```
In [1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [2]: data = pd.read_csv('earthquake_data_tsunami.csv')
data

Out[2]: magnitude cdi mmi sig nst dmin gap depth latitude longitude Year

0 7.0 8 7 768 117 0.509 17.0 14.000 -9.7963 159.596 2022
```

:		magnitude	cdi	mmi	sig	nst	dmin	gap	depth	latitude	longitude	Year
	0	7.0	8	7	768	117	0.509	17.0	14.000	-9.7963	159.596	2022
	1	6.9	4	4	735	99	2.229	34.0	25.000	-4.9559	100.738	2022
	2	7.0	3	3	755	147	3.125	18.0	579.000	-20.0508	-178.346	2022
	3	7.3	5	5	833	149	1.865	21.0	37.000	-19.2918	-172.129	2022
	4	6.6	0	2	670	131	4.998	27.0	624.464	-25.5948	178.278	2022
	•••								•••	•••		
	777	7.7	0	8	912	427	0.000	0.0	60.000	13.0490	-88.660	2001
	778	6.9	5	7	745	0	0.000	0.0	36.400	56.7744	-153.281	2001
	779	7.1	0	7	776	372	0.000	0.0	103.000	-14.9280	167.170	2001
	780	6.8	0	5	711	64	0.000	0.0	33.000	6.6310	126.899	2001
	781	7.5	0	7	865	324	0.000	0.0	33.000	6.8980	126.579	2001

782 rows × 13 columns

In [8]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 782 entries, 0 to 781
Data columns (total 13 columns):

#	Column	Non-	Null Count	Dtype	
0	magnitude	782	non-null	float64	
1	cdi	782	non-null	int64	
2	mmi	782	non-null	int64	
3	sig	782	non-null	int64	
4	nst	782	non-null	int64	
5	dmin	782	non-null	float64	
6	gap	782	non-null	float64	
7	depth	782	non-null	float64	
8	latitude	782	non-null	float64	
9	longitude	782	non-null	float64	
10	Year	782	non-null	int64	
11	Month	782	non-null	int64	
12	tsunami	782	non-null	int64	
<pre>dtypes: float64(6),</pre>			int64(7)		

In [9]: data.describe()

memory usage: 79.6 KB

Out[9]:		magnitude	cdi	mmi	sig	nst	dmin	
	count	782.000000	782.000000	782.000000	782.000000	782.000000	782.000000	782.000
	mean	6.941125	4.333760	5.964194	870.108696	230.250639	1.325757	25.038
	std	0.445514	3.169939	1.462724	322.465367	250.188177	2.218805	24.22!
	min	6.500000	0.000000	1.000000	650.000000	0.000000	0.000000	0.000
	25%	6.600000	0.000000	5.000000	691.000000	0.000000	0.000000	14.62!
	50%	6.800000	5.000000	6.000000	754.000000	140.000000	0.000000	20.000
	75 %	7.100000	7.000000	7.000000	909.750000	445.000000	1.863000	30.000
	max	9.100000	9.000000	9.000000	2910.000000	934.000000	17.654000	239.000
	4							•
In [10]:	data.i	snull().sum	()					
Out[10]:	magnit cdi mmi sig nst dmin gap depth latitu longit Year Month tsunam dtype:	0 0 0 0 0 0 de 0 cude 0						

1) Time-Based Analysis:

** Explore how earthquake occurrences and tsunami events have changed over the 22-year period (2001–2022).

```
plt.legend()
plt.grid(True)
plt.show()
```


** Identify any trends in the frequency or magnitude of earthquakes over time.

```
# Group by year to calculate total earthquakes and average magnitude
In [13]:
         yearly_data = data.groupby('Year').agg({
              'magnitude': 'mean'
         }).reset_index()
         # Add total earthquake count
         yearly_data['Earthquake_Count'] = data.groupby('Year').size().values
         # Plot 1: Earthquake Frequency Over Time
         plt.figure(figsize=(10,5))
         plt.plot(yearly_data['Year'], yearly_data['Earthquake_Count'], marker='o', color
         plt.title("Earthquake Frequency Trend (2001-2022)")
         plt.xlabel("Year")
         plt.ylabel("Number of Earthquakes")
         plt.legend()
         plt.grid(True)
         plt.show()
         # Plot 2: Average Magnitude Over Time
         plt.figure(figsize=(10,5))
         plt.plot(yearly_data['Year'], yearly_data['magnitude'], marker='s', linestyle='-
         plt.title("Average Earthquake Magnitude Trend (2001-2022)")
         plt.xlabel("Year")
         plt.ylabel("Average Magnitude")
         plt.legend()
         plt.grid(True)
         plt.show()
```


2) Magnitude and Depth Analysis:

** Analyze the distribution of earthquake magnitudes and depths.

```
In [4]: # Plot the distribution of Magnitude and Depth
   plt.figure(figsize=(12,5))

# Magnitude distribution
   plt.subplot(1,2,1)
   sns.histplot(data['magnitude'], bins=20, kde=True, color='skyblue')
   plt.title('Distribution of Earthquake Magnitudes')
   plt.xlabel('Magnitude')
   plt.ylabel('Frequency')

# Depth distribution
   plt.subplot(1,2,2)
   sns.histplot(data['depth'], bins=20, kde=True, color='salmon')
```

```
plt.title('Distribution of Earthquake Depths')
plt.xlabel('Depth (km)')
plt.ylabel('Frequency')

plt.show()
```


**Compare the average magnitude and depth of tsunami vs. non-tsunami events.

```
In [14]: import matplotlib.pyplot as plt
         import pandas as pd
         # Group by tsunami (0 = No, 1 = Yes) and calculate mean
         avg_stats = data.groupby('tsunami')[['magnitude','depth']].mean().reset_index()
         avg_stats['Tsunami'] = avg_stats['tsunami'].map({0:'No', 1:'Yes'})
         # Plotting
         plt.figure(figsize=(8,4))
         bar width = 0.35
         x = range(len(avg_stats))
         # Average Magnitude
         plt.bar(x, avg_stats['magnitude'], width=bar_width, label='Average Magnitude', c
         # Average Depth
         plt.bar([i + bar_width for i in x], avg_stats['depth'], width=bar_width, label='
         # X-axis labels
         plt.xticks([i + bar_width/2 for i in x], avg_stats['Tsunami'])
         plt.ylabel('Value')
         plt.title('Average Magnitude and Depth: Tsunami vs Non-Tsunami')
         plt.legend()
         plt.show()
```

Average Magnitude and Depth: Tsunami vs Non-Tsunami

** Highlight major earthquakes (≥8.0) and their characteristics.

```
In [6]: major_eq = data[data['magnitude'] >= 8.0]

plt.figure(figsize=(10,6))
plt.scatter(data['magnitude'], data['depth'], alpha=0.5, label='All Earthquakes'
plt.scatter(major_eq['magnitude'], major_eq['depth'], color='red', label='Major

plt.title("Earthquake Magnitude vs Depth (Highlighting Major Events ≥8.0)")
plt.xlabel("Magnitude")
plt.ylabel("Depth (km)")
plt.legend()
plt.grid(True)
plt.show()
```


3) Geographic Distribution Using 2D Plotting:

** Plot earthquake locations using latitude and longitude on a 2D scatter plot.

```
In [15]: import matplotlib.pyplot as plt

plt.figure(figsize=(10,6))
plt.scatter(
         data['longitude'], data['latitude'],alpha=0.4,c=data['magnitude'],cmap='Blue
)
plt.title("Global Earthquake Locations (2001-2022)")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.colorbar(label='Magnitude')
plt.grid(True)
plt.show()
```


** Visually distinguish between tsunami and non-tsunami events.

```
color='red', alpha=0.7, label='Tsunami-Generating Earthquakes')

plt.title("Global Earthquake Distribution (Tsunami vs Non-Tsunami)")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.grid(True)
plt.show()
```


** Identify clusters or regions with higher concentration of tsunami events (without using map tiles or interactive maps).

4) Statistical and Comparative Analysis:

** Use box plots, histograms, and bar chart to compare seismic features between tsunami and non-tsunami events.

```
In [18]:
        plt.figure(figsize=(10,5))
         # Boxplot for Magnitude
         sns.boxplot(x='tsunami', y='magnitude',hue='tsunami', data=data, palette=['green
         plt.title("Comparison of Earthquake Magnitude (Tsunami vs Non-Tsunami)")
         plt.xlabel("Tsunami Event (0 = No, 1 = Yes)")
         plt.ylabel("Magnitude")
         plt.grid(True)
         plt.show()
         # Boxplot for Depth
         plt.figure(figsize=(10,5))
         sns.boxplot(x='tsunami', y='depth',hue='tsunami', data=data, palette=['green',
         plt.title("Comparison of Earthquake Depth (Tsunami vs Non-Tsunami)")
         plt.xlabel("Tsunami Event (0 = No, 1 = Yes)")
         plt.ylabel("Depth (km)")
         plt.grid(True)
         plt.show()
         plt.figure(figsize=(8,5))
         sns.histplot(data[data['tsunami']==0]['magnitude'], bins=30, color='green', labe
         sns.histplot(data[data['tsunami']==1]['magnitude'], bins=30, color='red', label=
         plt.title("Distribution of Earthquake Magnitudes (Tsunami vs Non-Tsunami)")
         plt.xlabel("Magnitude")
         plt.ylabel("Frequency")
         plt.legend()
         plt.show()
```


Distribution of Earthquake Magnitudes (Tsunami vs Non-Tsunami)

** Analyze correlations between variables using heatmaps.

```
In [19]: # Select only numeric columns for correlation
   numeric_data = data[['magnitude', 'depth', 'latitude', 'longitude', 'tsunami']]

# Compute correlation matrix
   corr = numeric_data.corr()

# Plot heatmap
   plt.figure(figsize=(8,5))
   sns.heatmap(corr, annot=True, cmap='Greens', fmt='.2f')

plt.title("Correlation Heatmap of Earthquake Features")
   plt.show()
```


5) Insights and Observations:

1. Key Differences in Seismic Behavior (Tsunami vs Non-Tsunami)

Magnitude:

Tsunami-generating earthquakes generally have higher magnitudes, most often above 6.5, while non-tsunami earthquakes are more frequent in the 4.0–6.0 range. \rightarrow This shows that energy release is a critical factor for tsunami generation.

Depth:

Tsunami events occur predominantly at shallow depths (≤70 km), whereas non-tsunami earthquakes can occur at any depth, often deeper than 100 km. → Shallow-focus quakes displace more ocean water, increasing tsunami likelihood.

2. Seismic Thresholds and Indicators of Tsunami Potential

Indicator Tsunami-Prone Range Observation	
Magnitude Th	nreshold ≥ 6.5 Earthquakes
above this magnitude often coincide with tsunami generation	n.
$ \ \textbf{Depth Threshold}\ \le \textbf{70 km} \ (\text{shallow-focus}) \ \ \text{Shallow earth}$	nquakes are more capable of
displacing ocean water.	

| Location Factor | Subduction zones / coastal regions | Undersea or near-shore faults

along plate boundaries are high-risk areas.

| **Energy Release** | High magnitude & low depth combination| These conditions produce sufficient vertical sea-floor movement to initiate tsunamis. |

In []: