19. Convert the grammar G to Chomsky normal form.

G: S -> aA | ABa A -> AA | a B -> AbB | bb

 $S_0 \rightarrow S$

 $N_a \rightarrow a$

 $N_b \rightarrow b$

 $B_1 \rightarrow AN_b$

A₁ -> AB

 $S \rightarrow N_a A \mid AB$

A -> AA | a

 $B \rightarrow B_1B \mid N_bN_b$

27. Let G be the grammar

G: S -> A | B A -> aaB | Aab | Aba B -> bB | Bb | aba

a) Give a regular expression for L(G).

(aab*abab*)+(ab|ba)*|b*abab*

b) Construct a grammar G' that contains no left-recursive rules and is equivalent to G.

S -> A | B A -> A_1A_2 A_1 -> Aab | aaB -> $aaBA_1^1$ A_1^1 -> abA_1^1 | λ A_2 -> Aba | aaB -> $aaBA_2^1$ A_2^1 -> baA_2^1 | λ B -> B | B₁ B_1 -> Bb | aba -> $abaB_1^1$ B_1^1 -> bB_1^1 | λ

30. Construct a Greibach normal form grammar equivalent to

S -> aAb | a A -> SS | b 33. Convert the Chomsky normal form grammar ${\bf G}$ to Greibach normal form. Process the variables according to the order ${\bf S}$, ${\bf A}$, ${\bf B}$.

G: S -> BA | AB | λ