

CS120: Computer Networks

Lecture 12. Other Topics in IP Layer

Zhice Yang

Outline

- IPv6
- NAT
- Router Implementation

IP Version 6 (IPv6)

- Motivation
 - 32 bits IPv4 Address is not enough
 - Other Features
 - Stateless auto configuration
 - Source routing
- Launched around 2000
- IPv6 "base" Header
 - 40 bytes "base" header
 - 16 bytes addresses
- Extension headers
 - Fragmentation
 - Source routing
 - etc.

IPv6 Address

- 16 bytes
 - 1500 addresses per square foot (Earth's surface)
- Classless addressing/routing (similar to CIDR)
 - Notation: x:x:x:x:x:x:x/y (x = 16-bit hex number, y = netmask)
 - Contiguous 0s are compressed: 47CD::A456:0124
 - IPv4-mapped IPv6 address: ::FFFF:123.45.67.8
- Address assignment

010	RegistryID	ProviderID	SubscriberID	SubnetID	InterfaceID
					64bit

- IETF began looking at the problem of IPv4 address space in 1991
- Not all routers can be upgraded simultaneously

How will network operate with mixed IPv4 and IPv6 routers?

Transition from IPv4 to IPv6

 Tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Transition from IPv4 to IPv6

Outline

- IPv6
- >NAT
- Router Implementation

LAN Address

```
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix . :
   Link-local IPv6 Address . . . : fe80::d1b5:35be:9832:af6c%9
   IPv4 Address . . . . . . . . : 192.168.31.143
   Subnet Mask . . . . . . . . . . : 255.255.255.0
   Default Gateway . . . . . . . . . . : 192.168.31.1
```

LAN address: not routable on the public network and are used only within a local network.

LAN Addresses	Subnet mask	Provides	Addresses per LAN
10.0.0.0 - 10.255.255.255	255.0.0.0	1 class A LAN	16,777,216
172.16.0.0 - 172.31.255.255	255.255.0.0	16 class B LANs	65,536
192.168.0.0 - 192.168.255.255	255.255.255.0	256 class C LANs	256

LAN Address

datagrams with source or destination in this network have 192.168.1.0/24 address for source, destination

not routable on the public network (LAN addresses are not unique)

The Port Field

Multi-Layer NAT

NAT translation table R1		
LAN	WAN	
192.168.1.2:1234	10.1.1.8:6321	

NAT translation table R2		
LAN	WAN	
10.1.1.8:6321	59.23.1.8:6000	

Demo

- 16-bit port-number field (covered in later lectures)
 - ~60,000 simultaneous connections with a single IPv4 address
 - Hosts can uses LAN addresses to communicate with the public network
 - 192.168.0.0/16
 - 10.0.0.0/8
 - 172.16.0.0/12
 - etc.
- Criticisms
 - NAT is "impure"
 - Routers should not touch higher layers content
 - Efficiency
 - Traversal Connections

NAT Traversal Problem

- How to initiate connections to Host 1 from the external network?
 - e.g., VoIP (Voice Call)

NAT Traversal Problem

- Solution 1: Static Configure
 - Configure NAT to forward incoming connection requests at given port to the host's given port

 Preshare the port number to the connector

192.168.1.2	192.168.1.22 H2	192.168.1.222 H3
Network 2 (Ethernet)	192.168.1.1	
R1		
	1 59	0.23.1.8

NAT translation table		
LAN	WAN	
192.168.1.2:80	59.23.1.8: <u>6000</u>	

NAT Traversal Problem

- Solution 2: Relay
 - NATed host keeps connection to a relay host
 - External host connects to the relay
 - Relay bridges packets between two hosts

Outline

- IPv6
- NAT
- ➤ Router Implementation

Router Architecture

- Two Key Functions:
 - Routing protocols (e.g., RIP, OSPF, BGP, etc.)
 - Forwarding packets from input to output ports
- Performance metrics: packet per second (PPS)

Router Architecture

- Two Key Functions:
 - Routing algorithms (e.g, RIP, OSPF, BGP, etc.)
 - Forwarding packets from input to output ports

Performance metrics: packet per second (PPS)

Key Components

- Control Processor
 - Control and configuration
 - Ports and switch fabrics
 - Calculation
 - Routing Algorithm
 - Push forwarding tables into ports
- Port
 - Handle PHY and MAC Protocols
 - Output Port Looking Up
 - Deliver Packet to Switch Fabric
 - Buffer
- Switching Fabrics
 - Transfer packets from input buffer to appropriate output buffer
 - Types
 - Shared Bus/memory
 - Crossbar
 - Self-routing

Shared Bus/Memory

- Datagram from input port to output port via a shared bus
 - 2 bus crossings per datagram
 - Bus and memory bandwidth determines switch throughput

Inside Wireless Routers

Crossbar

- A crossbar switch is a matrix of pathways that can be configured to connect any input port to any output port
 - number of port-to-port connections => complexity and cost

 Insight: increase the number of port-to-port hops but decrease the number of port-to-port connections

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - Collision: Two packets with same output ports

- Banyan Network
 - Collision Free
 - Assumption: input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Assumption: input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Assumption: input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Assumption: input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Assumption: input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Assumption: input Packets are sorted according to routing header

Reference

- Textbook 4.1
- Textbook 4.3
- Textbook 3.4