МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет обшей и прикладной физики

Автор: Студент гр. Б02-304 Головинов. Г.А.

Долгопрудный, 2024

Аннотация

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью, термостат, вольтметр и амперметр, источник постоянного напряжения, магазин сопротивлений.

Основные теоретические сведения

Теплопроводность – процесс передачи тепловой энергии от нагретых частей системы к холодным за счет хаотического движения частиц среды. В газах теплопроводность осуществляется за счет непосредственной передачи кинетической энергии от быстрых молекул к медленным. Перенос тепла описывается законом Фурье.

Закон Фурье Этот закон утверждает, что плотность потока энергии \vec{q} (количество теплоты, переносимое через единичную площадку за единицу времени) пропорциональна градиенту температуры ∇T :

$$\vec{q} = -\kappa \nabla T \tag{1}$$

где κ – коэффициент теплопроводности. $[\kappa] = \frac{B_T}{M \cdot K}$

Молекулярно-кинетическая теория дает оценку коэффициента теплопроводности газов:

$$\kappa \sim \lambda \vec{v} \cdot nC_V \tag{2}$$

здесь λ — длина свободного пробега молекул газа, $\vec{v}=\sqrt{\frac{8kT}{\pi m}}$ — средняя скорость теплового движения, n — концентрация молекул, $C_V=\frac{i}{2}k$ — теплоемкость при постоянном объеме в расчете на одну молекулу

Формула (2) дает лишь оценку по порядку величины, а также правильную функциональную зависимость. Коэффициент перед этой формулой зависит от закона взаимодействия молекул и не может быть вычислено

методами общей физики. Также не подлежит прямому измерению длина свободного пробега.

Ее можно оценить как $\lambda=1/n\sigma$, где σ – эффективное сечение столкновения молекул друг с другом – величина, характеризующая вероятность существенного отклонения налетающей частицы при взаимодействии с некоторым рассеивающим центром. В общем случае определяется как отношение плотности потока рассеянных частиц к плотности потока падающих, имеет размерность площади.

В простейшей модели $\sigma=const$, а коэффициент теплопроводности пропорционален корню абсолютной температуры: $\kappa\sim \vec{v}/\sigma\sim \sqrt{T}$. На практике сечение σ зависит от температуры и его следует считать медленно убывающей функцией.

Рассмотрим теплопроводность в цилиндрической геометрии:

Пусть тонкая нить радиусом r_1 и длиной L помещена на оси цилиндра радиуса r_0 . Температура стенок T_0 поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q [Вт]. Если цилиндр длинный $(L\gg r_0)$, то можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния r до оси цилиндра, а поток \vec{q} — направленным строго радиально (от оси).

Рис. 1: Геометрия установки

Вместо уравнения (1) имеем теперь:

$$q = -\kappa \frac{dT}{dr} \tag{3}$$

В стационарном состоянии полный поток тепла через цилиндрическую поверхность радиуса r и площадью $S=2\pi rL$ должен быть одинаков и равен Q=qS:

$$Q = -2\pi r L \cdot \kappa \frac{dT}{dr} = const \tag{4}$$

Считая перепад температуры сильно меньшим чем само значение температуры ($\Delta \ll T_0$) можно пренебречь изменением теплопроводности κ

от радиуса. Тогда можно проинтегрировать по радиусу и температуре:

$$Q \int_{r_1}^{r_0} \frac{dr}{r} = -2\pi L \cdot \kappa \int_{T_1}^{T_0} dT$$

$$Q \ln(r_0/r_1) = 2\pi L \cdot \kappa \Delta T, \quad \Delta T = T_1 - T_0$$

$$Q = \frac{2\pi L \kappa \Delta T}{\ln(r_0/r_1)}$$
(5)

Оценка времени установления равновесия Когда в процессе работы мы меняем (желаемую) температуру на термостате требуется некоторое время, чтобы жидкость достигла этой температуры, затем некоторое время, чтобы жидкость достигла стенок цилиндра, затем некоторое время, чтобы воздух в цилиндре тоже прогрелся до новой температуры. Оценим время установления нового состояния в системе (без учета нагрева термостата).

Рассмотрим плоский слой толщиной a и сечением S, заполненный газом при постоянном давлении. Пусть температура одной из граней выросла на некоторую ΔT . Это вызовет поток тепла в сторону более холодной грани, величину которого можно оценить по закону Фурье: $q \sim \kappa \Delta T/a$. Для того чтобы весь слой прогредся на ΔT в него должно поступить тепло $nSa \cdot C_p\Delta T$, где C_p — теплоемкость при постоянном давлении в расчете на одну молекулу.

С другой стороны, поступившее за это время τ тепло можно вычислить как $qS\tau=\kappa \frac{\Delta T}{a}S\tau$. Приравнивая находим:

$$nSaC_p\Delta T = \kappa \frac{\Delta T}{a}S\tau$$

тогда

$$\tau \sim \frac{C_p a^2 n}{\kappa} \tag{6}$$

Коэффициент $\chi=\frac{\kappa}{C_pn}$ называется температуропроводностью среды. Для воздуха при нормальных условиях $\chi\sim 0.2cm^2/s$, что при размере $a\sim 1cm$ имеет характерное время $\tau\sim 5s$

Таким образом, состояние в установке может устанавливаться в течение нескольких десятков секунд, поэтому, учитывая также прогрев трубок, стоит ждать несколько минут после достижения термостатом желаемой температуры.

Пределы применимости теории Закон Фурье может нарушаться, когда масштабы установки соизмеримы с длиной свободного пробега молекул. Это может привести к эффекту, известному как «температурный скачок», явление, когда температура нити может отличаться от температуры окружающего газа. В данной работе этим можно пренебречь, так как при нормальных условиях $\lambda \sim 10^{-5} cm$, что сильно меньше размеров системы, и даже размеров нити.

Также возможны другие механизмы теплопередачи: конвекция и излучение. Конвекция возникает в поле тяжести только при больших вертикальных градиентах температуры, поэтому установка расположена вертикально. Мощность излучения можно оценить по закону Стефана-Больцмана:

$$Q_{rad} = \epsilon S \sigma_S (T_1^4 - T_0^4) \approx 4\epsilon S \sigma_S T_0^3 \Delta T \tag{7}$$

где S – площадь поверхности нити, $\sigma_S = 5.67 \cdot 10^{-8} W/(m^2 K^4)$ – постоянная Стефана-Больцмана, ϵ – безразмерный «коэффициент черноты», зависящий от качества и материала излучающей поверхности. Для металлов с полированной поверхностью можно принять $\epsilon \sim 0.1 - 0.2$. По формуле (7) находим мощность излучения:

$$Q_{max} \approx 3mW$$

Экспериментальная установка

Установка представляет собой цилиндрическую трубку длиной L=40cm, диаметром $2r_0=1cm$, диаметр нити $2r_1=50\mu m$. Трубка заполнена воздухом, через небольшое отверстие воздух внутри системы может сообщаться с атмосферой. Стенки трубки помещены в кожух, через который пропускается вода из термостата, так что температура стенок T_0 поддерживается постоянной. Трубка расположена вертикально для предот-

вращения влияния конвекции, как было обговорено ранее.

Нить служит источником тепла:

$$Q = UI \tag{8}$$

где ${\rm Q}$ — мощность нагрева нити, ${\rm U}$ — напряжение на нити, ${\rm I}$ — сила тока.

Также нить является способом измерения температуры. Сопротивление нити можно найти по закону Ома:

$$R = \frac{U}{I} \tag{9}$$

Электрические приборы и нить подключены согласно следующей схеме:

Рис. 2: Схема цепи

Предполагая, что все компоненты цепи идеальны, измерив напряжение U и силу тока I можно найти мощность, выделяемую на нити и ее сопротивление. По этим данным мы будем строить зависимость R(Q) – нагрузочная кривая.

Уменьшая сопротивление магазина мы увеличиваем значение силы тока в цепи. Есть некоторое значение силы тока I_{max} , выше которой теплопроводности воздуха перестанет хватать, чтобы отводить тепло, выделяющееся на нити. Если это значение превысить, нить может перегореть.

Найдем максимальную мощность отвода воздуха по формуле (5), затем используя формулу $Q_w=I^2R$, считая $R\approx 20\Omega$ получим, что $I_{max}\approx 137mA$, если максимальная разница температур $\Delta T\approx 20K$

Зависимость R(T) — сопротивления от температуры при температурах около комнатной (0-100 C°) можно с достаточно большой точностью считать линейной зависимостью:

$$R(T) \approx R_0 + \alpha (T - T_0)$$

гда α – коэффициент пропорциональности, R_0 – сопротивление при температуре T_0 . Мы в ходе работы также проверим ее линейность.