

ENGINEERING MATHEMATICS - II

Random variables and probability distributions

Random variables and probability distributions

- Review of probability
- > Random variables
- > Functions of random variables

Department of Science and Humanities

- 1. I have a fair chance (i.e., a reasonable probability of success) of getting admission.
- 2. In tossing a coin there is an even chance that a head may come up.
- In each case, we are not sure of the outcome, but we wish to estimate the chances of our predictions coming true. The study of probability provides a mathematical framework for such assertions (declaration/positive statement).

PES UNIVERSITY

- Experiment: A process/procedure we perform that generates some result.
 For example, tossing a coin, rolling a die, etc.
- Outcome: An outcome is a possible result of an experiment. For example, in tossing a coin two times, the four possible outcomes are
 (H, T), (T, H), (T, T), and (H, H).
- Sample space: The set of "all possible" distinct outcomes of an experiment is called the sample space and is denoted by S. For example, for tossing a coin, the sample space $S=\{H,T\}$.
- Note: A sample space S can be either "discrete" or "continuous".

- When the sample space *S* is countable, such as when it includes all integers between 1 and 9, it is known as a discrete sample space.
- When the sample space S is uncountably infinite, such as when it includes all real numbers between 1 and 9, it is known as a continuous sample space.
- Event: An event is a subset of a sample space. For example, for tossing a coin 3 times, the sample space is S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.
 Let A be the event of getting exactly two heads.
 Then A = {HHT, HTH, THH}.

- PES UNIVERSITY
- Mutually exclusive events: Two events are said to be "mutually exclusive" if both cannot occur at the same time. For example, in a single coin toss, either a head comes up or a tail comes up, but not both. Mathematically, if two events A and B are mutually exclusive, then $A \cap B = \emptyset$.
- Equally likely event: The events are said to be "equally likely" if the chance of happening is equal of all events. For example, If we toss a coin, there are equal chances of getting a head or a tail. Hence, getting a head or a tail by tossing a coin are equally likely events.

For example, if a die is rolled, then the event of getting a prime number and an odd number are exhaustive events or not?

Sample space = $\{1,2,3,4,5,6\}$.

Event of getting a prime number = $\{1,2,3,5\}$.

Event of getting an odd number = $\{1,3,5\}$.

Union of both events = $\{1,2,3,5\}$.

Both events together do not equal to the sample space. Hence, these events are not exhaustive.

Definition of probability

To find the probability of equally likely events, the following formula is

used.
$$P(E) = \frac{n(E)}{n(S)}$$

Here, n(E) is total number of favourable events.

n(S) is total number of events in sample space.

- Note that,
- 1. Probability of a certain (sure) event is one.
- 2. Probability of an impossible event is zero.

Definition of probability

■ The probability of non-occurrence of an event *E* (called its

failure) denoted by
$$P(\overline{E}) = \frac{n(S) - n(E)}{n(S)}$$

$$= 1 - \frac{n(E)}{n(S)}$$

$$= 1 - P(E)$$

• Therefore, $P(E) + P(\bar{E}) = 1$

Axioms (statements that are always accepted as true) of probability

Axiom 1: For any event E, $0 \le P(E) \le 1$

Axiom 2: Let S be a sample space. Then P(S) = 1

Axiom 3: If E_1 and E_2 are mutually exclusive events, then

$$P(E_1 \cup E_2) = P(E_1) + P(E_2).$$

More generally, if $E_1, E_2, ..., E_n,$ mutually exclusive events, then

$$P(E_1 \cup E_2 \cup \cdots) = P(E_1) + P(E_2) + \cdots$$

For example, consider,

Let A be the event of getting tails when you flip a fair coin.

Axiom 1: $P(A) = \frac{1}{2}$. Since P(A) is between 0 and 1, Axiom 1 holds.

Axiom 2: S ={Head, Tail}. P(S)= $\frac{1}{2} + \frac{1}{2} = 1$. So, Axiom 2 holds.

Axiom 3: Getting a head and a tail are two mutually exclusive events.

Then P({Head} U {Tail}) = P({Head})+P({Tail})= $\frac{1}{2}+\frac{1}{2}=1$.

So, Axiom 3 holds.

Additive theorem for probability

PES UNIVERSITY

Statement: If A and B are any two arbitrary events (not necessarily mutually exclusive) of a sample space S, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Additive theorem for mutually exclusive events

Statement: If A and B are two mutually exclusive events, then the probability of either A or B is given by $P(A \cup B) = P(A) + P(B)$.

For example, consider,

A card is drawn from a pack of 52, what is the probability that it is a king or a queen?

Solution: Let Event A = Draw of a card of king. Event B = Draw of a card of queen.

P (card draw is king or queen) = P (card is king) + P (card is queen)

$$P(A \cup B) = P(A) + P(B) = \frac{4}{52} + \frac{4}{52}$$

$$= \frac{2}{13}$$

Let us take an example of tossing a coin.

The sample space is $S = \{\text{heads, tails}\}\$

Let us give them the values: heads=0 and tails=1, and here we have a random variable X. That is,

$$X = \begin{cases} 0, & if \omega \in S \text{ is heads} \\ 1, & if \omega \in S \text{ is tails} \end{cases}$$

In short, $X = \{0,1\}$

So,

- > We have an **experiment** (such as tossing a coin).
- > We give **values** to each event (subset of sample space).
- > The set of values is a Random Variable.

- A Random variable is a set of possible values from a random experiment.
- A random variable X on a sample space S is a function $X: S \longrightarrow R$ from S to the set of real numbers R, which assigns a real number X(S) to each sample point ω of sample space S.
- A random variable X is a function from a sample space S into the real numbers R.

PES UNIVERSITY

Example 1: Rolling a die once.

Solution: Now, Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Random Variable X = The number shown on the top face.

Here $X = \{1, 2, 3, 4, 5, 6\}.$

Let's find the probability value:

$$P(X = 1) = \frac{1}{6}$$
; $P(X = 2) = \frac{1}{6}$; $P(X = 3) = \frac{1}{6}$; $P(X = 4) = \frac{1}{6}$; $P(X = 5) = \frac{1}{6}$

$$P(X = 6) = \frac{1}{6}$$

Note that the sum of the probabilities = 1.

Types of random variables

- Random variables are classified into the following two categories:
- Discrete random variable
- Continuous random variable

Discrete random variable

 Discrete random variable: A random variable X is said to be discrete if it assumes a finite or countable number of distinct possible values.

Example:

- The number of people going to a cricket match.
- Number of people born in January.

Note that in all the examples mentioned above, we cannot have values like 1.1 or 1.2 or 2.1, and so on.

Continuous random variable

Continuous random variable: A random variable X is said to be continuous if it assumes infinite number of distinct possible values.

Example:

- Average age of people born in January.
- Average weight of people born in January.

Functions of random variables

- A random variable is a rule that assigns a numeric value to every possible outcome in a sample space S.
- A function of a random variable is another random variable that is derived from the original variable by applying a mathematical function to it.
- These functions transform the original random variable into a new one with different properties, such as its mean, variance, and probability distribution.
- The main functions of random variables include: Probability Density Function (PDF); Cumulative Distribution Function (CDF); Expected Value; Variance;
 Standard Deviation; and Moment Generating Function.

Department of Science and Humanities