MIT Real Analysis - Dr. Casey Problem Set 4

Suroj Study

July 2025

1 Exercise

- 1. We say a set $F \subset \mathbb{R}$ is *closed* if its complement $F^c := \mathbb{R} \setminus F$ is open (see Assignment 3 for a discussion of open sets). Since \emptyset and \mathbb{R} are open, it follows that \emptyset and \mathbb{R} are closed as well.
 - (a) Let $a, b \in \mathbb{R}$ with a < b. Prove that [a, b] is closed.

Proof:

Since $[a,b]^c = (-\infty,a) \cup (b,\infty)$, and both $(-\infty,a)$ and (b,∞) are open sets (from Assignment 3, Q5.a), it follows that $[a,b]^c$ is open. Hence, [a,b] is closed.

(b) Is the set $\mathbb{Z} \subset \mathbb{R}$ closed? Provide a proof to substantiate your claim.

Proof:

Let $x \in \mathbb{R} \setminus \mathbb{Z}$. Then x lies between two consecutive integers, say n < x < n+1 for some $n \in \mathbb{Z}$.

Define

$$\varepsilon = \min(x - n, \ n + 1 - x) > 0.$$

Then the open interval $(x - \varepsilon, x + \varepsilon)$ contains x and does not intersect \mathbb{Z} , i.e.,

$$(x-\varepsilon,x+\varepsilon)\subset\mathbb{R}\setminus\mathbb{Z}.$$

Therefore, $\mathbb{R} \setminus \mathbb{Z}$ is open, and so \mathbb{Z} is closed.

$$\begin{array}{c|c} \varepsilon = x - n \\ \hline & \\ \hline n & \\ x = \frac{2n+1}{2} & n+1 \end{array}$$

$$\begin{array}{ccc}
\varepsilon = n + 1 - x \\
& & & & & \\
\hline
n & & & & & \\
x = \frac{2n+1}{2} & & & & \\
\end{array}$$

- (c) Is the set of rationals $\mathbb{Q} \subset \mathbb{R}$ closed? Provide a proof to substantiate your claim. Proof:
- (2) (a) Let Λ be a set (not necessarily a subset of \mathbb{R}), and for each $\lambda \in \Lambda$, let $F_{\lambda} \subset \mathbb{R}$. Prove that if F_{λ} is closed for all $\lambda \in \Lambda$, then the set

$$\bigcap_{\lambda \in \Lambda} F_{\lambda} = \{ x \in \mathbb{R} : x \in F_{\lambda} \text{ for all } \lambda \in \Lambda \}$$

1

is closed.

Proof.

Let $x \in (\bigcap_{\lambda \in \Lambda} F_{\lambda})^c \iff x \in \bigcup_{\lambda \in \Lambda} F_{\lambda}^c \implies x \in F_{\lambda}^c$, for some $\lambda \in \Lambda$

Since F_{λ} is closed set. $\iff F_{\lambda}^{c}$ is open set.

Thus $\exists \delta_{\lambda} > 0$ such that $(x - \delta_{\lambda}, x + \delta_{\lambda}) \subseteq F_{\lambda}^{c} \implies (x - \delta_{\lambda}, x + \delta_{\lambda}) \subseteq \bigcup_{\lambda \in \Lambda}^{n} F_{\lambda}^{c}$

Thus $\bigcap_{\lambda \in \Lambda} F_{\lambda}$ is open.

(b) Let $n \in \mathbb{N}$, and let $F_1, \ldots, F_n \subset \mathbb{R}$. Prove that if F_1, \ldots, F_n are closed, then the set

$$\bigcup_{m=1}^{n} F_m$$

is closed.

Proof.

Let $x \in (\bigcup_{m=1}^n F_n)^c, \iff x \in \bigcap_{m=1}^n F_m^c \implies x \in F_m^c, \forall m$

Since each F_m for all $m \in \mathbb{N}$ is closed set. $\Longrightarrow F_m^c$ is open for all m.

Thus $\exists \delta_m > 0$ such that $(x - \delta_m, x + \delta_m) \subseteq F_m^c$, for each k

Define $\delta := \min\{\delta_1, \delta_2, ., \delta_k, ..\}; k \in \mathbb{N}$

$$\implies (x - \delta, x + \delta) \subseteq F_m^c \text{ for all } m \in \mathbb{N}$$

$$\implies (x - \delta, x + \delta) \subseteq \bigcap_{m=1}^n F_m^c$$
Thus $\bigcup_{m=1}^n F_m$ is closed set.

$$\implies (x-\delta,x+\delta) \subseteq \bigcap_{m=1}^n F_m^c$$

(a) **Problem 3.** Let $F \subset \mathbb{R}$ be a closed set, and let $\{x_n\}$ be a sequence of elements of F converging to $x \in \mathbb{R}$. Prove that $x \in F$.

Hint: Assume that $x \in F^c$ and arrive at a contradiction.

Let $F \subseteq \mathbb{R}$ be a closed set, and let $\{x_n\}$ be the sequence of elements of F convergences to

So , Then $\forall \varepsilon > 0, \exists m \in \mathbb{N} \text{ for all } n \geq m.$

$$|x_n - x| < \varepsilon$$

$$\iff x - \varepsilon < x_n < x + \varepsilon(*)$$

Assume for contradiction $x \in F^c$

As F is closed set. $\iff F^c$ is open set.

So $\exists \delta > 0$ such that $(x - \delta, x + \delta) \subseteq F^c$

$$\iff (x - \delta < y < x + \delta \implies y \in F^c) (**)$$

By using (*)

We can choose $\varepsilon = \delta$, and for sufficiently large (n), We have

$$x - \delta < x_n < x + \delta \implies x_n \in F^c$$

This contradicts the fact that all $x_n \in F$, since $F \cap F^c = \emptyset$.

$$\therefore \Rightarrow \Leftarrow$$
 Contradiction

Therefore Our Assumption was wrong. So $x \in F$

