

# *Streamflow Characterization at Zion National Park, Utah*

by

Dr. Gustavo E. Diaz  
Dept. of Civil Engineering  
Colorado State University

affiliated with  
National Park Service  
Water Resources Division - ARB

August 1992  
Fort Collins, Colorado 80523



# TABLE OF CONTENTS

|                                                                                          | <u>Page</u> |
|------------------------------------------------------------------------------------------|-------------|
| 1.0 SCOPE OF THE STUDY                                                                   | 1           |
| 2.0 STUDY AREA                                                                           | 2           |
| 2.1 Location                                                                             | 2           |
| 2.2 Maps Inventory                                                                       | 2           |
| 2.3 Drainage Areas                                                                       | 5           |
| 2.4 Streams Network                                                                      | 7           |
| 3.0 STREAMFLOW RECORDS AVAILABLE                                                         | 10          |
| 3.1 USGS Streamflow Gaging Stations                                                      | 10          |
| 3.2 NPS Streamflow Gaging Stations                                                       | 11          |
| 3.3 Period of Record for Gaging Stations                                                 | 11          |
| 4.0 STRUCTURE OF SURFACE RUNOFF                                                          | 14          |
| 4.1 Annual Time Series                                                                   | 14          |
| 4.2 Monthly Time Series                                                                  | 18          |
| 4.3 Daily Time Series                                                                    | 21          |
| 4.3.1 Daily Runoff Means                                                                 | 21          |
| 4.3.2 Daily Runoff Standard Deviations                                                   | 23          |
| 4.3.3 Higher Order Statistics of Daily Runoff                                            | 25          |
| 4.3.4. Correlation in Time of Daily Flows                                                | 28          |
| 4.3.5 Typical Water Years                                                                | 29          |
| 5.0 FLOW FREQUENCY ANALYSIS                                                              | 31          |
| 5.1 Frequency Analysis of Annual Peak Flows                                              | 31          |
| 5.2 Frequency Analysis of High and Low Flow Variables                                    | 35          |
| 6.0 FLOW DURATION ANALYSIS                                                               | 38          |
| 6.1 At a Gaged River Site                                                                | 38          |
| 6.2 Parametric Flow Duration Analysis                                                    | 41          |
| 7.0 LITERATURE CITED                                                                     | 47          |
| 8.0 APPENDICES                                                                           | 48          |
| I Estimated Values of Statistics of Mean-Daily Flows of the NFVR<br>at Springdale.       | 48          |
| II Fourier-Fitted Values of Statistics of Mean-Daily Flows of the NFVR<br>at Springdale. | 56          |

A faint, grayscale background image showing the lower portion of several classical columns, possibly from a temple or large building, standing in a row.

Digitized by the Internet Archive  
in 2012 with funding from  
LYRASIS Members and Sloan Foundation

<http://archive.org/details/streamflowcharac00diaz>

## LIST OF FIGURES

|        | <u>Page</u>                                                                   |    |
|--------|-------------------------------------------------------------------------------|----|
| Fig.1  | Zion Site Map, Main Watersheds                                                | 3  |
| Fig.2  | USGS Maps Covering Zion N.P. and Adjacent Areas                               | 4  |
| Fig.3  | Watersheds Subdivision in the Vicinity of Zion N.P.                           | 5  |
| Fig.4  | Hydrologic Subareas of Upper Virgin River Basin                               | 8  |
| Fig.5  | Period of Record of Surface Runoff Gaging Stations                            | 13 |
| Fig.6  | Fluctuations of Annual Discharge of the NFVR at Springdale                    | 15 |
| Fig.7  | Annual Series of Average and Extreme Daily Flows of the NFVR<br>at Springdale | 17 |
| Fig.8  | Long-Term Trace of Mean-Monthly Flows of the NFVR<br>at Springdale            | 19 |
| Fig.9  | Histograms of Maximum, Average, and Minimum Mean-Monthly<br>Flows             | 20 |
| Fig.10 | Periodicity in Daily Runoff Means of the NFVR at Springdale                   | 22 |
| Fig.11 | Periodicity in Daily Runoff Standard Deviations of the NFVR<br>at Springdale  | 24 |
| Fig.12 | Periodic Estimates of Coefficient of Variations of the NFVR<br>at Springdale  | 25 |
| Fig.13 | Daily Coefficient of Skewness of the NFVR at Springdale                       | 26 |
| Fig.14 | Daily Coefficient of Kurtosis of the NFVR at Springdale                       | 27 |
| Fig.15 | First Autocorrelation Coefficient of the NFVR at Springdale                   | 29 |
| Fig.16 | Typical Dry, Average, and Wet Water-Years of the NFVR<br>at Springdale        | 30 |
| Fig.17 | Flood Frequency Distributions of Annual Peaks of the NFVR<br>at Springdale    | 32 |
| Fig.18 | Fitted Distribution and Confidence Limits of Annual Peaks                     | 34 |
| Fig.19 | High-Flows Frequency Curves for Various Consecutive Days                      | 36 |
| Fig.20 | Low-Flows Frequency Curves for Various Consecutive Days                       | 37 |
| Fig.21 | Flow Duration Curve of the NFVR at Springdale                                 | 40 |
| Fig.22 | Parametric Flow Duration Analysis in the Zion N.P. Region                     | 45 |

## LIST OF TABLES

|          |                                                               |    |
|----------|---------------------------------------------------------------|----|
| Table 1. | Topographic Maps Inventory                                    | 4  |
| Table 2. | Drainage Areas and Stream Length Measurements                 | 6  |
| Table 3. | Surface Runoff Gaging Stations in the Area of Zion N.P., Utah | 12 |
| Table 4. | Instantaneous Peak Flows of the NFVR at Springdale            | 31 |
| Table 5. | Values of the Flow Duration Curve at Springdale               | 39 |
| Table 6. | Selected Gaging Stations for Parametric FDA                   | 42 |
| Table 7. | Flow Values for Duration Curves at Selected Sites             | 44 |



## **1.0 SCOPE OF THE STUDY**

The purpose of this study is to provide a comprehensive description of the hydrological characteristics of surface runoff at Zion National Park and surrounding watersheds. The analysis is focused mainly on the North Fork of the Virgin River which traverses across the most popular portion of the National Park. The study is also extended, although in less detail, to other streams in the area such as the East Fork of the Virgin River, La Verkin Creek, North Creek, and Kolob Creek, all part of the same hydrologic region. The discussions presented in this report are aimed at providing the reader with an in-depth understanding of the structure of surface flow in the region, as well as the causal factors for their characteristics. Time series of surface runoff are analyzed at annual, monthly, and daily time intervals. The narrative description of the findings is accompanied by several graphs and tables.

The report is organized in the following manner. Chapter 2 defines the general area of interest for the study and provides basic physical information of the streams network. Chapter 3 summarizes all the existing records of surface water within the area of interest. Chapter 4 provides an in-depth characterization of the flow regime of the North Fork of the Virgin River, covering the structural aspects of flow time series at several time intervals; Chapter 4 also presents the bulk of the results of the study. Chapter 5 concentrates on the distribution of flood events in the North Fork of the Virgin River and the frequency analysis of high- and low-flow variables. Finally, Chapter 6 provides a sense of the variability of flows at the North Fork of the Virgin River by means of flow duration analysis. Chapter 6 also introduces a parametric flow duration analysis for the whole Zion region that has the potential to estimate flow availability and variability at any ungaged site in the region. Appendixes I and II contain results from computations introduced in Chapter 4.

Because of the vast number of specialists providing technical support to the Zion project, this report may not satisfy all information needs. If this is the case, special requests for further investigation of hydrological aspects at Zion National Park should be directed to the Zion Project manager for their prompt attention.



## **2.0 STUDY AREA**

### **2.1 Location**

Very comprehensive descriptions of the general area of the Upper Virgin River Basin, which includes Zion National Park, can be found in several reports and publications. Among them, the USGS (1950) and the Utah Division of Water Resources (1983) provide complete background information. For the purpose of this study, the description presented herein will be limited to the main features characterizing the flow network of the Virgin River and its tributaries upstream from the city of Virgin.

Zion National Park is located in the south-western corner of the State of Utah within the Virgin River drainage basin, Figure 1. The North and East Forks of the Virgin River together with several other smaller tributaries of the Virgin River drain the Park. The Park's boundaries encompass 231.3 square miles (148,050 acres) with elevations ranging from around 8000 feet above sea-level in the uplands to 4000 feet at the Park's headquarters. Figure 1 depicts the boundaries of Zion National Park and the major basins conforming the headwaters of the Virgin River. The principal water courses constituting the Virgin River are, from West to East: La Verkin Creek, North Creek; the North Fork of the Virgin River (NFVR) and its tributaries, and the East Fork of the Virgin River (EFVR). The Virgin River collects surface runoff from the above mentioned streams, running east to west from the confluence of the EFVR and the NFVR. With the addition of the Kanab Creek basin (located outside the Upper Basin of the Virgin River), the hydrologic units that constitute the general area of interest for this study are defined.

### **2.2 Maps Inventory**

Most of the topographic information incorporated in this report was extracted from topographic maps prepared by the U.S. Geological Survey at scale 1:24,000, dated 1950 to 1986. Table 1 contains an inventory of 31 topographic maps utilized to cover the area occupied by Zion National Park and its adjacent watersheds. Table 1 also is accompanied by Figure 2 which displays the relative position of the maps.





Fig.1 Zion Site Map, Main Watersheds





**Fig.2 USGS Maps Covering Zion National Park and Adjacent Areas**

**Table 1. Topographic Maps Inventory**

| Pos. | Map Name         | Pos. | Map Name           | Pos. | Map Name              |
|------|------------------|------|--------------------|------|-----------------------|
| 1    | Kanarraville     | 11   | Long Valley Junct. | 21   | Springdale West       |
| 2    | Cedar Mountain   | 12   | Alton              | 22   | Springdale East       |
| 3    | Webster Flats    | 13   | Smith Mesa         | 23   | The Barracks          |
| 4    | Navajo Lakes     | 14   | Guardian Angels    | 24   | Mount Carmel          |
| 5    | Henrie Knolls    | 15   | Temple of Sinawava | 25   | White Tower           |
| 6    | Kolob Arch       | 16   | Clear Creek Mount. | 26   | La Verkin 4 S.W.      |
| 7    | Kolob Reservoir  | 17   | Orderville         | 27   | Smithsonian Butte     |
| 8    | Cogswells Point  | 18   | Glendale           | 28   | Hildale               |
| 9    | Straight Canyon  | 19   | Hurricane          | 29   | Elephant Butte        |
| 10   | Strawberry Point | 20   | Virgin             | 30   | Yellow Jacket Canyon. |
|      |                  |      |                    | 31   | Kanab                 |



## 2.3 Drainage Areas

The maps listed in Table 1 provided the basic geographical information for the development of a Geographic Information System (GIS) for the area of interest. At present, the following thematic layers are available:

- ▶ watersheds boundaries
- ▶ river drainage network
- ▶ Zion National Park boundaries
- ▶ streamflow gaging stations

Figure 3 shows the main basins delineated by the thicker lines, and in turn, each basin segmented into several subbasins, as shown by the lighter green lines.



**Fig.3 Watersheds Subdivision in the Vicinity of Zion N.P.**



The GIS was used to compute areal measurements for all the basins and subbasins delineated in Figure 3. Area measurements are used to better describe the hydrological setting of the streams network, and to support future hydrologic analysis and modeling efforts in the area. Contributing drainage areas were measured at points of obvious interest such as at the confluence of streams, location of streamflow gaging stations, field study sites, etc. The results of the area measurements are included in Table 2, together with some stream length measurements.

**Table 2. Drainage and Stream Length Measurements**

| Watershed Name                         | ---Drainage Area (mi <sup>2</sup> )--- |        | River Length (mi) |       |
|----------------------------------------|----------------------------------------|--------|-------------------|-------|
|                                        | Partial                                | Total  | Partial           | Total |
| KANAB CREEK SUB-AREA .....             |                                        | 191.92 |                   |       |
| Kanab Creek                            | 191.92                                 |        | 38.74             |       |
| EAST FORK VIRGIN RIVER SUB-AREA .....  |                                        | 409.49 |                   |       |
| East Fork V.R.                         | 187.40                                 |        |                   | 52.17 |
| above Site (2)                         | 35.62                                  |        | 13.49             |       |
| between Sites (2) and (3)              | 127.75                                 |        | 34.57             |       |
| between Site (3) and confluence        | 24.03                                  |        | 4.11              |       |
| Stout Creek                            | 23.52                                  |        |                   |       |
| Lydias Creek                           | 15.03                                  |        |                   |       |
| Muddy Creek                            | 36.47                                  |        |                   |       |
| Meadow Creek                           | 47.65                                  |        |                   |       |
| Rock Canyon                            | 26.46                                  |        |                   |       |
| Yellow Jacket                          | 30.30                                  |        |                   |       |
| Shunes Creek                           | 37.66                                  |        |                   |       |
| NORTH FORK VIRGIN RIVER SUB-AREA ..... |                                        | 354.01 |                   |       |
| North Fork V.R.                        | 123.61                                 |        |                   |       |
| above Site (10)                        | 89.77                                  |        |                   |       |
| between Sites (10) and (12)            | 22.69                                  |        |                   |       |
| below Site (12)                        | 11.15                                  |        |                   |       |
| Deep Creek                             | 127.87                                 |        | 18.11             |       |
| Kolob Creek                            | 29.43                                  |        | 16.82             |       |
| Orderville Creek                       | 40.67                                  |        |                   |       |
| Clear Creek                            | 32.43                                  |        |                   |       |



|                                |        |       |
|--------------------------------|--------|-------|
| NORTH CREEK SUB-AREA .....     | 99.38  |       |
| North Creek                    | 99.38  | 19.36 |
| above Site (14)                | 94.99  | 16.19 |
| below Site (14)                | 4.39   | 3.17  |
| VIRGIN RIVER SUB-AREA .....    | 115.75 |       |
| Virgin River                   | 115.75 | 25.18 |
| above Site (15)                | 84.37  | 11.91 |
| below Site (15)                | 31.38  | 13.27 |
| LA VERKIN CREEK SUB-AREA ..... | 119.18 |       |
| La Verkin Creek                | 95.98  | 31.69 |
| above Site (16)                | 95.98  |       |
| Spring Creek                   | 6.21   |       |
| Camp Creek                     | 9.54   |       |
| Taylor Creek                   | 7.45   |       |

---

## 2.4 Streams Network

The following description of the stream network is carried out from the water system's point of view. That is, not just looking at the problem within the political boundaries of the National Park, but extending the analysis at areas adjacent to the Park as well. Figure 4 shows the Virgin River basin subdivided into several subareas. The subareas have been named according to the nomenclature adopted by the Utah Division of Water Resources (1983). They are from west to east: Hurricane-La Verkin, Virgin-Springdale, North Creek, North Fork of the Virgin River, and East Fork of the Virgin River. These five subareas constitute the Upper Basin of the Virgin River. The sixth subarea shown in Figure 4, Kanab Creek, although it does not belong to the Virgin River basin, has been included as part of the study area in order to extend the boundaries of the hydrological analysis as explained later in Section 6. The subareas shown in Figure 4 were purposely detached from each other to emphasize the independence of the stream runoff.

Figure 4 shows basic information of the stream networks within each subarea. The drainage network has been digitized from the USGS topographic maps indicated earlier, where all perennial streams and only the most important ephemeral water courses were included in the process. Following the quantitative classification of channels network suggested by Horton (Bras, 1990) and based on the level of resolution adopted during the





**Fig. 4** Hydrologic Subareas of Upper Virgin River Basin



digitizing process, the most downstream portion of the EFVR and NFVR reach a stream order of 4. Consequently, after the junction of these two streams which form the Virgin River, the Virgin River itself (within the Virgin River subarea) has a stream order of 5. Figure 4 also shows 16 sites, denoted with red diamonds, indicating the location of the surface-water gaging stations operated by the U.S. Geological Survey.

The two major contributors of water to the Upper Virgin River, the North and East Forks of the Virgin River, constitute the two largest subareas depicted in Figure 4. Within these two subareas, the Park is located in the most downstream portion of the basins. This situation makes the Park's aquatic resources highly vulnerable to changes in the hydrologic regime occurring at the headwaters and intermediate reaches of the streams. The section of the Park within La Verkin Creek subarea can also be impacted by development upstream, since a considerable portion of La Verkin Creek headwaters lies above the Park. Conversely, the areas of the Park within North Creek and the Virgin/Springdale subareas occupy the upper portion of the headwaters, and consequently, are less likely to be affected by development upstream from the Park. Finally, a small section of the Park extends west of La Verkin Creek into three small tributaries of Ash Creek. They are: Spring Creek, Camp Creek, and Taylor Creek. The location of these streams and their corresponding subbasins are shown in Figures 1 and 3 respectively.



## **3.0 STREAMFLOW RECORDS AVAILABLE**

### **3.1 USGS Streamflow Gaging Stations**

Records of surface runoff in the area of interest are available for several USGS gaging stations as indicated in Table 3. The Site No. helps to locate the gaging station in Figure 4. The USGS No. and Station name are as given by the USGS. Latitude, longitude, elevation, and drainage area were also provided by the USGS. Each period of analysis includes only those water-years with complete records at the station. The number of water-years with complete records is also indicated, since some records are fragmented (with water-years missing). Historic mean annual flow for the period of record is indicated as discharge, in cubic-feet per second, and as annual volume, in thousands of acre-feet per year. Table 3 also provides remarks concerning the degree of regulation of the streams and offstream water diversions affecting flow measurements.

All gaging stations listed in Table 3 are located in the same hydrologic region, the Upper Basin of the Virgin River, except for the station at site No.(1), Kanab Creek near Kanab, which belongs to the Kanab drainage area. This station was included to expand the boundaries of the study to areas with hydrologic conditions similar to the rest of the stations, and that can potentially contribute to the hydrologic information for the whole region. It should be also noted that flow records at Site (12), USGS No. 09405500, and at Site (13), USGS No. 09405501, refer to the same gaging station, located in the North Fork of the Virgin River near Springdale, one hundred feet from Park headquarters. Figure 4 shows only Site (12) for that reason. However, the corresponding flow records are different. The USGS published flow records for No.09405501 as the flows actually registered at the gaging station. On the other hand, the record for No.09405500 is a combined flow, which considers river flows at the gage plus flows diverted by the Springdale Canal (USGS No. 09405499), located a short distance upstream of the gaging station. Flow measurement at the Springdale Canal was discontinued after 1988, when the conveying system was changed from an open channel to a closed conduit. Since then, water diversions to the City of Springdale can only be estimated based on the past records.



### **3.2 NPS Streamflow Gaging Stations**

The National Park Service operated continuous recording gaging stations on the North Fork and the East Fork of the Virgin River from June 15, 1988, to June 13, 1989. Their locations are indicated in Figure 4 as Sites (10) and (3) respectively. Although a very short period of record, data collected at these stations were used to determine mean daily and mean monthly flows for the period over which the gages were operated (Hermes, 1991). During that same period of time, several discharge measurements were made at both locations with the purpose of developing stage-discharge relationships.

Unfortunately, water years 1988 and 1989 were at or below average in terms of total discharge for the whole region, impeding the measurement of very large peak flows at either stream. Measurements of streamflows at the NPS stations were part of a series of studies conducted in the area to assess potential changes of the park's water related resource attributes resulting from alterations in the hydrological regime.

Through a cooperative agreement between the U.S. Geological Survey and the National Park Service, two new gaging stations were installed in the old NPS locations during the summer of 1991. Data collection at these two new stations started in October 1991. Recently, a third station was installed in La Verkin Creek, before the stream leaves the Park. The station was installed and is being operated by the National Park Service since the spring of 1992.

### **3.3 Period of Record for Gaging Stations**

The periods of record for surface runoff as recorded by the USGS and NPS gaging stations are also displayed in Figure 5 in the form of a bar diagram. The bars allow the reader to readily compare the period of record available for a particular station in relation to the periods for the rest of the stations. The station at Site (17) shows practically no period of record because of its very recent installation (March 1992). Records for stations (3) and (10) include the period June 1988-June 89 (indicated as water year 1989) when they were operated by the NPS, and since October 1991 under USGS operation.



**Table 3. Surface Runoff Gaging Stations in the Area of Zion N.P., Utah.**

| Site<br>No. | USGS<br>No. | Station Name                       | Latitude | Longitude | Elevat.<br>[feet] | Drainage<br>Area<br>[mi <sup>2</sup> ] | Period of Analysis |        | Mean Annual Flow |          | Remarks                                               |
|-------------|-------------|------------------------------------|----------|-----------|-------------------|----------------------------------------|--------------------|--------|------------------|----------|-------------------------------------------------------|
|             |             |                                    |          |           |                   |                                        | 19<br>—            | No.Yrs | [cfs]            | [Ac-Ft]  |                                                       |
| (1)         | 09403600    | KANAB CREEK near KANAB             | 37:06:02 | 112:32:50 | 5060.             | 198.0                                  | 79.90              | 12     | 14.63            | 10,568.  | no diversions above station                           |
| (2)         | 09404450    | E.F. VIRGIN Rv. near GLENDALE      | 37:20:19 | 112:36:13 | 5900.             | 74.0                                   | 67.91              | 25     | 19.37            | 14,015.  | few diversions abo. stat.                             |
| (3)         | 09404900    | E.F. VIRGIN Rv. near SPRINGDALE    | 37:09:51 | 112:57:27 | 4700.             | 284.0                                  | 89,                | 1      |                  |          | 1989 under NPS operation                              |
| (4)         | 09405200    | DEEP CREEK near CEDAR CITY         | 37:31:18 | 112:53:01 | 7680.             | 6.7                                    | 88.91              | 4      | 1.64             | 1,187.   | some diversions above stat                            |
| (5)         | 09405250    | E.F. DEEP CREEK near CEDAR CITY    | 37:30:35 | 112:52:58 | 7640.             | 7.8                                    | 88.91              | 4      | 2.84             | 2,051.   | some diversions above stat                            |
| (6)         | 09405300    | CRYSTAL CREEK near CEDAR CITY      | 37:31:20 | 113:01:25 | 8320.             | 10.0                                   | 57.61              | 5      | 7.25             | 5,234.   |                                                       |
| (7)         | 09405400    | N.F. VIRGIN Rv. near GLENDALE      | 37:28:22 | 112:46:40 | 7530.             | 5.7                                    | 73.78              | 6      | 5.02             | 3,624.   |                                                       |
| (8)         | 09405420    | N.F. VIRGIN Rv. blw BULLOCK CANYON | 37:25:06 | 112:47:59 | 6420.             | 30.0                                   | 75.84              | 10     | 19.64            | 14,307.  |                                                       |
| (9)         | 09405450    | N.F. VIRGIN Rv. abo. ZION NARROWS  | 37:23:26 | 112:49:30 | 6000.             | 42.0                                   | 79.84              | 6      | 25.67            | 18,546.  |                                                       |
| (10)        | 09405490    | N.F. VIRGIN Rv. above BIG BEND     | 37:16:43 | 112:56:28 | 4400.             | 288.0                                  | 89,                | 1      |                  |          | 1989 under NPS operation                              |
| (11)        | 09405499    | SPRINGDALE CANAL nr. SPRINGDALE    | 37:12:42 | 112:58:33 | 3970.             | ---                                    | 69.88              | 20     | 6.50             | 4,700.   |                                                       |
| (12)        | 09405500    | N.F. VIRGIN Rv. near SPRINGDALE    | 37:12:35 | 112:58:40 | 3970.             | 344.0                                  | 26 &<br>28.88      | 62     | 104.48           | 75,718.  | minor regulation (Kolob)<br>Springdale canal included |
| (13)        | 09405501    | N.F. VIRGIN Rv. near SPRINGDALE    | 37:12:35 | 112:58:40 | 3970.             | 344.0                                  | 69.72 &<br>74.91   | 22     | 109.00           | 78,900.  | some diversions abo. stat.                            |
| (14)        | 09405900    | NORTH CREEK near VIRGIN            | 37:14:14 | 113:09:01 | 3680.             | 97.0                                   | 86.91              | 6      | 6.17             | 4,455.   | some diversions abo. stat.                            |
| (15)        | 09406000    | VIRGIN RIVER at VIRGIN             | 37:11:53 | 113:12:22 | 3440.             | 934.0                                  | 10.71 &<br>79.91   | 75     | 201.89           | 146,254. | some diversions abo. stat.                            |
| (16)        | 09406150    | LA VERKIN CREEK near LA VERKIN     | 37:12:17 | 113:17:03 | 3040.             | 91.0                                   | 86.91              | 6      | 8.45             | 6,105.   | some diversions abo. stat.                            |
| (17)        | NPS         | LA VERKIN CREEK within ZION N.P.   |          |           |                   |                                        |                    |        |                  |          | recently installed                                    |





Fig. 5 Period of Record of Surface Runoff Gaging Stations



## **4.0 STRUCTURE OF SURFACE RUNOFF**

Despite some expected differences in flow characteristics according to the order of the stream being analyzed, all watercourses in the upper-basin of the Virgin River display the same typical flow pattern of rivers in the semi-arid region of the Western United States. For the purpose of this study, an in-depth characterization of the flow regime of the North Fork of the Virgin River at Springdale, USGS station No.09405500 was carried out. The reasons for selecting that particular river location are:

- ☒ The NFVR is one of the most threatened rivers in the Park at the present time.
- ☒ Station No.09405500 is strategically located in the downstream portion of the stream. Thus, it captures all hydrological changes occurring in the headwaters of the basin.
- ☒ The gaging station is also close to the reach of the river selected by the NPS for ecological studies.
- ☒ The station has a relatively long period of flow record available.

Gaging station No.09405500, on the North Fork of the Virgin River, is located 1.9 miles upstream from the town of Springdale, and in the proximity of Zion National Park visitors center. The station is located approximately 7 miles downstream from the study site selected by the NPS.

### **4.1 Annual Time Series**

This analysis of flow time series begins at the annual level, which is the largest time-interval of analysis for a periodic process. Figure 6 displays historical annual discharge (in volume units) at Springdale from year 1926 to 1991 (1927 excluded), a total of 65 years. The average annual discharge for that period is 74,200 ac-ft (102.4 cfs). Due to the interruption of flow measurements at the Springdale Canal after water-year 1988, annual flow at Springdale for water-years 1989, 1990, and 1991 was computed as the flow measured at the station plus 4,700 ac-ft, which is the average annual canal diversion for the period 1969-1988. Any inaccuracy introduced by this procedure affects only the last three years of the series, and it is considered minor when analyzing flows at the annual scale.





**Fig. 6 Fluctuations of Annual Discharge of the NFVR at Springdale**

The total annual discharge measured at Springdale acts as a macroscale integrator of all processes in the watershed up to that point, from which it is possible to detect changes in the hydrologic environment, either by slow evolution in nature or by human activities. In other words, the annual time series should allow us to infer the existence of long-term trends or jumps in the series parameters along the period of record. Annual runoff series in natural systems are typically non-correlated in time. The annual flows at Springdale exhibit acceptable levels of independence, with a serial autocorrelation coefficient of about 0.11, slightly lower than the average value for rivers in the Western United States.

Kolob Reservoir, located on Kolob Creek, Figure 4, is the only storage system built in the NFVR system. The presence of Kolob Reservoir, since 1957, raises the question as to what degree natural flows have been affected by the operation of the reservoir. The ratio



between the maximum storage capacity of the reservoir (5,600 ac-ft) and the mean annual flow at Springdale (76,000 ac-ft) is 0.07. This relatively small ratio (7%) indicates the reduced capability of Kolob Reservoir to regulate flows in the NFVR system. The complete series of annual discharge at Springdale [1926-1991] was split into two sub-periods, the first from 1926 to 1956, and the second from 1957 to 1991. The two subsamples were used to test whether there was an appreciable change in the mean annual discharge for the periods before and after Kolob reservoir entered into operation.

The Student-t test indicated that the change in average annual discharge for the two subperiods, a 2% increase, is statistically insignificant at the two-tailed 5% confidence level. Thus, it could be concluded that there is no appreciable change in total annual runoff at Springdale due to the effect of Kolob Reservoir. However, it should be noticed that annual precipitation at Zion (NOAA station No. 9717) for the second sub-period (15.7 inches) is 12.9% larger than for the first sub-period (13.9 inches). This appreciable increase in precipitation is likely to conceal any decrement in total annual runoff due to water losses and withdrawals from Kolob Reservoir.

In a natural and relatively undisturbed system like the NFVR, inconsistency in data can only be produced by systematic errors in flow measurements which, fortunately, were neither reported nor detected at this station. Only the natural stochastic variation between wet, normal, and dry water years can be observed. The computed upward trend of the annual series, suggested in Figure 6 by the unbroken line, has no statistical significance at the 5% confidence level. That is, the slope of the regression line is statistically not different from zero.

Extreme values of annual discharge are also of interest. Figure 7 displays, in the same graph, the maximum, the average, and the minimum mean-daily flows (in cfs) that occurred each year, using two scales. Minimum annual flows have an average value of 33.7 cfs and a standard deviation of 6.1 cfs, indicative of the practically constant minimum base flow at Springdale year after year. Average annual discharge, with an average value of 102.4 cfs, displays natural variability with a standard deviation of 47.8 cfs. As expected, the variation of maximum annual flows is larger than for the previous two statistics, with an average value and standard deviation of 866.7 cfs and 784.2 cfs respectively. The large



variance is mainly due to three very large flow events occurring during water years 1938, 1967, and 1980.



Fig. 7 Annual Series of Average and Extreme Daily Flows of the NFVR at Springdale

The hypothesis of negligible trends in the annual series of average and extreme mean-daily flows was also tested utilizing the Student-t test. They were found insignificant in a two-tailed test at the 5% confidence level. These findings assure the homogeneity of the series of annual discharge of the NFVR at Springdale.



## 4.2 Monthly Time Series

The analysis of periodic time series like monthly flows is more complex than for annual series due to the influence of the annual cycle, which introduces periodic variations in the statistical characteristics of the former series. This section presents a discussion of the basic statistics for the monthly time series of flows in the NFVR. Figure 8 shows a long-term sequence of mean-monthly flows at Springdale, from 1926 to 1988. Water years 1989 through 1991 were excluded for the reasons explained earlier. This series has a long-term mean value of 104.5 cfs indicated by the dashed line. Despite the plotting of all those many years of monthly information on a single graph, it is still possible to appreciate the basic structure of periodicity and the high stochastic variability typical of mean-monthly flows. It is important to notice that 95% of the mean-monthly flows are below the 300 cfs level. Of the remaining 5% of flow events, shown in the graph by the sharp spikes that reach above 300 cfs, practically all of them occur during the months of April (40%) and May (54.3%), with only 2 events during the month of June (5.7%).

Periodicity in the mean-monthly flow series should be viewed as a deterministic processes, governed by physical mechanisms such as rainfall and snowmelt. From October through mid-March, when precipitation on the drainage is mostly in the form of snow, the river flow consists almost wholly of ground-water discharge. The largest mean-monthly flows began in April and continued through June. During that period, the hydrograph resembles that of a typical snowmelt season in high mountainous regions. After the snowmelt season is over, from July to September, the river peaks several times in response to runoff-producing rains. During the snowmelt and summer thunderstorms season, overland runoff is predominant over ground-water contribution.

The information embedded in the long term sequence of mean-monthly flows can be summarized by the three histograms shown in Figure 9, which represent the maximum, the average, and the minimum mean-monthly flows during the whole period of record for each month, starting in October and finishing in September. The histogram of maximum mean-monthly flows displays particularly large values for the months of December and February. Flood events that occurred in December of 1967 and February of 1980 are the reason for the irregular shape of the histogram.





**Fig. 8 Long-Term Trace of Mean-Monthly Flows of the NFVR at Springdale**

Hermes (1990) assessed the hypothesis that the distribution of mean-monthly flows at Springdale is different for the periods before and after the operation of Kolob Reservoir. Her analysis utilized a nonparametric method, the Wilcoxon rank sum test, to conclude that for every month of the year, the pre- and post-dam mean-monthly flows are derived from the same population. The null hypothesis (no difference) was proved at a 5% significance level. In other words, there is no significant difference in the structure of monthly flows before and after the construction of Kolob Reservoir. If a significance level of 10% is selected, the null hypothesis would still be accepted for all months except September, implying that there is a difference between pre- and post-dam monthly flows for that particular month.





**Fig. 9 Histograms of Maximum, Average, and Minimum Mean-Monthly Flows**

However, as mentioned in the Section 4.1, the post-dam period received a substantial increase in precipitation (12.9%). Though the increase in discharge did not change significantly, only a 2% increase of the post- over the pro-dam period, the variability of the monthly-flows as measured by the monthly standard deviation was substantially increased, a 27% larger during the second period. In general, a more intense precipitation process will tend to increase the variance of surface runoff, whereas the presence of a reservoir in the system like Kolob Reservoir will tend to diminish it. Here there are two processes acting simultaneously and in opposite directions. If there were any decrease in flow variance due to Kolob Reservoir, it has been largely offset by the increase in variance due to the change in precipitation.



## 4.3 Daily Time Series

Unlike annual hydrological series, daily runoff series are non-stationary in nature. Non-stationarity is a consequence of periodicity in series parameters, which in turn, is due to the orbital rotation of the planet around the sun. Periodicity in lower-order parameters such as the mean, standard deviation, and coefficient of variation is easy to observe. But even higher-order parameters such as the skewness, kurtosis, and serial autocorelation coefficients display periodicity. A presentation of an analysis of the basic statistics follows.

### 4.3.1 Daily Runoff Means

The snow pack accumulated during the winter months melts mostly during April, May, and June, generating the spring peaking hydrograph shown in Figure 10. The hydrograph of estimated periodic means is composed of 365 values, from October 1<sup>st</sup> to September 30<sup>th</sup>. Each ordinate of the hydrograph is computed as the average value, during the whole period of record (1926-1988, 1927 excluded), of the daily flows obtained from the USGS database. For instance, the periodic mean for October 1<sup>st</sup> is obtained as the average value of the 62 mean-daily flows on record for that particular day. It should be mentioned that the daily flow values provided by the USGS are already the average flow for the day. Mathematically, periodic mean values are estimated by,

$$m_t = \frac{1}{n} \sum_{p=1}^n X_{p,t}$$

where  $X_{p,t}$  represents the observed daily values, with  $p = 1, 2, \dots, n$  the sequence of years of record, and  $t = 1, 2, \dots, w$  the sequence of days in the annual cycle of  $w = 365$ , and  $m_t$  the estimated periodic daily means.

The mean hydrograph during the snowmelt season shows relatively smooth rising and recession limbs, with the highest peak values in the order of 370 cfs. Outside the snowmelt season, mean-daily flow values remain relatively constant, in the order of 60 cfs. For the whole year, the hydrograph averages 104.48 cfs. However, as a consequence of intense storm events, the river peaked many times in response to runoff-producing rains. This is depicted in the graph by sharp increases in the mean-daily values.





**Fig.10 Periodicity in Daily Runoff Means of the NFVR at Springdale**

The estimated values of a statistic always carry sampling variability because of the relatively small sample size. However, for some special applications, it may be preferable to work with a smooth representation of the estimated periodic means rather than with the sharp fluctuations of the estimated values. This is shown in Figure 10 by the darker line representing the periodic function of the daily means, fitted by Fourier series analysis. In statistical terms, the sample estimation of the statistic is being replaced by the estimate of its population value. The Fourier series representation of the periodic series is computed by the following expression,



$$v_t = m + \sum_{j=1}^h [A_j \cos(2\pi jt/w) + B_j \sin(2\pi jt/w)]$$

$$A_j = \frac{2}{w} \sum_{t=1}^w m_t \cos(\frac{2\pi jt}{w}), \quad j = 1, \dots, h$$

$$B_j = \frac{2}{w} \sum_{t=1}^w m_t \sin(\frac{2\pi jt}{w}), \quad j = 1, \dots, h$$

where  $m$  is the mean of  $m_t$ , and  $A_j$  and  $B_j$  are estimated coefficients,  $j$  is the harmonic, and  $h$  is the total number of harmonics. Only a few number of harmonics is required to fit daily time series, usually from 4 to 8. Although techniques are available to select the proper number of harmonics that more significantly contribute to explain the variability of the statistic, only selection by visual inspection was used in this study. Estimated and fitted values of the periodic daily mean are included at the end of this report as Appendix I and II respectively.

#### 4.3.2 Daily Runoff Standard Deviations

The change in variance over the annual cycle results from sampling characteristics due to differences in mechanisms of producing runoff, such as runoff hydrographs from rainfall, snowmelt, groundwater or their mixtures (Yevjevich, 1984). In the NFVR, the nature of these different processes is reflected by the 365 estimates of the standard deviation of the mean-daily flows,  $s_t$ , as displayed in Figure 11, and computed according to the expression below, where all variables are as defined earlier,

$$s_t = \left[ \frac{1}{n-1} \sum_{p=1}^n [X_{p,t} - m_t]^2 \right]^{1/2}$$

Comparing Figures 10 and 11, it can be seen that the periodicity in the mean and standard deviation of daily-flows are in phase. This is also true for higher-order parameters as shown later. Snowfall during fall and winter, and posterior snowmelt during the spring season, significantly smooth the estimates of the standard deviation from March through June. Estimates of the standard deviation during this period are, in general, of the same magnitude as the estimates of the daily means, denoted in Figure 11 as a period with





**Fig.11 Periodicity in Daily Runoff Standard Deviations of the NFVR at Springdale**

relatively small variance. As we depart from the snow-producing portion of the hydrograph and analyze periods of rainfall-producing runoff or their mixture snowmelt-rainfall, we find sharp spikes for the estimated values of the daily standard deviation. These deviations can double or triple the mean values (compare Figures 10 and 11, both drawn at the same scale), indicated in the graph as periods with medium and large variance. These large sampling variations are related to the fluctuations of daily flow series. The darker line in Figure 11 indicates the fitted periodic function of the standard deviation by Fourier series. Eight harmonics were used to generate the fitted function. The estimated and fitted values of the standard deviation are included in Appendix I and II respectively.



Another indicator of the degree of variability of mean-daily flows is given by the Coefficient of Variation ( $Cv$ ), computed as the ratio between the standard deviation and the mean values of the daily flows. Figure 12 displays the 365 estimates of  $Cv$ , with a general mean of 0.74.  $Cv$  during the period mid-March to early July (snowmelt season) exhibits a smooth variation with most values around 1. Outside that period,  $Cv$  changes abruptly above and below the general mean, reflecting the large variability in mean-daily flows, a typical characteristic of rivers in this region. For Day 67,  $Cv$  reaches the maximum value of 4.71 (not shown). This peak is associated with the maximum mean-daily flow of 4,990 cfs.



**Fig.12 Periodic Estimates of Coefficient of Variation of the NFVR at Springdale**

#### 4.3.3 Higher Order Statistics of Daily Runoff

In principle, there are 365 probability distributions and 365 sequential dependence functions in the daily-flow series, one for each of the 365 days of the annual cycle (Yevjevich, 1984). These distributions and dependence functions can vary from day to day throughout the year. Determination of the most suitable probability function for each marginal distribution is beyond the scope of this study. Nevertheless, basic parameters like the arithmetic mean and standard deviation of the daily-flows give us a good indication of the



shape of the distributions. More yet, we can better describe the shape of the marginal distributions by computing higher-order parameters, like the Skewness coefficient,  $g_t$ , and the Kurtosis coefficient,  $k_t$ . The two parameters  $g_t$  and  $k_t$  are estimated by the expressions

$$g_t = \sum_{p=1}^n \frac{[X_{p,t} - m_t]^3}{n s_t^3}$$

and

$$k_t = \sum_{p=1}^n \frac{[X_{p,t} - m_t]^4}{n s_t^4}$$

respectively, where  $m_t$  and  $s_t$  were previously defined. The skewness coefficient provides a measure of the "asymmetry" of the distribution, independent of the dimension of the variable. Due to large sampling variations characteristic of short-time interval series, high skewness values are typical for mean-daily runoff series. Figure 13 displays high positive



Fig.13 Daily Coefficient of Skewness of the NFVR at Springdale



skewness values for the daily-flows at Springdale, with an average value of 3.5, indicating highly asymmetric marginal distributions. For comparison, a normal distribution has a value of skewness equal to zero. The smooth fitted line helps to visualize the results, showing closer to normal distributions during the snowmelt season, and highly positively skewed distributions during the rest of the year.

The Kurtosis coefficient provides a measure of the "flatness" or "peakedness" of the marginal distributions, also independent of the dimension of the variable. Figure 14 displays the 365 estimated Kurtosis coefficients with an annual average value of 21.6. The estimated values of  $k_t$  for most of the days of the year are much higher than  $k=3$ , value that corresponds to a normal distribution. These large values imply that practically all marginal distributions have sharper peaks than the normal distribution. The smooth fitted curve also shown in Figure 14 indicates that the Skewness and Kurtosis coefficients are mutually in phase in their periodicities, displaying smaller values during the snowmelt season (closer to



**Fig.14 Daily Coefficients of Kurtosis of the NFVR at Springdale**



normality), and higher values for the rest of the year.

#### 4.3.4. Correlation in Time of Daily Flows

Daily flows have a strong dependence in time of successive values. The dependence structure is a result of several complex physical processes. It is principally governed by the way the basin responds to precipitation when generating excess rainfall, the manner that groundwater reaches the stream, and the river itself, that transports the runoff. Periodicity can also be detected in the dependence structure of daily flows. According to the time of the year, the basin reacts differently to the excitation, which can be rainfall, snowmelt, or a combination of the two. The linear dependence of daily flows can be measured by the  $k^{th}$  correlation coefficient  $r_k$ , where  $k$  indicates the lag (in days) to measure the degree of association between flow values. Mathematically, it is computed by the expression,

$$r_k = \frac{\text{cov}(X_{p,t}, X_{p,t+k})}{(\text{var } X_{p,t} \cdot \text{var } X_{p,t+k})^{1/2}}$$

where  $\text{var}$  and  $\text{cov}$  denote the variance and covariance respectively of the flow variable, represented in the equation by  $X$ . The coefficients  $r_k$  can adopt values in the range +1 to -1, with "1" showing perfect correlation and "0" absolute lack of association. The dependence structure of the NFVR at Springdale is shown in Figure 15, for  $k=1$ , named the periodic first autocorrelation coefficient.

Notice, Figure 15, that during those months of the year with very high flow variability, October through March and July through September, the time correlation between daily flows is also quite variable, with ordinates that can even drop to zero (totally uncorrelated flows). This should be expected since rainfall events drastically reduce the autocovariance between daily flows, and at the same time, increase the variance. Contrarily, during the period of the year when snowmelt is the major runoff contributor, the autocorrelation reaches values close to 1, that is, during that time of the year, the mean-daily flow at any given day can be quite precisely estimated based on the flow level that occurred during the previous day. The periodic function computed by Fourier series and shown in Figure 15 with a darker line helps visualize the dependence structure just described.





**Fig.15 First Autocorrelation Coefficient of NFVR at Springdale**

#### 4.3.5 Typical Water Years

Finally, after having analyzed the structure of flows at the daily time interval, it is illustrative to show the distribution of mean-daily flows not as average conditions for the period of record, but as the actual series of daily flows for a few specific years. A very dry water-year (1960), a normal year (1965), and a very wet year (1941) were selected and plotted in Figure 16. These years can be considered typical of most water years of record in each category.

The portion of the hydrograph characteristic of the snowmelt season can be seen in all three hydrographs, though it is much less pronounced as we move from the wettest to the





**Fig.16 Typical Wet, Normal, and Dry Water Years of the NFVR at Springdale.**

driest year. Base flow remains practically constant during the months of October through February, around 50 to 60 cfs, for the three years. In fact, base flow remains within that range of values year after year for the whole period of record, regardless of how wet or dry the hydrologic year was. Even during the critical period of 1974-1977, affected by a severe shortage in precipitation, the base flow remained close to 60 cfs. The hydrographs also show sudden increases in flows as a result of runoff-producing rainfall during the summer season.



## 5.0 FLOW FREQUENCY ANALYSIS

### 5.1 Frequency Analysis of Annual Peak Flows

A hydrologic variable of importance dominating the analysis of channel processes is the distribution of flood events. Customarily, flows start to be considered floods when the water stages in the river reach bank level on the alluvial channel. Floods are responsible for the abrupt modification of the geometry and composition of alluvial channels. The greatest quantity of substratum is moved during these large flow events. The area of hydrology that analyzes the magnitude and frequency of occurrence of extraordinary flow events is known as flood frequency analysis. Flood frequency analysis for the NFVR at Springdale was derived from the annual series of instantaneous peak flows provided by the USGS, a total of 65 values (discontinuous record from 1913 to 1988), as listed in Table 4.

**Table 4. Instantaneous Peak Flows of the NFVR at Springdale, (flows in cfs)**

| Rank | Annual Series | Water Yr |
|------|---------------|----------|------|---------------|----------|------|---------------|----------|------|---------------|----------|
| 1    | 9150          | 1967     | 18   | 680           | 1950     | 35   | 1690          | 1945     | 52   | 940           | 1934     |
| 2    | 7000          | 1938     | 19   | 2540          | 1937     | 36   | 1670          | 1979     | 53   | 920           | 1913     |
| 3    | 5990          | 1965     | 20   | 2520          | 1952     | 37   | 1660          | 1953     | 54   | 833           | 1951     |
| 4    | 5880          | 1961     | 21   | 2500          | 1932     | 38   | 1620          | 1966     | 55   | 798           | 1948     |
| 5    | 4480          | 1936     | 22   | 2490          | 1983     | 39   | 1580          | 1988     | 56   | 776           | 1974     |
| 6    | 4340          | 1963     | 23   | 2480          | 1954     | 40   | 1460          | 1914     | 57   | 750           | 1928     |
| 7    | 4140          | 1975     | 24   | 2390          | 1971     | 41   | 1370          | 1944     | 58   | 749           | 1977     |
| 8    | 4110          | 1940     | 25   | 2370          | 1931     | 42   | 1350          | 1964     | 59   | 734           | 1943     |
| 9    | 3960          | 1955     | 26   | 2270          | 1958     | 43   | 1350          | 1970     | 60   | 710           | 1926     |
| 10   | 3900          | 1929     | 27   | 2200          | 1972     | 44   | 1325          | 1978     | 61   | 668           | 1957     |
| 11   | 3880          | 1969     | 28   | 2190          | 1981     | 45   | 1240          | 1976     | 62   | 610           | 1986     |
| 12   | 3520          | 1947     | 29   | 2090          | 1984     | 46   | 1200          | 1927     | 63   | 558           | 1946     |
| 13   | 3190          | 1980     | 30   | 2070          | 1959     | 47   | 1180          | 1942     | 64   | 430           | 1960     |
| 14   | 3100          | 1941     | 31   | 1980          | 1935     | 48   | 1100          | 1949     | 65   | 428           | 1930     |
| 15   | 3000          | 1933     | 32   | 1970          | 1973     | 49   | 1050          | 1985     |      |               |          |
| 16   | 2900          | 1939     | 33   | 1930          | 1968     | 50   | 1010          | 1987     |      |               |          |
| 17   | 2780          | 1982     | 34   | 1870          | 1962     | 51   | 956           | 1956     |      |               |          |

Peak flows should not be confused with the maximum annual discharges plotted at the top of Figure 7. The latter are average values for the day and not instantaneous flow values.



For instance, the maximum mean-daily discharge on record for December 6th, 1966 (corresponding to water-year 1967), was 4990 cfs. For that same day, the peak discharge registered was almost twice that value, 9150 cfs.

Several extreme value distributions were tried to fit the empirical frequency of floods at the Springdale station, they are: the Gumbel distribution, the Log-Pearson Type III distribution recommended by the U.S Water Resources Council (1982), the Log-Normal distribution, and the Exponential distribution. All fitted distributions are shown in Figure 17. Practically all distributions reflect the same rate of occurrence for floods up to a magnitude of 5000 cfs. Above that flood level, significant differences are found among the four functions. The numbers in parenthesis in Figure 17 denote the standard error associated with each distribution, a quantitative measure of the goodness of fit.



Fig.17 Flood Frequency Distributions of Annual Peaks of the NFVR at Springdale



The Log-Pearson type III and the Log-Normal distributions turned out equally suitable for representing floods at the Springdale station. Similar fitting by these two distributions should be expected since the Virgin River is located in a region of the country where the generalized skew coefficient (estimated by the USGS) is practically zero. That finding was corroborated during this study. As the skewness coefficient decreases, the Log-Pearson Type III distribution converges toward the Log-Normal distribution.

Based on the results shown in Figure 17, the Log-Pearson Type III distribution was adopted to model the annual maxima streamflow series at Springdale. The  $T$ -Year event magnitude (in the base 10 log-domain) can be computed from the general equation

$$X_T = \bar{X} + K_T S$$

where  $\bar{X}$  and  $S$  are sample estimates of the population mean and standard deviation of the peak flows available (also in the log domain). The frequency factor  $K_T$ , specific to the Log Pearson distribution, can be obtained from tables (U.S. Water Resources Council, 1982), or it can be approximated by the following expression when the skewness is between -1 and +1 (Bras, 1990),

$$K_T = \frac{2}{G_w} \left\langle \left[ \left( t_{1-p} - \frac{G_w}{6} \right) \frac{G_w}{6} + 1 \right]^3 - 1 \right\rangle$$

where  $G_w$  is the generalized skewness coefficient of the peak flows available, and  $t_{1-p}$  is the standard normal deviate corresponding to a  $p$  exceedance probability (or equivalently of return period  $T$ ). The first three sample moments of peak flows at Springdale are:

$\bar{X}=7.4876$ ,  $S=0.6935$ , and  $G_w=0.0147$ . Furthermore, moment estimates of the scale, shape, and location parameters for the Log Pearson type III distribution yield  $\alpha=0.0051$ ,  $\beta=18542.1$ , and  $\gamma=-86.95$ , respectively.

Unfortunately, the estimated value of peak flows of large return period are likely to be in error. The relatively small size of the floods sample can bias the selection of the distribution. Bias may also be due to inaccuracies in the estimation of the parameters of the distribution. In order to account for those possible sources of errors, Figure 18 shows the



fitted Log Pearson distribution of the annual peaks and places confidence limits on the estimated flood values.



**Fig.18 Fitted Distribution and Confidence Limits of Annual Peaks**

The general mathematical expression to compute confidence limits for a given recurrence interval  $T$  is

$$X_T^{c.l.} = \bar{X} \pm K_C S$$

where the upper limit is computed using the (+) sign, and the lower bound with the (-) sign. For the case of the Virgin River, where  $G_w \approx 0$ , the factor  $K_C$  can be approximated by

$$K_C = t_{1-p} + [1 + 0.5(t_{1-p})^2]^{1/4} \frac{t_{1-\alpha}^{N-1}}{\sqrt{N}}$$



where  $N$  is the sample size and  $t_{1-\alpha}$  denotes the standard normal deviate at the  $\alpha$  one-sided level of significance. Upper and lower confidence limits at the 2% and 15% levels of significance are shown in Figure 18 as examples. The upper and lower bounds imply that, for instance, when considering confidence limits at the  $\alpha=2\%$  level of significance, the probability that any future flood event will lay within the range  $[+2\%, -2\%]$  is equal to  $(100-2-2)=96\%$ , or vice versa, that there is a 4% probability that an extraordinary flow event will not be contained within the specified bounds.

Notice that the maximum flood on record, 9150 cfs, appears to depart from the trend of the data. However, the departure is not large enough to consider that particular flood event an "outlier" according to the criterion recommended by the U.S. Water Resources Council (1982). It should also be mentioned that the present flood frequency analysis assumed that all flood events are caused by the same runoff-producing mechanism, without distinguishing between floods due to precipitation only, which generally occur during summer, and those due to snowmelt or a combination of snowmelt and rainfall, which occur in winter and spring. If necessary, the two types of flood events can be treated as components of different populations for independent flood frequency analyses.

## 5.2 Frequency Analysis of High and Low Flow Variables

Time series of high and low flows variables can be computed for various time intervals, for instance: 1-day, 3-day, 7-day, 30-day, and 90-days overlapping sub-sequences from the complete sequence of daily flows. Depending on the purpose of the application at hand, different time intervals may be useful. The procedure for the computation of any one of these variables is simple. Based on the time series of historic mean-daily flows, a sequence of the selected high- or low-flow variable is created, providing a new random variable which has a distribution and may have a time dependence as well. The new high/low-flow variable is expressed as the average discharge for the selected interval. The distribution of the high/low-flow time series can be approximated by the empirical frequency distribution of the sequence, which in turn, can be fitted by a probability distribution if necessary. This empirical approach circumvents to a large degree the difficulties encountered in the theoretical analysis of low-flow variables, due to their large dependence



and periodicity. Figure 19 and 20 display the family of curves for high- and low-flows, respectively, for the durations indicated above. Details of the origin of the curves at a more readable scale are also shown.



**Fig.19** High-Flows Frequency Curves For Various Consecutive Days





**Fig.20 Low-Flows Frequency Curves For Various Consecutive Days**



## **6.0 FLOW DURATION ANALYSIS**

### **6.1 At a Gaged River Site**

Flow duration analysis (FDA) estimates the percentage of time values of a given flow time series are above or below a certain flow level. FDA provides a sense of the variability of flows during a given time span, which it can range from a multi-year period to a particular month or season. The duration curve resulting from the FDA is useful in predicting the availability and variability of sustained flows, although it does not represent the actual sequence of flows. Flow duration curves can readily be constructed from the historical flow records at gaged points in a river. A potential application of FDA in the Zion area is the comparison of natural (existing) and post-impoundment (via simulation) flow regimes at reaches of the river downstream from sites where the construction of reservoirs with capacity to regulate flows are under consideration. Moreover, with the advent of environmental considerations in river systems management, flow duration information can also be used to predict changes in river morphology, changes in biological river communities, etc.

The shorter the length of the averaging time (observation period) used to construct the flow series, the more accurate the information embedded in the flow duration curve. The use of flow series at short time intervals is particularly important for rivers with flashy flow regimes like the NFVR, susceptible to fast rising and falling of its runoff hydrographs. Based on the flow data available for the NFVR, daily flows will provide the most accurate duration curves. The computation of duration curves utilizing discrete flows for coarser time intervals (weekly or monthly) would produce the undesirable effect of concealing the important extreme flows (maximum and minimum values) because of the averaging of daily flow data. The present analysis is based on the complete series of mean-daily flows for the NFVR at the Springdale Station during the period 1926-1988. Results of the FDA are presented in Table 5, which contains the ordinates of the flow duration curve for integer numbers of exceedance percentages. The flow duration curve is plotted in Figure 21, which displays the same flow duration curve in double logarithmic scales and in the natural domain.



**Table 5. Values of the Flow Duration Curve at Springdale**

| Exc.<br>(%) | Flow<br>(cfs) |
|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|
| ≈0          | 4990.         |             |               |             |               |             |               |             |               |
| 1           | 828.          | 21          | 98            | 41          | 64.           | 61          | 54.           | 81          | 44.           |
| 2           | 618.          | 22          | 93.           | 42          | 64.           | 62          | 53.           | 82          | 44.           |
| 3           | 498.          | 23          | 90.           | 43          | 63.           | 63          | 53.           | 83          | 43.           |
| 4           | 411.          | 24          | 87.           | 44          | 62.           | 64          | 52.           | 84          | 43.           |
| 5           | 350.          | 25          | 85.           | 45          | 62.           | 65          | 52.           | 85          | 42.           |
| 6           | 306.          | 26          | 82.           | 46          | 61.           | 66          | 51.           | 86          | 42.           |
| 7           | 276.          | 27          | 80.           | 47          | 60.           | 67          | 51.           | 87          | 41.           |
| 8           | 247.          | 28          | 78.           | 48          | 60.           | 68          | 50.           | 88          | 41.           |
| 9           | 220.          | 29          | 76.           | 49          | 60.           | 69          | 50.           | 89          | 40.           |
| 10          | 197.          | 30          | 75.           | 50          | 59.           | 70          | 50.           | 90          | 40.           |
| 11          | 181.          | 31          | 74.           | 51          | 58.           | 71          | 49.           | 91          | 39.           |
| 12          | 165.          | 32          | 73.           | 52          | 58.           | 72          | 49.           | 92          | 38.           |
| 13          | 151.          | 33          | 72.           | 53          | 57.           | 73          | 49.           | 93          | 37.           |
| 14          | 142.          | 34          | 70.           | 54          | 57.           | 74          | 48.           | 94          | 37.           |
| 15          | 133.          | 35          | 69.           | 55          | 56.           | 75          | 48.           | 95          | 36.           |
| 16          | 125.          | 36          | 68.           | 56          | 56.           | 76          | 47.           | 96          | 35.           |
| 17          | 118.          | 37          | 67.           | 57          | 55.           | 77          | 46.           | 97          | 34.           |
| 18          | 113.          | 38          | 66.           | 58          | 55.           | 78          | 46.           | 98          | 32.           |
| 19          | 107.          | 39          | 66.           | 59          | 54.           | 79          | 45.           | 99          | 29.           |
| 20          | 102.          | 40          | 65.           | 60          | 54.           | 80          | 45.           | 100         | 23.           |

Rivers in the Zion region display a singular shape of the flow duration curve. Instead of the more standard S-shaped curve of flow versus exceedance percentage, the duration curve at Springdale (see plotting in the natural scale) has more the shape of an equilateral hyperbola, with both limbs running practically parallel to the horizontal and vertical axes. The sharply descending vertical limb of the duration curve in the 1% to 6% exceedance percent range indicates that flows higher than 300 cfs have a very low probability of occurrence. Contrarily, flows smaller than 100 cfs occur almost 80% of the time. The slowly descending horizontal limb of the duration curve lies within a relatively narrow flow range, between 100 and 40 cfs, and occupying a wide range of exceedance probabilities, between 20% and 90%. That indicates the large persistence of flows under 100 cfs. The flow volume represented by the area under the flow duration curve was computed by graphical integration. The value obtained, 77,620. Ac-Ft, is reasonably close (2.5% difference) to the historical mean annual flow of 75,718. Ac-Ft indicated in Table 3, Site (12).





**Fig.21 Flow Duration Curve of the NFVR at Springdale  
Top: Logarithmic Scales, Bottom: Natural Scales**



## **6.2 Parametric Flow Duration Analysis**

As part of the methodology under implementation for quantifying federal water rights at Zion National Park, it will be required to define flows and their corresponding durations at several locations inside and outside the Park. More specifically, these locations include: reaches where the main water courses enter the Park (also known as quantification points), specific study sites within the Park where biological and channel processes studies are being conducted, and other locations outside the Park with the purpose of supporting reservoir operational studies. Unfortunately, as it happens in any real world project, sites at which hydrologic information is required very rarely coincide with the locations at which flows are being recorded systematically. The number of gaging stations in the Zion region is limited, see Table 3 and Figure 4, and sometimes with very short period of record.

The procedure presented in this section attempts to circumvent this problem by investigating potential correlative associations between parameters representing flow variability at a specific location with some other readily identifiable flow statistic at the same site, for instance, mean annual flow. If such relationships exist, it will be possible to estimate flow availability and variability at any ungaged site provided that annual discharge can be computed. The basic underlying assumption of the suggested approach is that in a "homogeneous" hydrologic region, the complex physical processes controlling flow variability affect the whole region in a similar manner. In other words, the shape of the flow duration curve at different locations in a river, or even the flow duration curves for different streams in a region, will remain similar in shape. This approach, if proved acceptable, can be particularly useful in the Zion area, where for some streams, streamflow does not vary in direct proportion to the contributing drainage area.

The flow duration curve shown in Figure 21 was constructed using flow data corresponding to a specific location on the NFVR (at Springdale) and, consequently, it reflects the variability of flows at that particular site. Similar computations can be performed at all those locations in the Zion region where reliable flow records are available. The gaging stations in the Zion area used for this study were chosen according to the following selection criteria:



- stations with the longest and more reliable period of record, preferably with not less than 6 years of records,
- stations with unregulated flows and with none or moderate water diversions upstream from the gaging station,
- stations conveying hydrological information from the heads, intermediate reaches, and the mouths of the basins,
- stations covering the widest possible range of mean annual flows, and
- stations within the same (homogeneous) hydrologic region.

Only half of the stations listed in Table 2 partially satisfied the selection criteria above. The chosen stations are listed in Table 6.

**Table 6. Selected Gaging Stations for Parametric FDA**

| Site | Station No. | Station Name                                 |
|------|-------------|----------------------------------------------|
| (1)  | 09403600    | Kanab Creek Near Kanab                       |
| (2)  | 09404450    | East Fork Virgin River near Glendale         |
| (4)  | 09405200    | Deep Creek Near Cedar City                   |
| (7)  | 09405400    | North Fork Virgin River Near Glendale        |
| (8)  | 09405420    | North Fork Virgin River Below Bullock Canyon |
| (9)  | 09405450    | North Fork Virgin River Above Zion Narrows   |
| (12) | 09405500    | North Fork Virgin River Near Springdale      |
| (15) | 09406000    | Virgin River at Virgin                       |

Not all the selection criteria could be met at the same time because of the limited number of gaging stations in the Zion area . For instance, the station at Site (4), although it has a period of record shorter than 6 years, was included in Table 6 because it is expected to provide valuable information about flow variability in relatively small and high altitude watersheds. Quantification points located in headwater areas with no flow records available, as in the case of La Verkin Creek, should benefit from the information provided by Site (4). However, the sequence of stations at Sites (7), (8), (9), and (12), all located over the same stream, the NFVR, will provide the opportunity to corroborate the assumption that there is a definite pattern in flow variability as mean annual flow increases downstream. Stations on different basins like those at Sites (1), (2) and (15) were purposely included in Table 6 to



test the hypothesis that a similar pattern in flow variability extends to other sub-areas as well, provided that they are all located in a region with homogeneous hydrological characteristics.

The station at Site (1), in Kanab Creek, although it is not part of the Upper Basin of the Virgin River, should be considered part of the same hydrologic region. Kanab Creek is located in the basin east of the EFVR. Both basins have similar shape and geographic orientation, and the gaging station at Kanab Creek is located at approximately the same elevation as the NPS study site in the EFVR, near Site (3). Stations at Sites (5), (6), (14) and (16) were excluded from the analysis not only because of the short period of record, but also because the majority of the water years during the period of record were noticeably dry. Stations at Sites (3) and (10) were only very recently installed.

In summary, the selected eight stations cover a wide range of drainage areas and water yield as required. They range from the relatively small watershed at Site (4) in the high country, to the station in the valley floor at Site (15), which encompasses the largest contributing drainage area under analysis, an area almost 140 times larger than the one at Site (4), and with a water yield over 120 times.

Ordinates of the flow duration curves corresponding to the selected stations are tabulated in the upper portion of Table 7. Flows (in cfs) are expressed in a base-10 logarithmic scale. A whole range of exceedance probabilities is provided in order to fully define the shape of a typical flow duration curve. Next, flows corresponding to exceedance percentages equal to 1, 3, 7, 20, 30, 70, and 90% for each station were plotted against the corresponding mean annual discharge (in Ac-Ft) on a double logarithmic scale as shown in Figure 22. The sub-set of exceedance percentages was arbitrarily chosen for the purpose of the illustration. As depicted by Figure 22, the hypothesis that the pattern of flow variability is preserved among stations as a function of the mean annual discharge is confirmed by the strong linear correlation between the two variables. From the statistical point of view, we are looking for associative relationships between two random variables, flow at a given percentage exceedance level, and mean annual discharge, both having the same causative factor, precipitation in the basin.



**Table 7. Flow Values for Duration Curves at Selected Sites**

| USGS<br>No. | Annual Flow<br>(Ac-Ft) | Flows (in cfs) for Probabilities of Exceedance (in %) equal to: |        |        |        |        |        |        |        |        |         |         |         |         |         |
|-------------|------------------------|-----------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
|             |                        | 1                                                               | 3      | 7      | 10     | 20     | 30     | 40     | 50     | 60     | 70      | 80      | 90      | 95      | 99      |
| 09403600    | 4.0240                 | 1.9731                                                          | 1.7076 | 1.4314 | 1.3263 | 1.2041 | 1.1461 | 1.0792 | 1.0414 | 0.9685 | 0.9138  | 0.8573  | 0.7782  | 0.6990  | 0.5682  |
| 09404450    | 4.1466                 | 2.1173                                                          | 1.7723 | 1.5051 | 1.4314 | 1.3424 | 1.2788 | 1.2304 | 1.1761 | 1.1271 | 1.0792  | 1.0414  | 0.9243  | 0.8062  | 0.6902  |
| 09405200    | 3.0745                 | 0.9294                                                          | 0.7404 | 0.5563 | 0.4914 | 0.3424 | 0.2304 | 0.1761 | 0.1139 | 0.0000 | -0.0969 | -0.2218 | -0.3979 | -0.5229 | -0.6990 |
| 09405400    | 3.5592                 | 1.4150                                                          | 1.2380 | 1.0792 | 0.9956 | 0.8921 | 0.7324 | 0.6021 | 0.5185 | 0.4624 | 0.4150  | 0.3424  | 0.0792  | -0.0969 | -0.3010 |
| 09405420    | 4.1555                 | 2.0414                                                          | 1.8543 | 1.6532 | 1.5441 | 1.3979 | 1.3010 | 1.2553 | 1.1761 | 1.1139 | 1.0000  | 0.9243  | 0.8195  | 0.7559  | 0.5911  |
| 09405450    | 4.2683                 | 2.0983                                                          | 2.0000 | 1.7896 | 1.6902 | 1.4624 | 1.3979 | 1.3222 | 1.2788 | 1.2304 | 1.1461  | 1.0792  | 0.9542  | 0.8865  | 0.7853  |
| 09405500    | 4.8792                 | 2.9179                                                          | 2.6972 | 2.4409 | 2.2945 | 2.0086 | 1.8751 | 1.8129 | 1.7709 | 1.7324 | 1.6990  | 1.6532  | 1.6021  | 1.5563  | 1.4624  |
| 09406000    | 5.1651                 | 3.1072                                                          | 2.8993 | 2.6875 | 2.3522 | 2.2330 | 2.1614 | 2.1139 | 2.0682 | 2.0170 | 1.9494  | 1.8513  | 1.7782  | 1.6721  |         |

#### Regression Analysis

|                      |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Intercept <i>a</i> : | -2.3560 | -2.5313 | -2.6387 | -2.6281 | -2.4946 | -2.5997 | -2.6984 | -2.8095 | -2.9897 | -3.1327 | -3.3074 | -3.7192 | -4.0002 | -4.3352 |
| Slope <i>b</i> :     | 1.0654  | 1.0567  | 1.0295  | 1.0034  | 0.9305  | 0.9315  | 0.9385  | 0.9517  | 0.9804  | 0.9989  | 1.0244  | 1.0929  | 1.1380  | 1.1857  |

**Note:** Flows expressed in base-10 logarithmic scale





**Fig.22** Parametric Flow Duration Analysis in the Zion N.P. Region



The parametric family of curves shown in Figure 22 is obtained by regressing flows at a specific probability of exceedance for all the selected stations (as the dependent variable) versus the corresponding mean annual flows (as the independent variable). Straight lines in the log-domain give the best regression relation of  $q(\%)$  versus  $\bar{Q}$  as defined by the expression

$$\text{Log}[q(\%)] = a + b * \text{Log}[\bar{Q}]$$

where parameters  $a$  and  $b$  are least-square estimates of the regression coefficients. The intercept  $a$  and slope  $b$ , the R-square and the standard errors obtained from the regression analysis, are shown at the bottom of Table 7. Given the set of curves in Figure 22, or better yet, the full set of regression equations, the flow duration curve at ungaged sites in the Zion region can be inferred, provided that an estimate of the mean annual flow at that particular location can be provided. The estimation of mean annual discharges at sites of interest will be the subject of a future report.



## **7.0 LITERATURE CITED**

- Bras, R. L., 1990. "Hydrology - An Introduction to Hydrologic Science", Addison-Wesley Publishing Company.
- Hermes, M, 1990. "Determination of the Period of Record to be Used to Quantify Instream Flows in Zion National Park", Internal Report, Nat'l Park Service - Water Resources Division - Water Rights Branch, July 24.
- Hermes, M, 1991. "Synthesis of a Long-Term Flow Record for the East Fork of the Virgin River in Zion National Park". Master Thesis, Dept. Civil Engineering, Colorado State University.
- U.S. Water Resources Council - Interagency Advisory Committee on Water Data, Hydrology Subcommittee, (USGS), 1982. "Guidelines for determining Flood Flow Frequency", Bulletin #17B, March.
- U.S. Geological Survey, 1950. "Geology and Geography of the Zion Park Region Utah and Arizona", Geological Survey Professional Paper 220.
- Utah Division of Water Resources, 1983. "Hydrologic Inventory of the Virgin and Kanab Study Units" - Comprehensive Water Planning Program, February.
- Yevjevich, V, 1984. "Structure of Daily Hydrologic Series", Water Resources Publications, Littleton, Colorado 80161.



**Appendix I.      Estimated Values of Statistics of Mean-Daily Flows of the NFVR  
at Springdale**

| Day | Mean   | Standard Deviation | Skewness | Kurtosis | (-1) Serial Correlation | Coefficient Variation |
|-----|--------|--------------------|----------|----------|-------------------------|-----------------------|
| 1   | 59.000 | 63.759             | 6.563    | 49.0627  | 0.307                   | 1.08                  |
| 2   | 61.790 | 52.734             | 3.729    | 16.7528  | 0.747                   | 0.85                  |
| 3   | 55.806 | 33.346             | 3.928    | 20.1622  | 0.529                   | 0.60                  |
| 4   | 52.323 | 17.328             | 2.121    | 10.4912  | 0.497                   | 0.33                  |
| 5   | 53.726 | 22.733             | 2.431    | 10.0865  | 0.699                   | 0.42                  |
| 6   | 52.823 | 28.577             | 5.580    | 40.4921  | 0.785                   | 0.54                  |
| 7   | 50.371 | 14.045             | 1.107    | 4.3276   | 0.657                   | 0.28                  |
| 8   | 52.323 | 21.021             | 2.366    | 9.5524   | 0.761                   | 0.40                  |
| 9   | 49.806 | 13.263             | 0.936    | 3.7283   | 0.778                   | 0.27                  |
| 10  | 50.823 | 15.535             | 1.644    | 7.387    | 0.740                   | 0.31                  |
| 11  | 53.871 | 18.211             | 1.066    | 3.6713   | 0.624                   | 0.34                  |
| 12  | 81.726 | 158.058            | 6.147    | 42.9774  | 0.231                   | 1.93                  |
| 13  | 61.177 | 47.575             | 4.188    | 22.5956  | 0.745                   | 0.78                  |
| 14  | 55.161 | 38.077             | 6.507    | 49.7945  | 0.837                   | 0.69                  |
| 15  | 51.694 | 15.984             | 1.826    | 7.8236   | 0.649                   | 0.31                  |
| 16  | 53.871 | 18.038             | 1.551    | 5.696    | 0.664                   | 0.33                  |
| 17  | 52.065 | 13.600             | 1.073    | 5.078    | 0.802                   | 0.26                  |
| 18  | 54.839 | 23.370             | 3.486    | 18.7605  | 0.481                   | 0.43                  |
| 19  | 60.355 | 42.299             | 3.819    | 18.5457  | 0.392                   | 0.70                  |
| 20  | 56.694 | 27.355             | 3.535    | 18.7631  | 0.827                   | 0.48                  |
| 21  | 55.661 | 23.546             | 3.012    | 13.1867  | 0.831                   | 0.42                  |
| 22  | 54.048 | 16.145             | 1.611    | 6.016    | 0.825                   | 0.30                  |
| 23  | 53.839 | 17.701             | 2.970    | 16.5722  | 0.626                   | 0.33                  |
| 24  | 53.936 | 16.111             | 1.738    | 7.0728   | 0.768                   | 0.30                  |
| 25  | 53.823 | 16.218             | 1.769    | 7.2737   | 0.880                   | 0.30                  |
| 26  | 55.645 | 22.010             | 3.658    | 20.802   | 0.735                   | 0.40                  |
| 27  | 55.468 | 18.033             | 2.356    | 9.882    | 0.859                   | 0.33                  |
| 28  | 69.839 | 90.118             | 5.814    | 39.1141  | 0.344                   | 1.29                  |
| 29  | 77.742 | 119.719            | 5.286    | 31.0359  | 0.874                   | 1.54                  |
| 30  | 60.677 | 29.914             | 3.187    | 15.987   | 0.693                   | 0.49                  |
| 31  | 69.032 | 91.368             | 7.069    | 55.0335  | 0.427                   | 1.32                  |
| 32  | 56.161 | 17.913             | 3.304    | 19.1409  | 0.232                   | 0.32                  |
| 33  | 57.000 | 20.155             | 2.858    | 13.3626  | 0.787                   | 0.35                  |
| 34  | 59.919 | 41.038             | 5.184    | 31.485   | 0.874                   | 0.68                  |
| 35  | 53.855 | 13.537             | 1.620    | 6.4681   | 0.654                   | 0.25                  |
| 36  | 56.161 | 29.315             | 6.308    | 47.7123  | 0.741                   | 0.52                  |
| 37  | 59.452 | 37.099             | 4.727    | 26.628   | 0.757                   | 0.62                  |
| 38  | 57.742 | 24.672             | 3.715    | 19.9233  | 0.921                   | 0.43                  |
| 39  | 60.855 | 37.516             | 4.887    | 31.0094  | 0.288                   | 0.62                  |
| 40  | 56.081 | 20.071             | 3.131    | 16.7278  | 0.831                   | 0.36                  |
| 41  | 57.339 | 34.560             | 6.090    | 44.9372  | 0.302                   | 0.60                  |
| 42  | 54.500 | 18.962             | 4.436    | 29.5056  | 0.166                   | 0.35                  |
| 43  | 56.355 | 19.241             | 2.552    | 11.7019  | 0.659                   | 0.34                  |
| 44  | 55.565 | 19.678             | 4.258    | 27.4279  | 0.736                   | 0.35                  |



|    |         |         |       |         |       |      |
|----|---------|---------|-------|---------|-------|------|
| 45 | 57.081  | 21.682  | 3.930 | 23.4509 | 0.521 | 0.38 |
| 46 | 54.871  | 11.749  | 1.241 | 6.1142  | 0.555 | 0.21 |
| 47 | 55.726  | 16.950  | 2.750 | 13.5051 | 0.569 | 0.30 |
| 48 | 58.290  | 30.959  | 5.838 | 42.2684 | 0.306 | 0.53 |
| 49 | 59.226  | 30.438  | 4.845 | 31.817  | 0.382 | 0.51 |
| 50 | 58.887  | 29.734  | 4.129 | 21.9047 | 0.752 | 0.50 |
| 51 | 54.968  | 13.283  | 1.139 | 5.7003  | 0.770 | 0.24 |
| 52 | 55.016  | 11.297  | 0.447 | 3.452   | 0.668 | 0.21 |
| 53 | 54.145  | 13.448  | 2.924 | 18.5565 | 0.758 | 0.25 |
| 54 | 64.436  | 70.035  | 5.972 | 39.9988 | 0.745 | 1.09 |
| 55 | 57.984  | 31.701  | 6.352 | 47.8214 | 0.651 | 0.55 |
| 56 | 60.726  | 40.395  | 6.347 | 47.609  | 0.277 | 0.67 |
| 57 | 56.839  | 26.043  | 5.505 | 38.720  | 0.349 | 0.46 |
| 58 | 52.855  | 9.960   | 0.342 | 3.5671  | 0.531 | 0.19 |
| 59 | 52.274  | 9.974   | 0.118 | 2.7789  | 0.833 | 0.19 |
| 60 | 56.210  | 28.267  | 6.051 | 45.4219 | 0.522 | 0.50 |
| 61 | 60.645  | 52.270  | 6.653 | 50.5959 | 0.366 | 0.86 |
| 62 | 54.177  | 14.896  | 1.433 | 6.2919  | 0.587 | 0.27 |
| 63 | 56.645  | 22.447  | 3.982 | 25.4525 | 0.561 | 0.40 |
| 64 | 57.065  | 21.326  | 2.430 | 9.9125  | 0.508 | 0.37 |
| 65 | 58.323  | 25.891  | 3.341 | 15.4916 | 0.616 | 0.44 |
| 66 | 69.984  | 128.390 | 7.762 | 62.9363 | 0.180 | 1.83 |
| 67 | 133.226 | 627.171 | 7.864 | 64.0178 | 0.981 | 4.71 |
| 68 | 67.710  | 121.110 | 7.723 | 62.5092 | 0.980 | 1.79 |
| 69 | 57.548  | 45.845  | 7.056 | 55.4497 | 0.970 | 0.80 |
| 70 | 53.806  | 18.879  | 2.560 | 10.8331 | 0.598 | 0.35 |
| 71 | 55.806  | 32.078  | 5.338 | 37.133  | 0.779 | 0.57 |
| 72 | 53.258  | 18.626  | 3.901 | 23.8989 | 0.941 | 0.35 |
| 73 | 55.548  | 34.338  | 6.380 | 48.1129 | 0.432 | 0.62 |
| 74 | 55.371  | 23.070  | 3.106 | 14.4405 | 0.270 | 0.42 |
| 75 | 53.177  | 24.133  | 5.499 | 39.8146 | 0.711 | 0.45 |
| 76 | 53.371  | 20.633  | 3.944 | 24.4138 | 0.904 | 0.39 |
| 77 | 54.710  | 27.409  | 5.860 | 43.2321 | 0.581 | 0.50 |
| 78 | 54.145  | 22.601  | 5.044 | 35.5566 | 0.951 | 0.42 |
| 79 | 54.758  | 16.214  | 2.932 | 15.952  | 0.491 | 0.30 |
| 80 | 52.484  | 10.703  | 0.797 | 3.5187  | 0.787 | 0.20 |
| 81 | 52.097  | 9.407   | 0.282 | 3.4424  | 0.853 | 0.18 |
| 82 | 52.984  | 10.237  | 0.676 | 4.4577  | 0.857 | 0.19 |
| 83 | 53.177  | 12.660  | 2.656 | 15.5653 | 0.690 | 0.24 |
| 84 | 56.774  | 35.163  | 6.133 | 45.1881 | 0.826 | 0.62 |
| 85 | 54.871  | 26.669  | 5.788 | 42.3799 | 0.348 | 0.49 |
| 86 | 67.968  | 113.211 | 7.488 | 59.8562 | 0.914 | 1.67 |
| 87 | 65.323  | 74.927  | 5.912 | 40.8136 | 0.918 | 1.15 |
| 88 | 64.806  | 65.594  | 4.330 | 21.2032 | 0.914 | 1.01 |
| 89 | 54.710  | 25.431  | 4.964 | 32.5257 | 0.863 | 0.46 |
| 90 | 53.823  | 24.497  | 5.260 | 35.9172 | 0.405 | 0.46 |
| 91 | 66.355  | 99.395  | 6.984 | 53.4599 | 0.858 | 1.50 |
| 92 | 52.210  | 13.481  | 2.062 | 10.4408 | 0.685 | 0.26 |
| 93 | 50.226  | 9.584   | 0.951 | 4.1062  | 0.704 | 0.19 |
| 94 | 49.339  | 9.178   | 0.925 | 4.4452  | 0.812 | 0.19 |
| 95 | 49.161  | 9.230   | 0.811 | 4.6321  | 0.844 | 0.19 |



|     |         |         |       |         |       |      |
|-----|---------|---------|-------|---------|-------|------|
| 96  | 49.194  | 9.605   | 1.214 | 6.1879  | 0.850 | 0.20 |
| 97  | 50.661  | 9.149   | 0.879 | 5.4415  | 0.888 | 0.18 |
| 98  | 53.629  | 14.410  | 3.431 | 20.1707 | 0.501 | 0.27 |
| 99  | 51.661  | 10.158  | 1.413 | 5.8226  | 0.494 | 0.20 |
| 100 | 52.097  | 10.575  | 1.133 | 5.0134  | 0.945 | 0.20 |
| 101 | 51.710  | 10.264  | 0.950 | 4.1804  | 0.863 | 0.20 |
| 102 | 53.952  | 21.062  | 5.851 | 43.5701 | 0.520 | 0.39 |
| 103 | 54.936  | 18.595  | 5.165 | 36.6591 | 0.963 | 0.34 |
| 104 | 58.081  | 39.276  | 6.990 | 54.4101 | 0.918 | 0.68 |
| 105 | 60.500  | 39.861  | 5.275 | 33.9628 | 0.873 | 0.66 |
| 106 | 68.242  | 108.583 | 7.613 | 61.2942 | 0.856 | 1.59 |
| 107 | 62.081  | 58.887  | 6.999 | 54.514  | 0.953 | 0.95 |
| 108 | 54.532  | 15.443  | 4.050 | 26.4296 | 0.873 | 0.28 |
| 109 | 54.226  | 12.105  | 1.220 | 5.4293  | 0.783 | 0.22 |
| 110 | 61.823  | 70.223  | 7.618 | 61.4108 | 0.580 | 1.14 |
| 111 | 56.403  | 21.171  | 5.350 | 37.932  | 0.909 | 0.38 |
| 112 | 59.048  | 38.095  | 7.018 | 54.9821 | 0.422 | 0.65 |
| 113 | 59.468  | 39.927  | 6.877 | 53.4761 | 0.966 | 0.67 |
| 114 | 56.161  | 20.400  | 5.216 | 37.2562 | 0.916 | 0.36 |
| 115 | 55.355  | 13.180  | 2.165 | 11.8215 | 0.888 | 0.24 |
| 116 | 55.742  | 12.067  | 1.389 | 5.9977  | 0.779 | 0.22 |
| 117 | 77.145  | 156.490 | 7.525 | 60.1326 | 0.293 | 2.03 |
| 118 | 66.097  | 61.172  | 6.015 | 41.5643 | 0.879 | 0.93 |
| 119 | 64.532  | 52.936  | 5.206 | 30.4977 | 0.952 | 0.82 |
| 120 | 57.403  | 16.092  | 2.361 | 10.8817 | 0.688 | 0.28 |
| 121 | 62.532  | 58.110  | 7.419 | 59.3038 | 0.448 | 0.93 |
| 122 | 64.952  | 76.750  | 7.614 | 61.3499 | 0.978 | 1.18 |
| 123 | 58.790  | 27.296  | 6.099 | 45.6989 | 0.940 | 0.46 |
| 124 | 59.016  | 22.282  | 4.769 | 31.1323 | 0.914 | 0.38 |
| 125 | 64.194  | 37.099  | 3.596 | 16.1443 | 0.566 | 0.58 |
| 126 | 59.355  | 21.295  | 3.681 | 18.706  | 0.760 | 0.36 |
| 127 | 61.194  | 28.003  | 4.726 | 29.7321 | 0.549 | 0.46 |
| 128 | 61.290  | 25.707  | 3.673 | 18.4252 | 0.945 | 0.42 |
| 129 | 61.226  | 18.101  | 2.305 | 9.6265  | 0.648 | 0.30 |
| 130 | 64.468  | 34.321  | 5.511 | 38.5472 | 0.480 | 0.53 |
| 131 | 67.500  | 36.442  | 4.293 | 23.5809 | 0.145 | 0.54 |
| 132 | 80.887  | 89.594  | 4.616 | 25.5171 | 0.795 | 1.11 |
| 133 | 71.613  | 64.606  | 5.739 | 39.1875 | 0.545 | 0.90 |
| 134 | 62.790  | 21.655  | 3.300 | 16.9823 | 0.640 | 0.34 |
| 135 | 72.097  | 68.640  | 6.482 | 48.1508 | 0.775 | 0.95 |
| 136 | 64.629  | 25.491  | 3.288 | 15.1393 | 0.564 | 0.39 |
| 137 | 115.210 | 373.726 | 7.789 | 63.1975 | 0.514 | 3.24 |
| 138 | 107.661 | 310.816 | 7.724 | 62.4798 | 0.980 | 2.89 |
| 139 | 79.516  | 92.692  | 5.604 | 37.2243 | 0.891 | 1.17 |
| 140 | 75.484  | 90.054  | 7.145 | 56.075  | 0.895 | 1.19 |
| 141 | 75.726  | 95.064  | 7.491 | 59.9864 | 0.973 | 1.26 |
| 142 | 75.403  | 93.545  | 6.618 | 48.8761 | 0.936 | 1.24 |
| 143 | 102.306 | 310.069 | 7.830 | 63.6498 | 0.931 | 3.03 |
| 144 | 71.129  | 59.135  | 6.530 | 49.3844 | 0.935 | 0.83 |
| 145 | 70.548  | 51.670  | 5.311 | 32.2992 | 0.702 | 0.73 |
| 146 | 79.500  | 62.992  | 3.957 | 20.1118 | 0.575 | 0.79 |



|     |         |         |       |         |       |      |
|-----|---------|---------|-------|---------|-------|------|
| 147 | 70.790  | 47.525  | 5.531 | 38.2807 | 0.655 | 0.67 |
| 148 | 74.419  | 63.193  | 5.431 | 35.6484 | 0.561 | 0.85 |
| 149 | 70.613  | 47.130  | 6.044 | 44.6975 | 0.241 | 0.67 |
| 150 | 66.806  | 24.705  | 2.362 | 10.2052 | 0.590 | 0.37 |
| 151 | 73.371  | 39.769  | 3.440 | 16.66   | 0.751 | 0.54 |
| 152 | 82.548  | 65.414  | 4.518 | 26.9126 | 0.437 | 0.79 |
| 153 | 93.081  | 95.621  | 4.109 | 20.3554 | 0.912 | 1.03 |
| 154 | 127.516 | 374.357 | 7.653 | 61.7111 | 0.630 | 2.94 |
| 155 | 91.516  | 108.073 | 4.668 | 26.3804 | 0.524 | 1.18 |
| 156 | 81.484  | 62.343  | 4.390 | 26.0725 | 0.732 | 0.77 |
| 157 | 76.323  | 37.404  | 2.424 | 9.2833  | 0.729 | 0.49 |
| 158 | 74.468  | 31.020  | 2.027 | 7.5806  | 0.856 | 0.42 |
| 159 | 74.887  | 28.783  | 2.187 | 9.7512  | 0.826 | 0.38 |
| 160 | 85.323  | 68.063  | 5.097 | 32.1771 | 0.658 | 0.80 |
| 161 | 80.436  | 40.421  | 3.281 | 16.1582 | 0.899 | 0.50 |
| 162 | 86.403  | 47.859  | 2.383 | 9.3864  | 0.657 | 0.55 |
| 163 | 90.129  | 59.677  | 2.636 | 11.0926 | 0.659 | 0.66 |
| 164 | 88.436  | 54.807  | 2.832 | 11.9499 | 0.808 | 0.62 |
| 165 | 91.065  | 71.874  | 5.508 | 39.2699 | 0.557 | 0.79 |
| 166 | 87.629  | 43.833  | 2.022 | 7.3665  | 0.733 | 0.50 |
| 167 | 87.210  | 49.204  | 3.180 | 14.854  | 0.520 | 0.56 |
| 168 | 85.419  | 40.806  | 3.405 | 18.5495 | 0.890 | 0.48 |
| 169 | 88.645  | 58.392  | 5.280 | 36.4557 | 0.886 | 0.66 |
| 170 | 86.452  | 40.945  | 3.330 | 18.0312 | 0.922 | 0.47 |
| 171 | 88.936  | 38.080  | 2.063 | 8.1612  | 0.725 | 0.43 |
| 172 | 85.323  | 34.370  | 2.012 | 8.1077  | 0.696 | 0.40 |
| 173 | 93.032  | 41.643  | 2.067 | 8.562   | 0.834 | 0.45 |
| 174 | 92.016  | 35.834  | 1.577 | 5.6625  | 0.755 | 0.39 |
| 175 | 92.387  | 34.853  | 1.334 | 4.6047  | 0.870 | 0.38 |
| 176 | 95.129  | 36.300  | 0.860 | 2.936   | 0.853 | 0.38 |
| 177 | 100.968 | 46.277  | 1.615 | 6.8036  | 0.863 | 0.46 |
| 178 | 114.774 | 74.167  | 2.411 | 10.5128 | 0.829 | 0.65 |
| 179 | 122.048 | 106.186 | 4.878 | 33.436  | 0.732 | 0.87 |
| 180 | 115.629 | 67.288  | 1.884 | 7.2389  | 0.837 | 0.58 |
| 181 | 118.500 | 69.626  | 1.651 | 5.3276  | 0.856 | 0.59 |
| 182 | 121.839 | 72.683  | 1.918 | 6.8792  | 0.928 | 0.60 |
| 183 | 128.936 | 87.156  | 1.985 | 6.8544  | 0.921 | 0.68 |
| 184 | 137.758 | 100.452 | 2.153 | 7.8285  | 0.909 | 0.73 |
| 185 | 138.323 | 88.363  | 1.790 | 6.719   | 0.902 | 0.64 |
| 186 | 145.161 | 89.804  | 1.453 | 4.8675  | 0.837 | 0.62 |
| 187 | 154.984 | 105.744 | 1.798 | 6.2192  | 0.932 | 0.68 |
| 188 | 165.710 | 131.465 | 2.351 | 8.7587  | 0.952 | 0.79 |
| 189 | 166.581 | 122.068 | 2.101 | 8.0715  | 0.920 | 0.73 |
| 190 | 178.919 | 163.719 | 3.074 | 15.0328 | 0.689 | 0.92 |
| 191 | 170.371 | 134.475 | 2.379 | 9.435   | 0.763 | 0.79 |
| 192 | 176.500 | 137.537 | 2.233 | 8.2613  | 0.943 | 0.78 |
| 193 | 189.645 | 140.061 | 1.887 | 6.6136  | 0.870 | 0.74 |
| 194 | 186.065 | 136.976 | 2.195 | 8.2942  | 0.898 | 0.74 |
| 195 | 197.661 | 146.126 | 1.920 | 7.1521  | 0.946 | 0.74 |
| 196 | 214.629 | 155.448 | 1.630 | 5.6529  | 0.957 | 0.72 |
| 197 | 235.065 | 185.463 | 1.794 | 6.7848  | 0.915 | 0.79 |



|     |         |         |       |         |       |      |
|-----|---------|---------|-------|---------|-------|------|
| 198 | 249.081 | 185.714 | 1.578 | 6.0983  | 0.962 | 0.75 |
| 199 | 263.323 | 196.334 | 1.334 | 4.8509  | 0.961 | 0.75 |
| 200 | 263.661 | 185.702 | 0.844 | 2.6275  | 0.902 | 0.70 |
| 201 | 269.000 | 196.812 | 0.890 | 2.7511  | 0.939 | 0.73 |
| 202 | 273.629 | 208.881 | 1.182 | 4.071   | 0.920 | 0.76 |
| 203 | 283.936 | 221.432 | 1.095 | 3.5784  | 0.934 | 0.78 |
| 204 | 298.355 | 240.336 | 1.323 | 4.4372  | 0.963 | 0.81 |
| 205 | 297.177 | 230.656 | 1.482 | 5.627   | 0.957 | 0.78 |
| 206 | 299.823 | 230.572 | 1.367 | 5.0374  | 0.953 | 0.77 |
| 207 | 303.000 | 231.538 | 1.168 | 4.0324  | 0.926 | 0.76 |
| 208 | 301.823 | 226.628 | 1.206 | 4.5414  | 0.935 | 0.75 |
| 209 | 311.581 | 263.131 | 2.136 | 9.617   | 0.942 | 0.84 |
| 210 | 314.565 | 242.572 | 1.444 | 5.5054  | 0.930 | 0.77 |
| 211 | 320.436 | 248.003 | 1.240 | 4.0215  | 0.950 | 0.77 |
| 212 | 322.581 | 244.720 | 1.133 | 3.8379  | 0.965 | 0.76 |
| 213 | 333.290 | 263.225 | 1.315 | 4.5009  | 0.958 | 0.79 |
| 214 | 338.210 | 272.918 | 1.497 | 5.5415  | 0.961 | 0.81 |
| 215 | 347.726 | 296.971 | 1.735 | 6.8833  | 0.965 | 0.85 |
| 216 | 354.161 | 297.830 | 1.731 | 6.8701  | 0.971 | 0.84 |
| 217 | 355.807 | 313.770 | 1.722 | 5.9678  | 0.958 | 0.88 |
| 218 | 362.129 | 342.614 | 1.848 | 6.0337  | 0.922 | 0.95 |
| 219 | 343.677 | 314.146 | 1.769 | 5.6417  | 0.954 | 0.91 |
| 220 | 340.258 | 310.678 | 1.633 | 4.9302  | 0.964 | 0.91 |
| 221 | 356.226 | 360.967 | 2.067 | 7.4432  | 0.938 | 1.01 |
| 222 | 367.065 | 374.866 | 2.178 | 8.544   | 0.972 | 1.02 |
| 223 | 347.936 | 323.104 | 1.595 | 4.8027  | 0.920 | 0.93 |
| 224 | 353.919 | 369.348 | 2.377 | 10.1128 | 0.891 | 1.04 |
| 225 | 352.290 | 358.142 | 1.995 | 7.4351  | 0.894 | 1.02 |
| 226 | 367.145 | 387.344 | 2.129 | 8.0488  | 0.932 | 1.06 |
| 227 | 357.903 | 359.524 | 1.880 | 6.8277  | 0.970 | 1.00 |
| 228 | 344.177 | 320.451 | 1.320 | 3.673   | 0.943 | 0.93 |
| 229 | 347.565 | 326.819 | 1.354 | 3.8848  | 0.967 | 0.94 |
| 230 | 335.339 | 323.863 | 1.363 | 3.8178  | 0.970 | 0.97 |
| 231 | 329.307 | 318.829 | 1.451 | 4.2873  | 0.962 | 0.97 |
| 232 | 331.274 | 325.503 | 1.385 | 3.8992  | 0.972 | 0.98 |
| 233 | 313.419 | 325.614 | 1.723 | 5.3136  | 0.949 | 1.04 |
| 234 | 301.516 | 318.177 | 1.938 | 6.7521  | 0.971 | 1.06 |
| 235 | 292.532 | 313.188 | 1.956 | 6.9803  | 0.976 | 1.07 |
| 236 | 281.823 | 309.500 | 2.110 | 7.9234  | 0.981 | 1.10 |
| 237 | 265.194 | 284.090 | 2.310 | 9.8229  | 0.963 | 1.07 |
| 238 | 258.903 | 282.812 | 2.466 | 10.8244 | 0.975 | 1.09 |
| 239 | 251.516 | 275.126 | 2.666 | 12.8873 | 0.973 | 1.09 |
| 240 | 236.871 | 270.899 | 3.090 | 16.0638 | 0.979 | 1.14 |
| 241 | 230.565 | 266.813 | 3.348 | 18.6449 | 0.981 | 1.16 |
| 242 | 227.984 | 261.976 | 3.203 | 17.5766 | 0.974 | 1.15 |
| 243 | 224.032 | 258.810 | 3.081 | 16.3719 | 0.956 | 1.16 |
| 244 | 203.016 | 235.845 | 3.585 | 20.8334 | 0.958 | 1.16 |
| 245 | 188.710 | 203.154 | 2.970 | 15.0864 | 0.975 | 1.08 |
| 246 | 181.597 | 189.282 | 2.664 | 12.2214 | 0.960 | 1.04 |
| 247 | 177.161 | 182.477 | 2.595 | 11.5469 | 0.963 | 1.03 |
| 248 | 166.403 | 174.622 | 2.939 | 14.3585 | 0.973 | 1.05 |



|     |         |         |       |         |       |      |
|-----|---------|---------|-------|---------|-------|------|
| 249 | 164.597 | 174.066 | 2.887 | 13.7907 | 0.967 | 1.06 |
| 250 | 161.016 | 168.281 | 2.774 | 12.5202 | 0.961 | 1.05 |
| 251 | 149.177 | 156.882 | 3.207 | 16.2621 | 0.971 | 1.05 |
| 252 | 138.387 | 137.872 | 3.351 | 18.0976 | 0.978 | 1.00 |
| 253 | 133.516 | 131.634 | 3.303 | 17.6822 | 0.954 | 0.99 |
| 254 | 125.194 | 122.274 | 3.727 | 21.6428 | 0.973 | 0.98 |
| 255 | 121.129 | 127.565 | 4.528 | 29.3528 | 0.976 | 1.05 |
| 256 | 113.758 | 106.875 | 3.936 | 23.8582 | 0.979 | 0.94 |
| 257 | 111.677 | 104.922 | 3.557 | 19.1333 | 0.954 | 0.94 |
| 258 | 106.919 | 93.881  | 3.872 | 23.4289 | 0.952 | 0.88 |
| 259 | 106.048 | 96.849  | 3.566 | 18.9772 | 0.925 | 0.91 |
| 260 | 101.306 | 84.995  | 3.552 | 20.2829 | 0.970 | 0.84 |
| 261 | 93.452  | 71.427  | 3.742 | 22.485  | 0.934 | 0.76 |
| 262 | 88.436  | 65.614  | 3.590 | 21.1196 | 0.977 | 0.74 |
| 263 | 84.871  | 60.094  | 3.506 | 20.5323 | 0.979 | 0.71 |
| 264 | 82.726  | 56.320  | 3.415 | 19.8357 | 0.977 | 0.68 |
| 265 | 84.436  | 62.303  | 3.198 | 15.3778 | 0.764 | 0.74 |
| 266 | 84.936  | 79.778  | 4.679 | 28.7489 | 0.927 | 0.94 |
| 267 | 79.597  | 52.465  | 2.921 | 13.9932 | 0.894 | 0.66 |
| 268 | 75.742  | 42.515  | 2.938 | 16.7984 | 0.907 | 0.56 |
| 269 | 74.048  | 40.423  | 2.772 | 15.0838 | 0.929 | 0.55 |
| 270 | 72.484  | 38.149  | 2.498 | 13.2997 | 0.959 | 0.53 |
| 271 | 69.403  | 36.086  | 2.720 | 15.184  | 0.961 | 0.52 |
| 272 | 69.694  | 37.053  | 2.227 | 10.0417 | 0.896 | 0.53 |
| 273 | 67.661  | 32.967  | 2.161 | 10.7741 | 0.936 | 0.49 |
| 274 | 65.968  | 32.554  | 2.040 | 9.0723  | 0.944 | 0.49 |
| 275 | 63.710  | 30.985  | 2.122 | 9.3735  | 0.973 | 0.49 |
| 276 | 62.274  | 26.737  | 1.697 | 8.0381  | 0.954 | 0.43 |
| 277 | 62.903  | 25.517  | 1.305 | 5.7558  | 0.883 | 0.41 |
| 278 | 60.968  | 22.565  | 1.153 | 5.2399  | 0.917 | 0.37 |
| 279 | 60.806  | 23.404  | 1.120 | 4.9909  | 0.955 | 0.38 |
| 280 | 62.097  | 28.247  | 1.628 | 6.1577  | 0.896 | 0.45 |
| 281 | 65.097  | 46.205  | 4.419 | 28.0314 | 0.857 | 0.71 |
| 282 | 65.355  | 41.673  | 3.706 | 21.7451 | 0.453 | 0.64 |
| 283 | 76.548  | 88.176  | 4.825 | 28.928  | 0.864 | 1.15 |
| 284 | 75.210  | 102.643 | 6.230 | 45.0225 | 0.533 | 1.36 |
| 285 | 64.871  | 42.349  | 2.913 | 12.9789 | 0.808 | 0.65 |
| 286 | 59.081  | 24.236  | 1.149 | 4.3801  | 0.785 | 0.41 |
| 287 | 57.597  | 22.444  | 0.878 | 3.4642  | 0.905 | 0.39 |
| 288 | 60.274  | 28.462  | 2.120 | 9.5436  | 0.718 | 0.47 |
| 289 | 57.403  | 18.739  | 0.451 | 2.7433  | 0.655 | 0.33 |
| 290 | 60.774  | 21.361  | 0.512 | 2.6254  | 0.817 | 0.35 |
| 291 | 59.419  | 19.817  | 0.533 | 3.0694  | 0.825 | 0.33 |
| 292 | 63.339  | 41.484  | 5.003 | 34.2766 | 0.637 | 0.65 |
| 293 | 71.565  | 92.532  | 6.733 | 51.561  | 0.295 | 1.29 |
| 294 | 63.016  | 31.433  | 2.431 | 10.8132 | 0.742 | 0.50 |
| 295 | 64.161  | 35.425  | 3.071 | 15.6589 | 0.489 | 0.55 |
| 296 | 62.774  | 36.545  | 4.501 | 30.3314 | 0.454 | 0.58 |
| 297 | 66.242  | 55.039  | 4.657 | 28.266  | 0.607 | 0.83 |
| 298 | 84.968  | 154.071 | 6.688 | 50.7771 | 0.821 | 1.81 |
| 299 | 64.565  | 46.236  | 3.724 | 18.9718 | 0.785 | 0.72 |



|     |        |         |       |         |       |      |
|-----|--------|---------|-------|---------|-------|------|
| 300 | 61.613 | 39.009  | 3.748 | 21.5548 | 0.854 | 0.63 |
| 301 | 65.403 | 44.556  | 3.179 | 14.69   | 0.659 | 0.68 |
| 302 | 78.097 | 110.929 | 6.551 | 49.688  | 0.260 | 1.42 |
| 303 | 63.758 | 37.925  | 2.533 | 10.2395 | 0.366 | 0.59 |
| 304 | 73.919 | 74.281  | 4.093 | 20.7214 | 0.428 | 1.00 |
| 305 | 70.145 | 74.286  | 6.247 | 46.2986 | 0.737 | 1.06 |
| 306 | 66.855 | 62.915  | 5.836 | 41.6687 | 0.915 | 0.94 |
| 307 | 74.452 | 71.930  | 4.416 | 24.9292 | 0.488 | 0.97 |
| 308 | 65.661 | 44.915  | 3.883 | 20.3933 | 0.662 | 0.68 |
| 309 | 76.952 | 78.875  | 3.806 | 18.1384 | 0.768 | 1.02 |
| 310 | 80.194 | 142.529 | 7.008 | 54.4891 | 0.670 | 1.78 |
| 311 | 62.048 | 40.422  | 3.528 | 18.705  | 0.097 | 0.65 |
| 312 | 60.242 | 50.899  | 5.572 | 38.715  | 0.914 | 0.84 |
| 313 | 65.323 | 53.205  | 3.758 | 18.6738 | 0.573 | 0.81 |
| 314 | 65.274 | 55.558  | 5.177 | 35.3623 | 0.440 | 0.85 |
| 315 | 68.790 | 56.078  | 4.051 | 23.1643 | 0.827 | 0.82 |
| 316 | 66.936 | 51.788  | 4.778 | 31.2637 | 0.430 | 0.77 |
| 317 | 61.339 | 27.355  | 1.722 | 6.4528  | 0.546 | 0.45 |
| 318 | 55.855 | 19.358  | 1.377 | 6.0912  | 0.758 | 0.35 |
| 319 | 58.226 | 25.521  | 2.177 | 9.7358  | 0.593 | 0.44 |
| 320 | 54.290 | 18.463  | 1.208 | 4.7941  | 0.787 | 0.34 |
| 321 | 61.323 | 40.694  | 4.072 | 24.1588 | 0.634 | 0.66 |
| 322 | 65.452 | 51.655  | 4.241 | 24.8834 | 0.869 | 0.79 |
| 323 | 62.726 | 46.798  | 4.033 | 20.7351 | 0.468 | 0.75 |
| 324 | 58.113 | 24.073  | 1.899 | 8.7367  | 0.779 | 0.41 |
| 325 | 60.258 | 30.967  | 3.110 | 17.1879 | 0.596 | 0.51 |
| 326 | 58.016 | 23.648  | 1.595 | 6.7489  | 0.792 | 0.41 |
| 327 | 56.790 | 21.309  | 1.444 | 5.0336  | 0.733 | 0.38 |
| 328 | 66.952 | 46.012  | 3.173 | 15.053  | 0.660 | 0.69 |
| 329 | 71.855 | 81.153  | 5.254 | 34.0858 | 0.561 | 1.13 |
| 330 | 57.484 | 23.775  | 1.581 | 6.261   | 0.622 | 0.41 |
| 331 | 78.371 | 184.502 | 7.744 | 62.7475 | 0.172 | 2.35 |
| 332 | 58.097 | 36.602  | 4.962 | 34.2189 | 0.884 | 0.63 |
| 333 | 58.290 | 45.640  | 6.654 | 51.5252 | 0.121 | 0.78 |
| 334 | 52.468 | 15.855  | 1.053 | 5.2857  | 0.716 | 0.30 |
| 335 | 54.758 | 26.481  | 4.425 | 29.9921 | 0.299 | 0.48 |
| 336 | 55.532 | 22.168  | 2.019 | 9.1491  | 0.321 | 0.40 |
| 337 | 58.161 | 39.228  | 4.800 | 31.2073 | 0.726 | 0.67 |
| 338 | 51.548 | 18.132  | 2.191 | 11.1793 | 0.301 | 0.35 |
| 339 | 51.645 | 25.195  | 5.067 | 35.7355 | 0.881 | 0.49 |
| 340 | 68.226 | 110.761 | 6.897 | 52.6826 | 0.085 | 1.62 |
| 341 | 69.629 | 92.802  | 4.986 | 28.0671 | 0.184 | 1.33 |
| 342 | 86.790 | 155.657 | 4.908 | 27.5786 | 0.671 | 1.79 |
| 343 | 68.306 | 69.336  | 4.068 | 19.8349 | 0.760 | 1.02 |
| 344 | 62.419 | 52.956  | 4.278 | 24.155  | 0.853 | 0.85 |
| 345 | 74.290 | 184.654 | 7.793 | 63.2626 | 0.783 | 2.49 |
| 346 | 56.177 | 32.406  | 4.288 | 26.6348 | 0.810 | 0.58 |
| 347 | 83.016 | 181.574 | 6.656 | 49.7134 | 0.461 | 2.19 |
| 348 | 55.306 | 30.963  | 2.829 | 11.3281 | 0.472 | 0.56 |
| 349 | 51.323 | 18.310  | 2.199 | 10.0851 | 0.851 | 0.36 |
| 350 | 50.048 | 15.491  | 1.408 | 6.5274  | 0.732 | 0.31 |



|              |         |         |       |         |        |       |
|--------------|---------|---------|-------|---------|--------|-------|
| 351          | 48.484  | 12.641  | 0.515 | 3.0194  | 0.787  | 0.26  |
| 352          | 78.371  | 178.526 | 6.136 | 41.6492 | 0.000  | 2.28  |
| 353          | 60.403  | 57.322  | 4.554 | 24.6078 | 0.625  | 0.95  |
| 354          | 65.194  | 88.146  | 5.571 | 34.902  | 0.072  | 1.35  |
| 355          | 57.532  | 59.788  | 6.900 | 53.4913 | 0.834  | 1.04  |
| 356          | 50.790  | 25.843  | 4.965 | 34.5632 | 0.935  | 0.51  |
| 357          | 50.936  | 21.626  | 3.034 | 14.9666 | 0.768  | 0.42  |
| 358          | 59.226  | 43.946  | 3.212 | 13.4758 | 0.668  | 0.74  |
| 359          | 63.613  | 91.768  | 7.054 | 55.1135 | 0.719  | 1.44  |
| 360          | 54.355  | 28.663  | 3.376 | 16.4508 | 0.715  | 0.53  |
| 361          | 54.274  | 31.643  | 4.517 | 27.929  | 0.404  | 0.58  |
| 362          | 57.887  | 63.015  | 7.130 | 56.1146 | 0.182  | 1.09  |
| 363          | 53.032  | 28.697  | 5.203 | 36.1003 | 0.311  | 0.54  |
| 364          | 51.371  | 19.361  | 3.015 | 16.7216 | 0.441  | 0.38  |
| 365          | 49.661  | 15.674  | 2.068 | 10.1909 | 0.574  | 0.32  |
| Average ---> | 104.535 | 87.844  | 3.531 | 21.588  | 0.743  | 0.742 |
| Maximum ---> | 367.145 | 627.171 | 7.864 | 64.018  | 0.981  | 4.708 |
| Minimum ---> | 48.484  | 9.149   | 0.118 | 2.625   | -0.000 | 0.181 |



## Appendix II. Fourier-Fitted of Statistics of Mean-Daily Flows of the NFVR at Springdale

| Day | Mean    | Standard Deviation | Skewness | Kurtosis | (-1) Serial Correlation | Coefficient Variation |
|-----|---------|--------------------|----------|----------|-------------------------|-----------------------|
| 1   | 55.9814 | 40.527             | 3.9429   | 24.571   | 0.6002                  | 0.72                  |
| 2   | 55.8464 | 39.4925            | 3.9088   | 24.2198  | 0.6056                  | 0.71                  |
| 3   | 55.7325 | 38.5533            | 3.8726   | 23.8525  | 0.6111                  | 0.69                  |
| 4   | 55.6404 | 37.709             | 3.8346   | 23.4715  | 0.6167                  | 0.68                  |
| 5   | 55.5703 | 36.9576            | 3.7951   | 23.079   | 0.6222                  | 0.67                  |
| 6   | 55.5224 | 36.2956            | 3.7541   | 22.6778  | 0.6278                  | 0.65                  |
| 7   | 55.4965 | 35.7178            | 3.7121   | 22.2705  | 0.6333                  | 0.64                  |
| 8   | 55.4923 | 35.2182            | 3.6694   | 21.8601  | 0.6386                  | 0.63                  |
| 9   | 55.5091 | 34.7893            | 3.6261   | 21.4497  | 0.6438                  | 0.63                  |
| 10  | 55.5461 | 34.4231            | 3.5827   | 21.0424  | 0.6488                  | 0.62                  |
| 11  | 55.6023 | 34.1108            | 3.5396   | 20.6414  | 0.6536                  | 0.61                  |
| 12  | 55.6765 | 33.8434            | 3.497    | 20.2501  | 0.6581                  | 0.61                  |
| 13  | 55.7672 | 33.6116            | 3.4553   | 19.8717  | 0.6622                  | 0.60                  |
| 14  | 55.873  | 33.4064            | 3.4149   | 19.5095  | 0.666                   | 0.60                  |
| 15  | 55.992  | 33.2187            | 3.3761   | 19.1669  | 0.6694                  | 0.59                  |
| 16  | 56.1225 | 33.0403            | 3.3394   | 18.8469  | 0.6723                  | 0.59                  |
| 17  | 56.2626 | 32.8635            | 3.3051   | 18.5527  | 0.6748                  | 0.58                  |
| 18  | 56.4104 | 32.6816            | 3.2735   | 18.2872  | 0.6769                  | 0.58                  |
| 19  | 56.5639 | 32.4887            | 3.2449   | 18.0533  | 0.6784                  | 0.57                  |
| 20  | 56.721  | 32.2803            | 3.2197   | 17.8535  | 0.6795                  | 0.57                  |
| 21  | 56.8799 | 32.053             | 3.1982   | 17.6902  | 0.68                    | 0.56                  |
| 22  | 57.0386 | 31.8047            | 3.1806   | 17.5656  | 0.68                    | 0.56                  |
| 23  | 57.1954 | 31.535             | 3.1671   | 17.4817  | 0.6795                  | 0.55                  |
| 24  | 57.3485 | 31.2444            | 3.1581   | 17.4399  | 0.6784                  | 0.54                  |
| 25  | 57.4963 | 30.9351            | 3.1536   | 17.4416  | 0.6769                  | 0.54                  |
| 26  | 57.6374 | 30.6105            | 3.1538   | 17.4877  | 0.6748                  | 0.53                  |
| 27  | 57.7706 | 30.2753            | 3.1589   | 17.579   | 0.6723                  | 0.52                  |
| 28  | 57.8948 | 29.9353            | 3.1688   | 17.7156  | 0.6693                  | 0.52                  |
| 29  | 58.0091 | 29.5975            | 3.1836   | 17.8975  | 0.6659                  | 0.51                  |
| 30  | 58.113  | 29.2695            | 3.2033   | 18.1243  | 0.6621                  | 0.50                  |
| 31  | 58.2059 | 28.9598            | 3.2279   | 18.3952  | 0.658                   | 0.50                  |
| 32  | 58.2878 | 28.6775            | 3.2572   | 18.7089  | 0.6535                  | 0.49                  |
| 33  | 58.3585 | 28.4319            | 3.2911   | 19.0641  | 0.6487                  | 0.49                  |
| 34  | 58.4184 | 28.2326            | 3.3294   | 19.4588  | 0.6437                  | 0.48                  |
| 35  | 58.4678 | 28.0891            | 3.3719   | 19.8907  | 0.6385                  | 0.48                  |
| 36  | 58.5075 | 28.0106            | 3.4183   | 20.3575  | 0.6332                  | 0.48                  |
| 37  | 58.5382 | 28.0058            | 3.4684   | 20.8561  | 0.6278                  | 0.48                  |
| 38  | 58.5608 | 28.0829            | 3.5217   | 21.3836  | 0.6223                  | 0.48                  |
| 39  | 58.5766 | 28.2493            | 3.578    | 21.9365  | 0.6168                  | 0.48                  |
| 40  | 58.5867 | 28.5111            | 3.6368   | 22.5111  | 0.6114                  | 0.49                  |
| 41  | 58.5924 | 28.8737            | 3.6977   | 23.1037  | 0.6062                  | 0.49                  |
| 42  | 58.595  | 29.3407            | 3.7603   | 23.7103  | 0.6011                  | 0.50                  |
| 43  | 58.5961 | 29.9147            | 3.8241   | 24.3267  | 0.5962                  | 0.51                  |
| 44  | 58.5968 | 30.5966            | 3.8886   | 24.9486  | 0.5916                  | 0.52                  |



|    |         |         |        |         |        |      |
|----|---------|---------|--------|---------|--------|------|
| 45 | 58.5985 | 31.3858 | 3.9533 | 25.5717 | 0.5873 | 0.54 |
| 46 | 58.6026 | 32.2802 | 4.0178 | 26.1917 | 0.5833 | 0.55 |
| 47 | 58.6102 | 33.2759 | 4.0814 | 26.8042 | 0.5798 | 0.57 |
| 48 | 58.6223 | 34.3675 | 4.1438 | 27.4048 | 0.5767 | 0.59 |
| 49 | 58.6399 | 35.5481 | 4.2044 | 27.9894 | 0.5741 | 0.61 |
| 50 | 58.6637 | 36.8093 | 4.2628 | 28.5538 | 0.572  | 0.63 |
| 51 | 58.6941 | 38.1412 | 4.3185 | 29.094  | 0.5704 | 0.65 |
| 52 | 58.7316 | 39.5328 | 4.371  | 29.6062 | 0.5694 | 0.67 |
| 53 | 58.7762 | 40.9717 | 4.4199 | 30.087  | 0.569  | 0.70 |
| 54 | 58.8279 | 42.4448 | 4.4648 | 30.5329 | 0.5692 | 0.72 |
| 55 | 58.8862 | 43.938  | 4.5055 | 30.9409 | 0.57   | 0.75 |
| 56 | 58.9506 | 45.4365 | 4.5414 | 31.3083 | 0.5714 | 0.77 |
| 57 | 59.0203 | 46.9252 | 4.5725 | 31.6328 | 0.5734 | 0.80 |
| 58 | 59.0941 | 48.3887 | 4.5983 | 31.9124 | 0.576  | 0.82 |
| 59 | 59.171  | 49.8114 | 4.6188 | 32.1453 | 0.5793 | 0.84 |
| 60 | 59.2493 | 51.1779 | 4.6338 | 32.3305 | 0.5831 | 0.86 |
| 61 | 59.3276 | 52.4734 | 4.6431 | 32.4669 | 0.5874 | 0.88 |
| 62 | 59.404  | 53.6833 | 4.6467 | 32.5543 | 0.5923 | 0.90 |
| 63 | 59.4768 | 54.7939 | 4.6447 | 32.5927 | 0.5978 | 0.92 |
| 64 | 59.544  | 55.7922 | 4.637  | 32.5825 | 0.6037 | 0.94 |
| 65 | 59.6035 | 56.6666 | 4.6237 | 32.5246 | 0.6101 | 0.95 |
| 66 | 59.6535 | 57.4065 | 4.6051 | 32.4202 | 0.6169 | 0.96 |
| 67 | 59.6918 | 58.0025 | 4.5813 | 32.271  | 0.624  | 0.97 |
| 68 | 59.7167 | 58.4469 | 4.5526 | 32.0792 | 0.6315 | 0.98 |
| 69 | 59.7262 | 58.7334 | 4.5192 | 31.8472 | 0.6393 | 0.98 |
| 70 | 59.7188 | 58.8573 | 4.4815 | 31.5778 | 0.6473 | 0.99 |
| 71 | 59.6929 | 58.8156 | 4.4399 | 31.2742 | 0.6556 | 0.99 |
| 72 | 59.6473 | 58.6071 | 4.3948 | 30.9399 | 0.6639 | 0.98 |
| 73 | 59.5807 | 58.2321 | 4.3467 | 30.5785 | 0.6724 | 0.98 |
| 74 | 59.4926 | 57.6926 | 4.2959 | 30.1941 | 0.6809 | 0.97 |
| 75 | 59.3823 | 56.9925 | 4.2431 | 29.7908 | 0.6894 | 0.96 |
| 76 | 59.2497 | 56.1371 | 4.1888 | 29.3731 | 0.6978 | 0.95 |
| 77 | 59.095  | 55.1332 | 4.1335 | 28.9454 | 0.7062 | 0.93 |
| 78 | 58.9185 | 53.9891 | 4.0778 | 28.5124 | 0.7144 | 0.92 |
| 79 | 58.7211 | 52.7148 | 4.0222 | 28.0787 | 0.7224 | 0.90 |
| 80 | 58.5039 | 51.3211 | 3.9674 | 27.6489 | 0.7302 | 0.88 |
| 81 | 58.2685 | 49.8202 | 3.9138 | 27.2278 | 0.7377 | 0.86 |
| 82 | 58.0167 | 48.2252 | 3.8621 | 26.8199 | 0.7448 | 0.83 |
| 83 | 57.7505 | 46.5503 | 3.8128 | 26.4297 | 0.7517 | 0.81 |
| 84 | 57.4725 | 44.8103 | 3.7665 | 26.0614 | 0.7581 | 0.78 |
| 85 | 57.1854 | 43.0206 | 3.7236 | 25.7194 | 0.7642 | 0.75 |
| 86 | 56.8921 | 41.1972 | 3.6847 | 25.4074 | 0.7698 | 0.72 |
| 87 | 56.5957 | 39.3564 | 3.6501 | 25.1292 | 0.775  | 0.70 |
| 88 | 56.2997 | 37.5147 | 3.6204 | 24.8881 | 0.7797 | 0.67 |
| 89 | 56.0075 | 35.6886 | 3.5959 | 24.6872 | 0.7839 | 0.64 |
| 90 | 55.7227 | 33.8948 | 3.5769 | 24.5292 | 0.7876 | 0.61 |
| 91 | 55.4489 | 32.1496 | 3.5638 | 24.4165 | 0.7909 | 0.58 |
| 92 | 55.1899 | 30.469  | 3.5567 | 24.3509 | 0.7936 | 0.55 |
| 93 | 54.9491 | 28.8688 | 3.5559 | 24.3341 | 0.7958 | 0.53 |
| 94 | 54.7303 | 27.3641 | 3.5615 | 24.3672 | 0.7976 | 0.50 |
| 95 | 54.5368 | 25.9695 | 3.5736 | 24.4509 | 0.7988 | 0.48 |



|     |         |          |        |         |        |      |
|-----|---------|----------|--------|---------|--------|------|
| 96  | 54.3719 | 24.6988  | 3.5923 | 24.5853 | 0.7996 | 0.45 |
| 97  | 54.2388 | 23.5651  | 3.6175 | 24.7705 | 0.7999 | 0.43 |
| 98  | 54.1403 | 22.5807  | 3.6491 | 25.0056 | 0.7998 | 0.42 |
| 99  | 54.0791 | 21.7568  | 3.6871 | 25.2896 | 0.7993 | 0.40 |
| 100 | 54.0576 | 21.1037  | 3.7312 | 25.6211 | 0.7983 | 0.39 |
| 101 | 54.0777 | 20.6306  | 3.7812 | 25.9981 | 0.797  | 0.38 |
| 102 | 54.1412 | 20.3457  | 3.8368 | 26.4184 | 0.7953 | 0.38 |
| 103 | 54.2495 | 20.2559  | 3.8977 | 26.8793 | 0.7933 | 0.37 |
| 104 | 54.4036 | 20.3669  | 3.9635 | 27.3776 | 0.791  | 0.37 |
| 105 | 54.6042 | 20.6833  | 4.0339 | 27.9101 | 0.7884 | 0.38 |
| 106 | 54.8515 | 21.2081  | 4.1083 | 28.4732 | 0.7856 | 0.39 |
| 107 | 55.1456 | 21.9433  | 4.1862 | 29.0627 | 0.7826 | 0.40 |
| 108 | 55.486  | 22.8893  | 4.2672 | 29.6747 | 0.7794 | 0.41 |
| 109 | 55.872  | 24.0453  | 4.3507 | 30.3046 | 0.7761 | 0.43 |
| 110 | 56.3027 | 25.409   | 4.4361 | 30.948  | 0.7726 | 0.45 |
| 111 | 56.7765 | 26.9766  | 4.5229 | 31.6001 | 0.769  | 0.48 |
| 112 | 57.2919 | 28.7431  | 4.6104 | 32.2562 | 0.7654 | 0.50 |
| 113 | 57.8469 | 30.7017  | 4.698  | 32.9115 | 0.7617 | 0.53 |
| 114 | 58.4396 | 32.8445  | 4.7852 | 33.5611 | 0.758  | 0.56 |
| 115 | 59.0674 | 35.162   | 4.8714 | 34.2003 | 0.7544 | 0.60 |
| 116 | 59.7279 | 37.6434  | 4.9558 | 34.8242 | 0.7507 | 0.63 |
| 117 | 60.4184 | 40.2763  | 5.0381 | 35.4282 | 0.7471 | 0.67 |
| 118 | 61.1361 | 43.0472  | 5.1175 | 36.0078 | 0.7436 | 0.70 |
| 119 | 61.8781 | 45.941   | 5.1936 | 36.5587 | 0.7402 | 0.74 |
| 120 | 62.6415 | 48.9418  | 5.2658 | 37.0768 | 0.7368 | 0.78 |
| 121 | 63.423  | 52.032   | 5.3337 | 37.558  | 0.7336 | 0.82 |
| 122 | 64.2198 | 55.1933  | 5.3967 | 37.9988 | 0.7305 | 0.86 |
| 123 | 65.0287 | 58.4064  | 5.4545 | 38.3959 | 0.7275 | 0.90 |
| 124 | 65.8467 | 61.6508  | 5.5067 | 38.7461 | 0.7246 | 0.94 |
| 125 | 66.6707 | 64.9056  | 5.5528 | 39.0469 | 0.7219 | 0.97 |
| 126 | 67.4977 | 68.149   | 5.5927 | 39.2957 | 0.7194 | 1.01 |
| 127 | 68.3247 | 71.3592  | 5.6261 | 39.4907 | 0.717  | 1.04 |
| 128 | 69.1489 | 74.5136  | 5.6527 | 39.6302 | 0.7147 | 1.08 |
| 129 | 69.9674 | 77.5898  | 5.6724 | 39.7129 | 0.7127 | 1.11 |
| 130 | 70.7774 | 80.5654  | 5.685  | 39.738  | 0.7107 | 1.14 |
| 131 | 71.5762 | 83.4183  | 5.6906 | 39.705  | 0.7089 | 1.17 |
| 132 | 72.3614 | 86.1268  | 5.689  | 39.6139 | 0.7073 | 1.19 |
| 133 | 73.1303 | 88.6701  | 5.6804 | 39.4648 | 0.7058 | 1.21 |
| 134 | 73.8805 | 91.0282  | 5.6646 | 39.2584 | 0.7045 | 1.23 |
| 135 | 74.6098 | 93.1821  | 5.642  | 38.9958 | 0.7032 | 1.25 |
| 136 | 75.3159 | 95.1144  | 5.6126 | 38.6783 | 0.7022 | 1.26 |
| 137 | 75.9968 | 96.8092  | 5.5766 | 38.3074 | 0.7013 | 1.27 |
| 138 | 76.6506 | 98.2521  | 5.5343 | 37.8852 | 0.7005 | 1.28 |
| 139 | 77.2754 | 99.431   | 5.4859 | 37.414  | 0.6998 | 1.29 |
| 140 | 77.8697 | 100.3357 | 5.4317 | 36.8961 | 0.6993 | 1.29 |
| 141 | 78.4321 | 100.9585 | 5.3721 | 36.3343 | 0.6989 | 1.29 |
| 142 | 78.9612 | 101.2939 | 5.3073 | 35.7315 | 0.6986 | 1.28 |
| 143 | 79.4563 | 101.3391 | 5.2377 | 35.0908 | 0.6985 | 1.28 |
| 144 | 79.9166 | 101.0941 | 5.1638 | 34.4154 | 0.6985 | 1.26 |
| 145 | 80.3417 | 100.5613 | 5.0859 | 33.7087 | 0.6986 | 1.25 |
| 146 | 80.7318 | 99.7462  | 5.0045 | 32.9741 | 0.6989 | 1.24 |



|     |          |          |        |         |        |      |
|-----|----------|----------|--------|---------|--------|------|
| 147 | 81.0871  | 98.657   | 4.9198 | 32.2151 | 0.6993 | 1.22 |
| 148 | 81.4086  | 97.3048  | 4.8325 | 31.4352 | 0.6999 | 1.20 |
| 149 | 81.6976  | 95.7032  | 4.7427 | 30.6378 | 0.7006 | 1.17 |
| 150 | 81.956   | 93.8688  | 4.6511 | 29.8265 | 0.7015 | 1.15 |
| 151 | 82.1864  | 91.8206  | 4.558  | 29.0046 | 0.7025 | 1.12 |
| 152 | 82.392   | 89.5802  | 4.4637 | 28.1755 | 0.7038 | 1.09 |
| 153 | 82.5765  | 87.1713  | 4.3686 | 27.3424 | 0.7052 | 1.06 |
| 154 | 82.7447  | 84.6199  | 4.2731 | 26.5084 | 0.7068 | 1.02 |
| 155 | 82.9019  | 81.9538  | 4.1776 | 25.6764 | 0.7087 | 0.99 |
| 156 | 83.0544  | 79.2024  | 4.0823 | 24.8492 | 0.7107 | 0.95 |
| 157 | 83.2093  | 76.3967  | 3.9876 | 24.0293 | 0.713  | 0.92 |
| 158 | 83.3745  | 73.5685  | 3.8937 | 23.2191 | 0.7155 | 0.88 |
| 159 | 83.559   | 70.7507  | 3.8008 | 22.4209 | 0.7182 | 0.85 |
| 160 | 83.7726  | 67.9766  | 3.7092 | 21.6365 | 0.7212 | 0.81 |
| 161 | 84.026   | 65.2797  | 3.6191 | 20.8678 | 0.7245 | 0.78 |
| 162 | 84.3306  | 62.6934  | 3.5307 | 20.1162 | 0.7279 | 0.74 |
| 163 | 84.6992  | 60.2507  | 3.444  | 19.3831 | 0.7317 | 0.71 |
| 164 | 85.1449  | 57.9838  | 3.3591 | 18.6694 | 0.7357 | 0.68 |
| 165 | 85.6817  | 55.924   | 3.2763 | 17.9761 | 0.74   | 0.65 |
| 166 | 86.3245  | 54.1012  | 3.1954 | 17.3038 | 0.7446 | 0.63 |
| 167 | 87.0884  | 52.5436  | 3.1167 | 16.653  | 0.7494 | 0.60 |
| 168 | 87.9895  | 51.2778  | 3.04   | 16.0238 | 0.7544 | 0.58 |
| 169 | 89.044   | 50.3281  | 2.9654 | 15.4163 | 0.7598 | 0.57 |
| 170 | 90.2683  | 49.7166  | 2.8928 | 14.8304 | 0.7653 | 0.55 |
| 171 | 91.6791  | 49.4629  | 2.8223 | 14.2659 | 0.7711 | 0.54 |
| 172 | 93.293   | 49.5842  | 2.7537 | 13.7224 | 0.7771 | 0.53 |
| 173 | 95.1264  | 50.0947  | 2.6871 | 13.1994 | 0.7833 | 0.53 |
| 174 | 97.1955  | 51.006   | 2.6222 | 12.6962 | 0.7897 | 0.52 |
| 175 | 99.5156  | 52.3267  | 2.5591 | 12.2121 | 0.7963 | 0.53 |
| 176 | 102.1014 | 54.0626  | 2.4977 | 11.7465 | 0.8031 | 0.53 |
| 177 | 104.9669 | 56.2166  | 2.4379 | 11.2984 | 0.8099 | 0.54 |
| 178 | 108.1246 | 58.7889  | 2.3795 | 10.8671 | 0.8169 | 0.54 |
| 179 | 111.5858 | 61.7768  | 2.3226 | 10.4517 | 0.8239 | 0.55 |
| 180 | 115.3603 | 65.175   | 2.267  | 10.0515 | 0.8311 | 0.56 |
| 181 | 119.4561 | 68.9758  | 2.2126 | 9.6655  | 0.8382 | 0.58 |
| 182 | 123.8793 | 73.1691  | 2.1595 | 9.2931  | 0.8453 | 0.59 |
| 183 | 128.6339 | 77.7425  | 2.1075 | 8.9336  | 0.8524 | 0.60 |
| 184 | 133.7218 | 82.6816  | 2.0567 | 8.5863  | 0.8595 | 0.62 |
| 185 | 139.142  | 87.9702  | 2.007  | 8.2507  | 0.8665 | 0.63 |
| 186 | 144.8916 | 93.5906  | 1.9583 | 7.9264  | 0.8733 | 0.65 |
| 187 | 150.9646 | 99.5236  | 1.9108 | 7.6129  | 0.88   | 0.66 |
| 188 | 157.3524 | 105.7488 | 1.8644 | 7.3101  | 0.8865 | 0.67 |
| 189 | 164.0435 | 112.2446 | 1.8192 | 7.0178  | 0.8929 | 0.68 |
| 190 | 171.0238 | 118.989  | 1.7751 | 6.736   | 0.899  | 0.70 |
| 191 | 178.2759 | 125.9592 | 1.7324 | 6.4647  | 0.9049 | 0.71 |
| 192 | 185.7799 | 133.1318 | 1.6911 | 6.2043  | 0.9105 | 0.72 |
| 193 | 193.5129 | 140.4834 | 1.6513 | 5.9549  | 0.9158 | 0.73 |
| 194 | 201.4492 | 147.9901 | 1.613  | 5.7171  | 0.9207 | 0.73 |
| 195 | 209.5607 | 155.6284 | 1.5765 | 5.4913  | 0.9254 | 0.74 |
| 196 | 217.8165 | 163.3748 | 1.5419 | 5.2781  | 0.9297 | 0.75 |
| 197 | 226.1833 | 171.2056 | 1.5093 | 5.0783  | 0.9337 | 0.76 |



|     |          |          |        |         |        |      |
|-----|----------|----------|--------|---------|--------|------|
| 198 | 234.626  | 179.0978 | 1.4789 | 4.8926  | 0.9373 | 0.76 |
| 199 | 243.107  | 187.0283 | 1.4508 | 4.7217  | 0.9405 | 0.77 |
| 200 | 251.5876 | 194.9745 | 1.4252 | 4.5667  | 0.9434 | 0.77 |
| 201 | 260.0268 | 202.914  | 1.4023 | 4.4283  | 0.9459 | 0.78 |
| 202 | 268.3834 | 210.8246 | 1.3823 | 4.3074  | 0.948  | 0.79 |
| 203 | 276.6143 | 218.6842 | 1.3652 | 4.2051  | 0.9498 | 0.79 |
| 204 | 284.6766 | 226.471  | 1.3514 | 4.122   | 0.9512 | 0.80 |
| 205 | 292.527  | 234.1635 | 1.3408 | 4.0592  | 0.9522 | 0.80 |
| 206 | 300.122  | 241.7395 | 1.3336 | 4.0174  | 0.953  | 0.81 |
| 207 | 307.4189 | 249.1776 | 1.33   | 3.9973  | 0.9534 | 0.81 |
| 208 | 314.3757 | 256.4557 | 1.3301 | 3.9997  | 0.9536 | 0.82 |
| 209 | 320.9514 | 263.5515 | 1.3339 | 4.0251  | 0.9535 | 0.82 |
| 210 | 327.1068 | 270.4427 | 1.3416 | 4.074   | 0.9531 | 0.83 |
| 211 | 332.8043 | 277.1066 | 1.3532 | 4.1468  | 0.9526 | 0.83 |
| 212 | 338.0086 | 283.52   | 1.3686 | 4.2436  | 0.9518 | 0.84 |
| 213 | 342.6868 | 289.6594 | 1.388  | 4.3646  | 0.951  | 0.85 |
| 214 | 346.8089 | 295.5009 | 1.4113 | 4.5098  | 0.9499 | 0.85 |
| 215 | 350.3477 | 301.0203 | 1.4384 | 4.6789  | 0.9488 | 0.86 |
| 216 | 353.2797 | 306.1931 | 1.4692 | 4.8716  | 0.9477 | 0.87 |
| 217 | 355.5844 | 310.9946 | 1.5038 | 5.0874  | 0.9465 | 0.87 |
| 218 | 357.2455 | 315.3997 | 1.5419 | 5.3256  | 0.9453 | 0.88 |
| 219 | 358.2502 | 319.3837 | 1.5834 | 5.5854  | 0.9441 | 0.89 |
| 220 | 358.5897 | 322.9218 | 1.6282 | 5.8659  | 0.943  | 0.90 |
| 221 | 358.2596 | 325.9898 | 1.6759 | 6.1659  | 0.942  | 0.91 |
| 222 | 357.2591 | 328.5639 | 1.7265 | 6.4841  | 0.9411 | 0.92 |
| 223 | 355.5921 | 330.6212 | 1.7796 | 6.8192  | 0.9403 | 0.93 |
| 224 | 353.2661 | 332.1397 | 1.8351 | 7.1696  | 0.9398 | 0.94 |
| 225 | 350.2929 | 333.0991 | 1.8925 | 7.5337  | 0.9394 | 0.95 |
| 226 | 346.6883 | 333.4804 | 1.9516 | 7.9097  | 0.9392 | 0.96 |
| 227 | 342.4718 | 333.2667 | 2.0122 | 8.2958  | 0.9392 | 0.97 |
| 228 | 337.6664 | 332.4434 | 2.0738 | 8.6901  | 0.9395 | 0.98 |
| 229 | 332.299  | 330.9985 | 2.1361 | 9.0905  | 0.94   | 1.00 |
| 230 | 326.3994 | 328.9224 | 2.1989 | 9.4952  | 0.9407 | 1.01 |
| 231 | 320.0002 | 326.2092 | 2.2617 | 9.9021  | 0.9417 | 1.02 |
| 232 | 313.1372 | 322.8562 | 2.3242 | 10.3092 | 0.943  | 1.03 |
| 233 | 305.8483 | 318.8641 | 2.3861 | 10.7144 | 0.9444 | 1.04 |
| 234 | 298.1732 | 314.2378 | 2.447  | 11.1157 | 0.9461 | 1.05 |
| 235 | 290.1539 | 308.9861 | 2.5067 | 11.5112 | 0.948  | 1.06 |
| 236 | 281.8333 | 303.122  | 2.5647 | 11.8991 | 0.9501 | 1.08 |
| 237 | 273.2558 | 296.6628 | 2.6209 | 12.2775 | 0.9524 | 1.09 |
| 238 | 264.466  | 289.6302 | 2.6748 | 12.6448 | 0.9548 | 1.10 |
| 239 | 255.5092 | 282.0502 | 2.7263 | 12.9993 | 0.9574 | 1.10 |
| 240 | 246.4303 | 273.9531 | 2.7751 | 13.3397 | 0.9601 | 1.11 |
| 241 | 237.2742 | 265.3736 | 2.821  | 13.6646 | 0.9628 | 1.12 |
| 242 | 228.0849 | 256.3504 | 2.8638 | 13.973  | 0.9655 | 1.12 |
| 243 | 218.9052 | 246.9257 | 2.9034 | 14.2637 | 0.9683 | 1.13 |
| 244 | 209.7768 | 237.1457 | 2.9395 | 14.5361 | 0.971  | 1.13 |
| 245 | 200.7396 | 227.06   | 2.9722 | 14.7894 | 0.9736 | 1.13 |
| 246 | 191.8316 | 216.7207 | 3.0013 | 15.0233 | 0.9761 | 1.13 |
| 247 | 183.0888 | 206.1827 | 3.0267 | 15.2374 | 0.9784 | 1.13 |
| 248 | 174.5446 | 195.503  | 3.0486 | 15.4318 | 0.9805 | 1.12 |



|     |          |          |        |         |        |      |
|-----|----------|----------|--------|---------|--------|------|
| 249 | 166.23   | 184.7399 | 3.0668 | 15.6065 | 0.9824 | 1.11 |
| 250 | 158.1731 | 173.9531 | 3.0815 | 15.7619 | 0.984  | 1.10 |
| 251 | 150.3996 | 163.2026 | 3.0927 | 15.8984 | 0.9852 | 1.09 |
| 252 | 142.9315 | 152.5479 | 3.1005 | 16.0167 | 0.9861 | 1.07 |
| 253 | 135.7883 | 142.0487 | 3.1052 | 16.1177 | 0.9866 | 1.05 |
| 254 | 128.9865 | 131.7628 | 3.1068 | 16.2022 | 0.9866 | 1.02 |
| 255 | 122.5391 | 121.7464 | 3.1056 | 16.2715 | 0.9862 | 0.99 |
| 256 | 116.4565 | 112.0533 | 3.1017 | 16.3268 | 0.9853 | 0.96 |
| 257 | 110.7458 | 102.7344 | 3.0955 | 16.3695 | 0.9839 | 0.93 |
| 258 | 105.4112 | 93.8369  | 3.0872 | 16.401  | 0.9819 | 0.89 |
| 259 | 100.4542 | 85.4043  | 3.077  | 16.423  | 0.9793 | 0.85 |
| 260 | 95.8735  | 77.4754  | 3.0653 | 16.437  | 0.9762 | 0.81 |
| 261 | 91.6653  | 70.0846  | 3.0523 | 16.4448 | 0.9725 | 0.76 |
| 262 | 87.8231  | 63.2604  | 3.0384 | 16.4481 | 0.9682 | 0.72 |
| 263 | 84.3385  | 57.0265  | 3.0238 | 16.4485 | 0.9633 | 0.68 |
| 264 | 81.201   | 51.4005  | 3.0089 | 16.4479 | 0.9578 | 0.63 |
| 265 | 78.3981  | 46.3946  | 2.994  | 16.4479 | 0.9518 | 0.59 |
| 266 | 75.9157  | 42.0145  | 2.9795 | 16.4502 | 0.9451 | 0.55 |
| 267 | 73.7386  | 38.2604  | 2.9655 | 16.4564 | 0.9379 | 0.52 |
| 268 | 71.8499  | 35.1263  | 2.9524 | 16.468  | 0.9302 | 0.49 |
| 269 | 70.232   | 32.6006  | 2.9405 | 16.4865 | 0.9219 | 0.46 |
| 270 | 68.8667  | 30.6663  | 2.93   | 16.5133 | 0.9132 | 0.45 |
| 271 | 67.7348  | 29.3005  | 2.9211 | 16.5494 | 0.904  | 0.43 |
| 272 | 66.8171  | 28.4758  | 2.9142 | 16.5962 | 0.8943 | 0.43 |
| 273 | 66.0941  | 28.1603  | 2.9094 | 16.6543 | 0.8843 | 0.43 |
| 274 | 65.5467  | 28.3177  | 2.9068 | 16.7248 | 0.874  | 0.43 |
| 275 | 65.1554  | 28.9084  | 2.9066 | 16.8082 | 0.8633 | 0.44 |
| 276 | 64.9017  | 29.8892  | 2.909  | 16.9051 | 0.8524 | 0.46 |
| 277 | 64.7673  | 31.2149  | 2.9141 | 17.0157 | 0.8413 | 0.48 |
| 278 | 64.7348  | 32.8381  | 2.9218 | 17.1402 | 0.8301 | 0.51 |
| 279 | 64.7873  | 34.7104  | 2.9324 | 17.2786 | 0.8187 | 0.54 |
| 280 | 64.909   | 36.7823  | 2.9456 | 17.4307 | 0.8073 | 0.57 |
| 281 | 65.0852  | 39.0046  | 2.9616 | 17.5963 | 0.7958 | 0.60 |
| 282 | 65.3021  | 41.3287  | 2.9804 | 17.7748 | 0.7844 | 0.63 |
| 283 | 65.547   | 43.707   | 3.0017 | 17.9657 | 0.7731 | 0.67 |
| 284 | 65.8086  | 46.0939  | 3.0256 | 18.1681 | 0.762  | 0.70 |
| 285 | 66.0764  | 48.446   | 3.0519 | 18.3812 | 0.751  | 0.73 |
| 286 | 66.3415  | 50.7227  | 3.0805 | 18.604  | 0.7403 | 0.76 |
| 287 | 66.5959  | 52.8868  | 3.1111 | 18.8353 | 0.7298 | 0.79 |
| 288 | 66.833   | 54.9048  | 3.1437 | 19.0741 | 0.7196 | 0.82 |
| 289 | 67.047   | 56.7472  | 3.1781 | 19.319  | 0.7098 | 0.85 |
| 290 | 67.2335  | 58.3887  | 3.2139 | 19.5689 | 0.7004 | 0.87 |
| 291 | 67.3891  | 59.8087  | 3.251  | 19.8222 | 0.6914 | 0.89 |
| 292 | 67.5112  | 60.9914  | 3.2892 | 20.0777 | 0.6828 | 0.90 |
| 293 | 67.5985  | 61.9254  | 3.3282 | 20.3339 | 0.6747 | 0.92 |
| 294 | 67.6501  | 62.6045  | 3.3677 | 20.5896 | 0.667  | 0.93 |
| 295 | 67.6661  | 63.0269  | 3.4075 | 20.8433 | 0.6599 | 0.93 |
| 296 | 67.6474  | 63.1954  | 3.4475 | 21.0939 | 0.6532 | 0.93 |
| 297 | 67.5952  | 63.1174  | 3.4872 | 21.34   | 0.6471 | 0.93 |
| 298 | 67.5114  | 62.8043  | 3.5266 | 21.5805 | 0.6414 | 0.93 |
| 299 | 67.3985  | 62.2712  | 3.5653 | 21.8144 | 0.6363 | 0.92 |



|     |         |         |        |         |        |      |
|-----|---------|---------|--------|---------|--------|------|
| 300 | 67.259  | 61.5368 | 3.6032 | 22.0407 | 0.6317 | 0.91 |
| 301 | 67.096  | 60.6227 | 3.64   | 22.2584 | 0.6275 | 0.90 |
| 302 | 66.9126 | 59.5533 | 3.6756 | 22.4669 | 0.6238 | 0.89 |
| 303 | 66.7121 | 58.3549 | 3.7098 | 22.6655 | 0.6206 | 0.87 |
| 304 | 66.4978 | 57.0555 | 3.7425 | 22.8538 | 0.6177 | 0.86 |
| 305 | 66.2732 | 55.6842 | 3.7735 | 23.0314 | 0.6153 | 0.84 |
| 306 | 66.0414 | 54.2708 | 3.8028 | 23.198  | 0.6133 | 0.82 |
| 307 | 65.8058 | 52.8449 | 3.8302 | 23.3537 | 0.6116 | 0.80 |
| 308 | 65.5692 | 51.436  | 3.8557 | 23.4984 | 0.6102 | 0.78 |
| 309 | 65.3345 | 50.0726 | 3.8792 | 23.6323 | 0.6091 | 0.77 |
| 310 | 65.1042 | 48.7814 | 3.9007 | 23.7558 | 0.6082 | 0.75 |
| 311 | 64.8807 | 47.588  | 3.9202 | 23.8694 | 0.6076 | 0.73 |
| 312 | 64.6658 | 46.5151 | 3.9379 | 23.9736 | 0.6071 | 0.72 |
| 313 | 64.4615 | 45.5835 | 3.9536 | 24.069  | 0.6068 | 0.71 |
| 314 | 64.269  | 44.8106 | 3.9674 | 24.1565 | 0.6065 | 0.70 |
| 315 | 64.0894 | 44.2109 | 3.9795 | 24.2369 | 0.6063 | 0.69 |
| 316 | 63.9235 | 43.7959 | 3.99   | 24.311  | 0.6062 | 0.69 |
| 317 | 63.7717 | 43.5732 | 3.9989 | 24.38   | 0.606  | 0.68 |
| 318 | 63.634  | 43.5473 | 4.0065 | 24.4447 | 0.6058 | 0.68 |
| 319 | 63.5105 | 43.7191 | 4.0127 | 24.5063 | 0.6056 | 0.69 |
| 320 | 63.4007 | 44.0858 | 4.0178 | 24.5657 | 0.6052 | 0.70 |
| 321 | 63.3036 | 44.6416 | 4.022  | 24.6241 | 0.6048 | 0.71 |
| 322 | 63.2187 | 45.3772 | 4.0254 | 24.6823 | 0.6042 | 0.72 |
| 323 | 63.1446 | 46.2806 | 4.0281 | 24.7414 | 0.6035 | 0.73 |
| 324 | 63.0801 | 47.3367 | 4.0303 | 24.8023 | 0.6026 | 0.75 |
| 325 | 63.0236 | 48.5284 | 4.0322 | 24.8658 | 0.6015 | 0.77 |
| 326 | 62.9736 | 49.8359 | 4.0339 | 24.9326 | 0.6002 | 0.79 |
| 327 | 62.9283 | 51.238  | 4.0356 | 25.0033 | 0.5988 | 0.81 |
| 328 | 62.886  | 52.7121 | 4.0374 | 25.0786 | 0.5972 | 0.84 |
| 329 | 62.8449 | 54.2344 | 4.0394 | 25.1587 | 0.5954 | 0.86 |
| 330 | 62.803  | 55.7806 | 4.0418 | 25.244  | 0.5934 | 0.89 |
| 331 | 62.7588 | 57.3262 | 4.0445 | 25.3345 | 0.5913 | 0.91 |
| 332 | 62.7103 | 58.847  | 4.0478 | 25.4302 | 0.5891 | 0.94 |
| 333 | 62.6558 | 60.3191 | 4.0516 | 25.531  | 0.5867 | 0.96 |
| 334 | 62.5939 | 61.7199 | 4.056  | 25.6364 | 0.5842 | 0.99 |
| 335 | 62.5229 | 63.0279 | 4.061  | 25.7461 | 0.5816 | 1.01 |
| 336 | 62.4416 | 64.2231 | 4.0666 | 25.8592 | 0.579  | 1.03 |
| 337 | 62.3487 | 65.2879 | 4.0729 | 25.975  | 0.5763 | 1.05 |
| 338 | 62.2433 | 66.2065 | 4.0796 | 26.0926 | 0.5737 | 1.06 |
| 339 | 62.1244 | 66.9653 | 4.0869 | 26.2108 | 0.5711 | 1.08 |
| 340 | 61.9915 | 67.5537 | 4.0945 | 26.3285 | 0.5685 | 1.09 |
| 341 | 61.8442 | 67.9636 | 4.1024 | 26.4443 | 0.566  | 1.10 |
| 342 | 61.6822 | 68.1893 | 4.1105 | 26.5568 | 0.5637 | 1.11 |
| 343 | 61.5055 | 68.2284 | 4.1187 | 26.6644 | 0.5615 | 1.11 |
| 344 | 61.3142 | 68.0807 | 4.1268 | 26.7656 | 0.5595 | 1.11 |
| 345 | 61.109  | 67.749  | 4.1346 | 26.8586 | 0.5578 | 1.11 |
| 346 | 60.8902 | 67.2386 | 4.1419 | 26.9419 | 0.5563 | 1.10 |
| 347 | 60.6589 | 66.557  | 4.1486 | 27.0138 | 0.5551 | 1.10 |
| 348 | 60.4161 | 65.7143 | 4.1546 | 27.0725 | 0.5542 | 1.09 |
| 349 | 60.163  | 64.7222 | 4.1595 | 27.1165 | 0.5536 | 1.08 |
| 350 | 59.9009 | 63.5944 | 4.1632 | 27.1441 | 0.5533 | 1.06 |



|              |         |         |        |         |        |       |
|--------------|---------|---------|--------|---------|--------|-------|
| 351          | 59.6315 | 62.346  | 4.1656 | 27.1538 | 0.5535 | 1.05  |
| 352          | 59.3563 | 60.9932 | 4.1664 | 27.1442 | 0.554  | 1.03  |
| 353          | 59.0772 | 59.5533 | 4.1655 | 27.114  | 0.5549 | 1.01  |
| 354          | 58.7961 | 58.0441 | 4.1626 | 27.062  | 0.5562 | 0.99  |
| 355          | 58.515  | 56.4834 | 4.1577 | 26.9871 | 0.5579 | 0.97  |
| 356          | 58.2358 | 54.8895 | 4.1506 | 26.8887 | 0.56   | 0.94  |
| 357          | 57.9607 | 53.28   | 4.1412 | 26.7659 | 0.5625 | 0.92  |
| 358          | 57.6915 | 51.6719 | 4.1293 | 26.6183 | 0.5654 | 0.90  |
| 359          | 57.4304 | 50.0815 | 4.1149 | 26.4458 | 0.5687 | 0.87  |
| 360          | 57.1795 | 48.5239 | 4.098  | 26.2483 | 0.5723 | 0.85  |
| 361          | 56.9403 | 47.0128 | 4.0785 | 26.0262 | 0.5763 | 0.83  |
| 362          | 56.7148 | 45.5605 | 4.0564 | 25.7798 | 0.5806 | 0.80  |
| 363          | 56.5048 | 44.1778 | 4.0317 | 25.5099 | 0.5851 | 0.78  |
| 364          | 56.3117 | 42.8734 | 4.0045 | 25.2176 | 0.59   | 0.76  |
| 365          | 56.1367 | 41.6544 | 3.9749 | 24.904  | 0.595  | 0.74  |
| Average ---> | 104.535 | 87.844  | 3.531  | 21.588  | 0.743  | 0.794 |
| Maximum ---> | 358.590 | 333.480 | 5.691  | 39.738  | 0.987  | 1.289 |
| Minimum ---> | 54.058  | 20.256  | 1.330  | 3.997   | 0.553  | 0.373 |





