幾何引理維基

 $\mathcal{L}i\mathcal{J} + \mathcal{S}_{\otimes} +$

February 19, 2021

目錄

0	記號	1
1	内心	:

Chapter 0

記號

若 X,Y 爲雨點 (不在無窮遠線 \mathcal{L}_{∞} 上),XY 代表過 X,Y 的直線, \overline{XY} 代表連接 X,Y 的線段 (與 \mathcal{L}_{∞} 沒有交點的那個)。若 K,L 爲雨線, $K\cap L$ 代表 K 與 L 的交點, $\angle(K,L)$ 代表 K 與 L 的有向夾角。

 $\odot(XYZ)$ 爲 $\triangle XYZ$ 的外接圓, $\odot(\overline{XY})$ 是以 \overline{XY} 爲直徑的圓, $\odot(X)$ 則是以 X 爲圓心的圓。給定一圓 Γ 及圓上一點 X,我們通常以 $XP \cap \Gamma$ 或 $\Gamma \cap XP$ 代表 XP 與 Γ 的異於 X 的交點 (若 XP 與 Γ 相切則還是 X)。

有時,若有三線 a, b, c ,我們會以 $\triangle abc$ 代表以 a, b, c 三線圍成的三角形 $\triangle (b \cap c)(c \cap a)(a \cap b)$ 。

在沒有特別說明的情況下,我們都是以 $\triangle ABC$ 作為基本三角形。I,G,O,H 分別為 $\triangle ABC$ 的内心、重心、外心和垂心。 I_X (X=A,B,C 或 a,b,c) 通常 會是三個旁心。

我們說 $\triangle X_1Y_1Z_1$ 與 $\triangle X_2Y_2Z_2$ 正向相似,記為 $\triangle X_1Y_1Z_1\stackrel{+}{\sim} \triangle X_2Y_2Z_2$,若 $\triangle X_1Y_1Z_1$ 與 $\triangle X_2Y_2Z_2$ 相似且

$$\angle Y_1 X_1 Z_1 = \angle Y_2 X_2 Z_2, \ \angle Z_1 Y_1 X_1 = \angle Z_2 Y_2 X_2, \ \angle X_1 Z_1 Y_1 = \angle X_2 Z_2 Y_2.$$

我們說 $\triangle X_1Y_1Z_1$ 與 $\triangle X_2Y_2Z_2$ 反向相似,記爲 $\triangle X_1Y_1Z_1$ \sim $\triangle X_2Y_2Z_2$,若 $\triangle X_1Y_1Z_1$ 與 $\triangle X_2Y_2Z_2$ 相似且

$$\angle Y_1 X_1 Z_1 = -\angle Y_2 X_2 Z_2, \ \angle Z_1 Y_1 X_1 = -\angle Z_2 Y_2 X_2, \ \angle X_1 Z_1 Y_1 = -\angle X_2 Z_2 Y_2.$$

給定 $\triangle ABC$ 與一點 P, 我們有: P 關於 $\triangle ABC$ 的

- 西瓦三角形 $\triangle(AP \cap BC)(BP \cap CA)(CP \cap AB)$
- 反西瓦三角形,使得 P 關於其西瓦三角形為 $\triangle ABC$ (當然我們還不知道存在性與唯一性)
- 佩多 (垂足) 三角形 $\triangle(P_{\infty_{\perp BC}} \cap BC)(P_{\infty_{\perp CA}} \cap CA)(P_{\infty_{\perp AB}} \cap AB)$
- 反佩多三角形 $\triangle(A\infty_{\perp AP})(B\infty_{\perp BP})(C\infty_{\perp CP})$,使得 P 關於其佩多三角形 爲 $\triangle ABC$
- 圓西瓦三角形 $\triangle(AP \cap \bigcirc(ABC))(BP \cap \bigcirc(ABC))(CP \cap \bigcirc(ABC))$

其中,西瓦三角形的定義關於 A, B, C, P 四個點是對稱的,所以也被定義爲一個完全四點形的西瓦三角形。

給定 $\triangle ABC$ 與一線 ℓ , 我們有 : ℓ 關於 $\triangle ABC$ 的

- 西瓦三角形 $\triangle(A(BC \cap \ell))(B(CA \cap \ell))(C(AB \cap \ell))$
- 反西瓦三角形,使得 ℓ 關於其西瓦三角形為 $\triangle ABC$ (同樣地我們還不知道存在性與唯一性)

跟點的情形一樣,西瓦三角形的定義也可以延伸至完全四線形 (但一般稱作對角線三角形)。

當我們給定三角形 ABC,在不特別說明的情況下我們令

- *I*, *G*, *O*, *H* 分別爲内心、重心、外心及垂心
- *I_r* 爲 *X*-旁心
- $\triangle DEF$ 爲切點三角形,即I的佩多三角形
- $\triangle D_x E_x F_x$ 爲 X-切點三角形,即 I_x 的佩多三角形
- $\triangle D'E'F' = \triangle D_a E_b F_c$ 爲旁切點三角形
- $\triangle M_a M_b M_c$ 爲中點三角形
- $\triangle N_a N_b N_c$ 為弧中點三角形

Chapter 1

内心

爲了方便,在內心這個章節中我們一律假設 I 是 $\triangle ABC$ 的內心且 DEF 爲 切點三角形。

Lemma 1.1. 我們有

$$\angle BIC = 90^{\circ} + \angle BAI = 90^{\circ} + \angle IAC.$$

Proof. 注意到 AI, BI, CI 分別垂直 EF, FD, DE, 所以

$$\angle BIC = \angle FDE = \angle AFE = 90^{\circ} + \angle BAI = 90^{\circ} + \angle IAC.$$

Lemma 1.2 (雞爪圓). 設 N_a 爲 \widehat{BC} 弧中點,則 B, I_a, C, I 共圓且圓心爲 N_a 。

Proof. 注意到

$$\angle BIN_a=\angle BIA=\angle BAI+\angle IBA=\angle N_aAC+\angle IBA=\angle N_aBI$$
 故 $\overline{N_aI}=\overline{N_aB}$,同理有 $\overline{N_aI}=\overline{N_aC}=\overline{N_aI_a}$ 。

Lemma 1.3. 設 $\triangle ABC$ 中 A-旁切圓切 BC 於 D',則 \overline{BC} 中點 M_a 爲 $\overline{DD'}$ 中點。

 $\mathit{Proof.}$ 令 I_a 爲 A -旁心,由 (1.2), $\overline{II_a}$ 的中點爲 $\widehat{\mathit{BC}}$ 中點 N_a ,故

$$\frac{DM_a}{M_aD'} = \frac{IN_a}{N_aI_a} = 1.$$

Lemma 1.4. 設 $\triangle ABC$ 中 A-旁切圓切 BC 於 D', M_a 爲 \overline{BC} 中點,則 $IM_a \parallel AD'$ 。

Proof. 令 D^* 爲 D 關於 $\odot(I)$ 的對徑點,過 D^* 作平行於 BC 的直線分別交 AB, AC 於 XY,則 $\triangle AXY$ 與 $\triangle ABC$ 位似。因此 A, D^* , D' 共線。由 (1.3), IM_a 爲 $\triangle DD'D^*$ 的 D-中位線,故 $IM_a \parallel D^*D' = AD'$ 。

Lemma 1.5. 設 $\odot(AEF)$ 和 $\odot(ABC)$ 交於 A, X,則 XD 過 \widehat{BC} 孤中點 N_a 。

Proof. 注意到 X 是 △ $ABC \cup EF$ 的密克點,故 △ $XBF \stackrel{+}{\sim} \triangle XCE$,因此

$$\frac{XB}{XC} = \frac{FB}{EC} = \frac{DB}{DC}$$

故 $\angle BXD = \angle DXC$ 。因爲 A, X 位於 BC 同側且 D 位於 \overline{BC} 内,因此 XD 爲 $\angle BXC$ 的内角平分線且 X, D, N_a 共線。

Lemma 1.6. 沿用 (1.5) 的標號,設 AI 交 EF 於 T,則 $DT \perp EF$ 。

Proof. 注意到 I 是 ⊙(AEF) 上 \widehat{EF} 的弧中點,故

$$\frac{TF}{TE} = \frac{XF}{XE} = \frac{XB}{XC} = \frac{DB}{DC}$$

故 $\triangle XTD \sim \triangle XFB$, 因此

$$\angle X N_a A = \angle X B A = \angle X B F = \angle X D T \implies D T \parallel N_a A \perp E F$$

Lemma 1.7. 令 $\triangle ABC$ 的垂心和内心分別為 H, I,則 (H, I) 為 $\triangle DEF$ 的垂足三角形的一對等角共軛點。

Proof. 考慮 D 對 EF 的垂足 T ,我們只需要證明 $\angle HTD = \angle DTI$ 則其他兩邊也同理,由 (1.6),X 是 $\triangle ABC \cup EF \cup DT$ 的密克點,故 $\triangle AEF$, $\triangle ABC$ 的垂心和 T 共線,注意到 AEF 垂心是 I 對 EF 的對稱點,故 $\angle HTD = \angle DTI$

Lemma 1.8 (熱爾岡點). 直線 AD, BE, CF 共於一點 $Ge \circ$

Proof 1. 由西瓦定理及

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = \frac{\overline{AF}}{\overline{AE}} \cdot \frac{\overline{BD}}{\overline{BF}} \cdot \frac{\overline{CE}}{\overline{CD}} = 1.$$

 $Proof\ 2.$ 考慮六折線 BDCEAF,由於其與內切圓 $\odot(I)$ 相切,由布里昂雄定理得證。

 $Proof\ 3.$ 由 Sondat 定理, $\triangle DEF$ 與 $\triangle \mathfrak{p}_{\odot(I)}(D)\mathfrak{p}_{\odot(I)}(E)\mathfrak{p}_{\odot(I)}(F)$ 透視,而我們顯然有

$$\triangle \mathfrak{p}_{\odot(I)}(D)\mathfrak{p}_{\odot(I)}(E)\mathfrak{p}_{\odot(I)}(F) = \triangle ABC.$$

Lemma 1.9. 設 EF 與 BC 交於 X,則 (B,C;D,X)=-1。

Proof 1. 由孟氏定理,

$$\frac{BX}{XC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1.$$

因此

$$\frac{BD/DC}{BX/XC} = -\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = -1.$$

 $Proof\ 2$. 由完全四線形 (CA, AB, BE, CF) 的調和分割性質。

Lemma 1.10. 設 ID 交 EF 於 T,則 AT 平分 \overline{BC} 。

 $Proof\ 1.$ 過 T 作平行於 BC 的直線交 CA, AB 於 X, Y, 則 I 關於 XY, YA, AX 共線。由西姆松定理, $I\in \odot(AXY)$,由 $\triangle AXY\cup I$ 與 $\triangle ABC\cup N_a$ 位似可得 A, T, M_a 共線。

 $Proof\ 2.$ 過 A 作平行於 BC 的直線交 EF 於 S,則 $ST=\mathfrak{p}_{\odot(I)}(A)$ 。由於 $IT\perp AS$,所以 $\mathfrak{p}_{\odot(I)}(T)=AS$,故

$$A(B, C; T, \infty_{BC}) = (F, E; T, S) = -1,$$

即 AT 平分 BC。

Lemma 1.11. 設 J 爲 C 關於 BI 的垂足,則 J 爲 C-中位線與 EF 的交點。

Proof 1. 由

$$\angle(M_a J, AB) = \angle M_a JB + \angle JBA = \angle IBC + \angle CBI = 0,$$

我們知道 J 位於 C-中位線上。注意到 C, E, J, I 共圓, 所以由 (1.1),

$$\angle JEC = \angle BIC = 90^{\circ} + \angle IAE = \angle FEC$$

即 $J \in EF$ 。

 $Proof\ 2.\ J$ 位於 C-中位線同上面的算角度證明。由於 $\triangle DEF$ 爲熱爾岡點 Ge 關於 $\triangle ABC$ 的西瓦三角形且 Ge 位於費爾巴哈雙曲線 \mathcal{H}_{Fe} 上,因此 $EF=\mathfrak{p}_{\mathcal{H}_{Fe}}(D)$ 。注意到 $D,\ J$ 爲 $\triangle IBC$ 的垂足三角形的兩個頂點且 $I\in\mathcal{H}_{Fe}$,所以 $J\in\mathfrak{p}_{\mathcal{H}_{Fe}}(D)=EF$ 。

Lemma 1.12. 設 H_A 爲 BIC 垂心, $ID \cap EF = S$,則 $(D, S; I, H_A) = -1$

Proof. 設 $BI \cap EF = J, DI \cap EF = S, BC \cap EF = X$,則 C, J, H' 共線,故

$$J(D, S; I, H_A) = (D, X; B, C) = -1$$

Lemma 1.13. 設 \overline{EF} 中點爲 M, H_A 爲 BIC 垂心,則 Ge, M, H_A 共線。

Proof. 標號沿用 (1.12),考慮 D 對 EF 的垂足 T,和 DT 中點 Y,則 S ■

Lemma 1.14 (偽內切圓). 設圓 ω_A 分別與 CA, AB 相切於 E_A , F_A ,且與 $\odot(ABC)$ 內切,則 I, E_A , F_A 共線。

 $Proof\ 2.$ 考慮關於 A 的反演命題,我們只要證明若 A-旁切圓分別與 CA, AB 相切於 E_a , F_a ,則 A, I_a , E_a , F_a 共圓,而這顯然是對的。