Lab2 - DDIM and LoRA

Task 1 - DDIM

Task 2 - LoRA

Introduction

In task 1, you will implement Denoising Diffusion Implicit Models (DDIM) to accelerate the generation process of pretrained DDPM

Introduction

In Task 2, you will train custom LoRA models with a given library

LoRA: Low-Rank Adaptation of Large Language Models, Hu et al., ICLR 2022

What to Do: Overview

You need to implement:

- Task 1-1: [2D Swiss Roll] Reverse Process of DDIMs
- Task 1-2: [Image Generation] DDIM Sampling
- Task 2-1: Train LoRA on a specific style
- Task 2-2: Train DreamBooth with LoRA on a Specific Identity

Task 1: DDIM

Modify both tasks from Assignment 1 to use DDIM sampling.

Task 1: DDIM

In the 2D example, replace a single line

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}^{(t)}(\mathbf{x}_t) \right) + \sigma_t \epsilon_t$$

in your DDPM implementation with

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{\theta}^{(t)}(\boldsymbol{x}_t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \boldsymbol{\epsilon}_{\theta}^{(t)}(\boldsymbol{x}_t) + \sigma_t \boldsymbol{\epsilon}_t$$

Denoising Diffusion Implicit Models, Song et al., ICLR 2021

#TODO1 - ddim_p_sample

- 2d plot diffusion todo/ddpm.py

Reverse Process

```
@torch.no_grad()
def ddim p sample(self, xt, t, t prev, eta=0.0):
    One step denoising function of DDIM: $x t{\tau i}$ -> $x {\tau{i-1}}$.
    Input:
       xt (`torch.Tensor`): noisy data at timestep $\tau_i$.
       t (`torch.Tensor`): current timestep (=\tau_i)
        t prev ('torch.Tensor'): next timestep in a reverse process (=\tau {i-1})
        eta (float): correspond to \eta in DDIM which controls the stochasticity of a reverse process.
    Output:
       x_t_prev (`torch.Tensor`): one step denoised sample. (= $x_{\tau_{i-1}}$)
    111111
    ####### TODO #######
    alpha prod t = extract(self.var scheduler.alphas cumprod, t, xt)
    if t prev >= 0:
       alpha_prod_t_prev = extract(self.var_scheduler.alphas_cumprod, t_prev, xt)
        alpha_prod_t_prev = torch.ones_like(alpha_prod_t)
    x_t_prev = xt
    return x t prev
```

Reverse Process

#TODO2 - ddim_p_sample_loop

2d_plot_diffusion_todo/ddpm.py

```
@torch.no grad()
def ddim_p_sample_loop(self, shape, num_inference_timesteps=50, eta=0.0):
    The loop of the reverse process of DDIM.
    Input:
        shape (`Tuple`): The shape of output. e.g., (num particles, 2)
        num inference timesteps (`int`): the number of timesteps in the reverse process.
        eta (`float`): correspond to \eta in DDIM which controls the stochasticity of a reverse process.
    Output:
        x0_pred (`torch.Tensor`): The final denoised output through the DDPM reverse process.
    ####### TODO #######
    # NOTE: This code is used for assignment 2. You don't need to implement this part for assignment 1.
    # DO NOT change the code outside this part.
    step_ratio = self.var_scheduler.num_train_timesteps // num_inference_timesteps
    timesteps = (
        (np.arange(0, num inference timesteps) * step ratio)
        .round()[::-1]
        .copy()
        .astype(np.int64)
    timesteps = torch.from_numpy(timesteps)
    prev_timesteps = timesteps - step_ratio
    xt = torch.zeros(shape).to(self.device)
    for t, t_prev in zip(timesteps, prev_timesteps):
    x0 pred = xt
    return x0_pred
```

#TODO3 - evaluate

2d_plot_diffusion_todo/ddpm_tutorial.ipynb

Run all cells in 2d_plot_diffusion_todo/ddpm_tutorial.ipynb and generate 2D points via DDIM sampling

#Report

- 1. Complete and Explain of all #TODO code (15pts)
- 2. Fig of evaluation result (2.5 pts)

3. A screenshot of the Chamfer Distance measured using DDIM (2.5 pts)

#TODO1 - DDIMScheduler

image_diffusion_todo/scheduler.py

Implement functions

- set_inference_timesteps
- step

```
class DDIMScheduler(BaseScheduler):
   def init (--
   def set_inference_timesteps(self, num_inference_timesteps: int):
       Define the inference schedule (a subset of training timesteps, descending order).
           num_inference_timesteps (int): number of inference steps (e.g., 50).
       ####### TODO #######
       raise NotImplementedError("TODO")
   def _get_teeth(self, consts: torch.Tensor, t: torch.Tensor):
   @torch.no grad()
   def step(self, x_t: torch.Tensor, t: int, eps_theta: torch.Tensor, predictor: str):
       One step DDIM update: x_t \rightarrow x_{t_prev} with deterministic/stochastic control via eta.
       Input:
           x t: [B.C.H.W]
           t: current absolute timestep index
           eps theta: predicted noise
           predictor: predictor type
            sample_prev: x at previous inference timestep
       ####### TODO #######
       assert predictor == "noise", "In assignment 2, we only implement DDIM with noise predictor."
       sample prev = None
       return sample prev
```

#TODO2 - sampling

- image_diffusion_todo/sampling.py

Run the following command to generate samples with DDIM:

```
python sampling.py --ckpt_path {CKPT} --save_dir {SAVE_DIR} \
--sample_method ddim \
--ddim_steps {DDIM_STEPS} --eta {ETA}
```

- Try different **DDIM_STEPS**: 10, 20, 50, 100, 1000
- Try different **ETA**: 0.0, 0.2, 0.5, 1.0

#TODO3 - evaluate

- image_diffusion_todo/dataset.py
- image_diffusion_todo/fid/measure_fid.py

STEP 1: Run python dataset.py once to prepare the evaluation data.

This will create the eval directory under data/afhq.

Do NOT forget to run this. Otherwise, you will get incorrect FIDs!

STEP 2: Run the following command to evaluate FID:

python fid/measure_fid.py data/afhq/eval/ {SAMPLE_DIR}

#Report

- Complete and Explain of all #TODO code (20pts)
- 2. Provide a table of evaluation results. (10 pts)
- 3. Discuss and explain the evaluation results. (10 pts)

FID		S					
		10	20	50	100	1000	
η	0.0	18.24	18.66	21.77	25.55	25.30	
	0.2	12.40	16.04	13.91	17.35	19.18	
	0.5	16.35	10.48	8.05	6.81	5.80	
	1.0	29.18	20.02	9.36	6.27	4.73	

Introduction to Hugging Face and Diffusers

Hugging Face 🤗

An open-source platform that serves as a hub for machine learning applications.

Diffusers Library D\ffusers

Task	Pipeline	👜 Hub	
Unconditional Image Generation	DDPM	google/ddpm-ema-church-256	
Text-to-Image	Stable Diffusion Text-to- Image	runwayml/stable-diffusion-v1-5	
Text-to-Image			
Text-to-Image	DeepFloyd IF	DeepFloyd/IF-I-XL-v1.0	
Text-to-Image			
Text-guided Image-to-Image	Controlnet	Illyasviel/sd-controlnet-canny	
Text-guided Image-to-Image	Instruct Pix2Pix		
Text-guided Image-to-Image	Stable Diffusion Image-to- Image	runwayml/stable-diffusion-v1-5	
Text-guided Image Inpainting			
Image Variation	Stable Diffusion Image Variation	lambdalabs/sd-image-variations-diffusers	
Super Resolution			
Super Resolution	Stable Diffusion Latent Upscale	stabilityai/sd-x2-latent-upscaler	

e.g. Loading Stable Diffusion from diffusers

```
import torch
from diffusers import StableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(
    model_id,
    torch_dtype=torch.float16
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
```

#TODO0

You need access to Hugging Face to proceed with Task 2:

- 1. Sign into Hugging Face.
- 2. Obtain your access token at https://huggingface.co/settings/tokens.
- 3. From your terminal, log into Hugging Face using

\$ huggingface-cli login

and enter your Access Token.

#TODO0

4. To check the access to Hugging Face, download Stable Diffusion from Hugging Face and generate an image with it:

```
import torch
from diffusers import StableDiffusionPipeline
model id = "CompVis/stable-diffusion-v1-4"
device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to(device)
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
```

Goal: Train custom LoRA models on different datasets.

Generated with GPT4 "A man with sunglasses"

No implementation required!

The main objective of this task is to:

- Gain hands-on experience on customizing diffusion models using LoRA.
- Explore creative use-cases of state-of-the-art diffusion models.

Task 2-1: Train LoRA on a specific style.

#TODO1 - train

You can either use an open-source dataset and train with

\$ sh scripts/train_lora.sh

Or create a custom dataset and train with

\$ sh scripts/train_lora_custom.sh

Task 2-1: Train LoRA on a specific style.

#TODO1 - train

In either case, just simply set the path to the dataset by

\$ export DATASET_NAME="\$PATH_TO_DATASET"

in the given script file.

Task 2-1: Train LoRA on a specific style.

TIP: You can find many open-source LoRA training datasets on Hugging Face.

Datasets 127	Full-text search ↑↓ Sort: Trending
■ Nerfgun3/sakimi-chan_LoRA ■ Viewer • Updated Jan 30, 2023 • ■ 5 • ± 2 • ♥ 22	■ MoSalama98/LoRA-WiSE ■ Viewer • Updated Jul 5 • ■ 1.81k • ±50 • ♥ 4
■ PhanAnh/LOR_art ■ Viewer • Updated Jan 22, 2023 • ■ 86 • ± 2	■ Nerfgun3/tinafate_LoRA ■ Viewer • Updated Jan 31, 2023 • ■ 4 • ± 2 • ♡ 1
■ Nerfgun3/miyuki-shiba_LoRA ■ Viewer • Updated Jan 31, 2023 • ■ 4 • ± 2 • ♡ 4	■ Nerfgun3/enaic31_LoRA ■ Viewer • Updated Jan 31, 2023 • ■ 4 • ± 2 • ♡ 2
■ Nerfgun3/FBI-meme_LoRA ■ Viewer • Updated Feb 2, 2023 • ■ 4 • ± 2 • ♡ 2	■ Nerfgun3/John_Kafka_LoRA ■ Viewer • Updated Feb 2, 2023 • ■ 4 • ± 2 • ♡ 1
■ Nerfgun3/Liang_Xing_LoRA ■ Viewer • Updated Feb 2, 2023 • ■ 4 • ± 2 • ♥ 4	■ AIARTCHAN/lora-hanboka-000003 ■ Viewer • Updated Feb 11, 2023 • ■ 7 • ± 2 • ♥ 4

https://huggingface.co/datasets?modality=modality:image&size_categories=or:%28size_categories:n%3C1K.size_categories:1K%3Cn%3C10K%29&sort=trending&search=lora

Task 2-2: Train LoRA on a specific identity using DreamBooth + LoRA.

#TODO1 - train

Run \$ sh scripts/train_dreambooth_lora.sh for training.

#TODO2 - inference

task_2_lora/lora_inference.ipynb

```
Load Stable Diffusion
    pipe = StableDiffusionPipeline.from_pretrained(
        "CompVis/stable-diffusion-v1-4",
        torch dtvpe=torch.float16
    print("[INFO] Successfully loaded Stable Diffusion!")
Load LoRA weights
    lora path = "./runs/artistic custom"
    if lora_path is not None:
       pipe.load lora weights(lora path)
       print("[INFO] Successfully loaded LoRA weights!")
    pipe = pipe.to(device)
 [INFO] Successfully loaded LoRA weights!
```



```
Inference
       prompt = "a man with sunglasses"
       seed = 10
       seed everything(seed)
       image = pipe(
           prompt,
           num inference steps=30,
           guidance_scale=7.5
        images [0]
       image
[27]
                     30/30 [00:01<00:00, 22.53it/s]
    100%
```

#Report

- 1. [Task 2-1] Description on the dataset used, including its source. (5 pts)
- [Task 2-1] Visualization of training images and generated image with the corresponding text prompts. (15 pts)
- 3. [Task 2-2] Description on the dataset used, including its source. (5 pts)
- [Task 2-2] Visualization of training images and generated image with the corresponding text prompts. (15 pts)

Submit

Create and zip a single folder named {ID}_lab2.zip including:

- The PDF file formatted following the guideline
- (Task1) The complete code for Task 1, excluding checkpoints and datasets.
- (Task2) Provide the LoRA weight cloud link in a text file.
 The file name should be: {ID}_task2-1_lora_weight.


```
{ID}_lab2.zip
   report.pdf
   task1
    — 2d_plot_diffusion_todo
           __init__.py
           chamferdist.py
           dataset.py
           ddpm_tutorial.ipynb
           ddpm.py
        network.py
        image_diffusion_todo
           dataset.py
           model.py
           module.py
           network.py
           sampling.py
           scheduler.py
           train.py
  – task2
    — {ID} task2-1 lora weight.txt
    └─ {ID} task2-2 lora weight.txt
```