Aprendizaje por refuerzo

Clase 15: Optimización Bayesiana

Antes de empezar...

- Dudas tarea 3
- Dudas proyecto
- Dudas examen

Para el día de hoy...

- RL para optimización
 - Optimización Bayesiana
 - Optimización combinatoria

Recordando el bandido multi-brazo

- Es una tupla $(\mathcal{A}, \mathcal{R})$
- \mathcal{A} es un conjunto de m acciones
- $\mathcal{R}^a(r) = \mathbb{P}[r|a]$ es una distribución de probabilidad desconocida sobre recompensas
- En cada paso t el agente selecciona una acción $a_t \in \mathcal{A}$
- El ambiente genera una recompensa $r_t {\sim} \mathcal{R}^{a_t}$
- El objetivo es maximizar la recompensa cumulativa $\sum_{\tau=1}^{t} r_{\tau}$

¿Qué pasa si tenemos un número infinito de brazos?

La idea

Transition data

Possible transition models

Model uncertainty

Procesos Gaussianos

- Son distribuciones Gaussianas sobre funciones
- Dados datos $D = \{(x_i, f_i), i = 1: N\}$, donde $f_i = f(x_i)$
- Dado el conjunto de entrenamiento, queremos predecir la función f_{st}

$$\binom{f}{f_*} \sim \mathcal{N} \left(\binom{\mu}{\mu_*}, \binom{K}{K_*^T}, \binom{K}{K_{**}} \right)$$

- Donde $K = \kappa(X, X)$ es $N \times N$, $K_* = \kappa(X, X_*)$ es $N \times N_*$ y $K_{**} = \kappa(X_*, X_*)$ es $N_* \times N_*$
- $\kappa(x, x') = \sigma_f^2 \exp(-\frac{1}{2\ell^2}(x x')^2)$
- $p(f_*|X_*,X,f) = \mathcal{N}(f_*|\mu_*,\Sigma_*)$
- $\mu_* = \mu(X_*) + K_*^T K^{-1} (f \mu(X))$
- $\Sigma_* = K_{**} K_*^T K^{-1} K_*$

Aprendiza activo con GPs

Algunas opciones para implementación

Scikitlearn (https://scikit-learn.org/)

Gpytorch (https://gpytorch.ai/)

Regresión

Aplicaciones

Diseño experimental

Optimización

Optimización Bayesiana

- Desde t = 1, ...
 - $x_t = \arg\max_{x} u(x|D_{1:t-1})$
 - Muestrear la función objetivo $y_t = f(x_t) + \epsilon_t$
 - Aumentar los datos $D_{1:t} = \{D_{1:t-1}, (x_t, y_t)\}$
 - Actualizar el modelo

Función de adquisición

- $\mu(x) + \kappa \sigma(x)$
- Probabilidad de mejora
- UCB
- Muestreo de Thompson

Una aplicación especial: configuración automática de algoritmos

- Los algoritmos de aprendizaje suelen tener varios parámetros libres
 - Aprendizaje
 - Capas ocultas
 - Tamaño de entrada
 - Capas a usar
 - Tamaño de población
 - Cruza

Algunos enfoques relevantes

iRace [López-Ibañez et al. 2011] ParamILS [Hutter et al., 2007, 2009]

SMAC [Hutter et al., 2011] EVOCA [Riff & Montero, 2013]

Enfoque de racing

- Se inicia con un conjunto de candidatos
- Se considera un conjunto de instancias
- Se evalúa a los candidatos secuencialmente
- Se descartan a los candidatos inferiores (si existe suficiente evidencia)
- Se repite el procedimiento hasta encontrar un ganador o agotar los recursos

Algoritmo F-Race

- Pruebas estadísticas para encontrar diferencias entre configuraciones
 - Friedman de dos vías
- Si la prueba rechaza H_0 , se realiza la comparación por pares para la mejor configuración
- El método de Racing selecciona la mejor configuración e independiente de la forma en que las configuraciones hayan sido muestreadas

Iterated race

- Muestrear las configuraciones de una distribución inicial
- Mientras no se cumpla condición de paro
 - Aplicar race
 - Modificar distribución de muestreo
 - Muestrear configuraciones
- http://iridia.ulb.ac.be/irace

Otros enfoques

ParamILS

- Búsqueda local en el espacio de configuración
- Requiere discretización de parámetros numéricos
- http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

SMAC

- Proceso de búsqueda asistido por modelos surrogados
- Muy buenos resultados para espacios con alta dimensionalidad
- http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

EVOCA

- Utiliza un método poblacional para ajuste de parámetros
- Realiza un proceso de optimización bajo ruido en cada paso

Problemas de optimización combinatoria

• Sea V un conjunto finito y $f\colon 2^V\to \mathbb{R}$, un problema de optimización combinatoria se define como

$$\min_{x \in 2^V} f(x)$$

• x^* es el óptimo del problema si

$$f(x^*) \le f(x) \forall x \in 2^V$$

Comentarios para problemas combinatorios

- Problemas de optimización donde las entradas son permutaciones
 - Problema del viajero
 - Problema de la mochila
 - Cobertura de vértices
 - Problema de ruteo de paquetes en redes/communication network routing problema
 - Muchos otros
- Normalmente NP-completos

Resolvamos un problema para uno de mis clientes...

- Nuestro cliente tiene una bolsa que soporta un peso muy muy grande $\mathcal C$ (pero no infinita)
- Hay N regalos y en la bolsa quiere llevar tantos regalos como le sea posible
- Cada regalo tiene un peso asociado w_i y un valor de alegría v_i
- Nuestro cliente quiere maximizar la alegría que traerán dichos regalos sin sobrepasar la capacidad de la bolsa

$$\max \sum_{i=1}^{N} v_i x_i$$

Tal que $\sum_{i=1}^{N} w_i x_i \leq C$

- ¡Existen 2^N opciones!
- Para 100 regalos existen 1.2676506e+30 opciones

Colonia de hormigas

- Esta basado en el comportamiento para búsqueda y provisión de alimentos realizando la exploración desde el nido
- Las hormigas dejan un rastro de feromona que puede ser detectado por el resto de la colonia
- Se trata de un algoritmo constructivo
- Particularmente útil en problemas que acepten una representación vía grafo

Algoritmo

 Se mantiene una matriz de feromona que indica la fortaleza de la conexión entre dos nodos del grafo

$$\tau_{ij}(t+1) = (1-\rho)\tau_{ij}(t) + \Delta\tau_{ij}(t+1)$$

$$\Delta\tau_{ij}(t+1) = \sum_{k=1}^{|ants|} \Delta^k\tau_{ij}(t)$$

$$\Delta^k\tau_{ij}(t) = \frac{1}{L_k}$$

 Cada hormiga construye una solución y cada paso el siguiente forma

$$P_{ij}(k) = \begin{cases} \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum_{h \in \mathcal{C}} \tau_{ih}^{\alpha} \eta_{ih}^{\beta}} & j \in \mathcal{C} \\ o & de \ lo \ contrario \end{cases}$$

ThompsonSamplingInBayesianRL(s,b)

Repeat

Sample
$$\theta_1, ..., \theta_k \sim \Pr(\theta)$$

 $Q_{\theta_i}^* \leftarrow solve(MDP_{\theta_i}) \forall i$
 $\hat{Q}(s, a) \leftarrow \frac{1}{k} \sum_{i=1}^k Q_{\theta_i}^*(s, a) \ \forall a$
 $a^* \leftarrow \operatorname{argmax}_a \hat{Q}(s, a)$
Execute a^* and receive r, s'
 $b(\theta) \leftarrow b(\theta) \Pr(r, s'|s, a^*, \theta)$
 $s \leftarrow s'$

RL profundo para Optimización combinatoria

- Reformular el problema en términos de un MDP
- Definir una codificación de los estados a los reales (aproximación de la función Q o de la política)
- Utilizar un algoritmo de RL para aprender la codificación y la política
- Profit

El flujo

Opciones para el codificador

- Redes de grafos convolucionales (GCN)
- Redes de grafos de atención (GAT)
- Redes de isomorfismos de grafos (GIN)
- Redes de estructuras a vectores (S2V)

Algunos trabajos

Approach	oroach Searching solution		Training		
	Joint	Constructive	Encoder	RL	
Bello et al. (2017)	No	Yes	Pointer network	REINFORCE with baseline	
Khalil et al. (2017)	No	Yes	S2V	DQN	
Nazari et al. (2018)	No	Yes	Pointer network with convolutional encoder	REINFORCE (TSP) and A3C (VRP)	
Deudon et al. (2018)	No	Yes	Pointer network with attention encoder	REINFORCE with baseline	
Kool et al. (2019)	No	Yes	Pointer network with attention encoder	REINFORCE with baseline	
Emami and Ranka	No	No	FF NN with Sinkhorn layer	Sinkhorn policy gradient	
(2018)					
Cappart et al. (2021)	Yes	Yes	GAT/Set transformer	DQN/PPO	
Drori et al. (2020)	Yes	Yes	GIN with an attention decoder	MCTS	
Lu et al. (2020)	Yes	No	GAT	REINFORCE	
Chen and Tian	Yes	No	LSTM encoder + classifier	Q-Actor–Critic	
(2019)					

Comparaciones

Algo	Article	Method	Average tour length		
			N = 20	N = 50	N = 100
RL	Lu et al. (2020)		4.0	6.0	8.4
	Kool et al. (2019)	REINFORCE	3.8	5.7	7.9
	Deudon et al. (2018)		3.8	5.8	8.9
	Deudon et al. (2018)	REINFORCE+2opt	3.8	5.8	8.2
	Bello et al. (2017)	A3C	3.8	5.7	7.9
	Emami and Ranka (2018)	Sinkhorn policy gradient	4.6	-	-
	Helsgaun (2017)	LK-H	3.8	5.7	7.8
	Perron and Furnon (2019)	OR-Tools	3.9	5.8	8.0

Para la otra vez...

• Otros temas avanzados

