Integral calculus 7th February 2006

Definition 1.

a.
$$\int_a^a f(x) dx = 0$$

b. $\int_a^b f(x) dx = -\int_b^a f(x) dx$

δ

- Theorem 1.

 a. $\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$. And if k = -1, then $\int_{a}^{b} -f(x) dx = -\int_{a}^{b} f(x) dx$ b. $\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$ c. If $f(x) \geq g(x)$ on [a, b], then $\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx$ Let g(x) = 0. Then, $f(x) \geq 0$ on [a, b]implies $\int_a^b f(x) \, dx \ge 0$ d. If $\max f$ and $\min f$ are the maximum and minimum values of f on [a,b], then

$$\min f \cdot (b-a) \le \int_a^b f(x) \, dx \le \max f \cdot (b-a)$$

e. If f if integrable on the intervals between a, b and c, then

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

δ

Theorem 2 is called 2.

Theorem 2. If f is continuous on the closed innterval [a,b], then at some point c in the interval

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$

δ

Theorem 3. The average- or mean value of an integrable function f on [a,b] is

$$\frac{1}{b-a} \int_a^b f(x) \, dx$$

δ

Theorem 4. If f has a constant value c on [a, b], then

$$\int_a^b f(x) dx = \int_a^b c dx = c(b-a)$$

Theorem 5. If f is continuous on [a,b], then the function $F(x) = \int_a^x f(t) dt$ has a derivative at every point on [a, b] and

$$\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

Theorem 6. If f is continuous at every point of [a, b] and F is an antiderivative of f on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

δ

Bibliography

George B Thomas, Jr and Ross L Finney. Calculus and analytic geometry. 8th, 1992

Business Mathematics, Integral calculus -1- From 6 February 2006, as of 23th February, 2006