Module 7 - Time Varying Circuits

ME3023 - Measurements in Mechanical Systems

Mechanical Engineering
Tennessee Technological University

Topic 3 - Frequency Filters

Topic 3 - Frequency Filters

- Signal, Amplitude, and Frequency
- Filter Concept
- High-Pass, Low-Pass, and Band-Pass
- Applications

Signal, Amplitude, and Frequency

Signal, Amplitude, and Frequency

What is the relationship between the unit circle and frequency?

Signal, Amplitude, and Frequency

Signals can be composed of multiple *frequency components*. (see Fourier Analysis Ch2).

Signal, Amplitude, and Frequency

Filter Concept

A raw signal is input to a frequency filter and a filtered signal is output.

Filter Concept

So what is inside the grey box?

How does it work?

Filter Concept

Filters are constructed from time-varying circuits. The most basic of which is the RC filter.

First Order Model

$$\tau \dot{y} + y = KA \sin(\omega t)$$

Response Equation

$$y(t) = Ce^{-\frac{t}{\tau}} + \frac{KA}{\sqrt{1 + (\omega \tau)^2}} \sin(\omega t - \tan^{-1}(\omega \tau))$$

High-Pass, Low-Pass, and Band-Pass

High-Pass, Low-Pass, and Band-Pass

Physical frequency filters do not behave in an ideal manner as the previous figure shows. The filter characteristics are frequency dependent.

Applications

Finally, what are filters used for?

- •
- •
- •