Вероятностный подход для задачи предсказания биологической активности ядерных рецепторов

Володин Сергей Евгеньевич

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 374, осень 2016

Цель исследования

Предсказание взаимодействия двух типов молекул: лиганд и рецепторов. Необходимо дать оценку связывания.

Проблема

События реакции лиганда с различными рецепторами не независимы. Классификатор, не учитывающий их, имеет плохой результат.

Задача

Необходимо построить вероятностную модель, учитывающую зависимости между классами, а также построить бинарный классификатор.

Проблема

Литература

- Olexandr Isayev Sherif Farag Stephen J. Capuzzi, Regina Politi and Alexander Tropsha. Qsar modeling of tox21 challenge stress response and nuclear receptor signaling toxicity assays.
- @ Geoff Holmes Eibe Frank Jesse Read, Bernhard Pfahringer. Classifier chains for multi-label classification.
- Eyke H.0 Krzysztof Dembczynski, Weiwei Cheng. Bayes optimal multilabel classification via probabilistic classifier chains. 2010.

Постановка задачи

Задана выборка $\mathfrak{D}=\{(\mathbf{x}_i,\mathbf{y}_i)\}=\mathfrak{L}\sqcup\mathfrak{T}.\ \mathbf{x}_i\in\mathbb{R}^n.\ \mathbf{y}_i\in\{0,1,\square\}^I$ **X**, **Y** — случайные величины

Восстановление распределения

Модель классификации: функция $f = P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}; \mathbf{w})$ Максимизируется правдоподобие выборки:

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathbf{W}}{\operatorname{arg max}} \operatorname{In} P(\mathbf{f}|\mathbf{w}, \mathfrak{L})$$

Бинарный классификатор

- lacktriangle Функция потерь $L(\mathbf{y}, \mathbf{y}')$
- $h(x) = \arg\min_{\mathbf{y} \in \mathbf{Y}} \mathbb{E}_{\mathbf{Y} | \mathbf{X} = \mathbf{x}} L(\mathbf{Y}, \mathbf{y})$

Модели сравниваются по различным метрикам с использованием кросс-валидации.

Решение. Вид модели f

Probabilistic Classifier Chains

1 Выразим искомую величину $P(\mathbf{y}|\mathbf{x})$:

$$P(\mathbf{y}|\mathbf{x}) = P(y_1|\mathbf{x}) \prod_{i=2}^{l} P(y_i|y_1, ..., y_{i-1}, \mathbf{x})$$

Задача распадается на п задач поиска

$$P(y_1|\mathbf{x}), P(y_2|y_1,\mathbf{x})..., P(y_l|y_1,...,y_{l-1},\mathbf{x})$$

- 3 Каждую оцениваем при помощи логистической регрессии.
- **④** Признаки для i-й: \mathbf{x} , а также $y_1, ..., y_{i-1}$

Решение. Бинарный классификатор

Байесовское решающее правило:

$$\mathit{h}(x) = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbf{Y}} \mathbb{E}_{\mathbf{Y} \mid \mathbf{X} = \mathbf{x}} \mathit{L}(\mathbf{Y}, \mathbf{y})$$

Все зависит от $L(\mathbf{y}, \mathbf{y}')$. Какая лучше?

- **1** Hamming Loss: $L(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{l} [y_i \neq y_i']$. h(x) не учитывает зависимости!
- **2** Subset Loss: $L(\mathbf{y}, \mathbf{y}') = [\mathbf{y} \neq \mathbf{y}']$
- $L(\mathbf{y}, \mathbf{y}') = q(\sum_{i=1}^{l} [y_i \neq y_i'])$

Решения для разных существенно различны.

Решение. Бинарный классификатор

Иллюстрация проблемы

$$y_1$$
 y_2 y_3 y_4 $P(\mathbf{y})$
0 0 0 0 0.30
0 1 1 1 0.17
1 0 1 1 0.18
1 1 0 1 0.17
1 1 1 0 0.18

- Лучший по Subset Loss: (0,0,0,0)
- Лучший по Hamming Loss: (1,1,1,1)

Krzysztof Dembczynski, Multi-Label Classification: Label Dependence, Loss Minimization, and Reduction Algorithms, 2013

Вычислительный эксперимент

Цель эксперимента

- Сравнение бинарных классификаторов
- 2 Выбор гиперпараметров
- Характеристики алгоритма

Сравниваемые модели

- Binary Relevance без зависимостей
- РСС предлагаемое решение

Вычислительный эксперимент. Модельные данные

1 признак, I = 3 класса. Плотность:

Вычислительный эксперимент. Модельные данные

Метрика	BR	PCC (H)	PCC (M)	PCC (S)
AUC 1	0.69 ± 0.03	0.69 ± 0.03	0.69 ± 0.02	0.69 ± 0.05
AUC 2	0.55 ± 0.04	0.55 ± 0.04	0.56 ± 0.03	0.51 ± 0.04
AUC 3	0.65 ± 0.04	0.66 ± 0.02	0.64 ± 0.04	0.64 ± 0.04
Hamming	0.37 ± 0.009	0.36 ± 0.02	0.36 ± 0.02	0.38 ± 0.04
Hamming 1	0.31 ± 0.03	0.31 ± 0.03	0.31 ± 0.02	0.31 ± 0.05
Hamming 2	0.45 ± 0.04	0.45 ± 0.04	0.45 ± 0.03	0.49 ± 0.05
Hamming 3	0.34 ± 0.03	0.3 ± 0.03	0.31 ± 0.04	0.34 ± 0.03
Precision 1	0.7 ± 0.06	0.7 ± 0.06	0.73 ± 0.05	0.64 ± 0.05
Precision 2	0.55 ± 0.04	0.51 ± 0.01	0.47 ± 0.04	0.46 ± 0.07
Precision 3	0.7 ± 0.06	0.56 ± 0.05	0.5 ± 0.1	0.66 ± 0.05
Recall 1	0.68 ± 0.04	0.68 ± 0.04	0.68 ± 0.03	0.71 ± 0.05
Recall 2	0.52 ± 0.1	0.53 ± 0.1	0.54 ± 0.09	0.48 ± 0.05
Recall 3	0.48 ± 0.1	0.53 ± 0.06	0.52 ± 0.07	0.49 ± 0.09
Subset	0.78 ± 0.03	0.77 ± 0.05	0.77 ± 0.05	0.62 ± 0.06

Есть улучшение только по Subset Loss.

Вычислительный эксперимент. Реальные данные

Взаимодействие лиганд и рецепторов. Признаки сгенерированы программой биохимической симуляции, ответы — результаты экспериментов.

- 165 признаков, 8000 объектов
- 2 12 классов (рецепторов), используется 3.
- Высокая мультиколлинеарность

В ответах имеется большое количество пропусков.

Вычислительный эксперимент. Реальные данные

1,2,3 = NR-AhR, NR-AR-LBD, NR-Aromatase Небольшое улучшение по Subset Loss

Meтрика AUC 1 AUC 2 AUC 3 Hamming H 1 H 2 H 3 Precision 1 Precision 2 Precision 3 Recall 1 Recall 2	$\begin{array}{c} \text{BR} \\ 0.58 \pm 0.03 \\ 0.61 \pm 0.06 \\ 0.55 \pm 0.01 \\ 0.15 \pm 0.01 \\ 0.21 \pm 0.03 \\ 0.045 \pm 0.01 \\ 0.2 \pm 0.02 \\ 0.79 \pm 0.1 \\ 0.91 \pm 0.1 \\ 0.76 \pm 0.07 \\ 0.17 \pm 0.06 \\ 0.22 \pm 0.1 \\ \end{array}$	$\begin{array}{c} PCC \; (H) \\ 0.58 \pm 0.03 \\ 0.61 \pm 0.06 \\ 0.54 \pm 0.01 \\ 0.17 \pm 0.01 \\ 0.21 \pm 0.03 \\ 0.041 \pm 0.007 \\ 0.25 \pm 0.01 \\ 0.79 \pm 0.1 \\ 0.88 \pm 0.1 \\ 0.82 \pm 0.09 \\ 0.17 \pm 0.06 \\ 0.23 \pm 0.1 \\ \end{array}$	$\begin{array}{c} PCC\;(M)\\ 0.57\pm0.02\\ 0.62\pm0.06\\ 0.53\pm0.01\\ 0.19\pm0.02\\ 0.24\pm0.02\\ 0.041\pm0.008\\ 0.29\pm0.03\\ 0.79\pm0.1\\ 0.91\pm0.1\\ 0.78\pm0.09\\ 0.15\pm0.04\\ 0.24\pm0.1\\ \end{array}$	$\begin{array}{c} PCC \; (S) \\ 0.58 \pm 0.02 \\ 0.61 \pm 0.05 \\ 0.54 \pm 0.01 \\ 0.17 \pm 0.02 \\ 0.21 \pm 0.03 \\ 0.041 \pm 0.006 \\ 0.25 \pm 0.03 \\ 0.82 \pm 0.1 \\ 0.88 \pm 0.1 \\ 0.82 \pm 0.08 \\ 0.18 \pm 0.05 \\ 0.23 \pm 0.1 \\ \end{array}$
Recall 2 Recall 3 Subset	$\begin{array}{c} 0.22\pm0.1 \\ 0.1\pm0.02 \\ 0.32\pm0.02 \end{array}$	$\begin{array}{c} 0.23 \pm 0.1 \\ 0.085 \pm 0.02 \\ 0.34 \pm 0.02 \end{array}$	$\begin{array}{c} 0.24 \pm 0.1 \\ 0.071 \pm 0.02 \\ 0.46 \pm 0.03 \end{array}$	$\begin{array}{c} 0.23 \pm 0.1 \\ 0.086 \pm 0.02 \\ 0.3 \pm 0.03 \end{array}$

Вычислительный эксперимент. Размер выборки

Модельные данные.

150 объектов достаточно.

Заключение

Результаты

- Предложена модель для предсказания взаимодействия, учитывающая зависимости между классами
- Проведено сравнение модели с базовой
- Оправо в пометрике Subset Loss
- Нет улучшений по отдельным классам

Планы на будущее

- Улучшение показателей по классам
- Выбор правильного алгоритма
- 3 Вычисление для всей выборки