Tema 15

- **4.34 Definición.** Sea $f: B \to \mathbb{R}$. Se dice que f está mayorada (resp. minorada) en B, si el conjunto f(B) está mayorado (resp. minorado). Se dice que f está acotada en B si el conjunto f(B) está acotado. Se dice que f alcanza en B un **máximo** (resp. un **mínimo**) absoluto si el conjunto f(B) tiene máximo (resp. mínimo), es decir, existe algún punto $v \in B$ (resp. $u \in B$) tal que $f(x) \le f(v)$ (resp. $f(u) \le f(x)$) para todo $x \in B$.
- **4.35 Teorema (Teorema de Weierstrass).** Toda función continua en un intervalo cerrado y acotado alcanza en dicho intervalo un máximo y un mínimo absolutos.

Demostración. Sea $f:[a,b]\to\mathbb{R}$ continua en [a,b]. Veamos que f tiene que estar acotada en [a,b]. En efecto, si f no estuviera acotada en [a,b], para cada $n\in\mathbb{N}$ existiría un $x_n\in[a,b]$ tal que $|f(x_n)|\geqslant n$. Como la sucesión $\{x_n\}$ está acotada, por el teorema de Bolzano - Weierstrass tiene alguna sucesión parcial convergente $\{x_{\sigma(n)}\}\to x$. Como para todo $n\in\mathbb{N}$ es $a\leqslant x_{\sigma(n)}\leqslant b$, deducimos que $a\leqslant x\leqslant b$. Como f es continua y $\{x_{\sigma(n)}\}\to x$, la sucesión $\{f(x_{\sigma(n)})\}$ debe ser convergente a f(x), pero dicha sucesión no converge porque para todo $n\in\mathbb{N}$ es $|f(x_{\sigma(n)})|\geqslant \sigma(n)\geqslant n$ y, por tanto, dicha sucesión no está acotada. Esta contradicción prueba que si f es continua en [a,b] entonces está acotada en [a,b].

Pongamos J=f([a,b]). Sabemos que J es un intervalo y acabamos de probar que está acotado. Sea $\beta=\sup(J)$. Para cada $n\in\mathbb{N}$ sea $y_n\in J$ tal que $\beta-1/n< y_n\leqslant \beta$. Claramente $\{y_n\}\to \beta$. Sea $v_n\in [a,b]$ tal que $f(v_n)=y_n$. Como $\{v_n\}$ es una sucesión acotada tiene alguna parcial convergente $\{v_{\varphi(n)}\}\to v$. Tenemos, al igual que antes, que $v\in [a,b]$. Por la continuidad de f deberá ser $\{f(v_{\varphi(n)})\}\to f(v)$. Puesto que $\{f(v_{\varphi(n)})\}=\{y_{\varphi(n)}\}$, deducimos que $\{f(v_{\varphi(n)})\}\to \beta$. Por la unicidad del límite, debe ser $f(v)=\beta$. Hemos probado así que $\beta\in J$, es decir, J tiene máximo. Claro está, para todo $x\in [a,b]$ se verifica que $f(x)\leqslant f(v)=\beta$.

Análogamente se prueba que $\alpha = \inf(J)$ pertenece a J, es decir que hay algún $u \in [a,b]$ tal que $f(u) = \alpha$. Claro está, para todo $x \in [a,b]$ se verifica que $\alpha = f(u) \le f(x)$.

Con frecuencia, lo que interesa del teorema de Weierstrass es una consecuencia inmediata del mismo que se recoge en el siguiente corolario.

4.36 Corolario. Toda función continua en un intervalo cerrado y acotado está acotada en dicho intervalo.

Veamos una aplicación del teorema de Weierstrass. Se llama *coeficiente líder* de una función polinómica al coeficiente de la mayor potencia de la variable. Seguramente sabes que una parábola cuyo coeficiente líder es positivo (lo que suele llamarse "una parábola con los cuernos para arriba") tiene un mínimo absoluto en \mathbb{R} , y si el coeficiente líder es negativo (lo que suele llamarse "una parábola con los cuernos para abajo") tiene un máximo absoluto en \mathbb{R} . Este comportamiento no es exclusivo de las parábolas y se puede generalizar a toda función polinómica de grado par. La idea de la demostración es sencilla. Un polinomio de grado par es muy grande cuando el valor absoluto de x es grande, por tanto para encontrar el mínimo podemos buscarlo en un intervalo cerrado y acotado.

4.37 Proposición. Una función polinómica de grado par cuyo coeficiente líder es positivo alcanza un mínimo absoluto en \mathbb{R} y si el coeficiente líder es negativo alcanza un máximo absoluto en \mathbb{R} .

Demostración. Sea

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1} + c_n x^n$$

una función polinómica de grado par $n \ge 2$. Podemos suponer que $c_n > 0$ y probaremos que P alcanza un mínimo absoluto en \mathbb{R} . Razonando exactamente igual que en el corolario (4.28), probamos (4.5) que hay un número $K \ge 1$ tal que para $|x| \ge K$ es:

$$\frac{P(x)}{x^n} \geqslant \frac{c_n}{2} > 0 \tag{4.6}$$

Pongamos en lo que sigue $\alpha = \frac{c_n}{2}$. Como n es par, se tiene que $x^n > 0$ para todo $x \neq 0$. Además, como $K \geqslant 1$, para $|x| \geqslant K$ es $|x|^n \geqslant |x|$ por tanto:

$$P(x) \geqslant \alpha x^n = \alpha |x|^n \geqslant \alpha |x| \qquad (|x| \geqslant K)$$

Haciendo ahora $M = \max \{K, |P(0)|/\alpha\}$, tenemos que para $|x| \ge M$ es

$$P(x) \geqslant \alpha |x| \geqslant \alpha M$$

La razón de elegir M en la forma que lo hemos hecho, es porque ahora podemos asegurar que $\alpha M \geqslant |P(0)|$. En el intervalo [-M,M] la función P(x) alcanza, en virtud del teorema de Weierstrass, un mínimo absoluto en algún punto $c \in [-M,M]$. Si ahora x es un número real podemos considerar dos posibilidades:

- $x \in [-M, M]$ en cuyo caso será $P(x) \ge P(c)$.
- $x \notin [-M, M]$, esto es |x| > M, en cuyo caso $P(x) \ge \alpha M \ge |P(0)| \ge P(0) \ge P(c)$.

En cualquier caso resulta que $P(x) \ge P(c)$, lo que prueba que P alcanza en c un mínimo absoluto en \mathbb{R} .