0.1 导数的几何意义

命题 0.1

过 z_0 作一条光滑曲线 γ ,它的方程为

$$z = \gamma(t), \ a \leqslant t \leqslant b.$$

设 $\gamma(a) = z_0$, 且 $\gamma'(a) \neq 0$. 设w = f(z) 把曲线 γ 映为 σ , 它的方程为

$$w = \sigma(t) = f(\gamma(t)), \ a \le t \le b.$$

则 σ 在 $w_0 = f(z_0)$ 处的切线与正实轴的夹角为

$$\operatorname{Arg}\sigma'(a) = \operatorname{Arg}f'(z_0) + \operatorname{Arg}\gamma'(a),$$

或者写为

$$Arg\sigma'(a) - Arg\gamma'(a) = Argf'(z_0). \tag{1}$$

 $Arg f'(z_0)$ 就称为映射 w = f(z) 在点 z_0 处的转动角.

 $\stackrel{\bigcirc}{\mathbf{Y}}$ 笔记 这说明像曲线 σ 在 w_0 处的切线与正实轴的夹角与原曲线 γ 在 z_0 处的切线与正实轴的夹角之差总是 $\mathrm{Arg}f'(z_0)$, 而与曲线 γ 无关.

证明 由定义??可知, γ 在点 z_0 处的切线与正实轴的夹角为 $Arg\gamma'(a)$. 由于 $\sigma'(a) = f'(\gamma(a))\gamma'(a) = f'(z_0)\gamma'(a) \neq 0$, 所以再结合定理??(1) 可得 σ 在 $w_0 = f(z_0)$ 处的切线与正实轴的夹角为

$$\operatorname{Arg}\sigma'(a) = \operatorname{Arg}f'(z_0) + \operatorname{Arg}\gamma'(a),$$

定义 0.1

若 w = f(z) 是定义域为 D 的复变函数, 并且在 z_0 处满足: 过 z_0 的任意两条曲线 C_1 , C_2 经映射后得到的曲线 Γ_1 , Γ_2 , 其夹角 (包括大小和方向) 与原曲线 C_1 , C_2 的夹角相等. 则称 z_0 为 f(z) 的保角点, 也称 f 在 z_0 点是保角的. 若 f(z) 在 D 内所有点都是保角的, 则称 f(z) 是 D 上的保角变换.

 $\dot{\mathbf{L}}$ 夹角的"方向"指从曲线 C_1 到 C_2 的旋转方向, 与映射后从 Γ_1 到 Γ_2 的旋转方向一致, 即保持"定向".

定理 0.1

全纯函数在其导数不为零的点处是保角的.

证明 如果过 z_0 点作两条光滑曲线 γ_1, γ_2 , 它们的方程分别为

$$z = \gamma_1(t), \ a \leqslant t \leqslant b \approx z = \gamma_2(t), \ a \leqslant t \leqslant b,$$

且 $\gamma_1(a) = \gamma_2(a) = z_0(\mathbf{N} \mathbf{1}(a))$. 映射 w = f(z) 把它们分别映为过 w_0 点的两条光滑曲线 σ_1 和 $\sigma_2(\mathbf{N} \mathbf{1}(b))$,它们的方程分别为

$$w = \sigma_1(t) = f(\gamma_1(t)), \ a \leq t \leq b$$
 $\Leftrightarrow w = \sigma_2(t) = f(\gamma_2(t)), \ a \leq t \leq b.$

由(1)式可得

$$\operatorname{Arg}\sigma_1'(a) - \operatorname{Arg}\gamma_1'(a) = \operatorname{Arg}f'(z_0) = \operatorname{Arg}\sigma_2'(a) - \operatorname{Arg}\gamma_2'(a),$$

即

$$\operatorname{Arg}\sigma_2'(a) - \operatorname{Arg}\sigma_1'(a) = \operatorname{Arg}\gamma_2'(a) - \operatorname{Arg}\gamma_1'(a). \tag{2}$$

1

上式左端是曲线 σ_1 和 σ_2 在 w_0 处的夹角 (两条曲线在某点的夹角定义为这两条曲线在该点的切线的夹角), 右端是曲线 γ_1 和 γ_2 在 z_0 处的夹角.(2)式说明, 如果 $f'(z_0) \neq 0$, 那么在映射 w = f(z) 的作用下, 过 z_0 点的任意两条光滑曲线的夹角的大小与旋转方向都是保持不变的.

推论 0.1

设 w = f(z) 是定义域为 D 的复变函数, 则 f 在 z_0 上是保角的的充要条件是 f(z) 在 D 上全纯且 $f'(z_0) \neq 0$.

证明 由定理 0.1立得. □

定义 0.2 (伸缩率)

过 z_0 作一条光滑曲线 γ ,它的方程为

$$z = \gamma(t), \ a \leqslant t \leqslant b.$$

设 $\gamma(a) = z_0$, 且 $\gamma'(a) \neq 0$. 设w = f(z) 把曲线 γ 映为 $\sigma(\mathbb{Z}^2)$, 它的方程为

$$w = \sigma(t) = f(\gamma(t)), \ a \le t \le b.$$

称 $|f'(z_0)|$ 为 f 在 z_0 处的**伸缩率**.

豪 笔记 由于

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0),$$

所以,当 Ζ 沿着 γ 趋于 Ζ0 时,有

$$\lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|} = \lim_{z \to z_0} \frac{|w - w_0|}{|z - z_0|} = |f'(z_0)|.$$

这说明像点之间的距离与原像之间的距离之比只与 20 有关, 而与曲线 γ 无关.

