NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Mai Thi Thanh Hien

MA 3218 Coding Theory 2010/2011 Sem 1

Question 1

(a)

$$H = \left(\begin{array}{rrrr} 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{array}\right)$$

- (b) n = 5, k = 2, d = 3. Since H has no zero columns, d > 1. Since no 2 columns of H are multiples of each other, d > 2. Since 2^{nd} column $= 2 \times 1^{st}$ column $+2 \times 5^{th}$ column.
- (c) G-V bound:

$$A_3(5,3) \ge B_3(5,3) \ge 3^{5-\log_3(V_3^4(1)+1)} = 9.$$

Hamming bound:

$$A_3(5,3) \le \frac{3^5}{V_3^5(1)} = 22.$$

For a [5,3]-linear code over \mathcal{F}_3 , $B_3(5,3)$ is a power of 3, then $3^2 = 9 \le B_3(5,3) \le 9 < 22 < 27 = 3^3$. Hence, the maximum dimension of a [5,3]-linear code over \mathcal{F}_3 is 2. A ternary [5,3,3]-code does not exist.

Question 2

(a)
$$n = 2^4 - 1 = 15, k = 2^4 - 1 - 4 = 11, d = 3.$$

(b)

(c)
$$S(w_1) = w_1 \times H^T = (11111000000000) \cdot H = (0001)^T$$

which is the first column of H. We decode w_1 to $w_1 + e_1 = (011110000000001)$.

$$S(w_2) = w_2 \times H^T = (0000011111100000) \cdot H = (1010)^T$$

which is the 10^{th} column of H. We decode w_1 to $w_1 + e_{10} = (111110000100000)$.

Question 3

(a) Proof. Since $d > \frac{3}{4}n$ and $r = 1 - \frac{1}{3} = \frac{2}{3}$, $rn = \frac{2}{3}n < \frac{3}{4}n < d$. We can apply the Plotkin bound:

$$B_3(n,d) \le A_3(n,d) \le \left| \frac{d}{d - \frac{2}{3}n} \right| < \left| \frac{d}{d - \frac{2}{3} \cdot \frac{4}{3}d} \right| = 9.$$

Then $B_3(n,d) < 9$. Since $B_3(n,d) \ge B_3(n,n) = 3$ and $B_3(n,d)$ is a power of 3, $B_3(n,d) = 3$.

(b) *Proof.* First, we construct a [4,2,3]-linear code D over \mathcal{F}_3 with a generator matrix:

$$G = \left(\begin{array}{rrr} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{array}\right)$$

Using this [4,2,3] –code, we can always repeat every codeword m times to construct a [4m,2,3m] –code

$$C = \{(c, c, \dots, c), \text{ repeat } c \text{ } m \text{ times } | c \in D\}.$$

Observe that $\dim(D) = 3^2 = 9$.

Question 4

(a) There are 9 binary cyclic codes of length 6 with the following generator matrices:

$$g_1(x) = 1;$$

$$g_2(x) = 1 + x;$$

$$g_3(x) = (1 + x)^2;$$

$$g_4(x) = 1 + x + x^2;$$

$$g_5(x) = (1 + x + x^2)^2;$$

$$g_6(x) = (1 + x)(1 + x + x^2);$$

$$g_7(x) = (1 + x)^2(1 + x + x^2);$$

$$g_8(x) = (1 + x)(1 + x + x^2)^2;$$

$$g_9(x) = (1 + x)^2(1 + x + x^2)^2.$$

(b) Generator of linear code Dimension of linear code

$g_0(x)$	6
$g_1(x)$	5
$g_2(x)$	4
$g_3(x)$	4
$g_4(x)$	2
$g_5(x)$	3
$g_6(x)$	2
$g_7(x)$	1
$g_8(x)$	$-\infty$

Question 5

- (a) True. When the minimum distance of the code is larger, the linear code cannot have more codewords. Hence, $B_q(n, d') \leq B_q(n, d)$.
- (b) False. Counter example: Question 3(a). For $d > \frac{3}{4}n$, all [n,d]-codes have $B_3(n,d) = 3$, which means $B_3(12,10) = B_3(12,11)$.
- (c) True. When the field upon which is linear code is extended, the maximum code size cannot be reduced. Hence $B_q(n',d) \geq B_q(n,d)$.
- (d) False. Similar to part (b), $B_3(11,9) = B_3(10,9)$.
- (e) False. Ham(7,2) is a linear, perfect code with distance 3, which means it achieves Hamming bound for $A_q(n,d)$. Hence, $B_2(7,3) = 2^3 1 3 = 4 = A_2(7,3)$.
- (f) False. G_{11} is a ternary Golay [11,6,5]-code, which is also a perfect code. Similar to part (e), $B_3(11,5) = 3^6 = A_3(11,5)$.
- (g) True. From Hadamard matrix of order 3, we can always build a binary (12, 24, 6)-code, which achieves the Plotkin bound. Hence, $A_2(12, 6) = 24$. However, over \mathcal{F}_2 , this code is not a linear code. Hence $B_2(12, 6) < A_2(12, 6)$.

Question 6

(a) *Proof.* For any codewords u,v in C^* , we can always express:

$$u = (c + \lambda a_1 \mathbf{1}, c + \lambda a_2 \mathbf{1}, \dots, c + \lambda a_q \mathbf{1})$$
 for some $c \in C$ and $\lambda \in \mathcal{F}_q$, $v = (d + \mu a_1 \mathbf{1}, d + \mu a_2 \mathbf{1}, \dots, d + \mu a_q \mathbf{1})$ for some $d \in C$ and $\mu \in \mathcal{F}_q$.

Then, for any $a, b \in \mathcal{F}_q$,

$$au + bv = (ac + bd + (a\lambda + b\mu)a_1\mathbf{1}, ac + bd + (a\lambda + b\mu)a_2\mathbf{1}, \dots, ac + bd + (a\lambda + b\mu)a_q\mathbf{1}).$$

Since C is a subspace and \mathcal{F}_q is a field, $ac + bd \in C$ and $a\lambda + b\mu \in F_q$. Therefore $au + bv \in C^*$. C^* is a subpace.

(b) The generator matrix of C^* is:

$$G^* = \left(\begin{array}{ccc} G & G & \dots & G \\ a_1 \mathbf{1} & a_2 \mathbf{1} & \dots & a_q \mathbf{1} \end{array}\right).$$

- (c) $n^* = nq, k^* = k + 1, d^* = dq$.
- (d) Let us first construct a [4,2,3]-code C over \mathcal{F}_4 .

 $\mathcal{F}_4 = \{0, 1, \alpha, \alpha + 1\}, \text{ with } \alpha^2 = 1. \text{ A possible generator of C is}$

$$G = \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & \alpha \end{array}\right)$$

Follow the construction, we get a [16, 3, 12]-code:

$$C^* = \{(c, c + \lambda \mathbf{1}, c + \lambda \alpha \mathbf{1}, c + \lambda (\alpha + 1) \mathbf{1}) \mid c \in C \text{ and } \lambda \in \mathcal{F}_4\}$$

Hence, such a code exists.

Question 7

(a) Let u, v be codewords in C, then

$$u = (f(a_1), f(a_2), \dots, f(a_n))$$
 for some function $f \in W$, $v = (g(a_1), g(a_2), \dots, g(a_n))$ for some function $g \in W$.

For any $\alpha, \lambda \in \mathcal{F}_q$,

$$\alpha u + \lambda v = (\alpha f(a_1) + \lambda g(a_1), \alpha f(a_2) + \lambda g(a_2), \dots, \alpha f(a_n) + \lambda g(a_n))$$

= $(h(a_1), h(a_2), \dots, h(a_n))$

for a function $h(x) = \alpha f(x) + \lambda g(x)$. Since W is a subspace, h is also a function in W. We have proven that C is a linear code.

- (b)
- (i) $\dim(C) = m + 1$, d(C) = n m.
- (ii) We have already shown that C is a linear code. It is sufficient to show that the cyclic shift of any codeword $c \in C$ is also a codeword in C.

$$c = (f(a_1), f(a_2), \dots, f(a_n))$$
 for some function $f \in \mathcal{P}_m(\mathcal{F}_q)$

Then the cyclic shift of c is

$$\sigma(c) = (f(a_n), f(a_1), f(a_2), \dots, f(a_{n-1}))$$

$$= (f(b^{n-1}), f(b^0), f(b^1), \dots, f(b^{n-2})) \text{ for some } b \in \mathcal{F}_q$$

$$= (f(b^{n-1}), f(b^n), f(b^{n+1}), \dots, f(b^{n+(n-2)})) \text{ since } b^n = 1$$

$$= b^{n-1} (f(b^0), f(b^1), f(b^2), \dots, f(b^{n-1})) \text{ since } b^{n-3} \text{ is a constant in } \mathcal{F}_q$$

$$= b^{n-1} (f(a_1), f(a_2), \dots, f(a_n))$$

$$= b^{n-1} c$$

Since $c \in C$ and C is a linear code, $\sigma(c) \in C$. Hence, C is a cyclic code.