Structure moléculaire

Table des matières

1		ison covalente localisée						
		Définition						
	1.2	Règles de stabilité						
		1.2.1 Règle de duet						
		1.2.2 Règle de l'octet(atomes de la ligne (n=2))						
	1.3							
2	Rep	3 Limite du modèle de l'octet						
3 Géométrie des édifices polyatomiques-Méthode de VSEPR								
	3.1	Méthode de VSEPR						
	3.2	Différents types de Géométrie						

Une liaison chimique résulte des intéractions coulombiennes entre les deux atomes. On dit que l'atome A se lie à B si l'entité formé AB est plus stable que A et B .

1 Liaison covalente localisée

1.1 Définition

•Définition : la liaison covalente est la mise en commun de deux électrons : doublet de la liaison

$$A^{\bullet} + B \longrightarrow A - B$$

► Exemples

• $H_2: H^{\bullet} + H \longrightarrow H - H$

• $HCl: \overline{H^{\bullet} + \underline{\cdot Cl}} \longrightarrow H - Cl$

▶ liaison de coordination

si A possède une lacune électronique et B possède un doublet d'électron, la liaison résultante sur la mise en commune du doublet et de la lucune électronique est appelé : liaison de coordination .

$$A\Box + |B \longrightarrow A^{-} - B^{+}$$

► Exemple

•

• les complexes mettent en jeu des liaisons de coordination

1.2 Règles de stabilité

Chaque atome d'un édifice polyatomique tend vers la configuration électronique la plus stable,c.à.d celle du gaz noble qui le suit dans le tableau périodique.

1.2.1 Règle de duet

• Règle de duet : L'atome d'hydrogène tend à partager un doublet électronique avec une autre atome de l'édifice pour avoir la configuration électronique de <u>He</u> (stable).

1.2.2 Règle de l'octet(atomes de la ligne (n=2))

- Octet : ensemble de quatre doublets autour d'un noyau
 - •Règle de l'octet : les atomes d'un édifice polyatomiques tendent à partager des doublets d'électrons nécessaire pour la réalisation de leurs octets.
 - ► Exemples
 - $H_2O: H-\overline{O}-H$
 - $F_2: |\overline{F} \overline{F}|$
 - $O_2:\overline{O}-\overline{O}$
 - $HF: H \overline{F}|$

1.3 Limite du modèle de l'octet

- les atomes de certaines édifices polyatomiques sont entourés de moins de huit électrons : on les appelle les édifices déficients en électrons .
 - **▶** Exemples
 - $\blacktriangleright BeH_2: H- \stackrel{\square}{Be} -H$
 - \triangleright BH_3 :

$$H-\stackrel{\square}{B}-H$$

 $ightharpoonup AlCl_3$:

$$Cl - Al - Cl$$
 Cl

- les atomes de certains édifices sont entourés de plus de huit électrons on les appelle Composés hypervalent
- Exemples
 - $ightharpoonup PCl_5$:

$$\begin{array}{c|c} Cl & Cl \\ Cl - P - Cl \\ & \\ & Cl \end{array}$$

 \triangleright SF_6 :

$$F \xrightarrow{F} S \xleftarrow{F} F$$

2 Représentation de Lewis

Pour obtenir le modèle de Lewis on utilise la méthode suivante :

- ▶ Ecrire la configuration électronique des atomes constituant l'édifice considéré
- \triangleright Déterminer N_v les nombres des électrons de valence de chaque atome
- Déterminer le nombre des électrons de valence de l'édifice

$$N_e = \sum_i N_v - z$$

z : représente le nombre de charge (pour les ions)

Déterminer le nombre de doublet D d'un composé

$$\begin{cases} D = \frac{N_e}{2} & \text{si } N_e \text{ est pair} \\ D = \frac{N_e - 1}{2} & \text{si } N_e \text{ est impair} \end{cases}$$

- ▶ Distribuer les différents doublets,en commençant par la formation des liaisons simples ,puis on complète l'octet de chaque atome externe .
- ▶ Reporter tous les doublets restants (et l'électron célibataire quand N_e est impair) sur les atomes centraux en commençant par ceux qui engagent le moins de liaisons.
- \blacktriangleright Déterminer le nombre d'électrons de valence N_a attribués à chaque atome
- Calculer le nombre de charge formelle $Z_F = N_v N_a$ donc la charge formelle $C_F = Z_F.e$
- ▶ Attribuer à chaque atome sa charge formelle
- ightharpoonup Exemple 1 : HOCl
 - modèle de Lewis de chaque atome : $H^{\cdot}; |\overline{O}; \overline{Cl}|$
 - $N_v(H) = 1; N_v(O) = 6; N_v(Cl) = 7$
 - z = 0 car le composé est neutre
 - $N_e = 1 + 6 + 7 = 14$
 - $D = \frac{14}{2} = 7$ doublets

le modèle de Lewis s'écrit sous la forme : $H - \overline{O} - \overline{Cl}$

- $N_a(H) = 1$; $N_a(O) = 6$; $N_a(Cl) = 7$ donc $Z_F = 0$ car $N_a = N_v$ pour toutes les atomes.
- finalement le modèle de Lewis

$$H - \overline{\underline{O}} - \overline{\underline{Cl}}$$

- ightharpoonup Exemple 2: H_3O^+
 - modèle de Lewis de chaque atome : H; $|\overline{O}$
 - $N_v(H) = 1; N_v(O) = 6$
 - z = 1
 - $N_e = 1 + 6 1 = 8$

•
$$D = \frac{8}{2} = 4$$
 doublets

• le modèle de Lewis s'écrit sous la forme

- $N_a(H) = 1$; $N_a(O) = 5$ donc $Z_F(H) = 0$; $Z_F(O) = N_v N_a = 6 5 = 1$
- finalement le modèle de Lewis s'écrit

- ightharpoonup Exemple 3 : Cl_3AlNH_3
 - $Al(z=13:1s^22s^22p^63s^23p^1$
 - $N(z=7):1s^22s^22p^3$
 - $N_v(Cl) = 7$; $N_v(Al) = 3$, $N_v(H) = 1$; $N_v(N) = 5$
 - $N_e = 3.7 + 3 + 5 + 3.1 = 32$
 - $D = \frac{32}{2} = 16$ doublets
 - le modèle de Lewis s'écrit

$$\begin{array}{c|c} |\overline{Cl}| & \mathbf{H} \\ | & \mathbf{I} \\ | \overline{Cl} - \mathbf{Al} - \mathbf{N} - \mathbf{H} \\ | & \mathbf{Cl} \\ | & \mathbf{H} \end{array}$$

- $N_a(Cl) = 6$; $N_a(Al) = 4$; $N_a(N) = 4$; $N_a(H) = 1$ donc $Z_F(Cl) = Z_F(H) = 0$; $Z_F(Al) = 3 4 = -1$ et $Z_F(N) = 5 4 = 1$
- donc finalement le modèle de Lewis s'écrit

$$\begin{array}{c|c} |\overline{Cl}| & \mathbf{H} \\ & \mathbf{I} & \mathbf{H} \\ |\overline{Cl} - Al \stackrel{\ominus}{---} & N \stackrel{\oplus}{---} \mathbf{H} \\ & \mathbf{I} & \mathbf{I} \\ |\underline{Cl}| & \mathbf{H} \end{array}$$

3 Géométrie des édifices polyatomiques-Méthode de VSEPR

3.1 Méthode de VSEPR

- La méthode de VSPR (répulsion des paires électroniques des couches de valence) permet de prévoir la géométrie d'un édifice à partir du modèle de Lewis .
- le principe fondamental de la théorie de Gillespie est que les diverses paires ou doublets électroniques de la couche externe de valence d'un atome centrale A se repoussent entre elle .

La géométrie de l'édifice sera celle pour laquelle les répulsions seront minimales,càd les distances mutuelles des doublets maximales .

▶ la géométrie de VSPR

la géométrie d'un édifice polyatomique est donnée par la formule suivante

$$AX_mE_n$$

- \bullet A: atome centrale
- X: atome liée à A
- \bullet m : nombre d'atomes X auquels est liée l'atome centrale A
- n : nombres des entités non liantes E(doublets libres ou électrons célibataires) de l'atome centrale A

▶ Exemples

• $HOCl: AX_2E_2$

• $AlCl_3: AX_3E_0$

• $O_3: AX_2E_1$

• $H_2O: AX_2E_2$

3.2 Différents types de Géométrie

Bipyramide trigonale	Croix-V	Forme en T	Linéaire	Octaèdre	Pyramide carrée	Plan carré
$\alpha = 120^\circ$ $\beta = 90^\circ$	$lpha < 120^{\circ}$ $eta < 90^{\circ}$	$\alpha < 90^{\circ}$	$\alpha = 180^{\circ}$ $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$		$lpha < 90^\circ$ $eta < 90^\circ$	$lpha=90^\circ$
AX, Trigonal bipyramidaal	Examples: PF ₀ AuF ₀ SOF ₄ AA ₄ E Seesaw Examples: SF ₄ XnO, F ₉ F ₁ , IO, F ₉ .	AVF. T-chaped Examples CF-98fr,	AX _E , Liner Liner Examples Me 1,5,1,1,5,-	AV, Cottabulat Co	ANÇE Sciure promidel Enamples: Bify Teff, 2, Acor.	AV, E.s. Examples: Xofe, 10,4.
AXs	AX_tE_I	AX_3E_2	AX_2E_3	AX_6	AX_5E_I	AX_4E_2
0	I	2	E	0	I	2
w	4	e	2	9	Ŋ	4

Dénomination	Linéaire	Triangulaire	Coudée ou Forme en V	Tétraédrique	Pyramide trigonale	Coudée ou Forme en V
Angle	$\alpha=180^\circ$	$lpha=120^\circ$	$lpha < 120^\circ$	$\alpha=109,5^{\circ}$	$lpha < 109.5^\circ$	$lpha < I09.5^\circ$
Géométrie de la molécule	AX ₂ Linear Examples: CS ₂ , HON, BeF ₂	AX ₅	Examples: SO ₂ , BF ₂ , NO ₂ , CO ₂ . Ax ₂ E Bent (V anapeu) Evamples: SO ₂ , O ₂ PRO2, SYBO ₂	AX ₄ Tetrahedel Exemples CV ₂ SiC ₂ -CO ₂ .	Axy Tigone lyamedal Examples: NH, Pr. 2003, 1903.	AV.F., Bert (V shiper) Exemples H ₂ O, OF ₂ SO ₁ ,
Arrangement	AX_2	AX ₃	AX_2E_I	AX_4	AX_3E_I	AX_2E_2
Nb de paires non liantes (E)	0	0	I	0	I	2
Nb de liaisons (X)	2	3	2	4	æ	2