

Departamento de Matemáticas $1^{\underline{0}}$ Bachillerato

22 - Producto Escalar

- 1. p035e01 Sea $\{\overrightarrow{i}, \overrightarrow{j}\}$ la base canónica de V_2 , y los vectores: $\overrightarrow{u} = -2\overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{v} = 2\overrightarrow{i} 3\overrightarrow{j}$, $\overrightarrow{w} = \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{z} = -i 3\overrightarrow{j}$ Calcular:
 - (a) Las coordenadas de cada uno de ellos respecto de la base canónica. Las coordenadas de los vectores: $\overrightarrow{u} + 2\overrightarrow{v}$, $5\overrightarrow{u} \overrightarrow{w}$, $-3\overrightarrow{v} + 4\overrightarrow{w}$, $\overrightarrow{w} 2\overrightarrow{z}$

Sol:
$$[[(-2,1),(2,-3),(1,1),(-1,-3)],[(2,-5),(4,-11),(13,-2),(3,7)]]$$

- 2. p035e02 Estudia la dependencia lineal de los siguientes conjuntos de vectores:
 - (a) $\vec{u} = (4, 12) \ \vec{v} = (2, 6)$

Sol: True

Sol: False

(c) $\overrightarrow{u} = (1,1) \ \overrightarrow{v} = (-2,-3)$

(b) $\overrightarrow{u} = (1,2) \overrightarrow{v} = (3,4)$

Sol: False

- 3. p
036e09 Respecto de una base ortonormal tenemos dos vectores \overrightarrow{u} y \overrightarrow{v} . Calcular $\overrightarrow{u} \cdot \overrightarrow{v}$,
 $|\overrightarrow{u}|$ y $|\overrightarrow{v}|$ y $\angle(\overrightarrow{u}, \overrightarrow{v})$ siendo:
 - (a) $\vec{u} = (2, -3) \ \vec{v} = (5, 4)$

Sol: $[-2, [\sqrt{13}, \sqrt{41}], 94,9697407281103]$

Sol: $[11, [\sqrt{5}, 5], 10,304846468766]$

(c) $\overrightarrow{u} = (1,1) \ \overrightarrow{v} = (-2,-3)$

(b) $\vec{u} = (1,2) \ \vec{v} = (3,4)$

Sol: $[-5, [\sqrt{2}, \sqrt{13}], 168,69006752598]$