实验报告

姓名 <u>李霄奕&赵百豪</u> 日期 <u>2022 年 11 月 8 日</u> No <u>PB21511897&PB21061263</u> 实验台. <u>9</u> 评分:

实验题目: 常用电子仪器+RC 电路频率特性

实验目的:

- 1. 对本实验室的示波器稳压电源、函数信号发生器、毫伏表、万用表等仪器的使用方法有基本了解,为今后的实验打下基础。
- 2. 利用示波器观察信号波形,测量振幅与周期(频率)。
- 3. 测量一阶 RC 低通滤波电路的幅频特性和相频特性。

实验原理:

RC 低通电路、低通电路的幅频、相频特性如图:

网络传递函数:

$$H(j\omega) = |H(j\omega)| \angle \varphi(\omega)$$

其中:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$\angle \varphi(\omega) = -\operatorname{tg}^{-1}(\omega RC)$$

测量相位差角的两种方法:

- 1. 时域法(如图 1): $\varphi = \frac{\Delta T}{T} \times 360^{\circ}$
- 2. 李沙育图形法(如图 2): $\varphi = sin^{-1} \frac{B}{A}$

实验仪器:

- 1. 双踪示波器
- 2. 直流稳压稳流电源
- 3. 函数信号发生器
- 4. 毫伏表。
- 5. 电阻、电容、导线

实验步骤:

- 1. 观测示波器本身的校准信号,并用 DC 和 AC 档分别画出波形图,利用示波器自动测量、标注电压 U_p 和周期 T_o
- 2. 按图 1-1 接线,保持输入电压为 1V,测量输出电压,并读取输出电压 $U_0=0.707V$ 时的信号频率 f_c ,用李沙育法测量相位差角,画出 U_0 、A、B、 φ 随f变化关系。
- 3. 画出频率为 f_C 时的输入、输出电压波形图。并表明其超前、滞后的相位关系。

实验数据与分析: _

1. 方波信号测量

DC:

AC:

由图得:

校准信号	标称值	测量值		
仪准洁亏	DC&AC	DC	AC	
幅度(Up)	2.5V	2.47V	2.48V	
频率f	1kHz	1.0012kHz	1.0012kHz	
周期T	1000μs	998.82µs	998.82µs	

2. U_0 、A、B、 φ 随f变化关系

测量参数: 电阻 R=2.2125kΩ, 电容 C=103.1nF

f(Hz)	50	100	200	500	699.79	1000	2000	3000	5000
U0(V)	1.002	0.997	0.945	0.807	0.707	0.580	0.352	0.243	0.151
B(V)	0.20625	0.41925	0.78500	1.59900	1.98400	2.24750	2.64225	2.71700	2.74725
A(V)	2.81875	2.81800	2.81770	2.81770	2.81725	2.80800	2.81775	2.81776	2.81125
B/A	0.073	0.149	0.279	0.567	0.704	0.800	0.938	0.964	0.977
φ(°)	-4.196	-8.556	-16.176	-34.575	-44.768	-53.168	-69.672	-74.631	-77.751

其中,*f_C*=699.79Hz

幅频特性、相频特性曲线如下:

3. 频率为 f_c 时的输入、输出电压波形图

李沙育图形和波形图如下:

由时域法 $\varphi = \frac{\Delta T}{T} \times 360^{\circ}$ 得 φ =-43'54"

由李沙育法 $\varphi=sin^{-1}rac{B}{A}$ 得 ϕ =-44'46"

可以看出 Ui 超前 Uo约 45'

思考题:

1. 两个不同频率的正弦信号能否测量其相位差? 为什么?

不能。根据正弦信号的相位公式 $\varphi = \omega t + \varphi_0$,设两个信号的相位、角速度、初相位分别为 φ_1 、 φ_2 、 ω_1 、 ω_2 、 φ_0 1、 φ_0 2,则 $\Delta \varphi = \varphi_1 - \varphi_2 = (\omega_1 - \omega_2)t + \varphi_{01} - \varphi_{02}$,因为频率不同,所以 $\omega_1 \neq \omega_2$, $\Delta \varphi$ 随 t 发生变化,因此无法测量

2. 理论证明公式 $\varphi = sin^{-1} \frac{B}{A}$ 成立

CH1、CH2 的信号分别有:

$$x(t) = A_1 \sin(\omega t + \varphi_1)$$

$$y(t) = A_2 \sin(\omega t + \varphi_2)$$

则容易得出:

$$A = 2A_1$$

当y(t) = 0时,求得此时的 t:

$$t = \frac{k\pi - \varphi_2}{\omega} \qquad k \in \mathbb{Z}$$

带入得此时的x(t):

$$x(t) = A_1 \sin(k\pi + (\varphi_1 - \varphi_2)) \qquad k \in \mathbb{Z}$$

$$x(t) = \pm A_1 \sin \Delta \varphi$$

$$B = 2A_1 \sin \Delta \varphi$$

$$\frac{B}{A} = \frac{2A_1 \sin \Delta \varphi}{2A_1} = \sin \Delta \varphi$$

所以, $\Delta \varphi = \sin^{-1} \frac{B}{A}$,证毕。

3. 总结示波器、信号源的使用方法及注意事项

示波器:需要注意所在采集频道,先用标准信号测试仪器是否损坏,然后将其连接待测两级,调整波形时先用自动调整,然后再手动调整,以波形占到屏幕 2/3 以上为佳,若要定量测量开启光标进行精密测量。

信号源:调整频率时注意单位,注意电压值为有效值还是最大值,可以用按键调整参数,也可以用滚轮快速调节相对连续变化的参数。