Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление системного и прикладного программного обеспечения

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

курса «Основы профессиональной деятельности»

по теме: «Исследование работы БЭВМ: асинхронный ввод/вывод с помощью прерываний»

Вариант № 1007

Выполнил студент:

Тюрин Иван Николаевич

группа: Р3110

Преподаватель:

Клименков С. В.,

Ларочкин Г. И.

Содержание

Лабораторная работа № 5. Исследование работы БЭВМ: асин-	
хронный ввод/вывод с помощью прерываний	2
1. Задание варианта № 1007	2
2. Описание программы	į
1. Назначение программы	9
2. Область допустимых значений	4
3. Методика проверки	
4. Программа	6
5. Вывод	6

Лабораторная работа № 5 Исследование работы БЭВМ: асинхронный ввод/вывод с помощью прерываний

1. Задание варианта № 1007

, , ,

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BY (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BY модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна уменьшать на 2 содержимое X (ячейки памяти с адресом 015_{16}) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности. BУ-3 осуществлять вывод результата вычисления функции F(X) = 3X + 1 на данное BУ, а по нажатию кнопки готовности BУ-2 прибавить утроенное содержимое PД данного BУ к X, результат записать в X.
- 3. Если оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в записать максимальное по ОДЗ число.

, , ,

2. Описание программы

2. 1. Назначение программы

Описание программы представлено в таблице 1.1. Программа осуществляет асинхронный ввод с BY-2 и вывод на BY-3 при помощи прерываний. BY-2 производит прерывание при выставлении готовности кнопкой, после чего над переменной в программе производятся определенные операции. BY-3 производит прерывание при выставлении готовности кнопкой, после чего над переменной производятся операции и результат выводится на табло этого устройства.

Адрес	Метка	Мнемоника	Описание
0x000		org 0x000	
0x001	v0:	word \$default, 0x180	Инициализация вектора
0x002	v1:	word \$default, 0x180	прерываний
0x003	v2:	word \$int2, 0x180	
0x004	v3:	word \$int3, 0x180	
0x005	v4:	word \$default, 0x180	
0x006	v5:	word \$default, 0x180	
0x007	v6:	word \$default, 0x180	
0x008	v7:	word \$default, 0x180	
		og 0x015	Параметры программы
0x015	x:	word?	Переменная (X)
0x016	uplim:	word 0x002a	Верхняя граница ОДЗ
0x017	lowlim:	word 0xffd5	Нижняя граница ОДЗ
0x018	default:	iret	Стандарт. обработка прер.
0x019	int2:	nop	Обработчик прерывания ВУ-2,
0x01A		cla	точка для остановы
0x01B		in 0x4	Считывние из ВУ-2
0x01C		sxtb	Прибавление утроенного
0x01D		push	значания РД ВУ-2
0x01E		asl	
0x01F		add &0	
0x020		add x	
0x021		call _check	
0x022		st x	
0x023		pop	
0x024		ld x	
0x025		nop	Точка для остановы
0x026		iret	
0x027	int3:	nop	Обработчик прерывания ВУ-3,
0x028		ld x	точка для остановы
0x029		asl	Арифметическая операция 3х+1
0x02A		add x	

0x02B		inc	
0x02C		out 0x6	Вывод на ВУ-3
0x02D		nop	Точка для остановы
0x02E		iret	, ,
0x02F	check:	cmp uplim	Подпрограмма для проверки
0x030	_	bpl setmax	выхода из ОДЗ
0x031		cmp lowlim	
0x032		bmi setmax	
0x033	_retcheck:	ret	
0x034	setmax:	ld uplim	
0x035	_	jump _retcheck	
0x036	START:	di	Начало программы,
0x037		cla	инициализация векторов
0x038		out 0x1	прерывания
0x039		out 0x3	
0x03A		out 0xb	
0x03B		out 0xf	
0x03C		out 0x13	
0x03D		out $0x17$	
0x03E		out 0x1b	
0x03F		out 0x1f	
0x040		d = 1 $d = 0$ $d = 0$	
0x041		out 0x5	
0x042		$d = 10 \pm 0 $	
0x043		out 0x7	
0x044		ei	
0x045	main:	di	Главный цикл
0x046		ld x	Уменьшение переменной на 2
0x047		$\int \mathrm{sub} \ \#2$	
0x048		call _check	
0x049		st x	
0x04A		ei	
0x04B		nop	
0x04C		jump main	

Таблица 1.1: Описание работы программ

2. 2. Область допустимых значений

Пользователю доступны для ввода любые однобайтовые знаковые числа, то есть из диапозона [-128;127]. ОДЗ для переменной X находится из соотношения:

$$-128 \leq 3x + 1 \leq 127 \Rightarrow$$

$$0 \texttt{xffd5} = -43 \leq x \leq 42 = 0 \texttt{x002a}$$

3. Методика проверки

Главный цикл

- 1. В переменную х записать 0xffd8.
- 2. Поставить точку остановы в цикле main на адрес 0x04b.
- 3. Загрузить программный компекс в память БЭВМ.
- 4. Запустить выполнение программы в автоматическом режиме с адреса 0x036 до остановки.
- 5. Записать значение аккумулятора, оно должно быть на 2 меньше, чем число которое мы записали в переменную.
- 6. Запустить выполнение программы с адреса предыдущей остановки до слудующей остановки.
- 7. Записать значение аккумулятора и сверить его с предпологаемым: оно должно быть равно верхней границе ОДЗ 0x002a (т.к. на новом витке цикла переменная вышла из ОДЗ).

Обработчик прерывания ВУ-2

- 1. Убрать прежние и поставить точки остановы в подпрограмме int2 на адресах 0x019 и 0x025.
- 2. Загрузить программный компекс в память БЭВМ.
- 3. Запустить выполнение программы в автоматическом режиме с адреса 0x036.
- 4. Установить значение и выставить режим готовности на ВУ-2.
- 5. Выполнять программу до точки остановы.
- 6. Записать значение аккумулятора.
- 7. Выполнить программу до следующей точки остановы.
- 8. Записать значение аккумулятора.
- 9. Рассчитать значение переменной по формуле x+3y, где y число введенное на ВУ-2, если вычисленное значение не находится в ОДЗ, то должно быть равно 0x02a.
- 10. Сравнить полученные значения аккумулятора: второе должно удовлетворять рассчетному.

Обработчик прерывания ВУ-3

- 1. Убрать прежние и поставить точки остановы в подпрограмме int3 на адресах 0x027 и 0x02d.
- 2. Загрузить программный комплекс в память БЭВМ.
- 3. Запустить выполнение программы в автоматическом режиме с адреса 0x036.
- 4. Выставить режим готовности на ВУ-3.
- 5. Выполнять программу до точки остановы.
- 6. Записать значение аккумулятора.
- 7. Выполнить программу до следующей точки остановы.
- 8. Записать значение аккумулятора.
- 9. Рассчитать значение переменной по формуле 3x + 1, если вычисленное значение не находится в ОДЗ, то должно быть равно 0x02a.
- 10. Сравнить полученные значения аккумулятора: второе должно удовлетворять рассчетному.

4. Программа

Была составлена программа на языке ассемблера. Она представлена в листингах 1.2 и 1.4.

5. Вывод

Нацчился работать с прерываниями в БЭВМ, писать код на языке ассемблера БЭВМ для их обработки. Научился делать одновременно несколько важных лаб за ночь и терпению в очереди за день.

```
org 0x000
  v0:
             word
                       $default ,
                                       0x180
                       $default,
з v1:
             word
                                       0x180
  v2:
                       $int2,
                                       0x180
             word
  v3:
             word
                       $int3,
                                       0x180
                       $default ,
  v4:
             word
                                       0x180
  v5:
                       $default,
                                       0x180
             word
                       $default,
  v6:
                                       0x180
             word
  v7:
             word
                       $default,
                                       0x180
  org 0x015
11 X:
             word
                       0x002a
12 uplim:
            word
13 lowlim: word
                       0 \times ffd5
  default:
       iret
15
16
  int2:
17
                       ; debug
     nop
18
     cla
19
                          ; dev -2
     in
               0 \times 4
20
       sxtb
21
       push
22
        asl
23
                  &0
       add
24
     add
25
             check
     call
26
     st
               Х
27
       pop
28
       Ιd
                            ; to see in AC
                  Х
29
       nop
                          ; debug
30
     iret
31
32
  int3:
33
                       ; debug
     nop
34
     Ιd
               Х
35
                       ; f(x) = 3x + 1
     asl
36
     add
               Х
37
       inc
38
                          ; dev -3
               0x6
     out
39
                       ; debug
     nop
40
     iret
```

Листинг 1.2: Первая чать кода программы на языке ассемблена БЭВМ: параметры программы, переменные, инициализация векторов прерывания, обработчики прерывания

```
check:
        cmp uplim
        bpl
             setmax
        cmp lowlim
             setmax
        bmi
    retcheck:
        ret
   setmax:
        ld uplim
       jump _retcheck
10
  START:
12
     di
13
     cla
     out
                0x1
                           ; deny interruptions
15
                0x3
     out
16
                0xb
     out
17
                0 \times f
     out
18
     out
                0x13
19
                0 \times 17
     out
20
     out
                0x1b
21
     out
                0 \times 1f
22
                        ; mr \ dev-2 \ (1000v0010)
     ١d
                #0xa
23
                0x5
     out
24
     Ιd
                #0xb
                        ; mr \ dev = 3 \ (1000 \ v0011)
25
                0×7
     out
26
     еi
27
28
  main:
29
     di
30
     Ιd
                Χ
31
     sub
                #2
32
             _{
m check}
     call
33
     st
                Χ
34
     еi
35
     nop
36
     jump
             main
```

Листинг 1.4: Вторая часть кода программы на языке ассемблена БЭВМ: подпрограмма проверки выхода результата вычисленяи из ОДЗ и главный цикл