K-Nearest Neighbors (KNN) Algorithm in Python and R

Lazy learning algorithm

What is KNN?

Introduction to KNN

Introduction to KNN

Introduction to KNN

- Observe the nature of nearest neighbours
- Lazy Learning Algorithm
- Simplest Machine Learning Algorithm

Applications of KNN

Enable fullscreen

KNN can be used for both classification and regression techniques but it is generally used for classification problems.

Examples of real-life use of KNN come in the fields of-

- 1. Microbiology(for classifying of cells),
- 2. Marketing(for customer segmentation)
- 3. Credit Fraud Analytics and many more...

Steps to build a KNN model

Building Knn model

- Plot the training dataset
- Locate the new "test" instance
- Calculate distance from all train data points

Building Knn model

Classification

1100010...

New Instance = Mode

Regression

1 99 22 53 97 ...

New Instance = Mean

Determining right value of k

Determining value of K

How to Calculate distance?

How to Calculate Distance

- Manhattan Distance
- Euclidean Distance
- · Minkowiski Distance
- Hamming Distance

Manhattan Distance

Sum of Absolute differences between the two points, across all dimensions

$$d = |p_1 - q_1| + |p_2 - q_2|$$

Euclidean Distance

The Shortest distance between two points

$$d = (b^2 + a^2)^{1/2}$$

$$d = ((p_1 - q_1)^2 + (p_{2b} - q_2)^2)^{1/2}$$

How to Calculate Distance

• Manhattan Distance
$$D_{m} = \sum_{i=1}^{n} |\mathbf{p_{i}} - \mathbf{q_{i}}|$$
• Euclidean Distance
$$D_{e} = \left[\sum_{i=1}^{n} (\mathbf{p_{i}} - \mathbf{q_{i}})^{2}\right]^{1/2}$$
• Euclidean Distance

$$D_{\mathbf{e}} = \left(\sum_{i=1}^{n} (\mathbf{p}_{i} - \mathbf{q}_{i})^{2}\right)^{1/2}$$

$$D = \left(\sum_{i=1}^{n} |\mathbf{p}_{i} - \mathbf{q}_{i}|^{k}\right)^{1/2}$$

How to Calculate Distance

• Manhattan Distance
$$D_{m} = \sum_{i}^{m} |p_{i} - q_{i}|$$

$$D_{\mathsf{m}} = \sum_{i=1}^{n} |\mathsf{p}_{i} - \mathsf{q}_{i}|$$

• Euclidean Distance
$$D_e = \left(\sum_{i=1}^n (p_i - q_i)^2\right)^{1/2}$$

• Minkowiski Distance
$$D = \left(\sum_{i=1}^{n} |\mathbf{p}_{i} - \mathbf{q}_{i}|^{p}\right)^{1/p}$$

Issues with distance based algorithms

Issues with Distance Based Algorithms

- Takes the distance between points into account
- Fails when variables have different scales

Relative Distance

Hamming Distance

Total number of differences between two strings of identical length

ID	Gender	Marital Status	Employment Status	
Α	Male	Married	Self Employed	
В	Female	Married	Salaried	
С	Male	Unmarried	Unemployed	

ID	Gender	Marital Status	Employment Status	Strings
Α	0	0	1 -,	001
В	1	0	2 -	102
С	0	1	3	013

-

Hamming Distance

Total number of differences between two strings of identical length

ID	Gender	Marital Status	Employment Status
Α	Male	Married	Self Employed
В	Female	Married	Salaried
С	Male	Unmarried	Unemployed

ID	Gender	Marital Status	Employment Status	Strings
Α	0	0	1	001
В	1	0	2 2	102
С	0	1	3	0 1 3