Теория функций комплексного переменного (ФУПМ, 5 семестр)

Линдеманн Никита, МФТИ

7 декабря 2020 г.

Содержание

1	Программа	2
2	Теория	4
3	Первое задание	5
4	Второе задание	17
5	Третье задание	34
Л	итература	36

1 Программа

- 1. Комплексные числа. Последовательности и ряды. Расширенная комплексная плоскость, сфера Римана и стереографичекая прокеция. Предел и непрерывность функции комплексного переменного.
- 2. Комплексная дифференцируемость функции комплексного переменного и условия Коппи-Римана. Понятие функции, регулярной в области. Понятие гармонической функции двух переменных, связь с регулярной функцией.
- 3. Элементарные функции комплексного переменного: степенная, рациональная, экспонента и тригонометрические, их свойства. Теорема об обратной функции. Понятие о многозначной функции и ее регулярных ветвях. Главные регулярные ветви логарифмической функции и корня n-ой степени.
- 4. Комплексное интегрирование. Интеграл и его свойства. Первообразна и полный дифференциал в области. Условия независимости интеграла от формы пути.
- 5. Лемма Гурса и интегральная теорема Коши для односвязной области. Обобщенная интегральная теорема Коши по границе области (доказательство для звездной области).
- 6. Интеграл Коши и его свойства. Интегральная формула Коши и бесконечная дифференцируемость регулярной функции. Интегральная формула Коши для производных.
- 7. Степенные ряды, первая теорема Абеля. Радиус и круг схоимоости. Ряд Тейлора. Разложение в степенной ряд функциии, регулярной в круге. Теоремы Вейерштрасса для локально равномерно содящихся рядов из регулярных функций.
- 8. Нули регулярной функции и теорема единственности. Теорема Морера и теорема о стирании разреза. Взаимосвязь первообразных регуляной функции.
- 9. Ряд Лорана и его кольцо скодимости. Разложение в ряд Лорана функции, регулярной в кольце, его единственность.
- 10. Изолированные особые точки. Связь их классификации с видом ряда Лорана.
- 11. Вычеты и формулы для их вычисления. Теорема Коши о вычетах. Вычисление несобственных интегралов с помощью вычетов. Лемма Жордана.
- 12. Приращение аргумента z вдоль гладкого контура, его интегральное представление и свойства. Приращение аргумента функции f(z) вдоль непрерывного контура. Общий вид регулярных ветвей многозначыных функций Lnz и $\sqrt[n]{z}$ в односвязной области, не содержащей нуля.
- 13. Теорема о существовании регулярной ветви логаифма регуляной в области функции. Теорема о существовании ргеулярной ветви корня регулярной в области функциии. Разложение в ряды регулярных ветсвей логарифма и корня. Вычисление интегралов с использованием регулярных ветвей.
- 14. Целые функции. Теорема Лиувилля, теорема Сокоцкого и теорема Пикара (последняя без доказательства) для целых функций.

- 15. Мероморфные функции. Теорема о представлении мероморфной функции в виде ряда элементарных дробей. Разложение котангенса в вие суммы элементарных дробей.
- 16. Аналитическое продолжение. Аналитические продолжения элементов с помощью конечной цепочки областей и вдоль пути, эквивалентность этих понятий. Единственность аналитического продолжения. Понятие о (полной) аналитической функции и ее римановой поверхности. Теорема о монодромии (без доказательства).
- 17. Особые точки аналитических функций. Точки ветвления. Теорема Коши-Адамара.
- 18. Принцип аргумента. Теорема Руше и основная теорема алгебы. Лемма об открытости. Принцип сохранения области. Однолистность и локальная однолистность. Принцип максимума модуля регулярной функции и лемма Шварца. Принцип максимума и минимума гармонической функции. Теорема о среднем для гармонической функции.
- 19. Геометрический смысл модуля и аргумента производной. Конфорность отображения и критерий конформности в точке. Конфорность в расширенной комплексной плоскости.
- 20. Элементарные конформные отображения. Дробно-линейные отображения и их свойства: конформность групповое, круговое и принцип смметрии.
- 21. Конформные отображения с использованием степинной и эспоненциальной функций. Функция Жуковского и ее свойства. Теорема Римана о конформной эквивалентности односвязных областей (доказательсво единственности). Теорема о соответствиии грниц при конфорном отображении (без доказательства).
- 22. Принцип симметрии при конформнык отображениях.
- 23. Классическая и общая задачи Дирикле на плоскости. Теорема единственности решения общей задачи Дирихле. Конформная инвариантность гармонической функции. Интеграл Пуассона и решение задачи Дирихле в круге.

2 Теория

Определение 2.1. Корнем n-ой степени из комплексного числа $z \in \mathbb{C}$ называется такое число y, что $z = y^n$, то есть это набор из n чисел:

$$\sqrt[n]{z} = \left\{ \sqrt[n]{|z|} \cdot \exp\left(\frac{\arg z + 2\pi k}{n} \cdot i\right) \mid k \in \mathbb{Z} \right\}.$$

Определение 2.2. Натуральный логарифм из комплексного числа $z \in \mathbb{C}$ – это такое число y, что $e^y = z$, то есть это множество чисел:

$$\operatorname{Ln} z = \{ \ln|z| + i(\arg z + 2\pi k) \mid k \in \mathbb{Z} \}.$$

Определение 2.3. Функция $u: G \to \mathbb{C}$, заданная в области $G \subset \mathbb{R}^2$, называется гармонической, если $u \in C^2(G)$ и $\Delta u = u_{xx} + u_{yy} = 0$ для всех $(x,y) \in G$.

Теорема 2.1. Пусть в области $G \subset \mathbb{C}$ задана регулярная функция $f: G \to \mathbb{C}$, причем f(z) = f(x+iy) = u(x,y) + iv(x,y), тогда функции u(x,y) и v(x,y) гармонические в G.

Определение 2.4. Пусть функция f(z) регулярна в проколотой окрестности конечной точки $\stackrel{\circ}{U}_r(z_0)$. Вычетом функции f(z) в точке z_0 называется интеграл

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{2\pi i} \oint_{\Gamma_0} f(z) dz,$$

где Γ_{ρ} – окружность с центром в точке z_0 и радиусом $\rho < r$. Вычет в бесконечности определяется аналогично

$$\operatorname{res}_{\infty} f(z) = \frac{1}{2\pi i} \oint_{\Gamma_R} f(z) dz,$$

где Γ_R — такая окружность с центром в точке 0 и радиусом R, что все особые точки функции f(z) (кроме бесконечности) лежат внутри этой окружности.

Теорема 2.2 (О вычетах). Если функция f(z) регулярна в \mathbb{C} , за исключением конечного числа изолированных особых точек z_k , $k = \overline{1, n}$, тогда

$$\sum_{k=1}^{n} \operatorname{res}_{z=z_k} f(z) + \operatorname{res}_{\infty} f(z) = 0.$$

3 Первое задание

§1, **№1(4)** Вычислить

$$\frac{(1+2i)^2 - (1-i)^3}{(3+2i)^3 - (2+i)^2}.$$

Решение. Раскрывая скобки, а затем домножая дробь на комплексно сопряженное знаменателю число, получим:

$$\frac{(1+2i)^2 - (1-i)^3}{(3+2i)^3 - (2+i)^2} = \frac{1+4i-4-(1-3i-3+i)}{27+54i-36-8i-(4+4i-1)} = \frac{-1+6i}{-12+42i} = \frac{(-1+6i)(-12-42i)}{(-12+42i)(-12-42i)} = \frac{12+42i-72i+252}{12^2+42^2} = \frac{264-30i}{1908} = \frac{22}{159} - \frac{5}{318}i.$$

§1, №4(2) Решить систему уравнений:

$$\begin{cases} |z^2 - 2i| = 4, \\ |z + 1 + i| = |z - 1 - i|. \end{cases}$$

Решение. Пусть z = x + iy, тогда из первого уравнения получим:

$$|(x+iy)^2 - 2i| = (x^2 - y^2)^2 + 4(xy - 1)^2 = 16.$$

Из второго:

$$|(x+1)+i(y+1)| = |(x-1)+i(y-1)| \Rightarrow (x+1)^2 + (y+1)^2 = (x-1)^2 + (y-1)^2 \Rightarrow x = -y.$$

Подставляя y = -x в полученное из первого уравнение равенство, найдем

$$x^4 + 2x^2 - 3 = 0 \Rightarrow x = \pm 1.$$

Получаем, что решение системы – два числа: $z_1 = 1 - i$, $z_2 = -1 + i$.

§1, №9(2) Выяснить, какая линия на плоскости задается уравнением

$$\operatorname{Re}\frac{z-1}{z+1} = 0.$$

Решение. Представляя z = x + iy и преобразуя дробь, получим:

$$\operatorname{Re} \frac{z-1}{z+1} = \operatorname{Re} \frac{(x-1)+iy}{(x+1)+iy} = \operatorname{Re} \frac{[(x-1)+iy] \cdot [(x+1)-iy]}{(x+1)^2+y^2} = \frac{x^2+y^2-1}{(x+1)^2+y^2} = 0 \Rightarrow x^2+y^2 = 1.$$

Значит, данное уравнение задает окружность единичного радиуса с центром в точке z=0 с выколотой точкой z=-1.

§1, №19 Доказать, что точка ξ лежит на отрезке, соединяющем точки z_1 и z_2 , в том и только том случае, когда существует такое число $\alpha \in [0,1]$, что $\xi = \alpha z_1 + (1-\alpha)z_2$.

$$\square$$
оказательство.

§2, №1(3) Найти предел последовательности

$$a_n = \frac{1}{n} \sum_{k=0}^n e^{ik\varphi}, \ \varphi \in (0, 2\pi)$$

Решение. Используя формулу суммы геометрической прогрессии, получим:

$$a_n = \frac{1}{n} \frac{e^{i(n+1)\varphi} - 1}{e^{i\varphi} - 1} \xrightarrow{n \to \infty} 0.$$

Т1 Покажите, что при сетреографической проекции окружность на сфере Римана соответсвует в комплексной плоскости окружность или прямая.

 \square оказательство.

§3, №12(1) Пусть x = Re z, y = Im z. Доказать, что $\text{Re}(\sin z) = \sin x \operatorname{ch} y$.

Доказательство. Расписывав синус суммы и учитывая связь с гиперболическими функциями ($\sinh x = -i \sin(ix)$, $\cot x = \cos(ix)$), получим:

 $\operatorname{Re}(\sin z) = \operatorname{Re}(\sin(x+iy)) = \operatorname{Re}[\sin x \cos(iy) + \cos x \sin(iy)] = \operatorname{Re}(\sin x \operatorname{ch} y + i \cos x \operatorname{sh} y) = \sin x \operatorname{ch} y.$

§3, №13(1) Пусть x = Re z, y = Im z. Доказать, что $|\sin z| = \sqrt{\cosh^2 y - \cos^2 x}$.

Доказательство. Используя результаты предыдущей задачи и применняя основное гиперболическое тождество $\cosh^2 x - \sinh^2 x = 1$, получим:

$$|\sin(z)| = |\sin(x+iy)| = \sqrt{\sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y} = \sqrt{(1-\cos^2 x) \cosh^2 y + \cos^2 x \sinh^2 y} = \sqrt{\cosh^2 y - \cos^2 x (\cosh^2 y - \sinh^2 y)} = \sqrt{\cosh^2 y - \cos^2 x}.$$

§3, №17 Найти все решения следующих уравнений:

3)
$$\cos z = \frac{3i}{4}$$
.

$$e^{iz} + e^{-iz} = \frac{3i}{2} \Rightarrow (e^{iz})^2 - \frac{3i}{2}e^{iz} + 1 = 0,$$

$$e^{iz} = \frac{3i/2 + \sqrt{(3i/2)^2 - 4}}{2} \Rightarrow e_1^{iz} = 2i, e_2^{iz} = -\frac{1}{2}i.$$

Логарифмируя, получаем две серии решений:

$$z_1 = \left\{ -i \ln 2 + \left(\frac{\pi}{2} + 2\pi k \right) \mid k \in \mathbb{Z} \right\}, z_2 = \left\{ i \ln 2 + \left(-\frac{\pi}{2} + 2\pi k \right) \mid k \in \mathbb{Z} \right\}.$$

4)
$$\cos z = \frac{3+i}{4}$$
.

$$e^{iz} + e^{-iz} = \frac{3+i}{2} \Rightarrow (e^{iz})^2 - \frac{3+i}{2}e^{iz} + 1 = 0,$$

$$e^{iz} = \frac{3+i}{4} + \frac{1}{2}\sqrt{\left(\frac{3+i}{2}\right)^2 - 4} = \frac{3+i}{4} \pm \frac{3i+1}{4} \Rightarrow e_1^{iz} = i+1, e_2^{iz} = -\frac{1-i}{2}.$$

Логарифмируя, получаем две серии решений:

$$z_1 = \left\{ -\frac{i}{2} \ln 2 + \left(\frac{\pi}{4} + 2\pi k \right) \mid k \in \mathbb{Z} \right\}, z_2 = \left\{ \frac{i}{2} \ln 2 + \left(-\frac{\pi}{4} + 2\pi k \right) \mid k \in \mathbb{Z} \right\}.$$

§3, №22(1) Пусть x = Re z, y = Im z. Доказать неравенство

$$\frac{2e^{-2y}}{1+e^{-2y}} \le |\operatorname{tg} z - i| \le \frac{2e^{-2y}}{1-e^{-2y}}, \ y > 0.$$

Доказательство.

§4, №6(4) Доказать равномерную сходимость ряда

$$\sum_{n=1}^{\infty} 2^{-n} \cos(nz)$$

на множестве $E = \{z : |\operatorname{Im} z| \le \delta < \ln 2\}.$

 \square оказательство.

§5, №1 Найти все точки z = x + iy, в которых дифференцируемы функции

2)
$$f(z) = |\overline{z}|^2 = |z|^2 = x^2 + y^2$$
.

Заметим, что $\operatorname{Re} f(z) = u(x,y) = x^2 + y^2 \in C(\mathbb{R}^2)$ и $\operatorname{Im} f(z) = v(x,y) = 0 \in C(\mathbb{R}^2)$. Проверим выполнимость условий Коши-Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Найдем частные производные:

$$\frac{\partial u}{\partial x} = 2x, \quad \frac{\partial v}{\partial y} = 0.$$

$$\frac{\partial u}{\partial y} = 2y, \quad \frac{\partial v}{\partial x} = 0.$$

Как видно, необходимые условия дифференцируемости выполнены лишь в одной точке z=0.

5) f(z) = x - y + i(x + y).

Полиномы – дифференцируемые функции, проверим, что выполняются условия Коши-Римана:

$$\frac{\partial u}{\partial x} = 1 = \frac{\partial v}{\partial y}.$$

$$\frac{\partial u}{\partial y} = -1 = -\frac{\partial v}{\partial x}.$$

Эти условия выполнены во всей плоскости, значит заданная функция дифференцируема на \mathbb{C} .

§5, №7 Выяснить, где дифференцируемы функции и найти их производные.

3)
$$f(z) = \frac{e^z + 2}{e^z - 2}$$
.

Так как функция представляет собой отношение двух дифференцируемых функций, то она будет дифференцируема всюду, где определена. А не определена она лишь на множестве $z=\operatorname{Ln} 2=\{\ln 2+2\pi ki\mid k\in\mathbb{Z}\}$. Используя правила дифференцирования, получим:

$$f'(z) = \frac{e^z(e^z - 2) - e^z(e^z + 2)}{(e^z - 2)^2} = \frac{-4e^z}{(e^z - 2)^2}.$$

4)
$$f(z) = \frac{1}{\operatorname{tg} z + \operatorname{ctg} z}.$$

Сперва найдем множество точек комлексной плокости, где знаменатель функции обращается в ноль:

$$\operatorname{tg} z + \frac{1}{\operatorname{tg} z} = 0 \Rightarrow \operatorname{tg}^{2} z = -1 \Rightarrow \frac{\sin^{2} z}{\cos^{2} z} = -1 \Rightarrow \sin^{2} z + \cos^{2} z = 0.$$

Так как для комплексного значения переменной z верно основное тригонометрическое тождество, то знаменатель всегда отличен от нуля, а значит заданная функция дифференцируема всюду, кроме точек $\left\{\frac{\pi k}{2} \mid k \in \mathbb{Z}\right\}$ так как в этих точках не определена функция $\operatorname{tg} z + \operatorname{ctg} z$.

Производная функции равна:

$$f'(z) = -\frac{1/\cos^2 z - 1/\sin^2 z}{(\operatorname{tg} z + \operatorname{ctg} z)^2} = \cos(2z).$$

§5, №17 Восстановить реуглярную функцию f(z) = f(x + iy) по условию

2) Re $f(z) = x \sin x \cosh y - y \sinh y \cos x$, f(0) = 0.

Так как функция f(z) = Re f(z) + i Im f(z) = u(z) + i v(z) по условию регулярна, значит она дифференцируема. Используя условия Коши-Римана

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}. \end{cases}$$

восстановим мнимую часть функции f(z):

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = \sin x \operatorname{ch} y + x \cos x \operatorname{ch} y + y \operatorname{sh} y \sin x \Rightarrow v = x \cos x \operatorname{sh} y + y \sin x \operatorname{ch} y + C(x).$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow x \sin x \operatorname{sh} y - \operatorname{sh} y \cos x - y \operatorname{ch} y \cos x = -\cos x \operatorname{sh} y + x \sin x \operatorname{sh} y - y \cos x \operatorname{ch} y - C'(x).$$

$$C'(x) = 0 \Rightarrow C(x) = C \Rightarrow v = x \cos x \operatorname{sh} y + y \sin x \operatorname{ch} y - C.$$

Используя условие f(0)=0, получим, что C=0, значит искомая функция имеет вид

$$f(z) = x \sin x \operatorname{ch} y - y \operatorname{sh} y \cos x + i(x \cos x \operatorname{sh} y + y \sin x \operatorname{ch} y) = \sin x \operatorname{ch} y(x + iy) + i \operatorname{sh} y \cos x(x + iy) =$$
$$= z(\sin x \operatorname{ch} y + i \operatorname{sh} y \cos x) = z \sin z.$$

6) Re $f(z) = xe^x \cos y - (y+1)e^x \sin y$, f(0) = i.

Так как функция дифференцируема, то, используя условия Коши-Римана

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}. \end{cases}$$

можно восстановить мнимую часть функции f(z):

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = e^x \cos y + xe^x \cos y - (y+1)\sin y \Rightarrow v = xe^x \sin y + (y+1)e^x \cos y + C(x).$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Rightarrow -xe^x \sin y - e^x \sin y - (y+1)e^x \cos y = -e^x \sin y - xe^x \sin y - ye^x \cos y - e^x \cos y - C'(x).$$

$$C'(x) = 0 \Rightarrow C(x) = C \Rightarrow v = xe^x \sin y + (y+1)e^x \cos y + C.$$

Используя условие f(0) = i, получим, что C = 0, значит искомая функция имеет вид

$$f(z) = xe^{x} \cos y - ye^{x} \sin y - e^{x} \sin y + i(xe^{x} \sin y + ye^{x} \cos y + e^{x} \cos y) = e^{x} \cos y(x + iy) + e^{x} \sin y(ix - y) + e^{x} (i \cos y - \sin y) = ze^{x} (\cos y + i \sin y) + ie^{x} = e^{x} (z + i).$$

7)
$$|f(z)| = (x^2 + y^2)e^x$$
.

Т2 Найти области, в которых функция $f(z) = 2|xy| + i|x^2 - y^2|, z = x + iy$, является регулярной.

Pewenue.

Т3 Пусть f(z) = u(x,y) + iv(x,y), z = x + iy, является регулярной в области G функцией. Докажите, что $|\operatorname{grad} u| = |\operatorname{grad} v|$ во всех точках области G.

Доказательство. Для регулярной в области G функции выполняются условия Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}. \end{cases}$$

Используя их, легко показать требуемое:

$$|\operatorname{grad} u|^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2.$$

$$|\operatorname{grad} v|^2 = \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2.$$

§7, №3 Разложить в ряд Тейлора в окрестности точки z=0 функцию

8)
$$f(z) = \frac{z^3}{(z^2+1)(z-1)}$$
.

Используя метод неопределенных коэффициентов, разложим функцию на сумму дробей:

$$f(z) = 1 + \frac{1}{2(z-1)} + \frac{z-1}{2(z^2+1)} = 1 + \frac{1}{2} \cdot \frac{1}{(z-1)} + \frac{1+i}{4} \cdot \frac{1}{z-i} + \frac{1-i}{4} \cdot \frac{1}{z+i}.$$

Пользуясь известными разложениями, получим:

$$f(z) = 1 - \frac{1}{2} \cdot \frac{1}{1 - z} - \frac{1 + i}{4i} \cdot \frac{1}{1 - \frac{z}{i}} + \frac{1 - i}{4i} \cdot \frac{1}{1 + \frac{z}{i}} =$$

$$= 1 - \frac{1}{2} \sum_{n=0}^{\infty} z^n - \frac{1 + i}{4i} \sum_{n=0}^{\infty} \left(\frac{z}{i}\right)^n + \frac{1 - i}{4i} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{i}\right)^n = 1 + \sum_{n=0}^{\infty} z^n \left(\frac{1 - i}{4i^{n+1}}(-1)^n + \frac{1 + i}{4i^{n+1}} - \frac{1}{2}\right).$$

8)
$$f(z) = \frac{1}{z^2 + z + 1}$$
.

Сперва найдем корни знаменателя:

$$z^{2} + z + 1 = 0 \Rightarrow z_{1} = \frac{-1 + i\sqrt{3}}{2}, \ z_{2} = \frac{-1 - i\sqrt{3}}{2}$$

Раскладывая функцию на сумму дробей и применяя известные разложения, получим:

$$f(z) = \frac{2i}{\sqrt{3}} \left(\frac{1}{z - z_2} - \frac{1}{z - z_1} \right) = \frac{2i}{\sqrt{3}} \left(\frac{1}{z_1 \left(1 - \frac{z}{z_1} \right)} - \frac{1}{z_2 \left(1 - \frac{z}{z_2} \right)} \right) =$$

$$= \frac{2i}{\sqrt{3}} \left[\frac{1}{z_1} \sum_{n=0}^{\infty} \left(\frac{z}{z_1} \right)^n - \frac{1}{z_2} \sum_{n=0}^{\infty} \left(\frac{z}{z_2} \right)^n \right] = \frac{2i}{\sqrt{3}} \sum_{n=0}^{\infty} z^n \left[\left(\frac{2}{-1 + i\sqrt{3}} \right)^{n+1} - \left(\frac{2}{-1 - i\sqrt{3}} \right)^{n+1} \right].$$

§7, №4 Разложить функцию

$$f(z) = \frac{2z^2 + 2z - 7}{z^2 + z - 2}$$

в ряд Тейлора в окрестности точки z = -1.

Решение. Преобразуем дробь и сделаем замену z + 1 = t:

$$f(z) = \frac{2z^2 + 2z - 4 - 3}{z^2 + z - 2} = 2 - \frac{3}{z^2 + z - 2} = 2 - \frac{3}{(z - 1)(z + 2)} = 2 - \frac{1}{(t - 2)(t + 1)} = 2 + \frac{1}{t + 1} - \frac{1}{t - 2}.$$

Искомое разложение имеет вид:

$$f(z) = 2 + \frac{1}{t+1} + \frac{1}{2\left(1 - \frac{t}{2}\right)} = 2 + \sum_{n=0}^{\infty} (-1)^n t^n + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{t}{2}\right)^n = 2 + \sum_{n=0}^{\infty} ((-1)^n + 2^{-(n+1)})(z-1)^n.$$

§7, №6(4) Разложить в ряд Тейлора в окрестности точки z=0 функцию

$$f(z) = \cos^2 z + \cosh^2 z.$$

Peшение. Понизив степень, сразу же запишем ответ, используя готовые разложения функций $\cos z$ и $\cosh z$:

$$f(z) = \frac{1 + \cos 2z}{2} + \frac{1 + \cot 2z}{2} = 1 + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (2z)^{2n}}{(2n)!} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(2z)^{2n}}{(2n)!} = 1 + \sum_{n=0}^{\infty} 2^{2n-1} z^{2n} \left(\frac{(-1)^n}{(2n)!} + \frac{1}{(2n)!} \right).$$

§7, №7 Разложить функцию

$$f(z) = (z^2 - 4z + 5)e^{4z - z^2}$$

в ряд Тейлора в окрестности точки z=2.

Решение. Делая замену t = z - 2, получим:

$$\begin{split} f(z) &= (t^2+1)e^{4-t^2} = e^4(t^2e^{-t^2}+e^{-t^2}) = e^4\left(\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}t^{2(n+1)} + \sum_{n=0}^{\infty}\frac{(-1)^n}{n!}t^{2n}\right) = \\ &= e^4 + \sum_{n=0}^{\infty}\left(\frac{(-1)^{n-1}}{(n-1)!} + \frac{(-1)^n}{n!}t^{2n}\right). \end{split}$$

§7, №12(2) Найти разложение в ряд Тейлора в окрестности точки z=0 функции f(z), довлетворяющей условию $(1+z^2)f'(z)=1, f(0)=0.$

Решение. Используя условие f(0) = 0, получим:

$$f'(z) = \frac{1}{1+z^2} \Rightarrow f(z) = \operatorname{arctg} z.$$

Разложение арктангенса имеет вид:

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{2n-1} z^{2n-1}.$$

Т4 Найти все значения выражений

1. 2^{i} .

Если
$$z, p \in \mathbb{C}$$
, то

$$z^p = e^{\operatorname{Ln} z \cdot p} = e^{[\ln |z| + (\arg z + 2\pi k)i]p}, \ k \in \mathbb{Z}.$$

Следовательно

$$2^{i} = e^{(\ln 2 + 2\pi ki)i} = e^{-2\pi k + i \ln 2} = e^{2\pi n} (\cos \ln 2 + i \sin \ln 2), \ n \in \mathbb{Z}.$$

2. i^{i} .

$$i^i = e^{(i\frac{\pi}{2} + 2\pi k)i} = e^{-\frac{\pi}{2} + 2\pi n}, \ n \in \mathbb{Z}.$$

3. $(-1)^{2i}$.

$$(-1)^{2i} = e^{[(\pi + 2\pi k)i] \cdot 2i} = e^{-2\pi + 4\pi n} = e^{2\pi(2n-1)}, \ n \in \mathbb{Z}.$$

§9, №2 Существует ли функция f(z), регулярная в некоторой окрестности точки z=0 и удовлетворяющая одному из следующих условий (для всех $n \in \mathbb{N}$)

5)
$$f\left(\frac{1}{n}\right) = \frac{1}{2n + \cos \pi n}$$
.

7)
$$f\left(\frac{1}{n}\right) = f\left(-\frac{1}{n}\right) = \frac{1}{2n+1}$$
.

$$8) \ f\left(\frac{1}{n}\right) = e^{-n}.$$

Т5 Пусть функция $f: G \to \mathbb{C}$ регулярна в области G. Пусть существует натуральное число n такое, что для всех $z \in G$ выполнено равенство $f^n(z) = 0$. Доказать, что f – полином степени меньше n.

 \square оказательство.

Т6 Пусть функция $f: G \to \mathbb{C}$ регулярна в области G. Пусть для любой точки $z \in G$ существует натуральное число n такое, что $f^{(n)}(z) = 0$. Является ли f полиномом?

§11, №4(4) Разложить в ряд Лорана функцию

$$f(z) = \frac{z^2 - 1}{z^2 + 1}$$

по степеням z-1 в кольце, которому принадлежит точка $z_0=2i$.

Решение. Преобразуем функцию и сделаем замену t = z - 1:

$$f(z) = \frac{z^2 + 1 - 2}{z^2 + 1} = 1 - \frac{2}{z^2 + 1} = 1 - \frac{2}{t^2 + 2t + 2} = 1 + \frac{i}{t + 1 - i} - \frac{i}{t + 1 + i}.$$

Полученная функция $\varphi(t)$ регулярна во всей комплексной плоскости кроме точек t=-1+i и t=-1-i, значит ее можно разложить в ряд Лорана в областях $|t|<\sqrt{2}$ и $|t|>\sqrt{2}$. Так как $t_0=-1+2i\in\{t\in\mathbb{C}\mid |t|>\sqrt{2}\}$, то раскладывать необходимо во внешнем кольце.

$$f(z) = 1 + \frac{i}{t\left(1 - \frac{-1+i}{t}\right)} - \frac{i}{t\left(1 - \frac{-1-i}{t}\right)} = 1 + \frac{i}{t}\sum_{n=0}^{\infty} \left(\frac{-1+i}{t}\right)^n - \frac{i}{t}\sum_{n=0}^{\infty} \left(\frac{-1-i}{t}\right)^n = 1 + i\sum_{n=0}^{\infty} [(-1+i)^n - (-1-i)^n]t^{-n-1}.$$

§11, **№**5(5) Разложить функцию

$$f(z) = \frac{3z+1}{2z^2+z} - \frac{z}{z^2+5}$$

в ряд Лорана по степеням z в кольце, которому принадлежит точка $z_0=1$. Указать границы кольца сходимости.

Решение. Методом неопределенных коэффициентов разложим функцию в сумму дробей:

$$f(z) = \frac{1}{z} + \frac{1}{2z+1} + \frac{i}{\sqrt{5}} \left(\frac{1}{z-i\sqrt{5}} - \frac{1}{z+i\sqrt{5}} \right).$$

Данная функция регулярна во всей комплексной плоскости кроме четырех точек z=0, z=-0.5 и $z=\pm i\sqrt{5}$, значит ее можно разложить в ряд Лорана в областях 0<|z|<0.5, $0.5<|z|<\sqrt{5}$ и $|z|>\sqrt{5}$. Так как $z_0=1\in\{z\in\mathbb{C}\mid 0.5<|z|<\sqrt{5}\}$, то раскладывать необходимо именно в этом кольце.

$$f(z) = \frac{1}{z} + \frac{1}{2z} \cdot \frac{1}{1 - \left(\frac{-1}{2z}\right)} - \frac{1}{5} \left(\frac{1}{1 - \left(\frac{-z}{i\sqrt{5}}\right)} + \frac{1}{1 - \frac{z}{i\sqrt{5}}} \right) =$$

$$= \frac{1}{z} + \frac{1}{2z} \sum_{n=0}^{\infty} \left(\frac{-1}{2z}\right)^n - \frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{-z}{i\sqrt{5}}\right)^n - \frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{z}{i\sqrt{5}}\right)^n.$$

Ряд Лорана сходится в кольце $0.5 < |z| < \sqrt{5}$.

§11, **№7**(**4**) Разложить функцию

$$f(z) = \frac{4z}{(z-1)(z^2-1)}$$

по степеням z+1 в кольце, которому принадлежит точка $z_0=-2$.

Peшение. Сделаем замену t=z+1 и представим функцию в виде суммы дробей:

$$f(z) = \frac{4z}{(z-1)^2(z+1)} = \frac{4t-4}{(t-2)^2t} = \frac{1}{t-2} + \frac{2}{(t-2)^2} - \frac{1}{t}.$$

Функция регулярна во всей комплексной плоскости кроме точек z=0 и z=2, значит ее можно разложить в ряд Лорана в областях 0<|z|<2 и |z|>2. Так как $t_0=z_0+1=-1\in\{z\in\mathbb{C}\mid 0<|z|<2\}$, то раскладывать необходимо именно в этом кольце.

$$f(z) = -\frac{1}{t} - \frac{1}{2} \cdot \frac{1}{\left(1 - \frac{t}{2}\right)} + \left(\frac{1}{1 - \frac{t}{2}}\right)' = -\frac{1}{t} - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{t}{2}\right)^n + \left(\sum_{n=0}^{\infty} \left(\frac{t}{2}\right)^n\right)' =$$

$$= -\frac{1}{z+1} - \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z+1}{2}\right)^n + \sum_{n=0}^{\infty} (z+1)^{n-1} \frac{n}{2^n}.$$

§11, **№**9(1) Разложить функцию

$$f(z) = \frac{-4+2i}{(z-1-2i)(z-5)}$$

по степеням z-1 в кольце, которому принадлежит точка $z_0=1+6i$.

Peшение. Сделаем замену t=z-1 и представим функцию в виде суммы дробей:

$$f(z) = \frac{-4+2i}{(z-1-2i)(z-5)} = \frac{-4+2i}{(t-2i)(t-4)} = \frac{1}{t-2i} - \frac{1}{t-4}.$$

Функция регулярна во всей комплексной плоскости кроме точек z=2i и z=4, значит ее можно разложить в ряд Лорана в областях $|z|<2,\ 2<|z|<4$ и |z|>4. Так как $t_0=z_0-1=6i\in\{z\in\mathbb{C}\mid |z|>4\}$, то раскладывать необходимо именно в этом кольце.

$$f(z) = \frac{1}{t} \cdot \frac{1}{1 - \frac{2i}{t}} - \frac{1}{t} \cdot \frac{1}{1 - \frac{4}{t}} = \frac{1}{t} \sum_{n=0}^{\infty} \left(\frac{2i}{t}\right)^n - \frac{1}{t} \sum_{n=0}^{\infty} \left(\frac{4}{t}\right)^n = \sum_{n=0}^{\infty} \frac{(2i)^n - 4^n}{(z+1)^{n+1}}.$$

§11, №10(10) Разложить функцию

$$f(z) = \frac{6z + 8 + 8i}{z^2 + 2z(2+i) + 8i} - \frac{3z - 2i}{z^2 + 4}$$

по степеням z-1-i в кольце, которому принадлежит точка $z_0=-1$.

Решение. Преобразуем функцию и сделаем замену t = z - 1 - i:

$$f(z) = \frac{6z + 8 + 8i}{(z + 2i)(z + 4)} - \frac{3z - 2i}{(z - 2i)(z + 2i)} = \frac{2}{z + 2i} + \frac{4}{z + 4} - \frac{1}{z - 2i} - \frac{2}{z + 2i} = \frac{4}{z + 4} - \frac{1}{z - 2i} = \frac{4}{t + 5 + i} - \frac{1}{t + 1 - i}.$$

Полученная функция $\varphi(t)$ регулярна во всей комплексной плоскости кроме точек t=-5-i и t=-1+i, значит ее можно разложить в ряд Лорана в областях $|t|<\sqrt{2},\,\sqrt{2}<|t|<\sqrt{26}$ и $|t|>\sqrt{26}$. Так как $t_0=z_0-1-i=-2-i\in\{t\in\mathbb{C}\mid\sqrt{2}<|t|<\sqrt{26}\}$, то раскладывать необходимо в этом кольце, указав, что при z=-2i ряд не равен заданной функции f(z), так как исходная функция не регулярна в этой точке.

$$f(z) = \frac{4}{t+5+i} - \frac{1}{t+1-i} = \frac{1}{5+i} \cdot \frac{4}{1-\frac{-t}{5+i}} - \frac{1}{t} \cdot \frac{1}{1-\frac{-1+i}{t}} =$$

$$= \frac{4}{5+i} \sum_{n=0}^{\infty} \left(\frac{-t}{5+i}\right)^n - \frac{1}{t} \sum_{n=0}^{\infty} \left(\frac{-1+i}{t}\right)^n = \frac{4}{5+i} \sum_{n=0}^{\infty} \frac{(-1)^n}{(5+i)^n} (z-1-i)^n - \sum_{n=0}^{\infty} \frac{(-1+i)^n}{(z-1-i)^{n+1}}.$$

§12, №8 Найти все изолированные особые точки однозначного характера и определить их тип для функций

4)
$$f(z) = \frac{1}{z^2 - 1} \cos\left(\frac{\pi z}{z + 1}\right)$$
.

Всего три претендента на особые точки: $z=\pm 1,\ z=\infty$. При z стремящимся к 1 предел f(z) существует и равен $-\frac{\pi}{8}$, значит z=1 – устранимая особая точка. Рассмотрев последовательность $z_k=-1+\frac{1}{k}$ имеющую предел -1, получим, что предел $f(z_k)$ не существует, откуда следует, что -1 – существенная особая точка. Наконец, при $z\to\infty$ заданная функция эквивалентна $-\frac{1}{z^2}\to 0$, значит, $z=\infty$ – устранимая особая точка.

7)
$$f(z) = e^{\operatorname{ctg} \frac{\pi}{z}}$$
.

Так как $\operatorname{ctg} \pi k$ не определен, то рассмотрим точки вида $z_k = \frac{1}{k}$, к каждой такой точке можно приближаться слева или справа, отчего будет зависить предел функции $f(z_k)$ (будет ли это 0 или $+\infty$), следовательно точки вида $z_k = \frac{1}{k}$ - существенные особенности, а их предел, точка z=0, — не изолированная особая точка. К точке $z=\infty$ можно приближаться последовательностями $z_n=n$ и $z_m=-m$, которые дают разные значения предела функции, а занчит бесконечность — существенная особенность.

§12, №15(5) Найти все особые точки функции

$$f(z) = \frac{6 \operatorname{sh} z - z(6 + z^2)}{(e^z - 1)^5}$$

и определить их вид.

Решение. В данном случае особые точки имеют вид $z_k = 2\pi ki$ – полюса 5-го порядка при всех $k \in \mathbb{Z}$, кроме k = 0. z = 0 – ноль пятого порядка для числителя и знаменателя дроби, значит z = 0 – устранимая особая точка. Бесконечность – неизолированная особенность.

§12, №17(4) Найти все особые точки функции

$$f(z) = \frac{z^2 + 4z - 12}{1 + \sin\left(\frac{3\pi}{z}\right)}$$

и определить их вид.

Peшение. Сперва найдем нули числителя: $z_1 = -6, z_2 = 2.$ Одну серию особых точек найдем уз условия

$$1 + \sin\left(\frac{3\pi}{z}\right) = 0 \Rightarrow \frac{3\pi}{z} = \frac{3\pi}{2} + 2\pi k \Rightarrow z_k = \frac{6}{3 + 4k}, \ k \in \mathbb{Z}.$$

Эти z_k – полюса второго порядка при всех $k \neq 0$ и $k \neq -1$, z = 2 – полюс первого порядка, так как двойка так же ноль числителя, и по той же причине z = -6 – тоже полюс первого порядка. Так как $\lim_{k \to \infty} z_k = 0$, то z = 0 – неизолированная особая точка. При $z \to \infty$ функция f(z) ведет себя как z^2 .

§12, №20(7)

Решение.

Т7 Найти и исследовать все особые точки функции (для полюсов указать порядок)

$$f(z) = \frac{z^2 + 2iz + 3}{1 + \operatorname{ch} \pi z} e^{\frac{1}{z - i}}.$$

Pешение. \square

Т8 Пусть дана регулярная в кольце $G=\{z\in\mathbb{C}\mid 0<|z|<1\}$ функция f(z) такая, что найдутся действительные числа $A>0,\ B>0$ и $\alpha\in[0,1],$ при которых справедливы неравенства

$$\frac{A}{|z|^{\alpha}} \le |f(z)| \le \frac{B}{|z|^{\alpha+1}}, \ \forall \ z \in G.$$

Определить при различных значениях α тип особой точки 0 функции f(z).

Решение.

4 Второе задание

§13, **№**1(6) Вычислить

$$\underset{z=1}{\text{res }} ze^{1/(z-1)}.$$

Peшение. Воспользуемся тем свойством, что если функция f(z) регулярна в проколотой окрестности конечной точки a, то

$$\operatorname{res}_{z=a} f(z) = c_{-1},$$

где c_k – коэффициенты в разложении функции f(z) в ряд Лорана по степеням (z-a). Разложим функцию, вычет которой нам нужно найти, в ряд Лорана по степеням z-1:

$$ze^{1/(z-1)} = z\left(1 + \frac{1}{z-1} + \frac{1}{2} \cdot \frac{1}{(z-1)^2} + \ldots\right) = z + \frac{z-1+1}{z-1} + \frac{1}{2} \cdot \frac{z-1+1}{(z-1)^2} + \ldots = z$$

$$=z+1+\frac{1}{z-1}+\frac{1}{2}\cdot\frac{1}{z-1}+\frac{1}{2}\cdot\frac{1}{(z-1)^2}+\ldots=(z-1)+2+\frac{3}{2}\cdot\frac{1}{z-1}+\frac{1}{2}\cdot\frac{1}{(z-1)^2}+\ldots\Rightarrow c_{-1}=\frac{3}{2}.$$

Значит искомый вычет равен

$$\operatorname{res}_{z=1}^{z} z e^{1/(z-1)} = c_{-1} = \frac{3}{2}.$$

§13, №3(3) Найти $\mathop{\rm res}_{z=a} f(z)$, если

$$f(z) = \sin\left(\frac{1}{z} + \frac{1}{z^2}\right), \ a = 0.$$

Решение. Можно легко решить задачу аналогично предыдущему пункту: разложить функцию в ряд Лорана по степеням z, и найти, что $c_{-1}=1$. А можно пойти другим путем: функция, вычет которой нам надо найти, регулярна в области $0<|z|<\infty$, а значит по теореме о вычетах $\mathop{\mathrm{res}}_{z=0} f(z)=-\mathop{\mathrm{res}}_{\infty} f(z)$. А вычет в бесконечности найдем, используя

свойство, что если функция f(z) представима в виде $f(z)=\varphi\left(\frac{1}{z}\right)$, где функция $\varphi(\xi)$ регулярна в точке $\xi=0$, то res $f(z)=-\varphi'(0)$.

Так как функция $\varphi(\xi) = \sin(\xi)$ регулярна в нуле, то

$$\operatorname{res}_{\infty} f(z) = -\varphi'(0) = -1 \Rightarrow \operatorname{res}_{z=0} f(z) = 1.$$

§13, №5(6) Найти вычет функции $f(z) = \frac{\cos z}{(z^2 + 1)^2}$ во всех особых точках и в бесконечности.

Решение. Представим функцию в виде $f(z) = \frac{\cos z}{(z+i)^2(z-i)^2}$. Тогда очевидно, что кроме бесконечности (которая является существенной осоенностью ввиду того, что для разных последовательностей стремящихся к бесконечности предел f(z) будет разный) есть еще две особые точки – это $\pm i$, причем обе полюсы второго порядка.

Чтобы найти вычеты в этих точках, воспользуемся тем фактом, что если точка a полюс m-го порядка (m>1) и функция f(z) представима в виде $f(z)=\frac{h(z)}{(z-a)^m}$, где h(z) регулярная функция такая, что $h(a)\neq 0$, то вычет функции f(z) в точке a равен

$$\operatorname{res}_{z=a} f(z) = \frac{h^{(m-1)}(a)}{(m-1)!}.$$

Сперва рассмотрим особую точку z = i, тогда

$$h(z) = \frac{\cos z}{(z+i)^2} \Rightarrow h'(z) = -\frac{2\cos z + (z+i)\sin z}{(z+i)^3} \Rightarrow h'(i) = -\frac{i}{4e} \Rightarrow \underset{z=i}{\text{res}} f(z) = \frac{h'(i)}{1!} = -\frac{i}{4e}.$$

Аналогично найдем вычет в точке z = -i:

$$h(z) = \frac{\cos z}{(z-i)^2} \Rightarrow h'(z) = -\frac{2\cos z + (z-i)\sin z}{(z-i)^3} \Rightarrow h'(i) = \frac{i}{4e} \Rightarrow \underset{z=-i}{\text{res}} f(z) = \frac{h'(i)}{1!} = \frac{i}{4e}.$$

Вычет в бесконечности легко находится, если воспользоваться тем фактом, что сумма вычетов во всех особых точках и в бесконечности равна нулю:

$$\operatorname{res}_{\infty} f(z) = -\left(\operatorname{res}_{z=i} f(z) + \operatorname{res}_{z=-i} f(z)\right) = -\left(\frac{i}{4e} - \frac{i}{4e}\right) = 0.$$

§14, №1(6) Вычислить интеграл от рациональной функции

$$\oint_{|z+i|=2} \frac{dz}{z^2(z^2 - 7z + 12)}.$$

Решение. Для нахождения этого интеграла воспользуемся теоремой Коши о вычетах, которая гласит, что если D – область в $\overline{\mathbb{C}}$ с кусочно-гладкой границей Γ , а функция f(z) регулярна в области D за исключением конечного числа изолированных особых точек $a_k \in D, \ k = \overline{1,n}$ (к их числу относится и точка $z = \infty$, если $\infty \in D$) и функция f(z) непрерывна вплоть до границы Γ области D, то

$$\int_{\Gamma^+} f(z)dz = 2\pi i \cdot \sum_{k=1}^n \operatorname{res}_{z=a_k} f(z),$$

где Γ^+ – положительно ориентированная относительно области D кривая Γ .

Контур Γ , задаваемый равенством |z+i|=2 представляет собой окружность радиуса 2 с центром в точке -i, внутрь которого попадает только одна особая точка подынтегральной функции z=0 — полюс второго порядка. Тогда искомое значение интеграла будет равно произведению $2\pi i$ на вычет подынтегральной функции в точке 0. Вычет найдем по формуле для полюса второго порядка:

$$\operatorname{res}_{z=0} \frac{1}{z^2(z^2 - 7z + 12)} = \left(\frac{1}{z^2 - 7z + 12}\right)' \bigg|_{z=0} = \frac{7}{144}.$$

Тогда ответ:

$$\oint_{|z+i|=2} \frac{dz}{z^2(z^2 - 7z + 12)} = 2\pi i \cdot \operatorname{res}_{z=0} \frac{1}{z^2(z^2 - 7z + 12)} = \frac{7\pi i}{72}.$$

§14, **№2** Вычислить интегралы

7)
$$\oint_{|z|=3/2} \frac{z \operatorname{tg} z}{(z^2-1)^2} dz$$
.

Внутрь контура |z|=3/2 попадают две особые точки подынтегральной функции – это z=1 и z=-1, обе полюсы второго порядка. Значит по теореме Коши о вычетах:

$$\oint_{|z|=3/2} \frac{z \operatorname{tg} z}{(z^2-1)^2} dz = \oint_{|z|=3/2} f(z) dz = 2\pi i \left(\operatorname{res}_{z=1} f(z) + \operatorname{res}_{z=-1} f(z) \right).$$

Найдем вычеты в полюсах:

$$\operatorname{res}_{z=1} f(z) = \left(\frac{z \operatorname{tg} z}{(z+1)^2} \right)' \bigg|_{z=1} = \frac{1}{4 \cos^2 1}, \quad \operatorname{res}_{z=-1} f(z) = \left(\frac{z \operatorname{tg} z}{(z-1)^2} \right)' \bigg|_{z=-1} = -\frac{1}{4 \cos^2 1}.$$

Значит ответ

$$\oint_{|z|=3/2} \frac{z \operatorname{tg} z}{(z^2 - 1)^2} dz = 0.$$

8)
$$\oint_{|z|=5/2} \frac{z^2}{z-3} \sin\left(\frac{z}{z-2}\right) dz.$$

Внутрь контура |z| = 5/2 попадает всего одна особая точка подынтегральной функции f(z), но эта точка z = 2 является существенной особой точкой, поэтому, используя теорему о вычетах и теорему Коши, запишем:

$$\oint_{|z|=5/2} \frac{z^2}{z-3} \sin\left(\frac{z}{z-2}\right) dz = \oint_{|z|=5/2} f(z) dz = 2\pi i \cdot \mathop{\rm res}_{z=2} f(z) = -2\pi i \cdot \left(\mathop{\rm res}_{z=3} f(z) + \mathop{\rm res}_{\infty} f(z)\right).$$

Вычет в точке z=3 найдем по формуле для вычета в полюсе первого порядка:

$$\operatorname{res}_{z=3} f(z) = \left(z^2 \sin \frac{z}{z-2} \right) \Big|_{z=3} = 9 \sin 3.$$

Для нахождения вычета функции f(z) в бесконечности воспользуемся тем фактом, что этот вычет равен $-c_{-1}$, где c_k – коэффициенты разложения функции f(z) в ряд Лорана по степеням z. Разложим f(z) в ряд Лорана:

$$f(z) = z \frac{1}{1 - 3/z} \sin\left(\frac{1}{1 - 2/z}\right) = z \left(1 + \frac{3}{z} + \frac{9}{z^2} + \dots\right) \sin\left(1 + \frac{2}{z} + \frac{4}{z^2} + \dots\right) =$$

$$= z \left(1 + \frac{3}{z} + \frac{9}{z^2} + \dots\right) \left[\sin 1 \cdot \cos\left(\frac{2}{z} + \frac{4}{z^2} + \dots\right) + \cos 1 \cdot \sin\left(\frac{2}{z} + \frac{4}{z^2} + \dots\right)\right] =$$

$$= \left(z + 3 + \frac{9}{z} + \dots\right) \left(\sin 1 - \frac{2\sin 1}{z^2} + \frac{2\cos 1}{z} + \frac{4\cos 1}{z^2} + \dots\right) =$$

$$= \frac{1}{z} \left(-2\sin 1 + 4\cos 1 + 6\cos 1 + 9\sin 1\right) + \dots = \frac{1}{z} \left(7\sin 1 + 10\cos 1\right) + \dots$$

Значит вычет в бесконечности равен:

$$\operatorname{res}_{\infty} f(z) = -c_{-1} = -7\sin 1 - 10\cos 1.$$

Таким образом, искомый интеграл равен:

$$\oint_{|z|=5/2} \frac{z^2}{z-3} \sin\left(\frac{z}{z-2}\right) dz = 2\pi i \cdot (7\sin 1 + 10\cos 1 - 9\sin 3).$$

18)
$$\oint_{|z|=1} \frac{(z+1)\cos\frac{i}{z}}{(2i-z)^2} dz.$$

Ввиду того, что внутри контура |z|=1 лежит одна существенно особая точка z=0 подынтегральной функции f(z), запишем:

$$\oint_{|z|=1} \frac{(z+1)\cos\frac{i}{z}}{(2i-z)^2} dz = 2\pi i \cdot \mathop{\mathrm{res}}_{z=0} f(z) = -2\pi i \cdot \left(\mathop{\mathrm{res}}_{z=2i} f(z) + \mathop{\mathrm{res}}_{\infty} f(z)\right).$$

Оба вычета находятся с использованием соответсвующих формул для вычетов в бесконечно удаленной точке и в полюсе второго порядка:

$$\operatorname{res}_{z=2i} f(z) = \left((z+1)\cos\frac{i}{z} \right)' \bigg|_{z=2i} = \cos\frac{1}{2} + \frac{2-i}{4}\sin\frac{1}{2}.$$

$$\operatorname{res}_{\infty} f(z) = \lim_{z \to \infty} \left[z \left(f(\infty) - f(z) \right) \right] = -\lim_{z \to \infty} \frac{z(z+1) \cos \frac{i}{z}}{(2i-z)^2} = -1.$$

Тогда ответ:

$$\oint_{|z|=1} \frac{(z+1)\cos\frac{i}{z}}{(2i-z)^2} dz = 2\pi i \cdot \left(1 + \frac{i-2}{4}\sin\frac{1}{2} - \cos\frac{1}{2}\right).$$

23)
$$\oint_{|z+1-i|=2} \frac{z+i}{(z-i) \operatorname{sh} \frac{1}{2z}} dz.$$

Внутри контура |z+1-i|=2 (это окружность на комплексной плоскости с центром в точке (-1,1) радиуса 2) лежат слежующие особые точки подынтегральной функции: z=i – полюс первого порядка, z=0 – неизолированная особая точка, так как к ней сходится последовательность особых точек $z_k=\frac{1}{2\pi i k}$. Тогда по теореме Коши о вычетах

$$\oint_{|z+1-i|=2} \frac{z+i}{(z-i) \sinh \frac{1}{2z}} dz = \oint_{|z+1-i|=2} f(z) dz = -2\pi i \cdot \mathop{\rm res}_{\infty} f(z).$$

Чтобы найти вычет функции f(z) в бесконечности, разложим эту функцию в ряд Лорана:

$$f(z) = \left(1 + \frac{i}{z}\right) \cdot \frac{1}{1 - i/z} \cdot \frac{1}{\sinh(1/2z)} = \left(1 + \frac{i}{z}\right) \cdot \left(1 + \frac{i}{z} - \frac{1}{z^2} + \dots\right) \cdot \frac{1}{1/2z + 1/48z^3 + \dots} = \frac{1}{1/2z + 1/48z^3 + \dots}$$

$$= 2z \left(1 + \frac{i}{z}\right) \cdot \left(1 + \frac{i}{z} - \frac{1}{z^2} + \dots\right) \cdot \frac{1}{1 + 1/24z^2 + \dots} = (2z + 2i) \cdot \left(1 + \frac{i}{z} - \frac{1}{z^2} + \dots\right) \cdot \left(1 - \frac{1}{24z^2} + \dots\right) = -\frac{49}{12} \cdot \frac{1}{z} + \dots$$

Тогда коэффициент ряда Лорана равен $c_{-1} = -\frac{49}{12}$, значит ответ:

$$\oint_{|z+1-i|=2} \frac{z+i}{(z-i) \sinh \frac{1}{2z}} dz = -2\pi i \cdot \mathop{\mathrm{res}}_{\infty} f(z) = 2\pi i \cdot c_{-1} = -\frac{49\pi i}{6}.$$

§14, №3(2) Сделав соответствующую замену переменной, свести данный интеграл к интегралу по замкнутому контуру в $\mathbb C$ и вычислить его:

$$\int_{0}^{2\pi} \frac{d\varphi}{(a+b\cos\varphi)^2} \quad (a>b>0).$$

§23, №1 Вычислить интегралы:

5)
$$\int_{-\infty}^{+\infty} \frac{x^4 + 1}{x^6 + 1} dx$$
.

Рассмотрим интеграл

$$\oint_{\gamma} \frac{z^4 + 1}{z^6 + 1} dz = \int_{\Gamma_R} \frac{z^4 + 1}{z^6 + 1} dz + \int_{-R}^{R} \frac{x^4 + 1}{x^6 + 1} dx,$$

где $\Gamma_R=\{z\mid {\rm Im}\,z\geq 0, |z|=R\}$ и $\gamma=\Gamma_R\cup [-R,R]$. Так как подынтегральная функция $f(z)=\frac{z^4+1}{z^6+1}$ непрерывна на замкнутом множестве $\{z\mid {\rm Im}\,z\geq 0, |z|\geq 1\}$ и

$$\lim_{R \to +\infty} R \cdot M(R) = 0$$
, где $M(R) = \max_{z \in \Gamma_R} |f(z)|$, то $\lim_{R \to +\infty} \int\limits_{\Gamma_R} \frac{z^4 + 1}{z^6 + 1} dz = 0$.

Тогда, так как исходный интеграл сходится, то

$$\int_{-\infty}^{+\infty} \frac{x^4 + 1}{x^6 + 1} dx = \text{v.p.} \int_{-\infty}^{+\infty} \frac{x^4 + 1}{x^6 + 1} dx = \oint_{\gamma} \frac{z^4 + 1}{z^6 + 1} dz = 2\pi i \cdot \sum_{\text{Im } z_k \ge 0} \underset{z = z_k}{\text{res }} f(z).$$

Особые точки функции f(z) – это $\{\sqrt[6]{-1}\} = \left\{\exp\left(\frac{\arg(-1)+2\pi k}{6}\right) \mid k \in \mathbb{Z}\right\} = \left\{e^{-\frac{\pi}{6}i}, e^{\frac{\pi}{6}i}, e^{\frac{\pi}{6}i}, e^{\frac{5\pi}{6}i}, e^{\frac{3\pi}{6}i}, e^{\frac{3\pi}{2}i}\right\}$. При этом в верхней полуплоскости лежат всего три из них: $z_1 = e^{\frac{\pi}{6}i}, z_1 = e^{\frac{\pi}{2}i}$ и $z_3 = e^{\frac{5\pi}{6}i}$. Так как все эти особые точки являются полюсами первого порядка для функции f(z), которая представима в виде $f(z) = \frac{z^4+1}{z^6+1} = \frac{h(z)}{g(z)}$, где $h(z) = z^4+1$ и $g(z) = z^6+1$ регулярные функции такие, что $g(z_k) = 0$ и $g'(z_k) \neq 0$, то вычеты в этих точках можно найти по формуле

$$\operatorname{res}_{z=z_k} f(z) = \frac{h(z_k)}{g'(z_k)} = \frac{z_k^4 + 1}{6z_k^5} = \frac{1}{6z_k} + \frac{1}{6z_k^5}.$$

Значит ответ:

$$\int_{-\infty}^{+\infty} \frac{x^4 + 1}{x^6 + 1} dx = \frac{2\pi i}{6} \cdot \sum_{k=1}^{3} \left(\frac{1}{z_k} + \frac{1}{z_k^5} \right) = \frac{2\pi i}{3} \left(e^{-\frac{\pi}{6}i} + e^{-\frac{\pi}{2}i} + e^{-\frac{5\pi}{6}i} \right) =$$

$$= \frac{2\pi i}{3} \left(\frac{\sqrt{3}}{2} - \frac{i}{2} - i - \frac{\sqrt{3}}{2} - \frac{i}{2} \right) = \frac{4\pi}{3}.$$

7)
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)(x^2+16)}.$$

Аналогично предыдущему номеру, представим искомый интеграл в виде

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)(x^2+16)} = \text{v.p.} \int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)(x^2+16)} =$$

$$= \lim_{R \to \infty} \left[\oint_{\gamma} \frac{dz}{(z^2+9)(z^2+16)} - \int_{\Gamma_R} \frac{dz}{(z^2+9)(z^2+16)} \right] = 2\pi i \cdot \sum_{\text{Im } z_k \ge 0} \underset{z=z_k}{\text{res}} f(z).$$

Здесь

$$f(z) = \frac{1}{(z^2 + 9)(z^2 + 16)}, \quad \Gamma_R = \{z \mid \text{Im } z \ge 0, |z| = R\}, \quad \gamma = \Gamma_R \cup [-R, R].$$

У функции f(z) в верхней полуплоскости две особые точки – это $z_1=3i$ и $z_2=4i$. Так как эти особые точки являются полюсами первого порядка для функции f(z), которая представима в виде $f(z)=\frac{1}{(z^2+9)(z^2+16)}=\frac{h(z)}{g(z)}$, где h(z)=1 и $g(z)=(z^2+9)(z^2+16)$ регулярные функции такие, что $g(z_k)=0$ и $g'(z_k)\neq 0$, то вычеты в этих точках можно найти по формуле

$$\operatorname{res}_{z=z_k} f(z) = \frac{h(z_k)}{g'(z_k)} = \frac{1}{2z_k(z_k^2 + 16) + 2z_k(z_k^2 + 9)}.$$

Таким образом, искомый интеграл равен

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)(x^2+16)} = 2\pi i \left(\frac{1}{6i(16-9)} + \frac{1}{8i(9-16)} \right) = \frac{\pi}{84}.$$

§23, №2 Вычислить интегралы

8)
$$\int_{-\infty}^{+\infty} \frac{(x-3)\sin(x-1)}{x^2+4x+5} dx.$$

Ввиду сходимости заданного интеграла, его можно записать в виде

$$\int_{-\infty}^{+\infty} \frac{(x-3)\sin(x-1)}{x^2+4x+5} dx = \text{v.p.} \int_{-\infty}^{+\infty} \frac{(x-3)\sin(x-1)}{x^2+4x+5} dx =$$

$$= \operatorname{Im} \left[\text{v.p.} \int_{-\infty}^{+\infty} \frac{(x-3)}{x^2 + 4x + 5} e^{i(x-1)} dx \right] = \operatorname{Im} \left[e^{-i} \cdot \text{v.p.} \int_{-\infty}^{+\infty} \frac{(x-3)}{x^2 + 4x + 5} e^{ix} dx \right].$$

Пусть $\Gamma_R=\{z\mid {\rm Im}\, z\geq 0, |z|=R\}$ и $\gamma=\Gamma_R\cup [-R,R],$ тогда

$$\int_{-R}^{R} \frac{(x-3)e^{ix}}{x^2+4x+5} dx = \oint_{\gamma} \frac{(z-3)e^{iz}}{z^2+4z+5} dz - \int_{\Gamma_R} \frac{(z-3)e^{iz}}{z^2+4z+5} dz = 2\pi i \cdot \sum_{\text{Im } z_k \ge 0} \mathop{\mathrm{res}}_{z=z_k} f(z),$$

где $f(z)=\frac{(z-3)e^{iz}}{z^2+4z+5}=g(z)e^{iz}$. Так как функция g(z) непрерывна на замкнутом множестве $\{z\mid {\rm Im}\,z\geq 0, |z|\geq \sqrt{5}\}$ и $\lim_{R\to +\infty}M(R)=0$, где $M(R)=\max_{z\in \Gamma_R}|g(z)|$, то лемма Жордана гарантирует, что

$$\lim_{R \to +\infty} \int_{\Gamma_R} \frac{(z-3)e^{iz}}{z^2 + 4z + 5} dz = 0.$$

Таким образом, устремляя R в бесконечность, найдем:

v.p.
$$\int_{-\infty}^{+\infty} \frac{(x-3)}{x^2+4x+5} e^{ix} dx = 2\pi i \cdot \underset{z=-2+i}{\text{res}} f(z) = \frac{\pi}{e} (i-5) e^{-2i} \Rightarrow$$

$$\int_{-\infty}^{+\infty} \frac{(x-3)\sin(x-1)}{x^2+4x+5} dx = \operatorname{Im}\left(\frac{\pi}{e}(i-5)e^{-3i}\right) = \frac{\pi}{e}(\cos 3 + 5\sin 3).$$

16)
$$\int_{-\infty}^{+\infty} \frac{x \cos(1 - 2x)}{x^2 + 4} dx.$$

Аналогично пердыдущему пункту, используем лемму Жордана:

$$\int_{-\infty}^{+\infty} \frac{x \cos(1-2x)}{x^2+4} dx = \operatorname{Re}\left[v.p. \int_{-\infty}^{+\infty} \frac{x e^{i(2x-1)}}{x^2+4} dx\right] = \operatorname{Re}\left[e^{-i} \cdot v.p. \int_{-\infty}^{+\infty} \frac{x e^{2ix}}{x^2+4} dx\right] =$$

$$= \operatorname{Re}\left(e^{-i} \cdot 2\pi i \cdot \underset{z=2i}{\operatorname{res}} f(z)\right) = \operatorname{Re}\left(\frac{\pi}{e^4} \cdot i(\cos 1 - i\sin 1)\right) = \frac{\pi}{e^4} \sin 1.$$

20)
$$\int_{-\infty}^{+\infty} \frac{x^3 \sin(2-x)}{(x^2+2)^2} dx.$$

Снова воспользуемся леммой Жордана:

$$\int_{-\infty}^{+\infty} \frac{x^3 \sin(2-x)}{(x^2+2)^2} dx = -\operatorname{Im} \left[e^{-2i} \cdot \operatorname{v.p.} \int_{-\infty}^{+\infty} \frac{x^3 e^{ix}}{(x^2+2)^2} dx \right] = -\operatorname{Im} \left[2\pi i \cdot e^{-2i} \cdot \underset{z=\sqrt{2}i}{\operatorname{res}} f(z) \right] =$$

$$-\operatorname{Im} \left[2\pi i \cdot e^{-2i} \cdot \left(\frac{z^3 e^{iz}}{(z+\sqrt{2}i)^2} \right)' \Big|_{z=\sqrt{2}i} \right] = \frac{(\sqrt{2}-2)\pi \cos 2}{2e^{\sqrt{2}}}.$$

Т1 Вычислить интеграл

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x^2 - 3ix + 4} dx.$$

Решение. Этот интеграл можно вычислить двумя способами. Первый из них заключается в домножении числителя и знаменателя подынтегральной функции на выражение, сопряженное знаменателю, таким образом мы сведем задачу к той, которую уже решали:

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x^2 - 3ix + 4} dx = \int_{-\infty}^{+\infty} \frac{(x^2 + 4) + 3i}{(x^2 + 4)^2 + 9x^2} \sin x \cdot dx = \int_{-\infty}^{+\infty} \frac{x^2 + 4}{(x^2 + 4)^2 + 9x^2} \sin x \cdot dx + \frac{\sin x}{(x^2 + 4)^2 + 9x^2} \sin x \cdot dx$$

$$+3i\int_{-\infty}^{+\infty} \frac{x\sin x}{(x^2+4)^2+9x^2} dx = \operatorname{Im} \left[\int_{-\infty}^{+\infty} \frac{(x^2+4)e^{ix}}{(x^2+4)^2+9x^2} dx \right] + 3i \cdot \operatorname{Im} \left[\int_{-\infty}^{+\infty} \frac{xe^{ix}}{(x^2+4)^2+9x^2} dx \right].$$

Второй способ заключается в представлении синуса через мнимые экспоненты, а затем использовании леммы Жордана:

$$\int_{-\infty}^{+\infty} \frac{\sin x}{x^2 - 3ix + 4} dx = \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 - 3ix + 4} dx - \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{-ix}}{x^2 - 3ix + 4} dx =$$

$$= \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 - 3ix + 4} dx - \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + 3ix + 4} dx = \frac{2\pi i}{2i} \cdot \underset{z=4i}{\text{res}} \frac{e^{ix}}{x^2 - 3ix + 4} -$$

$$-\frac{2\pi i}{2i} \cdot \underset{z=i}{\text{res}} \frac{e^{ix}}{x^2 + 3ix + 4} = \frac{\pi i}{5} \left(\frac{1}{e} - \frac{1}{e^4} \right).$$

Т2 Используя равенство $\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$, вычислить интеграл $\int_{0}^{\infty} e^{-ix^{2}} dx$.

§16, №3 Вычислить приращение аргумента функции $f(z) = z^2 + 1$ вдоль ориентированной кривой γ , заданной в виде z(t) = x(t) + iy(t), где

$$x(t) = 5\cos t$$
, $y(t) = 2\sin t$, $t \in \left[0, \frac{\pi}{2}\right]$.

Pemenue. Используя логарифмическое свойство приращения аргумента функции вдоль кривой, получим:

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg(z+i)(z-i) = \Delta_{\gamma} \arg(z-i) + \Delta_{\gamma} \arg(z-(-i)).$$

Приращение $\Delta_{\gamma}\arg(z-i)$ представляет собой угол, который образуют два вектора: один с началом в точке i и концом в точке кривой γ при t=0 и второй с началом в точке i и концом в точке кривой γ при $t=\frac{\pi}{2}$, причем, так как кривая ориентирована, то этот угол необходимо взять с правильным знаком, соответствующим изменению параметра t от 0 до $\frac{\pi}{2}$. Кривая γ представляет собой эллипс, следовательно этот угол равен $\pi-\arctan 5$. Аналогично приращение $\Delta_{\gamma} \arg \left(z-(-i)\right)$ представляет собой угол, который образуют

два вектора: один с началом в точке -i и концом в точке кривой γ при t=0 и второй с началом в точке -i и концом в точке кривой γ при $t=\frac{\pi}{2},$ это приращение равно $\arctan 5.$ Складывая найденные приращения, получим ответ:

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg(z-i) + \Delta_{\gamma} \arg(z-(-i)) = \pi - \arctan 5 + \arctan 5 = \pi.$$

§16, №5 Вычислить приращение аргумента функции $f(z) = \frac{z^2 + 1}{z^2 - 4}$ вдоль ориентированной кривой γ , заданной в виде z(t) = x(t) + iy(t), где

$$x(t) = \cos t$$
, $y(t) = 2\sin t$, $t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

Решение. Используя логарифмическое свойство приращения аргумента функции вдоль кривой, получим:

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg \frac{(z-i)(z+i)}{(z-2)(z+2)} = \Delta_{\gamma} \arg(z-i) + \Delta_{\gamma} \arg \left(z-(-i)\right) - \Delta_{\gamma} \arg(z-2) - \Delta_{\gamma} \arg \left(z-(-2)\right).$$

Кривая γ представляет собой эллипс. Аналогично предыдущей задаче, найдем все приращения:

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg \frac{(z-i)(z+i)}{(z-2)(z+2)} = \Delta_{\gamma} \arg(z-i) + \Delta_{\gamma} \arg \left(z-(-i)\right) - \Delta_{\gamma} \arg(z-2) + \Delta_{\gamma} \arg \left(z-(-2)\right) =$$

$$= \pi + \pi - \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = 2\pi.$$

§16, №7 Вычислить приращение аргумента функции $f(z) = \frac{\operatorname{ch}^2 z}{z}$ вдоль ориентированной замкнутой кривой, задаваемой уравнением |x| + |y| = 3, при однократном ее обходе по часовой стрелке.

§17, №3 Существуют ли регулярные ветви в области $\mathbb{C}\setminus[-1,1]$ у многозначной функции $\operatorname{Ln}(z^2+z)$?

Peшение. Воспользуемся следующим критерием существования регулярных ветвей многозначной функции $\operatorname{Ln} f(z)$. Если функция $f:G\to\mathbb{C}$ регулярна и $f(z)\neq 0, \forall z\in G$, то для существования в области G регулярных ветвей многозначной функции $\operatorname{Ln} f(z)$ необходимо и достаточно, чтобы для любой замкнутой кусочно-гладкой кривой $\overset{\circ}{\gamma}\subset G$ выполнялось условие $\Delta_{\overset{\circ}{\gamma}}$ arg f(z)=0.

В качестве замкнутой кусочно-гладкой кривой $\stackrel{\circ}{\gamma} \subset G$ рассмотрим положительно ориентированную окружность радиуса R>1 с центром в нуле. Функция $f(z)=z(z+1)\neq 0$ и регулярна в области $\mathbb{C}\setminus [-1,1]$. Тогда

$$\Delta_{\stackrel{\circ}{\sim}} \arg f(z) = \Delta_{\stackrel{\circ}{\sim}} \arg z + \Delta_{\stackrel{\circ}{\sim}} \arg(z+1) = 2\pi + 2\pi = 4\pi \neq 0.$$

Следовательно, можно заключить, что у многозначной функции $\operatorname{Ln}(z^2+z)$ не существует регулярных ветвей в области $\mathbb{C}\setminus [-1,1]$ так как не выполнено необходимое условие существования регулярных ветвей многозначной функции $\operatorname{Ln} f(z)$.

§17, №4 Существуют ли регулярные ветви в области $\mathbb{C}\setminus[-1,1]$ у многозначной функции $\{\sqrt{z^2+z}\}$?

Peшение. Воспользуемся следующим критерием существования регулярных ветвей многозначной функции $\{\sqrt[n]{f(z)}\}$. Если функция $f:G\to\mathbb{C}$ регулярна и $f(z)\neq 0, \ \forall \ z\in G,$ то для существования в области G регулярных ветвей многозначной функции $\{\sqrt[n]{f(z)}\}$ необходимо и достаточно, чтобы для любой замкнутой кусочно-гладкой кривой γ существовало целое число $k(\gamma)$ такое, что Δ_{γ} arg $f(z)=2\pi n\cdot k(\gamma)$.

В качестве замкнутой кусочно-гладкой кривой $\stackrel{\circ}{\gamma} \subset G$ рассмотрим положительно ориентированную окружность радиуса R>1 с центром в нуле. Функция $f(z)=z(z+1)\neq 0$ и регулярна в области $\mathbb{C}\setminus [-1,1]$. Тогда

$$\Delta_{\mathring{\gamma}} \arg f(z) = \Delta_{\mathring{\gamma}} \arg z + \Delta_{\mathring{\gamma}} \arg(z+1) = 2\pi + 2\pi = 4\pi = 2\pi n \cdot k, \ k=2.$$

Следовательно, можно заключить, что у многозначной функции $\{\sqrt{z^2+z}\}$ существуют регулярные ветви в области $\mathbb{C}\setminus [-1,1]$ так как выполнено достаточное условие существования регулярных ветвей многозначной функции $\{\sqrt[n]{f(z)}\}$.

§17, №8 Существуют ли регулярные ветви в области $G=\mathbb{C}\setminus [0,+\infty)$ у многозначной функции $\{z^z\}$?

§18, №9 Пусть $\varphi(z)$ – регулярная ветвь многозначной функции $\{\sqrt[3]{1-z^2}\}$ в области G, удовлетворяющая условию $\varphi(0) = 1$. Найти значение $\varphi(-3)$ в случаях, когда область G:

1) Вся комплексная плоскость с разрезами по лучам $[1, +\infty]$ и $[-1, -1 + i\infty]$.

Чтобы найти значение регулярной ветви многозначной функции $\{\sqrt[n]{f(z)}\}$ в точке, воспользуемся следующим утверждением. Пусть в области G задана регулярная функция $f:G\to\mathbb{C}$ такая, что $f(z)\neq 0,\ \forall\ z\in G,$ если в области G существуют регулярные ветви $\varphi(z)\in\{\sqrt[n]{f(z)}\},$ то для любых точек $a,b\in G$ справедливо выражение

$$\varphi(b) = \varphi(a) \cdot \sqrt[n]{\left| \frac{f(b)}{f(a)} \right|} \cdot \exp\left(\frac{i}{n} \cdot \Delta_{\gamma_{ab}} \arg f(z)\right),$$

где γ_{ab} – произвольная, лежащая в области G кусочно-гладкая ориентированная кривая с началом в точке a и концом в точке b.

Функция $f(z)=1-z^2$ регулярна и не обращается в ноль области G, значит действительно можно воспользоваться сформулированным утверждением. В качестве кривой $\gamma_{ab}=\gamma$ рассмотрим полуокружность, находящуюся в нижней полуплоскости с центром в точке -1,5 и радиуса 1,5, эта кривая будет принадлежать области G и будет соединять точки a=0 и b=-3. Тогда

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg(1-z^2) = \Delta_{\gamma} \arg(z-1) + \Delta_{\gamma} \arg(z+1) = 0 + (-\pi) = -\pi.$$

По выписанной выше формуле найдем

$$\varphi(-3) = \varphi(1) \cdot \sqrt[3]{\left|\frac{f(-3)}{f(1)}\right|} \cdot \exp\left(\frac{i}{3}\Delta_{\gamma}\arg f(z)\right) = \sqrt[3]{8} \cdot \exp\left(-\frac{\pi i}{3}\right) = 1 - i\sqrt{3}.$$

3) Вся комплексная плоскость с разрезами по лучам $[1, 1-i\infty]$ и $[-1, -1-i\infty]$. Аналогично предыдущему пункту, воспользуемся формулой

$$\varphi(b) = \varphi(a) \cdot \sqrt[n]{\left| \frac{f(b)}{f(a)} \right|} \cdot \exp\left(\frac{i}{n} \cdot \Delta_{\gamma_{ab}} \arg f(z)\right).$$

Но теперь, так как область G другая, в качестве кривой $\gamma_{ab} = \gamma$ выберем полуокружность, находящуюся в верхней полуплоскости с центром в точке -1,5 и радиуса 1,5, эта кривая будет принадлежать области G и будет соединять точки a=0 и b=-3. Тогда изменение аргумента будет равно

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg(1 - z^2) = \Delta_{\gamma} \arg(z - 1) + \Delta_{\gamma} \arg(z + 1) = 0 + \pi = \pi.$$

Следовательно, искомое значение равно

$$\varphi(-3) = \varphi(1) \cdot \sqrt[3]{\left|\frac{f(-3)}{f(1)}\right|} \cdot \exp\left(\frac{i}{3}\Delta_{\gamma}\arg f(z)\right) = \sqrt[3]{8} \cdot \exp\left(\frac{\pi i}{3}\right) = 1 + i\sqrt{3}.$$

§18, №24 Пусть $\varphi(z)$ – регулярная ветвь многозначной функции Ln z в области, изображенной на рисунке 1, удовлетворяющая условию $\varphi(1)=0$. Найти $\varphi'(2)$. Разложить функцию $\varphi(z)$ в ряд Тейлора в окрестности точки z=-3 по степеням z+3.

Рис. 1

Peшение. Для нахождения значения $\varphi'(2)$ не важно, на какой именно ветви многозначной функции $\operatorname{Ln} z$ мы находимся, так как для всех ветвей функции $\operatorname{Ln} f(z)$ производная вычисляется одинаково:

$$\left(\operatorname{Ln} f(z)\right)' = \frac{f'(z)}{f(z)} \Rightarrow (\operatorname{Ln} z)' = \frac{1}{z} \Rightarrow \varphi'(2) = \frac{1}{2}.$$

Чтобы найти разложение в ряд Тейлора функции $\varphi(z)$ в окрестности точки z=-3 по степеням z+3, сперва разложим $\varphi'(z)$, так как эту функцию мы уже нашли:

$$\varphi'(z) = \frac{1}{z} = \frac{1}{-3 + (z+3)} = -\frac{1}{3} \cdot \frac{1}{1 - \frac{z+3}{3}} = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{(z+3)^n}{3^n} = -\sum_{n=0}^{\infty} \frac{(z+3)^n}{3^{n+1}}.$$

Полученный ряд сходится при |z+3| < 3, то есть область сходимости представляет собой круг радиуса 3 с центром в точке -3. В круге сходимости можно почленно проинтегрировать ряд, тогда получим:

$$\varphi(z) = C - \sum_{n=0}^{\infty} \frac{(z+3)^{n+1}}{3^{n+1}(n+1)} \Rightarrow C = \varphi(-3).$$

Чтобы найти значение регулярной ветви многозначной функции $\operatorname{Ln} f(z)$ в точке, воспользуемся следующим утверждением. Пусть в области G задана регулярная функция $f:G\to\mathbb{C}$ такая, что $f(z)\neq 0, \ \forall \ z\in G,$ если в области G существуют регулярные ветви $\varphi(z)\in\operatorname{Ln} f(z),$ то для любых точек $a,b\in G$ справедливо выражение

$$\varphi(b) = \varphi(a) + \ln \left| \frac{f(b)}{f(a)} \right| + i \cdot \Delta_{\gamma_{ab}} \arg f(z),$$

где γ_{ab} — произвольная, лежащая в области G кусочно-гладкая ориентированная кривая с началом в точке a и концом в точке b.

Выберем в качестве кривой $\gamma_{ab}=\gamma$ лежащей в заданной области и соединяющей точки a=1 и b=-3 спираль. Тогда

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg z = 3\pi \Rightarrow \varphi(-3) = \ln 3 + 3i\pi.$$

Следовательно, искомое разложение имеет вид

$$\varphi(z) = \ln 3 + 3i\pi - \sum_{n=1}^{\infty} \frac{(z+3)^n}{3^n n}.$$

При этом стоит отметить, что функция $\varphi(z)$ совпадает с найденным рядом не во всем круге сходимости ряда, а на меньшей области.

§18, №25 Пусть g(z) – регулярная ветвь многозначной функции $\{\sqrt[3]{z}\}$ в области, изображенной на рисунке 1, такая, что g(-1) = -1. Найти g(-2) и g'(-3). Разложить g(z) в ряд Тейлора в окрестности точки z = 2 по степеням z - 2.

Решение. По формуле для нахождения значения регулярной ветви многозначной функции $\{\sqrt[n]{f(z)}\}$ в точке найдем:

$$g(b) = g(a) \cdot \sqrt[n]{\left|\frac{f(b)}{f(a)}\right|} \cdot \exp\left(\frac{i}{n} \cdot \Delta_{\gamma_{ab}} \arg f(z)\right) \Rightarrow g(-2) = -\sqrt[3]{2}e^{\frac{2\pi i}{3}},$$

здесь γ_{ab} – кривая, лежащая в заданной в условии области и соединяющая точки a=-1 и b=-2, а f(z)=z.

Найдем занчение производной функции g(z) в точке -3:

$$g'(-3) = \frac{f'(-3)}{3g^2(-3)} = \frac{1}{3\sqrt[3]{9}}e^{-\frac{8\pi i}{3}}.$$

Далее разложим функцию g(z) в ряд Тейлора в окрестности точки z=2 по степеням z-2:

$$\begin{split} g(z) &= \sqrt[3]{z} = \sqrt[3]{2 + (z - 2)} = \sqrt[3]{2} \cdot \sqrt[3]{1 + \frac{z - 2}{2}} = \\ &= g(2) \cdot \sum_{n=0}^{\infty} C_{1/3}^{n} \frac{(z - 2)^{n}}{2^{n}} = -\sqrt[3]{2} e^{i\pi} \cdot \sum_{n=0}^{\infty} C_{1/3}^{n} \frac{(z - 2)^{n}}{2^{n}}. \end{split}$$

§18, №27 Пусть g(z) – регулярная ветвь многозначной функции $\{\sqrt[4]{z}\}$ в плоскости с разрезом по лучу $[0, +\infty)$ такая, что $g(1+i\cdot 0)=1$. Найти $g(1-i\cdot 0), g(16-i\cdot 0), g(-16), g'(-16), g''(-16)$.

Решение. Используя формулу для вычисления значения регулярной ветви многозначной функции $\{\sqrt[n]{f(z)}\}$ в точке, получим:

$$g(1-i\cdot 0) = \exp\left(\frac{2\pi i}{4}\right) = i, \quad g(16-i\cdot 0) = \sqrt[4]{16} \exp\left(\frac{2\pi i}{4}\right) = 2i.$$

$$g(-16) = \sqrt[4]{16} \exp\left(\frac{\pi i}{4}\right) = 2 \exp\left(\frac{\pi i}{4}\right) = \sqrt{2} + i\sqrt{2}, \quad g'(-16) = \frac{1}{4g^3(-16)} = \frac{1}{32} \exp\left(-\frac{3\pi i}{4}\right).$$

$$g''(z) = \left(g'(z)\right)' = -\frac{3}{4} \cdot \frac{g'(z)}{g^4(z)} \Rightarrow g''(-16) = -\frac{3}{4} \cdot \frac{1}{32} \exp\left(-\frac{3\pi i}{4}\right) \cdot \frac{1}{16}e^{-\pi i} = \frac{3}{2^{11}} \exp\left(-\frac{3\pi i}{4}\right).$$

§18, №36 Пусть h(z) – регулярная ветвь многозначной функции Ln(2-z) в комплексной плоскости с разрезом по кривой $z=2e^{it},\ 0\leq t\leq \frac{3\pi}{2},$ и лучу $z=-2i+t,\ t\geq 0,$ такая, что Im h(-3)=0. Вычислить $h(-2-0),\ h(-2+0),\ h(2+i),\ h'(0).$ Разложить функцию h(z) в ряд Тейлора с центром в точке z=-1 и найти радиус сходимости этого ряда. Нарисовать наибольшую область, в которой ряд сходится к функции h(z).

Peшeнue. Так как для $h(z) \in \operatorname{Ln} f(z)$ верно

$$h(z) = \ln |f(z)| + i(\arg f(z) + 2\pi k),$$

то, используя условие ${\rm Im}\,h(-3)=0,$ найдем значение k, которое определяет конкретную ветвь функции ${\rm Ln}(z-2)$

$$\operatorname{Im} h(-3) = \operatorname{Im} \left(\ln 5 + i (\arg 5 + 2\pi k) \right) = \arg 5 + 2\pi k = 2\pi k = 0 \Rightarrow k = 0,$$

следовательно

$$h(-3) = \ln|f(-3)| + i(\arg f(-3) + 2\pi k) = \ln 5 + i \cdot (0 + 2\pi \cdot 0) = \ln 5.$$

Далее, аналогично предыдущим номерам, используя формулу для нахождения значения регулярной ветви многозначной функции $\operatorname{Ln} f(z)$ в точке, получим:

$$h(-2-0) = \ln 5 + \ln \left(\frac{4}{5}\right) + i \cdot 0 = \ln 4, \quad h(-2+0) = \ln 5 + \ln \left(\frac{4}{5}\right) + i \cdot (-2\pi) = \ln 4 - 2\pi i.$$

$$h(2+i) = \ln 5 + \ln \left(\frac{1}{5}\right) + i \left(-\frac{\pi}{2}\right) = -\frac{\pi}{2}i, \quad h'(0) = -\frac{1}{2-z}\Big|_{z=0} = -\frac{1}{2}.$$

Разложим h(z) в ряд Тейлора в окрестности точки z = -1:

$$\operatorname{Ln}(2-z) = \operatorname{Ln}\left(3 - (z+1)\right) = \operatorname{Ln} 3 + \operatorname{Ln}\left(1 - \frac{z+1}{3}\right) = h(3) + \operatorname{Ln}\left(1 - \frac{z+1}{3}\right) =$$

$$= \ln 3 - 2\pi i - \sum_{n=1}^{\infty} \frac{(z+1)^n}{3^n \cdot n}.$$

Ряд сходится при $\left| \frac{z+1}{3} \right| < 1$, значит радиус сходимости равен R=3.

§18, №37 Пусть g(z) – регулярная ветвь многозначной фукнции $\{\sqrt[3]{z(2-z)^2}\}$ в плоскости с разрезом по отрезку [0,2], такая, что $g(1+i\cdot 0)=1$. Найти $g(1-i\cdot 0),\ g(-3),\ g'(3)$. Разложить g(z) в ряд Лорана по степеням z в окрестности точки $z=\infty$.

Решение. Выпишем а общем виде приращение аргумента функции $f(z) = z(2-z)^2$:

$$\Delta_{\gamma} \arg f(z) = \Delta_{\gamma} \arg z + 2\Delta_{\gamma} \arg(z-2).$$

Далее найдем

$$g(1 - i \cdot 0) = 1 \cdot 1 \cdot \exp\left(\frac{2\pi i}{3}\right) = \exp\left(\frac{2\pi i}{3}\right), \quad g(-3) = \sqrt[3]{75} \exp\left(\frac{\pi i}{3}\right).$$
$$g'(z) = \frac{\left(z(2 - z)^2\right)'}{3g^2(z)} \Rightarrow g'(3) = \frac{1 + 6}{\sqrt[3]{9}e^{-\frac{4\pi i}{3}}} = \frac{7\sqrt[3]{3}}{9} \exp\left(\frac{4\pi i}{3}\right).$$

§18, №38 Пусть h(z) – регулярная ветвь многозначной функции $\ln \frac{z+1}{z-3}$ в плоскости с разрезом по отрезку [-1,3], такая, что $h(1+i\cdot 0)=0$. Найти $h(1-i\cdot 0),\ g(2),\ g'(-3)$. Разложить h(z) в ряд Тейлора с центром в точке z=5 и в ряд Лорана по степеням z в окрестности точки $z=\infty$. Найти области сходимости этих рядов.

§18, №46 Пусть g(z) – регулярная ветвь многозначной фукнции $\{\sqrt[6]{z^4+4}\}$ в плоскости с разрезами по лучам $\{z\mid z=i+t,t\geq 1\}$ и $\{z\mid z=-i+t,t\leq 1\}$, выделяемая условием $g(\sqrt{2}i)=-\sqrt{2}$. Найти g(0). Разложить g(z) в ряд Тейлора с центром в точке z=0 и найти радиус сходимости этого ряда. Вычислить отношение суммы ряда к g(z) при $z=-\frac{6}{5}i$.

Т3 Доказать, что функция

$$F(z) = \int_{-\infty}^{+\infty} e^{-\frac{t^2}{z}} dt, \operatorname{Re} z > 0$$

является регулярной ветвью многозначной функции $\{\sqrt{\pi z}\}$. Разложить F(z) в ряд Тейлора в окрестности точки $z_0=1$ и указать радиус сходимости этого ряда.

§19, №1(4) Для всех регулярных в области $G = \{z : |z| > 1\}$ ветвей $g_k(z) \in \{\sqrt{4z^2 + 4z + 3}\}$ вычислить интеграл по положительно ориентированной границе ∂G области G

$$\oint_{\partial G} \frac{dz}{g_k(z)}.$$

Peшение. Точки ветвления функции g(z) – это нули квадратного трехчлена, то есть точки

$$4z^2 + 4z + 3 = 0 \Rightarrow z = -\frac{1}{2} \pm \frac{\sqrt{2}}{2}i \in G.$$

Внутри единичного круга в цетром в нуле есть точки ветвления функции g(z), то есть есть особенности неоднозначного характера. Значит, для вычисления интегралов по замкнутому контуру от регулярных ветвей функции $\{\sqrt{4z^2+4z+3}\}$ необходимо вычислять вычеты вне этого круга, то есть в области G.

Так как заданая функция является квадратным корнем, то у нее существует равно две регулярные ветви, отличающиеся лишь знаком. Рассмотрим эти ветви на действительной оси при x>1:

$$g_1(x) = \sqrt{4x^2 + 4x + 3}, \quad g_2(x) = -\sqrt{4x^2 + 4x + 3}.$$

Сперва рассмотрим функцию $g_1(z)$. Ввиду того, что в области G у обеих ветвей нет никаких особенностей, то, по теореме Коши о вычетах:

$$\oint_{\partial G} \frac{dz}{g_1(z)} = -2\pi i \cdot \operatorname{res}_{\infty} \frac{1}{g_1(z)} = 2\pi i \cdot c_{-1},$$

где c_{-1} – коэффициент при $\frac{1}{z}$ в разложении $\frac{1}{g_1(z)}$ в ряд Лорана. Разложим функцию $\frac{1}{g_1(x)}$ в ряд Тейлора при $x\to +\infty$:

$$\frac{1}{g_1(x)} = \frac{1}{\sqrt{4x^2 + 4x + 3}} = \frac{1}{2x} \left(1 + \frac{1}{x} + \frac{3}{4x^2} \right)^{-\frac{1}{2}} = \frac{1}{2x} \cdot \left(1 - \frac{1}{2x} + \dots \right) = \frac{1}{2} \cdot \frac{1}{x} + \dots$$

В силу теоремы единственности, получим, что коэффициент при $\frac{1}{z}$ в разложении функции $\frac{1}{q_1(z)}$ в ряд Лорана в области G равен $\frac{1}{2}$. Значит

$$\oint_{\partial G} \frac{dz}{g_1(z)} = -2\pi i \cdot \operatorname{res}_{\infty} \frac{1}{g_1(z)} = 2\pi i \cdot c_{-1} = \pi i.$$

Так как функция $g_2(z)$ отличается от $g_1(z)$ только знаком, то, проведя аналогичные рассуждения, получим:

$$\oint_{\partial G} \frac{dz}{g_2(z)} = -2\pi i \cdot \operatorname{res}_{\infty} \frac{1}{g_2(z)} = 2\pi i \cdot c_{-1} = -\pi i.$$

§19, №8 Пусть g(z) – регулярная ветвь многозначной функции $\operatorname{Ln}(z+5)$ в комплексной плоскости с разрезом по кривой $\left\{z\mid z=5e^{it}, -\frac{\pi}{2}\leq t\leq\pi\right\}$ и лучу $\{z\mid z=-5i-t, t\geq 0\},$ такая, что $\operatorname{Im} g(6)=-2\pi.$ Вычислить интеграл

$$\oint_{|z|=4,5} \frac{g(z)}{z^2(z+4)} dz.$$

§19, №11 Пусть g(z), $g(0) = \ln 4 - i\pi$, – регулярная ветвь многозначной функции $\operatorname{Ln}(z-4)$ в плоскости с разрезом по отрезку [3,4] и лучу $\{z \mid z=3+it, 0 \leq t < +\infty\}$. Вычислить интеграл

$$\oint_{|z-7|=2.5} \frac{zg(z)}{(z-6)(z-5)} dz.$$

§19, №24 Пусть g(z) – регулярная ветвь многозначной функции $\{\sqrt{2z^2+1}\}$ в плоскости с разрезом по дуге $\{z:|z|=\frac{1}{\sqrt{2}},\operatorname{Re} z\geq 0\}$ такая, что g(0)=1. Вычислить интеграл

$$\oint_{|z-7|=2.5} \frac{zdz}{(z+2)(g(3)+3)}.$$

Решение.

§19, №25 Пусть g(z) — регулярная ветвь многозначной функции $\ln \frac{2i-z}{2i+z}$ в плоскости с разрезом по дуге $\{z: |z|=2, \operatorname{Re} z \leq 0\}$ такая, что $g(2)=\frac{\pi i}{2}$. Вычислить интеграл

$$\oint_{|z|=3} \frac{dz}{(z+4i)(3g(z)+2\pi i)}.$$

§19, №42 Пусть h(z) – регулярная ветвь многозначной функции $\ln \frac{3+z}{iz-3}$ в плоскости с разрезом по кривой $\gamma = \left\{z: |z| = 3, -\frac{\pi}{2} \leq \arg z \leq \pi \right\}$ такая, что $h(\infty) = -\frac{5}{2}\pi i$. Вычислить интеграл $\oint\limits_{|z|=1} \frac{dz}{(h^2(z)+\pi^2)^2}.$

§19, №46 Пусть h(z) – регулярная ветвь многозначной функции $\operatorname{Ln}(z^2-1)$ в комплексной плоскости с разрезом по кривой $\gamma = \gamma_1 \cup \gamma_2$, где $\gamma_1 = \{z : |z| = 1, -\pi \leq \arg z \leq 0\}$ и $\gamma_2 = \{z : \operatorname{Im} z = 0, \operatorname{Re} z \geq 1\}$, причем $\operatorname{Im} h(-2i) = 3\pi$. Вычислить интеграл

$$\oint_{|z-3i|=22/7} z \left(\frac{h(z)}{h(z)-\pi i}\right)^2 dz.$$

§19, №47 Пусть g(z) – регулярная ветвь многозначной функции $\{\sqrt[4]{z^2-1}\}$ в комплексной плоскости с разрезом по кривой $\gamma=\gamma_1\cup\gamma_2$, где $\gamma_1=\{z:|z|=1,\pi\leq\arg z\leq 2\pi\}$ и $\gamma_2=\{z:\operatorname{Im} z\leq -1,\operatorname{Re} z=0\}$, причем $g(2)=\sqrt[4]{3}$. Вычислить интеграл

$$\oint_{|z-i|=5/4} z \left(\frac{g(z)}{g(z) - e^{\pi i/4}} \right)^2 dz.$$

§23, №5 Вычислить интегралы:

3)
$$\int_{0}^{1} \frac{dx}{(x-3)^2 \sqrt{x-x^2}}$$
.

5)
$$\int_{0}^{5} \frac{\sqrt[4]{x(5-x)^{7}}}{x^{2}-5x-6} dx.$$

§23, **№**6 Вычислить интегралы:

$$3) \int_{0}^{+\infty} \frac{\sqrt{x} \ln x}{x^2 + 1} dx.$$

$$7) \int_{0}^{+\infty} \frac{dx}{\sqrt[5]{x(x+1)^2}}.$$

8)
$$\int_{2}^{+\infty} \frac{\ln(x-2)}{(x^2-1)\sqrt{x-2}} dx$$
.

§23, №7 Вычислить интегралы:

$$1) \int\limits_{0}^{+\infty} \frac{\ln x}{(x+1)^2} dx.$$

$$7) \int_{0}^{+\infty} \frac{\ln x}{x^2 - 1} dx.$$

§15, №1 Найти число корней уравнений в указанных областях:

2)
$$2z^4 - 5z + 2 = 0$$
, $\{z : |z| < 1\}$.

3)
$$z^7 - 5z^4 + z^2 - 2 = 0$$
, $\{z : |z| < 1\}$.

7)
$$z^6 - 6z + 10 = 0$$
, $\{z : |z| > 1\}$.

8)
$$z^4 + z^3 - 4z + 1 = 0$$
, $\{z : 1 < |z| < 2\}$.

§15, №4 — Доказать, что при $\lambda > 1$ уравнение $z = \lambda - e^{-z}$ имеет в верхней полуплоскости $\{z \mid \operatorname{Re} z \geq 0\}$ ровно один корень (и к тому же действительный).

Т4 Найти число корней многочлена $2z^6 + 2z^3 - 5z - 2$ в круге |z| < 1.

Т5 Применяя теорему Руше и теорию вычетов, вычислить интеграл

$$\oint\limits_{|z|=1} z^6 \left(\frac{1}{3z^4 + z + 1} \right) dz.$$

5 Третье задание

§26, №3 Пусть $n \ge 2$ – целое число, а α – произвольное действительное число. Доказать, что отображение $z^n + ne^{i\alpha}z$ конформно в круге $\{z: |z| < 1\}$.

§26, №4 Доказать, что отображение $z^2 + az$ конформно в полуплоскости $\{z \mid \text{Im } z > 0\}$ в том и только том случае, когда выполняется неравенство $\text{Im } a \geq 0$.

§26, №10 Доказать, что для конформности квадратного трехчлена $az^2 + bz + c$ в выпуклой области D необходимо и достаточно, чтобы этот трехчлен был конфорным в каждой точке области D (воспользоваться тем, что что середина отрезка, соединяющего любые две точки области D, также лежит в области D).

§27, №3(2) Найти образ круга $\{z: |z-1| < 2\}$ при отображении $w = \frac{2iz}{z+3}$.

Доказательство. Заданное отображение является дробно-линейным, значит образ границы заданной области будет прямая или окружность. Рассмотрим три точки на границе области: $z_1 = -1, z_2 = 3$ и $z_3 = 1 - 2i$. Образами этих точек будут точки

$$w_1 = w(z_1) = -i$$
, $w_2 = w(z_2) = i$, $w_3 = w(z_3) = 1$.

Следовательно, граница новой области – окружность радиуса 1 с центром в точке 0. Чтобы выяснить, какая именно область с найденной границей будет ответом (внутренность или внешность круга), рассмотрим точку, лежащую внутри заданной области, например $z_4 = 0$, тогда точка $w_4 = w(z_4) = 0$ лежит внутри круга, а значит искомый образ круга $\{z : |z-1| < 2\}$ – это множество $\{w : |w| < 1\}$.

§27, №6(2) Найти дробно-линейную функцию w(z), удовлетворяющую условию w(0)=0, w(1+i)=2+2i, w(2i)=4. Найти образ круга $\{z:|z-i|<1\}$ при отображении, которое задается этой функцией.

§27, №7(3) Отыскать дробно-линейную функцию w(z), удовлетвоющую условиям $w(i) = -2, w(\infty) = 2i, w(-i) = 2$. Найти образ полуплоскости $\{z \mid \text{Re } z > 0\}$ при отображении, которое задается этой функцией.

§27, №8 Найти функцию w(z), конформно отображающую область D на область D_1 и удовлетворяющую указанным условиям:

- 2) $D = \{z : |z| < 1\}, D_1 = \{w : |w| < 1\}, w(z_0) = w_0, \arg w'(z_0) = \alpha \ (|z_0| < 1, |w_0| < 1).$
- 4) $D = \{z : |\operatorname{Im} z| > 0\}, D_1 = \{w : |w| < 1\}, w(z_0) = w_0, \arg w'(z_0) = \alpha \ (\operatorname{Im} z_0 > 0, |w_0| < 1).$

§27, №9(2) Найти общий вид конформного отображения области $\{z: |z-5| > 4, \operatorname{Re} z > 0\}$ на кольцо $\{w: 1 < |w| < R\}$.

§28, №5

§28, №10

§28, №12

§28, №13

§28, №19

§28, №20

§29, №3

§29, №4

§29, №5

Т1 Решить классическую задачу Дирихле в единичном крге с заданным граничным условием:

a)
$$\Delta u = 0$$
, $u(e^{i\theta}) = \frac{\sin \theta}{5 + 4\cos \theta}$.

6)
$$\Delta u = 0, \ u(e^{i\theta}) = \frac{4 + 5\cos\theta}{(5 + 4\cos\theta)^2}.$$

Т2 Решить общую задачу Дирихле в области $G = \{z: |z| < 1, \operatorname{Im} z > 0\}$ с заданным граничным условием:

$$\Delta u=0, z\in G; \quad u\big|_{\mathrm{Im}\,z=0}=0, u\big|_{|z|=1}=1.$$

Список литературы

- [1] М.И. Шабунин, Е.С. Половинкин, М.И. Кралов. Сборник задач по теории функций комплексного переменного. Москва: Бином, 2006. (все номера задач указаны по этой книге).
- [2] М.И Карлов. Курс видеолекций «Теория функций комплексного переменного». https://mipt.lectoriy.ru/course/Maths-ComplexAnalysis-13L.