Matrix

see math notation, eigen

definition formally in my <u>math notation</u> a <u>matrix</u> in $\mathbb{R}^{m,n}$ is a <u>set theory</u>etical <u>function</u> with <u>function > domain</u> at least $\langle x,y \rangle \to \mathbb{N} x \wedge \mathbb{N} y \wedge 0 \leq x < m \wedge 0 \leq y < n$ that takes an <u>ordered pair</u> as an index and returns the element at that index

notation

$$\left[egin{matrix} a & b \ c & d \end{array}
ight]$$

Multiplication by Scalar

see matrix vector space, vector space

definition

$$(kA)^{i,j} = kA^{i,j} \dashv \mathbb{N}i \wedge \mathbb{N}j \wedge \mathbb{R}k \wedge \mathbb{M}A$$

properties

commutativity with <u>scalars</u> kA = Ak

Addition

see matrix vector space, vector space

definition

$$(A:B)^{i,j} = A^{i,j}: B^{i,j} \dashv \mathbb{N}i \wedge \mathbb{N}j \wedge \mathbb{M}^{m,n}A \wedge \mathbb{M}^{m,n}B$$

Multiplication

see dot product, vector in rn

definition

 $AB \neq \emptyset \equiv \mathbb{M}^{m,n}A \wedge \mathbb{M}^{n,p}B \wedge \mathbb{M}^{m,p}AB$ (AB is defined if the number of columns in A is equal to the number of rows in B. their product will be an m by p matrix)

$$(AB)^{i,j}=A^{i,}\ \dot{\mid}\ B^{,j}\dashv \mathbb{N}i\wedge \mathbb{N}j$$
, see dot product

intuitively, matrix multiplication is the <u>dot product</u> of **every row** of the first <u>matrix</u> by **every column** of the second <u>matrix</u>

notation

$$AA = A2 = [A]2 \dashv \mathbb{M}A$$

and therefore $AA\cdots A=[A]n\wedge \mathbb{N}n\dashv \mathbb{M}A$

properties

not commutative $AB=BA
ot MA \land MB$ or $AB \neq BA \land MA \land MB$

 $AB=0 \nvdash A=0 \lor B=0$ (it can happen that AB=0, but $A\neq 0$ and $B\neq 0$) (AB being equal to 0 does not imply that A=0 or that B=0)

 $AC = BC \land C \neq 0 \nvdash A = B$ (AC = BC and $C \neq 0$ does not imply that A = B)

associative (AB)C = A(BC)

distributive A(B:C) = AB:AC

distributive (B:C)A = BA:CA

associative with <u>scalars</u> k(AB) = (kA)B = A(kB)

applications

<u>matrix > multiplication</u> can be used to represent a <u>linear system</u> of <u>linear equation</u>s:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

<u>matrix > multiplication</u> can be used to represent any <u>linear transformation</u>

Identity Matrix

definition

$$(I^{a,b}=1 \wedge a=b) ee (I^{a,b}=0 \wedge a
eq b) \dashv \mathbb{N}a \wedge \mathbb{N}b \wedge \mathbb{M}^{n,n}I$$

examples

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

properties

$$AI = A \wedge IA = A \dashv \mathbb{M}A$$

Zero Matrix

see matrix vector space, vector space

definition

$$O^{a,b} = 0 \dashv \mathbb{N}a \wedge \mathbb{N}b \wedge \mathbb{M}^{n,m}O$$

examples

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

properties

$$A_{m,n}O_{n,p}=O_{m,p}\dashv \mathbb{M}^{n,p}O_{n,p}\wedge \mathbb{M}^{m,p}O_{m,p}\wedge \mathbb{M}^{m,n}A_{m,n}$$

$$O_{q,m}A_{m,n}=O_{q,n}\dashv \mathbb{M}^{q,m}O_{q,m}\wedge \mathbb{M}^{q,n}O_{q,n}\wedge \mathbb{M}^{m,n}A_{m,n}$$

Rank

the number of pivots in any REF of the matrix

notation

rank A, where

A is the <u>matrix</u> to find the <u>matrix > rank</u> of

Element Count

notation # M

definition the element count of a matrix is the total number of elements in the matrix

example let
$$M=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}$$
. then, $\mathbb{M}^{2,3}M\wedge\#\ M=2\mid 3=6$

Vector Spaces

Null Space (Nullspace, Kernel), Column Space, Row Space

notations

 $kernel\ Ker\ A \equiv Null\ A$

column space Col A

row space Row A

definitions

 $kernel\ (Ker\ A)\ x \equiv (Null\ A)\ x \equiv Ax = O \wedge \mathbb{M}^{m,n}A \wedge \mathbb{M}^{n,1}x$

column space $Col\ A = \operatorname{span} A^{,n} \dashv \mathbb{N} n$

row space $Row\ A = \operatorname{span} A^{n,} \dashv \mathbb{N} n$

procedure computing the kernel of a matrix use row reduction

theorems

the Null Space, Row Space and Column Space of a matrix are always vector spaces

number of free variables in A: number of pivots in A = number of columns in A

 $\dim Null\ A = \text{number of free variables in } A$

rank A = number of pivots in A

the nonzero rows in any REF of a matrix A forms a basis for $Row\ A$. therefore, $\dim Row\ A = rank\ A$, see matrix > rank

if A and B are row-equivalent, then $Row\ A = Row\ B$, see <u>linear system</u>

the <u>span</u>ning <u>set</u> of $Null\ A$ obtained from applying <u>row reduction</u> on the system Ax=O is a <u>basis</u> for $Null\ A$

 $Row\ A$ does not change when applying <u>linear system > elementary operations</u> on the rows of A

properties

 $Col\ A = Row\ A^{\intercal} \wedge Row\ A = Col\ A^{\intercal} \dashv \mathbb{M}A$, see matrix > transpose

applications

row spaces can be used to find a <u>basis</u> for a <u>span</u>ning <u>set</u> of vectors through <u>row</u> <u>reduction</u>

the <u>basis</u> for the row space of a <u>matrix</u> can be found by applying <u>row reduction</u> and <u>span</u>ning the <u>row-reduced columns</u> in the <u>REF</u> form of the <u>matrix</u>

the <u>basis</u> for the column space of a <u>matrix</u> can be found by applying <u>row reduction</u> and <u>span</u>ning the <u>original columns</u> that became pivots in the <u>REF</u> form of the <u>matrix</u>

example transforming a vector space into the null space of a certain matrix

let
$$W = \text{span} \langle \langle (1, 0, 0, 1), (1, 1, 1, 0), (2, 1, \cdot 1, 1) \rangle \rangle$$

after solving the <u>linear system</u>, we get $W\left(x,y,z,w\right)\equiv\cdot x:y:w=0$. therefore, W is the null space of $A=\begin{bmatrix}\cdot 1 & 1 & 0 & 1\end{bmatrix}$

Diagonal

the diagonal of a matrix

definition the *diagonal* of a square <u>matrix</u> goes from its top left element to its bottom right element

Transpose

the transpose of a matrix

flips a matrix around its matrix > diagonal

definition

$$(A^\intercal)^{i,j} = (A)^{j,i} \dashv \mathbb{N}i \wedge \mathbb{N}j \wedge \mathbb{M}A$$

properties

$$(A^\intercal)^\intercal = A \dashv \mathbb{M} A$$

$$(AB)^\intercal = B^\intercal A^\intercal \dashv \mathbb{M} A \wedge \mathbb{M} B$$

representation

Α

Inverse

the inverse of a matrix

definition

 $AA^- = A^-A = I \dashv \mathbb{M}A$, where

- *A* is a square <u>matrix</u>
- A⁻ is the *inverse matrix* of A

Invertability

definition an *invertible matrix* has a corresponding <u>matrix > inverse</u>

see theorems below for invertability criteria

properties

let A and C be invertible matrixes, let $\mathbb{Z}p$ and let $\mathbb{R}k \wedge k \neq 0$. then,

$$AA^- = A^-A = I$$

$$(A^{-})^{-} = A$$

$$(A^p)^- = (A^-)^p$$

 $(kA)^- = -k \mid A^-$ (see improved expression evaluation)

$$(AC)^- = C^-A^-$$

note in the equation above, the order of the <u>matrix</u>es has changed. this is significant as <u>matrix > multiplication</u> is not commutative

if AC is invertible, then A is invertible and C is invertible

procedure computing the <u>matrix > inverse</u> of a <u>matrix</u>

let
$$\mathbb{M}^{n,n}A$$

solve the system $AA^- = I$ by extending the <u>matrix</u> with the <u>matrix > identity matrix</u> and solve the <u>linear system</u> up to <u>RREF</u> using <u>row reduction</u>.

$$[A \quad | \quad I] \sim \cdots [I \quad | \quad A^-]$$

procedure computing the <u>matrix > inverse</u> of a 2 by 2 <u>matrix</u>

see determinant

$$\mathsf{let}\ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

A is invertible if and only if |A|
eq 0

$$A^- = -|A| \; \mid \; \left[egin{array}{cc} d & \cdot b \ \cdot c & a \end{array}
ight]$$

applications using a <u>matrix > inverse</u> to solve a <u>linear system</u>

let
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$

then, calculate B such that $B \equiv A^-$

this can be used to solve a linear system such as:

$$Ax = egin{bmatrix} \cdot 1 \ 1 \end{bmatrix}$$

$$BAx = Begin{bmatrix} \cdot 1 \ 1 \end{bmatrix}$$

$$Ix = x = B egin{bmatrix} \cdot 1 \\ 1 \end{bmatrix}$$

Triangular Matrix

definition a $\underline{\text{matrix}}$ is said to be $\underline{\text{triangular}}$ if every entry below its $\underline{\text{matrix}} > \underline{\text{diagonal}}$ or above its $\underline{\text{matrix}} > \underline{\text{diagonal}}$ is 0

Diagonal Matrix

definition a <u>matrix</u> is said to be *diagonal* if every entry below its <u>matrix > diagonal</u> and above its <u>matrix > diagonal</u> is 0

applications

[D]x can be calculated by raising every entry of D to the power x

Diagonalizable Matrix

see eigen > vector

definition an n by n matrix A is said to be diagonalizable over the reals if there exists a basis of \mathbb{R}^n consisting entirely of eigen > vectors of A

a <u>matrix</u> is <u>diagonalizable</u> if and only if the geometic <u>eigen > multiplicity</u> of an <u>eigen > value</u> is equal to the algebraic <u>eigen > multiplicity</u> of said <u>eigen > value</u>, for every <u>eigen > value</u> of the <u>matrix</u>

note a <u>matrix</u> may also be diagonalizable over other <u>number field</u>s such as the <u>set</u> of <u>complex</u> numbers $\mathbb C$

note some <u>matrix</u>es do not have "enough" real <u>eigen > value</u>s or "enough" <u>eigen > vector</u>s to be diagonalizable

example the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ is diagonalizable over the reals as $\langle \langle \ (1,1), (1,\cdot 1) \ \rangle \rangle$ is a <u>basis</u> of \mathbb{R}^2 consisting entirely of <u>eigen > vectors</u> of A

example the matrix $A = \begin{bmatrix} 1 & 1 \\ \cdot 1 & 1 \end{bmatrix}$ is not diagonalizable over the reals as it does not have any real eigen > values

example the matrix $A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ is not diagonalizable over the reals as it only has one eigen > value, and therefore only one set of linearly dependent eigen > vectors

example the $\underline{\text{matrix}}\ A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is diagonalizable over the reals as, even though A has a single $\underline{\text{eigen}} > \text{value}\ \lambda = 1$, its $\underline{\text{eigen}} > \text{space}\ \underline{\text{span}}$ s \mathbb{R}^2 . this is the case for both $A = I \wedge \lambda = 1$ and $A = O \wedge \lambda = 0$

proof let $A=I \wedge \lambda=1 \wedge E_1=x.$ we then have $O=A \cdot \lambda I \mid x=I \cdot 1I \mid E_1=O \mid E_1$. therefore, $E_1 \equiv \mathbb{R}^2.$ see <u>eigen</u>

example let $\mathbb{M}^{n,n}A \wedge \mathbb{N}n$ and suppose A has n distinct <u>eigen > values</u>. deduce that A is diagonalizable over the reals

proof A has at most n $\underline{\text{eigen}} > \text{values} \to \text{the algebraic } \underline{\text{eigen}} > \text{multiplicity}$ of every $\underline{\text{eigen}} > \text{value}$ of A is 1 as they are all distinct and must be greater than 1 \to the geometric $\underline{\text{eigen}} > \text{multiplicity}$ of every $\underline{\text{eigen}} > \text{value}$ of A is 1 as it must be greater than 1 and less than its algebraic $\underline{\text{eigen}} > \text{multiplicity} \to \text{all algebraic}$ $\underline{\text{eigen}} > \text{multiplicity}$ es are equal $\to A$ is diagonalizable. see $\underline{\text{eigen}}$

theorems

see <u>linear system</u>

theorem

let $\mathbb{M}^{m,n}A$ (see <u>matrix</u>). the following <u>logic statements</u> are equivalent:

- every <u>variable</u> is a leading <u>variable</u>
- there is a leading $\underline{\text{variable}}$ in every column of the $\underline{\text{RREF}}$ of A
- the system Ax = O has a unique solution

- the columns of A are linearly independent
- $Ker\ A = \langle\langle 0 \rangle\rangle$
- $\dim Ker A = 0$
- rank A = n

see linear system theorem proof

theorem

let $\mathbb{M}^{n,n}A$ (see <u>matrix</u>). the following <u>logic statements</u> are equivalent:

note all <u>logic statements</u> below are valid for both A and A^{T} , see <u>matrix > transpose</u>

- rank A = n
- every <u>linear system</u> of the form Ax = b has a unique solution
- the <u>RREF</u> of *A* is the <u>matrix > identity matrix</u>
- $Ker\ A = \langle\langle 0 \rangle\rangle$
- $Col\ A=\mathbb{R}^n$
- $Row A = \mathbb{R}^n$
- the columns of A are linearly independent
- the rows of *A* are <u>linearly independent</u>
- the columns of A form a <u>basis</u> for \mathbb{R}^n
- the rows of A form a <u>basis</u> for \mathbb{R}^n
- *A* is an invertible <u>matrix</u>
- $\det A \neq 0$