Rekapitulieren Sie: Bewertung physischer Netzwerktopologien

Topologie	Durchmesser	Grad	regulär	Bisektionsweite	Symmetrie	Skalierbarkeit	Konnektivität
Ring	$\frac{N}{2}$	2	Ja	2	Ja	Ja	2
Linie	N-1	$2-\frac{2}{N}$	Nein	1	Nein	Ja	1
Teil- vermascht	variabel	i.d.R. hoch	Nein	variabel	Nein	Ja	variabel
Voll- vermascht	1	hoch: <i>N</i> — 1	Ja	$\left(\frac{N}{2}\right)^2$	Ja	Nein	N-1
Bus	1	1	Ja	1	Ja	Ja	1
Stern	2	$2-\frac{2}{N}$	Nein	Knoten nicht teilbar!	Nein	Ja	1
Baum	variabel	$2-\frac{2}{N}$	Nein	1	Nein	Ja	1

Hinweise zum Grad 6 Knoten, 5 Kanten

Da wir beim Grad die durchschnittliche Anzahl der Links pro Knoten betrachten, spielt es keine Rolle, ob es eine Linie, ein Stern oder ein Baum ist. ©

Hinweis zur Bisektionsweite Vollvermascht

Bei Aufteilung der Knoten in zwei Hälften hat jeder Knoten Verbindungen/Links zu N/2 Knoten der anderen Hälfte, d.h.:

$$\left(\frac{N}{2}\right) * \left(\frac{N}{2}\right) = \left(\frac{N}{2}\right)^2$$