Linear Regression From Scratch

This is a documentation of me implementing Linear Regression from scratch using only numpy

```
import numpy as np
import matplotlib.pyplot as plt
```

- Importing the necessary library
 - NumPy for array and matrices manipulation
 - Matplotlib for plotting graphs and visualization

Generating dummy data

• Generating dummy data to test our Linear Regression functions which takes this form :

$$Y = X\beta + \varepsilon$$

- X_raw a matrix of **dimensions** (n imes p-1) , represent our **observations**
- intercept a vector assumed to contain only 1 for testing purposes (will change on real data)
- X represent X the **matrix** that contain both the X_{raw} and the intercept
- ullet beta_true array is the true values of the vector $eta_0=3\ eta_1\dotseta_p=2$
- noise randomly generated noise to simulate real life noise and bias
- y is the predicted response given by our model

Phase 1: Core Implementation

The First thing to do in almost every machine learning algorithm is to estimate the **coefficients** β to minimize the **Loss Function** which is in the Linear Regression case MSE

$$MSE = rac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

There is mainly two methods to estimate the coefficients β :

- Ordinary Least Squares
- Gradient Descent

Ordinary Least Squares (OLS):

```
def ols_estimate(X, Y):
    X_transpose = X.T
```

The Closed-Form formula for $\hat{\beta}$:

$$\hat{eta} = (X^TX)^{-1}X^TY$$

- Its derived from minimizing the Residual sum squared $\sum e^T e$ Ordinary Least Squares
- The OLS works great on small to medium sized datasets
- $gram_matrix$ is the **inner products** of the matrix X which represents the relationship between vectors in a set

Gram matrix =
$$X^T X$$

Gradient Descent

The Gradient Descent Algorithm came to fix a problem in the **OLS** where as we saw in the closed from we calculate the **inverse** matrix for the <code>gram_matrix</code>

$$(X^TX)^{-1}$$

- When dealing with large datasets its becomes very expansive to compute, Here where the Gradient Descent comes by using the two very important concepts:
 - Gradients Vectors
 - Loss Function

Loss Function MSE

Its a Known that the Mean Squared Error Graph In Linear Regression takes on a U-Shape

IF YOU READING THIS CURRENTLY WRITING THE REST OF THE DOCUMENTATION CHECK IN AFTER SOME HOURS