ISCTE-IUL Licenciatura em Ciência de Dados

Trabalho Individual II

Exercício realizado no âmbito da Unidade Curricular de Optimização Heurística do 2º ano da Licenciatura em Ciência de Dados

André Plancha, 105289

Andre_Plancha@iscte-iul.pt

26 Maio 2023 Versão 1.0.0

Indice																												
a)																											. 2)
b)																											. 2)

a)

Uma solução S diz-se admissível se satisfaz todas as condições do problema. Para este problema, uma solução admissível é uma solução que admite cada cientista C_i um projeto P_j , cada projeto tem apenas um cientista, e todos os projetos têm um cientista, $i, j \in \{1 ... 10\}$. Ou seja,

$$\forall S \in U : S \in A \Leftarrow S = \left\{ C_1 \mapsto P_a, C_2 \mapsto P_b, ..., C_{10} \mapsto P_j \right\} \tag{1}$$

, sendo A o conjunto de soluções admissíveis, U o conjunto de soluções, e $C_{\alpha}\mapsto P_{\beta}$ o associamento do projeto α ao cientista $\beta; a \ .. \ j, \alpha, \beta \in \{1 \ .. \ 10\} \land a \neq b \neq ... \neq j$, $A \subset U$.

Como há apenas 10 cientistas e apenas 10 projetos, todos os cientistas vão ter projetos e todos os projetos vão ter cientistas.

b)

Uma possível heurística construtiva seria admitir como lider do projeto P_i o cientista C_i para todos os projetos, $i \in \{1 ... 10\}$. Ou seja,

$$S = \{C_1 \mapsto P_1, C_2 \mapsto P_2, ..., C_{10} \mapsto P_{10}\}$$
 (2)

Esta heurística, embora simples e produtora de uma solução admissível, não é interessante para **Lusa_med**, sendo que é equivalente a uma heuristica que escolhe os lídderes de forma aleatória (sem reposição). Desta forma, uma heurística construtiva alternativa seria alocar para o cientista C_i o projeto P_j que tenha a melhor aptidão, entre as ainda não alocadas, $j \in \{1 ... 10\}$. Ou seja, sendo $a(C_i, P_j)$ a aptidão do cientista C_i , e \boldsymbol{P} os projetos para o projeto P_j :

$$S = \left\{ C_1 \mapsto P_{\operatorname{argmax}\{a(C_i, P): P \in P\}}, \\ C_2 \mapsto P_{\operatorname{argmax}\{a(C_2, P): P \in P \setminus \{P \leftrightarrow C_1\}\}}, \\ C_3 \mapsto P_{\operatorname{argmax}\{a(C_3, P): P \in P \setminus \{P \leftrightarrow C_1, P \leftrightarrow C_2\}\}}, \\ \dots, \\ C_{10} \mapsto P_{\operatorname{argmax}\{a(C_{10}, P): P \in P \setminus \{P \leftrightarrow C_1, P \leftrightarrow C_2, \dots, P \leftrightarrow C_9\}\}} \right\}$$

$$\left. \right\}$$