Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Exponential Moving Averages (EMA)

EWMA/EMA/Exponential Smoothing

Idea: quiero ir promediando (o algo parecido) pero darle más peso a lo reciente para que lo muy viejo no condicione tanto.

Dada una sucesión de valores a medir x_1, \ldots, x_t el λ -Exponentially Weighted Moving Average es:

suc. de
$$a_t = \lambda \cdot a_{t-1} + (1-\lambda) \cdot x_t$$

Podemos ver que, aproximadamente, a_n toma la forma de $\sum_{i=1}^n \lambda^{n-i} x_i = x_n + \lambda x_{n-1} + \lambda^2 x_{n-2} + \lambda^3 x_{n-3} + \dots$ Usando $\lambda \in (0,1)$ es un promedio ponderado que favorece valores recientes.

Y algo muy importante: es $\mathcal{O}(1)$ en memoria y $\mathcal{O}(1)$ para actualizar!

Nota: El valor inicial a_0 es un hiperparámetro, aunque es bastante común usar 0, la media global de x (\overline{x}) o directamente el primer valor x_1 .

$$\lambda_{1} = 0.1$$
 $\lambda_{1} = 0.0 \cdot 0.0 \cdot$

EWMA vs Windowed-Average (SMA)

Rescaling

Formato de promedio común es como ponderar todo con $\frac{1}{n}$: $\frac{\sum_{i=1}^{n} x_i}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \frac{1}{n} x_i. \text{ Importante: } \sum_{i=1}^{n} \frac{1}{n} = 1.$

¿Qué pasa con el EWMA? Para una sucesión que inicia en t=0 con $a_{-1}=0$, tenemos $a_n=\sum_{i=0}^n \lambda^{n-i}(1-\lambda)x_i$. Veamos que:

$$\lambda^0 + \lambda^1 + \dots + \lambda^n = \sum_{i=0}^n \lambda^i = \frac{1-\lambda^n}{1-\lambda}$$

Entonces,

$$\sum_{i=0}^{n} \lambda^{n-i} (1-\lambda) = \sum_{i=0}^{n} \lambda^{i} (1-\lambda) = \frac{1-\lambda^{n}}{1-\lambda} (1-\lambda) = 1-\lambda^{n}$$

La suma de los pesos no da 1! Si n>>0 entonces $1-\lambda^n \approx 1$, pero en n chicos se nota mucho. Por ej. $\lambda=0.99, n=10 \Rightarrow 1-\lambda^n \approx 0.0956$. La solución? Reescalar dividiendo por $1-\lambda^n$.

Rescaling: ejemplo simple

80= 6.0

Sea una sucesión de valores $x_n=1,1.5,2,1.6,4,2,1.3,\ldots$ y $\lambda=0.99$ ¿Cómo cambian los EMA si se usa o no rescaling? ¿Y si $\lambda=0.9$?

med.	EnA()	(+0.94)	(P.0.9)			
Xn	a _n	$1 - 0.99^n$	a'_n	b _n	$1 - 0.9^n$	b'_n
1	0.01	0.01	1.0	0.1	0.1	1.0
1.5	0.0249	0.02	1.25	0.24	0.19	1.26
2	0.0447	0.03	1.5	0.416	0.271	1.54
1.6	0.0602	0.039	1.53	0.534	0.3439	1.55
4	0.0996	0.049	2.03	0.881	0.4095	2.15
2	0.119	0.059	2.03	0.993	0.4686	2.12
1.3	0.13	0.068	1.92	1.02	0.5217	1.96