Отчёт по лабораторной работе №7

Межеловский Александр Игоревич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выполнение самостоятельной работы	13
6	Выводы	15

Список иллюстраций

3.1	Арифметические операции в nasm	7
	Команды умножения в nasm	
4.1	Создание директории	9
4.2	Переход в директорию	10
4.3	Создание нового файла	11
4.4	Окно исходного кода программы	12
5.1	Компиляция программы	13
5.2	Компиляция и запуск программы	14

Список таблиц

1 Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

2 Задание

- 1. Ознакомление с арифметическими операциями
- 2. Ознакомление с остальными операциями
- 3. Символьные и численные данные в NASM

3 Теоретическое введение

6.2.2. Арифметические операции в NASM

6.2.2.1. Целочисленное сложение add.

Схема команды целочисленного сложения add (от англ. addition - добавление) выполняет сложение двух операндов и записывает результат по адресу первого операнда. Команда add работает как с числами со знаком, так и без знака и выглядит следующим образом:

```
add <операнд_1>, <операнд_2>
```

Допустимые сочетания операндов для команды add аналогичны сочетаниям операндов для команды mov.

Так, например, команда add eax, ebx прибавит значение из регистра eax к значению из регистра ebx и запишет результат в регистр eax.

Примеры:

```
add ax,5 ; AX = AX + 5
add dx,cx ; DX = DX + CX
add dx,cl ; Ошибка: разный размер операндов.
```

Рис. 3.1: Арифметические операции в nasm

6.2.2.5. Команды умножения mul и imul.

Умножение и деление, в отличии от сложения и вычитания, для знаковых и беззнаковых чисел производиться по-разному, поэтому существуют различные команды.

Для беззнакового умножения используется команда mul (от англ. multiply - умножение):

mul <операнд>

Для знакового умножения используется команда imul:

imul <операнд>

Для команд умножения один из сомножителей указывается в команде и должен находиться в регистре или в памяти, но не может быть непосредственным операндом. Второй сомножитель в команде явно не указывается и должен находиться в регистре EAX,AX или AL, а результат помещается в регистры EDX: EAX, DX: AX или AX, в зависимости от размера операнда 6.1.

Таблица 6.1. Регистры используемые командами умножения в Nasm

Размер операнда	Неявный множитель	Результат умножения	
1 байт	AL	AX	
2 байта	AX	DX:AX	
4 байта	EAX	EDX: EAX	

Рис. 3.2: Команды умножения в nasm

4 Выполнение лабораторной работы

Создаю директорию.

```
imezhelovskiyj1@vbox:~/work/study/2023-2024/Архитектура компьютера/а rch-pc$ mkdir ~/work/arch-pc/lab06 aimezhelovskiyj1@vbox:~/work/study/2023-2024/Архитектура компьютера/а rch-pc$
```

Рис. 4.1: Создание директории

Перехожу в директорию.

Рис. 4.2: Переход в директорию

Создаю новый файл.

Рис. 4.3: Создание нового файла

Набираю исходный код программы в редакторе.

Рис. 4.4: Окно исходного кода программы

5 Выполнение самостоятельной работы

Компилирую программу.

Рис. 5.1: Компиляция программы

Компилирую программу с использованием функций, получаю желаемый результат.

Рис. 5.2: Компиляция и запуск программы

6 Выводы

В результате проделанной работы я освоил арифметические инструкции языка ассемблера NASM.