Memória Secundária

Organização e Recuperação de Dados Profa. Valéria

UEM - CTC - DIN

Slides preparados com base no Cap. 3 do livro FOLK, M.J. & ZOELLICK, B. *File Structures*. 2nd Edition, Addison-Wesley Publishing Company, 1992.

Areal Density

Fonte:

https://olhardigital.com.br/en/2020/12/17/noticias/fita-magnetica-da-fujifilm-e-ibm-traz-ate-580-tb-de-capacidade/

2015

IBM's Tale of the Tape

2006

Nearly 70 years of tape innovation: reliable, secure & energy efficient for Hybrid Clouds

2010

2020

2017

Durabilidade →
 ~30 anos

Fonte: https://www.ibm.com/

> blogs/research/2020/ 12/tape-density-record/

© Copyright IBM Corporation 2020, IBM and the IBM is	oso are trademarks of IBM Corp. registered in many lu	risdictions worldwide. Other product and service names	might be trademarks of IBM or other * ASSUM	nes 1MB of text data per book		
Tape Length (meters)	890	917	1255	1255	1098	1255
Tape Thickness (micrometers - μm)	6.1	5.9	4.3	4.3	4.7	4.3
Tape Material	Barium Ferrite	Barium Ferrite	Barium Ferrite	Barium Ferrite	Sputtered Media	Strontium Ferrite
Linear Density (bits per inch)	400'000	518'000	600'000	680'000	818'000	702'000
Track Width	1.5 µm	0.45 μm	0.177 μm	0.140 μm	103 nm	56.2 nm
# of Books Stored*	8 Million	35 Million	154 Million	220 Million	330 Million	580 Million
Cartridge Capacity (Terabytes)	8	35	154	220	330	580
(bits per sq inch)	6.67 Billion	29.5 Billion	85.9 Billion	123 Billion	201 Billion	317 Billion

2014

Bibliotecas de fitas podem armazenar centenas de petabytes

Fonte: https://spectrum.ieee.org/computing/hardware/why-the-future-of-data-storage-is-still-magnetic-tape

Seagate Ships 20TB HAMR HDDs Commercially, Increases Shipments of Mach.2 Drives

By Anton Shilov January 23, 2021

Seagate continues to advance HDD technologies forward.

(Image credit: Seagate)

Fonte: https://www.tomshardware.com/news/seagate-shipshamr-hdds-increases-dual-actuator-shipments

Atualmente, a Seagate tem um HD de 24TB e a Western Digital de 26TB Ambos para uso em servidor Custo = \sim \$480,00

Who
SEAGATE TECHNOLOGY

Where
UNITED STATES ()

What
60 TERABYTE(S)

When
2016

In 2016, the US data-storage company Seagate Technology revealed they had created a solid-state drive (SSD) with a capacity of 60 Terabytes. A Terabyte corresponds to 1,000,000,000,000 bytes – in terms of data storage, the equivalent of about 210 DVDs or 1.423 CDs full of data.

Fonte:

https://www.guinnessworldrecords.com/world-records/73071-greatest-disk-storage-capacity

Para uso em servidor Custo = ~\$40.000,00

Fonte:

https://nimbusdata.com/press/ nimbus-data-launches-worldslargest-solid-state-drive-100terabytes-power-data-driveninnovation/

Nimbus Data Launches the World's Largest Solid State Drive - 100 Terabytes - to Power Data-driven Innovation

ExaDrive DC series raises the bar in SSD power efficiency, density, and write endurance

Irvine, CA March 19, 2018 – Ilimbus Data, a pioneer in flash memory solutions, today announced the ExaDrive® DC100, the largest capacity (100 terabytes) solid state drive (SSD) ever produced. Featuring more than 3x the capacity of the closest competitor, the ExaDrive DC100 also draws 85% less power per terabyte (TB). These innovations reduce total cost of ownership per terabyte by 42% compared to competing enterprise SSDs, helping accelerate flash memory adoption in both cloud infrastructure and edge computing.

Memória secundária

- Por que os discos e fitas são lentos?
 - Porque eles são dispositivos eletromagnéticos que envolvem partes mecânicas, enquanto outro tipos de memória são eletrônicas
- SSDs não possuem partes mecânicas, por isso são dispositivos secundários mais rápidos
 - Mas ainda são milhares de vezes mais lentos do que a memória RAM
- Fitas são dispositivos seriais, enquanto HDs e SSDs são dispositivos de acesso aleatório

- 1956 → Primeiro disco rígido comercial IBM 350
- 50 discos de aproximadamente 60 cm de diâmetro
- Capacidade de 3,75 MB
- ~1,50m de altura e 1,80m de comprimento
- Pesava mais de 1 tonelada
- Alugado por \$750 ao mês (~ R\$3850,00)
- Em 1973, IBM lançou o Winchester, que é considerado o pai dos HDs modernos

Fonte: https://www.computerhistory.org

Exemplos

- Hard disks (discos rígidos)
 - Alta capacidade
 - Baixo custo por bit
 - Lento em relação à RAM
- Floppy disks (disquete)
 - Baixa capacidade
 - Baixo custo
 - Muito mais lento que o HD
- ZIP disks
 - Capacidade de até 750 MB
 - Velocidade: Floppy < ZIP < HD

Composição

- Um ou mais pratos circulares sobrepostos atravessados por um eixo que os rotaciona
 - Floppy Disks e Zip Disks possuem apenas um prato flexível, enquanto que Hard Disks possuem geralmente entre um e quatro pratos rígidos
- Os pratos são construídos com materiais não magnéticos e revestidos por uma cobertura magnética extremamente fina
 - Floppy Disks e Zip Disks utilizam material plástico enquanto Hard Disks utilizam alumínio ou vidro. Geralmente as duas superfícies do prato são magnetizáveis
- Cabeças de leitura/escrita posicionadas sobre as superfícies do prato são responsáveis pela leitura e gravação dos dados
 - Nos discos rígidos a distância entre a cabeça de leitura/escrita e um prato é extremamente pequena (≈3 nm). Ela é mantida pela pressão aerodinâmica produzida pela rotação do prato sob a cabeça
- As cabeças de leitura/escrita são sustentadas por um braço e um atuador é responsável por posicioná-las na superfície do prato
 - Esse posicionamento é chamado de <u>seeking</u>

• Esquema dos componentes de um disco

Funcionamento

- Durante uma leitura/gravação a cabeça permanece parada enquanto o prato gira sob ela
 - Esta disposição dá origem à organização dos dados no prato como um conjunto de anéis concêntricos chamados de <u>trilhas</u>
- Pulsos elétricos enviados a uma bobina na cabeça de L/E produzem campos magnéticos que alteram a polaridade de pequenas regiões de uma trilha do prato
 - A diferença no sentido da polaridade entre cada região codifica a informação binária (0s e 1s) da trilha
- Durante a leitura, quando as regiões magnetizadas passam sob a cabeça, mudanças de polaridade induzem pulsos elétricos na bobina da cabeça que são convertidos novamente para a informação binária equivalente

Organização dos discos

- Os dados são armazenados em <u>trilhas</u> sucessivas na superfície de um prato
- Cada trilha é dividida em setores
 - Um setor é a menor parte endereçável do disco (512B/4KB)
- Quando é realizada uma chamada READ() por um byte específico
 - O disco localiza a <u>superfície</u>, a <u>trilha</u> e o <u>setor</u> corretos
 - Os dados de um setor inteiro são copiados para um buffer
 - A partir do *buffer*, se encontra o byte específico que foi requisitado
- Normalmente os discos vêm setorizados de fábrica (formatação física)

Organização dos discos

- Os dados são armazenados em <u>trilhas</u> sucessivas na superfície de um prato
- Cada trilha é dividida em setores
 - Um setor é a menor parte endereçável do disco (512B/4KB)
- Quando é realizada uma chamada READ() por um byte específico
 - O disco localiza a <u>superfície</u>, a <u>trilha</u> e o <u>setor</u> corretos
 - Os dados de um setor inteiro são copiados para um buffer
 - A partir do buffer, se ancontra a buta aconsífica que foi requisitado
- Normalmente os disc

Importante notar que, logicamente, o disco é visto como um vetor contínuo de setores, i.e., a organização física é transparente para o sistema.

Organização dos discos

Organização dos discos

 Em um disco formado por diversos pratos, o conjunto de trilhas na mesma direção (sobrepostas em pratos diferentes) forma um cilindro

Organização dos discos

- Toda a informação em um cilindro pode ser acessada sem seeking adicional
 - O seeking normalmente é a parte mais lenta em uma operação de leitura/escrita
- As cabeças se posicionam sobre o cilindro desejado e alternam sucessivamente entre si a leitura de cada trilha
 - Mesmo possuindo várias cabeças de leitura, apenas uma delas pode ser usada de cada vez, de forma que a controladora precisa constantemente chavear entre elas durante a leitura

Exemplo (hipotético)

Discos = 4

Superfícies = 8

Trilhas/superfície = 5

Cilindros = 5

Trilhas = 40

Setores/trilha = 8

Setores = 320

Estimativa de capacidade

- A quantidade de dados que pode ser armazenada em uma trilha depende do quão densamente os bits podem ser armazenados
- A densidade depende da qualidade da mídia e da precisão das cabeças de leitura/escrita
 - **Exemplo:** Disco rígido 1TB Seagate 7200RPM (± R\$300,00)
 - 16.383 trilhas/superfície e 63 setores (de 4k) por trilha (256 KB/trilha)

- Estimativa de capacidade
- Sendo que:
 - Número de Cilindros = Número de Trilhas/Superfície
 - Número de Trilhas do Cilindro = 2 × Número de Pratos
- Temos que:
 - Capacidade da Trilha =

Número de bytes por Setor × Número de Setores por Trilha

- Capacidade do Cilindro =
 - Capacidade da Trilha × Número de Trilhas do Cilindro
- Capacidade do **Disco** =

Capacidade do Cilindro × Número de Cilindros

- Estimativa de capacidade e espaço necessários
- Exemplo
 - Propriedades do disco
 - 512 bytes/setor
 - 63 setores/trilha
 - 16 trilhas/cilindro
 - 4080 cilindros
 - Quantos cilindros são necessários para armazenar um arquivo de 50.000 registros de 256 bytes cada?

- Estimativa de capacidade e espaço necessários
- Exemplo
 - Propriedades do disco
 - 512 bytes/setor
 - 63 setores/trilha

<u>Capacidades</u>:

- 1 trilha = 63 setores de 512 bytes = 32.256 bytes
- 16 trilhas/cilindro
 1 cilindro = 16 trilhas
- 1 cilindro = 16 trilhas = 1.008 setores = 516.096 bytes

- 4080 cilindros
- Quantos cilindros são necessários para armazenar um arquivo de 50.000 registros de 256 bytes cada?
- Como cada setor tem 512 bytes, é possível armazenar 2 registros por setor, sendo necessário um total de 25.000 setores
- Em 1 cilindro temos 1.008 setores (63 setores x 16 trilhas)
- Então, para armazenar 25.000 setores são necessários 24,8 cilindros (25.000 setores/1.008 setores)

Clusters

- Organização lógica que visa aumentar o desempenho e mantida pelo Gerenciador de Arquivos (File Manager), presente no S.O.
 - Quando um arquivo é acessado por uma aplicação, é o gerenciador de arquivos quem associa o arquivo lógico às suas posições físicas
 - O arquivo é visto como uma série de *clusters*
- Para fazer esse mapeamento, o gerenciador de arquivos utiliza uma tabela de alocação de arquivos (chamada de File Allocation Table (FAT) em alguns S.Os.)

Clusters

- Em vez da tabela de alocação endereçar setores, endereça clusters
 - Um cluster é um conjunto de um ou mais setores contíguos do disco
 - Todos os setores de um *cluster* podem ser lidos sem *seeks* adicionais e sem a necessidade de consultas adicionais à tabela de alocação
 - A tabela de alocação contém uma lista de todos os clusters de um arquivo, ordenados de acordo com a ordem lógica dos setores que eles contém

- O tamanho do setor é uma característica do disco
- O tamanho do cluster é uma característica do S.O.

Clusters

 Cada cluster do disco é usado para um único arquivo, ou seja, em um mesmo cluster não haverá informações sobre mais de um arquivo

Comparação do tamanho de cluster entre partições

Tamanho do volume	Tamanho do cluster de FAT16	Tamanho do cluster de FAT32	Tamanho do cluster de NTFS
7 MB-16 MB	2 KB	Não compatível	512 bytes
17 MB-32 MB	512 bytes	Não compatível	512 bytes
33 MB-64 MB	1 KB	512 bytes	512 bytes
65 MB-128 MB	2 KB	1 KB	512 bytes
129 MB-256 MB	4 KB	2 KB	512 bytes
257 MB-512 MB	8 KB	4 KB	512 bytes
513 MB-1,024 MB	16 KB	4 KB	1 KB
1,025 MB-2 GB	32 KB	4 KB	2 KB
2 GB-4 GB	64 KB	4 KB	4 KB
4 GB-8 GB	Não Compatível	4 KB	4 KB
8 GB-16 GB	Não compatível	8 KB	4 KB
16 GB-32 GB	Não compatível	16 KB	4 KB
32 GB-2 TB	Não compatível	Não compatível	4 KB

Clusters

Exemplo:

Arquivo de 1 byte ocupando 4 KB (tamanho do *cluster*)

- Custos de acesso a disco
 - Em termos de tempo, o custo de um acesso ao disco é a soma de três tempos:
 - Posicionamento (seek time)
 - Tempo necessário para mover a cabeça leitura/escrita até a trilha correta – depende da distância a ser percorrida
 - Latência (rotational delay ou latency)
 - Tempo necessário para a cabeça de leitura/escrita se posicionar no setor correto
 - Transferência (transfer time)
 - Tempo necessário para um byte ser lido na superfície do disco e transferido para o buffer interno da controladora

Posicionamento (Seek time)

- É impossível saber exatamente quantas trilhas serão percorridas durante as buscas
- O que se faz é estimar um tempo médio, assumindo que as posições iniciais e finais para cada acesso são aleatórias
- Por meio de estudos empíricos, estimou-se que uma busca percorre, em média, 1/3 do total de trilhas, sendo que o tempo gasto para percorrer esse número de trilhas tem sido usado pelos fabricantes como indicador do tempo médio de busca (seek time)
 - O tempo médio divulgado pelos fabricantes está entre 5ms à 10ms

- Posicionamento (Seek time)
 - O que ocorre quando um arquivo está armazenado em cilindros consecutivos e é acessado sequencialmente?
 - O seek time é reduzido! (melhor situação)
 - O que ocorre quando dois arquivos, localizados em extremos opostos do disco (um no cilindro mais externo e outro no mais interno), são acessados alternadamente?
 - O seek time é alto! (pior situação)
- O tempo de seek tende a ser mais caro em sistemas multiusuários em que vários processos concorrem pelo uso do disco

Latência (Rotational delay)

- Tempo gasto para a cabeça de leitura/escrita encontre o setor desejado
 - Estima-se que o tempo médio seja a metade do tempo de uma rotação (na prática, esse tempo costuma ser menor)
 - Também chamado de *Average Latency*
 - No início dos anos 90, com discos de 3.600 rpm, a metade do tempo de uma rotação era de 8,3ms
 - Atualmente os discos de 7.200 rpm têm latência média de 4,16ms
- Em uma leitura/escrita sequencial envolvendo trilhas de um mesmo cilindro, não há latência na alternância entre as trilhas
 - Existe apenas um tempo (muito pequeno) de comutação entre as cabeças de leitura/escrita

- Tempo de transferência (Transfer time)
 - Uma vez que a cabeça de leitura/escrita está sob o setor desejado, ele pode ser transferido
 - O tempo de transferência é dado por:
 - O tempo para transferir uma trilha inteira normalmente é o tempo de uma rotação
 - (n° bytes transferidos/n° bytes na trilha) x tempo de rotação
 - Exemplo:
 - Tempo de transferência de 1 KB em um disco com 32 setores de 512 bytes por trilha (16.384b) e tempo de rotação de 8,2ms:

$$(1.024/16.384) \times 8,2 = 0,51 \text{ms}$$

 Neste exemplo o tempo está expresso em bytes/ms. Os fabricantes costumam utilizar MB/s

- O modo de acesso ao arquivo pode afetar drasticamente os custos de tempo de acesso
 - Dois modos de acesso:
 - Sequencial: o máximo do arquivo é processado em cada acesso
 - Aleatório: apenas um registro é processado por vez

Exemplo

- Determinar o tempo necessário para ler um arquivo com 40.000 registros de 256 bytes cada um
 - Vamos calcular o tempo para leitura do arquivo com acesso sequencial e aleatório e comparar os resultados

Vamos considerar as seguintes especificações do disco:

Tempo médio de seek	13 ms		
Tempo de latência	8,3 ms		
Tempo de transferência	16,7 ms/trilha ou 1.229 bytes/ms		
Bytes por setor	512		
Setores por trilha	100		
Trilhas por cilindro	12		
Trilhas por superfície	1.748		
Tamanho do cluster	10 setores (5.120 bytes)		

- Tamanho do arquivo ⇒ 40.000 registros de 256 bytes
 - Se cada *cluster* tem 5.120 bytes (10 setores), podemos armazenar 20 registros por *cluster* (5.120/256)
 - Será necessário um total de 2.000 clusters para armazenar todos os registros (40.000/20)
 - Como cada trilha possui 10 clusters (100 setores), serão necessárias
 200 trilhas
- Vamos assumir o pior caso, no qual as 200 trilhas que armazenam o arquivo estão espalhadas aleatoriamente no disco
 - Situação extrema, mas que pode ocorrer em discos no limite da capacidade, especialmente com muitos arquivos pequenos

- Custo com acesso sequencial
 - Para cada trilha, em que são lidos setores consecutivos, o processo de leitura envolve os seguintes custos:
 - Tempo médio de *seek* = 13 ms
 - Tempo de latência = 8,3 ms
 - Tempo de transferência de uma trilha = 16,7 ms

Para 200 trilhas =

 $(13 + 8,3 + 16,7) \times 200 = 7.600 \text{ ms} = 7,6 \text{ segundos}$

- Custo com acesso aleatório
 - Para cada registro, a operação de leitura envolve os seguintes custos:
 - Tempo médio de seek = 13 ms
 - Tempo de latência = 8,3 ms
 - Tempo de transferência de um cluster = 1,67 ms (Tempo de 16,7 ms/trilha, como cada trilha = 10 clusters, então é gasto 16,7/10 ms por cluster)

```
Para 40.000 registros = (13 + 8,3 + 1,67) \times 40.000 = 918,8 \text{ s} = 15,3 \text{ minutos}
```

Custo de acesso

- A diferença entre o acesso sequencial e acesso aleatório é muito grande!
 - No exemplo anterior: 7,6 seg vs. 15,3 min
 - Essa diferença se deve à quantidade de seeks 200 no 1º caso contra 40.000 do 2º caso
- Por isso é aconselhável que o máximo de informação necessária seja lida em cada acesso
 - Evitando o frequente posicionamento da cabeça de leitura/escrita para cada registro

- *Solid-state drives* (SSD) são compostos por componentes eletrônicos
 - O armazenamento geralmente é feito em módulos de memória flash
- Devido a essa característica, o custo de acesso a qualquer posição do SSD será o mesmo
 - Não há tempo de seek, nem latência rotacional
 - Mas existe uma latência (tempo para se iniciar uma operação) e um tempo de transferência (throughput)
 - Esses tempos dependem do tipo de memória usada, da controladora e da interface do SSD

Exemplo: Samsung SSD 840 Pro (512 GB)

Fonte: http://codecapsule.com/2014/02/12/coding-for-ssds-part-2-architecture-of-an-ssd-and-benchmarking/

- A menor unidade endereçável de um SSD é uma página
 - O tamanho de uma página muda de um SSD para outro, variando entre 2KB e 16KB
 - Assim como acontece com os setores de um disco, <u>a</u>
 <u>página é a menor unidade de leitura e escrita</u>
- As páginas são agrupadas em <u>blocos</u>
 - O tamanho dos blocos também varia de um SSD para outro, entre 256KB e 4MB
 - P.e., o Samsung SSD 840 EVO tem blocos de 2.048 KB (256 páginas de 8 KB cada)

- Diferentemente dos setores de um HD, as <u>páginas de um SSD</u> <u>não podem ser sobrescritas</u>
 - Quando uma alteração é necessária, a página é copiada para um buffer, alterada e escrita em uma nova página livre
 - A página antiga é marcada como "velha" e ficará assim até o seu bloco ser apagado e a página fique livre novamente
- Essa operação faz com que as <u>escritas sejam mais lentas do</u> que as <u>leituras</u>
- Além disso, apenas blocos podem ser apagados
 - Para que um bloco com alguma página "velha" seja apagado, o <u>coletor</u> de lixo copiará as páginas ativas para um novo bloco, deixando o bloco pronto para ser apagado por completo
 - Uma vez apagado, as páginas do bloco ficam livres novamente

- Além de não poderem ser sobrescritas, memórias flash também têm um número máximo de escritas possíveis
 - Elas desgastam conforme são escritas e apagadas
 - Por conta disso, a controladora distribuirá o uso dos blocos de memória para que o desgaste não seja maior em uma região do que em outra
- Todos esses fatores fazem com que as controladoras sejam complexas e adicionem custo nas operações em termos de tempo, especialmente nas escritas
- Ainda assim, os <u>SSDs são centenas de vezes mais rápidos do</u> que os <u>HDs</u>, especialmente quando se trata de acesso aleatório

Memória secundária

- Independentemente do tipo de dispositivo usado como memória secundária, ele será o gargalo do sistema
 - Gargalo

 quando um dispositivo mais lento afeta o desempenho de outros mais rápidos, se tornando um fator limitante do sistema
- Por isso é importante que acessos à memória secundária sejam feitos da forma eficiente