

Model Development Phase Template

Date	10 July 2024
Team ID	739722
Project Title	Credit card approval prediction by using ML
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
#LOGISTIC REGRESSION
def logistic_reg(xtrain,xtest, ytrain, ytest):
    lr=LogisticRegression(solver="liblinear")
    lr.fit(xtrain, ytrain)
    ypred=lr.predict(xtest)
    print("*****LogisticRegression****")
    print("Confusion matrix")
    print(confusion_matrix(ytest,ypred))
    print("Classification_report(ytest, ypred))
```

```
#RANDOM FOREST
def random_forest (xtrain,xtest, ytrain, ytest):
    rf=RandomForestClassifier()
    rf.fit(xtrain, ytrain)
    ypred=rf.predict(xtest)
    print("******Random ForestClassifler****")
    print("Confusion matrix")
    print(confusion_matrix(ytest,ypred))
    print("Classification_report(ytest,ypred))
```



```
#DECISION TREE
def d_tree (xtrain, xtest, ytrain, ytest):
    dt=DecisionTreeClassifier()
    dt.fit(xtrain, ytrain)
    ypred=dt.predict(xtest)
    print("***DecisionTreeClassifier****")
    print('Confusion matrix')
    print(confusion_matrix(ytest,ypred))
    print("Classification_report")
    print(classification_report (ytest, ypred))
```

```
#GRADIENT BOOSTING
def g_boosting(xtrain, xtest, ytrain, ytest):
   gb=GradientBoostingClassifier()
   gb.fit(xtrain, ytrain)
   ypred=gb.predict(xtest)
   print("****GradientBoostingClassifier****")
   print("Confusion matrix")
   print(confusion_matrix(ytest, ypred))
   print("Classification_report(ytest,ypred))
```

						F1 Sco e	r
Model		Classi	ficatio	n Repo	ort		Confusion Matrix
Random		precision	recall	f1-score	support	81%	<pre>print(confusion_matrix(ytest,ypred))</pre>
Forest	Not Approved	0.80	0.85	0.82	500		Confusion matrix
	Approved	0.83	0.78	0.80	500		[199 2136]]
	accuracy macro avg	0.81	0.81	0.81 0.81	1000 1000		
	weighted avg	0.81	0.81	0.81	1000		

Model Validation and Evaluation Report:

Decision Tree	print(classification_report (ytest, ypred)) precision recall f1-score support 0 0.99 1.00 1.00 2692 1 1.00 0.99 1.00 2335 accuracy 1.00 5027 macro avg 1.00 1.00 1.00 5027 weighted avg 1.00 1.00 1.00 5027	79%	<pre>print("Classification report") Confusion matrix [[2685 7] [15 2320]]</pre>
Logistic Regression	print(classification_report(ytest, ypred)) Classification report recall f1-score support 0 0.93 0.97 0.95 2692 1 0.97 0.91 0.94 2335 accuracy 0.95 5027 macro avg 0.95 0.94 0.94 5027 weighted avg 0.95 0.95 0.95 5027	64%	<pre>confusion_matrix(y_test,ypred) array([[43, 32], [29, 65]])</pre>
Gradient Boosting	print(classification_report(ytest,ypred)) classification report recall f1-score support 0 1.00 1.00 1.00 2692 1 1.00 1.00 1.00 2335 accuracy . 1.00 5027 macro avg 1.00 1.00 1.00 5027 weighted avg 1.00 1.00 1.00 5027	78%	confusion_matrix(y_test,ypred) array([[63, 12],