



# 3大人

Python 기초



## 수업 순서

01

#### 데이터 타입

여려가지 데이터 타입을 배웁니다.

02

#### 산술 연산자로 데이터를 변형

산술 연산자로 여려가지 데이터들을 변형 시킵니다.

03

#### 논리 연산자로 데이터 조건을 구성

논리 연산자로 데이터에 조건을 구성합나디.

### 데이터 타입

```
1  string = "Hello World!"
2  number_int = 1234
3  number_float = 3.14
4  void = None
5  arr = [0, 1, 2, 3, 4, 5]
6  dic = {
7    1 : "1",
8    "2" : 1
9 }
```

#### 데이터 타입

#### 데이터 타입이란?

데이터 타입이란, 데이터의 형태(데이터의 특성) 구분하는 것이며, 숫자, 문자와 같이 서로 특성이 다른 데이터들을 구분할 수 있게 하는 표시가 데이터 타입이다.





### 데이터 타입

데이터 타입1

정수

소수점 이 없는 수를 나타낸다

데이터 타입3

문자열

문자가 들어간 데이터를 나타낸다.

데이터 타입2

실수

소수점이 있는 수를 나타내며 수학의 실수 개념과는 살짝 다르다.

데이터 타입4

리스트

여려가지 데이터 원소를 저장한 공간을 나타낸다.





### 데이터 타입

#### 데이터 타입5

#### 딕셔너리

리스트처럼 데이터 원소를 저장할 수 있는 공간이지만 저장 방식이 다르다

#### 데이터 타입7

#### 튜플

리스트의 하위호환이며 인덱싱은 가능하나 원소 변형은 불가능하다

#### 데이터 타입6

#### NULL(NONE)

없음, 알 수 없음이라는 형태의 데이터이며 데이터끼리 상호작용 하기 어렵다.

### 산술 연산자로 데이터를 변형

```
11    string += " Goobye, World < ): >"
12    number_int += 1
13    number_float -= 3
14    number_float += 3
15    arr[-1] = "5"
16    dic["Hello Python!"] = "Hello, Agent!"
```

데이터 타입

산술 연산자로 데이터를 변형

1+1은 2로 변하듯이 산술 연산자는 데이터를 변형시키는데 유용한 연산자이다.



### 산술 연산자로 데이터를 변형

1

#### 등호

- 데이터를 특정한 데이터로 바 꿔 버릴 수 있다.
- 거의 모든 데이터에 적용이 가능하다.

2

#### 감소

- 데이터에 특정한 데이터 만큼 줄일 수 있다.
- 감소는 리스트, 딕셔너리, 문자 열을 제외한 정수와 실수에만 적용된다.

#### STEP.03

#### 증가

- 데이터끼리 더할 수 있다.
- 증가는 딕셔너리를 제외한 거의 모든 데이터에 적용 할수
   있다

#### STEP.04

#### 곱과 나눗셈

- 데이터에 반복적으로 더하거 나 분해 할 떄 사용된다.
- 딕셔너리를 제외한 거의 모든 데이터에 적용이 가능하다.





논리 연산자로 데이터 조건을 구성

02

### NULL(None)

None은 알 수 없음, 없음이라는 특성을 가진 데이터 자료형으로 산술연산자를 적용 할수 없습니다.

### 논리 연산자로 데이터 조건을 구성

```
if "a" < "b":
    print("yeah")
if 1 < 2:
    print(ascii("yeah"))
if arr[-1] == "5":
    print(["yeah"])
if dic["Hello, Python!"] == "Hello, Agent!":
    print("Hello, Yeah!")</pre>
```

#### 데이터 타입

#### 논리 연산자로 데이터 조건을 구성

데이터에 논리 연산자를 이용하여 데이터가 특정한 조건을 갖추면 조건에 들어간 코드가 작동할 수 있도록 구현 해주는 연산자



### 논리 연산자로 데이터 조건을 구성



#### 부등호

딕셔너리를 제외한 거의 모든 데이 터에 적용이 가능하며 데이터 크기 비교에 사용된다.



#### 등호(등식)

데이터끼리 서로 같은 크기의 데이터인지 비교에 사용된다.



#### 다름

등호의 반대이며 데이터끼리 서로 같은 크기가 아닌지 비교에 사용된 다.



#### OR, NOT, AND

OR은 데이터 조건이 여려개일 때하나라도 총족되면 True를 내보내면 NOT은 데이터 조건의 반대일 때 True를 내보내고 AND는 데이터 조건이 여려개일 때 모두 총족되면 True를 내보내는 연산자다.

문제 04 딕셔너리에 증가를 사용할 수 있는가? (O, X) 02 딕셔너리에 데이터를 추가 하기 위해선 무엇을 이용하는가? 03 리스트에 감소를 사용할 수 있는가? (O, X) 04 곱과 나눗셈 연산자에 대해 설명 해보시오. 05 OR 연산자는 어떤 역할을 하는지 설명 해보시오.