Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №8

по дисциплине "Математическая статистика"

Выполнила студентка группы 3630102/80201

Проверил

доцент, к.ф.-м.н.

Деркаченко Анна Олеговна

Баженов Александр Николаевич

Содержание

1. Постановка задачи			
2.	Теория	4	
	2.1. Величины дисперсионного анализа	4	
	2.2. Ход работы	4	
3.	Реализация	5	
4.	Результаты	5	
5.	Обсуждение	7	

Список иллюстраций

1.	График входного сигнала	١
2.	Гистограмма входного сигнала	(
3.	График разделения сигнада на однородные области	6

1. Постановка задачи

Необходимо:

- 1) Провести дисперсионный анализ с применением критерия Фишера по данным регистраторов для одного сигнала
- 2) Определить области однородности сигнала, переходные области, шум/фон
- 3) Взять длину сигнала равной 1024

2. Теория

2.1. Величины дисперсионного анализа

Необходимо вычислить следующие величины:

1) Внутригрупповая дисперсия

$$s_{IntraGroup}^2 = \frac{1}{k} \sum_{i=1}^k s_i^2 = \frac{1}{k} \sum_{i=1}^k \frac{\sum_{j=1}^n (x_{ij} - X_{cp})^2}{k - 1},$$
(1)

где X_{cp} - среднее для части выборки, k - количество частей выборки, n - количество элементов в рассматриваемой части выборки.

Внутригрупповая дисперсия является дисперсией совокупности и рассматривается как среднее значение выборочных дисперсий.

2) Межгрупповая дисперсия

$$s_{InterGroup}^2 = k \frac{\sum_{i=1}^k (X_{i_{cp}} - X_{cp})^2}{k - 1},$$
(2)

где $X_{1_{cp}}, X_{2_{cp}}, ..., X_{k_{cp}}$ - среднее значение для подвыборок, X_{cp} - среднее значение этих средних значений подвыборок

3) Значение критерия Фишера

$$F = \frac{s_{InterGroup}^2}{s_{IntraGroup}^2} \tag{3}$$

2.2. Ход работы

- 1) Извлечь сигнал из исходных данный в файле wave_ampl.txt. Так как сигнал имеет длину 1024, выбрать начальный индекс, кратный длине сигнала
- 2) Построить гистограмму с столбцами:
 - фон столбец с наибольшим значением
 - сигнал второй по величине столбец после фона
 - переходы столбцы с малыми значениями

- 3) Устранить явные выбросы, то есть сгладить сигнал, используя медианный фильтр с переназначением выброса как среднего арифметического его соседеней
- 4) Разделить сигнал на области: сигнал, фон, переходные процессы
- 5) Определить тип области по критерию Фишера:
 - если значение критерия Фишера велико, то эта область переходных процессов
 - если значение критерия Фишера находится вблизи 1, то эти области однородны

3. Реализация

Реализация лабораторной работы проводилась на языке Python в среде разработки PyCharm с использованием дополнительных библиотек:

- numpy
- matplotlib
- math

Исходный код лабораторной работы размещен в GitHub-репозитории.

URL: https://github.com/derkanw/Mathstat/tree/main/lab8

4. Результаты

Рассматривается сигнал с 2 номером.

Рис. 1. График входного сигнала

Рис. 2. Гистограмма входного сигнала

Рис. 3. График разделения сигнала на однородные области

Область	Тип	Количество разбиений	Критерий Фишера
[0, 250]	Фон	5	0.153571
[250, 317]	Переход	4	17.179199
[317, 741]	Сигнал	4	0.076965
[741, 808]	Переход	4	17.198535
[808, 1023]	Фон	5	1.091278

Таблица 1. Характеристика выделенных областей

5. Обсуждение

Входные данные были разделены на 5 частей: фон, переход, сигнал, переход, фон. При этом по критерию Фишера обе области фона имеют значения, близкие к единице, особенно левая из них, то есть можно заключить, что области достаточно однородны. Области, в которых наблюдается переход, имеют почти равные, но достаточно большие значения критерия Фишера, что говорит о неоднородности областей.

Стоит сказать, что график данных о сигнале почти симметричен относительно вертикали в точке, равной середине длины волны. А также заметно, что сигнал является центральной областью на графике данных. К тому же, при построении графиков не наблюдалось особых выбросов.