

PROBLEM

The Haber-Bosch Process is unsustainable.

1.5% of global CO2 emissions.

1% of global energy consumption.

PROBLEM

The Haber-Bosch Process is unsustainable.

260 million car emissions.

15x energy consumption of UAE.

SO... JUST ABANDON IT?

Well - we can't.

of world's food production is dependent on fertilizers

SOLUTION

Improve the efficiency of fertilizer production by optimizing the process using quantum molecular simulation.

VALUE ADDED

To the public

Reduced environmental harm

Sustainable future

Open Source Project

To the customer

Efficient & sustainable fertilizer production

Valuable insights into catalytic reactions

Optimized reactions for improved yields and reduced waste

APPROACH

- VQE
- Error Mitigation
 - Zero NoiseExtrapolation
 - Measurement ErrorMitigation

PLATFORMS

SYSTEM ARCHITECTURE

PRODUCT

Web App

WEB APP

DEMO

H2

BeH2

LiH

Analysis Result of Hydrogen (H2)

CUSTOMER SEGMENT

We discussed our product idea with

MARKET SIZE - CATALYSTS

USD 39.45 Billion

USD 61.82 Billion 2030

CAGR 5.77%

Fragmented Market

BUSINESS MODEL

Pay-for-performance We get paid for each percentage point improvement

WHY QUANTUM?

Nature isn't classical... and if you want to make a simulation of nature, you'd better make it quantum mechanical... and by golly it's a wonderful problem, because it doesn't look so easy.

99

Richard Feynman

WHY QUANTUM?

Resource requirement grows exponentially on classical computers.

$$O(2^n)$$

CONCLUSIONS

Successfully harnessed the power of Quantum Computing to...

THANK YOU

We've reached our ground state too.

Appendix

References

https://www.precedenceresearch.com/catalyst-market

Reiher M, Wiebe N, Svore KM, Wecker D, Troyer M. Elucidating reaction mechanisms on quantum computers. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7555-7560.

Kandala, A., Mezzacapo, A., Temme, K. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017). https://doi.org/10.1038/nature23879

Baiardi, A, Christandl, M., Reiher M., Quantum Computing for Molecular Biology. https://doi.org/10.48550/arXiv.2212.12220

https://mitiq.readthedocs.io/en/stable/apidoc.html https://qiskit.org/documentation/

Closest competitors

(they do general molecule simulations but don't focus on fertilizers)

EUMEN

Molecular Quantum Solutions

• HQS

Why is ground state important?

- Determines the most stable electronic and geometric structure of the molecule, which in turn affects
 the reactivity and selectivity of the catalyst.
- In a chemical reaction, the reactants must overcome an energy barrier (activation energy) before they
 can form products. The ground state of a molecule is the state of minimum energy, which means that
 the molecule is in its most stable configuration. If the reactants can reach this stable configuration, they
 are more likely to form product.
- Electronic structure of the molecule in its ground state can affect the binding strength between the reactants and the catalyst. The strength of the interaction between the reactants and the catalyst can affect the rate of the reaction and the selectivity of the products.

Insights obtained from ground state

- Relative energies of stable configurations
- Prediction of complex reaction mechanisms