Brain Graph Project

11/18/2022

Weikang Qiu

Dataset Overview

• 1770 brain voxel-level time series data (subjects) of size 61, 73, 61, 375)

Cube size

Timestamps

Atlas & Parcellation

- Parcellation
- Atlas: maps or rules we follow to perform the parcellation

Atlas' Name	Number of Nodes
AAL3v1	164
Scheafer400	400
shen268	268
shen368	368

Parcellation Disjoint

 Voxels in the same regions are disjoint

Each row represents a region of the parcellation

points are voxels in the same region

Each column represents a different view angle in the 3D space

Selected from Shen368 atlas

Signal Data Distribution

- Subjects $\{x_i\} = \{x_1, x_2, \cdots, x_n\}, x_i \in \mathbb{R}^{61 \times 73 \times 61 \times 375}$
 - MEAN($|x_i|$) $\in \mathbb{R}$ (mean of absolute value)
- Two clusters
 - 74.5% are around zero.
 - 24.9% are between 30-80

Preliminary Model: Pooling

Assign Matrix

Number of nodes/clusters in he l-th layer $\sqrt{}$

$$S \in [0,1]^{n_l^{\downarrow} \times n_{l+1}}$$

Intuitively, each entry (i, j) of assignment matrix denotes a "**soft**" assignment of the node i to a cluster j in the next coarsened layer.

Pooling nodes

•
$$X^{(l+1)} = S^T X^{(l)} \in \mathbb{R}^{n_{l+1} \times d}$$

•
$$[s_{11}, s_{12}, s_{13}]$$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{(l)} = s_{11}x_1^{(l)} + s_{12}x_2^{(l)} + s_{13}x_3^{(l)} = x_1^{(l+1)}$

Pooling edges (adjacency matrix)

•
$$A^{(l+1)} = S^T A^{(l)} S \in \mathbb{R}^{n_{l+1} \times n_{l+1}}$$

Summing edges between two sets of nodes in a pair of clusters

Preliminary Model: Architecture

Results: Training Loss

Different Architectures

	GCN	Sage (mean)	Sage (max)	Sage (add)
N_layer = 1	0.0260	0.0408	0.0583	0.0414
N_layer = 2	0.0791	0.0692	0.0673	0.0498
N_layer = 3	0.0791	0.0791	Out of Memory	0.0791

Different Initial Aggregation

	GCN
Mean Aggregation	0.0229
Principal Aggregation	0.0260

Different Atlas

Atlas	GCN
Shen268	0.02596
Shen368	0.05481
Scheafer400	0.05364
AAL3v1	0.02271

Results: Regression Results

Predictions are smoother

Node 1 A general issue in regression task predictions 0.5 truths 0.0 -0.5 Signal value Node 2 0.6 0.2 0.0 -0.2 -0.4 -0.6 200 400 800 0 timesteps

Results: Assignment Matrix

Number of Clusters = 50, i.e. S_{50}^{T}

Number of Clusters = 30, S_{30}^T original nodes (by parcellation)

Results: Cluster Size

Color strength

represents assignment

Results: Clustering magnitude

Each row

represents

assignment

one cluster

magnitude of

cluster 1 0.010 cluster 2 cluster 3 cluster 4 cluster 5

Each column represents a different view angle in the 3D space

Study of Number of Clusters

- Metric:
 - Gram determinant of matrix $S: |S^TS|$
 - Larger collinearity, smaller $|S^TS|$

Study of Number of Clusters

Distance:

dist(\tilde{S}_{50} , \tilde{S}_{40}): 31.04 dist(\tilde{S}_{50} , \tilde{S}'_{40}): 29.36

$$dist(A, B) = \frac{1}{268} \sum_{i=1}^{268} \sum_{j=1}^{30} (A_{ij} - B_{ij})^2$$