

HIGH FREQUENCY COMMUNICATION SYSTEMS

Lecture 7

Hasan T Abbas & Qammer H Abbasi Spring 2021

LECTURE OUTLINE

- · Antenna Arrays
- · Array Analysis
 - · Uniform linear arrays
 - · Non-uniform arrays

ANTENNA ARRAY MOTIVATION

- In individual antenna elements, we can't control the radiation patterns
- If we combine two antenna elements, it is possible to change the pattern significantly
 - We call the new combined structure as an antenna array.
- We achieve higher directivity using antenna arrays

Phase-delayed antenna elements

Figure 1: Typical antenna array with phased elements.

ANTENNA ARRAY APPLICATIONS

- CommunicationsApplications
 - The goal is to focus EM energy towards the target population (cars, people, cities etc.)
 - Modern wireless communications using beamforming
- Radar multiple target tracking
 - We would like to focus the energy on the targets as they move

Figure 2: A Phased array antenna in RADAR based target tracking.

THE ARRAY ELEMENT - POINT DIPOLE

 Recall from the antenna introduction lecture, the field pattern of an infinitesimal dipole:

$$\begin{split} \vec{\mathbf{E}} &= \hat{\boldsymbol{\gamma}} j k \eta l_0 l \frac{\exp(-jkr)}{4\pi r} \sin \gamma \\ &= j k \eta \vec{\mathbf{h}} G(r) \end{split}$$

where $\vec{\mathbf{h}} = \hat{\gamma} l_0 l \sin \gamma$ and G(r) is the free-space Green function for a point source, $\exp(jkr)/(4\pi r)$

 We will use this as the antenna element

OBTAINING A DESIRED PATTERN

- · There are some factors that determine the desired radiation pattern
 - · Array Geometry
 - · Element Spacing
 - · Element Excitation Amplitude
 - · Pattern of individual element

The total field is given by:

 $E_{total} = \text{Element Factor} \times \text{Array Factor}$

TWO ELEMENT ARRAY

- The simplest antenna array contains two elements
- Two analyse an array, we start by using point sources as individual elements
 - The final pattern is obtained by multiplication
- · First, we will ignore the mutual coupling between elements.
- Consider an array of two point sources separated by a distance d on the y-axis.
- Assuming that both the antenna elements are excited by the current $l_1 = l_0 \exp(j\alpha/2)$ and $l_2 = l_0 \exp(-j\alpha/2)$ where $0 < \alpha < 2\pi$.

Figure 3: Two point sources forming a basic antenna array.

Neglecting any mutual coupling, we obtain the total fields by simple vector summation:

$$\vec{\mathbf{E_t}} = \vec{\mathbf{E_1}} + \vec{\mathbf{E_2}}$$

$$= \hat{\gamma} j k \eta \frac{l_0 \ell}{4\pi} \left\{ \frac{e^{-jkR_1}}{R_1} e^{+j\alpha/2} \sin \gamma_1 + \frac{e^{-jkR_2}}{R_2} e^{-j\alpha/2} \sin \gamma_2 \right\}$$

We use the *far-field* approximation:

$$\gamma_1 \approx \gamma_2 \approx \gamma$$
 $R_1 \approx r - \frac{d}{2}\cos\theta$
 $R_2 \approx r + \frac{d}{2}\cos\theta$
 $R_1 \approx R_2 \approx r \text{(amplitude term)}$

8

The total far-field thus becomes:

$$\begin{split} \vec{\mathbf{E_t}} &= \hat{\gamma} j k \eta \frac{l_0 \ell}{4\pi r} \sin \gamma \left\{ \mathrm{e}^{-jk\frac{d}{2}\cos\theta} \mathrm{e}^{-j\alpha/2} + \mathrm{e}^{-jk\frac{d}{2}\cos\theta} \mathrm{e}^{+j\alpha/2} \right\} \\ &= j k \eta \vec{\mathbf{h}} G(r) \left\{ \mathrm{e}^{\frac{k d \cos\theta + \alpha}{2}} + \mathrm{e}^{-\frac{k d \cos\theta + \alpha}{2}} \right\} \\ &= \underbrace{j k \eta \vec{\mathbf{h}} G(r)}_{\text{Element Factor}} 2 \cos \left[\frac{1}{2} \left(k d \cos\theta + \alpha \right) \right]_{\text{Array Factor}} \end{split}$$

We can control and change the pattern by varying d and α , that are the spacing and phase shifts.

Lets look at different cases where we consider different values of d and α .

 $\alpha = 0^{\circ}$ and $d = \lambda/4$, for which the array factor (AF) is

$$AF = 2\cos\left[\frac{1}{2}\left(kd\cos\theta + \alpha\right)\right] = 2\cos\left(\frac{\pi}{4}\cos\theta\right)$$

Figure 4: The total field pattern for $\alpha = 0^{\circ}$ and $d = \lambda/4$.

Now looking at $\alpha=90^\circ$ and $d=\lambda/4$, for which the array factor (AF) is

$$AF = 2\cos\left[\frac{1}{2}\left(kd\cos\theta + \alpha\right)\right] = 2\cos\left(\frac{\pi}{4}\cos\theta + \frac{\pi}{4}\right)$$

Figure 5: The total field pattern for $\alpha=90^{\circ}$ and $d=\lambda/4$.

· Now looking at $\alpha=-90^\circ$ and $d=\lambda/4$, for which the array factor (AF) is

$$AF = 2\cos\left[\frac{1}{2}\left(kd\cos\theta + \alpha\right)\right] = 2\cos\left(\frac{\pi}{4}\cos\theta - \frac{\pi}{4}\right)$$

Figure 6: The total field pattern for $\alpha = -90^{\circ}$ and $d = \lambda/4$.

N-ELEMENT UNIFORM ARRAY

- A uniform array consists of equally spaced and identical elements
 - All elements are excited with same amplitude
 - However, the elements have a progressive phase shift.
- As before, the total field is the vector sum of the individual elements:

$$\vec{\mathbf{E}}_{7} = \vec{\mathbf{E}}_{0} + \vec{\mathbf{E}}_{1} + \vec{\mathbf{E}}_{-1} + \vec{\mathbf{E}}_{2} + \vec{\mathbf{E}}_{-2} + \dots$$

$$= j k \eta \vec{\mathbf{h}} G(r) \left(1 + e^{j\psi} + e^{-j\psi} + e^{2j\psi} + e^{-2j\psi} + \dots \right)$$

where $\psi = kd\cos\theta + \alpha$

Continuing, we can write the AF as:

$$AF = \sum_{n=1}^{N'} e^{jn\psi} \quad \text{where } N' = \frac{(N-1)}{2}$$
 (1)

We can also express (1) as:

$$AFe^{jn\psi} = \sum_{n=-N'}^{N'} e^{j(n+1)\psi} \tag{2}$$

From (2) and (1) we get:

$$AF = \frac{e^{j(N+1)\frac{\psi}{2}} - e^{-j(N-1)\frac{\psi}{2}}}{e^{j\psi} - 1}$$
$$= \frac{e^{j\psi/2}}{e^{j\psi/2}} \left[\frac{e^{jN\psi/2} - e^{-jN\psi/2}}{e^{j\psi/2} - e^{-j\psi/2}} \right]$$

$$AF = \frac{\sin N\psi/2}{\sin \psi/2} \text{ where } \psi = kd\cos\theta + \alpha$$

Noting that the above expression resembles a sinc function, we can extend this to find the AF of any discrete array made of uniformly spaced elements. A major difference however is the sidelobes don't decay with the increasing function argument.

In general, we plot the AF in the normalised form (divide by N).

Figure 7. The normalised AE of a 2 element array

SOME OBSERVATIONS

- · As N increases, the main lobe narrows
- We get more side lobes in one period of AF as N increases
- · The width of the minor/side lobes is $2\pi/N$
- The side lobe height decreases as we increase N
- \cdot AF is symmetric about π
- We also see that the peak value occurs at $\psi = \pm 2n\pi$ for n = 0, 1, 2, ...
- The nulls occur at $\psi = \pm 2n\pi/N$
- · The side lobe level is defined as:

$$SLL = \frac{Max \text{ side lobe value}}{Max \text{ Main lobe value}}$$

A four-element (N=4), uniformly excited, equally spaced array. The spacing d is $\lambda/2$ and the interelement phasing α is 90°.

Figure 9: A four element antenna array.

The normalised array factor is given by:

AF =1/4
$$\frac{\sin 4\psi/2}{\sin \psi/2}$$
 where $\psi = \frac{2\pi}{\lambda} \frac{\lambda}{2} \cos \theta + 90^{\circ}$

- · The linear plot is done as before
- We can plot the corresponding polar plot by translating peaks and main and side lobes
- \cdot We first shift the polar plot by an amount lpha
 - · One period of the AF is considered

The direction of the main beam in the polar plot is found as:

$$\psi = kd \cos \theta + \alpha$$

$$\theta = \arccos \frac{\psi - \alpha}{kd}$$

$$\theta_0 = \arccos \left(\frac{0 - \pi/2}{\pi}\right) = 120^{\circ}$$

PATTERN BEAMWIDTH

In general there are two extreme cases which are sometimes used:

- 1. Broadside ($\theta_0 = 90^{\circ}$) when $\alpha = 0$
- 2. Endfire ($heta_0=0^\circ$ or 180°) when $lpha=\pm kd$

The array pattern is often characterised by beamwidth between first nulls.

Knowing that the nulls occur at:

$$N\psi_{ extsf{FN}}/2=\pm\,\pi$$
 For broadside array, $rac{N}{2}rac{2\pi}{\lambda}d\cos heta_{ extsf{FN}}=\pm\,\pi$ $heta_{ extsf{FN}}=rccos\left(\pmrac{\lambda}{Nd}
ight)$

The BWFN is:

$$\mathit{BWFN} = |\theta_{\mathsf{FN, left}} - \theta_{\mathsf{FN, right}}|$$

(a) Broadside

For practical applications, we require a single pencil beam. To achieve it in the end-fire configuration, one of the ways to generate a single lobe is to use backing ground plane. Another way to do this is to slightly decrease the element spacing below $\lambda/2$.

Some of the famous antennas such as the *Yagi-Uda* implements this. The *Hansen-Woodyard* endfire array also does it by introducing an excess phase delay:

$$\alpha = \pm (kd + \delta)$$

The end expressions for Hansen-Woodyard array are:

$$d < \frac{\lambda}{2} \left(1 - \frac{1}{N} \right)$$
$$\alpha = \pm \left(kd + \frac{\pi}{N} \right)$$

Figure 10: Slight change of the phase

Considering an example, where a five-element Hansen Woodyard has element spacing $d=0.37\lambda$ and the element-element phase shift, $\alpha=0.94\pi$. Lets find the radiation pattern.

Figure 11: The side by side plots of the linear and polar patterns of a Hansen Woodyard array.

The sidelobes can be further truncated using non-uniform excitation on the elements. The AF can now be written as a polynomial in terms of $Z=e^{j\psi}$:

$$AF = \sum_{n=0}^{N-1} A_n e^{in\psi} = \sum_{n=0}^{N-1} A_n Z_n$$

The current amplitudes A_n are real-valued and different for each n. Lets plot the array patterns for a five-element broadside array.

