Question Number	Scheme	Marks
9 (a)	$(i) y = \frac{3}{2}$	B1
	$(ii) x = -\frac{3}{2}$	B1 (2)
(b)	(i) $x = -\frac{1}{3}$ or $\left(-\frac{1}{3}, 0\right)$	B1
	(ii) $y = \frac{1}{3}$ or $\left(0, \frac{1}{3}\right)$	B1 (2)
(c)	$y = \frac{3}{2}$ $y = \frac{3}{2}$ $x = -\frac{3}{2}$ $y = \frac{3}{2}$	B1 shape B1 asymptotes B1 crossing points (3)
(d)	$\frac{dy}{dx} = \frac{3(2x+3)-2(3x+1)}{(2x+3)^2}$	M1A1
	$x = -\frac{1}{3} \frac{dy}{dx} = \frac{3 \times \frac{7}{3} - 2 \times 0}{\left(\frac{7}{3}\right)^2} = \frac{9}{7}$	M1d
	Grad $I = -\frac{7}{9}$	A1
	EqnI: $y = -\frac{7}{9} \left(x + \frac{1}{3} \right)$	A1ft (5)

(e)	$y = -\frac{7}{9}\left(x + \frac{1}{3}\right) = \frac{3x + 1}{2x + 3}$	ALT:	M1
	$81x + 27 = -42x^2 - 77x - 21$	$-\frac{7}{9} \times \frac{1}{3} = \frac{1}{2x+3}$	M1
	$42x^2 + 158x + 48 = 0$	-14x-21=27	A1
	(3x+1)(7x+24)=0 (or use formula) solve linear eqn	solve linear eqn	M1
	x-coordinate of B is $-\frac{24}{7} \left(\text{Accept } x = -\frac{24}{7} \right)$ correct answer		A1 (5) [17]

Notes

- (a) (i) NOTE: If answers are transposed, award B0B1 If equations are on the graph, they must be written as equations.
- B1 answer as shown. $y = \frac{3}{2}$

(ii)

- B1 answer as shown $x = -\frac{3}{2}$
- (b) (i)
- B1 answer as shown $x = -\frac{1}{3}$ or $\left(-\frac{1}{3}, 0\right)$

(ii)

B1 answer as shown $y = \frac{1}{3}$ or $\left(0, \frac{1}{3}\right)$

(c)

- B1 for a rectangular hyperbola with one with branches in the correct quadrants. Please be generous on the shape of the curves.
- B1 for the correct asymptotes f t their answers to part (a) There must be at least one branch of their graph for the award of this mark.
- B1 for the correct intersections, ft their answers to part (b)

(d)

M1 for attempting to differentiate $y = \frac{3x+1}{2x+3}$. When using quotient rule, there must be an attempt to differentiate and **subtract** the terms in the numerator; the denominator must be **squared**.

ALT (using product rule)

M1 for attempting to differentiate and add two terms.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3(2x+3)^{-1} + (2x+3)^{-2}(-1)(3x+1)(2) \Rightarrow \frac{3}{2x+3} - \frac{2(3x+1)}{(2x+3)^2}$$

- A1 for a fully correct differentiated expression
- M1d for substituting $x = -\frac{1}{3}$ [ft their value from part (b) (i)] into their differentiated expression

Check the differentiation as they can achieve $\frac{9}{7}$ from incorrect calculus.

- A1 for gradient of normal $m = -\frac{7}{9}$
- A1ft uses $y y_1 = m(x x_1)$ to achieve an equation for the normal, where m is $-\frac{1}{f'(1/3)}$.
- (e)
- M1 for equating their straight line in the form $y = -\frac{7}{9}\left(x + \frac{1}{3}\right)$ with the equation of the curve. Simplification is not required for this mark.
- M1 for simplifying their equation to form a 3TQ
- A1 for the correct 3TQ
- M1 for an attempt to solve their **3TQ** (please see General Guidance)
- A1 for the coordinate of $B = -\frac{24}{7}$

ALT

- M1 for equating their straight line in the form $y = -\frac{7}{9}\left(x + \frac{1}{3}\right)$ with the equation of the curve.
- M1 for attempting to form a linear equation in $x \frac{7}{9} \times \frac{1}{3} = \frac{1}{2x+3}$
- A1 for the correct linear equation
- M1 for attempting to solve their equation (moves at least one term correctly to the other side of the equality)
- A1 for the coordinate of $B = -\frac{24}{7}$