

Lokalklima

R-Austausch, 31.08.2021 Corinna Grobe

Ausgangslage

Klimamodell ZH: Klimaanalysekarte GIS-Browser

Der menschengemachte Klimawandel wird immer stärker spürbar. Zur Einordnung haben wir die wichtigsten Fakten zum Klimawandel zusammengestellt.

AWEL & Statistisches Amt

Gian-Marco Alt

AWEL

Abteilung Luft,

Fachexperte

Jörg Sintermann AWEL Abteilung Luft, Fachexperte

Corinna Grobe
Statistisches Amt
Datashop,
Konzeption &
Programmierung

Darstellungen werden in definierten Intervallen aktualisiert und nachgeführt

Automatisierte Darstellungen von Messwerten* und ausgesuchten Auswertungen zum Lokalklima im ZHweb in Form interaktiver Grafiken & Tabelle.

46

* Das AWEL betreibt ein Messnetz von +/- 50 Sensoren im Kanton Zürich, welches die Temperaturwerte misst. Die Daten stehen als offene Behördendaten in einem offen und maschienen-lesbaren Format zur Verfügung. Benutzer können bestimmte Elemente der Anzeige selber auswählen (z.B. bestimmte Zeitperioden, Standorte, Standortkombinationen, Wärmeinseln etc.)

Bausteine

Daten + Visualisierung + Narration

Data Visualization Workflow

^{*} Cross Industry Standard Process for Data Mining

Explain & Explore

Information strukturieren (Slideshow)

Kontext und Interpretation (Narration)

Nutzende führen (author-driven)

Richtiges Mass an Interaktivität (reader-driven)

Overview first - detail on demand

R und **Shiny Dashboard**

- Skills: R wird bereits beim Kanton genutzt
- Support: R ist umfassend dokumentiert und aktive Community
- Wartung, Weiterentwicklung: Enabling der Data Owner
- Datenschutz: OGD, d.h. keine besonders schützenswerten Daten
- Hosting: Shiny Server verfügbar, einfach, kostengünstig

- Fehlende Werte → fortlaufende Zeitreihe
- Inkonsistenzen: Standortnamen und längere

Kalibrationszeiträume

→ nicht-systematische
Fehler

```
# DATA PROCESSING: POPULATE MISSING DATES -----
## The problem is that we don't have all the dates during the tracked period in the data.
## Instead, we have only the dates when values are actually measured.
## To merge with the metadata we need all dates.
## Reference: https://blog.exploratory.io/populating-missing-dates-with-complete-and-fill-functions-in-r-and-exploratory
## To populate missing dates we are working with 'complete' from 'tidyr' package and 'seq.Date' from base R
## Basic structure: complete(Date = seg.Date(<start_date>, <end_date>, by=<date_unit>))
tageswerte_populated <- tageswerte %>%
  # Filling missing dates and values within each group of unique sensor / site combination
  group_bv(sensor, site) %>%
  # 'seq.Date' works only for Date data type, so changing it by using as.Date
  # mutate(date = as.Date(date)) %>%
  # 'seq.Date' populates a sequence of Date data for the period that is configured
  # 'complete' will add rows for the missing dates.
  # Add all date column combinations that should be pre-filled
  complete(date = seq.Date(min(date), max(date), by="day")) %>%
  # Add all date column combinations that should be copied from the above line and filled into the newly added rows
  fill(x, y, year, month) %>%
  ungroup() %>%
  # Joining WGS84 transformed coordinates
  left_join(messnetz)
## Check: We should have introduced NA for the calculated values
na <- which(is.na(tageswerte_populated$T_min))</pre>
check_new_rows <- tageswerte_populated %>% filter(is.na(T_min))
```


Output Data

- Umrechnung der CH Koordinaten in WGS84
- Mergen der Datenquellen → möglichst standardisierten Datensatz
- Datenstruktur: Long vs. Wide Format
- Outputformat:

Data set	Output format	Size	Rows			
	R object	319.9 MB	4,439,795			
OGD raw data	RDS	27.2 MB	observations of 9 variables			
	CSV	381.8 MB				
The OGD raw data aggregated to	R object	66.1 MB	787,171 observations of 11 variables			
hourly values	RDS	4.0 MB				
The OGD raw data aggregated to	R object	18.3 MB	217,459 o observations of 9 variables			
hourly values and narrowed down to the summer months	RDS	1.1 MB				
The OGD raw data aggregated to daily values for all combinations	R object	4.5 MB	34,280 observations of 16 variables			
of sensor/site, filled in missing dates and added metadata as well the the MeteoSchweiz location	RDS	0.9 MB				

Automatisierung

- Tägliche Aktualisierung
- R-Server: cronjob

```
Source on Save
setwd("/home/b105pcg@ji.ktzh.ch/git/AWEL Lokalklima")
devtools::load all(".")
source("scripts/1 data import ogd.R")
print(paste0("Letztes Update 1_data_import_ogd.R: ", Sys.time()))
source("scripts/2 data import meteoschweiz.R")
print(paste0("Letztes Update 2 data import meteoschweiz.R: ", Sys.time()))
source("scripts/3 transform coordinates ogd.R")
print(paste0("Letztes Update 3 transform coordinates ogd.R: ", Sys.time()))
source("scripts/5_merging_metadata_to_ogd.R")
print(paste0("Letztes Update 5 merging metadata to ogd.R: ", Sys.time()))
source("scripts/7 calculate t diff.R")
print(paste0("Letztes Update 7 calculate t diff.R: ", Sys.time()))
source("scripts/8 data export zhweb vis.R")
print(paste0("Letztes Update 8 data export zhweb vis.R: ", Sys.time()))
files <- list.files("output")
file_paths <- paste0("output/", files)
purrr::walk(file paths, ~upload data(.))
print(paste0("Letztes abgeschlossenes Update: ", Sys.time()))
```


Kontinuierlich verbessern

- Nativere Einbindung ins ZHWeb → Shiny App zu D3.js
- Reduzieren & Vereinfachen
- Weiterentwicklungen gemäss Backlog

Α	В	С	D		E		F		G	Н	
ID,	BESCHREIBUNG	BESCHREIBUNG ZIELZUSTAND	INSTANZ		TYP		STATUS		DATUM	ZUSTÄNDIG	
1	Tab "Messnetz", X-Achse an Plot ist länger als der effektive Date Range	X-Achse geht von Min. bis Max. Datum	Applikation	*	Fehler	*	Umsetzung	*	2021-07-07	CG (STAT)	*
2	Anpassung Referenzstation	Falls die Daten der Meteoschweiz-Stationen tagesaktuell vorliegen, Anpassung Referenzstation auf Zürich/Affoltern	Applikation	~	Erweiterung	*	Offen	*	2021-07-12	GMA (AWEL	*
3						*		*			
A				_				_			

Danke!

Gibt es Fragen?

Ihr erreicht mich unter

- corinna.grobe@statistik.ji.zh.ch
- 043 259 75 07

Appendix

Zusätzliche Slides zu den in der Präsentation gezeigten Inhalten

Data Canvas

Business Value Data Sources Data Transformation Obstacles Users Automatisch aktualisierte, OGD: Messwerte, Metadaten Umrechnen der Koordinaten Ausreichende • Experten: Fachleute, AWEL interaktive Visualisierungen, MeteoSchweiz: weitere Umgang mit fehlende Datenabdeckung • Nicht-Experten: Journalisten, Tabellen Messstellen Messwerten Datenqualität Metadaten Bevölkerung Schnelle und offene Datenmenge / Performance Kommunikation zur Situation Metrics **Data Target** Frequency • Merge Tabelle mit Sommer: wöchentlich Informationen aus allen Tmin. Tmax. Tdiff. Restl. Jahr: monatlich Tropennacht, Hitzetag etc. Quellen • Verteilungen je Wärmeinsel, Raumlage, Periode

Pen & Paper Sketches

- Schnelles, iteratives Konzipieren
- Keine Programmierkenntnisse
- Nutzenden-Sicht vs. Daten-Sicht
- Komplexität, Anforderungen, Probleme
- Input für Datenaufbereitung (z.B. Berechnungen, Datenformat)
- Gezielte Umsetzung in Code

