

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Show that the derivative f'(x) exists for any $x \in \mathbb{R}$, but $f' \colon \mathbb{R} \to \mathbb{R}$ is not a continuous function.

• for
$$x=0$$
, $\lim_{k\to 0} \frac{f(x)-f(x)}{x} = \lim_{k\to 0} \frac{x^2 \sin(\frac{1}{x})}{x} = \lim_{k\to 0} x \sin(\frac{1}{x}) = 0$

Consider
$$(x_n = \frac{1}{2n\pi})_{n \in \mathbb{N}}$$
, $|T_n x_n = 0$, but: $|T_n f(x_n) = -1 + f'(0)$.
(In fact, $|T_n f(x)|$ doesn't exist.)

- (2) We say a function $f:(a,b) \to \mathbb{R}$ is strictly increasing if f(x) < f(y) for any a < x < y < b. Suppose f is differentiable on (a,b).
 - (a) Prove or disprove: If f is strictly increasing, then f'(x) > 0 for any $x \in (a, b)$.
 - (b) Prove or disprove: If f'(x) > 0 for any $x \in (a, b)$, then f is strictly increasing. (Hint: Mean value theorem.)

16) True:
$$\forall a < x < y < b$$
, by MVT, $\exists x < c < y$
sol. $f(c) = \frac{f(y) - f(x)}{y - x}$

$$f(y) > f(x)$$
.

(3) Prove that the equation $e^x = 1 - x$ has a unique solution in \mathbb{R} .

 $f(x) = e^{x} + x - 1$ has a zero at x = 0. Suppose f(x) = 0 for some $x \neq 0$

By Relles thm, 3 yto st. fly =0-11

Contradiction.

(4) Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying $|f(x) - f(y)| \le |x - y|^2$ for any $x, y \in \mathbb{R}$. Prove that f is a constant function.

Pf:
$$\forall x_0, \chi \in \mathbb{R}$$
, $\left| \frac{f_{(x)} - f_{(x_0)}}{\chi - \kappa_0} \right| \leq \frac{\left| \chi - \chi_0 \right|^2}{\left| \chi - \kappa_0 \right|} = \left| \chi - \kappa_0 \right|.$

- (5) Let $f:(a,b)\to\mathbb{R}$ be an unbounded differentiable function. Prove that the derivative $f':(a,b)\to\mathbb{R}$ is also unbounded.
- · Choose any point CE (a,b).
- STace f is unbounded on La,b), YM70, 3 de (a,b).
- · By MVT, Je between C&d sit.

$$|f(u)| = \left|\frac{f(d) - f(u)}{d - c}\right| > \frac{|f(a)| - |f(c)|}{b - a} > M.$$