Learning our ABCs

Nathan Cunningham Sherman Ip Ella Kaye

February 12th, 2016

Outline

- Approximate Bayesian computation
- ABC with conjugate priors
- ABC and semi-automatic ABC with the g-and-k distribution

Background and Motivation

Full Posterior

$$\pi(\theta|y_{obs}) = \frac{p(y_{obs}|\theta)\pi(\theta)}{p(y_{obs})}$$

Background and Motivation

Full Posterior

$$\pi(\theta|y_{obs}) = \frac{p(y_{obs}|\theta)\pi(\theta)}{p(y_{obs})}$$

Partial Posterior

$$\pi(\theta|s_{obs}) = \frac{p(s_{obs}|\theta)\pi(\theta)}{p(s_{obs})}$$

where $s_{obs} = S(y_{obs})$ is a vector of summary statistics (preferably sufficient) of lower dimension than the data

ABC approximation (rejection algorithm)

 $\pi_{\epsilon}(\theta|y_{obs})$, is generated by repeatedly

- Generating θ' from the prior distribution $\pi(\cdot)$
- Generating y_i from the likelihood $p(\cdot|\theta')$
- Accepting θ' if $\rho\{S(y_i), S(y_{obs})\} \le \epsilon$

ABC approximation (rejection algorithm)

 $\pi_{\epsilon}(\theta|y_{obs})$, is generated by repeatedly

- Generating θ' from the prior distribution $\pi(\cdot)$
- Generating y_i from the likelihood $p(\cdot|\theta')$
- Accepting θ' if $\rho\{S(y_i), S(y_{obs})\} \le \epsilon$

Requires tuning of

- $S(\cdot)$, the function to compute summary statistics
- \bullet ρ , the distance function
- \bullet ϵ , the threshold

ABC with local linear regression...

- Improve the previous algorithm by introducing a regression step to correct for discrepancy between $S(y_{obs})$ and $S(y_i)$
- For each simulated y_i , set

$$\theta_i = m(S(y_i)) + \eta_i$$

where m is the regression function and the η_i are centered random variables with common variance.

...and kernel

• Instead of accepting or rejecting a sample, assign each simulation $(\theta_i, S(y_i))$ a weight with a kernel

$$K[\rho(S(y_i), S(y_{obs}))]$$

- Higher weights given for proximity to the observation
- We use the Epanechnikov kernel and the Euclidean distance function

Principled summary statistic selection

Best subset selection

Principled summary statistic selection

- Best subset selection
- Semi-automatic ABC
 - Inital run of ABC to find a posterior region of non-negligible mass
 - Simulate parameter values and summary statistics
 - Run a linear regression of the summary statistics on each parameter. Use an information criterion such as BIC to determine which summary statistics can best be used to infer the parameter values
 - Run ABC using this choice of summary statistics

Beta prior, binomial likelihood

$$\theta \sim \text{Beta}(1,1) \tag{1}$$

$$X|\theta \sim \text{Bin}(12,\theta)$$
 (2)

$$\theta | X = 2 \sim \text{Beta}(3, 11) \tag{3}$$

Beta prior, binomial likelihood

$$\theta \sim \text{Beta}(1,1) \tag{1}$$

$$X|\theta \sim \text{Bin}(12,\theta)$$
 (2)

$$\theta | X = 2 \sim \text{Beta}(3, 11) \tag{3}$$

ABC Algorithm

- Sample $\theta \sim \text{Beta}(1,1)$
- Sample $X|\theta \sim \text{Bin}(12,\theta)$
- Accept θ if $X|\theta = 2$, otherwise reject.

Beta prior, binomial likelihood

Figure: 10,000 samples using ABC.

p value for χ^2 goodness of fit test $(50 \pm 30)\%$ (10 ± 10) rejects per accepted sample

Prior

$$\tau \sim \text{Gamma}(\alpha_0, \beta_0) \tag{4}$$

$$\mu|\tau \sim N\left(\mu_0, 1/(\nu_0 \tau)\right) \tag{5}$$

Prior

$$au \sim \operatorname{Gamma}(\alpha_0, \beta_0)$$

$$\mu | \tau \sim N \left(\mu_0, 1/(\nu_0 \tau) \right) \tag{5}$$

Likelihood

$$X|\mu,\tau \sim N(\mu,1/\tau) \tag{6}$$

(4)

Prior

$$\tau \sim \text{Gamma}(\alpha_0, \beta_0) \tag{4}$$

$$\mu | \tau \sim N \left(\mu_0, 1/(\nu_0 \tau) \right) \tag{5}$$

Likelihood

$$X|\mu, \tau \sim N(\mu, 1/\tau)$$
 (6)

Joint Posterior

$$\mu, \tau | X \sim \text{NGamma}(\mu_1, \nu_1, \alpha_1, \beta_1)$$
 (7)

Marginal Posterior

$$\mu|X = \sqrt{\frac{\beta_1}{\alpha_1 \nu_1}} T_{2\alpha_1} + \mu_1 \tag{8}$$

and

$$\tau | X \sim \text{Gamma}(\alpha_1, \beta_1)$$
 (9)

where $T_{2\alpha} \sim t_{2\alpha}$.

ABC Algorithm

- Sample $\tau \sim \text{Gamma}(\alpha_0, \beta_0)$
- Sample $\mu | \tau \sim N \left(\mu_0, 1/(\nu_0 \tau) \right)$
- Sample *n* times $Y|\mu, \tau \sim N(\mu, 1/\tau)$

ABC Algorithm

- Sample $\tau \sim \text{Gamma}(\alpha_0, \beta_0)$
- Sample $\mu | \tau \sim N(\mu_0, 1/(\nu_0 \tau))$
- Sample *n* times $Y|\mu, \tau \sim N(\mu, 1/\tau)$
- Conduct two tailed hypothesis tests, at some confidence level, on

$$\frac{\sqrt{n}(\bar{X} - \bar{Y})}{\sqrt{S_X^2 + S_Y^2}} \sim N(0, 1)$$
(10)

$$\frac{S_X^2}{S_Y^2} \sim F_{n-1,n-1} \tag{11}$$

• Accept μ, τ if both null hypothesis are accepted, reject otherwise

Figure: Joint histogram of 1000 samples from ABC. Confidence level set at 10%.

Figure: Marginal histogram of 100- samples from ABC. Confidence level set at 10%.

0.6

Posterior precision (no units)

Figure: p values for the χ^2 goodness of fit test. The test was conducted 50 times with different observations.

Figure: Rejections per accepted sample

- Threshold not too big, not too small.
- Ideally comparison through sufficient statistics.
- Posterior can be unknown.
- Unable to simulate from improper priors.

g-and-*k* distribution

• Easy to simulate from, but evaluating likelihood can be costly

$$F^{-1}(x,\theta) = A + B\left(1 + c\frac{1 - exp(-g.z(x))}{1 + exp(-g.z(x))}\right) (1 + z(x)^2)^k z(x)$$

- $\bullet \ \theta = (A, B, c, g, k)$
- c taken as fixed at 0.8
- Suitable choice of summary statistics not immediately obvious

Simulating data

- Generate 10^4 'observations' under 'true' $\theta = (A = 3, B = 1, g = 2, k = 0.5)$
- Simulate 10^5 parameters from $\mathcal{U}[0, 10]^4$
- Simulate 10⁴ observations from *g*-and-*k* distribution for each simulated parameter vector
- Use order statistics as summary statistics

Summary statistic selection

m	l	mean
60	1	24,016
60	2	9,470
60	3	1,090
60	4	-5,794
100	1	25, 253
100	2	10,835
100	3	2,946
100	4	-3,447
140	1	24,813
140	2	10,965
140	3	3,360
140	4	-2,734

Table: The BIC resulting from inferring the parameter values from the order statistics for a variety of number of order statistics (m), and powers of these (l)

Fitted vs true parameter values

Figure: Inference of parameter values using order statistics s

Fitted vs true parameter values

Figure: Inference of parameter values using order statistics on summary statistics and transformations (s, s^2, s^3, s^4)

February 12th, 2016

Inference on A and B parameters

Figure: ABC with semi-automatic summary statistic selection, local linear regresson correction, tolerance 0.01 (chosen by cross-validation)

Inference on g and k parameters

Figure: ABC with semi-automatic summary statistic selection, local linear regresson correction, tolerance 0.01 (chosen by cross-validation)

Inference on all parameters

Figure: ABC with semi-automatic summary statistic selection, local linear regresson correction, tolerance 0.01 (chosen by cross-validation)

Comparison with standard ABC

Figure: ABC using 60 order statistics as summary statistics, local linear regresson correction, tolerance 0.01 (chosen by cross-validation)

Conclusions

- Semi-automatic selection of summary statistics can be useful
- Not a panacea
 - Still need to choose summary statistics for step 1
 - Need to choose set of explanatory variables for linear model
 - ▶ Still need to tune ϵ , ρ (and K)
- Plenty more to explore ... (over to Paul, Giuseppe and Marcin)