Perth Modern School

45 marks 7 Questions

Yr 12 Maths Specialist

Page 1

Teacher:

One page of notes Classpads allowed TIME: 45 minutes working Exceptional schooling. Exceptional students. Monday 11 March 2019 TEST 2 *PERTH MODERN SCHOOL* Year 12 Specialist

Note: All part questions worth more than 2 marks require working to obtain full marks.

10 (y)ml Q1 (2 & 3 = 5 marks)

Determine the other three roots and express in the form a+bi .

Let
$$f(x) = \sqrt{2x-1}$$
 and $g(x) = \frac{1}{x+5}$.

a) State the natural domain and range of
$$g(x)$$
.

 $x + 5$
 $x + 5$
 $x + 5$
 $x + 5$
 $x + 5$

b) Does $f \circ g(x)$ exist over the natural domain of g? If it does not, determine the largest possible domain for the composite to exist

c) Determine $f \circ f^{-1}(x)$

Q3 (2, 3 & 2 = 7 marks)

Given that $f(x) = 2x^2 - 12x + 19$, $x \le 3$, determine the following.

a) $f^{-1}(x)$ and its domain.

$$3c = 2y^{2} - 12y + 19$$

$$0 = 2y^{2} - 12y + 19 - x$$

$$y = 12 \pm \sqrt{14y - 4(2)(19 - x)} = 12 \pm 2\sqrt{36 - 38 + 2x}$$

b) Sketch on the axes below, $f(x) & f^{-1}(x)$

appears to be reflected in y=x

x interest

overlap between 15 x ≤ 4

c) On the sketch above show the precise points where $f(x) = f^{-1}(x)$ Q4 (2 & 3 = 5 marks)

Page 7

Yr 12 Maths Specialist

Perth Modern School

Q7 (5 marks)

Let w=1+qi where q is a real constant. Let $p(z)=z^3+bz^2+cz+d$, where b,c & d are real constants. If p(z) = 0 for z = w and all roots of p(z) = 0 satisfy $|z^3| = 8$, determine all possible values of q, b, c & d

$$(\sqrt{1+g^2})^3 = 8 = 2^3$$

$$|+g^2 = 2^2$$

$$|+g^2 = 3$$

$$|+g^2 = 3$$

$$|+(-1+\sqrt{3})(2-(1-\sqrt{3}))|$$

$$|+(-1+\sqrt{3})(2-(1-\sqrt{3}))|$$

$$|+(-1+\sqrt{3})(2-(1-\sqrt{3}))|$$

$$|+(-1+\sqrt{3})(2-(1-\sqrt{3}))|$$

7=2 $(z-2)(z^2-2z+y)=z^3-4z^2+8z-8$

$$z=-2$$
 $(z+2)(z^2-2z+4) = z^3+8$
 $g=t\sqrt{3}$
 $b=0$
 $c=0$
 $d=8$
 $c=3$

$$\sqrt{\text{determines}}$$
 $9^2 = 3$
 $\sqrt{\text{determines}}$ $9 = \pm \sqrt{3}$

$$\sqrt{\text{determines}} = \frac{1}{2} = \frac{1}{$$

Perth Modern School

Yr 12 Maths Specialist

Раде 3

Q4 (2 & 3 = 5 marks) Consider the function $y = f\left(x\right)$ for the questions below.

a) Sketch the function y = |f(x)| on the axes below.

0<(1)+ ref. (1) 10 10 months \

b) Sketch the function y = |f(-x)| on the axes below.

Perth Modern School

Yr 12 Maths Specialist

Page 6

Deunifinued

Now consider the particular triangle OAB with $\overline{OA} = \frac{\delta}{\delta V}$ and $OB = \begin{pmatrix} 0 \\ 0 \\ \delta V \end{pmatrix}$ where α is a positive

constant, chosen so that triangle OAB is isosceles, with |OB|=|OA| . c) Show that $\alpha=4$.

. We a vector method to show that \overline{OO} is perpendicular to d

Q5 (3 & 4 = 7 marks)

a) Two moving objects have the following position vectors and constant velocities at time, t = 0:

$$r_a = \begin{pmatrix} 9 \\ -8 \end{pmatrix} m \quad v_a = \begin{pmatrix} -2 \\ 7 \end{pmatrix} m / s$$
$$r_b = \begin{pmatrix} 11 \\ -3 \end{pmatrix} m \quad v_b = \begin{pmatrix} 5 \\ -3 \end{pmatrix} m / s$$

Determine the closest approach and the time that this will occur.

$$\frac{d}{d} \cdot \frac{d}{d} = 0$$

$$\frac{2+7+}{5-10+} \cdot \frac{7}{-70} = 0$$

$$7(2+7+) - 10(5-10+) = 0$$

$$14+16+ -50+100+ = 0$$

$$149+ = 36$$

$$+ = 36$$

$$49(6.242)$$

b) Let the circle S have a radius 3 units and centre $(1,\beta)$, where β is a constant, and the line $r = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -5 \end{pmatrix}$ is tangential to this circle. Determine the value of β and the vector equation of the circle.

$$\begin{vmatrix} (-2+3\lambda) \\ (-2+3\lambda) \\ (-5\lambda) \end{vmatrix} = 3$$

$$\begin{vmatrix} -3+3\lambda \\ -5\lambda-\beta \end{vmatrix} = 3 \qquad (-3+3\lambda)^2 + (5\lambda+\beta)^2 = 9$$

$$9\lambda^2 - 18\lambda + 9 + 25\lambda^2 + 10\beta\lambda + \beta^2 - 9 = 0$$

$$34\lambda^2 + (10\beta-18)\lambda + \beta^2 = 0$$

$$(10\beta-18)^2 - 4(34)\beta^2 = 0$$

$$\beta = -5 \pm \sqrt{3}4(-1087,083)$$

V sets up a vector egn
with 2 and B

V sets up a quadratic egn
with 2 and B

V uses zero determinant to
solve for B

V states both values of B
as an approx

Page 5

Yr 12 Maths Specialist

Perth Modern School

Q6 (1, 1, 1, 3, 1 & 3 = 10 marks)

The diagram below shows a triangle with vertices with O, A & B. Let O be the origin, with vectors $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.

- a) Determine the following vectors in terms of a & b.
- i) \overrightarrow{MA} , where M is the midpoint of the line segment OA.

ii)
$$\overline{BA} = a - \frac{1}{2}$$

iii) \overrightarrow{AQ} , where Q is the midpoint of the line segment AB. $2\overrightarrow{AB} = 2\overrightarrow{AB} = 2\overrightarrow{AB}$

Let N be the midpoint of the line segment OB

b) Use a vector method tom prove that the quadrilateral MNQA is a parallelogram.

$$\overrightarrow{NM} = \overrightarrow{QA}$$

$$\overrightarrow{NM} = \overrightarrow{AA}$$

$$\overrightarrow{NM} = -\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{2}{4}$$

$$\overrightarrow{NM} = -\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{2}{4}$$

$$= -\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{2}{4}$$

$$= -\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{2}{4} \cdot \frac{2}{4}$$

$$= -\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{2}{4} \cdot \frac{2}{4$$

states that opposite
sides must be consinct
reparallel (May use
Vector statent)

Legiessions for one
pour of opposite sides

shows that vectors
are equal hence
parallelogram