Lecture 1.4

Phylogenetic Methods

Maximum parsimony

Popular phylogenetic methods

- 1. Maximum parsimony
- 2. Distance-based methods
- 3. Maximum likelihood

4. Bayesian inference

Model-based methods

Distance-Based Methods

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

Distance-based methods

Clustering algorithms

- Unweighted pair group method with arithmetic mean (UPGMA)
- Neighbour joining

Tree searching using optimality criteria

- Minimum evolution
- Least-squares inference

Strengths and weaknesses

Strengths

- Very quick method
- Deals with multiple substitutions and long-branch attraction

Weaknesses

- Does not use all information in alignment
- Loss of information in pairwise comparisons
- Unable to implement sophisticated evolutionary models

Likelihood of hypothesis *H* =

Probability of the data, given the hypothesis

Probability of?

bat	CCGTTAGTAACT
whale	CCGTTAGTAACT
rabbit	CCGATAGTTACT
elephant	TCGTTAGTTACC
kangaroo	TCATTGGTTACT

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant **TCGTTAGTTACC**

Likelihood is summed over all possibilities

CCGTTAGTAACT
CCGTTAGTAACT
CCGATAGTTACT
TCGTTAGTTACC
TCATTGGTTACT

Likelihood is multiplied across all sites

Very low probability of observing any particular alignment

Likelihood optimisation

- Search through the space of possible trees (including branch lengths) and model parameter values
- Calculate the likelihood for these
- Find best tree and model parameter values
- Multivariate optimisation

Finding the best tree

• For *n* taxa, the number of possible unrooted trees (B_n) is:

$$B_n = 1 \times 3 \times 5 \times ... \times (2n - 5) = \prod_{i=3}^{n} (2i - 5)$$

- For example:
 - 4 taxa \rightarrow 3 trees
 - 5 taxa \rightarrow 15 trees
 - 10 taxa \rightarrow 2,027,025 trees

Finding the best tree

Maximum-likelihood estimates

A single set of maximum-likelihood estimates of model parameters

A single maximum-likelihood tree

Strengths and weaknesses

Strengths

- Rigorous statistical method
- Deals with multiple substitutions and long-branch attraction
- Robust to violations of assumptions

Weaknesses

- Generally not feasible to implement very parameter-rich models
- Searching tree space can be difficult

Software

RAxML

PhyML

MEGA

PAML

IQ-TREE

Nonparametric bootstrap

- Uncertainty in the estimate of the tree is inferred indirectly using bootstrapping analysis
- "pull oneself up by one's bootstraps"
- Bootstrapping analysis can be used in various phylogenetic methods:
 - Maximum parsimony
 - Distance-based methods
 - Maximum likelihood

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

kangaroo TCATTGGTTACT

Randomly sample sites (with replacement)

bat **T**

whale **T**

rabbit A

elephant T

kangaroo T

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

kangaroo TCATTGGTTACT

bat **T**G

whale **T**G

rabbit AG

elephant TG

kangaroo TG

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

kangaroo TCATTGGTTACT

bat **TGCCCTTAGCAC**

whale **TGCCCTTAGCAC**

rabbit AGCCCATAGCAC

elephant TGCTCTCAGCAT

kangaroo TGCTCTTAACGT

bat **CCGTTAGTAACT**

whale **CCGTTAGTAACT**

rabbit **CCGATAGTTACT**

elephant TCGTTAGTTACC

kangaroo TCATTGGTTACT

Repeat 1,000 times

bat **TGCCCTTAGCAC**

whale **TGCCCTTAGCAC**

rabbit **AGCCCATAGCAC**

elephant TGCTCTCAGCAT

kangaroo TGCTCTTAACGT

Interpreting bootstrap values

Felsenstein (1985)

bootstrapping provides a confidence interval that contains the phylogeny that would be estimated from repeated sampling of many characters from the underlying set of all characters

- Bootstrap values are measures of repeatability
 - High when the data set is large
 - Not meaningful when analysing genome-scale data

Methods in practice

Maximum parsimony

- Commonly used to analyse morphological data
- Rarely used to analyse molecular data

Distance-based methods

- Popular in some fields of research
- Used to analyse very large data sets with many taxa

Maximum likelihood

 Widely used, lost some ground to Bayesian methods but is experiencing a resurgence

Useful references

Molecular phylogenetics: principles and practice
 Yang & Rannala (2012) Nature Reviews Genetics 13: 303–314.

