

Sample Analysis

Team Members REDACTED

Description: The dataset contains flight segment data for a single flight, covering various operational metrics such as flight time, engine duration, and gross weight.

Data Source: File Redacted parsed as a tab-separated text file.

Number of Records: 1 flight segment

- Model: Aircraft Type/Name REDACTED: Tail number or identifier FlStartDate, FlEndDate: Flight start and end dates
- FltTime, Airborne, PowerOn: Various operational times (in seconds)
- MinGW, MaxGW: Minimum and
- maximum gross weight

Flight Start Date/Time: REDACTED, 15:45:06

Flight End Date/Time: REDACTED, 16:51:01

Total Flight Time: 3220 seconds

Airborne Duration: 3501 seconds

Power On Duration: 1 second

Minimum Gross Weight: REDACTED

lbs

Maximum Gross Weight: 36911 lbs

Description: This dataset captures detailed ground operation parameters over multiple time intervals, measuring various flight dynamics such as yaw rate, pitch, roll, velocity, and engine torque. Each record corresponds to a specific ground operation segment with associated min, REDACTED, average, start, and end values for each parameter.

Data Source: File Redacted

Number of Records: 8 segments

- RgmID: Ground operation regime ID
- Start, End: Start and end times for the
- operation segment
 Nx, Ny, Nz: Acceleration in the X, Y, Z
 axes (REDACTED, Min, Avg, Start, End)
 REDACTED, REDACTED, Yawbeg: Angular
 displacement (degrees) in Roll, Pitch, and REDACTED axes (REDACTED, Min, Avg, Start, End)
- ALTR TT: Altitude in feet (REDACTED, Min, Avg, Start, End) Englow, RPM: REDACTED and RPM
- percentages (REDACTED, Min, Avg, Start, End)

Total Segments Analyzed: 8

REDACTED:

Regime ID: 1

Start Time: 0.00 seconds

End Time: 39.31 seconds

REDACTED (g): 0.0400

Min Ny (g): -0.0100

REDACTED (g): 0.0000

REDACTED (ft): 48.4700

REDACTED (%): 50.4600

REDACTED (dps): REDACTED: 2.1300, Min: 2.1100, Avg: 2.1200

Total Segments Analyzed: 8

REDACTED:

Regime ID: 1

Start Time: 0.00 seconds

End Time: 39.31 seconds

REDACTED (g): 0.0400

Min Ny (g): -0.0100

REDACTED (g): 0.0000

REDACTED (ft): 48.4700

REDACTED (%): 50.4600

REDACTED (dps): REDACTED: 2.1300, Min: 2.1100, Avg: 2.1200

Index	#	Start	End	Nx_max	min	avg	start	end	Ny_max	min_1	avg_1	start_1	end_1	Nz_max	min_2	avg_2	start_2	end_2	AirSpdKt_max	min_3	avg_3	start_3
count				8																		
mean	4.5	2359	244	0.04875	0.0	0. 0425	0. 03875	0. 045	0.00125	-0.02	-0.00	-0.00	-0.00								0.3425	
std				0. 0180772	0.0	0.0	0.00	0.0	0. 013562	0. 013562	0.003	0.017	0.016							0. 173184		
min				0.04	0.01	0.02	0.03	0.04	-0.01	-0.04	-0.01	-0.04	-0.04						0.07		0.05	0.05
25%			348	0.04	0.04	0.04	0.04	0.04	-0.01	-0.03	-0.01	-0.01	-0.01						0.145	0.025	0.09	0.06
50%	4.5	3693	371	0.04	0.04	0.04	0.04	0.04	-0.005	-0.015	-0.01	-0.01	-0.01						0.475	0.04		0.15
75%		3752	382	0.045	0.04	0. 045	0.04	0.04	0.0125	-0.01	-0.01	-0.005	-0.00							0.07		
max		3842	388	0.09	0.04	0.06	0.04	0.08	0.02	-0.01		0.02	0.02									0.69

Index	#	Start	End	Nx_max	min	avg	start	end	Ny_max	min_1	avg_1	start_1	end_1	Nz_max	min_2	avg_2	start_2	end_2	AirSpdKt_max	min_3	avg_3	start_3
count	8			8	8	8			8	8	8	8	8	8	8	8	8	8	8	8	8	8
mean	4.5	2359	244	0.04875	0.0	0. 0425	0. 03875	0. 045	0.00125	-0.02	-0.00	-0.00	-0.00						0.7075	0.1025	0.3425	0.24
std	2.4	1928	187	0. 0180772	0.0	0.0	0.00	0.0	0. 013562	0. 013562	0.003	0.017	0.016						0 XQZT52	0. 173184		
min	1		39	0.04	0.01	0.02	0.03	0.04	-0.01	-0.04	-0.01	-0.04	-0.04						0.07		0.05	0.05
25%	2.75	51.1	348	0.04	0.04	0.04	0.04	0.04	-0.01	-0.03	-0.01	-0.01	-0.01						0.145	0.025	0.09	0.06
50%	4.5	3693	371	0.04	0.04	0.04	0.04	0.04	-0.005	-0.015	-0.01	-0.01	-0.01						0.475	0.04	0.14	0.15
75%	6.25	3752	382	0.045	0.04	0. 045	0.04	0.04	0.0125	-0.01	-0.01	-0.005	-0.00						0.7825	0.07	0.21	0.3
max	8	3842	388	0.09	0.04	0.06	0.04	0.08	0.02	-0.01	0	0.02	0.02	0	0	0	0	0	2.77	0.52	1.83	0.69

Description: This dataset records the estimated gross weight (GW) of an aircraft at various time intervals during a specific flight segment. It includes details such as the flight data file name, segment number, index number, time of estimation, and the estimated gross weight.

Data Source: File Redacted

Number of Records: 9 entries

- FileN: Input flight data file name SegNum: Flight segment number within the input flight data file REDACTED: Index number (sequence number of the estimated gross weight
- Gwr Time: Time at which estimated gross weight is output (in seconds)
 estill: Estimated gross weight (in pounds)

Total Segments Analyzed: 1

REDACTED:

- File Name: Redacted
- Segment Number: 1 REDACTED: 36911 lbs Final Gross Weight: REDACTED
- Time Range: 0.00 seconds to 3955.19 seconds
- Total Weight Loss: REDACTED lbs over the flight segment Analysis: The estimated gross weight of the aircraft decreases steadily over time, reflecting fuel consumption or other weight loss factors during the flight the flight.

Index	SegNum	GwtNum	GwtTime	esGW
count	9	9	9	9
mean	1	5	2091.17	35736.7
std	0	2.73861	1366.86	782.067
min	1	1	ø	34742
25%	1	3	1137.38	35111
50%	1	5	2093.75	35711
75%	1	7	3128.63	36311
max	1	9	3955.19	36911

Description: This dataset captures the sequence of identified flight regimes and configurations along with their basic attributes such as start time, end time, and duration.

Data Source: File Redacted

Number of Records: 258 flight regime events

- **REDACTED: Redactedevent sequential**

- RgmNum: Regime number
 RgmID: Flight regime ID
 ComfId: Aircraft configuration ID
 StartTime, EndTime: Flight regime
 start and end times (Redacted relative
- time, in seconds)
 Duration: Flight regime duration (in
- seconds)
 REDACTE
- REDACTED: Regime type REDACTED: Regime name (e.g., REDACTED, Hovering: Steady)

Title: Summary Statistics Content:

- Total Flight Regimes Analyzed: 258 REDACTED:
- - **Event Number: 0**

 - Regime Number: 3
 Regime ID: 2
 Start Time: 0.00 seconds
 End Time: 39.31 seconds
 Duration: 39.31 seconds
 Regime Name: Steady
 Ground Idle

Index	EvtNum	RgmNum	Comfld	StartTime	EndTime	Duration	RgmType
count	259	259	259	259	259	259	259
mean	129	72.251	15.471	2363.45	2393.95	30.5034	0.23166
std	74.9111	43.863	61.4381	1017.8	1005.66	246.887	0.498449
min	0	2	11		39.31	0.5	
25%	64.5	31	11	1452.88	1460.35	3.44	
50%	129	97	11	2686.25	2689.38	7.06	
75%	193.5	102	11	3259.22	3270.69	16.06	
max	258	215	999	3883.13	3955.19	3955.19	4

Description: This dataset captures five attribute values (maximum, minimum, average, start value, and end value) of 16 parameters of interest related to flight regimes. Each parameter is associated with various flight regimes identified in the Redacted file.

Data Source: File Redacted

Number of Records: 45 regimes

Key Columns:

Redacted: Flight regime ID
Redacted: Aircraft configuration ID
Columns for each parameter like
REDACTED, AirSpdKt, REDACTED,
etc., each with five attributes
(REDACTED, min, avg, start, end) for
different metrics like roll angle,
airSpeed, climb rate, pitch angle,
BEDACTED, etc. REDACTED, etc.

Title: Summary Statistics Content:

- Total Flight Regimes Analyzed: 45 REDACTED:

 - TÉD:
 Regime ID: 2
 Configuration ID: 28
 Roll Angle (REDACTED)
 REDACTED/Min/Avg: 0.53 /
 0.47 / 0.51 degrees
 Airspeed (AirSpdKt)
 REDACTED/Min/Avg: 0.25 /
 0.13 / 0.21 knots
 REDACTED (ClmbRtFPM)
 Max/Min/Avg: -12.79 / -25.45 /
 -20.87 feet per minute
 REDACTED (YawDeg)
 Max/Min/Avg: 0.07 / -1.94 /
 -0.44 degrees per second

Index	RgmlD	CfgID	BankDeg_max	BankDeg_min	BankDeg_avg	BankDeg_start	BankDeg_end
count	260	260	260	260	260	260	260
unique	49	4	194	215	209	220	215
top	44	11	0.48	-0.70	-0.08	0.68	0.05
freq	46	248	5	4	4	3	4

Description: This dataset captures the remaining useful life (RUL) calculated by REDACTED for high cycle and low cycle damages associated with flight regimes. The dataset records RUL for specific keys during flight regimes in the previous file and includes flight cycles (Regime ID = 999) and power cycles (Regime ID = 998).

Data Source: File Redacted

Number of Records: 231 flight regime events

- Rgm#: Flight regime number RdmID: Flight regime ID Cfg#: Aircraft configuration number REDACTED: Regime duration

- REDACTED: Regime type
 hcdDmg#: High cycle damage for keys
 (e.g., hcdDmg7 for Key 7)
 LcdDmg#: Low cycle damage for keys
 (e.g., lcdDmg7 for Key 7)

Title: Summary Statistics Content:

Total REDACTED: 231

REDACTED:

Regime Number: 30
Regime ID: 27
Configuration Number: 11
Duration: 4.06 seconds
High Cycle Damage Key 7
(hcdDmg7): 0.00E+000
Low Cycle Damage Key 7
(lcdDmg7): 0.00E+000

Index	#	Rgm#	Cfg#	Durtn	RgmType	hcdDmg7	lcdDmg7	hcdDmg12	lcdDmg12	hcdDmg18	lcdDmg18	hcdDmg20	lcdDmg20
count	380	380			380	380	380	380	380	380	380	380	380
mean	189.5	52.1105		20.7904					2.10444e-06		4.51711e-06		3.96237e-06
std	109.841			204.195		4.58612e-09	3.92384e-06	1.43322e-06	6.8325e-06		1.55045e-05		2.31047e-05
min	0												
25%	94.75		11										
50%	189.5												
75%	284.25		998						9.89e-07				
max	379		999	3955.19		8.94e-08			4.42e-05		0.000182		0.0002

	Index	#	Rgm#	Cfg#	Durtn	RgmType	hcdDmg7	lcdDmg7	hcdDmg12	lcdDmg12	hcdDmg18	lcdDmg18	hcdDmg20	lcdDmg20
со	unt	380	380	380	380	380	380	380	380	380	380	380	380	380
me	ean	189.5	52.1105	328.329	20.7904	1.75	2.35263e-10	1.40923e-06	2.27653e-07	2.10444e-06		4.51711e-06		3.96237e-06
std	1)	109.841	46.6934	461.123	204.195	2.26202	4.58612e-09	3.92384e-06	1.43322e-06	6.8325e-06		1.55045e-05		2.31047e-05
mi	n	0		11										
25	%	94.75		11										
50	%	189.5	31	11	3.5									
75	%	284.25	97	998	10.5					9.89e-07				
ma	ЭX	379	215	999	3955.19		8.94e-08	2.1e-05	1.85e-05	4.42e-05		0.000182		0.0002

Description: This dataset captures the cycle counting results of various parameters, such as engine torque (EngTQ), rotor speed (RtrSpd), and other flight metrics across different cycle types (REDACTED and REDACTED). The data includes metrics like cycle range, mean, minimum, and maximum values.

Data Source: File Redacted

Number of Records: 195 cycles

- fileN: Data file name SegNum#: Flight number within the input
- flight data file
 yyyCycNum#: Sequential number for
 cycle counts for the parameter
 REDACTED: Cycle type (REDACTED or

- REDACTED, CycMean, REDACTED, CycMax: Cycle range, mean, minimum, and maximum values

Total Cycles Analyzed: 195 Sample Cycle Information:

REDACTED: Redacted Cycle Type: REDACTED Cycle Range: 2.88 Cycle Mean: 0.52 Cycle Min: -0.92 Cycle REDACTED: 1.96

Index	SegNum#	yyCycNum:	CycRange	CycMean	CycMin	CycMax
count	195	195	195	195	195	195
mean	1	98	3.75313	0.967692	-0.908974	2.84421
std	0	56.4358	2.97992	5.79749	5.93891	6.03233
min	1	1	2.19	-9.44	-12	-7.66
25%	1	49.5	2.39	-3.845	-5.19	-2.55
50%	1	98	2.82	0.11	-1.38	1.89
75%	1	146.5	3.805	6.04	4.415	7.765
max	1	195	27.86	12.19	10.5	15.86

Description: This dataset records peak and valley results of a particular parameter measured across different time points during a flight. Each record indicates whether the measured value represents a peak or a valley.

Data Source: File Redacted

Number of Records: 589 peak/valley events

- fileN: Input flight data file name SegNum#: Flight number within the input flight data file yyyPVNum#: Sequential record number for peak/valley data for the parameter PVTime: Time that peak or valley occurs REDACTED: Value of the parameter at peak or valley REDACTED: Type (peak or valley)

Total Events Analyzed: 589 REDACTED:

File Name: Redacted Segment Number: 1 Time (PVTime): 452.94 seconds Value (REDACTED): 3.66 Type: Peak

Index	SegNum#	/yyPVNum#	PVTime	PVValue
count	310	310	310	310
mean	1	155.5	2495.24	0.506903
std	0	89.6335	881.744	2.06188
min	1	1	456.38	-7.56
25%	1	78.25	1877.16	-1.3225
50%	1	155.5	2581.38	1.04
75%	1	232.75	3315.68	2.06
max	1	310	3707.13	6.38

Description: The datasets capture the low cycle loads for maneuver-to-maneuver (REDACTED) sequences of resultant regimes associated with failure modes for various key numbers. The data represents load values over time.

Data Source: Files Redacted

Number of Records:

Redacted: 496 records Redacted: 495 records Redacted: 495 records Redacted: 495 records

- Time: Time sequence (indicating different time points during flight) Redacted Low cycle load at the respective time point

Description: The datasets capture the low cycle loads for maneuver-to-maneuver (REDACTED) sequences of resultant regimes associated with failure modes for various key numbers. The data represents load values over time.

Data Source: Files Redacted

Number of Records:

Redacted: 496 records Redacted: 495 records Redacted: 495 records Redacted: 495 records

- Time: Time sequence (indicating different time points during flight) Redacted: Low cycle load at the respective time point

Total Records Analyzed:

Redacted 496

Redacted: 495 Redacted: 495

Redacted: 495

Sample Load Values (from Redacted):

Time (REDACTED): 146437.2

REDACTED (REDACTED): 146437.2 lb

Time (495): 565527.2 REDACTED (495): 565527.2 lb

Time	lcdLoad
496	496
247.5	674982
143.327	193791
0	-5459
123.75	546707
247.5	612687
371.25	870546
495	1.06442e+06
	496 247.5 143.327 0 123.75 247.5 371.25

Total Records Analyzed:

Redacted 496

Redacted: 495 Redacted: 495

Redacted: 495

Sample Load Values (from Redacted):

- Time (REDACTED): 146437.2
- REDACTED (REDACTED): 146437.2 lb
- Time (495): 565527.2 REDACTED (495): 565527.2 lb

Index	Time	lcdLoad
count	496	496
mean	247.5	536753
std	143.327	214093
min	0	-15119.5
25%	123.75	344556
50%	247.5	536484
75%	371.25	672690

Total Records Analyzed:

Redacted: 496

Redacted: 495 Redacted: 495

Redacted: 495

Sample Load Values (from Redacted):

- Time (REDACTED): 146437.2
- REDACTED (REDACTED): 146437.2 lb
- Time (495): 565527.2 REDACTED (495): 565527.2 lb

Index	Time	lcdLoad
count	496	496
mean	247.5	674902
std	143.327	193513
min	0	-5459
25%	123.75	546707
50%	247.5	612687
75%	371.25	870546

Total Records Analyzed:

Redacted: 496

Redacted: 495 Redacted: 495

Redacted: 495

Sample Load Values (from Redacted):

- Time (REDACTED): 146437.2
- REDACTED (REDACTED): 146437.2 lb
- Time (495): 565527.2 REDACTED (495): 565527.2 lb

Index	Time	lcdLoad
count	496	496
mean	247.5	536747
std	143.327	213850
min	0	-15119.5
25%	123.75	344556
50%	247.5	536484
75%	371.25	672690

Duration of Flight Regimes

Duration of Flight Regimes

The duration of flight regimes is critical in understanding the operational context of an aircraft. According to REDACTED (REDACTED), understanding the time spent in different flight regimes allows for a more accurate reconstruction of the usage spectrum, which is essential for assessing the fatigue and wear experienced by different components (p. REDACTED). By capturing the duration of these regimes, we can identify patterns in usage that might lead to accelerated wear and tear on specific parts of the helicopter, which is essential for designing effective maintenance schedules.

Moreover, REDACTED et al. (REDACTED) emphasize that the precise identification of time spent in each flight regime can be directly linked to the fatigue damage accumulated by various helicopter structures (p. REDACTED). This linkage enables the prediction of when a component is likely to fail, allowing for preemptive maintenance. This feature is particularly useful in a Condition-Based Maintenance (REDACTED) strategy, where maintenance actions are triggered based on the actual condition of the equipment rather than on a fixed schedule, thus potentially extending the lifespan of components and reducing maintenance costs.

REDACTED

REDACTED

REDACTED

REDACTED and valleys in operational data often represent critical events where the system experiences extreme conditions, such as maximum stress or strain.

REDACTED. (REDACTED) note that extracting features from such time-domain data, including maximum, minimum, and peak-to-peak values, significantly enhances the ability to diagnose faults by capturing the most critical aspects of the system's behavior (p. REDACTED). These features can be used to identify abnormal conditions that might indicate the onset of a fault, allowing for early intervention before the issue becomes more severe.

Additionally, REDACTED. (REDACTED) demonstrate that integrating these time-domain features with machine learning algorithms, such as decision trees, improves diagnostic accuracy and reduces the time required for training the model (p. REDACTED). This is particularly valuable in complex systems like the REDACTED, where quick and accurate fault detection is crucial for maintaining operational safety and efficiency.

Feature Engineering

By combining the duration of flight regimes with peaks and valleys data, we can develop a comprehensive understanding of the operational conditions that lead to wear and tear, allowing for more precise predictions of component lifespan and better maintenance planning. This approach not only improves safety but also optimizes maintenance schedules, potentially leading to significant cost savings.

The integration of flight regime duration and peaks and valleys features offers a robust framework for enhancing the predictive maintenance and operational efficiency of the REDACTED helicopter. These features provide critical insights into the operational stresses experienced by the aircraft, enabling more accurate and timely maintenance interventions.

References

REDACTED, F., Coral, REDACTED, REDACTED, REDACTED, REDACTED, Baldi, A., Mariani, U., & Mezzanzanica, D. (REDACTED). A Multivariate Time-Series Segmentation Framework for Flight Condition Recognition. IEEE Transactions on REDACTED, 59(3), REDACTED. REDACTEDTAES.2022.3215115

Ji, D., REDACTED, REDACTED, & Wang, REDACTED (REDACTED). Research on the motor fault diagnosis method based on feature engineering and machine learning. REDACTED 7th International Conference on Intelligent Computing and REDACTED), REDACTED. doi:10.1109/ICSP54964.REDACTED.9778415