Computational Methods for Astrophysical Applications

Ileyk El Mellah & Jon Sundqvist

Centre for mathematical Plasma Astrophysics Instituut voor Sterrenkunde KU Leuven

References

Books

- Riemann solvers and numerical methods for fluid dynamics A practical introduction, by Toro
- Numerical methods for conservation laws, by Leveque (Leveque1)
- Finite volume methods for hyperbolic problems, by Leveque (Leveque2)

Courses

- Rony Keppens & Jon Sundqvist 2016-2017
- Numerical PDE Techniques for Scientists and Engineers, by Dinshaw Balsara

Schools

- Les Houches
- Numerical techniques in MHD simulations, Köln University

Lesson 1: Hyperbolic Partial Differential Equations

- Conservation laws
 Integral and differential forms
 Examples
 - Hyperbolic PDE

 Matrix formulation of conservation laws
 Time advance
 Linear advective equations
 The Riemann problem

- Conservation laws
 - Integral form
 - Differential forms
 - Examples
- 2 Hyperbolic PDE
 - Classifications of PDE
 - Matrix formulation of conservation laws
 - The Riemann problem

Integral forms

- Continuous medium hypothesis : from actual particles to particles of fluid
 - \Rightarrow distribution function and integration of Boltzmann equation : the closure problem
 - ⇒ analogy with moments of the specific photon intensity (see Prof. Sundqvist's course)
- Consider any volume element dV of a fluid
 - \Rightarrow balance over $\mathrm{d}t$ of scalar quantity : inflow/outflow, sinks/sources
 - ⇒ for the momentum : tensor formulation and dyadic product
 - ⇒ for energy
- Shocks and jump conditions: Rankine-Hugoniot
- See Toro 2.4.1

Conservative form

• Provided the variables $U(\mathbf{r},t)$ are differentiable

$$\partial_t U + \nabla \cdot \underbrace{[F(U)]}_{\text{fluxes}} = \underbrace{\mathcal{S}(\mathbf{r}, \mathbf{v}, t)}_{\text{sources/sinks}}$$

- ⇒ Matrix formulation
- Properties of this differential form
 - ⇒ Coordinate / dimension independent formulation
 - \Rightarrow Given inital and boundary conditions, can provide a general solution
 - \Rightarrow Conservative form : Green-Ostrogradsky (or Gauss) law and Eulerian approach
 - \Rightarrow Conservative variables : ρ , ρ **v** and e (*total* energy)

Primitive form

Lagrangian approach

$$D_{t}\left(\cdot\right)=\partial_{t}\left(\cdot\right)+\mathbf{v}\nabla\left(\cdot\right)$$

- Continuity equation : $D_t(\rho) = -\rho \nabla \mathbf{v}$
 - \Rightarrow incompressible fluid \neq flow
- Navier-Stokes equation

$$\rho D_t(\mathbf{v}) = -\nabla P$$

- Energy equation
 - ⇒ internal and mechanical energy
 - ⇒ link w/ 1st principle of Thermodynamics
 - ⇒ entropy formulation
- Primitive variables : ρ, v, P

Closure relation

Equation-of-state of an ideal gas

$$u=\frac{P}{\gamma-1}$$

- \Rightarrow adiabatic index γ
- A classic way-around : the polytropic assumption

$$P \propto \rho^{\alpha}$$

- \Rightarrow polytropic index α
- ⇒ the isentropic case

The linear advection equation

 Consider the 1D continuity equation w/ constant & uniform speed v

$$\partial_t \rho + \mathbf{v} \partial_{\mathbf{x}} \rho = \mathbf{0}$$

- \Rightarrow initial conditions $\rho(x, t = 0) = \rho_0(x)$
- Analytic solution

$$\rho(x,t)=\rho_0(x-vt)$$

Fourier analysis

$$\rho(\mathbf{x},t) = r(\mathbf{k},t) e^{i\mathbf{k}\mathbf{x}}$$

- ⇒ non-dissipative
- ⇒ non-dispersive
- ⇒ see also Balsara 1 (slides#32-33)
- Analytic preliminary analysis => mathematical properties of the PDE => appropriate numerical scheme
- Numerical solution

Euler equations

- 2 scalar variables $(\rho \& e) + 1$ vector $(\rho \mathbf{v}) = 5$ variables
- Conservative form $\partial_t \mathbf{U} + \nabla \cdot \overline{\overline{F}} = \mathbf{0}$ with, in $\frac{3}{1}$:

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ e = u + \rho \mathbf{v}^2 / 2 \end{bmatrix} \quad \text{and} \quad \overline{\overline{F}} \qquad = \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v}^\mathsf{T} + P \overline{\mathbb{1}} \\ (e + P) \mathbf{v} \end{bmatrix}$$
 (1)

with $\overline{\overline{F}}$ a 5 rows \times 3 columns matrix

- ⇒ beware the divergence operator! Retrieve primitive form
- in Cartesian? in cylindrical? in spherical?

Navier-Stokes equations

• Consider the viscous tensor $\overline{\overline{\tau}}$

$$\overline{\overline{\tau}} = \mu \left[\left(\overline{\overline{\boldsymbol{\nabla}} \mathbf{v}} + \overline{\overline{\boldsymbol{\nabla}} \mathbf{v}^{\mathbf{f}}} \right) - \frac{2}{3} \left(\nabla \cdot \mathbf{v} \right) \overline{\overline{\mathbb{1}}} \right]$$

- ⇒ see Landau Lifschitz 2.15 for hypothesis & shape
- $\Rightarrow \mu$ dynamic viscosity in Pa·s, intrinsic
- ⇒ conservative formulation
- \Rightarrow Dimensionless form, Reynolds number and singular limit (D'Alembert's paradox)

Ideal Magneto-Hydrodynamics equations

Ideal MHD fundamental hypothesis

$$\mathbf{E} + \mathbf{j} \wedge \mathbf{B} = \mathbf{0}$$

- ⇒ **E** secondary variable
- Maxwell-Faraday and Maxwell-Ampère give the induction equation :

$$\partial_t \mathbf{B} = \nabla \wedge (\mathbf{v} \wedge \mathbf{B})$$

- \Rightarrow magnetic pressure and magnetic β number
- ⇒ magnetic tension
- Frozen-flux theorem

Ideal Magneto-Hydrodynamics equations

- 2 scalar variables (ρ & e) + 2 vectors (ρ **v** and **B**) = 8 variables
- Conservative form $\partial_t \mathbf{U} + \nabla \cdot \overline{\overline{F}} = \mathbf{0}$ with, in 3D:

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ e = u + \rho \mathbf{v}^2 / 2 + \mathbf{B}^2 / 2\mathbf{B} \end{bmatrix}$$
 (2)

$$\overline{\overline{F}} = \begin{bmatrix} \rho \mathbf{v} \otimes \mathbf{v}^{\mathsf{T}} + (P + \mathbf{B}^{2}/2) \overline{1} - \mathbf{B} \otimes \mathbf{B}^{\mathsf{T}} \\ (e + P + \mathbf{B}^{2}/2) \mathbf{v} - (\mathbf{v} \cdot \mathbf{B}) \mathbf{B} \\ \mathbf{v} \mathbf{B}^{\mathsf{T}} - \mathbf{B} \mathbf{v}^{\mathsf{T}} \end{bmatrix}$$
(3)

- Conservation laws
 - Integral form
 - Differential forms
 - Examples
- 2 Hyperbolic PDE
 - Classifications of PDE
 - Matrix formulation of conservation laws
 - The Riemann problem

Linear, non-linear, quasi-linear

Homogeneous

$$\partial_t \mathbf{U} + \overline{\overline{\mathbf{A}}}(\mathbf{U}, x, t) \, \partial_x \mathbf{U} = \mathbf{0}$$
 (4)

Nature of the PDE

Linear, non-linear, quasi-linear

- Non-homogeneous : ... + $\mathbf{B}(\mathbf{U}, x, t) = \mathbf{0}$
 - \Rightarrow still linear if $\mathbf{B} \propto \mathbf{U}$
- Exemples :
 - ⇒ Time and space dependent linear advection equation?
 - ⇒ Burgers equation?
 - ⇒ Conservation equations?
- Systematic way to solve quasi-linear PDE?

Eigenvalues & eigenvectors

Consider the following system of linear constant coeff. PDE:

$$\begin{cases} \partial_{t}\rho_{1} + \partial \left(\rho_{1}a_{11} + \rho_{2}a_{12}\right) = 0\\ \partial_{t}\rho_{2} + \partial \left(\rho_{1}a_{21} + \rho_{2}a_{22}\right) = 0 \end{cases} (5)$$

- ⇒ Linear? Homogeneous?
- \Rightarrow Matrix form $\partial_t \mathbf{U} + \mathbf{A} \partial_x \mathbf{U}$?
- ⇒ A diagonalisable?
- ⇒ Diagonal matrix **D**?
- \Rightarrow Eigenvector matrix **K** such as $\mathbf{A} = \mathbf{K}\mathbf{D}\mathbf{K}^{-1}$?

Hyperbolic and elliptic 1st order PDE

- Hyperbolic <=> A diagonisable and real eigenvalues
 - \Rightarrow eigenvalues λ_i as wave speeds
 - ⇒ Was (5) hyperbolic?
- Systematic way to solve hyperbolic quasi-linear PDE?
- Rk: Elliptic <=> A has non-real eigenvalues
 - ⇒ ex: Cauchy-Riemann equations (2D steady)

$$\begin{cases} \partial_x u - \partial_y v = 0 \\ \partial_x v + \partial_y u = 0 \end{cases}$$

General solutions

- Toro 2.3.1-2 and Balsara 1.5.3
- If constant coefficient linear system, the procedure is the following:
 - \Rightarrow $\mathbf{K}^{-1} \times (4) =>$ set of independent linear advection solutions, the canonical form :

$$\partial_t \mathbf{V} + \mathbf{D} \partial_x \mathbf{V} = \mathbf{0}$$

with the characteristic variables or waves:

$$V = \mathbf{K}^{-1}\mathbf{U} \tag{6}$$

General solutions

 \Rightarrow Given initial conditions **U** (x,0), **V** basis of decoupled linear advection solutions : $V_i(x,t) = V_i(x-\lambda_i t,0)$

whose linear superposition via (6) provides, the general solution \Rightarrow In (5), what if a_{11} and $a_{22} = 0$? What if $a_{12} = a_{21}$?

General solutions

- Examples
 - ⇒ the 1D second order wave equation (Leveque1 6.1)
 - ⇒ the 2D second order wave equation (Leveque1 6.2)
 - \Rightarrow the linearized shallow water equations (Leveque1 6.3, Balsara 1.7)
 - ⇒ the linearized isothermal HD equations (Toro 2.5, 2.10)

Flux Jacobian matrix

 In matrix form, the 1D conservation laws without source terms are written:

$$\partial_t \mathbf{U} + \partial_x \left[XXX\mathbf{F} \left(\mathbf{U} \right) \right] = 0$$

where

$$\mathbf{U} = (\rho, \rho \mathbf{v}, \mathbf{e})$$

and the vector of fluxes is:

$$\mathbf{F}(\mathbf{U}) = \begin{pmatrix} \rho V \\ \rho V^2 + P \\ (e + P) V \end{pmatrix}$$

Flux Jacobian matrix

Chain rule => quasi-linear form

$$\partial_t \mathbf{U} + \mathbf{A} \left(\mathbf{U} \right) \partial_x \mathbf{U} = 0 \tag{7}$$

with $\mathbf{A}(\mathbf{U})$ the Jacobian matrix of the flux :

$$A = \partial F / \partial U$$

- ⇒ conservation equations are quasi-linear
- The Jacobian matrices of the flux for conservative and primitive variables are similar
 - ⇒ which eigenvalues for the ideal 2D MHD equations?
 - \Rightarrow <u>hint:</u> the Jacobian matrix of the flux for primitive variables is, in Cartesian :

Linearization of non-linear PDE

Good news: ∃ Taylor expansion to linearize Leveque1 6.4

Linearized Euler equations

- Levegue1 6.4.1
- Solve for wave-like perturbations (Balsara 1.5.2, 1st part)

The Riemann problem

- Step initial state : $\mathbf{U}(x, t = 0) = \begin{cases} \mathbf{U}_{L} & \text{if } x < 0 \\ \mathbf{U}_{R} & \text{if } x > 0 \end{cases}$
- Applied to the *linear advection* equation, ∃ analytic solution (Toro 2.2.2, Leveque1 6.5)

The Riemann problem

- And for a 1D hyperbolic system of 2 linear PDE with constant coefficients (e.g. linearized isothermal gas dynamics, Toro 2.3.4)?
 - ⇒ Solve the Riemann problem for (5) with initial state :

$$\begin{cases} \rho_{1}(x,0) = \rho_{1,L} & \text{and} & \rho_{2}(x,0) = \rho_{2,L} & \text{for} & x < 0 \\ \rho_{1}(x,0) = \rho_{1,R} & \text{and} & \rho_{2}(x,0) = \rho_{2,R} & \text{for} & x > 0 \end{cases}$$

 Draw explicitly the solution at t=1 for the following numerical values:

$$\begin{cases} \rho_{1,L} = 4 \\ \rho_{1,R} = 1 \\ \rho_{2,L} = 2 \\ \rho_{2,R} = 100 \end{cases} \text{ and } \begin{cases} a_{11} = 0.5 \\ a_{12} = 1 \\ a_{21} = -1.25 \\ a_{22} = 3.5 \end{cases}$$

The Riemann problem

- For 3 equations, see linearized Euler (Balsara 1.5.2, 2nd part)
- In the general 1D case of N equations, see Toro 2.3.3 and Balsara 3.4.1 and 3.4.2
- A 1st test for a num. solver (e.g. the finite difference method)
- At the basis of any finite volume method (i.e. 'on a grid'), where data can be represented as a piecewise constant function
- Connection with Rankine-Hugoniot jump conditions at shock

- ⇒ 5 first chapters of Leveque1
- ⇒ Next course -> Chapter 10 of Leveque1