Applied Analysis, WS 2021 - Problem Sheet 3

P. 8 Define functions $f: \mathcal{D} \mapsto \mathbb{R}$ that show boundary layer behaviour at the following manifolds:

(a)
$$\mathcal{D} = \mathbb{R}^2$$
, $S = \{0\}$.

(b)
$$\mathcal{D} = \mathbb{R}^n$$
, $S = \{|x| = 1\}$.

(c)
$$\mathcal{D} = \mathbb{R}^3$$
, $S = \{x_1 = 1\}$, $x = (x_1, x_2, x_3)$.

P. 9 (*) (optional) We consider the linear boundary value problem

$$Lu := -\varepsilon u'' + b(x)u' + c(x)u = f(x), \qquad u(0) = u(1) = 0$$

with $0 < \varepsilon \ll 1$, $b, c, f \in C([0, 1])$ and

$$c(x) \ge 0,$$
 $b(x) \ge \beta > 0,$ $x \in [0, 1]$

Let u_{ε} be the solution of this BVP, and u_0 the solution of the reduced problem

$$b(x)u' + c(x)u = f(x),$$
 $u(0) = 0$

Show that for all $x \in [0, x_0]$ with $x_0 < 1$

$$\lim_{\varepsilon \to 0} u_{\varepsilon}(x) = u_0(x)$$

holds, and that the convergence is uniform on $[0, x_0]$

Hint: Set $w_1(x) := \exp(\beta x)$ and $w_2(x) := \exp(-\beta(1-x)/\varepsilon)$. Then $Lw_1 \ge \gamma > 0$ for a suitable $\gamma > 0$ and $Lw_2 \ge 0$. For $v = \pm (u_\varepsilon - u_0)$ and $w = A\varepsilon w_1 + Bw_2$ with suitable constants A, B the following comparison principle is applicable: If

$$\begin{array}{ccc} Lv(x) & \leq & Lw(x), & \forall x \in (0,1) \\ v(0) & \leq & w(0) \\ v(1) & \leq & w(1) \end{array}$$

then

$$\implies v(x) \le w(x) \quad \forall x \in (0,1)$$

which holds for $u, v \in C^2((0,1)) \cap C([0,1])$. So a boundary layer is possible only at x=1. Analoguously, for $b(x) \le \beta < 0$ it follows that a boundary layer is possible only at x=0.

P. 10 Consider the following linear boundary value problem

$$-\varepsilon u'' - (1+x)u' + u = 2,$$
 $u(0) = u(1) = 0,$ $0 < \varepsilon \ll 1$

Where can this problem have a boundary layer? Hint: use the statement of problem 9, last sentence. Introduce the local variable $\xi=x\varepsilon^{-\alpha}$ and derive an asymptotic representation

$$u_{\varepsilon}(x) = \overline{u}(x) + \tilde{u}(\xi) + \mathcal{O}(\varepsilon)$$

by solving the reduced equation for \overline{u} , respectively the boundary layer equation for \tilde{u} .