

Exampro A-level P

A LEVEL PHYSICS MC 2016

76

BLOCK E - MR LAWREN

Author:

Date:

Time:

Marks:

Comments:

Physics (7407/7408)	Name:
OCK EXAM - JANUARY	Class:
CE	
90	

Q1.	In a nuclear reaction $^{14}_{7}\rm N$ is bombarded by neutrons. This results in the capture of one neutron and the emission of one proton by one nucleus of $^{14}_{7}\rm N$. The resulting nucleus is						
	Α	¹³ ₇ N					
	В	¹⁴ ₈ C					
	С	¹² ₈ C					
	D	¹⁴ ₈ O					
							(Total 1 mark)
Q2.	change						pint. What are the e rocket as a result
		total kinetic rock		total momen rocket			
	A	unchar	nged	unchang	ed	0	
	В	unchar	nged	increase	ed	0	
	С	increa	sed	unchang	unchanged		
	D	increa	sed	increase	ed	0	
		-					(Total 1 mark)
Q3.	Q3. What are the numbers of hadrons, baryons and mesons in an atom of ⁷ ₃ Li?						
		hadrons baryons mesons					
	A	7	3	3	0		
	В	7	4	4	0		
	С	7	7	0	0		
	D	10	7	0	0		
	(Total 1 mark)						

Q4.		The nucle	us of ⁹ / ₄ Be captures a	a proton and emits a	n α particle. What is	the product nucleus	s?
	Α	10 C	0				
	В	7 3 Li	0				
	С	⁶ ₃ Li	0				
	D	⁶ He	0				l 1 mark)
Q5.	C	Which rovollision?	w, A to D , in the table	e correctly shows the	e quantities conserve		·
			mass	momentum	kinetic energy	total energy	
	Ī	A	conserved	not conserved	conserved	conserved	
		В	not conserved	conserved	conserved	not conserved	
		С	conserved	conserved	conserved	conserved	
		D	conserved	conserved	not conserved	conserved	
Q 6.		hown. Assur	ts passengers with a ne that $g = 10 \text{ m s}^{-2}$.		g accelerates upwar		l 1 mark)
	What is the tension in the cable?						

Α

В

C

D

1000 N

4000 N

5000 N

6000 N

0

(Total 1 mark)

Q7. In the system shown a light rigid beam, pivoted at **X**, is held in position by a string which is fixed at **Y**. The beam carries a load of 200 N. The load is moved towards **X**. Which one of the following statements is correct?

- A The tension in the string increases
- **B** The compression force in the beam increases
- **C** The moment of the load about **X** increases
- **D** The magnitude of the vertical component of the reaction at **X** increases

(Total 1 mark)

Q8. The graph shows the variation with time, t, of the force, F, acting on a body.

What physical quantity does the area X represent?

- A the displacement of the body
- **B** the acceleration of the body
- **C** the change in momentum of the body
- **D** the change in kinetic energy of the body

(Total 1 mark)

Q9. A car wheel nut can be loosened by applying a force of 200 N on the end of a bar of length 0.8 m as in X. A car mechanic is capable of applying forces of 500 N simultaneously in opposite directions on the ends of a wheel wrench as in Y.

What is the minimum length l of the wrench which would be needed for him to loosen the nut?

- **A** 0.16 m
- **B** 0.32 m
- **C** 0.48 m
- **D** 0.64 m

(Total 1 mark)

Q10. A body is accelerated from rest by a constant force.

Which one of the following graphs best represents the variation of the body's momentum p with time t?

(Total 1 mark)

Q11.	Complete	the	following	table.
------	----------	-----	-----------	--------

Q13.

(a)

Quantity	Vector or Scalar	S.I. Unit
Displacement	Vector	m
Velocity		
Weight		
Energy		

State the principle of moments.

(Total 3 marks)

	A car accelerates uniformly from rest to a speed of 100 km h ⁻¹ in 5.8 s. Calculate the magnitude of the acceleration of the car in m s ⁻² .	Q12. (a)
	Acceleration =m s ⁻²	
(3)	Calculate the distance travelled by the car while accelerating.	(b)
(2) (Total 5 marks)	Distance travelled =	

(3)

(b) The diagram below shows a horizontal beam pivoted close to one end. The beam is supported by a spring and is loaded with weights of 2.0 N and 5.0 N as shown. All dimensions are marked on the diagram **and are measured from the pivot**.

By taking moments about the pivot, calculate the tension in the spring when the beam is horizontal.

Tension =	
	(3)
	(Total 6 marks)

Q14. Figure 1 shows a skier being pulled by rope up a hill of incline 12° at a steady speed. The total mass of the skier is 85 kg. Two of the forces acting on the skier are already shown.

Figure 1

(a) Mark with arrows and label on **Figure 1** a further two forces that are acting on the skier.

(2)

(b) Calculate the magnitude of the normal reaction on the skier. gravitational field strength, $g = 9.8 \text{ N kg}^{-1}$

Normal reaction =(3)

	(c)	Explain why the resultant force on the skier must be zero.
		(1) (Total 6 marks)
Q15.		The diagram below shows a speed-time graph for a car that halts at traffic lights and then es away. Speed/m s ⁻¹ 40 20 10 20 40 60 80 100 time/s
	(a)	Use the graph to show that the car travels about 380 m whilst decelerating.
	(b)	Use the graph to calculate the acceleration of the car for the time interval from 75 s to 95 s.

Acceleration

(2)

(C)	Calculate the total distance travelled by the car in the time interval 5 s to 95 s.	
	Distance travelled	(1)
(d)	A second car travels the same route without being halted at the traffic lights. The speed of this car is a constant 30 m s $^{-1}$.	
	Calculate the difference in journey time between the first and second cars.	
	Journey time difference	(3) rks)

Q16. Figure 1 shows a graph of velocity against time for an aircraft of mass 2.8×10^4 kg landing on a stationary aircraft-carrier.

Figure 1

(a) (i) Calculate the initial kinetic energy of the aircraft.

Initial kinetic energy(2)

(ii) Show that the deceleration of the aircraft is about 20 m s⁻².

(3)

(iii) Calculate the decelerating force acting on the aircraft.

Force

(2)

(0)	accelerates the aircraft from rest to its take-off speed of 71 m s ⁻¹ in a distance of 62 m.	
	Calculate the acceleration of the aircraft.	
	Acceleration	(2)
(c)	In level flight, the pilot sets the course to be 80 m s ⁻¹ due north. There is a wind blowing from east to west at 20 m s ⁻¹ . Find, by scale drawing or otherwise, the resultant velocity of the aircraft.	
	Velocity of aircraft: magnitude	
	direction	(3)
	(Total 12 m	

Q17.		(a)	(i) Give an example of an exchange particle other than a $W^{\scriptscriptstyle +}$ or $W^{\scriptscriptstyle -}$ state the fundamental force involved when it is produced.	particle, and
			exchange particle	
			fundamental force	
		(ii)	State what roles exchange particles can play in an interaction.	
				(4)
	(b)	Fron	n the following list of particles,	
		p	\bar{n} \vee_{e} $e^{\scriptscriptstyle{+}}$ $\mu^{\scriptscriptstyle{-}}$ $\pi^{\scriptscriptstyle{0}}$	
		ident	tify all the examples of	
		(i)	hadrons,	
		(ii)	leptons,	
		(iii)	antiparticles,	
		(iv)	charged particles.	(4)
				(Total 8 marks)
Q18.	nucle		plete the equation below to show the decay of a free neutron. The protoumbers and appropriate symbols of all three particles produced should	
		0^{n}	→ ······ + ····· + ·····	
				(Total 3 marks)
Q19.			ons that contain a strange (or antistrange) quark are known as K-meson re a sub-group of a larger group of particles.	ns or kaons.
	(a)	(i)	State the name of this larger group of particles.	
				(1)
		(ii)	Determine the charge on a kaon with a quark structure of us.	
				(1)

	proposed decay for this kaon is	Ар	(b)	
	$u\bar{s} \longrightarrow \mu^{+} + \nu_{\mu}$			
	Apply the law of conservation of strangeness to the proposed decay.	(i)		
(1)				
	Comment on whether or not this decay is possible.	(ii)		
(1) al 4 marks)	(Total			
	(i) Name two baryons.	(a)).	Q20
(2)				
	State the quark structure of the pion π^+ .	(ii)		
(1)				
at	The K ⁺ kaon is a strange particle. Give one characteristic of a strange particle that makes it different from a particle that is not strange.	(i)	(b)	
(1)				

	(ii)	One of the following equations represent a possible decay of the K ⁺ kaon.	
		$K^+ \rightarrow \pi^+ + \pi^0$	
		$K^+ \rightarrow \mu^+ + \overline{\nu_{\mu}}$	
		State, with a reason, which one of these decays is not possible.	
			(2)
(c)	Ano	ther strange particle, X, decays in the following way:	
	X	$\rightarrow \pi^- + p$	
	(i)	State what interaction is involved in this decay.	
			(1)
	(ii)	Show that X must be a neutral particle.	
			(1)
	(iii)	Deduce whether \boldsymbol{X} is a meson, baryon or lepton, explaining how you arrive at your answer.	
			(2)
	(iv)	Which particle in this interaction is the most stable?	. ,
		(Total 11 ma	(1) arks)