Introduction to Machine Learning

Homework 5: Gradient Calculations and Nonlinear Optimization

[AUTHOR]

Student Name: Can Xu

Net id: cx461

Community Mail: jonathanxqs@nyu.edu

[Solution]

1.

1. Suppose we want to fit a model,

$$\hat{y} = \frac{1}{w_0 + \sum_{j=1}^{d} w_j x_j},$$

for parameters **w**. Given training data (\mathbf{x}_i, y_i) , i = 1, ..., n, a nonlinear least squares fit could use the loss function,

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left[y_i - \frac{1}{w_0 + \sum_{j=1}^{d} w_j x_{ij}} \right]^2$$

(a) Find a function $g(\mathbf{z})$ and matrix **A** such that the loss function is given by,

$$J(\mathbf{w}) = g(\mathbf{z}), \quad \mathbf{z} = \mathbf{A}\mathbf{w},$$

and $g(\mathbf{z})$ is factorizable, meaning $g(\mathbf{z}) = \sum_i g_i(z_i)$ for some functions $g_i(z_i)$.

- (b) What is the gradient $\nabla J(\mathbf{w})$?
- (c) What is the gradient descent update for w?
- (d) Write a few lines of python code to compute the loss function $J(\mathbf{w})$ and $\nabla J(\mathbf{w})$.

(a)
$$g(\mathbf{z}) = \sum_{k=1}^{n} [y_k - z_k^{-1}]^2 = \sum_{k=1}^{n} g(z_k)$$

...

[An1, An2,, And]]

(b)

That is the gradient

(C)

- , (.. ,, -

- ☐ Gradient descent algorithm:
 - \circ Start with initial w^0
 - $\circ \ w^{k+1} = w^k \alpha_k \nabla f(w^k)$
 - Repeat until some stopping criteria
- $\square \alpha_k$ is called the step size
 - In machine learning, this is called the learning rate

 $\nabla f(w^k)$ is known , we can choose $|\alpha_k|$ as learning rate

(D)

```
y = # yi known from data
tmp = 1 / ( w[0] + x.dot(w[1:]))

J = np.sum ( (y- tmp)**2 )
Jgrad = (y-tmp)* ( (x).dot(tmp**2) )
```

Use boradcasting

3.

- - - -

3. Matrix minimization. Consider the problem of finding a matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$ to minimize the loss function,

$$J(\mathbf{P}) = \sum_{i=1}^{n} \left[\frac{z_i}{y_i} - \ln(z_i) \right], \quad z_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{P} \mathbf{x}_i.$$

The problem arises in wireless communications where an m-antenna receiver wishes to estimate a spatial covariance matrix \mathbf{P} from n power measurements. In this setting, $y_i > 0$ is the i-th receive power measurement and \mathbf{x}_i is the beamforming direction for that measurement. In reality, the quantities would be complex, but for simplicity we will just look at the real-valued case. See the following article for more details:

Eliasi, Parisa A., Sundeep Rangan, and Theodore S. Rappaport. "Low-rank spatial channel estimation for millimeter wave cellular systems," *IEEE Transactions on Wireless Communications* 16.5 (2017): 2748-2759.

- (a) What is the gradient $\nabla_{\mathbf{P}} z_i$?
- (b) What is the gradient $\nabla_{\mathbf{P}}J(\mathbf{P})$?
- (c) Write a few lines of python code to evaluate $J(\mathbf{P})$ and $\nabla_{\mathbf{P}}J(\mathbf{P})$ given data \mathbf{x}_i and y_i . You can use a for loop.
- (d) See if you can rewrite (c) without a for loop. You will need Python broadcasting.
- (a) ZGrad[i] = x[i].dot(P.dot(x[i].T))

(b)
$$\operatorname{Jgrad} = \sum_{i=1}^{n} [\operatorname{ZGrad[i]/y[i]} - \operatorname{ZGrad[i]/z[i]}]$$

(n,n)

```
# x y known
for i in range(n):
    z[i] = x[i].T.dot(P.dot(x[i]))
    zgrad[i] = x[i].dot(P.dot(x[i].T)) # (n,n)
    J = J + (z[i]/y[i] - ln(z[i]) ) # (n,)
    Jgrad += zgrad[i]/y[i] - zgrad[i]/z[i] # (n,n)
(c)
```

(d) broadcasting:

```
J = z[:]/y[:] - ln(z[:]) # (n,)

Jgrad = zgrad[:]/y.reshape(n,-1) - zgrad[:]/z.reshape(n,-1) # (n,n)
```

Let it be n x n

4.

4. Nested optimization. Suppose we are given a loss function $J(\mathbf{w}_1, \mathbf{w}_2)$ with two parameter vectors \mathbf{w}_1 and \mathbf{w}_2 . In some cases, it is easy to minimize over one of the sets of parameters, say \mathbf{w}_2 , while holding the other parameter vector (say, \mathbf{w}_1) constant. In this case, one could perform the following nested minimization: Define

$$J_1(\mathbf{w}_1) := \min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2), \quad \widehat{\mathbf{w}}_2(\mathbf{w}_1) := \arg\min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2),$$

which represent the minimum and argument of the loss function over \mathbf{w}_2 holding \mathbf{w}_1 constant. Then,

$$\widehat{\mathbf{w}}_1 = \arg\min_{\mathbf{w}_1} J_1(\mathbf{w}_1) = \arg\min_{\mathbf{w}_1} \min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2).$$

Hence, we can find the optimal \mathbf{w}_1 by minimizing $J_1(\mathbf{w}_1)$ instead of minimizing $J(\mathbf{w}_1, \mathbf{w}_2)$ over \mathbf{w}_1 and \mathbf{w}_2 .

(b) Suppose we want to minimize a nonlinear least squares,

$$J(\mathbf{a}, \mathbf{b}) := \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} b_j e^{-a_j x_i} \right)^2,$$

over two parameters **a** and **b**. Given parameters **a**, describe how we can minimize over **b**. That is, how can we compute,

$$\hat{\mathbf{b}} := \arg\min_{\mathbf{a}} J(\mathbf{a}, \mathbf{b}).$$

(c) In the above example, how would we compute the gradients,

$$\nabla_{\mathbf{a}} J(\mathbf{a}, \mathbf{b}).$$

(b) Given a,

let
$$Jgrad(\mathbf{b}) = \nabla_{\mathbf{a}} J(\mathbf{a}, \mathbf{b}) = 0$$
, solve the related \mathbf{b}

That is local minima, compare these solutions and get global minima

Let it be = 0