

Extracting features: Statistical Shape Models

Dr Pablo Lamata

Sir Henry Dale Fellow - Senior Lecturer

CMIB - Cardiac Modelling & Imaging Biomarkers Group

Dept. Biomedical Engineering

How big is your heart?

Neat Fact: On average, your body has about 5 liters of blood continually traveling through it by way of the circulatory system.

How to squeeze the orange (current images) better?

An atlas = An average

The vision

• From mass, diameter, thickness... to a coefficient of a parametric shape space

- [3] Lamata et al (2014) "An automatic service for the personalization of ventricular cardiac meshes" *J Royal Soc Interface*
- [4] Lewandowski A et al (2013) "Preterm Heart in Adult Life: Cardiovascular Magnetic Resonance Reveals Distinct Differences in Left Ventricular Mass, Geometry, and Function" *Circulation*.

The vision

- From mass, diameter, thickness... to a coefficient of a parametric shape space
 - Build meshes [5]
 - 2. Reduce dimensionality PCA
 - Get Coefficients
 - 4. Identify relevant shape features LDA

[5] Varela M et al (2015) "Optimal Prediction of Atrial Fibrillation Recurrence After Ablation: A Computational Anatomy Study" *Circulation*

[6] Gonzalez G et al (2015), "Adverse Left Ventricular Remodelling Patterns Predict Response to Cardiac Resynchronization Therapy" *Circulation*

1. Build meshes

Encode shape, in 3D or 2D

- [2] Lamata P et al (2011), "An accurate, fast and robust method to generate patient-specific cubic Hermite meshes." Med Image Anal. 15(6):801-13"
- [3] Lamata P et al (2014), "An automatic service for the personalization of ventricular cardiac meshes." J R Soc Interface. 11(91):20131023.

2. Reduce dimensionality

- Pre-align all shapes
- Principal component analysis

The "anatomical mode"

This is the new "length", the new "diameter"...

3. Get shape coefficients

- The new biomarkers!
- How much of change in each direction (each anatomical mode)

-2std

M

4. Identify relevant shape features

- A linear combination of PCA modes is another anatomical mode
 - Linear Discriminant Analysis
 - Regression analysis

Examples

Predict CRT responder
Impact of breast milk on growth
Impact of drug on gestation
Impact of surgery

1 – CRT responders

- Who will benefit from a CRT?
 - 50 HF subjects 25 responders

Warrnier et al (2018) "An Asymmetric Wall-Thickening Pattern Predicts Response to Cardiac Resynchronization Therapy" *JACC Card. Imag. (in press)*

2 - Impact of breast milk

- Is breast milk better than formula for preterms? [7]
 - Population of 20-30 year old adults
 - Formula (EFF, n=16) vs. breast (EHM, n=30) vs. controls (YAT, n=103)
 - Finding: EFF are smaller (mainly length)

 Step further: find remodelling pattern by (1) premature birth or (2) milk vs formula.

[7] Lewandovski et al (2016) "Breast Milk Consumption in Preterm Neonates and Cardiac Shape in Adulthood" *Pediatrics*

The first two modes

Mode 1

Mode 2

Preterm vs term

EHM vs EFF

"Length"

Discussion

- Breast milk closer to controls
- but triggering a compensatory growth mechanism?

3 - Impact of drugs [*]

- Hyperoxia impact on development?
- Can drugs compensate for it?
- Material:
 - Neonatal rats at day 10 of life
 - H (n=12) Hyperoxia: high oxygen concentrations, 80%. This groups later develop high blood pressure, and cardiac alterations similar to the young-adult preterms
 - NN (n=12) Normoxia (21% of oxygen)
 - Within each subgroup
 - Control (water or cyclodextrin the vehicle)
 - ANGP (n=3) Angiotensin 1-7
 - ALAP (n=3) Alamandine

*: Bertagnolli & Nuyt

Imaging & segmentation

The average of each group

The shape space

Discussion

- Hyperoxia has a clear impact on development during pregnancy
- Drugs do not reverse it, but accentuate it, in a different "remodelling direction"
- Future: follow out of oucomes

Caution: tiny sample size!!

4 – Impact of surgery [8]

Hypoplastic Left Heart Syndrome

- Complex surgery different "schools"
- Small numbers many factors

Opportunity: huge impact for life

[8] Wong et al, (2016). Right ventricular morphology and function following stage I palliation with a MBT shunt versus a RVPA conduit. *European Journal of Cardio-Thoracic Surgery*

Shunts: two "schools"

modified Blalock-Taussig (MBT)

right ventricle-to-pulmonary artery (RVPA)

[8] Wong et al, (2016). Right ventricular morphology and function following stage I palliation with a MBT shunt versus a RVPA conduit. *European Journal of Cardio-Thoracic Surgery*

The result...

Lesson learned

Useful information might be in the small modes!

How good is the picture?

Sources of uncertainty in shape

ACQUISITION LIMITATIONS [2]

SEGMENTATION

MESHING

STATISTICAL MODELLING

Challenge: maximise final overlap (accurate, precise, reproducible)!

[2] Lamata et al, (2014) Images as drivers of progress in cardiac computational modelling. *Prog Biophys Mol Biol.*

A good one!

- Providing new insights
- Differences never revealed before

Working on getting until the last drop!

- Data limitations to be overcomed
- Processing: anatomical matching
- Analysis: only linear modes

Summary

Computational anatomy to improve risk stratification

