# 静态优化算法及软件实现之一 第4讲 约束优化

李传江 2019. 7. 8



# 主要内容



1 问题实例

- 2 数学描述
- 3 求解方法
- 4 MATLAB 软件求解
- 5 **MATHEMATICA** 软件求解

### 约束优化问题实例

#### 最大体积问题:

从长为4,宽为3的长方形薄铁皮的四个角上剪掉相同大小的正方形,将剩余铁皮折成一个无盖子的容器,确定裁剪方案使得容器的容积最大。

解:假设从铁皮的四个角上同时剪掉的正方形边长为x,则有

$$\max V(x) = (4 - 2x)(3 - 2x)x$$
  
s.t.  $0 < x < 1.5$ 



### 数学描述

具有m个不等式约束条件式和l个等式约束条件式的 n维约束优化问题通常可以描述为:

$$\min f(x), x \in \mathcal{R}^n$$
s. t. 
$$\begin{cases} g(x) \le 0 \\ h(x) = 0 \end{cases}$$

其中f(x)为标量函数, $g(x): \mathcal{R}^n \to \mathcal{R}^m$ ,  $h(x): \mathcal{R}^n \to \mathcal{R}^l$ 。



#### 拉格朗日乘子法

基本思想:通过引入拉格朗日乘子,将原多变量 约束最优化问题转化为一个无约束的最优化问题, 从而采用成熟的无约束优化方法完成求解。 等式约束情形:

$$\min f(x_1, x_2)$$
s. t.  $h(x_1, x_2) = 0$   $\Leftrightarrow$ 

$$\min L(x_1, x_2, \lambda) = f(x_1, x_2) - \lambda h(x_1, x_2)$$

常量 $\lambda$ 为拉格朗日乘子,函数 $L(x_1,x_2,\lambda)$ 为拉格朗日函数, 拉格朗日乘子法因此而得名。

例1: 求目标函数

$$f(x) = x_1^2 + x_2^2 - 4x_1 + 4$$

在等式约束条件 $x_1 + x_2 = 0$ 下的极小值。

[解] 构造拉格朗目函数

$$L(x_{1}, x_{2}, \lambda) = f(x_{1}, x_{2}) - \lambda h(x_{1}, x_{2})$$

$$= x_{1}^{2} + x_{2}^{2} - 4x_{1} + 4 - \lambda x_{1} - \lambda x_{2}$$

$$\left. \left\{ \frac{\partial L}{\partial x_{1}} \right|_{x^{*}} = 2x_{1}^{*} - 4 - \lambda = 0 \right.$$

$$\left. \frac{\partial L}{\partial \lambda} \right|_{x^{*}} = 2x_{2}^{*} - \lambda = 0 \quad \Rightarrow x_{1}^{*} = 1, x_{2}^{*} = -1$$

$$\left. \frac{\partial L}{\partial \lambda} \right|_{x^{*}} = -x_{1}^{*} - x_{2}^{*} = 0$$

#### 拉格朗日乘子法

#### 不等式约束情形:

主要思想:先通过引入一个辅助变量将不等式约束条件变换为等式约束条件,再利用上述等式约束情形下的目标函数最优化方法来求解。具体做法是引入一个非负辅助变量 $v^2$ 将不等式约束 $g(x) \le 0$ 变换为等式约束 $g(x) + v^2 = 0$ 。

例2: 求目标函数

$$f(x) = x_1^2 + x_2^2$$
在混合约束 $(x_1 - 2)^2 + (x_2 - 3)^2 \le 4$ ,  $x_1^2 = 4x_2$ 下的极值。

[解]  $L(x, \lambda, v)$ 

$$= x_1^2 + x_2^2 + \lambda_1 [(x_1 - 2)^2 + (x_2 - 3)^2 - 4 + v^2]$$

$$= x_1^2 + x_2^2 + \lambda_1 [(x_1 - 2)^2 + (x_2 - 3)^2 - 4 + v^2] + \lambda_2 (x_1^2 - 4x_2)$$

$$\left. \frac{\partial L}{\partial x_1} \right|_{x^*} = \left. \frac{\partial L}{\partial x_2} \right|_{x^*} = \left. \frac{\partial L}{\partial \lambda_1} \right|_{x^*} = \left. \frac{\partial L}{\partial \lambda_2} \right|_{x^*} = \left. \frac{\partial L}{\partial v} \right|_{x^*} = 0$$

$$\Rightarrow x_1^* = 2$$
,  $x_2^* = 1 \not \! D x_1^* = 3.86$ ,  $x_2^* = 3.73$ 

$$\implies f_{\min} = 5, \ f_{\max} = 28.8125$$

Matlab提供专有函数fmincon()求解约束优化问题:

$$\min f(x)$$

$$\begin{cases} Ax \leq b \\ A_{eq}x = b_{eq} \\ c(x) \leq 0 \\ c_{eq}(x) = 0 \\ lb \leq x \leq ub \end{cases}$$

其中 $x \in \mathcal{R}^n$ ,  $b \in \mathcal{R}^{m_1}$ ,  $b_{eq} \in \mathcal{R}^{m_2}$ , c(x),  $c_{eq}(x)$ 分别对应优化变量的非线性不等式约束和非线性等式约束,lb, ub分别为优化变量的下界和上界约束。

#### 函数fmincon()多种不同调用和说明:

 $\blacksquare$  x = fmincon (fun, x0, A, b)

以x0为初始点,求解目标函数f(x)在线性不等式约束  $Ax \leq b$ 下的局部极小值问题;

 $\blacksquare$  x = fmincon (fun, x0, A, b, Aeq, beq)

以x0为初始点,求解目标函数f(x)在线性不等式约束  $Ax \leq b$ 及线性等式约束 $A_{eq}x = b_{eq}$ 下的局部极小值问题,若没有不等式约束,可以设置A = [], b = [];

#### 函数fmincon()多种不同调用和说明:



### $\blacksquare$ x = fmincon (fun, x0, A, b, Aeq, beq, lb, ub)

求解f(x)在 $Ax \le b$ 、 $A_{eq}x = b_{eq}$ 及 $lb \le x \le ub$ 下的局部极小值问题,若无等式约束,可设置 $A_{eq} = [], b_{eq} = [],$ 若优化变量 $x_i$ 无下界约束,则可设置lb(i) = -Inf,若无上界约束,则可设置ub(i) = Inf;

#### 函数fmincon()多种不同调用和说明:

 $\blacksquare$  x = fmincon (fun, x0, A, b, Aeq, beq, lb, ub, nonlcon)

非线性不等式约束条件 $c(x) \leq 0$ 和非线性等式约束条件  $c_{eq}(x) = 0$  均由nonlcon输入参数来描述,若无上下界约束,则可设置lb = ub = []; nonlcon参数是一个包含函数名的字符串(函数句柄),该函数可以是M-函数文件。它要求输入一个向量x,返回两个向量c和ceq,分别对应非线性不等式约束和等式约束向量。

#### 函数fmincon()多种不同调用和说明:

x = fmincon (fun, x0, A, b, Aeq, beq, lb, ub, amycon)

其中mycon.m是一个如下形式的M-函数文件:

**function** [c, ceq] = mycon(x)

c=…;% 非线性不等式约束条件

ceq = ···; % 非线性等式约束条件

#### 函数fmincon()多种不同调用和说明:

■ x = fmincon (fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)



按options指定的优化参数选项进行目标函数最优解的求取, 若无非线性约束条件,则可设置nonlcon = [];

 $\blacksquare$  [x, fmin] = fmincon (···)

返回最优解x\*的同时还返回目标函数的极小值 $f_{\min}$ ;

 $\blacksquare$  [x, fmin, exitflag] = fmincon (···)



| exitflag | 物理意义                                             |  |  |  |
|----------|--------------------------------------------------|--|--|--|
| 1        | 梯度的模小于函数计算终止的误差限TolFun,最大的约束冲<br>突小于TolCon       |  |  |  |
| 0        | 已经达到最大迭代次数限制或者达到函数评价次数的最大允许值                     |  |  |  |
| -1       | 由输出函数或作图函数引起的算法终止                                |  |  |  |
| -2       | 不存在可行解                                           |  |  |  |
| 2        | 指定采用置信域法、内点法或SQP法时优化变量的变化量小于TolX,最大的约束冲突小于TolCon |  |  |  |
| 3        | 指定仅采用置信域法时,目标函数值的变化量小于TolFun,最大的约束冲突小于TolCon     |  |  |  |
| 4        | 仅采用有效集法时,搜索方向的幅值小于2TolX,最大的约束冲<br>突小于TolCon      |  |  |  |
| 5        | 仅采用有效集法时,搜索方向的方向导数幅值小于2TolFun,最大的约束冲突小于TolCon    |  |  |  |



### 函数fmincon()多种不同调用和说明:

#### $\blacksquare$ [x, fmin, exitflag, output] = fmincon (···)

| 属性名称                   | 属性含义                  |
|------------------------|-----------------------|
| output.iterations      | 优化过程的实际迭代次数           |
| output.algorithm       | 优化过程采用的具体算法           |
| output.funcCount       | 目标函数的评价次数             |
| output.firstorderopt   | 目标函数的一阶最优梯度           |
| output.cgiterations    | PCG迭代的次数(对置信域或内点算法有效) |
| output.lssteplength    | 线性搜索步长 (对有效集算法有效)     |
| output.constrviolation | 约束冲突的最大值              |
| output.stepsize        | x的最终步长(对有效集算法或内点算法有效) |
| output.message         | 优化过程退出信息              |

#### 函数fmincon()多种不同调用和说明:

 $\blacksquare$  [x, fmin, exitflag, output, lambda] = fmincon ( $\frown$ )

计算结束后返回最优解处拉格朗日乘子的结构变量lambda

| lambda                 | 含义       |
|------------------------|----------|
| lower                  | 下界lb     |
| upper                  | 上界ub     |
| ineqlin                | 线性不等式约束  |
| eqlin                  | 线性等式约束   |
| ineqnonlin             | 非线性不等式约束 |
| eqnonlin               | 非线性等式约束  |
| output.constrviolation | 约束冲突的最大值 |

### 函数fmincon()多种不同调用和说明:



- [x, fmin, exitflag, output, lambda, grad] = fmincon (…)
  - 优化计算结束后返回最优解处对应的梯度;
- $\blacksquare$  [x, fmin, exitflag, output, lambda, grad, hess] = fmincon (···)

优化计算结束后返回最优解处对应的梯度和Hessian矩阵;

例3: 求解约束优化问题

$$\min f(x) = -x_1 x_2 x_3$$
  
s.t.  $0 \le x_1 + 2x_2 + 2x_3 \le 72$ 



[解] 取初始点为x = [10; 10; 10],则有MATLAB程序如下:

$$x0 = [10;10;10];$$

fun = 
$$@(x)-x(1)*x(2)*x(3);$$

$$A = [1 \ 2 \ 2; -1 \ -2 \ -2];$$

$$b = [72;0];$$

[x, fmin, exitflag, output, lambda] = fmincon(fun,x0,A,b)

#### 返回运行结果如下:

```
x =

24.0000

12.0000

12.0000

fmin = -3.4560e+03

exitflag = 5

output = iterations: 12

funcCount: 53

lssteplength: 1

stepsize: 4.6528e-05
```

algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'

firstorderopt: 4.7697e-04

constrviolation: 0

message: [1x772 char]



例4: 求解约束优化问题

$$\min f(x) = e^{x_1} \left( 4x_1^2 + 2x_2^2 + 4x_1x_2 + 2x_2 + 1 \right)$$
s. t. 
$$\begin{cases} x_1x_2 - x_1 - x_2 + 2 \le 0 \\ -x_1x_2 \le 8 \\ x_2^2 - x_1 = 4 \end{cases}$$



[解] 首先定义非线性约束函数confun如下:

**function** [c ceq] = confun (x)

$$c = [2+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-8];$$

$$ceq = x(2)^2 - x(1) - 4;$$

[解] 取初始点为x = [-1; 0.5],并采用有效集算法进行迭代,则有MATLAB程序如下:



$$x0 = [-1; 0.5];$$

 $fun=@(x) \exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);$ 

options = optimset ('Algorithm', 'active-set', 'Display', 'iter');

[x, fmin, exitflag] = fmincon

(fun,x0,[],[],[],[],[], @confun, options)

返回运行结果如下:

| F-count | f(x)    | Max<br>Constraint | Line Search steplength | Directional derivative | First-order optimality |  |
|---------|---------|-------------------|------------------------|------------------------|------------------------|--|
| 3       | 1.65546 | 2.75              |                        |                        |                        |  |
| 6       | 1.7306  | 2.726             | 1                      | 0.306                  | 6.83                   |  |
| 9       | 1.5071  | 0.555             | 1                      | -0.621                 | 0.433                  |  |
| 12      | 1.624   | 0.008696          | 1                      | 0.413                  | 0.453                  |  |
| 15      | 1.62072 | 0.0001745         | 1                      | -0.164                 | 0.0181                 |  |
| 18      | 1.6208  | 2.534e-08         | 1                      | 0.24                   | 6.66e-05               |  |

x = -2.3028 1.3028

fmin = 1.6208

exitflag = 1

### 约束优化—MATHEMATICA软件求解

例5:  $\min f(x,y) = x + y$ , s.t.  $x^2 + y^2 \le 2$ 

s.t. 
$$x^2 + y^2 \le 2$$



Out[1] = 
$$\{-2, \{x \to -1, y \to -1\}\}$$



例6:

$$\min f = 2x + 3y - z$$
s. t. 
$$\begin{cases} 1 \le x + y + z \le 2 \\ 1 \le x - y + z \le 2 \\ x - y - z = 3 \end{cases}$$

In[2] = Minimize[
$$\{2x + 3y - z, 1 \le x + y + z \le 2\&\& 1 \le x - y + z \le 2\&\& x - y - z == 3\}, \{x, y, z\}$$
]
Out[2] =  $\{3, \{x \to 2, y \to -1/2, z \to -1/2\}\}$ 

### 约束优化—MATHEMATICA软件求解

例7: 
$$\min f(x,y) = x^2 - (y-1)^2$$
, s. t.  $x^2 + y^2 \le 1$ 

In[3] = NMinimize[
$$\{x^2 - (y-1)^2, x^2 + y^2 \le 1\}, \{x, y\}$$
]
Out[3] =  $\{-4, \{x \to -3.48879 \times 10^{-9}, y \to -1.\}$ }

例8: 
$$\min f(x) = 10x_1^3 + x_1x_2^2 + x_3(x_1^2 + x_2^2)$$

s. t. 
$$\begin{cases} \sqrt{x_1^2 + x_2^2} - x_3 - 10 \le 0 \\ \sqrt{x_1^2 + x_2^2} + x_3 - 3 \le 0 \end{cases}$$

### 约束优化—MATHEMATICA软件求解

$$In[6] = FindMinimum[\{10x^3 + xy^2 + z(x^2 + y^2),$$



$$\sqrt{x^2 + y^2} - z - 10 \le 0 \& \sqrt{x^2 + y^2} + z - 3 \le 0\},$$
  
$$\{\{x, -1\}, \{y, -1\}, \{z, -1\}\}\}$$

Out[6]

= 
$$\{-2894.13, \{x \to -6.5, y \to -6.5266 \times 10^{-12}, z \to -3.5\}\}$$