1 Distribution multivariées

1.1 Classes de Fréchet

Soit F_1, \ldots, F_n des fonction de répartition univariées et $F_{\mathbf{x}} = F_{X_1, \ldots, X_n}$ la fonction de répartition du vecteur \mathbf{X} .

On définit la classe de Fréchet $CF(F_1, ..., F_n)$ par l'ensemble des fonctions de répartition F_X dont les marginales sont $F_1, ..., F_n$.

1.1.1 Bornes d'une classe de Fréchet

Si
$$F_{\mathbf{X}} \in CF(F_1, \dots, F_n)$$
, alors $W(x_1, \dots, x_n) \leq F_{\mathbf{X}}(x_1, \dots, x_n) \leq M(x_1, \dots, x_n)$ où $W(x_1, \dots, x_n) = \max \left(\sum_{i=1}^n F_i(x_i) - (n-1); 0\right)$ $M(x_1, \dots, x_n) = \min \left(F_1(x_1), \dots, F_n(x_n)\right)$

Preuve des bornes à savoir!

1.2 Comonotonicité

Les composantes de **X** sont dites comonotones si $X_i = F_{X_i}(U)$, i = 1, ..., n et $U \sim U(0,1)$.

1.2.1 Algorithme

- 1. Simuler $U^{(j)}$ de la v.a. $U \sim U(0,1)$
- 2. Calculer $X_i^{(j)} = F_{X_i}(U^{(j)}), i = 1, ..., n$

variable comonotone et la borne supérieure de Fréchet

Le vecteur ${\bf X}$ a des composantes comonotones ssi

$$F_{\mathbf{X}(x_1,\ldots,x_n)}=M(x_1,\ldots,x_n)$$

Preuve à savoir

Additivité des VaR et TVaR

On définit $S = \sum_{i=1}^n X_i = \sum_{i=1}^n F_{X_i}(U) = \varphi(U)$, où φ est une fonction crois-

1. L'antimonotonicité est seulement définie pour n=2.

sante pour
$$y \in (0,1)$$
. Alors, on a

$$VaR_{\kappa}(S) = \sum_{i=1}^{n} VaR_{\kappa}(X_i)$$

$$TVaR_{\kappa}(S) = \sum_{i=1}^{n} TVaR_{\kappa}(X_i)$$

Preuve à savoir

1.3 Antimonotonicité

Un couple de v.a. 1 **X** = (X_1 , X_2) dont les composantes sont définies par X_1 = $F_{X_1}(U)$ et $X_2 = F_{X_2}(1-U)$ est antimonotone par définition.

1.3.1 Algorithme

- 1. Simuler $U_{(j)}$ de la v.a. $U \sim U(0,1)$
- 2. Calculer $X_1^{(j)} = F_{X_1}(U^{(j)})$ et $X_2^{(j)} = F_{X_2}(1 U^{(j)})$

variable antimonotone et la borne inférieure de Fréchet

Le vecteur $\mathbf{X}=(X_1,X_2)$ a des composantes antimonotone ssi $F_{\mathbf{X}(x_1,x_2)}=W(x_1,x_2)$

Preuve à savoir

1.4 Loi de Poisson bivariée Teicher

- > Couple de v.a. (M_1, M_2) dont les marginales sont $Pois(\lambda_1)$ $Pois(\lambda_2)$
- \rightarrow paramètre de dépendance α_0 avec $0 \le \alpha_0 \le \min(\lambda_1, \lambda_2)$
- $> \alpha_1 = \lambda \alpha_0 \text{ et } \alpha_2 = \lambda_2 \alpha_0$
- > On définit les v.a. M_1 et M_2 telles que (avec $K_i \sim Pois(\alpha_i)$) $M_1 = K_1 + K_0$ et $M_2 = K_2 + K_0$ avec $M_i \sim Pois(\lambda_i)$

1.4.1 Fonction de masse de probabilité (fmp)

$$f_{M_1,M_2}(m_1,m_2) = e^{-\lambda_i - \lambda_2 + \alpha_0} \sum_{j=0}^{\min(m_1,m_2)} \frac{\alpha_0^j}{j!} \frac{(\lambda_1 - \alpha_0)^{m_1 - j}}{(m_1 - j)!} \frac{(\lambda_2 - \alpha_0)^{m_2 - j}}{(m_2 - j)!}$$

Preuve à savoir

1.4.2 Fonction génératrice des probabilités (fgp)

$$P_{M_1,M_2}(t_1,t_2) = e^{(\lambda_1-\alpha_0)(t_1-1)}e^{(\lambda_2-\alpha_0)(t_2-1)}e^{\alpha_0(t_1t_2-1)}$$
 Preuve à savoir

Covariance de M_1 et M_2 Cov $(M_1, M_2) = \text{Var}(K_0) = \alpha_0$ Preuve à savoir

1.4.3 Connaître la loi de $N = M_1 + M_2$

À terminer

2 Annexe

2.1 Les 3 formes explicites de la TVaR

Pour la TVaR, il y a 3 preuves à bien connaître :

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa}\pi_{X}(VaR_{\kappa}(X)) + VaR_{\kappa}(X)$$

Démonstration.

$$TvaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X)du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (VaR_{u}(X) - VaR_{\kappa}(X) + VaR_{\kappa}(X))du$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (\underbrace{VaR_{u}(X)}_{\text{fonction quantile}} - VaR_{\kappa}(X))du + \underbrace{\int_{\kappa}^{1} VaR_{\kappa}(X)du}_{\text{intégration d'une constante}}$$

$$= \frac{1}{1-\kappa} \int_{\kappa}^{1} (F_{X}^{-1}(u) - VaR_{\kappa}(X)) \underbrace{\int_{U \cap U} du}_{U \cap Unif(0,1)} du$$

$$+ \underbrace{\frac{1}{1-\kappa} VaR_{\kappa}(X)(1-\kappa)}_{F_{X}^{-1} \cap X}$$

$$= \frac{1}{1-\kappa} E[\max(F_{X}^{-1}(U) - VaR_{\kappa}(X);0)] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[\max(X - VaR_{\kappa}(X);0)] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} \pi_{X}(VaR_{\kappa}(X)) + VaR_{\kappa}(X)$$

Démonstration.

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \pi_{X}(VaR_{\kappa}(X)) + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[\max(X - VaR_{\kappa}(X); 0)] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[(X - VaR_{\kappa}(X)) \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] - \frac{1}{1-\kappa} E[VaR_{\kappa}(X) \times \underbrace{1_{\{X > VaR_{\kappa}(X)\}}}]$$

$$+ VaR_{\kappa}(X)$$

$$= \frac{1}{1-\kappa} E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] - \frac{1}{1-\kappa} VaR_{\kappa}(X)(1 - F_{X}(VaR_{\kappa}(X)))$$

$$+ \frac{1-\kappa}{1-\kappa} VaR_{\kappa}(X)$$

$$= \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)(-1 + F_{X}(VaR_{\kappa}(X)) + 1 - \kappa)}{1-\kappa}$$

$$= \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)(F_{X}(VaR_{\kappa}(X)) - \kappa)}{1-\kappa}$$

Une dernière preuve fortement utilisée pour la *TVaR*, qui découle directement de la dernière : :

$$TVaR_{\kappa}(X) = \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}]}{1 - \kappa}$$

Démonstration. Étant donné que cette formule ne fonctionne seulement que pour une v.a. continue, elle est très facile à prouver :

si *X* est continue,
$$\forall x, F_X(VaR_{\kappa}(X)) = \kappa$$

Alors, on peut enlever la partie de droite de l'équation.

à partir de la preuve ci-dessus, on peut démontrer celle-ci :
$$TVaR_{\kappa}(X) = \frac{E[X \times 1_{\{X > VaR_{\kappa}(X)\}}] + VaR_{\kappa}(X)(F_X(VaR_{\kappa}(X)) - \kappa)}{1 - \kappa}$$