Review Component

- ► The Assumption of Normality will be a learning outcome for this course, in almost every section.
- ▶ In preparation, a review of the Normal Distribution is advisable

Random Variables

A **random variable** is a numerical description of the outcome of an experiment.

- 1. Random variables are denoted by uppercase letters, **X** or **Y**.
- 2. The values that the random variable can take on are denoted by lowercase letters, ${\bf x}$ or ${\bf y}$.
- 3. The <u>values of the random variable</u> together with the associated probabilities form a **probability distribution**.

4 D > 4 P > 4 B > 4 B > B 9 9 P

Random Variables

A **random variable** is a numerical description of the outcome of an experiment.

- 1. Random variables are denoted by uppercase letters, **X** or **Y**.
- 2. The values that the random variable can take on are denoted by lowercase letters, ${\bf x}$ or ${\bf y}$.
- 3. The <u>values of the random variable</u> together with the associated probabilities form a **probability distribution**.

The probability distribution of a Random Variable

The **probability distribution** of a rand.var. **X** is a description of the probabilities associated with the possible values of X.

Notation: **P[** X = x**]** the probability that the random variable X takes the value x.

Continuous random variables

A **continuous random variable** can take any value in an interval.

Since any interval contains an infinite number of values, it is not possible to talk about the probability that the random variable ${\bf X}$ will assume a specific value ${\bf x}$.

In fact P[X=x]=0 for any x.

Instead we calculate the probability that a continuous random variable will assume a value within a given interval

$$P[a \le X \le b]$$
 or $P[a \le X]$ or $P[X \le b]$

4日 4 日 1 4 日 1 4 日 1 日 1 9 9 9

Example

Consider the experiment of picking a student at random from this class. We are interested in the blood pressure the student has. The outcome of the experiment can be **any** value $[0, +\infty]$.

The random variable: X = blood pressure.

Possible value of the rand.var.: $\mathbf{x} = 100 \text{mm/Hg}$, but P[X=100]=0

Probabilities of interest: $P[X \ge 100]$

Note: $P[X \ge 100] = P[X > 100]$

Density Function

Let **X** be a continuous random variable.

Repeat the random experiment which produces \boldsymbol{X} many times

 $\left(\infty\right)$ and draw a histogram using very small interval classes.

The histogram can then be approximated by a curve

f(x)=probability density function of X.

Properties of density curve:

- the total area under the curve = 1
- the area under the curve between two points **a** and **b** is the probability that X lies between a and b, $P[a \le X \le b]$

Figure: Probability density function.

Mathematical properties of f(x)

For a continuous random variable X, a function f(x) is a probability density function if:

$$1.f(x_i) \ge 0$$
 for all $x_i \to f(x)$ is always positive

2.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
 \rightarrow area under $f(x) = 1$

3. $P(a \le X \le b) = \int_a^b f(x) dx$ =area under f(x) from a to b, for any a and b.

Normal Distribution

The most used model for the distribution of a random variable is a normal distribution $N(\mu, \sigma^2)$.

The density function a normal variable is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for $\infty \le x \le \infty$

where

 μ = expected value, or mean of the random variable X.

 σ = standard deviation of the random variable X.

Normal Density function

The mathematical shorthand for saying that a variable X is normally distributed with a mean of μ and a variance of σ^2 is $X \sim N(\mu, \sigma^2)$.

Properties of $N(\mu, \sigma^2)$

- 1. Highest point on the normal curve is at the mean(μ), which is also the median and mode of the distribution.
- **2**. The mean μ can be any numerical value: < 0, zero or > 0.
- 3. The curve is symmetric with respect to mean μ .
- 4. The standard deviation determines the width of the curve. Larger $\sigma \to \text{in}$ wider curves, showing more dispersion in the data. Smaller $\sigma \to \text{taller}$ curves.
- 5. The total area under the curve is 1.

Properties of $N(\mu, \sigma^2)$ continued

Probabilities for some commonly used intervals are:

- 68% of the time, **X** assumes values within \pm 1 σ from its mean μ .
- 95% of the time, **X** assumes values within \pm 1.96 σ from its mean μ .
- 99% of the time, **X** assumes values within \pm 2.58 σ from its mean μ .

The Standard Normal Probability Distribution N(0,1)

A random variable $\mathbf{X} \sim N(\mu, \sigma^2)$ follows a normal distribution with a mean μ and standard deviation σ .

If $\mu=0$ and $\sigma=1\to \mathbf{Z}\sim \mathcal{N}(0,1)$ follows a standard normal probability distribution.

Convert $N(\mu, \sigma^2)$ to N(0, 1) with

$$Z = \frac{X - \mu}{\sigma}$$

The probability that **Z** takes values greater than 1.44.

 $P[Z \ge 1.44] = 0.0749$ from Table 3.