

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA

Título da Tese (ou Dissertação)

Nome do Estudante

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física do Instituto de Física da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Ciências (Física).

Orientador: Paulo Américo Maia Neto

Coorientador: Nome do Coorientador

Rio de Janeiro

Março de 2013

P436(mudar) Fonseca, Arthur Luna da

Interação de Momento Angular de Spin e Orbital na Pinça Ótica. / Arthur Luna da Fonseca - Rio de Janeiro: UFRJ/IF, 2019.

xiv, 154f(mudar).

Orientador: Paulo Américo Maia Neto

Coorientador:

Dissertação (mestrado) - UFRJ / Instituto de Física / Programa de Pós-graduação em Física, 2019.

Referências Bibliográficas: f. 124-145.(mudar)

1. Pinça ótica. 2. Momento angular ótico. 3. Feixes não paraxiais. 4. Interação spin-órbita. 5. Astigmatismo. I. Wotzasek, Clóvis José. II. Guimarães, Marcelo Santos. III. Universidade Federal do Rio de Janeiro, Instituto de Física, Programa de Pós-graduação em Física. IV. Abordagem de Julia-Toulouse para condensação de correntes topológicas e aplicações.(mudar)

Resumo

Título da Tese

Nome do Estudante

Orientador: Nome do Orientador

Coorientador: Nome do Coorientador

Resumo da Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física do Instituto de Física da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Ciências (Física).

Resumo da tese.

Palavras-chave: Insira as palavras-chave aqui.

Abstract

Title of the Thesis

Name of the Student

Orientador: Name of the Advisor

Coorientador: Name of the Coadvisor

Abstract da Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física do Instituto de Física da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Ciências (Física).

Abstract in English.

Keywords: Insert the keywords here.

Agradecimentos

Listar agradecimentos aqui, inclusive à agência de fomento que concedeu a bolsa de pós-graduação.

Sumário

Sτ	ımário	vi
Li	sta de Figuras	vii
Li	sta de Tabelas	viii
1	Introdução	1
2	Teoria da Pinça Ótica	2
	2.1 Introdução	2
	2.2 Modelo Mie-Debye	3
	2.3 Interação Spin-Órbita	7
3	Título do Terceiro Capítulo	8
4	Título do Quarto Capítulo	9
5	Considerações Finais	10
R	eferências Bibliográficas	11
\mathbf{A}	Título do Primeiro Apêndice	11
\mathbf{R}	Título do Segundo Apêndice	12

Lista de Figuras

2.1	Operadores vetoriais no espaço de Fourier usados para encontrar as soluções	
	vetoriais	11

Lista de Tabelas

Capítulo 1

Introdução

blablabla...

blablabla...

Capítulo 2

Teoria da Pinça Ótica

2.1 Introdução

A presente dissertação é um resultado do trabalho do grupo de pinças óticas da UFRJ, que tem sido desenvolvido há quase duas décadas. Os trabalhos de teoria do grupo têm como objetivo descrever o aparato de pinças óticas, descoberta por Arthur Ashkin em 1986[?] [?]. Suas contribuições para o ramo de armadilhamento ótico vêm desde 1970, com seu primeiro artigo publicado sobre o assunto[?]. Em 2018, seus trabalhos sobre a pinça ótica e toda a sua importancia para aplicação em biologia lhe renderam o prêmio Nobel de 2018.

A importância desse aparato exigiu uma descrição teórica satisfatória. Os primeiros modelos que tentam descrever as forças da pinça ótica fazem uso de diversas aproximações para descrever o feixe que sai da objetiva e a interação da esfera com o campo. Falarei brevemente destes na próxima seção.

O primeiro artigo publicado pelo grupo que diz respeito a teoria de pinças óticas foi em 2000 [?], e deriva a força axial (na direção z) na microesfera em cima do eixo para um feixe de polarização circular. Resultados seguintes estendem o anterior para uma posição arbitrária da microesfera em relação ao foco do feixe e derivam forças nas demais direções (em coordenadas cilíndricas: azimutal e radial) [?]. O caso da polarização linear é discutido em [?]. Posteriormente, eles também inserem correções à aberração esférica

em [?] (para interface vidro-água no porta-amostra) e ao astigmatismo e coma em [?].

Na seção **inserir seção**, discutirei brevemente o modelo desenvolvido pelo grupo (MDSA+, do inglês Mie-Debye Spherical Aberration, com correção de outras aberrações). Este foi usado para obter os resultados da presente dissertação. Ele leva em conta diversos efeitos [CITAR EXEMPLOS] que são ignorados pelos demais, além de ser válido para um espectro maior de razões entre o comprimento de onda λ e o raio a (também chamado de parâmetro de tamanho, ou β).

Ajustes de dados experimentais com o modelo MDSA foram feitos e publicados pelo grupo [?, ?]. Uma vez demonstrada que a teoria tem boa concordância com o experimento, podemos tentar prever parâmetros experimentais a partir dela. Esse é um dos objetivos do presente trabalho, e, para tal, discutiremos nas próximas seções um pouco sobre o modelo Mie-Debye e suas extensões. Esse tema ja foi abordado em teses de doutorado de ex-alunos do grupo [?, ?], que tomaremos e recomendamos como referência para este texto.

O modelo MD levam em conta um efeito que a princípio não se apresenta com clareza: a interação de momento angular de spin e orbital do feixe. A alta abertura numérica da objetiva e o espalhamento Mie são dois elementos importantes levados em consideração e que são responsáveis por efeitos de conversão de momentos angulares[?]. Faremos uma breve discussão nesse capítulo sobre esses efeitos, a fim de elucidar não só os mesmos, mas os resultados obtidos nas simulações e no experimento. (rever esse paragrafo)

2.2 Modelo Mie-Debye

Discutiremos brevemente nessa seção o modelo MDSA+. Os detalhes de tais cálculos podem ser encontrados em [?] e [?], e não estarão no presente trabalho para evitar repetição.

Começamos pela forma como se faz o cálculo da força em uma amostra na pinça ótica ([?]):

$$\vec{F} = \oint_{\sigma} \hat{n} \cdot T d\sigma - \mu \epsilon \frac{d}{dt} \int_{\nu} \vec{S} d\nu, \tag{2.1}$$

onde σ é uma superfície que envolve a amostra na pinça ótica, ν é o interior dessa superfície, T é o tensor das tensões de Maxwell e μ e ϵ são a permeabilidade magnética e a permissividade elétrica do meio envolvendo a amostra, respectivamente.

O primeiro passo, portanto, é calcular o campo eletromagnético incidente e espalhado nessa amostra (centro espalhador). O campo incidente na amostra trata-se de um campo com formato cônico (focado). Montaremos esse campo superpondo ondas planas. Para tanto, começamos tratando do caso de uma onda plana se propagando na direção z, com polarização circular. Essa é a polarização conveniente para expansão do campo em multipolo (ondas esféricas ou ondas parciais). Outros casos de polarização serão discutidos adiante. A base de multipolos é a ideal para problemas com simetria esférica, pois são compostas pelos harmônicos esféricos na parte radial, que são autofunções dos operadores de momento angular L^2 e L_z . Esse fato será importante para obter os campos vetoriais a partir dos potenciais de Debye, que serão definidos a seguir:

$$\Pi^{E} = \sum_{J} \Pi_{J}^{E} = \sum_{J} \frac{(\mathbf{r} \cdot \mathbf{E})_{J}}{J(J+1)} \qquad e \qquad \Pi^{M} = \sum_{J} \Pi_{J}^{M} = \sum_{J} \frac{(\mathbf{r} \cdot \mathbf{H})_{J}}{J(J+1)}.$$
 (2.2)

com

$$\mathbf{E} = E_0(\hat{x} \pm i\hat{y})e^{ikz - i\omega t} \qquad e \qquad \mathbf{H} = \frac{n_1}{\mu c}(\mp i)\mathbf{E}.$$
 (2.3)

onde n_1 é o índice de refração do meio ao redor da amostra. Tais potenciais serão úteis para resolver o problem do espalhamento Mie.

Assim, uma vez encontradas as soluções escalares, temos que reobter os campos vetoriais. Fazemos isso usando um conjunto de operadores vetoriais que comutam com ∇^2 e são perpendiculares entre si: $-i\mathbf{r} \times \nabla = \mathbf{L}, \nabla \times \mathbf{L}$ e ∇ . No espaço de Fourier, esses operadores são proporcionais a $\mathbf{k} \times \nabla_{\mathbf{k}}$, $\mathbf{k} \times (\mathbf{k} \times \nabla_{\mathbf{k}}) \propto \nabla_{\mathbf{k}}$ e \mathbf{k} , respectivamente. A

figura 2.1 mostra os vetores em questão. O operador \mathbf{k} fornece a soluções com campos na direção de propagação, ou seja, campos com divergência não nula e que não são soluções do nosso problema.

Figura 2.1: Operadores vetoriais no espaço de Fourier usados para encontrar as soluções vetoriais.

Levando em conta que o centro espalhador no nosso problema é uma microesfera, vamos fazer uma descrição dos campos escalares de forma a aproveitar tal simetria. Assumiremos uma solução de ondas planas para o campo elétrico, de polarização circular (direita ou esquerda) e se propagando na direção z:

$$\mathbf{E} = E_0(\hat{x} \pm i\hat{y})e^{ikz - i\omega t}.$$
 (2.4)

Obtemos H levando 2.4 em ??:

$$\mathbf{H} = \frac{n_1}{\mu c} E_0(\hat{y} \mp i\hat{x}) e^{ikz - i\omega t} = \frac{n_1}{\mu c} (\mp i) \mathbf{E}, \tag{2.5}$$

onde n_1 é o índice de refração do meio ao redor da amostra. Definimos os potenciais de Debye como:

$$\Pi^{E} = \sum_{J} \Pi_{J}^{E} = \sum_{J} \frac{(\mathbf{r} \cdot \mathbf{E})_{J}}{J(J+1)} \qquad e \qquad \Pi^{M} = \sum_{J} \Pi_{J}^{M} = \sum_{J} \frac{(\mathbf{r} \cdot \mathbf{H})_{J}}{J(J+1)}.$$
 (2.6)

Onde o somatório em J significa que estaremos expandindo nossa onda plana em ondas esféricas (parciais), e cada um dos termos possui um potencial de Debye correspondente. Assim, nossa solução 2.4, junto com 2.6, ficará na forma[?]:

$$\Pi^{E} = \pm \frac{E_{0}e^{-i\omega t}}{k} \sum_{J=1}^{\inf} (i)^{J+1} j_{J}(kr) \sqrt{\frac{4\pi(2J+1)}{J(J+1)}} Y_{J}^{\pm 1}(\theta, \phi), \tag{2.7}$$

enquanto o potencial magnético será:

$$\Pi^M = \frac{n_1}{\mu c} (\mp i) \Pi^E. \tag{2.8}$$

Obtemos, até então, os potenciais de ondas planas incidentes na direção z em coordenadas esféricas. Queremos usa-las para montar um feixe cônico de alta abertura numérica. Faremos isso rotacionando e superpondo diversas ondas planas usando o operador \mathbf{J} , que é o gerador de rotações no espaço. Como a dependência angular nos potenciais de Debye estão contidas nos harmôncos esféricos, o procedimento se resume em fazer a rotação dos mesmos. A relação

$$Y_{JM}(\theta', \phi') = \sum_{M'=-J}^{J} Y_{JM'}(\theta, \phi) D_{M',M}^{J}(\alpha, \beta, \gamma)$$
 (2.9)

representa um harmônico esférico em um eixo rodado com coordenadas θ' e ϕ' , onde $D^J_{M',M}$ é o elemento da matriz de rotação $D(\alpha,\beta,\gamma)$ de Wigner e α , β , e γ são os ângulos de Euler. Os elementos $D^J_{M',M}$ tomam a forma:

$$D_{M',M}^{J}(\alpha,\beta,\gamma) = \langle JM' | D(\alpha,\beta,\gamma) | JM \rangle = \langle JM' | e^{-i\alpha J_z} e^{-i\beta J_y} e^{-i\gamma J_z} | JM \rangle, \qquad (2.10)$$

onde podemos substituir os autovalores de J_z : M e M'. Substituindo tambem $\langle JM'|\,e^{-i\beta J_y}\,|JM\rangle$ por $d^J_{M'M}(\beta)$, a equação 2.9 fica:

$$Y_{JM}(\theta', \phi') = \sum_{M'=-J}^{J} Y_{JM'}(\theta, \phi) e^{-i(\alpha M' + \gamma M)} d_{M'M}^{J}(\beta).$$
 (2.11)

A rotação é feita de forma que o eixo z coincida com o eixo $\hat{\mathbf{k}}$ de propagação. Para isso, $\alpha = \phi_k$ e $\beta = \theta_k$. Usamos o último ângulo de Euler para determinar corretamente a direção de polarização do feixe fazendo $\gamma = -\phi_k$. Substituindo em 2.6, os potenciais de Debye rotacionados ficam:

$$\Pi^{E} = \pm \frac{E_{0}e^{-}i\omega t}{k} \sum_{J=1} \inf(i)^{J+1} j_{J}(kr) \sqrt{\frac{4\pi(2J+1)}{J(J+1)}} \sum_{M'=-J}^{J} e^{i\phi_{k}(M'\mp1)} d_{M',\pm1}^{J}(\theta_{k}) Y_{JM'}(\theta,\phi),$$
(2.12)

e

$$\Pi^{M} = \frac{H_{0}e^{-i\omega t}}{k} \sum_{J=1} \inf(i)^{J} j_{J}(kr) \sqrt{\frac{4\pi(2J+1)}{J(J+1)}} \sum_{M'=-J}^{J} e^{i\phi_{k}(M'\mp1)} d_{M',\pm1}^{J}(\theta_{k}) Y_{JM'}(\theta,\phi).$$
(2.13)

2.3 Interação Spin-Órbita.

blablabla...

Capítulo 3 Título do Terceiro Capítulo

blablabla...

blablabla...

Capítulo 4 Título do Quarto Capítulo

blablabla...

blablabla...

Capítulo 5

Considerações Finais

blablabla...

blablabla...

Referências Bibliográficas

Apêndice A Título do Primeiro Apêndice

blablabla...

blablabla...

Apêndice B Título do Segundo Apêndice

blablabla...

blablabla...