

Epitech Nancy Projet Hub SmartRoom

<u>Sommaire</u>

<u>Introduction</u>	3/6
Objectif du projet	3/6
<u>Technologie utilisée</u>	
 Matériels	
<u>compétences nécessaires</u>	5/6
 Schéma	6/6

Introduction

Système sans fils de gestions de LED connectée. Avec options de configuration

objectif du projet

SmartRoom est une solution de gestion intelligente de LED et d'ambiance qui se base sur un système serveur - client·s qui se charge d'influer l'ambiance lumineuse grâce a différents modes.

L'ambiance lumineuse sera définie selon différents mode.

- Mode 1
 - totalement blanc.
- Mode 2
 - Couleur définie par potentiomètres.
- Mode 3
 - o arc-en-ciel.
- Mode 4
 - ambiance en fonction du son de la pièce selon une couleur définie par potentiomètres.
- Mode 5
 - o ambiance en fonction du son de la pièce selon un modèle arc-en-ciel.

L'utilisateur pourra changer l'ambiance lumineuse d'une pièce sans effort grâce au boîtier sans fil imprimé en 3D.

Par l'utilisation du bouton présent sur le boîtier du serveur l'utilisateur pour changer de mode et/ou aller dans le mode de configuration pour changer les réglages à l'aide de potentiomètres pour définir les valeurs RGB voulues.

<u>Technologies utilisées</u>

- modélisation 3D
- impression 3D
- réseaux et wifi
- c/c++
- Arduino

<u>Matériels</u>

IVIACC			
Qua ntité	Matériels	Utilisation / Usage	Disponibilité
2	Esp8266	Server / Client	Personel
1	Bandeau led	Sources de lumière	Personel
1	Alimentation	Alimenté le bandeau led	Personel
1	Microphone	Analyse de l'ambiance sonore	Personel
1	Fer à souder et etains	Souder les élements	Epitech Nancy
1	Duplicateur analogique	Augmentation de pin analogique	Personel
1	Bouton pression	Changement de mode	Epitech Nancy
3	Potentiomètres	Selections lors du mode RGB	Epitech Nancy
1	Batterie	Alimentation du serveur	Personel
1	Chargeur de batterie (usb c)	Charger la batterie	Personel
1	Interupteur	On / Off pour le serveur	Epitech Nancy
1	Prise d'alimentation Jack	Alimentations clients et led	Personel

Compétences nécessaires

- c/c++ (logiciel Arduino)
- socket (pour la communication réseau)
- Arduino (matériel et logiciel)
- soudure (apprendre à souder)

Temps nécessaire par taches

Taches	TEMPS	APPRENTISSAGE
Création logiciel serveur Création logiciel client	2 – 3 jours	Arduino Réseau
Teste du modèle serveur – clients	2 – 3 jours	Arduino Prototypage Réseau
Montage serveur client	4 – 6 heures	Soudures Électronique
Creation boitier en modèle 3D	6 heures	Modélisation 3D
Impression 3D	4 heures	Utilisation d'imprimante 3D et de slicer 3D

<u>Schéma</u>

