Top-down estimates of ammonia (NH₃) emissions to characterise the influence on local air quality

Eloise Marais University College London (UCL), 11 June 2025

with Martin Van Damme, Lieven Clarisse, Christine Wiedinmyer, Killian Murphy, Guido van der Werf, Alok Pandey, Pierre-François Coheur, Mark Shephard, Karen Cady-Pereira, Tom Misselbrook, Lei Zhu, Gan Luo, Fangqun Yu

Agricultural and fire emissions of ammonia affect air quality, human health, and ecosystem vitality

Ammonia is a precursor of fine particles and deposit nitrogen to sensitive habitats

Ammonia Emissions from Agriculture

UK NH₃ **Emissions** [thousands tonnes]

Contribution of management practices

[UK Clean Air Strategy, 2019]

>80% of total NH₃ emissions in the UK

Ammonia Emissions from Burning Biomass

Observationally-derived (Top-Down) NH₃ Emissions

Convert atmospheric column concentrations to surface emissions using a model

Simple mass-balance inversion method made possible by relatively short NH₃ lifetime

Preprocess IASI to Finer Resolution Grid than Instrument

Use so-called oversampling to enhance spatial resolution relative to native resolution of instrument

Oversampling Technique

Weights pixel by area of overlap

Oversampling technique over London

Lose time (temporal) resolution; gain spatial resolution

Improve resolution from 12-40 km to 10 km for an instrument observing ammonia (NH₃)

Multiyear means from the IASI version 3 ammonia

Multiyear (2008-2018) monthly means for warmer months of the year

Climatological mean to be consistent with bottom-up ammonia emissions

IASI-derived multiyear (2008-2018) monthly mean NH₃ emissions

Focus on Mar-Sep when warm temperatures and clearer conditions increase sensitivity to surface NH₃

Monthly emissions for March-September from **IASI**-derived estimates sum to **271.5 Gg** Uncertainty range is 11-36% and bottom-up is ~27% less than IASI-derived emissions

Satellite vs inventory NH₃ emissions: spatial distribution

Comparison of months with peak emissions according to IASI (April and July)

Large July difference over locations dominated by dairy cattle. Inventory is 27-49% less than the satellite values.

Biomass Burning Ammonia Emissions in Southern Africa

Monthly bottom-up June-October 2019 emissions

Mostly savanna fires. Some tropical forest fires.

Apply all 3 inventories **GE** S-Chem to compare to IASI for NH₃

Inventory differences:

- Emission factors
- Fire data
- Time resolution
- Spatial resolution
- Injection height
- Small fires
- Landcover classes

Reprocess IASI version 4 with local GEOS-Chem priors

IASI columns for July-October 2019. Prior from GEOS-Chem with FINN emissions

Overall decline in columns with local a priori, as more NH₃ placed higher up Less noisy over Atlantic Ocean east of Angola and northern Namibia More retrievals pass quality checks

Evaluation of Inventories with Satellite Observations

NH₃ vertical column densities for Jul-Oct 2019 [10¹⁵ molecules cm⁻²]

IASI with GEOS-Chem prior:

Anthropogenic NH₃ in the Lake Ukerewe Basin

Fire NH₃ in Angola that no inventory reproduces

GEOS-Chem:

IASI NH₃ in Dec-Feb

June excluded, as no inventories consistent with IASI observations (R < 0.5)

Evaluation of Inventories with Satellite Observations

NH₃ vertical column densities for Jul-Oct 2019 [10¹⁵ molecules cm⁻²]

IASI with GEOS-Chem prior:

GEOS-Chem:

June excluded, as no inventories consistent with IASI observations (R < 0.5)

Top-down Emissions with Best Performing Inventories

Calculate emissions for GEOS-Chem gridsquares with > 50% biomass burning emissions

Uses GEOS-Chem driven with FINN inventory, as yields best agreement with IASI

Emissions long-tailed distribution and degrades correlation with NO_x emissions from R > 0.8 to R < 0.4 Emissions peak in August, just like inventory. Error estimate on emissions is 1.2±0.4 Tg.

In Summary

- Spatial resolutions of ~12-14 km enhanced by oversampling for UK NH₃, but lots of data needed
- Estimate UK agricultural emissions that are consistent with spring fertilizer location and timing
- Identify large bottom-up and top-down UK agricultural emissions discrepancies in summer over cattle farming intensive regions to steer further research
- FINN inventory better than GFED and GFAS at representing smouldering emissions of NH₃
- Suggests would outperform other inventories for other smouldering pollutants (VOCs, CO, organic aerosols, methane)
- Inventories collocate NH₃ and NO_x emissions (smouldering and flaming fires), but these are mostly separate in top-down estimates
- Need independent observations for biomass burning in Africa. Ideally in National Parks
- Geostationary infrared instrument soon to launch over Europe to observe NH₃ every 30 min (including over Africa) offers tremendous opportunity to advance top-down estimates further
- UK NH₃ paper: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JD035237
- Southern Africa NH₃ work in review.