

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2020-2021

1^η ΕΡΓΑΣΙΑ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΜΑΡΙΑ ΚΟΝΤΑΡΑΤΟΥ ΓΕΩΡΓΙΟΣ ΚΟΥΜΟΥΝΔΟΥΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΝΣΤΑΝΤΙΝΑΚΟΣ ΔΡ.ΓΕΩΡΓΙΟΣ ΠΟΛΥΖΟΣ

> ΑΘΗΝΑ ΑΠΡΙΛΙΟΣ 2021

ΣΤΟΙΧΕΙΑ ΕΠΙΚΟΙΝΩΝΙΑΣ

Ονοματεπώνυμο	Αριθμός Μητρώου	Ακαδημαϊκό e-mail
Μαρία Κονταράτου	3200078	p3200078@aueb.gr
Γεώργιος Κουμουνδούρος	3200083	p3200083@aueb.gr
Παναγιώτης Κωνσταντινάκος	3200089	p3200089@aueb.gr

Για την εκπόνηση της εργασίας χρησιμοποιήσαμε την εφαρμογή Microsoft Teams για κοινή χρήση αρχείων.

ΠΡΟΒΛΗΜΑ 1°

-Μορφή SOP και POS ελαχίστου κόστους για την F με πίνακα Karnaugh

SOP

x3,x4	x1,x2	00		01	11	10
	00	1		0	0	0
	01	0		d	d	0
	11	0		1	1	0
	10	1		0	0	0
	/			x5=1		
x1'x2'x4'						x2x4x5

SOP = x1'x2x5' + x4'x5' + x3'x5' + x1'x2'x4' + x2x4x5

POS

	x1,x2					
x3,x4		00	01	11	10	
	00	1	1	1	1	
	01	1	d	1	1	
	11	0	1	0	0	x1'x3'x4'x5
	10	1	d	1	1	
			x5=0			

POS = (x1'+x3'+x4'+x5)(x2+x4'+x5')(x2'+x4+x5')(x2+x3'+x4')(x1'+x2+x5')

Συνολικό κόστος SOP

2 πύλες AND 2 εισόδων

3 πύλες AND 3 εισόδων

1 πύλη OR 5 εισόδων

13 είσοδοι για πύλες AND

5 είσοδοι για πύλες ΟR

SOP = 24

Συνολικό κόστος POS

4 πύλες ΟR 3 εισόδων

1 πύλη OR 4 εισόδων

1 πύλη AND 5 εισόδων

16 είσοδοι για πύλες ΟR

5 είσοδοι για πύλες ΑΝD

POS=27

Μικρότερο κόστος έχει το SOP

- Πρόγραμμα στη γλώσσα VHDL, το οποίο να υλοποιεί το παραπάνω κύκλωμα

```
package basic_components is
            component product_of_3
    port (ini, in2, in3: in std_logic; out1: out std_logic);
end component;
                    port (in1, in2, in3, in4, in5: in std_logic; out1: out std_logic);
                   basic_components.vhd (Read-Only)
🖷 | 🐽 🔐 | 🏗 🕮 | 🖪 🖺 🖹 📳 | 🖺 📳
end package basic_components;
         -- product_of_2
       library ieee;
use ieee.std_logic_1164.all;
      entity product_of_2 is
    port (inl, in2: in std_logic; out1: out std_logic);
end product_of_2;
      Barchitecture model_conc of product_of_2 is
Bbegin
out1 <= in1 and in2;
end model_conc;</pre>
       -- product_of_3
library ieee;
use ieee.std_logic_1164.all;
```

-Κυματομορφή προσομοίωσης λειτουργίας εξόδου για όλες τις δυνατές τιμές εισόδου

-RTL διάγραμμα

ΠΡΟΒΛΗΜΑ 2°

-Μορφή SOP ελαχίστου κόστους για την F με πίνακα Karnaugh

x1-x2

		00	01	11	10
	00	0	0	0	0
x3-x4	01	0	0	1	0
	11	0	1	0	1
	10	0	0	1	0

$$F(x1,x2,x3,x4) = \Sigma m(7,11,13,14) = x1'x2x3x4 + x1x2'x3x4 + x1x2x3'x4 + x1x2x3'x4'$$

Το συνολικό ελάχιστο κόστος είναι 25. Έχουμε 4 πύλες AND 4 εισόδων, 1 πύλη OR τριών εισόδων, 16 εισόδους για τις πύλες AND καθώς και 4 εισόδους για τις πύλες OR.

-Σχηματικό διάγραμμα για κύκλωμα ελαχίστου κόστους του υποερωτήματος (α)

-Κυματομορφή προσομοίωσης λειτουργίας εξόδου για όλες τις δυνατές τιμές εισόδου (ανά 10ns)

ПРОВЛНМА 3°

-Πίνακας αληθείας

X1	X2	ХЗ	X4	f	Minterm
0	0	0	0	0	m0=x1'*x2'*x3'*x4'
0	0	0	1	0	m1=x1'*x2'*x3'*x4
0	0	1	0	0	m2=x1'*x2'*x3*x4'
0	0	1	1	1	m3=x1'*x2'*x3*x4
0	1	0	0	1	m4=x1'*x2*x3'*x4'
0	1	0	1	1	m5=x1'*x2*x3'*x4
0	1	1	0	1	m6=x1'*x2*x3*x4'
0	1	1	1	1	m7=x1'*x2*x3*x4
1	0	0	0	0	m8=x1*x2'*x3'*x4'
1	0	0	1	0	m9=x1*x2'*x3'*x4
1	0	1	0	0	m10=x1*x2'*x3*x4'
1	0	1	1	1	m11=x1*x2'*x3*x4
1	1	0	0	0	m12=x1*x2*x3'*x4'
1	1	0	1	0	m13=x1*x2*x3'*x4
1	1	1	0	0	m14=x1*x2*x3*x4'
1	1	1	1	1	m15=x1*x2*x3*x4

-Συνάρτηση που δημιουργεί το διάγραμμα χρονισμού με την απλούστερη μορφή αθροίσματος γινομένων (SOP)

X1X2 X3X4	00	01	11	10	
00	0	1	0	0	
01	0	1	0	0	
11	1	1	1	1	
10	0	1	0	0	
X1'*X2 X3*X4					

$$f(x1,x2,x3,x4) = x1'*x2 + x3*x4$$

-2ος τρόπος εύρεσης απλούστερης μορφής αθροίσματος γινομένου

- Πρόγραμμα στη γλώσσα VHDL, το οποίο να υλοποιεί το παραπάνω κύκλωμα

-Κυματομορφή προσομοίωσης λειτουργίας εξόδου για όλες τις δυνατές τιμές εισόδου (ανά 10ns)

-RTL διάγραμμα

