Reinforcement Learning Homework 8

Reinforcement Learning Homework 8

Deadline 10th December 2024

Students Sahiti Chebolu, Surabhi S Nath, Xin Sui

Question 1. Importance weighted policy gradient

We assume one step MDPs here.

- We want to maximise the importance weighted rewards: $J_{\theta}(\theta) = \mathbb{E}_{\pi_{\theta^{old}}\left[\frac{\pi_{\theta}(s,a)}{\pi_{oold}(s,a)}r\right]}$

- We expand the expectation by summing over the state-action distribution induced by $\pi_{\theta^{old}}$: $\nabla_{\theta} J_{\theta}(\theta) = \nabla_{\theta} \sum_{s} \mu(s) \sum_{a} \pi_{\theta^{old}}(s,a) \frac{\pi_{\theta}(s,a)}{\pi_{\theta^{old}}(s,a)} r$

- Assuming that $\mu(s)$ doesn't change with π_{θ} , the only term that is dependant on θ is $\pi_{\theta}(a,s)$: $\nabla_{\theta}J_{\theta}(\theta) = \sum_{s} \mu(s) \sum_{a} \pi_{\theta^{old}}(s,a) \frac{\nabla_{\theta}\pi_{\theta}(s,a)}{\pi_{\theta^{old}}(s,a)} r$
- This is nothing but: $\nabla_{\theta}J_{\theta}(\theta)=\mathbb{E}_{\pi_{\theta^{old}}}\Big[rac{\nabla_{\theta}\pi_{\theta}(s,a)}{\pi_{\theta^{old}}(s,a)}r\Big]$

Question 2. PPO

(a)-(c)

Check code and plots in PPO.py and Gym-PPO-plot.ipynb. Training reward does increase through training for all values of ϵ except 0.01. For some (such as $\epsilon = 0.2$), training reward decreases after reaching a peak.

(d)

Results for $\epsilon=0.5$ look promising. Here, the training rewards increased and stayed stable. Plots for re-runs with different seeds are in Gym-PPO-plot.ipynb. On re-runs, while rewards did increase through training, they were not as promising as the initial run.

(e)

To test, we used the weights stored in the best run with $\epsilon = 0.5$ (this was the very first run for us). We got the following test rewards in 10 test episodes:

Reward
66
77
126
69
120
31
93
86
112
31

The lander was able to	o touch the surfac	e of the moon	and stay ther	e in most ca	ses. However,	to reach	rewards of
> 200 where the lunar	r lander is stable, v	we would have	to tweak oth	er hyperpara	meters		