Digital Image Processing

Ming-Sui (Amy) Lee Lecture 02

Announcement

- Class Information
 - Teaching Assistant
 - 郭柏辰 @532 Office Hours: 14:00 ~ 16:00, Monday
 - 黄聖凱 @532
 - Office Hours: 16:00 ~ 18:00, Thursday
 - Email: dip.mslee@gmail.com

Announcement

- Class Information
 - Class website
 - https://ceiba.ntu.edu.tw/1062DIP
 - Syllabus
 - Lecture #1
 - Lecture #2
 - Submission guideline
 - Sample codes
 - Homework #1

Announcement

- Class Information
 - Homework
 - Please be sure to read the guideline carefully
 - Submission guideline
 - Homework #1
 - Sample codes
 - Deadline: 11:59 am on Mar. 21, 2018

Image Enhancement

Goal of Image Enhancement

- make images more appealing
- o no theory, ad-hoc rules, derived with insights

Two Approaches

- Contrast Manipulation
- Histogram Modification

Transfer Function

relation between input & output

- Linear
- Nonlinear
- Piecewise

Continuous Image

Quantized Image

Linear scaling and clipping

$$G(j,k) = T[F(j,k)] \quad 0 \le F(j,k) \le 1$$

intensity

gray scale -> normalize -> 0 ... 1

white is more jet original

(a) Original (b) Original histogram

intensity

(c) Transfer function

(d) Contrast stretched red lines(clipping): input -> same output

Both black and white become intense

Power-Law

p > 1: darkness become detailed

$$G(j,k) = [F(j,k)]^p$$

255: bomb; with normalization, it's okay.

$$0 \le F(j,k) \le 1$$

(a) Square function p = 2

(b) Square output

(c) Cube function

p = 3

(d) Cube output 9
We care about cloud!

Power-Law

p < 1: whiteness become detailed

$$G(j,k) = [F(j,k)]^p \quad 0 \le F(j,k) \le 1$$

(a) Square root function

p = 1 / 2

(b) Square root output

(c) Cube root function

p = 1 / 3

(d) Cube root output

- Rubber Band Transfer Function
 - Piecewise linear transformation
 - Inflection point (control point)

Can choose the area where we want to stretch or reduce the contrast 11

Logarithmic Point Transformation

$$G(j,k) = \frac{\log_e \{1 + aF(j,k)\}}{\log_e \{2.0\}} \qquad 0 \le F(j,k) \le 1$$

Fourier Spectrum

Reverse Function

$$G(j,k) = 1 - F(j,k) \quad 0 \le F(j,k) \le 1$$

(a) Reverse function

(b) Reverse function output

Inverse Function

$$G(j,k) = \begin{cases} 1 & 0 \le F(j,k) \le 0.1 \\ \frac{0.1}{F(j,k)} & 0.1 \le F(j,k) \le 1 \end{cases}$$

(c) Inverse function

(d) Inverse function output

Amplitude-Level Slicing (Gray-Level Slicing)

Histogram Modification

Goal

 Rescale the original image so that the histogram of the enhanced image follows some desired form

Histogram Modification

- Histogram Equalization
 - make the output histogram to be uniformly distributed
 - Transfer function
 - Bucket filling

Histogram Equalization

Transfer Function

Probability Mass Function

Histogram Equalization

- Transfer Function
 - Output histogram not really uniformly distributed
 - Still keep the shape
 - More flat than the original histogram

Histogram Equalization

Bucket Filling

arbitrary

F(j,k)	# of pixels
0	1
1	2
2	5
:	:
255	3

uniform

G(j,k)	# of pixels
0	N/256
1	N/256
2	N/256
:	:
255	N/256

N: # of total pixels

- Not 1-1 mapping
- Accumulated probability may not end exactly at the boundary of a bin → split it out

Noise Cleaning

Noise

- electrical sensor noise
- photographic grain noise
- channel error
- o etc.

Characteristics of the noise

- discrete point
- o not spatially correlated point <-> point
- freq: Hz = 次 / sec O higher spatial frequency

改變次數 / 單位空間(space)

Noise Cleaning

- Two types of noise
 - Uniform Noise
 - Additive uniform noise, Gaussian noise
 - Impulse Noise
 - Salt and pepper noise

- Solutions
 - Our of the output of the o
 - o Impulse Noise → non-linear filtering

Basics of Spatial Filtering

Mask

- filter, kernel, template
- \circ m x n
 - m=2a+1, n=2b+1,where a and b are nonnegative integers
 - e.g. 3x3 mask

24

Spatial Filtering/Convolution

$$G(j,k) = w(-1,-1)F(j-1,k-1) + w(-1,0)F(j-1,k) + \cdots$$
output: a value
$$+ w(0,0)F(j,k) + \cdots$$

$$+ w(1,0)F(j+1,k) + w(1,1)F(j+1,k+1)$$

Basics of Spatial Filtering

$$G(j,k) = w(-1,-1)F(j-1,k-1) + w(-1,0)F(j-1,k) + \cdots + w(0,0)F(j,k) + \cdots + w(1,0)F(j+1,k) + w(1,1)F(j+1,k+1)$$

Q: Boundary pixels?

Basics of Spatial Filtering

Boundary Extension (3x3 mask)

26

Noise Cleaning

- Uniform noise let low freq component pass(i.e., high freq is discarded)
 - Perform low-pass filtering symmetric, square, all sum up to 1

$$H = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad H = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad H = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

General form

$$H = \frac{1}{(b+2)^2} \begin{bmatrix} 1 & b & 1 \\ b & b^2 & b \\ 1 & b & 1 \end{bmatrix}$$

e.g.

$$H = \frac{1}{(b+2)^2} \begin{bmatrix} 1 & b & 1 \\ b & b^2 & b \\ 1 & b & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \end{bmatrix}$$

High Frequency Noise Removal

- Low-pass filtering
 - Normalized to unit weighting
 - Averaging
 - Smaller/Larger filter size ?

7x7

Noise Cleaning

- Impulse noise
 - o black: pixel value =0 → dead sensor
 - o white: pixel value=255 → saturated sensor

- Solutions
 - Outlier detection
 - Median filtering
 - Pseudo-median filtering (PMED)

0 or 255

Outlier detection

if
$$\left| x - \frac{1}{8} \sum_{i=1}^{8} O_i \right| > \varepsilon$$
 then $x = \frac{1}{8} \sum_{i=1}^{8} O_i$

How to choose \mathcal{E} ? eg. standard deviation Larger window?

Median filtering

$$a_1, ..., a_N$$
 where N is odd

- sort those values in order
- pick the middle one in the sorted list
- o e.g. 3x3 mask:

$$I = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 8 & 7 \\ 1 & 5 & 6 \end{bmatrix}$$

→ Median is 3

1, 1, 2, 3, 3, 5, 6, 7, 8

- Median filtering
 - Preserve sharp edges
 - Effective in removing impulse noise
 - 1D/2D (directional)
 - e.g. 2D

e.g. 1D (window size = 5)

- Median filtering
 - Fast computation
 - Approximation of median

```
    e.g. 5-element filter
    a, b, c, d, e
    → MED(a, b, c, d, e)
    =max( min(a,b,c) , min(a,b,d), ... )
    =min( max(a,b,c) , max(a,b,d), ... )
    → there are 10 possible choices
    → could be narrowed down
```

Pseudomedian filtering (PMED)

```
    e.g. 5-element filter
    a, b, c, d, e → spatially ordered
    MAXMIN = A (under estimated)
        = max( min(a,b,c) , min(b,c,d) , min(c,d,e) )
    MINMAX = B (over estimated)
        = min( max(a,b,c) , max(b,c,d) , max(c,d,e) )
    → PMED( a, b, c, d, e )
    = 0.5 * (A + B) = 0.5 * (MAXMIN + MINMAX)
    ~ MED( a, b, c, d, e )
```

- Pseudomedian filtering (PMED)
 - 2D case

$$PMED = \frac{1}{2} \left(PMED_x + PMED_y \right)$$

$$PMED = \frac{1}{2} \max(MAXMIN(x_c), MAXMIN(y_R))$$

$$+ \frac{1}{2} \min(MINMAX(x_c), MINMAX(y_R))$$

- Pseudomedian filtering (PMED)
 - MAXMIN

white

- Remove <u>salt</u> noise
- O MINMAX

black

- Remove pepper noise
- May cascade two operations
 - Remove salt and pepper noise

Original noisy image

MAXMIN

MINMAX

MAXMIN of MINMAX

Q: same results?

Quality Measurement

- Peak signal-to-noise ratio (PSNR)
 - Mean squared error (MSE)

$$MSE = \frac{1}{w*h} \sum_{j} \sum_{k} \left[F(j,k) - F'(j,k) \right]^{2}$$

The PSNR is defined as

$$PSNR = 10 \times \log_{10} \left(\frac{255^2}{MSE} \right)$$
 (db)

Example

Original image

Gaussian noise (σ=10) PSNR: 28.18dB

Gaussian noise (σ=30) PSNR: 18.81dB

Q: Represent perceived visual quality?