EJERCICIO 1 EJERCICIO 2

Tarea 6 Inferencia Estadística

Code ▼

Hairo Ulises Miranda Belmonte 26 de Noviembre de 2018

EJERCICIO 1

Sean X - Binomial(n1, p1) y Y - Binomial(n2, p2), se quiere estimar λ = p2 ??? p1. Use la priori $f(p_1, p_2) = f(p_1)f(p_2) = 1$, para hallar la posterior $f(\lambda|x_1)$. Halle tambi'en la media posteriori y la densidad posteriori de λ .

Se realizaran 1000 simulaciones, asumiendo los valores de las variables y las muestras.

Code

Dado que bajo la posterior, tanto p1 como p2 son independientes, entonces para obtener la distribución de la posterior realizamos obtenemos B observaciones de la posterior, en este caso de cda p1 y p2

Code

observamos como la media de p1 y p2 bajo la posteror se aproximan a la media estimada por verosiilitud

Code

Media posteriori P1 0.7876267

Code

Estadístico de máxima Verosimilitud de P1 0.8

Code

Media posteriori P2 0.5974246

Code

Estadístico de máxima Verosimilitud de P2 0.6

Realizamos la transformación de la variable y observamos la media posterior de la función, y obtenemos su densidad al reaizar el histograma

Code

Media posteriori de la transformación 0.1902021

Code

Histogram of tau

Se puede observar la densidad de la trasformación o más bien, la posterior de tau.

EJERCICIO 2

- 2. Sean X1, ..., Xn Normal(μ , 1)
- a. Simule un conjunto de datos (use μ = 5) de n = 100 observaciones. Generar sample con media de cinco.

Code

b. Tome $f(\mu) = 1$ y halle la densidad posteriori. Grafique la densidad. La posteriror es una normal con media del estimador de máxima verosimilitud Con base al sample generamos las observaciones de la posterior.

density.default(x = posterior)

Como se puede observar, no se distribuye como una normal. Sin embargo, necesitamos varias observaciones para que esto suceda.

c. Simule 1000 observaciones de la posteriori. Grafique un histograma y compare con la densidad del punto anterior.

Histogram of posteriorB

Code ## Media posteriori 5.101425 Code

Podemos observar que la posterior al realizar varias simulaciones y tomar su media, se aproxima a la media del estadístico de la verosimilitud de unna normal.

d. Sea ?? = eµ. Halle la densidad posteriori para ?? de forma anal'itica y por simulaci on.

Realizamos una transformación

Histogram of posteriro

Code ## Media posteriori 5.099245

e. Halle un intervalo posteriori del 95 % para ??.

construimos intervalos de confianza posteriori

Code ## Intervalos de confianza posteriori 7.094697

En base a conocer la distribución de la transformación, las B observaciones generadas por la posterior, se evaluand en la transformacion.

Histogram of theta

Media posterior transformación 275.7255

Se pued eobservar que la función se comporta como una exponencial. Realizamos su intervalo posteriori a la transformación

Intervalos de confianza posteriori 1205.59

f) Halle un intervalo de confianza del 95 % para \ref{f}

Intervalos de confianza normal 1205.59