ESTRUCTURAS ALGEBRAICAS. Hoja de problemas 2

1. Sea A un grupo abeliano. Demostrad que

$$A_{tor} := \{ a \in A : o(a) < \infty \}$$

es un subgrupo de A. Comprobad que $\{M \in Gl_2(F) : o(M) < \infty\}$ no es un subgrupo de $Gl_2(F)$.

- 2. Encontrad un subgrupo estricto de D_8 que no sea cíclico.
- 3. Demostrad que ninguno de los grupos $C_n \times C_n$, $C_n \times \mathbb{Z}$, $\mathbb{Z} \times \mathbb{Z}$ es cíclico.
- 4. Sea G un grupo y sea $g \in G$.
 - (i) Demostrad que, si g tiene orden finito y $n \in \mathbb{N}$ es un múltiplo de o(g), existe un único homomorfismo $f: \mathbb{Z}/n\mathbb{Z} \to G$ que satisface f([1]) = g.
 - (ii) Demostrad que existe un único homomorfismo $f: \mathbb{Z} \to G$ que satisface f(1) = g.
- 5. Dado $a \in \mathbb{Z}$ definimos una función

$$\sigma_a:C_n\to C_n$$

poniendo $\sigma_a(x) := x^a$ para cada $x \in C_n$.

- (i) Demostrad que σ_a es un homomorfismo.
- (ii) Demostrad que σ_a es un isomorfismo si y sólo si (a, n) = 1.
- (iii) Demostrad que todo automorfismo de C_n es igual a σ_a para algún $a \in \mathbb{Z}$ (coprimo a n).
- (iv) Demostrad que $\sigma_a \circ \sigma_b = \sigma_{ab}$.
- (v) Demostrad que hay un isomorfismo

$$f: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(C_n)$$

dado por $f([a]) := \sigma_a$.

- 6. Demostrad que $\{-1\} \cup \{1/p : p \in \mathbb{N} \text{ es primo}\}$ genera \mathbb{Q}^* .
- 7. Sea G un grupo y sea H un subgrupo de G. Definid explícitamente una relación de equivalencia en G con la propiedad que, para cada $g \in G$, la clase de equivalencia de g sea Hg.
- 8. Sea p primo y sea $n \in \mathbb{N}$. Sean H y K subgrupos de C_{p^n} . Demostrad que $H \subseteq K$ o $K \subseteq H$.
- 9. Sea G un grupo y sean subgrupos H y K de G. Encontrad todos los posibles órdenes de $H \cap K$ cuando:
 - a) |H| = 16 y |K| = 20;
 - b) |H| = |K| = 7
- 10. Encontrad todos los subgrupos normales de D_8 .
- 11. Sea G un grupo y sea H un subgrupo de G.
 - (i) Para todo $g \in G$, demostrad que gHg^{-1} es un subgrupo de G.
 - (ii) Para todo $g \in G$, demostrad que la función

$$f_q: H \to gHg^{-1},$$

definida por $f_q(h) := ghg^{-1}$ para $h \in H$, es un isomorfismo de grupos.

- (iii) Demostrad que H es normal en G si y sólo si todo elemento de G normaliza H.
- 12. Sea G un grupo. ¿Verdadero o falso?
 - i) $H \leq G$ y H conmutativo implica $H \leq G$.
 - ii) $H \leq G$ y |H| = 2 implica $H \leq G$.
 - iii) Si $f: G \to G'$ es un homomorfismo de grupos, entonces im $(f) \leq G'$
 - iv) Si $H \subseteq K$ y $K \subseteq G$, entonces $H \subseteq G$.
 - v) Si $H \subseteq G$ y |H| = m entonces H es el único subgrupo de G de orden m.
 - vi) Si $H \subseteq G$ entonces $H \subseteq Z(G)$.

13. Sea G un grupo y S un subconjunto no vacío de G. Demostrad que

$$C_G(S) \le N_G(S) \le G$$
.

Demostrad que, si G es abeliano, entonces $C_G(S) = N_G(S) = G$.

- 14. Sea $S = \{1, (1, 2)\} \subset S_3$. Comprobad que $C_{S_3}(S) = N_{S_3}(S) = S$ y que $Z(S_3) = \{1\}$.
- 15. Si N es un subgrupo normal de G y N tiene dos elementos, demostrad que entonces N está incluido en el centro de G (esto es equivalente a: grupos de centro trivial no tienen subgrupos normales de orden 2).
- 16. Sea G un grupo para el que existe un entero n > 1 con la propiedad que $(ab)^n = a^nb^n$ para todos los elementos a y b de G. Sean $H_1 = \{x^n : x \in G\}$ y $H_2 = \{x \in G : o(x)|n\}$. Demostrad que H_1 y H_2 son subgrupos normales de G.
- 17. Sea G una grupo y sea N un subgrupo normal de G. Sea x un elemento de G de orden finito. Demostrad que el orden de xN en G/N es un divisor del orden de x en G.
- 18. Demostrad que $G = \{m + \sqrt{2}n : m, n \in \mathbb{Z}\}$ es un grupo con respecto a la suma. Demostrad que $H = \{5^k 3^s : k, s \in \mathbb{Z}\}$ es un grupo con respecto a la multiplicación. ¿Son G y H isomorfos?
- 19. Sea N un subgrupo normal de G tal que G/N tiene orden n. Demostrad que si n y m son primos entre sí y $x \in G$ satisface $x^m = 1$, entonces xN = N.
- 20. Sea f un homomorfismo sobreyectivo de G en \mathbb{Z} . Demostrad que para todo número entero positivo n, G tiene un subgrupo normal de índice n.
- 21. Dado un grupo G y un subgrupo normal N tal que G/N es cíclico de orden 6, describid el retículo de los subgrupos de G que contienen a N.
- 22. Sea $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$ (el grupo circular). Utilizad el primer teorema de isomorfía para demostrar que \mathbb{S}^1 es isomorfo al grupo cociente $\mathbb{R}/2\pi\mathbb{Z}$. Hallad el subgrupo de \mathbb{S}^1 formado por todos los elementos de orden finito. ¿A qué subgrupo de $\mathbb{R}/2\pi\mathbb{Z}$ corresponde?
- 23. Demostrad que si H es un subgrupo de un grupo G, $H \subseteq Z(G)$ y G/H es cíclico, entonces G es abeliano.
- 24. Hallad $D_8/Z(D_8)$ y determinad su clase de isomorfismo.
- 25. Demostrad que si G es un grupo no conmutativo y tiene orden p^3 (p un número primo) entonces Z(G) tiene orden p.
- 26. ¿Cuántos homomorfismos sobreyectivos se pueden definir entre los siguientes grupos aditivos?
 - (a) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/30\mathbb{Z}$,
 - (b) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/15\mathbb{Z}$ y
 - (c) de $\mathbb{Z}/30\mathbb{Z}$ en $\mathbb{Z}/8\mathbb{Z}$.
- 27. Definid un homomorfismo (si es posible) entre los siguientes grupos:
 - (a) de S_3 en $\mathbb{Z}/12\mathbb{Z}$, inyectivo;
 - (b) de S_3 en $\mathbb{Z}/3\mathbb{Z}$, sobreyectivo;
 - (c) de S_3 en $\mathbb{Z}/6\mathbb{Z}$, no constante.
- 28. Hallad todos los homomorfismos de $\mathbb{Z}/2\mathbb{Z}$ en Aut($\mathbb{Z}/12\mathbb{Z}$).
- 29. Sean G_1 y G_2 dos grupos finitos de órdenes primos entre sí. ¿Cuántos homomorfismos hay de G_1 en G_2 ?
- 30. Dad un ejemplo de un grupo G que posea un subgrupo normal N tal que N y G/N sean cíclicos pero G no lo sea.
- 31. Comprobad que todo subgrupo de Q_8 es normal en Q_8 y determinad la clase de isomorfismo de cada cociente de Q_8 .

$$H := \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} : a \in \mathbb{Z} \}.$$

Demostrad que H es un subgrupo de $\mathrm{Gl}_2(\mathbb{Q})$. Demostrad que

$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} H \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \subseteq H.$$

Demostrad que $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ no normaliza H.

- 33. Sea G un grupo y sea H un subgrupo finito de G.
 - (i) Demostrad que un elemento g de G normaliza H si y sólo si

$$gHg^{-1} \subseteq H$$
.

(ii) Sea S un conjunto generador de H. Demostrad que un elemento g de G normaliza H si y sólo si

$$gSg^{-1} \subseteq H$$
.

(iii) Sea T un conjunto generador de G. Demostrad que H es normal en G si y sólo si

$$tSt^{-1} \subseteq H$$

para todo $t \in T$.

- 34. Sean H y K subgrupos normales de un grupo G con $H \cap K = \{1\}$. Demostrad que cualquier elemento de H conmuta con cualquier elemento de K.
- 35. Si $H \leq K \leq G$ comprobad que [G:H] = [G:K][K:H].
- 36. Sea G un grupo y sea H un subgrupo normal en G cuyo índice en G es un número primo p. Sea K un subgrupo de G. Demostrad que o bien $K \subseteq H$ o bien tenemos G = HK y $[K : (K \cap H)] = p$.