ECE8843 Assignment 2 : Learning Robot Control Strategies

Ana Huamán Quispe

I. Problem Statement

Robby, the Soda-Can-Collecting robot has the job of cleaning up his environment by collecting soda cans. His gridded world is shown in Fig.I:

Fig. 1. 10×10 gridded world

A. Actions

The robot has 7 possible actions:

- North: Move one grid up
- South: Move one grid down
- East: Move one grid right
- West: Move one grid left
- Stay: Stay on same location
- Pick up: Stay, bend and pick up can (if any)
- Random: Any of the above

The number of allowed actions per episode is 200.

B. Rewards

- Move (North, South, East or West): -1
- Bump wall: -5
- Failed pick up: -2
- Successful pick up: +10

The author is with the Georgia Institute of Technology, Atlanta, GA.ahuaman3@gatech.edu

C. States

Robot states are composed of 5 variables, each of which can have 3 possible values:

- Current Grid: Free, Can or Wall
- North Grid: Free, Can or Wall
- South Grid: Free, Can or Wall
- East Grid: Free, Can or Wall
- West Grid: Free, Can or Wall

Having a total of $3^5 = 243$ states

II. Greedy Approach

We solved the problem by using a simple variant of the well-known ϵ – greedy approach. At each time step, the robot has two possible ways to choose an action:

- With probability ϵ : Choose a random action such that the robot does not bump into walls (north, south, east, west, stay or pick up)
- With probability 1ϵ : Choose the action with highest reward, that is:
 - If $CURRENT_GRID$ is $CAN \rightarrow$ Action is $PICK_UP$
 - Else
 - * If NORTH_GRID is $CAN \rightarrow Action$ is NORTH
 - * If $SOUTH_GRID$ is $CAN \rightarrow Action$ is SOUTH
 - * If EAST_GRID is $CAN \rightarrow Action$ is EAST
 - * If WEST_GRID is $CAN \rightarrow Action$ is WEST
 - * Else \rightarrow Action is *RANDOM*

Although fairly simple, this approach works moderately well. Table I shows the results obtained in 10 runs of our program with randomly generated starting positions:

 $\label{eq:table in table in$

Episode	Start Location	Final Value	Cans Picked
0	(3, 1)	-38	15
1	(0, 2)	-39	15
2	(8, 3)	6	19
3	(6, 4)	-35	15
4	(0, 3)	-58	13
5	(8, 2)	-62	13
6	(8, 8)	-17	17
7	(8,5)	6	19
8	(1,3)	-69	12
9	(8, 4)	-16	17

III. Sample Trial Run

To exemplify the usefulness of our approach we provide the result of $01\ \text{run}$ of our code. The output is attached on the zip file containing this .pdf (name of the document is sampleRun.txt)