Variational Inference (Contd) and Some Recent Advances

CS698X: Topics in Probabilistic Modeling and Inference
Piyush Rai

Plan

- Some properties of VI
- VI for non-conjugate models
- Some recent advances in VI

Some Properties of VB

lacktriangle Recall that VB approximates a posterior p by finding q that minimizes $\mathrm{KL}(q||p)$

$$\mathsf{KL}(q||p) = \int q(\mathsf{Z}) \log \left[rac{q(\mathsf{Z})}{p(\mathsf{Z}|\mathsf{X})}
ight]$$

- ullet q(Z) will be small where p(Z|X) is small otherwise KL will blow up
- Thus $q(\mathbf{Z})$ avoids low-probability regions of the true posterior

■ Some methods, e.g., Expectation Propagation (EP), can avoid this behavior

CS698X: TPMI

ELBO for Model Selection

- Recall that ELBO is a <u>lower bound</u> on log of model evidence $\log p(X|m)$
- lacktriangle Can compute ELBO for each model m and choose the one with largest ELBO

Plot of the variational lower bound \mathcal{L} versus the number K of components in the Gaussian mixture model, for the Old Faithful data, showing a distinct peak at K=2 components. For each value of K, the model is trained from 100 different random starts, and the results shown as '+' symbols plotted with small random horizontal perturbations so that they can be distinguished. Note that some solutions find suboptimal local maxima, but that this happens infrequently.

Each value of *K* represents a different model

Can thus measure the tradeoff between model's fit to the data vs the model's complexity

- ullet For GMM, unlike likelihood, ELBO doesn't monotonically increase with K
 - Also true for other models; increasing complexity increases likelihood monotonically but not ELBO
- Some criticism since we are using a lower-bound but often works well in practice

VI and Convergence

- VI is guaranteed to converge to a local optima (just like EM)
- Therefore proper initialization is important (just like EM)
 - Can sometimes run multiple times with different initializations and choose the best run

- ELBO increases monotonically with iterations
 - Can thus monitor the ELBO to assess convergence

Variational Inference and Expectation Maximization

- VI can be seen as a generalization of the EM algorithm
- lacktriangle In VI, there is no distinction between parameters $m{\Theta}$ and latent variables $m{Z}$
 - lacktriangle Also recall that EM finds CP of $oldsymbol{Z}$ and point estimate for $oldsymbol{\Theta}$
 - VI treats all unknowns identically and infers posterior for all
- VI can be used within an EM algorithm if the E step is intractable
- E step is intractable if the CP of latent variables given params is intractable
- This version of EM is known as Variational EM (VEM)
- If we only care about point estimates of the parameters, VEM is widely used if the CP of latent variables is intractable

S698X: TPM

Scalable VI using Mean-field

+

Local Conjugacy

+

Stochastic Optimization

(Stochastic Variational Inference)

Stochastic Variational Inference (SVI)

- An "online" algorithm[†] to speed-up VI for LVMs with local and global variables
- Recall the mean-field VI updates $(q(\beta, \mathbf{Z}) = q(\beta|\lambda) \prod_{n=1}^{N} q(\mathbf{z}_n|\phi_n))$ for such models

```
Nat. param of CP of \mathbf{z}_n Global var. params \phi_n = \mathbb{E}_{\lambda} \left[ \eta(\mathbf{x}_n, \boldsymbol{\beta}) \right] Vn and \lambda = \left[ \alpha_1 + \sum_{n=1}^{N} \mathbb{E}_{\phi_n} [t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + N \right] Slow; requires all local var params \phi_n is to be computed already \phi_n = \mathbb{E}_{\lambda} \left[ \hat{\alpha}(\mathbf{X}, \mathbf{Z}) \right]
```

- lacktriangle SVI uses minibatches to make the global param λ updates more efficient
 - 1. Initialize λ randomly as $\lambda^{(0)}$ and set current iteration number as i=1
 - 2. Set the learning rate (decaying as) as $\epsilon_i = (i+1)^{-\kappa}$ where $\kappa \in (0.5,1]$
 - 3. Choose a data point n uniformly randomly, i.e., $n \sim \text{Uniform}(1,2,...,N)$ minibatch size = 1
 - 4. Compute local var. param ϕ_n for data point \mathbf{x}_n as $\phi_n = \mathbb{E}_{\lambda^{(i-1)}}[\eta(\mathbf{x}_n, \boldsymbol{\beta})]$
 - 5. Update λ as $\lambda^{(i)} = (1 \epsilon_i)\lambda^{(i-1)} + \epsilon_i\lambda_n$ where $\lambda_n = [\alpha_1 + \mathbb{E}_{\phi_n}[t(\mathbf{x}_n, \mathbf{z}_n)], \alpha_2 + 1]^\top = \mathbb{E}_{\phi_n}[\hat{\alpha}(\mathbf{x}_n, \mathbf{z}_n)]$
 - 6. Set i = i + 1. If ELBO not converged, go to Step 2

CS698X: TPMI

What is SVI Doing?

- SVI updates the global var params λ using stochastic optimization[†] of the ELBO
- However, Instead of usual gradient of ELBO w.r.t. λ , SVI uses the natural gradient
- lacktriangle Denoting the double derivative of the log-partition function of CP of eta as A''

Usual gradient:
$$\nabla_{\lambda}\mathsf{ELBO} = A''(\lambda)(\mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X},\mathbf{Z})] - \lambda)$$
 If interested in the proof, can see the derivation in the SVI paper

Natural gradient:
$$g(\lambda) = A''(\lambda)^{-1} \times \nabla_{\lambda} \mathsf{ELBO} = \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] - \lambda$$

Note: $A''(\lambda)$ is cov. of suff-stats of CP of β and $A''(\lambda)^{-1}$ is the Fisher information matrix

- Using the natural gradient has some nice advantages
 - lacktriangle Nat. grad. based updates of λ have simple form + easy to compute (no need to compute $A^{\prime\prime}$)

$$\lambda^{(i)} = \lambda^{(i-1)} + \epsilon_i g(\lambda)|_{\lambda^{(i-1)}} = (1 - \epsilon_i)\lambda^{(i-1)} + \epsilon_i \mathbb{E}_{\phi}[\hat{\alpha}(\mathbf{X}, \mathbf{Z})] \quad \text{(assuming full batch)}$$

■ Natural grad. are more intuitive/meaningful: Euclidean distance isn't often meaningful when used to compute distance between parameters of probability distributions, e.g., $q(\beta|\lambda)$ and $q(\beta|\lambda')$

CS698X: TPMI

SVI: Some Comments

lacktriangle Often operates on minibatches: For iteration i minibatch \mathcal{B}_i , update λ as follows

Global var. param computed on this minibatch
$$\hat{\lambda} = \frac{1}{|\mathcal{B}_i|} \sum_{n \in \mathcal{B}_i} \lambda_n$$
 Now blending with the older estimate of λ from iteration $i-1$
$$\lambda^{(i)} = (1-\epsilon_i)\lambda^{(i-1)} + \epsilon_i \hat{\lambda}$$

- Decaying learning rate ϵ_i is necessary for convergence (need $\sum_i \epsilon_i = \infty$ and $\sum_i \epsilon_i^2 < \infty$)
- SVI successfully used on many large-scale problems (topic modeling, citation network analysis, etc). Much faster convergence (and better results) compared to batch VI

Coming Up Next

- VI for non-conjugate models
 - Some model-specific tricks
 - Black-box VI (BBVI) for general purpose VI
 - Reparametrization Trick for general purpose VI
- Other recent advances in VI
 - Automatic Differentiation VI
 - Amortized VI
 - Structured VI

