Balancedly Splittable Orthogonal Designs

Thomas Pender

Department of Mathematics and Computer Science University of Lethbridge

Alberta-Montana Combinatorics & Algorithms Days at BIRS June 2022

*** Joint work with Hadi Kharaghani, Sho Suda

1/48

T. Pender (U of L) Splittable ODs BIRS June 2022

Summary

- balancedly splittable Hadamard matrices
- balancedly splittable orthogonal designs
- construction
- related configurations

Definition: Hadmard Matrix

- A square matrix with entries from $\{-1,1\}$ with pairwise orthogonal rows.
- Equiv. $HH^t = nI_n$, with H an $n \times n$ (-1,1)-matrix of order n.

3 / 48

a Hadamard matrix of order 16

Definition: Hadmard Matrix

- ullet A square matrix with entries from $\{-1,1\}$ with pairwise orthogonal rows.
- Equiv. $HH^t = nI_n$, with H an $n \times n$ (-1,1)-matrix of order n.

5 / 48

T. Pender (U of L) Splittable ODs BIRS June 2022

Definition: Hadmard Matrix

- A square matrix with entries from $\{-1,1\}$ with pairwise orthogonal rows.
- Equiv. $HH^t = nI_n$, with H an $n \times n$ (-1,1)-matrix of order n.

Definition: Balancedly Splittable (Kharaghani and Suda, 2019)

- ullet A Hadamard matrix H of order n with $n imes \ell$ submatrix H_1 .
- H is (n, ℓ, a, b) balancedly splittable, a < b, if

$$H_1H_1^t = \ell I_n + aA + b(J_n - I_n - A),$$

for symmetric (0,1)-matrix A with zero diagonal.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

BIRS June 2022

T. Pender (U of L) Splittable ODs

a Hadamard matrix of order 16

a balancedly splittable Hadamard matrix of order 16

The rows of the split are equiangular.

There are four splits.

Definition: Orthogonal Designs

• A square $\{\pm z_1, \dots, \pm z_u\}$ -matriz X of order n such that

$$XX^t = \sigma I_n, \quad s_i \in \mathbb{N},$$

where
$$\sigma = \sum_{i} s_{i} z_{i}^{2}$$
.

• Write $OD(n; s_1, \ldots, s_u)$.

• An *OD*(16; 8, 8).

 (a b a b b a b b a a b b a b a b b a a b a b a b a a b b a a b a a b a b a a b a a b a a b a a b a b a a a a b a a b a a b a a b a a b a a b a a b a a b a a a b a a b a a b a a a b a a b a a b a a b a a b a a b a a b a a b a a b a a a b a a a b a a b a a a b a a b a a a b a a b a a a b a a b a a a b a a b a a a b a a b a a a b a a b a a a b a a a b a a b a a a b a a b a a a b a a b a a a b a a b a a b a a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a b a a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a a b a b a a a b a a b a a a b a a b a a a b a a b

• Products in the set $\{\pm 2a^2, \pm 2b^2, \pm 2ab\}$.

Definition: Orthogonal Designs

• A square $\{\pm z_1, \dots, \pm z_u\}$ -matrix X of order n such that $XX^t = \sigma I_n, s_i \in \mathbb{N}$, where $\sigma = \sum_i s_i z_i^2$.

Definition: Orthogonal Designs

• A square $\{\pm z_1, \dots, \pm z_u\}$ -matrix X of order n such that $XX^t = \sigma I_n, s_i \in \mathbb{N}$, where $\sigma = \sum_i s_i z_i^2$.

Definition: Balancedly Splittable (Kharaghani et al., 2021)

• An OD X with $n \times \ell$ submatrix X_1 admits a stable (n, ℓ, a, b) split if

$$X_1X_1^t = \sigma(cI_n + aA + b(J_n - I_n - A)),$$

where $c \mid \ell$.

The split is unstable if it is not stable and

$$X_1X_1^t = \ell I_n + aA + b(J_n - I_n - A)$$

after replacing each variable with 1.

←□▶←圖▶←필▶←필▶ ■ 釣९(

16 / 48

Auxiliary Matrices

Definition: Auxiliary Matrices

- X a full $OD(n; s_1, ..., s_u)$ and H the Hadamard matrix obtained by replacing each variable with 1.
- Label rows of X and H by x_0, \ldots, x_{n-1} , and h_0, \ldots, h_{n-1} .
- The auxiliary matrices of X are given by

$$c_i = h_i^t x_i, \qquad i = 0, \ldots, n-1.$$

• An OD(2; 1, 1):

$$\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

Auxiliary matrices:

$$c_0 = \begin{pmatrix} a & b \\ a & b \end{pmatrix}, \qquad c_1 = \begin{pmatrix} b & -a \\ -b & a \end{pmatrix}$$

Form the sequences

$$\alpha = (c_0, c_1, c_1), \qquad \beta = (c_0, c_1, -c_1).$$

ullet The sum of the periodic correlations of lpha and eta satisfy

$$\sum_{i} \alpha_{i} \alpha_{i+j}^{t} + \sum_{i} \beta_{i} \beta_{i+j}^{t} = 0, \qquad j = 1, 2.$$

Sums of cross-correlations

$$\sum_{i} \alpha_{i} \beta_{i+j}^{t} + \sum_{i} \beta_{i} \alpha_{i+j}^{t} = 0, \quad j = 1, 2.$$

Form the matrices

$$A = circ(\alpha), \qquad B = circ(\beta),$$

• Then the matrix

$$\Theta = \begin{pmatrix} A & B \\ B & A \end{pmatrix}.$$

$$\Theta = \begin{pmatrix} a & b & b & \bar{a} & b & \bar{a} & a & b & b & \bar{a} & \bar{b} & a \\ a & b & \bar{b} & a & \bar{b} & a & a & b & \bar{b} & a & b & \bar{a} \\ b & \bar{a} & a & b & b & \bar{a} & \bar{b} & a & a & b & b & \bar{a} \\ \bar{b} & a & a & b & \bar{b} & a & b & \bar{a} & a & b & \bar{b} & a \\ b & \bar{a} & b & \bar{a} & a & b & b & \bar{a} & \bar{b} & a & a & b \\ \bar{b} & a & \bar{b} & a & a & b & \bar{b} & a & b & \bar{a} & a & b \\ \hline a & b & \bar{b} & \bar{a} & \bar{b} & a & a & b & \bar{b} & \bar{a} & \bar{b} & \bar{a} \\ \bar{b} & a & a & b & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} \\ \bar{b} & a & a & b & \bar{b} & \bar{a} & \bar{b} & \bar{a} & a & b & \bar{b} & \bar{a} \\ \bar{b} & \bar{a} & \bar{a} & b & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{a} & b & \bar{b} & \bar{a} \\ \bar{b} & \bar{a} & \bar{b} & \bar{a} & a & b & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{a} & b \\ \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{a} & b & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{a} & b \end{pmatrix}$$

$$\Theta\Theta^{t} = \begin{pmatrix} AA^{t} + BB^{t} & AB^{t} + BA^{t} \\ AB^{t} + BA^{t} & AA^{t} + BB^{t} \end{pmatrix}.$$

Define:

$$\begin{array}{l} Y = \left(\begin{smallmatrix} 1 & 1 \\ 1 & - \end{smallmatrix} \right) \otimes X, \\ K = \left(\begin{smallmatrix} 1 & 1 \\ 1 & - \end{smallmatrix} \right) \otimes H. \end{array}$$

• Index rows as $y_0, ..., y_{2n-1}$, and $k_0, ..., k_{2n-1}$.

$$Y = \begin{pmatrix} 1 & 1 \\ 1 & - \end{pmatrix} \otimes X$$
 $K = \begin{pmatrix} 1 & 1 \\ 1 & - \end{pmatrix} \otimes H$
Rows: y_0, \dots, y_{2n-1} Rows: k_0, \dots, k_{2n-1}

Form

$$F = \begin{pmatrix} k_1^t x_0 & k_2^t x_0 & k_3^t x_0 \end{pmatrix},$$

$$E = \begin{pmatrix} h_0^t y_1 \\ h_0^t y_2 \\ h_0^t y_3 \end{pmatrix},$$

$$G = k_0^t y_0.$$

1	G	F							− <i>F</i>						
-	Ε	а	b	b	ā	b	ā		а	b	b	ā	b	а	_
		а	b	\bar{b}	a	\bar{b}	a		a	b	\bar{b}	a	b	ā	
		b	ā	a	b	b	ā		Б	a	a	b	b	ā	
l		\bar{b}	а	a	Ь	\bar{b}	а		b	ā	a	b	\bar{b}	a	
		Ь	ā	b	ā	a	b		b	ā	\bar{b}	a	a	b	
		\bar{b}	a	\bar{b}	a	a	b		Б	а	b	ā	а	b	
	- <i>E</i>	а	b	b	ā	b	а		a	b	b	ā	b	ā	
l		а	b	\bar{b}	a	b	ā		a	b	\bar{b}	a	\bar{b}	a	
		$ar{b}$	а	a	b	b	ā		b	ā	a	b	b	ā	
		b	ā	a	b	\bar{b}	а		Б	a	a	b	\bar{b}	a	
		Ь	ā	\bar{b}	а	a	b		b	ā	Ь	ā	а	b	
		\bar{b}	a	b	ā	a	b		Б	a	\bar{b}	a	a	b	

Complex and Quaternion Elements

• The following is a OD(2; 1, 1) of quaternions.

$$\begin{pmatrix} \bar{a} & bi \\ \bar{b}j & ak \end{pmatrix},$$

• where a and b are real variables.

Complex and Quaternion Elements

bi āk bi ak bi āk bi ak ā bi bi āk bi āk ā

Equiangular Lines and Unbiased Hadamard Matrices

Definition: Equiangular Lines

A collection $\mathcal{L} \subset \mathbb{R}^{\ell}$ of lines (vectors) are equiangular if there is a constant a such that $|\langle u, v \rangle| = a$ for every $u, v \in L$.

Definition: Unbiased Hadamard Matrices

Hadamard matrices H and K are unbiased if

$$HK^t = \sqrt{n}L$$

for some Hadamard matrix L.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Equiangular Lines and Unbiased Hadamard Matrices

a Hadamard matrix of order 16

Equiangular Lines and Unbiased Hadamard Matrices

a balanced split

- a collection of equiangular lines
- products are the same in absolute value

35 / 48

H and K are unbiased

Proposition (Kharaghani and Suda, 2019)

 $H = (H_1 H_2)$ a Hadamard matrix of order n with

$$H_1H_1^t = \ell I_n + aS$$

where S is a (-1,0,1)-matrix. The following are equivalent:

- **1** $K = (-H_1 H_2)$ is unbiased with H, and
- ② $(\ell, a) = ((n \pm \sqrt{n})/2, \sqrt{n}/2).$

T. Pender (U of L)

$$\begin{pmatrix}
G & F & -F \\
E & A & B \\
-E & B & A
\end{pmatrix}$$

$$\begin{pmatrix}
G & F & -F \\
E & A & B \\
-E & B & A
\end{pmatrix}$$

$$\begin{pmatrix}
G & F & -F \\
E & A & B \\
-E & B & A
\end{pmatrix}$$

$$\begin{pmatrix}
G & F & -F \\
E & A & B \\
-E & B & A
\end{pmatrix}$$

Equiangular Lines and Hadamard Matrices

- each split gives equiangular lines
- parametric conditions of the proposition are satisfied
- we can always construct unbiased Hadamard matrices

Definition: Unbiased ODs (Kharaghani and Suda, 2018)

- X_1 and X_2 be two $OD(n, s_1, \ldots, s_u)$ in $\{\pm z_1, \ldots, \pm z_u\}$.
- \bullet X_1 and X_2 are unbiased if there is a Hadamard matrix H such that

$$X_1 X_2^t = \left(\alpha^{-\frac{1}{2}} \sum_i s_i z_i^2\right) H.$$

for some $\alpha \in \mathbb{R}^+$.

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Definition: Unbiased ODs (Kharaghani and Suda, 2018)

- X_1 and X_2 be two $OD(n, s_1, \ldots, s_u)$ in $\{\pm z_1, \ldots, \pm z_u\}$.
- \bullet X_1 and X_2 are unbiased if there is a Hadamard matrix H such that

$$X_1 X_2^t = \left(\alpha^{-\frac{1}{2}} \sum_i s_i z_i^2\right) H.$$

for some $\alpha \in \mathbb{R}^+$.

•

$$\left\{\begin{array}{l} \text{stable split} \\ \text{equiangular lines} \\ \text{param. cond.} \end{array}\right\} \Rightarrow \text{unbiased ODs}$$

Recall:

$$X = \begin{pmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{pmatrix}.$$

Take

$$Y = \begin{pmatrix} G & F & F \\ E & A & -B \\ -E & B & -A \end{pmatrix}.$$

• Then $XY^t = 2(\sum_i s_i z_i^2) H$, where H is Hadamard.

T. Pender (U of L)

 a b a b b a b b a b b ā

 a a a b ā ā b a b ā ā b a a b ā ā b a b b ā ā b a a b ā ā b b ā ā b b a ā ā b b b ā ā a b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā b b ā ā ā b b b ā ā ā ā b b b ā ā ā ā b b ā ā ā ā b b ā ā ā ā b b ā ā ā b b ā ā ā ā

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久で

The End!!

47 / 48

References

- Kharaghani, H., Pender, T., and Suda, S. (2021). Balancedly splittable orthogonal designs and equiangular tight frames. *Des. Codes Cryptogr.*, 89(9):2033–2050.
- Kharaghani, H. and Suda, S. (2018). Unbiased orthogonal designs. *Des. Codes Cryptogr.*, 86(7):1573–1588.
- Kharaghani, H. and Suda, S. (2019). Balancedly splittable Hadamard matrices. *Discrete Math.*, 342(2):546–561.