3 LABORATORINIS DARBAS. Kompleksinio kintamojo funkcijos. Integralai. Koši-Rymano sąlygos

1 pavyzdys. Kreivinio integralo skaičiavimas.

Apskaičiuoti kreivinį integralą $\oint z^2 - 2z + 1 \, dz$, integruojamą išilgai kreivės $x = y^2 + 1$, y = -2..2

Nr.	Veiksmai	MATLAB komandos	Rezultatas
1	Išvalome	clear	
	atmintį		
2	Įvedame	syms t real	
	parametrą t		
3	Aprašome y	y=t	y =
			t
4	Aprašome	$x=t^2+1$	x =
	$x = y^2 + 1$		t^2 + 1
5	Aprašome z	z=x+i*y	z =
	_	-	$t^2 + t^*i + 1$
6	Aprašome	f=z^2-2*z+1	f =
	funkciją		$-t*2*i + (t^2 + t^i + 1)^2 - 2*t^2 - 1$
	$z^2 - 2z + 1$, , ,
7	Aprašome	Integr=f*diff(z,t)	Integr =
	pointegralinį		$-(2*t+i)*(t*2*i-(t^2+t*i+1)^2+2*t^2+$
	reiškinį z^2 –		1)
	2z + 1 dz		-/
8	Integruojame	F=int(Integr, 't',-2,2)	F=
		(<i>g</i> -, <i>c</i> , <i>-</i> , <i>-</i> ,	(176*i)/3
9	Galime	F=double(F)	F =
	konvertuoti į		0 +58.6667i
	double		

2 pavyzdys. Kreivinio integralo skaičiavimas.

Apskaičiuoti kreivinį integralą $\oint z^2 - 2z + 1 dz$, integruojama išilgai kreivės x = 5, y = -2..2

Nr.	Veiksmai	MATLAB komandos	Rezultatas
1	Išvalome	clear	
	atmintį		
2	Įvedame	syms t real	
	parametrą t		
3	Aprašome y	y=t	y =
			t
4	Aprašome x	x=5	x =
			5
5	Aprašome z	z=x+i*y	z =
			t*i + 5
6	Aprašome	$f=z^2-2*z+1$	f =
	funkciją z ² –		$-t*2*i + (t*i + 5)^2 - 9$
	2z + 1		
7	Aprašome	Integr=f*diff(z,t)	Integr =

	pointegralinį reiškinį		2*t + (t*i + 5)^2*i - 9*i
8	Integruojame	F=int(Integr, 't',-2,2)	F = (176*i)/3
9	Galime konvertuoti į double	F=double(F)	F = 0 +58.6667i

3 pavyzdys. Koši-Rymano sąlyga.

Patikrinsime, ar funkcijos
$$f(z) = \sin(x + 2y) + i\sin(2x + y)$$
 ir $f(z) = (x^3 - 3xy^2 + 2) + i(3x^2y - y^3 + 1)$ tenkina Koši-Rymano sąlygas $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

Nr.	Veiksmai	MATLAB komandos	Rezultatas
1	Išvalome atmintį	clear	
2	Aprašome kintamuosius	syms x y	
3	Aprašome funkcijos realiąją dalį	$u=\sin(x+2*y)$	$u = \sin(x + 2*y)$
4	Aprašome funkcijos menamąją dalį	v=sin(2*x+y)	$v = \sin(2*x + y)$
5	Tikriname sąlygą $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$	diff(u,x)-diff(v,y)	ans = $cos(x + 2*y) - cos(2*x + y)$
6	Atsakymas nelygus nuliui, pirmoji sąlyga nėra tenkinama		
7	Aprašome antros funkcijos realiąją dalį	u=x^3-3*x*y^2+2	$u = x^3 - 3*x*y^2 + 2$
8	Aprašome antros funkcijos menamąją dalį	v=3*x^2*y-y^3+1	$v = 3*x^2*y - y^3 + 1$
9	Tikriname pirmą sąlygą	diff(u,x)-diff(v,y)	ans =
10	Tikriname antrą sąlygą	diff(u,y)+diff(v,x)	ans = 0

4 pavyzdys

Raskite analizinę funkciją f(x), žinodami $Re\ f(x)$ arba $Im\ f(x)$ ir funkcijos reikšmę viename taške $f(z_0)$. $Re(f(z)) = x^2 - y^2 + x$, f(i) = -1 + 2i

$$Re(f(z)) = x^2 - y^2 + x, f(i) = -1 + 2i$$

Nr.	Veiksmai	MATLAB komandos	Rezultatas
1	Išvalome atmintį	clear all	
2	Aprašome	syms y x real	z =
	kintamuosius	syms c z	
		z=x+y*i	x + y*1i
		•	·

3	Aprašome funkcijos	u=x^2-y^2+x	u =
	realiąją dalį		x^2 + x - y^2
4	Pasinaudojame sąlyga $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$	Isv_v_y=diff(u,x)	
5	Randame dalį funkcijos $v = \int_0^y \frac{\partial u}{\partial x} dt$	v=int(Isv_v_y,'t',0,y)	
6	Pilna funkcijos išraiška bus $v = \int_0^y \frac{\partial u}{\partial x} dt + V(x)$	Pasinaudojame antra sąlyga $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$. Diferencijuodami v nepamirškite, kad lygtyje turės atsirasti $V'(x)$.	Trūkstamą dalį grąžinsime į skaičiavimus vėliau.
7	Skaičiuojame išvestinę $\frac{\partial v}{\partial x}$	Isv_v_x=diff(v,x)	Isv_v_x = 2*y
8	Skaičiuojame išvestinę $\frac{\partial u}{\partial y}$	Isv_u_y=diff(u,y)	Isv_u_y =
9	Iš lygties $\frac{\partial v}{\partial x} + V'(x) =$ $-\frac{\partial u}{\partial y} \text{ randame } V(x)$	V=int(Isv_v_x+Isv_u_y,x)+c	-2*y V = c
10	Konstruojame atsakymą $f(x,y) = u(x,y) + i(v(x,y) + V(x))$	f=u+i*(v+V)	$f =$ $c*1i + x + y*(2*x + 1)*1i + x^2 - y^2$
11	Pasinaudojame pradine sąlyga $f(i) = -1 + 2i$	lygt=subs(subs(f,x,0),y,i)	lygt = c*1i
12		t=solve(lygt-(-1+2*i))	t = 2 + 1i
13	Įrašome gautą reikšmę į funkciją	v=int(Isv_v_y,'t',0,y)+t	v =
14	Patikriname, ar galioja Koši-Rymano sąlygos	patikrinimas1=diff(u,x)-diff(v,y) patikrinimas2=diff(v,x)+diff(u,y)	y*(2*x + 1) + (2 + 1i) $patikrinimas 1 = 0$ $patikrinimas 2 = 0$
15	Išvedame galutinį atsakymą	f=u+i*v	$f = x + y*(2*x + 1)*1i + x^2 - y^2 - (1 - 2i)$