American University of Armenia, CSE CS110 Intro to CS Sections A, D Fall 2021

Homework Assignment 5 (100 pts.)

Deadline: Thu. Dec. 7th, 2021 9:00 AM (Before class)

- Please upload your submissions as zip files containing is **or** py files to Moodle
- Include links and references to the resources you have used with your answers
- Instances of academic dishonesty will result in the forfeiture of your entire submission.
- **1. (15 pts)** Write a function that calculates and returns the Euclidean distance between two n-dimensional points, p1 and p2. These points are arrays of coordinates (e.g. p1 = [x1,y1,z1] and p2 = [x2,y2,z2]). Assume they always come in correct and matching lengths.

calculateDistance (p1, p2)

2. (15 pts) Write a function that returns 2 if its parameter M is a square matrix, 1 if M is rectangular but not square, 0 if M is a ragged two-dimensional array. Return -1 if m is not a 2D array.

determineMatrixType (m)

3. (15 pts) Write a function that returns the transpose of a given matrix. This function should first verify that the argument is a rectangular matrix using the function from p2 and return null otherwise. The result must be stored in a new matrix and the original argument matrix must be left intact.

Inp	ut:		Output:			
1	2	3	4	1	5	9
5	6	7	8	2	6	10
9	10	11	12	3	7	11
				4	8	12

The transpose of a matrix is a matrix that has been "flipped over" its diagonal. The rows become columns and the columns become rows.

4. (15 pts) Create a function that has a parameter N, with N being an odd number and returns an $N \times N$ matrix filled with numbers, arranged in a spiral pattern.

Example. 3			Exa	Example. 5					
9	2	3		25	11	11	12	13	
8	1	4		24	9	2	3	14	
7	6	5		23	8	1	4	15	
				22	7	6	5	16	
				21	20	19	18	17	

- **5.a. (15 pts)** Create a pair of functions for saving and loading matrices to and from text files. The first function, saveMatrixToFile(matrix, path), writes the contents of the argument matrix into a file located at the given path.
- **5.b. (15 pts)** The second, loadMatrixFromFile(path) function, returns a matrix filled with the contents of a file that has been created using the function from p5.a. Ensure that they remain compatible with each other.
- **5.c. (10 pts)** Write a demo program that illustrates the use of these functions, e.g. creates a matrix, saves it inside a file, loads that same matrix from that file and performs integer operations on its values after determining the shape. See bonus.

BONUS (15 pts). Create a dedicated library package for your save and load functions and use that library for the demo program in 5.c.

BONUS (15 pts). Upload your library to a git repository and include the link in your submission in addition to your files. GitHub and BitBucket are popular choices and are free to use.