Algoritmos e Estrutura de Dados II (AE23CP-3CP)

Aula #02 - Complexidade de Algoritmos - Parte I

Prof^a Luciene de Oliveira Marin lucienemarin@utfpr.edu.br

Complexidade de Algoritmos - Parte I

Complexidade de Algoritmos

Por que estudar a complexidade dos algoritmos?

Por estamos interessados em algoritmos "eficientes".

$Programa \times Algoritmo$

Programa	Algoritmo
Linguagem concreta	Linguagem Abstrata
(C, Java, PHP)	(pseudo-código)
Dependente de SO	Independente de SO
Dependente de compilador	Independe de compilador
Dependente de máquina	Independe de máquina
Avaliação de tempo real	

Complexidade de Algoritmos

Por que estudar a complexidade dos algoritmos?

Por estamos interessados em algoritmos "eficientes".

Programa \times Algoritmo:

Programa	Algoritmo
Linguagem concreta	Linguagem Abstrata
(C, Java, PHP)	(pseudo-código)
Dependente de SO	Independente de SO
Dependente de compilador	Independe de compilador
Dependente de máquina	Independe de máquina
Avaliação de tempo real	Avaliação por estimativa
(empírica)	(assintótica)

Algoritmo

O que é um algoritmo (computacional?)

É uma ferramenta para resolver um **problema computacional**. Ou seja, é um procedimento computacional bem definido que:

- recebe um conjunto de valores como entrada,
- produz um conjunto de valores como saída,
- atravé de uma sequência de passos em um modelo computacional

Exemplos de problemas (1/2)

Teste de primalidade:

Problema: determinar se um dado número é primo.

Exemplo:

Entrada: 9411461 Saída: É primo.

Exemplo:

Entrada: 8411461

Saída: Não é primo.

Exemplos de problemas (2/2)

Ordenação:

Definição: um vetor $A[1 \dots n]$ é crescente se $A[1] \leq \dots \leq A[n]$.

Problema: rearranjar um vetor A[1 ... n] de modo que fique crescente.

Entrada:

Saída:

Instância de um problema

Uma instância de um problema é um conjunto de valores que serve de entrada para esse.

Exemplo:

Os números 9411461 e 8411461 são instâncias do problema de primalidade.

Exemplo:

O vetor

1										n
33	55	33	44	33	22	11	99	22	55	77

é uma instância do problema de ordenação.

A importância dos algoritmos para a computação

Onde se encontram as aplicações para o uso/desenvolvimento de algoritmos "eficientes"?

- projeto de genoma de seres vivos
- rede mundial de computadores
- comércio eletrônico
- planejamento de produção de indústrias
- logística de distribuição
- games e filmes
-

Objetivo de estudar complexidade de algoritmos

Por que analisar a complexidade dos algoritmos?

Para projetar algoritmos, é preferível:

- Se preocupar com o projeto de um algoritmo eficiente, desde sua concepção, do que
- Desenvolver um algoritmo e só depois analisar sua complexidade para verificar sua eficiência.

Dificuldade intrínseca de problemas (1/4)

- Infelizmente, existem certos problemas para os quais não se conhece algoritmos eficientes capazes de resolvê-los.
 Exemplos são os problemas NP-completos.
 - Curiosamente, **não foi provado** que tais algoritmos não existem! **Interprete isso como um desafio da inteligência** humana.
- Esses problemas tem a característica notável de que se <u>um</u> deles admitir um algoritmo "eficiente" então <u>todos</u> admitem algoritmos "eficientes".

Por que devo me preocupar com problemas NP-completos?

Problemas dessa classe surgem em inúmeras situações práticas, como problemas NP-difíceis.

Dificuldade intrínseca de problemas (2/4)

Exemplo de problema \mathcal{NP} -difícil: calcular as rotas dos caminhões de entrega de uma distribuidora de bebidas em São Paulo, minimizando a distância percorrida. (vehicle routing)

Dificuldade intrínseca de problemas (3/4)

Exemplo de problema \mathcal{NP} -difícil: calcular o número mínimo de containers para transportar um conjunto de caixas com produtos. (bin packing 3D)

Dificuldade intrínseca de problemas (4/4)

Exemplo de problema \mathcal{NP} -difícil: calcular a localização e o número mínimo de antenas de celulares para garantir a cobertura de uma certa região geográfica. (facility location)

e muito mais...

 $\acute{\text{E}}$ importante saber indentificar quando estamos lidando com um problema $\mathcal{NP}\text{-}\text{dif}[\text{cil}]$

O Éden:

os computadores têm velocidade de processamento e memória infinita.

Neste caso, qualquer algoritmo é igualmente bom e esta disciplina é inútil!

O mundo real:

há computadores com velocidade de processamento na ordem de bilhões por segundo e trilhões de bytes em memória.

Mas ainda sim temos uma limitação na velocidade de processamento e memória dos computadores.

Conclusão:

Neste caso faz <u>muita</u> diferença ter um <u>bom</u> algoritmo.

Complexidade de algoritmos - eficiência

Para um dado problema considere dois algoritmos que o resolvem:

- Seja n um parâmetro que caracteriza o tamanho da entrada do algoritmo.
 - Por exemplo, ordenar n números ou multiplicar duas matrizes $n \times n$ (cada uma com n^2 elementos).
- Como comparar os dois algoritmos para escolher o melhor?

Complexidade de algoritmos - eficiência

Exemplo: ordenação de um vetor de n elementos

- Suponha que os computadores A e B executam
 1G e 10M instruções por segundo, respectivamente.
 Ou seja, A é 100 vezes mais rápido que B.
- Algoritmo 1: implementado em A por um excelente programador em linguagem de máquina (ultra-rápida). Executa 2n² instruções.
- Algoritmo 2: implementado na máquina B por um programador mediano em linguagem de alto nível dispondo de um compilador "meia-boca".
 Executa 50n log n instruções.

Complexidade de algoritmos - eficiência

- O que acontece quando ordenamos um vetor de um milhão de elementos? Qual algoritmo é mais rápido?
- Algoritmo 1 na máquina A:
 2.(10⁶)² instruções
 10⁹ instruções/segundo

 ≈ 2000 segundos
- Algoritmo 2 na máquina B: $\frac{50.(10^6 \log 10^6) \text{ instruções}}{10^7 \text{ instruções/segundo}} \approx 100 \text{ segundos}$
- Ou seja, B foi VINTE VEZES mais rápido do que A!
- Se o vetor tiver 10 milhões de elementos, esta razão será de 2.3 dias para 20 minutos!

E se tivermos os tais problemas \mathcal{NP} -difíceis ?

<i>f</i> (<i>n</i>)	<i>n</i> = 20	<i>n</i> = 40	<i>n</i> = 60	<i>n</i> = 80	<i>n</i> = 100
	$2,0\times10^{-11}$ seg		$6,0\times10^{-11}$ seg	$8,0\times10^{-11}$ seg	$1,0 \times 10^{-10} \text{seg}$
	$4.0 \times 10^{-10} \text{seg}$			$6,4\times10^{-9}$ seg	$1,0 \times 10^{-8} \text{seg}$
n^3	$8,0\times10^{-9}$ seg	$6,4\times10^{-8}$ seg	$2,2\times10^{-7}$ seg	$5,1\times10^{-7}$ seg	$1,0 \times 10^{-6} \text{seg}$
n^5	$2,2\times10^{-6}$ seg	$1,0 \times 10^{-4} \text{seg}$	$7.8 \times 10^{-4} \text{seg}$	$3,3\times10^{-3}$ seg	$1,0 \times 10^{-2} \text{seg}$
2 ⁿ	$1,0 \times 10^{-6} \text{seg}$		13,3 dias	1,3×10 ⁵ séc	$1,4\times10^{11}$ séc
3 ⁿ	$3,4\times10^{-3}$ seg	140,7dias	1,3×10 ⁷ séc	1,7×10 ¹⁹ séc	5,9×10 ²⁸ séc

Supondo um computador com velocidade de 1 Terahertz (mil vezes mais rápido que um computador de 1 Gigahertz).

E se usarmos um super-computador para resolver os problemas \mathcal{NP} -difíceis ?

f(n)	Computador atual	100×mais rápido	1000×mais rápido
n	<i>N</i> ₁	100 <i>N</i> ₁	1000 <i>N</i> ₁
n ²	N_2	10 <i>N</i> ₂	31.6 <i>N</i> ₂
n ³	<i>N</i> ₃	4.64 <i>N</i> ₃	10 <i>N</i> ₃
n^5	N_4	2.5 <i>N</i> ₄	3.98 <i>N</i> ₄
2 ⁿ	<i>N</i> ₅	$N_5 + 6.64$	$N_5 + 9.97$
3 ⁿ	N ₆	$N_6 + 4.19$	$N_6 + 6.29$

Fixando o tempo de execução: Não iremos resolver problemas muito maiores.

Exemplo: Cálculo do determinante de uma matriz $n \times n$:

 A tabela abaixo mostra o desempenho de dois algoritmos, considerando-se os tempos de operações de um computador real:

n	Método de Cramer	Método de Gauss
2	22 μs	50 μs
3	102 μs	159 μs
4	456 μs	353 μs
5	2,35 ms	666 μs
10	1,19 min	4,95 ms
20	15 225 séculos	38,63 ms
40	5 . 10 ³³ séculos	0,315 s

Exemplo: Métodos de Ordenação. Qual implementar?

- Bolha
- Insertsort
- Shellsort
- Quicksort
- Mergesort
- Heapsort

Exemplo: Métodos de Busca. Qual utilizar? Por que?

- Busca Sequencial
- Busca Binária;
- Árvores de Pesquisa

Algoritmos e tecnologia - Conclusões 1/2

- O uso de um algoritmo adequado pode levar a ganhos extraordinários de desempenho.
- Isso pode ser tão importante quanto o projeto de hardware.
- A melhora obtida pode ser tão significativa que não poderia ser obtida simplesmente com o avanço da tecnologia.
- As melhorias nos algoritmos produzem avanços em outras componentes básicas das aplicações (pense nos compiladores, buscadores na internet, etc).

Algoritmos e tecnologia - Conclusões 2/2

Complexidade de um algoritmo

Reflete o esforço computacional requerido para executá-lo.

Esforço computacional

Mede a quantidade de trabalho, em termos de **tempo de execução** ou de **quantidade de memória** requerida.

- Complexidade de tempo
 - Exemplo: tempo de execução de um método de ordenação como bolha ou quicksort.
- Complexidade de espaço
 - Exemplo: algoritmos de grafos, data mining, bioinformática

Complexidade de algoritmos

Algoritmos

- são o cerne da computação
- um programa codifica um algoritmo a ser executado em um computador para resolver determinado problema.

Projeto e Análise de Algoritmos

 É extremamente importante pois visa produzir soluções com o menor dispêncio possível de tempo e memória.

Critérios de Complexidade

Operação fundamental:

Operação escolhida para medir a quantidade de trabalho realizado por um algoritmo

 Às vezes, é necessária mais de uma operação fundamental e com pesos diferentes: custo

Exemplo:

Para um **algoritmo de ordenação**, a operação fundamental é a **comparação** entre elementos.

Critérios de Complexidade

Tamanho da entrada:

Está associado ao tamanho das estruturas de dados do algoritmo:

- Quantidade de bits para representar um número;
- Quantidade de nós e arestas em um grafo;
- Exemplo:

Exemplo:

Tamanho do vetor em um problema de ordenação ou pesquisa.

Medida de complexidade e eficiência de algoritmos

- A complexidade de tempo (= eficiência) de um algoritmo é o número de instruções básicas que ele executa em função do tamanho da entrada.
- Adota-se uma "atitude pessimista" e faz-se uma análise de pior caso.
 - Determina-se o tempo máximo necessário para resolver uma instância de um certo tamanho.
- Além disso, a análise concentra-se no comportamento do algoritmo para entradas de tamanho GRANDE = análise assintótica.

Medida de complexidade e eficiência de algoritmos

Como exemplo, considere o número de operações de cada um dos dois algoritmos que resolvem o mesmo problema, como função de *n*.

- Algoritmo 1: $f_1(n) = 2n^2 + 5n$ operações
- Algoritmo 2: $f_2(n) = 500n + 4000$ operações

Dependendo do valor de *n*, o Algoritmo 1 pode requerer mais ou menos operações que o Algoritmo 2.

(Compare as duas funções para n = 10 e n = 100.)

Comportamento assintótico

- Algoritmo 1: $f_1(n) = 2n^2 + 5n$ operações
- Algoritmo 2: $f_2(n) = 500n + 4000$ operações

Um caso de particular interesse é quando n tem valor muito grande $(n \to \infty)$, denominado *comportamento assintótico*.

Os termos inferiores e as constantes multiplicativas contribuem pouco na comparação e podem ser descartados.

O importante é observar que $f_1(n)$ cresce com n^2 ao passo que $f_2(n)$ cresce com n. Um crescimento quadrático é considerado pior que um crescimento linear. Assim, vamos preferir o Algoritmo 2 ao Algoritmo 1.

Medida de complexidade e eficiência de algoritmos

 Um algoritmo é chamado eficiente se a função que mede sua complexidade de tempo é limitada por um polinômio no tamanho da entrada.

Por exemplo: n, 3n - 7, $4n^2$, $143n^2 - 4n + 2$, n^5 .

 Mas por que polinômios?
 Resposta padrão: (polinômios são funções bem "comportadas").

Medida de complexidade e eficiência de algoritmos

Medidas de complexidade:

- Melhor Caso
- Pior Caso
- Caso Médio

Melhor Caso

- Pouca utilidade prática
- Fornece um cálculo muito otimista sobre o comportamento do algoritmo.
- Exemplo: busca sequencial
- Objetivo: encontrar o elemento 5 no vetor

5	150	31	10	17	18	45	98	101	200

• O elemento é encontrado após 1 execução da operação fundamental, ou seja, a melhor situação possível.

Melhor Caso - exemplo: busca sequencial

```
início (início Pesquisa Sequencial – versão 2)
    tipo v = vetor[1..n] inteiro;
        v: VET:
    inteiro: I, K;
    lógico: ACHOU;
    leia(k);
    leia(VET);
    ACHOU \leftarrow falso; i \leftarrow 1;
    enquanto ((não ACHOU) e (i < n)) faça
         se (VET[i] = K) então
            escreva(K, "Esta na posicao", i);
           ACHOU ← verdadeiro;
         fim_se;
        i \leftarrow i + 1;
     fim_enquanto;
     se não ACHOU então
        escreva ("A chave", K, "Nao está no vetor");;
     fim_se(VET);
fim
```

Pior Caso

- É a complexidade pessimista, mede o esforço máximo necessário para resolver um problema de tamanho *n*.
- É fácil de calcular
- Exemplo: Encontrar o elemento 200 ou 1.000 no vetor

5	150	31	10	17	18	45	98	101	200
---	-----	----	----	----	----	----	----	-----	-----

• É útil quando precisamos dar garantias sobre o desempenho do algoritmo.

Pior Caso - Cenário 1: controlador de vôo

Pior Caso - Cenário 2: controle de processo

Caso Médio

- Calcula-se a complexidade de todas as entradas possíveis e extrai-se a sua média.
- Exemplo da pesquisa seguencial:
 - 1. complexidade do elemento estar na 1ª posição
 - 2. complexidade do elemento estar na 2ª posição...
 - n. complexidade do elemento estar na *n*^a posição.
- complexidade final é a média de todos os cálculos.
- Muitas vezes é muito difícil de ser calculada.

Método de análise de complexidade proposto: (1/2)

Vantagens:

- O modelo é robusto pois permite prever o comportamento de um algoritmo para instâncias GRANDES
- O modelo permite comparar algoritmos que resolvem um mesmo problema.
- A análise é mais robusta em relação às evoluções tecnológicas.

Método de análise de complexidade proposto: (2/2)

Desvantagens:

- Fornece um limite de **complexidade** pessimista sempre considerando o **pior caso**.
- Em uma aplicação real, nem todas as instâncias ocorrem com a mesma frequência e é possível que as "instâncias ruins" ocorram raramente.
- Não fornece nenhuma informação sobre o comportamento do algoritmo no caso médio.
- A análise de complexidade de algoritmos no caso médio é complicada e depende do conhecimento da distribuição das instâncias.

Lista de Exercícios

Lista de exercícios APS#02 - Métodos de ordenação e desempenho

• Vide moodle da disciplina.

