Bits and Bytes

Derrick Modified by Aidan

Transistors

- -The smallest building block of computing
- -A switch that can be in either an ON or OFF position
- -State is changed by electrical current
- -Solid State (no moving parts)

Data

At the smallest scale in the computer, information is stored as bits (and bytes).

```
"Single bit of information"

On / off
```

Yes / No

True / False

1 / 6

Number Systems

Decimal (Base 10)

Binary (Base 2)

Octal (Base 8)

Hexadecimal (Base 16)

Number Conversion

 Using Successive Division, we can easily convert decimal numbers to binary, octal, or hexadecimal

Converting Back

Convert the 8 bit binary number 00011010

128	64	32	16	8	4	2	1	
0	0	0	1	1	0	1	0	

$$16 + 8 + 2 = 26$$

Bits

Bit - the smallest unit of storage

A bit stores just a 0 or 1

"Computer is all 0's and 1's" ... bits

Anything with two separate states can store 1 bit

Bytes and Words

- Individual bits aren't that useful
- Solution: group 8 bits together into bytes
 - Optimized to handle bytes instead of bits
- How much exactly can one byte hold?
 - 1 bit: 2, 2 bits: 4, 3 bits: 8, 4 bits: 16...
 - Mathematically: n bits yields 2ⁿ patterns
- Group 4 or 8 bytes together to make a word
 - Number of bits the CPU reads from memory at a time
 - Part of the architecture

Representing Data: Character

- Plain text uses <u>ASCII</u> (a numbering system for characters)
 - Each character is represented by one byte (8 bits)

• <u>Unicode</u>

- Used for representing "special" characters and emojis
- Controlled by <u>The Unicode Consortium</u>
- Represented with one to four bytes based on an encoding scheme
- UTF-8 (most commonly used in web pages, emails etc.)
- Words are just a sequence of characters (computer use ASCII when possible)

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	δ.	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	i
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	18	[ESCAPE]	59	3B	;	91	5B	Γ	123	7B	{
28	10		60	3C		92	5C	1	124	7C	1
29	10		61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F		63	3F	?	95	5F	-	127	7F	[DEL]

01000101 01010011

Emojis (Face with Tears of Joy)

128514

Representing Data: Integers

- Represented with one computer word (32 or 64 bits)
- Problems with 32 bits:
 - Not enough options to label all computers in the world
 - Gangnam Style "overflow"

Representing Data: Real Numbers

- Usually called doubles
- Represented with one computer word (8 bytes)
- Much like scientific notation (<u>IEEE Floating Point</u>)
- Keeps track of the sign, the exponent, and the fractional part
- Idea: 7.5 can be represented as 1.875 * 2^2
- Tradeoff: fixed number of bytes means not perfectly precise

Representing Data: Colors

RGB (Red, Green, Blue)

Representing Data: Images

Represented using a set of three numbers for each pixel.

Provides an RGB value set for every pixel, so the data for an image is a collection of pixel colour values.

Representing Data: Animation (Videos)

- "It's just a sequence of images flying past the screen, very quickly"
- FPS (Frame Per Second)
- Movies "moving pictures"

Lots of Bytes

- Fact: 2^10 is 1024 (about 1000)
- 1 kilobyte (KB) = 1024 bytes
 - About the size of a 1000 characters
 - Measures emails and text documents
- 1 megabyte (MB) = 1024 KB (about 1 mil bytes)
 - MP3 audio is about 1 MB per minute
 - Used to measure audio clips and image sizes
- 1 gigabyte (GB) = 1024 MB (about 1 bil bytes)
 - 1 hour of video is about 2 GB
 - Used to measure video sizes and computer storage space
- 1 terabyte (TB) = 1024 GB (about 1 tril bytes)
 - Used to measure computer storage spaces
 - Sometimes used in the context of "big data", along with petabytes (1024 TB)

Storage space practice

- Alice has 600 MB of data. Bob has 700 MB of data. Will it all fit on Alice's 2 GB thumb drive?
 - Yes, 1300 MB is about 1.3 GB
- Alice has 100 small images, each of which is 500 KB. How much space do they take up overall in MB?
 - 100 times 500 KB is 50000 KB which is about 50 MB
- Your ghost hunting group is recording the sound inside a haunted Stanford classroom for 20 hours as MP3 audio files. About how much data will that be, expressed in GB?
 - MP3 usually takes up about 1 MB per min. 60 mins * 20 = 1200 mins which is about 1200 MB, 1.2 GB

Megabytes vs Mebibytes

 Marketers like to interpret a megabyte as 1 mil bytes (1000 KB) - less memory to make

- Mebibyte is the actual 1024 * 1024 bytes (1024KB)
- For more about kibibytes

Extra resources

- https://www.electronics-tutorials.ws/binary/bin 1.html
- https://www.electronics-tutorials.ws/binary/bin_2.html
- https://www.electronics-tutorials.ws/binary/bin 3.html
- https://www.electronics-tutorials.ws/binary/bin 4.html
- https://www.electronics-tutorials.ws/binary/bin_5.html
- https://www.electronics-tutorials.ws/binary/signed-binary-numbers.html
- https://www.electronics-tutorials.ws/binary/binary-coded-decimal.html
- https://www.electronics-tutorials.ws/binary/binary-fractions.html