

MEC-E8006 Fatigue of Structures

Teacher in charge: Heikki Remes

Email: heikki.remes@aalto.fi

Co-teacher and teaching assistant: Yuki Ono

Email: yuki.ono@aalto.fi

Today agenda

10:15 Welcome and course organization

10:30 Lecture 1: Fatigue phenomena

11:00 A short break

11:10 Lecture 1: Fatigue phenomena continue

12:00 End

MEC-E8006 Fatigue of Structures

Course organisation

Teacher in charge: Heikki Remes

Email: heikki.remes@aalto.fi

Course scope

The fatigue assessment of engineering structures and components

- Fatigue phenomena
- Main methods for fatigue assessment
- Machined components and welded structures
- Structural design aspects

Learning objectives

After the course, you

- <u>understand</u> the material behavior under cyclic loading and fatigue phenomenon.
- <u>can identify</u> the main affecting factors and requirements for fatigue assessment.
- <u>understand</u> the main modelling principles and assumptions used in common fatigue approaches.
- <u>can apply</u> selected fatigue approach for structural design.

Course contents

Week		Description		
43	Lecture 1-2	Fatigue phenomenon and fatigue design principles		
	Assignment 1	Fatigue Damage process, design principle and Rainflow counting – dl after week 43		
44	Lecture 3-4	Stress-based fatigue assessment		
	Assignment 2	Fatigue life estimation using stress-based approach – dl after week 44		
45	Lecture 5-6	Strain-based fatigue assessment		
	Assignment 3	Fatigue crack initiation life by strain-based approach – dl after week 46		
46	Lectures 7-8	Fracture mechanics -based assessment		
	Assignment 4	Fatigue crack propagation life by fracture mechanics – dl after week 46		
47	Lectures 9-10	Fatigue assessment of welded structures and residual stress effect		
	Assignment 5	Fatigue life estimation of welded joint – dl after week 48		
48	Lecture 11-12	Multiaxial fatigue and statistic of fatigue testing		
	Assignment 6	Fatigue life estimation for multiaxial loading and statistical analysis – dl after week 48		
49	Exam	Course exam		
	Project work	Delivery of final project (optional) – dl on week 50		

Optional project work

- With optional project work, you can replace two last assignment round (Assignment 5-6)
- The project work is real life application case:
 - A. Fatigue life analysis of welded cruciform joint in low strength steel
 - B. Fatigue life analysis of post-weld-treated joint in high strength steel
 - C. Fatigue life analysis of cut-plate edge in high strength steel
 - D. Fatigue life analysis of team own project work (upon approval)

Study material

Course material

- Mechanical Behavior of Materials by Dowling, N. E., Chapter 8-14
- Selected parts of textbooks, papers and reports

Optional reading

- Metal Fatigue in Engineering by Stephens, R. I. et al.
- Selected scientific papers, standards, and guidelines
- Shigley's Mechanical Engineering Design by Richard, G. et al., Chapter 6

Important note

- Textbooks are always the best reading material for self-studies since lecture slides do not include all the details.
- Readings material related to each week are specified in pdf-copy of lecture slides (MyCourses)

Course organisation

Course

- Teaching period II: 24.10.2023-1.12.2023
- Exam: 8.12.2023, 13:00 17:00
- Assignments (weekly basis) and optional project work (on week 50)

Lectures and exercises

• Lectures: Monday 10:15 – 12:00

Tuesday 12:15 – 14:00

• Question hour: Thursday 13:15 – 15:00

Grading

- 50% on assignments (and optional project report)
- 50% on the examination

Materials, assignments delivery, information, etc.

MyCourses: https://mycourses.aalto.fi/

Course organisation

- The assignments are delivered by each student every week. In addition to numerical results, please briefly describe the calculation steps in the assignment report.
- The question hour is organized to support assignment works based on student requests and questions.
- The optional project work can be done alone or as a group.

Weekly routine (suggested)

•	Sunday	Get familiar with the textbook or watch the video ((~0.5 hours)
---	--------	---	--------------

Monday 10:15-12 Lecture 1 (~2 h.)

Tuesday 12:15-14 Lecture 2 (~2 h.)

• Wednesday Reading of textbook chapter and assignment solving $(\sim 7 h)$

• Thursday 13:15-15 Question hour (if needed) ($\sim 2 h$)

• Friday - Saturday Finalization and delivery of assignment $(\sim 6 h)$

In this course, 5 credits really means in average 135 hours, i.e. ~20 hours / week!

MEC-E8006 Fatigue of Structures

Optional project work options

Project work cases

- A. Welded cruciform joint in lowstrength steel
- B. Post-weld-treated joint in highstrength steel
- C. Cut-plate edge in high-strength steel
- D. Own project work

For option A-C, the reference material (e.g., geometry measurements, material data) is in my course folder.

A: Welded cruciform joint in low strength steel

- Common fatigue critical detail in welded structures, such as ship, bridge, crane structures
- Fatigue test specimen including fillet welded cruciform joint
- A constant amplitude loading with load range of 39.6 kN and load ratio R=0.1

B: Post-weld treated joint in high strength steel

- Common fatigue critical detail in welded structures, such as ship, bridge, crane structures
- Fatigue test specimen including fillet welded cruciform joint, which is post-weld treated
- A constant amplitude loading with load range of 70.6 kN and load ratio R=-0.43

C: Cut-plate edge in high strength steel

- Common fatigue critical detail in complex structures
- Fatigue test specimen including cut plate edge, which is sandblasted. The plate thickness is 15.3 mm.
- A constant amplitude loading with load range of 243 KN and load ratio R=0.1

C

Sandblasted surface

Project work description

- The project report should include:
 - Case description (geometry, material, loading)
 - Description of analysed manufacturing-induced imperfections (e.g., residual stress, initial defect size)
 - Description of applied methods (at least methods)
 - Results from the analyses (fatigue life, sensitivity of input parameter)
 - Results discussion and conclusion
- The report should not be longer than 10 pages, but the number of appendixes for numerical calculations is not limited.
- Send an email to heikki.remes@aalto.fi by the end of W45 if you are interested in optional project work.

