

Ejercicio: Aplicando los postulados de Huntington demostrar la siguiente propiedad: $\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$

$$\mathbf{A} \cdot \mathbf{A} = (\mathbf{A} \cdot \mathbf{A}) + \mathbf{0}$$
 sumo 0
 $\mathbf{A} \cdot \mathbf{A} = (\mathbf{A} \cdot \mathbf{A}) + (\mathbf{A} \cdot \overline{\mathbf{A}})$ 0 es igual a $A \cdot \overline{A}$
 $\mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot (\mathbf{A} + \overline{\mathbf{A}})$ saco factor común A
 $\mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{1}$ $A + \overline{A}$ es igual a $A \cdot \overline{A} = \mathbf{A} \cdot \mathbf{1}$
 $\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$ $A \cdot \mathbf{1}$ es igual a $A \cdot \mathbf{1}$

Ejercicio: Dada la función no totalmente definida: $F(A,B,C,D) = \sum (0, 2, 5, 7, 8, 10, 13) + \sum (3, 9, 15)$

- Hallar todos los IP e IPE, simplificar mediante mapa K por 1's y 0's, obteniendo la función mínima.
- Decir si la función obtenida en a) es libre de riesgos, justificar la respuesta. b)
- Implementar la función obtenida en a) mediante un solo tipo de compuertas.

$$F_{min} = a + b$$

$$F_{min} = BD + \overline{B}\overline{D}$$

La función mínima NO es libre de riesgos, ya que cualquier cambio de B o D pone en riesgo estático la función. Se salva agregando cualquier IP no esencial.

IPE: a, b

Implementación $\mathbf{F} = \mathbf{B}\mathbf{D} + \overline{\mathbf{B}}\overline{\mathbf{D}}$ $\mathbf{F} = \overline{\overline{\mathbf{F}}} = \overline{\overline{\mathbf{BD}} + \overline{\overline{\mathbf{BD}}}}$ Aplico la Ley de DeMorgan

Ejercicio: Dada la función no totalmente definida: $F(A,B,C,D) = \sum_{m} (0, 2, 5, 7, 8, 10, 13) + \sum_{r} (3, 9, 15)$

- a) Hallar todos los IP e IPE, simplificar mediante mapa K por 1's y 0's, obteniendo la función mínima.
- b) Decir si la función obtenida en a) es libre de riesgos, justificar la respuesta.
- c) Implementar la función obtenida en a) mediante un solo tipo de compuertas.

$$\mathbf{F_{min}} = \mathbf{a \cdot b}$$

 $\mathbf{F_{min}} = (\overline{\mathbf{B}} + \mathbf{D}) \cdot (\mathbf{B} + \overline{\mathbf{D}})$

libre de riesgos, ya que cualquier cambio de B o D pone en riesgo estático la función. Se salva agregando cualquier IP no esencial.

IP: a, b, c, d

IPE: a, b

c) Implementación

Ejercicio: Dada la función no totalmente definida: $F(A,B,C,D) = \sum_{m} (5,7,13,15) + \sum_{r} (3,4,9,14)$

Hallar todos los IP e IPE, simplificar mediante mapa K por 1's y obteniendo la función mínima.

$$F_{min} = a$$

 $F_{min} = BD$

El IP a es un IP <u>dominante</u> y la función mínima es única.

IPE: ninguno

Ejercicio: Dada la función no totalmente definida: $F(A, B, C, D) = \sum (3, 4, 13, 14) + \sum (5, 7, 9, 15)$

Hallar todos los IP e IPE, simplificar mediante mapa K por 1's y obteniendo la función mínima.

IP: a, b, c, d, e

IPE: a, b, d

$$\begin{aligned} F_{min_1} &= a + b + d + c \\ F_{min_1} &= \overline{A}CD + A\overline{C}D + ABC + A\overline{C}D \\ F_{min_2} &= a + b + d + e \\ F_{min_2} &= \overline{A}CD + A\overline{C}D + ABC + BD \end{aligned}$$

TIPS: TIP Secundaria

	13
$c = A\overline{C}D$	V
e = BD	V
	V

Cuando queda uno o mas minitérminos sin tomar en la primera TIP, se arma una segunda TIP con los minitérminos que no fueron tomados y los IP que los abarcan. En este caso los IP c y e son intercambiables, aqui hay mas de una función mínima.

Ejercicio: Dada la función no totalmente definida: $F(A, B, C, D) = \sum_{m} (3, 4, 9, 14) + \sum_{r} (5, 7, 13, 15)$

Hallar todos los IP e IPE, simplificar mediante mapa K por 1's y obteniendo la función mínima.

Nunca un grupo de redundancias solamente, forman un IP.

IP: a, b, c, d

IPE: a, b, c, d

$$F_{min} = a + b + c + d$$

$$F_{min} = \overline{A}CD + \overline{A}B\overline{C} + A\overline{C}D + ABC$$

Ejercicio: Dada la función no totalmente definida: $F(A, B, C, D) = \sum_{m} (5, 7, 9, 15) + \sum_{r} (3, 4, 13, 14)$

Hallar todos los IP e IPE, simplificar mediante mapa K por 1's y obteniendo la función mínima.

	5	7	15
a = BD	V	V	V
$\mathbf{b} = \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}$	V		
$c = \overline{A}CD$		V	
e = ABC			V
	V	V	V

TIPS

IPE: d

$$F_{min} = d + a$$

$$F_{min} = A\overline{C}D + BD$$

El IP a es un IP <u>dominante</u> y la función mínima es única, formada por el IPE d y el IP dominante a.