En esta práctica se implementa un esquema en diferencias finitas explícito para la ecuación del calor. El esquema es el siguiente:

$$u_i^{n+1} = u_i^n + \frac{k\Delta t}{\Delta x^2} (u_{i+1} - 2u_i^n + u_{i-1}^n) + \Delta t F(x_i, t_n),$$

donde F es el término fuente y k es el coeficiente de difusión. Este esquema es estable bajo la condición CFL $\Delta t \leq \frac{\Delta x^2}{2k}$.

Resolveremos la ecuación en el intervalo [0,10] con tiempo máximo T=20 y tomando $\Delta x=0'5$ y k=1. Con el dato inicial $f(x)=\sin(\frac{\pi x}{10})$, la solución exacta del problema es $u(x,t)=\sin(\frac{\pi x}{10})\exp(-(\frac{\pi}{10})^2t)$.

Primero consideramos condiciones de Dirichlet homogéneas en los extremos. Tomando $\Delta t = 0'2$, no se verifica la condición CFL porque $\frac{\Delta x^2}{2k} = 0'125$. Al ejecutar la función calor_dirichlet con estos datos se observa que la solución aproximada explota alrededor de t = 10.

Tomando $\Delta t = 0'125$, sí se verifica la condición CFL y al ejecutar la función anterior se observa que la gráfica de la solución aproximada coincide con la de la solución exacta.

Ahora comparamos el error cometido con $\Delta x = 0'5$ y $\Delta x = 0'25$. En ambos casos, se toma $\Delta t = \frac{\Delta x^2}{2}$ para que se verifique la condición CFL.

Vemos que al reducir Δx a la mitad, el error cometido es aproximadamente cuatro veces menor. Esto ocurre porque el esquema empleado es de orden 2 en x.

A continuación, construimos un problema con condiciones de Neumann en los extremos que siga teniendo a $u(x,t)=\sin(\frac{\pi x}{10})\exp(-(\frac{\pi}{10})^2t)$ como solución exacta. Para obtener las

condiciones de Neumann, derivamos u respecto de x y evaluamos en los extremos:

$$u_x(0,t) = \frac{\pi}{10} \exp\left(-\left(\frac{\pi}{10}\right)^2 t\right),$$

$$u_x(10,t) = -\frac{\pi}{10} \exp\left(-\left(\frac{\pi}{10}\right)^2 t\right).$$

Ahora ejecutamos la función calor_neumann con $\Delta x=0'5$ y $\Delta x=0'25$, tomando en ambos casos $\Delta t=\frac{\Delta x^2}{2}$ para que se cumpla la condición CFL.

De nuevo, al reducir Δx a la mitad se comete un error aproximadamente cuatro veces menor, y esto se debe a que el esquema es de orden 2 en x.