Постановка задачи частичного обучения

Дано:

множество объектов X, множество классов Y; $X^{\ell} = \left\{x_1, \dots, x_{\ell}\right\}$ — размеченная выборка (labeled data); $\left\{y_1, \dots, y_{\ell}\right\}$ $X^k = \left\{x_{\ell+1}, \dots, x_{\ell+k}\right\}$ — неразмеченная выборка (unlabeled data).

Два варианта постановки задачи:

- Частичное обучение (semi-supervised learning): построить алгоритм классификации $a\colon X \to Y$.
- Трансдуктивное обучение (transductive learning): зная все $\{x_{\ell+1},\ldots,x_{\ell+k}\}$, получить метки $\{y_{\ell+1},\ldots,y_{\ell+k}\}$.

Типичные приложения:

классификация и каталогизация текстов, изображений, и т.п.

SVM: классификация

Линейный классификатор на два класса $Y = \{-1, 1\}$:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}.$$

Отступ объекта x_i :

$$M_i(w, w_0) = (\langle w, x_i \rangle - w_0)y_i.$$

Задача обучения весов w, w_0 по размеченной выборке:

$$Q(w, w_0) = \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

Функция $\mathscr{L}(M)=(1-M)_+$ штрафует за уменьшение отступа.

Идея!

Функция $\mathscr{L}(M) = \left(1 - |M|\right)_+$ штрафует за попадание в зазор, $|M_i|$ не зависит от y_i и определён на неразмеченных объектах.

Функция потерь для трансдуктивного SVM

Функция потерь $\mathscr{L}(M) = \begin{pmatrix} 1 - |M| \end{pmatrix}_+$ штрафует за попадание объекта внутрь разделяющей полосы.

Transductive SVM: частичное обучение

Обучение весов w, w_0 по частично размеченной выборке:

$$Q(w, w_0) = \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 +$$

$$+ \gamma \sum_{i=\ell+1}^{\ell+k} (1 - |M_i(w, w_0)|)_+ \rightarrow \min_{w, w_0}.$$

Достоинства и недостатки TSVM:

- как и в обычном SVM, можно использовать ядра;
- 🕀 имеются эффективные реализации для больших данных;
- ⊖ решение неустойчиво, если нет области разреженности;
- Θ требуется настройка двух параметров C, γ ;

Sindhwani, Keerthi. Large scale semisupervised linear SVMs. SIGIR 2006.

Многоклассовая логистическая регрессия

Линейный классификатор на конечное множество классов |Y|:

$$a(x) = \arg\max_{y \in Y} \langle w_y, x \rangle, \quad x, w_y \in \mathbb{R}^n.$$

Вероятность того, что объект x_i относится к классу y:

$$P(y|x_i, w) = \frac{\exp\langle w_y, x_i \rangle}{\sum_{c \in Y} \exp\langle w_c, x_i \rangle}.$$

Задача максимизации регуляризованного правдоподобия:

$$Q(w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) - \frac{1}{2C} \sum_{y \in Y} ||w_y||^2 \rightarrow \max_{w},$$

Оптимизация Q(w) — методом стохастического градиента.

Логистическая регрессия с частичным обучением

Теперь учтём неразмеченные данные $X^k = \{x_{\ell+1}, \dots, x_{\ell+k}\}$. Пусть $b_j(x)$ — бинарные признаки, $j=1,\dots,m$.

Оценим вероятности $P(y|b_i(x)=1)$ двумя способами:

1) эмпирическая оценка по размеченным данным X^{ℓ} :

$$\hat{p}_{j}(y) = \frac{\sum_{i=1}^{\ell} b_{j}(x_{i})[y_{i} = y]}{\sum_{i=1}^{\ell} b_{j}(x_{i})};$$

2) оценка по неразмеченным данным X^k и линейной модели:

$$\rho_j(y, w) = \frac{\sum_{i=\ell+1}^{\ell+k} b_j(x_i) P(y|x_i, w)}{\sum_{i=\ell+1}^{\ell+k} b_j(x_i)}.$$

Будем минимизировать расстояние между $\hat{p}_j(y)$ и $p_j(y,w)$, в качестве расстояния между распределениями возьмём дивергенцию Кульбака—Лейблера.

Построение функционала качества

Минимизация KL-дивергенции между $\hat{p}_j(y)$ и $p_j(y,w)$:

$$\mathsf{KL}(\hat{p}_j(y) \parallel p_j(y,w)) = \sum_{y} \hat{p}_j(y) \log \frac{\hat{p}_j(y)}{p_j(y,w)} \rightarrow \min_{w}.$$

Вычтем сумму KL-дивергенций по всем признакам $j=1,\dots,m$ из функционала регуляризованного правдоподобия Q(w):

$$\begin{split} \tilde{Q}(w) &= \sum_{i=1}^{\ell} \log P(y_i | x_i, w) - \frac{1}{2C} \sum_{y \in Y} \| w_y \|^2 + \\ &+ \gamma \sum_{j=1}^{m} \sum_{y \in Y} \hat{p}_j(y) \log \left(\frac{\sum_{i=\ell+1}^{\ell+k} b_j(x_i) P(y | x_i, w)}{\sum_{i=\ell+1}^{\ell+k} b_j(x_i)} \right) \to \max_{w}, \end{split}$$

где γ — коэффициент регуляризации.

Mann, McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. ICML 2007.

Особенности регуляризации для частичного обучения

- $oldsymbol{0}$ Оптимизация $ilde{Q}(w)$ методом стохастического градиента.
- 2 Возможные варианты задания переменных b_j :
 - $b_j(x) \equiv 1$, тогда $P(y|b_j(x) = 1)$ априорная вероятность класса y (label regularization) хорошо подходит для задач с несбалансированными классами;
 - $b_j(x) = [$ термин j содержится в тексте x] для задач классификации и каталогизации текстов.
- lacktriangle метод слабо чувствителен к выбору C и γ ,
- $oldsymbol{0}$ устойчив к погрешностям оценивания $\hat{p}_j(y)$,
- ullet не требует большого числа размеченных объектов ℓ ,
- хорошо подходит для категоризации текстов,
- в экспериментах показывает высокую точность.

Mann, McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. ICML 2007.

Резюме

- Задача SSL занимает промежуточное положение между классификацией и кластеризацией, но не сводится к ним.
- Простые методы-обёртки требуют многократного обучения, что вычислительно неэффективно.
- *Методы кластеризации* легко адаптируются к SSL путём введения ограничений (constrained clustering), но, как правило, вычислительно трудоёмки.
- *Методы классификации* адаптируются сложнее, но приводят к более эффективному частичному обучению.