

CHAPTER 6 POWER COUPLING AT FIBERS CONNECTIONS

Philippe DI BIN
University of Limoges
philippe.dibin@unilim.fr

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Introduction

Introduction

Connections between fibers will induce losses and power coupling between transmitted modes

- → Need to identify coupling conditions
- → Model of power coupling between fiber modes at connections

Aim of the chapter 6

- → Connections geometric defects definition
- → Power transfert between optical fibers
- → Connection losses in singlemode fibers (gaussian mode approximation)
- → Modal coupling at misaligned multimode fibers connections

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fiber connections

- Aims
 - Increasing the length of a fiber link
 - Allowing fiber network flexibility
 - Low loss
 - Reliability
- Technologies
 - Permanent link :
 Electrical arc fusion splices
 - Non-permanent link :
 Fiber connectors

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fiber connections loss causes (1)

- Mechanical misalignments
 - Transversal offset d

Angular offset

 \triangleright Fusion splice (angle θ only)

Longitudinal gap D

 \triangleright Connector (angle θ and gap D)

Fiber connections loss causes (2)

- Opto-geometrical mismatches
 - Core size mismatch (Multimode fiber)

Numerical Aperture mismatch (Multimode fiber)

 Mode field diameter mismatch (Singlemode fiber)

Power flow in optical fiber (1) when her from the fields

Complex fields

elds
$$\vec{\mathcal{E}}(x,y,z,t) = \vec{E}(x,y)e^{j(wt-\beta z)} = \vec{E}(x,y)e^{j\phi(z,t)}$$

$$\vec{\mathcal{H}}(x,y,z,t) = \vec{H}(x,y)e^{j(wt-\beta z)} = \vec{H}(x,y)e^{j\phi(z,t)}$$
ector

Poynting vector

$$\vec{S} = \mathcal{R}e(\vec{\mathcal{E}}) \wedge \mathcal{R}e(\vec{\mathcal{H}}) = \frac{1}{2}(\vec{\mathcal{E}} + \vec{\mathcal{E}}^*) \wedge \frac{1}{2}(\vec{\mathcal{H}} + \vec{\mathcal{H}}^*)$$

$$\vec{S} = \frac{1}{4}(\vec{E} \wedge \vec{H}^* + \vec{E}^* \wedge \vec{H} + \vec{E} \wedge \vec{H}e^{j2\phi(z,t)} + \vec{E}^* \wedge \vec{H}^*e^{-j2\phi(z,t)})$$

Time averaged Poynting vector

$$\langle \vec{S} \rangle = \frac{1}{T} \int_{0}^{T} \vec{S} dt = \frac{1}{4} (\vec{E} \wedge \vec{H}^* + \vec{E}^* \wedge \vec{H}) = \frac{1}{2} \mathcal{R}e(\vec{E}(x,y) \wedge \vec{\mathcal{H}}^*(x,y))$$

W m⁻² Surfacic power density

Mario-lempo

Power flow in optical fiber (2)

Power flow across the fiber section

ds o

The mean guided power

$$\overline{P} = \iint_{-\infty}^{+\infty} \langle \vec{S} \rangle \ \overrightarrow{ds} = \iint_{-\infty}^{+\infty} S_z dx \ dy = \iint_{-\infty}^{+\infty} \frac{n}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} |E(x, y)|^2 \ dx \ dy$$

We define/

$$|\psi(x,y)|^2 = S_z = \frac{n}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} |E(x,y)|^2$$

 $\bar{P} = \iint_{-\infty}^{+\infty} |\psi(x,y)|^2 dx \, dy$

field transvere reportetis.

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fields overlap integral (1)

- Fields at the connection (plane AB)
 - Incident optical wave field : $\psi_1(x,y)$ carrying a mean power $P_1 = \iint_{-\infty}^{+\infty} (\psi_1(x,y))^2 dx dy$
 - Output mode field $(\psi_2(x,y))$ with unknown amplitude and power
 - Guided output field $\psi_g(x,y) = \varepsilon \psi_2(x,y)$ carrying a power $P_g \neq (\varepsilon|^2) \int_{-\infty}^{+\infty} |\psi_2(x,y)|^2 dx dy$
 - Radiative (unguided) field: $\psi_r(x,y)$ carrying a mean power $P_r = \iint_{-\infty}^{+\infty} |\psi_r(x,y)|^2 dx dy$

Fiber #2

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fields overlap integral (2)

- Energy conservation
 - The total output power is equal to the input power P_{output}

From equation 1

$$\psi = \iint_{-\infty}^{+\infty} \left[\varepsilon \, \psi_2(x, y) + \psi_r(x, y) \right]^2 dx \, dy$$

$$= \left(|\varepsilon|^2 \iint_{-\infty}^{+\infty} |\psi_2(x,y)|^2 dx dy \right) +$$

$$|\psi_r(x, y)|$$

$$|\psi_r(x,y)|^2 dx dy + \varepsilon$$

$$\Leftrightarrow \iint_{-\infty}^{+\infty} \psi_2(x,y) \, \psi_r^*(x,y) \, dx \, dy = 0$$

 $\Leftrightarrow \psi_2(x,y)$ and $\psi_r(x,y)$ are orthogonal fields Guided and radiative modes are orthogonal

 $\psi_2(x,y)\psi_r^*(x,y) dx dy + \varepsilon^*$

cladding $\psi_1(x,y)$

Fiber #1

Linear propagation in optical fibers

 $\psi_1(x,y) = \psi_2(x,y) + \psi_r(x,y) = \psi_2(x,y) + \psi_r(x,y)$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fields overlap integral (3)

- Power transfer
 - Coupling power coefficient definition

Eqn(2)

- Value of ε
- Multiplying by $\psi_2^*(x,y)$ and integrating eqn. $\psi_1(x,y) = \varepsilon \psi_2(x,y) + \psi_r(x,y)$

$$\Leftrightarrow \iint_{-\infty}^{+\infty} \psi_1(x,y) \psi_2^*(x,y) \, dx \, dy = \varepsilon \iint_{-\infty}^{+\infty} |\psi_2(x,y)|^2 dx \, dy + \iint_{-\infty}^{+\infty} \psi_r(x,y) \psi_2^*(x,y) dx \, dy$$

 $\varepsilon = \underbrace{\left(\iint_{-\infty}^{+\infty} \psi_1(x,y) \, \psi_2^*(x,y) \, dx \, dy \right)}_{\varepsilon^1}$

By introducing this expression in Eqn(2) we get the final expression of α^2

Fiber #2

 $\psi_2(x,y)$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fields overlap integral (4)

- Power transfer
 - Coupling power coefficient Fields overlap integral

Fields ~ overlap integral

 $\psi_1(x,y)$

Power normalization terms

Fields are expressed in the plane AB and in the same coordinates axes

For normalized fields

Normalized fields overlap integral

2021-2022

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fields overlap integral (5)

- Power transfer
 - Between fibers
 - Identical singlemode fibers : $\mathsf{mode} \ \mathsf{of} \ \mathsf{fiber} \ \#1: \psi_1(x,y)$

mode of fiber #2 : $\psi_2(x', y') = \psi_1(x', y')$

- Non identical singlemode fibers mode of fiber #1 : $\psi_1(x,y)$ mode of fiber #2 : $\psi_2(x',y')$
- Multimode fibers

mode #i of fiber #1 : $\psi_1(x,y) = \psi_i(x,y)$ mode #j of fiber #2 : $\psi_2(x',y') = \psi_j(x',y')$

- At fiber input face
 - Power injection in fiber

input field : $\psi_1(x,y)$

mode of fiber : $\psi_2(x, y) = \psi_i(x, y)$

with (x,y) coordinates of the fiber #1 with (x',y') coordinates of the fiber #2

with (x,y) coordinates of the fiber

2021-2022

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Fields overlap integral (6)

Power transfer

If
$$\psi_1(x,y) = \psi_2(x,y)$$
 then $\alpha^2 = 1 \Leftrightarrow P_2 = P_1$: no coupling loss

Schwarz inequality

$$0 \le \left| \iint_{-\infty}^{+\infty} \psi_1(x,y) \, \psi_2^*(x,y) \, dx \, dy \right|^2 \le \iint_{-\infty}^{+\infty} |\psi_1(x,y)|^2 dx \, dy \quad \iint_{-\infty}^{+\infty} |\psi_2(x,y)|^2 dx \, dy$$

$$\Leftrightarrow 0 \leq \alpha^2 \leq 1 \qquad \Leftrightarrow P_2 \leq P_1$$

Independence of propagation direction (from fiber #1 to #2 or #2 to #1)

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between singlemode fibers (1)

• Gaussian guided mode fields :

elds:
$$\psi(x,y) = A_0 e^{\frac{-x^2+y^2}{(w_0^2)}} = A_0 e^{\frac{-x^2+$$

 (w_0) is the mode field radius @ 1/e of the maximal amplitude (1/e² of the maximal intensity)

with
$$V = k \ a \sqrt{n_1^2 - n_2^2}$$

For
$$1.2 < V < 4$$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between singlemode fibers (2)

• Tranversal offset (1)

$$\psi_1(x,y) = \psi(x,y),$$

$$\psi_2(x,y) = \psi(x-x_0,y-y_0)$$
are real fields

$$d = \sqrt{x_0^2 + y_0^2}$$

$$\alpha^2 = \frac{P_2}{P_1} = \frac{\left| \iint_{-\infty}^{+\infty} \psi(x, y) \psi(x - x_0, y - y_0) \, dx \, dy \right|^2}{\iint_{-\infty}^{+\infty} |\psi(x, y)|^2 dx \, dy} = \frac{\left| \iint_{-\infty}^{+\infty} \psi(x, y) \psi(x - x_0, y - y_0) \, dx \, dy \right|^2}{\iint_{-\infty}^{+\infty} |\psi(x, y)|^2 dx \, dy}$$

$$\alpha^{2}(x_{0}, y_{0}) = \frac{\left(\psi(x, y) * \psi(x, y)\right)_{x_{0}, y_{0}}^{2}}{\left(\psi(x, y) * \psi(x, y)\right)_{0, 0}^{2}}$$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between singlemode fibers (3)

• Tranversal offset (2)

$$e^{-\pi x^2} \rightleftharpoons e^{-\pi u^2}$$

$$f(ax) \rightleftharpoons \frac{1}{|a|} F\left(\frac{u}{a}\right)$$

$$\alpha^{2}(x_{0}, y_{0}) = \frac{P_{2}}{P_{1}} = e^{-\frac{x_{0}^{2} + y_{0}^{2}}{w_{0}^{2}}} = e^{-\frac{d^{2}}{w_{0}^{2}}}$$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between singlemode fibers (4)

Angular offset

In the coordinates axes of fiber #2:

$$\psi_2(x,y) = \psi(x,y) = \psi_2^*(x,y)$$
 because is real $\psi_1(x,y) = \psi(x,y) e^{j\beta z(x,y)}$ with $z(x,y) = HM$

$$\alpha^{2}(\theta) = \frac{P_{2}}{P_{1}} = e^{-\left(\frac{\pi w_{0} n_{1} \sin(\theta)}{\lambda}\right)^{2}}$$

θ (deg) w _o =4.75μm L=1.55μm, n ₁ =1,45	Losses (dB)
0.1	0.0025
0.2	0.01
0.5	0.06
1	0,27
2	0,92

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between singlemode fibers (5)

Mode field diameter mismatch

In fiber #1

$$\psi_1(x,y) = A_0 e^{-\frac{x^2 + y^2}{w_1^2}}$$

In fiber #2

$$\psi_2(x,y) = A_0 e^{-\frac{x^2+y^2}{w_2^2}}$$

$$\alpha^{2} = \frac{P_{2}}{P_{1}} = \left(\frac{2w_{1}w_{2}}{w_{1}^{2} + w_{2}^{2}}\right)^{2}$$
if $w_{1} = w_{1} \rightarrow d^{2} - 1$

$\frac{w_2}{w_1}$	Losses (dB)
1.1	0.04
1.3	0.3
1.63	1
2	2

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between singlemode fibers (6)

Triple defects connection (transversal+angular+mode mismatch)

$$(a, \theta, w_1, w_2) = \frac{P_2}{P_1} = \left(\frac{2w_1w_2}{w_1^2 + w_2^2}\right)^2 e^{-\left(\frac{\pi w_0 n_1 \sin(\theta)}{\lambda}\right)^2} e^{-\frac{d^2}{w_m^2}}$$

With

$$w_m^2 = \frac{w_1^2 + w_2^2}{2}$$

$$w_0^2 = \frac{2w_1^2w_2^2}{w_1^2 + w_2^2}$$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between multimode fibers (1)

- Power transfer at connection
 - Multimode fibers connection
 - M LP_{m,n} modes guided in fiber #1 $\psi_{mn}(r,\varphi)$ N LP_{m',n'} modes guided in fiber #2
 - $\psi'_{mm}(r,\varphi)$

MxN power coupling coefficients

$$\left(\left(\alpha_{mn}^{m'n'}\right)^{2}\right) = \frac{P_{m'n'}}{P_{mn}} = \left| \iint_{-\infty}^{+\infty} \psi_{mn}(r,\varphi) \, \psi'^{*}_{m'n'}(r,\varphi) \, r \, dr \, d\varphi \right|^{2}$$

$$P_{2} = \sum_{j=1}^{N} P_{m'n'} = \sum_{i=1}^{M} \sum_{j=1}^{N} (\alpha_{mn}^{m'n'})^{2} P_{mn}$$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between multimode fibers (3)

Power coupling at transversally misaligned connection

- d=O₁O₂
- Δ : axis of the transversal misalignment
- ϕ : azimuthal orientation of mode LP_{mn} (fiber #1) with respect to Δ

$$\Psi_{mn} = R(r) \cdot \cos(m(\theta - \phi))$$

• ϕ' : azimuthal orientation of mode LP_{m'n'} (fiber #2) with respect to Δ

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between multimode fibers (3)

 $+\sin(m\theta)\sin(m\phi)$

 $+\sin(m'\theta)\sin(m'\phi')$

Even modes

Odd modes

Output fiber

Fresnel representation

 $sin(m'\phi')$

 $\cos(m'\phi)$

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Connexion losses between multimode fibers (4)
$$\alpha^2 = \frac{P_2}{P_1} = \left| \iint_{-\infty}^{+\infty} \psi_1(x,y) \psi_2^*(x,y) dx dy \right|^2$$

■ Coupling properties from parity properties — 4 cases

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

$$P_2 = \left(\alpha_{mn}^{m'n'}\right)^2 P_1$$

$$tan(\mathbf{m}(\phi)) = \frac{\alpha_o}{\alpha_e} tan(\mathbf{m}(\phi))$$

The « tangents law »

$$(\alpha_{mn}^{m'n'})^{2} = \alpha_{e}^{2} \cos^{2}(m\phi) + \alpha_{o}^{2} \sin^{2}(m\phi)$$
$$(\alpha_{mn}^{m'n'})^{2} = \alpha_{o}^{2} + (\alpha_{e}^{2} - \alpha_{o}^{2}) \cos^{2}(m\phi)$$