STALGCM Final Exam Reviewer

Prepared By:

Ryan Austin Fernandez (ryan.fernandez@dlsu.edu.ph)

Academic Year and Term: Term 2, A.Y. 2024 - 2025

Total Points: 50

REMINDERS. READ BEFORE YOU START ANSWERING!

- 1. This is a closed notes exam. No notes are allowed. However, it is also a reviewer, so I cannot police you. You might as well practice answering this without notes. In fact, if you are reading this, especially if you are superstitious, I am cursing you with final exam failure if you use notes to answer this reviewer.
- 2. This reviewer is worth 50 points, of which none will be credited because it is a reviewer. Life is too short for unnecessary masochism.
- 3. Write your name AND section on the questionnaire and answer sheet/bubble sheet. After finishing the reviewer, please do not submit the questionnaire and the filled-out bubble sheet to me because it is only a reviewer. You may compare answers with a classmate, but please do not escalate your inevitable disagreements beyond academic discourse and debate. This is a reviewer, not a battle royale.
- 4. For each item, choose the **BEST ANSWER**. If none of the choices are appropriate, shade **E** for that item. It will also be like this in the final exam because sometimes, life wants you to have a 20% probability of success instead of 25%.
- 5. Cheating in any form is punishable with a grade of 0.0 for the course and a disciplinary offense. This includes but is not limited to passing notes during the exam or communicating with other people. However, since this is a reviewer, I literally could not care less.

Part I: Turing Machines and Computability

Consider the following as facts, given the languages L_1, L_2, L_3, L_4 , and L_5 :

- L_1 is Turing-recognizable.
- \bullet L_2 is Turing-decidable.
- ullet $L_2 \cup \overline{L_3}$ is Turing-decidable.
- ullet $\overline{L_1} \cup L_4$ is Turing-recognizable.
- ullet L_5 is regular.
- 1. Which of the following can we conclude about L_3 ?
 - A. L_3 is context-free.
 - B. L_3 is regular.
 - C. L_3 is Turing-decidable
 - D. $L_3 \subseteq L_1$
- 2. Which of the following can we conclude about $L_1 \cup L_2$?
 - A. $L_1 \cup L_2$ is Turing-complete.
 - B. $L_1 \cup L_2$ is an empty set.
 - C. $L_1 \cup L_2$ is Turing-recognizable.
 - D. $L_1 \cup L_2$ is regular.
- 3. Which of the following can we conclude about $L_5 L_3$?
 - A. L_5-L_3 is Turing-decidable.
 - B. $L_5 L_3$ is Turing-recognizable.
 - C. $L_5 L_3$ is context free.
 - D. $L_5 L_3$ is an empty set.
- 4. Which of the following can we conclude about $L_2 \cap L_3$?
 - A. $L_1 \cap L_2$ is Turing-recognizable.
 - B. $L_1 \cap L_2$ is Turing-decidable.
 - C. $L_1 \cap L_2$ is context-free.
 - D. $L_1 \cap L_2$ is regular.
- 5. Which of the following can we conclude about $L_2 \cup \overline{L_4}$?
 - A. $L_2 \cup \overline{L_4}$ is Turing-decidable.
 - B. $L_2 \cup \overline{L_4}$ is Turing-recognizable.
 - C. $L_2 \cup \overline{L_4}$ is context-free.
 - D. $L_2 \cup \overline{L_4}$ is an empty set.

- 6. Which of the following can we conclude about $L_2 \cup L_5$?
 - A. $L_2 \cup L_5$ is Turing-decidable.
 - B. $L_2 \cup L_5$ is Turing-recognizable.
 - C. $L_2 \cup L_5$ is context-free.
 - D. $L_2 \cup L_5$ is an empty set.

Consider the following Turing Accepter ${\cal M}$ given by:

```
M = (Q, \Sigma, \Gamma, \delta, A, \sqcup, E)
```

$$Q = \{A, B, C, D, E\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1, \sqcup, X, Y\}$$

$$\delta(A,0) = (B, X, R)$$

$$\delta(A, Y) = (D, Y, R)$$

$$\delta(B,0) = (B,0,R)$$

$$\delta(B,1) = (C, Y, L)$$

$$\delta(C,0) = (C,0,L)$$

$$\delta(C, X) = (A, X, R)$$

$$\delta(D,Y) = (D,Y,R)$$

$$\delta(D, \sqcup) = (E, \sqcup, L)$$

This machine must recognize the language $L = \{ \omega \in \{0,1\} \mid \omega = 0^n 1^n, n \ge 1 \}.$

- 7. State \boldsymbol{B} is missing a transition. What is the appropriate transition to add?
 - A. $\delta(B, X) = (B, X, L)$
 - B. $\delta(B, Y) = (B, Y, L)$
 - C. $\delta(B, X) = (B, X, R)$
 - D. $\delta(B, Y) = (B, Y, R)$
- 8. State C is missing a transition. What is the appropriate transition to add?
 - A. $\delta(C, X) = (C, X, L)$
 - B. $\delta(C, X) = (C, X, R)$
 - C. $\delta(C, Y) = (C, Y, L)$
 - D. $\delta(C, Y) = (C, Y, R)$
- 9. Including the correct missing transitions from the previous three items, what are the contents of the final tape when the machine takes the string 0011 as input?
 - A. $\sqcup XXYY \sqcup$
 - B. $\sqcup XXXXX \sqcup$
 - C. ⊔0011⊔
 - D. $\sqcup YYXX \sqcup$
- 10. Which of the following strings are accepted by M?
 - A. 000111
 - B. 00011
 - C. 00111
 - D. 0111

Consider the Turing transducer M given by:

$$M = (Q, \Sigma, \Gamma, \delta, A, \sqcup, J)$$

$$Q = \{A, B, C, D, E, F, G, H, I, J, K\}$$

$$\Sigma = \{1\}$$

$$\Gamma = \{1, \sqcup, X, Y\}$$

$$\delta(A,1) = (A,1,L)$$

$$\delta(A, \sqcup) = (B, Y, R)$$

$$\delta(B,1) = (C,X,R)$$

$$\delta(B, \sqcup) = (F, \sqcup, L)$$

$$\delta(C,1) = (C,1,R)$$

$$\delta(C, \sqcup) = (D, \sqcup, L)$$

$$\delta(D, 1) = (E, \sqcup, L)$$

$$\delta(E,1) = (E,1,L)$$

$$\delta(E, X) = (B, X, R)$$

$$\delta(F, X) = (F, 1, L)$$

$$\delta(F, Y) = (G, Y, R)$$

$$\delta(G, 1) = (H, 1, R)$$

$$\delta(G, \bot) = (I, \bot, IL)$$

$$\delta(H, \bot) = (I, \bot, L)$$

$$\delta(H, \square) = (I, \square, L)$$

$$\delta(H, 1) = (K, 1, L)$$

$$\delta(I,1) = (I, \sqcup, L)$$

$$\delta(I,Y) = (I,1,L)$$

$$\begin{split} \delta(I,\sqcup) &= (J,\sqcup,R) \\ \delta(K,1) &= (K,1,L) \end{split}$$

$$\delta(K,Y) = (K,Y,L)$$

$$\delta(K, \sqcup) = (B, Y, R)$$

This transducer converts the input 1^{2^n} , $n \ge 1$, to an output 1^n .

- 11. State B is missing a transition. Which of the following is the best transition to add?
 - A. $\delta(B, 1) = (B, 1, L)$
 - B. $\delta(B, Y) = (B, Y, L)$
 - C. $\delta(B,1) = (B,1,R)$
 - D. $\delta(B, Y) = (B, Y, R)$
- 12. What are the contents of the final tape when machine M takes 1111 as input?
 - **A**. ⊔11⊔
 - B. ⊔1111111111111111
 - C. ⊔1⊔
 - D. ⊔111⊔
- 13. Which of the following is the output for when 11 is the input?
 - **A**. 1
 - B. 11
 - C. 111
 - D. 1111
- 14. Which of the following best describes the purpose/task/responsibility of state D?
 - A. Mark a 1 to match with another 1 at the end.
 - B. Delete the rightmost 1.
 - C. Add another Y to the counter on the left of the tape.
 - D. Restore the marked 1s.
- 15. Which of the following best describes the purpose/task/responsibility of state F?
 - A. Mark a 1 to match with another 1 at the end.
 - B. Delete the rightmost 1.
 - C. Add another Y to the counter on the left of the tape.
 - D. Restore the marked 1s.

Part II: Context-Free Languages

Consider the CNF Grammar below:

$$\begin{split} G &= (N, T, P, \Sigma) \\ N &= \{A, B, C, D, E\} \\ T &= \{0, 1\} \\ P : \\ \Sigma &\to CA \mid AD \mid 0 \mid 1 \\ A &\to CA \mid 0 \mid 1 \mid CE \mid CB \mid DB \\ B &\to DB \mid 1 \\ C &\to 0 \\ D &\to 1 \end{split}$$

 $E \to AB$

Given the input string 00111, refer to the CYK parsing table below:

Σ, A, E				
Σ, A, E	(4)			
Σ, A, E	Σ, A, E	(3)		
(2)	Σ, A, E	Σ, B, E	Σ, B, E	
Σ, A, C	Σ, A, C	(1)	Σ, A, B, D	Σ, A, B, D
0	0	1	1	1

Table 1: CYK Parsing Table for string 00111 under grammar ${\cal G}$

- 16. What should be the contents of cell **(1)**? A. \varnothing B. Σ, B, D C. Σ, A, B, D D. Σ, A, B
- 17. What should be the contents of cell (2)? A. Σ, B, E B. \varnothing C. Σ, A, E D. Σ, A, B, E
- 18. What should be the contents of cell (3)? A. Σ, A, B, E B. \varnothing C. A, B, E D. Σ, A, E

19.	What should be the contents of cell ((4) ?	$P = A, \Sigma, A, E$	B. Σ . A	C . Σ . E	D. Ø
IJ.	What should be the contents of cent	T .	, , , , , , , , , , , , , , , , , , ,	D. 2, 11	$C. \ \Box, \Box$	D . ∞

Consider the context-free grammar ${\cal G}$ defined as:

$$\begin{split} G &= (N,T,P,\Sigma) \\ N &= \{A\} \\ T &= \{0,1\} \\ P : \\ \Sigma &\to A \mid \lambda \\ A &\to 0A \mid A1 \mid 0 \mid 1 \end{split}$$

20. The production $A \to A1$ is left-recursive. Which of the following is the correct modified form of As productions, assuming we move the recursive behavior to a new nonterminal B?

```
A. A \rightarrow 0A \mid 0 \mid 1
```

B.
$$A \to 0A \mid 0 \mid 1 \mid 0AB \mid 0B \mid 1B$$

C.
$$A \rightarrow 0AB \mid 0B \mid 1B$$

D.
$$A \to 0A \mid 1B0 \mid 1$$

21. Continuing from the previous item, which of the following is the correct production set for B?

```
A. B \rightarrow 1B \mid 1
```

B.
$$B \rightarrow B1 \mid 1$$

C.
$$B \to 1B \mid 0B \mid 1$$

D.
$$B \to 1B \mid 0B \mid 0 \mid 1$$

22. How many productions are in CNF in the original grammar?

- A. 0
- B. 1
- C. 4
- D. 5

23. In the CNF version of grammar G, how many productions are in GNF?

- A. 5
- B. 6
- C. 7
- D. 8

24. How many productions are in the GNF version of grammar G?

- A. 13
- B. 25
- C. 26
- D. 27

Consider the following formal definition of a Pushdown Automata:

$$M = (Q, \Sigma, \Gamma, \delta, A, Z, C)$$
$$Q = \{A, B, C\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{Z, X\}$$

$$\delta(A, 0, \lambda) = \{(A, X)\}$$

$$\delta(A, 0, \lambda) = \{(A, \lambda)\}$$

$$\delta(A,\lambda,\lambda) = \{(B,\lambda)\}$$

$$\delta(B, \lambda, \lambda) = \{(B, \lambda)\}\$$

$$\delta(B, 1, X) = \{(B, \lambda)\}\$$

$$\delta(B, 1, \lambda) = \{(B, \lambda)\}$$

$$\delta(B, \lambda, Z) = \{(C, \lambda)\}\$$

Consider the partial conversion of machine ${\cal M}$ into the CFG ${\cal G}$ as follows:

$$G = (N, T, P, \Sigma)$$

$$N = \{[AA], [AB], [BA], [BB]\}$$

$$T = \{0, 1\}$$

P:

$$[AA] \rightarrow [AA][AA] \mid [AB][BA] \mid \lambda$$

$$[AB] \rightarrow [AA][AB] \mid [AB][BB] \mid$$

$$[BA] \rightarrow [BA][AA] \mid [BB][BA] \mid$$

$$[BA] \rightarrow [BA][AA] \mid [BB][BA] \mid \lambda$$

25. How will the transition $\delta(A,0,\lambda)=\{(A,\lambda)\}$ be represented in G?

- A. Add the production $[AA] \rightarrow 0$ to P.
- B. Add the production $[AA] \rightarrow \lambda$ to P.
- C. Add the production $[AC] \rightarrow 0$ to P.
- D. Add the production $[AC] \rightarrow \lambda$ to P.

- 26. How will the transitions $\delta(A,0,\lambda)=\{(A,X)\}$ and $\delta(B,1,X)=\{(B,\lambda)\}$ be represented in G
 - A. Add the production $[AA] \rightarrow 0[AB]1$ to P.
 - B. Add the production $[AA] \rightarrow 0[AA]1$ to P.
 - C. Add the production $[AB] \rightarrow 0[AB]1$ to P.
 - D. Add the production $[AB] \rightarrow 0[AA]1$ to P.
- 27. What should be the productions for Σ ?
 - A. $\Sigma \rightarrow [AA] \mid [AB]$
 - B. $\Sigma \to [AA]$
 - C. $\Sigma \rightarrow [AB]$
 - $\mathsf{D}.\ \Sigma\to\lambda$
- 28. If we add the transition $\delta(A, \lambda, Z) = (C, \lambda)$ to the machine, which of the following productions must be added?
 - A. $[AB] \rightarrow [BA]$
 - B. $\Sigma \to [AA]$
 - C. $[AB] \rightarrow \lambda$
 - D. All of the above

Consider the context-free grammar ${\cal G}$ given by:

- $G = (N, T, P, \Sigma)$
- $N = \{A\}$
- $T = \{0, 1\}$
- $\Sigma \to A \mid \lambda$

 $A \to 0A1A \mid 01A \mid 0A1 \mid 01$

- 29. Which of the following strings is generated by G?
 - A. 00101101
 - B. 110010
 - C. 101010
 - D. 01010
- 30. Which of the following strings is not generated by G?
 - A. 00110
 - B. 0011
 - C. 0101
 - D. λ

Consider the pushdown accepter ${\cal M}$ given by:

- $M = (Q, \Sigma, \Gamma, \delta, A, Z, B)$
- $Q = \{A, B\}$
- $\Sigma = \{0, 1\}$ $\Gamma = \{Z, X\}$
- $\delta(A,0,\lambda) = \{(A,X)\}$
- $\delta(A, 1, X) = \{(A, \lambda)\}\$
- $\delta(A,\lambda,Z)=\{(B,\lambda)\}$
- 31. Which of the following strings is accepted by M?
 - A. 100111
 - B. 01001111
 - C. 0000111
 - D. 0001001111
- 32. Which of the following strings is not accepted by M?
 - A. 010011
 - B. 001101
 - C. 10010
 - D. 01001011

Part III: Regular Languages

Consider the language $L = \{\omega \in \{0,1\}^* \mid \omega = 0^*(10)^*\}$

When demonstrating the pumping lemma for regular languages, let p=4.

33. For the string $\omega=001010$, which of the following is a valid partitioning of ω ?

A.
$$x = \lambda, y = 001, z = 010$$

B.
$$x = 0010, y = 10, z = \lambda$$

C.
$$x = \lambda, y = 0, z = 01010$$

D.
$$x = \lambda, y = 001010, z = \lambda$$

34. For the string $\omega=101010$, which of the following is not a valid partitioning of ω ?

A.
$$x = \lambda, y = 10, z = 1010$$

B.
$$x = 10, y = 10, z = 10$$

C.
$$x = 10, y = 1010, z = \lambda$$

D.
$$x = \lambda, y = 1010, z = 10$$

Given the following two languages:

•
$$L_1 = \{ \omega \in \{a, b, c\}^* \mid \omega = a^*(b \cup c)(a \cup c \cup ba^*(b \cup c))^* \}$$

•
$$L_2 = \{ \omega \in \{a, b, c\}^* \mid \omega = (a(a \cup b)^*c \cup b \cup c)^* \}$$

represented by the following DFA's:

	a	b	c
$\rightarrow A$	A	В	В
B^*	В	A	В

Table 2: DFA for L_1

	a	b	c
$\rightarrow C^*$	D	С	С
D	D	D	\mathbf{C}

Table 3: DFA for L_2

And their joint machine given by the following transition table:

	a	b	c
$\rightarrow AC$	AD	BC	BC
AD	AD	BD	BC
BC	BD	AC	BC
BD	BD	AD	BC

Table 4: Joint/Product Machine for the DFAs of L_1 and L_2

35. Which of the following choices best represents the final states for $L_1 \cap L_2$?

$$\mathsf{A.}\ F=\{BC\}$$

$$\mathsf{B.}\ F = \{BC, BD\}$$

C.
$$F = \{AC, BC, BD\}$$

D.
$$F = \{BD\}$$

36. Which of the following choices best represents the final states for $\overline{L_1} \cup \overline{L_2}$?

$$\mathsf{A.}\ F = \{AC, AD, BD\}$$

$$B. F = \{BC\}$$

C.
$$F = \{BC, AD, BD\}$$

D.
$$F = \{BC, AC, BD\}$$

Consider the DFA ${\cal RM}$ given by Table 5.

	e	f	c
$\rightarrow Q1^*$	Q2		Q3
$Q2^*$	Q1	Q3	
$Q3^*$		Q2	Q3

Table 5: Transition Table for DFA RM

37. Refer to Table 5. Any string that matches the regex $e^*f^*c^*$ is accepted by DFA RM.

- A. True
- B. False

- 38. Refer to Table 5. Any string that matches the regex $(efc)^*$ is accepted by DFA RM.
 - A. True
 - B. False
- 39. The string ffce is in the language described by RegEx $f^{*}(ce)(ce)^{*}$
 - A. True
 - B. False
- 40. The string ffecffec is in the language described by RegEx $((ff \cup e)^*c)^*$
 - A. True
 - B. False

Consider the NFA ${\cal NM}$ given by Table 6.

	e	f
$\rightarrow Q1^*$	Q2	
Q2	Q1, Q2	Q1

Table 6: Transition Table for NFA NM

- 41. Refer to NFA ${\cal NM}.$ How many states will the converted DFA have?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 42. Refer to NFA NM. How many final states will the converted DFA have?
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Consider the DFA ${\cal DM}$ given by Table 7.

	e	f	c
$\rightarrow Q1$	Q1	Q2	Q4
$Q2^*$	Q3	Q1	Q2
Q3	Q4	Q4	Q1
$Q4^*$	Q2	Q2	Q2

Table 7: Transition Table for DFA DM

- 43. Refer to DFA DM. The DFA does not accept an empty string as input.
 - A. True
 - B. False
- 44. Refer to DFA ${\it DM}$. The DFA is also an NFA.
 - A. True
 - B. False

Consider the DFA SM given by Table 8 and the DFA EM given by Table 9.

	e	f
$\rightarrow A^*$	D	С
B^*	\mathbf{C}	F
C	\mathbf{C}	С
D^*	\mathbf{C}	Α
E^*	D	С
F^*	В	С

Table 8: Transition Table for DFA SM

	e	$\mid f \mid$
$\rightarrow G^*$	Н	I
H	Н	Н
I^*	J	Н
J^*	Н	Ι

Table 9: Transition Table for DFA EM

- 45. Refer to DFAs SM and EM. When testing for machine equivalence, the two machines are not equivalent.
 - A. True

	B. False	
46.	Refer to DFAs SM A. True B. False	and $EM.$ When testing for machine equivalence, state $\cal A$ will be in the same group as state $\cal I.$
47.	Refer to DFA $SM.$	Which state, if any, is unreachable?
	A. A	
	В. В	
	C. C	
	D. D	
48.	Refer to DFA SM .	How many states does the minimized DFA have?

48. Refer to DFA SM. How many states does the minimized DFA have:

A. 3

B. 4

C. 5

D. 6

Consider the Moore Machine ${\cal M}$ given by

	0	1
$\rightarrow A:0$	A	В
B:1	В	A

Table 10: Transition Table for Mealy Machine ${\cal M}$

- 49. Which of the following is a valid output of machine M for strings that follow the regular expression $0(10)^*$?
 - A. 01100110
 - B. 011001100
 - C. 11001100
 - D. 100
- 50. Which of the following is a valid output of machine M for strings that follow the regular expression $(11)^*$?
 - A. 10
 - B. 1001
 - C. 011
 - D. 0110

- - END OF FINAL EXAMINATION REVIEWER - -

STALGCM Final Examination Reviewer Answer Key

1.) E	2.) C	3.) E	4.) B	5.) E
6.) A	7.) D	8.) C	9.) A	10.) A
11.) D	12.) A	13.) A	14.) B	15.) D
16.) C	17.) E	18.) A	19.) A	20.) B
21.) A	22.) E	23.) D	24.) C	25.) A
26.) C	27.) C	28.) B	29.) A	30.) A
31.) D	32.) C	33.) C	34.) C	35.) A
36.) A	37.) B	38.) B	39.) A	40.) A
41.) C	42.) A	43.) A	44.) A	45.) A
46.) A	47.) B	48.) A	49.) B	50.) E

⁻⁻ END OF FINAL EXAMINATION REVIEWER ANSWER KEY --