ATS 01893

File with N76-11034

NASA CR-132727

TRANSONIC PRESSURE MEASUREMENTS AND COMPARISON OF THEORY TO EXPERIMENT FOR AN ARROW-WING CONFIGURATION

Volume I: Experimental Data Report-Base Configuration and Effects of Wing Twist and Leading-Edge Configuration

REPRODUCIBLE COPY (FACILITY CASEFILE COPY)

Marjorie E. Manro, Kenneth J. R. Manning, Thomas H. Hallstaff, and John T. Rogers

October 1975

Prepared under contract NAS1-12875 by Boeing Commercial Airplane Company P.O. Box 3707 Seattle, Washington 98124

for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

ERRATA

NASA CR-132727

TRANSONIC PRESSURE MEASUREMENTS AND COMPARISON OF THEORY

TO EXPERIMENT FOR AN ARROW-WING CONFIGURATION

VOLUME I: EXPERIMENTAL DATA REPORT-BASE CONFIGURATION

AND EFFECTS OF WING TWIST AND LEADING-EDGE CONFIGURATION

by Marjorie E. Manro, Kenneth J. R. Manning, Thomas H. Hallstaff, and John T. Rogers

October 1975

Blank or misprinted pages have been found in some copies of NASA CR-132727. Copies of these pages are enclosed so that if they are missing in your copy, you can replace them. The pages enclosed are: 91, 92, 537, 539.

Pages intentionally left blank are as follows: ii, x, 6, 98, 118, 128, 138, 148, 158, 168, 192, 202, 212, 222, 232, 242, 252, 262, 268, 320, 330, 340, 350, 360, 370, 380, 386, 436, 446, 454, 460, 470, 480, 490, 500, 510, 520, 526, 640.

1. Report No. NASA CR-132727	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle TRANSONIC PRECOMPARISON OF THEORY ARROW-WING CONFIGURATIO		5. Report Date October 1975 6. Performing Organization Code
7. Author(s) Marjorie E. Manro, Kenneth J.	0.	8. Performing Organization Report No. $D6-42670-2$
Thomas H. Hallstaff, John T. R 9. Performing Organization Name and Address Residue Communication Name and Address		10. Work Unit No. 743-01-12-02
Boeing Commercial Airplane Co P.O. Box 3707 Seattle, Washington 98124	11. Contract or Grant No. NAS1-12875 13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address National Aeronautics and Space	Administration	Contractor Report 14. Sponsoring Agency Code
Washington, D.C. 20546		

15. Supplementary Notes

Technical monitor, Percy J. Bobbitt, Theoretical Aerodynamics Branch, NASA Langley Research Center, Hampton, Virginia. Experimental and attached flow theory pressure data are available on magnetic tape.

16. Abstract

A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, has been conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions have been made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

This volume presents the experimental results for the base configuration (flat wing) and the effects of wing twist, leading-edge shape, and leading-edge droop. The effects of full- and partial-span trailing-edge control surface deflection and partial-span leading-edge control surface deflection are presented in NASA CR-132728. NASA CR-132729 presents detailed comparisons of the experimental results with the predictions of attached flow methods. NASA CR-2610 summarizes the results of the entire investigation and discusses both the experimental results and the theory-to-experiment comparisons.

17. Key Words (Suggested by Author(s)) Aeroelasticity Experimental pressure distribut Aerodynamic theory Arrow-wing configuration Wind tunnel test		Oution Statement Unclass	sified-unlimite	ed
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		21. No. of Pages 639	22. Price*

CONTENTS

																			Page
SUMMARY	•																		1
INTRODUCTION					٠	•			•				•	•					1
SYMBOLS				•		•			•									•	4
EXPERIMENTAL TASK											•								7
Wind Tunnel Models													٠.						7
Flat Wing																			7
Twisted Wing																			7
Body																			7
Wing-Body Intersection																			9
Pressure Orifice Locations																			9
Design and Construction																			9
Wind Tunnel Capabilities .																			18
Data System																			18
Mach Number																			18
Dynamic Pressure																			19
Angle of Attack																			19
Model Pressures																			20
Tests and Data Acquisition .																			20
Tests																			
Data Acquisition and Init																			
Data Tape Description						_													
RESULTS			•														•		25
APPENDIX A. DETAILED TEST I	LO	G																	28
APPENDIX B. DATA REDUCTION	N A	٩N	۱D	P	RE	SE	N	ГΑ	TI	ON	1	•	•	•		:			84
REFERENCES																			97

FIGURES

No.		Page
1	General Arrangement and Characteristics	99
2	Spanwise Twist Distribution for the Model Wing	100
3	Pressure Orifice Locations	101
4	Control Surface Bracket Details	102
5	Boeing Transonic Wind Tunnel	103
6	Variation of Reynolds Number and Dynamic Pressure With Mach Number .	104
7	Data Acquisition and Reduction System-Boeing Transonic Wind Tunnel	105
8	Wind Tunnel Photographs-Flat Wing, Rounded L.E.; L.E. Deflection,	
	Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0°	106
9	Wind Tunnel Photograph-Flat Wing, Sharp L.E.; L.E. Deflection,	
	Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0°	107
10	Wind Tunnel Photographs—Twisted Wing, Rounded L.E.; L.E. Deflection,	
	Full Span = 0.0°; T.E. Deflection, Full Span = 4.1°	107
11	Wind Tunnel Photograph—Flat Wing, Rounded L.E.; L.E. Deflection,	
	Full Span = 12.8°; T.E. Deflection, Full Span = 8.3°	108
12	Wind Tunnel Photograph—Flat Wing, Rounded L.E.; L.E. Deflection,	
	Full Span = 0.0° ; T.E. Deflection, Full Span = -30.2°	108
13	Wind Tunnel Photograph—Flat Wing, Rounded L.E.; L.E. Deflection,	
	Inboard = 0.0°, Outboard = 12.8°; T.E. Deflection, Inboard = 17.7°,	
	Outboard = 0.0°	108
14	Model Installation Diagram	109
15	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round	
	L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°;	
	$M = 0.40 \dots \dots$	110
16	Wing Experimental Data—Effect of Angle of Attack; Flat Wing,	
	Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	100
. ~	Full Span = 0.0° ; M = 0.70	120
17	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round	
	L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	120
1.0	Full Span = 0.0° ; M = 0.85	130
18	Wing Experimental Data—Effect of Angle of Attack; Flat Wing,	
	Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	1.40
10	Full Span = 0.0°; M = 0.95	140
19	Wing Experimental Data—Effect of Angle of Attack; Flat Wing,	
	Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.00	150
20	Wing Experimental Data—Effect of Angle of Attack; Flat Wing,	130
20	Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	
	Full Span = 0.0°; M = 1.05	160
21	Wing Experimental Data—Effect of Angle of Attack; Flat Wing,	100
41	Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	
	Full Span = 0.0°; M = 1.11	170
	$run\ span=0.0\ , M=1.11\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	1/0

No.				Page
22	Wing Experimental Data—Effect of Angle of Attack and Mach Number Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	r;		
	T.E. Deflection, Full Span = 0.0°			188
23	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,			
2.4	Full Span = 0.0° ; M = 0.40			194
24	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.70			204
25	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	• •	•	204
	Full Span = 0.0° ; M = 0.85°	,	. :	214
26	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,			
	Full Span = 0.0° ; M = 0.95			224
27	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	•		
• •	Full Span = 0.0° ; M = 1.00	: .		234
28	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.05			244
29	Full Span = 0.0°; M = 1.05			244
	Full Span = 0.0°; M = 1.11			254
30	Wing Experimental Data—Effect of Angle of Attack and Mach Number; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°;			
	T.E. Deflection, Full Span = 0.0°			264
31	Wing Experimental Data-Effect of Leading Edge Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°;			
	T.E. Deflection, Full Span = 0.0° ; M = 0.40			270
32	Wing Experimental Data—Effect of Leading Edge Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°;			
	T.E. Deflection, Full Span = 0.0° ; M = 0.85			284
33	Wing Experimental Data—Effect of Leading Edge Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°;			
34	T.E. Deflection, Full Span = 0.0°; M = 1.05	, , ·		298
	Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,			212
35	Full Span = 0.0°; M = 0.40			312
	Full Span = 0.0°; M = 0.70			322

No.		Page
36	Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	
37	Full Span = 0.0°; M = 0.85	. 332
	Full Span = 0.0°; M = 0.95	342
38	Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	
39	Full Span = 0.0°; M = 1.00	. 352
	Full Span = 0.0°; M = 1.05	. 362
40	Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	272
41	Full Span = 0.0°; M = 1.10	. 372
	T.E. Deflection, Full Span = 0.0°	. 382
42	Wing Experimental Data—Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	200
43	Full Span = 0.0°; M = 0.40	. 388
	Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.85	. 402
44	Wing Experimental Data—Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection,	
	Full Span = 0.0° ; M = 1.05	. 416
45	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 5.1°; T.E. Deflection,	
	Full Span = 0.0°; M = 0.40	. 430
46	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 5.1°; T.E. Deflection,	
	Full Span = 0.0°; M = 0.85	. 438
47	Wing Experimental Data—Effect of Angle of Attack; Flat Wing,	. 430
.,	Round L.E.; L.E. Deflection, Full Span = 5.1°; T.E. Deflection,	
	Full Span = 0.0° ; M = 1.05	. 448
48	Wing Experimental Data-Effect of Angle of Attack and Mach Number;	
	Flat Wing, Round L.E.; L.E. Deflection, Full Span = 5.1°;	
	T.E. Deflection, Full Span = 0.0°	. 456
49	Wing Experimental Data—Effect of Angle of Attack; Flat Wing,	
	Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection,	4.60
	Full Span = 0.0° ; M = 0.40	. 462

No.		Page
50	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection,	472
51	Full Span = 0.0°; M = 0.70	472
	Full Span = 0.0°; M = 0.85	482
52	Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection,	
53	Full Span = 0.0°; M = 0.95	492
54	Full Span = 0.0°; M = 1.05	502
	Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 0.0°; M = 1.11	512
55	Wing Experimental Data-Effect of Angle of Attack and Mach Number; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°;	312
	T.E. Deflection, Full Span = 0.0°	522
56	Wing Experimental Data-Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection,	520
57	Full Span = 0.0°; M = 0.40	528
	Full Span = 0.0° ; M = 0.85	548
58	Wing Experimental Data—Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection,	
	Full Span = 0.0° ; M = 1.05	568
59	Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.40	588
60	Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	300
	T.E. Deflection, Full Span = 0.0° ; M = 0.70	590
61	Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.85	592
62	Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.95	594
63	Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	J7 4
	T.E. Deflection, Full Span = 0.0° ; M = 1.00	596

No.		Page
64	Body Surface Longitudinal Pressure Distributions-Effect of Angle	
	of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0° ; M = 1.05	598
65	Body Surface Longitudinal Pressure Distributions—Effect of Angle	
	of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0° ; M = 1.11	600
66	Body Surface Longitudinal Pressure Distributions—Effect of Angle	
	of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.40	604
67	Body Surface Longitudinal Pressure Distributions—Effect of Angle	
	of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.85	606
68	Body Surface Longitudinal Pressure Distributions—Effect of Angle	
	of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0° ; M = 1.05	608
69	Body Surface Longitudinal Pressure Distributions—Effect of L.E.	
	Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°;	
5 0	T.E. Deflection, Full Span = 0.0° ; M = 0.40	610
70	Body Surface Longitudinal Pressure Distributions—Effect of L.E.	
	Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.85	612
71	Body Surface Longitudinal Pressure Distributions—Effect of L.E.	
	Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°;	~1.4
70	T.E. Deflection, Full Span = 0.0° ; M = 1.05	614
72	Body Surface Longitudinal Pressure Distributions—Effect of Angle	
	of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	(1)
72	T.E. Deflection, Full Span = 0.0° ; M = 0.40	616
73	Body Surface Longitudinal Pressure Distributions—Effect of Angle	
	of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	618
74	T.E. Deflection, Full Span = 0.0°; M = 0.85	010
/ 4	of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°;	
	T.E. Deflection, Full Span = 0.0°; M = 1.05	620
75	Body Surface Longitudinal Pressure Distributions—Effect of Wing	020
13	Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full	
	Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.40	622
76	Body Surface Longitudinal Pressure Distributions—Effect of Wing	022
70	Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full	
	Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.85	624
77	Body Surface Longitudinal Pressure Distributions—Effect of Wing	027
′ ′	Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full	
	Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.05	626
	Span = 0.0, 1.E. Deficetion, Fun Span = 0.0, M = 1.03	020

FIGURES (Concluded)

No.		Page
78	Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.40	628
79	Body Surface Longitudinal Pressure Distributions-Effect of Angle	
	of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.85	630
80	Body Surface Longitudinal Pressure Distributions—Effect of Angle	
	of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°;	
	T.E. Deflection, Full Span = 0.0° ; M = 1.05	632
81	Body Surface Longitudinal Pressure Distributions—Effect of Full	
	Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.40	634
82	Body Surface Longitudinal Pressure Distributions—Effect of Full	
	Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.;	
	T.E. Deflection, Full Span = 0.0° ; M = 0.85	636
83	Body Surface Longitudinal Pressure Distributions—Effect of Full	
	Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.;	
	T.E. Deflection, Full Span = 0.0° ; M = 1.05	638

TABLES

No.							Page
1	Wing Half—Thickness Distribution, Percent Chord						8
2	Wing Pressure Orifice Locations, Percent Local Chord						10
3	Body Pressure Orifice Locations						17
4	Summary of Test Conditions by Run Number						21
5	Figure Summary of Data Presentation						26
6	Summary of Additional Data Presentations						27

TRANSONIC PRESSURE MEASUREMENTS AND COMPARISON OF THEORY TO EXPERIMENT FOR AN ARROW-WING CONFIGURATION

VOLUME I: EXPERIMENTAL DATA REPORT-BASE CONFIGURATION AND EFFECTS OF WING TWIST AND LEADING-EDGE CONFIGURATION

by Marjorie E. Manro, Kenneth J. R. Manning, Thomas H. Hallstaff, and John T. Rogers Boeing Commercial Airplane Company

SUMMARY

A wind tunnel test of an arrow-wing body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, has been conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions have been made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient. The results of attempting to make empirical corrections to the theoretical methods and of using two-dimensional separation criteria to predict flow separation are shown.

This volume presents the experimental results for the base configuration (flat wing) and the effects of wing twist, leading-edge shape, and leading-edge droop. The effects of full-and partial-span trailing-edge control surface deflection and partial-span leading-edge control surface deflection are presented in NASA CR-132728. NASA CR-132729 presents detailed comparisons of the experimental results with the predictions of attached flow methods. NASA CR-2610 summarizes the results of the entire investigation and discusses both the experimental results and the theory-to-experiment comparisons.

INTRODUCTION

Accurate analytical techniques for the prediction of the magnitude and distribution of aeroelastic loads are required in order to design, in an optimum manner, the structure of large flexible aircraft. Uncertainties in the characteristics of loads may result in an improper accounting for aeroelastic effects, leading to understrength or overweight designs and unacceptable fatigue life. Moreover, correct prediction of loads and the resultant structural deformations is essential to the determination of the aircraft stability and control characteristics and control power requirements. The alternative to the use of satisfactory analytical techniques is exorbitantly expensive, time-consuming wind tunnel testing for each aircraft configuration.

The problem of accurate load prediction becomes particularly acute for aircraft where critical design conditions occur in the transonic speed regime. In this region, at typical design angles of attack, the predictions are clouded by mixed flow, embedded shocks, separation, and vortex flow. The degree to which the intelligent application of either the best state-of-the-art theoretical techniques or a combination of theory and experiment can account for these flow conditions is known in only a few circumstances. Clearly, if we are to continue to improve the accuracy of our predictive techniques as well as quantify their limitations, detailed comparisons of theoretical and experimental pressures on configurations of interest must be made on a continuing basis.

In the design process, pressure data obtained from wind tunnel tests on a single wing shape (with twist and camber) are translated by means of an aeroelastic solution to the load distributions for the elastically deformed airplane. In this solution, equations are used which relate the changes in local pressure to changes in structural deformation. For typical high aspect ratio configurations at subsonic speeds, methods of incorporating experimental data in the elastic solution are well developed and have been substantiated by flight tests. However, for typical low aspect ratio configurations and/or transonic flight conditions where various nonlinear phenomena become important, no satisfactory methods have been developed for correcting the aeroelastic solutions with experimental data from rigid models. Until such a tool is available, the need will remain for wind tunnel test programs simulating each flight design condition on the flexible airplane.

While analytical methods for loads estimation exist, they do not cover the necessary ranges of configuration and critical flight conditions associated with large supersonic airplanes. The most serious situation is the lack of analytical procedures of verified accuracy for the determination of loads in the critical transonic speed regime. One reason for this situation is the newness of many of the techniques; another is the scarcity of the experimental pressure data required to validate the techniques. One comprehensive set of data for variations of wing twist of a 45° sweep wing was obtained by Mr. John P. Mugler, Jr., of the NASA Langley Research Center (refs. 1 through 5).

The purpose of this study was to obtain some of the required experimental data for a highly swept thin wing at subsonic and transonic Mach numbers and, at the same time, to provide comparisons with analytical predictions using some of the most advanced methods available. The study was viewed as a two-part effort consisting of an experimental task and a theory comparison task.

The objective of the experimental task was to provide measured load distributions on models which are deformed to simulate representative twist distributions and which have deflectable leading- and trailing-edge control surfaces. These load distributions were used in the theoretical task to assess the adequacy of existing analytical methods of estimation and to determine empirical corrections to methods that are not fully adequate in themselves.

The model chosen for this study was a wing-body combination with a leading-edge sweep of 71.2° and a wing thickness of 3.3% (see fig. 1). Model components included both flat and twisted wings, deflectable full-span and half-span leading- and trailing-edge control surfaces, and both rounded and sharp leading edges. The tests were conducted in the Boeing

Transonic Wind Tunnel and covered the Mach range from 0.4 to 1.1 with angles of attack from -8° to $+16^{\circ}$. The measurements included pressure data on both the wing and body, wing deflection measurements, total force and moment data, and oil flow pictures.

The theoretical calculations were carried out using current state-of-the-art linear and advanced separated-vortex techniques to predict detailed pressures over both the flat and twisted wings. Comparisons of theoretical and experimental pressures for both wings were made as well as for the incremental pressure due to twist. The latter is of interest since the calculation is similar to that required to correct basic wind tunnel results from rigid models for incremental aeroelastic effects. In addition, an empirical prediction of the incremental pressures was attempted by developing correctors to apply to the aerodynamic influence coefficient (AIC) matrix.

Predictions of nonlinear phenomena which are due to separated flow ahead of a deflected trailing-edge control surface were attempted using empirical techniques.

The results of the various aerodynamic calculations and theory-to-experiment comparisons have been used to point out areas where pure theory is inadequate for design, and to examine combined theoretical and empirical approaches to aeroelastic design based on lifting-surface solutions. Some preliminary results of this study were presented at the NASA Conference on Aeroelastic Analyses Requiring Advanced Computers held at the NASA Langley Research Center in March 1975 (ref. 6).

SYMBOLS

b	wing span, cm
BL	buttock line, cm; distance outboard from model plane of symmetry
c	section chord length, cm
c , M.A.C.	mean aerodynamic chord length, cm
$C_{\mathbf{B}}$	surface bending moment coefficient referenced to y _{ref} ; positive wingtip up
C_{C}	surface chord force coefficient; positive aft
$C_{\mathbf{e}}$	section chord force coefficient; positive aft
$C_{\mathbf{M}}$	surface pitching moment coefficient, referenced to $0.25\ M.A.C.$; positive leading edge up
$C_{\mathbf{m}}$	section pitching moment coefficient referenced to section leading edge; positive leading edge up
C _{m.25c}	section pitching moment coefficient referenced to section 0.25c; positive leading edge up
$\mathbf{C}_{\mathbf{N}}$	surface normal force coefficient; positive up
$C_{\mathbf{n}}$	section normal force coefficient; positive up
$C_{\mathbf{p}}$	$pressure coefficient = \frac{measured pressure - reference pressure}{q}$
D	body diameter, cm
M	Mach number
MS	model station, cm; measured aft along the body centerline from the nose
p_S	static pressure, kN/m ²
p_t	total pressure, kN/m^2
q	dynamic pressure, kN/m ²
S	reference area used for surface coefficients, cm ²
S_h	area of streamwise strip associated with a pressure station, ${\rm cm}^2$; used in summation of section force coefficients (app. B)

x,y,z	general coordinates for distances in the longitudinal, lateral, and vertical directions, respectively
Уrеf	distance outboard of model centerline of the bending moment reference point, cm
α	corrected angle of attack, degrees; the angle between the wing root chord and the relative wind measured in the model plane of symmetry; includes compensation for sting deflection, tunnel flow angularities, and wall effects; positive nose up with respect to relative wind
$lpha_{ m sec}$	wing twist angle relative to wing reference plane, degrees; positive leading edge up
$\Delta C_{\mathbf{p}}$	increment between adjacent lines on isobars
δ	control surface deflection, degrees; positive leading edge down for leading edge (see exception in app. B) and trailing edge down for trailing edge
η	fraction of wing semispan, y/(b/2)
Λ	sweep angle, degrees; measured from a line perpendicular to the model centerline, positive aft
φ	angle defining location of pressure orifices on the surface of the cylindrical body at a constant MS, degrees; measured from the top of the body
Subscripts:	
L.E.	leading-edge control surface
r	wing root
s	referenced to segment of local chord
T.E.	trailing-edge control surface

EXPERIMENTAL TASK

WIND TUNNEL MODELS

The configuration chosen for this study was a thin, low aspect ratio, highly swept wing mounted below the centerline of a high fineness ratio body. The general arrangement and characteristics of the model are shown in figure 1. Two complete wings were constructed, one with no camber or twist, and one with no camber but with a spanwise twist variation. Deflectable control surfaces were available on these wings.

FLAT WING

The mean surface of the flat wing is the wing reference plane. The nondimensional wing thickness distributions, shown in table 1, deviate slightly from a constant for all streamwise sections so that a finite thickness of 0.0254 cm (0.01 in.) could be maintained at the trailing edge (a manufacturing requirement). The wing was designed with a full-span, 25% chord, trailing-edge control surface. Sets of fixed angle brackets allowed streamwise deflections of $\pm 4.1^{\circ}$, $\pm 8.3^{\circ}$, $\pm 17.7^{\circ}$, and $\pm 30.2^{\circ}$, as well as 0.0° . A removable full-span leading-edge control surface (15% of streamwise chord) was used in the undeflected position and also drooped 5.1° and 12.8° with fixed angle brackets. Both the leading- and trailing-edge control surfaces extended from the side of body (0.087 b/2) to the wingtip, and were split near midspan (0.570 b/2). Either the inboard or outboard portion of the control surfaces could be deflected separately and were rotated about points in the wing reference plane. An additional leading-edge control surface for this wing was constructed with a sharp (20° included angle) leading edge to examine the effects of leading-edge shape. The surface ordinates and slopes of this leading-edge segment were continuous with those of the flat wing at the leading-edge hingeline (table 1). The sharp leading edge was smoothly faired from 0.180 b/2 into the fixed portion of the rounded leading edge at 0.090 b/2.

TWISTED WING

The mean surface of the twisted wing was generated by rotating the streamwise section chord lines about the 75% local chord points (trailing-edge control surface hingeline). The spanwise variation of twist is shown in figure 2. The hingeline was straight and located in the wing reference plane at its inboard end (0.087 b/2) and 2.261 cm (0.890 in.) above the wing reference plane at the wingtip. The airfoil thickness distribution (table 1) and the trailing-edge control surface location and available deflections were identical to the flat wing.

BODY

The body was circular in cross section and had a straight centerline. The body geometry is shown in figure 1. The sting was an integral part of the model body.

Table 1.-Wing Half-Thickness Distribution, Percent Chord

											_	_	_				_															_					_
1.00 b/2		.3364	.4512	.6072	8194	9538	1.1219	1.3497	1.4892	1.5293	1.5508	1.5898	1.6018	1.6522	1.6807	1.6742	1.6412	1.4956	1.2341	1.1532	1.0686	.9796	0889. 0009	.5074	.3122		0000.	.1392	.1833	.2274	.2715 3596	5359	9268	1.4001	1.5007	1.5781	
0.93 b/2		.0000	.4509	.6068	8188	.9530	1.1206	1.3475	1.4855	1.5250	1.5514	1.5821	1.5929	1.6389	1.6630	1.6544	1.6192	1.4692	1.2034	1.1213	1.0357	.9456	6626	4679	.2706		0000	1024	.1465	.1906	3229	4992	.5400	1.3741	1.4803	1.5715	7
0.80 b/2	wing	.3360	.4508	.6066	8185	.9525	1.1199	1.3462	1.4832	1.5222	1.54/9	1.5770	1.5871	1.6301	1.6514	1.6413	1.6046	1.4518	1.1831	1.1003	1.0139	.9231	6379	.4418	.2430		.0000	.0781	.1222	.1663	2103	4748	.9156	1.3570	1.4669	1.5673	
0.65 b/2	e and twisted	.3360	.4507	.6065	8184	.9523	1.1195	1.3456	1.4822	1.5210	1.3403	1.5748	1.5845	1.6262	1.6462	1.6354	1.5981	1.4440	1.1739	1.0908	1.0041	.9129	.8197 6268	.4300	.2305		0000.	.0670	1111	.1552	.1993	.4638	.9046	1.3493	1.4609	1.5654	
0.50 b/2	ed leading edg	0000.	.4507	.6065	8183	9522	1.1194	1.3453	1.4816	1.5204	1.5450	1.5737	1.5832	1.6242	1.6435	1.6324	1.5948	1.4400	1,1692	1.0860	.9991	9078	6211	.4240	.2241	ing edge	0000.	.0614	.1055	.1496	7817	4581	0668	1.3453	1.4578	1.5644	
0.35 b/2	Flat wing with rounded leading edge and twisted wing	.0000	.4506	.6064	8183	.9521	1.1192	1.3450	1.4813	1.5200	1 5638	1.5729	1.5823	1.6230	1.6419	1.6305	1.592/	1.43/5	1.1663	1.0830	0966	.9046	9719	.4203	.2202	Sharp leading edge	.0000	0280	.1021	.1462	.1903	.4547	.8956	1.3429	1.4559	1.5638	
0.20 b/2	Flat w	.3359	.4506	.6064	8182	.9520	1.1192	1.3449	1.4811	1.5197	1.544/	1.5724	1.5818	1.6222	1.6408	1.6293	1.5914	1.4.359	1.1644	1.0810	.9940	.9025	.8089	4178	.0138		0000.	0557	8660.	.1439	.1880	.4524	.8933	1.3413	1.4547	1.5634	
0.09 b/2		.0000	.4506	.6064	.8182	.9520	1,1191	1.3448	1.4809	1.51.90	1.5631	1.5722	1.5815	1.6217	1.6402	1.6286	1.2500	1.3127	1.1634	1.0799	.9928	.9013	6140	4165	.2162 .0123		.0000	4506	.6064	.7247	.8182	1,1191	1.3448	1.4809	1.5196	1.5631	
0 b/2		0000°	.4506	.6064	.8182	9520	1.1191	1.3448	1.4809	1.5195	1.5630	1.5720	1.5813	1.6214	1.6398	1.6282	1.5901	1.3121	1.1627	1.0792	.9921	9006	6132	4156	.2153		0000	4506	.6064	.7247	.8182	1.1191	1.3448	1.4809	1.5195	1.5630	
x/c, percent chord		.0000	.2500	5000	00001	1,5000	2.5000	5.0000	8.5000	10.000	15,000	17.5000	20.0000	30.0000	40.000	45.0000	00000	65,000	70,0000	72.5000	75.0000	77.5000	85,000	0000.06	95.0000 100.0000		0000	2500	2000	.7500	1.0000	2.5000	5.0000	8.5000	10.0000	15.0000	

WING-BODY INTERSECTION

The wing reference plane was located 3.149 cm (1.240 in.) below and parallel to (zero incidence) the body centerline. The apex of the wing was located 33.496 cm (13.187 in.) aft of the model nose.

PRESSURE ORIFICE LOCATIONS

All pressure orifices were located on the left side of the model and distributed as shown in figure 3 and tables 2 and 3. Both the flat wing with round leading edge and the twisted wing had 214 orifices with seven streamwise pressure stations of 31 or 30 orifices each. One of these orifices was located at the leading edge; the remainder were distributed so that upper and lower surface orifices were located at the same chordwise locations. The orifice locations on the sharp leading edge were identical except that the leading-edge orifices were omitted. The 83 orifices on the body were located at 15 stations along the length of the model. At each station, orifices were located at angles of 0°, 45°, 90°, 135°, and 180° measured from the top of the body. In the area of the wing-body intersection, the orifices which are nominally identified as being at 135° and 180° were located on the wing lower surface at the same lateral location as the orifices at 45° and 0°, respectively, at that body station. Eight additional orifices were placed close to the juncture of the body with the wing upper surface.

DESIGN AND CONSTRUCTION

The objectives of this study dictated that the contours and physical characteristics of the flat and twisted wings be as nearly identical as possible. The model was constructed of steel to minimize aeroelastic deflections and to provide strength for potential future testing to a Mach number of 3.0. The aft body was flared approximately 4° from 194.310 cm (76.500 in.) aft of the nose to provide the required safety factor on predicted loads (see fig. 1). The model size was selected as the best compromise between potential tunnel blockage and adequate room to install orifices in the model.

A computerized lofting program was used to provide the wing definition. This definition was then used to machine the model components using numerically controlled machines. The tolerance on the contour was +0.1524, -0.0 mm (+0.006, -0.0 in.). The leading- and trailing-edge control surfaces were cut from the wings after they had been machined to final contour. Cuts were made along the 15% chord line of the twisted wing to simulate the removable leading edge of the flat wing in order to duplicate more closely the elastic characteristics of the flat wing (see fig. 4). Fixed angle brackets, arranged as shown in figure 4, were used to obtain the required control surface deflections with all pivot points located midway between the upper and lower surfaces at the hingelines. The brackets were also machined on numerically controlled machines. The same sets of trailing-edge brackets were used on both the flat and twisted wings, and the same sets of leading-edge brackets were used for both the rounded and sharp leading edges. Tests were conducted with the twisted trailing-edge control surface combined with the flat wing. For this configuration with the trailing-edge control surface deflection defined as 0.0°, a straight chord line was obtained only at 0.75 b/2. The relative spanwise twist distribution is shown in figure 2.

Table 2.—Wing Pressure Orifice Locations, Percent Local Chord

(a) Section at
$$0.09 \frac{b}{2}$$
, chord = 102.89 cm

		Flat wing,	$\alpha_{\rm sec} = 0.0^{\circ}$		Twisted wing,	$\alpha_{\text{sec}} = -0.01$
	Rounded le	eading edge	Sharp lea	ding edge	Rounded te	ading edge
Nominal	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface
0.00	0.00				0.00	
2.50	2.45	2.59	2.61	2.54	2.26	2.26
5.00	4.95	5.07	5.06	5.03	4.76	4.76
8.50	8.45	8.53	8.59	8.58	8.40	8.26
11.30				11.31		
12.25					12.23	12.27
12.50	12.45	12.55	12.58		[
17.50	17.49	17.62			17.59	17.66
20.00	19.94	20.08			20.03	20.03
30.00	29.92	30.09			29.98	29.89
45.00	45.00	45.07			44.96	44.89
60.00	59.98	60.08			60.01	59.97
70.00	70.03	70.13		•	70.05	69.95
72.50	72.55	72.60			72.58	72.51
77.50	77.53	77.62			77.56	77.51
85.00	85.11	85.14			85.03	85.00
90.00	90.10	90.10			90.04	89.98
95.00	95.09	95.05			94.96	94.98

Table 2.—(Continued)

(b) Section at $0.20 \frac{b}{2}$, chord = 91.80 cm

		Flat wing,	$\alpha_{\rm sec}$ = $0.0^{\rm c}$		Twisted wing,	$\alpha_{\rm sec} = -0.47^{\circ}$
,	Rounded I	eading edge	Sharp lea	iding edge	Rounded le	eading edge
Nominal	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface
0.00 2.50 5.00 8.50 11.40 12.50	0.00 2.59 5.05 8.54 —— 12.54	2.69 5.00 8.59 12.49	2.62 5.14 8.67 12.63	2.65 5.14 8.62 11.37	0.00 2.52 5.00 8.52 12.53	2.42 4.93 8.40 —— 12.42
17.50 20.00 30.00 45.00 60.00 70.00 72.50	17.63 20.08 30.04 45.08 60.02 70.11 72.63	17.61 20.07 30.09 45.09 60.13 70.13 72.61			17.65 20.00 30.02 45.03 60.03 70.06 72.55	17.52 19.90 29.89 44.92 59.91 69.96 72.50
77.50 85.00 90.00 95.00	77.59 85.07 90.14 95.14	77.65 85.13 90.11 95.10			77.59 85.02 90.07 95.05	77.52 85.00 89.97 95.08

Table 2.—(Continued)

(c) Section at 0.35 $\frac{b}{2}$, chord = 76.69 cm

		Flat wing,	$\alpha_{\rm sec}$ = 0.0°		Twisted wing,	$\alpha_{\rm sec} = -1.70^{\circ}$
	Rounded le	eading edge	Sharp lea	ding edge	Rounded le	ading edge
Nominal	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface
0.00 2.50 5.00 8.50 10.50 11.00 12.50	0.00 2.45 4.93 8.60 12.37	2.59 5.07 8.54 11.03	2.59 5.11 8.65 12.57	2.58 5.04 8.63 10.46	0.00 2.39 5.12 8.49 12.50	2.33 4.78 8.32 12.33
17.50 20.00 30.00 45.00 60.00 70.00 72.50	17.64 20.00 30.01 44.99 60.03 70.07 72.55	17.63 20.09 30.10 45.09 60.08 70.08 72.58			17.54 19.94 29.88 44.96 59.97 70.03 72.56	17.53 19.84 29.87 44.79 59.89 69.90 72.44
77.50 85.00 90.00 95.00	77.60 85.11 90.06 95.07	77.61 85.14 90.09 95.09			77.54 85.08 89.89 94.95	77.51 84.96 89.89 94.86

Table 2.—(Continued)

(d) Section at $0.50 \frac{b}{2}$, chord = 61.57 cm

		Flat wing,	$\alpha_{\rm sec}$ = 0.0°		Twisted wing, c	$x_{\rm sec} = -2.85^{\circ}$
	Rounded le	eading edge	Sharp lea	ding edge	Rounded le	ading edge
Nominal	Upper surface	Lower surface	Uppei surface	Lower surface	Upper surface	Lower surface
0.00 2.50 5.00 8.50 10.10 11.10 12.50	0.00 2.47 4.99 8.48 12.39	2.53 4.95 8.38 11.08	2.69 5.13 8.66 12.61	2.60 5.06 8.61 10.14	0.00 2.44 4.92 8.46 12.50	2.38 4.80 8.38 12.31
17.50 20.00 30.00 45.00 60.00 70.00 72.50	17.64 19.98 30.07 44.98 59.97 70.07 72.65	17.52 19.97 30.06 45.06 60.00 70.10 72.61			17.54 19.92 29.91 45.00 59.95 70.03 72.56	17.24 19.83 29.85 44.85 59.92 69.88 72.44
77.50 85.00 90.00 95.00	77.66 85.19 90.22 95.05	77.65 85.18 90.12 94.94			77.61 84.85 89.93 94.88	77.43 84.90 89.93 94.93

Table 2.—(Continued)

(e) Section at $0.65 \frac{b}{2}$, chord = 46.46 cm

		Flat wing, o	$\alpha_{\rm sec} = 0.0^{\circ}$		Twisted wing,	$\alpha_{\rm sec} = -3.59^{\circ}$
	Rounded le	eading edge	Sharp lea	ıding edge	Rounded le	ading edge
Nominal	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface
0.00 2.50 5.00 8.50 12.20 12.60	0.00 2.56 5.06 8.55 —— 12.57	2.66 5.12 8.55 	2.49 4.94 8.46 12.12	2.38 4.95 8.40	0.00 2.18 4.76 8.32 12.21	2.49 5.01 8.45
17.50 20.00 30.00 45.00 60.00 70.00 72.50	17.60 20.17 30.05 45.16 60.13 69.89 72.59	17.65 20.11 30.11 45.23 60.13 70.12 72.69			17.24 19.70 30.26 44.75 59.81 69.92 72.38	17.44 19.88 29.73 44.89 59.87 69.90 72.49
77.50 85.00 90.00 95.00	77.74 85.25 90.22 95.13	77.76 85.32 90.21 95.27			77.22 84.79 89.70 95.12	77.49 84.93 89.92 94.86

Table 2.—(Continued)

(f) Section at $0.80 \frac{b}{2}$, chord = 31.35 cm

		Flat wing,	$\alpha_{\rm sec} = 0.0^{\circ}$		Twisted wing,	$\alpha_{\rm sec} = -3.84^{\circ}$
	Rounded I	eading edge	Sharp lea	iding edge	Rounded le	ading edge
Nominal	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface
0.00 2.50 5.00 8.50 12.50	0.00 2.55 5.01 8.55 12.50	2.47 5.02 8.59	2.50 5.01 8.58 12.58	2.46 4.93 8.41	0.00 2.33 4.86 8.32 12.47	2.43 4.74 12.43
17.50 20.00 30.00 45.00 60.00 70.00 72.50	17.53 20.16 30.00 44.91 59.94 70.06 72.61	17.57 20.13 30.11 45.15 60.10 70.11 72.60			17.36 19.79 29.83 44.81 59.80 69.89 72.22	17.47 19.82 29.83 44.91 59.92 69.87 72.39
77.50 85.00 90.00 95.00	77.73 85.25 90.20 95.41	77.72 85.18 90.34 95.49			77.29 84.80 90.62 95.71	77.41 84.95 90.03 95.00

Table 2.—(Concluded)

(g) Section at $0.93\frac{b}{2}$, chord = 18.25 cm

		Flat wing, o	$x_{\text{sec}} = 0.0^{\circ}$		Twisted wing,	$\alpha_{\rm sec} = -4.14^{\circ}$
ļ	Rounded le	eading edge	Sharp lea	iding edge	Rounded le	ading edge
Nominal	Upper surface	Lower surface	Upper surface	Lower surface	Upper surface	Lower surface
0.00 2.51 5.00 8.50 11.59 12.25	0.00 1.70 4.38 7.89 —— 12.33	1.81 4.68 8.24 	2.12 4.72 8.21 —— 12.19	1.86 4.52 8.06	0.00 1.74 4.41 7.92 11.59	2.59 4.65 8.23
17.50 20.00 30.00 45.00 60.00 70.00 72.50	17.36 19.78 29.67 44.70 59.68 69.69 72.15	16.60 19.81 29.00 44.80 59.47 70.33 71.89			16.60 19.58 29.17 44.12 59.18 68.99 71.59	17.49 19.96 29.62 44.44 59.71 69.31 72.01
77.50 85.00 90.00 95.00	77.38 84.62 89.51 94.46	77.31 84.90 89.81 94.68			76.80 84.54 89.21 94.41	77.12 84.82 89.74 94.56

Table 3.— Body Pressure Orifice Locations

							// narc	d+page whod +pages 1/v	4+000						
							7, E, perc	ent body	ıngıra.						
Nominal locations	4.5	7.5	11.0	14.5	21.8	25.0	33.0	39.0	50.0	55.0	0.09	64.0	70.0	75.5	80.0
φ = 0.0°	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	*0.0	0.0	0.0	0.0	0.0
φ = 45.0°	44.3	44.3	44.5	44.7	44.4	44.8	45.0	44.8	45.0	44.8	44.8	45.0	44.8	45.0	44.8
φ = 90.0°	90.0	89.9	90.5	90.3	90.4	89.9	90.1	90.2	90.2	90.0	89.9	89.9	8.68	90.1	89.8
φ ≈ 110.0°		-			110.2	110.0	110.1	110.1	110.2	116.8	119.9	124.2			
Body, φ= 135.0° Flat wing, y = 3.094 cm Twisted wing, y = 3.094 cm	136.1	135.3	135.0	135.2	3.025	3.028	3.028	3.056	3.071	3.056 2.926	3.043 3.094	3.045	134.6	134.5	134.8
Body, \$\phi\$ = 180.0° Flat wing, y = 0.0 cm Twisted wing, y = 0.0 cm	180.0	180.0	180.0	180.0	018	030	064	.081	048	180.0*	180.0*	180.0	180.0	180.0	180.0

*for the first 149 runs, pressure readings at these orifices did not always stabilize

Pressure tubing used in this model was 1.016-mm (0.040-in.) o.d. Monel with a 0.1524-mm (0.006-in.) wall thickness. The major channels for wing pressure tubing were machined into the surface. The detailed grooves required to route tubing from the orifices to these channels were cut by hand. The pressure orifices were installed normal to and flush with the local surface. After installation of the pressure tubing, the surfaces were brought back to contour with solder. The tubing for body pressure orifices was run through the hollow center of the model body rather than in grooves in the outside contour. Tubing from all the orifices was routed through the hollow body to the scanivalves located in the body nose. Wiring from the scanivalves was routed through the body to the sting.

The nose portion of the body was removable to provide access to the fifteen 24-position scanivalves. Figure 1 shows the location on the aft body of the strain gages used to measure normal force and pitching moment.

WIND TUNNEL CAPABILITIES

The Boeing Transonic Wind Tunnel (BTWT) is a continuous-flow, closed-circuit, single-return facility with an operating range of Mach number from 0.0 to nearly 1.2. The test section is 2.438 by 3.658 by 4.420 m (8 by 12 by 14.5 ft) with 11.0 percent of the wall area in slots. The tunnel layout is shown in figure 5. The tunnel stagnation pressure is atmospheric with a total temperature range of 300 K to 356 K (540° to 640° Rankine). The variation with Mach number of Reynolds number based on the mean aerodynamic chord (M.A.C.) of this model is shown in figure 6, which also shows the variation of dynamic pressure with Mach number. The 26 856-kW (36 000-hp) wound-rotor induction motor in tandem with a 13 428-kW (18 000-hp) synchronous motor provides the power to drive a 7.315-m (24-ft) diameter fan up to a maximum speed of 470 rpm. The fan is made up of a 5.486-m (18-ft) diameter hub with 72 fixed-pitch fiberglass blades 0.914 m (36 in.) long in two stages and directs circuit air through two stages of 67 hollow steel stators.

DATA SYSTEM

The Boeing wind tunnel data system provides the capabilities of real-time test data acquisition, feedback control computation, and display. The data system consists of an Astrodata acquisition subsystem and a computing subsystem which uses a Xerox data system (XDS 9300) digital computer. The Astrodata system acquires signals from the sensors, conditions them, and passes them directly to the computer. Test data, averaged from up to 256 samples per test point, are recorded on a rapid-access data drum. As final computations are performed, selected on-line displays are provided on analog X-Y plotters and teletypewriters. Real-time computations and displays are performed every 200 milliseconds for control and test monitoring functions. Any test data may be retrieved from rapid-access drum storage and displayed on an oscilloscope. On-line programs also provide for preparation of magnetic tapes for plotting or interfacing with off-line programs. Figure 7 is a schematic of the data acquisition and reduction system.

MACH NUMBER

Mach number in the BTWT is referenced to the horizontal and lateral center of the test section at tunnel station 1000 which was the pitch point of this model (40% M.A.C.).

The pressures used to determine Mach number, p_s and p_t , are measured through permanently positioned sensors. Static pressure p_s is measured by a 103.42-kN/m^2 (15-psi) absolute transducer. A 103.42-kN/m^2 (15-psi) differential transducer is used to obtain total pressure by measuring $(p_t - p_s)$. These transducers are temperature compensated in addition to being in a $\pm 1.11^{\circ}$ C ($\pm 2^{\circ}$ F) environment. Transducer performance is checked periodically, and both the static and differential transducers have shown a maximum deviation of $\pm 0.02\%$ of full scale.

The static pressure tap is located out of the test section above the ceiling in the pressure cap plenum. A correction is made to adjust this static pressure reading to the measured test section centerline static pressure determined during calibrations at station 1000. The tunnel total pressure is obtained from a total pressure probe mounted near the tunnel ceiling in the bellmouth throat (see fig. 5).

Signals from the pressure sensors are fed to the XDS 9300 computer. The XDS system computes and updates the Mach display five times per second. Accounting for the entire system, calculated Mach number is accurate within ± 0.002 . Data are recorded only when the tunnel is within a preselected Mach tolerance. For this test, a tolerance of ± 0.003 was used.

DYNAMIC PRESSURE

The dynamic pressure q is computed from the Mach number and the corrected static pressure. The estimated tolerance on dynamic pressure is $\pm 95.8 \text{ N/m}^2$ ($\pm 2.0 \text{ psf}$).

ANGLE OF ATTACK

The angle of attack of the reference point (0.25 M.A.C. for this model) for a sting-mounted model is determined from several increments. The input angle of attack is determined by an encoder mounted in the strut. This angle is accurate within $\pm 0.02^{\circ}$. This angle is then modified by the effects of sting deflection, up-flow, and wall corrections.

Sting deflections due to load were determined during the calibration of the strain gages mounted on the integral sting body of the model. These deflections are known within $\pm 0.02^{\circ}$. The corrections for sting deflection are based on the normal force and pitching moment loads obtained during wind-on data acquisition. The sting deflection was taken into account when setting test angles of attack to minimize the variation in final angle of attack for the various model configurations. The strain gages attached to the sting body of this model have an estimated accuracy of $\pm 5\%$ of full-scale reading. This means that the sting deflections based on maximum model loads were known within $\pm 0.11^{\circ}$.

Up-flow corrections were made based on data obtained from upright and inverted runs on a calibration model of similar span. These corrections were less than 0.2° . It is believed the up-flow values are known within $\pm 0.05^{\circ}$.

A correction to model angle was made for the effect of lift interference for 11% slotted walls. The lift interference is a function of the ratio of model-to-test section size, test

section shape, C_N , and wall geometry. For $C_N=1.0$, this correction is on the order of -0.48°. Due to the limited amount of experimental substantiation, it is felt that the wall correction could be in error by $\pm 20\%$.

MODEL PRESSURES

The model was instrumented with fifteen 24-position scanivalves. Each scanivalve contained a 103.42-kN/m² (15-psi) differential Statham, variable resistance, unbonded strain gage transducer. These transducers are calibrated against a high accuracy standard and, if placed in a temperature-controlled environment, will read within an accuracy of 0.1% of full scale. For this test, the transducers were located inside the model and subjected to large temperature excursions. Temperatures recorded at the scanivalves indicate that the accuracy of readout was 0.75% of full-scale capability.

For the first 149 runs, the data filter for one of the scanivalves was inadvertently set at too low a cutoff frequency. This caused a lag which affected five body pressure measurements, producing a maximum error of approximately 0.684 kN/m^2 (0.1 psi) at an angle of attack of 16° and M=0.95. Table 3 identifies the specific data affected.

TESTS AND DATA ACQUISITION

TESTS

Table 4 shows the 54 configurations that were tested. Photographs of some are shown in figures 8 through 13 and a diagram of the model installation in the BTWT is shown in figure 14. Pressure and total force data were obtained at Mach numbers of 0.40, 0.70, 0.85, 0.95, and 1.05 for all configurations and at Mach numbers of 1.00 and 1.11 for selected configurations. Table 4 shows the run numbers for each Mach number and configuration for which these data were obtained. A detailed listing of all test points is shown in appendix A.

Wingtip deflection pictures were taken for representative configurations at three Mach numbers to evaluate the stiffness of the wing. These were compared to wind-off reference pictures to determine the relative deflection and twist. Configurations included the flat and twisted wings, and trailing-edge control surfaces deflected $+30.2^{\circ}$, 0.0° , and -17.7° . Whereas the tip did deflect (less than 2 cm), the change in incidence was negligible even at M = 1.05 and no corrections to the data were required due to model flexibility.

Some oil flow pictures were taken, predominately at $\,M=0.95\,$ and an angle of attack of $8.0^{\circ}.$

Test angles of attack were from -8° to $+16^{\circ}$ in 2° increments. When testing at M = 1.11, the maximum angle was $+8^{\circ}$, and for some of the negative (trailing edge up) trailing-edge control surface deflections only positive angles of attack were tested. A trip strip of No. 60 carborundum grit was used throughout the test with the exception of the first series. On the body, the trip strip was $0.32 \, \mathrm{cm} \, (0.125 \, \mathrm{in.})$ wide and placed $2.54 \, \mathrm{cm} \, (1 \, \mathrm{in.})$ from the nose. On the wing, it was $0.32 \, \mathrm{cm} \, (0.125 \, \mathrm{in.})$ wide from the side

Table 4.—Summary of Test Conditions by Run Number

	0.0)	-17.7									•			229 228 227 226 224
] " [-8.3												235 231 232 232 230
	utboa	۹-		_										
	Inboard (outboard	8.3						259	255	720	/C7	256	254	241 237 240 239 238 236
	lnbo	17.7						252	248	720	643	247		246 243 245 244 242
	= 0.0)	-17.7												202 198 201 200 199 197
		-8.3		·										196 192 195 194 193
, deg	Outboard (inboard	8.3			<u>-</u>			275	271	2/4	5/7	272	270	209 205 208 207 207 206
flection	Outk	17.7	rip off				trip on	280	277	6/7	0/7	276		215 211 214 213 212
edge de		-30.2	e, trip st				e, trip s	75	72	4 (2	71		
Trailing edge deflection, deg		-17.7	Flat wing, rounded leading edge, trip strip off				Flat wing, rounded leading edge, trip strip on	99	გ	62, 68		62		
		-8.3	ded lead		•		ded lead	78	8 8	82	ō	79	77	
		-4.1	g, roun				ıg, roun	1	57			99		
	Full span	0.0	Flat win	10 15	7	9	Flat wir	21,269	23,263	797,67	24,200	22,264	20,262	223 218 221 220 219 217
	Ē	4.1							S :			49		
		8.3						46	43	ე ,	1	42	40	
		17.7						32	23	ہے د	<u>-</u>	28		
		30.2						37	34	g S	Ç,	33		
	Mach			0.40	0.85	1.05		0.40	0.70	0.83	1.00	1.05	1.11	0.40 0.70 0.85 0.95 1.05
Leading	edge deflection,			Full span = 0.0				Full span = 0.0						Inboard =0.0 Outboard=5.1

Table 4.—(Continued)

				-				Trailing	Trailing edge deflection, deg	lection,	deg						
Mach				ı.	Full span					Outb	Outboard (inboard	board =	= 0.0)	Inboa	Inboard (outboard = 0.0)	board =	0.0)
	30.2	17.7	8.3	4.1	0.0	-4.1	-8.3	-17.7	-30.2	17.7	8.3	-8.3	-17.7	17.7	8.3	-8.3	-17.7
ıl					Flat wi	ng, roun	ded lea	ding edį	Flat wing, rounded leading edge, trip strip on	trip on							-
0.40					319					286	313			329	324		·
Οŭ					315					283	311			326	321		
0.95					317		•			284	310			327	322		
1.05					316 314					282	308			325	320		
Q.		177	149	138	183		189	132					-				
20		173	145	140	179		185	134									
35		175	148	142	182		188	136									
95		174	147	141	181		187	135						•			
1.05		172	146	139	180		186	133			-						
1.11			144	137	178		184	131									
40		118	115	109	86		82	126									
70		121	112	105	100		87	128		-			_				
82		123	114	108	102		68	130						-			
0.95		122	113	107	101		88	129							. :		_
50		120	111	106	66		98	127									
-		116		104	97		84	124									
											,	- V - 1 - 1					

Table 4.—(Concluded)

	ô	-17.7					· · · · · · · · · · · · · · · · · · ·		
	1= 0.0)					-			
	tboarc	-8.3							
	Inboard (outboard =	8.3							
	Inbo	17.7						1	·
	0.0	-17.7							
	Outboard (inboard = 0.0)	-8.3		` <u>.</u>					
İ	(inbo					no d			
, deg	board	8.3		-		ip stri			·
lection	Out	17.7	no o			dge, tr		trip on	
Trailing edge deflection, deg		-30.2	Flat wing , sharp leading edge, trip strip on			Flat wing, twisted trailing edge, rounded leading edge, trip strip on		Twisted wing, rounded leading edge, trip strip on	
Frailing		-17.7	g edge,			unded I	363 360 362 361 359	ding edg	442 439 441 440 438
		-8.3	p leadin			edge, rc	358 354 356 357 353	ded lead	435 432 434 433 431
		-4.1	ng , shar			trailing		ng, roun	
	Full span	0.0	Flat wir	368 366 372	374 373 367 365	twisted	337 333 336 335 334 332	sted wir	450 445 449 447 448 446 446
	ш	4.1	•			t wing,	342 339 341 340 338	Twi	411 408 410 409 407
		8.3		-		Fla	347 344 346 345 343		416 413 415 414 412
		17.7					352 349 351 350 348		422 419 421 420 418
		30.2							427 424 426 425 425
	Mach			0.40	0.95 1.00 1.05		0.40 0.70 0.85 0.95 1.05		0.40 0.70 0.85 0.95 1.00 1.10
Leading	edge deflection,			Full span= 0.0			Full span = 0.0		Full span=0.0

of body to the midspan control surface break (0.57 b/2), and tapered to 0.16 cm (0.0625 in.) wide at the wingtip. On the upper surface of the wing, the trip strip was placed at 15% chord; and on the lower surface, it was placed just aft of the leading-edge control surface brackets (see fig. 4). Density of the grit was 4 to 5 grains per quarter inch.

DATA ACQUISITION AND INITIAL PROCESSING

The pressure data were recorded through the use of fifteen 24-position scanivalves located in the fore body of the model. Pressure transducers in the scanivalves measured the differential pressure between the local surface pressures and tunnel total pressure. Signals from the scanivalves, force and moment data, tunnel parameters, and model attitude angle were recorded on the Astrodata system and reduced using the XDS 9300 computer.

Final data (pressure coefficients, tunnel parameters, and model attitude) were merged on magnetic tapes, with appropriate configuration and test point identification for integration and plotting of these data.

A detailed description of the data editing and integration procedure and the data presentation are included in appendix B.

DATA TAPE DESCRIPTION

The experimental data are available from Mr. Percy J. Bobbitt of the NASA Langley Research Center on seven-track unlabeled tapes written by the Boeing Computer Services CDC 6600 computer. The tapes are written in binary (odd parity) mode at a density of 556 BPI. The first file of each tape and any program files are BCD (formatted) information. The data files are binary.

The data are provided separately for the wing and body. Pressure coefficients and integrated data are provided in separate files.

A description of each of the tape files follows.

- First file of each tape (BCD format with 80-column records).—This file contains an identification of the test and model and describes the content of the remaining files.
- Program files (BCD).—These files contain the source code of FORTRAN IV
 programs which may be used to provide listings of user-selected items in the data
 files.
- Data files (binary).—The first record contains geometry pertinent to the data which will follow (i.e., for pressure data, the spanwise location of each section and the arrays of x/c for which C_p's are listed; for integrated data, geometric constants used in the integrations). The remaining records each contain data for one test point. A list defining all test points is shown in appendix A.

RESULTS

The experimental results of this investigation are presented in figures 15 through 83 (table 5) and in NASA CR-132728 (table 6). Also summarized in table 6 are the comparisons of attached flow theories to experiment which are presented in NASA CR-132729. Since the results of the entire investigation are summarized and discussed in NASA CR-2610, no further discussion will be presented in this report. Instead, these data are presented here in more complete detail in order to make the maximum amount of data available. It should also be noted that both the experimental data and the theoretical data for attached flow methods are available on magnetic tape and copies may be obtained from Mr. Percy J. Bobbitt of the NASA Langley Research Center.

Boeing Commercial Airplane Company P.O. Box 3707 Seattle, Washington 98124 June 1975

Table 5.—Figure Summary of Data Presentation

	Mach number						Effect of Mach	
	0.40	0.70	0.85	0.95	1.00	1.05	1.11	number
		Wi	ng					
Base configuration	15	16	17	18	19	20	21	22
Sharp leading edge	23	24	25	26	27	28	29	30
Effect of L.E. shape	31		32			33		
Twisted wing	34	35	36	37	38	39	40	41
Effect of wing twist	42	İ	43			44		
L.E. droop = 5.1°	45	}	46			47		48
L.E. droop = 12.8°	49	50	51	52		53	54	55
Effect of L.E. droop	56		57	'		58		
	·····	Во	dy					
Base configuration	59	60	61	62	63	64	65	
Sharp leading edge	66	!	67			68		
Effect of L.E. shape	69	İ	70			71	ļ	
Twisted wing	72	i	73	1		74	ì	
Effect of wing twist	75		76			77		
L.E. droop = 12.8°	78		79			80	}	
Effect of L.E. droop	81	ĺ	82			83	ļ	
	<u> </u>	<u></u>	ļ		<u> </u>	L		

Table 6.—Summary of Additional Data Presentations

(a) Experimental Data Presented in NASA CR-132728

	Mach number							
	0.40	0.70	0.85	0.95	1.00	1.05	1.11	
	Win	ıg						
T.E. deflection								
Flat wing and T.E.	α,Ε	E	α,E	E		α,E	E	
Flat wing, twisted T.E.	E		E			E	1	
Twisted wing and T.E.	E	l	Ε		i	E		
Partial span control surfaces			α,E					
-	Bod	У						
T.E. deflection	α,Ε		α ,Ε			α,Ε		

(b) Comparison of Attached Flow Theories to Experimental Data Presented in NASA CR-132729

	Mach number						
_	0.40	0.70	0.85	0.95	1.00	1.05	1.11
	Win	g					
Base configuration L.E. shape Wing twist L.E. droop T.E. deflection Partial span control surfaces	X X X X		× × × × ×			X X X	
	Boo	dy		· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>
Base configuration Wing twist L.E. droop T.E. deflection	X X X		X X X			X X X	

 α = Angle of attack effect

E = Effect of configuration change

APPENDIX A

DETAILED TEST LOG

All test points for which pressure and force data were recorded are listed in tables A-1 through A-9. These tables include normal force and pitching moment coefficients obtained from strain gage measurements and by integrating the pressure data. Each test point is identified as a unique number within the test by the analysis number, where:

ANALYSIS NUMBER = 100 (RUN NUMBER) + POSITION IN RUN

Table A-1.—Experimental Data Test Point Log. Flat Wing, Rounded Leading Edge; L.E. Deflection, Full Span = 0.0°

(a) T.E. Deflection, Full Span = 0.0° , Trip Strip Off

Pitching moment coefficient, bal (integ press.)		_	(410.)810.	1300 1000-	041(037)	(650 -) 790 -	079(075)	098(100)	116(114)	129(125)	143(135)		_	.028(.026)	_		014(010)	031(026)	050(046)	065(060)	079(076)	087(084)	094(092)	101(097)	.000 ,000.			_		.013(.012)	_	016(012)	037(031)	056(046)	071(070)	089(086)	104(102)	118(115)	130(125)
Normal force coefficient, bal (integ press.)	325(328) 238(239)	155(157)	(410)410	1010-1600-	150(140)		.31	40	64.	.584(.576)	.668(.654)	277(283)	201(206)	126(130)	057(062)	.005(004)	(120.)690.	139(.295(.281)			_	.648(.635)	.004(004)		312(319)	221(224)	142(144)	066(069)	(100)000-	(150.)090.		.227(.216)			. 48	.591(.584)	19.
Angle of attack, deg	-7.91	-3.88	26 .1-	* C	3.08	20.0	7.91	9.86	11.82	13.77	15.72	-7.76	-5.81	-3.84	-1.86	=	2.07	€0.4	00.9	1.97	9.92	11.87	13.86	15.30	.10		-7.81	-5.86	-3.90	-1.92	• 0 •	2.01	3.99	5.95	7.89	0.84	11.80	13.77	12.21
Dynamic pressure, kN/m² (psf)	9.2(8	39.7(818)		39.2(8)8			8	9.1(81	9.21	(81	39.2(818)	5.215	5.2(5	5.21	5.2(5	_	5.21	S	5.215	25.2(526)	5.2(5	25.2(526)	5.2		5.2		9.00	36.017521	36.0(752)	36.0(752)	36.017521	36.0(752)	36.017521	36.017521	16.0(752)	36.0(752)	36.0(752)	16.0(752)	36.0(752)
Mach	1.05	1.05		1.07	1.05	1.05	1.05	1.05	1.05	1.05	1.05	.70	.70	.70	.70	.70	• 70	70	07.	Ů.	.70	. 70	. 70	.70	.70		• 95	• 95	• 95	• 95	• 95	.95	65.	• 95	• 95	\$6.	.95	• 95	.95
Analysis	1408	1410	17.17	71+1	1414	1415	1416	1417	1418	1419	1420	1501	1502	1503	1504	1575	1506	1507	1508	1509	1510	1151	1512	1513	1514		1691	1602	1603	1694	1605	1605	1607	1608	1609	1610	1611	1612	1613
Pitching moment coefficient, bal (integ press.)		.031(.030)	(110.)610.	1000.		051(046)	066(055)	(776)070	(780)680	(760)660	1001103)	1970. 1970.	.040.) 240.	.041(.040)	.018(.016)		020(019)	043(041)	065(062)	084(080)							015(010)	028(028)	045(044)	061(058)	19201920	085(083)	392(098(100)					
Normal force coefficient, bal (integ press.)	2 10	137(138)	- 000 - 000 -	066(058)	_	.219(.206)		·	Ξ.	·	· ·	14 (31.	6.5	71(001(000)	72(152(.142)	36 (22(260(266)	œ	17(.051	.039(002)	Ξ	_	~	7	_	_	.5	.639(.623)					
Angle of attack, deg	-7.78	т.	-	90.0	4.02	5.98	7.95	9. R9	11.85	13.82	15.64	-7.74	-5.78	-3.93	-1.86	11.	2.10	40.4	6.01	7.95		-7.73	-5.76	-3.80	-1.83	.13	2.11	4.08	6.05	10.8	95.6	11.93	13.89	15.35					
Dynamic pressure, kN/m² (psf)	32.2(672)	2.2	7.2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	40.7(850)	40.7(851)	40.7(850)		40.7(850)						3 (2 1	51212	2121	2(213	0.2	2(214	2(214	0.2(214	2 (2 1	2(214	2(214	21214	3(21					
Mach	 R. R. R. R.	oc o	n w	0 00	.85	ď	α:	Œ	• 85	.85	αυ	1:1	1.11	1:1	1.11	1.11	1.11	1.11	1:11	1.11		04.	.40	Û 7.	04.	04.	.40	.40	.40	04.	04.	04.	.40	04.					
Analysis number	707	709		712	713	714	715	716	717	718	417	106	206	6 Ú 6	5 06	906	404	900	606	٥1 ₆		1001	1002	1003	1004	1005	1006	1001	1008	1009	1010	1011	1012	1013					

Table A-1.—(Continued)

(b) T.E. Deflection, Full Span = 0.0° , Trip Strip On (The trip strip was on for the remainder of the test.)

moment	cient, g press.)	1040					.000	011)	027)	0441	0603	0761	084)	092)	1960	.001)		.0711		(110.		.001)	- 1	0311	(650*-	071)	(081)	1021	115)	(125)		.0651	.0461			(000	(110:-	0291	0471	0651	0773	0971	(760)
Pitching moment	coefficient, bal (integ press.)	1190	16.90		F () ()	•013(100.	012(029(021)	047(044	063(060)	077(076)	086(084	-1092		,003		.070	,051(.033(,014(000.	0150	-,035(-1054(070(071	- 0 8 8 (·	102(102	116(115	1280		.065	650.	.031(1510.	100.	013(031(029	050 (-,065(-,065	120°-)080°-	089(087	-,098
Normal force	coerficient, bal (integ press.)	2791 2821	00 - 1000	1007-1707-	1621-1621-	060(062)	T	.0661 .057)	_	.212(.197)	_	.380(.371)		.554(.538)		.001(~.004)		312(319)	222(225)	143(143)	068(068)	002(009)		.143(.132)		.3111 .307)		_	Ċ	_		296(300)	211(212)	135(134)	063(065)	000(005)	.066(.054)	•	.218(.206)				_
Angle of	attack, deg	11.1-		700	10.01	-1.87	.10	2.07	4.04	6.00	7.97	9.92	11.89	13.84	15.40	01.		-7.81	-5.85	-3.88	-1.92	•04	2.01	3.97	5.94	7.89	9. A4	11.80	13.76	15.71		-7.79	-5.84						5.97				
Dynamic	pressure, kN/m ² (psf)	25.2(526)	•		, ;	5.2	5.2	5.	5.2		5.2	2 (5.2(5.2	·	2 (36.1(753)	36.1(753)	36.1(753)	36.1(753)	36.1(753)	36.0(752)	36.1(753)	36.0(752)	36.1(753)	36.0(752)	36.1(753)	36.1(753)	36.1(753)		32.1(571)	32.1(671)	32.1(671)	32.1(671)	32,1(671)	32.1(671)	22.1(671)	32.1(670)	32.1(671)	32,1(671)	32-1(670)	32,116701
1	Mach	10		- 6	0.1	• 10	.70	.70	.70	0.2	. 70	.70	.01	. 70	.70	. 70		. 95		\$6.	. 95	• 95	. 95	. 45	• 95	.95	• 95	• 95	• 95	• 95			. A 5	.85	. A.5	.85	. 85	.85	.85	.85	.85	9.5	a
	Analysis	1086	3000	7000	5000	2304	2305	2306	2307	2308	2379	2310	2311	2312	2313	2314		2401	2402	2433	2404	2405	2406	2407	2408	5409	2410	2411	2413	2414		2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511	2512
Pitching moment	coerricient, bal (integ press.)	1770- 1970-				(410.)510.	003(001)	023(018)	047(042)	069(062)	(080)980**		.044	.027(.013(.000. 1100.	-,010	-		060(059)		-		•		(710. 1770.				001(.001)	019(014)	042(038)	064(050)	080(075)	101(105)	116(115)	128(125)	142(136)					
Normal force	coerricient, bal (integ press.)	-,312(-,320)	- 2201 - 2251	1663-1063-	(261-1)4+1-1	6701012)	(900')000'	2	3	.239(.227)	.323(.315)		191(195)	119(122)	054(05A)	.006(002)	.068(.057)	.136(.122)	.210(.199)	.284(.271)	13701 .3671	(444) . 444)	.552(.534)	(819.) [59.		324(329)	239(242)	155(157)	'n	4	. n69(.05A)	Ċ	Š	œ	2		5 (.) 5					
Angle of	attack, deg				•		•		•	•	7.96		5.77	. 80		. 14	11.	60.	6.05	0.5	16.	693	ď.	484		-7.80	5	-3.88		. 74	20.2	3.98	20.6	7.89	98.0	11,81	13.77	15.73					
	pressure, kN/m ² (psf)	7184	71 95	7007		7 (74	,6184	7(84	.7184	71.84	40.6(848)		.2(21	.3(21	.2121	.2(21	.2121	.2(2!	10.2(214)	.2(21	.2121	.2121	.2(21	.2(21		9.2(81	9.1(817	9.2(818	0.2(818	9.2(818	39.2(818)	9.2(818	9.2(818	9.21818	9.2(818	9.2(819	.2(818	9.2(918					
1000	Mach	1.11				1111	1.11	1.11	110	1.1	1.11		04.	04.	04.	.40	.40	04.	C * *	04.	04.	Úţ.	040	04.		•	•	•	1.05	•	1.05	•	1.05	•	•	1.05	1.05	1.05					
. :	Analysis	2001	2000	2000	5002	2004	2002	2006	2003	2008	2009		2	5	2	10	01	10	2108	1.0	=	1		Ξ		2201	2202	2203	2204	2205	2226	2207	2208	2209	2211	2212	2213	2214					

Table A-1.—(Continued)

(c) T.E. Deflection, Full Span = 17.7°

Pitching moment coefficient, bal (integ press.)		060(075)079(005)072(105)106(125)128(136)151(158)151(168)178(187)178(187)
Normal force coefficient, bal (integ press.)	029(029) .056(029) .156(05) .181(182) .247(243) .399(349) .450(447) .521(524) .607(606) .683(606) .759(761)	.004(.005) .137(.135) .137(.135) .193(.189) .254(.249) .314(.308) .443(.436) .593(.601) .593(.675) .753(.677) .829(.825)
Angle of attack, deg	7, 98 -7, 98 -7, 93 -7, 03 -7,	2
Dynamic pressure, kN/m ² (psf)	32.1(670) 32.1(670) 32.1(670) 32.1(670) 32.1(670) 32.1(670) 32.1(671) 32.1(671) 32.1(670) 32.1(670)	10.2(213) 10.2(213) 10.2(213) 10.2(213) 10.2(213) 10.2(213) 10.2(213) 10.2(213) 10.2(213) 10.2(213)
Mach		
Analysis number	3101 3102 3103 3104 3106 3106 3108 3108 3110 3111	3201 3203 3203 3204 3206 3206 3210 3210 3211 3213
	1	
Pitching moment coefficient, bal (integ press.)	067(071) 086(109) 102(115) 137(175) 152(159) 164(159) 196(205) 279(205)	
Normal force coefficient, bal (integ press.)	.075(072) .012(-017) .012(-017) .034(-101) .227(-234) .227(-234) .294(-303) .364(-303) .364(-362) .505(-591) .507(-562) .712(-786)	006(1.005)006(1.005)132(1.132)190(1.186)248(244)312(3.304)312(3.304)519(5.517)604(5.59)604(6.64)604(6.64)
	•	
. Angle of attack, deg	- 25.99 - 2.99 - 2.90 -	10.00 10
Dynamic . Angle of pressure, attack, kN/m² (psf) deg	39.1(917) -7.89 -39.1(817) -2.95 39.1(816) -3.99 39.1(817) -2.95 39.1(817) -2.95 39.1(817) 1.92 39.1(817) 7.89 39.1(817) 9.78 39.1(817) 11.75 39.1(817) 11.75	25.3(528) -7.91 25.2(527) -5.93 25.2(527) -3.97 25.2(527) -2.00 25.2(528) 3.93 25.2(528) 3.93 25.2(528) 3.93 25.2(528) 3.93 25.2(527) 7.84 25.2(527) 13.76 25.2(527) 13.77 25.2(527) 13.77 26.2(751) 13.77 26.2(751) 13.77 26.2(751) 13.77 27.2(751) 1
	8817) 8817) 8817) 8817) 8817) 8817) 11 (818)	

(d) T.E. Deflection, Full Span = 30.2°

		Dynamic	Angle of	Normal force	93	Pitching moment			Dynamic	Angle of	Normal force	Pitching moment
Analysis number	Mach	pressure. kN/m² (μsf)	attack, deg	coefficient, bal (integ press.)	,, .ss.)	coefficient, bal (integ press.)	Analysis	Mach number	pressure, kN/m² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)
5	9	0	-7.96	٥	1220	1131 1261	34.01	9	11 016671		1000	116/- 13
10	, (40		1 2 2 5 1		1000					1621-1611-
3,5) C	19.0.0.05	40.4-	2 2	184	-1681-1581	2006		189910-25	10.0-	(001.)141.	(44]176]
, ,	•				2631	160(= 121)	5000		1000000000	100		1161-1041-
2 6	, c	50	00.21		1662.	1701-1021-	3604	V (50.71		158(171)
מ ל	•		11.	000	+ 1	(+8:-10/1-	5695	3,5	900	71	_	i
3	0	*16.0°6	1.88) ()	.376)	182(196)	3676	. 35	99)(•	1.98	. 41	
32	্	9.0(814	3.85		.4341	192(201)	3607	. 85	•0(66	3.85		202(211)
32	ç	9.0(814	5.82	75(.	(967	190(208)	36.98	.85	.0(66	5.81		213(221)
32	٥.	39.0(814)	7.81	194	.576)	207(222)	3609	ά.	32.0(668)	7.78	.589(.613)	213(224)
33	0	9.0(814	92.6	17(.646)	214(233)	3610	, a	0166	97.6		227(236)
33	0	8.9(11.72	78(.711)	213(233)	1176	α,	0.166	11.70		'n
3	c	9.00	13.69	196	(022	211(227)	3612		0.66	13.68		٠,
3333	1.05	39.0(814)	15.69	. 791(.8	822)	205(219)	3613	. 3.5	9910	15.66	.849(.876)	204(212)
3401	. 70	5.11525	-7.94	1.)78	(+0	120(127)	3701	04.	10.2(213)	-7.87	(611.)101.	102(123)
3405	7.0	5,115	-5.99	571	.1791	134(143)	3702	04.	(21	-5.94	167(.183)	1171138)
3403	. 70	5.1(525	-4.01	218(.237)	146(154)	3703	04.	.2(21	-3.97		130(146)
3404	. 70	5.1(524	-2.05	77(1996	158(168)	3078	04	7			143(164)
2005		5-11525	α 	1065	12501	171(182)	2705			20		1501-1781
4076		5 11525		1707	1007	106(- 103)	2016	•		70.		• ,
	•	777110	1.40	•	7 2 2	•	90.75			1.94	•	·
3407	0.1	2.1.22	3.87		t 2 1	(50.7 -) 861 - 1	1014	0.40	10.21213)	3.92	(584.)//4.	188(188
3408	. 10	5.1(5	5.84	535(246)		3708	04.	$\tilde{\sim}$	5.88		ř
3408	2	5.1(5	7.82	001 .	.6111	212(217)	4709	04.	٠3)	7.86	_	i
3410	.70	5.1(5	9.19	9169	16	222(225)	3710	.40	10.2(213)	9.82	_	213(230)
3411	• 70	5,115	11.76	. 1091	.7701	228(235)	3711	64.	10.2(213)	11.78	(611.)691.	22!(234)
3412	0.2	5.1(5	13.72	•	8331	218(228)	3712	04.	10.2(213)	13.77	_	~
3413	. 70	5.115	15.69	806	895)	205(212)	3713	04.	10.2(213)	15.75	(616.)506.	209(228)
3414	. 70	2	90	37(.	3631	169(183)						
Ľ	9.5	5.9175		7	10401	120(132)						
ľ	6	91 75	-6.02	2	483							
ľ	95	5.9(74	70-4-		2201	151(164)						
···	95	5.91749	-2.08	110	82)	163(179)						
ິເດ	• 95	9(75		0	.3341	175(189)						
ഹ	• 95	5.91750	1.86	72(.4001	189(204)						
S	• 95	5.9(75	3.83	351	4571	279(210)						
S	• 95	5.9(75	5.78	37(.516)	208(212)						
S	.95	5.9175	7.17	.) 29	.5871	211(222)						
S	• 95	5.9(75	08.6	36(662)	221(231)						
3511	\$6.	35.9(750)	11.71	702(. 7301	219(232)						
S	• 95	5.9(75	13.67	3 ((061.	214(222)						
•	• 95	5.9174	15.66	1.	.852)	206(212)						

Table A-1.—(Continued)

(e) T.E. Deflection, Full Span = 8.3°

Normal force Pitching moment coefficient, coefficient, bal (integ press.)
Dynamic Angle of pressure, attack, kN/m ² (psf) deg
Mach
Analysis
Pitching moment coefficient, bal (integ press.)
Normal force coefficient, bal (integ press.)
Angle of attack, deg
Angle attack
Dynamic Ang pressure, att kN/m² (psf) d

(f) T.E. Deflection, Full Span = 4.1°

Pitching moment coefficient, bal (integ press.)	.0251 .023) .010(.007)	0221024)	049(048) 066(065)	083(081) 095(093)	108(109) 116(115)	120(121)	.027(.026)	.00R(.007)	009(010)	027(028)	041(040)	077(073)	094(092)	.109(110)	127(124)	147(143)	153(149)	0261 0261	• •		•	036(037)	051(051)	070(069)	087(084)	098(100)	114(113)	122(122)	129(128)	135(133)
Normal force coefficient, bal (integ press.)	204(206) 128(129) 056(057) -		(-129)	3(.273)	(.519)	- (603) - - 701(.693) -	(,236)	1451	(066)	002)	1361	(602- 1	1 . 2931	<u>.</u>	. 550)	641(.638)	720(.723)	- 2184- 2211	136(135)		.006)	(990*)	(181)	(*504)	. 1612.	1498. 11	1 .450)	(.534)	.623)	(•714)
Angle of attack, deg	-7-81 -5-85 -3-88	-1.91	7. 03	5.97	9.88 11.84	13.82	-7.85	-5.90	-3.92	-1.96	10.1	3.94	2*40	7.85	11.77	13.73	15.69	-7.82	-5.86	-3.90	-1.93	•04	2.00	3.97	5.93	7.89	9.85	11.80	13.76	15.74
Dynamic pressure, kN/m² (psf)	25.1(524) 25.0(523) 25.1(524)	25.0(523)	25.1(524)	5.16	5.1(52 5.1(52	25.0(523)	35.9(750)	Ξ	27.2	35.9(750)	35.9(750)	~	31.75	7(74	35.9(749)	35.9(749)	35.9(749)	31.0(667)	: =	66	99)(32.0(668)	99)(=	31.9(667)	Ξ	č	99] (32.0(668)	32.0(668)
Mach	1			. 70	07.	٠. د د د	.95	• 95	\$6.	. 95	. 4.5	.95	• 95	56.	. 95	• 95	• 95	ď	. 85	.85	•85	.85	• 82	.85	• 85	•85	• 85	• 85	- 85	. 85
Analysis	. 5001 5002 5003	5004 5005	5006	5008 5009	5010	5012 5013	5101	5105	5103	5104	5105	5107	5109	5110	5111	5113	5114	5 20 1	5202	5203	5204	5205	\$206	5207	85208	5209	5210	5211	5212	5213
noment ient, press.)	.034)	.0281	064)	.105)	.022)	.007)	.023)	046)	064)	076)	107)	113)	8(119)	.124)	.031)	.013)	001)	028)	.062)	.0851	.103)	.113)	.135)	45(143)	(150)	1591				
Pitching moment coefficient, bal (integ press.)	.033(.034 .012(.014 008(006	031(028	070(-	110(105 120(115		-010(043(-	-,090	076(076	-103(107	113(-	118(-	122(-	.032(012(•	030(-	-1990-	089(085	108(10	118(113	1351135	145(-	155(-	1691				
Normal force coefficient, bal (integ press.)	247(250) 159(161) 078(081)	.001(003)	.225(.213)	.305(.297)	193(192)	121(123)	.010(.008)			.276(.264)			•		247(250)	_	_	.000(003)	145(.224(.214)	305	_	4 70 (•	•	. 7061 . 7061				
Angle of attack, deg	-7.83 -5.81 -3.85			5.97	-7.17	-5.80	-1.87	2.08	4.05	6.02	9.05	• ~	13.86	ς.	-7.84	-5.88	-3.91	-1.95	16.	3.94	5.91	7.86	9.82	11.79	13.74	15.70				
Dynamic pressure, kN/m ² (psf)	40.5(845)	40.5(845)	\$	40.5(845)	7	10.2(212)	~ ~	(2)	2	25	10-2(213)	1213	[2]	(213	39.0(814)	8	38.9(813)	8 6	39.0(814)	31.4	8	3	39.0(814)	8	8	39.0(814)				
Mach	1:1:	1.11			.40	64.	04.	04.	04.	¢.	0 4	. 40	04.	.40	1.05	1.05	1.05	1.05		1.05	1.05	1.05	1.05	1.05	1.05	1.05				
Analysis number	4713 4714 4715	4716 4717	4718	4720	4801	4802	4804	4806	4817	4808	4809	4811	4812	4813	4901	0	4903	4904	4004	4907	4908	6067	4910	4911	4912	4913				

Table A-1.—(Continued)

(g) T.E. Deflection, Full Span \approx -4.1°

Pitching moment coefficient, bal (integ press.)	38(.038)	, ,	037(040)	055(057)	.040(.038)		.043(.045)		008(004)	027(027)	042(040) 055(054)	073(070)	089(085)	116 .0411			008(005)	023(025)	037(037)	047(048)	058(057)	069(0681
Pitch co bal (.038(0.03	0	. 0.0		.043(.0116	00-	-03	20.0	01	90	1140.	.0280	.0110	-00	02	03	04	.0.	06
Normal force coefficient, bal (integ press.)	069(078)				1295. 1595.		080(088)	(050)			(116.)01		1709. 140	074(082)	007(019)	31 .051)			_		1085.)78	(615.)61
No co bal (i	1690	1381	.387	476	072		0 0	.062	145	.2316	.410(.507	• 604	0	••0	.063	.140	.222	.308	.396	.487	.579
Angle of attack, deg	2.10	6.05	9.96	13.88	13.84		2.05	4.01	5.98	7.93	11.83	13.78	15.77	. 10	2.08	4.04	6.01	7.97	16.6	11.88	13.83	15.80
Dynamic pressure, kN/m ² (psf)	25-1(525) 25-1(525)	25.1(525)	25.1(525)	25.1(524)	25.1(524)		35.9(750)	35.9(750)	35.9(749)	35.9(750)	35.9(750)	35.9(750)	35.9(750)	32.01668)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.016691
Mach	07.	0.00	07.	.70	2 2		5.6.	.95	\$6.	\$6.	. 56°	. 95	• 95	. 85	.85	.85	. 85	.85	.85	.85	.85	. 85
Analysis	5701	5704	5706	5708	5710		5801	5803	5804	5805	5807 5807	5808	5809	5901	5905	5903	5904	5005	9065	2003	5908	5909
oment ent, vress.)	.048)	014)	.035)	.025)	(900)	022)	041)	056)	0561		.0357	.013)	031)	1950	073)	0861	101)					
Pitching moment coefficient, bal (integ press.)	.025(1 1	.0376	.0241	†	022(022	037(041	055(056	3(::	ï	·	•	•					
i !		• • •	٠	•	• •	i	00	05	063(056	à	.029(.007	014(009	055(055	0721073	089(086)	106(101					
ormal force oefficient, (integ press.)	71(082)								53(.482)								1265. 100					
Normal force coefficient, bal (integ press.)	•	.162(.153)		.004(015)	.141(.121)	(361.)115.	.382(.371)	.473(.458)	.563(.482)		068(090)	.071(.058)	.153(.145)	.334(.329)	.4221 .419)	.512(.508)	1265.)009.					
Angle of Normal force attack, coefficient, deg bal (integ press.)	2.15 2.11 6.08	6.04 .162(.153)			.141(.121)	(361.)115.		.473(.458)	.563(.482)	7,000	068(090)	.071(.058)		.334(.329)	.4221 .419)	.512(.508)	1265.)009.					
 	2.15 2.11 6.08	.162(.153)	.17060(074)	2.15 .004(015)	6.09 .141(.121)	(361.)115.	11.96 .382(.371)	13.92 .473(.458)	15.89 .563(.482)	1000 + 1100 - 00	2-0508(090)	4.02 .071(.058)	.153(.145)	9.89 .334(.329)	11-84 .4221 .418)	.512(.508)	15.75 .600(.597)					
Angle of attack, deg	40.5(846) .15 .40.5(846) 2.11	6.04 .162(.153)	10.3(215) .17060(074)	10.2(213) 2.15 .004(015)	10.2(213) 6.09 .141(.121)	8.05 .711(.195)	10.2(213) 11.96 .382(.371)	10.2(212) 13.92 .473(.458)	15.89 .563(.482)	1000 -1100 - 00 191010 05	39.0(815) 2.05008(022)	39.0(815) 4.02 .071(.058)	5.97 .153(.145) 7.94 .243(.236)	39.0(815) 9.89 .334(.329)	39.0(814) 11.84 ,422(,419)	39.0(815) 13.80 .512(.508)	126. 1009. 25.75 1618)0.65					

(h) T.E. Deflection, Full Span = -17.7°

Pitching moment coefficient, bal (integ press.)		.059(.063)				.135(.136)					(690.)690.									(490.)810.					
Normal force coefficient, bal (integ press.)	!	1981 1861			282(299)	218(232)	154(169)	085(099)	001(013)	(510.)060.	1901.166)				273(284)	711(221)	150(162)	086(100)	014(024)	.068(.062)		(152.)656.			
Angle of attack, deg	66.6	11.94	15.86		•20	5.19	4.15	6.11	8.07	10.04	11.97	13.94	15.88		.34		4.22		8.15	10.13	12.16	14.03	15.98		
Dynamic pressure, kN/m² (psf)	35.9(750)	35.9(749)	35.9(750)		32.0(668)	32.0(668)	32.0(669)	32.0(669)	32.0(668)	32.1(670)	32.0(669)	32.0(669)	32.0(669)		10.2(214)	10.2(213)	10.2(213)	10.2(213)	10.2(213)	10.2(213)	10.2(213)	10.2(213)	10.2(213)		
Mach	.95	. 9. 29.	.95		. 85	. 85	.85	.85	.85	.85	.85	.85	.85		04.	04.	04.	.40	04.	.40	04.	04.	04.		
Analysis	6406	6408	6049		6501	6502	6503	6504	6202	9059	6507	6508	6059		6601	2099	6603	6604	9099	9099	2099	0199	6611		
Pitching moment coefficient, bal (integ press.)	.165)	130)	.105)	.080	•056)	.048)	.029)	(900*		.148)	32)	211	07)	.088)	.070	.058)	.0441	(620*	503		(+)	8)	8)	23	93)
Pitchi co bal (i	.148(1171	960.	.072(.050	.039(.021(000			. 132(.1			.0886				0.033(.0						.1064 .112	
Normal force Pitchi coefficient, co bal (integ press.) bal (i	263(289) .148(.0431		.2221	.321)	_		183(294) .145(155(168) .119(1060	.098	.073(190.	.048	.033(146(.133(.123(1066	.088(
lormal force coefficient, (integ press.)	263(289)		037(054)	.057(.043)	.155(.139)	.2221	.334(.321)	.426(.422)		283(294) .145(218(230) .132(155(168) .119(089(101)	.098	.075(.067) .073(167(.155) .061(.263(.250) .048(.368(.360) .033(1651 291(, 301)		146(208(223) .133(147(165) .123(071(088) .106(.088(
Normal force coefficient, bal (integ press.)	04263(289)	121(144)	6.07037(054)	8.02 .057(.043)	10.00 .155(.139)	11.94 .240(.222)	13.89 .334(.321)	15.84 .426(.422)		.23283(294) .145(2.22218(230) .132(4.19155(168) .119(1901. (1011680 51.9	012(023) .098(10.06 .075(.067) .073(12.02 .167(.155) .061(13.99 . 7631 . 2501 . 0481	15.95 .364(.360) .033(.07291(301) .149(.16271(289) .146(2.15208(223) .133(4.10147(165) .123(6.10071(088) .106(.016(003) .088(
Angle of Normal force attack, coefficient, deg bal (integ press.)	39.0(814)04263(289)	4.10121(144)	39.0(815) 6.07037(054)	39.0(815) 8.02 .057(.043)	10.00 .155(.139)	39.0(815) 11.94 .240(.222)	39.0(815) 13.89 .334(.321)	15.84 .426(.422)		25-1(524) .23283(294) .145(25-1(524) 2.22218(230) .132(25.1(524) 4.19155(168) .119(25.1(524) 6.15089(101) .106(8.12012(023) .098(25.1(525) 10.06 .075(.067) .073(25.1(525) 12.02 .167(.155) .061(25.1(525) 13.99 .263(.250) .048(25.1(525) 15.95 .368(.360) .033(25.1(525) .07291(301) .149(35.9(749) .16271(289) .146(35.9(749) 2.15208(223) .133(35.9(749) 4.10147(165) .123(6.10071(088) .106(35.9(749) 8.05 .016(003) .088(

(i) T.E. Deflection, Full Span = -17.7° , Side-of-Body and Midspan L.E. Cuts Sealed. (For the remainder of the test, the side-of-body cut was sealed for inboard L.E. deflection = 0.0° . The midspan cut was sealed for full span L.E. deflections)

_	_	_	_
press.	.153	.125	• 094
(integ	1471	122() 68(
bal			
ress.)	1662	171)	0171
nteg p	-) 51	5(<u>-</u>
	28	-15	00.
ea	.21	.15	10.
			_
² (psf)	1668	(668	32.0(668)
kN/m	32.0	32.0	32.0
mber	.85	.85	.85
er nu			
numb	690	69	069
		.122(.128)	
bal (integ press.)	.1461	.122(.087(
bal (integ press.)	.1461	.122(.087(
bal (integ press.)	.1461	.122(610041 .0871
bal (integ press.) bal (integ press.)	273(292) .146	147(166) .122(.016(004)
bal (integ press.)	273(292) .146	.122(.016(004)
deg bal (integ press.) bal (integ press.)	.17273(292) .146(4.11147(166) .122(9.03 .016(004) .087(
N/m² (psf) deg bal (integ press.) bal (integ press.)	.17273(292) .146(4.11147(166) .122(9.03 .016(004) .087(
N/m² (psf) deg bal (integ press.) bal (integ press.)	35.8(748) .17273(292)	35.8(748) 4.11147(166) .122(35.9(749) 4.03 .016(004) .087(
deg bal (integ press.) bal (integ press.)	1461. 12621273(292)	35.8(748) 4.11147(166) .122(.95 35.9(749) 4.03 .016(004) .087(
	number number kN/m² (psf) deg bal (integ press.) bal (integ press.)	number kN/m² (psf) deg bal (integ press.) bal (integ	32.0(668) .21284(299) 32.0(668) 4.15155(171)

Table A-1.—(Continued)

(j) T.E. Deflection, Full Span = -30.2°

	_																																										
1.00 to 1.00 t	ritching moment coefficient,	bal (integ press.)				.2016 .210)	.193(.203)	.:73(.185)	_	.146(.154)	_	_	_	.0871 .091)		.084(.082)	.227(.223)	.214(.208)	_	_					128(126)				L														
-	coefficient,	bal (integ press.)		631(658)	5401566)	469(495)	435(462)	339(369)	275(305)	213(241)	147(178)	065(098)	(200.)620.	.117(.093)		.283(.277)	622(630)	548(560)		416(435)	352(367)	-, 292(-, 309)	234(249)	- 176(- 192)	13(1-)6(1-	026[046]	(140-)650.		.225(.136)														
) o oloo V	attack,	deg		17.8-			-2.72			4.19		P. 11	10.16	12.03	13.96	15.93	-7.55	-5.58	-3.63	-1.65	. 60			6.23	2.0	10.19	12.12	14.08	16.05														
O. m. m.	Dynamic pressure,	kN/m ² (psf)		31.8(665)	11.8(665)	31.9(666)	31.9(666)	31.4(665)	31.9(666)	31.9(666)	31.9(666)	31.9(666)	31.8(665)	31.8(665)	31.9(666)	11.8(665)	10.2(213)	10.2(213)	2 (2)		21	10.2(213)	10.2(2)3)	10.212131	10.2(2)31	: 5	10.2(213)	10.2(212)	10.2(212)														
	Mach	number	;	.8,	8.	. 95	.85	.85	. 45	. 85	. 85	. 85	. 85	.85	.85	. 95	.40	04.	0.4	07	C *	04.	04.	. 4		•	0 7	(4)	04.														
	Analysis	number	;	105	7402	7403	7404	7405	7406	7407	7403	7409	7410	1411	7412	7413	7501	7502	7503	75.04	7505	7506	7507	75.08	7509	7510	7511	7512	7513														
			1		_		_			_								_																									
Pitching moment	coefficient,	bal (integ press.)			.213	. 2061	197			.159)	. [4]		.0981	.077	.054)	.050	.226	.215)	. 2011	188)			149)						.086	.177	.218)	•	199	.1931	.181)	.165)		.138)		.106)	.0891	.081)	.077
Ditchin	coeff	bal (int		100	. 195	.189	.178	.165	.154	.142(.125(. 106	.085	.062	.044	.042	.222	.212	1661	1836	169	155	144(1331	1200	100	093	0.60	080	.171	.2111	. 200	190	179(.1651	.152(.142(126	.111	960°	.082	.076	.068
Normal force	,	bal (integ press.)			*	4	Ċ,				0		0	.189(.159)	285(.360(.345)		553(567)		4	Ť	~	~	-	089(1141	Ċ	0881 .070)	71.	571	-) / +	57916011	503(529)	435(460)	•	311(345)	~	191(222)	-!	Ç.	24 (144(31(.321(.298)
Annie of	attack,	deg	,	50.1	-5.70	-3.74	-1.79	.21	2.18	4.15	6.10	8.07	10.00	11.95	13.91	15.88	-7.60	-5.64	-3.68	-1.70	• 25	7.24	4.22	61.9	8.15	10.12	12.06	14.03	15.98	.28	-7.70	-5.12	-3.75	-1.79	. 18	2.18	4.14	6.12	8.07	10.01	11.98	13.92	15.90
Dynamic	pressure.	kN/m² (psf)	0	0 14 0	8 6 6	8.68	8.8(8	8.9(8	8.9(8	8.9(8	8.9(8	8.8(8	38.9(812)	8.9(8	8.8(8	8.9(8	5.00.5	5.0(5	5.015	4.9(5	5.015	4.915	4.9(5	5.015	5.0(5	5005	25.0(523)	5.015	5.015	2.0(5.8(.8	5	5.8(ς.	5.8(5.7(5	5.7(5.8	.8(74	5.9(74	5.8(74
	Mach	number	•	•	9 (•	•	٥.	°	٥.	°	0	1.05	٥.	٥.	0	. 70	.70	.70	02.	7.0	٠,٧٥	. 70	.70	0.2	102	. 70	. 70	.70	.70	.95	• 95	• 45	• 95	• 95	• 95	• 45	• 95	• 95	• 95	.95	• 95	• 95
	nalysis	umber	7107		1105	1106	1017	1108	1109	7110	7111	7112	7113	7114	7115	7116	7201	7202	7203	7204	7205	7206	7207	7208	7209	7210	7211	7212	7213	7214	1301	7302	7303	7304	7305	7306	7307	1308	1309	7310	7311	7312	7313

(k) T.E. Deflection, Full Span = -8.3°

natysis	Mach	Dynamic pressure,	Angle of attack,	Normal force coefficient,	Pitching moment coefficient,	Analysis	Mach	Dynamic pressure,	Angle of attack,	Normal force coefficient,	Pitching moment coefficient,
nmper	number	kN/m² (psf)	deg	bal (integ press.)	bal (integ press.)	number	number	kN/m ² (psf)	deg	bal (integ press.)	bal (integ press.)
7705	1.11	40.3(841)	•20	144(156)	.088(.095)	8008	010	75.0(523)	ď	149(156)	1220- 1920-
7706	1.11	40.2(840)		072(088)		8008	7.0	25.1(524)	2.16	082(092)	
7077	1.1.	40.2(840)	4.13	.005(012)		1608	02.	25.0(522)	4.11	018(030)	
7708	1:11	40.2(840)				8008	.70	25.0(523)	60.9	.057(.043)	
1109	1.11	40.3(841)				8008	.10	25.0(522)	9.06		
						8010	.70	25.0(522)	96.6		
7801	04.	10.2(212)	-7.64	415(421)	.133(.133)	8011	.70	25.0(522)	11,96		•
1802	04.	10.2(213)	-5.68		.117(.116)	8012	. 70	25.0(522)	13,92		023(023)
7803	.40	10.2(213)	-3.75	267(279)	.102(.105)	8013	. 70	25.0(522)	15.90		032(030)
7804	04.	10.2(212)	-1.17								
7805	•40	10.2(213)		136(146)	.074(.072)	1018	• 95	35.6(744)	.11	169(176)	.093(.094)
7806	.40	10.2(213)		073(087)	.062(.961)	8102	• 95	35.6(744)	2.10	098(110)	
7807	.40	10.2(213)		011(021)	.050(.050)	8103	• 95	35.6(744)	4.08	026(040)	.060(.065)
7808	04.	10.2(213)		(240.)250.	.034(.032)	8104	.95	35.7(745)	6.05	.063(.048)	
7809	.40	10.2(213)		.136(.121)	.015(.013)	8105	.95	35.7(745)	7.97		
7810	04.	10.2(213)		.224(.209)	.000(003)	9108	99.	35.7(745)	9.92		
7811	.40	10.2(212)		.312(.297)	011(014)	8107	36.	35.7(745)	11.87		
7812	.40	10.2(212)		.402(.389)	020(025)	9108	95	35.7(745)	13.86		033(028)
7813	04.	10.2(212)	15.93	.489(.474)	029(0341	8109	56.	35.7(746)	15.81	.532(.533)	050(048)
1061		38.9(812)	-7.71	467(473)	.1641 .166)	8202	. 85	11.816651	1.85	097(103)	.072(.071)
2061		38.8(810)		389(397)	.151(.155)	8203	.85	31.8(665)	2.12	088(099)	
7903		38.8(810)	-3.78	310(318)	.136(.141)	R204	•85	31.8(665)	4.10	021(034)	
1904	1.05	18.7(809)		_	.118(.123)	902i	.85	31.8(665)	6.04	(540.)650.	
1905		38.8(810)	•12	162(171)	(660.)160.	8206	.85	31.8(665)	8.00	.145(.130)	.0171 .020)
9061		38.7(809)	2.11	089(102)	.079(.084)	9207	. A5	31.8(665)	9.98	.235(.221)	.902(.004)
1907		38.8(810)	4.08	011(027)	.059(.065)	8208	.85	31.8(665)	11.95	.327(.315)	011(011)
1908		38.7(809)	6.03	(890.)670.	.033(.036)	8209	.85	31.8(665)	13.88	(114.)814.	023(025)
6062		38,7(809)	7.96		.009(.015)	9219	•85	31.8(665)	15.84	.510(.509)	032(034)
1910		38.7(809)	6.94		013(012)						
1911	'n	38.8(810)	11.89	(158.)658.	432(050)						
2161		38.8(810)	13.83	Ċ	048(044)						
7913	7	38.4(811).	15.78	1753. 1585.	066(065)						

Table A-2.—Experimental Data Test Point Log. Flat Wing, Rounded Leading Edge; L.E. Deflection, Full Span = 12.8°

(a) T.E. Deflection, Full Span = -8.3°

Pitching moment coefficient, bal (integ press.)				.031(.034)	(710.)+10.	•	027(023)	030(040)	051(052)		(600)160					007(003)	026(028)	046(046)	062(059)		.082(.082)				(110.)910.	(900*-)900*-	025(025)	039(042)	051(041)
Normal force coefficient, bal (integ press.)	159(166)	(660*-)060*-	023(033)	.046(.035)			.287(.281)				182(191)	107(117)	032(044)	.045(.034)	_		.303(.314)	.400(.402)	(664.) 264.		166(176)	094(105)	025(037)	.046(.034)	.122(.115)				
Angle of attack, deg	11.	2.14	4.12	6.08	9.04	10.01	11.97	13.92	15. AR		.13	5.09	4.06	6.02	7.98	6.63	11.89	13.84	15.81		.14	2.12	4.08	6.05	8.00	4.07	11.93	13.88	15.84
Dynamic pressure, kN/m ² (psf)	25.1(524)	22.0(522)	25.0(522)	25.0(522)	25.0(522)	24.9(521)	25.0(522)	25.0(522)	25.0(522)		35.8(747)	35.8(748)	35.8(747)	35.8(747)	35.8(747)	35.8(747).	35.8(747)	35.8(747)	35.8(747)		31.9(666)	31.0(646)	31.9(666)	31,916661	31.9(666)	31.9(666)	31.9(666)	31.9(666)	31.8(665)
Mach number	.70	?	. 10	.73	• 70	• 70	.70	.70	.70		.95	• 95	• 95	. 95	• 95	• 95	.95	• 95	.95		. 85	. 85	. 85	.85	. 85	. 85	.85	. 85	.85
Analysis number	8702	8 703	407	8705	8706	8707	8018	P 700	8710		8801	8802	8803	8804	8805	8806	8807	8888	8809		8901	8902	8903	8904	8905	8906	8907	8068	6068
Pitching moment coefficient, bal (integ press.)		1410. 1000.		_	(+000)0000		1690 1020			1260. 1260.		002(008)	024(031)	041(043)	055(065)		.080°)£10°			.110.)800.	320(015)	042(042)	061(064)	078(075)					
Normal force coefficient, bal (integ press.)	155(168)	1660*-1610*-	÷	.074(.062)	J			_	Ţ	u	1186 .109)	_	J	.359(.360)	(995.)555.		_	÷	J	2(.238(.232)	9	چ	.501(.501)					
Angle of attack, deg	.19	01.7	4.12	6.12	3.05		.21	2.18	4.18	6.13	9.09	10.10	12.05	13.98	15.96		2.10	4.08	6. 04	7.97	96.6	11.04	13.89	15.82					
Dynamic pressure, kN/m² (psf)	40.4(843)	12401010	40.3(841)	40.3(842)	40.3(842)		10.2(213)	10.2(213)	10.2(213)	10.2(213)	10.2(212)	10.2(212)	10.2(212)	10.2(212)	10.2(212)		38.9(812)	38.9(812)	38.8(8!1)	18.8(811)	38.9(812)	38.8(811)	38.8(811)	38.8(811)					
Mach	1:1	11:	1.11	1.11	1.1		0.4	• 40	• 40	.40	04.	04.	04.	040	04.		1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05					
	8408		_	_	_		_	8504	Z.	ς.	8507	œ	œ	_	_		~	.+	'n	2	8607	æ	•	861n					

(b) T.E. Deflection, Full Span = 0.0°

Pitching moment coefficient, bal (integ press.)	.051(.047) .038(.038) .024(.025)		016(016)	031(028)	(990-)690-	087(089)	106(099)	122(117)			.045(.042)	1970 1770	- 1	020(018)	037(034)	057(054)	096(092)	119(119)	137(137)	1541147)	.057(.049)				003(003)	017(017)	034(030)	052(050)	072(067)	088(084)	109(108)	124(122) 136(129)
Normal force P coefficient, bal (integ press.)	308(320) 226(233) 148(154)			-134(.119) -	.272)	.361)	50(.438)	-5411 -5401 -		337(352)	249(256)	163(169)		.054)	.126)	15(.204)	.375)	.482)	.571)	- (664. 1094.	322(335)	237(246)	155(160)		015)	.0531	.120)	.197)	.2781	.359)	. 459)	.549(.551) - .641(.637) -
Angle of attack, deg	-7.81 -5.83 -3.86	-1.88	2.07	4.05	7.99	96.6	11.93	15.89		-7.88	-5.91	26.6-	.02	2.01	3.99	5.95	9.89	11.86	13,83	15.82	-7.85	-5.87	-3.89	16.1-	• 02	2.05	4.02	5.99	7.96	9.93	11.91	13.88
Dynamic pressure, kN/m ² (psf)	25.1(525) 25.1(525) 25.1(525)	5.16	5.1(25.1(525)	5.10	5.1(5.1	25.1(525)		~	9.6	35.9(750)	35.9(750)	35.9(750)	35.9(750)	35.9(750)	35.9(750)	35.9(750)	35.9(750)	1951 16.56	32.0(668)	32.0(668)	32.0(668)	32.0(669)	32.0(668)	32.0(668)	32.0(668)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)
Mach	07.0	22.	2.	. 7. 		.70	0.5	20		• 95	36.		.95	.95	56.	96.	.95	• 95	. 95	÷.	. 85	.85								• 85	. 85	. 85 . 85
Analysis number n	10001	10004	10006	10001	10009	1001	10011	10013		10101	20101	50101	10105	10106	10107	10108	10110	10111	10112	19113	10201	10202	10203	10204	10205	10206	10201	10208	10209	10210	10211	10212
Pitching moment coefficient, bal (integ press.)	.070(.070) .051(.053) .031(.035)	,	030(023)	051(046)	093(093)		•	.030(.035)		t (004)	010(015)	025(027)	070)	083)	.109)	.114)	1161-1061-	.071)	.055)	.016)	004)	020)	.043)	(190	0921	1081	129)	146)	1541			
		' '		00	1	•	0,0	òò	.017(.004	010	1670-	062(070)	083(083)	104(109	121(114	061.	.073(.054	.032		026(020)	046(043	0691067	091 (092	110(108	130(129)	144(146)	160(154			
Normal force coefficient, bal (integ press.)	339(356) 253(264) 167(171)	.083(089)	.073(.057)	51(.135)	(908.)60			36(153)	080)	36(011)	(16.054)	(911.)96	79(.270)	50(.347)	12(.440)	29(.511)	1010. 101	49(365)	1(273)	1731175) .032(088(093) .012(91020)007(06 .053)	7(.133)	7(.215)	0(.307)	2(.390)	6287)6	(£95.)0	(.645)			
Angle of Normal force attack, coefficient, deg bal (integ priss.	. 2	37083(089) 09005(016)	(750.)670. 60	.03 .151(.135)	.96 .309(.306)		73 294(304)	136(153)	13 063(080)	110)900-	(560,)1/0.	(971.)961.	.279(.270)	.360(.347)	.445(.440)	.529(.511)	1010. 1010.	349(365)	5.88261(273)	3(175) 8(093)	009(020)007(.070(.053)	.147(.133)	.227(.215)	.310(.307)	.392(.390)	84 .479(.482)	(£95.)0	82 .646(.645)			
of No	-7.793 -5.822 -3.851	846) -1.87083(089)	1 2.06 .073(.057)	6 6 6 728 (135)	.96 .309(.306)		2(212) -7.73294(304)	.2(213) -3.79136(153)	0.2(213) -1.83063(080)	.2(213) .15 .006(011)	0.2(213) 2.12 .0/1(.054)	0.2(213) 4.09 . (36) . (16)	0.2(213) 8.02 .279(.270)	.2(213) 9.99 .360(.347)	.2(213) 11.95 .445(.440)	• 2(213) 13.92 • 529(• 511)	1010. 1010. (8.61 161212.	.0(815) -7.85349(365) .	.0(815) -5.88261(273)	3.911731175) 1.94088(093)	.0(815) .03009(020)007(.0(814) 2.01 .070(.053)	.0(815) 3.97 .147(.133)	.0(815) 5.94 .227(.215)	.0(815) 7.91 .310(.307)	.0(815) 9.87 .392(.390)	.0(815) 11.84 .479(.482)	.0(815) 13.82 .560(.563)	.0(815) 15.82 .646(.645)			
Angle of No attack, co deg bal (.11 40.5(845) -7.793 .11 40.5(846) -5.822 .11 40.5(845) -3.851	40.5(846) -1.87083(089) 40.5(846) -000005(016)	40.6(847) 2.06 .073(.057)	40.5(846) 4.03 .151(.135)	40.5(846) 7.96 .309(.306)		2(212) -7.73294(304)	10.2(213) -3.79136(153)	0.2(213) -1.83063(080)	10.2(213) .15 .606(011)	10.2(213) 2.12 .0/1(.054)	1001 1001 4.04 (212)2.01	10.2(213) 8.02 .279(.270)	10.2(213) 9.99 .360(.347)	10.2(213) 11.95 .445(.440)	10.2(213) 13.92 .529(.511)	1919 1919 69-61 181717-01	39.0(815) -7.85349(365)	39.0(815) -5.88261(273)	.05 34.0(815) -3.91173(175) .05 39.0(814) -1.94088(093)	39.0(815) .03009(020)007(.05 39.0(814) 2.01 .070(.053)	.05 39.0(815) 3.97 .147(.133)	.05 39.0(815) 5.94 .227(.215)	.05 39.0(815) 7.91 .310(.307)	39.0(815) 9.87 .392(.390)	.05 39.0(815) 11.84 .479(.482)	.05 39.0(815) 13.82 .560(.563)	.05 39.0(815) 15.82 .646(.645)			

Table A-2.—(Continued)

(c) T.E. Deflection, Full Span = 4.1°

Pitching moment coefficient, bal (integ press.)	.019(.012)	~.013(014)	030(028)	042(044)	061(058)	078(075)	098(094)	116(114)	132(129)	151(151)	170(169)	181(173)		(010.)810.	.000.) >00.	010(012)	025(026)	040(041)	054(054)	071(070)	090(093)	106(107)	121(114)	139(134)	156(154)	163(157)	165(160)			(600.)210.	001(011)	015(024)	029(037)	045(046)	058(061)	075(077)	005(104)	111(112)	128(131)	145(141)	~•162(÷•161)
Normal force coefficient, bal (integ press.)	256(268)	088(094)	1		_	_	.286(.277)	.364(.363)		.529(.540)	.618(.625)	(1117.)107.		244(257)	162(169)	084(087)	008(014)	_		_	_	_		_	_	_	.692(.793)		(622*-) 522*-	149(151)	075(081)	Ľ.	.066(.059)	_	_	.262(.252)		.413(.411)	(464. 1564.		.669(.672)
Angle of attack, deg	-7.84	-3.92	-1.96	٥.	1.98	3.94	5.90	7.87	9.83	11.80	13.74	15.70		-7.82	-5.85	-3.90	76.1-	.03	2.02	3.97	96.5	7.89	0.87	11.83	۲.	14.78	۲.	1	-1.16	-5.80	-3.81	-1.88	.13	2.08	4.06	6.03	7.99	9.95	11.93	13.98	15.93
Dynamic pressure, kN/m ² (psf)	36.0(751)	36.0(751)	36.0(751)	36.0(752)	36.0(751)	36.0(75!)	36.0(752)	36.0(751)	36.0(752)	36.0(752)	36.0(752)	36.0(752)		32.1(671)	32.1(671)	=	32.1(671)	~	32.1(671)	2	2	~	32.1(670)	2	32.1(671)	32.1(671)	32.1(671)	i	•	10.3(215)	•	2	10.2(214)	10.2(214)	10.2(214)	7	~	10.2(213)	2	~	10.2(213)
Mach	.95 .95	• 95	• 95	• 95	• 95	• 95	• 95	• 95	• 95	• 95	• 95	\$6.		.85	. A5	. 85	.85	.85	.95	.85	.85	.85	.85	• 85	. 95	. 95	.85	•	.40	• 40	.40	• 40	040	04.	04.	.40	0,.	.40	04.	.40	.40
Analysis number	10701	10703	10704	10705	10706	10701	10708	10709	10710	10711	10712	10713		10801	10802	10803	10804	10805	10806	10807	10808	10804	10810	10811	10812	19813	10815		10601	10902	10903	10404	10905	10906	10901	10908	10909	10910	1001	10912	10913
Pitching moment coefficient, bal (integ press.)		013(007)	033(025)	(/50)540	074(066)	095(089)	113(107)	132(128)			000(.001)	015(011)	028(025)	042(034)	055(051)	069(065)	085(083)	102(036)	119(113)	133(127)	153(150)	161(155)	030(030)			(210.)110.	,010(,006)	030(026)	051(046)	.071	092(098)	113(108)	130(129)	146(138)	160(156)	172(172)	183(178)				
Normal force coefficient, bal (integ press.)	269(284)	098(099)	015(018)	(940.)490.	140(.128)	.216(.204)	.291(.282)	.3691 .3661		234(242)	155(157)	079(082)	004(011)	.067(.054)	.133(.124)	.200(.190)	.2691 .262)	.345(.337)	.424(.417)	.503(.500)	.597(.605)	.695(.685)	.066(.058)		271(286)	187(197)	101(102)	018(021)	1660. 12911.	.141(.129)	.218(.208)	.296(.286)	.372(.370)	.45!(.444)	.529(.531)	.605(.612)	.683(.687)				
Angle of attack, deg	-7.76	-3.84	-1.88	21.	5.04	4.00	5.97	7.95		-7.79	-5.83	-3.87	16.1-	.07	2.03	4.02	5.98	7.94	06.6	11.87	13.83	15.79	.07		-7.78	-5.86	-3.90	-1.95	10.	1.99	3.95	5.95	7.87	9.84	11.80	13.74	15.73				
Dynamic pressure, kN/m² (psf)	40.5(846)	40.6(847)	40.6(847)	174810-04	40.61848)	40-6(847)	0.6	40.6(847)	•	5.1(52	5.11.52	5.2152	5.2152	5.1(52	5.1152	5.!(52	5.1152	5.1152	5.1152	25.1(525)	5.2(52	5.2152	5.1(52		_	œ :	8		919	81	918)	(81	3	_	18)	_	18)				
	.11	Ξ:	= :	1:	= :	11.	11.	.1	,	. 70	. 10	. 10	.70	.70	• 10	• 10	. 10	. 10	• 10	• 10	. 70	2.	• 10		1.05	1.05	1.05	50.1	1.00	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05				
Mach	11	-		٠.	┛.	_	_	~																																	

(d) T.E. Deflection, Full Span = 8.3°

	_																											
Pitching moment coefficient, bal (integ press.)	019(023) 034(035) 048(047)	062(061) 076(075)	106(103)	-,139(-,138) -,151(-,141) -,168(-,162)	-,184(-,180) -,191(-,183)	008(016)		045(056)	057(068)	069(078)	085(092)	-,099(-,107)	130(142)	-147(149)	-,165(-,165)	182(185)												
Normal force coefficient, bal (integ press.)	111	.057(.053)		.413(.413) .486(.478) .570(.572)	.656(.663)	160(158)	084(082)	0.10-1010-			.252(.247)		(727) (927)		625(.715(.729)												
Angle of attack, deg		1	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	_	13.75	-7.78	-5.82	- 3.85	.09	5.06	4.03	6.01	96.0	11.90	13.86	15.82												
Dynamic pressure, kN/m ² (psf)	32.1(671) 32.1(671) 32.1(671)	32.1(671) 32.1(671) 32.1(671)	32.1(671)	32.2(672) 32.1(672) 32.1(671)	32.2(672)	10.2(214)	(21	10.2(214)		10.2(214)	10.2(213)	10.2(214)	10.2(214)			10.2(214)												
Mach	.85 .85	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	28.60	.85 .85 .85	.85 .85	.40	040	4.4	40	.40	0,		1 4	4.0	04	.40												
Anatysis	11401 11402 11403	11404	11407	11410	11412	11501	11502	11503	11595	11506	11507	11508	11510	11511	11512	11513												
Pitching moment coefficient, bal (integ press.)	009(010) 030(026) 049(045)	069(064) 088(083) 109(103)	129(125)	134(153) 174(162) 185(176)	193(193) 202(194)	021(022)	034(032)	040(056)	073(071)	086(083)	(\$60)101	117(120)	144(134)	162(151)	178(173)	186(177)	017(023)	019(024)	035(037)	(160*-)640*-	079(078)	096(094)	113(116)	134(130)	149(143)	184(178)	(041-140)	201(191)
Normal force coefficient, bal (integ press.)	14(- 25(- 40(-	.042(.043) .121(.116) .200(.194)		102	.641(.649)	167(176)	088(092)	.060(.053)) 6	<u> </u>	• 5 8	.330(.329)		5	. 16	.731(.733) .131(.123)	195(209)	189(202)	102(106)	, ,	.126(.122))66	.)01			581(591)		35(
Angle of attack, deg	-7.84 -5.89 -3.93	-1.97	3.92	9.83	13.73	-7.83	-5.87	-1.95	•03	20.2	3.98	7.95	06.6	11.83	13.80	15.76	-8.02	-7.87	-5.91	1.08	03	1.95	3.91	5.88	7.86	79.82	13.72	15.69
Dynamic pressure, kN/m ² (psf)	39.1(817) 39.1(816) 39.1(817)	9.1.6 9.1.6 9.1.6	39.2(818)	9.16	9.16	5.3(5.21	5.2(5.2	5.21	5.21	7.6	5.3(5.3	5.3(25.3(528)	~	ح	36.0(752)	5 5	<i>~</i>	ŏ	č.	=	5 8	5 6	9	0
Mach	1.05	000	000	1.05	c.o.	. 70	07.		.70	. 70	0.0	0.7	20.	. 70	. 70	. 20	. 95	• 95	9.95	9.	. 95	• 95	• 95	.95		, 6	. 8.	. 95
nalysis umber	104	108	11110	113	115	201	202	204	205	206	200	200	210	211	212	213 214	301	302	303	506	306	307	308	309	31.5	112	1313	314

Table A-2.—(Continued)

(e) T.E. Deflection, Full Span = 17.7°

Analysis Mach number number

Pitching moment coefficient, bal (integ press.)	081(079)	105(101)	131(126)	43	158(157)	172(164)	178(-:18u)	190(181)	207(205)	221(216)	22			078(083)	(VOT -) 600 - 1	-	-	5 ()	173(170)	- 18	196(189)	2006 2177	227(226)	224(221)		077(079)	090(086)	(560*-)501*-	118(115)	133(-128)	-146(141)	-,163(-,162)	177(172)	184(179)	196(188)	213(210)	.225(2	224(221)
Normal force coefficient, bal (integ press.)	1	.107(.104)		308(_	99.	j		1857. 1647.		ď	1100 140	• •	.236(.233)	•	•	•	.503(.503)	•	719(735)			·	•	(260) / 60 .	•	1256 1056	• •	3736	441(505			.735(.753)	
Angle of attack, deg	-7.87	-3.96	-0.03	1.98	3.93	5.88	7.88	9.82	11.79	13.79	15.72	10.1	;	16.7-	4.4	-2.07	06	1.89	3.86	5.81	67.6	78.6	13.74	15.69		-7.90	-5.93	9.98	10.2-	00.1	76.	3.91	5.86	7.82	9.83	11.76	13.71	10.01
Dynamic pressure, kN/m ² (psf)	5.2(5	25.2(527)	5.2(5	25.2(527)	5.215	5.2	5.2	5.2	5.2	5.2(5	2.5	212.0		36-1(753)	36 0(752)	:	~	$\tilde{}$	Ξ	\simeq	36.0(752)	Ξ ?				2.11	2.1(7.1	32-116/13	7.1.7	32.11670)	2.1	2.1(2.11	2.1(2	32.1(671)	32.1(671)
Mach	.70	0.70		.70	. 10	.70	.70	.70	٠,٧٠	. 10	2.5	•	,	\$6.	95	. 63	.95					. 45				.85	28.	č.			26.	8	.85	.85	.85	. 85	28.	.85
Analysis number	12102	12104	12106	12107	12108	12109	12110	12111	12112	12113	12114	61171		12201	12203	12204	12205	12206	12207	12208	12209	1221	12212	12213		12301	12302	12303	12305	12306	12307	12308	12309	12310	118311	12312	12313	16314
ning moment pefficient, integ press.)	160(068)	38(135)		180(078)	190(108)	01(099)	13(112)	27(-,125)	39	500	.62(168)	06(-199)	98(187)	20(219)	34(226)		0671067)	7871-1084	125(=,118)	143(-,137)	(59(156)	172(172)	182(182)	194(185)	212(210)	721(225)	20.	, ;										
Pitching moment coefficient, bal (integ press.)	, ,	9)138(135)		080(113	127	139(150	162(105(-198)	198	220				11 1007 1017		-				: 	•	2216	220											
Normal force Pitching moment coefficient, coefficient, bal (integ press.) bal (integ press.)	- (116)	.206(.209)138(135))080*- (160*-)	.043)	(1111)	1,175)113(.242) 1271	.303)139(.361)150(162(. 400)	(.628)198	11 .747)220	.819)			1120-	1441		.291)	.3591	_	.485)	- 1616.	. 694(.714) - 221(-225)	.774)220(
force ient, press.)	122(116)	- (602.		030(031)080((• 043)	1113(1111)	.181(.175)113(.250(.242)127(.310(.303)139(.370(.361)150(.432(.434)162(10010 1161	.638(.628)198	.731(.747)220	.815(.819)		- (221-	0421 0277	1411 1441	.219(.215)	.292(.291)	.357(.359)	.421(.425)	.485)	.5581 .5791	. 6948 . 7040	.750(.774)220(
Normal force coefficient, bal (integ press.)	-7.80122(116) -	-206(.209) -		1214) -7.84030(031)080(-5.88 .043(.043)	-3.90 .113(.111)	-1.96 .181(.175)113(.05 .250(.242)127(1.99 .310(.303)139(3.96 .370(.361)150(5.95 .432(.434)162((004.) (44.) (41.) (41.) (41.) (41.)	.2(214) 11.86 .638(.628)198	4) 13.80 .731(.747)220	.815(.819)		- (27 - 115(-125) - 816) - 605(-005)	(817) -6.00 0626 071	(817) -2.06 -141(144)	(816)05 .219(.215)	(817) 1.94 .292(.291)	9.1(816) 3.88 .357(.359)	9.1(817) 5.87 .421(.425)	.487(.485)	9-1(817) 11.75 6.324 6.491	- (912) 13"3 " (912) - (913) " (913) " (913) 13"3 " (913) 13"3"3 " (913) 13"3"3 " (913) " (913	9-1(817) 15-64 -750(-774)220(

 (f) T.E. Deflection, Full Span = -17.7°

Pitching moment coefficient, bal (integ press.)	1143 (.149) .129 (.1134) .100 (.105) .0084 (.089) .0053 (.055) .035 (.036) .021 (.151) .144 (.150) .151 (.163) .152 (.142) .102 (.114) .016 (.099) .070 (.082) .034 (.041) .016 (.057) .132 (.141) .148 (.155) .132 (.141) .148 (.155) .132 (.141) .016 (.077) .072 (.079) .072 (.079)
Normal force coefficient, bal (integ press.)	297(312)228(241)160(175)021(032)021(032)292(318)292(318)292(318)292(318)292(318)292(318)292(318)292(318)292(318)292(318)292(318)291(249)227(249)
Angle of artack, deg	2.24 6.14 6.14 6.16 10.06 112.06 112.06 113.97 113.90 113.90 113.90 113.90 113.90 113.90 113.90 113.90
Dynamic pressure, kN/m² (psf)	25,3(528) 25,3(528) 25,3(528) 25,2(527) 25,3(528) 25,3(528) 25,3(528) 25,3(528) 36,1(753) 36,1(7
Mach	00000000000000000000000000000000000000
Analysis number	12801 12803 12804 12804 12806 12806 12809 12809 12902 12902 12902 12904 12902 12900 12900 13002 13000 13000 13000
Pitching moment coefficient, bal (integ press.)	.133(.156) .102(.118) .057(.081) .135(.134) .108(.111) .094(.097) .096(.083) .066(.068) .051(.052) .030(.030) .012(.008) .012(.008) .012(.008) .012(.008) .012(.008) .012(.008) .012(.008)
Normal force coefficient, bal (integ press.)	-246(-276) -105(-132) -046(-024) -289(-301) -223(-233) -155(-164) -022(-034) -022(-034) -19(-115) -204(-204) -292(-303) -125(-152) -054(-078) -125(-152) -054(-078) -125(-152) -054(-078) -125(-152) -054(-078) -125(-152) -054(-078) -125(-152) -054(-078) -125(-152) -054(-078) -125(-152) -054(-078) -125(-152)
Angle of attack, deg	4.24 4.20 8.11 8.12 6.22 6.22 8.16 10.05 11.00 11
Dynamic pressure, kN/m² (psf)	40.7(850) 40.7(849) 40.7(849) 10.3(215) 10.2(214) 10.2(2
Mach	11.11 11.11 11.11 1.05 .40 .40 .40 .40 .40 .40 .40 .40 .40 .40
Analysis number	12405 12407 12407 12601 12603 12604 12606 12608 12608 12703 12703 12704 12704 12704 12704 12704 12704

Table A-3.—Experimental Data Test Point Log. Flat Wing, Rounded Leading Edge; L.E. Deflection, Full Span = 5.1°

(a) T.E. Deflection, Full Span = -17.7°

Pitching moment coefficient, bal (integ press.)	146(.152)	132(.136)	.118(.122)							149(.152)		146(.156)	-	.120(.130)			.073(.081)	(790.)880.	(740. 1540.	.022(.026)		148(.154)	134(.140)	.120(.126)				.060(.063)		
Normal force Pite coefficient, bal (integ press.) bal	286(302)		_	_	024(037)	_	.136)	_	.331)	3031		275(294)	_	_	_	_	_	. 176(.157)	_	_		286(303)	_	_	089(108)		_	.1451		
Angle of attack, deg b	. 23	O.		6.15			12.03	13.98	15.95			. 11	-					11.95	13.90	15.86		- 50	2.18					11.99	13.94	. 1
Dynamic pressure, kN/m² (psf)	25.1(525)	25.1(525)	25.1(525)	25.2(526)	25.2(526)	25.2(526)	25.2(526)	25.2(526)	25.1(525)	25.2(526)		36.0(752)	36.0(751)	36.0(752)	36.0(752)	36.0(752)	16.0(752)	36.0(752)	36.0(752)	36.0(752)		32.1(670)	32.1(670)	32.1(670)	32.1(670)	12.1(670)	32.1(670)	32.1(670)	42,1(670)	
Mach				. 70								• 95	.95					• 95	.95	.95		.85			. 85					
Analysis number n	13401	13402	13403	13404	13405	13406	13407	13408	13409	13410		13501	13502	13503	13504	13505	13506	13507	13508	13509		13601	13602	13603	13604	13605	13606	13607	13608	
														•																
ent , ss.)	.55)	(22)	175)		431	763	14)	010	1981	168)	1201	1371	(61)	•	149	47)	31)	12)	1881	(59)	(75)	132)	101							
rce Pitching moment t, coefficient, ess.) bal (integ press.)	.133(131) .107(.122)	041) .066(.075)			.124(11150	101. 1090. (201	035) .047(.086)	1690.	.054(2041 .039(.037)	(610.)620. (40)	•	_	128(150) .115(.131)	_	_	110) .057(.066)	.038(288) .023(.032)	390) .010. 1100.							
Normal force Pitching moment coefficient, coefficient, bal (integ press.)	36(264) .133()401. (181)40			751292) .1381	11(227) .124(5011661 .1120	36(102) .099(23(035) .087(521 .041) .0691	29(.126) .054(039(1970. (401.)01	•	59(283) .144(.128(11150	52(074) .098(34(.017) .076(26(.110) .057(.203) .038(09(.288) .023(1100. (068. 180							
	36(264) .133(104(131) .107(56(.041) .066(2751292) .138(211(227) .124(5011661 .1120	086(102) .099(023(035) .087(.052(.041) .069(.129(.126) .054(15(.204) .039(.310(.104) .026(-	59(283) .144(191(219) .128(125(150) .115(52(074) .098(1920. (710.) 20.	.126(.110) .057(204 .203) .038(.309(.288) .023(1100. (068. 1804.							
Angle of Normal force attack, coefficient, deg bal (integ press.)	.22236(264) .133(4.17104(131) .107(.056(.041) .066(.28275(292) .138(2.25711(227) .124(4.22150(166) .112(086(102) .099(R.15023(035) .087(.052(.041) .069(12.09 .129(.126) .054(14.05 .215(.204) .039(.310(.104) .026(.17259(283) .144(2.14191(219) .128(4.11125(150) .115(052(074) .098(8.04 .034(.017)	9.99 .126(.110) .057(11.94 .220(.203) .038(.1(817) 13.89 .309(.288) .023(1100. (068. 1804.							
Angle of Normal force attack, coefficient, deg bal (integ press.)	40.6(848) .22236(264) .133(4.17104(131) .107(40.6(848) 8.09 .056(.041) .066(10.2(214) .28275(292) .138(10.2(214) 2.25711(227) .124(4.22150(166) .112(10.2(214) 6.19086(102) .099(10.2(213) R.15023(035) .047(10.12 .052(.041) .069(10.2(214) 12.09 .129(.126) .054(10.2(213) 14.05 .215(.204) .039(16.00 .310(.304) .026(39.1(817) .17259(283) .144(39.1(816) 2.14191(219) .128(39.1(816) 4.11125(150) .115(39.1(817) 6.08052(074) .098(39.1(817) 8.04 .034(.017) .076(39.1(817) 9.99 .126(.110) .057(11.94 .220(.203) .038(39.1(817) 13.89 .309(.288) .023(39.1(816) 15.85 .405(.390) .001(

(b) T.E. Deflection, Full Span = 4.1°

Pitching moment coefficient, bal (integ press.)	.021 .020)	006(007)	023(025)	035(037)	048(048)	064 (062)	082(084)	097(092)	113(110)	122(120)	130(126)	136(135)	136(135)	035(037)		120. 1020.	700.	0101009)	120-1620-	(Th0)6+0	076(075)	095(091)	113(104)	137(129)	148(138)	155(152)	162(157)			0.000 1600	007(008)	025(026)	038(036)	051(051)		087(086)		122(121)	129(125)	137(135)	145(143)
Normal force coefficient, bal (integ press.)	223(226) 144(146)	•	_							•		_	• •	.068(.066)	;	(047)447	(791-1091-	077(078)	i	1890 1710			.368(.357)	_	_	79.	.711(.705)		234(232)	152(156)	L.		_			.279(.273)	.355(.342)	1447	529(13(.702(.696)
Angle of attack, deg	-7.80	-3.87	-1.91	90.	2.04	4.01	2.97	7.94	9.89	11.86	13.82	15.79	15.79	• 06		1.84	17.00	-3.92	-1.96	10.	70.2	2.90	7.86	9.81	11.76	13.72	15.70		-7.83	-5.86	-3.91	-1.94	• 03	1.99	3.98	5.94	7.90	9.85	11.83	13,77	15,73
Dynamic pressure, kN/m ² (psf)	25.2(526)	5.2(5.2	25.2(526)	25-2(526)	_	5.2	5.2	5.2	_	_	_	_	25.2(527)		36.01 7511	116/10.00	36.01 (52)	36.0(751)	36.0(752)	36.047521	36-0(751)	36.0(752)	36.0(752)	36.0(752)	75	36.0(752)		32-1(671)	32.1(671)	32.1(671)	32-1(671)	32-1(671)	32-1(671)	32.1(670)	32.1(671)	32.1(671)	32,1(671)	32.1(671)	32-1(671)	32-1(671)
Mach	70	. 70	. 70	. 10	۲.	2	0.1	0.5	0.	2.	010	2.	0.1	. 10	Ċ					Ç, 9	. 6	95	• 95	. 95	\$6.	• 95	. 95	į	. 85	68.	. 85	. 85	. 85	.85	.85	.85	.85	. 85	. 95	.85	.85
Analysis number	14001	14003	14004	14005	14006	14097	14008	14009	14010	14011	14012	14013	5	14014		14101	70141	60141	14104	14105	14107	14108	14109	14110	14111	14112	14113	-	20	14202	14203	14204	14205	14206	14207	1420R	14209	14210	14211	14212	14213
																																								٠	
Pitching moment coefficient, bal (integ press.)	(910,)(10, -	031(026)	050(045)	070(063)	092(088)	~	128(120)		ı		.015(.006)	001(001)	016(023)	028(035)	041(045)	056(056)	(080*-)1/0*-	088(093)	(601)601	126(127)	-162(136)	61.	.031(.033)	(716.)210.		031(027)	(550()050	068(060)	000(086)	111(105)	126(117)	144(138)	154(148)	161(159)	170(164)						
Normal force coefficient, bal (integ press.)	(176)	(011)	.0651	.134)	211)	.2851	.362)		5	<u> </u>	_	_							•	•	Ė	1			•	٠	r	•	í	ľ	i	·	ľ	;	•						
Norma coeff bal (inte	174(_		_	-	_	<u>.</u>	_		.129(.125)		(797.)097.		(114.	. (504.)804.	1604			178(180)	(960)050	000 (010)	.070(.064)	.142(.132)	.220(.213)	.298(.288)	.376(.363)	.463(.456)	.542(.533)	.6181 .6091	(689.)569.						
Angle of Norn attack, coe deg bal (in	-5.80174(1.88005(1070. 70	.04 .143(01 -220(1862. 16	.92 .374(•	990.	219(9 139(3 063(9000	.12 .068(.129(.05 .193(1097	.98 .335	.95 .418(.411)	90 .506(.502)	1606. 1266. 60.	1000-1100-	263(178(180)	(960)050	000 (010)	.070(.064)	.132)	.220(.213)	.298(.288)	.376(.363)	.463(.456)	.542(.533)	.6181 .6091	(689.)569.						
	5.80174 3.84088	847) -1.88005(1070. 70. (848)	2.04 .143(848) 4.01 .220(0.6(848) 5.97 .298((847) 7.92 .374(1990. 21. (512	2151 -7.76219(214) -5.791390	0.2(214) -3.83063(0.2(214) -1.86 .006(0.2(214) .12 .068(0.2(214) 2.08 .129(0.2(214) 4.05 .193(2.541 6.03 .2501	0.2(214) 7.98 .3331	214) 9.95 .418(.411)	. (205.)506502)	2141 15 65 4347 4081	1000- 1100- 10-01 1412	263(9.1(816) -5.87178(180)	19601050 16-8- (218)1-6	9.1(816) -1.96006(010)	9.1(816) .02 .070(.064)	.142(.132)	9.1(817) 3.94 .220(.213)	9.1(817) 5.91 .298(.288)	9.1(817) 7.86 .376(.363)	9.1(817) 9.83 .463(.456)	9.1(817) 11.79 .542(.533)	9.1(816) 13.75 .618(.609)	9.1(817) 15.73 .695(.689)						
Angle of attack, deg	348) -5.80174 849) -3.84088	.11 40.6(847) -1.88005(.11 40.6(848) .07 .070l	40.6(848) 2.04 .143(.11 40.6(848) 4.01 .220(40.6(848) 5.97 .298(40.6(847) 7.92 .374(10.2(214) .12 .066(10.3(215) -7.76219(10.2(214) -5.79139(10.2(214) -3.83063(10.2(214) -1.86 .006(10.2(214) .12 .068(10.2(214) 2.08 .129(10.2(214) 4.05 .193(19.2(214) 6.03 .260(10.2(214) 7.98 .333(10.2(2(4) 9.95 .418(.411)	214) 11.40 .506(.502)	10 2/21/47 13-63 - 29/2/ - 2037	7000- 1100- 10-01 1-1313-01	1.05 39.1(817) -7.83263(1.05 39.1(816) -5.87178(180)	1.05 39.1(817) -3.91090(096)	1.05 39.1(816) -1.96006(010)	1.05 39.1(816) .02 .070(.064)	9.1(817) 1.98 .142(.132)	1.05 39.1(817) 3.94 .220(.213)	1.05 39.1(817) 5.91 .298(.288)	1.05 39.1(817) 7.86 .376(.363)	1.05 39.1(817) 9.83 .463(.456)	1.05 39.1(817) 11.79 .542(.533)	1.05 39.1(816) 13.75 .618(.609)	1.05 39.1(817) 15.73 .695(.689)						

Table A-3.—(Continued)

(c) T.E. Deflection, Full Span = 8.3°

ant S.)	31.)	47)	(63)	76)	106	11	25)	361	(65	(59	72)	13)		14)	167	43)	109	72)	831	041	16)	27.)	49)	21)	60)	671		=	261	(Ú)	55)	651	151	(06	190	22)	32)	201	58)	641
Pitching moment coefficient, bal (integ press.)	019(015	050(047	067(063	091(076	060 060	,114(,111)	131(125)	1481139	1701159	176(165	178(172	180(173		015(014	028(029	044(043	061(060	073(072	087(083	103(104	110(116)	134(127	152(144	158(151)	163(160	169(167		002(011	017(026)	035(040)	046(055	05A(065	0691075	083(090)	000 (100)	114(122)	133(132	148(150)	157(158	162(164
Normal force coefficient, bal (integ press.)	174(175)	006(001)						.429(.419)	•		_			163(164)	083(081)	004(006)	.071(.068)	.134(.130)		٠.	_	_	_	_		.747(.745)		1.15011521	•			132(.127)	.192(.186)	.256(.249)		.394(.392)			.645(.643)	. 71
Angle of attack, deg	-7.89	-3.95	-1.99	04	1.94	3.92	5.86	7.83	98.6	11.75	13,71	15.69		-7.83	-5.90						5.91			11.80	13.76	15.74	•	Ox • J			7	• 08							13,85	15.80
Dynamic pressure, kN/m² (psf)	36.0(752)	36.0(751)	36-0(751)	36.0(752)	46.0(751)	36.0(751)	36.0(751)	36.0(751)	36.0(751)	36.0(752)	36.0(752)	36.0(752)		32.1(670)	32.1(670)	32.1(670)	32.1(670)	32.1(671)	32.1(670)	32.1(670)	32.1(670)	32.1(670)	32.1(670)	2.1(32.1(671)	32.1(670)		$\overline{}$	2 (7	10.2(213)	10.2(214)	10.2(214)	_		10.2(214)	10.2(214)	10.2(214)	10.2(213)
Mach	.95	.95	. 95	95	.95	• 95			• 95	• 95	• 95	• 95		. 85	.85	. 85		. 85	.85		.85	. A5	2		•		,	04.	040	.40	.40	04.	· •	.40	04.	04.	04.	04.		04.
Analysis number	14701	14703	14704	14705	14706	14707	14708	14709	14710	14711	14712	14713		14801	14802	14803	14804	14805	14806	14807	14808	14409	14810	14811	14812	14813		10651	14902	14903	14904	14905	14906	14907	14908	14509	14910	14911	14912	14913
Pitching moment coefficient, bal (integ press.)	010(004)	051(045)	072(063)	091(083)	(660*-1/01*-	17/1124)	146(140)	156(148)	•	017(013)	030(027)	046(045)	061(058)	073(068)	085(079)	100(,098)	116(113)	129(121)	144(136)	151(146)	155(149)	159(157)		706(005)	048(042)	069(065)	087(083)	1001 1001	126(124)	144(145)	156(151)	169(165)	177(172)	181(178)	186(182)					
Normal force coefficient, bal (integ press.)		<u>.</u>	.058(.050)		(161.)102.		_	.420(.411)		153(158)	Ţ	_	(170.)470.	_	_	_	.336(.329)	_	.493(.481)	.572(.565)		.736(.729)		į	Ţ	J	.134(.129)	_	_	_	L	_	.581(.577)	S.	.722(.722)					
Angle of attack, deg	-7.80	-3.87	-1.92	71.	00.7	00.4	5.94	16.7		-7.82	-5.86	-3.88	-1.93	.01	2.02	3.98	5.94	7.92	98.6	11.83	13.79	15.77		-7.85	-3.96	-1.97	02	1.94	3.91	5.87	7.85	68. 6	11.78	13,75	15.70					
Dynamic pressure, kN/m² (psf)	40.6(848)	40.6(847)	40.6(848)	40.6(848)	40.5(848)	9.0	9.0	40.6(848)		25.2(526)	25.2(526)	25.2(527)	25.2(527)	25.2(527)	25.2(527)	25.2(527)	25.2(527)	25.3(528)	25.2(527)	25.2(527)	25.2(527)	25.2(527)		39.1(817)	39.1(817)	39.1(816)	39.2(818)	39.1(81/)	39.1(817)	39.1(817)	39.1(817)	39.1(817)	7:	39.1(817)	39.1(817)					
Mach	1.11	i:	: : :	1:1	11.	:	= :			.70	.70	.70	.70	. 10	.70	.70	. 70	202	2.	. 10	.70	. 70	*	1.05	1.05	1.05	1.05	_	_	_	_		~	_	_					
Analysis	14404	14406	10441	14400	5044	01441	14411	14415		14501	14502	14503	14504	14505	14506	14507	14508	14509	14510	14511	14512	14513		14601	14602	14603	14604	14605	14606	14607	14608	14609	14610	14611	14612					

Table A-3.—(Continued)

(d) T.E. Deflection, Full Span = 17.7°

Pitching moment coefficient,	bal (integ press.)	076(070)	093(090)	108(106)	122(118)	132(126)	147(145)	161(158)	178(169)	189(179)	196(, 191)	203(197)	207(208)	202(204)	367(973)	079(085)	096(099)	108(111)	119(120)	132(133)	145(146)	157(158)	170(168)	181(179)	194(191)	202(199)	205 (205)														
Pitch cc	pal (0	0	7:	-			•			~	- 5	- 2	2	č	0	Ò	-	-	-					Ĭ.,	2	į.														
force cient,	press.)	0461	.035)	.119)	.183)	.241)	.3091				.592)	.6701	.751)	.820)	024)	.048)	.1271					.430)		.571)	.6451	. 737)	.810)														
Normal force coefficient,	bal (integ press.)	043(.042	.119(.186(.247	.312(.378(.450	.520(. 594(.670(. 746	.813(016	.060	.134(. 196(.253(.314(.375(.4376	.506	.577(.6591	. 742(.8231														
Angle of attack,	deg	-7.92	-5.95	-3.99	-2.05	05	1.93	3.88	5.85	7.81	9.19	11.74	13,72	15.68	-7.84	-5.88	-3.93	-1.95	.03	2.00	3.96	5.93	7.93	68°6	11.83	13.82	15.77														
Dynamic pressure,	(bst)	(1671)	(119)	(670)	(670)	(679)	(670)	(670)	(670)	(019)	(670)	(670)	.1(670)	.1(670)	3(215)	(215)	(517)	(517)	(517)	(512)	(517)	(214)	(514)	(517)	(514)	(514)	(514)			•											
Dyr	KN/n	32.11	32.1	32.1	32.1	32.	32.1	32.	32	32.1	32.1	32.1	32.1	32.16	10.	10.36	10.20	10.20	10.2(10.31	10.20	10.7	10.20	10.20	10.2(10.20	10.2														
Mach	number	.85	.85	.85	. 85	.85	•85	.85	.85	.85	.85	.85	.85	. 85	.40	.40	04.	• 40	.40	04.	.40	04.	C	04.	0.4.	.40	• 40														
Analysis	number	17501	17502	17503	17504	17505	17506	17507	17508	17509	17510	11511	17512	17513	17701	17702	17703	17704	177.05	17706	17707	17708	17709	17710	11771	17712	17713														
nent t,	ess.)	1991	1880	101)	125)	138)	159)	172)	1851	(061	1661	210)	213)	210)	0751	1910	1060	104)	116)	1231	141)	153)	1671	1731	190)	190)	194)	196)	572)	148)	(01)	125)	135)	1961	101	180)	187)	197)	2051	2113	1200
Pitching moment coefficient,	pai (integ press.)	072(068	093(088	112(107	129(125	144(138	158(159	172(172	147(185	192(190	202(199	2051210	208(213	2061210	083(075	085(076	060)960	110(104	123(116	133(123	145(141	160(153	175(167	183(173	186(190	105(190	197(194	196(196	076(072	093(048	112(110	1281125	141(135	156(156	172(170	190(1801	195(187	204(197	215(205	212(211	207(203
ormal force oefficient,	(integ press.)	1	•		.163)	•		•	.4321		.572)	.646)	.713)	.779)	030(037)	022(029)	.052)						•		•		.740)	.812)					.243)		.381)		.512)	.585)	.662)	.7341	7981
Normal forc coefficient,		092(001	C	.161		.295(765	. 569	•635		.763	030	022(.055(~	.194(.253	.315(. 742	.816	061	O	_	.1821	2	.311(.379(.450		.585		. 729	
Angle of attack,	5ap	16.1-			•					7.82		_		15.69	-8.07																	•		1.90					11.71	13.70	15.69
Dynamic pressure,	Kiv/m- (pst)	39.0(815)	39.0(815)	39.1(816)	39.1(816)	39.1(816)	39.0(815)	39.1(816)	39.1(816)	39.1(816)	39.0(815)	39.1(816)	39.1(816)	39,1(816)	25.2(526)	25.2(526)	25.2(526)	25.2(526)	25.2(526)	25.2(526)	25.2(526)	25.2(526)	75.2(526)	25.2(526)	25.2(527)	25.2(526)	25.2(527)	25.2(526)	36.0(752)	36.0(751)	36.0(751)	35.9(750)	36.01751)	36.0(751)	36.0(751)	36.0(75!)	36.0(751)	36.0(751)	36.01751)	36.0(751)	36-0(751)
Mach	number	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	. 70	.70	.70	.70	.70	.70	. 70	. 10	. 70	. 10	. 70	.70	. 70	.70	.95	• 95	. 95	.95	.95	.95	• 95	• 95	• 95	.95	.95	• 95	6
	unmoer	*0	0.2	90	0.1	208	503	10	117	212	213	214	215	17217	17301	302	303	304	305	306	307	308	309	310	315	313	314	315	17401	405	403	17404	405	406	401	408	604	410	411	412	17413

Table A-3.—(Continued)

(e) T.E. Deflection, Full Span = 0.0°

	1																																								
Pitching moment coefficient, bal (integ press.)		(1000) 200			016(014)	032(029)	053(052)	u73(069)	095(091)	109(104)	124(122)	137(132)		_	_		.015(.014)	.000(001)	013(013)	028(026)	049(048)	066(063)	087(087)	095(092)	105(104)	116(113)					.021(.011)	(100*-)600*	004(015)	018(024)	033(041)	054(062)	075(077)	093(098)	106(106)	114(115)	
Normal force coefficient, bal (integ press.)	326(323)		073(077)	002(005)	(690.)190.		.215(.208)				.574(.569)			312(312)	227(232)	147(147)	068(071)	001(004)		.132(.122)		97(91(.556(.546)	.646(.638)		295(296)	212(217)	136(136)	061(062)	-				.271(.266)	.353(.341)				
Angle of attack, deg	-7.80		-1.95	40.	2.05	4.00	5.93	7.89	9.86	11.79	13.75	15.73		-7.80	-5.82	-3.89	-1.89	.07	2.04	3.99	5.99	7.94	10.03	11.91	13.90	15.79		-7.72	-5.76	-3.84	-1.85	.11	2.14	4.09	6.05	8.04	96.6	11.93	13.92	15.86	
Dynamic pressure, kN/m² (psf)	36.0(752)	36.0(751)	36.0(752)	36.0(751)	36.0(751)	36.0(751)	35.9(750)	36.0(751)	36.0(751)	36.0(752)	36.0(752)	36.0(752)		101911.55	32.0(669)	32.1(670)	32.1(670)	32.1(670)	12.0(669)	32.1(670)	32.1(670)	32-11670)	32.1(670)	32.1(670)	32.1(670)	32.1(670)		10.2(214)	10.2(213)	10.2(213)	_	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	
Mach	\$6.	رد. م	. 95	96	9.	. 95	.95	.95	.95	• 95	• 95	• 95		.85	. 85	.85					. 85			. 85	.85	. 85		.40	04.	04.	040	04.	04.	.40	.40	04.	04.	. 04	04.	.40	
Analysis	10181	70181	19105	18105	19106	19107	18108	18199	19110	11181	18112	18113		18201	18202	18203	18204	18205	18206	18237	18208	19209	18210	18211	19212	18213		19301	18302	18303	18304	18305	18306	18307	18308	18309	18310	18311	18312	18313	
Pitching moment coefficient, bal (integ press.)		(090-)/50-	.016	-)900*-	'			091(.0571 .0581	•		.013(.013)	001(001)	013(013)			064(058)	082(078)	092(091)	101(105(103)	111(110)		(110.)etu.	1090.	.039(•016	002(002)		041(038)		089(083)		122(118)		147(142)				
Normal force coefficient, bal (integ press.)	ω,	243(247)		.002(002)	.073(.063)	.151(.138)	:232(.223)	.316(.305)		~	~	138(134)	999	016	199	.131(.122)	021	81(370(24(_	5	9331		339(347)	251(254)	163(169)	078(082)	003(001)	(090.)690.	.145(.135)	.229(.216)	.314(.305)	.406(.396)	(084.)884.	.570(.561)	654(
Angle of attack, deg	-7.73	-3.81	-1.86	.14	7.07	4.07	6.03	1.99		-7.76	-5.79	-3.83	-1.89	•60•	2.11	4.07	6.00	8.00	10.01	11.94	13,85	14.85	15.83		۲.	-5.83	m	÷	•	2.03	•	•	•	•	•	•	•				
Dynamic pressure, kN/m ² (psf)	40.6(848)	1 7	40.6(847)	40.6(847)	40.6(847)	40.618471	_	84		5.2	5.2	5.2	5.2(5.2	5.2(5.2	5.21	5.21526	5.2(5.2	25.2(526)	5.2	5.2		9.16	39.1(816)	9.1(8	9.1(8	9.1(8	9.1(8	9.118	9.168	9.1(8	9.1(8	9.16	9.1(8	9.1(8				
Mach	1:1	; ;	1.1	٦.	1.11	٦.	1.11	1.11		٠٢٥	. 70	.70	.70	.70	٠٢٠	. 70	02.	.70	• 10	. 70	.70	. 70	. 10		1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05				
Analysis number	17810	0.00	ar	an a	ar.	മ	an a	œ		17901	17902	17903	17904	17905	17906	17997	17908	17909	17910	11611	17912	17913	17914		18001	18002	18003	18004	18005	18006	18001	18008	18009	16010	18011	18013	18015				

(f) T.E. Deflection, Full Span = -8.3°

11.11	kN/m² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)	Analysis	Mach number	Dynamic pressure, kN/m² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)
	40.6(848)	• 05	!52(155)	(260.)880.	18701	.95	36-0(752)	. 12	170(171)	(160.)160.
=	40.6(847)	4.12	003(011)		18702	. 95	36.0(752)	2.09	098(102)	
1.11	40.6(848)	8.03	.168(.161)		18703	.95	36.0(752)	4.05	028(034)	
					18704	• 95	36.0(752)	6.03	.048(.042)	.038(.041)
.70	25.1(525)	.18	148(160)	.073(.090)	18705	• 95	36.0(751)	8.00		
• 70	25.2(526)	2.16	0A2(095)		18706	.95	36.0(752)	4.97	.2281 .218)	
. 70	25.1(525)	4.14	017(031)		18707	.95	36.0(752)	11.91		•
.70	25,1(525)	80.9	_		18708	• 95	36.0(752)	13.87		037(034)
.70	25.1(525)	8.05	.128(.113)		18709	• 95	36.0(752)	15.82		051(045)
.70	25.1(525)	66.6	_							
.70	25,1(525)	11.94	_	019(017)	19801	.85	32.1(670)	.13	157(162)	.081(.083)
.70	25.1(525)	13.92	_	030(056)	18802	.85	32.1(670)	2.13	038(095)	
.70	25.2(526)	15.92	.482(.471)	040(041)	18803	.85	32.1(670)	4.07	022(032)	_
.70	25,1(525)	.18	151(154)	(970.)270.	1,9804	.85	32.1(671)	90.9	.050(.039)	
					18805	.85	32.1(670)	8.02	.130(.118)	1610. 1510.
1.05	39,1(817)	60°	165(162)	(560.)960.	18806	.85	32,1(671)	96.6		
.05	39.1(817)	2.12	089(093)	.076(.078)	13807	.85	32.1(67!)	11.92		016(014)
1.05	39,11816)	4.08	016(023)	.058(.061)	18808	.85	32.1(671)	13,89	(168. 1004.	020(020)
1.05	39.1(817)	6.01	.0641 .0551	(950.)560.	18809	. A5	32.1(670)	15.83	.491(.482)	040(039)
1.05	39.1(817)	8.00	156(.150)	.009(.013)						
1.05	39.1(817)	6.63	.250(.244)	016(010)	10681	.40	10.2(214)	.21	136(172)	.0741 .0841
1.05	39.1(817)	11.92	_	037(036)	18902	•40	10.2(214)	2.17	072(105)	1890.)190.
1.05	39.1(817)	13.88	.434(.427)	055(054)	18903	.40	10.2(214)	4.14	009(042)	
• 05	39,1(817)	15.81	.519(.520)	069(068)	18904	04.	10.3(215)	6.13	.055(.027)	(050°)5EU°
					18905	040	10.3(215)	4.09	.125(.103)	.017(.018)
					18906	04.	10.3(215)	10.03	.203(.182)	
					18907	04.	10.3(215)	12.01	.286(.278)	020(022)
					18908	04.	10.2(214)	13.99	.373(.358)	032(033)
					1,8909	.40	10.3(215)	15.96	.464(.450)	042(046)

Table A-4.—Experimental Data Test Point Log. Flat Wing, Rounded Leading Edge; L.E. Deflection, Inboard = 0.0° Outboard = 5.1°

(a) T.E. Deflection, Inboard = 0.0° , Outboard = -8.3°

ا ، ع	5)	3)	51	3)	(9	10	. (6	10	5)		7.)	2)	0	6	2	3	5)	5)	6		60	6	5)	5)	2	ô	1	2)	-
Pitching moment coefficient, bal (integ press.)	920* 1520*		006 (002	029(023	950*-1650*-	762(360	984(079	103(100	116 (112		.028(.027			023(020	040(040	053(054	0671065	084(085	860 1260		.043(.030)		.016(.005	002 (015	025(037	038(050	048(061	068(085	101 -1000 -
Normal force coefficient, bal (integ press.)	029(~-034)	.038(.029)	1100,000		.282(.276)			.570(.567)	.661(.655)		030(036)	.035(.027)		.184(.169)			.446(.434)	.545(.542)	(159.)[59.]		031(0431	.031(.018)				.3301 .3221	(605.)515.		
Angle of attack, deg	.05	2.02	3.99	5.94	7.90	9.87	11.81	13.76	15.72		60.	5.06	4.02	5.98	7.94	06.6	11.85	13.80	15.77		.17	2.13	4.10	4.07	8.03	66.6	11.95	13.90	
Dynamic pressure, kN/m² (psf)	36.1(753)	26.1(753)	36.0(752)	36.0(752)	36.0(752)	36.0(752)	36.1(753)	36.0(752)	36.1(753)		32,1(671)	32.2(672)	32,1(671)	32.2(672)	32.1(671)	32.1(671)	32.1(671)	32.1(671)	32.1(671)		10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.3(215)	10.3(215)	19.3(215)	10,3(215)	10 20 2161
Mach	96.	. 95	.95	• 95	• 95	. 95	. 95	\$6.	95		.85	• 85	.85	.85	.85	. 45	.85	. 85	. R5		04.	04.	04.	.40	.40	.40	04.	04.	
number	19401	19402	19403	19404	19405	19406	19407	19408	19409		10561	19502	19503	19504	19505	19506	19507	19508	19509		10961	19602	19603	19604	19605	19606	19697	19608	0000
Pitching moment coefficient, bal (integ press.)	(050.)810.	-,022(-			_	_	0000 - ()020(018)	1 041(037)	_	1 064(065)	1083(384))102(102)			(\$20.)\$20. (1906.	1016(011)	1043(036)	1066(061)	081(079)	095(088)	110(107))126(124)					
Normal force coefficient, bal (integ press.)	024(,023	.127(.129)) † C		-)62	.035(.025)	.1016 .089	.176(.162		.3441 .337	.435(.426	.536(.527)	.645(.639	030(035		029(031	.043(.035	216	.209(.198		.386(.382)	.473(.465)	.560(.559)	.6471 .648					
Angle of attack, deg	.12	4.05	7.96		.11	2.08	4.05	6.01	7.97	6.94	11.90	13.84	15.80	.12		\$u*	2.C3	4.00	5.95	7.90	9.87	11.81	13.77	15.74					
Dynamic pressure, kN/m² (psf)	40.7(850)	40.6(848)	40.6(848)		25.2(527)	25.2(527)	25.2(526)	25.2(526)	25.2(527)	25.2(527)	25.2(526)	25.2(526)	25.2(526)	25.2(526)		39.2(818)	39.1(817)	39.1(817)	39.1(817)	19.2(818)	39.2(818)	39.2(818)		39.2(818)					
Mach	11.11	1.11	1.11		.70	.70	٠٢٠	01.	.70	.70	.70	. 70	.70	٠. د ۲٥		1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05					
Analysis	70161	19105	19106		19201	19202	19203	19204	19205	19206	19207	1920R	19209	19210		19301	19302	19303	19304	10305	19306	19301	19308	19309					

Table A-4.—(Continued)

(b) T.E. Deflection, Inboard = 0.0° , Outboard = -17.7°

Pitching moment coefficient, bal (integ press.)	.046(.050)	.033(.038)	.016(.022)	010(002)	036(033)	054(052)	077(072)	(860*-)660*-	113(112)				.022(.025)	002(.004)	027(025)	044(044)	060(058)	078(081)	004(101)				.036(.029)	.018(.010)	007(015)	029(037)	042(051)	064(077)	087(098)
Normal force coefficient, bal (integ press.)	1		.082(.070)	.170(.156)		.359(.353)			.657(.658)		057(065)	.007(003)			.250(.241)				.637(.645)		062(074)	000(015)	.063(.050)	.132(.121)	.217(.208)	.310(.303)	.398(.395)		.615(.609)
Angle of attack, deg	.07	2.03	4.01	5.95	7.91	9.86	11,81	13.76	15.72	•	.10	2.07	40.4	5.99	7.95	06.6	11.85	13.80	15.76		.18	2.14	4.12	60.9	8.04	10.00	11.95	13.91	15.85
Dynamic pressure, kN/m² (psf)	36-1(753)	36.0(752)	36.1(753)	35.1(753)	36.1(753)	36.1(753)	36.1(753)	36.1(753)	36.0(752)		32.1(671)	32.1(671)	32.1(671)	32.2(672)	32.2(672)	32-1(671)	32.1(671)	32-2(672)	32.1(671)		10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.2(214)	10.2(214)
Mach	\$6*	• 95	• 95	• 95	• 95	• 95	• 95	• 95	• 95	•	. 85	.85	• 82	.85	• 85	.85	.85	.85	.85		04.	. 40	04.	04.	04.	.40	04.	04.	.40
Analysis	20003	20004	50002	20002	20002	20008	20009	20010	11002		20101	20102	20103	20104	20102	20108	20102	20108	50102		20201	20202	20203	20204	20202	20206	20207	20208	20209
Pitching moment coefficient, bal (integ press.)	.037(.042)	001(.007)	058(054)			.03/1 .040)		.003(.008)	023(019)	(040*-1040*-	055(057)	075(081)	098(104)	.050)		.0451	.026(.032)	(.013)	014)	048)	069)	.079)	.107)	120)					
	_	_	ı				`•	င့	Ö	Ş	.05	•075	960.	.052(.043(.026	•000	.024(-0250-	•072(-	-)680*	-105(-	.120(
Normal force coefficient, bal (integ press.)	042(048	100. 104	.289(.284)		1.001850	(100)400-			.238(.227)0.			_	.642)	060(065) .052(.554(.563)105(107)	.640(.644)120(120					
Angle of Normal for attack, coefficie deg bal (integ p		.104(7.97 .289(.284)	,			.070(.058)	.146(.130)	.238(.227)	. 328(. 324)	.422(.416)	.525)	.638(.642)	065) .052(052(056)	(600.)610.	(80.)960.	5.95 .188(.175)024(.284(.279)	.376(.371)	.466(.455)		(449.)049.					
	•13	1040	.289(:	.13	01.7	4.06 .070(.058)	6.03 .146(.130)	.238(.227)	9-95 - 328(-324)	11.89 .422(.416)	13.85 .526(.525)	15.81 .638(.642)	.13060(065) .052(0.07052(056)	1 2.05 .019(.009)	(10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	5.95 .188(.175)	1.91 .284(.279)	9.87 .376(.371)	1 11.82 .466(.455)	1 13.77 .554(.563)	(449.)049.					
Angle of attack, deg	40.7(850)	10401. 1046	40.6(848) 7.97 .289(25.3(328) .13	01.2 (820)6.62	4.06 .070 .0581	25.2(527) 6.03 .146(.130)	7.98 .238(.227)	(475.) 4.95. 66.4 (176)2.65	75.2(527) 11.89 .422(.416)	25.2(527) 13.85 .526(.525)	25.2(526) 15.81 .638(.642)	.13060(065) .052(39.2(819) .07052(056)	39.2(819) 2.05 .019(.009)	39.2(818) 4.01 .096(.083)	39.1(817) 5.95 .188(.175)	39.2(818) 7.91 .284(.279)	39,2(818) 9,87 ,376(,371)	39.2(818) 11.82 .466(.455)	5 39.2(818) 13.77 .554(.563)	(818) 15.74 .640(.644)					

Table A-4.—(Continued)

(c) T.E. Deflection, Inboard = 0.0° , Outboard = 8.3°

		Dynamic	Angle of	Normal force	Pitching moment				,	Nieman Comme	
A profession	doch.	0.1100.00	30.1	Conflictent	Coopficient			Dynamic	Angle of	Normal lorce	Fitching moment
numiber	number	kN/m ² (psf)	deg deg	bal (integ press.)	bal (integ press.)	Analysis	Mach	pressure; kN/m² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)
] :										
\$ 0 t 0 ?	- T	100811.04	1. 7.	408(316)		20102	.05	36.1(754)	-7.81	300(305)	.059(.059)
20404	1.11	40.7(850)	-3.82	<u>.</u>	.020(.018)	20703	.95	36.1(754)	-5.86	206(208)	.035(.034)
20405	11.	40.71.8501	01.	٠	026(024)	20704	.95	36.1(753)	-3.91	121(125)	.013(.012)
20406	1.11	40.7(850)	40-4	_	-•064(-•059)	20705	• 95	36.1(753)	-1.94	044(041)	- 1
20407	1.11	40.7(849)	7.95	.332(.329)	098(097)	29706	.95	36-1(754)	.03	.025(.021)	023(023)
						20707	.95	36.11754)	1.99		036(035)
20501	. 7.0	5.3(52	-7.78	265(271)	.044(.048)	20708	. 95	36-1(754)	3.96		052(049)
20502	.70	25.3(528)	-5.81	.180	.024(.025)	20709	96	36-1(754)	5.92	.238(.229)	070(066)
20503	. 70	5.3(528	-3.85	106(109)	(700.)700.	20710	95	_	7.89		081(077)
20504	.70	5.3(-1.89	034(035)		20711	. 95	36.1(754)	9.85		087(083)
20505	. 70	5.3(529	, O.	.030(.025)	024(023)	20712	. 95	36-1(753)	11.80	489(101 (094)
90502	. 10	5.3152	2.06		036(034)	27713	95	36.1(753)	13.75	584	117(109)
20507	. 70	5.3(52	4.03	0	(750)650	20715	95	36-1(754)	15.71	6 AO C	134(124)
20503	7.0	5.3(528	5.99		066(065)		•		•	•	
20509	10	5.3152	7 95		078(075)	10806	a	22 216721	7 P.O	- 2021- 2071	0526 0521
20510		21620		•	(440 - 7000 -	10000		121012.26		11031203-	
01000	2	7.36.76.7	7	•	1100	20402	68.	171917.76	12.84	1921193)	
20511	0/•	5.3(528	11.98		085(085)	20803	• A5	32.2(672)	-3.87	113(116)	
20215	02.	5.3(52	13.84	.553(.545)	096(096)	20804	.85	32.2(672)	-1.91	039(041)	008(009)
20513	٠,	2512.5	15.80]	108(1031	20805	.85	32.2(672)	• 05	.027(.023)	022(023)
20514	.70	5.3(52	60.	.029(.026)	022(023)	70806	.85	32,2(672)	2.03		034(034)
						20807	8.5	32.2(672)	3,99		049(046)
10902	1.05	9.21	-7.80	319(327)	.072(.075)	20808	8.		5.96		067(065)
20902	1.05	_	-5.85	224(227)	. 1940	90808		7	7.92	3116 3011	078(075)
20603	c.	39.2(819)	-3.88	-,135(-,138)	1000	20810	. ur	167	88	3.85	081(079)
20604	1.05	6	11.93	054(059)		20811	, a	32 216721	11.84	1697	1,088(-1,086)
20405				1710 1160	0220	11663		121012020			
20007	•		• •	1010 1550	1320-1636-	21000	0.0	161012.26	10.19	1066 1706	1137 1031
20807	•			•	1050-1050-	61003		1017	12.12	_	1161 - 1211 -
2060R	1.05		. 6	248(.239)	080(075)	1000	0.4	10.212141	-7.74	253(255)	1540, 1550.
90409	C	8	7. A.R.	_	196(195)	20802	0 4	: -	7.7.	1721-1741	
20610	0	8	9,85	-	106(106)	20002	04	10.3(215)		009(103)	
20611	C	8	11.81	. ~	118(112)	40606		10.3(215)	18.1-	030(031)	•
20612	80	9	17 71		- 132(- 125)	10000	•	10 3/2161		1700 1700	1210 1200 -
24000	•	2 9		•	1677.	50662	•	7	C1 •		(620-1)+10-1
50613	•	Z	15.72	.672(.669)	144(144)	20906	04.	2	2.10	91(026(033)
						20907	.40	10.3(215)	4.08	53(039(043)
						20908	04.	10.3(215)	6.04	.221(.215)	055(062)
						20909	04.	10.3(215)	9.00	986	073(077)
						20910	7.0	-	0.07	3716	076(080)
						2,1911	040	10.3(215)	11.93	127	-,080(-,084)
						20012		10 212151	00 61	5201	1860 -) 160 -
						21606	† <	10.016151		67 178	- 101(- 107)
						CT11.3	; •	17.516.61	10.01	70. 140	11070.17670

Table A-4.—(Continued)

(d) T.E. Deflection, Inboard = 0.0° , Outboard = 17.7°

Pitching moment coefficient, bal (integ press.)	(980.)860.	011(010)	03210301	047(045)					(/60)101	(401)111	-127(119) - 1427- 13E1	1007-1361-	.0301 .0321		0131014)	022(022)	046(042)	059(055)	013(010)	088(086)	097(094)	046(044)	100(002)	110(105)	122(115)	.023(.021)	.004(001)	013(018)	330(036)	040(045)	051(054)	064(063)	0781086)	091(093)	093(095)	095(095)	104(104)	113(112)
Normal force coefficient, bal (integ press.)	279(282)	095(099)	t			1881 . 1807	.762(.749)		.414(.405)	•	1765) 965	•	256(261)	163(084(087)	_		-1	.17	_	. 32	.404	.485(.575(.5	1,599. 1699.	214(222)	137(141)	- 1	Ů.	•	.123(.115)	•	_•		3941	4671	.556(.544)	.650(.633)
Angle of attack, deg	-7.82	-3.92	96-1-	00.	1.99	3.46	5.90	x x x x	9.86	61.11	15.75	• • • • • • • • • • • • • • • • • • • •	-7.81	-5.85	-3.88	-2.90	90.	2.01	3.99	5.94	7.92	9.8B	11.85	13.79	15.76	-7.75	-5.80	-3.84	-1.86	.13	2.08	4.06	6.03	9.00	16.6	11.92	13.88	15.85
Dynamic pressure, kN/m² (psf)	36-1(755)	36.1(754)	36.1(754)	-	36.1(754)	- 1	36.1(754)	166/11.06	36.1(754)	6,11,7	36-1(755)		3		32.2(673)		32.2(672)	_	674	(67	_	9	_	_	32.2(673)	10,3(215)	.3(21	3 (2 1	(21	3(21	3(21	3(21	3(21	3	(2)	~	2	.3(21
Mach number	96.	. 95	.95	• 95	. 95	. y.	56.	٠. د د	٠ د د	÷.	 	:	.85	.85	. 85	. 85	. 3	.85	. 85	. 85	. 85	. 85	.85	.85		04.	.40	04.	.40				C 4 .				-	.40
Analysis	21301	21303	21304	21305	21306	21501	21308	21504	21310	21311	21217	01013	21401	21402	21403	21404	21405	21406	21407	2140A	21409	21410	21411	21412	21413	21501	21502	21503	21504	21505	21506	21507	21508	21509	21510	21511	21512	21513
nent t, sss.)	1821	2		_																																		
Pitching moment coefficient, bal (integ press.)		-	24	2	9	1	3	0 0	35	100	0.70	02)	08)		129	30)	03)	1251	(44)	57)	161	161	101	171	27)	56)												
Pitch co bal (080(082)		1020	100		0.00.1.7.40.1					(060 - 1400 -	*106(102)	117(108)		58((086.)620.	.000(003)		044	,061(,057)	079(076)	008(001)	112(110)	118(117)	֡֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֡	157(156)												
Normal force Pitch co coefficient, bal (integ press.)	187)	76+6 • 1066	10200201	152)001((078)017(7660	(+11+)	1621.	(947)	175.	(66.)		(159.)		058(1620. (602)	1000. (£11:-)		1 .040) 044(115(.106)061(188(.181)	(•256)	. 348)	(-424)	508(.508)128(1													
al force licient, eg press.)	188(.187)	1646 1066 44.	1020234(239)	149(152)001(5 075(078) 017(1000.	(+11+)	188(-173)	1947 1967	.3301 .3211	10.650 18650 1	.546(.554)	(159.)(999.		302(311) .058(1620. (602)	112(113) .000((034)	.044(.040)044(.115(.106)061(.188(.181)	.2691 .2561	.350(.348)	.83 .427(.424)	.81 .508(.508)128(1	543(.543)												
Normal force coefficient, bal (integ press.)	02 .188(.187)	1010 1000 1000	91 -7.80234(239) .020(25.6 - 5.83 - 149(152) 001(528) -3.86075(078)017(1650. 1000. 00. 1656	258) 2.06 .123(.114)	1071 1881 20*4 1820	1675 1967 1676 1876	258) (-94 -350(-321)	528) 4.4(.59R(.593)	529) 13.83 .566(.554)	5291 15.79 .663(.651)		01 -7.80302(3111 .058(19201 -5.47204(209) .029(919) -3.90112(113) .000(-1.95 C30(034)	820) .01 .044(.040)044(920) 2.01 .115(.106)061(820) 3.96 .188(.181)	920) 5.93 .269(.256)	920) 7.87 .350(.348)	819) 9.83 .427(.424)	920) 11.81 .508(.509)128(1													
Angle of Normal force attack, coefficient, deg bal (integ press.)	7 04 3501 3431	7010 1000 1000 1000 1100	5291 -7.80234(239) .0201	25.3(529)5.83149(152)001(25-3(528) -3.86075(078)017(1000 1000 00 100010 00	25.3(528) 2.06 .123(.114)	(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	(1975) 1967. 1966 (1976) 6.67	75.3(768) (.94 .530(.521)	23.3(328) 4.4(.398(.393) 25.3(520) 11.64 4.74(4.5)	25.3(529) 13.83 .566(.554)	25.3(529) 15.79 .663(.651)		.05 39.318201 -7.80302(3111 .0581	39.3(920) -5.87204(209) .029(.05 33.2(819) -3.90112(113) .000(39.2(819) -1.95030(034)	.05 39.3(820) .01 .044(.040)044(.05 39.3(820) 2.01 .115(.106)061(39.3(820) 3.96 .188(.181)	.05 39.3(820) 5.93 .269(.256)	.05 39.3(820) 7.87 .350(.348)	.05 39.2(819) 9.83 .427(.424)	.05 39.3(820) 11.81 .508(.508)128(1	320/ 13.73 .691 .593/ -151/1												

Table A-4.—(Continued)

(e) T.E. Deflection, Full Span = 0.0°

Pitching moment	coefficient, bal (integ press.)		030(025)	(540*-)650*-	090 090 -	072(070)	090(085)	108(101)	123(117)		•				.002(.001)	011(010)	026(023)	046(043)	059(057)	065(065)	075(074)	089(088)	066(100)		1000 1100	.067(.066)			.019(.013)	.006(.001)	005(009)	018(021)	035(039)	055(058)	062(065)	068 (074)	082(041)	095(101)			
Normal force	coefficient, bal (integ press.)				1567. 1667.		_		.669(.663)		302(308)	215(217)	139(146)	067(071)		.065(.056)							.643(.643)		(600*-)100*-	268(282)	194(204)	125(135)	057(063)	.005(004)				J	.354(.343)	.435(.427)	.529(.523)				
Angle of	attack, deg		4. 00	5.95	1.90	9.85	11.82	13.77	15.73		-7.80	-5.83	-3.86	-1.90	•07	2.02	4.02	5.98	7.94	06.6	11.85	13.81	15.77	,	*0.	-7.73	-5.75	-3.79	-1.84	.14	2.12	4.10	90•9	8.03	66.6	11.95	13.90	15.84	ı i		
Dynamic	pressure, kN/m ² (psf)	/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	36.1(755)	36.1(755)	36.1(755)	36.1(755)	36.1(755)	36-1(755)	36.2(756)		32.3(674)	32.2(673)	32.2(673)	32.3(674)	32.2(673)	32.2(673)	32.3(674)	32.2(673)	32.3(674)	32.2(673)	32.3(674)	32.2(673)	32.3(674)		36-11 (25)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	3(3(10.3(215)	10.3(215)	10.3(215)	10.3(215)			
	Mach		• 95	• 95	• 65	• 95	\$6.	• 95	• 95		.85	.85	. 85	.85	. 85	.85	.85	.85	•	•	8	. A 5	.85	;	. 95	04.	04.	40	04.	04.	04.	.40	04.	.40	04.	04.	04.	040			
	Analysis		22007	2200R	22009	22010	22011	22012	22013		22101	22102	22103	22104	22105	22106	22107	22108	22109	22110	22111	22112	22114		22201	22301	22302	22303	22304	22305	22306	22307	22308	22309	22310	22311	22312	22313			
Pitching moment	coefficient, bal (integ press.)			.040)	001)	0371	.084(079)		.0681	.0461	.031)	.013)	.001)	010)	.023)	.044)	.056)	.064)	076)	(060	1260.		.086)	.062)	.041)	-018)	1 0151	0361	1.0561	0741	087)	-101)	.112)	130)	•	.073)	.052)			1 .001)	(011)
	۵		.082	.039	004	043(037	1.084		.063(• 045 (.030	.013(000	•	026		~-059(056)	064(064)	074(-		160)660		.087	.064(.042(2010		010	- 062	420-1080-	- 091 (-104		-138(-		.075(.054	.035	.016	000	014
Normal force	coefficient, bal (integ press.) b	\dashv		.150(152) .039(0041004(_	- 1121		.287(294)	_	.132(138)	.061(064)			.121) 0266	.1951	.276)	.358)	.442)	_	(9890)		.330(-,338)	.239(242)	.156(160)	2010	1200 - 1000 1200	1361 . 1361	1640 - 1816	080	393)091	1046	(.565)120((.656)138(.317(322)	.227(228)	.146(152)	070(074)	.001(006)	.066(.058)014
Ĺ			.325(328)	150(152) .039(.001(004)004(.151(.134)	- 12183191 -		.287(294)	5.80204(208)	132(138)	1.87061(064)	.003(003)000(.066(.057)012(-	.133(.121)026(.2061 .1951	.285(.276)	.362(.358)	.447(.442)	.542(.537)	.64!(.636)		330(338)	239(242)	156(160))610°	1200 - 1000 1200	1970 (0000 1900	1640 1816. 1966.	315(307) 080(.398(.393)091(.482(.480)104(.571(.565)120(.660(.656)138(317(322)	36227(228)	90146(152)	.070(074)	04 001(006)	- (850.)990.
Angle of F	coefficient, bal (integ press.)		8521 -7.74325(328)	852) -3.80150(152) .039(852) .12 .001(004)004((852) 4.06 .151(.134)	- 1211. 1916. 7.97 - 1852) -		7.77287(294)	5.4(530) -5.80204(208)	5.3(529) -3.82132(138)	5.3(578) -1.87061(064)	5.3(529) .10 .03(003)000(5.3(528) 2.06 .066(.057)012(-	5.3(529) 4.06 .133(.121)026(5.3(529) 6.02 .206(.195)	5.3(529) 7.96 .285(.276)	5.3(529) 9.97 .362(.358)	5.3(529) 11.89 .447(.442)	5.3(529) 13.85 .542(.537)	5.3(529) 15.82 .641(.636)		1821) -7.78330(338)	[820] -5.82239(242)	(820) -3.89156(160))610. (9/0:=)//0:= 	(821) 2-01 CAST 0401 - 0100	[82]) 4.0] 1444 1345 - 0394	(821) 5, 92 , 239 , 2181 = ,0624	821) 7.89 315(307) - 080((821) 9.87 .398(.393)091(821) 11.81 .482(.480)104(8201 13.78 .571(.565)120(1820) 15.73 .660(.656)138(17551 -7.79317(322)	(754) -5.86227(228)	(755) -3.90146(152)	93 070(074)	(755) .04001(006)	- (855) 2.01 .066(.058) -
Dynamic Angle of P	attack, coefficient, deg bal (integ press.)		1 40.8(852) -7.74325(328)	.11 40.8(852) -3.80150(152) .039(.11 40.8(852) .12 .001(004)004(1 40.8(852) 4.06 .151(.134)	-11 40.8(852) 7.97 .319(.312) -		5.3(528) -7.77287(294)	75.4(530) -5.80204(208)	25.3(529) -3.82132(138)	25.3(528) -1.87061(064)	25.3(529) .10 .003(003)000(25.3(528) 2.06 .066(.057)012(-	25.3(529) 4.06 .133(.121)026(25.3(529) 6.02 .206(.195)	25.3(529) 7.96 .285(.276)	25.3(529) 9.97 .362(.358)	25.3(529) 11.89 .447(.442)	25.3(529) 13.85 .542(.537)	25.3(529) 15.82 .641(.636)		39.3(821) -7.78330(338)	39.3(820) -5.82239(242)	39.3(820) -3.89156(160)		05 39.3(821) 2.01 060(060) = 010(39,3(821) 4.01 126, 136, 136, 136,	.05 39.3(82)) 5.92 .239(.218)0624	.05 39.3(821) 7.89 .315(.307)080(.05 39.3(821) 9.87 .398(.393)091(39.3(821) 11.81 .482(.480)104(39.3(820) 13.78 .571(.565)120(39.3(820) 15.73 .660(.656)138(36.1(755) -7.79317(322)	36.1(754) -5.86227(228)	36-1(75) -3.90146(152)	(754) -1.93070(074)	36.1(755) .04001(006)	36.1(755) 2.01 .066(.058) -

(f) T.E. Deflection, Inboard = -17.7° , Outboard = 0.0°

		_	_	_	_	_	_			_	_	_	_		_	_		_										
Pitching moment coefficient, bal (integ press.)	1901.) 501.	.074(.076)	.0621 .064)	.051(.054	.0381 .042	.028(.028	.0116 .011.			1760. 1960.	_	.068(.067)		.046(.043)				.005(004)										
Normal force coefficient, bal (integ press.)	232(245)	098(114)	•					.411(.404)		214(228)	148(162)	087(102)	026(043)	_	1111 . 100)		J	.379(.369)										
Angle of attack, deg	2.18	4.17	6.13	8.08	10.06	11.99	13.98	15,93	1	.26	2.23	4.21	6.15	8.13	11.61	12.08	14.03	15.98										
Dynamic pressure, kN/m² (psf)	25.3(528)	25.3(528)	25.3(528)	25.3(528)	25.3(529)	25.3(529)	25.3(528)	25.3(528)		10.3(215)	19.3(215)	10.3(215)	10.3(215)	10.3(215)	10.2(214)	10.3(215)	10.2(214)	10.2(214)										
Mach	.70	.70	. 70	0.1	6.	0.7	٠,	07.		04.	0.	.40	04.	• 40	040	04.	04.	•40										
Analysis number n	22801 22802	22803	72804	72805	22806	22807	22808	22809		22901	20622	22903	52904	22905	52906	22907	22908	52909										
Pitching moment coefficient, bal (integ press.)	.124(.142)			.0631 .077)		1810. 1410.	010(015)	033(035)	1196 -1271					.048(.055)		.004(.012)	ŧ								.030(.033)		٠	
Normal force coefficient, bal (integ press.)	234(260)	097(122)	023(045)		.158(.147)	.262(.759)	64 (.459(.460)	19561986-	173(195)	109(133)	044(067)	.034(.016)	.127(.108)		.341(.331)	43(243(260)	174(193)	109(128)	041(060)	(£10.)1En.	.120(.103)		22(
Angle of attack, deg	2.12	4.10	6.05	8.04	4.61	11.93	13.8A	15.84	114	2.12	4.10	6-07	9.05	16.6	11.92	13.87	15.84		.21	2.17	4.12	6.10	8.06	10.03	11.98	13.93	15.87	
Dynamic pressure, kN/m ² (psf)	39.3(870)	39.3(820)	39.3(820)	39.3(920)	39.3(820)	39.3(820)	39.3(821)	39.318201	14.117551	36.1(754)	36-1(754)	36.11754)	36.1(755)	36.1(755)	36.2(756)	36.117551	36.1(755)		32.2(673)	32.2(673)	32.2(673)	32.2(673)	32.3(674)	32.3(674)	32.3(674)	32,3(674)	22.2(673)	
Mach	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	80	9	. 65	99	. 95	96	. 95	.95	. 95		.85	.85	. 95	.85	.85	8.5	.85	. A.5	4	•
Analysis number	22411	22413	2414	22415	2416	22417	2418	52419	226.01	22602	2603	2604	22605	22606	22607	260R	22619		10755	2012	2703	2704	2705	22706	22707	22708	2709	

Table A-4.—(Continued)

(g) T.E. Deflection, Inboard = -8.3° , Outboard = 0.0°

			,																															
	Pitching moment	bal (integ press.)	.0581 .0601			.015(.019)		•	019(016)	033(031)	045(045)	(670, 1050,				- 004(-	012(018(020)	028(034)	038(045)														
	Normal force	bal (integ press.)	126(134)	058(069)	.008(004)	(690.)620.						106(117)	041(054)	.020(.004)					_															
	Angle of	deg deg	.12	2.10	4.07	40.9	8.00	10.06	11.90	13.89	15.84	.20	2.20	4.15	6.14	8.08	-	_		15.93														
	Dynamic	kN/m ² (psf)	32.2(673)	32.2(673)	32.2(672)	32.2(673)	32.2(672)	32.2(672)	32.2(673)	32.2(672)	32.2(672)	10.2(214)	10,3(215)	10.2(214)	10.3(215)	10,3(215)	10.3(215)	10.3(215)	10.3(215)	10.2(214)														
	4000	number	.85	.85	.85	.85	.85	.85	.85	.85	.85	040	04.	040	04.	04.	04.	.40	.40	C 4.														
	2007	number	23301	23302	23303	23304	23305	23306	23307	23308	23309	23501	23502	23503	23504	23505	23506	23507	23508	23509														
ı			1 _	_	_	_		_		_	_		_	_	_	_		_	_		_		_	_	_		_	_	_	_				_
	Pitching moment	bal (integ press.)	1180. 1510.	.056(.062)			(200.)000	020(015]	040(032)	058(053)	0781074	.122(.127	1031 1041	.087(.088)	1020 1690	.051(.053)	1040*)880*		.012(.015	-,003(-,000)	010(008	019(019	032(033	1+0) ++0	.053(.053	.070.	.051(.055	.036(.040)	.0201 .0261	.104(.011)	1600*-1600*-	028(020)	046(041)	062(158
	Normal force	bal (integ press.)	142(151)	068(079)	•		.174(.167)	.267(.257)		.453(.450)	.544(.542)	421(431)	336(344)	262(268)	189(194)	٠.,	052(061)	.013(.001)	.081(.067)	.155(.144)	.236(.227)	.319(.309)	415(.510(.506)	118(124)	145(153)	070(079)	.000(011)	.075(.062)	11616 1151)	.246(.236)	.347(.335)	(444) (444)	.544(.542)
	Angle of	deg deg	.12	2.11	4.05	10°9	7.97	06.6	11.87	13.84	15.78	-7.69	-5.73	-3.78	-1-83	• 20	2.14	4.11	90 • 9	8.02	10.08	90.11	13.98	15.89	•16	90.						11.88		
	Dynamic	kN/m ² (psf)	39.2(819)	39.2(819)	39.2(819)	39.2(819)	9.3(39.3(820)	9.3(39.3(820)		25.2(526)	5.2	25.2(526)	5.2	5.2(5.2	25.3(528)	5.3(25.3(528)	5.3152	25.3(528)	25	5.2(52	5.3(52	36.1(755)	36.1(754)	36.1(754)	36.1(754)	36.1(754)	36.1(754)	36.1(755)	35.1(754)	36.1(754)
	doc M	number	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	.70	. 70	.70	.70	. 70	. 10	• 70	• 10	. 70	.70	.70	02.	. 10	.70	\$6.	• 95	.95	• 95	• 45	• 95	• 45	• 95	. 95
	Analyseis		23011	23012	23013	23014	23015	23016	23017	23018	23920	73101	23102	23103	23104	23195	23106	23107	23108	23109	23110	23111	23112	23113	23114	23201	23202	73203	23204	23205	23206	23207	23208	23209

(h) T.E. Deflection, Inboard = 8.3° , Outboard = 0.0°

Analysis Mach		attack,	coefficient,	coefficient,	Analysis	Mach	pressure,	attack,	coefficient,	coefficient,
number number	r kN/m² (psf)	deg	bal (integ press.)	bal (integ press.)	number	number	kN/m ² (psf)	deg	bal (integ press.)	bal (integ press.)
-		-7.79	204(214)	1710, 1010,	23901	.95	36.1 (753)	-7.87	185(188)	(200-)900-
_	40.71		037(049)	-,079(-,019)	23902	.95	36-11754)	•	-102(-10	- 1
3607 1.11	40.71.85	•	.110(.100)	066(059)	23903	.95	36-1(753)	-3.94		024(021)
-	40.7(4.03	.259(.248)	108(102)	23904	• 95	36.1(754)	-1.98	.044(040(038)
	40.7(6.95		134(129)	23905	• 95	_	10*-	1100	054(051)
					23906	• 95	36.1(753)	1.96	.178(070(065)
	25.3(52		167(170)	.012(.012)	23907	.95	36-1(754)	3.91		090(087)
	25.2(52	-5.88	- 1	(00	23908	• 95	36.1(753)	5.88	.330	109(101)
	25.2152	-3.90	0261029)	016(016)	23909	• 95	36-1(753)	7.98	.4146	126(122)
3704 .70	25.2(52	_		031(032)	61985	• 95	36.1(753)	9.88	1064.	132(127)
	25.2(52	•00	.103(.098)	043(042)	23911	• 95	36.1(754)	11.77	.573(.567)	141(136)
	25.3(52	2.05		056(054)	23912	.95	36.1(754)	13.74	•	156(149)
	25.2(52	3.99		072(071)	23913	• 95	36.1(754)	15.69	.738(.729)	162(148)
	25.2152	5.98		(060)160						
	25.31.52	1.92	.389(.385)	105(104)	24001	.85	32.2(672)	-7.84	176(180)	(110.)600.
	25.3152	9.87		109(109)	24002	.85	32.2(673)	-5.89		005(004)
	25.3(52	11.87	٠	119(121)	24003	.85	32.2(673)	-3.94		019(017)
	25.3(52		٠	138(140)	5 400 4	.85	32.2(673)	-1.99	.041	034(034)
113 .70	25.3(528)	15.76	.746(.745)	152(149)	24005	.85	32.2(673)	10.		041(046)
	25.2(52	.05	.102(.097)	041(042)	54004	. 85	32.2(672)	2.02		061(058)
					24007	.85	32.2(673)	3.97		(6401080
01 1.0	19.2(81	•	205(217)	.013(.016)	24008	• 85	32.2(673)	5.94		088(083)
02 1.0	39.2(81	.5.88	116(126)		54004	.85	32.2(673)	7.88		111(111)
03 1.0	39.2(8)	-3.96	037(047)	026(021)	24010	.85	32.2(672)	4.87	J	116(115)
04 1.0	39.2(81	_	(080.)680.	046(041)	24011	• 85	32.2(673)	11.81	.558(125(120)
05 1.0	39.2(81	[c.	1111 . 101)	065(058)	24012	. A.5	32.2(673)	13.77	.650(139(134)
306 1.05	39.2(819)	1.96	.184(.171)	084(075)	24013	• A 5	32.2(673)	15.73	•	148(141)
01 10	39.2(81	3.93	.258(.252)	105(102)						
08 1.0	39.3182	5.89	.340(.333)	127(122)	410	.40	10.3(215)	-7.76	160	
0.1 60	39.2(81	7.82	(419.)614.	142(134)	24102	04.		-5.83	092(.014(.000)
1.0	39.2(91	9.82	.491(.488)	145(141)	24103	.40	10.3(215)	-3.87	025	002(013)
11 1.0	39.2(81	11.77	.565(.563)	151(144)	24104	40	10.3(215)	-1.90	.037(015(028)
12 1.0	39.218	13.77	.64	162(155)	24105	04.	10.3(215)	• 10	1960.	026(038)
13 1.0	39.2(81	15.70	. 7		24106	Ú4.	10,3(215)	5.09	.158(040(050)
					24107	.40	10.3(215)	4.06		055(062)
					2410R		19.3(215)	4.06		056(062)
					24109		31	6.02	.292(.283)	074(083)
					24119	· •	3	7.99		095(102)
					24111	-	10.3(215)	46.6		100(108)
					24112	04.		11.91	_	108(119)
					24113	.40	3(21	13.86	.630(.632)	127(139)

Table A-4.—(Concluded)

(i) T.E. Deflection, Inboard = 17.7° , Outboard = 0.0°

292			to of the ore				Oynamic	io sifiric	an in in in	The state of the s
number	pressure, r kN/m² (psf)	deg.	bal (integ press.)	bal (integ press.)	Analysis	Mach	pressure, kN/m ² (psf)	attack, deg	coerricient, bal (integ press.)	coefficient, bal (integ press.)
0.50	39.2(9)	-7.92	083(080)	056(057)	24501	.85	32,216721	26.7-	063(066)	063(062)
• 05	39.2(81	-5.95	-	071(065)	24502		32.2(672)		1010.)410.	- 05
ō.	39.218	-3.98	20(049(986)	24503	.85	32.2(672)			
0	39.2(81	-7.03	376	104(151)	24504	• 85	32.2(672)	'	144(145)	083(083)
C	19.2(81	03	- 25	119(115)	24505	.692	32.2(572)		.206(.201)	095(094)
Č.	39.2(91	1.90	- 1	135(132)	24506	.85	32.2(672)		•	112(112)
c	39.2(81	3.99	, ,	154(152)	24597	.85	32.2(672)		.345(.341)	131(129)
Ċ	39.2(81	5.83) 61	171(170)	24508	.85	32.2(672)		•	149(145)
0	39.2(81	7.82	•) 26	181(184)	24509	٠ تار	32,1(671)		•	
Ö	19.2(81	9.81	99	189(185)	24510	.85	32.2(672)		•	166(167)
.0	39.2(81	11.73	59(187(185)	24511	.85	32,2(672)	_	•	171(167)
1.05	39.2(91	13,74	03(24512	. 85	32,2(672)	_	_	-,182(-,178)
0	39.2(8)	15.69	.7701 .774)	198(189)	24513	.85	32.2(672)	15.69		1811811
٠,	25.3(52		057(060)	037(036)	24671	.40	19.3(2)6)	-7.83	058(071)	016(025)
۲.	25.3(52	5	.015(.010)	052(050)	24692	040	~	-5. RA	.01260011	,
	25.3(52	-3.92	O	066(066)	24603	40	~	3.40	1700 1770	(4501050
7	25.3152	:	143(078(076)	24604	4.0	10.2(214)	-1-93		1062
7	25.2(52	•	.204(.197)	090(088)	24605	04	10,3(215)	90		
7	25.2152		2.701	105(102)	24606	.40	10.2(214)	2.02		
٠,٢٥	25.2(3.96	3401	-,123(-,122)	24407	04.	10.2(214)	3.98		107(113)
7	25.2(52	•	. 151	:4!(:35)	24508	.40	10.2(214)	5.95		124(128)
. 7.	25.2152	٠	(065. 1065.	154(154)	54609	• 40	10.2(214)	7.92		142(143)
۲.	25.2(52	•	.)29	158(155)	24610	040	19.2(214)	0.89		148(152)
ř	25.2(52	•	9441	165(165)	24611	.40	10.2(213)	11.87		157(163)
``	25.2152	•	743(185(183)	24612	.40	10.2(214)	13.82		176(180)
Ξ.	25.2152	ζ.	834(195(191)	24613	0.4.	10.2(214)	15.76	. 834(.817)	192(190)
.7	25.2(52	ī.	.202(.199)	088(048)						
.05	36.167		069(364)	053(0531						
ŏ.	36-1175		120	065(063)						
6	36.14.75		921	081(079)						
6.	36-1175		47(094(093)						
ċ	36-1175		.210(.203)	108(104)						
6	36.11.75		.278(.278)	126(123)					-	
6			20(145(142)						
ō	36-1175		316	169(156)						
ō	36-1175		17(191(186)						
ŏ	36.11		986	192(186)						
ò	36.11.75		201	188(181)						
.95	5 36.1(753)	13.71	_	192(183)						

Table A-5.—Experimental Data Test Point Log. Flat Wing, Rounded Leading Edge; L.E. Deflection, Full Span = 0.0°

(a) T.E. Deflection, Inboard = 17.7°, Outboard = 0.0°

045(045)	071(072)		097(095)	-1132(-128)	152(147)	169(165)	188(181)	197(188)		203(194)	017(028)	035(045)	048(056)	060(067)	073(078)	040(097)	\$\$11\BO1	(671-1471-	-154(-157)	167(171)	177(181)	184(186)														
, ,										37(052(056)											.81														
16.7-	00.4	-2.01	70	3.89	5.87	7.83	9.16	11.74	13.71	15.68	-7.84	-5.89	-3.88	-1.92	•01	2.03	444	7.0	0	11.83	13.82	15.75														
32.3(674)	32.2(673)	32.2(673)	32.2(672)	32.2(672)	32.2(672)	32.2(672)	32.2(673)	32.2(673)	32.2(672)	32.2(672)	10.3(215)	10.3(215)	10.3(215)	10.3(215)	10.2(214)	10.2(214)	171212101	10.21214)	10.2(214)	10.2(214)	10.2(214)	10.3(215)														
28. 7.	. 95	. 85	د ه		.85	.85	, 8 5	-85	. 85	8.2	04.	.40	04	.40	04	9,	•	•	4	0,4	04	.40														
25001	25003	25004	25005	25007	25008	25009	25010	25011	25012	501	25201	25202	25203	25204	25205	25206	10707	25200	25210	25211	25212	25213														
						_		_		_	1 036 (037)					106(_	054(055)	1067(066)				•				_			_	
1060	1110	1401	206(3461	4731	498(575(_	54 (- ,	55(145(506(275	1746	7//4	5056	4684	752	842(-1190	.0110.016	0851	٠	213(•	2821	356(435(517(595	663(738(• ====================================	
7.92	-4.00	-2.01	06	3.86	5.87	7.84	9.84	11.77	13.71	15.67	-7.88	-5.91	-3.92	96.1-	01	1.99	3.46	7.40	C0. 0	11.79	13.73	15.70	-7.93	-5.98	-4.01	-2.04	05	1.92	3.87	5.83	7.79	9.78	11.72	13.69	15.64	
39.2(819)	39.2(819)	_	~ ~	39.2(819)	: ~	7	2 (.2	.2(81	.2(81	75.3(528)	5.28	5.21	5.2	2.5	25.2(527)	7.7	2.2		5.3	5.3	5.3(36-1(754)	6.11	35.1(754)	36.1(754)	36.1(754)	36.1(754)	36.1(753)	36.1(754)	36.1(754)	36.1(754)	36.1(754)	36-1(754)	36.1(754)	
L 4								2	S	5	Ċ	0	c	0	0	9	၁ (- 9	- c	ے د	, 6	0	5	2	2	2	2	Š	S	ç	.	2	<u>.</u>	آن ا	2	
1.05 3		1.05	1.05	0.05	1.05	1.0	1.0	0	-0	1.0	٠.	۲.		.70	•	` '	• '	•	•			. '-	•	•	•	•	•	c.	6.	6.	6.	.95	6.	•	•	
	-7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059)	819) -7.92090(081)057(058) 25501 .85 32.3(674) -7.91059(059) 2502 .85 32.3(673) -5.94 .019(.018) 2503 .85 32.2(673) -5.94 .019(.018) 2503 .85 32.2(673) -5.94 .019(.018) 2503 .85 32.2(673) -5.94 .019(.018)	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 25002 .85 32.3(674) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25003 .85 32.2(673) -2.01 .146(.161) -104(101) 25004 .85 32.2(673) -2.01 .146(.143)	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25003 .85 32.2(673) -5.94 .019(.018) 25004 .85 32.2(673) -2.01 .146(.143) 25005 .85 32.2(673) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .208(.203)	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 25002 .85 32.3(674) -7.91059(059) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.94 .019(.018) 25002 .85 32.2(673) -5.01 .146(.143) 25002 .85 32.2(673) -2.01 .146(.143) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) 3.89 351(.342)	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.910591059) 819) -5.94007(003)072(069) 25002 .85 32.2(673) -5.94 .019(.0181) 819) -4.00071(.075)089(087) 25002 .85 32.2(673) -4.00085(.083) 819) -2.01 .140(.141)104(101) 25004 .85 32.2(673) -2.01 .146(.143) 818)06 .206(.205)119(116) 25005 .85 32.2(672)07 .208(.203) 819) 1.92 .275(.274)137(134) 25005 .85 32.2(672) 3.89 .351(.342) 3.81 .4.21 .4.21 .2.01 .2.01 .2.01 .3.81 .4.21 .2.01 .2.01 .2.01 .3.81 .4.21	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -5.94 .019(.0181) 25003 .85 32.2(673) -6.00 .085(.083) 25004 .85 32.2(673) -6.00 .085(.083) 25004 .85 32.2(673) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -0.07 .208(.203) 25005 .85 32.2(672) -0.07 .208(.203) 25005 .85 32.2(672) 3.89 .351(.342) 25007 .85 32.2(672) 3.89 .351(.342) 25007 .85 32.2(672) 5.87 .431(.421) 25009 .85 32.2(672) 7.83 .516(.506)	819) -7.92090(081)057(058)	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -4.00 .085(.083) 25002 .85 32.2(673) -4.00 .085(.083) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) -2.01 .146(.143) 25002 .85 32.2(672) 3.89 .351(.342) 25002 .85 32.2(672) 3.89 .351(.342) 25003 .85 32.2(672) 2.81 .421 .421 .421 .421 .421 .421 .421 .42	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -5.94 .019(.0181) 25004 .85 32.2(673) -4.00 .085(.083) 25004 .85 32.2(673) -2.01 .146(.143) 25004 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25005 .85 32.2(672) -2.01 .146(.143) 25009 .85 32.2(672) -2.01 .146(.143) 25009 .85 32.2(672) -2.01 .146(.143) 25009 .85 32.2(672) -2.01 .146(.143) 25009 .85 32.2(672) -2.01 .146(.143) 25009 .85 32.2(672) -2.01 .146(.143) 25011 .85 32.2(673) -2.01 .146(.143) 25011 .85 32.2(673) -2.01 .146(.143) 25011 .85 32.2(672) -2.01 .147(.143) 25011 .85 32.2(672) -2.01 .147(.143) 25011 .85 32.2(672) -2.01 .147(.143) 25011 .85 32.2(672) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(.141) -2.01 .147(819) -7.92090(081)057(058)	819) -7.92090(081)057(058)	819) -7.92090(081)057(058)	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 25002 .85 32.2(673) -5.94 .019(.0181) 25002 .85 32.2(673) -5.94 .019(.0181) 25004 .85 32.2(673) -5.94 .019(.0181) 25004 .85 32.2(673) -4.00 .085(.083) 25004 .85 32.2(673) -2.01 .146(.143) 25004 .85 32.2(673) -2.01 .146(.143) 25005 .85 32.2(672) -0.07 .208(.203) 3819 .206(.205) .119(116) 25005 .85 32.2(672) -0.07 .208(.203) 3819 .341(.424)154(152) 25006 .85 32.2(672) 3.89 .351(.342) 25007 .85 32.2(672) 3.89 .351(.342) 3510 .341 .421) 25007 .85 32.2(672) 3.89 .351(.342) 3510 .361(.342) 25007 .85 32.2(672) 3.89 .351(.342) 3510 .361 .361 .361 .361 .361 .361 .361 .361	819) -7.92090(081)057(058)	819) -7.92090(081)057(058) 25001 .85 32.3(674) -7.91059(059) 819 -5.94007(003)072(069) 25002 .85 32.2(673) -5.94019(.0181) 25002 .85 32.2(673) -5.94019(.0181) 25002 .85 32.2(673) -5.01 .146(.1431) 25002 .85 32.2(673) -5.01 .146(.1431) 25002 .85 32.2(673) -2.01 .146(.1431) 25002 .85 32.2(673) -2.01 .146(.1431) 25002 .85 32.2(672) -2.01 .146(.1431) 25002 .85 32.2(672) -2.01 .146(.1431) 25002 .85 32.2(672) -2.01 .146(.1431) 25002 .85 32.2(672) 2.84 .279(.2781) 25002 .85 32.2(672) 2.87 .279(.2781) 25002 .85 32.2(672) 2.87 .279(.2781) 25002 .85 32.2(672) 2.87 .279(.2781) 25002 .85 32.2(672) 2.87 .279(.2781) 25002 .85 32.2(672) 2.88 .270(.2781) 2.189(1831) 25012 .85 32.2(672) 2.88 .270(.2781) 2.189(1971) 25012 .85 32.2(672) 2.88 .270(.2781) 2.189(1971) 25012 .85 32.2(672) 2.88 .270(.2072) 2.189(1971) 25012 .85 32.2(672) 2.88 .270(.2072) 2.189(1971) 25202 .40 10.3(215) -7.84052(056) 2.2063 .89 32.2(672) 2.88 .270(.2072) 2.189(1971) 2.2202 .40 10.3(215) -7.84052(056) 2.2202 .40 10.3(215) -1.92 .140(.1301) 2.2277 -1.98 .145(.1971)056(076) 2.2202 .40 10.3(215) -1.92 .140(.1301) 2.2277 -0.01 .206(.1971)069(.0871)01 .198(.1981) 2.2277 -0.01 .198(.1981) 2.2277 -0.01 .206(.1971)01 .006(.1071) 2.2277 -0.01 .107(.1981) 2.2277 -0.01 .107(.1981) 2.2277 -0.01 .107(.1981) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .206(.1071) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101) 2.2277 -0.01 .107(.1101	819) -7.92 -0.090(081)057(069)	819) -7.92090(081)057(059)	819) -7.92090(081)057(058)	19 -7.92 -0.90(081) -0.57(058) 25001 -85 32-3(674) -7.91 -0.69(059) 25002 -85 32-3(673) -5.94 -0.19(018) 1819 -4.00 -7.71(003) -0.72(069) 25002 -85 32-2(673) -4.00 -0.081(083) 1818 -2.06 -2.06(161) 25006 -85 32-2(673) -2.01 -1.46(143) 25006 -85 32-2(672) -2.01 -1.46(143) 25005 -85 32-2(672) -2.01 -1.46(143) 25005 -0.85 32-2(672) -0.07 -0.085(083) 25001 -0.05 -0.07 -0.07 -0.07 -0.085(083) 25001 -0.05 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.	819) -7.92090(081)057(058)	819) -7.92 090(081) 057(059) 25001 .85 32.3(674) -7.91 059(059) 819) -5.94 007(003) 072(069) 25002 .85 32.2(673) -5.94 019(018) 819) -5.94 007(003) 072(069) 25002 .85 32.2(673) -5.94 019(018) 819) -2.01 1401 1104(110) 25004 .85 32.2(672) 07 2081 081 819) -2.01 1401 1104(110) 25004 .85 32.2(672) 07 2081 1441 819) -2.02 276 277 1401 1104(110) 25006 .85 32.2(672) 07 2081 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 276 -	819 -7.92 -090(081) -057(069) 55001 -85 32.3(644) -7.91 -059(059) 819 -5.94 -007(003) -072(069) 25002 -85 32.3(644) -7.91 -019(018) 819 -5.94 -007(003) -072(069) 25002 -85 32.2(673) -5.94 -019(018) 819 -4.00 -141 -104(101) 25006 -85 32.2(672) -6.00 -085(083) 819 -5.06 -205 -1194(116) 25006 -85 32.2(672) -70 -208(203) 819 -36 -346(347) -154(152) 25006 -85 32.2(672) -71 -208(203) 819 -36 -346(347) -164(166) 25006 -85 32.2(672) -87 -576(166) 819 -38 -426 -164(166) 25006 -85 32.2(672) -78 -516(164) 819 -38 -426 -346(166) -168(168)<	19 -7.920.901(0R1)0.57(0.58)	19 17 17 17 17 17 17 17	19 -7.92090(081)057(058) 25001	1919 -7, 92	1919 -7, 92	1999 -7.92 -0.091(081) -0.057(059) -5.90 -8.5 32.3(674) -7.91 -0.059(059) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(081) -0.091(0	199 -7.92 -0.001 -0.01 -0.057 -0.059 -0.050 -0.05 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059 -0.059	199 -7.92 090(001) .057(059) .500(1 .85 32.3(674) -7.91 059(059) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(199 -7.92 0901 087 065 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 089 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999	199 -7.92 090(001) .057(059) .500(1 .85 32.3(674) -7.91 059(059) .500(018) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(002) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(001) .500(1.90	1.90	11.00 -7.92 -0.090(001) -0.957(059) -5.900(059) -5.900(050) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059) -9.97(059)

Table A-5.—(Continued)

(b) T.E. Deflection, Inboard = 8.3° , Outboard = 0.0°

	_																																	
Pitching moment coefficient, bal (integ press.)	.005(.004)	039(038)	0701070	113(110)	151(143)	161(155)	168(161)	172(161)	1800, 1900,	00	022(023)	035(034)	047(046)	_	083(079)	102(041)	120(115)	136(129)	150(141)	162(150)	167(155)	(210,)250,	.007(003)	000(018)	018(028)	19801620	043(~.048)	361(068)	078(083)	(660*-)560*-	111(116)	124(127)	134(138)	10+1 1++1
Normal force coefficient, bal (integ press.)	181(=-184)	.045(.041)			.516(.504)		181	.752(.747)	-, 172(-,172)	095(093)	021(022)	.044(.039)		.175(.167)	_	_		_		_	.766(.755)	157(156)	084(086)	020(055)	.039(.035)		.160(.152)		_			_	<u> </u>	. (43) . (29).
Angle of attack, deg	7.87	-1.99	1.94	5.97	9.77	11.76	13.72	15.66	-7.85	-5.91	-3.95	-1.96	10.	1.99	3.95	5.90	7.85	9.82	11.78	13.74	15.72	-7.78	-5.83	-3.87	-1.86	01.	2.07	90.4	00*9	7.98	3.08	11.83	13.84	20.00
Oynamic pressure, kN/m ² (µsf)	36.0(752)	36.0(752)	6.0(75	36.0(75!)	36.0(751)	36.0(751)	36.0(751)	46.0(751)	32.1(671)	32.1(670)	~	32.1(670)	32.1(670)	7.11	32.1(670)	32.1(670)	2 . 1 (32.1(670)	32.1(671)	32.1(671)	32.1(670)	10.2(214)	19.2(214)	19.2(214)	2(21	3(21	~	21	10.3(215)	.31	2.1	10.3(215)		191717-01
Mach	. 95	9.0	.95	. 95	9.00	.95	• 95	. 95	.85	3.5	. 85	.85	. 45	. 85	٠,8	. 85	.85	• 8.	.85	, A5	. 85	04.	.40	04.	04.	040	0.40	.40	.40	04.	04.	04.	4. Q (7
Analysis number	25701	25704	25706	25708	25710	25711	7	25713	25801	25802	25803	25804	25805	25806	25807	25808	25809	25810	ď.	25812	25813	25901	25902	25903	25904	25905	90652	25907	25908	25909	25910	11652	25912	01467
- -	1 555	2.2	: =	<u> </u>	22		2)	.			33	6	2.3	5)		2.1	÷	.	-2		6 6	30	7.	5.1	3)	٤,	8)							
Pitching moment coefficient, bal (integ press.)	.013(.016	145(136	110.)110.	1 1		043(045	058(055		044(090)	125(120)	137(133	146(140)	_	045(045		10. 1110.	008(094		047(042	064(057	094(079	127(118	142(137	154(145)	162(158	177(168	179(16							
Normal force coefficient, bal (integ press.)	033(040)	504					•		.318(.309)		916	.667(.651)	.755(.742)	0			91	32(-	15	15(96	.347(.334)	.)6	.508(.496)	32 (109	33.							
Angle of attack, deg	-7.81 -3.87	4.01	-7.82	-5.88	-1.93	16.	2.05	4.01	7.93	9.89	11.95	13.79	15.78	•0	-	-7.84	-5.90	-3.95	-1.98	• 05	1.07	5.89	7.85	9.82	11.77	13.75	15.70						•.	
Dynamic pressure, kN/m² (psf)	40.7(849)	40.6(847)	52	25.2(527)	5.2(52	5.2(52	5.2(52	5.2(526	5.2(52 5.2(52	5.2(526	5.21526	5.2(526	5.21526	5.21527		1.8	30	•	817	CD.	നം	39.1(816)	- 000	Œ	- 600	39.1(817)	6							
		: = =	2	0,5	2	2	20	2	2.5	2	2	70	2	20		0	•02	.05	• 05	• 05	1.05	0.05	.05	• 05	• 05	• 05	0							
Mach	1.1			•	• •	•	•	•	•		·	Ī	٠	٠		-:	_	_	-	~ .		-	-	-	_	~	~							

(c) T.E. Deflection, Full Span = 0.0° (Repeat series)

Pitching moment coefficient,	Dai (III) piess./		1250)150	014(013)	(100.)100.		030(029)	052(048)	067(064)	079(075)	089(~.085)	099(095)	108(104)		.081(.079)	.059(.056)	.036(.035)	.015(.014)	(100.)000.	016(012)	037(033)	062(057)	082(077)	097(091)	110(105)	122(114)	134(127)					.0166 .011)	.005(.001)	007(010)	023(023)	042(043)	061(060)	074(073)	082(082)	091(091)	(660*-)660*-			•					
Normal force coefficient, hal (integraness)	Dai tiliteg piess.)	297(298)	212(213)	062(066)	.001(005)	.067(.058)	38 (221 .2091	1262. 170	93(.377)	80(.466)	73(.564)	50(.653)		_	7	6	73	2	6	9	.237(.226)	7	=	73	6	(4)		?	188(194)	118(123)	055(061)	003)	.067(.056)	120)	193	.289(.272)	.379(.361)	.463(.445)	516 .52	421 .62								
Angle of attack,	ו ב	٠,	19.6	-1.90	10.	2.06	3.99	5.96	7.92	9.88	11.87	13.90	15.79		-7.82	-5.87	-3.90	-1.95	• 02	1.99	3.96	5.90	7.87	9.83	11.78	13.75	15.70		-7.75	-5.77	-3.80									13.88	15.87							,	
Dynamic pressure, kN/m ² (psf)	rich link	32.2(672)	32-1(6/1)	32.2(672)	32.2(672)	32.1(671)	32.1(671)	32.1(671)	32.1(671)	32.1(671)	32.1(670)	32.1(671)	32.1(671)		37.6(786)	37.6(786)	37.6(786)	37.7(787)	37.6(786)	37.6(786)	37.6(786)	37.7(787)	37.6(785)	37.6(786)	37.6(786)	37.6(786)	37.6(786)				10.3(215)									10.2(214)									
Mach	in lines	oc ⊲		0	8	.85	œ	Œ	.85	.85	.85	.85	œ		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		.40	04.	04.	• 40	04.	40	04.	C.	.40	.40	.40	40	.40								
Analysis	┥,	10196	20197	26704	26705	26706	26707	80192	26719	26710	S.	26712	26713		o	26803	26805	26806	26807	25808	26909	26810	26811	26812	26813	26814	26815		9	20692	26903	26904	50692	26906	26907	٠ 9	691	11697	26913	26914	26915								
Pitching moment coefficient, bal (integroress.)	litted priess.	.040(.083)			.090(084)		9.	•		014(.012)	02(.001)	010(010)	(52(056)	047(044)	64(061)	75(072)	084(082)			-		083(.082)		_		001(.001)	018(014)	42(036)	67(060)	88(082)	03(086)	15(112)	27(124)	3	,)2/	•		.014(.013)		13(011)	33(031)	155(051)	173(067)	0AR(0A3)	03(100)	17(112)	-130(-124)	
Pitch co bal (i	┦.						•	•	•	•								1	_	•		•	•	•		'					.) 103(-	_	-	6)14	•	•	•						_	_	_	_	_		
Normal force coefficient, bal (integ press.)	second formal	518132	(900)100-	.157(.14	.3316 .313		281(285)	2031	126(129)	060(064)	.005(00	.065(.05	135(12	.214(.20(.300(.28	.385(.36	.471(.45	.557(.543	Ð	-) 200		325(329)	237(24)	150(15			.070(.059)				.416(.405	7664	85°)ü85	99. 1899		312(310	225(525	139(14	065(06	0001000	990	.143(.132)	1662	317(.406(.393	. 1864	5891		
Angle of attack,	fig.	71.1-	10.6	4.07	7.98		-7.74	u,	-3.84	-1.87	•08	2.05	4.03	6.03	7.98		_	13.86	s	111		۲.	-5.84		-1.91	•00	2.03	3.99	5.96	7.87	0	_:	13.76	ď	,	-7.81	Š	3	-1.92	•05	2.00	3.99	5.93	7.8R	9.85	11.92	13.77	16.71	1.01
Dynamic pressure, kN/m ² (osf)	٦,		40.6(847)	_	40.6(848)		5.2(52	5.21526	5.11525	25.2(526)	2.2(526	5.2(526	5.2(526	5.2(526	2.21526	5.1(525	5.1(525	5.1(52	5.1(52	5.2(52		9.16	9.1(8	9.1(8	9.1(8	9.1(8	9.1(8	9.16	9.1(8	9.1(8	39.1(817)	9.16	9.1(8	9.1(8		7 75	2 12	01.15	31.752	3(752	3(752	36.0(751)	15110	0 751	157)0	0(751	75	7 7	
Mach] : - -	1:1	1.11	1.11		۲.	.70	.70	0.70	• 10	0.7	. 70	. 70	٠,٢٥	. 70	.70	.70	. 70	.70		۰,	ç	٥.	٩	ိ	_	٥.	0	c.	1.05	့	_	့		• 95	. 95	.95	.95	.95	• 95	• 95	• 05	. 95	.95	.95	90		54.
Analysis	ᇽ.	029	26206	620	620		æ	•	o	26304	•	vo.	•	·C	•	•	v)	•0	æ	•		•	•	•	J	•	•	4	•	•	26410	•	•	•		099	660	99	999	660	999	26607	9	999	661	661	4 4	100	199

Table A-5.—(Continued)

(d) T.E. Deflection, Inboard = 0.0° , Outboard = 8.3°

Pitching moment coefficient, bal (integ press.)	1	.010(.009)	023(023)	037(034)	075(071)	089(083)	098(090)	110(103)	124(116)	138(132)				(100.)100.	010(015)	022(023)	036(034)	054(054)	073(070)	085(080)	040(083)	097(090)	101(046)	117(111)	.044(.038)		1	008(013)	018(023)	026(033)	(650) 550	063(067)	079(080)	089(089)	004(005)	10010911	101(104)
Normal force coefficient, bal (integ press.)	293(299)	112(117)	.028(.022)	.095(.085)			1181			.689(.682)		274(276)	186(1881	104(109)	•		(580.)560.						.579(.566)	.670(.662)	2361 2391	157(162)	086(090)	023(029)		.097(.088)			_	J	.482(.461)		.653(.628)
Angle of attack, deg	-7.82	-3.90	*0*	66.	5.40	7.87	9.85	11.80	13.74	15.70		-7.79	-5.84	-3.88	7						9.87	11.83	13.91	15.75	-7.75	-5.78	-3.83	-1.84	.14	2.12	4.07	6.05	9.01	4.07	11.94	13.89	15.82
Dynamic pressure, kN/m ² (psf)	36.0(751)	36.0(751)	36.0(751)	36.0(751)	36.0(752)	36.0(752)	36.0(751)	36.0(751)	36.0(752)	36.0(751)		32-116711	32.1(671)	32.1(671)	32.1(671)	32-11671)	32.1(671)	32-11671)	32.1(671)	32.1(670)	32.1(671)	32-1(670)	32.1(670)	32.1(670)	10.2(2)41	(2)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	19.2(214)
Mach	95	5. 5.	.95	9.0	. 6	95	. 95	• 95	.95	• 95		.85	.85	.85	.85	.85	. 85	.85	.85	.85	. 85	. 85	. 35	. 85	04	4	04.	.40	04.	04.	.40	04.	.40	04.	.40	.40	04.
Analysis	27301	27303	27305	27306	27308	27309	27310	27311	27312	27313		27401	27402	27403	27464	21405	27406	27407	27408	51400	27410	27411	27412	27413	27502	27503	27504	27505	27506	27507	27508	27509	27519	27511	21512	27513	27514
Pitching moment coefficient, baf (integ press.)	.068(.072)	024(024)	102(095)	1170 1670			•	023(023)	036(034)	052(051)	070(067)	083(079)	090(084)	084(088)	101(095)	108(101)	022(023)				.016.)910.	008(008)	U24(022)	042(036)	084(078)	100(093)	110(102)	125(120)	139(132)	155(151)							
Normal force coefficient, bal (integ press.)	307(315)	.177(.165)		- 2561- 2581	173(172)	0951097)	039(034)	.032(.026)	7 (. 25 (- 5	. 2(.)4(<u>ر</u>	9	.0311 .026)		313(323)	218(224)	127(132)	-) 9	3	(580,)360.	6		7		2								
Angle of attack, deg	-7.75	4.02	1.97		-5.82	_		•	•	•	5.98	•		•	•	•	.01		Œ	-5.86	Œ	0	ç, ۱	2.02	•	σ,	8			۲.							
Dynamic pressure, kN/m² (psf)	0.6	0.6(84	84	5.2152	25.2(527)	5.2152	5.2152	5.2152	5.2(52	5.2(52	5.2(52	5.215.2	5.2(52	5.2(52	5.2152	5.2(5?	5.2(52) . 1	9.1(817	-	3.1	9.1	39.1(816)	9.16	9.1(817	9.16	9.16	9.11	9.1(
Mach		===	٦.	7.0	7.0	. 70	.70	· 10	.70	.70	.70	9	• 10	0.	. 10	· •	20		Ç	0	•	ç,	•	50.1	? ?	٥.	့	•	1.05	Ċ.							
Analysis number	27007	4007	0102	1012	101	2103	7104	7105	1106	7107	27108	6677	1110	7111	7112	7113	7114		\sim $^{\circ}$	~ (\sim	\sim	\sim	7207	72	72	72	7.	\sim	2							

(e) T.E. Deflection, Inboard = 0.0° , Outboard = 17.7°

Pitching moment coefficient, bal (integ press.)	.028(.028) .006(.003) 017(018) 033(035)	058(056) 075(076) 098(096) 106(093) 106(096) 116(106)	.0024(.014) .007(006) 016(026) 029(037) 039(046) 051(074) 066(074) 088(100) 102(r.104) 107(102) 107(105)
Normal force coefficient, bal (integ press.)	251(254) 158(160) 015(019) 006(009)		209(210)126(128)056(058)064(059)126(116)126(116)126(254)262(254)262(254)263(639)663(639)
Angle of attack, deg	-7.82 -5.86 -3.91 -1.95	2 . 02 3 . 02 5 . 94 7 . 90 9 . 86 11 . 82 13 . 80	113.85 113.85 113.85 113.86 113.86 113.86
Dynamic pressure, kN/m ² (psf)	32.1(671) 32.1(671) 32.1(671) 32.1(671) 32.1(671)	32.1(671) 32.1(671) 32.1(671) 32.1(671) 32.1(671) 32.1(671)	10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214)
Mach	. & & & & & & & & & & & & & & & & & & &		44444444444
Analysis number	27901 27902 27903 27904 27905	27905 27906 27909 27910 27911 27911 27913	28001 28033 28034 28034 28035 28006 28010 28010 28011 28011 28011
Pitching moment coefficient, bal (integ press.)	.055(.060) .025(.025) .026(005) .029(030) .046(044)		. 020(. 018) . 002(004) . 002(004) . 0035(004) . 004(004) . 004(004) . 100(005) . 100(005) . 100(005) . 100(005) . 100(005) . 100(005) . 100(005) . 100(005) . 100(005) . 100(005) . 100(005) . 100(006) . 100(006) . 100(006) . 100(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006) . 110(006)
Normal force coefficient, bal (integ press.)	300(309) 199(203) 104(108) 023(025)	1118(194(276(358(436(436(602(689(
Angle of attack, deg	-7.81 -5.86 -3.91 -1.95	2.01 3.97 5.92 7.89 9.84 11.78 13.77	2. 2. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
Dynamic pressure, kN/m ² (psf)		8817 8817 8817 8817 8817 8817	(526) (526) (526) (526) (526) (526) (526) (526) (527)
Dyn pres kN/m		39.10	25.22 25
Mach press	05 39.1(05 39.1(05 39.1(05 39.1(05 39.11 05 39.11 05 39.11 05 39.11 05 39.11	7701 7702 7704 7704 7705 7705 7705 7705 7705 7707 7707 7707 7707 7707 7707 7708 7708 7709 770 7709 770 7709 770 770

Table A-6.—Experimental Data Test Point Log. Flat Wing, Rounded Leading Edge; L.E. Deflection, Inboard = 5.1° , Outboard = 0.0°

(a) T.E. Deflection, Inboard = 0.0° , Outboard = 17.7 $^\circ$

Pitching moment coefficient, bal (integ press.)	.029(.028) .009(.007) .009(.007) .015(015) .040(059)	005(055)005(055)105(103)115(115)118(115)118(114)	.075(.017) .005(002) .004(023) .040(048) .051(058) .051(-
Normal force coefficient, bat (integ press.)	263(266) 172(182) 084(088) 096(010) .056(054)		233(238)145(156)065(068) .005(064) .065(063) .126(118) .126(118) .266(257) .337(326) .407(397) .492(-477) .551(626)
Angle of attack, deg	-7.60 -5.86 -3.90 -1.93	3.99 5.99 7.90 9.86 11.82 13.80	7.7.6 -3.7.7.6 -3.8.7.7.7.6 -3.00.4 -3
Dynamic pressure, kN/m ² (psf)	32.1(670) 32.1(671) 32.1(671) 32.1(671) 32.2(672)	32-1(671) 32-1(670) 32-1(670) 32-1(670) 32-1(671) 32-1(671)	10.2(213) 10.2(213) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214) 10.2(214)
Mach			44444444444
Analysis number	28501 28502 28503 28503 28504 28506	28508 28508 28509 28510 28511 28513 28513 28514	28601 28673 28673 28673 28675 28608 28608 28610 28610 28610
Pitching moment coefficient, bal (integ press.)	.051) .026) .004) 004)		WOULD BLUMALAIR WWIALEBEANOCO
Pitchi co bal (i	.049(.051 .075(.026 .075(.004 .031(030 049(046	086(083) 107(106) 122(117) 133(128) 141(134)	. 018(. 023) - 002(. 000) - 024(. 022) - 052(. 048) - 055(. 058) - 055(. 058) - 057(. 078) - 057(. 078) - 078(. 034) - 078(. 034) - 078(. 078) -
Normal force Pitchi coefficient, co bal (integ press.) bal (i	303(304) .049(208(215) .073(114(123)005(- 026(029)031(- .046(-042)046(-	186) 277) 347) 425) 500)	244(253)018(05 069(072)002(002 063(072)024(023 063(057)052(042) 127(115)062(042) 270(258)097(012) 270(284)107(116 270(284)121(117 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(284)034(034) 279(103)047(062(054)) 271(265)098(098) 271(265)098(098) 271(265)098(098) 271(265)098(098)
	32303(304) .049(34208(215) .073(31114(123)005(36029)031(36029)031(3636363636363636	186) 277) 347) 425) 500)	244(253) .069(072) .000(003) .063(057) .195(115) .270(258) .239(330) .498(94) .653(628) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(636) .663(646) .664(646) .666(6
c, Normal force coefficient, bal (integ press.)	9.1(817) -7.92303(304) .049(9.1(817) -5.84208(215) .073((816) 3.95 (195(186) (816) 3.95 (195(186) (817) 7.88 (354(347) (817) 9.84 (435(425) (817) 11.82 (512(500) (817) 11.82 (512(500) (817) 11.87 (513) (618) (618)	88 244(253) 89 244(253) 89
Dynamic .Angle of Normal force pressure, attack, coefficient, deg bal (integ press.)	39.1(817) -7.82303(304) .049(39.1(817) -5.84208(215) .073(39.1(816) -3.91114(123)075(- 39.1(816) -1.96076(029)031(- 39.1(816) 1.99118(109)06(.05 39.1(816) 3.95 .195(.186) .05 39.1(816) 5.97 .277(.277) .05 39.1(817) 7.88 .354(.347) .05 39.1(817) 11.82 .512(.500) .05 39.1(817) 11.82 .512(.500) .05 39.1(817) 13.76 .593(.582) .05 39.1(816) 15.73 .678(.667)	2(527) -7.87244(253) 2(527) -3.81154(159) 2(527) -3.88069(072) 2(526) -1.91000(003) 2(527) -09063(057) 2(526) 5.98127(115) 2(527) 7.95339(258) 2(527) 11.85339(258) 2(527) 11.85493(493) 2(527) 11.85493(284) 2(527) 11.85493(284) 2(527) 12.82279(284) 2(527) -7.82279(284) 2(527) -7.82095(109) 2(752) -1.97014(018) 2(752) -1.97014(018) 2(752) 3.96186(194) 2(753) 3.96186(194) 2(753) 3.96193(185) 2(751) 5.93274(265) 2(751) 5.93274(265) 2(751) 7.86344(334) 2(752) 13.74595(579) 2(752) 13.74595(574)

Table A-6.—(Continued)

(b) T.E. Deflection, Inboard = 0.0° , Outboard = 8.3°

Anafysis number

Pitching moment coefficient, bal (integ press.)	.036(.035)	.004(.002)	•	024(025)	038(036)	053(053)	072(070)	085(082)	101(100)		113(106)	(1	023(025)		.038(.038)	_	_	012(013)	025(025)	039(036)	051(056)	075(072)	089(085)	103(102)	110(103)	118(111)	120(119)	.0437			1910 - 1110 -	-015(025)	1920-1720-	045(053)	064(070)	080(082)	092(093)	112(112)	122(121)	127(124)
Normal force coefficient, bal (integ press.)	262(269)	-103(-105)	030(033)	.032(.026)	(180.)	.154)	1622. 1	.303)	1 9961	74.	.562(.545)	.652(.631)			275(277)	196(204)	108(112)	Ţ	_	_	(191.)691.		.311)	(004.)	(\$4.75)	.572(.555)	2(- 254(= 254)	70-116	(800 -) 700 -	1028(1020)	033	200	1626 . 15	2401 .22	3116	383(473(558(. 1689
Angle of attack, deg	-7.78	-3.92	-1.87	60.	5.09	3.98	10°9	7.94	10.09	11.96	13.93	15.86	٠,		-7.76	-5.91	-3.84	-1.98	• 05	2.07	40.4	5.94	7.97	6.92	11.92	13.87	15.84	-7-73	60 3	200	2006	41	2,13	40.4	6.11	20.9	16.6	11.98	13.94	15,80
Dynamic pressure, kN/m ² (µsf)	25.2(526)		_		25.2(526)		_			25.1(525)	25.2(526)	_	25.2(526)		32,1(670)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.0(669)	32.1(670)	32.0(669)	2	26.26		10.2(213)	2.0		7	10.2(214)	7	10.2(214)	10.2(213)	2 1	10.2(213)
Mach	.70		.70	.70	• 70	. 70	.70	. 70	• 70	. 75	. 70	.79	. 70		.85	. 85	• 85	.85	. 85	.85	. 85	.85	. 85	.85	.85	.85	.95	0.7	•	0.7			0	04	0.4	40	0,4	040	04.	.40
Analysis number	31101	31103	31104	31105	31106	31107	31108	31109	31110	31111	31112	31113	31114		31201	31202	31203	31204	31205	31206	31207	31208	31209	11210	31211	31212	31213	11301	20216	31303	70212	31305	31306	31307	31308	31309	31319	31311	31312	31313
				_	_			_					_	_		_	_		_		_	_	_	_	_	_														
Pitching moment coefficient, bal (integ press.)	012(009	040(-)640-	069(064	092(087)	108(101	124(117	4(13	146(145		.035(.035	.002(.000	024(0251	054(054)	086(083				1600°)8Cu°	012(012)	028(026)	040(038)	060(0581	079(076	1180°-) 560°-	112(194)	121(1111)	133(127	1461138												
Normal force coefficient, bal (integ press.)	050(055)		_	_		*•	_	.586(.576)			L		1651 . 1551			291(295)	202(210)	119(125)	042(045)	.029(.024)					(404.)414.	.502(.487)	•	.677(.664)												
Angle of attack, deg	-2.00	2.11	3.94	6.02	7.97	9.84	12.11	13.78		-7.78	-3.79	•00	4.03	8.02		-7.83	-5.83	-3.93	-2.02	•10	2.00	10.4	5.89	7.87	9.89	11.87	13.76	15.71												
Dynamic pressure, kN/m² (psf)	39.1(816)	0.0	39.1(816)	39.0(815)	39.0(815)	39.0(815)	ŏ	9.1(25.1(525)	5.1(5.21	25.2(526)	5.1(35.9(750)	35.9(750)	35.9(750)	35.9(750)	35.9(750)	36.0(751)	36.0(751)	35.9(750)	35.9(750)	9.0	35.9(750)	9.0(75	36.0(751)												
Mach	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05		.70	. 70	0.4	. 70	.70				• 95					\$6.	• 95	.95	.95	. 95	• 62												

 Table A-6.—(Continued)

(c) T.E. Deflection, Full Span = 0.0°

Pitching moment coefficient, bal (integ press.)	.054(.054)	•	017(014)	059(054)	077(071)	(060)260	-112(-106)	140 (134)					.011(.010)	001 (001)	015(014)	033(031)	054(049)	(990)690-	036(086)	(#FO**) FFO*!	122(117)		.055(.047)			(600.)510.	.004(001)	009(012)	026(028)	045(046)	061(059)	077(076)	048(046)	112(109)	120(111)
Normal force coefficient, bal (integ press.)	306(308)	068(070)	• •	.227(.218)	•	•	5907 5723	• •		292(296)	215(223)	136(141)	063(065)	.001(004)			•	2.5	1876. 186.	1104. 1714.	1864. 1967.	:) ,	275(276)	199(209)		058	-0051-	.064(.132(.204(.278(.3581	•	36(•	.623(.604)
Angle of attack, deg	-7.86	-1.95	2.03	\$0.9 90.9	8.01	9.77	11.79	15.75		-7.83	-5.86	-3.89	-1.90	.07	2.09	3.98	5.45	7.95	- C	66.11	15-76		-7.73	-5.81	-3.80	-1.83	•15	2.12	4.12	50.6	8.01	10.00	11.93	13.91	15.80
Dynamic pressure, kN/m² (psf)	36.0(751)	36.0(751)	36.0(751)	35.9(750)	36.0(751)	36.0(751)	36.0(751)	36.0(752)		32.1(670)	32.1(670)	32.1(670)	32.1(670)	32.1(670)	32.1(670)	32.1(670)	.32.1(670)	32-1(670)	32.01669)	0	32-016691	1	2	10.2(213)	7	10.2(213)	10.2(213)	2 (10.2(213)	2		10.2(213)	10.2(213)	.2	10.2(213)
Mach	. 95	95	. 95	. 95	. 95	. 95	. 95	95		.85	• A5	. 85	. 95	. 85	. 85	• A5	35	. 85			• 0 C 8	•	.40	.40	04.	04.	.40	04.	04.	04.	04.	.40	.40	C 4 •	.40
Analysis number	31701	31704	31706	31708	31709	31710	31711	31713	ı	31801	31802	31803	31805	31806	31807	31808	31409	31812	51 H 15	31014	31816		31901	31902	31904	31905	31906	31997	31908	31911	31912	31913	31914	9	31916
Pitching moment coefficient, bal (integ press.)	.031(.035)	050(044)	(670) (70			.011(.010)	001(001)	030(029)	050(045)	066 (063)	083(083)	196(194)	105(100)	116(113)	.001(000)				1660. 1460.	(610.) (10.	003(005)	047(042)	070(064)	090(085)	111(106)	124(120)	136(135)	150(144)							
Normal force coefficient, bal (integ press.)	317(323) 148(158)	.158(.145)	Ì	• •	132(134)	063(065)	(600)100-		.212(.200)			•	•	.641(.625)	ľ		322(327)		17911161		1860-1300-			•	(£05.)015.	.492(.483)	.574(.565)	(659.)659.							
Angle of attack, deg	-7.74	4.11	-7.79	-5.74	-3.90	-1.94	21.0	40.4	6.04	7.99	10.06	11.92	13.84	15.86	•04	,	-7-19	-5.81	65.63	00.	2.16	4.14	5.98	7.93	06.6	11.85	13.78	15.77							
Dynamic pressure, kN/m ² (psf)	40.6(847)	40.5(846)	25.215261	25	5	52	7,5	52	25.1(525)	25	52	25	25	25	2		34.0(815)	~ 6	7 0	7 6	39-0(815)	8 1	18	8	8	_	81	8							
Mach	11:11	11:11		. 20	. 70	02.	2.5	7.0	.70	2.	2:	0.	02:	0.7	• 10		1.05	1.05		1.05	50.1	1.05	1.05	1.05	1.05	1.05	1.05	1.05							
Analysis number	31411331413	: 12 2	5	31502	60	40	2 6	20	90.0	60	0:		2 :	· .	4	;	70	2 6	n (t 4	31606	10	80	60	0	=	13	14							

(d) T.E. Deflection, Inboard = 8.3° , Outboard = 0.0°

Pitching moment	coefficient, bal (integ press.)	004(004)		027(027)	037(037)	048(047)	064(063)	085(081)	104(099)	119(114)	139(138)	154(146)	168(162)	180(173)	0146 .0013	.003(008)	009(021)	018(030)	029(040)	044(050)	062(071)	079(084)	095(101)	111(116)	131(135)	147(151)	157(159)													
-		'		_	i	.101)	.166)0	.241)0		_	_	_	_	_	•		02310	.03810	_	_		_			_	_	.706)1													
Normal force	coefficient, bal (integ press.)	172(174	096(104)	020(023	•			.251(.			_	•	•		1621165	086(096)	010	.0416						_	_															
Angle of	attack, deg	-7.84	-5.89	-3.90	-1.95	10.	1.97	3.99	5.99	7.90	9.82	11.78	13.74	15.70	-7.78	-5.82	-3.85	-1.88	.10	2.07	4.04	00.9	7.97	9.64	11.89	13.85	15.82													
Dynamic	pressure, kN/m ² (psf)	32.1(670)	2.1(32.1(670)	2.1(32.1(670)	2.1(32.1(670)	2.1(32.1(670)	2.1(32.1(670)	32.1(670)	32.1(670)	_	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(213)	10.2(213)	10.2(213)	_	10.2(213)													
	Mach	.85	• 35	.85	.85	• A5	.85	.85	. 85	.85	. 85	. 85	.85	• 85	04.	040	04.	•40	04.	04.	04.	04.	.40	04.	.40	.40	04.													
	Analysis number	32301	32302	32303	32304	32305	32306	32307	32308	32309	32310	32311	32312	32313	32401	32402	32403	32404	32405	32406	32407	32408	32409	32410	32411	32412	32414													
Pitching moment	coefficient, bal (integ press.)	001)019(012)	035(_)112(106)	132(147(1 1620)173(167)	_	185(187)			_	1 033(033)			_	_	_)129(126)		_	_)043(043)	009 (009)			1 043(041)				0117(110)	0 138(131)	1161(152))173(161)	
Normal force	coefficient, bat (integ press.)	234(208	115(128)	033(041	_	3()6	9	9		5 (·) [3(164(169	080(082)	Ę	·	Ų	· =	~	Ξ	Ξ	.478(.473)	•	<u>.</u>		.102(.098	182(185)	100(106)	021(023)		_	36	.2601 .2491			2	.593(.579)	
Angle of	attack, deg	7	5	ľ		•	_	•	r	_	σ	Ξ	=	12	-7.81	-5.82	-3.89	-1.94	90•	2.07	4.00	5.97	7.94	6.63	11.86	13.81	15.78	•04	-7.87	.5.90	-3.93	-2.02	01	1.97	3.52	5.89	7.82	9.83	11.76	
Dynamic	pressure, kN/m ² (psf)	9.16	3.10	9.1	39.1(816)	3.	9.1	7.	9.1(9.1(7:10	9.1(9.1	0.1	5.2	5.21	5.2(5.2(5.2(2.5	5.2	5.21	5.2(5.2(25.2(526)	5.21	5.1(5.2	9.0	9.00	9.01	36.0(751)	9.00	90.9	9.0	9.0	9.0	9.0	9.0	
	Mach	0	•	•	1.05	ç	ç	ď	ç.	٥.	C:	ç	0	0	٠,	. 70	.70	٠,٧٥	.70	.70	.70	. 70	.70	٠,70	. 70	. 70	. 70	. 70	.95	• 95	• 45	• 95	• 95	• 35	• 95	\$6.	. 95	• 95	• 95	
		١			_	_	_	~	_	~	m	4	ď	9202	_	~	~	J	2	9	œ	6	c	_	3	Š.	9	117	_	~	~ 1	70	ď	9	~	œ	6	_	_	,

Table A-6.—(Concluded)

(e) T.E. Deflection, Inboard = 17.7° , Outboard = 0.0°

-5.95 -
1391.2051.2051.2051.
.347(.417(.488(.550(
.632(.613 .694(.685 .767(.762
916 • 716 • 576 • 676 • 326 • 6
075(053) 010(027) 082(059) 147(164) 212(257) 258(353) 354(353) 430(431) 557(513) 563(513) 714(710)

Table A-7.—Experimental Data Test Point Log. Flat Wing, Twisted Trailing Edge, Rounded Leading Edge; L. E. Deflection, Full Span = 0.0°

(a) T.E. Deflection, Full Span = 0.0°

Pitching moment coefficient, bal (integ press.)	•		(710.) 310.	(100)000	013(013)	·	048(046)	19901690	088(086)	102(100)	116(116)	131(127)	143(138)		_	.036(.034)	_	.000. 1200.	011(015)	024(023)	043(043)	062(061)	(710)710	-•080(088)	098(101)	109(110)	121(117)	1670	•	0450 0340				•		•			092(102)	100(110)
Normal force coefficient, bal (integ press.)	267(269)	186(193)	103(101)	•		.103(.095)			53(39(.530(.523)		. 707(. 700)		257(258)	177(178)	12011560	•			721		.338(.326)	٠		(£65.)065.	.691(.682)	1656 -1156 -	1663-1363-1	1+01-1961-	1000-1000-	(301-1032)		1561 1511	2301 222)	313(302)	.403(.389)	.487(.475)	•	_
Angle of attack, deg	-7.83	-5.80	-3.91	-1.96	01	7.00	3.97	2.90	7.89	9.82	11.79	13.74	15.69		-7.82	.5.85	-3.89	-1.92	.07	2.02	4.01	5.95	16.7	68.6	11.32	13,78	15.72	37 7-	00	00.00	10.0	10.1-	2	90.4	4.03	8.00	4.97	11.91	13.90	15.82
Dynamic pressure, kN/m² (psf)	36.0(752)	36.1(753)	36.0(752)	36.0(752)	36.1(753)	36.1(753)	36-1(753)	36.1(753)	36.1(753)	16.1(754)	36.1(753)	36.1(753)	36.1(753)		32.2(672)	32,1(671)	32.1(671)	32.2(672)	32.216721	32.1(671)	12.2(672)	_	_	~	_	_	32.2(673)	10 36 316 1	1716.	10.5(215)	2121	, ,	10.2(2)6)	10.212141	[2]	2.2	2	10.3(215)	$\tilde{}$	10.2(214)
Mach	.95	• 95	• 95	• 95	• 95	• 95	• 95	• 95	96.	.95	• 95	• 95	• 95		.85	.85	. 85	.95	.95	.95	. 95					ı,	. 35		•	÷ <						040	04.	.40	04.	04.
Analysis number	33501	33502	33503	23504	33505	33506	13507	33508	33509	33510	11562	33513	33516		13801	33602	33603	33604	33605	33606	33507	3360P	60988	33610	33611	33612	33613	10755	27.70	70700	20100	33705	20226	227.8	23709	33710	33711	33712	33713	33714
Pitching moment coefficient, bal (integ press.)	1090.	.018(-•064	105(086)		.048(.047)			100.			•		UBS (094(095)	(-105(104)		008(010)				(220°)61v°			037(034)		083(077)		(221-)(1701-		1451-1041-	1671							
Normal force coefficient, bal (integ press.)	278(283)	110(120)		Pu(.17	.359(.348)						·	_	.1671 .153)	_		•	• 2	.677(.667)	•		34 (•	•	•	274(.262)	•	• 175	. 1017	•								
Angle of attack, deg	-7.75	-3.93	6c.	4.02	7.95		-7.78	-5.83	.3.92	1.88	60.	2.05	£0.4	7.95	Ú6*6	11.87	13.83	15.78	• 08		-7.87	-5.87	-3.89	-1.92	• 05	1.99	3.98	5.93	- 0	* * *	13 74	15.10	71.61							
Dynamic pressure, kN/m ² (psf)	40.7(849)	40.6(848)	40.7(849)	.7(84	40.7(849)		5.2(5	5.2(52	5.2	5.2	25.2(527)	5.2	_	5.2(52	5.2152	5.2155	5.2(52	5.	5.3(52		.2(81	9.2(81	(8)	9.2(818	2(8)	2(81	2(918	39.2(818)		1017	7070	26076	101206							
Mach	1.11	1.11	1.1	-:	1:1		.70	. 70	.7.	. Z	.70	77.	٠٢٥	. 70	.70	. 70	٠ <u>۲</u> ٠	.70	0.4		1.05	1.05	1.05	1.05	1.05	1.05	1.05	. 05		60.	00.		000							
Analysis number	33214	33215	33216	33217	33218		33301	33302	33303	23304	33305	33306	23307	60kEk	33310	13311	33312	33313	33314		33401	33402	33403	33404	33405	33406	10766	33408		01666	11466	21466	01400							

Table A-7.—(Continued)

(b) T.E. Deflection, Full Span = 4.1°

Pitching moment coefficient, bal (integ press.)	.013(.011) 003(004) 022(024)	035(037)	063(062)	081(080)	112(110)	121(120)	128(130)	143(138)	.0236 .013)	.005(004)	011(020)	021(031)	033(042)	045(053)	076(084)	092(100)	103(111)	-,111(-,119)	7	121(131)														
Normal force coefficient, bal (integ press.)	184(183) 124(105) 028(027)	1980 - 1180 - 1181			.402(.393)		.566(.560)	.734(.730)	160(163)	087(090)	022(024)	•		.160(.152)		.378(.367)			(619.)089.	.716(.706)														
Angle of attack, deg	-7.83 -5.90 -3.94	-1.95	_		7.88		11.81	15.73	-7.78	-5.83	-3.86	-1.88		2.09		7.97	9.92	11.90	13.87	15.82														
Dynamic pressure, kN/m ² (µsf)	32.1(671) 32.1(671) 32.1(670)	32.1(671)	32-1(671)	32.1(671)	32.2(672)	32.2(672)	32-1(671)	32.2(671)	10.2(214)	10.2(214)	(21	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	10.2(214)	.2 (10-2(214)					<u>`</u> -	`.								
Mach	. 85 . 85 . 85	. 85	.85	.85	. 85	.85	.85	85 7	04.	.40	04.	04.	C. 4	0 4	04			.40	Ć.	.40														
Analysis	34101 34102 34103	34104	34106	34107	34109	34110	34111	34112	34201	34202	34203	34204	34205	34205	34208	34209	34219	34211	34212	34213														
	•																																	
Pitching moment coefficient, bal (integ press.)	.016(.018) 006(02) 029(023)	048(043) 065(054)	(870)080	102(100) 1201	135(128)	143(135)	151(146)	172(163)	.012(.012)	005(003)	022(024)	034(034)	046(045)	059(057)	093(090)	107(104)	116(114)	121(121)	125(126)	131(128)	045(045)	1600. 3010.	000(002)	027(026)	041.(040)	055(052)	071(068)	na9(na7)	100(105)	127(122)	136(131)	144(140)	_	159(152)
Normal force Pitching moment coefficient, coefficient, bal (integ press.) bal (integ press.)	18(220) 29(130) 42(045)	.034(.030)048(043) .104(.095)065(054)	121 - 171)	34(.322)	151 .4041	(625.)16	68(.563)	25(-714)	74(177)	15-00 (960166	24(021)	37(.036)	1960 110	35(228)	101 3001	95(.382)	17(.465)	56(.544)	1629. 186	.7161	110.096) 045(1661196	12(113)	29(029)	37(.034)	1660 - 180	73(.169)	1846 . 2431	1228 162	146 .407)	(• 486)	(1126 . 571)	57(.655)	36(•731)159(
Normal force coefficient, bal (integ pruss.)	218(220) 129(130) 042(045)	34(.033)	1751 - 1711	. 246 . 248)	.415(.464)	(624.)164.	.568(.563)	.725(.719)	.83174(177) .012(093109610n5t	024(021)	.037(.036)	(960.)101.	154(.156)	310(300)	.395(.382)	(595.) (24.5)	.556(.544)	.638(.629)	23(.716))<*0 (960.)101.	1661196	112(113)	029(029)	.037(.036)	.103(.099)	.173(.169)	.7491 .2431	.329(.322)	.416(.407)	1984. 156	.575(.571)	. +57(.655)	.736(.731)159(
Normal force coefficient, bal (integ press.)	9.1(817) -7.86218(220) 9.1(817) -5.89129(130) 9.2(818) -3.93042(045)	(818) -1.97 .034(.033) (817)01 .104(.095)	(171.) 271. 89.1 (718) 1.98	(817) 5.89 .334(.248)	9.2(818) 7.86 .415(.464)	(64.)164. 58.6	9.2(818) 11.78 .568(.563)	(817) 15-74 - 64-51 (817) 15-74 - 725(-719)	5.2(527) -7.83174(177) .012(5.2(526) -5.92093(096)0n5(5.2(527) -3.87024(021)	5.2(526) -1.93 .037(.036)	2(526) .07 .101(.096)	5.2(526) 3.99 .235(226)	5-2(526) 5-96 -310(-301)	5.2(527) 7.93 .395(.382)	5.2(576) 0.90 .477(.465)	5.2(527) !1.82 .556(.544)	5.2(527) 13.80 .638(.629)	.723(.716)		-7.87196(199)	7521 -5.89112(113)	752) -3.95029(029)	751) -1-99 .037(.036)	03 .103(.099)	152) 1.97 .173(.169)	3.94 .748(.243)	1521 5.87 .329(.322)	752) 7.84 .416(.407)	(752) 9.80 .495(.486)	(173) 11.75 .575(.571)	.1(753) 13.74 .657(.655)	15.69 .736(.731)159(
Angle of Normal force attack, coefficient, deg bal (integ pruss.)	.05 39.1(817) -7.86218(220) .05 39.1(817) -5.89129(130) .05 39.2(818) -3.93042(045)	39.2(818) -1.97 .034(.033) 39.1(817)01 .104(.095)	(171.) 271. 89.1 (11817) 1.98	.05 39.1(817) 5.89 .334(.328)	•05 39-2(818) 7-86 -415(-464)	.05 39.2(818) 9.82 .491(.479)	.05 39.2(R18) 11.78 .568(.563)	.75 39.1(817) 15.74 .725(.714)	25.2(527) -7.83174(177) .012(25.2(526) -5.92093(096)0n5(25.2(527) -3.87024(021)	25.2(526) -1.93 .037(.036)	25.2(526) .07 .101(.096)	75-2(576) 7-91 -164(-156) 25-2(526) 3-99 -235(-228)	25-2(526) 5-96 -310(-301)	25.2(527) 7.93 .395(.382)	25.2(576) 0.90 .477(.465)	25.2(527) 11.82 .556(.544)	25.2(527) 13.80 .638(.629)	5.2(526) 15.76 .723(.716)	53.5(358) -(3 .101(.098)045(7531 -7.87196(199)	36.0(752) -5.89112(113)	36.0(752) -3.95029(029)	36.0(751) -1.99 .037(.034)	36.0(752)03 .103(.099)	36.0(752) 1.97 .173(.169)	36.0(752) 3.94 .748(.243)	36.0(752) 5.87 .329(.322)	36.0(752) 7.84 .416(.407)	36.0(752) 9.80 .495(.486)	36-1(753) 11-75 .575(.571)	36-1(753) 13-74 .657(.655)	36.0(752) 15.69 .736(.731)159(

(c) T.E. Deflection, Full Span = 8.3°

number number	pressure, kN/m² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)	Analysis	Mach	pressure, kN/m² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)
1.05	39.1(81 39.1(81	-7.89	, ,	026(024)	34601	85 85	32.1(670)		1 1	025(025)
	39.1(816)	-3.95	.023(.025)	069(066)	34603	.85	32.1(670)	-3.97	.037(.039)	058(059)
_	39.1(816	02		100(093)	34625	.85	32.1(670)			083(080)
-' -	39.0(8	1.93	.230(.228)	116(114)	34606	5.5	32.1(670)	1,96		(860°-)66U°-
	39-01815			145(153)	34608	* a.	32-0(669)		1167 1205	115(113) 131(127)
	39.1(8)	7.82	• •	-160(154)	34609	8.5	32.0(659)	7.84	.459(.451)	144(141)
_	39.1(81	9.81		168(161)	34610	.85	32.1(670)			152(150)
_	39.1(81	11.75		170(169)	34611	2 .	32.1(670)		_	157(156)
9 1.05	39.0(815)	15.68	.676(.679)	177(:73) 183(176)	34612 34613	 	32.1(670)	15.70	.695(.694) .772(.771)	161(159) 164(160)
	25.1(52	-7.86	90	025(022)	34701	Ú4.	_	-7.81	097(1051	007(015)
	25.1(525	-5.90	2 n (-	045(034)	34702	.40		-5.85	. 0	028(033)
	25.1(524	-3.92	.040(.039)	057(056)	34703	C. 4 .	10.2(212)	-3.90	_	045(046)
	25.1(52	-1.95	02(069(067)	34703	04.		-3.90	(660.)660.	045 (044)
	25.1(525	•03	63(081(077)	34704	C4.		-1.90		025(060)
	25-11525	1 • 0×		(600-) 760-	34795	• • •		60.0	(151.)861.	055(070)
	25 11 525	5 05 P	, ,	-126(-128)	34707	. 4				093(102)
34409 .70	75-1(525)	7. A9	451(136(133)	34708	640	10.2(213)	6.01	.355(.344)	107(112)
	25.11525	9.85	316	144(141)	34709	.40		7.94	•	121(127)
	25.2(526	11.83) R C	147(148)	34110	04.		68.6		131(137)
	25.1(525	13.78	96(148(149)	34711	04.		11.88	•	136(144)
	25.2152	15.77	27(151(148)	2115	04.	2 {	13.82	(679.)779.	140(148)
	25.2152	•05	.162(.154)	078(077)	34713	.40	10.2(213)	15.86	.764(.756)	143(152)
6.	36.0(75	-7.90	127(124)	029(0311						
6.	35.9(-5.93	043(341)	048(048)						
•	35.9(13.98	.036(.0401	064(0651						
6.	35.9(-2.02	_	077(077)						
σ.	35.9(+00-	.166(.163)	001(081)						
6	35.9(1.94	-	107(103)						
34507 .95	35.9(3,89	.306(.305)	124(122)						
•	7.00	0.0		163(153)						
9.0	35.9(7	9.78	.543(.535)	164(157)						
•	36.00	11.74	_	168(163)						
•	36.0175	13.73	· -	171(164)						
•	24 0175									

Table A-7.—(Continued)

(d) T.E. Deflection, Full Span = 17.7 $^{\circ}$

ss.)				_			_	_			_	_	_	_				_	_	_	_	_												
Pitching moment coefficient, bal (integ press.)	086(058	114(112	140(136)		170(165			203(207	1981 204	1610-16610-	073(069	090(085)			124(116		68	175(174	186(188	190(1961	190(198	186(195												
Normal force coefficient, bal (integ press.)	002(003)				.401(.400)			_	.764(.782)	•	.028(.012)					(CZC)055.				_	•	.852(.851)												
Angle of attack, deg	-7.92	10.4-	66.2-	1.95	3.86	7.80	6.77	11.76	13.71	00.	-7.89	-5.90	-3.93	-1.96	ē;	3.05	5.92	7.89	9.86	11.86	13.78	15.74												
Dynamic pressure, kN/m² (psf)	32.0(668)	32.0(668)	32.0(669)	32.0(668)	32.0(668)	32.0(668)	32.0(668)	32.0(668)	32.0(668)	199910-25	10.2(212)	13.2(212)	10.2(212)	13.2(212)	10.2(213)	10.2(212)	10.2(212)	10.2(212)	10.2(213)	10.2(212)		10.2(212)												
Mach number	.85	. 35		. 85	ຸ ຜູ້ ບໍ່ເ	. 85	.85	.85	. 85	•	04.	04.	. 4	.40	٠ د د	• •	4.0	0.7	.40	.40	.40	.40												
Analysis	35101	35103	35105	35106	35108	35110	35111	35112	35113	-	35201	35502	15203	35204	35205	35207	35208	35209	35210	35711	35212	35213												
Pitching moment coefficient, bal (integ press.)	087(085)	119(119)	147(149)	173(175)	(461-1)461-1	195(204)	196(214)	198(209)	198(224)	085(0861	101(102)	113(111)	123(119)	152(149)	151(149)	177(172)	185(184)	193(193)	195(200)	193(197)	-•188(-•190)	134(133)	090(094)	104(109)	121(125)	134(133)	148(150)	162(166)	178(178)	186(198)	163(165)	202(201)	204(208)	201(202)
Normal force Pitching moment coefficient, coefficient, bal (integ press.) bal (integ press.)	049(040)	.113(.124)	.254)	375(.396)	514(530)	1909.	65!(.682)	717(.745)	1791 -827)	.013(.024)085(086)	.0981	49(-155)	208(.211)	17(.338)	336(.337)	4701	549(.548)	1629. 1629	. 1061	(1771.)577	.851) lag(1272. 1075	001)	063(.081)	137(.155)	(212)	262(.276)	328(.342)	3966 .4061	462(.473)	.541)	.616)	676(.694)	. 142(. 160) 201(202) . 807(. 822) 199(198)
ormal force oefficient, (integ press.)	.049(040)	.113(.124)	.244(.254)	.375(.396)	514(530)	.588(.606)	.65!(.682)	.717(.745)	.179(.827)	-7.90 .013(.024)085(-5.94 .087(.098)	-3.96 .149(.155)	-2.00 .208(.211)	1.96 .3371 .3381	3 01 404 4021	5-88 -474(-470)	7.85 .549(.548)	9.82 .6291 .6291	11.80 .703(.706)	13.73 .777. 67.81	15.71 .842(.851)188(03 .270(.272)	018(001)	063(.081)	.137(.155)	.200(.212)	.262(.276)	.328(.342)	.396(.406)	.462(.473)	. 532(.541)	.608(.616)	(\$69°)919°	742(- 760) - 807(-822) -
Normal force coefficient, bal (integ press.)	14) -7.92049(040) 114) -5.96 .034(.045)	.113(.124)	113)07 .244(.254)	14) 3.87 .375(.386)	15) 5.65 .454 .461)	14) 9.84 .588(.606)	13) 11.72 .65!(.682)	14) 13.74 .717(.745)	14) 15.71 .779(.827)	-7.90 .013(.024)085(-5.94 .087(.098)	-3.96 .149(.155)	-2.00 .208(.211)	1.96 .3371 .3381	3 01 404 4021	5-88 -474(-470)	7.85 .549(.548)	9.82 .6291 .6291	11.80 .703(.706)	13.73 .777. 67.81	15.71 .842(.851)188(03 .270(.272)	.9(750) -7.96018(001)	.8(748) -6.00 .063(.081)	.9(749) -4.03 .137(.155)	.9(749) -2.05 .200(.212)	.9(749) 10 .262(.276)	.8(748) 1.88 .328(.342)	.9(749) 3.85 .396(.406)	.8(748) 5.80 .462(.473)	.8(748) 7.77 .532(.541)	.8(748) 9.77 .608(.616)	9(749) 11.70 .676(.694)	- (42(- (60) - - 807(-822) -
Angle of Normal force attack, coefficient, deg bal (integ press.)	14) -7.92049(040) 114) -5.96 .034(.045)	38.9(813) -4.01 .113(.124)	33.9(813)07 .244(.254)	39.0(814) 3.87 .375(.386)	39.0(814) 7.83 .514(.530)	39.0(814) 9.84 .588(.606)	38.9(813) 11.72 .651(.682)	39.0(814) 13.74 .717(.745)	39.0(814) 15.71 .779(.827)	25.1(525) -7.90 .013(.024)085(25.1(574) -5.94 .087(.098)	25.1(524) -3.96 .149(.155)	25.1(524) -2.00 .208(.211)	25.1(524) 1.96 .337(.338)	.336(.337)	25.1(524) 5.88 .474(.470)	25-1(524) 7.85 .549(.548)	25.0(523) 9.82 .629(.629)	25.1(524) 11.80 .703(.706)	25-1(524) 13.73 .772(.777)	25.1(524) 15.71 .842(.851)198(25.1(524)03 .270(.272)	35.9(750) -7.96018(001)	35.8(748) -6.00 .063(.081)	35.9(749) -4.03 .137(.155)	35.9(749) -2.05 .200(.212)	35.9(749)10 .262(.276)	35.8(748) 1.88 .328(.342)	35.9(749) 3.85 .396(.406)	35.8(748) 5.80 .462(.473)	35.8(748) 7.77 .532(.541)	35.8(748) 9.77 .608(.616)	35.9(749) 11.70 .676(.694)	.8(748) 13.71 .742(.760) = .9(750) 15.65 .807(.822) =

(e) T.E. Deflection, Full Span = -8.3°

	-										
Analysis	Mach	Dynamic pressure, kN/m² (psf)	Angle of attack, deg	Normal force coefficient, bal (integ press.)	Pitching moment coefficient, bal (integ press.)	Analysis	Mach number	Dynamic pressure, kN/m ² (psf)	Angle of attack, deg	Normal force coefficient, bal (integ press.)	Pitching moment coefficient, bal (integ press.)
35317	1.05	39.0(815)	010	124(133)	(280,)770,	35603	.85	32.0(669)	-12	119(127)	(070, 1940,
35318	1.05	39.0(814)	2.07	051(063)		35604	.85	32.0(669)	2.12	053(062)	
35319	1.05	39.0(814)	4.05	_		35605		32.0(669)	40.4	.013(.002)	.042(.045)
35320	1.05	39.0(814)	9.00	J		35606	.85	32.0(669)	6.03		.020022)
35321	1.05	39.0(814)	7.93	_	011(006)	35607	• 85	32.0(669)	8.00		
35322		39.0(814)		_	031(029)	35608	.85	32.0(669)	9.95		•
35323		39.0(814)		_	048(046)	35609	.85	32-0(669)	11.91		022(025)
35324		39.0(815)		.485(.482)	067(064)	35610	•85	32.0(669)	13.86	.452(.448)	035(035)
35355		39.0(814)	15.78	.580(.573)	088(085)	35611	. 85	32.0(669)	18.81	_	048(049)
35402	.70	25.1(525)	.13	115(122)	.066(.066)	35701	•	35.9(750)	• 05	129(135)	.0761 .0751
35403		25.1(525)	2.10	_	.053(.055)	35702	95	35.9(749)	2.06	059(067)	.060(.062)
35404		25.1(525)	4-14	_		35703	Ī	35.9(749)	4.03	.012(.002)	
35405		25.1(525)	6.07	(920.)060.	.021(.023)	35704	• 95	35.9(749)	6.01		(\$20.)[50.
35406	.70	25.1(525)	9.04	_	.004(.003)	35705	. 95	35.9(749)	7.99	181.)061.	
35407	.70	25.1(525)	9.98	.263(.253)	009(012)	35706	• 95	35.9(749)	96.6	.283(.274)	013(015)
35408	.70	25.1(524)	11.98	_	020(025)	35707	.95	35.9(750)	11.87	.376(.367)	030(~.027)
35409	. 70	25.115241	13.92	.440(.434)	031(035)	35708	• 95	35.9(750)	13.81	.475(.469)	049(044)
35410	. 70	25.1(524)	15.90	.538(.534)	043(042)	45709	. 95	35.9(750)	15.76	.579(.575)	072(069)
35501	. 95	35.9(750)		128(133)	.076(.075)	35801	.40	10.2(214)	. 20	108(118)	.971(.062)
35502	. 95	35.9(749)	2.13	_		35802	04.	10.2(214)	2.18	045(058)	
35503		35.917491	4.10	_		35813	04.	10,2(213)	4.13	(200.)110.	
35504		35.9(750)	6.02	1016 .092)	.020(.023)	35804	04.	10.2(213)	60°4	.086(.072)	
35505	• 95	35.9(749)	7.96	189(.180)		35805	04.	10.2(213)	4.13		
35506	.95	35.9(750)	10.01	.286(.276)	015(015)	35806	04.	10.2(214)	10.02	.253(.241)	001(013)
35507		35.9(750)	11.88	_	031(029)	35807	040	10.2(213)	12.02		010(026)
35508	• 95	35.9(750)	13.83	(014.)114.	051(045)	35808	• 40	10.212131	13.96	_	020(036)
35509		35.9(750)	15.78	122911 .577	073(070)	60858	.40	10.2(214)	15.90	.518(.511)	031(041)

(f) T.E. Deflection, Full Span = -17.7°

nafysis umber	Mach	Dynamic pressure, kN/m ² (psf)	Angle of attack, deg	Normal force coefficient, bal (integ press.)	Pitching moment coefficient, bal (integ press.)	Analysis	Mach	Dynamic pressure, kN/m² (psf)	Angle of attack, deg	Normal force coefficient, bal (integ press.)	Pitching moment coefficient, bal (integ press.)
15912	1.05	39.0(815)	.17	24512661	.1417 .158)	2029E	α α	32.016681	20	2671 2831	1631 1501
15913	1.05	39.0(814)	2.14			367		32,066691	2.17	200(212)	
15914	1.05	39.0(814)	4.10		.110(.125)	36204		32.0(669)	6.13	135(151)	116(121)
38915	1.05	39.0(814)	6.06	018(039)	.100	36205	. 95	32.0(669)	6.10	062(078)	
97658	1.05	39.0(814)	8.02	.075(.053)	.079		. 85	32.0(669)	4.07	.024(.007)	
12011	1.05	39.0(814)	96.6	1711 .155)	.046(.052)	16298		32.016691	10.01		
15918	1.05	39.0(815)	11.91		.030(.043)	36208		32.0(669)	11.96		
61658	1.05	39.0(814)	13.87	.360(.345)	10600.	36209		32.0(669)	13.91		
15920	1.05	39.0(814)	15.84	53(011(004)	36210	. 85	32.01668)	15.88		
10098	. 70	25.1(525)	.22	261(275)	.137(.142)	36391	.40	10.2(213)	.76	247(266)	.134(.134)
20098	. 70	25.1(525)	2.19	_		36302	·	10.2(213)	2.25	185(202)	(611.)021.
86003	.70	25.1(525)	4.17	132(148)	.112(.116)	36303		10.2(214)	4.21	125(143)	
36004	. 10	25.1(525)	4: 9	066(081)		46304		10.2(214)	6.17	062(079)	
30098	. 70	25.1(525)	8.09	.020(.005)	.090(.092)	36305		19.2(214)	9.14	.013(003)	(970.)080.
90098	• 10	25.1(525)	10.05	108(.094)	.055(.066)	36306	.40	19.2(214)	10.10		.066(.061)
16007	. 70	25.1(525)	12.00		.053(.050)	36307		10.2(214)	12.06	.187(.173)	.054(.047)
80098	• 10	25.1(525)	13.96	.293(.283)		36308	.40	10.2(214)	14.02	.2781 .265)	.042(.033)
60098	. 70	25.1(525)	15.91	93(36309		19.2(214)	15.97	.373(.363)	1610. 1010.
01098	• 70	25.1(525)	• 23	262(275)	.139(.143)						
10198	.95	35.9(749)	.17	263(280)	.144(.155)						
36195	.95	35.9(750)	2.14	198(215)	1301 .1371						
16103	\$6.	35.9(750)		134(153)							
16104	. 05	35.9(750)		054(072)	1001.108)						
36105	• 95	35.9(750)		.031(.015)	(160.) \$80.						
34106	.95	35.9(750)		25(.068(.072)						
36107	.95	35.9(750)		24 ((150.)150.						
86108	• 05	35.9(750)	13.88		.031(.038)						
\$610₫	• 45	35.9(750)		33(.010(.014)						

Table A-8.—Experimental Data Test Point Log. Flat Wing, Sharp Leading Edge; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0°

1. 1. 1. 1. 1. 1. 1. 1.	<u> </u>	01133010	701.110	COCHECION,	יים בו וכובווי,			piessuie,	dilder,	רחבוורובוווי,	coelsicient,
11 40.5 (845) - 7.71 -326(333) -782(333) -782(333) -782(333) -782(343) -78		kN/m ² (psf)	deg	bal (integ press.)	bal (integ press.)	-		kN/m² (psf)	deg	bal (integ press.)	bal (integ press.)
10 10 10 10 10 10 10 10		157875.07	-7.71	3251	0. 1580	36809	04	21.21	a	3061	- 0517- 3521
111 40.44 44.4 1.0 1		40-418441	-5.79	2376	0. 1630	36810	0.7	10.2(213)	000	3000	159(*,062)
	-1	40.5(845)	-3.p2	140(161)	040	36811	640	10.2(213)	11.91		065(069)
1.11 40.44(844) 2.12 0.034(-0.065) .0001(-0.017) 3730 .85 31.91(667) -5.78 .004(-0.047) .	1.11	40.4(844)	-1.87	069(077)		36812	04.	10.2(213)	13.88		072(075)
1.1 47.4(844) 4.05 1.044 (.065)090(017) 37730 .85 31.9(667) -7.763111 47.4(844) 4.05 1.054(063) 37737 .85 31.9(667) -5.722264 1.000	11.	40.4(844)	.12	003(-	(000°)100°.	35813	04.	10.2(213)	15.95	(+59. 1099.	077(079)
111 40.4844 6.05 1265 (1.42) -0.044(091) 3733 6.85 31.9(1667) -5.72 -2.74 (1.444) 6.05 1.155 (1.42) -0.044(091) 3733 6.85 31.9(1667) -5.72 -2.74 (1.444) 6.05 1.245 (1.422) -0.064(091) 3733 6.85 31.9(1667) -5.72 -2.74 (1.422) -5.42 -0.004(091) 3733 6.85 31.9(1667) -5.42 -0.004 (1.422) -5.42 -0.044 (1.422) -0.044	-;	40.4(844)	2.10	074(020(017)						
111 40.4(844) 7.95 1.245(-242)064(063) 17231 .85 31.9(667) .7.97 1.40.4(844) 7.95 1.26(275)064(063) 17234 .85 31.9(667)197 1.140.4(844) 7.95 1.26(275)047(054) 17234 .85 31.9(667)197 1.140.1(824)	1.11	40.4(844)	4.05	156(044(040)	37230	.85	1.9(-7.78	1(3	1190.)190.
10. 19.0, 4(844) 7.95	. 11	40.4(844)	6.01	245(065(063)	12212	ري دي •	31.9(667)	-5.82	6123	
77 25.1(225) -7.75 -300(-305)	-:	40.4(844)	7.95	332(0)480.	37232	* 8.5	31.9(566)	3.87	140(141)	
77 25.11529 -7.75 -900(-904) -060(-0671) 37234 -85 31.9(666) -2.9 79 25.11524) -3.46 -134(-122) -030(-071) 37234 -85 31.9(666) 3.99 79 25.11524) -3.46 -134(-122) -030(-071) 37234 -85 31.9(666) 3.99 70 25.11524) -07 -1011 -021(-062) -0114(-071) 37234 -85 31.9(667) 3.99 70 25.11524) -05 -102(-062) -0114(-071) 37234 -85 31.9(667) 17.95 70 25.11524) -05 -102(-072) -013(-072) 37.74 -85 31.9(667) 17.95 70 25.11524) -05 -103(-072) 37.74 -85 31.9(667) 17.95 70 25.11524) -05 -103(-072) 37.74 -85 31.9(667) 17.95 70 25.11524 -05 -075(-072) 37.74 -85 31.96						47233	.85	199916.15	-1.89	063(067)	
7.7 25.01523	• 70	5.1(52	-7.75	300(305)	0.	71234	85	31.916663	80.	(100)100.	(100.)500
777 75.11524 -1.84 -1134-1142	.70	5.0152	-5.80	218(225)	•	37235	. A.	31.9(667)	2.03	.0671 .0631	016(013)
70 25,11524 -1,88 -06010669 -011 -011 -011 -012 -011	. 70	5.11.52	-3.84	134(142)		37236	8.5	č	3.99		035(030)
70 25.1(574) .11 .022(-002) -000(-001) 37238 .45 31.9(667) 7.52 70 25.1(574) 4.05 -074(-002) -074(-002) 3774(-004)	.70	5.1152	-1.88	060(066)	0121	37237	.85	_	5.45		053(046)
7.0 25.1(524) 2.07 C66(.062)013012) 37240 .45 31.9(666) 9.88 31.9(667) 11.86 .45 25.1(524) 4.05 .142 .177031(028) 37240 .45 31.9(667) 11.86 .77 25.1(524) 7.96 .305(.305)058(064) 37242 .45 31.9(667) 11.87 .405(.305) .905(.305) .905(.304) 37242 .45 31.9(667) 15.75 .70 25.0(523) 19.92 .305(.301) .006(.306) .905(.304) 37242 .45 31.9(667) 15.75 .70 25.0(523) 14.49 .603(.306) .905(.304) 37301 1.00 27.4(781) -7.92 .70 25.0(523) 14.49 .603(.605) .905(.304) 37302 1.00 27.4(782) -3.91 .70 25.0(523) 14.49 .603(.605) .905(.304) 37302 1.00 27.4(782) -3.91 .70 25.0(523) 14.49 .603(.605) .905(.904) 37302 1.00 27.4(782) -3.91 .70 25.0(523) 14.49 .603(.605) .905(.904) 37302 1.00 27.4(782) -3.91 .70 25.0(523) .903(.605) .903(.603) .903	. 70	5.1(52	11.	(200-1200)		37238	. A5	31.9(667)	7.52	_	066(059)
7.0 25.11524) 4.05 .142(.137)031(028) 37240 .85 31.9(667) 11.84 7.0 25.11524) 7.05 .142(.137)054(054) 37241 .85 31.9(667) 13.79 7.0 25.11524) 7.05 .301(.300)064(056) 37241 .85 31.9(667) 13.79 7.0 25.11524) 7.00 .324(.301)064(056) 37241 .85 31.9(667) 15.75 7.0 25.01523) 14.49 .401 .005(003)085(073) 37301 1.00 37.4(782) -5.96 7.0 25.01523) 15.79 .6681 .669)005(097) 37302 1.00 37.4(782) -3.91 7.0 25.01523) 15.79 .6681 .669)005(097) 37302 1.00 37.4(782) -3.91 7.0 25.01523) 15.79 .6681 .669)005(097) 37305 1.00 37.4(782) -3.91 7.0 25.01523) 15.79 .6681 .669)005(097) 37305 1.00 37.4(782) 1.99 7.0 25.01523) 15.79 .6681 .6693005(098) 37305 1.00 37.4(782) 1.99 7.0 25.01523) 15.79 .6681 .66930061(059) 37305 1.00 37.4(782) 1.99 7.0 26.01523 .66930061(059) 37305 1.00 37.4(782) 1.07 7.0 26.01523006100610061(069) 37305 1.00 37.4(782) 1.07 7.0 26.01523006100610061(069) 37.4(782) 1.07 7.0 26.01623006100610061(069) 37.4(782) 1.07 7.0 2.0061006	70	5-11574	7.07	(290, 1993)	,	37239	۶, ۲	31.9(666)	0		076(071)
7.0 25.11524) 6.01 .728(.222)948(044) 37241 .85 31.9(667) 13.79 7.0 25.01523) 7.96 .310(.306)059(056) 37242 .85 31.9(667) 15.75 7.0 25.01523) 14.49 .603(.306)068(087) 37301 1.00 37.4(1781) -7.82 7.0 25.01523) 14.49 .6031 .008(087) 37302 1.00 37.4(1781) -7.82 7.0 25.01523) 14.49 .6031 .008(087) 37302 1.00 37.4(1781) -7.82 7.0 25.01523) 14.49 .6031 .008(003) 37302 1.00 37.4(1781) -7.83 7.0 25.01523) 14.49 .6031 .008(003) 37303 1.00 37.4(1782) -1.95 7.0 25.01623) 14.49 .6031 .008(003) 37303 1.00 37.4(1782) -1.95 7.0 25.01623) 1.2 2.6 2.7 2.7 2.3 4(743) .064(003) 37305 1.00 37.4(1782) -1.95 7.0 25.01623) 1.3 2.0 2.003(001) .008(003) 37305 1.00 37.4(1782) -1.95 7.0 38.9(813) -7.79154(146) .008(001) 37306 1.00 37.4(1782) 1.07 7.0 38.9(813) -7.79154(146) .008(001) 37306 1.00 37.4(1782) 1.08 7.0 38.9(813) -7.79154(149) .008(001) 37306 1.00 37.4(1782) 1.08 7.0 38.9(813) -7.79154(149) .008(001) 37406 .95 35.8(1747) -5.84 7.0 38.9(813) -7.74289(227) .008(009) 37408 .95 35.8(1747) -5.84 7.0 38.9(813) 1.5 71684(684) .124(138) 37408 .95 35.8(1747) -5.84 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) -5.84 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) -5.84 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(027) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(201) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76208(227) .016(201) 37416 .95 35.8(1747) 7.30 7.0 10.2(213) -5.76209(217) .010(201) 37416 .95 35.8(1	70	5-1(524	4.05	1421 . 1371	031 (028)	37240	. 85	31.9(667)	11.84	164	084(079)
7.0 25.0(523) 11.97	02	5-11524	4.01	.2281 .2221	048(044)	37241	.85	č	13.79	58	1880-1960-
70 25.0(523) 9.92 .395(.391) .068(066) 710 25.0(523) 11.87 .481(-473)075(073) 710 25.0(523) 11.87 .481(-473)075(073) 710 25.0(523) 11.87 .481(-473)075(073) 710 25.0(523) 11.87 .481(-473)075(092) 710 25.0(523) 15.79 .608(-669)076(092) 710 25.0(523) 15.79 .608(-669)002(092) 710 25.0(523) 15.79 .608(-669)002(001) 710 25.0(523) 15.79 .608(-669)002(001) 710 25.0(523) 15.79 .608(-669)002(001) 710 25.0(523) 15.79 .608(003)003(001) 710 25.0(523) 15.79 .608(003)003(001) 711 705 78.9(813)7.70334(343) .063(063) 77.6(782) 1.09 71.05 78.9(813)7.70734(074) .008(001) 77.6(782) 1.09 71.05 78.9(813)1.93072(074) .008(001) 77.6(782) 1.09 71.05 78.9(813)1.93072(014) .008(016) 77.6(782) 1.09 71.05 78.9(813) 75.72 .244(234)026(016) 77.6(782) 1.06 71.6(782) 1.07 71.6(782) 1.06 71.	1	5.1(524	7.96	310(306)	059(256)	37242	35	~	15.75	89.	-108(-102)
7.0 25.2(523) 11.87 .481(.473) .0075(073) 37321 1.00 37.4(172) -5.86 7.0 25.2(523) 14.49 .603(082) .37321 1.00 37.4(172) -5.86 7.0 25.0(523) 15.79 .6681 .6693 .002(082) 37304 1.00 37.4(172) -3.49 7.0 25.0(523) 15.79 .6693 .6693 .6704 .001 .002(082) 37304 1.00 37.4(172) -3.91 1.05 28.9(1813) -7.79 -3.34(343) .0631 .0631 37304 1.00 37.4(1782) -3.91 1.05 38.9(1813) -7.79 -3.44(343) .0631 37304 1.00 37.4(1782) -3.91 1.05 38.9(1813) -7.79 -3.74(164) .076(001) 37.4(1782) 1.09 37.4(1782) 1.09 1.05 38.9(1813) -7.72 -0.011 -0.067(001) 37.4(1782) 1.09 37.4(1782) 1.09 <	2.0	5.0(523	6.42	395(391)	068(066)	1		•			
70 25.0(523) 14.49 .603(035(032)) 373.02 1.00 37.4(782) -5.96 70 25.0(523) 15.79 .668(669) .002(039) 373.04 1.00 37.4(782) -3.91 70 25.1(524) .10 .002(003) .001(001) 37.305 1.00 37.4(782) -3.91 70 25.1(524) .10 .002(003) .001(001) 37.305 1.00 37.4(782) -3.91 1.05 38.9(813) -7.79 -334(254) .003(002) 37.305 1.00 37.4(782) 1.93 1.05 38.9(813) -7.79 -0.71(024) .004(034) 37.30 1.00 37.4(782) 1.78 1.05 38.9(813) -1.93 -0.72(014) -0.044(039) 37.31 1.00 37.4(782) 1.78 1.05 38.9(813) -1.93 -0.044(039) 37.31 1.00 37.4(782) 1.78 1.05 38.9(813) -1.24(149) -0.044(039)	10	5.0(523	11.87	(474)	075(073)	37331	00.	417	-7.92	334(339)	(270, 1090,
770 75.0(523) 15.79 .668(.669) .002(099) 37303 1.00 37.4(782) -3.91 70 75.1(524) .10 .002(003) .001(.001) 37304 1.00 37.4(782) -1.95 1.05 34.9(813) -7.79 245(253) .063(.063) 37307 1.00 37.4(782) 1.95 1.05 38.9(813) -7.79 245(253) .063(.063) 37307 1.00 37.4(782) 1.95 1.05 38.9(813) 300 154(154) .040(040) 37307 1.00 37.4(782) 1.96 1.05 38.9(813) 245(253) .060(010) 37307 1.00 37.4(782) 1.96 1.05 38.9(813) 150 000(010) 37307 1.00 37.4(782) 1.17 1.05 38.9(813) 100 100 000 000 000 000 000 000 000 000 000 000 000 000 000	7.0	5.0(523	14.49	6036	085(082)	37302		37.4(782)	-5.86	244(254)	.041(.059)
770 75.1(524) .10 .002(003) .001(.001) 37304 1.00 37.4(782) .1.9507703	2	5.0152	15.79	6581		17575		37.4(792)	-3.91	152(162)	
37305 1.00 37.4(782) .010020 37305 1.00 37.4(782) 1.99 .067(1.05) 38.9(813) -7.79334(343) .063(.063) 37305 1.00 37.4(782) 1.99 .067(1.05) 38.9(813) -3.90154(155) .063(.063) 37305 1.00 37.4(782) 1.99 .067(1.05) 38.9(813) -1.93072(073) .016(.016) 37305 1.00 37.4(782) 1.244(1.062) 38.9(813) -1.93072(073) .016(.016) 37305 1.00 37.4(782) 7.85 .332(1.05) 38.9(813) -1.93072(073) .016(.016) 37305 1.00 37.4(782) 1.244(1.062) 38.9(813) -1.93072(073) .0027(001) 37312 1.00 37.4(782) 1.374 .598(1.05) 38.9(813) 7.97233(.329)067(060) 37.4(782) 1.374 .598(1.062) 38.9(813) 7.97333(.329)094(095) 37.406 .95 35.8(747) -5.842333(1.05) 38.9(813) 13.76 .593(.569)127(121) 37406 .95 35.8(747) -5.842333(1.062) 38.9(813) 15.71 .683(.584)144(138) 37406 .95 35.8(747) -5.842333(1.062) 37.407 .95 35.8(747) -5.842333(1.062) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.407 .95 35.8(747) -3.88 -144(138) 37.408 .35 36.8(747) -3.88 -144(138) 37.416 .95 35.8(747) -3.88 -144(138) 37.416 .95 35.8(747) -3.88 -144(138) 37.416 .95 35.8(747) -3.88 -144(138) 37.416 .95 35.8(747) -3.88 -144(138) 37.416 .95 35.8(747) -3.88 -144(138) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95 35.8(748) 37.416 .95	7.0	5.1652		0026-	.001(.001)	17304		37.4(782)	-1.95	070(~.078)	
1.05 24.0(813) -7.79 -334(253) .054(253) .	•		•	;		37305		37.4(782)	.01	002(007)	
38.9(813) -5.81245(253) .063(.063) 37307 1.00 37.4(782) 3.96 .150(.253) .05 38.9(813) -3.90154(164) .040(.040) 37308 1.00 37.5(783) 5.91 .744(.253) .05 38.9(813) -3.90154(164) .002(.001) 37310 1.00 37.4(782) 7.81 .420(.011) .002(.001) 37311 1.00 37.4(782) 7.81 .420(.011) .05 38.9(813) .2.04 .071(.062)027(016) 37311 1.00 37.4(782) 11.78 .599(.052) .289.9(813) .2.04 .071(.062)027(016) 37312 1.00 37.4(782) 11.78 .599(.052) .289.9(813) .2.04 .239067(039) .274(.239)067(039) .274(.782) .11.78 .599(.052) .289.9(813) .2.02 .2097(039) .274(.239)067(039) .274(.239)067(095) .274(.782) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239)067(095) .274(.239) .274(.239)067(095) .274(.239) .274(.	1.05	8.91313	-7.79	334 (343)	3	37306		37.4(782)	1.99	.067(.062)	
37309 1.00 37.5(783) 5.91 .2446 .2539 .205 38.9(813) -1.93 -0.072(-0.079) .016(-0.16) 37309 1.00 37.4(782) 7.85 .332 .2539 .2546 .205 .2051 .205(-0.01) 37311 1.00 37.4(782) 11.78 .598 .420 .2534 .2526 .	C.	8.9(813	-5.81	245(253)		37307		37.4(782)	3.96	150(.147)	039(035)
373.0 1.00 37.4(782) 7.86 1.05 373.0 1.00 37.4(782) 7.86 1.05 38.9(813) .22 003(011) 002(016) 373.1 1.00 37.4(782) 9.81 1.05 38.9(812) 2.04 074(026) 373.1 1.00 37.4(782) 11.78 11.78 1.05 38.9(813) 4.01 2.544(239) 067(060) 373.1 1.00 37.4(782) 13.74 1.05 38.9(813) 7.47 333(339) 087(060) 373.14 1.00 37.4(782) 15.68 1.05 38.9(813) 7.47 333(329) 087(060) 373.14 1.00 37.4(782) 15.68 1.05 38.9(813) 17.87 -333(329) 094(095) 374.05 .95 35.8(747) -7.84 1.05 38.9(813) 15.71 683(297) 113(107) 374.06 .95 35.8(747) -1.92 1.05 38.9(813) 15.71 683(297) 057(062) 374.11 .95 35.8(747) 094 .005(067) 144(138) 374.11 .95 35.8(747) 094 .005(067) 144(138) 374.11 .95 35.8(747) 094 .005(067) 007(011) 374.14 .95 35.8(747) 7.89 .007(012) 007(011) 374.14 .95 35.8(748) 11.79 .007(012) 3	0	9.9(A13	-3.90	154(165)		37308		37.5(783)	5.91	(052.)552.	062(057)
38.9(813)	C	P.91813	-1.93	072(079)		37309		37.4(782)	7.85		080(074)
3.9.9(812) 2.04 .071(.062)920(016) 373:1 1.00 37.4(782) 11.78 1.05 38.9(812) 4.01 .154(.149)044(039) 373:2 1.00 37.4(782) 13.74 1.05 38.9(813) 5.72 .274(.782)054(039) 373:1 1.00 37.4(782) 13.74 1.05 38.9(813) 7.92 .274(.782)044(039) 373:1 1.00 37.4(782) 13.74 1.05 38.9(813) 7.92 .274(1.249)094(095) 37405 .95 35.8(749) -7.80 1.05 38.9(813) 13.76 .597(.507)113(107) 37405 .95 35.8(749) -7.80 1.05 38.9(813) 13.76 .594 1.077 .95 35.8(747) -1.92 1.05 38.9(813) 15.71 .683(.684)144(138) 37409 .95 35.8(747) -1.92 1.05 1.00 10.2(213) -7.74298(297) .054(.0624) 37411 .95 35.8(747) -1.92 1.00 10.2(213) -1.44055(062) .016(.002) 37412 .95 35.8(747) 5.94 1.07 10.2(213) -1.44055(062) .016(.001) .005(.001) 37414 .95 35.8(748) 9.84 1.77 10.2(213) 2.10 .065(.062)007(011) 37415 .95 35.8(748) 13.76 10.2(213) 4.08 13.76 10.2(2		8,9(. 32	003(011)		37310		37.4(782)	9.81	•	095(088)
38.9(813) 5.72 .244(.239)067(060) 37312 1.00 37.4(782) 13.74 1.05 38.9(813) 5.72 .244(.239)067(060) 37314 1.00 37.4(782) 15.68 1.05 38.9(813) 7.87 .333(.329)087(080) 374.05 .95 35.8(749) 7.8.0 1.05 38.9(813) 13.76 .5931(.540)098(095) 374.05 .95 35.8(747) -5.84 1.05 38.9(813) 13.76 .5931(.596)113(1107) 374.05 .95 35.8(747) -5.84 1.05 38.9(813) 13.76 .5931(.596)1127(121) 374.09 .95 35.8(747) -1.92 374.01 .95 35.8(747) -1.92 374.01 .95 35.8(747) -1.92 374.01 .95 35.8(747) -1.92 374.01 .95 35.8(747) -1.92 374.01 .95 35.8(747) -1.92 374.01 .95 35.8(747) -1.92 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(747) -1.89 374.01 .95 35.8(748) -1.79 374.01 .95 374.01 .95 374.01 .95 374.01 .95 374.01 .95 374.01 .95 374.01 .95 3	C	9.9(2.04	(290.)110.				37.4(782)	11.78		108(100)
1.05 38.9(813) 5.72 244(239) 067(060) 3314 1.00 374(782) 15.68 65	0	9.9(4.01	154(044(039)			37.4(782)	13.74	•	121(112)
1.05 38.9(813) 7.97 .333(.329) 094(0340) 374.05 .95 35.8(749) .7.80 .7.80 .2.90(13) 11.80 .5.07(.5.07) -1.127(107) 374.05 .95 35.8(747) -5.84 .2.90(813) 13.76 .96 .2.20(13) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74 .2.84(1.107) .2.74	c	8.9(5.92	3441	067(060)			37.4(782)	15.68	(889.)069.	138(126)
10.05 38.9 (813) 9.85 .421(.410) 009(095) 374.05 .95 35.8 (749) 77.8 0 10.05 38.9 (813) 11.80 .507(.507) 13(107) 374.06 .95 35.8 (747) 5.84	0	9.9(7.97	333(085(080)						
10.5 34.9(813) 11.80 .507(.507) .113(107) 37406 .95 35.8(747) -5.84 1.05 38.9(813) 13.76 .593(.596) -127(121) 37407 .95 35.8(747) -3.88 1.05 38.9(813) 15.71 .683(.584) -144(138) 37409 .95 35.8(747) -1.92 37409 .95 35.8(747) -1.92 37409 .95 35.8(747) -1.92 37410 .95 35.8(747) 3.98 37410 .95 35.8(747) 3.98 37410 .95 35.8(747) 3.98 37410 .95 35.8(747) 3.98 37410 .95 35.8(747) 3.98 37410 .95 35.8(747) 3.98 37410 .95 35.8(747) 3.98 37410 .95 35.8(747) 3.98 37410 .95 35.8(748) 3.98 37410 .95 35.8(748) 3.98 37410 .95 35.8(748) 3.98 37410 .95 35.8(748) 3.75 37410 .95 37410 .	c.	9.9	9.85	4216	0000(0095)	374.05		35.8(749)	-7-80	322(329)	
1.05 38.9(813) 13.76 .593(.594)127(121) 374.07 .95 35.8(747) -3.88 1.05 38.9(813) 15.71 .683(.684)144(138) 374.08 .95 35.8(747) -1.92 3.70 10.2(213) -7.74284(297) .054(.054) 374.11 .95 35.8(747) 2.09 3.70 10.2(213) -5.76208(217) .047(.064) 374.11 .95 35.8(747) 2.99 3.70 10.2(213) -3.79127(135) .031(.027) 374.12 .95 35.8(747) 5.94 3.70 10.2(213) -1.44055(062) .016(.012) 374.12 .95 35.8(747) 7.89 3.70 10.2(213) 2.10 .065(.062)007(011) 374.15 .95 35.8(748) 11.79 3.70 10.2(213) 2.10 .065(.062)007(011) 374.16 .95 35.8(748) 11.79	c	9.9(11.80	507(113(107)	37406		35.8(747)	-5.84	233(241)	
1.05 38.9(813) 15.71 .683(.684) .144(138) 37408 .95 35.8(747) .1.92 37409 .95 35.8(747) .1.92 37409 .95 35.8(747) .03 37409 .95 35.8(747) .03 .40 10.2(213) -7.74 284(297) .054(.062) .37411 .95 35.8(747) 3.98 .40 10.2(213) -3.79 -1.26(135) .031(.027) .37412 .95 35.8(747) 3.98 .40 10.2(213) .13 .004(001) .005(.001) .00	0	8.9	13.76	593(127(121)	10712		35.8(747)	-3.88	144(152)	
37409 .95 35.8(747) .03 40 10.2(213) -7.74288(297) .058(.054) 37410 .95 35.8(747) 2.00 40 10.2(213) -3.79124(135) .031(.027) 37411 .95 35.8(747) 3.98 40 10.2(213) -1.44055(06.2) .016(.012) 37412 .95 35.8(747) 7.89 40 10.2(213) -1.84055(06.2) .016(.001) 37414 .95 35.8(748) 9.84 40 10.2(213) 2.10 .065(.06.2)007(011) 37414 .95 35.8(748) 9.84 40 10.2(213) 4.08 .134 (.135) .024(026) 37414 .95 35.8(748) 11.79	c	8.9	15.71	683(144 (37408		35.8(747)	-1.92	066(071)	
.40 10.2(213) -7.74 288(297) .058(.062) 37410 .95 35.8(747) 2.00 .40 10.2(213) -3.76 208(217) .047(.042) 37411 .95 35.8(747) 3.98 .40 10.2(213) -3.79 126(135) .031(.027) 37412 .95 35.8(747) 5.94 .40 10.2(213) -1.24 055(062) .016(.012) 37413 .95 35.8(748) 7.89 .40 10.2(213) -13 .004(001) .005(.001) 37416 .95 35.8(748) 9.84 .40 10.2(213) 2.10 .065(.062) 007(011) 37416 .95 35.8(748) 11.79 .40 10.2(213) 2.10 .065(.062) 007(011) 37416 .95 35.8(748) 13.76 .40 10.2(213) 2.10 .065(.062) 007(011) 37416 .95 35.8(748) 13.76 .40 10.2(213) 2.10 .065(.062) 007(011) 37416 .95 35.8(748) 13.76						37409		35.8(747)	•03	001(~.005)	(100.)200
40 10.2(213) -5.76208(217) .047(.042) 37411 .95 35.8(747) 3.98 .40 10.2(213) -3.79124(135) .031(.027) 37412 .95 35.8(747) 5.94 .40 10.2(213) -1.24055(062) .016(.012) 37413 .95 35.8(747) 7.89 .40 10.2(213) .13 .004(001) .056(.051) 37414 .95 35.8(748) 9.84 .40 10.2(213) 2.10 .065(.062)007(011) 37416 .95 35.8(748) 11.79 .40 10.2(213) 4.09 .134(.135)024(026) 37416 .95 35.8(748) 13.76 .40 0.22 0.22 0.22 0.22 0.22 0.22 0.22		0.21213	-7-74	986	958(.05	37410		35.8(747)	5.00	.067(.062)	
.40 10.2(213) -3.7912f(135) .031(.027) 37412 .95 35.8(747) 5.94 .40 10.2(213) -1.24055(062) .016(.012) 37413 .95 35.8(747) 7.89 .40 10.2(213) .13 .004(001) .056(.051) 37414 .95 35.8(748) 9.84 .40 10.2(213) 2.10 .065(.062)007(011) 37415 .95 35.8(748) 11.79 .40 10.2(213) 4.08 .134(.135)024(026) 37415 .95 35.8(748) 13.75 .40 10.2(213) 4.08 .134(.135)024(026) 37415 .95 35.8(748) 13.75		0-2(213	-5.76	208(217)	1250	37411		35.8(747)	3.98	(.143)	036(032)
40 10.2(213) -1.44055(062) .016(.012) 37413 .95 35.8(747) 7.89 40 10.2(213) .13 .004(001) .005(.001) 375(.001) 37414 .95 35.8(748) 9.84 .40 10.2(213) 2.10 .065(.062)007(011) 37415 .95 35.8(748) 11.79 .40 10.2(213) 4.08 .134 (.135)024(026) 37415 .95 35.8(748) 13.76 .40 10.2(213) 4.08 .134 (.135)024(026) 37415 .95 35.8(748) 13.76 .40 10.2(213) 4.08 .134 (.135)024(026) 37415 .95 35.8(748) 13.76 .40 10.2(213) 4.08 .134 (.135)024(026) 37415 .95 35.8(748) 13.76		0.2(213	-3.79	126(135)		37412		35.8(747)	5.94	(.233)	056(050)
.4C !C.2(213) .13 .004(001) .005(.001) 37414 .95 35.8(748) 9.8440 10.2(213) 2.10 .065(.062)007(011) 37415 .95 35.8(748) 11.7940 10.2(213) 4.09 .134() .024(024) 37416 .95 35.8(748) 13.7540 10.2(213) 4.09 .134() .024(024) 37416 .95 35.8(748) 13.75		0.2(213	-1.44	055(062)		37413		35.8(747)	7.89	(.321)	07210651
40 10.2(213) 2.10 .065(.062)007(011) 37415 .95 35.8(748) 11.79 .46 10.2(213) 4.08 .139(.135)024(026) 37416 .95 35.8(748) 13.76 .46 10.2(213) 4.08 .139(.135)064(026) 37416 .95 35.8(748) 15.70		0.21213	13	.004(001)	002(37414		35.8(748)	9.84	(14(.414)	086(081)
46 10.2(213) 4.08 .139(.135)024(026) 37416 .95 35.8(748) 13.76 .		0.2(213	2.10	.065(.062)	1000	37415		35.8(748)	11.79	506(.508)	100(096)
77 17 17 17 17 17 17 17 17 17 17 17 17 1		213	4.08	130(124 (31416		35.8(748)	13.75	.690(.602)	114(107)
0. 0		15	6.08	2261	040(041)	37417		35.8(748)	15.70	J	133(123)

Table A-9.—Experimental Data Test Point Log. Twisted Wing, Rounded Leading Edge; L.E. Deflection, Full Span = 0.0°

(a) T.E. Deflection, Full Span = 4.1°

Admition Marked		:	Dynamic	. Angle of	Normal force	Pitching moment			Dynamic	Angle of	Normal force	Pitching moment
1.05 34-91412 -7.78 -3271-272 -3751	Analysis	Mach	pressure, kN/m ² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)	_	Mach number	pressure, . kN/m ² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)
1.05 38.9 (1812) -3.46 -1.061054 -1.061061064 -1.061064 -1.061064 -1.061064 -1.061064	40705	C.	9.9(a	-7.78	322(320)	1690	41005	.85	31,9(666)	-7.AO	1001-1005	
1.05 348 (1111 -1.46 -1.461 -1.46 -1.461 -1.46 -1.471 -1.	40106	c	8.9(8	.5.83	242(233)		90019		31.8(665)	, a , b -	220(216)	
1.05	40107	Ċ	30.3	-3.86	160(153)		41007	.85	31.9(666)	-3.A7	141(145)	
1.05 18-04 12 12 12 12 12 12 12 1	40708	ς,	9	-1.94	(920)620		41008	. 85	31.9(666)	16-1-	063(0651	
1.05 38-04 12 3-99 1-44 1-18 1-574 1-074 1-074 1-075 1-075 1-075 1-074 1-075 1-074 1-075 1-074 1-074 1-075 1-074 1-075 1-074 1-075 1-074 1-075 1-074 1-075 1-074 1-075 1-074 1-075 1-074 1-075 1-074 1-075 1-0	40719	٠.	9 (8	•0•	0110		60014	8.	31.9(666)	10.	(900.)260.	•
1.05	40711	ç.	8	2.03	0731	031(032)	41010	. 95	31.9(666)	2.03		025(025)
1.05 34.94812 7.594 2.204 2.154 2.064 2.054 4.011 4.65 31.94666 7.59 2.204 2.251 2.25 34.94812 7.49 2.304 2.204 2.201 4.011 4.05 34.94812 7.49 2.304 2.204 2.201 4.011 4.05 34.94812 7.49 2.304 2.204 2.201 4.011 4.05 34.94812 7.49 2.304 2.201	40712	۲.	E E	3.99	144(047(045)	41011	• 85	31.9(666)	4.00		037(037)
1.05 34.9(812) 7.49 .3044 .274 .274 .2704-1014 .41014 .85 .1946666 .9.9 .3777 .371 .275 .27	40713	0	8) 6	5.94	2201	067(068)	41012	. 95	31,9(666)	5.97		052(054)
1.05 38-9(1812) 9-34 3-34 3-34 -11004-1111 41016 85 3-19(4664) 13-18 455 1-05 3-94 3-18 1-05 3-94 3-18 3-19 4-18 3-19 3-	40714	ç.	8 6	7.49	304(096(084)	41013	.85	31.9(666)	7.95		071(072)
1.05 34-9(812) 11-83 477 467 467 467 471 41015 485 31-9(1661) 11-86 467 465 467 465 467 470	40715	0	8) (4.0	1168	100(101)	41014	• A5	31.9(666)	9.91		087(088)
1.05	40717	c.	8	11.83	477(113(1111)	41015	. A5	31.916671	11.86		096(097)
1.05 38.9(812) 15.75 640(630) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(130) 136(120) 136(120) 136(130) 136(130) 136(120)	40719	٥.	8)6	13.78	2601	125(122)	41016	.85	31.9(666)	13.81		-106(-101)
7.0 25.0(522) -7.782901291) .049(.050) 41101 .40 10.2(212) -7.69275(204) .045(.050) .072(.022) .072(40719	1.05	9(8	15.75	940(136(130)	41017	.85	11.9(666)	15.78	_	112(108)
7.0 25.015.22 -5.81 -2.111(-2.14) .038(-0.37) 41101 .40 10.2(212) -5.75 -1199(-2.06) .042(30804	1	5 0152	-7 70	1100 -1000	0.00	-	•				
7.0 (25.01523) -3.81 -1.37 -1.38 (037) 41102 -40 10.2(212) -3.49124(-1.296) 0.042(-1.297) 41102 -4.010 10.2(212) -3.49124(-1.296) 0.044(-1.297) 41103 4.0 10.2(212) -3.49124(-1.296) 0.044(-1.297) 1.0 (0.044 0.053) -0.044(-1.041) 4.0 (0.2(212) -1.32 -0.054(-1.056) 0.094(-1.057) 1.0 (0.044 0.053) -0.044(-1.041) 4.0 (0.2(212) 1.15 -0.054(-1.056) 0.094(-1.057) 1.0 (0.044 0.053) 4.0 (0.2(212) 1.15 -0.054(-1.056) 0.094(-1.057) 1.0 (0.044 0.054) 4.0 (0.2(212) 1.15 -0.054(-1.056) 0.094(-1.057) 1.0 (0.044 0.054) 4.0 (0.2(212) 1.19 0.054(-1.259) 0.054(-1.059) 4.0 (0.2(212) 1.19 0.054(-1.259) 0.054(-1.204) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.064(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.094(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.094(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.094(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.094(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.094(-1.254) 0.094(-1.054) 4.0 (0.2(212) 1.19 0.094(-1.254) 0.094(-1.254) 0.094(-1.054) 0.094		- 1	77.000	•			1011+	2	3	600	1+171617	
7.0 25.0(523) -1.87058(064) 0.004(002) 41103 .40 10.2(7212) -1.87055(055) 0.004(052) 41105 .40 10.2(7212) -1.87055(055) 0.004(052) 1.004(052) 1.004(004) 0.004(003) -011(011) 41105 .40 10.2(7212) 1.18004(056) -0104(004) 41105 .40 10.2(7212) 2.10 .004(056) -0104(004) 41105 .40 10.2(7212) 2.10 .004(056) -0104(004) 41107 .40 10.2(7212) 4.08 .1261 .125) -0.074(004) 41107 .40 10.2(7212) 6.06 .0065) -0104(004) 41107 .40 10.2(7212) 6.06 .0065) -0104(004) 41107 .40 10.2(7212) 6.06 .0066) -0104(004) 41107 .40 10.2(7212) 6.06 .0066) -0104(004) 41107 .40 10.2(7212) 6.06 .0065) -0104(004) 41107 .40 10.2(7212) 6.06 .0065) -0104(004) 41107 .40 10.2(7212) 6.06 .0065) -0104(004) 41107 .40 10.2(7212) 6.06 .0069 .0064(004) 41107 .40 10.2(7212) 6.06 .0069 .0064(004) 41107 .40 10.2(7212) 6.06 .0069 .0064(004) 41107 .40 10.2(7212) 6.06 .0069 .0064(004) 41107 .40 10.2(7212) 6.06 .0069 .0064(004) 41111 .40 10.2(7212) 6.06 .0069 .0064(004) 41111 .40 10.2(7212) 6.06 .0064(004) .0064(004) 41111 .40 10.2(7212) 6.06 .0064(004) .0064	40804		241046	18.4	7112		70117	0		-5.75	166(506)	
7.0 25.0(523) -1.67058(054)004(015) 41104 .4.0 10.2(212) -1.182055(056)009(005)009(011)008(005)014(011)014(011)014(011)014(011)014(012)	40807	• 10	5.0(52	-3.83	132(41103	10	10.2(212)	-3.90	124(129)	
70 25.0(523) .10 .008(.003) 01110111 41105 .40 10.2(2122) .15 .007(.006) 70 25.0(523) 4.03 .033(023) 41107 .40 10.2(212) .210 .0664 70 25.0(522) 4.03 .135(.126) 034(033) 41107 .40 10.2(212) 4.06 .129(.125) 70 25.0(522) 6.01 .201(192) 044(049) 41107 .40 10.2(212) 4.06 .129(.125) 70 25.0(523) 11.87 .421 094(094) 41111 .40 10.2(212) 10.00 .345(.254) 70 25.0(523) 11.87 .442) 094(094) 41111 .40 10.2(212) 11.93 .436(.427) 70 25.0(523) 11.87 .442) 094(094) 41111 .40 10.2(212) 13.93 .436(.427) 70 25.0(523) 11.87 .442) 094(094) .41111 .40 10.2(212)	40808		5.0(52	-1.87	-)850		41104	.40	19.2(212)	-1.82	055(056)	
70 75,01523 7.08 .0731023 .0233022 41105 .40 10.27212 2.10 .068f066 70 25,01522 4.03 .1345126 0731023 41107 .40 10.27212 4.08 .1259 .1259 70 25,01523 7.98 .274f263 064f064 41109 .40 10.27212 10.00 .345f359 .183 70 25,01523 7.98 .274f263 064f064 41110 .40 10.27212 10.00 .345f359 .345f340 41111 .40 10.27212 10.00 .345f340 .34111 .40 10.27212 11.93 .436f340 .41111 .40 10.27212 11.93 .436f340 .41111 .40 10.27212 11.93 .436f340 .41111 .40 10.27212 11.93 .436f271 .4211 .4211 .4211 .4211 .4211 .4211 .4211 .4211 .4211 .4211 .4211 .4211 .4211	40804	. 70	5.0(523	•10		011(011)	41105	0.40	10.2(212)	.15		304(010)
70 25.015221 4.03 .135(.126) 035(033) 41107 .40 .129(.125) 70 25.015221 6.01 .201(.192) 0449 41108 .40 10.21212 6.06 .192(.125) 70 25.015221 6.01 .201(.192) 044(049) 41110 .40 10.21212 10.00 .345(.340) 70 25.015221 9.94 .385(.354) 084(084) 41110 .40 10.21212 10.00 .345(.340) 70 25.015221 11.87 .453(.442) 084(084) 41111 .40 10.21212 11.93 .436(.421) 70 25.01523 11.87 .453(.442) 084(094) 41111 .40 10.21212 11.93 .436(.421) 70 25.01524 13.89 .544(094) 011(011) 41113 .40 10.21212 11.93 .436(.421) 70 25.01524 13.314 .054(054) 01113 .40 10.21212 11.93 .	40810	. 70	5.0(523	2.0A	073(023(022)	41106	04.	10.21212)	2.10		015(021)
70 25.0(522) 6.01 .201(.192)044(044) 41108 .40 10.2(212) 6.06 .192(.188) 70 25.0(523) 7.98 .274(-253)064(064) 41110 .40 10.2(212) 10.00 70 25.0(523) 11.87 .455(.354)084(094) 41111 .40 10.2(212) 11.93 .434(.421) 70 25.0(523) 11.87 .453(.442)094(094) 41111 .40 10.2(212) 11.93 .434(.421) 70 25.0(523) 11.87 .453(.442)094(094) 41111 .40 10.2(212) 13.89 .524(.512) 70 25.0(523) 13.85 .560(.525)101(101) 41112 .40 10.2(212) 13.89 .524(.512) 70 25.1(524) 15.82 .540(.601)101(101) 41113 .40 10.2(212) 15.87 .614(.603) 70 25.0(523) 13.89 .540(.601)101(011) 70 25.0(523) 13.89 .540(.004)011(011) 71 25.0(523) 13.89 .540(.004)011(011) 72 25.0(523) 13.89 .540(.004)011(012) 73 25.0(523) 13.89 .540(.004)011(012) 74 25.0(523) 13.89 .540(.004)011(012) 75 35.0(77) 2.00 .074(.073)024(024) 75 35.0(77) 2.00 .074(.073)024(024) 75 35.0(77) 2.00 .074(.073)024(024) 75 35.0(77) 3.97 .141(.139)054(041) 75 35.0(77) 11.83 .476(.470)095(094) 75 35.0(77) 11.83 .476(.470)117(113) 75 35.0(77) 15.74 .560(.647)117(113)	40811	.70	5.01522	4.03	135(035(033)	41107	04.	10.2(212)	4.08		027(032)
70 25.0(523) 7.98 .274(.263) 064(064) 41109 .40 10.2(212) 8.04 .256(.256) 70 25.0(522) 9.94 .354(.423) 084(082) 41111 .40 10.2(212) 11.93 .436(.427) 70 25.0(523) 11.87 .4534 (.442) 094(094) 41111 .40 10.2(212) 11.93 .436(.427) 70 25.0(523) 11.87 .4534 (.442) 094(094) 41112 .40 10.2(212) 13.93 .524(.512) 70 25.0(523) 13.95 .654(.611) 106(103) 41113 .40 10.2(212) 13.99 .524(.512) 70 25.0(523) 15.87 .614(.603) .614(.603) .614(.603) .614(.603) 95 35.7(746) -7.82 -231(226) .041(.026) .006(.006) .904(.006) .904(.006) .904(.006) .904(.006) .904(.006) .904(.006) .904(.006) .904(.006) .904(.006) .904(.006) .904(.006)	40812	.70	5.0(522	6.01	2016	048(049)	41108	04.	10,2(212)	90.9		039(045)
70 25.0(522) 9.94 .365(.354) 084(087) 41110 .46 10.2(212) 11.93 .436(.327) 70 25.0(523) 11.87 .453(.442) 094(094) 41111 .40 10.2(212) 11.93 .436(.427) 70 25.0(523) 13.87 .453(.442) 101(101) 41112 .40 10.2(212) 13.89 .524(.512) 70 25.0(523) 15.82 .626(.611) 106(103) 41113 .40 10.2(212) 15.87 .614(.603) 70 25.0(523) .10 .009(.004) 010(011) 41113 .40 10.2(212) 15.87 .614(.603) 95 35.7(746) -7.82 2313(314) .054(.053) .054(.053) .054(.005) .954(.006)	40813	. 70	5.0(523	7.98	274(064(064)	41109	.40	2	A.04		053(062)
70 25.0(523) 11.87 .453(.442) 094(094) 41111 .40 10.2(212) 11.93 .436(.427) 70 25.0(523) 13.85 .540(.525) 101(101) 41112 .40 10.2(212) 13.89 .524(.512) 70 25.0(523) .626(.611) 106(013) 41113 .40 10.2(212) 15.87 .614(.603) 70 25.0(523) .009(.004) 016(011) 41113 .40 10.2(212) 15.87 .614(.603) 95 35.7(746) -7.82 231(226) .004(.004) 016(.006) .056(.006) .956(.006) <td>40814</td> <td>. 70</td> <td>5.01522</td> <td>46.6</td> <td>365(</td> <td>(280)180</td> <td>41110</td> <td>04.</td> <td>7</td> <td>10.00</td> <td></td> <td>074(091)</td>	40814	. 70	5.01522	46.6	365((280)180	41110	04.	7	10.00		074(091)
70 25.0(523) 13.85 .540(.525) 101(101) 41112 .40 10.2(212) 13.89 .524(.512) 70 25.1(524) 15.82 .626(.611) 106(103) 41113 .40 10.2(212) 15.87 .614(.603) 70 25.0(523) .10 .009(.004) 010(011) 41113 .40 10.2(212) 15.87 .614(.603) .95 35.7(746) -7.82 314(226) .041(.038) .056(.006) .056(.006) .056(.006) .056(.006) .074(.015) .074(.0	40815	07.	5.01523	11.87	453(094(094)	41111	04.	10.2(212)	11.93	_	091(097)
70 25.1(524) 15.82 .626(.611) 106(103) 41113 .40 10.2(212) 15.87 .614(.603) 108(.70 25.0(523) .10 .009(.004) 010(011) .054(.053) 108(.004(.038) .054(.053) .054(.053) 108(.054(.053) 108(.004) .056(.004) </td <td>40816</td> <td>. 10</td> <td>5.0(52</td> <td>13,85</td> <td>2401</td> <td>-101(-101)</td> <td>41112</td> <td>04.</td> <td>10.2(212)</td> <td>13.89</td> <td>_</td> <td>101(106)</td>	40816	. 10	5.0(52	13,85	2401	-101(-101)	41112	04.	10.2(212)	13.89	_	101(106)
.70 25.0(523) .10 .009(.004)010(011) .95 35.7(746) -7.82313(314) .054(.053) .95 35.7(746) -5.86231(226) .041(.038) .95 35.7(746) -3.90149(148) .025(.024) .95 35.7(746) -1.93068(069) .006(.006) .95 35.8(747) .01 .005(.006)014(015) .95 35.8(747) 2.00 .074(.073)024(028) .95 35.8(747) 3.97 .141(.139)042(028) .95 35.8(747) 7.90 .299(.296)079(079) .95 35.8(747) 13.77 .547(.564)117(117) .95 35.8(747) 13.77 .564(.564)117(117)	40817	. 70	5-11-5	15.82	979	106(103)	41113	.40	10.2(212)	15.87	j	_
.95 35.7(746) -7.82313(314) .054(.95 35.7(746) -5.86231(226) .041(.95 35.7(746) -1.90149(148) .025(.95 35.7(746) -1.93068(069) .026(.95 35.8(747) .01 .005(.006)014(95 35.8(747) 3.97 .141(.139)028(95 35.8(747) 3.97 .141(.139)058(95 35.8(747) 7.90 .299(.296)079(95 35.8(747) 11.83 .476(.472)105(95 35.8(747) 11.83 .476(.472)117(95 35.8(747)117(95 35.8(747)117(95 35.8(747)117(95 35.8(747)117(95 35.8(747)117(95 35.8(747)117(95 35.8(747)	40818	٠,70	5*0(52	.10	1600	010(011)						
95 35.7(746) -5.86231(226) .041(95 35.7(746) -1.93149(148) .025(95 35.7(746) -1.93068(069) .006(95 35.8(747) .01 .0074(073) .0274(073) .0274(95 35.8(747) 3.97 .141(139) .042(95 35.8(747) 3.97 .141(139) .042(95 35.8(747) 3.97 .389(386)095(95 35.8(747) 11.83 .476(473)105(95 35.8(747) 11.83 .476(473)117(95 35.8(747) 11.83 .476(473)117(95 35.8(747) 15.74 .650(647)127(95 35.8(747) 15.74 .650(647)127(276)	10604	.95	35.7(746)			. 1540						
95 35.7(746) -1.90149(148) .025(95) 35.7(746) -1.93068(069) .006(-	20604	.95	35.7(746)		231(226)	0416						
95 35.7(746) -1.93068(069)006(95 35.8(747)01055(005)014(95 35.8(747)01055(005)014(95 35.8(747) 3.97141(139)0621(95 35.8(747) 5.92213(210)058(95 35.8(747) 7.90299(296)079(95 35.8(747) 11.83476(473)105(95 35.8(747) 13.77656(647)127(95 35.8(747) 15.74650(647)127(271)	40403	• 95	35.7(746)		149							
.95 35.8(747) .01 .005(.006) .95 35.8(747) 2.00 .074(.073) .95 35.8(747) 3.97 .141(.139) .95 35.8(747) 7.90 .299(.296) .95 35.8(747) 17.90 .299(.296) .95 35.8(747) 13.77 .656(.470) .95 35.8(747) 13.77 .656(.647)	40604	• 95	35.7(746)		068(069)							
.95 35.8(747) 2.00 .074(.073) .95 35.8(747) 3.97 .141(.139) .95 35.8(747) 5.92 .213(.210) .95 35.8(747) 9.86 .389(.386) .95 35.8(747) 11.83 .476(.473) .95 35.8(747) 15.77 .564(.564)	40405	• 95	35.8(747)		0050	014(015)						
.95 35.8(747) 3.97 .141(.139) .95 35.8(747) 5.92 .213(.210) .95 35.8(747) 7.90 .299(.296) .95 35.8(747) 11.83 .476(.473) .95 35.8(747) 13.77 .564(.564)	40604	• 95	35.8(747)		0741	028(028)						
.95 35.8(747) 5.92 (213(.210) .95 35.8(747) 7.90 (299(.296) .95 35.8(747) 11.83 (476(.473) .95 35.8(747) 15.74 (564(.647) .95 35.8(747) 15.74 (566(.647)	40604	• 95	35.8(747)		141	042(041)						
.95 35.8(747) 7.90 .299(.296) .95 35.8(747) 9.86 .389(.386) .95 35.8(747) 11.83 .476(.472) .95 35.8(747) 15.74 .650(.647)	40408	• 95	35.8(747)		213(058(058)						
.95 35.8(747) 9.86 389(386)	40604	• 95	35.8(747)		7667	079(079)						
.95 35.8(747) 11.83 .476(.473) .95 35.8(747) 13.77 .564(.564) .95 35.8(747) 15.74 .650(.647)	40410	. 95	35.8(747)		3891	095(096)						
.95 35.8(747) 13.77 .564(.564) .	40911	• 95	35.8(747)		4761	105(103)						
.95 35.8(747) 15.74 .650(.647)127(40912	• 95	35.8(747)		1495	117(117)						
	40913	• 95	35.8(747)	15.	920	127(123)						

(b) T.E. Deflection, Full Span = 8.3°

nalysis number	Mach	Dynamic pressure, kN/m ² (psf)	Angle of attack, deg	Normal force coefficient, bal (integ press.)	Pitching moment coefficient, bal (integ press.)	Analysis Mach number number	Dynamic pressure, per kN/m² (psf)	c Angle of attack,	Normal force coefficient, bal (integ press.)	Pitching moment coefficient, bal (integ press.)
41211	1.05	(311)	17.84	265(.026(.030)	41505	31.96	6661 -7.80	232(234)	.014(.016)
1212	1.05	8.7(809)	-5.87	170	(700.)700.	•	5 31			- 1
1213	1.05	8.8(910)	06*6-	60	014(015)	41507	5 31.8(015(013)
11214	1.05	8.8(811)	-1.94	-)800 - -	036(035)		5 31.80		1600.	036(035)
1215	1.05	ε. ε.	. 02	~	057(054)		Z.		,075(050(049)
1216	1.05	£.9	•	_	072(069)	41510 .8	95 21.8(665)			062(060)
1217	1.05	8.9		_	(880°-)J60°-	511	5 31.80	551 3.97	.203(074(072)
1218	1.05	14.9(410)	16.5	.245(.279)	-:110(100)		5 31.8(. 273(.	(680,-)060,-
61719	1.05	A . A		_	123(115)	513	5 31.P(. 351(107(i06)
1220	1.05	A. A		_	134(128)	4	5 31.8(_	. 439(.	121(119)
1221	1.05	α	11.81	_	!41(138)		5 31.86	_	. 521(.	127(126)
11223	1.05	R.81		.596(.592)	149(146)	41516	5 31.80	6651 13.78	.604(.596)	134(130)
1224	1.05	8.8181		Ų	156(150)		5 31.8(664) 15.74	.684(.680)	136(134)
0	.70	4.9(5	-7.78	:221(:219)	.016(.015)	41601	.40 10.2(2	21 -7.75	209(+:225)	.026(.025)
1303	.70	.9152	-5. P4	141(1411		02	10.2		1300	.011(.013)
1304	.70	4.9(52	-3.88	063(063)			19.20	2121 -3.84		•
1305	. 70	24.9(520)	-1.92		' '		10.2		.010	023(028)
1306	.70	\sim	.07	(670.)970.	046(-:046)		10.26		.0716	035(040)
10611	.1.	24.9(520)	2.01		057(057)		10.10		131(.126)	346 (051)
1378	٠. د م	24.9(520)	4.01		06P(067)	41607 .	10.1		192(058(061)
1309	.70	24.9(520)	5.98		082(084)		10.11	9	.255.	070(077)
1310	. 70	24.9(520)	7.94	.340(.332)	1660:-)860:-		13.1	211) 8.01	. 3226 .	084(094)
11311	. 70	24.9(520)	9.89		114(114)		10.1(. 4046	103(110)
1315	.70	102516*42	11.97			115	.40 10.112	_	• 1565.	118(124)
1313	.70	24.9(520)	13.82	.595(.584)	127(129)	41612	10.1	2111 13.89	.581(.57	13
1314	. 7.0	24.9(520)	15.78	•	129(129)	41613 .4	0 10.1(_	.664(.653)	130(136)
1315	• 10	24.9(520)	1 ·	.077(.072)	044(048)					
4.0	46.	15.7(745)	~	251(252)	(710,)810,					
1402	• 95	35.7(745)	-5.89	-	.001(001)					
4	• 95	5.7174	-3.92	076(076)	015(015)					
40414	.95	2	-1.98	2	-:035(035)					
5051	• 65	5.7(74	٠. ا	٠	-:052(055)					
1406	. 95	5.6(74	1.96	140(065(064)					
40	• 95	144	3.95	.2081 .2051	079(078)					
6	• 95	5.6174	5.92	280(096(095)					
40	.95	5.6174	1.97	3616	114(116)					
7	. 95	5.6(74	0.94	2	126(121)					
4	66.	5.6174	11.79	2						
1412	95	35.6(744)	13.73	.606(.605)	140(140)					
1413	• 65	5.7(74	15.71	.686(.681)	146(145)					

Table A-9.—(Continued)

(c) T.E. Deflection, Full Span = 17.7 $^{\circ}$

Pitching moment	coefficient,	bal (integ press.)	05210461	064(061)	080(075)	1100 - 1500 -	(160-1676-	112(-111)	- 130(127)	1771 - 1771 -	158(-153)	168(1661	174(174)	-178(-1811	172(175)	1070	1640*-1660*-	053(058)	068(073)	081(086)	091(094)	102(102)	113(115)	126(1311	(161.)671.	152(- 154)	165(172)	-,171(-,179)	-172(-180)	1007													
Normal force	coefficient,	pai (integ press.)	10461071	024(023)	1056 . 0531			2671 2621		3801 3751	451(445)		_				15/011/0	001(005)	.069(.068)	.131(.129)		.248(.239)		13461 13451					7611 7581														
Angle of	attack,	deg	-7.89	-5.93	79.47	-2.00	20	1.96	30.8	α	7.94	9.83	11.76	13.72	15.70		14./-	-5.89	-3.88	-1.91	90.	2.04	4.02	5.97	70.7	06.0	11.97	13.80	15.79														
Dynamic	pressure,	KIN/M* (pst)	31.7(663)	31.716631	31-8(664)	31-8(664)	31-7(663)	31.716631	31.7(663)	31.916641	31.8(664)	31.8(654)	31.8(664)	31.8(664)	31.8(665)		10.11211	10.1(211)	10.2(212)	10.1(211)	10.2(212)	10.1(211)	19.2(212)	10.2(212)	10.2(2)2)	10.2(2)21	10.2(2)2)	10.2(2)2)	7														
	Mach	unuper	.85	.85	2,	8	8.5	α. υ.	. 8	8	. 85	8,5	.85	.85	.85		•	.40	.40	.40	04.	04.	.40	04.	6.7	04	4		040	•													
	Analysis	namper namper	42101	42102	42103	42104	42105	42106	42107	42108	42109	42110	42111	42112	45114	10667	10/24	42202	45503	42204	45205	4220€	42207	42208	42209	42210	42211	42212	42213	1													
Pitching moment	coefficient, hal (integrates)	od (micy press.)	(050)640 (1062(060))091(075)	_	_)126(120)			_)174(191)	_)175(181)	1050 - 1050			_	_	_	_		•			_		-		051(046)	•		_			_	_				i	
Normal force	coefficient, bal (integ press.)	read family and	153(150	065(057)	610.)610.	100(168(2316	.294(.294)	358(431(.)605	5861	1959	.7181 .725	8 8 C 18 8 C	1000	1		.132(.126		•	314(.382(.374)	1055	533(6176)169	762(1801 184	124(125)	038(032)	.044(.045	1216	183(.245(.244)	3116	3791	445(5271 .	603(673(740(.740)
Angle of	attack, deo	5	-7.97	-5.93	-3.98	-2.00	50.	1.96	3.92	5.87	7.85	9.30	11.75	13.73	15.69															00	-7.90	-5.93	-3.04	~2.02	20.1	1.91	3.90	5.84	7.82	9.78	11.76	13.71	15.68
Dynamic	pressure, kN/m² (osf)	,	38.7(809)	9.6	8.7	8.71	38.7(808)	8.6	8.7(9.7(38.7(808)	9.6	8.7(808	8.7(3.7(24-9(521)		1176)6*42	17516.47	24.9(521)	24.9(521)	25.0(522)	24.9(521)	24.9(521)	24.9(521)	24.9(521)	24.9(521)	24.9(521)	24.9(520)	24.9(521)	5.61 744	35.6(744)	35.6(744)	35.6(744)	35.6(744)	35.6(744)	35.6(744)	35.6(744)	35.6(744)	35.7(745)	35.7(745)	35.7(745)	35.7(745)
\vdash	Mach		1.0	1.0	1.0	1.0	1.0	1.0	٠,	1.0		1.0	1:0	1.0	0.1													۲.			•	٠	•	•	•		•	•	•	•	٠	•	•
	Analysis		41804	41805	41806	41807	41808	41809	41810	41811	41815	41814	41815	41817	41819	41902	41003	0001	+061+	41905	41996	41907	41908	41909	41910	11615	41912	41913	41014	41018	42005	42006	42007	42008	45008	42010	42011	42015	42013	45014	42015	42016	42017

(d) T.E. Deflection, Full Span = 30.2°

	40.04	Dynamic	Angle of	Normal force	Pitching moment		March	Dynamic	Angle of	Normal force	Pitching moment
number	number	kN/m ² (psf)	ditack, deg	bal (integ press.)	bal (integ press.)	number	number	kN/m ² (psf)	attack, deg	coefficient, bal (integ press.)	coerficient, bal (integ press.)
				,							
\sim	0	8.7	-7.95	084 (061)	16601080	42601	. x S	31.9(666)	-7.93	021(.093	1088(099)
53	۲,	8.7		90	099(110)	42602	.85	31.9(666)	16.5-	1680.)190.	102(11
~	0	8.8	,	97(115(127)	42603	. 85	31.9(666)	-4.00	41(_
53	ζ,	38.8(810)	,	152(131	42604	.85	31.9(666)	-2.03	.202(.228	_
23	0	9.7		2241		42605	.85	31.9(666)	100-		_
42316	1.05	38.8(810)		.2816 .3111		42606	. 95	31.9(666)	1.92	.319(.342	
5	0	8.7(3.88	342(1616	42607	. A 5		3.86		
3		8.8	5.86	1904		42404	9.85		5.85		
	C	8	7.81	4671		90969	2.0	0	7.87	5.191	192
, L			9.78	544		01367			70.0	5007	
, ל		. a	72 11		70. 1	0.034		31 014441	11.		
ט נ	•	0 0	11.	1010		110/4	0 0	100016-15	11.4/4		7.
9 6		10.000		•	1212-1161-	21924	0.0		77.61	101. 1461.	17*=) 061*= 1
~	1.05	38.8(310)	15.71	. (41(. //1)	184(293)	42613	• x ·	31.9(667)	15.69	618. 1261.	1202141(
C 4	.70	5.00	16.7-	(920.)560.	092(100)	42791	040	10.2(213)	.7.88	.019(.046	(660-)690 (
42402	.70	5.1(-5.95	97(_	42702	04.	.2(21	.5.89	7	-)780
0	2.	5.00	-3.97	1571	121(133)	42703	04.		-3.94	1881 1091	1660 -
42404	70	2	-2.05	2136	130 (142)	407.54	40	10.2(2)2	10.17		
42405			, ,		2	40464	•	10 2(212)		17. 17.	1237
70404				7777	1.:01*1.041*1	CO 124	•	121/12-01	10.	667 1017	
90424	9	2	* 6 • 1	3.50	1-121(164)	90174) (*	15.212.71	6. T		16511761 1
42401	. 73	5.0	3.03	95(165(178)	42707	04.	10.2(213)	3.96	9150 .416	_
42408	.70	5.0	5.87	611	179(189)	42708	.40	10.2(213)	5.92		_
42409	. 70	5.0	7.85	39(191(200)	45709	.40	10.2(213)	7.90	.520(.538	_
61525	• 70	2.0	9.84	000	192(204)	42710	04.	10.2(212)	9.86	_	
42411	• 70	5.0	11.76	A1 (200(210)	42711	040	10.2(212)	11.83	_	_
42412	. 7.9	25.0(522)	13.75	.760(.775)	206(222)	42712	.40	212	13.78	31 • 76	7 192(2
42413	.70	2.0(15.72	.821(.842)	(21	42713	04.	10.2(212)	15.76	.834(.856)197(227)
45414	.70	9.0(03	11	138(150)						
~	.95	35.7(746)	-1.93	038(016)	093(1031						
42503	.95	35.7(746)	-5.98	43(105(120)						
\sim	. 95	35.7(746)	-4.03	201	120(137)						
σ.	. 95	-	-7.05	106	135(154)						
~	• 95	۲.	- O.B.	195	145(161)						
42507	. 95	35.7(746)	1.90	940	55(
\sim	• 95	۲.	3.86	.364(.391)	167(182)						
\sim	• 95	æ	5.81	28(180(195)						
~	. 95	٣.	7.80	.487(.512)	182(195)						
~	. 95	æ	61.6	63(.	190(201)						
42512	• 95	35.8(747)	11.79	3(193(215)						
~	• 95	7.	13.69	07(196(210)						
42514	• 95	.8(74	15.67	.769(.794)	149(200)						

. Table A-9.—(Continued)

(e) T.E. Deflection, Full Span = -8.3°

Pitching moment coefficient, bal (integ press.)	.098(.100)	1	.108(.103) .092(.086) .073(.074) .057(.063) .057(.050) .072(.011) .010(002)	
Normal force coefficient, bal (integ press.)	228(241) 157(166) 090(098)	.050(.039) .142(.039) .232(.223) .329(.318)	203(219) 138(152) 076(090) 014(029) .048(.033) .125(.112) .213(.201) .301(.288)	
Angle of attack, deg	2.15	8.05 10.00 11.95 13.89	2.25 4.19 6.15 8.13 10.08 12.05 14.00	
Dynamic pressure, kN/m ² (psf)	31.9(667) 31.9(667) 32.0(668)	32.0(668) 32.0(668) 32.0(668) 32.0(668) 32.0(668)	10.2(213) 10.2(213) 10.2(213) 10.2(213) 10.2(214) 10.2(214) 10.2(214)	
Mach	 		44444444	
Analysis	43401 43402 43403	43405 43406 43406 43407 43408	43501 43502 43503 43504 43504 43504 43504 43507 43507	
Pitching moment coefficient, bal (integ press.)	.112(.124) .112(.124) .093(.103)	050(-005(-005(-005(-005(-005(-005(-005(.091(.092) .091(.092) .078(.079) .056(.067) .034(.053) .033(.031) .020(.016)	.128(.136) .108(.112) .091(.094) .075(.080) .055(.059) .031(.038) .023(.025) .004(.010)
Normal force coefficient, bal (integ press.)	240(256) 165(182) 090(106)	.077 (.062) .077 (.062) .176 (.262) .372 (.355) .468 (.451)	217(227)149(158)084(093)020(030)137(128)226(218)317(36)	247(259)172(179)030(061)054(041) .148(141) .242(272) .345(331)
Angle of attack, deg	2.14	9.97 11.90 13.86	2.17 4.15 4.15 6.11 8.08 10.03 12.00 13.94	2.13 4.09 6.06 8.02 9.77 11.92 13.86
Dynamic pressure, kN/m ² (psf)	38.9(813) 38.9(812) 38.9(812)	38.9(812) 38.9(812) 38.9(813) 38.9(813) 38.9(813)	25.1(524) 25.1(524) 25.1(524) 25.1(524) 25.1(524) 25.1(524) 25.1(524) 25.1(524) 25.1(524)	35.8(747) 35.8(747) 35.8(748) 35.8(748) 35.8(748) 35.8(748) 35.8(748)
Mach	1.05	1.05	077	************
Analysis	(3101 (3103 (3104 (3104	43106 43107 43108 43109 43111	43203 43203 43204 43206 43206 43207 43207 43209 43209	43301 43302 43303 43304 43304 43305 43304 43308 43308

Table A-9.—(Continued)

(f) T.E. Deflection, Full Span = -17.7°

Analysis number	Mach number	pressure, kN/m² (psf)	attack, deg	coefficient, bal (integ press.)	coefficient, bal (integ press.)	Analysis number	Mach	Dynamic pressure, kN/m ² (psf)	Angle of attack, deg	Normal force coefficient, bal (integ press.)	Pitching moment coefficient, bal (integ press.)
3805	1.05	39.0(814)	-7.65	610(638)	7776 . 1946	44105	. 85	32.016691	40	- 369(- 388)	1101)181
80	1.05	-	-5.68				.85	32.1(670)	.22	358(379)	
43807	1.05	81	-3.73	463(494)		10144	. 95	15.01669)	2.23	290(313)	
43808	•	81	-1.78	•	1012.)191.	1 44108	.85	32.0(669)	4.20	221(242)	
43809	•	8	. 22	327(358)	.1761 .199	1 44109	. P.5	32.0(669)	6.16	154(173)	
43810	•	81	2.20	•	.161(.184)		.85	32.0(668)	8.12	085(105)	
1186	•	814	4.15	193(222)	.147(.166		. 85	32.0(669)	10.08	.004(013)	
43812	1.05	39.0(815)	6.11	123(150)	.132(.149)		.85	32-1(670)	17.03	(110.)160.	
13814	•	81	8.10	032(064)	.111(.127)		.85	32.1(670)	13.98		
43815	1.05	81	10.01	.067(.035)	.088(.103		. 85	32.0(659)	15.93		
43817	•	81	11.97	(251.)691.	(110.)290.						
43818	1.05	81	13.92	.265(.236)	.048(.066	10244	4.	10.2(214)	ÚŁ.	344(360)	.165(.171)
3419	1.05	81	15.90	.361(.343)	050. 1620.	1 44202	04.	10.2(213)	2.29	278(293)	
						44203	.40	10.2(213)	4.24	215(225)	
43905	.70	1152	-7.58	648(659)	.2151 .222	1 44204	04.	10.2(213)	6.21	153(161)	
3906	.70	1152	-5.64	573(583)	.209(.212)	1 44205	040	10.2(213)	9.18	(660)680	
3907	. 70	1152	-3.66	•	(602.)661.		C \$.	10.2(214)	10.18	015(029)	
3908	.70	1152	-1.70	•		1 44207	04.	10.2(213)	12.11	(950.) 070.	(610.)580.
3404	• 10	1 (52	• 26	357(378)	.174(.185)	4420	.4C	10.2(213)	14.09	.158(.144)	(590.)690.
3910	.70	1 (524	2 - 23	•		1 44210	04.	10.2(213)	16.05	.250(.237)	.057(.053)
3911	• 10	1(524	4.24	•		_					
3912	۲.	1 (52	61.9	•		_					
3913	. 70	125)	8.16	088(104)		~					
3914	.70	1 (525	10.13	-) 500.		_					
3915	.70	925)	15.06			_					
3916	. 70	1 (52	14.03			_					
3917	• 10	5125	15.07			_					
3918	. 70	5 (526	• 28	357(378)	.175(.185)	•					
1004		35.9(749)	• 20	347(369)	.1804 .192	_					
4005		35.9(750)	2.18	278(302)	.163(.176)	-					
4003		35.9(749)	4.16	211(232)		-					
4004		35.9(750)	6.12	147(169)	.135(.144)	_					
44005	• 95	35.9(749)	8.07	-) 220-		•					
9004		35.9(750)	10.05			_					
2005		35.9(750)	11.97			•					
4008		35.9(750)	13.93	_•	_	_					
4004	96	35.9(750)	15.87	.317(.308)	.054(.057)	_					

Table A-9.—(Concluded)

(g) T.E. Deflection, Full Span = 0.0°

نادر

	Pitching moment	bal (integ press.)	035(034)	.053(05	067(064)	083(077)	()00(004)	(901.)601.	1260.) 260.		.050050)		(*10.)110.		241(030)	059(060)	076(070)	105(066)	(160.)060.		_		(970.)20.		-	031(031)	050(060)	070(068)	080(011)	.095(.083)	10.)	_		.029(.024)		1600 1966	1000	018(025)	040(045)	058(063)		
	Normal force	bal (integ press.)	1	.313(.307)		010	.595(.587)	404(401)	•	234(235)	149(149)	(1/2:-)2/0:-	(*00'-)100'		2.)(.3	*•) 9	.596(.589)	379(3821	2	215(227)	136(141)	063(068)	.0660.0590	.131(.122)	•	(086.)085.		.) 4/	355(353)	274(282)	196(200)	122(128)		.005(007)				.275(.265)	_ :	(++++)20+4	•
	Angle of	deg ,	7.94	9.88	11.83	13.78	15.74	-7.79	-5.84	-3.85	-1.91	.04	70.7	20.5	7.92	9.89	11.82	15.75	-7.73	-5.80	-3.83	-1.89	2.08	4.03	66.5	7.98	11.88	13.84	15.79	-7.69	-5.74	-3.76	-1-80	.17	7.15	71.4	60.09	8.05	10.03	11.96	10.44	13.41
	Dynamic	kN/m ² (psf)	35.9(749)	35.9(749)	35.4(749)	35.9(749)	35.9(750)	_	7.5(37.5(784)	37.5(783)	37.51 (34)	37 51784)	37.5(784)	37.5(784)	37.5(783)	1.6	37.5(784)	0	2.01	2.01	2.0(32.0(658)	2.00	2.0(2.0(66	3 5	· ~	32.0(669)	10.2(214)	2(21	7 (21	┛.	10.2(213)	7	2	<u>۔</u> 2		.2(21	10.21214)	
	Mach	number	.95	.95	. 95	• 95	. 45	1.00	1.00	1.00	1.00	00.1	00.	000	1.00	1.00	1.00	1.00	. A.S	. A 5	• 85	.85		.85	. 45	28.		.85	. R.S	040	04.	.40	04.	04.	040	0 4	.40	· 40	· •	٠ ٠		•
	Analysis	number	44709	44710	44711	44112	44/13	44805	44806	10855	44808	TC 2 2 4 4	- 1 x 3 x 3 x 3	44812	44813	44814	44815	44817	44901	44902	86654	40644	444705	4490R	60655	44910	64912	44013	44014	10055	45005	45003	45004	45006	45007	45008	42004	01055	45011	45012	42013	5
			_																																							
	Pitching moment	bal (integ press.)	.103(.112)	•			(260-17		726(022)	.046(044)		0811 .0861	•					010(009)	046(047)	1650*-1650*-	(020)690*	.01		.16 .115)			.026(.033)		04(000)	047(042)	066(062)	082(075)	.096(095)	(901)		1001	.085)	.0671	.048)		.014)	.012)
Γ			'	0.	.074(.052	1/20.	- 005		Ċ	č	•	140	043	.025(.01	100.	010	9,00	050	90.	-,076	7:.•	.111	Ç, (• c		•	004(0.0	06	40.1	00.	-110		0660	_	1690	047(.027	210.	01510
	Normal force coefficient.	bal (integ press.)	.391(398)	.311(314)	.226(232)	143(151)	.003(072)	077(.066)	153(-139)	- 1822. 1982		. (cos)cos .	· / K4 (- · / 54)	29(136)	.057(064)	06(002)	58(.058)	131(119) - 181	94(.291)	34(.373) -	75(•460) -	55(.551) -	7ii• 1000•=110	05(412)	.322(325)	35(739)	.071(077)	01(000)		37(.224)	(116.)65	(805-)61	06(.504) -	- (185.) -		. (+04)	12(312) .085(28(227)	+3(145)	55(079)	75(004)	.015(-
-	Š	deg bal (integ press.)	391(398)	311(314)	226(232)	143(151)	.003(072)	.077(.066)	153(-139)	- 239(.228) -		. (606)006	. 1407.1347	-129(136)	057(064)	.006(002)	.068(.058)	31(.119)	.294(.291)	- 384(.373) -	- 475(.460) -	. 565(.551) -	20.0 1000 - 1100 -	.75405(412)	.80322(325)	235(734)	.07071(077)	04 .001(006)	71(.062)	95 .237(.224)	9.91 .329(.317)	1.85 .419(.408)	- 506(.504) -	5.79 .591(.587)		7.78397(404)	5.83312(312) .085(90228(227)	1.91143(145)	.09065(072)	.05 .002(004)	98 .136(.127)015(-
	Jo Jo) deg	0.3(841) -7.69391(398)	0.3(841) -5.75311(314)	0.3(841) -3.78226(232)	0.3(841) -1.83143(151)	12/0*-1500*- 11* (242) 1641) 2-08 (1702)	0.3(841) 4.09 .077(.066)	0.3(841) 6.01 .153(.139)	3(941) 7.97 .239(.228) -		. 1606-1606- 4/4- 162611-6	5.1(524) -5.16744(744) . 5.1(524) -3.81 - 504(504)	5-1(524) -1-86129(136)	5.1(525) .15057(064)	5.1(524) 2.10 .006(002)	5.1[525] 4.09 .068(.058)	(611.) (81.6)	5.1(525) 9.96 .294(.291)	5.1(524) 11.92 .384(.373) -	5.1(524) 13.90 .475(.460) -	5-1(524) 15-95 -565(-551) -	20. 1696. 1966. 61. 182611.6	(815) -7.75405(412)	(815) -5.80322(325)	[814] -3.86235(234) [815] -1.80 - 150(154)	(814) -07071 (077)	1915) 2.04 .001(006)	01 .071(.062)	[814] 7.95 .237(.224)	18151 9.01 .329(.317)	(815) 11.85 .419(.408)	- (405°) 506° - 18.81 (418)	- 15.81 15.79 .591(.587) -		.9(750) -7.78397(404)	5.9(749) -5.83312(312) .085(5.9(749) -3.90228(227)	5.9(749) -1.91143(145)	5.9(749) .09065(073)	5-9(749) 2-05 -002(004)	.03 .064(.061)011(.98 .136(.127)015(-
	Angle of Nor	kN/m² (psf) deg	10 40.3(841) -7.69391(398)	.10 40.3(841) -5.75311(314)	.10 40.3(841) -3.78226(232)	.10 40.3(841) -1.83143(151)	0.3(84)) 2.08 (0.07(1.072)	.10 40.3(841) 4.09 .077(.066)	.10 40.3(841) 6.01 .153(.139)	-10 40.3(941) 7.97 .239(.228) -	the state of the s	. [COS.][OS.] -1.4/4 -1.500[507] .	70 25 115241 -3.16784(784) .	25.1(524) -1.86129(136)	70 25-1(525) .15057(064)	70 25-1(524) 2-10 .006(002)	25.1(525) 4.08 .068(.058)	70 25-1(525) 6-03 -131(-119) -	25.1(525) 9.96 .294(.291)	- 11.92 . 384(.373) -	- 1094. 1574. 13.90 .475(.460) -	25.1(524) 15.95 .565(.551) -	20* [600*=]360*= 61* [426]1*62 [33	.05 39.0(815) -7.75405(412)	.05 39.0(815) -5.80322(325)	.05 34.0(814) -3.86235(234) 05 30.0(815) -1 80 - 150(156)	05 39.0(814) 05 - 071(077)	.05 39.0(815) 2.04 .001(006)	[8]4) 4.0] .07](.062)	.05 39.0(814) 7.95 .237(.224)	.05 39.0(815) 9.91 .329(.317)	.05 39.0(815) 11.85 .419(.408)	- (905,)405, 13.81 .506(.504) -	- 05 39.0(815) 15.79 .591(.587) -		5 35.9(750) -7.78397(404)	5 35.9(749) -5.83312(312) .085(5 35.9(749) -3.90228(227)	5 35.9(749) -1.91143(145)	5 35.9(749) .09065(079)	25.4(749) 2.05 .002(004)	5-91749) 4-03 -0881 -0511 5-91749) 5-98 -1361 -127)0151-

APPENDIX B

DATA REDUCTION AND PRESENTATION

DATA EDITING AND INTEGRATION PROCEDURE

DATA EDITING

Some cases were encountered with these data where the methods of data editing available within the integration programs were not adequate. During approximately the first half of the test, the scanivalve which recorded lower surface wing box (between the hingelines) pressures for the sections at 2 y/b = 0.09, 0.20, 0.35, and 0.50 was intermittent at an angle of attack of 16° . This problem was eventually traced to an electrical problem in the strut. Rather than sacrifice all of these data, these incorrect measurements were replaced by extrapolating the data from angles of attack of 12° and 14° .

Because the plotting program assumes that geometry for all configurations is the same and the chordwise location of orifices on the various model parts was not absolutely identical, points were added as required. Therefore, some interpolations or extrapolations using selected orifices were done before the integration program was used. The row of orifices on the body at the wing-body intersection was extended in front of the wing and aft of the wing by interpolating between the orifices located at 90° and 135°.

To obtain comparisons of the results of some of the theoretical methods, the experimental data were required as a loading parameter along the body length or as pressure distributions at constant body stations. To obtain this information, a set of body stations was selected and at each of these, orifices were defined so that the interpolation would be along constant x/c lines on the streamwise wing sections. A linear interpolation was performed between buttock lines. This representation was verified by comparing the integrations of these data to those obtained using the data at the actual orifices. All three integrated coefficients matched within 1%.

Several methods were introduced into the integration program to replace or add data points to account for:

- Plugged or leaking orifices or bad data points
- Extrapolating the data to leading and trailing edges
- Hingeline discontinuities in the pressure data

These procedures were selected by code for each point. The codes are described in the following list and are illustrated in figure B-1. An additional use of these codes is to ensure that only measured pressure data ($CODE_i = 0$) are identified with symbols on the plots.

Figure B-1.—Codes Used To Interpolate and Extrapolate

If $CODE_i = 0$, use pressure as entered on tape (measured pressure)

- = 20, use pressure as entered on tape (previously replaced value)
- = 1, interpolate from adjacent points
- = 2, extrapolate from two preceding points
- = 3, extrapolate from two following points
- = 4, set equal to preceding point
- = 5, set equal to following point
- = 6, interpolate using points (i-2) and (i+1)
- = 7, interpolate using points (i-1) and (i+2)

If CODE_i = negative of above, evaluate as above but average with corresponding point on opposite surface—used for leading and trailing edges of section only

where

i identifies the position of the point from the leading edge of the upper or lower surface per section

Editing of the pressure data is done in the following order:

- 1. Each section is done separately.
- 2. Each surface (upper or lower) per section is done in the following sequence:
 - a. Starting at leading edge, points with codes of 1, 2, and 4
 - b. Starting at trailing edge, points with codes of 3, 5, 6, and 7
- 3. Leading- and trailing-edge points with negative codes are evaluated. Upper and lower surface codes need not both be negative and need not be the same negative code.
- 4. Extrapolated pressure coefficients are checked to see that they are greater than vacuum and less than stagnation pressure. These limits are shown in figure B-2 for the range of Mach numbers tested. This option was not used for theoretical data.
 - a. Vacuum, equation valid for all Mach numbers

$$C_{\text{p,vacuum}} = -\frac{2.0}{\gamma M^2}$$
 (B-1)

Figure B-2.—Pressure Limits Applied to Experimental Data

b. Stagnation pressure, equation is dependent on type of flow

For isentropic flow:

$$C_{p,\text{stag}} = \frac{2.0}{\gamma M^2} \left\{ \left[1.0 + 0.5(\gamma - 1.0)M^2 \right]^{\frac{\gamma}{\gamma - 1.0}} - 1.0 \right\}$$
 (B-2)

Across a normal shock wave:

$$C_{\text{p,stag}} = \frac{2.0}{\gamma \text{M}^2} \left\{ \left[\frac{\gamma + 1.0}{2.0} \text{ M}^2 \right]^{\frac{\gamma}{\gamma - 1.0}} \left[\frac{\gamma + 1.0}{2.0 \text{ } \gamma \text{M}^2 - (\gamma - 1.0)} \right]^{\frac{1.0}{\gamma - 1.0}} - 1.0 \right\}$$
(B-3)

Equation (B-2) is used for $M \le 1.0$. An average of equations (B-2) and (B-3) is used for M > 1.0.

where

M is Mach number γ is gas constant ≈ 1.40 for air

CALCULATION OF NET PRESSURE COEFFICIENTS

The net lift distribution on the section is calculated by:

$$C_{p,\text{net}} = C_{p,\text{lower}} - C_{p,\text{upper}}$$
 (B-4)

INTEGRATION OF PRESSURE DATA

To account for the effects on integrated coefficients of the deflected control surfaces, each streamwise section (of which there are NSECT) is divided into segments (of which there are NSEG). These segments are the leading-edge control surface, wing box, and trailing-edge control surface. The upper and lower surfaces of each are integrated separately over the number of points available ((number of orifices +2) = NP1) and are based on the segment chord length c. Sign conventions are shown in the following sketch. The equations, which use a rectangular integration process, follow.

Segment Coefficients

Integration of the pressures for each segment per surface per section is the first step.

Normal force coefficient C_{n,s}

$$C_{n,s} = 0.5 \sum_{i=2}^{NP1} \left[\left(C_p \right)_i + \left(C_p \right)_{i-1} \right] \left[\left(\frac{x}{c} \right)_i - \left(\frac{x}{c} \right)_{i-1} \right]$$
 (B-5)

$$C_{n,s,net} = C_{n,s,lower} - C_{n,s,upper}$$
 (B-6)

• Chord force coefficient C_{C,S}

$$C_{c,s} = 0.5 \sum_{i=2}^{NP1} \left[(C_p)_i + (C_p)_{i-1} \right] \left[\left(\frac{z}{c} \right)_i - \left(\frac{z}{c} \right)_{i-1} \right]$$
 (B-7)

$$C_{c.s.net} = C_{c.s.upper} - C_{c.s.lower}$$
 (B-8)

Pitching moment coefficient about segment leading edge C_{m,s}

$$C_{\text{m.s}} = 0.5 \sum_{i=2}^{\text{NP1}} \left[\left(C_{p} \right)_{i} + \left(C_{p} \right)_{i-1} \right] \left[\left(\frac{x}{c} \right)_{i-1} + \frac{\left(\frac{x}{c} \right)_{i} - \left(\frac{x}{c} \right)_{i-1}}{2.0} \right] \left[\left(\frac{x}{c} \right)_{i} - \left(\frac{x}{c} \right)_{i-1} \right]$$

$$= 0.25 \sum_{i=2}^{\text{NP1}} \left[\left(C_{p} \right)_{i} + \left(C_{p} \right)_{i-1} \right] \left[\left(\frac{x}{c} \right)_{i}^{2} - \left(\frac{x}{c} \right)_{i-1}^{2} \right]$$
(B-9)

$$C_{\text{m,s,net}} = C_{\text{m,s,upper}} - C_{\text{m,s,lower}}$$
 (B-10)

• Pitching moment coefficient about 0.25 c of segment C_{m.25c,s}

$$C_{\text{m.25c,s}} = C_{\text{m.s}} + 0.25 C_{\text{n.s}}$$
 (B-11)

Section Coefficients

Total section coefficients are obtained by summing the segment coefficients, taking into account segment deflections as defined in the following sketch and segment chord lengths. These coefficients are based on the section chord length $c_{\rm T}$.

• Normal force coefficient C_n

$$C_{n} = \sum_{j=1}^{NSEG} \left(C_{n,s}\right)_{j} \left(\frac{c_{s}}{c}\right)_{j} \cos \delta_{j} - \sum_{j=1}^{NSEG} \left(C_{c,s}\right)_{j} \left(\frac{c_{s}}{c}\right)_{j} \sin \delta_{j}$$
 (B-12)

• Chord force coefficient C_c

$$C_c = \sum_{j=1}^{NSEG} \left(C_{c,s} \right)_j \left(\frac{c_s}{c} \right)_j \cos \delta_j + \sum_{j=1}^{NSEG} \left(C_{n,s} \right)_j \left(\frac{c_s}{c} \right)_j \sin \delta_j$$
 (B-13)

• Pitching moment coefficient about section leading edge C_m

$$C_{m} = \sum_{j=1}^{NSEG} (C_{m,s})_{j} \left(\frac{c_{s}}{c}\right)_{j}^{2} + \left[(C_{n,s})_{j} \left(1.0 - \cos \delta_{1}\right) + (C_{c,s})_{j} \sin \delta_{1} \right] \left(\frac{c_{s}}{c}\right)_{1}^{2}$$

$$-\sum_{j=2}^{NSEG} \left[(C_{n,s})_{j} \cos \delta_{j} - (C_{c,s})_{j} \sin \delta_{j} \right] \left(\frac{c_{s}}{c}\right)_{1} \left[\frac{x_{L.E.,s} - x_{L.E.}}{c} \right]$$
(B-14)

where

cs is segment chord, cm

c is section chord, cm

 δ is deflection of segment relative to section chord plane, leading edge up, degrees

x_{L.E.,s} is leading edge of segment, cm

x_{L.E.} is leading edge of section, cm

Pitching moment coefficient about 0.25 c of section C_{m.25c}

$$C_{\text{m.25c}} = C_{\text{m}} + 0.25 C_{\text{n}}$$
 (B-15)

Total Surface Coefficients

To obtain total surface coefficients, the assumption is made that the section coefficients apply for a finite distance on both sides of each row of orifices. The equations for total surface coefficients are as follows:

Normal force coefficient C_N

$$C_N = \frac{1}{S} \sum_{k=1}^{NSECT} (C_n)_k (S_h)_k$$
 (B-16)

Chord force coefficient C_C

$$C_C = \frac{1}{S} \sum_{k=1}^{NSECT} (C_c)_k (S_h)_k$$
 (B-17)

Bending moment coefficient C_B

$$C_{B} = \frac{1}{S(b/2)} \sum_{k=1}^{NSECT} (C_{n})_{k} (S_{h}y)_{k}$$
 (B-18)

Pitching moment coefficient C_M about 0.25 M.A.C.

$$C_{M} = \frac{1}{S\bar{c}} \sum_{k=1}^{NSECT} \left((C_{m})_{k} (S_{h}c)_{k} + (C_{n})_{k} (S_{h})_{k} x_{ref} - [(x_{L.E.})_{k} - x_{L.E..M.A.C.}] \right)$$
(B-19)

where

ē is reference chord for pitching moment, cm

x_{L.E.,M.A.C.} is leading edge of M.A.C., cm

x_{ref} is reference station for pitching moment, cm (0.25 M.A.C.)

x_{L.E.} is leading edge of section chord, cm

b/2 is reference length for bending moment, cm

Determination of Geometric Constants Required for Integration

To obtain total surface coefficients, the assumption is made that the section coefficients apply for a finite distance on both sides of each row of orifices. The input geometry required to calculate the areas, and products of area and length required for the summation of total surface coefficients, are shown in the following sketch.

Section area:

$$S_{h} = \int_{y_{in}}^{y_{out}} \int_{x_{L} + \tan \Lambda_{L.E.}y}^{x_{T} + \tan \Lambda_{T.E.}y} dy dx$$

$$= c_{r} (y_{out} - y_{in}) + 0.5 (\tan \Lambda_{T.E.} - \tan \Lambda_{L.E.}) (y_{out}^{2} - y_{in}^{2})$$
 (B-20)

Product of section area and mean chord:

$$S_{hc} = \int_{y_{in}}^{y_{out}} \int_{x_{L} + \tan \Lambda_{L,E,y}}^{x_{T} + \tan \Lambda_{L,E,y}} c \, dy \, dx$$

$$= c_{r}^{2} (y_{out} - y_{in}) + c_{r} (\tan \Lambda_{L,E,-} - \tan \Lambda_{L,E,-}) (y_{out}^{2} - y_{in}^{2})$$

$$+ \frac{(\tan \Lambda_{T,E,-} - \tan L,E,-)^{2}}{3.0} (y_{out}^{3} - y_{in}^{3}) \qquad (B-21)$$

Product of section area and moment arm:

$$S_{h}y = \int_{y_{in}}^{y_{out}} \int_{x_{L} + \tan \Lambda_{L,E,y}}^{x_{T} + \tan \Lambda_{T,E,y}} (y - y_{ref}) dy dx$$

$$= \frac{c_{r} - (\tan \Lambda_{T,E,y} - \tan \Lambda_{L,E,y}) y_{ref}}{2.0} (y_{out}^{2} - y_{in}^{2})$$

$$+ \frac{(\tan \Lambda_{T,E,y} - \tan \Lambda_{L,E,y})}{3.0} (y_{out}^{3} - y_{in}^{3}) - c_{r} y_{ref} (y_{out} - y_{in})$$
 (B-22)

• Product of section area and leading edge coordinate:

$$S_{h}x = \int_{y_{in}}^{y_{out}} \int_{x_{L} + \tan \Lambda_{L.E.}y}^{x_{T} + \tan \Lambda_{T.E.}y} x_{L.E.} dy dx$$

$$= x_{L} c_{r} (y_{out} - y_{in}) + \frac{\tan \Lambda_{L.E.} c_{r} + x_{L} (\tan \Lambda_{T.E.} - \tan \Lambda_{L.E.})}{2.0} (y_{out}^{2} - y_{in}^{2})$$

$$+ \tan \Lambda_{L.E.} \frac{(\tan \Lambda_{T.E.} - \tan \Lambda_{L.E.})}{3.0} (y_{out}^{3} - y_{in}^{3})$$
(B-23)

Total surface reference area:

$$S = \sum_{k=1}^{NSECT} (S_h)_k$$
 (B-24)

• M.A.C. and X coordinate of M.A.C. leading edge:

$$\bar{c} = \frac{1}{S} \sum_{k=1}^{NSECT} (S_h c)_k$$
 (B-25)

$$x_{L.E..M.A.C.} = \frac{1}{S} \sum_{k=1}^{NSECT} (s_h x)_k$$
 (B-26)

The required integration constants for the wing and body are shown in table B-1.

DATA PRESENTATION

Computer programs were used to generate plots in order to minimize the amount of manual labor. The following sections describe the forms of data presentation used in this report.

PRESSURE COEFFICIENTS

Chordwise distributions of upper surface, lower surface, and net (lower-upper) pressure coefficients are plotted as a function of local x/c. Any interpolated or extrapolated values are used in fairing the lines, but only actual measured values are plotted as symbols. In cases where the measurement at a particular orifice was not valid for a particular test point, the symbol is not shown on the plot either for local surface or net distributions. Longitudinal pressure distributions of surface pressures are presented for the body.

The variation of net pressure coefficients with angle of attack at specific orifice locations is compared with theoretical predictions.

Isobar plots are drawn on the surface planform after interpolating the pressure coefficients from the input locations (for this model all interpolated and extrapolated data from the integration program were used) to a more dense rectangular grid of streamwise lines (orifice stations are retained) and constant percent chord lines. This is a linear interpolation and extrapolation process which ignores the presence of all discontinuities such as deflected control surfaces. The final isobars in the regions near such discontinuities will therefore be inaccurate.

Table B-1.—Integration Constants

Reference area = 3128.45 cm^2 M.A.C. = 75.311 cmHalf span = 50.80 cm

Pitching moment referenced to 0.25 M.A.C. Bending moment referenced to 0.086 $\frac{b}{2}$ (y_{ref} = 4.374 cm) L.E. of M.A.C. @ B.S. 87.760 cm

Wing

2y/b	Δy (b/2)	Area cm ²	Area • chord	Area • (y-y _{ref})
0.09	0.0425	219.69	22 357.	167.
0.20	0.1575	733.51	67 415.	4 206.
0.35	0.1500	580.54	44 374.	7 857.
0.50	0.1400	437.93	27 084.	9 148.
0.65	0.1600	377.64	17 722.	10 729.
0.80	0.1300	210.35	6 794.	7 528.
0.93	0.1400	129.79	2 487.	5 505.

Body

Longitudinal section	Area cm ²	Area • L
1	356.61	81 258.
2	504.32	114 916.
3	70.94	16 164.

Each set of four adjacent points in the rectangular grid is treated in turn and a fifth point is added to form four triangles as shown in the following sketch. The pressure coefficient at the center point is calculated by averaging the outer four.

The values of pressure coefficient which will be mapped are determined by marking off a series of specified increments above and below zero, up to the maximum and minimum pressure coefficients which exist in the rectangular grid. The upper and lower surfaces are treated separately and can have different increments between isobars.

The isobars are drawn by checking each triangle to determine if the pressure coefficients at the ends of any triangle side are above and below the desired value, in which case the isobar must cross that triangle side. The location of the crossing is found by linear interpolation between the end points, and when two adjacent triangle sides are found to contain the desired pressure coefficient a small segment of the isobar is drawn. As each set of four points is processed, the whole isobar will be constructed from many of these small segments. A letter symbol identifying the pressure coefficient value is generated wherever an isobar crosses one of the rows of orifices.

SECTION AND SPANWISE LOADING CHARACTERISTICS

Section aerodynamic coefficients C_n and C_m are presented as a function of angle of attack.

The spanwise loading is illustrated by plots of the loading parameters C_{nc}/\overline{c} and $C_{m.25c}$ c^2/\overline{c} along the span of the surfaces.

TOTAL SURFACE CHARACTERISTICS

The total surface coefficients C_N , C_M , and C_B are shown as a function of angle of attack.

REFERENCES

- 1. Mugler, John P., Jr.: Basic Pressure Measurements at Transonic Speeds on a Thin 45° Sweptback Highly Tapered Wing With Systematic Spanwise Twist Variations-Untwisted Wing. NASA MEMO 10-20-58L, 1958.
- 2. Mugler, John P., Jr.: Basic Pressure Measurements at Transonic Speeds on a Thin 45° Sweptback Highly Tapered Wing With Systematic Spanwise Twist Variations-Wing With Linear Spanwise Twist Variation. NASA MEMO 12-28-58L, 1959.
- 3. Mugler, John P., Jr.: Basic Pressure Measurements at Transonic Speeds on a Thin 45° Sweptback Highly Tapered Wing With Systematic Spanwise Twist Variations-Wing With Quadratic Spanwise Twist Variation. NASA MEMO 2024-59L, 1959.
- 4. Mugler, John P., Jr.: Basic Pressure Measurements at Transonic Speeds on a Thin 45° Sweptback Highly Tapered Wing With Systematic Spanwise Twist Variations-Wing With Cubic Spanwise Twist Variation. NASA MEMO 5-12-59L, 1959.
- 5. Mugler, John P., Jr.; and Woodall, Elizabeth R.: Basic Pressure Measurements at a Mach Number of 1.43 on a Thin 45° Sweptback Highly Tapered Wing With Systematic Spanwise Twist Variations. NASA Technical Note D-528, 1960.
- 6. Manro, Marjorie E.; Tinoco, Edward N.; Bobbitt, Percy J.; and Rogers, John T.: "Comparison of Theoretical and Experimental Pressure Distributions on an Arrow-Wing Configuration at Transonic Speed." *Aerodynamic Analyses Requiring Advanced Computers*. NASA SP-347, 1975, pp. 1141-1188.

Figure 1.—General Arrangement and Characteristics

Figure 2.—Spanwise Twist Distribution for the Model Wing

Figure 3.—Pressure Orifice Locations

Figure 4.—Control Surface Bracket Details

(a) Schematic

(b) Test Section

Figure 5.—Boeing Transonic Wind Tunnel

Figure 6.— Variation of Reynolds Number and Dynamic Pressure With Mach Number

Figure 7.— Data Acquisition and Reduction System—Boeing Transonic Wind Tunnel

Figure 8.—Wind Tunnel Photographs—Flat Wing, Rounded L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0°

Figure 9.—Wind Tunnel Photograph—Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0°

Figure 10.—Wind Tunnel Photographs—Twisted Wing, Rounded L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 4.1°

Figure 11.—Wind Tunnel Photograph—Flat Wing, Rounded L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 8.3°

Figure 12.—Wind Tunnel Photograph—Flat Wing, Rounded L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = -30.2°

Figure 13.—Wind Tunnel Photograph—Flat Wing, Rounded L.E.; L.E. Deflection, Inboard = 0.0°, Outboard = 12.8°; T.E. Deflection, Inboard = 17.7°, Outboard = 0.0°

(a) Upper Surface Isobars

Figure 15.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.40

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 15.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 15.-(Continued)

M = 0.40 (run 269) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 15.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 15.–(Continued)

M = 0.40 (run 269) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 15.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 15.-(Continued)

M = 0.40 (run 269) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 15.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 15.-(Concluded)

119

(a) Upper Surface Isobars

Figure 16.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.70

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 16.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 16.-(Continued)

 $\begin{array}{ll} M = 0.70 & (\text{run 263}) \\ \text{Flat wing, round L.E.} \\ \text{L.E. deflection, full span} &= 0.0^{\circ} \\ \text{T.E. deflection, full span} &= 0.0^{\circ} \end{array}$

(c) (Concluded)

Figure 16.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 16.-(Continued)

M = 0.70 (run 263) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 16.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 16.-(Continued)

M = 0.70 (run 263) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 16.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 16.-(Concluded)

PAGE INTENTIONALLY BLANK

(a) Upper Surface Isobars

Figure 17.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.85

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 17.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 17.-(Continued)

M = 0.85 (run 267) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 17.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 17.-(Continued)

M = 0.85 (run 267) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 17.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 17.-(Continued)

M = 0.85 (run 267) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 17.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 17.-(Concluded)

-PAGE INTENTIONALLY BLANK

(a) Upper Surface Isobars

Figure 18.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.95

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 18.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 18.–(Continued)

M = 0.95 · (run 266) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 18.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 18.-(Continued)

M = 0.95 (run 266) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 18.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 18.-(Continued)

M = 0.95 (run 266) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 18.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 18.-(Concluded)

(a) Upper Surface Isobars

Figure 19.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.00

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 19.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 19.-(Continued)

M = 1.00 (run 268) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 19.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 19.-(Continued)

M = 1.00 (run 268) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 19.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 19.-(Continued)

M = 1.00 (run 268) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 19.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 19.-(Concluded)

PAGE INTENTIONALLY BLANK

(a) Upper Surface Isobars

Figure 20.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.05

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 20.–(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 20.-(Continued)

M = 1.05 \cdot (run 264) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 20.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 20.-(Continued)

M = 1.05 (run 264) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 20.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 20.-(Continued)

M = 1.05 (run 264) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 20.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 20.-(Concluded)

PAGE INTENTIONALLY BLANK

(a) Upper Surface Isobars (run 20)

Figure 21 —Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.11

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars (run 20)

Figure 21.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions (run 20)

Figure 21.-(Continued)

 $M = 1.11 \quad (run 20)$

Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 21.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions (run 20)

Figure 21.-(Continued)

M = 1.11 (run 20) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 21.-(Continued)

(e) Net Chordwise Pressure Distributions (run 20)

Figure 21.–(Continued)

M = 1.11 (run 20) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 21.-(Continued)

Note: ΔC_p = increment between adjacent isobars

(f) Upper Surface Isobars (run 262)

Figure 21.-(Continued)

Note: ΔC_p = increment between adjacent isobars

(g) Lower Surface Isobars (run 262)

Figure 21.-(Continued)

(h) Upper Surface Chordwise Pressure Distributions (run 262)

Figure 21.-(Continued)

M = 1.11 (run 262) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(h) (Concluded)

Figure 21.-(Continued)

(i) Lower Surface Chordwise Pressure Distributions (run 262)

Figure 21.-(Continued)

 $M = 1.11 \quad (run\ 262)$ Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(i) (Concluded)

Figure 21.-(Continued)

(j) Net Chordwise Pressure Distributions (run 262)

Figure 21.–(Continued)

M = 1.11 (run 262) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(j) (Concluded)

Figure 21.-(Continued)

 $M = 1.11 \quad (run 20)$ Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(k) Spanload Distributions and Section Aerodynamic Coefficients (run 20)

Figure 21.-(Continued)

(I) Spanload Distributions and Section Aerodynamic Coefficients (run 262)

Figure 21.-(Concluded)

(a) Section Aerodynamic Coefficients - Normal Force

Figure 22.—Wing Experimental Data—Effect of Angle of Attack and Mach Number; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0°

Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 22.-(Continued)

(b) Section Aerodynamic Coefficients — Pitching Moment

Figure 22.-(Continued)

Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 22.-(Continued)

Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

PAGE INTENTIONALLY BLANK

(c) Wing Aerodynamic Coefficients

Figure 22.-(Concluded)

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 23.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.40°

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 23.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 23.-(Continued)

M = 0.40 (run 368) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 23.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 23.-(Continued)

M = 0.40 (run 368) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 23.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 23.-(Continued)

M = 0.40 (run 368 Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 23.–(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

PAGE INTENTIONALLY BLANK

Figure 23.-(Concluded)

, and the second

(a) Upper Surface Isobars

Figure 24.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.70

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 24.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 24.-(Continued)

M = 0.70 (run 366) Flat wing, sharp L.E.

L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 24.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 24.–(Continued)

M = 0.70 (run 366) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 24.-(Continued)

(e): Net Chordwise Pressure Distributions

Figure 24.-(Continued)

M = 0.70 (run 366) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 24.-(Continued)

PAGE INTENTIONALLY BLANK

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 24.–(Concluded)

(a) Upper Surface Isobars

Figure 25.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L. E.; L. E. Deflection, Full Span = 0.0° ; T. E. Deflection, Full Span = 0.0° ; M = 0.85

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 25.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 25.-(Continued)

M = 0.85 (run 372) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 25.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 25.-(Continued)

M = 0.85 (run 372) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 25.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 25.-(Continued)

M = 0.85 (run 372) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded).

Figure 25.-(Continued)

PAGE INTENTIONALLY BLANK

(7) Spanload Distributions and Section Aerodynamic Coefficients

Figure 25.-(Concluded)

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 26.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.95

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 26.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 26.-(Continued)

M = 0.95 (run 374) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 26.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 26.–(Continued)

 $M = 0.95 \quad (run 374)$

Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 26.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 26.-(Continued)

M = 0.95 (run 374) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 26.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

PAGE INTENTIONALLY BLANK

Figure 26.- (Concluded)

(a) Upper Surface Isobars

Figure 27.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L. E.; L. E. Deflection, Full Span = 0.0° ; T. E. Deflection, Full Span = 0.0° ; M = 1.00

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 27.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 27.-(Continued)

M = 1.00 (run 373) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 27.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 27.-(Continued)

M = 1.00 (run 373) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 27.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 27.-(Continued)

M = 1.00 (run 373) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 27.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

PAGE INTENTIONALLY BLANK

Figure 27.-(Concluded)

(a) Upper Surface Isobars

Figure 28.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.05

(b) Lower Surface Isobars

Figure 28.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 28.-(Continued)

M = 1.05 (run 367) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 28.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 28.-(Continued)

M = 1.05 (run 367) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 28.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 28.-(Continued)

M = 1.05 (run 367) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 28.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 28.-(Concluded)

252)
PAGE INTENTIONALLY BLANK

Note: 20p Moralising Sociation adjustices

(a) Upper Surface Isobars

Figure 29.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.11

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 29.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 29.-(Continued)

M = 1.11 (run 365) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 29.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 29.-(Continued)

M = 1.11 (run 365) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 29.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 29.-(Continued)

M = 1.11 (run 365) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 29.-(Continued)

M = 1.11 (run 365) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 29.-(Concluded)

262 PAGE INTENTIONALLY BLANK

263

(a) Section Aerodynamic Coefficients - Normal Force

Figure 30.—Wing Experimental Data—Effect of Angle of Attack and Mach Number; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°

Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 30.-(Continued)

(b) Section Aerodynamic Coefficients - Pitching Moment

Figure 30.-(Continued)

Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 30.-(Continued)

Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) Wing Aerodynamic Coefficients

PAGE INTENTIONALLY BLANK

Figure 30.-(Concluded)

(a) Upper Surface Isobars

Figure 31.—Wing Experimental Data—Effect of Leading Edge Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.40°

Note: ΔC_p = increment between adjacent isobars

(a) (Concluded)

Figure 31.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions

Figure 31.-(Continued)

M = 0.40Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 31.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions

Figure 31.-(Continued)

 $\begin{array}{l} \text{M} = 0.40 \\ \text{Flat wing} \\ \text{L.E. deflection, full span} = 0.0^{\text{O}} \\ \text{T.E. deflection, full span} = 0.0^{\text{O}} \end{array}$

(c) (Concluded)

Figure 30.-(Continued)

(d) Net Chordwise Pressure Distributions

Figure 31.-(Continued)

M = 0.40Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 31.–(Continued)

(e) Section Aerodynamic Coefficients - Normal Force

Figure 31.-(Continued)

M = 0.40 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 31.-(Continued)

(f) Section Aerodynamic Coefficients - Pitching Moment

Figure 31.-(Continued)

M = 0.40 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(f) (Concluded)

Figure 31.-(Continued)

M = 0.40 Flat wing

L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(g) Spanload Distributions

Figure 31.-(Continued)

(h) Wing Aerodynamic Coefficients

Figure 31.-(Concluded)

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 32.-Wing Experimental Data—Effect of Leading Edge Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.85

Note: ΔC_p = increment between adjacent isobars

(a) (Concluded)

Figure 32.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions

Figure 32.-(Continued)

M = 0.85Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 32.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions

Figure 32.-(Continued)

M = 0.85Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 32.-(Continued)

(d) Net Chordwise Pressure Distributions

Figure 32.-(Continued)

M = 0.85

Flat wing
L.E. deflection, full span = 0.0°
T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 32.-(Continued)

(e) Section Aerodynamic Coefficients - Normal Force

Figure 32.-(Continued)

M = 0.85 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 32.-(Continued)

(f) Section Aerodynamic Coefficients - Pitching Moment

Figure 32.-(Continued)

M = 0.85 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(f) (Concluded)

Figure 32.-(Continued)

 $\begin{array}{l} M = 0.85 \\ \hbox{Flat wing} \\ \hbox{L.E. deflection, full span} = 0.0^{\circ} \\ \hbox{T.E. deflection, full span} = 0.0^{\circ} \\ \end{array}$

(g) Spanload Distributions

Figure 32.-(Continued)

(h) Wing Aerodynamic Coefficients

Figure 32.- (Concluded)

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 33.—Wing Experimental Data—Effect of Leading Edge Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.05

(a) (Concluded)

Figure 33.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions

Figure 33.-(Continued)

(b) (Concluded)

Figure 33.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions

Figure 33.-(Continued)

M = 1.05 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 33.-(Continued)

(d) Net Chordwise Pressure Distributions

Figure 33.-(Continued)

M = 1.05 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 33.-(Continued)

(a) Section Aerodynamic Coefficients - Normal Force

Figure 33.-(Continued)

M = 1.05 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 33.–(Continued)

(f) Section Aerodynamic Coefficients — Pitching Moment

Figure 33.-(Continued)

M = 1.05 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(f) (Concluded)

Figure 33.-(Continued)

M = 1.05 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(g) Spanload Distributions

Figure 33.–(Continued)

(h) Wing Aerodynamic Coefficients

Figure 33.- (Concluded)

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 34.—Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.40°

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 34.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 34.-(Continued)

M = 0.40 (run 450) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 34.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 34.-(Continued)

 $\begin{array}{lll} M = 0.40 & (run \, 450) \\ Twisted wing, round L.E. \\ L.E. deflection, full span = <math>0.0^{\circ}$ T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 34.-(Continued)

(a) Net Chordwise Pressure Distributions

Figure 34.-(Continued)

M = 0.40 (run 450) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 34.-(Continued)

M = 0.40 (run 450) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(f) Spanload Distributions and Section Aerodynamic Coefficients

PAGE INTENTIONALLY BEANK

Figure 34.- (Concluded)

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 35.—Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.70

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 35.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 35.-(Continued)

M = 0.70 (run 445) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 35.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 35.-(Continued)

M = 0.70 (run 445) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 35.-(Continued)

(a) Net Chordwise Pressure Distributions

Figure 35.~(Continued)

M = 0.70 (run 445) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 35.-(Continued)

M = 0.70 (run 445) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(f) Spanload Distributions and Section Aerodynamic Coefficients

PAGE INTENTIONALLY BLANK

Figure 35.- (Concluded)

(a) Upper Surface Isobars

Figure 36.—Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.85

(b) Lower Surface Isobars

Figure 36.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 36.-(Continued)

M = 0.85 (run 449) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 36.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 36.-(Continued)

M = 0.85 (run 449) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 36.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 36.-(Continued)

M = 0.85 (run 449) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 36.-(Continued).

(f) Spanload Distributions and Section Aerodynamic Coefficients

PAGE INTENTIONALLY BLANK

Figure 36. -(Concluded)

(a) Upper Surface Isobars

Figure 37.—Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.95

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 37.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 37.-(Continued)

M = 0.95 (run 447) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 37.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 37.-(Continued)

M = 0.95 (run 447) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 37.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 37.–(Continued)

M = 0.95 (run 447) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 37.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 37.-(Concluded)

350
PAGE INTENTIONALLY BLANK

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 38.—Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.00

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 38.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 38.-(Continued)

M = 1.00 (run 448) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 38.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 38.-(Continued)

M = 1.00 (run 448) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 38.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 38.-(Continued)

M = 1.00 (run 448) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 38.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 38.-(Concluded)

PAGE INTENTIONALLY BLANK

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 39.—Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.05°

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 39.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 39.-(Continued)

M = 1.05 (run 446) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 39.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 39.-(Continued)

M = 1.05 (run 446) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 39.–(Continued)

(e) Net Chordwise Pressure Distributions

Figure 39.-(Continued)

M = 1.05 (run 446) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 39.–(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 39.-(Concluded)

PAGE INTENTIONALLY BLANK

(a) Upper Surface Isobars

Figure 40.-Wing Experimental Data—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.10

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 40.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 40.-(Continued)

M = 1.10 (run 444) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 40.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 40.-(Continued)

M = 1.10 (run 444) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 40.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 40.-(Continued)

M = 1.10 (run 444) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 40.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 40.- (Concluded)

PAGE INTENTIONALLY BLANK

(a) Section Aerodynamic Coefficients - Normal Force

Figure 41.—Wing Experimental Data—Effect of Angle of Attack and Mach Number; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°

Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 41.-(Continued)

(b) Section Aerodynamic Coefficients - Pitching Moment

Figure 41.-(Continued)

(b) (Concluded)

Figure 41.-(Continued)

Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) Wing Aerodynamic Coefficients

Figure 41.-(Concluded)

PAGE INTENTIONALLY BLANK

(a) Upper Surface Isobars

Figure 42.-Wing Experimental Data—Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.40

(a) (Concluded)

Figure 42.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions

Figure 42.-(Continued)

M = 0.40 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 42.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions

Figure 42.-(Continued)

 $\begin{array}{l} \text{M} = 0.40 \\ \text{Round L.E.} \\ \text{L.E. deflection, full span} = 0.0^{O} \\ \text{T.E. deflection, full span} = 0.0^{O} \end{array}$

(c) (Concluded)

Figure 42.-(Continued)

(d) Net Chordwise Pressure Distributions

Figure 42.-(Continued)

M = 0.40 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 42.-(Continued)

(e) Section Aerodynamic Coefficient - Normal Force

Figure 42.-(Continued)

M = 0.40 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 42.-(Continued)

(f) Section Aerodynamic Coefficient - Pitching Moment

Figure 42.-(Continued)

M = 0.40 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(f) (Concluded)

Figure 42.-(Continued)

M = 0.40 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(g) Spanload Distributions

Figure 42.-(Continued)

 $\begin{array}{ll} M = 0.40 \\ \text{Round L.E.} \\ \text{L.E. deflection, full span} = 0.0^{\circ} \\ \text{T.E. deflection, full span} = 0.0^{\circ} \end{array}$

(h) Wing Aerodynamic Coefficients

Figure 42.-(Concluded)

(a) Upper Surface Isobars

Figure 43.-Wing Experimental Data-Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.85

Note: ΔC_p = increment between adjacent isobars

(a) (Conduded)

Figure 43.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions

Figure 43.-(Continued)

M = 0.85Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 43.–(Continued)

(c) Lower Surface Chordwise Pressure Distributions

Figure 43.-(Continued)

M = 0.85 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 43.-(Continued)

(d) Net Chordwise Pressure Distributions

Figure 43.-(Continued)

M = 0.85 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 43.-(Continued)

(e) Section Aerodynamic Coefficient - Normal Force

Figure 43.-(Continued)

M = 0.85 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 43.-(Continued)

(f) Section Aerodynamic Coefficient — Pitching Moment

Figure 43.-(Continued)

M = 0.85 Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, inboard = 0.0°

(f) (Concluded)

Figure 43.-(Continued)

M = 0.85 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(g) Spanload Distributions

Figure 43.-(Continued)

 $\begin{array}{ll} M = 0.85 \\ \text{Round L.E.} \\ \text{L.E. deflection, full span} = 0.0^{\circ} \\ \text{T.E. deflection, full span} = 0.0^{\circ} \end{array}$

(h) Wing Aerodynamic Coefficients

Figure 43.-(Concluded)

(a) Upper Surface Isobars

Figure 44.-Wing Experimental Data-Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.05

Note: ΔC_p = increment between adjacent isobars

(a) (Concluded)

Figure 44.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions

Figure 44.-(Continued)

M = 1.05Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 44.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions

Figure 44.-(Continued)

$$\label{eq:mass_model} \begin{split} \text{M} = & 1.05\\ \text{Round L.E.}\\ \text{L.E. deflection, full span} = & 0.0^O\\ \text{T.E. deflection, full span} = & 0.0^O\\ \end{split}$$

(c) (Concluded)

Figure 44.-(Continued)

(d) Net Chordwise Pressure Distributions

Figure 44.-(Continued)

M = 1.05 Round L.E.

L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 44.-(Continued)

(e) Section Aerodynamic Coefficient - Normal Force

Figure 44.-(Continued)

 $\begin{array}{ll} M = 1.05 \\ Round L.E. \\ L.E. \ deflection, \ full \ span = 0.0^O \\ T.E. \ deflection, \ full \ span = 0.0^O \end{array}$

(e) (Concluded)

Figure 44.-(Continued)

(f) Section Aerodynamic Coefficient - Pitching Moment

Figure 44.-(Continued)

M = 1.05 Round L.E. L.E. deflection, full span = 0° T.E. deflection, full span = 0°

(f) (Concluded)

Figure 44.-(Continued)

M = 1.05 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(g) Spanload Distributions

Figure 44.-(Continued)

M = 1.05 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(h) Wing Aerodynamic Coefficients

Figure 44.-(Concluded)

(a) Upper Surface Chordwise Pressure Distributions

Figure 45.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 5.1°; T.E. Deflection, Full Span = 0.0°; M = 0.40

M = 0.40 (run 183) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 45.-(Continued)

(b) Lower Surface Chordwise Pressure Distributions

Figure 45.-(Continued)

M = 0.40 (run 183) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 45.-(Continued)

(c) Net Chordwise Pressure Distributions

Figure 45.-(Continued)

M = 0.40 (run 183) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 45.-(Continued)

(d) Spanload Distributions and Section Aerodynamic Coefficients

Figure 45.-(Concluded)

Note: ΔC_p = increment between adjacent isobars

(a): Upper Surface Isobars

Figure 46.-Wing Experimental Data-Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 5.1° ; T.E. Deflection, Full Span = 0.0° ; M = 0.85

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 46.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 46.-(Continued)

M = 0.85 (run 182) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 46.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 46.-(Continued)

M = 0.85 (run 182) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 46.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 46.-(Continued)

M = 0.85 (run 182) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 46.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 46.- (Concluded)

(a) Upper Surface Chordwise Pressure Distributions

Figure 47.-Wing Experimental Data-Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 5.1°; T.E. Deflection, Full Span = 0.0°; M = 1.05

M = 1.05 (run 180) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 47.-(Continued)

(b) Lower Surface Chordwise Pressure Distributions

Figure 47.-(Continued)

M = 1.05 (run 180) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 47.-(Continued)

(c) Net Chordwise Pressure Distributions

Figure 47.-(Continued)

M = 1.05 (run 180) Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 47.-(Continued)

(d) Spanload Distributions and Section Aerodynamic Coefficients

Figure 47 - (Concluded)

PAGE INTENTIONALLY BLANK

(a) Section Aerodynamic Coefficients - Normal Force

Figure 48.—Wing Experimental Data—Effect of Angle of Attack and Mach Number; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 5.1° ; T.E. Deflection, Full Span = 0.0°

Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 48.-(Continued)

(b) Section Aerodynamic Coefficients - Pitching Moment

Figure 48.-(Continued)

Flat wing, round L.E. L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 48.-(Continued)

Flat wing, round L.E.

L.E. deflection, full span = 5.1° T.E. deflection, full span = 0.0°

(c) Wing Aerodynamic Coefficients

Figure 48.- (Concluded)

PAGE INTENTIONALLY BLANK

461

Figure 49.-Wing Experimental Data-Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 0.0°; M = 0.40

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 49.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 49.-(Continued)

M = 0.40 (run 98) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 49.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 49.-(Continued)

M = 0.40 (run 98) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 49.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 49.-(Continued)

M = 0.40 (run 98) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 49.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 49.- (Concluded)

Figure 50.-Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span \approx 12.8°; T.E. Deflection, Full Span \approx 0.70

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 50.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 50.-(Continued)

M = 0.70 (run 100) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 50.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 50.-(Continued)

M = 0.70 (run 100) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 50.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 50.-(Continued)

M = 0.70 (run 100) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 50.-(Continued)

(f) - Spanload Distributions and Section Aerodynamic Coefficients

Figure 50.- (Concluded)

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 51.-Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 0.0°; M = 0.85

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 51.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 51.-(Continued)

M = 0.85 (run 102) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 51.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 51.-(Continued)

M = 0.85 (run 102) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 51.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 51.-(Continued)

M = 0.85 (run 102) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 51.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

PAGE INTENTIONALLY BLANK

Figure 51.- (Concluded)

(a) Upper Surface Isobars

Figure 52.-Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 0.0°; M = 0.95

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 52.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 52.-(Continued)

M = 0.95 (run 101) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 52.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 52.-(Continued)

M = 0.95 (run 101) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 52.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 52.-(Continued)

M = 0.95 (run 101) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 52.-(Continued)

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 52.-(Concluded)

Figure 53.-Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.;

L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 0.0°; M = 1.05

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 53.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 53.-(Continued)

M = 1.05 (run 99) Flat wing, round L.E. L.E. deflection, full span = 12.8°

T.E. deflection, full span = 12.8

(c) (Concluded)

Figure 53.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 53.-(Continued)

M = 1.05 (run 99) Flat wing, round L.E.

L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 53.-(Continued)

(e) Net Chordwise Pressure Distributions

Figure 53.-(Continued)

M = 1.05 (run 99)
Flat wing, round L.E.
L.E. deflection, full span = 12.8°
T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 53.-(Continued)

M = 1.05 (run 99)
Flat wing, round L.E.
L.E. deflection, full span = 12.8°
T.E. deflection, full span = 0.0°

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 53.- (Concluded)

PAGE INTENTIONALLY BLANK

Figure 54.—Wing Experimental Data—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 0.0°; M = 1.11

Note: ΔC_p = increment between adjacent isobars

(b) Lower Surface Isobars

Figure 54.-(Continued)

(c) Upper Surface Chordwise Pressure Distributions

Figure 54.-(Continued)

(c) (Concluded)

Figure 54.-(Continued)

(d) Lower Surface Chordwise Pressure Distributions

Figure 54.-(Continued)

M = 1.11 (run 97)
Flat wing, round L.E.
L.E. deflection, full span = 12.8°
T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 54.–(Continued)

(e) Net Chordwise Pressure Distributions

Figure 54.-(Continued)

M = 1.11 (run 97)
Flat wing, round L.E.
L.E. deflection, full span = 12.8°
T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 54.-(Continued)

M = 1.11 (run 97)
Flat wing, round L.E.
L.E. deflection, full span = 12.8°
T.E. deflection, full span = 0.0°

(f) Spanload Distributions and Section Aerodynamic Coefficients

Figure 54.- (Concluded)

(a) Section Aerodynamic Coefficients - Normal Force

Figure 55.—Wing Experimental Data—Effect of Angle of Attack and Mach Number; Flat Wing,
Round L.E.; L.E. Deflection, Full Span = 12.8°; T.E. Deflection, Full Span = 0.0°

Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 55.-(Continued)

(b) Section Aerodynamic Coefficients - Pitching Moment

Figure 55.-(Continued)

Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 55.-(Continued)

Flat wing, round L.E.

L.E. deflection, full span = 12.8°

T.E. deflection, full span = 0.0°

(c) Wing Aerodynamic Coefficients

Figure 55.- (Concluded)

PAGE INTENTIONALLY BLANK

Note: ΔC_p = increment between adjacent isobars

(a) Upper Surface Isobars

Figure 56.—Wing Experimental Data—Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection, Full Span = 0.0° ; M = 0.40

(a) (Concluded)

Figure 56.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions, $lpha\!pprox\!0.0^\circ$ and 8.0°

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 56.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions, $\,\alpha\,\approx\,0.0^{\circ}$ and 8.0°

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 56.-(Continued)

(d) Net Chordwise Pressure Distributions, $\, \alpha \, \approx \, 0.0^{\circ} \, \text{and} \, \, 8.0^{\circ} \,$

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 56.-(Continued)

(e) Upper Surface Chordwise Pressure Distributions, $\alpha \approx 4.0^{\circ}$ and 12.0°

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(e) (Concluded)

Figure 56.-(Continued)

(f) Lower Surface Chordwise Pressure Distributions, $\alpha \approx 4.0^{\circ}$ and 12.0°

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(f) (Concluded)

Figure 56.-(Continued)

(g) Net Chordwise Pressure Distributions, $\, \alpha \, \approx 4.0^{\circ} \,$ and $\, 12.0^{\circ} \,$

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(g) (Concluded)

Figure 56.-(Continued)

(h) Section Aerodynamic Coefficient - Normal Force

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(h) (Concluded)

Figure 56.-(Continued)

(i) Section Aerodynamic Coefficient - Pitching Moment

Figure 56.-(Continued)

M = 0.40Flat wing, round L.E. T.E. deflection, full span = 0.0°

(i) (Concluded)

Figure 56.-(Continued)

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(j) Spanload Distributions

Figure 56.-(Continued)

M = 0.40Flat wing, round L.E. T.E. deflection, full span = 0.0°

(k) Wing Aerodynamic Coefficients

Figure 56.- (Concluded)

(a) Upper Surface Isobars

Figure 57.-Wing Experimental Data—Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection, Full Span = 0.0° ; M = 0.85

Note: ΔC_p = increment between adjacent isobars

(a) (Concluded)

Figure 57.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions, $\alpha \approx 0.0^{\circ}$ and 8.0°

Figure 57.-(Continued)

M = 0.85 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 57.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions, $\, \alpha \, \approx \, 0.0^{\circ} \, {\rm and} \, 8.0^{\circ} \,$

Figure 57.-(Continued)

M = 0.85 Flat wing, round L.E. T.E. deflection, full span = 0.00

(c) (Concluded)

Figure 57.-(Continued)

(d) Net Chordwise Pressure Distributions, $\alpha \approx 0.0^{\circ}$ and 8.0°

Figure 57.-(Continued)

M = 0.85 Flat wing, round L.E. L.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 57.-(Continued)

(e) Upper Surface Chordwise Pressure Distributions, $\alpha \approx 4.0^{\circ}$ and 12.0°

Figure 57.-(Continued)

M = 0.85 Flat wing, round L.E. T.E. deflection, full span $\approx 0.0^{\circ}$

(e) (Concluded)

Figure 57.-(Continued)

(f) Lower Surface Chordwise Pressure Distributions, $\alpha \approx 4.0^{\circ}$ and 12.0 $^{\circ}$

Figure 57.-(Continued)

M = 0.85 Flat wing, round L.E.

T.E. deflection, full span = 0.0°

(f) (Concluded)

Figure 57.-(Continued)

(g) Net Chordwise Pressure Distributions, $\alpha \approx 4.0^{\circ}$ and 12.0°

Figure 57.-(Continued)

M = 0.85Flat wing, round L.E. T.E. deflection, full span = 0.0°

(g) (Concluded)

Figure 57.-(Continued)

(h) Section Aerodynamic Coefficient - Normal Force

Figure 57.-(Continued)

M = 0.85 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(h) (Concluded)

Figure 57.–(Continued)

(i) Section Aerodynamic Coefficient — Pitching Moment

Figure 57.-(Continued)

M = 0.85Flat wing, round L.E. T.E. deflection, full span = 0.0°

(i) (Concluded)

Figure 57.-(Continued)

M = 0.85 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(j) Spanload Distributions

Figure 57.-(Continued)

(k) Wing Aerodynamic Coefficients

Figure 57.-(Concluded)

(a) Upper Surface Isobars

Figure 58.-Wing Experimental Data—Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection, Full Span = 0.0°; M = 1.05

(a)\(Concluded)

Figure 58.-(Continued)

(b) Upper Surface Chordwise Pressure Distributions, $\, \alpha \, \approx \, 0.0^{\circ} \, {\rm and} \, 8.0^{\circ} \,$

Figure 58.-(Continued)

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 58.-(Continued)

(c) Lower Surface Chordwise Pressure Distributions, $\, lpha \, \approx \, 0.0^{\circ} \, {
m and} \, 8.0^{\circ} \,$

Figure 58.-(Continued)

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(c) (Concluded)

Figure 58.-(Continued)

(d): Net Chordwise Pressure Distributions, $\alpha \approx 0.0^{\circ}$ and 8.0°

Figure 58.-(Continued)

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(d) (Concluded)

Figure 58.-(Continued)

(e) Upper Surface Chordwise Pressure Distributions, $\, lpha \, \approx \, 4.0^{\circ} \, {
m and} \, 12.0^{\circ} \,$

Figure 58.-(Continued)

M = 1.05Flat wing, round L.E. T.E deflection, full span = 0.0°

(e):(Concluded)

Figure 58.-(Continued)

(f) Lower Surface Chordwise Pressure Distributions, $\alpha \approx 4.0^{\circ}$ and 12.0°

Figure 58.-(Continued)

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0o

(f) (Concluded)

Figure 58.-(Continued)

(g) Net Chordwise Pressure Distributions, $\, \alpha \, \approx \, 4.0^{\circ} \, \mathrm{and} \, 12.0^{\circ} \,$

Figure 58.-(Continued)

M = 1.05Flat wing, round L.E. T.E. deflection, full span = 0.0°

(g) (Concluded)

Figure 58.-(Continued)

(h) Section Aerodynamic Coefficient - Normal Force

Figure 58.-(Continued)

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0°

 $\{h\}_i(Concluded)$

Figure 58.-(Continued)

(i) Section Aerodynamic Coefficient — Pitching Moment

Figure 58.-(Continued)

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(i) (Concluded)

Figure 58.-(Continued)

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0°

(j) Spanload Distributions

Figure 58.-(Continued)

M = 1.05Flat wing, round L.E. T.E. deflection, full span = 0.0°

(k) Wing Aerodynamic Coefficients

Figure 58.-(Concluded)

Figure 59.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.40

M = 0.40 (run 269) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 59.-(Concluded)

Figure 60.-Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.70°

M = 0.70 (run 263) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 60.-(Concluded)

Figure 61 – Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.85

M = 0.85 (run 267) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 61.-(Concluded)

Figure 62.-Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.95

M = 0.95 (run 266) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 62.-(Continued)

Figure 63 – Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.00°

M = 1.00 (run 268) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 63.-(Concluded)

Figure 64.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.05

M = 1.05 (run 264) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 64.- (Concluded)

Figure 65.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.11

M = 1.11 (run 20) Flat wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(a) (Concluded)

Figure 65.-(Continued)

(b) Data from run 262

Figure 65.-(Continued)

M = 1.11 (run 262) Flat wing, Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

(b) (Concluded)

Figure 65.-(Concluded)

Figure 66.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.40°

M = 0.40 (run 368) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 66.-(Concluded)

Figure 67.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 0.85

M = 0.85 (run 372) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 67. –(Concluded)

Figure 68.-Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Sharp L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.05

M = 1.05 (run 367) Flat wing, sharp L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 68.-(Concluded)

Figure 69.—Body Surface Longitudinal Pressure Distributions—Effect of L.E. Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.40

M = 0.40 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 69.-(Concluded)

Figure 70.–Body Surface Longitudinal Pressure Distributions—Effect of L.E. Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.85

M = 0.85 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 70.-(Concluded)

Figure 71.—Body Surface Longitudinal Pressure Distributions—Effect of L.E. Shape With Angle of Attack; Flat Wing; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; M = 1.05

M = 1.05 Flat wing L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure.71.-(Concluded)

Figure 72.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0° ; T.E. Deflection, Full Span = 0.0° ; $M = 0.40^{\circ}$

M = 0.40 (run 450) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 72.-(Concluded)

Figure 73.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.85

M = 0.85 (run 449) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 73.-(Concluded)

Figure 74.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Twisted Wing, Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.05

M = 1.05 (run 446) Twisted wing, round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 74.-(Concluded)

Figure 75.—Body Surface Longitudinal Pressure Distributions—Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.40

M = 0.40 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 75.-(Concluded)

Figure 76.—Body Surface Longitudinal Pressure Distributions—Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 0.85

M = 0.85 Round L.E. L.E. deflection, full span = 0.0° T.E. deflection, full span = 0.0°

Figure 76.-(Concluded)

Figure 77.—Body Surface Longitudinal Pressure Distributions—Effect of Wing Twist With Angle of Attack; Round L.E.; L.E. Deflection, Full Span = 0.0°; T.E. Deflection, Full Span = 0.0°; M = 1.05

 $\begin{array}{ll} M = 1.05 \\ \text{Round L.E.} \\ \text{L.E. deflection, full span} = 0.0^{O} \\ \text{T.E. deflection, full span} = 0.0^{O} \\ \end{array}$

Figure 77.-(Concluded)

Figure 78.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8° ; T.E. Deflection, Full Span = 0.0° ; M = 0.40

M = 0.40 (run 98) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

Figure 78.-(Concluded)

Figure 79.—Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8° ; T.E. Deflection, Full Span = 0.0° ; M = 0.85

M = 0.85 (run 102) Flat wing, round L.E. L.E. deflection, full span = 12.8° T.E. deflection, full span = 0.0°

Figure 79.-(Concluded)

Figure 80.-Body Surface Longitudinal Pressure Distributions—Effect of Angle of Attack; Flat Wing, Round L.E.; L.E. Deflection, Full Span = 12.8° ; T.E. Deflection, Full Span = 0.0° ; M = 1.05

M = 1.05 (run 99)
Flat wing, round L.E.
L.E. deflection, full span = 12.8°
T.E. deflection, full span = 0.0°

Figure 80.-(Concluded)

Figure 81.—Body Surface Longitudinal Pressure Distributions—Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection, Full Span = 0.0° ; M = 0.40

M = 0.40 Flat wing, round L.E. T.E. deflection, full span = 0.0°

Figure 81.-(Concluded)

Figure 82.—Body Surface Longitudinal Pressure Distributions—Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection, Full Span = 0.0°; M = 0.85

M = 0.85 Flat wing, round L.E. T.E. deflection, full span = 0.00

Figure 82.-(Concluded)

Figure 83.—Body Surface Longitudinal Pressure Distributions—Effect of Full Span L.E. Deflection With Angle of Attack; Flat Wing, Round L.E.; T.E. Deflection, Full Span = 0.0° ; M = 1.05

M = 1.05 Flat wing, round L.E. T.E. deflection, full span = 0.0°

Figure 83.-(Concluded)