FATIGUE

- □ Finite Life/Strength
- □ Cumulative Fatigue Damage

Endurance Limit and Strength

 $S_{UT} \equiv Ultimate\ Tensile\ Strength$

 $\overline{S}'_e \equiv Mean \ Endurance \ Limit \ of \ Test \ Specimen$

 $\overline{S}_e = Mean \ Endurance \ Limit \ of \ Structural \ Element$

 $S'_f \equiv Fatigue \ Strength \ of \ Test \ Specimen$

Rules of Thumb

□ Steel

English Units

$$\overline{S}'_e = \mathbf{0.5} \cdot S_{UT}$$
 when $S_{UT} \leq \mathbf{200}ksi$

$$\overline{S}'_e = 100ksi$$
 when $S_{UT} > 200ksi$

Metric Units

$$\overline{S}_e' = \mathbf{0.5} \cdot S_{UT}$$
 when $S_{UT} \leq \mathbf{1400}MPa$

$$\overline{S}'_e = 700MPa$$
 when $S_{UT} > 1400MPa$

Rules of Thumb

Cast Iron

$$\overline{S}_e' = \mathbf{0.4} \cdot S_{UT}$$

Aluminum and Magnesium

$$\overline{S}_e' \approx 0.3 \text{ to } 0.4 \cdot S_{UT}$$

Values

(Reported by F.B. Stulen, H.N. Cummings, and W.C. Schulte, Preventing Fatigue Failures, Part 5, *Machine Design*, vol. 33, P. 161, 22 June 1961)

Material UNS No.	Tensile Strength, S _{ut}		Endurance Limit, S' _E		Standard Deviation	
(Alloys are heat treated, hot worked, specimens smooth, subjected to long life rotating beam test)	MPa	ksi	MPa	ksi	ksi	%
G43400 Steel	965 1310 1580 1790	140 190 230 260	489 586 620 668	71 85 90 97	3.5 6.7 5.3 6.3	4.9 7.8 5.9 6.5
G43500 Steel	2070	300	689	100	4.4	4.4
R50001-series Titanium Alloy	1000	145	579	84	5.4	6.4
A97076 Aluminum Alloy	524	76	186	27	1.6	6.0
C63000 Aluminum Bronze	806	117	331	48	4.5	9.4
C17200 Beryllium Copper	1210	175	248	36	2.7	7.5

Finite Life, S'_f, The S-N Curve

Cumulative Damage Log-Log Plot

Equation for the S-N Curve

S-N Curve Equation

$$\log S_f' = -m \cdot \log n + b$$

where

$$m = \frac{1}{3} \cdot \log \left(\frac{f \cdot S_{ut}}{S_e'} \right)$$

$$b = \log\left(\frac{\left(f \cdot S_{ut}\right)^2}{S_e'}\right)$$

f is often taken as 0.9

S-N Curve Calculations In the range $10^3 \le y \le 10^6$

Given N, S'_f is

$$S' = \frac{10^b}{N^m}$$

Given S'_f , N is

$$N = \frac{10^{b/m}}{S_f'^{1/m}}$$

Example

The endurance limit of a steel member is 112MPa and the tensile strength is 385MPa. What fatigue strength corresponds to a life of $70(10^3)$ cycles.

Cumulative Damage

- Multiple Stress Levels
 - σ₁ for n₁ cycles
 - σ_2 for σ_2 cycles
 - Etc.
- □ Palmgren-Miner's Rule

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots + \frac{n_n}{N_n} = C \implies \sum \frac{n_i}{N_i} = 1$$

- n-nubmer of cycles of stress σ applied
- N-life corresponding to σ
- C-determined experimentally
 - □ 0.7<C<2.2
 - Typically C=1

Example

Steel, S_{ut}=80ksi 3000 cycles at 60ksi How many cycles remain at 50ksi and 40ksi?

1.00E+03 1.00E+04 1.00E+05 1.00E+06 Number of Cycles