Solution - Abstract Algebra Assignments © BinaryPhi

Name:	Assignment: Number 2
Score:	Last Edit: May 26, 2022 PDT

Problem 1: Definitions

(a) Let " \circ " be the binary operation in the non-empty set S, and satisfies the following:

$$(a \circ b) \circ c = a \circ (b \circ c), \quad \forall a, b, c \in S.$$

Then, the algebraic system $\{S; \circ\}$ is called a **Semigroup** $(S \text{ is a } \underline{\text{semigroup}} \text{ for short})$

(b) If two elements e_1 and e_2 in the semigroup satisfy:

$$e_1 \circ a = a,$$

 $a \circ e_2 = a, \quad \forall a \in S$

 e_1 is called the <u>Left Identity</u> of S, and e_2 is called the <u>Right Identity</u> of S. If an element e in the semigroup satisfies:

$$e \circ a = a \circ e = a, \quad \forall a \in S,$$

e is called the **Identity Element** of S.

The semigroup that has Identity Element is called a Monoid.

(c) Assuming a monoid $\{S; \circ\}$ has the identity element e and an element $a \in S$, if:

$$a_1 \circ a = e,$$

 $a \circ a_2 = e, \quad \forall a_1, a_2 \in S$

 a_1 is called the <u>Left Inverse</u> of a, and a_2 is called the <u>Right Inverse</u> of a. If:

$$a_3 \circ a = a \circ a_3 = e, \quad \forall a_3 \in S,$$

 a_3 is called the **Inverse Element** of a, and denoted by $a_3 = a^{-1}$.

(d) If every element in monoid $\{S; \circ\}$ is invertible, then S is called a **Group**.

(e) A group is a set S with an operation " \circ " that satisfies the following:

Closure: $\forall a, b \in S$, we have $a \circ b \in S$;

Associativity: $\forall a, b, c \in S$, we have $(a \circ b) \circ c = a \circ (b \circ c)$;

Identity: $\forall a \in S, \exists e \in S, \text{ so } e \circ a = a \circ e = a;$

Invertibility: $\forall a \in S, \exists b \in S, \text{ so } b \circ a = a \circ b = e;$

- (f) Unilateral definition of the previous definition. Prove that a semigroup S is a group if it satisfies the following:
 - $\forall a \in S, \exists b \in S, \text{ so } b \circ a = e;$
 - $\forall a \in S, \exists e \in S, \text{ so } e \circ a = a;$

Invertibility: Assume $(a^{-1})^{-1}$ is a left inverse of a^{-1} : $(a^{-1})^{-1} \circ a^{-1} = e$, and $b \circ a = e$ could be rewritten as $a^{-1} \circ a = e$. Then,

$$a \circ a^{-1} = e \circ (a \circ a^{-1}) = ((a^{-1})^{-1} \circ a^{-1})(a \circ a^{-1})$$
$$= (a^{-1})^{-1} \circ e \circ a^{-1} = (a^{-1})^{-1} \circ a^{-1} = e$$

Identity: By using the inverse property and the semigroup, we have:

$$a \circ e = a \circ (a^{-1} \circ a)$$
$$= (a \circ a^{-1}) \circ a = e \circ a = a$$

- (g) Interesting Question: Does the previous conclusions still hold if the semigroup has a left inverse and a right identity:
 - $\forall a \in S, \exists a^{-1} \in S, \text{ so } a^{-1} \circ a = e;$
 - $\forall a \in S, \exists e \in S, \text{ so } a \circ e = a.$

No: Assuming a semigroup with operation $a \circ b = a \cdot \sqrt{b^2} = a|b|$ with an identity element e. For any element m, $m \circ e = m$. However, for instance, for a nagetive m, we have $e \circ m = e|m| \neq m$. Thus, although the right identity exists in this scenario, the left identity doesn't exist.

No: Let $G = \{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \mid x, y \in \mathbb{Q}, x \neq 0 \}.$

Because $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} xx_1 & xy_1 \\ 0 & 0 \end{pmatrix}$, G is a semigroup with a left identity $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Because $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x^{-1} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = e, \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$ has a right inverse.

However, for $y \neq 0$, $\begin{pmatrix} x_1 & y_1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \neq e$ $(x_1x = 1 \text{ and } x_1y = 0 \text{ contradict})$.

- (h) Let the operation " \circ " in an algebraic system be commutative, the group $\{S; \circ\}$ is called the **Abelian Group** or **Commutative Group**.
- (i) Prove that the operation "o" in group G is left(right) Cancellative:

$$\forall a, b, c \in \mathbb{G}, \ a \circ b = a \circ c \implies b = c$$
$$b \circ a = c \circ a \implies b = c.$$

Since \mathbb{G} is a group, we have $a^{-1} \in \mathbb{G}$. By multiplying a^{-1} to the left of both sides of $a \circ b = a \circ c$, we have:

$$a^{-1} \circ (a \circ b) = a^{-1} \circ (a \circ c)$$
$$(a^{-1} \circ a) \circ b = (a^{-1} \circ a) \circ c$$
$$\therefore b = c.$$

It is the same for the proof of right cancellation law.

- (j) The number of elements in group \mathbb{G} is called the <u>Order</u> of \mathbb{G} , denoted by $|\mathbb{G}|$. If $|\mathbb{G}|$ is finite, we call \mathbb{G} a <u>Finite Group</u>. If $|\mathbb{G}|$ has infinite order, we call \mathbb{G} a <u>Infinite Group</u>.
- (k) Assuming the group \mathbb{G} has an operation (multiplication or addtion) and a is an element of \mathbb{G} , if $\forall k \in \mathbb{N}$, $a^k \neq 1 (\neq e)$ or $ka \neq 0 (\neq e)$, we call the order of element a is <u>Infinite</u>. If $\exists k \in \mathbb{N}$, $a^k = e$ or ka = 0, the order of element a is $\underline{\min\{k \in \mathbb{N} \mid a^k = e(ka = 0)\}}$.

Problem 2: Prove:

1) There is only one inverse element of any element a in group \mathbb{G} .

Assuming a_1 and a_2 are two inverse elements of element a, we have

$$a_1 \circ a = e = a_2 \circ a$$
.

According to the right cancellation law, $a_1 = a_2$.

2) For a group \mathbb{G} , $\forall a, b \in \mathbb{G}$, equations $a \circ x = b$ and $x \circ a = b$ have one and only one solution.

Since \mathbb{G} is a group, we have $a^{-1} \in \mathbb{G}$.

Due to the closure property of group, we have $a^{-1} \circ b \in \mathbb{G}$, which is the(a) solution of $a \circ x = b$.

If x_1 and x_2 are both the solutions of $a \circ x = b$, we have $a \circ x_1 = b$ and $a \circ x_2 = b$, thus $a \circ x_1 = a \circ x_2$.

According to the right cancellation law, $x_1 = x_2$.

3) If $\forall a, b \in S$ for which S is a semigroup, S is a group if $a \circ x = b$, $x \circ a = b$ both have solutions.

Clossure:

Satisfied because S is a semigroup.

Associativity:

Satisfied because S is a semigroup.

Identity:

Since $x \circ a = a$ has solution in S, denoted by $e_a \circ a = a$.

 $\forall c \in S, a \circ x = c$ has a solution denoted by d, which means:

$$a \circ d = c$$

$$e_a \circ (a \circ d) = (e_a \circ a) \circ d = a \circ d = c = e_a \circ c$$

Invertibility:

Since $x \circ a = e_a$ has solution in S, the solution is the left inverse of a.

Problem 3: Check if the following options are semigroups, monoids, or groups?

1) In \mathbb{Z} , $a \circ b = a - b$;

Association Law Fails. Not a semigroup.

2) In \mathbb{Z} , $a \circ b = a + b + ab$;

Association Law:

$$(a \circ b) \circ c = (a + b + ab) + c + (a + b + ab)c = a + b + c + ab + ac + bc + abc;$$

 $a \circ (b \circ c) = a + (b + c + bc) + a(b + c + bc) = a + b + c + ab + ac + bc + abc;$
 $\therefore (a \circ b) \circ c = a \circ (b \circ c)$

Thus, the binary operation has associative property.

Identity Element:

$$e \circ b = e + b + eb \Longrightarrow e = 0, \ 0 \circ b = 0 + b + 0b = b;$$

Thus, for any element in \mathbb{Z} , there exists an identity element 0.

Inverse Element:

$$i \circ b = i + b + ib \Longrightarrow i = -1, \ (-1) \circ b = (-1) + b + (-1)b = -1;$$

Thus, for i = -1, the inverse element doesn't exist.

Therefore, $\{G; \circ\}$ is a monoid (with commutative binary operation).

3) In \mathbb{Z} , $a \circ b = a + b - ab$;

Association Law: ✓

$$(a \circ b) \circ c = a + b + c - ab - ac - bc + abc = a \circ (b \circ c);$$

Identity Element: \checkmark

$$e \circ b = e + b - eb \Longrightarrow e = 0, \ 0 \circ b = 0 + b - 0b = b;$$

Inverse Element:

$$i \circ b = i + b - ib \Longrightarrow i = 1, \ 1 \circ b = 1 + b - 1b = 1;$$

Thus, for i = 1, the inverse element doesn't exist.

Therefore, $\{G; \circ\}$ is a monoid (with commutative binary operation).

Problem 4: Define operation " \circ " in $S = \{x \mid x \in \mathbb{R}, x \neq -1\}$: $a \circ b = a + b + ab$. Prove that S is a group with respect to the operation " \circ ". Then, solve equation $2 \circ x \circ 3 = 7$.

Association Law:

$$(a \circ b) \circ c = a + b + c + ab + ac + bc + abc = a \circ (b \circ c)$$

Thus, the binary operation has associative property.

Identity Element:

$$e \circ b = e + b + eb \Longrightarrow e = 0, \ 0 \circ b = 0 + b + 0b = b;$$

Thus, for any element in \mathbb{Z} , there exists an identity element 0.

Inverse Element:

Because $a \neq -1$, we have:

$$a \circ \frac{-a}{1+a} = a + \frac{-a}{1+a} + a \frac{-a}{1+a} = \frac{a(1+a) - a - a^2}{1+a} = \frac{a+a^2 - a - a^2}{1+a}$$
$$= 0$$

Thus, the inverse always exists.

Therefore, $\{G; \circ\}$ is a commutative group.

In addition, $2 \circ x \circ 3 = 7 \Longrightarrow$

$$x = \frac{-2}{1+2} \circ 7 \circ \frac{-3}{1+3}$$

$$= \frac{-2}{3} \circ 7 \circ \frac{-3}{4}$$

$$= \frac{-2}{3} + 7 + \frac{-3}{4} + \frac{-2}{3} \cdot 7 + \frac{-2}{3} \cdot \frac{-3}{4} + 7 \cdot \frac{-3}{4} + \frac{-2}{3} \cdot 7 \cdot \frac{-3}{4}$$

$$= \frac{1}{3}$$

Problem 5: Prove:

G is an Abelian Group if the order of every non-identity element is 2.

Assuming e is the identity element, we have:

$$\forall a \in \mathbb{G}, \ a^2 = e \Longrightarrow a^{-1} = a.$$

Thus,

$$\forall a, b \in \mathbb{G}, ab = (ab)^{-1} = b^{-1}a^{-1} = ba.$$

Therefore, \mathbb{G} is an Abelian Group (Commutative Group).

Problem 6: Assuming M is a monoid, $m \in M$. Define another multiplication rule " \circ ": $a \circ b = amb$.

Prove that M is a semigroup with respect to " \circ ".

When is M a monoid with respect to " \circ "?

Suppose $a, b, c \in M$, then we have:

$$(a \circ b) \circ c = (amb) \circ c = ambmc$$

 $a \circ (b \circ c) = a \circ (bmc) = ambmc$
 $\therefore (a \circ b) \circ c = a \circ (b \circ c)$

Thus, M is a semigroup.

Then, assuming 1 is the identity element of M and e is the identity element of $\{M; \circ\}$, then we have:

$$e \circ 1 = 1 = em1 = em$$

 $1 \circ e = 1 = 1me = me$

Thus, m is invertible and $e = m^{-1}$. Then:

$$e \circ b = m^{-1}mb = b$$

 $b \circ e = bmm^{-1} = b$

Therefore, $\{M; \circ\}$ is a monoid when and only when m is invertible.

Problem 7: Assuming M is a monoid with an identity element e. It is said that the element a of M is invertible if there exists an element a^{-1} that satisfies $a^{-1}a = aa^{-1} = e$.

Prove the following statements:

1) If $a, b, c \in M$ and ab = ca = e, then a is invertible and $a^{-1} = b = c$.

We have:

$$ab = ca = e \Longrightarrow c(ab) = c(e) = c = b = eb = (ca)b;$$

So that, we have

$$ab = ba = e \Longrightarrow a^{-1} = b = c.$$

2) If $a \in M$ is invertible then $b = a^{-1}m$, when and only when aba = a, $ab^2a = e$.

$$ab^2a = e = (ab^2)a = a(b^2a)$$

Thus, a is invertible and $a^{-1} = ab^2 = b^2a$.

Then, because aba = a, we have:

$$a^{-1}aba = a^{-1}a \Longrightarrow ba = e \Longrightarrow a^{-1} = b.$$

3) The sufficient prerequisite of G, the subset of M, being a group is that every element in G is invertible and for all $g_1, g_2 \in G$, we have $g_1^{-1}g_2 \in G$.

 \Longrightarrow : If G is a group, then every element g of G is invertible and every inverse of the element $g^{-1} \in G$. Then, we have: $\forall g_1, g_2 \in G \Longrightarrow g_1^{-1}g_2 \in G$.

 \iff : If $g \in G$ and g is invertible and $g_1, g_2 \in G$, $g_1^{-1}g_2 \in G \implies (g_1^{-1})^{-1}g_2 = g_1, g_2 \in G$. Additionally, when $g_1 = g_2 = g \implies g_1^{-1}g_2 = e \in G$, and $g_1^{-1} = g_1^{-1}e \in G$.

4) All invertible elements in M is a group.

Suppose the set of all invertible elements in M is U. It is apparent that every element of U is invertible. Assuming $g_1, g_2 \in G$, then:

$$(g_1^{-1}g_2)(g_2^{-1}g_1) = (g_2^{-1}g_1)(g_1^{-1}g_2) = e.$$

Therefore, $g_1^{-1}g_2 \in U \Longrightarrow U$ is a group.