C	on	tents	10 Formula
1	Bas	ic 1	10.1 Recurrences 10.2 Trigonometry
_		Default Code	10.2 Higohometry
	1.2	.vimrc	10.3.1 Triangles .
			10.3.2 Quadrilater
2		a Structure 1	10.3.3 Spherical co
		Heavy-Light Decomposition	10.4 Derivatives/Integr
		Li-Chao Tree	10.5 Sums
		Link Cut Tree	10.6 Series
	2.4	Treap	10.7 Probability theory
9	Flo	w Matching 3	10.7.1 Discrete dis
3	3.1	w Matching 3 Bounded Flow	10.7.2 Continuous
	-	Dinic	10.8 Markov chains
		Gomory Hu	
		Hungarian Algorithm	1 D
		ISAP Algorithm	1 Basic
		KM Algorithm	
		Max Simple Graph Matching	1.1 Default Cod
	3.8		
	3.9	Min Cost Circulation 6	//Challenge: Accepted
	3.10	SW Mincut	#pragma GCC optimize
			#include <bits stdc+<="" td=""></bits>
1		ometry 7	<pre>using namespace std;</pre>
		Geometry Template	#ifdef zisk
		Convex Hull	<pre>void debug(){cout <<</pre>
		Minimum Enclosing Circle	template < class T, cl
		Minkowski Sum	cout << a << " "
		Half Plane Intersection	template < class T> vo
	$\frac{4.0}{4.7}$	Dynamic Convex Hull	while (l != r) cou
	4.7	3D Point	cout << endl;
	4.0	ConvexituiisD] }
5	Gra	ph 10	#else
	5.1	Block Cut Tree	<pre>#define debug() 0 #define pary() 0</pre>
	5.2	2-SAT	#endif
	5.3	Dominator Tree	#define ll long long
	5.4	Virtual Tree	#define maxn 50005
			#define pii pair <int< td=""></int<>
6	Ma		#define ff first
		Extended Euclidean Algorithm	#define ss second
		Floor & Ceil	#define io ios_base:
	6.4		#define iter(v) v.be
		Floor Sum	#define SZ(v) (int)v
	0.5	riooi Suini	#define pb emplace_ba
7	Mis	c 12	<pre>int main() {</pre>
	7.1	Fraction	io
	7.2	Matroid	
			}
8		ynomial 13	
		FFT	
	8.2	NTT	1.2 .vimrc
		Polynomial Operation	
	8.4	Generating Function	sy on
		8.4.1 Ordinary Generating Function	se nu rnu bs=2 sw=4
		8.4.2 Exponential Generating Function	map <f9> :w<bar>!g++</bar></f9>
a	Str	ing 15	Dzisk -g -fsanit
0	9.1	Rolling Hash	map <f8> :!./%:r<cr></cr></f8>
	9.2	KMP Algorithm	map <c-a> <esc>ggVG</esc></c-a>
	9.3		
	9.4	9	
	9.5	Suffix Array	2 Data Struc
	9.6	·	
	9.7	v	9.1 Hosser Timb
	9.8		$\mid 2.1 \mid ext{Heavy-Ligh}$
	9.9	AC Automaton	
			struct Heavy_light_De
			int n, up[maxn], de
];
			int C, ti[maxn], or

```
17
    17
    17
    17
    17
17
18
    18
    18
18
18
```

\mathbf{e}

```
"Ofast")
h>
endl;}
ss ... U> void debug(T a, U ... b){
debug(b...);}
d pary(T l, T r) {
    << *l << " ", l++;
 int>
sync_with_stdio(0);cin.tie(0);
in(),v.end()
size()
ck
```

```
s=4 hls ls=2 si acd bo=all mouse=a
"%" -o %:r -std=c++17 -Wall -Wshadow -
ze=undefined,address<CR>
```

ture

Decomposition

```
composition { // 1-base
                         p[maxn], to[maxn], siz[maxn], pa[maxn
                         d[maxn], wdown[maxn], edge[maxn], et =
vector<pii> G[maxn];
void init(int _n) {
  n = _n, C = 0, et = 1;
  for (int i = 1;i <= n;i++)</pre>
     G[i].clear(), to[i] = 0;
```

```
void add_edge(int a, int b, int w) {
    G[a].push_back(pii(b, et)), G[b].push_back(pii(a, et));
    edge[et++] = w;
 void dfs(int u, int f, int d) {
    siz[u] = 1, pa[u] = f, dep[u] = d;
    for (auto &v: G[u])
      if (v.ff != f) {
        dfs(v.ff, u, d+1), siz[u] += siz[v];
        if (siz[to[u]] < siz[v]) to[u] = v;</pre>
  void cut(int u, int link) {
    ti[u] = C;
    ord[C++] = u, up[u] = link;
    if (!to[u]) return;
    cut(to[u], link);
    for (auto v:G[u]) {
      if (v.ff != pa[u] && v.ff != to[u]) cut(v.ff, v.ff);
  }
  void build() { dfs(1, 1, 1), cut(1, 1); }
  int query(int a, int b) {
    int ta = up[a], tb = up[b], re = 0;
    while (ta != tb)
      if (dep[ta] < dep[tb])</pre>
        /*query*/, tb = up[b = pa[tb]];
      else /*query*/, ta = up[a = pa[ta]];
    if (a == b) return re;
    if (ti[a] > ti[b]) swap(a, b);
    /*query*/
    return re;
};
    Li-Chao Tree
struct LiChao_min {
  struct line {
    ll m, c;
    line(ll _m = 0, ll _c = 0) {
      m = _m;
      c = _c;
    ll eval(ll x) { return m * x + c; }
 }:
  struct node {
    node *1, *r;
    line f:
    node(line v) {
      f = v;
      l = r = NULL;
    }
  }:
  typedef node *pnode;
  pnode root;
 int sz;
#define mid ((l + r) >> 1)
  void insert(line &v, int l, int r, pnode &nd) {
    if (!nd) {
      nd = new node(v);
      return;
    ll trl = nd->f.eval(l), trr = nd->f.eval(r);
    ll\ vl = v.eval(l), vr = v.eval(r);
    if (trl <= vl && trr <= vr) return;</pre>
    if (trl > vl && trr > vr) {
      nd -> f = v;
      return;
    if (trl > vl) swap(nd->f, v);
    if (nd->f.eval(mid) < v.eval(mid))</pre>
      insert(v, mid + 1, r, nd->r);
    else swap(nd->f, v), insert(v, l, mid, nd->l);
```

```
ll query(int x, int l, int r, pnode &nd) {
    if (!nd) return inf;
    if (l == r) return nd->f.eval(x);
    if (mid >= x)
      return min(
          nd->f.eval(x), query(x, l, mid, nd->l));
    return min(
        nd->f.eval(x), query(x, mid + 1, r, nd->r));
  /* -sz <= query_x <= sz */
  void init(int _sz) {
    sz = _sz + 1;
    root = NUll;
  void add_line(ll m, ll c) {
    line v(m, c);
    insert(v, -sz, sz, root);
  ll query(ll x) { return query(x, -sz, sz, root); }
};
2.3 Link Cut Tree
struct Splay { // subtree-sum, path-max
  static Splay nil;
  Splay *ch[2], *f;
  int val, rev, size, vir, id, type;
  pii ma;
  Splay(int _val = 0, int _id = 0)
    : val(_val), rev(0), size(0), vir(0), id(_id) {
      ma = make_pair(val, id);
      f = ch[0] = ch[1] = &nil;
      type = 0;
  bool isr() { //is root
    return f->ch[0] != this && f->ch[1] != this;
  int dir() { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push() {
    if (!rev) return;
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev = 0;
  void pull() {
    // take care of the nil!
    size = ch[0] -> size + ch[1] -> size + vir + type;
    ma = max(make\_pair(val, id), max(ch[0]->ma, ch[1]->ma))
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x - > f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(), x->pull();
void splay(Splay *x) {
  vector<Splay *> splayVec;
  for (Splay *q = x;; q = q->f) {
    splayVec.pb(q);
    if (q->isr()) break;
  reverse(iter(splayVec));
```

```
for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
 }
Splay *access(Splay *x) {
 Splay *q = nil;
 for (; x != nil; x = x->f){
    splay(x);
    x->vir -= q->size; x->vir += x->ch[1]->size;
    x->setCh(q, 1); x->pull();
 }
 return q;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x) {
  root_path(x), x->rev ^= 1;
 x->push(), x->pull();
void split(Splay *x, Splay *y) {
 chroot(x), root path(y);
void link(Splay *x, Splay *y) {
 chroot(x), root_path(y);
 x - f = y; y - vir += x - size;
void cut(Splay *x, Splay *y) {
 split(x, y);
 y->push();
 y - ch[0] = y - ch[0] - f = nil;
 y->pull();
Splay *get_root(Splay *x) {
 for (root_path(x); x->ch[0] != nil; x = x->ch[0])
   x->push();
  splay(x);
 return x;
bool conn(Splay *x, Splay *y) {
 return get_root(x) == get_root(y);
Splay *lca(Splay *x, Splay *y) {
  access(x), root_path(y);
 if (y->f == nil) return y;
 return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
pii query(Splay *x, Splay *y) {
 split(x, y);
 return y->ma;
2.4 Treap
struct node {
 int data, sz;
 node *l, *r;
 node(int k) : data(k), sz(1), l(0), r(0) {}
  void up() {
   sz = 1;
    if (l) sz += l->sz;
    if (Γ) sz += Γ->sz;
 void down() {}
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
 if (rand() % (sz(a) + sz(b)) < sz(a))
```

return a->down(), a->r = merge(a->r, b), a->up(),

```
return b->down(), b->l = merge(a, b->l), b->up(), b;
void split(node *o, node *&a, node *&b, int k) {
 if (!o) return a = b = 0, void();
  o->down():
 if (o->data <= k)
   a = o, split(o->r, a->r, b, k), a->up();
  else b = o, split(o->l, a, b->l, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
 if (sz(o) <= k) return a = o, b = 0, void();</pre>
  o->down();
  if (sz(o->l) + 1 <= k)
    a = o, split2(o->r, a->r, b, k - <math>sz(o->l) - 1);
  else b = o, split2(o->l, a, b->l, k);
  o->up();
node *kth(node *o, int k) {
  if (k <= sz(o->l)) return kth(o->l, k);
  if (k == sz(o->l) + 1) return o;
  return kth(o->r, k - sz(o->l) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
  if (o->data < key)</pre>
    return sz(o->l) + 1 + Rank(o->r, key);
  else return Rank(o->l, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
  if (o->data == k) {
    node *t = o;
    o->down(), o = merge(o->l, o->r);
    delete t:
    return 1;
  node *\&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
  node *a, *b;
  split(o, a, b, k),
    o = merge(a, merge(new node(k), b));
void interval(node *&o, int l, int r) {
  node *a, *b, *c;
  split2(o, a, b, l - 1), split2(b, b, c, r);
  // operate
  o = merge(a, merge(b, c));
```

3 Flow Matching

3.1 Bounded Flow

```
struct Dinic { // 1-base
    struct edge {
    int to, cap, flow, rev;
};
vector<edge> g[maxN];
int n, s, t, dis[maxN], ind[maxN], cnt[maxN];
const int inf = 1e9;

void init(int _n) {
    n = _n + 2;
    s = _n + 1, t = _n + 2;
    for (int i = 0; i <= n; ++i) g[i].clear(), cnt[i] = 0;
}
void reset() {
    for (int i = 0; i <= n; ++i)
        for (auto &j : g[i]) j.flow = 0;
}
void add_edge(int u, int v, int lcap, int rcap) {
    cnt[u] -= lcap, cnt[v] += lcap;</pre>
```

}

```
g[u].pb(edge{v, rcap, lcap, (int)g[v].size()});
g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
void add_edge(int u, int v, int cap) {
g[u].pb(edge{v, cap, 0, (int)g[v].size()});
g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
 //change g[v] to cap for undirected graphs
bool bfs() {
fill(dis, dis+n+1, -1);
queue < int > q;
q.push(s), dis[s] = 0;
 while (!q.empty()) {
  int cur = q.front(); q.pop();
  for (auto &e : g[cur]) {
   if (dis[e.to] == -1 && e.flow != e.cap) {
    q.push(e.to);
    dis[e.to] = dis[cur] + 1;
   }
  }
 }
return dis[t] != -1;
int dfs(int u, int cap) {
if (u == t || !cap) return cap;
 for (int &i = ind[u]; i < (int)g[u].size(); ++i) {</pre>
  edge &e = g[u][i];
  if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
   int df = dfs(e.to, min(e.cap - e.flow, cap));
   if (df) {
    e.flow += df;
   g[e.to][e.rev].flow -= df;
    return df;
   }
dis[u] = -1;
return 0;
int maxflow(int _s, int _t) {
s = _s, t = _t;
int flow = 0, df;
while (bfs()) {
 fill(ind, ind+n+1, 0);
  while ((df = dfs(s, inf))) flow += df;
}
return flow;
bool feasible() {
int sum = 0;
for (int i = 1; i <= n - 2; ++i)</pre>
  if (cnt[i] > 0)
  add_edge(n - 1, i, cnt[i]), sum += cnt[i];
  else if (cnt[i] < 0) add edge(i, n, -cnt[i]);</pre>
 if (sum != maxflow(n - 1, n)) sum = -1;
 for (int i = 1; i <= n - 2; ++i)</pre>
  if (cnt[i] > 0)
   g[n - 1].pop_back(), g[i].pop_back();
  else if (cnt[i] < 0)</pre>
   g[i].pop_back(), g[n].pop_back();
return sum != -1;
int boundedflow(int _s, int _t) {
add_edge(_t, _s, inf);
if (!feasible()) return -1; // infeasible flow
int x = g[_t].back().flow;
g[_t].pop_back(), g[_s].pop_back();
int y = maxflow(_t, _s);
return x-y;
```

3.2 Dinic

```
struct MaxFlow { // 1-base
```

```
struct edge {
    int to, cap, flow, rev;
  vector<edge> g[maxn];
  int s, t, dis[maxn], ind[maxn], n;
  void init(int _n) {
    n = _n + 2;
    s = _n + 1, t = _n + 2;
    for (int i = 0; i <= n; ++i) g[i].clear();</pre>
  void reset() {
    for (int i = 0; i <= n; ++i)</pre>
      for (auto &j : g[i]) j.flow = 0;
  void add_edge(int u, int v, int cap) {
    g[u].pb(edge{v, cap, 0, (int)g[v].size()});
    g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
    //change g[v] to cap for undirected graphs
  bool bfs() {
    fill(dis, dis+n+1, -1);
    queue < int > q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int cur = q.front(); q.pop();
      for (auto &e : g[cur]) {
        if (dis[e.to] == -1 && e.flow != e.cap) {
          q.push(e.to);
          dis[e.to] = dis[cur] + 1;
        }
      }
    return dis[t] != -1;
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = ind[u]; i < (int)g[u].size(); ++i) {</pre>
      edge &e = g[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          g[e.to][e.rev].flow -= df;
          return df;
        }
      }
    }
    dis[u] = -1;
    return 0;
  int maxflow() {
    int flow = 0. df:
    while (bfs()) {
      fill(ind, ind+n+1, 0);
      while ((df = dfs(s, inf))) flow += df;
    return flow;
}flow;
3.3 Gomory Hu
MaxFlow Dinic;
int g[MAXN];
void GomoryHu(int n) { // 0-base
 fill_n(g, n, 0);
for (int i = 1; i < n; ++i) {</pre>
 Dinic.reset();
  add_edge(i, g[i], Dinic.maxflow(i, g[i]));
  for (int j = i + 1; j <= n; ++j)</pre>
   if (g[j] == g[i] && ~Dinic.dis[j])
    g[j] = i;
}
```

3.4 Hungarian Algorithm

```
int c[maxn][maxn]; //hungarian algorithm in O(n^3)
//1 base
int lx[maxn], ly[maxn], mx[maxn], my[maxn];
bool vx[maxn], vy[maxn];
int slack[maxn];
int tot;
bool dfs(int n, bool ch) {
  if (vx[n]) return false;
  vx[n] = 1;
  for (int v = 1; v <= tot; v++) {</pre>
    slack[v] = min(slack[v], lx[n] + ly[v] - c[n][v]);
    if (lx[n] + ly[v] - c[n][v] > 0) continue;
    if (!my[v] || dfs(my[v], ch)) {
      if (ch) mx[n] = v, my[v] = n;
      return true;
    }
  return false;
int main() {
  for (int i = 1;i <= n;i++) {</pre>
    for (int j = 1; j <= n; j++) vx[j] = vy[j] = 0;
    for (int j = 1; j <= n; j++) slack[j] = 1<<30;</pre>
    if (dfs(i, 1)) continue;
    bool aug = 0;
    while (!aug) {
      for (int j = 1; j <= n; j++) \{
        if (!vy[j] && slack[j] == 0) {
          vy[j] = 1;
          if (dfs(my[j], 0)) {
             aug = 1;
             break;
          }
        }
      if (aug) break;
      int delta = 1<<30;</pre>
      for (int j = 1; j <= n; j++) {</pre>
        if (!vy[j]) delta = min(delta, slack[j]);
      for (int j = 1; j <= n; j++) {</pre>
        if (vx[j]) lx[j] -= delta;
        if (vy[j]) ly[j] += delta;
        else {
          slack[i] -= delta;
          if (slack[j] == 0 && !my[j]) aug = 1;
    for (int j = 1; j <= n; j++) vx[j] = vy[j] = 0;
    dfs(i, 1);
}
```

3.5 ISAP Algorithm

```
struct Maxflow { //to be modified
 static const int MAXV = 20010;
  static const int INF = 1000000;
 struct Edge {
   int v, c, r;
   Edge(int _v, int _c, int _r)
      : v(_v), c(_c), r(_r) {}
 };
 int s, t;
 vector < Edge > G[MAXV * 2];
 int iter[MAXV * 2], d[MAXV * 2], gap[MAXV * 2], tot;
 void init(int x) {
   tot = x + 2;
   s = x + 1, t = x + 2;
   for (int i = 0; i <= tot; i++) {</pre>
      G[i].clear();
      iter[i] = d[i] = gap[i] = 0;
```

```
}
  void addEdge(int u, int v, int c) {
    G[u].push_back(Edge(v, c, SZ(G[v])));
    G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
  int dfs(int p, int flow) {
    if (p == t) return flow;
    for (int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
      Edge &e = G[p][i];
      if (e.c > 0 && d[p] == d[e.v] + 1) {
        int f = dfs(e.v, min(flow, e.c));
        if (f) {
          e.c -= f;
          G[e.v][e.r].c += f;
          return f;
        }
    if ((--gap[d[p]]) == 0) d[s] = tot;
    else {
      d[p]++;
      iter[p] = 0;
      ++gap[d[p]];
    }
    return 0;
  int solve() {
    int res = 0;
    gap[0] = tot;
    for (res = 0; d[s] < tot; res += dfs(s, INF))
    return res;
} flow;
3.6 KM Algorithm
int n, m; //1-base, max matching
int mx[maxn], my[maxn];
bool adj[maxn][maxn], vis[maxn];
bool dfs(int n) {
  if (vis[n]) return false;
  vis[n] = 1;
  for (int v = 1; v <= n; v++) {</pre>
    if (!adj[n][v]) continue;
    if (!my[v] || (my[v] && dfs(my[v]))) {
      mx[n] = v, my[v] = n;
      return true;
    }
  }
  return false;
//min vertex cover: take unmatched vertex in L and find
```

3.7 Max Simple Graph Matching

//ans is not reached in L + reached in R

alternating tree,

int lca(int u, int v) {

```
struct GenMatch { // 1-base
  int V, pr[N];
bool el[N][N], inq[N], inp[N], inb[N];
int st, ed, nb, bk[N], djs[N], ans;
void init(int _V) {
    V = _V;
    for (int i = 0; i <= V; ++i) {
        for (int j = 0; j <= V; ++j) el[i][j] = 0;
        pr[i] = bk[i] = djs[i] = 0;
        inq[i] = inp[i] = inb[i] = 0;
    }
}
void add_edge(int u, int v) {
    el[u][v] = el[v][u] = 1;
}</pre>
```

```
fill_n(inp, V + 1, 0);
    while (1)
      if (u = djs[u], inp[u] = true, u == st) break;
      else u = bk[pr[u]];
    while (1)
      if (v = djs[v], inp[v]) return v;
      else v = bk[pr[v]];
    return v;
  void upd(int u) {
    for (int v; djs[u] != nb;) {
      v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
      u = bk[v];
      if (djs[u] != nb) bk[u] = v;
    }
  void blo(int u, int v, queue<int> &qe) {
    nb = lca(u, v), fill_n(inb, V + 1, 0);
    upd(u), upd(v);
    if (djs[u] != nb) bk[u] = v;
    if (djs[v] != nb) bk[v] = u;
    for (int tu = 1; tu <= V; ++tu)</pre>
      if (inb[djs[tu]])
        if (djs[tu] = nb, !inq[tu])
          qe.push(tu), inq[tu] = 1;
  void flow() {
    fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
    iota(djs + 1, djs + V + 1, 1);
    queue < int > qe;
    qe.push(st), inq[st] = 1, ed = 0;
    while (!qe.empty()) {
      int u = qe.front();
      qe.pop();
      for (int v = 1; v <= V; ++v)</pre>
        if (el[u][v] && djs[u] != djs[v] &&
            pr[u] != v) {
          if ((v == st) ||
              (pr[v] > 0 \&\& bk[pr[v]] > 0)) {
            blo(u, v, qe);
          } else if (!bk[v]) {
            if (bk[v] = u, pr[v] > 0) {
              if (!inq[pr[v]]) qe.push(pr[v]);
            } else {
              return ed = v, void();
            }
          }
        }
   }
  }
  void aug() {
    for (int u = ed, v, w; u > 0;)
      v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,
       u = w:
  int solve() {
    fill_n(pr, V + 1, 0), ans = 0;
    for (int u = 1; u <= V; ++u)</pre>
      if (!pr[u])
        if (st = u, flow(), ed > 0) aug(), ++ans;
    return ans;
};
3.8 MCMF
```

```
struct MCMF { // 0-base
 struct edge {
   ll from, to, cap, flow, cost, rev;
 } * past[maxn];
 vector <edge> G[maxn];
 bitset <maxn> inq;
 ll dis[maxn], up[maxn], s, t, mx, n;
 bool BellmanFord(ll &flow, ll &cost) {
   fill(dis, dis + n, inf);
   queue<ll> q;
```

```
q.push(s), inq.reset(), inq[s] = 1;
    up[s] = mx - flow, past[s] = 0, dis[s] = 0;
    while (!q.empty()) {
      ll u = q.front();
      q.pop(), inq[u] = 0;
      if (!up[u]) continue;
      for (auto &e : G[u])
        if (e.flow != e.cap &&
            dis[e.to] > dis[u] + e.cost) {
          dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
          up[e.to] = min(up[u], e.cap - e.flow);
          if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
    if (dis[t] == inf) return 0;
    flow += up[t], cost += up[t] * dis[t];
    for (ll i = t; past[i]; i = past[i]->from) {
      auto &e = *past[i];
      e.flow += up[t], G[e.to][e.rev].flow -= up[t];
    }
    return 1;
  ll MinCostMaxFlow(ll _s, ll _t, ll &cost) {
    s = _s, t = _t, cost = 0;
    ll flow = 0;
    while (BellmanFord(flow, cost));
    return flow;
  void init(ll _n, ll _mx) {
    n = _n, mx = _mx;
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(edge{a, b, cap, 0, cost, G[b].size()});
    G[b].pb(edge{b, a, 0, 0, -cost, G[a].size() - 1});
  }
};
```

Min Cost Circulation 3.9

vector<pair<int, int>> cyc;

cyc.emplace_back(pv[rt], ed[rt]);

while (!mark[rt]) {

```
//to be modified
struct Edge { int to, cap, rev, cost; };
vector < Edge > g[kN];
int dist[kN], pv[kN], ed[kN];
bool mark[kN];
int NegativeCycle(int n) {
 memset(mark, false, sizeof(mark));
  memset(dist, 0, sizeof(dist));
 int upd = -1;
 for (int i = 0; i <= n; ++i) {</pre>
   for (int j = 0; j < n; ++j) {
      int idx = 0;
      for (auto &e : g[j]) {
        if (e.cap > 0 && dist[e.to] > dist[j] + e.cost) {
          dist[e.to] = dist[j] + e.cost;
          pv[e.to] = j, ed[e.to] = idx;
          if (i == n) {
            upd = j;
            while (!mark[upd]) mark[upd] = true, upd = pv[
                upd];
            return upd;
          }
        idx++;
      }
   }
  return -1;
int Solve(int n) {
 int rt = -1, ans = 0;
  while ((rt = NegativeCycle(n)) >= 0) {
    memset(mark, false, sizeof(mark));
```

```
mark[rt] = true;
      rt = pv[rt];
    reverse(cyc.begin(), cyc.end());
    int cap = kInf;
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      cap = min(cap, e.cap);
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      e.cap -= cap;
      g[e.to][e.rev].cap += cap;
      ans += e.cost * cap;
    }
  }
 return ans;
3.10 SW Mincut
// stoer wagner algorithm: global min cut
const int maxn = 505;
struct SW { // O(V^3) 0-based
  int n, vis[maxn], del[maxn];
 int edge[maxn][maxn], wei[maxn];
  void init(int _n) {
    n = _n;
    fill(del, del+n, 0);
    for (int i = 0;i < n;i++) fill(edge[i], edge[i] + n, 0)</pre>
  void addEdge(int u, int v, int w) {
    edge[u][v] += w, edge[v][u] += w;
  void search(int &s, int &t) {
    fill(vis, vis+n, 0);
    fill(wei, wei+n, 0);
    s = t = -1;
    while (1) {
      int ma = -1, cur = 0;
      for (int i = 0; i < n; ++i)</pre>
        if (!del[i] && !vis[i] && ma < wei[i])</pre>
          cur = i, ma = wei[i];
      if (mx == -1) break;
      vis[cur] = 1, s = t, t = cur;
      for (int i = 0; i < n; ++i)</pre>
        if (!vis[i] && !del[i]) wei[i] += edge[cur][i];
   }
  int solve() {
    int ret = INF;
    for (int i = 0, x=0, y=0; i < n-1; ++i) {
      search(x, y), ret = min(res, wei[y]), del[y] = 1;
      for (int j = 0; j < n; ++j)</pre>
        edge[x][j] = (edge[j][x] += edge[y][j]);
    return ret:
};
```

4 Geometry

4.1 Geometry Template

```
using NumType = ll;
// using NumType = ld;
using Pt = pair<NumType, NumType>;
using Line = pair<Pt, Pt>;
#define X first
#define Y second
// ld eps = 1e-7;
Pt operator+(Pt a, Pt b)
```

```
{ return {a.X + b.X, a.Y + b.Y}; }
Pt operator - (Pt a, Pt b)
{ return {a.X - b.X, a.Y - b.Y}; }
Pt operator*(NumType i, Pt v)
{ return {i * v.X, i * v.Y}; }
Pt operator/(Pt v, NumType i)
{ return {v.X / i, v.Y / i}; }
NumType dot(Pt a, Pt b)
{ return a.X * b.X + a.Y * b.Y; }
NumType cross(Pt a, Pt b)
{ return a.X * b.Y - a.Y * b.X; }
NumType abs2(Pt v)
{ return v.X * v.X + v.Y * v.Y; };
int sgn(NumType v)
{ return v > 0 ? 1 : (v < 0 ? -1 : 0); }
// int sgn(NumType\ v){ return v > eps ? 1 : ( v < -eps ? -1
     : 0); }
int ori(Pt a, Pt b, Pt c)
{ return sgn(cross(b - a, c - a)); }
bool collinearity(Pt a, Pt b, Pt c)
{ return ori(a, b, c) == 0; }
bool btw(Pt p, Pt a, Pt b)
{ return collinearity(p, a, b) && sgn(dot(a - p, b - p)) <=
     0; }
bool intersect(Line a, Line b){
  Pt p1, p2, p3, p4;
  tie(p1, p2) = a; tie(p3, p4) = b;
  if(btw(p1, p3, p4) || btw(p2, p3, p4) || btw(p3, p1, p2)
      || btw(p4, p1, p2))
    return true;
  return ori(p1, p2, p3) * ori(p1, p2, p4) < 0 &&
    ori(p3, p4, p1) * ori(p3, p4, p2) < 0;
}
4.2 Convex Hull
vector < int > getConvexHull(vector < Pt > & pts) {
  vector<int> id(SZ(pts));
  iota(iter(id), 0);
  sort(iter(id), [&](int x, int y){ return pts[x] < pts[y];</pre>
       });
  vector<int> hull;
  for(int tt = 0; tt < 2; tt++){</pre>
    int sz = SZ(hull);
    for(int j : id){
      Pt p = pts[j];
      while(SZ(hull) - sz >= 2 &&
          cross(pts[hull.back()] - pts[hull[SZ(hull) - 2]],
  p - pts[hull[SZ(hull) - 2]]) <= 0)</pre>
        hull.pop_back();
      hull.pb(j);
    }
    hull.pop_back();
    reverse(iter(id));
  return hull;
```

4.3 Minimum Enclosing Circle

if(abs(pts[k] - c) > r)

```
using NumType = ld;
pair<Pt, ld> MinimumEnclosingCircle(vector<Pt> &pts){
    random_shuffle(iter(pts));
    Pt c = pts[0];
    ld r = 0;
    for(int i = 1; i < SZ(pts); i++){
        if(abs(pts[i] - c) <= r) continue;
        c = pts[i]; r = 0;
        for(int j = 0; j < i; j++){
            if(abs(pts[j] - c) <= r) continue;
        c = (pts[i] + pts[j]) / 2;
        r = abs(pts[i] - c);
        for(int k = 0; k < j; k++){</pre>
```

```
c = circumcenter(pts[i], pts[j], pts[k]);
      }
    }
                                                                         back()))
 return {c, r};
      Minkowski Sum
void reorder_poly(vector<Pt>& pnts){
 int mn = 0;
  for(int i = 1; i < (int)pnts.size(); i++){</pre>
                                                                  struct Line{
    if(pnts[i].Y < pnts[mn].Y || (pnts[i].Y == pnts[mn].Y</pre>
        && pnts[i].X < pnts[mn].X))
      mn = i;
 rotate(pnts.begin(), pnts.begin() + mn, pnts.end());
vector<Pt> minkowski(vector<Pt> P, vector<Pt> Q){
                                                                    }
 reorder_poly(P);
  reorder_poly(Q);
 int psz = P.size();
 int qsz = Q.size();
                                                                  };
 P.eb(P[0]);
 P.eb(P[1]);
 Q.eb(Q[0]);
 Q.eb(Q[1]);
 vector < Pt > ans;
 int i = 0, j = 0;
 \label{eq:while} \mbox{while} (\mbox{i < psz } \mbox{|| j < qsz)} \{
    ans.eb(P[i] + Q[j]);
    int t = sgn(cross(P[i + 1] - P[i], Q[j + 1] - Q[j]));
    if(t >= 0) i++;
    if(t <= 0) j++;
 return ans;
      Half Plane Intersection
// copy from 8BQube
bool isin( Line l0, Line l1, Line l2 ) {
  // Check inter(l1, l2) in l0
  pdd p = intersect(l1.X, l1.Y, l2.X, l2.Y);
  return sign(cross(l0.Y - l0.X,p - l0.X)) > 0;
/* Having solution, check intersect(ret[0], ret[1])
 * in all the lines. (use (l.Y - l.X) ^{\circ} (p - l.X) > 0
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> lines) {
  vector < double > ata(SZ(lines)), ord(SZ(lines));
 for(int i = 0; i < SZ(lines); ++i) {</pre>
    ord[i] = i;
    pdd d = lines[i].Y - lines[i].X;
    ata[i] = atan2(d.Y, d.X);
  }
  sort(ALL(ord), [&](int i, int j) {
      if (fabs(ata[i] - ata[j]) >= eps)
      return ata[i] < ata[j];</pre>
      return ori(lines[i].X, lines[i].Y, lines[j].Y) < 0;</pre>
      });
  vector<Line> fin(1, lines[ord[0]]);
```

for (int i = 1; i < SZ(lines); ++i)</pre>

for (int i = 0; i < SZ(fin); ++i) {</pre>

fin.pb(lines[ord[i]]);

deque<Line> dq;

back()))

dq.pb(fin[i]);

dq.pop_back();

dq.pop_front();

if (fabs(ata[ord[i]] - ata[ord[i - 1]]) > eps)

while $(SZ(dq) \ge 2 \&\& !isin(fin[i], dq[SZ(dq) - 2], dq.$

while (SZ(dq) >= 2 && !isin(fin[i], dq[0], dq[1]))

```
while (SZ(dq) >= 3 \&\& !isin(dq[0], dq[SZ(dq) - 2], dq.
    dq.pop_back();
  while (SZ(dq) >= 3 \&\& !isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  return vector<Line>(ALL(dq));
4.6 Dynamic Convex Hull
 ll a, b, l = MIN, r = MAX;
  Line(ll a, ll b): a(a), b(b) {}
  ll operator()(ll x) const{
    return a * x + b;
  bool operator < (Line b) const{</pre>
    return a < b.a;
  bool operator<(ll b) const{</pre>
    return r < b;</pre>
ll iceil(ll a, ll b){
 if(b < 0) a *= -1, b *= -1;
  if(a > 0) return (a + b - 1) / b;
  else return a / b;
ll intersect(Line a, Line b){
  return iceil(a.b - b.b, b.a - a.a);
struct DynamicConvexHull{
 multiset < Line, less <>> ch;
  void add(Line ln){
    auto it = ch.lower_bound(ln);
    while(it != ch.end()){
      Line tl = *it;
      if(tl(tl.r) <= ln(tl.r)){
        it = ch.erase(it);
      else break;
    auto it2 = ch.lower_bound(ln);
    while(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.l) <= ln(tl.l)){</pre>
        it2 = ch.erase(prev(it2));
      else break:
    it = ch.lower_bound(ln);
    if(it != ch.end()){
      Line tl = *it;
      if(tl(tl.l) >= ln(tl.l)) ln.r = tl.l - 1;
        ll pos = intersect(ln, tl);
        tl.l = pos;
        ln.r = pos - 1;
        ch.erase(it);
        ch.insert(tl);
      }
    it2 = ch.lower_bound(ln);
    if(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.r) >= ln(tl.r)) ln.l = tl.r + 1;
        ll pos = intersect(tl, ln);
        tl.r = pos - 1;
        ln.l = pos;
        ch.erase(prev(it2));
```

```
ch.insert(tl);
     }
    if(ln.l <= ln.r) ch.insert(ln);</pre>
 ll query(ll pos){
    auto it = ch.lower_bound(pos);
    if(it == ch.end()) return 0;
    return (*it)(pos);
};
      3D Point
4.7
// Copy from 8BQube
struct Point {
double x, y, z;
Point(double _x = 0, double _y = 0, double _z = 0): x(_x),
     y(_y), z(_z){}
Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
};
Point operator - (const Point &p1, const Point &p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
Point cross(const Point &p1, const Point &p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.
    x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(const Point &p1, const Point &p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(const Point &a)
{ return sqrt(dot(a, a)); }
Point cross3(const Point &a, const Point &b, const Point &c
    )
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
{ return dot(cross3(a, b, c), d - a); }
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
Point e1 = b - a;
Point e2 = c - a;
e1 = e1 / abs(e1);
e2 = e2 - e1 * dot(e2, e1);
e2 = e2 / abs(e2);
Point p = u - a;
return pdd(dot(p, e1), dot(p, e2));
4.8 ConvexHull3D
// Copy from 8BQube
struct CH3D {
struct face{int a, b, c; bool ok;} F[8 * N];
 double dblcmp(Point &p,face &f)
 {return dot(cross3(P[f.a], P[f.b], P[f.c]), p - P[f.a]);}
int g[N][N], num, n;
 Point P[N];
 void deal(int p,int a,int b) {
  int f = g[a][b];
  face add;
 if (F[f].ok) {
   if (dblcmp(P[p],F[f]) > eps) dfs(p,f);
    add.a = b, add.b = a, add.c = p, add.ok = 1, g[p][b] =
```

g[a][p] = g[b][a] = num, F[num++]=add;

deal(p, F[now].a, F[now].c);

void dfs(int p, int now) {

bool same(int s,int t){

Point a = P[F[s].a];

F[now].ok = 0;

}

```
deal(p, F[now].b, F[now].a), deal(p, F[now].c, F[now].b),
```

```
Point \&b = P[F[s].b];
 Point &c = P[F[s].c];
 return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(</pre>
   volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a, b, a))
   c, P[F[t].c])) < eps;
void init(int _n){n = _n, num = 0;}
void solve() {
 face add;
 num = 0;
 if(n < 4) return;</pre>
 if([&](){
   for (int i = 1; i < n; ++i)</pre>
   if (abs(P[0] - P[i]) > eps)
   return swap(P[1], P[i]), 0;
   return 1;
   }() || [&](){
   for (int i = 2; i < n; ++i)</pre>
   if (abs(cross3(P[i], P[0], P[1])) > eps)
   return swap(P[2], P[i]), 0;
   return 1;
   }() || [&](){
   for (int i = 3; i < n; ++i)</pre>
   if (fabs(dot(cross(P[0] - P[1], P[1] - P[2]), P[0] - P[
   i])) > eps)
   return swap(P[3], P[i]), 0;
   return 1:
   }())return;
 for (int i = 0; i < 4; ++i) {</pre>
  add.a = (i + 1) \% 4, add.b = (i + 2) \% 4, add.c = (i + 2) \% 4
   3) % 4, add.ok = true;
  if (dblcmp(P[i],add) > 0) swap(add.b, add.c);
  g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] =
   num:
  F[num++] = add;
 for (int i = 4; i < n; ++i)</pre>
  for (int j = 0; j < num; ++j)</pre>
   if (F[j].ok && dblcmp(P[i],F[j]) > eps) {
    dfs(i, j);
    break;
 for (int tmp = num, i = (num = 0); i < tmp; ++i)</pre>
  if (F[i].ok) F[num++] = F[i];
double get_area() {
 double res = 0.0;
 if (n == 3)
  return abs(cross3(P[0], P[1], P[2])) / 2.0;
 for (int i = 0; i < num; ++i)</pre>
 res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
 return res / 2.0;
double get volume() {
 double res = 0.0;
 for (int i = 0; i < num; ++i)</pre>
  res += volume(Point(0, 0, 0), P[F[i].a], P[F[i].b], P[F[
   i].c]);
 return fabs(res / 6.0);
int triangle() {return num;}
int polygon() {
 int res = 0:
 for (int i = 0, flag = 1; i < num; ++i, res += flag, flag
    = 1)
  for (int j = 0; j < i && flag; ++j)</pre>
   flag &= !same(i,j);
 return res;
Point getcent(){
 Point ans(0, 0, 0), temp = P[F[0].a];
 double v = 0.0, t2;
 for (int i = 0; i < num; ++i)</pre>
  if (F[i].ok == true) {
   Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].c];
   t2 = volume(temp, p1, p2, p3) / 6.0;
   if (t2>0)
```

```
ans.x += (p1.x + p2.x + p3.x + temp.x) * t2, ans.y +=
    (p1.y + p2.y + p3.y + temp.y) * t2, ans.z += (p1.z + p2)
    .z + p3.z + temp.z) * t2, v += t2;
  ans.x /= (4 * v), ans.y /= (4 * v), ans.z /= (4 * v);
 return ans;
 double pointmindis(Point p) {
  double rt = 99999999;
  for(int i = 0; i < num; ++i)</pre>
   if(F[i].ok == true) {
    Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].c];
    double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z)
    ) * (p3.y - p1.y);
    double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x)
    ) * (p3.z - p1.z);
    double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y)
    ) * (p3.x - p1.x);
    double d = 0 - (a * p1.x + b * p1.y + c * p1.z);
    double temp = fabs(a * p.x + b * p.y + c * p.z + d) /
    sqrt(a * a + b * b + c * c);
    rt = min(rt, temp);
 return rt;
}
};
```

Graph

Block Cut Tree

```
struct BlockCutTree{
 vector<vector<int>> tree; // 1-based
 vector < int > node;
 vector<int> type; // 0:square, 1:circle
 bool iscut(int v){
   return type[node[v]] == 1;
 vector < int > getbcc(int v){
   if(!iscut(v)) return {node[v]};
    vector<int> ans;
   for(int i : tree[node[v]])
      ans.pb(i);
    return ans;
 }
 void build(int n, vector<vector<int>>& g){
   tree.resize(2 * n + 1);
    type.resize(2 * n + 1);
   node.resize(n + 1, -1);
   vector < int > in(n + 1);
   vector < int > low(n + 1);
   stack<int> st;
    int ts = 1;
   int bcc = 1;
    auto addv = [&](int id, int v){
      if(node[v] == -1){
        node[v] = id;
        return;
      if(type[node[v]] == 0){
        int o = node[v];
        node[v] = bcc++;
        type[node[v]] = 1;
        tree[o].pb(node[v]);
        tree[node[v]].pb(o);
      }
      tree[id].pb(node[v]);
      tree[node[v]].pb(id);
    function < void(int, int) > dfs = [&](int now, int p){
      in[now] = low[now] = ts++;
```

```
st.push(now);
      int child = 0;
      for(int i : g[now]){
        if(i == p) continue;
        if(in[i]){
          low[now] = min(low[now], in[i]);
          continue;
        child++;
        dfs(i, now);
        low[now] = min(low[now], low[i]);
        if(low[i] >= in[now]){
          int nowid = bcc++;
          while(true){
            int x = st.top();
            st.pop();
            addv(nowid, x);
            if(x == i) break;
          addv(nowid, now);
      if(child == 0 && now == p) addv(bcc++, now);
    };
    dfs(1, 1);
  }
};
```

```
5.2 2-SAT
struct SAT{ // 1-based
  int n:
  vector<vector<int>> g, rg;
  bool ok = true;
  vector < bool > ans;
  void init(int _n){
   n = _n;
    g.resize(2 * n + 1);
    rg.resize(2 * n + 1);
    ans.resize(n + 1);
  int neg(int v){
    return v <= n ? v + n : v - n;
  void addEdge(int u, int v){
    g[u].eb(v);
    rg[v].eb(u);
  void addClause(int a, int b){
    addEdge(a, b);
    addEdge(neg(b), neg(a));
  void build(){
    vector < bool > vst(n + 1);
    vector < int > tmp, scc(n + 1, -1);
    int cnt = 1;
    function < void(int) > dfs = [&](int now){
      vst[now] = true;
      for(int i : rg[now]){
        if(vst[i]) continue;
        dfs(i);
      tmp.pb(now);
    };
    for(int i = 1; i <= 2 * n; i++){</pre>
      if(!vst[i]) dfs(i);
    reverse(iter(tmp));
    function < void(int, int) > dfs2 = [&](int now, int id){
      scc[now] = id;
      for(int i : g[now]){
        if(scc[i] != -1) continue;
        dfs2(i, id);
```

```
}:
    for(int i : tmp){
      if(scc[i] == -1) dfs2(i, cnt++);
    for(int i = 1; i <= n; i++){</pre>
      if(scc[i] == scc[neg(i)]){
        ok = false;
        return;
      if(scc[i] < scc[neg(i)]) ans[i] = true;</pre>
      else ans[i] = false;
  }
};
5.3
      Dominator Tree
// copy from 8BQube
struct dominator_tree { // 1-base
  vector < int > G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
int semi[N], idom[N], best[N];
  vector < int > tree[N]; // dominator_tree
  void init(int _n) {
    n = _n;
    for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
    G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
    Time = 0;
    for (int i = 1; i <= n; ++i) {</pre>
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
          find(v, i);
          semi[i] = min(semi[i], semi[best[v]]);
      tree[semi[i]].pb(i);
      for (auto v : tree[pa[i]]) {
        find(v, pa[i]);
        idom[v] =
          semi[best[v]] == pa[i] ? pa[i] : best[v];
      tree[pa[i]].clear();
    for (int i = 2; i <= Time; ++i) {</pre>
      if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
      tree[id[idom[i]]].pb(id[i]);
 }
```

```
// copy from 8BQube
vector < int > vG[N];
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
  while (top >= 1 && dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
 for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
  top = -1:
  sort(ALL(v),
      [&](int a, int b) { return dfn[a] < dfn[b]; });</pre>
  for (int i : v) insert(i);
  while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
    Math
6
     Extended Euclidean Algorithm
// ax + ny = 1, ax + ny == ax == 1 \pmod{n}
void extgcd(ll x,ll y,ll &g,ll &a,ll &b) {
 if (y == 0) g=x,a=1,b=0;
  else extgcd(y,x%y,g,b,a),b-=(x/y)*a;
6.2 Floor & Ceil
int floor_div(int a,int b){
  return a/b-(a%b&&a<0^b<0);
int ceil_div(int a,int b){
  return a/b+(a%b&&a<0^b>0);
6.3 Legendre
// the Jacobi symbol is a generalization of the Legendre
    symbol.
// such that the bottom doesn't need to be prime.
// (n|p) -> same as legendre
// (n|ab) = (n|a)(n|b)
// work with long long
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
    if ((r & 1) && ((m + 2) & 4)) s = -s;
    a >>= r;
    if (a & m & 2) s = -s;
    swap(a, m);
  return s;
```

// 0: a == 0

5.4 Virtual Tree

};

```
// -1: a isn't a quad res of p
// else: return X with X^2 \% p == a
// doesn't work with long long
int QuadraticResidue(int a, int p) {
 if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
 int b, d;
 for (; ; ) {
   b = rand() % p;
    d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
 int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 % p))
          % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)) %
    f1 = (2LL * f0 * f1) \% p;
    f0 = tmp;
 }
  return g0;
      Simplex
#pragma once
typedef double T; // long double, Rational, double + mod<P
typedef vector <T> vd;
typedef vector < vd > vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s]))
     s=i
struct LPSolver {
 int m, n;
 vi N, B;
 vvd D;
  LPSolver(const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
      rep(i,0,m) rep(j,0,n) D[i][j] = A[i][j];
      rep(i,0,m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[
          il:}
      rep(j,0,n) { N[j] = j; D[m][j] = -c[j]; }
      N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
      T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j,0,n+2) b[j] -= a[j] * inv2;
      b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
     int s = -1;
```

rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);

```
if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;</pre>
        if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
            < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
    }
 T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i,0,m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

6.5 Floor Sum

```
// from 8BQube
ll floor_sum(ll n, ll m, ll a, ll b) {
    ll ans = 0;
    if (a >= m)
        ans += (n - 1) * n * (a / m) / 2, a %= m;
    if (b >= m)
        ans += n * (b / m), b %= m;
    ll y_max = (a * n + b) / m, x_max = (y_max * m - b);
    if (y_max == 0) return ans;
    ans += (n - (x_max + a - 1) / a) * y_max;
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
    return ans;
}// sum^{n-1}_0 floor((a * i + b) / m) in log(n + m + a + b)
}
```

7 Misc

7.1 Fraction

7.2 Matroid

我們稱一個二元組 $M=(E,\mathcal{I})$ 為一個擬陣,其中 $\mathcal{I}\subseteq 2^E$ 為 E 的子集所形成的 **非空**集合,若:

- 若 $S \in \mathcal{I}$ 以及 $S' \subsetneq S$,則 $S' \in \mathcal{I}$
- 對於 $S_1, S_2 \in \mathcal{I}$ 滿足 $|S_1| < |S_2|$,存在 $e \in S_2 \setminus S_1$ 使得 $S_1 \cup \{e\} \in \mathcal{I}$

除此之外,我們有以下的定義:

- 位於 $\mathcal I$ 中的集合我們稱之為獨立集(independent set),反之不在 $\mathcal I$ 中的 我們稱為相依集(dependent set)
- 極大的獨立集為基底(base)、極小的相依集為廻路(circuit)
- 一個集合 Y 的秩 (rank) r(Y) 為該集合中最大的獨立子集,也就是 $r(Y) = \max\{|X| \mid X \subseteq Y \ \exists X \in \mathcal{I}\}$

性質:

- 1. $X \subseteq Y \land Y \in \mathcal{I} \implies X \in \mathcal{I}$
- 2. $X \subseteq Y \land X \notin \mathcal{I} \implies Y \notin \mathcal{I}$
- 3. 若 B 與 B' 皆是基底且 $B \subseteq B'$,則 B = B' 若 C 與 C' 皆是迴路且 $C \subseteq C'$,則 C = C'
- 4. $e \in E \land X \subseteq E \implies r(X) \le r(X \cup \{e\}) \le r(X) + 1$ i.e. 加入一個元素 後秩不會降底,最多增加 1
- 5. $\forall Y \subseteq E, \exists X \subseteq Y, r(X) = |X| = r(Y)$

一些等價的性質:

- 1. 對於所有 $X \subseteq E$, X 的極大獨立子集都有相同的大小
- 2. 對於 $B_1, B_2 \in \mathcal{B} \wedge B_1 \neq B_2$,對於所有 $e_1 \in B_1 \setminus B_2$,存在 $e_2 \in B_2 \setminus B_1$ 使得 $(B_1 \setminus \{e_1\}) \cup \{e_2\} \in \mathcal{B}$
- 3. 對於 $X,Y \in \mathcal{I}$ 且 |X| < |Y|,存在 $e \in Y \setminus X$ 使得 $X \cup \{e\} \in \mathcal{B}$
- 4. 如果 $r(X \cup \{e_1\}) = r(X \cup \{e_2\}) = r(X)$,則 $r(X \cup \{e_1, e_2\}) = r(X)$ 。 如果 $r(X \cup \{e\}) = r(X)$ 對於所有 $e \in E'$ 都成立,則 $r(X \cup E') = r(X)$ 。

擬陣交

```
Data: 兩個擬陣 M_1 = (E, \mathcal{I}_1) 以及 M_2 = (E, \mathcal{I}_2) Result: I 為最大的位於 \mathcal{I}_1 \cap \mathcal{I}_2 中的獨立集 I \leftarrow \emptyset X_1 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_1\} X_2 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_2\} while X_1 \neq \emptyset 且 X_2 \neq \emptyset do if e \in X_1 \cap X_2 then I \leftarrow I \cup \{e\} else 構造交換圖 \mathcal{D}_{M_1,M_2}(I) 在交換圖上找到一條 X_1 到 X_2 且沒有捷徑的路徑 P I \leftarrow I \triangle P end if X_1 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_1\} X_2 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_2\} end while
```

8 Polynomial

8.1 FFT

```
template < int MAXN >
struct FFT {
    using val_t = complex < double >;
    const double PI = acos(-1);
    val_t w[MAXN];
    FFT() {
        for (int i = 0; i < MAXN; ++i) {
            double arg = 2 * PI * i / MAXN;
            w[i] = val_t(cos(arg), sin(arg));
        }
    }
    void bitrev(val_t *a, int n); // see NTT
    void trans(val_t *a, int n, bool inv = false); // see NTT
    ;
};</pre>
```

8.2 NTT

```
//to be modified
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
```

```
//51*(2^25)+1, 1711276033, 29
template < int MAXN, ll P, ll RT > //MAXN must be 2^k
struct NTT {
  ll w[MAXN];
  ll mpow(ll a, ll n);
  ll minv(ll a) { return mpow(a, P - 2); }
  NTT() {
    ll dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw % P</pre>
  }
  void bitrev(ll *a, int n) {
    int i = 0:
    for (int j = 1; j < n - 1; ++j) {
      for (int k = n >> 1; (i ^= k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
  void operator()(ll *a, int n, bool inv = false) { //0 <=</pre>
      a[i] < P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {</pre>
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {
        for (int j = i, x = 0; j < i + dl; ++j, x += dx) {</pre>
          ll tmp = a[j + dl] * w[x] % P;
          if ((a[j + dl] = a[j] - tmp) < 0) a[j + dl] += P;
          if ((a[j] += tmp) >= P) a[j] -= P;
        }
      }
    if (inv) {
      reverse(a + 1, a + n);
      ll invn = minv(n);
      for (int i = 0; i < n; ++i) a[i] = a[i] * invn % P;</pre>
  }
};
```

8.3 Polynomial Operation

```
// Copy from 8BQube
#define fi(s, n) for (int i = (int)(s); i < (int)(n); ++i)
template < int MAXN, ll P, ll RT> // MAXN = 2^k
struct Poly : vector<ll> { // coefficients in [0, P)
using vector<ll>::vector;
static NTT < MAXN , P , RT > ntt;
int n() const { return (int)size(); } // n() >= 1
Poly(const Poly &p, int m) : vector<ll>(m) {
 copy_n(p.data(), min(p.n(), m), data());
Poly& irev() { return reverse(data(), data() + n()), *this
    ; }
 Poly& isz(int m) { return resize(m), *this; }
 Poly& iadd(const Poly &rhs) { // n() == rhs.n()
 fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)[i] -=
 return *this;
Poly& imul(ll k) {
  fi(0, n()) (*this)[i] = (*this)[i] * k % P;
  return *this;
 Poly Mul(const Poly &rhs) const {
 int m = 1;
  while (m < n() + rhs.n() - 1) m <<= 1;</pre>
  Poly X(*this, m), Y(rhs, m);
  ntt(X.data(), m), ntt(Y.data(), m);
  fi(0, m) X[i] = X[i] * Y[i] % P;
 ntt(X.data(), m, true);
  return X.isz(n() + rhs.n() - 1);
 Poly Inv() const { // (*this)[0] != 0, 1e5/95ms
 if (n() == 1) return {ntt.minv((*this)[0])};
 int m = 1;
```

```
while (m < n() * 2) m <<= 1;</pre>
 Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(m);
 Poly Y(*this, m);
 ntt(Xi.data(), m), ntt(Y.data(), m);
 fi(0, m) {
 Xi[i] *= (2 - Xi[i] * Y[i]) % P;
 if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
ntt(Xi.data(), m, true);
return Xi.isz(n());
Poly Sqrt() const { // Jacobi((*this)[0], P) = 1, 1e5/235}
if (n() == 1) return {QuadraticResidue((*this)[0], P)};
Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n());
return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 + 1);
pair < Poly , Poly > DivMod(const Poly &rhs) const { // (rhs.)
   back() != 0
 if (n() < rhs.n()) return {{0}, *this};</pre>
 const int m = n() - rhs.n() + 1;
Poly X(rhs); X.irev().isz(m);
Poly Y(*this); Y.irev().isz(m);
Poly Q = Y.Mul(X.Inv()).isz(m).irev();
X = rhs.Mul(Q), Y = *this;
 fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
Poly ret(n() - 1);
 fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] % P;
return ret.isz(max(1, ret.n()));
Poly Sx() const {
Poly ret(n() + 1);
 fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i] % P;
return ret;
Poly _tmul(int nn, const Poly &rhs) const {
Poly Y = Mul(rhs).isz(n() + nn - 1);
return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<ll> _eval(const vector<ll> &x, const vector<Poly> &
   up) const {
 const int m = (int)x.size();
if (!m) return {};
 vector < Poly > down(m * 2);
 // down[1] = DivMod(up[1]).second;
 // fi(2, m * 2) down[i] = down[i / 2].DivMod(up[i]).
   second;
 down[1] = Poly(up[1]).irev().isz(n()).Inv().irev()._tmul(
 fi(2, m * 2) down[i] = up[i ^ 1]._tmul(up[i].n() - 1,
   down[i / 2]);
 vector<ll> y(m);
 fi(0, m) y[i] = down[m + i][0];
 return y;
static vector<Poly> _tree1(const vector<ll> &x) {
const int m = (int)x.size();
vector < Poly > up(m * 2);
 fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
 for (int i = m - 1; i > 0; --i) up[i] = up[i * 2].Mul(up[
   i * 2 + 1]);
 return up;
vector<ll> Eval(const vector<ll> &x) const { // 1e5, 1s
auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const vector<ll> &x, const vector<</pre>
   ll> &y) { // 1e5, 1.4s
 const int m = (int)x.size();
 vector<Poly> up = _tree1(x), down(m * 2);
 vector < ll > z = up[1].Dx()._eval(x, up);
 fi(0, m) z[i] = y[i] * ntt.minv(z[i]) % P;
 fi(0, m) down[m + i] = {z[i]};
```

```
for (int i = m - 1; i > 0; --i) down[i] = down[i * 2].Mul
    (up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(up[i * 2]));
  return down[1];
 Poly Ln() const { // (*this)[0] == 1, 1e5/170ms
  return Dx().Mul(Inv()).Sx().isz(n());
 Poly Exp() const { // (*this)[0] == 0, 1e5/360ms
 if (n() == 1) return {1};
  Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
  Poly Y = X.Ln(); Y[0] = P - 1;
  fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i] += P;
  return X.Mul(Y).isz(n());
 // M := P(P - 1). If k >= M, k := k % M + M.
 Poly Pow(ll k) const {
 int nz = 0;
  while (nz < n() && !(*this)[nz]) ++nz;</pre>
  if (nz * min(k, (ll)n()) >= n()) return Poly(n());
  if (!k) return Poly(Poly {1}, n());
  Poly X(data() + nz, data() + nz + n() - nz * k);
  const ll c = ntt.mpow(X[0], k % (P - 1));
  return X.Ln().imul(k % P).Exp().imul(c).irev().isz(n()).
    irev();
 static ll LinearRecursion(const vector<ll> &a, const
    vector<ll> &coef, ll n) { // a_n = |sum c_j a_n(n-j)
  const int k = (int)a.size();
  assert((int)coef.size() == k + 1);
  Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
  fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
 C[k] = 1;
  while (n) {
  if (n % 2) W = W.Mul(M).DivMod(C).second;
   n /= 2, M = M.Mul(M).DivMod(C).second;
  ll ret = 0;
  fi(0, k) ret = (ret + W[i] * a[i]) % P;
  return ret;
};
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template <> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

8.4 Generating Function

8.4.1 Ordinary Generating Function

- C(x) = A(rx): $c_n = r^n a_n$ 的一般生成函數。
- C(x) = A(x) + B(x): $c_n = a_n + b_n$ 的一般生成函數。
- C(x) = A(x)B(x): $c_n = \sum_{i=0}^n a_i b_{n-i}$ 的一般生成函數。
- $C(x)=A(x)^k$: $c_n=\sum\limits_{i_1+i_2+\ldots+i_k=n}a_{i_1}a_{i_2}\ldots a_{i_k}$ 的一般生成函數。
- C(x) = xA(x)': $c_n = na_n$ 的一般生成函數。
- $C(x) = \frac{A(x)}{1-x}$: $c_n = \sum_{i=0}^{n} a_i$ 的一般生成函數。

常用展開式

- $\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \ldots$
- $(1+x)^a = \sum_{n=0}^{\infty} {a \choose n} x^n$, ${a \choose n} = \frac{a(a-1)(a-2)...(a-n+1)}{n!}$.

8.4.2 Exponential Generating Function

 a_0, a_1, \ldots 的指數生成函數:

$$\hat{A}(x) = \sum_{i=0}^{\infty} \frac{a_i}{i!} = a_0 + a_1 x + \frac{a_2}{2!} x^2 + \frac{a_3}{3!} x^3 + \dots$$

- $\hat{C}(x) = \hat{A}(x) + \hat{B}(x)$: $c_n = a_n + b_n$ 的指數生成函數
- $\hat{C}(x) = \hat{A}^{(k)}(x)$: $c_n = a_{n+k}$ 的指數生成函數

- $\hat{C}(x) = x\hat{A}(x)$: $c_n = na_n$ 的指數生成函數
- $\hat{C}(x) = \hat{A}(x)\hat{B}(x)$: $c_n = \sum_{k=0}^n \binom{n}{i} a_k b_{n-k}$ 的指數生成函數
- $\hat{C}(x)=\hat{A}(x)^k$: $\sum_{i_1+i_2+\dots+i_k=n} {n\choose i_1,i_2,\dots,i_k} a_i a_{i_2}\dots a_{i_k}$ 的指數生成函數

9 String

9.1 Rolling Hash

```
int n;
string s;
vector<ll> h, rh;
vector<ll> kp;
const ll K = 26, MOD = 1000000007;
void topos(ll &a){
 a = (a \% MOD + MOD) \% MOD;
int ord(char c){
 return c - 'a';
pll geth(int l, int r){
 if(l > r) return mp(0, 0);
 ll \ ans = h[r] - h[l - 1] * kp[r - l + 1];
 topos(ans):
 return mp(ans, r - l + 1);
pll getrh(int l, int r){
 if(l > r) return mp(0, 0);
 l = n - l + 1;
 r = n - r + 1;
 swap(l, r);
 ll \ ans = rh[r] - rh[l - 1] * kp[r - l + 1];
 topos(ans);
 return mp(ans, r - l + 1);
pll concat(pll a, pll b){
 ll ans = a.F * kp[b.S] + b.F;
 ans %= MOD;
  return mp(ans, a.S + b.S);
void build(){
 n = s.size();
 s = " " + s;
 h.resize(n + 1);
 rh.resize(n + 1);
 kp.resize(n + 1);
 kp[0] = 1;
 for(int i = 1; i <= n; i++){</pre>
   kp[i] = kp[i - 1] * K % MOD;
 for(int i = 1; i <= n; i++){</pre>
   h[i] = h[i - 1] * K % MOD + ord(s[i]);
   h[i] %= MOD;
   rh[i] = rh[i - 1] * K % MOD + ord(s[n - i + 1]);
    rh[i] %= MOD;
```

9.2 KMP Algorithm

```
void kmp(string s){
  int siz = s.size();
  vector < int > f(siz, 0);
  f[0] = 0;
  for (int i = 1; i < siz; i++) {
    f[i] = f[i-1];
    bool zero = 0;</pre>
```

```
while (s[f[i]] != s[i]) {
    if (f[i] == 0) {
        zero = 1;
        break;
    }
    f[i] = f[f[i]-1];
    }
    if (!zero) f[i]++;
}
```

9.3 Manacher Algorithm

9.4 MCP

```
string mcp(string s) { //Duval algorithm for Lyndon
    factorization
s += s;
int n = s.size(), i = 0, ans = 0;
while (i < n/2) {
    ans = i;
    int j = i+1, k=i;
    while (j < n && s[k] <= s[j]) {
        if (s[k] < s[j]) k = i;
        else k++;
        j++;
    }
    while (i <= k) i += j - k;
}
return s.substr(ans, n/2);
}</pre>
```

9.5 Suffix Array

```
struct SuffixArray { //tested
  vector<int> sa, lcp, rank; //lcp[i] is lcp of sa[i] and
      sa[i-1]
  SuffixArray(string& s, int lim=256) { // or basic_string<
      int>
    int n = s.size() + 1, k = 0, a, b;
    vector \langle int \rangle x(n, 0), y(n), ws(max(n, lim));
    rank.resize(n);
    for (int i = 0;i < n-1;i++) x[i] = (int)s[i];</pre>
    sa = lcp = y, iota(sa.begin(), sa.end(), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim =
        p) {
      p = j, iota(y.begin(), y.end(), n - j);
      for (int i = 0;i < n;i++) if (sa[i] >= j) y[p++] = sa
          [i] - j;
      for (int &i : ws) i = 0;
      for (int i = 0;i < n;i++) ws[x[i]]++;</pre>
      for (int i = 1;i < lim;i++) ws[i] += ws[i - 1];</pre>
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      for(int i = 1; i < n; i++) a = sa[i - 1], b = sa[i], x[
          b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p
```

```
}
for (int i = 1;i < n;i++) rank[sa[i]] = i;
for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
    for (k && k--, j = sa[rank[i] - 1];
        s[i + k] == s[j + k]; k++);
}
};</pre>
```

9.6 Suffix Array Automaton

```
//to be modified
const int MAXM = 1000010;
struct SAM {
int tot, root, lst, mom[MAXM], mx[MAXM];
int acc[MAXM], nxt[MAXM][33];
 int newNode() {
 int res = ++tot;
 fill(nxt[res], nxt[res] + 33, 0);
 mom[res] = mx[res] = acc[res] = 0;
 return res;
}
void init() {
 tot = 0;
 root = newNode();
 mom[root] = 0, mx[root] = 0;
 lst = root;
 void push(int c) {
 int p = lst;
 int np = newNode();
 mx[np] = mx[p] + 1;
 for (; p && nxt[p][c] == 0; p = mom[p])
  nxt[p][c] = np;
 if (p == 0) mom[np] = root;
  else {
   int q = nxt[p][c];
   if (mx[p] + 1 == mx[q]) mom[np] = q;
    int nq = newNode();
    mx[nq] = mx[p] + 1;
    for (int i = 0; i < 33; i++)</pre>
    nxt[nq][i] = nxt[q][i];
    mom[nq] = mom[q];
    mom[q] = nq;
    mom[np] = nq;
    for (; p && nxt[p][c] == q; p = mom[p])
     nxt[p][c] = nq;
  }
 lst = np;
 void push(char *str) {
  for (int i = 0; str[i]; i++)
  push(str[i] - 'a' + 1);
} sam;
```

9.7 Z-value Algorithm

```
vector < int > z_function(string const& s) {
   int n = s.size();
   vector < int > z(n);
   for (int i = 1, l = 0, r = 0; i < n; i++) {
      if (i <= r) z[i] = min(r-i+1, z[i-l]);
      while (i + z[i] < n && s[z[i]] == s[i+z[i]])
      z[i]++;
   if (i + z[i] - 1 > r)
      l = i, r = i + z[i] - 1;
   }
   return z;
}
```

9.8 Main Lorentz

```
vector < int > z_function(string const& s);
int get_z(vector<int> const& z, int i) {
  return (0 <= i && i < SZ(z)) ? z[i] : 0;
vector<pair<int, int>> rep;
void convert_to_rep(int shift, bool left, int cntr, int l,
    int k1, int k2) {
  for (int l1 = max(1, l - k2); l1 <= min(l, k1); l1++) {
    if (left && l1 == l) break;
    int l2 = l - l1;
    int pos = shift + (left ? cntr - l1 : cntr - l - l1 +
    rep.emplace_back(pos, pos + 2*l - 1);
  }
}
void find_rep(string s, int shift = 0) {
  int n = s.size():
  if (n == 1) return;
  int nu = n / 2;
  int nv = n - nu;
  string u = s.substr(0, nu);
  string v = s.substr(nu);
  string ru(u.rbegin(), u.rend());
  string rv(v.rbegin(), v.rend());
  find_rep(u, shift);
  find_rep(v, shift + nu);
  vector < int > z1 = z_function(ru);
  vector <int> z2 = z_function(v + '#' + u);
  vector < int > z3 = z function(ru + '#' + rv);
  vector < int > z4 = z_function(v);
  for (int cntr = 0; cntr < n; cntr++) {</pre>
    int l, k1, k2;
    if (cntr < nu) {</pre>
      l = nu - cntr;
      k1 = get_z(z1, nu - cntr);
      k2 = get_z(z2, nv + 1 + cntr);
    } else {
      l = cntr - nu + 1;
      k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu));
      k2 = get_z(z4, (cntr - nu) + 1);
    if (k1 + k2 >= 1)
      convert_to_rep(shift, cntr < nu, cntr, l, k1, k2);</pre>
  }
}
```

9.9 AC Automaton

```
// copy from nontoi
struct AhoCorasick {
  enum { P = 26, st = 'a'};
 struct node { // zero-based
    array<int, P> ch = {0};
    int fail = 0, cnt = 0, dep = 0;
 };
 int cnt;
 vector<node> v;
  vector < int > ans;
  void init_(int mx) {
   v.clear();
    cnt = 1, v.resize(mx);
   v[0].fail = 0;
  void insert(string s) {
    int p = 0, dep = 1;
    for(auto i : s) {
      int c = i - st;
```

if(!v[p].ch[c]) {

```
v[cnt].dep = dep;
        v[p].ch[c] = cnt ++;
       = v[p].ch[c], dep ++;
    }
    v[p].cnt ++;
  }
  void build(vector<string> s) {
    for(auto i : s) insert(i);
    queue < int > q;
    for(int i = 0; i < P; i ++) {</pre>
      if(v[0].ch[i]) q.push(v[0].ch[i]);
    while(q.size()) {
      int p = q.front();
      q.pop();
      for(int i = 0; i < P; i ++) if(v[p].ch[i]) {</pre>
        int to = v[p].ch[i], cur = v[p].fail;
        while (cur \&\& !v[cur].ch[i]) cur = v[cur].fail;
        if(v[cur].ch[i]) cur = v[cur].ch[i];
        v[to].fail = cur;
        v[to].cnt += v[cur].cnt;
        q.push(to);
      }
    }
  void traverse(string s) {
    int p = 0;
    ans.assign(cnt, 0);
    for(auto i : s) {
      int c = i - st;
      while(p && !v[p].ch[c]) p = v[p].fail;
      if(v[p].ch[c]) {
        p = v[p].ch[c];
        ans[p] ++, v[p].cnt;
      }
    }
    vector < int > ord(cnt, 0);
    iota(all(ord), 0);
    sort(all(ord), [&](int a, int b) { return v[a].dep > v[
        b].dep; });
    for(auto i : ord) ans[v[i].fail] += ans[i];
    return;
  int go(string s) {
    int p = 0;
    for(auto i : s) {
      int c = i - st;
      assert(v[p].ch[c]);
      p = v[p].ch[c];
    }
    return ans[p];
};
```

Formula

Recurrences

If $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \dots + c_k a_{n-k}$ $\cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1n + d_2)r^n$.

Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

10.3 Geometry

10.3.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4}$

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles): $m_a =$ $\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$

Length of bisector (divides angles in two):
$$s_a = \sqrt{bc \left(1 - \left(\frac{a}{b+c}\right)^2\right)}$$

Law of sines: $\frac{\sin \alpha}{c} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} =$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$ Incenter:

 $\begin{array}{l} P_1 = \underbrace{(x_1,y_1)}, P_2 = (x_2,y_2), P_3 = (x_3,y_3) \\ s_1 = \overline{P_2P_3}, s_2 = \overline{P_1P_3}, s_3 = \overline{P_1P_2} \\ s_1P_1 + s_2P_2 + s_3P_3 \end{array}$

 $s_1 + s_2 + s_3$

Circumcenter:

Continuenter:

$$P_0 = (0,0), P_1 = (x_1, y_1), P_2 = (x_2, y_2)$$

$$x_c = \frac{1}{2} \times \frac{y_2(x_1^2 + y_1^2) - y_1(x_2^2 + y_2^2)}{-x_2y_1 + x_1y_2}$$

$$y_c = \frac{1}{2} \times \frac{x_2(x_1^2 + y_1^2) - x_1(x_2^2 + y_2^2)}{-x_1y_2 + x_2y_1}$$

 $-x_1y_2 + x_2y_1$

Check if (x_0, y_0) is in the circumcircle:

$$\begin{vmatrix} x_1 - x_0 & y_1 - y_0 & (x_1^2 + y_1^2) - (x_0^2 + y_0^2) \\ x_2 - x_0 & y_2 - y_0 & (x_2^2 + y_2^2) - (x_0^2 + y_0^2) \\ x_3 - x_0 & y_3 - y_0 & (x_3^2 + y_3^2) - (x_0^2 + y_0^2) \end{vmatrix}$$

0: on edge, > 0: inside, < 0: outside

10.3.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2 f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}.$

10.3.3 Spherical coordinates

$$\begin{array}{ll} x = r \sin \theta \cos \phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r \sin \theta \sin \phi & \theta = \cos(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r \cos \theta & \phi = \operatorname{atan2}(y, x) \end{array}$$

10.4 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

10.5 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

10.6 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

10.7 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

10.7.1 Discrete distributions

Binomial distribution The number of successes in n independent yes/no experiments, each which yields success with probability p is Bin(n, p), $n = 1, 2, \ldots, 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
$$\mu = np, \ \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

10.7.2 Continuous distributions

Uniform distribution If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$
$$\mu = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

10.8 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi=\pi \mathbf{P}$. If the Markov chain is *irreducible* (it is possible to get to any state from any state), then $\pi_i=\frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is ergodic if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and aperiodic (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii}=1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij}=p_{ij}+\sum_{k\in\mathbf{G}}a_{ik}p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i=1+\sum_{k\in\mathbf{G}}p_{ki}t_k$.

			ı		ı	ı	ı	ı		ı		1	ı	1	
1	1	1	1	1	1	1	1	1		1		1	1	1	

			ı		ı	ı	ı	ı		ı		1	ı	1	
1	1	1	1	1	1	1	1	1		1		1	1	1	

			ı		ı	ı	ı	ı		ı		1	ı	1	
1	1	1	1	1	1	1	1	1		1		1	1	1	