GEOMETRY HOMEWORK 5

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

October 27, 2011

Problem 1 (Ex P151 2). Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.

Proof. Assume that the curve is $\gamma(s)$, then along this curve, $N(\gamma(s))$ is perpendicular to the plane, so it is constant.

At point $\gamma(s)$, $[dN](\gamma'(s)) = \left(\frac{dN(\gamma(t))}{dt}\right)_{t=s} = 0$, so $\gamma'(s)$ is one of the principal direction of the surface at $\gamma(s)$, and it's associated principal curvature is 0. So the gaussian curvature of the surface at $\gamma(s)$ is K=0, and this means that the point $\gamma(s)$ is either parabolic or planar.

Problem 3 (Ex P151 3).

(a) Let $C \subset S$ be a regular curve on a surface S with Gaussian curvature K>0. Show that the curvature κ of C at p satisfies

$$\kappa \geq \min(|\kappa_1|, |\kappa_2|),$$

where κ_1, κ_2 are the principal curvatures of S at p.

(b) 為什麼上一小題需要 $\kappa > 0$ 的條件, $\kappa \ge 0$ 不可以嗎?

Proof. (a)

$$egin{aligned} \kappa &\geq |\kappa_n| \ &= |\kappa_1 \cos^2 heta + \kappa_2 \sin^2 heta| \ &= |\kappa_1| \cos^2 heta + |\kappa_2| \sin^2 heta(\because \kappa_1, \kappa_2 heta) \ &\geq \min(|\kappa_1|, |\kappa_2|) (\cos^2 heta + \sin^2 heta) \ &= \min(|\kappa_1|, |\kappa_2|) \end{aligned}$$

(b)

Problem 7.

(a) T_{λ} 是縮放 λ 倍的映射, $\lambda > 0$ 。 $\mathbb{X}: \Omega \to \mathbb{R}^3$ regular surface。討論 $T_{\lambda} \circ \mathbb{X}: \Omega \to \mathbb{R}^3$ 上對應點 κ_n, H, K 的變化。

(b) \mathbb{X} : $\frac{\Omega}{(u,v)}\to\mathbb{R}^3$,若定義 $\overline{\mathbb{X}}(u,v)=\mathbb{X}(v,u)$ (因此 N 轉向)。討論 $\overline{\mathbb{X}}(\Omega)$ 上相對應點的 K_n,H,K 變化。

Problem 9 (旋轉面). $\mathbb{X}(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$, f>0

- (a) 計算其 e, f, g, H, K
- (b) 討論其 principal direction 與 principal curvature K_1, K_2 。

Proof. To avoid the notational ambiguity, let $\mathbb{X}(u, v) = (s(u) \cos v, s(u) \sin v, t(u))$, and that s > 0.

(a) We have

$$\begin{split} & \mathbb{X}_{u} = (s'(u)\cos v, s'(u)\sin v, t'(u)); \\ & \mathbb{X}_{v} = (-s(u)\sin v, s(u)\cos v, 0); \\ & E = \langle \mathbb{X}_{u}, \mathbb{X}_{u} \rangle = s'(u)^{2} + t'(u)^{2} \\ & F = \langle \mathbb{X}_{u}, \mathbb{X}_{v} \rangle = 0 \\ & G = \langle \mathbb{X}_{v}, \mathbb{X}_{v} \rangle = s(u)^{2} \\ & \mathbb{X}_{uu} = (s''(u)\cos v, s''(u)\sin v, t''(u)); \\ & \mathbb{X}_{uv} = (-s'(u)\sin v, s'(u)\cos v, 0); \\ & \mathbb{X}_{vv} = (-s(u)\cos v, -s(u)\sin v, 0); \\ & N = \frac{\mathbb{X}_{u} \times \mathbb{X}_{v}}{|\mathbb{X}_{u} \times \mathbb{X}_{v}|} = \frac{(-t'(u)s(u)\cos v, -t'(u)s(u)\sin v, s'(u)s(u))}{\sqrt{t'(u)^{2}s(u)^{2}} + s'(u)^{2}s(u)^{2}} \\ & = \frac{(-t'(u)\cos v, -t'(u)\sin v, s'(u))}{\sqrt{t'(u)^{2}} + s'(u)^{2}}; \\ & e = \langle N, \mathbb{X}_{uv} \rangle = \frac{-s''(u)t'(u) + t''(u)s'(u)}{\sqrt{t'(u)^{2}} + s'(u)^{2}} \\ & f = \langle N, \mathbb{X}_{uv} \rangle = 0 \\ & g = \langle N, \mathbb{X}_{uv} \rangle = 0 \\ & g = \langle N, \mathbb{X}_{vv} \rangle = \frac{s(u)t'(u)}{\sqrt{t'(u)^{2}} + s'(u)^{2}} \\ & -dN^{T} = \begin{bmatrix} e & f \\ f & g \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} = \frac{1}{EG - F^{2}} \begin{bmatrix} e & f \\ f & g \end{bmatrix} \begin{bmatrix} G & -F \\ -F & E \end{bmatrix} = \begin{bmatrix} e/E & 0 \\ 0 & g/G \end{bmatrix} \\ & K = \det(-dN) = \frac{eg}{EG} \\ & H = \frac{1}{2} tr(-dN) = \frac{eG + gE}{2EG} \end{split}$$

(b) Since -dN is already a diagonal matrix, clearly,

$$K_1 = e/E;$$

 $K_2 = g/G;$
 $V_1 = X_u;$
 $V_2 = X_v;$

Problem 10 (管面). $\mathbb{X}(s,\theta) = \gamma(s) + \cos\theta \vec{n}(s) + \sin\theta \vec{b}(s)$, $0 < \kappa < 1$

- (a) 計算其 e, f, g, H, K
- (b) 討論曲面上 K 的分佈。

Proof. (a) Let $\vec{t}(s)$, $\vec{n}(s)$, $\vec{b}(s)$ be the basis, and $\gamma(0)$ be the origin.

$$\begin{split} &\mathbb{X}_{s} = (1-\kappa\cos\theta, \tau\sin\theta, -\tau\cos\theta); \\ &\mathbb{X}_{\theta} = (0, -\sin\theta, \cos\theta); \\ &N = \frac{\mathbb{X}_{s} \times \mathbb{X}_{\theta}}{|\mathbb{X}_{s} \times \mathbb{X}_{\theta}|} = \frac{(0, (\kappa\cos\theta - 1)\cos\theta, (\kappa\cos\theta - 1)\sin\theta)}{|\kappa\cos\theta - 1|} \\ &= (0, -\cos\theta, -\sin\theta); \quad (\text{since } \kappa < 1) \\ &\mathbb{X}_{ss} = (-\sin\theta\kappa\tau, \kappa + \cos\theta(-\kappa^{2} - \tau^{2}), -\sin\theta\tau^{2}); \\ &\mathbb{X}_{s\theta} = (1 + \kappa\sin\theta, \tau\cos\theta, \tau\sin\theta); \\ &\mathbb{X}_{\theta\theta} = (0, -\cos\theta, -\sin\theta); \\ &e = -\kappa\cos\theta + \cos^{2}\theta(\kappa^{2} + \tau^{2}) + \tau^{2}\sin^{2}\theta = -\kappa\cos\theta + \kappa^{2}\cos^{2}\theta + \tau^{2}; \\ &f = -\tau; \\ &g = 1; \\ &dN(\mathbb{X}_{s}) = N_{s} = (\kappa\cos\theta, -\tau\sin\theta, \tau\cos\theta) = \mathbb{X}_{s}\kappa/(1-\kappa) + \frac{\tau}{1-\kappa}\mathbb{X}_{\theta}; \end{split}$$

 $dN(\mathbb{X}_{\theta}) = N_{\theta} = (\kappa \cos \theta, -\tau \sin \theta, \tau \cos \theta) = \mathbb{X}_{\theta} \kappa / (1 - \kappa) + \frac{1 - \kappa}{1 - \kappa}$ $dN(\mathbb{X}_{\theta}) = N_{\theta} = (0, \sin \theta, -\cos \theta) = -\mathbb{X}_{\theta};$

$$egin{aligned} [-dN] &= \left[egin{array}{cc} rac{-\kappa}{1-\kappa} & rac{- au}{1-\kappa} \ 0 & 1 \end{array}
ight] \ \kappa_1 &= rac{\kappa}{1-\kappa}; \end{aligned}$$

$$K = \frac{\kappa}{1 - \kappa};$$

$$H = \frac{1}{2 - 2\kappa}.$$

(b)
$$K = \frac{\kappa}{1 - \kappa}; \quad \text{(how to discuss?)}$$