Python for Data Analysis

Pandas docs (W. Mckinney), Scikit-learn docs (A. Mueller), Matplotlib docs, and UB's K. Oleinik Research Computing Docs

R has taken over academic data analysis

- Used to be SPSS
- Then SPSS and STATA
- R is free, has more applications, and is constantly updated by open source contributions
 - So it has taken over other software usage
- However, Python is becoming the dominant language of data science

R is awesome, but Python dominates outside academia (Social Science)

- Plays well with cloud resources
- Developed by computer scientists
 - Code is cleaner/structurally similar across libraries
- Python is becoming the dominant language of data science
 - Annual Survey from Kaggle Users:
 - https://www.kaggle.com/surveys/2017

Python use is growing for data analysis

Table 1: Top Analytics/Data Science/ML Software in 2018 KDnuggets Poll

Software	2018 % share	% change 2018 vs 2017
Python	65.6%	11%
RapidMiner	52.7%	65%
R	48.5%	-14%
SQL	39.6%	1%
Excel	39.1%	24%
Anaconda	33.4%	37%
Tensorflow	29.9%	32%
Tableau	26.4%	21%
scikit-learn	24.4%	11%
Keras	22.2%	108%

Many popular Python toolboxes/libraries:

- NumPy
- SciPy
- Pandas
- SciKit-Learn

Visualization libraries

- matplotlib
- Seaborn

and many more ...

NumPy:

- introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects
- provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance
- many other python libraries are built on NumPy

Link: http://www.numpy.org/

SciPy:

 collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics and more

part of SciPy Stack

built on NumPy

Link: https://www.scipy.org/scipylib/

Pandas:

- adds data structures and tools designed to work with table-like data (similar to Vectors and Data Frames in R)
- provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.
- allows handling missing data

Link: http://pandas.pydata.org/

SciKit-Learn:

- provides machine learning algorithms: classification, regression, clustering, model validation etc.
- built on NumPy, SciPy and matplotlib

Link: http://scikit-learn.org/

matplotlib:

- python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
- a set of functionalities similar to those of MATLAB
- line plots, scatter plots, barcharts, histograms, pie charts etc.
- relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/

Seaborn:

- based on matplotlib
- provides high level interface for drawing attractive statistical graphics
- Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

Start Google Colab Jupyter notebook from Google Drive:

Start Google Colab Jupyter notebook from Google Drive:

Loading Python Libraries

```
In []: #Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib as mpl
import seaborn as sns
```

Press Shift+Enter to execute the jupyter cell

Reading data using pandas

```
In [ ]: #Read csv file
    df = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/Salaries.csv")
```

Note: The above command has many optional arguments to fine-tune the data import process.

There is a number of pandas commands to read other data formats:

```
pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5','df')
```

Exploring data frames

```
In [3]: #List first 5 records
    df.head()
```

Out[3]:

		rank	discipline	phd	service	sex	salary
	0	Prof	В	56	49	Male	186960
	1	Prof	Α	12	6	Male	93000
	2	Prof	Α	23	20	Male	110515
	3	Prof	Α	40	31	Male	131205
	4	Prof	В	20	18	Male	104800

Hands-on exercises

- ✓ Learn more about the method (i.e.-function) with question marks
 - ✓ Run ?df.head() to learn about head method args.

- ✓ Try to read the first 10, 20, 50 records;
- ✓ Can you guess how to view the last few records; Hint:

Data Frame data types

Pandas Type	Native Python Type	Description	
object	string	The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings).	
int64	int	Numeric characters. 64 refers to the memory allocated to hold this character.	
float64	float	Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal.	
datetime64, timedelta[ns]	N/A (but see the <u>datetime</u> module in Python's standard library)	Values meant to hold time data. Look into these for time series experiments.	

Data Frame data types

```
In [4]: #Check a particular column type
        df['salary'].dtype
Out[4]: dtype('int64')
In [5]: #Check types for all the columns
        df.dtypes
Out[4]: rank
                      object
                      object
        discipline
        phd
                      int64
                      int64
        service
                      object
        sex
        salary
                      int64
        dtype: object
```

Data Frames attributes

Python objects have attributes and methods.

df.attribute	description
dtypes	list the types of the columns
columns	list the column names
axes	list the row labels and column names
ndim	number of dimensions
size number of elements shape return a tuple representing the dimensionality	

Hands-on exercises

- ✓ Find how many records this data frame has;
- ✓ How many elements are there?
- ✓ What are the column names?
- ✓ What types of columns we have in this data frame?

Data Frames methods

Unlike attributes, python methods have *parenthesis*.

All attributes and methods can be listed with a *dir()* function: **dir(df)**

df.method()	description
head([n]), tail([n])	first/last n rows
describe()	generate descriptive statistics (for numeric columns only)
max(), min()	return max/min values for all numeric columns
mean(), median()	return mean/median values for all numeric columns
std()	standard deviation
sample([n]) returns a random sample of the data frame	
dropna()	drop all the records with missing values

Hands-on exercises

- ✓ Give the summary for the numeric columns in the dataset
- ✓ Calculate standard deviation for all numeric columns;
- ✓ What are the mean values of the first 50 records in the dataset? *Hint:* use

head() method to subset the first 50 records and then calculate the mean

Selecting a column in a Data Frame

Method 1: Subset the data frame using column name: df['sex']

Method 2: Use the column name as an attribute: df.sex

Note: there is an attribute rank for pandas data frames, so to select a column with a name "rank" we should use method 1.

Hands-on exercises

- ✓ Calculate the basic statistics for the *salary* column;
- ✓ Find how many values in the *salary* column (use *count* method);
- ✓ Calculate the average salary;

Data Frames groupby method

Using "group by" method we can:

- Split the data into groups based on some criteria
- Calculate statistics (or apply a function) to each group
- Similar to dplyr() function in R

```
In []: #Group data using rank
    df_rank = df.groupby(['rank'])
In []: #Calculate mean value for each numeric column per each group
    df_rank.mean()
```

	phd	service	salary
rank			
AssocProf	15.076923	11.307692	91786.230769
AsstProf	5.052632	2.210526	81362.789474
Prof	27.065217	21.413043	123624.804348

Data Frames groupby method

Once groupby object is create we can calculate various statistics for each group:

Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object. When double brackets are used the output is a Data Frame

28

Data Frames groupby method

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the *groupby* object only verifies that you have passed a valid mapping
- by default the group keys are sorted during the *groupby* operation. You may want to pass sort=False for potential speedup:

```
In []: #Calculate mean salary for each professor rank:
    df.groupby(['rank'], sort=False)[['salary']].mean()
```

Data Frame: filtering

To subset the data we can apply Boolean indexing. This indexing is commonly known as a filter. For example if we want to subset the rows in which the salary value is greater than \$120K:

```
In []: #Calculate mean salary for each professor rank:
    df_sub = df[ df['salary'] > 120000 ]
```

Data Frames: Slicing

There are a number of ways to subset the Data Frame:

- one or more columns
- one or more rows
- a subset of rows and columns

Rows and columns can be selected by their position or label

Data Frames: Slicing

When selecting one column, it is possible to use single set of brackets, but the resulting object will be a Series (not a DataFrame):

```
In []: #Select column salary:
    df['salary']
```

When we need to select more than one column and/or make the output to be a DataFrame, we should use double brackets:

```
In []: #Select columns rank and salary:
    df[['rank', 'salary']]
```

Data Frames: Selecting rows

If we need to select a range of rows, we can specify the range using ":"

```
In []: #Select rows by their position:
    df[10:20]
```

Notice that the first row has a position 0, and the last value in the range is omitted: So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9

Data Frames: method loc

Prof Male 150500

If we need to select a range of rows, using their labels we can use method loc:

```
In []: #Select rows by their labels:
df_sub.loc[10:20,['rank','sex','salary']]

rank sex salary

Out[]: 10 Prof Male 128250
11 Prof Male 134778
13 Prof Male 162200
14 Prof Male 153750
15 Prof Male 150480
```

Data Frames: method iloc

If we need to select a range of rows and/or columns, using their positions we can use method iloc:

```
In []: #Select rows by their labels:
           df sub.iloc[10:20,[0, 3, 4, 5]]
              rank service
                          sex salary
           26 Prof
                         Male 148750
Out[]:
                          Male 155865
                     20 Male 123683
              Prof
              Prof
                          Male 155750
             Prof
                         Male 126933
                          Male 146856
              Prof
                     18 Female 129000
              Prof
              Prof
                     36 Female 137000
                     19 Female 151768
              Prof
```

Data Frames: method iloc (summary)

```
df.iloc[0] # First row of a data frame
df.iloc[i] #(i+1)th row
df.iloc[-1] # Last row
```

```
df.iloc[:, 0] # First column
df.iloc[:, -1] # Last column
```

Data Frames: Sorting

We can sort the data by a value in the column. By default the sorting will occur in ascending order and a new data frame is return.

```
In []: # Create a new data frame from the original sorted by the column Salary
    df_sorted = df.sort_values( by ='service')
    df_sorted.head()
```

Out[]:	rank		discipline ph		service	sex	salary	
		55	AsstProf	А	2	0	Female	72500	
		23	AsstProf	Α	2	0	Male	85000	
		43	AsstProf	В	5	0	Female	77000	
		17	AsstProf	В	4	0	Male	92000	
		12	AsstProf	В	1	0	Male	88000	

Data Frames: Sorting

We can sort the data using 2 or more columns:

```
In [ ]: df_sorted = df.sort_values( by =['service', 'salary'], ascending = [True, False])
    df_sorted.head(10)
```

0+ [] -			rank	discipline	phd	service	sex	salary
Out[]:	52	Prof	А	12	0	Female	105000
		17	AsstProf	В	4	0	Male	92000
		12	AsstProf	В	1	0	Male	88000
		23	AsstProf	Α	2	0	Male	85000
		43	AsstProf	В	5	0	Female	77000
		55	AsstProf	Α	2	0	Female	72500
		57	AsstProf	Α	3	1	Female	72500
		28	AsstProf	В	7	2	Male	91300
		42	AsstProf	В	4	2	Female	80225
		68	AsstProf	Α	4	2	Female	77500

Missing Values

Missing values are marked as NaN

	,		,	<u>p_</u>	,		,				·					
33	2013	1	1	1807.0	29.0	2251.0	NaN	UA	N31412	1228	EWR	SAN	NaN	2425	18.0	7.0
40	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EHAA	791	LGA	DFW	NaN	1389	NaN	NaN
40	4 2013	1	1	NaN	NaN	NaN	NaN	AA	N3EVAA	1925	LGA	MIA	NaN	1096	NaN	NaN
85	2013	1	2	2145.0	16.0	NaN	NaN	UA	N12221	1299	EWR	RSW	NaN	1068	21.0	45.0
85	3 2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133	JFK	LAX	NaN	2475	NaN	NaN

Missing Values

There are a number of methods to deal with missing values in the data frame:

df.method()	description
dropna()	Drop missing observations
dropna(how='all')	Drop observations where all cells is NA
dropna(axis=1, how='all')	Drop column if all the values are missing
dropna(thresh = 5)	Drop rows that contain less than 5 non-missing values
fillna(0)	Replace missing values with zeros
isnull()	returns True if the value is missing
notnull()	Returns True for non-missing values

Missing Values

- When summing the data, missing values will be treated as zero
- If all values are missing, the sum will be equal to NaN
- cumsum() and cumprod() methods ignore missing values but preserve them in the resulting arrays
- Missing values in GroupBy method are excluded (just like in R)
- Many descriptive statistics methods have skipna option to control if missing data should be excluded. This value is set to True by default (unlike R)

Aggregation Functions in Pandas

Aggregation - computing a summary statistic about each group, i.e.

- compute group sums or means
- compute group sizes/counts

Common aggregation functions:

min, max count, sum, prod mean, median, mode, mad std, var

Aggregation Functions in Pandas

agg() method are useful when multiple statistics are computed per column:

```
In [ ]: flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
```

Out[]:		dep_delay	arr_delay
		min	-16.000000	-62.000000
		mean	9.384302	2.298675
		max	351.000000	389.000000

Basic Descriptive Statistics

df.method()	description
describe	Basic statistics (count, mean, std, min, quantiles, max)
min, max	Minimum and maximum values
mean, median, mode	Arithmetic average, median and mode
var, std	Variance and standard deviation
sem	Standard error of mean
skew	Sample skewness
kurt	kurtosis

Graphics to explore the data

Seaborn package is built on matplotlib but provides high level interface for drawing attractive statistical graphics, similar to ggplot2 library in R. It specifically targets statistical data visualization

To show graphs within Python notebook include inline directive:

```
In [ ]: %matplotlib inline
```

Matplotlib introductory examples

Line chart code

```
In [ ]: from matplotlib import pyplot as plt
       years=[1950,1960,1970,1980,1990,2000,2010]
        gdp=[300.2,543.3,1075.9,2862.5,5979.6,10289.7,14958.3]
       # create a line chart, years on x-axis, gdp on y-axis
       plt.plot(years,gdp,color='green',marker='o',linestyle='solid')
        # add a title
       plt.title("Nominal GDP")
        # add a label to the y-axis
       plt.ylabel("Billions of $")
       plt.show() # code to print out final chart
```

Matplotlib introductory examples

Line chart output (without titles or labels that show up in actual output)

Out[]:

Matplotlib introductory examples

More examples in notebook

Basic statistical Analysis

statsmodel and scikit-learn - both have a number of function for statistical analysis

The first one is mostly used for regular analysis using R style formulas, while scikit-learn is more tailored for Machine Learning.

statsmodels:

- linear regressions
- hypothesis testing
- many more ...

scikit-learn:

- kmeans
- support vector machines
- random forests
- many more ...

See examples in the Tutorial Notebook

Machine Learning Prediction versus Focus on Causation

Relationship to Social Science approach

- Statistics focus
 - Causation
 - Inference Making
 - Real world insights
 - Model coefficients represent potential causal factors

- Machine Learning focus
 - Prediction
 - Elevates importance of training data
 - Real world insights secondary to accuracy of prediction

