Analytical Geometry and Linear Algebra I, Lab 4

Innopolis University, September 2023

Changing Basis and Coordinates 1

- 1. Two bases are given in the plane: \mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_1' , \mathbf{e}_2' . The vectors of the first basis have coordinates (-1; 3) and (2; -7) in the second basis.
 - (a) Compose transition matrices from the old basis to the new and vice

versa. **Ans:**
$$e = \begin{bmatrix} -1 & 3 \\ 2 & -7 \end{bmatrix} e'$$

$$e' = \begin{bmatrix} -7 & -3 \\ -2 & -1 \end{bmatrix} e$$

- (b) Find the coordinates of a vector in the old basis given that it has coordinates α'_1 , α'_2 in the new basis.
- (c) Find the coordinates of a vector in the new basis given that it has coordinates α_1 , α_2 in the old basis.
- 2. Let us consider two coordinate systems in the plane: O, \mathbf{e}_1 , \mathbf{e}_2 and O', $\mathbf{e}'_1, \mathbf{e}'_2$. Point O' has coordinates (7, -2) in the old coordinate system, and vectors \mathbf{e}'_1 , \mathbf{e}'_2 can be obtained from vectors \mathbf{e}_1 , \mathbf{e}_2 by rotating them 60° (a) clockwise; (b) counterclockwise. Find the old coordinates of a point x,

$$y$$
 given its new coordinates x' , y' .

Ans: $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} 7 \\ -2 \end{bmatrix}$, (a) $\theta = 60^{\circ}$, (b) $\theta = -60^{\circ}$

3. If vectors a and b form a basis (you should check it), it is needed to find coordinates \mathbf{c} and \mathbf{d} in the basis.

$$\mathbf{a} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, \, \mathbf{b} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \, \mathbf{c} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \, \mathbf{d} = \begin{bmatrix} 2 \\ -6 \end{bmatrix}.$$

$$\mathbf{Ans:} \, \mathbf{c} = \frac{1}{16}\mathbf{a} + \frac{11}{16}\mathbf{b}$$

$$\mathbf{d} = -2\mathbf{b}$$

4. There are 4 vectors
$$f_1$$
, f_2 , f_3 , x and the basis $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Find the coordinates of x in the basis

1

$$(f_1, f_2, f_3)$$
, if $f_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $f_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $f_3 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, $x = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Ans:
$$\mathbf{x} = 1\mathbf{f}_1 + 1\mathbf{f}_2 - 1\mathbf{f}_3$$

2 Inverse Matrix

- 1. Find inverse matrices for the following matrices:
 - (a) $\begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix}$; **Ans:** $\begin{bmatrix} \frac{9}{2} & -\frac{5}{2} \\ -\frac{5}{2} & \frac{3}{2} \end{bmatrix}$
 - (b) $\begin{bmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ -1 & -1 & 1 \end{bmatrix}$; **Ans:** $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 3 & 4 \end{bmatrix}$
- 2. Solve matrix equations:
 - (a) $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} X = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$; **Ans:** $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$
 - (b) $X \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$; **Ans:** $\begin{bmatrix} 5 & -8 \\ 2 & -3 \end{bmatrix}$