Санкт-Петербургский государственный университет Математико-механический факультет

5 отчёт по методам вычислений
Частичная проблема собственных значений.

Выполнил:

студент 4 курса Калистый Ф.Н.

Санкт-Петербург 2023

1 Постановка задачи

Дана матрица A. Хотим найти максимальное по модулю собственное значение матрицы A.

2 Степенной метод

Пусть матрица A имеет полную систему ортонормированных собственных векторов $e_i, i = 1, \ldots, n: Ae_i = \lambda_i e_i$ причём $|\lambda_1| \geqslant |\lambda_2| \geqslant \cdots \geqslant |\lambda_n|$. Тогда любой вектор $x^{(0)}$ записывается в виде

$$x^{(0)} = c_1 e_1 + c_2 e_2 + \dots + c_n e_n$$

Итерационный процесс:

$$x^{(k+1)} = Ax^{(k)}$$

Следующее приближенное значение λ_1 на k-ой итерации:

$$\frac{(A^{k+1}x^{(0)})_i}{(A^kx^{(0)})_i} = \lambda_1 + O((\frac{\lambda_2}{\lambda_1})^{k+1})$$

Чтобы не было переполнения или потери точности, нужно иногда нормировать.

3 Метод скалярных произведен

Вместе с матрицей A рассматриваем матрицу A^T с ортонормированной системой собственных векторов $v_i, i=1,\ldots,n$. Для

$$y^{(0)} = d_1 v_1 + d_2 v_2 + \dots + d_n v_n$$

строим итерационный процесс

$$y^{(k+1)} = A^T y^{(k)}$$

Как и в случае степенного метода, для избежания чрезмерного роста по абсолютной величине координат векторов целесообразно все их координаты умножать на $\alpha_k = \frac{1}{|A^k X_i^{(0)}|}$.

В итоге конечна формула:

$$\lambda_1^{(k)} = \frac{(Ax^{(k)}, A^T y^{(k)})}{(x^{(k)}, A^T y^{(k)})}$$

4 Расчет

Буду искать максимальное собственное число матрицы Гильбера. Это будет сделанно степенным методом и методом скалярных произведен. Также буду считать количество итераций потраченых на достижение точности $\varepsilon=1e^{-12}$. И в конце сравним значения, полученные в этом отчёте, с значениями полученными методом вращений Якоби.

5 Тесты

5.1 Tect 1

матрица Гильберта 8×8 .

максимальное собственное число для степенного метода: 1.6959389969220253

число итераций: 17

максимальное собственное число посчитанное методом скалярных произведений: 1.6959389969219385

число итераций: 8

максимальное собственное число посчитанное методом Якоби: 1.6959389969219487

число итераций: 140

максимальное собственное число посчитанное numpy: 1.6959389969219487

5.2 Tect 2

матрица Гильберта 20×20 .

максимальное собственное число посчитанное степенным методом: 1.9071347204074

число итераций: 22

максимальное собственное число посчитанное методом скалярных произведений: 1.9071347204072435

число итераций: 11

максимальное собственное число посчитанное методом Якоби: 1.9071347204072564

число итераций: 950

максимальное собственное число посчитанное numpy: 1.9071347204072553

6 Вывод

Степенной метод сходится быстрее метода скалярных произведений для матрицы Гильберта. Однако метод Якоби из предыдущего отчета подходит ещё хуже для этой задачи. Однако все методы получают достатоно точные результаты.