

统计数据分析习题

杨振伟

北京大学高能物理研究中心 内部资料,仅供教学使用。

目录

第一章	基本概念	1
第二章	常用概率密度函数	3
第三章	蒙特卡罗方法	5
第四章	统计检验	8
第五章	参数估计的一般概念	12
第六章	最大似然法	14
第七章	最小二乘法	19
第八章	矩方法	24
第九章	统计误差、置信区间和极限	25
第十章	特征函数	28
第十一章	声 解谱法	31

第一章 基本概念

习题 1.1. 考虑某样本空间 S 以及给定子空间 B, 并假设 P(B) > 0。证明条件概率

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{1.1}$$

满足概率的公理。

习题 1.2. 证明

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

(提示: 将 $A \cup B$ 表示成3个不相交的子集的并。)

习题 1.3. 某粒子束流包含 10^{-4} 的电子,其余为光子。粒子通过某双层探测器,可能在 2 层都给出信号,也可能只有一层给出信号或者没有任何信号。电子 (e) 和光子 (γ) 在穿过该双层探测器给出 0,1 或 2 个信号的概率如下

$$P(0|e) = 0.001$$
 $P(0|\gamma) = 0.99899$ $P(1|e) = 0.01$ $P(1|\gamma) = 0.001$ $P(2|e) = 0.989$ $P(2|\gamma) = 10^{-5}$

- (a) 如果只有一层给出信号,该粒子为光子的概率是多少?
- (b) 如果两层都给出了信号, 该粒子为电子的概率是多少?

习题 1.4. 假设随机变量 x 的概率密度函数为 f(x)。证明 $y=x^2$ 的概率密度函数为

$$g(y) = \frac{1}{2\sqrt{y}}f(\sqrt{y}) + \frac{1}{2\sqrt{y}}f(-\sqrt{y}). \tag{1.2}$$

习题 1.5. 假设两个独立的随机变量 x 和 y 都服从 0 到 I 之间的均匀分布,即概率密度函数 g(x) 为

$$g(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \not\pm \dot{\Xi}, \end{cases} \tag{1.3}$$

概率密度函数 h(y) 与 g(x) 类似。

(a) 利用 Statistical Data Analysis 中的 (1.35) 式,证明, z = xy 的概率密度函数 f(z) 为

$$f(z) = \begin{cases} -\log z & 0 < z < 1, \\ 0 & \sharp \dot{\Xi}. \end{cases}$$
 (1.4)

(b) 利用 Statistical Data Analysis 的 (1.37) 和 (1.38) 式,通过另外定义一个函数 u=x,求 z=xy 的概率密度函数。首先求 z 和 u 的联合概率密度函数,然后对 u 进行积分求出 z 的概率密度函数。

(c) 证明 z 的累积分布为

$$F(z) = z(1 - \log z). (1.5)$$

习题 1.6. 考虑随机变量 x 与常数 α 和 β 。证明

$$E[\alpha x + \beta] = \alpha E[x] + \beta,$$

$$V[\alpha x + \beta] = \alpha^{2} V[x].$$
(1.6)

习题 1.7. 考虑两个随机变量 x 和 y。

(a) 证明 $\alpha x + y$ 的方差为

$$V[\alpha x + y] = \alpha^2 V[x] + V[y] + 2\alpha \text{cov}[x, y]$$

= $\alpha^2 V[x] + V[y] + 2\alpha \rho \sigma_x \sigma_y$, (1.7)

其中 α 为任意常数, $\sigma_x^2 = V[x]$, $\sigma_y^2 = V[y]$, 关联系数 $\rho = \text{cov}[x,y]/\sigma_x\sigma_y$

(b) 利用 (a) 的结果,证明关联系数总是位于区间 $-1 \le \rho \le 1$ 。(利用 $V[\alpha x + y]$ 的方差总是大于或等于零。)

习题 1.8. 假设随机变量 $\mathbf{x} = (x_1, \dots, x_n)^T$ 用联合概率密度函数 $f(\mathbf{x})$ 描述,而变量 $\mathbf{y} = (y_1, \dots, y_n)^T$ 由下面的线性变换定义

$$y_i = \sum_{j=1}^{n} A_{ij} x_j. {(1.8)}$$

假设反变换 $\mathbf{x} = A^{-1}\mathbf{y}$ 存在。

(a) 证明 y 的联合概率密度函数为

$$g(\mathbf{y}) = f(A^{-1}\mathbf{y})|\det(A^{-1})|.$$
 (1.9)

(b) 当 A 为矩阵, 即 $A^{-1} = A^T$ 时, 求 g(y)。

第二章 常用概率密度函数

习题 2.1. 考虑 N 个服从多项分布的随机变量 $\mathbf{n} = (n_1, \dots, n_N)$,概率为 $\mathbf{p} = (p_1, \dots, n_N)$,并且总试验次数 为 $n_{\text{tot}} = \sum_{i=1}^{N} n_i$ 。假设变量 k 定义为前 M 个 n_i 之和,

$$k = \sum_{i=1}^{M} n_i, \qquad M \le N. \tag{2.1}$$

利用误差传递以及多项分布的协方差

$$cov[n_i, n_j] = \delta_{ij} n_{tot} p_i (1 - p_i) + (\delta_{ij} - 1) p_i p_j n_{tot}, \tag{2.2}$$

求 k 的方差。证明该方差等于 $p = \sum_{i=1}^{M} p_i$ 并且总试验次数为 n_{tot} 的二项分布的方差。

习题 2.2. 假设随机变量 x 均匀分布于区间 $[\alpha, \beta]$, $\alpha, \beta > 0$ 。 求 1/x 的期待值,并将结果与 1/E[x] 进行比较,取 $\alpha = 1, \beta = 2$ 。

习题 2.3. 考虑指数分布

$$f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}, \qquad x \ge 0.$$
 (2.3)

(a) 证明对应的累积分布函数为

$$F(x) = 1 - e^{-x/\xi}, \qquad x \ge 0.$$
 (2.4)

(b) 证明给定 $x>x_0$ 时x处于 x_0 与 x_0+x' 之间的条件概率等于x小于x'的概率(非条件概率),即

$$P(x \le x_0 + x' | x \ge x_0) = P(x \le x'). \tag{2.5}$$

(c) 产生于大气上层的宇宙线 μ 子进入海平面的探测器, 其中的一部分在探测器中停止并衰变。进入探测器与衰变的时间差 t 服从指数分布, t 的均值等于 μ 子的平均寿命 (近似为 2.2μ S)。解释为什么 μ 子进入探测器前存活的时间对确定平均寿命没有影响。

习题 2.4. 假设 y 服从均值为 μ , 方差为 σ^2 的高斯分布。

(a) 证明

$$x = \frac{y - \mu}{\sigma} \tag{2.6}$$

服从标准高斯分布 $\varphi(x)$ (即,均值为零,方差为1)。

(b) 证明累积分布函数F(y) 与 $\Phi(x)$ 相等,即

$$F(y) = \Phi(\frac{y-\mu}{\sigma}). \tag{2.7}$$

习题 2.5.

(a) 证明,如果 y 服从均值为 μ 方差为 σ^2 的高斯分布,则 $x = e^y$ 服从对数正态分布,

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{x} \exp\left(\frac{-(\log x - \mu)^2}{2\sigma^2}\right).$$
 (2.8)

(b) 通过积分

$$E[x] = \int x f(x; \mu, \sigma^2) dx,$$

$$V[x] = \int (x - E[x])^2 f(x; \mu, \sigma^2) dx.$$
(2.9)

求 x 的均值与方差。

(c) 将 (b) 中求得的方差与通过误差传递 ($V[y] = \sigma^2$) 得到的近似结果进行比较。在什么条件下误差传递近似成立? (注意 y 是无量纲的,因而 σ^2 也是无量纲的。)

习题 2.6. 证明自由度为 n 的 χ^2 分布的累积分布函数可以表示为

$$F_{\chi^2}(x;n) = P(\frac{x}{2}, \frac{n}{2}),$$
 (2.10)

其中 P 为不完全伽马函数 (incomplete gamma function)

$$P(x,n) = \frac{1}{\Gamma(n)} \int_0^x e^{-t} t^{n-1} dt.$$
 (2.11)

第三章 蒙特卡罗方法

习题 3.1. 写一段小程序,利用 ROOT 中的随机数产生子产生 10^4 个 (0,1] 之间均匀分布 的随机数,将并结果画到直方图中 (分 100 个区间)。

习题 3.2. 修改习题 3.1 中的直方图,使其只有 5 个区间,事例数 N=100。产生的直方图可以看做对矢量 (n_1,\ldots,n_5) 的观测,该矢量满足参数 N=100, $p_i=0.2(i=1,\ldots,5)$ 的多项分布。

(a) 将上面的程序代码放到循环中产生直方图,重复该 MC 实验 100 次,每次用不同的随机数种子。只要保证每次实验程序不中断,程序在下一次实验(即下一个循环)时自动更新种子。定义一个直方图,将每次实验第 i 个区间(比如 i=3)的值填充其中。这应该服从均值为 $Np_i=20$,标准偏差为 $\sqrt{Np_i(1-p_i)}=4$ 的二项分布。

(b) 为任意两个区间的值 n_i 和 n_j 作出散点图(二维直方图)。其协方差的理论值为 $cov[n_i,n_j]=-Np_ip_j=-4$,或者说关联系数 $\rho=-4/4^2=-0.25$ 。

习题 3.3. 考虑锯齿分布

$$f(x) = \begin{cases} \frac{2x}{x_{\text{max}}^2} & 0 < x < x_{\text{max}}, \\ 0 & \sharp \dot{\Xi} \, . \end{cases}$$

$$(3.1)$$

(a) 参考课本 3.2 节,利用变换方法寻找函数 x(r),以产生服从 f(x) 的随机数。用程序实现该方法,并生成一个直方图。(可以取 $x_{\max}=1$ 。)

(b) 参考课本 3.3 节、编写一段程序、利用舍选法产生服从锯齿分布的随机数。画出相应的直方图。

习题 3.4. 该练习的目的是产生服从高斯分布的随机数。有很多算法可以产生高斯分布,一个最简单的适合教学目的的算法基于中心极限定理: 当n 很大时,n 个随机数之和趋向于高斯分布,只要其中任何一项不占绝对份额(参考课本第 10 章)。

(a) 假设x均匀分布于[0,1],考虑n个独立随机变量x之和,

$$y = \sum_{i=1}^{n} x_i. {(3.2)}$$

证明 y 的期待值为 n/2, 方差为 n/12。并证明变量 z

$$z = \frac{\sum_{i=1}^{n} x_i - \frac{n}{2}}{\sqrt{n/12}} \tag{3.3}$$

均值为零、标准偏差为1。

(b) 写一段小程序产生 (a) 中定义的变量 z, n 可以为任意值。分别取 n = 1, ..., 20, 生成直方图,每个直方图包含 10^4 个 z 的值。何时 z 的分布近似为高斯分布?作为简单的高斯分布产生子,可以取 n = 12。评论此算法的局限性。选作:对于 n = 2,推导出 z 的概率密度函数的明显形式。

习题 3.5. 变量 t 服从均值 $\tau = 1$ 的指数分布,x 服从均值 $\mu = 0$,标准偏差 $\sigma = 0.5$ 的高斯分布。写一段 MC 程序,产生变量

$$y = t + x. ag{3.4}$$

这里t可以表示不稳定粒子的真实衰变时间,x表示测量误差,所以y表示测量到的衰变时间。画出y的直方图。修改程序以研究 $\tau \ll \sigma$ 和 $\tau \gg \sigma$ 的情形。

习题 3.6. 考虑服从 Cauchy(Breit-Wigner) 分布的随机变量 x,

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}. (3.5)$$

(a) 证明如果r均匀分布于[0,1],则

$$x(r) = \tan[\pi(r - \frac{1}{2})]$$
 (3.6)

服从 Cauchy 分布。

- (b) 利用 (a) 中的结果,写一段小程序产生 Cauchy 分布的随机数。产生 10^4 个事例并画出直方图。
- (c) 修改 (b) 中的程序,重复进行实验,每次实验 n 个独立的柯西分布数值 (如取 n = 10)。对每个样本,计算样本均值 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 。比较 \overline{x} 的直方图与 x 的原始直方图。 (参见习题 10.8。)

习题 3.7. 光电倍增管是可以探测单光子的设备,如图3.1所示。1

图 3.1: 光电倍增管的示意图。入射光子入射到光阴极上产生光电子,光电子被加速到打拿极上产生次级电子。

光子打到光阴极上,有一定的概率发射出一个电子(即光电子)。光电子在电场中向电极(称为打拿极)加速。当光电子撞到第一个打拿极时,光电子可以进一步释放出电子。这些电子又被加速到第二个打拿极,产生更多的电子。该过程一直持续,直到最后一个打拿极产生的电子被收集起来。

进入第i个打拿极的每个电子产生的次级电子数目可以看成均值为 ν_i 的泊松变量 n_i ,一般而言,每个打拿极的泊松均值 ν_i 不同。假设光电倍增管有N个打拿极,单个入射光电子最终产生的电子数目 n_{out} 的期待值(即光电倍增管的增益)为

$$\nu_{\text{out}} = E[n_{\text{out}}] = \prod_{i=1}^{N} \nu_i.$$
 (3.7)

(a) 写一段蒙特卡罗程序,用来计算 N=6 时单个光电子产生的电子数 n_{out} 的分布,对所有打拿极取 $\nu=3.0$ 。(ROOT 中可以直接调用函数产生泊松分布。) 利用你写的程序,重复 M=1000 次单个光电子事

¹更详细的描述请参见相关文献,例如,C. Grupen, A. Böhrer and L. Smolik, *Particle Detectors*, Cambridge University Press, Cambridge, 1996。

件,从而得到 $M \land n_{\text{out}}$,作出这 $M \land n_{\text{out}}$ 值的直方图。(建议直方图分 $50 \land$ 区间。)通过计算样本均值和样本方差

$$\overline{n}_{\text{out}} = \frac{1}{M} \sum_{i=1}^{M} n_{\text{out},i}$$
(3.8)

$$s_{\text{out}}^2 = \frac{1}{M-1} \sum_{i=1}^{M} (n_{\text{out},i} - \overline{n}_{\text{out}})^2$$
(3.9)

以估计均值 ν_{out} 和方差 $V[n_{\text{out}}] = \sigma_{\text{out}}^2$ 。(样本均值和样本方差详见 Statistical Data Analysis 第 5 章。)将样本均值与(3.7)式给出的值进行比较。比较样本方差(或标准差)与均值为 ν_{out} 的泊松变量的方差。定性解释为什么 n_{out} 的标准差远大于泊松变量的标准差。

(b) 我们希望 n_{out} 的标准差尽量小,以便能够尽可能精确地确定初始光电子的数目(从而可以估计入射光子的数目)。在某些应用中,需要标准差小到可以区分到底是一个还是两个光子,因此希望使相对分辨率(即标准差与均值的比值)小于 1。减小方差的一个方法是提高第一个打拿极产生电子数的均值,这可以通过增大电压从而提高入射到打拿极的光电子的能量来实现,也可以通过选取较低功函数的金属(即提高发射次级电子的概率)来实现。

修改 (a) 中的程序,增大第一个打拿极的均值 (比如增大至 6)。运行程序并估计 n_{out} 的标准差与均值的比值。定性解释为什么这么做比所有 ν_i 都相同时的分辨率更好。为什么提高后面的打拿极的增益对提高分辨率作用不大?

(c) 尝试将程序改成模拟 N=12 个打拿极。你会发现模拟每个打拿极上每个电子的碰撞需要太长时间。可以考虑换个思路,取 N=6 运行足够多的事例从而获得足够精确的 $n_{\rm out}$ 的分布(例如至少 $M\approx 10^4$,分 50 个区间作出 $0 \le n_{\rm out} \le 5000$ 之间的直方图)。用某种方法,比如舍选法,产生服从该分布的随机数。对前 6 个打拿极得到的每个电子,用同样方法模拟它在后面 6 个打拿极产生的电子数目。对前 6 个打拿极,取 $\nu_1=6$,其余 $\nu_2=3$;对后 6 个打拿权,全部取 $\nu_3=3$ 。

第四章 统计检验

习题 4.1. 带电粒子穿过气体会发生电离现象,电离的数目与入射粒子的类型有关。假设基于电离的测量构造了某个检验统计量t,使其服从高斯分布:如果带电粒子是电子,则高斯分布的均值为 t0,标准差为 t1;如果带电粒子是t7,则高斯分布的均值为 t7,则高斯分布的均值为 t8,标准差为 t8。构造某个检验,通过要求 t8 不能择电子事件。

- (a) 该检验的显著水平 (significance level) 如何? (显著性水平即在拒绝域中接受电子的概率。)
- (b) 该检验排除粒子为π介子的假设的功效 (power) 多大? 有多大概率将π介子鉴别为电子?
- (c) 假定已知样本中包含 99% 的 π 介子和 1% 的电子, t < 1 的判选条件得到的电子样本的纯度 (purity) 为多少?
- (d) 假定要求电子样本的纯度至少95%, 应该如何选择统计检验的拒绝域 (即判选条件)? 如果选用该判选条件,则该检验接受电子的效率为多少,显著性水平多大?

图 4.1: 用于判选电子 e 和 π 介子的检验统计量 t, 判选条件为 $t_{cut} = 1$.

习题 4.2. 考虑某检验统计量 t 为输入变量 $\mathbf{x}=(x_1,\ldots,x_n)$ 的线性组合,系数为 $\mathbf{a}=(a_1,\ldots,a_n)$,即

$$t(\mathbf{x}) = \sum_{i=1}^{n} a_i x_i = \mathbf{a}^T \mathbf{x}.$$
 (4.1)

假定在 H_0 和 H_1 两个假设下,**x** 的均值分别为 μ_0 和 μ_1 ,协方差矩阵分别为 V_0 和 V_1 ,检验统计量 t 的均值分别为 τ_0 和 τ_1 ,方差为 Σ_0^2 和 Σ_1^2 (见 Statistical Data Analysis 第 4.4.1 节)。

(a) 证明: 当系数 a 为 a = $W^{-1}(\mu_0 - \mu_1)$ 时 (其中 $W = V_0 + V_1$), 下式定义的分离量达到最大值:

$$J(\mathbf{a}) = \frac{(\tau_0 - \tau_1)^2}{\Sigma_0^2 + \Sigma_1^2}.$$
 (4.2)

这定义了 Fisher 线性甄别量。

- (b) 假定 $V_0 = V_1 = V$,且輸入变量的概率密度函数 $f(\mathbf{x}|H_0)$ 和 $f(\mathbf{x}|H_1)$ 是多维高斯分布,均值分别为 μ_0 和 μ_1 (参见 Statistical Data Analysis 的式 4.26)。取两个假设的先验概率分别为 π_0 和 π_1 。利用 Bayes 定理,求验后概率 $P(H_0|\mathbf{x})$ 和 $P(H_1|\mathbf{x})$ 作为 t 的函数。
- (c) 推广该检验统计量, 使其包含一个偏倚:

$$t(\mathbf{x}) = a_0 + \sum_{i=1}^{n} a_i x_i. \tag{4.3}$$

证明此时验后概率 $P(H_0|\mathbf{x})$ 可以表示为

$$P(H_0|\mathbf{x}) = \frac{1}{1 + e^{-t}},\tag{4.4}$$

其中偏倚 a0 为

$$a_0 = -\frac{1}{2}\boldsymbol{\mu}_0^T V^{-1} \boldsymbol{\mu}_0 + \frac{1}{2}\boldsymbol{\mu}_1^T V^{-1} \boldsymbol{\mu}_1 + \log \frac{\pi_0}{\pi_1}.$$
 (4.5)

$$\sum_{n=0}^{m} P(n; \nu) = 1 - F_{\chi^2}(2\nu; n_{\text{dof}}), \tag{4.6}$$

其中 $P(n; \nu$ 是均值为 ν 的泊松分布的概率, F_{χ^2} 是自由度数目为 $n_{\text{dof}} = 2(m+1)$ 的 χ^2 分布的累积分布。可以调用 ROOT 里面的 TMath 名字空间下的函数 TMath: Prob (double chi2, int ndf) 计算,或者查表得到。

习题 4.4. 表 4.1 是实验获取的分区间数据和理论预言值。第二、三列是区间边界,第四列是对应区间的观测事件数 n_i ($i=1,\ldots,20$),服从泊松分布。第五、六列是两种理论对期待值 $\nu_i=E[n_i]$ 的预言,如图 4.2 所示。

- (a)写一段程序,将表中 20 个区间的实验观测值和理论预期值画成直方图,画到一张图上,并根据"Statistical Data Analysis"的式 (4.39) 式计算 χ^2 统计量。
- (b) 因为很多区间的事件数很小甚至为零,前面计算的统计量不太可能服从 χ^2 分布。写一段程序,根据两种理论假设(theory1 和 theory2)给出真实的 χ^2 分布。如果利用 (a) 中的数据计算统计检验,其 P-值是多少?如果利用正常的 χ^2 分布计算,P-值是多少?

习题 4.5. 在放射性实验中,卢瑟福和盖革记录了固定时间间隔内 α 衰变的次数。数据如表 4.2 所示。假定放射源中放射性核素的数目非常大,且任意一个核素在小时间间隔内发射一个 α 粒子的概率很小,则可以认为在时间间隔 Δt 内发生衰变的次数 m 服从泊松分布。如果观测结果与泊松分布的假设存在差异,则表明核素的 α 衰变不相互独立,比如某个核素发生 α 衰变可能会引发邻近核素也发生衰变,从而在短时间间隔内形成衰变簇团。

(a) 利用表4.2的数据, 计算样本均值

$$\overline{m} = \frac{1}{n_{\text{tot}}} \sum_{m} n_m m, \tag{4.7}$$

以及样本方差

$$s^{2} = \frac{1}{n_{\text{tot}} - 1} \sum_{m} n_{m} (m - \overline{m}), \tag{4.8}$$

序号	x_{\min}	x_{max}	n (data)	ν (theory1)	ν (theory2)
1	0.0	0.5	1	0.2	0.2
2	0.5	1.0	0	1.2	0.7
3	1.0	1.5	3	1.9	1.1
4	1.5	2.0	4	3.2	1.6
5	2.0	2.5	6	4.0	1.9
6	2.5	3.0	3	4.5	2.2
7	3.0	3.5	3	4.7	2.7
8	3.5	4.0	4	4.8	3.3
9	4.0	4.5	5	4.8	3.6
10	4.5	5.0	7	4.5	3.9
11	5.0	5.5	4	4.1	4.0
12	5.5	6.0	5	3.5	4.0
13	6.0	6.5	2	3.0	3.9
14	6.5	7.0	0	2.4	3.5
15	7.0	7.5	1	1.6	3.2
16	7.5	8.0	0	0.9	2.8
17	8.0	8.5	0	0.5	2.2
18	8.5	9.0	1	0.3	1.5
19	9.0	9.5	0	0.2	1.0
20	9.5	10.0	0	0.1	0.5

表 4.1: 实验获取的分区间数据和理论预言值。第二、三列是区间边界。

m	n_m	m	n_m
0	57	8	45
1	203	9	27
2	383	10	10
3	525	11	4
4	532	12	0
5	408	13	1
6	273	14	1
7	139	> 14	0

表 4.2: 卢瑟福与盖革实验数据,即在时间间隔 $\Delta t = 7.5\,\mathrm{s}$ 内发生 m 次 α 衰变的次数。

图 4.2: 从表中读取的观测数据和理论预言值的结果。

其中 n_m 是发生 m 个衰变的次数, $n_{\text{tot}} = \sum_m n_m = 2608$ 是测量时间内总衰变次数。求和从 m = 0 一直到测量时间内最大的衰变次数 (次数为 m = 14)。利用 \overline{m} 和 s^2 ,求分散度

$$t = \frac{s^2}{m}. (4.9)$$

m 和 s^2 分别为 m 的均值和方差的估计量(参见 Statistical Data Analysis 第 5 章);如果 m 服从泊松分布,则 m 和 s^2 应该相等,于是可以预期 t 大约为 1。可以证明对于泊松分布,当 n_{tot} 很大时, $(n_{\text{tot}}-1)t$ 服从自由度为 $n_{\text{tot}}-1$ 的 χ^2 分布。而且,当 n_{tot} 很大时,该分布变成均值为 $n_{\text{tot}}-1$,方差为 $2(n_{\text{tot}}-1)$ 的高斯分布。

(b) m 服从泊松分布这一假设的 P-值为多少? 为了表征 t 的观测值与泊松假设相符或不相符,应该选取什么样的 t 值 (即 t 大表示相符还是 t 小表示相符)?

(c) 写一段蒙特卡罗程序产生很多组数据,每组数据包含 n_{tot} 个服从泊松分布的 m 值。(泊松分布的随机数可以在 ROOT 中直接调用,gRandom— > Possion(ν)。) 对于 m 的均值,可以取表4.2 中数据的均值 m。对于每组数据,计算 t 的值并填充至直方图。利用直方图和从卢瑟福实验数据得到的 t 值,计算泊松假设的 P-值。将该结果与(a)中的结果进行比较。(选作:将 $(n_{tot}-1)t$ 记录至直方图,与均值为 $n_{tot}-1$,方差为 $2(n_{tot}-1)$ 的高斯分布进行比较。)

第五章 参数估计的一般概念

习题 5.1. 考虑随机数x, 其均值和方差分别为 μ 和 σ^2 。假设样本空间由n 次观测结果 x_1, x_2, \cdots, x_n 构成。本题的目的是证明样本均值

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,\tag{5.1}$$

为均值 μ 的一致性估计量。

(a) 第一步要证明 Chebyshev 不等式,即只要x的方差存在,对任意a>0,下面式子成立:

$$P(|x - \mu|) \ge a) \le \frac{\sigma^2}{a^2}.\tag{5.2}$$

该式的证明需要用到方差的定义,

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx, \tag{5.3}$$

其中 f(x) 为随机变量 x 的概率密度函数。利用如下事实: 如果积分区域限定为 $|x-\mu| \ge a$, 则积分 (5.3) 会变小, 如果用 a^2 替换 $(x-\mu)^2$, 则积分会更小。

(b) 利用 Chebyshev 不等式证明大数弱定理, 即, 对任意 $\epsilon > 0$,

$$\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} x_i - \mu\right| \ge \epsilon\right) = 0.$$
 (5.4)

这等价于, \overline{x} 是 μ 的一致性估计量, 只要 x 的方差存在。

习题 5.2. 考虑均值为 μ , 方差为 σ^2 的随机变量 x, 并得到样本值为 x_1, x_2, \dots, x_n 的样本空间。

(a) 假设均值 μ 已经利用样本均值 \overline{x} 估计。证明样本方差

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{n}{n-1} (\overline{x^{2}} - \overline{x}^{2})$$
 (5.5)

为方差 σ^2 的无偏估计量。(利用 $E[x_i x_j] = \mu^2 (i \neq j)$, $E[x_i^2] = \mu^2 + \sigma^2 (i = 1, 2, ..., n)$ 。

(b) 假设均值 μ 已知。证明 σ^2 的无偏估计量为

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \overline{x^{2}} - \mu^{2}.$$
 (5.6)

习题 5.3.

(a) 证明样本方差 $s^2(5.5)$ 的方差为

$$V[s^2] = E[s^4] - (E[s^2])^2 = \frac{1}{n} \left(\mu_4 - \frac{n-3}{n-1} \mu_2^2 \right), \tag{5.7}$$

其中 $\mu_k = E[(x-\mu)^k]$ 为 x 的 k 阶中心矩。为此,需要先证明 s^2 可以写为

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n(n-1)} \sum_{i,j=1}^{n} x_{i} x_{j}.$$
 (5.8)

然后证明 s^4 的期待值为

$$E[s^4] = \frac{1}{(n-1)^2} \sum_{i,j=1}^n E[x_i^2 x_j^2] - \frac{2}{n(n-1)^2} \sum_{i,j,k=1}^n E[x_i x_j x_k^2] + \frac{1}{n^2(n-1)^2} \sum_{i,j,k,l=1}^n E[x_i x_j x_k x_l].$$
 (5.9)

计算每个求和给出多少项代数矩 μ_4' 或 $\mu_2'^2$ 。注意其余所有项都 μ 的一次项或高次项。令 $\mu=0$,将结果表示为中心矩 μ_2 和 μ_4 的函数。从中减掉习题5.2得到的 $(E[s^2])^2$ 即可得到结果。

(b) 如果 x 服从高斯分布,计算 s^2 的方差。利用高斯分布的 4 阶中心矩为 $\mu_4=3\sigma^4$ 。

第六章 最大似然法

习题 6.1.

- (a) 给定一组数据高斯分布的数据样本 x_1,\ldots,x_n , 求均值 μ 和方差 σ^2 的最大似然估计量。
- (b) 将估计量 $\hat{\mu}$ 和 $\hat{\sigma}^2$ 同《统计数据分析》第 5 章定义的估计量 \overline{x} 和 s^2 联系起来,计算 $\hat{\mu}$ 和 $\hat{\sigma}^2$ 的期待值和 方差。
- (c) 通过计算

$$(V^{-1})_{ij} = -E\left[\frac{\partial^2 \log L}{\partial \theta_i \partial \theta_j}\right],\tag{6.1}$$

近似求解协方差矩阵的逆 (大统计样本有效)。其中 θ_i 和 θ_j i,j=1,2 分别为 μ 和 σ^2 。对 V^{-1} 求逆,计算 出协方差矩阵,并将对角元素 (方差) 与 (b) 中求得的精确值比较。注意到,在大样本极限下,(b) 和 (c) 的 结果符合。

习题 6.2. 考虑某二项分布变量,即 N 次试验中成功的次数 n,单个实验试验成功的概率为 p。如果只进行一次观测得到 n,p 的最大似然估计量为多少?证明 \hat{p} 是无偏的,并求其方差。证明 \hat{p} 的方差等于最小方差边界 (\mathcal{P}_n) 《统计数据分析》 (6.16) 式)。

习题 6.3.

(a) 重新考虑二项分布的随机变量 n, 每次试验结果 (成功或失败) 的概率为 p 和 q = 1 - p。利用习题 6.2 得到的 p 的估计量,构造不对称度

$$\alpha = p - q = 2p - 1 \tag{6.2}$$

的最大似然估计量 $\hat{\alpha}$,并求标准差 $\sigma_{\hat{\alpha}}$ 。

(b) 假设需要测量某个非常小的不对称度,预计大约是 $\alpha \approx 10^{-3}$ 水平。如果要求标准差不大于 α 的三分之一,至少需要多少次试验?

习题 6.4. 考虑泊松变量的单次观测值 n。均值 ν 的最大似然估计量为多少?证明该估计量是无偏的并求其方差。证明 $\hat{\nu}$ 的方差等于最小方差边界。

习题 6.5. 支持粒子物理标准模型的早期证据是观测到左手 (R) 和右手 (L) 极化的电子与氘靶的非弹散射截面 σ_R 和 σ_L 不同。对于给定积分亮度 L(正比于电子束流密度以及取数时间),两种类型的事例数 n_R 和 n_L 均为泊松变量,平均值分别为 ν_R 和 ν_L 。均值与散射截面的关系为 $\nu_R = \sigma_R L$ 和 $\nu_L = \sigma_L L$,并且实验中两种情形的亮度 L 相同。利用习题的结果、构造计划不对称度的估计量 $\hat{\alpha}$ 、

$$\alpha = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L},\tag{6.3}$$

利用误差传递,求标准差 $\sigma_{\hat{\alpha}}$,用 α 和 $\nu_{tot} = \nu_R + \nu_L$ 表示。将此与习题6.3的结果进行比较。预计不对称度大约为 10^{-4} 水平,要想使 $\sigma_{\hat{\alpha}}$ 比不对称度小一个数量级,需要多少散射事例? (事例数非常大,以至于事例

不能单独记录下来,而是测量探测器输出电流。参见 C.Y. Prescott et al., Parity non-conservation in inelastic electron scattering, Phys. Lett. B77(1978)347.))

习题 **6.6.** 随机变量 x 服从分布 $f(x;\theta)$,其中 θ 为未知参数。考虑样本空间 $\mathbf{x} = (x_1, \dots, x_n)$,以此构造 θ 的估计量 $\hat{\theta}(\mathbf{x})$ (不限于最大似然估计量)。证明 Rao- $Cram\acute{e}r$ -Frechet(RCF) 不等式

$$V[\hat{\theta}] \ge \frac{\left(1 + \frac{\partial b}{\partial \theta}\right)^2}{-E\left[\frac{\partial^2 \log L}{\partial \theta^2}\right]},\tag{6.4}$$

其中 $b = E[\hat{\theta}] - \theta$ 为估计量的偏置。可分以下几步证明:

(a) 首先, 证明 Cauchy-Schwarz 不等式, 即对任意两个随机变量 u 和 v,

$$V[u]V[v] \ge (\operatorname{cov}[u,v])^2, \tag{6.5}$$

其中 V[u] 和 V[v] 为方差, $\cos[u,v]$ 为协方差。利用 $\alpha u + v$ 的方差必定大于等于零 (对任意 α)。然后考虑特殊情形 $\alpha = (V[v]/V[u])^{1/2}$ 。

(b) 利用 Cauchy-Schwarz 不等式, 令

$$u = \hat{\theta},$$

$$v = \frac{\partial}{\partial \theta} \log L,$$
(6.6)

其中 $L = f_{\text{joint}}(\mathbf{x}; \theta)$ 为似然函数,也是 \mathbf{x} 的联合概率密度函数。代入 (6.5) ,表示出 $V[\hat{\theta}]$ 的下界。这里要注意的是,我们将似然函数看成 \mathbf{x} 的函数,即似然函数本身也是一个随机变量。

(c) 假设对 θ 的微分可以移到积分的外面,证明

$$E\left[\frac{\partial}{\partial \theta}\log L\right] = \int \cdots \int f_{\text{joint}}(\mathbf{x};\theta) \frac{\partial}{\partial \theta}\log f_{\text{joint}}(\mathbf{x};\theta) dx_1 \dots dx_n = 0.$$
 (6.7)

我们将推导的 RCF 不等式的形式依赖于该假设,这在感兴趣的问题中一般都成立。(只要积分的极限不依赖于 θ ,该假设总是成立的。)利用 (6.7) 与 (6.5)、(6.6),证明

$$V[\hat{\theta}] \ge \frac{\left(E\left[\hat{\theta}\frac{\partial \log L}{\partial \theta}\right]\right)^2}{E\left[\left(\frac{\partial \log L}{\partial \theta}\right)^2\right]}.$$
(6.8)

(d) 证明 (6.8) 的分子可以表示为

$$E\left[\hat{\theta}\frac{\partial \log L}{\partial \theta}\right] = 1 + \frac{\partial b}{\partial \theta},\tag{6.9}$$

分母可以表示为

$$E\left[\left(\frac{\partial \log L}{\partial \theta}\right)^{2}\right] = -E\left[\frac{\partial^{2} \log L}{\partial \theta^{2}}\right]. \tag{6.10}$$

再次假设对 θ 的微分与对 \mathbf{x} 的积分可以互换次序。将(c)和(d)的结果放到一起即可证明(6.4)。

习题 6.7. 写一段程序, 根据指数分布

$$f(t;\tau) = \frac{1}{\tau}e^{-t/\tau}, \quad t \ge 0,$$
 (6.11)

产生样本容量为n的样本 (t_1,\ldots,t_n) 。

- (a) 证明 τ 的最大似然估计量由样本平均 $\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$ 给出。产生 $1000 \land \tau = 1$, n = 10 的样本。对每个样本计算 $\hat{\tau}$ 并做直方图。比较 $\hat{\tau}$ 的均值与真值 $\tau = 1$ 。
- (b) 假设 t 的概率密度函数的参数为 $\lambda = 1/\tau$, 即

$$f(t;\lambda) = \lambda e^{-\lambda t}, \quad t \ge 0,$$
 (6.12)

证明 λ 的最大似然估计量为 $\hat{\lambda}=1/\sum_{i=1}^n t_i$ 。 修改 (a) 中的程序,加入 $\hat{\lambda}$ 的直方图。比较 $\hat{\lambda}$ 的均值与真值 $\lambda=1$ 。对 n=5,10,100 三种情况,分别数值计算偏置 $b=E[\hat{\lambda}]-\lambda$ 。

习题 6.8. 日内瓦的出租车牌照号是从 I 一直到总数目 N_{taxi} 。对牌照的 N 次观测得到观测数字 n_1, \ldots, n_N 。 (a) 构造出租车总数目的最大似然估计量。(这是最大似然估计量有偏并且不有效的常见例子。困难的根源在于数据的边界依赖于参数。)

(b) 提出出租车数目更好的估计量并给出均值和方差。

习题 **6.9.** 考虑 N 个独立的泊松变量 n_1,\ldots,n_N ,均值为 ν_1,\ldots,ν_N 。假设均值依赖于某可控变量 x

$$\nu(x) = \theta a(x),\tag{6.13}$$

其中 θ 为未知参数,a(x)为任意已知函数。 $N \wedge \nu_i$ 因而可以由 $\nu(x_i) = \theta a(x_i)$ 给出,其中假设 x_1, \ldots, x_N 已知。证明 θ 的最大似然估计量为

$$\hat{\theta} = \frac{\sum_{i=1}^{N} n_i}{\sum_{i=1}^{N} a(x_i)}.$$
(6.14)

证明 $\hat{\theta}$ 为无偏的,并且其方差有最小方差边界给出(参见习题6.6)。

习题 6.10. 习题 6.9 描述的状况的例子之一为 (反) 中微子-核子散射。根据夸克-部分子模型, 反应 $\nu N \to \mu^- X$ 和 $\bar{\nu} N \to \mu^+ X$ 的截面为

$$\sigma(\nu N \to \mu^{-} X) = \frac{G^{2} M E}{\pi} \left(\langle \langle q \rangle + \frac{1}{3} \langle \bar{q} \rangle \right) \equiv \theta_{\nu} E$$

$$\sigma(\bar{\nu} N \to \mu^{+} X) = \frac{G^{2} M E}{\pi} \left(\frac{1}{3} \langle \langle q \rangle + \langle \bar{q} \rangle \right) \equiv \theta_{\bar{\nu}} E$$
(6.15)

其中 E 为入射 (反) 中微子的能量, $M=0.938\,\mathrm{GeV}$ 为靶核子的质量, $G=1.16\times 10^{-6}\,\mathrm{GeV}^{-2}$ 为费米常数。(取自然单位制 c=1。)这里变量 x 对应于能量 E,式 (6.15) 右端的参数对应两个不同的参数 θ_{ν} 和 $\theta_{\bar{\nu}}$ 。 假设在 N 个不同能量值处收集了数据。每个能量点,事例数的期待值为

$$\nu_i = \sigma(E_i)\epsilon(E_i)\mathcal{L}_i,\tag{6.16}$$

其中 $\sigma(E_i)$ 为 (\mathcal{L}_i) 中微子在能量为 E_i 时的截面, \mathcal{L}_i 为积分亮度, $\epsilon(E_i)$ 为记录事例的概率(效率),效率通常为能量的函数。出于本习题的目的,我们假设能量 E_i ,积分亮度 \mathcal{L}_i 以及效率 $\epsilon(E_i)$ 精确已知没有不确定度。(再假设没有本底事例。)确定参数 θ_{ν} 和 $\theta_{\bar{\nu}}$ 的最大似然估计量,并据此求 $\langle q \rangle$ 和 $\langle \bar{q} \rangle$ 的估计量。在夸克-部分子模型中,它们分别对应夸克和反夸克携带的动量占核子动量的份额。确定除了正反夸克外其它粒子(即,胶子)携带的动量份额 $\langle g \rangle = 1 - \langle q \rangle - \langle \bar{q} \rangle$ 。

习题 6.11. 确定阿伏伽德罗常数的最早实验之一是基于布朗运动,实验装置如图6.1所示。Jean Perrin¹ 用该装置观测悬浮在水中的乳香 (一种抛光材料) 颗粒。

¹Jean Perrin, Mouvement brownien et réalité moléculaire, *Ann. Chimie et Physique*, 8[€] série, **18**(1909)1-114; *Les Atomes*, Flammarion, Paris, 1991(first edition, 1913); *Brownian Movement and Molecular Reality*, in Mary-Jo Nye, ed., *The Question of the Atom*, Tomash, Los Angeles, 1984.

图 6.1: Jean Perrin 的实验装置,用于观测悬浮在水中的粒子数作为高度的函数。

粒子为半径 $r=0.52~\mu m$ 的球状颗粒,密度为 $1.063~g/cm^3$,即,比水的密度大 $0.063~g/cm^3$ 。在显微镜中观测这些颗粒,只有大约 $1~\mu m$ 的一层在聚焦范围内,范围之外的粒子观测不到。通过调节显微镜的透镜,焦平面可以垂直移动。在 $4~\Lambda$ 不同高度 z 处拍摄了照片,(最低高度任意设为 z=0),并数出不同 z 处的粒子数 n(z)。数据如表 $6.1~\mu m$ 。

	n)	粒子数 n
0		1880
6		940
12		530
18		305

表 6.1: Perrin 观测的数据,乳剂中不同高度 z 处乳香粒子的数目。

水中球状乳香粒子的引力势能为

$$E = \frac{4}{3}\pi r^3 \Delta gz,\tag{6.17}$$

其中 $\Delta \rho = \rho_{\rm Aff} - \rho_{\rm A} = 0.063 \, {\rm g/cm^3}$ 为密度差, $g=980 \, {\rm cm/s^2}$ 为重力加速度。统计力学预言,粒子处在能量为 E 的态的概率正比于

$$P(E) \propto e^{-E/kT},\tag{6.18}$$

其中 k 为 Boltzmann 常数,T 为绝对温度。因此,粒子数作为高度的函数服从指数规律,其中在 z 处观测到的粒子数 n 可以看作均值为 $\nu(z)$ 的泊松变量。结合式 (6.17) 和 (6.18) 得到

$$\nu(z) = \nu_0 \exp\left(-\frac{4\pi r^3 \Delta \rho gz}{3kT}\right),\tag{6.19}$$

其中 ν_0 为z=0时粒子数的期待值。

(a) 写程序用最大似然法计算参数 k 和 ν_0 。利用表6.1中的数据按照泊松概率构造最大似然函数 (参见《统计数据分析》6.10 节),

$$\log L(\nu_0, k) = \sum_{i=1}^{N} (n_i \log \nu_i - \nu_i), \tag{6.20}$$

其中N=4为测量次数。温度取T=293K。

(b) 利用得到的 k, 通过下面的关系计算阿伏伽德罗常数

$$N_A = R/k, (6.21)$$

其中 R 为气体常数。 Perrin 计算时取值为 $R=8.32\times 10^7$ erg/mol K。

(c) 不求解对数似然函数 (6.20) 的最大值, 而是通过最小化

$$\chi_{\rm P}^2(\nu_0, k) = 2\sum_{i=1}^N \left(n_i \log \frac{n_i}{\nu_i} + \nu_i - n_i \right), \tag{6.22}$$

其中 $\nu_i=\nu(z_i)$ 通过式 (6.19) 依赖于 ν_0 和 k。利用 $\chi^2_{\rm P}$ 的值计算拟合优度 (参见《统计数据分析》 6.11 节)。 讨论 Perrin 测量 N_A 中可能的系统不确定度。

第七章 最小二乘法

图 7.1: Galileo 小球和斜坡实验的示意图。

d
1500
1340
1328
1172
800

表 7.1: Galileo 斜坡实验的 5 组数据。给定初始高度 h,d 为落地前的水平距离。单位为punti,1punto \simeq 1mm。

随机变量。(实际上我们不清楚 Galileo 如何估计测量误差,但是 1-2% 的误差是可以接受的。) 此外,我们知道如果 h=0,则水平距离 d 将为零,即,如果球从斜坡边缘出发,它将垂直落到地上。

(a) 考虑 h 和 d 的关系为如下形式

$$d = \alpha h \tag{7.1}$$

¹ 参见 Stillman Drake and Maclachlan, Galileo's discovery of the parabolic trajectory, *Scientific American* **232** (March 1975) 102; Stillman Drake, *Galileo at Work*, University of Chicago Press, Chicago (1978).

以及

$$d = \alpha h + \beta h^2. \tag{7.2}$$

求参数 α 和 β 的最小二乘估计量。对应于这两个假设的最小 χ^2 和 P-值分别为多少?

(b) 假设 d 和 h 的关系为如下形式

$$d = \alpha h^{\beta}. \tag{7.3}$$

写一段程序对 α 和 β 进行最小二乘拟合。注意这是参数的非线性函数,必须数值求解。

(c) Galileo 认为运动是水平分量和垂直分量的叠加,其中水平运动是匀速运动,垂直速度在斜坡的最低处为零,随后随时间线性增加。证明这将导致关系式

$$d = \alpha \sqrt{h}. (7.4)$$

求 α 的最小二乘估计量以及最小 χ^2 。该假设的P-值是多少?

习题 7.2. 考虑对直方图的最小二乘拟合。直方图对应区间 $i=1,\ldots,N$ 的事例数为 y_i , 理论预言值为

$$\lambda_i(\boldsymbol{\theta}) = n \int_{x_i^{\min}}^{x_i^{\max}} f(x; \boldsymbol{\theta}) dx, \tag{7.5}$$

其中 $f(x;\theta)$ 依赖于未知参数 θ 。假设用参数 ν 代替总事例数 n,并且该参数在最小化

$$\chi^2(\boldsymbol{\theta}, \nu) = \sum_{i=1}^{N} \frac{(y_i - \lambda_i(\boldsymbol{\theta}, \nu)^2)}{\sigma_i^2}$$
(7.6)

时与其它参数同时调整。

(a) 证明如果 $\sigma_i^2 = \lambda_i$ 则总事例数的估计量为

$$\hat{\nu}_{LS} = n + \frac{\chi_{\min}^2}{2} \tag{7.7}$$

(b) 证明如果 $\sigma_i^2 = y_i$ (修正后的最小二乘),则估计量为

$$\hat{\nu}_{MLS} = n - \chi_{\min}^2. \tag{7.8}$$

习题 7.3. 考虑对直方图的最小二乘拟合,第 i 个区间的事例数为 y_i , $i=1,\ldots,N$, 对应的期待值为 $\lambda_i(\boldsymbol{\theta})$ 。 假设总事例数 n 可以看作常数,于是 y_i 服从多项分布。

- (a) 求协方差矩阵 $V_{ij} = \text{cov}[y_i, y_j]$ 。为什么该矩阵的逆不存在?
- (b) 考虑只使用前 N-1 个区间进行拟合。求协方差矩阵的逆,并证明这等价于对所有 N 个区间进行拟合但不考虑相关性。

习题 7.4. 假设样本容量为 n,利用该样本得到 N 个量的测量值: y_1, \ldots, y_N 。这 N 个测量值将被用于最小二乘拟合以估计若干未知参数。如果这 N 个测量是相关的,在构造 χ^2 时需要用到协方差矩阵的逆 V^{-1} 。一般来说,我们先通过某种办法(比如蒙特卡罗计算)得到相关系数矩阵 $\rho_{ij} = V_{ij}/(\sigma_i\sigma_j)$ (其中 $i,j=1,2,\ldots,N$,然后再计算得到协方差矩阵的逆。

(a) 注意到对于有效估计量,协方差矩阵的逆正比于样本容量 n。证明:在此条件下,相关系数矩阵与样本容量 n 无关。

(b) 证明协方差矩阵的逆为

$$(V^{-1})_{ij} = \frac{(\rho^{-1})_{ij}}{\sigma_i \sigma_j} \tag{7.9}$$

【提示: 从下面等式出发

$$\delta_{ij} = \sum_{k} (V^{-1})_{ik} V_{kj} = \sum_{k} (V^{-1})_{ik} \rho_{kj} \sigma_k \sigma_j \tag{7.10}$$

对式 (7.10) 两边都乘以 ρ^{-1} ,并对适当的指标求和即可得到式 (7.9)。】

习题 7.5. 考虑随机变量 x 的两个部分重叠的样本,它们的样本容量分别为 n 和 m,共有部分的样本容量 为 c。假设已知 x 的方差 $V[x] = \sigma^2$ 。考虑样本均值

$$y_1 = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{7.11}$$

和

$$y_2 = \frac{1}{m} \sum_{i=1}^m x_i. (7.12)$$

(a) 证明协方差为

$$cov[y_1, y_2] = \frac{c\sigma^2}{nm}. (7.13)$$

(b) 利用 7.6 节的结果, 求 y_1 和 y_2 的加权平均和方差。

习题 7.6. 天文学家托勒密(Claudius Ptolemy)利用圆盘做过光折射的实验。他把圆盘的一半浸入水中,圆心正好位于水面处,如图 7.2 所示。大约公元 140 年,Ptolemy 对 8 组不同的入射角 θ_i 测量了相应的折射角

图 7.2: Ptolemy 用来研究光折射的设备。

 θ_r ,结果如表7.2所示 2 。本练习中,我们认为入射角已知且误差可以忽略,而把折射角看作标准差为 $\sigma=\frac{1}{2}^\circ$ 的高斯随机变量。(这是一个合理的假设,记录的角度精确到最邻近的半度。注意,我们可以将 θ_i 的误差吸收到 θ_r 的有效误差中。)

(a) 直到 17世纪才发现正确的折射定律,在此之前,通常的假设是

$$\theta_r = \alpha \theta_i, \tag{7.14}$$

²取自 Pedersen and Mogens Pihl, Early Physics and Astronomy: A Historical Introduction, MacDonald and Janes, London, 1974

θ_i	$\overline{ heta_r}$
10	8
20	$15\frac{1}{2}$
30	$22\frac{1}{2}$
40	29
50	35
60	$40\frac{1}{2}$
70	$45\frac{1}{2}$
80	50

表 7.2: 入射角和折射角(单位: 度)。

然而 Ptolemy 更喜欢用下面的形式

$$\theta_r = \alpha \theta_i - \beta \theta_i^2. \tag{7.15}$$

对这两种不同的假设,求参数的最小二乘估计量,并计算最小 χ^2 值。评论一下两个假设的拟合优度。是否可以相信所有的数据都是从实际测量得来的? 3

(b) 1621 年 Snell 发现了折射定律

$$\theta_r = \sin^{-1}\left(\frac{\sin\theta_i}{r}\right),\tag{7.16}$$

其中 $r=n_r/n_i$ 为两种介质的折射率之比。求r的最小二乘估计量并计算出最小 χ^2 值。评价对 θ_r 作 $\sigma=\frac{1}{2}^\circ$ 假设的合理性。

习题 7.7. 重新考虑练习 6.9: N 个独立的泊松变量 $\mathbf{n} = (n_1, \dots, n_N)$, 均值为 $\boldsymbol{\nu} = (\mu_1, \dots, \nu_N)$, 其中均值与某控制变量 x 有关,

$$\nu(x) = \theta a(x). \tag{7.17}$$

(a) 首先考虑最小二乘方法 (LS), χ^2 的分母使用 $\sigma_i^2 = \nu_i$ 。证明 θ 的最小二乘估计量为

$$\hat{\theta} = \left(\frac{\sum_{i=1}^{N} \frac{n_i^2}{a(x_i)}}{\sum_{i=1}^{N} a(x_i)}\right)^{1/2}.$$
(7.18)

通过对 $\hat{\theta}(\mathbf{n})$ 在 ν 处进行泰勒展开至第二阶,计算期待值,证明 (7.18) 的偏置为

$$b = \frac{N-1}{2\sum_{i=1}^{N} a(x_i)} + O(E[(n_i - \nu_i)^3]). \tag{7.19}$$

(利用独立泊松变量的协方差 $cov[n_i, n_j] = \delta_{ij}\nu_j$.)

(b) 取 χ^2 的分母为 $\sigma_i^2 = n_i$,即把观测值作为方差,用修正的最小二乘法 (MLS) 重复 (a) 中的步骤。证明 θ 的最小二乘估计量为

$$\hat{\theta} = \frac{\sum_{i=1}^{N} a(x_i)}{\sum_{i=1}^{N} \frac{a(x_i)^2}{x_i^2}},\tag{7.20}$$

并且偏置为

$$b = -\frac{N-1}{\sum_{i=1}^{N} a(x_i)} + O(E[(n_i - \nu_i)^3]).$$
 (7.21)

将(a)和(b)得到的偏置与习题7.2进行比较。

³ 参见 R. Feynman, R. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. I, Addison-Wesley, Menlo Park, 1963, Section 26-2.

(c) 利用误差传递,对LS和MLS两种情况估计 $\hat{\theta}$ 的方差。

注意,由于习题 (6.9) 已经证明了 θ 的最大似然估计量是无偏的并且方差最小,这里并不推荐最小二乘 (LS) 和修正的最小二乘 (MLS) 估计量。然而,对于足够大的数据样本,三个方法是类似的,参见习题 (7.8)。

习题 7.8. 重新考虑 Perrin 关于乳香粒子作为高度的函数 (习题 6.11)。通过最小化

$$\chi^{2}(k,\nu_{0}) = \sum_{i=1}^{N} \frac{(n_{i} - \nu_{i}(k,\nu_{0}))^{2}}{\sigma_{i}^{2}},$$
(7.22)

求玻尔兹曼常数 k(或者等价于阿伏伽德罗常数 $N_A=R/k$) 和系数 ν_0 的最小二乘估计量。

- (a) 取 n_i 的标准差 σ_i 为 $\sqrt{\nu_i}$ (通常的最小二乘法)。
- (b) 取 σ_i 为 $\sqrt{n_i}$ (修正的最小二乘法)。
- 将 (a) 和 (b) 得到的估计量与习题 (6.11) 中最大似然估计量进行比较。

第八章 矩方法

习题 8.1. 考虑服从高斯分布的随机变量 x,均值 μ 和方差 σ^2 未知,并假设样本为 x_1,\ldots,x_n 。

(a) 利用矩方法构造 μ 和 σ^2 的估计量。利用函数 $a_1=x$, $a_2=x^2$, 使得期待值 $E[a_i(x)]$ 对应于 x 的一阶和二阶代数矩。

(b) 计算 (a) 中得到的估计量 $\hat{\mu}$ 与 $\hat{\sigma}^2$ 的期待值。这两个估计量是否是无偏的?

习题 8.2. 考虑粒子反应中产生的 ρ^0 介子衰变为两个带电 π 介子 $(\pi^+\pi^-)$ 。衰变角定义为,在 $\pi^+\pi^-$ 质心系中 π^+ 运动方向与 ρ 的原初方向的夹角,见图 (8.1)。由于 ρ^0 的自旋为 1, π 介子的自旋为 0,可以证明 $\cos\theta$

图 8.1: $\rho^0 \to \pi^+\pi^-$ 中衰变角的定义。

的分布具有如下形式

$$f(\cos\theta;\eta) = \frac{1}{2}(1-\eta) + \frac{3}{2}\eta\cos^2\theta, \tag{8.1}$$

其中自旋排列参数 η 的取值范围为 $-\frac{1}{2} \le \eta \le 1$ 。

(a) 假设某反应产生的 ρ^0 中,测量到 n 个 $\cos\theta$ 值。利用矩方法,取 $a=x^2$,构造自旋排列参数的估计量 $\hat{\eta}$ 。为什么不能用 a=x 构造估计量?

(b) 计算 $\hat{\eta}$ 的期待值和方差。

第九章 统计误差、置信区间和极限

习题 9.1. 假设估计量 $\hat{\theta}$ 服从高斯分布,高斯分布的参数分别为 $\hat{\theta}$ 的真值 θ 和标准偏差 $\sigma_{\hat{\theta}}$ 。假设 $\sigma_{\hat{\theta}}$ 已知。

- (a) 画出定义置信带的函数 $u_{\alpha}(\theta)$ 和 $v_{\beta}(\theta)$ (参见 Statistical Data Analysis 第 9.2 节)。
- (b) 证明置信水平为 $1-\gamma$ 时参数 θ 的中心置信区间 由下式给出

$$[\hat{\theta} - \sigma_{\hat{\theta}}\phi^{-1}(1 - \gamma/2), \hat{\theta} + \sigma_{\hat{\theta}}\phi^{-1}(1 - \gamma/2)], \tag{9.1}$$

其中 ϕ^{-1} 是标准高斯分布的分位数。

习题 9.2. 随机变量 x 服从均值为 ξ 的指数分布,考虑对 x 的 n 次观测。参数 ξ 的最大似然估计量 (见 *Statistical Data Analysis* (6.6) 式) 由下式给出

$$\hat{\xi} = \frac{1}{n} \sum_{i=1}^{n} x_i, \tag{9.2}$$

并且 $\hat{\xi}$ 的概率密度函数(参见 Statistical Data Analysis (10.25) 式)为

$$g(\hat{\xi};\xi) = \frac{n^n}{(n-1)!} \frac{\hat{\xi}^{n-1}}{\xi^n} e^{-n\hat{\xi}/\xi}.$$
 (9.3)

(a) 证明: 定义置信带的曲线 $u_{\alpha}(\xi)$ 和 $v_{\beta}(\xi)$ 为

$$u_{\alpha}(\xi) = \frac{\xi}{2n} F_{\chi^{2}}^{-1} (1 - \alpha; 2n),$$

$$v_{\beta}(\xi) = \frac{\xi}{2n} F_{\chi^{2}}^{-1} (\beta; 2n),$$
(9.4)

其中 $F_{\chi^2}^{-1}$ 为 χ^2 分布的分位数。根据习题2.6, χ^2 分布的累积分布可以与不完全伽马函数P(x,n)联系起来:

$$F_{\chi^2}(2x;2n) = P(x,n) \equiv \frac{1}{\Gamma(n)} \int_0^x e^{-t} t^{n-1} dt.$$
 (9.5)

取 $\alpha = \beta = 0.159$, n = 5, 画出 $u_{\alpha}(\xi)$ 和 $v_{\beta}(\xi)$ 。 $(\chi^2$ 分布的分位数可以从标准分布表中查出,或者在 ROOT 中调用 TMath::ChisquareQuantile(Double_t p, Double_t ndf) 函数得到。)

(b) 求出置信区间 [a,b] 作为估计值 $\hat{\xi}$ 、样本容量 n 以及置信水平 α 和 β 的函数。假设估计值为 $\hat{\xi}=1.0$,在 $u_{\alpha}(\xi)$ 和 $v_{\beta}(\xi)$ 的图上画出该估计量的值。取 n=5, $\alpha=\beta=0.159$,计算 a 和 b。将计算结果与估计值加减一倍标准差得到的区间进行比较。

习题 9.3. 证明二项分布的参数 p 的上限和下限为

$$p_{lo} = \frac{nF_F^{-1}[\alpha; 2n, 2(N-n+1)]}{N-n+1+nF_F^{-1}[\alpha; 2n, 2(N-n+1)]}$$

$$p_{up} = \frac{(n+1)F_F^{-1}[1-\beta; 2(n+1), 2(N-n)]}{(N-n)+(n+1)F_F^{-1}[1-\beta; 2(n+1), 2(N-n)]}.$$
(9.6)

其中上下限的置信水平分别为 $1-\alpha$ 和 $1-\beta$, n为N次试验中成功的次数, F_F^{-1} 为F分布的分位数, 由F分布定义:

$$f(x; n_1, n_2) = \left(\frac{n_1}{n_2}\right)^{n_1/2} \frac{\Gamma(\frac{1}{2}(n_1 + n_2))}{\Gamma(\frac{1}{2}n_1)\Gamma(\frac{1}{2}n_2)} x^{n_1/2 - 1} \left(1 + \frac{n_1}{n_2}x\right)^{-(n_1 + n_2)/2}, \tag{9.7}$$

其中x>0,参数 n_1 和 n_2 为整数 (自由度)。利用二项分布累积分布函数与自由度为 $n_1=2(n+1)$ 和 $n_2=2(N-n)$ 的累积分布函数 $F_F(x)$ 的关系¹

$$\sum_{k=0}^{n} \frac{N!}{k!(N-k)!} p^{k} (1-p)^{N-k} = 1 - F_{F} \left[\frac{(N-n)p}{(n+1)(1-p)}; 2(n+1), 2(N-n) \right]. \tag{9.8}$$

F分布的分位数可以从标准分布表中查得,或者调用ROOT中的函数计算。

习题 9.4. 在 CERN 的 Gargamelle 气室中进行了反中微子-核子散射实验。选择的事例是只产生强子的事例 (通过中性流过程 $\overline{\nu}_{\mu}N \to \overline{\nu}_{\mu}X$),或者是产生强子和一个 μ 子的事例 (通过带电流过程 $\overline{\nu}_{\mu}N \to \mu^{+}X$)。从 212 个事例样本中,64 个事例归类为中性流 (NC) 过程,148 个归类为带电流 (CC) 过程。估计事例为中性流 (NC) 的概率,并求出 68.3% 的中心置信区间。求 NC 与 CC 过程概率之比的估计量和置信区间。²

习题 9.5. 在研究粒子碰撞的实验中,选择出来 10 个某种类型的事例,比如说某个量x 具有较高值的事例。 这 10 个高 x 值的事例中,发现有 2 个事例包含 μ 子。

- (a) 高 x 值事例中包含 μ 子的事例数目服从二项分布, 求参数 p 的 68.3% 中心置信区间。将结果表示为 $p = \hat{p}_{-d}^{+c}$, 其中 \hat{p} 为 p 的最大似然估计, $[\hat{p} c, \hat{p} + d]$ 为置信区间。
- (b) 将 (a) 中的区间与 $\hat{p} \pm \hat{\sigma}_{\hat{p}}$ 进行比较,其中 $\hat{\sigma}_{\hat{p}}$ 为 \hat{p} 的标准偏差的估计量。
- (c) 经常犯的错误是将高x值的事例数10当作随机变量,并将其方差引入 \hat{p} 的误差中(例如通过误差传递)。 为什么这种方法是不正确的?

习题 9.6. 假设为了产生习题 (9.5) 中的事例,收集的总数据对应于积分亮度为 $L=1\,\mathrm{pb}^{-1}$ (误差可以忽略)。 产生的给定类型事例总数可以看作均值为 $\nu=\sigma L$ 的泊松随机变量 n,其中 σ 为产生截面。(为什么是泊松分布?)

- (a) 对于高x 值事例以及高x 值的 μ 子事例,假设观测到的事例数分别为 $n_x=10$ 和 $n_{x\mu}=2$,求事例数期 待值 ν_x 和 $\nu_{x\mu}$ 的 68.3% 中心置信区间。对应的产生截面 σ_x 和 $\sigma_{x\mu}$ 的置信区间为多少?
- (b) 将(a) 中得到的置信区间与通过加减一倍标准偏差得到的区间进行比较。
- (c) 假设另外一个实验的积分亮度为 $L'=100\,\mathrm{pb}^{-1}$,观测到 n'_x 个高 x 值的事例。但是这个实验不能鉴别 μ 子。利用数据 n_x , $n_{x\mu}$ 和 n'_x 构造参数 σ_x 和 $\sigma_{x\mu}/\sigma_x$ 的对数似然函数。证明 p 的最大似然估计量与 n'_x 无关。这是否说明第二个实验的结果对 p 的估计没有影响?
- (d) 假设最初的实验没有测量高 x 值的事例数,只是测得了包含 μ 子的高 x 值事例数。利用结果 $n_{x\mu}=2$ 和 n'_x ,构造 σ_x 和 p 的对数似然函数,并求出最大似然估计量。利用误差传递估计 \hat{p} 的标准偏差,并比较区间 $\hat{p}\pm\sigma_{\hat{p}}$ 与习题 (9.5) 中 (a) 和 (b) 得到的区间。选作:这种情况下,如何构造 p 的置信区间?

习题 9.7. 相互作用中产生的某粒子以相对于 z 的某一角度发射出来,如图 9.1 所示。探测器放在距离相互作用顶点为 d 处测量粒子垂直于 z 方向的位置 x。角度 θ 定义为 z 轴与粒子径迹在 (x,z) 平面上投影的夹角。假设测量值 x 可以看做以真值为中心值,标准偏差为 σ_x 的高斯变量。

¹利用 F 分布计算二项分布的置信区间是 A. Hald 提出来的,见 Statistical Theory with Engineering Applications, John Wiley, New York, 1952.

²实际实验中还考虑了小本底的修正,参见 F.J. Hasert et al., Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment. *Phys. Lett.* **46B**(1973) 138.

图 9.1: 粒子径迹投影到 (x,z) 平面上的散射角 θ 的定义。

(a) 求 $\cos \theta$ 置信水平为 $1-\gamma$ 的中心置信区间。

(b) 取 $d=1\mathrm{m}$, $\sigma_x=1\,\mathrm{mm}$, 并假设测量值为 $x=2.0\,\mathrm{mm}$ 。求 $\cos\theta$ 置信水平分别为 68.3% 和 95% 的中心 置信区间。

第十章 特征函数

习题 10.1. 证明高斯分布

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$
(10.1)

的特征函数为

$$\phi(k) = \exp(i\mu k - \frac{1}{2}\sigma^2 k^2). \tag{10.2}$$

习题 10.2. 证明指数分布

$$f(x;\xi) = \frac{1}{\xi} e^{-x/\xi}$$
 (10.3)

的特征函数为

$$\phi(k) = \frac{1}{1 - ik\xi}.\tag{10.4}$$

习题 10.3. 证明自由度为 n 的 χ^2 分布

$$f(z;n) = \frac{1}{2^{n/2}\Gamma(n/2)} z^{n/2-1} e^{-z/2}$$
(10.5)

的特征函数为

$$\phi(k) = (1 - 2ik)^{-n/2}. (10.6)$$

提示:证明中需要用到伽马函数,定义为

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt. \tag{10.7}$$

习题 10.4. 假定随机变量 x_1, \ldots, x_n 相互独立,且都服从均值为 μ 、方差为 σ^2 的高斯分布。第 σ^2 5 章和第 σ^2 6 章和第 σ^2 7 章

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{10.8}$$

作为均值 μ 的估计量。

- (a) 求样本均值的特征函数。
- (b) 利用特征函数证明 \overline{x} 服从高斯分布,并求其均值和方差。

习题 10.5. 利用特征函数证明高斯分布的前 4 阶代数矩为

$$E[x] = \mu$$

$$E[x^{2}] = \mu^{2} + \sigma^{2}$$

$$E[x^{3}] = \mu^{3} + 3\mu\sigma^{2}$$

$$E[x^{4}] = 3(\mu^{2} + \sigma^{2})^{2} - 2\mu^{4}.$$
(10.9)

习题 10.6.

- (a) 利用特征函数证明自由度为 n 的 χ^2 分布的均值和方差分别为 n 和 2n。
- (b) 假设 z 服从自由度为 n 的 χ^2 分布。证明: 在大 n 极限下, χ^2 分布变为均值为 $\mu=n$ 、方差为 $\sigma^2=2n$ 的高斯分布。提示: 证明中需要定义变量

$$y = \frac{z - n}{\sqrt{2n}},\tag{10.10}$$

y 的均值为零,标准差为 I。证明 y 的特征函数为

$$\phi_y(k) = e^{-ik\sqrt{n/2}}\phi_z\left(\frac{k}{\sqrt{2n}}\right). \tag{10.11}$$

将 $\phi_{u}(k)$ 的对数展开,并只保留大n极限下不消失的项,然后再变换回变量z得到要证明的结果。

习题 10.7. 假设 n 个相互独立的随机变量 x_1, \ldots, x_n 都服从标准高斯分布,即对所有 $i=1,\ldots,n$,

$$\varphi(x_i) = \frac{1}{\sqrt{2\pi}} e^{-x_i^2/2}.$$
 (10.12)

考虑下面这个变量的性质:

$$y = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}.$$
 (10.13)

(a) 首先只考虑某一个 x_i 。通过变量变换,证明 $u=x_i^2$ 的概率密度函数为

$$f(u) = \frac{1}{\sqrt{2\pi u}}e^{-u/2}. (10.14)$$

这是自由度为 I 的 χ^2 分布。

(b) 证明u 的特征函数为

$$\phi_u(k) = \frac{1}{\sqrt{1 - 2ik}}. (10.15)$$

(c) 利用相加定理, 求下面变量的特征函数

$$v = \sum_{i=1}^{n} x_i^2. {(10.16)}$$

(d) 利用变量变换,证明 $y = (\sum_{i=1}^{n} x_i^2)^{1/2}$ 的概率密度函数为

$$h(y) = \frac{1}{2^{n/2 - 1} \Gamma(n/2)} y^{n-1} e^{-y^2/2}.$$
(10.17)

- (e) 写出 n=3 时的概率密度函数。这是 Maxwell-Boltzmann 分布。假设气体中分子的速度分量 v_x , v_y 和 v_z 都服从均值为零、标准差为 σ 的高斯分布。写出分子速度 $v=(v_x^2+v_y^2+v_z^2)^{1/2}$ 的概率密度函数。
- (f) 写出 n=1 时的概率密度函数。即、如果 x 服从标准高斯分布、则 y=|x| 的概率密度函数是什么?

习题 10.8. 考虑服从柯西分布的随机变量 x,

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}. (10.18)$$

(a) 证明其特征函数为

$$\phi(k) = e^{-|k|}. (10.19)$$

(利用留数定理, k>0 时选取上半平面的路径, k<0 时选取下半平面的路径。)

(b) 考虑柯西随机变量 x 的某个样本,样本容量为 n。利用 (a) 中得到的特征函数并应用相加定理,证明样本均值 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 也服从柯西分布。这是一个特例,即 \overline{x} 的概率密度函数不随样本容量的增加而改变,这与柯西分布的各阶矩不存在有关。

习题 10.9. 狄拉克 δ 函数

$$f(x;\mu) = \delta(x-\mu) \tag{10.20}$$

定义为

$$\delta(x - \mu) = 0, x \neq \mu,$$

$$\int_{-\infty}^{\infty} \delta(x - \mu) dx = 1.$$
(10.21)

即, $\delta(x-\mu)$ 在 $x=\mu$ 处为无限尖锐的峰,但在其它地方都等于零。求 $\delta(x-\mu)$ 的特征函数,并据此得到 δ 函数的积分表示。

第十一章 解谱法

习题 11.1. 考虑图 9.1 的探测器设备。假设x 的分辨率函数服从高斯分布

$$s(x|x') = \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left[-\frac{(x-x')^2}{2\sigma_x^2}\right].$$
 (11.1)

求 $\cos \theta = a/\sqrt{x^2 + a^2}$ 的分辨率函数。

习题 11.2. 对等区间宽度的直方图 $\mu = (\mu_1, \dots, \mu_M)$,考虑 k=I 的 Tikhonov 正规化函数,

$$S(\boldsymbol{\mu}) = -\sum_{i=1}^{M-1} (\mu_i - \mu_{i+1})^2.$$
 (11.2)

求 $M \times M$ 维矩阵G, 使得 $S(\mu)$ 可以表示成以下形式

$$S(\mu) = -\sum_{i,j=1}^{M} G_{ij} \mu_i \mu_j = -\mu^T G \mu.$$
 (11.3)

习题 11.3. 考虑期待值为 $\mu=(\mu_1,\ldots,\mu_M)$ 的直方图,对应的概率为 $\mathbf{p}=\mu/\mu_{\mathrm{tot}}$,其中 $\mu_{\mathrm{tot}}=\sum_{i=1}^M \mu_i$ 。

(a) 证明 Shannon 熵

$$H(\mathbf{p}) = -\sum_{i=1}^{M} p_i \log p_i,$$
(11.4)

在所有区间 i 的 $p_i=1/M$ 时最大。(利用 Lagrange 乘子法引入限制条件 $\sum_{i=1}^M p_i=1$ 。)

(b) 证明交叉熵

$$K(\mathbf{p}; \mathbf{q}) = -\sum_{i=1}^{M} p_i \log \frac{p_i}{Mq_i},$$
(11.5)

在概率p等于参考分布q时最大。

习题 11.4. 考虑观测到的直方图 $\mathbf{n}=(n_1,\ldots,n_N)$,对应的期待值 $\boldsymbol{\nu}=(\nu_1,\ldots,\nu_N)$ 与真值直方图 $\boldsymbol{\mu}=(\mu_1,\ldots,\mu_N)$ 的关系为 $\boldsymbol{\nu}=R\boldsymbol{\mu}$ 。假设协方差矩阵 V 和响应矩阵 R 已知,并且直方图中没有本底。

(a) 通过最大化 $\Phi(\mu)$ 构造 μ 的估计量

$$\Phi(\boldsymbol{\mu}) = -\frac{\alpha}{2}\chi^2(\boldsymbol{\mu}) + S(\boldsymbol{\mu}) \tag{11.6}$$

$$= -\frac{\alpha}{2} (\mathbf{n} - R\boldsymbol{\mu})^T V^{-1} (\mathbf{n} - R\boldsymbol{\mu}) - \boldsymbol{\mu}^T G \boldsymbol{\mu}, \tag{11.7}$$

其中 α 为正规化参数, $M \times M$ 对称矩阵 G 由已知常数确定 (参考 Statistical Data Analysis 中 11.5.1 节)。证明估计量 $\hat{\mu}$ 为

$$\hat{\boldsymbol{\mu}} = (\alpha R^T V^{-1} R + 2G)^{-1} \alpha R^T V^{-1} \mathbf{n}, \tag{11.8}$$

并求协方差矩阵 $U_{ij} = \text{cov}[\hat{\mu}_i, \hat{\mu}_j]$.

(b) 考虑限制条件 $\nu_{\text{tot}} = \sum_{i=1}^{N} \nu_i = \sum_{i=1}^{N} \sum_{j=1}^{M} R_{ij} \mu_j$ 等于总观测事例数 $n_{\text{tot}} = \sum_{i=1}^{N} n_i$,通过对参数 μ 和 Lagrange 乘子 λ 最大化 $\varphi(\mu)$ 求得结果

$$\varphi(\boldsymbol{\mu}) = -\frac{\alpha}{2} (\mathbf{n} - R\boldsymbol{\mu})^T V^{-1} (\mathbf{n} - R\boldsymbol{\mu}) - \boldsymbol{\mu}^T G \boldsymbol{\mu} + \lambda (n_{\text{tot}} - \nu_{\text{tot}}).$$
(11.9)

求估计量 $\hat{\mu}$ 及其协方差。

(c) 利用 Statistical Data Analysis 中方程 (11.76),对 (a) 和 (b) 两种情况分别构造偏置 $\mathbf{b}=E[\hat{\boldsymbol{\mu}}]-\boldsymbol{\mu}$ 的估计量 $\hat{\mathbf{b}}$ 。