review

Exam contents

- Combination circuit logic
- wire
- Datapath
- Sequential circuit Logic

Exam contents

- Combination circuit logic
- wire
- Datapath
- Sequential circuit Logic

Combination logic.

CMOS logic Properties

Sizing has different options

$$OUT = \overline{D + A \cdot (B + C)}$$

Delay Dependence on Input Patterns

Input Data	Delay		
Pattern	(psec)		
A=B=0→1	69(max)		
A=1, B=0→1	62		
A= 0→1, B=1	50		
A=B=1→0	35(min)		
A=1, B=1→0	76		
A= 1→0, B=1	57		

NMOS = $0.5\mu m/0.25 \mu m$ PMOS = $0.75\mu m/0.25 \mu m$ C_L = 100 fF

Shared cap. charging

Modified formula

$$t_{p} = t_{par} + t_{ext} = \ln 2 \cdot (C_{par} + C_{ext}) R_{par}$$

$$= \ln 2 \cdot R_{inv} C_{int} \left(\frac{C_{par}}{C_{int}} + \frac{C_{g}}{C_{int}} \frac{C_{ext}}{C_{g}} \right)$$

$$= t_{p0} \left(\frac{C_{par}}{C_{int}} + \frac{C_{g}}{C_{int}} \frac{C_{ext}}{C_{g}} \right)$$

$$= t_{p0} \left(\frac{C_{par}}{C_{int}} + \frac{C_{g}}{\gamma C_{ginv}} \frac{C_{ext}}{C_{g}} \right)$$

$$= t_{p0} \left(p + \frac{gf}{\gamma} \right)$$

Example: 3-stage path

 Select gate sizes x and y for least delay from A to B

Asymmetric Gates

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
 - So total resistance is same

•
$$g_A = 10/9$$

•
$$g_B = 2$$

•
$$g_{total} = g_A + g_B = 28/9$$

- Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

the special Path Optimization

Catalog of Skewed Gates

Inverter

NAND2

NOR2

A
$$g_u = 1$$

$$g_{avg} = 1$$

HI-skew

LO-skew

Complementary Pass Transistor Logic

Solution 1:Level Restoring Transistor

- Advantage: Full Swing
- Restorer adds capacitance, takes away pull down current at X
- Ratio problem

Transmission Gate XOR

Dynamic Gate

Two phase operation

Logical Effort

Inverter

NAND2

NOR2

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{1}$$

$$g_d = 1/3$$

$$p_d = 2/3$$

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{2}$$

$$B \rightarrow \boxed{2}$$

$$g_d = 2/3$$

$$p_d = 3/3$$

$$\phi$$
 1

A 3

B 3

 $g_d = 3/3$
 $p_d = 4/3$

footed
$$A = \frac{1}{2}$$
 $A = \frac{2}{3}$ $A = \frac{2}{3}$ $A = \frac{3}{3}$ $A = \frac{3}{3}$ $A = \frac{3}{3}$ $A = \frac{3}{3}$ $A = \frac{2}{3}$ $A = \frac{2$

Monotonicity

Dynamic gates require monotonically rising inputs during evaluation

$$-0 -> 0$$

$$-0 -> 1$$

$$-1 -> 1$$

– But not 1 -> 0

Monotonicity Woes

- But dynamic gates produce monotonically falling outputs during evaluation
- Illegal for one dynamic gate to drive another!

Domino Gates

- Follow dynamic stage with inverting static gate
 - Dynamic / static pair is called domino gate

Produces monotonic outputs

Issues in Dynamic Design 1: Charge Leakage

Dominant component is subthreshold current

Issues in Dynamic Design 2: Charge Sharing

Charge stored originally on C_L is redistributed (shared) over C_L and C_A leading to reduced robustness

Could we move it to there?

Exam contents

- Combination circuit logic
- wire
- Datapath
- Sequential circuit Logic

Lumped RC Model

Pessimistic approximation

time const = RC

Elmore Delay of RC-Network

- Does not have any resistive loops
- All capacitances are between a node and a ground
- Have a single input node

$$\tau_{Di} = R_1 C_1 + R_1 C_2 + (R_1 + R_3) C_3 + (R_1 + R_3) C_4 + (R_1 + R_3 + R_i) C_i$$

Delay Elmore Delay – Another Solution Search all C

$$\tau_{D5} = R_1 C_1 + R_1 C_2 + (R_1 + R_3) C_3 + (R_1 + R_3) C_4 + (R_1 + R_3 + R_5) C_5$$

$$\tau_{D5} = R_1(C_1 + C_2 + C_3 + C_4 + C_5) + R_3(C_3 + C_4 + C_5) + R_5C_5$$

 $\tau_{s \to t} = \sum_{R_k \text{ along path } s \to t} R_k \text{ (sum of } C_i \text{ driven by } R_k \text{)}$

Which model is the fastest one

$$R_{S} \frac{C}{2N} + \sum_{i=1}^{N-1} (R_{S} + \frac{i}{N}R) \frac{C}{N} + (R_{S} + \frac{N}{N}R) \frac{C}{2N} = R_{S}C + \frac{N}{2N}RC$$

Which model is the fastest one

$$\sum_{i=1}^{N} (R_s + \frac{1}{2N}R + \frac{i-1}{N}R) \frac{C}{N} = R_s C + \frac{RC}{2N} + \frac{N(N-1)}{2N} R \frac{C}{N} = R_s C + \frac{N}{2N} RC$$

Exam contents

- Combination circuit logic
- wire
- Datapath
- Sequential circuit Logic

Inversion Property

$\bar{S}(A,B,C_i)$	=	$S(\overline{A}, \overline{B}, \overline{C}_i)$
$\overline{C_o}(A,B,C_i)$	=	$C_{\pmb{o}}(\bar{A},\bar{B},\overline{C}_{\pmb{i}})$

	Α	В	С	C _{out}	S
7	0	0	0	0	0
_	0	0	1	0	1
>	0	1	0	0	1
>	0	1	1	1	0
·>	1	0	0	0	1
7	1	0	1	1	0
113	1	1	0	1	0
K	1	1	1	1	1
		0 0 0 0 1 1 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Mirror Adder-Stick Diagram

Single-Bit Addition

Half Adder

$$S = A \oplus B$$

$$C_{out} = AB$$

Α	В	C _{out}	S
0	0	0	0
	4		4
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A\overline{BC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

$$= A \oplus B \oplus C = P \oplus C$$

$$C_{out} = AB + (A + B)C$$

$$=\overline{A}\overline{B}+(\overline{A}+\overline{B})\overline{C}=MAJ(A,B,C)$$

Full Adder

$$S = A \oplus B \oplus C$$

$$C_{\text{out}} = MAJ(A, B, C)$$

Α	В	С	C_out	S	Р	G
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	1	0
1	0	0	0	1	1	0
1	0	1	1	0	1	0
1	1	0	1	0	0	1

propagate

Delete/Kill

generate

Full Adder Design IV

$$S = A \oplus B \oplus C = P \oplus C$$

$$C_{out} = AB + (A \oplus B)C = AAB + A\bar{A}\bar{B} + (A \oplus B)C = A\bar{P} + PC$$

$$\overline{C_{out}} = (\bar{A} + P)(\bar{P} + \bar{C}) = \bar{A}\bar{P} + \bar{A}\bar{C} + P\bar{C} = \bar{A}\bar{P} + \bar{A}\bar{C}\bar{P} + \bar{A}\bar{C}P + P\bar{C} = \bar{A}\bar{P} + P\bar{C}$$

Carry-Skip PG Diagram

Carry-Select Adder

- Trick for critical paths dependent on late input X
 - Precompute two possible outputs for X = 0, 1
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums

For both possible carries into n-bit group

$$t_{select} = t_{pg} + [n + (k - 2)]t_{AO} + t_{mux}$$

Han-Carlson(B+K tree) Kogge Stone———Brent Kung

Ladner-Fischer(S+B) Sklansky———Brent Kung

Knowles [1, 1, 1, 2](S+K) Kogge Stone———Sklansky

Exam contents

- Combination circuit logic
- wire
- Datapath
- Sequential circuit Logic

Timing Diagrams

Contamination and **Propagation** Delays

Clock skew about FF_{negative skew}

$$t_{pdq} \le T_c - (t_{peq} + t_{setup} + t_{skew})$$

Positive skew for better condition

Large is better!

Ex. t_{pcq} =20ps, t_{setup} =30ps, T_c =300ps, t_{skew} =50ps

 $t_{pdq} < =300-20-30=250$, $t_{pdq} = 240$ is OK

Including skew delay, $t_{pdq} \le 300-20-30-50=200ps$, $t_{pdq} = 240$ is not OK!

Clock skew about FF

