

CANDIDATE

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MMM. Aremedabers.com

*	
_	
∞	
9	
5	
W	
5	
7	
6	
_	
6	

NAIVIE					
CENTRE NUMBER		CANDIDATE NUMBER			
CHEMISTRY		(620/33		
Paper 3 (Exter	nded)	October/November 2011			
		1 hour 15 m	ninutes		

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 11 printed pages and 1 blank page.

1	Use your	сору	of the	Periodic	Table to	answer	these of	questions.
---	----------	------	--------	----------	----------	--------	----------	------------

(a)	Choose an element from the Periodic Table to match each description.
	You may give either the name or the symbol.

	(i)	It is the most reactive metal.	[1]
	(ii)	It is the only non-metal which is a liquid at r.t.p	[1]
	(iii)	An isotope of this element is used as a fuel in nuclear reactors	[1]
	(iv)	This Group VII element is a solid at r.t.p	[1]
	(v)	This element is in Group V and Period 4	[1]
	(vi)	This unreactive gas is used to fill lamps.	[1]
(b)	Pre	edict the formula of each of the following compounds.	
	(i)	germanium oxide	
	(ii)	tellurium bromide	[2]
(c)	Giv	e the formula of each of the following ions.	
	(i)	strontium	
	(ii)	fluoride	[2]

[Total: 10]

2	Starch, a complex carbohydrate, is a natural macromolecule or polymer.
	It can be formed from its monomer by condensation polymerisation.

(a)	(1)	Explain the terms:
		monomer
		condensation polymerisation
		[2]
		[2]
	(ii)	Draw the structural formula of starch to include three monomer units.
		Glucose, the monomer, can be represented as HO——OH.
		[3]
(b)	war	rch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by ming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva.
	(i)	What is an enzyme?
	(.,	What is all only me.
		[1]
	(ii)	
		Explain why, if the saliva/starch mixture is heated above 70 °C, the hydrolysis stops.
	(iii)	Explain why, if the saliva/starch mixture is heated above 70 °C, the hydrolysis stops. [1]
		The complete acid-catalysed hydrolysis of starch forms only glucose.
		The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which
		The complete acid-catalysed hydrolysis of starch forms only glucose.
		The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which
		The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which includes glucose. Describe how you could identify the different sugars in this mixture.
		The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which includes glucose. Describe how you could identify the different sugars in this mixture.
		The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which includes glucose. Describe how you could identify the different sugars in this mixture.

3	Two	tilisers are used to promote plant growth. o fertilisers are ammonium phosphate, $(NH_4)_3PO_4$, and calcium dihydrogenphosphate, $(H_2PO_4)_2$.
	(a)	Describe a test to distinguish between these two fertilisers.
		test
		[2]
		result
		[1]

		[4]

(b) Many fertilisers are manufactured from ammonia. Describe how ammonia is made in the Haber process. Give the essential conditions and an equation for the process.

(c)	State the essential plant nutrient not supplied by ammonium phosphate.	
		[1

(d) The soluble compound, calcium dihydrogenphosphate is made by heating the insoluble mineral rock phosphate, $Ca_3(PO_4)_2$, with sulfuric acid.

(i)	Why would rock phosphate not be effective as a fertiliser?		
		[1]	

(ii) The phosphate ion, PO_4^{3-} , from the rock phosphate is changed into the dihydrogenphosphate ion, $H_2PO_4^{-}$.

$$PO_4^{3-} + 2H_2SO_4 \rightarrow H_2PO_4^{-} + 2HSO_4^{-}$$

What type of reagent is the phosphate ion? Give a reason for your choice.

.....[2]

(e) The extensive use of fertilisers and possibly the effect of acid rain tend to increase the acidity of the soil. State why it is necessary to control soil acidity and explain how this can be done.

							[0]
 	121						

[Total: 13]

]

		v	
(a)	Ste	el rusting is an example of an oxidation reaction.	
	(i)	Define the term steel.	
	(ii)	Define oxidation in terms of electron transfer.	[2]
	(ii)		[1]
(b)	A m	nethod of preventing steel rusting is sacrificial protection.	
		connected block of electrically magnesium to steel pipe	
	Giv	e an explanation, in terms of electron transfer, why the steel does not rust.	
			[2]
(c)	Anc	other method of preventing steel rusting is cathodic protection.	
		steel girder ———————————————————————————————————	
	ŀ	bubbles of hydrogen gas sea water	
	(i)	Write an equation for the formation of the gas given off at the steel cathode duri cathodic protection.	ing
	(ii)	Give one difference between the two methods.	[2]
	` ,		
			[2]

			6
5	The	e rea	ctions in this question are all examples of photochemical reactions.
	(a)	Exp	plain the phrase photochemical reaction.
			[2]
	(b)	cor	ny millions of years ago, the Earth's atmosphere was rich in carbon dioxide and stained negligible amounts of oxygen. After the appearance of green plant-like cteria, the proportions of these two gases in the atmosphere changed.
		(i)	What are the approximate percentages of these two gases in the atmosphere now?
			carbon dioxide =[1]
			oxygen =[1]
		(ii)	Explain how the green plant-like bacteria changed the composition of the atmosphere.
			[4]
	(c)	The	e reduction of silver(I) bromide to silver is the basis of film photography.
			$2AgBr \rightarrow 2Ag + Br_2$
			white black
			opaque object is placed on a piece of paper coated with silver(I) bromide which is n exposed to a bright light. The light is switched off and the opaque object removed.
		opa .g. th	hick

opaque e.g. thick paper coated with silver(I) bromide

before exposed to light after exposed to light cardboard removed

Explain how the image is formed.

[Total: 12]

6	Nickel is	a transition e	lement.

(a)	Predict three differences in the chemical properties of nickel and barium.						
	ro						

(b) Nickel ores are converted into nickel(II) oxide. This can be reduced to impure nickel by heating with carbon. The nickel is purified by the following reversible reaction.

$$Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$$
nickel carbonyl

(i) Impure nickel is heated at 60 °C. The forward reaction occurs.

$$Ni(s) + 4CO(g) \rightarrow Ni(CO)_4(g)$$
 impure

The nickel carbonyl, a gas, moves into a hotter chamber at 200 °C. The backward reaction occurs and the nickel carbonyl decomposes.

$$Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$$
pure

	Is the forward reaction exothermic or endothermic? Give a reason for your answer.
/ii\	Explain why the forward reaction is favoured by an increase in pressure.
(ii)	Explain why the lorward reaction is lavoured by an increase in pressure.
	[2]
(iii)	Suggest what happens to the impurities.

......[1]

(iv) Suggest another method of refining nickel. Give a brief description of the method which you have suggested. A labelled diagram is acceptable.

For Examiner's Use

[4]

[Total: 12]

© UCLES 2011 0620/33/O/N/11

- 7 The alkenes are a series of unsaturated hydrocarbons. They have the general molecular formula C_nH_{2n} .
 - (a) Deduce the molecular formula of an alkene which has a relative molecular mass of 126. Show your working.

(b) The structural formula of propene is drawn below.

- (i) Draw a diagram showing the arrangement of the valency electrons in one molecule of this covalent compound.
 - Use x to represent an electron from an atom of carbon.

Use o to represent an electron from an atom of hydrogen.

[3]

(ii) Draw the structure of the polymer formed from propene

[2]

For Examiner's Use

(iii) Bond energy is the amount of energy, in kJ, which must be supplied to break one mole of the bond.

bond	bond energy in kJ/mol
Н—Н	+436
C=C	+610
C—C	+346
С—Н	+415

Use the data in the table to show that the following reaction is exothermic.

[3]

- **(c)** This question is concerned with some of the addition reactions of but-1-ene.
 - (i) Name the product formed when but-1-ene reacts with water.

......[1]

(ii) Complete the equation.

(iii) Deduce the formula of the compound which reacts with but-1-ene to form 1-iodobutane.

.....[1]

[Total: 14]

© UCLES 2011 0620/33/O/N/11

BLANK PAGE

© UCLES 2011 0620/33/O/N/11

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 40 Argon	84 Kr ypton 36	131 Xe Xenon	Radon 86		175 Lu Lutetium	Lr Lawrendur 103
	II/		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine		At		173 Yb Ytterbium 70	Nobelium 102
			16 Oxygen 8 32 S Sulfur	79 Se Selenium 34	128 Te Tellurium	Po Polonium		169 Tm Thulium 69	Md Mendelevium 101
	^		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51			167 Er Erbium 68	E min
	2		12 Carbon 6 Si Siiroon 14	73 Ge Germanium 32	Sn 119	207 Pb Lead		165 Ho Holmium 67	ES n Einsteinium
	=		11 B Boron 5 27 A1 Aluminium 13	70 Ga Galium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium 66	Californium 98
				65 Zn Zinc 30	Cadmium 48			159 Tb Terbium 65	BK Berkelium 97
				64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	
Group				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	
Gre				59 Co Cobalt 27	Rhodium 45	192 Ir Iridium		Sm Samarium 62	
		1 Hydrogen		56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm Promethium 61	Neptunium 93
				Mnnganese	Tc Technetium 43			Neodymium 60	238 U Uranium 92
				Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 No Niobium	181 Ta Tananum		140 Ce Cerium	232 Th Thorium 90
				48 T Titanium	91 Zr Zirconium 40	178 # Hafnium 72			nic mass bol nic) number
				Scandium	89 ≺ Yttrium	139 La Lanthanum *	227 Ac Actinium	l series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	e ×
	_		7 Lithium 3 23 Na Sodium 11	39 K	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L 190-103 ,	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.