به نام خدا

مجموعه تمارين نظريه اعداد جلسه هشتم دوره تابستاني المپياد رياضي ١۴٠١

مبحث مانده و ناماندههای مربعی و قضیه تقابل درجه دوم

- (ac,p)=1 مجموعهٔ تمام ماندههای مربعی به پیمانهی p باشد. ثابت کنید هیچ a,c طبیعی با شرط $A=\{b_1,b_2,...,b_{rac{p-1}{2}}\}$ عددی اول و ac,p>5 عددی اول و ac,p>5 مجموعه های ac,p>5 مجموعههای ac,p>5 مجموعه های ac,p>5 محموعه های ac,p>5 مجموعه های ac,p>5 محموعه های محموعه ه
- ۲. اعداد $p\in\mathbb{P},r\in\mathbb{N}$ داده شدهاند، به طوری که $p\mid r^7-1$ و $p\mid r^7-1$ به پیمانه p مانده درجه دوماند. ثابت کنید $p\in\mathbb{P}$ نیز به پیمانه p مانده درجه دوم است.
 - ۳. برای هر $p\in\mathbb{P},n\in\mathbb{N}$ ثابت کنید دقیقاً $p\in\mathbb{P}$ ثابت کنید دقیقاً $p\in\mathbb{P}$ مانده مربعی به پیمانه وجود دارد.
 - ۴. فرض کنید $n\in\mathbb{N}$ داده شده است به طوری که برای هر p به اندازه کافی بزرگ، n=1 ثابت کنید n مربع کامل عددی طبیعیست.
 - ۵. برای هر $p\in\mathbb{P}$ اول و فرد ثابت کنید کوچکترین ناماندهی درجه دوم مثبت به پیمانه $p\in\mathbb{P}$ اول و فرد ثابت کنید کوچکترین ناماندهی درجه دوم مثبت به پیمانه $p\in\mathbb{P}$
 - $a, b \in \mathbb{Z}$ فرض کنید $p \in \mathbb{P}$ عددی اول به فرم k+1 باشد. ثابت کنید گرف کنید ورض کنید و عددی اول به فرم k+1 باشد. ثابت کنید و موجودند به طوری که
- $2\cdot 4\cdots (p-1)\stackrel{p}{\equiv} (-1)^{m+k}$ داده شده باشد و m تعداد ماندههای درجه دوم به پیمانه p است که از p کوچکتر باشند. ثابت کنید $4k+3=p\in\mathbb{P}$ داده شده باشد و p تعداد ماندههای درجه دوم به پیمانه p
 - $ab\stackrel{m}{\equiv}c^2$ موجود است به طوری که $a^n\stackrel{m}{\equiv}-1, b^n\stackrel{m}{\equiv}-1$. ثابت کنید $a,b,m,n\in\mathbb{N}$ موجود است به طوری که $a,b,m,n\in\mathbb{N}$ فرض کنید
 - . $\left(rac{n}{p}
 ight)=\left(rac{n+k}{p}
 ight)$ داده شده باشد. ثابت کنید برای هر $k\in\mathbb{N}$ ، مقدار طبیعی n موجود است به طوری که $p\in\mathbb{P}$. هر
 - . $arphi(5^m-1)
 eq 5^n-1$ مفروض باشند به طوری که $\gcd(m,n)=1$ فرض کنید هر مفروض باشند به طوری که .۱۰
- ۱۱. فرض کنید $p\in\mathbb{P}$ عددی اول، بزرگتر از ۱۳ و به فرم k+5 بوده و همچنین ۳۹ به پیمانه p یک نامانده درجه دوم باشد. ثابت کنید $p\in\mathbb{P}$ عددی اول، بزرگتر از ۱۳ و به فرم k+5 بوده و همچنین ۹۳ به پیمانه $p\nmid x_1x_2x_3x_4$, $p\mid x_1^4+x_2^4+x_3^4+x_4^4$
 - دارد. k+3 دارد. برای هر $n\in\mathbb{N}$ ثابت کنید n+1 حداقل n عامل اول به فرم ۱۲
 - .۱۳ $f_p \stackrel{p}{\equiv} \left(rac{p}{5}
 ight)$ ماهد، آنگاه و نباله فیبوناتچی باشد. ثابت کنید اگر $p \in \mathbb{P}$ عددی اول و بزرگتر از ۵ باشد، آنگاه امرام دنباله فیبوناتچی باشد. ثابت کنید اگر و بزرگتر از ۵ باشد، آنگاه و نبای در تابع این در تابع این
- $\prod_{a\in\mathcal{A}}a\stackrel{p^3}{\equiv}\prod_{b\in\mathcal{B}}b$ ثابت کنید دستگاه مخفف ماندهها به پیمانه p قابل افراز به دو مجموعه \mathcal{A},\mathcal{B} با تعداد اعضای برابر است به طوری که $k+1=p\in\mathbb{P}$ ۱۴. برای هر
- اشد. همچنین ورخه دوم به پیمانه p عددی اول و $z\in\mathbb{C}$ یک ریشه pاُم اولیه واحد باشد. فرض کنید $z\in\mathbb{C}$ به ترتیب مجموعه ماندهها و ناماندههای درجه دوم به پیمانه z باشند. همچنین کنید $z\in\mathbb{C}$ عددی اول و $z\in\mathbb{C}$ یک ریشه های معادله z باشند. z هستند. z هستند. z
 - ۱۶. اتحاد های زیر را درباره نماد لژاندر اثبات کنید:

$$p \in \mathbb{P}$$
 , $p \neq 2 \implies \sum_{i=1}^{p-1} \left(\frac{i^2 + i}{p}\right) = -1$ (i)

$$p \in \mathbb{P}$$
 , $a \in \mathbb{Z}$, $p \neq 2$, $\gcd(p, a) = 1 \implies \sum_{i=0}^{p-1} \left(\frac{i^2 + a}{p}\right) = -1$ (4)

$$a,b\in\mathbb{Z}\quad,p\in\mathbb{P}\quad,p\neq2\quad,\gcd(a,p)=\gcd(b,p)=1\implies\sum_{i=1}^{p-1}\left(\frac{ai^2+bi}{p}\right)=-\left(\frac{a}{p}\right)\ \ (\mathbf{z})$$

- ۱۷. فرض کنید $\Omega(x)$ چندجملهای با ضرایب صحیح باشد به طوری که $\Omega(x)=+\infty$. اگر $\Omega(x)\neq 0$ و $\Omega(x)=0$ و وجود دارد به $\Omega(x)=0$ و وجود دارد به طوری که $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)\neq 0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه $\Omega(x)=0$ و بین مقسوم علیه های $\Omega(x)=0$ تعداد یکسانی مانده و نامانده درجه دوم به پیمانه و به بیمانه و بیمانه
 - $4kxy-1 \nmid x^m+y^n$ داده شده باشند. ثابت کنید $x,y,k,m,n \in \mathbb{N}$ داده شده باشند.

۱. فرض کنید $x^p+2^p=p^2+y^2$ داده شده باشد. ثابت کنید معادله $x^p+2^p=p^2+y^2$ در اعداد طبیعی جوابی ندارد.

: فرض کنید $\mathbb{N} o \mathbb{N}$ توابعی با خواص زیر باشند $f,g:\mathbb{N} o \mathbb{N}$:

(آ) g روی اعداد طبیعی پوشاست.

$$2f(n)^2=n^2+g(n)^2$$
 : داریم $n\in\mathbb{N}$ برای هر

f(n)=n موجود است به طوری که $n\in\mathbb{N}$ ثابت کنید نامتناهی

۳. (اتحاد بسیار مهم) به عنوان تعمیم سوال ۱۶، فرض کنید $p\in\mathbb{P}$ و $a,b,c\in\mathbb{Z}$ عددی اول باشد به طوری که p
mid a ثابت کنید:

$$\sum_{i=0}^{p-1} \left(\frac{ai^2 + bi + c}{p} \right) = \begin{cases} (p-1) \left(\frac{a}{p} \right) & \text{if} \quad p \mid b^2 - 4ac \\ -\left(\frac{a}{p} \right) & \text{if} \quad p \nmid b^2 - 4ac \end{cases}$$

 $p-(-1)^{rac{p-1}{2}}$ برای هر $p\in\mathbb{P}$ ثابت کنید تعداد زوجهای متوالی از مجموعه $p=(1,\cdots,p-1)$ به طوری که به ترتیب مانده و نامانده درجه دوم به پیمانه p باشد، برابر است با

ه. (اختیاری) برای هر
$$\mathbb{Z}$$
 و \mathbb{Z} تعریف کنید $a,b\in\mathbb{Z}$ تعریف کنید $K(p,a)=\sum_{x=0}^{p-1}\left(\dfrac{x(x^2+a)}{p}\right)$ داده شده باشند به طوری که $K(p,a)=\sum_{x=0}^{p-1}\left(\dfrac{x(x^2+a)}{p}\right)$ داده شده باشند به طوری که $K(p,a)$ اعدادی زوج هستند به طوری که :

$$K(p,a)^2 + K(p,b)^2 = 4p$$