Raspoznavanje uzoraka Jesenski rok 8.9.2014.

Teorijska pitanja (nisam prepisala točne tekstove zadataka):

- 1. Model sustava za raspoznavanje
- 2. Perceptron kriterijska funkcija, parcijalna derivacija, k+1 korak, ... (sve)
- 3. Formalni model SVM
- 4. Dva pristupa KL transformaciji

Zadaci (doslovno prepisano s ispita):

1.
$$\omega_1 = \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$
; $\omega_2 = \left\{ \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\}$

Naći granicu između razreda postupkom perceptrona s djelomičnim prirastom. Neka je početni vektor težina $w_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, a parametar $\lambda = 1.5$. Uzorke uzimati redoslijedom kojim su napisani u zadatku.

- 2. Skup uzoraka $\left\{\begin{bmatrix} -2\\0 \end{bmatrix}, \begin{bmatrix} 5\\-1 \end{bmatrix}, \begin{bmatrix} 0\\4 \end{bmatrix}\right\}$ transformirajte iz dvodimenzionalnog u jednodimenzionalni prostor uporabom KL transformacije (PCA). Uputa: koristiti **kovarijacijsku** matricu.
- 3.Tri razreda dvodimenzionalnih uzoraka zadana su svojim matricama raspršenja, središtima i brojem uzoraka u razredu:

$$S_{1} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \quad \vec{m}_{1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad n_{1} = 2$$

$$S_{2} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \vec{m}_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad n_{2} = 2$$

$$S_{3} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \quad \vec{m}_{3} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad n_{3} = 2$$

Naći pravac koji daje optimalnu projekciju ovih uzoraka u smislu maksimizacije raspršenja između razreda i minimizacije raspršenja unutar razreda. U prostoru uzoraka nacrtati središta uzoraka i dobiveni pravac.

4. Na raspolaganju su uzorci iz dvaju razreda za koje se pretpostavlja da slijede višedimenzionalnu normalnu razdiobu.

Uzorci iz razreda ω_1 imaju središte u $\vec{m}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ i imaju kovarijacijsku matricu $C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Uzorci iz razreda ω_2 imaju središte u $\vec{m}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ i imaju kovarijacijsku matricu $C_2 = I$.

Vjerojatnost pojavljivanja uzoraka iz razreda ω_2 je dvostruko veća od vjerojatnosti pojavljivanja uzoraka iz ω_1 . Napišite jednadžbu granice između razreda koju za ovakve uzorke daje Bayesov klasifikator, i to u obliku polinoma odgovarajućeg stupnja.