Definition: Complete Metric Space

Definition: Complete Metric Space

A Metric Space (X, d) is called **complete** if every Cauchy sequence in X converges to a Limit of a Sequence in X.

Cauchy Sequences

A sequence $(x_n)_{n=1}^{\infty}$ in a metric space (X,d) is called a **Cauchy sequence** if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$:

$$d(x_m, x_n) < \varepsilon$$

Intuitively, the terms of a Cauchy sequence get arbitrarily close to each other as the sequence progresses.

Relationship to Convergence

- Every convergent sequence is Cauchy
- In a complete metric space, every Cauchy sequence converges
- A metric space is complete if and only if the converse holds: every Cauchy sequence converges

Examples

Complete metric spaces: - \mathbb{R} with the standard metric (see Real Line with Standard Metric) - \mathbb{C} with the standard metric - Any closed subset of a complete metric space - C[a,b] (continuous functions on [a,b]) with the supremum metric

Incomplete metric spaces: - \mathbb{Q} with the standard metric (e.g., the sequence (x_n) where x_n is the *n*-th decimal approximation of $\sqrt{2}$ is Cauchy but doesn't converge in \mathbb{Q}) - (0,1) with the standard metric - C[a,b] with the L^1 metric

Importance

Completeness is crucial for: - **Fixed point theorems**: The Banach fixed-point theorem requires completeness - **Existence theorems**: Many existence results in analysis rely on completeness - **Construction of** \mathbb{R} : The real numbers can be constructed as the completion of \mathbb{Q}

See Also

- ?@thm-banach-fixed-point A fundamental theorem requiring completeness
- ?@def-banach-space A complete normed vector space
- ?@thm-baire-category An important theorem about complete metric spaces

Dependency Graph

Local dependency graph