

Agenda

Problem Statement

Dimensionality Reduction
Significance: Curse Of Dimensionality

Literature Review

Classical Methods
Gradient Descent Methods

Methodology

Visualization Clustering

Results

Accuracy: Kappa Score Confusion Matrix

Dimensionality Reduction – Motivation?

Hamner, B., 2016, Kaggle Blog

$$\lim_{d\to\infty} \mathbb{E}\left(\frac{dist_{max}(d) - dist_{min}(d)}{dist_{min}(d)}\right) \to 0$$

Bartlett et al., "Nearly-tight VC-dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks", Journal of Machine Learning Research

Literature Review Principal Component Analysis and Linear Discriminant Analysis

https://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

https://www.idtools.com.au/classification-nir-spectra-linear-discriminant-analysis-python/

Megh Shukla et al., "LEt-SNE: A Hybrid Approach To Data Embedding And Visualization Of Hyperspectral Imagery"

Literature Review Laplacian Eigenmaps and Locally Linear Embedding

Laplacian Eigenmaps

https://towardsdatascience.com/graph-theory-set-matrix-notation-7dfb04b8ed24

Xiang wang et al., Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding, Sensor

$$\mathcal{J}(y) = \sum_{i,j} (y_i - y_j)^2 A_{ij}$$
Adjacency Matrix
Embeddings

Local Structure > Global Structure

$$\underset{y^TDy = I}{argmin} \ y^TLy$$

$$y^TD1 = 0$$

$$\mathcal{E}(W) = \sum_{i} |x_{i} - \sum_{j} W_{ij} x_{j}|^{2}$$
Weight Matrix
Original samples

$$argmin_{y} \sum_{i} |y_{i} - \sum_{j} W_{ij}y_{j}|^{2}$$

Literature Review t-SNE and UMAP

$$p_{j|i} = \frac{exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$

UMAP

https://www.youtube.com/watch?v=nq6iPZVUxZU

Megh Shukla et al., "LEt-SNE: A Hybrid Approach To Data Embedding And Visualization Of Hyperspectral Imagery"

S-SNE 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8

Lunga and Ersoy, "Spherical Stochastic Neighbor Embedding of Hyperspectral Data" IEEE TGRS, Feb. 2013

Autoencoders

https://medium.com/red-buffer/autoencoders-guide-and-code-intensorflow-2-0-a4101571ce56

t

Why Propose A New Method?

Parameterization

Multilayer Perceptron

Curse Of Dimensionality

Compression Factor

Visualization and Clustering

KL Divergence

Parameterization

Compression Factor

Laplacian Eigenmaps

KL Divergence

t-SNE

$$Y = f(X, w)$$

Multilayer perceptron X parameterized by w to yield encodings Y

Minimization Objective ... ?

$$\nabla_w Y^T L Y$$

Minimization objective ... ?

$$\nabla_w Y^T L Y Y^T \mathcal{D} Y = I$$

Ensure grouping of embeddings!

Parameterization |

Compression Factor Laplacian Eigenmaps

KL Divergence

t-SNE

$$p_{j|i} = \frac{exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Curse of Dimensionality ...

$$p_{j|i} \approx 1/|X|$$

$$q_{j|i} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

Countering Laplacian Eigenmaps Keeping embeddings apart

$$|q_{j|i} \approx 1/|Y|$$

Parameterization

Compression Factor

Laplacian Eigenmaps

KL Divergence

t-SNE

Goodfellow et al., "Deep Learning"

Parameterization

Compression **Factor**

Laplacian Eigenmaps

KL Divergence

t-SNE

Illusion of manipulating inter-sample distances!

$$\tilde{p}_{j|i} = \frac{p_{j|i} * \{(CF - 1) * \mathcal{A}_{ij} + 1\}}{\sum_{j} p_{j|i} * \{(CF - 1) * \mathcal{A}_{ij} + 1\}}$$
Adjacency Matrix

Adjacency Matrix Compression Factor

LEt-SNE Stitching the Components

Manifold Visualization

Adjacency Matrix using top-k neighbours

$$arg\min_{w}\mathbb{E}_{x}\left(\mathcal{Y}^{T}\mathcal{L}\mathcal{Y}+\lambda\sum_{i,j}\tilde{p}_{i|j}lograc{ ilde{p}_{i|j}}{q_{i|j}}
ight)$$
 Laplacian Eigenmaps

Compression Factor < 10

Clustering With Labels

Adjacency Matrix based on Class Labels

$$= arg \min_{w} \mathbb{E}_{x} \left(Y^{T} \mathcal{L} Y + \lambda \sum_{(i,j)} q_{i|j} log rac{q_{i|j}}{ ilde{p}_{i|j}}
ight)$$

 $\times KL(p||q)$ KL(q||p)

Compression Factor > 10

Clustering Without Labels

Adjacency Matrix based on Region Segmentation

$$arg\min_{w} \mathbb{E}_{x} \left(Y^{T} \mathcal{L} Y + \lambda \sum_{(i,j)} q_{i|j} log rac{q_{i|j}}{ ilde{p}_{i|j}}
ight)$$

Specific to Hyperspectral Imagery

Compression Factor > 10

Experimentation Datasets

Experimentation Compression Factor

Table 1: Compression Factor: LEt-SNE (sup) with Dimensions = 2

Compression	Indian Pines	Salinas	Pavia
NA NA	0.4936	0.7877	0.7534
200	0.6207	0.9236	0.8594

Experimentation Visualization

Megh Shukla et al., "LEt-SNE: A Hybrid Approach To Data Embedding And Visualization Of Hyperspectral Imagery"

Experimentation Clustering With Labels

Metric	LEt-SNE (sup)	UMAP (sup)	Autoencoder	PCA	UMAP (unsup)
SVM (OA)	0.9286	0.899	0.8358	0.8296	0.8524
Kappa (κ)	0.9234	0.8876	0.8178	0.811	0.8361

Experimentation Clustering With Labels

		Confusion Matrix_SVM: UMAP															
	Alfalfa -	0.08	0.00	0.00	0.00	0.00	0.00	0.46	0.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Corn-notill -	0.00	0.64	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.10	0.20	0.03	0.00	0.00	0.00	0.00
	Corn-mintill -	0.00	0.17	0.48	0.04	0.01	0.00	0.00	0.00	0.00	0.01	0.25	0.03	0.00	0.00	0.00	0.00
	Corn -	0.00	0.23	0.17	0.34	0.03	0.09	0.00	0.00	0.00	0.03	0.09	0.03	0.00	0.00	0.00	0.00
	Grass-pasture -	0.01	0.00	0.00	0.00	0.88	0.02	0.00	0.01	0.00	0.02	0.00	0.01	0.01	0.02	0.00	0.00
	Grass-trees -	0.00	0.00	0.00	0.00	0.01	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00
	Grass-pasture-mowed -	0.00	0.33	0.00	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
True label	Hay-windrowed -	0.00	0.00	0.00	0.00	0.01	0.00	0.03	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
True	Oats -	0.00	0.33	0.00	0.00	0.00	0.33	0.00	0.00	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Soybean-notill -	0.00	0.03	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.83	0.08	0.02	0.00	0.00	0.00	0.00
	Soybean-mintill -	0.00	0.10	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.07	0.78	0.00	0.00	0.00	0.00	0.00
	Soybean-clean -	0.00	0.26	0.04	0.01	0.04	0.00	0.00	0.00	0.00	0.10	0.08	0.47	0.00	0.00	0.00	0.00
	Wheat -	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.98	0.00	0.00	0.00
	Woods -	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.02	0.00
В	uildings-Grass-Trees-Drives -	0.00	0.01	0.00	0.00	0.10	0.22	0.00	0.00	0.00	0.00	0.03	0.00	0.17	0.31	0.17	0.00
	Stone-Steel-Towers -		0.00		0.00		0.00	0.00	0.00		0.00			0.00	0.00	0.00	
	,	Alfalfa	notill	nintill	Com	sture	XIEE'S	ioned i	owed	03 ^{t5}	notili	nintill	clean	wheat v	400ds	Jrive's	OWERS

dennin.		TO SOLETING			Cocca Pro	200200049	Conf	usion	Matri	x_SVN	1: LEt	SNE	611000				0.0000000000000000000000000000000000000
	Alfalfa -	0.54	0.00	0.00	0.15	0.00	0.00	0.08	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Corn-notill -	0.00	0.54	0.16	0.08	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.13	0.00	0.00	0.00	0.00
	Corn-mintill -	0.00	0.15	0.57	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.17	0.00	0.00	0.00	0.00
	Corn -	0.00	0.26	0.20	0.40	0.00	0.00	0.00	0.00	0.03	0.00	0.03	0.06	0.00	0.00	0.03	0.00
	Grass-pasture -	0.00	0.00	0.01	0.02	0.86	0.02	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.06	0.00
	Grass-trees -	0.00	0.00	0.01	0.02	0.03	0.83	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.05	0.00
	Grass-pasture-mowed -	0.33	0.00	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
True label	Hay-windrowed -	0.12	0.00	0.00	0.00	0.00	0.00	0.06	0.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Oats -	0.00	0.00	0.00	0.33	0.00	0.33	0.00	0.00	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Soybean-notill -	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.77	0.19	0.01	0.00	0.00	0.00	0.00
	Soy bean-mintill -	0.00	0.01	0.11	0.01	0.00	0.00	0.00	0.00	0.00	0.09	0.74	0.03	0.00	0.00	0.00	0.00
	Soybean-clean -	0.00	0.13	0.16	0.05	0.00	0.01	0.00	0.00	0.00	0.01	0.07	0.57	0.00	0.00	0.00	0.00
	Wheat -	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.02	0.00
E	Woods -	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	88.0	0.11	0.00
	Buildings-Grass-Trees-Drives -	0.00	0.00	0.01	0.00	0.04	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.12	0.81	0.00
	Stone-Steel-Towers -	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.12		0.00	0.00	0.00	0.00	0.62
		rafa	notill	aintill	COTT	cture	rees	wed	wed	03 ¹⁵	notill	aintill	lean	meat	oods	ives	wers

Experimentation **Clustering Without Labels**

Watershed segmentation

Pavia University

Megh Shukla et al., "LEt-SNE: A Hybrid Approach To Data Embedding And Visualization Of Hyperspectral Imagery"

Experimentation Clustering

Fig. 3: Pavia (left) and Salinas (right): Comparing various supervised and unsupervised approaches

Thank You!

work.meghshukla@gmail.com

https://www.linkedin.com/in/megh-shukla/

https://github.com/meghshukla/LEt-SNE

Megh Shukla

Machine Learning
Engineer

Mercedes-Benz R&D
India

M.Tech
IIT Rombay

Dr. Biplab Banerjee

Assistant Professor
Deep Learning for
Remote Sensing Lab
CSRE, IIT Bombay

Dr. Krishna Mohan Buddhiraju

Professor
Satellite Image
Processing Lab
CSRE, IIT Bombay