Satz 4 (Eigenwerte von Dreiecksmatrizen)

Ist ${\bf A}$ eine Dreiecksmatrix, dann sind die Diagonalelemente die Eigenwerte von ${\bf A}$.

Satz 5

A und **A**^T haben die gleichen Eigenwerte.

Beispiel 1

$$\mathbf{A} = \begin{pmatrix} 2 & 8 & 0 & -4 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 5 \end{pmatrix} \Rightarrow \text{Eigenwerte von } \mathbf{A} : \\ spek(\mathbf{A}) = \{2, -1, 7, 5\} \\ \mathbf{A}^{\mathsf{T}} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 8 & -1 & 0 & 0 \\ 0 & 3 & 7 & 0 \\ -4 & 1 & 0 & 5 \end{pmatrix} \quad spek(\mathbf{A}) = spek(\mathbf{A}^{\mathsf{T}})$$

Satz 6

Für eine $n \times n$ Matrix **A** mit dem Eigenpaar $(\lambda, \vec{x}), \vec{x} \neq \vec{0}$ gilt

- (a) \vec{x} und \vec{Ax} sind linear abhängig
- (b) (λ^k, \vec{x}) ist Eigenpaar von $\mathbf{A}^k, k \in \mathbb{N}$, d.h. $\mathbf{A}^k \vec{x} = \lambda^k \vec{x}$
- (c) Eigenvektoren zu **verschiedenen** Eigenwerten sind stets linear unabhängig

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzi