Rimozione Rumore da un File Audio

In questo script viene mostrato come eliminare un rumore da un file Audio attraverso l'uso della Trasformata Discreta di Fourier. Analizzando i campioni dell'Audio registrato viene mostrato il relativo Periodogramma in termini della Frequenza e in Decibel, successivamente viene analizzato lo Spettrogramma con l'ausilio della Finestra di Blackman da cui viene rimosso il rumore presente. Infine viene mostrato il nuovo periodogramma e spettrogramma del file senza rumore per poi memorizzare il nuovo file audio con un nome differente.

Caricamento del File Audio e Grafico del Periodogramma in Frequenza e Decibel

In questa sezione viene caricato il file audio memorizzato sottoforma di file .mat per poi mostrare i Periodogrammi in Decibel e Frequenze.

```
song = load('vicru.mat');
```

Essendo un file audio campionato a 8 Bit bisogna considerare una frequenza di campionamento pari a 8192 Hz

```
Fc = 8192;
%Ricavo i valori della canzone memorizzati nelle Y del file caricato
ysong = song.y;
```

Proviamo ad ascoltare il suono del file audio attraverso il comando sound del Matlab

```
sound(ysong,Fc);
```

Di conseguenza mostriamo il Periodogramma in Frequenza e in Decibel

```
%Calcolo della DFT
F=fft(ysong);
n=length(ysong);
%Ampiezza per le frequenze simmetriche intorno alle frequenze di Nyquist
A=2*abs(F(1:floor(n/2)+1)/n);
%Tutte le frequenze da 0 a n/2 moltiplicate per la frequenza di
%campionamento
freq=(0:n/2)*Fc/n;
subplot(2,1,1);
plot(freq,A,'g');
xlabel('Frequency (f)');
ylabel('Amplitude');
title('Periodogramma delle Frequenze');
Adb = mag2db(A); %Conversione ampiezza in decibel
subplot(2,1,2);
plot(freq,Adb);
xlabel('Frequency (f)');
ylabel('Amplitude (db)');
title('Periodogramma in Decibel');
```


Si può notare che intorno alle frequenze comprese tra 1500 e 2000, i periodogrammi mostrano un picco anomalo. Mostriamo dunque lo Spettrogramma per confermare questa teoria.

Spettrogramma ed Eliminazione del Rumore

Mostriamo lo spettrogramma del fenomeno con l'ausilio della Finestra di Blackman e procediamo di conseguenza all'eliminazione del rumore rilevato.

```
%Impostiamo la banda della finestra di Blackman
Nblack = 512;
%Mostriamo lo spettrogramma associato al fenomeno
%la routine Spectrogram richiede l'overlap associato che indica la
%frequenza di campionamento di base per la finestra
figure();
spectrogram(ysong,blackman(Nblack),floor(Nblack/2),Nblack,Fc,'yaxis');
```


Lo spettrogramma mostra un comportamento anomalo intorno ai 1.8 kHz di dB/kHz -90 dB corrispondenti. Questo conferma ciò mostrato dal Periodogramma precedente.

Rimozione Rumore

A questo punto rimuoviamo il rumore presente e procediamo nella sezione successiva alla ricostruzione del segnale.

```
sound1=F;
%Annulliamo gli indici nella DFT con frequenze maggiori di 1500
indici=find(freq>=1500);
%Annulliamo anche i corrispettivi valori associati
sound1(1)=0;
indici(1)=[];
sound1(indici)=0;
%Eseguo lo stesso per Simmetria intorno alla frequenza di Nyquist
sound1(n+2-indici)=0;
```

Ricostruzione del Segnale, Periodogramma e Spettrogramma

Procediamo ora dunque alla ricostruzione del segnale e alla costruzione del Periodogramma e dello Spettrogramma associato.

```
newsound=ifft(sound1);
n2=length(newsound);
F2=fft(newsound);
A2=2*abs(sound1(1:floor(n/2)+1)/n);
freq2=(0:n/2)*Fc/n2;
```

```
subplot(2,1,1);
plot(freq2,A2,'g');
xlabel('Frequency (f)');
ylabel('Amplitude');
title('Periodogramma delle Frequenze');
subplot(2,1,2);
spectrogram(newsound,blackman(Nblack),floor(Nblack/2),Nblack,Fc,'yaxis');
title('Spettrogramma del suono pulito dal rumore');
```


Si può notare che il rumore è stato completamente rimosso e dunque sia lo spettrogramma che il periodogramma mostra alle frequenze maggiori di 1500 un valore nullo.

Salvataggio su File dell'Audio Ricostruito

Una volta mostrato il comportamento del segnale ricostruito, lo salviamo su di un file audio.

```
%Ascolto del suono ripulito
soundsc(real(newsound));
```

Da come si può ascoltare il suono viene completamente ripulito dal rumore, il quale era presente alle alte frequenze per questo motivo il suono risulta molto più cupo.

```
%Salviamo su di un file l'audio
audiowrite('Vicru_Noise_Removed.wav',newsound,Fc,'Comment','Suono vicru assente da Rumore');
%Mostriamo le informazioni sul file salvato
audioinfo('Vicru_Noise_Removed.wav')
```

ans = struct with fields:

```
Filename: '/Users/raffaeleformisano/Desktop/Elaborato 7 Matlab/Vicru_Noise_Removed.wav'
CompressionMethod: 'Uncompressed'
NumChannels: 1
SampleRate: 8192
TotalSamples: 78000
Duration: 9.5215
Title: []
Comment: 'Suono vicru assente da Rumore'
Artist: []
BitsPerSample: 16
```

Riferimenti

- 1. Docenti.unina.it D'alessio Alessandra
- 2. Trasformata di Fourier Discreta
- 3. Audio and Video in MATLAB

Autori

Giuseppe Napolano M63000856 Raffaele Formisano M63000912 Giuseppe Romito M63000936