DEPARTMENT OF MATHEMATICS, IIT GUWAHATI MA 622: GALOIS THEORY PROBLEM SHEET- II JANUARY-MAY 2025

- 1. Let F be a field, and suppose that L_1 and L_2 are field extensions of F contained in some common extension K of F. Then, the composite L_1L_2 of L_1 and L_2 is defined as the subfield of K generated by L_1 and L_2 ; that is, $L_1L_2 = L_1(L_2) = L_2(L_1)$.
 - (a) If L_1 and L_2 are field extensions of F that are contained in a common field, show that L_1L_2 is algebraic over F if and only if both L_1 and L_2 are algebraic over F.
 - (b) Let L and M be intermediate fields of the extension $F \subset K$, of finite dimension over F. If [LM:F] = [L:F][M:F], prove that $L \cap M = F$. Further, prove that the converse holds if [L:F] or [M:F] is 2. Give an example where $L \cap M = F$, [L:F] = [M:F] = 3, but [LM:F] < 9.
- 2. Let K be a finite dimensional Galois extension of F, and let L and M be two intermediate fields. Prove that:
 - (a) $\operatorname{Aut}(K/LM) = \operatorname{Aut}(K/L) \cap \operatorname{Aut}(K/M);$
 - (b) $\operatorname{Aut}(K/L \cap M) = \langle \operatorname{Aut}(K/L) \cup \operatorname{Aut}(K/M) \rangle$, the subgroup generated by $\operatorname{Aut}(K/L) \cup \operatorname{Aut}(K/M)$.
 - (c) What conclusion can be drawn if $Aut(K/L) \cap Aut(K/M) = \{1\}$.
- 3. Let L and M be intermediate fields of the extension $F \subset K$. If L is a finite dimensional Galois extension of F, prove that LM is a finite dimensional Galois extension of M and $\operatorname{Aut}(LM/M) \cong \operatorname{Aut}(L/L \cap M)$.
- 4. Let n and m be positive integers. Prove that:
 - (a) $\mathbb{Q}(\zeta_n)\mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_\ell)$, where $\ell = \text{lcm}(n, m)$.
 - (b) $\mathbb{Q}(\zeta_n) \cap \mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_d)$, where $d = \gcd(n, m)$.
- 5. Let F be a field of characteristic p > 0. Let $f(x) = x^p x c \in F[x]$. Show that either all roots of f(x) lie in F or f(x) is irreducible in F[x].
- 6. Let F be a field of characteristic zero and let p be an odd prime. Let $a \in F$ be such $a \neq 0$ and a is not a pth power of any element in F. Show that $f(x) = x^p a$ is irreducible in F[x]. What can you say about the degree of a splitting field of f(x) over F?
- 7. Let x, y be variables. Let $a, b, c, d \in \mathbb{Z}$ and n = |ad bc|. Show that $L = \mathbb{C}(x, y)$ is a Galois extension of $K = \mathbb{C}(x^a y^b, x^c y^d)$ of degree n. Find $\operatorname{Aut}(L/K)$.
- 8. Prove that the Galois group of $x^p 2 \in \mathbb{Q}[x]$, where p is a prime, is isomorphic to the group

$$G = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a, b \in \mathbb{F}_p, a \neq 0 \right\}.$$