

VOLTA V100

Per Streaming Multiprocessor

- 64 FP32 lanes
- 32 FP64 lanes
- 64 INT32 lanes
- 16 SFU lanes (transcendental)
- **32 LD/ST** lanes (G-mem/L-mem/S-mem)
- 8 Tensor Cores
- 4 TEX lanes

SM Resources

Thread blocks require registers and shared memory.

SM can schedule any resident warp without context switching.

Volta limits per SM

- Register file size: 256 KB.
- Maximum shared memory: 96 KB.
- Maximum number of threads: 2048.
- Maximum number of warps: 64.
- Maximum number of blocks: 32.

Performance Constraints

Compute bound - saturates compute units

- Reduce the number of instructions executed
 - Vector types, intrinsic operations, tensor cores, FMAs.

Bandwidth bound - saturates memory bandwidth

- Optimize access pattern
- Use lower precision

Latency bound

Increase the number of instructions / mem accesses in flight

Little's Law

For Escalators

Our escalator parameters

- 1 Person per step
- A step arrives every 2 seconds
 Bandwidth: 0.5 person/s
- 20 steps tallLatency = 40 seconds

Little's Law

For Escalators

A step arrives every 2 seconds

Bandwidth: 0.5 person/s

20 steps tall : Latency = 40 seconds

- One person at a time?Achieved bandwidth = 0.025 person/s
- To saturate bandwidth
 Need one person arriving with every step,
 we need 20 persons in flight.
- Need Bandwidth x Latency persons in flight.

Optimization Goals

Saturating the compute units

- $a = b + c \rightarrow arithmetic intensity = \frac{1}{3 \times 4} F/B$
- $GPU's\ capability = \frac{15\ TFps}{900\ GBps} = 16.6\ F/B$
- It is hard to saturate the compute units.
- One can improve it by saturating the memory bandwidth.

Saturating the memory bandwidth

Hiding the latency is the key in achieving this goal.

Memory Bandwidth

Volta reaches 90% of peak bandwidth with ~6KB of data in flight per SM.

Little's law

Takeaways

Instructions in flight =

instructions in flight per thread x threads executing

Instruction Level Parallelism

Occupancy

Occupancy

Higher occupancy hides latency

SM has more warp candidates to schedule while other warps are waiting for instructions to complete.

$$Occupancy = \frac{Achieved number of threads per SM}{Maximum number of threads per SM}$$

Use the profiler to compute it.

Achieved occupancy vs theoretical occupancy

Need to run enough thread blocks to fill all the SMs.

Be mindful of diminishing returns.

Instruction Issue

Instructions are issued in-order

If an instruction is not eligible, it stalls the warp.

An instruction is eligible for issue if both are true:

A pipeline is available for execution

Some pipelines need multiple cycles to issue a warp.

All the arguments are ready

Argument is not ready if a previous instruction has not produced it yet.

Instruction Issue Example

```
<u>__g</u>lobal___ void kernel (float *a, float *b, float *c) {
int i= blockIdx.x * blockDim.x + threadIdx.x;
c[i] += a[i] * b[i];
                                            LDG.E R2, [R2];
                                            LDG.E R4, [R4];
                                                                           12B / thread
                                                                           in flight
                                            LDG.E R9, [R6];
                                                   stall!
                                         FFMA R9, R2, R4, R9;
                                                   stall!
                                            STG.E [R6], R9;
```

Computing 2 values per thread

```
_global___ void kernel (float2 *a, float2 *b, float2 *c) {
int i= blockIdx.x * blockDim.x + threadIdx.x;
c[i].x += a[i].x * b[i].x;
c[i].y += a[i].y * b[i].y;
                                        LDG.E.64 R2, [R2];
                                                                      24B/ thread
                                        LDG.E.64 R4, [R4];
                                                                       in flight
                                        LDG.E.64 R6, [R8];
                                                 stall!
                                       FFMA R7, R3, R5, R7;
        2 Independent instructions
                                       FFMA R6, R2, R4, R6;
                                                 stall!
                                         STG.E.64 [R8], R6;
```

Blocks of threads, warps

- Single Instruction Multiple Threads (SIMT) model.
- CUDA hierarchy: Grid -> Blocks -> Threads.
- One warp = 32 threads.
- Why does it matter?
 Many optimizations depend on behavior at the warp level.

Mapping threads

- Thread blocks can have 1D, 2D, or 3D representation.
 Threads are linear in hardware.
- Consecutive 32 threads belong to the same warp.

Mapping threads

- Thread blocks can have 1D, 2D, or 3D representation.
 Threads are linear in hardware.
- Consecutive 32 threads belong to the same warp.

Divergence

- Different warps can execute different code No impact on performance.
 Each warp maintains its own Program Counter.
- Different code path inside the same warp?
 Threads that do not participate are masked out,
 but the whole warp executes both sides of the branch.


```
A;
if(threadIdx.y==0)
   B;
else
   C;
D;
```

```
Warp 1 ... 31

Warp 2 ... 31

Warp 3 ...
```

31

Instructions, time


```
A;
if(threadIdx.y==0)
    B;
else
    C;
D;
```


Instructions, time


```
A;
if(threadIdx.y==0)
   B;
else
   C;
D;
```



```
A;
if(threadIdx.y==0)
   B;
else
   C;
D;
```



```
A;
if(threadIdx.y==0)
   B;
else
   C;
D;
```



```
A;
if(threadIdx.y==0)
   B;
else
   C;
D;
```



```
A;
if(threadIdx.y==0)
   B;
else
   C;
D;
```


Case study: Thread divergence

Problem: 2D convolution with padding on an input image of size 1024x1024.

- Number of divergence in first and last row: 0
- Number of divergence in other rows
 - 2-way divergence in first and last warp of each row.
 - Total warps with divergence: 1022 x 2 = 2044.
 - 6% of threads will have a 2-way divergence.

Takeaways

- Not every branch is a divergence.
- Minimize thread divergence inside a warp.
- Divergence between warps is fine.
- Maximize "useful" cycles for each thread (maximize # of threads executing + minimize thread divergence).
- Do not call a warp-wide instruction on a divergent branch (e.g. __syncthreads()).

Intrinsic Functions

- Fast but less accurate math intrinsic functions are available.
- 2 ways to use the intrinsic functions
- Whole file: compile with --fast-math
- Individual calls
 E.g. __sinf(x), __logf(x), __fdivide(x,y)
- The programming guide has a list of intrinsic functions and their impact on accuracy.

Volta/Turing

Dedicated matrix multiplication pipeline.

Input precision: FP16.

Peak Performance: 125 TFLOPS.

Used in CUBLAS, CUDNN, CUTLASS.

Optimized libraries can reach ~90% of peak.

Exposed in CUDA.

Using Tensor Cores in your CUDA code

Warp Matrix Multiply Add (WMMA)

- Warp-wide macro-instructions.
- All threads in the warp must be active.

Performs matrix multiplication on 16x16 tiles (8x32x16 and 32x8x16 tiles also available)

 $D = A \times B + C$

A and B: FP16 only

C and D: Same, either FP16 or FP32.

Typical use

Each warp processes a 16x16 output tile

Each warp:

Loop on all input tiles A_k and B_k

 $C = C + A_k \times B_k$

Write the output tile.

Typical use

Each warp processes a 16x16 output tile

Each warp:

Loop on all input tiles A_k and B_k

 $C = C + A_k \times B_k$

Write the output tile.

Can compute several tiles per block, with inputs staged in shared memory.

Case Study: Deep Learning

Scaling is required in the backward path.

Source: https://arxiv.org/pdf/1710.03740.pdf

Volta's Memory System

V100

80 Streaming Multiprocessors 256KB register file (20 MB)

Unified Shared Mem / L1 Cache 128KB, Variable split (~10MB Total, 14 TB/s)

6 MB L2 Cache (2.5TB/s Read, 1.6TB/s Write)

16/32 GB HBM2 (900 GB/s) "Free" ECC.

Memory System

Shared Memory Split

By default, the driver is using the configuration that maximizes the occupancy.

Shared Memory / L1 Split		
Volta	Turing	
96 KB / 32 KB	64 KB / 32 KB	
64 KB / 64 KB	32 KB / 64 KB	
32 KB / 96 KB		
16 KB / 112 KB		
8 KB / 120 KB		
0 KB /128 KB		

>	Examples	Volta	Turing
	0 KB Shared Mem. Other resources: 16 Blocks/SM.	Config: 0/128 Blocks/SM: 16	Config: 32/64 Blocks/SM: 16
	40 KB Shared Mem. Other resources: 4 Blocks/SM.	Config: 96/32 Blocks/SM: 2	Config: 64/32 Blocks/SM: 1

Cache Lines and Sectors

Moving data between L1, L2, DRAM

Sector-level memory access granularity.

- Sector size in Maxwell, Pascal, and Volta: 32B.
- Sector size in Kepler and before: variable (32 or 128).

A cache line is 128 Bytes, made of 4 sectors.

Memory Reads

Getting Data from Global Memory

- Checking if the data is in L1 (if not, check L2).
- Checking if the data is in L2 (if not, get in DRAM).
- Unit of data moved: Sectors.

Memory Writes

Before Volta: Writes were not cached in L1.

Volta+: L1 will cache writes.

L1 is write-through: Write to L1 AND L2.

L2 is write back: Will flush data to DRAM only when needed.

Partial writes are supported (masked portion of sector, but behavior can change with ECC on/off).

L1, L2 Caches

Why Does GPU Have Caches?

In general, not for cache blocking

- 100s ~ 1000s of threads running per SM.
 Tens of thousands of threads sharing the L2 cache.
 L1, L2 are small per thread.
 E.g. at 2048 threads/SM, with 80 SMs: 64 bytes L1, 38 Bytes L2 per thread.
 Running at lower occupancy increases bytes of cache per thread.
- Shared Memory is usually a better option to cache data explicitly:
 User managed, no evictions out of your control.

L1, L2 Caches

Why Does GPU Have Caches?

Caches on GPUs are useful for:

- "Smoothing" irregular, unaligned access patterns.
- Caching common data accessed by many threads.
- Faster register spills, local memory.
- Fast atomics.
- Codes that do not use shared memory (naïve code).

Warps and Sectors

For each warp: How many sectors needed?

Depends on addresses, active threads, access size. Natural element sizes = 1B, 2B, 4B, 8B, 16B.

Warps and Sectors

Examples of 8-byte elements: long long, int2, double, float2.

Warps and Sectors

Warps and Sectors

128 Bytes requested; 160 bytes read (80% efficiency).

Warps and Sectors

With >1 warp per block, this sector might be found in L1 or L2.

Warps and Sectors

Warps and Sectors

128 bytes requested; 1024 bytes transferred. Using only a few bytes per sector. Wasting lots of bandwidth.

Takeaways

- Know your access patterns.
- Use the profiler (metrics, counters) to check how many sectors are moved. Is that what you expect? Is it optimal?
- Using the largest type possible (e.g. float4) will maximize the number of sectors moved per instruction.

Shared Memory Addressing

- Number of banks: 32, band width: 4B.
- Mapping addresses to banks
 - Successive 4B words go to successive banks
 - Bank index computation examples:

```
(4B word index) % 32.
((1B word index) / 4) % 32.
8B word spans two successive banks.
```

Logical View Of Shared Memory Banks

With 4-Bytes data

Shared Memory Bank Conflicts

A bank conflict occurs when, inside a warp:

2 or more threads access within different 4B words in the same bank. Think: 2 or more threads access different "rows" in the same bank.

N-way bank conflict: N threads in a warp conflict

- Increases latency.
- Worst case: 32-way conflict \rightarrow 31 replays.
- Each replay adds a few cycles of latency.

There is no bank conflict if:

- Several threads access the same 4-byte word.
- Several threads access different bytes of the same 4-byte word.

2-way Bank Conflict

2-way Bank Conflict

3-way Bank Conflict

Bank Conflict and Access Phase

4B or smaller words

Process addresses of all threads in a warp in a single phase.

8B words are accessed in 2 phases

- Process addresses of the first 16 threads in a warp.
- Process addresses of the second 16 threads in a warp.

16B words are accessed in 4 phases

Each phase processes a quarter of a warp.

Bank conflicts occur only between threads in the same phase

8B words, No Conflicts

8B words, 2-way Conflict

Case Study: Matrix Transpose

Staged via SMEM to coalesce GMEM addresses

32x32 blocks, single-precision values.

32x32 array in shared memory.

Initial implementation:

A warp reads a row from GMEM, writes to a row of SMEM.

Synchronize the threads in a block.

A warp reads a column of from SMEM, writes to a row in GMEM.

Case Study: Matrix Transpose

32x32 SMEM array (.e.g. __shared__ float sm[32][32])

Warp accesses a row: No conflict.

Warp accesses a column: 32-way conflict.

Number indentifies which warp is accessing data. Color indicates in which bank data resides.

Bank 0

Bank 1

• • •

Bank 31

Case Study: Matrix Transpose

Solution: add a column for padding: 32x33 (.e.g. __shared__ float sm[32][33])

Warp accesses a row or a column: no conflict.

Number indentifies which warp is accessing data. Color indicates in which bank data resides.

Bank 0

Bank 1

• • •

Bank 31

Summary: Shared Memory

Shared memory is a precious resource

Very high bandwidth (14 TB/s), much lower latency than Global Memory.

Data is programmer-managed, no evictions by hardware.

Volta: up to 96KB of shared memory per thread block.

4B granularity.

Performance issues to look out for

Bank conflicts add latency and reduce throughput.

Use profiling tools to identify bank conflicts.

2D Stencil Experiment

with and without Shared Memory

With Shared Memory:

- Load the input array and halos in shared memory
- __syncthreads()
- Compute the stencil from the shared memory

2D - Small stencils

Relative speed of L1 implementation versus Smem implementation

L1 implementation is faster than Shared Memory on Volta!

2D - Larger Stencils

Relative speed of L1 implementation versus Smem implementation

Shared Memory implementation is always faster for larger stencils

Local Memory

- Local Memory
 - Volta's max register/thread: 255
 - Option to use smaller number of registers: -maxrregcount
 - Developers might use it to increase occupancy
 - Issues
 - Increased memory traffic
 - Increased instruction counts
 - Solutions
 - Increase register count, increase L1 cache size, careful non-caching loads.

Constant Memory

- Globally-scoped arrays qualified with __constant___.
- Total constant data size limited to 64 KB.
- Throughput = 4B per clock per SM (ideal if entire warp reads the same address).
- Can be used directly in arithmetic instructions (saving registers).
- Example use: Stencil coefficients.

Running Faster

Start with something simple. Simplicity and massive parallelism are key.

Profile first, optimize then. Do not over optimize (opportunity cost).

Use libraries as building blocks whenever possible - e.g. CUB for parallel primitives (reduce/scan/sort/partition/..) at warp/block/device level.

Other libraries: CUBLAS, CUFFT, CUTLASS, CUSOLVER.

Shared Memory

Scratch-pad memory on each SM

User-managed cache, hardware does not evict data. Data written to shared memory stays there till user overwrites.

Usage

Storing frequently-accessed data, to reduce DRAM accesses. Communication among threads of a block.

Performance benefits compared to DRAM

Latency: 20X - 40X lower.

Bandwidth: 15X higher.

Access granularity: 4X finer (4B vs. 32B).

Volta Shared Memory

- Shared Memory Size Per Block
 - Default: 48 KB, Maximum: 96KB.
- Shared Memory Bandwidth
 - Number of banks: 32, band width: 4B.
 - Bandwidth per SM: 128 B/clock
 - Total Bandwidth: 10 KB/clock ~ 14 TB/s

Shared Memory Instruction Operation

Threads in a warp provide addresses

HW determines into which 4-byte words addresses fall.

Reads (LDS):

Fetch the data, distribute the requested bytes among threads. Multi-cast capable.

Writes (STS):

Multiple threads writing the same address: race condition.