MATH 135: Extra Practice Set 9

December 21^{st} 2016 imjehing

Question 1. Find all $z \in \mathbb{C}$ which satisfy

(a)
$$z^2 + 2z + 1 = 0$$
,

(b)
$$z^2 + 2\bar{z} + 1 = 0$$
,

(c)
$$z^2 = \frac{1+i}{1-i}$$
.

Question 2. (a) Find all $w \in \mathbb{C}$ satisfying $w^2 = -15 + 8i$. (b) Find all $w \in \mathbb{C}$ satisfying $z^2 - (3+2i)z + 5 + i = 0$.

Question 3. Let $z, w \in \mathbb{C}$. Prove that if zw = 0 then z = 0 or w = 0.

Question 4. Let $a,b,c\in\mathbb{C}$. Prove: if |a|=|b|=|c|=1, then $\overline{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

Question 5. Find all $z \in \mathbb{C}$ satisfying $z^2 = |z|^2$.

Question 6. Find all $z \in \mathbb{C}$ satisfying $|z+1|^2 \equiv 3$ and shade the corresponding region in the complex plane.

Question 7. Prove that if |z| = 1 and $\bar{z}w \neq 1$, then $\left| \frac{z - w}{1 - \bar{z}w} \right| = 1$.

Question 8. Show that $|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \equiv \sqrt{2}|z|$.

Question 9. Prove that $\forall z, w \in \mathbb{C}$, $|z-w|^2 + |z+w|^2 = 2(|z|^2 + |w|^2)$ (This is the Parallelogram Identity).

Question 10. Use De Moivre's Theorem (DMT) to prove that $\sin(4\theta) = 4\sin\theta\cos^3\theta - 4\sin^3\theta\cos\theta$.

Question 11. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$. Show that $z = (a + bi)^n + (a - bi)^n$ is real.