for errors or questions email: nicolatr@student.ethz.ch

5 Sheaves of Modules

$\mathcal{O}(X)-modules$ 5.1

Fix a scheme X

A (pre)sheaf of $\mathcal{O}(X)$ -modules is a (pre)sheaf of abelian sheaf of \mathcal{O}_X -modules:

> groups \mathcal{F} on X together with a morphism of presheaves of sets $\mathcal{O}_X \times \mathcal{F} \longrightarrow \mathcal{F}$, which turns $\mathcal{F}(U)$ into an $\mathcal{O}_X(U)$ -module for

every open $U \subset X$

A homomorphism of such is a morphism of presheaves $\mathcal{F} \to \mathcal{G}$ such that $\mathcal{F}(U) \to \mathcal{G}(U)$ is $\mathcal{O}_X(U)$ -linear for each U

analogously define composition, identity morphism etc. \rightsquigarrow this forms a category.

Take \mathcal{O}_X -module \mathcal{F}_i for $i \in I$

The direct product $\prod \mathcal{F}_i$ is defined by $U \longmapsto \prod (\mathcal{F}_i(U))$ with direct product:

component-wise structure

direct sum: the direct sum $\bigoplus \mathcal{F}_i$ is the sheafification the presheaf

 $U \longmapsto \bigoplus \mathcal{F}_i(U)$. This is a subsheaf of $\prod \mathcal{F}_i$ with equality if |I|

is finite.

The tensor product $\mathcal{F} \otimes \mathcal{G}$ of \mathcal{O}_X -modules $\mathcal{F} \& \mathcal{G}$ is the sheafification tensor product:

of the presheaf $U \longmapsto \mathcal{F}(U) \otimes_{O(U)} \mathcal{G}(U)$

inner Hom: The inner Hom is the sheaf of homomorphisms of \mathcal{O}_X -modules \mathcal{F}

and \mathcal{G}

 $U \longmapsto Hom_{\mathcal{O}_X}(\mathcal{F}|_U, \mathcal{G}|_U) =: \mathcal{H}om_{\mathcal{O}(X)}(\mathcal{F}, \mathcal{G})(U)$

Locally free \mathcal{O}_X -modules 5.2

Abbreviate: $\mathcal{O}_X^{(I)} := \bigoplus_{i \in I} \mathcal{O}_X$ $\mathcal{O}_X^I := \prod_{i \in I} \mathcal{O}_X$ $\mathcal{O}_X^r := \bigoplus_{i=1}^r \mathcal{O}_X$

free \mathcal{O}_X -module : An \mathcal{O}_X -module isomorphic to $\mathcal{O}_X^{(I)}$ for some I is called free

locally free $\mathcal{O}_{X^{-}}$ (a) An \mathcal{O}_{X} -module is locally free if $\forall x \exists x \in U \subset X open \ \exists I : \mathcal{F}|_{U} \cong \mathcal{O}_{X}^{(I)}|_{U}$

(b) It is called locally free of rank r if $\exists I: |I|=r$ and $\forall x\exists x\in U\subset X:\mathcal{F}|_U\cong\mathcal{O}_X^{(I)}|_U$

dual sheaf: For \mathcal{F} locally free of finite rank, $\mathcal{F}^{\vee} := \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$ is called

the dual sheaf, also locally free of rank r.

invertible sheaf: A locally free sheaf of rank 1 is called an invertible sheaf.

Picard group: The set of isomorphism classes of invertible sheaves on X form an

abelian group, Pic(X), called the Picard group of X.

5.3 \mathcal{O}_X -modules on affine schemes

5.4 Quasicoherent \mathcal{O}_X -modules

Let X be an arbitrary scheme

Notation for global sections: $\mathcal{F}(X) = \Gamma(X, \mathcal{F}) = H^0(X, \mathcal{F})$

Any system of global sections $s_i \in \mathcal{F}(X)$ determines a homomorphism $\mathcal{O}_X^{(I)} \longrightarrow \mathcal{F}$, $(f_i)_{i \in I} \longmapsto \sum f_i \cdot res_U^X$

 \mathcal{F} is called generated by global sections if $\exists I$: \exists a surjective homomorphism: $\mathcal{O}_X^{(I)} \twoheadrightarrow \mathcal{F}$

quasicoherent $\mathcal{O}_{X^{-}}$ An $\mathcal{O}_{X^{-}}$ module \mathcal{F} is called quasicoherent if $\forall x \in X \exists$ open neighborhood $x \in U \subset X \exists I \exists J \exists$ exact sequence

$$\mathcal{O}_X^{(I)}|_U \longrightarrow \mathcal{O}_X^{(J)}|_U \longrightarrow \mathcal{F}|_U \longrightarrow 0$$

locally free \Longrightarrow quasicoherent

5.5 Coherent sheaves

finitely generated $\mathcal{O}_{X^{-}}$ An $\mathcal{O}_{X^{-}}$ module \mathcal{F} is called: module :

(a) finitely generated (or of finite type) if $\forall \exists x \in U \subset X$ open: $\exists n < \infty \ \exists \ \mathcal{O}_X^n|_U \twoheadrightarrow \mathcal{F}|_U \ \mathcal{O}_X$ -module homomorphism.

coherent \mathcal{O}_X -module (b) coherent if it is finitely generated and $\forall U \subset X$ open $\forall n < \infty \ \forall$ homomorphisms $\varphi : \mathcal{O}_X^n|_U \twoheadrightarrow \mathcal{F}|_U \ker(\varphi)$ is finitely generated.

5.6 Functoriality

Consider a morphism $f: X \longrightarrow Y$ with sheaves \mathcal{F} on X and \mathcal{G} on Y. Let \mathcal{F} be an \mathcal{O}_X -module and \mathcal{G} be an \mathcal{O}_Y -module.

f comes with a homomorphism of sheaves of rings:

$$f^{\flat}: \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X \iff f^{\sharp}: f^*\mathcal{O}_Y \longrightarrow \mathcal{O}_X$$

push-forward of a Make $f_*\mathcal{F}$ into an \mathcal{O}_V -module by sheaf:

$$\mathcal{O}_{Y}(V) \times (f_{*}\mathcal{F})(V) \longrightarrow (f_{*}\mathcal{F})(V)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{X}(f^{-1}(V)) \times \mathcal{F}(f^{-1}) \xrightarrow{mult.} \mathcal{F}(f^{-1}(V))$$

inverse image:

the inverse image of an \mathcal{O}_X -module is $f^*\mathcal{G} := f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$. i.e.the sheafification of the presheaf

$$U \longmapsto \varinjlim_{f(U) \subset V \subset Y} (\mathcal{O}_X(U) \otimes_{\mathcal{O}_Y(V)} \mathcal{G}(V))$$

scheme-theoretic support of \mathcal{F} :

Let \mathcal{F} be a quasicoherent, finitely generated \mathcal{O}_X -module. the scheme-theoretic support is the smallest closed subscheme $i: Y \hookrightarrow X$ such that $\mathcal{F} \cong i_* i^* \mathcal{F}$. Moreover $Y = \{x \in X | \mathcal{F}_x \neq 0\}$

\mathcal{O}_X -modules on a projective scheme

For any graded R-module M and any $n \in \mathbb{Z}$ we set M(n) := M as R-module with grading $M(n)_d = M_{n+d}$

$$\widetilde{R(n)} =: \mathcal{O}_X(n)$$

clear: $\mathcal{O}_X(0) \cong \mathcal{O}_X$

twisting sheaf:

 $\mathcal{O}_X(1)$ is called the twisting sheaf on X = ProjRfor any \mathcal{O}_X -module we set $\mathcal{F}(n) := \mathcal{F} \otimes \mathcal{O}_X(n)$

5.8 Morphisms to projective spaces

very ample sheaf: An invertible sheaf \mathcal{L} is called very ample (over SpecR) if

 $\mathcal{L} \cong f^*\mathcal{O}_X(1)$ for some locally closed embedding over R f:

 $X \hookrightarrow \mathbb{P}^n_R$ for some n.

ample sheaf: An invertible sheaf \mathcal{L} on a quasicompact scheme X is called

ample if for any finitely generated quasicoherent sheaf \mathcal{F} on X there exists n_0 such that $n \geq n_0$ the sheaf $\mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is

generated by global sections.

relatively ample /very \mathcal{L} an invertible sheaf with respect to $f: X \longrightarrow Y$ iff there example sheaf

ists an affine open covering $Y = \bigcup_{i \in I} V_i$ such that $\forall i \mathcal{L}|_{f^{-1}(V_i)}$

is ample/very ample over V_i

5.9 **Divisors**

Assume X integral with function field K.

field of rational functions on X

the constant sheaf $(K)_X := \underline{K}$ on X is called the sheaf of rational functions on X

group of Cartier divisors

 $Div(X) := \Gamma(X, \mathcal{K}_X^{\times}/\mathcal{O}_X^{\times})$

 $Div(X) = \{([f_x]) \in \prod_{x \in X} K^{\times} / \mathcal{O}_{X,x}^{\times} \mid \forall x \exists U \exists f \in K^{\times} \forall y \in U : f_y \in \mathcal{O}_{X,x} \mid \forall x \exists U \exists f \in \mathcal{O}_{X,x} \mid \mathcal{$

 $\mathcal{O}_{X,y}^{\times} = f \mathcal{O}_{X,y}^{\times} \}$ = { collections of $f_i \in K^{\times}$ for all $i \in I$ and an open covering $X = \bigcup U_i$ such that $\forall i, j : f_i/f_j \in \Gamma(U_i \cap U_j, \mathcal{O}_X^{\times}) \} /$ modulo some equivalence relation

convention: The group law on Div(X) is written additively.

 $\mathcal{O}_X(D)(U)$

For any Cartier divisor $D = ([f_x])x \in X$ and any open $U \subset X$ set:

$$\mathcal{O}_X(D)(U) = \begin{cases} \{0\} if U = \emptyset \\ \bigcap_{x \in U} f_x^{-1} \mathcal{O}_{X,x} else \end{cases}$$

locally factorial scheme

A noetherian integral scheme such that $\forall x \in X\mathcal{O}_{X,x}$ is factorial is called locally factorial.

effective cartier divi-

A cartier divisor $D = ([f_x])_x$ is called effective if $\forall x \in X : f_x \in$

equiv: $\forall i: f_i \in \mathcal{O}_X(u_i)$

 $\iff \mathcal{O}_X(-D) \subset \mathcal{O}_X \iff \mathcal{O}_X \subset \mathcal{O}_X(D)$

 $\iff \mathcal{O}_X(-D)$ is a quasicoherent sheaf of ideals of \mathcal{O}_X

⇔ D corresponds to a closed subscheme locally given by one equation f_i i.e. locally principal. this subscheme determines D.

principal cartier divisor

A cartier divisor of the form $div(f) := (f) := ([f])_{x \in X}$ for some $f \in K^{\times}$ is called principal.

cartier divisor class group of X

The factor group DivCl(X) := Div(X)/principal divisors

prime cycle

an integral closed subscheme is called a prime cycle. (equiv: irred closed subset)

codimension of A prime cycle's codimension is $\dim \mathcal{O}_{X,y}$ for the generic point $y \in Y$. prime cycle

cycle

A finite formal \mathbb{Z} -linear combination of prime cycles $\sum_{y} n_{y} y$ is called a cycle.

codimension of a cycle If all these Y have codim d the cycle has codim d

Weil divisor A cycle of dimension 1 is called a Weil divisor.

A Weil divisor of the form $cyc(div(f)) = \sum ord_y(f) \cdot \overline{\{y\}}$ is called principal weil divisor

principal.

Weil The factor group $Z(X)/\{principal\} = Cl(X)$ is called the Weil divisor class

divisor group. group

A weil divisor $\sum n_y Y$ is effective if all $n_y \geq 0$ effective weil divisor

> equiv: associated cartier divisor is effective equiv: $\mathcal{O}_X(-D)$ is an ideal sheaf of \mathcal{O}_X

ample/very ample di-A divisor is called ample/very ample iff $\mathcal{O}_X(D)$ is dito.

visor

5.10Differentials

Let X=Spec B , Y=Spec A and $f: Y \longrightarrow X$

A-derivation of B to M An A-derivation of B to a B-module M is a map $d: B \longrightarrow M$

> with $\forall b, b' \in B \ \forall a \in A$ (a)d(b+b') = d(b) + d(b') $(b)d(b \cdot b') = b \cdot b' + d(b) \cdot b'$

 $(c)d(a \cdot 1_B) = 0$

the set of these is denoted $DER_A(B, M)$

 $\Omega_{B/A}$ module of (relative) differential

(form)s

A module of relative differential forms of B over A is a B-module $\Omega_{B/A}$ with a derivation $d: B \longrightarrow \Omega_{B/A}$ over A which satisfies the universal property: for all B-modules M and all derivations δ : $B \longrightarrow M$ over A there exists exactly one B-module homomorphism $f: \Omega_{B/A} \longrightarrow M \text{ with } f \circ d = \delta$

cohomology 6