

Task 1: HR Data Analysis

Introduction

Hello everyone! I am thrilled to announce that I have secured a Data Analyst Internship at Psyliq. I've been tasked with an exciting challenge — an HR Data Analysis Assessment comprising 17 questions.

In this article, I will showcase my approach to solving the Task 1.

Let's dive in!

Task Questions

1. Using Excel, how would you filter the dataset to only show employees aged 30 and above?

Before performing any analysis on Excel. I have created a copy of the dataset. Because It helps to preserve the integrity of the original data and serves as a precautionary measure in case any mistakes are made during the analysis process.

Now moving to answer this question. I have opened the **general data** Excel file. Then I applied a filter on the header by using the shortcut **Ctrl** + **Shift** + **L**.

4	A B	C	D	E	F	G	H	1	1	K	L	M	N	0	P
1 Age	- Attrition -	BusinessTravel •	Department -	DistanceFromHon -	Educati	Educati *	Employ :	Employ	- Gender	- JobLeve	 JobRole * 	Marital •	Month! - !	NumCo	· Over18
2	51 No	Travel_Rarely	Sales	- 6		2 Life Science		1	1 Female		1 Healthcar	Married	131160		1 Y
3	31 Yes	Travel_Frequently	Research & Development	10	1	1 Life Science		1	2 Female		1 Research	:Single	41890		0 Y
4	32 No	Travel_Frequently	Research & Development	17		4 Other		1	3 Male		4 Sales Exe	c Married	193280		1 Y
5	38 No	Non-Travel	Research & Development	2		5 Life Scienc		1	4 Male		3 Human R	eMarried	83210		3 Y
6	32 No	Travel_Rarely	Research & Development	10	1	1 Medical		1	5 Male		1 Sales Exe	c Single	23420		4 Y
7	46 No	Travel_Rarely	Research & Development	8		3 Life Science		1	6 Female		4 Research	IMarried	40710		3 Y
8	28 Yes	Travel_Rarely	Research & Development	11	1	2 Medical		1	7 Male		2 Sales Exe	cSingle	58130		2 Y
9	29 No	Travel_Rarely	Research & Development	18		3 Life Scienc		1	8 Male		2 Sales Exe	Married	31430		2 Y
10	31 No	Travel_Rarely	Research & Development	1		3 Life Science		1	9 Male		3 Laborato	Married	20440		0 Y
11	25 No	Non-Travel	Research & Development	3		4 Medical		1 1	0 Female		4 Laborato	Divorced	134640		1 Y
12	45 No	Travel_Rarely	Research & Development	17		2 Medical		1 1	1 Male		2 Laborato	Married	79910		0 Y
13	36 No	Travel_Rarely	Research & Development	28		1 Life Science		1 1	2 Male		1 Laborato	Married	33770		0 Y
14	55 No	Travel_Rarely	Research & Development	14		4 Life Science		1 1	3 Female		1 Sales Exe	c Single	55380		0 Y
15	47 Yes	Non-Travel	Research & Development	1	1 8	1 Medical		1 1	4 Male		1 Research	:Married	57620		1 Y
16	28 No	Travel_Rarely	Research & Development	1		3 Life Science		1 1	5 Male		1 Manufac	Married	25920		1 Y
17	37 No	Travel_Rarely	Research & Development	1		3 Life Science		1 1	6 Male		2 Healthcar	Married	53460		4 Y
18	21 No	Travel_Rarely	Research & Development	3		2 Life Science		1 1	7 Male		1 Laborato	Single	42130		1 Y
19	37 No	Non-Travel	Research & Development	1		3 Medical		1 1	8 Male		2 Sales Exe	c Divorced	41270		2 Y
20	35 No	Travel_Rarely	Sales	7	8	4 Life Science		1 1	9 Male		1 Sales Rep	r Divorced	24380		7 Y
21	38 No	Travel_Rarely	Research & Development	8	- 5	3 Life Science		1 2	0 Female		1 Manager	Divorced	68700		1 Y

Then, Click on the filter button and then choose option **Number Filters**, and then choose **Greater than or equal to** option.

Then Custom AutoFilter Dialogue box is opened. Beside **is greater than or equal to** field I have filled **30**(as this is my condition) and then clicked ok.

Now, you can observe that the 'Age' field includes values equal to or above 30.

2. Create a pivot table to summarize the average Monthly Income by Job Role.

For Creating a pivot table for summarizing the Data. **Go to Insert tab in the Ribbon > Click on Pivot table as shown in the image > Create PivotTable dialogue box will open > Click Ok** (By default the Table/Range and New Worksheet where you pivot table want has been selected).

In PivotTable Fields. First, I have selected the **Job role**. By Default JobRole will get inserted in the Rows field.

Pivot Table

Likewise, I have selected **Monthly Income**. By Default **Monthly Income** will get inserted in the values field.

Pivot Table

After that, I have to change the summarization of the **Monthly**Income field from **Sum to Average** (as the task is to calculate the Average of Monthly Income). For that, I have to click the drop down option in the **Values field** and then Choose the **Value Field Settings**

Pivot Table

Then **Value Field Settings** dialogue box will open. After that choose the type of calculation you want. I want **Average** Calculation and then Click OK.

Value Field Settings

Now we can see, that **MonthlyIncome** values are summarized by **Average**.

Monthly Income by Job Role

But there is a problem, It is not advisable to show more than 2 numbers after decimal so we will change the format. You just have to open the **Value Field Settings** Box again and then click on the **Number Format**.

Note: I have changed the name of the Column from Average of Monthly Income to Avg Monthly Income.

Value Field Settings

Format Cells Dialogue Box will open. Select **Number** from the Category. By default Decimal Places will be set to 2 and then Click OK.

Foramat Cells

Voila! I have summarized the **Average Monthly Income** by **Job Role**

Job Role	Avg Monthly Income
Healthcare Representativ	ve 60983.74
Human Resources	58528.08
Laboratory Technician	66314.05
Manager	63395.88
Manufacturing Director	69183.72
Research Director	65473.13
Research Scientist	64975.68
Sales Executive	65186.69
Sales Representative	65370.96
Grand Total	65029.31

Avg Monthly Income By Job Role

3. Apply conditional formatting to highlight employees with Monthly Income above the company's average income.

First Select the Monthly Income Column and **Go to the Home Tab in Ribbon > Click on the Conditional Formatting option >**

Then Above Average box will open. Select the color range you want. Here I have selected Green Color and then clicked ok.

Here I have Changed the formatting of Values from General to Number. By clicking $\mathbf{Ctrl} + \mathbf{Shift} + \mathbf{1}$.

4. Create a bar chart in Excel to visualize the distribution of employee ages.

Select the **Age** and then **Employee Count** Column from the Pivot table Field.

i icia.	
Age	Total Employee
18	24
19	27
20	33
21	39
22	48
23	42
24	78
25	78
26	117
27	144
28	144
29	204
30	180
31	207
32	183
33	174
34	231
35	234
36	207
37	150
38	174
39	126
40	171
41	120

Select the Entire Pivot table and **Go to Insert tab > Recommended Charts** or you can select any chart you want.

Then Insert Chart dialogue box will open. Here you can select any chart according to your business needs. I am selecting Column Chart for now and then Clicked OK.

I have changed the color and added axis names, Chart Titles, and Data labels to make it visually appealing.

5. Identify and clean any missing or inconsistent data in the "Department" column.

After applying Filters on the Department Column. I have not seen any inconsistent data.

6. In Power BI, establish a relationship between the "EmployeeID" in the employee data and the "EmployeeID" in the time tracking data.

Open **Power BI desktop > Click Get Data Option in the Home tab > Select Text/CSV** because our file format is Comma Separated Value.

One dialogue Box will Open where you have to choose files that you want to import into Power BI one by one.

Load the data into the Power BI. By choosing the option **Load**. Here I am loading Three tables.

We can see in our **Data** Field we have successfully imported **three** tables.

For building relationships between the tables. We have to go to the **Model**

View as shown in the figure.

In the **model view**, we can see our three tables which are not connected because there is no relationship between them.

Now, I have established the relationship between the three tables. By selecting the EmployeeID present in the general_data table and dragging it into column 1 of the in_time table and the out_time table.

7. Using DAX, create a calculated column that calculates the average years an employee has spent with their current manager.

For creating a new calculated column. Select the **general_data** table and **right-click** on it. It will show a list of options where you have to select the **New Column**.

Then the formula bar will appear. Here I have used the **average** function to calculate the average of the column(YearWithCurrManager) and then give it a name of **Average_Year_wih_current_manager**.

8. Using Excel, create a pivot table that displays the count of employees in each Marital Status category, segmented by Department.

We have already created a pivot table earlier, we just have to change the **rows** and **values** field.

Select the **Department** column and put it into the **Rows** field > Select **Marital Status** and put it into the **Column** field > Select **Employee Count** Column and put it into the **Values** field.

1	A	В	С	D	E
1	Departments	Marital Status			
2		Divorced	Married	Single	Grand Total
3	Human Resources	21	96	72	189
4	Research & Development	621	1350	912	2883
5	Sales	339	573	426	1338
6	Grand Total	981	2019	1410	4410

9. Apply conditional formatting to highlight employees with both above-average Monthly Income and above-average Job Satisfaction.

The job Satisfaction Column is in another workbook. So I copy-paste the Job Satisfaction column into the general_Data workbook and then Select the Job Satisfaction column > Go to the Home Tab > Select Conditional

formatting > Top/Bottom Rules > Above Average.

Above Average Box will appear. Select the color you want and then click ok.

М		N	0		
JobSatisfaction 🔻		MaritalStatus	*	MonthlyIncor ▼	
	4	Married		1,31,160	
	2	Single	41,890		
	2	Married	1,93,280		
	4	Married	83,210		
	1	Single	23,420		
	2	Married	40,710		
	3	Single	58,130		
	2	Married	31,430		
	4		Married		
1		Divorced	1,34,640		
4		Married	79,910		
4		Married	33,770		
1		Single	55,380		
2		Married	57,620 25,920		
	4		Married		
	4	Married	53,460		
	3	Single		42,130	
	4	Divorced		41,270	
	2	Divorced		24,380	
	1	Divorced		68,700	
	2		Divorced		
2		Divorced	96,670		
	3	Married		21,480	

10. In Power BI, create a line chart that visualizes the trend of Employee Attrition over the years.

In Power BI, Select the **line chart** from the **Visualization Pane** and then Pull the **Years at company** column into the **X-axis** and **Employee ID** into the **Y-axis**. Your line chart will be ready. For **Formatting**, In the Visualization Pane Select the **Format Visual** option and Format your visual according to the business needs.

11. Describe how you would create a star schema for this dataset, explaining the benefits of doing so.

First of all, Let's understand about Star Schema.

Star schema contains one or more dimensions and fact tables. It is called a star schema because the entity-relationship diagram between dimensions and fact tables resembles a star where one fact table which is in the center is connected to multiple dimensions tables.

After understanding about star schema let's understand the fact and dimensions tables.

Fact tables: Fact tables are those tables that store quantitative data that you want to analyze, such as sales, transactions, and invoice tables.

Dimension tables: Dimension tables are those tables that store descriptive attributes that provide context for the data in the fact tables, such as customer demographics, and product information.

Steps to Create a Star Schema

1. **Identify Fact tables and Dimensions table:** The dataset provided by the psyliq are general_data, manager_survey_data, employee_survey_data, in_time, out_time.

Here general_data is the fact table and other data are the dimensions table.

- 2. **Establish Relationship:** Go to the model view, where you can see all the tables imported into the Power BI. Drag the key column from the dimensions table into the Foreign key of the fact table.
- 3. **Configure Relationships:** Double-click on the relationship lines to open the Manage Relationships dialog. Make sure that the correct fields are matched. Choose the relationship type (single, both, or none). Set the cross-filter direction based on your analysis needs.
- 4. **Validate Data Model:** Switch to the Data view and ensure that relationships and data types are correct.

Benefits of creating Star Schema

- 1. **Simplicity:** The simple structure of star schemas makes easy to understand for both technical and non-technical users.
- 2. **Performance:** Star schemas are optimized for querying large datasets, making them ideal for data analysis.
- 3. **Scalability:** Star schemas can be easily extended to add new dimension tables or measures to the fact table.
- 4. **Flexible:** Star schemas can be used to model a wide variety of business data.

12. Using DAX, calculate the rolling 3-month average of Monthly Income for each employee

Rolling Avg = CALCULATE(
AVERAGE('YourTableName'[MonthlyIncome]), DATESINPERIOD(
'YourTableName'[Date], LASTDATE('YourTableName'[Date]), -3, MONTH
))

13. Create a hierarchy in Power BI that allows users to drill down from Department to Job Role to further narrow their analysis.

To create a hierarchy, I have used a Matrix visual. Matrix visual is best to drill down into the details of your data by clicking on specific cells. This allows you to explore deeper levels of analysis and identify trends within specific categories.

Here I have put the Department column first in the rows field and then added the JobRole Column for creating a hierarchy and then I put the Employee ID in the values field.

15. In Excel, calculate the total Monthly Income for each Department, considering only the employees with a Job Level greater than or equal to 3.

Go to the pivot table > Place Job Level Column in the rows field > Department in the column field > Monthly Income in the values field.

Job Level	Department *				
	▼ Human Resources	Research & Development Sales	Grand Total		
3	16,48,500	2,81,17,740	1,17,92,400 4,15,58,640		
4	7,54,800	1,52,77,290	87,53,070 2,47,85,160		
5	8,55,840	1,01,07,870	24,28,860 1,33,92,570		
Grand Tot	tal 32,59,140	5,35,02,900	2,29,74,330 7,97,36,370		

16. Explain how to perform a What-If analysis in Excel to understand the impact of a 10% increase in Percent Salary Hike on Monthly Income.

Create a new sheet and Copy the Monthly Income column in it. Create a new column named Percent_Hike and calculate the salary hike. The formula for a salary hike is (=A2*(1+10%). Then select the Monthly Income and Percent_hike Column and Go to Data Tab > What-if Analysis > select Data table > Do not give any Row input > In column input, select cell A2 and then Click OK.

MonthlyIncome	Percent_hike
131160	144276
41890	46079
193280	212608
83210	91531
23420	25762
40710	44781
58130	63943
31430	34573
20440	22484
134640	148104
79910	87901
33770	37147
55380	60918
57620	63382
25920	28512
53460	58806
42130	46343
41270	45397
24380	26818
68700	75570
104470	114917
96670	106337
21480	23628
89260	98186
65130	71643
67990	74789
162910	179201
27050	29755

17. Verify if the data adheres to a predefined schema. What actions would you take if you found inconsistencies?

Yes, the Data adheres to a predefined schema.

Action to take when Inconsistent are found:

- 1. Check the Data normalization, if not normalize the dataset.
- 2. Check the dataset's column and its data type.
- 3. Check the relationship between the tables.
- 4. Transform the dataset if any inconsistent data is found.
- 5. Replace the null values with o or mean or according to the client.

Thank you for reading. Feel free to share your thoughts, ask questions, and let's continue this journey together.

Additionally, if you'd like to connect with me, you can find my LinkedIn ID and GitHub profile below.

<u>LinkedIn</u> <u>GitHub</u>

Happy learning!