

MAGUS:

Machine learning And Graph theory assisted Universal structure Searcher

高豪, 王俊杰, 韩瑜, Dc, 孙建

使用手册

Version 1.0.2, 2021 年 12 月 14 日.

https://git.nju.edu.cn/gaaooh/magus

目录 MAGUS 1.0.2

目录

1	安装		3
	1.1	依赖	3
	1.2	准备	3
		1.2.1 设置 ase 的 vasp 接口	3
		1.2.2 机器学习包安装	4
	1.3	pip 安装	4
	1.4	source 安装	5
		1.4.1 代码下载	5
		1.4.2 编译 GenerateNew 模块	5
		1.4.3 编译 lrpot 模块	6
		1.4.4 设置入口	6
		1.4.5 设置环境变量	7
	1.5	检查安装	7
	1.6	设置自动补全(可选)	7
2	输人	文件	8
	2.1	input.yaml 参数	8
		2.1.1 基本参数	8
		2.1.2 种群相关	8
		2.1.3 结构产生	8
		2.1.4 结构演化	9
		2.1.5 煮计算器	9
		2.1.6 机器学习 1	10
		2.1.7 代理计算器	10
	2.2	inputFold	11

目录 MAGUS 1.0.2

		2.2.1	V	as	р.																						 11
		2.2.2	(Jul	р.					•									•								 12
		2.2.3	I	₄an	nm	ps													•					•			 13
		2.2.4	A	\SI	3 Z	系列	îIJ	(E	M	Τ,	L.	J,	X	Т	В.)			•								 14
		2.2.5	N	ЛΤ	Р																						 15
	2.3	Seeds .					•			•	•		•					•	٠					٠	•		 16
3	程序	指令																									18
	3.1	search	ı.							•																	 18
	3.2	summa	ary	y																							 18
	3.3	calc .					•																				 20
4	输出	文件																									21
	4.1	calcFo	old															•						•			 21
	4.2	mlFold	d .							•									•								 22
	4.3	results	s.															•	•					•			 22
5	例子																										24
	5.1	NH_4N	VO	1 ₃ /	分三	子旨	温化	本产	左 左	Ė	•																 24
	5.2	MTP :	大	批:	量值	优化	化肾	随村	孔丝	结	构								•					•			 25
	5.3	TiO_2 5	定:	组?	分约	吉村	勾扌	叟复	索										•					•			 28
	5.4	$Zn_x(C$	ЭН	$()_y$	变	组	分.	结	构	搜	索																 30
	5.5	MgSic	O_3	机	器	学	:习	结	构	J搜	索	÷							•					•			 33
	5.6	CH_4 /	分三	子旨	14	本 搜	复雾	₹ .										•	•					•			 34
6	常见	问题																									37

1 安装

1.1 依赖

Python >= 3.6

NumPy

SciPy

Scikit-learn

PyYAML

Ase > = 3.19

Networkx = 2.1

Spglib

Pandas

可选项:

Pytest >= 3.6.1: unittest

Xtb == 6.3: XTBCalculator

Mlip: MTPCalculator

1.2 准备

1.2.1 设置 ase 的 vasp 接口

1) 新建一个 run_vasp.py:

```
import subprocess
exitcode = subprocess.call("mpiexec.hydra
/your/path/to/vasp", shell=True)
```

2) 建立 mypps 目录存放 vasp 赝势,可以用软连接:

mypps/

2021 年 12 月 14 日

Page 3

```
potpaw
potpaw_GGA
potpaw_PBE
```

```
$ ln -s /your/path/PBE-5.4 mypps/potpaw_PBE
```

三个子目录分别对应 LDA, PW91, PBE 也可以加入其他赝势库。

3) 设置环境变量:

```
$ export VASP_SCRIPT=/your/path/run_vasp.py
$ export VASP_PP_PATH=/your/path/mypps
```

更多信息见:https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp. html#module-ase.calculators.vasp

注意: run_vasp.py 和 mypps 不要放在 magus 目录下

1.2.2 机器学习包安装

TwoShareMTPCalculator 使用了修改过的 mtp 代码, 官方版本不支持此功能. 如需使用可进入 magus/mtp-api 目录, 按其中教程安装。详见:https://git.nju.edu.cn/bigd4/mtp-api

1.3 pip 安装

magus 安装需要 boost_python,boost_numpy. 若所使用的 python 环境 (如 anaconda-3/5.0.1) 的 lib 中有会自动探测路径, 否则需要在环境变量中给出相应路径 (无需写入bashrc)

```
$ export MAGUS_INCLUDE_PATH=your_path_to_include_dir:
your_path_to_py_include_dir
$ export MAGUS_LD_LIBRARY_PATH=your_ld_library_path
```

如:

```
$ CONDA_PATH=/fs00/software/anaconda/3-5.0.1
$ export MAGUS_INCLUDE_PATH=$CONDA_PATH/include:
$CONDA_PATH/include/python3.6m
$ export MAGUS_LD_LIBRARY_PATH=$CONDA_PATH/lib
```

配置好后执行:

```
$ pip install -i
https://repo.nju.edu.cn/repository/pypi-nju/simple
magus-test --upgrade
```

若直接在集群安装需加入--user参数

1.4 source 安装

1.4.1 代码下载

克隆库到本地并初始化子项目:

```
$ git clone git@git.nju.edu.cn:gaaooh/magus.git
$ git submodule init
$ git submodule update
```

或直接下载压缩包.

1.4.2 编译 GenerateNew 模块

进入 magus/generatenew 中, 编译 generatenew.so 文件, 并将其放入 magus/magus 文件夹下. 如使用集群 anaconda/3-5.0.1, 命令为:

```
$ g++ -std=c++11 -I/fs00/software/anaconda/3-5.0.1/include
-I/fs00/software/anaconda/3-5.0.1/include/python3.6m
-L/fs00/software/anaconda/3-5.0.1/lib -lboost_python
-lboost_numpy -lpython3.6m main.cpp -o GenerateNew.so
-shared -fPIC
```

具体可见: https://git.nju.edu.cn/HanYu/generatenew

1.4.3 编译 lrpot 模块

进入 magus/lrpot 中, 编译 lrpot.so 文件, 并将其放入 magus/magus 文件夹下. 如使用集群 anaconda/3-5.0.1, 命令为:

```
$ g++ -std=c++11 -I/fs00/software/anaconda/3-5.0.1/include
-I/fs00/software/anaconda/3-5.0.1/include/python3.6m
-L/fs00/software/anaconda/3-5.0.1/lib -lboost_python
-lboost_numpy -lpython3.6m lrpot.cpp -o lrpot.so -shared
-fPIC
```

具体可见: https://git.nju.edu.cn/bigd4/lrpot

1.4.4 设置人口

新建 magus 文件:

```
import re
import sys
from magus.entrypoints.main import main
if __name__ == '__main__':
    sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '',
    sys.argv[0])
    sys.exit(main())
```

保存后执行 chmod +x magus 设置为可执行文件。

1.4.5 设置环境变量

在 bashrc 中加入

```
$ export PYTHONPATH=$PYTHONPATH:/your/path/magus
```

\$ export PATH=\$PATH:/your/path/magus

1.5 检查安装

```
$ magus -v
```

1.0.2

1.6 设置自动补全(可选)

在 bashrc 中加入

\$ source your_path_to_magus/auto_complete.sh

2 输入文件

- 一个典型的结构搜索任务一般包含以下文件:
- input.yaml, 给出任务的主要参数. 详见 2.1
- inputFold, 补充 input.yaml 中定义的 Calculator 所需要的一些额外的信息, 如 Vasp 的 INCAR, Lammps 的 in.lammps 等. 详见 2.2
- Seeds, 给出种子结构, 可指定在哪一代加入. 详见 2.3

2.1 input.yaml 参数

2.1.1 基本参数

- formulaType: 计算类型,可用值: fix (定组分),var (变组分)
- pressure : 压强 (GPa)
- molMode:是否使用分子晶体模式产生结构
- symprec:默认值: 0.1,判断空间群时容忍误差

2.1.2 种群相关

• initSize:初代种群大小

• popSize:种群大小

• numGen: 迭代次数

• saveGood:保留到下一代的优秀结构数

2.1.3 结构产生

• spacegroup: 随机结构的空间群, 例: [1,2,20-30]

• minNAtoms: 最小原子数

- maxNAtoms:最大原子数
- symbols:元素类型例: ['Ti', 'O'],外层是方括号,每个元素用引号括起来,
- formula:元素比例,例:[1,2](定组分),[[1,0],[0,1]](变组分)
- eleSize:变组分搜索时,产生的不包含所有元素的结构数,如: eleSize=2,则每代产生(He, Al, O, HexAly, AlxOy, HexOy)各两个
- volRatio:随机产生结构时的体积参数,为结构体积除以原子球体积之和
- dRatio: 若存在两原子距离除以共价半径之和小于此值, 则认为过近, 排除此结构
- distanceMatrix: 原子间的最小距离矩阵,与 dRatio 同时出现时使用此数值,例: [[1, 1.5, 2.0], [1.5, 1.8, 1.9], [2.0, 1.9, 2.5]]

2.1.4 结构演化

- randFrac: 随机结构比例
- molDetector:结构演化时判断分子片段的方法可用值:0(不判断分子局域结构, 默认值)1(自动判断分子局域结构)2(使用 Girvan-Newman 算法划分局域结构)
- addSym:产生结构之前是否为父代加入对称性

2.1.5 煮计算器

主计算器定义了 Magus 搜索时使用的 MainCalculator, 以下所有参数都定义于 MainCalculator 条目下, 需要缩进:

- jobPrefix: 计算器所需附属文件在 inputFold 文件夹中的名称, 如 EMT, OvO 等如需使用多个计算器串接则给出对应列表, 如: ['Gulp', 'Vasp1', 'Vasp2']
- calculator:程序种类,如未给出则按照 jobPrefix 文件名判断,可用值: vasp, gulp, lammps, emt, xtb, lj, quip
- mode:运行方式,可用值: serial (串行), parallel (并行)
- xc: (VASP) 交换关联类型,可用值: PBE, LDA, PW-91

• ppLabel: (VASP) VASP 赝势的后缀,与 symbols 顺序一致,若无后缀则填入",如: ['_sv', "]。

• exeCmd: (gulp, lammps) 运行结构优化程序的命令,如 gulp < input > output, mpirun -np 4 lmp_mpi -in in.lammps

以下选项为并行模式下的队列控制选项,同样适用于代理计算器

• numParallel:并行优化结构的数目

• numCore:结构优化使用的核数

• queueName:结构优化任务的队列

• verbose: log 中是否显示详细队列信息

• waitTime:检查任务的时间间隔(s)

• killTime: 杀死任务的时间间隔(s)

• preProcessing: 提交脚本时的预处理

2.1.6 机器学习

• poolSize:用于初始化势场时随机产生的结构数

• initTimes: 初始化势场时的迭代次数, 如果已有训练过的力场可设为 0. 默认值: 2

• DFTRelax:是否使用 DFT 演算

2.1.7 代理计算器

代理计算器定义了 MLMagus 搜索时使用的 MLCalculator, 以下所有参数都定义于 MLCalculator 条目下,需要缩进:

• jobPrefix: 同2.1.5

• calculator: 程序种类,如未给出则按照 jobPrefix 文件名判断,可用值: mtp, mtp-lammps

• connect: 多个 mtp 的连接方式,可用值: [naive, share-trainset]

• force_tolerance: 结构优化力收敛判据, 默认值: 0.05

• stress_tolerance: 结构优化应力收敛判据, 默认值: 1.

• weights: 训练时能量、力、应力权重, 默认值: [1., 0.01, 0.001]

• scaled_by_force: 训练时给予较小力的额外权重, 默认值: 0.

• min_dist: 优化时最小距离, 默认值: 0.5

• n_epoch: 训练代数, 默认值: 200

2.2 inputFold

inputFold 中为不同 calculator 所需要的补充文件,放在对应的 jobPrefix 文件夹中。以下为各 calculator 所需文件的示例,内容可根据需要修改(名字不行):

2.2.1 Vasp

INCAR 就是 INCAR PREC = Accurate EDIFF = 1e-4 EDIFFG = 1e-3 IBRION = 2 ISIF = 3 NSW = 40 ISMEAR = 0 SIGMA = 0.050 POTIM = 0.250 ISTART = 0 LCHARG = FALSE LWAVE = FALSE KSPACING = 0.314

2021年12月14日

NCORE= 4

注意: INCAR 中不需要给出 pstress

2.2.2 Gulp

goption.relax

gulp 优化参数配置

opti conjugate nosymmetry conp

goption.scf

gulp 自洽参数配置

nosymmetry conp gradients

goption.scf

gulp 势函数文件

space

1

species

Mg 2.0

Al 3.0

0 -2.0

lennard 12 6

Mg 0 1.50 0.00 0.00 6.0

Al 0 1.50 0.00 0.00 6.0

0 0 1.50 0.00 0.00 6.0

Mg Mg 1.50 0.00 0.00 6.0

Mg Al 1.50 0.00 0.00 6.0

Al Al 1.50 0.00 0.00 6.0

buck

2021 年 12 月 14 日

```
Mg 0 1428.5 0.2945 0.0 0.0 7.0
Al 0 1114.9 0.3118 0.0 0.0 7.0
O 0 2023.8 0.2674 0.0 0.0 7.0
maxcyc 850
switch rfo 0.010
time 60
```

2.2.3 Lammps

```
in.relax
lammps 优化参数配置,可替换为分子动力学等等
clear
atom_style atomic
units metal
boundary p p p
                    # 此行不可更改
read_data data
### interactions
pair_style lj/cut 2.5
pair_coeff * * 1 1
mass 1 35.450000
mass 2 22.989769
### run
fix fix_nve all nvt temp 300.0 300.0 100
dump dump_all all custom 1 out.dump id type x y z vx vy vz
fx fy fz
# 最终输出必须为 out.dump
thermo_style custom step temp press pxx pyy pzz pxy pxz
pyz ke pe etotal
# 需要 pxx pyy pzz pxy pxz pyz
thermo 1
run 10
```

in.scf lammps 自洽计算参数配置

```
clear
atom_style atomic
units metal
boundary p p p
read_data data
### interactions
pair_style lj/cut 2.5
pair_coeff * * 1 1
mass 1 35.450000
mass 2 22.989769
### run
fix fix_nve all nve
dump dump_all all custom 1 out.dump id type x y z vx vy vz
fx fy fz
thermo_style custom step temp press pxx pyy pzz pxy pxz
pyz ke pe etotal
thermo 1
run 10
```

2.2.4 ASE 系列 (EMT, LJ, XTB...)

EMT, LJ, XTB...

建个文件夹就完事了,除非如 XTB 需要相关配置文件

xtb.yaml

下次一定

2021年12月14日

2.2.5 MTP

```
mlip.ini
active learning 控制参数,详见 https://git.nju.edu.cn/bigd4/mtp-api/
-/blob/master/doc/manual/manual.pdf
mtp-filename
                                     pot.mtp
# 改不得
select
                                     TRUE
    select:site-en-weight
                                     1.0
    select:energy-weight
                                     0.0
    select:force-weight
                                     0.0
    select:stress-weight
                                     0.0
    select:threshold
                                     1.5
    select:threshold-break
                                     7.0
    select:save-selected
                                     B-preselected.cfg
    # 改不得
    select:load-state
                                     A-state.als
    # 改不得
```

pot.mtp

mtp 使用势场,可从 untrained_mtps 中拷贝,仅可改变标注了作用的参数。

```
MTP
version = 1.1.0
potential_name = MTP1m
species_count = 1  # 原子种类数量
potential_tag =
radial_basis_type = RBChebyshev
    min_dist = 2  # 原子最小间距
    max_dist = 5  # 原子环境最大考虑半径
    radial_basis_size = 8  # 基函数个数
    radial_funcs_count = 3
```

```
alpha_moments_count = 84
alpha_index_basic_count = 46
```

```
train.cfg
训练集, 若不存在, 将自动生成空训练集
BEGIN_CFG
Size
4
Supercell
2.457244 0.0 0.0
0.0 - 2.457244 0.0
0.0 \ 0.0 \ -2.457244
AtomData: id type cartes_x cartes_y cartes_z fx fy fz
1 0 0.0 0.0 0.0 0.0 -0.0 0.0
2 0 0.0 -1.228622 -1.228622 0.0 -0.0 -0.0
3 0 1.228622 -1.228622 0.0 -0.0 0.0 0.0
4 0 1.228622 0.0 -1.228622 0.0 -0.0 -0.0
Energy
-15.79300182
EnergyWeight
0.02195049074783156
PlusStress: xx yy zz yz xz xy
26.253439887628005 26.253439887628005 26.253439887628005
-0.0 0.0 0.0
END_CFG
```

2.3 Seeds

POSCARS_i 为第 i 代加入的种子文件,如有 POSCAR_1~POSCAR_9 希望在第一代加入,POSCAR_10~POSCAR_19 希望第二代加入,执行 cat POSCAR_{1..9} > POSCARS_1 ; cat POSCAR_{10..19} > POSCARS_2 后将 POSCARS_1 与

POSCARS_2 放入 Seeds 中即可。

3 程序指令 MAGUS 1.0.2

3 程序指令

magus 文件为程序运行的入口,通过运行 magus 可以得到所有的指令与介绍,通过 magus [commond] -h 可获得其帮助。

指令	用途
search 3.1	结构搜索
summary 3.2	事后总结
clean	事后清理
prepare	事前准备
calc 3.3	批量计算
gen	批量产生

3.1 search

结构搜索模块,使用时直接提交命令 magus search 即可。可选择参数如下:

- -h -help 展示帮助文档
- -i INPUTFILE, -input-file INPUTFILE
 指定输入参数文件, 默认为 input.yaml
- -1 LEVEL, -log-level LEVEL 指定 log.txt 文件 logging 等级,可选项: DEBUG,INFO,WARNING,ERROR。默 认为 INFO
- -m, -use-ml
 是否使用机器学习模块
- -r, -restart 是否为继续上次任务,使用此选项目录内应保留上次作业的 results 与 log.txt

3.2 summary

用于总结一条或多条 ase traj 格式的轨迹,参数如下:

3 程序指令 MAGUS 1.0.2

- -h -help展示帮助文档
- -p PREC, -prec PREC
 判断空间群的精度, 默认值为 0.1
- -r, -reverse
 是否倒着输出,默认正着输出
- -s, -save 是否将此轨迹中所有结构输出为 POSCAR, 默认不输出, 以防文件夹很乱
- -o OUTDIR, -outdir OUTDIR POSCAR 输出的目录
- -n SHOW_NUMBER, -show-number SHOW_NUMBER 展示条目数量, 默认为 20
- -sb SORTED_BY, -sorted-by SORTED_BY
 用哪个关键字排序, 默认为 enthalpy
- -rm REMOVE_FEATURES [REMOVE_FEATURES ...], -remove-features RE-MOVE_FEATURES [REMOVE_FEATURES ...] 需要移除展示的信息
- -a ADD_FEATURES [ADD_FEATURES ...], -add-features ADD_FEATURES [ADD_FEATURES ...] 需要附加展示的其他信息

一个例子如下:

3 程序指令 MAGUS 1.0.2

3	Aea2 (41)	0.419	None	Li40	301.519	ref
4	Ama2 (40)	0.419	random	Li88	645.352	good
5	P3c1 (158)	0.422	Rattle	Li88	644.677	good
6	Cc (9)	0.423	Rattle	Li88	646.661	good
7	Cm (8)	0.427	Lattice	Li88	649.852	good
8	P1 (1)	0.427	Slip	Li88	647.470	good
9	Aea2 (41)	0.429	random	Li88	647.528	good
10	Aea2 (41)	0.429	Rattle	Li88	647.652	good

3.3 calc

根据 input.yaml 中定义的 calculator, 计算给出的 traj, 结果会输出于 out.traj, 可用 magus summary out.traj 命令查看。

- -h -help展示帮助文档
- -m MODE, -mode MODE
 计算类型,可用值: scf, relax. 默认为 relax
- -i INPUTFILE, -input-file INPUTFILE
 指定参数所在文件, 默认为 input.yaml
- -p PRESSURE, -pressure PRESSURE 指定压强,若不给出则使用 INPUTFILE 中给出的压强

如若需对 in.traj 中的结构在 10GPa 下优化,运行命令为:

\$ magus calc in.traj -p 10

此命令与 MtpCalculator 或 MTPLammpsCalculator 结合,可以 on the fly 的得到机器学习的训练集。

4 输出文件

结构搜索过程中,将会产生 log.txt,calcFold 与 results,如果搜索时加入-m 选项,会额外产生 MLFold。

4.1 calcFold

calcFold 中为 input.yaml 定义的计算器计算过程中所产生的文件。一个典型的结构搜索任务将产生如下结构的 calcFold:

如果并行模式计算过程中发生错误,报错信息将在对应的文件夹中出现。此外,并行模式中计算器文件夹下会产生 job_controller 文件,可通过修改其中内容改变作业提交的参数。如:


```
new_job_controller

kill_time: 100000
num_core: 64
pre_processing: ''
queue_name: 7702ib
verbose: false
```

这些改变将被记录在 log.txt 中:

log.txt

Be careful, the following settings are changed

num_core: 48 -> 64

queue_name: 9242opa! -> 7702ib

4.2 mlFold

mlFold 中为 input.yaml 中定义的机器学习模块执行挑选、训练的部分。如果提交任务时此文件夹不存在,将会使用 inputFold 中对应的文件。训练或挑选中发生错误报错信息将在对应文件夹中出现,此外,可在 train-out 中查看训练集上的误差。

若已经进行过一次 MLMagus 搜索并得到了一个不错的势,可以不用删除 mlFold 以在以后的搜索中使用;或者复制 pot.mtp 与 train.cfg 到其他 inputFold 中反复使用。此时可将 init times 设为 0,代表不再在初始化时训练力场。

4.3 results

results 中记录了各代生成的各种结构,可根据需要使用 summary 命令查看。

- good.traj
 目前最优的 popSize 个结构
- good{i}.traj第 i 代最优的 popSize 个结构
- best.traj

历代最优的结构,使用 summary 查看时注意需添加-sb None 或-sorted_by None 选项,否则会默认按焓值排序显示而不是代数的顺序

keep{i}.traj第 i 代经过聚类后保留的 goodSize 个结构

init{i}.traj第 i 代产生的初始结构

• raw{i}.traj

第 i 代的初始结构经过第一性结构优化后的结构,可用于 debug

• gen{i}.traj

第 i 代种群,一般为 raw{i}.traj 或 mlraw{i}.traj 经过 check 后的结果若机器学习 搜索使用第一性验证,则为 mlraw{i}.traj 中低能结构第一性优化后额结果。第一性验证则为

mlraw{i}.traj

第 i 代的初始结构经过机器学习结构优化后的结构,可用于 debug

mlgen{i}.traj

mlraw{i}.traj 经过 check 的结果

5 例子

5.1 NH_4NO_3 分子晶体产生

目标: 产生 $10 \uparrow Pccn$ 的 NH_4NO_3 分子晶体。

准备: input.yaml, NH4.xyz, NO3.xyz

```
input.yaml
结构产生控制文件
                                # 最小原子数
   minAt: 72
                               # 最大原子数
   maxAt: 72
   symbols: ['H', 'N', 'O']
                               # 待产生结构所含元素
                               # 分子晶体模式
   molMode: True
   molFile: ['NH4.xyz', 'NO3.xyz'] # 所含分子结构
                               # 分子组分
   molFormula: [1, 1]
   molType: 'fix'
                               # 指定 56 号空间群 Pccn
   spacegroup: [56]
                               # 原子间最小距离比
   dRatio: 0.8
   threshold_mol: 1.5
                               # 分子间最小距离比
   volRatio: 8
                                # 体积比
```

```
NH4.xyz
   5
   NH4
   Н
        4.511281
                  4.375470
                               3.210227
   Н
        3.584655
                  4.486488
                               1.796710
       4.670180
                               2.019142
   Н
                   3.191076
   Н
        3.246077 3.272899
                               2.937012
        4.000271
   Ν
                    3.837356
                               2.488938
```

NO3.xyz			
4			
N03			
N :	2.012707	2.014563	4.870574
0	1.714319	0.953807	5.478185
0	2.311095	3.075319	5.478185
0	2.012707	2.014563	3.582428

运行: magus gen -n 10 结果:目标结构 gen.traj

5.2 MTP 大批量优化随机结构

目标: 使用 MTP 力场优化 1000 个 B₁₂ 随机结构

准备: 待优化结构 gen.traj, inputFold, input.yaml, 其中, inputFold 结构为:

input.yaml 定义主计算器与机器学习计算器 #main calculator settings MainCalculator: jobPrefix: Vasp # 标准能量由 Vasp 给出 #vasp settings

2021年12月14日

```
xc: PBE
   ppLabel: ['']
   #parallel settings
    numParallel: 20
    numCore: 24
    queueName: 9242opa!
    waitTime: 30
MLCalculator:
   jobPrefix: MTP
    calculator: mtp
                           # MTPrelax 最小距离
    min_dist: 1.2
    queueName: 9242opa!
    numCore: 48
    waitTime: 10
    force_tolerance: 0.001
    stress_tolerance: 0.01
```

INCAR

不会有人不会写 INCAR 把

```
PREC = Accurate
EDIFF = 1e-4
IBRION = 2
ISIF = 3
NSW = 40
ISMEAR = 0
SIGMA = 0.050
POTIM = 0.250
ISTART = 0
LCHARG = FALSE
LWAVE = FALSE
```

```
#Crude optimisation
EDIFFG = 1e-3
KSPACING = 0.314
NCORE = 4
```

```
pot.mtp
MTP 势函数文件,这里只给出表头
   MTP
   version = 1.1.0
   potential_name = MTP1m
   scaling = 1.497018669914417e-02
                                   # 只有 B 原子一种
   species_count = 1
   potential_tag =
   radial_basis_type = RBChebyshev
      min_dist = 1.277113860000000e+00
      # 最小距离 1.27, 由于 train 中设置了--update, 此项不必特
      别设置,会自动更新
      radial_basis_size = 12
      radial_funcs_count = 5
```

mlip.ini	
active 控制文件	
mtp-filename	pot.mtp
select	TRUE
select:site-en-weight	1.0
select:energy-weight	0.0
select:force-weight	0.0
select:stress-weight	0.0
select:threshold	1.5

select:threshold-break 7.0

select:save-selected B-preselected.cfg

select:load-state A-state.als

运行: 提交 magus calc gen.traj 命令到队列

结果: MTP 优化后的结构 out.traj, 势文件 mlFold/MTP/pot.mtp

5.3 TiO₂ 定组分结构搜索

目标:搜索 12 个原子 TiO2 的结构

准备: input.yaml, inputFold

由于初始结构往往杂乱无章,因此往往使用多个 INCAR 分步优化,据说合适的做法是固定体积优化原子位置与晶格形状 (ISIF=4),然后放开体积限制优化原子位置与晶格 (ISIF=3),最后进行高精度的单点能自治运算 (NSW=0)

input.yaml

给出搜索所需参数

calcType: fix # 定组分搜索

pressure: 0 # OGPa

numGen: 10 # 搜索 10 代

saveGood: 3 # 每代保存 3 个结构

#structure parameters

minAt: 12
maxAt: 12

symbols: ['Ti', '0']

formula: [1, 2]

```
dRatio: 0.6
                         # 最小半径比
                          # 最小体积比
volRatio: 3
addSym: False
                           # 不在父代中加入对称性
#main calculator settings
MainCalculator:
   jobPrefix: ['q', 'w', 'e' ,'r']
   # 这里只是为了说明只要给出 calculator, jobPrefix 可以随
   意命名,实际建议用更清晰的方式命名。
   calculator: vasp
   mode: parallel
   #vasp settings
   xc: PBE
   ppLabel: ['', '_s']
   #parallel settings
   numParallel: 5
   queueName: 7702ib
   waitTime: 30
```

q/INCAR

```
PREC = Normal

EDIFF = 1e-3

IBRION = 2

ISIF = 4

NSW = 85

ISMEAR = 0

SIGMA = 0.06

POTIM = 0.20

LCHARG = FALSE

LWAVE = FALSE

#Crude optimisation
```

w/INCAR

PREC = Normal
EDIFF = 1e-3
IBRION = 2
ISIF = 3
NSW = 100
ISMEAR = 0
SIGMA = 0.060
POTIM = 0.020
LCHARG = FALSE
LWAVE = FALSE
#Crude optimisation

EDIFFG = 1e-2

KSPACING = 1.256

LREAL = A

ALGO = Fast

EDIFFG = 1e-2

KSPACING = 0.942

LREAL = A

ALGO = Fast

e/INCAR

PREC = Normal

EDIFF = 1e-4

IBRION = 2

ISIF = 3

NSW = 70

ISMEAR = 0

SIGMA = 0.060

POTIM = 0.250

ISTART = 0

LCHARG = FALSE

LWAVE = FALSE

#Crude optimisation

EDIFFG = 1e-3

KSPACING = 0.618

#ALGO = Fast

r/INCAR

PREC = Normal

EDIFF = 1e-4

IBRION = 2

ISIF = 2

NSW = 0

ISMEAR = 0

SIGMA = 0.060

POTIM = 0.250

ISTART = 0

LCHARG = FALSE

LWAVE = FALSE

#Crude optimisation

EDIFFG = 1e-3

KSPACING = 0.618

#ALGO = Fast

运行: 提交 magus search 到队列

结果: 搜索结果 results/good.traj

5.4 $Zn_x(OH)_y$ 变组分结构搜索

目标: 搜索 8-16 个原子 $Zn_x(OH)_y$ 的结构

准备: input.yaml, inputFold

使用 Gulp 经验势优化,因此种群数目与代数可以大大增加。

input.yaml 给出搜索所需参数 calcType: var # 变组分搜索 pressure: 0 initSize: 150 popSize: 150 numGen: 60 saveGood: 8 #structure parameters minAt: 8 maxAt: 16 symbols: ['Zn','0','H'] formula: [[1,0,0],[0,1,1]] # Zn : (OH) = 1 : 1 fullEles: True eleSize: 5 dRatio: 0.5 volRatio: 10 addSym: False #main calculator settings MainCalculator: jobPrefix: ['Gulp1', 'Gulp2'] # 若 jobPrefix 给出计算器名称, 可不指定 calculator mode: parallel #gulp settings exeCmd: gulp < input > output #parallel settings numParallel: 5 numCore: 4 queueName: e52692v2ib! waitTime: 30

Gulp1/gpot

定义 gulp 所使用的势,其中 ReaxFF.lib 是相应的反应力场文件

```
time 240
space
1
maxcyc 300
library ./ReaxFF.lib
lennard epsilon
Zn Zn 0.0150 1.00 0.0 8.0
Zn
   0 0.0150 1.00 0.0 8.0
       0.0150 0.80 0.0 8.0
Zn H
H H
       0.0150 0.60 0.0 8.0
 0
0
       0.0150 0.80 0.0 8.0
       0.0150 0.80 0.0 8.0
H 0
```

Gulp1/goption.relax

relax 所使用命令, conv 代表第一代粗优固定晶格优化

opti spatial conj nosymmetry conv

类似的:

Gulp2/gpot

```
time 240
space
1
maxcyc 300
library ./ReaxFF.lib
```

Gulp1/goption.relax

opti spatial conj nosymmetry conv

2021年12月14日

运行: 提交 magus search 到队列

结果: 搜索结果 results/good.traj

5.5 MgSiO₃ 机器学习结构搜索

目标: 使用 MTP 加速搜索 10-20 个原子 MgSiO3 的结构

准备: input.yaml, inputFold

与5.2类似,准备好相应的 pot.mtp, mlip.ini,不同的是需要把 pot.mtp 中的原子种类改为 3 种

input.yaml

搜索所需参数, 计算器部分与5.2类似, 不再赘述

calcType: fix

poolSize: 2000 # 预训练生成的代挑选随机结构,可以设的很大

initSize: 400
popSize: 400
numGen: 60
saveGood: 3

#structure parameters

DFTRelax: False # 不使用 DFT 验证能量

minAt: 10
maxAt: 20

symbols: ['Mg','Si','0']

formula: [1, 1, 3]

molDetector: 2 # 2 号分子探测算法

dRatio: 0.8
volRatio: 1.3
randFrac: 0.4
pressure: 150
addSym: True

softNum: 0

MTP/pot.mtp

表头部分,主要区别为分子种类被替换成了3

MTP

version = 1.1.0
potential_name = MTP1m
scaling = 7.002314814814817e-01
species_count = 3
potential_tag =
radial_basis_type = RBChebyshev
 min_dist = 5.000000000000000e-01
 max_dist = 5.000000000000000e+00
 radial_basis_size = 12
 radial_funcs_count = 4

运行: 提交 magus search -m 到队列

结果: 搜索结果 results/good.traj

5.6 CH₄ 分子晶体搜索

目标: 甲烷晶体结构搜索准备: input.yaml, inputFold, CH4.xyz

input.yaml 可参照5.1与5.3中的设置:

MTP/pot.mtp

calcType: fix
initSize: 20
popSize: 20
numGen: 40
saveGood: 3

```
pressure: 50
minAt: 20
maxAt: 20
symbols: ['C', 'H']
## mol crystal
molMode: True
molFile: ['CH4.xyz']
molFormula: [4]
molType: 'fix'
chkMol: True
addSym: True
dRatio: 0.8
volRatio: 5
randFrac: 0.4
molDetector: 2
#main calculator settings
MainCalculator:
    jobPrefix: ['Vasp1', 'Vasp2']
    mode: parallel
    #vasp settings
    xc: PBE
    ppLabel: ['','']
    #parallel settings
    numParallel: 4
    numCore: 24
    queueName: 9242opa!
```

MTP/pot.mtp										
5										
С	Н									
С	2.260984	1.227715	2.255654							
Н	2.597307	0.217093	2.238728							
Н	1.194544	1.227505	2.236584							
Н	2.611534	1.725297	1.379429							
Н	2.590593	1.698611	3.156207							

运行: 提交 magus search 到队列

结果: 搜索结果 results/good.traj

6 常见问题 MAGUS 1.0.2

6 常见问题

使用时遇到疑问或 bug 可在https://git.nju.edu.cn/gaaooh/magus中提出 issue.

1. **为啥** pip **安装时报错**"ModuleNotFoundError: No module named 'yaml'"? 那你装一个啊

\$ pip install pyyaml