Digital Fundamentals

More on Gray Codes

- Gray numbers are unidistance numbers
 - unlike binary numbers only one bit changes from one count to another count.
- Gray pointers too have problem of metastability while synchronizing with other clock domains
 - but it is minimized by the fact of one bit change.
- Metastability condition on one bit causes +/- 1 count error
 - □ that is better compared to +/-8 count error in binary pointers.
- Because of this minimized error gray counters are generally used as FIFO pointers.

2n: Power-of-2 Gray Code

Binary ⇔ Gray-Coding

Decimal Value	Binary Code	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

2019/10/3

Conversion: Binary → Gray Code

- **B**= $\langle b_{n-1}, b_{n-2}, ..., b_1, b_0 \rangle$: Binary Code
- $G=\langle g_{n-1}, g_{n-2}, ..., g_1, g_0 \rangle$: Gray Code
- Gray code is a non-redundant representation.
- We have:
 - $g_{n-1} = b_{n-1}$
 - $g_i = b_{i+1} \oplus b_i$, i=n-2, ..., 0.
- Ex. B=<1, 1, 0, 1>
 - \Rightarrow G= $\langle b_3, b_3 \oplus b_2, b_2 \oplus b_1, b_1 \oplus b_0 \rangle$
 - \Rightarrow G=<1, 0, 1, 1>

Conversion: Gray → Binary Code

- For the MSB,
 - $b_{n-1} = g_{n-1}$
- For i = n-2, ..., 0,
 - \Box $b_i = b_{i+1} \oplus g_i$

- Ex. G=<1, 1, 0, 1>
 - \Rightarrow B= $\langle g_3, g_3 \oplus g_2, g_3 \oplus g_2 \oplus g_1, g_3 \oplus g_2 \oplus g_1 \oplus g_0 \rangle$
 - \Rightarrow B=<1, 0, 1?, 1?>

Gray Code of Any Length

- FIFO counters can be designed to have any mod number.
- FIFO memory locations can also be any arbitrary number.
- The dimension of an FIFO could be any length.
- Question:
 - Can we have a gray code of any length?

October 3, 2019 7

Even Length: Throwing Away Adjacent Pairs with the same LSB

- Removing one pair
 - a 14-count sequence
- removing any two pairs
 - □ a 12-count sequence
- removing any three pairs
 - a 10-count sequence
- pointless to remove four pairs to give us an 8-count sequence,
 - as we could achieve the same effect by dropping down to a 3-bit Gray code).

Even Length: Pruning the Middle

- The previous solution is easy to use, but it would require us to keep track as to which pairs of codes we've removed.
- The "mirroring method" has a more correct name:
 - a "recursive reverse-and-prefix" approach.
- Rule:
 - Simply remove pairs of entries from the center of the table around the "mirror line"

Even Length: Pruning the Ends

16-Count 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0	14-Count 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0	12-Count 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0	10-Count	"Mirror" line
1110	1110	1110	1110	

 Remove the same numbers of entries from the top and from the bottom of a traditional power-of-2 Gray code counter.

No Gray Code of Odd Length

Lemma:

 It is not possible to construct a Gray code with an odd cycle length.

Proof:

- As only one bit changes at a time, the parity of the code toggles.
- Parity(0000)=even, Parity(0001)=odd, Parity(0011)=even,
- As we have an odd number of codes, it contradicts the Gray hypothesis of cyclic feature.

11

Gray Code Counter of Length 3?

A Virtual Space based Gray Code

Shannon's Decomposition

$$Y = f(x_1, x_2, ..., x_n) = x_i f_{x_i} + \overline{x}_i f_{\overline{x}_i}$$

where

$$f_{x_i=1} = f_{x_i} = f(x_1, x_2, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$$

$$f_{x_i=0} = f_{\bar{x}_i} = f(x_1, x_2, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$$

2019/10/3

Proof of Shannon Expansion

- Proof of Shannon's expansion theorem
- $f(x_1, x_2, ..., x_n) = x_1' f(0, x_2, ..., x_n) + x_1 f(1, x_2, ..., x_n)$
- This theorem can be proved using **perfect induction**, by showing that the expression is true for every possible value of x_1 .
- As x_1 is a Boolean variable, we look at only two cases: $x_1 = 0$ and $x_1 = 1$.
- Setting $x_1 = 0$, we have:
 - $f(0, x_2, ..., x_n) = 1 \wedge f(0, x_2, ..., x_n) + 0 \wedge f(1, x_2, ..., x_n) = f(0, x_2, ..., x_n)$
- Setting $x_1 = 1$, we have:
- This proof can be performed for any arbitrary xi in the same manner.

References

- The Art of Hardware Architecture: Design Methods and Techniques for Digital Circuits by Mohit Arora. Springer.
- http://www.eetimes.com/document.asp?doc_id=1274581
- https://forums.xilinx.com/t5/BRAM-FIFO/FIFO-with-non-power-of-two-depth/td-p/482158
- http://www.verilogpro.com/asynchronous-fifo-design/
- Patent US7667629.