Hermite Spline wavelets

Yoann Pradat

August 8, 2019

Contents

I	$\mathbf{A} \mathbf{c}$	cardinal spline approach to wavelets	1
	I.1	Main results	2
TT	God	odman's papers	3

I A cardinal spline approach to wavelets

Notations

- $N_m(t) = m[0, \dots, m](\cdot t)_+^{m-1} = N_1 * \dots * N_1(t)$
- $\phi \in L^2$, $\phi_{kj}(x) := \phi(2^k x j)$
- $\bullet \ \psi_{kj}(x) := \psi(2^k x j)$
- $V_k = \operatorname{Clos}_{L^2}\operatorname{span}\{\phi_{kj}\}_{j\in\mathbb{Z}}$

It is well-kwnon that the m^{th} order B-spline N_m with integer knots generate a mulitresolution analysis with m^{th} order of approximation (references?). This paper achieves the following

- 1. $\psi(x) = L_{2m}^{(m)}(2x-1)$ generates the orthogonal wavelet spaces W_k .
- 2. Gives exact formulation of $N_m(2 \cdot -1)$ in terms of N_m and $L_{2m}^{(m)}$.

An unconditional basis is (Mallat, Multiresolution Approximations and Wavelet orthonormal bases of $L^2(\mathbb{R})$) a sequence of functions $(e_{\lambda})_{\lambda \in \Lambda}$ such that for any sequence of numbers $\alpha := (\alpha_{\lambda})_{\lambda \in \Lambda}$

$$A\|\alpha\|_{l^2} \le \left\| \sum_{\lambda \in \Lambda} \alpha_{\lambda} e_{\lambda} \right\|_{L^2} \le B\|\alpha\|_{l^2}$$

 ψ is a basic wavelet relative to ϕ if $W_0 = \operatorname{Clos}_{L^2}\operatorname{span}\{\psi(\cdot - j)\}_j$ is the orthogonal complement to V_0 in V_1 . Let us assume that $V_1 = V_0 \oplus W_0$. Let's prove that the following holds then

Proposition 1. 1. $V_{k+1} = V_k \oplus W_k$

- 2. $W_k \perp W_j$ if $j \neq k$
- 3. $L^2 = \bigoplus_k W_k$

Proof. As $V_1 = V_0 \oplus W_0$, there exists sequences $(a_i), (\tilde{a}_i), (b_i), (\tilde{b}_i)$ such that

$$\phi(2x) = \sum_{i} a_i \phi(x-i) + b_i \psi(x-i)$$

$$\phi(2x-1) = \sum_{i} \tilde{a}_{i}\phi(x-i) + \tilde{b}_{i}\psi(x-i)$$

Defining (α_i) and (β_i) so that $\begin{cases} \alpha_{2i} &= a_i \\ \alpha_{2i-1} &= \tilde{a}_i \end{cases}$ we get that for any integer l

$$\phi(2x-l) = \sum_{i} \alpha_{2i-l}\phi(x-i) + \beta_{2i-l}\psi(x-i)$$
(1)

Changing x in 2x leads to

$$\phi(4x - l) = \sum_{i} \alpha_{2i-l}\phi(2x - i) + \beta_{2i-l}\psi(2x - i)$$
(2)

that is $V_2 \subseteq V_1 + W_1$.

As $V_0 \subset V_1$, there exists (γ_i) such that

$$\phi(x) = \sum_{i} \gamma_i \phi(2x - i)$$

so that

$$\phi(2x-l) = \sum_{i} \gamma_{i-2l} \phi(4x-i)$$

i.e $V_1 \subset V_2$. Similarly $W_1 \subset V_2$ hence $V_1 + W_1 \subseteq V_2$.

As for the orthogonality notice that $\int \phi(x-k)\overline{\psi(x-l)}dx = 2\int \phi(2x-k)\overline{\psi(2x-l)}dx$ so that $V_0 \perp$ $W_0 \implies V_1 \perp W_1$. Eventually $V_1 \bigoplus W_1 = V_2$. The reasoning extends to any integer k.

Standard method to determine $\tilde{\psi}$ from ϕ is: orthormalize $\{\phi_{0j}\}$ into $\{\tilde{\phi}_{0j}\}$, find two-scale relation of $\tilde{\phi}_0$ in terms of $\{\tilde{\phi}_{1i}\}$, alternate the signs cleverly in the sequence to form $\tilde{\psi}_0$. See Mallat's paper for linear and cubic spline i.e m=2 and m=4.

In the paper authors do not impose orthogonality of $\{\psi_{0j}\}$ and instead focus on representing ϕ_{1j} in terms of $\{\phi_{0i}\}\$ and $\{\psi_{0i}\}\$ with fast decaying sequences.

Main results **I.1**

Note that the m^{th} order B-spline N_m is such that

$$N_m(t) = \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} (k-t)_+^{m-1} \frac{1}{(m-1)!}$$
(3)

$$= \sum_{k=0}^{m} (-1)^k \binom{m}{k} (t-k)_+^{m-1} \frac{1}{(m-1)!}$$
 (4)

(5)

These two writing are equivalent for the reason that $(t-k)_+^{m-1} = (t-k)_+^{m-1} + (-1)_+^m (k-t)_+^{m-1}$. Notice that $D^m \frac{(t-k)_+^{m-1}}{(m-1)!} = \delta_k$ in the sense of distribution hence

$$D^m N_m = \sum_{k=0}^m (-1)^k \binom{m}{k} \delta_k$$

 $\phi = N_m$ generates a multiresolution analysis. The fundamental splines L_{2m} is an element of \mathcal{S}_{2m} hence the decomposition

$$L_{2m}(t) = \sum_{i} \alpha_i N_{2m}(t+m-j) \tag{6}$$

where the +m in the B-spline is equivalent to considering a decomposition in the central B-splines M_{2m} . Using the z-transforms $A(z) = \sum_{i} \alpha_{i} z^{i}$, $B(z) = \sum_{i=-(m-1)}^{m-1} N_{2m}(i+m)z^{i}$, equation (6) becomes

$$A(z)B(z) = 1 (7)$$

As detailed by Schoenberg in constructing L_{2m} , we have $B(z) = \frac{\Pi_{2m-1}(z)}{(2m-1)!z^{m-1}}$ with Π_{2m} the Euler-Froebenius polynomial of order 2m-1. The basice wavelet ψ_m related to ϕ_m is

$$\psi_m(t) = L_{2m}^{(m)}(2t - 1) \tag{8}$$

Supposedly, we have the 2-scale relation

$$N_m(t) = \sum_{j=0}^{m} 2^{-(m-1)} {m \choose j} N_m(2t - j)$$
(9)

proving that $V_0 \subset V_1$. As $L_{2m} \in \mathcal{S}_{2m}$, $L_{2m}^{(m)} \in \mathcal{S}_m$ so that $W_0 \subset V_1$. Property $W_k \subset V_{k+1}$ is a consequence of lemma 1. It remains to show that $V_1 = V_0 + W_0$ i.e find (a_n) , (b_n) such that

$$\phi(2t - l) = \sum_{n} a_{2n-l}\phi(t - l) + b_{2n-l}\psi(t - l)$$

 (a_n) and (b_n) are the coefficients of the Laurent series G(z), H(z).

II Goodman's papers

Notations

- $\zeta_{2r-1,r}(\mathbb{Z}) = \$_{2r,\mathbb{Z}_r}$ the set of cardinal splines of order 2r with knots of multiplicity r
- $V_0 = \zeta_{2r-1,r}(\mathbb{Z}) \cap L_2$
- $V_1 = \zeta_{2r-1,r}(\frac{1}{2}\mathbb{Z}) \cap L_2$

In the introductory part of its 1994 article Interpolatory Hermite Spline wavelets, Goodman discussed the B-splines introduced by Schoenberg and Sharma for the problem of Hermite interpolation. Schoenberg and Sharma proposed as generators for the solution of Hermite interpolation problem the functions $L_s \in \zeta_{2r-1,r-1}(\mathbb{Z})$, $s = 0, \ldots, r-1$, with support in [-1,1] satisfying for all integers i

$$L_s^{(j)}(i) = \delta_{sj}\delta_i$$

These functions are splines of order 2r and are symmetric (s even) or antisymmetric (s odd) depending on the parity of s.

Goodman considers in his paper $\{B_s = L_s(.-1)\}_{0 \le s \le r-1}$, a causal version of these B-splines with support in [0,2]. He also introduces N_s the B-spline in $\zeta_{2r-1,r}(\mathbb{Z})$ also supported in [0,2] with knots at 0, 1 and 2 of multiplicity r-s,r,s+1 for $s=0,\ldots,r-1$ ($N_s \propto [0_{r-s},1_r,2_{s+1}](.-t)_+^{(2r-1)}$). He claims that B_0,\ldots,B_{r-1} and N_0,\ldots,N_{r-1} are equivalent bases while the latter (with all integer shifts) is a Riesz basis for V_0 . This would have the consequence that $\{B_s(.-i)\}_{0 \le s \le r-1,i \in \mathbb{Z}}$ is also a Riesz basis for V_0 , a result that is hard to prove otherwise in the general case. Having a Riesz basis for V_0 makes it a closed subspace of the Hilbert space L_2 and therefore a Hilbert space itself.

Goodman makes reference to another of his articles published in 1993 when stating that claim, the article Wavelets of multiplicity r.