## الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017



وزارة التربية الوطنية

امتحان شهادة البكالوريا

الشعبة: الآداب والفلسفة، لغات أجنبية

اختبار في مادة: الرياضيات المدة: 02 سا و30 د

# على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

# التمرين الأول: (06 نقاط)

- 1) أ) عين باقي القسمة الإقليدية لكل من الأعداد 4،  $4^3$  و  $4^3$  على 9.
  - $\cdot$ 4<sup>3n</sup>  $\equiv$ 1[9]،  $\cdot$ 1 عدد طبیعی من أجّل كل عدد طبیعی بيّن أنّ: من أجل كل عدد طبیعی
  - $4^{3n+1} \equiv 4[9]$ ، ستنتج أنّ: من أجل كل عدد طبيعي أبّ
    - $.2020^{1438} = 4[9]$  تحقّق أنّ: (2
- .9 بيّن أنّ العدد  $\left(2020^{1438} 2017^2 + 1995\right)$  يقبل القسمة على 9.

#### التمرين الثاني: (06 نقاط)

 $\cdot$  r المعرّفة على  $\mathbb N$  بحدها الأول  $u_n$  و أساسها

- .  $u_3 + u_5 = 20$  احسب الحد  $u_4$  علما أنّ (1
- .  $2u_4 u_5 = 7$ : قام الحد  $u_5$  علما الحد (2
  - $u_0$  استنتج قیمة r و احسب (3
- $u_n=3n-2$  ، n عدد طبیعی (4
- $S_n = u_0 + u_1 + \dots + u_n$  : المجموع المجموع الطبيعي المجموع (5
  - .  $S_n = 33$ : حيث العدد الطبيعي (6

#### التمرين الثالث: (08 نقاط)

. عدد حقیقی  $f(x)=-2+\frac{a}{x+3}$  بـ:  $\mathbb{R}-\left\{-3\right\}$  عدد حقیقی و نعتبر الداله  $f(x)=-2+\frac{a}{x+3}$ 

 $(C_f)$ . وليكن وراي تمثيلها البياني في المستوي المنسوب الى المعلم المتعامد المتجانس وليكن



- .  $(C_f)$  إلى المنحنى A(-2;5) النقطة a حتى تنتمي النقطة a إلى المنحنى (I
  - . a=7: نضع في كل ما يلي (II
  - $f(x) = \frac{-2x+1}{x+3}$  ،  $\mathbb{R} \{-3\}$  من  $f(x) = \frac{-2x+1}{x+3}$  ،  $\mathbb{R} \{-3\}$  من أجل كل
- احسب النهايات الآتية :  $\lim_{x\to +\infty} f(x)$  ،  $\lim_{x\to -3} f(x)$  ،  $\lim_{x\to -3} f(x)$  ،  $\lim_{x\to -\infty} f(x)$  احسب النهايات الآتية (2
  - .  $(C_f)$  المستقيمين المقاربين للمنحنى
  - . f أحسب (f'(x) ثم استنتج اتجاه تغير الدالة
    - f شكّل جدول تغيرات الدالة f
  - .  $-\frac{7}{4}$  واصل النّقط من المنحنى  $(C_f)$  التي يكون عندها معامل توجيه المماس يساوي  $(C_f)$ 
    - . جد إحداثيي نقطتي تقاطع المنحنى  $(C_f)$  مع حاملي محوري الإحداثيات ( $\mathbf{6}$ 
      - $(C_f)$  ارسم المستقيمين المقاربين و المنحنى (7

#### الموضوع الثانى

### التمرين الأول: (06 نقاط)

 $.b \equiv -1[13]$  و  $a \equiv 14[13]$  و عددان صحیحان حیث:  $a \equiv a$ 

. الترتيب القسمة الإقليدية للعددين a و b على a الترتيب (1a و 1a الترتيب ) بيّن أنّ باقي القسمة الإقليدية للعددين a

. 13 على a-b و a-b على 13 على 13 على 14 و a-b و a-b على 13 على 14 و a-b

 $a^{1438} + b^{2017}$  بيّن أنّ العدد  $a^{1438} + b^{2017}$  يقبل القسمة على (2

.  $b^{2017} + n + 1438 \equiv 0$ [13]: ميّن الأعداد الطبيعية n بحيث (3

#### التمرين الثاني: (06 نقاط)

في كل حالة من الحالات الأربع الآتية اقتُرحت ثلاث إجابات، واحدة فقط منها صحيحة، يطلب تحديدها مع التعليل.

1) الحد السّادس لمتتالية حسابية أساسها 3 وحدها الأول 1 هو:

-11 ( $\div$  -14 ( $\div$  -17 ( $\dagger$ 

2) مجموع 100 حد الأولى لمتتالية هندسية حدّها الأول هو 1 وأساسها 3 هو:

$$\frac{3^{100}-1}{2}$$
 (  $\Rightarrow$   $\frac{1-3^{100}}{2}$  (  $\Rightarrow$   $\frac{3^{101}-1}{2}$  (  $\uparrow$ 

c = 4x ، b = 6x - 3 ، a = 2x + 2: x عدد حقیقی (3

$$x = \frac{3}{4} \quad (\Rightarrow \qquad x = 0 \qquad (\Rightarrow \qquad x = \frac{4}{3} \quad (\uparrow )$$

 $u_{n+1} = \frac{1}{2} u_n + 1$ ، n ومن أجل كل عدد طبيعي  $u_0 = 1 : u_0 = 1$  المعرّفة ب $u_n = 1$  المعرّفة ب $u_n = 1$  المعرّفة ب $u_n = 1$  المعرّفة بعد طبيعي  $u_n = 1$  المعرّفة بعد طبيعي عبد المعرّفة بعد المعرّفة بعد

أ) حسابية أساسها 1 ب) هندسية أساسها  $\frac{1}{2}$  جسابية و X هندسية.

#### التمرين الثالث: (08 نقاط)

 $f(x) = -x^3 - 3x^2 + 4$  به المعرّفة على  $\mathbb{R}$  بعتبر الدالة f المعرّفة على

 $(O; \vec{i}, \vec{j})$  التّمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس  $(C_f)$ 



- $\lim_{x\to+\infty} f(x) \cdot \lim_{x\to-\infty} f(x) \leftarrow (1$
- $(C_f)$ تحقّق أنّ: من أجل كل عدد حقيقي x ، x عدد حقيقي أنّ : من أجل كل عدد حقيقي x ، x عدد الله عدد عقيقي (2) مع حاملي محوري الإحداثيات .
  - درس اتجاه تغیر الدالهٔ f ثم شکّل جدول تغیّراتها.
  - .(-1;2) المِيّن أنّ ( $C_f$ ) يقبل نقطة انعطاف ( $E_f$ ) بيّن أنّ ( $C_f$ ) .
  - $\cdot E$  اكتب معادلة للمماس ( $\Delta$ ) للمنحني ( $C_f$ ) في النقطة ( $\Delta$ 
    - $oldsymbol{(C_f)}$  و  $(\Delta)$  ارسم ( $oldsymbol{\delta}$

## الموضوع الأول

| العلامة |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |  |  |  |
|---------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| مجموع   | مجزأة                  | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |  |  |
|         | التمرين الأول: (06ن)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |  |  |  |
|         | 3×0.50                 | $4^3 \equiv 1$ $[9]$ ، ، $4^2 \equiv 7$ $[9]$ $4^1 \equiv 4$ $[9]$ القسمة الاقليدية الاقليدية (1) الماء أي القسمة الاقليدية الاقليدية (1) الماء أي القسمة الاقليدية (1) الماء أي الماء ا |       |  |  |  |
| 03.00   | 0.50                   | $4^{3n}\equiv 1$ [9]: $n$ عدد طبیعي تبیان أنه من أجل كل عدد طبیعي تبیان أنه من أجل كل عدد البیعي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |  |  |  |
|         | 01.00                  | $4^{3n+1} \equiv 4[9]:n$ جـ) استنتاج أنه من أجل كل عدد طبيعي $n=4^{3n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |  |  |  |
| 01.50   | 1.50                   | $2020^{1438} = 2020^{3(479)+1} \equiv 4^{3(479)+1} [9] \equiv 4[9]$ التحقق أن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |  |  |
| 01.50   | 1.50                   | 3) [9] ≡ 9[9] = 4-1² + 6[9] على 9 يقبل القسمة على 9 يقبل القسمة على 9 يقبل القسمة على 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |  |  |  |
|         |                        | ين الثاني : (06 <i>ن</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | التمر |  |  |  |
| 01.00   | 01.00                  | $u_4 = 10$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |  |  |  |
| 00.50   | 00.50                  | $u_5 = 13$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |  |  |  |
| 01.00   | 0.50                   | r=3 (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |  |
|         | 0.50                   | $u_0 = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |  |  |  |
| 01.00   | 01.00                  | $u_n=3n-2$ ، التحقق أنّ: من أجل كل عدد طبيعي (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |  |  |  |
| 01.00   | 01.00                  | $S_n = u_0 + u_1 + u_2 + \dots + u_n = \frac{(n+1)(3n-4)}{2}$ : (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |  |  |  |
|         | 0.50                   | $3n^2 - n - 70 = 0$ يعني $S_n = 33$ يعني $S_n = 33$ يعني $S_n = 33$ (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |  |
| 01.50   | 0.50                   | $\Delta = 841 = 29^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |  |  |  |
|         | 0.50                   | $n=5$ الحل $-\frac{14}{3}$ مرفوض ومنه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |  |  |  |
|         | مرين الثالث: (08 نقاط) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |  |  |  |
| 0.50    | 0.50                   | $a=7$ : $a$ تعيين العدد الحقيقي (1 $\alpha=7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |  |  |
| 0.50    | 0.50                   | $f(x) = rac{-2x+1}{x+3}$ ، $\mathbb{R} - \{-3\}$ من $f(x) = rac{-2x+1}{x+3}$ ، $\mathbb{R} - \{-3\}$ من أجل كل $f(x) = \frac{-2x+1}{x+3}$ ، $f(x) = \frac{-2x+1}{x+3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | П     |  |  |  |
|         | 4×0.25                 | $\lim_{\substack{x \to -3 \\ x \to -3}} f(x) = +\infty, \lim_{\substack{x \to -\infty \\ x \to -3}} f(x) = -\infty, \lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x) = -2, \lim_{\substack{x \to +\infty \\ x \to -\infty}} f(x) = -2$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |  |  |  |
| 02.00   | 2×0.50                 | y=-2 , $x=-3$ : الاستنتاج معادلتي المستقيمين المقاربين للمنحنى هما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| 01.00   | 0.50                   | $f'(x) = \frac{-7}{(x+3)^2} $ (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |  |  |  |
|         | 0.50                   | $]-3;+\infty$ و $[g]-\infty;-3$ الدالة $[g]$ متناقصة تماما على المجالين $[g]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |  |  |

| 2     | ﺎﺋﻴﻪ: 017 | الإجابة النموذجية لموضوع امتحان مادة: الرياضيات/الشعبة: آداب وفلسفة لغات اجنبية/ بكالوريا استثنا                                         |
|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
|       |           | . $f$ شكّل جدول تغيرات الدالة $f$                                                                                                        |
| 0.50  | 0.50      | $ \begin{array}{c cccc} x & -\infty & -3 & +\infty \\ f'(x) & - & - \\ \hline f(x) & -2 & +\infty \\ \hline & -\infty & -2 \end{array} $ |
| 01.00 | 01        | -5 ; $-1$ :فواصل نقط المنحنى $(C)$ التي يكون فيها معامل توجيه المماس يساوي $-5$ هي: $-5$ ; $-5$                                          |
| 01.00 | 2×0.50    | $(C_f) \cap (y'y) = \left\{ B(0; \frac{1}{3}) \right\} (C_f) \cap (x'x) = \left\{ A(\frac{1}{2}; 0) \right\} $ (6)                       |
|       | 01        | $\cdot(C_f)$ رسم المنحنى (7                                                                                                              |
| 01.50 |           |                                                                                                                                          |
|       | 0.50      | رسم المقاربين                                                                                                                            |
|       | Ċ         |                                                                                                                                          |

|       | الموضوع الثاني           |                                                                                                |         |  |  |
|-------|--------------------------|------------------------------------------------------------------------------------------------|---------|--|--|
|       | التمرين الأول: (06 نقاط) |                                                                                                |         |  |  |
|       | 0.5                      | a = I[13] ومنه $a = I[13]$ ومنه $a = 14[13]$                                                   | (1)     |  |  |
| 01.00 | 0.5                      | b = 12[13] و $b = -1[13]$ و $b = -1[13]$                                                       |         |  |  |
|       | 0.50                     | $a+b\equiv 0[13]$ الاستنتاج (13)                                                               | ب       |  |  |
| 02.00 | 0.50                     | $a-b \equiv 2[13]$                                                                             |         |  |  |
|       | 01.00                    | $2a + b^2 \equiv 3[13]$                                                                        |         |  |  |
| 01.50 | 1.50                     | $a^{1438}+b^{2017}$ ين أنّ العدد $a^{1438}+b^{2017}$ يقبل القسمة على                           | بي (2   |  |  |
| 01.50 | 1.50                     | $n=13k+6$ $k\in\mathbb{N}$ ميين الأعداد الطبيعية $n$                                           | ت (3    |  |  |
|       |                          | ن الثاني: (06 نقاط)                                                                            | التمرير |  |  |
| 01.50 | 0.5                      | 1) -الاجابة الصحيحة هي ب)                                                                      | l       |  |  |
| 01.30 | 01                       | $u_6 = u_1 + 5r = 1 + 5(-3) = -14$ التبرير                                                     |         |  |  |
|       | 0.50                     | 2) -الاجابة الصحيحة هي جـ)                                                                     | 2       |  |  |
| 01.50 |                          | $S = 1 \times \frac{3^{100} - 1}{3 - 1} = \frac{3^{100} - 1}{2}$ التبرير –                     |         |  |  |
|       | 01                       |                                                                                                |         |  |  |
|       | 0.50                     | 3) - الاجابة الصحيحة هي أ)                                                                     | 3       |  |  |
| 01.50 | 01                       | $x=rac{4}{3}$ اذن $(2x+2)+(4x)=2(6x-3)$ اذن $x:x=-1$                                          |         |  |  |
|       | 0.50                     | ر (4 الاجابة الصحيحة هي <b>ج</b> )                                                             | 1       |  |  |
|       | 0.30                     | $u_{n+1}=u_n+1$ ، $n$ عندما تكون حسابية أساسها $1$ يكون : من اجل كل عدد طبيعي $n$              |         |  |  |
| 01.50 |                          | 1                                                                                              |         |  |  |
|       | 01                       | $u_{n+1}=rac{1}{2}u_n$ ، $n$ عندما تكون هندسية أساسها $rac{1}{2}$ يكون : من اجل كل عدد طبيعي |         |  |  |
|       |                          | (يمكن حساب حدود ثلاثة حدود متتابعة من المتتالية و التحقق انها لا حسابية ولا هندسية)            |         |  |  |
|       | 1                        | ن الثالث: (08 نقاط)                                                                            | التمرير |  |  |
| 01.00 | 0.50×2                   | $\lim_{x \to +\infty} f(x) = -\infty  \lim_{x \to -\infty} f(x) = +\infty  (1)$                | l       |  |  |
|       | 01                       | $f(x) = (-x+1)(x+2)^2$ ، التحقّق أنّ: من أجل كل عدد حقيقي $x$                                  | 2       |  |  |
| 01.75 | 0.05.2                   |                                                                                                |         |  |  |
|       | 0.25x3                   | $(C_f) \cap (y'y) = \{C(0;4)\}  \text{o}  (C_f) \cap (x'x) = \{A(-2;0); B(1;0)\}$              |         |  |  |
|       | 0.50                     | f'(x) = -3x(x+2) (3                                                                            | 3       |  |  |
|       | 0.50                     | اشارة المشتقة                                                                                  |         |  |  |
|       | 0.25                     | $[0;+\infty[$ و $]-\infty;-2]$ الدالة $f$ متناقصة تماما على المجالين                           |         |  |  |
|       | 0.25                     | ومتزايدة تماما على المجال $\left[ -2;0 \right]$                                                |         |  |  |
|       |                          |                                                                                                |         |  |  |

الإجابة النموذجية لموضوع امتحان مادة: الرياضيات/الشعبة: آداب وفلسفة لغات اجنبية/ بكالوريا استثنائية: 2017

|       |      | تشكيل جدول التغيرات                                                                                     |
|-------|------|---------------------------------------------------------------------------------------------------------|
| 02.50 | 01   | $x -\infty -2 0 +\infty$                                                                                |
| 02.30 |      | f'(x) $ 0$ $+$ $0$ $ 0$ $+$ $0$ $ 0$ $+$ $0$ $ 0$ $+$ $0$ $ 0$ $ 0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ |
|       |      | $f(x)$ $0$ $-\infty$                                                                                    |
|       |      |                                                                                                         |
|       |      | $\cdot (-1;2)$ يقبل نقطة انعطاف $E$ إحداثياتها $(C_f)$ تبيين أنّ $(C_f)$                                |
|       | 0.25 | f''(x) = -6x - 6 لدينا                                                                                  |
| 0.75  | 0.25 | الدالة المشتقة الثانية $f''$ تنعدم عند $-1$ و تغير إشارتها                                              |
|       |      | إذن $(-1;2)$ إحداثيات نقطة الانعطاف                                                                     |
|       | 0.25 |                                                                                                         |
| 0.50  | 0.25 | : معادلة للمماس $y = f'(-1)(x+1) + f(-1)$ لدينا                                                         |
| 0.30  | 0.25 | $y = y \cdot (-1)(x+1)+y \cdot (-1)$ این $y = 3x+5$ این                                                 |
|       | 0.50 | $(\Delta) \cdot y = 3\lambda + 3 \cdot $ ارسم المماس ( $\Delta$ ) رسم المماس ( $\Delta$ )               |
|       | 0.30 |                                                                                                         |
|       |      | 5)                                                                                                      |
|       |      |                                                                                                         |
|       |      | 3                                                                                                       |
| 01.50 |      | 2                                                                                                       |
|       |      | -4 -3 -2 -1 0 2 3                                                                                       |
|       |      | -1 0 2 3                                                                                                |
|       |      | -2                                                                                                      |
|       | 01   | $(C_f)$ المنحنى                                                                                         |