

Via IV Novembre 215/5 Casella postale N° 33 40045 Ponte della Venturina (BO) ITALY

Tel +39 0534 60460 Fax +39 0534 60463

E-MAIL ufftec@rmitaly.com http://www.rmitaly.com

## Mod. HLA 300V plus linear amplifier







**Page** 3 di 7





| - A A                                                |                |               |       |                                     |       |              |
|------------------------------------------------------|----------------|---------------|-------|-------------------------------------|-------|--------------|
| List of compo                                        | onents         |               | C 60  | = 390  pF                           | 500 V | Silveredmica |
| $C_1 = 10 \text{ pF}$                                | 50 V           | NP0           | C 61  | = 330  pF                           | 500 V | Silveredmica |
| $C_2 = 100  \text{nF}$                               | 50 V           |               |       | = 270  pF                           | 500 V | N750         |
| $C_3 = 10 \text{ nF}$                                | 50 V           |               |       | = 560  pF                           | 500 V | Silveredmica |
| $C_4 = 1.0 \mu\text{F}$                              | 50 V           | Multilayer    |       | = 270  pF                           | 500 V | N750         |
|                                                      |                |               |       | = 1600  pF                          | 500 V | Silveredmica |
| $C_{5} = 4.7 \text{ pF}$                             | 50 V           | NP0           |       |                                     |       |              |
| $C_{6} = 100 \text{ nF}$                             | 50 V           |               |       | = 620  pF                           | 500 V | Silveredmica |
| C 7 = 10  nF                                         | 50 V           |               |       | = 560  pF                           | 500 V | Silveredmica |
| $C_{8} = 2.2 \mu\text{F}$                            | 25 V           |               |       | = 10  nF                            | 50 V  |              |
| $C_9 = 22 \mu\text{F}$                               | 25 V           |               |       | = HCU06C                            |       |              |
| $C_{10} = 100 \text{ nF}$                            | 50 V           |               |       | = 470  pF                           | 50 V  | N750         |
| $C_{11} = 100  nF$                                   | 50 V           |               |       | = 100  nF                           | 50 V  |              |
| $C_{12} = 470 \mu\text{F}$                           | 25 V           |               | C 72  | = 100  nF                           | 50 V  |              |
| $C_{13} = 100  nF$                                   | 50 V           |               | C 73  | $=22 \mu F$                         | 25 V  |              |
| $C_{14} = 100  nF$                                   | 50 V           |               | C 74  | = 100  nF                           | 50 V  |              |
| $C_{15} = 100  nF$                                   | 50 V           |               | C 75  | = 100  nF                           | 50 V  |              |
| $C_{16} = 220 \text{ pF}$                            | 500 V          | N750          |       | = 100  nF                           | 50 V  |              |
| $C_{17} = 10 \text{ nF}$                             | 50 V           |               |       | $=47 \mu F$                         | 25 V  |              |
| $C_{18} = \text{not prese}$                          |                |               |       | $=220 \mathrm{nF}$                  | 50 V  | Multilayer   |
| $C_{19} = 100 \text{ pF}$                            | 50 V           | NP0           |       | = 220  nF                           | 50 V  | Multilayer   |
| $C_{20} = 100 \text{ pF}$                            | 50 V           | NP0           |       | $=10 \mu\text{F}$                   | 25 V  | TVICILITATE  |
|                                                      |                | NFU           |       |                                     | 50 V  |              |
| $C_{21} = 47  \text{nF}$                             | 50 V           |               |       | = 100  nF                           |       |              |
| $C_{22} = 47 \text{ nF}$                             | 50 V           |               |       | $= 22 \mu\text{F}$                  | 25 V  |              |
| $C_{23} = 47 \text{ nF}$                             | 50 V           |               |       | = 100  nF                           | 50 V  |              |
| $C_{24} = 47  \text{nF}$                             | 50 V           |               |       | = 100  nF                           | 50 V  | 3.6.1.9      |
| $C_{25} = 180 \text{ pF}$                            | 500 V          | N750          |       | = 220  nF                           | 50 V  | Multilayer   |
| $C_{26} = 180  pF$                                   | 500 V          | N750          |       | = 220  nF                           | 50 V  | Multilayer   |
| $C_{27} = 180 \text{ pF}$                            | 500 V          | N750          | C 87  | = 220  nF                           | 50 V  | Multilayer   |
| $C_{28} = 180  pF$                                   | 500 V          | N750          | C 88  | = 220  nF                           | 50 V  | Multilayer   |
| $C_{29} = 560 + 39$                                  |                |               | C 89  | = 220  nF                           | 50 V  | Multilayer   |
| $C_{30} = 560 + 39$                                  |                |               |       | = 100  nF                           | 50 V  | J            |
| $C_{31} = 100 \text{ nF}$                            | 50 V           |               |       | = 100  nF                           | 50 V  |              |
| $C_{32} = 100 \text{ nF}$                            | 50 V           |               |       | = 100  nF                           | 50 V  |              |
| $C_{33} = 100 \text{ nF}$                            | 50 V           |               |       | = 100  nF                           | 50 V  |              |
| $C_{34} = 100 \text{ nF}$                            | 50 V           |               |       | = 100  nF                           | 50 V  |              |
| $C_{35} = 100 \text{ pF}$                            | 500 V          | NP0           |       | = 100  nF                           | 50 V  |              |
| $C_{36} = 56 \text{ pF}$                             | 500 V          | NP0           |       | = 100  nF                           | 50 V  |              |
| $C_{36} = 30 \text{ pr}$<br>$C_{37} = 47 \text{ pF}$ |                | NP0           |       | = 100  nF                           | 50 V  |              |
|                                                      | 500 V          |               |       | = 100  nF                           | 50 V  |              |
| $C_{38} = 12 \text{ pF}$                             | 500 V          | NPO           |       |                                     |       |              |
| $C_{39} = 150 \text{ pF}$                            | 500 V          | NP0           |       | = 100  nF                           | 50 V  |              |
| $C_{40} = 39 \text{ pF}$                             | 500 V          | NP0           |       | $_{0} = 100 \text{ nF}$             | 50 V  |              |
| $C_{41} = 39 \text{ pF}$                             | 500 V          | NP0           |       | 1 = 100  nF                         | 50 V  |              |
| $C_{42} = 82 pF$                                     | 500 V          | NP0           |       | a = 100  nF                         | 50 V  |              |
| $C_{43} = 18 \text{ pF}$                             | 500 V          | NP0           |       | s = 100  nF                         | 50 V  |              |
| $C_{44} = 220 \text{ pF}$                            | 500 V          | N750          |       | $\mu = 470  \mu F$                  | 25 V  |              |
| $C_{45} = 39  pF$                                    | 500 V          | NP0           | C 105 | $s = 470 \mu\text{F}$               | 25 V  |              |
| $C_{46} = 68 \text{ pF}$                             | 500 V          | NP0           | C 106 | s = 100  nF                         | 50 V  |              |
| $C_{47} = 100 \text{ pF}$                            | 500 V          | NP0           | C 107 | 7 = 470  nF                         | 100 V | Polyester    |
| $C_{48} = 56 \text{ pF}$                             | 500 V          | NP0           | C 108 | s = 100  nF                         | 50 V  | •            |
| $C_{49} = 220 \text{ pF}$                            | 500 V          | N750          |       | p = 100  nF                         | 50 V  |              |
| $C_{50} = 180 \text{ pF}$                            | 500 V          | N750          |       | 0 = 10  nF                          | 50 V  |              |
| $C_{51} = 22 \text{ pF}$                             | 500 V          | NP0           |       | i = 100  nF                         | 50 V  |              |
| $C_{52} = 390 \text{ pF}$                            | 500 V<br>500 V | Silveredmica  |       | $a = 22 \mu\text{F}$                | 25 V  |              |
| $C_{52} = 56 \text{ pF}$                             |                | NP0           |       | $a = 22 \mu \text{r}$<br>a = 220 nF | 50 V  | Multilayer   |
|                                                      | 500 V          |               |       | a = 220  mF<br>a = 220  nF          | 50 V  |              |
| $C_{54} = 620 \text{ pF}$                            | 500 V          | Silvered mica |       |                                     |       | Multilayer   |
| $C_{55} = 180 \text{ pF}$                            | 500 V          | N750          |       | s = 1.0  nF                         | 50 V  |              |
| $C_{56} = 180 \text{ pF}$                            | 500 V          | N750          |       | 6 = 1.0  nF                         | 50 V  |              |
| $C_{57} = 390 \text{ pF}$                            | 500 V          | Silveredmica  |       | 7 = 1.0  nF                         | 50 V  | 1750         |
| $C_{58} = 68 \text{ pF}$                             | 500 V          | NP0           |       | s = 470  pF                         | 50 V  | N750         |
| $C_{59} = 560 \text{ pF}$                            | 500 V          | Silveredmica  | C 119 | $\rho = 100 \text{ nF}$             | 50 V  |              |
|                                                      |                |               |       |                                     |       |              |

```
C_{120} = 100 \text{ nF}
                              50 V
                                                                                                    R_{54} = 22 K_{\Omega}
                                                                                                                                  ^{1}/_{4}W
C_{121} = 100 \text{ nF}
                              50 V
                                                                                                    R_{55} = 2.2 \text{ K}_{\Omega}
                                                                                                                                  ^{1}/_{4}W
                                                                                                    R_{56} = 2.2 K_{\Omega}
   _{122} = 100 \text{ nF}
                              50 V
                                                                                                                                  ^{1}/_{4}W
                                                                                                    R_{57} = 22 K_{\Omega}
   _{123} = HCU06C100 \text{ 1-5 pF (Blue)}
                                                                                                                                  \frac{1}{4}W
C_{124} = 1.0 pF
                                                                                                    R_{58} = 470 \,\Omega
                              50 V
                                                                                                                                  ^{1}/_{4}W
C_{125} = 22 \mu F
                                                                                                    R 59 = 10 \text{ K}\Omega
                              25 V
                                                                                                                                  ^{1}/_{4}W
C_{126} = 22 \mu F
                              25 V
                                                                                                    R_{60} = 330 \Omega
                                                                                                                                  2W
C_{127} = 1.0 pF
                              50 V
                                                                                                    R_{61} = 4.7 \text{ K}_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R_1 = 22 K_{\Omega}
                              \frac{1}{4}W
                                                                                                    R_{62} = 4.7 \text{ K}_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R_2 = 47 K_{\Omega}
                                                                                                    R_{63} = 4.7 \text{ K}_{\Omega}
                              \frac{1}{4}W
                                                                                                                                  \frac{1}{4}W
R_3
         = 1.0 \text{ K}_{\Omega}
                              ^{1}/_{4}W
                                                                                                    R_{64} = 4.7 \text{ K}_{\Omega}
                                                                                                                                  \frac{1}{4}W
                                                                                                    R_{65} = 2.2 \text{ K}_{\Omega}
R 4
         = 100 \text{ K}_{\Omega}
                              \frac{1}{4}W
                                                                                                                                  ^{1}/_{4}W
         = 100 \text{ K}\Omega
                              \frac{1}{4}W
                                                                                                    R_{66} = 4.7 \text{ K}_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R 5
                              \frac{1}{4}W
                                                                                                                                  ^{1}/_{4}W
R 6
         =22 \text{ K}_{\Omega}
                                                                                                    R_{67} = 4.7 K_{\Omega}
R 7
         =4.7 \text{ K}_{\Omega}
                              \frac{1}{4}W
                                                                                                    R_{68} = 47 \Omega
                                                                                                                                  \frac{1}{4}W
         =4.7 \text{ K}_{\Omega}
                                                                                                    R_{69} = 47 \Omega
R 8
                              ^{1}/_{4}W
                                                                                                                                  ^{1}/_{4}W
R 9
         = 10 \text{ K}_{\Omega}
                              ^{1}/_{4}W
                                                                                                    R_{70} = 47 \Omega
                                                                                                                                  \frac{1}{4}W
R_{10} = 10 K_{\Omega}
                              ^{1}/_{4}W
                                                                                                    R_{71} = 47 \Omega
                                                                                                                                  \frac{1}{4}W
R_{11} = 10 K_{\Omega}
                                                                                                    R_{72} = 4.7 K_{\Omega}
                                                                                                                                  ^{1}/_{4}W
                              multi-turn trimmer
R_{12} = 1.0 \text{ K}_{\Omega}
                                                                                                    R_{73} = 4.7 K_{\Omega}
                                                                                                                                  ^{1}/_{4}W
                              ^{1}/_{4}W
                                                                                                    R_{74} = 4.7 K_{\Omega}
R_{13} = 10 \text{ K}_{\Omega}
                              ^{1}/_{4}W
                                                                                                                                  ^{1}/_{4}W
R_{14} = 1.0 M_{\Omega}
                              ^{1}/_{4}W
                                                                                                    R_{75} = 4.7 K_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R_{15} = 4.7 \text{ K}_{\Omega}
                              ^{1}/_{4}W
                                                                                                    R_{76} = 4.7 \text{ K}_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R_{16} = 4.7 \text{ K}_{\Omega}
                              ^{1}/_{4}W
                                                                                                    R_{77} = 4.7 \text{ K}_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R_{17} = 4.7 K_{\Omega}
                                                                                                    R_{78} = 4.7 K_{\Omega}
                              ^{1}/_{4}W
                                                                                                                                  \frac{1}{4}W
                                                                                                    R_{79} = 4.7 \text{ K}_{\Omega}
R_{18} = 10 \text{ K}_{\Omega}
                              \frac{1}{4}W
                                                                                                                                  \frac{1}{4}W
R_{19} = 10 K_{\Omega}
                              \frac{1}{4}W
                                                                                                    R_{80} = 1.0 \text{ K}_{\Omega}
                                                                                                                                  \frac{1}{4}W
                                                                                                                                  ^{1}/_{4}W + Zener 5,1V ^{1}/_{2}W
R_{20} = 1.0 \text{ K}_{\Omega}
                              \frac{1}{4}W
                                                                                                    R_{81} = 220 \Omega
R_{21} = 33 \Omega
                              5W
                                                                                                    R_{82} = 4.7 K_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R_{22} = 10 \text{ K}_{\Omega}
                              \frac{1}{4}W
                                                                                                    R_{83} = 6.8 K_{\Omega}
                                                                                                                                  ^{1}/_{4}W
R_{24} = 680\Omega
                              ^{1}/_{4}W
                                                                                                    R_{84} = 33 \Omega
                                                                                                                                  5W
R_{25} = 1.0 \Omega
                              \frac{1}{2}W
                                                                                                    R_{85} = 33 \Omega
                                                                                                                                  5W
                                                                                                    \begin{array}{ll} Rr_1 &= 8 \; x \; 270 \; \Omega^{\; 1} / \!\!\! W \\ Rr_2 &= 8 \; x \; 270 \; \Omega^{\; 1} / \!\!\! ^8 W \end{array}
R_{26} = 33 \Omega
                              5W
R_{27} = 33 \Omega
                              5W
                                                                                                    Rr_3 = 8 \times 470 \Omega^{1/0} W
R_{28} = 470 \,\Omega
                              5W
                                                                                                    NTC 1 = 4.7 \text{ K}\Omega
R_{29} = 470 \,\Omega
                              5W
R_{30} = 330 \Omega
                              2W
                                                                                                    Trim 1 = 220 \text{ K}\Omega \text{ PT}10\text{LV}
R_{31} = 33 \Omega
                              5W
                                                                                                    B_1 = Buzzer 12V ARIMB12A12
R_{32} = 33 \Omega
                              5W
                                                                                                    D_1 \text{ to } D_4 = 1N4148
R_{33} = 100 \Omega
                              2W
                                                                                                    D_5 = 1N5711
R_{34} = 100 \Omega
                              2W
                                                                                                    D_6 to D_{10} = 1N4148
R_{35} = 10 \Omega
                              \frac{1}{2}W
                                                                                                    D<sub>11</sub> to D<sub>12</sub>= 1N4007
                              \frac{1}{2}W
                                                                                                    D_{13} = 1N5400
R_{36} = 10 \Omega
R_{37} = 10 \Omega
                              \frac{1}{2}W
                                                                                                    D_{14} = 1N4148
R_{38} = 10 \Omega
                              \frac{1}{2}W
                                                                                                    D_{15} to D_{17} = 1N5711
                              5W
R_{39} = 68 \Omega
                                                                                                    D_{18} = 1N4148
R_{40} = 68 \Omega
                              5W
                                                                                                    D_{19 \text{ to }} D_{20} = 1N4007
R_{41} = 68 \Omega
                              5W
                                                                                                    D_{21} = 1N4148
R_{42} = 68 \Omega
                              5W
                                                                                                    D_{22} to D_{28} = 1N4007
R_{43} = 100 \,\Omega
                              2W
                                                                                                    D_{29 \text{ to } D_{31}} = 1N5400
R_{44} = 100 \text{ K}_{\Omega}
                             ^{1}/_{4}W
                                                                                                    Dz_1 = Zener 5.1 V
                                                                                                                                            \frac{1}{2}W
R_{45} = 12 K_{\Omega}
                              ^{1}/_{4}W
                                                                                                    Dz_2 = Zener 10 V
                                                                                                                                            1W
R_{46} = 47 K_{\Omega}
                              ^{1}/_{4}W
                                                                                                    Led_1 = green
R_{47} = 4.7 \text{ K}_{\Omega}
                              ^{1}/_{4}W
                                                                                                    Led 2 to Led 3 = \text{red}
R_{48} = 10 \text{ K}_{\Omega}
                              \frac{1}{4}W
                                                                                                    Led 4 to Led 10 = green
R_{49} = 10 \text{ K}\Omega
                              \frac{1}{4}W
                                                                                                    Led_{11} = yellow
                              ^{1}/_{4}W
R_{50} = 1.0 \text{ K}_{\Omega}
                                                                                                    Led 12 to Led 17 = green
R_{51} = 47 \Omega
                              ^{1}/_{4}W
                                                                                                    Led_{18} = vellow
R_{52} = 1.0 \text{ K}_{\Omega}
                                                                                                    Fuse 1 to Fuse 4 = 10 A Fast
                              ^{1}/_{4}W
R_{53} = 22 K_{\Omega}
                                                                                                    Ic_1 = 74HC14
                              ^{1}/_{4}W
```

- $Ic_2 = 74HC393$ Ic  $_3$  = Micro RM20  $Ic_4 = LM358$
- Ic  $_5 = LM 7805$
- Ic  $_{6} = 74HC595$
- = 74HC595Ic 7
- Ic  $_{8} = 74HC595$
- $Tr_1 = BF199$
- $Tr_2$  to  $Tr_4 = BC 547 B$
- $Tr_5 = BC 337-25$   $Tr_6 = BD241BFP$
- $Tr 7 Tr_{10} = SD 1446$
- $Tr_{11} = BDX53BFP$
- $Tr_{12} Tr_{19} = BC 547 B$
- $Scr_1 = P0102$
- $R1_1 = 4152.9.012$
- $R1_2 = 3022.9.012$
- $R1_3$  to  $R1_8 = 4152.9.012$
- $T_1 = Input Decoupler Transformer$
- T<sub>2</sub> and T<sub>3</sub>=Input Transformers
- T 4 and T 5 = Output Transformers
- =Output Coupler Transformer
- = ANRA 700/12T 7
- $L_1 = 10 \,\mu\text{H}$
- $L_{2 \text{ and } L_{3}} = FH002100$
- =ANRA883 L 4
- $L_{5 \text{ to } L_{8}} = FH002110$
- $L_9 = ANRA 856/1$
- $L_{10} = ANRA 856/1$
- $L_{11} = ANRA 856$
- $L_{12} = ANRA 856/2$
- $L_{13} = ANRA 856/1$
- $L_{14} = ANRA 856/4$
- $L_{15} = ANRA 856/3$
- $L_{16} = ANRA 725/5$
- $L_{17} = ANRA 725/4$
- $L_{18} = ANRA 725/7$  $L_{19} = ANRA 725/6$
- $L_{20} = ANRA 725/9$
- $L_{21} = ANRA 725/8$
- $L_{22} = 10 \,\mu H$
- $L_{23} = 10 \,\mu H$
- $L_{24} = 10 \,\mu H$
- PTT = GP305522S<sub>1</sub> = JS606A 10A **S** 1
- S 2 = JS606A 10A
- $S_3$ = JS606A 10A
- S 4 =BL200012