THỰC HÀNH NHẬP MÔN MẠCH SỐ - LỚP PH002.N16.1 BÀI THỰC HÀNH 5: CÁC THÀNH PHẦN LƯU TRỮ

Giảng viên hướng dẫn	Trương Văn	ÐIĒM	
Sinh viên thực hiện 1	Trần Ngọc Ánh	22520077	
Sinh viên thực hiện 2			
Sinh viên thực hiện 3			
Sinh viên thực hiện 4			

Câu 1: Khảo sát ngõ vào của D Flipflop

Mô phỏng D Flipflop với chuỗi kiểm tra tương đối dựa theo các câu hỏi bên dưới (PRE_n và CLR_n giữ ở logic 1)

- Tại khoảng thời gian CLK = 0 hoặc CLK = 1, thay đổi D liên tục, khi D thay đổi liên tục thì Q có thay đổi theo D không?
 - Có: □
 - Không: ⊠
- Thời điểm CLK chuyển từ 0 sang 1 thì Q thay đổi như thế nào?

Tại thời điểm CLK chuyển từ 0 sang 1 thì Q sẽ thay đổi là: khi Pre_n và CLK_n đều đang 1 thì Q sẽ thay đổi theo D khi CLK kích cạnh lên.

- Ngõ vào D là đồng bộ hay bất đồng bộ?
 - Đồng bộ: ⊠
 - Bất đồng bộ: □
- Mô phỏng lại D Flipflop:

- Ngõ vào PRE_n là đồng bộ hay bất đồng bộ?
 - Đồng bộ: □
 - Bất đồng bộ: ⊠

Giải thích: vì PRE_n dùng để thiết lập mạch lên trạng thái 1 hoặc xoá mạch về trạng thái 0 vào bất kì thời điểm nào mà không phụ thuộc vào D và CLK.

- Ngõ vào PRE_n tích cực loại nào?

- Tích cực cạnh lên: □
- Tích cực cạnh xuống: □
- Tích cực mức cao: □
- Tích cực mức thấp: ⊠

Giải thích: Tại vì kí hiệu trên mạch cho t thấy thế, và khi mô phỏng ra thì khi nó xuống 0 mới làm thay đổi Q.

Câu 2: Thiết kế bộ đếm đồng bộ dùng D-FF

- Bảng trạng thái:

	CK	Q2	Q1	Q0	Ngõ vào		Kế tiếp			
					D2	D1	D0	Q2	Q1	Q0
0	↑	0	0	0	0	0	1	0	0	1
1	↑	0	0	1	0	1	0	0	1	0
2	↑	0	1	0	0	1	1	0	1	1
3	↑	0	1	1	1	0	0	1	0	0
4	↑	1	0	0	1	0	1	1	0	1
5	↑	1	0	1	1	1	0	1	1	0
6	↑	1	1	0	1	1	1	1	1	1
7	↑	1	1	1	0	0	0	0	0	0

$$D0 = Q0$$

$$D1 = Q0Q1' + Q1Q0' = Q0 \text{ xor } Q1$$

$$D2 = Q2Q1' + Q2Q0' + Q1Q0Q2'$$

- Vẽ sơ đồ mạch trên Quartus II:

Câu 3: Úng dụng lưu trữ của Register:

- Thiết kế bộ tăng giá trị lên 1 (Increment):
 - ➤ Bảng chân trị:

I1	I0	F1	F0
0	0	0	1

0	1	1	0
1	0	1	1
1	1	0	0

Vẽ sơ đồ mạch và đóng gói trên Quatus:

- Nối mạch có sơ đồ bên dưới trên Quartus:

- Nếu A và B là 2 bit của một số nhị phân X (B là MSB và A là LSB) thì X sẽ thay đổi thứ tự nào? Giải thích hoạt động của mạch?
 - X sẽ thay đổi theo thứ tự từ 0 đến 3 rồi lặp lai theo trình tự như vậy.
 - ➤ Giải thích: Khi xung CLK kích cạnh lên thì trạng thái của A thay đổi, khi xung CLK kích cạnh lên lần thứ 2 thì trạng thái của B thay đổi, tạo ra vòng lặp có giá trị tăng dần từ 0 đến 3.