(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 February 2003 (06.02.2003)

PCT

(10) International Publication Number WO 03/010202 A1

(51) International Patent Classification7:

C07K 16/46

(21) International Application Number: PCT/KR02/01427

(22) International Filing Date: 26 July 2002 (26.07.2002)

(25) Filing Language:

Korean

(26) Publication Language:

English

(30) Priority Data: 2001-45028

26 July 2001 (26.07.2001) KR

(71) Applicant (for all designated States except US): MEDEX-GEN CO. LTD. [KR/KR]; 2th Floor, Medical Bldg A, Hanyang University College of Medicine, 17 Haengdangdong, Seongdong-gu, 133-791 Seoul (KR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHUNG,

Yong-Hoon [KR/KR]; #405-804 Jugong Apt., Dunchon-dong, Gandong-gu, 134-060 Seoul (KR). HAN, Ji-Woong [KR/KR]; #201 Han Yang Villa 24-5, Gueui-2dong, Gwangjin-gu, 143-816 Seoul (KR). LEE, Hye-Ja [KR/KR]; #607 ChungSil Apt., Gaebongbon-dong, Guro-gu, 152-806 Seoul (KR). CHOI, Eun-Yong [KR/KR]; 19-1 Chungchun-1dong, Pupyong-gu, 403-854 Inchun-si (KR). KIM, Jin-Mi [KR/KR]; 409-287 Shillimbon-dong, Gwanak-gu, 151-029 Seoul (KR).

- (74) Agents: LEE, Sei-Jin et al.; 17th Floor, City Air Tower, 159-9 Samsung-dong, Gangnam-gu, 135-973 Seoul (KR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI,

[Continued on next page]

(54) Title: CONCATAMERIC IMMUNOADHESION

(57) Abstract: Disclosed are concatameric proteins comprising two soluble domains, in which the C-terminus of a soluble domain of a biologically active protein is linked to the N-terminus of an identical soluble domain or a distinct soluble domain of a biologically active protein. Also, the present invention disclosed dimeric proteins formed by formation of intermolecular disulfide bonds at the hinge region of two monomeric proteins formed by linkage of a concatamer of two identical soluble extracellular regions of proteins involving immune response to an Fc fragment of an immunoglobulin molecule, their glycosylated proteins, DNA constructs encoding the monomeric proteins, recombinant expression plasmids containing the DNA constructs, host cells transformed or transfected with the recombinant expression plasmids, and a method of preparing the dimeric proteins by culturing the host cells. Further, the present invention disclosed pharmaceutical or diagnostic compositions comprising the dimeric protein or its glycosylated form.

- SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

CONCATAMERIC IMMUNOADHESION

TECHNICAL FIELD

The present invention relates to concatameric proteins, and more specifically, concatamerized structure of biologically active protein domains where C-terminal end of extracellular soluble domain of biologically active protein is fused to N-terminal end of the same or other extracellular soluble domain of biologically active protein, and dimerization of two concatamers by coupling to hinge region of Fc fragment of immunoglobulin, and glycosylated forms of the concatameric proteins.

1.0

5

BACKGROUND ART

The activity of cytokine is associated with pathologic severity of inflammatory and /or immune response to various antigenic stimulations. Many antigen specific antibodies and soluble receptors which could recognize cytokines are currently in use to inhibit the function of cytokines for the therapeutic purposes (WO 93/016184, WO 96/02576, WO 96/023067, WO 1997/03682, and US 5,434,131, 5,656,272, 5,977,318, 6,210,661, 6,225,117). Antibodies and soluble receptors inhibit cytokine signal transduction by disturbing interaction between cytokines and their receptors on cell surface.

20

15

Soluble receptors used as functional inhibitors of cytokine that fused to heavy chains of human immunoglobulins were disclosed by Capon et al. (Nature 337:5254, 1989), and thereafter many patents were disclosed inventions related to fusion proteins of soluble receptors and immunoglobulins (US patent 5,521,288, 5,844,095, 6,046,310, 6,090,914, 6,100,383, 6,225,448).

Generally, fusion proteins of soluble receptors and immunoglobulins have following advantages (Capon et al., Nature 337:5254, 1989)

5

10

15

20

25

1. Increase in total avidity to ligand by forming bivalency via dimerization.

2. Increase in blood half-life of proteins, that is, increase in molecular stability

3. Activation of effecter cells by Fc fragment of immunoglobulin heavy chain

4. Convenience of purification by using affinity column, e.g. using protein A Most fusion proteins of receptor extracellular domain and immunoglobulin heavy chain are composed of heavy chain without CH1 domain, which result in dimers not binding to light chains. This structure is more desirable for the function of proteins and receptors involving immune response. For example, TNFR(WO92/16221, WO95/34326)-immunoglobulin fusion proteins disclosed in WO94/06476 and US 5,447,851 have been used for the inhibition of TNF-mediated inflammation. It is well known that TNFR-immunoglobulin fusion proteins have a higher affinity than original monomeric molecules (Lesslauer et al., Eur. J. Immunol. 21:2883, 1991; Ashkenazi et al., Proc. Natl. Acad. Sci. 88:10535, 1991; Peppe et al., J. Exp. Med. 174:1483, 1991; Mohler et al., J. Immunol. 151:1548, 1993).

For the improved inhibition of TNF mediated response, one can increase efficacy by multimerizing soluble extracellular domains of TNFR, CD2, and CTLA-4. For example, when fusion proteins of TNFR's extracellular domains bound with immunoglobulin heavy chain(heavy chain fusion protein) and with light chain(light chain fusion protein) respectively are coexpressed in the same cell, one can produce fusion proteins as a tetrameric form by linking heavy chain to heavy and light chains. This tetramer showed much more increased efficacy than monomeric or dimeric forms as presented by Scallon et al. (Cytokine 7:759, 1995).

However, this method had many difficulties for commercialization such as simultaneous expression of two different fusion genes in the same cell line, remarkably lower production yields of multimeric form; and difficulty in purifying multimeric high

molecular weight forms. For these reasons, immunoglobulin fusion proteins currently in use are only heavy chain fused form.

Therefore, there is considerable demand for the development of methods of producing multimeric protein therapeutics with high yield and efficient purification procedures.

DISCLOSURE OF INVENTION

5

The present inventors have manufactured concatameric proteins by fusing the C-terminal end of soluble domain of biologically active protein to the N-terminal end of soluble domain of the same or other biologically active protein by using DNA recombination techniques. Also, the present inventors have dimerized this concatamers by linking it to the hinge region of Fc fragment of immunoglobulin and added more glycosylations by using DNA mutagenesis techniques. And the present inventors have found that concatamerized protein dimers and their glycosylated forms show increased efficacy and stability compared to conventional monomeric fusion proteins.

10

Therefore, in one aspect, the present invention provides concatameric proteins where C-terminal end of soluble domain of biologically active proteins is fused to N-terminal end of soluble domain of the same or other biologically active proteins.

15

In another aspect, the present invention provides dimeric proteins formed by disulfide bond at hinge region of two monomeric proteins whose concatamerized part is fused to hinge region of Fc fragment of immunoglobulin.

20

Also in another aspect, the present invention provides DNA constructs that encode monomeric fusion proteins whose concatamerized domain is fused to hinge region of Fc fragment of immunoglobulins.

Also in another aspect, the present invention provides DNA plasmids comprising a DNA construct that encodes monomeric fusion protein whose concatamerized part is fused to hinge region of Fc fragment of immunoglobulin.

Also in another aspect, the present invention provides host cells transfected or transformed with recombinant DNA plasmids including a DNA construct that encodes monomeric fusion protein whose concatamerized part is fused to hinge region of Fc fragment of immunoglobulin.

5

10

15

20

25

Also in another aspect, the present invention provides a method for culturing the host cells, which were transfected or transformed with recombinant DNA plasmids including a DNA construct that encodes monomeric fusion protein whose concatamerized part is fused to hinge region of Fc fragment of immunoglobulin, under culture condition for expression of DNA constructs encoding concatameric fusion protein coupled to hinge region of Fc fragment of immunoglobulin, and manufacturing dimeric concatamers formed by disulfide bond at hinge region of two monomeric concatamers described as above including the process of purification of the proteins described as above from cell culture.

Also in another aspect, the present invention provides a method for culturing the host cells, which were transfected or transformed with recombinant DNA plasmids including a DNA construct that encodes monomeric fusion protein whose concatamerized part of immunomudulatory function is fused to hinge region of Fc fragment of immunoglobulin and is inserted with glycosylation motifs, under the best condition which is suitable for expression of DNA constructs that encode monomeric fusion protein whose concatamerized part of immune function is fused to hinge region of Fc fragment of immunoglobulin, and for manufacturing glycosylated dimers formed by disulfide bond at hinge region of two monomeric proteins described as above including the process of purification of the glycosylated proteins described as above from cell culture.

Also in another aspect, the present invention provides DNA primers for inserting glycosylation motif into the DNA constructs that encode monomeric fusion

proteins whose concatamerized part is fused to hinge region of Fc fragment of immunoglobulins.

Also in another aspect, the present invention provides the glycosylated dimers formed by disulfide bond at hinge region of two monomeric proteins whose concatamerized part involving immune response is fused to hinge region of Fc fragment of immunoglobulins.

Also in another aspect, the present invention provides the pharmaceutical compositions comprising dimers formed by disulfide bond at hinge region of two monomeric proteins whose concatamerized part involving immune response is fused to hinge region of Fc fragment of immunoglobulins in a pharmaceutically effective amount and in a pharmaceutically acceptable carrier.

Also in another aspect, the present invention provides the pharmaceutical compositions comprising glycosylated dimers formed by disulfide bond at hinge region of two monomeric proteins whose concatamerized part involving immune response is fused to hinge region of Fc fragment of immunoglobulins in a pharmaceutically effective amount and in a pharmaceutically acceptable carrier.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

Fig. 1 is a schematic view showing a process of preparing a DNA construct encoding a conventional simple fusion monomeric protein through polymerase chain reaction (PCR);

Fig. 2 is a schematic view showing a process of preparing a DNA construct encoding a concatameric fusion monomeric protein according to the present invention through PCR;

5

10

15

20

Fig. 3a shows structures of [TNFR/Fc]₂, [CD2/Fc]₂ or [CTLA4/Fc]₂ fusion proteins, which are simple fusion dimeric proteins formed through homodimerization in cells of TNFR/Fc, CD2/Fc or CTLA4/Fc fusion proteins as examples of conventional simple fusion monomeric proteins;

Fig. 3b shows structures of [TNFR-TNFR/Fc]₂, [CD2-CD2/Fc]₂ or [CTLA4-CTLA4/Fc]₂ fusion proteins, which are concatameric fusion dimeric proteins formed through homodimerization in cells of TNFR-TNFR/Fc, CD2-CD2/Fc or CTLA4-CTLA4/Fc fusion proteins as embodiments of the concatameric fusion dimeric protein according to the present invention;

5

10

15

20

25

30

Fig. 4a shows a structure of [TNFR1-TNFR1/Fc]₂, as an embodiment of a concatameric fusion dimeric protein according to the present invention;

Fig. 4b shows a structure of [TNFR2-TNFR2/Fc]₂, as another embodiment of the concatameric fusion dimeric protein according to the present invention;

Fig. 4c shows a structure of [CD2-CD2/Fc]₂, as a further embodiment of the concatameric fusion dimeric protein according to the present invention;

Fig. 4d shows a structure of [CTLA4-CTLA4/Fc]₂, as a still further embodiment of the concatameric fusion dimeric protein according to the present invention;

Fig. 5 is a diagram showing a process of constructing a recombinant expression plasmid pTR11Ig-Top10' expressing a concatameric fusion monomeric protein TNFR1-TNFR1/Fc according to the present invention;

Fig. 6 is a diagram showing a process of constructing a recombinant expression plasmid pCD22Ig expressing a concatameric fusion monomeric protein CD2-CD2/Fc according to the present invention;

Fig. 7 is a map of a recombinant expression plasmid pTR11Ig-Top10' expressing a concatameric fusion monomeric protein TNFR1-TNFR1/Fc according to the present invention;

Fig. 8 is a map of a recombinant expression plasmid pTR22Ig-Top10' expressing a concatameric fusion monomeric protein TNFR1-TNFR1/Fc according to the present invention;

Fig. 9 is a map of a recombinant expression plasmid pCD22Ig expressing a concatameric fusion monomeric protein CD2-CD2/Fc according to the present invention;

Fig. 10 is a map of a recombinant expression plasmid pCT44Ig expressing a concatameric fusion monomeric protein CTLA4-CTLA4/Fc according to the present invention;

Fig. 11 is a map of a recombinant expression plasmid pTR11Ig-MG expressing a concatameric fusion monomeric protein mgTNFR1-TNFR1/Fc containing four glycosylation motif peptides according to the present invention;

Fig. 12 is a map of a recombinant expression plasmid pTR22Ig-MG expressing a concatameric fusion monomeric protein mgTNFR2-TNFR2/Fc containing two glycosylation motif peptides according to the present invention;

Fig. 13 is a map of a recombinant expression plasmid pCD22Ig-MG expressing a concatameric fusion monomeric protein mgCD2-CD2/Fc containing two glycosylation motif peptides according to the present invention;

Fig. 14 is a map of a recombinant expression plasmid pCT44Ig-MG expressing a concatameric fusion monomeric protein mgCTLA4-CTLA4/Fc containing three glycosylation motif peptides according to the present invention;

Fig. 15 shows a result of SDS-PAGE of purified concatameric fusion dimeric proteins [TNFR1-TNFR1/Fc]₂ and [TNFR2-TNFR2/Fc]₂ under reducing or non-reducing conditions;

Fig. 16 is a graph showing inhibitory effect of the conventional simple fusion dimeric proteins $[TNFR1/Fc]_2(\bullet)$ and $[TNFR2/Fc]_2(\bigcirc)$ and the concatameric fusion dimeric proteins $[TNFR1-RNFR1/Fc]_2(\blacktriangledown)$ and $[TNFR2-TR2Fc]_2(\bigtriangledown)$ according to the present invention against cytotoxic activity of TNF-alpha;

Fig. 17 is a graph showing inhibitory effect of the conventional simple fusion dimeric proteins $[TNFR1/Fc]_2(\bullet)$ and $[TNFR2/Fc]_2(\bigcirc)$ and the concatameric fusion dimeric proteins $[TNFR1-RNFR1/Fc]_2(\nabla)$ and $[TNFR2-TR2Fc]_2(\nabla)$ according to the present invention against cytotoxic activity of TNF-beta;

Fig. 18 is a graph showing inhibitory effect of the conventional simple fusion dimeric protein $[CD2/Fc]_2(\bullet)$, the known immunosuppressive agent cyclosporin A (\blacktriangledown) and the concatameric fusion dimeric protein $[CD2-CD2/Fc]_2(\bigcirc)$ according to the present invention on the proliferation of active T lymphocytes;

Fig. 19 is a graph showing inhibitory effect of the conventional simple fusion

5

10

15

20

25

dimeric protein [CTLA4/Fc]₂(●), the known immunosuppressive agent cyclosporin A (▼) and the concatameric fusion dimeric protein [CTLA4- CTLA4/Fc]₂ (○) according to the present invention on the proliferation of active T lymphocytes;

Fig. 20 is a graph showing blood half-life of the conventional simple fusion dimeric protein [TNFR1/Fc]₂(⑤), the concatameric dimeric protein [TNFR1-TNFR1/Fc]₂ (○) and a glycosylated concatameric fusion dimeric protein [mgTNFR1-TNFR1/Fc]₂ (▽) according to the present invention;

Fig. 21 is a graph showing blood half-life of the conventional simple fusion dimeric protein [CD2/Fc]₂(●), the concatameric fusion dimeric protein [CD2-CD2/Fc]₂ (○) and a glycosylated concatameric fusion dimeric protein [mgCD2-CD2/Fc]₂ (▽) according to the present invention;

Fig. 22 is a graph showing blood half-life of the conventional simple fusion dimeric protein [CTLA4/Fc]₂(●), the concatameric fusion dimeric protein [CTLA4-CTLA4/Fc]₂(○) and a glycosylated concatameric fusion dimeric protein [mgCTLA4-CTLA4/Fc]₂(▽) according to the present invention; and

Fig. 23 is a graph showing inhibitory effect of PBS (\bullet) as a control, the conventional simple fusion dimeric proteins [TNFR1/Fc]₂(\blacksquare) and [TNFR2/Fc]₂(\blacktriangle), and concatameric fusion dimeric proteins [TNFR1-TNFR1/Fc]₂ (\times) and [TNFR2-TNFR2/Fc]₂ (\triangle) according to the present invention on the induction of collagen-induced arthritis (CIA) in DBA/1 mice.

BEST MODE FOR CARRYING OUT THE INVENTION

5

10

15

20

25

30

The present invention is generally directed to concatameric proteins, and more particularly, to immunoadhesion molecules. Immunoadhesion molecules are typically formed by fusion of the Fc fragment of immunoglobulin (Ig) to a ligand-binding region of a receptor or an adhesion molecule, and thus have a structure similar to that of an antibody. The typical immunoadhesion molecules known in the art have a structure of an antibody in which the variable region is substituted with a ligand-binding region of a receptor while retaining the Fc fragment. A wide variety of immunoadhesion molecules are suggested in the literature. However, immunoadhesion molecules according to the

present invention have different structure with the conventional immunoadhesion molecules, and there is also no prior art predicting or describing preparation of the immunoadhesion molecules according to the present invention.

Definition of Terms

5

For full understanding of the characteristic structure of the immunoadhesion molecules according to the present invention, exact definitions of the terms used in the present invention are given as follows. In general, all of the technical and scientific terms being not additionally defined in the present invention have meanings commonly used in the art. However, although having meanings commonly used in the art, the following terms are defined to give a clearer understanding of their meanings and make the scope of the present invention clear, as follows.

15

20

25

10

The term "immunoglobulin", as used herein, refers to protein molecules being produced in B cells and serving as antigen receptors specifically recognizing a wide The molecules have a Y-shaped structure consisting of two identical variety of antigens. light chains (L chains) and two identical heavy chains (H chains), in which the four chains are held together by a number of disulfide bonds, including the disulfide bridge between The L and H chains comprise variable and constant the H chains at the hinge region. The L chain variable region associates with the H chain variable region, thus producing two identical antigen-binding regions. According to features of the constant regions of H chains, immunoglobulins (Ig) are classified into five isotypes, A (IgA), D (IgD), E (IgE), G (IgG) and M (IgM). Each subtype possesses unique structural and biological properties. For example, IgG has slightly different Fc structure, compared In addition, IgG and IgA have a number of subtypes. with other isotypes. example, the human IgG isotype has four subtypes, IgG1, IgG2, IgG3 and IgG4, which have $\gamma 1$, $\gamma 2$, $\gamma 3$ and $\gamma 4$ H chains, respectively. Biological functions of immunoglobulin molecules, such as complement activation, Fc receptor-mediated phagocytosis and determinants structural mediated by are cytotoxicity, antigen-dependent (complementarity-determining regions) in the Fc region of H chains. Such an Fc region of H chains is used for construction of dimeric proteins according to the present

invention, and may be derived from all isotypes and subtypes of immunoglobulin as described above.

The term "Fc fragment of an immunoglobulin molecule", as used herein, refers to a fragment having no antigen-binding activity and being easily crystallized, which comprises a hinge region and CH2 and CH3 domains, and a portion responsible for binding of an antibody to effector materials and cells. Therefore, the Fc fragment mentioned in the present invention can be different from that described in some literatures, but includes the hinge region. Such description of the Fc fragment is given to supply convenience in describing the present invention, and will be fully understood by those of ordinary skill in the art with reference to the specification of the present invention and the accompanying drawings.

The term "biologically active protein", as used herein, refers to a protein, peptide or polypeptide having generally physiological or pharmaceutical activities, which retains a part of its native activities after forming a concatamer or immunoadhesion molecule. The term "biological activity", as used herein, is not limited in meaning to physiological or pharmaceutical activities. For example, some concatamers, such as those containing an enzyme can catalyze a reaction in an organic solvent. Similarly, some high-molecular weight fusion molecules containing concanavalin A or an immunoglobulin molecule are useful as diagnostic agents in laboratories.

20

25

30

I FACUCULUEU

5

10

15

Non-limiting examples of the protein, peptide or polypeptide include hemoglobin, serum proteins (e.g., blood factors including factor VII, VIII and factor IX), immunoglobulin, cytokines (e.g., interleukin), α -, β - and γ -interferon, colony-stimulating agent (e.g., G-CSF and GM-CSF), platelet-derived growth factor (PDGF), and phospholipase activating proteins (PLAPs). Other typical biological or therapeutic proteins include insulin, plant proteins (e.g., lectin and ricin), tumor necrosis factor (TNF) and its related alleles, growth factors (e.g., tissue growth factors and endothelial growth factors such as TGF α or TGF β), hormones (e.g., follicle-stimulating hormone, thyroid-stimulating hormone, antidiuretic hormone, pigment-concentrating or dispersing hormones and parathyroid hormone, luteinizing hormone-releasing hormone and its derivatives, calcitonin, calcitonin gene related peptide (CGRP), synthetic enkephalin, somatomedin, erythropoietin, hypothalamus releasing factors, prolactin, chronic gonadotrophin, tissue

plasminogen-activating agents, growth hormone-releasing peptide (GHRP), and thymic humoral factor (THF). The immunoglobulins include IgG, IgE, IgM, IgA, IgD and fragments thereof. Some proteins such as interleukin, interferon or colony-stimulating factor may be produced in a non-glycosylated form using DNA recombinant techniques. The non-glycosylated proteins may be useful as biologically active materials in the present invention.

In addition, the biologically active materials useful in the present invention include any polypeptide, which has bioactivity in vivo. Examples of the biologically active materials include peptides or polypeptides, fragments of an antibody, single chain-binding proteins (see U.S. Pat. No. 4,946,778), binding molecules including fusion polypeptides of antibodies or their fragments, polyclonal antibodies, monoclonal antibodies, and catalytic antibodies. Other examples of the biologically active materials include allergen proteins, such as ragweed, antigen E, honeybee venom, or allergen of mites.

In addition, the biologically active material useful in the present invention includes enzymes. Examples of the enzymes include carbohydrate-specific enzymes, proteinases, oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases. In detail, non-limiting examples of the enzymes include asparaginase, arginase, arginine deaminase, adenosine deaminase, peroxide dismutase, endotoxinase, catalase, chymotrypsin, lipase, uricase, adenosine dephosphatase, tyrosinase, and bilirubin oxidase. Examples of the carbohydrate-specific enzymes include glucose oxidase, glucodase, galactosidase, glucocerebrosidase, and glucouronidase.

The term "proteins involving immune response", as used herein, refers to all proteins mediating cell-to-cell signal transduction during cellular or humoral immune response and thus activating or suppressing immune response. Immunity is a process of protecting "self" from "non-self" such as bacteria or viruses. Immune response is largely divided into cellular and humoral immune response, where T and B lymphocytes play the most important role. T cells, mainly mediating cellular immune response, directly attack and kill virus-infected cells or tumor cells, or help other immune cells by secreting cytokines functioning to induce or activate immune response or inflammation. B cells produce antibodies against non-self foreign materials (antigens) that enter a body,

5

10

15

20

25

such as bacteria or viruses, and such immune response is called cellular immune response. Cell-to-cell signal transduction is an essential process in both cellular and humoral immune responses, in which a signal molecule, that is, a ligand, interacts with a cell surface receptor acting to transduce a specific signal into a cell.

5

10

15

Representative examples of the proteins involving the immune response according to the present invention include cytokines, cytokine receptors, adhesion molecules, tumor necrosis factor receptor (TNFR), enzymes, receptor tyrosine kinases, chemokine receptors, other cell surface proteins, and soluble ligands. Non-limiting examples of the cytokines include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-17, TNF, TGF, IFN, GM-CSF, G-CSF, EPO, TPO, and M-CSF. Examples of the cytokine receptors, but are not limited to, include growth hormone receptors (GHRs), IL-13R, IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-15R, TNFR, TGFR, IFNR (e.g., IFN-γ R α-chain and IFN-γ R β-chain), interferon-α R, -β R and -γ R, GM-CSFR, G-CSFR, EPOR, cMpl, gp130, and Fas (Apo 1). Non-limiting examples of the enzymes include influenza C hemaglutinin esterase and urokinase. The chemokine receptors are exemplified by CCR1 and CXCR1-4. Examples of the receptor tyrosine kinases, but are not limited to, include TrkA, TrkB, TrkC, Htk, REK7, Rse/Tyro-3, hepatocyte growth factor R, platelet-derived growth factor R, and Flt-1. Examples of other cell surface proteins includes CD2, CD4, CD5, CD6, CD22, CD27, CD28, CD30, CD31, CD40, CD44, CD100, CD137, CD150, LAG-3, B7, B61, \(\beta\)-neurexin, CTLA-4, ICOS, ICAM-1, complement R-2 (CD21), IgER, lysosomal membrane gp-1, α2microglobulin receptor-related proteins, and sodium-releasing peptide R. Non-limiting examples of the soluble ligands include IL-10, heregulin, and keratinocyte growth factors.

25

20

Ligands for the proteins involving immune response according to the present invention and use thereof are well known to those of ordinary skill in the art, as summarized in Tables 1 to 7, below.

TABLE 1
Proteins involving immune response: Adhesion molecules

Adhesion molecules	Ligands	Uses of CD4
CD4	HIV gp120	Inhibition of in vivo HIV infection; and identification of CD4 domain participating in ligand binding
L-Selectin	GlyCAM-1, CD34	Prevention of neutrophile-mediated lung damage; determination of position in tissues of a ligand by histochemical staining; and isolation and cloning of ligands and determination of their properties Prevention of neutrophile-mediated lung damage; and determination
E-Selectin	Sialyl Lewis ^x	cal dynamic properties in ligand-pinding
P-Selectin	Sialyl Lewis ^x	Prevention of neutrophile-mediated lung damage; and study of functions of individual of amino acid residues in binding to cell surface
ICAM-1	CD11a/CD18	Phagocytosis of erythrocytes in malaria; inhibition of infection with rhinovirus; and anti-inflammation in diabetes
ICAM-2	CD11a/CD18	Study of activation of T cells mediated by T cell receptor
ICAM-3	CD11a/CD18	Identification of receptor domains binding to a ligand
VCAM-1	VLA-4	Study of role of VLA-4 in T lymphocyte migration to derma inflammation sites
LFA-3	CD2	Study of role of CD2 in costimulation of T cells
L1 glycoprotein	Fibroblast growth factor receptor	Stinulation of nerve reproduction after repair; and functional comparison with FGF

TABLE 2
Proteins involving immune response: Enzymes

dishirbing urokinase activation	Enzymes Influenza C hemaglutinin esterase Urokinase	Sialic acid	Uses Inactive enzyme used in study of tissue-specific expression of ligands Inactive enzyme developed to inhibit cancer metastasis by disturbing urokinase activation
---------------------------------	---	-------------	---

TABLE 3
Proteins involving immune response: Cytokine receptors

Cytokine	Ligands	Uses				
receptors						
	IFN-y	Inhibition of IFN-mediated autoimmunity				
IFN-γ R α-chain	IFN-y	Study of structure of subunits of a ligand-receptor complex				
IFN-γ R β-chain		Inhibition of IL-1-mediated inflammation				
IL1R	<u>IL-1</u>	Identification of receptor domains participating in ligand				
IL4R	IL-4	binding				
	T IIintin	Map design of epitopes of anti-ligand antibodies				
Erythropoietin R	Erythropoietin	Isolation and cloning of ligands				
cMpl	Thrombopoietin	Study of structure of subunits of a ligand-receptor complex				
gp130	IL-6-IL6R Study of structure of subunits of a figure co					
Or "	complex					

TABLE 4

Proteins involving immune response: Tumor necrosis factor receptors

		TToo
TNF receptors	Ligands	Uses
TNF R-1	TNF,	Treatment of septic shock, rheumatoid arthritis and other inflammatory
	lymphotoxin-α	diseases; and identification of domains participating in ligand binding
TNF R-2	TNF,	Inhibition of TNF-enriched HIV replication; and prevention of
	lymphotoxin-α	collagen-induced arthritis in mice
Lymphotoxin-	Lymphotoxin-β	Study of structure of subunits of cell surface lymphotoxin-β
βR		, ATDC)
Fas/Apo-	Fas/Apo-	Treatment of excessive apoptosis and related diseases (e.g., AIDS);
1/CD95	1/CD95 ligand	and resistance to apoptosis of lymphocytes and peripheral immune
17 CD 73	1,02,02,12	tolerance; roles of Fas ligand in T cell-mediated cytotoxicity; and
		isolation and cloning of ligands
CD27	CD27 ligand	Isolation and cloning of ligands
CD30	CD30 ligand	Isolation and cloning of ligands
CD40	gp39	Isolation and cloning of ligands
4-1BB	4-1BB ligand	Identification of tissues containing ligands by histochemical staining,
4 100	,	isolation and cloning of ligands; and Study of structural determinant of
		potential ligand
OX40	gp34	Isolation and cloning of ligands

TABLE 5
Proteins involving immune response: Receptor tyrosine kinases

Receptor tyrosine	Ligands	Uses
kinases		C di ef cutonin hinding
TrkA, B, C	Neutropin	Determination of properties of neutropin binding
Htk	Htk ligand	Isolation and cloning of ligands
REK7	AL-1	Isolation and cloning of ligands
Rse/Tyro-3	Protein S, Gas6	Identification of ligands and determination of
KSC/1 y10-3	,	their properties
Hepatocyte growth	Hepatocyte growth factor	Identification of receptor domains participating in
factor R	Tropuloty to B	ligand binding
Platelet-derived	Platelet-derived growth	Identification of receptor domains participating in
growth factor R	factor	ligand binding
Flt-1	Vesicular endothelial growth	Determination of properties of ligand binding of
FIL-1	factor (VEGF)	receptors
		Evaluation of selectivity of receptors for VEGF
Flk-1/KDR	VEGF	versus placenta growth factor

TABLE 6
Proteins involving immune response: Other cell surface proteins

		Uses		
Other cell surface	Ligands	Uses		
proteins	CID OO	G. 1 . CT - II -timulation by P colls		
B7	CD28	Study of T cell stimulation by B cells		
B61	Eck	Roles of Eck in inflammation		
β-neurexin	β-neurexin ligand	Determination of properties of a signal sequence from β -neurexin		
CD2	LFA-3, CD48	Identification of ligands		
CD5	CD5 ligand	Study of T cell stimulation by B cells		
CD6	ALCAM	Study of binding activities of cloned ligands		
CD22	CD45, other	Identification of ligands; study on roles of CD22 in T-B-		
	sialoglycoproteins	cell interaction; and determination of properties of binding		
		determinants of sialo-oligo sugar ligands		
CD28	B7, B7-2	Study of T cell stimulation by B cells		
CD31	CD31	Identification of CD31 domains related to homotype		
		binding		
CD44	Hyaluronate	Screening of tissues containing ligands by histochemical		
	•	staining; and determination of properties of structural		
		determinants of ligands		
Complement R-2	C3 fragment	Inhibition of reactivity of antibody to immunosuppressive		
(CD21)		and cancer therapeutic agents		
CTLA-4	B7	Identification of CTLA-4 as a secondary receptor of B7		
IgE R	IgE	Inhibition of mast cell-binding of IgE as therapy of allergic		
-8		diseases		
Lisosome membrane	LAMP-1 ligand	Design of epitope maps of anti-ligand antibodies		
gp-1				
α2-microglobulin	gp330	Determination of position of ligands in tissues by		
receptor-bound		histochemical staining		
proteins				
Sodium-releasing	Sodium-releasing	Design of epitope maps of anti-ligand antibodies; and		
peptide R	peptide	preparation of recombinant receptors for structural study		

TABLE 7
Proteins involving immune response: Soluble ligands

Soluble ligands	Ligands	Uses
IL-2	IL-2R	Extension of half-life of IL-2 in the circulation system
Ш10	IL-10R	Therapy of septic shock and transplantation rejection; and extension of half-life of IL-10 in the circulation system
Heregulin	Her4/p180 ^{erbB4}	Study of signal transduction by Her4
Keratinocyte growth factor	Keratinocyte growth factor R	Determination of position of receptors by histochemical staining

The term "soluble extracellular domain", as used herein, refers to a portion exposed to the extracellular region of an integral membrane protein penetrating the cell membrane comprising phospholipid, wherein the integral membrane protein contains one or more transmembrane domain made up predominantly of hydrophobic amino acids.

5

10

15

20

25

30

Such an extracellular domain mainly comprises hydrophilic amino acids, which are typically positioned at the surface of a folded structure of a protein, and thus is soluble in an aqueous environment. For most cell surface receptor proteins, extracellular domains serve to bind specific ligands, while intracellular domains play an important role in signal transduction.

The term "concatamer-linked", as used herein, refers to a state in which two soluble domains of biologically active proteins are linked and thus form a long polypeptide.

The term "concatameric protein", as used herein, means a concatamer-linked protein. For example, the N-terminus of a soluble extracellular domain of a protein involving immune response is linked to the C-terminus of an identical soluble extracellular domain of the protein involving immune response, wherein the C-terminus of the former soluble extracellular domain is linked to the hinge region of an Fc fragment of an immunoglobulin molecule. Thus, two identical soluble extracellular domains of a protein involving immune response form a long polypeptide.

The term "simple fusion monomeric protein", as used herein, refers to a fusion protein having a monomeric structure consisting of a single polypeptide formed by linkage of a soluble extracellular domain of a protein involving immune response to the hinge region of an Fc fragment of an immunoglobulin molecule. A simple fusion monomeric protein may be designated "protein name/Fc" for convenience in the present invention. For example, a simple fusion monomeric protein produced by linkage of an soluble extracellular domain of TNFR1 protein involving immune response to an Fc fragment of an immunoglobulin molecule is designated TNFR1/Fc. If desired, the origin of the Fc fragment may be also specified in the designation. For example, in the case that the Fc fragment is derived from IgG1, the monomeric protein is called TNFR1/IgG1Fc.

The term "simple fusion dimeric protein", as used herein, refers to a fusion protein having a dimeric structure, in which two simple fusion monomeric proteins are joined by formation of intermolecular disulfide bonds at the hinge region. Such a simple fusion dimeric protein may be designated "[protein name/Fc]₂" for convenience in the present invention. For example, when fused by formation of intermolecular disulfide

bonds at the hinge region of two simple fusion monomeric proteins produced by linkage of an soluble extracellular domain of TNFR1 protein and an Fc fragment of an immunoglobulin molecule, the resulting fusion protein having dimeric structure is designated [TNFR1/Fc]₂. In addition, the origin of the Fc fragment may be specified in the designation, if desired. For example, in the case that the Fc fragment is derived from IgG1, the dimeric protein is designated [TNFR1/IgG1Fc]₂.

The term "concatameric fusion monomeric protein", as used herein, refers to a fusion protein having a monomeric structure consisting of a single polypeptide, in which the N-terminus of a soluble extracellular domain of a protein involving immune response is linked to the C-terminus of an identical soluble extracellular domain of the protein involving immune response, wherein the C-terminus of the former soluble extracellular domain is linked to the hinge region of an Fc fragment of an immunoglobulin molecule. A concatameric fusion monomeric protein may be designated "protein name-protein name/Fc" for convenience in the present invention. For example, when an soluble extracellular domain of TNFR1 of a simple fusion monomeric protein, produced by linkage of the soluble extracellular domain of TNFR1 protein involving immune response and an Fc fragment of an immunoglobulin molecule, is linked to an identical soluble extracellular domain of TNFR1, the resulting concatameric fusion monomeric protein is designated TNFR1-TNFR1/Fc. If desired, the origin of the Fc fragment may be specified in the designation. For example, in the case that the Fc fragment is derived from IgG1, the monomeric protein is designated TNFR1-TNFR1/IgG1Fc.

The term "concatameric fusion dimeric protein", as used herein, refers to a fusion protein having a dimeric structure, in which two concatameric fusion monomeric proteins are fused by formation of intermolecular disulfide bonds at the hinge region. A concatameric fusion dimeric protein may be designated "[protein name-protein name/Fc]₂" for convenience in the present invention. For example, when two concatameric fusion monomeric proteins, each of which is produced by linkage of a TNFR1 soluble extracellular domain of a simple fusion monomeric protein to an identical soluble extracellular domain of TNFR1 protein involving immune response, are fused by formation of intermolecular disulfide bonds at the hinge region, the resulting fusion protein having dimeric structure is designated [TNFR1-TNFR1/Fc]₂, wherein the simple

5

10

15

20

25

fusion monomeric protein is formed by linkage of the TNFR1 soluble extracellular domain to an Fc fragment from an immunoglobulin molecule. If desired, the origin of the Fc fragment may be specified in the designation. For example, in the case that the Fc fragment is derived from IgG1, the fusion protein is designated [TNFR1-TNFR1/IgG1Fc]₂.

5

10

15

20

25

30

The term "vector", as used herein, means a DNA molecule serving as a vehicle capable of stably carrying exogeneous genes into host cells. For useful application, a vector should be able to replicate, have a system for introducing itself into a host cell, and possess selectable markers. The exogeneous genes, for example, include, a DNA construct encoding a concatameric fusion monomeric protein.

The term "recombinant expression plasmid", as used herein, refers to a circular DNA molecule carrying exogeneous genes operably linked thereto to be expressed in a host cell. When introduced into a host cell, the recombinant expression plasmid has the ability to replicate regardless of host chromosomal DNA, copy itself at a high copy number, and to produce heterogeneous DNA. As generally known in the art, in order to increase the expression level of a transfected gene in a host cell, the gene should be operably linked to transcription and translation regulatory sequences functional in a host cell selected as an expression system. Preferably, the expression regulation sequences and the exogeneous genes may be carried in a single expression vector containing bacteria-selectable markers and a replication origin. In case that eukaryotic cells are used as an expression system, the expression vector should further comprise expression markers useful in the eukaryotic host cells.

The term "operably linked", as used herein, means an arrangement of elements of a vector, in which each element is capable of performing its innate function. Therefore, a control sequence operably linked to a coding sequence can influence expression of the coding sequence. A control sequence acting to induce expression of a coding sequence does not have to be adjacent to the coding sequence. For example, when an intervening sequence is present between a promoter sequence and a coding sequence, the promoter sequence may still be "operably linked" to the coding sequence.

Host cells used in the present invention may be prokaryotic or eukaryotic. In addition, host cells having high introduction efficiency of foreign DNA and having high

expression levels of an introduced gene may be typically used. Examples of the host cells useful in the present invention include prokaryotic and eukaryotic cells such as *E. coli, Pseudomonas* sp., *Bacillus* sp., *Streptomyces* sp., fungi or yeast, insect cells such as *Spodoptera frugiperda* (Sf9), animal cells such as Chinese hamster ovary cells (CHO) or mouse cells, African green monkey cells such as COS 1, COS 7, human embryonic kidney cells, BSC 1, BSC 40 or BMT 10, and tissue-cultured human cells. When cloning a DNA construct encoding the fusion protein according to the present invention, host cells are preferably animal cells. When using COS cells, since SV40 large T antigen is expressed in COS cells, a plasmid carrying a SV 40 replication origin may be present as a multicopy episome and thus allows high expression of an exogeneous gene. A DNA sequence introduced into a host cell may be homogeneous or heterogeneous to the host cell, or a hybrid DNA sequence containing a homogenous or heterogeneous DNA sequence.

In order to express a DNA sequence encoding the concatameric fusion protein according to the present invention, a wide variety of combinations of host cells as an expression system and vectors may be used. Expression vectors useful for transforming eukaryotic host cells contain expression regulation sequences from, for example, SV40, bovine papillomavirus, adenovirus, adeno-associated viruses, cytomegalovirus and retroviruses. Expression vectors useful in bacterial host cells include bacterial plasmids from E. coli, which are exemplified by pBluescript, pGEX2T, pUC, pCR1, pBR322, pMB9 and derivatives thereof, plasmids having a broad range of host cells, such as RP4, phage DNAs, exemplified by a wide variety of λ phage derivatives including λ gt10, λ gt11 and NM989, and other DNA phages, exemplified by filamentous single-stranded DNA phages such as M13. Expression vectors useful in yeast cells include 2μ plasmid and derivatives thereof. Expression vectors useful in insect cells include pVL 941.

25

5

10

15

20

The term "transformation", as used herein, means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration.

The term "transfection", as used herein, refers to the taking up of an expression vector by a suitable host cell, whether any coding sequences are in fact expressed or not.

30

The term "signal sequence", as used herein, means an amino acid sequence mediating transport of an expressed protein to the outside of the cell membrane, and is also

5

10

15

20

25

30

called a "leader sequence". Cell surface proteins or secretory proteins, which are transported to the outside of the cell membrane, have an N-terminal sequence typically cut by signal peptidase in the cell membrane. Such a N-terminal sequence is called a signal sequence or signal peptide, or a leader sequence or leader peptide. Secretory (or transported) proteins or all proteins present outside of the cell membrane or in the extracellular environment have a specific signal sequence. There is no specific homology between such signal sequences and same proteins have different signal sequences according to their origin. Secondary structure or distribution of nonpolar and charged residues is more important for proper function of the signal sequences than primary structures thereof. Although not having specific homology, the signal sequences share several common features, as follows. The signal sequences contain an N domain at their N-termini, which is a hydrophilic region comprising one or more positively charged residues, and an Hdomain follows the N domain, which is a somewhat long hydrophobic region. In the case of E. coli, the signal sequence comprises about 18-30 amino acids. The N domain contains many cationic amino acids such as Lys or Arg, and thus has a net positive charge. Many hydrophobic amino acids such as Ala or Leu are found in the H domain, and polar or charged amino acids such as Pro, Lys, Arg, Asn or Glu are rarely in the H domain. A large number of amino acids such as Ala and Leu residues form an α-helical structure to facilitate membrane penetration. A C domain is positioned between the H domain and an actually secreted portion of a protein. The C domain is less hydrophobic, and contains a sequence capable of being recognized by signal peptidase such as LebB or LspA. have been no reports about an exact site cleaved by the signal peptidase, but the signal peptidase is typically known to mostly cleave behind the Ala-X-Ala sequence in the C domain. Preproteins containing the above-mentioned signal sequence arrive at the cell membrane through interaction with several proteins, and fold to their mature forms through cleavage of a specific region of a signal peptide. Such a signal sequence is very important in strategies to express a desired protein on the cell surface or in the extracellular environment. Foreign proteins and fusion proteins should be stably transported to the extracellular environment at high efficiency. Typically, cell surface proteins having excellent secretory ability are useful for cell surface expression of foreign proteins or fusion

proteins, which typically have secretory signal sequences capable of offering excellent secretion efficiency.

<u>Preparation of the concatameric fusion dimeric protein according to the present invention</u>

5

10

15

The concatameric fusion dimeric protein according to the present invention is generally prepared by (a) preparing a DNA construct encoding a simple fusion monomeric protein using a gene encoding an Fc fragment of an immunoglobulin molecule and a gene encoding a soluble extracellular domain of a protein involving immune response; (b) inserting by polymerase chain reaction (PCR) a recognition sequence of a restriction enzyme into the prepared simple fusion monomeric protein-encoding DNA construct and an identical gene to the gene encoding a soluble extracellular domain of a protein involving immune response, respectively; (c) cleaving the recognition sequence of a restriction enzyme in the simple fusion monomeric protein-coding DNA construct and the gene encoding a soluble extracellular domain of a protein involving immune response using the restriction enzyme recognizing the recognition sequence; (d) ligating the cleaved DNA fragments using ligase to produce a DNA construct encoding a concatameric fusion monomeric protein (see, Fig. 2); (e) operably linking the prepared DNA construct encoding a concatameric fusion monomeric protein to a vector to produce a recombinant expression plasmid; (f) transforming or transfecting a host cell with the recombinant expression plasmid; and (g) culturing the transformant or transfectant under conditions suitable for expression of the DNA construct encoding a concatameric fusion monomeric protein and then isolating and purifying a concatameric fusion dimeric protein of interest.

25

20

A DNA fragment encoding a soluble extracellular domain of a protein involving immune response is produced by PCR using a primer containing a recognition sequence of a specific restriction enzyme and a sequence encoding a leader sequence, and a primer containing an antisense sequence encoding the 3' end of the soluble extracellular domain and a portion of the 5' end of a specific region of Fc fragment of an immunoglobulin molecule.

A DNA fragment encoding a specific region of the Fc fragment of an immunoglobulin molecule is produced by PCR using a primer having a sequence encoding a portion of the 3' end of the soluble extracellular domain of the protein involving immune response and a sequence encoding the 5' end of the specific region of the Fc fragment of an immunoglobulin molecule, and another primer having an antisense sequence encoding a recognition sequence of a specific restriction enzyme and the 3' end of a specific region of the Fc fragment of an immunoglobulin molecule.

5

10

15

20

25

30

The DNA fragment encoding a soluble extracellular domain of a protein involving the immune response and the DNA fragment encoding a specific region of Fc fragment of an immunoglobulin molecule, as described above, are mixed in a test tube. After denaturation, the DNA is re-annealed. Then, a complete double-stranded DNA fragment is produced by polymerization using DNA polymerase at the 3' end of each DNA hybrid. Using the resulting double-stranded DNA fragment, another polymerase chain reaction (PCR) is carried out with the primer having a sequence encoding a soluble extracellular domain of a protein involving immune response and the primer encoding the 3' end of a specific region of the Fc fragment of an immunoglobulin molecule, in order to amplify a immunoglobulin fusion gene comprising a sequence corresponding to the DNA fragment encoding a soluble extracellular domain of a protein involving immune response and a sequence corresponding to the DNA fragment encoding a specific region of the Fc fragment of an immunoglobulin molecule.

An recognition sequence of a restriction enzyme is introduced by PCR into the amplified immunoglobulin fusion gene and the DNA fragment having a sequence encoding a soluble extracellular domain of a protein involving the immune response. The recognition sequence is then cleaved with the restriction enzyme and the cleaved regions are ligated using ligase, thus producing a concatameric immunoglobulin fusion gene.

The immunoglobulin fusion gene may further include a signal sequence to stimulate extracellular secretion of a protein encoded thereby. For example, the CTLA-4 molecule contains a unique leader sequence having highly hydrophilic redundancy at its N-terminus, and which is abnormally long and highly water-soluble (Harper, K. et al., J. Immunol. 147:1037-1044; and Brunet, J.F. Nature 328:267-270, 1987). Generally, most

cell surface proteins or secretory proteins have a leader sequence comprising 20-24 highly hydrophobic amino acids at their N-termini. However, the CTLA-4 molecule used in the present invention comprises a total of 37 residues: 16 hydrophilic amino acids at its N-terminus, and 21 highly hydrophobic amino acids typical in its transmembrane regions. In the conventional method of preparing CTLA4Ig fusion proteins, the leader sequence of the CTLA-4 molecule was substituted with a leader sequence of oncostatin M (Linsley, P.S. et al., J. Exp. Med. 174:561-569, 1991) or IL-6 (Yamada, A, et al., Microbiol. Immunol. 40:513-518, 1996). The present inventors demonstrated that a CTLA-4 molecule containing a leader sequence having a "MRTWPCTLLFFIPVFCKA" sequence consisting of 16 sequence acid of the amino instead "ACLGFQRHKAQKNLAA", is preferable, and the secretion of an expressed protein to the extracellular environment is easily achieved, as disclosed in International Pat. Publication No. WO98/31820.

5

10

15

20

25

BNSDOCID: <WO_____

03010202A1_l_>

A recombinant expression plasmid is prepared by inserting the immunoglobulin fusion gene into a vector, and then introduced to a host cell to produce a transformant or transfectant. A concatameric fusion dimeric protein of interest may be obtained by culturing the transformant or transfectant cell and isolating and purifying a concatameric fusion protein.

A host cell useful for preparation of the concatameric fusion dimeric protein according to the present invention is preferably selected from among bone marrow cell lines, CHO cells, monkey COS cells, human embryonic kidney 293 cells, and baculovirus-infected insect cells. A polypeptide of interest, produced in such an expression system, is secreted to culture medium as an inclusion body. Then, the concatameric fusion dimeric protein can be purified by affinity chromatography using a protein A or protein G column. In fact, effective mammalian expression systems and such purification systems are very useful in expressing proteins involving immune response in a dimeric form, and isolation of such proteins.

Preparation of the glycosylated concatameric fusion dimeric protein according to the present invention

Secretory proteins produced in eukaryotic cells as host cells are modified by glycosylation. Glycosylation is known to influence in vivo stability and functionality as well as physical properties of a protein. Therefore, a preferred aspect of the present invention includes facilitating production of a concatameric fusion dimeric protein of interest using recombinant DNA techniques and the above-mentioned animal cell lines as host cells, and linking additional sugar chains to a soluble extracellular domain of a protein involving immune response.

5

10

15

20

25

30

1 + Acocotoco

Two glycosylation patterns are known. One is O-linked glycosylation, in which an oligosaccharide is linked to a serine or threonine residue, and the other is N-linked glycosylation, in which an oligosaccharide is linked to asparagine residue. N-linked glycosylation occurs at a specific amino acid sequence, particularly, Asn-X-Ser/Thr, wherein X is any amino acid excluding proline. N-linked oligosaccharide has a structure distinct from O-linked oligosaccharide, and glycosylated residues found in the N-linked type also differ from the O-linked type. For example, N-acetylgalactosamine is invariably linked to serine or threonine in O-linked oligosaccharide, while N-acetylglucosamine is linked to asparagines in all of N-linked oligosaccharides. The O-linked oligosaccharides generally contain only 1-4 sugar residues. In contrast, the N-linked oligosaccharides comprise 5 or more sugar residues, essentially including N-acetylglucosamine and mannose.

In accordance with the present invention, to allow additional O-linked or N-linked glycosylation, one or more nucleotides in a DNA sequence encoding a soluble extracellular domain of a protein involving immune response are altered, and the resulting DNA is expressed in a suitable animal host cell to induce glycosylation using the host system. In accordance with an aspect of the present invention, the glycosylated concatameric fusion dimeric protein according to the present invention may be prepared by altering a DNA sequence encoding a soluble extracellular domain of a protein involving immune response to induce or increase N-linked glycosylation by adding the sequence Asn-X-Ser/Thr.

Alteration of a DNA sequence to introduce glycosylation may be performed according to the conventional method common in the art. In a preferred aspect of the present invention, to protect the concatameric fusion protein, especially the two soluble

extracellular domains, from attack of intercellular proteinases and thus increase its halflife in serum, a DNA construct encoding a multiglycosylated concatameric fusion monomeric protein may be prepared using PCR, which introduces multiglycosylation of the present invention, glycosylation motif peptide sequences may be introduced into the concatameric fusion protein, as follows. A DNA fragment is prepared by performing PCR using a primer encoding a leader sequence of a soluble extracellular domain and EcoRI restriction site, and an antisense primer in which a portion of a nucleotide sequence encoding a portion of the 3' end of a first soluble extracellular domain and a portion of the 5' end of a second soluble extracellular domain is substituted with glycosylation motif Another DNA fragment is prepared by performing PCR using a primer in which a portion of a nucleotide sequence encoding a portion of the 3' end of a first soluble extracellular domain and a portion of the 5' end of a second soluble extracellulalar domain is substituted with glycosylation motif sequences, and an antisense primer encoding the 3' end of Fc portion of IgG1 and XbaI restriction site. Then, secondary PCR is carried out in a test tube using the two DNA fragments.

In accordance with an embodiment of the present invention, the soluble extracellular domains useful in the present invention include soluble extracellular domains of TNFR1, TNFR2, CD2 and CTLA-4. Their application will be described in detail with reference to accompanying figures, sequence listing and examples.

Tumor necrosis factor-alpha (TNF-α), which is known as the hormone cachectin, and tumor necrosis factor-beta (TNF-β), which is also known as lymphotoxin, are multifunctional cytokines, inducing inflammation, cellular immune response, septicemia, cytotoxicity, cachexia, rheumatoid arthritis, inflammation-related diseases (Tartaglia, L.A. et al., Immunol. Today 13:151,1992), and antiviral reaction (Butler, P., Peptide Growth Factor II, 1990, Springer-Verlag, Berlin, pp.39-70). Such actions of TNF-α and TNF-β, including cytotoxic activity, originate from their binding to TNF receptors in a trimeric form (Eck, M.J. et al., J. Biol. Chem. 267:2119, 1992). As TNF receptors, 55 kDa-type I (TNFR1 or p55) and about 75 kDa-type II (TNFR2 or p75) are known (Smith, C.A. et al., Science 248:1019, 1990; Loetscher, H. et al., Cell 61:351, 1990; and Schall et al., Cell 61:361, 1990). The two receptors have similar affinity for TNF-α and TNF-β (Schall et

5

10

15

20

25

al., Cell 61:361, 1990). Immunoglobulin fusion proteins of such soluble receptors have effects of inhibiting the action of TNF- α and TNF- β by inhibiting binding of TNF- α and TNF- β to their receptors on the cell surface, which is known to be effective in reducing TNF-dependent inflammation.

5

10

15

20

25

30

Among cell surface antigens regulating immune response, the costimulatory molecule CD2 and CTLA-4, inducing secondary stimulation to give sufficient activation of T cells, when being in a soluble form, also can be used for therapy of diverse immunological diseases according to the same method as TNF receptors. Immune response is accomplished by binding of cell surface antigen molecules of antigen presenting cells (APC) to specific receptors of T lymphocytes, that is, T lymphocytes and leukocyte-function-antigen molecules of APC, and when a costimulatory signal as a secondary signal is not produced during antigen-presenting, T lymphocytes are removed by apoptosis or inhibition of clonal activation. CD2 is a leukocyte-function-antigen on T lymphocytes, binding to LFA-3 on APC, and participates in adhesion and costimulation of leukocytes, as well as stimulating T cell activation through costimulation with CD28. CTLA-4 is expressed after activation of T lymphocytes, and its expression level is increased in the resting phase. CTLA-4 has a binding affinity to the B7 molecule of APC over 20 times higher than that of CD28, and transduces signals inhibiting T lymphocyte activation after binding to B7.

In a specific aspect of the present invention, there are provided a concatameric fusion monomeric protein TNFR1-TNFR1/Fc, designated by SEQ ID NO: 6; a concatameric fusion monomeric protein TNFR2-TNFR2/Fc, designated by SEQ ID NO: 8; a concatameric fusion monomeric protein CD2-CD2/Fc, designated by SEQ ID NO: 18; and a concatameric fusion monomeric protein CTLA4-CTLA4/Fc, designated by SEQ ID NO: 20.

In another specific aspect of the present invention, there are provided a DNA construct (TNFR1-TNFR1-IgG) encoding a concatameric fusion monomeric protein TNFR1-TNFR1/Fc, designated by SEQ ID NO: 5; a DNA construct (TNFR2-TNFR2-IgG) encoding a concatameric fusion monomeric protein TNFR2-TNFR2/Fc, designated by SEQ ID NO: 7; a DNA construct (CD2-CD2-IgG) encoding a concatameric fusion monomeric protein CD2-CD2/Fc, designated by SEQ ID NO: 17; and a DNA construct

(CTLA4-CTLA4-IgG) encoding a concatameric fusion monomeric protein CTLA4-CTLA4/Fc, designated by SEQ ID NO: 19.

In a further specific aspect of the present invention, there are provided a recombinant expression plasmid pTR11Ig-Top10' operably linked to a DNA construct encoding a concatameric fusion monomeric protein TNFR1-TNFR1/Fc, designated by SEQ ID NO: 5; a recombinant expression plasmid pTR22Ig-Top10' operably linked to a DNA construct encoding a concatameric fusion monomeric protein TNFR2-TNFR2/Fc, designated by SEQ ID NO: 7; a recombinant expression plasmid pCD22Ig operably linked to a DNA construct encoding a concatameric fusion monomeric protein CD2-CD2/Fc, designated by SEQ ID NO: 17; and a recombinant expression plasmid pCT44Ig operably linked to a DNA construct encoding a concatameric fusion monomeric protein CTLA4-CTLA4/Fc, designated by SEQ ID NO: 19. The recombination expression plasmids are deposited in Korean Culture Center of Microorganisms (KCCM) and are assigned accession Nos. KCCM-10288, KCCM-10291, KCCM-10402 and KCCM-10400, The KCCM deposit will be maintained under the terms of the Budapest respectively. Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

In a further specific aspect of the present invention, there are provided a mammalian host cell (e.g., TR11Ig-CHO) transformed or transfected with a recombinant expression plasmid pTR11Ig-Top10' operably linked to a DNA construct encoding a concatameric fusion monomeric protein TNFR1-TNFR1/Fc, designated by SEQ ID NO: 5; a mammalian host cell (e.g., TR22Ig-CHO) transformed or transfected with a recombinant expression plasmid pTR22Ig-Top10' operably linked to a DNA construct encoding a concatameric fusion monomeric protein TNFR2-TNFR2/Fc, designated by SEQ ID NO: 7; a mammalian host cell transformed or transfected with a recombinant expression plasmid pCD22Ig operably linked to a DNA construct encoding a concatameric fusion monomeric protein CD2-CD2/Fc, designated by SEQ ID NO: 17; and a mammalian host cell transformed or transfected with a recombinant expression plasmid pCT44Ig operably linked to a DNA construct encoding a concatameric fusion monomeric protein CTLA4-CTLA4/Fc, designated by SEQ ID NO: 19. Chinese hamster ovary cell line TR11Ig-CHO transfected with the recombinant expression

5

10

15

20

25

plasmid pTR11Ig-Top10' and Chinese hamster ovary cell line TR22Ig-CHO transfected with the recombinant expression plasmid pTR22Ig-Top10' are deposited in KCCM and are assigned accession Nos. KCLRF-BP-00046 and KCLRF-BP-00049, respectively. The KCCM deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

5

10

15

20

25

30

In a still further specific aspect of the present invention, there are provided a concatameric fusion monomeric protein mgTNFR1-TNFR1/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 10; a concatameric fusion monomeric protein mgTNFR2-TNFR2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 12; a concatameric fusion monomeric protein mgCD2-CD2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 22; and a concatameric fusion monomeric protein mgCTLA4-CTLA4/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 24.

In a still further specific aspect of the present invention, there are provided a DNA construct encoding a concatameric fusion monomeric protein mgTNFR1-TNFR1/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 9; a DNA construct encoding a concatameric fusion monomeric protein mgTNFR2-TNFR2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 11; a DNA construct encoding a concatameric fusion monomeric protein mgCD2-CD2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 21; and a DNA construct encoding a concatameric fusion monomeric protein mgCTLA4-CTLA4/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 23. In order to produce a glycosylation motif peptide, a primer set (forward and reverse primers) is designed, which are complementary to a nucleotide sequence corresponding to the joint region between soluble extracellular domains of concatameric fusion proteins of TNFR/Fc, CD2/Fc and CTLA4/Fc, as well as containing codons encoding asparagine (N) (ATT and AAC) or codons encoding serine (S) and threonine (T) (TCC; and ACC, ACG and ACA, respectively), with which any codon in the concatameric fusion protein gene may be substituted. When designing the primer, selection of one among a plurality of amino acid sequences may be determined

depending on a condition allowing minimum substitution of the nucleotide sequence and melting temperature (T_m) of each primer.

In a still further specific aspect of the present invention, there are provided a recombinant expression plasmid pTR11Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgTNFR1-TNFR1/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 9; a recombinant expression plasmid pTR22Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgTNFR2-TNFR2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 11; a recombinant expression plasmid pCD22Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgCD2-CD2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 21,; and a recombinant expression plasmid Pct44Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgCTLA4-CTLA4/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 23. The recombination expression plasmids are deposited in Korean Culture Center of Microorganisms (KCCM) and are assigned accession Nos. KCCM-10404, KCCM-10407, KCCM-10401 and KCCM-The KCCM deposit will be maintained under the terms of the 10399, respectively. Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure.

20

25

30

5

10

15

In a still further specific aspect of the present invention, there are provided a mammalian host cell transformed or transfected with a recombinant expression plasmid pTR11Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgTNFR1-TNFR1/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 9; a mammalian host cell transformed or transfected with a recombinant expression plasmid pTR22Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgTNFR2-TNFR2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 11; a mammalian host cell transformed or transfected with a recombinant expression plasmid pCD22Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgCD2-CD2/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 21; and a mammalian host cell transformed or transfected with a recombinant expression plasmid

5

10

15

20

25

BNGDOCID ->WO

030102024115

Pct44Ig-MG operably linked to a DNA construct encoding a concatameric fusion monomeric protein mgCTLA4-CTLA4/Fc containing glycosylation motif peptides, designated by SEQ ID NO: 23.

The concatameric fusion dimeric proteins of the present invention may be isolated from culture medium after culturing the transformants or transfectants according The concatameric fusion dimeric proteins may participate in to the present invention. immune response, as described in Table 1, above, and are thus useful as therapeutic agents, diagnostic agents and laboratory tools according to the kinds of the protein, and their use is well known to those of ordinary skill in the art. In particular, when being used as therapeutic agents, the concatameric fusion dimeric proteins may be applied at an therapeutically effective amount common in the art, and it will be understood that such an amount may vary depending on diverse factors including activity of the used compound, patient's age, body weight, health state, sex and diet, administration time, administration route, combination of drugs, and pathogenic state of a specific disease to be prevented or treated. In addition, when being used as therapeutic agents, it will be understood that the concatameric fusion dimeric proteins according to the present invention may be applied by the typical methods and routes for administration of proteins involving immune response, which are known to those of ordinary skill in the art.

The present invention will be explained in more detail with reference to the following examples in conjunction with the accompanying drawings. However, the following examples are provided only to illustrate the present invention, and the present invention is not limited to them. For convenience in describing the present invention, information on DNA constructs, recombinant expression plasmids and transformed cell lines, which are prepared according to the Examples, below, and the used primers and accession numbers is summarized in Tables 8 and 9, below.

TABLE 8
Information on DNA constructs and accession Nos.

DNA construct name	SEO ID No.		Deposition of genes		Deposition of cell lines	
DNA consulter name	DNA	Protein	Designation	Accession No.	Designation	Accession No.
TNFR1-IgG	1	2				
INFR2-IgG	3	4		71.507 (10000	TR11Ig-	KCLRF-BP-
TNFR1-TNFR1-IgG	5	6	pTR111g-Top10'	KCCM 10288	CHO	00046
TNFR2-TNFR2-IgG	7	8	pTR22Ig-Top10'	KCCM 10291	TR22Ig- CHO	KCLRF-BP- 00049
mgTNFR1-TNFR1-IgG	9	10	pTR11Ig-MG	KCCM 10404		
mgTNFR2-TNFR2-IgG	11	12	PTR22Ig-MG	KCCM 10407		
CD2-IgG	13	14				
CTLA4-IgG	15	16				
CD2-CD2-IgG	17	18	pCD22Ig	KCCM 10402		
CTLA4-CTLA4-IgG	19	20	pCT44Ig	KCCM 10400		
mgCD2-CD2-IgG	21	22	pCD22Ig-MG	KCCM 10401		
mgCTLA4-CTLA4-IgG	23	24	pCT44Ig-MG	KCCM 10399	<u> </u>	<u> </u>

TABLE 9
Information for primers

		Information for primers
Primer name	SEQ	Description
	D No.	
Oligo TNFR-EDF- EcoRI	25	Containing 5' end of the extracellular domain of TNFR1 and an EcoRI site
Oligo TNFR-EDR- IgGh	26	Reverse primer containing 3' end of the extracellular domain of TNFR1 and the hinge region of IgG
Oligo IgG1-T1F	27	Containing 5' end of the hinge region of IgG and 3' end of TNFR1
Oligo IgG1-R-XbaI	28	Reverse primer containing 3' end of the hinge region of IgG and a Xbal site
Oligo TNFR2-EDF- EcoRI	29	Containing 5' end of the extracellular domain of TNFR2 and an EcoRI site
Oligo TNFR2-EDR- IgGh	30	Reverse primer containing 3' end of the extracellular domain of TNFR2 and the hinge region of IgG
Oligo IgG1-T2F	31	Containing 5' end of the hinge region of IgG and 3' end of TNFR2
Oligo TNFR1-CF- BamHI	32	Containing 5' end of the extracellular domain of TNFR1 and a BamHI site; and used for preparation of a concatamer
Oligo TNFR1-NR- BamHI	33	Reverse primer containing 3' end of the extracellular domain of TNFR1 and a BamHI site; and used for preparation of a concatamer
Oligo TNFR2-CF- BamHI	34	Containing 5' end of the extracellular domain of TNFR2 and a BamHI site; and used for preparation of a concatamer
Oligo TNFR2-NR- BamHI	35	Reverse primer containing 3' end of the extracellular domain of TNFR2 and a BamHI site; and used for preparation of a concatamer
Oligo mgTNFR1- TNFR1-IgG-F	36	Primer for mutagenesis, containing a sequence capable of inserting glycosylation sites into the joint region of TNFR1-TNFR1, and sequences corresponding to 3' end and 5' end of TNFR1; and used for preparation of a MG (multiglycosylation) form
Oligo mgTNFR1- TNFR1-IgG-R	37	Reverse primer for mutagenesis, containing a sequence capable of inserting glycosylation sites into the joint region of TNFR1-TNFR1, and sequences corresponding to 3' end and 5' end of TNFR1; and used for preparation of a MG form
Oligo mgTNFR2- TNFR2-IgG-F	38	Primer for mutagenesis, containing a sequence capable of inserting glycosylation sites into the joint region of TNFR2-TNFR2, and sequences corresponding to 3' end and 5' end of TNFR2, and used for preparation of a MG form
Oligo mgTNFR2- TNFR2-IgG-R	39	Reverse primer for mutation, containing a sequence capable of inserting glycosylation sites into the joint region of TNFR2-TNFR2, and sequences corresponding to 3' end and 5' end of TNFR2; and used for preparation of a MG form
Oligo CD2F-EcoRI	40	Containing 5' end of the extracellular domain of CD2 and a EcoRI site
Oligo CD2R-RstI	41	Containing 3' end of the extracellular domain of CD2 and a PstI site
Oligo IgG-F-PstI	42	Containing 5' end of the hinge region of IgG and a PstI site
Oligo CTLA4F-EcoRI	43	Containing 5' end of the extracellular domain of CTLA-4 and a EcoRI site
Oligo CTLA4R-PstI	44	Containing 3' end of the extracellular domain of CTLA-4 and a PstI site
Oligo CD2-NT-F	45	Containing 5' end of the extracellular domain of CD2; and used for preparation of a concatamer
Oligo CD2-CT-R	46	Reverse primer containing 3' end of the extracellular domain of CD2; and used for preparation of a concatamer
Oligo CTLA4-NT-F	47	Containing 5' end of the extracellular domain of CTLA-4; and used for preparation of a concatamer
Oligo CTLA4-CT-R	48	Reverse primer containing 3' end of the extracellular domain of CTLA-4; and used for preparation of a concatamer
Oligo mgCD2-CD2- IgG-F	49	Used for preparation of a MG (multiglycosylation) form of CD2-CD2-IgG
Oligo mgCD2CD2- IgG-R	50	Reverse primer used for preparation of a MG (multiglycosylation) form of CD2-CD2-IgG
Oligo mgCTLA4- CTLA4-IgG-F	51	Used for preparation of a MG (multiglycosylation) form of CTLA4-CTLA4-IgG
Oligo mgCTLA4- CTLA4-IgG-R	52	Reverse primer used for preparation of a MG (multiglycosylation) form of CTLA4-CTLA4-IgG

EXAMPLE 1

Human TNFR

A. Manufacture of a DNA construct encoding simple fusion monomeric protein of TNFR1/Fc (Fig. 1 and Fig. 5)

a. DNA fragment encoding soluble extracellular domain of TNFR1

A fusion gene encoding soluble extracellular domain of type I human TNF receptor (TNFR1, p55) and Fc fragment of human immunoglobulin G1 was constructed by the Polymerase Chain Reaction (PCR) method described in the prior art (Holten et al., Biotechniques 8:528, 1990).

A DNA fragment encoding soluble extracellular domain of TNFR1 was constructed by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 25) with EcoRI restriction site and the sequence encoding leader sequence (the sequence of amino acids 1-20 of SEQ ID NO: 2), and an antisense primer (the sequence of nucleotide of SEQ ID NO: 26) with the sequence encoding a part of 3' ends of the said soluble extracellular domain of TNFR1 (TNFR1-ED) and 5' ends of the hinge region of immunoglobulin G1 (IgG1). The template cDNA for this reaction was constructed by reverse transcription PCR (RT-PCR) of mRNA extracted from monocyte (T lymphocyte) of healthy adults.

After blood of healthy adults was extracted and diluted to 1:1 with RPMI-1640 (Gibco BRL, USA), the layer of T lymphocyte which formed at upper part was obtained by density gradient centrifugation using Ficoll-hypaque (Amersham, USA). In order to make the concentration of the cell to 5X10⁵ cells/ml, the cell was washed with RPMI-1640 for 3 times, and RPMI-1640 culture media containing 10% Fetal Bovine Serum (FBS, Gibco BRL, USA) was added, then cultured at 37°C for two days in the 5% CO₂ incubator after adding leukoagglutinin to 3.5ug/ml (Pharmacia, USA).

5

10

15

20

The mRNAs were purified using Tri-Reagent (MRC, USA) mRNA purification kit. First, 2X10⁷ of human T lymphocyte was washed with Phosphate Buffered Saline (PBS, pH7.2) for 3 times, and then 1ml of Tri-Reagent was mixed for several times to dissolve RNA. After adding 0.2ml of chloroform to this tube and mixing thoroughly, this tube was incubated at room temperature (RT) for 15 min, then centrifuged at 15,000 rpm, 4°C for 15 min. The upper part of the solution was transferred to a 1.5ml tube, and 0.5ml of isopropanol was added, and then centrifuged at 15,000 rpm, 4°C for 15 min. After the supernatant was discarded, the pellet was resuspended with 1ml of 3° distilled water treated with 75% ethanol-25% DEPC (Sigma, USA), and then centrifuged at 15,000 rpm, 4°C for 15 min. After the supernatant was removed completely and dried in the air to remove ethanol residue, RNA was resuspended with 50µl of 3° distilled water treated with DEPC.

5

10

15

20

25

The primary cDNA was synthesized by mixing 2µg of purified mRNA and 1µl of oligo dT (dT30, Promega, USA) primer to 10µM in 1.5ml tube, heating at 70°C for 2 min, and cooling in ice for 2 min. After that, this mixture was added with 200U of M-MLV reverse transcriptase (Promega, USA), 10µl of 5 x reaction buffer (250mM Tris-HCl, pH 8.3, 375mM KCl, 15mM MgCl₂, and 50mM DTT), 1µl of dNTP (10mM each, Takara, Japan), and DEPC-treated 3° distilled water to 50µl, then reacted at 42°C for 1 hour.

b. DNA fragment encoding Fc fragment of immunoglobulin

A DNA fragment encoding Fc fragment of immunoglobulin G1 was constructed by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 27) with the sequence encoding a part of 3' ends of the said soluble extracellular domain of TNFR and 5' end of the hinge region of immunoglobulin G1 (IgG1), and an antisense primer (the sequence of nucleotide of SEQ ID NO: 28) with XbaI restriction site and the sequence encoding 3' ends of IgG1 Fc. The template cDNA for this reaction was constructed by RT-PCR of mRNA extracted from peripheral blood cell (B lymphocyte) of convalescent patients with pyrexia of unknown origin.

5

10

15

20

c. DNA construct encoding simple fusion monomeric protein of TNFR1/Fc

After DNA fragment encoding soluble extracellular domain of TNFR1 and DNA fragment encoding Fc fragment of immunoglobulin produced as described above were mixed in the same tube, complementary binding between the common sequence (the sequence including 3' end of soluble extracellular domain of TNFR1 and 5' end of IgG1 hinge region) was induced. Using this mixture as a template, DNA construct including DNA fragment encoding soluble extracellular domain of TNFR1 and DNA fragment encoding IgG1 Fc fragment was amplified by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 25) with the sequence encoding 5' end of TNFR1 and another primer (the sequence of nucleotide of SEQ ID NO: 28) with the sequence encoding 3' end of IgG1 Fc. The constructed gene included a leader sequence to faciliate secretion of protein after expression.

d. Cloning of the DNA construct encoding simple fusion monomeric protein of TNFR1/Fc

DNA construct encoding simple fusion monomeric protein of TNFR1/Fc as described above was restricted with EcoRI and XbaI, and cloned by inserting into a commercially available cloning vector, pBluescript KS II (+) (Stratagene, USA), at EcoRI/XbaI site. The sequence of a total coding region was identified by DNA sequencing (SEQ ID NO: 1). This produced fusion protein was designated TNFR1/Fc as simple fusion monomeric protein, and the elliptical shape shown in Figure 1 represents the structure of a primary expression product of the fusion gene. The deduced amino acid sequence of simple fusion monomeric of TNFR1/Fc corresponded to SEQ ID NO: 2.

25

B. Manufacture of a DNA construct encoding simple fusion monomeric protein of TNFR2/Fc (Fig. 1 and Fig. 5)

a. DNA fragment encoding soluble extracellular domain of TNFR2

A fusion gene encoding soluble extracellular domain of type II human TNF receptor (TNFR2, p75) and Fc fragment of human immunoglobulin G1 was constructed by the same method as that of TNFR1/Fc.

5

10

15

20

25

BNSDOCID <WO

0301020241 1

A DNA fragment encoding soluble extracellular domain of TNFR2 was constructed by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 29) with EcoRI restriction site and the sequence encoding leader sequence (the sequence of amino acids 1-22 of SEQ ID NO: 4), and an antisense primer (the sequence of nucleotide of SEQ ID NO: 30) with the sequence encoding a part of 3' ends of said soluble extracellular domain of TNFR2 (TNFR2-ED) and 5' ends of the hinge region of immunoglobulin G1 (IgG1). The template cDNA for this reaction was constructed by RT-PCR of mRNA extracted from monocyte (T lymphocyte) of healthy adults.

b. DNA construct encoding simple fusion monomeric protein of TNFR2/Fc

After DNA fragment encoding soluble extracellular domain of TNFR2 and DNA fragment encoding Fc fragment of immunoglobulin G1 produced as described above were mixed in the same tube, complementary binding between the common sequence (the sequence including 3' end of soluble extracellular domain of TNFR2 and 5' end of IgG1 hinge region) was induced. Using this mixture as a template, DNA construct including DNA fragment encoding soluble extracellular domain of TNFR2 and encoding and DNA fragment encoding IgG1 Fc fragment was amplified by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 29) with the sequence encoding 5' end of TNFR2 and another primer (the sequence of nucleotide of SEQ ID NO: 28) with the sequence encoding 3' end of IgG1 Fc. The constructed gene includes a sequence to faciliate secretion of protein after expression.

c. Cloning of the DNA construct encoding simple fusion monomeric protein of TNFR2/Fc

DNA construct encoding simple fusion monomeric protein of TNFR2/Fc as described above was restricted with EcoRI and XbaI, and cloned by inserting into a commercially available cloning vector, pBluescript KS II (+) (Stratagene, USA), at EcoRI/XbaI site. The sequence of a total coding region was identified by DNA sequencing (SEQ ID NO: 3). This produced fusion protein was designated TNFR2/Fc as simple fusion monomeric protein, and the elliptical shape shown in Figure 1 represents the structure of a primary expression product of the fusion gene. The deduced amino acid sequence of simple fusion monomeric of TNFR2/Fc corresponded to SEQ ID NO: 4.

C. Manufacture of a DNA construct encoding concatameric fusion monomeric protein of TNFR1-TNFR1/Fc (Fig. 2 and Fig. 5)

In order to manufacture a fusion gene comprising the concatameric shape in soluble extracellular domain of TNFR1, i.e. the DNA construct encoding concatameric fusion monomeric protein of TNFR1-TNFR1/Fc, BamHI restriction site was inserted respectively into the sequence of soluble extracellular domain of TNFR1 and DNA construct as produced as above encoding simple fusion monomeric protein of TNFR1/Fc by PCR, and then regions of each fragments restricted by BamHI were linked by ligase. The DNA construct, encoding simple fusion monomeric protein of TNFR1/Fc produced as above, was used as the template of this reaction.

The fragment of the soluble extracellular domain of TNFR1 with BamHI restriction site at 3' end was amplified by PCR using a primer corresponding to the nucleotide of SEQ ID NO: 25 and another primer corresponding to the nucleotide sequence of SEQ ID NO: 33, and the other fragment of simple fusion monomeric protein of TNFR1/Fc with BamHI restriction site at 5' end was amplified by PCR using a primer

5

10

15

20

corresponding to the nucleotide of SEQ ID NO: 28 and another primer corresponding to the nucleotide sequence of SEQ ID NO: 32, respectively PCR was performed by adding 1µl of primary cDNA, 2U of Pfu DNA polymerase (Stratagene, USA), 10µl of 10X reaction buffer [200mM Tris-HCl, pH 8.75, 100mM (NH₄)₂SO₄, 100mM KCl, 20mM MgCl₂], 1% TritonTM X-100, 1mg/ml BSA, 3µl primer 1 (10µM), 3µl primer 2 (10µM), 2µl dNTP (10mM each), and 3° distilled water to 100µl. The reaction condition was as follows; 94°C, 5 min; 95°C, 1 min; 58°C, 1 min 30 sec; 72°C, 1 min for 31 cycles; and 72°C, 15 min to make PCR product with complete blunt end.

5

10

15

20

25

1 1 ACOCO11050

After electrophorized on 0.8% agarose gel, the PCR product was purified by Qiaex II gel extraction kit (Qiagen, USA). The purified PCR product was restricted by BamHI and extracted by phenol-chloroform extraction methods. Subsequently, two kinds of DNA fragments restricted by BamHI were linked by ligase.

D. Manufacture of a DNA construct encoding concatameric fusion monomeric protein of TNFR2-TNFR2/Fc (Fig. 2 and Fig. 5)

After a BamHI restriction site was inserted respectively into the sequence of the soluble extracellular domain of TNFR21 and the DNA construct produced as described above encoding simple fusion monomeric protein of TNFR2/Fc by PCR, a DNA construct encoding concatameric fusion monomeric protein of TNFR2-TNFR2/Fc was manufactured by linking the regions of each fragments restricted by BamHI by ligase.

A fragment of soluble extracellular domain of TNFR2 with BamHI restriction site at 3' end was amplified using a primer corresponding the sequence of SEQ ID NO: 34 and SEQ ID NO: 35. PCR was performed as that of TNFR1, except that a DNA construct encoding simple fusion monomeric protein of SEQ ID NO: 3 produced as above was used as a template. The PCR product was purified by the method as that of TNFR1.

E. DNA construct encoding concatameric fusion monomeric protein of TNFR1-TNFR1/Fc with glycosylation motif.

A DNA fragment was manufactured by PCR using an antisense primer (the sequence of nucleotide of SEQ ID NO: 37) with the sequence encoding the part (the sequence of nucleotide 565-591 of SEQ ID NO: 5) of 3' end of the first soluble extracellular domain of TNFR1, except the sequence of hydrophobic peptide region (the sequence of amino acid 197-216 of SEQ ID NO: 6) at the junction of soluble extracellular domain of TNFR1 and the part (the sequence of nucleotide 649-681 of SEQ ID NO: 5) of 5' end of the second soluble extracellular domain of TNFR1, and another primer (the sequence of nucleotide of SEQ ID NO: 25) with the sequence encoding EcoRI restriction site and leader sequence.

In addition, the total four amino acid sequences encoding glycosylation site (the sequence of amino acids 189-191, 192-194, 198-200, and 204-206 of SEQ ID NO: 10) were inserted by manufacturing the primer as above (the sequence of nucleotide of SEQ ID NO: 36 and 37) corresponding the substitution of the nucleotide 565-567 (CTG, Leu), 574-576 (ACG, Thr), 652-654 (CTA, Leu), and 670-672 (AGA, Arg) of SEQ ID NO: 5 with the nucleotide of AAC (Asn, N); the nucleotide of 571-573 (TGC, Cys) and 580-582 (TTG, Leu) of SEQ ID NO: 5 with the nucleotide of ACC (Thr, T); the nucleotide of 658-660 (GAC, Asp) with the nucleotide of TCC (Ser, S).

In this reaction, the gene (the nucleotide of SEQ ID NO: 5) encoding concatameric shape of TNFR1-TNFR1/Fc was used as a template. During the primary PCR, only the half of the antisense primer was induced to bind the gene encoding concatameric shape of TNFR1-TNFR1/Fc used as a template, and, as chain reaction was proceeding, the unbound part to the template was induced to form a complete double-stranded DNA by polymerase, and then this was capable of producing the DNA fragment with state of linkage of the sequence of 5' end encoding the part of the second soluble

5

10

15

20

extracellular domain and the sequence of 3' end encoding TNFR1 extracellular domain including leader sequence. Therefore, a part of the sequence of 5' end encoding the second soluble extracellular domain has the function that was capable of binding to the second DNA fragment as follows.

5

The second DNA fragment was manufactured by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 36) with the sequence encoding the part (the sequence of nucleotide 565-591 of SEQ ID NO: 5) of 3' end of the first soluble extracellular domain of TNFR1 and the part (the sequence of nucleotide 649-681 of SEQ ID NO: 5) of 5' end of the second soluble extracellular domain of TNFR1, and an antisense primer (the sequence of nucleotide of SEQ ID NO: 28) with the sequence encoding a XbaI restriction site and 3' end of IgG1 Fc. This reaction was also performed as described above, that is, only the half of antisense primer was induced to bind the template, and consequently, DNA fragment like that described above had the sequence encoding 5' end of TNFR1 extracellular including the part of 3' end of the first soluble extracellular domain.

15

10

Subsequently, resulting from two kinds of DNA fragments as PCR described as above were mixed in the same tube, induced to bind between common sequences, and fused by PCR using primers (the sequence of nucleotide of SEQ ID NO: 25 and 28) encoding 5' and 3' end of each concatameric genes, and the product was designated mgTNFR1-TNFR1-IgG.

20

F. DNA construct encoding concatameric fusion monomeric protein of TNFR2-TNFR2/Fc with glycosylation motif.

25

A DNA fragment was manufactured by PCR using an antisense primer (the sequence of nucleotide of SEQ ID NO: 39) with the sequence encoding the part (the sequence of nucleotide 586-606 of SEQ ID NO: 7) of 3' end of first soluble extracellular domain of TNFR2, except the sequence of hydrophobic peptide region (the sequence of

0301020241 1 -

amino acid 203-263 of SEQ ID NO: 8) at the junction of soluble extracellular domain of TNFR2 and the part (the sequence of nucleotide 790-807 of SEQ ID NO: 7) of 5' end of second soluble extracellular domain of TNFR2, and another primer (the sequence of nucleotide of SEQ ID NO: 29) with the sequence encoding EcoRI restriction site and leader sequence.

In addition ,the total two amino acid sequences encoding glycosylation site (the sequence of amino acids 199-201 and 206-208 of SEQ ID NO: 12) were inserted by manufacturing the primer as described above (the sequence of nucleotide of SEQ ID NO: 38 and 39) corresponding to the substitution of the nucleotide 595-597 (GTC, Val) and 799-801 (GGG, Gly) SEQ ID NO: 7 with the nucleotide of AAC (Asn, N).

In this reaction, the gene (the nucleotide of SEQ ID NO: 7) encoding concatameric shape of TNFR2-TNFR2/Fc was used as a template. During the primary PCR, only the half of antisense primer was induced to bind the gene encoding concatameric shape of TNFR2-TNFR2/Fc used as a template, and, as the chain reaction was proceeding, the unbound part to the template was induced to form a complete double-stranded DNA by polymerase, and thus this was capable of producing the DNA fragment with a state of linkage of the sequence of 5' end encoding the part of the second soluble extracellular domain and the sequence of 3' end encoding TNFR2 extracellular domain including the leader sequence. Therefore, a part of the sequence of 5' end encoding the second soluble extracellular domain has the function that was capable of binding to the second DNA fragment as follows.

The second DNA fragment was manufactured by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 38) with the sequence encoding the part (the sequence of nucleotide 586-606 of SEQ ID NO: 7) of 3' end of the first soluble extracellular domain of TNFR2 and the part (the sequence of nucleotide 790-807 of SEQ ID NO: 7) of 5' end of the second soluble extracellular domain of TNFR2, and an antisense primer (the sequence of nucleotide of SEQ ID NO: 28) with the sequence encoding a XbaI restriction

5

10

15

20

site and 3' end of IgG1 Fc. This reaction was also performed, that is, only the half of antisense primer was induced to bind the template, and consequently, DNA fragment like that described above had the sequence encoding 5' end of TNFR2 extracellular including the part of 3' end of first soluble extracellular domain.

5

Subsequently, resulting from two kinds of DNA fragments as PCR produced as above were mixed in the same tube, induced to bind between common sequences, and fused by PCR using primers (the sequence of nucleotide of SEQ ID NO: 29 and 28) encoding 5' and 3' end of each concatameric genes, and the product was designated mgTNFR2-TNFR2-IgG.

10

G. Cloning of DNA constructs encoding concatameric fusion monomeric protein of TNFR-TNFR/Fc and their glycosylated forms

15

DNA constructs encoding concatameric fusion monomeric protein of TNFR-TNFR/Fc and their glycosylated forms as above were cloned by inserting into pBluescript KS II (+) (Stratagene, USA) at EcoRI/XbaI site. These produced fusion proteins were designated TNFR1-TNFR1/Fc and TNFR2-TNFR2/Fc as concatameric fusion monomeric protein, and designated mgTNFR1-TNFR1/Fc and mgTNFR2-TNFR2/Fc as their glycosylated forms. The deduced amino acid sequences corresponded to SEQ ID NO: 6, 8, 10, and 12.

20

25

After 10µg of pBluescript KS II (+) (Stratagene, USA) used as a vector was mixed with 15U of EcoRI, 15U of XbaI, 5µl of 10X reaction buffer (100mM Tris-HCl, pH 7.5, 100mM MgCl₂, 10mM DTT, 500nM NaCl), 5µl of 0.1% BSA (Takara, Japan), and 3° distilled water to 50µl, DNA was restricted by incubation at 37°C for 2 hrs. After electrophorized on 0.8% agarose gel, the PCR product was purified by Qiaex II gel extraction kit (Qiagen, USA).

After 100ng of pBluescript KS II (+) (Stratagene, USA) restricted by EcoRI and XbaI was mixed with 20ng of PCR product restricted by the restriction enzyme, 0.5U of T4 DNA ligase (Amersham, USA), 1µl of 10X reaction buffer (300mM Tris-HCl, pH 7.8, 100mM MgCl₂, 100mM DTT, 10mM ATP) and 3° distilled water were added to 10µl, and the mixture was incubated in the water bath at 16°C for 16 hrs. E. coli Top10 (Novex, USA) was made to competent cell by the method of rubidium chloride (RbCl, Sigma, USA) and transformed, then spread on the solid LB media including 50µg/ml of ampicillin (Sigma, USA) and incubated at 37°C for 16 hrs. Formed colonies were inoculated in 4ml of liquid LB media including 50µg/ml of ampicillin and incubated at 37°C for 16 hrs. Plasmid was purified by the method of alkaline lysis according to Sambrook et al. (Molecular cloning, Cold Spring Harbor Laboratory press, p1.25-1.31, p1.63-1.69, p7.26-7.29, 1989) from 1.5ml of that, and the existence of cloning was confirmed by the restriction of EcoRI and XbaI.

The sequence of a total coding region was identified by the DNA sequencing method of dideoxy chain termination method (Sanger et al., Proc. Natl. Acad. Sci., 74:5483, 1977) as follows. The DNA sequencing reaction was performed according to the manual using a plasmid purified by alkaline lysis method as described above and SequenaseTM ver 2.0 (Amersham, USA). After the reaction mixture as above was loaded on 6% polyacrylamide gel and electrophorized for 2 hrs at constant voltage of 1,800~2,000 V and 50 °C, DNA sequence was identified by exposing to X-ray film (Kodak, USA) after the gel was dried out.

EXAMPLE 2 AND 3

CD2 and CTLA4

25

20

5

10

15

DNA fragments encoding soluble extracellular domain of CD2 and CTLA4 were constructed by PCR using a primer [CD2(the sequence of nucleotide of SEQ ID NO:

40), and CTLA4(the sequence of nucleotide of SEQ ID NO: 43)] with EcoRI restriction site and the coding sequence [CD2 (the sequence of nucleotide of SEQ ID NO: 13), and CTLA4 (the sequence of nucleotide of SEQ ID NO: 15)] encoding the leader sequence [CD2(the sequence of amino acid 1-24 of SEQ ID NO: 14), and CTLA4(the sequence of amino acid 1-21 of SEQ ID NO: 16)], and an antisense primer [CD2(the sequence of nucleotide of SEQ ID NO: 41), and CTLA4(the sequence of nucleotide of SEQ ID NO: 44)] with PstI restriction site and the sequence [CD2(the sequence of nucleotide of SEQ ID NO: 13), and CTLA4(the sequence of nucleotide of SEQ ID NO: 15)] encoding 3' end of the soluble extracellular domain of the proteins as described above. The template cDNA for this reaction was constructed by reverse transcription PCR (RT-PCR) of mRNA extracted from the monocyte (T lymphocyte) of healthy adults.

5

10

15

20

25

Also, a DNA fragment encoding Fc fragment of immunoglobulin G1 was constructed by PCR using a primer (the sequence of nucleotide of SEQ ID NO: 42) with PstI restriction site and the sequence encoding 5' ends of constant region of IgG1, and an antisense primer (the sequence of nucleotide of SEQ ID NO: 28) with XbaI restriction site 'and the sequence encoding 3' ends of IgG1 Fc. The template cDNA for this reaction was constructed by RT-PCR of mRNA extracted from peripheral blood cell (B lymphocyte) of convalescent patients with unknown fever.

Subsequently, both DNA fragment encoding soluble extracellular domain of CD2 and CTLA4 and DNA fragment encoding Fc fragment of immunoglobulin G1 produced as described above were restricted by PstI, and then the simple dimeric shape of CD2/Fc and CTLA4/Fc genes were constructed by linkages using T4 DNA ligase. The constructed genes included a leader sequence to faciliate secretion of protein after expression.

DNA constructs as described above were restricted by restriction enzyme of EcoRI and XbaI, and cloned by inserting into a commercially available cloning vector, pBluescript KS II (+) (Stratagene, USA) at EcoRI/XbaI site. The sequence of a total coding

5

10

15

20

25

03010202A1_l_>

region was identified by DNA sequencing (SEQ ID NO: 13 and 15). These produced fusion proteins were designated CD2/Fc and CTLA4/Fc, and the deduced amino acid sequences of these corresponded to SEQ ID NO: 14 and 16.

PCR was performed by adding 1µl of primary cDNA, 2U of Pfu DNA polymerase (Stratagene, USA), 10µl of 10X reaction buffer [200mM Tris-HCl, pH 8.75, 100mM (NH₄)₂SO₄, 100mM KCl, 20mM MgCl₂], 1% TritonTM X-100, 1mg/ml BSA, 3µl primer 1 (10µM), 3µl primer 2 (10µM), 2µl dNTP (10mM each), and 3° distilled water to 100µl. The reaction condition was as follows; 94°C, 5 min; 95°C, 1 min; 58°C, 1 min 30 sec; 72°C, 1 min for 31 cycles; and 72°C, 15 min to make PCR product with complete blunt end.

The fusion genes with concatameric shape of CD2-CD2/Fc and CTLA4-CTLA4/Fc were constructed as follows.

In order to manufacture fusion gene comprising the concatameric shape in soluble extracellular domain of CD2 and CTLA4, the sequences of soluble extracellular domain of CD2 and CTLA4 were inserted by blunt-end ligation using ligase at the junction between extracellular domain and immunoglobulin of fusion genes in the shape of simple dimer with blunt end, using PstI restriction enzyme and T4 DNA polymerase. Specifically, DNA constructs were constructed by PCR using a primer [CD2(the sequence of nucleotide of SEQ ID NO: 13) and CTLA4(the sequence of nucleotide of SEQ ID NO: 48)] with the coding sequence [CD2(the sequence of nucleotide of SEQ ID NO: 13) and CTLA4(the sequence of nucleotide of SEQ ID NO: 15)] encoding the end of leader sequence [CD2(the sequence of amino acid 25 of SEQ ID NO: 14) and CTLA4(the sequence of amino acid 22 of SEQ ID NO: 16)] of soluble extracellular domain, and an antisense primer [CD2(SEQ ID NO: 46) and CTLA4(SEQ ID NO: 48)] with the sequence [CD2(the sequence of nucleotide of SEQ ID NO: 13) and CTLA4(the sequence of nucleotide of SEQ ID NO: 13) and CTLA4(the sequence of nucleotide of SEQ ID NO: 15)] encoding 3' end of soluble extracellular domain as above. The simple fusion monomeric genes [CD2/Fc (the sequence of nucleotide of SEQ ID NO: 13) and CTLA4/Fc (the sequence of

nucleotide of SEQ ID NO: 15)] described as above were used as the template of this reaction.

Also, CD2/Fc and CTLA4/Fc, which were inserted in pBluescript KS II (+) in the shape of simple monomeric form, were made to have 3' overhang end using the restriction enzyme of PstI. The cut end of 3' overhang was partially deleted to form a blunt end by treating T4 DNA polymerase. In order to manufacture fusion genes in the shape of concatamer in soluble extracellular domain, the soluble extracellular domains of CD2 and CTLA4 produced by PCR as described above were cloned by inserting into cut ends of simple monomeric gene made as blunt end. These produced fusion proteins were designated CD2-CD2/Fc and CTLA4-CTLA4/Fc as concatameric fusion monomeric protein, and their deduced amino acid sequences corresponded SEQ ID NO: 18 and 20, respectively.

5

10

15

20

25

The concatameric fusion genes in the shape of multiglycosylated form were constructed as follows.

The glycosylation mofit was inserted by secondary PCR with mixing in the same tube of a DNA fragment produced by PCR using a primer including EcoRI restriction site and the soluble extracellular domain with leader sequence, and an antisense primer with the sequence encoding the part of 3' end of the first soluble extracellular domain of concatameric shape of fusion gene and the part of 5' end of the second soluble extracellular domain with the nucleotide of substituted glycosylation motif; and other DNA fragment produced by PCR using a primer with the sequence encoding the part of 3' end of the first soluble extracellular domain of concatameric shape of fusion gene and the part of 5' end of the second soluble extracellular domain with the nucleotide of substituted glycosylation motif, and an antisense primer with the sequence encoding 3' end of Fc fragment of immunoglobulin G1 and XbaI restriction site.

In the case of concatameric fusion gene of CD2/Fc and CTLA4/Fc, the glycosylation motif was inserted by PCR using modified primers as the same methods as

that of TNFR/Fc described as above, but it was different from the case of TNFR/Fc that the amino acid sequence of binding to soluble extracellular domain of CD2 and CTLA4 was retained as the same.

5

10

15

20

25

03010202A1_l_>

In the process of multiglycosylatin of the concatameric fusion protein of CD2/Fc and CTLA4/Fc, the case of CD2/Fc was completed by inserting the total two glycosylation motif peptide region (the sequence of amino acid of 200-202 and 206-208 of SEQ ID NO: 22) using a manufactured primer including the substitution of the nucleotide of 598-600 (CCT, Pro) and 616-618 (GAG, Glu) of SEQ ID NO: 17 with AAT (Asn, N), and the case of CTLA4/Fc was completed by inserting the total three glycosylation motif peptide region (the sequence of amino acid of 136-138, 142-144, and 147-149 of SEQ ID NO: 24) using a manufactured primer(SEQ ID NO: 51 and 52) including the substitution of the nucleotide of 403-405 (GTA, Val) and 424-426 (CCA, Pro) of SEQ ID NO: 19 with AAT (Asn, N); the nucleotide of 409-411 (GAT, Asp) and 445-447 (GTG, Val) with ACA (Thr, T) and ACG (Thr, T), respectively. These produced fusion proteins were designated mgCD2-CD2/Fc and mgCTLA4-CTLA4/Fc as concatameric fusion monomeric protein, and their deduced amino acid sequences corresponded to SEQ ID NO: 22 and 24, respectively.

EXAMPLE 4

Expression and purification of simple/concatameric fusion dimeric protein of <u>TNFR/Fc</u>

In order to express the fusion proteins in CHO-K1 cell (ATCC CCL-61, Ovary, Chinese hamster, Cricetulus griseus), after pBluescript KS II (+) plasmid DNA including TNFR/Fc fusion gene was purified from transformed E. coli, an animal cell expression vectors were constructed as TNFR/Fc fragment produced by restriction using EcoRI and XbaI was inserted at EcoRI/XbaI site of an animal cell expression vector, pCRTM3

5

10

15

20

25

(Invitrogen, USA) plasmid. And these were designated plasmid pTR11-Top10' and plasmid pTR22-Top10', and deposited as accession numbers of KCCM 10288 and KCCM 10291, respectively, at Korean Culture Center of Microorganisms (KCCM) on Jul. 10. 2001.

Transfection was performed by mixing either the plasmid pTR11-Top10' or plasmid pTR22-Top10' DNA including TNFR/Fc fusion genes as described above with the reagent of LipofectaminTM (Gibco BRL, USA). CHO-K1 cells with the concentration of 1~3 X 10⁵ cells/well were inoculated in 6-well tissue culture plate (Nunc, USA), and incubated to 50~80% in 10% FBS - DMEM media, then the DNA-liposome complex, which was reacted for 15~45 min with 1~2µg of either the plasmid pTR11-Top10' or plasmid pTR22-Top10' DNA including TNFR/Fc fusion genes as described above and 2~25µl of LipofectaminTM (Gibco BRL, USA), were added to the cell culture plate in the serum-free DMEM media. After incubation for 5 hrs, DMEM media with 20% serum was added and cells were incubated further for 18~24 hrs. After primary transfection, cells were incubated for 3 weeks in 10% FBS - DMEM media with 1.5mg/ml of Geneticin (G418, Gibco BRL, USA), and formed colonies was selected for amplified incubation. The expression of fusion proteins was analyzed by ELISA using a peroxidase labeled goat anti-human IgG (KPL, USA).

ELISA was performed as follows. First, 1mg/ml of a peroxidase labeled goat anti-human IgG (KPL, USA) was diluted to 1:2,000 with 0.1M sodium bicarbonate, 100 μ l of that was aliquoted into 96-well flexible plate (Falcon, USA) and sealed with plastic wrap, then incubated at 4°C over 16 hrs to be coated on the surface of the plate. After this, it was washed for 3 times with washing buffer (0.1% Tween-20 in 1X PBS) and dilution buffer (48.5ml 1XPBS, 1.5ml FBS, 50ul Tween-20), and then was aliquoted to 180l. After 20 μ l of culture supernatant was dropped in the first well, then serially diluted using a micropipette, and $0.01\mu g/\mu l$ of human immunoglobulin G (Sigma, USA) as the positive control and the culture media of untransfected CHO K-1 cell as the negative was equally diluted. After dilution, 96-well ELISA plate (Falcon, USA) was wrapped with aluminum

foil and incubated at 37°C for 1 hr 30 min, washed for 3 times with washing buffer. Peroxidase conjugated goat anti-human IgG (KPL, USA) was diluted to 1:5,000 with dilution buffer, aliquoted to 100µl, wrapped with aluminum foil, and reacted at 37°C for 1 hr. After reaction, this plate was washed for 3 times, colorized using TMB microwell peroxidase substrate system (KPL, USA) and existence of expression was confirmed by measurement of absorbance at 655nm wavelength using microplate reader (Bio-Rad, Model 550, Japan).

Transfectants manufactured as above were designated TR11Ig-CHO and TR22Ig-CHO and deposited as accession numbers of KCLRF-BP-00046 and KCLRF-BP-00049, respectively, at Korean Cell Line Research Foundation (KCLRF) on Jul. 7. 2001. And adaptation for transfectants as described above to one of the serum free media, CHO-S-SFM II (Gibco BRL, USA), was proceeded to purify the proteins produced by those transfectants as follows. After about 3X10⁵ of cells were inoculated into the 6-well plate, cells were cultured at 5% CO2, 37°C for over 16 hrs to adhere, and it was checked under a microscope that cells were adhered at about 30~50% area of the plate, then cells were cultured in a media consisting of 10% FBS DMEM and CHO-S-SFM II in the ratio of 8:2. After culturing 3 times serial passage at this ratio, it was cultured 3 times at the ratio of 6:4; 3 times at 4:6; 3 times at 3:7; 3 times at 2:8; 3 times at 1:9; and finally cultured in 100% CHO-S-SFM II media. And the level of expression was measured by ELISA.

20

25

15

5

10

After these transfectant cells were cultured on a large scale in CHO-S-SFM II, the supernatants including each fusion proteins were centrifuged at 200X g for 12min to remove cell debris, and proteins were purified by the method using HiTrap protein A column (Amersham, USA) as follows. After 20mM of sodium phosphate (pH 7.0, Sigma, USA) was passed at the velocity of 1ml/min for 2 min, 10ml of supernatant was passed at the same velocity to bind fusion protein to protein A. After 20mM of sodium phosphate (pH 7.0) was passed at the same velocity for 2 min to wash, 500µl of the extracts were serially fractionated in a 1.5ml tube as 0.1M of citric acid (pH 3.0, Sigma, USA) was

passed at the the same velocity for 3 min. This was adjusted to pH 7.0 using 1M of Tris (pH 11.0, USB, USA), the existence of fusion proteins in tube was confirmed through ELISA as described above. The purified proteins were concentrated by centrifugation at 2000Xg, 4°C for 30min using Centricon 30 (Amicon, USA)

5

10

<u>Example 5.</u>

SDS-PAGE of purified TNFR1-TNFR1/Fc and TNFR2-TNFR2/Fc (Fig. 15)

Proteins purified using protein A column were electrophorized by the method of SDS-PAGE in reducing condition added by DTT, reducing reagent (which destroy disulfide bond), and in a non-reducing condition excluding DTT. The result of the estimation of molecular weight on SDS-PAGE is shown in Table 10. It was possible to confirm that TNFR/Fc proteins were the shape of a dimer in the cell. The molecular weight deduced from the amino acid sequence of TNFR1-TNFR1-Ig was about 70kDa, and was estimated as about 102kDa on SDS-PAGE. As this difference could be regarded as a general phenomenon which generate on the electrophoresis of glycoproteins, this feature seemed to occurr as the result from decrease in mobility on the electrophoresis by the site of glycosylation.

20

15

Table 10. Molecular weight of TNFR-TNFR/Fc on the SDS-PAGE.

D	Molecular weight (kDa)		
Proteins	Reducing condition	Non-reducing condition	
TNFR1-TNFR1/Fc	102	200	
TNFR2-TNFR2/Fc	115	220	

Example 6.

Experiment of neutralization effect of simple/concatameric fusion dimeric TNFR/Fc fusion proteins on the cytotoxicity of TNFα and TNFβ

An L929 cell [ATCC, Mus musculus (mouse), NCTC clone 929 (derivative of strain L; L-929; L cell) was used for testing the effect of TNFR/Fc fusion protein on the inhibition of cytotoxicity induced by TNFα and TNFβ. This analysis was based on the TNFR activity of inhibiting cytotoxicity induced by TNF (Scallon et al., Cytokine 7:759, 1995).

L929 cells were inoculated to be 3X10⁴ cells/well in 96-well plates, and incubated at 37°C for 24 hrs in a CO₂ incubator. Subsequently, actinomycin D (Sigma, USA) was added to 3µg/ml, and cells were incubated for 16~18 hrs with TNFα and TNFβ in the concentration of expressing 100% cytotoxicity (0.5~2ng/ml), and with serially 10 times diluted TNFR sample. Then, the cells in the 96-well plate were stained by the staining reagent, crystal violet (Wako Pure Chemical Industries, Japan) and the activity of the cells was estimated by the degree of absorbance at 595 nm wavelength using a spectrophotometer (Bio-Rad, Model-550, Japan).

As shown in Table 11 represented by IC₅₀ of each TNFR/Fc fusion protein, concatameric fusion proteins (TNFR1-TNFR1/Ig and TNFR2-TNFR2/Ig) have shown the higher inhibitory effect on the cytotoxicity induced by two kinds of TNF than simple dimeric fusion proteins (TNFR1/Ig and TNFR2/Ig). Also, as compared with the effects of existing simple fusion dimer and concatameric shaped TNFR/Fc fusion protein dimer of the present invention on the inhibition of cytotoxicity of TNFα (Fig. 16) and TNFβ (Fig. 17), it more clearly appeared that concatameric shaped TNFR/Fc fusion protein dimers of the present invention remarkably inhibited the TNFα and TNFβ cytotoxicity.

25.

5

10

15

Table 11. IC₅₀ of cytotoxicity inhibition

	IC50 (ug/ml)	
Fusion proteins		

		TNFα treated	TNFβ treated
Simple dimer	[TNFR1/Fc] ₂	63	129
	[TNFR2/Fc] ₂	189	469
Concatameric dimer	[TNFR1-TNFR1/Fc] ₂	9	20
	[TNFR2-TNFR2/Fc] ₂	15	15

Example 7

Experiment of suppressive effect of simple/concatameric fusion dimeric CD2/Fc fusion

protein and CTLA4/Fc fusion protein on the proliferation of active immune cell

5

10

15

20

WT100B1S, a cell line of B lymphocyte which was made by transfection of pyrexia patient's B lymphocyte with Ebstein-Barr virus was incubated in RPMI 1640 supplemented with 10% FBS to use as antigen presenting cell of T lymphocyte. After centrifuged at 2,000rpm for 2 min to precipitate, this cells were resuspended in RPMI 1640

supplemented with 10% FBS to make 5.0X10⁵ cells/ml, then irradiated by 3,000 rd of γ-ray.

T lymphocytes were isolated from blood of healthy adult using Ficoll-hypaque (Amersham, USA), then incubated RPMI 1640 supplemented with 10% FBS to 2.0X10⁶ cells/ml.

To perform primary Mixed Lymphocyte Reaction (MLR), each 15ml of WT100B1S and T lymphocyte were mixed in 150mm cell culture dish, and incubated for 3 days, then added by 15ml of RPMI 1640 supplemented with 10% FBS and incubated for 3 days further. After incubated for total 6 days, live T lymphocytes were purified using Ficoll-hypaque (Amersham, USA) as described above, and purified T lymphocytes were stored in liquid nitrogen after freezing it by using the media comprising 45% FBS, 45% RPMI 1640, and 10% DMSO.

After T lymphocytes which were reacted by primary MLR were thawed to perform secondary MLR, the cells were washed with RPMI 1640 media for 2 times and made to be 3.0X10⁵ cells/ml in RPMI 1640 supplemented with 10% FBS.

WT100B1S using as antigen presenting cell was newly cultured by the method as described above, then prepared by irradiation of 3,000 rd of γ-ray and to be 7.5X10⁴ cells/ml in RPMI 1640 supplemented with 10% FBS. After 100μl of prepared WT100B1S was added in 96-well flat bottom cell culture plate and mixed with CD2/Fc and CTLA4/Fc fusion protein at final concentration of 10, 1, 10⁻¹, 10⁻², 10⁻³, and 10^{-4μ}g/ml, 100μl of primary MLR reacted T lymphocytes as above was added. After incubated for 2 days in 5% CO₂, 37°C incubator, 100μl of RPMI 1640 supplemented with 10% FBS was added and incubated for 2 days further. In the last 6 hrs of the total 6 days culture, cells were incubated with addition of 1.2μCi/ml of ³H-thymidine (Amersham, USA).

5

10

15

20

25

BNSDOCID: <WO_

_03010202A1_l_>

At the end of culturing, supernatants were removed after centrifugation of 96-well plate was performed at 4°C, 110Xg for 10 min to precipitate T lymphocytes, and pellets were washed with 200µl of 1XPBS. Centrifugation was performed in the same condition and PBS was removed, then 200µl of ice-cold trichloridic acid (TCA, Merck, USA) was added and mixed for 2 min, then reacted at 4°C for 5 min to remove residue of ³H-thymidine.

After centrifugation in the same condition as described above, supernatants were removed and T lymphocytes were fixed by incubation at 4°C for 5 min after 200µl of ice-cold 70% ethanol was added. Supernatants were removed after centrifugation, and ³H-thymidine (Amersham, USA) residue was completely removed by treatment of 10% TCA in the same method as described above.

Cell lysis was performed by reaction with 100µl of 2% SDS (pH 8.0) and 0.5N of NaOH at 37°C for 30min, and T lymphocytes were precipitated by centrifugation at 25°C, 110Xg for 10min, and then 50µl of supernatants was transferred to 96-well sample plate (Wallac, USA). After 1.5 volume of OptiPhase SuperMix (Wallac, USA) was added into the supernatants and mixed for 5 min, the existence of T lymphocyte proliferation was confirmed by measurement of cpm value of ³H using 1450 MicroBeta TriLux microplate liquid scintillation and luminescence counter (Wallac, USA).

Example 8

Experiment of effect on increase of plasma half-life of glycosylated concatameric fusion dimeric proteins in mouse

5

10

The measurement of plasma half-life of glycosylated concatameric fusion dimeric proteins, [mgTNFR1-TNFR1/Fc]2, [mgTNFR2-TNFR2/Fc]2, [mgCD2-CD2/Fc]2, and [mgCTLA4-CTLA4/Fc]2 was performed by measuring the concentration of proteins using ELISA after 5µg of purified fusion proteins was i.p. injected into mouse (ICR, Samtako, Korea) and bloods were extracted at regular interval for 120 hrs (5 days) as maximum. As shown Fig. 20, Fig. 21, and Fig 22, it could be seen that the plasma half-life of glycosylated concatameric fusion dimeric proteins have been increased in comparison of the corresponding simple fusion dimeric proteins of native shape, and the increase in efficacy through continuous effect could be expected.

15

Example 9

Experiment of effects of simple/concatameric TNFR/Fc fusion protein dimers on collagen-induced arthritis of DBA/1 mouse

20

Collagen Induced Arthritis (CIA) was developed by injection with 100µg per DBA/1 mouse of type II collagen dissolved at 2mg/ml concentration in 0.05M acetic acid and Arthrogen-CIA adjuvant (Chondrex, USA) into tail. Boosting was performed after 3 weeks, and incomplete Freund's adjuvant (Difco, USA) was used.

25

BNISDOCID: NIO

NACHORNERA

Arthritis was developed 3~4 weeks after immunization with 100µg of type II collagen in the DBA/1 mice. Red and swollen paws of mice had been observed 3~5 days after onset, and inflammatory arthritis lasted more than 3 - 4 weeks. Although inflammation was eventually alleviated, damaged joints remained rigid permanently. The degree of

arthritis was measured 2~3 times per week on the basis of table 12 which represented subjective index of arthritis severity (measure average of five mice in each experiment). To measure the effects of simple and concatameric fusion dimeric TNFR/Fc on CIA, TNFR/Fc or PBS was i.p. injected into the mice. TNFR/Fc was injected with 10µg at every 2 days for 19~45 days into 5 mice per experiments (arrows in Fig. 23). PBS was injected into 5 mice as control. As shown in Fig. 7, in the case of mice injected with existing simple dimeric shaped TNFR/Fc fusion protein, it could be seen that the effect decreased to about 26-38% in comparison with the figures of arthritis index in mice injected with PBS as control, but 42-55% decreased in case of concatameric shaped dimer, [TNFR1-TNFR1/Fc]₂ and [TNFR2-TNFR2/Fc]₂ were injected. Therefore, it could be shown that concatameric fusion dimeric TNFR/Fc fusion proteins have remarkably decreased arthritis of mouse than existing simple fusion dimeric TNFR/Fc fusion proteins.

Table 12. Severity score of arthritis

Severity score	Condition of disease
0	No erythema and swelling
1	Erythema and mild swelling limited to ankle and tarsal
2	Erythema and mild swelling spread from ankle to tarsal
3	Erythema and mild swelling spread from ankle to metatarsal joint
4	Erythema and severe swelling expend to ankle, legs, and digits

15

20

5

10

The results as above represented that concatameric shaped dimeric TNFR/Fc fusion proteins were more effective in decreasing the rate of CIA development than existing simple dimeric fusion proteins, therefore, as use in arthritis therapy, concatameric shaped protein compositions could be more effective therapeutics than existing protein compositions.

The concatameric proteins, concatameric fusion dimeric proteins and their glycosylated proteins of the present invention were able to express increased efficacy and high stability, and to be produced with high yield.

5

INDUSTRIAL APPLICABILITY

03010202A1 L >

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT R	ule 13bis)
A. The indications made below relate to the deposited mici description on page 28, line 0-5	roorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT Furth	er deposits are on an additional sheet□
Name of depositary institution	
Korea Cell Line Research Foundation(KCLRF) Address of depositary institution(<i>including postal code and c</i>	ountry)
Cancer Research Institute, Seoul National University Colleg 28 Yongon-dong, Chongno-gu SEOUL 120-091 Republic of Korea	e of Medicine
	Accession Number
Date of deposit	KCLRF-BP-00046
C.ADDITIONAL INDICATIONS (careblanki frot applicable) Thi	s information is continued on an additional sheet $\;\Box\;$
OF YMPYONE 4	cult if not applicable)
E.SEPARATE FURNISHING OF INDICATIONS (leave bl.	ank if not appucable)
The indications listed below will be submitted to the I indications e.q., "Accession Number of Deposit")	nternational Bureau later(specif) the general nature of t
For receiving Office use only	For international Bureau use only
☐ This sheet was received with the international	☐ This sheet was received by the International Burea
application	on:
аррисация	
Authorized officer	Authorized officer

Form PCT/RO/134(July 1998)

INDICATIONS RELATING TO DEPOSITED MICROURGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)		
description on page 28, line 0-5	croorganism or other biological material referred to in the	
B. IDENTIFICATION OF DEPOSIT Fur	ther deposits are on an additional sheet.	
Name of depositary institution		
Korea Cell Line Research Foundation(KCLRF)		
Address of depositary institution(including postal code and	country)	
Cancer Research Institute, Seoul National University Colle 28 Yongon-dong, Chongno-gu	ge of Medicine	
SEOUL 120-091 Republic of Korea	Accession Number	
Date of deposit	KCLRF-BP-00049	
29/06/2001		
C.ADDITIONAL INDICATIONS (teane blankif not applicable) Ti	nis information is continued on an additional sheet \Box	
E.SEPARATE FURNISHING OF INDICATIONS (leave to the indications e.q., "Accession Number of Deposit")	olank if not applicable) International Bureau later(specify the general nature of the	
For receiving Office use only	For international Bureau use only	
☐ This sheet was received with the international		
application	on:	
appromission		
Authorized officer	Authorized officer	
-		
l e e e e e e e e e e e e e e e e e e e		

Form PCT/RO/134(July 1998)

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT)	Rule 13bis)
lescription on page 29, line 15-20	croorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT Furt	her deposits are on an additional sheet 🗌
Name of depositary institution	
Korean Culture Center of Microorganisms(KCCM)	
Address of depositary institution(including postal code and	country)
361-221, Yurim B/D, Hongje-1-dong, Scodaemun-gu, SEOUL 120-091, Republic of Korea	
	Accession Number
Date of deposit 22/07/2002	KCCM 10407
	nis information is continued on an additional sheet \Box
E.SEPARATE FURNISHING OF INDICATIONS (leave to the indications listed below will be submitted to the	blank if not applicable) International Bureau later(specify the general nature of th
indications e.q., "Accession Number of Deposit")	
For receiving Office use only	For international Bureau use only
☐ This sheet was received with the international	, , , , , , , , , , , , , , , , , , ,
	on:
application	
Authorized officer	Authorized officer

Form PCT/RO/134(July 1998)

INDICATIONS RELATING TO DEPOSITED MICROORGANISM ${\bf OR\ OTHER\ BIOLOGICAL\ MATERIAL}$

	Rule 13bis)
A. The indications made below relate to the deposited m description on page 29, line 15-20	icroorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT Fur	rther deposits are on an additional sheet□
Name of depositary institution	
Korean Culture Center of Microorganisms(KCCM)	
Address of depositary institution(including postal code and	country)
361-221, Yurim B/D, Hongje-1-dong, Seodaemun-gu, SEOUL 120-091, Republic of Korea	
Date of deposit	Accession Number
11/07/2002	KCCM 10399
C.ADDITIONAL INDICATIONS (envelope in the property of the control	is information is continued on an additional sheet $\;\Box\;$
E.SEPARATE FURNISHING OF INDICATIONS (leave bl The indications listed below will be submitted to the Indications e.q., "Accession Number of Deposit")	ank if not applicable) nternational Bureau later(specif) [,] the general nature of the
The control of the co	
For receiving Office use only	For international Bureau use only
☐ This sheet was received with the international application	☐ This sheet was received by the International Bureau on:
Authorized officer	Authorized officer

5 Form PCT/RO/134(July 1998)

nauthonovi I =

DIRECTORIO ANO

$\begin{tabular}{ll} \textbf{INDICATIONS RELATING TO DEPOSITED MICROORGANISM}\\ \\ \textbf{OR OTHER BIOLOGICAL MATERIAL} \end{tabular}$

(PC	T Rule 13bis)
A. The indications made below relate to the deposited n description on page 29, line 51-20	nicroorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT Fu	rther deposits are on an additional sheet□
Name of depositary institution	
Korean Culture Center of Microorganisms(KCCM)	
Address of depositary institution(including postal code and	d country)
361-221, Yurim B/D, Hongje-1-dong, Seodaemun-gu, SEOUL 120-091, Republic of Korea	
Date of deposit	Accession Number
11/07/2002	KCCM 10401
C.ADDITIONAL INDICATIONS deane blank if not applicable)	This information is continued on an additional sheet 🗌
D.DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E.SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
The indications listed below will be submitted to the indications e.q., "Accession Number of Deposit")	e International Bureau later(specify the general nature of the
For receiving Office use only	For international Bureau use only
☐ This sheet was received with the internations	This sheet was received by the International Bureau
application	on:
Authorized officer	Authorized officer

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT)	Rule 13bis)
A. The indications made below relate to the deposited mic description on page 27, line 10-20	roorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT Furth	her deposits are on an additional sheet□
Name of depositary institution	
Korean Culture Center of Microorganisms(KCCM)	
Address of depositary institution(including postal code and c	ountry)
361-221, Yurim B/D, Hongje-1-dong, Seodaemun-gu, SEOUL 120-091, Republic of Korea	
Date of deposit	Accession Number
11/07/2002	KCCM 10400
C.ADDITIONAL INDICATIONS (envelous kij not applicable) Thi	s information is continued on an additional sheet 🗌
D.DESIGNATED STATES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated States)
E.SEPARATE FURNISHING OF INDICATIONS (leave bla	ank if not applicable)
· ·	nternational Bureau later(specify the general nature of the
indications e.q., "Accession Number of Deposit")	terminolar Dateau mertopeogy me general name of me
For receiving Office use only	For international Bureau use only
☐ This sheet was received with the international	☐ This sheet was received by the International Bureau
application	on:
Authorized officer	Authorized officer

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)		
A. The indications made below relate to the deposited mi description on page 27, line 10-20	croorganism or other biological material referred to in the	
B. IDENTIFICATION OF DEPOSIT Fur	ther deposits are on an additional sheef□	
Name of depositary institution		
Korean Culture Center of Microorganisms(KCCM)		
Address of depositary institution(including postal code and	country)	
361-221, Yurim B/D, Hongje-1-dong, Seodaemun-gu,		
SEOUL 120-091, Republic of Korea		
Date of deposit	Accession Number	
11/07/2002	KCCM 10402	
C.ADDITIONAL INDICATIONS (temeblanki) not applicable) Th	nis information is continued on an additional sheet 🗌	
D.DESIGNATED STATES FOR WHICH INDICATIONS		
E.SEPARATE FURNISHING OF INDICATIONS (leave b	elank if not applicable)	
The indications listed below will be submitted to the indications e.q., "Accession Number of Deposit")	International Bureau later(specify the general nature of the	
For receiving Office use only	For international Bureau use only	
☐ This sheet was received with the international	☐ This sheet was received by the International Bureau	
application	on:	
Authorized officer	Authorized officer	

PCT/KR02/01427 WO 03/010202

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT	Rule 13bis)
A. The indications made below relate to the deposited m description on page 29, line <u>15-20</u>	dicroorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT Fun	rther deposits are on an additional sheet□
Name of depositary institution	
Korean Culture Center of Microorganisms(KCCM)	
Address of depositary institution(including postal code and	country)
361-221, Yurim B/D, Hongje-1-dong, Seodaemun-gu, SEOUL 120-091, Republic of Korea	
Date of deposit	Accession Number
11/07/2002	KCCM 10404
C.ADDITIONAL INDICATIONS (teneblankifnet applicable) T	his information is continued on an additional sheet 🗌
D.DESIGNATED STATES FOR WHICH INDICATIONS	S ARE MADE (if the indications are not for all designated States)
E.SEPARATE FURNISHING OF INDICATIONS (leave l	
The indications listed below will be submitted to the indications e.q., "Accession Number of Deposit")	International Bureau later(specify the general nature of the
For receiving Office use only	For international Bureau use only
☐ This sheet was received with the international	☐ This sheet was received by the International Bureau
application	on:
Authorized officer	Authorized officer

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCI	Rule 13bis)	
A. The indications made below relate to the deposited microorganism or other biological material referred to in the description on page 29, line 15-20		
B. IDENTIFICATION OF DEPOSIT Fur	her deposits are on an additional sheet□	
Name of depositary institution		
Korean Culture Center of Microorganisms(KCCM)		
Address of depositary institution(including postal code and country)		
361-221, Yurim B/D, Hongje-1-dong, Seodaemun-gu, SEOUL 120-091, Republic of Korea		
Date of deposit	Accession Number	
11/07/2002	KCCM 10403	
C.ADDITIONAL INDICATIONS (care blankif not applicable) This information is continued on an additional sheet		
D.DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E.SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)		
The indications listed below will be submitted to the International Bureau later(specify the general nature of the		
indications e.q., "Accession Number of Deposit")		
For receiving Office use only	For international Bureau use only	
☐ This sheet was received with the international	☐ This sheet was received by the International Bureau	
application	on:	
аррисалон		
Authorized officer	Authorized officer	

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)	
A. The indications made below relate to the deposited mic description on page 29, line $\underline{15-20}$	roorganism or other biological material referred to in the
B. IDENTIFICATION OF DEPOSIT Furth	her deposits are on an additional sheet□
Name of depositary institution	
Korean Culture Center of Microorganisms(KCCM)	
Address of depositary institution(including postal code and c	ountry)
361-221, Yurim B/D, Hongje-1-dong, Seodaemun-gu, SEOUL 120-091, Republic of Korea	
Date of deposit	Accession Number
_	KCCM 10405
C.ADDITIONAL INDICATIONS (eareblankif not applicable) Thi	s information is continued on an additional sheet 🗌
D.DESIGNATED STATES FOR WHICH INDICATIONS	ARE MADE (if the indications are not for all designated States)
E.SEPARATE FURNISHING OF INDICATIONS (leave bla	ınk if not applicable)
The indications listed below will be submitted to the In indications e.q., "Accession Number of Deposit")	nternational Bureau later(specify the general nature of the
For receiving Office use only	For international Bureau use only
☐ This sheet was received with the international	☐ This sheet was received by the International Bureau
application	on:
Authorized officer	Authorized officer

5 Form PCT/RO/134(July 1998)

0301020241 1 >

WHAT IS CLAIMED IS:

1. A concatameric protein comprising two soluble domains, in which a N-terminus of a soluble domain of a biologically active protein is linked to C-terminus of an identical soluble domain or a different soluble domain of a biologically active protein.

5

2. A concatameric fusion dimeric protein comprising two monomeric proteins formed by linkage of a concatamer of two identical soluble extracellular domains of proteins involving immune response to a hinge region of an Fc fragment of an immunoglobulin molecule, wherein said monomeric proteins are linked by intermolecular disulfide bonds at the hinge region, and having improved stability and therapeutic effects.

10

3. The concatameric fusion dimeric protein as set forth in claim 2, wherein the immunoglobulin molecule is IgG.

15

4. The concatameric fusion dimeric protein as set forth in claim 2, wherein the protein involving immune response is selected from the group consisting of cytokines, cytokine receptors, adhesion molecules, tumor necrosis factor receptors, receptor tyrosine kinases, chemokine receptors and other cell surface proteins which contain a soluble extracellular domain.

20

5. The concatameric fusion dimeric protein as set forth in claim 4, wherein the protein is selected from the group consisting of IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-17, TNF, TGF, IFN, GM-CSF, G-CSF, EPO, TPO, M-CSF, GHR, IL-13R, IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-15R, TNFR, TGFR, IFNR, interferon-α R, -β R and -γ R, GM-CSFR, G-CSFR, EPOR, cMpl, gp130, Fas (Apo 1), CCR1, CXCR1-4, TrkA, TrkB, TrkC, Htk, REK7, Rse/Tyro-3, hepatocyte growth factor R, platelet-derived growth factor R, Flt-1, CD2, CD4, CD5, CD6, CD22, CD27, CD28, CD30, CD31, CD40, CD44, CD100, CD137, CD150, LAG-3, B7, B61, β-neurexin, CTLA-4, ICOS, ICAM-1, complement R-2 (CD21), IgER, lysosomal membrane gp-1, α2-microglobulin receptor-related proteins, and sodium-releasing peptide R.

6. The concatameric fusion dimeric protein as set forth in claim 2, wherein the monomeric protein contains an amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 18, or SEQ ID NO: 20.

- 7. A DNA construct encoding a monomeric protein formed by linkage of a concatamer of two identical soluble extracellular domains of a protein involving immune response to a hinge region of an Fc fragment of an immunoglobulin molecule.
- 8. The DNA construct as set forth in claim 7, wherein the immunoglobulin molecule is IgG.
- 9. The DNA construct as set forth in claim 7, wherein the protein involving immune response is selected from the group consisting of cytokines, cytokine receptors, adhesion molecules, tumor necrosis factor receptors, receptor tyrosine kinases, chemokine receptors and other cell surface proteins which contain a soluble extracellular domain.
 - 10. The DNA construct as set forth in claim 9, wherein the protein is selected from the group consisting of IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-17, TNF, TGF, IFN, GM-CSF, G-CSF, EPO, TPO, M-CSF, GHR, IL-13R, IL-1R, IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-15R, TNFR, TGFR, IFNR, interferon-α R, -β R and -γ R, GM-CSFR, G-CSFR, EPOR, cMpl, gp130, Fas (Apo 1), CCR1, CXCR1-4, TrkA, TrkB, TrkC, Htk, REK7, Rse/Tyro-3, hepatocyte growth factor R, platelet-derived growth factor R, Flt-1, CD2, CD4, CD5, CD6, CD22, CD27, CD28, CD30, CD31, CD40, CD44, CD100, CD137, CD150, LAG-3, B7, B61, β-neurexin, CTLA-4, ICOS, ICAM-1, complement R-2 (CD21), IgER, lysosomal membrane gp-1, α2-microglobulin receptor-related proteins, and sodium-releasing peptide R.
 - 11. The DNA construct as set forth in claim 7, wherein the DNA construct contains a nucleotide sequence of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 17, or SEQ ID NO: 19.

25

5

15

12. A recombinant expression plasmid comprising the DNA construct of claim 7 operably linked thereto.

- The recombinant expression plasmid as set forth in claim 12, wherein the recombinant expression plasmid is a pTR11-Top10' plasmid (accession No.: KCCM 10288), a pTR22-Top10' plasmid (accession No.: KCCM 10289), a pCD22Ig plasmid (accession No.: KCCM 10402), or a pCT44Ig plasmid (accession No.: KCCM 10400).
- 14. A host cell transformed or transfected with the recombinant expression plasmid of claim 12.
- The host cell as set forth in claim 14, wherein the host cell is a mammalian cell.
 - 16. The host cell as set forth in claim 14 or 15, wherein the recombinant expression plasmid is a pTR11-Top10' plasmid (accession No.: KCCM 10288), a pTR22-Top10' plasmid (accession No.: KCCM 10289), a pCD22Ig plasmid (accession No.: KCCM 10402), or a pCT44Ig plasmid (accession No.: KCCM 10400).
- 15 17. The host cell as set forth in claim 16, wherein the host cell is a TR11Ig-CHO cell line (accession No.: KCLRF-BP-00046) or a TR22Ig-CHO cell line (accession No.: KCLRF-BP-00049).
 - A method of preparing a concatameric fusion dimeric protein in which disulfide bonds are formed between the hinge regions of two monomeric proteins, comprising the steps of:
 - culturing the transformed or transfected host cell of claim 14 under conditions suitable for expression of a DNA construct encoding a concatameric fusion monomeric protein in which a concatamer of two identical soluble extracellular domains of

20

5

proteins involving immune response is linked to a hinge region of an Fc fragment of an immunoglobulin molecule; and

isolating and purifying a dimeric protein formed by dimerization of the produced monomeric proteins from culture medium.

5

10

- a concatameric fusion monomeric protein is prepared by preparing a DNA construct encoding a simple fusion monomeric protein formed by joining a DNA fragment encoding an Fc fragment of an immunoglobulin molecule and a DNA fragment encoding a soluble extracellular domain of a protein involving immune response; and joining the prepared DNA construct and a second DNA fragment identical to the DNA fragment encoding a soluble extracellular domain of a protein involving immune response.
- 20. The method as set forth in claim 19, wherein the DNA construct encoding a concatameric fusion monomeric protein contains a glycosylation motif sequence.
- The method as set forth in claim 20, wherein the glycosylation motif sequence is inserted to a region at which two soluble extracellular domains are joined.
 - 22. The method as set forth in claim 19, wherein the concatameric fusion monomeric protein contains a leader sequence.
 - 23. The method as set forth in claim 22, wherein the concatameric fusion monomeric protein is CTLA-4, and the leader sequence has an amino acid sequence of MACLGFQRHKAQKNLAARTWPCTLLFFIPVFCKA.
 - 24. The method as set forth in claim 23, wherein the leader sequence has an amino acid sequence of MRTWPCTLLFFIPVFCKA excluding ACLGFQRHKAQKNLAA.
 - 25. The method as set forth in any of claims 18 to 24, wherein the host cell is a mammalian cell.

20

26. A concatameric fusion dimeric protein comprising two monomeric proteins formed by linkage of a concatamer of two identical soluble extracellular domains of proteins involving immune response to the hinge region of Fc fragment of an immunoglobulin molecule, wherein said monomeric proteins are linked by formation of intermolecular disulfide bonds at the hinge region and glycosylated, and having improved stability and therapeutic effects.

- The concatameric fusion dimeric protein as set forth in claim 26, wherein the monomeric protein contains an amino acid sequence of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 22, or SEQ ID NO: 24.
- 10 28. A DNA construct encoding a monomeric protein formed by linkage of a concatamer of two identical soluble extracellular domains of proteins involving immune response to a hinge region of an Fc fragment of an immunoglobulin molecule and containing glycosylation motif peptides.
- 29. The DNA construct as set forth in claim 28, wherein the DNA construct contains an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 21, or SEQ ID NO: 23.
 - 30. A recombinant expression plasmid operably linked to the DNA construct of claim 28.
- The recombinant expression plasmid as set forth in claim 30, wherein the recombinant expression plasmid is a pTR11Ig-MG plasmid (accession No.: KCCM 10404), a pTR22Ig-MG plasmid (accession No.: KCCM 10401), or a pCT44Ig-MG plasmid (accession No.: KCCM 10399).
 - 32. A host cell transformed or transfected with the recombinant expression plasmid of claim 30.

5

33. The host cell as set forth in claim 32, wherein the host cell is a mammalian cell.

- 34. A pharmaceutical or diagnostic composition comprising the dimeric protein of claim 2.
- 5 35. A pharmaceutical or diagnostic composition comprising the glycosylated dimeric protein of claim 26.

DISCUSSION -1410

PCT/KR02/01427

1/23

FIG. 1

DEIDDOOLD TRIO USU4000364

2/23

FIG. 2

PCT/KR02/01427

3/23

FIG. 3

Concatameric, dimer

4/23 FIG. 4

5/23

FIG. 5

6/23 FIG. 6

7/23 FIG. 7

8/23 FIG. 8

PCT/KR02/01427

9/23 FIG. 9

10/23 FIG. 10

11/23 FIG. 11

12/23 FIG. 12

PCT/KR02/01427

13/23

FIG. 13

14/23 FIG. 14

15/23

FIG. 15

16/23 FIG. 16

PCT/KR02/01427

17/23

FIG. 17

18/23 FIG. 18

PCT/KR02/01427

19/23 FIG. 19

20/23 FIG. 20

21/23 FIG. 21

22/23 FIG. 22

23/23

FIG. 23


```
<110>
          MeDexGen Inc.
          CHUNG, Yong Hoon
          HAN, Ji Woong
          LEE, Hye Ja
          CHOI, Eun Yong
          KIM, Jin Mi
          YIM, Soo Bin
         Method of manufacturing Ig-fusion proteins by concatamerization,
<120>
         {\tt TNFR/Fc}, {\tt CD2/Fc}, {\tt CTLA4/Fc} fusion proteins manufactured by the
         method, DNA coding the proteins, vectors including the DNA, and
         cells transformed by the vectorTOR
<160>
          52
<170>
         KopatentIn 1.71
<210>
<211>
         1335
<212>
         DNA
<213>
         Homo sapiens
<220>
<221>
         CDS
         (1)..(1332)
<222>
<223>
         TNFR1-IgG
<220>
<221>
         C_region
<222>
         (634)..(1335)
<223>
         Hinge, CH2, CH3 region
<220>
<221>
         misc_signal
<222>
         (160)..(168)
<223>
         N-linked glycosylation site
```

```
<220>
<221>
       misc_signal
<222>
      (433)..(441)
<223>
         N-linked glycosylation site
<220>
<221>
       misc_signal
<222>
        (451)..(459)
<223>
         N-linked glycosylation site
<220>
<221>
         primer_bind
<222>
         (1)..(15)
<223>
         PCR primer SEQ ID : 25 binding site
<220>
<221>
         primer_bind
<222>
         (616)..(652)
<223>
         PCR primer SEQ II) : 26(antisense) binding site
<220>
<221>
         primer_bind
<222>
        (616)..(651)
<223>
         PCR primer SEQ ID : 27 binding site
<220>
<221>
         primer_bind
<222>
         (1312)..(1335)
<223>
         PCR primer SEQ ID : 28(antisense) binding site
<220>
<221>
        sig_peptide
<222>
         (1)..(60)
<223>
         signal peptide
```

<40	0>	1														
atg	ggc	ctc	tec	acc	gtg	cct	gac	ctg	ctg	ctg	ceg	ctg	gtg	cto	ctg	48
Met	Gly	Leu	Ser	Thr	Val	Pro	Asp	Leu	Leu	Leu	Prc	Leu	Val	Leu	Leu	
1				5					10					15		
gag	ctg	ttg	āŗā	gga	ata	tac	ccc	tca	ggg	gtt	att	gga	ctg	gtc	cct	96
Glu	Leu	Leu	Val	Gly	Ile	Tyr	Pro	Ser	Gly	Val	Ile	Gly	Leu	Val	Pro	
			20					25					30			
cac	cta	ggg	gac	agg	gag	aag	aga	gat	agt	gtg	tgt	ccc	caa	gga	aaa	144
Hls	Leu		Asp	Arg	Gl.u	Lys	Arg	Asp	Ser	Val	Суз	Pro	Gln	Gly	Lys	
		35					40					45				
++									•							
Tur	Tlo	uic	Dra	caa	aat	aat	tcg	att	tgc	tgt	acc	aag	tgc	cac	aaa	192
1 Y L	50	UTS	FIO	GIN	Asn		Ser	Ile	Cys	Cys		Lys	Cys	His	Lys	
	50					55					60					
aaa	acc	tac	*+~	+20	-	~~~	44.									
Glv	Thr	Tvr	Tien	Tur	Aen	yac	Crr	cca	ggc	ccg	ggg	cag	gat	acg	gac	240
65		,-	330.01	+ y +	70	vsh	cys	Pro	Gly		Gly	Gln	Asp	Thr		
					, 0					75					80	
tgc	agg	gag	tat	σaσ	agc	aac	tcc	ttc	acc	aat						
Cys	Arg	Glu	Cys	Glu	Ser	Glv	Ser	Phe	Thr	Al=	Sor	gaa	aac	cac	ctc	288
				85		1		2110	90	rua	per	GIU	ASI		Leu	
									20					95		
aga	cac	tgc	ctc	agc	tgc	toc	aaa	tqc	cga	aaq	gaa	ato	aut	cad	ata	226
Arg	His	Cys	Leu	Ser	Cys	Ser	Lys	Cys	Arg	Lvs	Glu	Met	Glv	Gln	y Ly Val	336
			100					105	-	-			110		var	
gag	atc	tct	tct	tgc	aca	gtg	gac	cgg	gac	acc	gtg	tqt	aac	tac	agg	384
Glu	Ile	Ser	Ser	Cys	Thr	Val	Asp	Arg	Asp	Thr	Val	Cys	Gly	Cvs	Ara	304
		115					120					125	•		J	
aag	aac	cag	tac	cgg	cat	tat	tgg	agt	gaa	aac	ctt	ttc	cag	tgc	ttc	432
Lys	Asn	Gln	Tyr	Arg	His	Tyr	Trp	Ser	Glu	Asn	Leu	Phe	Gln	Cys	Phe	
	130					135					140					
aat	тgс	agc	ctc	tgc	ctc	aat	ggg	acc	gtg	cac	ctc	tcc	tgc	cag	gag	480

Asn 145	Cys	Ser	Leu	Cys	Leu 150	Asn	Gly	Thr	Val	His 155	Leu	Ser	Сув	Gln	Glu 160		
aaa	cag	aac	acc	gtg	tgc	acc	tgc	cat	gca	ggt	ttc	ttt	cta	aga	gaa		528
Lys	Gln	Asn	Thr	Val	Cys	Thr	Суз	His	Ala	Gly	Phe	Phe	Leu	Arg	Glu		
				165					170					175			
220	asa	tat	atc	tcc	tat	agt	a a c	tat	aad	aaa	adc	cta	gag	tac	aca		576
		_	-		_	_		_	_	Lys	-	_	_	_	_		0.0
		-,, -	180					185	4				190	2			
aag	ttg	tgc	cta	ccc	cag	att	gag	aat	gtt	aag	ggc	act	gag	gac	tca		624
Lys	Leu	Cys	Leu	Pro	Gln	Ile	Glu	Asn	Val	Lys	Gly	Thr	Glu	Asp	Ser		
		195					200					205					
								, ,						4			670
										ааа Ъу <i>з</i>							672
GTÀ	210		ALA	GIU	FIO	дуs 215	DET	Cys	Asp	г пуз	220	птэ	IIIL	Cys	FLO		,
						210											
ccg	tgc	cca	gca	cct	gaa	ctc	ctg	ggā	gga	ccg	tca	gtc	ttc	ctc	ttc		720
Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	· Gly	r Pro	Ser	Val	Phe	Let	Phe		
225	,				230					235					240		
																	7.44
				_	-			_						,	gtc		768
Pro	Pro	ь гуз	FPC	ь Lys 245	_	Thr	ren	Met	250		Arg	Thr	Pro	255	ı Val		
				230	,				200	,				4 N.	,		
aca	a tgo	gtg	g gtg	g gto	g gac	gtg	ago	cac	gaa	a gac	: cct	gaç	gto	aaç	g ttc		816
Thi	с Суя	val	l Val	l Val	. Asp	v Val	Ser	His	s Gl	ı Asp	Pro	Glu	ı Val	Lys	5 Phe		
			260)				265	5				270)			
aad															g ccg		864
Ası	n Tr	-		l As _}	o Gl	y Val			l Hi	s Ası	n Ala			c Ly:	s Pro		
		27	5				280)				28!	0				
cq	g ga	g ga	g ca	g ta	c aad	c ago	c aco	g ta	c cg	g gto	g gto	age	e gte	e ct	c acc		912
_			_	-		_			-				-		u Thr		
	29	0		·		29	5				30	0					
gt	c ct	g ca	c ca	g ga	c tg	g ct	g aa	t gg	c aa	g ga	g ta	c aa	g tg	c aa	g gto	:	960

Val 305	Leu	His	Gln	Asp	Trp 310	Leu	Asn	Gly	Lys	Glu 315	Tyr	Lys	Cys	Lys	Val 320	
			_			gec Ala			Glu					Lys	-	1008
		_		cga		cca Pro	_				-					1056
			340					345					350			
-		-		-		cag Gln	-	-	_		-	_	_			1104
			_	-		gee					-			_	_	1152
rne	370		per	Asp	116	Ala 375	Val	GT.TI	пр	GTII	380	ASII	GTÀ	GIII	FIO	
				_		Thr				_	-		-		tcc Ser 400	1200
				-	_				-	-	-			_	cag Gln	1248
aaa	. aac	, ata	. ++c	405		. +	ata	- 2+m	410		act	sta		415	cac	1296
				Ser				-	His	-	-	_		Asr	His	1270
	-	c Glr	ı Lys	-		tcc Sei	Leu	. Ser	-	22				tç	ja	1335
		435	,				440	,								

<210> 2

<211> 444

<212> PRT

<213> Homo sapiens

< 400	> 2														
	Gly	Leu	Ser	Thi	Val	Pro	Asp	Leu		Leu	Pro	Leu	Val		Leu
1				5					10					15	
Glu	Leu	Leu	Val	Gly	Ile	Tyr	Pro	Ser	Gly	Val	Ile	Gly	Leu	Val	Pro
			20					25					30		
His	T.e.ii	Glv	Asn	Arg	Glu	T.vs	Arm	Asn	Ser	Val	Cvs	Pro	Gln	Glv	Lvs
11110	204	35	. юр	11.29		1-	40	. 10 10			-,-	45			~J~
Tyr	Ile 50	His	Pro	Gln	Asn	Asn 55	Ser	Ile	Суз	Суѕ	Thr 60	Lys	Cys	His	Lys
	30					55					00				
Gly	Thr	Tyr	Leu	Tyr	Asn	Asp	Cys	Pro	Gly	Pro	Gly	Gln	Asp	Thr	Asp
65					70					75					80
Cys	Arg	Glu	Cys	Glu	Ser	Gly	Ser	Phe	Thr	Ala	Ser	Glu	Asn	His	Leu
			-	85					90					95	
70			T		G	0	T	C	7)	T	GI.	36-4-	G3	c1-	17-1
Arg	Hls	Cys	ьеи 100	Ser	Cys	ser	цуѕ	105		ьуѕ	G.I.U	Mec	110	GTU	vaı
Glu	Ile			Cys	Thr	Val	_	_	Asp	Thr	Val	_	_	Cys	Arg
		115)				120					125			
Lys	Asn	Glr	туг	Arg	His	Туг	Trp	Ser	Glu	ı Asn	Leu	Phe	Gln	Cys	Phe
	130)				135	i				140	i			
Asn	Csrs	: Sei	r I.e.ı	ı Cys	: T.e.i	ı Asr	. (2 13.	, Thr	· Val	His	. Lei	. Ser	Cvs	: Gln	Glu
145	_			. 0,1.	150					155					160
Lys	5 Gli	n Ası	n Th	r Val		s Thi	c Cys	s His	s Ala 170		/ Fhe	e Phe	e Leu	175	
				165	,				7.7	J				1.7	
Asr	ı Glı	и Су	s Va	l Se	r Cys	s Se	r Asr	n Cys	s Ly	s Lys	s Sei	c Lei	ı Glu	ı Cys	Thr
			18	0				189	5				190)	
Lvs	s Le	u Cv	s Le	u Pro	o Gli	n Il	e Glı	u Ası	n Va	l Ly:	s Gl	y Th:	r Glı	ı Asp	o Ser
		J 19					20	_		-	•	20		•	

Gly	Thr 210	Thr	Ala	Glu	Pro	Lys 215	Ser	Cys	Asp	Lys	Thr 220	His	Thr	Cys	Pro
Pro 225	Cys	Pro	Ala	Pro	Glu 230	Leu	Leu	Gly	Gly	Pro 235	Ser	Val	Phe	Leu	Phe 240
Pro	Pro	Lys	Pro	Lys 245	Asp	Thr	Leu	Met	Ile 250	Ser	Arg	Thr	Pro	Glu 255	Val
Thr	Cys	Val	Val 260	Val	Asp	Val	Ser	His 265	Glu	Asp	Pro	Glu	Val 270	Lys	Phe
Asn	Trp	Tyr 275	Val	Asp	Gly	Val	Glu 280	Val	His	Asn	Ala	Lys 285	Thr	Lys	Pro
Arg	Glu 290	Glu	Gln	Tyr	Asn	Ser 295	Thr	Tyr	Arg	Val	Val 300	Ser	Va1	Leu	Thr
Val 305	Leu	Hi.s	Gln	Asp	Trp 310	Leu	Asn	Gly	Lys	Glu 315	Tyr	Lys	Cys	Lys	Val 320
Ser	Asn	Lys	Ala	Leu 325	Pro	Ala	Pro	Ile	Glu 330	Lys	Thr	Ile	Ser	Lys 335	Ala
Lys	Gly	Gln	Pro 340	Arg	Glu	Pro	Gln	Val 345	Tyr	Thr	Leu	Pro	Pro 350	Ser	Arg
Asp	Gl.u	Leu 355	Thr	Lys	Asn	Gln	Val 360	Ser	Leu	Thr	Cys	Leu 365	Val	Lys	Gly
Phe	Tyr 370	Pro	Ser	Asp	Ile	Ala 375	Val	Glu	Trp	Glu	Ser 380	Asn	Gly	Gln	Pro
Glu 385	Asn	Asn	Tyr	Lys	Th <i>r</i> 390	Thr	Pro	Pro	Val	Leu 395	Asp	Ser	Asp	Gly	Ser 400
Ser	Fhe	Leu	Tyr	Ser 405	Lys	Leu	Thr	Val	Asp 410	Lys	Ser	Arg	Trp	Gln 415	Gln

```
Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
           420
                             425
                                               430
Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
       435
                         440
<210>
<211> 1473
<212> DNA
<213> Homo sapiens
<220>
<221>
        CDS
<222> (1)..(1470)
<223> TNFR2-IgG
<220>
<221> C_region
<222> (772)..(1473)
<223> Hinge, CH2, CH3 region
<220>
<221> misc_signal
<222> (511)..(519)
<223> N-linked glycosylation site
<220>
<221> misc_signal
<222> (577)..(585)
 <223>
        N-linked glycosylation site
 <220>
 <221> primer_bind
 <222> (1)..(15)
 <223> PCR primer SEQ ID : 29 binding site
```

```
<220>
<221> primer_bind
<222>
       (754)..(790)
<223>
        PCR primer SEQ ID : 30(antisense) binding site
<220>
<221>
        primer bind
<222>
       (754)..(790)
<223>
        PCR primer SEQ ID : 31 binding site
<220>
<221>
      primer_bind
<222> (1451)..(1473)
<223>
        PCR primer SEQ ID : 28(antisense) binding site
<220>
<221>
      sig_peptide
<222> (1)..(66)
<223> signal peptide
<400>
atg geg eee gte gee gte tgg gee geg etg gee gte gga etg gag ete
                                                                         48
Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu
  1
                 5
                                    10
                                                        15
tgg get geg geg eac gec ttg ecc gec eag gtg gea ttt aca ecc tac
                                                                         96
Trp Ala Ala Ala His Ala Leu Fro Ala Gln Val Ala Phe Thr Pro Tyr
             20
                                25
                                                    30
gee eeg gag eee ggg age aca tge egg ete aga gaa tae tat gae eag
                                                                        144
Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln
         35
aca get cag atg tge tge age aaa tge teg eeg gge caa eat gea aaa
                                                                        192
```

Thr	Ala 50	Gln	Met	Cys	Cys	Ser 55	Lys	Суѕ	Ser	Pro	Gly 60	Gln	His	Ala	Lys	
_		_		-		_	-			-	-		tgt Cys		_	240
-				-					-			-	ttg Leu	-	-	288
		-	-	_		_	_		-			-	tgc Cys 110			336
			Arg		_		-						tgc Cys		-	384
_	-	Gln			_		-	_		-	-	Arg	aag Lys	-	ege Arg	432
	Gly				_	Arg				-	Thr		-		gtg Val 160	480
	_		-	-	Pro		-			Asn	-				acg	528
				g Pro					: Asn					Pro	Gly ggg	576
			r Met	-	_	-	-	Thi		_			Thi		ı agt ı Ser	624
ato	g gc	c cc	a gg	g gc:	a gta	a cac	tta	a cco	c caç	g cca	a gto	g te	e aca	a cga	a tcc	672

Met	Ala 210	Pro	Gly	Ala	Val	His 215	Leu	Pro	Gln	Pro	Val 220	Ser	Thr	Arg	Ser	
caa	cac	acg	cag	сса	act	cca	gaa	ccc	agc	act	gct	cca	agc	acc	tcc	720
Gln	His	Thr	Gln	Pro	Thr	Pro	Glu	Pro	Ser	Thr	Ala	Pro	Ser	Thr	Ser	
225					230					235					240	
ttc	ctg	ctc	cca	atg	ggc	ccc	agc	ccc	сса	gct	gaa	ggg	agc	act	ggc	768
Phe	Leu	Leu	Pro	Met	Gly	Pro	Şer	Pro	Pro	Ala	Glu	Gly	Ser	Thr	Gly	
				245					250					255		
gac	gca	gag	ccc	aaa	tct	tgt	gac	aaa	act	cac	aca	tgc	cca	ccg	tgc	816
Asp	Ala	Glu	Pro	ГÀг	Ser	Суѕ	Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	
			260					265					270			
						ggg										864
Pro	Ala		Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	
		275					280					285				
						atg							-		-	912
Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	
	290					295					300					
						cac					-	-				960
Val	Val	Val	Asp.	Val	Ser	His	Glu	Asp	Pro	Glu	Val	ГЛЗ	Phe	Asn	Trp	
305					310					315					320	
													_		gag	1008
Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	
				325					330					335		
						tac			-	-	-			_	~	1056
Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	
			340					345					350			
															aac	1104
His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	
		355					360					365				
aaa	. gcc	cto	сса	gcc	ccc	atc	gag	aaa	acc	atc	tcc	aaa	gcc	aaa	ggg	1152

Lys	Ala 370	Leu	Pro	Ala	Pro	Ile 375	Glu	Lys	Thr	Ile	Ser 380	Lys	Ala	Lys	Gly	
		cga												_		1200
	Pro	Arg	Glu	Pro		Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp	Glu	
385					390					395					400	
ctg	acc	aag	aac	cag	gtc	agc	ctg	acc	tgc	ctg	gtc	aaa	ggc	ttc	tat	1248
Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	
				405					410					415		
cac	agc	gac	atc	acc	ata	пап	taa	gag	agc	aat	aaa	nan	cca	asa	220	1296
		Asp											-			1290
		•	420				•	425			,	0	430		71011	
		aag														1344
Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Ser	Phe	
		435					440					445				
ctc	tac	agc	aag	ctc	acc	ata	gac	aaq	arc	agg	taa	cad	cad	aaa	aac	1392
		Ser														
	450					455					460			-		
		tca														1440
	Phe	Ser	Суя	Ser		Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	
465					470					475					480	
cag	aag	agc	ctc	tcc	ctg	tct	ccg	ggt	aaa		tga					1473
Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys							
				485					490							
<21	0>	4														
<21		490														
<21	2>	PRT														
<21	3>	Homo	sap	iens												
<40		4														
		Pro	Val		Val	Trp	Ala	Ala	Leu	Ala	Val	Gly	Leu	Glu	Leu	
1				5					10					15		

Trp	Ala	Ala	Ala 20	His	Ala	Leu	Pro	Ala 25	Gln	Val	Ala	Phe	Thr 30	Pro	Tyr
Ala	Pro	Glu 35	Pro	Gly	Ser	Thr	Cys 40	Arg	Leu	Arg	Glu	Tyr 45	Tyr	Asp	Gln
Thr	Ala 50	Gln	Met	Cys	Cys	Ser 55	Lys	Суз	Ser	Pro	Gly 60	Gln	His	Ala	Lys
Val 65	Phe	Cys	Thr	Lys	Thr 70	Ser	Asp	Thr	Val	Cys 75	Asp	Ser	Cys	Glu	Asp 80
Ser	Thr	Tyr	Thr	Gln 85	Leu	Trp	Asn	Trp	Val 90	Pro	Glu	Cys	Leu	Ser 95	Cys
Gly	Ser	Arg	Cys 100	Ser	Ser	Asp	Gln	Val 105	Glu	Thr	Gln	Ala	Cys 110	Thr	Arg
Glu	Gln	Asn 115	Arg	Ile	Cys	Thr	Cys 120	Arg	Pro	Gly	Trp	Tyr 125	Cys	Ala ,	Leu
Ser	Lys 130	Gln	Glu	Gly	Cys	Arg 135	Leu	Cys	Ala	Pro	Leu 140	Arg	Lys	Cys	Arg
Pro 145		Phe	Gly	Val	Ala 150	Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160
Cys	Lys	Pro	Cys	Ala 165	Pro	Gly	Thr	Phe	Ser 170		Thr	Thr	Ser	Ser 175	Thr
Asp	Ile	Cys	Arg 180		His	Gln	Ile	Cys 185		Val	Val.	Ala	Ile 190	Pro	Gly
Asn	Ala	Ser 195		Asp	Ala	Val	Суs 200		Ser	Thr	Ser	Pro 205		Arg	Ser
Met	210	-	Gly	Ala	Val	His		Pro	Gln	Pro	Val 220		Thr	Arg	Ser

Gln 225	His	Thr	Gln	Pro	Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe	Leu	Leu	Pro	Met 245	GlУ	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Thr 255	Gly
Asp	Ala	Glu	Pro 260	Lys	Ser	Cys	Asp	Lys 265	Thr	His	Thr	Суѕ	Pro 270	Pro	Cys
Pro	Ala	Pro 275	Glu	Leu	Leu	Gly	Gly 280	Pro	Ser	Val	Phe	Leu 285	Phe	Pro	Pro
Lys	Pro 290	Lys	Asp	Thr	Leu	Met 295	Ile	Ser	Arg	Thr	Pro 300	Glu	Val	Thr	Cys
Val 305	Val	Val	Asp	Val	Ser 310	His	Glu	Asp	Pro	Glu 315	Val	Lys	Phe	Asn	Trp 320
Tyr	Val	Asp	Gly	Val 325		Val	His	Asn	Ala 330	_	Thr	Lys	Pro	Arg 335	Glu
Glu	Gl.n	Tyr	Asn 340		Thr	Tyr	Arg	Val		Ser	· Val	Leu	Thr 350	Val	Leu
His	Gln	Asp 355		Leu	Asn	Gly	360 360		Туг	Lys	Cys	Lys 365		Ser	Asn
Lys	370		ı Pro	Ala	Pro	375	Glu	. Lys	Thr	Ile	Ser 380		Ala	Lys	Gly
Glr. 385		Arç	g Glu	ı Pro	390		. Tyr	Thr	: Leı	395		Ser	Arg	-	Glu 400
Leı	ı Thi	r Lys	s Ası	405		. Ser	. Lev	ı Thr	Cys 410		ı Val	. Lys	Gly	Phe	-
Pro	o Sei	c As	2 Ile 420		a Val	l Glı	ı Trp	Gl: 425		. Ası	n Gly	7 Glr	1 Pro		Asn
Ası	л Ту:	r Ly:	s Th	r Th	r Pro	o Pro	o Val	L Lei	ı Ası	p Se	r Ası	o Gly	/ Ser	Ser	Phe

BRIGHTON -MIO N301020241 1 -

435 440 445 Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 455 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 470 475 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 485 <210> 5 <211> 1887 <212> DNA Homo sapiens <213> <220> <221> CDS <222> (1)..(1884) <223> TNFR1-TNFR1-IgG <220> <221> C_region <222> (1716)..(1887) <223> Hinge, CH2, CH3 region <220> <221> misc_signal <222> (160)..(168) <223> N-linked glycosylation site <220> <221> misc_signal <222> (433)..(441) <223> N-linked glycosylation site

WO 03/010202 PCT/KR02/01427

```
<220>
<221>
      misc_signal
<222> (451)..(459)
<223> N-linked glycosylation site
<220>
<221>
      misc_signal
<222>
       (631)..(639)
<223> N-linked glycosylation site
<220>
<221> misc_signal
<222>
       (712)..(720)
<223> N-linked glycosylation site
<220>
<221> misc_signal
<222> (985)..(993)
<223> N-linked glycosylation site
<220>
<221> misc_signal
<222> (1003)..(1011)
<223>
        N-linked glycosylation site
<220>
<221> primer_bind
<222> (1)..(15)
<223>
        PCR primer SEQ ID : 25 binding site
<220>
<221>
       primer_bind
<222> (592)..(628)
```

```
<223>
        PCR primer SEQ ID: 33(antisense) binding site
<220>
<221>
        primer_bind
<222>
       (622)..(655)
<223>
        PCR primer SEQ ID: 32 binding site
<220>
<221>
       primer_bind
<222>
       (1168)..(1204)
<223>
        PCR primer SEQ ID: 26(antisense) binding site
<220>
<221>
       primer_bind
<222>
        (1168)..(1204)
<223>
         PCR primer SEQ ID: 27 binding site
<220>
<221>
         primer_bind
<222>
         (1864)..(1887)
<223>
         PCR primer SEQ ID: 28(antisense) binding site
<220>
<221>
       sig_peptide
<222>
         (1)..(60)
<223>
         signal peptide
<400>
 atg ggc ctc tcc acc gtg cct gac ctg ctg ctg ccg ctg gtg ctc ctg
                                                                          48
Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu
                   5
                                     10
 gag ctg ttg gtg gga ata tac ccc tca ggg gtt att gga ctg gtc cct
                                                                          96
 Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro
```

20 25 30 144 cac cta ggg gac agg gag aag aga gat agt gtg tgt ccc caa gga aaa His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 40 35 192 tat atc cac cct caa aat aat tcg att tgc tgt acc aag tgc cac aaa Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 gga acc tac ttg tac aat gac tgt cca ggc ccg ggg cag gat acg gac 240 Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 70 75 288 tgc agg gag tgt gag agc ggc tcc ttc acc gct tca gaa aac cac ctc Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu 336 aga cac tgc ctc agc tgc tcc aaa tgc cga aag gaa atg ggt cag gtg Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val 100 105 110 384 gag atc tct tct tgc aca gtg gac cgg gac acc gtg tgt ggc tgc agg Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 432 aaq aac caq tac cqq cat tat tqq aqt gaa aac ctt ttc cag tgc ttc Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 480 aat tgc agc ctc tgc ctc aat ggg acc gtg cac ctc tcc tgc cag gag Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 150 aaa cag aac acc gtg tgc acc tgc cat gca ggt ttc ttt cta aga gaa 528 Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 170 175 165 aac gag tgt gtc tcc tgt agt aac tgt aag aaa agc ctg gag tgc acg 576 Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr

190 180 185 624 aaq ttq tqc cta ccc cag att gag aat gtt aag ggc act gag gac gga Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Gly 200 205 195 tcc ggg aac att tca ctg gtc cct cac cta ggg gac agg gag aag aga 672 Ser Gly Asn Ile Ser Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg 210 215 220 gat agt gtg tgt ccc caa gga aaa tat atc cac cct caa aat aat tcg 720 Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Fro Gln Asn Asn Ser 230 235 768 att tgc tgt acc aag tgc cac aaa gga acc tac ttg tac aat gac tgt Ile Cys Cys Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys 245 cca ggc ccg ggg cag gat acg gac tgc agg gag tgt gag agc ggc tcc 816 Pro Gly Pro Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser 260 265 270 864 tte ace get tea gaa aae cae ete aga cae tge ete age tge tee aaa Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys 275 280 tgc cga aag gaa atg ggt cag gtg gag atc tct tct tgc aca gtg gac 912 Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp cgg gac acc gtg tgt ggc tgc agg aag aac cag tac cgg cat tat tgg 960 Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp 305 310 320 315 agt gaa aac ctt ttc cag tgc ttc aat tgc agc ctc tgc ctc aat ggg 1008 Ser Glu Asn Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly 330 325 335 acc gtg cac ctc tcc tgc cag gag aaa cag acc gtg tgc acc tgc 1056 Thr Val His Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys

			340					345					350			
cat His						_	_			_	_		-	-		1.104
	_		_	_		-	_	_	ttg Leu	_			-			1152
		_				_			acc Thr		-					1200
	_					-		-	tgc Cys 410		•		-		-	1248
									cca Pro			_	-			1296
									tgc Cys							1344
		Asp													gag Glu	1392
	His					Lys					Gln				acg Thr 480	1440
					Val					His					aat Asn	1488
															ccc Pro	1536

U3U1U3U3V1 1 -

	500	505	510	
	acc atc tcc aaa gcc Thr Ile Ser Lys Ala 520	Lys Gly Gln Pro A		34
	ctg ccc cca tcc cgg Leu Pro Pro Ser Arg 535			32
	tgc ctg gtc aaa ggc Cys Leu Val Lys Gly 550			30
	agc aat ggg cag ccg Ser Asn Gly Gln Pro 565		_	18
	gac tcc gac ggc tcc Asp Ser Asp Gly Ser 580			76
	agc agg tgg cag cag Ser Arg Trp Gln Gln 600	Gly Asn Val Phe S		24
	gct ctg cac aac cac Ala Leu His Asn His 615			12
tct ccg ggt Ser Pro Gly	. .		188	37
<210> 6 <211> 628 <212> PRT <213> Homo	sapiens			

< 400)> (5													
Met 1	Gly	Leu	Ser	Thr 5	Val	Pro	Asp	Leu	Leu 10	Leu	Pro	Leu	Val	Leu 15	Leu
Glu	Leu	Leu	Val 20	Gly	Ile	Tyr	Pro	Ser 25	Gly	Val	Ile	Gly	Leu 30	Val	Pro
His	Leu	Gly 35	Asp	Arg	Glu	Lys	Arg 40	Asp	Ser	Val	Cys	Pro 45	Gln	Gly	Lys
Tyr	Ile 50	His	Pro	Gln	Asn	Asn 55	Ser	Ile	Cys	Cys	Thr 60	Lys	Cys	His	Lys
Gly 65	Thr	Tyr	Leu	Tyr	Asn 70	Asp	Cys	Pro	Gly	Pro 75	Gly	Gln	Asp	Thr	Asp 80
Суз	Arg	Glu	Cys	Glu 85	Ser	Gly	Ser	Phe	Thr 90	Ala	Ser	Glu	Asn	His 95	Leu
Arg	His	Cys	Leu 100	Ser	Cys	Ser	Lys	Cys 105	Arg	Lys	Glu	Met	Gly 110	Gln	Val
Glu	Ile	Ser 115	Ser	Cys	Thr	Val	Asp 120	Arg	Asp	Thr	Val	Cys 125	Gly	Сув	Arg
Lys	Asn 130	Gln	Tyr	Arg	His	Tyr 135	Trp	Ser	Glu	Asn	Leu 140	Phe	Gln	Cys	Phe
Asn 145	Cys	Ser	Leu	Суѕ	Leu 150	Asn	Gly	Thr	Val	His 155	Leu	Ser	Cys	Gln	Glu 160
Lys	Gln	Asn	Thr	Val 165	Cys	Thr	Cys	His	Ala 170	Gly	Ph∈	Phe	Leu	Arg 175	Glu
Asn	Glu	Cys	Val 180	Ser	Cys	Ser	Asn	Cys 185	Lys	Lys	Ser	Leu	Glu 190	Cys	Thr
Lys	Leu	Cys - 195	Leu	Pro	Gln	Ile	Glu 200	Asn	Val	Lys	Gly	Thr 205	Glu	Asp	Gly

ASUSULUEU

Ser	Gly 210	Asn	Ile	Ser	Leu	Val 215	Pro	His	Leu	Gly	Asp 220	Arg	Glu	Lys	Arg
Asp 225	Ser	Val	Cys	Pro	Gln 230	Gly	Lys	Tyr	Ile	His 235	Pro	Gln	Asn	Asn	Ser 240
Ile	Cys	Cys	Thr	Lys 245	Суя	His	Lys	Gly	Thr 250	Tyr	Leu	Tyr	Asn	Asp 255	Cys
Pro	Gly	Pro	Glу 260	Gln	Asp	Thr	Asp	Cys 265	Arg	Glu	Cys	Glu	Ser 270	Gly	Ser
Phe	Thr	Ala 275	Ser	Glu	Asn	His	Leu 280	Arg	His	Cys	Leu	Ser 285	Cys	Ser	Lys
Cys	Arg 290	Lys	Glu	Met	Gly	Gln 295	Val	Glu	Ile	Ser	Ser 300	Cys	Thr	Val	Asp
Arg 305	Asp	Thr	Val	Сув	Gly 310	Суз	Arg	Lys	Asn	Gln 315	Tyr	Arg	His	Tyr	Trp 320
Ser	Glu	Asn	Leu	Phe	Gln	Суя	Phe	Asn	Cys 330	Ser	Leu	Суз	Leu	Asn 335	Gly
Thr	Val	His	Leu 340	Ser	Cys	Gln	Glu	Lys 345	Gln	Asn	Thr	Val	Cys 350	Thr	Cys
His	Ala	Gly 355	Phe	Phe	Leu	Arg	Glu 360	Asn	Glu	Cys	Val	Ser 365	Суз	Ser	Asn
Суз	Lys 370	Lys	Ser	Leu	Glu	Cys 375	Thr	Lys	Leu	Суз	Leu 380	Pro	Gln	Ile	Glu
Asn 385	Val	Lys	Gly	Thr	Glu 390	Asp	Ser	Gly	Thr	Thr 395	Ala	Glu	Pro	Ьуs	Ser 400
Cys	Yżb	Lys	Thr	His 405	Thr	Cys	Pro	Pro	Cys 410	Pro	Ala	Pro	Glu	Leu 415	Leu
Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu

			420					4.25					430		
			420					425					430		
Met	Ile	Ser 435	Arg	Thr	Pro	Glu	Val 440	Thr	Cys	Val	Val	Val 445	Asp	Val	Ser
His	Glu 450	Asp	Pro	Glu	Val	Lys 455	Phe	Asn	Trp	Tyr	Val 460	Asp	Gly	Val	Glu
Val 465	His	Asn	Ala	Lys	Thr 470	Lys	Pro	Arg	Glu	Glu 475	Gln	Tyr	Asn	Ser	Thr 480
Tyr	Arg	Val	Val	Ser 485	Val	Leu	Thr	Val	Leu 490	His	Gln	Asp	Trp	Leu 495	Asn
Gly	Lys	Glu	Tyr 500	Lys	Cys	Lys	Val	Ser 505	Asn	Lys	Ala	Leu	Pro 510	Ala	Pro
Ile	Glu	Lys 515	Thr	Ile	Ser	Lys	Ala 520	Lys	Gly	Gln	Pro	Arg 525	Glu	Pro	Gln
Val	Tyr 530		Leu	Pro	Pro	Ser 535	Arg	Asp	Glu	Leu	Thr 540	Lys	Asn	Gln	Val
Ser 545	Leu	. Thr	Cys	Leu	Val 550		Gly	Phe	Tyr	Pro 555		Asp	Ile	Ala	Val
Glu	Trp	Glu	Ser	Asn 565		Gln	Pro	Glu	Asn 570		Туг	Lys	Thr	Thr 575	
Pro	Val	. Leu	. Asp 580		Asp	Gly	Ser	Ser 585		Leu	Tyr	Ser	Lys 590		Thr
Val	Asp	595	Ser	Arç	ı Trp	Gln	Gln 600		/ Asn	Val	. Phe	Ser 605		Ser	Va]
Met	His		ı Ala	ı Leı	ı His	: Ası:		г Туг	Thi	Glr	Lys 620		. Leu	Ser	Let

Ser Pro Gly Lys

625

03010202A1 | 5

```
<210>
        7
<211>
      2163
<212>
      DNA
<213>
      Homo sapiens
<220>
<221>
      CDS
<222> (1)..(2160)
<223> TNFR2-TNFR2-IgG
<220>
<221>
        C_region
<222>
        (1462)..(2163)
<223>
      Hinge, CH2, CH3 region
<220>
<221> misc_signal
<222> (511)..(519)
<223> N-linked glycosylation site
<220>
<221> misc_signal
<222>
       (577)..(585)
<223>
        N-linked glycosylation site
<220>
<221> misc_signal
<222> (769)..(777)
<223>
        N-linked glycosylation site
<220>
<221>
        misc_signal
<222> (1201)..(1209)
```

```
<223>
      N-linked glycosylation site
<220>
<221> misc_signal
<222> (1267)..(1275)
<223> N-linked glycosylation site
<220>
<221>
      primer_bind
<222>
        (1)..(15)
<223>
        PCR primer SEQ ID: 29 binding site
<220>
<221> primer_bind
<222>
        (761)..(795)
<223>
       PCR primer SEQ ID: 35(antisense) binding site
<220>
<221> primer_bind
<222>
         (741)..(768)
<223>
         PCR primer SEQ ID : 34 binding site
 <220>
 <221> primer_bind
 <222>
         (1444)..(1480)
 <223>
         PCR primer SEQ ID : 30(antisense) binding site
 <220>
 <221> primer_bind
 <222> (1444)..(1480)
 <223>
         PCR primer SEQ ID : 31 binding site
 <220>
```

<221>	prime	r_bi	nd												
<222>	(2141	L) ((216	3)											
<223>	PCR p	orime	er S	EQ I	D :	28 (a	ntis	ense	:) bi	ndin	ıg si	te			
<220>															
<221>	sig_	pept	id∈												
<222>	(1).	. (66)												
<223>	sign	al p	epti	.de											
<400>	7														
atg gcg	ccc g	jtc g	jec (gtc 1	tgg (gcc (geg	ctg	gcc	gtc	gga	ctg	gag	ctc	48
Met Ala															
1			5					10					15		
tgg gct	aca a	aca (cac	acc	tta	ccc	qcc	cag	gtg	gca	ttt	aca	ccc	tac	96
Trp Ala															
110 144		20					25					30			
		.50													
gec ceg	nan	aac	uaa	апс	aca	tac	caa	ctc	aga	gaa	tac	tat	gac	cag	144
Ala Pro															
Ala Ele	35	110	ary	L.51	****	40	5				45	-			
	55														
aca gci	- 030	at a	tac	tac	adc	222	tac	tca	cca	aac	caa	cat	qca	aaa	192
Thr Al															
1111 A.1.		riec	Cys	Cys	55	шую	Ojo			60				-	,
J					0.0										
gtc tt	a +a+	300	220	300	tca	aac	acc	ato	tat	gac	tec	: tat	gao	qac	240
Val Ph															
	e cla	1111	nys	70		1 11.5	1112		75					80	
65				, 0					. ~						
agc ac	_ 4				. +		+ + ~ ~	r att		י מפני	a tao	a tito	n ago	e tat	288
agc ac Ser Th															
Ser Tr	ır Tyr	Thr			ıırı) ASI	TTF	.va او		, ,,,,,,	ı Oy.	, 1,,0,	9!		
			85)				2)1	U				٦.	-	
		L		_ 4 1				a ac	a ac.	+ ~=	ם תרי	c ta	ר אר	t caa	336
ggc to															•
Gly S	er Arg			r Sei	r Asj	اللفا د			u In	r GT	II WT			r 1219	ı
		100)				10	5				1.1	J		

															.		~~	~ .	.+.~		384
							tgc														.504
(31u	Gln			٩rg	TTE	Суѕ	Thr		Arg	PIC) G.	ту .		191 125	Cys	21.4.	.ш.	bea		
			1.3	15					120						150						
						~~~	tgc	0.7.C	ata	tac	acı	· ·	בע ו	cta	cac	aad	tc	rc (	cac		432
	_						Cys														
	ser			T.11	GIU	дту	Cys	135	neu	Cys	1			140	9	-, , -					
		130						133													
	cca	ממר	. +	ta	uuc	ata	gcc	aga	cca	aas	ac	t a	raa	aca	tca	gac	gt	tg	gtg		480
	_						Ala														
	145	O.L.)	, .	110	or,	, 44	150						155			_			160		
	7.30																				
	tac	aad	a c	:00	tat	qcc	ccg	qqq	acc	tto	e ta	CE	aac	acg	act	tca	a t	cc	acg		528
							Pro														
	-1-					165		-			17							75			
	gat	at	t. t	.gc	agg	GGC	cac	cac	, ato	tg:	t aa	ac (	gtg	gtg	gcc	at	c c	ct	ggg		576
	-						His														
	•			_	180					18						19					
	aat	gc:	a	agc	ato	, gat	ge:	a gto	e tg	c ac	g to	cc	acg	tcc	ccc	ac	c	gg	agt		624
																			Ser		
				195					20						20!						
	ate	g go	c	cca	gg	g gc	a gt	a ca	c tt	a co	c c	ag	cca	. gt	g to	c ac	a (	cga	tcc		672
	Me	t A	La	Pro	Gl	y Al	a Va	l Hi	s Le	u Pi	o G	ln	Pro	Va.	l Se	r Th	ır J	Arg	Ser		
		2.	10					21	5					22	0						
																			tcc		720
	Gl	n H	is	Th	r Gl	n Pr	o Th	r Pr	:0 G1	u P	ro S	er	Thi	Al.	a Pr	o S	er	Thr	Ser		
	22	:5					25	0					235	5					240		
			_																a tec		768
	Ph	ne L	eu	Le	u Pr	ю Ме	et Gi	ГУ Р	ro Se	er P	ro I	91.0	Al	a Gl	u G.1	у S	er	G1	y Ser		
						24	15				2	250						25	5		
																			g cto		816
	A	sn A	lla	Th	r Th	ar P	ro T	yr A	la P	ro G	lu	Pro	Gl	y Se	er Tl			Ar	g Let	1	
					2	60				2	65					2	270				

			aca Thr							864
			gtc Val 295							912
			agc Ser							960
			ggc Gly							1008
			gaa Glu							1056
			agc Ser							1104
			ccg Pro 375							1152
									tcc Ser 400	1200
						Pro			aac Asn	1248
		Pro			Met			Thr	tcc Ser	1296

acg Thr					-	-	-			-	-				-	1344
				_				_	-				gaa Glu		_	1392
			-				_			-			agc Ser			1440
-	-		_			_	-					-	gac Asp			1488
													gga Gly 510			1536
													atc Ile			1584
		Glu	-			-	Val		_		-	His	gaa Glu	_		1632
	Val					Tyr					Glu				gcc Ala 560	1680
					Glu					Ser					gtc Val	1728
				· Val					Trp					Glu	tac Tyr	1776

aag	tgc	aag	gtc	tcc	aac	aaa	gee	ctc	cca	gcc	ccc	atc	gag	aaa	acc	1824	
Lys	Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr		
		595					600					605					
atc	tcc	aaa	gcc	aaa	ggg	cag	ccc	cga	gaa	cca	cag	gtg	tac	acc	ctg	1872	
Ile	Ser	Lys	Ala	Lys	Gly	Gln	Fro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu		
	610					615					620						
ccc	cca	tac	cgg	gat	gag	ctg	acc	aag	aac	cag	gtc	age	ctg	acc	tgc	1920	
Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys		
625					630					635					640		
ctg	gtc	aaa	ggc	ttc	tat	acc	agc	gac	atc	gcc	gtg	gag	tgg	gag	agc	1968	
Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Al.a	Val	Glu	Trp	Glu	Ser		
				645					650					655			
aat	ggg	cag	ccg	gag	aac	aac	tac	aag	acc	acg	cct	ccc	gtg	ctg	gac	2016	
Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp		
			660					665					670				
tcc	gac	ggc	tac	tcc	ttc	ctc	tac	ago	aag	ctc	acc	gtg	gac	aag	agc	2064	
Ser	Asp	Gl3	/ Ser	Ser	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	. Val	. Asp	Lys	Ser		
		675	;				680	·				685	,				
agg	tg	g cag	g cac	i dad	, aac	gtc	ttc	tca	ı tgc	tec	gtç	, atç	g cat	gaç	gct	2112	
Arg	Trp	Glr	ı Gl.r	ı Gly	/ Asr	. Val	. Fh∈	: Sei	с Сув	Ser	Val	Met	: His	Glu	ı Ala		
	690	)				695	<u> </u>				700	)					
ctg	cad	c aad	c cad	e tad	e acç	g caç	, aaç	g ago	cto	too	c ct	g tet	ccc	g ggt	aaa	2160	
Let	Hi	s Ası	n His	з Ту	r Thi	Glr	ı Lys	Se	r Lei	ı Sei	r Let	ı Sei	r Pro	Gly	y Lys		
705	,				710	)				71!	5				720		
tga	ì															2163	

<210> 8

<211> 720

<212> PRT

<213> Homo sapiens

<400	)> 8	3													
Met 1	Ala	Pro	Val	Ala 5	Val	Trp	Ala	Ala	Leu 10	Ala	Val	Glγ	Leu	Glu 15	Leu
Trp	Ala	Ala	Ala 20	His	Ala	Leu	Pro	Ala 25	Gln	Val	Ala	Phe	Thr 30	Pro	Tyr
Ala	Pro	Glu 35	Pro	Gly	Ser	Thr	Cys 40	Arg	Leu	Arg	Glu	Tyr 45	Tyr	Asp	Gln
Thr	Ala 50	Gln	Met	Cys	Суз	Ser 55	Lys	Cys	Ser	Pro	Gly 60	Gln	His	Ala	Lys
Val 65	Phe	Cys	Thr	Lys	Thr 70	Ser	Asp	Thr	Val	Cys 75	Asp	Ser	Суѕ	Glu	Asp 80
Ser	Thr	Tyr	Thr	Gln 85	Leu	Trp	Asn	Trp	Val 90	Pro	Glu	Cys	Leu	Ser 95	Cys
Gly	Ser	Arg	Cys 100	Ser	Ser	Asp	Gln	Val 105	Glu	Thr	Gln	Ala	Cys 110	Thr	Aṛg
Glu	Gln	Asn 115	Arg	Ile	Cys	Thr	Cys 120	Arg	Pro	Gly	Trp	Tyr 125	Cys	Ala	Leu
Ser	Lys 130		Glu	Gly	Cys	Arg 135	Leu	Cys	Ala	Pro	Leu 140	Arg	Lys	Суѕ	Arg
Pro	Gly	Phe	Gly	Val	Ala 150	Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160
Cys	Lys	Fro	Суз	Ala 165	Pro	Gly	Thr	Phe	Ser 170		Thr	Thr	Ser	Ser 175	Thr
Asp	Ile	Cys	Arg 180		His	Gln	Ile	Cys 185		. Val	Val	Ala	Ile 190	Pro	Gly
Asn	Ala	Ser 195		Asp	Ala	Val	Cys 200		Ser	Thr	Ser	Pro 205		Arg	Ser

Met	Ala 210	Pro	Gly	Ala		His 215	Leu	Pro	Gln		Val 220	Ser	Thr	Arg	Ser
Gln 225	His	Thr	Gln	Pro	Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe	Leu	Leu	Pro	Met 245	Gly	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Gly 255	Ser
Asn	Ala	Thr	Thr 260	Pro	Tyr	Ala	Pro	Glu 265	Pro	Gly	Ser	Thr	Cys 270	Arg	Leu
Arg	Glu	Tyr 275	Tyr	Asp	Gln	Thr	Ala 280	Gln	Met	Cys	Cys	Ser 285	Lys	Cys	Ser
Pro	Gly 290	Gln	His	Ala	Lys	Val 295	Phe	Cys ·	Thr	Lys	Thr 300	Ser	Asp	Thr	Val
Cys 305	Asp	Ser	Cys	Glu	Asp 310	Ser	Thr	Tyr	Thr	Gln 315	Leu	Trp	Asn	Trp	Val 320
Pro	Glu	Cys	Leu	325	_	Gly	Ser	Arg	Cys 330		Ser	Asp	Gln	Val 335	Glu
Thr	Gln	. Ala	. Суз 340		Arg	Glu	Gln	Asn 345	_	Ile	Cys	Thr	Cys 350	_	Pro
Gly	Trp	355	-	s Ala	Leu	Ser	Lys 360		Glu	Gly	. Cās	Arg 365		Cys	Ala
Pro	370		J Ly:	e Cys	arg	9ro		Phe	Gly	Val	. Ala 380		Pro	Gly	Thr
Gl:		: Se	r Asj	p Val	Val 390	-	: Lys	Pro	Cys	395		Gl3	Thr	Phe	Ser 400
Ası	n Thi	r Th	r Se	r Sei 405		Asp	o Ile	Cys	410		o His	Glr	ı Ile	2 Cys	: Asn
Va.	l Vai	l Al	a Il	e Pro	o Gly	y Asr	n Ala	Se	. Met	. Ası	o Ala	a Val	l Cys	s Thr	: Ser

			420					425					430		
Thr	Ser	Pro 435	Thr	Arg	Ser	Met	Ala 440	Pro	Gly	Ala	Val	His 445	Leu	Pro	Gln
Pro	Val 450	Ser	Thr	Arg	Ser	Gln 455	His	Thr	Gln	Pro	Thr 460	Pro	Glu	Pro	Ser
Thr 465	Ala	Pro	Ser	Thr	Ser 470	Phe	Leu	Leu	Pro	Met 475	Gly	Pro	Ser	Pro	Pro 480
Ala	Gl.u	Gly	Ser	Thr 485	Gly	Asp	Ala	Glu	Pro 490	Lys	Ser	Cys	Asp	Lys 495	Thr
His	Thr	Суз	Pro 500	Pro	Cys	Pro	Ala	Pro 505	Glu	Leu	Leu	Glγ	Gly 510	Pro	Ser
Val	Phe	Leu 515		Pro	Pro	Lys	Pro 520	Lys	Asp	Thr	Leu	Met 525	Ile	Ser	Arg
Thr	Pro 530		Val	Thr	Cys	Val 535		Val	Asp	Val	Ser 540	His	Glu	Asp	Pro
Glu 545		Lys	: Phe	Asn	Trp	_	· Val	Asp	Gly	Val.		Val	His	Asn	Ala 560
Lys	Thr	Lys	s Pro	Arg 565		Glu	Gln	Tyr	Asn 570		Thr	Tyr	Arg	Val 575	
Ser	. Val	. Leı	1 Thr 580		Let	ı His	s Gln	Asp 585		> Leu	ı Asn	. Gly	7 Lys 590		Tyr
Lys	s Суз	5 Lys		. Ser	: Ası	ı Lys	600		ı Pro	Ala	ı Pro	605		. Lys	Thr
Ile	e Se:	-	s Ala	a Lys	Gl ₃	y Gl:		o Arg	g Gl.ı	ı Pro	620		l Tyr	Thr	Leu
Pro 62!		o Se	r Arq	g Asi	63:		ı Thi	r Lys	s Ası	n Gl. 639		L Sei	r Lev	ı Thr	: Cys

```
Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
                                  650
               645
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
                              665
           660
Ser Asp Gly Ser Ser Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser
                           680
        675
Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
                                          700
                       695
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
                   710
                                      715
705
 <210>
 <211> 1827
 <212> DNA
 <213>
         Homo sapiens
 <220>
 <221>
        CDS
 <222>
       (1)..(1824)
 <223>
       mgTNFR1-TNFR1-IgG
 <220>
 <221> C region
         (1126)..(1827)
 <222>
 <223> Hinge, CH2, CH3 region
  <220>
  <221> misc_signal
  <222> (160)..(168)
  <223> N-linked glycosylation site
```

```
<220>
<221>
      misc_signal
      (433)..(441)
<222>
<223>
       N-linked glycosylation site
<220>
<221>
      misc_signal
<222>
       (451)..(459)
<223>
       N-linked glycosylation site
<220>
<221> misc_signal
<222>
        (565)..(573)
<223>
         N-linked glycosylation site
<220>
<221> misc_signal
<222>
       (574)..(582)
<223>
         N-linked glycosylation site
 <220>
 <221> misc_signal
 <222>
         (592)..(600)
 <223>
         N-linked glycosylation site
 <220>
 <221>
         misc_signal
 <222>
         (610)..(618)
 <223>
         N-linked glycosylation site
 <220>
 <221>
       misc_signal
 <222>
        (925)..(933)
 <223>
         N-linked glycosylation site
```

```
<220>
      misc_signal
<221>
<222> (943)..(951)
        N-linked glycosylation site
<223>
<220>
<221>
         primer_bind
<222>
         (1)..(15)
         PCR primer SEQ ID : 25 binding site
<223>
<220>
<221>
         primer_bind
<222>
         (545)..(606)
<223>
         PCR primer SEQ ID : 37(antisense) binding site
<220>
 <221>
         primer_bind
 <222>
         (559)..(621)
 <223>
         PCR primer SEQ ID : 36 binding site
 <220>
 <221>
         primer_bind
 <222>
         (1108)..(1144)
 <223>
          PCR primer SEQ ID : 26(antisense) binding site
 <220>
 <221>
         primer bind
 <222>
         (1108)..(1144)
 <223>
          PCR primer SEQ ID : 27 binding site
  <220>
  <221>
          primer_bind
```

<222> <223>			(182 mer S		(D :	28 (a	ntis	ense	≥) b:	indi	ng si	ite			
<220> <221> <222> <223>	(1).	_pept (60		ide											
<400> atg ggc Met Gly															48
gag ctg Glu Leu															96
cac cta His Leu												Gln			144
tat atc Tyr Ile 50	His										Lys				192
gga acc Gly Thr 65					Asp					Gl3					240
tgc agg				ı Ser					c Ala					Leu	288
aga cad			ı Sei					s Ar					y Gli		336
gag at	e tet	t to	t tg	c ac	a gty	g gad	c cg	g ga	c ac	c gt	g tg	t gg	c tg	c agg	384

Glu	Ile	Ser 115	Ser	Суѕ	Thr	Val	Asp 120	Arg	Asp	Thr	Val	Cys 125	Gly	Cys	Arg		
aag	aac	cag	tac	cgg	cat	tat	tgg	agt	gaa	aac	ctt	ttc	cag	tgc	ttc		432
Lys	Asn	Gln	Tyr	Arg	His	Tyr	Trp	Ser	Glu	Asn	Leu	Phe	Gln	Суз	Phe		
	130					135					140						
aat	tgc	agc	ctc	tgc	ctc	aat	ggg	acc	gtg	cac	ctc	tcc	tgc	cag	gag		480
Asn	Суз	Ser	Leu	Cys	Leu	Asn	Gly	Thr	Val	His	Leu	Ser	Cys	Gln	G.lu		
145					150					155					160		
aaa	cag	aac	acc	gtg	tgc	acc	tgc	cat	gca	ggt	ttc	ttt	cta	aga	gaa		528
Lys	Gln	Asn	Thr	Val	Cys	Thr	Сув	His	Ala	Gly	Phe	Phe	Leu	Arg	Glu		
				165					170					175			
aac	gag	tgt	gte	tec	tgt	agt	aac	tgt	aag	aaa	agc	aac	gag	acc	aac		576
Asn	Glu	Cys	Val	Ser	Cys	Ser	Asn	Cys	Lys	Lys	Ser	Asn	Glu	Thr	Asn		
			180	)				185					190				
aag	acc	tgc:	cta	cac	aac	ggg	tac	agg	gag	aag	aac	gat	agt	gto	ı tgt		624
Lys	Thr	Суя	Let	ı His	Asn	Gl3	Ser	Arg	Glu	Lys	Asn	Asp	Ser	Va]	. Cys		
		195	•				200	)				205	5				
ccc	caa	a gga	aaa	a tat	ato	cad	cat	caa	aat	aat	teg	, att	tgc	: tgt	acc		672
Pro	Glr	ı Gly	/ Ly:	з Ту	: Ile	Hi.s	s Pro	Glr	Asr	n Asr	Sei	: Ile	e Cys	с Суз	5 Thr		
	210	)				215	5				220	)					
aaç	, tg	c cad	c aa	a gg:	a acc	e tad	ttç	g tac	c aat	gad	e tgt	cca	a ggo	000	a aaa		720
Lys	Cys	s His	s Ly	s Gl	y Thi	г Ту	r Lei	а Туз	: Ası	n Asy	э Суя	s Pro	o Gly	y Pro	o Gly		
225	5				230	0				235	5				240		
cag	g ga	t ac	g ga	c tg	c ago	g ga	g tg	t gag	g ago	c ggo	e te	c tt	c ac	c gc	t tca		768
Glr	n Asj	p Th	r As	р Су	s Ar	g Gl	и Су	s Gl	ı Se	r Gl	y Se.	r Ph	e Th:	r Al	a Ser		
				24	5				25	0				25	5		
gaa	a aa	с са	c ct	c ag	a ca	c tg	c at	c ag	c tg	c to	c aa	a tg	c cg	a aa	d das		816
Gli	ı As	n Hi	s Le	u Ar	g Hi	s Cy	s Le	u Se	r Cy	s Se	r Ly	s Cy	s Ar	g Ly	s Glu	L	
			26	0				26	5				27	0			
at	g gg	t ca	g gt	g ga	ıg at	c to	t tc	t tg	c ac	a gt	g ga	.c cg	g ga	c ac	c gto	I	864

Met	Gly		Val	Glu	Ile			Cys	Thr	Val	Asp	-	Asp	Thr	Val		
		275					280					285					
tgt	ggc	tgc	agg	aag	aac	cag	tac	cgg	cat	tat	tgg	agt	gaa	aac	ctt		912
Суѕ	Glу	Cys	Arg	Lys	Asn	Gln	Tyr	Arg	His	Tyr	Trp	Ser	Glu	Asn	Leu		
	290					295					300						
ttc	cag	tạc	ttc	aat	tgc	agc	ctc	tgc	ctc	aat	ggg	acc	gtg	cac	ctc		960
Phe	Gln	Cys	Phe	Asn	Cys	Ser	Leu	Cys	Leu	Asn	Gly	Thr	Val	His	Leu		
305					310					315					320		
tcc	tgc	cag	gag	aaa	cag	aac	acc	gtg	tgc	acc	tgc	cat	gca	ggt	ttc		1008
Ser	Cys	Gln	Glu	Lys	Gln	Asn	Thr	Val	Суѕ	Thr	Cys	His	Ala	Gly	Phe		
				325					330					335			
ttt	cta	aga	gaa	aac	gag	tgt	gtc	tcc	tgt	agt	aac	tgt	aag	aaa	agc		1056
Phe	Leu	. Arg	Glu	Asn	Glu	Cys	Val	Ser	Cys	Ser	Asn	Cys	Lys	Lys	Ser		
			340	)				345					350				
ctg	gag	tgc	acç	g aag	ttg	tgc	cta	ccc	cag	att	gaç	g aat	gtt	aag	l ddc		1104
Leu	Glu	суя	Thi	. Lys	Leu	Cys	Leu	Pro	Gln	Ile	Glu	ı Ası	ı Val	Lys	Gly		
		355	5				360					365	5				
act	gaç	g gad	c tca	a ggc	acc	aca	gca	gag	ccc	aaa	ı tct	tg:	t gac	aaa	a act		1152
Thi	Glı	ı Ası	Se)	r Gly	Thr	Thr	Ala	Glu	Pro	Lys	Se:	c Cy:	s Asp	Lys	5 Thr		
	37(	)				375					380	)					
cad	e aca	a tg	c cc:	a ccç	, tg	cca	gca	cct	ga:	a cto	c ct	g gg	g gga	a da	g tca		1200
His	s Th	г Су	s Pr	o Pro	суз	s Pro	Ala	Pro	Gl.	ı Leı	ı Le	u Gl	y Gly	/ Pro	o Ser		
38	5				390	)				395	5				400		
gt	c tt	c ct	c tt	c cc	e de	a aas	ı dad	c aaq	g gad	aco	c ct	c at	g ato	c to	c cgg		1248
Va	l Ph	e Le	u Ph	e Pro	o Pro	o Lys	s Pro	b Ly:	s Ası	p Th	r Le	u Me	t Il	e Se	r Arg		
				40	5				41	0				41	5		
ac	c cc	t. ga	g gt.	c ac	a tg	c gt	g gto	g gt	g ga	c gt	g ag	с са	.c ga	a ga	.c cct	:	1296
Th	r Pr	o G1	u Va	l Th	r Cy	s Va.	l Vai	l Va	l As	p Va	l Se	r Hi	s Gl	u As	p Pro	•	
			42	0:0				42	5				43	0			
ga	g gt	c aa	ıg tt	c aa	c tg	g ta	c gt	g ga	c gg	c gt	g ga	ıg gt	g ca	t aa	ıt ged	:	1344

Glu	Val	Lys 435	Phe	Asn	Trp	Tyr	Val 440	Asp	Gly	Val	Glu	Val 445	His	Asn	Ala	
aag	aca	aag	ceg	cgg	gag	gag	cag	tac	aac	agc	acg	tac	cgg	gtg	gtc	1392
Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	
	450					455					460					
agc	gtc	ctc	acc	gtc	ctg	cac	cag	gac	tgg	ctg	aat	ggc	aag	gag	tac	1440
Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Glу	Lys	Glu	Tyr	
465					470					475					480	
aag	tgc	aag	gtc	tcc	aac	aaa	gcc	ctc	cca	gcc	ccc	atc	gag	aaa	acc	1488
Lys	Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	
				485					490					495		
atc	tcc	aaa	gcc	aaa	ggg	cag	ccc	cđa	gaa	cca	cag	gtg	tac	acc	ctg	1536
Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	
			500					505					510			
ccc	cca	tcc	cgg	gat	gag	ctg	acc	aag	aac	cag	gtc	ago	ctg	acc	tgc	1584
Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	
		515					520					525				
ctg	gtc	aaa	ggc	ttc	tat	ccc	agc	gac	atc	gcc	gtg	gaç	tgg	gag	agc	1632
Leu		-	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	. Glu	Trp	Glu	Ser	
	530					535					540					
		_						_		_				_	gac	1680
	_	r Gln	Pro	Glu			Tyr	Lys	Thr			Pro	Val	Leu	Asp	
545					550					555					560	
tcc	gac	. ggc	tcc tcc	: ttc	: ttc	ctc	tac	ago	aaç	, ctc	aco	gto	g gac	aac	g agc	1728
Ser	Ası	o Gly	/ Ser	Phe	Phe	Let	Tyr	Ser	Lys	: Leu	Thi	· Val	l Asp	Lys	Ser	
				565	<b>S</b>				570	)				575	5	
ago	j tg	gcaq	J caç	g ggg	g aad	gto	ttc	tca	a tgo	tec	gt	y ato	g cat	gaç	g gct	1776
Arç	Tr	o Gli			/ Ası	ı Val	Phe	Ser	с Суз	s Ser	· Va.	L Me	His	Glı	r Ala	
			580	)				585	5				590	)		
cto	g ca	c aad	c cac	c tac	ac	g caq	g aag	g ago	c cto	tc.	ct	g tc	t ccg	ggi	t aaa	1824

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 595 600 600 600 605

tga 1827

<210> 10

<211> 608

<212> PRT

<213> Homo sapiens

<400> 10

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys
35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu 85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val 100 105 110

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Asn Glu Thr Asn Lys Thr Cys Leu His Asn Gly Ser Arg Glu Lys Asn Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly 

Thr	Glu 370	Asp	Ser	Gly		Thr 375	Ala	Glu	Pro		Ser 380	Cys :	Asp	Lys '	l'hr
His 385	Thr	Cys	Pro	Pro	Cys 390	Pro	Ala	Pro	Glu	Leu 395	Leu	Gly	Gly		Ser 400
Val	Phe	Leu	Phe	Pro 405	Pro	Lys	Pro	Lys	Asp 410	Thr	Leu	Met	Ile	Ser 415	Arg
Thr	Pro	Glu	Val 420	Thr	Cys	Val.	Val.	Val 425	qzA	Val	Ser	His	Glu 430	Asp	Pro
Glu	Val	Lys 435		Asn	Trp	Туг	Val 440	Asp	Gly	Val	Glu	Val 445	His	Asn	Ala
Lys	Th:		s Pro	Arg	Glu	Glu 455		Tyr	Asn	Ser	Thr 460		Arg	Val	Val
Se:		L Le	u Thi	r Val	. Leu 470		: Gln	Asp	Trp	Leu 475		Gly	Lys	Glu	Tyr 480
Ьy	в Су	s Ly	s Va	1 Sei 48!		Lys	s Ala	. Leu	490		a Pro	) Ile	: Glu	Lys 495	Thr
11	e Se	г Ьу	s Al 50		s Gly	/ Gli	n Pro	505		ı Pro	o Gl.r	ı Val	Туг 510		Leu
Pr	o Pr		er Ar 15	g As	p Glı	ı Le	u Th:		s Ası	n Gli	n Vai	1 Sei 52!		ı Thr	Cys
Le	eu Va 53		ys Gl	Ly Ph	е Ту	r Pr 53		r Asj	p Il	e Al	a Va 54		u Tr	p Glı	ı Ser
	sn Gl	Ly G	ln Pi	ro Gl	.u As 55		:n Ту	r Ly	s Th	r Th		o Pr	o Va	l Le	u Asp 560
S	er A:	sp G	ly S		ne Ph	e Le	eu Ty	r Se	r Ly 57		eu Th	ır Va	l As	р Ly 57	s Ser 5

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 580 585 585

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
595 600 605

```
<210>
        11
<211>
        1980
<212>
        DNA
<213>
        Homo sapiens
<220>
<221>
         CDS
<222>
        (1)..(1977)
<223>
        mgTNFR2-TNFR2-IgG
<220>
<221>
        C_region
<222>
         (1279)..(1980)
<223>
        Hinge, CH2, CH3 region
<220>
<221>
      misc_signal
<222>
        (511)..(519)
<223>
        N-linked glycosylation site
<220>
<221>
      misc_signal
<222>
        (577)..(585)
<223>
        N-linked glycosylation site
<220>
<221>
        misc_signal
```

```
<222>
       (595)..(603)
<223>
        N-linked glycosylation site
<220>
<221>
      misc_signal
<222> (616)..(624)
<223>
        N-linked glycosylation site
<220>
<221>
       misc_signal
<222> (1018)..(1026)
<223>
       N-linked glycosylation site
<220>
<221>
       misc_signal
<222> (1084)..(1092)
<223>
         N-linked glycosylation site
<220>
<221>
         primer_bind
<222>
         (1)..(15)
<223>
         PCR primer SEQ ID : 29 binding site
<220>
<221>
         primer_bind
<222>
         (586)..(627)
<223>
         PCR primer SEQ ID : 39(antisense) binding site
<220>
<221>
         primer_bind
<222>
         (586)..(630)
 <223>
         PCR primer SEQ ID: 38 binding site
```

<220>	
<221>	primer_bind
<222>	(1261)(1296)
<223>	PCR primer SEQ ID : 30(antisense) binding site
<220>	
<221>	primer_bind
<222>	(1261)(1296)
<223>	PCR primer SEQ ID : 31 binding site
<220>	•
<221>	primer bind
<222>	(1957)(1980)
<223>	PCR primer SEQ ID : 28(antisense) binding site
	1
<220>	
<221>	sig peptide
<222>	(1)(66)
<223>	signal peptide
<400>	11
ata aca	ccc gtc gcc gtc tgg ycc gcg ctg ycc gtc gga ctg gag ctc 48
	Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu
1	5 10 15
_	2 20 10
taa act	geg geg cae gee tig eee gee eag gig gea tit aca eee tae 96
	geg geg cae gee ttg eee gee cag gtg gea ttt aca eee tae 96 Ala Ala His Ala Leu Fro Ala Gln Val Ala Phe Thr Fro Tyr
	-
	20 25 30
מככ ככמ	G2G CCC GGG 2GC 2C2 +GC 2GG 2+G 2GG 2+G 2GG 2+G 2GG 2GG 2GG 2GG
	gag ccc ggg age aca tgc egg ctc aga gaa tac tat gac eag 144
nia iio	Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln
	35 40 45
505	
	cag atg tgc tgc agc aaa tgc tcg ccg ggc caa cat gca aaa 192
	Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys
50	55 60

gtc ttc tgt acc aag acc tcg gac acc gtg tgt gac tcc tgt gag gac Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80	240
age aca tae ace eag ete tgg aac tgg gtt eee gag tge ttg age tgt  Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys  85 90 95	288
ggc tcc cgc tgt agc tct gac cag gtg gaa act caa gcc tgc act cgg Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 110	336
gaa cag aac cgc atc tgc acc tgc agg ccc ggc tgg tac tgc gcg ctg Glu Gln Asn Arg Ile Cys Thr Cys Arg Fro Gly Trp Tyr Cys Ala Leu 115 120 125	384
age aag cag gag ggg tge egg etg tge geg eeg etg ege aag tge ege Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135 140	432
ceg ggc ttc ggc gtg gcc aga cca gga act gaa aca tca gac gtg gtg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160	480
tgc aag cec tgt gee ceg ggg acg ttc tcc aac acg act tca tcc acg  Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr  165 170 175	528
gat att tgc agg ccc cac cag atc tgt aac gtg gtg gcc atc cct ggg Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185 190	576
aat gca age atg gat gca aac tgc acg tcc ceg gag ccc aac age aca Asn Ala Ser Met Asp Ala Asn Cys Thr Ser Pro Glu Pro Asn Ser Thr  195 200 205	624
. tgc cgg ctc aga gaa tac tat gac cag aca gct cag atg tgc tgc agc Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser 210 215 220	672

							cat His												720
ьуs 225		5 2	er.	FTO	GTÀ	230	UTS	Ala	пур	vaı	235	Cys	1111	٠.	, .		240		
-							tgt Cys								ln :				768
	-	-	-				ttg Leu							s S					816
		_					tgc Cys							g I					864
-	rs A						tgc Cys 295	Ala					n Gl						912
Le	-	-	-				g Lys					y Ph					aga Arg 320		960
	-					r Se					s Ly						ely Gly		1008
	_				n Th					r As						Hi:	c cag s Gln		1056
		-		n Va					o Gl				er M				a gto a Val		1104
	-		r Se					ır Ar				la P					a cad		1152

tta	ccc	cag	cca	gtg	tcc	aca	cga	tcc	caa	cac	acg	cag	cca	act	cca		1200
Leu	Pro	Gln	Pro	Val	Ser	Thr	Arg	Ser	Gln	His	Thr	Gl.n	Pro	Thr	Pro		
385					390					395					400		
gaa	ccc	agc	act	gct	cca	agc	acc	tcc	ttc	ctg	ctc	cca	atg	ggc	ccc		1248
				Ala													
				405					410					415			
agc	ccc	cca	gct	gaa	aga	age	act	ggc	gac	gca	gag	CCC	aaa	tct	tgt		1296
				Glu													
			420					425	_				430				
dac	222	act	cac	aca	tac	cca	cca	tac	cca	aca	cct	gaa	ctc	ctq	aaa		1344
				Thr													
пор	шус	435		****	0,10		440	~.]				445					
		400					110										
aas	aaa	+	ato	. ++0	ctc	ttc	ccc	cca	222	ccc	. aac	r dad	acc	ctc	atg		1392
															Met		
GTA			. val	. rne	Leu	455		1. 1. C	, na	LIC	460		, 1111				
	450	,II				455					400	,					
	4							+	. ~+~		. atr	. «	ata	. 200			1440
															cac His		7440
		ALC	. 1111	LIC			. 1111	Суг	o vai	47!		L ASE	, ,,,,	. 501	480		
465					470	,				47.	,				400		
									- +	t-	~ ~~		~ ~+~		a ata		1488
_	-														g gtg		1400
GT	l As	o Pr	o 61.			s Pne	e Asi	1 11			I AS	р ст.	y val		u Val		
				48!	)				490	J				49	5		
															_ +		1536
															g tac		1330
His	s As	n Al	-		r Ly:	s Pr	o Ar			u GI	n Ty	r As			r Tyr		
			50	0				50	5				51	0			
		,															
_															t ggc		1584
Ar	g Va	l Va	ıl S∈	r Va	l Le	u Th	r Va	l Le	u Hi	s Gl	n As	p Tr	b re	u As	n Gly	•	
		51	.5				52	0				52	5				
		-													c atc		1632
Ly	s Gl	u Ty	r P	ie C?	s Ly	rs Va	l Se	r As	sn Ly	s A.	la Le	eu Pr	o Al	a Pr	o Ile	•	
	53	30				53	15				54	10					

gag aaa ac													1680
Glu Lys Th	r Ile			ьуs G.	ту сл			AIG	GIU	PLO		560	
545		5	50			5	55					300	
tac acc ct	tg ccc	cca t	.cc cgg	gat g	ag ct	tg a	cc	aag	aac	cag	gtc	agc	1728
Tyr Thr Le	eu Pro	Pro S	Ser Arg	Asp G	lu Le	eu T	hr	Lys	Asn	Gln	Val	Ser	
		565			5	70					575		
ctg acc t	gc ctg	gtc a	aaa ggc	ttc t	at c	cc a	agc	gac	atc	gcc	gtg	gag	1776
Leu Thr C	ys Leu	Val I	Lys Gly	Phe T	yr P	ro s	Ser	Asp	Ile	Ala	Val	Glu	
	580			5	85					590			
tgg gag a													1824
Trp Glu S	Ser Asn	Gly (	Gln Prc	Glu A	Asn ⊅	\sn	Туг	Lys	Thr	Thr	Pro	Pro	
5	595			600					605				
gtg ctg g													1872
Val Leu /	Asp Ser	Asp	Gly Sea	Phe	Phe I	Leu	Tyr	Ser	Lys	Leu	Thr	Val	
610			61.	5				620					
													1.000
gac aag													1920
Asp Lys	Ser Aro	g Trp		n Gly	Asn '	Val			. Суз	Ser	· Val		
625			630				635	,				640	
				•								. + a +	1968
cat gag	_												1200
His Glu	Ala Le		ASN HI	s iyr.	TIII	650	ւրչ	2 261	. пет	r per	65!		
		645				650					00.	~	
ana mat	222	+	ga	1980									
ccg ggt Pro Gly		υ,	ga										
rio dry	myo												
<210> 1	1.2												
	659												
	PRT					,							
	Homo sa	piens	5										
<400>	12												
Met Ala	Pro Va	al Ala	a Val T	rp Ala	Ala	Lev	ı Al	a Va	ıl Gl	y L∈	eu Gl	lu Leu	

1				5					10					15		
ľrp	Ala	Ala	Ala 20	His	Ala	Leu	Pro	Ala 25	Gln	Val	Ala	Phe	Thr 30	Pro	Туг	:
Ala	Pro	Glu 35	Pro	Gly	Ser	Thr	Cys 40	Arg	Leu	Arg	Glu	Tyr 45	Tyr	Asp	Glı	n.
Thr	Ala 50	Gln	Met	Cys	Cys	Ser 55	Lys	Суз	Ser	Pro	Gly 60	Gln	His	Ala	Ly	s
Val 65	Phe	Суз	5 Thr	Lys	Thr 70		Asp	Thr	· Val	. Cys	: Asp	Ser	Суз	Gl.u		p 0
Ser	Thi	туз	r Thi	r Gln		Trp	Ası	ı Trp	o Val		o Glu	Cys	: Leu	Ser 95		7S
Gly	, Sei	r Ar	g Cy 10		: Sei	. Asp	Gl:	n Va.		ı Th	r Glr	n Ala	a Cys		: Ai	rg
Glı	ı Gl:	n As		g Il	э Су	s Th	r Cy 12		g Pr	o Gl	y Tr	р Ту 12		s Ala	a L	eu
Se:	r Ly 13		.n Gl	.u Gl	у Су	s Ar 13		au Cy	s Al	a Pr	o Le		d PÀ	s Cy	s A	rg
Pr 14		.y Pl	ne G	ly Va	il Al 15		rg Pi	co Gl	Ly Th		Lu Th	ır Se	er As	p Va		al .60
СА	rs Ly	ys P	ro C		La Pi	ro Gl	ly T	hr Pl		∍r A: 70	sn Tl	ır Tl	nr S∈	r Se		ľhr
As	sp I	le C		rg P:	ro H.	is G	ln I		ys A 85	sn V	al V	al A		le P: 90	ro (	Зlу
A:	sn A		Ser M 195	ſet A	sp A	la A		ys T	hr S	er P	ro G		ro A	sn S	er	Thr
C		Arg I	Leu <i>I</i>	Arg G	lu T		'yr <i>F</i> 215	Asp (	aln T	hr <i>F</i>	Ala G	ln M	1et C	ys C	:ys	Ser

Lys 225	Cys	Ser	Pro	Gly	Gln 230	His	Ala	Lys	Val	Phe 235	Cys	Thr	Lys	Thr	Ser 240
Asp	Thr	Val	Cys	Asp 245	Ser	Сув	Glu	Asp	Ser 250	Thr	Туг	Thr	Gln	Leu 255	Trp
Asn	Trp	Val	Pro 260	Glu	Cys	Leu	Ser	Cys 265	Gly	Ser	Arg	Cys	Ser 270	Ser	Asp
Gln	Val	Glu 275	Thr	Gln	Ala	Суѕ	Thr 280	Arg	Glu	Gln	Asn	Arg 285	Ile	Cys	Thr
Cys	Arg 290	Pro	G1.y	Trp	Tyr	Су <i>в</i> 295	Ala	Leu	Ser	Lys	Gln 300	Glu	Gly	Cys	Arg
Leu 305	Cys	Ala	Pro	Leu	Arg 310	Lys	Cys	Arg	Pro	Gly 315	Phe	Gly	Val	Ala	Arg 320
Pro	Gly	Thr	Glu	Thr 325	Ser	Asp	Val	Val	Cys 330	Lys	Pro	Cys	Ala	Pro 335	Gly
			Asn 340					345					350		
		355	Val				360					365			
	370		Thr			375					380				
385			Pro		390					395					400
			Thr	405					410					415	
Ser	Pro	Pro	Ala 420	Glu	Gly	Ser	Thr	Gly 425	Asp	Ala	Glu	Pro	Lys 430	Ser	Cys

Asp	Lys	Thr 435	His	Thr	Cys I		Pro 440	Cys	Pro	Ala		Glu 445	Leu	Leu	Gly
Gly	Pro 450	Ser	Val	Phe	Leu l	Phe 455	Pro	Pro	Lys	Pro	Lуs 460	Asp	Thr	Leu	Met
Ile 465	Ser	Arg	Thr	Pro	Glu 470	Val	Thr	Cys	Val	Val 475	Val	Asp	Val	Ser	His 480
Glu	Asp	Pro	Glu	Val 485	Lys	Phe	Asn	Trp	Tyr 490	Val	Asp	Gly	Val	Glu 495	Val
His	Asn	Ala	Lys 500	Thr	Lys	Pro	Arg	Glu 505	Glu	Gln	Tyr	Asn	Ser 510	Thr	Tyr
Arg	Val	Val 515		Val	Leu	Thr	Val 520	Leu	His	Gln	Asp	Trp 525	Leu	Asn	Gly
Lys	Glu 530	-	Lys	Cys	Lys	Val 535	Ser	Asn	Lys	Ala	Leu 540	Pro	Ala	Pro	Ile
Glu 545		: Thi	: Ile	Ser	Lys 550	Ala	Lys	Gly	Gln	9ro		Glu	Prc	Gln	Val 560
Туг	r Thi	: Le	ı Pro	9 Pro		Arg	Asp	Glu	. Lev 570		Lys	: Asr	ı Glr	n Val	. Ser
Le	u Thi	r Cy:	s Lei		. Lys	Gly	Phe	Tyr 585		Sei	: Asp	) Ile	e Ala 590		l Glu
Tr	p Gl	u Se 59		n Gly	/ Gln	Pro	Glu 600		a Ası	n Ty:	r Lys	5 Th:	_	r Pro	o Pro
Va	l Le		p Se	r Ası	e Gl	7 S⊕1 615		∍ Ph∈	≅ Le	и Ту	r Se:		s Le	u Th	r Val
As 63		s Se	r Ar	g Tr	p Glr 630		n Gl	y Ası	n Va	1 Ph 63		r Cy	s Se	r Va	1 Met 640
Нэ	s Gl	u Al	a Le	u Hi	s Ası	n Hi	в Ту	r Th	r Gl	n Ly	s Se	r Le	u Se	r Le	u Ser

645 650 655

Pro Gly Lys

```
<210>
         13
<211>
         1314
<212>
         DNA
<213>
         Homo sapiens
<220>
<221>
         CDS
<222>
        (1)..(1311)
<223>
         CD2-IgG
<220>
<221>
         C_region
<222>
        (613)..(1314)
<223>
         Hinge, CH2, CH3 region
<220>
<221>
        misc_signal
<222>
         (265)..(273)
<223>
         N-linked glycosylation site
<220>
<221>
        misc_signal
<222>
         (421)..(429)
<223>
         N-linked glycosylation site
<220>
<221>
        misc_signal
<222>
         (448)..(456)
<223>
         N-linked glycosylation site
```

```
<220>
<221>
      primer_bind
<222>
        (1)..(27)
<223>
        PCR primer SEQ ID: 40 binding site
<220>
<221>
       primer_bind
<222>
        (589)..(618)
<223>
         PCR primer SEQ ID: 41(antisense) binding site
<220>
<221>
       primer_bind
<222>
         (611)..(633)
<223>
       PCR primer SEQ ID: 42 binding site
<220>
<221>
       primer_bind
<222>
         (1292)..(1314)
<223>
         PCR primer SEQ ID : 28(antisense) binding site
<220>
<221>
       sig_peptide
<222>
         (1)..(72)
<223>
         signal peptide
 <400>
 atg ago ttt cca tgt aaa ttt gta gcc ago tto ctt ctg att tto aat
                                                                          48
Met Ser Phe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn
  1
                   5
                                     10
 gtt tet tee aaa ggt gea gte tee aaa gag att aeg aat gee ttg gaa
                                                                          96
 Val Ser Ser Lys Gly Ala Val Ser Lys Glu Ile Thr Asn Ala Leu Glu
              20
                                 25
                                                     30
```

WO 03/010202

#### PCT/KR02/01427

acc	tgg	ggt	gcc	ttg	ggt	cag	gac	atc	aac	ttg	gac	att	cct	agt	ttt	144
Thr	Trp	Gly	Ala	Leu	Gly	Gln	Asp	Ile	Asn	Leu	qaA	Ile	Pro	Ser	Phe	
		35					40					45				
		,														
						gac									-	192
GIII	50	per	Asp	Asp	TTE	Asp 55	Asp	TTE	ьуѕ	Trp		гуз	Thr	Ser	Asp	
	0.0					55					60					
aag	aaa	aag	att	gca	caa	ttc	aga	aaa	gag	aaa	gag	act	ttc	aaq	gaa	240
						Phe								_	-	
65					70					75					80	
						ttt										288
Lys	Asp	Thr	Tyr		Leu	Phe	Lys	Asn	Gly	Thr	Leu	Lys	Ile	Lys	His	
				85					90					95		
cta	aad	200	σ=t	ast	cac	gat	-, <del>-</del> - ,	+	222	.~.	+		41-			226
						Asp										336
			100		O		440	105	DyS	var	Der	TTC	110	vsh	LILL	
aaa	gga	aaa	aat	gtg	ttg	gaa	aaa	ata	ttt	gat	ttg	aag	att	caa	gag	384
Lys	Gly	Lys	Asn	Val	Leu	Glu	Lys	Ile	Phe	Asp	Leu	Lys	Ile	Gln	Glu	
		115					120	•				125				
						atc									-	432
Arg	Va.I 130	Ser	ьуs	Pro	Lys	Ile	Ser	Trp	Thr	Cys		Asn	Thr	Thr	Leu	
-	130					135					140					
acc	tgt	gag	ata	ato	aat	gga	act	gac	ccc	gaa	tta	220	cta	tat	Caa	480
						Gly										400
145					150	-		•		155				-,,-	160	
gat	ggg	aaa	cat	cta	aaa	ctt	tot	cag	agg	gto	atc	aca	cac	aag	tgg	528
Asp	Glу	ГЛS	His	Leu	Lys	Leu	Ser	Gln	Arg	Val	Ile	Thr	His	Lys	Trp	
				165					170					175		
			<u>_</u>	1	_											
						aaa										576
T11T.	TIIT	oe t	180	ser	wra	Lys	r.ne	ьуs 185		Thr	Ala	дŢŻ		глг	Val	
			T 0 ()					700					190			

agc Ser													gag Glu			624
		195					200					205				
													cct	_		672
Ser	210 CA2	Asp	Lys	Thr	His	Thr 215	Суѕ	Pro	Pro	Суѕ	Pro 220	Ala	Pro	Glu	Leu	
ctg	ggg	gga	ccg	tca	gtc	ttc	ctc	ttc	ccc	cca	aaa	acc	aag	gac	acc	720
Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	
225					230					235					240	
ctc	atg	atc	tcc	cąg	acc	cct	gag	gtc	aca	tgc	gtg	gtg	gtg	gac	gtg	768
Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Суѕ	Val	Val	Val	Asp	Val	
				245					250					255		
244								1.1								
_													gac Asp			816
DCI	113.0	O.L.	260	LLO	Giu	vaı	пур	265	Veii	ırp	тАт	val	270	GT À	vaı	
			200					200					210			
gag	gtg	cat	aat	gcc	aag	aca	aag	ccg	cgg	gag	gag	cag	tac	aac	agc	864
													Tyr			
		275					280					285				
acg	tac	cgg	gtg	gtc	agc	gtc	ctc	acc	gtc	ctg	cac	cag	gac	tgg	ctg	912
Thr		Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	
	290					295					300					
aat	aac	aad	gag	tac	aad	tac	aan	ate	tcc	aac	222	acc	ctc	CCA	gee	960
															Ala	300
305		•		-	310					315	3				320	
ccc	ato	gaç	aaa	acc	ato	tee	aaa	gee	aaa	ggg	cag	acc	cga	gaa	cca	1008
Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	
				325					330					335		
															cag	1056
Gln	. Val	. Туі			Pro	Pro	Ser			Glu	Leu	Thr			Gln	
			340	,				345					350	1		

gtc agc ctg acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala	1104
355 360 365	
gtg gag tgg gag age aat ggg cag cog gag aac aac tac aag acc acg	1.152
Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr	u, 11 0 11
370 375 380	
ect ecc gtg etg gae tee gae gge tee tte tte ete tae age aag ete Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu	1200
385 390 395 400	
acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc	1248
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser	
405 410 415	
gtg atg cat gag get etg cae aac cae tae acg cag aag age ete tee	1296
Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser	
420 425 430	
ctg tct ccg ggt aaa tga	1314
Leu Ser Pro Gly Lys 435	
433	
<210> 14	
<211> 437	
<211> 437 <212> PRT	
<211> 437	
<211> 437 <212> PRT	
<211> 437 <212> PRT <213> Homo sapiens	
<211> 437 <212> PRT <213> Homo sapiens <400> 14	
<pre>&lt;211&gt; 437 &lt;212&gt; PRT &lt;213&gt; Homo sapiens  &lt;400&gt; 14  Met Ser Fhe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn</pre>	
<pre>&lt;211&gt; 437 &lt;212&gt; PRT &lt;213&gt; Homo sapiens  &lt;400&gt; 14  Met Ser Fhe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn</pre>	
<pre>&lt;211&gt; 437 &lt;212&gt; PRT &lt;213&gt; Homo sapiens  &lt;400&gt; 14  Met Ser Fhe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn</pre>	
<pre>&lt;211&gt; 437 &lt;212&gt; PRT &lt;213&gt; Homo sapiens  &lt;400&gt; 14  Met Ser Fhe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn</pre>	

Gln	Met 50	Ser	Asp	Asp :	Ile A	Asp <i>1</i> 55	Asp :	Ile	Lys	Trp	Glu 60	Lys	Thr	Ser	Asp
Lys 65	Lys	Lys	Ile	Ala	Gln Î	Phe .	Arg	Lys	Glu	Lys 75	Glu	Thr	Phe	Lys	Glu 80
Lys	Asp	Thr	Tyr	Lys 85	Leu :	Phe	Lys	Asn	Gly 90	Thr	Leu	Lys	Ile	Lys 95	His
Leu	Lys	Thr	Asp 100	Asp	Gln .	Asp	Ile	Tyr 105	Lys	Val	Ser	Ile	Tyr 110	Asp	Thr
Lys	Gly	Lys 115		Val	Leu	Glu	Lys 120	Ile	Phe	Asp	Leu	Lys 125	Ile	Gln	Glu
Arç	Val		· Lys	Pro	Lys	Ile 135	Ser	Trp	Thr	Cys	Ile 140	Asn	Thr	Thr	Leu
Th:		s Glu	ı Val	Met	Asn 150	Glγ	Thr	Asp	Pro	Glu 155		Asn	Leu	Туг	Gln 160
Ası	p Gly	y Ly:	∃ His	s Leu 165		Leu	Ser	Glr	170		l Ile	Thr	His	175	Trp
Th	r Th	r Se.	r Lei 18		: Ala	Lys	Phe	: Lys		s Thi	r Ala	Gl3	/ Asr 190		s Val
Se	r Ly	s Gl 19		r Sei	. Val	Glu	200		l Se	r Cy	s Pro	205		a Pr	o Lys
Se	r Cy 21		p Ly	s Th	r His	: Thi	_	s Pr	o Pr	о Су	s Pro		a Pr	o Gl	u Leu
Le 22		.y Gl	y Pr	ro Se	r Val		a Lei	u Ph	e Pr	o Pr 23		s Pr	o Ly	s As	p Thr 240
Le	∋u Me	et Il	Le Se	er Ar 24		r Pr	o Gl	u Va	1 Th		⁄s Va	l Va	l Va	1 As 25	sp Val
S	er H	is G	lu As	sp Pr	o Gl	u Va	l Ly	s Ph	ne As	sn Ti	ср Ту	r Va	al As	sp Gl	Ly Val

			260					265					270		
Glu	Val	His 275	Asn	Ala	Lys	Thr	Lys 280	Pro	Arg	Glu	Glu	Gln 285	Tyr	Asn	Ser
Thr	Tyr 290	Arg	Val	Val	Ser	Val 295	Leu	Thr	Val	Leu	His 300	Gln	Asp	Trp	Leu
Asn 305	Gly	Lys	Glu	Tyr	Lys 310	Суя	Lys	Val	Ser	Asn 315	Lys	Ala	Leu	Pro	Ala 320
Pro	Ile	Glu	Lys	Thr 325	Ile	Ser	Lys	Ala	Lys 330	Gly	Gln	Pro	Arg	Glu 335	Pro
Gln	Val	Tyr	Thr 340	Leu	Pro	Pro	Ser	Arg 345	Asp	Glu	Leu	Thr	Lys 350	Asn	Gln
Val.	Ser	Leu 355	Thr	Cys	Leu	Val	Lys 360	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala
Val	Glu 370	Trp	Glu	Ser	Asn	Gly 375	Gln	Pro	Glu	Asn	Asn 380	Tyr	Lys	Thr	Thr
Pro 385	Pro	Val	Leu	Asp	Ser 390	Asp	Gly	Ser	Phe	Phe 395	Leu	Tyr	Ser	Lys	Leu 400
Thr	Val	Asp	Lys	Ser 405	Arg	Trp	Gln	Gln	Gly 410		Val	Phe	Ser	Cys 415	Ser
Val	Met	His	Glu 420		Leu	His	Asn	His 425		Thr	Gln	Lys	Ser 430		Ser
Leu	Ser	Pro		Lys											

<210> 15 <211> 1134 <212> DNA <213> Homo sapiens

```
<220>
      CDS
<221>
<222> (1)..(1131)
<223>
      CTLA4-IgG
<220>
      C_region
<221>
<222> (433)..(1134)
<223> Hinge, CH2, CH3 region
<220>
<221> misc_signal
<222> (289)..(297)
<223> N-linked glycosylation site
<220>
<221> misc_signal
 <222> (385)..(393)
 <223> N-linked glycosylation site
 <220>
 <221> primer_bind
        (1)..(15)
 <222>
         PCR primer SEQ ID: 43 binding site
 <223>
 <220>
 <221> primer_bind
 <222>
         (409)..(438)
         PCR primer SEQ ID: 44(antisense) binding site
 <223>
 <220>
 <221> primer_bind
 <222> (430)..(453)
```

0301020241 I >

<223>		PCR	prin	ner S	SEQ I	: D	42 b	oind:	ing s	site						
<220																
<221:		_	mer_l													
<222			11).				00/	, ,		, ,	. ,.					
<2231	>	PCR	pri	ner :	SEQ .	LD:	28 (	antı.	sens	e) b:	ınaı	ng s:	rre			
<220	>															
<221	>	sig	_beb	tide												
<222	>	(1)	(6	3)												•
<223	>	sig	nal	pept	ide											
<400	>	15														
atg	agg	acc	tgg	ccc	t.gc	act	ctc	ctg	ttt	ttt	ctt	ctc	ttc	atc	cct	48
			Trp													
1				5					10					15		
gtc	ttc	tgc	aaa	gca	atg	cac	gtg	gcc	cag	cct	ġct	gtg	gta	ctg	gcc	96
Val	Phe	Cys	Lys	Ala	Met	His	Val		Gln	Pro	Ala	Val		Leu	Ala	
			20					25					30			
adc	age	cga	ggc	atc	acc	agc	ttt.	ata	tat	gag	tat	σca	tct	cca	aac	144
			Gly													
		35					40		•		-	45			_	
aaa	gcç	act	gag	gtc	cgg	gtg	aca	gtg	ctt	cgg	cag	gct	gac	agc	cag	192
Lys	Ala	Thr	Glu	Val	Arg	Val	Thr	Val	Leu	Arg	Gln	Ala	Asp	Ser	Gln	
	50					55					60					
ata	act	αaa	gtc	tat	aca	aca	200	tac	ato	ato	aaa	aat	aaa	tta	acc	240
		_	. yal	-		_			-	-				-		
65					70			- ,,		75					80	
tto	cta	gat	gat	tac	ato	tgc	acg	ggc	acc	tcc	agt	gga	aat	caa	gtg	288
Phe	Let	Asp	Asp	Ser	: Ile	Cys	Thr	Gly	Thr	Ser	Ser	Gly	Asn	Gl.n	Val	
				85	5				90	)				95	,	
													•			

													ctc			336
Asn	Leu	Thr	Ile	Gln	Gly	Leu	Arg	Ala	Met	Asp	Thr	Gly	Leu	Tyr	Ile	
			100					105					110			
-													ggc			384
Cys	Lys	Val	Glu	Leu	Met	Tyr	Pro	Pro	Pro	Tyr	Tyr		Gly	Ile	Gly	
		115					120					125				
	-												cca			432
Asn	Gly	Thr	Gln	Ile	Туг	Val	Ile	Asp	Pro	Glu	Pro	Cys	Pro	Asp	Ser	
	130					135					140					
													ccg			480
Ala	Glu	Pro	Lys	Ser		Asp	Lys	Thr	His		Cys	Pro	Pro	Cys		
145					150					155					160	
																F.O.O.
													ccc			528
Ala	Pro	Glu	Let			Gly	Pro	Ser			Leu	Phe	Pro			
				165	•				170					175		
															,	F7.6
	_														gtg	576
Pro	Lys	.Ası			ı Met	: Ile	Ser			Pro	) GII	LEV 1			· Val	
			180	)				189	)				190	)		
														·		624
															, tac	054
Val	. va.			I Sei	c Hls	2 GT/			) GT	ı val	г пу:			1 11.	Tyr	
		19	5				20	U				205	ر			
												~ ~~	~ ~~	. ~~.	~ ~~~	672
	-														g gag	07
va.		•	y va	T GT	u va.			u AT	a ny:	5 111.	_		o Wrá	i GT	ı Glu	
	21	U				21	מ				22	U				
							طس س	~ ~+		a ~+	a a+		a at	a .a.t.	~ ~~~	720
															g cac u His	720
	_	r As	n Se	r m			g va	ı. va	T De			(i 111	ı va.	r ne	240	
22	j				23	U				23	J				240	
	<b>~</b> ~-	a +-	سلید چدرو	·~ ~-	+ ~~	<u> </u>	~ .~~	. <del>.</del> + -		~ +~	c 35	/T /T+	c +c	u = 0	C: 220	768
		_	-												c aaa n Lws	, 00
GT.	n AS	۲. T.	Эц ц.	eu As 24		у гу	o GT	.α ι	т Бу 25		رىد د	n va	. <u>.</u> .5e	1 AS 25	n Lys 5	
				.54	, U				23	J				دے	~	

03010202A1 | >

<213> Homo sapiens

<400> 16

## **Sequence Listing**

gcc	ctc	cca	gcc	ccc	atc	gag	aaa	acc	atc	tcc	aaa	gcc	aaa	ggg	cag	816
Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	
			260					265					270			
ccc	cga	gaa	cca	cag	gtg	tac	acc	ctg	ccc	cca	tcc	cgg	gat	gag	ctg	864
Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	qaA	Glu	Leu	•
		275					280					285				
acc	aag	aac	cag	gtc	agc	ctg	acc	tgc	ctg	gtc	aaa	ggc	ttc	tat	ccc	912
Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	
	290					295					300					
agc	gac	atc	gcc	gtg	gag	tgg	gag	agc	aat	ggg	cag	ccg	gag	aac	aac	960
Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	
305					310					315					320	
tac	aag	acc	acg	cct	ccc	gtg	ctg	gac	tcc	gac	ggc	tcc	ttc	ttc	ctc	1008
Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	
				325					3.30					335		
tac	ago	aaç	s ctc	acc	gtg	gac	aag	agc	agg	tgg	cag	cag	ggg	aac	gtc	1056
Tyr	Ser	Lys	Leu	Thr	Val	. Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	
			340	1				345					350			
tto	tca	tg:	e too	gtg	ato	, cat	gag	gct	ctg	cac	aac	cac	: tac	acg	cag	1104
Phe	Ser	Суз	s Ser	Val	Met	His	Glu	Ala	Lev	His	Asr	His	туг	Thr	Gln	
		35	5	•			360	)				365	,			
aaç	g ago	cto	e ted	e etg	, tct	ccc	ı ggt	aaa	ı		tç	ја				1134
Lys	Se	r Le	u Sei	: Let	Se)	Pro	G17	, PAS	5							
	370	0				375	5									
<23	10>	16														
<2:	11>	377														
<2.	1.2>	PRT														

Met Arg Thr Trp Pro Cys Thr Leu Leu Phe Phe Leu Leu Phe Ile Pro

- 65 -

1				5					10					15	
Val	Phe	Cys	Lys 20	Ala	Met	His	Val /	Ala 25	Gln	Pro	Ala	Val	Val. 30	Leu	Ala
Ser	Ser	Arg 35	Gly	Ile	Ala	Ser	Phe 40	Val	Cys	Glu	Tyr	Ala 45	Ser	Pro	Gly
Lys	Ala 50	Thr	Glu	Val	Arg	Val 55	Thr	Val	Leu	Arg	Gln 60	Ala	Asp	Ser	Gln
Val 65	Thr	Glu	Val	Суз	Ala 70	Ala	Thr	Tyr	Met	Met 75	Gly	Asn	Glu	Leu	Thr 80
Phe	Leu	Asp	Asp	Ser 85	Ile	Cys	Thr	Gly	Thr 90	Ser	Ser	Gly	Asn	Gln 95	Val
Asn	Leu	Thr	Ile	Gln	Gly	Leu	Arg	Ala 105	Met	Asp	Thr	Gly	Leu 110	Tyr	Ile
Cys	Lys	Val		Leu	Met	Туг	Pro 120	Pro	Pro	Tyr	Tyr	Leu 125	Gly	Ile	Gly
Asn	Gly 130		Gl.n	Ile	Tyr	Val 135	Ile	Asp	Pro	Glu	Pro	Cys	Fro	Asp	Ser
Ala 145		Pro	Lys	Ser	Cys 150	-	Lys	Thr	His	Thr 155	_	Pro	Pro	Суз	Pro 160
Ala	Pro	o Glu	ı Lev	1 Leu 165		Gly	Pro	Ser	Val		Leu	Phe	Pro	Pro 175	Lys
Pro	) Lys	s Asp	Th:		n Met	: Ile	Ser	Arg		Pro	Glu	Val	. Thr 190	_	Val
Val	L Val	l Ası 19		l Ser	His	s Glu	Asp 200		Glu	n Val	. Lys	Ph∈		Trp	Tyr
Va.	l As _j		y Va.	l Glı	ı Va.	L His		Ala	Lys	5 Thr	Lys 220		Arg	g Glu	ı Glu

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 230 235 Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 250 245 Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 270 265 260 Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 275 280 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 290 295 300 Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 315 305 310 Tyr Lys Thr Thr Fro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 325 330 335 Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 350 345 340 Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 365 355 360 Lys Ser Leu Ser Leu Ser Pro Gly Lys 370 375 <210> 17 <211> 1854 <212> DNA <213> Homo sapiens <220> <221> CDS

(1)..(1851)

<222>

```
<223> CD2-CD2-IgG
<220>
<221> C_region
<222> (1153)..(1854)
<223> Hinge, CH2, CH3 region
<220>
<221> misc_signal
<222> (265)..(273)
<223> N-linked glycosylation site
<220>
<221> misc_signal
<222> (421)..(429)
<223> N-linked glycosylation site
<220>
 <221> misc_signal
 <222> (448)..(456)
 <223> N-linked glycosylation site
 <220>
 <221> misc_signal
 <222> (805)..(813)
         N-linked glycosylation site
 <223>
 <220>
 <221> misc_signal
       (961)..(969)
 <222>
 <223>
         N-linked glycosylation site
```

<220>

```
<221>
       misc_signal
<222>
       (988)..(996)
<223> N-linked glycosylation site
<220>
<221>
       primer bind
<222> (1)..(27)
<223>
      PCR primer SEQ ID : 40 binding site
<220>
<221>
       primer_bind
<222>
        (598)..(612)
<223>
       PCR primer SEQ ID : 46(antisense) binding site
<220>
<221> primer_bind
<222>
       (612)..(630)
 <223> PCR primer SEQ ID : 45 binding site
 <220>
 <221>
       primer_bind
 <222>
        (1128)..(1158)
         PCR primer SEQ ID: 41(antisense) binding site
 <223>
 <220>
 <221> primer_bind
 <222> (1151)..(1173)
 <223>
         PCR primer SEQ ID: 42 binding site
 <220>
 <221>
         primer_bind
 <222>
         (1832)..(1854)
 <223>
          PCR primer SEQ ID: 28(antisense) binding site
```

<	(220)	>																
<	<221	>	sig	_pep	tide													
<	<222	>	(1)	(7	2)													
<	<223	>	sig	nal	pept	ide												
																	•	
	<400	>.	17															
	atg	agc	ttt	cca	tgt	aaa	ttt	gta	gcc	agc	ttc	ctt	ctg	att	ttc	aat	48	
į	Met	Ser	Phe	Pro	Cys	Lys	Phe	Val .	Ala	Ser	Phe	Leu	Leu	Ile	Phe	Asn		
	1				5					10					15			
	gtt	tct	tcc	aaa	ggt	gca	gtc	tcc	aaa	gag	att	acg	aat	gcc	ttg	gaa	96	
	Val	Ser	Ser	Lys	Gly	Ala	Val	Ser	Ьуs	Glu	Ile	Thr	Asn	Ala	Leu	Glu		
				20					25					30				
	acc	tgg	ggt	gcc	ttg	ggt	cag	gac	atc	aac	ttg	gac	att	cct	agt	ttt	144	
	Thr	Trp	Gly	Ala	Leu	Gly	Gln	qsA	Ile	Asn	Leu	Asp	Ile	Pro	Ser	Phe		
			35					40					45					
			-															
	caa	atg	agt	gat	gat	att	дас	gat	ata	aaa	tgg	gaa	aaa	act	tca	gac	192	
	Gln	Met	Ser	Asp	Asp	Ile	Asp	Asp	Ile	Lys	Trp	Glu	Lys	Thr	Ser	Asp		
		50					55					60						
	aag	aaa	aag	att	gca	caa	ttc	aga	aaa	gag	aaa	gag	act	ttc	aag	gaa	240	ı
	Lys	Lys	ГЛг	∶Il∈	: Ala	Gln	Phe	Arg	Lys	Glu	Lys	Glu	Thr	Phe	Lys	Glu		
	65					70	1				75					80		
	aaa	gat	aca	a tat	aag	r cta	ı ttt	aaa	aat	gga	act	ctg	aaa	att	aag	g cat	288	3
	Lys	Asp	Thi	туз	r Lys	Leu	ı Phe	Lys	Asn	Gly	Thr	Leu	Lys	Ile	Lys	His		
					85	5				90	)				95	5		
	ctç	, aaq	gac	c gat	t gat	cag	g gat	atc	tac	aac	g gta	tca	ata	ı tat	gat	aca	33	3
	Leı	ı Ly:	s Th	r As	p Ası	o Glr	n Asp	Ile	Туг	Lys	val	. Ser	: Ile	yı Tyr	Asp	o Thr		
				10	0				105	,				110	)			
	aaa	a gg	a aa	a aa	t gt	g tto	g gas	a aaa	ata	tt!	c gat	: ttq	g aaq	g att	caa	a gag	38	4
	Lу	s Gl	у Ьу	s As	n Va.	l Le	u Glı	ı Lys	: Ile	e Phe	a Ası	. Le	т Гр	s Ile	e Gli	n Glu		
			11	5				120	)				12	5				

agg Arg	_					atc Ile										432
	130					135					140					
						gga Gly										480
145					150					155					160	
-						ctt Leu										528
-		-		165					170					175		
						aaa Lys										576
			180			•		185	-			-	190			
						gag Glu										624
201	~. , ~.	195					200			J		205				
															gac Asp	672
ASI.	210		ı Gal	111		215		THE C	. Ciry	011	220				р	
															g gaa o Glu	720
225		o se.	r Pn	e (31.	23		. vet	J Asi	, 116	23!		יבי ע	e ny.	, ,,,	240	
			_												a gag	768
ъλ	s TN	r se	r As	р Бу 24	_	е гу	≳ TT€	s VT	25		≅ VI	д пу	s GI	25	s Glu 5	
															t ctg	816
Th	r Ph	ıe Ly	s G] 20		s As	p Th	г Ту	r Ьу 26		u Pn	е пу	rs As	:n G1 27		r Leu	
															a tca	864
Ly	s I	le Ly 27		is L∈	eu Lj	s Th	r As 28		p Gl	n As	sp II	le Ty 28		rs Va	ıl Ser	

WO 03/010202 PCT/KR02/01427

at	a	tat	gat	aca	aaa	gga	aaa	aat	gtg	ttg	gaa	aaa	ata	ttt	gat	ttg	912
IJ	e	Tyr	Asp	Thr	Lys	Gly	Lys	Asn	Val	Leu	Glu	Lys	Ile	Phe	Asp	Leu	
		290					295					300					
аз	ıg	att	caa	gag	agg	gtc	tca	aaa	сса	aag	atc	tcc	tgg	act	tgt	atc	960
Ьy	/S	Ile	Gln	Glu	Arg	Val	Ser	Lys	Pro	ГЛЗ	Ile	Ser	Trp	Thr	Cys	Ile	
30	)5					310					315					320	
aa	ac	aca	acc	ctg	acc	tgt	gag	gta	atg	aat	gga	act	gac	ccc	gaa	tta	1008
As	sn	Thr	Thr	Leu	Thr	Cys	Glu	Val	Met	Asn	Gly	Thr	Asp	Pro	Glu	Leu	
					325					330					335		
a	ac	ctg	tat	caa	gat	ggg	aaa	cat	cta	aaa	ctt	tct	cag	agg	gtc	atc	1056
A:	sn	Leu	Tyr	G.ln	Asp	Gly	Lys	His	Leu	Lys	Leu	Ser	Gln	Arg	Val	Ile	
				340					345					350			
a	ca	cac	aaç	ı tgg	acc	acc	agc	ctg	agt	gca	aaa	ttc	aag	tgc	aca	gca	1104
T	hr	His	Lys	Trp	Thr	Thr	Ser	Leu	Ser	Ala	Lys	Phe	Lys	Суя	Thr	Ala	
			355	5				360					365				
g	gg	aac	aaa	gto	ago	aag	gaa	tee	agt	gtc	gag	cct	gto	ago	: tgt	cct	1152
G	:1.y	Asr	Lys	s Val	Ser	Lys	Glu	Sen	Ser	Val	Glu	Pro	val	Sei	Cys	Pro	
		370	)				375					380	)				
g	jca	gag	g cc	c aaa	a tct	tgt:	gac	aaa	act	cac	aca	a tgo	c cca	a cc	g tgo	cca	1200
72	\la	ı Glı	ı Pro	o Ly:	s Sei	. Cys	s Asp	Lys	Thr	His	Thi	с Суя	s Pro	Pro	с Суз	s Pro	
	385	5				390	)				395	5				400	
Č	gca	a cc	t ga	a ct	c ct	g ggg	g gga	cco	g ta	gt.c	tto	cto	e tt		e eea	a aaa	1248
Į	Ala	a Pro	o Gl	u Le	u Lei	ı Gl	y Gly	Pro	Sei	. Val	L Phe	e Le	u Ph	e Pr	o Pro	o Lys	
					40	5				410	)				41.	5	
C	00	c aa	g ga	c ac	c ct	c at	g ato	: to	c cg	g aco	c cc	t ga	g gt	c ac	a tg	c gtg	1296
1	Pr	o Ly	s As	p Th	r Le	u Me	t Ile	e Se:	r Ar	Th:	r Pr	o Gl	u Va	l Th	r Cy	s Val	
				42	0				42	5				4.3	0		
	gt	g gt	g ga	ıc gt	g ag	c ca	c ga	a ga	c cc	t ga	g gt	c aa	g tt	c aa	c tg	g tac	1344
	Va	l Va	l As	p Va	l Se	r Hi	s Gl	u As	p Pr	o Gl	u Va	l Ly	s Ph	e As	n Tr	- p Tyr	
			43	5				44	0			Ī	44	5		-	

gtg	gac	ggc	gtg	gag	gtg	cat	aat	gcc	aag	aca	aag	ccg	cgg	gag	gag		1392
Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr		Pro	Arg	Glu	Glu		
	450					455					460						
cag	tac	aac	agc	acg	tac	cgg	gtg	gtc	agc	gtc	ctc	acc	gtc	tgt	cac		1440
						Arg											
465					470					475					480		
		,	,					<b>.</b>		+	~	~+~	+00	220	222		1488
															aaa Lys		1400
GTII	Asp	rrb	neu	485		Бу≎	OLU	1,71	490	Cys	טענ	V C	001	495			
_															g cag		1536
Ala	Leu	Pro			Ile	Glu	Lys			Ser	Lys	Ala			7 Gln		
			500	)				505					510				
ccc	: cas	ı qaa	a cca	a cad	g qtc	, tac	acc	cto	r ace	cca	too	c egg	gat	gaq	g ctg		1584
															ı Leu		
•		515	5				520	)				525	5				
																	1.67.0
															t ccc		1632
Th	с ьу: 53:		n GI	n va	ı se:	г ње 535		. Cy:	s Ter	ı va.	541		A LII6	a ră	r Pro		
	55	O .															
ag	c ga	c at	c gc	c gt	g ga	g tg	g ga	g ag	c aat	gg:	g ca	g cc	g ga	g aa	c aac		1680
Se	r As	p Il	e Al	a Va	l Gl	u Trj	p Gl	ı Se	r Ası	n Gl	y Gl	n Pr	o Gl	u As	n Asn		
54	5				55	0				55	5				560	1	
ta	c aa	or ac	c ac	a co	t cc	c at	a ct	a aa	c tc	с па	c aa	c tc	c tt	c tt	c ctc	:	1728
															ie Lei		
-	-			56	55				57	0				57	5		
	_														ac gto		1776
Τ̈́	r Se	er Ly			ır Va	ıl As	р Гу	s Se 58		g ·ˈlˈr	b GT	n Gi	n G1 59		en Va.	L	
			J.	30				J	, ,					. •			
t.i	c to	ca to	gc to	cc g	tg at	g ca	it ga	ıg go	ct ct	g ca	ıc aa	ac ca	ac ta	ac a	cg ca	g	1824
Pl	ne Se	er C	ys S	er V	al Me	et Hi	.s G]	.u Al	la Le	eu Hi	s As	sn Hi	is Ty	/r T	hr Gl	n	
		5	95				6(	0.0				60	05				

1854 tga aag age ctc tcc ctg tct ccg ggt aaa Lys Ser Leu Ser Leu Ser Pro Gly Lys 615 610 <210> 18 <211> 617 <212> PRT <213> Homo sapiens <400> 18 Met Ser Phe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn 5 Val Ser Ser Lys Gly Ala Val Ser Lys Glu Ile Thr Asn Ala Leu Glu 20 Thr Trp Gly Ala Leu Gly Gln Asp Ile Asn Leu Asp Ile Pro Ser Phe 40 Gln Met Ser Asp Asp Ile Asp Asp Ile Lys Trp Glu Lys Thr Ser Asp 55 Lys Lys Lys Ile Ala Gln Phe Arg Lys Glu Lys Glu Thr Phe Lys Glu 70 Lys Asp Thr Tyr Lys Leu Phe Lys Asn Gly Thr Leu Lys Ile Lys His 90 85 Leu Lys Thr Asp Asp Gln Asp Ile Tyr Lys Val Ser Ile Tyr Asp Thr 105 100 Lys Gly Lys Asn Val Leu Glu Lys Ile Phe Asp Leu Lys Ile Gln Glu 120 115 Arg Val Ser Lys Pro Lys Ile Ser Trp Thr Cys Ile Asn Thr Thr Leu 135 130 Thr Cys Glu Val Met Asn Gly Thr Asp Pro Glu Leu Asn Leu Tyr Gln

155

150

145

4sp	Gly	Lys	His	Leu 165	Lys	Leu	Ser	Gln	Arg 170	Val	Ile :	Thr 1		Lys ' 175	rp
Thr	Thr	Ser	Leu 180	Ser	Ala	Lys	Phe	Lys 185	Cys	Thr	Ala (		Asn 190	Lys	Val
Ser	Lys	Glu 195		Ser	Val	Glu	Pro 200	Val	Ser	Cys	Pro	Lys 205	Glu	Ile	Thr
Asn	Ala 210		ı Glu	. Thr	Trp	Gly 215		Leu	Gly	Gln	Asp 220	Ile	Asn	Leu	Asp
Ile 225		Se	r Phe	e Glr	230		Asp	Asp	Ile	Asp 235	Asp	Ile	Lys	Trp	Glu 240
Lys	: Thr	: Se	r As	p Lys 24!		s Lys	s Ile	Ala	Gln 250		Arg	Lys	Glu	Lys 255	Glu
Thr	r Ph∈	∍ Ьу	rs Gl 26		s As	p Thi	г Туг	: Lys 265		ı Phe	Lys	Asn	Gly 270		Leu
Lys	s Ile	e Ly 27		s Le	u Ly	s Th	r As _l		o Gli	n Asp	o Ile	Tyr 285		Val	Ser
Il	е Ту 29		sp Th	ır Ly	s Gl	y Ly 29		n Va	l Le	u Glı	и Љув 300		Ph∈	: Asp	Leu
Lу 30		e G	ln G	lu Ar	rg Va		r Ly	s Pr	о Ьу	31		Tr	p Thi	cy's	320
As	n Th	ır T	hr L		nr C <u>1</u> 25	ys Gl	Lu Va	ıl Me		n Gl		r As _l	p Pro	33:	ı Leu 5
As	sn Le	eu T		ln A	sp G	ly Ly	ys Hi	is Le		/s Le	u Se	r Gl	n Ar		l Ile
T	nr H	-	ys T	rp T	hr T		er Lo					e Ly 36		s Th	r Ala

Gly	Asn 370	Lys	Val	Ser	Lys (	375	Ser S	Ser '	Val	Glu	Pro 380	Va.l	Ser	Суз	Pro	
Ala 385	Gl.u	Pro	Lys	Ser	Cys 1	qaA	Ĺуs '	Thr	His	Thr 395	Cys	Pro	Pro	Cys	Pro 400	
Ala	Pro	Glu	Leu	Leu 405	Gly	Gly	Pro	Ser	Val 410	Phe	Leu	Phe	Pro	Pro 415	Lys	
Pro	Lys	Asp	Thr 420	Leu	Met	Ile	Ser	Arg 425	Thr	Pro	Glu	Val	Thr 430	Cys	Val	
Val	Val	Asp 435		Ser	His	Glu	Asp 440	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	
Val	Asp 450		Val	. Glu	Val	His 455	Asn	Ala	Lys	Thr	Lys 460		Arg	Glu	Glu	
Glr 465		: Asr	n Sei	Thr	Tyr 470	Arg	Val	Val	Ser	Val		Thr	· Val	. Cys	His 480	
Glr	a Ası	o Tr	p Let	ı Asr 485		Lys	Glu	Tyr	Lys 490		s Lys	Val	. Sei	49!	Lys	
Ala	a Lei	u Pr	50		o Ile	Glu	Lys	505		e Se	r Lys	s Ala	51		y Gln	
Pr	o Ar	g Gl. 51		o Gl:	n Val	. Tyr	Thr 520		ı Pro	o Pr	o Sei	52		p Gl	u Leu	
Th	r Ly 53		n Gl	n Va	l Sei	535		r Cys	s Le	u Va	l Ly: 54		y Ph	е Ту	r Pro	
S∈ 54		sp Il	e Al	a Va	.l Gl: 55:		o Glu	u Se:	r As	n Gl 55		n Pr	o Gl	u As	n Asn 560	
T	yr Ly	ys Tì	ar Tl	nr Pr 50		o Va.	l Le	u As	p Se		sp Gl	y Se	r Ph	ne Ph 57	ie Lei '5	1
T	yr Se	er L	ys L	eu Th	ır Va	l As	р Гу	s Se	r Ai	g Ti	p G1	n Gl	ln G	ly As	sn Val	L

WO 03/010202 PCT/KR02/01427

## **Sequence Listing**

590 580 585 Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 605 600 595 Lys Ser Leu Ser Leu Ser Pro Gly Lys 615 19 <210> 1509 <211> <212> DNA Homo sapiens <213> <220> CDS <221> (1)..(1506) <222> <223> CTLA4-CTLA4-IgG <220> <221> C region (808)..(1509) <222> <223> Hinge, CH2, CH3 region <220> <221> misc_signal <222> (289)..(297) N-linked glycosylation site <223> <220> misc_signal <221> (385)..(393) <222> <223> N-linked glycosylation site <220> <221> misc_signal

DNISDOCID AND

0301020241 | >

```
<222> (664)..(672)
<223> N-linked glycosylation site
<220>
<221> misc_signal
<222>
       (760)..(768)
<223> N-linked glycosylation site
<220>
<221> primer_bind
<222> (1)..(15)
       PCR primer SEQ ID : 43 binding site
<223>
<220>
 <221> primer_bind
 <222> (418)..(431)
       PCR primer SEQ ID: 48(antisense) binding site
 <223>
 <220>
 <221> primer_bind
 <222> (432)..(453)
 <223> PCR primer SEQ ID : 47 binding site
 <220>
 <221>
        primer_bind
         (784)..(813)
 <222>
          PCR primer SEQ ID : 44(antisense) binding site
 <223>
 <220>
  <221> primer_bind
          (805)..(826)
  <222>
          PCR primer SEQ ID : 42 binding site
  <223>
```

<220>																	
<221>		pri	mer_h	oind													
<222>		(14	86).	. (15	09)											·	
<223>		PCR	pri	mer	SEQ :	ID:	28 (a	anti:	sense	e) bi	indir	ng si	ite				
<220>	>																
<221	>	sig	_pep	tide													
<222	>	(1.)	(6	3)													
<223	>	sig	nal	pept	ide												
,																	
<400		19															
atg																48	
Met.	Arg	Thr	Trp	Pro	Cys	Thr	Leu	Leu	Phe	Phe	Leu	Leu	Phe	Ile	Pro		
1				5					10					15			
_			aaa													96	
Val.	Phe	Cys	Lys	Ala	Met	His	Val	Ala	Gln	Pro	Ala	Val	Val	Leu	Ala		
			20					25					30				
-		-	ggc													144	
Ser	Ser	Arg	Gly	Ile	Ala	Ser	Phe	Val	Cys	Glu	Tyr		Ser	Pro	Gly		
		35					40					45					
			gag													192	
Lys			Glu	Val	Arg		Thr	Val	Leu	Arg			Asp	Ser	GIN	•	
	50					55					60						
																0.46	
		_	gto														
		Glu	ı Val	. Cys			Thr	Туг	Met		_	Asn	GLu	Leu	Thr		
65					70	١				75					80		
																200	,
															gtg		5
Phe	Let	ı Ası	o Asp			: Cys	Thr	. GTZ			Ser	GTA	Asn		ı Val		
				85	5				90	)				95	)		
									•					_ 1		_	_
															c ato		Э
Asn	ı Let	ı Th			n Gly	y Lei	ı Arç			c Asp	o Thi	c GL3			r Ile	1	
			100	U				10	5				110	J			

tgc Cys	_				_	tac Tyr		-				_					384
		115					120					125				,	
						gta		-		-	-	-			_		432
Asn	130	Thr	GIn	Ile	Tyr	Val 135	11e	Asp	Fro	Glu	140	Cys	Pro	Asp	Ser		
gat	aac	atg	cac	gtg	gcc	cag	ect	gat	gtg	gta	ctg	gcc	agc	agc	cga		480
-	Asn	Met	His	Val		Gln	Pro	Ala	Val		Leu	Ala	Ser	Ser	_		
145					150					155					160		
ggc	atc	gcc	agc	ttt	gtg	tgt	gag	tat	gca	tct	cca	ggc	aaa	gcc	act		528
Gly	Ile	Ala	Ser		Val	Cys	Glu	Tyr		Ser	Pro	GЉ	Lys		Thr		
				165					170					175			
gag	gtc	cgg	gtg	aca	gtg	ctt	cgg	cag	gct	gac	agc	cag	gtg	act	gaa		576
Glu	Val	Arg			Val	Leu	Arg		Ala	Asp	Sei	Gln		Thr	Glu		
			180					185					190				
gtc	tgt	gcg	gca	acc	tac	atg	atg	gaa	aat	gag	ttg	acc	ttc	cta	gat		624
Val.	Cys			Thr	Tyr	Met		-	Asn	Glu	Leu			Leu	Asp		
		195	<b>,</b>				200					205	ı				
gat	too	: atc	tgc	acg	ggc	acc	tcc	agt	gga	aat	caa	gtg	aac	ata	act		672
Asp	Sei	Ile	e Cys	Thr	Gl3	Thr	Ser	Sér	Gly	Asn	Gln	. Val	. Asn	Leu	Thr		
	210	)				215					220	)					
ato	caa	a gga	a cto	g ago	g gad	atç	gac	acq	i dds	ctc	: tac	ato	tgc	aaç	gtg		720
		ı Gly	y Lei	ı Arç			Asp	Thi	: Gly		_	: Ile	е Суа	: Lys	val		•
225	5				230	)				235	5				240		
gaç	geto	at(	g tao	008	a dog	g dda	a tac	tac	cto	g ggc	e ata	a ggo	aac	gga	a acc		768
Glu	ı Lei	ı Me	t Tyı	r Pro	o Pro	) Pro	туі	ту:		_	/ Ile	e Gly	y Asr	ı Gly	Thr		
				245	5				250	)				255	5		
caq	g at	t ta	t gt:	a at	t ga	t cc:	a gas	a cc	g tgo	e eca	a gat	t te	t gca	a gaç	g ccc		816
Glı	n Il	е Ту	r Va	1 11	e Ası	p Pro	o Gli	u Pr	э Су:	s Pro	o Asj	p Se	r Ala	a Glı	ı Pro		
			26	0				26	5				270	)			

													gca			864	4
Lys	Ser	Cys 275	Asp	Lys	Thr	His	Thr 280	Cys	Pro	Pro	Суѕ	Pro 285	Ala	Pro	Glu		
		210					20										
													aca			913	2
Leu	Leu 290	Gly	Gly	Pro	Ser	Val 295	Phe	Leu	Phe	Pro	9ro 300	ГАЗ	Pro	гуз	Asp		
	250					20.0											
		_											gtg			96	0
	Leu	Met	Ile	Ser	_	Thr	Pro	Glu	Val		Cys	Val	Val	Val			
305					310					315					320		
gtg	agc	cac	gaa	gac	cct	gag	ytc	aag	ttc	aac	tgg	tac	gtg	gac	gặc	100	8
Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly		
				325					330					335			
gtg	gag	gto	, cat	: aat	gee	aag	aca	aag	ccg	cgg	gag	gag	cag	tac	aac	105	56
Val	Glu	Val	His	s Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Туг	Asn		
			340	כ				345					350				
auc	י פרנ	r tar	י כמנ	ı ata	r atc	auc	ato	: ctc	acc	atc	tat	cac	cad	gac	: tgg	110	04
-		•				-	_								Trp		
		35	5				360	)				365	5				
									,							7.1	E 0
	•				-	_	_	-	-						c cca ı Pro	11	52
Te	37:		у ту	5 G.L	ı ıy.	375		э шуг	y va.	L LIG	380		J 7120	, pc	1 110		
-			-	-											a gaa	1.2	00
		o Il	e Gl	u Ly			e Se	r Ly:	s Al:	_		y Gl:	n Pro	o Ar	g Glu		
38	5				39	0				39	5				400		
cc	a ca	g gt	g ta	ıc ac	c ct	g ac	c cc	a tc	c cg	g ga	t ga	g ct	g ac	c aa	g aac	12	43
Pr	o G1	n Va	al Ty	r Th	r Le	u Pr	o Pr	o Se	r Ar	g As	p Gl	u Le	u Th	r Ly	s Asn		
				40	5				41	0				41	5		
са	.g at	c ac	je et	g ac	c to	ıc ct	g at	c aa	a qq	c tt	c ta	t cc	c aq	c ga	c atc	12	296
		•		-	_								_	-	p Ile		
			42	20				42	.5				43	0			

gcc gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag acc Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 435 440 445	1344
acg cet cec gtg ctg gac tec gae gge tec tte tte etc tac age aag  Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys  450 455 460	1392
ctc acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 465 470 475 480	1440
tcc gtg atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 485 490 495	1488
tcc ctg tct ccg ggt aaa tga Ser Leu Ser Pro Gly Lys 500	1509
<210> 20 <211> 502 <212> PRT <213> Homo sapiens	
<pre>&lt;400&gt; 20 Met Arg Thr Trp Pro Cys Thr Leu Leu Phe Phe Leu Leu Phe Ile Pro 1 5 10 15</pre>	
Val Phe Cys Lys Ala Met His Val Ala Gln Pro Ala Val Val Leu Ala 20 25 30	
Ser Ser Arg Gly Ile Ala Ser Phe Val Cys Glu Tyr Ala Ser Pro Gly  35 40 45	
Lys Ala Thr Glu Val Arg Val Thr Val Leu Arg Gln Ala Asp Ser Gln 50 55 60	

Val 65	Thr	Glu	Val	Cys	Ala 70	Ala	Thr	Tyr	Met	Met 75	Gly	Asn	Glu	Leu	Thr 80
Phe	Leu	Asp	Asp	Ser 85	Ile	Cys	Thr	Gly	Thr 90	Ser	Ser	Gly	Asn	Gln 95	Val
Asn	Leu	Thr	Ile 100	Gln	Gly	Leu	Arg	Ala 105	Met	Asp	Thr	Gly	Leu 110	Tyr	Ile
Cys	Lys	Val	Glu	Leu	Met	Tyr	Pro 120	Pro	Pro	Tyr	Tyr	Leu 125	Gly	Ile	Gly
Asn	Gly 130		Gln	Ile	Tyr	Val 135	Ile	Asp	Pro	Glu	Pro 140	Cys	Pro	Asp	Ser
Asp		Met	His	Va.l.	Ala 150		Pro	Ala	. Val	Val 155		Ala	Ser	Ser	Arg 160
Gly	lle	Ala	ı Ser	Phe		Cys	Glu	. Туг	170		Pro	Gly	. Lys	Ala 175	Thr
Glu	ı Val	L Arç	g Val		. Val	. Leu	ı Arç	Glr 185		a Asp	) Ser	Glr	1 Val		Glu
Val	L Cys	5 Al:		a Thi	. Tyr	Met	200		y Ası	n Glu	ı Lev	1 Thi		. Leu	ı Asp
Ası	21		е Су	s Th	r Gly	y Thi 21!		r Se:	r Gl	y Ası	n Glr 220		l Asr	ı Leı	ı Thr
11 22		n Gl	y Le	u Ar	g Ala 23		t As	p Th		y Lei 23	-	r Il	e Cy:	s Lys	5 Val
Gl.	u Le	u Me	t Ty	r Pr 24		o Pr	о Ту	r Ty	r Le 25		λ II	e Gl	y Ası	n Gl	y Thi
Gl	n Il	.e Ty	yr Va 20		e As	p Pr	o Gl	u Pr 26	_	s Pr	o As	p Se	r Al 27		u Pro
T.a	rs Se	ar Ci	.rs 71.a	a Ta	zs Th	r Hi	s ጥነ	וד ריי	ıs Pı	ro Pr	n Cu	s Pr	n Al	a Pr	o Gli

WO 03/010202

		275					280					285			
Leu	Leu 290	Gly	Gly	Pro	Ser	Val 295	Phe	Leu	Phe	Pro	Pro 300	Lys	Pro	Lys	Asp
Thr 305	Leu	Met	Ile	Ser	Arg 310	Thr	Pro	Glu	Val	Thr 315	Cys	Val	Val	Val	Asp 320
Val	Ser	His	Glu	Asp 325	Pro	Glu	Val	Lys	Phe 330	Asn	Trp	Tyr	Val	Asp 335	Gly
Val	Glu	Val	His 340	Asn	Ala	Lys	Thr	Lys 345	Pro	Arg	Glu	Glu	Gln 350	Tyr	Asn
Ser	Thr	Tyr 355		Val	Val	Ser	Val 360	Leu	Thr	Val	Cys	His 365	Gln	Asp	Trp
Leu	Asn 370		/ Lys	Glu	Tyr	Lys 375		ГУs	Val	. Ser	380		Ala	Leu	Pro
Ala 385		o Ile	∋ Glu	ı Lys	390		. Ser	Lys	: Ala	ъуs 395		, Gln	Pro	Arg	Glu 400
Pro	Glı	n Va	1 Туі	c Thr 405		ı Pro	Pro	sei	410		o Glu	ı Ley	Thr	Lys 415	: Asn
Glı	n Va	l Se	r Let		г Су:	s Lei	u Val	L Ly:		y Phe	е Тул	r Pro	9 Ser 430		) Ile
Al	a Va	1 Gl 43		p Gl	u Se	r As	n Gl;		n Pr	o Gl	u Asi	n Ası 44!		r Lys	s Thr
Th	r Pr 45		o Va	l Le	u As	p Se 45		p Gl	y Se	r Ph	e Ph 46		и Ту:	r Se	r Lys
Le 46		ır Va	al As	:р Ьу	rs Se 47		g Tr	p Gl	n Gl	n Gl 47		n Va	l Ph	e Se	r Cys 480
Se	er Va	al Me	et Hi	is G.1 48		a Le	≈u Hi	s As	n Hi 49		/r Th	ır Gl	n Ly	s Se	r Lei

Ser Leu Ser Pro Gly Lys

```
500
<210>
        21
<211> 1854
<212>
       DNA
<213>
       Homo sapiens
<220>
<221> CDS
<222> (1)..(1851)
 <223> mgCD2-CD2-IgG
 <220>
<221> C_region
 <222> (1153)..(1854)
 <223> Hinge, CH2, CH3 region
 <220>
 <221> misc_signal
 <222> (265)..(273)
 <223> N-linked glycosylation site
 <220>
  <221> misc_signal
  <222> (421)..(429)
  <223> N-linked glycosylation site
  <220>
  <221> misc_signal
  <222> (448)..(456)
  <223>
          N-linked glycosylation site
```

```
<220>
<221> misc_signal
<222> (598)..(606)
<223> N-linked glycosylation site
<220:
<221> misc_signal
<222> (616)..(624)
<223> N-linked glycosylation site
<220>
<221> misc_signal
        (805)..(813)
<222>
 <223> N-linked glycosylation site
 <220>
 <221> misc_signal
 <222> (961)..(969)
 <223> N-linked glycosylation site
 <220>
 <2217 misc_signal
 <222> (988)..(996)
 <223> N-linked glycosylation site
  <220>
  <221> primer_bind
  <222> (1)..(27)
          PCR primer SEQ ID: 40 binding site
  <.223>
  <:220>
  <221> primer_bind
  <222> (588)..(630)
  <223> PCR primer SEQ ID : 50(antisense) binding site
```

Daninanani I -

```
<220>
<221>
        primer_bind
       (588)..(630)
<222>
       PCR primer SEQ ID : 49 binding site
<223>
<220>
       primer_bind
<221>
<222>
        (1128)..(1158)
       PCR primer SEQ ID : 41(antisense) binding site
<223>
 <220>
 <221> primer_bind
         (1151)..(1173)
 <222>
          PCR primer SEQ ID: 42 binding site
 <223>
 <220>
 <221>
          primer_bind
 <222>
          (1832)..(1854)
          PCR primer SEQ ID : 28(antisense) binding site
 <223>
  <220>
  <221>
          sig_peptide
          (1)..(72)
  <222>
           signal peptide
  <223>
  <400>
  atg agc ttt cca tgt aaa ttt gta gcc agc ttc ctt ctg att ttc aat
                                                                            48
  Met Ser Phe Pro Cys Lys Phe Val Ala Ser Phe Leu Leu Ile Phe Asn
                                       10
    1
                    5
                                                                            96
  gtt tet tee aaa ggt gea gte tee aaa gag att aeg aat gee ttg gaa
   Val Ser Ser Lys Gly Ala Val Ser Lys Glu Ile Thr Asn Ala Leu Glu
                                                       30
                                   25
               20
```

acc																	144
Thr	Trp		Ala	Leu	Gly	Gln		Ile	Asn	Leu	Asp		Pro	Ser	Phe		
		35					40					45					
caa	atg	agt	gat	gat	att	gac	gat	ata	aaa	tgg	gaa	aaa	act	tca	gac		192
Gln	Met	Ser	Asp	Asp	Ile	Asp	Asp	Ile	Lys	Trp		Lys	Thr	Ser	Asp		
	50					55					60						
aag	aaa	aag	att	gca	caa	ttc	aga	aaa	gag	aaa	gag	act	ttc	aag	gaa		240
Lys	Lys	Lys	Ile	Ala	Gln	Phe	Arg	Lys	Glu	Lys	Glu	Thr	Phe	Lys	Glu		
65					70					75					80		
aaa	gat	aca	tat	aaq	cta	ttt	aaa	aat	gga	act	ctg	aaa	att	aag	cat		288
													Ile				
				85					90					95			
ata	220	3.00	· cat	ast	cau	ast	ato	tac	חבב	αta	tca	ata	tat	gat	aca		336
													Tyr				
			100					105					110				
																	204
															gag		384
ьys	GT.2	7 Ly: 11:		ı val	. Leu	(GIV	ьу: 12(		Pne	Asp	, тег	1 Буз 125		: G11.	ı Glu		
			-		,												
	_														c ctg		432
Arg			r Ly:	s Pro	) Lys			r Trp	Thr	Суз			n Thi	Thi	Leu		
	13	0				13!	Ō				14	3					
aco	e tg	t ga	g gt	a at	g aat	t gg:	a ac	t gad	2 000	ga:	a tt	a aa	c ct	g ta	t caa		480
Th	с Су	s Gl	u Va	l Me	t Ası	n Gl	y Th	r Ası	p Pro	Gl:	ı Le	u As:	n Lei	и Ту	r Gln		
14	5				15	0				15	5				160		
ga	t qa	g aa	a ca	t ct	a aa	a ct	t to	t ca	g ag	g gt	c at	c ac	a ca	c aa	g tgg	i	528
-		_													s Trp		
				16	5				17	0				17	5		
			,, a+	· cr - n - n	rt ~~	2 27	a ++		a +a	c 2c	א ענ	ים מת	.u aa	C aa	a gto	•	576
		_													rs Val		0.0
			18			1		18					19				

0301020241 | >

#### PCT/KR02/01427

												aat Asn			624
-	-	-										aac Asn			672
												aaa Lys			720
												gag Glu			768
	-	-	Lys	_			_					gga Gly 270			816
		s His					Asp							tca Ser	864
	r As					: Asr					s Ile		_	ttg Leu	912
s Il					l Sei					e Se:				atc s Ile 320	960
			-	r Cy	_			_	n Gl					a tta u Leu 5	1008
	_		n As		_			u Ly					g Va	c atc l Ile	1056

													tgc Cys				1104
													agc Ser				1152
													ccg Pro				1200
													ecc Pro				1248
				Leu									aca Thr 430				1296
		_	Val	-				Pro					: Asn		tac Tyr		1344
		G1;					Asn					Fro			gag 1 Glu		1392
-	ı Ty:		_	•		r Arg		-	_	•	l Lei				cac His 480		1440
		_	-	-	n Gl			-		s Су					c aaa n Lys 5	٠	1.488
~			-	a Pr		-	_		r Il			_		s Gl	g cag y Gln		1536

ccc	cga	gaa	cca	cag	gtg	tac	acc	ctg	ccc	cca	tcc	cgg	gat	gag	ctg	1584
Pro	Arg	Glu	Pro	Gln	Val	Туг	Thr	Leu	Pro	Pro	Ser	Arg	Asp	Glu	Leu	
		515					520					525				
acc	aag	aac	cag	gtc	agc	ctg	acc	tgc	ctg	gtc	aaa	āāc	ttc	tat	CCC	1632
Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Суѕ	Leu	Val	Lys	Gly	Phe	Tyr	Pro	
	530					535					540					
agc	gac	atc	gcc	gtg	gag	tgg	gag	agc	aat	ggg	cag	ccg	gag	aac	aac	1680
Ser	Asp	Ile	Al.a	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	
545					550					555					560	
				cct												1728
Tyr	Ьуs	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	
				565					570					575		
tac	ago	aaç	ctc	acc	gtg	gac	aag	agc	agg	tgg	cag	cag	ggg	aac	atc	1776
Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln			. Val	
			580	)				585					590			
															cag	1824
Phe	Ser			: Val	. Met	His			Leu	His	Asr			Thr	Gln	
		599	5				600	)				605	1			
											1.					1054
_	-			e etç		_					tọ	ja				1.854
гуs			u Se:	r Lei	ı Sei		_	л г.	5							
	610	, ,				615	)									
	LO>	22														
	11>	617														
	12>	PRT														
	13>			pien	5											
٠2.		HOR	.o .bu	Prem	_											
<4	00≻	22														
			e Pr	о Су	s Ly	s Ph	e Va	1 A1	a Se	r Ph	e Le	u Le	u Il	e Ph	e Asn	
	1				5				1					1		
٧a	l Se	r Se	r Ly	s Gl	y Al	a Va	l Se	r Ly	s Gl	u Il	e Th	r As	n Al	a Le	u Glu	

			20					25					30		
Thr	Trp	Gly 35	Ala	Leu	Glу	Gln	Asp 40	Ile	Asn	Leu	Asp	Ile 45	Pro	Ser	Phe
Gln	Met 50	Ser	Asp	Asp	Ile	Asp 55	qzA	Ile	Lys	Trp	Glu 60	Lys	Thr	Ser	Asp
Lys 65	Lys	Lys	Ile	Ala	Gln 70	Phe	Arg	Lys	Glu	Lys 75	Glu	Thr	Phe	Lys	Glu 80
Lys	Asp	Thr	Tyr	Lys 85	Leu	Phe	Lys	Asn	Gly 90	Thr	Leu	Lys	Ile	Lys 95	His
Leu	Lys	Thr	Asp 100		Gln	Asp	Ile	Туг 105	Lys	Val	Ser	Ile	Tyr 110	Asp	Thr
Lys	Gly	Lys		ı Val	Leu	Glu	Lys 120	Ile	Phe	Asp	Leu	Lys 125		Gln	Glu
Arg	Val		r Lys	s Pro	Lys	135	Ser	Trp	Thr	Cys	Ile 140		Thr	Thr	Leu
Thr 145	_	s Gl	u Val	l Met	150		/ Thr	Asp	Pro	Glu 155		Asn	ı Lev	ı Tyr	Gln 160
Ası	o Gl	у Lу	s Hi	s Lei		s Lei	ı Ser	Gl.	170		l Ile	th:	r His	5 Lys 175	Trp
Th	r Th	r Se	r Le 18		r Ala	a Ly:	s Phe	Ly:		s Th:	r Ala	a Gl	y Ası 19		s Val
Se	r Ly	s Gl		r Se	r Va	l Gl	u Ası 201		l Se	r Cy	s Pro	о Ly 20		n Ile	∍ Thr
As	n Al 21		eu Gl	u Th	r Tr	p Gl 21		a Le	u Gl	y Gl	n As _j 22		e As	n Le	u Asp
I1 22		o Se	er Ph	ne Gl	.n Me 23		er As	p As	p Il	e As 23		p Il	e Ly	s Tr	p Glu 240

Lys	Thr	Ser	As		ys 1 45	Lys	Lys	Ile	Ala		ln :	Phe	Arg	Lys	Glu		ys ( 55	Glu
Thr	Phe	Lys	: Gl 26		ys :	Asp	Thr	Tyr	Lу:		eu	Phe	Lys	Asn	Gly 270		hr	Leu
Lys	Ile	Lys 27!		s I	eu	Lys	Thr	Asp 280		ρG	ln	Asp	Ile	Tyr 285	Lys	e V	al	Ser
Ile	Туг 290		Tr	ır l	jys	Gly	Lys 295	Asn	. Va	ıl I	Leu	Glu	Lys 300	Ile	Phe	e <i>P</i>	/sp	Leu
Lys 305		G1	n G	lu i	Arg	Val 310	Ser	Lys	F Pi	o 1	Lys	Ile 315	Ser	Trp	Th	r(	Cys	Ile 320
Asn	Thr	Th	гL		Thr 325	Cys	Glu	. Va.	l Me		Asn 330	Gly	Thr	Asp	Pr		Glu 335	Leu
Ası	ı Lev	1 Ту		ln 40	Asp	Gly	Lys	s H.i.		eu 45	Lys	Leu	ı Ser	Glı	35		Val	Ile
Th	r Hi		7s T 55	'rp	Thr	Thr	: Sei	: Le		er	Ala	Lys	5 Ph€	∌ <b>Ъ</b> у: 36		/s	Thr	Ala
G1	y As 37		ys \	/al	Ser	Lys	37		r S	Ser	Val	Glı	u Pro 38		l Se	er	Cys	Pro
A1 38		u P	ro :	Lys	Sei	: Су: 39		p Ly	7s T	l'hr	His	s Th 39		s Pr	o P	ro	Cys	Fro 400
Al	.a Pr	o G	lu	Leu	Let		y Gl	y E'ı	ro S	Ser	Va.		e Le	u Ph	ie P	ro	Pro	o Lys
Pı	co Ly	ys P	/sp	Thr 420		u Me	t Il	e S		Arg 425		r Pr	o Gl	.u Va		hr 30	Су	s Val
Va	al V		Asp 435	Val	. Se	r Hi	.s G.		sp 40	Pro	Gl	u Va	al Ly		he <i>F</i> 45	\sn	Tr	p Tyr

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
450 455 460

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Cys His 465 470 475 480

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 485 490 495

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 500 505 510

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 515 520 525

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 530 535 540

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 545 550 550 560

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Fhe Leu 565 •570 575

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
580 585 590

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 595 600 605

Lys Ser Leu Ser Leu Ser Pro Gly Lys 610 615

<210> 23

<211> 1509

<212> DNA

<213> Homo sapiens

<220>

```
<221>
        CDS
<222>
        (1)..(1506)
<223>
        mgCTLA4-CTLA4-IgG
<220>
<221>
        C_region
<222>
        (808)..(1509)
<223>
        Hinge, CH2, CH3 region
<220>
<221>
      misc_signal
<222> (289)..(297)
<223>
        N-linked glycosylation site
<220>
<221> misc_signal
<222> (385)..(393)
<223> N-linked glycosylation site
<220>
<221> misc_signal
 <222>
        (403)..(411)
 <223>
        N-linked glycosylation site
 <220>
 <221>
        misc_signal
 <222>
        (424)..(432)
 <223>
         N-linked glycosylation site
 <220>
 <221>
        misc_signal
 <222>
        (439)..(447)
 <223>
         N-linked glycosylation site
```

```
<220>
<221> misc_signal
<222>
         (664)..(672)
<223>
         N-linked glycosylation site
<220>
<221> misc_signal
<222> (760)..(768)
 <223> N-linked glycosylation site
 <220>
 <221>
        primer_bind
 <222>
        (1)..(15)
 <223>
         PCR primer SEQ ID: 43 binding site
 <220>
 <221>
        primer_bind
 <222> (394)..(456)
· <223>
        PCR primer SEQ ID : 52(antisense) binding site
 <220>
 <221>
        primer bind
 <222> (397)..(460)
 <223>
         PCR primer SEQ ID : 51 binding site
 <220>
        primer_bind
 <221>
 <222>
         (784)..(813)
 <223>
          PCR primer SEQ ID: 44(antisense) binding site
  <220>
  <221>
        primer_bind
  <222>
          (805)..(826)
```

<223>	PCR prim	er SEQ I	D: 42	bindi	ng s	ite					
<220> <221> <222> <223>	primer_b (1486) PCR prim	(1509)	ID : 280	antis	ense	) bi	.ndir	ng si	te		
<220> <221> <222> <223>	sig_pept	3)									
	23 acc tgg										48
	tgc aaa Cys Lys 20										96
-	cga ggc Arg Gly 35			val							144
	act gag Thr Glu										192
	gaa gtc Glu Val		Ala Th		atg						240
	a gat gat u Asp Asp					Ser				Val	288

aac	ctc	act	atc	caa	gga	ctg	agg	gcc	atg	gac	acg	gga	ctc	tac	atc		336
Asn	Leu	Thr	Ile	Gln	Gly	Leu	Arg	Ala	Met	Asp	Thr	Gly	Leu	Tyr	Ile		
			100					1.05					110				
					,						+	a+ ~	~~~	2+2	aaa		384
_	-				atg Met												204
Cys	гуг	115	GIU	ьеи	Mec	ıyı	120	110	110	1 J L	1 3 2	125	رين	2.20			
		117															
aac	qga	acc	cag	att	tat	gta	aat	gat	aca	gaa	ccg	tgc	aat	gat	tcg		432
	-				Tyr												
	130					135					140						
															cga		480
Asp	Asn	.Ası	1 His	Thi	Ala	Gln	Pro	Ala	Val			Ala	Ser	Ser	Arg		
145					150	•				155					160		
	4					. ++	~~~	, +n+	~~~	tat	cc:	י ממנ		acc	act		528
															Thr		
GTA	7.7.6	: VT	a se.	16		. Oy	. 010		170				, ,	175			
gag	gto	c cg	g gt	g ac	a gt	g ctt	egg	g caq	g gct	gac	age	ca	g gto	g ac	c gaa		576
Glu	ı Va.	l Ar	g Va	l Th	r Va.	l Le	ı Arç	g Glı	n Ala	a Asp	Se.	r Gl	n Va	l Th	r Glu	L	
			18	0				18	5				19	0			
_	-														a gat		624
Va.	l Cy			a Th	r Ty	r Me			y As:	n Gli	ı Le	u Th 20		е ге	u Asp	)	
		19	)5				20	U				20	5				
ga.	t tc	c at	rc to	ic ac	ra aa	сас	c tc	c ad	t aa	a aa	t ca	a qt	g aa	c ct	c act	t	672
															u Thi		
	21		•			21				-	23						
at	c ca	aa g	ga ci	tg a	gg gc	c at	g ga	c ac	g gg	a ct	c ta	ac at	ic tç	c as	ıg gt	g	720
Il	e G.	ln G	ly L	eu A	rg Al	La Me	et As	p Th	ır Gl	y Le	u Ty	yr II	Le Cy	s Ly	ys Va	1	
22	:5				23	30				23	15				24	0	
																	7.66
															ga ac		768
G]	lu L	eu M	et T			ro Pi	ro T	yr T			Ly I	te G	ту А:		ly Th 55	r	
				2	45				2	00				۷.	J		

WO 03/010202

#### PCT/KR02/01427

Sequence	e Listing

	_			-		-	cca Pro	_	-	_		_		_			816
			_	_			cac His		_		_	_				_	864
		_			_		gtc Val 295								-	-	912
		ctc	_				acc Thr			-		tgc				-	960
,		_		-	-		gag Glu	-	_						-	ggc	1008
					Asn	-	aag Lys		_	ccg Pro				-	tac	aac Asn	1056
	_			cgg Arg	gtg		-	-	ctc Leu	acc	-	-		cag	-	tgg Trp	1104
		ı Asr	ggo	c aac			Lys	tgc Cys	: aag	-		Asn	: aas	ı gac		cca Pro	1152
	Ala	a Pro	c at					tec		-			j caç		_	ı gaa g Glu	1200
		a ca		_	r Thi	: Le	g ced			-		t gay		_	_	400 g aac s Asn	1248
					405	J				410	,				415	J	

cag	gtc	agc	ctg	acc	tgc	ctg	gtc	aaa	ggc	ttc	tat	ccc	agc	gac	atc	1296
Gln	Val.	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	
			420					425					430			
gcc	gtg	gag	tgg	gag	agc	aat	ggg	cag	ccg	gag	aac	aac	tac	aag	acc	1344
Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	
		435					440					445				
acg	cct	ccc	gtg	ctg	gac	tcc	gac	ggc	tcc	ttc	ttc	ctc	tac	agc	aag	1392
		Pro														
	450					455					460					
ctc	acc	gtg	gac	aag	agc	agg	tgg	cag	cag	ggg	aac	gtc	ttc	tca	tgc	1440
		Val														
465			•	-	470		_			475					480	
tcc	ata	atq	cat	gaq	gct	ctq	cac	aac	cac	tac	acg	cag	aag	ago	ctc	1488
															Leu	
				485					490					495		
tcc	cto	tct	ccc	ı aat	aaa	ā	tgs	<b>1</b>								1509
	_	, 1 Ser	_				-									
			500	_												
<21	.0>	24														
<23	11>	502														
<21	L2>	PRT														
	1.3>	Home	o <i>s</i> a	pien	s											
				-												
<4	00>	24														
			r Tr	p Pr	o Cv	s Th	r Le	u Le	u Ph	e Ph	e Le	u Le	u Ph	e Il	e Pro	
	1	<b>,</b>			5					0					5	
	-															
V۶	] Ph	e Cv	s Iv	s Al	a Me	t Hi	s Va	1 A1	a G1	n Pr	o Al	a Va	ıl Va	l Le	u Ala	
• •		0,		:0					:5					0		
			2					2	-				~	-		
90	r Se	·γ Δγ	ሚ ርብ	י דו	e 741	a Se	. p-	ie Va	al Cv	rs G1	ነን ጥላ	r Al	a Se	er Pr	o Gly	
56			.g G.	ىدى س.	II	.u De		10	uy	J 01	<u>.</u>		15		<u>-</u> y	
		2	, ,				*-					-				

Lуs	Ala 50	Thr	Glu	Val	Arg	Val 55	Thr	Val	Leu	Arg	Gln 60	Ala	Asp	Ser	Gln
Val 65	Thr	Glu	Val	Cys	Ala . 70	Ala	Thr	Tyr	Met	Met 75	Gly	Asn	Glu	Leu	Thr 80
Phe	Leu	Asp	Asp	Ser 85	Ile	Cys	Thr	Gly	Thr 90	Ser	Ser	Gly	Asn	Gln 95	Val.
Asn	Leu	Thr	Ile 100	Gln	Gly	Leu	Arg	Ala 105	Met	Asp	Thr	Gly	Leu 110	Tyr	Ile
Cys	Lys	Val 115	Glu	Leu	Met	Туг	Pro 120	Pro	Pro	Tyr	Туг	Leu 125	Gly	Ile	Gly
Asn	Gly 130	Thr	Gln	Ile	Tyr	Val 135	Asn	Asp	Thr	Glu	Pro 140	Cys	Asn	Asp	Ser
Asp 145	Asn	Asn	His	Thr	Ala 150	Gln	Pro	Ala	Val	Val 155		Ala	Ser	Ser	Arg 160
Gly	Ile	Ala	. Ser	Phe	Val	Cys	Glu	Tyr	Ala 170		Pro	Gly	Lys	Ala 175	Thr
Glu	Val	. Arg	7 Val		Val	Leu	Arg	Gln 185		. Asp	Ser	Gln	Val		Glu
Val	. Суз	: Ala		. Thr	Tyr	Met	Met 200		Asn	. Glu	ı Leu	Thr 205		Leu	Asp
Asp	Ser 210		e Cys	5 Thr	Gly	Thr 215		Ser	Gl3	/ Asr	o Gln 220		. Asn	. Leu	Thr
Ile 225		a Gly	y Let	ı Arç	J Ala 230		Asp	Thr	Gl3	/ Let 235		Ile	cys	. Lys	Val 240
Glı	ı Lev	ı Me	t Ту:	r Pro		Pro	ту1	Туг	Let 250	-	y Ile	e Gl	/ Asr	n Gly 255	Thr
Glı	n Il	е Ту	r Va	l Ile	e Asp	Pro	Glı	ı Pro	с Су:	s Pro	o Ası	Se:	c Ala	a Glu	ı Pro

			260				Š	265					270		
Lys	Ser	Cys 275	Asp	Lys	Thr l		Thr (	Cys :	Pro	Pro		Pro . 285	Ala	Pro	Glu
Leu	Leu 290	Gly	Gly	Pro	Ser	Val 295	Phe	Leu	Phe	Pro	Pro 300	Lys	Pro	Lys	Asp
Thr 305	Leu	Met	Ile	Ser	Arg 310	Thr	Pro	Glu	Val	Thr 315	Cys	Val	Val	Val	Asp 320
Val	Ser	His	Glu	Asp 325	Pro	Glu	Val	Lys	Phe 330	Asn	Trp	Tyr	Val.	Asp 335	Gly
Val	Glu	Val	His 340		Ala	Lys	Thr	Lys 345	Pro	Arg	Glu	Glu	Gln 350	Tyr	Asn
Ser	Thr	Туг 355		Val	Val	Ser	Val 360	Leu	Thr	Val	Cys	His 365	Gln	Asp	Trp
Leu	Asn 370		/ Lys	Glu	Tyr	Lys 375	Cys	Lys	Val	Ser	Asn 380	Lys	Ala	Leu	Pro
Ala 385		o Ile	≥ Glı	ı Lys	Thr 390		Ser	Lys	Ala	. Lys 395		Gln	ı Pro	Arg	Glu 400
Pro	Glı	ı Va.	l Ty	r Thr 405		Pro	Pro	Ser	Arç 410		o Glu	Lev	ı Thi	Lys 415	s Asn
Glı	n Va.	l Se	r Le [.] 42		c Cys	s Leu	ı Val	. Lys 425		/ Phe	e Tyr	Pro	36 430		o Ile
Al	a Va	1 G1 43		p Gl	u Sei	c Ası	1 Gly		ı Pro	o Gli	u Ası	1 Ası		r Ly:	s Thr
Th	r Pr 45		ro Va	ıl Le	u Asj	p Se:		• Gl	y Se	r Fh	e Phe		и Ту	r Se	r Lys
Le 46		ır Va	al As	ър Ъу	s Se		g Tr	p Gl	n Gl	n Gl 47		n Va	l Ph	e Se	r Cys 480

<220>

#### **Sequence Listing**

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 490 485 Ser Leu Ser Pro Gly Lys 500 <210> 25 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> PCR primer, oligonucleotide TNFR1-EDF-EcoRI <400> 33 coggaattce ggtctggcat gggcctctcc acc <210> 26 <211> 37 <212> DNA <213> Artificial Sequence <220> PCR primer, oligonucleotide TNFR1-EDR-IgGh <223> <400> 26 37 cacaagattt gggctctgct gtggtgcctg agtcctc <210> 27 <:211> 37 <212> DNA <213> Artificial Sequence

<223>	PCR primer, oligonucleotide IgGl-T1F	
<400>	27	
	cag gcaccacage agageccaaa tettgtg	37
gaggace	edy generacine dynagerenda tentigry	3,
<210>	28	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide IgG1-R-XbaI	
<400>	28	
gctctag	yage teatttacee ggagaeaggg agag	34
<2107	29	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide TNFR2-EDF-EcoRI	
		•
<400>	29	
ccggaat	ttee gggcacceat ggegeeegte gee	33
<210>	30	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide TNFR2-EDR-IgGh	

<400>	30	
cacaagat	tt gggetetgeg tegeeagtge tecette	37
<210>	31	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<220≻		
<223>	PCR primer, oligonucleotide IgG-T2F	
<400>	31	
gaagggag	ca ctggcgacgc agagcccaaa tcttgtg	37
<b>-010</b>	20	
<210> <211>	32	
<211>	37	
<213>	INA	
\215×	Artificial Sequence	
<230>		
<223>	PCR primer, oligonucleotide TNFR1-CF-BamHI	
	16K Plimel, Oligoracieotide intri-Cr-Bamai	
<400>	32	
cgcggatc	cg ggaacattte actggteeet cacctag	37
	J. J	51
<210>	33	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide TNFR1-NR-BamHI	

<400>	33	
cgcggatco	cg teeteagtge cettaacatt eteaatetg	39
<210>	34	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide TNFR2-CF-BamHI	
<400>	34	
cgcggatc	ca acgcaactac accetaegee eeggag	36
<210>	35	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
*000		
<220>	DOD and a second	
<223>	PCR primer, oligonucleotide TNFR2-NR-BamHI	
<400>	35	
	og ctecetteag etgggggget g	74
09099460	ey electical ciggggget g	31.
<210>	36	
<211>	63	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	PCR primer, oligopusleotide marNFP1_TNFP1_Tac_F	

<400>	36	
aaaagcaad	og agaccaacaa gacctgecta cacaaegggt ecagggagaa gaaegatagt	60
gtg		63
<210>	37	
<211>	62	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide mgTNFR1-TNFR1-IgG-R	
<400>	37	
creeergg	ac cogttgtgta ggcaggtett gttggteteg ttgettttet tacagttact	60
		<i>c</i> 0
ac		62
<210>	38	
<211>	45	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	PCR primer, oligonucleotide mgTNFR2-TNFR2-IgG-F	
<400>	38	
atggatgo	caa actgeacgte eceggageee aacagcacat geegg	45
<210>	39	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
<220>		

<223>	PCR primer, oligonucleotide mgTNFR2-TNFR2-IgG-R	
<400>	39	
gcatgtgc	tg ttgggctccg gggacgtgca gtttgcatcc at	42
<210>	40	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide CD2F-EcoRI	
<400>	40	
ccggaatt	ca tgagctttcc atgtaaattt gtagcc	36
<210>	41	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide CD2R-PstI	
<400>	41	
ctctgcag	ga cagctgacag gctcgacact	30
<210>	42	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
	<del>-</del>	
<220>		
<223>	PCR primer, oligonuclectide IgG-F-PstI	

<400>	42	
atctgcag	ag cccaaatctt gtgac	25
<210>	43	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide CTLA4F-EcoRI	
	•	
<400>	43	
ccggaatt	ca tgaggacctg gccc	24
<210>	4 4	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide CTLA4R-PstI	
<400>	4 4	
ctctgcac	aa tetgggeaeg gtteaggate	30
<b>-010</b> :	45	
<210>	45	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
10.32		
<220>		
<223>	PCR primer, oligonucleotide CD2-NT-F	

<400>	45	
taaagagat	rt acgaatgee	19
<210>	46	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide CD2-CT-R	
<400>	46	
tgcaggac	ag ctgacagg	18
<210>	47	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220>		
<223>	PCR primer, oligonucleotide CTLA4-NT-F	
<400>	47	
ggacaacc	at geaegtggee eag	23
<210>	48	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
•		
<220>		
<223>	PCR primer, oligonucleotide CTLA4-CT-R	

<400>	48	
tgcagaat	ct gggcacgg	18
<210>	49	
<211>	43	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide mgCD2-CD2-IgG-F	
<400>	49	
cagtgtcg	ag aatgtcaget gteetaaaaa tattaegaat gee	43
<210>	50	
<211>	43	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer, oligonucleotide mgCD2-CD2-IgG-R	
<400>	50	
ggcattcg	ta atatttttag gacagetgae attetegaca etg	43
<210>	51	
	51	
<211>	64	
<212>	DNA	
<213>	Artificial Sequence	
<220×		
<220> <223>	DCD maximum all and a line and a	
~243>	PCR primer, oligonucleotide mgCTLA4-CTLA4-IgG-F	
<400>	51	

atttatgta	aa acgatacaga accgtgcaat gattcggata acaaccacac agcccagcct	60
gctg		64
<210>	52	
<211>	63	
<212>	DNA	
<213>	Artificial Sequence	
*		
<220>		
<223>	PCR primer, oligonucleotide mgCTLA4-CTLA4-IgG-R	
<400>	52	
aggctgggc	et gtgtggttgt tatcegaate attgeaeggt tetgtategt ttacataaat	60
ctg		63

International application No.
PCT/KR02/01427

#### A. CLASSIFICATION OF SUBJECT MATTER

IPC7 C07K 16/46

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 C07K 16/46, C07K 19/00, C12N 15

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Korean Patents and applications for inventions since 1975

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)

Medline, Biosis

#### C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	US 5,073,627 A (Immunex Corporation) 17 DECEMBER 1991 see the whole document	1
X, P  Y,P	EP1148065 A1 (ROSE-JOHN, STEFAN) 24 OCTOBER 2001 see column3, lines 20-40, claims	1  2-5, 7-10, 12, 14, 15
Y	EP0464533 A1 (HOECHST AKTIENGESELLSCHAFT) 8 JANUARY 1992 see claims	2-5, 7-10, 12, 14, 15
Y	US 5861151 A (BRISTOL-MYERS SQUIBB CO.) 19 JANUARY 1999 see column7, lines 40-45, Fig,1	2-5, 7-10, 12, 14, 15
A	US 5349053 A (PROTEIN DESIGN LABS, INC) 20 SEPTEMBER 1994 see the whole document	1-35
A	US 5428130 A (GENENTECH, INC) 27 JUNE 1995 see the whole document	1-35
A	US 6165476 A (BETH ISRAEL DEACONESS MEDICAL) 26 DECEMBER 2000 see the whole document	1-35

	Further	documents a	are listed	in the	continuation	of Box C.

X See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevence
- "E" earlier application or patent but published on or after the nternational

filing date

- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other
- "P" document published prior to the international filing date but later
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevence; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevence; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of mailing of the international search report

12 DECEMBER 2002 (12.12.2002)

than the priority date claimed

Date of the actual completion of the international search

11 DECEMBER 2002 (11.12.2002)

Authorized officer

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701,
Republic of Korea

HAN, Hyun Sook

Facsimile No. 82-42-472-7140

Telephone No. 82-42-481-5596





#### INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/KR02/01427

Patent document cited in search report	Publication date	Patent family , member(s)	Publication date
US 5073627 A	17.12.91	AU 6424090 A1	03.04.91
		EP 0489116 B1 WO9102754 A1	06.04.94 07.03.91
EP1148065 A1	24.10.01	NONE	
EP 0464533 A1	08.01.92	JP 5247094 A2 KR 0249572 B1 US 20010053539 A1	24.09.93 15.03.00 20.12.01
US 5861151 A1	19.01.99	AU 03327293 A1 EP 0619843 A1 WO 9313210 A1	28.07.93 19.10.94 19.01.99
US 5349053 A1	20.09.94	NONE	
US 5428130 A1	27.06.95	EP 1029870 A2 JP 5503009 T2 WO 9108298 A2	23.08.00 27.03.93 13.06.91
US 6165476 A1	26.12.00	AU 8392198 A1 JP 2001510682 T2 WO 9902711 A3	08.02.99 07.08.01 02.09.99