Discrete commutative hypergroups & Polynomial Hypergroups

Manjunatha M R

December 6, 2023

Contents

1	Dis	crete Hypergroups	
	1.1	Basic definitions	
	1.2	Hypergroup Definition	7
	1.3	Left and Right translations and Haar measure	11

CONTENTS

Chapter 1

Discrete Hypergroups

1.1 Basic definitions

Let K be a set.

Recall 1.1.1. Definition of Linear spaces, Normed spaces, complete space and Banach space (Complete Normed linear space)

Definition 1.1.2 (Dirac function on K). For $x \in K$, the Dirac function on K is denoted by ε_x , and given by

$$\varepsilon_x(x) = 1$$
 and $\varepsilon_x(y) = 0$ if $y \in K, y \neq x$.

Definition 1.1.3. Let ℓ^1 be the space of all functions $f: K \to \mathbb{C}$ of the form $f = \sum_{n=1}^{\infty} a_n \varepsilon_{x_n}$, where $a_n \in \mathbb{C}$ such that $\sum_{n=1}^{\infty} |a_n| < \infty$, and x_n are distinct points of K.

Example 1.1.4 (Belongs to ℓ^1). Let K be the set of natural numbers \mathbb{N} , and consider the function $f: K \to \mathbb{C}$ defined by:

$$f = \sum_{n=1}^{\infty} \frac{1}{2^n} \varepsilon_n$$

Here, $a_n = \frac{1}{2^n}$, $x_n = n$, and ε_n is the function that takes the value 1 at n and 0 elsewhere. The series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges absolutely, so f belongs to ℓ^1 .

Example 1.1.5 (Does not belong to ℓ^1). Let K again be the set of natural numbers \mathbb{N} , and consider the function $g: K \to \mathbb{C}$ defined by:

$$g = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \varepsilon_{2n}$$

Here, $a_n = \frac{(-1)^n}{n}$, $x_n = 2n$, and ε_{2n} is the function that takes the value 1 at 2n and 0 elsewhere. The series $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right|$ diverges, so g does not belong to ℓ^1 .

Question 1.1.6. Can you write what is f(n) for f in the example 1.1.4?

Note 1.1.7. The norm of f is $||f|| = \sum_{n=1}^{\infty} |a_n|$.

Exercise 1.1.8. Prove that space ℓ^1 [see:1.1.3] is a Banach space.

Hint: A normed vector space V is a Banach space if and only if every absolutely summable series is summable.

Definition 1.1.9 (Finite convex combination of Dirac functions). If $f \in \ell^1$ is a finite convex combination of Dirac functions, we write $f \in \ell^1_{co}$, i.e.,

$$f = \sum_{n=1}^{N} \alpha_n \varepsilon_{x_n},$$

where $\alpha_n \geq 0$ and $\sum_{n=1}^{N} \alpha_n = 1$.

Note 1.1.10. We set $supp f = \{x \in K : f(x) \neq 0\}$ (support of f).

- Question 1.1.11. Why do we set suppf as mentioned in 1.1.10? Can we see it anywhere else?
 - Can you write suppf for examples 1.1.4 and ????

Now let us assume that a map $\omega^*: K \times K \to \ell^1_{co}$ is given.

Example 1.1.12. $\omega^*: K \times K \to \ell^1_{co}$ given by

$$\omega^*(i,j) = \frac{1}{2}\varepsilon_i + \frac{1}{2}\varepsilon_j$$

Question 1.1.13. (i) Can we find out $\omega^*(2,3)$ in the example 1.1.12?

(ii) Dose $\omega^*(f,g) = \varepsilon_{n+m}$ belongs to ℓ^1 ?

Definition 1.1.14. We define $\omega : \ell^1 \times \ell^1 \to \ell^1$, $\omega(f,g) = \sum_{n,m=1}^{\infty} a_n b_m \omega^*(x_n, y_m)$, where $f = \sum_{n=1}^{\infty} a_n \varepsilon_{x_n}$ and $g = \sum_{m=1}^{\infty} b_m \varepsilon_{y_m}$.

Remark 1.1.15. We can apply any rearrangement of the series, and we obtain $\|\omega(f,g)\| \leq \sum_{n,m=1}^{\infty} |a_n| \cdot |b_m| \|\omega^*(x_n,y_m)\| = \|f\| \cdot \|g\|$.

Question 1.1.16. Is the remark 1.1.15 true? Can we say $\omega: \ell^1 \times \ell^1 \to \ell^1$ in definition 1.1.14 is well-defined?

Recall 1.1.17. What is Bilinear extension?

Remark 1.1.18. The map $\omega : \ell^1 \times \ell^1 \to \ell^1$ is the bilinear extension of the given map $\omega^* : K \times K \to \ell^1_{co}$.

Let us assume that the map $\sim^*: K \to K, x \mapsto \tilde{x}$, is given.

Definition 1.1.19. We define $\sim: \ell^1 \to \ell^1$ by setting

$$f = \sum_{n=1}^{\infty} a_n \varepsilon_{\tilde{x}_n}$$

for $f = \sum_{n=1}^{\infty} a_n \varepsilon_{x_n}$.

Remark 1.1.20. The map \sim is the extension of \sim^* from K to ℓ^1 .

Now, the stage is ready to give the definition of a discrete hypergroup.

Note 1.1.21. The definition of a discrete hypergroup reads much simpler than that of a general hypergroup.

1.2 Hypergroup Definition

Definition 1.2.1 (Discrete Hypergroup). We call a triplet (K, ω, \sim) a discrete hypergroups if the following conditions holds.

(H1) $\omega: K \times K \to \ell^1_{co}$ is a mapping fulfilling the associativity law

$$\omega(\varepsilon_r, \omega^*(y, z)) = \omega(\omega^*(x, y), \varepsilon_z)$$

for all $x, y, z \in K$.

(H2) $\sim: K \to K$ is a bijective mapping such that $\tilde{x} = x$ and

$$\omega(x,y) = \omega(\tilde{y},\tilde{x})$$

for all $x, y \in K$.

(H3) There exists a (necessarily unique) element $e \in K$ such that

$$\omega(e,x) = \varepsilon_x = \omega(x,e)$$

for all $x \in K$.

(H4) We have $e \in supp \omega(x, \tilde{y})$ if, and only if x = y.

Remark 1.2.2. If $\omega(x,y) = \omega(y,x)$ for all $x,y \in K$, the hypergroup (K,ω,\sim) is called **commutative**.

Note 1.2.3. • The mapping ω (and its extension to ℓ^1) is called **convolution**.

- The mapping \sim (and its extension to ℓ^1) is called **involution**.
- The element e is called the **unit element**.
- In the literature, the convolution $\omega(x,y)$ is often written as $\varepsilon_x * \varepsilon_y$ or $\delta_x * \delta_y$.
- If any confusion can be excluded, we shall use the notation K instead of (K, ω, \sim) .
- **Recall 1.2.4.** A topology on a set X may be defined as a collection τ of subsets of X, called open sets, and satisfying the following axioms:
 - 1. The empty set and X itself belong to τ .
 - 2. Any arbitrary (finite or infinite) union of members of τ belongs to τ .
 - 3. The intersection of any finite number of members of τ belongs to τ .

(This definition of a topology is the most commonly used; the set τ of the open sets is commonly called a topology on X.)

• Topological groups are the combination of groups and topological spaces.

• A topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood that only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated.

Exercise 1.2.5. Prove that every discrete group G is also a discrete hypergroup by setting $\omega^*(x,y) = \varepsilon_{xy}$ and $\tilde{x} = x^{-1}$.

For our further investigations, we need an extension of the convolution ω and the involution \sim to the powerset of K.

Definition 1.2.6. We define, for $A, B \subseteq K$

$$\omega(A,B) := \bigcup_{x \in A, y \in B} supp \ \omega(x,y) \tag{1.1}$$

and

$$\tilde{A} = \{\tilde{x} : x \in A\} \tag{1.2}$$

Note 1.2.7. In definition 1.2.6 the domain of ω is $2^K \times 2^K$.

Lemma 1.2.8. Let A, B, and C be subsets of K. Then we have:

(i)
$$\omega(\omega(A, B), C) = \omega(A, \omega(B, C)).$$

(ii)
$$\omega(A, B) \cap C = \emptyset$$
 if, and only if $\omega(\tilde{A}, C) \cap B = \emptyset$.

Proof. (i) Let $a \in A$, $b \in B$, and $c \in C$ such that $\omega(a,b) = \sum_{n=1}^{\infty} a_n \varepsilon_{x_n}$. Using the definition, we obtain

$$\omega(\omega(a,b),\varepsilon_c) = \sum_{n=1}^{N} a_n \omega(x_n,c)$$

.

supp
$$\omega(\omega(a,b), \varepsilon_c) = \bigcup_{n=1}^{N} \text{supp } \omega(x_n,c)$$

= $\omega(\text{supp } \omega(a,b), \{c\}).$

Now applying the definition 1.2.6 we obtain

$$\omega(\omega(\{a\}, \{b\}), \{c\}) = \omega(\sup \omega(a, b), \{c\})$$
$$= \sup \omega(\omega(a, b), \varepsilon_c).$$

In an analogous way we get

$$\omega(\{a\}, \omega(\{b\}, \{c\})) = \text{supp } \omega(\varepsilon_a, \omega(b, c)).$$

The associativity law (H1) implies

$$\omega(\omega(\{a\},\{b\}),\{c\}) = \omega(\{a\},\omega(\{b\},\{c\})).$$

Now (i) follows easily.

(ii) In view of Axiom (H4), we have $e \in \omega(\tilde{A}, B)$ if, and only if there is an $x \in A \cap B$. Axiom (H3) yields

$$\omega(A, B)^{\sim} = \omega(\tilde{B}, \tilde{A}).$$

Therefore we have

$$\omega(A, B) \cap C \neq \emptyset \Leftrightarrow e \in \omega(\tilde{C}, \omega(A, B)).$$

and since

$$\omega(\tilde{C}, \omega(A, B)) = \omega(\omega(\tilde{C}, A), B) = \omega(\omega(\tilde{A}, C)^{\sim}, B)$$

we obtain the equivalence

$$\omega(A, B) \cap C \neq \emptyset \Leftrightarrow \omega(\tilde{A}, C) \cap B \neq \emptyset.$$

This completes the proof.

Question 1.2.9. Do you have any previous exposure to Haar measure? What is it?

1.3 Left and Right translations and Haar measure

Let $f: K \to \mathbb{C}$ be a function, and let $x \in K$.

Definition 1.3.1 (Left translation). The left-translation, $L_x f: K \to \mathbb{C}$, is defined by

$$L_x f(y) = \sum_{n=1}^{N} a_n f(u_n)$$

where $\omega^*(x,y) = \sum_{n=1}^N a_n \varepsilon_{u_n}$

Recall 1.3.2. A measure μ on (X, Σ) is discrete (with respect to ν) if and only if μ has the form

$$\mu = \sum_{i=1}^{\infty} a_i \delta_{s_i}$$

with $a_i \in \mathbb{R}_{>0}$ and Dirac measures δ_{s_i} on the set $S = \{s_i\}_{i \in \mathbb{N}}$ defined as

$$\delta_{s_i}(X) = \begin{cases} 1 & \text{if } s_i \in X, \\ 0 & \text{if } s_i \notin X. \end{cases}$$

for all $X \in \Sigma$ and $i \in \mathbb{N}$. See

Remark 1.3.3. • Keep in mind that in the definition 1.3.1 N = N(x, y) and $a_n = a_n(x, y)$. That is they depend on x and y.

- Since $L_x \varepsilon_u(y) = \omega(x, y)(u)$ for each $u \in K$, it makes sense to write $L_x f(y) = \omega(x, y)(f)$.
- The notation $\omega(x,y)(f)$ emphasizes that $\omega(x,y)$ can be viewed as a functional or a discrete measure, while the notation $L_x f(y)$ reminds us of the role of operators that the family $(L_x)_{x\in K}$ will play.

Definition 1.3.4 (right-translation). The right-translation, $R_x f: K \to \mathbb{C}$, is defined by

$$R_x f: K \to \mathbb{C}, R_x f(y) = \sum_{n=1}^M b_n f(v_n),$$

where now $\omega(y,x) = \sum_{n=1}^{M} b_n \varepsilon_{v_n}$.

Question 1.3.5. • What do you say about M and a_n in the definition 1.3.4? See remark 1.3.3.

• What is the difference in Left and Right translation?

Recall 1.3.6. Lemma 1.2.8 (ii).

Question 1.3.7. What happens to supp $f \cap supp \ \omega(x,y)$ when $L_x f(y) \neq 0$?

Proposition 1.3.8. For any function $f: K \to \mathbb{C}$ and $x \in K$, one has

$$supp L_x f \subseteq \omega(\{\tilde{x}\}, supp f)$$

In particular, if supp f is finite, then supp $L_x f$ is finite as well. Furthermore, if f is bounded, then $L_x f$ is bounded, and $||L_x f||_1 \le ||f||_1$ (where, as usual, $||f||_1 = \sup_{x \in K} |f(x)|$).

Proof. Left out for later days. Its easy just solve just previous question and see recall.

Note 1.3.9. Two mathematical objects a and b are called "equal up to an equivalence relation R" if a and b are related by R, that is, if aRb holds, which means that the equivalence classes of a and b with respect to R are equal.

Recall 1.3.10. Haar's theorem: There is, up to a positive multiplicative constant, a unique countably additive, nontrivial measure μ on the Borel subsets of G satisfying the following properties:

- The measure μ is left-translation-invariant: $\mu(gS) = \mu(S)$ for every $g \in G$ and all Borel sets $S \subseteq G$.
- The measure μ is finite on every compact set: $\mu(K) < \infty$ for all compact $K \subseteq G$.
- The measure μ is outer regular on Borel sets $S \subseteq G$: $\mu(S) = \inf\{\mu(U) : S \subseteq U, U \text{ open}\}.$
- The measure μ is inner regular on open sets $U \subseteq G$: $\mu(U) = \sup\{\mu(K) : K \subseteq U, K \ compact\}$.

Such a measure on G is called a left Haar measure.

Note 1.3.11. In the discrete case, the Haar measure is completely determined by its values at the points $x \in K$.

Definition 1.3.12 (left-invariant). A positive function $h: K \to [0, \infty[$ is called left-invariant if, for each $f: K \to \mathbb{C}$ with $|supp| f| < \infty$ and $y \in K$,

$$\sum_{x \in K} L_y f(x) h(x) = \sum_{x \in K} f(x) h(x).$$

Definition 1.3.13 (Haar function). A left-invariant positive function $h: K \to [0, \infty[, h \neq 0, is called a Haar function.$

Remark 1.3.14. There is an analogous definition of right-invariance.

Question 1.3.15. • Can you define right-invariance?

• We have defined Haar function but does there exists such a function in general?

Note 1.3.16. For discrete hypergroups the existence of a Haar function is true.

Theorem 1.3.17.

Index

 ℓ^1 space, 5 $\ell^1_{\rm co}$, 6 ω function, 7 $\omega(A,B)$, 9 \sim function, 7 \tilde{A} , 9

Banach space, 5, 6 Bilinear extension, 7

Commutative Hypergroups, 8 Convolution, 8 Dirac function on K, 5 Discrete Hypergroup, 7

Haar function, 13

Involution, 8

Left translation, 11 left-invariant, 13

Right-translation, 11

Support, 6

Unit Element, 8