STEVENS INSTITUTE OF TECHNOLOGY SYS-601 Homework Cover Sheet

Date:	HW #:

Author:

Collaborators:

5.1 Trapezoidal Distribution

Consider a trapezoidal PDF with parameters $0 \le a \le c_1 \le c_2 \le b$ for the minimum value a, maximum value b, and transition points c_1 and c_2 between linear and constant segments:

- (a) Using the property $\int_a^b f(y) dy = 1$, solve for h in terms of a, b, c_1 , and c_2 . (*Hint:* write an equation for the area under the PDF, set equal to 1, and solve for h.)
- ⇒ We know that:

$$\int_{-\infty}^{\infty} f(x) dx = 1$$
 and it is given that $\int_{a}^{b} f(y) dy = 1$ Area of trapezoid is: $\frac{Sum\ of\ parallel\ sides}{2} \times height$

Therefore.

$$\int_{a}^{b} f(y) \, dy = 1 \quad \Rightarrow \quad \frac{(c_2 - c_1) + (b - a)}{2}(h) = 1 \quad \Rightarrow \quad h = \frac{2}{c_2 - c_1 + b - a}$$

- (b) Write an equation for the PDF f(y) in terms of a, b, c_1 and c_2 for the ranges:
 - (i) $a < y \le c_1$ (Hint: verify f(a) = 0 and $f(c_1) = h$.)
- $\Rightarrow f (y) = \frac{h}{c_1 a} x (y a) [formula of ramp equation]$ Substituting value of h in this equation, we get

$$f(y) = \frac{2(y-a)}{(c_1-a)(c_2-c_1+b-a)}$$

(ii)
$$c_1 < y \le c_2$$

$$\Rightarrow f(y) = (c_2 - c_1)(h)$$

SYS 601 - PROBABILITY AND STATISTICS FOR SYSTEMS ENGINEERING

$$= \frac{2(c_2 - c_1)}{c_2 - c_1 + b - a}$$

(iii) $c_2 < y \le b$ (Hint: verify $f(c_2) = h$ and f(b) = 0.)

$$\Rightarrow f(y) = \frac{h}{b-c_2}(b-y)$$

$$= \frac{2(b-y)}{(b-c_2)(c_2-c_1+b-a)}$$

- (c) Write an equation for the CDF F(y) in terms of a, b, c_1 and c_2 for the ranges:
 - (i) $a < y \le c_1$ (Hint: the area of the triangular region between a and y.)

$$F(y) = \frac{c_1 - a}{2} \times h$$

$$= \frac{c_1 - a}{2} \times \frac{2}{c_2 - c_1 + b - a}$$

$$= \frac{c_1 - a}{c_2 - c_1 + b - a}$$

(ii) $c_1 < y \le c_2$ (Hint: $F(c_1)$ plus the area of rectangular region between c_1 and y.)

$$F(y) = \frac{c_1 - a}{c_2 - c_1 + b - a} + [(c_2 - c_1) \times h]$$

$$= \frac{(c_1 - a) + [(c_2 - c_1)^2]}{(c_2 - c_1 + b - a)}$$

$$=\frac{2c_2-c_1-a}{(c_2-c_1+b-a)}$$

(iii) $c_2 < y \le b$ (Hint: $F(c_2)$ plus the area of triangular region between c_2 and y.)

$$\Rightarrow F(y) = \frac{2c_2 - c_1 - a}{(c_2 - c_1 + b - a)} + \left[\frac{(b - c_2)}{2} \times \frac{2}{c_2 - c_1 + b - a}\right]$$

$$=\frac{c_2-c_1+b-a}{(c_2-c_1+b-a)}$$

= 1

(d) Draw a sketch of the CDF F(y) for parameters a = 0.5, $c_1 = 1.5$, $c_2 = 2.5$, b = 3.5.

Figure 1 CDF plot

Y	F(y)
0	0
1.5	0.25
2.5	0.75
3.5	1
4	1

Table 1 CDF Values

Café Java: Customer Inter-arrival 5.2

Mathematically inclined customers arrive at Café Java following a Poisson process:

- There is a long-term average rate of $\lambda = 2$ customer arrivals per minute.0.
- · The arrival rate is constant throughout the day.
- · Customer arrivals are independent of each other.

Under these assumptions, the inter-arrival time between customers is an exponentiallydistributed random variable X with rate parameter λ^1 :

$$X \sim \text{exponential } (\lambda)$$

(a) Write an equation for the PDF f(x).

$$\Rightarrow \lambda = \frac{1}{2}$$
 customer per minute [inter arrival rate]

$$p(x) = 0.5e^{-0.5x}$$

(b) Draw a sketch of the PDF f(x) for $0 \le x \le 5$.

Graph 1 PDF of x

(c) Find the population mean $\mu = E[X]$ and mark on the PDF plot.

$$\Rightarrow$$
 Mean $\mu = \frac{1}{\lambda} = \frac{1}{0.5} = 2$

Graph 2 Mean value in p(x)

(d) Write an equation for the CDF F(x).

$$\Rightarrow F(x) = 1 - e^{-0.5x}$$

(e) Draw a sketch of the CDF F(x) for $0 \le x \le 5$.

Graph 3 CDF of x

- (f) Evaluate or estimate the following quantities and mark on the CDF plot:
 - (i) 10th percentile inter-arrival time P_{10} (Hint: $F(P_{10}) = 0.10$)

$$\rightarrow 0.1 = 1 - e^{\frac{x}{2}} \approx 0.2107$$

(ii) Median inter-arrival time P_{50} (Hint: $F(P_{50}) = 0.50$)

$$\rightarrow 0.5 = 1 - e^{\frac{x}{2}} \approx 1.3862$$

(iii) 90th percentile inter-arrival time P_{90} (Hint: $F(P_{90}) = 0.90$)