## 'Bad' Infrastructure





# Building Web Apps on Google's Infrastrucutre

Presented by



**Eric Jiang** 

This presentation's code/slides can be found on https://github.com/lorderikir/googlecloud-techtalk



## **Talk Summary**

- 1. Introduction to Google Cloud
- 2. What is Google App Engine
  - a. GAE Environments
  - b. What is Scaling and Why is it Important?
- 3. Deep-Dive
  - a. Setting up Google SDK tools
- 4. Other Tools

[NOTE]: You can play with Google Cloud Platform off your student accounts

#### Introduction

#### What is Google Cloud Platform?

Google Cloud Platform lets you build and host applications and websites, store data, and analyze data on Google's scalable infrastructure.

#### Composes of many applications, such as:

- Google App Engine (GAE)
- Google Container Engine (GCE)
- Google DataStore
- Cloud ML (built off *TensorFlow*)
- and much more

Did you know that Firebase and API.AI are both on GCP

### Some Products on GCP



Cloud Bigtable

Cloud Pub/Sub

## Google App Engine

- designed around the fact that Google just can't send everyone into their datacentre(s) and update applications across their many datacenters
- Built off Remote Deployments

| Language                          | Environment              |
|-----------------------------------|--------------------------|
| Java 7 (and Kotlin <sup>1</sup> ) | Standard                 |
| Java 8                            | Standard (Beta)/Flexible |
| Node.js                           | Flexible                 |
| Python 2.7                        | Standard                 |
| Python 3.5                        | Flexible                 |

<sup>&</sup>lt;sup>1</sup> This for you Kotlin fans out there

**Standard Environments** run in a specialised envrionment. Though building the application is more constrained then other environments, it means scaling up is faster.

**Flexible Environment** applications run off a Docker container, it is designed for applications that recieve constant traffic. When deployed they are Google Compute Engine VM<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> Because they run off Docker, you can write your own Dockerfile Configuration to deploy

## Horizontal vs Veritcal Scaling

Me when I look at Scaling:









#### **Benefits of Horizontal Scaling**

- Dynamic scaling allows spinning up more instances and nodes faster, i.e. if you suddenly get a influx of traffic
- Vertical Scaling is limited to capacity of resources, simply adding more resources
- Good examples include Niantic (PokemonGo) and Australian Census 2016

#### **Demo Section**



## Installing the SDK

- 1. Install the SDK over https://cloud.google.com/sdk/downloads
- 2. Authenticate Using gcloud init (login using your Monash Student Account)
- 3. You may need Java (JDK 1.8) and Maven (MVN) Installed if you are using the package provided.

If you are interested in developing on the framework provided I strongly suggest for you to read the docs.

Framework: http://tinyurl.com/mplan-baseapi

## **Deploying the App**

#### Other Tools Available on GCP

- Cloud ML (Google Cloud Machine Learning) which is built off TensorFlow
- Compute Engine Google VMs
- Container Engine built off Kubernetes and allows deployment of custom applications
- Cloud Storage CDN provider of files (like *Amazon S3*)
- Network Balancer for Load Balancing of traffic for your applications
- Cloud APIs such as NLP, Sentiment Analysis, DLP, etc.
- and Much more

## Questions