APPM 5360, Spring 2023 - Written Homework 3 and 4

Eappen Nelluvelil; Collaborators: Bisman, Kalyan, Tyler, Jack, Logan

February 17, 2023

1. Find a 2D function f(x,y) such that $x \mapsto f(x,y)$ is convex for every y, and $y \mapsto f(x,y)$ is convex for every x, but f is not a convex function (that is, it is not jointly convex in (x,y)).

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(x,y) = xy. For any fixed $x_0 \in \mathbb{R}$, $f(x_0,y) = x_0y$ is convex as it is linear, and similarly, for any fixed $y_0 \in \mathbb{R}$, $f(x,y_0) = y_0x$ is also convex.

However, f is not jointly convex in x and y. Consider the points (-1,1) and (1,-1). We have that

$$f\left(\frac{1}{2}(-1,1) + \frac{1}{2}(1,-1)\right) = f(0,0) = 0,$$

but we have that

$$\frac{1}{2}f(-1,1) + \frac{1}{2}f(1,-1) = \frac{1}{2}(-1)(1) + \frac{1}{2}(1)(-1)$$
$$= -1,$$

which shows that f is not convex.

- 2. Problem 3.14: We say the function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is *convex-concave* if f(x,z) is a concave function of z, for each fixed x, and a convex function of x, for each fixed z. We also require its domain to have the product form dom $(f) = A \times B$, where $A \subseteq \mathbb{R}^n$, $B \subseteq \mathbb{R}^m$ are convex.
 - (a) Give a second-order condition for a twice-differentiable function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ to be convex-concave, in terms of its Hessian $\nabla^2 f(x,z)$.

A second-order condition for a twice-differentiable function to be convex-concave is that for every fixed z, $\nabla^2 f\left(x,z\right)$ is symmetric, positive semi-definite, and for every fixed x, $\nabla^2 f\left(x,z\right)$ is symmetric, negative-definite.

(b) Suppose that $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is convex-concave and differentiable, with $\nabla f(\widetilde{x}, \widetilde{z}) = 0$. Show that the saddle-point property holds: for all x, z, we have

$$f(\widetilde{x},z) \le f(\widetilde{x},\widetilde{z}) \le f(x,\widetilde{z})$$
.

Show that this implies that f satisfies the *strong max-min property*:

$$\sup_{z}\inf_{x}f\left(x,z\right) =\inf_{x}\sup_{z}f\left(x,z\right) .$$

(and their common value is $f(\widetilde{x}, \widetilde{z})$).

We have that $\nabla f\left(\widetilde{x},\widetilde{z}\right)=0$. Since f is concave for every fixed x, which, in this case, we take our fixed x to be \widetilde{x} , we have that $f\left(\widetilde{x},z\right)\leq f\left(\widetilde{x},\widetilde{z}\right)$. This can be seen by applying the first-order concavity condition to f at $(\widetilde{x},\widetilde{z})$, i.e.,

$$f(\widetilde{x}, z) \le f(\widetilde{x}, \widetilde{z}) + \nabla f(\widetilde{x}, \widetilde{z})^{T} ((\widetilde{x}, z) - (\widetilde{x}, \widetilde{z}))$$

$$\le f(\widetilde{x}, \widetilde{z}).$$

Furthermore, since f is convex for every fixed z, which, in this case, we take our fixed z to be \widetilde{z} , we have that $f(\widetilde{x},\widetilde{z}) \leq f(x,\widetilde{z})$. This can be seen by applying the first-order convexity condition to f at $(\widetilde{x},\widetilde{z})$, i.e.,

$$f(x, \widetilde{z}) \ge f(\widetilde{x}, \widetilde{z}) + \nabla f(\widetilde{x}, \widetilde{z}) ((x, \widetilde{z}) - (\widetilde{x}, \widetilde{z}))$$

= $f(\widetilde{x}, \widetilde{z})$.

We have that $f(\widetilde{x}, z) \leq f(\widetilde{x}, \widetilde{z})$ for any z. Then taking the supremum over all z, we have that $\sup_z f(\widetilde{x}, z) = f(\widetilde{x}, \widetilde{z})$.

Similarly, we have that $f(\widetilde{x},\widetilde{z}) \leq f(x,\widetilde{z})$ for any x. Then taking the infimum over all x, we have that $f(\widetilde{x},\widetilde{z}) \leq \inf_x (x,\widetilde{z})$.

Thus, we have that $\sup_{z} f(\widetilde{x}, z) = \inf_{x} f(x, \widetilde{z})$. From this, it follows that

$$\inf_{x} \sup_{z} f(x, z) \le \sup_{z} \inf_{x} f(x, z).$$

To show the inequality the other way, we use the minimax inequality to get that

$$\sup_{z} \inf_{x} f(x, z) \le \inf_{x} \sup_{z} f(x, z).$$

Thus, we have that

$$\sup_{x} \inf_{x} f(x, z) = \inf_{x} \sup_{z} f(x, z).$$

(c) Now suppose that $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is differentiable, but not necessarily convex-concave, and the saddle-point property holds at $\widetilde{x}, \widetilde{z}$:

$$f(\widetilde{x}, z) \le f(\widetilde{x}, \widetilde{z}) \le f(x, \widetilde{z}).$$

for all x, z. Show that $\nabla f(\widetilde{x}, \widetilde{z}) = 0$.

We have that $f(\widetilde{x},z) \leq f(\widetilde{x},\widetilde{z})$ for any z, which implies that $\frac{\partial f}{\partial z}_{(\widetilde{x},z)} = 0$ for all z. Furthermore, we also have that $f(\widetilde{x},\widetilde{z}) \leq f(x,\widetilde{z})$ for any x, which implies that $\frac{\partial f}{\partial z}_{(x,\widetilde{z})} = 0$ for all x.

Then, evaluating the two partials at $(\widetilde{x}, \widetilde{z})$, we have that $\nabla f(\widetilde{x}, \widetilde{z}) = \langle 0, 0 \rangle$, as desired.

3. Problem 3.16 (d): let $f(x_1, x_2) = \frac{x_1}{x_2}$ on \mathbb{R}^2_{++} . Determine if this function is convex, concave, quasiconvex and/or quasiconcave. Justify your answers.

The Hessian of f(x,y) is given by $\nabla^2 f(x,y) = \begin{bmatrix} 0 & -\frac{1}{y^2} \\ -\frac{1}{y^2} & \frac{2x}{y^3} \end{bmatrix}$. Taking the determinant of this Hessian, we

have that the determinant is $-\frac{1}{y^4}$, which means that the matrix is indefinite, i.e., the two eigenvalues differ in sign. Thus, f is neither convex nor concave.

If we look at the level sets of f, i.e., given an $\alpha \in \mathbb{R}^{++}$, we have that $f(x,y) = \alpha \implies \frac{x}{y} = \alpha \implies x = \alpha y$, which is a convex set. Furthermore, the domain of f is also convex, which implies that f is quasilinear, i.e., f is both quasiconvex and quasiconcave.

4. Problem 3.18 (a): prove that $f(X) = \operatorname{trace}(X^{-1})$ is convex on dom $(f) = S_{++}^n$.

We will verify concavity by considering an arbitrary line, given by Z + tV, where $Z \in S_{++}^n$, $V \in S^n$.

We define g(t) = f(Z + tV), where t is restricted so that $(Z + tV) \in S_{++}^n$. We have that

$$\begin{split} g\left(t\right) &= \operatorname{tr}\left(\left(Z+tV\right)^{-1}\right) \\ &= \operatorname{tr}\left(\left(Z^{\frac{1}{2}}Z^{\frac{1}{2}} + tZ^{-\frac{1}{2}}Z^{\frac{1}{2}}VZ^{-\frac{1}{2}}Z^{\frac{1}{2}}\right)^{-1}\right) \\ &= \operatorname{tr}\left(Z^{-1}\left(I + tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}}\right)^{-1}\right) \\ &= \operatorname{tr}\left(Z^{-1}\left(I + PDP^{-1}\right)^{-1}\right) \quad \text{where we made use of the fact that } Z^{-\frac{1}{2}}VZ^{-\frac{1}{2}} \text{ is diagonalizable} \\ &= \operatorname{tr}\left(Z^{-1}\left(PP^{-1} + tPDP^{-1}\right)^{-1}\right) \\ &= \operatorname{tr}\left(Z^{-1}\left(P\left(I + tD\right)P^{-1}\right)^{-1}\right) \\ &= \operatorname{tr}\left(Z^{-1}\left(I + tD\right)^{-1}\right) \\ &= \sum_{i=1}^{n}\frac{\left(Z^{-1}\right)_{ii}}{1 + t\lambda_{i}}. \end{split}$$

We take the first and second derivatives of g with respect to t:

$$g'(t) = \sum_{i=1}^{n} -\frac{(Z^{-1})_{ii} \lambda_{i}}{(1+t\lambda_{i})^{2}}$$
$$g''(t) = \sum_{i=1}^{n} \frac{2(Z^{-1})_{ii} \lambda_{i}^{2}}{(1+t\lambda_{i})^{3}}.$$

We have that $g''(t) \ge 0$, which implies that f is convex.

5. Problem 3.36 (a): Derive the conjugate of $f(x) = \max_{i=1,...,n} x_i$ on \mathbb{R}^n .

The conjugate of this function is

$$f^{*}(y) = \sup_{x \in \mathbb{R}^{n}} (y^{T}x - f(x)).$$

We consider two cases for $y \in \mathbb{R}^n$:

- (a) $y \ge 0$ Here, we consider three subcases:
 - i. $\sum_{i=1}^n y_i < 1$ In this case, we take $x \in \mathbb{R}^n$ to be $x = -t \cdot 1$, where t > 0. Then, $(y) = y^T x - \max_i x_i = -t \sum_{i=1}^n y_i + t$, which goes to ∞ as $t \to \infty$ since $\sum_{i=1}^n y_i < 1$.

 ii. $\sum_{i=1}^n y_i > 1$
 - ii. $\sum_{i=1}^n y_i > 1$ In this case, we take $x \in \mathbb{R}^n$ to be $x = t \cdot 1$, where t > 0. Then, $(y) = y^T x - \max_i x_i = t \sum_{i=1}^n y_i - t$, which goes to ∞ as $t \to \infty$ since $\sum_{i=1}^n y_i > 1$.
 - iii. $\sum_{i=1}^{n} y_i = 1$ In this case, we have that

$$(y^T x - \max_i x_i) = \sum_{i=1}^n y_i x_i - \max_i x_i$$

$$\leq x_k - x_k \quad \text{(where } x_k = \max_i x_i\text{)}$$

$$= 0.$$

Since we are taking the supremum over all $x \in \mathbb{R}^n$, we have that $f^*(y) = 0$.

(b) $y_i < 0$ for some $i \in [n]$

If $y_i < 0$, we take $x \in \mathbb{R}^n$ such that $x_i = -t$ and $x_k = 0$ for all $k \neq i$, where t > 0. Then, we have that $y^Tx - \max_i x_i = y_ix_i - 0$, and since we are taking the supremum over all $x \in \mathbb{R}^n$, we simply let $t \to \infty$ to get that $f^*(y) = \infty$.

Thus, we have that

$$f^*(y) = \begin{cases} 0 & \text{if } y \ge 0, \sum_{i=1}^n y_i = 1, \\ \infty & \text{if } y \ge 0, \sum_{i=1}^n y_i < 1, \\ \infty & \text{if } y \ge 0, \sum_{i=1}^n y_i > 1, \\ \infty & \text{if } y_i < 0 \text{ for some } i \in [n]. \end{cases}$$