

Grado en Ingeniería Informática Computabilidad y Algoritmia

Tema 1: Alfabetos, cadenas y lenguajes

F. de Sande

Curso 2024-2025

Indice

- Alfabetos, cadenas y lenguajes
- Operaciones con cadenas
 - Concatenación y repetición
 - Igualdad
 - Prefijos, sufijos, subcadenas y subsecuencias
 - Inversa
- Operaciones con lenguajes
 - Concatenación y potencia
 - Unión e intersección
 - Sublenguajes e igualdad de lenguajes
 - Cierre de Kleene y cierre positivo
 - Diferencia, complemento e inversa

Indice

- Alfabetos, cadenas y lenguajes
- Operaciones con cadenas
 - Concatenación y repetición
 - Igualdad
 - Prefijos, sufijos, subcadenas y subsecuencias
 - Inversa
- Operaciones con lenguajes
 - Concatenación y potencia
 - Unión e intersección
 - Sublenguajes e igualdad de lenguajes
 - Cierre de Kleene y cierre positivo
 - Diferencia, complemento e inversa

- Palabras inglesas.
- Valores enteros.
- Programas escritos en algún lenguaje de programación.
- Frases escritas en algún lenguaje natural como el español.

- Palabras inglesas.
- Valores enteros.
- Programas escritos en algún lenguaje de programación.
- Frases escritas en algún lenguaje natural como el español.
- Cada uno está compuesto por secuencias de símbolos tomados de alguna colección finita.

- Palabras inglesas.
- Valores enteros.
- Programas escritos en algún lenguaje de programación.
- Frases escritas en algún lenguaje natural como el español.
- Cada uno está compuesto por secuencias de símbolos tomados de alguna colección finita.
 - Conjunto de letras del alfabeto junto con símbolos como el guión, apóstrofe, etc.

- Palabras inglesas.
- Valores enteros.
- Programas escritos en algún lenguaje de programación.
- Frases escritas en algún lenguaje natural como el español.
- Cada uno está compuesto por secuencias de símbolos tomados de alguna colección finita.
 - Conjunto de letras del alfabeto junto con símbolos como el guión, apóstrofe, etc.

- Palabras inglesas.
- Valores enteros.
- Programas escritos en algún lenguaje de programación.
- Frases escritas en algún lenguaje natural como el español.
- Cada uno está compuesto por secuencias de símbolos tomados de alguna colección finita.
 - Conjunto de letras del alfabeto junto con símbolos como el guión, apóstrofe, etc.
 - Identificadores legales del lenguaje, palabras reservadas, símbolos especiales, salto de línea, etc.

- Palabras inglesas.
- Valores enteros.
- Programas escritos en algún lenguaje de programación.
- Frases escritas en algún lenguaje natural como el español.
- Cada uno está compuesto por secuencias de símbolos tomados de alguna colección finita.
 - Conjunto de letras del alfabeto junto con símbolos como el guión, apóstrofe, etc.
 - Identificadores legales del lenguaje, palabras reservadas, símbolos especiales, salto de línea, etc.
 - Palabras del idioma, espacios, comas y otros signos de puntuación.

- Palabras inglesas.
- Valores enteros.
- Programas escritos en algún lenguaje de programación.
- Frases escritas en algún lenguaje natural como el español.
- Cada uno está compuesto por secuencias de símbolos tomados de alguna colección finita.
 - Conjunto de letras del alfabeto junto con símbolos como el guión, apóstrofe, etc.
 - Identificadores legales del lenguaje, palabras reservadas, símbolos especiales, salto de línea, etc.
 - Palabras del idioma, espacios, comas y otros signos de puntuación.
- 2 Las secuencias de símbolos tienen longitud finita.

Definición

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

Definición

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

Definici<u>ón</u>

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

•
$$\Sigma_1 = \{0, 1\}$$

Definición

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

- $\Sigma_1 = \{0, 1\}$
- $\Sigma_2 = \{., _\}$

Definición

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

- $\Sigma_1 = \{0, 1\}$
- $\Sigma_2 = \{., _\}$
- $\Sigma_3 = \{a, b, c, ..., z\}$

Definición

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

- $\Sigma_1 = \{0, 1\}$
- $\Sigma_2 = \{., _\}$
- $\Sigma_3 = \{a, b, c, ..., z\}$
- $\Sigma_4 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Definición

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

- $\Sigma_1 = \{0, 1\}$
- $\Sigma_2 = \{., .\}$
- $\Sigma_3 = \{a, b, c, ..., z\}$
- $\Sigma_4 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\Sigma_5 = \{ \spadesuit, \heartsuit, \diamondsuit, \clubsuit \}$

Definición

Un alfabeto Σ es un conjunto no vacío y finito de símbolos.

Ejemplos

- $\Sigma_1 = \{0, 1\}$
- $\Sigma_2 = \{., .\}$
- $\Sigma_3 = \{a, b, c, ..., z\}$
- $\Sigma_4 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $\Sigma_5 = \{ \spadesuit, \heartsuit, \diamondsuit, \clubsuit \}$

Si Σ es un alfabeto, $\sigma \in \Sigma$ indica que σ es un símbolo del alfabeto Σ .

Definición

Una cadena o palabra es una secuencia finita de símbolos de un determinado alfabeto.

Definición

Una cadena o palabra es una secuencia finita de símbolos de un determinado alfabeto.

Definición

Una cadena o palabra es una secuencia finita de símbolos de un determinado alfabeto.

Ejemplos

• $w_1 = 01101$

Definición

Una cadena o palabra es una secuencia finita de símbolos de un determinado alfabeto.

- $w_1 = 01101$
- $w_2 = \dots \dots$

Definición

Una cadena o palabra es una secuencia finita de símbolos de un determinado alfabeto.

- $w_1 = 01101$
- \bullet $w_2 = \dots \dots$
- $w_3 = \mathsf{hola}$

Definición

Una cadena o palabra es una secuencia finita de símbolos de un determinado alfabeto.

```
• w_1 = 01101
```

•
$$w_2 = \dots - \dots$$

$$ullet$$
 $w_3 = \mathsf{hola}$

•
$$w_4 = 1024$$

Definición

Una cadena o palabra es una secuencia finita de símbolos de un determinado alfabeto.

Ejemplos

- $w_1 = 01101$
 - $w_2 = \dots = \dots$
 - $w_3 = \mathsf{hola}$
 - $w_4 = 1024$

Nota

La experiencia nos lleva a identificar el término palabra con las palabras de algún lenguaje natural

Para evitar esta idea preconcebida, en CyA se utilizará el término cadena en lugar de palabra

• Cada símbolo de un alfabeto es una cadena sobre dicho alfabeto.

- Cada símbolo de un alfabeto es una cadena sobre dicho alfabeto.
- Dos cadenas con los mismos símbolos en distinto orden, son distintas:
 - Sea $\Sigma = \{a, b, c, ..., z\}$, $las \neq sal$

- Cada símbolo de un alfabeto es una cadena sobre dicho alfabeto.
- Dos cadenas con los mismos símbolos en distinto orden, son distintas:
 - Sea $\Sigma = \{a,b,c,...,z\}$, $las \neq sal$
- El número de símbolos que componen una cadena w es su **longitud** y se denota por |w|.

- Cada símbolo de un alfabeto es una cadena sobre dicho alfabeto.
- Dos cadenas con los mismos símbolos en distinto orden, son distintas:
 - Sea $\Sigma = \{a, b, c, ..., z\}$, $las \neq sal$
- El número de símbolos que componen una cadena w es su **longitud** y se denota por |w|.
- La cadena vacía ε es la que no tiene ningún símbolo: $|\varepsilon|=0$

- Cada símbolo de un alfabeto es una cadena sobre dicho alfabeto.
- Dos cadenas con los mismos símbolos en distinto orden, son distintas:
 - Sea $\Sigma = \{a, b, c, ..., z\}$, $las \neq sal$
- El número de símbolos que componen una cadena w es su **longitud** y se denota por |w|.
- La cadena vacía ε es la que no tiene ningún símbolo: $|\varepsilon|=0$
- La cadena vacía ε es una cadena sobre cualquier alfabeto Σ puesto que es una cadena vacía de símbolos tomados de cualquier alfabeto.

Notas

En cierta bibliografía y herramientas relacionadas con la asignatura se utiliza λ en lugar de ε para representar la cadena vacía

En CyA, las cadenas carecen de significado

Definición

Un lenguaje (formal) es un conjunto de cadenas.

Definición

Un lenguaje (formal) es un conjunto de cadenas.

Definici<u>ón</u>

Un lenguaje (formal) es un conjunto de cadenas.

Ejemplos

• $L_1 = \{1, 234, 912, 456\}$ es un lenguaje sobre $\Sigma_1 = \{0, 1, 2, ..., 9\}$

Definición

Un lenguaje (formal) es un conjunto de cadenas.

- $L_1 = \{1, 234, 912, 456\}$ es un lenguaje sobre $\Sigma_1 = \{0, 1, 2, ..., 9\}$
- $L_2 = \{a, aa, aaa, aaaa, ...\}$ es un lenguaje sobre $\Sigma_2 = \{a\}$

Definición

Un lenguaje (formal) es un conjunto de cadenas.

- $L_1 = \{1, 234, 912, 456\}$ es un lenguaje sobre $\Sigma_1 = \{0, 1, 2, ..., 9\}$
- $L_2 = \{a, aa, aaa, aaaa, ...\}$ es un lenguaje sobre $\Sigma_2 = \{a\}$
- El conjunto de palabras inglesas "correctas" es un lenguaje sobre el alfabeto inglés.

• Si Σ es un alfabeto, también es un lenguaje (el formado por todas las cadenas con un único símbolo).

- Si Σ es un alfabeto, también es un lenguaje (el formado por todas las cadenas con un único símbolo).
- Los lenguajes pueden ser infinitos, a pesar de que todas sus cadenas tengan longitud finita:
 - $\bullet \ L = \{a, aa, aaa, aaaa, aaaaa, ...\}$

- Si Σ es un alfabeto, también es un lenguaje (el formado por todas las cadenas con un único símbolo).
- Los lenguajes pueden ser infinitos, a pesar de que todas sus cadenas tengan longitud finita:
 - $L = \{a, aa, aaa, aaaa, aaaaa, ...\}$
- Cuando el cardinal de un lenguaje es grande, resulta difícil especificar qué cadenas lo componen.

- Si Σ es un alfabeto, también es un lenguaje (el formado por todas las cadenas con un único símbolo).
- Los lenguajes pueden ser infinitos, a pesar de que todas sus cadenas tengan longitud finita:
 - $L = \{a, aa, aaa, aaaa, aaaaa, ...\}$
- Cuando el cardinal de un lenguaje es grande, resulta difícil especificar qué cadenas lo componen.
- ullet El lenguaje vacío \emptyset es el lenguaje que no contiene ninguna cadena.
 - El lenguaje vacío no es el mismo que el que consta de la cadena vacía: $\emptyset \neq \{\varepsilon\}$

- Si Σ es un alfabeto, también es un lenguaje (el formado por todas las cadenas con un único símbolo).
- Los lenguajes pueden ser infinitos, a pesar de que todas sus cadenas tengan longitud finita:
 - $L = \{a, aa, aaa, aaaa, aaaaa, ...\}$
- Cuando el cardinal de un lenguaje es grande, resulta difícil especificar qué cadenas lo componen.
- ullet El lenguaje vacío \emptyset es el lenguaje que no contiene ninguna cadena.
 - El lenguaje vacío no es el mismo que el que consta de la cadena vacía: $\emptyset \neq \{\varepsilon\}$
- Supongamos que Σ es un alfabeto y w es una cadena sobre Σ . Si L es el lenguaje formado por algunas de las cadenas sobre Σ y si w está en L, entonces $w \in L$ y se dice que w es un elemento de L.
 - $\bullet \ aaaa \in \{a, aa, aaa, aaaa, aaaaa, ...\}$
 - $234 \in \{1, 234, 912, 456\}$

Definición

El lenguaje universal sobre Σ o cierre de Σ es el lenguaje compuesto por **todas** las cadenas sobre el alfabeto Σ .

- Se denota por Σ^*
- Para cualquier alfabeto, Σ^* es infinito (puesto que los alfabetos son no vacíos, $\Sigma \neq \emptyset)$

Definición

El lenguaje universal sobre Σ o cierre de Σ es el lenguaje compuesto por **todas** las cadenas sobre el alfabeto Σ .

- Se denota por Σ^*
- Para cualquier alfabeto, Σ^* es infinito (puesto que los alfabetos son no vacíos, $\Sigma \neq \emptyset$)

Ejemplos

Definición

El lenguaje universal sobre Σ o cierre de Σ es el lenguaje compuesto por **todas** las cadenas sobre el alfabeto Σ .

- Se denota por Σ^*
- Para cualquier alfabeto, Σ^* es infinito (puesto que los alfabetos son no vacíos, $\Sigma \neq \emptyset$)

Ejemplos

 $\begin{array}{l} \bullet \;\; \text{Si} \;\; \Sigma = \{a\} \text{, entonces:} \\ \Sigma^* = \{\varepsilon, a, aa, aaa, aaaa, aaaa, aaaaa, \ldots \} \end{array}$

Definición

El lenguaje universal sobre Σ o cierre de Σ es el lenguaje compuesto por **todas** las cadenas sobre el alfabeto Σ .

- Se denota por Σ^*
- Para cualquier alfabeto, Σ^* es infinito (puesto que los alfabetos son no vacíos, $\Sigma \neq \emptyset$)

Ejemplos

- Si $\Sigma = \{a\}$, entonces: $\Sigma^* = \{\varepsilon, a, aa, aaa, aaaa, aaaa, ...\}$
- Si $\Sigma = \{0,1\}$, entonces: $\Sigma^* = \{\varepsilon,0,1,00,01,10,11,000,...\}$

Indice

- Alfabetos, cadenas y lenguajes
- Operaciones con cadenas
 - Concatenación y repetición
 - Igualdad
 - Prefijos, sufijos, subcadenas y subsecuencias
 - Inversa
- Operaciones con lenguajes
 - Concatenación y potencia
 - Unión e intersección
 - Sublenguajes e igualdad de lenguajes
 - Cierre de Kleene y cierre positivo
 - Diferencia, complemento e inversa

Concatenación y repetición Igualdad Prefijos, sufijos, subcadenas y subsecuencias Inversa

Concatenación

Sean w, z cadenas sobre cualquier alfabeto Σ

Definición

La concatenación de w con z es la cadena que se obtiene al añadir a la cadena w la cadena z.

Se denota como wz o $w \cdot z$

Sean w, z cadenas sobre cualquier alfabeto Σ

Definición

La concatenación de w con z es la cadena que se obtiene al añadir a la cadena w la cadena z.

Se denota como wz o $w \cdot z$

Ejemplo

• Sea w = abra y z = cadabra, entonces: wz = abracadabra

Sean w, z cadenas sobre cualquier alfabeto Σ

Definición

La concatenación de w con z es la cadena que se obtiene al añadir a la cadena w la cadena z.

Se denota como wz o $w \cdot z$

Ejemplo

- Sea w = abra y z = cadabra, entonces: wz = abracadabra
- |wz| = |w| + |z|

Sean w, z cadenas sobre cualquier alfabeto Σ

Definición

La concatenación de w con z es la cadena que se obtiene al añadir a la cadena w la cadena z.

Se denota como wz o $w \cdot z$

Ejemplo

- Sea w = abra y z = cadabra, entonces: wz = abracadabra
- |wz| = |w| + |z|
- \bullet ε es la identidad para la concatenación: $\varepsilon \cdot w = w \cdot \varepsilon = w$

Repeticiones

Sea w una cadena y $n \in \mathbb{N}$

Definición

Dada una cadena sobre un alfabeto, su potencia se define como:

$$w^n = \begin{cases} \varepsilon & \text{si } n = 0 \\ ww^{n-1} & \text{si } n > 0 \end{cases}$$

Repeticiones

Sea w una cadena y $n \in \mathbb{N}$

Definición

Dada una cadena sobre un alfabeto, su potencia se define como:

$$w^{n} = \begin{cases} \varepsilon & \text{si } n = 0\\ ww^{n-1} & \text{si } n > 0 \end{cases}$$

Ejemplo

Si w=aba es una cadena sobre el alfabeto $\Sigma=\{a,b\}$, se tiene que:

- $w^0 = \varepsilon$
- \bullet $w^1 = aba$
- $w^2 = abaaba$
- $w^3 = abaabaaba$

Concatenación y repetición Igualdad Prefijos, sufijos, subcadenas y subsecuencias Inversa

Igualdad de cadenas

Definición

Si w y z son cadenas, se dice que w=z si tienen la misma longitud (|w|=|z|) y los mismos símbolos en la misma posición.

Igualdad de cadenas

Definición

Si w y z son cadenas, se dice que w=z si tienen la misma longitud (|w|=|z|) y los mismos símbolos en la misma posición.

Ejemplo

Sea
$$\Sigma = \{\alpha, \beta\}$$

- $\alpha\beta\beta = \alpha\beta\beta$
- $\alpha\beta\beta \neq \beta\beta\alpha$

Prefijos y sufijos

Sean $w, x \in \Sigma^*$

Definición

Se dice que x es **prefijo** de w si $\exists y \in \Sigma^* \mid w = xy$

Prefijos y sufijos

Sean $w, x \in \Sigma^*$

Definición

Se dice que x es **prefijo** de w si $\exists y \in \Sigma^* \mid w = xy$

Ejemplo

- Si w = subprograma, entonces x = sub es un prefijo de w (y = programa)
- Si $y = \varepsilon$, entonces para w = xy se tiene que w = x (toda cadena puede considerarse prefijo de sí misma)
- ullet La cadena vacía arepsilon es un prefijo de cualquier cadena

Prefijos y sufijos

Sean $w, x \in \Sigma^*$

Definición

Se dice que x es **prefijo** de w si $\exists y \in \Sigma^* \mid w = xy$

Ejemplo

- Si w = subprograma, entonces x = sub es un prefijo de w (y = programa)
- Si y=arepsilon, entonces para w=xy se tiene que w=x (toda cadena puede considerarse prefijo de sí misma)
- ullet La cadena vacía arepsilon es un prefijo de cualquier cadena

Definición

Los **prefijos propios** son aquellos que no son iguales a la cadena.

Subcadenas

Sean $x,y,z,w\in \Sigma^*$

Definición

Se dice que w es subcadena de z si existen las cadenas x e y para las cuales z=xwy

Subcadenas

Sean $x, y, z, w \in \Sigma^*$

Definición

Se dice que w es subcadena de z si existen las cadenas x e y para las cuales z=xwy

Ejemplo

Sea z = abc Subcadenas de z son:

Subcadenas

Sean $x, y, z, w \in \Sigma^*$

Definición

Se dice que w es subcadena de z si existen las cadenas x e y para las cuales z = xwy

Ejemplo

Sea z = abc Subcadenas de z son:

- ε

- ab
- bc
- abc

Sean $x,y\in\Sigma^*$

Definición

Se dice que y es una subsecuencia de x si y tiene símbolos de x respetando su orden, pero no necesariamente contiguos:

$$x = x_1 x_2 \dots x_N$$

$$y = x_{i_1} x_{i_2} \dots x_{i_k}$$

$$1 \le i_1 \le i_2 \le \dots i_k \le i_m$$

Sean $x,y\in\Sigma^*$

Definición

Se dice que y es una subsecuencia de x si y tiene símbolos de x respetando su orden, pero no necesariamente contiguos:

$$x = x_1 x_2 \dots x_N$$

$$y = x_{i_1} x_{i_2} \dots x_{i_k}$$

$$1 \le i_1 \le i_2 \le \dots i_k \le i_m$$

Ejemplo

Sea w=123456789. Algunas subsecuencias de w son: 1457, 23479, 1236789, ...

Sean $x,y\in\Sigma^*$

Definición

Se dice que y es una subsecuencia de x si y tiene símbolos de x respetando su orden, pero no necesariamente contiguos:

$$x = x_1 x_2 \dots x_N$$

$$y = x_{i_1} x_{i_2} \dots x_{i_k}$$

$$1 \le i_1 \le i_2 \le \dots i_k \le i_m$$

Ejemplo

Sea w=123456789. Algunas subsecuencias de w son: 1457, 23479, 1236789, ...

- \bullet ε es subsecuencia de toda cadena.
- Toda subcadena es subsecuencia, pero el recíproco no es cierto.

Sean $x, y \in \Sigma^*$

Definición

Se dice que y es una subsecuencia de x si y tiene símbolos de x respetando su orden, pero no necesariamente contiguos:

$$x = x_1 x_2 \dots x_N$$

$$y = x_{i_1} x_{i_2} \dots x_{i_k}$$

$$1 \le i_1 \le i_2 \le \dots i_k \le i_m$$

Ejercicio

¿Cuál es el número de subsecuencias de $x \in \Sigma^*$ si |x| = n?

Inversa

Definición

Dada una cadena $w \in \Sigma^*$, su inversa o traspuesta se define como:

$$w^I = \begin{cases} w & \text{si } w = \varepsilon \\ y^I a & \text{si } w = ay, \text{con } a \in \Sigma \wedge y \in \Sigma^* \end{cases}$$

Inversa

Definición

Dada una cadena $w \in \Sigma^*$, su inversa o traspuesta se define como:

$$w^I = \begin{cases} w & \text{si } w = \varepsilon \\ y^I a & \text{si } w = ay, \text{con } a \in \Sigma \wedge y \in \Sigma^* \end{cases}$$

Ejemplo

Sea w=atar, entonces la inversa de w es:

•
$$w^I = (atar)^I =$$

$$\bullet = (tar)^I a =$$

$$\bullet = (ar)^I ta =$$

$$\bullet = (r)^I ata =$$

$$\bullet = (\varepsilon)^I rata =$$

$$\bullet = \varepsilon \cdot rata = rata$$

Indice

- Alfabetos, cadenas y lenguajes
- Operaciones con cadenas
 - Concatenación y repetición
 - Igualdad
 - Prefijos, sufijos, subcadenas y subsecuencias
 - Inversa
- Operaciones con lenguajes
 - Concatenación y potencia
 - Unión e intersección
 - Sublenguajes e igualdad de lenguajes
 - Cierre de Kleene y cierre positivo
 - Diferencia, complemento e inversa

Definición

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ , la concatenación o producto cartesiano se define como:

$$L_1 \cdot L_2 = L_1 L_2 = \{ xy \mid x \in L_1 \land y \in L_2 \}$$

Definición

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ , la concatenación o producto cartesiano se define como:

$$L_1 \cdot L_2 = L_1 L_2 = \{ xy \mid x \in L_1 \land y \in L_2 \}$$

Ejemplo

Si $L_1 = \{ojos\}$ y $L_2 = \{azules, negros\}$, entonces:

• $L_1L_2 = \{ojosazules, ojosnegros\}$

Definición

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ , la concatenación o producto cartesiano se define como:

$$L_1 \cdot L_2 = L_1 L_2 = \{ xy \mid x \in L_1 \land y \in L_2 \}$$

Ejemplo

Si $L_1 = \{ojos\}$ y $L_2 = \{azules, negros\}$, entonces:

- $L_1L_2 = \{ojosazules, ojosnegros\}$
- Si L_1 es un lenguaje sobre Σ_1 y L_2 es un lenguaje sobre Σ_2 , entonces L_1L_2 es un lenguaje sobre $\Sigma_1 \cup \Sigma_2$
- Para cualquier lenguaje L, se tiene que: $L \cdot \{\varepsilon\} = \{\varepsilon\} \cdot L = L$

Potencia

Definición

Sea L un lenguaje sobre Σ , se define la potencia del lenguaje como:

$$L^n = \begin{cases} \{\varepsilon\} & \text{si } n = 0 \\ L \cdot L^{n-1} & \text{si } n > 0 \end{cases}$$

Definición

Sea L un lenguaje sobre Σ , se define la potencia del lenguaje como:

$$L^n = \begin{cases} \{\varepsilon\} & \text{si } n = 0 \\ L \cdot L^{n-1} & \text{si } n > 0 \end{cases}$$

Si
$$L=\{0,1\}$$

Definición

Sea L un lenguaje sobre Σ , se define la potencia del lenguaje como:

$$L^n = \begin{cases} \{\varepsilon\} & \text{si } n = 0 \\ L \cdot L^{n-1} & \text{si } n > 0 \end{cases}$$

<u>Ej</u>emplo

Si
$$L=\{0,1\}$$

Definición

Sea L un lenguaje sobre Σ , se define la potencia del lenguaje como:

$$L^n = \begin{cases} \{\varepsilon\} & \text{si } n = 0 \\ L \cdot L^{n-1} & \text{si } n > 0 \end{cases}$$

Si
$$L=\{0,1\}$$

$$L^0 = \{\varepsilon\}$$

$$^{\bullet} \ L^{1} = L = \{0,1\}$$

Definición

Sea L un lenguaje sobre Σ , se define la potencia del lenguaje como:

$$L^{n} = \begin{cases} \{\varepsilon\} & \text{si } n = 0 \\ L \cdot L^{n-1} & \text{si } n > 0 \end{cases}$$

Si
$$L=\{0,1\}$$

$$L^0 = \{ \varepsilon \}$$

•
$$L^1 = L = \{0, 1\}$$

$$\bullet \ L^2 = L \cdot L = \{00, 01, 10, 11\}$$

Definición

Sea L un lenguaje sobre Σ , se define la potencia del lenguaje como:

$$L^{n} = \begin{cases} \{\varepsilon\} & \text{si } n = 0 \\ L \cdot L^{n-1} & \text{si } n > 0 \end{cases}$$

Si
$$L=\{0,1\}$$

$$L^0 = \{ \varepsilon \}$$

•
$$L^1 = L = \{0, 1\}$$

•
$$L^3 = L \cdot L^2 = \{000, 001, 010, 011, 100, 101, 110, 111\}$$

Definición

Sea L un lenguaje sobre Σ , se define la potencia del lenguaje como:

$$L^{n} = \begin{cases} \{\varepsilon\} & \text{si } n = 0 \\ L \cdot L^{n-1} & \text{si } n > 0 \end{cases}$$

Si
$$L=\{0,1\}$$

$$L^0 = \{ \varepsilon \}$$

•
$$L^1 = L = \{0, 1\}$$

•
$$L^2 = L \cdot L = \{00, 01, 10, 11\}$$

•
$$L^3 = L \cdot L^2 = \{000, 001, 010, 011, 100, 101, 110, 111\}$$

Unión e intersección

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Unión: $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$

Unión e intersección

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Unión: $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$

Definición

Intersección: $L_1 \cap L_2 = \{w \mid w \in L_1 \land w \in L_2\}$

Unión e intersección

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Unión: $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$

Definición

Intersección: $L_1 \cap L_2 = \{w \mid w \in L_1 \land w \in L_2\}$

Ejemplo

Si $\Sigma=\{0,1\}$, $L_1=\{\varepsilon,0,1,10,11\}$ y $L_2=\{\varepsilon,1,0110,11010\}$, entonces:

Unión e intersección

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Unión: $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$

Definición

Intersección: $L_1 \cap L_2 = \{w \mid w \in L_1 \land w \in L_2\}$

Ejemplo

Si $\Sigma=\{0,1\}$, $L_1=\{\varepsilon,0,1,10,11\}$ y $L_2=\{\varepsilon,1,0110,11010\}$, entonces:

• $L_1 \cup L_2 = \{\varepsilon, 0, 1, 10, 11, 0110, 11010\}$

Unión e intersección

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Unión: $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$

Definición

Intersección: $L_1 \cap L_2 = \{w \mid w \in L_1 \land w \in L_2\}$

Ejemplo

Si $\Sigma=\{0,1\}$, $L_1=\{\varepsilon,0,1,10,11\}$ y $L_2=\{\varepsilon,1,0110,11010\}$, entonces:

- $L_1 \cup L_2 = \{\varepsilon, 0, 1, 10, 11, 0110, 11010\}$
- $L_1 \cap L_2 = \{\varepsilon, 1\}$

Sean L_1 , L_2 y L_3 lenguajes sobre un alfabeto Σ

•
$$L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$$

•
$$(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$$

Sean L_1 , L_2 y L_3 lenguajes sobre un alfabeto Σ

- $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$
- $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$

Si
$$L_1 = \{a, b\}$$
, $L_2 = \{b\}$, y $L_3 = \{c\}$, entonces:

Sean L_1 , L_2 y L_3 lenguajes sobre un alfabeto Σ

- $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$
- $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$

Ejemplo

Si $L_1 = \{a, b\}$, $L_2 = \{b\}$, y $L_3 = \{c\}$, entonces:

•
$$L_1(L_2 \cup L_3) = \{a, b\} \cdot (\{b\} \cup \{c\}) = \{a, b\} \cdot \{b, c\} = \{ab, ac, bb, bc\}$$

Sean L_1 , L_2 y L_3 lenguajes sobre un alfabeto Σ

- $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$
- $(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$

Ejemplo

Si $L_1 = \{a, b\}$, $L_2 = \{b\}$, y $L_3 = \{c\}$, entonces:

- $L_1(L_2 \cup L_3) = \{a, b\} \cdot (\{b\} \cup \{c\}) = \{a, b\} \cdot \{b, c\} = \{ab, ac, bb, bc\}$
- $L_1L_2 \cup L_1L_3 = \{a, b\} \cdot \{b\} \cup \{a, b\} \cdot \{c\} = \{ab, bb\} \cup \{ac, bc\} = \{ab, bb, ac, bc\}$

Sublenguajes e igualdad de lenguajes

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Si todas las cadenas de L_1 son también cadenas de L_2 se dice que L_1 es un **sublenguaje** de L_2 ($L_1 \subseteq L_2$).

Sublenguajes e igualdad de lenguajes

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Si todas las cadenas de L_1 son también cadenas de L_2 se dice que L_1 es un sublenguaje de L_2 ($L_1 \subseteq L_2$).

- \bullet Para los lenguajes $L_1=\{a,aa,aaa,aaaa,aaaaa\}$ y $L_2=\{a^n\mid n=0,1,2,...\},$ se tiene que $L_1\subseteq L_2$
- ullet Cualquier lenguaje L sobre el alfabeto Σ es un sublenguaje de $\Sigma^*\colon L\subseteq \Sigma^*$

Sublenguajes e igualdad de lenguajes

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ

Definición

Si todas las cadenas de L_1 son también cadenas de L_2 se dice que L_1 es un **sublenguaje** de L_2 ($L_1 \subseteq L_2$).

Ejemplo

- Para los lenguajes $L_1=\{a,aa,aaa,aaaa,aaaaa\}$ y $L_2=\{a^n\mid n=0,1,2,...\}$, se tiene que $L_1\subseteq L_2$
- ullet Cualquier lenguaje L sobre el alfabeto Σ es un sublenguaje de $\Sigma^*\colon L\subseteq \Sigma^*$

Definición

Se dice que dos lenguajes L_1 y L_2 son **iguales** si contienen exactamente las mismas cadenas:

$$L_1=L_2$$
 si y sólo si $L_1\subseteq L_2$ y $L_2\subseteq L_1$

Sea L un lenguaje sobre un alfabeto Σ

Definición

Cierre de Kleene (o cierre estrella) de L:

$$L^* = \bigcup_{n=0}^{\infty} L^n$$

Sea L un lenguaje sobre un alfabeto Σ

Definición

Cierre de Kleene (o cierre estrella) de L:

$$L^* = \bigcup_{n=0}^{\infty} L^n$$

Definición

Cierre positivo de L:

$$L^+ = \bigcup_{n=1}^{\infty} L^n$$

Cierre de Kleene y cierre positivo

Ejemplo

Supongamos que $L=\{a\}$, entonces:

Ejemplo

Supongamos que $L = \{a\}$, entonces:

- $L^0 = \{ \varepsilon \}$
- $L^1 = \{a\}$
- $\bullet \ L^2=\{aa\}$
- ..

Ejemplo

Supongamos que $L = \{a\}$, entonces:

- $L^0 = \{ \varepsilon \}$
- $L^1 = \{a\}$
- $L^2 = \{aa\}$
- ...

Y, por tanto:

- $\bullet \ L^* = \{\varepsilon, a, aa, aaa, \ldots\}$
- $L^+ = \{a, aa, aaa, ...\}$

Ejemplo

Supongamos que $L=\{a\}$, entonces:

- $L^0 = \{ \varepsilon \}$
- $L^1 = \{a\}$
- $L^2 = \{aa\}$
- ...

Y, por tanto:

- $L^* = \{ \varepsilon, a, aa, aaa, ... \}$
- $L^+ = \{a, aa, aaa, ...\}$
- \bullet Las cadenas de L^* se forman al realizar ${\bf cero}\ {\bf o}$ más concatenaciones de las cadenas del lenguaje.
- ullet Las cadenas de L^+ se forman realizando **una o más** concatenaciones.

Propiedades de las operaciones de cierre

Recordatorio

El lenguaje universal Σ^* está formado por todas las concatenaciones de cero o más símbolos de Σ .

Propiedades de las operaciones de cierre

Recordatorio

El lenguaje universal Σ^* está formado por todas las concatenaciones de cero o más símbolos de Σ .

Propiedades

- Si L es un lenguaje sobre Σ , $L\subseteq \Sigma^*$
- Si L es un lenguaje sobre Σ , $L^n \subseteq \Sigma^*, \forall n \in \mathbb{N}$
- $L^* \subseteq \Sigma^*$
- $L^+ \subseteq \Sigma^*$
- Puesto que $\emptyset^0 = \{\varepsilon\}$ y $\emptyset^n = \emptyset, \forall n \ge 1$, entonces:
 - $\emptyset^* = \{\varepsilon\}$
 - $\emptyset^+ = \emptyset$

Propiedades de las operaciones de cierre

Teoremas

•
$$(L^+)^+ = L^+$$

•
$$(L^*)^* = L^*$$

•
$$(L^+)^* = L^*$$

•
$$(L^*)^+ = L^*$$

•
$$L^+ = L^* \cdot L = L \cdot L^*$$

•
$$L \subseteq L^+ \subseteq L^*$$

•
$$L_1 \subseteq L_2 \Rightarrow L_1^n \subseteq L_2^n$$
, $\forall n \in \mathbb{N}$

•
$$L_1 \subseteq L_2 \Rightarrow L_1^* \subseteq L_2^* \ (L_1^+ \subseteq L_2^+)$$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

Demostración

• Sea $w \in L^+$, por la definición de cierre positivo se obtiene que $w \in \bigcup_{n=1}^{\infty} L^n$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

- Sea $w \in L^+$, por la definición de cierre positivo se obtiene que $w \in \bigcup_{n=1}^\infty L^n$
- Entonces, para algún $k \ge 1$, se tiene que $w \in L^k$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

- Sea $w \in L^+$, por la definición de cierre positivo se obtiene que $w \in \bigcup_{n=1}^\infty L^n$
- Entonces, para algún $k \ge 1$, se tiene que $w \in L^k$
- Puesto que $L^k = L \cdot L^{k-1}$, se obtiene que $w \in L \cdot L^{k-1}$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

- Sea $w \in L^+$, por la definición de cierre positivo se obtiene que $w \in \bigcup_{n=1}^\infty L^n$
- Entonces, para algún $k \ge 1$, se tiene que $w \in L^k$
- Puesto que $L^k = L \cdot L^{k-1}$, se obtiene que $w \in L \cdot L^{k-1}$
- Por tanto:

$$w \in \bigcup_{n=0}^{\infty} (L \cdot L^n) = L \cdot \bigcup_{n=0}^{\infty} L^n = L \cdot L^*$$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

Demostración

- Sea $w \in L^+$, por la definición de cierre positivo se obtiene que $w \in \bigcup_{n=1}^\infty L^n$
- Entonces, para algún $k \ge 1$, se tiene que $w \in L^k$
- Puesto que $L^k = L \cdot L^{k-1}$, se obtiene que $w \in L \cdot L^{k-1}$
- Por tanto:

$$w \in \bigcup_{n=0}^{\infty} (L \cdot L^n) = L \cdot \bigcup_{n=0}^{\infty} L^n = L \cdot L^*$$

• Esto prueba que $L^+ \subset L \cdot L^*$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

• Sea
$$w \in L \cdot L^* = L \cdot \bigcup_{n=0}^{\infty} L^n = \bigcup_{n=0}^{\infty} (L \cdot L^n)$$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

- $\bullet \ \ \mathsf{Sea} \ w \in L \cdot L^* = L \cdot \bigcup_{n=0}^{\infty} L^n = \bigcup_{n=0}^{\infty} (L \cdot L^n)$
- Entonces, para algún $j \ge 0$, se deduce que:

$$w \in L \cdot L^j = L^{j+1} \subseteq \bigcup_{k=1}^{\infty} L^k = L^+$$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

Demostración

- $\bullet \ \ \mathrm{Sea} \ w \in L \cdot L^* = L \cdot \bigcup_{n=0}^{\infty} L^n = \bigcup_{n=0}^{\infty} (L \cdot L^n)$
- Entonces, para algún $j \ge 0$, se deduce que:

$$w \in L \cdot L^j = L^{j+1} \subseteq \bigcup_{k=1}^{\infty} L^k = L^+$$

 $\bullet \ \, \text{Por lo tanto} \,\, L \cdot L^* \subset L^+ \\$

Propiedades de las operaciones de cierre

Teorema

$$\forall L \subseteq \Sigma^* : L^+ = L \cdot L^* = L^* \cdot L$$

Demostración

- $\bullet \ \ \mathrm{Sea} \ w \in L \cdot L^* = L \cdot \bigcup_{n=0}^{\infty} L^n = \bigcup_{n=0}^{\infty} (L \cdot L^n)$
- Entonces, para algún $j \ge 0$, se deduce que:

$$w \in L \cdot L^j = L^{j+1} \subseteq \bigcup_{k=1}^{\infty} L^k = L^+$$

• Por lo tanto $L \cdot L^* \subseteq L^+$

La demostración de $L^+ = L^* \cdot L$ es similar.

Diferencia

Definición

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ , definimos la diferencia como:

$$L_1 - L_2 = \{ w \mid w \in L_1 \land w \notin L_2 \}$$

Diferencia

Definición

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ , definimos la diferencia como:

$$L_1 - L_2 = \{ w \mid w \in L_1 \land w \notin L_2 \}$$

- Consideremos $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Definamos L_1 como el lenguaje formado por las cadenas que no contienen ninguno de los dígitos 2, 3, ..., 9.
- Definamos L_2 como el lenguaje formado por las cadenas de ceros.

Diferencia

Definición

Sean L_1 y L_2 lenguajes sobre un alfabeto Σ , definimos la diferencia como:

$$L_1 - L_2 = \{ w \mid w \in L_1 \land w \notin L_2 \}$$

- Consideremos $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Definamos L_1 como el lenguaje formado por las cadenas que no contienen ninguno de los dígitos 2, 3, ..., 9.
- Definamos L_2 como el lenguaje formado por las cadenas de ceros.
- Entonces $L_1 L_2$ es el lenguaje formado por las cadenas de ceros y unos que tienen al menos un uno.

Complemento o complementario

Definición

Sea L un lenguaje sobre un alfabeto Σ , definimos el complementario o complemento del lenguaje sobre el alfabeto como:

$$\overline{L} = \Sigma^* - L$$

Complemento o complementario

Definición

Sea L un lenguaje sobre un alfabeto Σ , definimos el complementario o complemento del lenguaje sobre el alfabeto como:

$$\overline{L} = \Sigma^* - L$$

- Consideremos $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Definamos L como el lenguaje formado por las cadenas que no contienen ninguno de los dígitos 2, 3, ..., 9

Complemento o complementario

Definición

Sea L un lenguaje sobre un alfabeto Σ , definimos el complementario o complemento del lenguaje sobre el alfabeto como:

$$\overline{L} = \Sigma^* - L$$

- Consideremos $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Definamos L como el lenguaje formado por las cadenas que no contienen ninguno de los dígitos 2,3,...,9
- Entonces \overline{L} es el lenguaje formado por todas las cadenas que contienen al menos uno de los dígitos 2, 3, ..., 9

Inversa

Definición

Sea L un lenguaje sobre un alfabeto Σ , definimos la inversa del lenguaje como:

$$L^I = L^{-1} = \{ w^I \mid w \in L \}$$

Inversa

Definición

Sea L un lenguaje sobre un alfabeto Σ , definimos la inversa del lenguaje como:

$$L^I = L^{-1} = \{ w^I \mid w \in L \}$$

- Si $L = \{sala, eva\}$ entonces:
- $L^I = L^{-1} = \{alas, ave\}$

Inversa

Definición

Sea L un lenguaje sobre un alfabeto Σ , definimos la inversa del lenguaje como:

$$L^I = L^{-1} = \{ w^I \mid w \in L \}$$

Ejemplo

- Si $L = \{sala, eva\}$ entonces:
- $L^I = L^{-1} = \{alas, ave\}$

Obsérvese que:

- \bullet $(L^I)^I = L$
- $(L_1 \cdot L_2)^I = L_2^I \cdot L_1^I$

IMPORTANTE

Estas transparencias se utilizan ÚNICAMENTE como guía para el profesorado durante las clases.

Estas transparencias NO son un material completo y autocontenido para el uso del alumnado.