CB n° 1 - Intégrales généralisées - Sujet 1

Dans tous les exercices, on notera f la fonction intégrée. Dans tous les cas, f est continue par morceaux sur l'intervalle I précisé, donc localement intégrable sur I.

1. Donner la nature des intégrales suivantes :

a.
$$\int_1^{+\infty} \frac{1}{x} \tan\left(\frac{1}{x}\right) dx$$
 $I = [1; +\infty[, f \text{ est positive sur } I \text{ (on a bien } \frac{1}{x} \in \left[0; \frac{\pi}{2}\right[\text{ pour } x \in I).$

 $\underline{\operatorname{En} + \infty} : f(x) \underset{+\infty}{\sim} \frac{1}{x^2}$, donc par comparaison à une intégrale de référence, $\int_1^{+\infty} f(x) \mathrm{d}x$ converge.

b.
$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{\sin^2 x} \qquad I = \left]0; \frac{\pi}{2}\right], f \text{ est positive sur } I.$$

 $\underline{\text{En }0:}\ f(x) \underset{0}{\sim} \frac{1}{x^2}, \ \text{donc par comparaison à une intégrale de référence}, \int_{0}^{\frac{\pi}{2}} f(x) \mathrm{d}x \ \text{diverge}.$

c.
$$\int_0^{+\infty} \frac{1}{\sqrt{x}} \ln\left(1 + \frac{1}{x}\right) dx$$
 $I =]0; +\infty[, f \text{ est positive sur } I.$

En 0: $x^{\frac{2}{3}}f(x) \sim -\ln(x)x^{\frac{1}{6}}$ donc, par croissances comparées, $\lim_{x\to 0} x^{\frac{2}{3}}f(x) = 0$ et par suite, $f(x) = o_0\left(\frac{1}{x^{\frac{2}{3}}}\right)$; par comparaison à une intégrale de référence, $\int_0^1 f(x) dx$ converge.

 $\underline{\operatorname{En} + \infty} : f(x) \underset{+\infty}{\sim} \frac{1}{x^{\frac{3}{2}}},$ donc par comparaison à une intégrale de référence, $\int_{1}^{+\infty} f(x) \mathrm{d}x$

En conclusion, $\int_0^{+\infty} f(x) dx$ converge.

d.
$$\int_0^1 \frac{(-1)^{E(\frac{1}{x})}}{\sqrt{\sin x}} dx$$
 $I =]0; 1]$

En 0 : $|f(x)| \sim \frac{1}{\sqrt{x}}$, donc par comparaison à une intégrale de référence, $\int_0^1 |f(x)| dx$ converge, donc $\int_0^1 f(x) dx$ converge.

 $\operatorname{Sp\'e}$ PT B Page 1 sur 4

2. Après en avoir justifié l'existence, calculer les intégrales suivantes :

a.
$$\int_0^{+\infty} \frac{\mathrm{d}x}{\mathrm{ch}x}$$
 $I = [0; +\infty[, f \text{ positive sur } I.$

 $\underline{\operatorname{En} + \infty}: f(x) \underset{+\infty}{\sim} 2\mathrm{e}^{-x}$, donc par comparaison à une intégrale de référence, $\int_0^{+\infty} f(x) \mathrm{d}x$ converge.

On effectue le changement de variable
$$t=\mathrm{e}^x$$
, et on obtient :
$$\int_0^{+\infty} f(x)\mathrm{d}x = \int_1^{+\infty} \frac{2}{1+t^2}\mathrm{d}t = [2\mathrm{Arctan}\ t]_1^{+\infty} = \frac{\pi}{2}.$$

b.
$$\int_{1}^{+\infty} \frac{\ln x}{x^2} dx \qquad I = [1; +\infty[, f \text{ positive sur } I.$$

 $\underline{\operatorname{En} + \infty}$: Par croissances comparées, $\lim_{x \to +\infty} x^{\frac{3}{2}} f(x) = 0$ donc $f(x) = o_{+\infty} \left(\frac{1}{x^{\frac{3}{2}}}\right)$; par comparaison à une intégrale de référence, $\int_1^{+\infty} f(x) dx$ converge.

On effectue une intégration par parties avec :

$$u(x) = \ln x, v(x) = \frac{-1}{x}$$
, de classe C^1 , $\lim_{x \to +\infty} u(x)v(x) = 0$ (par croissances comparées),

et on obtient :
$$\int_{1}^{+\infty} f(x) dx = \left[\frac{-\ln x}{x} \right]_{1}^{+\infty} + \int_{1}^{+\infty} \frac{dx}{x^{2}} = \left[\frac{-1}{x} \right]_{1}^{+\infty} = 1.$$

Spé PT B

${ m CB^{\circ}}$ 1 - Intégrales généralisées - Sujet 2

Dans tous les exercices, on notera f la fonction intégrée. Dans tous les cas, f est continue par morceaux sur l'intervalle I précisé, donc localement intégrable sur I.

1. Donner la nature des intégrales suivantes :

a.
$$\int_0^{+\infty} \sqrt{1 - \cos \frac{1}{x^2}} dx$$
 $I =]0; +\infty[, f \text{ est positive sur } I.$

En 0: $0 \le f(x) \le \sqrt{2}$ donc, par domination, $\int_0^1 f(x) dx$ converge.

 $\underline{\operatorname{En} + \infty} : f(x) \underset{+\infty}{\sim} \frac{1}{\sqrt{2}x^2}$ donc, par comparaison à une intégrale de référence, $\int_1^{+\infty} f(x) \mathrm{d}x$

En conclusion, $\int_0^{+\infty} f(x) dx$ converge.

b.
$$\int_0^1 \frac{\ln(1-x)}{x} dx \qquad I =]0; 1[, f \text{ est négative sur } I.$$

En 0: $\lim_{x\to 0} f(x) = -1$, donc par prolongement par continuité, $\int_0^{\frac{1}{2}} f(x) dx$ converge.

 $\underline{\text{En 1:}} \ f(x) \underset{1}{\sim} \ln(1-x) \,; \, \text{la fonction } ln \text{ est intégrable en 0, donc, par changement de variable } \\ (t=1-x) \int_{\frac{1}{2}}^{1} \ln(1-x) \mathrm{d}x \text{ converge, et par comparaison, } \int_{\frac{1}{2}}^{1} f(x) \mathrm{d}x \text{ converge.}$

En conclusion, $\int_0^1 f(x) dx$ converge.

c.
$$\int_0^{\frac{\pi}{4}} \frac{\mathrm{d}x}{(\tan x)^2} \qquad I = \left]0; \frac{\pi}{4}\right], f \text{ est positive sur } I.$$

En 0 : $f(x) \sim \frac{1}{x^2}$, donc par comparaison à une intégrale de référence, $\int_0^{\frac{\pi}{4}} f(x) dx$ diverge.

d.
$$\int_{1}^{+\infty} (-1)^{E(x)} \sin \frac{1}{x^2} dx$$
 $I = [1; +\infty[$

 $\frac{\text{En } + \infty :}{\text{donc}} \frac{|f(x)|}{\int_{1}^{+\infty}} \frac{1}{x^2}, \text{par comparaison à une intégrale de référence}, \int_{1}^{+\infty} |f(x)| \mathrm{d}x \text{ converge}, \\ \text{donc} \int_{1}^{+\infty} f(x) \mathrm{d}x \text{ converge}.$

Spé PT B Page 3 sur 4

2. Après en avoir justifié l'existence, calculer les intégrales suivantes :

a.
$$\int_0^{+\infty} \frac{1}{x^2} e^{-\frac{1}{x}} dx \qquad I =]0; +\infty[, f \text{ est positive sur } I.$$

En 0: $\lim_{x\to 0} f(x) = 0$ (croissances comparées) donc f se prolonge par continuité en 0; $\int_0^1 f(x) dx$ converge.

 $\underline{\operatorname{En} + \infty} : f(x) \underset{+\infty}{\sim} \frac{1}{x^2}$, donc par comparaison à une intégrale de référence, $\int_1^{+\infty} f(x) dx$

En conclusion $\int_0^{+\infty} f(x) dx$ converge.

En utilisant une primitive on a : $\int_0^{+\infty} f(x) \mathrm{d}x = \left[\mathrm{e}^{-\frac{1}{x}} \right]_0^{+\infty} = 1.$

b.
$$\int_0^{+\infty} e^{-\sqrt{x}} dx \qquad I = [0; +\infty[, f \text{ positive sur } I.$$

 $\underline{\operatorname{En}\,+\infty\,:}\,\operatorname{Par}\,\operatorname{croissances}\,\operatorname{comparées},\,\lim_{x\to+\infty}x^2f(x)=0,\,\operatorname{donc}\,f(x)=o_{+\infty}\left(\frac{1}{x^2}\right);$ par comparaison à une intégrale de référence, $\int_1^{+\infty}f(x)\mathrm{d}x\,\operatorname{converge}.$

On effectue le changement de variable $t = \sqrt{x}$, on obtient : $\int_0^{+\infty} f(x) dx = \int_0^{+\infty} 2t e^{-t} dt$; on effectue une intégration par parties, avec :

 $u(t) = t, v(t) = -2e^{-t}$, de classe C^1 , $\lim_{t \to +\infty} (u(t)v(t)) = 0$ (par croissances comparées),

et on obtient : $\int_0^{+\infty} f(x) dx = \int_0^{+\infty} 2t e^{-t} dt = \left[-2t e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} 2e^{-t} dt = 2.$

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$