Représentations matricielles

Définition

Soit E un espace vectoriel de dimension finie sur \mathbb{K} , Soit $\mathscr{B} = (e_1, \dots e_n)$ une base de E et $(u_1, \dots u_p)$ des vecteurs de E. On appelle **matrice représentative de** $(u_1, \dots u_p)$ **dans la base** \mathscr{B} la matrice de type $n \times p$ dont la $j^{\text{ème}}$ colonne est constituée des coordonnées de u_j dans la base \mathscr{B} . On note cette matrice $M(u_1, \dots u_p, \mathscr{B})$

Plus explicitement,

$$\forall j = 1, \dots, p, \quad u_j = \sum_{i=1}^n a_{ij} e_i$$

équivaut à

Si,
$$u = \sum_{i=1}^{n} x_i e_i$$
 alors

$$M(u, \mathcal{B}) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Dans la suite on posera souvent $X = M(u, \mathcal{B})$.

Proposition

Soit E un espace vectoriel de dimension finie sur \mathbb{K} , Soit $\mathscr{B} = (e_1, \dots e_n)$ une base de E. Avec les notations de la définition précédente, l'application

$$f_{\mathscr{B}}: E \to M_{n,1}(\mathbb{K})$$

 $u \mapsto M(u, \mathscr{B})$

est un isomorphisme d'espaces vectoriels.

Définition

Soient E et F deux espaces vectoriels de dimension finie sur \mathbb{K} , $\mathscr{B} = (e_1, \dots e_p)$ une base de E, $\mathscr{B}' = (v_1, \dots v_n)$ une base de F et $f \in \mathcal{L}(E, F)$.

On appelle matrice de f par rapport aux bases \mathscr{B} et \mathscr{B}' la matrice $M(f(e_1), \dots f(e_p), \mathscr{B}')$. Il s'agit de la matrice de type $n \times p$ dont la $j^{\text{ème}}$ colonne est constituée des coordonnées de $f(e_j)$ dans la base \mathscr{B}' que l'on notera $Mat(f, \mathscr{B}, \mathscr{B}')$.

Plus explicitement, si

$$\forall j = 1, \dots, p, \quad f(e_j) = a_{1j}v_1 + a_{2j}v_2 + \dots + a_{nj}v_n.$$

alors

$$Mat(f, \mathcal{B}, \mathcal{B}') = \begin{bmatrix} f(e_1) & \cdots & f(e_j) & \cdots & f(e_p) \\ v_1 & a_{11} & \cdots & a_{1j} & \cdots & a_{1p} \\ v_2 & a_{21} & \cdots & a_{2j} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_n & a_{n1} & \cdots & a_{nj} & \cdots & a_{np} \end{bmatrix}$$

Par exemple, soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire donnée par

$$f(x,y) = (x+2y, 3x+4y, 5x+6y).$$

Notons $\mathscr{B} = (e_1, e_2)$ et $\mathscr{B}' = (v_1, v_2, v_3)$ les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 respectivement, c-à-d

$$e_1 = (1,0), e_2 = (0,1)$$

 $v_1 = (1,0,0), v_2 = (0,1,0), v_3 = (0,0,1).$

Pour trouver la matrice de f dans \mathscr{B} et \mathscr{B}' , on calcule

$$g(e_1) = g(1,0) = (1,3,5) = v_1 + 3v_2 + 5v_3$$

 $g(e_2) = g(0,1) = (2,4,6) = 2v_1 + 4v_2 + 6v_3.$

Ainsi

$$Mat(f, \mathcal{B}, \mathcal{B}') = \begin{array}{c} f(e_1) & f(e_2) \\ v_1 \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}.$$

Définition

Si E = F et $\mathscr{B} = \mathscr{B}' = (e_1, \dots e_n)$. La matrice $Mat(f, \mathscr{B}, \mathscr{B})$ s'appelle **la matrice de** f **par rapport** à \mathscr{B} et se note $Mat(f, \mathscr{B})$.

Par exemple, soit $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ l'application linéaire donnée par

$$\forall P \in \mathbb{R}_2[X], f(P) = P'.$$

Pour trouver la matrice de f dans le base canonique $\mathscr{B} = (1, X, X^2)$, on calcule

$$f(1) = 0$$
, $f(X) = 1$ et $f(X^2) = 2X$.

Ainsi

$$Mat(f,\mathcal{B}) = \begin{pmatrix} f(1) & f(X) & f(X^2) \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 2 \\ X^2 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Proposition

Soient E et F deux espaces vectoriels de dimension finie sur \mathbb{K} , $\mathscr{B} = (e_1, \dots e_p)$ une base de E et $\mathscr{B}' = (v_1, \dots v_n)$ une base de F. Soit $f \in \mathcal{L}(E, F)$ et posons

$$A = Mat(f, \mathcal{B}, \mathcal{B}').$$

Pour tout $u \in E$ notons $X = M(u, \mathcal{B})$ et $Y = M(f(u), \mathcal{B}')$. On a

$$Y = AX$$
.

Plus explicitement, si $u = \sum_{i=1}^{p} x_i e_i$ alors $f(u) = \sum_{j=1}^{n} y_j v_j$ où

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{Y} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}}_{X}.$$

En effet,

$$\sum_{i=1}^{n} y_j v_j = f(u) = f(\sum_{j=1}^{p} x_j e_j) = \sum_{j=1}^{p} x_j f(e_j) = \sum_{j=1}^{p} x_j \left(\sum_{i=1}^{n} a_{ij} v_i\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{p} a_{ij} x_j\right) v_i$$

On déduit que

$$\forall j = 1, \dots, n, \ y_j = \sum_{j=1}^{p} a_{ij} x_j.$$

Autrement dit,

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + \dots + x_p \begin{pmatrix} a_{1p} \\ a_{2p} \\ \vdots \\ a_{np} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = AX.$$

Finalement, la matrice de f dans les bases \mathscr{B} et \mathscr{B}' permet d'exprimer l'application f:

- 1. par ses colonnes : la jème colonne donne les coordonnées de $f(e_j)$ dans \mathscr{B}' ;
- 2. par ses lignes : elle donne les coordonnées de f(x) dans \mathscr{B}' en terme des coordonnées de x dans \mathscr{B} .

Proposition

Soient E et F deux espaces vectoriels de dimension finie sur \mathbb{K} , $\mathscr{B} = (e_1, \dots e_p)$ une base de E et $\mathscr{B}' = (v_1, \dots v_n)$ une base de F. L'application

$$Mat: \mathcal{L}(E, F) \longrightarrow M_{n,p}(\mathbb{K})$$

 $f \longmapsto Mat(f, \mathcal{B}, \mathcal{B}')$

est un isomorphisme.

L'application réciproque de cet isomorphisme associe à une matrice $A=(a_{ij})_{1\leq i\leq n,\ 1\leq j\leq p}\in M_{n,p}(\mathbb{K})$ l'unique application linéaire L_A de E dans F définie par

$$\forall j = 1, \dots, p, \quad L_A(e_j) = \sum_{i=1}^n a_{ij} v_j.$$

Il s'agit de l'application dont la matrice dans les bases \mathscr{B} et \mathscr{B}' est la matrice A. Autrement dit,

$$L_A: E \longrightarrow F$$

 $\sum_{i=1}^p x_i e_i \longmapsto L_A(u) := \sum_{j=1}^n y_j v_j$

οù

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{Y} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}}_{X}.$$

Exemple

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire dont la matrice dans les bases canoniques est

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right).$$

Calculer f(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$. Comme

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} x + 2y + 3z \\ 4x + 5y + 6z \end{array}\right)$$

on déduit f(x, y, z) = (x + 2y + 3z, 4x + 5y + 6z).

Exemple

Soit $g: \mathbb{R}_1[X] \to \mathbb{R}_2[X]$ l'application linéaire donnée par $g(P) = X^2P' + P$. Vérifions d'abord que g est bien définie. Pour tout $P \in \mathbb{R}_1[X]$, le degré de P' est au plus 0 et donc le degré de X^2P est au plus 2. Ainsi $g(P) = X^2P' + P \in \mathbb{R}_2[X]$. La linéarité est évidente. Comme

$$g(1) = 1$$
 et $g(X) = X + X^2$,

la matrice de g dans les bases $\mathscr{B}=(1,X)$ et $\mathscr{B}'=(1,X,X^2)$ est

$$M(g, \mathscr{B}, \mathscr{B}') = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

Aussi si on veut g(a + bX) on calcule le produit

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} a \\ b \\ b \end{array}\right)$$

Finalement,

$$q(a+bX) = a + bX + bX^2$$

Exemple

Soit \mathscr{B} la base de $E = \mathcal{M}_2(\mathbb{R})$ constituée par

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

On se donne des réels a,b,c,d et posons $\Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. L'application

$$\psi: E \longrightarrow E$$

$$A \longmapsto \psi(A) = \Lambda \cdot A$$

est clairement un endomorphisme de E. De plus,

$$\psi(E_1) = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} = aE_1 + cE_2 \quad , \quad \psi(E_2) = \begin{pmatrix} b & 0 \\ d & 0 \end{pmatrix} = bE_1 + dE_2
\psi(E_3) = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix} = aE_3 + cE_4 \quad , \quad \psi(E_4) = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} = bE_3 + dE_4.$$

Ainsi la matrice de ψ dans la base $\mathscr{B} = (E_1, E_2, E_3, E_4)$ est donnée par

$$M(g,\mathscr{B}) = \begin{pmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{pmatrix}.$$

Supposons que ψ est bijective. Alors $I_2 \in \text{Im}\psi$ et donc il existe une matrice A telle que $\Lambda A = I_2$, ou encore Λ est inversible. Réciproquement, si Λ est inversible alors l'équation $\Lambda A = 0_E$ implique que $A = 0_E$ et donc ker $\psi = \{0_E\}$. Finalement, pour que ψ soit bijective il faut et il suffit que Λ soit inversible.

Proposition

Soient E, F et G des espaces vectoriels de dimension finie sur \mathbb{K} et $\mathcal{B}, \mathcal{B}', \mathcal{B}''$ des bases respectives de E, F et G. Pour tout $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, on a:

$$Mat(g \circ f, \mathcal{B}, \mathcal{B}'') = Mat(g, \mathcal{B}', \mathcal{B}'') \cdot Mat(f, \mathcal{B}, \mathcal{B}').$$

Démonstration: Posons $\mathscr{B} = (e_1, \dots, e_m), \mathscr{B}' = (v_1, \dots, v_n)$ et $\mathscr{B}'' = (w_1, \dots, w_p)$. Posons

$$A = (a_{ij}) = Mat(f, \mathcal{B}, \mathcal{B}')$$

$$B = (b_{ij}) = Mat(g, \mathcal{B}', \mathcal{B}'')$$

$$C = (c_{ij}) = Mat(g \circ f, \mathscr{B}, \mathscr{B}'').$$

Pour un $u \in E$, posons

$$X = M(u, \mathcal{B}), \quad Y = M(f(u), \mathcal{B}') \text{ et } Z = M((g \circ f)(u), \mathcal{B}) = M(g(f(u)), \mathcal{B}'')$$

Par définition des matrices A, B et C on a :

$$Y = AX$$
 et $CX = Z = BY = BAX$.

Donc C = BA.

Une autre démonstration : Par définition de A on a :

$$\forall j = 1, \dots, m, \ f(e_j) = \sum_{k=1}^{n} a_{kj} v_k.$$

Le définition de B implique que, pour tout $j = 1, \dots, m$,

$$g(f(e_j)) = g(\sum_{k=1}^n a_{kj}v_k) = \sum_{k=1}^n a_{kj}g(v_k) = \sum_{k=1}^n a_{kj}\left(\sum_{i=1}^p b_{ik}\right)w_i = \sum_{i=1}^p \left(\sum_{k=1}^n b_{ik}a_{kj}\right)w_i.$$

Ainsi, par définition de C,

$$\forall i = 1, \dots, p, \ \forall j = 1, \dots, m, \ c_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj}$$

Autrement dit, C = BA.

Proposition

Soient E, F deux espaces vectoriels de dimension n sur \mathbb{K} et $\mathscr{B}, \mathscr{B}'$ deux bases respectives de E et F. Une application linéaire $f \in \mathcal{L}(E, F)$ est bijective si, et seulement si, sa matrice $A = Mat(f, \mathscr{B}, \mathscr{B}')$ est inversible et

$$Mat(f^{-1}, \mathscr{B}', \mathscr{B}) = A^{-1}.$$

Démonstration : (i) Si f est bijective alors $f^{-1} \circ f = \mathrm{id}_E$. Or

$$Mat(id_E, \mathscr{B}, \mathscr{B}) = I_n.$$

Ainsi, la formule de la proposition précédente, montre que

$$Mat(f^{-1}, \mathcal{B}', \mathcal{B}) \cdot Mat(f, \mathcal{B}, \mathcal{B}') = I_n.$$

De même, $f \circ f^{-1} = \mathrm{id}_F$ et

$$Mat(id_F, \mathscr{B}', \mathscr{B}') = I_n$$

et donc

$$Mat(f, \mathcal{B}, \mathcal{B}') \cdot Mat(f^{-1}, \mathcal{B}', \mathcal{B}) = I_n.$$

(ii) Réciproquement, si la matrice $A = Mat(f, \mathcal{B}, \mathcal{B}')$ est inversible alors il existe une matrice B telle que $AB = BA = I_n$. Soit g l'application linéaire de E dans F telle que $B = Mat(g, \mathcal{B}', \mathcal{B})$. Ainsi

$$Mat(g \circ f, \mathscr{B}) = Mat(g, \mathscr{B}', \mathscr{B}) \cdot Mat(f, \mathscr{B}, \mathscr{B}') = BA = I_n.$$

Autrement dit $g \circ f = \mathrm{id}_E$. De même,

$$Mat(f \circ g, \mathscr{B}') = Mat(g, \mathscr{B}, \mathscr{B}') \cdot Mat(f, \mathscr{B}', \mathscr{B}) = AB = I_n.$$

et donc $f \circ g = \mathrm{id}_F$.

Cas particulier où $E = \mathbb{K}^p$ et $F = \mathbb{K}^n$

Soient $\mathscr{B} = (e_1, \dots e_p), \mathscr{B}' = (v_1, \dots v_n)$ sont les bases canoniques de \mathbb{K}^p et \mathbb{K}^n respectivement. À une matrice $A \in M_{n,p}(\mathbb{K})$ on associe l'application $L(A) \in \mathscr{L}(\mathbb{K}^p, \mathbb{K}^n)$ dont la matrice dans les bases canoniques de \mathbb{K}^p et \mathbb{K}^n respectivement est la matrice A.

Si on identifie $M_{p,1}(\mathbb{K})$ avec \mathbb{K}^p et on identifie $M_{n,1}(\mathbb{K})$ avec \mathbb{K}^n , on a

$$L(A): M_{p,1}(\mathbb{K}) \longrightarrow M_{n,1}(\mathbb{K})$$

 $X \longmapsto AX$

De plus, l'application

$$L: M_{n,p}(\mathbb{K}) \longrightarrow \mathscr{L}(\mathbb{K}^p, \mathbb{K}^n)$$

 $A \longmapsto L(A)$

est un isomorphisme qui vérifie $L(AB) = L(A) \circ L(B)$.

Voici un démonstration de l'associativité du produit des matrices. Soit $A \in M_{n,p}(\mathbb{K}), B \in M_{p,q}(\mathbb{K})$ et $C \in M_{q,r}(\mathbb{K})$. On a

$$L(A(BC)) = L(A) \circ L(BC) = L(A) \circ (L(B) \circ L(C)) = (L(A) \circ L(B)) \circ L(C) = L((AB)C).$$

Ainsi

$$A(BC) = (AB)C.$$

Définition

Soit $A \in M_{n,p}(\mathbb{K})$.

• On appelle **noyau de la matrice** A, et on note ker(A) l'ensemble :

$$\ker(A) = \{ X \in M_{p,1}(\mathbb{K}), AX = 0 \}.$$

• On appelle image de la matrice A, et on note ker(A) l'ensemble :

$$Im(A) = \{ Y \in M_{n,1}(\mathbb{K}), \exists X \in M_{p,1}(\mathbb{K}), AX = Y \}.$$

En identifiant \mathbb{K}^p avec $M_{p,1}(\mathbb{K})$ on a:

$$\ker(A) = \ker(L(A))$$
 et $\operatorname{Im}(A) = \operatorname{Im}((L(A)).$

Exemple

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans la base canonique de \mathbb{R}^3 est

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Trouver le noyau de f, l'image de f. Posons

$$\mathbf{v}_1 = (1, 1, 1), \ v_2 = (-1, 1, 0), \ v_3 = (-1, 1, 0).$$

Vérifier que $\mathscr{B}' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 et donner la matrice de f dans cette base.

Soit $u = (x, y, z) \in \mathbb{R}^3$. Pour que $u \in \ker f$, il faut et il suffit, que le vecteur colonne $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker A$, ce qui équivant

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + y + z \\ x + 2y + z \\ x + y + 2z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

On voit que x = y = z = 0. Ainsi $\ker f = \{(0,0,0\} \text{ et } f \text{ est injective. D'après la théorème du rang, } f$ est un automorphisme de \mathbb{R}^3 et l'image de f est \mathbb{R}^3 .

On vérifie aisément que $\mathscr{B}' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 . On a

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Autrement dit,

$$f(v_1) = 4v_1, \ f(v_2) = v_2 \text{ et } f(v_3) = v_3.$$

Ainsi la matrice de f dans la nouvelle base \mathscr{B}' est

$$Mat(f, \mathcal{B}') = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

En particulier,

$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Définition

Soit $A \in M_{n,p}(\mathbb{K})$, on appelle **rang de la matrice** A et on note $\mathbf{rg}(A)$ le rang du système de ses vecteurs colonnes dans \mathbb{K}^n .

Proposition

- 1. rg(A) = rg((L(A));
- 2. $rg(^tA) = rg(A)$;
- 3. $rg(AB) \le \min(rg(A), rg(B))$;
- 4. Si $A \in M_{n,p}(\mathbb{K})$ alors $rg(A) + \dim(\ker(A)) = p$.
- 5. rg(A) est le rang du système de ses vecteurs lignes dans \mathbb{K}^n .
- 6. Si \mathscr{B} est une base d'un espace vectoriel E sur \mathbb{K} alors le rang d'une famille de p vecteurs (x_1, \dots, x_p) est le rang de la matrice $M(\mathscr{B}, x_1, \dots, x_p)$.
- 7. Si f est une application linéaire entre deux espaces vectoriels de dimension finie munis respectivement des bases \mathscr{B} et \mathscr{B}' alors le rang de f est le rang de la matrice $M(f, \mathscr{B}, \mathscr{B})$.

Proposition

Soit $A \in M_{n,p}(\mathbb{K})$. Les assertions suivantes sont équivalentes :

- 1. La matrice A est inversible
- 2. l'application L(A) est un isomorphisme
- 3. $p = n \ et \ ker(A) = \{0\}$
- 4. $p = n \ et \ rg(A) = n$.

Matrice de changement de base

Soit E un espace vectoriel de dimension n muni de deux bases $\mathscr{B} = (e_1, \dots e_n), \mathscr{B}' = (v_1, \dots v_n).$

Définition

On appelle matrice de passage de la base \mathscr{B} à la base \mathscr{B}' la matrice $M(\mathscr{B}, v_1, \dots v_n)$ que nous noterons $P_{\mathscr{B},\mathscr{B}'}$. Il s'agit de la matrice dont la $j^{\text{ème}}$ colonne, pour tout $j = 1, \dots, n$, sont les coefficients de vecteur v_j de la "nouvelle" base \mathscr{B}' dans "l'ancienne base" \mathscr{B} .

Plus explicitement, si

$$\forall j = 1, \dots, n, \ v_j = a_{1j}e_1 + a_{2j}e_2 + \dots + a_{nj}e_n$$

alors la matrice de passage de la base \mathscr{B} à la base \mathscr{B}' :

Exemple

Soit $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré au plus 2. Les polynômes

$$P_0 = 1, P_1 = X - 1, P_2 = (X - 1)^2$$

forment une base de E. La matrice de passage de la base canonique $\mathscr{B}=(1,X,X^2)$ à la base $\mathscr{B}'=(P_0,P_1,P_2)$ est

$$P_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

Proposition

Notons $f_{\mathcal{B}}^{\mathcal{B}'}$ l'unique application linéaire qui transforme e_i en v_i , c-à-d

$$\forall i \in \{1, \dots, n\}, \ f_{\mathscr{B}}^{\mathscr{B}'}(e_i) = v_i.$$

Alors la matrice de passage $P_{\mathcal{B},\mathcal{B}'}$ est la matrice de $f_{\mathcal{B}}^{\mathcal{B}'}$ dans la base \mathcal{B} :

$$P_{\mathscr{B},\mathscr{B}'} = Mat(f_{\mathscr{B}}^{\mathscr{B}'},\mathscr{B})$$

Proposition

On a

$$P_{\mathscr{B},\mathscr{B}'} = Mat(id_E,\mathscr{B}',\mathscr{B}).$$

En particulier, $P_{\mathscr{B},\mathscr{B}'}$ est inversible, et

$$P_{\mathscr{R}\mathscr{R}'}^{-1} = P_{\mathscr{R}'\mathscr{R}} = Mat(id_E, \mathscr{R}, \mathscr{R}').$$

Corollaire : formule de changement de base pour les vecteurs

Soit E un espace vectoriel de dimension n muni de deux bases $\mathscr{B} = (e_1, \dots e_n), \mathscr{B}' = (v_1, \dots v_n)$ et posons $P = P_{\mathscr{B},\mathscr{B}'}$. Pour tout $u \in E$, posons $X = M(u,\mathscr{B})$ et $Y = M(u,\mathscr{B}')$. Nous avons

$$X = PY \quad et \quad Y = P^{-1}X.$$

En effet, il suffit d'exprimer la fait que

$$P_{\mathscr{B},\mathscr{B}'} = Mat(\mathrm{id}_E,\mathscr{B}',\mathscr{B})$$
 et $\mathrm{id}_E(u) = u$.

Plus explicitement, pour tout $u = \sum_{i=1}^{n} y_i v_i = \sum_{i=1}^{n} x_i e_i$, on a

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \text{et} \quad X = PY \ , \quad Y = P^{-1}X.$$

Proposition

Soient E un espace vectoriel de dimension finie sur \mathbb{K} , muni de deux bases \mathscr{B}_1 et \mathscr{B}'_1 , et F un espace vectoriel de dimension finie sur \mathbb{K} , muni de deux bases \mathscr{B}_2 et \mathscr{B}'_2 . Soit $f \in \mathscr{L}(E,F)$ une application linéaire. Alors, on a

$$Mat(f, \mathscr{B}'_1, \mathscr{B}'_2) = P_{\mathscr{B}'_2, \mathscr{B}_2} \cdot Mat(f, \mathscr{B}_1, \mathscr{B}_2) \cdot P_{\mathscr{B}_1, \mathscr{B}'_1}.$$

Autrement dit, si on pose

$$A = Mat(f, \mathcal{B}_1, \mathcal{B}_2), A' = Mat(f, \mathcal{B}'_1, \mathcal{B}'_2), P = P_{\mathcal{B}_1, \mathcal{B}'_1}, Q = P_{\mathcal{B}_2, \mathcal{B}'_2}$$

alors

$$A' = Q^{-1}AP.$$

Démonstration : Notons $\mathscr{B}_1 = (e_1, \cdots, e_m)$ et $\mathscr{B}'_1 = (e'_1, \cdots, e'_m)$ les bases de E et $\mathscr{B}_2 = (v_1, \cdots, v_n)$ et $\mathscr{B}'_2 = (v'_1, \cdots, v'_m)$ les bases de F. On sait que $f = \mathrm{id}_F \circ f \circ \mathrm{id}_E$. Donc

$$A' = Mat(f, \mathcal{B}'_1, \mathcal{B}'_2)$$

$$= Mat(id_F, \mathcal{B}_2, \mathcal{B}'_2) \cdot Mat(f, \mathcal{B}_1, \mathcal{B}_2) \cdot Mat(id_E, \mathcal{B}'_1, \mathcal{B}_1)$$

$$= Q^{-1}AP = A'$$

Une autre démonstration Notons $\mathscr{B}_1=(e_1,\cdots,e_m)$ et $\mathscr{B}_1'=(e_1',\cdots,e_m')$ les bases de E et $\mathscr{B}_2=(v_1,\cdots,v_n)$ et $\mathscr{B}_2'=(v_1',\cdots,v_m')$ les bases de F. Supposons que

$$u = \sum_{j=1}^{m} x_j e_j = \sum_{j=1}^{m} x'_j e'_j$$
 et $f(u) = \sum_{i=1}^{n} y_i v_i = \sum_{i=1}^{n} y'_i v'_i$.

Posons

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}, X' = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_m \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \text{ et } Y' = \begin{pmatrix} y'_1 \\ y'_2 \\ \vdots \\ y'_n \end{pmatrix}.$$

Nous avons, par définition des différentes matrices,

$$X = PX'$$
, $Y = QY'$, $Y = AX$ et $Y' = A'X'$.

Ainsi

$$Y' = Q^{-1}Y = Q^{-1}APX'$$
 et $Y' = A'X'$

et donc

$$Q^{-1}AP = A'.$$

On a la formule de changement de base suivante pour les endomorphismes :

Corollaire

Soient E un \mathbb{K} espace vectoriel de dimension finie, muni de deux bases \mathscr{B} et \mathscr{B}' , et $f \in \mathscr{L}(E)$ un endomorphisme. Posons

$$P = P_{\mathcal{B}, \mathcal{B}'}, \quad A = Mat_{\mathcal{B}}(f) \quad et \quad A' = Mat_{\mathcal{B}'}(f).$$

Alors

$$A' = P^{-1}AP.$$

Définition

Deux matrices carrées $A, B \in M_n(\mathbb{K})$ sont dites **semblables**, s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$.

Théorème

Deux matrices sont semblables si, et seulement si, elles représentent le même endomorphisme dans deux bases différentes.

Retour sur les matrices inversibles

Proposition

Soit $A \in M_n(\mathbb{K})$. Les assertions suivantes sont équivalentes :

- A est inversible
- Il existe $B \in M_n(\mathbb{K})$ telle que $AB = I_n$.
- Il existe $B' \in M_n(\mathbb{K})$ telle que $B'A = I_n$.
- ^tA est inversible
- L'application linéaire associée L(A) est un automorphisme de \mathbb{K}^n .
- $\ker(A) = \{0\}.$
- \bullet rg(A) = n.
- Les colonnes de A forment une base de \mathbb{K}^n .
- Les lignes de A forment une base de \mathbb{K}^n .
- A est la matrice de passage d'une base à un autre.
- $Si\ A = Mat_{\mathscr{B}}(f)$ alors f est un automorphisme.

Dans ce cas, $A^{-1} = B = B'$. De plus, $({}^{t}A)^{-1} = {}^{t}(A^{-1})$

Caractérisation matricielle des bases

Soit E un espace vectoriel de dimension n sur \mathbb{K} , Soit $\mathscr{B} = (e_1, \dots e_n)$ une base de E. Une famille $(u_1, \dots u_n)$ est une base de E si, et seulement si, la matrice $M(u_1, \dots u_n, \mathscr{B})$ est inversible.

Calcul de l'inverse d'une matrice : Matrice de passage

Une matrice $A \in M_n(\mathbb{K})$ est inversible si, et seulement si, les colonnes de A forment une base de \mathbb{K}^n . Dans ce cas, on peut interprèter A comme la matrice de passage de la base canonique de \mathbb{K}^n à la nouvelle base \mathscr{B}' formée des vecteurs colonnes de la matrice A. Ainsi l'inverse de A n'est rien d'autre que la matrice de passage de la base canonique à la nouvelle base \mathscr{B}' . Pour calculer donc A^{-1} il suffit de trouver les coordonnées des vecteurs de la base canonique exprimés dans la nouvelle base \mathscr{B}' .

Calcul de l'inverse d'une matrice : systèmes d'équations linéaires

Soit le système de n équations linéaires à n inconnues suivant

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$$

où les $a_{ij}, b_j \in \mathbb{K}$, supposés connus, et les x_i sont les inconnus à chercher dans \mathbb{K} . Ce système s'écrit sous la forme matricielle suivante

$$AX = B$$

où $A = (a_{ij})_{1 \le i,j \le n}$, B est le vecteur colonne dont les coordonnées sont les b_j : ils représentent les données du problème, et où X est le vecteur colonne de coordonnées x_i qui est l'inconnue du problème.

Théorème:

Les assertions suivantes sont équivalentes :

- 1. la matrice A est inversible,
- 2. pour tout vecteur donné B, le système AX = B admet une solution unique,
- 3. pour tout vecteur donné B, le système AX = B admet au plus une solution,
- 4. pour tout vecteur donné B, le système AX = B admet au moins une solution,
- 5. le système AX = 0 n'admet aucune solution autre que la solution triviale.

Dans ce cas, le système AX = B admet une unique solution donnée par $X = A^{-1}B$.

Démonstration:

On considère l'endomorphisme L(A) sur \mathbb{K}^n dont la matrice dans la base canonique est A.

Ainsi l'assertion 2) signifie que L(A) est bijective et donc que A est inversible.

De même, l'assertion 3) signifie que L(A) est injective, ce qui équivaut à u soit bijective et donc que A soit inversible.

Aussi l'assertion 4) signifie que L(A) est surjective, ce qui équivaut à u soit bijective et donc que A soit inversible.

En fin l'assertion 5) signifie que $\ker L(A) = \{0\}$, et donc à L(A) est injective et finalement équivaut à A inversible.

Remarque

- 1. Si A n'est pas inversible alors, par linéarité, l'ensemble des solutions du système AX = B est ou bien vide ou bien infinie.
- 2. Le système d'équations linéaires AX = B est dit de Cramer si la matrice A est inversible.
- 3. Si A est inversible alors pour déterminer A^{-1} il suffit de résoudre le système linéaire AX = B.

Calcul de l'inverse d'une matrice : méthode parallèle

Définition

- Soit $A = (a_{ij})_{i < i \le n}$, $1 \le j \le p \in M_{n,p}(\mathbb{K})$.

 On appelle $i^{\grave{e}me}$ vecteur ligne de A, la matrice $L_i(A) = (a_{i1} \ a_{i2}, \cdots, a_{ip}) \in M_{1,p}(\mathbb{K})$;
 - On appelle $j^{\grave{e}me}$ vecteur colonne de A, la matrice $C_j(A) = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{n-1} \end{pmatrix} \in M_{n,1}(\mathbb{K}).$

Définition

Les opérations élémentaires sur les lignes d'une matrice sont :

- 1. La multiplication d'une ligne de A par un scalaire : dans la matrice on remplace la i-ème ligne $L_i(A)$ par $\lambda L_i(A)$, les autres lignes restant inchangées. On appelle cette opération dilatation de la *i*-ème ligne et on la note $\mathrm{Dil}_i^L(A,\lambda)$ avec $\lambda \in \mathbb{K}$.
- 2. L'échange de deux lignes de la matrice A: dans la matrice on échange les i-ème et j-ème lignes $L_i(A)$ et $L_i(A)$ de la matrice, les autres lignes restant inchangées. On appelle cette opération échange des lignes i et j et on la note $\operatorname{Ech}_{i,j}^L(A)$.
- 3. L'addition à une ligne de A du produit d'une autre ligne de A par un scalaire $\lambda \in \mathbb{K}$: dans la matrice on remplace la i-ème ligne $L_i(A)$ par $L_i(A) + \lambda L_i(A)$, les autres lignes restant inchangées. On appelle cette opération ajout à la ligne i et de λ fois la ligne j et on la note $\operatorname{Ajout}_{i}^{L}(A, j, \lambda)$.
- 4. On définit de manière analogue les opérations élémentaires sur les colonnes :

$$\mathrm{Dil}_i^C(A,\lambda)$$
, $\mathrm{Ech}_{i,j}^C(A)$, $\mathrm{Ajout}_i^C(A,j,\lambda)$.

Méthode parallèle: on réalise des opérations élémentaires successives simultanément sur les lignes de la matrice A et sur celles de la matrice identité I_n . Lorsque l'on est arrivé à la matrice identité en partant de A, on a l'expression de A^{-1} , en prenant la matrice obtenue en effectuant les mêmes opérations à partir de la matrice I_n .

Attention! On peut choisir de faire des opérations sur les colonnes plutôt que sur les lignes, mais on ne peut mélanger les opérations sur les lignes et les colonnes pour obtenir A^{-1} , par cette méthode

Matrices diagonales

Définition

On dit qu'une matrice carrée $A \in M_n(\mathbb{K})$ est diagonale si tous ses coefficients en dehors de la diagonale sont nuls, c'est à dire si $A \in \text{Vect}(E_{i,i})_{1 \leq i \leq n}$. On note $\text{Diag}_n(\mathbb{K})$ ou $D_n(\mathbb{K})$ l'ensemble des matrices diagonales et on écrit $D = \text{diag}(a_1, a_2, \cdots, a_n)$ pour désigner la matrice diagonale dont les coefficients sont $d_{i,j} = 0$ si $i \neq j$ et $d_{i,i} = a_i$.

Exemples

- 1. La matrice nulle est diagonale.
- 2. La matrice identité I_n est diagonale.
- 3. Les matrices d'homothéties λI_n sont diagonales.

Proposition

- $D_n(\mathbb{K})$ est un sous-espace vectoriel de $M_n(\mathbb{K})$ de dimension n.
- La matrice identité $I_n \in D_n(\mathbb{K})$.
- Si A et B sont diagonales, AB est diagonale.
- $Si\ A\ et\ B\ sont\ diagonales,\ AB=BA.$

On dit que $D_n(\mathbb{K})$ est une sous-algèbre commutative unitaire de $M_n(\mathbb{K})$, de dimension n.

Proposition

- 1. Le rang d'une matrice diagonale est donné par le nombre de coefficients non nuls.
- 2. En particulier, une matrice diagonale $D = diag(d_1, d_2, \dots d_n)$ est inversible si, et seulement si, $\forall i \in \{1, \dots, n\}, d_i \neq 0$. Dans ce cas, l'inverse de D est la matrice $D^{-1} = diag(d_1^{-1}, d_2^{-1}, \dots d_n^{-1})$

Définition

Soit E un \mathbb{K} espace vectoriel et $\lambda \in \mathbb{K}$. On appelle homothétie sur E de rapport λ l'endomorphisme h_{λ} défini par : $h_{\lambda}(x) = \lambda x$.

Proposition

Soit E un \mathbb{K} espace vectoriel et $\lambda \in \mathbb{K}$ et h une homothétie sur E de rapport λ . Alors, dans toute base \mathscr{B} de E, $Mat_{\mathscr{B}}(h) = \lambda I_n$.

Proposition

Si $A \in M_n(\mathbb{K})$ est une matrice qui commute avec toute autre matrice $B \in M_n(\mathbb{K})$, alors A est une matrice d'homothétie.

Matrices triangulaires

Définition

Soit $T \in M_n(\mathbb{K})$ une matrice. On dit que :

- T est triangulaire supérieure si $t_{i,j} = 0$ dès que i > j.
- T est triangulaire supérieure stricte si $t_{i,j} = 0$ dès que $i \ge j$.

On note $T_n(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures et $T_n^s(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures strictes.

Proposition

Les ensembles $T_n(\mathbb{K})$ et $T_n^s(\mathbb{K})$ sont des sous-algèbres de $M_n(\mathbb{K})$, de dimensions respectives $\frac{n(n+1)}{2}$ et $\frac{n(n-1)}{2}$. De plus,

$$T_n(\mathbb{K}) = D_n(\mathbb{K}) \oplus T_n^s(\mathbb{K}).$$

Proposition

Si $N \in T_n^s(\mathbb{K})$, alors $N^n = 0$, c'est à dire que N est une matrice nilpotente.

Définition

On appelle trace d'une matrice carrée $A \in M_n(\mathbb{K})$, et on note Tr(A) la somme de ses coefficients diagonaux : $Tr(A) = \sum_{i=1}^n a_{i,i}$.

Proposition

- 1. L'application Tr est une forme linéaire sur $M_n(\mathbb{K})$.
- 2. Pour toutes matrices $A, B \in M_n(\mathbb{K})$, on a Tr(AB) = Tr(BA).
- 3. Deux matrices semblables ont la même trace.

Corollaire

Si $f \in \mathcal{L}(E)$ est un endomorphisme, on peut définir $Tr(f) = Tr(Mat_{\mathscr{B}}(f))$, où \mathscr{B} est une base quelconque de E.