ENUNȚURI ȘI REZOLVĂRI 2010

- 1. La capetele unui fir conductor se aplică o tensiune de 12 V. În timp de 1 minut prin acest fir trece o sarcină electrică de 72 C. Rezistența electrică a firului este:
- a) 12 Ω ; b) 16 Ω ; c) 10 Ω ; d) 8 Ω ; e) 14 Ω ; f) 15,5 Ω .

Rezolvare

Intensitatea curentului care trece prin fir este $I = \frac{q}{\Delta t}$, iar din legea lui Ohm, $I = \frac{U}{R}$, rezultă rezistența electrică a firului $R = \frac{U\Delta t}{a} = 10 \,\Omega$.

- 2. Un fir de cupru (coeficientul termic al rezistivității $\alpha = 4 \cdot 10^{-3} \, \text{grad}^{-1}$) are rezistența $R_0 = 10 \, \Omega$ la temperatura de 0°C. Neglijând dilatarea firului, rezistența acestuia la temperatura de 100°C este:
- a) 8 Ω ; b) 14 Ω ; c) 50 Ω ; d) 6 Ω ; e) 4 Ω ; f) 12 Ω .

Rezolvare

Rezistența firului la 100 °C, R_{100} , este: $R_{100} = R_0 (1 + \alpha \Delta t) = 14 \Omega$.

- **3.** Un acumulator cu t.e.m. E = 12 V are intensitatea curentului de scurtcircuit $I_{sc} = 40 \text{ A}$. Legând la bornele acumulatorului un rezistor, tensiunea la bornele sale devine U = 11 V. Valoarea rezistenței rezistorului este:
- a) 4,5 Ω ; b) 3,5 Ω ; c) 3,3 Ω ; d) 4 Ω ; e) 2,5 Ω ; f) 3 Ω .

Rezolvare

Din relația curentului de scurtcircuit, $I_{sc}=\frac{E}{r}$, obținem rezistența internă, r, a sursei. Din legea lui Ohm, $I=\frac{E}{R+r}$ și $I=\frac{U}{R}$, obținem rezistența R a rezistorului: $R=\frac{UE}{I_{sc}\left(E-U\right)}=3,3\,\Omega.$

- 4. Două surse identice de curent continuu având fiecare t.e.m. de $12\,\mathrm{V}$ și rezistența internă de $0.4\,\Omega$ sunt legate în paralel la bornele unui rezistor cu rezistența de $5.8\,\Omega$. Puterea disipată pe rezistor este:
- a) 12,6 W; b) 18,4 W, c) 23,2 W; d) 12 W; e) 5,8 W; f) 45,2 W.

Rezolvare

Puterea disipată pe rezistor este $P = RI^2$ cu $I = \frac{E}{R + \frac{r}{2}}$; rezultă P = 23,2 W.

5. Legea lui Ohm pentru o porțiune de circuit care nu conține generatoare electrice, scrisă cu notațiile din manualele de fizică, este:

a)
$$I = \frac{E}{r}$$
; b) $I = \frac{U}{R}$; c) $I = \frac{E}{R+r}$; d) $I = UR$; e) $U = \frac{I}{R}$; f) $P = UI$.

Rezolvare

Legea lui Ohm pentru o porțiune de circuit este $I = \frac{U}{R}$.

6. În cazul transferului maxim de putere, randamentul unui circuit de curent continuu format dintr-un generator cu t.e.m E, rezistența internă r și un rezistor cu rezistența R este:

a) 75%; b) 95%; c) 50%; d)
$$\frac{2R}{R+r}$$
; e) 25%; f) $\frac{RE^2}{(R+r)^2}$.

Rezolvare

Transferul maxim de putere se produce când R = r. În acest caz, randamentul circuitului este:

$$\eta = \frac{P_u}{P_c} = \frac{R}{R+r} = 50\%$$
.

7. Un corp se deplasează rectiliniu uniform pe o suprafață orizontală pe distanța de 10 m, sub acțiunea unei forțe orizontale de 10 N. Lucrul mecanic al forței de frecare este:

Rezolvare

Deoarece deplasarea este uniformă, forța de tracțiune este egalată de forța de frecare (cele două forțe având sens contrar), astfel încât:

$$L_r = -F_{tr} \cdot d = -100 \,\mathrm{J}.$$

8. Un corp este aruncat vertical în sus cu viteza inițială $v_0 = 15 \text{ m/s}$. Cunoscând accelerația gravitațională $g = 10 \text{ m/s}^2$, timpul după care corpul revine pe sol este:

Rezolvare

Timpul de urcare este egal cu timpul de coborâre în punctul de lansare: $t = t_u + t_c = 2 \frac{v_0}{g} = 3 \text{ s}.$

- 9. Căldura se măsoară în S.I. cu aceeași unitate de măsură ca:
- a) temperatura; b) cantitatea de substanță; c) energia cinetică; d) capacitatea calorică; e) căldura molară; f) căldura specifică.

2

Rezolvare

$$\left[\text{căldura}\right]_{\text{SI}} = \left[\text{energia cinetică}\right]_{\text{SI}} = J$$

10. Utilizând notațiile din manualele de fizică, expresia energiei cinetice este:

a)
$$\frac{mv}{2}$$
; b) mgh ; c) $\frac{mv^2}{2}$; d) $\frac{kx^2}{2}$; e) mv^2 ; f) $\frac{kv^2}{2}$.

Rezolvare

Expresia energiei cinetice este: $E_c = \frac{mv^2}{2}$.

- 11. O cantitate de gaz ideal parcurge un ciclu format dintr-o transformare izocoră în care presiunea crește de 8 ori, o destindere adiabatică și o comprimare izobară. Exponentul adiabatic este $\gamma = 1,5$. Randamentul ciclului este:
- a) 0,571; b) 3/16; c) 5/16; d) 5/14; e) 43,8%; f) 4/15.

Rezolvare

Randamentul ciclului este $\eta = 1 - \frac{|Q_c|}{Q_p}$, unde Q_p este căldura primită pe izocoră, iar Q_c este căldura cedată pe izobară: $Q_p = \upsilon C_V \left(T_2 - T_1 \right)$, respectiv $|Q_c| = \upsilon C_p \left(T_3 - T_1 \right)$.

Din transformarea izocoră, $\frac{p_1}{T_1} = \frac{p_2}{T_2}$, rezultă $T_2 = 8T_1$ și $T_2 - T_1 = 7T_1$. Din transformările

izobară,
$$\frac{V_1}{T_1}=\frac{V_3}{T_3}$$
, și adiabatică, $p_2V_1^\gamma=p_1V_3^\gamma$, rezultă $T_3=4T_1$ și $T_3-T_1=3T_1$. Astfel,
$$\eta=1-\gamma\frac{3}{7}=\frac{5}{14}$$
.

12. Unitatea de măsură a accelerației în S.I. este:

a)
$$s/m$$
; b) m/s^2 ; c) $m \cdot s^{-1}$; d) m/s ; e) $m \cdot s$; f) $m \cdot s^2$.

Rezolvare

$$\left[a\right]_{\mathrm{SI}} = \mathrm{m/s^2} \ .$$

- 13. O maşină termică ideală funcționează după un ciclu Carnot, temperatura sursei reci fiind 300 K iar cea a sursei calde cu 200 K mai mare. În cursul unui ciclu lucrul mecanic produs este L = 0,2 kJ. Valoarea absolută a căldurii cedate sursei reci într-un ciclu este:
- a) 0,1 kJ; b) 0,3 kJ; c) 0,5 kJ; d) 0,2 kJ; e) 0,6 kJ; f) 0,8 kJ.

Rezolvare

Din expresia randamentului ciclului Carnot, $\eta = \frac{L}{Q_p} = 1 - \frac{T_{\text{rece}}}{T_{\text{caldă}}}$, rezultă căldura primită Q_p ,

iar din lucrul mecanic
$$L = Q_p - |Q_c|$$
 obţinem $|Q_c| = \frac{L}{1 - \frac{T_{\text{rece}}}{T_{\text{cald}}}} - L = 0,3 \text{ kJ}.$

- **14.** Un gaz ideal se destinde adiabatic. La finalul procesului volumul gazului este de 8 ori mai mare și presiunea este de 32 de ori mai mică. Exponentul adiabatic este:
- a) 3/5; b) 5/3; c) 1,75; d) 3/2; e) 7/5; f) 2.

Rezolvare

Ecuația transformării adiabatice, $p_1V_1^{\gamma} = p_2V_2^{\gamma}$, se scrie $p_1V_1^{\gamma} = \frac{p_1}{32} \left(8V_1\right)^{\gamma}$, de unde rezultă $\gamma = 5/3$.

- **15.** Cunoscând R constanta universală a gazelor perfecte și γ exponentul adiabatic, căldura molară la presiune constantă este:
- a) γR ; b) $\frac{\gamma}{\gamma 1} R$; c) $\frac{\gamma}{\gamma + 1} R$; d) $\frac{R}{\gamma 1}$; e) $(\gamma 1) R$; f) $(\gamma + 1) R$.

Rezolvare

Din relația Robert-Mayer, $C_p = C_V + R$ și expresia exponentului adiabatic, $\gamma = \frac{C_p}{C_V}$, obținem

$$C_p = \frac{\gamma}{\gamma - 1} R.$$

- 16. Un autoturism începe sa frâneze cu accelerație constantă. După ce a parcurs un sfert din distanța până la oprire, viteza este egală cu $40\sqrt{3}$ km/h. Viteza autoturismului în momentul începerii frânării este:
- a) 50 km/h; b) $60\sqrt{3}$ km/h; c) 25 m/s; d) 20 m/s; e) 100 km/h; f) 80 km/h.

Rezolvare

Scriem relația lui Galilei, $v=\sqrt{v_0^2+2ad}$, pentru distanța până la oprire: $0=\sqrt{v_0^2-2ad'}$ și pentru un sfert din această distanță: $v_1=\sqrt{v_0^2-\frac{ad'}{2}}$. Rezultă $v_0=80$ km/h.

17. O cantitate de gaz ideal aflată la presiunea de 8,4·10⁶ Pa și temperatura de 280 K suferă o transformare izocoră la sfârșitul căreia temperatura devine 250 K. Presiunea finală este:

4

a) 7 MPa; b) 6 MPa; c) 5,5 MPa; d) 6,5 MPa; e) 7,5 MPa; f) 5 MPa.

Rezolvare

Din ecuația transformării izocore, $\frac{p_1}{T_1} = \frac{p_2}{T_2}$, rezultă 7,5 MPa.

- 18. Peste un scripete fix ideal este trecut un fir de masă neglijabilă. Firul trece printr-un manșon fix care exercită asupra sa o forță de frecare constantă egală cu 32 N. La un capăt al firului este legat un corp de masă $m_1 = 3$ kg, la capătul celălalt unul de masă m_2 . Sistemul se mișcă uniform. Se cunoaște g = 10 m/s². Masa m_2 este:
- a) 3 kg; b) 6 kg; c) 5,5 kg; d) 0,2 kg; e) 6,2 kg; f) 0,5 kg.

Rezolvare

Ecuațiile de mișcare a celor două corpuri sunt: $m_1g-T_1=0$ și $m_2g-T_2=0$, la care se adaugă ecuația pentru fir: $T_2-T_1-F_f=0$.

Rezultă
$$m_2 = m_1 + \frac{F_f}{g} = 6,2 \text{ kg}.$$