MA E χ 02

isagila

Собрано 18.06.2023 в 13:31

Содержание

1.	Инт	егрирование функции одной переменной	3
	1.1.	Определение и свойства неопределенного интеграла.	3
	1.2.	Замена переменной в неопределенном интеграле. Интегрирование по частям	3
	1.3.	Интегрирование рациональных функций (общая схема). Разложение дроби на простейшие.	4
	1.4.	Интегрирование рациональных функций. Интегрирование простейших дробей 1,2,3.	5
	1.5.	Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка	6
	1.6.	Интегрирование тригонометрических функций вида $R(\sin^m x, \cos^n x)$, $R(\sin mx, \cos nx)$	6
	1.7.	Интегрирование некоторых иррациональных функций, метод тригонометрической подстановки	7
	1.8.	Определенный интеграл. Определение, свойства линейности и аддитивности.	7
	1.9.	Геометрический смысл определенного интеграла. Оценка определенного интеграла. Теорема о среднем.	8
		Интеграл с переменным верхним пределом. Теорема Барроу.	9
		Вычисление определенного интеграла. Формула Ньютона-Лейбница	10
		Замена переменной в определенном интеграле. Интегрирование по частям	10
		Приложения определенного интеграла: вычисление площадей в декартовых координатах	11
		Приложения определенного интеграна: вычисление площади криволинейного сектора в полярных	11
	1.14.	координатах	11
	1 15	Приложения определенного интеграла: вычисление длины дуги кривой (вывод формулы)	12
		Приложения определенного интеграла: вычисление длины дуги кривой (вывод формулы)	12
			1.2
	1.17.	Приложения определенного интеграла: вычисление объемов тел с известными площадями сечений и тел вращения	10
	1 10	Несобственные интегралы 1-го рода (на неограниченном промежутке). Определение и свойства	13
			13
	1.19.	Вычисление несобственного интеграла 1-го рода: формула Ньютона-Лейбница, интегрирование по частям,	1.4
	1.00	замена переменной	14
		Несобственные интегралы 2-го рода (от неограниченной функции). Определение, вычисление и свойства.	
		Признаки сходимости несобственных интегралов: первый признак сравнения (в неравенствах)	14
		Признаки сходимости несобственных интегралов: второй признак сравнения (предельный)	15
	1.23.	Признаки сходимости несобственных интегралов: теорема об абсолютной сходимости. Понятие условной	
	4.04	сходимости	15
	1.24.	Сходимость интегралов 1-го и 2-го рода от степенных функций	16
2.	Инт	егрирование функции нескольких переменных	18
2.		егрирование функции нескольких переменных Лвойной интеграл. Опредедение и свойства.	18 18
2.	2.1.	Двойной интеграл. Определение и свойства	18
2.	2.1. 2.2.	Двойной интеграл. Определение и свойства	18 19
2.	2.1.2.2.2.3.	Двойной интеграл. Определение и свойства	18 19 19
2.	2.1. 2.2. 2.3. 2.4.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты.	18 19 19 20
2.	2.1. 2.2. 2.3. 2.4. 2.5.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан.	18 19 19
2.	2.1. 2.2. 2.3. 2.4.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический	18 19 19 20 20
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.	18 19 19 20 20 21
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства.	18 19 19 20 20 21 22
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи.	18 19 19 20 20 21 22 22
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина.	18 19 19 20 20 21 22
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равно-	18 19 19 20 20 21 22 22 23
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений.	18 19 19 20 20 21 22 22
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений.	18 19 20 20 21 22 22 23 23
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений.	188 199 200 200 211 222 223 233 255
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница).	18 19 20 20 21 22 22 23 23
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический	18 19 19 20 20 21 22 22 23 23 25 25
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.	18 19 19 20 20 21 22 22 23 23 25 25 26
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность.	18 19 19 20 20 21 22 22 23 25 25 26 26
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода.	18 19 19 20 21 22 22 23 23 25 25 26 26 28
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность І,ІІ,ІІІ утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность ІІІ, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства.	188 199 200 200 211 222 223 233 255 266 268 288 288
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейный интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность І,ІІ,ІІІ утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность ІІІ, ІV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства. Теорема Гаусса-Остроградского.	188 199 200 200 211 222 233 235 255 266 288 288 288
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17. 2.18.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность І,ІІ,ІІІ утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства. Теорема Гаусса-Остроградского. Теорема Стокса.	188 199 200 200 211 222 223 233 255 266 268 288 288
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17. 2.18.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства. Теорема Гаусса-Остроградского. Теорема Стокса. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и	18 19 19 20 20 21 22 23 25 25 26 26 28 28 29
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17. 2.18. 2.19.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность І,І,ІІІ утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства. Теорема Гаусса-Остроградского. Теорема Стокса. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и интегральные характеристики полей (определения).	18 19 19 20 20 21 22 23 23 25 25 26 26 28 28 29 30
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17. 2.18. 2.19.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность [II, III] утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства. Теорема Гаусса-Остроградского. Теорема Стокса. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и интегральные характеристики полей (определения). Виды векторных полей и их свойства (теоремы о поле градиента и поле вихря).	18 19 19 20 20 21 22 22 23 25 25 26 26 28 28 29 30 31
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17. 2.18. 2.19. 2.20. 2.21.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейный интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность І,ІІ,ІІІ утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность ІІІ, ІV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства. Теорема Гаусса-Остроградского. Теорема Стокса. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и интегральные характеристики полей (определения). Виды векторных полей и их свойства (теоремы о поле градиента и поле вихря).	18 19 19 20 20 21 22 22 23 23 25 26 26 28 28 28 29 30 31 32
2.	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 2.11. 2.12. 2.13. 2.14. 2.15. 2.16. 2.17. 2.18. 2.19. 2.20. 2.21. 2.22.	Двойной интеграл. Определение и свойства. Вычисление двойного интеграла. Кратный интеграл. Определение и вычисление тройного интеграла. Криволинейные координаты. Замена переменных в двойном и тройном интегралах. Якобиан. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства. Криволинейные интегралы 1-го и 2-го рода: формула связи. Теорема (формула) Грина. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность [II, III] утверждений. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница). Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл. Поверхностный интеграл 2-го рода как поток жидкости через поверхность. Связь между поверхностными интегралами 1-го и 2-го рода. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства. Теорема Гаусса-Остроградского. Теорема Стокса. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и интегральные характеристики полей (определения). Виды векторных полей и их свойства (теоремы о поле градиента и поле вихря).	18 19 19 20 20 21 22 22 23 23 25 25 26 26 28 28 29 30 31 32 33 33

1. Интегрирование функции одной переменной

1.1. Определение и свойства неопределенного интеграла.

Def 1.1.1. Кусочная дифференцируемая функция F(x) называется первообразной для функции f(x), если F'(x) = f(x).

Теорема 1.1.2. Разность двух первообразных для одной и той же функции — константа.

Доказательство. Пусть дана функция f(x) и две её первообразные $F_1(x)$, $F_2(x)$. Обозначим их разность как $\varphi(x) = F_1(x) - F_2(x)$. Производная этой функции будет равна $\varphi'(x) = (F_1(x) - F_2(x))' = F_1'(x) - F_2'(x) = f(x) - f(x) = 0$.

Из множества дифференцируемости $F_1(x)$ и $F_2(x)$ выберем наименьшее и выделим в нем отрезок [a;x]. По т. Лагранжа:

$$\exists \xi \in (a; x) \colon \varphi'(\xi) = \frac{\varphi(x) - \varphi(a)}{x - a}$$

Т.к. $\forall \xi \colon \varphi'(\xi) = 0$, то $\varphi(x) - \varphi(a) = 0$, т.е. $\varphi(x) = \varphi(a)$. Т.к. отрезок произвольный, то значения функции $\varphi(x)$ равны во всех точках, т.е. она константа.

Следствие 1.1.3. Первообразные для f(x) составляют множество функций вида $\{F(x) + C \mid C \in \mathbb{R}\}$, где F(x) это какая-либо первообразная.

Def 1.1.4. Семейство первообразных функции f(x) называется неопределенным интегралом функции f(x) по аргументу x.

Замечание 1.1.5. О существовании первообразной

Не для каждой функции существует первообразная, но для каждой непрерывной на отрезке. Даже если первообразная существует, то она не всегда выражается в элементарных функциях, например, $\int e^{-x^2} dx$.

Далее рассмотрим некоторые свойства неопределенного интеграла.

Lm 1.1.6.

$$\int \mathrm{d}F(x) = F(x) + C$$

Доказательство.

$$dF(x) = F'(x)dx = f(x)dx \Longrightarrow \int dF(x) = \int f(x)dx = F(x) + C$$

Lm 1.1.7.

$$\left(\int f(x)\mathrm{d}x\right)' = f(x)$$

Доказательство.

$$\left(\int f(x)\mathrm{d}x\right)' = (F(x) + C)' = F'(x) = f(x)$$

Lm 1.1.8. Линейность

$$\int \alpha f(x) dx = \alpha \int f(x) dx$$
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

Доказательство.

$$\int \alpha f(x) dx = \int d(\alpha F(x)) = \alpha F(x) + C$$

При первым переходе используется свойство линейности дифференциала, а при втором - 1.1.6. Доказательство для суммы функций аналогично.

1.2. Замена переменной в неопределенном интеграле. Интегрирование по частям.

Замечание 1.2.1. Интеграл сохраняет инвариантность своей формы, т.е.

$$\int f(\clubsuit) d\clubsuit = F(\clubsuit) + C$$

Теорема 1.2.2. О замене производной в неопределенном интеграле

Если $x = \varphi(t)$, где $\varphi(t)$ обратимая и дифференцируемая функция, то

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt$$

Доказательство. Возьмем производные от обоих частей:

$$\left(\int f(x)\mathrm{d}x\right)_x' = f(x)$$

$$\left(\int f(\varphi(t))\varphi'(t)\mathrm{d}t\right)_x' = \left(\int f(\varphi(t))\varphi'(t)\mathrm{d}t\right)_t' \frac{\mathrm{d}t}{\mathrm{d}x} \xrightarrow{\frac{1.1.7}{4}} f(\varphi(t))\varphi'(t) \frac{\mathrm{d}t}{\mathrm{d}x} = f(\varphi(t))\varphi'(t) \frac{1}{\varphi'(t)} = f(\varphi(t)) = f(x)$$

Замечание 1.2.3. Формула работает в обе стороны:

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx \xrightarrow{\sqrt{x} = t} \int \frac{e^t}{t} 2t dt = 2e^t + C = 2e^{\sqrt{x}} + C$$
$$\int e^{x^2} \underbrace{2x dx}_{dx^2} \xrightarrow{x^2 = t} \int e^t dt = e^t + C = e^{x^2} + C$$

Теорема 1.2.4. Интегрирование по частям

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u$$

Доказательство. Рассмотрим равенство (uv)' = u'v + uv' и проинтегрируем обе его части:

$$(uv)' = u'v + uv'$$

$$\int (uv)' dx = \int (u'v + uv') dx$$

$$uv = \int u'v dx + \int uv' dx$$
 Линейность интеграла (1.1.8)
$$uv = \int v du + \int u dv$$
 Внесение под дифференциал (1.2.2)
$$\int u dv = uv - \int v du$$

3амечание 1.2.5. Интегрирование по частям используется если $\int v du$ вычисляется проще, чем интеграл $\int u dv$. В качестве функции u выбирают ту, которая упрощается при дифференцировании.

1.3. Интегрирование рациональных функций (общая схема). Разложение дроби на простейшие.

Выделим 4 типа простейших дробей:

$$(I): \quad \frac{A}{x-a} \qquad (II): \quad \frac{A}{(x-a)^2} \qquad (III): \quad \frac{Mx+N}{x^2+px+q} \qquad (IV): \quad \frac{Mx+N}{(x^2+px+q)^k}$$

где $(x^2 + px + q)$ неразложимый на множители многочлен, а A, M, N — неопределенные коэффициенты.

Метод неопределенных коэффициентов:

Пусть дана дробь $\frac{Q_m(x)}{P_n(n)}$, в которой $Q_m(x)$ и $P_n(x)$ это многочлены с вещественными коэффициентами. Требуется разложить её на простейшие.

- 1. Если $m \geqslant n$, то необходимо выделить целую часть. Далее будем считать, что m < n.
- 2. Раскладываем знаменатель на множители, т.е. приводим его к виду

$$P_n = a_0(x - x_1)^{b_1} \dots (x - x_t)^{b_t} (x^2 + p_1 x + q_1)^{c_1} \dots (x^2 + p_r x + q_r)^{c_r}$$

3. Для каждой скобки в знаменателе записываем некоторую дробь по следующему правилу:

$$(x - x_i) \rightarrow \frac{A}{x - x_i}$$

$$(x - x_i)^k \rightarrow \frac{A}{x - x_i} + \dots + \frac{A}{(x - x_i)^k}$$

$$(x^2 + p_i x + q_i) \rightarrow \frac{Ax + B}{x^2 + p_i x + q_i}$$

$$(x^2 + p_i x + q_i)^k \rightarrow \frac{Ax + B}{x^2 + p_i x + q_i} + \dots + \frac{Ax + B}{(x^2 + p_i x + q_i)^k}$$

У каждой скобки будет свой набор констант.

- 4. Получаем уравнение относительно коэффициентов $A, B \dots$, которые находятся в числителе полученных дробей.
- 5. Приводим полученную дробь к общему знаменателю и приравниваем её к исходной дроби.
- 6. Т.к. знаменатели полученных дробей равны, то должны быть равны и числители. Пользуемся тем, что два полинома равны когда равны все коэффициенты перед одинаковыми степенями. Получаем систему уравнений (по количеству коэффициентов).
- 7. Решаем систему, находим коэффициенты. Подставляем их в разложение исходной дроби на сумму простейших дробей.

Теперь интегрирование рациональных дробей свелось к тому, чтобы разложить их на простейшие, а потом, пользуясь линейностью интеграла (1.1.8), проинтегрировать каждую из дробей по-отдельности. Подробнее об интегрировании простейших дробей написано в вопросе 1.4.

1.4. Интегрирование рациональных функций. Интегрирование простейших дробей 1,2,3.

• Интегрирование простейших дробей *I*-ого типа

$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = \ln|x-a| + C$$

• Интегрирование простейших дробей II-ого типа

$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} d(x-a) = \frac{A}{1-k} \cdot (x-a)^{1-k} = \frac{A}{1-k} \cdot \frac{1}{(x-a)^{k-1}}$$

• Интегрирование простейших дробей III-его типа

$$\int \frac{Mx+N}{x^2+px+q} \mathrm{d}x \tag{1}$$

Попытаемся внести числитель под дифференциал

$$(Mx + N) = \frac{M}{2} \left(2x + \frac{2N}{M} \right) = \frac{M}{2} \left(2x + p + \frac{2N}{M} - p \right) = \frac{M}{2} (2x + p) + \underbrace{\left(N - \frac{Mp}{2} \right)}_{b}$$

Подставим это в (1):

$$\int \frac{\frac{M}{2}(2x+p) + h}{x^2 + px + q} dx = \frac{M}{2} \cdot \int \frac{2x+p}{x^2 + px + q} dx + \int \frac{h}{x^2 + px + q} dx$$

Далее вычислим каждый из интегралов по-отдельности

$$\frac{M}{2} \cdot \int \frac{2x+p}{x^2+px+q} dx = \frac{M}{2} \cdot \int \frac{d(x^2+px+q)}{x^2+px+q} = \frac{M}{2} \cdot \ln|x^2+px+q| + C$$

$$\int \frac{h}{x^2+px+q} dx = h \cdot \int \frac{1}{(x+p/2)^2 + \underbrace{q - (p/2)^2}_{q^2}} dx = \frac{h}{g} \cdot \arctan\left(\frac{x+p/2}{g}\right) + C$$

Подставим полученные выражения в исходный интеграл (1):

$$\int \frac{Mx+N}{x^2+px+q} dx = \frac{M}{2} \cdot \ln\left|x^2+px+q\right| + \frac{h}{g} \cdot \operatorname{arctg}\left(\frac{x+\frac{p}{2}}{g}\right) + C$$
$$h = \left(N - \frac{Mp}{2}\right), g^2 = q - \left(\frac{p}{2}\right)^2$$

• Интегрирование простейших дробей IV-его типа

Пример 1.4.1.

$$\int \frac{\mathrm{d}x}{(x^2+1)^2} = \int \frac{x^2+1-x^2}{(x^2+1)^2} \mathrm{d}x = \int \frac{\mathrm{d}x}{x^2+1} - \int \frac{x^2}{(x^2+1)^2} \mathrm{d}x \tag{1}$$

Первый из полученных интегралов мы уже вычислить, это простейшая дробь III-ого типа. Таким образом этот интеграл будет равен $\operatorname{arctg} x + C$. Далее работаем со вторым интегралом:

$$\int \frac{x^2}{(x^2+1)^2} dx = \frac{1}{2} \cdot \int \frac{x d(x^2+1)}{(x^2+1)^2} = \left[\frac{dt}{t^2} = -d\left(\frac{1}{t}\right) \right] = -\frac{1}{2} \cdot \int x \cdot d\left(\frac{1}{x^2+1}\right)$$
(2)

Полученный интеграл возьмем по частям:

$$\int \underbrace{x}_{u} d\underbrace{\left(\frac{1}{x^{2}+1}\right)}_{x} = \frac{x}{x^{2}+1} - \int \frac{dx}{x^{2}+1} = \frac{x}{x^{2}+1} - \arctan x + C$$
(3)

Подставим (3) в (2), а полученное выражение в исходный интеграл (1):

$$\int \frac{\mathrm{d}x}{(x^2+1)^2} = \int \frac{\mathrm{d}x}{x^2+1} - \int \frac{x^2}{(x^2+1)^2} \mathrm{d}x =$$

$$\arctan x + \frac{1}{2} \left(\frac{x}{x^2+1} - \arctan x \right) + C =$$

$$\frac{1}{2} \arctan x + \frac{x}{2(x^2+1)} + C$$

Замечание 1.4.2. В случаях с более высокой степенью каждая подобная итерация будет приводить к уменьшению степени знаменателя на единицу. Обычно подобные интегралы раскладываются с помощью подведения под дифференциал и линейности, после чего используется следующая рекуррентная формула:

$$I_n = \int \frac{\mathrm{d}x}{(x^2 + a^2)^n} = \frac{x}{2a^2(n-1)(x^2 + a^2)^{n-1}} + \frac{2n-3}{2a^2(n-1)} \cdot I_{n-1}$$

1.5. Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка.

Замечание 1.5.1. Всякая рациональная дробь интегрируемая, поэтому можно попытаться с помощью замены свести функции другого вида к рациональным дробям.

Если требуется вычислить интеграл вида $\int R(\sin x, \cos x) dx$, где R это некоторая рациональная функция, то можно применить универсальную тригонометрическую подстановку:

$$x = 2 \operatorname{arctg} t \iff t = \operatorname{tg} \frac{x}{2}$$

Тогда составляющие интеграла преобразуется следующим образом:

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{2\operatorname{tg}^{x}/2}{\operatorname{tg}^{2} \frac{x}{2} + 1} = \frac{2t}{1+t^2}$$

$$\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2} = \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{1 - \operatorname{tg}^2\frac{x}{2}}{\operatorname{tg}^2\frac{x}{2} + 1} = \frac{1 - t^2}{1+t^2}$$

$$dx = d(2\operatorname{arctg} t) = \frac{2}{1+t^2}dt$$

Подставляя полученные выражения в исходный интеграл, получаем:

$$\int R(\sin x, \cos x) dx \xrightarrow{\text{YTI}} \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} dt$$

1.6. Интегрирование тригонометрических функций вида $R(\sin^m x,\cos^n x)$, $R(\sin mx,\cos nx)$.

Рассмотрим интегралы вида $\int \sin^m x \cos^m x dx$

 $1. \, n$ или m нечетное

Пусть m нечетное, тогда m=2k+1. Подставим это в исходный интеграл:

$$\int \sin^m x \cos^m dx = \int \sin^m x \cos^{2k} \cos x dx = \int \sin^m x (1 - \sin^2 x)^k d(\sin x) \xrightarrow{t = \sin x} \int t^m (1 - t^2)^k dt$$

Получили интеграл от полинома \Longrightarrow умеем его решать.

 $2. \, n$ и m четные

Обозначим n = 2p, m = 2q, тогда:

$$\int \sin^m x \cos^m dx = \int (\sin^2 x)^p (\cos^2 x)^q dx = \int \left(\frac{1 - \cos 2x}{2}\right)^p \left(\frac{1 + \cos 2x}{2}\right)^q dx$$

Далее раскрываем скобки и упрощаем. Получится либо первый случай (с нечетной степенью), либо второй, но с меньшей степенью.

Интегралы видов

- $\int \sin mx \sin nx dx$
- $\int \sin mx \cos nx dx$
- $\int \cos mx \cos nx dx$

решаются при помощи использования тригонометрических формул, которые сводят произведение к сумме/разности:

$$\sin mx \sin nx = \frac{1}{2} \Big(\cos((m-n)x) - \cos((m+n)x) \Big)$$

$$\sin mx \cos nx = \frac{1}{2} \Big(\sin((m-n)x) + \sin((m+n)x) \Big)$$

$$\cos mx \cos nx = \frac{1}{2} \Big(\cos((m-n)x) + \cos((m+n)x) \Big)$$

TODO: На лекции были интегралы вида $\int \sin^m x \cos^m dx$, а не $R(\sin^m x, \cos^n x)$.

1.7. Интегрирование некоторых иррациональных функций, метод тригонометрической подстановки.

• Интегралы вида $\int R(\sqrt{x^2\pm 1},x)\mathrm{d}x$ решаются с помощью замены x на гиперболическую функцию:

$$sinh u = \frac{e^u - e^{-u}}{2} \qquad cosh u = \frac{e^u + e^{-u}}{2}$$

Данные функции называются гиперболическим синусом и гиперболическим косинусом соответственно.

Lm 1.7.1. Основное гиперболическое тождество

$$\cosh^2 - \sinh^2 = 1$$

Доказательство. $\cosh^2 - \sinh^2 = \left(\frac{e^u + e^{-u}}{2}\right)^2 - \left(\frac{e^u - e^{-u}}{2}\right)^2 = \frac{1}{4}\left(e^{2u} + 2 + e^{-2u} - e^{2u} + 2 - e^{-2u}\right) = 1$

Замечание 1.7.2. Заметим, что

$$\ln|\sinh + \cosh| = \ln\left|\frac{e^u - e^{-u}}{2} + \frac{e^u + e^{-u}}{2}\right| = \ln e^u = u$$

Пример 1.7.3. Вычислим 'длинный' логарифм:

$$\int \frac{\mathrm{d}x}{\sqrt{1+x^2}} = \begin{bmatrix} x = \sinh u \Longrightarrow 1 + x^2 = \cosh^2 u \\ \mathrm{d}x = \mathrm{d}(\sinh u) = \cosh u \mathrm{d}u \\ u = \ln \left| \underbrace{x}_{\sinh u} + \underbrace{\sqrt{1+x^2}}_{\cosh u} \right| (1.7.2) \end{bmatrix} = \int \frac{\cosh u}{\cosh u} \mathrm{d}u = u + C = \ln \left| x + \sqrt{1+x^2} \right| + C$$

- Интегралы вида $\int R(\sqrt{1-x^2},x) dx$ решаются с помощью замены x на синус или косинус.
- Интегралы вида $\int R(\sqrt[k]{x},\dots,\sqrt[k]{x})\mathrm{d}x$ решаются с помощью замены $t=\sqrt[K]{x}$, где K это НОД для k_1,\dots,k_n .
- Интегралы вида $\int R(\sqrt{ax+b},x) dx$ решаются с помощью замены $t=\sqrt{ax+b}$. При этом $x=\frac{t^2-b}{a}$, $dx=\frac{2t}{a}dt$.

1.8. Определенный интеграл. Определение, свойства линейности и аддитивности.

<u>Постановка задачи</u>: требуется найти площадь криволинейной фигуры. Разобьем фигуру на квадраты и найдем площадь каждого из них. После это сложим полученные площади.

Упростим задачу: пусть нужно посчитать площадь криволинейной трапеции.

- 1. Разбиение области [a;b]: $a=x_0 < x_1 < \ldots < x_n = b$. Отрезок $[x_{i-1},x_i]$ назовем частичным, если длину обозначим $\Delta x_i = x_i x_{i-1}$. Разбиение (дробление) обозначим $T = \{x_i\}_{i=0}^n$. Введем понятие ранга дробления $\tau : \tau = \max \Delta x_i$.
- 2. Выберем среднюю точку $\xi_i \in [x_{i-1}, x_i]$. Тогда $f(\xi_i)$ это высота элементарного прямоугольника. Значит площадь элементарного прямоугольника будет равна $S_e = f(\xi_i) \Delta x_i$.
- 3. Просуммируем площади всех элементарных прямоугольников: $\sum_{i=1}^{n} f(\xi_i) \Delta x_i$. Данная сумма называется интегральной суммой Римана.
- 4. Возьмем предел при $n \to \infty$ и $\tau \to 0$:

$$\lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} f(\xi_i) \Delta x_i \tag{1}$$

Def 1.8.1. Если полученный предел интегральных сумм (1) существует, конечен, **не зависит от дробления и** выбора средней точки, то он называется определенным интегралом.

$$\int_{a}^{b} f(x) dx = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

a,b называются пределами интегрирования, f(x) — подынтегральной функцией, а $\mathrm{d}x$ — дифференциалом переменной (или элементом длины).

Замечание 1.8.2. В определении выше a < b. Доопределим для случаев a = b и a > b:

$$\int_{a}^{a} f(x)dx = 0 \qquad \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Замечание 1.8.3. Интеграл Римана определен для кусочно-непрерывных (т.е. имеющих конечное число разрывов) функций.

Т.к. интеграл является пределом сумм, то его свойства вытекают из свойств пределов:

1. Линейность

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

2. Аддитивность

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx$$

Замечание 1.8.4. Свойство аддитивности выполняется даже в случае, если $c \notin [a; b]$. Это легко проверить пользуясь свойством 1.8.2.

1.9. Геометрический смысл определенного интеграла. Оценка определенного интеграла. Теорема о среднем.

Геометрический смысл определенного интеграла следует из его построения: определенный интеграл по модулю равен площади криволинейной трапеции.

<u>**Lm**</u> **1.9.1.** Пусть $f \in C_{[a;b]}$ и определен $\int_a^b f(x) dx$. m, M — наименьшее и наибольшее значения функции f(x) на отрезке [a;b]. Тогда

$$(b-a)m \leqslant \int_{a}^{b} f(x) dx \leqslant (b-a)M$$

Доказательство.

$$\forall x \in [a;b] : m \leqslant f(x) \leqslant M \Longrightarrow \forall \xi_i \in [a;b] : m \leqslant f(\xi_i) \leqslant M$$

$$m\Delta x_i \leqslant f(\xi_i) \Delta x_i \leqslant M\Delta x_i$$

$$m\sum_{i=1}^n \Delta x_i \leqslant \sum_{i=1}^n f(\xi_i) \Delta x_i \leqslant M\sum_{i=1}^n \Delta x_i$$

$$m\lim_{\substack{n\to\infty\\\tau\to 0}} \sum_{i=1}^n \Delta x_i \leqslant \lim_{\substack{n\to\infty\\\tau\to 0}} \sum_{i=1}^n f(\xi_i) \Delta x_i \leqslant M\lim_{\substack{n\to\infty\\\tau\to 0}} \sum_{i=1}^n \Delta x_i$$

$$(b-a)m \leqslant \int_a^b f(x) \mathrm{d}x \leqslant (b-a)M$$

Теорема 1.9.2. Теорема Лагранжа о среднем (в интегральной форме)

Пусть $f \in C_{[a;b]}$ и определен $\int_a^b f(x) \mathrm{d}x.$ Тогда

$$\exists \xi \in (a;b) \colon \int_{a}^{b} f(x) dx = f(\xi)(b-a)$$

Доказательство. Воспользуемся леммой 1.9.1:

$$(b-a)m \leqslant \int_{a}^{b} f(x)dx \leqslant (b-a)M \Longrightarrow m \leqslant \frac{1}{b-a} \cdot \int_{a}^{b} f(x)dx \leqslant M$$

По т. Больцано-Коши функция f(x) принимает все значения от минимального m до максимального M. Значит $\exists \xi \in (a;b),$ что

$$f(\xi) = \frac{1}{b-a} \cdot \int_{a}^{b} f(x) dx \Longrightarrow \int_{a}^{b} f(x) dx = f(\xi)(b-a)$$

Замечание 1.9.3. Геометрический смысл теоремы Лагранжа заключается в том, что на промежутке (a;b) всегда найдется такая точка ξ , что площадь криволинейной трапеции будет в точности равна площади прямоугольника со сторонами (b-a) и $(f(\xi)-f(m))$.

 $\underline{\mathbf{Lm}}$ 1.9.4. Если $f(x),g(x)\in C_{[a;b]},$ определены $\int_a^b f(x)\mathrm{d}x,\int_a^b g(x)\mathrm{d}x$ и при этом $\forall x\in[a;b]\colon f(x)\geqslant g(x),$ то

$$\int_{a}^{b} f(x) dx \geqslant \int_{a}^{b} g(x) dx$$

Доказательство. Рассмотрим h(x) = f(x) - g(x). Она будет неотрицательная на отрезке [a;b], значит $\int_a^b h(x) \mathrm{d}x \geqslant 0$. Далее пользуемся аддитивностью и получаем искомое неравенство.

<u>Lm</u> 1.9.5. Пусть $f \in C_{[a:b]}$ и определен $\int_a^b f(x) dx$. Тогда

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

Доказательство. Т.к. определенный интеграл это предел интегральных сумм, то можно воспользоваться предельных переходом, а затем свойством о том, что модуль суммы не превосходит сумму модулей. ■

3амечание 1.9.6. Выкалывание из отрезка [a;b] конечного числа точек не меняет значение интеграла.

1.10. Интеграл с переменным верхним пределом. Теорема Барроу.

Def 1.10.1. Интегралом с переменных верхним пределом называется

$$\int_{a}^{x} f(t) dt$$

где x — переменный верхний предел.

Замечание 1.10.2. $\forall x \in [a; +\infty]$ соответствует определенное значение $\Phi(x) = \int_a^x f(t) \mathrm{d}t$, т.е. определена функция верхнего предела, которая геометрически является площадью криволинейной трапеции с подвижным правым краем.

Теорема 1.10.3. Теорема Барроу

Пусть $f \in C_{[a;b]}$ и определен $\Phi(x) = \int_a^x f(t) dt$. Тогда $\Phi'(x) = f(x)$.

$$\Phi'(x) = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x) - \Phi(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_a^{x + \Delta x} f(t) dt - \int_a^x f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_x^{x + \Delta x} f(t) dt}{\Delta x}$$

Далее по т. Лагранжа (1.9.2) $\exists \xi \in (x; x + \Delta x)$ такая, что:

$$\lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t) dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\xi) \Delta x}{\Delta x} = \begin{bmatrix} \Delta x \to 0 \\ \xi \in (x, x + \Delta x) \end{bmatrix} \Longrightarrow \xi \to x \end{bmatrix} = f(x)$$

1.11. Вычисление определенного интеграла. Формула Ньютона-Лейбница.

Теорема 1.11.1. Формула Ньютона-Лейбница

Пусть $f(x) \in C_{[a;b]}$, определен $\int_a^b f(x) dx$ и F(x) это некоторая первообразная для f(x). Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Доказательство. Рассмотрим функцию $\Phi(x) = \int_a^x f(t) dt$, где $x \in [a;b]$. Тогда по т. Барроу (1.10.3) $\Phi(x) = F(x) + C$. Найдем значение функции $\Phi(x)$ в точке a:

$$\Phi(a) = \int_a^a f(t) dt = 0
\Phi(a) = F(a) + C$$

$$\implies C = -F(a)$$

Теперь найдем значение функции $\Phi(x)$ в точке b:

$$\Phi(b) = \int_a^b f(t) dt
\Phi(b) = F(b) + C = F(b) - F(a)$$

$$\Longrightarrow \int_a^b f(t) dt = F(b) - F(a)$$

Замечание 1.11.2. Формула Ньютона-Лейбница работает в тех случаях, когда можно найти F(x) или хотя бы её значения на концах отрезка [a;b].

3амечание 1.11.3. Если функция f(x) кусочно заданная, то используем свойство аддитивности и разбиваем отрезок на части.

1.12. Замена переменной в определенном интеграле. Интегрирование по частям.

Замена в определенном интеграле выполняется также, как и в неопределенном за исключением смены пределов интегрирования. Более формально:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$
$$\varphi(\alpha) = a, \varphi(\beta) = b$$

Интегрирование по частям для определенных интегралов выполняется также, как и для неопределенных:

$$\int_{a}^{b} u \mathrm{d}v = uv \bigg|_{a}^{b} - \int_{a}^{b} v \mathrm{d}u$$

Стоит отметить несколько свойств определенных интегралов для четных и нечетных функций на симметричном промежутке:

<u>Lm</u> 1.12.1. Если f(x) нечетная функция, то

$$\int_{a}^{a} f(x) \mathrm{d}x = 0$$

(a)
$$f(-x) = -f(x)$$

 $\underline{\text{Lm}}$ 1.12.2. Если f(x) четная функция, то

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

1.13. Приложения определенного интеграла: вычисление площадей в декартовых координатах.

Замечание 1.13.1. Для случая (c) расположение функций f(x), g(x) относительно нуля не важно. Важно лишь, чтобы $\forall x \in [a;b] \colon f(x) \geqslant g(x)$.

1.14. Приложения определенного интеграла: вычисление площади криволинейного сектора в полярных координатах.

Построим интеграл:

- 1. Дробление отрезка $[\alpha, \beta]$ на подотрезки $[\varphi_{i-1}, \varphi_i]$, $\tau = \max \Delta \varphi_i$.
- 2. В каждом отрезке выбираем среднюю точку ξ_i . Ищем $\rho(\xi_i)$, приближаем площадь элементарного сектора площадью кругового.

$$S_{sec} = \frac{\pi \rho^2(\xi_i)}{2\pi} \cdot \Delta \varphi_i = \frac{1}{2} \rho^2(\xi_i) \Delta \varphi_i$$

3. Площадь это предел интегральных сумм

$$S = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} \frac{1}{2} \rho^{2}(\xi_{i}) \Delta \varphi_{i}$$

4. Переход к интегралу $S = \frac{1}{2} \int_{-\beta}^{\beta} \rho^2(\varphi) d\varphi$

3амечание 1.14.1. Если кривая задана параметрически $x=\varphi(t), y=\psi(t),$ то площадь можно вычислить по формуле:

$$S = \int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} \varphi(t) \varphi'(t) dt$$
$$a = \varphi(\alpha), b = \varphi(\beta)$$

1.15. Приложения определенного интеграла: вычисление длины дуги кривой (вывод формулы).

Пусть дана гладкая (без самопересечений, разрывов и циклов) дуга \check{AB} задаваемая уравнением y=y(x), где y(x)функция, дифференцируемая на [a;b]. Найдем её длину.

Построим интеграл:

- 1. Дробление AB такими M_i , что $AM_0 \dots M_n B \approx AB$.
- 2. Стянем точки M_{i-1} и M_i хордой и получим координатный треугольник.

$$\Delta l_i \approx \Delta L_i = \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} = \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \Delta x_i$$

3. Заметим, что $\frac{\Delta y_i}{\Delta x_i}$ это отношение конечных приращений, поэтому можно применить т. Лагранжа: $\exists \xi_i \in [x_{i-1}, x_i] \colon \frac{\Delta y_i}{\Delta x_i} = f'(\xi_i)$

$$\exists \xi_i \in [x_{i-1}, x_i] : \frac{\Delta y_i}{\Delta x_i} = f'(\xi_i)$$
$$\Delta L_i = \sqrt{1 + y'(\xi_i)^2} \Delta x_i$$

4. Составим предел интегральных сумм и перейдем к интегралу:

$$L = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} \sqrt{1 + y'(\xi_i)^2} \Delta x_i \Longrightarrow L = \int_{a}^{b} \sqrt{1 + y'(x)^2} dx$$

Замечание 1.15.1. Выражение $dl = \sqrt{1 + y'(x)^2} dx$ называется дифференциалом дуги.

1.16. Приложения определенного интеграла: вычисление длины дуги кривой, заданной параметрически.

Рассмотрим формулу $L = \int_a^b \sqrt{1 + y'(x)^2} \mathrm{d}x$ при условии, что кривая задана параметрически. Получим:

$$x = \varphi(t), y = \psi(t)$$
$$dx = \varphi'(t)dt$$
$$a = \varphi(\alpha), b = \varphi(\beta), t \in [\alpha; \beta]$$
$$y'(x) = \frac{dy}{dx} = \frac{\psi'(t)}{\varphi'(t)}$$

Подставим это в исходную формулу:

$$L = \int_{a}^{b} \sqrt{1 + y'(x)^{2}} dx = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{\psi'(t)}{\varphi'(t)}\right)^{2}} \varphi'(t) dt = \int_{\alpha}^{\beta} \sqrt{\varphi'(t)^{2} + \psi'(t)^{2}} dt$$
$$a = \varphi(\alpha), b = \varphi(\beta)$$

Замечание 1.16.1. Таким образом, дифференциал дуги в при параметрическом задании будет равен

$$dl = \sqrt{\varphi'(t)^2 + \psi'(t)^2} dt$$
$$x = \varphi(t), y = \psi(t)$$

1.17. Приложения определенного интеграла: вычисление объемов тел с известными площадями сечений и тел вращения.

Пусть дано некоторое тело и известны площади его сечений в плоскости $\bot Ox$, т.е. известна функция S(x), определяющая площадь сечения в зависимости от x. Построим интеграл:

- 1. Дробление: отрезок [a;b], где a и b это крайние точки тела, делится на подотрезки $[x_{i-1},x_i]$. Через x_i проводится плоскость $\bot Ox$ и выделяется элементарный слой.
- 2. Приближаем объем этого слоя объемом цилиндра с основанием $S(\xi_i)$, где ξ_i это некоторая средняя точка из отрезка $[x_{i-1}, x_i]$.
- 3. Составляем предел интегральных сумм и переходим к интегралу.

$$V = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} S(\xi_i) \Delta x_i \Longrightarrow V = \int_{a}^{b} S(x) dx$$
 (RV)

Замечание 1.17.1. Сечения обязательно должны быть $\perp Ox$, в противном случае получится объем, умноженный на коэффициент наклона сечения по отношению к оси Ox.

Рассмотрим нахождение объема тел вращения.

Подставим в полученную выше формулу $S_{sec} = S_0 = \pi f(x)^2$. Получим, что объем тела вращения равен:

$$V = \pi \int_{a}^{b} f(x)^{2} \mathrm{d}x$$

1.18. Несобственные интегралы 1-го рода (на неограниченном промежутке). Определение и свойства.

Def 1.18.1. Интеграл от функции на неограниченном промежутке называет несобственным интегралом 1-ого рода.

$$\int_{a}^{+\infty} f(x) dx \stackrel{\text{def}}{\Longleftrightarrow} \lim_{\beta \to +\infty} \int_{a}^{\beta} f(x) dx$$

$$\int_{-\infty}^{a} f(x) dx \stackrel{\text{def}}{\Longleftrightarrow} \lim_{\beta \to -\infty} \int_{\beta}^{a} f(x) dx$$

$$\int_{-\infty}^{+\infty} f(x) dx \stackrel{\text{def}}{\Longleftrightarrow} \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx, \ c \in \mathbb{R}$$

Def 1.18.2. Если предел в определении 1.18.1 существует и конечен, то говорят, что интеграл cxodumcs (\succ), в противном случае говорят, что интеграл pacxodumcs (\prec).

Несобственные интегралы 1-ого рода обладают теми же свойствами, что и рассмотренные ранее интегралы:

1. Линейность

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

2. Аддитивность

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

3. Сравнение

$$\forall x \in [a; +\infty] : f(x) \geqslant g(x) \Longrightarrow \int_{a}^{+\infty} f(x) dx \geqslant \int_{a}^{+\infty} g(x) dx$$

Замечание 1.18.3. Если

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$$

и при этом один из двух полученных интегралов расходится, то расходится и изначальный интеграл.

1.19. Вычисление несобственного интеграла 1-го рода: формула Ньютона-Лейбница, интегрирование по частям, замена переменной.

Т.к. несобственный интеграл первого рода это по сути предел, то его можно вычислить с помощью формулы Ньютона-Лейбница:

$$\int_{a}^{+\infty} f(x) dx = \left(\lim_{\beta \to +\infty} F(\beta) \right) - F(a) = \lim_{\beta \to +\infty} F(x) \Big|_{a}^{\beta}$$

Интегрирование по частями и замена переменной выполняются также, как и в определенном интеграле (аккуратнее с пределами интегрирования при замене).

Замечание 1.19.1. Иногда после замены несобственный интеграл может превратиться в собственный.

1.20. Несобственные интегралы 2-го рода (от неограниченной функции). Определение, вычисление и свойства.

Def 1.20.1. Пусть $f(x) \in C_{[a;b]}$ и b это точка бесконечного разрыва $(\lim_{x \to b} f(x) = \infty)$, тогда интеграл

$$\int_{a}^{b} f(x) dx \iff \lim_{\beta \to b-} \int_{a}^{\beta} f(x) dx$$

называется несобственным интегралом 2-ого рода.

Замечание 1.20.2. Существуют также другие формы несобственных интегралов 2-ого рода:

$$\int_{a}^{b} f(x) dx \iff \lim_{\alpha \to a+} \int_{\alpha}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx \iff \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

В первом случае точкой бесконечного разрыва является точка a, а во втором — $c \in (a;b)$.

Несобственные интегралы второго рода обладают теми же свойствами (линейность, аддитивность, сравнение) и вычисляются так же, как и несобственные интегралы 1-ого рода:

$$\int_{a}^{b} f(x) dx = \lim_{\beta \to b} F(x) \Big|_{a}^{\beta}$$

1.21. Признаки сходимости несобственных интегралов: первый признак сравнения (в неравенствах).

Теорема 1.21.1. Пусть $f(x), g(x) \colon [a, +\infty] \to \mathbb{R}$ и на этом отрезке выполняется неравенство $f(x) \geqslant g(x) \geqslant 0$. Тогда:

$$\int_{-\infty}^{+\infty} f(x) dx > \Longrightarrow \int_{-\infty}^{+\infty} g(x) dx >$$
 (a)

$$\int_{a}^{+\infty} g(x) dx \iff \int_{a}^{+\infty} f(x) dx \iff (b)$$

Доказательство. (а) Сначала докажем первое утверждение. Т.к. $f(x) \geqslant 0$, то $I = \int_a^b f(x) \mathrm{d}x \geqslant 0 \in \mathbb{R}$, при этом т.к. этот интеграл сходится, то $I \in \mathbb{R}$. Далее рассмотрим второй интеграл, по определению имеем:

$$\int_{a}^{+\infty} g(x) dx = \lim_{\beta \to +\infty} \underbrace{\int_{a}^{\beta} g(x) dx}_{h(\beta)}$$

Заметим, т.к. $g(x)\geqslant 0$, то функция $h(\beta)$ монотонно возрастает при $\beta\to +\infty$. При этом значение этой функции ограничено сверху числом $I\in\mathbb{R}$. Значит по свойствам пределов данный предел конечен, из чего следует, что интеграл $\int_a^{+\infty}g(x)\mathrm{d}x$ сходится.

(b) Доказательство второго утверждения вытекает из первого. От противного: пусть $\int_a^{+\infty} f(x)$ сходится. Тогда по пункту а интеграл $\int_a^{+\infty} g(x)$ тоже должен сходится. Противоречие.

1.22. Признаки сходимости несобственных интегралов: второй признак сравнения (предельный).

Теорема 1.22.1. Пусть $f(x), g(x) \colon [a; +\infty] \to \mathbb{R}$ и f(x) > 0, g(x) > 0. Тогда если предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = r \in \mathbb{R} \setminus \{0\}$$

существует, конечен и не равен нулю, то функции оба интеграла $\int_a^{+\infty} f(x) dx$, $\int_a^{+\infty} g(x) dx$ ведут себя одинаково в плане сходимости (т.е. либо оба сходятся, либо оба расходятся).

Доказательство. По определению предела получаем:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = r \iff \forall \varepsilon > 0 \exists \delta > 0 \mid \forall x \in [a; +\infty], x > \delta \colon \left| \frac{f(x)}{g(x)} - r \right| < \varepsilon$$
$$r - \varepsilon < \frac{f(x)}{g(x)} < r + \varepsilon \mid \cdot g(x) > 0$$
$$(r - \varepsilon)g(x) < f(x) < (r + \varepsilon)g(x)$$

Далее используем признак сравнения в неравенствах (1.21.1). Рассмотрим два случая:

Т.к. $r \in \mathbb{R}$, а $\varepsilon > 0$ произвольное положительное число, то интеграл $\int_a^{+\infty} g(x) \mathrm{d}x$ также будет сходится. Второй случай рассматривается аналогично:

1.23. Признаки сходимости несобственных интегралов: теорема об абсолютной сходимости. Понятие условной сходимости.

Теорема 1.23.1. Пусть $f(x): [a; +\infty] \to \mathbb{R}$. Тогда

$$\int_{a}^{+\infty} |f(x)| \mathrm{d}x > \Longrightarrow \int_{a}^{+\infty} f(x) \mathrm{d}x >$$

 \mathcal{A} оказательство. Раскроем интегралы $\left|\int_a^{+\infty} f(x) \mathrm{d}x\right|$ и $\int_a^{+\infty} |f(x)| \mathrm{d}x$ по определению:

$$\left| \int_{a}^{+\infty} f(x) dx \right| = \left| \lim_{\beta \to +\infty} \int_{a}^{\beta} f(x) dx \right| = \lim_{\beta \to +\infty} \left| \int_{a}^{\beta} f(x) dx \right|$$

$$\int_{a}^{+\infty} |f(x)| dx = \lim_{\beta \to +\infty} \int_{a}^{\beta} |f(x)| dx$$

Далее воспользуемся свойством определенных интегралов (1.9.5) $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$ и предельным переходом:

$$\lim_{\beta \to +\infty} \left| \int_{a}^{\beta} f(x) dx \right| \leq \lim_{\beta \to +\infty} \int_{a}^{\beta} |f(x)| dx$$
$$\left| \int_{a}^{+\infty} f(x) dx \right| \leq \int_{a}^{+\infty} |f(x)| dx$$

Т.к. интеграл в правой части сходится, то обозначим его значение $r \in \mathbb{R}$. Раскрывая модуль по определению получаем:

$$-r \leqslant \int_{a}^{+\infty} f(x) \mathrm{d}x \leqslant r$$

Другими словами значение интеграла ограничено, а значит интеграл сходится.

Def 1.23.2. Если $\int_a^{+\infty} |f(x)| \mathrm{d}x \succ$, то интеграл $\int_a^{+\infty} f(x) \mathrm{d}x$ называется абсолютного сходящимся.

Def 1.23.3. Если $\int_a^{+\infty} |f(x)| \mathrm{d}x \prec$, а $I = \int_a^{+\infty} f(x) \mathrm{d}x \succ$ интеграл I называется условно сходящимся.

1.24. Сходимость интегралов 1-го и 2-го рода от степенных функций.

Def 1.24.1. Интегралы, про сходимость которых известна, называются *эталонными*. Обычно они используются в признаках сравнения.

Исследуем на сходимость интеграл $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}.$ Рассмотрим три случая:

$$\alpha = 1 \qquad \int_{1}^{+\infty} \frac{\mathrm{d}x}{x} = \ln|x| \Big|_{1}^{+\infty} \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x} \prec \alpha > 1 \qquad \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \left(\frac{x^{1-\alpha}}{1-\alpha}\right) \Big|_{1}^{+\infty} = \frac{1}{1-\alpha} \lim_{x \to \infty} x^{1-\alpha} - \frac{1}{1-\alpha} \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} > \alpha < 1 \qquad \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \left(\frac{x^{1-\alpha}}{1-\alpha}\right) \Big|_{1}^{+\infty} = \frac{1}{1-\alpha} \lim_{x \to \infty} x^{1-\alpha} - \frac{1}{1-\alpha} \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \prec \alpha < 1 \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \left(\frac{x^{1-\alpha}}{1-\alpha}\right) \Big|_{1}^{+\infty} = \frac{1}{1-\alpha} \lim_{x \to \infty} x^{1-\alpha} - \frac{1}{1-\alpha} \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \prec \alpha < 1 \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \left(\frac{x^{1-\alpha}}{1-\alpha}\right) \Big|_{1}^{+\infty} = \frac{1}{1-\alpha} \lim_{x \to \infty} x^{1-\alpha} - \frac{1}{1-\alpha} \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \frac{1}{1-\alpha} \lim_{x \to \infty} x^{1-\alpha} - \frac{1}{1-\alpha} \qquad \Longrightarrow \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \frac{1}{1-\alpha} \lim_{x \to \infty} x^{1-\alpha} - \frac{1}{1-\alpha} = \frac{1}{1-\alpha} = \frac{1}{1-\alpha} \lim_{x \to \infty} x^{1-\alpha} - \frac{1}{1-\alpha}$$

Исследуем на сходимость интеграл $\int \frac{\mathrm{d}x}{(x-a)^{\alpha}}.$ Также рассмотрим три случая:

$$\alpha = 1 \qquad \int_{a}^{b} \frac{\mathrm{d}x}{(x-a)} = \ln|x-a| \Big|_{a}^{b} \qquad \Longrightarrow \int_{a}^{b} \frac{\mathrm{d}x}{x-a} \prec \alpha$$

$$\alpha > 1 \qquad \int_{a}^{b} \frac{\mathrm{d}x}{(x-a)^{\alpha}} = \frac{(x-a)^{1-\alpha}}{1-\alpha} \Big|_{a}^{b} = \frac{(b-a)^{1-\alpha}}{1-\alpha} - \lim_{x \to a+} \frac{(x-a)^{1-\alpha}}{1-\alpha} \qquad \Longrightarrow \int_{a}^{b} \frac{\mathrm{d}x}{(x-a)^{\alpha}} \prec \alpha$$

$$\alpha < 1 \qquad \int_{a}^{b} \frac{\mathrm{d}x}{(x-a)^{\alpha}} = \frac{(x-a)^{1-\alpha}}{1-\alpha} \Big|_{a}^{b} = \frac{(b-a)^{1-\alpha}}{1-\alpha} - \lim_{x \to a+} \frac{(x-a)^{1-\alpha}}{1-\alpha} \qquad \Longrightarrow \int_{a}^{b} \frac{\mathrm{d}x}{(x-a)^{\alpha}} \succ \alpha$$

Аналогично можно исследовать сходимость интеграла $\int\limits_a^b \frac{\mathrm{d}x}{(b-x)^{\alpha}}.$ Таким образом получаем:

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \succ \alpha > 1 \qquad \int_{1}^{b} \frac{\mathrm{d}x}{(x-a)^{\alpha}} \succ \alpha < 1 \qquad \int_{1}^{b} \frac{\mathrm{d}x}{(b-x)^{\alpha}} \succ \alpha < 1$$

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \prec \alpha \leqslant 1 \qquad \int_{1}^{b} \frac{\mathrm{d}x}{(x-a)^{\alpha}} \prec \alpha \geqslant 1 \qquad \int_{1}^{b} \frac{\mathrm{d}x}{(b-x)^{\alpha}} \prec \alpha \geqslant 1$$

Замечание 1.24.2. Как правило для проверки на сходимость интегралов разного вида используют разные эталонные интегралы:

$$\int_{a}^{+\infty} f(x) dx \longrightarrow \int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$$
$$\int_{a}^{b} f(x) dx \longrightarrow \int_{a}^{b} \frac{dx}{(x-a)^{\alpha}}$$

2. Интегрирование функции нескольких переменных

2.1. Двойной интеграл. Определение и свойства.

3амечание 2.1.1. Об области D

Область D должна быть:

- 1. Выпуклой (3b), т.е. любые две точки можно стянуть отрезком, который полностью содержится в области D.
- 2. Правильной в координатном направлений. На рисунке 4a отрезки, параллельные Oy, при 'выходе' из области пересекают красную и синюю границы, которые имеют разное аналитическое задание. В то время как на рисунке 4b отрезки 'входят' в область через зеленую границу, а 'выходят' только через синюю.
- 3. Связной (5b), т.е любые две точки можно стянуть дугой, которая полностью содержится в области D.
- 4. Ограничена простой кривой (6b), т.е. граница области должна задаваться непрерывной дифференцируемой функцией и не иметь разрывов, изломов, самопересечений.

 $\it Замечание~2.1.2.$ Если область $\it D$ обладает всеми вышеперечисленными свойствами, т.е. $\it D$ выпуклая, правильная в координатном направлении, связная и имеет простую кривую в качестве границы, то будем называть такую область $\it xopome \check{u}$.

Построим двойной интеграл:

- 1. Разбиваем область D на прямоугольники размера $\Delta x_i \times \Delta y_i = \Delta S_i$.
- 2. Выбираем средние точки M_i , вычисляем $f(M_i)$.
- 3. Составляем предел интегральных сумм, переходим к двойному интегралу.

$$\iint\limits_{D} f(x) \, \underline{\mathrm{d}x\mathrm{d}y}$$

Замечание 2.1.3. Геометрический смысл двойного интеграла заключается в том, что он равен объему криволинейного цилиндра (если f(x,y) > 0).

Т.к. двойной интеграл можно свести к двум обычным определенным интегралам (см. 2.2.1), то он обладает такими же свойствами:

- 1. Линейность
- 2. Аддитивность
- 3. Оценка (через минимальное/максимальное значение в области)
- 4. Применима т. Лагранжа ($\exists \xi \in D$ такая, что объем криволинейного цилиндра будет равен объему обычного цилиндра с высотой $f(\xi)$)

5. Сравнение (в т.ч. по модулю):

$$\forall x, y \in D \colon 0 \leqslant f(x, y) \leqslant g(x, y) \Longrightarrow 0 \leqslant \iint\limits_{D} f(x, y) \mathrm{d} \leqslant \iint\limits_{D} g(x, y) \mathrm{d} x \mathrm{d} y$$
$$\left| \iint\limits_{D} f(x, y) \mathrm{d} x \mathrm{d} y \right| \leqslant \iint\limits_{D} |f(x, y)| \mathrm{d} x \mathrm{d} y$$

2.2. Вычисление двойного интеграла. Кратный интеграл.

Теорема 2.2.1. Сведение двойного интеграла к повторным

$$\iint\limits_{D} f(x,y) \mathrm{d}x \mathrm{d}y = \int\limits_{x_1}^{x_2} \mathrm{d}x \int\limits_{y_1(x)}^{y_2(x)} f(x,y) \mathrm{d}y$$

Доказательство. Пусть область D правильная в направлении Oy. Найдем x_1 и x_2 — границы области для переменной x. Далее будем 'идти' по оси x от x_1 к x_2 .

Рассмотрим момент, в котором x = const. В этот момент y может меняться в диапазоне от $y_1(x)$ до $y_2(x)$, где $y_1(x)$, $y_2(x)$ это функции от x, задающие 'верхнюю' и 'нижнюю' границы текущего отрезка в области D (для этого и требовалась правильность в направлении Oy). Значит мы можем вычислить площадь сечения как

$$\int_{y_1(x)}^{y_2(x)} f(x = const, y) dy = F(x = const, y) \Big|_{y_1(x)}^{y_2(x)} = \check{F}(x)$$

Далее применим формулу для вычисления объема тела с известными площадями сечений (RV):

$$V = \int_{x_1}^{x_2} \check{F} dx = \int_{x_1}^{x_2} \left(\int_{y_1(x)}^{y_2(x)} f(x, y) dy \right) dx = \int_{x_1}^{x_2} dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

Замечание 2.2.2. Полученный интеграл называется кратным (повторным).

Замечание 2.2.3. Порядок интегрирования можно изменить, если область правильная в обоих направлениях.

Если область правильная только в одном из направлений, то внутренний интеграл должен браться по переменной, соответствующей этому направлению.

Если область неправильная ни в одном из направлений, то её необходимо разбить на части (пользуясь аддитивностью интегралов), каждая из которых должна быть правильной хотя бы в одном из направлений.

2.3. Определение и вычисление тройного интеграла.

Пусть в \mathbb{R}^3 есть область, в которой определена скалярная величина и 'плотность' её распределения $\rho(x,y,z)$. Тогда содержание этой величины в данной области будет равно:

$$\iiint\limits_{T} \rho(x,y,z) \, \underline{\mathrm{d}x\mathrm{d}y\mathrm{d}z}_{\mathrm{d}V}$$

Замечание 2.3.1. В определении выше рассматривается область, правильная в направлении Oz.

Замечание 2.3.2. Свойства тройного интеграла, а также способ его вычисления полностью аналогичен двойному интегралу:

- 1. Определяем границы для одной из переменных (область должна быть правильной в направлении оси этой переменной).
- 2. Выражаем границы для второй переменной через первую, а для третьей через первые две.
- 3. Сводим все к повторным интегралам.

Формула для вычисления тройного интеграла будет выглядеть следующим образом:

$$\iiint_T f(x, y, z) dx dy dz = \int_{x_1}^{x_2} dx \int_{y_1(x)}^{y_2(x)} dy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz$$

2.4. Криволинейные координаты.

Полярные координаты определяются как:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \quad \rho \geqslant 0, \varphi \in [0; 2\pi)$$
$$dxdy \longrightarrow \rho d\rho d\varphi$$

Цилиндрические координаты определяются как:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi & \rho \geqslant 0, \varphi \in [0; 2\pi), z \in \mathbb{R} \\ z = z & dx dy dz \longrightarrow \rho d\rho d\varphi dz \end{cases}$$

Сферические координаты определяются как:

$$\begin{cases} x = \rho \cos \varphi \sin \theta \\ y = \rho \sin \varphi \sin \theta \\ z = z \cos \theta \end{cases} \quad \rho \geqslant 0, \varphi \in [0; 2\pi), \theta \in [0, \pi]$$
$$dxdydz \longrightarrow \rho^2 \sin \theta d\rho d\varphi d\theta$$

Замечание 2.4.1. О том, почему элементы объема имеют именно такое задание можно прочитать в следующем вопросе.

2.5. Замена переменных в двойном и тройном интегралах. Якобиан.

Дробление в выбранной СК проводится соответствующими координатными линиями/поверхностями. Потребуем малости du, dv. Тогда площадь криволинейного прямоугольника будет мало отличать от площади обычного прямоугольника ABCD, значит:

$$dS' = \left| \overrightarrow{AB} \times \overrightarrow{AD} \right| = \left| \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ B_x - A_x & B_y - A_y & 0 \\ D_x - A_x & D_y - A_y & 0 \end{vmatrix} \right|$$
(1)

Рассмотрим полученные разницы координат точек:

$$B_{x} - A_{x} = \varphi(u, v + \Delta v) - \varphi(u, v) = \Delta_{v} \varphi \approx \frac{\partial \varphi}{\partial v} dv$$

$$B_{y} - A_{y} = \psi(u, v + \Delta v) - \psi(u, v) = \Delta_{v} \psi \approx \frac{\partial \psi}{\partial v} dv$$

$$D_{x} - A_{x} = \varphi(u + \Delta u, v) - \varphi(u, v) = \Delta_{u} \varphi \approx \frac{\partial \varphi}{\partial u} du$$

$$D_{y} - A_{y} = \psi(u + \Delta u, v) - \psi(u, v) = \Delta_{u} \psi \approx \frac{\partial \psi}{\partial u} du$$

Подставим это в (1). Имеем:

$$dS' \approx \left| \left(\frac{\partial \varphi}{\partial v} dv \cdot \frac{\partial \psi}{\partial u} du - \frac{\partial \psi}{\partial v} dv \cdot \frac{\partial \varphi}{\partial u} du \right) \right| = \underbrace{\left| \frac{\partial \varphi}{\partial v} \cdot \frac{\partial \psi}{\partial u} - \frac{\partial \psi}{\partial v} \cdot \frac{\partial \varphi}{\partial u} \right|}_{|J|} \cdot du dv$$

|J| можно записать в виде определителя:

$$|J| = \begin{vmatrix} \varphi_v' & \varphi_u' \\ \psi_v' & \psi_u' \end{vmatrix}$$

Def 2.5.1. Определитель J составленный из частных производных исходных переменных по каждой из новых переменных называется определителем Якоби (якобианом).

Его геометрический смысл заключается в том, что он является коэффициентом искажения при переходе от одной СК к другой.

В итоге получаем, что $\mathrm{d}S=\mathrm{d}x\mathrm{d}y=|J|\mathrm{d}\rho\mathrm{d}\varphi$, причем $|J|=\lim_{\Delta S,\Delta S'\to 0}\frac{\Delta S'}{\Delta S}$. Итоговая формула замены при смене СК имеет вид:

$$\iint\limits_{D} f(x,y) \mathrm{d}x \mathrm{d}y = \iint\limits_{D'} f(x(u,v),y(u,v)) |J| \mathrm{d}u \mathrm{d}v$$

Замечание 2.5.2. Якобиан при стандартном переходе в полярные координаты $(x = \rho \cos \varphi, y = \rho \sin \varphi)$ равен ρ .

В тройном интеграле замены проводятся аналогично (только якобиан будет третьей размерности). Некоторые стандартные замены можно найти в предыдущем вопросе.

2.6. Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.

Задача: найти массу m, распределенную с плотностью f по участку плоской кривой (простая дуга \check{AB}).

Замечание 2.6.1. Постановка задачи определяет физический смысл криволинейного интеграла первого рода.

Составим интеграл: разобьем дугу \check{AB} на элементарные дуги $\mathrm{d}l$. Масса таких дуг будет равна $f(x,y)\mathrm{d}l$, значит масса всей дуги будет равна

$$\int_{AB} f(x,y) \mathrm{d}l$$

Полученный интеграл называется криволинейным интегралом 1-ого рода.

Замечание 2.6.2. О математическом определении

- 1. Введем ДПСК $AB \rightarrow y = y(x), x \in [a; b]$.
- 2. Разобьем дугу на элементарные дуги l_i , тогда элементарная масса будет равна $m_i = f(\xi_i, \eta_i) \Delta l_i$.
- 3. Составим предел интегральных сумм

$$\lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta l_i$$

4. Перейдем к интегралу и получим такое же выражение, что и выше.

Замечание 2.6.3. О вычислении

 $\mathrm{d}l$ это дифференциал дуги (см. 1.15.1), значит получаем, что

$$\int_{AB} f(x, y) dl = \int_{x_1}^{x_2} f(x, y(x)) \sqrt{1 + y'(x)^2} |dx|$$

или в параметрическом виде (см. 1.16.1):

$$\int_{AB} f(x,y) dl = \int_{t_1}^{t_2} f(\varphi(t), \psi(t)) \sqrt{\varphi'(t)^2 + \psi'(t)^2} |dt|$$

Дифференциалы dx и dt находятся под модулем, т.к. если дуга проходится в обратном направлении (т.е. dx, dy, dt < 0), то получится отрицательное число. Однако dl здесь имеет смысл длины и не может быть отрицательным. Замечание 2.6.4. Криволинейный интеграл первого рода не зависит от направления прохода дуги:

$$\int_{AB} f(x,y) dl = \int_{BA} f(x,y) dl$$

Остальные его свойства совпадают со свойствами определенного интеграла.

2.7. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства.

Пусть дана простая дуга \check{AB} и некоторая сила $\check{F}(P,Q)$, где $P=P(x,y),\ Q=Q(x,y)$ это некоторые функции, зависящие от координат.

Построим интеграл:

- 1. Введем ДПСК
- 2. Вычислим среднюю элементарную работу dA вдоль элемента дуги dl, а потом просуммируем все полученные элементарные работы:

$$dA = \overrightarrow{F} \overrightarrow{ds} = (P, Q) \cdot (dx, dy)$$
$$A = \int_{AB} dA = \int_{AB} P(x, y) dx + Q(x, y) dy$$

3. Получили криволинейный интеграл 2-ого рода.

Замечание 2.7.1. Можно рассматривать действие силы в каждом координатном направлении (в проекциях):

$$A_x = \int_{AB} P(x, y) dx$$
 $A_y = \int_{AB} Q(x, y) dy$

поэтому криволинейный интеграл 2-ого рода иногда называют криволинейным интегралов в проекциях.

Замечание 2.7.2. О математическом определении

Криволинейный интеграл можно определить математически (дробление, составление интегральных сумм, переход к пределу, а затем и к интегралу), для этого нужно рассмотреть проекции на оси координат. В каждой из проекций получится криволинейный интеграл первого рода.

Замечание 2.7.3. О вычислении

Параметризуем дугу и сведем все к определенному интегралу:

$$\int_{AB} P(x,y) dx + Q(x,y) dy$$

$$\begin{cases} x = \varphi(t) \Longrightarrow dx = \varphi'(t) dt \\ y = \psi(t) \Longrightarrow dy = \psi'(t) dt \\ t \in [t_1, t_2] \iff A \to B \end{cases}$$

$$\int_{t_1}^{t_2} P(\varphi(t), \psi(t)) \varphi'(t) dt + Q(\varphi(t), \psi(t)) \psi'(t) dt$$

Замечание 2.7.4. Криволинейный интеграл 2-ого рода (в отличие от криволинейного интеграла 1-ого рода) зависит от направления обхода:

$$\int_{AB} P dx + Q dy = -\int_{BA} P dx + Q dy$$

Остальные его свойства совпадают со свойствами определенного интеграла.

2.8. Криволинейные интегралы 1-го и 2-го рода: формула связи.

$$\int\limits_{AB} P \mathrm{d}x + Q \mathrm{d}y =$$

$$\int\limits_{AB} (P, Q) \cdot (\mathrm{d}x, \mathrm{d}y) =$$

$$\int\limits_{AB} (P, Q) \cdot (\cos \alpha \mathrm{d}l, \sin \alpha \mathrm{d}l) =$$

$$\int\limits_{AB} \left(P \cos \alpha + Q \sin \alpha \right) \mathrm{d}l$$

Таким образом получили формулу связи криволинейных интегралов 1-ого и 2-ого рода.

Замечание 2.8.1. При достаточно малых \overrightarrow{ds} можно обозначить $\overrightarrow{\tau} = (\cos \alpha, \cos \beta)$, тогда получим криволинейный интеграл 2-ого рода в векторной форме:

$$\int\limits_{AB} P \mathrm{d}x + Q \mathrm{d}y = \int\limits_{AB} \overrightarrow{F} \cdot (\cos \alpha, \cos \beta) \mathrm{d}l = \int\limits_{AB} \overrightarrow{F} \cdot \overrightarrow{\tau} \mathrm{d}l$$

2.9. Теорема (формула) Грина.

Теорема 2.9.1. Теорема Грина

Пусть Dправильная
† $Ox, \uparrow Oy, \, \Gamma_D = K$

Даны функции $P(x,y), Q(x,y) \colon K, D \to \mathbb{R}$

Определен $\oint\limits_{K^+} P \mathrm{d}x + Q \mathrm{d}y$

Тогда

$$\oint_{K^+} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Доказательство. Рассмотрим двойной интеграл $\iint\limits_{D} \frac{\partial P}{\partial y} \mathrm{d}x \mathrm{d}y$ и сведем его к повторному:

$$\iint\limits_{D} \frac{\partial P}{\partial y} \mathrm{d}x \mathrm{d}y = \int\limits_{a}^{b} \mathrm{d}x \int\limits_{y_{1}(x)}^{y_{2}(x)} \frac{\partial P}{\partial y} \mathrm{d}y = \int\limits_{a}^{b} \left(P(x,y) \Big|_{y_{1}(x)}^{y_{2}(x)} \right) \mathrm{d}x = \int\limits_{a}^{b} P(x,y_{2}(x)) \mathrm{d}x - \int\limits_{a}^{b} P(x,y_{1}(x)) \mathrm{d}x$$

Используя формулу вычисления криволинейного интеграла 2-ого рода (2.7.3) в обратную сторону получаем:

$$\int_{a}^{b} P(x, y_{2}(x)) dx - \int_{a}^{b} P(x, y_{1}(x)) dx =$$

$$\int_{MLN} P(x, y) dx - \int_{MAN} P(x, y) dx =$$

$$- \int_{NLM} P(x, y) dx - \int_{MAN} P(x, y) dx =$$

$$- \oint_{K^{+}} P(x, y) dx$$

Аналогично можно показать, что $\iint\limits_{D} \frac{\partial P}{\partial y} \mathrm{d}x \mathrm{d}y = \oint\limits_{K^+} Q(x,y) \mathrm{d}y$. Объединяя эти равенства получаем, что

$$\oint\limits_{K^+} P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y = \oint\limits_{K^+} Q(x,y)\mathrm{d}y - \left(-\oint\limits_{K^+} P(x,y)\mathrm{d}x\right) = \iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathrm{d}x\mathrm{d}y$$

Замечание 2.9.2. Формула Грина работает в обе стороны. Вычисляется тот интеграл, который проще.

Следствие 2.9.3. С помощью формулы Грина можно получить формулу для площади фигуры через криволинейный интеграл 2-ого рода:

$$S = \iint\limits_{D} \mathrm{d}x \mathrm{d}y = \begin{bmatrix} P = -y/2 \\ Q = x/2 \end{bmatrix} \Longrightarrow Q'_x - P'_y = 1 \end{bmatrix} = \oint\limits_{K^+} -\frac{y}{2} \mathrm{d}x + \frac{x}{2} \mathrm{d}y = \frac{1}{2} \oint\limits_{K^+} x \mathrm{d}y - y \mathrm{d}x$$

2.10. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений.

Пусть на $\ddot{AB} \in D$ определен $I = \int_{AB} P dx + Q dy$, тогда

Def 2.10.1. Интеграл I называется независящим от пути интегрирования (далее НЗП), если

$$\forall M, N \in D \colon \int_{AMB} P dx + Q dy = \int_{ANB} P dx + Q dy$$

Теорема 2.10.2. Следующие утверждения равносильны:

I. $\int_{AB} P dx + Q dy$ не зависит от пути.

II.
$$\oint_K P dx + Q dy = 0$$
.

III. $P'_{y} = Q'_{x}$ (везде в области D).

IV.
$$\exists \Phi(x, y) : d\Phi = Pdx + Qdy$$
.

Доказательство. $I \Longrightarrow II \ (H3\Pi \Longrightarrow \phi = 0)$

Если интеграл не зависит от пути, то по определению:

$$\int\limits_{AMB} = \int\limits_{ANB} \Longrightarrow \int\limits_{AMB} - \int\limits_{ANB} = 0 \Longrightarrow \int\limits_{AMB} + \int\limits_{BNA} = 0 \Longrightarrow \oint\limits_{K} = 0$$

Доказательство. $I \iff II \text{ (H3}\Pi \iff \phi = 0)$

Пусть в области D есть некоторые точки M и N, тогда интеграл по контуру можно представить в виде:

$$\oint_K = 0 \Longrightarrow \int_{AMB} + \int_{BNA} = 0 \Longrightarrow \int_{AMB} - \int_{ANB} = 0 \Longrightarrow \int_{AMB} = \int_{ANB}$$

Т.к. точки M и N выбраны произвольно $\in D$, то это выполняется для любых точек $M, N \Longrightarrow$ интеграл не зависит от пути по определению.

Доказательство. $II \Longrightarrow III \ (\oint = 0 \Longrightarrow P'_y = Q'_x)$

От противного: пусть

$$\exists M(x_0, y_0) \in D \colon P'_y \neq Q'_x \Longrightarrow Q'_x - P'_y > 0$$

Знак больше выбран для определенности, можно и рассмотреть и с минусом: доказательство будет аналогичным. Окружим точку $M(x_0, y_0)$ окрестностью $u_{\varepsilon}(M_0)$. Применим формулу Грина для $K = \Gamma_u$:

$$\oint_K P dx + Q dy = \iint_{u(M_0)} (Q'_x - P'_y) dx dy$$

$$Q'_x - P'_y > 0 \Longrightarrow \exists \delta \in \mathbb{R}^+ \colon Q'_x - P'_y > \delta > 0$$

$$\iint_{u(M_0)} (Q'_x - P'_y) dx dy > \iint_{u(M_0)} \delta dx dy = \delta S(u(M_0)) > 0$$

Получаем, что $\oint_K P \mathrm{d}x + Q \mathrm{d}y > 0$. Противоречие.

Доказательство. II \longleftarrow III ($\oint = 0 \longleftarrow P'_y = Q'_x$)

Применяем формулу Грина:

$$P'_y = Q'_x \Longrightarrow Q'_x - P'_y = 0$$

$$\int\limits_D (Q'_x - P'_y) \mathrm{d}x \mathrm{d}y = 0 = \oint\limits_{K = \Gamma_D} P \mathrm{d}x + Q \mathrm{d}y$$

Доказательство. $I \Longrightarrow IV \ (H3\Pi \Longrightarrow \exists \Phi(x,y))$

Рассмотрим интеграл $\int_{AB} P dx + Q dy$. Заменим точку B на 'плавающую' (по дуге AB) точку M(x,y). Получим:

$$\Phi(x,y) = \int_{AM} P dx + Q dy$$

$$d\Phi = \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy$$
(1)

Покажем, что $\frac{\partial \Phi}{\partial x} = P(x,y)$. Рассмотрим частное приращение функции $\Phi(x,y)$ по x:

$$\Delta_x \Phi = \Phi(x + \Delta, y) - \Phi(x, y) = \int_{AM_1} - \int_{AM} = \int_{MM_1} = \int_{MM_1} P dx + Q dy$$

где точка M_1 имеет координаты $(x + \Delta x, y)$. Т.к. интеграл не зависит от пути, то выберем удобный путь интегрирования $y = const \Longrightarrow \mathrm{d}y = 0$:

$$\int_{MM_1} P \mathrm{d}x + Q \mathrm{d}y = \int_{MM_1} P \mathrm{d}x$$

Воспользуемся т. Лагранжа о среднем(1.9.2):

$$\exists \xi \in (x, x + \Delta x) : \int_{MM_1} P dx = P(\xi, y) \Delta x$$

В итого получаем, что

$$\Phi(x + \Delta, y) - \Phi(x, y) = P(\xi, y)\Delta x$$

Подставим это в определение частной производной для $\frac{\partial \Phi}{\partial x}$:

$$\frac{\partial \Phi}{\partial x} = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x, y) - \Phi(x, y)}{\Delta x} = \lim_{\Delta x \to 0} P(\xi, y) = \begin{bmatrix} \Delta x \to 0 \\ \xi \in (x, x + \Delta x) \end{bmatrix} \Longrightarrow \xi \to x \end{bmatrix} = P(x, y)$$

Аналогично можно показать, что $\frac{\partial \Phi}{\partial y} = Q(x,y)$. Подставляя полученные выражения в (1) получаем искомое равенство.

Доказательство. III \iff IV $(P'_y = Q'_x \iff \exists \Phi(x,y))$

Раскроем дифференциал функции $\Phi(x,y)$ по определению:

$$P dx + Q dy = d\Phi = \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy$$

Далее возьмем частные производные P_y' и Q_x' :

$$\frac{\partial P}{\partial y} = \frac{\partial^2 \Phi}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$

Замечание 2.10.3. Функция $\Phi(x,y)$ называется потенциалом, либо первообразной для подынтегрального выражения.

Замечание 2.10.4. Если интеграл не зависит от пути, то частно бывает удобно рассмотреть путь $A(x_0, y_0) \to M(x, y_0) \to B(x, y)$. При таким подходе интеграл разбивается на два, причем в каждом из них половина обнуляется (т.к. $\mathrm{d} x = 0$ либо $\mathrm{d} y = 0$).

2.11. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений.

Замечание 2.11.1. Теорема 2.10.2 полностью доказана в предыдущем вопросе.

2.12. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница).

<u>Теорема</u> **2.12.1.** Формула Ньютона-Лейбница для интегралов, не зависящих от пути интегрирования Пусть выполнены условия теоремы 2.10.2, тогда

$$\int_{AB} P dx + Q dy = \Phi(B) - \Phi(A)$$

$$x = \varphi(t) \Longrightarrow dx = x'_t dt$$
$$y = \psi(t) \Longrightarrow dy = y'_t dt$$
$$t \in [t_1; t_2] \iff A \to B$$

Подставим это в исходный интеграл:

$$\int_{AB} P dx + Q dy = \int_{AB} \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy = \int_{t_1}^{t_2} \left(\frac{\partial \Phi}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial \Phi}{\partial y} \cdot \frac{dy}{dt} \right) dt$$

Заметим, что то, что стоит в скобках, это полная производная Φ по t. Тогда имеем:

$$\int_{t_1}^{t_2} \frac{\mathrm{d}\Phi(x(t), y(t))}{\mathrm{d}t} \mathrm{d}t = \Phi(x(t), y(t)) \Big|_{t_1}^{t_2} = \Phi(B) - \Phi(A)$$

2.13. Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.

Пусть f(x,y,z) это плотность распределения некоторой скалярной величины. Введена ДПСК, поверхность простая z=z(x,y).

Элемент поверхности $d\sigma$ вырезается координатными плоскостями x=const, y=const. Выделим элементарную массу dm. Умножая среднюю плотность на размер элементарного участка получаем $dm=f(x,y,z)d\sigma$. Полную массу получим 'суммированием':

$$m = \iint_{S} dm = \iint_{S} f(x, y, z) d\sigma$$

Получили поверхностный интеграл 1-ого рода (по участку поверхности).

Замечание 2.13.1. Физический смысл поверхностного интеграла 1-ого рода вытекает из его построения: он равен массе участка неоднородной поверхности.

Замечание 2.13.2. О математическом определении

Поверхностный интеграл 1-ого рода можно определить математически аналогично уже рассмотренным интегралам:

- 1. Дробим S плоскостямиx = const, y = const на элементарные участки $\Delta \sigma_i$.
- 2. В каждом участке выбираем среднюю точку $M_i(\xi_i, \eta_i, \zeta_i)$ и вычисляем $f(M_i)$.
- 3. Составляем предел интегральных сумм и переходим к интегралу:

$$\lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta \sigma_i$$

Замечание 2.13.3. О вычислении

Введем параметризацию z=z(x,y) и спроецируем поверхность на плоскость Oxy, т.е. $D_{xy}=S_{\text{пр. }xy}$. Получим

$$\iint_{S} f(x, y, z) d\sigma = \iint_{D_{xy}} f(x, y, z(x, y)) \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} dxdy$$

При необходимости можно вводить другую параметризацию и проектировать поверхность на другую координатную плоскость.

Замечание 2.13.4. С помощью поверхностного интеграла 1-ого рода можно найти площадь поверхности следующим образом:

$$S_{\text{пов.}} = \iint\limits_{C} \mathrm{d}\sigma$$

2.14. Поверхностный интеграл 2-го рода как поток жидкости через поверхность.

Замечание 2.14.1. О поверхности, обходе участка и направлении нормали. Постановка задачи

Будем рассматривать только двусторонние поверхности. Положительной нормалью n^+ будет называть ту нормаль, у которой угол с осью Oz меньше 90 градусов. Сторону S с положительной нормалью будет называть sepxneй. Дуально определим отрицательную нормаль и nu-иснюю сторону поверхности. Согласуем обходы S и $D_{xy} = S_{\text{пр. }xy}$

Пусть через данный участок поверхности течет жидкость со скоростью \overrightarrow{v} и плотностью ρ . Вычислим количество жидкости, проходящей через t за единицу времени t. Будем считать поток положительным, если он течет в направлении положительной нормали и отрицательным если в направлении отрицательной.

Рассмотрим более простую задачу: пусть поверхность S плоская, а v=const. Тогда жидкость, которая протечет через участок поверхности, может рассматриваться как наклонный цилиндр. Найдем его объем по известной формуле $V=h\cdot S_{\rm och.}$, причем высота будет равна проекции скорости на нормаль, умноженной на время. Таким образом поток Π будет равен $\Pi=V=(\overrightarrow{v},\overrightarrow{n_0})\Delta tS$.

Теперь вернемся к исходной задаче: поверхность S криволинейная и через неё действует некоторая векторная величина $\overrightarrow{F} = (P,Q,R)$. Тогда полученную ранее формулу можно использовать для вычисления элементарного потока $d\Pi = (\overrightarrow{F} \cdot \overrightarrow{n_0}) d\sigma$. Переход к вычислению всего потока осуществляется с помощью двойного интеграла:

$$\Pi = \iint_{S} d\Pi = \iint_{S} \left(\overrightarrow{F} \cdot \overrightarrow{n_0} \right) d\sigma$$
 (SIV)

Полученный интеграл называется поверхностным интегралом 2-ого рода в векторной форме. Замечание 2.14.2. Найдем связь между $d\sigma$ и dxdy

Проведем касательные $\overrightarrow{m_1}$ и $\overrightarrow{m_2}$ в плоскостях x=const и y=const. Их векторное произведение будет задавать нормаль к поверхности в этой точке: $\overrightarrow{n}=\overrightarrow{m_1}\times\overrightarrow{m_2}$. Значит площадь элементарного параллелограмма,построенного на m_1 и m_2 , будет $\approx d\sigma$ с точностью до б.м. более высокого порядка.

Вычислим полученное векторное произведение:

$$\overrightarrow{m_1} = (0, dy, \frac{\partial z}{\partial y} dy) \qquad \overrightarrow{m_2} = (dx, 0, \frac{\partial z}{\partial x} dx)$$

$$\overrightarrow{n} = m_1 \times m_2 = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 0 & dy & \frac{\partial z}{\partial y} dy \\ dx & 0 & \frac{\partial z}{\partial x} dx \end{vmatrix} = \underbrace{\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1\right)}_{\overrightarrow{p}} dxdy$$

Нормируем и домножим на -1 полученный вектор \overrightarrow{p} , чтобы получить единичный вектор в направлении положительной нормали n_0^+ :

$$n_0^+ = \frac{(-z_x', -z_y', 1)}{\sqrt{1 + (z_x')^2 + (z_y')^2}} \Longrightarrow \cos \gamma = \frac{1}{\sqrt{1 + (z_x')^2 + (z_y')^2}}$$

Итак, площадь элементарного параллелограмма будет равна:

$$d\sigma = |\vec{n}| \approx \sqrt{1 + (z_x')^2 + (z_y')^2} |dxdy| = \frac{1}{|\cos \gamma|} |dxdy| \Longrightarrow dxdy \approx \pm \cos \gamma d\sigma$$

Аналогично $dxdz = \pm \cos \beta d\sigma$, $dydz = \pm \cos \alpha d\sigma$.

3амечание $2.14.3.\ d\sigma > 0$ как площадь элементарного участка. $dxdy,\ dxdz,\ dydz$ это проекции $d\sigma$ и их знак зависит от обхода $d\sigma$, т.е. от знака нормали \vec{n} . Далее опустим \pm , т.к. косинус учитывает знак, т.е. при dxdy < 0 будет $\cos \gamma < 0$.

Переведем полученную ранее формулу для поверхностного интеграла 2-ого рода в координатную форму:

$$\iint_{S} (\overrightarrow{F} \cdot \overrightarrow{n_0}) d\sigma = \iint_{S} (P, Q, R) \cdot (\cos \alpha, \cos \beta, \cos \gamma) d\sigma = \iint_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) d\sigma$$
 (SIC)

Подставим в это выражение полученные формулы связи $d\sigma$ с dxdy, dxdz и dydz. Получим формулу для поверхностного интеграла 2-ого рода в проекциях:

$$\iint_{S} P dy dz + Q dx dz + R dx dy$$
 (SIP)

2.15. Связь между поверхностными интегралами 1-го и 2-го рода.

Связь между поверхностными интегралами первого и второго рода была получена при нахождении формулы для поверхностного интеграла 2-ого рода в проекциях (SIC):

$$\underbrace{\iint\limits_{S} (\overrightarrow{F} \cdot \overrightarrow{n_0}) \mathrm{d}\sigma}_{II \text{ pog}} = \underbrace{\iint\limits_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \mathrm{d}\sigma}_{I \text{ pog}}$$

Формулы для нахождения направляющих косинусов также же были получены в предыдущем вопросе:

$$\cos\alpha = \frac{\mp z_x'}{\sqrt{1 + (z_x')^2 + (z_y')^2}} \qquad \cos\beta = \frac{\mp z_y'}{\sqrt{1 + (z_x')^2 + (z_y')^2}} \qquad \cos\gamma = \frac{\pm 1}{\sqrt{1 + (z_x')^2 + (z_y')^2}}$$
(ANG)

2.16. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства.

Замечание 2.16.1. О математическом определении

Чтобы математически определить поверхностный интеграл 2-ого рода, сначала отдельно определяются интегралы в проекциях на координатные плоскости, после чего вычисляется из сумма. При построении поверхностного интеграла 2-ого в проекциях была получена соответствующая формула связи (SIC \rightarrow SIP):

$$\underbrace{\iint\limits_{S} \Big(P\cos\alpha + Q\cos\beta + R\cos\gamma \Big) \mathrm{d}\sigma}_{I \text{ pog}} = \underbrace{\iint\limits_{S} P\mathrm{d}y\mathrm{d}z + Q\mathrm{d}x\mathrm{d}z + R\mathrm{d}y\mathrm{d}z}_{II \text{ pog}}$$

Замечание 2.16.2. О вычислении

Рассмотрим криволинейный интеграл 2-ого рода в проекциях (SIP):

$$\iint\limits_{S} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}x \mathrm{d}z + R \mathrm{d}x \mathrm{d}y$$

Спроецируем поверхность S на координатную плоскость Oxy, получим некоторую область D_{xy} :

$$\iint\limits_{S} R(x, y, z) dxdy = \pm \iint\limits_{D_{xy}} R(x, y, z(x, y)) dxdy \tag{\bigstar}$$

Знак \pm ставится потому, что в поверхностном интеграле $dxdy \approx \cos \gamma d\sigma$ это проекция и косинус учитывает знак (т.е. направление обхода $d\sigma$). А в двойном интеграле dxdy это площадь элементарного участка $\Longrightarrow dxdy > 0$.

Таким образом вычисление поверхностного интеграла 2-ого рода в проекциях сводится к вычислению трех двойных интегралов в проекции на каждую из координатных плоскостей (но нужно не забывать про знаки).

2.17. Теорема Гаусса-Остроградского.

Пусть дано правильное в направлении Oz замкнутое тело T, образованное поверхностями $S_1,\,S_2$ и $S_3.$

В области, содержащей тело, определена тройка скалярных функций $P(x,y,z),\,Q(x,y,z),\,R(x,y,z),\,$ каждая из которых дифференцируема и имеет непрерывные частные производные.

Теорема 2.17.1. Теорема Гаусса-Остроградского.

При выполнении условий, описанных выше, справедливо равенство

$$\iiint\limits_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint\limits_{S_{T}} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) \mathrm{d}\sigma$$

Доказательство. Рассмотрим одну из частей тройного интеграла и перейдем к повторному:

$$\iiint_{T} \frac{\partial R}{\partial z} dx dy dz = \iint_{D_{xy}} dx dy \int_{z_{2}(x,y)}^{z_{1}(x,y)} \frac{\partial R}{\partial z} dz = \iint_{D_{xy}} R(x,y,z_{1}(x,y)) dx dy - \iint_{D_{xy}} R(x,y,z_{2}(x,y)) dx dy$$

Теперь, используя формулу вычисления (★) в обратную сторону, перейдем к поверхностному интегралу:

$$\iint\limits_{D_{xy}} R(x,y,z_1(x,y))\mathrm{d}x\mathrm{d}y - \iint\limits_{D_{xy}} R(x,y,z_2(x,y))\mathrm{d}x\mathrm{d}y = \iint\limits_{S_1^+} R(x,y,z)\mathrm{d}x\mathrm{d}y + \iint\limits_{S_2^-} R(x,y,z)\mathrm{d}x\mathrm{d}y$$

Заметим, что

$$\gamma_3 = 90^\circ \Longrightarrow \cos \gamma d\sigma = 0 = dxdy \Longrightarrow \iint_{S_3^+} R(x, y, z) = 0$$

поэтому этот интеграл можно добавить к полученному ранее выражению и собрать три полученных поверхностных интеграла в один интеграл по поверхности тела:

$$\iint\limits_{S_1^+} R(x,y,z) \mathrm{d}x \mathrm{d}y + \iint\limits_{S_2^-} R(x,y,z) \mathrm{d}x \mathrm{d}y + \iint\limits_{S_3^+} R(x,y,z) \mathrm{d}x \mathrm{d}y = \iint\limits_{S_T} R(x,y,z) \mathrm{d}$$

Таким образом мы получили первое слагаемое в поверхностном интеграле в правой части формулы. Аналогично можно показать, что

$$\iiint_{T} \frac{\partial P}{\partial x} dx dy dz = \oiint_{S_{T}} P \cos \alpha d\sigma \qquad \iiint_{T} \frac{\partial Q}{\partial y} dx dy dz = \oiint_{S_{T}} Q \cos \beta d\sigma$$

2.18. Теорема Стокса.

Пусть поверхность S опирается на замкнутый контур L. $D_{xy} = S_{\text{пр. }Oxy}, \ K = L_{\text{пр. }Oxy}$

В области, содержащей S, определена тройка скалярных функций $P(x,y,z),\,Q(x,y,z),\,R(x,y,z),\,$ каждая из которых дифференцируема и имеет непрерывные частные производные.

Теорема 2.18.1. Теорема Стокса.

При выполнении условий, описанных выше, справедливо равенство

$$\iint\limits_{S} \left(\frac{\partial P}{\partial z} \cos \beta - \frac{\partial P}{\partial y} \cos \gamma \right) + \left(\frac{\partial Q}{\partial x} \cos \gamma - \frac{\partial Q}{\partial z} \cos \alpha \right) + \left(\frac{\partial R}{\partial y} \cos \alpha - \frac{\partial R}{\partial x} \cos \beta \right) \mathrm{d}\sigma = \oint\limits_{L^{+}} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

Доказательство. Рассмотрим слагаемое $\oint\limits_{L^+} P \mathrm{d}x$ в интеграле в правой части. Применяя формулу вычисления в

обратную сторону, получаем, что

$$\oint_{L^{+}} P dx = \oint_{K^{+}} P(x, y, z(x, y)) dx + 0 dy \xrightarrow{2.9.1} \iint_{D_{xy}} \left(0 - \frac{\partial P}{\partial y} \right) dx dy = - \iint_{D_{xy}} \frac{\partial P}{\partial y} dx dy \tag{1}$$

Возьмем производную в подынтегральном выражении, учитывая то, что x и y это независимые переменные, а P — сложная функция:

$$\frac{\partial P}{\partial y} = \frac{\partial P}{\partial x} \cdot \frac{\partial x}{\partial y} + \frac{\partial P}{\partial y} \cdot \frac{\partial y}{\partial y} + \frac{\partial P}{\partial z} \cdot \frac{\partial z}{\partial y} = \frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \cdot \frac{\partial z}{\partial y}$$

Первое слагаемое будет равно нулю, т.к x и y это независимые переменные. Подставим это в (1), а также заменим dxdy на $\cos \gamma d\sigma$:

$$-\iint\limits_{D_{xy}} \left(\frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \cdot \frac{\partial z}{\partial y} \right) \cos \gamma d\sigma = -\iint\limits_{D_{xy}} \left(\frac{\partial P}{\partial y} \cos \gamma + \frac{\partial P}{\partial z} \cdot \frac{\partial z}{\partial y} \cos \gamma \right) d\sigma \tag{2}$$

Упростим второе слагаемое, используя полученные ранее формулы для косинусов (ANG):

$$\frac{\partial z}{\partial y}\cos\gamma = \frac{z_y'}{\sqrt{1 + (z_x')^2 + (z_y')^2}} = -\cos\beta \tag{3}$$

Подставим (3) в (2) и получим:

$$-\iint\limits_{D_{xy}} \left(\frac{\partial P}{\partial y} \cos \gamma - \frac{\partial P}{\partial z} \cos \beta \right) d\sigma = \iint\limits_{D_{xy}} \left(\frac{\partial P}{\partial z} \cos \beta - \frac{\partial P}{\partial y} \cos \gamma \right) d\sigma$$

Таким образом мы получили первое слагаемое в поверхностном интеграле в левой части формулы. Аналогично можно рассмотреть $\oint_{L^+} Q dy$, $\oint_{L^+} R dz$ получить и оставшиеся два слагаемых.

Замечание 2.18.2. Формулу Стокса можно записать в другом виде, если собрать коэффициенты при косинусах:

$$\iint\limits_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha \mathrm{d}\sigma + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta \mathrm{d}\sigma + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \mathrm{d}\sigma = \oint\limits_{L^{+}} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

Также можно представить интеграл в левой части в виде поверхностного интеграла 2-ого рода:

$$\iint\limits_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \mathrm{d}y \mathrm{d}z + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \mathrm{d}x \mathrm{d}z + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}y \mathrm{d}z = \oint\limits_{L^{+}} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

- 2.19. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и интегральные характеристики полей (определения).
 - **Def 2.19.1.** Скалярная функция $u = u(x, y, z) : \mathbb{R}^3 \to R$ называется скалярным полем.
 - **Def 2.19.2.** Тройка скалярных функций $P(x,y,z),\ Q(x,y,z),\ R(x,y,z),\$ действующих из \mathbb{R}^3 в \mathbb{R} определяют векторное поле, т.е. векторную величину $\overrightarrow{F}=(P,Q,R),$ действующую в каждой точке пространства.

	Скалярное поле	Векторное поле
Геометрические характеристики	Линии (поверхности) уровня $u(x,y) = const.$	Векторные линии и векторные трубки
Дифференциальные характеристики	Производная по направлению и градиент $\frac{\partial u}{\partial s} = \vec{\nabla} u \cdot \vec{s}_0$ $\overrightarrow{\text{grad}} u = \vec{\nabla} u = \left(\frac{\partial u}{\partial x}; \frac{\partial u}{\partial y}; \frac{\partial u}{\partial z}\right)$	Дивергенция и ротор(вихрь) $\operatorname{div} \vec{F} \overset{\text{def}}{\Longleftrightarrow} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \overset{\text{def}}{\Longleftrightarrow} \vec{\nabla} \cdot \vec{F}$ $\operatorname{rot} \vec{F} \overset{\text{def}}{\Longleftrightarrow} \vec{\nabla}_x \vec{\nabla}_y \vec{\nabla}_z \overset{\text{def}}{\Longleftrightarrow} \vec{\nabla} \times \vec{F}$ $ \vec{F}_x \vec{F}_y \vec{F}_z $
Интегральные ха- рактеристики	ТОDO: Кажется их нет	Поток и циркуляция $\Pi \stackrel{\mathrm{def}}{\Longleftrightarrow} \iint\limits_S \overrightarrow{F} \overrightarrow{n}_0 \mathrm{d}\sigma \stackrel{\mathrm{def}}{\Longleftrightarrow} \iint\limits_S \overrightarrow{F}_n \mathrm{d}\sigma$ $\Gamma = \oint\limits_L \overrightarrow{F} \mathrm{d}\overrightarrow{l}$

Def 2.19.3. Векторная линия векторного поля это кривая, в каждой точке которой вектор поля \vec{F} является касательным к ней.

Def 2.19.4. Объединении непересекающихся векторных линий называется векторной трубкой.

Замечание 2.19.5. Отыскание векторных линий сводится к нахождению интегральных кривых из условия

$$\frac{\mathrm{d}x}{P} = \frac{\mathrm{d}y}{Q} = \frac{\mathrm{d}z}{R}$$

<u>Пример</u> 2.19.6. Дано векторное поле $\vec{F} = y\vec{i} - x\vec{j}$. Требуется найти векторную линию, проходящую через $\overline{M_0(1,0)}$.

В данном примере P(x,y) = y, а Q(x,y) = -x. Составим ДУ и решим его:

$$\frac{\mathrm{d}x}{y} = \frac{\mathrm{d}y}{-x} \Longrightarrow x\mathrm{d}x + y\mathrm{d}y = 0 \Longrightarrow \frac{x^2}{2} + \frac{y^2}{2} = C$$

Подставим начальные условия y(1) = 0:

$$\begin{cases} x^2 + y^2 = 2C \\ 1 + 0 = 2C \end{cases} \implies x^2 + y^2 = 1$$

Def 2.19.7. Оператор Гамильтона/Набла

$$\vec{\nabla} = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)$$

Def 2.19.8. Оператор Лапласа (лапласиан)

$$\Delta = \overrightarrow{\nabla}^2 = \left(\frac{\partial^2}{\partial x^2}; \frac{\partial^2}{\partial y^2}; \frac{\partial^2}{\partial z^2}\right)$$

2.20. Виды векторных полей и их свойства (теоремы о поле градиента и поле вихря).

Def 2.20.1. Если rot $\vec{F} = 0$, то поле \vec{F} называется безвихревым.

Def 2.20.2. Если div $\vec{F} = 0$, то поле \vec{F} называется соленоидальным.

Замечание 2.20.3. Безвихревому полю соответствуют незамкнутые векторные линии, а соленоидальному—замкнутые.

Замечание 2.20.4. В действительности поле может быть сложнее, но можно показать, что всякое поле является композицией этих двух типов.

Def 2.20.5. Векторное поле \vec{F} называется потенциальным, если

$$\exists u(x,y,z) \colon \vec{F} = \vec{\nabla} u$$

Функция u(x,y,z) в этом случае называется скалярным потенциалом поля \overrightarrow{F} .

Теорема 2.20.6. Всякое безвихревое потенциально. Другими словами

$$\operatorname{rot} \overrightarrow{F} = 0 \iff \exists u(x, y, z) \colon \overrightarrow{F} = \overrightarrow{\nabla} u$$

Доказательство. ⇒ По определению ротора (в координатной форме):

$$\operatorname{rot} \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k} = 0$$
$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z} \qquad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \qquad \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

Подберем u(x,y,z) так, чтобы $u_x'=P,\,u_y'=Q$ и $u_z'=R.$ Тогда:

$$\frac{\partial R}{\partial y} = \frac{\partial^2 u}{\partial y \partial z} = \frac{\partial Q}{\partial z}$$

— Пусть $\exists u(x,y,z)\colon \overrightarrow{F}=\overrightarrow{\nabla}u.$ Тогда по определению ротора (в векторной форме):

$$\operatorname{rot} \overrightarrow{F} = \operatorname{rot} \overrightarrow{\nabla} u = \overrightarrow{\nabla} \times \overrightarrow{\nabla} \cdot u = \underbrace{(\overrightarrow{\nabla} \times \overrightarrow{\nabla})}_{=0} \cdot u = 0$$

Следствие 2.20.7.

$$\cot \vec{\nabla} u = 0$$

Теорема 2.20.8.

$$\operatorname{div}\operatorname{rot}\overrightarrow{F} = 0$$

Доказательство. По определению дивергенции и ротора (в векторной форме)

$$\operatorname{div}\operatorname{rot}\overrightarrow{F}=\overrightarrow{\nabla}\cdot(\overrightarrow{\nabla}\times\overrightarrow{F})=\underbrace{(\overrightarrow{\nabla}\times\overrightarrow{\nabla})}_{=\ 0}\cdot\overrightarrow{F}=0$$

2.21. Механический смысл потока и дивергенции.

Теорема 2.21.1. О механическом смысле потока

Поток это количество жидкости, протекающей за единицу времени через площадку S в заданном направлении.

Доказательство. Механический смыл потока был выяснен при построении поверхностного интеграла 2ого рода. ■

Теорема 2.21.2. О механическом смысле дивергенции

Дивергенция $\operatorname{div} \vec{F}(M_0)$ это мощность мощность точечного источника поля \vec{F} .

Доказательство. Рассмотрим равенство в т. Гаусса-Остроградского (2.17.1):

$$\iiint_{T} \operatorname{div} \vec{F} dv = \oiint_{S_{T}} \vec{F} d\vec{\sigma} = \Pi$$

Выберем в пространстве, где действует \vec{F} , точку M_0 и окружим её объемом в границей S. К тройному интегралу в левой части равенства применима т. Лагранжа о среднем:

$$\exists M \in V : \iiint_{T} \operatorname{div} \overrightarrow{F} dv = \operatorname{div} \overrightarrow{F}(M) \cdot V$$

Будем стягивать выделенный ранее объем в точку M_0 , получим

$$\lim_{\substack{M \to M_0 \\ V \to 0}} \operatorname{div} \vec{F}(M) \cdot V = \lim_{\substack{M \to M_0 \\ V \to 0}} \Pi \quad |: V$$

$$\operatorname{div} \vec{F}(M_0) = \frac{\Pi}{V}$$

Выражение в правой части это и есть мощность точечного источника.

Следствие 2.21.3. Таким образом т. Гаусса-Остроградского (2.17.1) утверждает, что поток равен сумме мощностей точечных источников.

2.22. Механический смысл вихря и циркуляции.

Теорема 2.22.1. О механическом смысле ротора (вихря)

Ротор равен отношению циркуляции к площадке, т.е. работе силы вдоль бесконечно малого контура.

Доказательство. Рассмотрим равенство в т. Стокса (2.18.1):

$$\iint\limits_{S} \operatorname{rot} \overrightarrow{F} \operatorname{d} \overrightarrow{\sigma} = \oint\limits_{L^{+}} \overrightarrow{F} \operatorname{d} \overrightarrow{l} \stackrel{\operatorname{def}}{=\!\!\!=\!\!\!=} \Gamma$$

Выделим в пространстве, где действует \vec{F} , поверхность S, окруженную контуром L. К двойному интегралу в левой части равенства применима т. Лагранжа о среднем:

$$\exists M \in S \colon \iint_{S} \operatorname{rot} \vec{F} d\vec{\sigma} = \operatorname{rot} \vec{F}(M) \cdot S$$

Будем стягивать выделенную ранее поверхность в точку M_0 , получим

$$\lim_{\substack{M \to M_0 \\ S \to 0}} \operatorname{rot} \vec{F}(M) \cdot S \lim_{\substack{M \to M_0 \\ S \to 0}} \Gamma \qquad |: S$$

$$\operatorname{rot} \vec{F}(M_0) = \frac{\Gamma}{S}$$

Теорема 2.22.2. О механическом смысле циркуляции

Циркуляция это работа поля по вращению бесконечно малого колеса.

Рассмотрим поле линейных скоростей плоско вращающегося тела

$$\vec{v} = \underbrace{-\omega y}_{P} \vec{i} + \underbrace{\omega x}_{Q} \vec{j}$$

где $\omega = const$ — угловая скорость, которая перпендикулярна плоскости вращения.

Доказательство. Рассмотрим плоскую площадку S, расположенную под углом γ к Oz и ограниченную контуром L. Найдем циркуляцию по этому контуру:

$$\Gamma_{L} = \oint_{L^{+}} P dx + Q dy \xrightarrow{\frac{2.9.1}{D_{xy}}} \iint_{D_{xy}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$\Gamma_{L} = \oint_{L^{+}} -\omega y dx + \omega x dy \xrightarrow{\frac{2.9.1}{D_{xy}}} \iint_{D_{xy}} 2\omega dx dy$$

Т.к. D_{xy} это проекция S на плоскость Oxy, то $\mathrm{d}x\mathrm{d}y=\cos\gamma\mathrm{d}\sigma$ (пусть $\cos\gamma>0$). Получаем

$$\Gamma_L = \iint\limits_{D_{xy}} 2\omega \mathrm{d}x \mathrm{d}y = \iint\limits_{S} 2\omega \cos \gamma \mathrm{d}\sigma = 2\omega_n \iint\limits_{S} \mathrm{d}\sigma = 2\omega_n S_{\text{площадь}}$$

Где ω_n это проекция угловой скорости на нормаль к поверхности S.

Cnedcmeue~2.22.3.~ Таким образом, если $\vec{n}_S \perp \vec{\omega}$, то работа равна нулю.

При этом, если учесть механический смысл ротора (2.22.1), то

$$\operatorname{rot} \overrightarrow{F}(M_0) = \frac{\Gamma}{S} = 2\omega_n$$

2.23. Векторная запись теорем теории поля и их механический смысл.

Теорема 2.23.1. О потенциале

$$\int_{L} P dx + Q dy + R dz \text{ H3}\Pi \iff \oint_{K} = 0 \iff \begin{cases} R'_{y} = Q'_{z} \\ P'_{z} = R'_{x} \\ Q'_{x} = P_{y} \end{cases} \iff \exists u(x, y, z) : \overrightarrow{\nabla} u = \overrightarrow{F}$$

Доказательство. Как было показано ранее (2.20.6) последнее равенство равносильно тому, что rot $\overrightarrow{F}=0$. Таким образом

$$\operatorname{rot} \overrightarrow{F} = 0 = \oint_{K} = \Gamma$$

Теорема 2.23.2. Теорема Стокса.

$$\iint\limits_{S} \operatorname{rot} \overrightarrow{F} \cdot \overrightarrow{n_0} \cdot d\sigma = \int\limits_{L} \overrightarrow{F} dl = \Gamma$$

Доказательство. Теорема Стока в координатной форме уже доказана (2.18.1). Запишем её:

$$\iint_{S} \underbrace{\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)}_{\text{rot } \overrightarrow{F}_{x}} \cos \alpha d\sigma + \underbrace{\left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial z}\right)}_{\text{rot } \overrightarrow{F}_{y}} \cos \beta d\sigma + \underbrace{\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)}_{\text{rot } \overrightarrow{F}_{z}} \cos \gamma d\sigma = \oint_{L^{+}} P dx + Q dy + R dz$$

Заметим, что в скобках перед косинусами находятся соответствующие проекции ротора на координатные оси. Учитывая то, что $\overrightarrow{n_0} = (\cos \alpha, \cos \beta, \cos \gamma)$, получаем:

$$\iint\limits_{S} \operatorname{rot} \overrightarrow{F} \cdot \overrightarrow{n_{0}} d\sigma = \int\limits_{L^{+}} \overrightarrow{F} d\overrightarrow{l}$$

Теорема 2.23.3. Теорема Гаусса-Остроградского.

$$\iiint_{T} \operatorname{div} \vec{F} dV = \oiint_{S_{T}} \vec{F} \cdot \vec{n_{0}} d\sigma$$

Доказательство. Теорема Гаусса-Остроградского в координатной форме уже доказана (2.17.1). Запишем её:

$$\iiint\limits_{T} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint\limits_{S_{T}} \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) \mathrm{d}\sigma$$

Заметим, что под тройным интегралом в левой части выражения находится дивергенция поля \vec{F} . Тогда

$$\iiint\limits_{T} \operatorname{div} \vec{F} dv = \iint\limits_{S_{T}} \vec{F} \cdot \vec{n_{0}} d\sigma$$

Замечание 2.23.4. Эти три теоремы устанавливают связь между содержанием величин внутри области и их расходом на границе области. Таким образом они все являются вариациями формулы Ньютона-Лейбница.