Logarithmic Functions

Summary

- 1. The inverse of the exponential function $y=b^x$ is $y=\log_b(x)$ with b>0 and $b\neq 1$
- 2. $\log_{10}(x) = \log(x)$ and $\log_e(x) = \ln x$
- 3. The domain of the logarithmic function is $(0, \infty)$

Recall that an inverse function allows you to get your input back from your output of a function.

The **inverse** of the exponential function $f(x) = b^x$ is the **logarithmic function**.

It is denoted $f^{-1}(x) = \log_b x$

$$\log_b(y) = x$$

$$b^{x} = y$$

Common Logarithm

The **common logarithm** of a real number x is $\log_{10} x$ and is usually written

$$\log x$$

Natural Logarithm

The **natural logarithm** of a real number x is $\log_e x$ and is usually written

Example 1. Re-write each as a logarithmic expression.

(a)
$$2^5 = 32$$

(b)
$$3^4 = 81$$

(c)
$$\left(\frac{1}{4}\right)^2 = \frac{1}{16}$$

(d)
$$7^{-2} = \frac{1}{49}$$

(e)
$$e^x = 5$$

Properties of Logarithms

Exponents and logarithms have similar properties where x>0 and y>0

Property	Exponents	Logarithms
Product	$b^{x} \cdot b^{y} = b^{x+y}$	$\log_b(xy) = \log_b(x) + \log_b(y)$
Quotient	$\frac{b^{x}}{b^{y}} = b^{x-y}$	$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$
Power	$\left(b^{x}\right)^{y} = b^{xy}$	$\log_b(x)^y = y \cdot \log_b(x)$
Equality	$b^x = b^y \iff x = y$	$\log_b(x) = \log_b(y) \Longleftrightarrow x = y$
Zero Power	$b^0=1$	$\log_b(1)=0$
1st Power	$b^1 = b$	$\log_b(b)=1$

Example 2. Use the properties of logarithms to rewrite each of the following.

(a)
$$\log(6 \cdot 17)$$

(b)
$$\log_5\left(\frac{10}{3}\right)$$

(c)
$$\log_6\left(\sqrt{11}\right)$$

Solving Exponential Equations

Solving an exponential equation involves

- Isolating the exponential base
- Taking the logarithm of both sides

Example 3. \$20,000 is deposited and compounded continuously $(A = Pe^{rt})$ at a rate of 6.5%.

(a) How many years until there is \$25,000 in the account?

(b) How many years until the account value doubles?