VE311 RC4 MOSFET

Yian HU

University of Michigan-Shanghai Jiao Tong University Joint Institute

November 7, 2024

Overview

- MOSFET Physics
- Second Order Effects
- Small-Signal Model
- Exercise

NMOS

- $ightharpoonup L_{eff} = L_{drawn} 2L_D$
- ▶ If not specify L, we assume it is L_{eff}

NMOS

3/23

- $ightharpoonup V_{GS} < 0$, attract holes to surface: Accumulation, not we want
- $ightharpoonup V_{GS} > V_T$, induce electrons: Inversion, form channel
- ▶ If not apply V_{DS} , no current
- ► How to distinct Source (S) and Drain (D)
 - Since both S and D are doped with same concentration, it depends on how you apply voltage
 - ▶ Electrons flow from source to drain. Current IDS or ID, drain to source
 - Positive voltage: Drain $V_{DS} > 0$
 - ► S and D can switch by changing voltage

Yian HU (UM-SJTU JI) November 7, 2024

NMOS - I_G

► Gate is insulated from the semiconductor, always 0

$NMOS - I_{Di}$

$$I_D = \begin{cases} 0 & V_{GS} - V_T < 0 \\ \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2 & 0 \le V_{GS} - V_T < V_{DS} \\ \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T - \frac{1}{2} V_{DS}) V_{DS} & V_{GS} - V_T \ge V_{DS} \end{cases}$$

Summary of I_D

$I_D - V_{GS}$

- ► Fixed V_{DS}
- 1. When $V_{GS} < V_T$, no current, $J_D = 0$
- 2. When $0 < V_{GS} V_T < V_{DS}$, $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T)^2$, I_D and V_{GS} follows quadratic relation.
- 3. When $V_{GS} V_T > V_{DS}$, $I_D = \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T \frac{1}{2} V_{DS}) V_{DS}$, I_D and V_{GS} follows **linear** relation, the interception with x axis is $V_T + \frac{1}{2} V_{DS}$

- ightharpoonup Fixed V_{GS} for each curve
- 1. When $0 < V_{DS} < V_{GS} V_T$, $I_D = \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T \frac{1}{2} V_{DS}) V_{DS}$
 - When $0 < V_{DS} << 2(V_{GS} V_T)$, V_{DS}^2 can be ignored. Then $I_D = (\mu_n C_{ox} \frac{W}{L} (V_{GS} V_T)) V_{DS}$, I_D and V_{DS} follows **linear** relationship. We call this **Linear**/ **Triode**/ **Resistive** region
 - ► S to D can be represented by a linear $R_o = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{CS} V_T)}$
- 2. When $V_{DS} > V_{GS} V_T$, $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T)^2$, I_D has no relation with V_{DS} , current saturate. We call this **Saturation** region.

*How does saturation happen - Pinch off

- $I_D = WQ_n(x)v$. $Q_n(x)$ is charge per unit area. $v = \mu_n E$
- Inversion layer charge density $|Q_n(x)| = C_{ox}(V_{GS} V_{T} V(x))$, where $V(x) = \frac{V_{DS}}{L}x$ $V(x) = \frac{V_{DS}}{L}x$ $V_{KS} - V_{T} = |V| \quad V_{DS_1 = 0.5V}$ $V_{DS_1 : |V|}$ $V_{DS_1 : |V|}$
- 1. When $0 < V_{DS} < V_{GS} V_T$: At L, $|Q_n(x)| > 0$, still has electrons, no pinch off
- 2. When $V_{DS} = V_{GS} V_T$: At L, $|Q_n(x)| = 0$, start to pinch off
- 3. When $V_{DS} > V_{GS} V_T$: Before L, $|Q_n(x)| = 0$, pinch off. MOSFET reaches saturation region, even if we increase V_D , I_D will not change since $|Q_n(x)|$ will not change.
- \triangleright Electrons can still pass through the pinch-off region because of E_{bi}

Yian HU (UM-SJTU JI) November 7, 2024

PMOS

P1N05 1.

- $ightharpoonup V_{GS} < 0$, attract holes as channel.
 - ▶ In PMOS, V_T is usually smaller than 0. To turn on the device, $V_{GS} < V_T$
- ▶ Holes from source to drain. Current I_{SD} , source to drain

Positive voltage: Source. $V_{SD} > 0$. Current direction is opposite from NMOS (I_{DS})

NMOS and PMOS

From slides

NMOS vs PMOS

$$\begin{split} & \text{Triode region: } I_D = \mu_n C_{ox} \frac{W}{L_{eff}} \Big[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^{\ \ 2} \Big] \\ & \text{Saturation region: } I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_f} (V_{GS} - V_{TH})^2 \end{split}$$

Saturation region: $I_D = -\frac{1}{2}\mu_p C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$

NMOS and PMOS IMPORTANT!

To simplify the equation, we can use the following universal formula by simply adding | | on I_D , $V_{GS} - VT$, and V_{DS} .

This equation is valid for both NMOS and PMOS, and either V_T is positive or negative.

$$I_{D} = \begin{cases} 0 & |V_{GS}| - |V_{T}| < 0 \\ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T}|)^{2} & 0 \le |V_{GS} - V_{T}| < |V_{DS}| \\ \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T}| - \frac{1}{2} |V_{DS}|) |V_{DS}| & |V_{GS} - V_{T}| \ge |V_{DS}| \end{cases}$$

Universal Formula

Transconductance g_m

• Usually defined in saturation region. $I_D=\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS}-V_T)^2$

ightharpoonup High g_m , small change in V_{GS} will lead to large change in I_D . High sensitivity.

Yian HU (UM-SJTU JI)

Overview

- MOSFET Physics
- Second Order Effects
- 3 Small-Signal Model
- 4 Exercise

Second Order Effects - Body Effect

- ▶ Initially $V_B = 0$, now $V_B < 0$. Attract more holes to bottom, leaving more electrons to surface. Wider depletion region V_{TH} increases.
- $V_{TH} = V_{TH0} + \gamma(\sqrt{|2\Phi_F + V_{SB}|} 2\sqrt{|2\Phi_F|})$
- $\begin{array}{c} \gamma = 0, \text{ no body effect} \\ \hline P \left(g_{mb}\right) = \frac{dl_D}{dV_{BS}} = \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T) \frac{\gamma}{2} \frac{1}{\sqrt{|2\Phi_F + V_{SB}|}} = g_m \eta. \end{array}$
 - $ightharpoonup \Delta I_D = \Delta V_{BS} * g_{mb}$, when $V_{BS}(>0)$ increases (V_{SB} becoming more negative I_D increases
 - $g_m = \frac{dI_D}{dV_{CS}} = \mu_n C_{ox} \frac{W}{I} (V_{GS} V_T) = \sqrt{2\mu_n C_{ox} \frac{W}{I} I_D} = \frac{2I_D}{V_{CS} V_T}.$
 - $ightharpoonup \Delta I_D = \Delta V_{GS} * g_m$, when $V_{GS}(>0)$ increases, I_D increases

Second Order Effects - Channel Length Modulation

- After reaching saturation region, when $\Delta L << L_{eff}$ is not satisfied, the effect of V_{DS} on I_D cannot be ignored. Now we use $L = L_{eff} \Delta L$, where ΔL is the pinch-off length.
- ► $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} V_T)^2 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} V_T)^2 (1 + \frac{\Delta L}{L_{eff}}) = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} V_T)^2 (1 + \lambda V_{DS}), \ \lambda \text{ is the slope}$

Yian HU (UM-SJTU JI) November 7, 2024 14

Second Order Effects - Channel Length Modulation

15 / 23

With the channel-length modulation,

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2} (1 + \frac{\lambda}{\lambda} V_{DS})$$

$$\mathbf{g_m} = \frac{\partial \mathbf{I_D}}{\partial \mathbf{V_{GS}}} = \mu_n \mathbf{C_{ox}} \frac{W}{L_{eff}} (\mathbf{V_{GS}} - \mathbf{V_{TH}}) (\mathbf{1} + \lambda V_{DS})$$

$$\begin{split} \boldsymbol{r_o} &= \frac{\partial V_{DS}}{\partial I_D} = 1 \big/ \frac{\partial I_D}{\partial V_{DS}} &= \frac{1}{\frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \cdot \lambda} \\ &\approx \frac{1}{I_D \cdot \lambda} \end{split}$$

Channel-length modulation is reflected in \boldsymbol{g}_m and $\boldsymbol{r}_{\!\scriptscriptstyle 0}$ by λ

Overview

- MOSFET Physics
- Second Order Effects
- Small-Signal Model
- 4 Exercise

Small-Singal Model

16/23

- $ightharpoonup \Delta I_D = g_m \Delta V_{GS} i_d = g_m V_{gS}$, add voltage controlled current source
- ► Consider channel length modulation $(\lambda \neq 0)$: $(r_o \neq \frac{dV_{DS}}{dl_D} \rightarrow i_d = \frac{v_{DS}}{r_o}$, add a resistor r_o
- Consider body effect $(\gamma \neq 0)$: $g_{mb} = \frac{dI_D}{dV_{BS}} \rightarrow i_d \neq g_{mb}v_{bS}$, add voltage controlled current source. If $V_{SB} > 0$, we reverse the direction of the current source to make each term positive value
- This small-signal diagram is the same for PMOS

Yian HU (UM-SJTU JI) VESII RC4 MOSFET November 7, 2024

How to solve problems

- For DC analysis, we are required to calculate I or V.
- ► If the question specify which region the MOSFET is now working in, apply the equation for I directly
- If not, assume the MOSFET is in saturation region, because the equation for I is much easier. $|V_{DS}| > |V_{GS} V_T| \leftarrow p_{MOS}$.
- ▶ Apply the formula $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T)^2$ to calculate I and V
- ightharpoonup Check whether $|V_{DS}| > |V_{GS} V_T|$ is indeed true
 - ▶ If indeed true, then it is in saturation region, you get the answer
 - ▶ If not, it is in linear region, and use $I_D = \mu_n C_{ox} \frac{W}{L} (V_{GS} V_T) V_{DS}$ to calculate I and V again

Yian HU (UM-SJTU JI) VESIE RCS MOSEET November 7, 2024 17 / 23

Overview

- MOSFET Physics
- Second Order Effects
- Small-Signal Model
- Exercise

Exercise 1

See solution

For the following problems, assume: $\mu_n C_{ox} = 100 \mu A/V^2$, $V_{TH} = 1 V$.

Problem 1: For the circuit below, perform the following calculations:

- a) Find I₁ when V_{IN} =1.2 V and R₁ =2 k Ω .
- b) If W/L of the transistor is changed to W/L = 80/1, compute the new value of overdrive voltage (V_{OV}) such the current I₁ remains the same as in part (a).
- Find the maximum value of R₁ which ensures that the transistor remains in saturation.
- d) Determine the minimum value of supply voltage V_{DD} to bias the transistor in saturation.

- ▶ b): $V_{ov} = V_{GS} V_{TH}$
- ▶ c): $V_{IN} = 1.2V$
- ▶ d): $V_{IN} = 1.2V$, $R_1 = 2k\Omega$

EX1 ANS

ANS

Exercise 2

$$\mu_n C_{ox} = 100 \mu A/V^2$$
, $V_{TH} = 1V$

Problem 2: Consider the circuit below. For R_D = 5 k Ω and R_S = 1 k Ω , find I_D , V_D , and V_S .

EX2 ANS

ANS

Yian HU (UM-SJTU JI)

Exercise 3

$$\mu_n C_{ox} = 100 \mu A/V^2$$
, $V_{TH} = 1V$

Problem 3: For the circuit below $V_{IN} = 2.8 \text{ V}$, find the value of I_D and V_{OUT} .

EX3 ANS

ANS

► Analyze the self-bias stage M2 first