HashesLesson Introduction

- The birthday paradox and length of hash
- Secure hash function
- HMAC

- Compute message digest of data of any size
- •Fixed length output: 128-512 bits
- ◆Easy to compute *H*(*m*)
- •Given H(m), no easy way to find m
 - One-way function
- •Given m_1 , it is computationally infeasible to find $m_2 \neq m_1$ s.t. $H(m_2) = H(m_1)$
 - Weak collision resistant
- •Computationally infeasible to find $m_1 \neq m_2$ s.t. $H(m_1) = H(m_2)$
 - Strong collision resistant

- Compute message digest of data of any size
- •Fixed length output: 128-512 bits
- ◆Easy to compute *H*(*m*)
- •Given H(m), no easy way to find m
 - One-way function
- •Given m_1 , it is computationally infeasible to find $m_2 \neq m_1$ s.t. $H(m_2) = H(m_1)$
 - Weak collision resistant
- •Computationally infeasible to find $m_1 \neq m_2$ s.t. $H(m_1) = H(m_2)$
 - Strong collision resistant

Requirements for a practical application of a hash function

- Compute message digest of data of any size
- •Fixed length output: 128-512 bits
- Easy to compute H(m)
- Given H(m), no easy way to find m
 - One-way function

The one way property

- •Given m_1 , it is computationally infeasible to find $m_2 \neq m_1$ s.t. $H(m_2) = H(m_1)$
 - Weak collision resistant
- •Computationally infeasible to find $m_1 \neq m_2$ s.t. $H(m_1) = H(m_2)$
 - Strong collision resistant

- Compute message digest of data of any size
- •Fixed length output: 128-512 bits
- Easy to compute H(m)
- •Given H(m), no easy way to find m
 - One-way function

- Hash functions are unique to each message
- •Given m_1 , it is computationally infeasible to find $m_2 \neq m_1$ s.t. $H(m_2) = H(m_1)$
 - Weak collision resistant
- •Computationally infeasible to find $m_1 \neq m_2$ s.t. $H(m_1) = H(m_2)$
 - Strong collision resistant

- Compute message digest of data of any size
- •Fixed length output: 128-512 bits
- ◆Easy to compute *H*(*m*)
- •Given H(m), no easy way to find m
 - One-way function
- •Given m_1 , it is computationally infeasible to find $m_2 \neq m_1$ s.t. $H(m_2) = H(m_1)$
 - Weak collision resistant
- •Computationally infeasible to find $m_1 \neq m_2$ s.t. $H(m_1) = H(m_2)$
 - Strong collision resistant

Pigeonhole Principle

The Birthday Paradox

Pigeonhole Principle

n = number of pigeonsm = number of holes

n = m There is one
pigeon per hole

n > m Then at least one hole must have more than one pigeon

The Birthday Paradox

How many people do you need in a room before you have a greater than 50% chance that two of them will have the same birthday?

Assume 365 birthdays (our containers)

% chance that two people in the room have the same birthday:

100% requires 366 people (the pigeonhole principle)

The Birthday Paradox

- Compute probability of different birthdays
- Random sample of n people (birthdays) taken from k
 (365) days
- kⁿ samples with replacement
- $(k)_n = k(k-1)...(k-n+1)$ sample without replacement
- Probability of repetition:

•
$$p = 1 - (k)_n / k^n \approx n(n-1)/2k = 0.5$$
 if $n = \sqrt{k}$

The Birthday Paradox

 $1-(k)_n/k^n$ = the probability that a pair share the same birthday

If
$$k = 365$$
, $n = 19$

If there are 19 people in a room, there is a good chance that two of them share the same birthday!

Hash Functions:

- There are many more 'pigeons' than 'pigeonholes'
- Many inputs will be mapped to the same output. That is, many input messages will have the same hash.

Conclusion: The longer the length of the hash, the fewer collisions.

Determining Hash Length

Hash Length	Possible # of hash values
1	2
64	2 ³²

Hash Size Quiz

Choose the correct answer:

If the length of hash is 128 bits, then how many messages does an attack need to search in order to find two that share the same hash?

Secure Hash Algorithm

- Developed by NIST, specified in the Secure Hash
 Standard, originally 1993
- Revised as SHA-1 in 1995
 - •160 bit hash
- NIST specified SHA2 algorithms in 2002
 - Hash value lengths of 256, 384, and 512
 - Similar to SHA-1

Comparison of SHA Parameters

	SHA-1	SHA-256	SHA-384	SHA-512
Message digest size	160	256	384	512
Message size	<264	<2 64	<2 128	<2 128
Block size	512	512	1024	1024
Word size	32	32	64	64
Number of steps	80	80	80	80
Security	80	128	192	256

- Notes: 1. All sizes are measured in bits.
 - 2. Security refers to the fact that a birthday attack on a message digest of size n produces a collision with a work factor of approximately $2^{n/2}$.

Message Processing

+ = word-by-word addition mod 264

Message Digest Generation Using SHA-512

Message Processing

SHA-512 Processing of a Single 1024-Bit Block

Hash Based Message Authentication

- Cryptographic hash functions generally execute faster
- Library code is widely available
- SHA-1 was not designed for use as a MAC because it does not rely on a secret key
 - Issued as RFC2014
 - Has been chosen as the mandatory-to-implement MAC for IP security
- Used in other Internet protocols such as Transport Layer Security (TLS)

Hash Based Message Authentication

HMAC Security

- Security depends on the cryptographic strength of the underlying hash function
- It's much harder to launch successful collision attacks on HMAC because of secret key

Hash Function Quiz

Check the statements that are True:

The one-way hash function is important not only in
message authentication but also in digital signatures

SHA processes the input one block at a time but each
block goes through the same processing

HMAC is secure provided that the embedded hash function has good cryptographic strengths such as oneway and collision resistant

Hashes Lesson Summary

- Hash length should be at least 128
 - 2^(64) message to find collision
- SHA1: 160-bit hash; SHA2: 256/384/512-bit hash
 - Message processed/hashed block by block, result to next
- HMAC: hash the message with a secret key
 - Message authentication