Name	Types	Important Insights	Programming tricks	Exam Year
		First find out which is the start and end point by trying	Calling max-flow multiple times is	
		every startpoint (calling push relabel max flow multiple	totally fine. You can look at the	
		times on the same graph is not slow!). Then read off the	runtime of push_relabel as roughly	
Algocoon Group	Max Flow: Minimum Cut	figures by doing a residual BFS.	O(n^2) but that is no guarantee.	
		Construct the min circle, then go over support points and		
Almost Antenna	Geometric	try without one of these.		
		Figure out that we need MST, then build new graph with		
Ant Challenge	Graph: MST & Dijkstra	MSTs		
Antenna	Geometric	Straight forward, construct min circle.		
		Circular earliest deadline first scheduling. Special input		
Attack of the Clones	Greedy	restrictions can be used to speed up the process		14
Beach Bars	STL: Sliding Window	-		
Bistro	Triangulation	Straight forward		
Boats	Greedy	Do earlierst deadline first scheduling		
		Undirected graph with vertex weights. Transform into		
		directed graph with edge weights. Do Dijkstra from all		
		three corners. Find best center by combining all three		
Bobs Burden	Graph: Dijkstra Shortest Path	shortest paths		
		Realize that we do not need to compute the matching, but	t	
		only test if there is a better one. For all student pairs, find		
		the number of common hobbies by using set intersection.		
		Then build a graph with edges only if the two students		
		have more than f common hobbies. Check if there exists a		
		maximal matching in this graph. If yes, it was not optimal,		
Buddy Selection	Graph: Maximum Cardinality Matching	if no, it was optimal.		
Burning Coins from Two Sides	Dynamic Programming	Take the max of the min to get guaranteed amount		
Canteen	Min Cost Max Flow	Classical Min Cost Max Flow		15
		Weird flow problem. It does not matter who pays, but		
Cantonal Courier	Max Flow	only that someone does (flow)		
		Ensure maximal flow by having edges with 0 cost. Make		
		edge weights positive, use "path compression" to have		
Carsharing	Min Cost Max Flow	only times that are relevant		15

Casino Royale	Min Cost Max Flow	Relatively standard. Have ensured max flow.		
Clues	Triangulation	Weird graph properties. Can do 2-coloring greedily	Can use struct as vertex info	
		For each player have a node. For every game that was not		
		recorded, add an edge. Limit the flow from the player to		
		target with the remaing points needed. Check if the flow		
Coin Tossing Tournament	Max Flow	is maximal.		
Corbusier	Dynamic Programming	DP with nr_disks * k. For each disk, either take it or don't.		
		Use binary search to get two best candidates for the sum		
Deck of Cards	STL: Prefix Sum & Binary Search	in the prefix vector		16
		DP with nr_defenders * nr_attackers. Do preprocessing or	n	
Defensive Line	Dynamic Programming	the possible choices, then use recursion to solve it		17
Diets	Linear Programming	Straight forward		
		Iterate over it once to find the first domino that does not		
Dominoes	Greedy	fall.		
Even Matrices	STL: Partial Sum	Magic	-	15
		Use prefix sum to avoid computing the sum of a		
Even Pairs	STL: Prefix Sum	sequence. Speed up even more by using a magic formula		
		Do bfs over graph and handle on the fly all requests, since		
		they can be computed in a different order, then later put		
Evolution	Graph: DFS & binary search	back in the correct order.		16
		Instead of a ray, use a segment to check for intersection		
		that keeps getting shorter (then we have to do less		
		constructions). To make sure that we do not get an		
First Hit	Geometric	adversarial input, we do a random_shuffle before.		
Fleetrace	Min Cost Max Flow	Straight forward		17
Germs	Triangulation	Realize that it only depends on the closest distance to any	,	
Golden Eye	Triangulation & Union Find			
Graypes	Triangulation	Straight forward, shortest edge is in triangulation		
H1N1	Triangulation		-	
		Quite hard to see the matching part. Binary search over		
Her Majesty's Secret Service	Graph: Maximum Cardinality Matching	possible end times.		
			Find range that satisfies by using	
			equal_range, then subtract the two	
Highschool Teams	Split & List	-	iterators	17

		For each segment find which path parts are inside. Then do a sliding window over the parts to find the cheapest	Use CGAL::left_turn(), CGAL::right turn() to find if a point is	
Hiking Maps	STL: Sliding Window	segment that covers the whole path.	inside a triangle	
Hit	Geometric	Straight forward using a ray and do_intersect		
		Realize that all escape points at the centers of the triangles, build graph with all possible paths and from escape points to infinite vertex. Then do a minimum	Use squared_radius(x, y, z) to find	
		spanning tree and a BFS over it to find for each location if		
Hong Kong	Triangulation & MST & BFS	escape is possible	that x, y and z span.	18
5 5	Ü	Realize the fact that bridges are biconnected components	•	
		with only one edge. Use the template from the boost		
Important Bridges	Graph: Biconnected Components	documentation		
		Limit maxflow to value, find the minimal cost. Do binary		
India	Max Flow	search over solution space.		18
		The vertex demands and supply can be easily modelled by		
		adding a source and target vertex. For every edge (u,v) we		
		know that at least c many units need to flow and at most		
		C, i.e. we can add an edge from s to v with capacity c,		
		from u to t with capacity c and from u to v with capacity C		
		c. Then we check if the maxflow is >= sum demands + sum		
Kingdom Defense	Max Flow	miniums		
Light at the Museum	Split & List	-		16
		Compute then each participant gets hit. If some do not		
Light at the Stage	Triangulation	get hit, output them, else get the ones that are hit last.		
		Go from back to front. Always keep a count if the bits are		
Light Pattern	STL: Sliding Window & Bitmagic	inverted or not. Check all cases of odd and even swaps.		
		Create back/front pairs (a counter for each). For each of		
		them have a node in the graph with a limit on them (have		
London	Max Flow	to choice either one of the other side)	letter to int with (int) letter - (int) 'a'	18
		Each time we can bet a value between 1 and k, we want		
		to find the maximum of that. If we manage to get enough,		
		the probability is 1. If we do not manage, the probability is	5	
Magician and the Coin	Dynamic Programming	0.		
		Do a lot of preprocessing: eliminate duplicate edges by		
		only taking shortest one and summing up capacities. Find		
Marathan	May Flour	all shortest paths by doing dijkstra from both sides, then		17
Marathon	Max Flow	iterating over all edges.		17

M : D		Diagram and a company of the company	have two indices and while(i < max	
Moving Books	Greedy	Binary search over solution space	&& j < max)	
Now Tiles	Dunamia Programming & Ditmagia	DP with h * (2^w). Use bitmask to fill table in a very		
New Tiles	Dynamic Programming & Bitmagic	strange way		
		Do a DFS over the tree while always keeping the whole path saved (with the recursive implementation). Keep a	rbegin(), rend(). Use global variables	
		multiset of the currently relevant temperatures, always	if the recursive DFS causes a	
New York	Graph: DFS	check if max - min is below threshold.	stackoverflow.	18
New fork	біаріі. DF3	Realize that it is greedy with respect to the minimum time	Stackoverriow.	10
		on top of current. Realize that sorting will keep the		
		invariant that a bomb on top has a higher number than on		
Octopussy	Greedy	the bottom.		15
Octopussy	Greedy	Use strong components to find all teleportation networks.		13
		Then connect them all by adding a vertex for each		
		component and connecting all vertices of the component		
		to it in both directions. Then use dijkstra to find the best		
Planet Express	Graph: Strong Components & Dijkstra	warehouse.		
Planks	Split & List	warenouse.	-	16
FIGURS	Spiit & List	Split into 4 sets, then regular split and list with lower and		10
		upper bound. Realize that there are 4! = 24 possibilities to		
Planks	Split & List	label a 4-tuple.		
FIGURS	Spiit & List	iabel a 4 tupie.	map.find instead of find(map)	
			maps much slower than vector for	
Poker Chips	Dynamic Programming	_	memo	
Punch	Dynamic Programming	DP with nr_beverages * maxVolume size	memo	16
Radiation	Linear Programming	Loop over degrees to get all possible combinations		10
Real Estate	Min Cost Max Flow	Classical Min Cost Max Flow		15
Near Estate	Will Cost Wax How	Find the second minimum spanning tree cost. Compute		13
		MST, then compute for each pair of vertices the maximum		
		edge in the spanning tree. Finally, find the cheapest edge		
		to add that is not in the minimum spanning tree that		
		could be added instead of the maximum edge in the path		
Return of the Jedi	Graph: MST & BFS	between these vertices.		14
netall of the seal	5.ap 1.31 & 513	DP with nr_holes * nr_moves. Do not actually need graph,		
		just info where you can go from u. Solve recursively what		
		score can be achieved with i many moves left. Do linear		
San Francisco	Dynamic Programming	search over this variable.		
Jan Handisco	2 y hanne i rogramming	Scaron Over this variable.		

Satellites	Max Flow: Bipartite Minimum Vertex Cover	Compute flow, then residual BFS and read off result		
		Slide over the sequence always updating the word counts		
Search Snippets	STL: Sliding Window	and saving the shortest sequence		
		Find the number of edge disjoint paths, check by doing a		
		max flow with capacity 1. Check if the max flow is equal to		
Shopping Trip	Max Flow	the given number of stores		
			Number of (unconnected) nodes	
			heavily impacts performance of	
Tetris	Max Flow	Check corner cases	push_relabel_max_flow()	
		Realize that radius should be maximal for sure, calculate		
		using triangulation. Then do linear program over the		
The Empire Strikes Back	Linear Programming & Triangulation	power constraint		
		Realize that the two marbels are independent of each		
		other. In each move, it is tried to minimize, then maximize		
		the number of turns. In the end decide based on the		
The Great Game	Dynamic Programming	number of moves needed.		
		Realize that it is not possible with min cost max flow. Use		
		triangulation and set difference to do preprocessing on		
World Cup	Linear Programming & Triangulation	profits. Then regular linear program		17