a) No, logislic regression is not good choice because it is meant for classification task, not for predicting continuous values like the price of laptops

A regression model, linear regression would be better choice for this problem,

(i) Pruning in decision trees is a technique used to used to reduse the size of the tree. The purpose is to ovoid overfilting the training set by simplifying the model. This helps to generalize the model and get good performance by reducing the complexity of the model using the fro unseen data.

(i) y = ax + bx² + e is more appropriate
to fit the training doto better if the
data shows a nonlinear pattern. Other
one shows the linear Model. It
can only used for linear data set.
If data set is non linear, Model
y=ax + bx²+e provide a better fil
because it can accommo date nonlear
trends.

H(RESULT) - 0 4 los (0 A) = 0 6 log (

Machine Learning January 2024 a) No, logistic regression is not good choice because it is meant for classification task, not for predicting continuous values like the price of laptops A regression model, linear regression would be better choice for this problem, b) (i) Pruning in decision trees is a technique used to used to reduse the size of the tree. The purpose is to ovoid overfilting the training set by simplifying the model. This helps to generalize the model and get good performance by reducing the complexity of the model using the fro unseen data. H(RESULT) - 0 4 log(0,4) = 06 log(p (i) y=an +bn2 +e is more appropriate to fit the training data better if the data shows a nonlinear pattern Other one shows the linear Model Il can only used for linear data set. If data set is non linear, Model year + bn2+e provide a better fil because it can accommo date nontear trends.

(4) (1) The entropy formula is Ha) - - I pan log pan Faled Passed Br Pass Probability = H(Result) = - 0.4 log(0.4)

(in) slopt Possed failed $H(No) = -\frac{2}{3} log_{1}(\frac{2}{3}) \cdot \frac{1}{3} log_{3}(\frac{1}{3})$ = + 0.3896 + 0.5283 : 0,918 H (Yes): 1-0.918 0 = 0.082 al had (c) par 11(slepto): 2 x 0.000 + 3 0.918 · 0.5836 0 (Shall) Stadied dad Noo yes Possed faile any Coloplan Harall - 17 Colo = - 1 log, (1) x 2 | H(yes) = - 1 log, (1) - 2 log = 0.918 H (studied) ~ 2 x 1 + 3 x 0.918 20, 9508 B5 Atlas

No: All Dalance (Charles, Coate, L.	
Attended Class	
and the second second	
Pagsed	
No Yes Yes	1
Passed Failed Passed Faile	
0 (1) 1000 - (0) 2 - 10 2	
H(No) = 0 + - 1 log (1)	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1000 2 100 100 100 100 100 100	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
Hyes: - 2 log(2) - 1 log(2)	
14(6(22/2): 2 x 0 == 1 3 0 2/8 =	
H (Altended) = 0 + A XI	
H (Altended): 0+4 x 1	
= 0.84	ic :
Prised failed for F	
Gain (slept): H(Result) - It (slept)	
0.9711 - 0.5536 - (OL) H	
0.4174	
Gain (Studied) = H (Result) - H (studied)	
30,971 - 0.9508	
- 0, 0202	
8000	
	B5 Attas

l'an	No: Distance. \((n2-n1)^2 + (92-91)^2				
class 1 class 2 class 2 class 2 class 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
3 nearest 5 nearest 7 neighbour neighbour (i) Class 2					
	ii) Class 2				
	v) Class,				
	B5 Atlas				

mid point between (2,3) and (4,5)
= (3,4) slope of the line 1 Weight vector [1,1] (3, A) on the boundary line 2 1×3+1×4+6-0 bias

	No:	Pate:/				
Q	(0 c x - (0 = 1))				
(a)	$(\infty c - 1) \cdot (0 = 0)$					
(:)	(i) Batch gradient descent Stochastic gradient descent Mini balch gradient descent					
	Stochastic gradient descent 1)					
	Mini balch gradient descent	4 - Malera				
(ji)	cost function	À ()				
	J (0,,0,) - 0, -0, 2					
	we need partial derivatives					
	respect to 0, and 0,2	The				
	<u> 17.20.</u> ~ 0	traces b				
(4)	30,					
	0J 20, ~ (2)					
	20, 130 - 1) 10 by G	Deplanes				
	The gradient of J	,				
using	Matrix V J (0, 0,): 37	20,				
torm	DIO 2500	[202]				
	[302]					
using	vector $\nabla J(0,0_2) = 2J$	i + 2) i				
	form 20,	∂ O ₂				
*	= 20,	i + 20, j				
	using gradient descent $0: := 0: -\alpha \frac{\partial J}{\partial 0}$					
/						
	using 0					
	0, = 0, - a 2 J	02.000				
	20,	85 Atlas				

Q:= 0, - 0 20, O:= O. (1-20) using 2 O2:= O2 - 0 201 $O_2 := O_2 - \alpha 2 O_1$ $O_2 := O_2 (1-2\alpha)$ The update equation for gradient descent ore O. := O. (1-2 a) O2:= O2(1-2x)

	No:				
6)	Mall of				
(1)	De Bratinia grad tall somers				
(n)	Ash B; labor who switing IT				
(iii)					
	CD was a long of a frequent				
	Exercise Cotegorical Variables				
c)	Stratified sampling is technique where a				
Alsh	dataset is divided into distinct groups,				
	and samples lare taken from each group				
	proportionally				
	Treating O Option Cant Deplicate				
	In machine learning it helps ensure				
. 35	that both the training and testing				
	datasets have a similar distribution, which				
	is useful for handling imbalanced toad				
1364	to data and improving tumodel accuracy				
1	(i) les services (ii)				
(ل	Train Test Split				
208	It helps to assess how well a				
	machine learning model will generalize to new unseen data while avoiding				
	to new unseen data while avoiding				
	overfitting as to some st				
	Missing / Null Values Handling				
	Fils in or removes missing data				
	to avoid biases and improve model				
	accuracy				
	B5 Atlas				
	DI PIUSIS				

Scalling Ensures that have similar ranges, It importance for model performance Encoding Categorical Variones Converts categorical data into numerical form, allowing machine learning models to process it effectively Treating Outliers and Duplicate Duplicate ere can be see every set removing Duplicate we outliers. Median (i) rem ove improve the mode performance

	No:	Date:/
(ii)	For small data sets Anomaly Delection Fraud Detection	
1	The man Bull and the deal	
	Shoulder thought is last	and here
	Adorate special destroy	
	compensate discourse	Marie Carlo Marie
	That I do the Killianing	Continue against
	delate they are solved	
	Berger and January Daroll	at account 1
	This copy is the large of	Edwin Land
		Duill general ?
	ela Haja de de la	
	May of bitale values of	
	de over de brases and	
	William y	
		B5 Atlas

