ضریب نفوذ سیم پیچ با هسته فرومغناطیس

• منحنی چگالی شار بر حسب شدت میدان مغناطیسی را منحنی مغناطیسی می گویند.

آموزش مبانی مهندسی برق ۲

ضریب نفوذ سیم پیچ با هسته فرومغناطیس

• در هر نقطه نسبت چگالی شار به شدت میدان برابر ضریب نفوذ مغناطیسی است.

• ضریب نفوذ یک پارامتر متغیر است.

ضریب نفوذ سیم پیچ با هسته فرومغناطیس

• متداول ترین مواد فرومغناطیس معمولاً از آهن و آلیاژهای آهن و کبالت، تنگستن، نیکل و فلزات دیگر ساخته می شوند و با نامهای تجاری فولاد الکتریکی عرضه می شوند.

آموزش مبانی مهندسی برق ۲

ضریب نفوذ سیم پیچ با هسته فرومغناطیس

• فولاد الكتريكي M-5 ماده فرومغناطيس متداولي است كه در ساخت ماشينهاي

الکتریکی به کار میرود.

• یک سیم پیچ ۲۰۰ حلقهای حامل جریان ۱ آمپر بر روی هسته آهنی با منحنی مغناطیسی شکل زیر قرار گرفته است. طول متوسط هسته ۱۰ سانتی متر است. چگالی شار مغناطیسی چند گاووس است؟

• یک سیم پیچ ۲۰۰ حلقهای حامل جریان ۱ آمپر بر روی هسته آهنی با منحنی مغناطیسی شکل زیر قرار گرفته است. طول متوسط هسته ۱۰ سانتی متر است.

Self Single Sin

آموزش مبائی مهندسی برق ۲

نواحي منحنى مغناطيسي مواد فرومغناطيس

• منحنی مغناطیسی به سه ناحیه تقسیمبندی میشود:

نواحى منحنى مغناطيسي مواد فرومغناطيس

• چرا این اتفاق میافتد؟

ضریب نفوذ سیم پیچ با هسته هوا در خلا

• جریان الکتریکی را به آرامی از صفر تا مقدار حداکثر افزایش میدهیم.

ضریب نفوذ سیم پیچ با هسته هوا در خلا

• به نسبت B به H در این شرایط ضریب نفوذ مغناطیسی خلا می گوییم.

$$\mu_{\circ} = \frac{B_{\circ}}{H_{\circ}}$$

$$\mu_{\circ} = \pi \times 1 \cdot \sqrt{\frac{wb}{A.turn.m}}$$

پگالی فوران مغناطیسی در خلأ \mathbf{B}_{\circ}

H. شدت میدان مغناطیسی در خلأ

ضریب نفوذ مغناطیسی خلأ μ ه

- سیم پیچ ۱۰۰۰ دور بدون هسته با طول متوسط ۱۰ سانتی متر در خلا دارای چگالی شار مغناطیسی ۱/۶ تسلا است. جریان عبوری از سیم پیچ را بدست آورید.
 - اگر هسته فولاد الکتریکی M-5 استفاده شود بار دیگر جریان را محاسبه کنید.

H = A A turn

$$B = 0, \forall T \qquad N = 1000 \qquad C_{c} = 1000 \qquad C_{c} = 1000 \qquad M$$

$$H = \frac{NI}{Q_{c}} = \frac{1000 \times I}{0,1} = 10^{8} I \qquad D$$

$$\frac{B}{H} = A_{0} = \frac{2\pi \times 10^{-V}}{5\pi \times 10^{-V}} \Rightarrow H = \frac{0, \forall}{5\pi \times 10^{-V}} = \frac{4\times 10^{4}}{5\pi} = \frac{4\times 10^{4}}{5\pi} = \frac{4\times 10^{4}}{5\pi} = \frac{4\times 10^{4}}{5\pi} = \frac{100}{5\pi} = \frac{100}{5\pi}$$

ضریب نفوذ نسبی

- برای مقایسه مواد فرومغناطیس از ضریب نفوذ خلا به عنوان معیار استفاده می شود.
- به نسبت ضریب نفوذ هسته فرومغناطیس به ضریب نفوذ مغناطیسی خلا، ضریب نفوذ نسبی می گویند.

$$\mu_r = \frac{\mu}{\mu_\circ}$$

- ضریب نفوذ نسبی واحد ندارد.
- ضریب نفوذ نسبی نشان میدهد که هسته فرومغناطیس چند برابر خلا نفوذ مغناطیسی دارد.

ضریب نفوذ نسبی

• اغلب کارخانهها، برای محصولات فرومغناطیس خود منحنی ضریب نفوذ نسبی بر حسب شدت میدان مغناطیسی را ارائه می کنند.

ضریب نفوذ نسبی

- ضریب نفوذ نسبی با افزایش فرکانس جریان سیم پیچ و یا افزایش دمای سیم پیچ کاهش می یابد.
 - بر اساس ضریب نفوذ نسبی مواد مغناطیسی به سه دسته تقسیمبندی میشوند:
 - دیامغناطیس
 - پارامغناطیس
 - فرومغناطیس

• ضریب نفوذ مغناطیسی هسته فولاد مورق شکل زیر را بدست آورید.

$$H = \frac{NI}{Q_c}$$

$$Q_c = (\Lambda - YXI)XY + (I_0 - YXI)XY = I\Gamma + IY = Y\Lambda cm$$

$$H = \frac{Y\Lambda YX \cdot I}{Y\Lambda X_0^{-1}} = \frac{Y\Lambda Y_0}{\Gamma\Lambda} = Q_0 \quad A \cdot turn/m$$

$$M_r = 9000$$

$$\frac{1}{\sqrt{1-r}} = \frac{1}{\sqrt{1-r}}$$

آموزش مبانی مهندسی برق ۲

مواد ديامغناطيس

- ضریب نفوذ مغناطیسی نسبی مواد دیامغناطیس کمی کمتر از یک میباشد.
 - جیوه، نقره، قلع و آب از این مواد هستند.
 - _ فوران مغناطیسی را از خود عبور نمی دهند.
 - _ میدان مغناطیسی را غیر یکنواخت می کنند.
 - _ از طرف میدان مغناطیسی دفع میشوند.

MIKI

مواد پارامغناطیس

- ضریب نفوذ مغناطیسی نسبی مواد پارامغناطیس کمی بیشتر از یک میباشد.
 - آلومینیوم، هوا و پلاتین از این مواد هستند.
- _ مولکولهای مغناطیسی آنها می کوشند تا در جهت میدان مغناطیسی منظم شوند.
 - ـ به طرف ناحیه قوی میدان مغناطیسی کشیده میشوند.
 - ـ به آهنربا تبدیل میشوند و با خروج از میدان مغناطیسی،
 - خاصیت آهنربایی خود را از دست میدهند.

مواد فرومغناطيس

- ضریب نفوذ مغناطیسی نسبی مواد فرومغناطیس بین ۲۰۰۰ تا ۸۰۰۰۰ هزار است.
 - آهن و آلياژهاي آن جز اين مواد هستند.
- مولکولهای مغناطیسی آنها در جهت میدان مغناطیسی منظم میشوند و به بالاترین درجه همسویی میرسند.
 - به طرف ناحیه قوی میدان مغناطیسی کشیده میشوند و جذب قطبها میشوند.
- به آهنربا تبدیل میشوند و با خروج از میدان مغناطیسی، خاصیت آهنربایی خود را از دست نمی دهند.

آموزش مبانی مهندسی برق ۲

مقايسه ضريب نفوذ نسبى مواد مختلف

مواد دیامغناطیس		مواد پارامغناطیس		مواد فرومغناطیس	
μ_r	ماده	μ_r	ماده	μ_r	ماده
0/99970	جيوه	11000000421	<u>هوا</u>	تا ٥٥٥٠	آهن بدون آلياژ
o/9999A1	نقره	1/000000	اكسيژن	تا ۵۰۰۶	فولاد الكتريكي
0/999AA	قلع	1/000077	آلومينيم	700000	آهن نيكل آلياژ
0/A9991	آب	1/00079	پلاتين	10000	فريت مغناطيسي

مدارهای مغناطیسی

• مدار مغناطیسی شامل حداقل یک مسیر بسته برای عبور شار مغناطیسی است.

آموزش مبانی مهندسی برق ۲

مدارهای مغناطیسی

• قانون اهم مغناطيسي

در این رابطه:

[A.turn] نیروی مـحرکه مـغناطیسی سیـمپیچ بر حسب θ

[wb] فوران مغناطیسی هسته بر حسب ϕ

 $\lceil \frac{A.turn}{wb}
ceil$ مقاومت مغناطیسی هسته بر حسب R

مدارهاي مغناطيسي

• مقاومت مغناطیسی هسته زیر را بدست آورید.

• مقاومت مغناطیسی هسته زیر را بدست آورید.

مدارهای مغناطیسی

$$B = \frac{\varphi}{A} \Rightarrow \varphi = B.A \blacktriangleleft$$

$$\mu = \frac{B}{H} \Rightarrow B = \mu H$$

$$B = \mu_{\circ} \mu_{r}.H$$

$$\varphi = \mu_{\circ} \mu_{r}.H.A$$

$$\mathcal{R} = \frac{\theta}{\varphi} \Rightarrow \mathcal{R} = \frac{NI}{\mu \, \mu \, HA}$$

$$H = \frac{NI}{\ell_C} \Rightarrow \underline{\ell_C} = \frac{NI}{H}$$

$$\mathcal{R}_C = \frac{\ell_C}{\mu_\circ \mu_r A}$$

• محاسبه مقاومت مغناطیسی

مدارهاي مغناطيسي

• محاسبه مقاومت مغناطیسی

 $M_o = \sum_{\mathbf{T} \mid \mathbf{X} \mid_o} \sqrt{\left[\frac{wb}{A.turn.m} \right]}$ سب خلأ بر حسب خلأ بر حسب μ_o

ضریب نفوذ نسبی هسته بدون واحد μ_{r}

 $[m^r]$ سطح مقطع هسته بر حسب A $\frac{A.turn}{wb}$ مقاومت مغناطیسی هسته بر حسب \mathcal{R} (\mathcal{R}_o)

• اگر شار مغناطیسی مدار زیر برابر ۴ میلی وبر باشد، جریان سیم پیچ را محاسبه کنید.

$$\pi = \Upsilon$$
 $\mu_r = \mathcal{P} \cdots$

• اگر شار مغناطیسی مدار زیر برابر ۴ میلی وبر باشد، جریان سیم پیچ را محاسبه کنید. $\pi = \Upsilon$ $\mu_r = 9 \cdots$ P = Emwb = Exlo Wb 120mm lc = Yx(100-Tx10)+Yx (150-Tx10) 20mm Pc= 1% + Too = 4 Yomm 100mm lc= 0/49 m N = 1000→ I= p= Emwb R=1170x100 le

آموزش مبانی مهندسی برق ۲

$$R = \frac{l_c}{\mu_0 \rho_r A} = \frac{.749}{\epsilon_{\pi \chi l_o} V_{\chi} 9000 \times .707 \times 0007}$$

$$R = \frac{.949}{17 \times 10^{-7} \times 10^{-7} \times 10^{-7}} = \frac{.47 \times 10^{-7}}{17 \times 10^{-7} \times 10^{-7}} = \frac{.47 \times 10^{-7}}{17 \times 10^{-7}} = \frac{.74 \times 10^{-7}}{17 \times 10^{-7}} = \frac{.74 \times 10^{-7}}{10^{-7}} = \frac{.74 \times 10^{-7}}{10^{-7$$