem

• Aurélio: Base por fatoração *LU* rectangular de *A*

• Porfirio: Base por fatoração *LU* rectangular de *A*^T

Melhor condicionamento da Base

Nova abordagem

- Aurélio: Base por fatoração *LU* rectangular de *A*
- ullet Porfirio: Base por fatoração LU rectangular de A^T

Melhor condicionamento da Base

Nova abordagem

- Aurélio: Base por fatoração *LU* rectangular de *A*
- Porfirio: Base por fatoração LU rectangular de A^T

Melhor condicionamento da Base

Nome do	LUret	LUstd
Problema	Número de Condição	Número de Condição
afiro	118.9738	33.3923
fit1p	5.0716e+03	4.0253e+03
fit2p	2.2670e+04	5.9354e+03
grow22	1.9056e+17*	653.0329
israel	1.7269e+07*	2.9008e+04
kb2	2.8085e+03	2.8085e+03
Maros-r7	4.1548e+06*	187.3688

	LUstd	LUret
Problemas abordados	179	179
Problemas resolvidos	141	115
Só por cada método	32	6
Não resolvidos	38	64
Prob. c/outro erro	1	16
Resolvidos Luret e Lustd	109	109
Tempo total dos 109 problemas	4563.98	4497.81

- Enquanto a tempos n\u00e3o existe uma diferen\u00e7a significativa a favor de um dos m\u00e9todos
- LUstd é mais robusto que LUret, embora que LUstd resolvió quase todos os problemas de fort#, (não são problemas grandes)
- 16 problemas com LUret falharam por outras razões como Wrong Branch, falha de segmentação no Linux, etc.
- LUstd tem problemas de fatoração para problemas maiores co kra30a, ste36a. precisa melhorar algoritmo LUstd.

	LUstd	LUret
Problemas abordados	179	179
Problemas resolvidos	141	115
Só por cada método	32	6
Não resolvidos	38	64
Prob. c/outro erro	1	16
Resolvidos Luret e Lustd	109	109
Tempo total dos 109 problemas	4563.98	4497.81

- Enquanto a tempos n\u00e3o existe uma diferen\u00e7a significativa a favor de um dos m\u00e9todos
- LUstd é mais robusto que LUret, embora que LUstd resolvió quase todos os problemas de fort#, (não são problemas grandes)
- 16 problemas com LUret falharam por outras razões como Wrong Branch, falha de segmentação no Linux, etc.
- LUstd tem problemas de fatoração para problemas maiores cop kra30a, ste36a. precisa melhorar algoritmo LUstd.

	LUstd	LUret
Problemas abordados	179	179
Problemas resolvidos	141	115
Só por cada método	32	6
Não resolvidos	38	64
Prob. c/outro erro	1	16
Resolvidos Luret e Lustd	109	109
Tempo total dos 109 problemas	4563.98	4497.81

- Enquanto a tempos n\u00e3o existe uma diferen\u00e7a significativa a favor de um dos m\u00e9todos
- LUstd é mais robusto que LUret, embora que LUstd resolvió quase todos os problemas de fort#, (não são problemas grandes)
- 16 problemas com LUret falharam por outras razões como Wrong Branch, falha de segmentação no Linux, etc.
- LUstd tem problemas de fatoração para problemas maiores con kra30a, ste36a. precisa melhorar algoritmo LUstd.

	LUstd	LUret
Problemas abordados	179	179
Problemas resolvidos	141	115
Só por cada método	32	6
Não resolvidos	38	64
Prob. c/outro erro	1	16
Resolvidos Luret e Lustd	109	109
Tempo total dos 109 problemas	4563.98	4497.81

- Enquanto a tempos n\u00e3o existe uma diferen\u00e7a significativa a favor de um dos m\u00e9todos
- LUstd é mais robusto que LUret, embora que LUstd resolvió quase todos os problemas de fort#, (não são problemas grandes)
- 16 problemas com LUret falharam por outras razões como Wrong Branch, falha de segmentação no Linux, etc.
- LUstd tem problemas de fatoração para problemas maiores como kra30a, ste36a. precisa melhorar algoritmo LUstd.

Problema

Acabou memoria de meu computador para problemas maiores a 130 mil variáveis!!!!

- Hall J. Al-Jeiroudi G., Gondzio J., *Precontioning indefite system in interior point methods for large scale linear optimization*, Optimization Methods and Software **23** (2008), 345–363.
 - Luca Bergamaschi, Jacek Gondzio, and Giovanni Zilli, *Preconditioning indefinite systems in interior point methods for optimization*, Computational Optimization and Applications **28** (2004), no. 2, 149–171.
- Zilli G. Bergamaschi L., Gonszio J., *Precontioning indefite system in interior point methods for optimization*, Computational Optimization and Application **28** (2004), 149–171, Kluwer Academic Publishers Netherlands.
- Toh K. Chai J., Preconditioning and iterative solution of symetric indefinite linear system arising from interior point methods for linear programming, Computational Optimization and Applications 3: (2007), 221–247.

- Hall J. Al-Jeiroudi G., Gondzio J., *Precontioning indefite system in interior point methods for large scale linear optimization*, Optimization Methods and Software **23** (2008), 345–363.
- Luca Bergamaschi, Jacek Gondzio, and Giovanni Zilli, *Preconditioning indefinite systems in interior point methods for optimization*, Computational Optimization and Applications **28** (2004), no. 2, 149–171.
- Zilli G. Bergamaschi L., Gonszio J., *Precontioning indefite system in interior point methods for optimization*, Computational Optimization and Application **28** (2004), 149–171, Kluwer Academic Publishers Netherlands.
- Toh K. Chai J., Preconditioning and iterative solution of symetric indefinite linear system arising from interior point methods for linear programming, Computational Optimization and Applications 3 (2007), 221–247.

- Hall J. Al-Jeiroudi G., Gondzio J., *Precontioning indefite system in interior point methods for large scale linear optimization*, Optimization Methods and Software **23** (2008), 345–363.
- Luca Bergamaschi, Jacek Gondzio, and Giovanni Zilli, *Preconditioning indefinite systems in interior point methods for optimization*, Computational Optimization and Applications **28** (2004), no. 2, 149–171.
- Zilli G. Bergamaschi L., Gonszio J., *Precontioning indefite system in interior point methods for optimization*, Computational Optimization and Application **28** (2004), 149–171, Kluwer Academic Publishers Netherlands.
- Toh K. Chai J., *Preconditioning and iterative solution of symetric indefinite linear system arising from interior point methods for linear programming*, Computational Optimization and Applications 3 (2007), 221–247.

- Hall J. Al-Jeiroudi G., Gondzio J., *Precontioning indefite system in interior point methods for large scale linear optimization*, Optimization Methods and Software **23** (2008), 345–363.
- Luca Bergamaschi, Jacek Gondzio, and Giovanni Zilli, *Preconditioning indefinite systems in interior point methods for optimization*, Computational Optimization and Applications **28** (2004), no. 2, 149–171.
- **Zilli** G. Bergamaschi L., Gonszio J., *Precontioning indefite system in interior point methods for optimization*, Computational Optimization and Application **28** (2004), 149–171, Kluwer Academic Publishers Netherlands.
- Toh K. Chai J., *Preconditioning and iterative solution of symetric indefinite linear system arising from interior point methods for linear programming*, Computational Optimization and Applications 3 (2007), 221–247.

- Timothy A Davis and Iain S Duff, *An unsymmetric-pattern multifrontal method for sparse lu factorization*, SIAM Journal on Matrix Analysis and Applications **18** (1997), no. 1, 140–158.
- Luenberger David G., *Linear and nonlinear programming*, 2nd ed., Springer, Standford University USA, 2005.
- Gondzio J., *Interior point method 25 year later*, European Journal of Operational Research (2011), 12–34, Elsevier doi 10.1016/j.ejor.2011.09.017 http://maths.ed.ac.uk/~gondzio.
- Oliveira Aurelio R. L., *Mt503: Programação linear*, Aulas de Pósgraduação em Matemática Aplicada no IMECC–UNICAMP, Ago-Dez 2011.

- Timothy A Davis and Iain S Duff, *An unsymmetric-pattern multifrontal method for sparse lu factorization*, SIAM Journal on Matrix Analysis and Applications **18** (1997), no. 1, 140–158.
- Luenberger David G., *Linear and nonlinear programming*, 2nd ed., Springer, Standford University USA, 2005.
- Gondzio J., *Interior point method 25 year later*, European Journal of Operational Research (2011), 12–34, Elsevier doi 10.1016/j.ejor.2011.09.017 http://maths.ed.ac.uk/~gondzio.
- Oliveira Aurelio R. L., *Mt503: Programação linear*, Aulas de Pósgraduação em Matemática Aplicada no IMECC–UNICAMP, Ago-Dez 2011.

- Timothy A Davis and Iain S Duff, *An unsymmetric-pattern multifrontal method for sparse lu factorization*, SIAM Journal on Matrix Analysis and Applications **18** (1997), no. 1, 140–158.
- Luenberger David G., *Linear and nonlinear programming*, 2nd ed., Springer, Standford University USA, 2005.
- Gondzio J., *Interior point method 25 year later*, European Journal of Operational Research (2011), 12−34, Elsevier doi 10.1016/j.ejor.2011.09.017 http://maths.ed.ac.uk/~gondzio.
- Oliveira Aurelio R. L., *Mt503: Programação linear*, Aulas de Pósgraduação em Matemática Aplicada no IMECC–UNICAMP, Ago-Dez 2011.

- Timothy A Davis and Iain S Duff, *An unsymmetric-pattern multifrontal method for sparse lu factorization*, SIAM Journal on Matrix Analysis and Applications **18** (1997), no. 1, 140–158.
- Luenberger David G., *Linear and nonlinear programming*, 2nd ed., Springer, Standford University USA, 2005.
- Gondzio J., *Interior point method 25 year later*, European Journal of Operational Research (2011), 12–34, Elsevier doi 10.1016/j.ejor.2011.09.017 http://maths.ed.ac.uk/~gondzio.
- Oliveira Aurelio R. L., *Mt503: Programação linear*, Aulas de Pósgraduação em Matemática Aplicada no IMECC–UNICAMP, Ago-Dez 2011.

- S. Mehrotra, *On the implementation of a primal-dual interior point method*, SIAM Journal on Optimization **2** (1992), 575–601.
 - Sorensen D. C. Oliveira A. R. L., *A new class of preconditioners for large-scale linear systems from interior point methods for linear programming*, Linear Algebra and its Applications **394** (2005), 1–24, England http://www.ime.unicamp.br/~aurelio/artigos/cor.pdf.
- Mehrotra S., Asymptotic convergence in a generalized-predictor-corrector method, Manuscript, Dept. of Industrial Engineering and Management Sciences, 1992, Northwestern University, Evanston, IL 60208, USA.
- Bocanegra Silvana, Algoritmos de newton-krylov precondicionados para métodos de pontos interiores, Impresso, Universidade Federal Minas Gerais, Belo Horizonte, Dezembro 2005.

- S. Mehrotra, *On the implementation of a primal-dual interior point method*, SIAM Journal on Optimization **2** (1992), 575–601.
- Sorensen D. C. Oliveira A. R. L., *A new class of preconditioners for large-scale linear systems from interior point methods for linear programming*, Linear Algebra and its Applications **394** (2005), 1–24, England http://www.ime.unicamp.br/~aurelio/artigos/cor.pdf.
- Mehrotra S., Asymptotic convergence in a generalized-predictor-corrector method, Manuscript, Dept. of Industrial Engineering and Management Sciences, 1992, Northwestern University, Evanston, IL 60208, USA.
- Bocanegra Silvana, Algoritmos de newton-krylov precondicionados para métodos de pontos interiores, Impresso, Universidade Federal Minas Gerais, Belo Horizonte, Dezembro 2005.

- S. Mehrotra, *On the implementation of a primal-dual interior point method*, SIAM Journal on Optimization **2** (1992), 575–601.
- Sorensen D. C. Oliveira A. R. L., *A new class of preconditioners for large-scale linear systems from interior point methods for linear programming*, Linear Algebra and its Applications **394** (2005), 1–24, England http://www.ime.unicamp.br/~aurelio/artigos/cor.pdf.
- Mehrotra S., Asymptotic convergence in a generalized-predictor-corrector method, Manuscript, Dept. of Industrial Engineering and Management Sciences, 1992, Northwestern University, Evanston, IL 60208, USA.
- Bocanegra Silvana, Algoritmos de newton-krylov precondicionados para métodos de pontos interiores, Impresso, Universidade Federal Minas Gerais, Belo Horizonte, Dezembro 2005.

- S. Mehrotra, *On the implementation of a primal-dual interior point method*, SIAM Journal on Optimization **2** (1992), 575–601.
- Sorensen D. C. Oliveira A. R. L., *A new class of preconditioners for large-scale linear systems from interior point methods for linear programming*, Linear Algebra and its Applications **394** (2005), 1–24, England http://www.ime.unicamp.br/~aurelio/artigos/cor.pdf.
- Mehrotra S., Asymptotic convergence in a generalized-predictor-corrector method, Manuscript, Dept. of Industrial Engineering and Management Sciences, 1992, Northwestern University, Evanston, IL 60208, USA.
- Bocanegra Silvana, *Algoritmos de newton-krylov precondicionados* para métodos de pontos interiores, Impresso, Universidade Federal de Minas Gerais, Belo Horizonte, Dezembro 2005.

Agradecimento

OBRIGADO

Pela sua Atenção Porfirio Suñagua Salgado

Agradecimento

OBRIGADO

Pela sua Atenção Porfirio Suñagua Salgado

