

Universidad Peruana Cayetano Heredia Facultad de Ciencias y Filosofía Departamento de Ciencias Exactas

Computación 2022 Verano

Lab. 6.1. Listas en Python. Array Multidimensional

Febrero 07, 2022

Cree una carpeta (folder) en el disco D, nómbrela con su apellido paterno seguido de su código. Ejemplo: LOPEZ12345

Para ejercicios 1 y 2, verificar la salida con la ayuda del interpretador de Python

- 1. Dada la lista lst=[30, 1, 2, 1, 0], ¿qué lista se genera al aplicar cada una de las siguientes instrucciones?. Asuma que cada línea de código es independiente.
 - a) lst.append(40)
 - b) lst.insert(1, 43)
 - c) lst.extend([1, 43])
 - d) lst.remove(1)
 - e) lst.pop(1)
 - f) lst.pop()
 - g) lst.sort()
 - h) lst.reverse()
- i) random.shuffle(lst)
- 2. dada la lista lst=[30, 1, 2, 1, 0], ¿cuál es el valor que retorna las siguientes instrucciones?
 - a) lst.index(1)
 - b) lst.count(1)
 - c) len(lst)
 - d) max(lst)
 - e) min(lst)
 - f) sum(lst)

Lista de dos dimensiones (matrices)

Una lista de dos dimensiones, es una lista que contiene como elementos a otras listas. Sirven para almacenar tablas y matrices.

Por ejemplo, dada la siguiente matriz:

$$A = \begin{bmatrix} 9 & 3 & 7 & 8 \\ 5 & 3 & 1 & 0 \\ 4 & 2 & 7 & 3 \\ 6 & 1 & 9 & 5 \end{bmatrix}$$

Su implementación en Python es la siguiente:

```
A=[[9,3,7,8],[5,3,1,0],[4,2,7,3],[6,1,9,5]] (lista de listas)
```

También de las siguientes maneras:

```
A=[
    [9,3,7,8],
    [5,3,1,0],
    [4,2,7,3],
    [6,1,9,5]]

A=[[9,3,7,8],
    [5,3,1,0],
    [4,2,7,3],
    [6,1,9,5]]
```

```
Podemos acceder a los elementos de una matriz usando sus índices:
print(A[0]]
[9,3,7,8]

print(A[2])
[4,2,7,3]

print(A[2][2])
7
```

En general, el acceso a los elementos de una matriz se realiza usando el índice que representa a las filas y el índice que representa a las columnas:

a 00	a 01	a 02	a 03
a ₁₀	a ₁₁	a ₁₂	a ₁₃
a ₂₀	a ₂₁	a ₂₂	a ₂₃
a ₃₀	a ₃₁	a ₃₂	a ₃₃

Para cada uno de los siguientes ejercicios implemente el programa Python correspondiente. Guarde vuestros programas en vuestra carpeta de trabajo.

- 1. Inicializar la matriz A y B de N*M con valores ingresados del teclado.
 - a) Separando previamente memoria para la matriz A
 - b) Sin separar memoria previamente para la matriz B
 - c) Imprima el contenido de las matrices en una sola línea
- 2. a) Implemente una función que reciba dos valores N, M y devuelva una matriz de N*M cuyos elementos sean valores aleatorios de -10 a 10 ambos inclusive.
 - b) Implemente una función que reciba una matriz e imprima sus elementos en forma de filas y columnas.

Escriba un programa para probar las funciones.

- 3. Dada una matriz de números enteros, elaborar las siguientes funciones:
 - a) Función que recibe una matriz y devuelve la suma total
 - b) Función que recibe una matriz y devuelve la suma de cada columna
 - c) Función que recibe una matriz y devuelve la suma de cada fila
- 4. Dada una matriz de números enteros, realizar lo siguiente:
 - a) Determinar el valor máximo de la matriz
 - b) Ordenar cada fila de la matriz
 - c) Intercambiar la primera y la última fila de la matriz

Guarde todos vuestros programas y vuestra hoja de respuestas en una carpeta con el nombre su **Apellido** paterno seguido de vuestro **DNI**, luego comprima esta carpeta. Envíe este archivo a <u>victor.melchor.e@upch.pe</u>, especificando como asunto **Lab6.1**.