

CÓDIGO: DES-FO-39

VERSIÓN: 1

VIGENCIA: 2025-06-27

PÁGINA: 1 DE 6

Identificación de la Asignatura					
Programa: ESPECIALIZACIÓN EN INSTRUMENTACIÓN INDUSTRIAL			Fecha de impresión: 13 de septiembre de 2024		
Nombre de la Asignatura: SISTEMAS DE CONTROL INDUSTRIAL					
Área académica: AUTOMATIZACIÓN Y CONTROL			Modalidad: PRESENCIAL		
Código: 0714XXXX4	Naturaleza de Asignatura: TEÓRICA - PRÁCTICA				
Semestre en malla curricular: 1	Componente de formación al que pertenece: PROFESIONAL ESPECÍFICO				
Número de Créditos: 4		Horas Trabajo co Docente (HP / HTD			

Descripción de la Asignatura

Esta asignatura presenta los conceptos que orientan al control de procesos soportándose en teorías y aplicaciones que hasta este momento se aplican en las industrias preocupadas por la competitividad y productividad de sus procesos.

Propósito e intencionalidad formativa

El desarrollo de los temas propuestos le permite al estudiante conocer y manejar las herramientas usadas para monitorear, controlar y mejorar los procesos productivos.

Competencias del programa a las que se tributa - CP

- **CP1.** Gestiona de forma ética y responsable proyectos de diseño, actualización y operación de sistemas de instrumentación y control industrial integrando los distintos requerimientos técnicos y normativos.
- **CPG1.** Trabaja en equipo para la solución a problemáticas de ingenería en su campo de trabajo. **CPG2.** Justifica su postura sobre diversas situaciones y en distintos escenarios a partir de la información suministrada.

Resultados de Aprendizaje del programa a los que se tributa - RAP

- **RP1.** Integra la normatividad técnica, ambiental, así como de seguridad y salud en el trabajo en el diseño, actualización y operación de sistemas de instrumentación y control industrial.
- **RAPG1.** Participa efectivamente como miembro o líder en equipos de trabajo para el desarrollo de proyectos de ingeniería.
- **RAPG2.** Concluye de forma crítica a partir de la comprensión del contenido de textos e informaciones de las cuales dispone.

Resultados de Aprendizaje de la Asignatura - RAC

RAC1. Diseña estrategias de control bajo el enfoque de espacios de estados, con herramientas como realimentación de variables de estado y observadores para optimizar procesos

CÓDIGO: DES-FO-39

VERSIÓN: 1

VIGENCIA: 2025-06-27

PÁGINA: 2 DE 6

dinámicos.

RAC2. Evalúa diseños realizados por medio de experimentación y/o simulación, para validar estrategias de control bajo el enfoque de espacio de estados.

RAC3. Identifica modelos de sistemas dinámicos lineales, bajo el enfoque de espacios de estados y de ser necesario linealización, como insumo para su caracterización.

Contenidos Temáticos				
Semana No.	Temas y Subtemas			
1	Presentación de la asignatura Socialización y presentación del Syllabus Normatividad de la asignatura			
2	 Automatización Historia Niveles de automatización Tipos y clasificación de automatización. Lazo abierto vs lazo cerrado. 			
	 Evolución de los sistemas de control industrial Paneles locales, salas de control, procesadores electrónicos, sistema de control distribuido (DCS), sistemas SCADA. Lógica cableada VS Lógica programable. 			
2 4	 ¿Qué es un sistema de control industrial? Tipo de tecnologías: Controladores lógicos programables (PLC) Control de supervisión y adquisición de datos (SCADA) Sistemas de automatización y control industrial (IACS) Unidades terminales remotas (RTU) Dispositivos electrónicos inteligentes (IED) Dispositivos de control y los sensores ¿Por qué son importantes los sistemas de control industrial? 			
3 y 4	 Objetivos de la utilización del SCI Ventajas de los sistemas de control de procesos Limitaciones de los sistemas de control industrial Modelado matemático de sistemas físicos Sistemas electrónicos Sistemas mecánicos Sistemas térmicos 			
	Transformada de Laplace			
	Transformada Z			

CÓDIGO: DES-FO-39

VERSIÓN: 1

VIGENCIA: 2025-06-27

PÁGINA: 3 DE 6

	7					
	Clasificación de los sistemas de control					
	Sistema de control de procesos					
	Sistema instrumentado de seguridad					
	Sistema de control distribuido					
	 Sistema de automatización de edificios 					
	Sistema de gestión de energía					
	Sensores y acondicionamiento de señales.					
	Rango					
	 Precisión 					
5 v 6	Repetibilidad					
5 y 6	Principios de funcionamiento de sensores:					
	Temperatura					
	Presión					
	Nivel					
	• Flujo					
	Técnicas de acondicionamiento de señales:					
	Amplificación					
	Filtrado					
	Linealización					
	Transmisión de señales 4-20 mA					
	Controladores Discretos					
	Son controladores que están montados en un solo panel normalmente. Cada					
	control suele tener un único bucle de actuación. En el mismo panel se puede					
_	visualizar el mecanismo de control y actuar de forma manual sobre él.					
7	Controlador PID, estructuras y algoritmos.					
	Métodos de sintonización de PID:					
	Ziegler-Nichols					
	Lambda Tuning					
	Control por Modelo Interno (IMC)					
	Análisis de Estabilidad y el Lugar Geométrico de las Raíces (LGR)					
	Routh-Hurwitz					
	• Jury					
	Sistema de control distribuido (DCS)					
8	Se configuran para actuar con diferentes bucles en cascada, los cuales					
	suelen estar conectados a un sistema informático que controla todo el					
	proceso de producción.					
	Con este tipo de sistemas se hace un control más sofisticado que puede activar					
	alarmas o registrar la información automáticamente, sin necesidad de hacer					
I						
	registros manuales.					

CÓDIGO: DES-FO-39

VERSIÓN: 1

VIGENCIA: 2025-06-27

PÁGINA: 4 DE 6

9, 10 y 11	 Control de supervisión y adquisición de datos (SCADA) Sirve para automatizar y controlar una industria moderna. El sistema supervisa, recopila datos, los analiza y genera informes a través de una aplicación informática. Redes de Comunicación Industrial: Fieldbus y Ethernet Industrial Práctica 1: Análisis de sistemas de manufactura integrada, protocolos de comunicación, control local y supervisión. Lab Festo E102 (Industria 4.0) 	
12, 13 y 14	 Controladores lógicos programables (PLC) Fundamentación conceptual de los PLC Estructuración de la Pirámide de la automatización Identificación de las partes que componen la arquitectura interna y externa del PLC Elementos básicos de la programación Conocimiento de los 5 lenguajes de programación de la norma IEC 61131-3 Práctica 2: Reconocimiento de un sistema automatizado basado en señales discretas. Análisis de las rutinas de automatización usadas en sistemas CIM Lab Festo E102 (Industria 4.0) Práctica 3: Programación de rutinas en islas de sistemas de manufactura integrada Lab Festo E102 (Industria 4.0) Práctica 4: Reconocimiento de un sistema automatizado basado en señales analógicas. 	
	Análisis de las rutinas de automatización usadas en control de procesos Lab planta Multipropisito (Taller Motores)	
15	¿Por qué es importante el mantenimiento de su sistema de control • Mantenimiento de su sistema de control • Paradas no programadas • Productos no conformes • Incumplimiento de metas y normas medioambientales • Riesgo al entorno y a las personas TinyML y Sensores Inteligentes EdgeComputing	
16 y 17	Realización de Proyecto de aplicación	
18	Consolidación Nota Final	
Estrategias Pedagógicas y Didácticas		

CLASIF. DE CONFIDENCIALIDAD	IPR	CLASIF. DE INTEGRIDAD	Α	CLASIF. DE DISPONIBILIDAD	1	

Para facilitar la formación y apoyar el aprendizaje de los estudiantes se utilizan entre otras algunas de las siguientes estrategias pedagógicas y las correspondientes técnicas didácticas

para el desarrollo de los distintos contenidos y temas que componen la asignatura:

CÓDIGO: DES-FO-39

VERSIÓN: 1

VIGENCIA: 2025-06-27

PÁGINA: 5 DE 6

Clase magistral, aprendizaje basado en proyectos, aprendizaje basado en problemas, trabajo colaborativo, exposiciones, talleres, prácticas de laboratorio, guías de aprendizaje.

Criterios, estrategias e instrumentos para evaluar los Resultados de Aprendizaje (RAC)

Son el conjunto de actividades permanentes que se realizan para evidenciar y valorar los resultados de aprendizaje. Estas modalidades pueden ser la combinación de varias notas como, por ejemplo: evaluaciones escritas, exposiciones, trabajos en grupo, sustentaciones, etc. El docente responsable de cada asignatura deberá presentar al inicio de semestre la forma de realizar este tipo de evaluaciones y registrar solo una (1) nota al final del semestre.

Criterios de evaluación:

RAC1. Diseña estrategias de control bajo el enfoque de espacios de estados, con herramientas como realimentación de variables de estado y observadores para optimizar procesos dinámicos.

RAC2. Evalúa diseños realizados por medio de experimentación y/o simulación, para validar estrategias de control bajo el enfoque de espacio de estados.

RAC3. Identifica modelos de sistemas dinámicos lineales, bajo el enfoque de espacios de estados y de ser necesario linealización, como insumo para su caracterización.

Recursos Bibliográficos

Libros Básicos:

Integración de sistemas de automatización industrial (Electricidad y Electrónica)

Autor: Juan Manuel Escaño González, Antonio Nuevo García, Javier García Caballero

Editorial: Ediciones Paraninfo, S.A; N.º 1 edición (5 junio 2019)

Idioma: español

ISBN-10: 8428342288 ISBN-13: 978-8428342285

Optimización de los sistemas automáticos de control

Autor: Diana Arenas, Jaime Parra

Año de Edición: 2013 ISXN: 9789588817019

Idioma: español

Instrumentación industrial Por: Soisson, Harold

Tipo de material: Texto

Editor: México, D.F. Limusa, 2007 Descripción:550 p.

ISBN:9681817389

Libros en inglés:

Pentesting Industrial Control Systems: An ethical hacker's guide to analyzing,

CLASIF. DE CONFIDENCIALIDAD	IPR	CLASIF. DE INTEGRIDAD	Α	CLASIF. DE DISPONIBILIDAD	1

CÓDIGO: DES-FO-39

VERSIÓN: 1

VIGENCIA: 2025-06-27

PÁGINA: 6 DE 6

compromising, mitigating, and securing industrial processes

Autor: Paul Smith

Editorial: Packt Publishing (9 diciembre 2021)

Idioma:inglés

Tapa blanda: 450 páginas ISBN-10: 1800202385 ISBN-13: 978-1800202382

• Industrial Automation and Control System Security Principles

Autor: Ronald L. Krutz ASIN: B01B0EJSI0

Editorial: International Society of Automation; N.º 2 edición (15 febrero 2016)

Idioma: inglés

Cibergrafía:

Revistas electrónicas

https://www.infoplc.net/plus-

plus/magazine

https://polipapers.upv.es/index.p

hp/RIAI

https://www.editores.com.ar/sites/default/files/aadeca revista 18 julio septiembre 2021.pdf

Bases de Datos

Páginas Web

https://www.banelec.com/es/how-do-industrial-control-systems-work/

https://industriasgsl.com/blogs/automatizacion/que-es-un-sistema-de-control-industrial

https://www.autycom.com/que-es-un-sistema-de-control/

https://www.virtualpro.co/noticias/optimizacion-y-sistema-de-control-industrial

		Seguimiento de Aprobación	
Fecha/Acta	Instancia	Nombre/Firma	Cargo
	Elaboró		Área Académica/Coordinador
	Aprobó		Consejo de Facultad/ Decano que preside