Überlichtgeschwindigkeit in kosmischen Jets

Alexander Helbok

18. Januar 2024

3c273

Leuchtkraft von 3c273

Entfernung über Rotverschiebung

$$(z = 0.158)$$

$$L = 4\pi d^2 F$$

Flussmessung im Radiobereich

 \Rightarrow extrem Hell

Helligkeitsschwankungen in 3c273

sphärische Expansion $v \ll c$

sphärische Expansion $v \sim c$

Beobachtung

$$F \propto \langle = 2 \frac{vt}{R} \rangle$$

Konsequenz

$$\begin{split} \beta &= \frac{v}{c} \in [0;1] \\ \gamma &= \frac{1}{\sqrt{1-\beta^2}} \in [1,\infty) \Rightarrow \gamma v > c \text{ m\"{o}glich!} \end{split}$$

Recap

Fragen?

$$\beta = 0.835, \ \gamma = 1.82$$

$$\beta = 0.835, \ \gamma = 1.82$$

$$(t = 0.25)$$

$$\beta = 0.835, \ \gamma = 1.82$$

$$(t = 0.59)$$

$$\beta = 0.835, \ \gamma = 1.82$$

$$\beta = 0.835, \ \gamma = 1.82$$

$$t = 2.5$$

to O

$$\beta = 0.835, \ \gamma = 1.82$$

$$t = 4$$

to O

Sources i

Literatur

- [1] P. Maltby und A. T. Moffett. "Spectrum of the Intensity Variations in 3C 273B". In: Science 150.3692 (1965), S. 63–64. ISSN: 00368075, 10959203. URL: http://www.jstor.org/stable/1717963 (besucht am 28.12.2023).
- [2] S. Fernandes u. a. "Multiwavelength analysis of the variability of the blazar 3C 273". In: Monthly Notices of the Royal Astronomical Society 497.2 (Juli 2020), S. 2066–2077. ISSN: 1365-2966. URL: http://dx.doi.org/10.1093/mnras/staa2013.

Sources ii

[3] A. R. Whitney u. a. "Quasars Revisited: Rapid Time Variations
Observed Via Very-Long-Baseline Interferometry". In: Science
173.3993 (1971), S. 225–230. ISSN: 00368075, 10959203. URL:
http://www.jstor.org/stable/1732675 (besucht am 07.01.2024).