Análisis y extracción de características de enfermedades de la piel: su aplicación en la detección de varicela

Virginia Arroyo y Julián Oyola

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

24 de diciembre de 2012

- Motivación
 - Presentación del problema básico
 - Ejemplos

- Motivación
 - Presentación del problema básico
 - Ejemplos
- 2 Las imágenes de piel y sus características
 - Procesamiento digital de imágenes

- Motivación
 - Presentación del problema básico
 - Ejemplos
- 2 Las imágenes de piel y sus características
 - Procesamiento digital de imágenes
- Detección de vesículas
 - Espacio de color
 - Detección de bordes
 - Detección de círculos
 - Falsos positivos y falsos negativos

- Motivación
 - Presentación del problema básico
 - Ejemplos
- 2 Las imágenes de piel y sus características
 - Procesamiento digital de imágenes
- Detección de vesículas
 - Espacio de color
 - Detección de bordes
 - Detección de círculos
 - Falsos positivos y falsos negativos
- 4 Discriminación entre varicela y otras enfermedades
 - Construcción de un modelo teórico

- Motivación
 - Presentación del problema básico
 - Ejemplos
- 2 Las imágenes de piel y sus características
 - Procesamiento digital de imágenes
- Detección de vesículas
 - Espacio de color
 - Detección de bordes
 - Detección de círculos
 - Falsos positivos y falsos negativos
- Discriminación entre varicela y otras enfermedades
 - Construcción de un modelo teórico
- Conclusiones
 - Trabajo futuro
 - Preguntas

¿Cómo detectar patrones de enfermedades de la piel?

- ¿Cómo detectar patrones de enfermedades de la piel?
- Resultan naturales y poco complejos para un ser humano
- ¿Y para un ordenador?

Ejemplo: Dos enfermedades

Varicela

Sarampión

Ejemplo: Variabilidad de imágenes para una misma enfermedad

Este problema se enmarca en el procesamiento digital de imágenes.

Este problema se enmarca en el procesamiento digital de imágenes. Algunas dificultades:

Escala

- Escala
- Elementos que afectan la imagen

- Escala
- Elementos que afectan la imagen
- Espacio de color

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes
- Detección de círculos

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes
- Detección de círculos
- Falsos positivos y falsos negativos

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes
- Detección de círculos
- Falsos positivos y falsos negativos
- Detección de la piel

Escala

Elementos que afectan la imagen

Problemas

- Ruido
- Imperfecciones de la piel
- Luces y sombras
- Elementos ajenos

Técnicas

- Ecualización del histograma (Contrast-limited adaptive histogram equalization)
- Reducción del ruido o suavización utilizando un filtro gaussiano

Espacio de color

¿Cómo representamos los colores y la luz en el ordenador?

- Espacios de color posibles
- Luminancia vs Crominancia
- YUV vs L*a*b

Luminancia: detección de bordes

Crominancia: detección de piel y falsos positivos

Luminancia vs Crominancia

Luminancia - componente L

Luminancia vs Crominancia

Crominancia - componente a

Luminancia vs Crominancia

Crominancia - componente b

Detección de bordes

- Resulta sencillo para el ser humano
- Borde: frontera entre el objeto y el fondo
- Existen varios métodos (Canny, Roberts, Sobel o Prewitt)
- Objetivos de un detector de borde:
 - Baja tasa de error
 - Buena localización del borde

Método de Canny

- Robusto contra el ruido
- Gran adaptabilidad
- Etapas del método:
 - Suavizado de la imagen: Filtro gaussiano
 - Obtención del gradiente: Filtro pasa altos en dirección vertical y horizontal
 - Supresión de puntos que no son máximos locales:
 Adelgazamiento del ancho de los bordes hasta lograr bordes de un píxel de ancho
 - Umbral con histéresis: Función de histéresis basada en dos umbrales; con este proceso se trata de reducir la posibilidad de aparición de contornos falsos.

Operaciones morfológicas

- Herramientas muy utilizadas en el procesamiento de imágenes
- Simplificar los datos de una imagen
- Preservar las características esenciales
- Eliminar aspectos irrelevantes
- bridge: Une pixeles que están separados
- Otras operaciones: open, close, clean

Ejemplo: Bordes detectados en algunas imágenes

Ejemplo: Bordes detectados en la imagen

Ejemplo: Bordes detectados

Detección de círculos

- ¿Dados los bordes, cuándo conforman un círculo?
- CHT: Circular Hough Transform
 - Espacio de Hough
 - Arreglo de acumulación
- Selección de candidatos
 - Ponderación con respecto al máximo
 - Umbralización

Ejemplo: Imagen con bordes detectados

Ejemplo: Arreglo de acumulación

Ejemplo: Imagen con el círculo detectado

Falsos positivos y falsos negativos

Detección de círculos redundantes

• Análisis del interior de la ampolla: Discriminación

Selección de vesículas de referencia

. . .

Trabajo futuro

- Detección de piel
- Detección de ampollas que no tengan forma circular
- Detección de patrones en las imágenes
 - Buscar características que permitan determinar cuándo se está en presencia de la varicela
 - Aprendizaje automático sobre el histograma del color de las ampollas detectadas

Preguntas?

. . .

Gracias!

Virginia Arroyo (virginia.arroyo@gmail.com) Julián Oyola (joyola@dc.uba.ar) Anita Ruedin (ana.ruedin@dc.uba.ar)