CLIPPEDIMAGE= JP411204882A

PAT-NO: JP411204882A

DOCUMENT-IDENTIFIER: JP 11204882 A

TITLE: NITRIDE SEMICONDUCTOR LASER ELEMENT AND ITS MANUFACTURE

PUBN-DATE: July 30, 1999

INVENTOR-INFORMATION:

NAME COUNTRY

NAGAHAMA, SHINICHI N/A

YANAGIMOTO, TOMOYA

NAKAMURA, SHUJI N/A

N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

NICHIA CHEM IND LTD N/A

APPL-NO: JP10008244

APPL-DATE: January 20, 1998

INT-CL_(IPC): H01S003/18

ABSTRACT:

PROBLEM TO BE SOLVED: To prevent short-circuit when pits exist on the surface

of a clad layer, by forming current blocking layers which are thinner than a clad layer constituted of a first conductivity type nitride semiconductor layer containing Al, and contain second conductivity type nitride semiconductor layers, on both side surfaces of a ridge stripe.

SOLUTION: A P-type <u>AlGaN</u> layer is grown, and an undoped GaN layer is grown. By

alternately laminating these layers, a P-side clad layer 12 composed of a superlattice layer is grown. A P-side contact layer 13 is grown on the P-side clad layer 12, and a protective film 30 is formed on the surface of the P-side contact layer 13 of the uppermost layer. The P-side contact layer 13 and a part f th P-sid clad lay r are tch d, and a ridg strip c rresp nding to the shap f th pr t ctiv film is f rm d. Curr nt bl cking lay rs 14 are

07/11/2002, EAST Version: 1.03.0002

form d n th sid surfa s f th ridg whil th P-sid c nta t lay r 13 is I ft b I w th ridg. An hmic P- lectr d which is c ntinu usly bridg d on the surfaces f th current bl cking lay r 14 and the P-sid c ntact layer 13 is f rm d.

COPYRIGHT: (C)1999,JPO

07/11/2002, EAST Version: 1.03.0002

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-204882

(43)公開日 平成11年(1999)7月30日

(51) Int.Cl.⁶

H01S 3/18

識別記号

ΡI

H01S 3/18

審査耐求 未耐求 耐水項の数6 OL (全 7 頁)

(21)出顧番号

特額平10-8244

(22)出顧日

平成10年(1998) 1月20日

(71)出願人 000226057

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72)発明者 長濱 慎一

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(72)発明者 柳本 友弥

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(72)発明者 中村 修二

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(54) 【発明の名称】 室化物半導体レーザ素子及びその製造方法

(57)【要約】

【目的】 クラッド層から上の層にリッジが設けられてなるレーザ素子において、クラッド層表面にピットが存在してもショートせず、しかもリッジ最表面にあるコンタクト層と安定してオーミックコンタクトが得られるレーザ素子とその製造方法を提供する。

【構成】 少なくともクラッド層と、コンタクト層とを順に有し、前記クラッド層を含む層から上の層にリッジストライプが形成されてなる窒化物半導体レーザ素子において、前記クラッド層はA1を含む第1導電型の窒化物半導体層を有し、一方、リッジストライプの両側面には、クラッド層よりも薄い膜厚で第2導電型若しくは半絶縁性の窒化物半導体層を含む電流阻止層が形成されており、前記電流阻止層及び前記コンタクト層とに渡って連続した電極が形成されていることにより、その電流阻止層でピットを埋めて、ショートを無くすることができる。

【特許請求の範囲】

【請求項1】 少なくともクラッド層と、コンタクト層とを順に有し、前記クラッド層を含む層から上の層にリッジストライプが形成されてなる窒化物半導体レーザ素子において、

前記クラッド層はA1を含む第1導電型の窒化物半導体層を有し、一方、リッジストライプの両側面には、クラッド層よりも薄い膜厚で、第2導電型若しくは半絶縁性の窒化物半導体層を含む電流阻止層が形成されており、前記電流阻止層及び前記コンタクト層とに渡って連続した電極が形成されてなることを特徴とする窒化物半導体レーザ素子。

【請求項2】 前記電流阻止層はA1を含む第2導電型若しくは半絶縁性の窒化物半導体層を有する多層膜を有し、前記クラッド層のA1の平均組成より多層膜のA1の平均組成が大きいことを特徴とする請求項1に記載の窒化物半導体レーザ素子。

【請求項3】 前記クラッド層及びコンタクト層は、結晶欠陥の多い領域と、結晶欠陥の少ない領域とをストライプ状に有するGaNよりなる基板上に、複数の窒化物 20半導体層を介して成長されており、前記リッジストライプは、そのGaN基板の結晶欠陥の少ない領域に対応する位置にストライプ状に形成されていることを特徴とする請求項1に記載の窒化物半導体レーザ素子。

【請求項4】 少なくともA1を含む第1尊電型の窒化物半導体層を有するクラッド層の上に、同じく第1尊電型の窒化物半導体層を有するコンタクト層を備えたウェーハの、そのコンタクト層の表面に、ストライプ状の保護膜を形成する第1の工程と、

第1の工程後、前記コンタクト層側からエッチングを行 30 い、前記クラッド層及びコンタクト層に前記保護膜の形状と対応したリッジストライプを形成する第2の工程と、

第2の工程後、前記保護膜が形成された状態でリッジストライプの側面に、クラッド層よりも薄い膜厚で、第2 夢電型若しくは半絶縁性の窒化物半導体層を有する電流 阻止層を形成する第3の工程とを具備することを特徴と する窒化物半導体レーザ素子の製造方法。

【請求項5】 第3の工程後、前記コンタクト層及び埋め込み層とに渡って連続した電極を形成する第4の工程 40とを具備することを特徴とする請求項4に記載の窒化物半導体レーザ素子の製造方法。

【請求項6】 前記クラッド層及びコンタクト層は、結晶欠陥の多い領域と、結晶欠陥の少ない領域とをストライプ状に有するGaNよりなる基板上に複数の窒化物半導体層を介して成長されており、前記保護膜を、結晶欠陥の少ないGaN基板に対応したコンタクト層の表面にストライプ状に形成することを特徴とする請求項4に記載の窒化物半導体レーザ素子の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は窒化物半導体(I na A lb G a1-a-b N、0≤a、0≤b、a+b≤1)よりなるレ ーザ素子とその製造方法に関する。

2

[0002]

【従来の技術】我々は窒化物半導体基板の上に、活性層を含む窒化物半導体レーザ素子を作製して、世界で初めて室温での連続発振1万時間以上を達成したことを発表した(ICNS'97 予稿集,October 27-31,1997,P444-446、及びJpn.J.Appl.Phys.Vol.36(1997) pp.L1568-1571、Part2,No.12A,1 December 1997)。基本的な構造としてはサファイア基板上に、部分的に形成されたSiO2膜を介して選択成長された前ーGaNよりなる窒化物半導体基板の上に、レーザ素子構造となる窒化物半導体層が複数積層されてなる。(詳細はJ.J.A.P参照)

【0003】図4はそのレーザ素子の構造を示す模式断面図である。このレーザ素子はInGaN/InGaN よりなるMQW (多重量子井戸構造)の活性層の上に、p-A10.2Ga0.8Nよりなるキャップ層、p-GaN よりなるガイド層、p-A10.14Ga0.86Nよりなるクラッド層、p-GaNよりなるコンタクト層が順に積層され、前記クラッド層を含む層から上の層にリッジストライブが形成されている。リッジストライプの両側面にはSiO2よりなる絶縁膜が形成され、その絶縁膜を介して、コンタクト層の表面にp電極が形成された構造を有している。

【0004】一般にクラッド層から上に形成されたリッジストライプのストライプ幅は非常に狭く調整される。 ストライプ幅が広くなると水平横モードがマルチモードになりやすいからである。従来、このようなストライプ幅の狭いコンタクト層の表面に電極を設けるのは、非常に細かいフォトマスク合わせ技術を必要とするため、工業的には難しい手法である。

【0005】また、リッジストライプは、窒化物半導体のエッチングによって形成されるため、窒化物半導体のエッチング面に、エッチピットと呼ばれる微細な孔が発生する可能性がある。クラッド層、コンタクト層に連続した電極を設けると、仮にクラッド層にそのエッチピットが発生していると、電流がその孔を介してn電極とショートしやすくなり、レーザ素子の信頼性が低下する恐れがある。

【0006】また他の技術として、我々は特開平9-4 26651号公報において、リッジ側面に、クラッド層 よりも屈折率の小さい窒化物半導体よりなる埋め込み層 を形成することを提案した。しかしこの技術では、埋め 込み層の上に新たにGaNよりなるコンタクト層を成長 させる必要がある。埋め込み層は単一層でA1混晶比の 大きい層であるために、結晶性がGaNに比較して悪 い。そのためこの埋め込み層の上にGaNよりなるコン タクト層を成長しても結晶性があまり良くならないため 3

に、電極とのオーミック接触が悪くなって、閾値電圧が 上昇する傾向にある。

[0007]

【発明が解決しようとする課題】従って、本発明の目的 とするところは、クラッド層から上の層にリッジが設け られてなるレーザ素子において、クラッド層表面にピッ トが存在してもショートせず、しかもリッジ最表面にあ るコンタクト層と安定してオーミックコンタクトが得ら れるレーザ素子とその製造方法を提供することにある。 [0008]

【課題を解決するための手段】本発明の窒化物半導体レ ーザ素子は、少なくともクラッド層と、コンタクト層と を順に有し、前記クラッド層を含む層から上の層にリッ ジストライプが形成されてなる窒化物半導体レーザ素子 において、前記クラッド層はA1を含む第1導電型の窒 化物半導体層を有し、一方、リッジストライプの両側面 には、クラッド層よりも薄い膜厚で第2導電型若しくは 半絶縁性の窒化物半導体層を含む電流阻止層が形成され ており、前記電流阻止層及び前記コンタクト層とに渡っ て連続した電極が形成されてなることを特徴とする。

【0009】また本発明のレーザ素子において、前記電 流阻止層はA1を含む第2導電型若しくは半絶縁性の窒 化物半導体層を有する多層膜を有し、前記クラッド層の A1の平均組成より多層膜のA1の平均組成が大きいこ とを特徴とする。

【0010】さらに、前記クラッド層及びコンタクト層 は、結晶欠陥の多い領域と、結晶欠陥の少ない領域とを ストライプ状に有するGaNよりなる基板上に、複数の **窒化物半導体層を介して成長されており、前記リッジス** トライプは、そのGaN基板の結晶欠陥の少ない領域に 30 対応する位置にストライプ状に形成されていることを特 徴とする。

【0011】また、本発明のレーザ素子の製造方法は、 少なくともA1を含む第1導電型の窒化物半導体層を有 するクラッド層の上に、同じく第1導電型の窒化物半導 体層を有するコンタクト層を備えたウェーハの、そのコ ンタクト層の表面に、ストライプ状の保護膜を形成する 第1の工程と、第1の工程後、前記コンタクト層側から エッチングを行い、前記クラッド層及びコンタクト層に 前記保護膜の形状と対応したリッジストライプを形成す 40 クラッド層が形成できる。 る第2の工程と、第2の工程後、前記保護膜が形成され た状態でリッジストライプの側面に、クラッド層よりも 薄い膜厚で、第2導電型若しくは半絶縁性の窒化物半導 体層を有する電流阻止層を形成する第3の工程とを具備 することを特徴とする。

【0012】さらに本発明の製造方法において、第3の 工程後、前記コンタクト層及び埋め込み層とに渡って連 続した電極を形成する第4の工程とを具備することを特 徴とする。

【0013】本発明の製造方法において、前記クラッド 50 【0017】さらに、電流阻止層の膜厚はクラッド層の

層及びコンタクト層は、結晶欠陥の多い領域と、結晶欠 陥の少ない領域とをストライプ状に有するGaNよりな る基板上に複数の窒化物半導体層を介して成長されてお り、前記保護膜を、結晶欠陥の少ないGaN基板に対応 したコンタクト層の表面にストライプ状に形成すること を特徴とする。

[0014]

【発明の実施の形態】本発明のレーザ素子において、ク ラッド層を構成するA1を含む第1導電型の窒化物半導 10 体層は、p型AlxGa1-xN(0<X<1)層を含む超 格子層とすることが望ましい。なお2種類の窒化物半導 体を積層した超格子とする場合、AlGaNはいずれか 一方の層に成長してあれば良く、両方ともAIGaNと する必要はない。具体的には、一方がA1GaN層、も う一方が InGaN若しくはGaN層を交互に積層した 超格子とすると、結晶性が良くA 1 平均組成の大きいク ラッド層を厚膜で成長させることができる。超格子を構 成する窒化物半導体層の膜厚は70オングストローム以 下、好ましくは50オングストローム以下とすると、窒 20 化物半導体の単一層が臨界限界膜厚以下となるので、A 1混晶比の大きい窒化物半導体層が成長できる。また、 クラッド層を超格子とすると、そのクラッド層全体の結 晶性も良くなるために、リッジ形状にエッチングした 後、そのクラッド層の表面に新たに電流阻止層を形成す る際、ピット、クラックがほとんどない結晶性の良い電 流阻止層が成長できる。

【0015】クラッド層の膜厚は、2.0μm以下にす ることが望ましい。2. 0μmよりも厚くするとクラッ ド層の抵抗値が高くなって閾値が上昇する。好ましい膜 厚は1.5 m以下、さらに好ましくは1.0 m以下 である。下限については特に限定しないが、キャリア閉 じ込めとしてのクラッド層として作用させるためには、 50オングストーム以上の膜厚があることが望ましい。 クラッド層を超格子とした場合には、A1平均組成とし ては50%以下が望ましい。例えば、クラッド層全体の 厚さを2.0μm以下として、かつそのクラッド層に含 まれる3族元素に対するA1平均組成(%)と、p側ク ラッド層全体の厚さ (μm) との積が4.4以上となる ように構成すると、光閉じ込めが良く、抵抗値も小さい

【0016】一方、電流阻止層を形成する第2導電型若 しくは半絶縁性の窒化物半導体層は、n型若しくはi型 (insulater)のAlyGa1-yN(0≦Y<1、但しX< Y)を含む層とすることが望ましく、クラッド層のよう に超格子層とすることもできる。さらに、クラッド層よ りもA1平均組成の大きい層とすると、電流阻止層の屈 折率が小さくなるので、リッジ下部に導波路を形成し て、水平横モードがシングルモードのレーザ光を得るこ とができる。

(4)

膜厚よりも薄くする必要がある。この層の膜厚を厚くす ると、コンタクト層の上に形成した保護膜の上に電流阻 止層が成長してしまうため、保護膜を後で除去すること が難しくなる。また電流阻止層のA1平均組成をクラッ ド層よりも大きくした場合、A1量が多い窒化物半導体 は少ないものに比較して、その結晶欠陥が多い傾向にあ る。従って、A1混晶比の大きい電流阻止祖を厚く成長 させると、結晶中にクラックが入りやすくなり、ピット が発生しやすくなる傾向にある。従って電流阻止層の好 ましい膜厚としては1µm以下、さらに好ましくは0. 8μm以下、最も好ましくは0.5μm以下に調整す

【0018】なお、リッジのストライプ幅は30µm以一 下、さらに好ましくは20μm以下、最も好ましくは1 0μm以下に調整する。30μmよりも太いとレーザ光 の水平横モードがマルチモードとなりやすい傾向にあ る。下限は特に限定しないが通常O.5µm以上にす る。

【0019】さらに、本発明のレーザ素子では電流阻止 層と、コンタクト層とに渡って連続した電極が形成され 20 ている。特開平9-426651号では電流阻止層の上 に後からコンタクト層が成長されているために、リッジ の最上部に結晶性の良いコンタクト層が成長できなかっ たが、本発明のレーザ素子では、リッジ形成時に既にコ ンタクト層が成長されており、後から電流阻止層が形成 されるため、コンタクト層の結晶性が変わらない。従っ て、p電極に対して常に安定したオーミック接触が得ら れる。

【0020】また本発明の請求項2では、前記電流阻止 層はA 1を含む第2導電型若しくは半絶縁性の窒化物半 30 導体層を有する多層膜を有し、前記クラッド層のA1の 平均組成より多層膜のAlの平均組成が大きいことを特 徴としている。これは先にも述べたように、電流阻止層 のAI組成を大きくすることによって、その屈折率が、 クラッド層の屈折率よりも小さくなり、リッジ下部に光 を集中させて導波路領域を作製することができる。Al 組成がクラッド層よりも小さいと埋め込み層の方の屈折 率が大きくなるため、水平横方向の屈折率差が小さくな り、リッジの効果が得られにくくなる傾向にある。また 多層膜、好ましくは超格子とすることによって、Al組 成の大きい層を成長できる。なお、電流阻止層はクラッ ド層と異なり、その上にコンタクト層のような層を成長 させないため、少々結晶性は悪くても良いので、特に膜 厚の薄い窒化物半導体を積層した超格子としなくても、 例えば数百オングストロームの窒化物半導体を積層した 多層膜としても良い。

【0021】本発明において、クラッド層、埋め込み層 を多層膜、または超格子とする場合、その層のAIの平 均組成は次のように求めるものとする。例えば25オン グストロームのA 10.5 G a 0.5 Nと、25オングストー 50 【0024】下地層2成長後、ウェーハを反応容器から

ムのGaNとを200ペア(1.0μm)積層した超格 子の場合、1ペアが50オングストローム、A1を含む 層のA1混晶比が0.5であるため、0.5(25/5 0) = 0. 25となり、超格子における3族元素に対す るA1平均組成は25%である。一方、膜厚が異なる場 合、A 10.5 Gao.5 Nを40オングストロームと、Ga Nを20オングストロームとで積層した場合、膜厚の加 重平均を行い、0.5(40/60)=0.33とな り、A1平均組成は33.3%とする。即ちA1を含む 窒化物半導体層のA1混晶比を、その窒化物半導体層が 超格子1ペアの膜厚に占める割合に乗じたものを本発明 におけるA1平均組成とする。またA1を両方含む場合 も同様であり、例えばAlo.1Gao.9N2Oオングスト ローム、A 10.2G a0.8N3Oオングストロームの場合 6.0.1(20/50)+0.2(30/50)=0.16、即ち16%をA1平均組成とする。なお以上 の例はAIGaN/GaN、AIGaN/AIGaNに ついて説明したが、AIGaN/InGaNについても 同じ算出方法を適用するものとする。従って、クラッド 層、埋め込み層を成長させる場合には、以上の算出方法 に基づいて成長方法を設計できる。また、A 1 平均組成 は、SIMS(二次イオン質量分析装置)、オージェ等 の分析装置を用いても検出できる。

[0022]

【実施例】図1は本発明の一実施例に係るレーザ素子の 構造を示す模式断面図であり、図2は、図1のレーザ素 子の活性層から上の層を拡大して示す斜視図、図3は本 発明の製造方法の第1~第4の各工程において得られる ウェーハの構造を部分的に示す模式断面図である。これ らの図において、同一符号は同一部材を示している。こ れらの図を元に本発明の実施例を以下詳説する。

【0023】2インチø、C面を主面とするサファイア よりなる異種基板1の上に、MOVPE法を用い、50 0℃で、GaNよりなるバッファ層 (図示せず) を20 0オングストロームの膜厚で成長させる。 バッファ層成 長後、温度を1050℃にして、同じくGaNよりなる 下地層2を2μmの膜厚で成長させる。この下地層2は 保護膜を部分的に表面に形成して、次に窒化物半導体基 板の選択成長を行うための下地層として作用する。下地 層2はA1混晶比X値が0.5以下のA1xGa1-xN $(0 \le X \le 0.5)$ を成長させることが望ましい。0.5を超えると、結晶欠陥というよりも結晶自体にクラッ クが入りやすくなってしまうため、結晶成長自体が困難 になる傾向にある。また膜厚はバッファ層よりも厚い膜 厚で成長させて、10μm以下の膜厚に調整することが 望ましい。基板はサファイアの他、SiC、ZnO、ス ピネル、GaAs等、窒化物半導体を成長させるために 知られている、窒化物半導体と異なる材料よりなる基板 を用いることができる。

10

りなる n 側光ガイド層 8を 0. 1 μmの膜厚で成長させる。この n 側光ガイド層は、活性層の光ガイド層として作用し、GaN、In GaNを成長させることが望ましく、通常 100オングストローム~5 μm、さらに好ましくは 200オングストローム~1 μmの膜厚で成長さ

せることが望ましい。

取り出し、この下地層2の表面に、ストライプ状のフォトマスクを形成し、CVD装置によりストライプ幅10μm、ストライプ間隔(窓部)2μmのSiO2よりなる第1の保護膜3を1μmの膜厚で形成する。なおストライプ状の保護膜を形成する際、窓部よりも保護膜の面積を大きくする方が、結晶欠陥の少ないGaN基板4が成長しやすい。第1の保護膜3の材料としては、例えば酸化ケイ素(SiNy)、酸化シルコニウム(ZrOx)等の酸化物、窒化物、またこれらの多層膜の他、1200℃以上の融点を有する金属等を用いることができる。これらの保護膜材料は、窒化物半導体の成長温度600℃~1100℃の温度にも耐え、その表面に窒化物半導体が成長しないか、若しくは成長しにくい性質を有している。

【0030】次に、温度を800℃にして、アンドープ I no.2Gao.8Nよりなる井戸層を40オングストロームの膜厚で成長させる。次に同一温度で、アンドープ I no.01Gao.95Nよりなる障壁層を100オングストロームの膜厚で成長させる。井戸層と障壁層とを順に積層し、最後に障壁層で終わり、総膜厚440オングストロームの多重量子井戸構造(MQW)の活性層9を成長させる。活性層は本実施例のようにアンドープでもよいし、またn型不純物及び/又はp型不純物をドープしても良い。不純物は井戸層、障壁層両方にドープしても良く、いずれか一方にドープしてもよい。

【0025】第1の保護膜3形成後、ウェーハを再度MOVPEの反応容器内にセットし、温度を1050℃にして、アンドープGaNよりなるGaNよりなるGaN基板4を20μmの膜厚で成長させる。このように異種基板の上に成長させた窒化物半導体よりなる下地層の上20に、ストライプ状の保護膜を形成し、その保護膜の窓部から保護膜上部に横方向に窒化物半導体を成長させると、基板となるような結晶欠陥の少ない半導体層が得られる。GaN基板4はこの他ハライド気相成長法(HVPE)を用いて成長させることもできる。GaN基板はIn、A1を含まないアンドープのGaNを成長させることが結晶欠陥が最も少なくなるので最も好ましい。以上のようにして成長したGaN基板は保護膜のストライプ形状に対応して、ストライプ状に結晶欠陥の多い位置と、少ない位置とを有している。30

【0031】次に、温度を1050℃で、p側光ガイド層11よりもバンドギャップエネルギーが大きい、Mgを1×10²⁰/cm³ドープしたp型A10.3Ga0.7Nよりなるp側キャップ層10を300オングストロームの膜厚で成長させる。このp型キャップ層は0.1μm以下の膜厚で形成することにより素子の出力が向上する傾向にある。膜厚の下限は特に限定しないが、10オングストローム以上の膜厚で形成することが望ましい。

【0026】次に、GaN基板4の上にSiを3×10 18/cm3ドープしたn型GaNよりなるn側コンタクト 層5を5μmの膜厚で成長させる。このn側コンタクト 層はn電極を形成するためのコンタクト層として作用する。

【0032】続いて、1050℃で、バンドギャップエネルギーがp側キャップ層10よりも小さい、アンドープGaNよりなるp側光ガイド層11を0.1μmの膜厚で成長させる。この層は、活性層の光ガイド層として30作用し、n側光ガイド層8と同じくGaN、InGaNで成長させることが望ましい。

【0027】次に、温度を800℃にしてIno.0s Ga 0.94Nよりなるクラック防止層6を0.15μmの膜厚 で成長させる。 【0033】続いて、1050℃でMgを1×10²0/cm³ドープしたp型A10.16Ga0.84N層を25オングストロームの膜厚で成長させ、続いてアンドープGaN層を25オングストロームの膜厚で成長させ、これらの層を交互に積層して総膜厚0.6μmの超格子層よりなるp側クラッド層12を成長させる。このp側クラッド層はA1の平均組成が8%であるので、膜厚との積は4.8である。なお、p側クラッド層も少なくとも一方がA1を含む窒化物半導体層を含み、互いにバンドギャップエネルギーが異なる窒化物半導体層を積層した超格子で作製した場合、不純物はいずれか一方の層に多くドープして、いわゆる変調ドープを行うと閾値が低下しや

【0028】続いて、1050℃で、Siを1×10¹⁹ /cm³ドープしたn型Alo.16Gao.84N層を25オングストロームの膜厚で成長させ、続いてアンドープGaN層を25オングストロームの膜厚で成長させる。そしてこれらの層を交互に積層して超格子層を構成し、総膜厚1.2μmの超格子よりなるn側クラッド層7を成長させる。なおn側クラッド層に、バンドギャップエネルギーが異なる窒化物半導体を積層した超格子を作製した場合、不純物はいずれか一方の層に多くドープして、いわゆる変調ドープを行うと閾値が低下しやすい傾向にある。

【0034】次に1050℃で、p側クラッド層12の上に、Mgを2×10²⁰/cm³ドープしたp型GaNよりなるp側コンタクト層13を150オングストロームの膜厚で成長させる。p側コンタクト層13はp型のInxAlyGa1-x-yN(0≤X、0≤Y、X+Y≤1)で構

すい傾向にある。

【0029】続いて、1050℃でアンドープGaNよ 50 成することができ、好ましくはMgをドープしたGaN

とすれば、p電極20と最も好ましいオーミック接触が 得られる。

【0035】最後に、窒化物半導体を積層成長させたウ ェーハを反応容器内において、窒素雰囲気中700℃で アニーリングを行い、p型不純物をドープした層をさら に低抵抗化させる。

【0036】(第1の工程)以上のようにして、窒化物 半導体を積層したウェーハを反応容器から取り出し、図 3(a)に示すように、CVD装置を用いて、最上層の p側コンタクト層13の表面に、2μmのストライプ幅 10 を有するSiO2よりなる第2の保護膜30を1μmの 膜厚で形成する。なお先にGaN基板4を成長した時 に、第1の保護膜をストライプ状に形成してあるため、 GaN基板の表面には表面に現れた結晶欠陥もストライ **ブ状に現れやすい傾向にある。このため第2の保護膜を** 形成する際は、GaN基板表面の結晶欠陥の少ないとこ ろ (例えば 1×10⁸個/cm²以下、好ましくは 1×10 ⁷個/cm²以下) の上部にあるp側コンタクト層13の表 面に対応した位置にストライプ状に形成すると、GaN 基板の結晶欠陥が活性層に転位しにくくなるためレーザ 20 素子の寿命が向上する。

【0037】(第2の工程) 次にウェーハをRIE (反 応性イオンエッチング) 装置に移し、図3 (b) に示す ようにp側コンタクト層13と、p側クラッド層12の 一部とをエッチングして、第2の保護膜の形状に対応し たリッジストライプを形成する。このエッチングにより 露出したクラッド層の表面にピットが発生する可能性が あるが、後で電流阻止層で埋めることができる。

【0038】(第3の工程)リッジストライプ形成後、 保護膜をつけたまま、再度ウェーハを反応容器内に移 し、1050℃で、Siを1×10¹⁹/cm³ドープした n型A 10.20Ga0.80N層を50オングストロームの膜 厚で成長させ、続いてSiを同量ドープしたGaN層を 50オングストロームの膜厚で成長させ、これらを交互 に積層して総膜厚O.5 μmの超格子よりなる電流阻止 層14を形成する。このようにp型コンタクト層13が リッジに残ったまま、そのリッジ側面に電流阻止層14 を形成すると、リッジ形成後にコンタクト層を成長させ るのと異なり、コンタクト層の膜質が安定しているの で、電極と安定してオーミックが得られる。

【0039】電流阻止層14成長後、ウェーハを反応容 器から取り出し、第2の保護膜30をフッ酸で除去した 後、最上層の窒化物半導体層に所定の形状の保護膜を形 成し、図1に示すように、n 側コンタクト層5の表面が 露出するまでエッチングする。

【0040】(第4の工程)エッチング終了後、保護膜 を除去し、図3(d)に示すように、電流阻止層14及 びp側コンタクト層13の表面に渡って連続したN i / Auよりなるオーミック用のp電極を形成する。このp 電極は大面積で形成できるため、ボンディングを行うの 50 示す模式断面図。

に容易となる。

【0041】一方、先ほど露出させたn側コンタクト層 の表面にはTi/Alよりなるオーミック用のn電極2 1を形成する。

10

【0042】以上のようにして、n電極とp電極とを形 成したウェーハのサファイア基板を研磨して70µmと した後、ストライプ状の電極に垂直な方向で、基板側か らバー状に劈開し、劈開面に共振器を作製する。共振器 面にSiO2とTiO2よりなる誘電体多層膜を形成し、 最後にp電極に平行な方向で、バーを切断してレーザ素 子とする。なおサファイア基板を研磨する際に、第1の 保護膜3まで研磨して除去し、GaN基板4を露出させ ても良い。GaN基板4を露出させる際、GaN基板の 成長膜厚を80μm以上に調整しないと、研磨中にウェ 一ハが細かく割れてしまい、素子作成が難しくなる傾向 にある。またGaN基板を80μm以上成長させた後、

サファイア基板1、下地層2、第1の保護膜3を除去 し、GaN基板のみとして、そのGaN基板の上に前記 n側コンタクト層5から上の層を積層することもでき る。

【0043】このレーザ素子をヒートシンクに設置し、 それぞれの電極をワイヤーボンディングして、室温でレ ーザ発振を試みたところ、室温において連続発振を示 し、単レーザ光のFFPは単一で、その形状も楕円形で 形の良いものが得られていた。また、レーザ素子の特性 に関しても、同一ウェーハから100個無作為に抽出し たところ、発振閾値、出力とも全てがほぼ同一の特性を 示し、連続で1000時間発振させても電極間でショー トしたものはなかった。

【0044】[実施例2]実施例1の電流阻止層14を 形成する工程において、1050℃で、Znを1×10 ¹⁹/cm³ドープした半絶縁性のi型Alo.20Gao.80N 層を0.1μmと、Siを1×1018/cm3ドープした n型GaN層を0.1μm交互に成長させて総膜厚0. 4μmの多層膜とする他は同様にしてレーザ素子を得た ところ、実施例1とほぼ同等の特性を有するレーザ素子 が得られた。

[0045]

【発明の効果】以上説明したように、本発明のレーザ素 40 子はリッジ側面に電流阻止層が形成されているため、エ ッチングによりクラッド層の表面にピットが発生してい ても、電流阻止層がそのピットを埋めてしまうため、電 極間のショートがない。また、本発明の製造方法による と、リッジを形成してから、その狭い領域のストライプ 幅に、マスクを利用して他の窒化物半導体層、あるいは 電極等を形成する工程がないので、細かい作業も必要と せず、工業的にも非常に有用である。

【図面の簡単な説明】

【図1】 本発明の一実施例に係るレーザ素子の構造を

12

【図2】 図1のレーザ素子の活性層から上の一部の構 造を拡大して示す斜視図。

【図3】 本発明の製造方法の第1~第4のそれぞれの 工程を順に説明するためのガイド層から上の構造を部分 的に示す模式断面図。

【図4】 従来のレーザ素子の構造を示す模式断面図。 【符号の説明】

1・・・サファイア基板

2 · · · 下地層

3・・・第1の保護膜

4···GaN基板

5・・・n側コンタクト層

6・・・クラック防止層

7···n側クラッド層

8···n側光ガイド層

9・・・活性層

10···p側キャップ層

11···p側光ガイド層

12··・p側クラッド層

13··・p側コンタクト層

14 · · · 電流阻止層

10 20···p電極

21···n電極

【図1】

.21:n 電極

【図2】

【図3】

(b)

【図4】

