(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年7 月14 日 (14.07.2005)

PCT

(10) 国際公開番号 WO 2005/064735 A1

(51) 国際特許分類7: H01M 10/40, 4/02, 2/02

(21) 国際出願番号: PCT/JP2004/019328

(22) 国際出願日: 2004年12月24日(24.12.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願 2003-428675

2003年12月25日(25.12.2003) JF

- (71) 出願人 (米国を除く全ての指定国について): 三洋電機 株式会社 (SANYO ELECTRIC CO., LTD.) [JP/JP]; 〒 5708677 大阪府守口市京阪本通2丁目5番5号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 岩永 征人 (IWANAGA, Masato) [JP/JP]; 〒5708677 大阪府守口市京阪本通2丁目5番5号三洋電機株式会社内 Osaka (JP). 猪俣 秀行 (INOMATA, Hideyuki) [JP/JP]; 〒5708677 大阪府守口市京阪本通2丁目5番5号三洋電機株式会社内 Osaka (JP). 大賀 敬介 (OOGA, Keisuke) [JP/JP]; 〒5708677 大阪府守口市京阪本通2丁目5番5号三洋電機株式会社内 Osaka (JP). 安部浩司 (ABE, Koji) [JP/JP]; 〒7558633 山口県宇部市大字小串1978番地の10宇部興産株式会社宇部ケミカル工場内 Yamaguchi (JP). 三好和弘 (MIYOSHI, Kazuhiro) [JP/JP]; 〒7558633 山口県宇部市大字小串

1978番地の10 宇部興産株式会社宇部ケミカル工場内 Yamaguchi (JP).

- (74) 代理人: 特許業務法人 ウィンテック (WIN TECH PATENT OFFICE); 〒1010045 東京都千代田区神田 鍛冶町三丁目 6番7号 ウンピン神田ビル4階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
- (54) 発明の名称: 非水電解液二次電池
- (57) Abstract: A nonaqueous electrolyte secondary battery comprising a negative electrode constituted of a carbonaceous material permitting reversible insertion and desorption of lithium, a positive electrode permitting reversible insertion and desorption of lithium, a separator separating these positive electrode and negative electrode from each other and a nonaqueous electrolyte composed of an organic solvent and, dissolved therein, a solute of lithium salt, wherein the nonaqueous electrolyte contains vinylene carbonate and di(2-propynyl) oxalate, these vinylene carbonate and di(2-propynyl) oxalate added in an amount of 0.1 to 3.0% by mass and 0.1 to 2.0% by mass, respectively, based on the mass of the nonaqueous electrolyte. Thus, there can be provided a nonaqueous electrolyte secondary battery wherein a stable SEI surface coating is formed to thereby exhibit a large initial capacity and excel in cycle characteristics at high temperature and wherein any cell swelling is slight.

(57)要約: リチウムを可逆的に挿入脱離できる炭素質材料からなる負極と、リチウムを可逆的に挿入脱離できる正極と、これらの正極と負極とを隔離するセパレータと、有機溶媒にリチウム塩からなる溶質が溶解した非水電解液を備えた非水電解液二次電池において、前記非水電解液中にビニレンカーボネート及びジ(2-プロピニル)オギザレートを含み、前記ビニレンカーボネートの添加量は前記非水電解液の質量に対して 0. 1 質量%以上 3. 0 質量%以下であり、前記ジ(2-プロピニル)オギザレートの添加量は前記非水電解液の質量に対して 0. 1 質量%以上 2. 0 質量%以下となるようにする。本発明によれば、安定な SEI表面被膜を形成して、初期容量が大きく、高温でのサイクル特性に優れ、しかも電池の膨れが小さい非水電解液二次電池を提供し得る。

1

明細書

非水電解液二次電池

技術分野

[0001] 本発明は、非水電解液二次電池に関し、更に詳しくは、初期容量が大きく、高温での充放電サイクル特性に優れ、電池の膨れが小さい非水電解液二次電池に関する

背景技術

- [0002] 携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解液二次電池が注目され、このリチウム非水電解液二次電池の占める割合は二次電池市場において大きな伸びを示している。
- [0003] このリチウム非水電解液二次電池は、細長いシート状の銅箔等からなる負極芯体(集電体)の両面に負極用活物質合剤を塗布した負極と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極用活物質合剤を塗布した正極との間に、微多孔性ポリオレフィンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状又は楕円形状に巻回した後、角形電池の場合は更に巻回電極体を押し潰して偏平状に形成し、負極及び正極の各所定部分にそれぞれ負極リード及び正極リードを接続して所定形状の外装缶内に収納した構成を有している。
- [0004] このリチウム非水電解液二次電池のうち、特に高エネルギー密度を有する4V級の非水電解液二次電池として、正極活物質がLiCoO₂、LiNiO₂、LiMn₂O₄、LiFeO₂等のリチウム複合酸化物からなり、負極活物質が炭素質材料からなる非水電解液二次電池が多く開発されている。このような非水電解液二次電池に使用される非水溶媒には、電解質を電離させるために誘電率が高い必要があること、及び、広い温度範囲でイオン伝導度が高い必要があるということから、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(D

WO 2005/064735

- MC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等のカーボネート類、γーブチロラクトン等のラクトン類、その他、エーテル類、ケトン類、エステル類などの有機溶媒が使用されており、特にECと粘度の低い非環状カーボネート、例えばDMC、DEC、EMC等の混合溶媒が広く使用されている。
- [0005] また、負極活物質としては、炭素質材料、特に黒鉛材料からなる負極活物質が、リチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有しているために、広く使用されている。
- [0006] しかしながら、負極活物質として黒鉛、非晶質炭素などの炭素質材料を用いると、 充放電過程において電極表面で有機溶媒が還元分解され、ガスの発生、副反応生 成物の堆積等により負極インピーダンスが増大し、充放電効率の低下、充放電サイク ル特性の劣化等を引き起すという問題点が存在していた。
- [0007] そこで、従来から、有機溶媒の還元分解を抑制するために、様々な化合物を非水 系電解液に添加して、負極活物質が有機溶媒と直接反応しないように、不動態化層 とも称される負極表面被膜(SEI:Solid Electrolyte Interface. 以下、「SEI表面被膜」 という。)を制御する技術が重要となっている。例えば、下記特許文献1及び2には、 非水電解液二次電池の非水系電解液として、非水系電解液中にビニレンカーボネ ート(VC)及びその誘導体から選択される少なくとも1種(特許文献1)或いはビニル エチレンカーボネート化合物(特許文献2)を添加し、これらの添加物により、最初の 充電による負極へのリチウムの挿入前に、負極活物質層上にSEI表面被膜を形成さ せ、リチウムイオンの周囲の溶媒分子の挿入を阻止するバリアーとして機能させるよう になしたものが開示されている。
- [0008] しかしながら、VC単独では、室温での充放電サイクル特性等は良好な結果を与えるものの、高温で充放電サイクルを繰り返すと電池が膨れてしまうと言う問題点が存在していた。これは、VCにより形成されたSEI表面被膜が高温で溶解してしまい、電解液を分解してガスが発生するためと考えられる。
- [0009] 一方、下記特許文献3には、電解液中に下記一般式(I)で表されるアルキン誘導体のうち少なくとも1種を添加すると、充放電サイクル特性、電池容量、保存特性等にす

ぐれた非水電解液二次電池が得られることが示されているが、室温で50サイクル程度までは良好なサイクル特性を与えるものの、300サイクルもの長期充放電サイクル特性は劣る上、高温での充放電サイクル特性については改善効果はなかった。これは、下記一般式(I)で表されるアルキン誘導体によるSEI被膜が、充放電サイクル時や高温で変質し易いために、電池の特性低下につながっているものと考えられる。

[0010] [化1]

$$R^{1}C \equiv C + \begin{pmatrix} R^{2} \\ I \\ C \end{pmatrix} + \begin{pmatrix} O - X - O - Y \\ I \end{pmatrix}$$

$$R^{3}$$

$$(I)$$

(式中、R¹、R²およびR³は、それぞれ独立して炭素数1~12のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基、炭素数7~12のアラルキル基、または水素原子を示す。また、R²とR³は、互いに結合して炭素数3~6のシクロアルキル基を形成していても良い。ただし、nは1または2の整数を示す。式中、Xはスルホキシド基、スルホン基、オギザリル基を示し、Yは、炭素数1~12のアルキル基、アルケニル基、アルキニル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基または炭素数7~12のアラルキル基を示す。)

[0011] 特許文献1:特開平08-045545号公報(特許請求の範囲、段落[0009]〜[0012] 、[0023]〜[0036])

特許文献2:特開2001-006729号公報(特許請求の範囲、段落[0006]〜[0014])

特許文献3:特開2002-124297号公報(特許請求の範囲、段落[0012]〜[0016])

発明の開示

発明が解決しようとする課題

[0012] 本発明者等は、上述の炭素負極の表面に生じるSEI表面被膜の生成機構につき 種々検討を重ねた結果、非水系電解液中にVCを含有させる場合に、上記一般式(I)で表されるアルキン誘導体のうち下記化学式(II)で表されるジ(2ープロピニル)オギ ザレート(D2PO)を共存させると、初期容量を低下させることなく、それぞれの単独添 加よりも飛躍的に高温での長期充放電サイクル特性が向上し、その際の電池の膨れ を抑制できることを見出し、本発明を完成するにいたったのである。

[0013] [4k2]

- [0014] このような結果が得られる理由は、現在のところ定かではなく、今後の研究を待つ必要があるが、おそらくはSEI被膜としてD2POとVCとの混合被膜が形成されることにより、D2PO被膜の変質を防ぐことができるようになると共に、高温での充放電サイクル時のVC被膜の溶解が抑制されているものと考えられる。
- [0015] したがって、本願発明の目的は、安定なSEI表面被膜を形成して、初期容量が大きく、高温での充放電サイクル特性に優れ、しかも電池の膨れが小さい非水電解液二次電池を提供することにある。

課題を解決するための手段

[0016] 本発明の上記目的は以下の構成により達成し得る。すなわち、本願の請求項1に 係る非水電解液二次電池の発明は、リチウムを可逆的に挿入脱離できる炭素質材料 からなる負極と、リチウムを可逆的に挿入脱離できる正極と、これらの正極と負極とを 隔離するセパレータと、有機溶媒にリチウム塩からなる溶質が溶解した非水電解液を 備えた非水電解液二次電池において、

前記非水電解液中にビニレンカーボネート及びジ(2-プロピニル)オギザレートを含み、前記ビニレンカーボネートの添加量は前記非水電解液の質量に対して0.1質量%以上3質量%以下であり、前記ジ(2-プロピニル)オギザレートの添加量は前記

非水電解液の質量に対して0.1質量%以上2質量%以下であることを特徴とする。

- [0017] この場合、前記VCの添加量は、前記非水電解液の質量に対して1質量%~3質量%が好ましく、1質量%~2.5質量%が最も好ましい。また、前記D2POの添加量は、前記非水電解液の質量に対して0.3質量%~2質量%が更に好ましい。前記の量範囲の時の前記VCと前記D2POの質量比率は、1/20以上30/1以下が好ましく、1/2以上10/1以下が更に好ましい。
- [0018] 前記非水電解液を構成する非水溶媒(有機溶媒)は、カーボネート類、ラクトン類、エーテル類、エステル類、芳香族炭化水素などが挙げられ、これらの中でカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類が更に好適に用いられる。
- [0019] カーボネート類として具体的には、環状カーボネート類として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)から選ばれる少なくとも1種以上が好ましく、鎖状カーボネート類(非環状カーボネート類)として、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)から選ばれる少なくとも1種以上が好ましい。
- [0020] 前記非水溶媒は、環状カーボネート類と鎖状カーボネート類を混合して用いることが好ましい。環状カーボネート類と鎖状カーボネート類の体積比は、40/60~20/80が好ましく、35/65~25/75が更に好ましい。また、鎖状カーボネート類としては、非対称鎖状カーボネート類であるエチルメチルカーボネート(EMC)を使用することが好ましく、非対称鎖状カーボネート類であるEMCと対称カーボネート類であるDECを併用することが特に好ましい。この場合、溶媒全体に占めるEMCとDECとの体積比は、70/0~40/30が好ましい。
- [0021] 非水系電解液を構成する電解質は、過塩素酸リチウム(LiClO $_4$)、六フッ化リン酸リチウム(LiPF $_6$)、ホウフッ化リチウム(LiBF $_4$)、六フッ化砒酸リチウム(LiAsF $_6$)、トリフルオロメチルスルホン酸リチウム(LiCF $_3$ SO $_3$)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF $_3$ SO $_2$) $_2$]などのリチウム塩が挙げられる。中でもLiPF $_6$ 、LiBF $_4$ を用いるのが好ましく、前記非水溶媒に対する溶解量は、0.5~2.0モル/1とするのが好ましい。

- [0022] 正極活物質には、 $LixMO_2$ (但し、MikCo、Ni、Mno少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち $LiCoO_2$ 、 $LiNiO_2$ 、 $LiNi_yCo_1O_2$ (y=0.01-0.99)、 $LiMnO_2$ 、 $LiCo_xMn_yNi_zO_2$ (x+y+z=1)などや、 $LiMn_zO_4$ で表わされるスピネル型コバルト酸リチウムが一種単独もしくは複数種を混合して用いられる。また、必要に応じて前記リチウム遷移金属複合酸化物中にチタン、マグネシウム、ジルコニウム、アルミニウム等の異種の金属元素を含有させてもよい。
- [0023] 負極活物質には、リチウムを吸蔵・放出することが可能な炭素質材料、特に人造黒鉛や天然黒鉛等のグラファイト類が用いられる。
- [0024] また、本願の請求項2に記載の発明は、前記請求項1に記載の非水電解液二次電池において、前記負極活物質の充填密度が1.3g/ml以上であることを特徴とする。負極活物質の高充填密度化は電池の高容量化のために行われるが、電解液中にVCとD2POを添加したことによる効果は負極充填密度が1.3g/ml以上になると、顕著に表れ、1.5g/ml以上で一層顕著に表れる。この現象は、電解液中にVCとD2POとが共存していないと、負極充填密度が上がることにより、負極表面に電解液の分解など不可逆的な反応を促進する活性点が増加してしまうためであって、電解液中にVCとD2POとを共存させると生じたSEI被膜によりこれらの活性点が有効に保護されるためと考えられる。前記負極活物質の充填密度が1.3g/ml未満であると、電解液中にVCとD2POを添加したことによる効果が有効に生じない。前記負極活物質の充填密度が大きくなると徐々に初期容量及び高温での長期容量維持率が低下して電池膨れが大きくなるし、また、1.9g/mlを超える充填密度のものは製造し難いので、臨界的限度ではないが1.9g/ml以下が好ましい。
- [0025] また、本願の請求項3に記載の発明は、前記請求項1に記載の非水電解液二次電池において、前記非水電解液がECと非環状カーボネートとの混合溶媒からなることを特徴とする。
- [0026] また、本願の請求項4に記載の発明は、前記請求項3に記載の非水電解液二次電池において、前記ECの含有割合が混合溶媒の20体積%以上40体積%以下であることを特徴とする。
- [0027] また、本願の請求項5に記載の発明は、前記請求項3に記載の非水電解液二次電

池において、前記非環状カーボネートがEMC、DEC、DMCから選択される少なくとも1種であることを特徴とする。

- [0028] また、本願の請求項6に記載の発明は、前記請求項5に記載の非水電解液二次電池において、前記DECの含有割合が混合溶媒の0体積%以上30体積%以下であることを特徴とする。この場合、他の非環状カーボネートを含有していればDECは含まれていなくてもよい。
- [0029] また、本願の請求項7に記載の発明は前記請求項1~6の何れか1項に記載の非水電解液二次電池において、前記非水電解液二次電池が金属製の外装缶内に配置されており、該外装缶の厚さが0.15mm以上0.50mm以下であることを特徴とする。外装缶の厚さが0.15mm未満であると、容量維持率が小さくなり、また、電池の膨れも大きくなるので好ましくない。外装缶の厚さが0.50mmを超えると、電池の初期容量が低下し、しかも、電解液中にVCとD2POを添加したことによる効果が有効に生じないので好ましくない。なお、金属製外装缶としてはアルミニウム合金製のものが好ましいが、ステンレススチールや鉄などの他のものも使用し得る。

発明の効果

- [0030] 本発明は、非水電解液にVC及びD2POを同時に含有させたために、SEI被膜の安定性が大きくなり、以下に詳細に述べるように、初期容量が大きく、高温でのサイクル特性に優れ、また、電池の膨れが小さい優れた非水電解液二次電池が得られる。発明を実施するための最良の形態
- [0031] 以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細 に説明するが、まず最初に実施例及び比較例に共通する非水電解液二次電池の具 体的製造方法について説明する。

[0032] 〈正極板の作製〉

LiCoO からなる正極活物質をアセチレンブラック、グラファイト等の炭素系導電剤(例えば3質量%)と、ポリビニリデンフルオライド(PVdF)よりなる結着剤(例えば3質量%)等を、Nーメチルピロリドンからなる有機溶剤等に溶解したものを混合して、活物質スラリーあるいは活物質ペーストとする。これらの活物質スラリーあるいは活物質ペーストとする。これらの活物質スラリーあるいは活物質ペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場

合はローラコーティング法等により正極芯体(例えば、厚みが15μmのアルミニウム 箔あるいはアルミニウムメッシュ)の両面に均一に塗付して活物質層を塗布した正極 板を形成する。この後、活物質層を塗布した正極板を乾燥機中に通過させて、スラリーあるいはペースト作製時に必要であった有機溶剤を除去して乾燥させ、乾燥後にこの正極板をロールプレス機により圧延して、厚みが0.14mmの正極板とする。

[0033] 〈負極板の作製〉

天然黒鉛よりなる負極活物質、PVdFよりなる結着剤(例えば3質量%)等と、Nーメチルピロリドンからなる有機溶剤等に溶解したものを混合して、スラリーあるいはペーストとする。これらのスラリーあるいはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により負極芯体(例えば、厚みが10μmの銅箔)の両面の全面にわたって均一に塗布して、活物質層を塗布した負極板を形成する。この後、活物質層を塗布した負極板を乾燥機中に通過させて、スラリーあるいはペースト作製時に必要であった有機溶剤を除去して乾燥させる。乾燥後、この乾燥負極板をロールプレス機により圧延して、厚みが0.13mmの負極板とする。なお、負極活物質の充填密度は、ロールプレス機の加圧圧力を変えることにより所定の値に調節した。

[0034] 〈電極体の作製〉

上述のようにして作製した正極板と負極板を、有機溶媒との反応性が低いポリオレフイン系樹脂からなる微多孔膜(例えば厚みが0.022mm)を間にセパレータとして挟んで、かつ、各極板の幅方向の中心線を一致させて重ね合わせる。この後、巻き取り機により捲回し、最外周をテープ止めして実施例及び比較例の渦巻状電極体とする。次いで、上述のようにして作製した電極体を所定の厚みのアルミニウム合金製角形外装缶にそれぞれ挿入し、電極体より延出した正極集電タブ、負極集電タブを外装缶と共に溶着する。

[0035] 〈電解液の作製〉

所定の組成比となるようにECに非環状カーボネートを混合した溶媒中に1M-LiP F_{c} となる割合で溶解させ、必要に応じてVC及びD2POも所定量添加して、電解液を作製した。

[0036] 〈電池の作製〉

次いで、各種電解液を外装缶の開口部より必要量注液した後シールして、実施例及び比較例の全てについて設計容量が750mAhの非水電解液二次電池を作製した。

[0037] 〈充放電条件〉

上述のようにして作製した実施例及び比較例のそれぞれについて、以下に示した 充放電条件下で各種充放電試験を行った。なお、充放電試験は全て40℃に維持さ れた恒温槽中で行った。

「0038】 〈初期容量の測定〉

まず最初に、各電池について、1It=750mA(1C)の定電流で充電し、電池電圧が4.2Vに達した後は4.2Vの定電圧で電流値が20mAになるまで充電し、その後、1Itの定電流で電池電圧が3.0Vに達するまで放電を行い、この時の放電容量を初期容量として求めた。

[0039] 〈サイクル特性の測定〉

サイクル特性の測定は、初期容量を測定した各電池について、1Itの定電流で電池電圧が4.2Vに達するまで充電した後に4.2Vの定電圧で電流値が20mAになるまで充電し、その後、1Itの定電流で電池電圧が3.0Vに達するまで放電することを1サイクルとし、300サイクルに達するまで繰返して300サイクル後の放電容量を求めた。そして、各電池について以下の計算式に基づいて300サイクル後の容量維持率(%)を求めた。

容量維持率(%)=(300サイクル後の放電容量/初期容量)×100

[0040] 〈電池膨れの測定〉

前記サイクル特性を測定した各電池について、電池の膨れをマイクロメータで測定した。

[0041] (実施例1~7、比較例1~6)

非水電解液の溶媒として、EC/EMC=30/70の体積比で混合した溶媒中に1M-LiPF₆となる割合で溶解させ、更にVC及びD2POをそれぞれ表1に示した割合で添加した電解液を用いて実施例1~7及び比較例1~6の非水電解液二次電池を

作製し、ぞれぞれの電池について初期容量、容量維持率及び電池膨れの測定を行った。ただし、負極の充填密度は全て1.5g/mlであり、また、外装缶の厚みは全て0.3mmである。結果をまとめて表1に示す。

[0042] [表1]

WO 2005/064735

	VC (質量%)	D2PO (質量%)	初期容量 (mAh)	容量維持率 (%)	電池膨れ (mm)
比較例1	0. 0	0. 0	780	63	6. 10
比較例2	2. 0	0. 0	775	88	6. 00
比較例3	0. 0	1. 0	780	75	6. 05
実施例1	0. 1	1. 0	779	80	5. 80
実施例2	1. 0	1. 0	777	86	5. 78
実施例3	2. 0	1. 0	775	88	5. 75
実施例4	3. 0	1. 0	773	90	5. 69
比較例4	4. 0	1. 0	765	90	5. 68
比較例 5	1. 0	0. 0	777	85	6. 03
実施例5	1. 0	0. 1	776	85	5. 75
実施例6	1. 0	1. 0	777	86	5. 78
実施例7	1. 0	2. 0	778	85	5. 80
比較例6	1. 0	3. 0	776	84	5. 90

溶媒系: EC/EMC(30/70)+1M-LiPFe

負極充填密度: 1.5g/ml 外装缶の厚み: 0.3mm

[0043] 表1に示した結果によると、以下のことが分かる。すなわち、VC及びD2POの両者とも添加されていない比較例1では、初期容量は780mAhと大きいが、300サイクル後の容量維持率が63%と非常に小さく、また、電池膨れも6.10mmと大きくなっている。また、VCは添加されているがD2POが添加されていない比較例2及び比較例5では、初期容量及び300サイクル後の容量維持率は大きいが、電池膨れが6.00mmないし6.03mmと大きく、逆にVCは添加されていないがD2POが添加されている比較例3では初期容量は大きいが、容量維持率が75%と小さく、また、電池膨れが6.05mmと大きくなっている。

[0044] これに対し、VC及びD2POの両者が添加されている実施例1~7では、初期容量が比較例1のものよりも若干小さくなっているが、773mAh以上もあり、300サイクル後の容量維持率は全て80%以上と大きく、また、300サイクル後の電池膨れも全て5.80mm以下と小さく、非常に良好な結果が得られている。しかしながら、VCの添加量が4.0質量%と多い比較例4では容量維持率及び電池膨れに関しては実施例1~7と同等の効果を奏しているが、初期容量が765mAhと小さくなっている。また、D2POの添加量が3.0質量%と多い比較例6では、初期容量及び容量維持率に関しては実施例1~7と同等の効果を奏しているが、電池膨れについては5.90mmと大きくなっている。従って、上記表1に示した結果によれば、VC及びD2POの両者を同時に添加することにより優れた効果を奏し、VCの添加量は電解液の質量に対して0.1質量%以上3.0質量%以下、D2POの添加量は電解液の質量に対して0.1質量%以上2.0質量%以下が好ましいことが分かった。

[0045] (実施例8~14, 比較例7)

実施例8~14、比較例7では、電解液の溶媒系を環状カーボネートであるECに非環状カーボネートとしてEMCないしDECをそれぞれ表2に示すとおりに混合したものとし、これに支持塩としてLiPF。 ϵ 1Mとなるように添加し、更にVC(1.0質量%)及びD2PO(1.0質量%)の両成分を添加して、実施例1~7ないし比較例1~6の場合と同様にして初期容量、容量維持率及び電池膨れの測定を行った。ただし、負極の充填密度は全て1.5g/mlであり、また、外装缶の厚みは全て0.3mmである。結果をまとめて表2に示す。

[0046] [表2]

	EC (体積%)	EMC (体積%)	DEC (体積%)	初期容量 (mAh)	容量維持率 (%)	電池膨れ (mm)
実施例8	30	70	0	777	86	5. 78
実施例 9	30	65	5	776	87	5. 72
実施例10	30	60	10	774	89	5. 69
実施例11	30	50	20	771	87	5. 65
実施例12	30	40	30	770	86	5. 66
比較例7	30	30	40	764	84	5. 65
実施例13	20	70	10	779	83	5. 78
実施例14	40	50	10	774	89	5. 76

溶媒系: VC(1.0質量%)+ D2PO(1.0質量%)

1M-LiPF₆

負極充填密度: 1. 5g/ml 外装缶の厚み: 0. 3mm

[0047] 表2に示した結果によると、以下のことが分かる。すなわち、DEC量が10体積%である実施例10、13及び14の結果によれば、環状カーボネートであるEC量が有機溶媒の20体積%~40体積%の間で変動しても電池特性にほとんど差異は生じないが、EC量が少なくなると若干初期容量が大きくなり、EC量が増えると若干初期容量が減少すると共に電池膨れも小さくなる傾向がある。EC量が30体積%と一定である実施例8~12及び比較7の結果によれば、DECの含有量が増加すると初期容量が徐々に減少すると共に電池の膨れも小さくなる傾向が認められるが、DECの含有量が40質量体積%と大きくなると初期容量が大幅に低下する。したがって、ECは20体積%以上40体積%以下が好ましく、また、EC以外にDECを含む場合にはDECは30体積%以下が望ましい。なお、DECは、他の非環状カーボネートを含んでいれば、含んでいなくてもよい。

[0048] (実施例15~18, 比較例8~11)

実施例15~18、比較例8~11では、炭素材料からなる負極の充填密度を1.3~1.9g/mlまで変化させ、溶媒系組成をEC/EMC/DEC=30/60/10(体積比)一定とし、これに支持塩としてLiPFを1Mとなるように添加し、更にVC(1.0質量%)及びD2PO(1.0質量%)の両成分を添加した場合(実施例15~18)及び添加

しない場合(比較例8-11)のそれぞれの電解液に対応する非水電解液二次電池を作製し、実施例1-7ないし比較例1-6の場合と同様にして初期容量、容量維持率及び電池膨れの測定を行った。ただし、外装缶の厚みは全て0.3mmである。結果をまとめて表3に示す。

「0049] 「表3]

WO 2005/064735

	充填密度	VC+D2PO	初期容量 (mAh)	容量維持率 (%)	電池膨れ (mm)
比較例 8	1. 3	なし	773	83	5. 68
比較例 9	1. 5	なし	771	66	6. 00
比較例10	1. 7	なし	765	45	6. 25
比較例11	1. 9	なし	751	16	6. 68
実施例15	1. 3	あり	776	91	5. 66
実施例16	1. 5	あり	774	89	5. 69
実施例17	1. 7	あり	771	88	5. 70
実施例18	1. 9	あり	766	84	5. 73

電解液:EC/EMC/DEC(30/60/10)+1M-LiPF6 VC(1.0質量%)+D2PO(1.0質量%)

外装缶の厚み:0.3mm

[0050] VC及びD2POの両者を含有していない比較例8~11では、炭素材料からなる負極の充填密度が1.3g/mlから1.9g/mlへと大きくなるに従って、初期容量はわずかに減少するが、容量維持率は大幅に減少すると共に電池膨れも大きく増加している。しかしながら、VC及びD2POの両者を含有させると、炭素材料からなる負極の充填密度が1.3g/mlから1.9g/mlへと大きくなっても、初期容量は実質的に比較例8~11のものと同等の特性を維持しているとともに、容量維持率は僅かしか減少せず、また、電池膨れも僅かしか増大していない。このような負極活物質の高充填密度化は電池の高容量化のために行われるが、電解液中にVCとD2POを添加したことによる効果は負極充填密度が1.3g/ml以上になると、顕著に表れ、1.5g/ml以上で一層顕著に表れる。前記負極活物質の充填密度が1.3g/ml未満であると、電解液中にVCとD2POを添加したことによる効果が有効に生じないので好ましくない。前記負極活物質の充填密度が大きくなると徐々に初期容量及び高温での長期

容量維持率が低下し、電池膨れが大きくなるし、また、1.9g/mlを超える充填密度のものは製造し難いので、臨界的限度ではないが1.9g/ml以下が好ましい。

[0051] (実施例19~24, 比較例12~17)

実施例19~24、比較例12~17では、非水電解液の溶媒として、EC/EMC/DEC=30/60/10の体積比で混合した溶媒中に1M-LiPFとなる割合で溶解させたものを使用し、外装缶の厚みを0.50mm~0.15mmまで変化させて、VC(1.0質量%)及びD2PO(1.0質量%)の両成分を添加した(実施例19~24)及び添加しない場合(比較例12~17)のそれぞれの電解液に対応する非水電解液二次電池を作製し、実施例1~7ないし比較例1~6の場合と同様にして初期容量、容量維持率及び電池膨れの測定を行った。ただし、負極の充填密度は全て1.5g/mlである。結果をまとめて表4に示す。

[0052] [表4]

	外装缶厚み (mm)	VC+D2PO	初期容量 (mAh)	容量維持率 (%)	電池膨れ (mm)
比較例12	0. 5	なし	775	83	5. 78
比較例13	0. 4	なし	775	80	5. 81
比較例14	0. 3	なし	773	68	6. 01
比較例15	0. 25	なし	771	58	6. 22
比較例16	0. 2	なし	769	47	6. 43
比較例17	0. 15	なし	768	32	6. 68
実施例19	0. 5	あり	774	88	5. 62
実施例20	0. 4	あり	775	90	5. 65
実施例21	0. 3	あり	774	89	5. 69
実施例22	0. 25	あり	773	88	5. 71
実施例23	0. 2	あり	775	86	5. 73
実施例24	0. 15	あり	773	85	5. 76

電解液:EC/EMC/DEC(30/60/10)+1M-LiPF₆ VC(1.0質量%)+D2PO(1.0質量%)

負極充填密度: 1.5 g/ml

[0053] VC及びD2POの両者を含有していない比較例12~17では、外装缶の厚みが0.

15

50mmから0. 15mmへと薄くなるに従って、初期容量は若干減少するが、容量維持率は大幅に減少すると共に電池膨れも大きく増加している。しかしながら、VC及びD 2POの両者を含有させると、外装缶の厚みが0. 50mmから0. 15mmへと薄くなっても、初期容量は実質的に比較例12~17のものと同等の特性を維持しているとともに、容量維持率は比較例12~17のものに比して大幅に大きく、また、電池膨れも比較例12~17のものに比して大幅に小さくなっている。このような電解液中にVCとD2 POを添加したことによる効果は外装缶の厚みの影響は、厚みが0. 50mm以下0. 15mm以上で顕著に表れ、前記外装缶の厚みが0. 50mmを超えると電解液中にVCとD2POを添加したことによる効果が有効に生じないので好ましくなく、また、0. 15mm未満であると容量維持率が大きく低下しだし、また、電池膨れも大きく増大するようになるので好ましくない。

WO 2005/064735

請求の範囲

[1] リチウムを可逆的に挿入脱離できる炭素質材料からなる負極と、リチウムを可逆的 に挿入脱離できる正極と、これらの正極と負極とを隔離するセパレータと、有機溶媒 にリチウム塩からなる溶質が溶解した非水電解液を備えた非水電解液二次電池にお いて、

前記非水電解液中にビニレンカーボネート及びジ(2-プロピニル)オギザレートを含み、前記ビニレンカーボネートの添加量は前記非水電解液の質量に対して0.1質量%以上3質量%以下であり、前記ジ(2-プロピニル)オギザレートの添加量は前記非水電解液の質量に対して0.1質量%以上2質量%以下であることを特徴とする非水電解液二次電池。

- [2] 前記負極活物質の充填密度が1.3g/ml以上であることを特徴とする請求項1に 記載の非水電解液二次電池。
- [3] 前記非水電解液がエチレンカーボネートと非環状カーボネートとの混合溶媒からなることを特徴とする請求項1に記載の非水電解液二次電池。
- [4] 前記エチレンカーボネートの含有割合が混合溶媒の20体積%以上40体積%以下であることを特徴とする請求項3に記載の非水電解液二次電池。
- [5] 前記非環状カーボネートがエチルメチルカーボネート、ジエチルカーボネート、ジメ チルカーボネートから選択される少なくとも1種であることを特徴とする請求項3に記 載の非水電解液二次電池。
- [6] 前記ジエチルカーボネートの含有割合が混合溶媒の0体積%以上30体積%以下であることを特徴とする請求項5に記載の非水電解液二次電池。
- [7] 前記非水電解液二次電池が金属製の外装缶内に配置されており、該外装缶の厚さが0.15mm以上0.50mm以下であることを特徴とする請求項1に記載の非水電解液二次電池。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/019328

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01M10/40, H01M4/02, H01M2/02						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SE	B. FIELDS SEARCHED					
Minimum docur Int.Cl	nentation searched (classification system followed by cl H01M2/00-2/08, H01M4/00-4/62,	assification symbols) , H01M10/40				
Jitsuyo Kokai J	itsuyo Shinan Koho 1971-2005 Ji	oroku Jitsuyo Shinan Koho tsuyo Shinan Toroku Koho	1994-2005 1996-2005			
Electronic data l CA (STN	pase consulted during the international search (name of a	data base and, where practicable, search te	erms used)			
C. DOCUME	NTS CONSIDERED TO BE RELEVANT		<u>r</u>			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
Y	JP 2002-124297 A (Ube Indust 26 April, 2002 (26.04.02), Claims 1, 2; Par. Nos. [0011] example 5; Par. No. [0044] (Family: none)	1-7				
Y	JP 2002-343426 A (Mitsui Che 29 November, 2002 (29.11.02), Claims 1, 12, 15; Par. Nos. [[0048]; example 3 (Family: none)	1-7				
Y .	JP 2001-43899 A (Toshiba Cor 16 February, 2001 (16.02.01), Claim 1 (Family: none)	2				
× Further do	cuments are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international		date and not in conflict with the applica the principle or theory underlying the ir	shed after the international filing date or priority ict with the application but cited to understand ry underlying the invention			
filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family				
20 Janı	al completion of the international search uary, 2005 (20.01.05)	Date of mailing of the international sear 08 February, 2005 (ch report (08.02.05)			
	ng address of the ISA/ se Patent Office	Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/019328

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 8-50923 A (Sumitomo Chemical Co., Ltd.), 20 February, 1996 (20.02.96), Claim 1 & CA 002148860 A1 & EP 000682377 A1 & CN 001119350 A & US 005595842 A & DE 069511321 T	3-6
Y	JP 2003-282140 A (Osaka Gas Co., Ltd.), 03 October, 2003 (03.10.03), Claim 1 (Family: none)	3-6
Y	JP 11-283668 A (Sanyo Electric Co., Ltd.), 15 October, 1999 (15.10.99), Claims 1, 4 (Family: none)	7
Ά	JP 2000-195545 A (Ube Industries, Ltd.), 14 July, 2000 (14.07.00), (Family: none)	1-7
A	<pre>JP 2003-059529 A (Ube Industries, Ltd.), 28 February, 2003 (28.02.03), (Family: none)</pre>	1-7

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl ' H01M10/40, H01M4/02, H01M2/02

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ H01M2/00-2/08, H01M4/00-4/62, H01M10/40

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国登録実用新案公報

1994-2005年

日本国実用新案登録公報

1996-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN)

C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2002-124297 A (宇部興産株式会社) 2002.04.26、 【請求項1】、【請求項2】、【0011】 【0017】、【0018】、実施例5、【0044】(ファミリーなし)	1 - 7
Y	JP 2002-343426 A(三井化学株式会社) 2002.11.29、【請求項1】、【請求項12】、【請求項15】、【0044】、【0046】~【0048】、実施例3(ファミリーなし)	1-7

|X|| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 20.01.2005 国際調査報告の発送日 **08.2.2005** 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 大野 斉 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3477

	関連すると認められる文献	·
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2001-43899 A (株式会社東芝) 2001. 02.16、【請求項1】 (ファミリーなし)	2
Y	JP 8-50923 A (住友化学工業株式会社) 199 6.02.20、【請求項1】 & CA 002148860 A1 & EP 000682377 A1 & CN 0011 19350 A & US 005595842 A & DE 069511321 T	3 — 6
Y	JP 2003-282140 A (大阪瓦斯株式会社) 20 03.10.03、【請求項1】 (ファミリーなし)	3 — 6
Y	JP 11-283668 A (三洋電機株式会社) 199 9.10.15、【請求項1】、【請求項4】 (ファミリーなし)	7
A	JP 2000-195545 A (宇部興産株式会社) 20 00.07.14、(ファミリーなし)	1 – 7
A	JP 2003-059529 A (宇部興産株式会社) 20 03.02.28、(ファミリーなし)	1-7
,		•