PROBLEM SET 9

Due: Th, April 23, 6.00 PM

Topics: Self-adjoint operators, L^2 spaces, Hermite's operator

- 1. Reading. Sections 2.8, 2.9 (up to Theorem 2.14), 4.9, 4.10, 4.11 in Holland's book.
- 2. Self-adjoint Operators. Consider the complex Hilbert space $\mathcal{H}=L^2([0;1];dx)$ and the Laplace operator $\ell=-\partial_x^2$ with domain

$$D_{\ell} = \{ \psi \in H^2([0;1]; dx) : \psi(0) = \psi(1) \text{ and } \psi'(0) = \psi'(1) \}.$$

Prove that ℓ is self-adjoint by proceeding as follows:

a) Using integration by parts, prove that for every $\phi \in D_{\ell}, \psi \in D_{\ell^*}$, we have that

$$0 = \partial_x \phi(0) \Big(\overline{\psi}(0) - \overline{\psi}(1) \Big) + \phi(0) \Big(\overline{\partial_x \psi}(1) - \overline{\partial_x \psi}(0) \Big).$$

- b) Now, given $\psi \in D_{\ell^*}$, we need to conclude that $\psi \in D_{\ell}$. Notice that the identity from the previous part holds true for **every** $\phi \in D_{\ell}$. Make smart choices to conclude that $\psi \in D_{\ell}$. This proves $D_{\ell} = D_{\ell^*}$ and hence that ℓ is self-adjoint.
- **3.** L^2 -Spaces. Consider the space $L^2([0;1]^2, dxdy)$, defined by

$$L^{2}([0;1]^{2}, dxdy) = \left\{ \psi : [0;1]^{2} \to \mathbb{C} : \int_{0}^{1} dx \int_{0}^{1} dy |\psi(x,y)|^{2} < \infty \right\}.$$

Denote by $(\varphi_p)_{p\in\mathbb{Z}}$ our standard orthonormal basis of $L^2([0;1],dx)$, $\varphi_p(x)=e^{2\pi i p x}$. Using the basis elements φ_p , define a new sequence $(\varphi_p\otimes\varphi_q)_{p,q\in\mathbb{Z}}$ by

$$\varphi_p \otimes \varphi_q(x,y) = \varphi_p(x)\varphi_q(y) = e^{2\pi i p x} e^{2\pi i q y}$$

for all $x, y \in [0; 1]$. Prove that for every $p, q \in \mathbb{Z}$, we have $\varphi_p \otimes \varphi_q \in L^2([0; 1]^2, dx)$ and that $(\varphi_p \otimes \varphi_q)_{p,q \in \mathbb{Z}}$ is an orthonormal sequence in $L^2([0; 1]^2, dxdy)$. Using the hint below, provide a semi-rigorous argument¹ why this sequence forms a complete orthonormal basis of $L^2([0; 1]^2, dxdy)$. It is called the *tensor product basis*.

Hint: It is a useful fact that if $(\zeta_k)_{k\in\mathbb{N}}$ is a complete orthonormal basis in a Hilbert space \mathcal{H} , and $\langle f, \zeta_k \rangle_{\mathcal{H}} = 0$ for all $k \in \mathbb{N}$, then $f = 0 \in \mathcal{H}$. Why is that?

3. Hermite's Equation. Read carefully Section 2.8 and have a look at Exercise 1 of section 2.9 in Holland's book: For fixed $n \in \mathbb{N}_0$, consider the 2nd order linear ODE

$$y'' - xy' + ny = 0. (1)$$

Use the power series expansion method to prove that for every $n \in \mathbb{N}_0$, the differential equation (1) admits a polynomial solution H_n of degree $n \in \mathbb{N}_0$ with the property that if n is even, the polynomial $x \mapsto H_n(x)$ has only non-zero coefficients for even powers of x and if n is odd, $x \mapsto H_n(x)$ has only non-zero coefficients for odd powers of x. Compute H_0 , H_1 and H_2 .

4. Hermite's Operator Prove that every polynomial is compatible with the Hermite operator $\ell(y) = -e^{x^2/2}\partial_x(e^{-x^2/2}\partial_x y)$, as defined in class.

¹Semi-rigorous means here that there are some details from Lebesgue integration that we, strictly speaking, do not know. Nevertheless, that's not going to keep us from providing a strong, intuitive argument!