⑩日本国特許庁(IP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭61-49466

@Int.Cl.4

識別記号

庁内整理番号

❸公開 昭和61年(1986)3月11日

H 01 L 27/14 H 04 N

7525-5F 6940-5C

審査請求 未請求 発明の数 1 (全3頁)

69発明の名称

固体撮像装置の製造方法

願 昭59-171889 ②特

願 昭59(1984)8月17日 (22)H.

⑫発 明者 政 夫

門真市大字門真1006番地 松下電子工業株式会社内

79発 明者 水 野 博 之 門真市大字門真1006番地 松下電子工業株式会社内

門真市大字門真1006番地

⑪出 願 人 松下電子工業株式会社 ⑩代 理 人

本

弁理士 中尾 敏男 外1名

明

1、発明の名称

固体撮像装置の製造方法

2、特許請求の範囲

一方の面に2次元的に配列した多数の集光構造 体を形成した透光性ガラス基板と前記集光構造体 に対応した画素ピッチを有する固体撮像素子とを、 光及び熱反応性樹脂を介して、接合し、前記透光 性ガラス基板側から露光し、さらに加熱して前記 光及び熱反応性樹脂を硬化させることを特徴とす る固体撮像装置の製造方法。

3、発明の詳細な説明

産業上の利用分野

本発明は固体カメラに用いることができる固体 撮像装置の製造方法に関するものである。

従来例の構成とその問題点

近年、固体カメラは感度,解像度等の改善が図 られてきている。とりわけ、固体撮像素子の前面 に集光構造体を取り付け、それらを改善する研究 がさかんである(特開昭58-114684号公 報)。

以下、図面を参照しながら、上述したような従 来の集光構造体の取付け方法について説明する。

第1図は従来の集光構造体を取り付けた固体撮 像素子の断面構造図を示すものである。第1図に おいて、1は透光性ガラス基板(屈折率約1.5) である。2は遮光物質層である。3はレンズ形状 の集光構造体(屈折率約1.5)、4は表面を保護 するための保護膜(屈折率約1.5)である。5は 空気層で、6は固体撮像素子の光感知部であるホ トダイオードである。なお、透光性ガラス基板1 は固体撮像素子のパッケージに固定されている。

以上のように構成された固体撮像素子について、 以下その動作を説明する。

まず、固体カメラのレンズを通過して来た入射 光では透光性ガラス基板1、レンズ形状の集光機 造体3、保護膜4を通過するが、それらは全て屈 折率が約1.5であるため、直進する。ところが次 の空気層 5 との界面で屈折を起し、撮像素子のホ トダイオード6上で集光する。

特開昭61-49466(2)

しかしながら、上記のような構成では、カメラ レンズの絞りを大きく開いた場合、斜めに入射し て来た光は、直進して来た光よりも集光位置がず れることになる。そのため、空気層5の厚さによ ってはホトダイオード6亿入らない斜め入射光が 存在し、受光量が減少する。また、撮像素子の中 心と、周辺とでは斜め入射光の状況が異なるため、 同様に、空気層5の厚さによっては、ホトダイオ - ド6の受光量が場所によって異なるという欠点 を有していた。

発明の目的

本発明は上記欠点に鑑み、各集光構造体を通過 して来た光が全て、対応するホトダイオードに入 るようにすることのできる固体撮像装置の製造方 法を提供するものである。

発明の構成

この目的を達成するために本発明の固体撮像装 置の製造方法は、一方の面に2次元的に配列した 多数の集光構造体を形成した透光性ガラス基板と 前記集光構造体に対応した画素ピッチを有する固

体撮像素子とを、光及び熱反応性樹脂を介して、 接合し、前記透光性ガラス基板側から露光し、さ らに熱を加えて前記光及び熱反応性樹脂を硬化さ せることを特徴とするものであり、これによって、 各集光構造体を通過して来た光を全て、対応する ホトダイオードに入射させることのできる固体撮 像装置を製造することができる。

実施例の説明

以下、本発明の一実施例について、図面を参照 しながら説明する。

第2図は本発明の実施例における固体撮像素子 の作製方法のプロセスを示すものである。 第2図aにおいて、11は透光性ガラス基板(屈 折率1.5)、12は遮光物質層、13はレンズ状 の集光構造体(屈折率1.5)、14は保護膜(屈 折率 1.5)、15は未硬化の光及び熱反応性樹脂 履(屈折率1.3)、16はホトダイオードである。 ただし、光及び熱反応性樹脂層 1 5 の厚さを 5 0 μとした。との状態で、透光性カラス基板 1 1 側 から垂直に入射光19を入れる。入射光19は保

護膜14までは直進するが、樹脂層15との界面 で屈折し、対応するホトダイオード16まで行き、 一部反射する。ととで、樹脂層15は光反応し硬 化し始め、それと同時に屈折率も変化し始める (一般的に光及び熱反応性樹脂では硬化とともに、 屈折率が増大し始める)。その後、光照射を止め、 撮像素子全体を一時加熱する。ただし、樹脂全体 の硬化反応が完了する前に、加熱をやめる。との 加熱によって、第2図bに示すように光及び、熱 反応性樹脂膜15において屈折率11の領域17 と屈折率 n2 の領域 1 8 とが形成される。何故な ら、領域17では光及び熱により光及び熱反応性 樹脂の硬化が進み、領域18では熱による硬化の みなので、硬化度及び屈折率が異なる。本実施例 では $n_1 - n_2 = 0.5(n_1 > n_2)$ となるように硬 化条件を決めた。

とのように作製した固体撮像素子に対して、レ ンズの絞りを F11~F1.4まで変えて光を入射さ せたが、領域17が光導波路となり、入射光を全 て対応するホトダイオード16亿入れることが出

樹脂を介して、接合し、光照射後さらに、熱を加 えて前記光及び熱反応性樹脂を硬化するととによ り、光導波路を作り、レンズ絞りが F11~F1.4 までの斜め入射光でも全て、対応するホトダイオ ードに入れることが出来る。

発明の効果

以上のように本発明は、一方の面に2次元的に 配列した多数の集光構造体を形成した透光性ガラ ス基板と前記集光構造体に対応した画素ピッチを 有する固体撮像素子とを、光及び熱反応性樹脂を 介して接合し、前記透光性ガラス基板側から露光 し、さらに熱を加えて前記光及び熱反応性樹脂を 硬化させることにより、光導波路を作り、入射光 を全て対応するホトダイオードに入れることがで き、その実用的効果は大なるものがある。

4、図面の簡単な説明

第1図は従来の集光構造体を取付けた固体撮像 素子の断面図、第2図は本発明の実施例における

特開昭61-49466(3)

固体撮像装置の作製プロセスを示す図である。

1 1 ……透光性ガラス基板、1 2 ……遮光物質層、1 3 ……レンズ状の集光構造体、1 4 ……保護膜、1 5 ……光及び熱反応性樹脂層、1 6 ……ホトダイオード、1 7 ……光及び熱で硬化した樹脂領域、1 8 ……熱で硬化した樹脂領域。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 2 図

第 1 図

