

Freeform Search

	US Pre-Grant Publication Full-Text Database
	US Patents Full-Text Database
	US OCR Full-Text Database
Database:	EPO Abstracts Database
	JPO Abstracts Database
	Derwent World Patents Index
	IBM Technical Disclosure Bulletins

Term:

Display: Documents in Display Format: Starting with Number

Generate: Hit List Hit Count Side by Side Image

Search History

DATE: Tuesday, June 06, 2006 [Printable Copy](#) [Create Case](#)

<u>Set Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
result set			
<u>DB=PGPB,USPT,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR</u>			
<u>L13</u>	l9 and l12	1	<u>L13</u>
<u>L12</u>	determin\$ near3 l1 near2 access\$	18	<u>L12</u>
<u>L11</u>	l5 near2 l6 near3 l1	6	<u>L11</u>
<u>L10</u>	l8 and L9	1	<u>L10</u>
<u>L9</u>	l5 near3 l1	87	<u>L9</u>
<u>L8</u>	l3 adj2 l4	181	<u>L8</u>
<u>L7</u>	l1 adj2 l1	312	<u>L7</u>
<u>L6</u>	state	3429802	<u>L6</u>
<u>L5</u>	cache adj2 line	10313	<u>L5</u>
<u>L4</u>	counter	910357	<u>L4</u>
<u>L3</u>	prefetch\$	10785	<u>L3</u>
<u>L2</u>	nonspeculative	102	<u>L2</u>
<u>L1</u>	speculative	6682	<u>L1</u>

END OF SEARCH HISTORY

Freeform Search

	<input type="checkbox"/> US Pre-Grant Publication Full-Text Database
	<input type="checkbox"/> US Patents Full-Text Database
	<input checked="" type="checkbox"/> US OCR Full-Text Database
Database:	<input type="checkbox"/> EPO Abstracts Database
	<input type="checkbox"/> JPO Abstracts Database
	<input type="checkbox"/> Derwent World Patents Index
	<input type="checkbox"/> IBM Technical Disclosure Bulletins

Term:

Display: **Documents in Display Format:** **Starting with Number**

Generate: Hit List Hit Count Side by Side Image

Search History

DATE: **Tuesday, June 06, 2006** [Printable Copy](#) [Create Case](#)

Set Name **Query**
side by side

Hit Count **Set Name**
result set

DB=PGPB,USPT,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR

L1 (speculative near3 cach\$) and pollution 17 L1

END OF SEARCH HISTORY

View Selected Items

BROWSE

SEARCH

IEEE Xplore Guide

SUPPORT

Results for " (((speculativ and cach)<in>m tadata))<and>(p lluti n<in>metadata)) "
Your search matched 3 of 103 documents. You selected 3 items.[e-mail](#)[printer friendly](#)[» Download Citations](#)Display Format: Citation Citation & Abstract[Citation & Abstract](#)[Article Information](#)[View: 1-3](#) | [View Search Results](#)[ASCII Text](#)[» Learn more](#)[» Key](#)

IEEE JNL IEEE Journal or Magazine

IEE JNL IEE Journal or Magazine

IEEE CNF IEEE Conference Proceeding

IEE CNF IEE Conference Proceeding

IEEE STD IEEE Standard

1. Using incorrect speculation to prefetch data in a concurrent multithreaded processor

Ying Chen; Sendag, R.; Lija, D.J.

[Parallel and Distributed Processing Symposium, 2003. Proceedings. International](#)

22-26 April 2003

Page(s): 9 pp.-

Digital Object Identifier 10.1109/IPDPS.2003.1213177

Summary: Concurrent multithreaded architectures exploit both instruction-level and thread-level parallelism through a combination of branch prediction and thread-level control speculation. The resulting speculative issuing of load instructions in these archi.....[AbstractPlus](#) | [Full Text: PDF](#) [IEEE CNF](#)**2. Accurate modeling of aggressive speculation in modern microprocessor architectures**

Modi, H.; Spracklen, L.; Chou, Y.; Abraham, S.G.

[Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 2005. 13th IEEE International Symposium on](#)

27-29 Sept. 2005

Page(s): 75- 84

Digital Object Identifier 10.1109/MASCOTS.2005.12

Summary: Computer architects utilize cycle simulators to evaluate microprocessor chip design tradeoffs and estimate performance metrics. Traditionally, cycle simulators are either trace-driven or execution-driven. In this paper, we describe ValueSim, a softw.....[AbstractPlus](#) | [Full Text: PDF](#) [IEEE CNF](#)**3. An analysis of the performance impact of wrong-path memory references on out-of-order and runahead execution processors**

Mutlu, O.; Kim, H.; Armstrong, D.N.; Patt, Y.N.

[Computers, IEEE Transactions on](#)

Volume: 54 Issue: 12 Dec. 2005

Page(s): 1556- 1571

Digital Object Identifier 10.1109/TC.2005.190

Summary: High-performance, out-of-order execution processors spend a significant portion of their execution time on the incorrect program path even though they employ aggressive branch prediction algorithms. Although memory references generated on the wrong[AbstractPlus](#) | [References](#) | [Full Text: PDF](#) [IEEE JNL](#)[View: 1-3](#) | [View Search Results](#) | [Back to top](#)[Help](#) [Contact Us](#) [Privacy & Security](#) [IEEE.org](#)

© Copyright 2006 IEEE – All Rights Reserved

[Search Session History](#)[BROWSE](#)[SEARCH](#)[IEEE XPLOR GUIDE](#)[SUPPORT](#)

Edit an existing query or
compose a new query in the
Search Query Display.

Tue, 6 Jun 2006, 1:36:01 PM EST**Search Query Display** **Select a search number (#)****t :**

- Add a query to the Search Query Display
- Combine search queries using AND, OR, or NOT
- Delete a search
- Run a search

Recent Search Queries

		Results
<u>#1</u>	((speculative and cache)<in>metadata)	103
<u>#2</u>	((((speculative and cache)<in>metadata))<AND>(pollution<in>metadata))	3
<u>#3</u>	((((speculative and cache)<in>metadata))<AND>(pollution<in>metadata))	3

[Help](#) [Contact Us](#) [Privacy & Security](#) [IEEE.org](#)

© Copyright 2006 IEEE – All Rights Reserved