

AD-A076 533 METEOROLOGY INTERNATIONAL INC MONTEREY CALIF F/G 4/2  
TECHNICAL DESCRIPTION OF THE RAPID ANALOGUE SELECTION SYSTEM IN--ETC(U)  
JUN 77 F C CATON , M M HOLL , M J CUMING N00228-76-C-3189  
UNCLASSIFIED MII-M-222 NL

1 OF 2  
AD A076533



AD A076533



# LEVEL ✓

(1)

Final Report  
MII Project-M-222  
June 1977

(14)

(11)

(12) 168

D D C  
REF ID: A6533  
R E U L L T I L D  
NOV 9 1979  
E

6  
TECHNICAL DESCRIPTION OF THE  
RAPID ANALOGUE SELECTION SYSTEM  
INCLUDING REGIONALIZED CAPABILITIES  
APPLIED TO THE MEDITERRANEAN SEA

(9) Final rept.

(10)

Francis G. Caton,  
Manfred M. Holl  
Michael J. Cuming

Meteorology International Incorporated  
2600 Garden Road, Suite 145  
Monterey, California 93940

DDC FILE COPY

Prepared for

The Commanding Officer  
Naval Environmental Prediction Research Facility  
Monterey, California 93940

(15)

Contract No. N00228-76-C-3189

227450

79 10

This document has been approved  
for public release and its  
distribution is unlimited.

030

3  
ADA076533  
DNC FILE COPY

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------|
| 1. REPORT NUMBER<br>Final Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                               |
| 4. TITLE (and Subtitle)<br>TECHNICAL DESCRIPTION OF THE RAPID ANALOGUE SELECTION SYSTEM INCLUDING REGIONALIZED CAPABILITIES APPLIED TO THE MEDITERRANEAN SEA                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 5. TYPE OF REPORT & PERIOD COVERED<br>Final                 |
| 7. AUTHOR(s)<br>Francis G. Caton, Manfred M. Holl and Michael J. Cuming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 8. CONTRACT OR GRANT NUMBER(s)<br>N00228-76-C-3189          |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Meteorology International Incorporated<br>2600 Garden Road, Suite 145<br>Monterey, California 93940                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Naval Environmental Prediction Research Facility<br>Monterey, California 93940                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 12. REPORT DATE<br>June 1977                                |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 13. NUMBER OF PAGES<br>164                                  |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 15. SECURITY CLASS. (of this report)<br>UNCLASSIFIED        |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                                             |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                             |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Analogue Selection System                          Pattern Similarity<br>Analogue Forecasting                              Mediterranean Sea.<br>Pattern Characteristics                                                                                                                                                                                                                                                                                                                                      |                       |                                                             |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>A method is described for bit-coding meteorological analyses in terms of specifying parameters which measure pattern characteristics. By matching the bit-string produced for each analysis, an absolute measure of the similarity between any two meteorological situations can be obtained. An extension of the bit-coding methodology allows the development-in-time of two meteorological episodes to be compared. From these measures of similarity analogues can rapidly be selected from the data base. |                       |                                                             |

## TABLE OF CONTENTS

|                                                                    | <u>Page</u> |
|--------------------------------------------------------------------|-------------|
| 1. INTRODUCTION . . . . .                                          | 1           |
| 2. OBJECTIVES . . . . .                                            | 3           |
| 2.1 Task 1 . . . . .                                               | 3           |
| 2.2 Task 2 . . . . .                                               | 4           |
| 3. THE ANALOGUE APPROACH TO ENVIRONMENTAL FORECASTING . . . . .    | 5           |
| 3.1 Terminology Used in This Report . . . . .                      | 5           |
| 3.2 Discussion and Outline of the Analogue Approach . . . . .      | 6           |
| 3.2.1 General Approach . . . . .                                   | 6           |
| 3.2.2 The MII Approach . . . . .                                   | 9           |
| 3.2.2.1 Regional Focus . . . . .                                   | 9           |
| 3.2.2.2 The Available Historical Data Base . . . . .               | 9           |
| 3.2.2.3 The Quick Screen . . . . .                                 | 10          |
| 4. THE BASIC BIT CODE FOR REPRESENTING SYNOPTIC PATTERNS . . . . . | 14          |
| 4.1 Modular Design . . . . .                                       | 14          |
| 4.2 The Specifying Parameters for Each 4x4 Module . . . . .        | 18          |
| 4.3 The Bit-Code for the Specifying Parameters . . . . .           | 18          |
| 4.4 Tabulation of Range Levels . . . . .                           | 30          |
| 4.5 Formation of the 60-Bit Word for a 4x4 Module . . . . .        | 34          |
| 5. PRODUCTION OF THE BIT-CODED HISTORY . . . . .                   | 38          |
| 6. REGIONAL FOCUS CAPABILITIES . . . . .                           | 39          |
| 6.1 General Approach . . . . .                                     | 39          |
| 6.2 Standardized Approach . . . . .                                | 40          |
| 6.3 The Greater Mediterranean Focus . . . . .                      | 41          |



## TABLE OF CONTENTS (Continued)

|           |                                                                  |            |
|-----------|------------------------------------------------------------------|------------|
|           | <u>Page</u>                                                      |            |
| <b>7.</b> | <b>THE ANALOGUE SEARCH AND SELECTION PROCESS . . . . .</b>       | <b>47</b>  |
| 7.1       | Introduction . . . . .                                           | 47         |
| 7.2       | Preparing the Baseday . . . . .                                  | 47         |
| 7.3       | The Scoring Matrix . . . . .                                     | 47         |
| 7.4       | Comparison with Monthly-Mean Fields . . . . .                    | 50         |
| 7.5       | Probability Considerations . . . . .                             | 50         |
| 7.6       | A Scheme for Scenario-Matching . . . . .                         | 53         |
| 7.6.1     | The Time Tunnel . . . . .                                        | 53         |
| 7.6.2     | Coupling RASS Forecasts to Numerical Forecast Models . . . . .   | 57         |
| <b>8.</b> | <b>TUNING AND VERIFICATION PROCEDURES . . . . .</b>              | <b>60</b>  |
| 8.1       | Tuning . . . . .                                                 | 60         |
| 8.1.1     | The Selection Gates . . . . .                                    | 60         |
| 8.1.1.1   | Persistence . . . . .                                            | 61         |
| 8.1.2     | Weight Factors . . . . .                                         | 65         |
| 8.2       | Persistence Climatologies . . . . .                              | 66         |
| 8.3       | The RASS Verification Scheme . . . . .                           | 70         |
| 8.4       | Demonstration of Current RASS Capabilities . . . . .             | 72         |
| 8.4.1     | RASS Demonstration 1: Baseday<br>12Z 22 AUG 69 . . . . .         | 76         |
| 8.4.2     | RASS Demonstration 2: Baseday<br>12Z 18 OCT 75 . . . . .         | 118        |
|           | <b>APPENDIX A SCALE-AND-PATTERN SPECTRA AND DECOMPOSITIONS .</b> | <b>160</b> |

|                |                         |
|----------------|-------------------------|
| Accession For  |                         |
| NTIS           | Code                    |
| B&D TAB        |                         |
| Unnumbered     |                         |
| Classification | <i>for pub</i>          |
| 50 cm          | <i>on feet</i>          |
| 17             |                         |
| Purchased from |                         |
| Approved by    |                         |
| Dist           | Available or<br>special |
| A              |                         |

## 1. INTRODUCTION

The initial involvement of Meteorology International Incorporated with analogue prediction techniques developed out of years of association with the FNWC Optimum Track Ship Routing (OTSR) System. During this association it became apparent that the quality and timeliness of the product, based in part on analogue techniques, left much to be desired from the point of view of operational utility. Existing analogue selection and compilation techniques were crude and, in terms of computer processing time, were cumbersome and costly.

Confronted with this situation, MII became directly involved in analogue research and development as from January 1973 with the objective of devising and implementing an analogue selection scheme which was both rapid and based on comprehensive and realistic selection criteria. As the system was developed and its early capabilities explored, it became apparent that analogue selection based on the total hemisphere could only be useful in the broadest terms because of the great variability in synoptic patterns occurring simultaneously over the hemisphere. (The data base required to provide a reasonable number of good analogues if trying to match the hemisphere as a whole is far greater than that available.) Because of this variability, even the top-scoring hemispheric analogues had little relevance to any operationally-significant analogue forecast for a local area such as the Mediterranean Sea. What was required, of course, was the ability to focus on any pre-selected region, taking into account, when selecting analogues, only those essential features of the space and time scales of the atmospheric disturbances likely to affect the region during the objective period of the forecast.

The first efforts aimed at regionalizing the analogue selection system were carried out on behalf of NEPRF for the Mediterranean region;

subsequently, further work was performed for FNWC directed toward the eventual goal of a multi-regional capability.

These first efforts laid only the foundations of the Regionalized Rapid Analogue Selection System (RASS); further development work was required. This requirement was recognized and in June 1976, under NEPRF sponsorship, MII was awarded Contract No. N00228-76-C-3189 to continue with the development of RASS with specific emphasis on its application to the Mediterranean. Under the terms of this Contract, the work was to be carried out by the performance of Tasks 1 and 2, the objectives of these Tasks being detailed in Section 2. Task 1 was finished in December 1976, an Interim Report being delivered to NEPRF on completion. Task 2 has now been completed, and this Final Report presents the methods developed and the results obtained in fulfillment of both Task 1 and Task 2.

## 2. OBJECTIVES

The overall purpose of this project was to improve the regionalized rapid analogue selection capabilities with emphasis in the Mediterranean area. The specific objectives of the work were essentially as follows:

### 2.1 Task 1

- a. Re-examine and modify the components presently used in the regionalized rapid analogue selection scheme.
- b. Design an optimum storage configuration and construct a new history data base to incorporate necessary data resolution while significantly reducing total data tape handling in the current data base of 28 years.
- c. Compute a climatology of each component field in addition to the history base.
- d. Develop techniques which provide effective measurement of both large- and small-scale characteristics in both space and time of the component fields.
- e. Design selection techniques so as to be pertinent for analogues covering the Mediterranean region, but with capabilities to be modified for any predetermined region in the Northern Hemisphere.
- f. Produce an operational program to be run on the Fleet Numerical Weather Central (FNWC) CDC-6500 computer system.
- g. Design methods for both tuning the regionalized rapid analogue scheme and for verification.
- h. Write an interim report for the internal use of the Naval Environmental Prediction Research Facility.

2.2     Task 2

- a. Expand upon the work initiated under Task 1 with increased tuning of the program.
- b. Thoroughly demonstrate and evaluate at least two historical periods using data furnished by NEPRF.
- c. Design a continuing program for verification statistics of the regionalized rapid analogue scheme.
- d. Produce a final report to conform with MIL-STD-847A, Formal Requirements for Scientific and Technical Reports Prepared by or for the Department of Defense, 31 Jan 1973. The results of the demonstration and evaluation of the historical periods should be presented as case studies.

### 3. THE ANALOGUE APPROACH TO ENVIRONMENTAL FORECASTING

#### 3.1 Terminology Used in This Report

A METEOROLOGICAL SITUATION, defined as occurring at a fixed point in time, may be represented and comprehended by an assemblage of SPECIFYING PARAMETERS.

A SCENARIO is a METEOROLOGICAL EPISODE or SEQUENCE, defined as a (normally brief) time-connected series of situations. The specifying parameters involve time.

A METEOROLOGICAL EVENT may be either a situation or a scenario, as defined above.

An ANALOGUE is a meteorological event selected from historical records as being acceptably similar (according to pre-established criteria involving the specifying parameters) to another event.

The BASEDAY is the meteorological event for which analogues are to be selected. For forecasting, either the current situation or the current scenario would be used. For hindcasting a baseday event would be chosen from historical records.

The ANALOGUE CANDIDATE is the particular event being compared with the baseday to assess its suitability for selection as an acceptable analogue.

MATCHING is the process of comparing the chosen baseday with all analogue candidates in order to select analogues. Matching is performed by comparison of corresponding specifying parameters.

The ANALOGUE SCORE is the number assigned to an analogue candidate as a result of the matching process, this number being a measure of the overall degree of matching or similarity.

**PERSISTENCE FORECAST.** A forecast method based on the assumption that meteorological conditions during the forecast period remain unchanged from those prevailing at the beginning of the forecast period. A persistence forecast may be taken as demonstrating zero skill, thus providing a basis for determining the effectiveness of other forecast techniques.

**CLIMATOLOGICAL FORECAST.** A forecast regarding the future value of a meteorological parameter, couched in terms which relate stated ranges of that parameter to their percentage probability of occurrence during the forecast period, based entirely on statistics.

**DETERMINISTIC FORECAST.** A forecast which gives only what is considered to be the most probable future value (or narrow range of values) of a meteorological parameter. In general no additional information is provided by which to assess the actual probability associated with the forecast, this assessment being left to the user--a process requiring considerable experience on the part of the user. A deterministic forecast is therefore an incomplete statement of available information.

**PROBABILISTIC FORECAST.** A forecast expressed in terms which distribute the full probability (100%) over the entire range of possible future values of a particular meteorological parameter. A probabilistic forecast is therefore a complete statement of available information.

### 3.2 Discussion and Outline of the Analogue Approach

#### 3.2.1 General Approach

The analogue approach to meteorological forecasting is based on an ability to recognize significant degrees of similarity between events which have occurred in recorded meteorological history and the current event.

An historical event recognized as being an acceptably close match to the current event (or to another chosen historical event) is termed an "analogue". The underlying premise is that, given sufficient and relevant similarity, an analogy may be drawn between what did follow from the selected historical events, and what will follow from the current event.

Assuming this premise is accepted, it follows that any effective analogue forecasting system must include the following basic components:

- a. A methodology for interpreting any meteorological event in terms of relevant specifying parameters.
- b. A data base, expressed in terms of the specifying parameters, which is sufficiently large to encompass the range of significant variabilities which have occurred in meteorological history and which may possibly occur (within reason) during the forecast period.
- c. A system for comparing the selected meteorological event with all others in the data base in order to select analogues. In practice of course, any practical scheme will find degrees of similarity ranging from very good matches (hopefully), to very poor matches. Thus the matching technique must incorporate a scoring system, allowing the analogue candidates to be ranked in order from the best fit to the worst fit.
- d. A method of compiling a forecast from the selected analogues and their ensuing scenarios.

Note: As far as is known, no attempt has been made previously to select analogues based on a baseday scenario, only on a baseday situation. The ability to match scenarios, described in this Report, is a development unique to MII.

In essence the analogue approach is one of compiling a day-by-day "selective climatology"--the selection process eliminates those developments unlikely to ensue (based on meteorological history) from the current scenario or situation, choosing only those developments which, in the past, have evolved from events similar to those currently taking place. Clearly any skill used in selecting the appropriate developments and from them compiling a day-by-day "climatology", must provide a more skillful probabilistic forecast than using the complete climatology which incorporates all scenarios, including those recognizable as being unlikely to evolve from current events. If an analogue selection system fails to demonstrate this increase in skill then it follows that the design of the system is such that no skill is being used in the overall selection process.

As envisaged by MII, a major use of a successful analogue forecasting scheme lies in the compilation of extended range forecasts--say from 3 to 10 days. Out to 3 days the various numerical analysis and forecast models, aided by the subjective skills of the experienced forecaster, demonstrate considerable skill over persistence or climatology, this skill decreasing rapidly with lapsed time; after about 3 days any deterministic skill can only be expressed in gross terms. Although not displaying the initial skill available from numerical models, the probabilistic skill provided by an effective analogue system should degrade more slowly with time, providing more meaningful forecasts than numerical models after about 3 days. With current technology and understanding it seems unlikely that any operationally significant forecasting skill, superior to say a monthly climatology, can exist much beyond 10 days, although it may be possible to provide "trend" forecasts for longer periods.

Various analogue forecasting methodologies have been designed using the four basic components outlined above. Meaningful comparison of the effectiveness of these systems is made difficult, if not impossible, by the fact that the objective of each system usually differs from that of

other systems. However, none has demonstrated sufficient skill to warrant their sustained use in any operational context without further development.

### 3.2.2 The MII Approach

#### 3.2.2.1 Regional Focus

Most weather elements of operational significance (e.g., winds, waves, clouds, precipitation, fog, etc.) are the result of synoptic-scale disturbances in space and time. On this scale the range of variabilities encountered on a hemispheric basis is so great that the available data base of meteorological history (30 years) is insufficient to provide analogues unless the selection criteria are made so coarse that synoptic-scale disturbances play little part in deciding analogue selection. As mentioned in Section 1, the alternative approach adopted by MII is to focus on a region, such as that determining the meteorological events affecting the Mediterranean Sea, making no attempt to match irrelevant external events. (It will be appreciated, of course, that to produce analogue forecasts for the Mediterranean Sea, a region considerably larger than the Mediterranean itself must be considered.)

#### 3.2.2.2 The Available Historical Data Base

The MII system for analogue forecasting has been designed to exploit, on a regional focus basis, the information and resolution contained in the available history of synoptic fields. The available archived records consist of six component fields for the whole of the Northern Hemisphere for each date-time group. These are the three component-range-of-scale<sup>1</sup> (SV, SL and SD) fields for the 500-mb and 1000-mb height fields. An additional three thickness fields, one for each scale component, are produced from the 500-mb and 1000-mb isobaric fields as differences. Each of these nine fields is expressed by a 63x63 array of grid-point values oriented as shown

---

<sup>1</sup> See Appendix A.

in Fig. 1. The 30 years of available history with intervals of once daily and twice daily coverage is summarized as follows:

|                     |             |
|---------------------|-------------|
| JAN 1946 - MAR 1955 | once daily  |
| APR 1955 - MAR 1960 | twice daily |
| APR 1960 - DEC 1964 | once daily  |
| JAN 1965 - DEC 1975 | twice daily |

As discussed in Section 8.1.2, a more extensive data base is required to take full advantage of RASS--in particular, more frequent analyses are required to capture the small-scale (SD) variabilities of the atmosphere.

The gridded fields of this data base are not, of course, in the form required by RASS; one of the tasks (Task 1 b) of this Project was to construct a new history data base for use by RASS. (See Section 5.)

### 3.2.2.3 The Quick Screen

Any synoptic situation is represented by the appropriate set of 9 gridded fields discussed above. The fundamental component of any analogue selection scheme lies in the techniques used for representing the baseday and analogue candidate, thus allowing comparisons to be made and scored, and analogues selected. Various approaches can be used, all of which attempt to capture the essential pattern characteristics of the historical fields. Any approach should take into account the variations in resolution required by the different scales of atmospheric disturbance (i.e., SV, SL and SD). Also, the techniques used must be rapid enough to scan through the total history in an acceptable time without sacrificing (in the interests of speed) any of the necessary detail required for effective analogue selection.

In an attempt to speed up the selection process, an earlier version of the Rapid Analogue Selection System incorporated a preliminary "Quick Screen" process for producing a much-reduced list of potential analogue

THIS PAGE IS BEST QUALITY AVAILABLE  
FROM SOURCE & IS SUITABLE TO DDC



Fig. 1 The Standard 63x63 Grid Array of Northern-Hemisphere Coverage,  
Polar-Stereographic Projection. Note that the grid-point  
coordinates are numbered 0 through 62.

candidates. Having passed the Quick Screen criteria, these potential analogues were then assigned a final score using a functional measure which determined the proportion of baseday variance explained by each analogue candidate (Fig. 2a). The Quick Screen technique was based on a special bit-coding of component fields, designed so that the count of matching bits (baseday compared with analogue candidate) gave a measure of pattern similarity.

The Quick Screen was found to be so fast and effective at giving a preview of the final scores that it was realized it could be expanded in comprehensiveness to do the entire job of analogue selection. Quick Screen provides absolute measures of pattern similarity rather than the relative measures afforded by correlation coefficients or our functional measures. It can also give the regional distribution of pattern similarities for any component characteristics and degrees of resolution. The flexibility of the design readily allows analogue selections to be made on a regional-focus basis, utilizing data base subsets from the full hemispheric coverage.

Essentially, this particular component of the overall Rapid Analogue Selection System consists of an expanded, comprehensive, and very flexible Quick Screen process. If presented with current or other weather patterns (including scenarios), it can scan rapidly the data base and determine whatever similar weather patterns may have occurred in a history going back 30 years. The search, for an extensive region such as the Greater Mediterranean, can generally be accomplished in the order of three minutes of CDC-6500 CPU time; the complete history for the regionally focused subset can be accommodated on one large reel of magnetic tape. To satisfy Task 1 f of this Project, RASS has been designed, developed and optimized for operational use on the FNWC computer system. Program resource requirements are well within the constraints of operational specifications.

INITIAL SCREENING  
(Quick Screen Measures)

FINAL SELECTION

(Error Functional Measures)



Fig. 2a Previous Rapid Analogue System



Fig. 2b Improved Rapid Analogue System

## 4. THE BASIC BIT CODE FOR REPRESENTING SYNOPTIC PATTERNS

### 4.1 Modular Design

The Quick-Screen bit code, applicable to gridded fields, is a scheme for coding synoptic patterns. The coded bit strings that are formed represent stratified grid-point values, and the differences between grid-point values, in regular spacings and orderings of repetition over the grid. The primary purpose of the code is to allow easy and rapid comparison of one field of patterns with another, measuring the degree of similarity between these two patterns in ranges of scale, in subregion by subregion, and in coarse, medium and fine degrees of resolution. The whole Northern Hemisphere can be covered at the full resolution of the code; however any subset may be extracted to correspond to a specified regional focus.

The bit code is formulated in terms of a modularization of the gridded fields, a module consisting of a 4x4 array of grid-point values. The spacing of the grid points used to form a module differs according to the range-of-scale inherent in synoptic patterns. Thus, in the Disturbance (SD) range-of-scale the full density of the 63x63 grid array is used; in the Long-wave (SL) range-of-scale a double-spaced subset is used; and in the Vortex (SV) range-of-scale a triple-spaced subset is used. These arrays are shown in Figs. 3, 4 and 5, respectively. The numbering of the modules extends the modular concept to arrays of 8x8.

In order to effect greater discrimination in the coding of the vortex (SV) range-of-scale field, the coding is applied to the anomaly of this field from a long-term (annual) mean field:  $SV - \bar{SV}$ . The north-south gradient of the vortex anomaly reverses between summer and winter, giving a strong seasonal discriminator. Other characteristics associated with eccentricities of the vortex are also accentuated.



**Fig. 3** Resolution and Coverage for the Disturbance Scale of Pattern Features--The SD Component Range-of-Scale. The 4x4 modules of the grid array are numbered for identification and ordering. The density of grid points used is illustrated in grid-array subset number 1.

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC



**Fig. 4** Resolution and Coverage for the Large Scale of Pattern Features--  
The SL Component Range-of-Scale. The 4x4 modules of the grid  
array are numbered for identification and ordering. The density  
of grid points used is illustrated in grid-array subset number 1.

THIS PAGE IS BEST QUALITY PRACTICALLY  
FROM COPY FURNISHED TO DDC



**Fig. 5** Resolution and Coverage for the Planetary Vortex Scale of Pattern Features--The SV Component Range-of-Scale. The 4x4 modules of the grid array are numbered for identification and ordering. The density of grid points used is illustrated in grid-array subset number 1.

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

#### **4.2      The Specifying Parameters for Each 4x4 Module**

Associated with each 4x4 module of the total array there are seventeen parameters which measure the pattern characteristics (i.e., value and shape) of the height and thickness contours affecting that module for any given synoptic situation. This set of parameters has been designed to encompass the various scales of atmospheric disturbance and contour orientations that could occur in any meteorological situation. These seventeen parameters are shown in Fig. 6; note that each grid-point value of the 4x4 module enters into two of the seventeen parameters.

#### **4.3      The Bit-Code for the Specifying Parameters**

For any given meteorological situation, each of these seventeen parameters will have a numerical value of height or thickness (parameters A or B), or height or thickness difference (parameters C through Q). A bit-code is then assigned to each parameter, this bit-code defining the range interval into which the actual measured value of the parameter falls. (Note that this bit-code is not a binary code.) These range intervals are defined in terms of range levels which, in turn, are expressed in terms of a mean standard deviation,  $\bar{\sigma}^1$ . For example, Fig. 7 (page 22) shows the range intervals and range levels for parameter A, together with their specifying bit-codes (bit elements A1 through A7). The numerical values of the range levels are tabulated in Section 4.4.

---

<sup>1</sup> More precisely, an RMS value in that the sample means were close to, but not exactly, zero.



**Fig. 6** The seventeen parameters which are bit coded for each 4x4 module of the grid array are shown in five subsets. A and B are actual parameter values at the two grid points indicated. The other parameters, C through Q, are differences. To calculate the value of any difference parameter, the value at the non-lettered end of the line segment is subtracted from the value at the lettered end. Parameter C alternates in orientation between even and odd numbered modules.

The range levels which define the range intervals are specified to the program which bit-codes the gridded fields.  $\bar{\sigma}$  was calculated for each of the nine component fields based on a summer and winter sampling of each parameter. The samples were taken from all modules of the SD and SL component fields, but were confined to modules 3, 8, 10 and 13 of the three SV-anomaly component fields in order to accentuate the significant SV variabilities occurring in these modules compared with those of more southerly modules. The percentages, given as a normal expectance of occurrence for each range interval in Fig. 7, are based on an approximation to a normal distribution; they have not been verified by actually counting occurrences. However this is not critical because the distributions vary from season to season and from day to day. Values for the range levels for all seventeen parameters are given in Section 4.4.

Bit-codes are allotted to the other sixteen parameters in a manner similar to that described for parameter A. The bits assigned to all seventeen parameters are composed into a 60-bit word of code for that module. How this is done is described in detail in Section 4.5 but, basically, the composition of the word is so designed that the first quarter of the word gives a coarse resolution of a module pattern, the second quarter gives a medium resolution supplement, and the remaining half-word gives a fine resolution supplement. This composition provides a very flexible system. Thus portions of the full resolution words can be assembled to provide other resolutions; for example, a new word formed from the first quarters of a block of 4 words gives a coarse resolution coding of an 8x8 module. This flexibility for forming subsets of the basic bit code is exploited in regionally focusing the search for analogues.

In comparing two fields to determine their mutual degree of pattern similarity, the two sets of bit-coded words are simply matched, one with the other. The count of the number of corresponding bits that match is an absolute measure of the degree of pattern similarity between the fields

associated with each module. Extending this concept to include all modules representing the total field, it can be seen that this scheme can give a word-by-word (i.e., module-by-module) accounting of pattern similarity.

In Fig. 7 it will be noted that bit elements A6 and A7 (or B6 and B7 for parameter B) "flip" at the range levels corresponding to range intervals 9 and 10. This results in unwarranted bit matching when comparing corresponding pairs of these measures from two modular patterns. This will only occur when comparing the most mismatched pairs of measures--for example, if pattern x has parameter A in range interval 1 and pattern y has parameter A in range interval 10, then bit elements A6 and A7 will match. However, in such cases the entire module will generally score very low and this minor detraction is accepted in order to create extra range intervals without adding extra bits of coding.

Figure 7 shows the range intervals, range levels and bit coding for parameters A and B; Fig. 8 shows the associated scoring matrix, giving the number of matching bits obtained when two modules are compared. Note the effect (top-right and bottom-left corners of the scoring matrix) due to the spurious bit matching of elements A6 and A7 or B6 and B7. Figures 9 through 14 show similar tabulations for the other pattern-specifying parameters and their associated scoring matrices.

| Range Levels          | Range Intervals | Normal Expectancy of Occurrences | Bit Code Using Bit Elements Numbered |    |    |    |    |    |    |
|-----------------------|-----------------|----------------------------------|--------------------------------------|----|----|----|----|----|----|
|                       |                 |                                  | A1                                   | A2 | A3 | A4 | A5 | A6 | A7 |
|                       | (1)             | 4.5%                             | 0                                    | 0  | 0  | 0  | 0  | 0  | 0  |
| 1.700 $\bar{\sigma}$  | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (2)             | 8.0%                             | 0                                    | 0  | 0  | 0  | 0  | 0  | 1  |
| 1.150 $\bar{\sigma}$  | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (3)             | 12.5%                            | 0                                    | 0  | 0  | 0  | 0  | 1  | 1  |
| 0.675 $\bar{\sigma}$  | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (4)             | 12.5%                            | 0                                    | 0  | 0  | 0  | 1  | 1  | 1  |
| 0.320 $\bar{\sigma}$  | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (5)             | 12.5%                            | 0                                    | 0  | 0  | 1  | 1  | 1  | 1  |
| 0                     | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (6)             | 12.5%                            | 0                                    | 0  | 1  | 1  | 1  | 1  | 1  |
| -0.320 $\bar{\sigma}$ | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (7)             | 12.5%                            | 0                                    | 1  | 1  | 1  | 1  | 1  | 1  |
| -0.675 $\bar{\sigma}$ | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (8)             | 12.5%                            | 1                                    | 1  | 1  | 1  | 1  | 1  | 1  |
| -1.150 $\bar{\sigma}$ | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (9)             | 8.0%                             | 1                                    | 1  | 1  | 1  | 1  | 1  | 0  |
| -1.700 $\bar{\sigma}$ | ←               |                                  |                                      |    |    |    |    |    |    |
|                       | (10)            | 4.5%                             | 1                                    | 1  | 1  | 1  | 1  | 0  | 0  |

Fig. 7 Specification of Bit Code for Parameter A. The Bit Code for Parameter B is Similar.

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----|---|---|---|---|---|---|---|---|---|----|
| 1  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2  |
| 2  | 6 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1  |
| 3  | 5 | 6 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0  |
| 4  | 4 | 5 | 6 | 7 | 6 | 5 | 4 | 3 | 2 | 1  |
| 5  | 3 | 4 | 5 | 6 | 7 | 6 | 5 | 4 | 3 | 2  |
| 6  | 2 | 3 | 4 | 5 | 6 | 7 | 6 | 5 | 4 | 3  |
| 7  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 6 | 5 | 4  |
| 8  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 6 | 5  |
| 9  | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 6  |
| 10 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7  |

Fig. 8 The Scoring Matrix for Parameters A and B. Shown are the counts of the number of matching bits in comparing the bit code of range intervals.

| Range<br>Levels       | Range<br>Intervals | Normal Expectancy<br>of Occurrences | Bit Code Using Bit<br>Elements Numbered |    |    |    |
|-----------------------|--------------------|-------------------------------------|-----------------------------------------|----|----|----|
|                       |                    |                                     | C1                                      | C2 | C3 | C4 |
|                       | (1)                | 10%                                 | 0                                       | 0  | 0  | 0  |
| 1.280 $\bar{\sigma}$  |                    |                                     |                                         |    |    |    |
|                       | (2)                | 15%                                 | 0                                       | 0  | 0  | 1  |
| 0.675 $\bar{\sigma}$  |                    |                                     |                                         |    |    |    |
|                       | (3)                | 25%                                 | 0                                       | 0  | 1  | 1  |
| 0                     |                    |                                     |                                         |    |    |    |
|                       | (4)                | 25%                                 | 0                                       | 1  | 1  | 1  |
| -0.675 $\bar{\sigma}$ |                    |                                     |                                         |    |    |    |
|                       | (5)                | 15%                                 | 1                                       | 1  | 1  | 1  |
| -1.280 $\bar{\sigma}$ |                    |                                     |                                         |    |    |    |
|                       | (6)                | 10%                                 | 1                                       | 1  | 1  | 0  |

Fig. 9 Specification of Bit Code for Parameter C. The Bit Codes for Parameters F, G, H and I are Similar.

|     | (1) | (2) | (3) | (4) | (5) | (6) |
|-----|-----|-----|-----|-----|-----|-----|
| (1) | 4   | 3   | 2   | 1   | 0   | 1   |
| (2) | 3   | 4   | 3   | 2   | 1   | 0   |
| (3) | 2   | 3   | 4   | 3   | 2   | 1   |
| (4) | 1   | 2   | 3   | 4   | 3   | 2   |
| (5) | 0   | 1   | 2   | 3   | 4   | 3   |
| (6) | 1   | 0   | 1   | 2   | 3   | 4   |

Fig. 10 The Scoring Matrix for Parameters C, F, G, H and I. Shown are the counts of the number of matching bits in comparing the bit code of range intervals.

| Range<br>Levels       | Range<br>Intervals | Normal Expectancy<br>of Occurrences | Bit Code Using Bit<br>Elements Numbered |    |    |    |    |
|-----------------------|--------------------|-------------------------------------|-----------------------------------------|----|----|----|----|
|                       |                    |                                     | D1                                      | D2 | D3 | D4 | D5 |
|                       | (1)                | 5%                                  | 0                                       | 0  | 0  | 0  | 0  |
| 1.650 $\bar{\sigma}$  | ←                  |                                     |                                         |    |    |    |    |
|                       | (2)                | 10%                                 | 0                                       | 0  | 0  | 0  | 1  |
| 1.040 $\bar{\sigma}$  | ←                  |                                     |                                         |    |    |    |    |
|                       | (3)                | 15%                                 | 0                                       | 0  | 0  | 1  | 1  |
| 0.525 $\bar{\sigma}$  | ←                  |                                     |                                         |    |    |    |    |
|                       | (4)                | 20%                                 | 0                                       | 0  | 1  | 1  | 1  |
| 0                     | ←                  |                                     |                                         |    |    |    |    |
|                       | (5)                | 20%                                 | 0                                       | 1  | 1  | 1  | 1  |
| -0.525 $\bar{\sigma}$ | ←                  |                                     |                                         |    |    |    |    |
|                       | (6)                | 15%                                 | 1                                       | 1  | 1  | 1  | 1  |
| -1.040 $\bar{\sigma}$ | ←                  |                                     |                                         |    |    |    |    |
|                       | (7)                | 10%                                 | 1                                       | 1  | 1  | 1  | 0  |
| -1.650 $\bar{\sigma}$ | ←                  |                                     |                                         |    |    |    |    |
|                       | (8)                | 5%                                  | 1                                       | 1  | 1  | 0  | 0  |

Fig. 11 Specification of Bit Code for Parameter D. The Bit Code for Parameter E is Similar.

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| 1 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 |
| 2 | 4 | 5 | 4 | 3 | 2 | 1 | 0 | 1 |
| 3 | 3 | 4 | 5 | 4 | 3 | 2 | 1 | 0 |
| 4 | 2 | 3 | 4 | 5 | 4 | 3 | 2 | 1 |
| 5 | 1 | 2 | 3 | 4 | 5 | 4 | 3 | 2 |
| 6 | 0 | 1 | 2 | 3 | 4 | 5 | 4 | 3 |
| 7 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 4 |
| 8 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 |

**Fig. 12** The Scoring Matrix for Parameters D and E. Shown are the counts of the number of matching bits in comparing the bit code of range intervals.

| Range Levels         | Range Intervals | Normal Expectancy of Occurrences | Bit Code Using Bit Elements Numbered |
|----------------------|-----------------|----------------------------------|--------------------------------------|
|                      |                 |                                  | J1 J2                                |
| $0.84 \bar{\sigma}$  | (1)             | 20%                              | 0 0                                  |
| 0                    | (2)             | 30%                              | 0 1                                  |
| $-0.84 \bar{\sigma}$ | (3)             | 30%                              | 1 0                                  |
|                      | (4)             | 20%                              | 1 1                                  |

Fig. 13 Specification of Bit Code for Parameter J. The Bit Code for Parameters K through Q are Similar.

|     | (1) | (2) | (3) | (4) |
|-----|-----|-----|-----|-----|
| (1) | 2   | 1   | 0   | 1   |
| (2) | 1   | 2   | 1   | 0   |
| (3) | 0   | 1   | 2   | 1   |
| (4) | 1   | 0   | 1   | 2   |

**Fig. 14** The Scoring Matrix for Parameters J through Q. Shown are the counts of the number of matching bits in comparing the bit code of range intervals.

#### **4.4      Tabulation of Range Levels**

As described in Section 4.3 the range levels are defined in terms of a mean standard deviation,  $\bar{\sigma}$ , calculated for each parameter by a sampling technique. The following tabulations show, for each of the nine component fields, the numerical values of the range levels for the seventeen pattern-specifying parameters.

Field: SV500      (all units in cm)

|          |       |      |      |      |       |       |        |       |       |
|----------|-------|------|------|------|-------|-------|--------|-------|-------|
| A,B:     | 7930  | 5365 | 3149 | 1493 | 0     | -1493 | -3149  | -5365 | -7930 |
| C:       |       | 9847 | 5193 | 0    | -5193 | -9847 |        |       |       |
| D,E:     | 12550 | 7910 | 3993 | 0    | -3993 | -7910 | -12550 |       |       |
| F,G,H,I: |       | 6538 | 3448 | 0    | -3448 | -6538 |        |       |       |
| J-Q:     |       |      | 3195 | 0    | -3195 |       |        |       |       |

Field: SV1000

|          |       |      |      |      |       |       |        |       |       |
|----------|-------|------|------|------|-------|-------|--------|-------|-------|
| A,B:     | 7354  | 4975 | 2920 | 1384 | 0     | -1384 | -2920  | -4975 | -7354 |
| C:       |       | 9860 | 5200 | 0    | -5200 | -9860 |        |       |       |
| D,E:     | 13875 | 8745 | 4415 | 0    | -4415 | -8745 | -13875 |       |       |
| F,G,H,I: |       | 6902 | 3640 | 0    | -3640 | -6902 |        |       |       |
| J-Q:     |       |      | 3531 | 0    | -3531 |       |        |       |       |

Field: SV5-10

|          |       |      |      |      |       |       |        |       |       |
|----------|-------|------|------|------|-------|-------|--------|-------|-------|
| A,B:     | 7480  | 5060 | 2970 | 1408 | 0     | -1408 | -2970  | -5060 | -7480 |
| C:       |       | 9779 | 5157 | 0    | -5157 | -9779 |        |       |       |
| D,E:     | 12670 | 7986 | 4031 | 0    | -4031 | -7986 | -12670 |       |       |
| F,G,H,I: |       | 7709 | 4066 | 0    | -4066 | -7709 |        |       |       |
| J-Q:     |       |      | 3226 | 0    | -3226 |       |        |       |       |

Field: SL500

|          |       |       |       |      |   |       |        |        |        |
|----------|-------|-------|-------|------|---|-------|--------|--------|--------|
| A,B:     | 12407 | 8393  | 4926  | 2335 | 0 | -2335 | -4926  | -8393  | -12407 |
| C:       |       |       | 13810 | 7283 | 0 | -7283 | -13810 |        |        |
| D,E:     |       | 15650 | 9864  | 4980 | 0 | -4980 | -9864  | -15650 |        |
| F,G,H,I: |       |       | 9544  | 5033 | 0 | -5033 | -9544  |        |        |
| J-Q:     |       |       |       | 4783 | 0 | -4783 |        |        |        |

Field: SL1000

|          |      |      |      |      |   |       |       |       |       |
|----------|------|------|------|------|---|-------|-------|-------|-------|
| A,B:     | 5153 | 3486 | 2046 | 970  | 0 | -970  | -2046 | -3486 | -5153 |
| C:       |      |      | 5828 | 3073 | 0 | -3073 | -5828 |       |       |
| D,E:     |      | 7178 | 4524 | 2284 | 0 | -2284 | -4524 | -7178 |       |
| F,G,H,I: |      |      | 4465 | 2354 | 0 | -2354 | -4465 |       |       |
| J-Q:     |      |      |      | 2243 | 0 | -2243 |       |       |       |

Field: SL5-10

|          |       |       |       |      |   |       |        |        |        |
|----------|-------|-------|-------|------|---|-------|--------|--------|--------|
| A,B:     | 10977 | 7426  | 4358  | 2066 | 0 | -2066 | -4358  | -7426  | -10977 |
| C:       |       |       | 11790 | 6217 | 0 | -6217 | -11790 |        |        |
| D,E:     |       | 13972 | 8807  | 4446 | 0 | -4446 | -8807  | -13972 |        |
| F,G,H,I: |       |       | 8225  | 4338 | 0 | -4338 | -8225  |        |        |
| J-Q:     |       |       |       | 4260 | 0 | -4260 |        |        |        |

Field: SD500

|          |      |       |      |      |   |       |       |        |       |
|----------|------|-------|------|------|---|-------|-------|--------|-------|
| A,B:     | 7480 | 5060  | 2970 | 1408 | 0 | -1408 | -2970 | -5060  | -7480 |
| C:       |      |       | 8018 | 4228 | 0 | -4228 | -8018 |        |       |
| D,E:     |      | 10058 | 6340 | 3200 | 0 | -3200 | -6340 | -10058 |       |
| F,G,H,I: |      |       | 5704 | 3008 | 0 | -3008 | -5704 |        |       |
| J-Q:     |      |       |      | 2520 | 0 | -2520 |       |        |       |

Field: SD1000

|          |      |      |      |      |   |       |       |       |       |
|----------|------|------|------|------|---|-------|-------|-------|-------|
| A,B:     | 4420 | 2990 | 1755 | 832  | 0 | -832  | -1755 | -2990 | -4420 |
| C:       |      |      | 4851 | 2558 | 0 | -2558 | -4851 |       |       |
| D,E:     |      | 6115 | 3854 | 1946 | 0 | -1946 | -3854 | -6115 |       |
| F,G,H,I: |      |      | 3933 | 2074 | 0 | -2074 | -3933 |       |       |
| J-Q:     |      |      |      | 1680 | 0 | -1680 |       |       |       |

Field: SD5-10

|          |      |      |      |      |   |       |       |       |       |
|----------|------|------|------|------|---|-------|-------|-------|-------|
| A,B:     | 6630 | 4485 | 2632 | 1248 | 0 | -1248 | -2632 | -4485 | -6630 |
| C:       |      |      | 7142 | 3766 | 0 | -3766 | -7142 |       |       |
| D,E:     |      | 8781 | 5535 | 2794 | 0 | -2794 | -5535 | -8781 |       |
| F,G,H,I: |      |      | 5394 | 2844 | 0 | -2844 | -5394 |       |       |
| J-Q:     |      |      |      | 2352 | 0 | -2352 |       |       |       |

#### 4.5 Formation of the 60-Bit Word for a 4x4 Module

As outlined in Section 4.3 the bits allotted to the seventeen parameters of a module are composed into one 60-bit word of code for that module. The bit elements are arranged in such a way that, for any word, bits 1-15 give a coarse resolution of the module pattern, bits 16-30 give a medium resolution supplement and bits 31-60 give a fine resolution supplement. The following table shows the bit number location of each parameter element:

| <u>Bit Position in<br/>the 60-Bit Word</u> | <u>Parameter Element<br/>Located There</u> |                       |
|--------------------------------------------|--------------------------------------------|-----------------------|
| 1                                          | A1                                         |                       |
| 2                                          | A3                                         |                       |
| 3                                          | A5                                         |                       |
| 4                                          | B1                                         |                       |
| 5                                          | B3                                         |                       |
| 6                                          | B5                                         |                       |
| 7                                          | C1                                         | Bits 1-15 provide     |
| 8                                          | C2                                         | coarse pattern        |
| 9                                          | C3                                         | resolution            |
| 10                                         | D2                                         |                       |
| 11                                         | D4                                         |                       |
| 12                                         | D5                                         |                       |
| 13                                         | E2                                         |                       |
| 14                                         | E4                                         |                       |
| 15                                         | E5                                         |                       |
| 16                                         | A6                                         |                       |
| 17                                         | B6                                         |                       |
| 18                                         | C4                                         |                       |
| 19                                         | F1                                         |                       |
| 20                                         | F2                                         |                       |
| 21                                         | F3                                         |                       |
| 22                                         | G1                                         | Bits 16-30 provide    |
| 23                                         | G2                                         | a medium pattern      |
| 24                                         | G3                                         | resolution supplement |
| 25                                         | H1                                         |                       |
| 26                                         | H2                                         |                       |
| 27                                         | H3                                         |                       |
| 28                                         | I1                                         |                       |
| 29                                         | I2                                         |                       |
| 30                                         | I3                                         |                       |

| <u>Bit Position in<br/>the 60-Bit Word</u> | <u>Parameter Element<br/>Located There</u> |                                                                  |
|--------------------------------------------|--------------------------------------------|------------------------------------------------------------------|
| 31                                         | A2                                         |                                                                  |
| 32                                         | A4                                         |                                                                  |
| 33                                         | A7                                         |                                                                  |
| 34                                         | B2                                         |                                                                  |
| 35                                         | B4                                         |                                                                  |
| 36                                         | B7                                         |                                                                  |
| 37                                         | D1                                         |                                                                  |
| 38                                         | D3                                         |                                                                  |
| 39                                         | E1                                         |                                                                  |
| 40                                         | E3                                         |                                                                  |
| 41                                         | F4                                         |                                                                  |
| 42                                         | G4                                         |                                                                  |
| 43                                         | H4                                         |                                                                  |
| 44                                         | I4                                         |                                                                  |
| 45                                         | J1                                         |                                                                  |
| 46                                         | J2                                         |                                                                  |
| 47                                         | K1                                         |                                                                  |
| 48                                         | K2                                         |                                                                  |
| 49                                         | L1                                         |                                                                  |
| 50                                         | L2                                         |                                                                  |
| 51                                         | M1                                         |                                                                  |
| 52                                         | M2                                         |                                                                  |
| 53                                         | N1                                         |                                                                  |
| 54                                         | N2                                         |                                                                  |
| 55                                         | O1                                         |                                                                  |
| 56                                         | O2                                         |                                                                  |
| 57                                         | P1                                         |                                                                  |
| 58                                         | P2                                         |                                                                  |
| 59                                         | Q1                                         |                                                                  |
| 60                                         | Q2                                         |                                                                  |
|                                            |                                            | Bits 31-60 provide<br>a fine pattern<br>resolution<br>supplement |

It is instructive to follow the construction of a 60-bit word from the seventeen contributing parameters.

For any given parameter, say parameter A, there exists a "library" of ten 60-bit words, one for each of the ten range intervals associated with parameter A. The range interval is determined by progressive tests on the actual numerical measure of parameter A (see Section 4.4) and the appropriate word representing this range interval is selected from the library. For example, the library for parameter A is as follows:

| Bit Positions: | 1  | 2  | 3  | 4-15 | 16 | 17-30 | 31 | 32 | 33 | 34-60 |
|----------------|----|----|----|------|----|-------|----|----|----|-------|
| Bit Elements : | A1 | A3 | A5 |      | A6 |       | A2 | A4 | A7 |       |

Range Interval

|      |   |   |   |     |   |     |   |   |   |     |
|------|---|---|---|-----|---|-----|---|---|---|-----|
| (1)  | 0 | 0 | 0 | 0-0 | 0 | 0-0 | 0 | 0 | 0 | 0-0 |
| (2)  | 0 | 0 | 0 | 0-0 | 0 | 0-0 | 0 | 0 | 1 | 0-0 |
| (3)  | 0 | 0 | 0 | 0-0 | 1 | 0-0 | 0 | 0 | 1 | 0-0 |
| (4)  | 0 | 0 | 1 | 0-0 | 1 | 0-0 | 0 | 0 | 1 | 0-0 |
| (5)  | 0 | 0 | 1 | 0-0 | 1 | 0-0 | 0 | 1 | 1 | 0-0 |
| (6)  | 0 | 1 | 1 | 0-0 | 1 | 0-0 | 0 | 1 | 1 | 0-0 |
| (7)  | 0 | 1 | 1 | 0-0 | 1 | 0-0 | 1 | 1 | 1 | 0-0 |
| (8)  | 1 | 1 | 1 | 0-0 | 1 | 0-0 | 1 | 1 | 1 | 0-0 |
| (9)  | 1 | 1 | 1 | 0-0 | 1 | 0-0 | 1 | 1 | 0 | 0-0 |
| (10) | 1 | 1 | 1 | 0-0 | 0 | 0-0 | 1 | 1 | 0 | 0-0 |

The above library should be compared with Fig. 7--note that the bit columns have been rearranged to separate A1, A3, A5 (coarse pattern

resolution), A6 (the medium resolution supplement), and A2, A4, A7 (the fine resolution supplement).

A similar process is followed for the remaining 16 parameters. The 60-bit word representing the module initially has all bits set to zero and is then formed by accrual of the 17 contributory 60-bit words representing the range intervals of the parameters. The total library contains 98 words, made up as follows:

|                           |         |                 |
|---------------------------|---------|-----------------|
| A and B                   | 10 each | total 20        |
| C, F, G, H and I          | 6 each  | total 30        |
| D and E                   | 8 each  | total 16        |
| J, K, L, M, N, O, P and Q | 4 each  | total <u>32</u> |
|                           |         | <u>98</u>       |

Section 3.2.1 laid down the four basic components of any analogue forecasting scheme. It can be seen that the first of these--a methodology for interpreting any meteorological event in terms of relevant specifying parameters--is accomplished by the RASS techniques described in Section 4.

## 5. PRODUCTION OF THE BIT-CODED HISTORY

The second basic component of any analogue selection system (see Section 3.2.1) is the production of a data base in terms of the specifying parameters used to represent any meteorological events.

The source data set consists of about 150 large reel magnetic tapes and production of the bit-coded history was accomplished in two separate phases. The first step was to extract and/or generate the required nine component fields (see Section 3.2.2.2) from this source data set. Then these fields were processed into the full hemispheric bit code described in Section 4.

The coded data is organized on 8 large reel magnetic tapes and is the source for generation of any regional subset of the data.

## 6. REGIONAL FOCUS CAPABILITIES

This Section contains a description of the methods used for focusing on a selected region; the Greater Mediterranean will be used as an example. The techniques involved in searching for and selecting analogues (the third basic component of an analogue system--see Section 3.2.1) are described in Section 7.

### 6.1 General Approach

As described in Section 4.1 the bit-code is formulated in terms of a modularization of the gridded fields, a module consisting of a 4x4 array of grid-point values with the grid-point spacing being dependent on the 3 inherent ranges-of-scale.

On the SD range-of-scale the Northern Hemisphere is covered by 144 modules (see Fig. 3), the SL range-of-scale by 36 modules (see Fig. 4), and the SV range-of-scale by 16 modules (see Fig. 5). Each range-of-scale involves three fields (1000-mb, 500-mb, 500-1000-mb thickness) and thus a bit string of 588 words is required to represent the nine component fields of each synoptic situations; i.e., each date-time group in the bit-coded history.

Subsets of this coded history may be extracted to suit any purpose. A subset extracted for a specific region, such as the Greater Mediterranean, constitutes a "regional focus" subset of the data. As discussed in Sections 6.2 and 6.3, the required resolution should be taken into account when compiling a regional focus data base.

From the regional focus subset of the bit-coded history, specific date-time groups may be selected and combined to produce a bit-string

representing a regional focus scenario. Such a combination may be expressed by

$$SC_{(\tau-1) \rightarrow \tau} = S_{(\tau-1)} + S_\tau$$

where the scenario taking place from time  $(\tau-1)$  to  $\tau$ ,  $SC_{(\tau-1) \rightarrow (\tau)}$ , is a combination of the situation  $S$  at  $(\tau-1)$  and  $\tau$ .

A search for analogues similar to the baseday scenario requires, of course, that analogue candidate scenarios and the baseday scenario, are both bit-coded in the same way; the similarity score between the baseday scenario and a particular analogue candidate scenario can then be based on a count of the matching bits.

The concept of scenario coding, matching, and analogue selection is discussed in greater detail in Section 7.

## 6.2 Standardized Approach

A standard procedure has been devised for specifying a regional focus and for extracting the required bit-coded data subset. This standard procedure allows a selected list of module numbers to be specified for each of the component fields, this list depending on the particular region of interest. (The reason for specifying module numbers for each component field is to provide greater realism and flexibility--the modules required for representation of one range-of-scale are not generally the same as for other ranges-of-scale.) The degree of resolution required for every listed module has also to be specified: for coarse resolution the first quarter of the bit-coded word for that module is extracted; for medium resolution the first half of the word is extracted; and for fine resolution the full word is

extracted. The resulting subset for each component field is rearranged into three groups of words:

- a. Coarse-resolution words formed by stringing together all quarter-words which had resided in the upper quarter word before extraction;
- b. Medium-resolution-supplement words formed by stringing together all quarter-words which had resided in the second quarter-word before extraction;
- c. Fine-resolution-supplement words formed by stringing together all half-words which had resided in the second half of the word before extraction.

(Zeroes are used as necessary to complete the last word of each group so formed.)

### 6.3 The Greater Mediterranean Focus

The standardized approach outlined in Section 6.2 has been applied to the Greater Mediterranean region. The regional focus is specified by range-of-scale component fields and Figs. 15, 16 and 17 show the focus for the SD, SL and SV fields respectively. Extractions are made only for the modules where numbers have been circled. A double circle indicates fine resolution, a double bar under the number indicates medium resolution, and a single bar indicates coarse resolution for that module.

To construct the specification list (see Section 6.2) only the lowest module number of each group of four modules is listed; e.g., specifying module number 37 automatically incorporates modules 37 through 40. Following a module number a code is used to specify the resolution required for each of the four associated modules in numerical order. The resolution



**Fig. 15** Greater-Mediterranean Focus for the SD Component Fields.  
 Extractions are made only for the circled-number modules.  
 A double circle indicates fine resolution. A double bar under  
 the number indicates medium resolution. And a single bar  
 under the number indicates coarse resolution for that module.



**Fig. 16** Greater-Mediterranean Focus for the SL Component Fields.  
 Extractions are made only for the circled-number modules.  
 A double circle indicates fine resolution. A double bar under  
 the number indicates medium resolution. And a single bar  
 under the number indicates coarse resolution for that module.



**Fig. 17** Greater-Mediterranean Focus for the SV Component Fields.  
 Extractions are made only for the circled-number modules.  
 A double circle indicates fine resolution. A double bar under  
 the number indicates medium resolution. And a single bar  
 under the number indicates coarse resolution for that module.

code is 1 for coarse, 2 for medium, and 4 for fine resolution. Thus, for example, a specification list element given as 65:2244 is interpreted as

```
module 65 -- medium resolution  
66 -- medium resolution  
67 -- fine resolution  
68 -- fine resolution .
```

From Figs. 15, 16 and 17 the following specification list for the Greater Mediterranean Region may be constructed:

| <u>SD Fields</u> | <u>SL Fields</u> | <u>SV Fields</u> |
|------------------|------------------|------------------|
| 37: 1111         | 5: 0011          | 5: 0044          |
| 41: 1111         | 9: 0002          | 13: 4400         |
| 45: 0001         | 17: 1221         |                  |
| 61: 1221         | 21: 4114         |                  |
| 65: 2244         | 29: 0100         |                  |
| 69: 2002         | 33: 1000         |                  |
| 85: 1210         |                  |                  |
| 89: 4442         |                  |                  |
| 93: 4002         |                  |                  |
| 113: 1200        |                  |                  |
| 117: 1000        |                  |                  |

Rearrangement produces the following groups of words:

| <u>For an SD Field</u> | <u>For an SL Field</u> | <u>For an SV Field</u> |
|------------------------|------------------------|------------------------|
| 8 coarse               | 4 coarse               | 1 coarse               |
| 4 medium               | 2 medium               | 1 medium               |
| 3 fine                 | 1 fine                 | 2 fine                 |

Thus, for the Greater Mediterranean region, an SD field requires 15 words, an SL field requires 7 words, and an SV field 4 words--a total of 78 words for all nine component fields. To produce the data subset these 78 words are extracted and formed from the full set of 588 words for each date-time group.

In general, the production of a regional-focus data subset is accomplished in a single computer production run using the full data set of 8 tapes as input. The number of output tapes generated for any subset depends, of course, on the size of the region being considered but, typically, this would be a single tape.

## 7. THE ANALOGUE SEARCH AND SELECTION PROCESS

### 7.1 Introduction

Section 7 presents and discusses the MII methodology for providing the third basic component of any analogue selection system laid down in Section 3.2.1.

### 7.2 Preparing the Baseday

As defined in Section 3.1, the baseday may be specified as either the current synoptic situation or the synoptic situation corresponding to any date-time group in the history. Clearly, if the current situation is chosen, then analogue selection must begin with the bit-coding of its component fields and extraction of the regional-focus elements. For scenario matching using the current situation, the appropriate bit-strings must be formed incorporating the time element.

### 7.3 The Scoring Matrix

Each regional-focus subset representing a single synoptic situation, consists of 27 subgroups of words, thus:

- 3 ranges-of-scale (SV, SL, SD)
- x 3 contour values (1000-mb, 500-mb, 500-1000-mb thickness)
- x 3 resolutions (coarse, medium, fine).

Each analogue candidate from the history is scored by comparing its subset to that of the baseday, the count of the number of matching bits being a measure of the similarity between the patterns corresponding to the two situations. The counting of matching bits proceeds in stages,

commencing with coarse resolution words, then medium resolution words, and ending with fine resolution words. At each stage there is a "gate"--if the number of matching bits does not reach an assigned minimum level, then the analogue candidate is rejected at that stage. This procedure speeds up the selection process considerably.

The counting of matching bits and gate checks for minimum counts proceeds as follows:

|       |        |        |
|-------|--------|--------|
| Count | Coarse | SV500  |
| "     | "      | SV1000 |
| "     | "      | SV5-10 |
| "     | "      | SL500  |
| "     | "      | SL1000 |
| "     | "      | SL5-10 |
| "     | "      | SD500  |
| "     | "      | SD1000 |
| "     | "      | SD5-10 |

Total the Coarse counts

|       |        |        |
|-------|--------|--------|
| Count | Medium | SV500  |
| "     | "      | SV1000 |
| "     | "      | SV5-10 |
| "     | "      | SL500  |
| "     | "      | SL1000 |
| "     | "      | SL5-10 |
| "     | "      | SD500  |
| "     | "      | SD1000 |
| "     | "      | SD5-10 |

Total the Medium counts

|       |      |        |                         |
|-------|------|--------|-------------------------|
| Count | Fine | SV500  |                         |
| "     | "    | SV1000 | Total the SV500 counts  |
| "     | "    | SV5-10 | Total the SV1000 counts |
| "     | "    | SL500  | Total the SV5-10 counts |
| "     | "    | SL1000 | Total the SL500 counts  |
| "     | "    | SL5-10 | Total the SL1000 counts |
| "     | "    | SD500  | Total the SL5-10 counts |
| "     | "    | SD1000 | Total the SD500 counts  |
| "     | "    | SD5-10 | Total the SD1000 counts |
|       |      |        | Total the SD5-10 counts |
|       |      |        | Total the Fine counts   |

In the above procedure for counting matching bits there are 39 gates, each of which must be passed by an analogue candidate before being considered for the next stage in the selection process. In addition to a listing of gate values to be exceeded, the system contains a listing of weight factors to be applied to the actual scores achieved at each stage. These weights can be adjusted (tuned) to emphasize any desired feature or combination of features (i.e., range-of-scale, level, thickness, resolution). A final count is then made which is the weighted total of the 39 contributing counts--this final count is the "analogue score" and is used to rank the selected analogues. If the number of analogues selected does not reach a specified minimum, e.g., 100, then the selection process is repeated after lowering all gates by 10%. For uncommon basedays this process may have to be repeated more than once.

#### 7.4 Comparison with Monthly-Mean Fields

From the historical data, monthly-mean hemispheric climatologies have been compiled for all nine component fields in bit-coded format. A climatological regional focus subset may be extracted for any region; one such subset has been extracted for the Greater Mediterranean. The climatic group for the month of the baseday is forced past all gates, thus enabling its (weighted) final score to be used for reference purposes.

#### 7.5 Probability Considerations

In any study and design of an analogue system it is of interest to consider the effects of chance in determining the degree of similarity obtained between a baseday and an analogue candidate. For RASS, a very simple model will be presented, based on modularization and bit-coding concepts.

Consider a parameterization scheme which enables the pattern over a module to be represented by a string of  $n$  bits. Each bit, of course, can have only one value--either 0 or 1. Assume that there exists a very large data base, containing a wide range of variabilities, in this bit-coded format. Then under these conditions, selecting any two situations at random and counting the matching bits should give a result in agreement with the laws of probability regarding random events.

From Bernoulli's formula:

$$P_n(B) = \frac{n!}{B!(n-B)!} p^B q^{n-B}$$

where  $P_n(B)$  is the probability that an event will occur exactly  $B$  times out of  $n$  trials;  $p$  is the probability of the event occurring, common to each trial; and  $q$  is the probability of the event not occurring, i.e.,  $q = 1-p$ .

Matching 2 n-bit words is equivalent to n trials where  $p = q = 0.5$ . Substituting for p and q we obtain

$$P_n(B) = \frac{n!(0.5)^n}{B!(n-B)!}$$

where  $P_n(B)$  may be regarded as the probability that B bits will match out of a bit-string of n bits. Figure 18 shows curves of  $P_n(B)$  against B for various values of n.

The main feature of note is that as n increases, the probability of obtaining a chance match of other than about 50% of the bits becomes very small--or, to put it the other way, it is very likely that about 50% of the bits will match by chance.

In an analogue system such as RASS which utilizes bit-matching (60 bits per module) the arrangement of bits within the bit-string is not completely random for several reasons. For example, the range levels for the specifying parameters are based on a distribution obtained by sampling, and there is a methodology for bit-coding the range intervals. Also, for an area such as the Mediterranean, pressure is generally higher in the south than in the north and this will, on average, be reflected in the number of bits matching by chance.

Thus on average it would be expected that, when matching two 60-bit RASS modules, rather more than 30 bits would match by chance. It is not possible to calculate the actual average because of the complex interactions involved--inherent in the RASS system itself, and in the meteorological situations and patterns. However such an average for a specified module or complete regional focus can be determined by experiments. Knowledge of



**Fig. 18** Curves showing  $P_n(B)$ , the probability of B bits out of n bits matching by chance, as a function of B for various values of n.

this average determines the "zero skill" level of RASS matching<sup>1</sup> and is required for the setting of the selection gates (see Sections 7.3 and 8.1).

## 7.6 A Scheme for Scenario-Matching

### 7.6.1 The Time Tunnel

Section 6.1 described in simple terms how a bit-string representing a scenario is compiled in RASS. The equation given in that section can be generalized to cover a scenario of any length in time:

$$SC_{(\tau-n) \rightarrow \tau} = \sum_{x=0}^{x=n} s_{\tau-x}$$

where  $x$  and  $n$  are measured in units of the time increment of the data base.

It is edifying to compare analogue and scenario matching by a simple pictorial technique. A meteorological situation  $S$  can be imagined as a point in  $N$ -space where  $N$  is the number of specifying parameters. The evolution of  $S$  with time may be illustrated thus:



where  $S$  has been shown at a particular point in time. If  $S$  at this point in time is used as a basis for analogue selection then, of course, the time is that of the baseday.

---

<sup>1</sup> It is interesting to note that because of the bias toward matching, it is more difficult to find very bad analogues than very good analogues.

$S$  would only be a point in  $N$ -space if the precise value of the specifying parameters were both known and used. However the technique of using range levels for coding the specifying parameters introduces uncertainty and  $S$  should be represented by a blob rather than a point, thus:



Even allowing for the uncertainty in  $S$ , a precise match is most unlikely to be found. In general, analogue candidates are scored and ranked, and the top-scoring analogues are selected. The maximum number of mismatching bits allowed before an analogue candidate is rejected describes a "volume"  $V$  in  $N$ -space about  $S$ , thus:



In analogue selection, a baseday is chosen and then the history is searched for meteorological situations whose evolution in time with respect to  $S$  passes through  $V$ ; candidates not passing through  $V$  (the vast majority) are rejected:



An analogue forecast at time  $(\tau+1)$  for meteorological situation S occurring at time  $\tau$  is a compilation of all analogues passing through V, the compilation being performed on the analogue situations one time period later than when they passed through V.

One point is immediately apparent from the above diagrams--the best analogue at time  $\tau$  is not necessarily the analogue situation which will be closest to the evolution of S at time  $\tau+1$ . Thus an analogue forecasting system based on the single best analogue at time  $\tau$  (the deterministic approach) is not likely to be consistently successful; a compilation of a "reasonable" number of analogues is required (the probabilistic approach). It may also be noted that the closest match(es) at time  $\tau+1$  may lie outside V at time  $\tau$ , and will therefore not be included in the compilation. However it is not possible to recognize these cases in advance and an analogue forecast system assumes that the evolution of analogues passing through V will more closely resemble the evolution of S than analogues not passing through V.

The diagrams shown above may be extended to illustrate scenario matching where, instead of an acceptable match at  $\tau$  only, an acceptable match over a period of time is required. The following diagram is self-evident--to be successful, analogue candidates must enter and pass through a "time-tunnel":



The above diagram requires that the match be maintained over two time intervals, from  $\tau-2$  to  $\tau$ . This is a two-period scenario match. Matches over longer periods may be obtained.

Note that a cylindrical tunnel requires that the number of matching bits remains within  $V$  for the whole time period. It is more realistic to accept a greater number of analogues at the start of the scenario matching process, the selection criteria becoming relatively more stringent as baseday is approached. The diagram now becomes:



Only those analogue candidates entering the time "funnel" at  $\tau-2$  and remaining within to emerge at time  $\tau$  are used to compile the forecast for time  $\tau+1$ .

The effect of a funnel may be achieved in a variety of ways, an obvious method being to set

$$V_{\tau-2} > V_{\tau-1} > V_\tau \quad .$$

An alternative approach is to base the funnel on range-of-scale and pattern resolution considerations, using large-scale features and coarse resolution at first, then emphasizing smaller-scale features and finer resolution as baseday is approached. A method for doing this is described in the following Section.

### 7.6.2 Coupling RASS Forecasts to Numerical Forecast Models

The pictorial technique developed above may be used to illustrate a technique for making fuller use of the skill inherent in a numerical forecast model, both by improving RASS forecasts and by extending the usefulness of the numerical model.

Considering the meteorological situation  $S$  at time  $\tau$  as being the current situation, scenario matching from say  $\tau-48$  hours to  $\tau$  can be carried out as previously described. Now assume that a PE (or other) model is available which demonstrates useful skill out to  $\tau+48$  hours. The forecast situations from this model can be used to extend the "time funnel" into the future, thus making use of the skill in the PE model to select analogues for times greater than  $\tau+48$  hours. Thus:



Only analogue candidates which remain within  $V$  for the whole range of  $\tau$  ( $\pm 48$  hours) are used to compile analogue forecasts for forecast times greater than 48 hours. Note that the above diagram need not be symmetrical. For example,  $V_{\tau+24}$  and  $V_{\tau+48}$  need not be equal to  $V_{\tau-24}$  and  $V_{\tau-48}$  respectively, and neither do equal periods about the baseday have to be used. In fact, the more confidence that can be placed in the PE model, the less  $V_{\tau+24}$  and  $V_{\tau+48}$  should be.

A method for producing a bit-string to select analogue scenarios based on the known past evolution of S and its forecast future evolution is shown below. (This method is part of the overall design of RASS and its use is demonstrated in the two examples discussed in Section 8.)



Key:     ● Coarse resolution only

■ Coarse resolution plus medium resolution supplement

▲ Full resolution (coarse plus medium and fine resolution supplements)

Note that the ranges-of-scale (3) utilized in the bit string depend on time, as do the degrees of resolution (3) employed.

It is considered that the ability to couple analogue scenarios to a numerical forecast model such as the FNWC PE model is a unique and particularly significant development. Not only does the technique promise to allow the information provided by the PE model to be usefully extended by several days, but it should also allow the deterministic nature of the

PE forecast to be converted into probabilistic terms. In other words, if the deterministic result of the PE model is regarded as the most likely evolution from the current situation, then a selection of appropriate analogues will allow other but less likely evolution possibilities to be determined. Such a capability is of considerable operational significance and of direct relevance to the use of operational analysis techniques for planning purposes. However at this stage of RASS development the many potential uses of scenario matching have yet to be explored and exploited.

## 8. TUNING AND VERIFICATION PROCEDURES

### 8.1 Tuning

There are basically two sets of tuning controls--the selection gates and the weight factors assigned to the number of matching bits achieved by an analogue candidate at each phase of the selection process. As discussed in Section 7.3 and as presently used in RASS, essentially the selection gate levels control the number of analogues selected while the weights decide the final ranking by adjusting the relative significance of any chosen pattern characteristics.

#### 8.1.1 The Selection Gates

In carrying out the selection process it is important to select a "reasonable" number of analogues. If too many are scored, selected and ranked, computer resources are being expended unnecessarily, and if too few are selected the process has to be repeated after lowering the gate levels--which again wastes computer time. (It is not possible to know how many analogues will be selected for an arbitrary baseday. The selection process could be stopped once a chosen number is reached but this is not a realistic approach as the best analogues may not have been reached in the search.)

Selection of this "reasonable" number has to be based on knowing, on average, how many analogues will be selected from the appropriate season for a randomly-chosen baseday. Selection gates are set so that this average number is "reasonable". Of course, if any particular baseday is a commonly-occurring situation then a larger number will be selected, and vice versa<sup>1</sup>. Determining this average number of selections involves those considerations discussed in Section 7.5.

---

<sup>1</sup>The fact that a very low number of analogues is selected for a given baseday is information of value in that it informs that an unusual event is occurring.

### 8.1.1.1 Persistence

A method for arriving at an approximation to this average number of analogues to an arbitrary baseday is to select a small number of basedays and match them (by counting matching bits) against their own evolution. Thus if  $S_\tau$  is the baseday and  $n$  is an integer number of days the procedure may be expressed by

$$S_\tau : S_{\tau+n} , \quad n = 0 \rightarrow 15$$

where ":" indicates the process of counting matching bits. In effect this procedure detects the persistence of  $S_\tau$  out to 15 days.

Figures 19, 20 and 21 show the persistence out to 15 days of the nine component fields using all 31 days of January 1967 as basedays. Similar curves are discussed in greater detail in Section 8.2. However with regard to selection gates, if it is assumed that there is zero persistence after 15 days (i.e., that  $S_{\tau+15}$  is independent of  $S_\tau$ ) and that January 1967 was a "typical" January, then the match coefficient at  $S_{\tau+15}$  gives a measure of the number of bits likely to match by chance in all Januaries.

To obtain this measure correctly for, say, January, requires matching two randomly selected situations from all Januaries in the data base, repeating this process a large number of times, then taking a mean of the count of matching bits. However, for the purposes of setting selection gate levels the approximate process has been found satisfactory with regard to selection of a reasonable number of analogues (see also Section 8.2).



Figure 19 January 1967 500-mb Persistence



Figure 20 January 1967 1000-mb Persistence



Figure 21 January 1967 500-1000-mb Persistence

### 8.1.2 Weight Factors

Suitable choice of the weighting factors applied to the number of matching bits at each stage of the selection process allows the relative significance of any input component to the final score to be controlled. There are 9 of these components--3 ranges-of-scale x 3 degrees of resolution. Basically (and obviously) the smaller the range-of-scale and the finer the degree of resolution, the more difficult it is to obtain good analogues.

The three ranges-of-scale are adequate to represent disturbances of the atmosphere in space. However, associated with each range-of-scale there is a range-in-time; SV disturbance components vary slowly, SL components more quickly, and SD components vary rapidly. To capture time-variabilities on the SV scale, SV analyses in the data base should be at intervals of 1 or 2 days; the available data base contains SV analyses with this frequency (see Section 3.2.2.2). For SL analyses, the analysis frequency should be every 12 hours; the available data base is adequate for some periods of the history but not for all the history. However, to capture time-variabilities on the SD scale, SD analyses are required every 6 hours with an interpolation capability down to 1 hour; in this respect the data base is completely inadequate.

To illustrate the effect of this lack of resolution-in-time on the SD range-of-scale, imagine that good analogues for a particular baseday have been found in the SV and SL ranges-of-scale. Because SD analyses are only available at 12-hour or 24-hour intervals, they will appear to be scattered almost randomly through these analogues and their subsequent evolution. In fact, based on 24-hour analyses, the SD range-of-scale (in time) appears as "noise". A forecaster requires synoptic analyses every 6 hours for a large area and every 3 hours for local-area forecasting; this requirement is no less critical for RASS which matches synoptic situations and their evolutions in space and time.

The need to interpolate SD features to a time-resolution of 1 hour is to provide a "phase-matching" capability. For example, an analogue may match the baseday situation very well with regard to the SV and SL features, but the evolution of analogue SD features may lead or lag those of the baseday by a small number of hours. The analogue should therefore be adjusted to correspond to the "phase" of the baseday--a feasible process given sufficient time-resolution in the data base.

SD features are largely responsible for operationally significant weather factors and therefore their importance should be reflected in analogue selection and ranking. However at this time, due to the lack of resolution in the data base along the time axis, very little weight can be given to the SD range-of-scale. Given the currently available data base, the SL range-of-scale is the smallest that can be matched with any degree of success. Therefore the weight factors assigned to SL fields are accentuated accordingly.

## 8.2 Persistence Climatologies

Section 8.1.1.1 discussed the relevance of persistence in establishing selection gate levels to ensure that an adequate but reasonable number of analogues are chosen in, ideally, one pass through the available history. However the main use of persistence scores is to establish a "zero skill" level against which to compare the effectiveness of RASS; a variety of climatologies has been derived for this purpose.

In all climatologies the formulation given previously has been used out to 15 days; i.e.,

$$S_{\tau} : S_{\tau+n} \quad , \quad n = 0 \rightarrow 15 \quad ,$$

where  $\tau$  assumes a range of values depending on the climatology required. For example to derive an all-January climatology,  $\tau$  covers the range 1 → 31 for all Januarys in the data base. Note that a January climatology is based on a 15-day period starting in January but including contributions from situations up to mid-February. From the results for each January a mean curve is calculated for the all-January persistence climatology.

The climatology to be used for verification of RASS is the monthly climatology appropriate to the baseday. This monthly climatology has been derived for each month (12), by each component field (9), and by each degree of resolution plus one all-resolution category (4). In all cases the modules incorporated in the climatology are those appropriate to the range-of-scale and resolution considered; these modules are shown in Figs. 15, 16 and 17.

In addition to monthly values, seasonal and annual persistence climatologies have also been derived. Figure 22 shows an example of an all-years persistence climatology using equal weight factors (=1) at each selection gate; it thus falls in the all-resolution category. (Note that in this figure the match coefficient is the fraction of mis-matching bits-- compare with Figs. 19-21 which use the fraction of matching bits.)



Fig. 22 Mean annual persistence climatologies for the three ranges-of-scale, 500-mb level.



Fig. 22 continued

### 8.3 The RASS Verification Scheme

The RASS methodology for selecting, scoring and ranking analogues is described in Section 7. As explained, the selection process includes considerations of 3 ranges-of-scale and 3 degrees of resolution. For a regional focus, the actual terrestrial area involved in analogue selection is a function of both resolution and range-of-scale. Thus, for example, Figs. 15-17 show the modules and associated ranges-of-scale and degrees of resolution for the Greater Mediterranean regional focus. It will be noted that the area involved in analogue selection is much greater than the Mediterranean Sea itself.

The analogue verification scheme is designed to operate on a smaller area than that involved in analogue selection. This area (in terms of modules) is called the OBJECT REGION, and is presently defined as those modules, appropriate to each range-of-scale, for which full resolution is used in analogue selection. Thus, for the Greater Mediterranean regional focus, the object region modules are as follows:

SD range-of-scale. Modules no. 67, 68, 89, 90, 91, 93.

(See Fig. 15.)

SL range-of-scale. Modules no. 21, 24. (See Fig. 16.)

SV range-of-scale. Modules no. 7, 8, 13, 14. (See Fig. 17.)

Only these modules are used in the RASS verification scheme.

The verification process currently is performed out to eight days from the time of the selected baseday; this verification period can be varied. There are basically three stages involved in the verification procedure:

- a. Persistence Verification. For a selected baseday of time  $\tau$  ( $BD_\tau$ ) the ensuing events are matched against  $BD_{\tau+x}$ . Thus, using the nomenclature previously explained:

$$BD_{\tau+x} : BD_\tau , \quad x = 0 \rightarrow 8 .$$

This score shows the effectiveness of persistence forecasting, i.e., the effect of assuming that the baseday situation remains unchanged for 8 days.

- b. Climatology Verification.<sup>2</sup> The baseday,  $BD_\tau$ , and its ensuing scenario, is matched against the climatology appropriate to the calendar month ( $C_{BD}$ ) of the baseday. Thus:

$$BD_{\tau+x} : C_{BD} , \quad x = 0 \rightarrow 8 .$$

This score shows the effect of assuming that climatologically normal conditions will prevail for the next 8 days.

- c. Analogue Verification. The day-by-day evolution of each of the top N analogues (where N can be specified) is matched against the evolution of the baseday situation. Thus:

$$S_{n,\tau'+x} : BD_{\tau+x} , \quad n = 1 \rightarrow N , \quad x = 0 \rightarrow 8$$

where  $\tau'$  is the date-time of the selected analogue  $S_n$ .

Examples of verification records are given in Sections 8.4.1 and 8.4.2.

---

<sup>2</sup>As used in this sense, climatology refers to the mean (in time) of the component fields.

Verification of course, can only be carried out using historical information. Thus in an operational mode the verification scores of analogues selected for a particular baseday will not be available until 8 days later.

In the RASS verification scheme, records are stacked as they are produced and, once an adequate sample has accumulated, various statistical measures can be produced to show the performance of analogue selections over, for example, the previous month.

#### 8.4 Demonstration of Current RASS Capabilities

The current capabilities of RASS are demonstrated by application to two scenarios<sup>3</sup> for the Greater Mediterranean region of focus chosen from historical records. The first demonstration is based on the scenario ensuing from 12Z 22 AUG 69 and is presented in Section 8.4.1; the second demonstration, presented in Section 8.4.2, is based on the scenario ensuing from 12Z 18 OCT 75.

While studying the tables and charts presented for each demonstration, the following points should be kept in mind:

- a. As discussed in Section 8.1.2, because of the inadequacy of the data base with regard to SD features, little weight can be given to this range-of-scale. In general, therefore, a good match for SD features is less likely than for the more-strongly accentuated SL features.

---

<sup>3</sup> Dates specified by NEPRF.

- b. Analogue selection is based on scenario-matching, discussed in Section 7.6, using a "double-ended time tunnel" of the type shown in Section 7.6.2. In using this time funnel however, the "forecast future" shown on the diagram was available from historical records. A suitable input to such a time funnel is shown on page 58, but the current data base does not contain all the required analyses. The procedure adopted to circumvent data base deficiencies was to assume that any missing field was identical to the last available analysis of that field. The effect of this assumption of persistence is, of course, particularly severe when matching the SD range-of-scale.
- c. The analogue scenarios presented in chart form (two scenarios for each baseday scenario) must not be regarded as deterministic. The scenarios given should be regarded as being only two examples of a set of possible scenarios evolving from initial conditions similar to those of the baseday scenario. (The other possible scenarios have not been included in this Report due to space limitations.) The set of possible scenarios would be used, for example, to compile a forecast of surface winds in probabilistic terms--there are many other potential uses.
- d. The term "climatology" used in each of the two verification summaries refers to the monthly mean field for each of the nine component-fields. This mean field, of course, is relatively flat and featureless and has no utility in generating weather information--no more than weather information for the Mediterranean can be produced from, say, a monthly-mean chart of sea-level pressure. Comparison of the fields representing an actual meteorological situation with the mean fields merely yields a measure of the degree of pattern

similarity between these two sets of fields; this measure has little significance.

The two demonstrations are presented without discussion of the tables or charts as significant similarities and differences are readily apparent by visual inspection.

The first table in each Section shows the top 25 analogues. For each selection, two rows of figures are given; the upper row shows scores based on the baseday situation, while the lower row shows scores based on the baseday scenario. (The ordering of the selections was based on final scenario scores.) All scores are given in parts per 1000 (i.e., % x 10). The first 9 columns show the scores of unweighted matching bits for each of the nine component fields. The sum of the unweighted bits, normalized to 1000, is shown in column 10. The final column shows the final score based on the weighted sum of matching bits, again normalized to 1000.

As will be noted the top eight analogues for the summer case and the top nine analogues for the winter case were part of the same sequence as the baseday and these cases, therefore, have been excluded from the verification summaries. These are given in the next four tables in each Section and show, for the baseday to baseday+8 days, the scores for each of the nine component fields. These scores are in terms of unweighted matching bits, apart from the final row which is the weighted sum of matching bits. For each verification summary the mean-field climatology is given first (see paragraph d above), followed by persistence. Then follow the scores for the ten scenarios selected as most closely resembling the baseday scenario.

Each demonstration presents charts for 3 scenarios showing the SL500, SL1000, SD500 and SD1000 component fields at day 0, day 2 and day 5. The first scenario in each case is for that of the baseday followed by two scenarios chosen from the list of analogue selections. These are as follows:

|               | <u>1st Scenario</u>          | <u>2nd Scenario</u>             | <u>3rd Scenario</u>             |
|---------------|------------------------------|---------------------------------|---------------------------------|
| Section 8.4.1 | { 12Z 22 AUG 69<br>(baseday) | 12Z 04 SEP 52<br>(selection 10) | 12Z 15 JUL 66<br>(selection 11) |
| Section 8.4.2 | { 12Z 18 OCT 75<br>(baseday) | 12Z 26 APR 72<br>(selection 11) | 12Z 10 NOV 68<br>(selection 12) |

**8.4.1 RASS Demonstration 1: Baseday 12Z 22 AUG 69**

**List of contents:**

Analogue Selection Table: page 77

Verification Summary : pages 78-81

1st Scenario (baseday) : pages 82-93

2nd Scenario : pages 94-105

3rd Scenario : pages 106-117

(To facilitate study of the charts, each scenario has been separated from the next by an unnumbered yellow insert; within each scenario sets of component fields are separated by an unnumbered blue insert.)

## ANALOGUE SELECTIONS FOR 12Z 22 AUG 69 MEDITERRANEAN REGION

| ANALOGUE DTG      | SV         |            |            | SL         |            |            | SD         |            |            | TOTAL      | FINAL |
|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------|
|                   | 500        | 1000       | 5-10       | 500        | 1000       | 5-10       | 500        | 1000       | 5-10       |            |       |
| 1. 12Z 22 AUG 69  | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000  |
|                   | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000       | 1000  |
| 2. 00Z 22 AUG 69  | 971<br>980 | 971<br>965 | 954<br>960 | 942<br>950 | 942<br>929 | 958<br>957 | 817<br>847 | 834<br>848 | 820<br>835 | 875<br>884 | 886   |
| 3. 00Z 23 AUG 69  | 983<br>985 | 979<br>975 | 958<br>963 | 964<br>953 | 924<br>925 | 958<br>961 | 833<br>836 | 834<br>840 | 845<br>842 | 885<br>882 | 885   |
| 4. 12Z 21 AUG 69  | 967<br>993 | 971<br>967 | 983<br>988 | 921<br>923 | 909<br>893 | 924<br>941 | 782<br>792 | 799<br>800 | 758<br>777 | 843<br>844 | 913   |
| 5. 12Z 23 AUG 69  | 975<br>980 | 971<br>968 | 988<br>990 | 915<br>919 | 845<br>882 | 945<br>940 | 799<br>794 | 756<br>772 | 826<br>809 | 849<br>844 | 903   |
| 6. 00Z 21 AUG 69  | 958<br>973 | 958<br>948 | 946<br>957 | 900<br>895 | 885<br>854 | 903<br>915 | 751<br>757 | 745<br>749 | 725<br>742 | 811<br>808 | 884   |
| 7. 00Z 24 AUG 69  | 971<br>967 | 946<br>940 | 958<br>967 | 870<br>883 | 818<br>828 | 897<br>920 | 733<br>750 | 720<br>731 | 723<br>742 | 795<br>800 | 865   |
| 8. 12Z 20 AUG 69  | 958<br>973 | 954<br>950 | 979<br>985 | 852<br>868 | 845<br>820 | 900<br>892 | 713<br>721 | 721<br>729 | 710<br>720 | 790<br>785 | 864   |
| 9. 12Z 20 AUG 62  | 954<br>962 | 892<br>885 | 954<br>957 | 858<br>882 | 833<br>833 | 830<br>856 | 755<br>747 | 685<br>703 | 721<br>726 | 783<br>783 | 852   |
| 10. 12Z 04 SEP 62 | 933<br>940 | 950<br>937 | 925<br>930 | 870<br>859 | 894<br>852 | 858<br>833 | 688<br>676 | 699<br>699 | 702<br>689 | 776<br>757 | 852   |
| 11. 12Z 15 JUL 65 | 954<br>973 | 908<br>903 | 954<br>960 | 870<br>841 | 812<br>824 | 858<br>842 | 750<br>745 | 730<br>739 | 703<br>710 | 791<br>783 | 851   |
| 12. 00Z 16 JUL 65 | 950<br>958 | 917<br>907 | 967<br>968 | 852<br>840 | 833<br>827 | 852<br>847 | 742<br>740 | 701<br>722 | 707<br>711 | 784<br>778 | 850   |
| 13. 12Z 16 JUL 66 | 958<br>968 | 908<br>905 | 967<br>960 | 845<br>840 | 824<br>821 | 855<br>844 | 760<br>757 | 727<br>731 | 730<br>722 | 795<br>786 | 849   |
| 14. 00Z 15 JUL 66 | 958<br>972 | 913<br>912 | 967<br>968 | 852<br>835 | 818<br>815 | 864<br>838 | 713<br>708 | 715<br>713 | 685<br>684 | 776<br>763 | 845   |
| 15. 12Z 05 SEP 62 | 908<br>932 | 913<br>917 | 946<br>947 | 858<br>854 | 821<br>838 | 845<br>840 | 701<br>695 | 697<br>717 | 707<br>701 | 770<br>766 | 844   |
| 16. 12Z 24 AUG 69 | 929<br>942 | 950<br>938 | 979<br>978 | 852<br>862 | 758<br>796 | 894<br>908 | 698<br>706 | 688<br>705 | 699<br>703 | 769<br>771 | 842   |
| 17. 12Z 15 AUG 61 | 929<br>945 | 875<br>898 | 942<br>942 | 852<br>843 | 812<br>798 | 855<br>857 | 732<br>732 | 697<br>736 | 732<br>736 | 780<br>782 | 841   |
| 18. 12Z 16 AUG 61 | 929<br>947 | 896<br>898 | 933<br>938 | 839<br>839 | 830<br>816 | 842<br>850 | 712<br>698 | 714<br>707 | 706<br>707 | 774<br>763 | 841   |
| 19. 00Z 15 JUL 70 | 925<br>938 | 889<br>887 | 937<br>947 | 864<br>855 | 845<br>815 | 827<br>829 | 711<br>705 | 729<br>721 | 669<br>672 | 770<br>759 | 841   |
| 20. 12Z 19 AUG 62 | 958<br>960 | 908<br>898 | 954<br>953 | 870<br>875 | 800<br>796 | 867<br>866 | 695<br>706 | 679<br>691 | 710<br>716 | 769<br>767 | 840   |
| 21. 12Z 21 AUG 62 | 942<br>960 | 900<br>892 | 942<br>943 | 858<br>866 | 788<br>806 | 858<br>851 | 687<br>708 | 685<br>684 | 686<br>708 | 759<br>762 | 838   |
| 22. 12Z 14 JUL 66 | 954<br>973 | 908<br>910 | 954<br>963 | 839<br>826 | 821<br>812 | 821<br>829 | 720<br>719 | 704<br>705 | 687<br>670 | 770<br>759 | 838   |
| 23. 00Z 25 AUG 69 | 942<br>952 | 908<br>917 | 958<br>967 | 848<br>849 | 776<br>787 | 882<br>891 | 671<br>685 | 684<br>685 | 688<br>682 | 758<br>754 | 836   |
| 24. 12Z 15 JUL 70 | 917<br>947 | 879<br>882 | 933<br>937 | 873<br>855 | 821<br>807 | 848<br>841 | 693<br>690 | 687<br>701 | 650<br>659 | 754<br>749 | 835   |
| 25. 12Z 04 SEP 60 | 908<br>935 | 937<br>932 | 925<br>943 | 842<br>826 | 827<br>791 | 839<br>859 | 701<br>710 | 749<br>751 | 680<br>692 | 774<br>770 | 835   |

8-DAY VERIFICATION SUMMARY

BASEDAY : 12Z 22 AUG 69  
 ANALOGUE : CLIMATOLOGY  
 RANK : 0  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 937 | 945 | 942 | 933 | 967 | 975 | 971 | 942 | 929 |
| 1000:   | 942 | 937 | 933 | 937 | 967 | 950 | 950 | 963 | 933 |
| 5-10:   | 983 | 996 | 988 | 958 | 954 | 954 | 925 | 946 | 946 |
| SL 500: | 808 | 792 | 783 | 775 | 800 | 783 | 792 | 808 | 833 |
| 1000:   | 742 | 783 | 729 | 775 | 750 | 775 | 753 | 800 | 792 |
| 5-10:   | 842 | 850 | 850 | 850 | 817 | 817 | 850 | 858 | 875 |
| SD 500: | 653 | 697 | 683 | 628 | 608 | 639 | 631 | 661 | 650 |
| 1000:   | 669 | 694 | 681 | 675 | 639 | 672 | 636 | 673 | 664 |
| 5-10:   | 672 | 697 | 664 | 650 | 608 | 619 | 603 | 667 | 629 |
| FINAL   | 845 | 870 | 835 | 852 | 842 | 855 | 850 | 856 | 842 |

BASEDAY : 12Z 22 AUG 69  
 ANALOGUE : PERSISTENCE  
 RANK : 0  
 REGION : MEDITERRANEAN

|         | +0   | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 1000 | 975 | 929 | 896 | 904 | 929 | 933 | 904 | 892 |
| 1000:   | 1000 | 971 | 959 | 929 | 925 | 929 | 933 | 921 | 875 |
| 5-10:   | 1000 | 988 | 979 | 950 | 937 | 937 | 925 | 937 | 937 |
| SL 500: | 1000 | 933 | 858 | 883 | 825 | 825 | 833 | 850 | 808 |
| 1000:   | 1000 | 858 | 783 | 817 | 825 | 867 | 850 | 842 | 833 |
| 5-10:   | 1000 | 953 | 892 | 875 | 825 | 842 | 842 | 833 | 800 |
| SD 500: | 1000 | 755 | 647 | 585 | 594 | 625 | 639 | 597 | 608 |
| 1000:   | 1000 | 731 | 678 | 706 | 569 | 725 | 667 | 664 | 694 |
| 5-10:   | 1000 | 808 | 681 | 639 | 603 | 653 | 664 | 656 | 658 |
| FINAL   | 1000 | 897 | 844 | 842 | 831 | 862 | 858 | 831 | 832 |

BASEDAY : 12Z 22 AUG 69  
 ANALOGUE : 12Z 20 AUG 52  
 RANK : 1  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 954 | 950 | 929 | 883 | 908 | 913 | 908 | 858 | 829 |
| 1000:   | 992 | 904 | 898 | 825 | 875 | 892 | 838 | 846 | 779 |
| 5-10:   | 954 | 954 | 933 | 937 | 937 | 950 | 913 | 954 | 950 |
| SL 500: | 867 | 875 | 842 | 817 | 800 | 800 | 767 | 783 | 758 |
| 1000:   | 858 | 900 | 833 | 783 | 700 | 758 | 758 | 792 | 758 |
| 5-10:   | 817 | 883 | 892 | 903 | 858 | 792 | 842 | 842 | 825 |
| SD 500: | 694 | 722 | 722 | 522 | 619 | 658 | 656 | 625 | 664 |
| 1000:   | 633 | 705 | 697 | 628 | 617 | 647 | 631 | 639 | 717 |
| 5-10:   | 681 | 697 | 733 | 578 | 633 | 639 | 703 | 650 | 625 |
| FINAL   | 365 | 902 | 857 | 827 | 805 | 844 | 832 | 835 | 824 |

## 8-DAY VERIFICATION SUMMARY

BASEDAY : 122 22 AUG 69  
 ANALOGUE: 122 04 SEP 52  
 RANK : 2  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 933 | 925 | 921 | 917 | 904 | 929 | 929 | 858 | 904 |
| 1000:   | 950 | 917 | 892 | 867 | 921 | 921 | 933 | 946 | 921 |
| 5-10:   | 925 | 950 | 958 | 975 | 963 | 971 | 971 | 871 | 937 |
| SL 500: | 925 | 858 | 775 | 767 | 817 | 750 | 800 | 867 | 842 |
| 1000:   | 917 | 867 | 733 | 742 | 692 | 667 | 717 | 753 | 758 |
| 5-10:   | 917 | 892 | 792 | 833 | 850 | 825 | 850 | 850 | 853 |
| SD 500: | 678 | 772 | 742 | 672 | 658 | 697 | 608 | 647 | 725 |
| 1000:   | 691 | 755 | 694 | 714 | 736 | 639 | 603 | 736 | 669 |
| 5-10:   | 706 | 790 | 703 | 700 | 661 | 661 | 667 | 664 | 734 |
| FINAL   | 901 | 872 | 805 | 804 | 830 | 816 | 821 | 830 | 821 |

BASEDAY : 122 22 AUG 69  
 ANALOGUE: 122 15 JUL 66  
 RANK : 3  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 954 | 950 | 925 | 917 | 975 | 950 | 942 | 917 | 871 |
| 1000:   | 998 | 904 | 875 | 863 | 921 | 900 | 875 | 853 | 812 |
| 5-10:   | 954 | 971 | 933 | 946 | 946 | 954 | 917 | 937 | 933 |
| SL 500: | 908 | 917 | 933 | 817 | 775 | 725 | 775 | 858 | 825 |
| 1000:   | 842 | 917 | 842 | 767 | 717 | 742 | 708 | 858 | 792 |
| 5-10:   | 917 | 908 | 892 | 908 | 850 | 808 | 842 | 842 | 875 |
| SD 500: | 703 | 753 | 742 | 644 | 658 | 572 | 639 | 636 | 573 |
| 1000:   | 703 | 750 | 694 | 658 | 697 | 619 | 681 | 697 | 592 |
| 5-10:   | 678 | 678 | 689 | 683 | 619 | 553 | 592 | 633 | 633 |
| FINAL   | 881 | 914 | 886 | 858 | 831 | 812 | 807 | 840 | 831 |

BASEDAY : 122 22 AUG 69  
 ANALOGUE: 007 16 JUL 66  
 RANK : 4  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 950 | 904 | 896 | 925 | 950 | 925 | 925 | 879 | 829 |
| 1000:   | 917 | 904 | 908 | 904 | 946 | 888 | 892 | 871 | 825 |
| 5-10:   | 967 | 958 | 954 | 933 | 950 | 937 | 921 | 925 | 929 |
| SL 500: | 892 | 908 | 900 | 792 | 790 | 725 | 817 | 900 | 800 |
| 1000:   | 883 | 903 | 842 | 753 | 708 | 725 | 775 | 800 | 767 |
| 5-10:   | 917 | 917 | 917 | 867 | 825 | 792 | 858 | 883 | 875 |
| SD 500: | 700 | 739 | 764 | 611 | 600 | 603 | 611 | 603 | 572 |
| 1000:   | 664 | 747 | 683 | 667 | 664 | 631 | 689 | 672 | 561 |
| 5-10:   | 669 | 681 | 739 | 644 | 581 | 578 | 592 | 592 | 647 |
| FINAL   | 883 | 908 | 900 | 844 | 822 | 812 | 840 | 821 | 820 |

8-DAY VERIFICATION SUMMARY

BASEDAY : 127 22 AUG 69  
 ANALOGUE: 127 16 JUL 66  
 RANK : 5  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 958 | 954 | 950 | 950 | 958 | 929 | 946 | 883 | 842 |
| 1000:   | 908 | 913 | 921 | 900 | 933 | 875 | 879 | 842 | 808 |
| 5-10:   | 967 | 942 | 950 | 950 | 963 | 946 | 917 | 933 | 925 |
| SL 500: | 883 | 892 | 842 | 783 | 725 | 750 | 842 | 883 | 808 |
| 1000:   | 842 | 933 | 900 | 755 | 717 | 742 | 817 | 783 | 742 |
| 5-10:   | 917 | 908 | 908 | 850 | 825 | 825 | 833 | 892 | 867 |
| SD 500: | 725 | 761 | 739 | 628 | 625 | 664 | 667 | 594 | 531 |
| 1000:   | 686 | 714 | 681 | 672 | 681 | 667 | 700 | 650 | 608 |
| 5-10:   | 697 | 694 | 714 | 650 | 647 | 631 | 619 | 608 | 583 |
| FINAL   | 869 | 887 | 890 | 841 | 818 | 818 | 852 | 823 | 821 |

BASEDAY : 127 22 AUG 69  
 ANALOGUE: 002 15 JUL 66  
 RANK : 6  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 958 | 942 | 875 | 871 | 958 | 958 | 937 | 904 | 867 |
| 1000:   | 913 | 904 | 867 | 879 | 908 | 913 | 879 | 871 | 842 |
| 5-10:   | 967 | 963 | 950 | 925 | 924 | 942 | 925 | 942 | 933 |
| SL 500: | 908 | 892 | 917 | 875 | 783 | 750 | 750 | 850 | 858 |
| 1000:   | 842 | 925 | 883 | 775 | 717 | 733 | 708 | 850 | 598 |
| 5-10:   | 917 | 904 | 867 | 917 | 867 | 808 | 808 | 867 | 900 |
| SD 500: | 672 | 744 | 725 | 686 | 614 | 564 | 589 | 725 | 603 |
| 1000:   | 739 | 689 | 744 | 672 | 669 | 619 | 656 | 736 | 653 |
| 5-10:   | 678 | 672 | 681 | 692 | 631 | 536 | 561 | 633 | 606 |
| FINAL   | 875 | 903 | 873 | 864 | 833 | 823 | 810 | 863 | 835 |

BASEDAY : 127 22 AUG 69  
 ANALOGUE: 127 05 SEP 52  
 RANK : 7  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 909 | 925 | 942 | 904 | 904 | 917 | 879 | 908 | 883 |
| 1000:   | 913 | 921 | 913 | 892 | 904 | 925 | 958 | 933 | 937 |
| 5-10:   | 946 | 958 | 946 | 975 | 963 | 958 | 883 | 929 | 929 |
| SL 500: | 875 | 850 | 742 | 808 | 767 | 758 | 833 | 817 | 742 |
| 1000:   | 875 | 772 | 742 | 733 | 542 | 667 | 700 | 733 | 750 |
| 5-10:   | 900 | 808 | 817 | 950 | 858 | 817 | 875 | 850 | 833 |
| SD 500: | 650 | 755 | 728 | 706 | 667 | 617 | 622 | 697 | 750 |
| 1000:   | 647 | 708 | 703 | 717 | 678 | 628 | 617 | 706 | 683 |
| 5-10:   | 675 | 703 | 747 | 725 | 672 | 678 | 622 | 692 | 711 |
| FINAL   | 866 | 836 | 801 | 842 | 808 | 803 | 814 | 820 | 792 |

8-DAY VERIFICATION SUMMARY

BASEDAY : 12Z 22 AUG 69  
 ANALOGUE: 12Z 15 AUG 61  
 RANK : 8  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 929 | 921 | 892 | 779 | 867 | 863 | 863 | 838 | 846 |
| 1000:   | 875 | 892 | 871 | 846 | 858 | 875 | 833 | 892 | 867 |
| 5-10:   | 942 | 937 | 937 | 846 | 917 | 946 | 921 | 929 | 917 |
| SL 500: | 917 | 875 | 858 | 850 | 825 | 867 | 800 | 817 | 825 |
| 1000:   | 850 | 875 | 775 | 800 | 792 | 792 | 733 | 783 | 817 |
| 5-10:   | 917 | 908 | 875 | 808 | 833 | 875 | 883 | 850 | 817 |
| SD 500: | 725 | 742 | 661 | 603 | 564 | 639 | 608 | 697 | 658 |
| 1000:   | 683 | 703 | 733 | 675 | 664 | 656 | 611 | 683 | 719 |
| 5-10:   | 725 | 725 | 664 | 608 | 544 | 639 | 547 | 675 | 639 |
| FINAL   | 878 | 874 | 837 | 805 | 820 | 851 | 844 | 827 | 834 |

BASEDAY : 12Z 22 AUG 69  
 ANALOGUE: 12Z 16 AUG 61  
 RANK : 9  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 929 | 929 | 804 | 842 | 846 | 850 | 867 | 858 | 867 |
| 1000:   | 896 | 909 | 875 | 821 | 850 | 875 | 904 | 913 | 863 |
| 5-10:   | 933 | 946 | 850 | 929 | 929 | 925 | 933 | 909 | 929 |
| SL 500: | 875 | 833 | 825 | 867 | 867 | 792 | 817 | 850 | 758 |
| 1000:   | 883 | 817 | 767 | 817 | 783 | 767 | 792 | 858 | 717 |
| 5-10:   | 867 | 858 | 842 | 867 | 858 | 867 | 858 | 850 | 825 |
| SD 500: | 675 | 619 | 558 | 578 | 614 | 639 | 656 | 719 | 633 |
| 1000:   | 689 | 558 | 619 | 606 | 561 | 619 | 697 | 706 | 686 |
| 5-10:   | 667 | 681 | 583 | 569 | 628 | 669 | 572 | 747 | 625 |
| FINAL   | 874 | 851 | 804 | 839 | 826 | 845 | 852 | 851 | 809 |

BASEDAY : 12Z 22 AUG 69  
 ANALOGUE: 00Z 15 JUL 70  
 RANK : 10  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 925 | 921 | 892 | 892 | 900 | 921 | 896 | 879 | 871 |
| 1000:   | 888 | 913 | 883 | 875 | 879 | 913 | 913 | 900 | 892 |
| 5-10:   | 937 | 917 | 921 | 904 | 913 | 904 | 917 | 892 | 904 |
| SL 500: | 908 | 858 | 850 | 892 | 850 | 808 | 717 | 725 | 700 |
| 1000:   | 900 | 817 | 792 | 817 | 767 | 733 | 683 | 683 | 654 |
| 5-10:   | 867 | 867 | 842 | 858 | 842 | 842 | 750 | 783 | 717 |
| SD 500: | 686 | 711 | 706 | 672 | 625 | 628 | 675 | 614 | 658 |
| 1000:   | 722 | 731 | 669 | 628 | 617 | 692 | 683 | 656 | 667 |
| 5-10:   | 630 | 656 | 639 | 664 | 636 | 619 | 667 | 611 | 600 |
| FINAL   | 889 | 867 | 843 | 864 | 817 | 810 | 772 | 768 | 734 |





RASS DEMONSTRATION 1  
BASEDAY +2  
12Z 24 AUG 69  
SL 500







RASS DEMONSTRATION 1  
BASEDAY +2  
12Z 24 AUG 69  
SL1000











RASS DEMONSTRATION 1  
BASEDAY +0  
12Z 22 AUG 69  
SD1000



AD-A076 533 METEOROLOGY INTERNATIONAL INC MONTEREY CALIF F/G 4/2  
TECHNICAL DESCRIPTION OF THE RAPID ANALOGUE SELECTION SYSTEM IN--ETC(U)  
JUN 77 F C CATON , M M HOLL , M J CUMING N00228-76-C-3189  
UNCLASSIFIED MII-M-222 NL

2 OF 2  
AD  
A076533



END  
DATE  
FILMED  
12-79  
DDC



























RASS DEMONSTRATION 1  
SELECTION 1 +5  
12Z 09 SEP 52  
SD1000





RASS DEMONSTRATION 1  
SELECTION 2 +2  
12Z 17 JUL 66  
SL 500







RASS DEMONSTRATION 1  
SELECTION 2 +2  
12Z 17 JUL 66  
SL1000













RASS DEMONSTRATION 1  
SELECTION 2 +2  
12Z 17 JUL 66  
S01000



**8.4.2 RASS Demonstration 2: Baseday 12Z 18 OCT 75**

**List of contents:**

Analogue Selection Table: page 119

Verification Summary : pages 120-123

1st Scenario (baseday) : pages 124-135

2nd Scenario : pages 136-147

3rd Scenario : pages 148-159

(To facilitate study of the charts, each scenario has been separated from the next by an unnumbered yellow insert; within each scenario sets of component fields are separated by an unnumbered blue insert.)

## ANALOGUE SELECTIONS FOR 12Z 18 OCT 75 MEDITERRANEAN REGION

| ANALOGUE DTG      | SV   |      |      |  | SL   |      |      |  | SD   |      |      |  | TOTAL | FINAL |
|-------------------|------|------|------|--|------|------|------|--|------|------|------|--|-------|-------|
|                   | 500  | 1000 | 5-10 |  | 500  | 1000 | 5-10 |  | 500  | 1000 | 5-10 |  |       |       |
| 1. 12Z 18 OCT 75  | 1000 | 1000 | 1000 |  | 1000 | 1000 | 1000 |  | 1000 | 1000 | 1000 |  | 1000  | 1000  |
|                   | 1000 | 1000 | 1000 |  | 1000 | 1000 | 1000 |  | 1000 | 1000 | 1000 |  | 1000  | 1000  |
| 2. 00Z 19 OCT 75  | 921  | 975  | 958  |  | 924  | 936  | 921  |  | 847  | 876  | 828  |  | 849   | 874   |
|                   | 925  | 970  | 962  |  | 933  | 920  | 922  |  | 833  | 864  | 821  |  | 874   | 917   |
| 3. 00Z 18 OCT 75  | 933  | 992  | 963  |  | 942  | 891  | 918  |  | 805  | 845  | 801  |  | 864   | 868   |
|                   | 925  | 977  | 962  |  | 939  | 921  | 928  |  | 827  | 843  | 816  |  | 864   | 912   |
| 4. 12Z 17 OCT 75  | 963  | 979  | 979  |  | 888  | 818  | 867  |  | 755  | 774  | 767  |  | 821   | 872   |
|                   | 943  | 954  | 957  |  | 898  | 656  | 884  |  | 772  | 776  | 774  |  | 821   | 872   |
| 5. 12Z 19 OCT 75  | 913  | 942  | 958  |  | 879  | 876  | 867  |  | 776  | 806  | 749  |  | 825   | 870   |
|                   | 922  | 942  | 947  |  | 836  | 852  | 878  |  | 782  | 791  | 766  |  | 821   | 870   |
| 6. 00Z 17 OCT 75  | 937  | 958  | 971  |  | 858  | 752  | 836  |  | 706  | 710  | 720  |  | 775   | 830   |
|                   | 965  | 945  | 960  |  | 861  | 787  | 849  |  | 728  | 731  | 735  |  | 781   | 830   |
| 7. 00Z 20 OCT 75  | 850  | 908  | 942  |  | 842  | 818  | 836  |  | 748  | 784  | 704  |  | 791   | 827   |
|                   | 870  | 918  | 935  |  | 839  | 795  | 840  |  | 743  | 762  | 711  |  | 780   | 827   |
| 8. 12Z 16 OCT 75  | 917  | 942  | 967  |  | 827  | 736  | 812  |  | 664  | 667  | 681  |  | 743   | 802   |
|                   | 905  | 925  | 942  |  | 831  | 745  | 820  |  | 689  | 704  | 694  |  | 748   | 802   |
| 9. 12Z 20 OCT 75  | 946  | 883  | 937  |  | 797  | 755  | 800  |  | 744  | 780  | 713  |  | 774   | 796   |
|                   | 852  | 905  | 933  |  | 801  | 743  | 810  |  | 720  | 754  | 704  |  | 761   | 796   |
| 10. 00Z 11 NOV 68 | 771  | 867  | 779  |  | 812  | 745  | 830  |  | 697  | 713  | 667  |  | 734   | 774   |
|                   | 775  | 868  | 787  |  | 783  | 761  | 820  |  | 703  | 727  | 673  |  | 736   | 774   |
| 11. 12Z 26 APR 52 | 792  | 775  | 804  |  | 773  | 773  | 800  |  | 659  | 714  | 660  |  | 720   | 774   |
|                   | 822  | 782  | 768  |  | 805  | 759  | 812  |  | 690  | 746  | 681  |  | 727   | 774   |
| 12. 12Z 10 NOV 68 | 800  | 567  | 796  |  | 779  | 761  | 797  |  | 650  | 712  | 663  |  | 729   | 773   |
|                   | 790  | 880  | 805  |  | 779  | 772  | 808  |  | 656  | 705  | 670  |  | 723   | 773   |
| 13. 12Z 25 APR 52 | 833  | 800  | 783  |  | 812  | 745  | 797  |  | 660  | 698  | 652  |  | 718   | 770   |
|                   | 837  | 803  | 767  |  | 818  | 740  | 808  |  | 696  | 697  | 670  |  | 726   | 770   |
| 14. 12Z 27 OCT 64 | 812  | 913  | 812  |  | 794  | 703  | 842  |  | 733  | 718  | 723  |  | 757   | 769   |
|                   | 793  | 895  | 805  |  | 806  | 731  | 822  |  | 733  | 723  | 711  |  | 751   | 769   |
| 15. 00Z 25 OCT 55 | 879  | 921  | 900  |  | 779  | 588  | 852  |  | 719  | 681  | 666  |  | 742   | 769   |
|                   | 887  | 903  | 857  |  | 773  | 694  | 830  |  | 700  | 667  | 651  |  | 722   | 769   |
| 16. 00Z 16 OCT 75 | 853  | 921  | 971  |  | 791  | 658  | 758  |  | 653  | 643  | 651  |  | 713   | 769   |
|                   | 872  | 922  | 948  |  | 803  | 706  | 796  |  | 663  | 676  | 667  |  | 722   | 769   |
| 17. 00Z 21 OCT 75 | 817  | 867  | 913  |  | 752  | 691  | 797  |  | 728  | 754  | 704  |  | 755   | 766   |
|                   | 827  | 883  | 910  |  | 767  | 697  | 798  |  | 707  | 732  | 693  |  | 741   | 766   |
| 18. 12Z 18 OCT 52 | 812  | 879  | 850  |  | 800  | 779  | 755  |  | 666  | 684  | 660  |  | 723   | 766   |
|                   | 795  | 908  | 825  |  | 776  | 771  | 746  |  | 659  | 680  | 667  |  | 712   | 766   |
| 19. 12Z 25 OCT 55 | 883  | 863  | 875  |  | 773  | 679  | 874  |  | 696  | 685  | 681  |  | 732   | 766   |
|                   | 883  | 873  | 867  |  | 767  | 693  | 817  |  | 696  | 680  | 673  |  | 724   | 766   |
| 20. 00Z 22 OCT 55 | 913  | 867  | 850  |  | 785  | 697  | 809  |  | 699  | 702  | 679  |  | 740   | 765   |
|                   | 885  | 857  | 822  |  | 787  | 694  | 808  |  | 704  | 702  | 690  |  | 733   | 765   |
| 21. 12Z 09 NOV 68 | 754  | 888  | 796  |  | 785  | 770  | 812  |  | 642  | 677  | 653  |  | 713   | 765   |
|                   | 775  | 870  | 805  |  | 773  | 761  | 791  |  | 675  | 689  | 665  |  | 717   | 765   |
| 22. 12Z 24 OCT 75 | 858  | 925  | 888  |  | 709  | 733  | 758  |  | 673  | 703  | 678  |  | 730   | 765   |
|                   | 852  | 908  | 897  |  | 715  | 736  | 752  |  | 678  | 706  | 675  |  | 722   | 765   |
| 23. 12Z 11 NOV 68 | 767  | 833  | 792  |  | 761  | 743  | 821  |  | 647  | 713  | 664  |  | 718   | 764   |
|                   | 780  | 847  | 797  |  | 775  | 749  | 809  |  | 678  | 723  | 682  |  | 728   | 764   |
| 24. 12Z 15 NOV 49 | 767  | 833  | 833  |  | 806  | 718  | 830  |  | 722  | 744  | 652  |  | 741   | 764   |
|                   | 780  | 838  | 828  |  | 778  | 725  | 801  |  | 736  | 741  | 670  |  | 741   | 764   |
| 25. 12Z 03 NOV 58 | 871  | 925  | 854  |  | 773  | 697  | 836  |  | 708  | 673  | 680  |  | 733   | 764   |
|                   | 850  | 917  | 852  |  | 769  | 702  | 805  |  | 696  | 683  | 673  |  | 725   | 764   |

6-DAY VERIFICATION SUMMARY

BASEDAY : 122 18 OCT 75

ANALOGUE: CLIMATOLOGY

RANK :

REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 867 | 854 | 879 | 883 | 879 | 871 | 867 | 871 | 867 |
| 1000:   | 842 | 842 | 821 | 783 | 792 | 829 | 875 | 883 | 913 |
| 5-10:   | 850 | 829 | 871 | 871 | 878 | 892 | 896 | 820 | 863 |
| SL 500: | 717 | 650 | 625 | 620 | 683 | 667 | 675 | 750 | 808 |
| 1000:   | 633 | 642 | 608 | 642 | 675 | 658 | 725 | 780 | 717 |
| 5-10:   | 763 | 729 | 742 | 753 | 825 | 775 | 775 | 792 | 783 |
| SD 500: | 694 | 697 | 697 | 639 | 656 | 629 | 647 | 656 | 697 |
| 1000:   | 621 | 625 | 661 | 653 | 703 | 708 | 697 | 684 | 697 |
| 5-10:   | 664 | 675 | 636 | 633 | 611 | 633 | 647 | 678 | 717 |
| FINAL   | 762 | 737 | 740 | 756 | 756 | 759 | 765 | 796 | 795 |

BASEDAY : 122 18 OCT 75

ANALOGUE: PERSISTENCE

RANK :

REGION : MEDITERRANEAN

|         | +0   | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 1000 | 913 | 846 | 807 | 825 | 829 | 858 | 863 | 857 |
| 1000:   | 1000 | 942 | 886 | 875 | 858 | 896 | 925 | 933 | 864 |
| 5-10:   | 1000 | 958 | 937 | 974 | 892 | 853 | 880 | 883 | 879 |
| SL 500: | 1000 | 867 | 608 | 750 | 753 | 738 | 742 | 723 | 704 |
| 1000:   | 1000 | 875 | 758 | 628 | 675 | 708 | 725 | 650 | 633 |
| 5-10:   | 1000 | 858 | 806 | 617 | 806 | 801 | 792 | 775 | 733 |
| SD 500: | 1000 | 781 | 769 | 706 | 683 | 653 | 625 | 633 | 592 |
| 1000:   | 1000 | 789 | 781 | 728 | 722 | 672 | 641 | 642 | 617 |
| 5-10:   | 1000 | 767 | 711 | 719 | 714 | 642 | 656 | 675 | 642 |
| FINAL   | 1000 | 879 | 815 | 769 | 789 | 787 | 791 | 766 | 747 |

BASEDAY : 122 18 OCT 75

ANALOGUE: 002 11 NOV 68

RANK :

REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 771 | 754 | 794 | 767 | 721 | 729 | 717 | 754 | 825 |
| 1000:   | 867 | 875 | 871 | 892 | 896 | 865 | 863 | 879 | 891 |
| 5-10:   | 779 | 808 | 788 | 783 | 804 | 825 | 796 | 804 | 821 |
| SL 500: | 700 | 833 | 879 | 842 | 808 | 792 | 783 | 756 | 756 |
| 1000:   | 775 | 756 | 700 | 893 | 883 | 798 | 717 | 704 | 696 |
| 5-10:   | 842 | 817 | 800 | 779 | 692 | 792 | 808 | 806 | 792 |
| SD 500: | 631 | 636 | 636 | 675 | 700 | 597 | 514 | 556 | 556 |
| 1000:   | 596 | 694 | 706 | 675 | 703 | 614 | 526 | 663 | 611 |
| 5-10:   | 542 | 644 | 633 | 642 | 644 | 569 | 517 | 572 | 569 |
| FINAL   | 813 | 795 | 774 | 793 | 810 | 757 | 753 | 766 | 796 |

## 8-DAY VERIFICATION SUMMARY

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 122 26 APR 52  
 RANK : 1  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 792 | 871 | 867 | 754 | 717 | 729 | 771 | 704 | 671 |
| 1000:   | 775 | 733 | 721 | 679 | 687 | 750 | 733 | 696 | 700 |
| 5-10:   | 804 | 774 | 775 | 758 | 779 | 732 | 771 | 763 | 754 |
| SL 500: | 808 | 829 | 750 | 690 | 783 | 750 | 642 | 608 | 625 |
| 1000:   | 825 | 825 | 758 | 775 | 733 | 717 | 633 | 592 | 608 |
| 5-10:   | 850 | 833 | 825 | 625 | 817 | 800 | 720 | 717 | 692 |
| SD 500: | 603 | 672 | 669 | 628 | 594 | 603 | 553 | 633 | 575 |
| 1000:   | 642 | 675 | 692 | 703 | 689 | 667 | 597 | 597 | 639 |
| 5-10:   | 594 | 714 | 667 | 636 | 564 | 608 | 528 | 589 | 625 |
| FINAL   | 794 | 813 | 791 | 787 | 762 | 761 | 727 | 689 | 688 |

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 122 10 NOV 66  
 RANK : 3  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 860 | 754 | 771 | 746 | 725 | 721 | 732 | 750 | 825 |
| 1000:   | 867 | 803 | 892 | 872 | 838 | 838 | 863 | 879 | 833 |
| 5-10:   | 796 | 800 | 779 | 763 | 808 | 817 | 800 | 804 | 812 |
| SL 500: | 833 | 875 | 875 | 833 | 800 | 808 | 758 | 750 | 683 |
| 1000:   | 775 | 742 | 717 | 858 | 822 | 742 | 717 | 663 | 650 |
| 5-10:   | 850 | 850 | 833 | 783 | 825 | 783 | 767 | 750 | 758 |
| SD 500: | 594 | 647 | 619 | 600 | 631 | 644 | 514 | 519 | 594 |
| 1000:   | 675 | 703 | 673 | 622 | 667 | 669 | 556 | 561 | 600 |
| 5-10:   | 639 | 667 | 653 | 619 | 631 | 625 | 525 | 589 | 594 |
| FINAL   | 816 | 817 | 775 | 779 | 769 | 764 | 743 | 759 | 754 |

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 122 25 APR 52  
 RANK : 4  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 832 | 840 | 896 | 779 | 728 | 696 | 742 | 767 | 692 |
| 1000:   | 800 | 742 | 713 | 708 | 679 | 717 | 746 | 768 | 692 |
| 5-10:   | 783 | 786 | 798 | 790 | 758 | 763 | 724 | 783 | 758 |
| SL 500: | 942 | 829 | 917 | 798 | 833 | 763 | 672 | 633 | 633 |
| 1000:   | 775 | 850 | 708 | 798 | 772 | 733 | 667 | 652 | 658 |
| 5-10:   | 833 | 842 | 833 | 850 | 817 | 817 | 733 | 783 | 692 |
| SD 500: | 564 | 639 | 626 | 689 | 611 | 614 | 608 | 600 | 664 |
| 1000:   | 644 | 680 | 676 | 706 | 775 | 699 | 617 | 650 | 667 |
| 5-10:   | 572 | 617 | 675 | 669 | 597 | 597 | 578 | 508 | 644 |
| FINAL   | 795 | 816 | 765 | 773 | 775 | 767 | 729 | 718 | 704 |

6-DAY VERIFICATION SUMMARY

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 122 27 OCT 64  
 RANK : 5  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 612 | 618 | 642 | 667 | 671 | 688 | 683 | 900 | 858 |
| 1000:   | 613 | 600 | 617 | 758 | 642 | 500 | 900 | 958 | 846 |
| 5-10:   | 612 | 608 | 654 | 828 | 646 | 850 | 871 | 867 | 888 |
| SL 500: | 758 | 733 | 700 | 717 | 717 | 692 | 808 | 758 | 700 |
| 1000:   | 675 | 708 | 633 | 625 | 653 | 633 | 733 | 708 | 657 |
| 5-10:   | 675 | 820 | 650 | 658 | 817 | 608 | 783 | 783 | 717 |
| SD 500: | 681 | 622 | 650 | 667 | 669 | 614 | 578 | 558 | 614 |
| 1000:   | 681 | 644 | 656 | 622 | 647 | 611 | 626 | 678 | 725 |
| 5-10:   | 667 | 796 | 631 | 581 | 614 | 578 | 569 | 601 | 625 |
| FINAL   | 753 | 767 | 763 | 750 | 730 | 726 | 763 | 763 | 746 |

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 092 25 OCT 55  
 RANK : 6  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 379 | 875 | 869 | 750 | 683 | 717 | 671 | 663 | 679 |
| 1000:   | 921 | 875 | 846 | 804 | 808 | 792 | 821 | 775 | 779 |
| 5-10:   | 900 | 892 | 913 | 821 | 638 | 796 | 767 | 763 | 825 |
| SL 500: | 817 | 692 | 608 | 667 | 667 | 608 | 629 | 542 | 675 |
| 1000:   | 658 | 608 | 600 | 625 | 592 | 517 | 592 | 700 | 650 |
| 5-10:   | 892 | 763 | 692 | 733 | 742 | 692 | 658 | 625 | 675 |
| SD 500: | 717 | 683 | 575 | 619 | 608 | 553 | 575 | 625 | 714 |
| 1000:   | 658 | 578 | 567 | 625 | 667 | 639 | 592 | 711 | 694 |
| 5-10:   | 672 | 652 | 678 | 636 | 586 | 572 | 578 | 617 | 650 |
| FINAL   | 777 | 713 | 709 | 731 | 705 | 644 | 669 | 700 | 731 |

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 122 18 OCT 52  
 RANK : 7  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 812 | 779 | 696 | 888 | 850 | 804 | 800 | 783 | 821 |
| 1000:   | 879 | 929 | 920 | 904 | 821 | 746 | 779 | 821 | 825 |
| 5-10:   | 850 | 821 | 863 | 650 | 863 | 817 | 838 | 850 | 846 |
| SL 500: | 833 | 825 | 783 | 717 | 750 | 725 | 650 | 683 | 700 |
| 1000:   | 792 | 858 | 700 | 717 | 733 | 742 | 675 | 663 | 700 |
| 5-10:   | 792 | 825 | 775 | 767 | 825 | 800 | 725 | 717 | 742 |
| SD 500: | 631 | 292 | 617 | 567 | 590 | 608 | 572 | 492 | 511 |
| 1000:   | 642 | 667 | 566 | 644 | 639 | 642 | 608 | 636 | 622 |
| 5-10:   | 642 | 575 | 603 | 533 | 606 | 614 | 603 | 593 | 536 |
| FINAL   | 797 | 824 | 771 | 783 | 767 | 787 | 752 | 748 | 766 |

8-DAY VERIFICATION SUMMARY

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 122 25 OCT 55  
 RANK : 8  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 682 | 904 | 638 | 792 | 725 | 721 | 683 | 671 | 679 |
| 1000:   | 863 | 838 | 808 | 821 | 779 | 768 | 796 | 779 | 779 |
| 5-10:   | 875 | 863 | 908 | 886 | 629 | 792 | 800 | 771 | 817 |
| SL 500: | 808 | 667 | 592 | 700 | 642 | 583 | 575 | 556 | 675 |
| 1000:   | 696 | 567 | 508 | 678 | 575 | 590 | 617 | 717 | 675 |
| 5-10:   | 925 | 767 | 675 | 725 | 700 | 698 | 633 | 642 | 700 |
| SD 500: | 675 | 606 | 522 | 647 | 564 | 533 | 542 | 658 | 686 |
| 1000:   | 629 | 533 | 569 | 663 | 614 | 594 | 608 | 700 | 678 |
| 5-10:   | 528 | 655 | 626 | 619 | 583 | 556 | 564 | 619 | 681 |
| FINAL   | 769 | 709 | 719 | 732 | 694 | 644 | 666 | 715 | 738 |

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 022 22 OCT 55  
 RANK : 9  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 913 | 875 | 866 | 879 | 796 | 771 | 767 | 713 | 746 |
| 1000:   | 867 | 879 | 825 | 621 | 642 | 829 | 829 | 825 | 792 |
| 5-10:   | 850 | 783 | 879 | 913 | 575 | 867 | 804 | 838 | 850 |
| SL 500: | 792 | 692 | 683 | 667 | 692 | 633 | 608 | 582 | 583 |
| 1000:   | 662 | 608 | 675 | 623 | 628 | 500 | 542 | 530 | 625 |
| 5-10:   | 817 | 792 | 708 | 792 | 800 | 708 | 708 | 698 | 617 |
| SD 500: | 561 | 592 | 572 | 626 | 575 | 619 | 572 | 586 | 581 |
| 1000:   | 544 | 647 | 678 | 623 | 676 | 608 | 625 | 708 | 656 |
| 5-10:   | 578 | 600 | 553 | 625 | 583 | 642 | 594 | 642 | 622 |
| FINAL   | 761 | 737 | 763 | 757 | 768 | 662 | 695 | 689 | 706 |

BASEDAY : 122 18 OCT 75  
 ANALOGUE: 122 09 NOV 68  
 RANK : 10  
 REGION : MEDITERRANEAN

|         | +0  | +1  | +2  | +3  | +4  | +5  | +6  | +7  | +8  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| SV 500: | 754 | 779 | 788 | 742 | 721 | 713 | 725 | 754 | 812 |
| 1000:   | 858 | 900 | 879 | 879 | 833 | 825 | 829 | 871 | 842 |
| 5-10:   | 796 | 804 | 779 | 779 | 763 | 833 | 812 | 804 | 817 |
| SL 500: | 858 | 836 | 867 | 817 | 833 | 750 | 763 | 796 | 708 |
| 1000:   | 800 | 767 | 775 | 800 | 808 | 826 | 698 | 658 | 633 |
| 5-10:   | 820 | 825 | 817 | 858 | 822 | 792 | 767 | 767 | 742 |
| SD 500: | 582 | 619 | 628 | 583 | 620 | 639 | 611 | 572 | 556 |
| 1000:   | 678 | 703 | 717 | 575 | 669 | 672 | 656 | 625 | 581 |
| 5-10:   | 603 | 639 | 694 | 594 | 614 | 614 | 594 | 578 | 544 |
| FINAL   | 817 | 809 | 802 | 777 | 789 | 793 | 751 | 738 | 748 |



RASS DEMONSTRATION 2  
BASEDAY +6  
12Z 18 OCT 75  
SL 500





RASS DEMONSTRATION 2  
BASEDAY +5  
12Z 23 OCT 75  
SL 500



RASS DEMONSTRATION 2  
BASEDAY +0  
12Z 18 OCT 75  
SL1000





RASS DEMONSTRATION 2  
BASEDAY +5  
12Z 23 OCT 75  
SL1000



RASS DEMONSTRATION 2  
BASEDAY +0  
12Z 18 OCT 75  
SD 500









RASS DEMONSTRATION 2  
BASEDAY +2  
12Z 26 OCT 75  
S01UJ0



RASS DEMONSTRATION 2  
BASEDAY +5  
12Z 23 OCT 75  
SD1000





RASS DEMONSTRATION 2  
SELECTION 1 +2  
12Z 28 AFR 52  
SL 500





RASS DEMONSTRATION 2  
SELECTION 1 +5  
12Z 01 MAY 52  
SL 500

138











RASS DEMONSTRATION 2  
SELECTION #2  
12Z 28 AFR 52  
SD 500









RASS DEMONSTRATION 2  
SELECTION #5  
12Z 01 MAY 52  
SD1000



RASS DEMONSTRATION 2  
SELECTION 2 +0  
12Z 10 NOV 68  
SL 500















RASS DEMONSTRATION 2  
SELECTION 2  
12Z 12 NOV 68  
SD 500









RASS DEMONSTRATION 2  
SELECTIONS +5  
12Z 15 NOV 68  
SU1000

## APPENDIX A

### SCALE-AND-PATTERN SPECTRA AND DECOMPOSITIONS

Two of the fundamental concepts in the interpretation of meteorological fields are those of pattern and scale. In 1963, MII developed an objective technique<sup>1</sup> for separating any geophysical field into recognizable characteristic patterns, or features, evident in the field, so that their relative contributions to the total can be quantitatively represented.

Using the 500-mb height field (HT) as an example, this may be decomposed into additive component ranges-of-scale expressed by:

$$\begin{aligned} \text{HT} &= \text{SD} + \text{SR} \\ &= \text{SD} + \text{SL} + \text{SV} \end{aligned}$$

where SD is the Disturbance range-of-scale component

SR is the Residual range-of-scale component

SL is the Long-wave range-of-scale component

SV is the Planetary Vortex .

By definition, SR = SL + SV .

Figure A1 shows the 500-mb height analysis for 12Z on 21 OCT 64. Decomposing this field into its inherent ranges-of-scale yields the SV field shown in Fig. A2, the SL field shown in Fig. A3 and the SD field shown in Fig. A4.

---

<sup>1</sup>Manfred M. Holl, Scale-and-pattern spectra and decompositions, Technical Memorandum No. 3, Contract N228-(62271)60550, Meteorology International Incorporated, Monterey, California, 1963.



500 HTL ANAL 12Z 21 OCT 64

Fig. A1



Fig. A2



Fig. A3



Fig. A4