DPENCLASSROOMS

Lena Verboom

Détection de faux billet

Projet 6: Détectez des faux billets

Contexte

Mission pour le ministère de l'intérieur

Lutte contre la criminalité en réprimant la fausse monnaie

Stratégie : Créer un algorithme de détection de faux billets

Analyse des caractéristiques billets (Longueur, hauteur, diagonal, marge...) [669]

Quelles sont les caractéristiques des vrais et faux billets?

ACP

K-means

Régression logistique

Conclusion

Diagonale du billet (mm) :

HO: Les moyennes des échantillons sont égales

Ha: Au moins une des moyennes est différentes

p value > 0.05 : Les moyennes de diagonal sont égales entre les différents billets

ACP

K-means

Régression logistique

Conclusion

Hauteur du billet coté gauche (mm) :

H0: Les moyennes des échantillons sont égales

Ha: Au moins une des moyennes est différentes p value < 0.05 : Il y a une différence significative des moyennes de l'hauteur coté gauche entre les différents billets

Hauteur du billet coté droit (mm) :

HO: Les moyennes des échantillons sont égales

Ha: Au moins une des moyennes est différentes p value < 0.05: Il y a une différence significative des moyennes de l'hauteur coté droit entre les différents billets

Marge entre le bord inférieure du billet et de l'image (mm) :

HO: Les moyennes des échantillons sont égales

Ha: Au moins une des moyennes est différentes

p value < 0.05: Il y a une différence significative
des moyennes de la marge bord inférieure entre les
différents billets

ACP

K-means

Régression logistique

Conclusion

Marge entre le bord supérieure du billet et de l'image (mm) :

HO: Les moyennes des échantillons sont égales

Ha: Au moins une des moyennes est différentes p value < 0.05: Il y a une différence significative des moyennes de la marge bord supérieure entre les différents billets

ACP

K-means

Régression logistique

Conclusion

Longueur du billet (mm):

p-value =9.4e-32

HO: Les moyennes des échantillons sont égales

Ha: Au moins une des moyennes est différentes p value < 0.05: Il y a une différence significative des moyennes de longueur entre les différents billets

Centrage et réduction des données avec StandardScaler :

```
array([[-0.42834385, 2.6694537 , 3.09656321, -0.13159013, -1.18987367, 0.28163308],
[-0.88755932, -1.09769709, -0.69125444, -0.86012554, -1.27473985, 0.78069736],
[-0.36274164, -1.03042654, -0.50943919, -0.30301023, -1.23230676, 1.37740465],
...,
[1.73652911, 0.68497248, 0.52084721, 0.38267015, 0.67718214, -2.05094997],
[-0.39554274, -0.32408577, -0.1458087, 0.16839504, 1.61071005, -0.75989238],
[0.06367273, -0.22317994, 0.06630909, 1.45404575, 0.38015054, -1.74717171]])
```

Transformation des variables [0 ; 1]

$$x_{scaled} = \frac{x - x_{moyenne}}{\sigma_{écart_type}}$$

Détermination du nombre de composantes :

True False

False centroide True centroide

Analyse en composantes principales :

Analyse en composantes principales

Deux groupes distincts avec quelques chevauchements

ACP

K-means

Régression logistique

Conclusion

Cercle de corrélation :

Corrélation positive entre la hauteur droite et gauche, entre la marge inférieure et supérieure

Corrélation négative entre la longueur et la marge inférieure

Méthode du clustering K-means :

Détermination du nombre de classes :

Méthode du coude :

Lancement du k-means avec différentes valeurs de nombre de groupe (K)

Détermination de l'inertie interclasse

Valeur de K au-delà de laquelle la diminution est plus faible

Clustering k-means sur les données brutes :

Clustering k-means sur les données brutes :

Clustering k-means sur les données PCA:

Clustering k-means sur les données PCA:

Régression logistique :

Méthode statistique de prédiction de classes binaires

Transformation régression linéaire en logistique pour une prédiction de probabilité

Matrice de confusion et classification report :

Evaluation des performances du modèle de classification

Courbe ROC:

Interprétation des variables avec SHAP:

Prédiction de l'impact de chaque variables

3 variables qui ont le plus d'impact pour la prédiction

Interprétation des variables avec SHAP :

Interprétation de prédiction local avec SHAP :

Faux billet

Vrai billet

Test de la fonction de prédiction :

☐ La régression logistique a permis **de prédire la probabilité** du billet à être vrai

- Les variables les plus impactant sont : margin low, margin up et length
- ☐ Plus la margin_low et up sont élevées plus les billets ont tendance à être faux

- ☐ Plus la longueur est grande plus les billets ont tendance à être vrai
- ☐ La fonction de prédiction possède une précision de 1 (il n'y a pas eu de mauvaises classifications)

Merci pour votre attention

