Question 1

In which one of the following figures do you think the hypothesis has overfit the training set?

Question 2

In which one of the following figures do you think the hypothesis has underfit the training set?

Question 3

You are training a classification model with logistic regression. Which of the following statements are true? Check all that apply.

Which of the following are true? Check all that apply.

D \(\text{Adding many new features to the model makes it more likely to overfit the training set.} \)

Question 4

Suppose you ran logistic regression twice, once with λ = 0, and once with λ = 1. One of the times, you got parameters $\theta = \begin{bmatrix} 26.29 \\ 65.41 \end{bmatrix}$, and the other time you got $\theta = \begin{bmatrix} 2.75 \\ 1.32 \end{bmatrix}$. However, you forgot which value of λ corresponds to which value of θ . Which one do you think corresponds to λ = 1?

$$\mathbf{A} \bigcirc \quad \theta = \begin{bmatrix} 26.29 \\ 65.41 \end{bmatrix}$$

$$\mathbf{B} \bigcirc \quad \theta = \begin{bmatrix} 2.75 \\ 1.32 \end{bmatrix}$$

Question 5

Which of the following statements about regularization are true? Check all that apply.

- **A** \square Using a very large value of λ cannot hurt the performance of your hypothesis; the only reason we do not set λ to be too large is to avoid numerical problems.
- **B** \square Using too large a value of λ can cause your hypothesis to overfit the data; this can be avoided by reducing λ .
- Because regularization causes $J(\theta)$ to no longer be convex, gradient descent may not always converge to the global minimum (when $\lambda > 0$, and when using an appropriate learning rate α).
- **D** \square Using too large a value of λ can cause your hypothesis to underfit the data.