MTH210 - SUBMISSION_20220922

If P and Q are two partitions of a non-empty set X, we say that \mathbb{P} *is finer than* \mathbb{Q} if every subset in \mathbb{P} is contained in some subset in \mathbb{Q} , i.e. for any $A \in \mathbb{P}$, there is a $B \in \mathbb{Q}$ such that $A \subseteq B$. Let \leq denote the *is finer than* relation and let Σ denote the family (set) of all partitions of X, i.e. $\Sigma = \{\mathbb{P} : \mathbb{P} \text{ is a partition of } X\}$.

a) Show that \leq is a partial ordering on Σ . (3 marks)

b) Draw the Hasse diagram of $\langle \Sigma, \le \rangle$ if $X = \{1, 2, 3\}$. (2 marks)

RUBRIC

List of Common Errors and Marks Deductions:

- 1. Using an undefined symbol.
- 2. Writing an equation in which the LHS and RHS are nt comparable. For example, the LHS is a set, and the RHS is an integer.
- 3. Writing a meaningless or completely illogical statement.

Deduct 0.5 marks for each occurrence of an error of the above type. However, since this is only the second submission, a maximum of 1.5 marks to be deducted for the above, and the total marks for the submission should remain non-negative.

- a) For proving that \leq as above is a partial ordering:
- **1.** Reflexive property $\rightarrow 1$ mark
- 2. Anti-symmetric property $\rightarrow 1$ mark
- **3.** Transitive property $\rightarrow 1$ mark
- **4. General Instruction:** The proof for each property should be in technical language using the definitions, as in the given solution; however, it can be more concise (the given solutions typically are more detailed than strictly necessary).
- **5. Partial Credit:** A "wordy" answer for this problem, which does not use technical terms and notation, is not very satisfactory, since the elements involved are themselves sets. For example, a wordy answer for the reflexive property would be something like: "Since every subset in a partition is a subset of itself, a partition is finer than itself". However, some credit may be given as follows:

- If an answer has three correct wordy proofs $\rightarrow 1$ mark
- If an answer has one or two correct wordy proofs $\rightarrow 0.5$ marks
- If an answer has mixed technical and wordy proofs, award marks for the technical proofs only, as explained above.

b) For the Hasse diagram:

- Correct diagram \rightarrow 2 marks
- **But** if the diagram has the correct shape, but the subsets making up each partition have not been clearly identified $\rightarrow 0.5$ marks.