Weibel R= d[x, xm] this is commutative
En 9.13 So Re ROR F ROR = d[y, -ym z, -zm]
Pg. 304 what is the map R ? yimai, zimai
Oberiously (y,-z,, y2-z2, -, ym-zm) R° c ker (R°->R)
Other direction is also trivial
Regular sequence - Do we need & to be a VFD or may be an
integral domain affeast?
Not really sure about this.
Kozul Complex:
$x \in \mathbb{R}$ central, $K(x) = 0 \longrightarrow \mathbb{R} \xrightarrow{x} \mathbb{R} \longrightarrow 0$
$x \in \mathcal{X}$ central, $x(x) = 0 \rightarrow x \rightarrow 0$
Why do we need n central? To make this a himodule map?
K(n) & Kly) = K(n,y)
$0 \longrightarrow R \longrightarrow R \oplus R \longrightarrow R \longrightarrow 0$
h - nh-yh Note the -ve wigh
$0 \longrightarrow R \longrightarrow R \oplus R \longrightarrow R \longrightarrow 0$ $h \longmapsto nh - yh \qquad \qquad Note the -ve sign$ $(h,k) \longmapsto hx + ky$
Define: $\overline{\pi} := \pi, \dots, \pi_n$ all central,
/ K(\(\(\bar{u}\)):= K(\(u_1\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$H_{q}(\overline{\chi}_{J}A) = H_{q}(\overline{\chi}(\overline{\chi})\otimes A)$
$H^{\mathcal{V}}(\overline{x},A):=H_{\star}(Hom(K(\overline{x}),A))$
$K(\bar{x})_{p} \cong \Lambda^{p}$ generated by $e_{x_{i_{1}}} \sim e_{x_{i_{p}}}$
$K(\overline{x})_{p-1} \stackrel{\text{def}}{=} \bigwedge^{p-1} \stackrel{\text{def}}{R} \qquad \qquad \stackrel{\text{def}}{=} \sum_{j=1}^{p} (-1)^{j} e_{x_{i_1}} \wedge \dots \wedge e_{x_{i_p}} \wedge \dots \wedge e_{x_{i_p}}$
i β-1
K - DG algebra,
H _* (K) = {H _p (K)} is an R-graded algebra i.e. the product structure truckles down to the homologies
i.e. the product structure trickles down to the homologies
[a].[b] := [ab]
Well defined: $da \cdot b = d(ab) \pm a \cdot db = d(ab)$
graded commutativity: [a] [b] = (-) pillon [b][a]
yzadea communatury: [4] [6] [a]

$$K(\overline{x}) - GCDG GAB, med be which the differentials: \\ d(e_n, ne_n, ne_n, ne_n) = d(e_n ne_n) \\ = \sum_{j=1}^{n} \pi_{ij}^{-1} \hat{e}_{n}^{-1} ne_{n}^{-1} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} \hat{e}_{n}^{-1} ne_{n}^{-1} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-1} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-1} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} + \sum_{j=1}^{n} (-j^{-j})^{-j} e_{n} n\hat{e}_{n}^{-j}$$

$$= \frac{\sum_{j=1}^{n} \pi_{ij}^{-1} ne_{n}^{-j} ne_{n}^{-j}$$

