Spring 2012: Geometry/Topology Graduate Exam

Peter Kagey

January 8, 2019

Problem 1. (Topology)

Proof. \Box

Problem 2. (Topology)

Proof. \Box

Problem 3. (Topology)

Proof.

Problem	4.	Does	there	exist	\mathbf{a}	smooth	embeddin	g of	the	projective	plane	$\mathbb{R}P^2$	into	\mathbb{R}^2 ?	Justify	your
answer.																
Proof.																

Problem 5. Let M be a manifold and let $C^{\infty}(M)$ be the algebra of C^{∞} functions $M \to \mathbb{R}$. Explain the
relationship between vector fields on M and $C^{\infty}(M)$. If we consider vector fields as maps $C^{\infty}(M) \to C^{\infty}(M)$
is the composition map XY also a vector field? What about $[X,Y] = XY - YX$?

Proof. \Box

Problem 6. Let S be the unit sphere defined by $x^2 + y^2 + z^2 + w^2 = 1$ in \mathbb{R}^4 . Compute $\int_S \omega$ where

$$\omega = (w + w^2) \, dx \wedge dy \wedge dz$$

Proof. By Stokes' Theorem, knowing that $\partial B^4 = S^3$, we can rewrite the integral as

$$\int_{S} \omega = \int_{\partial B^4} \omega = \int_{B^4} d\omega.$$

Then

$$d\omega = d((w + w^2) dx \wedge dy \wedge dz)$$

= $(1 + 2w) dw \wedge dx \wedge dy \wedge dz$
= $-(1 + 2w) dx \wedge dy \wedge dz \wedge dw$,

where $dx \wedge dy \wedge dz \wedge dw$ is the usual volume form.

By linearity,

$$\int_{B^4} d\omega = -\underbrace{\int_{B^4} dx \wedge dy \wedge dz \wedge dw}_{\text{volume}(B^4)} - \underbrace{\int_{B^4} 2w \, dx \wedge dy \wedge dz \wedge dw}_{=0 \text{ by symmetry}}$$
$$= - \text{volume}(B^4).$$

Problem 7. Does the equation $x^2 = y^3$ define a smooth submanifold in \mathbb{R}^3 ?

Proof. Consider the map $f: \mathbb{R}^3 \to \mathbb{R}$ which sends $(x, y, z) \xrightarrow{f} x^2 - y^3$. The function f is not submersive at $f^{-1}(0)$ because

$$df_{(x,y,z)} = \begin{bmatrix} 2x & -3y^2 & 0 \end{bmatrix}$$

has rank 0 when x=y=0. Thus $0 \in \mathbb{R}$ is a critical value, and $f^{-1}(0)$ cannot be given the structure of a smooth manifold.