Logique des Propositions

Corrigé Série N°4 Exo3

Etude Sémantique

Langage $\mathbb{L}(\neg, \rightarrow, \leftarrow)$ avec :

Р	Q	P←Q
V	V	F
V	F	F
F	V	V
F	F	F

1. Montrons que : a) $\neg (P \rightarrow Q) \equiv \neg P \leftarrow \neg Q$

P	Q	¬P	¬Q	P→Q	¬(P→Q)	¬ P ← ¬Q
V	V	F	F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	V	F	F
F	F	V	V	V	F	F

1. Montrons que : b) $\neg (P \leftarrow Q) \equiv \neg P \rightarrow \neg Q$

P	Q	¬P	¬Q	P←Q	¬(P ← Q)	$\neg P \rightarrow \neg Q$
V	V	F	F	F	V	V
V	F	F	V	F	V	V
F	V	V	F	V	F	F
F	F	V	V	F	V	V

2. Déduire que $\{\neg, \leftarrow\}$ est un S. C. C ?

On sait que $\{\neg, \rightarrow\}$ est un S. C. C Pour montrer que $\{\neg, \leftarrow\}$ est un S. C. C. Il faut exprimer :

$$\neg \alpha$$
 et $\alpha \rightarrow \beta$ en fonction en fonction de $\{\neg, \leftarrow\}$

D'après la question 1)a):

$$\neg (\alpha \rightarrow \beta) \equiv \neg \alpha \leftarrow \neg \beta$$

$$\neg \neg(\alpha \rightarrow \beta) \equiv \neg (\neg \alpha \leftarrow \neg \beta)$$

$$\alpha \rightarrow \beta \equiv \neg (\neg \alpha \leftarrow \neg \beta)$$

Donc $\{\neg, \leftarrow\}$ est un S. C. C

3. Rappel des Clauses du →

$$\Sigma \cup \{\alpha \rightarrow \beta\}$$

$$\Sigma \cup \{\alpha \rightarrow \beta\}$$

$$\Sigma \cup \{\beta\}$$

$$\Sigma \cup \{\neg(\alpha \rightarrow \beta)\} \longrightarrow \Sigma \cup \{\alpha, \neg\beta\}$$

3. Donnons les Clauses du connecteur \leftarrow .

D'après la question 1)b): $\neg (\alpha \leftarrow \beta) \equiv \neg \alpha \rightarrow \neg \beta$ $\neg \neg (\alpha \leftarrow \beta) \equiv \neg (\neg \alpha \rightarrow \neg \beta)$ $\alpha \leftarrow \beta \equiv \neg (\neg \alpha \rightarrow \neg \beta)$

3. Les Clauses du connecteur ←.

$$\Sigma \cup \{\alpha \leftarrow \beta\}$$

$$\Sigma \cup \{\neg (\neg \alpha \rightarrow \neg \beta)\}$$

$$\downarrow$$

$$\Sigma \cup \{\neg \alpha, \neg \neg \beta\}$$

$$\downarrow$$

$$\Sigma \cup \{\neg \alpha, \beta\}$$

3. Les Clauses du connecteur ←.

En Conclusion Clauses du ←

$$\Sigma \cup \{\alpha \leftarrow \beta\} \longrightarrow \Sigma \cup \{\neg \alpha, \beta\}$$

$$\Sigma \cup \{\neg(\alpha \leftarrow \beta)\}$$

$$\Sigma \cup \{\neg(\alpha \leftarrow \beta)\}$$

$$\Sigma \cup \{\neg\beta\}$$

4. Montrer que:

$$\Gamma = \{ \neg (\neg (B \leftarrow A) \rightarrow \neg (\neg (\neg B \rightarrow A) \leftarrow \neg B)) \}$$
Est inconsistant

$$\Gamma = \{ \neg (\neg (B \leftarrow A) \rightarrow \neg (\neg (\neg B \rightarrow A) \leftarrow \neg B)) \}$$

$$\{ \neg (B \leftarrow A) \rightarrow \neg (\neg (\neg B \rightarrow A) \leftarrow \neg B) \}$$

$$\{ \neg (B \leftarrow A) \rightarrow \neg (\neg (\neg B \rightarrow A) \leftarrow \neg B) \}$$

$$\{ \neg (B \leftarrow A) \rightarrow \neg (\neg (\neg B \rightarrow A) \leftarrow \neg B) \}$$

$$\{ \neg (B \leftarrow A) \rightarrow \neg (\neg (B \rightarrow A) \rightarrow A) \rightarrow \neg (B \rightarrow A) \rightarrow A \}$$

En Conclusion

$$\Gamma = \{ \neg (\neg (B \leftarrow A) \rightarrow \neg (\neg (\neg B \rightarrow A) \leftarrow \neg B)) \}$$
Est inconsistant

$$\vdash \neg (B \leftarrow A) \rightarrow \neg (\neg (\neg B \rightarrow A) \leftarrow \neg B)$$