4

THE PHYSICAL SYSTEMS OF PLANET EARTH

The Engine of Life

STUDENT LEARNING OUTCOMES

After reading this chapter, students will be able to

- Explain how a convection cell can be used to explain patterns of circulation in the atmosphere, ocean, and Earth's surface.
- Explain how gradients in incoming solar energy generate predictable patterns of temperature, precipitation, and winds.
- Describe the factors that cause ocean water to circulate horizontally and vertically.
- Describe how the energy from Earth's interior causes matter to flow from the interior to the surface and back again.
- Compare and contrast changes in atmospheric and oceanic circulation that are associated with El Nino events.

Small Changes, Big Effects

- The Day After Tomorrow movie
- Planet Earth changes within weeks
- How did Hollywood make the film "believable"?
- Based on the shift in the flow of seawater between the ocean surface and depths. Stops the Gulf Stream
- Without the Gulf Stream bringing warm water northward, the eastern U.S. would cool in decades
- The Butterfly Effect (nonlinearity and distance effects)

Energy from the Sun

- E=mc² describes the Sun's thermal nuclear fusion that converts hydrogen atoms to helium and energy
- The photosphere (outer layers of sun) radiates energy to Earth at about 6,400 degrees °C (11,552 °F)
- The amount that reaches the Earth's atmosphere is 1.97 calories/cm² (12.7 kcal/inch²)
- Radiation
- Scatter
- Reflection
- Absorption
- Albedo

Incoming Solar Energy

Work Done by Solar Energy

The Earth's Interior

- Some heat left over from formation
- Most associated with radioactive decay of elements
- Total heat flow from Earth interior is 2 x 10¹⁷ kcal.
 How much per square inch?
- This total is greater than the global use of coal, oil, natural gas, and electricity generated from nuclear and hydropower plants but- <1% of energy from the Sun.
- Also, the total work done at the surface by the Sun only affects the upper few meters of Earth's surface

A Simple Model of Physical System

Differential Solar Radiation

Radiation Balance

Global Heat Transport

Atmospheric Convection Cell

Atmospheric Circulation

Coriolis Effect

Global Patterns of Precipitation

- As air moves through a circulation cell the ability to hold water changes
- Air picks up moisture as it moves along the ground
- Water condenses as it rises, this generates large amounts of rain/snow near equator and the polar front
- Air absorbs very little water as it moves parallel to Earth's surface along upper arm of cell
- As air descends, its temperature and pressure rises, holding less water
- World's deserts are found at about 30 degrees North and South.

Orographic Rainfall

- Other deserts are formed downwind from large mountain ranges.
- As air rises up the windward side of the mountain precipitation increases
- As air descends on the leeward side, there is little rain
- Mojave Desert (leeward side of San Gabriel and San Bernardino)
 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cool,

Environmental Services from Atmospheric Circulation

- Air movements produce clean air and drinkable water
- And predictable climate is important
 - No circulation?
 - Advection (motion of individual molecules)?
 - Complete random flow of air?
 - But the convection cell- predictable patterns allow for plants, animals, and human societies to adapt to the range of conditions there

Physical Properties of Water

- Specific Heat (water is 1.0, rock is 0.2)
- Evaporation releases large amount of heat and thawing absorbs a large amount of heat
- Ocean heats up and cools down much slower than land
- Temperature Profile
 - Water is most dense at 4 degrees C
 - Thermocline (steep temperature gradient)
 - Barrier to mixing (layers differ in chemistry)

Patterns of Oceanic Circulation

Ekman Transport

- Atmosphere and ocean series of layers with air the least dense and ocean the most dense.
- Some of air movement transferred to the water
- At each transfer down, the movement slows and Coriolis bends movement to the right.
- Total effect is that ocean current is 90 degrees to right of the surface winds in the northern hemisphere.

Ocean Currents at the Surface

- At equator, surface water tend to move west
- North of equator, currents have a northward component
- Moves water away from equator and is critical to El Nino events
- Surface waters move west until they reach eastern shore of continent and water deflected north, generates the Gulf Stream.
- Relatively mild climate of mid-Atlantic states results from the Gulf Stream.
- Between 30-60 degrees surface water flow east until they reach western shore of continent. Again deflected North.

Thermohaline Circulation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cold and salty deep current

El Nino: Environmental Services of Oceanic Circulation

- Oceanic circulation is important determinate of climate
- Redistributes materials critical to life.
- El Nino occurs every 3-7 years off the coast of Peru
- Most years, SE trade winds blow from subtropical high off coast of Peru to Indonesian equatorial low, normally just north of Australia
- During these normal years the trade winds blow across the warm Pacific and rain supports tropical rain forests in Indonesia, wheat production in Australia, monsoon rains support rice in India.
- Upwelling off coast of Peru for anchovy fisheries.
- When trade winds blow strongly this termed "La Nina".

El Nino

- During an El Nino event, positive feedback loop reinforces an initial disturbance so the zone of high pressure off Peru becomes progressively weaker
- As subtropical high becomes weaker, the weaker gradient slows the trade winds.
- Less moisture in the western Pacific so monsoons fail in India, Australia has a drought.
- Rainfall increases over portions of U.S.
- Upwelling slows, anchovy industry suffers
- Disruption in environmental services; biological and human systems affected throughout the world

El Nino Cycle

The Southern Oscillation Index

Plate Tectonics

- In 1596, Dutch map maker, Abraham Ortelius, wrote that the eastern coast of South America "fits into" the western coast of Africa
- In 1912, formalized into the Theory of Continental Drift by Alfred Wegener
- 1960s, better maps of the ocean floor and earthquake epicenters indicated the crust was made of plates.

Plate Tectonics

- •Crust moves about 2 centimeters/year in North Atlantic
- •Amount of new crust formed at ridges balanced by amount of crust destroyed

The Rock Cycle

Rocks

- Igneous rocks
 - Weathering
 - Sediment
 - Erosion
- Sedimentary Rocks
 - Consolidation
 - Lithification
- Metamorphic
 - Pressure and/or temperature

Natural Resources and Environmental Services

- Geothermal heating
- Biogeography and Biological Diversity
- Chemistry of the Ocean
- Residence time of Ocean is 8 million years
- Mineral Formation
- Fossil Fuels