### Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko lehenengo zatia: AFD, AFED eta  $\varepsilon$ -AFED-en diseinua Bilboko IITUE 1,6 puntu

2015-11-18

#### 1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$  alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

#### 1.1 Osagai denak a izan gabe a kopuru bakoitia duten hitzez eratutako $L_1$ lengoaia

a kopuru bakoitia edukitzeaz gain, b edo c sinboloen agerpenak ere badituzten hitzez eratutako  $L_1$  lengoaia. Adibidez, cabbb, abaabc, aaab eta ababcababa hitzak  $L_1$  lengoaiakoak dira baina  $\varepsilon$ , a, aaa, b, aacabac, aabcbc eta bccccc hitzak ez dira  $L_1$  lengoaiakoak.  $L_1$  lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land |w|_a \bmod 2 \neq 0 \land |w|_a \neq |w| \}$$

## 1.2 b-rik eta c-rik ez duten edo a kopuru bakoitia duten edo a-rik ez duten hitzez eratutako $L_2$ lengoaia

Gutxienez honako hiru baldintza hauetakoren bat betetzen duten hitzez osatutako  $L_2$  lengoaia:

- ullet b-rik eta c-rik ez edukitzea edo
- a kopurua bakoitia izatea edo
- a-rik ez edukitzea.

Adibidez,  $\varepsilon$ , aa, aaa, abaabc, aaab, ccc eta bbcb hitzak  $L_2$  lengoaiakoak dira baina aab, bcaababa eta acaaa hitzak ez dira  $L_2$  lengoaiakoak.  $L_2$  lengoaiaren definizio formala honako hau da:

$$L_2 = \{ w \mid w \in A^* \land (|w|_a = |w| \lor |w|_a \bmod 2 \neq 0 \lor |w|_a = 0) \}$$

### 2 Automata finitu ez-deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako  $L_2$  lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

# 3 $\varepsilon$ trantsizioak dituzten automata finitu ez-deterministen ( $\varepsilon$ -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako  $L_2$  lengoaiari dagokion  $\varepsilon$ -AFED bat diseinatu. Nahitaezkoa da  $\varepsilon$ -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo  $\varepsilon$  sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez  $\varepsilon$  trantsizio bat egotea.

### 4 Konputazio deterministen garapena (0,100 puntu)

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:



- 1.  $\delta^*(q_0, abcaab)$
- 2.  $\delta^*(q_0, abb)$
- 3.  $\delta^*(q_0, cab)$
- 4.  $\delta^*(q_0, aca)$
- 5.  $\delta^*(q_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

### 5 Konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:



- 1.  $\nu^*(r_0, aaac)$
- 2.  $\nu^*(r_0, acaa)$
- 3.  $\nu^*(r_0, aaa)$
- 4.  $\nu^*(r_0, b)$
- 5.  $\nu^*(r_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

# 6 $\varepsilon$ trantsizioak dituzten konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den  $\varepsilon$ -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran  $\varepsilon$ -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:



- 1.  $\lambda^*(s_0, abac)$
- 2.  $\lambda^*(s_0, abab)$
- 3.  $\lambda^*(s_0, bbb)$
- 4.  $\lambda^*(s_0, a)$
- 5.  $\lambda^*(s_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

### 7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a,b,c\}$  alfabetoaren gainean definitutako honako AFD hau minimizatu:



AFD honi dagokion  $\delta$  trantsizio funtzioa honako taula honen bidez adieraz daiteke:

| δ        | a        | b        | c        |
|----------|----------|----------|----------|
| $q_0$    | $q_1$    | $q_9$    | $q_{10}$ |
| $q_1$    | $q_2$    | $q_3$    | $q_5$    |
| $q_2$    | $q_2$    | $q_2$    | $q_2$    |
| $q_3$    | $q_6$    | $q_4$    | $q_5$    |
| $q_4$    | $q_4$    | $q_4$    | $q_4$    |
| $q_5$    | $q_6$    | $q_7$    | $q_5$    |
| $q_6$    | $q_8$    | $q_7$    | $q_5$    |
| $q_7$    | $q_6$    | $q_8$    | $q_5$    |
| $q_8$    | $q_8$    | $q_8$    | $q_8$    |
| $q_9$    | $q_{10}$ | $q_{10}$ | $q_{10}$ |
| $q_{10}$ | $q_9$    | $q_9$    | $q_9$    |