Appunti del corso di Equazioni Differenziali I

raccolti da Luca Colombo Gomez

AA 2017/2018

Indice

1	Dis	tribuzioni e trasformate di Fourier	2
	1.1	Distribuzioni	2
		1.1.1 Idea di base	2
		1.1.2 Derivata di una distribuione	2
		1.1.3 Delta di Dirac	2
		1.1.4 Definizione formale	3
		1.1.5 Proprietà della delta di Dirac	4
	1.2	Trasformate di Fourier	5
	1.3	Funzioni di Green	6
2	Equ	azione del Calore	9
	2.1	Flusso di calore in un cilindro infinito	17
		2.1.1 Separazione delle variabili	18
	2.2	Problemi non omogenei	19
	2.3	Problema ai valori al contorno	22
		2.3.1 Applicazione del formalismo imparato	25
	2.4	Il kernel di Schroedinger	31
	2.5	L'equazione dei telegrafisti	34
3	Cla	ssificazione delle equazioni differenziali alle derivate parziali lineari del 2 ordine	36
	3.1	Il problema di Cauchy	38
	3.2	La questione della buona posizione del problema di Cauchy	41
	3.3	Classificazione di equazioni differenziali di ordine superiore e in più variabili	43
	3.4	La formula di Green	46
	3.5	Equazioni differenziali non lineari	49
	3.6	L'esponenziale ordinato cronologicamente	57
		3.6.1 L'equazione di Korteweg - De Vries (KdV)	59
		3.6.2 Le trasformazioni di B ä cklund	60
4	Car	rica immagine	62

Capitolo 1

Distribuzioni e trasformate di Fourier

1.1 Distribuzioni

le distribuzioni (funzioni generalizzate) sono degli oggetti che generalizzano le funzione e le distribuzioni di probabilità. Estendono il concetto di derivata a tutte le funzioni continue e oltre. le distribuzioni sono importanti in fisica (p.e. distribuzione delta di Dirac).

1.1.1 Idea di base

 $f: \mathbb{R} \to \mathbb{R}$ funzione integrabile $\phi: \mathbb{R} \to \mathbb{R}$ smooth (C^{∞}) , con supporto compatto. $\to \int f \phi dx \in \mathbb{R}$, dipende linearmente e in un modo continuo da ϕ . \to f è un funzionale lineare continuo sullo spazio di tutte le "funzioni test" ϕ . Questa è la definizione di una distribuzione.

Le distribuzioni possono essere moltiplicate con dei numeri reali, e possono essere sommate \rightarrow formano uno spazio vettoriale reale.

1.1.2 Derivata di una distribuione

Considera prima il caso di una funzione $f: \mathbb{R} \to \mathbb{R}$ differenziabile. Se ϕ è una funzione test, abbiamo:

$$\int_{\mathbb{R}} f' \phi dx = -\int_{\mathbb{R}} f \phi' dx$$

non c'è un termine di bordo perchè ϕ ha supporto compatto. \rightarrow suggerisce la seguente definizione della derivata S' di una distribuzione S : S' = funzionale lineare che manda la funzione test ϕ in $-S(\phi)$

1.1.3 Delta di Dirac

("Funzione delta di Dirac") $\delta(x)$ è la distribuzione che manda la funzione test ϕ in $\phi(0)$. È la derivata della funzione step di Heaviside.

$$H\left(x\right) = \begin{cases} 0 & x < 0\\ 1 & x \ge 0 \end{cases}$$

La derivata della delta di Dirac è la distribuzione che manda ϕ in $-\phi'(0)$. la delta è un esempio di una distribuzione che non è una funzione, ma può essere definita come limite di una seuenza di funzioni, p.e.

$$\delta\left(x\right) = \lim_{a \to 0} \delta_a\left(x\right)$$

$$\delta_a(x) = \begin{cases} \frac{1}{2a} & -a \le x \le a \\ 0 & |x| > a \end{cases}$$

Dimostrazione

$$\int_{B} \delta_{a}(x)\Phi(x)dx = \int_{-a}^{a} \frac{1}{2a}\Phi(x)dx = \frac{1}{2a}\left(\psi(a) - \psi(-a)\right) \quad \psi = \int \Phi, \quad \psi' = \Phi$$

$$\Rightarrow \lim_{a \to 0} \int_{R} \delta_a(x) \Phi(x) dx = \lim_{a \to 0} \frac{\psi(a) - \psi(-a)}{2a} = \psi'(0)$$

1.1.4 Definizione formale

Def: una funzione $\Phi:U\to\mathbb{R}$ ha supporto compatto se esiste un sottoinsieme compatto K di U tale che $\Phi(x)=0 \forall x\in U\backslash K$

Le funzioni $C^{\infty}\Phi:U\to\mathbb{R}$ con supporto compatto formano uno spazio vettoriale topologico $\mathbf{D}(U)$

<u>Def:</u> lo spazio delle <u>distribuizioni</u> su $U \subseteq \mathbb{R}^n$ è il <u>duale</u> D'(U) dello spazio vettoriale topologico D(U) di funzioni C^{∞} con supporto compatto in U.

Notazione:

$$S \in D'(U), \quad \phi \in D(U), \quad S : D(U) \to \mathbb{R}, \quad \Phi \mapsto S(\Phi) = \langle S | \Phi \rangle$$

Una funzione integrabile f
 definisce una distribuzione \tilde{f} su \mathbb{R}^n tramite

$$\langle \tilde{f}, \Phi \rangle := \int_{\mathbb{R}^n} f \Phi d^n x \forall \Phi \in D(U)$$
 (1.1)

Si dice che \tilde{f} è la distribuzione associata alla funzione f, o che la distribuzione \tilde{f} è equivalente alla funzione f.

La distribuzione di Dirac (o misura di Dirac) è definita da

$$\langle \delta, \Phi \rangle := \Phi(0) \tag{1.2}$$

<u>Teorema:</u> la distribuzione di Dirac non può essere rappresentata da una funzione integrabile (senza dim). Nonostante ciò scriveremo in seguito formalmente

$$\langle \delta, \Phi \rangle = \int_{\mathbb{R}^n} \delta(x)\phi(x)d^n x = \Phi(0)$$
 (1.3)

Es (n=1)

Si dimostri che

$$\delta'(x) = -\frac{\delta(x)}{x} \tag{1.4}$$

Si ha

$$\int x\delta(x)\Phi(x)dx = x\Phi(x)|_{x=0} = 0 \forall \Phi \Rightarrow x\delta(x) = 0$$

$$\Rightarrow \delta(x) + x\delta'(x) \Rightarrow \delta'(x) = -\frac{\delta(x)}{x}$$

Un'altra identità utile è

$$\delta(g(x)) = \sum_{i} \frac{\delta(x - x_i)}{|g'(x_i)|} \tag{1.5}$$

dove x_i sono gli zeri della fuznione g(x).

Rappresentazione della delta: $\delta(x) = \lim_{a\to 0} \delta_a(x)$, con

$$\delta_a(x) = \begin{cases} \frac{1}{2a} & -a \le x \le a \\ 0 & |x| > a \end{cases}$$
 (1.6a)

$$\delta_a(x) = \frac{1}{\pi} \frac{a}{a^2 + x^2} \tag{1.6b}$$

$$\delta_a(x) = \frac{1}{a\sqrt{\pi}} \exp{-\frac{x^2}{a^2}} \tag{1.6c}$$

$$\delta_a(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp^{ikx - a|k|} dk \tag{1.6d}$$

Dimostrazione della (1.6b):

$$\int_{-\infty}^{\infty} \delta_a(x)\Phi(x)dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} \Phi(x)dx = (x = at) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1 + t^2} \Phi(at)dt$$
$$\lim_{a \to 0} \int_{-\infty}^{\infty} \delta_a(x)\Phi(x)dx = \frac{1}{\pi} \lim_{a \to 0} \int_{-\infty}^{\infty} \Phi(at) \frac{dt}{1 + t^2}$$

usa il teorema della convergenza dominata: se $f_{kk\in\mathbb{N}}\grave{e}$ una successione di funzioni misurabili con limite puntuale f, e se esiste una funzione integrabile g tale che $|f_k| \leq g \forall k$ allora $f \grave{e}$ integrabile e $\lim_{k\to\infty} \int f_k dx = \int f dx$

Da noi $f_k(t) = \frac{\Phi(at)}{1+t^2} \to$ funzione g
 esiste, perchè Φ ha supporto compatto. Quindi :

$$\lim_{a \to 0} \int_{-\infty} \infty \delta_a(x) \Phi(x) dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \lim_{a \to 0} \Phi(at) \frac{dt}{1 + t^2} = \frac{1}{\pi} \Phi(0) \operatorname{arctan}(t) \Big|_{-\infty}^{\infty} = \Phi(0) q.e.d.$$

In N dimensioni: coordinate cartesiane $x_1, x_2, \dots, x_n \Rightarrow \delta(x) = \delta(x_1) \dots \delta(x_n)$

1.1.5 Proprietà della delta di Dirac

$$\delta(-\bar{r}) = \delta(\hat{r})$$

$$\int_{\Re^n} d^n \hat{r} \delta(\hat{r} - \hat{r'}) f(\hat{r}) = \int_{\Re^n} d^n \hat{\rho} \delta(\hat{\rho}) f(\hat{\rho} + \hat{r'}) = f(\hat{\rho} + \hat{r'}|_{\hat{\rho}=0} = f(\hat{r'})$$

$$(1.7)$$

Scegli $f=1 \Rightarrow$ formalmente

$$\int_{\Re^n} d^n \hat{r} \delta(\hat{r} - \hat{r'}) = 1 \tag{1.8}$$

 δ in coordinate curvilinee?

la quantità invariante per trasformazione di coordinate è $d^n \hat{r} \delta(\hat{r} - \hat{r'})$ Coord $\alpha_i(x_i, \dots, x_n), i = 1, \dots, n \ x_j$ sono le coordinate cartesiane

Jacobiano

$$J(x_i, \xi_j) = \begin{pmatrix} \frac{\partial x_1}{\partial \xi_1} & \dots & \frac{\partial x_1}{\partial \xi_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial \xi_1} & \dots & \frac{\partial x_n}{\partial \xi_n} \end{pmatrix} dx_1 \dots dx_n \delta(x_1 - x_1') \dots \delta(x_n - x_n')$$

$$|J|d\xi_{1} \dots d\xi_{n}\delta(x_{1} - x'_{1}) \dots \delta(x_{n} - x'_{n}) = d\xi_{1} \dots d\xi_{n}\delta(\xi_{1} \dots \xi'_{1}) \dots \delta(\xi_{n} - \xi'_{n})$$

$$\delta(\xi_{1} - \xi'_{1}) \dots \delta(\xi_{n} - \xi'_{n}) = |J|\delta(x_{1} - x'_{1}) \dots \delta(x_{n} - x'_{n})$$
(1.9)

Esempio coordinate sferiche 3-dim

$$x = r \cos \varphi \sin \theta$$
 $y = r \sin \varphi \sin \theta$ $z = r \cos \theta$ $(\xi_1 = r, \xi_2 = \theta, \xi_3 = \varphi)$

$$\left| \frac{\partial x_i}{\partial \xi_j} \right| = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix} = r^2 \sin \theta$$

$$\Rightarrow \delta(r - r')\delta(\theta - \theta')\delta(\varphi - \varphi') = r^2 \sin \theta \delta(x - x')\delta(y - y')\delta(z - z') \tag{1.10}$$

Esercizio: calcolare J in coordinate cilindriche

Densità di carica di un insieme discreto di N cariche puntiformi

$$\rho(\hat{r}) = \sum_{i=1}^{N} q_i \delta(\hat{r} - \hat{r}_i)$$
(1.11)

carica Q uniformemente distribuita su una superficie sferica con raggio R. $\rho(\underline{r}) = ?$ Chiamo $\rho(\underline{r}) = AQ\delta(r-R)$ con A da determinare.

$$\int d^3\underline{r}\rho(\underline{r}) = 4\pi \int r^2 \sin\theta dr d\theta d\phi AQ\delta(r-R) = 4\pi AQ \int r^2 dr \delta(r-R) = 4\pi AQR^2$$

Normalizzando $4\pi AQR^2 = Q$ ottengo $A = \frac{1}{4\pi R^2}$

$$\rho(\underline{r}) = \frac{Q}{4\pi R^2} \delta(r - R)$$

1.2 Trasformate di Fourier

<u>Definizione:</u> spazi L^P

Sia χ uno spazio di misura con misura m
 positiva. (Possiamo prendere la misura di Lebesgue come esempio)
 $L^P(\chi) :=$ spazio di funzioni su χ tale che $|f|^p$ sia integrabile, e
 $\int_{\chi} |f|^p dm < \infty$

Si dimostra che per p ≥ 1 , $L^P(\chi)$ è uno spazio vettoriale e $||f|| := \left\{ \int_{\chi} |f|^p dm \right\}^{\frac{1}{p}}$ è una norma su questo spazio.

A noi interessa il caso in cui m è la misura di Lebesgue; in tal caso gli elementi di $L^P(\chi)$ sono le funzioni f con $\int_{\gamma} |f|^p dx < \infty$. Il caso p=2 trova applicazioni in meccanica quantistica.

<u>Definizione</u>: Sia f una funzione $f \in L^1(\mathbb{R}^n)$, la <u>trasformata di Fourier</u> Ff è una funzione in \mathbb{R}^n (in realtà sul duale di \mathbb{R}^n , ma coincide con \mathbb{R}^n) definita da

$$((F) f) (\bar{k}) = \int_{\mathbb{R}^n} e^{-\bar{k}\bar{x}} f(\bar{x}) d^n \bar{x}$$

$$(1.12)$$

Si osserva che se $f \in L'(\mathbb{R}^n) \Rightarrow \exists (Ff)(\bar{k})$. In seguito verrà usata la notazione $\hat{f}(\bar{k}) = (Ff)(\bar{k})$ Una possibile rappresentazione della δ di Dirac è (per n=1)

$$\delta(x) = \lim_{a \to 0} \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx - a|k|} dk$$

che è una Trasformata di Fourier. Formalmente si può scrivere

$$\delta(\bar{x}) = \left(\frac{1}{2\pi}\right)^n \int_{\mathbb{R}^n} e^{i\bar{k}\bar{x}} d^n \bar{k} \tag{1.13}$$

Se conosco la trasformata di Fourier \hat{f} posso determinare la funzione f applicando la antitrasformata di Fourier:

$$\left(\frac{1}{2\pi}\right)^n \int_{\mathbb{R}^n} d^n \bar{k} e^{i\bar{k}\bar{x}} \hat{f}(\bar{k}) =$$

$$= \left(\frac{1}{2\pi}\right)^n \int_{\mathbb{R}^n} d^n \bar{k} e^{i\bar{k}\bar{x}} \int_{\mathbb{R}^n} e^{-i\bar{k}\bar{x'}} f(\bar{x'}) d^n \bar{x'} = \left(\frac{1}{2\pi}\right)^n \int_{\mathbb{R}^n} d^n \bar{x'} f(\bar{x'}) \int_{\mathbb{R}^n} d^n \bar{k} e^{i\bar{k}(\bar{x}-\bar{x'})} =$$

$$= \left(\frac{1}{2\pi}\right)^n \int_{\mathbb{R}^n} d^n \bar{x'} f(\bar{x'}) \delta(\bar{x} - \bar{x'})$$

$$\Rightarrow f(\bar{x}) = \left(\frac{1}{2\pi}\right)^n \int_{\mathbb{R}^n} d^n \bar{k} e^{i\bar{k}\bar{x}} \hat{f}(\bar{k}) \tag{1.14}$$

paragonando quest'ultima espressione con (1.13) si trova che

$$(F\delta)(\bar{k}) = 1 \tag{1.15}$$

Definiamo ora una famiglia di funzioni

$$\varphi_{\bar{k}}(\bar{x}) = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}} e^{i\bar{k}\bar{x}} \tag{1.16}$$

Allora possiamo riscrivere la funzione $f(\bar{x})$ come:

$$f(\bar{x}) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \int d^n \bar{k} \hat{f}(\bar{k}\varphi_{\bar{k}}(\bar{x}))$$

 \Rightarrow se dimostro che $\varphi_{\bar{k}}(\bar{x})$ è <u>ortonormale</u> e <u>completo</u> allora posso sviluppare qualsiasi funzione su $\varphi_{\bar{k}}(\bar{x})$ che chiamo <u>funzioni di base</u>.

Dimostrazione completezza:

$$\int d^n \bar{k} \varphi_{\bar{k}}(\bar{x}) \varphi_{\bar{k}}^*(\bar{x}') = \left(\frac{1}{2\pi}\right)^n \int d^n \bar{k} e^{i\bar{k}(\bar{x}-\bar{x}')} = \delta(\bar{x}-\bar{x}') \tag{1.17}$$

Che equivale alla condizione di completezza, infatti:

$$f(\bar{x}) = \int d^n \bar{x}' f(\bar{x}') \delta(\bar{x} - \bar{x}') =$$

$$= \int d^n \bar{x}' f(\bar{x}') \int d^n \bar{k} \varphi_{\bar{k}}(\bar{x}) \varphi_{\bar{k}}^*(\bar{x}') = \int d^n \bar{k} \varphi_{\bar{k}}(\bar{x}) \int d^n \bar{x}' f(\bar{x}') \varphi_{\bar{k}}^*(\bar{x}') =$$

$$= \int d^n \bar{k} \varphi_{\bar{k}}(\bar{x}) \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \hat{f}(\bar{x})$$

$$\Rightarrow f(\bar{x}) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \int d^n \bar{k} \varphi_{\bar{k}}(\bar{x}) \hat{f}(\bar{x})$$

quindi qualunque f è sviluppabile in una base di $\varphi_{\bar{k}}$

Dimostrazione ortogonalita:

$$\int d^n \bar{x} \varphi_k(\bar{x}) \varphi_{\bar{k}'}^*(\bar{x}') = \left(\frac{1}{2\pi}\right)^n \int d^n e^{i(\bar{k} - \bar{k}')\bar{x}} = \delta(\bar{x} - \bar{x}') \tag{1.18}$$

Osservazione: $\{\varphi_{\bar{k}}(\bar{x})\}$ formano una base di \mathbb{R}^n , non di tutti i sottoinsiemi di \mathbb{R}^n . Sulla superficie sferica, le armoniche sferiche sono le combinazioni lineari di $\{\varphi_{\bar{k}}(\bar{x})\}$

1.3 Funzioni di Green

<u>Definizione</u>: un <u>nucleo</u> (detto anche <u>Kernel</u>) su \mathbb{R}^n è una distribuzione su $\mathbb{R}^n \wedge \mathbb{R}^n$, ossia un elemento del duale $D'(\mathbb{R}^n \wedge \mathbb{R}^n)$ di funzioni C^{∞} con supporto compatto in $\mathbb{R}^n \wedge \mathbb{R}^n$.

$$K: D(\mathbb{R}^n \wedge \mathbb{R}^n) \to \mathbb{R}^n \qquad K \in D'(\mathbb{R}^n \wedge \mathbb{R}^n)$$

<u>Definizione</u>: un <u>nucleo fondamentale</u> (o elementare) E di un operatore differenziale lineare D su \mathbb{R}^n con coefficienti $a_i(\bar{x}) \in C^{\infty}$;

$$D = \sum_{|j| \le m} a_j(\bar{x}) D^j$$

è un nucleo, che soddisfa

$$D = \sum_{|j| \le m} a_j(\bar{x}) D^j E(\bar{x}, \bar{y}) = \delta(\bar{x} - \bar{y}) (1.19)$$
(1.19)

osservazione sulla notazione: j è un indice multiplo

$$j = (j_1, \dots, j_n)$$
 $|j| = \sum_{i=1}^n j_i$

con m:= ordine dell'operatore differenziale D^j

$$D^j = \left(\frac{\partial}{\partial x_i}\right)^{j_i}$$

dimostrazione:

$$DX(\bar{x}) = \int_{\mathbb{R}^n} DE(\bar{x}, \bar{y}) B(\bar{y}) d^n(\bar{y}) = \int_{\mathbb{R}^n} \delta(\bar{x} - \bar{y}) B(\bar{y}) d^n y$$
$$\Rightarrow DX(\bar{x}) = B(\bar{x}) \blacksquare$$

Definizione: una funzione di green è un nucleo elementare per l'operatore differenziale

$$-\frac{\nabla^2}{4\pi} \Rightarrow -\nabla^2 G(\bar{x}, \bar{y}) = -4\pi\delta(\bar{x} - \bar{y})(1.21) \tag{1.20}$$

Si può dimostrare che $G(\bar{x}, \bar{y}) = G(\bar{y}, \bar{x})$.

Esempio: si consideri una carica puntiforme in \bar{y} con carica q=1. $\rho=q\delta(\bar{x}-\bar{y})$ è la densità di carica. Dalle equazioni di Maxwell si ha $\nabla^2\phi(\bar{x})=-4\pi\rho(\bar{x})=-4\pi\delta(\bar{x}-\bar{y})$ \to definizione di Funzione di Green.

Una possibile Funzione di Green è $\phi(\bar{x}) = \frac{1}{|\bar{x} - \bar{y}|}$

Se è nota una funzione di Green \Rightarrow una soluzione dell'equazione di Poisson è:

$$\phi(|x) = \int G(\bar{x}, \bar{y}) \rho(\bar{y}) d^3 y(1.23)$$

Quindi passo da un'equazione differenziale ad un integrale.

Nel nostro caso $\phi(\bar{x}) = \int \rho(\bar{y}) d^3\bar{y}$, come in elettromagnetismo, in generale

$$G(\bar{x}, \bar{y}) = \frac{1}{|\bar{x} - \bar{y}|} + F(\bar{x}, \bar{y})(1.24a)$$
(1.21a)

$$\nabla^2 F(\bar{x}, \bar{y}) = 0(1.24b) \tag{1.21b}$$

 \Rightarrow F dipende dalle condizioni di bordo. <u>Teorema:</u> In assenza di superficio di bordo la funzione di Green $G(\bar{x}, \bar{y})$ dipende solo dalla differenza $\bar{x} - \bar{y}$

$$G(\bar{x}, \bar{y}) = G(\bar{x} - \bar{y}) \rightarrow \text{Invarianzatraslazionale}(1.25)$$

Nota: non dimostrato ma intuibile, $\delta(\bar{x}-\bar{y})$ invariante se non ho condizioni di bordo; ∇^2 invariante; $G(\bar{x}-\bar{y})$ invariante per traslazioni $\bar{x}\to\bar{x}-\bar{a},\,\bar{y}\to-\bar{a}$

Se $G(\bar{x}, \bar{y}) = G(\bar{x} - \bar{y})$ è più facile trovarla. Per n=3

$$\nabla^2 G(\bar{x} - \bar{y}) = -4\pi\delta(\bar{x} - \bar{y})$$

$$\frac{\nabla^2}{(2\pi)^3} \int d^3k e^{i\bar{k}(\bar{x}-\bar{y})} \tilde{G}(\bar{k}) = -\frac{4\pi}{(2\pi)^3} \int d^3k e^{i\bar{k}(\bar{x}-\bar{y})}$$

Quindi il primo passaggio è scrivere G e δ come trasformate di Fourier

$$\int d^3k e^{i\bar{k}(\bar{x}-\bar{y})}(-k^2\tilde{G}(\bar{k})+4\pi) = 0$$

il secondo passaggio è osservare che \bar{x} compare solo come esponente $(\Rightarrow -k^2)$ e porto tutto da una parte. $e^{i\bar{k}(\bar{x}-\bar{y})}=\psi_k(\bar{x})$ è linearmente indipendete, quindi deve annullarsi il coefficiente

$$-k^2 \tilde{G}(\bar{k}) + 4\pi = 0 \Rightarrow \tilde{G}(\bar{k}) = \frac{4\pi}{\bar{k}^2}$$

Applico l'antitrasformata di Fourier

$$G(\bar{x}) = \frac{1}{2\pi^3} \int d^3\bar{k} e^{i\bar{k}\bar{x}} \frac{4\pi}{\bar{k}^2}$$

Cambiamento di coordinate: coordinate sferiche

$$d^{3}\bar{k} = k^{2}\sin\theta dk d\theta d\varphi \Rightarrow G(\bar{x}) = \frac{1}{\pi} \int \sin\theta d\theta dk \frac{e^{ik|\bar{x}|\cos\theta}}{k^{2}}$$

cambio variabile: $u = \cos \theta \rightarrow du = -\sin \theta d\theta$

$$G(\bar{x}) = -\frac{1}{\pi} \int du dk e^{ik|\bar{x}|u} = \int_0^\infty \frac{2}{k|\bar{x}|\pi} \sin(k|\bar{x}|) dk = \frac{1}{|\bar{x}|}$$

Capitolo 2

Equazione del Calore

La legge di Fourier della conduzione termica è data da

$$\bar{q} = -k\bar{\nabla}T\tag{2.1}$$

dove $\bar{q}:=$ densità di flusso termico; k:= conducibilità termica; T:= temperatura.

La temperatura può essere riscritta come $T=\frac{\phi}{C_p\rho}$, dove ρ è la denstià, C_p è il calore specifico a pressione costante, e ϕ è il calore per unità di volume.

L'equazione di continuità è:

$$\frac{\partial \phi}{\partial t} + \bar{\nabla}\bar{q} = 0 \tag{2.2}$$

che ha la forma tipica di una legge di conservazione.

In questa formula sostituisc
to ϕ e \bar{q} e trovo

$$\frac{\partial}{\partial t}(\rho C_p T) + n \bar{a} \bar{b} l a \cdot (-k \bar{\nabla T}) = \rho C_p \frac{\partial}{\partial t} T - k \bar{\nabla}^2 T = 0$$

Definendo $\chi = \frac{k}{\rho C_p}$:= coefficiente di conducibilità termica, si ottiene l'<u>equazione del calore</u>

$$\frac{\partial T}{\partial t} = \chi \nabla^2 T \tag{2.3}$$

paragona con l'equazione di diffusione

$$\frac{\partial u}{\partial t} = D \cdot \Delta u \tag{2.4}$$

D: Coefficiente di diffusione

u: densità del materiale che si diffonde

la (2.4) segue dalla 1 legge di Fick sulla corrente di diffusione

$$\overrightarrow{q}_D = -D\overrightarrow{\nabla}u\tag{2.5}$$

più l'equazione di continuità (il materiale non viene creato o distrutto)

$$\frac{\partial u}{\partial t} + \overrightarrow{\nabla} \cdot \overrightarrow{q_D} = 0$$

La (2.4) viene anche chiamata 2 legge di Fick.

N.B. anche l'equazione di Black-Scholes per il prezzo di un'opzione può essere riportato nella forma (2.3),(2.4). -Risolviamo la (2.3) in d dimensioni:

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2} \tag{2.6}$$

Faccio una trasformata di Fourier:

$$T(\bar{x},t) = \frac{1}{(2\pi)^d} \int d^d \bar{k} e^{i\bar{k}\bar{x}} \tilde{T}(\bar{k},t)$$
(2.7)

$$(3) \Rightarrow \frac{1}{(2\pi)^d} \int d^d \bar{k} e^{i\bar{k}\bar{x}} \left(\frac{\partial}{\partial t} \tilde{T}(\bar{k}, t) + \chi \bar{k}^2 \tilde{T}(\bar{k}, t) \right) = 0$$

dato che gli esponenziali sono lnearmente indipendenti, devo annullare i coefficienti

$$\frac{\partial}{\partial t}\tilde{T} + \chi \bar{k}^2 \tilde{T} = 0 \Rightarrow \tilde{T}(\bar{k}, t) = e^{-\chi \bar{k}t} \tilde{T}_0(\bar{k})$$
(2.8)

faccio una trasformata di fourier inversa

$$\int d^d \bar{y} e^{-i\bar{k}\bar{y}} T_0(\bar{y}) \tag{2.9}$$

sostituisco (8),(9) nella (7):

$$T(\bar{x},t) = \frac{1}{(2\pi)^d} \int d^d \bar{y} T_0(\bar{y}) \int d^d \bar{k} e^{i\bar{k}(\bar{x}-\bar{y})-\chi\bar{k}t}$$

definisco

$$\int d^d \bar{k} e^{i\bar{k}(\bar{x}-\bar{y})-\chi \bar{k}t} =: (2\pi)^d G(\bar{x}-\bar{y},t)$$
(2.10)

G: propagatore/nucleo di calore ("heat kernel"). Propaga le condizioni iniziali di $T_0(\bar{y})$. Quindi abbiamo la convoluzione:

$$T(\bar{x},t) = \int d^d \bar{y} G(\bar{x} - \bar{y}, t) T_0(\bar{y})(11)$$
 (2.11)

Caso particolare: $T_0(\bar{y}) = \delta(\bar{y})$

$$\Rightarrow T(\bar{x},t) = G(\bar{x},t)$$

il propagatore è soluzione dell'equazione del calore corrispondente a un dato iniziale deltiforme. Per questo motivo, il propagatore è anche chiamato soluzione fondamentale, perchè esso è una soluzione e con esso si costruiscono tutte le altre per convoluzione.

Calcoliamo G:

$$G(\bar{z},t) = \frac{1}{(2\pi)^d} \int d^d \bar{k} e^{i\bar{k}\bar{z} - \chi\bar{k}t}$$

passo agli esponenti, usando il teorema dei residui sposto l'asse reale nel piano complesso in alto o in basso

$$-\chi t \left(\bar{k} - \frac{i\bar{z}}{2\chi t}\right)^2 - \frac{\bar{z}^2}{4\chi t}$$
$$\left(\bar{k} - \frac{i\bar{z}}{2\chi t}\right)^2 =: \bar{k'}$$
$$\Rightarrow G(\bar{z}, t) = \frac{1}{(2\pi)^d} \exp\left(\frac{-\bar{z}^2}{4\chi t}\right) \int d^d\bar{k} e^{-\chi t \bar{k'}^2}$$

l'integrale è Gaussiano (più precisamente prodotto di integrali Gaussiani)

$$G(\bar{z},t) = \frac{1}{(2\pi)^d} \exp\left(-\frac{\bar{z}^2}{4\chi t}\right) \sqrt{\frac{\pi}{\chi t}}^d$$

Se $Re(\chi t) > 0 \Rightarrow t > 0$, la soluzione esiste solo per t > 0, cioé per tempi posteriori all'essegnazione del dato iniziale (soluzione ritardata)

$$\Rightarrow G(\bar{z},t) = \frac{1}{(4\pi\chi t)^{\frac{1}{2}}} \exp\left(-\frac{\bar{z}^2}{4\chi t}\right) (12)$$
(2.12)

-Soluzione della (11) per d=1 per dato iniziale localizzato:

$$T_0(x) = \begin{cases} \hat{T}_0 & |x| \le L \\ 0 & |x| > L \end{cases}$$

$$(11) \Rightarrow T(\bar{x}, t) = \int_L^L dy \hat{T}_0 \frac{1}{(4\pi\chi t)^{1/2}} exp\left(-\frac{(x-y)^2}{4\chi t}\right)$$

$$= \frac{\hat{T}_0}{(4\pi\chi t)^{1/2}} \int_{x-L}^{x+L} dz exp\left(-\frac{z^2}{4\chi t}\right)$$

definisco $r := \frac{z}{(4\chi t)^{1/2}}$

definisco z := x - y

$$=\frac{\hat{T}_0}{\pi} \int_{\frac{X-L}{2\sqrt{\chi t}}}^{\frac{X+L}{2\sqrt{\chi t}}} e^{-r^2} dr = \frac{\hat{T}_0}{\sqrt{\pi}} \left(\int_{\frac{X-L}{2\sqrt{\chi t}}}^{0} e^{-r^2} dr + \int_{0}^{\frac{X+L}{2\sqrt{\chi t}}} \right)$$

$$= \frac{\hat{T}_0}{\sqrt{\pi}} \left(-\frac{\sqrt{pi}}{2} \right)$$

$$= \frac{\hat{T}_0}{2} \left(erf \frac{x+L}{2\sqrt{\chi t}} - erf \frac{x-L}{2\sqrt{\chi t}} \right) (13)$$
(2.13)

dove la funzione degli errori (di Gauss) e definita da

$$erf(s) := \frac{2}{\sqrt{\pi}} \int_0^s e^{-r^2} dr(14)$$
 (2.14)

dato che la soluzione e pari possiamo limitarci a $x \ge 0$ Il punto fondamentale è che, sebben il dato iniziale sia nonnullo solo in una regione localizzata, appena comincia al'evoluzione la funzione è maggiore di zero <u>ovunque</u>, per quanto lontano dal supporto del dato iniziale. È questo il <u>comportamento diffusivo</u> che contrasta con la propagazione per onde.

-Dimostrazione che la (11) soddisfa il dato iniziale per $t \to 0$. A tal fine dimostriamo che :

$$\lim_{a \to 0} \frac{1}{a\sqrt{\pi}} e^{-\frac{x^2}{a^2}} = \delta(x) =: \delta_a(x)$$

$$\int_{-\infty}^{\infty} \delta_a(x)\phi(x)dx = \int_{-\infty}^{\infty} \frac{1}{a\sqrt{\pi}} e^{-\frac{x^2}{a^2}}\phi(x)dx = (\frac{x}{a} =: y) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2}\phi(ya)dy$$

$$\lim_{a \to 0} \int_{-\infty}^{\infty} \delta_a(x)\phi(x)dx = \frac{1}{\sqrt{\pi}} \lim_{a \to 0} \int_{-\infty}^{\infty} e^{-y^2}\phi(ya)dy = (\text{teo conv dominata}) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \infty \lim_{a \to 0} e^{-y^2}\phi(ya)dy =$$

$$= \frac{\phi(0)}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2}dy = \phi(0)$$

Con $a = 2\sqrt{\chi t}$:

$$\lim_{t \to 0} \frac{1}{2\sqrt{\pi \chi t}} e^{-\frac{x^2}{4\chi t}} = \delta(x)(15) \tag{2.15}$$

Quindi $(12) \Rightarrow$

$$\lim_{t\to 0} G(\bar{z},t) = \delta(z_1) \cdot \dots \cdot \delta(z_d) = \delta(\bar{z})$$

e la (11) implica

$$\lim_{t \to 0} T(\bar{x}, t) = \int d^d \bar{y} \lim_{t \to 0} G(\bar{x} - \bar{y}, t) T_0(\bar{y}) = \int d^d \bar{y} \delta(\bar{x} - \bar{y}) T_0(\bar{y}) = T_0(\bar{x}) \quad \blacksquare$$

-Flusso di calore con produzione di calore:

$$\frac{\partial T}{\partial t} - \chi \Delta T = S(\bar{x}, t) \quad t > 0$$

S è il termine di sorgente, rende l'equazione lineare non omogenea

-Soluzione particolare dell'equazione non omogenea:

definiamo una funzione di Green G tramite una convoluzione spaziale e temporale

$$(\partial_t - \chi \Delta) G(\bar{x} - \bar{x'}, t - t') = \delta(\bar{x} - \bar{x'}) \delta(t - t') (16)$$

$$(2.16)$$

$$\Rightarrow T(\bar{x},t) = \int d^n \bar{x'} dt'$$

$$G(\bar{x} - \bar{x'}, t - t') S(\bar{x'}, t') (17)$$
(2.17)

Check:

$$(\partial_t - \chi \Delta_{\bar{x}}) T(\bar{x}, t) = \int d^n \bar{x'} dt' (\partial_t - \chi \Delta_{\bar{x}}) G(\bar{x} - \bar{x'}, t - t') S(\bar{x'}, t') = S(\bar{x}, t)$$
$$(\partial_t - \chi \Delta_{\bar{x}}) G(\bar{x} - \bar{x'}, t - t') = \delta(\bar{x} - \bar{x'}) \delta(t - t')$$

trasformata di Fourier, definisco $\bar{z}:=\bar{x}-\bar{x'}, \tau:=t-t'$

$$G(\bar{z},\tau) = \frac{1}{(2\pi)^{n+1}} \int d^n \bar{k} d\omega e^{i(\bar{k}\bar{z}-\omega\tau)} \tilde{G}\bar{k}, \omega \delta(\bar{z}) \delta(\tau) = \frac{1}{(2\pi)^{n+1}} \int d^n \bar{k} d\omega e^{i(\bar{k}\bar{z}-\omega\tau)}$$

sostituito nella (16) mi da

$$\begin{split} (-i\omega + \chi \bar{k}^2) \tilde{G}(\bar{k},\omega) &= 1 \\ \Rightarrow \tilde{G}(\bar{k},\omega) &= \frac{1}{-i\omega + \chi \bar{k}^2} \\ \Rightarrow G(\bar{z},\tau) &= \frac{1}{(2\pi)^{n+1}} \int d^n \bar{k} dw e^{i(\bar{k}\bar{z}-\omega\tau)} \frac{1}{-i\omega + \chi \bar{k}^2} \end{split}$$

calcolo l'integrale in $d\omega$ con il teorema dei residui, chiudendo sopra se τ è positiva, e viceversa

$$\begin{split} i\omega + \chi \bar{k}^2 &= 0 \Rightarrow \omega = -i\chi \bar{k}^2 \\ \int d\omega \frac{e^{-i\omega\tau}}{-i(\omega + i\chi \bar{k}^2)} &=: \int F(\omega) d\omega \\ e^{-i\omega\tau} &= e^{-i(Re\omega + iIm\omega)\tau} \\ \tau &> 0 \qquad \Rightarrow Im\omega < 0 \\ \tau &< 0 \quad \Rightarrow Im\omega > 0 \Rightarrow G(\bar{z},t) = 0 \end{split}$$

per $\tau \ll$, cioè t - t' < 0

$$F(\omega)dw = \frac{e^{-i\tau(\rho\cos\varphi + i\rho\sin\varphi)}}{-i(\rho e^{i\varphi} + i\chi\bar{k}^2)}\rho e^{i\varphi}id\varphi =: f(\varphi)d\varphi$$

vado a risolvere l'integrale

$$\left| \int_0^\pi f(\varphi) d\varphi \right| \le \int_0^\pi |f(\varphi)| \, d\varphi = \int_0^\pi \frac{e^{\tau \rho \sin \varphi} \rho d\varphi}{\left| \rho e^{i\varphi} + i\chi \bar{k}^2 \right|} =$$

$$= \int_0^\pi \frac{e^{\tau\rho\sin\varphi}\rho d\varphi}{\sqrt{(\rho\cos\varphi)^2 + (\rho\sin\varphi + \chi\bar{k}^2)^2}} = \int_0^\pi \frac{e^{\tau\rho\sin\varphi}\rho d\varphi}{\sqrt{\rho^2 + 2\rho\sin\varphi\chi\bar{k}^2 + \chi^2k^4}}$$

posso minorare il denominatore con ρ^2 e ottengo

$$\leq \int_0^{\pi} \frac{e^{\tau \rho \sin \varphi} \rho d\varphi}{\rho} = 2 \int_0^{\pi/2} e^{\tau \rho \sin \varphi d\varphi}$$

So che in $[0, \frac{\pi}{2}]$: $\sin \varphi \ge \frac{2\varphi}{\pi}$

$$(\tau < 0) \Rightarrow \tau \rho \sin \varphi \le \tau \rho \frac{2\varphi}{\pi}$$

$$\Rightarrow 2\int_0^{\pi/2} e^{\tau\rho\sin\varphi} d\varphi \le 2\int_0^{\pi/2} e^{\tau\rho\frac{2\varphi}{\pi}} = 2\left[\frac{\pi}{2\tau\rho} e^{\tau\rho\frac{2\varphi}{\pi}}\right]_0^{\frac{\pi}{2}} = \frac{\pi}{\tau\rho} (e^{\tau\rho} - 1) \to (\rho \to \infty)0$$

Analogamente si dimostra che anche per il cammino sotto l'integrale per $\rho \to \infty$ tende a 0. Restano da calcolare i residui.

$$ResF(\omega) = \lim_{\omega \to -i\gamma \bar{k}^2} F(\omega) \cdot (\omega + i\chi \bar{k}^2) = ie^{-i\tau(-i\chi \bar{k}^2)} = ie^{-\tau\chi \bar{k}^2}$$

Per $\tau > 0$ chiudo l'integrale sotto. Il valore dell'integrale sull'asse reale è la differenza tra l'integrale sul cammino chiuso e quello sul solo semicerchio sotto.

$$\tau > 0: \int_{-\infty}^{\infty} d\omega F(\omega) = (residui) = -2\pi i Res F(\omega) = -2\pi i e^{-\tau \chi \bar{k}^2} = 2\pi e^{-\tau \chi \bar{k}^2}$$

$$\Rightarrow G(\bar{z},t) = \frac{1}{(2\pi)^n} \int d^n \bar{k} e^{i\bar{k}\bar{z} - \tau\chi\bar{k}^2} = \frac{1}{(2\pi)^n} exp\left(\frac{-\bar{z}^2}{4\tau\chi}\right) \int d^n \bar{k} e^{-\tau\chi\left(\bar{k} - \frac{iz}{2\tau\chi}\right)} =$$

$$= \frac{1}{(2\pi)^n} exp\left(-\frac{\bar{z}^2}{4\tau\chi}\right) \sqrt{\frac{\pi}{\chi\tau}}^n = \frac{1}{(4\pi\tau\chi)^{n/2}} exp\left(-\frac{\bar{z}^2}{4\chi\tau}\right) (18)$$
(2.18)

 \rightarrow nucleo di calore!

$$G(\bar{z}, \tau) = 0, \tau > 0(19)$$
 (2.19)

 \rightarrow soluzione particolare dell'equazione del calore con sorgente:

$$T(\bar{x},t) = (17) = \int d^n \bar{x'} \int_{-\infty}^t dt' G(\bar{x} - \bar{x'}, t - t') S(\bar{x'}, t')$$

Soluzione generale dell'equazione omogenea

$$T_{om}(\bar{x},t) = (11) = \int d^n \bar{x'} G(\bar{x} - \bar{x'},t) T_0(\bar{x'})$$

Soluzione generale dell'equazione non omogenea

$$T(\bar{x},t) = T_p(\bar{x},t) + T_{om}(\bar{x},t)$$

supponi $S(\bar{x}',t')=0$ per $t'<0 \Rightarrow T_p(\bar{x},t)=0$, e quindi abbiamo che $T(\bar{x},0)=T_0(\bar{x})$

-Considera il problema di Dirichlet in un dominio connesso (o su una varietà curva con bordo) U. λ_n : autovalori del problema di Dirichlet, ϕ : autofunzioni di Δ

$$\Delta \phi + \lambda \phi = 0 \quad \text{in } U$$
$$\phi = 0 \quad \text{su } \partial U$$

$$G(t, \bar{x}, \bar{y}) = \sum_{n} e^{-\lambda_n \chi t} \phi_n(\bar{x}) \phi_n(\bar{y})(20)$$
(2.20)

$$T(\bar{x},t) = \int d^d \bar{y} G(t, \bar{x}, \bar{y}) t_0(\bar{y}) = \int d^d \bar{y} \sum_n e^{-\lambda_n \chi t} \phi_n(\bar{x}) \phi_n(\bar{y}) T_0(\bar{y}) (21)$$
 (2.21)

La (20) è un esempio di una funzione di Green che non dipende solo la $\bar{x} - \bar{y}$, ma da \bar{x} e \bar{y} separatamente. Motivo: rottura dell'invarianza per traslazioni a causa del bordo ∂U Check: $T(\bar{x},0)=(21)=$

$$= \int d^d \bar{y} \sum_n \phi_n(\bar{x}) \phi_n(\bar{y}) T_0(\bar{y}) = \int d^d \bar{y} \delta(\bar{x} - \bar{y}) T_0(\bar{y}) = T_0(\bar{x})$$

$$T(\bar{x}, t)|_{\bar{x} \in \partial U} = \int d^d \bar{y} \sum_n e^{-\lambda n \chi t} \phi_n(\bar{x})|_{\bar{x} \in \partial U} \phi_n(\bar{y}) t_0(\bar{y}) = 0$$

$$\frac{\partial}{\partial t} T(\bar{x}, t) = \int d^d \bar{y} \sum_n (-\lambda_n \chi) e^{-\lambda_n \chi t} \cdot \phi_n(\bar{x}) \phi_n(\bar{y}) T_0(\bar{y})$$

$$\chi \Delta_{\bar{x}} T(\bar{x}, t) = \int d^d \bar{y} \sum_n e^{-\lambda_n \chi t} \chi \Delta_{\bar{x}} \phi_n(\bar{x}) \phi_n(\bar{y}) T_0(\bar{y}) = (\chi \Delta_{\bar{x}} \phi_n(\bar{x}) = -\lambda_n \phi_n(\bar{x})) = \frac{\partial}{\partial t} T(\bar{x}, t)$$

Esempio: $U = [0, L] \rightarrow$ da risolvere $\partial_t T = \chi \partial_x^2 T$, $x \in [0, L]$, t > 0 condizioni al contorno T(0, t) = 0 = T(L, t), $T(x, 0) = T_0(x)$

$$\partial_x^2 \phi = -\lambda \phi \to \phi = \phi_0 \sin \frac{n\pi}{L} x, n = 0, 1, 2, \cdot \cdot \cdot , \lambda = \frac{n^2 \pi^2}{L^2}$$
$$\int_0^L dx \phi_n(x)^2 = 1 \Rightarrow \phi_0 = \sqrt{\frac{2}{L}}$$

$$(20) \Rightarrow G(t, x, y) = \frac{2}{L} \sum_{n=0}^{\infty} e^{-n^2 \pi^2} \frac{\chi t}{L^2} \cdot \sin \frac{n\pi}{L} x \sin \frac{n\pi}{L} y (22)$$
 (2.22)

$$(21) \Rightarrow T(x,t) = \int_0^L dy \sum_{n=1}^\infty e^{-n^2 \pi^2} \frac{\chi t}{L^2} \cdot \frac{2}{L} \sin \frac{n\pi}{L} x \sin \frac{n\pi}{L} y T_0(y) (23)$$
 (2.23)

Sviluppo $T_0(y)$ in serie di Fourier:

$$T_0(y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{L} y(24)$$
 (2.24)

con

$$b_n = \frac{2}{L} \int_0^L T_0(y) \sin \frac{n\pi}{L} y dy(25)$$
 (2.25)

Usando la (25), posso riscrivere la (23)

$$T(x,t) = \sum_{n=1}^{\infty} e^{-n^2 \pi^2} \frac{\chi t}{L^2} b_n \sin \frac{n\pi}{L} (26)$$
 (2.26)

N.B.: la (20) vale anche per varietà compatte senza bordo (p.e. S^2) Compiti a casa: i) risolvere $\partial_t T = \chi \Delta T$ nel cubo

$$\begin{aligned} \partial_t T &= \chi \Delta T \\ 0 &\leq x \leq L \\ T(\bar{x},0) &= T_0(\bar{x}) \\ T(\bar{x},t) &= 0 \end{aligned} \quad 0 \leq y \leq L \quad 0 \leq z \leq L \quad t \geq 0 \\ T(z,t) &= 0 \quad z = 0, L \quad z = 0, L \end{aligned}$$

ii) le (20),(21) valgono anche per il problema di Neumann $\Delta \phi + \lambda \phi = 0$ in Um $\bar{n} \cdot \bar{\nabla} \phi = 0$ su ∂U (\bar{n} : versore normale al bordo). Perchè? (p.e. verificare che $\bar{n} \cdot \bar{\nabla} T \big|_{\bar{x} \in \partial U} = 0$ risolvere l'equzione del calore nel cubo con pareti isolati (nessun flusso termico attraverso le pareti, vedi equazione (1)

$$T(\bar{x}, 0) = T_0(\bar{x})$$

$$\partial_x T = 0 \qquad x = 0, L$$

$$\partial_y T = 0 \qquad y = 0, L$$

$$\partial_z T = 0 \qquad z = 0, L$$

iii) Risolvere l'equzione del calore sulla 2-sfera. Suggerimento: scrivere il laplaciano in coordinate sferiche

$$\Delta = \frac{1}{r^2} \partial_r(r^2 \partial_r) + \frac{1}{r^2 \sin \theta} \partial_\theta(\sin \theta \partial_\theta + \frac{1}{r^2 \sin^2 \theta} \partial^2 \varphi(27)$$
 (2.27)

porre r = cost e usare

$$\frac{1}{\sin \theta} \partial_{\theta} (\sin \theta Y_l^m) + \frac{1}{\sin^2 \theta} \partial_{\varphi}^2 Y_l^m = -\lambda Y_l^m (28)$$
(2.28)

con $\lambda = l(l+1), Y_l^m$ armoniche sferiche. Sostituire le (24),(25) col corrispondente sviluppo in armoniche sferiche.

-Parentesi: soluzione di $\Delta_{\bar{x}}G(\bar{x},\bar{y})=-\delta(\bar{x}-\bar{y})$ in d dimensioni. consideriamo un problema un po' più generale:

$$(\Delta_{\bar{x}} - m^2)G(\bar{x} - \bar{y}) = -\delta(\bar{x} - \bar{y})(29)$$
(2.29)

 \rightarrow G è il nucleo dell'equazione di <u>Helmholtz</u>

$$(\Delta_{\bar{x}} - m^2)f = -S(30) \tag{2.30}$$

(soluzione: $f(\bar{x}) = \int d^d \bar{x'} G(\bar{x} - \bar{x'}) S(\bar{x'})$) G è il propagatore per un campo scalare in di dimensioni Euclidee (\rightarrow teoria quantistica dei campi). Uso la trasformata di Fourier per riportarmi ad un'equazione algebrica

$$G(\bar{x} - \bar{y}) = \frac{1}{(2\pi)^d} \int d^d \bar{k} e^{i\bar{k}(\bar{x} - \bar{y})} \tilde{G}(\bar{k})$$

$$\delta(\bar{x} - \bar{y}) = \frac{1}{(2\pi)^d} \int d^d \bar{k} e^{i\bar{k}(\bar{x} - \bar{y})} \Rightarrow (-k^2 - m^2) \tilde{G}(\bar{k}) = -1 \Rightarrow \tilde{G}(\bar{K}) = \frac{1}{\bar{k}^2 + m^2}$$

$$\Rightarrow G(\bar{z}) = \frac{1}{(2\pi)^d} \int d^d \bar{k} \frac{e^{i\bar{k}\bar{z}}}{\bar{k}^2 + m^2}$$
(2.31)

Uso

$$\frac{1}{\bar{k}^2 + m^2} = \int_0^\infty \exp\left(-\tau(\bar{k}^2 + m^2)\right) d\tau(32) \tag{2.32}$$

$$\Rightarrow G(\bar{z}) = \frac{1}{(2\pi)^d} \int_0^\infty d\tau e^{-\tau m^2} \cdot \int d^d \bar{k} e^{i\bar{k}\bar{z} - \tau \bar{k}^2}$$

$$i\bar{k}\bar{z} - \tau \bar{k}^2 = -\tau(\bar{k} - \frac{i\bar{z}}{2\tau})^2 - \frac{\bar{z}^2}{4\tau}$$

$$\bar{k}' := \bar{k} - \frac{i\bar{z}}{2\tau}$$

$$\Rightarrow G(\bar{z}) = \frac{1}{(2\pi)^d} \int_0^\infty d\tau e^{-\tau m^2 - \frac{\bar{z}^2}{4\tau}} \cdot \int d^d \bar{k}' e^{-\tau \bar{k}'^2}$$

$$\int d^d \bar{k}' e^{-\tau \bar{k}'^2} = \left(\frac{\pi}{\tau}\right)^{d/2} \quad (\tau > 0)$$

$$\frac{1}{(4\pi)^{d/2}} \int_0^\infty \tau^{-d/2} e^{-\tau m^2 - \frac{\bar{z}^2}{4\tau}} d\tau$$

$$\tau := \frac{m^{-1}}{2} |\bar{z}| e^t, \quad d\tau = \frac{m^{-1}}{2} |\bar{z}| e^t dt$$

$$\tau^{-\frac{d}{2}} = \left(\frac{m^{-1}|\bar{z}}{2}\right)^{-\frac{d}{2}} e^{-\frac{d}{2}t}$$

$$-\tau m^2 - \frac{\bar{z}^2}{4\tau} = -\frac{m^{-1}}{2} |\bar{z}| e^t m^2$$

$$-\frac{\bar{z}^2}{4\tau} \frac{2m}{|\bar{z}|} e^{-t} = -m |\bar{z}| \cosh t$$

$$\Rightarrow G(\bar{z}) = \frac{1}{(4\pi)^{d/2}} \int_{-\infty}^{\infty} dt y \left(\frac{|\bar{z}|}{2m}\right)^{1-d/2} e^{(1-d/2)t} e^{-m|\bar{z}|\cosh t} = \int_{-\infty}^{0} + \int_{0}^{\infty} \frac{1}{(4\pi)^{d/2}} \int_{-\infty}^{0} dt \left(\frac{|\bar{z}|}{2m}\right)^{1-d/2} e^{(1-d/2)t} e^{-m|\bar{z}|\cosh t}$$

$$(t' = -t) = \frac{1}{(4\pi)^{d/2}} \int_{0}^{\infty} dt' \left(\frac{|\bar{z}|}{2m}\right)^{1-d/2} e^{-(1-d/2)t'} e^{-m|\bar{z}|\cosh t'}$$

$$(t' \to t) \Rightarrow G(\bar{z}) = \frac{1}{(4\pi)^{d/2}} \int_{0}^{\infty} dt \left(\frac{|\bar{z}|}{2m}\right)^{1-d/2} \cdot 2 \cosh((1-d/2)t) e^{-m|\bar{z}|\cosh t'}$$

funzione di Bessel modificata del 2 tipo:

$$K_{\nu}(x) = \int_0^\infty e^{-x\cosh t} \cosh(\nu t) dt (33) \tag{2.33}$$

$$Rex > 0 \Rightarrow K_{-\nu}(x) = K_{\nu}(x)$$

$$\Rightarrow G(\bar{z}) = \frac{1}{(4\pi)^{d/2}} \left(\frac{|\bar{z}|}{2m}\right)^{1-d/2} \cdot 2K_{1-d/2}(m|\bar{z}|)$$

$$\Rightarrow G(\bar{z}) = \frac{1}{(2\pi)^{d/2}} m^{d-2} (|\bar{z}|m)^{1-d/2} \cdot K_{1-d/2}(m|\bar{z}|)(34)$$
(2.34)

 $m \to 0$: usa

$$K_{\nu}(x)(x \to 0) \begin{cases} -\gamma - \ln \frac{x}{2} & \nu = 0\\ \frac{\Gamma(\nu)}{2} \left(\frac{2}{x}\right)^{\nu} & \nu > 0 \end{cases}$$
(2.35)

dove $\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right) \approx 0,577$ costante di Eulero-Mascheroni.

 $\Gamma(\nu)$: funzione gamma di Eulero, estende il concetto di fattoriale ai numeri completti, el senso che per ogni numero intero non negativo n si ha $\Gamma(n) = (n-1)!$

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt, \quad Rez > 0(36)$$
 (2.36)

Esercizio: integrando per parti, dimostrare che

$$\Gamma(z+1) = z\Gamma(z)(37) \tag{2.37}$$

 $\Rightarrow \Gamma(z) = \frac{\Gamma(z+1)}{z}$ Usando questa la definizione della Γ può essere estesa al piano $Rez < 0 \Rightarrow$ per d+2 e $m \to 0,$ la (34) diventa

$$G(\bar{z}) \to \frac{1}{(2\pi)^{d/2}} m^{\frac{d-2}{2}} |\bar{z}|^{1-d/2} \frac{\Gamma(\frac{d}{2}-1)}{2} \left(\frac{2}{m|\bar{z}|}\right)^{d/2-1} = \frac{\Gamma(\frac{d}{2}-1)}{4\pi^{d/2}|\bar{z}|^{d-2}} (38)$$
 (2.38)

corrisponde al potenziale di una carica puntiforme in d-dimensioni.

Caso d = 3:

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Rightarrow G(\bar{z}) = \frac{1}{4\pi|\bar{z}|}(38')$$

Caso limite d=2:

$$(34) \Rightarrow G(\bar{z}) = \frac{1}{2\pi} K_0(m|\bar{z}|)(39) \tag{2.39}$$

$$(35)(m \to 0) \to \frac{1}{2\pi} \left(-\gamma - \ln \frac{m|\bar{z}|}{2} \right) = \frac{1}{2\pi} (-\gamma - \ln m + \ln 2 - \ln |\bar{z}|)$$

Chiaro: G definita a meno di una costante additiva nel caso $m \to 0$.

$$\Delta_{\bar{x}}G(\bar{x}-\bar{y}) = -\delta(|x-\bar{y}) \Rightarrow G(\bar{z}) = -\frac{\ln|\bar{z}|}{2\pi}(40)$$
(2.40)

Check: $\Delta_{\bar{x}}G(\bar{x}) = -\delta(\bar{x})$

A causa dell'invarianza per rotazioni, G dipende solo da $|\bar{x}|$, se le condizioni al contorno non rompono l'invarianza. Passo in coordinate polari per controllare.

Coordinate polari:

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2}$$

considero $r \neq 0$, $\frac{\partial G}{\partial \varphi} = 0$

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}\right) - \frac{\ln r}{2\pi} = \frac{1}{2\pi} \left(\frac{1}{r^2} + \frac{1}{r}\left(-\frac{1}{r}\right)\right) = 0 \qquad \checkmark$$

Per verificare che $\Delta_{\bar x}G(\bar x)=-\delta(\bar x)$ integro ΔG su un disco D centrato in zero, con raggio ϵ

$$\int_{D} \Delta G d^{2} \bar{x} = \int_{D} \underline{\nabla} \cdot (\underline{\nabla} G) d^{2} \bar{x}$$

Uso Gauss per passare a un integrale di bordo

$$= \int_{\partial D} \bar{n} \cdot \underline{\nabla} G ds \quad \bar{n} = \bar{e_r}, \quad ds = r d\varphi$$

$$\int_{\partial D} \bar{n} \cdot \underline{\nabla} G ds = \int_0^{2\pi} \left(\frac{\partial}{\partial r} G \right) r d\varphi = \int_0^{2\pi} -\frac{1}{2\pi r} r d\varphi = -1 = -\int_D \delta(\bar{x}) d^2 \bar{x} \quad \checkmark$$

ho ottenuto il nucleo del laplaciano in due dimensioni, che corrisponde al potenziale elettrostatico in due dimensioni

2.1 Flusso di calore in un cilindro infinito

$$\frac{\partial}{\partial t}T = \chi \Delta T$$

$$T(\bar{x}, t) = 0 \qquad \bar{x} \text{ sul bordo}$$

$$T(\bar{x}, 0) = T_0(\bar{x})$$

la simmetria del problema suggerisc edi usare le coordinate cilindriche: r, φ, z , con $x = r \cos \varphi$, $y = r \sin \varphi$

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}$$

$$0 \le r \le L$$
, $0 \le \varphi \le 2\pi$, $-\infty < z < \infty$

2.1.1 Separazione delle variabili

$$T(r, \varphi, z, t) = \tau(t)R(r)\Phi(\varphi)Z(z) \Rightarrow \frac{\partial T}{\partial t} = \tau'(t)R\Phi Z$$

$$\Delta T = \tau (R'' + \frac{1}{r}R')\Phi Z + \tau R\frac{1}{r^2}\Phi''Z + \tau R\Phi Z'' = \frac{1}{\chi}\tau' R\Phi Z \Rightarrow \frac{1}{R}(R'' + \frac{1}{r}R') + \frac{1}{r^2}\frac{\Phi''}{\Phi} + \frac{Z''}{Z} - \frac{1}{\chi}\frac{\tau'}{\tau} = 0$$

la funzione di Z è costante = C_2 , e analogamente la funzione di t = C_2 , di conseguenza la parte rimanente in $r, \varphi = C_1 - C_2$

$$\tau' = \chi \tau C_1$$
 $\tau = \tau_0 e^{\chi C_1 t}$
 $Z'' = C_2 Z$ $Z = Z_0 e^{\sqrt{C_2} z} + Z_1 e^{-\sqrt{C_2} z}$

$$r^{2}\frac{1}{R}(R'' + \frac{1}{r}R') + \frac{\Phi''}{\Phi} = (C_{1} - C_{2})r^{2} \Rightarrow \frac{\Phi''}{\Phi} = cost := -\lambda^{2}$$

 $^{2}\frac{1}{R}(R'' + \frac{1}{r}R') + (C_{2} - C_{1})r^{2} = \lambda^{2} \Rightarrow \Phi = \Phi_{0}\cos\lambda\varphi + \Phi_{1}\sin\lambda\varphi = \Phi_{0}\cos\lambda(\varphi + 2\pi) + \Phi_{1}\sin\lambda(\varphi + 2\pi) = \phi_{0}(\cos\lambda\varphi\cos2\pi\lambda) + \Phi_{1}\sin\lambda(\varphi + 2\pi) = \phi_{0}\cos\lambda\varphi\cos2\pi\lambda$

$$\Rightarrow \begin{array}{l} \phi_0\cos 2\pi\lambda + \phi_1\sin 2\pi\lambda = \phi_0 \\ -\phi_0\sin 2\pi\lambda + \phi_1\cos 2\pi\lambda = \phi_1 \end{array} \Rightarrow \begin{pmatrix} \cos 2\pi\lambda - 1 & \sin 2\pi\lambda \\ -\sin 2\pi\lambda & \cos 2\pi\lambda - 1 \end{pmatrix} \begin{pmatrix} \phi_0 \\ \phi_1 \end{pmatrix} = 0$$

ho una soluzione non banale se il determinante è nullo $\implies \cos 2\pi\lambda = 1$, $\sin 2\pi\lambda = 0$, $\lambda = m, m \in \mathbb{Z}$. Basta prendere $m \in \mathbb{N}_0$, per cui le funzioni Φ formano un sistema completo. Passo all'equazione radiale:

$$r^2R'' + rR' + ((C_2 - C_1)r^2 - m^2)R = 0$$

Supponiamo per semplicità che $T_0(\bar{x})$ dipenda solo da r, φ .

$$T(r,\varphi,z,0) = \tau_0 R\Phi Z' = T_0(r,\varphi) \Rightarrow Z = cost \Rightarrow C_2 = 0$$
$$Z = Z_0 e^{\sqrt{C_2}z} + Z_1 e^{-\sqrt{C_2}z}$$

senza perdere la generalità, poniamo $Z=1, C_1<0$ altrimenti T diverge per $t\to\infty$ $(\tau=\tau_0e^{\chi C_1t})$ (Inoltre si può far vedere che la soluzione dell'equzione radiale (con $C_2=0$) diverge nell'origine (per le nostre condizioni al contorno) se $C_1>0$) Pongo $x:=\sqrt{|C_1|}r$

$$\Rightarrow x^2 \frac{d^2 R}{dx^2} + x \frac{dR}{dx} + (x^2 - m^2)R = 0(41)$$
(2.41)

equazione differenziale di Bessel. Cerca soluzioni della forma

$$R(x) = x^{\alpha} \sum_{n=0}^{\infty} a_n x^n (42)$$
 (2.42)

$$(a_0 \neq 0) \Rightarrow R'(x) = \alpha x^{\alpha - 1} \sum_n a_n x^n + x^{\alpha} \sum_n n a_n x^{n - 1}$$

$$R''(x) = \alpha(\alpha - 1)x^{\alpha - 2} \sum_{n} a_n x^n + 2\alpha x^{\alpha - 1} \sum_{n} a_n x^{n - 1} + x^{\alpha} \sum_{n} n(n - 1)a_n x^{n - 2}$$

$$(41) \Rightarrow \alpha(\alpha - 1)x^{\alpha} \sum_{n} a_n x^n + 2\alpha x^{\alpha} \sum_{n} n a_n x^n + x^{\alpha} \sum_{n} n(n - 1)a_n x^n + \alpha x^{\alpha} \sum_{n} a_n x^n + x^{\alpha} \sum_{n} n a_n x^n + (x^2 - m^2)x^{\alpha} \sum_{n} a_n x^n + (x^2 - m^2)x^{\alpha} \sum_{n$$

studio il prefattore di x^0 : $\alpha^2 a_0 - m^2 a_0 = 0 \Rightarrow \alpha = \pm m$. Scarto la soluzione $\alpha = -m$ perchè non fisica (divergerebbe sull'asse del cilindro).

Soluzione regolare in x = 0: $\alpha = m$. In tal caso:

$$2m\sum_{n}na_{n}x^{n} + \sum_{n}n^{2}a_{n}x^{n} + \sum_{n}a_{n}x^{n+2} = 0(43)$$
(2.43)

sostituisco nell'ultimo pezzo $n+2=n^{\prime}$

$$\sum_{n'} a_{n'-2} x^{n'}$$

$$x^1 : 2ma_1 + a_1 = 0 \Rightarrow a_1 = 0$$

 $\Rightarrow la(43) diventa$

$$\sum_{n=2}^{\infty} x^n (a_n (2mn + n^2) + a_{n-2}) = 0 \Rightarrow a_n := -\frac{a_n - 2}{2mn + n^2} (44)$$
(2.44)

 \rightarrow relazione di ricorrenza

scegliendo $a_0 = \frac{2^{-m}}{m!}$ per motivi di normalizzazione, si ottiene la soluzione

$$J_m(x) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{m+2k}}{k!(m+k)!} (45)$$
 (2.45)

dove per m
 non interi si definisce $m! := \Gamma(m+1)$ $J_m :$ funzione di Bessel del 1 tipo
 $\Rightarrow R = J_m(\sqrt{|C_1|}r)$, impongo le condizioni al contorno $T(r=L,\varphi,z,t) = 0$

$$\Rightarrow R(r=L) = 0 \Rightarrow J_m(\sqrt{|C_1|}L) = 0 \implies \sqrt{|C_1|}L = j_k^{(m)}, \quad k = 1, 2, \dots \implies C_1 = -\left(\frac{j_k^{(m)}}{L}\right)^2$$

dove $j_k^{(m)}$ sono gli zeri positivi di $J_m(x)$, noti numericamente.

$$\Rightarrow T(r,\varphi,z,t) = \tau_0 e^{-\chi \left(\frac{j_k^{(m)}}{L}\right)^2 t} \cdot J_m\left(j_k^{(m)} \frac{r}{L}\right) (\phi_0 \cos m\varphi + \phi_1 \sin r\varphi)$$

la costante τ_0 si può riassorbire in ϕ_0, ϕ_1 , quindi la pongo =1. La soluzione generale sarà uan combinazione lineare di queste soluzioni.

$$T(r,\varphi,z,t) = \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} e^{-\chi \left(\frac{j_k^{(m)}}{L}\right)^2 t} J_m\left(j_k^{(m)} \frac{r}{L}\right) (C_{km} \cos m\varphi + S_{km} \sin m\varphi) (46)$$
(2.46)

$$T(r,\varphi,z,0) = \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} J_m \left(j_k^{(m)} \frac{r}{L} \right) \left(C_{km} \cos m\varphi + S_{km} \sin m\varphi \right) = T_0(r\varphi)(47)$$
 (2.47)

la (47) forma un sistema di funzioni completo nel cilindro \rightarrow qualsiasi funzione $T_0(r,\varphi)$ con $T_0(L,\varphi) = 0$ possiede uno sviluppo di questo tipo. Devono essere scelte delle costanti $C_{km}eS_{km}$ appropriate, invertendo la (47)

2.2 Problemi non omogenei

spesso la separazione delle variabili riducce delle equazioni differenziali alle derivate parziali a delle equazioni differenziali ordinarie, come p.e.

$$a(x)u'' + b(x)u' + c(x)u = f(x)(48)$$
(2.48)

Ipotesi: a(x) continuamente differenziabile; b,c continue. Moltiplica la (48) con $\frac{1}{a(x)}exp\left(\int_{\alpha}^{x}\frac{b(\xi)}{a(\xi)}d\xi\right)$ e definisco

$$p(x) := exp\left(\int_{\alpha}^{x} \frac{b(\xi)}{a(\xi)} d\xi\right)$$

$$q(x) := \frac{c(x)}{a(x)}p(x), \quad f(x) := \frac{F(x)}{a(x)}p(x)$$

posso scrivere la "forma autoaggiunta" della (48)

$$(48) \Rightarrow \frac{d}{dx} \left(p \frac{du}{dx} \right) + qu = f(x)(49) \tag{2.49}$$

digressione:

$$p\frac{d}{dx}\left(p\frac{d}{dx}u\right) + pqu = pf$$

definisco $pq:=\omega^2(x),\, pf:=g$ e y attraverso

$$\frac{d}{dy} = p(x)\frac{d}{dx} \Rightarrow \frac{dx}{p(x)} = dy \Rightarrow y = \int \frac{dx}{p(x)}$$

ottengo

$$\frac{d^2u}{dy^2} + \omega^2(y)u = g$$

è un'equazione di oscillatore armonico con frequenza ω che dipende dal "tempo" g, dove g è una forzante. Viene chiamato "oscillatore di Ermakoff", e trova applicazioni in Cosmologia (equazione di Sasaki-Mukhonov) per quanto riguarda la teoria dell'inflazione.

Equazione omogenea:

$$\frac{d}{dx}\left(p\frac{d}{dx}\right) + qv = 0(50) \tag{2.50}$$

possiede 2 soluzioni v_1, v_2 linearmente indipendenti \implies soluzione generale:

$$v(x) = c_1 v_1(x) + c_2 v_2(x), \quad c_1, c_2 cost$$

considera la funzione

$$w(x) = v_1(x) \int_{\alpha}^{x} v_2(\xi) f(\xi) d\xi - v_2(x) \int_{\alpha}^{x} v_1(\xi) f(\xi) d\xi (51)$$
(2.51)

(paragona con il metodo della variazione delle costanti)

$$\Rightarrow w'(x) = v_1'(x) \int_{\alpha}^{x} v_2(\xi) f(\xi) d\xi - v_2'(x) \int_{\alpha}^{x} v_1(\xi) f(\xi) d\xi + v_1(x) v_2(x) f(x) - v_2(x) v_1(x) f(x) =$$

$$= v_1'(x) \int_{\alpha}^{x} v_2(\xi) f(\xi) d\xi - v_2'(x) \int_{\alpha}^{x} v_1(\xi) f(\xi) d\xi \Rightarrow$$

$$\begin{split} \frac{d}{dx}\left(p(x)\frac{dw}{dx}\right) &= \\ \frac{d}{dx}(p(x)v_1'(x))\int_{\alpha}^{x}v_2(\xi)f(\xi)d\xi - \frac{d}{dx}(p(x)v_2'(x))\int_{\alpha}^{x}v_1(\xi)f(\xi)d\xi + p(x)v_1'(x)v_2(x)f(x) - p(x)v_2'(x)v_1(x)f(x) \end{split}$$

i coefficienti davanti agli integrali corrispondono rispettiamente a $-qv_1$ e $-qv_2$

$$-q(x)w(x) + p(x)(v_1'(x)v_2(x) - v_2'(x)v_1(x))f(x)$$

Inoltre:

$$\frac{d}{dx} \left\{ p(x)(v_1'(x)v_2(x) - v_2'(x)v_1(x)) \right\}$$

deve avere il Wronskiano

$$\begin{vmatrix} v_1 & v_2 \\ v_1' & v_2' \end{vmatrix} \neq 0$$

$$= \frac{d}{dx} (pv_1')v_2 - \frac{d}{dx} (pv_2')v_1 + pv_1'v_2' - pv_2'v_1' = 0$$

$$\Rightarrow p(x)(v_1'(x)v_2(x) - v_2'(x)v_1(x)) = K \quad costante$$

Quindi:

$$\frac{d}{dx}\left(p\frac{dw}{dx}\right) + qw = Kf(52) \tag{2.52}$$

Inoltre, se v'_1, v'_2 sono limitati per $x \to \alpha$, $w(\alpha) = w'(\alpha) = 0$

$$(52): K \Rightarrow \frac{w(x)}{K} = u(x) = \int_{\alpha}^{x} R(x,\xi) f(\xi) d\xi(53)$$
 (2.53)

con

$$R(x,\xi) := \frac{v_1(x)v_2(\xi) - v_2(x)v_1(\xi)}{p(x)(v_1'(x)v_2(x) - v_2'(x)v_1(x))} (54)$$
(2.54)

è una soluzione del problema ai valori iniziali

$$\begin{cases} \frac{d}{dx} \left(p \frac{du}{dx} \right) + qu = f(x) & x > \alpha \\ u(\alpha) = u'(\alpha) = 0 \end{cases}$$
 (2.55)

Il denominatore della (54) è costante $\implies R(x,\xi)$ soddisfa l'equazione omogenea (50) sia come funzione di x che di ξ . (NB: $R(x,\xi) = -R(\xi,x)$). Per ξ fissato: $R(x,\xi)$ è la soluzione del problema omogeneo ai valori iniziali

$$\frac{d}{dx}\left(p(x)\frac{dR}{dx}\right) + q(x)R = 0, \quad x > \xi$$

$$R|_{x=\xi} = 0 \qquad \frac{dR}{dx}\Big|_{x=\xi} = (54) = \frac{1}{p(\xi)}(56)$$
(2.56)

 $R(x,\xi)$: funzione di Green (one-sided). esempio: oscillatore armonico invertito

$$\begin{cases} u'' - u = f(x) & x > 0 \\ u(0) = u'(x) = 0 \end{cases}$$

soluzione per ξ fissato, $R(x,\xi)$ soddisfa

$$\frac{d^2R}{dx^2} - R = 0, \quad x > \xi$$

$$R|_{x=\xi} = 0, \quad \frac{dR}{dx}\Big|_{x=\xi} = 1$$

$$\Rightarrow R = A(\xi)\sinh(x) + B(\xi)\cosh(x)$$

$$R|_{x=\xi} = A\sinh\xi + B\cosh\xi = 0$$

$$\frac{dR}{dx}\Big|_{x=\xi} = A\cosh\xi + B\sinh\xi = 1$$

$$\Rightarrow A = \cosh\xi, \quad B = -\sinh\xi, \Rightarrow R = \sinh(x - \xi)$$

$$(53) \Rightarrow u(x) = \int_0^x f(\xi)\sinh(x - \xi)d\xi$$

N.B. i) Se $u(\alpha), u'(\alpha) \neq 0 \implies$ aggiungi soluzione $c_1v_1(x) + c_2v_2(x)$ dell'equazione omogenea, in modo tale da soddisfare le nuove condizioni iniziali. Nell'esempio sopra:

$$u(x) = \int_0^x f(\xi) \sinh(x - \xi) d\xi + c_1 \sinh(x) + c_2 \cosh(x)$$

soddisfa $u(0) = c_2, u'(0) = c_1$

ii) (53) \Rightarrow Il valore di u(x) dipende solo da $f(\xi)$ per $\xi < x$. Comportamento molto simile a quelle delle equazioni alle derivate parziali iperboliche (vedi piu tardi)

2.3 Problema ai valori al contorno

Risolvi p.e.

$$\begin{cases} \frac{d}{dx} \left(p \frac{du}{dx} \right) + qu = -f(x) & \alpha < x < \beta \\ u(\alpha) = u(\beta) = 0 \end{cases}$$

(ndr il - davanti a f(x) viene messo per convenienza) soluzione generale:

$$u(x) = -\int_{\alpha}^{x} R(\xi, x) f(\xi) d\xi + c_1 v_1(x) + c_2 v_2(x)$$
(2.57)

$$\begin{cases} u(\alpha) = c_1 v_1(\alpha) + c_2 v_2(\alpha) = 0\\ u(\beta) = -\int_{\alpha}^{\beta} R(\beta, \xi) f(\xi) d\xi + c_1 v_1(\beta) + c_2 v_2(\beta) = 0 \end{cases}$$
(58)

La (58) ha una soluzione per c_1, c_2 se $D := v_1(\alpha)v_2(\beta) - v_2(\alpha)v_1(\beta) \neq 0$. In tal caso

$$c_1 = -\frac{v_2(\alpha)}{D} \int_{\alpha}^{\beta} R(\beta, \xi) f(\xi) d\xi = -\frac{v_2(\alpha)}{D} \int_{\alpha}^{x} R(\beta, \xi) f(\xi) d\xi - \frac{v_2(\alpha)}{D} \int_{x}^{\beta} R(\beta, \xi) f(\xi) d\xi$$

$$c_2 = \frac{v_1(\alpha)}{D} \int_{\alpha}^{\beta} R(\beta, \xi) f(\xi) d\xi = \frac{v_1(\alpha)}{D} \int_{\alpha}^{x} R(\beta, \xi) f(\xi) d\xi + \frac{v_1(\alpha)}{D} \int_{x}^{\beta} R(\beta, \xi) f(\xi) d\bar{x}$$

$$\Rightarrow u(x) = -\int_{\alpha}^{x} \left[R(x,\xi) + \frac{v_2(\alpha)v_1(x) - v_1(\alpha)v_2(x)}{D} R(\beta,\xi) \right] f(\xi) d\xi - \int_{x}^{\beta} \frac{v_2(\alpha)v_1(x) - v_1(\alpha)v_2(x)}{D} R(\beta,\xi) f(\xi) d\xi$$

$$R(x,\xi) + \frac{v_2(\alpha)v_1(x) - v_1(\alpha)v_2(x)}{D}R(\beta,\xi) = (54) = \frac{v_1(x)v_2(\xi) - v_2(x)v_1(\xi)}{KD}(v_1(\alpha)v_2(\beta) - v_2(\alpha)v_1(\beta)) + \frac{v_2(\alpha)v_1(x) - v_1(\alpha)v_2(x)}{D}\frac{v_1(\beta)v_2(\xi) - v_2(\beta)v_1(\xi)}{KD}$$

$$\frac{1}{KD}(v_1(\alpha)v_2(\xi) - v_2(\alpha)v_1(\xi))(v_1(x)v_2(\beta) - v_2(x)v_1(\beta))$$

Definisco G

$$G(x,\xi) := \begin{cases} \frac{1}{KD} (v_1(\xi)v_2(\alpha) - v_2(\xi)v_1(\alpha))(v_1(x)v_2(\beta) - v_2(x)v_1(\beta)) & \xi \le x \\ \frac{1}{KD} (v_1(x)v_2(\alpha) - v_2(x)v_1(\alpha))(v_1(\xi)v_2(\beta) - v_2(\xi)v_1(\beta)) & x \le \xi \end{cases}$$
(59)

 \implies soluzione del problema ai valori al contorno (57):

$$u(x) = \int_{\alpha}^{\beta} G(x,\xi) f(\xi) d\xi(60)$$
 (2.60)

 $G(x,\xi)$ è una funzione di Green

$$G(x,\xi) = G(\xi,x)(61)$$
 (2.61)

per determinare G notiamo che per ogni ξ soddisfa il problma ai valori al contorno

$$\frac{d}{dx}\left(p(x)\frac{dG}{dx}\right) + q(x)G = 0 \quad x \neq \xi$$

$$G|_{x=\alpha} = G|_{x=\beta} = 0$$

$$G_{x=\xi+0} == G|_{\xi-0} \qquad (62)$$

$$Gcontinuain\xi$$

$$\frac{dG}{dx}|_{x=\xi+0} - \frac{dG}{dx}|_{x=\xi-0} = -\frac{1}{p(\xi)}$$

 $\frac{dG}{dx}$ discontinua in $x=\xi.$ (Usare la (59). Per ricavare l'ultima equazione bisogna usare anche la definizione di K)

Esempio:

$$((1+x)^{2}u')' - u = f(x), \quad 0 < x < 1, \quad u(0) = u(1) = 0$$

$$\Rightarrow \frac{d}{dx} \left((1+x)^{2} \frac{dG(x,\xi)}{dx} \right) - G(x,\xi) = 0$$
Prova $G(x,\xi) = c(\xi)(1+x)^{\alpha} \implies \frac{dG}{dx} = c\alpha(1+x)^{\alpha-1}$

$$\left((1+x)^{2} \frac{dG}{dx} \right)' = \left(c\alpha(1+x)^{\alpha+1} \right)' = c\alpha(\alpha+1)(1+x)^{\alpha} = G = c(1+x)^{\alpha}$$

$$\implies \alpha^{2} + \alpha - 1 = 0 \Rightarrow \alpha = \frac{1}{2}(1 \pm \sqrt{5}) := \alpha_{\pm}$$

devo separe i casi $x > \xi$ e $x < \xi$

$$\Rightarrow G(x,\xi) = \begin{cases} c_{+}(\xi)(1+x)^{\alpha_{+}} + c_{-}(\xi)(1+x)^{\alpha_{-}} & x < \xi \\ \tilde{c}_{+}(\xi)(1+x)^{\alpha_{+}} + \tilde{c}_{-}(\xi)(1+x)^{\alpha_{-}} & x > \xi \end{cases}$$

$$G|_{x=0} = c_{+} + c_{-} = 0 \qquad \Longrightarrow c_{-} = -c_{+}$$

$$G|_{x=1} = \tilde{c}_{+}2^{\alpha} + \tilde{c}_{-}2^{\alpha} = 0 \qquad \Longrightarrow \tilde{c}_{-} = -\tilde{c}_{+}2^{\sqrt{5}}$$

$$\Rightarrow G(x,\xi) = \left\{ c_{+}(\xi)((1+x)^{\alpha_{+}} \right\}$$

$$G(x,\xi) = \left\{ c_{+}(\xi)((1+\xi)^{\alpha_{+}} \right\}$$

$$G(x,\xi) = \left\{ c_{+}(x)((1+\xi)^{\alpha_{+}} - (1+x)^{\alpha_{-}}) \quad x < \xi \right\}$$

$$\Rightarrow G(x,\xi) = \left\{ \lambda((1+\xi)^{\alpha_{+}} - 2^{\sqrt{5}}(1+\xi)^{\alpha_{-}})((1+x)^{\alpha_{+}} - (1+x)^{\alpha_{-}}) \quad x < \xi \right\}$$

$$\Rightarrow G|_{x=\xi+0} = G|_{x=\xi-0}$$

$$\frac{dG}{dx}\Big|_{x=\xi+0} = \lambda((1+\xi)^{\alpha_{+}} - (1+\xi)^{\alpha_{-}})(\alpha_{+}(1+\xi)^{\alpha_{+}+1} - 2^{\sqrt{5}}\alpha_{-}(1+\xi)^{\alpha_{-}-1})$$

$$\frac{dG}{dx}\Big|_{x=\xi+0} = \lambda((1+\xi)^{\alpha_{+}} - 2^{\sqrt{5}}(1+\xi)^{\alpha_{-}})(\alpha_{+}(1+\xi)^{\alpha_{+}+1} - \alpha_{-}(1+\xi)^{\alpha_{-}-1})$$

$$\frac{dG}{dx}\Big|_{x=\xi+0} - \frac{dG}{dx}x=\xi-0$$

$$= \lambda \left[\alpha_{+} (1+\xi)^{2\alpha_{+}-1} - 2^{\sqrt{5}} \alpha_{-} (1+\xi)^{\alpha_{+}+\alpha_{-}-1} - \alpha_{+} (1+\xi)^{\alpha_{-}+\alpha_{+}-1} + 2^{\sqrt{5}} \alpha_{-} (1+\xi)^{2\alpha_{-}-1} - \alpha_{+} (1+\xi)^{2\alpha_{+}-1} + \alpha_{-} (1+\xi)^{\alpha_{+}+\alpha_{-}-1} + 2^{\sqrt{5}} \alpha_{+} (1+\xi)^{\alpha_{-}+\alpha_{+}-1} - 2^{\sqrt{5}} \alpha_{-} (1+\xi)^{2\alpha_{-}-1} \right] = -\frac{1}{p(\xi)} = -\frac{1}{(1+\xi)^{2}}$$

$$\alpha_{+} + \alpha_{-} - 1 = -2$$

$$\Rightarrow \lambda \left[-2^{\sqrt{5}}\alpha_{-} - \alpha_{+} + \alpha_{-} + 2^{\sqrt{5}}\alpha_{+} \right] = -1$$

 \rightarrow determina λ

Problema ai valori al contorno piu generale:

$$(pu')' + qu = -f, \quad \alpha < x < \beta, \quad u(\alpha) = a, u(\beta) = b(63)$$
 (2.63)

A tal fine: nota che $\frac{\partial G}{\partial \xi}(x\alpha)$ soddisfa

$$\begin{split} \frac{d}{dx} \left[p(x) \frac{d}{dx} \left(\frac{\partial G}{\partial \xi}(x, \alpha) \right) \right] + q(x) \frac{\partial G}{\partial \xi}(x, \alpha) &= 0, \quad \alpha < x < \beta \\ \frac{\partial G}{\partial \xi}(\alpha, \alpha) &= \frac{1}{p(\alpha)}, \quad \frac{\partial G}{\partial \xi}(\beta, \alpha) &= 0 \end{split}$$

mentre

$$\begin{split} \frac{d}{dx} \left[p(x) \frac{d}{dx} \left(\frac{\partial G}{\partial \xi}(x,\beta) \right) \right] + q(x) \frac{\partial G}{\partial \xi}(x,\beta) &= 0, \quad \alpha < x < \beta \\ \frac{\partial G}{\partial \xi}(\alpha,\beta) &= 0, \quad \frac{\partial G}{\partial \xi}(\beta,\beta) &= -\frac{1}{p(\beta)} \end{split}$$

(seguono dalla definizione (59) \rightarrow compito)

il problema (63) ha la soluzione

$$u(x) = \int_{\alpha}^{\beta} G(x,\xi)f(|xi)d\xi + ap(\alpha)\frac{\partial G}{\partial \xi}(x,\alpha) - bp(\beta)\frac{\partial G}{\partial \xi}(x,\beta)(64)$$
 (2.64)

combinazione lineare di soluzione particolare (l'integrale) e soluzione dell'omogenea (il resto).

Nella soluzione del problema (57) abbiamo dovuto assumere $D \neq 0$.

Caso D=0: le equazioni

$$c_1 v_1(\alpha) + c_2 v_2(\alpha) = 0$$

 $c_1 v_1(\beta) + c_2 v_2(\beta) = 0$

ammettono soluzione non banale $\Rightarrow v(x) = c_1v_1(x) + c_2v_2(x)$ soddisfa

$$(pv')' + qv = 0$$
, $\alpha < x < \beta$, $v(\alpha) = v(\beta) = 0$

Se u è una soluzione del problema (63), lo è anche u+cv, $\forall c$ costante. \Rightarrow il problema (63) non può avere soluzione unica. Inoltre:

moltiplica la (63) conn v e integra da α a β :

$$-\int_{0}^{\beta} f(x)v(x)dx = \int_{0}^{\beta} v(x)((pu')' + qu)dx$$

integro due volte per parti

$$= \left[vpu' - v'pu \right]_{\alpha}^{\beta} + \int_{\alpha}^{\beta} u \left[(pv')' + qvdx \right] = p(\alpha)v'(\alpha)a - p(\beta)v'(\beta)b$$

dove l'integranda è nulla. $v(pu')' \rightarrow -v'pu' \rightarrow (v'p)'u$

Se il problema (63) deve avere una soluzione, la funzione f e le due costanti a,b devono soddisfare

$$p(\alpha)v'(\alpha)a - p(\beta)v'(\beta)b = -\int_{\alpha}^{\beta} v(x)f(x)dx$$

altrimenti non ci può essere una soluzione del problema.

⇒ nel caso D=0, il problema (63) può avere nessuna soluzione o molte soluzioni, ma mai una sola soluzione. Problemi ai valori al contorno ancora piu generali:

$$(pu')' + qu = -f(x), \quad \alpha < x < \beta$$

 $-\mu_1 u'(\alpha) + \sigma_1 u(\alpha) = a, \quad (65)$
 $\mu_2 u'(\beta) + \sigma_2 u(\beta) = a$ (2.65)

(condizione al contorno di Robin).

La funzione di Green $G(x,\xi)$ si ricava come prima se

$$D := \left[-\mu_1 v_1'(\alpha) + \sigma_1 v_1(\alpha) \right] \cdot \left[\mu_2 v_2'(\beta) + \sigma_2 v_2(\beta) \right] - \left[-\mu_1 v_2'(\alpha) + \sigma_1 v_2(\alpha) \right] \cdot \left[\mu_2 v_1'(\beta) + \sigma_2 v_1(\beta) \right] \neq 0$$

(esercizio) $G(x,\xi)$ è la soluzione del problema

$$\frac{d}{dx}\left(p(x)\frac{dG}{dx}\right) + q(x)G = 0 \quad x \neq \xi$$

$$-\mu_1 \frac{dG}{dx}|_{x=\alpha} + \sigma_1 G|_{x=\alpha} = \mu_2 \frac{dG}{dx}|_{x=\beta} + \sigma_2 G|_{x=\beta} = 0(66)$$

$$G|_{x=\xi+0} = G|_{x=\xi-0} \frac{dG}{dx}|_{x=\xi+0} - \frac{dG}{dx}|_{x=\xi-0} = -\frac{1}{p(\xi)}$$
(2.66)

(paragona con le (62), qui le condizioni al contorno su G sono più generali). G soddisfa ancora $G(x,\xi)=G(\xi,x)$

-Soluzione di (65):

$$u(x) = \int_{\alpha}^{\beta} G(x,\xi)f(\xi)d\xi + \frac{p(\alpha)}{\mu_1}aG(x,\alpha) + \frac{p(\beta)}{\mu_2}bG(x,\beta)(67)$$
 (2.67)

$$(\mu_1, \mu_2 \neq 0)$$
 se $\mu_1 = 0$ sostituisci $\frac{1}{\mu_1} G(x, \alpha) con \frac{1}{\sigma_1} \frac{\partial G}{\partial \xi}(x, \alpha)$

se
$$\mu_2 = 0$$
 sostituisci $\frac{1}{\mu_2} G(x, \beta) con \frac{1}{\sigma_2} \frac{\partial G}{\partial \xi}(x, \alpha)$

(Siccome $D \neq 0$ non può essere $\mu_1 = \sigma_1 = 0$ oppure $\mu_2 = \sigma_2 = 0$)

Caso D=0: il problema (65) avrà nessuna soluzione o molte soluzione ed è quindi ben bosto se e solo se $D \neq 0$. In tal caso la soluzione è data dalla (67)

NB:

- i) In un problema ai valori al contorno, il valore di u in un dato punto dipende dai valori di f(x) nell'intero intervallo α, β). \rightarrow Comportamento simile a quello delle equazionni alle derivate parziali ellittiche (vedi piu tardi).
- ii) Se una soluzione particolare dell'equazione differenziale non omogenea può essere indovinata, non è necessario usare le funzioni di Green

2.3.1 Applicazione del formalismo imparato

Conduzione di calore in un intervallo con sorgente

$$\partial_t T = \chi \partial_x^2 T + S(x, t), \quad x \in [0, L], \quad t \ge 0$$

$$T(0, t) = T(L, t) = 0, \quad T(x, 0) = 0$$
(2.68)

Sviluppa T(x,t) in serie di Fourier

$$T(x,t) = \sum_{n=1}^{\infty} b_n(t) \sin \frac{n\pi x}{L} (69)$$
 (2.69)

con

$$b_n(t) = \frac{2}{L} \int_0^L T(x, t) \sin \frac{n\pi x}{L} dx(70), vedi(25)$$
 (2.70)

$$S(x,t) = \sum_{n=1}^{\infty} s_n(t) \sin \frac{n\pi x}{L} (71a)$$
 (2.71a)

$$s_n(t) = \frac{2}{L} \int_0^L S(x, t) \sin \frac{n\pi x}{L} dx$$
 (71b)

inserisco (69),(71a) nella (68)

 $b_n(t) = u'(t)$

$$\Rightarrow \partial_t b_n(t) = \chi \left(-\frac{n^2 \pi^2}{L^2} \right) b_n(t) + s_n(t)$$
 (2.72)

Questa si risolve facilmente col metodo di variazione delle costanti arbitrarie. Invece con la funzione di Green: Riscrivi la (72) nella forma

$$(p(t)u'(t))' = f(t)$$

con
$$p(t) = exp\left(\frac{\chi n^2 \pi^2}{L^2}t\right), \quad u'(t) = b_n(t), \quad f(t) = p(t)s_n(t)$$

$$T(x,0) = 0 \Rightarrow b_n(t) = 0 \Rightarrow u'(t) = 0$$

u(t) è definita a meno di una costante additiva \rightarrow scegli $u(t) = 0 \rightarrow$ problema ai valori iniziali (55). La funzione di Green $R(t, \xi)$ dalla (56):

$$\frac{d}{dt}\left(p(t)\frac{dR}{dt}\right) = 0, \quad t > \xi$$

$$\Rightarrow p(t)\frac{dR}{dt} = C(\xi) \Rightarrow R = -C(\xi)\frac{L^2}{\chi n^2 \pi^2} \exp\left(-\frac{\chi n^2 \pi^2}{L^2}t\right) + \tilde{C}(\xi)$$

$$R|_{t=\xi} = -C(\xi)\frac{L^2}{\chi n^2 \pi^2} \exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right) + \tilde{C}(\xi) = 0$$

$$\tilde{C}(\xi) = C\frac{L^2}{\chi n^2 \pi^2} \exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right) = \gamma(\xi) \exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right)$$

$$\Rightarrow R(t, \xi) = \gamma(\xi) \left(\exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right) - \exp\left(-\frac{\chi n^2 \pi^2}{L^2}t\right)\right)$$

$$\frac{dR}{dt}\Big|_{t=\xi} = \gamma \frac{\chi n^2 \pi^2}{L^2} \exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right) = \frac{1}{p(\xi)} = \exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right)$$

$$\gamma = \frac{L^2}{\chi n^2 \pi^2} \Rightarrow \Rightarrow R(t, \xi) = \gamma(\xi) \left(\exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right) - \exp\left(-\frac{\chi n^2 \pi^2}{L^2}t\right)\right)$$

$$u(t) = (53) = \int_0^t \frac{L^2}{\chi n^2 \pi^2} \left(\exp\left(-\frac{\chi n^2 \pi^2}{L^2}\xi\right) - \exp\left(-\frac{\chi n^2 \pi^2}{L^2}t\right)\right) e^{\frac{\chi n^2 \pi^2}{L^2}\xi} s_n(\xi) d\xi$$

$$= \frac{L^2}{\chi n^2 \pi^2} \int_0^t \left(1 - \exp\left(-\frac{\chi n^2 \pi^2}{L^2}(t - \xi)\right)\right) \cdot s_n(\xi) d\xi \equiv \int_0^t H(t, \xi) d\xi$$

$$= u'(t)$$

$$\int_0^t H(t, \xi) d\xi = H(t, t) + \int_0^t \frac{\partial}{\partial t} H(t, \xi) d\xi = \frac{L^2}{\chi n^2 \pi^2} \int_0^t \frac{\chi n^2 \pi^2}{L^2} \exp\left(-\frac{\chi n^2 \pi^2}{L^2}(t - \xi)\right) s_n(t) d\xi$$

$$= \int_0^t \exp\left(-\frac{\chi n^2 \pi^2}{L^2}(t - \xi)\right) s_n(t) d\xi$$

Nella (69):

$$T(x,t) = \sum_{n=1}^{\infty} \int_0^t \exp\left(-\frac{\chi n^2 \pi^2}{L^2} (t-\xi)\right) s_n(t) d\xi \sin\frac{n\pi x}{L}$$

riscrivo $s_n(t)$ usando la (71b)

$$\Rightarrow T(x,t) = \int_0^t \int_0^L \sum_{n=1}^\infty \frac{2}{L} \exp\left(-\frac{\chi n^2 \pi^2}{L^2} (t-\xi)\right) \sin\frac{n\pi x}{L} \sin\frac{n\pi y}{L} S(y,\xi) dy d\xi$$

$$\Rightarrow T(x,t) = \int_0^t \int_0^L G(t-\xi,x,y) S(y,\xi) dy d\xi \tag{2.73}$$

$$G(t - \xi, x, y) := \frac{2}{L} \sum_{n=1}^{\infty} \frac{2}{L} \exp\left(-\frac{\chi n^2 \pi^2}{L^2} (t - \xi)\right) \sin\frac{n\pi x}{L} \sin\frac{n\pi y}{L}$$
(2.74)

è identica alla (22).

NB: se $T(x,0) = T_0(x)$ anziché 0, sostituisci $b_n(0) = 0$ con

$$b_n(0) = \frac{2}{L} \int_0^L T_0(x) \sin \frac{n\pi x}{L} dx$$

$$b_n(t) = \int_0^t \exp\left(-\frac{\chi n^2 \pi^2}{L^2} (t - \xi)\right) s_n(\xi) d\xi + \underbrace{b_n(0) \exp\left(-\frac{\chi n^2 \pi^2}{L^2} (t)\right)}_{}$$

Soluzione dell'equazione omogenea $b_n'(t) = -\frac{\chi n^2 \pi^2}{L^2} b_n(t)$

$$\Rightarrow T(x,t) = \sum_{n=1}^{\infty} \int_0^t \exp\left(-\frac{\chi n^2 \pi^2}{L^2} (t-\xi)\right) s_n(\xi) d\xi \sin\frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n(0) \exp\left(-\frac{\chi n^2 \pi^2}{L^2} t\right) \sin\frac{n\pi x}{L}$$

$$T(x,t) = \int_0^t \int_0^t G(t-\xi,x,y) S(y,\xi) dy d\xi + \int_0^L G(t,x,y) T_0(y) dy$$
(2.75)

-Abbiamo visto che la (74) coincide con la (22), ottenuta dalla (20). Questo vale in generale.: vogliamo risolvere

$$\partial_t T = \chi \Delta T + S(\bar{x}, t), \quad \bar{x} \in U$$

$$T(\bar{x}, t)|_{\bar{x} \in U} = 0$$
(2.76)

A tal fine: funzione di Green tale che

$$(\partial_t \chi \Delta_{\bar{x}}) G(t - t', \bar{x}, \bar{y}) = \delta(t - t') \delta(\bar{x} - \bar{y}) (77)$$
(2.77)

$$\Rightarrow T(\bar{x},t) = \int_{-\infty}^{\infty} dt' \int_{U} d^{d}\bar{y}G(t-t',\bar{x},\bar{y})S(\bar{y},t')(78)$$
(2.78)

Sviluppa G e δ secondo

$$G(t - t', \bar{x}, \bar{y}) = \frac{1}{2\pi} \int d\omega \sum_{n,m} e^{-i\omega(t - t')} \cdot \varphi_n(\bar{x}) \varphi_m(\bar{y}) \tilde{G}_{nm}(\omega)$$

$$\delta(t - t') \delta(\bar{x} - \bar{y}) = \frac{1}{2\pi} \int d\omega e^{-i\omega(t - t')} \sum_{n,m} \varphi_n \bar{x} \varphi_m(\bar{y}) \delta_{nm}$$

$$(2.79)$$

a causa del bordo l'integrale viene discretizzato.

 φ soddisfa $\Delta \varphi_n + \lambda_n \varphi_n = 0$ in U, $\varphi(\bar{x})|_{\bar{x} \in \partial U} = 0$ formano un sistema completo in U. Motro completezza

$$\sum_{n,m} \varphi_n(\bar{x}) \varphi_m(\bar{y}) \delta_n, m = \sum_n \varphi_n(\bar{x}) \varphi_n(\bar{y}) = \delta(\bar{x} - \bar{y})$$

sostituisco la (79)nella (77)

$$\frac{1}{2\pi} \int d\omega \sum_{n,m} (-i\omega + \chi \lambda_n) e^{-i\omega(t-t')} \cdot \varphi_n(\bar{x}) \varphi_m(\bar{y}) \tilde{G}_{n,m}(\omega) = \frac{1}{2\pi} \int d\omega \sum_{n,m} (-i\omega + \chi \lambda_n) e^{-i\omega(t-t')} \cdot \varphi_n(\bar{x}) \varphi_m(\bar{y}) \delta_{nm}(\omega)$$

$$\Rightarrow \tilde{G}_{nm}(\omega) = \frac{\delta_{nm}}{-i\omega + \chi \lambda_n}$$

Nella (79): \Rightarrow

$$G(\tau, \bar{x}, \bar{y}) = \frac{1}{2\pi} \int d\omega \sum_{n,m} e^{-i\omega\tau} \varphi_n(\bar{x}) \varphi_m(\bar{y}) \frac{\delta_{nm}}{-i\omega + \chi \lambda_n}$$

Considera $\int_{-\infty}^{\infty} d\omega \frac{e^{-i\omega\tau}}{-i\omega + \chi\lambda_n}$ Affermazione: titti gli autovalori λ_n sono positivi: Dimostrazione

$$0 = \int_{U} \varphi_{n} (\Delta \varphi_{n} + \lambda_{n} \varphi_{n}) d^{d} \bar{x} = \int_{U} \left[\bar{\nabla} \cdot (\varphi_{n} \bar{\nabla} \varphi_{n}) - \bar{\nabla} \varphi_{n} \cdot n \bar{a} b l a \varphi_{n} + \lambda_{n} \varphi_{n}^{2} \right] d^{d} \bar{x}$$

uso Gauss

$$= \int_{\partial U} \bar{n} (\varphi_n \bar{\nabla} \varphi_n) d^{d-1} \bar{x} + \int_{U} \left[-(\bar{\nabla} \varphi_n)^2 + \lambda_n \varphi_n^2 \right] d^d \bar{x}$$

il primo integrale è nullo per le condizioni al contorno, $\varphi_n|_{\partial U}=0$

$$\lambda_n = \frac{\int_U (\bar{\nabla}\varphi_n)^2 d^d \bar{x}}{\int_U \varphi_n^2 d^d \bar{x}} > 0, \quad q.e.d.$$

 \rightarrow polo nel semipiano inferiore:

$$e^{-i\omega\tau} = e^{-i(Re\omega + iIm\omega)\tau} = e^{-i\tau Re\omega}e^{\tau Im\omega}$$

Abbiamo gia dimostrato che il contributo del semicerchio è nullo (vedi)

$$\Rightarrow G(\tau, \bar{x}, \bar{y}) = 0, \quad \tau < 0(80) \tag{2.80}$$

 $\tau = t - t', \quad \tau < 0 \Rightarrow t < t' \rightarrow$ contributi solo dal passato nella convoluzione

$$\tau > 0: \int_{-\infty}^{\infty} d\omega \frac{e^{-i\omega t}}{-i(\omega + i\chi\lambda_n)} = -2\pi i \cdot i e^{-i(-i\chi\lambda_n)\tau} = 2\pi e^{-\chi\lambda_n\tau}$$

$$\Rightarrow G(\tau, \bar{x}, \bar{y}) = \sum_n e^{-\chi\lambda_n\tau} \varphi_n(\bar{x}) \varphi_n(\bar{y})(81) v(20)$$
(2.81)

 \Rightarrow L'equazione del calore $(\partial_t - \chi \Delta)T = S$ in U ha la soluzione

$$T(\bar{x},t) = \int_0^t dt' \int_U d^d \bar{y} G(t-t',\bar{x},\bar{y}) S(\bar{y},t') + \int_U d^d \bar{y} G(t,\bar{x},\bar{y}) T_0(\bar{y})(82)$$
 (2.82)

Soluzione particolare dell'equazione non omogenea (v.(78)), tenendo conto della (80) e di $S(\bar{y}, t') = 0$ per t' < 0 sommata a soluzone dell'equazione omogenea in modo tale che $T(\bar{x}, 0) = T_0(\bar{x})$

-Altro esempio: equazione di laplace (Poisson) nella palla di raggio R

$$\Delta \Phi = -F(r, \theta, \varphi) \quad r < R
\Phi(R, \theta, \varphi = 0$$
(2.83)

(Elettrostatica: $-F = 4\pi\rho$)

$$\Delta = \partial_r^2 + \frac{2}{r}\partial_r + \frac{1}{r^2\sin\theta}\partial_\theta(\sin\theta\partial_\theta) + \frac{1}{r^2\sin^2\theta}\partial_\varphi^2$$

Sviluppo di Φ , F in armoniche sferiche (reali, non complesse):

$$\Phi(r,\theta,\varphi) = \sum_{l=0}^{\infty} \left(\frac{1}{2} a_{l0}(r) P_l^0(\cos\theta) + \sum_{m=1}^{l} \left(a_{lm}(r) P_l^m(\cos\theta) \cos m\varphi + b_{lm}(r) P_l^m(\cos\theta) \sin m\varphi \right) \right)$$

$$F(r,\theta\varphi) = \sum_{l=0}^{\infty} \left(\frac{1}{2} A_{l0}(r) P_l^0(\cos\theta) + \sum_{m=1}^{l} \left(A_{lm}(r) P_l^m(\cos\theta) \cos m\varphi + B_{lm}(r) P_l^m(\cos\theta) \sin m\varphi \right) \right)$$
(2.84)

Sostituisco nella (83)

$$\sum_{l=0}^{\infty} \left(\frac{1}{2} a_{l0}''(r) P_l^0(\cos \theta) + \frac{2}{r} \frac{1}{2} a_{l0}'(r) P_l^0(\cos \theta) + \frac{1}{r^2} (-l)(l+1) \frac{a_{l0}(r)}{2} P_l^0(\cos \theta) \right) + \sum_{l=1}^{\infty} \sum_{m>0} \left(a_{lm}''(r) P_l^m(\cos \theta) \cos m\varphi + b_{ln}''(r) P_l^m(\cos \theta) \cos m\varphi + b_{ln}''(r) P_l^m(\cos \theta) \cos m\varphi \right)$$

$$= -\sum_{l=0}^{\infty} \frac{1}{2} A_{l0}(r) P_l^0(\cos \theta) - \sum_{l=0}^{\infty} \left(A_{lm}(r) P_l^m(\cos \theta) \cos m\varphi + B_{lm}(r) P_l^m(\cos \theta) \sin m\varphi \right)$$

(usato: $\frac{1}{\sin\theta}\partial_{\theta}(\sin\theta\partial_{\theta}(P_{l}^{m}(\cos\theta)\cos m\varphi) + \frac{1}{\sin^{2}\theta}\partial_{\varphi}^{2}(P_{l}^{m}(\cos\theta)\cos m\varphi) = -l(l+1)P_{l}^{m}(\cos\theta)\cos m\varphi$. Sfrutto il fatto che le armoniche sferiche $P_{l}^{m}(\cos\theta)\cos m\varphi$ e $P_{l}^{m}(\cos\theta)\sin m\varphi$ sono linearmente indipendenti

$$\Rightarrow a_{lm}''(r) + \frac{2}{r}a_{lm}'(r) - \frac{l(l+1)}{r^2}a_{lm}(r) = -A_{lm}(r)$$

$$b_{lm}''(r) + \frac{2}{r}b_{lm}'(r) - \frac{l(l+1)}{r^2}b_{lm}(r) = -B_{lm}(r)$$

$$a_{lm}(R) = b_{lm}(R) = 0$$
(2.85)

Entrambe le equazioni possono essere riscritte nella forma (pu')'+qu=-f, con $p=r^2$, q=-l(l+1), $f=A_{lm}(r)r^2$ oppure $B_{lm}(r)r^2$, $u=a_{lm}(r)$ oppure $b_{lm}(r)$. Funzione di Green $G(r,\xi)$. Soddisfa l'equazione omogenea $\frac{d}{dr}\left(r^2\frac{dG}{dr}\right)-l(l+1)G=0$. Prova $G(r,\xi)=C(\xi)r^{\alpha}$, $r\neq\xi$

$$r^{2} \frac{dG}{dr} = C\alpha r^{\alpha+1}$$

$$\implies C\alpha(\alpha+1)r^{\alpha} - l(l+1)Cr^{\alpha} = 0, \quad \alpha = l \lor \alpha = -l-1$$

$$G(r,\xi) = \begin{cases} c_{1}(\xi)r^{l} + c_{2}(\xi)r^{-l-1} & \xi \le r \\ \tilde{c}_{1}(\xi)r^{l} + \tilde{c}_{2}(\xi)r^{-l-1} & \xi \ge r \end{cases}$$

N.B. l'estremo r=0 dell'intervallo [0,R] è un punto singolare: $p(r) = r^2$ si annulla in r=0, e la soluzione fondamentale $\sim r^{-l-1}$ diverge. Al posto di una condizione al contorno inr=0 richiediamo che u (e G) rimangano limitate $\Longrightarrow \tilde{c}_2 = 0$

$$G|_{r=\xi+0} = G|_{r=\xi-0} \implies c_1 \xi^l + c_2 \xi^{-l-1} = \tilde{c}_1 \xi^l$$

$$\tilde{c}_1 0 c_1 + c_2 \xi^{-2l-1}$$

$$G|_{r=R} = 0 \Rightarrow c_1 R^l + c_2 R^{-l-1} = 0 \implies c_2 = -c_1 R^{2l+1} \implies \tilde{c}_1 = c_1 (1 - R^{2l+1} \xi^{-2l-1})$$

$$\Rightarrow G(r,\xi) = \begin{cases} c_1 r^l (1 - (\frac{R}{r})^{2l+1} & \xi \le r \\ c_1 r^l (1 - (\frac{R}{\xi})^{2l+1} & \xi \ge r \end{cases}$$

$$\frac{dG}{dr}|_{r=\xi+0} - \frac{dG}{dr}|_{r=\xi-0} = \frac{1}{p(\xi)}$$

$$c_1 = \frac{\xi^l}{(2l+1)R^{2l+1}}$$

$$G_{l}(r,\xi) = \begin{cases} \frac{1}{(2l+1)R} (\frac{\xi}{R})^{l} [\frac{r}{R})^{-l-1} - (\frac{r}{R})^{l}] & \xi \leq r \\ appunti \end{cases}$$
 (2.86)

Inversa della (84):

$$A_{lm}(r) = \frac{(2l+1)(l-m)!}{2\pi(l+m)!} \int_{-\pi}^{\pi} \int_{0}^{\pi} F(r,\theta,\varphi) P_{l}^{m}(\cos\theta) \cos m\varphi \sin\theta d\theta d\varphi$$

$$B_{lm}(r) = \frac{(2l+1)(l-m)!}{2\pi(l+m)!} \int_{-\pi}^{\pi} \int_{0}^{\pi} F(r,\theta,\varphi) P_{l}^{m}(\cos\theta) \cos m\varphi \sin\theta d\theta d\varphi$$
(2.87)

(usa ortogonalità delle armoniche sferiche).

Con la (87) e (88), la (84) diventa

$$\Phi(r,\theta,\varphi) = \int_{-\pi}^{\pi} \int_{0}^{\pi} \int_{0}^{R} G(r,\theta,\varphi,r',\theta',\varphi') F(r',\theta',\varphi') r'^{2} \sin\theta' dr' d\theta' d\varphi'(89)$$
(2.88)

dove, per r';r

$$G(r, \theta, \varphi, r', \theta', \varphi') = \sum_{l,m>0} \frac{(2l+1)(l-m)!}{2\pi(l+m)!} \frac{1}{(2l+1)R} \left(\frac{r'}{R}\right)^{l} \left[\left(\frac{r}{R}\right)^{-l-1} - \left(\frac{r}{R}\right)^{l}\right] P_L^m(\cos\theta) P_l^m(\cos\theta') (\cos m\varphi \cos m\varphi' \sin m\varphi') \left[\left(\frac{r'}{R}\right)^{-l-1} - \left(\frac{r'}{R}\right)^{l}\right] P_L^m(\cos\theta') \left[\left(\frac{r'}{R}\right)^{-l}\right] P_L^m(\cos\theta') P_$$

(per r'¿r : scambia r con r')

$$\sum_{m=1}^{l} \frac{(2l+1)(l-m)!}{2\pi(l+m)!} P_l^m(\cos\theta) P_l^m(\cos\theta') \underbrace{(\cos m\varphi \cos m\varphi' + \sin m\varphi + \sin m\varphi')}_{l} + \frac{1}{2} \frac{2l+1}{2\pi} P_l^0(\cos\theta) P_l^0(\cos\theta')$$

$$\frac{1}{2} \left(e^{im(\varphi - \varphi')} + e^{-im(\varphi - \varphi')} \right)$$
$$Y_l^m(\theta, \varphi) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(\cos \theta) e^{im\varphi}$$

Riscrivo passando alle armoniche complesse

$$= \sum_{m=1}^{l} \left(Y_l^m(\theta, \varphi) Y_l^{m*}(\theta', \varphi') + Y_l^{m*}(\theta, \varphi) Y_l^m(\theta', \varphi') \right) + Y_l^0(\theta, \varphi) Y_l^{0*}(\theta', \varphi')$$

$$Y_l^{m*}(\theta, \varphi) = (-1)^m Y_l^{-m}(\theta, \varphi)$$

$$Y_l^m(\theta', \varphi') = (-1)^m Y_l^{-m*}(\theta', \varphi')$$

$$= \sum_{m=-l}^{l} Y_l^m(\theta, \varphi) Y_l^{m*}(\theta', \varphi') = \frac{2l+1}{4\pi} P_l(\cos \gamma)$$

con $\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\varphi - \varphi')$. Quindi

$$G(r, \theta, \varphi; r', \theta', \varphi') = \sum_{l=0}^{\infty} \frac{1}{(2l+1)R} (\frac{r'}{R})^{l} [(\frac{r}{R})^{-l-1} - (\frac{r}{R})^{l}] \frac{2l+1}{4\pi} P_{l}(\cos \gamma)$$

-funzione generatrice dei polinomi di Legendre:

$$\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n(90)$$
 (2.89)

$$G(r,\theta,\varphi;r',\theta',\varphi') = \frac{1}{4\pi r} \sum_{l=0}^{\infty} P_l(\cos\gamma) \left(\frac{r'}{r}\right)^l - \frac{1}{4\pi R} \sum_{l=0}^{\infty} P_l(\cos\gamma) \left(\frac{rr'}{R^2}\right)^l$$

$$(90) = \frac{1}{4\pi r} \frac{1}{\sqrt{1 - 2\frac{r'}{r}\cos\gamma + \frac{r'^2}{r^2}}} - \frac{1}{4\pi R} \frac{1}{\sqrt{1 - 2\frac{rr'}{R^2}\cos\gamma + \frac{r^2r'^2}{R^4}}}$$

$$= \frac{1}{4\pi} (r^2 + r'^2 - 2rr'\cos\gamma)^{-\frac{1}{2}} - \frac{1}{4\pi} (R^2 + \frac{r^2r'^2}{R^2} - 2rr'\cos\gamma)^{-\frac{1}{2}} (91)$$

$$(2.90)$$

è già simmetrica in $r, r' \to \text{stesso}$ risultato per r' > r. in coordinate cartesiane:

$$G(x, y, z, x', y', z') = \frac{1}{4\pi} \left\{ (x - x')^2 + (y - y')^2 + (z - z')^2 \right\}^{-\frac{1}{2}} - \frac{1}{4\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2 \right\}^{-\frac{1}{2}} - \frac{1}{2\pi} \frac{R}{r'} \left\{ (x - x' \frac{R^2}{r'^2})^2 + (y - y' \frac{R^2}{r'^2})^2 + (z - z' \frac{R^2}{r'^2})^2$$

usando

$$R^{2} + \frac{r^{2}r'^{2}}{R^{2}} - 2rr'\cos\gamma = \frac{r'^{2}}{R^{2}}\left(r^{2} + \frac{R^{4}}{r'^{2}} - \frac{2rR^{2}}{r'}\cos\gamma\right) = \frac{r'^{2}}{R^{2}}(\bar{r} - \bar{\rho})^{2}$$
$$\bar{\rho} := \frac{R^{2}}{r'^{2}}\bar{r}'$$

1 termine della (91'): carica puntiforme in \bar{r}' .

2 termine : carica immagine in $\bar{\rho}=\frac{R^2}{r'^2}\bar{r}'$ (che è fuori dalla palla)

2.4 Il kernel di Schroedinger

equazione di Schroedinger

$$i\hbar\partial_t\psi = \hat{H}\psi = (p.libera) = -\frac{\hbar^2}{2m}\Delta\psi$$

$$\Rightarrow -i\partial_t\psi = \frac{\hbar}{2m} = \chi\Delta\psi(92)$$
(2.92)

risulta dall'equazione del calore $\partial_t \psi = \chi \Delta \psi$ tramite la rotazione di Wick $t \to it \ (\Rightarrow \partial_t \to -i\partial_t)$ Supponiamo di essere in d dimensioni spaziali. Trasformata di fourier

$$\psi(\bar{x},t) = \frac{1}{(2\pi)^d} \int d^d \bar{k} e^{i\bar{k}\bar{x}} \tilde{\psi}(\bar{k},t)$$

$$(92) \Rightarrow -i\partial_t \tilde{\psi}(\bar{k},t) = \chi(-\bar{k}^2) \tilde{\psi}(\bar{k},t)$$

$$\Rightarrow \tilde{psi}(\bar{k},t) = e^{-i\chi\bar{k}t^2} \tilde{\psi}_0(\bar{k})$$

$$\tilde{psi}_0(\bar{k}) = \int d^d \bar{y} e^{-i\bar{k}\bar{y}} \psi_0(\bar{y})$$

$$\Rightarrow \psi(\bar{x},t) = \frac{1}{(2\pi)^d} \int d^d \bar{y} \psi_0(\bar{y}) \cdot \int d^d \bar{k} e^{i\bar{k}(\bar{x}-\bar{y})-i\chi\bar{k}^2t}$$

definisco $\bar{z} := \bar{x} - \bar{y}, \quad (2\pi)^d G(\bar{z}, t) := \int d^d \bar{k} e^{i\bar{k}(\bar{x} - \bar{y}) - i\chi \bar{k}^2 t}$

$$i\bar{k}\bar{z} - i\chi\bar{k}^2t = -i\chi t\left(\bar{k} - \frac{\bar{z}}{2\chi t}\right)^2 + \frac{i\bar{z}^2}{4\chi t}$$

 $Re(i\chi t) = 0 \Rightarrow \text{regolarizza } t \to t - i\epsilon, \ \epsilon > 0 \implies Re(i\chi(t - i\epsilon)) = \chi \epsilon > 0 \quad \checkmark$

$$\Rightarrow G(\bar{z},t) = \frac{1}{(2\pi)^d} \exp\left(\frac{i\bar{z}}{4\chi(t-i\epsilon)}\right) \cdot \int d^d\bar{k}e^{-i\chi(t-i\epsilon)} \left(\bar{k} - \frac{\bar{z}}{2\chi(t-i\epsilon)}\right)^2$$

$$= \frac{1}{(2\pi)^d} \exp\left(\frac{i\bar{z}^2}{4\chi(t-i\epsilon)}\right) \sqrt[d]{\frac{\pi}{i\chi(t-i\epsilon)}}$$

$$\to (\epsilon \to 0) \left(\frac{m}{2\pi i\hbar t}\right)^{\frac{d}{2}} \exp\left(-\frac{m\bar{z}^2}{2i\hbar t}\right) (93)$$
(2.93)

"Schroedinger Kernel" esiste per tutti i $t \in \mathbb{R}$. (l'equazione di Schroedinger è reversibile, quella del calore no)

$$-i\partial_t \psi = \chi \Delta \psi$$
$$(t \to -t) \Rightarrow i\partial_t \psi = \chi \Delta \psi$$
$$(\psi \to \psi^*) \Rightarrow i\partial_t \psi^* = \chi \Delta \psi^*$$
$$(c.contorno) \Rightarrow -i\partial_t \psi = \chi \Delta \psi$$

Commenti: i) $G(\bar{x} - \bar{y}, t)$ soddisfa l'equazione di Schroedinger $-\partial_t \psi = \chi \Delta_{\bar{x}} G$

ii) $\lim_{t\to 0} G(\bar{z},t) = \delta(\bar{z})$

Più in generale (non necessariamente particella libera): cerchiamo $G^R(\bar{x}, \bar{y}, t)t.c.$

$$\psi(\bar{x},t) = i \int d^d \bar{y} \psi_0(\bar{y}) G^R(\bar{x}, \bar{y}, t) (94)$$
(2.94)

 $G^R(\bar{x}, \bar{y}, t)$: funzione di Green ritardata, $G^R(\bar{x}, \bar{y}, t) = 0$ per tio. Rappresenta l'ampiezza di probabilità che la particella cada dal punto $(\bar{y}, t = 0)$ al punto (\bar{x}, t) .

 φ_n autofunzioni di H

$$\hat{H}\varphi_n = E_n\varphi_n(95) \tag{2.95}$$

$$\Rightarrow G^{R}(\bar{x}, \bar{y}, t) = -i \sum_{n} e^{-iE_{n}t/\hbar} \varphi_{n}(\bar{x}) \varphi_{n}^{*}(\bar{y}), \quad t \ge 0(96)$$

$$(2.96)$$

vedi le (20) e (81)

$$(94) \Rightarrow \psi(\bar{x}, t) = \int d^d \bar{y} \sum_n e^{-iE_n t/\hbar} \varphi_n(\bar{x}) \varphi_n^*(\bar{y}) \psi_0(\bar{y})$$

sooddisfa l'equazione di Schroedinger:

$$i\hbar\partial_t\psi(\bar{x},t) = \int d^d\bar{y} \sum_n i\hbar \frac{-iE_n t}{\hbar} e^{-iE_n t/\hbar} \varphi_n(\bar{x}) \varphi_n^*(\bar{y}) \psi_0(\bar{y})$$

$$\hat{H}_{\bar{x}}\psi(\bar{x},t) = \int d^d\bar{y} \sum_n e^{-iE_n t/\hbar} \underbrace{\hat{H}_{\bar{x}}\varphi_n(\bar{x})}_n \varphi_n^*(\bar{y}) \psi_0(\bar{y})$$

$$E_n\varphi_n(x)$$

Inoltre: $\psi(\bar{x},0) = \int d^d \bar{y} \underbrace{\sum_n \varphi_n(\bar{x}) \varphi_n^*(\bar{y})}_n \psi_0(\bar{y}) = \psi_0(\bar{x})$

$$\delta(\bar{x}-\bar{y})$$

Trasformata di Fourier:

$$\tilde{G}^R(\bar{x},\bar{y},E) = \int_{-\infty}^{\infty} dt e^{iEt/\hbar} G^R(\bar{x},\bar{y},t) = \int_{0}^{\infty} dt e^{iEt/\hbar} G^R(\bar{x},\bar{y},t) = (96) = -i \sum_{n} \int_{0}^{\infty} dt e^{i(E-E_n)t/\hbar} \varphi_n(\bar{x}) \varphi_n^*(\bar{y})$$

l'ultimo integrale non è ben definito se $E \in \mathbb{R} \to \text{regolarizza tramite } E \to E + i\epsilon, \quad \epsilon > 0$

$$\Rightarrow \tilde{G}^{R}(\bar{x}, \bar{y}, E) = \sum_{n} \frac{\varphi_{n}(\bar{x})\varphi_{n}^{*}(\bar{y})}{E + i\epsilon - E_{n}} (97)$$
(2.97)

Abbiamo

$$(E + i\epsilon - \hat{H}_{\bar{x}})\tilde{G}(\bar{x}, \bar{y}, E) = \sum_{n} \frac{(E + i\varepsilon - \hat{H}_{\bar{x}})\varphi_n(\bar{x})\varphi_n^*(\bar{y})}{E + i\varepsilon - E_n} = \sum_{n} \varphi_n(\bar{x})\varphi_n^*(\bar{y}) = \delta(\bar{x} - \bar{y})$$
(2.98)

Funzione di Green avanzata:

$$G^A(\bar{x}, \bar{y}, t)$$

 $G^{A}(\bar{x}, \bar{y}, t) = 0$ per t¿0. Affinché la sua trasformata di fourier

$$\tilde{G}^{A}(\bar{x}, \bar{y}, E) = \int_{-\infty}^{0} dt e^{iEt/\hbar} G^{A}(\bar{x}, \bar{y}, t)$$

esista, dobbiamo sostituire $E \to E - i\varepsilon, \varepsilon > 0$

$$\tilde{G}^{A}(\bar{x}, \bar{y}, E) = \sum_{n} \frac{\varphi_{n}(\bar{x})\varphi_{n}^{*}(\bar{y})}{E - i\varepsilon - E_{n}}$$

Esercizio: calcolare G per l'oscillatore armonico.

$$\hat{H}\varphi_n = -\frac{\hbar^2}{2m}\varphi''(x) + \frac{1}{2}m\omega^2 x^2 \varphi_n(x) = E_n \varphi_n(x)$$

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right); \quad n = 0, 1, 2, \dots$$

$$\varphi_n(x) = \left(\sqrt{\pi}2^n n!\right)^{-\frac{1}{2}} \exp\left(-\frac{m\omega x^2}{2\hbar}\right) \cdot H_n\left(\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}} x\right)$$

polinomi di Hermite

Usa

$$(96) \Rightarrow -i\sum_{n=0}^{\infty} e^{-iE_n t/\hbar} \varphi_n(x) \varphi_n^*(y)$$

$$= -i\sum_{n=0}^{\infty} e^{-i\hbar\omega(n+1/2)} \frac{1}{\sqrt{\pi} 2^n n!} \exp\left(-\frac{m\omega}{2\hbar} (x^2 + y^2)\right) H_n\left(\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}} x\right) H_n\left(\left(\frac{m\omega}{\hbar}\right)^{\frac{1}{2}} y\right)$$

$$\sum_{n=0}^{\infty} \frac{H_n(x) H_n(y)}{n!} \left(\frac{u}{2}\right)^n = \frac{1}{\sqrt{1-u^2}} \exp\left\{\frac{2u}{1+u} xy - \frac{u^2}{1-u^2} (x-y)^2\right\} (99)$$

$$(u = e^{-i\omega t}) \Rightarrow -i\sum_{n=0}^{\infty} e^{-iE_n t/\hbar} \varphi_n(x) \varphi_n^*(y) =$$

$$-ie^{-i\omega t/2}\pi^{-\frac{1}{2}}\exp\left\{-\frac{m\omega}{2\hbar}(x^2+y^2)\right\}\frac{1}{\sqrt{1-e^{-2i\omega t}}}\exp\left\{\frac{2e^{-i\omega t}}{1+e^{-i\omega t}}\frac{m\omega}{\hbar}xy - \frac{e^{-2i\omega t}}{1-e^{-2i\omega t}}\frac{m\omega}{\hbar}(x-y)^2\right\}$$

$$= -\sqrt{\frac{i}{2\pi\sin\omega t}}\exp\left\{\frac{i\omega t}{\hbar}\left[\frac{x^2+y^2}{2}\cot\omega t - xy\csc\omega t\right]\right\}(100)$$
(2.100)

"Mehler Kernel"

2.5 L'equazione dei telegrafisti

equazioni di Maxwell in materia, sistema CGS:

$$div\bar{D} = 4\pi \rho_{macr.}(101a) \tag{2.101a}$$

$$rot\bar{H} = \frac{4\pi}{c}\bar{j}_{macr.} + \frac{1}{c}\frac{\partial\bar{D}}{\partial t}(101b)$$
 (2.101b)

$$div\bar{B} = 0(101c) \tag{2.101c}$$

$$rot\bar{E} = -\frac{1}{c}\frac{\partial \bar{B}}{\partial t}(101d) \tag{2.101d}$$

Legge di materiale (caso più semplice)

$$\bar{D} = \varepsilon \bar{E}\bar{B} = \mu \bar{H}(102) \tag{2.102}$$

legge di Ohm, σ rappresenta la conducibilità elettrica

$$\bar{j}_{macr} = \sigma \bar{E}(103) \tag{2.103}$$

$$(101b) \Rightarrow rotRot\bar{H}\frac{4\pi}{c}rot\bar{j}_macr + \frac{i}{c}\frac{\partial}{\partial t}rot\bar{D}$$

=0

$$(103), (101d), (101c) \Rightarrow \overbrace{graddiv\bar{H}} - \Delta \bar{H} = \frac{4\pi\sigma}{c} \underbrace{rot\bar{E}}_{} - \frac{\varepsilon}{c^2} \frac{\partial^2}{\partial t^2} \bar{B}$$

$$-\frac{1}{c}\frac{\partial}{\partial t}\bar{B}$$

$$\Rightarrow \Delta \bar{B} = \frac{4\pi\sigma\mu}{c^2} \frac{\partial \bar{B}}{\partial t} + \frac{\epsilon\mu}{c^2} \frac{\partial^2 \bar{B}}{\partial t^2} (104a)$$
 (2.104a)

equazione dei telegrafisti

$$(101d) \Rightarrow rotrot\bar{E} = -\frac{1}{c}\frac{\partial}{\partial t}rot\bar{B} = -\frac{\mu}{c}\frac{\partial}{\partial t}rot\bar{H}$$

$$(101b) = -\frac{\mu}{c} \frac{\partial}{\partial t} \left(\frac{4\pi}{c} \sigma \bar{E} + \frac{\epsilon}{c} \frac{\partial}{\partial t} \bar{E} \right) = grad \underbrace{div\bar{E}}_{} - \Delta \bar{E}$$

=0 se $j_{macr}=0$

$$\Rightarrow \Delta \bar{E} = \frac{4\pi\sigma\mu}{c^2} \frac{\partial \bar{E}}{\partial t} + \frac{\varepsilon\mu}{c^2} \frac{\partial^2 \bar{E}}{\partial t^2} (104b)$$
 (2.104b)

è equivalente all'equazione delle onde, con l'aggiunta del termine dissipativo.

Casi limite: $\sigma = 0$ equazione delle onde. $\epsilon = 0$: equazione del calore con $\chi = \frac{c^2}{4\pi\sigma\mu}$

Esercizio: risolvere l'equazione dei telegrafisti $\Delta u = a\partial_t u + b\partial_t^2 u$ (a,b costanti positive) nell'intervallo $0 \le x \le L$, $t \ge 0$, con u(0,t) = u(L,t) = 0, u(x,0) = 0, $\frac{\partial u}{\partial t}(x,0) = g(x)$ Soluzione: serie di Fourier

$$u(x,t) = \sum_{n=1}^{\infty} u_n(t) \sin \frac{n\pi x}{L}$$

con

$$u_n(t) = \frac{2}{L} \int_0^L u(x,t) \sin \frac{n\pi x}{L} dx \Rightarrow -\frac{n^2 \pi^2}{L^2} u_n(t) = a u_n'(t) + b u_n''(t)$$

ansatz $u_n(t) = \alpha e^{\lambda_n t}$

$$\Rightarrow -\frac{n^2\pi^2}{L^2} = a\lambda_n + b\lambda_n^2$$

$$\Rightarrow \lambda_n = -\frac{a}{2b} \pm \sqrt{\frac{a^2}{4b^2} - \frac{n^2\pi^2}{L^2b}} \equiv \lambda_n^{\pm}$$

$$\Rightarrow \text{comportamento oscillatorio se } \frac{n^2\pi^2}{L^2b} > \frac{a^2}{L^2b}$$

 \rightarrow comportamento oscillatorio se $\frac{n^2\pi^2}{L^2} > \frac{a^2}{4\hbar}$

$$u_n(t) = \alpha_n^+ e^{\lambda_n^+ t} + \alpha_n^- e^{\lambda_n^- t}$$
$$u(x,0) = 0 \Rightarrow u_n(0) = 0 \Rightarrow \alpha_n^- = \alpha_n^+$$

$$u(x,0) = 0 \Rightarrow u_n(0) = 0 \Rightarrow \alpha_n = \alpha_n$$
$$\Rightarrow u(x,t) = \sum_{n=0}^{\infty} \alpha_n^+ (e^{\lambda_n^+ t} - e^{\lambda_n^- t}) \sin \frac{n\pi x}{L}$$

$$\frac{\partial u(x,t)}{\partial t} = \sum_{n=1}^{\infty} \left(\lambda_n^+ e^{\lambda_n^+ t} - \lambda_n^- e^{\lambda_n^- t} \right) \sin \frac{n\pi x}{L}$$

$$\left. \frac{\partial u(x,t)}{\partial t} \right|_{t=0} = \sum_{n=1}^{\infty} \alpha_n^+ (\lambda_n^+ - \lambda_n^-) \sin \frac{n\pi x}{L} =: g(x) = \sum_{n=1}^{\infty} g_n \sin \frac{n\pi x}{L}$$

$$\alpha_n^+ = \frac{g_n}{\lambda_n^+ - \lambda_n^-} = \frac{g_n}{2\sqrt{\frac{a^2}{4b^2} - \frac{n^2\pi^2}{L^2b}}} = \frac{1}{2\sqrt{\frac{a^2}{4b^2} - \frac{n^2\pi^2}{L^2b}}} \frac{2}{L} \int_0^L g(x') \sin\frac{n\pi x'}{L} dx'$$

e quindi

$$u(x,t) = \frac{1}{L} \int_0^L dx' \sum_{n=1}^{\infty} \frac{e^{\lambda_n^+ t} - e^{\lambda_n^- t}}{\sqrt{\frac{a^2}{4b^2} - \frac{n^2 \pi^2}{L^2 b}}} \sin \frac{n\pi x'}{L} \sin \frac{n\pi x}{L} g(x') = \int_0^L G(x, x', t) g(x') dx'$$

con la funzione di Green

$$G(x, x', t) = \frac{1}{L} \sum_{n=1}^{\infty} \frac{e^{\lambda_n^+ t} - e^{\lambda_n^- t}}{\sqrt{\frac{a^2}{4b^2} - \frac{n^2 \pi^2}{L^2 b}}} \sin \frac{n\pi x'}{L} \sin \frac{n\pi x}{L}$$

N.B. se esiste n_0 tale che

$$\lambda_{n_0}^+ = \lambda_{n_0}^-$$

cioè

$$\sqrt{\frac{a^2}{4b^2} - \frac{n^2\pi^2}{L^2b}} = 0$$

scrivi

$$\sqrt{\frac{a^2}{4b^2} - \frac{n^2 \pi^2}{L^2 b}} = \frac{e^{\left(-\frac{a}{2b} + \sqrt{\cdots}\right)t} - e^{\left(-\frac{a}{2b} - \sqrt{\cdots}\right)t}}{\sqrt{\cdots}}$$

$$\frac{e^{-\frac{at}{2b}} 2 \sinh(\sqrt{\cdots t})}{\sqrt{\cdots}} \xrightarrow{\sqrt{\cdots \to 0}} \frac{e^{-\frac{at}{2b}} 2 \sqrt{\cdots t}}{\sqrt{\cdots}} = 2te^{-\frac{at}{2b}}$$

Capitolo 3

Classificazione delle equazioni differenziali alle derivate parziali lineari del 2 ordine

per semplicità ci limitiamo alle equazioni in 2 variabili,

$$a_{11}(x,y)u_{xx} + 2a_{12}(x,y)u_{xy}a_{22}(x,y)u_{yy} + b_1(x,y)u_x + b_2(x,y)u_y + c(x,y)u = d(x,y)(105)$$
(3.1)

La classificazione è basata sulla sola parte contenente le derivate seconde, $a_{11}u_{xx} + 2a_{12}(x, y)u_{xy}a_{22}(x, y)u_{yy}$, detta parte principale dell'equazione.

<u>Definizione</u>: Sia $\delta(x,y) = a_{12}^2 - a_{11}a_{22}$, il <u>discriminante</u> della parte principale

Se $\delta > 0$ l'equazione (105) si dice iperbolica

Se $\delta = 0$ l'equazione (105) si dice parabolica

Se $\delta < 0$ l'equazione (105) si dice ellittica

<u>N.B.</u> la definizione si estende anche alle equazioni <u>quasilinearli</u> (nelle quali i coefficienti a_{ij} possono dipendere anche da u, u_x, u_y) se si riesce a stabilire il segno di δ .

Esempio: superfici minime

Considera superficie in \mathbb{R}^3 definita da $z = u(x, y), x, y \in \Omega \subset \mathbb{R}^2$

$$\mathbb{R}^3 \ni \bar{x} = \begin{pmatrix} x \\ y \\ u(x, y) \end{pmatrix}$$

vettori tangenti:

$$\partial_x \bar{x} = \begin{pmatrix} 1 \\ 0 \\ u_x \end{pmatrix}, \quad \partial_y \bar{y} = \begin{pmatrix} 0 \\ 1 \\ u_y \end{pmatrix}$$

vettore normale

$$\bar{N} = \partial_x \bar{x} \times \partial_y \bar{y} = \begin{vmatrix} e_x & e_y & e_z \\ 1 & 0 & u_x \\ 0 & 1 & u_y \end{vmatrix} = e_z - u_x e_x - u_y e_y = \begin{pmatrix} -u_x \\ -u_y \\ 1 \end{pmatrix}$$

Elemento di superficie:

$$dA = |\bar{N}| dxdy = \sqrt{u_x^2 u_y^2 + 1} dxdy$$

 \Rightarrow area della superficie:

$$A = \int_{\Omega} \sqrt{1 + (\nabla u)^2} dx dy \equiv \int_{\Omega} \mathcal{L} dx dy (106)$$
(3.2)

Superfici minime: $\delta A = 0$ Equazione di Eulero-Lagrange:

$$\partial_i \frac{\mathcal{L}}{\partial \partial_i u} - \frac{\partial \mathcal{L}}{u} = 0(107) \tag{3.3}$$

(somma su i da 1 a 2 sottintesa)

$$\partial_i = \frac{\partial}{\partial_i}$$
 $i = 1, 2$ $x_1 = x, \quad x_2 = y$

[paragona con $\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{u}} - \frac{\partial \mathcal{L}}{\partial u} = 0$]

$$(107) \Rightarrow \partial_i \left(\frac{\partial_i u}{\sqrt{1 + (\nabla u)^2}} \right) = 0$$

$$\frac{\partial \mathcal{L}}{\partial \partial_i u} = \frac{1}{2} (1 + (\nabla u)^2)^{-\frac{1}{2}} 2\partial_i u = \frac{\partial_i u}{\sqrt{(1 + (\nabla u)^2)}}, \qquad \frac{\partial \mathcal{L}}{\partial u} = 0$$

oppure

$$\nabla \cdot \left(\frac{\partial_i u}{\sqrt{1 + (\nabla u)^2}}\right) = 0(108) \tag{3.4}$$

"equazione delle superfici minime"

(Senza usare la (107):

$$\delta \mathcal{L} = \delta \sqrt{1 + (\nabla u)^2} = \frac{1}{2} \left(1 + (\nabla u)^2 \right)^{-\frac{1}{2}} 2\nabla u \underbrace{\delta \nabla u}_{\nabla \delta u} \xrightarrow{\text{int. parti}}_{\delta u \mid \text{bordo}} - \delta u \nabla \left(\frac{\nabla u}{\sqrt{1 + (\nabla u)^2}} \right) \stackrel{!}{=} 0$$

$$(108) \Leftrightarrow \partial_i \left(\frac{\partial_i u}{\sqrt{1 + (\nabla u)^2}} \right) = 0 \Rightarrow \frac{\partial_i \partial_i u}{\sqrt{1 + (\nabla u)^2}} + \partial_i u \left(-\frac{1}{2} \right) (1 + (\nabla u)^2)^{-\frac{3}{2}} \cdot \underbrace{\partial_i (\nabla u)^2}_{\partial_i (\partial_j u \partial_j u)} = 0$$

$$\partial_i (\partial_j u \partial_j u) = 2(\partial_i \partial_j u) \partial_j u$$

$$\Rightarrow (1 + \underbrace{(\nabla u)^2}_{(\partial_x u)^2 + (\partial_y u)^2}) \underbrace{\Delta u}_{\partial_x^2 u + \partial_y^2 u} = -\partial_x u \partial_x u \partial_x^2 u - \partial_x u \partial_y u \partial_x \partial_y u - \partial_y u \partial_x u \partial_y \partial_x u - \partial_y u \partial_y u \partial_y^2 u = 0$$

$$\Rightarrow u_{xx} + u_{yy} + u_x^2 u_{yy} + u_y^2 u_{xx} - 2u_x u_y u_{xy} = 0$$

$$\Rightarrow (1 + u_y^2) u_{xx} + (1 + u_x^2) u_{yy} - 2u_x u_y u_{xy} = 0(108')$$

$$a_{11} = 1 + u_y^2, \quad a_{22} = 1 + u_x^2, \quad a_{12} = -u_x u_y$$

$$\delta = a_{12}^2 - a_{11} a_{22} = u_x^2 u_y^2 - (1 + u_x^2 u_y^2 + u_x^2 u_y^2) = -(1 + (\nabla u)^2) < 0$$

 \Rightarrow equazione ellittica

def.
$$A := \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, det A = -\delta$$

iperbolica ($\delta > 0$): det A < 0, 2 autovalori di segno opposto

parabolica ($\delta = 0$): 1 autovalore =0

ellittica ($\delta < 0$): 2 autovalori di segno uguale

 \dot{E} il parallelismo col comportamento della forma quadratica generata da A a suggerire la medesima denominazione delle coniche.

Esempi:

Equazioni ellittiche: laplace, Poisson (parte principale Δu)

Equazioni paraboliche: equazione del calore $\partial_t u = \chi \Delta u$ nel caso di 2 variabili: $\partial_t u = \chi \partial_x^2 u \Rightarrow a_{11} = \chi$, $a_{12} = 0 = a_{22}$

Iperboliche: equazione delle onde e dei telegrafisti (quest'ultima per $\epsilon \neq 0$, altrimenti è parabolica), equazione di Klein-Gordon.

3.1 Il problema di Cauchy

La classificazione ha una prima motivazione nel problema di Cauchy: trovare una funzione $u \in C^2$ che soddisfi la (105) e i dati di Cauchy, ossia:

$$u|_{\gamma} = \Phi|_{\gamma}, \quad \frac{\partial u}{\partial n}|_{\gamma} = \Psi|_{\gamma} (109)$$
 (3.6)

dove Φ , Ψ sono funzioni assegnate e γ è una data urva regolare con normale \bar{n} , $\frac{\partial n}{\partial n} = \bar{n} \cdot \bar{\nabla} u$. Possibile modo di tentare di risolvere il problema: supporre che le a_{ij} , la γ e i dati Φ , Ψ siano analitici e

- i) di calcolare tutte le derivate di u su γ
- ii) di dimostrare che lo sviluppo di Taylor di u è convergente in un intorno di γ .

Se il procedimento ha successo si è costruita una soluzione analitica.

Questo è l'obiettivo del teorema di Cauchy - Kowalevski: se i coefficienti a_{ij} , b_i , c, d sono analitici in un dominio D, se $\gamma \subset D$ è analitica e i dati di Cauchy Φ , Ψ sono analitici in D, il problema di cauchy (105) con dati iniziali (109) ammette una e una sola soluzione analitica in un opportuno intorno $I \subset D$ di γ , purché la normale \bar{n} a γ verifichi la condizione

$$\bar{n} \cdot A\bar{n} \neq 0(110). \tag{3.7}$$

(senza dim.)

 \rightarrow la (110) chiama in causa la classificazione. Il ruolo della (110) è quello di consentire il calcolo delle derivate seconde:

$$\bar{n} \equiv (\alpha, \beta)$$

Deriva tangenzialmente il primo dato di cauchy

$$\frac{\partial}{\partial \bar{\tau}} \equiv \bar{\tau} \cdot \bar{\nabla}, \qquad \bar{\tau} = (-\beta, \alpha), \qquad \frac{\partial u}{\partial \tau} \Big|_{\gamma} = \frac{\partial \Phi}{\partial \tau} \Big|_{\gamma}, \qquad \alpha^2 + \beta^2 = 1$$

$$\Rightarrow (-\beta u_x + \alpha u_y)|_{\gamma} = \frac{\partial \Phi}{\partial \tau} \Big|_{\gamma} (111)$$
(3.8)

Secondo dato di Cauchy:

$$(\alpha u_x + \beta u_y)|_{\gamma} = \Psi|_{\gamma}(112)$$

$$(111), (112) \underset{\alpha^2 + \beta^2 \neq 0}{\Longrightarrow}$$

$$(3.9)$$

$$u_x|_{\gamma} = p_0(s),$$
 (3.10)

$$u_y|_{\gamma} = q_0(s)(113) \tag{3.11}$$

dove p_0 , q_0 sono espresse tramite i dati e s è il parametro naturale su γ (lunghezza della curva). Deriva (113) lungo γ :

$$\bar{\tau} \cdot \bar{\nabla} u_x|_{\gamma} = p'_0(s)$$

$$\bar{\tau} \cdot \bar{\nabla} = \frac{d}{ds}$$

$$\bar{\tau} \cdot \bar{\nabla} u_y|_{\gamma} = q'_0(s),$$

$$\Leftrightarrow \begin{cases} (-\beta u_{xx} + \alpha u_{xy})|_{\gamma} = p'_0 \\ (-\beta u_{xy} + \alpha u_{yy})|_{\gamma} = q'_0 \end{cases}$$

Anche la parte principale nella (105) è esprimibile su γ in base ai dati, perchè tutti i termini rimanenti sono calcolabili:

$$(a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy})|_{\gamma} = r_0(s)$$

⇒ sistema di 3 equazioni lineare con determinante

$$\begin{vmatrix} a_{11} & 2a_{12} & a_{22} \\ -\beta & \alpha & 0 \\ 0 & -\beta & \alpha \end{vmatrix} = \bar{n} \cdot A\bar{n}(114)$$
(3.12)

 \Rightarrow la condizione (110) consente di calcolare le derivate seconde. Nello stesso modo di calcolano, sempre grazie alla (110), tutte le derivate successive.

Interpretazione geometrica della negazione della (110)?

$$\bar{n} \cdot A\bar{n} = a_{11}\alpha^2 + 2a_{12}\alpha\beta + a_{22}\beta^2 = 0(115)$$
(3.13)

Autovalori di A: $\underbrace{\lambda_1,\lambda_2}_{\in\mathbb{R}};$ con autovettori ortogonali $\bar{\Theta_1},\bar{\Theta_2}$ (A simmetrica).

$$\bar{n} =: \eta_1 \bar{\Theta}_1 + \eta_2 \bar{\Theta}_2 \Rightarrow \bar{n} \cdot A \bar{n} = \lambda_1 \eta_1^2 + \lambda_2 \eta_2^2$$

 \rightarrow nel caso ellittico, questo è sempre $\neq 0$.

Caso parabolico: $A\bar{n}=0$ per \bar{n} nell'autospazio corrispondente all'autovalore nullo.

Caso iperbolico:
$$\bar{n}\cdot A\bar{n}=0$$
 per $\frac{\eta_1}{\eta_2}=\pm\sqrt{\left|\frac{\lambda_1}{\lambda_2}\right|}\to 2$ campi vettoriali

$$\bar{w}_1 = \sqrt{|\lambda_2|}\bar{\Theta}_1 + \sqrt{|\lambda_1|}\bar{\Theta}_2, \qquad (\eta_2 = \sqrt{|\lambda_1|}, \eta_1 = \sqrt{|\lambda_2|})$$

$$\bar{w}_2 = \sqrt{|\lambda_2|}\bar{\Theta}_1 + \sqrt{|\lambda_1|}\bar{\Theta}_2, \qquad (\eta_2 = \sqrt{|\lambda_1|}, \eta_1 = -\sqrt{|\lambda_2|})$$

 \cdot curve \perp a questi campi:

$$\chi_{1,2}(x,y) = \cos t$$

$$\implies \bar{n} \propto \bar{\nabla} \chi \Rightarrow (\alpha, \beta) \propto (\chi_x, \chi_y)$$
 e quindi (115) \Rightarrow

$$a_{11}\chi_x^2 + 2a_{12}\chi_x\chi_y + a_{22}\chi_y^2 = 0(116)$$
(3.14)

Poni $\chi =: f(x) - y \Rightarrow \chi_x = f', \quad \chi_y = -1$

$$(116) \Rightarrow a_{11}f'^2 - 2a_{12}f' + a_{22} = 0(116')$$

equazione di 2 grado per f'.

nel caso parabolico ci si riduce ad una sola famiglia, nel caso ellittico non ci sono curve di questo genere. <u>Definizione</u>: le curve $\chi(x,y)$ =cost. soddisfacenti la (116) si chiamano <u>curve caratteristiche</u> dell'equazione (105)

Esempi:

i) equazione d'onda in 1+1 dimensioni

$$c^{2}u_{xx} - u_{tt} = 0,$$
 $a_{11} = c^{2},$ $a_{12} = 0,$ $a_{22} = -1$
$$(116') \Rightarrow c^{2}f'^{2} = 1 \implies f = \pm \frac{x}{c} + f_{0}$$
$$\chi = f(x) - t = \pm \frac{x}{c} + f_{0} - t \stackrel{!}{=} cost \Rightarrow x - x_{0} \pm c(t - t_{0}) = 0$$

ii) equazione del calore

$$\mathcal{H}u_{xx} - u_t = 0,$$
 $a_{11} = \mathcal{H},$ $a_{12} = a_{22} = 0$
$$(116') \Rightarrow \mathcal{H}f'^2 = 0 \Rightarrow f = cost =: f_0, \quad \chi = f_0 - t = cost \Rightarrow t = cost.$$
ho delle rette

-Cambiamento di coordinate: Sia $\xi=\xi(x,y),\ \eta=\eta(x,y)$ cambiamento di coordinate con determinante Jacobiano $\neq 0$.

$$v(\xi, \eta) := u(x, y)$$

Come si trasforma la parte principale della (105)?

$$u_{x} = v_{\xi}\xi_{x} + v_{\eta}\eta_{x}, \quad u_{y} = v_{\xi}\xi_{y} + v_{\eta}\eta_{y}$$

$$u_{xx} = v_{\xi\xi}\xi_{x}^{2} + 2v_{\xi\eta}\xi_{x}\eta_{x} + v_{\eta\eta}\eta_{x}^{2} + v_{x}i\eta_{xx} + v_{\eta}\eta_{xx}$$

$$u_{xy} = v_{\xi\xi}\xi_{x}\xi_{y} + 2v_{\xi\eta}(\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + v_{\eta\eta}\eta_{x}\eta_{y} + v_{\xi}\xi_{xy} + v_{\eta}\eta_{xy}$$

$$u_{yy} = v_{\xi\xi}\xi_{y}^{2} + 2v_{\xi\eta}\xi_{y}\eta_{y} + v_{\eta\eta}\eta_{y}^{2} + v_{\xi}\xi_{yy} + v_{\eta}\eta_{yy}$$

$$\frac{\partial}{\partial x} = \frac{\partial\xi}{\partial x}\frac{\partial}{\partial \xi} + \frac{\partial\eta}{\partial x}\frac{\partial}{\partial \eta}$$

$$\frac{\partial}{\partial y} = \frac{\partial\xi}{\partial y}\frac{\partial}{\partial \xi} + \frac{\partial\eta}{\partial y}\frac{\partial}{\partial \eta}$$

 \rightarrow la parte principale della (105) diventa $\tilde{a}_{11}v_{\xi\xi}+2\tilde{a}_{12}v_{\xi\eta}+\tilde{a}_{22}v_{\eta\eta},$ con

$$\tilde{a}_{11} = a_1 1 \xi_x^2 + 2a_{12} \xi_x \xi_y + a_{22} \xi_y^2 = \bar{\nabla} \xi \cdot A \bar{\nabla} \xi$$

$$\tilde{a}_{12} = a_1 1 \xi_x \eta_x + a_{12} (\xi_x \eta_y + \xi_y \eta_x) + a_{22} \xi_y \eta_y = \bar{\nabla} \eta \cdot A \bar{\nabla} \xi = \bar{\nabla} \xi \cdot A \bar{\nabla} \eta$$

$$\tilde{a}_{22} = a_1 1 \eta_x^2 + 2a_{12} \eta_x \eta_y + a_{22} \eta_y^2 = \bar{\nabla} \eta \cdot A \bar{\nabla} \eta$$

$$\implies \tilde{A} = JAJ^{-1}, \quad J = \text{Jacobiano}(117)$$

$$\implies \det \tilde{A} = \det A \underbrace{(\det J)^2}_{>0}$$

$$(3.15)$$

 \Rightarrow le trasformazioni invertibili di coordinate lasciano invariante il carattere dell'equazione.

Esempio: equazione d'onda $c^2u_{xx} - u_{tt} = 0$. Prendi $\xi = x - ct$, $\eta = x + ct$, ("coordinate di cono luce") poni $v(\xi,\eta) = u(x,y) \implies \tilde{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, e l'equazione diventa $v_{\xi\eta} = 0$. (\rightarrow soluzione generale: $v(\xi, \eta) = v_1(\xi) + v_2(\eta)$, con v_1, v_2 funzioni arbitrarie.

- riduzione alla forma canonica: forme canoniche:

ellittica $u_{xx} + u_{yy}$

parabolica $u_{xx}(-u_t)$

iperbolica (in alternativa u_{xt})

N.B. costanti come per esempio c^2 in $c^2u_{xx} - u_{tt}$ possno essere riassobite nella scala delle variabili.

Trasformazione di una parte principale generica nella forma canonica:

Caso iperbolico:

L'esempio sopra suggerisce di prendere le curve caratteristiche come nuove linee coordinate $\xi = \chi_1(x, y)$, $\chi_2(x,y)$

$$(117) \Rightarrow \tilde{A} \begin{pmatrix} a_{11}\chi_{1x}^2 + 2a_{12}\chi_{1x}\chi_{1y} + a_{22}\chi_{1y}^2 & a_{11}\chi_{1x}\chi_{2x} + a_{12}(\chi_{1x}\chi_{2y} + \chi_{1y}\chi_{2x}) + a_{22}\chi_{1y}\chi_{2y} \\ a_{11}\chi_{1x}\chi_{2x} + a_{12}(\chi_{1x}\chi_{2y} + \chi_{1y}\chi_{2x}) + a_{22}\chi_{1y}\chi_{2y} & a_{11}\chi_{2x}^2 + 2a_{12}\chi_{2x}\chi_{2y} + a_{22}\chi_{2y}^2 \end{pmatrix} = \begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix} \rightarrow \text{parte principale riconducibile alla forma canonica } u_{xy}$$

$$[\Rightarrow 2 * v_{\xi_n} + \dots = 0] : (2*) \Rightarrow \text{parte princ } v_{\xi_n}]$$

Caso parabolico:

prendi
$$\xi = x$$
, $\eta = \chi(x, y) \Rightarrow J = \begin{pmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \chi_x & \chi_y \end{pmatrix}$

N.B. $\det A=0 \Rightarrow$ se uno dei coefficienti a_{11}, a_{22} è sero lo è anche a_{12} $(a_{11}a_{22}-a_{12}^2=0)$. In tal caso siamo già nella forma canonica.

 \rightarrow supponiamo $a_{11}a_{22} > 0$ (non può essere < 0, perchè $a_{12}^2 = a_{11}a_{22}$).

Equazione delle caratteristiche (116):

$$a_{11}\chi_x^2 + 2\sqrt{a_{11}a_{22}}\chi_x\chi_y + a_{22}\chi_y^2 = 0$$

(se $a_{12} = -\sqrt{a_{11}a_{22}}$: manda y in -y).

Senza perdere la generalità:

 $a_{11} > 0$ (altrimenti moltiplica la (105) con -1) $\Rightarrow a_{22} > 0$. \rightarrow abbiamo $(\sqrt{a_{11}}\chi_x + \sqrt{a_{22}}\chi_y)^2 = 0$

$$\Rightarrow \chi_y = -\sqrt{\frac{a_{11}}{a_{22}}} \chi_x(118) \tag{3.16}$$

$$\tilde{A} = \begin{pmatrix} 1 & 0 \\ \chi_x & \chi_y \end{pmatrix} \begin{pmatrix} a_1 1 & \sqrt{a_{11} a_{22}} \\ \sqrt{a_{11} a_{22}} & a_2 2 \end{pmatrix} \begin{pmatrix} 1 & \chi_x \\ 0 & \chi_y \end{pmatrix}$$

$$=\begin{pmatrix} a_{11} & a_{11}\chi_x + \sqrt{a_{11}a_{22}}\chi_y \\ a_{11}\chi_x + \sqrt{a_{11}a_{22}}\chi_y & a_{11}\chi_x^2 + 2\sqrt{a_{11}a_{22}}\chi_x\chi_y + a_{22}\chi_y^2 \end{pmatrix} \stackrel{(118)}{=} \begin{pmatrix} a_{11} & 0 \\ 0 & 0 \end{pmatrix} \rightarrow \text{forma canonical}$$

<u>Caso ellittico</u>: il metodo seguito per le equazioni iperboliche e paraboliche non è applicabile (non disponiamo di curve caratteristiche) \rightarrow torna alla (117) e imponi direttamente $\tilde{a}_{12} = 0, \tilde{a}_{11} = \tilde{a}_{22}$

$$a_{11}\xi_x\eta_x + a_{12}(\xi_x\eta_y + \xi_y\eta_x) + a_{22}\xi_y\eta_y = 0(119)$$
(3.17)

$$a_{11}(\xi_x^2 - \eta_x^2) + 2a_{12}(\xi_x \xi_y - \eta_x \eta_y) + a_{22}(\xi_y^2 - \eta_y^2) = 0(119')$$
(3.18)

$$2i \cdot (119) + (119')$$
:

$$\implies a_{11}(\xi_x + i\eta_x)^2 + 2a_{12}(\xi_x + i\eta_x)(\xi_y + i\eta_y) + a_{22}(\xi_y + i\eta_y)^2 = 0(119'')$$
(3.19)

Si ha $a_{11}a_{22}>0$ nel caso ellittico (altrimenti $\delta=a_{12}^2-a_{11}a_{22}$ non può mai essere $\mathfrak{j}(0)$. \to la (119") è un'equazione di 2 grado non degenere per $\rho:=\frac{\xi_x+i\eta_x}{\xi_y+i\eta_y}$, con soluzioni $\rho_\pm=-(a_{12}+i\sqrt{|\delta|})/a_{11}$ Prendi per esempio ρ_\pm :

$$\Rightarrow a_{11}(\xi_x + i\eta_x) = -(a_{12} + i\sqrt{|\delta|})(\xi_y + i\eta_y)$$

e quindi

Commenti:

$$\xi_x = (a_{12}\eta_x + a_{22}\eta_y)/\sqrt{|\delta|}
\xi_y = -(a_{11}\eta_x + a_{12}\eta_y)/\sqrt{|\delta|}$$
(3.20)

"equazioni di Beltrami", caratterizzano le trasformazioni che conducono la parte principale ad un'espressione proporzionale all'operatore di Laplace. \grave{E} stato dimostrato (risultato non banale) che le (120) ammettono soluzioni nell'intera regione di ellitticità.

N.B. le (120) possono essere scritte nella forma

$$\frac{\partial w}{\partial \bar{z}} = \mu \frac{\partial w}{\partial z} (120') \tag{3.21}$$

con
$$z = x + iy$$
, $w == \xi + i\eta$, $\mu = \frac{a_{11} + ia_{12 - \sqrt{|\delta|}}}{-a_{11} + ia_{12 - \sqrt{|\delta|}}}$ (esercizio)

Commento: un'applicazione $w(z, \bar{z})$ che soddisfa la (120') viene chiamata mappa <u>quasiconforme</u> (Caso particolare $\mu = 0$: mappa conforme, w = w(z) funzione olomorfa).

3.2 La questione della buona posizione del problema di Cauchy

 $\underline{\text{Definizione}}\text{: un prblema al contorno per un equazione alle derivate parziali di sice }\underline{\text{ben posto secondo Hadamard}}$ se possiede una e una sola soluzione ed essa dipende in modo continuo dai dati.

- i) L'enunciato corretto di un problema al contorno contiente non solo l'equazione differenziale e i dati al contorno, ma anche la precisazione dello spazio funzionale in cui si cerca la soluzione. Questa scelta è in grado di influenzare ad esempio l'unicità.
- ii) Cosa si intende per dipendenza continua? \rightarrow richiede una metrica nello spazio delle soluzione e una metrica nello spazio dei dati

X: spazio delle soluzioni, con norma $\|\cdot\|_X$

Y: spazio dei dati, con norma $\|\cdot\|_{Y}$

 \rightarrow dipendenza continua significa:

Sia $\{\bar{\delta}_n\}$ successione di dati (ordinabili in un vettore) t.c. $\lim_{n\to\infty} \|\bar{\delta}_n - \bar{\delta}\|_Y = 0$, e sia $\{u_n\}$ successione di soluzioni, u: soluzione corrispondente al dato limite $\bar{\delta}$. Si ha dipendenza continua se $\lim_{n\to\infty} \|u_n - u\| = 0$. -Le curve caratteristiche di un'equazione differenziale hanno un ruolo critico nel problema di Cauchy, perchè limitano la scelta delle curve portanti i dati.

 \rightarrow equazioni ellittica avvantaggiate dall'assenza di curve caratteristiche? E' così per la questione dell'esistenza e unicità, ma non per la dipendenza continua (idem per le equazioni paraboliche).

N.B. dipendenza continua dai dati è proprietà irrinunciavile per un modello matematico sensato. Infatti i dati sono di solito sperimentali e ciò non deve essere causa di un comportamento imprevedibile della soluzione.

Inoltre: mancanza della dipendenza continua impedisce il calcolo numerico della soluzione, a causa della ripercussione incontrollabile degli errori di arrotondamento.

-La non buona posizione del problema di Cauchy per equazioni ellittiche e paraboliche è messa in luce dai seguenti esempi:

i)Successione di problemi di Cauchy

$$u_{xx}^{(n)} + u_{yy}^{(n)} = 0, \quad u_{x}^{(n)}(0, y) = 0, \quad u_{x}^{(n)}(0, y) = A_n \cos ny; n = 1, 2, \dots$$
$$\bar{n} \cdot \bar{\nabla} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix} = \partial_x$$

 \rightarrow unica soluzione: $u^{(n)}(x,y)=\frac{A_n}{2n}(e^{nx}-e^{-nx})\cos ny$ (si può trovare con un ansatz di separazione delle variabili, $u^{(n)}(x,y)=f(x)g(y)$ (\rightarrow esercizio!)). Prendi per esempio $A_n=e^{-\sqrt{n}}\Rightarrow n\to\infty$ -i dati di Cauchy tendono uniformemente a 0.

-per qualunque $x \neq 0$ le $u^{(n)}$ non solo non tendono a 0, ma non restano limitate. ii) Successione

$$u_{rr}^{(n)} - u_t^n = 0$$
, $u_t^{(n)}(0,t) = A_n \sin nt$, $u_r^{(n)}(0,t) = 0$; $n = 1, 2, ...$

 \rightarrow soluzione:

$$u^{(n)}(x,t) = \frac{1}{2}A_n \left(e^{\sqrt{\frac{n}{2}}x} \sin\left(nt + \sqrt{\frac{n}{2}x}\right) + e^{-\sqrt{\frac{n}{2}}x} \sin\left(nt - \sqrt{\frac{n}{2}x}\right) \right)$$

(esercizio!)

Prendi per esempio $A_n = n^{-k}, k > 0 \rightarrow$ stessa situazione dell'esempio i)

Problema: calcolare le derivate di ordine ¿2 nel problema di Cauchy (105),(109).

Soluzione: conosciamo su γ

$$u_{xx} := \omega_{2,0}(s), \quad u_{xy} := \omega_{1,1}(s), \quad u_{yy} = \omega_{0,2}(s)$$
$$\frac{d}{ds} = \bar{t} \cdot \bar{\nabla} = -\beta \partial_x + \alpha \partial_y$$
$$\bar{n} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \qquad \bar{t} = \begin{pmatrix} -\beta \\ \alpha \end{pmatrix}$$

Derivate tangenziali:ho 4 incognite

$$-\beta u_{xxx} + \alpha u_{xxy} = \omega'_{2,0}(s)
-\beta u_{xxy} + \alpha u_{xyy} = \omega'_{1,1}(s)(121)
-\beta u_{xyy} + \alpha u_{yyy} = \omega'_{0,2}(s)$$
(3.22)

Inoltre: deriva la (105) rispetto a x e otieni conto che termini del tipo $(a_{11,x}u_{xx})|_{\gamma}$ sono noti

$$\Rightarrow a_{11}u_{xxx} + 2a_{12}u_{xxy} + a_{22}u_{xyy} = r_0^{(3)}(s)(122.0)$$
(3.23)

oppure deriva rispeto a y

$$\Rightarrow a_{11}u_{xxy} + 2a_{12}u_{xyy} + a_{22}u_{yyy} = r_1^{(3)}(s)(122.1)$$
(3.24)

 $(|_{\gamma} \text{ sempre sottinteso}).$

Per (121),(122.0) abbiamo il determinante:

$$J_0^{(3)} = \begin{vmatrix} -\beta & \alpha & 0 & 0\\ 0 & -\beta & \alpha & 0\\ 0 & 0 & -\beta & \alpha\\ a_{11} & 2a_{12} & a_{22} & 0 \end{vmatrix} = a_{11}\alpha^3 + 2a_{12}\beta\alpha^2 + a_{22}\alpha\beta^2 = \alpha\bar{n} \cdot A\bar{n}$$

Per (121),(122.1) invece:

$$J_1^{(3)} = \begin{vmatrix} -\beta & \alpha & 0 & 0\\ 0 & -\beta & \alpha & 0\\ 0 & 0 & -\beta & \alpha\\ 0 & a_{11} & 2a_{12} & a_{22} \end{vmatrix} = a_{11}\beta\alpha^2 + 2a_{12}\alpha\beta^2 + a_{22}\beta^3 = \beta\bar{n} \cdot A\bar{n}$$

Siccome $\alpha^2 + \beta^2 = 1$, $\bar{n} \cdot A\bar{n} \neq 0$, non possono essere entrambi nulli.

Derivate di ordine > 3: supponiamo note su γ le derivate di grado minode nella forma $\partial_x^{n-i}\partial_y^i u = \omega_{n-i,i}(s)$, con $n \geq 3$, $i = 0, 1, \ldots, n$ $(\partial_x^0 = \partial_y^0 \equiv 1)$

Deriviamole tangenzialmente:

$$-\beta \partial_x^{n+1-i} \partial_y^i u + \alpha \partial_x^{n-i} \partial_y^{i+1} u = \omega'_{n-i,i}(s)$$
(123)

ho n+1 equazioni, n+2 incognite. Equazione mancante: applica alla (105) l'operatore $\partial_x^{n-1-k}\partial_y^k(k=0,\ldots,n-1)$ per far comparire le derivate (n+1)-esime:

$$\Rightarrow a_{11}\partial_x^{n+1-k}\partial_y^k u + 2a_{12}\partial_x^{n-k}\partial_y^{k+1}u + a_2 2\partial_x^{n-1-k}\partial_y^{k+2}u = r_k^{(n+1)}(s)(124)$$
(3.26)

 \rightarrow troviamo dei determinanti $J_k^{(n+1)}$, che hanno in comue le prime n+1 righe (corrispondenti alle (123))

mentre l'ultima riga (corrispondente a una delle (124)) ha la terna a_{11} , $2a_{12}$, a_{22} che occupa i rispettivi posti (k+1)-esimo, (k+2)-esimo, (k+3)-esimo.

Per:

$$k = 0: J_0^{(n+1)} = \alpha^{n-1}\bar{n} \cdot A\bar{n}$$

$$k = 1: J_1^{(n+1)} = \beta\alpha^{n-2}\bar{n} \cdot A\bar{n}$$

$$\vdots$$

$$k = n - 1: J_{n-1}^{(n+1)} = \beta^{n-1}\bar{n} \cdot A\bar{n}$$

Almeno uno tra $J_0^{(n+1)}$ e $J_{n-1}^{(n+1)}$ è diverso da zero.

3.3 Classificazione di equazioni differenziali di ordine superiore e in più variabili

Considera equazioni differenziali:

$$\sum_{|j| \le m} a_j D^j u = f \qquad \text{(in } \mathbb{R}^n\text{)(125)}$$
(3.27)

$$j = (j_1, \dots, j_n)$$
 multi-indice
 $|j| \equiv j_1 + \dots + j_n$ m ordine
 $D^j \equiv \left(\frac{\partial}{\partial x_1}\right)^{j_1} \dots \left(\frac{\partial}{\partial x_n}\right)^{j_n}$

parte principale:

$$\sum_{|j|=m} a_j D^j u(126) \tag{3.28}$$

Esempio m=3:

$$a_{300}(x,y,z)\frac{\partial^{3} u}{\partial x^{3}} + a_{020}(x,y,z)\frac{\partial^{2} u}{\partial y^{2}} + a_{201}(x,y,z)\frac{\partial^{3} u}{\partial x^{2}\partial z} + a_{001}(x,y,z)\frac{\partial u}{\partial x} = f(x,y,z)(*)$$

 \rightarrow parte principale:

$$a_{300}(x,y,z)\frac{\partial^3 u}{\partial x^3} + a_{201}(x,y,z)\frac{\partial^3 u}{\partial x^2 \partial z}$$

<u>Definizione</u>: una sottovarietà di dim n-1 ed equazione $S(x_1, ..., x_n) = 0$ viene chiamata <u>varietà caratteristica</u> dell'equazione differenziale a derivate parziali se soddisfa l'equazione differenziale del 1 ordine

$$\sum_{|j|=m} a_j p^j = 0, \qquad p^j = \left(\frac{\partial S}{\partial x_1}\right)^{j_1} \cdot \dots \cdot \left(\frac{\partial S}{\partial x_n}\right)^{j_n} = p_1^{j_1} \cdot \dots \cdot p_n^{j_n} (127) \tag{3.29}$$

Esempi:

i) per la (*):

$$\sum_{|j|=3} a_{j_1 j_2 j_3} \left(\frac{\partial S}{\partial x} \right)^{j_1} \left(\frac{\partial S}{\partial y} \right)^{j_2} \left(\frac{\partial S}{\partial z} \right)^{j_3} = 0$$

$$\Rightarrow a_{300} \left(\frac{\partial S}{\partial x}\right)^3 + a_{201} \left(\frac{\partial S}{\partial x}\right)^2 \left(\frac{\partial S}{\partial y}\right) = 0$$

ii) per la (105):

$$a_{20}(x,y)u_{xx} + a_{11}(x,y)u_{xy} + a_{02}u_{yy} + a_{10}(x,y)u_x + a_{01}(x,y)u_y + a_{00}(x,y)u = f(x,y)$$

(rinominato i coefficienti)

m=2

parte principale: $a_{20}u_{xx} + a_{11}u_{xy} + a_{02}u_{yy}$

varietà caratteristica:

$$a_{20} \left(\frac{\partial S}{\partial x}\right)^2 + a_{11} \frac{\partial S}{\partial y} + a_{02} \left(\frac{\partial S}{\partial y}\right)^2 = 0$$

è la (116) (con $\chi \to S|_{S(x,y)=0}$) <u>Problema di Cauchy</u>: trovare una soluzione C^m della (125), la quale, assieme alle sue derivate dell'ordine $\leq m-1$, assume dei valori fissati su una sottovarietà di dimensione n-1 ed equazione $S(x_1,\ldots,\bar{x}_n)=0$.

Esempio: $n = m = 2 \Rightarrow \dim S = 1 \rightarrow \text{curva sulla quale fissiamo u e la sua derivata prima.}$

Il problema viene semplificato dal seguente cambiamento di coordinate:

$$x'_1 = S(x_1, \dots, x_n), x'_j = x_j (j = 2, \dots, n)$$

$$\frac{\partial}{\partial x_i} = \frac{\partial x_1'}{\partial x_i} \frac{\partial}{\partial x_1'} + \sum_{i=2}^n \frac{\partial x_j'}{\partial x_i} \frac{\partial}{\partial x_j'} = p_i \frac{\partial}{\partial x_1'} + \sum_{i=2}^n \delta_{ij} \frac{\partial}{\partial x_j'}$$

 \Rightarrow la (125) diventa:

$$\sum_{|j| \leq m} a_{j} \left(\frac{\partial}{\partial x_{1}}\right)^{j_{1}} \left(\frac{\partial}{\partial x_{2}}\right)^{j_{2}} \cdot \dots \cdot \left(\frac{\partial}{\partial x_{n}}\right)^{j_{n}} u$$

$$\left(\frac{\partial}{\partial x_{1}}\right)^{j_{1}} \to p_{1} \frac{\partial}{\partial x'_{1}} + \sum_{j=2}^{n} \delta_{j1} \frac{\partial}{\partial x'_{j}} = p_{1} \frac{\partial}{\partial x'_{1}}$$

$$\left(\frac{\partial}{\partial x_{2}}\right)^{j_{2}} \to p_{2} \frac{\partial}{\partial x'_{1}} + \sum_{j=2}^{n} \delta_{j2} \frac{\partial}{\partial x'_{j}} = p_{2} \frac{\partial}{\partial x'_{1}} + \frac{\partial}{\partial x'_{2}}$$

$$\left(\frac{\partial}{\partial x_{n}}\right)^{j_{n}} \to$$

$$\Rightarrow \sum_{|j|=m} a_{j} p_{1}^{j_{1}} \cdot \dots \cdot p_{n}^{j_{n}} \left(\frac{\partial}{\partial x'_{1}}\right)^{j_{1}+\dots+j_{n}} + \sum_{|j| \leq m} b_{j} \left(\frac{\partial}{\partial x'_{1}}\right)^{j_{1}} \cdot \dots \cdot \left(\frac{\partial}{\partial x'_{n}}\right)^{j_{n}} u = f(128)$$

$$(3.30)$$

Per alleggerire la notazione sopprimo i primi ' in quello che segue. Dati di Cauchy per la (128):

$$\left. \frac{\partial^k u}{(\partial x_1)^k} \right|_{x_1 = 0} = \varphi_k(x_2, \dots, x_n), \qquad k = 0, \dots, m - 1(129)$$
(3.31)

Se le funzioni φ_k sono di classe C^{m-k} , determinano

$$D^{j}u(0, x_{2}, \dots, x_{n}) = \left(\left(\frac{\partial}{\partial x_{1}}\right)^{j_{1}} \dots \left(\frac{\partial}{\partial x_{n}}\right)^{j_{n}} u\right)(0, x_{2}, \dots, x_{n})(130)$$
(3.32)

per $|j| \le m$, $j_1 < m$ (deriva la (129) al massimo m-k volte).

Le (130), attraverso la (128), determinano $\frac{\partial^m u}{(\partial x_1)^m}(0, x_2, \dots, x_n)$ se $\sum_{|j|=m} a_j p^j \neq 0$, cioè se S non è una varietà caratteristica. Se S è una varietà caratteristica, la (128) valutata in $x_1 = 0$ dà una reatione fra i dati di Cauchy (129). Su una varietà caratteristica i dati di Cauchy possono essere prescritti indipendentemente! Teorema di Cauchy - Kowalevski:

La $\overline{(125)}$ con f e $\{a_j\}$ analitiche, e dati di Cauchy analitici su una varietà analitica S non caratteristica, ha una e una sola soluzione analitica in un intorno di S.

<u>Classificazione</u>: le proprietà di soluzioni di equazioni differenziali alle derivate parziali dipendono dalla natura delle variabili caratteristiche \rightarrow seguente classificazione:

-La (125) viene chiamata <u>ellittica</u> se l'equazione in (p_1, \ldots, p_n)

$$\sum_{|j|=m} a_j p^j = 0$$

non ammette soluzioni reali per $p \neq 0$

-La (125) è x^1 -iperbolica se l'equazione in p_1

$$\sum_{|j|=m} a_j p^j = 0$$

ha m radici reali distinte per ogni sistea di numero reali (p_1, \ldots, p_n) Esempi:

i) Equazione di Laplace $\Delta u = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} u = 0,$ m=2

$$\sum_{|j|=2} a_{j_1,\dots,j_n} p_1^{j_1} \cdot \dots \cdot p_n^{j_n} = 0$$

$$\Rightarrow p_1^2 + p_2^2 + \dots + p_n^2 = 0$$

$$\left[\Delta u = \underbrace{a_{20\dots 0}}^{1} \underbrace{\partial^2}_{\partial x_1^2} u + \underbrace{a_{020\dots 0}}_{1} \underbrace{\partial^2}_{\partial x_2^2} + \dots + \underbrace{a_{0\dots 02}}_{1} \underbrace{\partial^2}_{\partial x_n^2} + \underbrace{a_{20\dots 0}}_{1} p_1^2 p_2^0 \dots p_n^0 + \dots + \underbrace{a_{00\dots 02}}_{1} p_1^0 p_2^0 \dots p_n^2\right] \Rightarrow \text{ellittica}$$

ii) Equazione d'onda

$$\Delta u = \left(\frac{\partial^2}{\partial x_1^2} - \sum_{i=2}^n \frac{\partial^2}{\partial x_i^2}\right) u = 0, \qquad m = 2$$

$$\sum_{|j|=2} a_{j_1...j_n} p_1^{j_1} \cdot \dots \cdot p_n^{j_n} = 0$$

$$\Rightarrow p_1^2 - p_2^2 - \dots - p_n^2 = 0$$

 \Rightarrow 2 radici reali per $p_1,\,\forall (P_1,\ldots,p_n)\Rightarrow$ i
perbolica.

-La (125) è x^1 -parabolica se può essere scritta

$$\frac{\partial u}{\partial x_1} - \sum_{\substack{|j| \le m \\ j_1 = 0}} a_j D^j = f(131) \tag{3.33}$$

 $\operatorname{con} \ \textstyle \sum_{\substack{|j| \leq m \\ j_1 = 0}} a_j p^j > 0 \forall p \neq 0, \ \operatorname{cio\'e} \ \textstyle \sum_{\substack{|j| \leq m \\ j_1 = 0}} a_j D^j \ \text{\`e} \ \text{un operatore differenziale ellittico in} \ \mathbb{R}^{n-1}.$

Esempio: l'equazione del calore $\frac{\partial u}{\partial t} - \Delta u$ è t-parabolica.

-Le equazioni paraboliche rappresentano una classe importante di equazioni che non sono né ellittiche né iperboliche.

3.4 La formula di Green

Sia $U \subseteq \mathbb{R}^n$ insieme aperto limitato con bordo $C^1 \partial U$, u, φ funzioni C^2 in U.

$$\Rightarrow u\Delta\varphi = \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(u \frac{\partial \varphi}{\partial x_{i}} \right) - \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{i}}$$

$$\int_{U} u\Delta\varphi d^{n}x = \underbrace{\int_{U} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(u \frac{\partial \varphi}{\partial x_{i}} \right) d^{n}x}_{Gauss} - \int_{U} \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{i}} d^{n}x$$

$$\stackrel{Gauss}{=} \int_{\partial U} \sum_{i} u \frac{\partial \varphi}{\partial x_{i}} d^{n-1}S^{i}$$

 $\sum_{i} \frac{\partial}{\partial x_{i}} v_{i} = div\bar{v}$ posso applicare il teorema di Gauss al primo integrale.

$$\left| d^{n-1} \vec{S} \right|$$
 = elemento di "superficie" (n-1)-dim.

$$\stackrel{\varphi=u}{\Rightarrow} \int_{U} u \Delta u d^{n} x = \int_{\partial U} \sum_{i} u \frac{\partial u}{\partial x_{i}} d^{n-1} S^{i} - \int_{U} \sum_{i} \left(\frac{\partial u}{\partial x_{i}}\right)^{2} d^{n} x (132)$$

$$(3.34)$$

("integrale di energia"), e

$$\int_{U} (u\Delta\varphi - \varphi\Delta u) d^{n}x = \int_{\partial U} \sum_{i} \left(u\frac{\partial\varphi}{\partial x_{i}} - \varphi\frac{\partial u}{\partial x_{i}} \right) d^{n-1}S(133)$$
(3.35)

"formula di Green" (2 identità di Green)

 \Rightarrow teorema di unicità: l'equazione $\Delta u = f$ ha al massimo una soluzione in $C^2(U)$ che assume dei dati valori

su ∂U .

<u>Dimostrazione</u>: siano v_1 e v_2 soluzioni. Dimostreremo che $u=v_1-v_2=0$

$$\Delta u = \Delta v_1 - \Delta v_2 = f - f = 0, \qquad u|_{\partial U} = v_1|_{\partial U} - v_2|_{\partial U} = 0$$

$$(132) \Rightarrow \sum_i \int_U \left(\frac{\partial u}{\partial x_i}\right)^2 d^n x = 0$$

$$\Rightarrow \frac{\partial u}{\partial x_i} = 0 \text{ in } U$$

$$\Rightarrow u = \text{costante in } U$$

$$u|_{\partial U} = 0 \Rightarrow u = 0 \text{ in } U$$

La formula di Green (133) permette di ottenere un'espressione per $u(\bar{y}), \bar{y} \in U$, in termini di f $(=\Delta u)$ in U e di $u, \frac{\partial u}{\partial n}$ su ∂U :

Nella (133), poni
$$\varphi(\bar{x}) = -K_n |\bar{x} - \bar{y}|^{2-n}$$
, con $K_n := \frac{\Gamma(n/2)}{(n-2)2\pi^{n/2}}, n \neq 2$

 φ è C^{∞} nell'insieme aperto $\bar{x} \neq \bar{y}$. Per il dominio di integrazione prendiamo U_{ϵ} , uguale a U senza la palla $B_{\epsilon}(\bar{y})$ con raggio ϵ e centro \bar{y} :

$$(133) \Rightarrow \int_{U_{\epsilon}} (u\Delta\varphi - \varphi\Delta u) \, d^n x$$

 $\Delta \varphi = 0$ in U_{ϵ} (compite: verificare!). $\partial U_{\epsilon} = \partial U \cup \partial B_{\epsilon}$

$$\int_{\partial U_{\epsilon}} \sum_{i} \left(u \frac{\partial \varphi}{\partial x_{i}} - \varphi \frac{\partial u}{\partial x_{i}} \right) d^{n-1} S^{i}$$

$$\Rightarrow K_{n} \underbrace{\int_{U_{\epsilon}} |\bar{x} - \bar{y}|^{2-n} \underbrace{\Delta u}_{f} d^{n} x}_{\epsilon \to 0} \underbrace{\int_{U} |\bar{x} - \bar{y}|^{2-n} f d^{n} x}_{f}$$

$$= -K_{n} \int_{\partial U \cup \partial B_{\epsilon}} \sum_{i} \left(u \frac{\partial}{\partial x_{i}} |\bar{x} - \bar{y}|^{2-n} - |\bar{x} - \bar{y}|^{2-n} \frac{\partial u}{\partial x_{i}} \right) d^{n-1} S^{i} (134) \tag{3.36}$$

$$\frac{\partial}{\partial x_i} |\bar{x} - \bar{y}|^{2-n} = \frac{\partial}{\partial x_i} \left[(x_1 - y_1)^2 + \dots + (x_n - y_n)^2 \right]^{\frac{2-n}{2}} = \frac{2-n}{2} [\dots] 2(x_i - y_i) = (2-n)(x_i - y_i) |\bar{x} - \bar{y}|^{-n}$$

Integrale su ∂B_{ϵ} :

$$-K_n \int_{S_{\epsilon}} \sum_{i} \left(u(2-n) \underbrace{(x_i - y_i)}_{i} |\bar{x} - \bar{y}|^{-n} - |\bar{x} - \bar{y}|^{2-n} \frac{\partial u}{\partial x_i} \right) d^{n-1} S^i$$

con S_{ϵ}^{n-1} (n-1)-sfera con raggio ϵ (bordo di B_{ϵ}), $|\bar{x} - \bar{y}| = \epsilon$ per $\bar{x} \in \partial B_{\epsilon}$ vettore normale: $\bar{n} = \frac{\bar{x} - \bar{y}}{|\bar{x} - \bar{y}|}, |\bar{n}| = 1$ (punta verso l'esterno della palla)

 $d^{n-1}S^i = -n_i dV_{\epsilon}$. Il vettore normale deve puntare verso l'<u>esterno</u> di U_{ϵ} , che è l'interno della palla. dV_{ϵ} elemento di "superficie" su S_{ϵ}^{n-1}

 \Rightarrow integrale su $\partial B_{\epsilon} =$

$$= +K_n \int_{S_{\epsilon}^{n-1}} \sum_{i} \left(u(2-n) n_i \epsilon^{1-n} - \epsilon^{2-n} \frac{\partial u}{\partial x_i} \right) n_i \underbrace{dV_{\epsilon}}_{\epsilon^{n-1} dV_{\epsilon}}$$

dove dV_1 = elemento di volume sulla S_1^{n-1} (raggio 1)

$$\sum_{i(n_i)^2=1}^{\epsilon \to 0} +K_n u(\bar{y})(2-n) \int_{S_1^{n-1}} dV_1 = -u(\bar{y})(135)$$
(3.37)

con $\int_{S_1^{n-1}} dV_1$ = "superficie" della sfera (n-1)-dimensionale con raggio 1, $dV_1 = \frac{2\pi^n}{\Gamma(n/2)}$, volume $V_n(R)$

$$u(\bar{x})$$
 $\bar{x} \in \partial B_{\epsilon}$ $u(\bar{x}) \to u(\bar{y}) \text{ per } |\bar{x} - \bar{y}| = \epsilon$

Parentesi: volume della palla n-dim e area della S^{n-1}

$$B^{n}(R) = \{(x_{1}, \dots, x_{n}) \in \mathbb{R} | x_{1}^{2} + \dots + x_{n}^{2} \leq \mathbb{R}^{2} \}$$

$$S^{n-1}(R) = \{(x_{1}, \dots, \bar{x}_{n}) \in \mathbb{R}^{n} | x_{1} + \dots + x_{n}^{2} = R^{2} \}, \text{ area } A_{n-1}(R)$$

$$V_{n}(R) = \int \dots \int dx_{1} \dots dx_{n} = C_{n} R^{n} (136)$$

$$(3.38)$$

 C_n coefficienti da calcolare, R^n segue da analisi dimensionale Posso calcolare $V_n(R)$ sommando infiniti gusci sferici di spessore infinitesimo.

$$V_n(R) = \int_0^R A_{n-1}(r)dr(137)$$
(3.39)

$$\Rightarrow A_{n-1} = \frac{dV_n(R)}{dR} \stackrel{(136)}{=} nC_n R^{n-1}(138)$$
(3.40)

Uguagliando (136) e (137), e usando la (138)

$$\int \cdots \int_{\substack{x_1^2 + \dots + x_n^2 \le R \text{ in serrele in cartesians}}} = \underbrace{C_n \int_0^R r^{n-1} dr}_{\text{in sferiche (già integrato su angoli)}}$$
(3.41)

In n dimensioni:

$$dx_1 \cdots dx_n = r^{n-1} dr d\Omega_{n-1}(140)$$
 (3.42)

 $\Rightarrow d\Omega_{n-1}$ contiene la parte angolare.

n=2: $d\Omega = d\theta$; n=3: $d\Omega = \sin\theta d\theta d\varphi$, ecc... (potrei dare esplicitamente la n-1-esima variabile angolare) Confrontando (139) e (140)

$$\int \cdots \int d\Omega_{n-1} = nC_n(141) \tag{3.43}$$

Si può calcolare C_n senza introdurre esplicitamente le coordinate sferiche in n dimensioni \Rightarrow Trucco: considero $f(x_1, \dots, x_n) = \exp(-x_1^2 - \dots - x_n^2) = e^{-1^2}$. Integro f su \mathbb{R}^n , sia in cartesiane che in sferiche.

$$\underbrace{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-(x_1^2 + \dots + x_n^2)} dx_1 \dots dx_n}_{purd to} = \int_0^{\infty} r^{n-1} dr \int d\Omega_{n-1} e^{-r^2}$$

$$\Rightarrow \underbrace{\left(\int_{-\infty}^{\infty} e^{-x_1^2} dx_1\right)^n}_{\text{Gauss} = \sqrt{\pi}} = \underbrace{nC_n \int_{0}^{\infty} r^{n-1} e^{-r^2} dr}_{\text{esprimibile tramite } \Gamma \text{ di Eulero} \Rightarrow = \frac{1}{2} \Gamma\left(\frac{n}{2}\right)} \Rightarrow C_n = \frac{2\pi^{n/2}}{n\Gamma\left(\frac{n}{2}\right)}$$

$$\stackrel{(138)}{\Rightarrow} A_{n-1}(R) = \frac{2\pi^{n/2}}{\Gamma\left(\frac{n}{2}\right)} R^{n-1}(142) \tag{3.44}$$

$$V_n(R) = \frac{2\pi^{n/2}}{n\Gamma\left(\frac{n}{2}\right)}R^n(143) \tag{3.45}$$

Se
$$n = 2, A_1(R) = \underbrace{\frac{2\pi}{\Gamma(1)}}_{-1} R = 2\pi R$$
 (superficie sfera in \mathbb{R}^2);

Se
$$n=3, A_2(R)=\frac{2\pi^{3/2}}{\underbrace{\Gamma\left(\frac{3}{2}\right)}}R^2=4\pi R^2$$
 (superficie della sfera in \mathbb{R}^3)
$$\Gamma\left(\frac{3}{2}\right)=\Gamma\left(\frac{1}{2}+1\right)=\frac{1}{2}\Gamma\left(\frac{1}{2}\right)=\frac{1}{2}\sqrt{\pi}$$

Cosa divertente: $\lim_{n\to\infty} V_n(R) = 0 = \lim_{n\to\infty} A_{n-1}(R)$ cosa inaspettata (me li aspettavo divergenti) Torniamo alle identità di Green. Inserisco (135) in (134), e faccio il $\lim_{\epsilon\to 0} \Rightarrow$ ciò che resta della (134) è

$$K_n \int_U |\bar{x} - \bar{y}|^{2-n} f d^n x = -u(y) - K_n \int_{\partial U} \sum_i \left(u \frac{\partial}{\partial x_i} |\bar{x} - \bar{y}|^{2-n} - |\bar{x} - \bar{y}|^{2-n} \frac{\partial u}{\partial x_i} \right) n_i dV$$

dV è "l'elemento di volume" indotto su $\partial U \Rightarrow$ sarebbe in realtà una superficie in n-1 dimensioni

$$\Rightarrow u(y) = -K_n \int_U |\bar{x} - \bar{y}|^{2-n} f d^n x - K_n \int_{\partial U} \left(u \frac{\partial}{\partial n} |\bar{x} - \bar{y}|^{2-n} - |\bar{x} - \bar{y}|^{2-n} \frac{\partial u}{\partial n} \right) dV(144)$$
(3.46)

Formula generale del potenziale (III identità di Green)

 \Rightarrow importante in elettrostatica/dinamica, per esemio da soluzione dell'equazioni di Poisson (u sarebbe il potenziale elettricom integro sul dominio la densità di carica; $\frac{\partial u}{\partial u}$ sarebbe il campo elettrico). Questa formula ha alcune conseguenze: per esempio, sia φ di supporto compatto e $\bar{y}=0$. Sia ∂U fuori dal

Questa formula ha alcune conseguenze: per esempio, sia φ di supporto compatto e $\bar{y} = 0$. Sia ∂U fuori dal compatto in cui $\varphi \neq 0$ (integrale sul bordo non contribuirà) (144) ci dà:

$$\varphi(0) = -K_n \int |\bar{x}|^{2-n} \Delta \varphi d^n x = <\delta, \varphi> = \int \delta(\bar{x}) \varphi(\bar{x}) d^n x$$

Integro per parti due volte, non ho contributo di bordo perchè il supporto è compatto)

$$-K_n \int \varphi \Delta |\bar{x}|^{2-n} d^n x = \int \varphi(\bar{x}) \delta(\bar{x}) d^n x$$

devo quindi avere

$$\Delta(\underbrace{-K_n|\bar{x}|^{2-n}}_{\text{funzione di Green del }\Delta}) = \delta(\bar{x})(145)$$
(3.47)

Abbiamo concluso la parte sulle equazioni lineari! Adesso parleremo delle equazioni non lineari (importanti perchè il nostro mondo è altamente non lineare).

3.5 Equazioni differenziali non lineari

I metodo per risolverle: metodo delle caratteristiche (o Lagrange-Charpit). Considero equazioni quasi lineari del I ordine (dipendenza da U ma non dalla derivata)

$$a(x, y, u)u_x + b(x, y, u)u_y + c(x, y, u) = 0(146)$$
(3.48)

Suppongo di conoscere una soluzione u(x,y) e considero la curva (x(t),y(t)) che soddisfa

$$\frac{dx}{dt} = a(x(t), y(t), u(x(t), y(t)))
\frac{dy}{dt} = b(x(t), y(t), u(x(t), y(t)))$$
(3.49)

Lungo questa curva ho

$$\frac{d}{dt}u(x(t),y(t)) = u_x \frac{dx}{dt} + u_y \frac{dy}{dt} \stackrel{(147)}{=} au_x + bu_y \stackrel{(146)}{=} -c(148)$$
(3.50)

La curva (x(t), y(t)) è una curva caratteristica.

Dimostrazione: le curve caratteristiche sono date da

$$S(x,y) = 0, \quad a\frac{\partial S}{\partial x} + b\frac{\partial S}{\partial y} = 0(149)$$
 (3.51)

 \Rightarrow soddisfa (127): $\sum_{|j|=m} a_j p^j = 0$, con $p^j = \left(\frac{\partial S}{\partial x_1}\right)^{j_1} \cdots \left(\frac{\partial S}{\partial x_n}\right)^{j_n}$ (in questo caso $m=1, n=2, x_{1,2}=1$) (x,y). Lungo essa

$$S = 0 \Rightarrow dS = 0 \Rightarrow \frac{\partial S}{\partial x}\dot{x} + \frac{\partial S}{\partial y}\dot{y} = 0(150)$$
 (3.52)

Da (149), il vettore $(a,b) \perp \underbrace{(S_x,S_y)}_{\nabla S}$; d'altra parte, da (150) segue che anche $(\dot{x},\dot{y}) \perp \underbrace{(S_x,S_y)}_{\nabla S}$ e quindi

 $(a,b) \propto (\dot{x},\dot{y})$. Riparametrizzo la curva per assorbire il fattore di proporzionalità, cioè in modo che $(a,b) = (\dot{x},\dot{y}) \left(\text{N.B.} : \frac{dx}{dt} = \frac{dx}{dt'} \frac{dt'}{dt} \right)$ Le (147) sono soddisfatte.

Tutto ciò suggerisce un método per risolvere (146). Suppogo di avere una curva Γ data da $(x_0(\lambda), y_0(\lambda))$ su cui sono definiti dei calori iniziali $U = U_0(\lambda)$. Supponiamo che sulla curva valga

$$\det \begin{pmatrix} \frac{dx_0}{ds} & a \\ \frac{dy_0}{ds} & b \end{pmatrix} \neq 0(151) \tag{3.53}$$

cioè Γ non è caratteritica (altrimenti $\nabla S \propto (a, b)$ e potrei riparametrizzare come prima). $\forall s$, risolvo

$$\frac{dx}{dt} = a(x, y, u)$$

$$\frac{dy}{dt} = b(x, t, u) \quad (152)$$

$$\frac{du}{dt} = -c(x, y, u)$$
(3.54)

con condizioni iniziali

$$x(t = 0, s) = x_0(s)$$

$$y(t = 0, s) = y_0(s)(153)$$

$$u(t = 0, s) = u_0(s)$$
(3.55)

Dal parametro s dipende la soluzione (vedi esempio dopo). Ho espresso x, y, u in termini di t, s. (151) posso esprimere t,s in funzione di x,y in un intorno di Γ .

Controllo che questo metodo dia soluzioni di (146)

$$\frac{\partial}{\partial t}u(x(t,s),y(t,s)) = u_x \frac{\partial x}{\partial t} + u_y \frac{\partial y}{\partial t} \stackrel{(152)}{=} au_x + bu_y$$

d'altra parte

$$(152) \Rightarrow \frac{\partial}{\partial t} u(x(t,s), y(t,s)) = -c$$

 \Rightarrow soddisfatta (146).

Esempio per chiarire: $xu_x + (x+y)u_y = u+1$ (lineare). Come curva, uso $u(x,0) = x^2$. Quali sono le equazioni caratteristiche (!52)?

$$\Rightarrow \dot{x}(=a) = x; \quad \dot{y}(=b) = x + y; \quad \dot{u}(=-c) = u + 1$$

N.B.: ho trasformato in equazioni differenziali ordinarie, al prezzo di averne 3 al posto di 1. Curva iniziale può essere parametrizzzata nella forma $x_0(s) = s, y_0(s) = 0, u_0(s) = s^2$. Per vedere che la curva sia caratteristica calcolo

$$\begin{vmatrix} \frac{dx_0}{ds} & a \\ \frac{dy_0}{ds} & b \end{vmatrix} = \begin{vmatrix} 1 & x_0 \\ 0 & x_0 + y_0 \end{vmatrix} = x_0 + y_0 = x_0 \neq 0 \Rightarrow \text{ok}$$

Integrando l'equazione per x, ho $\dot{x}=x\Rightarrow x=Ce^t, x(t=0):=x_0=s\Rightarrow C=s\Rightarrow x=se^t.$ Poi ho $\dot{y}-y=x=se^t.$

La soluzione generale dell'equazione omogenea è $y=Ae^t$; per ricavare quella particolare della non omogenea, uso il metodo di variazione delle costanti: scrivo $y=A(t)e^t\Rightarrow \dot{y}=\dot{A}e^t+Ae^t:=y+se^t=Ae^t+se^t\Rightarrow \dot{A}=s\Rightarrow A=st$. La soluzione generale dell'equazione non omogenea diventa $y=ce^t+ste^t$.

impongo che $y(t=0,s)=y_0(s)=0 \Rightarrow c=0 \Rightarrow y=ste^t$. Infine risolvo $\dot{u}=u+1 \Rightarrow \frac{du}{u+1}=dt \Rightarrow ln(u+1)=t+\ln C \Rightarrow \exp(u+1)=Ce^t$ e impongo condizioni iniziali $u(t=0,s)=u_0(s)=s^2 \Rightarrow c-1=s^2 \Rightarrow u=(s^2+1)e^t-1$. Ora esprimo t,s in funzione di x,y: $y=ste^t=tx \Rightarrow t=y/x$ e quindi $s=xe^{-t}=xe^{-y/x}$. Sostituisco nell'espressione per u: $u(x,y)=x^2e^{-y/x}+e^{-y/x}-1$

Compito: generalizzare il metodo descritto sopra al problema

$$\sum_{i=1}^{n} a_i(\bar{x}, u) u_{x_i} + c(\bar{x}, u) = 0$$

con $\bar{x} = (x_1, \dots, x_n)$, e i dati iniziali sono dati nella forma $\bar{x} = \bar{x}_0(\bar{s}), u = u_0(\bar{s})$ con $\bar{s} = (s_1, \dots, s_{n-1})$. L'equazione per \bar{x} definisce un'ipersuperficie di dimensione n-1 in \mathbb{R}^n .

-Ora vorremmo generalizzare questa costruzione al problema non-quasilineare

$$F(x, y, u, p, q) = 0, \quad p = u_x, q = u_y(154)$$
 (3.56)

Assumiamo che F sia una funzione C^1 dei suoi argomenti. Sia u una funzione C^2 che risolve la (154). Vorremmo trovare un sistema caratteristico di equazioni differenziali ordinarie simile a (152).

A tal fine poniamo

$$\frac{dx}{dt} = \frac{\partial F}{\partial p} = F_p, \quad \frac{dy}{dt} = \frac{\partial F}{\partial q} = F_q(155)$$
(3.57)

(Applicando questo alla (146), cioé a a(x,y,u)p+b(x,y,u)q+c(x,y,u)=0, dà le (152).) equazione per u:

$$\frac{d}{dt}u(x(t), y(t)) = u_x \frac{dx}{dt} + u_y \frac{dy}{dt} = pF_p + qF_q(156)$$
(3.58)

(Applicando alla (146), questo da $\frac{d}{dt}u(x(t),y(t))=-c$, che è l'ultima delle (152).)

Vorremmo usare (155),(156) come sistema caratteristico.

problema: questo sistema (contrariamente alle (152)) non dipende solo da x,y,u, ma anche da u_x e u_y . \rightarrow servono delle equazioni per $p = u_x$ e $q = u_y$.

Si ha:

$$\frac{dp}{dt} = \frac{d}{dt}u_x = u_{xx}\frac{dx}{dt} + u_{xy}\frac{dy}{dt} = u_{xx}F_p + u_{xy}F_q(157)$$
(3.59)

deriva la $\underbrace{(154)}_{F(x,y,y,g)}$ rispetto a x:

$$\Rightarrow F_x + F_u u_x + F_n u_{xx} + F_n u_{xy} = 0(158) \tag{3.60}$$

Usando la (158), la (157) diventa

$$\frac{dp}{dt} = -F_x - pF_u(159) \tag{3.61}$$

In modo molto simile (compito!)

$$\frac{dq}{dt} = -F_y - qF_u(159') \tag{3.62}$$

→ abbiamo il seguente sistema chiuso di equazioni differenziali ordinarie:

$$\frac{dx}{dt} = F_p, \quad \frac{dy}{dt} = F_q, \quad \frac{du}{dt} = pF_p + qF_q,
\frac{dp}{dt} = -pF_u - F_x, \quad \frac{dq}{dt} = -qF_u - F_y$$
(3.63)

"Sistema di Lagrange-Charpit"

 \rightarrow seguente metodo per risolvere la (154):

Sia data una curva Γ non caratteristica $(x_0(s), y_0(s))$, assieme a dei valori $u = u_0(s)$ su Γ .

Contrariamente al caso quisilineare abbiamo bisogno di condizioni iniziali $p = p_0(s)$ e $q = q_0(s)$ per risolvere le (160). Le condizioni iniziali devono risolvere la (154):

$$F(x_0, y_0, u_0, p_0, q_0) = 0(161) (3.64)$$

Serve un'altra condizione per determinare p_0 , e q_0 . Per ottenerla, notiamo che la soluzione u(x,y) della (!54) soddisfa $\frac{d}{ds}u(x_0(s),y_0(s))=u_x\frac{dx_0}{ds}+u_y\frac{dy_s}{ds}\Rightarrow$ richiediamo che p_0,q_0 soddisfino anche

$$\frac{du_0}{ds} = p_0(s)\frac{dx_0}{ds} + q_0(s)\frac{dy_0}{ds}(162)$$
(3.65)

(161) e (162) forniscono le funzioni iniziali $p_0(S), q_0(s)$.

Richiediamo inoltre

$$\begin{vmatrix} x_0'(s) & F_p \\ y_0'(s) & F_q \end{vmatrix} \neq 0 \text{ su } \Gamma(163)$$
 (3.66)

(vedremo sotto a cosa serve)

Risolvi le (160) con condizioni iniziali date su Γ .

 \rightarrow produce le funzioni x(t,s), y(t,s), u(t,s), p(t,s), q(t,s)

Grazie alla (163) possiamo invertire x(t,s), y(t,s) per ottenere t(x,y), s(x,y) in un intorno di Γ . Sostituito in u(t,s) da una soluzione u(x,y).

Dimostriamo che questa ricetta fornisce infatti una soluzione della (154):

Dimostriamo prima che

$$G(t,s) \equiv F(x(t,s), y(t,s), u(t,s), p(t,s), q(t,s)) = 0$$

N.B. :
$$G(0, s) = 0$$
 a causa della (161)

$$F(x_0,y_0,u_0,p_0,q_0)=0$$

$$\frac{\partial G}{\partial t} = F_x \frac{\partial x}{\partial t} + F_y \frac{\partial y}{\partial t} + F_u \frac{\partial u}{\partial t} + F_p \frac{\partial p}{\partial t} + F_q \frac{\partial q}{\partial t}$$

$$\stackrel{(160)}{=} F_x F_p + F_y F_q + F_u (pF_p + qF_q) - F_p (F_x + pF_u) - F_q (F_y + qF_u) = 0$$

$$\Rightarrow G(t, s) = 0$$

Prossimo passo: dobbiamo dimostrare che

$$p(x,y) = \frac{\partial u(x,y)}{\partial x}, \quad q(x,y) = \frac{\partial u(x,y)}{\partial y}$$

A tal fine dimostriamo che

$$H(t,s) = \frac{\partial u}{\partial s} - p(t,s)\frac{\partial x}{\partial s} - q(t,s)\frac{\partial y}{\partial s} = 0(164)$$
(3.67)

(il motivo diventerà chiaro fra qualche istante...)

N.B.
$$H(0,s)=0$$
 per la
$$\underbrace{\frac{du_0}{ds}}_{=p_0(s)}\underbrace{\frac{dx_0}{ds}}_{+q_0(s)}\underbrace{\frac{dy_0}{ds}}$$

$$\frac{\partial H}{\partial t} = \frac{\partial^2 u}{\partial t \partial s} + \frac{\partial p}{\partial t} \frac{\partial x}{\partial s} - p \frac{\partial^2 x}{\partial t \partial s} + \frac{\partial q}{\partial t} \frac{\partial y}{\partial s} - q \frac{\partial^2 y}{\partial t \partial s}$$

$$\stackrel{(160)}{=} \frac{\partial}{\partial s} (pF_p + qF_q) + (F_x pF_u) \frac{\partial x}{\partial s} - p \frac{\partial}{\partial s} F_p + (F_y + qF_u) \frac{\partial y}{\partial s} - q \frac{\partial}{\partial s} F_q$$

$$= F_p \frac{\partial p}{\partial s} + F_q \frac{\partial q}{\partial s} + (F_x + pF_u) \frac{\partial x}{\partial s} + (F_y + qF_u) \frac{\partial y}{\partial s} (165)$$
(3.68)

Inoltre: $G(t,s) = 0 \forall (t,s)$

$$\Rightarrow \frac{\partial G}{\partial s} = F_x \frac{\partial x}{\partial s} + F_y \frac{\partial y}{\partial s} + F_u \frac{\partial u}{\partial s} + F_p \frac{\partial p}{\partial s} + F_q \frac{\partial q}{\partial s} = 0$$

Usando questa nella (165) otteniamo

$$\frac{\partial H}{\partial t} = -F_u \left(\frac{\partial u}{\partial s} - p \frac{\partial x}{\partial s} - q \frac{\partial y}{\partial s} \right) = -F_u H$$

La soluzione di questa equazione differenziale ordinaria con condizione iniziale H(0, s) = 0 è H(t, s) = 0 [Dimostrazione in appendice

$$\frac{\partial H}{\partial t} = -F_u \Rightarrow \frac{\partial}{\partial t} \ln H = -F_u$$

$$\Rightarrow \ln H(t) = -\int F_u(s, t) dt + \ln C$$

$$\Rightarrow H(t, s) = C \exp(-\int F_u dt)$$

$$=:h(t, s)$$

$$\Rightarrow H(0,s) = Ch(0,s) \stackrel{!}{=} 0 \Rightarrow C = 0 \Rightarrow H(t,s) = 0]$$

Dobbiamo ancora far vedere che H(t,s)=0 implica $p=u_x, q=u_y$. A tal fine nota che :

$$\frac{\partial u}{\partial t} \stackrel{(160)}{=} pF_p + qF_q \stackrel{(160)}{=} p\frac{\partial x}{\partial t} + q\frac{\partial y}{\partial t}$$

Questa, assieme alla (164) dimostra che

$$\begin{pmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial s} \end{pmatrix} = J \cdot \begin{pmatrix} p \\ q \end{pmatrix}$$

con

$$J = \begin{pmatrix} \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \end{pmatrix} (166) \tag{3.69}$$

Considerando u una funzione di x e , abbiamo

$$J\begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial s} \end{pmatrix} (167) \tag{3.70}$$

[p.e. prima riga: $\frac{\partial x}{\partial t} \frac{\partial u}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial t} \quad \checkmark$]

$$(166) = \begin{pmatrix} p \\ q \end{pmatrix} = \underbrace{J^{-1}}_{\text{è invertibile a causa della (163)}} \cdot \begin{pmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial s} \end{pmatrix} \stackrel{(167)}{=} \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} q.e.d.$$

N.B. eliminando il parammetro t dalle equazioni di Lagrange-Charpit (160) si ottiene

$$\frac{dx}{F_p} = \frac{dy}{F_q} = \frac{du}{pF_p + qF_q} = \frac{dp}{-F_x - pF_u} = \frac{dq}{-F_y - qF_u}$$
(168)

A volte le equazioni si vedono scritte in questa forma.

-Generalizzazione al caso di n variabili:

$$F(x_1, \dots, x_n, u, p_1, \dots, p_n) = 0(169)$$
(3.72)

(prima n=2, $p_1 = 1, p_2 = q, x_1 = x, x_2 = y$)

$$p_{i} = \frac{\partial u}{\partial x_{i}}$$

$$\Rightarrow \dot{x}_{i} = F_{p_{i}} \quad (170)$$

$$\dot{p}_{i} = -F_{x_{i}} - p_{i}F_{u}$$

$$\dot{u} = \sum_{i=1}^{n} p_{i}F_{p_{i}} \quad (3.73)$$

oppure

$$\frac{dx_i}{F_{p_i}} = -\frac{dp_i}{F_{x_i} + p_i F_u} = \frac{du}{\sum_{j=1}^n p_j F_{p_j}}$$

Se u è data su una superficie iniziale, $u=u_0(\bar{s})$, per $\bar{x}=\bar{x}_0(\bar{s})$ dove $\bar{s}=(S_1,\ldots,s_{n-1}), \bar{x}=(x_1,\ldots,x_n)$, le condizioni iniziali per $\bar{p} = (p_1, \dots, p_n)$ sono le soluzioni del sistema

$$F(\bar{x}_0(\bar{s}), u_0(\bar{s}), p_0(\bar{s}) = 0 \frac{\partial u_0(\bar{s})}{\partial s_j} = \sum_{k=1}^n p_{k,0}(\bar{s}) \frac{\partial x_{k,0}(\bar{s})}{\partial s_j}, \quad j = 1, \dots, n-1^{(170')}$$
(3.74)

che generalizzano le (161),(162).

Esempi per Lagrange-Charpit: i)
$$u=u_x^2-3u_y^2,\,u(x,0)=x^2$$

$$\Rightarrow F(x, y, u, p, q) = p^2 - 3q^2 - u, \qquad F_x = 0 = F_y, \quad F_p = 2p, \quad F_q = -6q, F_u - 1$$

Sia $x_0(s) = s \Rightarrow y_0(s) = 0, u_0(s) = s^2, p_0(s), q_0(s)$ sono soluzioni del sistema

$$p_0^2 - 3q_0^2 = u_0 = s^2(vedi(161))$$

$$\frac{du_0}{ds} = p_0 \frac{dx_0}{ds} + q_0 \frac{dy_0}{ds}(162)$$
(3.75)

$$\Rightarrow 2s = p_0$$
$$\Rightarrow 4s^2 - 3q_0^2 = s^2 \Rightarrow q_0 = \pm s$$

Prendiamo per esempio $q_0 = s$

(160):
$$\dot{x} = 2p, \dot{y} = -6q, \dot{u} = 2p^2 - 6q^2 = 2(p^2 - 3q^2) = 2u, \dot{p} = p, \dot{q} = q$$

$$\dot{u} = 2u \Rightarrow u = s^2 e^{2t}$$

$$\dot{p} = p \Rightarrow p = 2se^t$$

$$\dot{q} = q \Rightarrow q = se^t$$

Sostituisci nelle equazioni caratteristiche per x e y

$$\dot{x} = 2p = 4se^t \Rightarrow x = 4s(e^t - 1) + s$$

Simile:

$$y = -6s(e^t - 1)$$

Invertire:

ii)

Invertire:
$$e^{t} - 1 = -\frac{y}{6s} \Rightarrow x = 4s \left(-\frac{y}{6s}\right) + s = -\frac{2}{3}y + s \Rightarrow s = x + \frac{2}{3}y$$

$$e^{t} = 1 - \frac{y}{6s} = 1 - \frac{y}{6x + 4y}$$

$$\Rightarrow u = s^{2}e^{2t} = \left(x + \frac{2}{3}y\right)^{2} \left(1 - \frac{y}{6x + 4y}\right)^{2} = \left(x + \frac{y}{2}\right)^{2}$$
Se avessimo scelto $q_{0}(S) = -s$, avremmo ottenuto $u = \left(x - \frac{y}{2}\right)^{2}$
ii)
$$u_{x}^{2} - u_{y}^{2} = x^{2} + y^{2}, u(x, 0) = x \Rightarrow F = p^{2} - q^{2} - x^{2} + y$$

$$F_{p} = 2p, F_{q} = 2q, F_{x} = -2x, F_{y} = 1, F_{u} = 0$$

$$x_{0}(s) = s, y_{0}(s) = 0, u_{0}(s) = s, p_{0}^{2} - q_{0}^{2} = s^{2}$$

$$\frac{du_{0}}{ds} = p_{0}\frac{dx_{0}}{ds} + q_{0}\frac{dy_{0}}{ds} \Rightarrow 1 = p_{0}$$

$$\Rightarrow q_{0}^{2} = 1 - s^{2} \Rightarrow \text{ prendi per esempio } q_{0} = \sqrt{1 - s^{2}}$$

$$(160) : \dot{x} = 2p, \dot{y} = -2q, \dot{u} = 2p^{2} - 2q^{2}, \dot{p} = 2x, \dot{q} = -1$$

$$q = -t + \sqrt{1 - s^{2}}$$

$$\dot{y} = -2q = 2t - 2\sqrt{1 - s^{2}} \Rightarrow y = t^{2} - 2t\sqrt{1 - s^{2}}$$

$$\ddot{y} = 2\dot{x} = 4p \Rightarrow p = Ae^{2t} + Be^{-2t} \Rightarrow \dot{p} = 2Ae^{2t} - 2Be^{-2t} = 2x \Rightarrow x = Ae^{2t} - Be^{-2t}$$

$$p_{0} = A + B = 1, x_{0} = A - B = s \Rightarrow A = \frac{1 + s}{2}, B = \frac{1 - s}{2}$$

$$p = \frac{1 + s}{2}e^{2t} + \frac{1 - s}{2}e^{-2t}, x = \frac{1 + s}{2}e^{2t} - \frac{1 - s}{2}e^{-2t}$$

Invertire: \rightarrow sono equazioni trascendenti, è possilile dare la soluzione in forma parametrica, u = u(t, s), x =x(t,s), y = y(t,s).iii)

 $\dot{u} = 2(p^2 - q^2) = 2(x^2 - y) = \frac{(1+s)^2}{2}e^{4t} - (1-s)^2 + \frac{(1-s)^2}{2}e^{-4t} - 2t^2 + 4t\sqrt{1-s^2}$

 $\Rightarrow u = \frac{(1+s)^2}{2}e^{4t} - t(1-s^2) - \frac{(1-s)^2}{2}e^{-4t} - \frac{2}{2}t^3 + 2t^2\sqrt{1-s^2} + \frac{s}{2}$

$$u_x u_y = 1, u(x, 0) = \ln x \to esercizio$$

$$\left(soluzione : u(x, y) = -1 + \sqrt{1 + 4xy} + \ln\left(\frac{2x}{1 + \sqrt{1 + 4xy}}\right)\right)$$

iv) esempio di equazione senza parametro t

$$(168) \Rightarrow \frac{dx}{qxy} = \frac{dy}{pxy} = \frac{du}{2pqxy} = \frac{dp}{-pqy+p} = \frac{dq}{-pqx+q}$$

(non c'è una ricetta standard per risolvere questo tipo di equazioni) osservo che 2pqxy = 2u

$$\frac{dx}{qxy} = \frac{dp}{p(1 - qy)} \Rightarrow \frac{d\ln p}{d\ln x} = \frac{1}{qy} - 1(*)$$

$$\frac{dy}{pxy} = \frac{dq}{q(1 - px)} \Rightarrow \frac{s\ln q}{d\ln y} = \frac{1}{px} - 1(**)$$

$$\frac{dx}{dxy} = \frac{du}{2u} \stackrel{(*)}{\Rightarrow} \left(\frac{d\ln p}{d\ln x} + 1\right) d\ln x = \frac{du}{2u}$$

[conti espliciti

sx:
$$\frac{dx}{x} \cdot \frac{1}{qy} \stackrel{(*)}{=} \frac{dx}{x} \left(\frac{d \ln p}{d \ln x} + 1 \right) = d \ln x \left(\frac{d \ln p}{d \ln x} + 1 \right)$$

]

$$\Rightarrow d \ln p + d \ln x = \frac{1}{2} d \ln u \Rightarrow xpCu^{\frac{1}{2}}(***)$$

$$\frac{dy}{pxy} = \frac{du}{2u} \stackrel{(**)}{\Rightarrow} \left(\frac{d \ln q}{d \ln y} + 1\right) d \ln y = \frac{1}{2} d \ln u$$

$$\Rightarrow yq = \tilde{C}u^{\frac{1}{2}}(****)$$

$$pqxy = u \Rightarrow \tilde{C} = \frac{1}{C}$$

$$(***) \Rightarrow xu_x = Cu^{\frac{1}{2}} \overset{\text{separando variabili}}{\Rightarrow} \ln x = \frac{2}{C}\sqrt{u} - \ln f(y)$$

In modo analogo:

$$(****) \Rightarrow \ln y = 2C\sqrt{u} - \frac{\ln g(x)}{\text{"cost." di integrazione}}$$

$$\Rightarrow 2\sqrt{u} = C\ln(xf(y)) = \frac{1}{C}\ln(yg(x)) \Rightarrow C\ln x - \frac{1}{c}\ln g(x) = \underbrace{\frac{1}{C}\ln y - C\ln f(y)}_{\ln a}$$

$$\ln \frac{x^C}{g(x)^{1/C}} = \ln a, \ln \frac{y^{1/C}}{f(y)^C} = \ln a$$

$$g(x) = \frac{x^{C^2}}{a^C}, f(y) = \frac{y^{1/C^2}}{a^{1/C}}$$

$$\Rightarrow 2\sqrt{u} = \frac{1}{C}(\ln y + \ln g(x)) = \frac{1}{C}(\ln y + C^2 \ln x - C \ln a)$$

$$\Rightarrow u = \frac{1}{4}\left(C\ln x + \frac{1}{C}\ln y + b\right)^2$$

i dati iniziali sono contenuti nelle due costanti di integrazione.

Commento: equazioni di Hamilton-Jacobi

$$\frac{\partial S}{\partial x_1} + H(\underbrace{x_1, \dots, x_n}_{\text{coord. spaziali}}; \underbrace{\frac{\partial S}{\partial x_2}, \dots, \frac{\partial S}{\partial x_n}}_{\text{impulsi}}; x_1) = 0$$

S: funzione principale di Hamilton, corrisponde a $F = p_1 + H(x_1, x_2, \dots, x_n; p_2, \dots, p_n)$

$$\Rightarrow F_{p_1} = 1, F_{p_j} = \frac{\partial H}{\partial p_j} \quad (j = 2, \dots, n), F_{x_i} = \frac{\partial H}{\partial x_i} \quad (i = 1, \dots, n), F_u = 0 \quad (u \equiv S)$$

$$(170) \Rightarrow \dot{x_1} = 1, \dot{p_1} = -F_{x_1} - p_1 F_u = -\frac{\partial H}{\partial x_1}$$

$$\dot{x_j} = \frac{\partial H}{\partial p_j}, \quad j = 2, \dots, n$$

$$\dot{p_j} = -F_{x_j} - p_j F_u = -\frac{\partial H}{\partial x_j}, j = 2, \dots, n$$
equazioni canoniche di Hamilton

$$\dot{u} = \underbrace{p_1 F_{p_1}}_{-H} + \sum_{j=2}^{n} p_j \underbrace{F_{p_j}}_{\frac{\partial H}{\partial p_j} = \dot{x}_j}$$

$$\Rightarrow \dot{u} = -H + \sum_{j=2}^{n} p_j \dot{x}_j = L \quad \text{(Lagrangiana)}$$

$$\Rightarrow u = \int L dt \quad \text{azione}$$

3.6 L'esponenziale ordinato cronologicamente

- Vogliamo risolvere

$$i\hbar \frac{d}{dt}\psi = H\psi(171a) \tag{3.76}$$

(che include equazioni difficili matriciali del tipo

$$\dot{\bar{x}}(t) = At)\bar{x}(t)(171b) \tag{3.77}$$

con A matrice finito o infinito dimensionale

$$\psi(t) = U(t, t_0) \qquad \psi(t_0)(172)$$
operatore di evoluzione temporale (3.78)

$$\Rightarrow i\hbar \frac{d}{dt}\psi = i\hbar \frac{\partial}{\partial t}U(t, t_0)\psi(t_0) \stackrel{!}{=} H\psi = HU(t, t_0)\psi(t_0)$$

$$\Rightarrow i\hbar \frac{\partial}{\partial t}U(t, t_0) = HU(t, t_0)(173)$$
(3.79)

i) H non dipende esplicitamente dal tempo: Soluzione della (173):

$$U(t,t_0) = \exp\left(-\frac{i}{\hbar}(t-t_0)H\right)$$

ii) H dipende esplicitamente dal tempo ma [H(t), H(t')] = 0: (per esempio campo magnetico omogeneo $\bar{B} = B(t)\bar{e}_z$)

$$\Rightarrow U(t,t_0) = \exp\left(-\frac{i}{\hbar} \int_{t_0}^t dt' H(t')\right)$$

iii) H = H(t) e $[H(t), H(t')] \neq 0$ per $t \neq t'$: (caso piu interessante e piu realistico)

-Riscrivi la (173) come equazione integrale:

$$U(t,t_0) = I - \frac{i}{\hbar} \int_{t_0}^t dt' H(t') U(t',t_0) (174)$$
(3.80)

 $(\rightarrow \text{ condizione iniziale } U(t, t_0) = 1 \text{ già implementata}).$

Risolvi la (174) iterativamente:

Sostituisci il membro destro in se stesso:

$$\Rightarrow U(t, t_0) = \sum_{n=0}^{\infty} U^{(n)}(t, t_0)$$

$$U^{(n)}(t, t_0) = -\frac{i}{\hbar} \int dt' H(t') U^{(n-1)}(t', t_0) (175)$$

$$u^{(0)}(t, t_0) = I$$
(3.81)

 \rightarrow relazione di ricorrenz, risolta da

$$U^{(n)}(t,t_0) = \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n \cdot H(t_1)H(t_2) \cdots H(t_n)(176)$$
(3.82)

N.B. :1) i limiti superiori degli integrali sono tutti diversi

2) l'ordine delle H
 non è arbitrario. Abbiamo $t_n < t_{n-1} < \cdots < t_1 < t$ -Lo sviluppo

$$U(t,t_0) = 1 + \sum_{n=1}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n \cdot H(t_1) \cdots H(t_n)$$

si chiama serie di Dyson.

L'esponenziale ordinato cronologicamente è definito da

$$T \exp\left(-\frac{i}{\hbar} \int_{t_0}^t dt' H(t')\right) := 1 + \sum_{n=1}^{\infty} \left(-\frac{i}{\hbar}\right)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n \cdot H(t_1) \cdots H(t_n) = U(t, t_0) (178)$$
(3.83)

$$u_{xx} - u_t = 0,$$
 $u(0,t) = A_n \sin nt,$ $u_x(0,t) = 0$

Più in generale: poniamo u(0,t) = g(t)

Ansatz di separazione:

$$u(x,t) = v(x)w(t)$$

$$u_{xx} = v''(x)w(t), \quad u_t = v(x)w'(t)$$

$$u_{xx} = u_t \Rightarrow v''w = vw' \Rightarrow \frac{v''}{v} = \frac{w'}{w} = k \in C = cost.$$

$$v'' = kv \Rightarrow v(x) = Ae^{\sqrt{k}x} + Be^{-\sqrt{k}x}$$

$$w' = kw \Rightarrow w(t) = Ce^{kt}$$

$$\Rightarrow u_k(x,t) = e^{kt} \left(A_k e^{\sqrt{k}x} + B_k e^{-\sqrt{k}x} \right)$$

(senza perdere generalità ho posto C=1 assorbendolo in A e B) \Rightarrow soluzione generale: sovrapposizione delle $u_k(x,t)$

$$u(x,t) = \int_{k \in C} e^{kt} \left(A_k e^{\sqrt{k}x} + B_k e^{-\sqrt{k}x} \right)$$
$$\Rightarrow u_x(x,t) = \int_{k \in C} e^{kt} \sqrt{k} \left(A_k e^{\sqrt{k}x} - B_k e^{-\sqrt{k}x} \right)$$

 $= 0 \text{ in } x = 0 \text{ se } A_k = B_k$

$$\Rightarrow u(x,t) = \int_{k \in C} 2A_k e^{kt} \cosh \sqrt{k}x$$

$$u(0,t) = \int_{k \in C} 2A_k e^{kt} \stackrel{!}{=} g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\chi t} \qquad \tilde{g} \qquad (\chi) d\chi$$
tracf di Fourier di $g(t)$

 \Rightarrow k immaginaria, $k=i\chi,\,2A_k=rac{\tilde{g}(\chi)}{2\pi}$

$$\Rightarrow u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{g}(\chi) e^{i\chi t} \cosh(\sqrt{i\chi} x d\chi)$$

N.B. $g(t) = g(t)^* \Rightarrow \tilde{g}(\chi) = \tilde{g}(-\chi)^*$ questo garantisce la realtà di $u(x,t)(\to \text{ esercizio!})$ Nel nostro esempio: $g(t) = A_n \sin nt \to \text{trasformata di Fourier:}$

$$\tilde{g}(\varkappa) = \int_{-\infty}^{\infty} dt e^{-i\varkappa t} A_n \sin nt$$

$$\begin{split} \frac{A_n}{2i} \int_{-\infty}^{\infty} dt e^{-i\varkappa t} \left(e^{int} - e^{-int} \right) \\ &= \frac{A_n}{2i} \int_{-\infty}^{\infty} dt e^{it(n-\varkappa)} - \frac{A_n}{2i} \int_{-\infty}^{\infty} dt e^{-it(n+\varkappa)} \\ &= i\pi A_n \left(\delta(n+\varkappa) - \delta(n-\varkappa) \right) \\ &\Rightarrow u(x,t) = \frac{iA_n}{2} \left(e^{-int} \cosh(\sqrt{-in}x) - e^{int} \cosh(\sqrt{in}x) \right) \end{split}$$

Senza perdere generalità: n > 0 $(\sin(-nt) = -\sin(nt)$, riassorbile il - in $A_n)$

$$\sqrt{\pm in} = \frac{n}{2}(1 \pm i)$$

 $\cosh(\alpha + \beta) = \cosh \alpha \cosh \beta + \sinh \alpha \sinh \beta$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cosh(iz) = \cos z, \qquad \sinh(iz) = i\sin z$$

$$\Rightarrow u(x,t) = A_n \left[\cos nt \sinh \left(\sqrt{\frac{n}{2}} x \right) \sin \left(\sqrt{\frac{n}{2}} x \right) + \sin nt \cosh \left(\sqrt{\frac{n}{2}} x \right) \cos \left(\sqrt{\frac{n}{2}} x \right) \right]$$

oppure

$$u(x,t) = \frac{A_n}{2} \left[e^{\sqrt{\frac{n}{2}}x} \sin\left(nt + \sqrt{\frac{n}{2}}x\right) + e^{-\sqrt{\frac{n}{2}}x} \sin\left(nt - \sqrt{\frac{n}{2}}x\right) \right], \quad \text{q.e.d.}$$

L'equazione di Korteweg - De Vries (KdV) 3.6.1

$$\partial_t u + 6u\partial_x u + \partial_x^3 u = 0(179) \tag{3.84}$$

con $u = u(x, t), \quad x \in \mathbb{R}, t > 0$

- -descrive delle onde in acqua non troppo profonda, ha delle applicazioni in molti rami della fisica, p.e. sistemi integrabili, teoria delle stringhe
- -equazione del 3 ordine
- -ha delle soluzioni chiamate onde solitarie

Ansatz:

$$u(x,t) = f(x - c t)(180)$$

$$(3.85)$$

velocità di propagazione dell'onda

nuova variabile $\xi := x - ct$, $u(x,t) = f(\xi)$

$$(179) = \frac{\partial \xi}{\partial t} \frac{df}{d\xi} + 6f(|xi) \frac{\partial \xi}{\partial x} \frac{df}{d\xi} + \left(\frac{\partial \xi}{\partial x}\right)^3 \frac{\partial^3 f}{\partial \xi^3} = 0$$

$$\frac{\partial \xi}{\partial t} = -c, \quad \frac{\partial \xi}{\partial x} = 1, \quad f' = \frac{df}{d\xi}$$

$$\Rightarrow -cf' + 6ff' + f''' = 0(181)$$

$$(3.86)$$

Imponiamo ora una condizione fondamentale sul comportamento di f, ovvero che $f \to 0, f' \to 0, f'' \to 0$ per $\xi \to \pm \infty$

$$(181) \Rightarrow -cf' + (3f^2)' + f''' = 0(182) \tag{3.87}$$

con le nostre ipotesi

$$\Rightarrow -cf + 3f^2 + f'' = cost = 0(183) \tag{3.88}$$

Moltiplica la (183)con f':

$$\Rightarrow f'f'' + 3f^2f' - cf'f = 0$$

$$\Rightarrow \left(\frac{1}{2}f'^{2}\right) + (f^{3})' - \frac{c}{2}(f^{2})' = 0(184)$$

$$\Rightarrow \frac{1}{2}f'^{2} + f^{3} - \frac{c}{2}f^{2} = cost = 0$$
(3.89)

a causa delle nostre condizioni su f, f', f''

$$\Rightarrow f' = \pm f\sqrt{c - 2f}, \quad f \le \frac{c}{2}(185) \tag{3.90}$$

Scegliamo il segno meno (altrimenti mandi ξ in $-\xi$)

$$\Rightarrow \frac{df}{d\xi} = -f\sqrt{c - 2f} \Rightarrow \int_{\frac{c}{2}}^{f(\xi)} \frac{-df}{f\sqrt{x - 2f}} = \int_{\xi_0}^{\xi} d\xi' (\text{sep. di var.})$$

$$\Rightarrow \int_{f(\xi)}^{\frac{c}{2}} \frac{df}{f\sqrt{c - 2f}} = \xi - \xi_0$$

$$f = \frac{c}{2\cosh^2 z}, \quad -\infty < z < \infty, \quad df = -\frac{c\sinh z}{\cosh^3 z} dz$$

$$\frac{df}{f\sqrt{c - 2f}} = \frac{-c\sinh z}{\cosh^3 z \frac{c}{2\cosh^2 z} \sqrt{c - \frac{c}{\cosh^2 z}}} dz$$

$$= \frac{-2\sinh z dz}{\sqrt{c\cosh^2 z - c}}$$

$$\int_{f(\xi)}^{c/2} \frac{df}{f\sqrt{c - 2f}} = \xi - \xi_0$$

$$\Rightarrow -\int_{z}^{0} \frac{2}{\sqrt{c}} dz' = \xi - \xi_0 \Rightarrow \frac{2}{\sqrt{c}} z = \xi - \xi_0$$

$$\Rightarrow f(\xi) = \frac{c}{2\cosh^2 \left(\frac{\sqrt{c}}{2}(\xi - \xi_0)\right)}$$

$$\Rightarrow u(x, t) = \frac{c}{2} \frac{1}{\cosh^2 \left[\frac{\sqrt{c}}{2}(x - ct - \xi_0)\right]}$$

N.B.:
$$f(\xi) = \frac{c}{2}$$

Dall'espressione (183) $f'' + 3f^2 - cf = 0 \Rightarrow f''(\xi_0) = -\frac{c^2}{4} \Rightarrow$ al crescere della velocità, l'onda diventa più alta e più sottile.

3.6.2 Le trasformazioni di Bäcklund

Per ricavare le soluzioni delle equazioni di Liouville e di sine-Gordon introduciamo uno strumento molto utile per la risoluzione di olte e quaioni differenziali a derivate parziali non lineari, ovvero le trasformazioni di Bäcklund.

Per semplicità ci limitiamo al caso di 2 variabili (x, y).

L'idea è quella di cercare le soluzioni di un'equazione differenziale del tipo

$$Lu = 0$$

tramite una funzione ausiliare v(x,y). Questa funzione è legata a u(x,y) tramite 2 equazioni

$$B_i(u, v, \partial_x u, \partial_y u, \partial_x v, \partial_y v, x, y) = 0, \quad i = 1, 2$$

Queste 2 equazioni garantiscono che u sia una soluzione dell'equazio
e differenziale in esame se e solo se v(x,y) è soluzione di un'altra equazione differenziale

$$Mv = 0$$

Le equazioni $B_i=0$ costituiscono la trasformazione di Bäcklund. Nel caso M=L, le trasformazioni di Bäcklund costituiscono un'auto-trasformazione.

Capitolo 4

Carica immagine

problema: sfera con raggio R, messa a terra, con carica puntiforme q in \bar{r}_0

Per motivi di simmetria, la carica immagine giace sulla retta che collega O e q. Potenziale in P

$$\Phi = \frac{q}{a} + \frac{q'}{b} = 0 \tag{4.1}$$

prendi p=A:

$$\frac{q}{R - r_0} + \frac{q'}{d} = 0 (4.2)$$

$$(2) \Rightarrow \frac{q'}{q} = -\frac{d}{R - r_0}$$

prendo p=B:

$$\frac{q}{R+r_0} + \frac{q'}{d+2R} = 0$$

$$(3) \Rightarrow \frac{q'}{q} = \frac{d+2R}{R+r_0}$$

$$\Rightarrow \frac{d}{R-r_0} = \frac{d+2R}{R+r_0}$$

$$\Rightarrow d(R+r_0) = (d+2R)(R-r_0)$$

$$\Rightarrow dR + 2dr_0 = dR - dr_0 - 2R^2 - 2Rr_0$$

$$\Rightarrow d = \frac{R(R - r_0)}{r_0}$$
(4.4)

e quindi

$$q' = \frac{dq}{Rr_0} = -\frac{q}{Rr_0} \frac{R(R - r_0)}{r_0} = -\frac{qR}{r_0}$$
(4.5)

Verificare che la (1) vale $\forall p$

$$(1) \Leftrightarrow \frac{q'}{q} = -\frac{b}{a} = (5) = \frac{R}{r_0} \Leftrightarrow \frac{b}{a} = \frac{R}{r_0}$$

Calcolo $\alpha: a^2 = r_0^2 + R^2 = 2r_0R\cos\alpha \implies \cos\alpha = \frac{r_0^2 + R^2 - a^2}{2r_0R}$

D'altra parte:

$$\cos \alpha = \frac{r_0 + l}{R} \implies \frac{r_0 + l}{R} = \frac{r_0^2 + R^2 - a^2}{2r_0 R} \implies l = \frac{-r_0^2 + R^2 - a^2}{2r_0}$$

$$c^2 = R^2 - (r_0 + l)^2 = R^2 - \left(\frac{r_0^2 + R^2 - a^2}{2r_0}\right)^2 = b^2 - (d + R - r_0 - l)^2 = b^2 - (d + R)^2 - (r_0 + l)^2 + 2(d + R)(r_0 + l)^2 = r_0^2 - (d + R)^2 - (d$$

$$\Rightarrow R^{2} = b^{2} - (d+R)^{2} + 2\underbrace{(d+R)\underbrace{(r_{0}+l)}}_{\frac{R^{2}}{r_{0}^{2}}} \qquad \frac{r_{0}^{2} + R^{2} - a^{2}}{2r_{0}R}$$

$$\Rightarrow R^{2} = b^{2} - \frac{R^{4}}{r_{0}^{2}} + \frac{R^{2}}{r_{0}^{2}} (r_{0}^{2} + R^{2} - a^{2}) \implies \frac{R}{r_{0}^{2}} a^{2} = b^{2} \implies \frac{b}{a} = \frac{R}{r_{0}} \qquad \checkmark$$