Aprendizagem Baseada em Instâncias

Fabrício Jailson Barth

fabricio.barth@gmail.com

Sumário

- Problema (Blue Flag Iris)
- Espaço Euclidiano
- Aprendizagem Baseada em Instâncias (Modelos Baseados em Distâncias)
- Regra kNN (k vizinhos mais próximos)

Problema

Blue Flag Iris

- Considere uma base de dados sobre um determinado tipo de flor.
- Esta base de dados possui informações sobre o comprimento e largura do caule e das pétalas de várias flores parecidas (todas azuis).

- A Blue Flag Iris é classificada em três tipos:
 - ★ Iris Setosa.
 - * Iris Versicolor.
 - ★ Iris Virginica.

Blue Flag Iris - Dados

```
REAL
    @ATTRIBUTE sepallength
1
    @ATTRIBUTE sepalwidth
                              R.E.A.L.
2
    @ATTRIBUTE petallength
                              REAL
3
    @ATTRIBUTE petalwidth
                              REAL
4
    @ATTRIBUTE class
                              {Iris-setosa, Iris-versicolor,
5
                         Iris-virginica}
6
    @DATA
7
    5.1,3.5,1.4,0.2, Iris-setosa
8
    4.9,3.0,1.4,0.2, Iris-setosa
9
    4.7,3.2,1.3,0.2, Iris-versicolor
10
    5.0,3.6,1.4,0.2, Iris-versicolor
11
    6.6,2.9,4.6,1.3, Iris-virginica
12
    5.2,2.7,3.9,1.4, Iris-virginica
13
```

Todas as medidas são em cm.

Blue Flag Iris - Problema

- O que faz uma Blue Flag Iris ser do tipo Iris Setosa, Iris Versicolor ou Iris Virginica?
- Como extrair esta informação a partir dos dados existentes?

Aplicando uma abordagem baseada em instâncias

- Muitos métodos de aprendizagem constroem uma descrição geral e explícita da função alvo a partir de exemplos de treinamento.
- Os métodos de aprendizagem baseados em instâncias simplesmente armazenam os exemplos de treinamento.

- A generalização é feita somente quando uma nova instância é classificada.
- Métodos de aprendizagem baseados em instâncias assumem que as instâncias podem ser representadas como pontos em um espaço euclidiano.

Espaço Euclidiano

x = Petal Width, y = Petal Length, z = Sepal Length.

Espaço Euclidiano

- (Petal Width, Petal Length) 2-dimensional
- (Petal Width, Petal Length, Sepal Length)
 3-dimensional
- (Petal Width, Petal Length, Sepal Length, Sepal Width) 4-dimensional

Aprendizagem Baseada em Instâncias

- A aprendizagem consiste somente em armazenar os exemplos de treinamento.
- Após a aprendizagem, para encontrar o valor do conceito alvo associado a uma nova instância, um conjunto de instâncias similares são buscadas na memória e utilizadas para classificar a nova instância.

- No final, teremos um conjunto de distâncias (medida de similaridade) entre a nova instância e todos os exemplos de treinamento.
- Qual o valor do conceito alvo (classe) atribuímos à nova instância? O conceito alvo associado ao exemplo de treinamento mais similar !!

Exemplo com nova instância

x = Petal Width, y = Petal Length, z = Sepal Length.

Aprendizagem k-NN

- k-NN = K Nearest Neighbor = k vizinhos mais próximos.
- O algoritmo k-NN é o método de aprendizagem baseado em instâncias mais elementar.

- O algoritmo k-NN assume que todas as instâncias correpondem a pontos em um espaço n-dimensional (\Re^n) .
- Os "vizinhos mais próximos" de uma instância são definidos em termos da distância Euclidiana.

$$|\overrightarrow{x} - \overrightarrow{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \tag{1}$$

Aprendizagem *k*-NN

- A regra dos vizinhos mais próximos:
- Classificar a nova instância, atribuindo a ela o rótulo mais freqüente entre as k amostras mais próximas.

Classificando a nova instância

Classificando a nova instância (k=1)

Classificando a nova instância (k=2)

Classificando a nova instância (k=3)

Classificando a nova instância (k=4)

Exemplo *k*-NN

- k=3 (valor ímpar) e $e_i = (0.10, 0.25)$
- Exemplos de treinamento:
 - \star (0.15, 0.35, c_1)
 - \star (0.10, 0.28, c_2)
 - \star (0.09, 0.30, c_5)
 - \star (0.12, 0.20, c_2)

• Os vetores mais próximos a e_i , com suas classes, são:

$$\star$$
 (0.10, 0.28, c_2)

$$\star$$
 (0.12, 0.20, c_2)

$$\star$$
 (0.15, 0.35, c_1)

• Uma votação atribui a classe c_2 a e_i , pois c_2 é a classe representada com mais freqüencia.

Como escolher o melhor k?

- Escolher o valor de **k** é crítico.
- Um k muito pequeno resulta em uma solução que não tolera ruído.
- Um k muito grande vai contra a filosofia do KNN.
- Regra genérica para escolha de k:

$$k = n^{(1/2)} (2)$$

Cuidado: normalizar dados

```
normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}</pre>
```

Knn no R

```
data(iris)
normalize <- function(x) {</pre>
return ((x - min(x)) / (max(x) - min(x)))
}
iris_norm <- as.data.frame(lapply(iris[1:4], normalize))</pre>
summary(iris_norm)
set.seed(1234)
ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.67, 0.33))</pre>
iris.training <- iris[ind==1, 1:4]</pre>
iris.test <- iris[ind==2, 1:4]</pre>
iris.trainLabels <- iris[ind==1, 5]</pre>
iris.testLabels <- iris[ind==2, 5]</pre>
library(class)
iris_pred <- knn(train = iris.training, test = iris.test, cl = iris.trainLabels, k=3)</pre>
t <- table(iris_pred, iris.testLabels)</pre>
t
```

Problema — Knn no R

Considerações

Vantagens:

* A informação presente nos exemplos de treinamento nunca é perdida.

Desvantagens:

- ⋆ Toda a computação ocorre no momento da classificação!!!
- * A computação aumenta com a quantidade de exemplos de treinamento.

References

[Mitchell, 1997] Mitchell, T. M. (1997). *Machine Learning*. McGraw-Hill.