Definition 1 Line integration of a vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ along a smooth curve C

 $\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds \tag{1}$

where T is the tangent vector to curve C

As the definition of line integration in scalar field, the definition above is derived from the concept of Riemann summation. Let's take the following toy example to illustrate this.

Example 1 Given a vector field in \mathbb{R}^2 defined by $\mathbf{F}(x,y) = (x^2 - y^2 - 12) \mathbf{i} + 2xy \mathbf{j}$ and a parametric curve C defined by following equations

$$x = 6t\cos(5t) \qquad \qquad y = 6t^3 - 6$$

Derive the definition of line integration exploiting the concept of Riemann summation. Graph some Riemann approximation of the line integration of $\mathbf{F}(x,y)$ along curve C for arbitrary n

Riemann summation performed on $\mathbf{F}(x,y)$ along curve C can be achieve by the following steps:

- 1. Divide the curve C to n small subarcs $\Delta s_1, \ldots \Delta s_n$.
- 2. For every subarc i, evaluate $\mathbf{F}(x,y)$ and the unit tangent vector to the curve direction $\mathbf{T}(t)$ at some point $t_i^* \equiv (x_i^*, y_i^*) \in \Delta s_i$.
- 3. Compute $[\mathbf{F}(x_i^*, y_i^*) \cdot \mathbf{T}(t_i^*)] \Delta s_i$ for every subarc " i.e. the alignment between the vector field vector $\mathbf{F}(x_i^*, y_i^*)$ with the unit tangent vector $\mathbf{T}(t_i^*)$ of subarc i".
- 4. Sum $[\mathbf{F}(x_i^*, y_i^*) \cdot \mathbf{T}(x_i^*, y_i^*)] \Delta s_i$ over n to approximate how much the vectors of $\mathbf{F}(x_i^*, y_i^*)$; along the path defined by C, align with C.

Work
$$\approx \sum_{i=1}^{n} [\mathbf{F}(x_i^*, y_i^*) \cdot \mathbf{T}(x_i^*, y_i^*)] \Delta s_i$$

5. Riemann summation imply that n goes to infinity. Hence the Riemann summation gives us the line integration³ of $\mathbf{F}(x,y)$ along curve C

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \lim_{n \to \infty} \sum_{i=1}^{n} [\mathbf{F}(x_{i}^{*}, y_{i}^{*}) \cdot \mathbf{T}(x_{i}^{*}, y_{i}^{*})] \Delta s_{i}$$

 $^{^{1}}$ small arcs

 $^{^2{\}rm choice}$ of (x_i^*,y_i^*) will decide which Riemann sum we have. Either Right, Left, Midpoint Riemann sum

³recall that $\int \equiv \lim_{n \to \infty} \sum_{i=1}^{n}$

Figure 1: Left: Illustrating Δs_i . Right: Riemann summation for small n where vectors in yellow are $\mathbf{F}(x_i^*, y_i^*)$ and in black are $\mathbf{T}(x_i^*, y_i^*)$

The plot above is the approximated line integration of $\mathbf{F}(x,y)$ along curve C using Riemann sum.

In context of parametric curves, it is more convenient⁴ to reformulate line integration formula "presented in definition (1)" in terms integration operator for the parametric variable "usually referred as t" rather than the arc length "usually referred as s" hence $ds \to dt$.

Definition 2 Line integration of a vector field $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ along a smooth parametric curve C defined by vector function $\mathbf{r}(t)$, $a \le t \le b$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

Example 2 Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is a quarter-circle defined through $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j}$, $0 \le t \le \pi/2$ and \mathbf{F} is a vector field $\mathbf{F}(x,y) = x^2 \, \mathbf{i} - xy \, \mathbf{j}$.

From the parametric equation $x = \cos t$ and $y = \sin t$, hence we have

$$\mathbf{F}(\mathbf{r}(t)) = \cos^2 t \, \mathbf{i} - \cos t \, \sin t \, \mathbf{j}$$

and

$$\mathbf{r}'(t) = -\sin t \,\mathbf{i} + \cos t \,\mathbf{j}$$

Therefore the line integration reads

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{\pi/2} \left(-\cos^2 t \sin t - \cos^2 t \sin t \right) dt$$
$$= \int_0^{\pi/2} (-2\cos^2 t \sin t) dt$$
$$= \left[2\frac{\cos^3 t}{3} \right]_0^{\pi/2} = -\frac{2}{3}$$

⁴computationally