part1-metrics

December 13, 2019

1 Part 1: Know Your Metrics

In terms of growth we could want more customers, more orders, more revenue, more signups, more efficiency...

Before going into coding, we need to understand what exactly is our metric.

The North Star Metric is the single metric that best captures the core value that your product delivers to customers.

This metric depends on company's product, position, targets & more. Airbnb's North Star Metric is nights booked whereas for Facebook, it is daily active users.

We will use a sample dataset of an online retail. For an online retail, we can choose our North Star Metric as Monthly Revenue. In addition to Monthly Revenue we will also calculate following metrics: * Monthly Active Customer * Monthly Order Count * Average Revenue per Order * New Customer Ratio * Monthly Retention Rate * Cohort Based Retention Rate

1.1 Load the dataset

536365

85123A

Let's first load the dataset. This is how our data looks like.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
InvoiceNo
               541909 non-null object
StockCode
               541909 non-null object
Description
               540455 non-null object
               541909 non-null int64
Quantity
               541909 non-null datetime64[ns]
InvoiceDate
UnitPrice
               541909 non-null float64
               406829 non-null float64
CustomerID
Country
               541909 non-null object
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 33.1+ MB
None
                                                Description Quantity \
  InvoiceNo StockCode
```

WHITE HANGING HEART T-LIGHT HOLDER

1	536365	71053		WHITE	METAL LA	ANTERN	6
2	536365	84406B	CREAM	CUPID HEART	S COAT I	HANGER	8
3	536365	84029G	KNITTED UN	ION FLAG HOT	WATER I	BOTTLE	6
4	536365	84029E	RED W	OOLLY HOTTIE	WHITE H	HEART.	6
5	536365	22752	SET	7 BABUSHKA	NESTING	BOXES	2
6	536365	21730	GLASS ST	AR FROSTED T	-LIGHT H	HOLDER	6
7	536366	22633		HAND WARM	ER UNIO	N JACK	6
8	536366	22632		HAND WARMER	RED POLI	KA DOT	6
9	536367	84879	ASSO	RTED COLOUR	BIRD OR	NAMENT	32
	In	voiceDate	${\tt UnitPrice}$	CustomerID		Country	
0	2010-12-01	08:26:00	2.55	17850.0	United	Kingdom	
1	2010-12-01	08:26:00	3.39	17850.0	United	Kingdom	
2	2010-12-01	08:26:00	2.75	17850.0	United	Kingdom	
3	2010-12-01	08:26:00	3.39	17850.0	United	Kingdom	
4	2010-12-01	08:26:00	3.39	17850.0	United	Kingdom	
5	2010-12-01	08:26:00	7.65	17850.0	United	Kingdom	
6	2010-12-01	08:26:00	4.25	17850.0	United	Kingdom	
7	2010-12-01	08:28:00	1.85	17850.0	United	Kingdom	
8	2010-12-01	08:28:00	1.85	17850.0	United	Kingdom	
9	2010-12-01	08:34:00	1.69	13047.0	United	Kingdom	

(541909, 8)

We have all the crucial information we need: * Customer ID * Unit Price * Quantity * Invoice Date

With all these features, we can build our North Star Metric equation: $> Revenue = Active\ Customer$ Count * Order Count * Average Revenue per Order

1.2 Revenue

We want to see monthly revenue. So let's calculate revenue of each order first.

	${\tt InvoiceNo}$	StockCode			Description	Quantity	\
0	536365	85123A	WHITE HAN	GING HEART T	-LIGHT HOLDER	6	
1	536365	71053		WHITE	METAL LANTERN	6	
2	536365	84406B	CREAM	CUPID HEART	S COAT HANGER	8	
3	536365	84029G	KNITTED UN	ION FLAG HOT	WATER BOTTLE	6	
4	536365	84029E	RED W	OOLLY HOTTIE	WHITE HEART.	6	
	In	voiceDate	${\tt UnitPrice}$	CustomerID	Country	<i>r</i> \	
0	2010-12-01	08:26:00	2.55	17850.0	United Kingdom	1	
1	2010-12-01	08:26:00	3.39	17850.0	United Kingdom	1	
2	2010-12-01	08:26:00	2.75	17850.0	United Kingdom	1	
3	2010-12-01	08:26:00	3.39	17850.0	United Kingdom	1	
4	2010-12-01	08:26:00	3.39	17850.0	United Kingdom	ı	

	${ t Invoice Year Month}$	Revenue
0	201012	15.30
1	201012	20.34
2	201012	22.00
3	201012	20.34
4	201012	20.34

Summing up for every month and we have montly revenue.

	${\tt InvoiceYearMonth}$	Revenue
0	201012	748957.020
1	201101	560000.260
2	201102	498062.650
3	201103	683267.080
4	201104	493207.121
5	201105	723333.510
6	201106	691123.120
7	201107	681300.111
8	201108	682680.510
9	201109	1019687.622
10	201110	1070704.670
11	201111	1461756.250
12	201112	433668.010

We can also visualize $\bf Monthly\ Revenue.$

This clearly shows our revenue is growing especially Aug '11 onwards (and our data in December is incomplete). Absolute numbers are fine, let's figure out what is our **Monthly Revenue Growth Rate**:

MonthlyGrowth	Revenue	${\tt InvoiceYearMonth}$	
NaN	748957.020	201012	0
-0.252293	560000.260	201101	1

Montly Growth Rate

Everything looks good, we saw 36.5% growth previous month (December is excluded in the code since it hasn't been completed yet). But we need to identify what exactly happened on April. Was it due to less active customers or our customers did less orders? Maybe they just started to buy cheaper products? We can't say anything without doing a deep-dive analysis.

1.3 Monthly Active Customers

To see the details Monthly Active Customers, we will follow the steps we exactly did for Monthly Revenue. Starting from this part, we will be focusing on UK data only (which has the most records). We can get the monthly active customers by counting unique CustomerIDs.

Country

United Kingdom	8187806		
Netherlands	284661		
EIRE	263276		
Germany	221698		
France	197403		
Name: Revenue,	dtype: int32		

\	uantity	Description (StockCode	${\tt InvoiceNo}$	
	6	-LIGHT HOLDER	GING HEART T	WHITE HAN	85123A	536365	0
	6	METAL LANTERN	WHITE		71053	536365	1
	8	S COAT HANGER	CUPID HEART	CREAM	84406B	536365	2
	6	WATER BOTTLE	ION FLAG HOT	KNITTED UN	84029G	536365	3
	6	WHITE HEART.	OOLLY HOTTIE	RED W	84029E	536365	4
	\	Country	${\tt CustomerID}$	${\tt UnitPrice}$	voiceDate	Ir	
		United Kingdom	17850.0	2.55	08:26:00	2010-12-01	0
		United Kingdom	17850.0	3.39	08:26:00	2010-12-01	1

2	2010-12-01	08:26:00	2.75	17850.0	United Kingdom
3	2010-12-01	08:26:00	3.39	17850.0	United Kingdom
4	2010-12-01	08:26:00	3.39	17850.0	United Kingdom

	${\tt InvoiceYearMonth}$	Revenue
0	201012	15.30
1	201012	20.34
2	201012	22.00
3	201012	20.34
4	201012	20.34

Number of active customers per month and its bar plot:

	${\tt InvoiceYearMonth}$	${\tt CustomerID}$	<pre>pct_change</pre>
0	201012	871	NaN
1	201101	684	-0.214696
2	201102	714	0.043860
3	201103	923	0.292717
4	201104	817	-0.114843
5	201105	985	0.205630
6	201106	943	-0.042640
7	201107	899	-0.046660
8	201108	867	-0.035595
9	201109	1177	0.357555
10	201110	1285	0.091759
11	201111	1548	0.204669
12	201112	617	-0.601421

Monthly Active Customers

In April, Monthly Active Customer number dropped to 817 from 923 (-11.5%).

Montly Active Customers (pct_change)

We will see the same trend for number of orders as well.

1.4 Monthly Order Count

We will apply the same steps this time using Quantity field:

	${\tt InvoiceYearMonth}$	Quantity
0	201012	298101
1	201101	237381
2	201102	225641
3	201103	279843
4	201104	257666
5	201105	306452
6	201106	258522
7	201107	324129
8	201108	319804
9	201109	458490
10	201110	455612
11	201111	642281
12	201112	199907

Monthly Total # of Order

As we expected, Order Count is also declined in April (279k to 257k, -8%) We know that Active Customer Count directly affected Order Count decrease. At the end, we should definitely check our **Average Revenue per Order** as well.

1.5 Average Revenue per Order

To get this data, we need to calculate the average of revenue for each month:

	${\tt InvoiceYearMonth}$	Revenue
0	201012	16.865860
1	201101	13.614680
2	201102	16.093027
3	201103	16.716166
4	201104	15.773380
5	201105	17.713823
6	201106	16.714748
7	201107	15.723497
8	201108	17.315899
9	201109	18.931723
10	201110	16.093582
11	201111	16.312383
12	201112	16.247406

Even the monthly order average dropped for April (16.7 to 15.8). We observed slow-down in every metric affecting our North Star.

We have looked at our major metrics. Of course there are many more and it varies across industries. Let's continue investigating some other important metrics: * New Customer Ratio: a good indicator of if we are losing our existing customers or unable to attract new ones * Retention Rate: King of the metrics. Indicates how many customers we retain over specific time window. We will be showing examples for monthly retention rate and cohort based retention rate.

1.6 New Customer Ratio

First we should define what is a new customer. In our dataset, we can assume a new customer is whoever did his/her first purchase in the time window we defined. We will do it monthly for this example.

We will be using <code>.min()</code> function to find our first purchase date for each customer and define new customers based on that. The code below will apply this function and show us the revenue breakdown for each group monthly.

	CustomerID	MinPuro	chaseDate	MinPurchaseYearMonth
0	12346.0	2011-01-18	10:01:00	201101
1	12747.0	2010-12-05	15:38:00	201012
2	12748.0	2010-12-01	12:48:00	201012
3	12749.0	2011-05-10	15:25:00	201105
4	12820.0	2011-01-17	12:34:00	201101
Exi	isting 25	56114		
Nev	<i>i</i> 10)5764		
Nan	ne: UserType	e, dtype: ir	nt64	

	${\tt InvoiceNo}$	StockCode			Descript	ion (Quantity	<i>,</i> \
0	536365	85123A	WHITE HAN	GING HEART T	-LIGHT HOL	DER	6	3
1	536365	71053		WHITE	METAL LANT	ERN	6	3
2	536365	84406B	CREAM	CUPID HEART	S COAT HAN	GER	8	3
3	536365	84029G	KNITTED UN	ION FLAG HOT	WATER BOT	TLE	6	3
4	536365	84029E	RED W	OOLLY HOTTIE	WHITE HEA	RT.	6	3
	In	nvoiceDate	${\tt UnitPrice}$	${\tt CustomerID}$	Co	untry	\	
0	2010-12-01	08:26:00	2.55	17850.0	United Ki	ngdom		
1	2010-12-01	08:26:00	3.39	17850.0	United Ki	ngdom		
2	2010-12-01	08:26:00	2.75	17850.0	United Ki	ngdom		

3.39

3.39

	${ t Invoice Year Month}$	Revenue	${ t MinPurchaseDate}$	${ t MinPurchaseYearMonth}$	\
0	201012	15.30	2010-12-01 08:26:00	201012	
1	201012	20.34	2010-12-01 08:26:00	201012	
2	201012	22.00	2010-12-01 08:26:00	201012	
3	201012	20.34	2010-12-01 08:26:00	201012	
4	201012	20.34	2010-12-01 08:26:00	201012	

17850.0 United Kingdom

17850.0 United Kingdom

```
UserType

New

New

New

New

New

New

New
```

3 2010-12-01 08:26:00

4 2010-12-01 08:26:00

Lets calculate the Revenue per month for each user type.

	${\tt InvoiceYearMonth}$	UserType	Revenue
0	201012	New	483799.740
1	201101	Existing	195275.510
2	201101	New	156705.770
3	201102	Existing	220994.630
4	201102	New	127859.000
5	201103	Existing	296350.030
6	201103	New	160567.840
7	201104	Existing	268226.660
8	201104	New	108517.751
9	201105	Existing	434725.860
10	201105	New	90847.490
11	201106	Existing	408030.060
12	201106	New	64479.190
13	201107	Existing	407693.610
14	201107	New	53453.991
15	201108	Existing	421388.930
16	201108	New	55619.480
17	201109	Existing	640861.901
18	201109	New	135667.941
19	201110	Existing	648837.600
20	201110	New	133940.280
21	201111	Existing	838955.910
22	201111	New	117153.750
23	201112	Existing	273472.660
24	201112	New	24447.810

New vs Existing Users

Existing customers are showing a positive trend and tell us that our customer base is growing but new customers have a slight negative trend.

Let's have a better view by looking at the New Customer Ratio:

InvoiceYearMonth

Name: CustomerID, dtype: int64

${\tt InvoiceYearMonth}$

Name: CustomerID, dtype: int64

	${\tt InvoiceYearMonth}$	CustomerID
1	201101	1.124224
2	201102	0.904000
3	201103	0.792233
4	201104	0.510166
5	201105	0.343793
6	201106	0.281250
7	201107	0.236589
8	201108	0.192572
9	201109	0.304878
10	201110	0.328852
11	201111	0.236422
12	201112	0.058319

New Customer Ratio

New Customer Ratio has declined as expected (we assumed on Feb, all customers were New) and running around 20%.

1.7 Generate Sign Up Data

We want to inspect channel the customers came from when they made first purchase.

Imagine we have data on the date cusotmer SignedUp and date when customer installed the mobile app. We don't so we'll simulate this data. This is what fucntion generate_signup_data does.

	CustomerID	MinPur	chaseDa	ate Minl	Purchase	YearMontl	1
0	12346.0	2011-01-18	10:01:	:00		20110	1
1	12747.0	2010-12-05	15:38:	:00		201013	2
2	12748.0	2010-12-01	12:48:	:00		201013	2
3	12749.0	2011-05-10	15:25	:00		20110	5
4	12820.0	2011-01-17	12:34:	:00		20110	1
ar	ray([201101,	, 201012, 20	01105,	201109,	201102,	201110,	201
	201103	201107 20	01104	201111	2011127	dtwne=	int6

array([201101,	201012,	201105,	201109,	201102,	201110,	201108,	201106,
201103,	201107,	201104,	201111,	201112],	dtype=:	int64)	

	CustomerID	${ t MinPurchaseDate}$	MinPurchaseYearMonth	${ t Signup Year Month}$	\
0	12346.0	2011-01-18 10:01:00	201101	201101	
1	12747.0	2010-12-05 15:38:00	201012	201012	
2	12748.0	2010-12-01 12:48:00	201012	201012	
3	12749.0	2011-05-10 15:25:00	201105	201104	
4	12820.0	2011-01-17 12:34:00	201101	201101	

	InstallYearMonth						
0	201101						
1	201012						
2	201012						
3	201101						
4	201101						

Simulate the channel from which the customer came.

1.8 Activation Rate

Retention rate should be monitored very closely because it indicates how effective is your campaign.

Activation rate indicates the percentage of people who upon signing-up your campaign actually engage with by making a purchase.

For making Monthly Activation Rate visualized, we need to calculate how many customers were made purchase in the month they signed up.

Monthly Activation Rate = Signed Up and Engaged Customers / Total Signed Up Customers

	${\tt SignupYearMonth}$	${\tt CustomerID}$
0	201012	0.577203
1	201101	0.274268
2	201102	0.238477
3	201103	0.285303
4	201104	0.207469
5	201105	0.212644
6	201106	0.203947
7	201107	0.179688
8	201108	0.202128
9	201109	0.295775
10	201110	0.491525
11	201111	0.846154
12	201112	1.000000

Let's also check activation rates by acquisition channel. We do it by counting all customers that purchased and signed-up in the selected month vs. total signed-up customers and grouping by month and channel.

	${\tt SignupYearMonth}$	AcqChannel	CustomerID
0	201012	inorganic	0.604207
1	201012	organic	0.537155
2	201012	referral	0.586408
3	201101	inorganic	0.301508
4	201101	organic	0.267606
5	201101	referral	0.257384

Monthly Activation Rate - Channel Based

Since it is syntetically generated data we won't take it into consideration for the analysis.

1.9 Monthly Retention Rate

Retention rate should be monitored very closely because it indicates how sticky is your service and how well your product fits the market. For making Monthly Retention Rate visualized, we need to calculate how many customers were retained from previous month.

Monthly Retention Rate = Retained Customers From Prev. Month / Active Customers Total

We will be using crosstab() function of pandas which to calculate Retention Rate.

${\tt InvoiceYearMonth}$	Custome	rID 201	.012 203	1101 2	201102	201103	201104	201105	\
0	1234	6.0	0	1	0	0	0	0	
1	1274	7.0	1	1	0	1	0	1	
2	1274	8.0	1	1	1	1	1	1	
3	1274	9.0	0	0	0	0	0	1	
4	1282	0.0	0	1	0	0	0	0	
${\tt InvoiceYearMonth}$	201106	201107	201108	20110	9 201	110 201	1111 20	1112	
0	0	0	0		0	0	0	0	
1	1	0	1		0	1	1	1	
2	1	1	1		1	1	1	1	
3	0	0	1		0	0	1	1	
4	0	0	0		1	1	0	1	

Retention table shows us which customers are active on each month (1 stands for active).

In the for loop, for each month we calculate Retained Customer Count from previous month and Total Customer Count.

	${\tt InvoiceYearMonth}$	${\tt RetainedUserCount}$	TotalUserCount	RetentionRate
0	201102	263	714	0.368347
1	201103	305	923	0.330444
2	201104	310	817	0.379437
3	201105	369	985	0.374619
4	201106	417	943	0.442206
5	201107	379	899	0.421580
6	201108	391	867	0.450980
7	201109	417	1177	0.354291
8	201110	502	1285	0.390661
9	201111	616	1548	0.397933
10	201112	402	617	0.651540

Monthly Retention Rate

Monthly Retention Rate significantly jumped from June to August and went back to previous levels afterwards.

1.10 Churn Rate

Chrun rate is opposite of retention rate. It is the percentage of customer that were active on the previous month but did not buy anyting in the current month.

Monthly Churn Rate

1.11 Cohort Based Retention Rate

There is another way of measuring Retention Rate which allows you to see Retention Rate for each cohort. Cohorts are determined as first purchase year-month of the customers. We will be measuring what percentage of the customers retained after their first purchase in each month.

This view will help us to see how recent and old cohorts differ regarding retention rate and if recent changes in customer experience affected new customer's retention or not.

	TotalUserCount		201101	201102	201103	201104	201105	\
${\tt InvoiceYearMonth}$								
201101		684	1.0	0.38	0.26	0.18	0.15	
201102		714	NaN	1.00	0.43	0.23	0.19	
201103	923		NaN	NaN	1.00	0.34	0.23	
201104		817	NaN	NaN	NaN	1.00	0.45	
201105		985	NaN	NaN	NaN	NaN	1.00	
201106		943	NaN	NaN	NaN	NaN	NaN	
201107		899	NaN	NaN	NaN	NaN	NaN	
201108		867	NaN	NaN	NaN	NaN	NaN	
201109		1177	NaN	NaN	NaN	NaN	NaN	
201110		1285	NaN	NaN	NaN	NaN	NaN	
201111		1548	NaN	NaN	NaN	NaN	NaN	
201112	617		NaN	NaN	NaN	NaN	NaN	
	201106	201107	201108	201109	201110	201111	201112	
${\tt InvoiceYearMonth}$								
201101	0.13	0.12	0.11	0.10	0.08	0.08	0.07	
201102	0.16	0.14	0.12	0.11	0.10	0.09	0.07	
201103	0.17	0.13	0.11	0.11	0.09	0.09	0.06	
201104	0.28	0.20	0.16	0.15	0.12	0.11	0.08	
201105	0.42	0.25	0.19	0.16	0.13	0.12	0.08	
201106	1.00	0.40	0.25	0.19	0.15	0.13	0.09	
201107	NaN	1.00	0.43	0.27	0.19	0.17	0.11	

201108	NaN	NaN	1.00	0.48	0.28	0.23	0.14
201109	NaN	NaN	NaN	1.00	0.43	0.29	0.15
201110	NaN	NaN	NaN	NaN	1.00	0.48	0.19
201111	NaN	NaN	NaN	NaN	NaN	1.00	0.26
201112	NaN	NaN	NaN	NaN	NaN	NaN	1.00

We can see that first month retention rate became better recently (don't take Dec '11 into account) and in almost 1 year, only 7% of our customers retain with us.

2 Summary

In this notebook defined important metrics for the company and calculated / analysed them with Python. *Monthly Revenue *Monthly Active Customer *Monthly Order Count *Average Revenue per Order *New Customer Ratio *Monthly Retention Rate *Cohort Based Retention Rate

In next part we'll try to segment our base to see who are our best customers.