```
In [33]: categories = bifeat_no_churn_radar.keys().tolist()
   values = bifeat_no_churn_radar.values.tolist()
   radar_chart(categories, values, 'No_Churn: sum of 1')
```

No_Churn: sum of 1

2. Model Training Using Grid Search to Find Optimal Parameters and Result Evaluation

```
In [34]: target_col = [LABEL]
    df_data = churn_feat_space_and_target
    X = df_data.drop(labels = target_col, axis = 1) # pandas dataframe
    y = np.where(df_data[LABEL] == LABEL_ONE, 1, 0) # numpy array
```

```
In [35]: | def run_ml(X, y, algorithm, algorithm_name, n_folds = None, feature_importance_attr = None):
             Run the machine learning model and show the results.
             Parameters:
             X: input features, dataframe
             y: input labels, numpy array
             algorithm: an object of the model class, e.g., sklearn.linear_model.LogisticRegression
             algorithm name: name of the model
             n_f olds: if not None, use k-fold cross validation, and n_f olds is the number of folds.
             feature importance attr: if not None, it is the attribute name of the model class to get the feature importance
             Returns:
             algorithm: the trained model
             performance: the model performance dataframe, with columns of 'Model', 'Test Data Size', 'Accurary', 'Precision (1)',
                          'Recall (1)', 'F1 Score', 'AUC'
             df_feat_importance: the dataframe showing the importance of all features
             # 1. Model training
             if n folds is not None:
                 y test pred = y.copy()
                 y test prob = np.zeros(y.shape)
                 # Construct a kfolds object
                 kf = KFold(n_splits = n_folds, shuffle = True)
                 # Iterate through folds
                 for train index, test index in kf.split(X):
                     X train, X test = X.iloc[train index], X.iloc[test index]
                     y train = y[train index]
                     # Fit the model according to the given training data.
                     algorithm.fit(X train, y train)
                     # Predict class labels for samples in X.
                     # Note that the threshold is 0.5
                     y test pred[test index] = algorithm.predict(X test)
                     # Return estimates for all classes.
                     # predict() will give 0 or 1 as output; predict proba() will give the probability of 0 (in column 0) and 1 (in column 1).
                     y test prob[test index] = algorithm.predict proba(X test)[:, 1]
                 y test = y # all data is used as test set
                 X \text{ test} = X
                 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 0)
                 # Fit the model according to the given training data.
                 algorithm.fit(X train, y train)
                 # Predict class labels for samples in X.
                 # Note that the threshold is 0.5
```

```
v test pred = algorithm.predict(X test)
    # Return estimates for all classes.
    # predict() will give 0 or 1 as output; predict proba() will give the probability of 0 (in column 0) and 1 (in column 1).
    y test prob = algorithm.predict proba(X test)[:, 1]
# 2. Show the results
if n folds is not None:
    print('\nSummary of ' + str(algorithm name) + ' Model with ' + str(n folds) + '-Fold Cross Validation:')
else:
    print('\nSummary of ' + str(algorithm name) + ' Model:')
# 2.1 Print the model details
print('\nAlgorithm:\n')
print(algorithm)
# 2.2 Print the test accuracy
print('\nTest Accuracy:', accuracy score(y true = y test, y pred = y test pred))
# 2.3 Print the classification report
print('\nClassification Report:\n', classification report(y true = y test, y pred = y test pred))
# 2.4 Print and plot the receiver operating characteristic (ROC)
auc = roc_auc_score(y_true = y_test, y_score = y_test_prob)
fpr, tpr, thresholds = roc curve(y_true = y_test, y_score = y_test_prob)
trace roc = go.Scatter(x = fpr, y = tpr)
trace roc diag = go.Scatter(x = [0, 1], y = [0, 1], line = dict(dash = "dash"))
# 2.5 Calculate and plot the confusion matrix
conf_matrix = confusion_matrix(y_true = y_test, y_pred = y_test_pred)
trace conf matrix = go.Heatmap(z = conf matrix / len(y test), x = [Predicted: ' + str(algorithm.classes [0]),
                                                                   'Predicted: ' + str(algorithm.classes [1])],
                               y = ['True: ' + str(algorithm.classes [0]), 'True: ' + str(algorithm.classes [1])])
# 2.6 Calculate and plot accurary, recall and precision according to different thresholds
if thresholds[0] > 1: # the library code adds a large at index 0 for some specific reason; we don't need it.
    thresholds = thresholds[1:]
accuracy = np.zeros(thresholds.shape)
precision = np.zeros(thresholds.shape)
recall = np.zeros(thresholds.shape)
```

```
for i in range(len(thresholds)):
      v test pred i = (algorithm.predict proba(X test)[:, 1] >= thresholds[i])
      cm i = confusion matrix(y true = y test, y pred = y test pred i)
      tp = cm i[1][1]
      tn = cm i[0][0]
      fp = cm i[0][1]
      fn = cm i[1][0]
      accuracy[i] = (tp + tn) / (tp + fp + fn + tn + 0.0)
      recall[i] = tp / (tp + fn + 0.0)
      precision[i] = tp / (tp + fp + 0.0)
  trace acc = go.Scatter(x = thresholds, y = accuracy, name = 'Accuracy')
  trace recall = go.Scatter(x = thresholds, y = recall, name = 'Recall (Positive)')
  trace precision = go.Scatter(x = thresholds, y = precision, name = 'Precision (Positive)')
  # 2.7 Calculate and plot feature importance
  if feature importance attr is not None:
      feature importance = np.squeeze(getattr(algorithm, feature importance attr))
      dict feat importance = {'cols' : X.columns, 'importance' : feature importance}
      df feat importance = pd.DataFrame(data = dict feat importance)
      df feat importance = df feat importance.iloc[df feat importance.importance.abs().argsort()[::-1]] # [::-1] to get decreasing
order
      trace feat importance = go.Bar(x = df feat importance['cols'], y = df feat importance['importance']) # bar plot
  # 3. Show the figures
  fig1 = py.subplots.make subplots(rows = 1, cols = 2, subplot titles = ('ROC', 'Confusion Matrix'),
                                fig1.add trace(trace roc, row = 1, col = 1)
  fig1.add trace(trace roc diag, row = 1, col = 1)
  fig1.add trace(trace conf matrix, row = 1, col = 2)
  if n folds is not None:
      title = str(algorithm name) + ' (' + str(n folds) + '-Fold Cross Validation)'
  else:
      title = str(algorithm_name)
  fig1['layout'].update(title = dict(text = '<b>Performance of ' + title + ' Model</b>', x = 0.5,
                                    font = dict(family = 'Times New Roman', size = 25)),
                        showlegend = False,
                        annotations = [dict(x = 0.3, y = 0.1, font = dict(size = 25, color = 'white'),
                                           text = 'AUC: ' + str(round(auc, 4)))],
                        plot bgcolor = 'black')
  fig1["layout"]["xaxis1"].update(dict(title = "False Positive Rate", gridcolor = 'grey'))
  fig1["layout"]["yaxis1"].update(dict(title = "True Positive Rate", gridcolor = 'grey'))
  pyo.iplot(fig1)
  fig2 = go.Figure()
```

```
fig2.add trace(trace acc)
fig2.add trace(trace recall)
fig2.add trace(trace precision)
fig2['layout'].update(title = dict(text = '<b>Threshold Plot</b>', x = 0.5), titlefont = dict(size = 20), showlegend = True,
                      plot bgcolor = "rgb(200, 200, 200)")
fig2["layout"]["xaxis"].update(dict(title = "Threshold"))
fig2["layout"]["yaxis"].update(dict(title = "Score"))
pyo.iplot(fig2)
if feature importance attr is not None:
    fig3 = go.Figure()
    fig3.add trace(trace feat importance)
    fig3['layout'].update(title = dict(text = '<b>Feature Importance</b>', x = 0.5), titlefont = dict(size = 20),
                          plot bgcolor = "rgb(223, 237, 245)")
    fig3["layout"]["xaxis"].update(dict(tickangle = 90, tickfont = dict(size = 10)))
    pyo.iplot(fig3)
# contruct the performance dataframe
test size = X test.shape[0]
tp = conf matrix[1][1]
tn = conf matrix[0][0]
fp = conf matrix[0][1]
fn = conf matrix[1][0]
acc = (tp + tn) / (tp + fp + fn + tn + 0.0) # accuracy
rec = tp / (tp + fn + 0.0) # recall
prec = tp / (tp + fp + 0.0) # precision
f1 = 2 * (prec * rec) / (prec + rec)
performance = {'Model' : [algorithm name + '<br>(N Folds: ' + str(n folds) + ')'], 'Test Data Size' : [test size],
               'Accuracy' : [acc], 'Precision (1)' : [prec], 'Recall (1)' : [rec], 'F1 Score' : [f1], 'AUC' : [auc]}
performance = pd.DataFrame(data = performance)
# construct the feature importance dataframe
feat importance = None
if feature importance attr is not None:
    feat_importance = {'Features' : X.columns, algorithm_name + '<br>(N_Folds: ' + str(n_folds) + ')' : feature importance}
    feat importance = pd.DataFrame(data = feat importance)
    feat importance = feat importance.set index(keys = 'Features')
return algorithm, performance, feat importance
```

```
In [36]: | def grid_search(X, y, algorithm, parameters):
             Use grid search to find the optimal paramters for the model
             Parameters:
             X: input features, dataframe
             y: input labels, numpy array
             algorithm: an object of the model class, e.g., sklearn.linear model.LogisticRegression
             paramters: dict or list of dictionaries. Dictionary with parameters names (string) as keys and lists of parameter settings to
                         try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are
                         explored. This enables searching over any sequence of parameter settings.
             Returns:
             dictionary of best paramters.
             gs = GridSearchCV(estimator = algorithm, param grid = parameters, cv = 5, verbose = 1, refit = False)
             gs.fit(X, y)
             print('\nBest Score:', gs.best score )
             print('\nBest Parameter Set:', gs.best_params_)
             return gs.best params
```

2.1 Logistic Regression

Summary of Logistic Regression Model:

Algorithm:

LogisticRegression(C=4.786300923226385, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm start=False)

Test Accuracy: 0.8224431818181818

	precision	recall	f1-score	support
0	0.85	0.92	0.88	514
1	0.72	0.57	0.63	190
accuracy			0.82	704
macro avg	0.78	0.74	0.76	704
weighted avg	0.81	0.82	0.82	704

Performance of Logistic Regression Model

Feature Importance

2.2 Logistic Regression with K-Fold Cross Validation

Summary of Logistic Regression Model with 5-Fold Cross Validation:

Algorithm:

LogisticRegression(C=4.786300923226385, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm start=False)

Test Accuracy: 0.8075938566552902

	precision	recall	f1-score	support
0	0.85	0.90	0.87	5163
1	0.67	0.56	0.61	1869
accuracy			0.81	7032
macro avg	0.76	0.73	0.74	7032
weighted avg	0.80	0.81	0.80	7032

Performance of Logistic Regression (5-Fold Cross Validation) Model

Feature Importance

2.3 Logistic Regression with Recursive Feature Elimination (RFE)

The goal of RFE is to select features by recursively considering smaller and smaller sets of features.

```
In [42]: rfe_logis = RFE(logis_rfe, n_features_to_select = n_features_to_select)
         rfe logis.fit(X, y)
         print("Logistic Regression RFE Result:")
         for k, v in sorted(zip(rfe_logis.ranking_, X.columns)):
             print(k, ':', v)
         # get the selected columns
         cols_selected = np.array(X.columns)[rfe_logis.support_].tolist()
         Logistic Regression RFE Result:
         1 : Contract Month-to-month
         1 : Contract Two year
         1 : InternetService Fiber optic
         1 : InternetService_No
         1 : OnlineSecurity
         1 : PaperlessBilling
         1 : PhoneService
         1 : TechSupport
         1 : TotalCharges
         1 : tenure
```

2 : PaymentMethod Mailed check

15 : PaymentMethod Electronic check

5 : InternetService_DSL
6 : MultipleLines
7 : Contract_One year
8 : StreamingMovies
9 : SeniorCitizen
10 : StreamingTV
11 : OnlineBackup
12 : Dependents
13 : MonthlyCharges
14 : DeviceProtection

16 : gender
17 : Partner

3 : PaymentMethod_Credit card (automatic)
4 : PaymentMethod Bank transfer (automatic)

Summary of Logistic Regression RFE Model with 5-Fold Cross Validation:

Algorithm:

LogisticRegression(C=1, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

Test Accuracy: 0.7987770193401593

	precision	recall	f1-score	support
0	0.84	0.89	0.87	5163
1	0.64	0.55	0.59	1869
accuracy			0.80	7032
macro avg	0.74	0.72	0.73	7032
weighted avg	0.79	0.80	0.79	7032

Performance of Logistic Regression RFE (5-Fold Cross Validation) Model

Feature Importance

2.4 K Nearest Neighbors with K-Fold Cross Validation

In [44]: knn = KNeighborsClassifier()

Best Parameter Set: {'n_neighbors': 16}

[Parallel(n_jobs=1)]: Done 20 out of 20 | elapsed: 5.3s finished

Summary of K-Nearest-Neighbors Model with 5-Fold Cross Validation:

Algorithm:

Test Accuracy: 0.7925199089874858

	precision	recall	f1-score	support
0	0.83	0.90	0.86	5163
1	0.64	0.51	0.57	1869
accuracy			0.79	7032
macro avg	0.74	0.70	0.71	7032
weighted avg	0.78	0.79	0.78	7032

Performance of K-Nearest-Neighbors (5-Fold Cross Validation) Model

2.5 Random Forest with K-Fold Cross Validation

```
In [47]: rand_forest = RandomForestClassifier(n_estimators = 100, criterion = 'entropy', random_state = 0)
```

Summary of Random Forest Model with 5-Fold Cross Validation:

Algorithm:

Test Accuracy: 0.7864050056882821

	precision	recall	f1-score	support
0	0.83	0.90	0.86	5163
1	0.63	0.49	0.55	1869
accuracy			0.79	7032
macro avg	0.73	0.69	0.70	7032
weighted avg	0.77	0.79	0.78	7032

Performance of Random Forest (5-Fold Cross Validation) Model

Feature Importance

value: the list represents the count of samples in each class that have reached that node. **sample**: if using bootstrap, this number is not equal to the sum of the numbers in 'value'.

3. Summary

3.1 Model Performance

```
In [50]: # contruct the dataframe table including the performance of all models

performances_df = pd.DataFrame()
performance_df = [performance_lr, performance_lr_kfolds, performance_lr_rfe_kfolds, performance_knn_kfolds, performance_rf_kfolds]
for i in performance_df:
    performances_df = performances_df.append(i, sort = False)
```

Model Performance Summary

Model	Test Data Size	Accuracy	Precision (1)	Recall (1)	F1 Score	AUC
Logistic Regression (N_Folds: None)	704	0.8224	0.7152	0.5684	0.6334	0.8469
Logistic Regression (N_Folds: 5)	7032	0.8076	0.6652	0.5559	0.6057	0.8452
Logistic Regression RF (N_Folds: 5)	^{-E} 7032	0.7988	0.6431	0.5457	0.5904	0.8425
K-Nearest-Neighbors (N_Folds: 5)	7032	0.7925	0.6372	0.5094	0.5662	0.825
Random Forest (N_Folds: 5)	7032	0.7864	0.6268	0.4853	0.547	0.8248

3.2 Feature Importance

Feature Importance

Feature Importance Summary:

Features	Mean Importance
tenure	0.9630173596922257
TotalCharges	0.6457857584345441
InternetService_No	0.6267839269666561
Contract_Two year	0.4957349744170466
MonthlyCharges	0.4705673303586739
InternetService_Fiber optic	0.39369312772910836
Contract_Month-to-month	0.2758324173686368
PhoneService	0.24596280269354162
PaperlessBilling	0.2415529248475717
PaymentMethod_Credit card (automatic)	0.21965729919730578
TechSupport	0.20568534139028977
PaymentMethod_Mailed check	0.2003460678487564
InternetService_DSL	0.19989215054796086
OnlineSecurity	0.19872298622421242
Contract_One year	0.19750966997494915
StreamingMovies	0.17672114393745927
MultipleLines	0.1758751654808676
PaymentMethod_Bank transfer (automatic)	0.1588764197893863
StreamingTV	0.15754563756482862
SeniorCitizen	0.14818334945641423
Dependents	0.10935270769604277
OnlineBackup	0.10888267047331805
gender	0.07031909228841961
DeviceProtection	0.05763341863163266

PaymentMethod_Electronic check	0.057132621248535076
Partner	0.05291432629360901