

Mining Data Streams (Part 2)

A. Farzindar farzinda@usc.edu

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org

Today's Lecture

- More algorithms for streams:
 - Sampling data from a stream
 - Filtering a data stream: Bloom filters
 - Counting distinct elements: Flajolet-Martin
 - Estimating moments: AMS method.

Sampling from a data stream

- Method 1: sample a fixed portion of elements
 - e.g., 1/10

Method 2: maintain a fixed-size sample.

Sampling from a Data Stream: Sampling a fixed proportion

 As the stream grows the sample also gets bigger

Sampling from a Data Stream

- Since we can not store the entire stream,
 one obvious approach is to store a sample
- Two different problems:
 - (1) Sample a **fixed proportion** of elements in the stream (say 1 in 10)
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k we would like a random sample of s elements
 - What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has equal prob. of being sampled.

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the query if the integer is 0, otherwise discard.

Example: Unique search queries

- The length of the sample is 10% of the length of the whole stream
- Suppose a query is unique
 - It has a 10% chance of being in the sample
- Suppose a query occurs exactly twice in the stream
 - It has an 18% chance of appearing exactly once in the sample.
 - **(1/10 · 9/10)+(9/10 · 1/10)=0.18**
- And so on ... The fraction of unique queries in the stream is unpredictably large.

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only d/100 pairs of duplicates
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of d "duplicates" 18d/100 appear exactly once
 - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
 - d_i selected, d_i' not selected: 1/10 * 9/10
 - d_i not selected, d_i' selected: 9/10 * 1/10
 - So the sample-based answer is $\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d} \neq d/(x + d)$

Solution: Sample Users

Our mistake: we sampled based on the position in the stream, rather than the value of the stream element

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets.

Generalized Solution

- Stream of tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - Choice of key depends on application
- To get a sample of a/b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Sampling from a Data Stream: Sampling a fixed-size sample

 As the stream grows, the sample is of fixed size

Problem with fixed portion sample

- Sample size may grow too big when data stream in
 - Even 10% could be too big
- Idea: throw away some queries
- Key: do this consistently
 - remove all or none of occurrences of a query.

Controlling the sample size

- Put an upper bound on the sample size
 - Start out with 10%

- Solution:
- Hash queries to a large # of buckets, say 100
 - Take for the sample those elements hashing to buckets 0 through 9.
- When sample grows too big, throw away bucket 9
- Still too big, get rid of 8, and so on.

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*.

Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream.

Applications

Example: Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam

Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest.

Filtering Stream Content

- Consider a web crawler
- It keeps a list of all the URL's it has found so far
- It assigns these URL's to any of a number of parallel tasks;
 - these tasks stream back the URL's they find in the links they discover on a page
- It needs to filter out those URL's it has seen before.

Role of the Bloom Filter

- A Bloom filter placed on the stream of URL's will declare that certain URL's have been seen before
- Others will be declared new, and will be added to the list of URL's that need to be crawled
- Unfortunately, the Bloom filter can have false positives
 - It can declare a URL has been seen before when it hasn't
 - But if it says "never seen," then it is truly new (no False Negative).

How a Bloom Filter Works

- A Bloom filter is an array of bits, together with a number of hash functions
- The argument of each hash function is a stream element, and it returns a position in the array
- Initially, all bits are 0
- When input x arrives, we set to 1 the bits h(x),
- for each hash function h.

Example: Bloom Filtering

- Use N = 11 bits for our filter
- Stream elements = integers
- Use two hash functions:
 - h1(x) =
 - Take odd numbered bits from the right in the binary representation of x
 - Treat it as an integer i
 - Result is i modulo 11
- h2(x) = same, but take **even numbered** bits.

Example: Building the filter

 $h_1(x) = odd position bits from the right$

 $h_2(x) = even position$

Stream element	h ₁	h_2	Filter
			0 0 0 0 0 0 0 0 0 0
25 = 1 1 0 0 1	5	2	0 0 1 0 0 1 0 0 0 0
159 = 10011111	7	O	1 0 1 0 0 1 0 1 0 0
585 = 1 0 0 1 0 0 1 0 0 1	9	7	1 0 1 0 0 1 0 1 0 1 0

Bloom Filter Lookup

- Suppose element y appears in the stream, and we want to know if we have seen y before
- Compute h(y) for each hash function y
- If all the resulting bit positions are 1, say we have seen y before (false positive)
- If at least one of these positions is 0, say we have not seen y before (false negative).

Example: Lookup

- Suppose we have the same Bloom filter as before, and we have set the filter to 10100101010.
- Lookup element y = 118 = 1110110 (binary).
- h1(y) = 14 modulo 11 = 3.
- h2(y) = 5 modulo 11 = 5.
- Bit 5 is 1, but bit 3 is 0, so we are sure y is not in the set.

Performance of Bloom Filters

- Probability of a false positive depends on the density of 1's in the array and the number of hash functions
 - = (fraction of 1's)# of hash functions
- The number of 1's is approximately the number of elements inserted times the number of hash functions
 - But collisions lower that number slightly.

Analysis: Throwing Darts (1)

- Turning random bits from 0 to 1 is like throwing d darts at t targets, at random
- More accurate analysis for the number of false positives
- Consider: If we throw d darts into t equally likely targets, what is the probability that a target gets at least one dart?
- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items.

Analysis: Throwing Darts (2)

- We have d darts, t targets
- What is the probability that a target gets at least one dart?
- Probability a given target is hit by a given dart

$$= 1/t$$

 Probability non of d darts hit a given target is

$$=(1-1/t)^{d}$$

Analysis: Throwing Darts (2)

- We have d darts, t targets
- What is the probability that a target gets at least one dart?

Example: Throwing Darts

- Fraction of 1s in the array B =
 = probability of false positive = 1 e^{-d/t}
- Example: Suppose we use an array of 1 billion bits, 5 hash functions, and we insert 100 million elements
- That is, $t = 10^9$, and $d = 5*10^8$
 - The fraction of 0's that remain will be $e^{-1/2} = 0.607$
 - Density of 1's = 0.393
- Probability of a false positive = (0.393) ⁵ = 0.00937.

Summary

- More algorithms for streams:
 - Sampling data from a stream
 - Method 1: sample a fixed portion of elements
 - Method 2: maintain a fixed-size sample
 - Filtering a data stream: Bloom filters
 - Counting distinct elements: Flajolet-Martin
 - Estimating moments: AMS method.