What if the sample is not from a normal distribution? In the case that n is large, we can say that

$$W(X_1,X_2,\cdots,X_n)=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$$

is approximately standard normal. Therefore, we accept $H_0: \mu = \mu_0$ if

$$\left| rac{\overline{X} - \mu_0}{S/\sqrt{n}}
ight| \leq z_{rac{lpha}{2}},$$

and reject it otherwise (i.e., accept $H_1: \mu \neq \mu_0$).

Let us summarize what we have obtained for the two-sided test for the mean.

Table 8.2: Two-sided hypothesis testing for the mean: $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$.

Case	Test Statistic	Acceptance Region
$X_i \sim N(\mu, \sigma^2)$, σ known	$W=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$	$ W \leq z_{rac{lpha}{2}}$
n large, X_i non-normal	$W=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$	$ W \leq z_{rac{lpha}{2}}$
$X_i \sim N(\mu, \sigma^2)$, σ unknown	$W=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$	$ W \leq t_{rac{lpha}{2},n-1}$

One-sided Tests for the Mean:

We can provide a similar analysis when we have a one-sided test. Let's show this by an example.

Example 8.28

Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\mu, \sigma^2)$ distribution, where μ is unknown and σ is known. Design a level α test to choose between

$$H_0$$
: $\mu \leq \mu_0$,

$$H_1$$
: $\mu > \mu_0$.

Solution

As before, we define the test statistic as

$$W(X_1,X_2,\cdots,X_n)=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}.$$

If H_0 is true (i.e., $\mu \leq \mu_0$), we expect \overline{X} (and thus W) to be relatively small, while if H_1 is true, we expect \overline{X} (and thus W) to be larger. This suggests the following test: Choose a threshold, and call it c. If $W \leq c$, accept H_0 , and if W > c, accept H_1 . How do we choose c? If α is the required significance level, we must have

$$P(ext{type I error}) = P(ext{Reject } H_0 \mid H_0) \ = P(W > c \mid \mu \le \mu_0) \le \alpha.$$

Here, the probability of type I error depends on μ . More specifically, for any $\mu_0 \leq \mu$, we can write

$$\begin{split} P(\text{type I error} \mid \mu) &= P(\text{Reject } H_0 \mid \mu) \\ &= P(W > c \mid \mu) \\ &= P\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > c \mid \mu\right) \\ &= P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} + \frac{\mu - \mu_0}{\sigma/\sqrt{n}} > c \mid \mu\right) \\ &= P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} > c + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}} \mid \mu\right) \\ &\leq P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} > c \mid \mu\right) \quad \text{(since } \mu \leq \mu_0\text{)} \\ &= 1 - \Phi(c) \quad \text{(since given } \mu, \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)\text{)}. \end{split}$$

Thus, we can choose $\alpha = 1 - \Phi(c)$, which results in

$$c=z_{\alpha}$$
.

Therefore, we accept H_0 if

$$rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \le z_{lpha},$$

and reject it otherwise.

The above analysis can be repeated for other cases. More generally, suppose that we are given a random sample $X_1, X_2, ..., X_n$ from a distribution. Let $\mu = EX_i$. Our goal is to decide between

$$H_0$$
: $\mu \leq \mu_0$,

$$H_1$$
: $\mu > \mu_0$.

We define the test statistic as before, i.e., we define W as

$$W(X_1,X_2,\cdots,X_n)=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}},$$

if $\sigma = \sqrt{\operatorname{Var}(X_i)}$ is known, and as

$$W(X_1,X_2,\cdots,X_n)=rac{\overline{X}-\mu_0}{S/\sqrt{n}},$$

if σ is unknown. If H_0 is true (i.e., $\mu \leq \mu_0$), we expect that \overline{X} (and thus W) to be relatively small, while if H_1 is true, we expect \overline{X} (and thus W) to be larger. This suggests the following test: Choose a threshold c. If $W \leq c$, accept H_0 , and if W > c, accept H_1 . To choose c, note that

$$P(ext{type I error}) = P(ext{Reject } H_0 \mid H_0)$$

= $P(W > c \mid \mu \leq \mu_0)$
 $\leq P(W > c \mid \mu = \mu_0).$

Note that the last inequality resulted because if we make μ larger, the probability of W>c can only increase. In other words, we assumed the worst case scenario, i.e, $\mu=\mu_0$ for the probability of error. Thus, we can choose c such that $P(W>c\mid \mu=\mu_0)=c$. By doing this procedure, we obtain the acceptance regions reflected in Table 8.3.

Table 8.3: One-sided hypothesis testing for the mean: $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$.

Case	Test Statistic	Acceptance Region	
------	----------------	-------------------	--

$X_i \sim N(\mu, \sigma^2), \sigma$ known	$W=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$	$W \leq z_{lpha}$
n large, X_i non-normal	$W=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$	$W \leq z_{lpha}$
$X_i \sim N(\mu, \sigma^2), \sigma { m unknown}$	$W=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$	$W \leq t_{lpha,n-1}$

Note that the tests mentioned in Table 8.3 remain valid if we replace the null hypothesis by $\mu=\mu_0$. The reason for this is that in choosing the threshold c, we assumed the worst case scenario, i.e, $\mu=\mu_0$. Finally, if we need to decide between

$$H_0$$
: $\mu \geq \mu_0$,

$$H_1$$
: $\mu < \mu_0$,

we can again repeat the above analysis and we obtain the acceptance regions reflected in Table 8.4.

Table 8.4: One-sided hypothesis testing for the mean: $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$.

Case	Test Statistic	Acceptance Region
$X_i \sim N(\mu, \sigma^2)$, σ known	$W=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$	$W \geq -z_lpha$
n large, X_i non-normal	$W=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$	$W \geq -z_{lpha}$
$X_i \sim N(\mu, \sigma^2), \sigma {\sf unknown}$	$W=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$	$W \geq -t_{lpha,n-1}$