$$T = \left[h(x) \right] = \int_{X} h(x) f(x) dx$$
Have a prop. disth $g(x)$ that we can sample from.

$$= \int_{X} h(x) f(x) g(x) dx$$

$$= \int_{X} h(x) f(x) g(x) dx$$

$$= \int_{X} h(x) f(x) g(x) dx$$

$$= \left[g\left[\frac{h(x) f(x)}{g(x)} \right] \right] \text{ if we cannot calc this in closed form}$$

We can eit I by $f(x)$

$$= \int_{X} h(x) f(x) f(x) \int_{X} h(x) f(x) \int$$

Exercise Goal:
$$P(X75)$$
 $f(x) = N(0,1)$
 $g(x) = N(5,1)$ $g(x) = N(0,1)$
 $f(x) = N(0,1)$
 $f(x) = S$ $f(x) =$