

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2013/2014 – 2nd Year Examination – Semester 4

IT4504: Data Communication and Networks PART 2 - Structured Question Paper

20st July, 2014 (ONE HOUR)

To be completed by the	e candid	late	
BIT Examination	Index	No:	

Important Instructions:

- The duration of the paper is 1 (One) hour.
- The medium of instruction and guestions is English.
- This paper has 3 questions and 8 pages.
- Answer all questions. All questions do not carry equal marks.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.

Questions Answered

Indicate by a cross (x), (e.g. X) the numbers of the questions answered.

	Quest	ion nun		
To be completed by the candidate by marking a cross (x).	1	2	3	
To be completed by the examiners:				

(1) (i)	Your Internet Service Provider has given you the following information regarding y	your office
(-)	data link.Link type & bandwidth -Local Leased Circuit with 10Mbps fixed bandwidth	
	directions.LAN interface of the router - IP 192.248.22.20 (public IP)	
	• Subnet - 255.255.255.224	
	(a) What is the network address /subnet ID?	(1 marks)
	192.248.22.0	
	(b) What is the broadcast address for the specified subnet?	
	192.248.22.31	(1 marks)
	(c) How many usable IP addresses are available for your equipment?	(1 marks)
	30	
	(d) Write down IP of the above router interface in Classless Inter-Domain Routing (CII	DR)
	notation?	(1 marks)
	192.248.22.20/27	
ii)	State the technologies that are available to provide world wide web (web browsing to the rest of the office if you have 150 staff computers.)facilities
	to the rest of the office if you have 150 stair computers.	(4 marks)
	Using NAT /PAT or web proxy	
	Cong Till / Till of Wee proxy	

Index No

	Index No
(iii)	The office wants to maintain a video conferencing facility to communicate with overseas partners. How do you provide dedicated bandwidth /data rate to the video conferencing data packets within your network? Explain briefly how you can implement your technical solution. (12 marks)
	Use QOS and provide separate priority for VC connection on all end and

Us	e QOS and provide separate priority for VC connection on all end and
int	termediate networking devices(switch, routers etc) are separate VLAN
M	ust be implemented for VC connectivity.

iv) You have 3 separate departments (Accounts, Human Resources, Sales) in the office. How do you segregate the departments logically? State a technology that can be used for this purpose.

(10 marks)

Implement separate VLANs, Isolate the r	network using firewall
or using ACL	

Index No		

v) What are the basic equipments (active components) required for the above network? Use a diagram to depict the connectivity between those components.

(16 marks) Router Switch L1/L2 Core and Access switch **Firewall** 10M data link Router Firewall core Switch Access Switch

Index No			

		(4 n
	The MAC address filtering , WEP, hiding SSID, Static IP assigning	
	end to end encryptions or VPN, implement security protocol like WPA, WPA2,TKIP,EAP,	
	use of Smart cards, USB tokens, and software tokens, WAPI, RF Shielding	
	000 samples per second are captured during a digitising process of an analogue sign	nal. V
the 1		nal. V
the 1	000 samples per second are captured during a digitising process of an analogue sign maximum frequency of the analogue signal you can reconstruct, theoretically, from	nal. V
the 1	000 samples per second are captured during a digitising process of an analogue sign maximum frequency of the analogue signal you can reconstruct, theoretically, from	nal. V
the 1	000 samples per second are captured during a digitising process of an analogue sign maximum frequency of the analogue signal you can reconstruct, theoretically, from ples?	nal. V
the 1	2000 / 2	nal. V
the 1	2000 samples per second are captured during a digitising process of an analogue sign maximum frequency of the analogue signal you can reconstruct, theoretically, from ples? 20000 / 2 =10,000	nal. V
the 1	2000 samples per second are captured during a digitising process of an analogue sign maximum frequency of the analogue signal you can reconstruct, theoretically, from ples? 20000 / 2 =10,000	nal. V
the 1	2000 samples per second are captured during a digitising process of an analogue sign maximum frequency of the analogue signal you can reconstruct, theoretically, from ples? 20000 / 2 =10,000	nal. V
the 1	2000 samples per second are captured during a digitising process of an analogue sign maximum frequency of the analogue signal you can reconstruct, theoretically, from ples? 20000 / 2 =10,000	nal. V

Index No	١.												
much in				 							 	 	

(ii)	Calculate the maximum possible data rate over a noisy channel with an S/N ratio of 15 and a
	bandwidth of 20Khz.

	(10 marks)
$=20,000$ Hz($\log_2(1+15)$)	
=20000X4	
=80,000	
=80Kbps	

(iii) Briefly explain two key factors you will consider in selecting a suitable network topology/design for a networking project.

(10 marks)

	(10 marks)
Relia	bility
	What is the degree of reliability expected? What is the
	permissible downtime, is the solution needs failover options?
Expa	<u>ndability</u>
	Does the system need to be expandable? What are the
	limitations of the required solution? The degree of complexity
	of adding extra nodes to the solution.
perfo	<u>ormance</u>
	Speed ,bandwidth, delay or latency need to be
	Considered under performance.

	The packet filtering firewall is a filter which filtered data packets using sou	(5 ma irce or
	destination IP Address or port ID. This will require a layer 3 device to	
	inspect the header of each data packet.	
Wh	at is a VPN (Virtual Private Network)? Explain briefly how it improves security.	
Wh	at is a VPN (Virtual Private Network)? Explain briefly how it improves security.	(5 ma
Wh	at is a VPN (Virtual Private Network)? Explain briefly how it improves security. VPN is a secure network over public infrastructure using encryption techn	
Wh	VPN is a secure network over public infrastructure using encryption techn	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.
Wh	VPN is a secure network over public infrastructure using encryption techn	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.
Wh	VPN is a secure network over public infrastructure using encryption technical By setting up a VPN, we can establish a secure channel preventing a man in	nology.

Index No

Index	Nο								
mucx	INU	 							

(iii)	What is a	broadcast	domain	with	respect	to networ	ks?
-------	-----------	-----------	--------	------	---------	-----------	-----

(5 marks)

A broadcast domain is a logical division of a computer network, in which all							
nodes can reach each other by broadcast at the data link layer.							

(iv) Explain briefly the advantages and disadvantages of modern ring networks

(5 marks)

Advantages, less cost on materials, Multipath circuits redundancy can be maintain							
Disadvantages, Costly end equipment, shared bandwidth							

(v) Draw a diagram to show the messages passed between client and the DHCP server in establishing an IP address using the DHCP protocol.
