AMALGAMS OF SYMMETRIC GROUPS AND NONABELIAN TENSOR PRODUCTS

SERGEY SINCHUK

ABSTRACT. By amalgamating copies of symmetric group S_n we construct a central extension $S_n(G)$ of a large subgroup of the wreath product $G \wr S_n$. We then establish a connection between this group and the theory of $\mathfrak{U}(G)$ and $\mathfrak{H}_n(G)$ -extensions developed by K. Dennis and U. Rehmann in 1970's. We also give a topological application of this construction by describing homotopy invariants of blah-blah-blah...

1. Introduction

The aim of this note is to establish a surprising connection between symmetric groups and (certain quotients of) nonabelian tensors squares.

Let G be a group. Consider the family of copies of the symmetric group S_n in which each copy is indexed by an n-tuple $(g_1, \ldots, g_n) \in G^n$. Denote by $S_n(G)$ the free product of groups from this family amalgamated over the single family of relations $s_{(g)} = s_{(h)}$, where $s \in S_n$, $g, h \in G^n$ are such that hg^{-1} is fixed by s (here $s_{(g)}$ denotes a permutation $s \in S_n$ embedded into the copy with index g).

Consider the wreath product $G \wr S_n = G^n \rtimes S_n$. By the definition of $S_n(G)$ there is a well defined map $\mu_n \colon S_n(G) \to G \wr S_n$ given by $s_{(g)} \mapsto s^g = (g^{-1}g^{s^{-1}}, s)$.

Our first main result is the following theorem.

Theorem 1. For $n \geq 3$ the map μ_n is a crossed module whose cokernel and kernel are isomorphic to $H_1(G,\mathbb{Z})$ and $H_2(G,\mathbb{Z})$ respectively. Moreover, the group $S_n(G)$ is isomorphic to $S_n \ltimes H_n^{\wedge}(G)$.

Here $H_n^{\wedge}(G)$ denotes the quotient of the universal extension of type $\mathfrak{H}_n(G)$ modulo all symbols of the form $\{x, x\} = 1$, $x \in G$. Theory of extensions of type \mathfrak{H}_n was developed by U. Rehmann in [11] for the purpose of generalization of Matsumoto theorem to skew-fields (we refer the reader to Section 2.4 for more details).

Theorem 1 and its proof (which itself involves little more than some basic combinatorial group theory) may be of interest for the following reasons.

Date: April 6, 2017.

Key words and phrases. $\mathfrak{U}(G)$ -extensions, $\mathfrak{H}_n(G)$ -extensions, amalgamated products, van Kampen theorem, Mathematical Subject Classification (2010): 55Q05, 20B30, 20E06, 20J06.

- The presentation is similar in spirit to results of Brown—Loday and Kassel—Reutenauer on the presentation of the linear Steinberg group in the form of an amalgam of braid groups.
- It gives a presentation of the universal extension $H_n(G)$ with generators and relations which is simpler than the original presentation given in [11], see Proposition 2.9. Moreover, our presentation explicitly obtained from the presentation of S_n formulated in terms of transpositions.

Theorem 1 was proved in an attempt to answer some purely topological question, which we describe in more detail below.

For a pointed simplicial set (X, x_0) denote by $\mathbb{Z}[X]$ the associated free simplicial abelian group. Define the "alternating" map of simplicial sets $h_n \colon X^{2n} \to \mathbb{Z}[X]$ by the identity:

$$h_n(x_1, x_2, \dots x_{2n}) = \sum_{i=1}^{2n} (-1)^i x_i.$$

Denote by X^{∞} the colimit of X^n with respect to the natural embeddings $X^n \hookrightarrow X^{n+1}$. Taking colimit of h_n we get the map $h_{\infty} = \operatorname{colim}_n(h_n) \colon X^{\infty} \to \mathbb{Z}[X]$.

Based on a recent result of S. Podkorytov one can deduce that this map is a quasifibration provided X is fibrant and connected. In particular, the natural map $h_{\infty}^{-1}(0) \to F_{h_{\infty}}$ between the fiber and the homotopy fiber of h_{∞} over 0 is a weak equivalence, see Lemma A.4.

Theorem 2. If X = BG is the classifying space of a group G then for $n \geq 3$ the natural map $h_n^{-1}(0) \to F_{h_n}$ induces an isomorphism of fundamental groups $\pi_1(h_n^{-1}(0)) \cong \pi_1(F_{h_n})$.

The proof of Theorem 2 goes as follows. ???

In the course of the proof we also find a presentation of the universal $\mathfrak{H}_n(G)$ -extension that is simpler than the original presentation introduced by Rehmann in [11], see Proposition 2.9.

1.1. **Acknowledgements.** I wish to thank S. Podkorytov for suggesting the problem and also for his kind permission to use some of his unpublished results. I am also grateful to S. O. Ivanov and V. Isaev for their numerous helpful comments and interest in this work.

2. The extension $S_n(G)$

2.1. The definition of $S_n(G)$. Let G be a group. Recall that the wreath product is, by definition, the semidirect product $G^n \rtimes S_n$, in which S_n acts on G^n on the right by permuting its factors.

Consider the family $\{S_n^{(g)}\}_{g\in G^n}$ of isomorphic copies of S_n indexed by elements of G^n and let F be the free product of groups from this family. For $s\in S_n$ and $g\in G^n$ we denote by s_g the image of s in F under the canonical map $S_n^{(g)}\to F$.

Definition 2.1. We define the group $S_n(G)$ to be the quotient of F modulo the following single family of relations:

$$(2.1) s_g = s_h, \text{ where } s \text{ fixes } hg^{-1}.$$

We continue to denote by s_g the image of the element $s_g \in F$ under the canonical map $F \to S_n(G)$.

Remark 2.2. Expanding the definition of the semidirect product we get that

$$s^g = (1_{G^n}, s)^{(g,1)} = (g^{-1}, s)(g, 1) = (g^{-1}g^{(s^{-1})}, s).$$

therefore the equality $s^g = s^h$ holds in $G \wr S_n$ iff $g^{-1}g^{(s^{-1})} = h^{-1}h^{(s^{-1})}$, or what is the same, iff s fixes hq^{-1} .

The last statement immediately implies that the map $\mu: S_n(G) \to G \wr S_n$ given by $\mu(s_g) = s^g = (g^{-1}g^{(s^{-1})}, s)$ is well-defined. We will see shortly that μ is, in fact, a crossed module in the sense of [2, § 2.2].

Observe from the definition of $S_n(G)$ that there is a split exact sequence.

$$(2.2) 1 \longrightarrow \operatorname{Ker}(\pi) \longrightarrow S_n(G) \xrightarrow[\iota(1)]{\pi} S_n \longrightarrow 1,$$

Here the map $\pi = \pi_{S_n} \circ \mu$ removes subscript g from each s_g and the section $\iota(1)$ sends s to s_1 , where 1 is the identity element of G^n . Thus, if we denote $\operatorname{Ker}(\pi)$ by $HS_n(G)$ we get a decomposition $S_n(G) = HS_n(G) \rtimes S_n$.

2.2. A crossed module structure on $S_n(G)$. Recall from [2, § 2.2] that a crossed module is a morphism of groups $\mu \colon M \to N$ together with a right action of N on M compatible with the conjugation action of N on itself, i. e.

(CM1)
$$\mu(m^n) = \mu(m)^n \text{ for all } n \in N, m \in M,$$

which also satisfies the following identity called *Peiffer identity*:

(CM2)
$$m^{m'} = m^{\mu(m')} \text{ for all } m, m' \in M.$$

In our situation, we let $G \wr S_n$ act on $S_n(G)$ by

(2.3)
$$(s_g)^{(h,t)} = s^t_{(gh)^t}$$
, for $s, t \in S_n$ and $g, h \in G^n$.

The goal of this subsection is to prove the following.

Proposition 2.3. For $n \geq 3$ the map $\mu: S_n(G) \to G \wr S_n$ is a crossed module.

From the fact that μ is a crossed module one can deduce that $\operatorname{Ker}(\mu)$ is a central subgroup of $S_n(G)$ and $\operatorname{Im}(\mu)$ is a normal subgroup of $G \wr S_n$. It is not hard to show that the group $S_2(G)$ is isomorphic to a free product of copies of S_2 (whose center is always trivial). Therefore, the requirement $n \geq 3$ in the statement of Proposition 2.3 is essential.

Verification of the fact that formula (2.3) gives a well-defined action of $G \wr S_n$ on $S_n(G)$ that satisfies (CM1) is lengthy but straightforward. Let us show that (CM2) holds. It suffices to verify Peiffer identities only for the generators of $S_n(G)$, for which it takes the form:

(2.4)
$$t_h^{-1} s_g t_h = s^t_{(gh^{-1})^t \cdot h} \text{ for all } s, t \in S_n, g, h \in G^n.$$

If we act on both sides of the above formula by $(h^{-1}, 1) \in G \wr S_n$ we obtain the equality $t_1^{-1}s_{gh^{-1}}t_1 = s^t_{(gh^{-1})^t}$. Thus, to prove (2.4) it suffices to show the following simpler relation:

(2.5)
$$t_1^{-1} s_g t_1 = s_{g^t}^t \text{ for all } s, t \in S_n, g \in G^n.$$

The key step in the proof is the following lemma.

Lemma 2.4. The relation (2.5) holds in the special case when s = (ij) and t = (kl) are two nonequal transpositions.

Proof. First of all, we immediately check that (2.5) holds in the special case when t fixes $g' \in G^n$. Indeed, by (2.1) we have $t_1 = t_{g'}$, hence

$$t_1^{-1}s_{q'}t_1 = t_{q'}^{-1}s_{q'}t_{q'} = (s^t)_{q'} = (s^t)_{q'^t}.$$

Without loss of generality we may assume that $l \neq i$ and $l \neq j$. Denote by g' the vector which differs from g only at l-th position, for which we set $g'_l = g_k$. Since the only nontrivial component of $g'g^{-1}$ (resp. $g'g^{-t}$) is located at l-th (resp. k-th) position, it is fixed by s (resp. s^t), hence from (2.1) we conclude that $s_g = s_{g'}$ (resp. $(s^t)_{g'} = (s^t)_{g^t}$). Finally, since g' is fixed by t, we get that

$$t_1^{-1}s_qt_1 = t_1^{-1}s_{q'}t_1 = (s^t)_{q'^t} = s_{q'}^t = (s^t)_{q^t}.$$

Proof of Proposition 2.3. Let us show that (2.5) holds for arbitrary transpositions $s, t \in S_n$. It suffices to consider the case s = t = (ij). After choosing some $k \neq i, j$ and presenting (ij) as (kj)(ik)(kj) we use the lemma:

$$(ij)_1^{-1}(ij)_g(ij)_1 = (ij)_1^{-1}(kj)_g(ik)_g(kj)_g(ij)_1 = (ki)_{g^{(ij)}}(jk)_{g^{(ij)}}(ki)_{g^{(ij)}} = (ij)_{g^{(ij)}}.$$

Proposition now follows by induction on the length of permutations s, t.

2.3. An explicit presentation of $S_n(G)$. This presentation turns out to be much more economical than the original definition given in section 2.1. An explicit presentation for the subgroup $HS_n(G)$ is derived from this presentation via Reidemeister-Schreier method.

We start with the following simple lemma which is, in essence, a variant of the standard presentation of a Weyl group in terms of reflections with some redundant generators and relations added (cf. [3, Theorem 2.4.3]).

Lemma 2.5. For $n \geq 3$ The symmetric group S_n admits presentation with transpositions as the set of generators and the following list of defining relations (in every formula distinct letters denote distinct indices):

$$(S1) (ij)^2 = 1,$$

$$(S2) (ij)^{(jk)} = (ik),$$

(S3)
$$[(ij), (kl)] = 1.$$

$$(S4) (ij) = (ji),$$

Now we are ready to formulate the main result of this subsection.

Proposition 2.6. For $n \geq 3$ and arbitrary group G the group $S_n(G)$ admits presentation with the set of generators $\{(ij)_a \mid i \neq j, 1 \leq i, j, \leq n, a \in G\}$ and the following list of relations (as before, distinct letters denote distinct indices):

$$(SG1) (ij)_a^2 = 1,$$

$$(SG2) (ij)_a^{(jk)_b} = (ik)_{ab},$$

(SG3)
$$[(ij)_a, (kl)_b] = 1.$$

$$(SG4) (ij)_a = (ji)_{a^{-1}}$$

Proof. Denote by S' the group from the statement of the proposition. For $1 \le i \le n$ and $x \in G$ denote by x[i] the element of G^n whose only nontrivial component equals x and is located in the i-th position.

It is not hard to deduce from the definition of $S_n(G)$ and Lemma 2.4 that the formula $(ij)_a \mapsto (ij)_{a[j]}$ gives a well-defined map $\varphi \colon S' \to S_n(G)$.

Now we are going to construct the map $\psi \colon S_n(G) \to S'$ in the opposite direction. Using the presentation of S_n given by Lemma 2.5 we define for a fixed $g \in G^n$ the map $\psi_g \colon S_n \to S'$ by $\psi_g((ij)) = (ij)_{g_i^{-1}g_j}$. It is obvious that ψ_g preserves the defining relations (S1)–(S4) of S_n . It remains to show that the equation $\psi_g(s) = \psi_h(s)$ holds whenever $g, h \in G^n$ and $s \in S_n$ satisfy the requirement of (2.1).

Indeed, if hg^{-1} is fixed by s then for every $1 \le i \le n$ we have $(hg^{-1})_i = (hg^{-1})_{s(i)}$, or equivalently $h_i^{-1}h_{s(i)} = g_i^{-1}g_{s(i)}$. For example, if s is a cycle of length p, i.e.

 $s = (i_1, i_2, \dots i_p)$ with $i_{k+1} = s(i_k)$ we get that

$$\psi_g(s) = \psi_g\left(\prod_{k=1}^{p-1} (i_k, i_{k+1})\right) = \prod_{k=1}^{p-1} (i_k, i_{k+1})_{g_{i_k}^{-1} g_{i_{k+1}}} = \prod_{k=1}^{p-1} (i_k, i_{k+1})_{h_{i_k}^{-1} h_{i_{k+1}}} = \psi_h(s).$$

The proof for a general s is almost the same. Verification of the fact that ψ and φ are mutually inverse is also immediate.

We now obtain a presentation of the subgroup $HS_n(G)$. For every $i \neq j$ and $a \in G$ we define the element $h_{ij}(a) \in HS_n(G)$ as follows:

$$(2.6) h_{ij}(a) = (ij)_a \cdot (ij)_1.$$

It is not hard to show that $h_{ij}(a)$ form a generating set for $HS_n(G)$. In fact, there is an explicit formula how an element of $HS_n(G)$ originally expressed through $(ij)_a$'s can be rewritten in terms of $h_{ij}(a)$. Indeed, if h lies in $HS_n(G)$ and is written as $\prod_{k=1}^{N} (i_k j_k)_{a_k}$ for some $i_k \neq j_k$ and $a_k \in G$ then it can be rewritten as follows:

(
$$au$$
)
$$h = \prod_{k=1}^{N} h_{\sigma_k(i_k),\sigma_k(j_k)}(a_k), \text{ where } \sigma_k = \prod_{s=1}^{k-1} (i_s j_s) \in S_n.$$

We briefly recall the notion of a rewriting process given in [7, § 2.3]. If G is a group presented by generators a_{ν} and relations $R_{\mu}(a_{\nu})$ and H is its subgroup with a generating set $J_i(a_{\nu})$ then a rewriting process for H is a function which maps every word u in alphabet a_{ν} to a word v in alphabet s_i such that u and $v[s_i := J_i]$ define the same element of G whenever u represents an element of H.

With this terminology, the mapping (τ) defined above is a rewriting process for the subgroup $HS_n(G)$. Since it does not arise as a rewriting process corresponding to a coset representative function, this process is *not* a Reidemeister rewriting process in the sense of [7, § 2.3]. However, it still satisfies the following two key properties of a Reidemeister rewriting process (cf. with (v) and (vi) of [7, § 2.3]):

- if U and U^* are freely equal words in $(ij)_a$ then $\tau(U)$ and $\tau(U^*)$ are also freely equal words in $h_{ij}(a)$;
- if U_1 and U_2 are two words in $(ij)_a$ which define elements of $HS_n(G)$ then the words $\tau(U_1U_2)$ and $\tau(U_1)\tau(U_2)$ are equal.

Using these two properties and repeating the arguments used in the proof of [7, Theorem 2.8] one can simplify the generic presentation of $HS_n(G)$ given by [7, Theorem 2.6] and obtain the following.

Lemma 2.7. For $n \geq 3$ the group $HS_n(G)$ admits presentation on the generators $h_{ij}(a)$ with the following two families of defining relations:

(2.7)
$$h_{ij}(a) = \tau ((ij)_a \cdot (ij)_1);$$

where R varies over relations of Proposition 2.6 and K is any word in $(ij)_1$, $i \neq j$.

From (2.7) one immediately obtains the equality $h_{ij}(1) = 1$, $i \neq j$. Thus, if we denote by σ the permutation corresponding to a word K and let S_n act on $h_{ij}(a)$'s in the natural way we will get that the word $\tau(KRK^{-1})$ is equivalent to $\sigma \tau(R)$ (modulo relations $h_{ij}(1) = 1$).

Since the relations from Proposition 2.6 are respected by the action of S_n , only relations of the form $\tau(R) = 1$ are, in fact, needed for the presentation of $HS_n(G)$. Writing down what $\tau(R)$ is for each of (SG1)–(SG4) we get the following.

Proposition 2.8. For $n \geq 3$ the group $HS_n(G)$ admits presentation with generators $h_{ij}(a)$ and the following list of relations:

(R0)
$$h_{ij}(1) = 1,$$

(R1)
$$h_{ij}(a)h_{ji}(a) = 1,$$

(R2)
$$h_{ik}(b)h_{ik}(a)h_{ij}(b) = h_{ik}(ab),$$

(R3)
$$[h_{ij}(a), h_{kl}(b)] = 1,$$

(R4)
$$h_{ij}(a)^{-1} = h_{ij}(a^{-1}).$$

3. Comparison with extensions of type $\mathfrak{H}_n(G)$

We start by briefly reviewing the material of § 1–3 of [11]. Let $n \geq 3$ be a natural number. By definition, the group $H_n(G)$ is given by generators $h_{ij}(u)$, $u \in G$, $i \neq j$ and the following relations (cf. [11, H1–H5 of § 2]):

$$(H1) h_{ij}(u)h_{ii}(u) = 1,$$

(H2)
$$h_{ij}(u)h_{ki}(u)h_{jk}(u) = 1,$$

(H3)
$$h_{ij}(u)h_{ik}(v)h_{ij}(u)^{-1} = h_{ik}(uv)h_{ik}(u)^{-1},$$
 for $j \neq k$

(H4)
$$h_{ij}(u)h_{kj}(v)h_{ij}(u)^{-1} = h_{kj}(vu)h_{kj}(u)^{-1},$$
 for $i \neq k$

(H5)
$$[h_{ij}(u), h_{kl}(v)] = 1.$$

There is a surjective group homomorphism $H_n(G) \to D_n(G)$ sending $h_{ij}(g)$ to $d_{ij}(g)$. Here $d_{ij}(g)$ stands for the element of G^n whose *i*-th component equals g, *j*-th component equals g^{-1} and all other components are trivial.

By definition, an extension of type $\mathfrak{H}_n(G)$ is an extension H of $D_n(G)$ which is also a quotient of $H_n(G)$, i.e. the extension that fits into the following diagram.

$$H_n(G)$$

$$\downarrow$$

$$H \longrightarrow D_n(G)$$

Any $\mathfrak{H}_n(G)$ -extension is central, see [11, Proposition 2.3].

We now recall the notion of an extension of type $\mathfrak{U}(G)$ introduced by Rehmann in [11, § 1]. Let G be a group. Denote by U(G) the group presented by generators $(u, v), u, v \in G$ and relations:

(U1)
$$({}^{u}v, {}^{u}w)(u, w) = (uv, w),$$

$$(U2) (u, vw)(v, wu)(w, uv) = 1.$$

There is a left action of G on U(G) given by $^{x}(u,v) = (^{x}u,^{x}v)$. Equivalently, U(G) can be defined by the following relations, see [4, p. 8].

$$(3.1) (u, v)(v, u) = 1,$$

$$(3.2) (u,v)^{v}(u,w) = (u,vw),$$

(3.3)
$${}^{u}(v,w)(w,v) = (u,[v,w]).$$

It is clear from the definition that U(G) is a quotient of the nonabelian tensor square $G \otimes G$ and that the map $(u,v) \mapsto [u,v]$ defines a G-equivariant map $U(G) \twoheadrightarrow [G,G]$. Notice that in the literature one can find alternative notations for U(G) which emphasize its connection with nonabelian tensor products e.g. (G,G) or $G \wedge G$.

By definition, an extension of type $\mathfrak{U}(G)$ is simply a quotient of U(G) that fits into the following commutative diagram with G-equivariant arrows.

$$U(G)$$

$$\downarrow$$

$$U \longrightarrow [G, G]$$

There is a correspondence between extensions of type $\mathfrak{H}_n(G)$ and $\mathfrak{U}(G)$. One can obtain a $\mathfrak{U}(G)$ -extension from given $\mathfrak{H}_n(G)$ -extension via restriction. Indeed, let H be an extension of type $\mathfrak{H}_n(G)$ and k be arbitrary number $1 \leq k \leq n$. Denote by ι_k the inclusion map $[G,G] \to D_n(G)$ that inserts an element $g \in [G,G]$ at the k-th position. Then the corresponding extension U_H is simply the pull-back of H with respect to ι_k .

In other words, U_H is simply the subgroup of H generated by symbols $c_{kj}(u,v) = h_{kj}(u) \cdot h_{kj}(v) \cdot h_{kj}(vu)^{-1}$ (here j is any index not equal k, $c_{kj}(u,v)$ does not depend

on j, see [11, Proposition 2.1]). It can be shown that U is an extension of type $\mathfrak{U}(G)$ with kernel $\operatorname{Ker}(\pi_U)$ isomorphic to $\operatorname{Ker}(\pi_H)$, see [11, Propositions 2.2–2.3]. In [11, § 3] Rehmann also describes the inverse construction which assign to every $\mathfrak{U}(G)$ -extension $U \to [G, G]$ and a number $n \geq 3$ some extension H_U of type $\mathfrak{H}_n(G)$ that fits into the pull-back diagram above.

3.1. A simpler presentation of $H_n(G)$. The aim of this subsection is to obtain a presentation of $H_n(G)$ that is simpler than the original presentation: 4 instead of 5 relations that are also shorter. Our main result is the following.

Proposition 3.1. For $n \ge 3$ relations (R0)–(R4) imply (H1)–(H5). Moreover, for $n \ge 4$ relations (R0)–(R3) are equivalent to (H1)–(H5).

For $u, v \in G$ we define the following two symbols:

$$c_{ij}(u,v) = h_{ij}(u)h_{ij}(v)h_{ij}(vu)^{-1}, c'_{ij}(u,v) = h_{ij}(u)h_{ij}(v)h_{ij}(uv)^{-1}.$$

Notice that (H4) implies $h_{ij}(1) = 1$ therefore $c_{ij}(u, u^{-1}) = c'_{ij}(u, u^{-1})$. Our goal is to show that (H3) can be omitted from the definition of $H_n(G)$ provided $n \ge 4$.

Lemma 3.2. If one excludes relation (H3) from the list of defining relations for the group $H_n(G)$, $n \geq 3$, the following still remain true:

- (1) The elements $c_{ij}(u, u^{-1})$ are central in $H_n(G)$;
- (2) One has $c'_{ij}(u,v) = [h_{ij}(u), h_{kj}(v)], k \neq i, j;$
- (3) One has $h_{ij}(w)c'_{kj}(u,v) = c'_{kj}(u,w)^{-1}c'_{kj}(u,vw), k \neq i,j;$
- (4) One has $h_{ij}(w)c'_{ij}(u,v) = c'_{ij}(uw,v)c'_{ij}(w,v)^{-1}$.

Proof. First one shows using (H4) that $c_{ij}(u, u^{-1})$ centralizes $h_{kj}(v)$ (cf. with the proof of [11, Lemma 2.1(2)]). Since in any group [a, b] = 1 implies $[a^{-1}, b] = [a, b^{-1}] = [a^{-1}, b^{-1}] = 1$ we get that $c_{ij}(u, u^{-1})$ also centralizes $h_{kj}(v)^{-1} = h_{jk}(v)$ and $c_{ij}(u^{-1}, u)^{-1} = c_{ji}(u, u^{-1})$ centralizes both $h_{kj}(v)$ and $h_{jk}(v)$. Together with (H2) and (H5) this implies that $c_{ij}(u, u^{-1})$ centralizes all the generators of $H_n(G)$ and hence lies in the center of $H_n(G)$.

The second and third assertions are straightforward corollaries of (H4). The fourth assertion follows from the third one:

$$^{h_{ij}(w)}c'_{ij}(u,v) = ^{h_{ij}(w)}c'_{kj}(v,u)^{-1} = (c'_{kj}(v,w)^{-1}c'_{kj}(v,uw))^{-1} = c'_{ij}(uw,v)c'_{ij}(w,v)^{-1}.$$

Lemma 3.3. If one excludes relation (H3) from the list of defining relations for the group $H_n(G)$, $n \geq 3$, the following statements are equivalent:

- (1) (H3) holds;
- (2) one has $c'_{ij}(u,v)^{-1} = c'_{ij}(v,u)$;

- (3) symbols $c'_{ij}(u,v)$ do not depend on i;
- (4) one has $c'_{ij}(u, vw) = c'_{ij}(wu, v) \cdot c'_{ij}(uv, w);$
- (5) one has $c'_{ij}(u, vu^{-1}) = c'_{ij}(uv, u^{-1})$.

Proof. Implications (1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4) are essentially contained in the proof of [11, Lemmas 2.1-2.2]. Implication (4) \Longrightarrow (5) is trivial.

We now prove (5) \implies (1). Notice that (H4) implies $h_{ij}(u)^{-1}h_{ik}(v) = h_{ik}(u)^{-1}h_{ik}(vu)$, therefore using Lemma 2.10.(1) we get that $h_{ij}(u)h_{ik}(v) = c_{ij}(u,u^{-1})h_{ij}(u^{-1})^{-1}h_{ik}(v) = h_{ik}(u^{-1})^{-1}h_{ik}(vu^{-1})$. Thus, (H3) is equivalent to the equality

$$h_{ik}(uv)h_{ik}(u)^{-1} = h_{ik}(u^{-1})^{-1}h_{ik}(vu^{-1}),$$

or what is the same

$$c'_{ik}(u^{-1}, uv) = h_{ik}(u^{-1})h_{ik}(uv) = h_{ik}(vu^{-1})h_{ik}(u) = c'_{ik}(vu^{-1}, u).$$

It is clear that the last equality is an equivalent reformulation of (5).

Proof of Proposition 2.9. The assertion of the proposition becomes evident once one notices the following:

- (H2) and (H4) are implied by (R0)-(R2);
- (R0) follows from (H4);
- (R2) follows from (H1), (H2) and (H4);
- (H4) and (H3) are equivalent in the presence of (R4);
- for $n \ge 4$ the third statement of the previous lemma follows from Lemma 2.10.(2).

Corollary 3.4. For $n \geq 3$ the group $HS_n(G)$ is the quotient of the extension $H_n(G)$ by (R4) and, in particular, is an $\mathfrak{H}_n(G)$ -extension. The associated $\mathfrak{U}(G)$ extension $U_{HS_n(G)}$ is isomorphic to the quotient of U(G) modulo single family of relations

$$(u,u)=1,\ u\in G.$$

In particular, we have the following natural isomorphism:

(3.4)
$$\operatorname{Ker}(HS_n(G) \to D_n(G)) = \operatorname{Ker}(S_n(G) \to G \wr S_n) \cong \operatorname{H}_2(G, \mathbb{Z}).$$

Proof. Most of the assertions follow from Proposition 2.9 and [4, Proposition 5]. One also has to use the formula $c_{ij}(u,u) = c_{ij}(u,u^{-1})$ (see [11, p. 87]).

4. Proof of Theorem 2

Recall that for arbitrary set X one defines the space EX as the the simplicial set whose set of k-simplices EX_k is X^{k+1} and whose faces and degeneracies are obtained by omitting and repeating components. For a group G we denote by π_G the canonical map $EG \to BG$ sending $(g,h) \in EG_1$ to $g^{-1}h \in BG_1$.

Now let N be a group acting on X. We define two simplicial sets U and V as follows:

$$U = \bigcup_{n \in N} E(\Gamma_{n,-}) \subseteq E(X \times X), \quad V = \bigcup_{x,y \in X} E(N(x \to y)) \subseteq EN.$$

Here $\Gamma_{n,-}$ is the graph of the function $(x \mapsto nx)$ and $N(x \to y)$ denotes the subset of elements $n \in N$ satisfying nx = y. With this notation the subset $N(x \to x)$ coincides with the stabilizer subgroup $N_x \le N$.

Lemma 4.1. The simplicial sets U and V are homotopy equivalent.

Proof. First, we define yet another simplicial set W as follows. Its k-simplices W_k are matrices $\binom{x_0}{n_0} \frac{x_1}{n_1} \dots \frac{x_k}{n_k}$, where $x_i \in X$ are $n_i \in N$ are such that all n_i 's act each x_j in the same way, i. e. $n_i x_j = n_{i'} x_j$ for $0 \le i, i', j \le k$. The faces and degeneracies of W are the maps of omission and repetition of columns.

Now there are two simplicial maps $f: W \to U$, $g: W \to V$ whose action on 0-simplicies is given by $f\begin{pmatrix} x_0 \\ n_0 \end{pmatrix} = (x_0, n_0 x_0)$, $g\begin{pmatrix} x_0 \\ n_0 \end{pmatrix} = n_0$. To prove the lemma it suffices to show that f and g are homotopy equivalences. The proof for f and g is similar, let us show, for example, that g is a homotopy equivalence.

In view of Quillen theorem A (cf.[13, ex. IV.3.11]) it suffices to show that for each p-simplex $d: \Delta^p \to V$ the pullback g/(p,d) of d and g is contractible. The simplicial set g/(p,d) can be interpreted as the subset of $\Delta^p \times E(X)$ whose set of k-simplices consists of pairs $(\alpha: \underline{k} \to \underline{p}, (x_0, \dots, x_k) \in X(\alpha, d)^{k+1})$. Here $X(\alpha, d)$ is the subset of X consisting of all x for which $d_{\alpha(i)}x = d_{\alpha(j)}x$ for $0 \le i, j \le k$. Notice that the set $X_d := X(id_{\underline{p}}, d)$ is nonempty and is contained in every $X(\alpha, d)$ (it even equals $X(\alpha, d)$ for surjective α). Now choose a point $\widetilde{x} \in X_d$ and consider the simplicial homotopy

$$H: \Delta^p \times EX \times \Delta^1 \to \Delta^p \times EX$$

between the identity map of $\Delta^p \times EX$ and the map $\Delta^p \times c_{\widetilde{x}}$, where $c_{\widetilde{x}}$ is the constant map. More concretely, H sends each triple $(\alpha: \underline{k} \to \underline{p}, (x_0, \dots, x_k), \beta: \underline{k} \to \underline{1})$ to $(\alpha, (x_0, \dots, x_{i-1}, \widetilde{x}, \dots, \widetilde{x}))$, where i is the minimal number such that $\beta(i) = 1$. By the choice of \widetilde{x} the image of H restricted to $g/(p, d) \times \Delta^1$ is contained in g/(p, d), hence g/(p, d) is contractible.

Now suppose that X = H is also a group upon which N acts on the left.

Corollary 4.2. Consider the following two simplicial sets:

$$S = \bigcup_{h \in H} BN_h \subseteq BN, \quad T = \pi_N(U) \subseteq B(H \times H).$$

There is an isomorphism θ : $\operatorname{Ker}(\pi_1(S) \to N) \cong \operatorname{Ker}(\pi_1(T) \to H \times H)$. Moreover, the higher homotopy groups of S and T are isomorphic.

Proof. Consider the following two pull-back squares:

$$V \hookrightarrow EN \qquad U \hookrightarrow E(H \times H)$$

$$\downarrow^{J} \qquad \downarrow^{\pi_{N}} \qquad \downarrow^{\pi_{H \times H}}$$

$$S \hookrightarrow BN \qquad T \hookrightarrow B(H \times H)$$

The required isomorphism can be obtained from the homotopy long exact sequence applied to the left arrows of these diagrams. \Box

Now let G be a group. Set $N = G \wr S_n$, $H = G^n$ and consider the left action of N on H given by $(g,s) \cdot h = gh^{s^{-1}}$, $g,h \in G^n$, $s \in S_n$. If one reorders the components of BG^{2n} accordingly, the simplicial subset $T \subset BG^{2n}$ from the above corollary becomes precisely the preimage of 0 under $h_n \colon BG^{2n} \to \mathbb{Z}[BG]$.

It is also easy to compute the map $\pi_1(S) \to N$. Indeed, van Kampen theorem [8, Theorem 2.7] asserts that $\pi_1(S)$ is isomorphic to the free product of stabilizer subgroups $N_h \leq N$ amalgamated over pairwise intersections $N_h \cap N_{h'}$, $h, h \in H$. For $h \in G^n$ the subgroup N_h consists of elements $(g, s) \in N$ satisfying $gh^{s^{-1}} = h$, i.e. elements of the form $(hh^{-s^{-1}}, s)$. Thus, $N_h \cong S_n$, $\pi_1(S)$ is isomorphic to the group $S_n(G)$ and the map $\pi_1(S) \to N$ coincides with the map μ defined in section 2.1. In particular, for an abelian G its kernel is generated by symbols $c_{ij}(u, v)$.

The following lemma gives a more concrete description of the isomorphism θ from Corollary 3.2.

Lemma 4.3. If G is abelian then every generator $c_{ij}(u,v) \in \text{Ker}(\pi_1(S) \to N)$ is mapped under θ to the homotopy class of the loop $f_{ij}(u,v)$, which is defined as follows:

$$f_{ij}(u,v) = p_{ij}(u) \circ p_{ij}(v) \circ p_{ij}(u^{-1}v^{-1}), \text{ where } p_{ij}(x) = (x[i], x[i]) \circ (x^{-1}[i], x^{-1}[j]).$$

Proof. Fix a vector $g \in G^n$ and denote by $\gamma_{ij}(g, x)$ the path of length 4 in W which connects the following five points of W_0 :

$$\left(\begin{smallmatrix} e \\ (g;e) \end{smallmatrix} \right), \; \left(\begin{smallmatrix} x[i] \\ (g;e) \end{smallmatrix} \right), \; \left(\begin{smallmatrix} x[i] \\ (d_{ij}(x)g,(ij)) \end{smallmatrix} \right), \; \left(\begin{smallmatrix} e \\ (d_{ij}(x)g,(ij)) \end{smallmatrix} \right), \; \left(\begin{smallmatrix} e \\ (d_{ij}(x)g,e) \end{smallmatrix} \right).$$

One can easily check that the image of $\gamma_{ij}(g,x)$ in S under $\pi_N g$ is precisely the element $h_{ij}(x)$, while $\pi_{H\times H}f$ sends $\gamma_{ij}(g,x)$ to the loop $p_{ij}(x)$ (here f,g are the maps from the proof of Lemma 3.1).

Lemma 4.4. The only natural endotransformations of the second homology functor $H_2(-,\mathbb{Z})$: **Groups** \to **Ab** are morphisms of multiplication by $n \in \mathbb{Z}$.

Proof. Denote by η an endotransformation $H_2(-,\mathbb{Z}) \to H_2(-,\mathbb{Z})$. When restricted to the subcategory of free finitely-generated abelian groups $\mathbf{Add}(\mathbb{Z}) \subseteq \mathbf{Ab}$ the second homology functor coincides with the second exterior power functor $A \mapsto \wedge^2 A$.

Recall from [1, Theorem 6.13.12] that the category of quadratic functors is equivalent to the category of quadratic \mathbb{Z} -modules (see Definition 6.13.5 ibid.) The functor $A \mapsto \wedge^2 A$ is clearly quadratic and corresponds to the quadratic \mathbb{Z} -module $0 \to \mathbb{Z} \to 0$ under this equivalence. Thus, we get that η restricted to $\mathbf{Add}(\mathbb{Z})$ coincides with the morphism of multiplication by $n \in \mathbb{Z}$.

Consider the group $\Gamma_k = \langle x_1, y_1, \dots x_k, y_k \mid [x_1, y_1] \cdot \dots \cdot [x_k, y_k] \rangle$ (the fundamental group of a sphere with k handles). It is clear that the abelianization map $\Gamma_k \to \mathbb{Z}^{2k}$ induces an injective map $H_2(\Gamma_k, \mathbb{Z}) \cong \mathbb{Z} \to \wedge^2 \mathbb{Z}^{2k}$. Consider the following diagrams.

$$\mathbb{Z} \xrightarrow{} \wedge^{2} \mathbb{Z}^{2k} \qquad \mathbb{Z} \xrightarrow{\chi} \operatorname{H}_{2}(G, \mathbb{Z})$$

$$\eta_{\Gamma_{k}} \downarrow \qquad \qquad \downarrow^{n} \qquad \eta_{\Gamma_{k}} \downarrow \qquad \qquad \downarrow^{\eta_{G}}$$

$$\mathbb{Z} \xrightarrow{\chi} \wedge^{2} \mathbb{Z}^{2k} \qquad \mathbb{Z} \xrightarrow{\chi} \operatorname{H}_{2}(G, \mathbb{Z})$$

From the left diagram it follows that η_{Γ_k} is also the morphism of multiplication by n. For every element $x \in H_2(G, \mathbb{Z})$ there exist an integer k and a map $\chi \colon \Gamma_k \to G$ sending the generator of $H_2(\Gamma_k, \mathbb{Z})$ to x. From the right square we conclude that $\eta_G(x) = nx$, as claimed.

Proof of Theorem 2. Factor h_n as a composition of a trivial cofibration followed by a fibration $BG^{2n} \to E_{h_n} \to \mathbb{Z}[BG]$ and write down the starting portion of the long homotopy exact sequence for the latter. If we denote by K the kernel of the map $\nu \colon \pi_1(T) \to G^{2n}$ induced by the embedding $h_n^{-1}(0) = T \subseteq BG^{2n}$ we obtain the following commutative diagram:

$$1 \longrightarrow K \xrightarrow{\beta} \pi_1(T) \xrightarrow{\nu} G^{2n} \longrightarrow H_1(G, \mathbb{Z}) \longrightarrow 1$$

$$\downarrow \psi \qquad \qquad \downarrow \psi \qquad \qquad \qquad \parallel$$

$$1 \longrightarrow H_2(G, \mathbb{Z}) \xrightarrow{\alpha} \pi_1(F_{h_n}) \longrightarrow \pi_1(E_{h_n}) \longrightarrow H_1(G, \mathbb{Z}) \longrightarrow 1.$$

We already know by Corollaries 2.12 and 3.2 that K is naturally isomorphic to $H_2(G,\mathbb{Z})$ provided $n \geq 3$. Thus, it suffices to show that ψ is an isomorphism. In view of Lemma 3.4 we only need to consider the case when G is abelian.

We are going to compute the image of each generator $c_{ij}(x,y) = x \wedge y \in H_2(G,\mathbb{Z})$ under ψ . In order to do this we need to obtain a more explicit description of the set of 1-simplices of F_{h_n} . Since both BG^{2n} and $\mathbb{Z}[BG]$ are fibrant E_{h_n} and F_{h_n} can be constructed using the path space construction, i. e. $E_{h_n} = BG^{2n} \times_{\mathbb{Z}[BG]} \mathbb{Z}[BG]^I$. In this case the set of 1-simplices of F_{h_n} can be identified with the set of triples $(g,t,t') \in G^{2n} \times \mathbb{Z}[BG]_2 \times \mathbb{Z}[BG]_2$ satisfying the following identites:

$$d_2(t) = h_n(g), d_1(t) = d_1(t'), d_0(t') = 0.$$

It will be convenient for us to perform all calculations inside the subset $F' \subset (F_{h_n})_1$ consisting of those triples for which t' = 0 and $d_1(t) = d_0(t) = 0$. For shortness we write down an element of F' as (g,t). It is easy to check that the image of the loop $p_{ij}(x)$ under the natural map $T \to F_{h_n}$ corresponds to the pair $((e, d_{ij}(x)), t(x))$, where $t(x) = -(x, x^{-1}) + (e, e) - (x^{-1}, e) + (e, x^{-1})$.

We want to devise a concrete formula for the element of F' homotopic to the concatenation of two elements $(g_1, t_1), (g_2, t_2) \in F'$. It is easy to check that (g_1g_2, t) , where t is the 1-st face of the filler f for the 3-horn $(t_2, t_1, h_n(g_1, g_2))$, is the desired element. By Moore's theorem one can find a filler for any horn (p_0, p_2, p_3) in a simplicial abelian group via the formula $f = s_0p_0 - s_0s_1d_2p_0 - s_0s_0d_1p_0 + s_0s_0d_2p_0 + s_1p_2 + s_2p_3 - s_1p_3$. Substituting concrete values of p_i into this formula and using the fact that $d_1t_2 = 0$ we get the following expression for t:

$$t = d_1 f = p_0 - s_1 d_2 p_0 - s_0 d_1 p_0 + s_0 d_2 p_0 + p_2 - p_3 + s_1 d_1 p_3 =$$

= $t_1 + t_2 - h_n(g_1, g_2) - s_1 h_n(g_2) + s_0 h_n(g_2) + s_1 h_n(g_1 g_2).$

Using the above formula we get that the image of $c_{ij}(u, v)$ via $\varphi\beta$ equals ((e, e), t), where

$$(4.1) \quad t = 2(e, e) - (x^{-1}, e) + (xy, x^{-1}y^{-1}) - (xy, e) - (x, x^{-1}) - (y, y^{-1}) - (e, x^{-1}y^{-1}) + (e, x^{-1}) + (x, y) + (x^{-1}, y^{-1}) - (e, y) - (xyx^{-1}y^{-1}, e) + (y, e).$$

The map α can be described as the Dold—Kan isomorphism $H_2(G,\mathbb{Z}) \cong \pi_2(\mathbb{Z}[BG])$ followed by the boundary map $\partial \colon \pi_2(\mathbb{Z}[BG]) \to \pi_1(F_{h_n})$. It is not hard to show that ∂ maps each $c \in \pi_2(\mathbb{Z}[BG])$ to ((e,e),-c) (see [5, p. 29]). Thus, we get that ψ maps $x \wedge y$ to -t, where t is given by (3.1).

On the other hand, the generator $x \wedge y$ of $H_2(G, \mathbb{Z})$ corresponds to the 2-cycle c = (x, y) - (y, x) (cf. [9, (14), p. 582]) and the corresponding element of $\pi_2(\mathbb{Z}[BG])$ is simply the normalized 2-cycle of c:

$$c' = c - s_0 d_0 c - s_1 d_1 c + s_1 d_0 = (x, y) - (y, x) - (x, e) + (y, e) + (e, x) - (e, y).$$

It it not hard to check that t - c' is the image of the following 3-cycle under the differential $d_0 - d_1 + d_2 - d_3$:

$$(xy, x^{-1}, y^{-1}) - (y, x, x^{-1}) + s_1 s_1 (x^{-1} + xy - x - y) + s_0 s_0 (x^{-1} - x - x^{-1} y^{-1}).$$

Thus we obtain that [t] = -[c'], hence ψ is an isomorphism, as claimed.

APPENDIX A. SIMPLICIAL DOLD—SERRE FIBRATIONS

The aim of this appendix is to show that the map $h_\infty \colon X^\infty \to \mathbb{Z}[X]$ is a quasifibration under suitable assumptions on X.

We start with the definition of the simplicial analogue of the so-called "Dold—Serre fibration", i.e. a map possessing "weak covering homotopy property" (also called "delayed homotopy lifting property"), cf. [12, § 1.4.4]. We show in Lemmas A.2 and A.4 that the map h_{∞} satisfies this property and that every map with this property is a quasifibration.

Definition A.1. Let C be a subclass of the class of acyclic cofibrations in the category of simplicial sets. We say that a map of simplicial sets $p: E \to B$ satisfies weak homotopy covering property with respect to C if for every commutative square

(A.1)
$$U \xrightarrow{g} E$$

$$\downarrow \downarrow \qquad \qquad \downarrow p$$

$$V \xrightarrow{F} B$$

for which $i \in C$ there exists a map \widetilde{F} such that the lower triangle commutes strictly and the upper one commutes up to a fiberwise homotopy H (i. e. a homotopy H such that $pH \colon U \times I \to B$ coincides with the composite $U \times I \xrightarrow{\pi} U \xrightarrow{pg} B$).

Denote by C_{pr} the class consisting of all inclusions $i: U \hookrightarrow V$ of finite polyhedral simplicial sets for which there exists a deformation retract (i. e. a map $r: V \to U$ homotopic to id_V).

Lemma A.2. For a fibrant and connected simplicial set X the map $h_{\infty} \colon X^{\infty} \to \mathbb{Z}[X]$ satisfies the weak covering homotopy property with respect to the class C_{pr} .

Proof. Let i_0 be a map from C_{pr} and r be the corresponding retraction. We first reduce the problem to the special case when g is the constant map at the basepoint of X^{∞} (which we denote by 0). Indeed, let F, g be arbitrary maps as in (A.1). Since U is finite the image of g is contained in $X^{2N} \subset X^{\infty}$. If now \widetilde{F}_0 is a lifting in the diagram similar to (A.1) in which the top map equals 0 and the bottom one is $F_0 = F - h_{\infty}gr$ then $\widetilde{F} = gr \times \widetilde{F}_0$ is the desired lifting of F.

Now choose a contractible fibrant simplicial set W which maps surjectively onto X (e. g. take W to be the path space fibration). Since $p: W \to X$ is surjective, the associated map between free simplicial abelian groups is a Kan fibration. Since i_0 is acyclic we can choose a lifting \widetilde{F} in the following diagram

$$U \xrightarrow{0} \mathbb{Z}[W]$$

$$i_0 \downarrow \qquad \qquad \downarrow \\ V \xrightarrow{\tilde{F}} \mathbb{Z}[X]$$

It is clear that the image of \widetilde{F} is contained in the simplicial subgroup $\mathbb{Z}[W]_0 \leq \mathbb{Z}[W]$ which, by definition, consists of linear combinations $\sum_i n_i w_i$ for which $\sum_i n_i = 0$. By [10, Lemma 9.1] the canonical map $\mathbb{Z}[\underline{\mathrm{Hom}}(V,W)]_0 \to \underline{\mathrm{Hom}}(V,\mathbb{Z}[W]_0)$ is surjective, hence the map \widetilde{F} can be lifted along h_W in such a way that the bottom triangle in following diagram commutes strictly.

$$U \xrightarrow{0} W^{\infty}$$

$$i_0 \downarrow G \qquad \downarrow h_W$$

$$V \xrightarrow{\widetilde{F}} \mathbb{Z}[W]$$

Notice that the image of Gi_0 is contained in the fiber $h_W^{-1}(0)$. It is easy to see that $h_W^{-1}(0)$ is contractible (the contracting homotopy for W^{∞} can be restricted to $h_W^{-1}(0)$). We get that Gi_0 is fiberwise homotopic to 0 hence the composite map $V \xrightarrow{G} W^{\infty} \to X^{\infty}$ is the desired lifting of F.

The assertions of the following lemma are straightforward and are given without proof.

Lemma A.3. Let $p: (E, e) \to (B, b)$ be a map of pointed topological spaces. Let $p^{-1}(b) \hookrightarrow F_p(b) \subseteq E \times_B B^I$ be the inclusion map of the fiber of p into the homotopy fiber. Denote k-th relative homotopy group (or set) $\pi_k(F_p(b), p^{-1}(b), e)$) by G_k .

(1) Maps of triples $(D^k, S^{k-1}, pt) \to (F_p(b), p^{-1}(b), e)$ are in one-to-one correspondence with commuting diagrams of the form

(A.2)
$$D^{k} \xrightarrow{a} E \downarrow^{p}$$

$$D^{k} \times I \xrightarrow{\pi} (D^{k} \times I)/J \xrightarrow{A} B$$

Here J denotes $(S^{k-1} \times I) \cup (D^k \times \{1\})$. In the sequel we denote such a diagram by (a, A).

- (2) Two diagrams (a_0, A_0) and (a_1, A_1) represent the same element of G_k iff there exists a "diagram homotopy" that connects them. By a diagram homotopy we mean a family of maps (a_t, A_t) continously depending on $t \in [0, 1]$ such that $pa_t = A_t \pi i_0$ holds for all t.
- (3) Let (a, A) be a diagram and a' be any other map homotopic to a via some homotopy H such that $H(S^{k-1} \times I) \subseteq p^{-1}(b)$. Then there exists a map A' such that (a', A') is a diagram homotopic to (a, A).

(4) Assume that in the diagram (A.2) there exists a diagonal map $A: D^k \times I \to E$ such that the bottom triangle is commutative and the upper is commutative up to a fiberwise homotopy. Then the element of G_k given by (a, A) is trivial.

Lemma A.4. Let $p: E \to B$ be a map of simplicial sets satisfying the weak covering homotopy property with respect to the class C_{pr} . Then the geometric realization of p is a quasifibration, i. e. for every point $b \in B_0$ the inclusion $|p|^{-1}(b) \hookrightarrow F_{|p|}(b)$ is a homotopy equivalence.

Proof. It suffices to show that $\pi_k(F_{|p|}(b),|p|^{-1}(b))$ are all trivial for $k \geq 1$. Consider a diagram (a, A) of the form (A.2) (with the map |p| in the right hand side). In view of the previous lemma it suffices to construct a lifting \widetilde{A} satisfying the requirements of Lemma A.3.(4).

The idea of the proof is to approximate (a, A) with a homotopic pair of geometric realizations of simplicial maps and then invoke the weak covering homotopy property. The key ingredient in the proof below is the simplicial approximation theorem [6, Theorem 4.7. For brevity we denote the subdivision functor $\mathrm{sd}^m\,\mathrm{sd}_*(-)$ from its statement by $s^m(-)$ and the canonical natural transformation $s^m X \to X$ by δ^m .

We proceed in a number of steps. Denote the restriction of a to S^{k-1} by a_0 . Notice that the image of a_0 is contained in $|p^{-1}(b)|$. Using the approximation theorem we find a simplicial map $a_0' \colon s^m(S^{k-1}) \to p^{-1}(b)$ such that $a|\delta^m| \cong |a_0'|$. We can find a map $a' \colon D^k \to |E|$ extending $|a_0'|$ and homotopic to a via some

homotopy H satisfying $H(S^k \times I) \subset p^{-1}(b)$.

Invoking the approximation theorem once again (with the initial condition specified by $|a_0'|$ we find q > m and $a'' : s^q(D^k) \to E$ such that $a' |\delta^q| \cong |a''|$ rel S^k . Using Lemma A.3.(3) we extend the homotopy $a|\delta^q| \cong a'|\delta^q| \cong |a''|$ to a homotopy of diagrams $(a|\delta^q|, A|\delta^q|) \cong (|a''|, A').$

Applying the approximation theorem to A' with the initial condition on the boundary $\partial(D^k \times I) = D^k \times \{0\} \cup J$ specified by pa'' and $const_b$, respectively, we find an integer r > q and a map $A'': s^r(D^k \times I) \to B$ such that $A'|\delta^r| \cong |A''|$ rel $\partial(D^k \times I)$.

Thus, we have obtained the following commutative diagram of simplicial sets for which (|a''|, |A''|) is a diagram homotopic to (a, A).

$$s^{r}(D^{k}) \xrightarrow{a''\gamma^{r-q}} E$$

$$s^{r}(i) \downarrow \qquad \widetilde{A} \qquad \downarrow^{p}$$

$$s^{r}(D^{k} \times I) \xrightarrow{A''} B$$

By functoriality of the subdivision functor the map $s^r(i)$ possesses a deformation retract hence there exists the desired lifting A.

References

- [1] H. J. Baues. "Homotopy type and homology". Oxford University Press, 1996.
- R. Brown, P. J. Higgins, and R. Sivera. "Nonabelian algebraic topology". Vol. 15. EMS Tracts in Mathematics. 2011.
- [3] R. W. Carter. "Simple groups of Lie type". Vol. 22. John Wiley & Sons, 1989.
- [4] R. K. Dennis. "In search of new homology functors having a close relationship to K-theory". Preprint, Cornell University (1976).
- [5] P. G. Goerss and J. Jardine. "Simplicial homotopy theory". Springer Science & Business Media, 2009.
- [6] J. F. Jardine. "Simplicial approximation". Theory Appl. Categ Vol. 12, No. 2, (2004), pp. 34–72.
- [7] W. Magnus, A. Karrass, and D. Solitar. "Combinatorial group theory". Dover Publications, 1976.
- [8] J. P. May. "A concise course in algebraic topology". University of Chicago press, 1999.
- [9] C. Miller. "The second homology group of a group; relations among commutators". *Proc.* AMS Vol. 3, No. 4, (1952), pp. 588–595.
- [10] S. Podkorytov. "Straight homotopy invariants". In: Top. Proceedings. Vol. 49. 2017, pp. 41–64.
- [11] U. Rehmann. "Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers." J. Reine Angew. Math. Vol. 301, (1978), pp. 77–104.
- [12] K. Szumiło. "Two Models for the Homotopy Theory of Cocomplete Homotopy Theories". PhD thesis. Universität Bonn, 2014.
- [13] C. A. Weibel. "The K-book: An introduction to algebraic K-theory". Vol. 145. AMS, 2013.