(given x=(x, x2) is a random vector where x, x2 are both independent and have uniform distribution over (-1,1) $P(1|x||<1) = \int P(x_1=x_1) P(1|x_2| \leq \sqrt{1-x_1^2}) dx,$ X,2+X2 =1 X2 = 1 - x,2 Now M, E[-1, 1) 1x21 = 11-x2 and [1-x,2 E[-1,1] Thus P(x=x,)=1/2 P(\(\int_{-\pi_1} = \pi_2 \) = \(\frac{1}{1-\pi_1 2}\) = \(\frac{1}{2}\) \(\frac{1}{1-\pi_1 2}\) $= \int_{2}^{1} \sqrt{|x|} \sqrt{1-x^2} dx$ b) Let 8 = (11×11 < 1). S=0 nohen 11XII 71 s=1 nohen ||x|| \le 1 Thus sis a bernoulli Rondom variable with parameter T1/4 In simulation we generate data samples X = (X, X2) T We find the number of x for which 11x11 £1. S = 1 for these data points The maximum likelihood estimate of the perobability = 58i For large N Thus pm= = 17/4

N	Estimate of Th
101	2.0000
105	3.2400
103	3. 24 40
104	3.12 28
105	3.1397
106	3. 1421
107	3.1418
108	3,1717

It is not possible to handle 109 amont of memory in matlab. We can divide the sample into 2010

sets of size 108 and then own a simulation

to find the number of xis such [xi][]. For each

set not calculate a maximum likelihood estimates

set not calculate a maximum likelihood estimates

and then take the average of all of them.

Basically we handle 108 values in memory at a

Yes owle code framelles this.

A= 450 ~ 4 Gr (H, C) = Gr (4P, 16P(1-P))

where H = E(s) = P $\sigma = Var(s) = P(1-P)$

the econge (H-1960, H+1960) neith probability

0.95 using lookup tables.

erange (+- 0,010, 0 ++0.0)0

$$0.01 = \left(\frac{16 \, \text{P(1-b)}}{N} \right) \cdot 1.96$$

$$p = 7/4$$

$$16 \left(\frac{17}{4} \right) \left(1 - \frac{17}{4} \right) * \frac{1}{N} = \frac{1}{196}$$

$$\frac{(7C)(4-7C)}{N} = \frac{1}{(196)^2}$$

$$N = (7C)(4-7C)(196)^2$$

$$N \approx 103600$$
Using this for simulation
$$p \hat{i} = 3.1392$$

(60)60 (00)60

The season with a single to the season of th

The said to be of the first and the said the