

a deterministic TM is (K, E, E, S, S, H) 5 function from (k-H) XE to kx(EU je, -71) A deterministic TM is $(K, \Sigma, \delta, s, H)$ Where δ is a function from (K-H) $X \Sigma$ to $KX(\Sigma \cup \{\leftarrow, \rightarrow\})$ A non-deterministic Turing machine is a quintuple $M = (K, \Sigma, \Delta, s, H)$ where K, Σ, s , and H are as for standard TM ∆ is subset of $((K-H) \times \Sigma) \times (KX(\Sigma \cup \{\leftarrow, \rightarrow\}))$ 7 TMs (an recognize uneustricted grammars Conjust "grammars") - These languages ou recursively enumerable grammer RHS too, Some rules must reach terminals through SanA SAa > aAB NOTM, DIM exist Unrestricted G= (V, Z, R,S) ZCV V-E SEV-E R [V*(V-E)] > V*)

 $V = \{8, a, b, c, A, B, C, Ta, Tb, E\}$ $E = \{a, b, c\}, and$ $R = \{a, b, c\}, and$

ABCS ABCABCS ABCABCTC $V = \{S, a, b, c, A, B, C, T_a, T_b, T_c\},\$ $\Sigma = \{a, b, c\},$ and $R = \{S \to ABCS,$ $S \rightarrow T_c$ $CA \rightarrow AC$ AABCBCIC $BA \rightarrow AB$, AAB BC CTC $CT_c \rightarrow T_c c$, $CT_c \rightarrow T_b c$, ADBBCTCC $BT_b \to T_b b$, $BT_b \rightarrow T_a b$, AA BBTOCC $AT_a \rightarrow T_a a$, RA BTO bcc $T_a \rightarrow e$. AATabbcc aabbcc ATaabbcc

Taac bb CC

aabbcc