Large Sample Hypothesis Testing

Tiandong Wang

Department of Statistics Texas A&M University

April 19, 2021

Asymptotic Properties of LRT

Asymptotic distribution of $\lambda(\mathbf{X})$ for a simple H_0 :

Theorem

For testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta \neq \theta_0$, suppose X_1, \dots, X_n i.i.d. $f(x; \theta)$ (satisfying some regularity conditions). Then under H_0 , as $n \to \infty$,

$$-2\log\lambda(\textbf{\textit{X}})\stackrel{d}{\longrightarrow}\chi_1^2.$$

Hence, reject Ho iff

$$-2\log\lambda(\mathbf{X})\geq\chi_{1,\alpha}^2.$$

Example

For
$$X_1, \dots, X_n$$
 iid Poisson(λ), test

$$H_0: \lambda = \lambda_0$$

$$H_0: \lambda = \lambda_0$$
 v.s. $H_1: \lambda \neq \lambda_0$.

Multivariate Case: Wilks' Theorem

Assume that the joint distribution of X_1, \ldots, X_n depends on p unknown parameters and that, under H_0 , the joint distribution depends on p_0 unknown parameters. Let $\nu = p - p_0$. Then, under some regularity conditions, when the null hypothesis is true,

$$-2\log\lambda(\mathbf{X})\stackrel{d}{\longrightarrow}\chi_{\nu}^{2},$$

as $n \to \infty$.

• Thus, for large n, the rejection region for a test with approximate significance level α is

$$\{\mathbf{y}: -2\log(\lambda(\mathbf{x})) \geq \chi^2_{\nu,\alpha}\}$$

Remark:

- Wilks' theorem allows us to approximate the "null distribution" of $\lambda(\mathbf{X})$.
- The limiting null distribution of $\lambda(\mathbf{X})$ does not depend on which element of Θ_0 is the true parameter value.
- Asymptotic size α test:

$$\lim_{n\to\infty} \mathbb{P}_{\theta}(\text{Reject } H_0) = \alpha, \qquad \text{for each } \theta \in \Theta_0.$$

Example: Suppose that Y_i , i = 1, ..., n, are iid random variables with the probability mass function given by

$$\mathbb{P}(Y = y) = \begin{cases} \theta_j, & \text{if } y = j, j = 1, 2, 3; \\ 0, & \text{otherwise,} \end{cases}$$

where θ_j are unknown parameters s.t. $\sum_i \theta_i = 1$, $\theta_i \geq 0$. Test:

 $H_0: \theta_1 = \theta_2 = \theta_3$ v.s. $H_a:$ at least one of them is different.

Contingency Tables

A two-way table presents categorical data by

 Counting the number of observations that fall into each group for two variables:
 One divided into rows and the other divided into columns.

Example:

Students in grades 4-6 were asked whether good grades, athletic ability, or popularity was most important to them. A two-way table separating the students by grade and by choice of most important factor is shown below:

Goals	4	Grade 5	6	Total
Grades Popular Sports	49 24 19	50 36 22	69 38 28	168 98 69
Total	 92	108	135	335

Goal: Testing the association between the row and column variables in a two-way table.

 H_0 : No association between the variables. v.s.

 H_a : Some association does exist.

Solution:

Chi-square Test!

Chi-square Test

Based on a test statistic that measures:

- The divergence of the observed data from the values that would be expected under the H_0 of no association.
- Two-way table: The expected value for each cell in a two-way table is equal to

$$\frac{\text{Row Total} \times \text{Column Total}}{\text{Total number of observations included in the table}}.$$

• Chi-sq test stat:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(\mathsf{Observed}_{ij} - \mathsf{Expected}_{ij})^2}{\mathsf{Expected}_{ij}}.$$

• The test stat is chi-square with (r-1)(c-1) degrees of freedom, where r=# of rows, c=# of columns.

Example ctd:

	Expected Values				
	Grade				
Goals	4	5	6		
Grades	46.1	54.2	67.7		
Popular	26.9	31.6	39.5		
Sports	18.9	22.2	27.8		

• The chi-square statistic

$$\chi^2 = 1.51$$
 $\sim \chi^2_{(3-1)(3-1)}$.

So

$$\mathbb{P}(\chi_4^2 \ge 1.51) \approx 0.825,$$

and there is no association between the choice of most important factor and the grade of the student – the difference between observed and expected values under the null hypothesis is negligible.

Remark:

- The usual test for association in contingency tables is a LRT
- Its asymptotic distribution is an example of Wilks' theorem.

For
$$\sum_{i=1}^{r} a_i = \sum_{j=1}^{c} b_j = 1$$
, test

$$H_0: \theta_{ij} = a_i b_j$$
 v.s. $H_1: \theta_{ij} \neq a_i b_j$ for at least one pair of (i, j) .

Likelihood:

$$L(\boldsymbol{\theta}; \mathbf{x}) = C \prod_{i=1}^{r} \prod_{j=1}^{c} \theta_{ij}^{x_{ij}},$$

where the coefficient C is the number of ways that a total of N subjects can be divided in rc groups with x_{ij} in the ij-th group.

Find unrestricted MLE, i.e.

Maximize
$$\log L(\theta; \mathbf{x}) = \log C + \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \log \theta_{ij}$$

s.t. $\sum_{j=1}^{r} \sum_{i=1}^{c} \theta_{ij} = 1$.

Therefore,

$$\widehat{\theta}_{ij} = \frac{X_{ij}}{N}.$$

Find restricted MLE, i.e.

Maximize
$$\log L(\theta; \mathbf{x}) = \log C + \sum_{i=1}^{r} \sum_{j=1}^{c} x_{ij} \log \theta_{ij}$$

s.t. $\theta_{ij} = a_i b_j$
 $\sum_{i=1}^{r} a_i = 1$
 $\sum_{j=1}^{c} b_j = 1$.

Therefore,

$$\widehat{\theta}_{ij}^{0} = \frac{R_{i}}{N} \frac{C_{j}}{N} =: \frac{E_{ij}}{N},$$

where R_i and C_j are the sum of *i*-th row and *j*-th column, respectively.

• By Wilks' theorem: as $N \to \infty$,

$$-2\log \lambda(\mathbf{X}) = 2\sum_{i=1}^{r} \sum_{j=1}^{c} X_{ij} \log(X_{ij}/E_{ij}) \stackrel{d}{\longrightarrow} \chi_{\nu}^{2},$$

with
$$\nu = (r - 1)(c - 1)$$
. Why?

By Taylor expansion,

$$x_{ij} \log \frac{x_{ij}}{e_{ij}} \approx (x_{ij} - e_{ij}) + \frac{1}{2} \frac{(x_{ij} - e_{ij})^2}{e_{ij}}.$$

• Since $\sum_{i=1}^{r} \sum_{j=1}^{c} (x_{ij} - e_{ij}) = 0$,

$$-2\log\lambda(\mathbf{X})\approx\sum_{i=1}^r\sum_{j=1}^c\frac{(X_{ij}-E_{ij})^2}{E_{ij}}.$$