Math 120, Practice final exam

- 1. [20 pts] Find a vector equation (of the form $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$) for the line of intersection of the planes x + 2y z = 4 and x y + z = 1.
- 2. [20 pts] Use the chain rule to find f_x and f_y at (x,y)=(1,0) for the following function:

$$f(u,v) = \ln(u-v), \quad u(x,y) = x\cos(y), \quad v(x,y) = \sin(xy^2)$$

- 3. [30 pts] Find the absolute maximum and absolute minimum of the function $f(x, y, z) = x y^2 + z$ subject to the constraint $x^2 + y^2 + z^2 = 1$.
- 4. (a) [10 pts] If f(x) and g(y) are continuously differentiable functions on the intervals [a, b] and [c, d], respectively, and $R = [a, b] \times [c, d]$, show that

$$\int \int_{R} f'(x)g'(y)dA = (f(b) - f(a))(g(d) - g(c)).$$

(b) [10 pts] Let D_1 be the square $[-1,1] \times [-1,1]$ and D_2 be the disk (in \mathbb{R}^2) of radius 1 centered at the origin. Is the following inequality true? Justify your answer.

$$\iint_{D_1} (e^{x^2} + e^{y^2}) dA \ge \iint_{D_2} (e^{x^2} + e^{y^2}) dA.$$

5. (a) [5 pts] Which graph corresponds to the curve $r = \sin(3\theta)$? Give a brief reason to support your answer.

- (b) [20 pts] Find the area enclosed by one leaf of $r = \sin(3\theta)$.
- 6. [30 pts] Let $\mathbf{F}(x,y,z) = \langle \sin(e^z) + y, -x + \tan(y), \cos(z^2) + x^2 \rangle$. Suppose C consists of three line segments, from (0,-1,0) to (-1,0,2), then to (0,1,0), then back to (0,-1,0) as shown the figure below. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

7. [30 pts] Let $\mathbf{F}(x,y) = \langle 2x(y+1) + y^3, 3y^2(x+1) + x^2 \rangle$. Let C be the curve parametrized by

$$\mathbf{r}(t) = \langle \pi^{\ln(t^2+1)} \sin(\pi t), t^{10} \cos(\pi t) \rangle$$

from t=0 to t=1. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$.

- 8. In each part (a) (e), circle the correct statement. You do not need to justify your choices.
 - (a) [5 pts] Let $\mathbf{F}(x, y, z) = (0, 0, z^5)$, and let S be the unit sphere centered at (0, 0, 0), oriented outwards. The integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ is
 - i. positive
 - ii. negative
 - iii. zero
 - (b) [5 pts] Let $\mathbf{F}(x,y) = \langle y, -x \rangle$, and let C be the clockwise boundary of the rectangle with vertices (0,0), (0,1), (2,1), (2,0), as shown below. The integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is

iv.
$$-2$$

$$v. -4$$

- (c) [5 pts] Let \mathbf{v} and \mathbf{w} be vectors with three components. The product $(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} \times \mathbf{w})$ is
 - i. positive
 - ii. negative
 - iii. zero
 - iv. it can be any of the above, depending on the vectors
- (d) [5 pts] The level curves of $f(x,y) = \frac{y}{x-y}$ are
 - i. parabolas
 - ii. hyperbolas
 - iii. lines
 - iv. planes
 - v. none of the above
- (e) [5 pts] Shown to the right is a field ${\bf F}$ and a point P. The value of ${\rm div}({\bf F})$ at P is
 - i. positive
 - ii. negative
 - iii. zero

- 9. Let C be the curve $z = 4 x^2$, from x = -2 to x = 2. Let S be the surface of revolution, obtained by rotating C about the x-axis.
 - (a) [15 pts] Find a parametric representation for S. Indicate the domain for your parameters.
 - (b) [25 pts] Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for outward orientation of S, where \mathbf{F} is the field

$$\mathbf{F} = \left\langle -\frac{z}{x^2 + y^2 + z^2}, \ 0, \ \frac{x}{x^2 + y^2 + z^2} \right\rangle.$$

- 10. Let S be the cone parametrized by $\mathbf{r}(u,v) = \langle u\cos v, u\sin v, 2u \rangle$, $0 \le u \le 2$ and $0 \le v \le 2\pi$, with downward orientation.
 - (a) [15 pts] Evaluate $\iint_S x^2 dS$.
 - (b) [15 pts] Let $\mathbf{F}(x, y, z) = \langle x + y, y^2, z \rangle$. Find $\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$.
- 11. [30 pts] Let $\mathbf{F}(x,y,z) = \langle \cos(yz), yz+1, z-\sin(x^2) \rangle$. Let V be the part of the unit ball given by the equations $x^2+y^2+z^2 \leq 1, \ y \geq 0, \ z \leq 0$. Let S be the surface of the solid, oriented outward. Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$.