DIFFERENTIABLE MANIFOLDS HOMEWORK 1

(1) Consider the stereographic coordinates on

$$S^{2} = \{(x, y, z) \mid x^{2} + y^{2} + z^{2} = 1\} \subset \mathbb{R}^{3}.$$

- (a) Sow the projection from the north pole (0,0,1) sends a
- point $(x, y, z) \in S^2$ to $(\frac{2x}{1-z}, \frac{2y}{1-z}, -1)$ on the z = -1 plane. (b) Show the projection from the south pole (0, 0, -1) sends a point $(x, y, z) \in S^2$ to $(\frac{2x}{1+z}, \frac{2y}{1+z}, 1)$ on the z = 1 plane.

We then identify both the z = -1 plane and z = 1 plane with \mathbb{R}^2 , and define the atlas $\mathfrak{A}_1 = \{(U, \phi), (V, \psi)\}$ in which

$$U = S^2 - \{(0,0,1)\}$$
 and $\phi(x,y,z) = (\frac{2x}{1-z}, \frac{2y}{1-z}),$

and

$$V = S^2 - \{(0, 0, -1)\}$$
 and $\psi(x, y, z) = (\frac{2x}{1+z}, \frac{2y}{1+z}).$

The map $\psi \circ \phi^{-1}(\frac{2x}{1-z}, \frac{2y}{1-z}) = (\frac{2x}{1+z}, \frac{2y}{1+z})$ is defined for $(\frac{2x}{1-z}, \frac{2y}{1-z}) \in \mathbb{R}^2 - \{(0,0)\} = \phi(U \cap V)$.

(c) Set $u = \frac{x}{z}$, $v = \frac{y}{z}$ and solve x, y, z in terms of u and v (note that $x^2 + y^2 + z^2 = 1$). Show that the map $\psi \circ \phi^{-1}$ is given

$$(u,v) \mapsto (\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2})$$
 for $(u,v) \neq (0,0)$.

- (d) Find $\phi \circ \psi^{-1}$ and its domain of definition, and show that it is a diffeomorphism.
- (2) We can use graphical coordinates for S^2 and define another atlas \mathfrak{A}_2 which consists of 6 coordinate charts. Show that \mathfrak{A}_2 is compatible with (or equivalent to) \mathfrak{A}_1 given by the stereographic projection, i.e. $\mathfrak{A}_1 \cup \mathfrak{A}_2$ is an atlas.
- (3) The complex projective space \mathbb{CP}^n is the set of all (complex) 1dimensional complex-linear subspaces of \mathbb{C}^{n+1} . Show that \mathbb{CP}^n can be considered as a quotient space of $\mathbb{C}^{n+1}\setminus\{0\}$ by $\mathbb{C}\setminus\{0\}$. Construct an atlas analogous to the one we constructed for \mathbb{RP}^n in class.
- (4) Do Problem 1-1 on page 29 of [1].

- (5) Do Problem 1-2 on page 30 of [1].
- (6) Let $P: \mathbb{R}^{n+1}\setminus\{0\} \to \mathbb{R}^{k+1}\setminus\{0\}$ be a smooth map, and suppose that for some $d \in \mathbb{Z}$, $P(\lambda x) = \lambda^d P(x)$ for all $\lambda \in \mathbb{R}\setminus\{0\}$ and $x \in \mathbb{R}^{n+1}\setminus\{0\}$. Show that the map $\tilde{P}: \mathbb{RP}^n \to \mathbb{RP}^k$ defined by $\tilde{P}([x]) = [P(x)]$ is a well-defined smooth map.

REFERENCES

[1] Lee, John M. *Introduction to Smooth Manifolds*, Second edition, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2012.