1.Випадкова величина задана щільністю розподілу

$$f(x) = \begin{cases} C(6-x), 2 < x \le 6; \\ 0, & x < 2 \text{ a foo } x > 6. \end{cases}$$

Знайти параметр C, записати функцію розподілу випадкової змінної, обчислити її математичне сподівання та ймовірність того, що ξ прийме значення з проміжку (0; 4) Побудувати графіки щільності і функції розподілу.

2.Задано закон розподілу двовимірної випадкової величини ξ , η . Знайти невідомий параметр, закони розподілу складових, коваріацію та коефіцієнт кореляції. Визначити, чи складові є залежними.

$\xi = x_i$ $\eta = y_j$	-1	0	1
-1	0,1	0,3	0,2
0	0,1	0,1	0,05
1	5a	4a	6a

3.В ящику ϵ 6 деталей, 4 з яких стандартні. Навмання відібрано 3 деталі. Скласти закон розподілу дискретної випадкової величини X — числа стандартних деталей серед відібраних.

4.Задано закон розподілу величини X. Записати функцію розподілу випадкової змінної та нарисувати графік, обчислити її числові характеристики та ймовірність того, що ξ прийме значення з проміжку (-1; 2)

X	-1	0	1
P(x)	0,3	0,35	0,35