

第四节 制动系统

4.1 组件位置索引

4.2 制动系统的检查与测试

4.2.1 组件检查

组件	检查程序	其它检查项目
制动主缸	检查损坏或漏油迹象: ●油杯或油杯油封 ●管路接头 ●制动主管与真空助力器之间	油杯盖上的油封鼓起,说明被矿物油污染
制动软管	检查损坏或漏油迹象: ●管路接头和与制动器连接端扁接头 ● 软管和管路,还要检查是否扭曲或损坏	管路鼓起、扭曲或弯曲
制动钳	检查损坏或漏油迹象: ● 活塞密封 ● 制动软管扁接头 ● 排气阀螺钉	制动钳导向销被卡死或粘结
ABS控制单元	检查损坏或漏油迹象: ● 管路接头 ● 液压单元	
ESP控制单元	检查损坏或漏油迹象: ● 管路接头 ● 液压单元	
真空泵	检查损坏或进气迹象 ● 真空管路及其接头密封性● 真空单向阀是否正常工作	真空泵是否工作正常

4.2.2 制动系统的测试

- 1、 制动时,制动踏板下沉/逐渐失灵
- (1) 接通整车电源,启动点火开关,让电动真空 泵有足够的时间对真空助力器抽真空。
- (2) 沿着方向盘的底部贴一片 2 英寸的不透光胶纸,并在胶纸上画一条水平参考线。
- (3) 挂入空档(neutral)位置,轻轻地踩下制 动踏板并保持此状态(大约相当于让 A /T 车 保持缓行所需的压力),然后释放 EPB 开关。
- (4) 在踩住制动踏板的同时,捏住放在其后方的卷尺端部。然后,将卷尺向上拉,直至方向盘,注意卷尺会在何处与你在胶纸上画的参考线对齐。
- (5) 给制动踏板施以稳定的压力,并保持 3 分钟。
- (6) 观察卷尺。
- 如果位移小于 10mm,那么制动总泵是合格的。
- 如果位移超过 10mm,则更换制动总泵。
- 2、 制动片迅速磨损、汽车震动(长时间驾驶后) 或制动踏板高而难踩。
- (1) 驾驶汽车直至制动器拖滞,或直至踏板变得高而难踩。在长时间的试车过程中,可能要踩 20 次或更多次的制动踏板。
- (2) 起动发动机,用举升机举升汽车,并用手 转动四个车轮。

是否有车轮存在制动器拖滞现象?

是 转向第 3 步

否 寻找其它可能引起制动片磨损、踏板偏 高或汽车震动的原因。

(3) 关掉发动机,给制动踏板抽气,使制动助力器内的真空耗尽,然后再次转动车轮,检查是否存在制动器拖滞现象。

是否有车轮存在制动器拖滞现象?

是 转向第 4 步

否 更换真空助力器

(4) 不拆除制动管路,松开螺栓,并使制动总 泵与助力器分离,然后转动车轮,检查是否存 在制动器拖滞现象。

是否有车轮存在制动器拖滞现象?

是 转向第 5 步

否 检查制动踏板位置开关的调整情况和踏 板的自由行程。

(5) 松开制动总泵上的液压管路,然后转动车轮,检查是否存在制动器拖滞现象。

是否有车轮存在制动器拖滞现象?

是 转向第6步

否 更换制动主缸。

(6) 松开各制动钳上的排放阀螺钉,然后转动车轮,检查是否存在制动器拖滞现象。 是否有车轮存在制动器拖滞现象? 是 分解出现制动器咬死车轮上的制动钳, 并维修故障。

否 检查制动主缸盖密封圈是否膨胀、制动 主缸中的制动液是否变色或污染、制动管路是否损 坏。如果上述任何一项损坏,

请予以更换。如果以上项目良好,则更换 ABS/ESP 液压单元

3、 ESP 功能主观测试,针对 TCS VDC HHC 功能异常.

ESP作为电子稳定系统为了保证行车安全,针对功能异常需要用专用诊断仪进行排查;

4.3 制动踏板和制动踏板位置开关的

调整

4.3.1 踏板高度

1、 逆时针转动制动踏板位置开关(A),并将其往后拉,直到不再与制动踏板接触。

2、 卷起覆盖物, 在绝缘件切口处, 测量至踏板垫 (B) 左侧的踏板高度 (C)。

标准踏板高度 (移开地毯): 136mm~146mm

3、 松开推杆锁紧螺母(A),用钳子将推杆旋入或 旋出,以达到相对于地板的标准踏板高度。调 解完毕,紧固锁紧螺母。

推杆压下时不要调整踏板高度。

4.3.2 制动踏板开关间隙

1、 压下制动踏板位置开关,直到其柱塞被完全压紧(螺纹端(A)与踏板臂上的衬垫(B)接触),然后将制动踏板位置开关顺时针转动,直到锁紧。确认踏板松开后制动指示灯熄灭。

2、 检查制动踏板的自由行程。

4.3.3 踏板自由行程

- 1、 关掉发动机, 反复踩制动踏板直至助力器中无真空为止。
- 2、 踩下踏板直至感到有阻力为止,用手推动踏板, 以检测踏板(B)处的自由行程(A)。

自由行程: 1-5mm

如果间隙不合要求,检查制动灯开关的间隙。如果间隙正确,对制动系统进行诊断。

制动灯开关间隙: 0.75-2.4mm。

3、 如果踏板自由行程不符合技术要求,则调整制动踏板位置开关(C)。如果踏板行程不够,则可能引起制动器拖滞。

4.4 制动踏板的更换

- 1、 拆除仪表板。
- 2、 取下锁销(A)和销轴(B)。

- 3、 断开制动灯开关 C 处的接插件,将制动灯开关逆时针旋转 45°取下制动灯开关。
- 4、 断开踏板角度传感器 D 处的接插件。
- 5、 拆除制动踏板支架上连接管梁的螺栓(E)和卡片(F)。
- 6、 将制动踏板连同托架(G)一起拆除。
- 7、 以与拆卸相反的顺序进行安装。
- 8、 对制动踏板和制动踏板位置开关进行调整。

4.5 制动系统排气

注:

- 排出的制动液不可再用。
- 须使用纯正的 DOT 4 制动液。使用非规定制动液可能会造成腐蚀,并缩短系统使用寿命。
- 不要让制动液溅洒在车辆上,否则,可能损坏油漆,如果制动液已经溅洒在漆层上,应立即用水清洗。
- 在开始进行排气时,制动总泵储液罐的液位必须 处于最大液位标志处(上液位)(A),每个制动 钳排放之后都必须检查。 按要求补足制动液。
- 1、 确认储液罐中制动液液位处于最大液位标志处 (上液位)(A)。

- 2、 将一段干净的排放管接在排放螺钉上。
- 3、 由助手缓慢踏压制动踏板几次,然后施加持续不 变的压力并踩住不动。
- 4、 从左后方开始,松开制动器排气螺钉,让空气从 系统中释放出来,在制动液停止流出的一刻牢固 地拧紧排气螺钉。

5、 重复步骤 4 多次, 排气过程中实时注意储液壶中

- 制动液液面位置, 随时补足制动液。
- 6、 按图示顺序,依次对每个车轮进行上述操作,直 到排放管中出来的制动液中见不到气泡为止,然 后拧紧排气螺钉,拧紧力矩:9.0N•m。

7、 再次将制动总泵储液罐注满,使液面达到 MAX(最高液位) 标线。

4.6 制动系统指示灯电路图

仪表总成

1、 制动液液位开关的检测

浮标在下位和上位时,检查端子(1)之间的导通性。

- 将储液罐中的制动液全部排出,浮标下沉,端 子间应导通。
- 将储液罐注满制动液,使液面达到 MAX (最高液位)标线(A),浮标上浮,端子间应断开。

4.7 前制动摩擦片的检测及更换

注意

制动片的构成成份为有毒物 质,经常吸入其尘屑,会有害于您 的健康。

- 避免吸入摩擦片尘屑。
- 切勿使用吸气软管或毛刷 清理制动器总成,必须使用真空清 吸尘器。

1、 检测

- (1) 举升车辆前部,利用安全支撑,在合适的 位置将其支撑,拆下前轮。
- (2) 检查内侧摩擦片和外侧摩擦片的厚度。垫片的厚度不计,用直尺测量衬面厚度。如下图 所示。

摩擦片厚度:

标准: 11.0mm 维修极限: 2.0mm

内侧摩擦片:

外侧摩擦片:

(3) 如果摩擦片厚度小于维修极限,则应将摩擦片整套更换。

2、 更换

- (1) 升高车辆前部,利用安全支撑,在合适的 位置将其支撑。拆除前轮。
- (2) 拆下减震器上制动软管安装螺栓。
- (3) 拆下 A、B 两处螺栓。沿箭头方向把制动钳

体径向拔出。同时检查软管及轮缸橡胶护套是 否破损或老化。

(4) 拆下制动垫片(A),检查弹簧片 B 是否变形或者损坏。

- (5) 将制动钳彻底清理干净,除去全部锈蚀, 并检查是否有沟槽及裂纹。
- (6) 检查制动盘是否破损及有裂纹。
- (7) 在制动片(A)的双侧、制动片(B)的外侧以及箭头所指的其他位置,涂上润滑脂。将调整垫片和制动片上的多余润滑脂擦掉。润滑脂沾到制动盘或制动片上会降低制动性能,不要让制动盘和制动片沾上润滑脂。
- (8) 正确安装制动片,将带有磨损报警器(B)

的制动片安装在内侧。

(9) 推进活塞,使制动钳体沿箭头方向卡进。 确认活塞护套就位,再用 10mm 内六花扳手旋紧 A、B 两处螺栓,拧紧力矩:34N•m。

- (10) 装上减震器上制动软管固定螺栓,并用规定力矩 25N•m将其上紧。
- (11) 向下踏压制动踏板数次,确认制动器工作 正常,然后进行试车。

注: 全套制动片刚换上时,进行制动可能需要较大的踏板行程。踏压几次制动踏板可恢复正常的踏板 行程。

(12) 安装结束后,检查软管及管路接口或连接 机构是否有泄漏,必要时重新紧固。

4.8 前制动盘的检测

1、 振摆

- (1) 升高车辆前部,利用安全支撑,在合适的 位置将其支撑,拆下前轮。
- (2) 拆下制动片
- (3) 检查制动盘表面是否破损或开裂。彻底清洁制动盘,并清除所有锈蚀。
- (4) 安装合适的平垫圈(A)及车轮螺母,用规定力矩将螺母拧紧,使制动盘紧紧贴住轮毂。

- (5) 如图将百分表靠制动盘放置,测量从制动盘外缘起 10mm 处的振摆。
- (6) 如果制动盘振摆超出维修极限,用车载制动器车床对制动盘进行休整最大休整极限:高配车型:26mm,低配车型:24mm。

注:

- 若制动盘超出休整极限值,应予以更换
- 新的制动盘振摆大于 0.025mm,则要进行修整。
- 2、 厚度及平行度
- (1) 升高车辆前部,利用安全支撑,在合适的 位置将其支撑。拆下前轮。
- (2) 拆下制动片。
- (3) 使用千分尺,在距制动盘外缘 10mm、间隔 大约为 45°的 8 个点处测量制动盘的厚度,如 果最小测量值小于最大休整极限,则更换制动 盘。

制动盘厚度:

(7) 标准: 高配车型: 28mm, 低配车型: 26mm。 最大休整极限: 高配车型: 26mm, 低配车型: 24mm。 制动盘平行度: 最大 0.05mm

注: 此为厚度测量值的最大容许偏差。

- (4) 如果最小测量值小于最大修正极限,则更 换制动盘。
- (5) 如果制动盘的平行度超出维修极限,用车载制动器车床对制动盘进行修整。

4.9 前轮毂单元总成的更换

前轮毂单元总成和挡泥板拆卸:

- 1、 升起车辆;
- 2、 拆下前车轮;
- 3、 松开螺栓(C), 拆下前制动卡钳(B);
- 4、 拆下前制动盘(A);
- 5、 松开螺栓(D), 拆下挡泥板(E);
- 6、 用专用工具把轮毂单元从转向节拆出;
- 7、 以与拆卸相反的顺序进行安装。

要求力矩:

制动卡钳与转向节连接螺栓: 95N·m

4.10 真空助力器的检测

- 1、 按点火开关使车辆上电,深踩 2 次制动踏板。
- 2、 真空泵停止工作后,用诊断仪读取真空压力数据,如果 30 秒后真空读数下降值等于或大于2.7kPa,则检查以下部件是否泄漏。
- 真空软管、管路
- 密封件
- 真空助力器
- 制动总泵

4.11 真空助力器带主缸的更换

注:不要试图分解制动助力器。更换时,要将制动助力器作为一个总成更换。请勿将制动液溅洒在车辆上;否则可能损坏油漆,如果制动液已经溅洒在漆层上,应立即用水将其清洗干净。

- (1) 按拆卸顺序拆下前舱动力总成(按实际情况需要);
- (2) 打开远程液壶盖,并将储壶中的制动液排干;
- (3) 拆下制动液液位报警开关插接件;
- (4)取下固定销轴(B)与锁销(A),拆下真空助力器 与制动踏板连接螺母(C);

- (5) 拆下真空管路(B);
- (6) 从制动主缸上断开制动硬管(A);
- 为了防止溅洒,要用抹布或维修用毛巾包住硬管管接头。
- (7) 利用卡箍钳拆下卡箍(C),将远程液壶连接油管与真空助力器断开;
- 为了防止溅洒,要用抹布或维修用毛巾包住油 管接头。

(8) 从前舱室拆除真空助力器。

注意:

- 小心不要损坏助力器表面和助力器双 头螺栓的螺纹。
- 小心不要弯曲或损坏制动管路。
- (9) 以与拆卸相反的顺序进行安装。

注意以下事项:

- 安装了真空助力器和制动总泵之后,给储液罐中加注新制动液,给制动系统排气,并调整制动踏高度。
- 要求力矩:

制动管路至制动主缸: 17.5N·m 真空助力器与制动踏板连接螺母: 25N·m

4.12 真空辅助装置常见故障排查

- 1、 将专用的诊断仪插入相应的接口处,测量进气 温度压力传感器的读数。
- 2、打开点火开关,深踩 2 次制动踏板。使真空泵工作,直至诊断仪显示的真空度读数为 60kpa(踩下制动踏板时为 75kpa),此时,真空泵自动停止工作。若真空度无法达到上述要求值或真空泵无法自动停止工作,则检查以下部件是否满足性能要求。
- 真空度压力传感器。
- 真空泵控制继电器
- 3、观察诊断仪显示的真空度读数,如果3分钟内真空度下降值不超过2kpa,则说明真空辅助系统性能良好。若3分钟内真空度下降值超过2kpa,则检查以下部件是否漏气:
- 真空管路总成
- 真空软管带单向阀、真空压力传感器
- 管路接头

4.13 电动真空泵的更换

先将真空管与真空助力器断开,拆下真空压力 传感器接插件,并将固定在车身流水槽的螺栓拆下, 拆下电动真空泵线束对接接插件,按照要求将动力 总成和前副车架一起从车身落下。

高配车型:

(1) 拆下(A)处的卡箍,然后将真空管与真空 泵断开:

(2) 拆下(B)、(C)处的螺栓,将真空泵从动力电机上拆下;

(3) 将接插件(D)从真空泵支架上拆下,然后 将电动真空泵从四个橡胶件减震垫(E)中压出。

(5) 以与拆卸相反的顺序进行安装。 真空管路要按照要求装配,抽气方向要注意。 真空泵支架螺栓紧固力矩: 25±2N.m

低配车型:

(1) 拆下(A)处的卡箍,然后将真空管与真空 泵断开;

(2) 拆下(B)处螺栓;

(3) 拆下(C)处螺栓;

(4) 拆下(D)处扎带,将接插件(E)从真空 泵支架上拆下,然后将电动真空泵从四个 橡胶件减震垫(F)中压出;

(5) 以与拆卸相反的顺序进行安装。 真空管路要按照要求装配,抽气方向要注意。 真空泵支架螺栓紧固力矩: 25±2N.m

4.14 后制动摩擦片的检测及更换

注意

制动片的构成成份为有毒物质,经常吸入其尘屑,会有害于您的健康。

- 避免吸入摩擦片尘屑。
- 切勿使用吸气软管或毛刷清理制 动器总成,必须使用真空清吸尘器。

1、检测

(1) 举升车辆后部,利用安全支撑,在合适的

位置将其支撑。拆下后轮。

(2) 检查内侧摩擦片(A)和外侧摩擦片(B)的厚度。垫片的厚度不计。

摩擦片厚度: 标准:10mm 维修极限:2mm

(3) 如果摩擦片厚度小于维修极限,则应将摩擦片整套更换。

2、 更换

- (1) 升高车辆后部,利用安全支撑,在合适的 位置将其支撑。拆除后轮。
- (2) 松开制动卡钳(B)导向销处的连接螺栓(A) 的其中一个,旋动制动钳,使制动片与制动盘 脱离; 检查软管和销子护套是否破损或老化。

(3) 拆下制动片(A)和制动片固定簧片。

- (4) 将制动钳彻底清理干净,除去全部锈蚀, 并检查是否有沟槽及裂纹。
- (5) 检查制动盘是否破损及有裂纹。
- (6) 清洁并装上制动片固定簧片。
- (7) 在制动片(A)的双侧的外侧以及箭头所指的其他位置,涂上润滑脂。将调整垫片和制动片上的多余润滑脂擦掉。润滑脂沾到制动盘或制动片上会降低制动性能,不要让制动盘和制动片沾上润滑脂。

(8) 正确安装制动片和制动片垫片,带有磨损 报警器的制动片(B)安装在内侧。

如果重复使用制动片, 务必将制动片装回原先 位置, 以防制动瞬时失效。

(9) 推进活塞(A),使制动钳卡在制动片上。 确认活塞护套就位,以防安装制动钳时将其损 坏。

- (10) 安装制动钳,使其就位。装上法兰面螺栓 (B),用扳手夹住销钉(C),用规定的力矩将 法兰面螺栓拧紧。小心不要损坏小护套。
- (11) 向下踏压制动踏板数次,确认制动器工作 正常,然后进行试车。
- **注:** 全套制动片刚换上时,进行制动可能需要较大的踏板行程。踏压几次制动踏板可恢复正常的踏板 行程。
- (12) 若维修释放是按 4.1 中的方法三操作的, 需按 3.2 装配,将 EPB 驱动总成装配上去。
- (13) 用诊断设备进行 EPB 初始化(操作方法参考 4.2),确认无 EPB 故障码。
- (14) 检查制动软管、管路接口及制动卡钳是否存在制动液泄漏,必要时重新紧固。

4.15 EPB 卡钳的检查与更换

1、检查

- (1) 使用举升机举起车辆,并拆下车轮。
- (2) 检查制动卡钳是否存在损坏或漏油迹象:活塞防尘罩处、制动软管接头处、排气阀螺钉处等。
- (3) 检查制动卡钳浮动销是否存在卡死、阻滞力大或粘结等现象。

2、更换

2.1 拆除

- (1) 操作维修释放(操作方法参考 4.1)。
- (2) 使用举升机举起车辆,并拆下车轮。

(3) 首先拆下进油口处空心螺栓(A), 然后拆除六角法兰面螺栓(B), 最后取下制动卡钳。

2.2 装配

- (1) 取出要更换的制动卡钳,确认所有橡胶件无破损、老化,EPB 驱动总成壳体完成无破损,所有零部件安装是否到位。
- (2) 把制动卡钳卡在制动盘上,并按上图依次安装六角法兰面螺栓 B 和进油口处空心螺栓 A。
- (3) 对制动系统进行排气处理。
- (4) 用诊断设备进行 EPB 初始化(操作方法参考 4.2), 确认无 EPB 故障码。

3、EPB 驱动总成的检测和更换

3.1 检测

当仪表上制动系统报警灯 点亮时,需连接诊断设备,并按以下步骤读取故障码,确认是 否检修 EPB 驱动箱。

若出现以下故障码,需确认是否更换 EPB 驱动总成:

DTC	故障描述	故障范围	故障码产生时对应的原因
C11B013		EPB	EPB 内部故障
	左电机开路或故障	线束	线束开路
		左卡钳电机	电机开路
C11B113		EPB	EPB 内部故障
	右电机开路或故障	线束	线束开路
		右卡钳电机	电机开路
C11B41D	左电机过电流	EPB	EPB 内部故障
		线束	线束短路
		左卡钳电机	左电机短路
C11B51D	右电机过电流	EPB	EPB 内部故障
		线束	线束短路
		右卡钳电机	右电机短路
C11B617	左电机长时间工作	EPB	EPB 内部故障
		线束	线束损坏
		左卡钳电机	左电机损坏
C11B717	右电机长时间工作	EPB	EPB 内部故障
		线束	线束损坏
		右卡钳电机	右电机损坏
C11B815	左电流检测回路开路	EPB	EPB 内部故障
		线束	线束损坏

		左卡钳电机	左电机损坏
C11B915	右电流检测回路开路	EPB	EPB 内部故障
		线束	线束损坏
		右卡钳电机	右电机损坏
C11BA29	左电流检测回路信号异常	EPB	EPB 内部故障
		线束	线束损坏
		左卡钳电机	左电机损坏
C11BB29	右电流检测回路信号异常	EPB	EPB 内部故障
		线束	线束损坏
		右卡钳电机	右电机损坏
C11BC00	左 EPB 未初始化或初始化 失败	EPB	EPB 内部故障或未进行初始化
		线束	线束损坏
		左卡钳电机	左电机损坏
C11BD00	右 EPB 未初始化或初始化 失败	EPB	EPB 内部故障或未进行初始化
		线束	线束损坏
		右卡钳电机	右电机损坏

在依次排除供电电压、线束、接插件和 ECU 故障后,故障依然重现,可确认是 EPB 驱动总成故障,并进行更换。

3.2 更换

1拆卸

注意:

EPB是涉及到安全的部件,因此对它进行维修诊断时,除遵守一般的安全和预防措施外,还必须遵下列诊断注意事项。

- EPB 系统必须由经过专业培训并掌握维修技能的技师进行维修,并只许使用原厂零部件进行更换。
- 进行 EPB 系统硬件更换,必须在有举升设备的 专业维修厂或 4S 店进行。
- 当车辆行驶过程中,禁止操作电子驻车,除非紧 急制动。
- 请勿在 EPB 不释放的故障情况下强制驾驶。
- 需避免在 EPB 驱动总成更换过程中意外激活动作,因此,在把 EPB 驱动总成从卡钳体上拆除之前,需确保线束的接插件断开。
- (1) 操作维修释放(操作方法参考 4.1)。
- (2) 车辆被举起后,在车轮悬空状态下拆卸连接

线束的接插件。

(3) 使用内六角扳手逆时针旋转拧开 EPB 驱动总成的固定螺栓 A。

- (4) 沿轴向平稳地从卡钳体上取下 EPB 驱动总成。
- (5) 从卡钳体 O 型圈槽中拆除 O 型密封圈。

注意:使用带有柔软尖端的工具把 O 型密封圈从卡钳体 O 型圈槽拆下。拆卸过程一定不要损伤卡钳体 O 型圈槽,若划伤会导致泄漏以及传动总成的损坏,甚至导致驻车完全失效。

2 装配

- (1) 装配新的 O 型密封圈在卡钳体 O 型圈槽上。注意:新的 O 型密封圈必须没有灰尘和污染。为了避免液体污染 EPB 驱动总成,不得使用装配液。在安装后检查 O 型密封圈是否有扭曲和撕裂。
- (2) 清理卡钳体螺纹孔内的螺纹,去除螺纹上的螺纹胶。通过轴向平稳的推入,来安装新的 EPB 驱动总成到卡钳体上。EPB 驱动总成必须推至与卡钳体的接触面上如图 A。EPB 驱动总成的固定孔须在相应卡钳体螺纹孔的前面。

- (3) 使用与 EPB 驱动总成同时提供的新的固定螺栓, 顺时针旋进螺栓直到螺栓头部与 EPB 驱动总成安装耳面接触。然后控制拧紧力矩至 8±2NM。注意:
- ▶ 在拧紧螺栓时,在 EPB 驱动总成与卡钳体之间 不能产生扭矩、剪切力及拉力。
- 螺栓的螺纹上涂有防松胶,该防松胶只能确保在 初次使用时的锁紧,因此不得使用旧螺栓,否则 会导致松脱。当安装 EPB 驱动总成时总是使用 新的螺栓。
- (4) 把线束的连接插头与 EPB 驱动总成的连接插槽接好,拉动插头确认已将线束装配牢固,线束连接插头设计有防松机构以确保插接良好的接头不会松脱。

注意:线路连接插头连接到 EPB 驱动总成的连接插槽时,最大推力和拉力不应超过 100N。

(5) 用诊断设备进行 EPB 初始化(操作方法参考 4.2), 确认无 EPB 故障码。

4、其它

4.1 维修释放

方法一:

使用诊断设备, 按以下步骤操作:

方法二:

使用 EPB 开关操作维修释放

- 1) 整车上电(ON挡)或启动车辆;
- 2) 持续踩住制动踏板,踩制动踏板的效果为"制动灯常亮";
- 4) 在报警指示灯开始闪烁的 2 秒内松开 EPB 开关;
- 5) 松开 EPB 开关后开始计时,在之后的第 3~5 秒 的范围内,再次按一下 EPB 开关;
- 6) EPB 开始执行完全释放,报警指示灯转为常亮;
- 7) 松开制动踏板,操作完成。

注意:

- a) 全过程必须始终踩下制动踏板;
- b) 第一次按下开关若保持时间少于 10 秒或多于 12 秒, 系统都会自动恢复为初始状态,需要重新操作;
- c) 再按下开关若是在第一次松开开关后的3秒以内或5秒以后,系统都会自动恢复为初始状态,需要重新操作;
- d) 进入完全释放后,系统将不会响应任何功能,需要重新"初始化"或使用 EPB 开关退出维修释放。

注:通过以上两种方法进行维修释放后,EPB 所有功能将会失效,避免在维修过程中意外动作导致对 EPB 驱动总成的损伤。在完成维修操作并恢复车辆状态后,必须进行"初始化",EPB 系统才能恢复正常。

方法三:

由于电器故障导致在以上两种方法失效时,可采取机 械维修释放,具体方法如下:

1) 使用内六角扳手把花型圆柱头螺钉(A)和(B) 拆卸,取下 EPB 电机即可。

2) 把安装了内六角头的力矩扳手连接到卡钳体的花键内(注意:轴向力请勿超过 10N);通过顺时针旋转卡钳体上的花键来释放制动活塞。放松制动活塞直到卡钳体的推力螺杆旋转自由(力矩≤0.2 Nm)。

4.2 初始化

使用诊断设备,按以下步骤进行 EPB 初始化,可退出维修释放状态。

注: EPB 驱动总成一旦从车辆上拆除,禁止使用通电的方式进行驱动。

4.16 后轮制动盘的检测

1、 振摆

- (1) 升高车辆后部,利用安全支撑,在合适的位置将其支撑。拆下后轮。
- (2) 拆下制动片
- (3) 检查制动盘表面是否破损或开裂。彻底清洁制动盘,并清除所有锈蚀。
- (4) 安装合适的平垫圈(A)及车轮螺母,用规定力矩将螺母拧紧,使制动盘紧紧贴住轮毂。

(5) 如图将百分表靠制动盘放置,测量从制动盘 外缘起 10mm 处的振摆。

制动盘振摆:

单个制动盘振摆维修极限: 0.025mm

(6) 如果制动盘振摆超出维修极限,用车载制动器车床对制动盘进行休整

注:

- 若制动盘超出休整极限值,应予以更换
- 新的制动盘振摆大于 0.025mm,则要进行修整。
- 2、 厚度及平行度
 - (1) 升高车辆后部,利用安全支撑,在合适的位置将其支撑。拆下后轮。
 - (2) 拆下制动片。
 - (3) 使用千分尺,在距制动盘外缘 10mm、间隔大约为 45°的 8个点处测量制动盘的厚度,如果最小测量值小于最大休整极限。则更换制动盘。

制动盘厚度:

标准: 11mm(高配车型)、12m(低配车型) 最大休整极限: 9mm(高配车型)、10m(低配车型) 制动盘平行度: 最大 0.05mm

注: 此为厚度测量值的最大容许偏差。

(4) 如果制动盘的平行度超出维修极限,则对制动盘进行修整。

注: 如果制动盘的平行度超出重新维修极限,用更换制动盘。

4.17 后轮毂单元总成的更换

后毂单元总成和挡泥板拆卸:

- 1、 升起车辆;
- 2、 拆下后车轮;
- 3、 拆下 EPB 线束 (A);
- 4、 松开螺栓(B) 拆下后制动卡钳(C);
- 5、 拆下后制动盘(D);

6、 旋转后轮毂单元法兰面(A),,用套筒通过通孔(C)把螺栓(B)松开,取下后轮毂单元(A)与挡泥板(D);

7、 以与拆卸相反的顺序进行安装。 要求力矩:

制动卡钳与安装底板连接螺栓: 100N • m 轮毂单元与安装底板连接螺栓: 100N • m (高配车型) 轮毂单元与安装底板连接螺栓: 75N • m (低配车型)

4.18 制动软管及管路的检测

- 1、 检查制动软管是否损坏、老化、泄露、相互干扰 及扭曲。
- 2、 检查制动管路是否损坏、锈蚀及泄漏。还要检查 制动管路是否被碰弯。
- 3、 检查软管和管路接头和连接处是否出现泄漏,必 要时重新紧固。
- 4、 检查制动总泵和 ABS/ESP 调制器装置是否破损或 泄漏。

注:一旦检修制动管路,务必更换制动管路管夹。

4.19 制动软管的更换

注:

- 在重新安装之前,检查所有零件,上面不得有灰尘和其它杂质。
- 按规定更换新零件。
- 勿将制动液溅洒在车辆上;否则可能损坏油漆,如果制动液已经溅洒在漆层上,应立即用水将其清洗干净。
- 1、 如果制动软管被扭曲、开裂或泄漏,请更换制动 软管(A),否则会出现泄漏。

- 2、 使用 10mm 的油管扳手,将制动软管从制动管路 (B)上拆下。(见上图)
- 3、 将制动软管(A)上的E形卡(B)拆除并废弃。 (见下图)

4、 拆除制动软管(A),将制动软管与制动钳分离。 5、 松开减震器上的螺栓(D),拆除制动软管(见下

6、 首先使用紧固螺栓(D)将制动软管(A)装在减

- 震器上,然后用空心螺栓(B)和新的紫铜垫片(C)将制动软管与制动卡钳连接起来(见上图)
- 7、 用新的 E 型卡 (C) 将制动软管 (A) 装在车身上 用于安装制动软管的支架 (B) 上 (见下图)。

- 8、 把制动硬管 (D) 与制动软管连接起来。拧紧力矩: 30N•m。(见上图)
- 9、 制动软管安装完毕后,将制动系统排气,参照本章 7.6 操作

10、进行下列检查:

- 检查制动软管及管路接头是否泄漏。必要时予以 紧固。
- 检查制动软管是否相互干扰、扭曲。 要求力矩:

制动硬管至制动软管: 17.5N•m 制动总泵至制动管路: 17.5N•m 制动软管至制动钳(连接螺栓): 32 N•m

4.20 ABS/ESP 维修更换

ABS/ESP 维修更换注意事项

连接ESP/ABS模块的制动管路时,确保正确连接。 ABS/ES不能判断制动管路是否正确连接。错误连接可能导致严重事故。连接制动管路时,必须遵照ABS/ES 控制单元及阀体总成上的标记:

- MC1: 连接制动主缸的制动管路 1:
- · MC2: 连接制动主缸的制动管路 2:
- FL: 连接左前轮制动轮缸的制动管路;
- FR: 连接右前轮制动轮缸的制动管路;
- RL: 连接左后轮制动轮缸的制动管路;
- RR: 连接右后轮制动轮缸的制动管路。

电子制动助力系统(ABS/ESP)模块更换

确定更换以下模块,必须遵循操作步骤,不然造成人员伤害及损失,概不负责!

在拆卸前整车高压电、低压电必须断开! 拆装DC控制器必须按照要求进行!

1) 断开(A) 处ECU接插件,并断开(B) 处与ESP 模块连接的制动硬管,安装力矩17.5N.M;

2) 松开(A)、(B)处ESP模块与安装支架的螺母,然后拆下故障件ESP模块(如下图所示);

3) 将新的ESP模块(A) 与ESP安装支架(B) 安装; 力矩9N. M(如下图所示);

- 4) 连接步骤1) 的管路(按照模块表面标记记号 装配);
- 5) 连上ECU接插件;
- 6) 进行基础制动排气'
- 7) 运用诊断仪进行ESP传感器标定。