4 (CWATRO)

1° Rec. Parcial 07/06/2018

Apellido: SKACKAUSKAS Padrón: 97198

Problema 1. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{bmatrix} 5 & 1 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Se desea calcular iterativamente su solución utilizando el método de Gauss-Seidel. Se pide:

- a) Justificar teóricamente su convergencia
- b) Efectuar tres iteraciones arrancando de x1 = 0.1, x2 = 0.1, x3=1.0, x4=0.1. Estimar en cada una de ellas una cota del error de truncamiento.

Problema 2. El siguiente polinomio posee una raíz en el intervalo [140, 160]:

$$y(x) = 1.00 x^3 - 191x^2 + 6130x - 9720$$

- Aplicar el método de la secante para obtener la raíz x* con un error absoluto menor a 0.05.
 Elegir con algún criterio los valores semilla. Escribir el resultado final correctamente redondeado.
- b) Si se considera que el primer coeficiente del polinomio (1.00) puede tener un error relativo de 1%, hallar de manera experimental una cota del error para la raíz hallada.
- c) Dada esta incertidumbre, ¿con cuántos dígitos significativos y medianamente significativos se conoce realmente la raíz?

Problema 3. En un circuito electrónico se realiza una medición a la salida de una de sus etapas y se obtienen los siguientes valores de tensión en función del tiempo:

Tiempo (seg)	0	0,5	Name and Address of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, which is the Owner,				The second second second	3,5		4,5	5
Tensión (V)	3,712	2,322	1,307	1,210	1,349	1,710	1,740	1,555	1,317	1,160	1,110

Se desea hallar una relación para la tensión (V) en función del tiempo (t), para lo cual se propone utilizar la siguiente ley:

$$V = C_1 \cdot e^{-0.1t} + C_2 \cdot e^{-0.5t} \cdot sen(2t + \pi/2)$$

- a) Utilizar el método de los cuadrados mínimos para determinar los valores más apropiados para los parámetros.
- b) Obtener el valor del error cuadrático total.


```
problems (3)
                                sec (25+ 1)
     b = e -019t sen (22 + T)
 PH = 3,712
   21822
                       0,951
                      0,905
    11307
    4,210
    4,349
                      0,819
                      0,339
                                      180,0
    11740
                      0,741
                                       0,244
    1,555
                                       0,131
                      0,405
                      0,630
                                       0,000
   1,160
                                       -0,096
                      0,638
    1,440
                      0,607
                                       -0,069
  =>(7,195 C1 +0,770C2=14,915
    0,770 C1 + 4,601 C2 = 3,614
    V=1,931 e-0,1E +1,329 e seu (2+ T
b) E = Z(H*(t) - H(t))
   E=0,204 + 0,005 + 0,011 + 0,029 + 0,008 + 0,000 +
        0,001 +0,001 +0,0024 + 0,003 +0,001
           E=0,275
```