ΣΥΖΕΥΚΤΙΚΗ ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ (ΣΚΜ)

ΓΝΩΣΗ(ΛΟΓΙΚΗ) www.psounis.gr

Βήμα 1: Εξάλειψη των συνεπανωνών

 $\forall x [T(x) \Rightarrow (\exists y (P(x, y) \land \sim Q(x)) \land \forall y (\sim Q(y) \Rightarrow R(x, y)))]$ (εξάλειψη συνεπαγωγών)

 $= \forall x [\sim T(x) \lor (\exists y (P(x, y) \land \sim Q(x)) \land \forall y (\sim \sim Q(y) \lor R(x, y)))]$ (εφ.ν.διπλής άρνησης)

 $= \forall x \Big[\sim T(x) \lor \big(\exists y (P(x,y) \land \sim Q(x)) \land \forall y (Q(y) \lor R(x,y)) \big) \Big]$

Βήμα 2: Αρνήσεις μόνο στις ατομικές προτάσεις Δεν Απαιτείται

Βήμα 3: Εξάλειψη Υπαρξιακών Ποσοδεικτών (Σκολεμοποίηση) $= \forall x [\sim T(x) \lor ((P(x, f(x)) \land \sim Q(x)) \land \forall y (Q(y) \lor R(x, y)))]$

Βήμα 4: Επονόμαση Μεταβλητών Καθολικών Ποσοδεικτών Λεν απαιτείται

Βήμα 5: Μετακίνηση των ποσοδεικτών αριστερά

 $\forall x \forall y \Big[\sim T(x) \lor \Big((P(x, f(x)) \land \sim Q(x)) \land (Q(y) \lor R(x, y)) \Big) \Big]$

Βήμα 6: Μετακίνηση των διαζεύξεων στο επίπεδο των κυριολεκτημάτων

$$\forall x \forall y \left[\sim T(x) \lor \left(\left(P(x, f(x)) \land \sim Q(x) \right) \land \left(Q(y) \lor R(x, y) \right) \right) \right]$$
 (νόμος επιμερισμού)

$$= \forall x \forall y \left[\left(\neg T(x) \lor \left(P(x, f(x)) \land \neg Q(x) \right) \right) \land \left(\neg T(x) \lor \left(Q(y) \lor R(x, y) \right) \right) \right]$$
(νόμος επιμερισμού)

$$= \forall x \forall y \left[\left(\left(-T(x) \lor P(x, f(x)) \right) \land \left(-T(x) \lor \neg Q(x) \right) \right) \land \left(-T(x) \lor Q(y) \lor R(x, y) \right) \right]$$

$$= \forall x \forall y \left[\left(-T(x) \lor P(x, f(x)) \right) \land \left(-T(x) \lor \neg Q(x) \right) \land \left(-T(x) \lor Q(y) \lor R(x, y) \right) \right]$$

Βήμα 7: Απάλειψη του καθολικού ποσοδείκτηκαι του ΑΝΟ

 $1. \sim T(x_1) \vee P(x_1, f(x_1))$

 $2. \sim T(x_2) \vee \sim Q(x_2)$

 $3. \sim T(x_3) \vee Q(y_1) \vee R(x_3, y_1)$

Βήμα 1: Με το νόμο: $A \Rightarrow B \equiv \sim A \lor B$

Βήμα 2: Με τους νόμους : $\sim \forall x[\dots] \equiv \exists x \sim [\dots]$ \sim (A \wedge B) \equiv (\sim A \vee \sim B) $\sim \exists x[...] \equiv \forall x \sim [...]$ $\sim (A \lor B) \equiv (\sim A \land \sim B)$ Άρνηση Ποσοδείκτη De Morgan

Βήμα 3: Όχι στην εμβέλεια καθολικού: Σταθερά $\exists x \forall y (Q(x,y)) \equiv \forall y (Q(A,y))$

Στην εμβέλεια καθολικών: Συνάρτηση με όρισμα τις μεταβλητές των καθολικών:

$$\forall x \forall z \exists y (Q(y,x)) \equiv \forall x \forall z (Q(f(x,z),x))$$

Βήμα 4: Αλλαγή ονόματος μεταβλητής αν έχουμε δύο καθολικούς ποσοδείκτες με το ίδιο όνομα

Βήμα 5: Με τη σειρά που τους βλέπουμε.

Βήμα 6: OR στις ατομικές προτάσεις. Νόμος Επιμερισμού: $A \lor (B \land \Gamma) = (A \lor B) \land (A \lor \Gamma)$

ΣΚΜ για προτάσεις HORN (και παραλλαγές):

