

Fonctions circulaires et hyperboliques inverse

1 Fonctions circulaires inverses

Exercice 1

Une statue de hauteur *s* est placée sur un piédestal de hauteur *p*. À quelle distance doit se placer un observateur (dont la taille est supposée négligeable) pour voir la statue sous un angle maximal?

Indication ▼ Correction ▼ [000745]

Exercice 2

Écrire sous forme d'expression algébrique

$$\sin(\operatorname{Arccos} x)$$
, $\cos(\operatorname{Arcsin} x)$, $\sin(3\operatorname{Arctan} x)$.

Indication ▼ Correction ▼ [000747]

Exercice 3

Résoudre les équation suivantes :

$$Arcsin x = Arcsin \frac{2}{5} + Arcsin \frac{3}{5}, \quad Arccos x = 2 Arccos \frac{3}{4},$$
$$Arctan x = 2 Arctan \frac{1}{2}.$$

Indication ▼ Correction ▼ [000749]

Exercice 4

Vérifier

$$Arcsin x + Arccos x = \frac{\pi}{2}$$
, $Arctan x + Arctan \frac{1}{x} = sgn(x) \frac{\pi}{2}$.

Indication ▼ Correction ▼ [000752]

Exercice 5

Démontrer les inégalités suivantes :

Arcsin
$$a < \frac{a}{\sqrt{1-a^2}}$$
 si $0 < a < 1$;
Arctan $a > \frac{a}{1+a^2}$ si $a > 0$.

Indication ▼ Correction ▼ [000746]

2 Fonctions hyperboliques et hyperboliques inverses

Exercice 6

Calculer:

$$\lim_{x \to +\infty} e^{-x} (\cosh^3 x - \sinh^3 x) \quad \text{et} \quad \lim_{x \to +\infty} (x - \ln(\cosh x)).$$

Indication ▼

Correction ▼

[000759]

Exercice 7

Les réels x et y étant liés par

$$x = \ln\left(\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)\right),\,$$

calculer ch x, sh x et th x en fonction de y.

Indication ▼

Correction ▼

[000764]

Exercice 8

1. Montrer qu'il n'existe pas de fonction $f:[1;+\infty[\to\mathbb{R} \text{ vérifiant}:$

$$\forall x \in \mathbb{R}, \quad f(\operatorname{ch} x) = e^x.$$

2. Déterminer toutes les fonctions $f: \mathbb{R}^{+*} \to \mathbb{R}$ telles que :

$$\forall x \in \mathbb{R}, \quad f(e^x) = \operatorname{ch} x.$$

Préciser le nombre de solutions.

3. Déterminer toutes les fonctions $f: \mathbb{R}^+ \to \mathbb{R}$ telles que :

$$\forall x \in \mathbb{R}, \quad f(e^x) = \operatorname{ch} x.$$

Préciser le nombre de solutions ; y a t-il des solutions continues sur \mathbb{R}^+ ?

Indication ▼

Correction ▼

[000758]

Exercice 9

Résoudre l'équation $x^y = y^x$ où x et y sont des entiers positifs non nuls.

Correction ▼

[000776]

Indication pour l'exercice 1 ▲

Faire un dessin. Remarquer que maximiser l'angle d'observation α revient à maximiser $\tan \alpha$. Puis calculer $\tan \alpha$ en fonction de la distance et étudier cette fonction.

Indication pour l'exercice 2 A

Il faut utiliser les identités trigonométriques classiques. Pour la dernière expression commencer par calculer $\sin(\operatorname{Arctan} x)$, $\cos(\operatorname{Arctan} x)$.

Indication pour l'exercice 3 A

On compose les équations par la bonne fonction, par exemple sinus pour la première.

Indication pour l'exercice 4 A

Faire une étude de fonction.

sgn(x) est la fonction signe : elle vaut +1 si x > 0, -1 si x < 0 (et 0 si x = 0).

Indication pour l'exercice 5 ▲

On pourra étudier les fonctions définies par la différence des deux termes de chaque inégalité.

Indication pour l'exercice 6 ▲

Réponses:

- 1. $\frac{3}{4}$;
- 2. ln 2.

Indication pour l'exercice 7 ▲

Il faut trouver $chx = \frac{1}{\cos(y)}$, $shx = \tan y$, $thx = \sin y$.

Indication pour l'exercice 8 ▲

- 1. Regarder ce qui se passe en deux valeurs opposées x et -x.
- 2. Poser $X = e^x$.

Indication pour l'exercice 9 ▲

Montrer que l'équation $x^y = y^x$ est équivalente à $\frac{\ln x}{x} = \frac{\ln y}{y}$, puis étudier la fonction $x \mapsto \frac{\ln x}{x}$.

Correction de l'exercice 1 A

On note x la distance de l'observateur au pied de la statue. On note α l'angle d'observation de la statue seule, et β l'angle d'observation du piedestal seul. Nous avons le deux identités :

$$\tan(\alpha + \beta) = \frac{p+s}{x}, \qquad \tan\beta = \frac{p}{x}.$$

En utilisante la relation $\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\cdot\tan\beta}$ on obtient

$$\tan \alpha = \frac{sx}{x^2 + p(p+s)}.$$

Maintenant l'angle $\alpha \in [0, \frac{\pi}{2}[$ et la fonction tan est croissante sur cet intervalle, donc maximiser α est équivalent à maximiser $\tan \alpha$. Étudions la fonction $f(x) = \frac{sx}{x^2 + p(p+s)}$ définie sur $x \in [0, +\infty[$. Après calculs f' ne s'annule qu'en $x_0 = \sqrt{p(p+s)}$ qui donne le maximum de f (en 0 et $+\infty$ l'angle est nul). Donc la distance optimale de vision est $x_0 = \sqrt{p(p+s)}$.

En complément on peut calculer l'angle maximum α_0 correspondant : par la relation $\tan \alpha_0 = f(x_0) = \frac{s}{2\sqrt{p(p+s)}}$, on obtient $\alpha_0 = \operatorname{Arctan} \frac{s}{2\sqrt{p(p+s)}}$.

Correction de l'exercice 2

- 1. $\sin^2 y = 1 \cos^2 y$ donc $\sin y = \pm \sqrt{1 \cos^2 y}$. Donc $\sin \operatorname{Arccos} x = \pm \sqrt{1 \cos^2 \operatorname{Arccos} x} = \pm \sqrt{1 x^2}$ et comme $\operatorname{Arccos} x \in [0, \pi]$ on a $\sin \operatorname{Arccos} x = +\sqrt{1 x^2}$.
- 2. De la même manière on trouve la même formule pour : $\cos Arcsin x = +\sqrt{1-x^2}$.
- 3. Commençons par calculer $\sin(\operatorname{Arctan} x)$, $\cos(\operatorname{Arctan} x)$. On utilise $1 + \tan^2 y = \frac{1}{\cos^2 y} = \frac{1}{1 \sin^2 y}$ avec $y = \operatorname{Arctan} x$. Cela donne $\cos^2 y = \frac{1}{1 + x^2}$ et $\sin^2 y = \frac{x^2}{1 + x^2}$. En étudiant les signes de $\sin(y)$, $\cos(y)$ nous obtenons $\cos y = \frac{1}{\sqrt{1 + x^2}}$ et $\sin y = \frac{x}{\sqrt{1 + x^2}}$.

Il ne reste plus qu'à linéariser $\sin(3y)$: $\sin(3y) = 3\sin y \cos^2 y - \sin^3 y$, ce qui s'écrit aussi $\sin(3y) = 4\sin y \cos^2 y - \sin y$. Ces formules s'obtiennent à la main en écrivant d'abord $\sin(3y) = \sin(2y + y) = \sin(2y)\cos(y) + \cdots$. Ou alors à l'aide des nombres complexes et de la formule de Moivre en développant $\cos(3y) + i\sin(3y) = (\cos y + i\sin y)^3 = \cos^3 y + 3i\cos^2 y \sin y + \cdots$ puis identifiants les parties imaginaires.

Maintenant

$$\sin(3 \operatorname{Arctan} x) = \sin(3y) = 4 \sin y \cos^2 y - \sin y = 4 \frac{x}{(1+x^2)^{3/2}} - \frac{x}{\sqrt{1+x^2}}.$$

Correction de l'exercice 3

- 1. En prenant le sinus de l'équation $\operatorname{Arcsin} x = \operatorname{Arcsin} \frac{2}{5} + \operatorname{Arcsin} \frac{3}{5}$ on obtient $x = \sin(\operatorname{Arcsin} \frac{2}{5} + \operatorname{Arcsin} \frac{3}{5})$, donc $x = \frac{2}{5}\cos\operatorname{Arcsin} \frac{3}{5} + \frac{3}{5}\cos\operatorname{Arcsin} \frac{2}{5}$. En utilisant la formule $\cos\operatorname{Arcsin} x = +\sqrt{1-x^2}$. On obtient $x = \frac{2}{5}\frac{4}{5} + \frac{3}{5}\sqrt{\frac{21}{25}} = \frac{8}{25} + \frac{3\sqrt{21}}{25}$.
- 2. En prenant le cosinus de l'équation $Arccos x = 2 Arccos \frac{3}{4}$ on obtient $x = cos(2 Arccos \frac{3}{4})$ on utilise la formule $cos 2u = 2 cos^2 u 1$ et on arrive à : $x = 2(\frac{3}{4})^2 1 = \frac{1}{8}$.
- 3. En prenant la tangente et à l'aide de $\tan(a+b) = \cdots$ on obtient : $x = \tan(2 \arctan \frac{1}{2}) = \frac{4}{3}$.

Correction de l'exercice 4

1. Soit f la fonction sur [-1,1] définie par $f(x) = \operatorname{Arcsin} x + \operatorname{Arccos} x$ alors $f'(x) = \frac{1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}} = 0$ pour chaque $x \in]-1,1[$; donc f est une fonction constante sur l'intervalle [-1,1] (car continue aux extrémités). Or $f(0) = \frac{\pi}{2}$ donc pour tout $x \in [-1,1]$, $f(x) = \frac{\pi}{2}$.

2. Soit $g(x) = \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x}$, la fonction est définie sur $]-\infty,0[$ et sur $]0,+\infty[$. On a $g'(x) = \frac{1}{1+x^2} + \frac{-1}{x^2} \cdot \frac{1}{1+\frac{1}{x^2}} = 0$ donc g est constante sur chacun de ses intervalles de définition. $g(x) = c_1$ sur $]-\infty,0[$ et $g(x) = c_2$ sur $]0,+\infty[$. En calculant g(1) et g(-1) on obtient $c_1 = -\frac{\pi}{2}$ et $c_2 = +\frac{\pi}{2}$.

Correction de l'exercice 5

- 1. Soit $f(a) = \operatorname{Arcsin} a \frac{a}{\sqrt{1-a^2}} \sup]0,1[$. Alors $f'(a) = \frac{1}{\sqrt{1-a^2}} \frac{1}{\sqrt{1-a^2}(1-a^2)} = \frac{1}{\sqrt{1-a^2}} \cdot \frac{-a^2}{1-a^2} \operatorname{donc} f'(a) \leq 0$. Ainsi f est strictement décroissante et f(0) = 0 donc f(a) < 0 pout tout $a \in]0,1[$.
- 2. Si $g(a) = \operatorname{Arctan} a \frac{a}{1+a^2}$ alors $g'(a) = \frac{1}{1+a^2} \frac{1-a^2}{(1+a^2)^2} = \frac{2a^2}{(1+a^2)^2} > 0$. Donc g est strictement croissante et g(0) = 0 donc g est strictement positive sur $]0, +\infty[$.

Correction de l'exercice 6

- 1. Par la formule du binôme de Newton nous avons $\cosh^3 x = \left(\frac{e^x + e^{-x}}{2}\right)^3 = \frac{1}{8} \left(e^{3x} + 3e^x + 3e^{-x} + e^{-3x}\right)$. Et de même $\sinh^3 x = \left(\frac{e^x e^{-x}}{2}\right)^3 = \frac{1}{8} \left(e^{3x} 3e^x + 3e^{-x} e^{-3x}\right)$. Donc $e^{-x}(\cosh^3 x \sinh^3 x) = \frac{1}{8} e^{-x}(6e^x + 2e^{-3x}) = \frac{3}{4} + \frac{1}{4} e^{-4x}$ qui tend vers $\frac{3}{4}$ lorsque x tend vers $+\infty$.
- 2. $x \ln(\operatorname{ch} x) = x \ln(\frac{e^x + e^{-x}}{2}) = x \ln(e^x + e^{-x}) + \ln 2 = x \ln(e^x (1 + e^{-2x})) + \ln 2 = x x + \ln(1 + e^{-2x}) + \ln 2 = \ln(1 + e^{-2x}) + \ln 2$. Lorsque $x \to +\infty$, $\ln(1 + e^{-2x}) \to 0$ donc $x \ln(\operatorname{ch} x) \to \ln 2$.

Correction de l'exercice 7

Soit $x = \ln\left(\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)\right)$.

1.

$$\operatorname{ch} x = \frac{e^x + \frac{1}{e^x}}{2} = \frac{\tan\left(\frac{y}{2} + \frac{\pi}{4}\right) + \frac{1}{\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)}}{2} = \frac{1}{2\sin\left(\frac{y}{2} + \frac{\pi}{4}\right)\cos\left(\frac{y}{2} + \frac{\pi}{4}\right)} = \frac{1}{\sin(y + \frac{\pi}{2})} = \frac{1}{\cos(y)}.$$

- 2. De même sh $x = \tan y$.
- 3. thx = sin y.

Ce sont des formules classiques utiles à connaître.

Correction de l'exercice 8

- 1. Si f existe alors pour x = 1 on a $f(\operatorname{ch} 1) = e$ et pour x = -1 on a $f(\operatorname{ch} -1) = f(\operatorname{ch} 1) = 1/e$. Une fonction ne peut prendre deux valeurs différentes au même point (ici $t = \operatorname{ch} 1$).
- 2. Notons $X = e^x$, l'équation devient

$$f(X) = \frac{e^x + e^{-x}}{2} = \frac{1}{2}(X + \frac{1}{X}).$$

Comme la fonction exponentielle est une bijection de \mathbb{R} sur $]0,+\infty[$, alors l'unique façon de définir f sur $]0,+\infty[$ est par la formule $f(t)=\frac{1}{2}(t+\frac{1}{t})$.

3. Comme e^x est toujours non nul, alors f peut prendre n'importe quelle valeur en 0. $f(0) = c \in \mathbb{R}$ et $f(t) = \frac{1}{2}(t + \frac{1}{t})$ pour t > 0. Il y a une infinité de solutions. Mais aucune de ces solutions n'est continue car la limite de f(t) quand t > 0 et $t \to 0$ est $+\infty$.

Correction de l'exercice 9

$$x^{y} = y^{x} \Leftrightarrow e^{y \ln x} = e^{x \ln y} \Leftrightarrow y \ln x = x \ln y \Leftrightarrow \frac{\ln x}{x} = \frac{\ln y}{y}$$

(la fonction exponentielle est bijective). Etudions la fonction $f(x) = \frac{\ln x}{x} \sin \left[1, +\infty\right[$.

$$f'(x) = \frac{1 - \ln x}{x^2},$$

donc f est croissante sur [1,e] et décroissante sur $[e,+\infty[$. Donc pour $z\in]0, f(e)[=]0, 1/e[$, l'équation f(x)=z a exactement deux solutions, une dans]1,e[et une dans $]e,+\infty[$.

Revenons à l'équation $x^y = y^x$ équivalente à f(x) = f(y). Prenons y un entier, nous allons distinguer trois cas : y = 1, y = 2 et $y \ge 3$. Si y = 1 alors f(y) = z = 0 on doit donc résoudre f(x) = 0 et alors x = 1. Si y = 2 alors il faut résoudre l'équation $f(x) = \frac{\ln 2}{2} \in]0, 1/e[$. Alors d'après l'étude précédente, il existe deux solutions une sur]0, e[qui est x = 2 (!) et une sur $]e, +\infty[$ qui est 4, en effet $\frac{\ln 4}{4} = \frac{\ln 2}{2}$. Nous avons pour l'instant les solutions correspondant à $2^2 = 2^2$ et $2^4 = 4^2$.

Si $y \ge 3$ alors y > e donc il y a une solution x de l'équation f(x) = f(y) dans e, $+\infty$ qui est e y, et une solution e dans l'intervalle e]1, e[. Mais comme e est un entier alors e 2 (c'est le seul entier appartenant à e]1, e[) c'est un cas que nous avons déjà étudié conduisant à e2 dans l'est un cas que nous avons déjà étudié conduisant à e3.

Conclusion : les couples d'entiers qui vérifient l'équation $x^y = y^x$ sont les couples (x, y = x) et les couples (2, 4) et (4, 2).