基礎コンピュータ工学 第2章 情報の表現 (パート3:2進数の計算と2の補数)

https://github.com/tctsigemura/TecTextBook

基礎コンピュータ工学第2章 情報の表現 (パ

2進数の和差の計算

10**進数の場合**を思い出してみる.

- 9より大きくなる時に桁上げが発生する。)大きくなら時に**11」といっ** 135 155 154 104 + 107 + 127 + 167 292 099 + 104 + 001 207 212 262 322 100
- 桁借りでは10借りてくる.

•••	, IH	10. 10	III /	- , ,	•							
		207		212			262		322			100
	-	104	-	107		-	127	-	167		-	001
		103		105			135		155	-		099

基礎コンピュータ工学第2章 情報の表現 (パー

2進数の和差の計算

2進数の場合は以下のようになる.

1より大きくなる時に桁上げが発生する。

	010		001		010		011		011	
+	001	+	001	+	011	+	001	+	011	
	011		010		101		100		110	-

桁借りでは2借りてくる。

	011		010		101		100		110	
-	001	_	001	_	011	_	001	-	011	
	010		001		010		011		011	_

基礎コンピュータ工学第2章 情報の表現 (バ・

2進数の和差の計算(問題)

問題8:10進数の計算と2進数の計算をしなさい.

10進 2進 0011 + 1000 + 8

5+7 -10進 っ進 5 0101 + 7 + 0111

- 11-8 - 10進 2進 11 1011 - 8 - 1000 - 12-7 — 10進 2進 12 1100 7 - 0111

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

負の数を2進数でどのようにビットで表現するか約束する.

(1) 符号付き絶対値表現

左端のビットを符号 (+/-) として使用する.

- 4ビット符号付き絶対値表現の例 -

	. 13 3 14	0 10 7	
負数	2進数	正数	2進数
-7	1111_{2}	+7	0111_2
-6	1110_{2}	+6	0110_2
-5	1101_{2}	+5	0101_2
-1	1001_2	+1	0001_2
-0	1000_2	+0	0000_2
	-7 -6 -5	$\begin{array}{cccc} -7 & 1111_2 \\ -6 & 1110_2 \\ -5 & 1101_2 \\ \dots & \dots \\ -1 & 1001_2 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- 4ビットで-7から+7の範 囲を表現できる.
- 0の表現が二つある(-0 + 0.

基礎コンピュータ工学第2章 情報の表現(パー

負数の表現

· 補数表現 —

- n桁のb進数において b^n からxを引いた数yをxに対する「bの補数」と呼ぶ。 $y = b^n - x$ (y は x に対する b の補数)
- n桁のb進数において b^n-1 からxを引いた数zをxに対する「(b-1)の補数」と

$$z = b^n - 1 - x$$
 (zはxに対する(b-1)の補数)

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

- 2桁の10進数における補数の例 -

$$b=10$$
進数

$$n=2$$
桁

$$b^n = 100$$
 $x = 25$ 75 は 25 に対す 3 10 の補数

$$n=2$$
桁 99

$$b^{n}-1=99$$
 $x=25$ 74 は 25 に対する 9 の補数

基礎コンピュータ工学第2章 情報の表現 (パ-

負数の表現

- 4桁の2進数における補数の例 -

$$n=4$$
桁 10000_2 1010_2 に $b^n=10000_2$ -1010_2 対する $x=1010_2$ 0110_2 2 $の補数$

$$b=2$$
進数 0101_2 は $n=4$ 桁 1111_2 1010_2 に

 $0110_2~\mathrm{l}\sharp$

対する

基礎コンピュータ工学第2章 情報の表現(バ・

負数の表現

(2) 1の補数による負数の表現

1の補数を負数の表現に使用する.

- 4ビット2進数の1の補数(2⁴ - 1 - x = z) -

もとの数 (x)	補数へ変換		補数(z)
0	$1111_2 - 0000_2$	=	1111_{2}
1	$1111_2 - 0001_2$	=	1110_{2}
2	$11111_2 - 0010_2$	-	1101_{2}
3	$11111_2 - 0011_2$	-	1100_{2}
4	$1111_2 - 0100_2$	=	1011_{2}
5	$1111_2 - 0101_2$	-	1010_{2}
6	$1111_2 - 0110_2$	=	1001_{2}
7	$1111_2 - 0111_2$	=	1000_{2}

基礎コンピュータ工学第2章 情報の表現 (バー

負数の表現

- 1の補数を用いた符号付き数値 -

-7	1000_{2}	_	_	_	_	_	_	_	+
-6	1001_{2}	-	-	-	-	-	-	+	
-5	1010_{2}	-	-	-	-	_	+		Ì
-4	1011_{2}	-	-	-	-	+			

- $-3 \quad 1100_2$ $-2 \quad 1101_2$ $-1 \quad 1110_2$ -0 1111₂ +
- $+0 \quad 0000_2 \quad + \quad |$ 0000_2 - + 00010_2 - - -+1+2
- +3 0011_{2} 0100_{2} +4
- 0101_{2}
- $+6 \quad 0110_{2}$ 0111_{2}

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

• 1の補数の求め方

ビット反転

$$x = +3_{10} = 0011_2$$
 (もとの数)

 $y = -3_{10} = 1100_2$ (1の補数)

• 表現できる数値の範囲

正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

基礎コンピュータ工学第2章 情報の表現(パー

負数の表現

(3) 2の補数による負数の表現

2の補数 $(2^n - x)$ を負数の表現に使用する.

- 4ビット2進数の2の補数(2⁴ – x = y) -

もとの数 (x)	補数へ変換		補数 (y)
0	1 0000 2 0000 2	=	10000_{2}
1	$10000_2 - 0001_2$	=	1111_{2}
2	$10000_2 - 0010_2$	=	1110_{2}
3	1 0000 2 - 0011 2	=	1101_{2}
4	$10000_{2} - 0100_{2}$	=	1100_{2}
5	$10000_{2} - 0101_{2}$	=	1011_{2}
6	$10000_{2} - 0110_{2}$	=	1010_{2}
7	$10000_{2} - 0111_{2}$	=	1001_{2}
8	$10000_{2} - 1000_{2}$	=	1000_{2}

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

```
2の補数を用いた符号付き数値 ---
   1000_{2}
    10012 -
   -5
-4 1100_2 - -
-3 \quad 1101_2
-2 \quad 1110_2
-1 1111<sub>2</sub>
 0 - 0000_2
   0001_{2}
 1
    0010_{2}
 2
 3 00112
    0100_{2}
 4
    0101_{2}
 5
    0110_{2}
 6
 7 \quad 0111_2
                 基礎コンピュータ工学第2章 情報の表現 (パー
```

負数の表現

• 2の補数の求め方

ビット反転+1

 $x = +3_{10} = 0011_2$ (もとの数)

 $y = -3_{10} = 1100_2 + 1 = 1101_2$ (2の補数)

元に戻すのもビット反転+1

 $y = -3_{10} = 1101_2$ (2の補数)

 $y = +3_{10} = 0010_2 + 1 = 0011_2$ (もとの数)

• 表現できる数値の範囲

正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現(問題1/2)

問題9:次の10進数を2の補数表現形式の4桁の2進数に変換しなさい。

- **1)** 4₁₀
- 2) -4_{10}
- **3)** 5₁₀
- **4)** -5₁₀
- **5)** 6₁₀
- **6)** -6_{10}

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現(問題2/2)

問題1**0**:次の2の補数表現形式の4桁の2進数を10進数に変換しなさい。

- **1)** 1001₂
- **2)** 0111₂
- **3)** 1101₂
- **4)** 0011₂
- **5)** 1011₂
- **6)** 1100₂

基礎コンピュータ工学第2章 情報の表現(バー

16/1