Kinematics (Continued)

Hsiu-Chin Lin

September 10, 2020

Welcome

Lecture Recordings This lecture will be recorded. By attending the live sessions, you agree to the recording, and you understand that your image, voice, and name may be disclosed to classmates

During the lecture

I will mute the audience Ask questions through 'Chat'

Last time

Representations of Rigid Bodies

Configuration and task Homogeneous Transformation Matrix

Last time

Representations of Rigid Bodies

Configuration and task Homogeneous Transformation Matrix

Forward Kinematics

Given configuration position/velocity, find task position/velocity

Last time

Representations of Rigid Bodies

Configuration and task Homogeneous Transformation Matrix

Forward Kinematics

Given configuration position/velocity, find task position/velocity

Inverse Kinematics

Given task veloticity

Use inverse kinematics to find configuration velocity

Outline

REDUNDANCY RESOLUTION

ORIENTATIONS

Outline

REDUNDANCY RESOLUTION

ORIENTATIONS

What is Redundancy?

 $^{^{0}}$ © Youtube: Ministry of Silly Walks

What is Redundancy?

Redundancy

More degree-of-freedom than what is required for your task There are more than one solutions to achieve the desired task

What is Redundancy?

Redundancy

More degree-of-freedom than what is required for your task There are more than one solutions to achieve the desired task

EXAMPLE

keep your finger tip and the same position and move your elbows

▶ joint-space velocity but no task-space velocity

Mathematically....

Mathematically....

 $\,\blacktriangleright\,$ There are many solutions to $\dot{x}=J\dot{q}$

Mathematically....

- \blacktriangleright There are many solutions to $\dot{x}=J\dot{q}$
- ▶ Jacobian is rank deficient $r(\mathbf{J}) \leq \mathcal{P} < \mathcal{N}$

Mathematically....

- \blacktriangleright There are many solutions to $\dot{x}=J\dot{q}$
- ▶ Jacobian is rank deficient $r(J) \le P < N$
- ▶ There exist a nullspace $\mathcal{N}(\mathbf{J}) \neq 0$

Mathematically....

- ightharpoonup There are many solutions to $\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$
- ▶ Jacobian is rank deficient $r(\mathbf{J}) \leq \mathcal{P} < \mathcal{N}$
- ▶ There exist a nullspace $\mathcal{N}(\mathbf{J}) \neq 0$

Nullspace

The nullspace of a matrix ${\bf A}$ consists of all the vectors ${\bf x}$ that satisfy ${\bf A}{\bf x}={\bf 0}$

Mathematically....

- ightharpoonup There are many solutions to $\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$
- ▶ Jacobian is rank deficient $r(\mathbf{J}) \leq \mathcal{P} < \mathcal{N}$
- ► There exist a nullspace $\mathcal{N}(\mathbf{J}) \neq 0$

Nullspace

The nullspace of a matrix ${f A}$ consists of all the vectors ${f x}$ that satisfy ${f A}{f x}={f 0}$

so... our elbows generate some joint velocity $\dot{\mathbf{q}}^0$, and $\mathbf{J}\dot{\mathbf{q}}^0=\mathbf{0}$

Redundancy Resolution

Inverse Kinemaitcs Controller with Redudnacy Resolution

$$\dot{\mathbf{q}} = \mathbf{J}^{\dagger}\mathbf{x} + \mathbf{N}\dot{\mathbf{q}}^{0}$$
 where

$$\mathbf{N} = \mathbf{I} - \mathbf{J}^\dagger \mathbf{J}$$
 is the nullspace projection matrix of \mathbf{J}

Redundancy Resolution

Inverse Kinemaitcs Controller with Redudnacy Resolution

$$\dot{\mathbf{q}}=\mathbf{J}^{\dagger}\mathbf{x}+\mathbf{N}\dot{\mathbf{q}}^{0}$$
 where

 $\mathbf{N} = \mathbf{I} - \mathbf{J}^\dagger \mathbf{J}$ is the nullspace projection matrix of \mathbf{J}

Nullspace Projection Matrix

A nullspace projection of **A** projects a vector onto $\mathcal{N}(A)$

Redundancy Resolution

Inverse Kinemaitcs Controller with Redudnacy Resolution

$$\dot{q}=J^{\dagger}x+N\dot{q}^{0}$$
 where
$$N=I-J^{\dagger}J \text{ is the nullspace projection matrix of } J$$

- ightharpoonup N projects $\dot{\mathbf{q}}^0$ onto the nullspace of the jacobian.
- \[
 \bar{q}^0\] can be **ANY** arbitrary vector.
 \[
 \bar{q}^0\] has **NO** effect on the \(\bar{x}\)
 \[
 \bar{q}^0\]
 \[
 \bar{q}^0\] has **NO** effect on the \(\bar{x}\)
 \[
 \bar{q}^0\]
 \[
 \ba

$$JN\dot{q}^0=J(I-J^\dagger J)\dot{q}^0=(J-JJ^\dagger J)\dot{q}^0=(J-J)\dot{q}^0=0$$

Question: How do we choose \dot{q}^0 ?

Ideally, we like to move our arms in a comfortable way, or reduce the amount of energy we consume for a given task.

Question: How do we choose \dot{q}^0 ?

Ideally, we like to move our arms in a comfortable way, or reduce the amount of energy we consume for a given task.

Move the redundant dimension to some default positions

$$\dot{\mathbf{q}}^0 = \mathbf{q}^0 - \mathbf{q}$$
 \mathbf{q}^0 is the home configuration \mathbf{q} is the current configuration

Matlab Example

Without Redundancy Resolution

With Redundancy Resolution

Outline

REDUNDANCY RESOLUTION

ORIENTATIONS

Orientations

What about orientations?

Previously, we only control the positions and ignore the orientations. How do we control orientations?

Position

$$\mathbf{x} \in \mathbb{R}^6 = egin{bmatrix} m{ heta} \ \mathbf{p} \end{bmatrix}$$
 $m{ heta} \in \mathbb{R}^3$ orientation $\mathbf{p} \in \mathbb{R}^3$ translation

Position

$$\mathbf{x} \in \mathbb{R}^6 = egin{bmatrix} m{ heta} \ \mathbf{p} \end{bmatrix}$$
 $m{ heta} \in \mathbb{R}^3$ orientation $\mathbf{p} \in \mathbb{R}^3$ translation

(Spatial) Velocity/Twist

$$\dot{\mathbf{x}} \in \mathbb{R}^6 = egin{bmatrix} \omega \ \dot{\mathbf{p}} \end{bmatrix}$$
 $\omega \in \mathbb{R}^3$ angular velocity $\dot{\mathbf{p}} \in \mathbb{R}^3$ linear velocity

Position

$$\mathbf{x} \in \mathbb{R}^6 = egin{bmatrix} m{ heta} \ \mathbf{p} \end{bmatrix}$$
 $m{ heta} \in \mathbb{R}^3$ orientation $\mathbf{p} \in \mathbb{R}^3$ translation

(Spatial) Velocity/Twist

$$\dot{\mathbf{x}} \in \mathbb{R}^6 = egin{bmatrix} oldsymbol{\omega} \ \dot{\mathbf{p}} \end{bmatrix} \ oldsymbol{\omega} \in \mathbb{R}^3 ext{ angular velocity} \ \dot{\mathbf{p}} \in \mathbb{R}^3 ext{ linear velocity}$$

Move to robot from point p to p*

Find $\dot{\textbf{p}}^* = \textbf{p}^* - \textbf{p}$, and then inverse kinematics to find $\dot{\textbf{q}}$

Position

$$\mathbf{x} \in \mathbb{R}^6 = egin{bmatrix} m{ heta} \ \mathbf{p} \end{bmatrix}$$
 $m{ heta} \in \mathbb{R}^3$ orientation $\mathbf{p} \in \mathbb{R}^3$ translation

(Spatial) Velocity/Twist

$$\dot{\mathbf{x}} \in \mathbb{R}^6 = egin{bmatrix} oldsymbol{\omega} \ \dot{\mathbf{p}} \end{bmatrix} \ oldsymbol{\omega} \in \mathbb{R}^3 \ ext{angular velocity} \ \dot{\mathbf{p}} \in \mathbb{R}^3 \ ext{linear velocity}$$

Move to robot from point p to p*

Find $\dot{\mathbf{p}}^* = \mathbf{p}^* - \mathbf{p}$, and then inverse kinematics to find $\dot{\mathbf{q}}$

Move to robot from point θ to θ^*

Find $\omega = ?$

current rotation: $\mathbf{R} = [\hat{x}(t), \hat{y}(t), \hat{z}(t)]$ desired rotation: $\mathbf{R}^* = [\hat{x}(t+\triangle t), \hat{y}(t+\triangle t), \hat{z}(t+\triangle t)]$ angular velocity $\boldsymbol{\omega} = ?$

⁰ More details in Modern Robotics, Section 3.3

current rotation: $\mathbf{R} = [\hat{x}(t), \hat{y}(t), \hat{z}(t)]$ desired rotation: $\mathbf{R}^* = [\hat{x}(t+\triangle t), \hat{y}(t+\triangle t), \hat{z}(t+\triangle t)]$ angular velocity $\boldsymbol{\omega} = ?$

Skew Interpertation of a Twist

 $\dot{\mathsf{R}} = \omega \times \mathsf{R}$

$$\mathbb{S}(\omega)$$
R
$$\mathbb{S}(\omega) = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$

 $\mathbb{S}(\omega)$: skew-symmetric matrix representation of ω

⁰ More details in Modern Robotics, Section 3.3

Desired position $R^* \in \mathbb{SO}(3)$ provided by the planner

Desired position $\mathbf{R}^* \in \mathbb{SO}(3)$ provided by the planner

Durrent position $R \in SO(3)$ calculated by forward kinematics

Desired position $R^* \in SO(3)$ provided by the planner

Durrent position $R \in SO(3)$ calculated by forward kinematics

Approximation of Angular Velocity

$$\mathbb{S}(\omega) = \dot{\mathsf{R}}\mathsf{R}^{-1} \ = \dot{\mathsf{R}}\mathsf{R}^{ op}$$

 $^ op$ (since $\mathsf{R}^ op = \mathsf{R}^{-1}$)

Desired position $\mathbf{R}^* \in \mathbb{SO}(3)$ provided by the planner

Durrent position $R \in SO(3)$ calculated by forward kinematics

Approximation of Angular Velocity

Desired position $\mathbf{R}^* \in \mathbb{SO}(3)$ provided by the planner

Durrent position $R \in \mathbb{SO}(3)$ calculated by forward kinematics

Approximation of Angular Velocity

Convert skew symmetric matrix back to angles

$$\omega = \frac{1}{2} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

Matlab Example

Example (Move orientations)

```
\mathbf{q} \in \mathbb{R}^7: joints \mathbf{x} \in \mathbb{R}^3: hand orientations \mathbf{J} \in \mathbb{R}^{3 \times 7}: Jacobian
```