

Prediction for potential medical treatment pathways with outpatient data Jingvi Lai. Jeffrey Jin. Xuan Tao

Jingyi Lai, Jeffrey Jin, Xuan Tao UMSI MADS

Introduction

- Patients often experience unease when they must visit the hospital outpatient department, as they may lack clarity about their illness, the required examinations, and the associated expenses.
- Machine learning with clinical data has long been in practice, offering substantial benefits.
- While numerous studies have explored diagnostic and support pathways for specific ailments like depression and diabetes, the application of these technologies in creating interactive self-check platforms remains less explored.
- Our project aims to:
- a. Could analyzing medical encounter data reveal distinct patient groups with similar healthcare needs?
- b. Could classification prediction on user-reported symptoms and health status enable the identification of potential treatment pathways in a statistical representation?

Method

Dataset

- Outpatient dataset of National Hospital Ambulatory Medical Care Survey (NHAMCS) with ICD-9-CM

Preprocessing

- Merged: by consolidating relevant columns, resulting in a dataset with 150 features.
 - Splitted into training (2006-2008), validation (2009), test (2010), and evaluation (2011) sets to maintain generalizability and adaptability to data shift

Feature Engineering

- Quantitative features: Binning or normalization based on stability and sensitivity requirements.
- Categorical features: One-hot encoding
- Text features: text extracted, integrated and transformed into topic features

 Machine Learning

- Employed Random Forest Classifier to predict the classification of Diseases and Injuries

Results

Intertopic Distance Map (via multidimensional scaling) Top-30 Most Relevant Terms for Topic 7 (8.4% of tokens) Top-30 Most Relevant Terms for Topic 7 (8.4% of toke

- Figure 1 showed 10 distinct topics with varying degrees of intertopic distance, indicating differentiated patient groupings based on their medical descriptors.

- The term relevance for Topic 1 reveals a strong emphasis on patient management programs, as indicated by high-frequency terms such as 'hypertension' and 'diabete'.

Figure 1: Example of Word Cloud

Conclusion

- Our machine learning analysis of NHAMCS outpatient data reveals key diagnostic pathways and supports, potentially improving patient understanding before medical consultations.
- Despite time and data limitations, our promising results endorse the application of machine learning in healthcare, setting a foundation for future interactive self-check platforms.

Classification approach in NHAMCS outpatient data reveals key diagnostic pathways

Scan me for Github

and supports

Reference

Hing E, Middleton K. National Hospital Ambulatory Medical Care Survey: 2001 outpatient department summary. Adv Data. 2003 Aug 5;(338):1-26. PMID: 12918175.

Czakon, J. (2023, September 5). F1 score vs ROC AUC vs Accuracy Vs PR AUC: Which evaluation metric should you choose?. neptune.ai. https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc

Classifier

Figure 2: Pipeline of the final best model – Random Forest Model

Figure 3: Topic 20 importance features

The prominence of these features highlights the intricate interplay between demographic characteristics, vital signs, and thematic elements of patient data in our final model.

Mock up health self-check interactive simulation

Top 3 highest possibility diseases

