

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS (CEFET-MG)
CAMPUS DIVINÓPOLIS

Detector de Pulsares Educativo v2.0

Sistema Interativo de Processamento Digital de Sinais Aplicado à Detecção de Pulsares Astronômicos

> Matheus Emanuel da Silva João Paulo Faria da Cunha

Sinais e Sistemas Lineares Engenharia de Computação – 5º Período

> Divinópolis, MG 23 de julho de 2025

Sumário

1	Sob	re o Pro	ojeto		3		
	1.1	O que	e são Pulsares?	•	. 3		
2	Objetivos Educacionais 4						
	2.1	Conce	eitos de Sinais e Sistemas		. 4		
	2.2	Habili	lidades Práticas	•	. 4		
3	Instalação e Configuração						
	3.1	Pré-re	equisitos				
	3.2	Instala	ação Automática				
		3.2.1	Windows		. 5		
		3.2.2	PowerShell		. 5		
		3.2.3	Linux/Mac		. 5		
	3.3	Instala	lação Manual		. 6		
	3.4	Deper	ndências	•	. 6		
4	Tuto	orial Co	ompleto		7		
	4.1	Modo	os de Operação		. 7		
		4.1.1	Modo Educativo		. 7		
		4.1.2	Modo Aleatório		. 7		
	4.2	Passo	a Passo Detalhado		. 7		
		4.2.1	Passo 1: Geração de Componentes				
		4.2.2	Passo 2: Superposição Linear				
		4.2.3	Passo 3: Adição de Ruído				
		4.2.4	Passo 4: Filtragem Digital				
		4.2.5	Passo 5: Análise FFT				
5	Fun	damen	ntos Teóricos		9		
	5.1	Maten	mática dos Sinais		. 9		
		5.1.1	Síntese por Superposição		. 9		
		5.1.2	Amostragem e Discretização				
		5.1.3	Filtragem Digital				
		5.1.4	Transformada de Fourier Discreta (DFT)				
	5.2		dos Pulsares				
		5.2.1	Formação e Estrutura				
		522			10		

6	Con	Como Usar					
	6.1	Interface do Usuário	11				
	6.2	Fluxo de Trabalho	12				
7	Desenvolvimento						
	7.1	Estrutura do Projeto	13				
		Arquitetura do Sistema					

Sobre o Projeto

Este simulador educativo combina **astrofísica** e **processamento digital de sinais** para criar uma experiência de aprendizado única. Os usuários exploram desde conceitos básicos de superposição de ondas até técnicas avançadas de análise espectral, tudo no contexto da detecção de pulsares – estrelas de nêutrons que são alguns dos objetos mais extremos do universo.

1.1 O que são Pulsares?

Pulsares são estrelas de nêutrons altamente magnetizadas que rotacionam rapidamente (até 700 vezes por segundo!). Elas emitem feixes de radiação eletromagnética que, quando apontados para a Terra, são detectados como pulsos regulares – funcionando como "faróis cósmicos" com precisão comparável a relógios atômicos.

Características importantes:

- Massa: 1.4 massas solares comprimidas em ~20 km de diâmetro.
- Rotação: De milissegundos a segundos por rotação.
- Emissão: Radiação em múltiplas frequências simultaneamente.
- Precisão: Alguns são mais precisos que relógios atômicos.

Objetivos Educacionais

2.1 Conceitos de Sinais e Sistemas

- Síntese de Sinais: Superposição de componentes senoidais.
- Amostragem Digital: Teorema de Nyquist e discretização.
- Sistemas LTI: Linearidade e invariância temporal.
- **Filtragem Digital**: Filtros passa-baixa Butterworth.
- Análise Espectral: Transformada de Fourier (FFT).
- Processamento de Ruído: Relação sinal-ruído (SNR).

2.2 Habilidades Práticas

- Implementação de algoritmos de processamento digital.
- Análise de sinais no domínio tempo-frequência.
- Detecção de periodicidade em sinais ruidosos.
- Interpretação de espectros de potência.
- Configuração de parâmetros de filtragem.

Instalação e Configuração

3.1 Pré-requisitos

```
Python 3.8 ou superior

2 Git (para clonagem do reposit rio)
```

3.2 Instalação Automática

3.2.1 Windows

```
# Execute o script de instalacao
2 run.bat
```

3.2.2 PowerShell

```
# Execute o script PowerShell
2 .\\run.ps1
```

3.2.3 Linux/Mac

```
# Clone o repositorio
git clone https://github.com/Matheus-Emanuel23/Trabalho-Final-SSL.git
cd Trabalho-Final-SSL

# Crie ambiente virtual
python3 -m venv venv
source venv/bin/activate

# Instale dependencias
pip install -r requirements.txt

# Execute a aplicacao
python src/main_app.py
```

3.3 Instalação Manual

1. Clone o repositório:

```
git clone https://github.com/Matheus-Emanue123/Trabalho-Final-SSL.git cd Trabalho-Final-SSL
```

2. Crie um ambiente virtual:

```
python -m venv .venv

# Windows
venv\Scripts\activate

# Linux/Mac
source .venv/bin/activate
```

3. Instale as dependências:

```
pip install -r requirements.txt
```

4. Execute a aplicação:

```
python src/main_app.py
```

3.4 Dependências

- numpy: Computação numérica e arrays.
- matplotlib: Visualização de gráficos e plots.
- scipy: Algoritmos científicos (filtros, FFT).
- **tkinter**: Interface gráfica (incluído no Python).

Tutorial Completo

4.1 Modos de Operação

4.1.1 Modo Educativo

- Características: Parâmetros fixos e reproduzíveis.
- **Componentes**: 3 senoides bem definidas (5, 15, 25 Hz).
- **Objetivo**: Demonstração clara dos conceitos.
- Ideal para: Primeira experiência e aprendizado.

4.1.2 Modo Aleatório

- Características: Simulação realística.
- Variações: Pulsar típico, sinal irregular, apenas ruído.
- Desafio: Nem sempre há pulsar detectável!
- **Ideal para**: Teste de conhecimento e casos reais.

4.2 Passo a Passo Detalhado

4.2.1 Passo 1: Geração de Componentes

O que acontece:

- Criação de 2-5 componentes senoidais independentes.
- Cada componente tem frequência, amplitude e fase específicas.
- Visualização individual de cada onda.

Conceitos aplicados:

$$x_i(t) = A_i \cdot \sin(2\pi f_i \cdot t + \phi_i) \tag{4.1}$$

Onde A_i é a amplitude, f_i é a frequência em Hz e ϕ_i é a fase inicial.

4.2.2 Passo 2: Superposição Linear

O que acontece:

- Soma algébrica de todas as componentes.
- Demonstração do princípio da superposição.

Conceitos aplicados:

$$x(t) = \sum_{i} x_i(t) = \sum_{i} A_i \cdot \sin(2\pi f_i \cdot t + \phi_i)$$

$$(4.2)$$

4.2.3 Passo 3: Adição de Ruído

O que acontece:

- Adição de ruído gaussiano branco.
- Simulação de condições reais de detecção.

Conceitos aplicados:

$$y(t) = x(t) + n(t) \tag{4.3}$$

Onde n(t) é o ruído gaussiano. A Relação Sinal-Ruído (SNR) é calculada como:

$$SNR = 10 \cdot \log_{10} \left(\frac{P_{\text{sinal}}}{P_{\text{ruído}}} \right) \quad [dB]$$
 (4.4)

4.2.4 Passo 4: Filtragem Digital

O que acontece:

- Aplicação de filtro Butterworth passa-baixa.
- Remoção de componentes de alta frequência (ruído).

Parâmetros configuráveis:

- Frequência de corte: 35 Hz (ajustável).
- Ordem: 5^a ordem.
- Tipo: Butterworth (resposta maximalmente plana).

4.2.5 Passo 5: Análise FFT

O que acontece:

- Transformada de Fourier do sinal filtrado.
- Cálculo do espectro de potência.
- Detecção automática de picos de frequência.

Conceitos aplicados: A Transformada de Fourier X(f) e o Espectro de Potência P(f).

$$X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j2\pi ft} dt$$
 (4.5)

$$P(f) = |X(f)|^2 (4.6)$$

O período é então calculado como T = 1/f.

Fundamentos Teóricos

5.1 Matemática dos Sinais

5.1.1 Síntese por Superposição

A base matemática dos pulsares reside na síntese de Fourier. Para nosso simulador, usamos uma aproximação finita:

$$x(t) = \sum_{i=1}^{N} A_i \sin(2\pi f_i t + \phi_i)$$
 (5.1)

5.1.2 Amostragem e Discretização

O teorema de Nyquist garante que a frequência de amostragem (f_s) deve ser pelo menos o dobro da frequência máxima do sinal (f_{max}):

$$f_s \ge 2 \cdot f_{\text{max}} \tag{5.2}$$

No projeto, usamos $f_s = 1000$ Hz para um f_{max} de 50 Hz, garantindo uma margem de segurança de 10x (oversampling).

5.1.3 Filtragem Digital

O filtro Butterworth de ordem N tem uma resposta em frequência ao quadrado dada por:

$$|H(j\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^{2N}}$$
 (5.3)

Onde ω_c é a frequência de corte angular e N é a ordem do filtro.

5.1.4 Transformada de Fourier Discreta (DFT)

A DFT é calculada eficientemente pela FFT (Fast Fourier Transform):

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi kn}{N}}$$
(5.4)

A complexidade computacional é da ordem de $O(N \log N)$.

5.2 Física dos Pulsares

5.2.1 Formação e Estrutura

- Colapso gravitacional: Estrela massiva se torna uma estrela de nêutrons.
- Conservação do momento angular: Resulta em rotação extremamente rápida.
- Campo magnético: Intenso, da ordem de 10^8 a 10^{15} Gauss.

5.2.2 Mecanismo de Emissão

- Aceleração de partículas: O campo magnético rotativo acelera partículas.
- Radiação síncrotron: Elétrons relativísticos emitem radiação.
- **Efeito farol**: O cone de emissão, alinhado com o eixo magnético, varre o espaço. Se cruzar a Terra, detectamos um pulso.

Como Usar

6.1 Interface do Usuário

Painel Lateral Contém a barra de progresso, botões de controle, seletor de modo e o banco de conhecimento.

Área Principal Exibe os gráficos em tempo real, com uma barra de ferramentas para navegação (zoom, pan, salvar).

Barra de Status Mostra a operação atual e um indicador visual de status.

A imagem 6.1 apresenta a intefeace gráfica do software em questão, ilustrando detalhadamente cada aspecto citado acima.

Figura 6.1: Interface do software exibindo os sinais obtidos após o processamento, incluindo o sinal original com ruído, o sinal filtrado e o espectro de potência.

6.2 Fluxo de Trabalho

- 1. **Inicialização**: Escolha o modo (educativo/aleatório) e clique em "Gerar Componentes".
- 2. **Execução Sequencial**: Execute os passos em ordem, observando as visualizações e lendo as explicações.
- 3. **Análise de Resultados**: Interprete os espectros de potência para identificar as frequências do pulsar.
- 4. **Experimentação**: Use "Reinicializar Sistema" para novas simulações e explore diferentes cenários.

De forma detalhada, a imagem 6.2 apresenta os gráficos gerados após executadas todas as etapas de processamento do sinais gerados pelo software.

Figura 6.2: Gráficos gerados pelo software, mostrando os sinais filtrados após o processamento.

Desenvolvimento

7.1 Estrutura do Projeto

```
Trabalho-Final-SSL/
|-- src/
  |-- main_app.py
                    # Interface principal e logica
   |-- generate_signal.py # Geracao de sinais sinteticos
   |-- process_signal.py
                          # Processamento e filtragem
   '-- __pycache__/
|-- requirements.txt
                    # Dependencias Python
|-- run.bat
                           # Script Windows
|-- run.ps1
                           # Script PowerShell
|-- README.md
                           # Documentacao
'-- LICENSE
                           # Licenca MIT
```

7.2 Arquitetura do Sistema

Classe Principal: PulsarDetectorApp Responsável pela interface gráfica e coordenação geral, seguindo um padrão próximo ao MVC (Model-View-Controller).

Módulo de Geração: generate_signal.py Contém a lógica para criar os sinais sintéticos nos modos educativo e aleatório.

Módulo de Processamento: process_signal.py Implementa os algoritmos de filtragem (Butterworth), análise espectral (FFT) e detecção de picos.