Conjuntos parcialmente ordenados y retículos Días de Combinatoria 2017

Jhon Bladimir Caicedo¹ y Rafael S. González D'León¹

¹Escuela de Ciencias Exactas e Ingeniería, Universidad Sergio Arboleda

RESUMEN. Notas de clase del minicurso de introducción a los conjuntos parcialmente ordenados y retículos. La mayor parte de estas notas está basada en la obra y notas de clase de Richard Stanley [2, Capítulo 3] y en el en el artículo de Federico Ardila [1, Sección 4] para la parte de conjuntos parcialmente ordenados; y en las notas de clase de Michelle Wachs [3] para la parte de topología de conjuntos parcialmente ordenados.

Índice

1.	Con	juntos Parcialmente Ordenados	2
	1.1.	Definiciones básicas	2
	1.2.	Mapas entre posets	4
	1.3.	Construcciones y operaciones entre posets	6
2.	Retí	culos	7
	2.1.	Definiciones básicas	7
	2.2.	Retículos distributivos	9
	2.3.	Retículos geométricos	11
3.	Álge	bras de incidencia y la función de Möbius	13
	3.1.	Álgebras de incidencia	13
		3.11. Algunas funciones en $I(P)$	14
	3.2.	Calculando la función de Möbius	15
	3.3.	La formula de inversión de Möbius	17

1. Conjuntos Parcialmente Ordenados

1.1. Definiciones básicas

Definición 1.1. Un conjunto parcialmente ordenado, también llamado *po-conjunto* o *poset* (por su nombre en inglés), es un par (P, \leq) en donde P es un conjunto $y \leq$ es una *relación de orden*, o sea una relación binaria que es:

- (I). (Reflexiva) Para todo $x \in P$ se tiene x < x.
- (II). (Antisimétrica) Para $x, y \in P$ se tiene que $x \le y$ y $y \le x$ implica x = y.
- (III). (Transitiva) Para $x, y, z \in P$ se tiene que $x \le y$ y $y \le z$ implica $x \le z$.

Uno de los ejemplos más simples que se puede dar de un conjunto parcialmente ordenado es el de una colección $\mathcal C$ de conjuntos relacionados por la relación de inclusión no estricta " \subseteq ". En donde $A\subseteq B$ quiere decir que todo elemento de A es también un elemento de B. En esta relación tenemos que para todo conjunto A es cierto que $A\subseteq A$, verificando la relación reflexiva. Adicionalmente se verifican fácilmente la antisimetría ya que $A\subseteq B$ y $B\subseteq A$ implican que A y B tienen los mismos elementos (o sea A=B) y la transitividad ya que $A\subseteq B$ y $B\subseteq C$ claramente implican $A\subseteq C$. Nótese que en una clase de conjuntos $\mathcal C$ pueden existir dos conjuntos A y B para los cuales $A\nsubseteq B$ y $B\nsubseteq A$ y entonces A y B no están relacionados o son *incomparables*, de ahí el nombre de orden **parcial**. Un conjunto parcialmente ordenado P se se llama *orden total* o *cadena* si para cualquier par de elementos $x,y\in P$ tenemos que x y y son comparables, o sea $x\le y$ o $y\le x$.

Se usa frecuentemente la notación $x \leq_P y$ para aclarar que la relación de orden es la asociada a (P, \leq) . Cuando la relación de orden es clara en el contexto normalmente abusaremos de la notación y diremos que P es un poset sin hacer referencia a la relación de orden. También decimos que x < y cuando $x \leq y$ pero $x \neq y$. Si $x \leq y$ en P y no existe un $z \in P$ tal que x < z < y entonces diremos que y cubre a $x \in Y$ lo denotamos $x \in Y$.

Ejemplo 1.2. Denotemos \mathbb{B}_S al conjunto potencia (algunas veces se usa $\mathcal{P}([n])$ o $2^{[n]}$) de un conjunto S, es decir el conjunto de subconjuntos de S. En particular cuando $S = [n] := \{1, 2, \ldots, n\}$ denotamos $B_n := B_S$. Usando el mismo orden dado por inclusión descrito anteriormente podemos considerar \mathbb{B}_n como un poset y llamaremos este poset *el álgebra de Boole sobre* [n] o *el poset de subconjuntos de* [n]. El *diagrama de Hasse* de un poset P es un grafo dirigido cuyos vértices son los elementos de P y cuyas aristas dirigidas son las relaciones de cobertura en P. En la Figura 1 se ilustra el diagrama de Hasse de \mathbb{B}_3 .

Ejemplo 1.3. Una *cadena* es un poset en donde sus elementos están totalmente ordenados. En particular los reales \mathbb{R} , los enteros \mathbb{Z} y los naturales \mathbb{N} forman una cadena de acuerdo a su orden usual. Estas cadenas son cadenas infinitas. Vamos a denotar \mathbf{n} ó C_n a la cadena que sus elementos son [n] y en donde $x \leq y$ en \mathbf{n} de acuerdo al orden usual de los enteros.

Llamamos n la cadena de orden n (o la cadena de longitud n-1, razón que es aparente en el diagrama de Hasse de la Figura 1).

Ejemplo 1.4. El conjunto D_n de divisores enteros positivos del entero n puede considerarse como un poset con la relación de orden parcial dada por $x \le y$ siempre que x|y (x divida a y). D_n se es conocido como el *poset de divisibilidad de* n o el *poset de divisores de* n, ver la Figura 1.

Ejemplo 1.5. Una partición de un conjunto S es una colección $\{B_1, B_2, \ldots, B_k\}$ de subconjuntos disjuntos (también llamados bloques) de S tal que su unión $\bigcup_{i=1}^k B_i = S$. Sea Π_n el conjunto de particiones de [n] y para $\pi, \pi' \in \Pi_n$ decimos que π es un refinamiento de π' si para cada bloque $B \in \pi$ hay un bloque $B' \in \pi'$ tal que $B \subseteq B'$. Podemos verificar que Π_n tiene la estructura de poset con la relación dada por refinamiento, o sea, $\pi \leq \pi'$ siempre que π sea un refinamiento de π' . Llamamos a Π_n el poset de particiones. La Figura 1 ilustra el diagrama de Hasse de Π_3 .

Figura 1. Ejemplos de posets

Observación 1.6. Si en la definición 1.1 la relación \leq solamente satisface las propiedades (i) y (ii), el par (P, \leq) es llamado un preorden o preposet. Si en un preposet consideramos la relación de equivalencia $x \sim y$ siempre que $x \leq y$ y $y \leq x$ en P, entonces \leq induce un orden parcial en el conjunto de clases de equivalencia. En la Figure 2 se ilustra un ejemplo del diagrama de Hasse de las clases de equivalencia de un preposet sobre el conjunto $\{a,b,c,d,e,f,g,h\}$. En este caso tenemos por ejemplo que $b \leq c$ y $c \leq b$ pero $b \neq c$.

Figura 2. Diagrama de Hasse de un preposet

Observación 1.7. Decimos que un poset P es finito si $|P| < \infty$. En un poset finito es suficiente con describir las relaciones de cobertura para describir todo el poset (véase la Figura 1). Esto no es cierto para un poset infinito, por ejemplo en $\mathbb R$ con su relación de orden total clásica no existen relaciones de cobertura. En este minicurso trabajaremos con posets finitos a no ser de que se especifique lo contrario.

1.2. Mapas entre posets

Definición 1.8. Una función monótona, preservante de orden, mapa de posets o morfismo de posets es una función $f:P\to Q$ en donde P y Q son posets y siempre que $x\leq_P y$ tenemos que $f(x)\leq_Q f(y)$. Un isomorfismo entre los posets P y Q es una biyección monótona $f:P\to Q$ tal que su inversa $f^{-1}:Q\to P$ también es monótona. En el lenguaje de la teoría de categorías diríamos que un isomorfismo de posets es un isomorfismo en la categoría $\mathcal{P}oset$ formada por posets y funciones monótonas.

Definición 1.9. Para un poset P definimos su poset dual P^* como el poset formado por el mismo conjunto de elementos que P pero tal que $x \leq_{P^*} y$ si y solo si $y \leq_P x$. En el ejemplo de la Figura 3 están los diagramas de Hasse de un poset y su dual.

Figura 3. Un par de posets duales

Proposición 1.10. El algebra de Boole \mathbb{B}_n es auto-dual, es decir, $\mathbb{B}_n \cong \mathbb{B}_n^*$.

Demostración. El mapa definido por $A \mapsto [n] \setminus A$ para cada $A \subseteq [n]$ es una biyección que claramente es monótona y su inversa es monótona, osea es un isomorfismo de posets. \square

Ejemplo 1.11. Una *composición de n* es una sucesión finita de enteros positivos cuya suma es igual a n. Por ejemplo (2,1,1,3,1) es una composición de 8. Denotemos \mathbb{COMP}_n al conjunto de composiciones de n. Para $\nu, \mu \in \mathbb{COMP}_n$ definimos la relación de cobertura $\nu \lessdot \mu$ si μ puede ser obtenido de ν sumando entradas adyacentes, por ejemplo $(2,1,1,3,1) \lessdot (2,1,4,1)$.

Proposición 1.12. Tenemos que $\mathbb{COMP}_n \cong \mathbb{B}_{n-1}$.

Demostración. Sea $f:\mathbb{COMP}_n\to\mathbb{B}_{n-1}^*$ la función definida por $f(\mu)=\{\mu_1,\mu_1+\mu_2,\mu_1+\mu_2+\mu_3,\dots,\mu_1+\mu_2+\dots+\mu_{|\mu|-1}\}$ en donde $|\mu|$ es el número de elementos en μ .

- f es una biyección: f tiene una inversa $f^{-1}: \mathbb{B}_{n-1}^* \to \mathbb{COMP}_n$ definida $f^{-1}(A) = (a_1, a_2 a_1, a_3 a_2, \dots, a_{|A|} a_{|A|-1}, n a_{|A|})$ para $A = \{a_1 < a_2 < \dots < a_{|A|}\}.$
- f es monótona: Sea $\mu \lessdot \nu$, para algún $r \in [|\mu|-1]$ tenemos que $\nu_i = \mu_i$ siempre que $i \lessdot r$, $\nu_r = \mu_r + \mu_{r+1}$ y $\nu_i = \mu_{i+1}$ siempre que $i \gt r$. Entonces $\sum_{j=1}^i \nu_j = \sum_{j=1}^i \mu_j$ cuando $i \lessdot r$, y $\sum_{j=1}^i \nu_j = \sum_{j=1}^{i+1} \mu_j$ cuando $i \succeq r$ y entonces $f(\mu) \supseteq f(\nu)$. Como estamos trabajando con posets finitos solo tenemos que chequear que f es monótona en relaciones de cobertura ya que a la conclusión se llega por inducción.
- f^{-1} es monótona: Sea $A = \{a_1 < a_2 < \cdots < a_{|A|}\} \supseteq B = \{a_1 < a_2 < \cdots < \widehat{a_r} < \cdots < a_{|A|}\}$ una relación de cobertura en \mathbb{B}_{n-1}^* , en donde $\widehat{a_r}$ indica que el elemento a_r lo hemos removido de A. Entonces por definición tenemos que $f^{-1}(B)_i = f^{-1}(A)_i$ para i < r, $f^{-1}(B)_r = a_{r+1} a_{r-1} = a_{r+1} a_r + a_r a_{r-1} = f^{-1}(A)_r + f^{-1}(A)_{r+1}$ y $f^{-1}(B)_i = f^{-1}(A)_{i+1}$ para i > r.

Proposición 1.13. Si $f: P \to P$ es una biyección monótona y P es un poset finito entonces f es un automorfismo de posets.

Demostraci'on. Si f es el mapa identidad entonces la conclusi\'on es trivial, en cualquier otro caso como f es una biyecci\'on sobre el mismo conjunto entonces es una permutación de P. Como P es finito entonces f tiene orden finito en el grupo permutaciones de P, osea para algún k>1 tenemos que $f^k=Id$. Tenemos entonces que $f^{-1}=f^{k-1}$ es un mapa monótono ya que la composición de mapas monótonos es un mapa monótono. \Box

Ejemplo 1.14. La conclusión de la Proposición 1.13 no se cumple cuando P no es finito. Consideremos por ejemplo el poset infinito P de la Figura 4 y el mapa $f:P\to P$ dado por f(i)=i y f(i')=(i+1)' para todo $i\in\mathbb{Z}$. Este mapa es una biyección monótona pero su inversa no es monótona.

Figura 4

Definición 1.15. A un poset Q lo llamamos subposet en el sentido débil de un poset P si $Q \subseteq P$ como conjuntos y para cada $x,y \in Q$ tenemos que $x \leq_Q y$ implica que $x \leq_P y$, en otras palabras, el mapa de inclusión $Q \hookrightarrow P$ es un mapa de posets. Si Q = P

como conjuntos entonces decimos que P es un *refinamiento* de Q. Decimos que Q es un *subposet* (*inducido*) de P si $Q \subseteq P$ como conjuntos y para $x, y \in Q$ tenemos que $x \leq_Q y$ si y solo si $x \leq_P y$. En otras palabras, un subposet de P se obtiene al tomar un subconjunto Q de P junto con todas las relaciones que tienen los elementos de Q en P.

Dos ejemplos particulares de subposets son los invervalos cerrados $[x,y]:=\{z\in P\mid x\leq z\leq y\}$ y los intervalos abiertos $(x,y):=\{z\in P\mid x< z< y\}$. De un poset en el cual todo intervalo es finito se dice que es localmente finito. Por ejemplo la cadena infinita $\mathbb Z$ de enteros con su orden natural es localmente finita. Las cadenas de subposet P son todos los subposets de P cuyo orden inducido sea total. Una cadena $C\subseteq P$ es saturada si no hay un $z\in P\setminus C$ tal que x< z< y para todo par de elementos $x,y\in C$ tal que $C\cup\{z\}$ es también una cadena. Una cadena es m'axima si no hay un $z\in P\setminus C$ tal que $C\cup\{z\}$ sea también una cadena. La longitud de un poset se define como $\ell(P):=\{|C|\mid C\subseteq P\text{ es una cadena}\}$. A un poset se le llama puro, graduado o ranqueado si todas las cadenas maximas tienen la misma longitud. A un elemento $x\in P$ se le llama minimal (maximal) si no hay un elemento $z\in P$ tal que z< x (z>x). Denotaremos $\mathcal{M}in(P)$ $(\mathcal{M}ax(P))$ al conjunto de elementos minimales (maximales) de P.

Proposición 1.16. Si P es un poset finito graduado entonces existe una función bien definida $\rho: P \to \mathbb{N}_0$ (llamada función de grado) tal que $\rho(x) = 0$ siempre que $x \in \mathcal{M}in(P)$ y si $x \leqslant y$ entonces $\rho(y) = \rho(x) + 1$.

Cuando P es graduado con función de grados ρ decimos que el grado de un elemento x es $\rho(x)$. La función generadora por grados de P es el polinomio

$$F(P,t) := \sum_{x \in P} t^{\rho(x)}.$$

Ejemplo 1.17. (a)
$$F(C_n, t) = 1 + t + \dots + t^n = \frac{1 - t^{n+1}}{1 - t} = [n+1]_t$$
.

- (b) $F(\mathbb{B}_n, t) = (1+t)^n$.
- (c) $F(\Pi_n,t) = \sum_{k=0}^{n-1} S(n,n-k)t^k$ en donde S(n,k) es el número de particiones de [n] en exactamente k bloques, también conocidos como *números de Stirling del segundo tipo*.

1.3. Construcciones y operaciones entre posets

Definición 1.18. Entre posets P y Q también tenemos las siguientes operaciones

(I) (Union disjunta) La union disjunta o suma directa P+Q se define como el poset cuyo conjunto de elementos es $P \sqcup Q$ y cuya relación de orden está dada por $x \leq_{P+Q} y$ si y solo si $x \leq_P y$ o $x \leq_Q y$.

- (II) (Producto directo) El producto directo o producto cartesiano $P \times Q$ es el poset cuyo conjunto de elementos es $P \times Q$ y cuya relación de orden esta dada por $(x, x') \leq_{P \times Q} (y, y')$ si y solo si $x \leq_P y$ y $x' \leq_Q y'$.
- (III) (Sum ordinal) La suma ordinal $P \oplus Q$ es el poset en $P \sqcup Q$ cuya relación de orden esta dada por $x \leq_{P \oplus Q} y$ si y solo si $x \leq_{P} y$, $x \leq_{Q} y$ ó $x \in P$ y $y \in Q$.
- (IV) (Producto ordinal) El producto ordinal o producto diccionario $P \otimes Q$ es el poset con elementos $P \times Q$ y cuya relación de orden está dada por $(x, x') \leq_{P \times Q} (y, y')$ si y solo si $x \leq_P y$ ó x = y y $x' \leq_Q y'$.
- (V) (Potencia) Denotamos Q^P al poset formado por todos los mapas monótonos $f:P\to Q$ con relación de orden dada por $f\le g$ para $f,g\in Q^P$ si $f(t)\le g(t)$ para todo $t\in P$.

A continuación ilustraremos algunas de éstas operaciones para los posets P y Q de la Figura 5. Las operaciones entre P y Q se muestran en la Figura 6.

Figura 5

2. Retículos

2.1. Definiciones básicas

Sea P un poset. Para un subconjunto $A \subseteq P$ decimos que $u \in P$ es una cota superior de A si $u \geq x$ para todo $x \in A$. A u le llamamos cota superior minima, supremo o juntura (en inglés se usa comúnmente la palabra "join") de los elementos de A si para cualquier otra cota superior z se cumple que $z \geq u$. De la misma manera definimos el concepto de cota inferior de A como un elemento $l \in P$ tal que $l \leq x$ para todo $x \in A$ y a l le llamamos cota inferior maxima, infimo o concurrencia (en inglés se usa comúnmente la palabra "meet") si cualquier otra cota inferior z cumple que $z \leq l$. Usaremos la notación $v \in A$ y $v \in A$ para la juntura y concurrencia de $v \in A$ respectivemente siempre que existan, y cuando $v \in A$ 0 tenga solo dos elementos usaremos la notación $v \in A$ 1. En el poset de la Figura 7 tenemos que $v \in A$ 2 repero el conjunto $v \in A$ 3 no tiene una concurrencia ya que $v \in A$ 4 y $v \in A$ 5 son ambos cotas inferiores de $v \in A$ 6 pero $v \in A$ 7 y $v \in A$ 8 son incomparables. En un poset $v \in A$ 8 denotamos $v \in A$ 9 y $v \in A$ 9 en caso de que estos elementos existan y los llamamos respectivamente elementos $v \in A$ 3 un poset que tenga ambos, un elemento tope y un elemento base, le llamamos $v \in A$ 5 un poset que tenga ambos, un elemento tope y un elemento base, le llamamos $v \in A$ 9 a $v \in A$ 9 a un poset que tenga ambos, un elemento tope y un elemento base, le llamamos $v \in A$ 9 a $v \in$

Figura 6

Definición 2.1. Un *retículo* es un poset L en el cuál todo par de elementos $x, y \in P$ tiene una juntura $x \vee y$ y una concurrencia $x \wedge y$.

Ejemplo 2.2. (a) \mathbb{N} es un retículo en el cuál $x \wedge y = \min\{x,y\}$ y $x \vee y = \max\{x,y\}$.

- (b) \mathbb{B}_n es un retículo en el cuál $A \wedge B = A \cap B$ y $A \vee B = A \cup B$.
- (c) Π_n es un retículo en donde $\pi \wedge \pi' = \{B \cap B' \mid B \in \pi, B' \in \pi'\}$ y $\pi \vee \pi'$ es la partición más fina con la propiedad de que si $B \in \pi$ y $B' \in \pi'$ tienen una intersección no vacía $B \cap B' \neq \emptyset$ entonces ambos $B \subseteq X$ y $B' \subseteq X$ para algún bloque $X \in \pi \vee \pi'$.
- (d) D_n es un retículo en el cuál $x \wedge y = \gcd(x, y)$ y $x \vee y = \operatorname{lcm}(x, y)$.

Definición 2.3. A un poset P se le conoce como semiretículo por concurrencia (semiretículo por juntura) si todo par de elementos en P tiene un ínfimo (supremo).

Proposición 2.4. Un semiretículo por concurrencia finito con un $\hat{1}$ es un retículo.

Figura 7

Demostración. Para mostrar que cada par de elementos $x,y \in P$ tienen también una juntura en P consideremos el conjunto

$$A = \{ z \in P \mid z \ge x \ y \ z \ge y \}$$

(nótese que $|A|<\infty$). Entonces $l:=\bigwedge_{a\in A}a$ es una cota superior mínima para x y y. \square

Observación 2.5. La Proposición 2.4 falla cuando P no es finito, considerese por ejemplo el poset $\{\hat{0}\} \oplus (C_0 + C_0) \oplus \mathbb{N}^*$.

Ejemplo 2.6. El poset $\mathbb{B}_{\leq k}$ formado por los subconjuntos de [n] de cardinalidad a lo sumo k o exactamente n es un retículo.

2.2. Retículos distributivos

Definición 2.7. Un retículo L se dice que es *distributivo* si satisface las leyes distributivas:

(D1)
$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$
 para todo $x, y, x \in L$.

(D2)
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 para todo $x, y, x \in L$.

Observación 2.8. Un retículo satisface la propiedad (D1) si y sólo si satisface la propiedad (D2).

Ejemplo 2.9. Las operaciones sobre conjuntos $\land = \cap$ y $\lor = \cup$ cumplen con las propiedades (D1) y (D2) entonces \mathbb{B}_n es un retículo distributivo.

Un ideal de orden (inferior) I es un subconjunto de P tal que si $x \in I$ y $z \le x$ entonces $z \in I$. Similarmente un ideal de orden superior o filtro U es un subconjunto de P tal que si $x \in I$ y $x \le z$ entonces $z \in I$. Como estamos trabajando con posets finitos, podemos caracterizar un ideal de orden I por su conjunto de elementos maximales máx I. Nótese que todo par de elementos en máx I es incomparable, un conjunto con esta propiedad se conoce como una anticadena. Cómo cada anticadena también describe un ideal de orden entonces hay una biyección entre anticadenas de P e ideales de orden de P. Para un subconjunto $A \subseteq P$ denotamos $I(A) := \{z \in P \mid z \le x \text{ para algún } x \in A\}$ el ideal de orden generado por A y si |A| = 1 este ideal se le llama principal. El conjunto J(P) de ideales de orden de P tiene la estructura de un poset cuando consideramos la relación de inclusión (ver la Figura 8).

Figura 8

Proposición 2.10. Sea P un poset finito, entonces J(P) es un retículo distributivo.

Demostración. Nótese que siempre que I e I' son ideales de orden en J(P) entonces $I \cap I'$ e $I \cup I'$ también lo son. Entonces J(P) es un subposet del álgebra de Boole B_P en los elementos de P cerrado al tomar uniones e intersecciones (también llamado *subretículo*). Y sabemos que uniones e intersecciones en B_P satisfacen (D1) y (D2).

Observación 2.11. Nótese que si P es un poset con n elementos, entonces J(P) es graduado de grado n.

Definición 2.12. A un elemento $x \neq \hat{0}$ de un retículo L le llamamos *irreducible (con respecto a juntura)* si $x = a \vee b$ implica que a = x o b = x, es decir, x no se puede expresar como la juntura de dos elementos estrictamente menores.

Lema 2.13. Si $x \in L$ es irreducible entonces cubre exactamente un elemento de L.

Proposición 2.14. Sea P un poset finito. El subposet de J(P) formado por los elementos irreducibles es isomorfo a P.

Demostración. Sea $I \in J(P)$ irreducible. Gracias al Lema 2.13 sabemos que I cubre exactamente un elemento, y esto es verdad si y solo si I = I(x) es un ideal de orden principal, en donde $x \in P$. Tenemos entonces una biyección entre los elementos $x \in P$ y los irreducibles (ideales de orden principales) $I(x) \in J(P)$. Adicionalmente $I(x) \subseteq I(y)$ si y solo si $x \le y$.

Teorema 2.15 (Teorema Fundamental de los Retículos finitos distributivos). Sea L un retículo finito distributivo. Entonces existe un único poset finito (salvo isomorfismo) P tal que $L \cong J(P)$.

Sketch de la demostración. Sea P el subposet formado por los irreducibles de L, queremos mostrar que $L\cong J(P)$. Para esto consideramos la función $\psi:L\to J(P)$ que para cada $x\in L$ esta dada por

$$\psi(x) = \{ z \in P \mid z \le x \}.$$

Esta función es claramente monótona y cuenta con una inversa dada por

$$\phi(I) = \bigvee_{z \in I} z$$

que es también claramente monótona.

2.3. Retículos geométricos

Definición 2.16. A un retículo graduado L se le llama *semimodular (superior)* si su función de grados ρ cumple que

$$\rho(x) + \rho(y) \ge \rho(x \land y) + \rho(x \lor y) \quad \forall x, y \in L. \tag{2.1}$$

El concepto de *semimodular inferior* se define de manera similar cambiando la dirección de la inigualdad y decimos queL es modular cuando la relación es dada por la igualdad.

Proposición 2.17. Sea L un retículo finito. Las siguientes condiciones son equivalentes:

- (1) L es graduado y su función de grados satisface la ecuación 2.1.
- (II) Para todo $x, y \in L$ si x cubre $x \land y$ entonces $x \lor y$ cubre y.
- (III) Para todo $x, y \in L$ si x y y ambos cubren $x \land y$ entonces $x \lor y$ cubre ambos x y y.

Demostración. Probamos primero $(i) \Rightarrow (ii)$. Podemos reescribir 2.1 de la siguiente manera:

$$\rho(x) - \rho(x \land y) \ge + \rho(x \lor y) - \rho(y).$$

Si $x > x \land y$ entonces $\rho(x) - \rho(x \land y) = 1$ y por consiguiente $\rho(x \lor y) - \rho(y)$ puede ser solamente 0 ó 1. Si este valor fuera 0 entonces $\rho(x \lor y) = \rho(y)$ lo que implicaría que $x \le y$ y $x = x \land y$, una contradicción. Entonces $\rho(x \lor y) - \rho(y) = 1$ lo que implica que $x \lor y > y$.

Como (iii) se desprende fácilmente de (ii) nos queda únicamente por mostrar que $(iii)\Rightarrow (i)$. Demostraremos primero que L es graduado. Supongamos que no y escojamos un intervalo [x,y] de longitud mínima en L que no sea graduado. Entonces tienen que existir dos elementos $z,w\in [x,y]$ y enteros positivos $\ell_1\neq \ell_2$ tal que $x\lessdot z,x\lessdot w$ y que toda cadena máxima en [z,y] sea de longitud ℓ_1 y toda cadena máxima en [w,y] sea de longitud ℓ_2 . Pero (iii) nos dice que $z\lor w$ cubre ambos z y w implicando que toda cadena saturada de la forma $z\lor w=t_0\lessdot t_1\lessdot \cdots \lessdot t_k=y$ tiene ambas longitudes ℓ_1-1 y ℓ_2-1 , una contradicción. Así que L tiene que ser graduado.

Ahora, asumamos que L falla en satisfacer la ecuación 2.1 y escojamos un par x,y tal que

$$\rho(x) + \rho(y) < \rho(x \wedge y) + \rho(x \vee y)$$

con las propiedades de que el intervalo $[x \wedge y, x \vee y]$ sea de longitud mínima y la cantidad $\rho(x) + \rho(y)$ sea mínima. Nótese que ambos x y y no pueden cubrir $x \wedge y$ al mismo tiempo ya que por (iii) $\rho(x) + \rho(y) = \rho(x \wedge y) + \rho(x \vee y)$, que sería una contradicción. Entonces asumamos sin pérdida de generalidad que hay un elemento x' tal que $x \wedge y < x' < x$.

Por la minimalidad de $\ell(x \wedge y, x \vee y)$ y $\rho(x) + \rho(y)$ tenemos que

$$\rho(x') + \rho(y) \ge \rho(x' \land y) + \rho(x' \lor y).$$

y como $x \wedge y = x' \wedge y$ concluimos de las dos inigualdades que

$$\rho(x) + \rho(x' \vee y) < \rho(x') + \rho(x \vee y).$$

Como $x \lor (x' \lor y) = x \lor y$ y $x \land (x' \lor y) \ge x'$ tenemos que el par $x, x' \lor y$ satisface

$$\rho(x) + \rho(x' \vee y) < \rho(x \wedge (x' \vee y)) + \rho(x \vee (x' \vee y))$$

y
$$\ell(x \land (x' \lor y), x \lor y(x' \lor y)) < \ell(x \land y, x \lor y)$$
, que es una contradicción.

Proposición 2.18. *Un retículo finito L es modular si y solo si cumple:*

$$\forall x, y, z \in L \text{ tal que } x \leq z, \text{ tenemos } x \lor (y \land z) = (x \lor y) \land z.$$
 (2.2)

Observación 2.19. Es un corolario de la Proposición 2.18 que todo retículo finito distributivo es también modular. En la Figura 9 se muestra un ejemplo de un retículo que es semimodular pero no es modular.

Ejemplo 2.20. El álgebra de Boole \mathbb{B}_n es un ejemplo de un retículo modular ya que para todo par de conjuntos A y B se tiene que

$$|A| + |B| = |A \cup B| + |A \cap B|.$$

Figura 9

Definición 2.21. En un poset P con $\hat{0}$ llamamos *átomo* a un elemento a que cubre al $\hat{0}$. Decimos que un retículo L es *atómico* si todo elemento $x \in L$ se puede expresar como una juntura $x = \bigvee_{a \in A'} a$ en donde A' es un conjunto de átomos. Un retículo atómico semimodular finito se conoce como un *retículo geométrico*.

Observación 2.22. La razón detrás del nombre retículo geométrico es que estos precisamente son los retículos de conjuntos cerrados de matroides simples (también conocidas como geometrías combinatorias).

Ejemplo 2.23. \mathbb{B}_n es atómico y modular así que también es geométrico.

Proposición 2.24. Un retículo finito L es geometrico si y solo si satisface la siguiente condición:

$$x \lessdot y \iff \exists a > \hat{0} \text{ tal que } y = x \lor a.$$
 (2.3)

Ejemplo 2.25. En Π_n un átomo es una partición en donde todos los bloques excepto uno son singuletes y el bloque que no es singuelete contiene dos elementos. Para cada relación de cobertura $\pi \lessdot \pi'$ en Π_n podemos considerar los dos bloques $B_1, B_2 \in \pi$ que se combinan en un solo bloque en π' . Seleccionemos cualesquier elementos $x \in B_1$ y $y \in B_2$ y llamemos $a_{x,y}$ al átomo cuyo solo bloque que no es singulete es $\{x,y\}$. Es fácil de chequear que $\pi' = \pi \lor a_{x,y}$. Entonces por la Proposición 2.24 concluimos que Π_n is geométrico. Nótese que esto en particular implica que Π_n es a la vez semimodular y atómico.

3. Álgebras de incidencia y la función de Möbius

3.1. Álgebras de incidencia

Sea \mathbf{k} un campo. En esta Sección estaremos trabajando con espacios vectoriales con coeficientes en \mathbf{k} . Para un poset finito P denotaremos $\mathrm{Int}(P)$ al conjunto de intervalos cerrados en P.

Definición 3.1. El álgebra de incidencia de P es la k-álgebra I(P) generada por todas las funciones

$$f: \operatorname{Int}(P) \to \mathbf{k},$$

con la operación de *convolución* definida para funciones $f,g \in I(P)$ por

$$f\star g([x,y]) = \sum_{x\leq z\leq y} f([x,z])g([z,y]).$$

Proposición 3.2. I(P) es un álgebra asociativa con unidad dada por la función ϵ : Int $(P) \to \mathbf{k}$ definida por

$$\epsilon([x,y]) = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

La siguiente proposición nos describe cuales son los elementos invertibles de I(P).

Proposición 3.3. Las siguientes condiciones son equivalentes para $f \in I(P)$:

- 1. f tiene una inversa por derecha, o sea, existe $g \in I(P)$ tal que $f \star g = \epsilon$.
- 2. f tiene una inversa por izquierda, o sea, existe $h \in I(P)$ tal que $h \star f = \epsilon$.
- 3. f tiene una inversa bilateral única.
- 4. $f([x,x]) \neq 0$ para todo $x \in P$.

Demostración. La ecuación $f \star g = \epsilon$ se lee como

$$f\star g([x,y]) = \sum_{x\leq z\leq y} f([x,z])g([z,y]) = \begin{cases} 1 & \text{si } x=y\\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Si x = y entonces tenemos que f([x, x])g([x, x]) = 1 y esta ecuación se satisface si y solo si $f([x, x]) \neq 0$. En este caso $g([x, x]) = f([x, x])^{-1}$. Si x < y entonces tenemos

$$g([x,y]) = -f([x,x])^{-1} \sum_{x < z \le y} f([x,z])g([z,y]),$$

y entonces g([x,y]) es definida recursivamente y existe si y solo si $f([x,x]) \neq 0$. El mismo argumento aplica con la ecuación $h \star f = \epsilon$. Entonces si se tiene la inversa por un lado se tiene la inversa por el otro y finalmente si tenemos que $f \star g = \epsilon$ y $h \star f = \epsilon$ entonces $h = h \star \epsilon = h \star f \star g = \epsilon \star g = g$.

3.11. Algunas funciones en I(P)

Definición 3.4. La función zeta ζ es la función en I(P) definida para todo $x \leq y$ en P por $\zeta([x,y]) = 1$.

Ejemplo 3.5. Nótese que las potencias de ζ cuentan ciertos invariantes de P. Por ejemplo,

$$\zeta^{\star 2}([x,y]) := \zeta \star \zeta([x,y]) = \sum_{x < z < y} \zeta([x,z]) \zeta([x,y]) = |\{x \leq z \leq y \ | \ z \in P\}|.$$

Definición 3.6. Una multicadena de (orden k) en un poset P es una sucesión de la forma $m_1 \le m_2 \le \cdots \le m_k$ en donde $m_i \in P$ para todo i.

Proposición 3.7. Sea P un poset acotado finito, entonces

$$\zeta^{\star k}(P) = |\{\hat{0} = x_0 \le x_1 \le \dots \le x_k = \hat{1}\}|,$$

es decir, $\zeta^{\star k}$ cuenta multicadenas de orden k+1.

Si lo que queremos contar son cadenas en lugar de multicadenas podemos usar una función un poco modificada.

Proposición 3.8. Sea P un poset acotado, entonces

$$(\zeta - \epsilon)^{*k}(P) = |\{\hat{0} = x_0 < x_1 < \dots < x_k = \hat{1}\}|.$$

Demostración. Nótese que

$$(\zeta - \epsilon)([x, y]) = \begin{cases} 1 & \text{si } x < y \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Proposición 3.9. Sea P un poset acotado, entonces

$$(2\epsilon - \zeta)^{-1}(P) = |\{\hat{0} = x_0 < x_1 < \dots < x_k = \hat{1} \mid \text{ para algún } k \in \mathbb{N}\}|.$$

Demostración. Nótese que

$$(2\epsilon - \zeta)([x, y]) = \begin{cases} -1 & \text{si } x < y \\ 1 & \text{si } x = y \end{cases}$$

entonces $(2\epsilon-\zeta)$ es invertible y podemos expresar $(2\epsilon-\zeta)^{-1}=(\epsilon-(\zeta-\epsilon))^{-1}$. Ahora consideremos la función $\sum_{k\geq 0}(\zeta-\epsilon)^{\star k}$ en donde $(\zeta-\epsilon)^0=\epsilon$. Esta es una función válida en I(P) ya que P es finito y entonces $(\zeta-\epsilon)^{\star N}=0$ para todo $N>\ell(P)$. Además tenemos que

$$(\epsilon - (\zeta - \epsilon)) \star \sum_{k > 0} (\zeta - \epsilon)^{\star k} = \epsilon,$$

o sea que

$$(2\epsilon - \zeta)^{-1} = \sum_{k \ge 0} (\zeta - \epsilon)^{\star k}.$$

Finalmente el resultado se concluye usando la Proposición 3.8.

Definición 3.10. Como $\zeta([x,x])=1$ para todo $x\in P$, sabemos por la Proposition 3.3 que ζ es invertible. La *función de Möbius* μ es la inversa de ζ , o sea $\mu:=\zeta^{-1}$.

3.2. Calculando la función de Möbius

Proposición 3.11. La función de Möbius μ puede definirse recursivamente para un intervalo [x, y] como

$$\mu([x,y]) = \begin{cases} 1 & \text{si } x = y \\ -\sum_{x \le z < y} \mu([x,z]) & \text{en cualquier otro caso.} \end{cases}$$
 (3.1)

Demostración. Como μ es la inversa de ζ , tenemos que $\mu \star \zeta = \epsilon$, lo que implica que

$$\mu \star \zeta([x, x]) = \mu([x, x])\zeta([x, x]) = \epsilon([x, x]) = 1,$$

o sea que $\mu([x, x]) = 1$. Y si x < y entonces

$$\mu \star \zeta([x,y]) = \sum_{x \leq z \leq y} \mu([x,z]) \zeta([z,y]) = \epsilon([x,y]) = 0,$$

lo que implica la fórmula que buscamos.

Figura 10. Valores $\mu([\hat{0}, x])$ de la función de Möbius

Ejemplo 3.12. Sea \mathbf{n} la cadena con n elementos. Tenemos entonces

$$\mu(\mathbf{n}) = \begin{cases} 1 & \text{si } n = 1\\ -1 & \text{si } n = 2\\ 0 & \text{si } n \ge 3. \end{cases}$$

Por inspección podemos calcular $\mu(\mathbf{1}) = 1$, $\mu(\mathbf{2}) = -1$ y $\mu(\mathbf{3}) = 0$. Ahora por inducción y usando la formula recursiva 3.1 tenemos que para $n \ge 3$

$$\mu(\mathbf{n}) = -\sum_{k=1}^{n-1} \mu(\mathbf{k}) = -\mu(\mathbf{1}) - \mu(\mathbf{2}) = 0.$$

Proposición 3.13. Sean P y Q posets localmente finitos y $(x,y) \leq (x',y')$ en $P \times Q$ entonces

$$\mu([(x,y),(x',y')]) = \mu([x,x'])\mu([y,y']).$$

Demostración. Procederemos por inducción en $\ell([(x,y),(x',y')])$. Si $\ell([(x,y),(x',y')]) = 0$ entonces x = x' y y = y' y la conclusión es trivial. Ahora consideremos $\ell([(x,y),(x',y')]) \geq 0$

1 y obsérvese que todo intervalo cerrado [(x,y),(x',y')] en $P\times Q$ es un producto de intervalos $[x,x']\times [y,y']$. Tenemos entonces

$$\begin{split} \mu([(x,y),(x',y')]) &= -\sum_{(x,y) \leq (z,w) < (x',y')} \mu([(x,y),(z,w)]) \\ &= -\sum_{(x,y) \leq (z,w) < (x',y')} \mu([x,z]) \mu([y,w]) \\ &= -\sum_{(x,y) \leq (z,w) \leq (x',y')} \mu([x,z]) \mu([y,w]) + \mu([x,x']) \mu([y,y']) \\ &= -\sum_{x \leq z \leq x'} \mu([x,z]) \sum_{y \leq w \leq y'} \mu([y,w]) + \mu([x,x']) \mu([y,y']) \\ &= \mu([x,x']) \mu([y,y']). \end{split}$$

Ejemplo 3.14. Cómo $\mathbb{B}_n \cong \mathbf{2}^n$ tenemos que

$$\mu(\mathbb{B}_n) = \mu(\mathbf{2}^n) = \mu(\mathbf{2})^n = (-1)^n.$$

De igual forma si $A \subseteq B$ en \mathbb{B}_n , es fácil verificar que $[A, B] \cong \mathbb{B}_{B \setminus A}$, así que

$$\mu([A, B]) = \mu(\mathbb{B}_{B \setminus A}) = (-1)^{|B| - |A|}.$$

La estructura adicional de un retículo facilita la siguiente fórmula recursiva de Weisner para calcular los valores de la función de Möbius.

Teorema 3.15 (Teorema de Weisner). Para todo $x \le w < y$ en un retículo L tenemos que

$$\sum_{\substack{x \le z \le y \\ w \land z = x}} \mu([z, y]) = 0. \tag{3.2}$$

Ejemplo 3.16. En Π_n escojamos w como el coátomo $12\cdots(n-1)|n$. Nótese que los valores de $z\in\Pi_n$ tales que $w\wedge z=\hat{0}$ son $z=\hat{0}$ o elementos de la forma $z=1|2|\cdots|\hat{i}|\cdots(n-1)|in$, para los cuales se verifica que $[z,\hat{1}]\cong\Pi_{n-1}$. Usando el teorema de Weisner tenemos entonces que

$$\mu(\Pi_n) + (n-1)\mu(\Pi_{n-1}) = 0.$$

Resolviendo ésta ecuación en diferencias tenemos que $\mu(\Pi_n) = (-1)^{n-1}(n-1)!$.

3.3. La formula de inversión de Möbius

Proposición 3.17 (La fórmula de inversión de Möbius). Sea P un poset en el cuál para todo $x \in P$ tenemos que $|I(x)| < \infty$ y sean $f, g : P \to \mathbf{k}$ un par de funciones en P. Las siguientes dos aserciones son equivalentes:

$$g(y) = \sum_{x \le y} f(x) \quad \forall y \in P$$
 (3.3)

$$f(y) = \sum_{x \le y} g(x)\mu([x, y]) \quad \forall x \in P.$$
 (3.4)

Demostración. El espacio vectoral \mathbf{k}^P formado por las funciones $f: P \to \mathbf{k}$ tiene una acción por derecha del álgebra de incidencia I(P) dada por

$$f\xi(y) = \sum_{x \leq y} f(x)\xi([x,y]) \text{ para todo } f \in \mathbf{k}^P \text{ y para todo } \xi \in I(P).$$

Entonces la ecuación (3.3) se lee en este lenguaje como $g = f\zeta$ y entonces como $\zeta^{-1} = \mu$ tenemos que $f = g\mu$ que es la ecuación (3.4).

Proposición 3.18 (Forma dual del teorema de inversión de Möbius). Sea P un poset en el cuál para todo $x \in P$ tenemos que $|I(x)| < \infty$ y sean $f, g : P \to \mathbf{k}$ un par de funciones en P. Las siguientes dos aserciones son equivalentes:

$$g(y) = \sum_{x \ge y} f(x) \quad \forall y \in P$$
 (3.5)

$$f(y) = \sum_{x \ge y} \mu([y, x])g(x) \quad \forall x \in P.$$
 (3.6)

Ejemplo 3.19. (a) En la cadena n el teorema de inversión de Möbius es una versión discreta del Teorema Fundamental del Cálculo:

$$g(n) = \sum_{k=0}^{n} f(k) \quad \forall n \in \mathbb{N}$$
(3.7)

$$f(n) = g(n) - g(n-1) \quad \forall n \in \mathbb{N}. \tag{3.8}$$

(b) En el álgebra de Boole \mathbb{B}_n el teorema de inversión de Möbius es conocido como el Principio de Inclusión-Exclusión:

$$g(A) = \sum_{B \subseteq A} f(B) \quad \forall B \subseteq A \tag{3.9}$$

$$f(A) = \sum_{B \subseteq A} (-1)^{|A| - |B|} g(B) \quad \forall B \subseteq A.$$
(3.10)

(c) Si en el álgebra de boole las funciones g(A) y f(A) solamente dependen de la cardinalidad del conjunto A entonces obtenemos un teorema de inversión conocido como Teorema de Inversión Binomial.

$$g(n) = \sum_{k=0}^{n} \binom{n}{k} f(k) \quad \forall n \in \mathbb{P}$$
 (3.11)

$$f(n) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} g(k) \quad \forall n \in \mathbb{P}.$$
 (3.12)

(d) En el retículo de divisibilidad D_n el teorema de inversión de Möbius es un teorema clásico en la teoría de números:

$$g(n) = \sum_{d|n} f(d) \quad \forall n \in \mathbb{P}$$
 (3.13)

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d) \quad \forall n \in \mathbb{P},$$
 (3.14)

en donde $\mu(n)$ es la función de Möbius clásica de teoría de números dada por:

$$\mu(n) = \begin{cases} (-1)^k & \text{ si } n = p_1 p_2 \dots p_k \text{ es libre de cuadrados} \\ 0 & \text{ en cualquier otro caso.} \end{cases}$$

Ejemplo 3.20. Dado un alfabeto A de tamaño |A|=m, Una $palabra\ circular$ de longitud n es una clase de equivalencia de $palabras\ lineales\ w=w_1w_2\dots w_n$ bajo la acción de la operación de desplazamiento o shift $\tau w=w_nw_1w_2\dots w_{n-1}$. Una palabra circular es llamada primitiva si su clase de equivalencia contiene exactamente n palabras lineales distintas. Denotemos por a(n) al número de palabras circulares primitivas de longitud n y b(n) al número de todas las palabras circulares de longitud n (primitivas y no primitivas). Nuestro objetivo será encontrar una formula para determinar el número de palabras circulares b(n). Nótese que una palabra circular es primitiva si y solo si no es una potencia de otra palabra así que tenemos la relación

$$b(n) = \sum_{d|n} a(d).$$

Nótese también que hay c palabras lineales distintas en la clase de equivalencia de una palabra circular w de longitud $\ell(w)=d$ de la forma $w=u^{\frac{d}{c}}$ en donde u es una palabra circular primitiva de longitud $\ell(u)=c$. Así que contando todas las palabras lineales de longitud d tenemos

$$m^d = \sum_{c|d} c \, a(c).$$

El teorema de inversión de Möbius nos dice que

$$da(d) = \sum_{c|d} \mu\left(\frac{d}{c}\right) m^c.$$

concluimos que

$$b(n) = \sum_{d|n} \frac{1}{d} \sum_{c|d} \mu\left(\frac{d}{c}\right) m^{c}.$$

4. Topología de posets

Definición 4.1. Un complejo simplicial $\Delta \subset 2^{[n]}$ en [n] es una clase de subconjuntos de [n] tal que si $F \in \Delta$ y $F' \subseteq F$ entonces $F' \in \Delta$. A cada $F \in \Delta$ lo llamamos una cara

y a las caras máximas por inclusión las llamamos *carotas* o *caras maximales*. Definimos $\dim F = |F| - 1$ y $\dim \Delta = \max_{F \in \Delta} \dim F$. Existe un único complejo simplicial de dimensión -1 ($\Delta = \{\emptyset\}$).

Definición 4.2. Para un poset finito P definimos su *complejo de orden* $\Delta(P)$ como el complejo simplicial cuyas caras son las cadenas de P.

Definición 4.3. Para un poset acotado P denotamos $\overline{P}:=P\setminus\{\hat{0},\hat{1}\}$. De una manera similar denotamos $\hat{P}:=P\cup\{\hat{0},\hat{1}\}$ al poset P luego de añadirle elementos mínimos y máximos únicos.

Ejemplo 4.4. Sea P=3, la cadena con tres elementos en [3], entonces $\Delta(P)=\{\emptyset,1,2,3,1<2,1<3,2<3,1<2<3\}$. En la figura 11 y 12 se ilustran los complejos de orden de dos subposets de \mathbb{B}_3 .

Figura 11. Complejo de orden de $\mathbb{B}_3 \setminus \{\hat{0}\}$

Figura 12. Complejo de orden de $\overline{\mathbb{B}}_3$

Definición 4.5. Dado un complejo simplicial Δ sea f_i el número de caras de dimensión i. Definimos la *característica de Euler reducida* de Δ como:

$$\tilde{\chi}(\Delta) = \sum_{i=-1}^{\dim \Delta} (-1)^i f_i.$$

Ejemplo 4.6. Para el complejo de orden de la Figura 12 tenemos que

$$\tilde{\chi}(\Delta(\overline{\mathbb{B}}_3)) = -f_{-1} + f_0 - f_1 = -1 + 6 - 6 = -1.$$

Teorema 4.7 (Teorema de Philip Hall). Sea P un poset finito y acotado tal que $\ell(P) \ge 1$ entonces

$$\mu(P) = \widetilde{\chi}(\Delta(\overline{P})).$$

Teorema 4.8 (Teorema de Philip Hall theorem versión 2). Sea P un poset finito entonces

$$\mu(\hat{P}) = \widetilde{\chi}(\Delta(P)).$$

Demostración. Tenemos que $\mu = \zeta^{-1} = (\epsilon + (\zeta - \epsilon))^{-1}$ so

$$\mu(\hat{P}) = \sum_{k \ge 0} (-1)^k (\zeta - \epsilon)^{\star k} (\hat{P})$$

$$= 2\epsilon (\hat{P}) - 1 + \sum_{k \ge 2} (-1)^k |\{\hat{0} = x_0 < x_1 < \dots < x_k = \hat{1}\}|$$

$$= -1 + \sum_{k \ge 2} (-1)^k f_{k-2} (\Delta(P))$$

$$= \sum_{k \ge -1} (-1)^k f_k (\Delta(P))$$

$$= \widetilde{\chi}(\Delta(P)).$$

Ejercicios sesión número 1

- 1. Dibuje todos los posets sin etiquetas (clases de isomorfismo) que hay en un conjunto de uno, dos, tres o cuatro elementos. Cuantos posets diferentes hay en los conjuntos [1], [2], [3] y [4]?
- 2. Verifique que el conjunto Π_n de particiones del conjunto [n] junto con la relación de refinamiento forman un conjunto parcialmente ordenado. Describa las relaciones de cobertura.
- 3. Sea G un grafo conexo con n vertices y sea Π_G el subposet inducido de Π_n formado por el conjunto de particiones $\pi \in \Pi_n$ con la propiedad de que para cada bloque $B \in \pi$, el subgrafo inducido $G|_B$ es conexo. Muestre que cuando G = T es un árbol (un grafo conexo sin loops ni ciclos) $\Pi_T \cong \mathbb{B}_{n-1}$, o sea Π_T es un poset isomorfo al álgebra de Boole \mathbb{B}_{n-1} .
- 4. Verifique que si $f:P\to Q$ y $g:Q\to R$ son mapas monótonos entonces $g\circ f:P\to R$ también lo es.

- 5. Dé un ejemplo de una biyección monótona $f:P\to Q$ que no sea un isomorfismo de posets. Dé un ejemplo de una biyección monótona $f:P\to P$ que no sea un automorfismo de posets. Que condición tiene que cumplir P en este caso?
- 6. Dé un ejemplo de un poset finito que no sea graduado.
- 7. Demuestre la siguiente proposición:

Proposición Si P es un poset finito graduado entonces existe una función bien definida $\rho: P \to \mathbb{N}_0$ tal que $\rho(x) = 0$ siempre que $x \in \mathcal{M}in(P)$ y si $x \lessdot y$ entonces $\rho(y) = \rho(x) + 1$.

8. Encuentre una fórmula en términos de productos de polinomios para la función generadora por grados del álgebra de Boole $F(\mathbb{B}_n, t)$.

Ejercicios sesión número 2

- 1. Dé un ejemplo concreto (utilizando diagramas de Hasse) de cada una de las operaciones P+Q, $P\oplus Q$, $P\times Q$, $P\otimes Q$ y Q^P . Cuales de estas operaciones son simétricas, o sea, $P\circledast Q\cong Q\circledast P$?
- 2. Muestre que $\mathbb{B}_n \cong \mathbf{2} \times \mathbf{2} \times \cdots \times \mathbf{2} = \mathbf{2}^n$. Calcule $F(\mathbb{B}_n, t)$ usando esta relación y la conclusión del ejercicio 7.
- 3. Cuales de los posets en uno, dos, tres, cuatro o cinco elementos son retículos?.
- 4. Determine la estructura de J(P) cuando P es una cadena, una anticadena o la suma directa de cadenas.
- 5. Muestre que Π_n es un retículo. Describa para un par de particiones $\pi, \pi' \in \Pi_n$ su concurrencia $\pi \wedge \pi'$ y su juntura $\pi \vee \pi'$.
- 6. Muestre que un retículo, \vee y \wedge cumplen con las *leyes de absorción* $x \wedge (x \vee y) = x$ y $x \vee (x \wedge y) = x$.

Ejercicios adicionales

- 7. Muestre que $F(P \times Q, t) = F(P, t)F(Q, t)$.
- 8. Sea n un entero positivo con decomposición en primos $n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$. Muestre que $D_n\cong \mathbf{n_1}+\mathbf{1}\times \mathbf{n_2}+\mathbf{1}\times \cdots \times \mathbf{n_k}+\mathbf{1}$. Encuentre $F(D_n,t)$ usando esta relación.
- 9. Muestre que las operaciones fundamentales entre posets satisfacen las siguientes relaciones:
 - $P \times (Q+R) \cong (P \times Q) + (P \times R).$
 - $P^{Q+R} \cong P^Q \times P^R$.
 - $(P^Q)^R \cong P^{Q \times R}.$

- 10. Muestre que $J(P+Q) \cong J(P) \times J(Q)$.
- 11. Muestre que en un retículo L las operaciones \vee y \wedge son asociativas (así expresiones como $x \wedge y \wedge z$ tienen sentido), conmutativas e idempotentes $(x \vee x = x)$.
- 12. Verifique que si L y M son retículos entonces también lo son L^* , $L \times M$, $L \oplus M$ y $\widehat{L+M}$, en donde $\widehat{L+M} := \{\hat{0}\} \oplus (L+M) \oplus \{\hat{1}\}.$

Ejercicios sesión número 3

- 1. Calcule los valores $\mu([\hat{0},x])$ de la función de Möbius para \mathbb{B}_3 y Π_3 .
- 2. Compute varios ejemplos de los valores $\mu([\hat{0},x])$ de la función de Möbius para D_n . Conjeture y pruebe una formula para $\mu(D_n)$. Sugerencia: Use el siguiente hecho demostrado en la sesión 2

Sea n un entero positivo con descomposición en primos $n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$. Entonces es un producto de cadenas $D_n\cong \mathbf{n_1}+\mathbf{1}\times\mathbf{n_2}+\mathbf{1}\times\cdots\times\mathbf{n_k}+\mathbf{1}$.

- 3. Utilice las *leyes de absorción* $x \wedge (x \vee y) = x$ y $x \vee (x \wedge y) = x$ que se cumplen en todo retículo para mostrar que un retículo satisface la ley distributiva (D1) si y sólo si satisface la ley distributiva (D2).
 - (D1) $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ para todo $x, y, x \in L$.
 - (D2) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ para todo $x, y, x \in L$.
- 4. Sea P un poset. Muestre que existe una colección $\mathcal C$ de conjuntos que si los ordenamos por inclusión, o sea $A \leq B$ siempre que $A \subseteq B$, tenemos que $P \cong \mathcal C$.

Ejercicios sesión número 4

- 1. Utilice la fórmula de Weisner para calcular los valores de la función de Möbius en \mathbb{B}_n .
- 2. Sean ζ la función en I(P) definida para todo $x \leq y$ en P por $\zeta([x,y]) = 1$ y ϵ la función en I(P) definida por

$$\epsilon([x,y]) = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Encuentre una fórmula para los valores de $(2\epsilon-\zeta)^2([x,y])$ cuando $\ell([x,y])=1$, $\ell([x,y])=2$ y $\ell([x,y])\geq 3$.

3. Es la función

$$(\zeta - \epsilon)([x, y]) = \begin{cases} 1 & \text{si } x < y \\ 0 & \text{en cualquier otro caso.} \end{cases}$$

invertible en I(P)? Porqué?

 a) Demuestre la siguiente fórmula recursiva alternativa para calcular la función de Möbius:

Proposición (Definición dual recursiva de la función de Möbius) La función de Möbius μ puede definirse recursivamente para un intervalo [x, y] como

$$\mu([x,y]) = \begin{cases} 1 & \text{si } x = y \\ -\sum_{x < z \leq y} \mu([z,y]) & \text{en cualquier otro caso.} \end{cases}$$

Sugerencia: recuerde que μ es la función definida como la inversa de ζ , es decir, satisface $\zeta \star \mu = \epsilon$ y $\mu \star \zeta = \epsilon$.

- b) Utilice la fórmula alternativa de la primera parte para calcular $\mu(\mathbb{B}_4)$ y $\mu(\Pi_4)$. Son estos valores los mismos que si hubiéramos calculado μ con la definición recursiva original?
- c) Utilice lo observado en las dos partes anteriores para concluir que para todo poset finito acotado P (recuerde que acotado significa que P tiene un elemento base $\hat{0}$ y un elemento tope $\hat{1}$, es decir, P es el intervalo cerrado $[\hat{0},\hat{1}]$)

$$\mu(P) = \mu(P^*).$$

Sugerencia: Haga uso de las dos definiciones recursivas de μ .

Ejercicios sesión número 5

- 1. Determine cual es el complejo de orden $\Delta(\mathbf{n})$ de la cadena con n elementos. Calcule la característica reducida de Euler $\tilde{\chi}(\Delta(\mathbf{n}))$ utilizando el teorema de Philip Hall.
- 2. Un desarreglo es una permutación de [n] (una biyección $\sigma:[n] \to [n]$) que no contiene puntos fijos, es decir puntos tal que $\sigma(i)=i$. Teniendo en cuenta que hay n! permutaciones de [n], demuestre que el número d(n) de desarreglos de [n] puede ser calculado con la formula

$$n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

(Sugerencia: Utilice el teorema de inversión binomial y la fórmula $\binom{n}{k} := \frac{n!}{k!(n-k)!}$)

- 3. Para un complejo simplicial Γ definimos su *subdivisión baricéntrica* como $\Delta(L(\Gamma)\setminus\emptyset)$, en donde $L(\Gamma)\setminus\emptyset$ es el poset formado por las caras no vacías de Γ ordenadas por inclusión.
 - a) Determine cual es la subdivisión baricéntrica del simplex Δ_2 de dimensión 2 (Dibuje el complejo simplicial resultante).
 - b) Calcule la característica de Euler de Δ_2 .
 - c) Calcule la característica de Euler de $\Delta(L(\Delta_2)\setminus\emptyset)$ usando la función de Möbius. Sugerencia agregue un $\hat{0}$ y un $\hat{1}$ a $L(\Delta_2)\setminus\emptyset$ y utilice el Teorema de Philip Hall.
 - d) Que conclusión podemos conjeturar de las partes (b) y (c)?

Referencias

- [1] Federico Ardila, *Algebraic and geometric methods in enumerative combinatorics*, Handbook of enumerative combinatorics (2015), 3–172.
- [2] Richard P. Stanley, *Enumerative combinatorics*. *Volume 1*, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- [3] Michelle L. Wachs, *Poset topology: tools and applications*, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 497–615. MR 2383132