BSM101 Programlama Dilleri I

Hafta 1 Programlamaya Giriş

Mehmet Zahid YILDIRIM

Derse Giriş

► Ofis Saatleri: Belirsiz...

e-mail: m.zahidyildirim@karabuk.edu.tr

Kaynak Kitaplar:

Doç. Dr. Fahri Vatansever, "Algoritma Geliştirme ve Programlamaya Giriş", Seçkin Yayıncılık, 12. Baskı, 2015 Harvey Deitel, "C How to Program", Pearson Education

Derse Giriş

► Bol bol pratik yapın!

- ► Notlandırma
 - Vize Sınavı: %40
 - Final Sinavi: %60

Dönem Boyunca Görülecek Konular

- Hafta 1- Temel Kavramlar ve Algoritma
- Hafta 2- Giriş/Çıkış İşlemleri, Değişken Kavramı ve Basit Matematiksel İşlemler
- Hafta 3- Kontrol Yapıları (if / if-else / switch-case)
- Hafta 4- Döngü Yapıları (while / do-while / for)
- Hafta 5- Algoritma Örnekleri ve Analizi-1
- Hafta 6- Algoritma Örnekleri ve Analizi-2
- Hafta 7- C Programlama Diline Giriş ve C Derleyicisi
- Hafta 8- C Dilinde Değişken Tipleri ve Temel Giriş/Çıkış İşlemleri (printf, scanf)
- Hafta 9- C Dilinde Kontrol ve Döngü Yapıları
- Hafta 10-Diziler
- Hafta 11-Çok Boyutlu Diziler
- Hafta 12-Karakter Tutan Diziler
- Hafta 13- Fonksiyonlar-1
- Hafta 14- Fonksiyonlar-2

- Bilgi ile çalışmak için tasarlanmış bir elektronik cihazdır.
- 'computare' kelime kökünden gelmekte ve kelime olarak hesaplama yapmak veya programlanabilir makine anlamına gelir.
- Bilgisayarlar program olmadan hiçbir şey yapamazlar.

Bilgisayar,

- kullanıcıdan girdi olarak ham veri alan,
- bu verileri komut seti (program adı verilen) kontrolü altında işleyen,
- sonucu veren (çıktı),
- ileride kullanmak üzere çıktıyı kaydeden gelişmiş bir elektronik cihazdır.
- Hem sayısal hem de sayısal olmayan (aritmetik ve mantıksal) hesaplamaları yapabilir.

Modern bir dijital bilgisayarın temel bileşenleri şunlardır: Giriş Cihazı, Çıkış Cihazı, Merkezi İşlemci Birimi (CPU), yığın depolama cihazı ve bellek.

accepts data	Input
processes data	Processing
produces output	Output
stores results	Storage

• En eski hesaplama aracı "Abaküs"

- Kronolojik olarak bilgisayarların gelişimi:
 - M.Ö. 500 Abaküs
 - 1642 Pascal'ın Mekanik Toplama Makinesi
 - 1827 Babbage'in çıkarma makinesi
 - 1941 İkili>İkili Mekanik Hesaplayıcı (Zuse)
 - 1944 Ondalık Elektromekanik Hesaplayıcı (Aiken)
 - 1945-54 İlk Kuşak Vakum Tüpler ve ışınlar
 - 1955-64 İkinci Kuşak Transistorlar ve Manyetik Bellekler
 - 1965-71 Üçüncü Kuşak Tümleşik Devreler
 - 1971-90 Dördüncü Kuşak VLSI Devreler
 - 1982 IBM PC & MS-DOS
 - 1984 MAC
 - 1990'lar Paralel İşlemciler

IBM MARK-I

ENIAC- Electronic Numerical Integrator And Computer

Mühendislik Nedir?

- Mühendislik, problemleri çözmek için fen ve matematiğin uygulanmasıdır.
- Mühendislik, problem çözmeye adanmış bir disiplindir.
- Gelişmiş protezler üzerinde çalışan, yeni malzemeler üreten, motor verimliliğini ve alternatif yakıtları inceleyen, köprüler inşa eden veya temiz su sistemleri geliştiren mühendislerdir.
- Uydulardan hücre zarlarına kadar mühendisler olağanüstü şeyler elde etmek ve dünyanın en karmaşık sorunlarının bazılarına çözümler bulmak için matematik ve bilimi kullanırlar.

Bilgisayar Mühendisliği

 Bilgisayar mühendisleri, bilgisayar sistemleri ve diğer teknolojik aygıtları tasarlar ve geliştirir.

Genel bir sistemin yapısı

Programlama Dili

- Bilgisayarın fonksiyonel bir beyni olmadığı için insanlar komutlar yazmalıdır.
- Bir problemin algoritmik çözümünün
 Bilgisayara anlatılmasını sağlayan, son derece sıkı-sıkıya kuralları bulunan kurallar dizisidir.
- Bu özel dile "programlama dili" denir.

Programlama Dili

- Bilgisayar programlama dilleri, bilgisayara bilgisayarın anladığı bir dilde talimatlar vermemizi sağlar.
- Birçok insan tabanlı dil olduğu gibi, programcıların bir bilgisayarla iletişim kurmak için kullanabileceği bir dizi bilgisayar programlama dili vardır.
- C Dilinden Python'a kadar her dilin ortak özellikleri olmasına rağmen kendine özgü özellikleri de vardır.

Programlama Dili

Veri Saklama Birimleri

- Bilgisayar sistemlerindeki bütün bilgiler ikilik sistemde
 1 ve 0 ile temsil edilen elektrik sinyalleri ile saklanır.
- İkilik sistemdeki her bir basamağa bit denir.
- Bit nicelik ifade edebilmek için yeterli bir birim değildir.
 Temel hafıza birimi olarak byte kullanılır.
 - -1 bayt = 8 bit
- Bilgisayar sisteminde her bir karakter 8 bit'ten oluşur.
- Örneğin: A karakteri bilgisayar içinde 0100001 sayısıyla ifade edilir. İşte bu sayının her basamağına 1 Bit denir.

Veri Saklama Birimleri

- Kapasite ölçüm birimleri küçükten büyüğe Bit, Byte (Bayt), KB(Kilo Byte), MB (Mega Byte), GB (Giga Byte), TB (Tera Byte).
- 1 Byte=8 Bit
- 1 KB (Kilo Bayt)=1024 Byte
- 1 MB (Mega Bayt)=1024 KB
- 1 GB (Giga Bayt)=1024 MB
- 1 TB (Tera Bayt)=1024 GB'dır.

Programlama Nedir?

- Kullanım amaçları ve yerlerine göre birçok değişik program türü vardır:
 - Sistem programları: Her program, bir işletim sistemi üzerinde çalışır. İşletim sistemi, diğer programların çalışması için gerekli olan kaynakları ve ortamı sağlar.
 - Sürücüler: İşletim sistemi ile donanım aygıtları arasında iletişim sağlayan programlardır. Klavye ile yazılan yazıların algılanması için, klavyenin sürücü programı kullanılır.
 - Uygulamalar: İşletim sistemi üzerinde çalışan, kullanıcıların ihtiyaç duyduğu işlevleri sağlayan programlardır.

Programcı Kimdir?

- Belirli işlevlere sahip programlar geliştiren kişilere programcı denir. Programcı, kullanılan teknolojiyi, platformu iyi tanıması gerekir.
- Programcılar 3 grupta incelenir:
 - Mimar: Programların yazılması için gerekli teknolojileri belirler.
 - Geliştirici: Programı yazan kişidir.
 - Analist: Programın geliştirilmesi aşamasında, hatanın kaynaklarını bulan ve geliştiricilere raporlayan programcıdır.

- Programlama dilleri sıklıkla seviyelerine göre sınıflandırılır.
- Seviye, bir programlama dilinin insan algılamasına olan yakınlığının bir ölçüsüdür.
- Yüksek seviyeli diller insan algılayışına daha yakın, alçak seviyeli diller de bilgisayarın doğal çalışmasına daha yakın olan dillerdir.
- Dilin seviyesi yükseldikçe programcının işi de kolaylaşır.
- Çok yüksek seviyeli dillerde bir işin nasıl yapılacağına ilişkin değil, ne yapılacağına ilişkin komutlar bulunur.
- Seviyenin yükselmesi programcının işini kolaylaştırırken genel olarak verimliliği ve esnekliği azaltır.

İnsana yakın

Bilgisayara yakın

- Çok yüksek seviyeli programlama dilleri ya da görsel diller (Visual C# .NET, Visual Basic.NET, Java..)
- Yüksek seviyeli programlama dilleri (Pascal, Cobol, Fortran,
 Basic
- Orta seviyeli programlama dilleri (C)
- Alçak seviyeli programlama dilleri (Assembly)
- Makine dilleri (1 ve 0 dan oluşur)

Makine Dilleri

- Bilgisayarın kendi doğal dili
- Sayı dizilerinden oluşur (çoğunlukla 1 ve 0'a indirgenmiştir.)
- Makine bağımlıdır

Alçak Seviyeli Diller (Assembly Dili)

- Temel komutları temsil etmek için İngilizce benzeri kısaltmalar.
- Assembler, Assembly dilini makine diline çevirmek için kullanılır.

- Makine dili programlaması çok yavaş ve hata yapmaya çok elverişlidir.
- Bilgisayarların doğrudan anlayabildiği sayı dizileri ile uğraşmak yerine programcılar temel işlemleri temsil etmek için İngilizce kısaltmalar kullanmaya başladılar.
- Bu kısaltmalar **assembly dilinin** temelini oluşturmuştur.
- Assembler'lar assembly dilinde yazılan bir programı makine diline çevirmek için tasarlanmışlardır.

- •Orta seviyeli diller hem kullanıcıya hem de bilgisayara yakın olan yapılar içerirler.
- Orta seviyeli diller, yüksek seviyeli dillerin kolaylıkları ile aşağı seviyeli dillerin esnekliğini ve doğallığını kullanırlar.
- C tipik bir orta seviyeli dildir.
- Orta seviyeli diller özellikle sistem programlarının yazımında kullanılırlar.

- Yüksek seviyeli programlama dilleri daha algoritmik dillerdir.
- Bu dillerde önce işlerin nasıl yapılacağına ilişkin algoritmalar tasarlanır. Daha sonra bu algoritmalar program koduna çevrilir.

Basic, Pascal, Fortran gibi diller bu grup

dillerdir.

- Çok yüksek seviyeli diller, program kodunun kısmen ya da tamamen görsel biçimde çeşitli araçlar tarafından üretildiği dillerdir.
- Windows sistemlerinde .NET çatısı altında C# ve Visual Basic gibi diller yoğun olarak kullanılmaktadır.
- Çok yüksek seviyeli dillere deklaratif diller de denir.
- Veri tabanlarının yönetimlerinde kullandığımız dilleri bu gruba sokabiliriz.

Derleyici Nedir?

- Derleyici (Compiler), bir bilgisayar dilinde yazılmış olan kodu, bilgisayarın (yada elektronik cihazın) donanımına uygun makine diline çeviren bilgisayar programıdır.
- Derleyici öncelikle yazılan program kodunun doğru yazılıp yazılmadığını kontrol eder, eğer hatalar varsa bunları programcıya bildirir.
- Eğer kod doğru ise derleme yapılan sisteme uygun olan 0 ve 1'lerden oluşan makine kodunu üretir (EXE dosyası).

Yorumlayıcı Nedir?

- Yorumlayıcı (Interpreter), bir programın kaynak kodunu derlemek yerine doğrudan satır satır yürüten bir programdır.
- BASIC gibi bazı diller hem derleyici hem yorumlayıcı programlar ile kullanılabilir.
- JAVA dili, yorumlayıcı kullanması nedeniyle taşınabilir (platform bağımsız) bir yapıya sahip olmuştur.

Derleyiciler ile Yorumlayıcılar Arasındaki Farklar

- Derleyiciler, basitçe bir kaynak kodu hedef koda çevirdikten sonra çalıştırır ve dolayısıyla koddaki hataları yakalama işlemini ve kodun iyileştirilmesini daha kod çalıştırmadan yapar.
- Yorumlayıcılar ise kodu satır satır veya bloklar halinde çalıştırıp sırası gelmeyen satırları hiç çalıştırmaz ve bu satırlardaki hataları hiçbir zaman göremez. Kodun bütününe ait iyileştirmeleri yapamaz.

Problem ve Problem Çözümü

- Bir işlemin, otomasyonun yada bilimsel hesaplamanın bilgisayarla çözülmesi fikrinin ortaya çıkmasına problem denir.
- Problemi çözebilmek için öncelikle sorunun çok net olarak programcı tarafından anlaşılmış olması gerekir.
- Tüm ihtiyaçlar ve istekler belirlenmelidir.
- Bir sorunun tabii ki birden fazla çözümü olabilir.
 Bu durumda bilgisayar ile en uygun çözüm seçilmelidir.

- Bir sorunu çözebilmek için gerekli olan <u>sıralı</u> mantıksal adımların tümüne algoritma denir.
 - Her adım son derece belirleyici olmalıdır. Hiç bir şey şansa bağlı olmamalıdır.
 - Belirli bir sayıda adım sonunda algoritma sonlanmalıdır.
 - Algoritmalar karşılaşılabilecek tüm ihtimalleri ele alabilecek kadar genel olmalıdır.
- Algoritmalar pseudo kod(sahte kod) veya akış diyagramları ile ifade edilirler.

Pseudo Kod

- Pseudo kod algoritma geliştirmeye yardımcı olmak için kullanılan yapay ve resmi olmayan bir dildir.
- Pseudo code günlük konuşma dili gibidir;
 - Kolay
 - Kullanıcı dostu
 - Gerçek olmayan bir programlama dili.
- Bilgisayarlar tarafından çalıştırılamaz.
- Bir programı yazmaya başlamadan önce onun hakkında düşünmenize yardımcı olur.
- Sadece eylem ifadelerinden oluşur. Tanımlamalar çalıştırılabilir ifadeler değildir ve herhangi bir eyleme sebep olmaz. Bu sebeple pseudo kod içinde yer almazlar.

Pseudo Kod

- Bazı temel sahte kod komutları şunlardır:
- **Başla**: Programın başladığını ifade eder.
- **Bitir**: Programın bittiğini ifade eder.
- Oku: Kullanıcı girişi için yazılır.
- Yaz: Kullanıcıya bilgi veya sonuç göstermek için yazılır.
- **Eğer ... İse ...:** Şartlara göre akışın değişmesinde kullanılır.
- **Eğer Değilse...** : Şartlara göre akışın değişmesinde kullanılır.

Akış Diyagramı

- Çeşitli anlamlar ifade eden ve birbirine oklarla bağlanan şekillerle görsel olarak algoritmanın adımlarını ifade etmektir.
- Akış şemaları Dikdörtgen, Baklava, Elips, Daire gibi özel amaçlı bazı sembollerin çizilmesi ile oluşturulurlar.

- Temelde algoritmamızı üç ana bölüme ayırabiliriz:
- Giriş: Bilgisayarın üzerinde çalışacağı veri kullanıcı tarafından girilir.
- İşlem: Bilgisayar girilen bilgiyi işler.
- Çıkış: Bilgisayar insanların anlayacağı şekilde ekrana sonucu gösterir.

- Giriş:
- a. Ürünün adını al.
- b. Ürünün miktarını al.
- c. Bir dosyadan ürünün fiyatını oku.
- İşlem:
- a. Ürünün toplam fiyatını hesapla.
- b. Gerekli indirimi yap.
- Çıkış:
- a. Toplam satış değerini yaz.

- Örnekteki adımları algoritma olarak alt alta toplarsak:
- 1. Başla.
- 2. Ürünün adını al.
- 3. Ürünün miktarını al.
- 4. Bir dosyadan ürünün fiyatını oku.
- 5. Ürünün toplam fiyatını hesapla.
- 6. Gerekli indirimi yap.
- 7. Toplam satış değerini yaz.
- 8. Bitir.

Kaynaklar

- ▶ Doç. Dr. Fahri Vatansever, "Algoritma Geliştirme ve Programlamaya Giriş", Seçkin Yayıncılık, 12. Baskı, 2015.
- ► J. G. Brookshear, "Computer Science: An Overview 10th Ed.", Addison Wisley, 2009.
- ► Kaan Aslan, "A'dan Z'ye C Klavuzu 8. Basım", Pusula Yayıncılık, 2002.
- ▶ Paul J. Deitel, "C How to Program", Harvey Deitel.
- ► Bayram AKGÜL, C Programlama Ders notları