Targeted Fusion Caller (TFC)

Rongxin Fang

Bioinformatics, UC San Diego E-mail: <u>r3fang@ucsd.edu</u> <u>https://github.com/r3fang/tfc</u>

Background

Object:

Develop a gene fusion detection tool for clinical purpose with following features:

- 1. Precise
- 2. Fast
- 3. User friendly
- 4. Affordable

Input:

RNA-seq (.fq)

Output:

A list of gene fusion candidates with likelihood and p-value.

Artificial Transcript

Artificial Transcript

Artificial Transcript

Artificial Transcript

Fitting Alignment with Affine Gap and 2 Jump States

Fusion Scoring (how likelihood calculated?)

likelihood equals the product of alignment probability of the reads that support the fusion normalized by the sequencing depth.

$$L_{i,j} = \frac{-\alpha \sum_{s}^{S1_{i,j}} log(1 - f(s)) - \beta \sum_{s}^{S2_{i,j}} log(1 - f(s))}{|S_i| + |S_j|}$$

in which f(s) is alignment probability, $\alpha = 3$ and $\beta = 1$.

p-value is the probability of observing given likelihood in the normal sample.

gene_i vs gene_j

Fusion	Hits	Likelihood	P-value
TMPRSS2-ETV1	207	173166.20	1E_10

Se=90%

Sp=100%

Fusion	Hits	Likelihood	P-value
TMPRSS2-ETV1	207	173166.20	1E_10
BCAS4-BCAS3	70	20250.15	1E_10
BRD4-NUTM1	38	3903.03	1E_10
EWSR1-FLI1	35	2608.38	1E_10
ETV6-NTRK3	34	17625.09	1E_10
EML4-ALK	28	4238.51	1E_10
EWSR1-ATF1	24	1860.94	1E_10
HOOK3-RET	23	6593.92	1E_10
CD74-ROS1	6	4468.12	1E_10
AKAP9-BRAF	NA	NA	NA

Object:

Develop a fusion detection tool for clinical usage with following features:

- 1. Precise
- 2. Fast
- 3. User friendly
- 4. Affordable

How precise is TFC?

~0.85 and ~0.99 for Se and Sp on the simulated data.

How fast is TFC?

Implemented by C. ~5min per million read pairs using a single x86_64 32-bit 2000 MHz GenuineIntel processor.

What's the maximum memory requirement for TFC?

1GB would be the up limit for predicting against 500 genes.

Is it easy to use?

./tfc rapid R1.fastq.gz R2.fastq.gz

TFC

predict

./tfc name2fasta -g exon gname.txt genes.gtf hg19.fa exon.fa ./tfc predict exon.fa R1.fastq.gz R2.fastq.gz Is it easy to use?

Demo

Thanks!