Problem 1: PCA and Feature Selection

SVMs and PCA

```
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        import math
        import pandas as pd
        import cvxopt
        from tqdm.notebook import trange
        from sklearn.svm import SVC
In [2]: | sonar_train = pd.read_csv('sonar_train.data', header=None)
        sonar test = pd.read csv('sonar test.data', header=None)
        sonar valid = pd.read csv('sonar valid.data', header=None)
        sonar train.loc[sonar train[60] == 2, 60] = -1
         sonar test.loc[sonar test[60] == 2, 60] = -1
        sonar valid.loc[sonar valid[60] == 2, 60] = -1
        def normalize(data, mean, std):
            return (data - mean) / std
        def split_data(data):
            return data.iloc[:, :60].to numpy(), data.iloc[:, 60:].to numpy()
        X, y train = split data(sonar train)
        train mean = X.mean(axis=0)
        train std = X.std(axis=0)
        X train = normalize(X, train mean, train std)
        X, y_validation = split_data(sonar_valid)
        X validation = normalize(X, train mean, train std)
        X, y_test = split_data(sonar_test)
        X test = normalize(X, train mean, train std)
```

Perform PCA on the training data to reduce the dimensionality of the data set (ignoring the class labels for the moment). What are the top six eigenvalues of the data covariance matrix?

```
In [3]: def compute_covariance(norm_data):
    # Covariance matrix has dimensions (p x p)
    # Usually computed with variables as rows and observations as columns (np.
cov)
    return norm_data.T.dot(norm_data)

covariance_mat = compute_covariance(X_train) #np.cov(X_train.T)
```

For each $k \in \{1, 2, 3, 4, 5, 6\}$, project the training data into the best k dimensional subspace (with respect to the Frobenius norm) and use the SVM with slack formulation to learn a classifier for each $c \in \{1, 10, 100, 1000\}$. Report the error of the learned classifier on the validation set for each k and c pair.

```
In [5]: C = [1, 10, 100, 1000]
In [6]: data = {
            'k': [],
             'c': [],
             'Training Data Error': [],
             'Validation Data Error': []
        for k in range(1,7):
            U = eig_vecs[:,:k]
            X proj = X train.dot(U)
            X_valid_proj = X_validation.dot(U)
            for c in C:
                data['k'].append(k)
                data['c'].append(c)
                clf = SVC(C=c, kernel='linear')
                clf.fit(X_proj, y_train.ravel())
                y pred = clf.predict(X proj)
                data['Training Data Error'].append(1 - np.mean(y_pred == y_train.ravel
        ()))
                valid_pred = clf.predict(X_valid_proj)
                data['Validation Data Error'].append(1 - np.mean(valid_pred == y_valid
        ation.ravel()))
```

```
In [7]: pd.DataFrame(data)
```

Out[7]:

	k	С	Training Data Error	Validation Data Error
0	1	1	0.509615	0.461538
1	1	10	0.509615	0.461538
2	1	100	0.509615	0.461538
3	1	1000	0.509615	0.461538
4	2	1	0.432692	0.307692
5	2	10	0.432692	0.307692
6	2	100	0.432692	0.307692
7	2	1000	0.432692	0.307692
8	3	1	0.269231	0.211538
9	3	10	0.269231	0.211538
10	3	100	0.269231	0.211538
11	3	1000	0.278846	0.211538
12	4	1	0.288462	0.211538
13	4	10	0.288462	0.211538
14	4	100	0.288462	0.211538
15	4	1000	0.288462	0.211538
16	5	1	0.269231	0.250000
17	5	10	0.269231	0.250000
18	5	100	0.269231	0.250000
19	5	1000	0.269231	0.250000
20	6	1	0.240385	0.269231
21	6	10	0.240385	0.269231
22	6	100	0.240385	0.269231
23	6	1000	0.240385	0.269231

How does it compare to the best classifier (with the same possible c choices) without feature selection?

```
In [8]: data = {
    'c': [],
    'Training Data Error': [],
    'Validation Data Error': []
}
for c in C:
    data['c'].append(c)
    clf = SVC(C=c, kernel='linear', random_state=0)
    clf.fit(X_train, y_train.ravel())
    y_pred = clf.predict(X_train)
    data['Training Data Error'].append(1 - np.mean(y_pred == y_train.ravel()))
    valid_pred = clf.predict(X_validation)
    data['Validation Data Error'].append(1 - np.mean(valid_pred == y_validatio
    n.ravel()))
    pd.DataFrame(data)
```

Out[8]:

	С	Training Data Error	Validation Data Error
0	1	0.009615	0.211538
1	10	0.000000	0.230769
2	100	0.000000	0.230769
3	1000	0.000000	0.230769

What is the error of the best k/c pair on the test data? How does it compare to the best classifier (with the same possible c choices) without feature selection? Explain your observations.

Best k = 3 and c = 1, 10, 100, 1000

Out[9]:

	С	Test data error
0	1	0.192308
1	10	0.192308
2	100	0.192308
3	1000	0.192308

```
In [10]:
         # SVM without feature selection
          res = {
              'c': [],
              'Test data error': []
          for c in [1]:
              res['c'].append(c)
              clf = SVC(C=c, kernel='linear', random state=0)
              clf.fit(X train, y train.ravel())
              res['Test data error'].append(1 - np.mean(clf.predict(X_test) == y_test.ra
          vel()))
          pd.DataFrame.from_dict(res)
Out[10]:
             c Test data error
                    0.211538
          0 1
```

SVM on reduced dimension data performs better on test data compared to SVM without any feature selection

If you had to pick a value of k before evaluating the performance on the validation set (e.g., if this was not a supervised learning problem), how might you pick it?

Value of k or the number of components could be picked by heuristics. We can pick the number of components needed to explain at least 85% of the data variance. For this dataset, we can pick k = 14.

```
In [11]: fig = plt.figure(figsize=(10, 5))
    plt.plot(np.cumsum(eig_vals) / np.sum(eig_vals), marker='o')
    plt.xlabel('Number of Components')
    plt.ylabel('Total variance retained')
    plt.axhline(y=0.85, color='r', linestyle='-')
    plt.grid()
```


PCA for Feature Selection

- 1. Compute the top k eigenvalues and eigenvectors of the covariance matrix corresponding to the data matrix omitting the labels (recall that the rows of the data matrix are the input data points).
- 2. Define π
- 3. Sample s columns independently from the probability distribution defined by π .

```
In [12]: def select_k_features(features, s, pi):
    sel_features = np.random.choice(features, s, p=pi, replace=False)
    return sel_features
```

Why does π define a probability distribution?

 π has values ranging between 0 and 1. Also sum of all values in π = 1.

Again, using the UCI Sonar data set, for each $k \in \{1, ..., 10\}$ and each $s \in \{1, ..., 20\}$, report the average test error of the SVM with slack classifier over 100 experiments. For each experiment use only the s selected features (note that there may be some duplicates, so only include each feature once).

```
In [13]: data = {
              'k': [],
             's': [],
              'Average test error': []
         }
         datapoints, features = X_train.shape
         for k in trange(1,11):
             V = eig_vecs[:k]
             pi = np.sum(V^{**2}, axis=0) / k
             for s in trange(1,21):
                 error = []
                 for _ in range(100):
                      sel_features = select_k_features(features, s, pi)
                      clf = SVC(C=1, kernel='linear', random_state=0)
                      clf.fit(X_train[:,sel_features], y_train.ravel())
                      y_pred = clf.predict(X_test[:,sel_features])
                      error.append(1 - np.mean(y_pred==y_test.ravel()))
                 mean_error = np.mean(error)
                 data['k'].append(k)
                 data['s'].append(s)
                  data['Average test error'].append(mean_error)
         res = pd.DataFrame.from_dict(data)
```

In [16]: pd.set_option("display.max_rows", None, "display.max_columns", None)
res

Out[16]:

	k	s	Average test error
0	1	1	0.460769
1	1	2	0.401154
2	1	3	0.378269
3	1	4	0.367692
4	1	5	0.350192
5	1	6	0.320769
6	1	7	0.318846
7	1	8	0.318077
8	1	9	0.305192
9	1	10	0.302115
10	1	11	0.291731
11	1	12	0.285962
12	1	13	0.292308
13	1	14	0.286154
14	1	15	0.285385
15	1	16	0.283654
16	1	17	0.281731
17	1	18	0.267115
18	1	19	0.268269
19	1	20	0.268269
20	2	1	0.435962
21	2	2	0.389038
22	2	3	0.342885
23	2	4	0.343269
24	2	5	0.311154
25	2	6	0.299808
26	2	7	0.296731
27	2	8	0.297308
28	2	9	0.280962
29	2	10	0.265385
30	2	11	0.267885
31	2	12	0.266731
32	2	13	0.258269
33	2	14	0.252500
34	2	15	0.259423

	k	s	Average test error
35	2	16	0.252885
36	2	17	0.240192
37	2	18	0.247500
38	2	19	0.247692
39	2	20	0.239423
40	3	1	0.428077
41	3	2	0.364231
42	3	3	0.347885
43	3	4	0.320769
44	3	5	0.293654
45	3	6	0.294423
46	3	7	0.282885
47	3	8	0.280769
48	3	9	0.265577
49	3	10	0.271154
50	3	11	0.264231
51	3	12	0.252692
52	3	13	0.258269
53	3	14	0.256731
54	3	15	0.248077
55	3	16	0.247692
56	3	17	0.247692
57	3	18	0.259423
58	3	19	0.242500
59	3	20	0.253077
60	4	1	0.430385
61	4	2	0.376346
62	4	3	0.331923
63	4	4	0.323077
64	4	5	0.305192
65	4	6	0.281346
66	4	7	0.281731
67	4	8	0.280385
68	4	9	0.273654
69	4	10	0.257308
70	4	11	0.256346

	k	s	Average test error
71	4	12	0.258654
72	4	13	0.263077
73	4	14	0.255385
74	4	15	0.258654
75	4	16	0.247692
76	4	17	0.250385
77	4	18	0.245769
78	4	19	0.250962
79	4	20	0.247115
80	5	1	0.434615
81	5	2	0.365577
82	5	3	0.345577
83	5	4	0.302115
84	5	5	0.295192
85	5	6	0.286731
86	5	7	0.283077
87	5	8	0.271538
88	5	9	0.266923
89	5	10	0.273269
90	5	11	0.265000
91	5	12	0.258269
92	5	13	0.255385
93	5	14	0.261538
94	5	15	0.250769
95	5	16	0.254808
96	5	17	0.240962
97	5	18	0.246731
98	5	19	0.242308
99	5	20	0.242500
100	6	1	0.427692
101	6	2	0.372308
102	6	3	0.341923
103	6	4	0.317500
104	6	5	0.294231
105	6	6	0.282308
106	6	7	0.282115

	k	s	Average test error
107	6	8	0.267500
108	6	9	0.270385
109	6	10	0.265385
110	6	11	0.260000
111	6	12	0.255577
112	6	13	0.248462
113	6	14	0.248654
114	6	15	0.244231
115	6	16	0.252308
116	6	17	0.252115
117	6	18	0.239231
118	6	19	0.239038
119	6	20	0.242885
120	7	1	0.430577
121	7	2	0.352885
122	7	3	0.344808
123	7	4	0.313654
124	7	5	0.289423
125	7	6	0.282885
126	7	7	0.274038
127	7	8	0.265577
128	7	9	0.260385
129	7	10	0.254808
130	7	11	0.258654
131	7	12	0.259038
132	7	13	0.259038
133	7	14	0.242885
134	7	15	0.250192
135	7	16	0.242500
136	7	17	0.243846
137	7	18	0.241538
138	7	19	0.244615
139	7	20	0.245192
140	8	1	0.428269
141	8	2	0.384038
142	8	3	0.336731

143 8 4 0.330000 144 8 5 0.301346 145 8 6 0.289038 146 8 7 0.269615 147 8 8 0.280385 148 8 9 0.274231 149 8 10 0.258269 151 8 11 0.258269 151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.245154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9		k	s	Average test error
145 8 6 0.289038 146 8 7 0.269615 147 8 8 0.280385 148 8 9 0.274231 149 8 10 0.256731 150 8 11 0.258269 151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.289615 165 9 6 0.289615 <tr< th=""><th>143</th><th>8</th><th>4</th><th>0.330000</th></tr<>	143	8	4	0.330000
146 8 7 0.269615 147 8 8 0.280385 148 8 9 0.274231 149 8 10 0.258269 150 8 11 0.258269 151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.245769 155 8 16 0.245769 155 8 16 0.245769 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.287692 165 9 6 0.289615 166 9 7 0.268846 <tr< th=""><th>144</th><th>8</th><th>5</th><th>0.301346</th></tr<>	144	8	5	0.301346
147 8 8 0.280385 148 8 9 0.274231 149 8 10 0.256731 150 8 11 0.258269 151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 <tr< th=""><th>145</th><th>8</th><th>6</th><th>0.289038</th></tr<>	145	8	6	0.289038
148 8 9 0.274231 149 8 10 0.256731 150 8 11 0.258269 151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.245769 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 <tr< th=""><th>146</th><th>8</th><th>7</th><th>0.269615</th></tr<>	146	8	7	0.269615
149 8 10 0.256731 150 8 11 0.258269 151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.276731 170 9 11 0.251731 <t< th=""><th>147</th><td>8</td><td>8</td><td>0.280385</td></t<>	147	8	8	0.280385
150 8 11 0.258269 151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.247115 <t< th=""><th>148</th><th>8</th><th>9</th><th>0.274231</th></t<>	148	8	9	0.274231
151 8 12 0.253846 152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.251731 171 9 12 0.247115 172 9 13 0.261731 <t< th=""><th>149</th><td>8</td><td>10</td><td>0.256731</td></t<>	149	8	10	0.256731
152 8 13 0.262500 153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.247115 172 9 13 0.261731 173 9 14 0.251346 <t< th=""><th>150</th><td>8</td><td>11</td><td>0.258269</td></t<>	150	8	11	0.258269
153 8 14 0.251346 154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 <t< th=""><th>151</th><td>8</td><td>12</td><td>0.253846</td></t<>	151	8	12	0.253846
154 8 15 0.245769 155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 <t< th=""><th>152</th><td>8</td><td>13</td><td>0.262500</td></t<>	152	8	13	0.262500
155 8 16 0.246154 156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 <t< th=""><th>153</th><td>8</td><td>14</td><td>0.251346</td></t<>	153	8	14	0.251346
156 8 17 0.248462 157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 <t< th=""><th>154</th><td>8</td><td>15</td><td>0.245769</td></t<>	154	8	15	0.245769
157 8 18 0.245192 158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769 <th>155</th> <td>8</td> <td>16</td> <td>0.246154</td>	155	8	16	0.246154
158 8 19 0.236538 159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	156	8	17	0.248462
159 8 20 0.241154 160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	157	8	18	0.245192
160 9 1 0.415577 161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	158	8	19	0.236538
161 9 2 0.373846 162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	159	8	20	0.241154
162 9 3 0.336154 163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	160	9	1	0.415577
163 9 4 0.318462 164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	161	9	2	0.373846
164 9 5 0.297500 165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	162	9	3	0.336154
165 9 6 0.289615 166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	163	9	4	0.318462
166 9 7 0.287692 167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	164	9	5	0.297500
167 9 8 0.268846 168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	165	9	6	0.289615
168 9 9 0.275192 169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	166	9	7	0.287692
169 9 10 0.276731 170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	167	9	8	0.268846
170 9 11 0.251731 171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	168	9	9	0.275192
171 9 12 0.247115 172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	169	9	10	0.276731
172 9 13 0.261731 173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	170	9	11	0.251731
173 9 14 0.251346 174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	171	9	12	0.247115
174 9 15 0.248846 175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	172	9	13	0.261731
175 9 16 0.250192 176 9 17 0.234038 177 9 18 0.245769	173	9	14	0.251346
176 9 17 0.234038 177 9 18 0.245769	174	9	15	0.248846
177 9 18 0.245769	175	9	16	0.250192
	176	9	17	0.234038
178 9 19 0.247308	177	9	18	0.245769
	178	9	19	0.247308

	k	s	Average test error	
179	9	20	0.252308	
80	10	1	0.431731	
181	10	2	0.366154	
182	10	3	0.333269	
183	10	4	0.310000	
184	10	5	0.300192	
185	10	6	0.286154	
186	10	7	0.285769	
187	10	8	0.266923	
188	10	9	0.262115	
189	10	10	0.256731	
190	10	11	0.256731	
191	10	12	0.264423	
192	10	13	0.257885	
193	10	14	0.242308	
194	10	15	0.247692	
195	10	16	0.242115	
196	10	17	0.244038	
197	10	18	0.235385	
198	10	19	0.231154	
199	10	20	0.231731	

```
In [15
Out[15]:
                 k s Average test error
```

198 10 19 0.231154

Does this provide a reasonable alternative to SVM with slack formulation without feature selection on this data set? What are the pros and cons of this approach?

SVM with feature selection (k = 7, s = 20, c = 1) gives lowest average test error of 23% whereas SVM without feature selection (c = 1) gives lowest test error of 21%. There is not much improvement with feature selection.

Pros:

· Training individual models is computationally faster as number of features is less

Cons:

· Choosing k and s is difficult. Grid search like above takes long time

Problem 2: Spectral Clustering.

1. Compute the "Laplacian matrix", L = D - A, where D is a diagonal matrix with Dii = $\sum j$ Aij for all i. Argue that this matrix is positive semidefinite

```
In [1]: import numpy as np
       import pandas as pd
        from sklearn.cluster import KMeans
        import matplotlib.pyplot as plt
In [2]: def compute laplacian(A):
           m, n = A.shape
           D = np.zeros((m, m))
           for i in range(m):
               D[i, i] = A[i].sum()
           return D - A
In [3]: def compute_similarity_matrix(X, sigma):
           shape = X.shape
           if len(shape) == 2:
               m, n = shape
           else:
               m = shape[0]
           K = np.zeros((m, m))
           X_sq = X_sq.astype(np.float64)
           X_{sq} += (X ** 2).sum(axis=1).reshape(-1, 1)
           K = X_sq / (-2 * (sigma ** 2))
           np.exp(K, K)
           return K
```

- 2. Compute the eigenvectors of the Laplacian using eig() in MATLAB (numpy in Python).
- 3. Construct a matrix $V \in R$ n×k whose columns are the eigenvectors that correspond to the k smallest eigenvalues of L.
- 4. Let $y1, \ldots, yn$ denote the rows of V . Use the kmeans() algorithm in MATLAB (scikit-learn in Python) to cluster the rows of V into clusters $S1, \ldots, Sk$.
- 5. The final clusters C1, . . . , Ck should be given by assigning vertex i of the input set to cluster Cj if $yi \in Sj$.

```
In [4]: def form_clusters(labels, X, K):
            clusters = {}
            for i in range(len(X)):
                clusters[labels[i]] = X[i]
            return clusters
        def spectral_clustering(A, K=2):
            L = compute_laplacian(A)
            eigen_val, eigen_vectors = np.linalg.eigh(L)
            idx = eigen_val.argsort()[0:K]
            k_eigen_val = eigen_val[idx]
            V = eigen_vectors[:,idx]
            V = np.nan_to_num(V)
            spectral = KMeans(n_clusters=K).fit(V)
            labels = spectral.labels
            clusters = form_clusters(labels, V, K)
            return clusters, labels
```

A Simple Comparison

1. Use the spectral clustering algorithm above to compute the clustering for the matrix of twodimensional points returned by the function circs() (attached to this problem set) above with k = 2 and different values of σ .

```
In [5]: def circs():
            \#X = zeros(2,100);
            #y = 0;
            #for i = 0:pi/25:2*pi
                \#y = y + 1;
                #X(1, y) = cos(i);
                 #X(2, y) = sin(i);
            #end
            #for i = 0:pi/25:2*pi
                \#y = y + 1;
                \#X(1, y) = 2*cos(i);
                #X(2, y) = 2*sin(i);
            #end
            X = np.zeros((2, 100))
            y = 0
            for i in np.arange(0, 2*np.pi, np.pi/25.0):
                X[0, y] = np.cos(i)
                X[1, y] = np.sin(i)
                 y += 1
            for i in np.arange(0, 2*np.pi, np.pi/25.0):
                X[0, y] = 2*np.cos(i)
                X[1, y] = 2*np.sin(i)
                y += 1
             return X
```

```
In [6]: X = circs().T
K = 2
```

```
In [7]: sigma_list = [0.01, 0.1, 1, 10, 100]
```

```
In [8]: for sigma in sigma_list:
    A = compute_similarity_matrix(X, sigma)
    clusters, labels = spectral_clustering(A, K)
    label_colors = ['r' if l else 'g' for l in labels]
    plt.title(f'Sigma = {sigma}')
    plt.scatter(X[:, 0], X[:, 1], c=label_colors)
    plt.show()
```


Laplacian Computed Eigen values computed

Use the k-means algorithm in MATLAB/Python to compute an alternative clustering.

```
In [9]: kmeans = KMeans(n_clusters=K).fit(X)
label_color = ['r' if l else 'g' for l in kmeans.labels_]
plt.scatter(X[:, 0], X[:, 1], c=label_color)
plt.show()
```


3. Find a choice of σ such that the spectral method outperforms k-means. How do you know that there is no k-means solution (i.e., a choice of centers and clusters) that performs this well? Include the output of your code in your submission

 $\sigma=0.1$ produces a good clustering compared to k-means

k-means is well suited for linearly separable data. This dataset with k = 2 is not linearly separable and k-means will perform poorly. However, spectral clustering is similar to applying feature map to data and then performing k-means clustering on higher dimensions where the data would be linearly separable.

Partitioning Images

- 1. We can use the same spectral technique to partition images. Here, we consider each pixel of a grayscale image as a single intensity and construct a similarity matrix for pairs of pixels just as before
- 2. Perform the same comparison of spectral clustering and k-means as before using the image bw.jpg that was attached as part of the homework. Again, set k = 2. You can use imread() to read an image from a file in MATLAB.

```
In [10]: img = plt.imread('bw.jpg')
    plt.imshow(img, cmap='gray')
    h, w = img.shape
    img = img.ravel()
    img = img.reshape(-1,1)
```



```
In [16]: for sigma in sigma_list:
    print(f"computing for Sigma = {sigma}")
    A = compute_similarity_matrix(img, sigma)
    clusters, labels = spectral_clustering(A, K)
    image_labels = np.array(labels).astype(np.float)
    image_labels = np.reshape(image_labels, (h, w))
    plt.imsave(f'bw{sigma}.png',image_labels)

computing for Sigma = 0.01

/home/xnkr/ml/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWa
```

/home/xnkr/ml/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWa
rning: overflow encountered in exp
 del sys.path[0]

computing for Sigma = 0.1

/home/xnkr/ml/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWa
rning: overflow encountered in exp
 del sys.path[0]

computing for Sigma = 1
computing for Sigma = 10
computing for Sigma = 100

```
In [41]: fig,a = plt.subplots(5,1,figsize=(20,20))
    it = 0
    for i in range(5):
        s = sigma_list[i]
        k = plt.imread(f'bw{s}.png')
        a[i].set_title(f'Sigma = {s}')
        a[i].imshow(k)
    plt.show()
```



```
In [25]: kmeans = KMeans(n_clusters=2).fit(img)
    clusters_kmeans = form_clusters(kmeans.labels_, img, K)
    image_labels = np.reshape(kmeans.labels_, (75, 100))
    plt.imsave('bw-kmeans.jpg',image_labels)
    plt.title('k-means')
    plt.imshow(image_labels)
```

Out[25]: <matplotlib.image.AxesImage at 0x7fccae0d69b0>

Prove that L is positive semidefinite $x^T L x \ge 0$

$$L = D - A$$

$$D_i = \sum_{j} A_{ij} \qquad A = e^{-\frac{1}{26^2} ||x_i - x_j||^2}$$

$$u^{T} L x = x^{T} (D-A) x$$

$$= \sum_{i} a_{i} x_{i}^{2} - \sum_{i} A_{ij} x_{i} x_{j}$$

A''y
$$\geqslant 0$$
 $(\alpha_i - \alpha_j)^2 \geqslant 0$