

Past XAI work:

- GLocalX, RSS (tabular)
- TriplEx (text)

Current XAI work

- parametric explanations (tabular)
- sub-global explanations (tabular)
- language model beliefs (text)
- authorship attribution (text)
- neurosymbolic few-shot learning (images)

GLOCAIX From local to global explanations

Local explanations

Local explanations

- explain one prediction on one record
- locally approximate the decision boundary

E.g. LIME¹, LORE², SHAP³, etc.

Local explanation

^{[1] &}quot;Why Should I Trust You?": Explaining the Predictions of Any Classifier, Ribeiro et al.

^[2] Factual and Counterfactual Explanations for Black Box Decision Making, Guidotti et al.

^[3] A Unified Approach to Interpreting Model Predictions, Lundberg & Lee

Global explanations

Global explanation

Global explanations

- explain all predictions on many records
- globally approximate the decision boundary

E.g. CART⁴, CPAR⁵, SBRL⁶, etc.

^[4] Classification and Regression Trees, Breiman et al.

^[5] CPAR: Classification based on Predictive Association Rules, Yin et al.

^[6] Scalable Bayesian Rule Lists, Yang et al.

Who are the explanation users?

Who are the explanation users?

Local explanations

- require only a fraction of the data
- more easily acquired
- precise but potentially complex
- possibly diverse^{7,8}

E.g. LIME, LORE, SHAP, etc.

Global explanations

- require data
- more cumbersome to acquire
- loose but potentially simple

E.g. DT, CART, CPAR, SBRL, etc.

^[7] Ensembles of locally independent prediction models, Ross et al.

^[8] Learning qualitatively diverse and interpretable rules for classification, Ross et al.

Local explanations

- require only a fraction of the data
- more easily acquired
- precise but potentially complex
- possibly diverse^{1,2}

E.g. LIME, LORE, SHAP, etc.

- [7] Ensembles of locally independent prediction models, Ross et al.
- [8] Learning qualitatively diverse and interpretable rules for classification, Ross et al.
- [9] Meaningful explanations of black box ai decision systems, Pedreschi et al.

Global explanations

- require data
- more cumbersome to acquire
- loose but potentially simple

E.g. DT, CART, CPAR, SBRL, etc.

Explain globally by explaining locally!

- explanation-driven (decision rules)
- model-agnostic
- inferring instead of learning

GLocalX¹⁰: local-to-global decision rules as explanations

Explain globally by explaining locally!

GLocalX¹⁰:

- input: local decision rules
- output: global decision rules
- inferring instead of learning
- model-agnostic


```
def glocalx(local_exp, X, f, a):
   boundary = copy(local_exp)
```



```
def glocalx(local_exp, X, f, a):
   boundary = copy(local_exp)
   q = sort(boundary, X)
```


{age > 20, salary > 8k} => grant


```
X
```

```
def glocalx(local_exp, X, f, a):
   boundary = copy(local_exp)
   q = sort(boundary, X)
   while len(q) > 1:
        e1, e2 = pop(q)
        M = merge(e1, e2, batch(X), f)
```


{age > 20, salary > 8k} => grant {age > 25, salary < 10k} => deny

{age > 20, salary > 8k} => grant

{age > 25, salary < 10k} => deny

{age > 20, salary > 8k} => grant

What to merge?

sort merge fitness

 Distance between explanations

- Linkage for sets of explanations
 - o min
 - o max
 - o full

Twofold merge operator

- o approximate union (⊕) for concordance, approximate difference (⊝) for discordance
- each premise is an axis-parallel polyhedron, e.g.
 premise age > 20 is polyhedron P_{age}: [20, +∞)

From local to global via premise relaxation.

P_i : $[a_p, b_p] + Q_i$: $[a_Q, b_Q]$					
[non-empty]	P_i , $Q_i \neq \emptyset$				
[empty]	$P_{i} = \emptyset XOR$ $Q_{i} = \emptyset$	900	220		

From global to local via premise specification.

P_i : $[a_p, b_p] - Q_i$: $[a_Q, b_Q]$					
[left]	[a _P , a _Q]				
[right]	[b _P , b _Q]				
[in-between]	$[a_Q, a_P], [b_P, b_Q]$				
[everything]	$[a_{\scriptscriptstyle <}, a_{\scriptscriptstyle p}], [b_{\scriptscriptstyle p}, b_{\scriptscriptstyle >}]$				

From global to local via premise specification.

age
$$\in$$
 [30, 40) \ominus age \in [20, 35) = 20 30 35 40 20 30 35 40 age \in [30, 40), age \in [20, 30)

Should we merge?

sort merge fitness

Not all merges are created equal!

- some are more global and less accurate
- some are less global and more accurate

BIC(E)

- model likelihood as explanation fidelity
- complexity as avg. #rules and avg. length

404: data not found!

Data may be scarce for auditors and users

- density estimation of training data
- run GLocalX as is

Validation setting

- 3 UCI datasets (~1k to ~50k records), 8 black boxes (DNN, RF, SVM)
- 1 real-world fraud detection dataset (from the Italian Ministry of Economics)
- Natively global models:
 - rule-based models (CPAR)
 - decision tree (pruned/not pruned)

How many local rules do we need?

Acquiring local explanation can be costly, can we get away with using fewer local explanations?

How simple can we make our explanations?

The higher the filter, the less rules we output.

α-percentile	Fidelity	Size	Length
75	83.0 ± 3.6	31.0 ± 19.4	5.36 ± 2.41
90	84.7 ± 5.14	11.5 ± 6.4	5.43 ± 2.46
95	84.5 ± 5.48	6.625 ± 2.9	5.17 ± 2.59
99	84.0 ± 5.0	3.625 ± 2.6	5.97 ± 3.04

GLocalX VS Natively global models

	Fidelity	Size	Length
GLocalX	85.1	8.5	4.28 ± 1.42
GLocalX*	83.5	9.5	4.79 ± 1.67
CPAR	86.6	91.6	3.06 ± 1.66
Decision Tree	87.5	1036.5	6.60 ± 1.86
Pruned Decision Tree	85.5	29.1	2.64 ± 0.73
Union	76.8	2660.2	4.14 ± 1.63

GLocalX

- Local to Global explanation paradigm
- Explaining globally by explaining locally
- Explanation cost: how many explanations do we really need?

Extensions and future work

- Local to Global in other domains
 - text
 - images
 - oblique rules

A plethora of challenges:

- [text] sparsity, merging tokens/text, few (if any) global families;
- [images] highly complex and entangled latent space.

Merge as subsumption?

May remind you of θ -subsumption in ILP⁵. In a LFE setting:

- [join] generalization as entailment (local entails global)
- [cut] specialization as inverse entailment (global entails local)

Why not apply classic LFE learning?

- lack of variables (what to substitute?);
- lattice already implicit in the polyhedral interpretation;
- practically: very few merges, less accurate models;

Piggybacking again on ILP: background knowledge injection and predicate invention

- can generalize premises to domain-specific concepts
- can use more principled similarity measures
- invent symbols for common clauses (premises)

Locality (globality) is a continuum!

Explain different (possibly related) groups/clusters, e.g.

- o medical AI on white/black or young/old patients⁷
- Al judge on white/black defendants⁸