0. 写在前面

1本课程总体结构

章节		教学内容	
第一章 引言 (刘均, 2)		概念与研究背景;主要任务;挑战与研究方向;相关资源	
第二章: 自然语言的 统计特性(刘均,1)		Zipf定律、Heaps定律、Benford 定律。	
	词袋模型 (刘均, 3)	语言模型;词袋模型(BoW);TF-IDF。 NLU任务:情感分析、文本聚类。	
第三章:	概率语言模型 (李辰, 6)	概率语言模型; n-gram 模型; 最大似然估计; 平滑技术。 NLU任务: 分词、语义关系抽取。	
语言模型	主题模型 (刘均, 6)	生成模型; 主题模型的图表示; LSA、PLSA、LDA; NMF等。 NLU任务: 话题检测、推荐。	
	神经网络语言模型 (李辰, 6)	分布式表示; C&W、CBOW、Skip-Gram、Glove等。 NLU任务: 对话、实体消歧。	
	概述 (李辰, 1)	面临的挑战;发展历程;方法类别及特点;MT评估。	
第四章: 机器翻译	统计机器翻译 (李辰, 3)	锋 统计MT;Noisy Channel模型;IBM模型。	
	神经网络机器 译 与大语言模 (刘均, 4)	RNN与LSTM简介: Encoder-Decoder框架: Attention模型:	

- 这门课由于由两位老师授课,个人感觉结构比较混乱
- 由于时间紧任务重经费无,所以笔记还是按PPT内容和以上结构展开,即使有很多不合理的地方

2 考试有关事项

1. 概率模型

1.1. 马可夫模型

1.1.1. 概述

1 Markov模型概述

1. 定义:描述系统状态的统计模型,用过去一段时间的状态描述当前状态(而忽略更早状态)

2. 类型:

类型	含义	示例
显马可夫模型(VMM)	状态是可以直接观察到	天气预报(晴/雨/雪)
隐马可夫模型(HMM)	状态只能通过直接观测到的值推 断	语音识别(声波→发 音)

2 Markov模型的数学描述

1. 状态描述: 系统有 $S_1, S_2, ..., S_N$ 共N个状态/任意t时的状态表示为 q_t ; 例如 $q_t = S_i$

2. 马可夫假设:

。 时间无关: 让上述过程独立于时间,即 $\forall t$ 都有 $P\left(q_t{=}S_j|q_{t-1}{=}S_{i_1},...,q_{t-k}{=}S_{i_k}\right)$

3. 状态转移概率:

 \circ 含义:一阶马可夫中,从i状态转移到j状态的概率,即 $P(q_t = S_i | q_{t-1} = S_i) = a_{ij}$

。 性质:
$$\sum_{j=1}^{N} a_{ij} = 1$$

1.1.2. 隐马可夫过程及Viterbi算法

0 问题描述

1. 一个隐马可夫的示例: From Wikipedia

Item	描述
条件	只考虑三种活动(散步/购票/购物),两种天气(阴/晴)
假设	一位朋友,每天告诉你 <mark>他的活动</mark>
问题	在他告诉你每天所做事情基础上,你要猜他那边的天气

7. 两种空间: 观测 → 状态

空间	符号	示例
观测空间	$O=\{o_1,o_2,\ldots,o_T\}$	朋友的活动
状态空间	$X{=}\{x_1,x_2,\ldots,x_T\}$	朋友那边的天气

3. 符号: 三种矩阵 $\mathbf{A}/\mathbf{B}/\pi$ 的项

符号	含义	示例
初始状态概率 π_{x_i}	初始状态($t=0$ 时状态)为 x_i 的概率	第一天的天气
状态转移概率 $a_{x_ix_j}$	从一状态 x_i 转化为下一状态 x_j 的 概率	今天晴天明天阴天的概 率
符号发射概率 $b_{x_io_j}$	从状态 x_j 从而导向某种观测 o_j 的 概率	晴天时朋友散步的概率

1问题1:给定 $\mu=(A,B,\pi)$ 求解观察序列 $O=\{o_1,o_2,\ldots,o_T\}$ 发生的概率 $P(O|\mu)$

1. 分解:
$$P(O|\mu) \xrightarrow{\text{边缘化}} \sum_{X} P((O,X)|\mu) \xrightarrow{\text{分解}} \sum_{X} P(O|(X,\mu)) \times P(X|\mu)$$

2. 代入:

$$\mathbf{P}(O|\mu) \xrightarrow{\mathbf{P}(X|\mu) = \pi_{x_1} \times a_{x_1x_2} \times a_{x_2x_3} \times \ldots \times a_{x_{T-1}x_T}} \sum_{x_1 \to x_T} \left(\pi_{x_1} \times b_{x_1o_1} \times \prod_{t=1}^{T-1} a_{x_tx_{t+1}} \times b_{x_{t+1}o_{t+1}} \right)$$

2 问题2: 给定参数 $\mu = (A,B,\pi)$ 与观察所得 $O = \{o_1,o_2,\ldots,o_T\}$,最大化 $P(X|(O,\mu))$

1. 含义: 找到最可能的状态序列 $X=\{x_1,x_2,\ldots,x_T\}$,以解释观测

2. 求解: Viterbi算法, 计算每个时刻t的最路径概率, 最终找出整体最优路径; 示例如下

○ 转换概率:状态↔状态/状态→观测

o Viterbi算法路径:

- ③ 问题3:观测到O,如何调整 $\mu=(A,B,\pi)$ 最大化 $P(O|\mu)$
 - 1. 期望值最大化算法(EM)
 - 2. 最大似然估计(MLE).......

1.2. 贝叶斯模型

1 Bayes定律

1. 不展开形式:
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} \Leftarrow \begin{cases} P(A|B) = \frac{P(AB)}{P(B)} \\ P(B|A) = \frac{P(AB)}{P(A)} \end{cases}$$

参数	含义	示例
P(A)/P(B)	先验概率,即对 $oldsymbol{A}/oldsymbol{B}$ 发生的经验推断 (臆测)	发病率历史数据
$rac{P(A\ B)}{P(B\ A)}$	后验概率,即已知 $oldsymbol{B}/A$ 后 $oldsymbol{A}/B$ 发生的概率	检测后个体的患病 概率

2. 展开后:

$$P(A|B) = \frac{P(A)P(B|A)}{\sum_{j} P(B|A_{j})P(A_{j})} \iff P(B) = \sum_{j} P(BA_{j}) = \sum_{j} P(B|A_{j})P(A_{j})$$

2 朴素贝叶斯分类器

1. 模型描述:

假设:决定各分类的属性之间是相互独立(简单粗暴/但也损失了分类精度)

。 前提: 样本 $X(a_1,a_2,\ldots,a_n)$ 有n个属性 $\{A_1,A_2,\ldots,A_n\}$ 且有m个类 $\{C_1,C_2,\ldots,C_m\}$

。 分类: 将 $X(a_1,a_2,\ldots,a_n)$ 归类为 $C_i \stackrel{\text{等价}}{\Longleftrightarrow} P\left(C_i|X\right) > P\left(C_j|X\right)$,其中 C_j 为除 C_i 任一类

2. 模型分析:

$$\circ P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)} \xrightarrow{P(X)$$
为常数 最大化 $P(X|C_i)P(C_i)$ 以分类

$$\circ \ P(X|C_i)P(C_i) = P(A_1 = a_1, A_2 = a_2, \cdots, A_n = a_n|C_i)P(C_i) \xrightarrow{\text{Agitatic}} \prod_{k=1}^n P(a_k|C_i)P(C_i)$$

3. 模流程:

阶段	操作
准备	确定样本的属性, 获取相应的样本
训练	对每个类别计算 $P(C_i)$ $ ightarrow$ 对每个属性计算 $P(a_k C_i)$
应用	对新样本 Λ 计算其对每个类别的 $P(\Lambda C_i)P(C_i)$ $ o$ 找到使之最大的 C_i 以归类之

4. 示例: 判断学历为大学, 年薪30-40, 薪水20000-30000的员工的性别

样本	性别	工作内容	学历	年龄	薪水
1	女	送货	大学	20 - 30	20000 - 30000
2	男	包装	大学	> 40	> 40000
3	男	烘烤	大学	30 - 40	20000 - 30000
4	男	包装	高中	30 - 40	20000 - 30000
5	男	送华	大学	> 40	30000 - 40000
6	女	烘烤	高中	20 - 30	20000 - 30000
7	男	烘烤	大学	20 - 30	< 20000
8	女	包装	大学	30 - 40	20000 - 30000
9	男	烘烤	大学	> 40	20000 - 30000
10	男	包装	大学	20 - 30	< 20000

。 根据给定条件,应归类为男性

1.3. 平滑技术

1 基本概念

1. 稀疏问题:某些变量在训练集未出现(但可能在测试集出现)→概率被估计为0→为后续计算造成麻烦

2. 平滑概念: 为所有分配一个非零概率→解决稀疏问题→提高模型泛化能力

2 Additive平滑

1. 方法:普通(频率估计的)概率 $p_i = \frac{x_i}{N} \xrightarrow{\text{Additive} \oplus \mathbb{R}} p_{i,\alpha\text{-smoothed}} = \frac{x_i + \alpha}{N + \alpha}$

2. 参数: d是可能变量的总数, α 为平滑参数(α =1时即变为Laplace变换)

3 图灵(Good-Turing)估计

1. 方法: 原有计数 $r \stackrel{\text{ilitar}}{\longrightarrow} r^* = (r+1) \frac{n_{r+1}}{n_r}$,其中 n_r 表示计数为r的变量个数

2. 示例: 若鱼类及数目为3 perch/2 white/1 trout/1 salmon/1 eel \to trout数目估计为 $(1+1)\frac{1}{3}$

2. 语言模型概述

2.1. 基本概念

1 语言模型含义: 计算一个句子的概率的概率模型, 如已知一个句子已有的词预测下一个词

- 2 数学描述: 对句子 $\{x^{(1)}, x^{(2)}, ..., x^{(t)}\}$
 - 1. 对单词: 计算下一词出现的概率分布 $P\left(x^{(t+1)}|x^{(t)},...,x^{(1)}\right)$
 - 2. 对句子: 计算句子出现的概率分布 $P\left(x^{(1)},...,x^{(T)}\right) = \prod_{t=1}^T P\left(x^{(t)}|x^{(t-1)},...,x^{(1)}\right)$

2.2. N-gram概率模型

■ N-gram含义: 以The girl opened her book为例

N-gram	含义	示例
Unigrams	单个词	The, girl, opened, her, book
Bigrams	两个连续的 词	The girl, girl opened, opened her, her book
Trigrams	三个连续的词	The girl opened, girl opened her, opened her book
4-grams	四个连续的词	The girl opened her, girl opened her book

2 N-gram概率计算

- 1. 假设: $P\left(x^{(t+1)}|x^{(t)},x^{(t-1)},\ldots,x^{(1)}\right)$ \approx $P\left(x^{(t+1)}|x^{(t)},\ldots,x^{(t-n+2)}\right)$ 即当前词仅依赖前n-1词
- 2. 概率: $P\left(x^{(t+1)}|x^{(t)},...,x^{(t-n+2)}\right) pprox rac{ ext{count}\left(x^{(t+1)},x^{(t)},...,x^{(t-n+2)}
 ight)}{ ext{count}\left(x^{(t)},...,x^{(t-n+2)}
 ight)}$ 即

 $\frac{\text{N-gram}数量}{(\text{N-1})\text{-gram}数量}$

3. 示例: $P(\text{book}|\text{girl opened her}) = \frac{\text{count}(\text{girl opened herbook})}{\text{count}(\text{girl opened her})}$

3 稀疏性问题:

处理	示例	处理
平滑化	w_1,w_2,w_3,w_X 不在语 料库	$P(w_X w_1, w_2, w_3) = \frac{\text{count}(w_1, w_2, w_3, w_X) + 1}{\text{count}(w_1, w_2, w_3) + V}$

处理	示例	处理
回退	w_1, w_2, w_3 不在语料库	用 $w_1, w_2,$ 的3-gram代替 w_1, w_2, w_3 的3-gram

2.3. 神经网络语言模型简述

1 结构&流程

- 1. 词向量:通过one-hot编码/分布式表示等,得到 $\{x^{(1)},x^{(2)},...,x^{(t)}\}$
 - 。 在基于窗口的神经网络中词向量通常为定长(窗口),而RNN正是为了处理任意长度句子 而生
- 2. 词嵌入: $\{x^{(1)},x^{(2)},...,x^{(t)}\} \xrightarrow{\text{embedding}} \{e^{(1)},e^{(2)},e^{(3)},...\}$
- 3. 隐藏层:获得 $h=f(We+b_1)$
- 4. 输出层: 获得 $\hat{y} = \operatorname{Softmax}\left(Uh + b_2\right) \in \mathbb{R}^{|V|}$
- 2 相比于N-gram: 没有稀疏性问题, 无需存储所有观察到的N-gram