Quantum Information Theory - 67749 Recitation 2, May 7, 2025

1 Overview - Quantum States as Computational Resources.

In the last lectures, we saw that quantum states can be considered as resources. In particular, we saw that shared **EPR** pair (\mathbf{Bell}_{00}) enables one:

- 1. Transmit two classical bits by sending a single qubit, via the superdense-coding.
- 2. 'Teleoperate' a qubit by sending two classical bits. From an engineering point of view, it means that for having a complete quantum internet, it's enough to provide a mechanism to distribute **EPR** pairs.

2 Dense Encoding.

)

3 Quantum Teleportation.

Figure 1: Measuring the single-qubit state $|\psi\rangle$ at the $\{|+\rangle, |-\rangle\}$ base.

4 Gate Teleportation.

Gate teleportation is a method to 'encode' operations by states. At the high level, given a precomputed state, it allows one to apply an operation (gate) by using (probably) simpler gates. The precomputed states are called **Magic States**.

4.1 Leading Example: *T*-Teleportation.

Recall that the Clifford 1 + T is a universal quantum gate set. The Clifford group alone is considered from the computer science point of view a simple/weak computational class since it can be classically simulated 2 . Yet, we will see that given access to the magic $|T\rangle = T|+\rangle$, one can simulate the T gate using only Clifford gates and measurements.

Figure 2: Measuring the single-qubit state $|\psi\rangle$ at the $\{|+\rangle, |-\rangle\}$ base.

$$\left(\sum_{x} \alpha_{x} |x\rangle\right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\frac{\pi}{4}} |1\rangle\right) \xrightarrow{\text{CX}} \sum_{x,y} \frac{1}{\sqrt{2}} \alpha_{x} |x\rangle |x \oplus y\rangle e^{i\frac{\pi}{4}y}$$

$$\mapsto \begin{cases} \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}x} = T |\psi\rangle & \text{measured } 0 \\ \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}\bar{x}} & \text{measured } 1 \end{cases}$$

$$\xrightarrow{\text{CS}} \begin{cases} T |\psi\rangle \\ \sum_{x} \alpha_{x} |x\rangle e^{i\left(\frac{\pi}{4}\bar{x} + \frac{\pi}{2}x\right)} = \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}} e^{i\left(\frac{\pi}{4}\bar{x} + \frac{\pi}{4}x\right)} \end{cases}$$

$$= \begin{cases} T |\psi\rangle \\ e^{i\frac{\pi}{4}} \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}} = e^{i\frac{\pi}{4}} T |\psi\rangle \end{cases}$$

4.2 Extends it.

Let's extends it to a general gate. First create $|\mathbf{GHZ}_{2n}\rangle$ state, then Let's split upon the measurement result.

1. If we measured 0, means the states 'agreed' in the computational base.

$$|\psi\rangle\otimes\left(\sum_{x}|x\rangle\otimes U|x\rangle\right)$$

¹Generated by H, S and CX

 $^{^2 \}mathrm{And}$ conjectured to be strictly weaker than $\mathbf P$

5 Magic State Distillation.

Question. Can we purify noisy magic states into high-fidelity ones, using only Clifford operations?

Magic state distillation is a procedure that uses many copies of noisy magic states, plus only Clifford gates and measurements, to produce fewer, higher-fidelity magic states.

6 Uhlmann's theorem

Claim 6.1.

$$\sum_{ij} \left\langle i; i|AB|j; j \right\rangle = \sum_{ij} \left\langle i|A|j \right\rangle \left\langle i|B|j \right\rangle = \sum_{ij} \left\langle i|A|j \right\rangle \left\langle j|B^\top|i \right\rangle = \sum_i \left\langle i|AB^\top|i \right\rangle = \mathbf{Tr}AB^\top$$

$$|\psi_{\rho}\rangle = \sum_{i} \left(\rho^{\frac{1}{2}} |\psi_{i}\rangle\right) |i\rangle = \sum_{i} \left(\rho^{\frac{1}{2}} U_{\rho} |i\rangle\right) |i\rangle$$

$$|\psi_{\sigma}\rangle = \sum_{i} \left(\sigma^{\frac{1}{2}} |\psi_{i}'\rangle\right) |i'\rangle = \sum_{i} \left(\sigma^{\frac{1}{2}} U_{\sigma} |i\rangle\right) V |i\rangle$$

$$\max |\langle \psi_{\rho} | \psi_{\sigma} \rangle|^{2} = \max |\sum_{i} \left(\langle \psi_{i} | \rho^{\frac{1}{2}} \right) \langle i | \left(\sigma^{\frac{1}{2}} U_{1} | \psi_{j} \rangle \right) U_{2} | j \rangle|^{2}$$

$$= \max |\sum_{i} \mathbf{Tr} \left[\left(\langle \psi_{i} | \rho^{\frac{1}{2}} \right) \langle i | \left(\sigma^{\frac{1}{2}} U_{1} | \psi_{j} \rangle \right) U_{2} | j \rangle \right]|^{2}$$

$$= \max |\sum_{i} \mathbf{Tr} \left[\left(\sigma^{\frac{1}{2}} U_{1} | \psi_{j} \rangle \langle \psi_{i} | \rho^{\frac{1}{2}} \right) (U_{2} | j \rangle \langle i |) \right]|^{2}$$

$$= \max |\sum_{i} \mathbf{Tr} \left[\left(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}} U_{1} | \psi_{j} \rangle \langle \psi_{i} | \right) (U_{2} | j \rangle \langle i |) \right]|^{2}$$

$$= \max \left| \mathbf{Tr} \left[\left(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}} U_{1} \right) \otimes U_{2} \right] \right|^{2}$$

$$\leq \left| \mathbf{Tr} \sqrt{\rho^{\frac{1}{2}} \sigma^{\frac{1}{2}} \sigma^{\frac{1}{2}} \rho^{\frac{1}{2}}} \right|^{2} = \left| \mathbf{Tr} \sqrt{\rho^{\frac{1}{2}} \sigma \rho^{\frac{1}{2}}} \right|^{2}$$

Notice that $|i\rangle\langle j|$ is unitray since.