Monolithic SiGe BiCMOS pixel detectors: Ultra fast timestamping performance and TeV-scale photon detection.

2021 - 2025

Written by Théo Moretti

Université de Genève, Suisse Section de Physique - Département de Physique Nucléaire et Corpusculaire theo.moretti@unige.ch

Supervised by Professor Giuseppe Iacobucci

Contents

1	\mathbf{Intr}	roduction	2
	1.1	The MONOLITH ERC Advanced project: ultra-fast timing	4
	1.2	The FASER experiment: looking forward for new Physics	4
2	Mo	nolithic silicon pixel detectors	5
	2.1	Fundamentals of semiconductors 5 pages	6
		2.1.1 Intrinsic and doped semiconductors 3 pages	6
		2.1.2 Junctions and external voltage 1 pages	7
		2.1.3 Current and capacitance behavior 1 pages	7
	2.2	Signal formation and charge carrier transport 5 pages	7
		2.2.1 Drift of electrons and holes 1 pages	7
		2.2.2 Weighting field and Shockley-Ramo theorem 2 pages	7
		2.2.3 Space charge and signal formation 2 pages	7
	2.3	Pixelated detector technologies 4 pages	7
		2.3.1 Hybrid pixel detectors 2 pages	7
		2.3.2 Monolithic pixel detectors 2 pages	7
	2.4	Signal amplification 4 pages	7
		2.4.1 Charge-sensitive amplifier 2 pages	7
		2.4.2 Pulse shaping and amplifier characteristics 2 pages	7
	2.5	Electronic noise 2 pages	7
		2.5.1 Noise sources 1 pages	7
		2.5.2 Equivalent Noise Charge 1 pages	7
	2.6	Effects of radiation 4 pages	7
		2.6.1 Processes involved 2 pages	7
		2.6.2 Consequences of damages and solutions 2 pages	7
3	The	e MONOLITH ERC project: ultra-fast timing (28 pages)	8
	3.1	Timing detectors in HEP 2 pages	8
	3.2	The recipe for ultra-fast timing 8 pages	8
		3.2.1 SiGe BiCMOS HBTs 4 pages	8
		3.2.2 Picosecond Avalanche Detector: PicoAD 4 pages	8
	3.3	Time resolution of silicon pixel detectors 6 pages	8
		3.3.1 Time jitter 2 pages	8
		3.3.2 Time walk 2 pages	8
		3.3.3 Fixed threshold vs. Constant Fraction Discriminator 2 page	8
	3.4	Prototypes and characteristics 12 pages	8
		3.4.1 MONOLITH prototypes 6 pages	8
		3.4.2 PicoAD prototypes 6 pages	8

4		formance characterization of MONOLITH and PicoAD prototype (40
	pag	
	4.1	Testbeam at SPS testbeam facility 26 pages
		4.1.1 Layout of test beam experiment 3 pages
		4.1.2 The FE-I4 telescope: track reconstruction 3 pages
		4.1.3 Analysis methods and dataset construction 5 pages
		4.1.4 Detection efficiency 6 pages
		4.1.5 Time resolution 9 pages
	4.2	Effects of radiation 14 pages
		4.2.1 Radiation tolerance MONOLITH prototypes 5 pages
		4.2.2 Gain and time jitter of irradiated PicoAD prototypes 3 pages
5	FAS	SER: Looking forward to Long-Lived-Particles (19 pages)
	5.1	The ForwArd Search ExpeRiment 6 pages
		5.1.1 Original detector layout 4 pages
		5.1.2 Charged decay products 2 pages
	5.2	Physics program 4 pages
	5.3	Axion-Like-Particles decays into di-photon 9 pages
		5.3.1 Motivation of the ALP model 5 pages
		5.3.2 Production and decay within FASER 4 pages
6	The	e new FASER Pre-Shower detector (14 pages)
	6.1	Detector design 6 pages
		6.1.1 Layout of the pre-shower 2 pages
		6.1.2 Sub-detector components 4 pages
	6.2	ASIC description 6 pages
		6.2.1 Requirements 2 pages
		6.2.2 Architecture 4 pages
	6.3	Readout and detector control 4 pages
		6.3.1 Readout 2 pages
		6.3.2 Logic Board and APP 2 pages
7	Dev	velopment of the new FASER Pre-shower detector (37 pages)
	7.1	Pre-Production ASIC characterization 6 pages
		7.1.1 ASIC description 3 pages
		7.1.2 Time-Over-Threshold mismatch 3 pages
	7.2	Production ASIC description 3 pages
	7.3	Detector qualification and comissionning 19 pages
		7.3.1 Module assembly 3 pages
		7.3.2 Characterization set-up 3 page
		7.3.3 Front-End working points 2 page
		7.3.4 Threshold and Noise scans 4 pages
		7.3.5 Load scan and Charge calibration 4 pages
		7.3.6 Plane assembly 3 pages
	7.4	Trigger and Data Acquisition: TDAQ 9 pages
		7.4.1 Slow-Control and ASIC configuration 3 pages
		7.4.2 Readout and Data conversion 3 pages
		7.4.3 Data corruption and solutions 3 pages
8	0114	tlook and conclusion (4 pages)
J	Jul	Joon and contribion (+ pages)