Chapter 2 Categories

2.6 Limit and Colimit

- · Direct and inverse limits for modules
- · Limit
- · Colimit

(I) Direct limit of modules

Det (Poset) A partially ordered set (poset) is a set I equipped with a partial order "<":

- 2. If $x \le y$ and $y \le x$, then x = y.
- 3. 野 x my and y mill then x mill.

Exercise. Every poset (I, \leq) can be regarded as a category:

- 1. ob I = I
- 2. $Hom(x,y) = \{*\}$ if $x \leq y$ $Hom(x,y) = \phi$, if $x \neq y$

≤y≥° ≤xy = ≤x≥

TXZ must exist

Def. A direct set I is a poset such that any finite subset has an upper bound. More precise, I is a poset such that for any $x,y \in I$, there is a $z \in I$ such that $x \le z$ and $y \le z$.

Example. Every totally ordered set is direct set.

Counter example is discrete poset $\{x, y, z, \dots\}$, where we only have $x \le x$, $y \le y$, $z \le z$

Def Consider category of direct set I and category Mode of R-modules, a covariant functor

F: I - Mode

gives a family of R-modules $\{M_{\lambda}\}_{\lambda\in\mathbb{I}}$ and module maps $\{f_{\lambda M}\in Hom(M_{M},M_{\lambda})\}$ that sutisfy 1. For every $\lambda\in\mathbb{I}$, $f_{\lambda\lambda}=\mathrm{id}_{M_{\lambda}}$

2. For any $\lambda \leqslant \mu \leqslant \nu$, we have $f_{\mu\mu} \circ f_{\mu\lambda} = f_{\nu\lambda}$ We call $\{M_{\lambda}, f_{\mu\lambda}\}$ a direct system (or, we call $F: I \to M$ ode a direct system).

Def For a direct system $\{M_{\lambda}, f_{u\lambda}\}$, if there exists a module M and a set of R-module maps $\{g_{\lambda}: M_{\lambda} \longrightarrow M\}$ such that

- 1. For any $\lambda \leqslant \mu$, we have $\varphi_{\lambda} = \varphi_{\mu} \cdot f_{\mu \lambda}$.
- 2. If there exist another $N \in Mod_R$ and R-module maps $\{Y_\lambda : M_\lambda \longrightarrow M\}$ such that for any $\lambda \leqslant M$, we have $Y_\lambda = Y_M \circ f_M \lambda$, then there exists a unique $g: M \longrightarrow N$ such that $Y_\lambda = g f_\lambda \quad \forall \lambda \in I$. M

Then M is alled the direct limit of direct system $\{M_{\lambda}, f_{\lambda}\mu\}$, and we denote $\lim_{\lambda \to \infty} M_{\lambda} = M$.

Prop In Mode, the direct limit always exists.

Proof. Consider direct sun $\bigoplus_{\alpha \in I} M_{\alpha}$ with canonical map $L_{\alpha} : M_{\alpha} \longrightarrow M$.

Construct submodule s as

 $S = \langle l_{M} \cdot f_{M\lambda} (N_{\lambda}) - l_{\lambda} (N_{\lambda}) | \lambda \leqslant M, \quad N_{\lambda} \in M_{\lambda} \rangle$ and we define $M = \bigoplus_{\alpha \in I} M_{\alpha} / \dot{s}$, the quotient map is $Q : \bigoplus_{\alpha \in I} M_{\alpha} \longrightarrow M.$ Then we define $Q_{\lambda} = Q \cdot l_{\lambda} : m_{\lambda} \mapsto l_{\lambda} (m_{\lambda}) + \dot{s}$, the $(M, \{Q_{\lambda} : M_{\lambda} \to M^{\frac{1}{2}})$ is the direct limit.

We need to check M satisfies universal property.

• $S \subseteq \ker \widetilde{Y}$, thus there exist a canonical $g: M \longrightarrow N$.

$$\psi_{\lambda} = \widehat{\psi} \cdot l_{\lambda} = \widehat{\psi} \cdot l_{\mu} \cdot f_{\mu\lambda} = \psi_{\mu} \cdot f_{\mu\lambda}$$

$$\psi_{\mu} = \widehat{\psi} \cdot l_{\mu}$$

$$S \subseteq \ker \widehat{\psi}$$

Define $g: M \longrightarrow N$, which is well-defined since $S \subseteq Ker \ \Psi$. $m+s \longmapsto \widetilde{\Psi}cm$

Such a map is unique, since any $h: M/s \rightarrow N$ with $h \circ \ell = \hat{V}$ must have $h(m+s) = \hat{V}(m) = g(m+s)$.

Example 6.1. Consider a R-module M, $\{M_{\lambda}\}_{\lambda \in \mathcal{I}}$ is the set of all finitely generated submodules. Set partial or of I as: $\lambda = \mathcal{M}$ iff $M_{\lambda} \subseteq \mathcal{M}_{\mathcal{U}}$. Since for any M_{λ} and $M_{\mathcal{U}}$, there exists a finitely generated $M_{\lambda} + M_{\mathcal{U}}$ that contain M_{λ} , $M_{\mathcal{U}}$ as submodules, thus I is a direct set.

When $M_{\lambda} \subseteq M_{\mu}$, define $f_{\mu\lambda}: M_{\lambda} \hookrightarrow M_{\mu}$ as inclusion, then $f_{\lambda}M_{\lambda}$, $f_{\mu\lambda}$ is a direct system. For this we have $(P_{\lambda}: M_{\lambda} \to M)$ is inclusion map):

 $\lim_{n \to \infty} M_{\lambda} = M$.

Namely, every module is a direct limit of its finitely generated submodules. Proof. Try to prove it by yourself, you will need to use the fact that $M = U_{N \in \mathcal{F}_{1}} N$

where F_{M} is the set of all finitely generated modules. This is exercise 17 of Sec 2 of Atiyah & Macdonald

<u>Prop</u> For direct system $\{M_{\lambda}, f_{\lambda u}\}$ and R-module N: $\lim_{N \to \infty} M_{\lambda} \otimes_{\mathbb{R}} N \cong (\lim_{N \to \infty} M_{\lambda}) \otimes_{\mathbb{R}} N$.

Proof. Exercise 20 of Sec 2 of Atiyah & Macdonald.

(II) Inverse limit of modules

Def. For direct index set I, consider contravaurant functor $F\colon \mathbb{T} \longrightarrow \mathsf{Mod}_R.$

We have a family of modules $\{M_{\lambda}\}$ and R-module maps $\{f_{\lambda u} \in Hom(M_{\mu}, M_{\lambda})\}$ such that

- 1. For any $\lambda \in I$, $f_{\Lambda\lambda} = id_{M_{\Lambda}}$
- 2. For any $\lambda \leq \mu \leq \nu$, we have $f_{\lambda\mu} \circ f_{\mu\nu} = f_{\lambda\nu}$ Then $\{M_{\lambda}, f_{\lambda\mu}\}$ is called an inverse system.

Def. For inverse system $\{M\lambda, f\lambda\mu\}$, if there exists a module M and a family of R-module maps $\{S_\lambda: M \longrightarrow M\lambda\}$ such that

- 1. For any l≤u, Yz= flu gu;
- 2. (M, 5823) sountres the following universal property:

If there is an R-module N and R-module maps $fY_{\lambda}: N \rightarrow N_{K}$ s-t.

 $\forall \lambda \leq \mu$, $\forall \lambda = f_{\lambda u} \, \forall u$, then there is a unique R-module map $\theta \colon N \to M$ st $\forall \lambda = \psi_{\lambda} \, \theta$.

Then M is called inverse limit of $\{M_{\lambda}\}$, and we denote $\underset{\sim}{\lim} M_{\lambda} = M$.

Prop. In Mode, the inverse limit always exists.

proof. Take direct product $\Pi_{\alpha\in I}$ M_{α} and construct submodule as $S = \{\alpha\in \Pi_{\alpha\in I} \ M_{\alpha} \mid f_{\lambda\alpha} \ T_{\lambda\alpha}(\alpha) = T_{\lambda\alpha}(\alpha), \ \lambda \leq \mu\},$ then $\lim_{\epsilon \to \infty} M_{\lambda} = \prod_{\alpha\in I} M_{\alpha}/\epsilon$. Complete this by your self.

Example. Let $I=\mathbb{Z}_{\geq 0}$, for $i\in I$, define Abelian group $M_i=\mathbb{Z}[X]/(X^i)$. When i<j, there is a canonical homomorphism

$$f_{ij}: \mathcal{M}_{j} \longrightarrow \mathcal{M}_{i}.$$

$$p(x) + (x^{5}) \longmapsto p(x) + (x^{i})$$

This is well defined since $(x^i) \subseteq (x^i)$.

where \mathbb{Z} CDXII = $\{a_0 + a_1x + \cdots + a_nx^n + \cdots \mid a_i \in \mathbb{Z}\}$. The $\mathcal{G}_i: \mathbb{Z}$ CCXII $\to M_i$ is defined as truncation and then taking quotient.

 $\varphi_i: \ \Sigma_{k>0} \ \alpha_k \, \chi^k \ \longmapsto \ \Sigma_{k=0}^{i-1} \ \alpha_k \, \chi^k \ + \ (\chi^i)$

(II) Colinit and limit

- Colinit = direct limit = inductive limit
- Jimit = inverse limit = projective limit

We will only provide definition of colimit, since limit is a dual concept.

Def (Calimit) Consider two categories B and C and α functor $F: B \rightarrow C$.

We define a new category \mathfrak{D} :

• Ob $\mathcal{D} = \{(C, \Psi)\}$ where Ψ is a family of morphisms $\Psi = \{\Psi_{\mathcal{B}} : F(\mathcal{B}) \longrightarrow C \mid \Psi_{\mathcal{B}} = \Psi_{\mathcal{B}'} \circ F(f_{\mathcal{B}'\mathcal{B}}), \forall f_{\mathcal{B}} \in Hom(\mathcal{B}, \mathcal{B}')\}$

$$F(B) \xrightarrow{\psi_{B}} C$$

$$F(B') \xrightarrow{\psi_{B'}} C$$

• Morphism between CC, Ψ and (C', Ψ') is defined as $g \in Hom \ CC, \ C'$

such that $\Psi_B' = g \Psi_B$ for all $B \in \mathcal{O}b \mathcal{B}$.

If D has an initial object A, then A will be called co-limit $\lim F = A$.

Since initial object, if exists, must be unique, colimit, if exists, must be unique.

Theorem 6.1. If C is a contegory for which coproduct exists for any objects, any $A \stackrel{f}{\Rightarrow} B$ has coequalizer, then, when B is small category, the co-limit of functor $F: B \rightarrow C$ exists!

For a function $G: C \to C$, if it preserves coproduct and coesiumlizer, then it preserves colimit.