CLI in njegova zgodba pri vzorčenju

- 1. Opazujemo določeno lastnost (neke populacije velikosti N), ki jo spremlja spremenljivka X.
- 2. Radi bi ocenili pričakovano vrednost E(X), pri čemer predpostavimo $D(X) < \infty$ (oznaki $\mu = E(X)$ in $\sigma^2 = D(X)$).
- 3. V ta namen si izberemo vzorec velikosti $n \ll N$ (nimamo namreč možnosti, da bi opravili meritve na celotni populaciji):
 - (a) vzorec je vektor (x_1, \ldots, x_n) , sestavljen iz n meritev,
 - (b) izberemo ga naključno, meritve in izbira pa so med seboj neodvisne,
 - (c) vzorec mora biti dovolj velik (npr. vsaj $n \ge 30$).
- 4. Naj bo X_i $(1 \le i \le n)$ spremenljivka, ki spremlja *i*-to meritev. Lahko predpostavimo, da ima enako porazdelitev kot X, tj.

$$E(X_i) = \mu$$
 in $D(X_i) = \sigma^2$.

5. Iščemo dobro formulo oz. funkcijo $f(x_1, ..., x_n)$ (cenilko), za katero velja, da bo njena vrednost na danem vzorcu z dovolj veliko verjetnostjo blizu E(X). V primeru E(X) je to vzorčno povprečje (ki je tudi slučajna spremenljivka):

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- 6. CLI nam zagotavlja, da se \overline{X} porazdeljuje normalno, tj. $\overline{X} \sim N(\mu_{\overline{X}}, \sigma_{\overline{X}})$ (predpostavki: $n \geq 30$ in $\sigma < \infty$!). V praksi nas zanima, koliko sta parametra $\mu_{\overline{X}}, \sigma_{\overline{X}}$!
- 7. Iz lastnosti pričakovane vrednosti (linearnost) izračunamo $\mu_{\overline{X}} = E(\overline{X}) = \cdots = \mu$
- 8. Iz lastnosti odklona (linearnost za nekorelirane slučajne spremenljivke) izračunamo $\sigma_{\overline{X}}^2 = D(\overline{X}) = \dots = \sigma^2/n. \ ("\dots" \ v \ točkah \ 7. \ in \ 8. \ je potrebno znati dopolniti.)$

Povzemimo (točke 6-8): za vzorčno povprečje vemo naslednje

$$\overline{X} \sim N(\mu, \sigma/\sqrt{n})$$

in ne pozabimo, da za računanje verjetnosti uporabljamo tabelirano funkcijo napake od N(0,1), zato vpeljemo še standardizirano slučajno spremenljivko $Z=(\overline{X}-\mu_{\overline{X}})/\sigma_{\overline{X}}$.

Mimogrede: kje smo zgoraj uporabili D(X+Y)=D(X)+D(Y)+2K(X,Y) (kar spominja na $(a+b)^2=a^2+2ab+b^2$)?

To je bil Centralni limitni izrek (CLI) za μ . Kaj pa za delež π , odklon σ ali celo razliko pričakovanih vrednosti $\mu_1 - \mu_2$ ali deležev $\pi_1 - \pi_2$ (da ne govorimo o σ_1/σ_2). Odgovore na slednje vprašanje najdete v poglavju o intervalih zaupanja.