

https://www.youtube.com/watch?v=flzGjnJLyS0

Lecture 9: Logistic Regression & Deep Neural Networks

Haiping Lu's last lecture @ MLAI19

Reproducibility

https://www.ucl.ac.uk/pals/research/experimental-psychology/wp-content/uploads/2016/03/reproducibility-small-496x300.jpg

Reproducibility

PCA: Eigenvalue → Variance

• First PC: maximise the variance in the projected space, i.e., the variance of $y = \mathbf{u}^{\top} \mathbf{x}$

$$\operatorname{var}(y) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - \mu_y \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}^{\top} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} \right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{\mathbf{x}} \right)^{\top} \mathbf{u} = \mathbf{u}^{\top} \mathbf{S} \mathbf{u}$$

• To learn/estimate the *projection vector* **u**, we incorporate the unit norm constraint and take derivative w.r.t. **u**

$$L(\mathbf{u}, \lambda) = \mathbf{u}^{\top} \mathbf{S} \mathbf{u} + \lambda \left(1 - \mathbf{u}^{\top} \mathbf{u} \right)$$
$$dL(\mathbf{u}, \lambda) / d\mathbf{u} \implies \mathbf{S} \mathbf{u} = \lambda \mathbf{u}$$

• Question: many solutions (eigen-pairs), which to choose?

$$\operatorname{var}(y) = \mathbf{u}^{\top} \mathbf{S} \mathbf{u} = \lambda \mathbf{u}^{\top} \mathbf{u} = \lambda$$

PCA: Max Variance $\leftarrow \rightarrow$ Min MSE

Consider the first PC: Here the projection vector is denoted as **v**. We assume **zero-mean**, i.e., *centered* data

Maximum Variance Direction: 1st PC = a vector **v** such that projection on it captures max variance in the data

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

Minimum Reconstruction Error: 1st PC = a vector **v** such that projection on it yields minimum MSE reconstruction

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$

 $blue^2 + green^2 = black^2$

black² is fixed (it's just the data)

So, maximizing blue² is equivalent to minimizing green²

Week 9 Contents / Objectives

Part A

- Motivation for Logistic Regression
- Logistic Regression

Part B

- Neural Networks
- Convolutional Neural Networks Unboxing

Week 9 Contents / Objectives

Part A

- Motivation for Logistic Regression
- Logistic Regression

Part B

- Neural Networks
- Convolutional Neural Networks Unboxing

The Question

Click-Through Rate (CTR) Prediction

- Estimating click probabilities: What is the probability that user *i* will click on ad *j*
 - Not important just for ads:
 - Optimize search results
 - Suggest news articles
 - Recommend products
- Logistic regression is used by many internet companies, making lots of money for them
 - E.g., Facebook ad matching

A Binary Classification Problem

Table 1: Age and signs of coronary heart disease (CD)

Age	CD	Age	CD	Age	CD
22	0	40	0	54	0
23	0	41	1	55	1
24	0	46	0	58	1
27	0	47	0	60	1
28	0	48	0	60	0
30	0	49	1	62	1
30	0	49	0	65	1
32	0	50	1	67	1
33	0	51	0	71	1
35	1	51	1	77	1
38	0	52	0	81	1

Prediction question: a particular age \rightarrow CD Linear regression?

Dot-plot: Data from Table 1

Transform the Data >> Probability

Table 2 Prevalence (%) of signs of CD according to age group

	# in group	Diseased		
Age group		#	%	
20 - 29	5	0	0	
30 - 39	6	1	17	
40 - 49	7	2	29	
50 - 59	7	4	57	
60 - 69	5	4	80	
70 - 79	2	2	100	
80 - 89	1	1	100	
	-		•	

Dot-plot: Data from Table 2

Logistic Function

Week 9 Contents / Objectives

Part A

- Motivation for Logistic Regression
- •Logistic Regression

Part B

- Neural Networks
- Convolutional Neural Networks Unboxing

Probabilistic Classification

- Training classifiers: estimating f: $X \rightarrow Y$, or P(Y|X)
- **Discriminative** classifiers
 - Assume some functional form for P(Y|X)
 - Estimate parameters of P(Y|X) directly from training data
- Generative classifiers
 - Assume some functional form for P(X|Y), P(X)
 - Estimate parameters of P(X|Y), P(X) directly from training data
 - Use Bayes rule to calculate $P(Y|X=x_i)$

Log Odds

• Odds: the ratio of π , the probability of a positive outcome $P(y=1/\mathbf{x})$, to $(1-\pi)$, the probability of a negative outcome $P(y=0/\mathbf{x})$.

 $\frac{1}{1-\pi}$

• Probability: [0, 1]

• \rightarrow Odds: $[0, \infty]$

• \rightarrow Log odds: $[-\infty, \infty]$

$$\log \frac{\pi}{1-\pi}$$

Logit Function \rightarrow Logistic Function

• Linear **regression** on **logit** function = logistic *regression*

$$\operatorname{logit}(\pi) = \log \frac{\pi}{1 - \pi} = \mathbf{w}^{\top} \mathbf{x} = w_0 + w_1 x_1 + \cdots$$

• More generally, we can use basis function as

$$\operatorname{logit}(\pi) = \log \frac{\pi}{1 - \pi} = \mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}) = w_0 + w_1 \boldsymbol{\phi}(x_1) + \cdots$$

In the following, we use the simpler first form above

• Logistic function (sigmoid)= inverse of logit

$$P(y = 1|\mathbf{x}) = \text{logit}^{-1}(\mathbf{w}^{\top}\mathbf{x}) = \text{logistic}(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\top}\mathbf{x}}}$$
• Exercise: verify the odds using the above equation

18

How to Estimate w? (Learning algo)

- Assumption: Conditional independence of data
- → Likelihood:

$$P(\mathbf{y}|\mathbf{X}) = \prod_{i=1}^{n} P(y_i|\mathbf{x}_i)$$

- Bernoulli distribution for binary classification
 - $P(y=1) = \pi$; $P(y=0) = 1 \pi$ (coin flipping)
 - Write the above as a single equation: using y as a switch

$$P(y) = \pi^y (1 - \pi)^{(1-y)}$$
 $\pi_i = P(y_i = 1 | \mathbf{x}_i)$

• Log likelihood (*cross entropy*)

$$\log P(\mathbf{y}|\mathbf{X}) = \sum_{i=1}^{n} \log P(y_i|\mathbf{x}_i) = \sum_{i=1}^{n} y_i \log \pi_i + \sum_{i=1}^{n} (1 - y_i) \log(1 - \pi_i)$$

- MLE: no closed form solution
 - → SGD on negative log likelihood

Summary on Logistic Regression

• **Discriminative** classifiers directly model the likelihood P(Y|X)

• Logistic regression is a simple **linear** classifier, that retains a **probabilistic** semantics (see lab)

• Parameters in LR are learned by **iterative** optimization (e.g. SGD), no closed-form solution

Week 9 Contents / Objectives

Part A

- Motivation for Logistic Regression
- Logistic Regression

Part B

- Neural Networks
- Convolutional Neural Networks Unboxing

ImageNet I Fancy feature

extraction

Logistic Regression!

CNN for Image Class

Input

(pixels)

image

Dataset: 1.2 million /representation 1000 cl: Softmax: sigmoid learning evsky, S

for multiclass

Hinton, 2011) → 17.5% error

1000-way softmax

Five convolutional layers (w/max-pooling)

Three fully connected layers

Pigeon? The Neuron Metaphor

- Neurons
 - accept information from multiple inputs,
 - transmit information to other neurons.
- Multiply inputs by weights along edges
- Apply some function to the set of inputs at each node

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$
 gradient!

- 2. Choose each of tl
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient) $oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$

Decision **Functions**

Linear Regression

Linear Regression Neural Networks

 Question: What happens when we arrange linear neurons in a multilayer network?

Linear Regression Neural Networks

- Nothing special happens.
 - The product of two linear transformations is itself a linear transformation. D = N-1

Decision Functions

Logistic Regression

Neural Network Model

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

"Combined logistic models"

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

Not really, no target for hidden units...

Independent variables

Weights

HiddenL ayer

Weights

Dependent variable

Jargon Pseudo-Correspondence

- Independent variable = input variable
- Dependent variable = output variable
- Coefficients = "weights"
- Estimates = "targets"

Logistic Regression Model (the sigmoid unit)

Neural Network

Decision Boundary

- o hidden layers: linear classifier
 - Hyperplanes

Decision Boundary

- 1 hidden layer
 - Boundary of convex region (open or closed)

Decision Boundary

2 hidden layers

Combinations of convex regions

Deeper Networks

Different Levels of Abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Pixels

Different Levels of Abstraction

Face Recognition:

- Deep Network

 can build up
 increasingly
 higher levels of
 abstraction
- Lines, parts, regions

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Different Levels of Abstraction

Week 9 Contents / Objectives

Part A

- Motivation for Logistic Regression
- Logistic Regression

Part B

- Neural Networks
- Convolutional Neural Networks Unboxing

Convolutional Neural Networks

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Tensor: Preserve spatial structure

• 32x32x3 image

Filters always extend the full depth of the input volume

• 5x5x3 filter

- **Convolve** the filter with the image
- i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Convolution Operation

7

7x7 input (spatially) assume 3x3 filter

7

Convolution Operation

7

7x7 input (spatially) assume 3x3 filter

7

Convolution Operation

After three more sliding and dot products

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

Question: 7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Convolution – Size of output

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

Zero Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 \Rightarrow zero pad with 1

F = 5 \Rightarrow zero pad with 2

F = 7 \Rightarrow zero pad with 3
```

Convolution Shrinks

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Exercises

- Input volume: 32x32x3 10 5x5 filters with stride
 1, pad 2
 - Output volume size?

•

Number of parameters in this layer?

•

Pooling Layer: Downsampling

- makes the representations smaller and more manageable -> dimensionality reduction
- operates over each activation map independently:

Max Pooling

Single depth slice

•					
X	\	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4
					—

max pool with 2x2 filters and stride 2

Lab 9 CNN

```
init (self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) #3: #
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
                                     • Initial Image Size: 3 \times 32 \times 32
self.fc3 = nn.Linear(84, 10)
                                     • After conv1 : 6 \times 28 \times 28 (32)
forward(self, x):

 After Pooling: 6 × 14 × 14 (image)

x = self.pool(F.relu(self.conv1(x)
x = self.pool(F.relu(self.conv2(x) • After conv2: 16 \times 10 \times 10 (14)
x = x.view(-1, 16 * 5 * 5)

    After Pooling: 16 × 5 × 5 (halve

x = F.relu(self.fc1(x))

    After fc1: 120

x = F.relu(self.fc2(x))

    After fc2:84

x = self.fc3(x)
return x

 After fc3: 10 (= number of class)
```

Acknowledgement

- Part A used materials from: Matt Gormley, Rachid Salmi, Jean-Claude Desenclos, Thomas Grein, Alain Moren, Christophe Giraud-Carrier, Bart Selman, Sham Kakade, Neil Lawrence
- Part B used materials from: Matt Gormley, Eric Xing, Nina Balcan, Fei-Fei Li & Justin Johnson & Serena Yeung

Recommended Reading

• The lab notebook and references there