算法基础第二次作业

艾语晨

2020年10月18日

目录

1	算法	法基础第二次作业															2								
	1.1	堆排序	; .																						2
	1.2	快速排	脖																						2
		(a)	递归	日深度	: 																				2
		(b)	更三	平衡的	概3	ž																			2

第1次作业 算法基础第二次作业

第1.1题 堆排序

不妨设最终要求升序排列。那么需要构建一个最大堆。对于一组升序排列的数据,Build-Max-Heap 过程的时间复杂度为O(n),而每一次调用Max-Heapify的时间为 $O(\lg n)$,共调用n-1次,故时间复杂度为 $O(n \lg n)$ 。

对于一组降序排列的数据,BUILD-MAX-HEAP 过程的时间复杂度为 O(n),而每一次调用 MAX-HEAPIFY 的时间为 $O(\lg n)$,共调用 n-1 次,故时间复杂度为 $O(n \lg n)$ 。

第1.2题 快速排序

快速排序的时间复杂度递归式为:

$$T(n) = T((1 - \alpha)n) + T(\alpha n) + cn$$

(a) 递归深度

证明. 叶节点的最小深度在所有层选择均为 $T(\alpha n)$ 分支时得到,设深度为 x_{\min} ,则有 $\alpha^{x_{\min}} n = 1$,故 $x_{\min} = -\log_{\alpha} n = -\lg n/\lg \alpha$ 。最大深度在所有层的选择均为 $T((1-\alpha)n)$ 分支时取到,设深度为 x_{\max} ,则有 $(1-\alpha)^{x_{\max}} n = 1$,故 $x_{\max} = -\log_{\alpha} n = -\lg n/\lg(1-\alpha)$

(b) 更平衡的概率

证明. 设新的划分为 1-x:x,则它的 Partition 产生比 $1-\alpha:\alpha$ 更平衡等价于 $|\frac{1}{2}-x|<\frac{1}{2}-\alpha$,即 $\alpha< x<1-\alpha$,即概率为 $1-2\alpha$