

Project Proposal

Tobias Hild Jacob Hyatt

Overview

Study the impact of unemployment, wealth, number of young males, and time on the number of burglaries in census blocks across Chicago from 2010-2015.

Sources of Variation Diagram		
Observational Units	Sources of Explained Variation	Sources of Unexplained Variation
Census Blocks within	Census Block location	Other demographic effects
Chicago for each month	Time of year	Geographic variation in police
from 2010-2015	Young Male Proportion	Variation in Laws
	Time since Jan 2010	Willingness to Report
	Wealth	Housing types
	Unemployment	Security technology and access

Data

Burglary Counts by Census Block

Correlation Heatmap

Ideas for Models

- Time as a quantitative variable
 - By month
 - By year
 - With season represented by temperature
 - Represented by temperature
- Time as a random variable
 - AR1 correlation structure
 - Grouped by month
 - With year as a quantitative variable
- Location as a random variable
 - BYM model (block and county)
 - Uncorrelated error structure (block and county)

- Feature Extraction
 - Young male percentage
 - Number of unemployed
- Offsets for population
 - Offset for young male population
 - Offset for unemployed population

Proposal Models

$$y_{ij} \sim \text{Po}(\lambda_{ij})$$

$$\log(\lambda_{ij}) = \eta_{ij}$$

$$\eta_{ij} = \log(\text{Pop}_j) + \beta X + u_i$$

$$X = \begin{bmatrix} \text{Unemployment Proportion}_j \\ \text{Wealth}_j \\ \text{Young Male Proportion}_j \\ \text{Months since Jan } 2010_i \end{bmatrix}$$

 $u_i \sim N(0, \sigma_u^2)$ is a random component for Census Block

Model 1: Random Effect by Location, quantitative variable for time, Offset for population. Covariates for wealth, unemployment, young male percentage

Proposal Models

$$y_{ij} \sim \text{Po}(\lambda_{ij})$$
$$\log(\lambda_{ij}) = \eta_{ij}$$
$$\eta_{ij} = \log(\text{Pop}_j) + \beta X + \gamma_j + u_t$$

$$X = \begin{bmatrix} \text{Unemployment Proportion}_j \\ \text{Wealth}_j \\ \text{Young Male Proportion}_j \\ \text{Months since Jan } 2010_i \end{bmatrix}$$

 γ_j is the BYM Model

$$u_t = \Phi u_{t-1} + v_t$$

Model 2: Random Effect by Location with neighbors correlated (BYM?), offset for population, Covariates for wealth, unemployment, young males percentage, AR1 for time

Proposal Models

$$y_{ij} \sim \text{Po}(\lambda_{ij})$$

$$\log(\lambda_{ij}) = \eta_{ij}$$

$$\eta_{ij} = \log(\text{Young Male Proportion}_i) + \beta X + u_t + \kappa_i$$

$$X = \begin{bmatrix} \text{Unemployment Proportion}_j \\ \text{Wealth}_j \\ \text{Pop}_j \\ \text{Months since Jan } 2010_i \end{bmatrix}$$

 $\kappa_i \sim N(0, \sigma_u^2)$ is a random component for Census Block

$$u_t = \Phi u_{t-1} + v_t$$

Model 3: Random Effect by Location, offset for young male proportion, Covariates for cyclic time (monthly temperature), AR1 for time

