

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A61K 9/12, 9/72		A1	(11) International Publication Number: WO 92/00062 (43) International Publication Date: 9 January 1992 (09.01.92)		
(21) International Application Number: PCT/US91/04423		(74) Agents: REEDICH, Douglas, E. et al.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).			
(22) International Filing Date: 21 June 1991 (21.06.91)		(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent).			
(30) Priority data: 544,659 27 June 1990 (27.06.90)		US	Published <i>With international search report.</i>		
(71) Applicant: MINNESOTA MINING AND MANUFACTURING COMPANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, MN 55133-3427 (US).					
(72) Inventors: MORIS, Robert, A. ; Post Office Box 33427, Saint Paul, MN 55133-3427 (US). SCHULTZ, David, W. ; SCHULTZ, Robert, K. ; THIEL, Charles, G. ; Post Office Box 33427, Saint Paul, MN 55133-3427 (US).					
(54) Title: THE USE OF SOLUBLE FLUOROSURFACTANTS FOR THE PREPARATION OF METERED-DOSE AEROSOL FORMULATIONS					
(57) Abstract Pharmaceutical suspension aerosol formulations using one or more perfluorinated sulfonamido alcohol phosphate esters as surface-active dispersing agents and 1,1,1,2-tetra-fluoroethane, 1,1,1,2,3,3-heptafluoropropene, or a mixture thereof, as the propellant.					

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	LJ	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark				

THE USE OF SOLUBLE FLUOROSURFACTANTS FOR THE
PREPARATION OF METERED-DOSE AEROSOL FORMULATIONS

5 TECHNICAL FIELD OF THE INVENTION

This invention relates to suspension aerosol formulations suitable for the administration of medicaments. More particularly, it relates to pharmaceutical suspension aerosol formulations using 10 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoropropane as the propellant.

BACKGROUND OF THE INVENTION

Pharmaceutical suspension aerosol formulations 15 currently use a mixture of liquid chlorofluorocarbons as the propellant. Fluorotrichloromethane, dichlorodifluoromethane and dichlorotetrafluoroethane are the most commonly used propellants in aerosol formulations for administration by inhalation.

20 Chlorofluorocarbons have been implicated in the destruction of the ozone layer and their production is being phased out. Hydrofluorocarbon 134a (HFC-134a, 1,1,1,2-tetrafluoroethane) and hydrofluorocarbon 227 (HFC-227, 1,1,1,2,3,3,3-heptafluoropropane) are viewed 25 as being more ozone friendly than many chlorofluorocarbon propellants; furthermore, they have low toxicity and vapor pressures suitable for use in aerosols.

U.S. Pat. No. 4,352,789 discloses a self-30 propelling, powder dispensing aerosol composition comprising between about 0.001 and 20 percent by weight of a finely-divided solid material coated with a dry coating of a perfluorinated surface-active dispersing agent of a particular type which constitutes between 35 about 0.1 to 20 percent by weight of the coated solid and a halogenated propellant. The solid material can be a medicament. The use of 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoropropane as a propellant is not specifically disclosed.

-2-

SUMMARY OF THE INVENTION

This invention provides suspension aerosol formulations comprising an effective amount of a powdered medicament, between about 0.001 and 0.6 percent by weight of a perfluorinated surface-active dispersing agent and a propellant comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,2-tetrafluoroethane and 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof.

5 by weight of a perfluorinated surface-active dispersing agent and a propellant comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,2-tetrafluoroethane and 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof.

10 The perfluorinated surface-active agent is selected from the group consisting of a perfluorinated sulfonamido alcohol phosphate ester having the general formula

15

wherein R_f is a perfluorinated radical selected from the group consisting of aliphatic C_nF_{2n+1} and cycloaliphatic C_nF_{2n+1} where n is an integer from about 4 to about 10, R is selected from the group consisting of hydrogen and alkyl having about 4 to about 12 carbon atoms, R' is alkylene having about 2 to about 8 carbon atoms and m is an integer from 1 to 3, and a mixture of two or more of said esters;

the formulation exhibiting substantially no growth in particle size or change in crystal morphology of said medicament over a prolonged period, being substantially readily redispersible, and upon redisposition not flocculating so quickly as to prevent reproducible dosing of the medicament. Preferably, the formulation is prepared by combining the dispersing agent and propellant rather than coating the dispersing agent onto the powdered medicament prior to addition of said propellant.

The pharmaceutical suspension aerosol formulations of the invention are suitable, for example, for dermal, pulmonary, or mucosal (e.g., buccal or nasal) administration.

-3-

DETAILED DESCRIPTION OF THE INVENTION

The term "suspension aerosol" means that the medicament is in powder form and is substantially insoluble in the propellant.

5 By "prolonged period" as used herein in the context of crystallization is meant at least about four (4) months.

10 The medicament is micronized, that is, over 90 percent of the particles have a diameter of less than about 10 microns.

15 The medicament is generally present in an amount effective to bring about the intended therapeutic effect of the medicament, i.e., an amount such that one or more metered volumes of the formulation contains an effective amount of the drug. The amount of medicament, however, depends on the potency of the particular medicament being formulated. Generally, the medicament constitutes from about 0.01 to 5 percent by weight of the total weight of the formulation, preferably about 20 0.01 to about 2 percent by weight of the total weight of the formulation.

Medicaments for delivery by inhalation include, for example, analgesics, anginal preparations, antiallergics, antibiotics, antihistamines, 25 antiinflammatories, antitussives, bronchodilators, enzymes, hormones, peptides, steroids, or a combination of these.

30 Examples of medicaments falling within the above therapeutic classes are: adrenochrome, albuterol, albuterol sulfate, atropine methylnitrate or sulfate, beclomethasone dipropionate, chlorotetracycline, codeine, colchicine, cortisone, disodium cromoglycate, ephedrine, ephedrine hydrochloride or sulfate, epinephrine bitartrate, fentanyl, flunisolide, 35 formoterol, glucagon, heparin, hydrocortisone, hydroxy-tetracycline, insulin, isoproterenol hydrochloride or sulfate, morphine, nedocromide, neomycin, oscapine, penicillin, phenylephrine bitartrate or hydrochloride, phenylpropanolamine hydrochloride, pирbutерол acetate or

-4-

hydrochloride, prednisolone, salmeterol, streptomycin, tetracycline, triamcinolone acetonide, and trypsin.

Preferred medicaments in the practice of this invention include albuterol, albuterol sulfate,

- 5 beclomethasone dipropionate, disodium cromoglycate, epinephrine bitartrate, fenoterol hydrobromide, ipratropium bromide, isoproterenol hydrochloride, isoproterenol sulfate, metaproterenol sulfate, phenylephrine bitartrate, phenylephrine hydrochloride,
- 10 pirbuterol acetate, pirbuterol hydrochloride, procaterol hydrochloride, salmeterol, triamcinolone acetonide, and mixtures thereof.

Perfluorinated surface-active dispersing agents useful in the invention are perfluorinated

- 15 sulfonamido alcohol phosphate esters or mixtures of such compounds that are soluble in 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, or a mixture thereof.

Suitable perfluorinated sulfonamido alcohol phosphate esters include those described in U.S. Pat.

- 20 No. 3,094,547, which is incorporated herein by reference, having the general formula:

25

- where R_f is a perfluorinated radical selected from the group consisting of aliphatic $\text{C}_n\text{F}_{2n+1}$ and cycloaliphatic $\text{C}_n\text{F}_{2n-1}$, where n is an integer from about 4 to about 10, R is selected from the group consisting of hydrogen and alkyl having about 4 to about 12 carbon atoms, R' is alkylene having about 2 to about 8 carbon atoms and m is an integer from 1 to 3.

Particularly preferred perfluorinated sulfonamido alcohol phosphate esters include

- 35 bis(perfluorooctyl-N-ethylsulfonamidoethyl)phosphate, tris(perfluorooctyl-N-ethylsulfonamidoethyl)phosphate, and mixtures thereof.

-5-

For some medicaments a combination of the bis(perfluorooctyl-N-ethylsulfonamidoethyl)phosphate and the tris(perfluorooctyl-N-ethylsulfonamidoethyl)-phosphate affords aerosol formulations with superior

5 suspension qualities compared to suspensions obtained by using either ester alone. The total amount of ester and the ratio of the bis(perfluorooctyl-N-ethyl-sulfonamidoethyl)phosphate to the tris(perfluorooctyl-N-ethylsulfonamidoethyl)phosphate can be optimized by
10 those skilled in the art for particular medicaments.

The perfluorinated surface-active dispersing agent preferably has a solubility of at least 0.1 percent by weight, more preferably at least 0.3 percent by weight, and most preferably at least 0.8 percent by
15 weight in the propellant.

The perfluorinated surface-active dispersing agent constitutes from about 0.001 to about 0.6 percent by weight, preferably about 0.001 to about 0.5 percent by weight, of the aerosol formulation. The particular
20 preferred amount depends on the particular medicament being formulated and on the particular surface-active dispersing agent being used. It is preferred to use approximately the minimum amount of agent needed to provide a suitable suspension.

25 The hydrofluorocarbon or mixture thereof is preferably the only propellant present in the formulations of the invention. However, one or more other propellants such as propellant 142b (1-chloro-1,1-difluoroethane) can also be present.

30 The suspension aerosol formulations of the invention can be prepared by first preparing a solution of the perfluorinated surface-active dispersing agent in the propellant and then suspending the medicament in the solution. In order to prepare a formulation in this
35 manner, the perfluorinated surface-active dispersing agent is placed in an aerosol vial, a continuous valve is crimped onto the vial and the vial is pressure filled with the propellant. The vial is shaken on an automatic shaker until all of the dispersing agent is in solution.

-6-

The micronized medicament is then placed in a separate aerosol vial, a continuous valve is crimped onto the vial and the vial is pressure filled with the previously prepared solution. The medicament is then dispersed in
5 the solution by mixing or homogenizing. If the medicament being formulated is moisture sensitive, these steps should be performed in a dehumidified atmosphere using only dry materials and equipment.

The following examples are provided to
10 illustrate the invention but should not be construed as limiting the invention.

In the following examples the quality of the aerosol suspension is rated on a scale of 1 to 5 with 1 indicating a "poor" suspension and 5 indicating an
15 "excellent" suspension. A poor suspension is characterized by one or more of the following: it has a rapid rate of settling or separation, it is difficult to redisperse after settling or separation, it forms large flocs quickly, or it exhibits crystal formation. In
20 contrast, an excellent suspension is slow to settle or separate, is easily redispersed, has minimal flocculation, and exhibits no crystallization or crystal morphology changes. Substantially no crystal formation, relative ease of redispersion, and absence of rapid
25 flocculation after redispersion are important properties in order to provide reproducible dosing of the medicament. Absence of substantial crystal formation provides for maximization of the fraction of the dose deliverable to the target area of the lung. Ease of
30 redispersion permits dosing of a uniform suspension. Finally, rapid flocculation results in a large variation in the dose delivered from the aerosol canister. Suspensions exhibiting a rating of 1 or 2 are not considered desirable in terms of an overall balance of
35 properties of degree of crystallization, ease of redispersibility, and nature of any flocculation, whereas ones exhibiting a rating of 3, 4 or 5 are considered desirable and fall within the scope of this invention.

-7-

As used in the Examples below, the term "diester" refers to bis(perfluoroctyl-N-ethyl-sulfonamidoethyl)phosphate, and the term "triester" refers to tris(perfluoroctyl-N-ethylsulfonamidoethyl)-
5 phosphate. Except as otherwise indicated the propellant in the Examples below is 1,1,1,2-tetrafluoroethane (HFC-134a).

Example 1

10 A 11.528 mg portion of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate was placed in a 4 ounce vial, the vial was sealed with a continuous valve then pressure filled with 115.65 g of 1,1,1,2-tetrafluoroethane. The vial was then shaken on an
15 automatic shaker for 15 minutes. The resulting stock solution contained 0.01 % by weight of bis(perfluoroctyl-N-ethylsulfonamidoethyl)-phosphate. A 100 mg portion of micronized albuterol sulfate was placed in a 15 cc vial along with 5 mL of
20 glass beads, the vial was sealed with a continuous valve then pressure filled with the previously prepared stock solution. The vial was shaken on a WIG-L-BUG™ mixer for 30 seconds. The resulting suspension contained 0.5% by weight of albuterol sulfate and had a quality rating of
25 5 (excellent).

Examples 2-13

Using the general method of Example 1, a series of micronized albuterol sulfate suspensions were
30 prepared. Table 1 shows the amount (percent by weight based on the total weight of the formulation) and identity of the surface-active dispersing agent (ratios are weight:weight) used and the quality rating of the suspensions. The suspensions of Examples 2 and 3 contained 0.5% by weight of albuterol sulfate, that of Example 4 contained 0.46% by weight and the remaining Examples contained 0.45 % by weight of albuterol sulfate.

-8-

Table 1

<u>Example</u>	<u>Surface-Active Dispersing Agent</u>	<u>Rating</u>
2	0.005% diester	3
5 3	0.05% diester	5
4	0.3% diester	3
5	0.005% 3:1 diester:triester	5
6	0.01% 8:1 diester:triester	4
7	0.05% 38:1 diester:triester	3
10 8	0.005% 4:3 diester:triester	5
9	0.01% 8:3 diester:triester	4
10	0.05% 38:3 diester:triester	3
11	0.005% 4:13 diester:triester	5
12	0.01% 8:13 diester:triester	5
15 13	0.05% 38:13 diester:triester	3

Examples 14-18

Using the general method of Example 1, a series of suspension aerosol formulations containing 0.5% percent by weight micronized pirbuterol hydrochloride was prepared. Table 2 shows the amount (percent by weight based on the total weight of the formulation) and identity of the surface-active dispersing agent used and the suspension quality rating.

-9-

Table 2

<u>Example</u>	<u>Surface-Active Dispersing Agent</u>	<u>Rating</u>
5 14	0.05% diester	5
15	0.10% diester	5
16	0.15% diester	5
17	0.20% diester	5
18	0.01% diester	2

10

Examples 19-27

Using the general method of Example 1, a series of aerosol suspension formulations containing 1.6% by weight based on the total weight of the 15 formulation of micronized disodium cromoglycate was prepared. Table 3 shows the amount (percent by weight based on the total weight of the formulation) and identity (ratios are weight:weight) of the surface-active dispersing agent used and the suspension 20 quality rating.

Table 3

<u>Example</u>	<u>Surface-Active Dispersing Agent</u>	<u>Rating</u>
25 19	0.03% diester	1
20	0.05% diester	1
21	0.01% diester	1
22	0.3% diester	3
23	0.3% 1:1 diester:triester	4
30 24	0.3% triester	3
25	0.05% 1:1 diester:triester	3
26	0.1% 1:1 diester:triester	5
27	0.15% 1:1 diester:triester	5

35

Examples 28-40

Using the general method of Example 1, a series of suspension aerosol formulations containing 0.45% by weight of micronized pirbuterol acetate was prepared. Table 4 shows the amount (percent by weight

-10-

based on the total weight of the formulation) and identity (ratios are weight:weight) of the surface-active dispersing agent used and the suspension quality rating.

5

Table 4

<u>Example</u>	<u>Surface-Active Dispersing Agent</u>	<u>Rating</u>
28	0.3% diester	1
10 29	0.01% diester	3
30	0.05% diester	2
31	0.10% diester	2
32	0.15% diester	2
33	0.20% diester	2
15 34	0.005% 3:1 diester:triester	2
35	0.005% 4:3 diester:triester	2
36	0.005% 4:13 diester:triester	2
37	0.1% 3:1 diester:triester	2
38	0.1% 1:1 diester:triester	2
20 39	0.3% 3:1 diester:triester	2
40	0.5% 3:1 diester:triester	2

Examples 41-46

Using the general method of Example 1, a series of suspension aerosol formulations containing 0.5% by weight based on the total weight of the formulation of micronized epinephrine bitartrate was prepared. Table 5 shows the amount (percent by weight based on the total weight of the formulation) and identity (ratios are weight:weight) of the surface-active dispersing agent used and the suspension quality rating.

-11-

Table 5

<u>Example</u>	<u>Surface-Active Dispersing Agent</u>	<u>Rating</u>
5 41	0.05% 1:1 diester:triester	5
	42 0.1% 1:1 diester:triester	2
	43 0.15% 1:1 diester:triester	2
	44 0.05% diester	4
	45 0.1% diester	2
10 46	0.15% diester	2

Example 47

A 16.6 mg portion of perfluorooctyl-N-ethylsulfonamidoethylphosphate was mixed with 1 g of ethanol in a 4 gram glass vial. The resulting solution was transferred to a 4 ounce glass aerosol vial which was then sealed with a continuous valve and pressure filled with 100 g of 1,1,1,2-tetrafluoroethane to give a stock solution containing 0.016 percent by weight of the ester and 1 percent by weight of ethanol. A 100 mg portion of micronized albuterol sulfate was placed in a 15 cc glass vial along with 5 mL of glass beads, the vial was sealed with a continuous valve and then pressure filled with the stock solution. The vial was placed on a WIG-L-BUG™ mixer for at least 30 seconds. The resulting suspension contained 0.5% by weight of albuterol sulfate and had a quality rating of 2.

Example 48

Using the general method of Example 47, a suspension aerosol containing 0.5% by weight of micronized albuterol sulfate, 0.05% by weight of perfluorooctyl-N-ethylsulfonamidoethylphosphate, 1.2% by weight of ethanol and 1,1,1,2-tetrafluoroethane was prepared. The resulting suspension had a quality rating of 1.

-12-

Example 49

Using the general method of Example 47, a suspension aerosol containing 0.5% by weight of 5 micronized albuterol sulfate, 0.005% by weight of perfluoroctyl-N-ethylsulfonamidoethylphosphate, 0.5% by weight of ethanol and 1,1,1,2-tetrafluoroethane was prepared. The resulting suspension had a quality rating of 4.

10

Example 50

A 10.0 mg portion of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and a 50.7 mg portion of tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate 15 were placed in a vial, the vial was sealed with a continuous valve then pressure filled with 99.879 g of 1,1,1,2-tetrafluoroethane. The resulting stock solution contained 0.01% by weight of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and 0.05% by weight of 20 tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate. A 30 mg portion of micronized beclomethasone dipropionate was placed in a vial along with 3 mL of glass beads, the vial was sealed with a continuous valve and pressure filled with 10 g of the previously prepared 25 stock solution. The vial was placed on a WIG-L-BUG™ mixer for at least 30 seconds. The resulting suspension contained 0.3% by weight of beclomethasone dipropionate and had a quality suspension rating of 4 (excellent).

30

Examples 51-55

Using the general method of Example 50 and the stock solution prepared in Example 50, a series of suspension aerosols was prepared. Table 6 shows the amount (percent by weight based on the total weight of 35 the formulation) and identity of the medicament used and the quality rating of the suspension. All of the suspensions contained 0.01% by weight of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and

-13-

0.05% by weight of tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate.

Table 6

5	<u>Example</u>	<u>Medicament</u>	<u>Rating</u>
	51	0.3% triamcinolone acetonide	5
	52	0.5% pirbuterol acetate	5
	53	1.5% disodium cromoglycate	5
10	54	0.5% albuterol sulfate	5
	55	0.45% salmeterol	3

Examples 56-58

Using the general method of Example 1, a
 15 series of suspension aerosol formulations containing
 0.1% by weight of micronized salmeterol was prepared.
 Table 7 shows the amount (percent by weight based on
 the total weight of the formulation) and identity of
 the surface-active dispersing agent used and the
 20 suspension quality rating.

Table 7

25	<u>Example</u>	<u>Surface-Active Dispersing Agent</u>	
	<u>Rating</u>		
	56	0.01% diester	4
	57	0.005% diester	5
	58	0.001% diester	5

30 Examples 59-64
 A series of suspension aerosol formulations
 in which 1,1,1,2,3,3-heptafluoropropane (HFC-227)
 serves as the propellant was prepared using the general
 method of Example 1. Table 8 shows the amount (percent
 35 by weight based on the total weight of the formulation)
 and identity of the surface-active dispersing agent
 used and the suspension quality rating. The
 formulations of Examples 59-61 contained 0.3 percent by
 weight based on the total weight of the formulation of

-14-

micronized triamcinolone acetonide. Those of Examples 62-64 contained 0.5 percent by weight of micronized pirbuterol acetate.

5

Table 8

<u>Example</u>	<u>Surface-Active Dispersing Agent</u>		
<u>Rating</u>			
	59	0.025% diester	4
10	60	0.05% 1:4 diester:triester	5
	61	0.005% 4:1 diester:triester	5
	62	0.025% diester	5
	63	0.05% 1:4 diester:triester	4
	64	0.005% 4:1 diester:triester	4

15

In the claims that follow, all weight percentages are based on the total weight of the formulation unless otherwise stated.

-15-

WHAT IS CLAIMED IS:

1. A suspension aerosol formulation,
5 comprising: a propellant comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,2-tetrafluoroethane and 1,1,1,2,3,3,3-heptafluoropropane, and a mixture thereof; a therapeutically effective amount of a powdered medicament; and between about 0.001
10 and 0.6 percent by weight of a surface-active dispersing agent of the formula

15 wherein R_f is a perfluorinated radical selected from the group consisting of aliphatic C_nF_{2n+1} and cycloaliphatic C_nF_{2n-1} where n is an integer from about 4 to about 10, R is selected from the group consisting of hydrogen and
20 alkyl having about 4 to about 12 carbon atoms, R' is alkylene having about 2 to about 8 carbon atoms and m is an integer from 1 to 3, and mixture of two or more of said esters;

the formulation exhibiting substantially no
25 growth in particle size or change in crystal morphology of said medicament over a prolonged period, being substantially readily redispersible, and upon redispersion not flocculating so quickly as to prevent reproducible dosing of the medicament.

30

2. A suspension aerosol formulation according to Claim 1 wherein said powdered medicament is present in an amount of about 0.01 to 2 percent by weight; said formulation being prepared by combining
35 said dispersing agent and propellant rather than coating said dispersing agent onto said powdered medicament prior to addition of said propellant.

-16-

3. A suspension aerosol formulation according to Claim 1 wherein said dispersing agent is present in an amount of about 0.001 to 0.5 percent by weight.

5 4. A suspension aerosol formulation according to Claim 1 wherein said dispersing agent has a solubility of at least 0.3 percent by weight in said propellant.

10 5. A suspension aerosol formulation according to Claim 4 wherein said dispersing agent has a solubility of at least 0.8 percent by weight in said propellant.

15 6. A suspension aerosol formulation according to Claim 1 wherein said dispersing agent is selected from the group consisting of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate, tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate, 20 and mixtures thereof.

7. A suspension aerosol formulation according to Claim 1 wherein said medicament is selected from the group consisting of an analgesic, an anginal preparation, an antiallergic, an antibiotic, an 25 antihistamine, an antiinflammatory, an antitussive, a bronchodilator, an enzyme, a hormone, a peptide, a steroid, and mixtures thereof.

30 8. A suspension aerosol formulation according to Claim 1 wherein said medicament is selected from the group consisting of albuterol, albuterol sulfate, beclomethasone dipropionate, disodium cromoglycate, epinephrine bitartrate, fenoterol hydrobromide, 35 ipratropium bromide, isoproterenol hydrochloride, isoproterenol sulfate, metaproterenol sulfate, phenylephrine bitartrate, phenylephrine hydrochloride, pirbuterol acetate, pirbuterol hydrochloride, procaterol

-17-

hydrochloride, salmeterol, triamcinolone acetonide, and mixtures thereof.

9. A suspension aerosol formulation according
5 to Claim 1 wherein 1,1,1,2-tetrafluoroethane is
essentially the only propellant, and comprising between
0.1 and 1.0 percent by weight of albuterol sulfate
having a substantially uniform particle size of less
than about 10 microns in diameter, and between about
10 0.008 and about 0.06 percent by weight of
bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate.

10. A suspension aerosol formulation
according to Claim 1 wherein 1,1,1,2-tetrafluoroethane
15 is essentially the only propellant, and comprising
between about 0.5 and about 2 percent by weight of
disodium cromoglycate having a substantially uniform
particle size of less than about 10 microns in diameter,
and between about 0.05 and about 0.4 percent by weight
20 of a mixture of bis(perfluoroctyl-N-
ethylsulfonamidoethyl)phosphate and tris(perfluoro-
octyl-N-ethylsulfonamidoethyl)phosphate.

11. A suspension aerosol formulation according
25 to Claim 10 wherein said bis(perfluoroctyl-
N-ethylsulfonamidoethyl)phosphate and said
tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate
are present in about equal amounts by weight.

30 12. A suspension aerosol formulation according
to Claim 1 wherein 1,1,1,2-tetrafluoroethane is
essentially the only propellant, and comprising between
about 0.1 and about 1 percent by weight of epinephrine
bitartrate having a substantially uniform particle size
35 of less than about 10 microns in diameter, and between
about 0.02 and about 0.07 percent by weight of a mixture
of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate
and tris(perfluoroctyl-N-ethylsulfonamidoethyl)-
phosphate.

-18-

13. A suspension aerosol formulation according to Claim 12 wherein said bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and said tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate 5 are present in about equal amounts by weight.

14. A suspension aerosol formulation according to Claim 1 wherein 1,1,1,2-tetrafluoroethane is essentially the only propellant, and comprising between 10 about 0.1 and about 1 percent by weight of epinephrine bitartrate having a substantially uniform particle size of less than about 10 microns in diameter, and between about 0.02 and about 0.07 percent by weight of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate.

15

15. A suspension aerosol formulation according to Claim 1 wherein 1,1,1,2-tetrafluoroethane is essentially the only propellant, and comprising between about 0.1 and about 1 percent by weight of pirbuterol 20 hydrochloride having a substantially uniform particle size of less than about 10 microns in diameter, and between about 0.03 and about 0.3 percent by weight of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate.

25

16. A suspension aerosol formulation according to Claim 1 comprising between about 0.1 and about 1.0 percent by weight of albuterol sulfate having a substantially uniform particle size of less than about 10 microns in diameter, and between about 0.004 and 30 about 0.02 percent by weight of a mixture of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate, with the proviso that the ratio by weight of said bis ester to said tris ester is about 8:1 to about 1:4.

35

17. A suspension aerosol formulation according to Claim 1, prepared by combining the dispersing agent and the propellant rather than coating the dispersing

-19-

agent onto the powdered medicament prior to addition of said propellant.

18. A suspension aerosol formulation according
5 to Claim 1 comprising 1,1,1,2-tetrafluoroethane as
essentially the only propellant.

19. A suspension aerosol formulation according
to Claim 1 comprising 1,1,1,2,3,3,3-heptafluoropropane
10 as essentially the only propellant.

20. A suspension aerosol formulation according
to Claim 1 wherein 1,1,1,2-tetrafluoroethane is
essentially the only propellant, and comprising: about
15 0.02 to about 0.07 percent by weight of a mixture of
about one part by weight bis(perfluoroctyl-N-ethyl
sulfonamidoethyl)phosphate and about five parts by
weight tris(perfluoroctyl-N-ethylsulfonamidoethyl)-
phosphate; and a medicament having substantially uniform
20 particle size of less than about 10 microns in diameter
selected from the group consisting of beclomethasone
dipropionate in an amount of about 0.1 to about 0.5
percent by weight, triamcinolone acetonide in an amount
of about 0.1 to about 0.5 percent by weight, pirbuterol
25 acetate in an amount of about 0.3 to about 0.7 percent
by weight, disodium chromoglycate in an amount of about
1.0 to about 2.0 percent by weight, albuterol sulfate in
an amount of about 0.3 to about 0.7 percent by weight,
and salmeterol in an amount of about 0.4 to about 0.5
30 percent by weight.

21. A suspension aerosol formulation according
to Claim 1 wherein 1,1,1,2-tetrafluoroethane is
essentially the only propellant, and comprising about
35 0.05 to about 0.2 percent by weight of salmeterol having
a substantially uniform particle size of less than about
10 microns in diameter and about 0.001 to about 0.01
percent by weight bis(perfluoroctyl-N-ethylsulfonamido-
ethyl)phosphate.

-20-

22. A suspension aerosol formulation according to Claim 1 wherein 1,1,1,2,3,3,3-heptafluoropropane is essentially the only propellant and comprising about 0.1 to about 0.5 percent by weight triamcinolone acetonide
5 having a substantially uniform particle size of less than about 10 microns in diameter and about 0.005 to about 0.05 percent by weight of a dispersing agent selected from the group consisting of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and
10 a mixture of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate.

23. A suspension aerosol formulation according to Claim 1 wherein 1,1,1,2,3,3,3-heptafluoropropane is essentially the only propellant and comprising about 0.3 to about 0.7 percent by weight pirbuterol acetate having a substantially uniform particle size of less than about 10 microns in diameter and about 0.005 to about 0.05 percent by weight of a dispersing agent selected from the group consisting of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and a mixture of bis(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate and tris(perfluoroctyl-N-ethylsulfonamidoethyl)phosphate.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 91/04423

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all)⁶

According to International Patent Classification (IPC) or to both National Classification and IPC
 Int.C1.5 A 61 K 9/12 A 61 K 9/72

II. FIELDS SEARCHED

Minimum Documentation Searched⁷

Classification System	Classification Symbols
Int.C1.5	A 61 K

Documentation Searched other than Minimum Documentation
 to the Extent that such Documents are Included in the Fields Searched⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
A	US,A,4352789 (C.G. THIEL) 5 October 1982, see claims 1-7,11-18 (cited in the application) ---	1,2,6-8 ,17-19
A	US,A,3094547 (R.F. HEINE) 18 June 1963, see claims 1,3,5,7; column 3, lines 16-18; column 4, lines 53-54 (cited in the application) ---	1,6
A	STN International Information Services Data Base: Chemical Abstracts, Accession No.: 89(14):117545k, & JP-A-53 031 582 (DAIKIN KOGYO CO., LTD) 24 March 1978, see abstract -----	1,18-19

¹⁰ Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

06-09-1991

Date of Mailing of this International Search Report

17.11.91

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

Mme. M. van der Drift

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. US 9104423
SA 4895**

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EPO EDD file on 25/09/91. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A- 4352789	05-10-82	None	
US-A- 3094547		CH-A- 421083 DE-A, B, C 1493944 FR-A- 1317427 GB-A- 1002680	08-06-72

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.