Логика

Мы

15 апреля 2023 г.

Оглавление

1	Aĸc	иоматический метод
	1.1	
	1.2	
	1.3	
2		рия множеств
	2.1	Базовые понятия
	2.2	Аксиомы
		2.2.1 Равенства
		2.2.2 Пары
		2.2.3 Объединения
		2.2.4 Степени
		2.2.5 Выделения
	2.3	Определения
3	Не	обработанное

Глава 1

Аксиоматический метод

Базовое понятие - это неопределяемое понятие.

1.1

Зафиксировать базовые понятия.

1.2

Зафиксировать аксиомы, связывающие понятия.

1.3

Выводить следствия по правилам логики.

Глава 2

Теория множеств

2.1 Базовые понятия

Принадлежность $(x \in y)$.

2.2 Аксиомы

2.2.1 Равенства

$$x = y \longrightarrow \forall z \ (x \in z \longrightarrow y \in z)$$

2.2.2 Пары

$$\exists z \ \forall u \ \left(u \in z \Leftrightarrow \begin{bmatrix} u = x \\ u = y \end{bmatrix} \right)$$

2.2.3 Объединения

$$\exists y \ \forall u \ \left(u \in y \Leftrightarrow \exists z \ \begin{cases} u \in z \\ z \in x \end{cases} \right)$$

2.2.4 Степени

$$\exists y \ \forall u \ (u \in y \Leftrightarrow u \subseteq x)$$

2.2.5 Выделения

$$\{x \in A \mid \varphi(x)\}$$

2.3 Определения

Класс = $\{x \mid \varphi(x)\}$. Не все классы являются множествами. Все множества являются классами.

$$x = y \Leftrightarrow (z \in x \Leftrightarrow z \in y)$$

$$x \subseteq y \Leftrightarrow \forall z \ (z \in x \longrightarrow z \in y)$$

Глава 3

Не обработанное

Автонимный способ обозначения - это способ обозначения, при котором формальные выражения обозначаются так же, как и их значения.

Высказывательная форма.

Именная форма - это выражение с переменной.

Связанные переменные - это переменные, вместо которых нельзя подставить значение.

Основания математики - это раздел (в книге сказано "аспект") математической логики, изучающий объекты математики, истинные свойства этих объектов, на основании которых можно вести рассуждения, а также "сохраняющие истину"способы рассуждений.