

OVNのご紹介

v1.0

2019-11-01

Manabu Ori @orimanabu

注意

● この資料は2019年11月1日時点の情報を元に作成しました

OVNとは

OVN (Open Virtual Network) とは

- 複数ハイパーバイザ上のOVSにまたがった仮想ネットワークを作る仕組み
- OVS (Open vSwitch) のサブプロジェクトとして、2015年に始動
 - 最初のリリース: 27 Sep 2016 (OVS v2.6)
 - OpenStack Neutron Plugin (networking-ovn) の最初のリリース: 06 Oct 2016 (Newton)
 - OVS v2.11からリポジトリが分離 https://github.com/ovn-org
- オーバーレイネットワークを論理ネットワークとして抽象化

OVNの特徴

- データベース操作によるコンフィギュレーション
- Logical Flowによる設定
 - 物理ネットワーク(OVS)と仮想ネットワークを分離
 - だいたいOpenFlowと同じ気分
 - フローテーブルのパイプライン、フローのmatchとaction
- ハイパーバイザ間のカプセリングはGeneve,STT
- 分散L2, L3処理
- NAT、DHCP、ロードバランサのネイティブ実装
- L2, L3ゲートウェイ
- 他のCMS (Cloud Management System) と連携することを想定したデザイン
 - OpenStack, Kubernetes, Docker, Mesos, oVirt, ...

	OVS	OVN
対象	1台のホスト内の仮想スイッチ	複数のホストにまたがる仮想ネットワーク
設定	OpenFlow + OVSDB	Logical Flow + OVSDB

Open vSwitch (OVS) の課題

- OVSは超強力、だけどOpenFlowでSDN環境を構築するのは大変
 - 「現時点では、低レベルのフローロジックを直接作り込む必要があるなど、導入の敷居はあまり低くありません」
 - 技術文書 OpenFlowの概要, VA Linux Systems Japan
 - 「プログラミング言語に例えるとアセンブラ、もしくは標準ライブラリがないC言語」
 - マスタリングTCP/IP OpenFlow編, オーム社
- OVSは超強力、だから
 - OVSネイティブな機能を活用するとより効率的に処理できるはず
 - 現状はOVS, Network Namespace, iptables, etcを組み合わせて様々な機能を実現している
- 仮想化/コンテナ基盤のソフトウェア製品それぞれでOpenFlowの作り込みをするのはつらい
 - OpenStack
 - Kubernetes
 - o oVirt, ...

- Northbound DB
 - o CMS (Cloud Management System) との連携をする部分
 - 論理ネットワークの構成、あるべき姿 (desired state) を格納するデータベース
 - Logical Port, Logical Switch, Logical Router, ...
- Southbound DB
 - 現在の状態 (runtime state) を格納するデータベース
 - 論理ポート・スイッチ・ルータと、物理要素とのマッピング
 - o runtime stateと論理ネットワークを元にしたLogical Flowのパイプライン
- ovn-northd
 - Northbound DBの論理構成をSouthbound DBのruntime stateに変換するデーモン
 - 論理ネットワークの構成を元にLogical flowを生成
- ovn-controller
 - 各ハイパーバイザノードで稼働
 - Logical flowからPhysical flowを生成
 - e.g. VIF UUID → OpenFlow port
 - Physical flowをハイパーバイザ上のOVSに注入

Logical Table Flow Structure - Logical Switch Datapaths

Ingress

Flow category Table Admission Control and Ingress Port Security - L2 Ingress Port Security - IP Ingress Port Security - Neighbor discovery 2 from-Iport Pre-ACLs 3 Pre-LB 4 Pre-stateful 5 from-Iport ACLs 6 from-lport QoS marking from-lport QoS meter 8 9 LB Stateful 10 ARP/ND responder 11

Table	Flow category
12	DHCP option processing
13	DHCP responses
14	DNS Lookup
15	DNS Responses
16	Destination Lookup

Egress

Table	Flow category
0	Pre-LB
1	to-Iport Pre-ACLs
2	Pre-stateful
3	LB
4	to-Iport ACLs
5	to-lport QoS marking
6	to-Iport QoS meter
7	Stateful
8	Egress Port Security - IP
9	Egress Port Security - L2

Logical Table Flow Structure - Logical Router Datapaths

Ingress

Table	Flow category
0	L2 Admission Control
1	IP Input
2	DEFRAG
3	UNSNAT
4	DNAT
5	IPv6 ND RA option processing
6	IPv6 ND RA responder
7	IP Routing
8	ARP/ND Resolution
9	Gateway Redirect
10	ARP Request

Egress

Table	Flow category
0	UNDNAT
1	SNAT
2	Egress Loopback
3	Delivery

OVNの手動構成

- OVSDBの操作
 - ovsdb-tool
 - ovsdb-client
- Logical Switchの作成
 - ovn-nbctl lswitch-add SWITCH_NAME
- Logical Portの作成
 - ovn-nbctl lport-add SWITCH_NAME PORT_NAME
- Logical PortにMACアドレスを設定
 - ovn-nbctl lport-set-address PORT_NAME MAC_ADDRESS
- Logical PortとPhysical Portの紐付け
 - ovs-vsctl add-port BRIDGE INTERFACE -- set Interface INTERFACE external_ids:iface-id=PORT_NAME

1

▶ OpenStack, Kubernetes等と連携するときは、この辺りはNeutron ML2 driver/CNI Pluginがやってくれます

OpenStack Integration

OpenStackとの連携

Neutron ML2 driver: networking-ovn

ML2/OVS

| DB | rabbitmq | DHCP agent |
| Adv. Services |

ML2/OVN

NeutronとOVNの構成要素のマッピング

NEUTRON	OVN
router	logical router + gateway_chassis (scheduling)
network	logical switch + dhcp_options
port	logical switch port (+ logical router port)
security group	Port_Group + ACL + Address_Set
floating ip	NAT (dnat_snat entry type)
(in octavia WIP!)	Load_Balancer

networking-ovnの特徴

- L2
 - ARP responderの機能
- L3
 - OVNでIPv4/IPv6ルーティングのネイティブサポート
 - L3 agentは必要ない
 - 分散ルータ
 - namespaceを渡る必要がないので効率的
- Security Group
 - カーネルのconntrackモジュールをOVSから直接利用
 - o Neutronの firewall_driver = openvswitch と同じ動き
- DHCP
 - ovn-controllerがDHCPの機能を持つ
 - dhcp agentは必要ない
 - dnsmasqがたくさん地獄にならない
 - シンプルなユースケースのみ想定

networking-ovnの特徴

Metadata

- 今の実装では namespace + haproxy
- metadata-agentとneutron-serverとの 通信は不要
- Octavia
 - OVNのOctavia driver開発中
 - Amphora VMが必要なくなる

Kubernetes Integration

Kubernetesとの連携

- OVN用のCNIプラグイン: ovn-kubernetes https://github.com/ovn-org/ovn-kubernetes
- 他のCNIプラグインとの主な違い
 - Serviceオブジェクトは基本的にOVSの機能で実現している
 - Service → PodのDNAT
 - Service → 複数Podのロードバランス
 - Network Policyの制御はOVSで実現
 - その他はだいたい従来のCNIプラグインと同じ
 - 内部DNSは今のところCoreDNSを使う前提になっている...ように見える

ovn-kubernetes 物理構成

-A POSTROUTING -s 169.254.33.0/24 -j MASQUERADE

netes 論理ネットワーク

ovn-kubernetes 物理構成

OVNの今後

- Multi master OVSDB Server Clustring
- スケーラビリティ改善 (特にOVSDB)
- BPF/DPDK Datapath
- Service Function Chaining
- Red Hatの製品
 - Red Hat OpenStack Platform 15 (Stain)
 - OpenStackの製品版
 - OVNがデフォルトのNeutron ML2ドライバ
 - Red Hat OpenShift Container Platform 4.2
 - Kubernetesの製品版
 - 4.2でTech Preview、次かその次くらいで正式サポート→デフォルトのCNIプラグイン
 - Red Hat Virtualization
 - 4.2以降でOVNサポート

参考文献

- ovn-architecture(7) http://www.openvswitch.org/support/dist-docs/ovn-architecture.7.txt
- ovn-nb(5) http://www.openvswitch.org/support/dist-docs/ovn-nb.5.txt
- ovn-sb(5) http://www.openvswitch.org/support/dist-docs/ovn-sb.5.txt
- ovn-northd(8) http://www.openvswitch.org/support/dist-docs/ovn-northd.8.txt
- ovn-controller(8) http://www.openvswitch.org/support/dist-docs/ovn-controller.8.txt
- OVSConの資料 http://www.openvswitch.org/support/ovscon2019/

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

