MATHEMATICS

Paper - II (B)

(English Version)

Time: 3 Hours

Max. Marks

Note: This question paper consists of three sections A, B and C.

SECTION - A

(10 × 2

- Very short answer type questions: (i) Answer all questions.
- (ii) Each question carries two marks.
- If $x^2 + y^2 4x + 6y + c = 0$ represents a circle with radius 6 then find the
- Find the chord of contact of (1,1) to the circle $x^2 + y^2 = 9$.
- Find K if the pair of circles $x^2 + y^2 + 4x + 8 = 0$, $x^2 + y^2 16y + k = 0$
- Show that the line 2x y + 2 = 0 is a tangent to the parabola $y^2 = 16x$.
- If the eccentricity of a hyperbola is $\frac{5}{4}$, then find the eccentricity of its con hyperbola.
- 6. Evaluate $\int \frac{1}{(x+3)\sqrt{x+2}} dx$, $x \in I \subset (-2, \infty)$.
- Evaluate $\int e^x \frac{(1+x\log x)}{dx} dx$ on $(0, \infty)$.

SECTION - B

- II. Short answer type questions:
 - (i) Answer any five questions.
 - (ii) Each question carries four marks.
- 11. If the length of the tangent from (2,5) to the circle $x^2 + y^2 5x + 4y + k = 0$ is $\sqrt{37}$
- 12. Find the radical centre of the circles $x^2 + y^2 4x 6y + 5 = 0$, $x^2 + y^2 2x 4y 1 = 0$,
- 13. Find the length of latus rectum, eccentricity, coordinates of centre and foci of
- 14. If the normal at one end of a latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through one end of the minor axis, then show that $e^4 + e^2 = 1$.

[e is the eccentricity of the ellipse].

- 5. Find the equations of the tangents to the hyperbola $3x^2 4y^2 = 12$ which are
 - Parallel and
 - (ii) Perpendicular to the line y = x 7.
- Find the area of the region enclosed by the curves $y = e^x$, y = x, x = 0, x = 1.
- Solve the differential equation $(e^x + 1) y dy + (y + 1) dx = 0$.

SECTION - C

- III. Long answer type questions.
 - (i) Answer any five questions.
 - (ii) Each question carries seven marks.
- 18. If (2,0), (0,1), (4,5) and (0,c) are concyclic then find c.
- 19. Show that $x^2 + y^2 6x 9y + 13 = 0$, $x^2 + y^2 2x 16y$. Find the point of contact and the equation of common ta contact.
- 20. Find the equation of the parabola whose axis is paralled passes through the points (-2, 1), (1,2) and (-1,3).
- 1. Evaluate $\int \frac{dx}{4+5\sin x}$.
- 2. If $I_n = \int \sin^n x \, dx$ for an integer $n \ge 2$, then show that

$$I_{n} = \frac{-\sin^{n-1} x \cos x}{n} + \frac{(n-1)}{n} I_{n-2}.$$

3. Evaluate
$$\int_{0}^{\pi} \frac{x}{1+\sin x} dx$$
.