# Histogram Processing -2

## Recap

- What is a Histogram?
- Histogram Normalization
- What is Random variable
- Histogram Equalization

## Lecture Objectives

- Histogram matching / Histogram specification
- Local histogram processing

## **Key Stages in DIP**



# Histogram Matching (Histogram Specification)

- Recall that histogram equalization yields an image whose pixels are (in theory) uniformly distributed among all gray levels.
- When **automatic enhancement** is desired, **histogram equalization** is a good approach to consider because the results from this technique are **predictable** and the method is **simple to implement**.
- Sometimes, this may not be desirable. Instead, we may want a transformation that yields an output image with a pre-specified histogram. This technique is called <u>histogram matching</u> OR <u>histogram specification</u>.

#### Given Information :

- Input image from which we can compute its histogram.
- User specified histogram of the output image.

#### Goal:

- Derive a point operation, h(r), that <u>maps</u> the input image into an output image that has the <u>user-specified</u> histogram.
- We will assume again, for the moment, continuous gray values.

- Consider for a moment <u>continuous intensities</u> r and z which, we treat as random variables with PDFs  $p_r(r)$  and  $p_z(z)$ , respectively.
  - Here, r and z denote the intensity levels of the input and output (processed) images, respectively.
- We can <u>estimate</u>  $p_r(r)$  from the given **input image**, and  $p_z(z)$  is the **user specified PDF** that we wish the *output image to have*.

Let s be a random variable with the property:

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

where w is dummy variable of integration.

Define a function G on variable z with the property:

$$G(z) = (L-1) \int_0^z p_z(v) dv = s$$

- where **v** is a dummy variable of integration.
- It follows from the preceding two equations that G(z) = s = T(r) and, therefore, that z must satisfy the condition:

$$z = G^{-1}(s) = G^{-1}[T(r)]$$

Approach of derivation

$$Z = G^{-1}(s=T(r))$$





 $p_R(r)$  (computed),  $p_Z(z)$  (Given), s=T(r)=G(z) (Given)

- Input:  $p_R(r)$  (computed),  $p_7(z)$  (Given), s=T(r)=G(z) (Given)
- Objective: compute z
- First apply the transformation:  $s = T(r) = (L-1) \int_0^r p_r(w) dw$ 
  - This gives an uniform image with a uniform probability density.
- Apply the transformation:  $G(z) = (L-1) \int_0^z p_z(v) dv = s$ 
  - This would generate an image with the desired uniform density.

• From the grayscale values **s**, we can obtain the grayscale values **z** by using the inverse transformation:

$$z = G^{-1}(s) = G^{-1}(T(r))$$

• It will generate an image with the specified PDF  $p_z(z)$  from an input image with PDF of  $p_R(r)$ .

#### **Given:**

$$P_R(r) = \begin{cases} \frac{2r}{(L-1)^2} & \text{if } 0 \le r \le L-1\\ 0 & \text{otherwise} \end{cases}$$

$$s = T(r) = (L-1) \int_0^r P_R(w) dw$$

$$P_Z(z) = \begin{cases} \frac{3z^2}{(L-1)^3} & \text{if } 0 \le z \le L-1\\ 0 & \text{otherwise} \end{cases}$$

$$s = G(z) = (L-1) \int_0^z P_Z(t)dt$$

Derive 
$$z = G^{-1}(s) = G^{-1}(T(r))$$

$$P_R(r) = \begin{cases} \frac{2r}{(L-1)^2} & \text{if } 0 \le r \le L-1\\ 0 & \text{otherwise} \end{cases}$$

$$s = T(r) = (L-1) \int_0^r p_r(w) dw = \frac{2}{(L-1)} \int_0^r w \, dw = \frac{r^2}{(L-1)}$$

$$P_Z(z) = \begin{cases} \frac{3z^2}{(L-1)^3} & \text{if } 0 \le z \le L-1\\ 0 & \text{otherwise} \end{cases}$$

$$G(z) = (L-1) \int_0^z p_z(w) dw = \frac{3}{(L-1)^2} \int_0^z w^2 dw = \frac{z^3}{(L-1)^2}$$

$$S = \frac{r^2}{(L-1)}$$
  $G(z) = \frac{z^3}{(L-1)^2}$ 

Finally, we require that G(z)=s, but  $G(z)=z^3/(L-1)^2$ .

So  $z^3/(L-1)^2 = s$  and we have:

$$z = G^{-1}(s) = \left[ (L-1)^2 s \right]^{1/3}$$

#### **Back to Discrete Case**

 We have to <u>convert the continuous result just derived into a discrete</u> form. This means that we work with **histograms** instead of **PDFs**.

$$s = T(r) = (L-1) \int_0^r p_r(w) dw \implies s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) \quad k = 0, 1, 2, \dots, L-1$$

Similarly, given a specific value of sk,

$$G(z) = (L-1) \int_0^z p_z(v) dv = s$$
  $G(z_q) = (L-1) \sum_{i=0}^q p_z(z_i)$  for a value of **q** so that

 $G(z_q) = s_k$ , where  $P_z(z_i)$  is the i<sup>th</sup> value of the specified histogram.

• Finally, we obtain the desired value  $z_q$  from the <u>inverse transformation</u>:

$$z_q = G^{-1}(s_k)$$

## Algorithm for Histogram Matching

**Step-1:** Compute the histogram,  $p_R(r)$  of the input image, and use it in following equation to map the intensities in the input image to the intensities in the <u>histogram-equalized image</u>. Round the resulting values  $s_k$ , to the integers in the range [0, L-1].

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$
  $k = 0, 1, 2, ..., L-1$ 

Step-2: Compute all values of function  $G(z_q)$  using the following equation for q = 0,1, 2,...,L - 1, where  $p_z(z_i)$  are the values of the <u>specified</u> <u>histogram</u>. Round the values of G to integers in the range [0, L - 1]. Store the rounded values of G in a lookup table.

$$G(z_q) = (L-1)\sum_{i=0}^{q} p_z(z_i)$$

## Algorithm for Histogram Matching

- **Step-3:** For every value of  $s_k$ , for k = 0,1,2,...,L-1, use the stored values of G from Step-2 to find the corresponding value of  $z_q$  so that  $G(z_q)$  is closest to  $s_k$ .
  - Store these mappings from s to z.
  - When more than one value of  $z_q$  gives the same match in  $G(z_q)$  (i.e., the mapping is not unique), choose the smallest value by convention.

**Step-4:** Form the histogram-specified image by <u>mapping every equalized pixel</u> with value  $s_k$  to the corresponding pixel with value  $z_q$  in the histogram-specified image, using the mappings found in <u>Step-3</u>.

#### **Given:**

| $r_k$     | $n_k$ | $p_r(r_k) = n_k/MN$ |
|-----------|-------|---------------------|
| $r_0 = 0$ | 790   | 0.19                |
| $r_1 = 1$ | 1023  | 0.25                |
| $r_2 = 2$ | 850   | 0.21                |
| $r_3 = 3$ | 656   | 0.16                |
| $r_4 = 4$ | 329   | 0.08                |
| $r_5 = 5$ | 245   | 0.06                |
| $r_6 = 6$ | 122   | 0.03                |
| $r_7 = 7$ | 81    | 0.02                |
|           |       |                     |

| $z_q$     | Specified $p_z(z_q)$ |
|-----------|----------------------|
| $z_0 = 0$ | 0.00                 |
| $z_1 = 1$ | 0.00                 |
| $z_2 = 2$ | 0.00                 |
| $z_3 = 3$ | 0.15                 |
| $z_4 = 4$ | 0.20                 |
| $z_5 = 5$ | 0.30                 |
| $z_6 = 6$ | 0.20                 |
| $z_7 = 7$ | 0.15                 |

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k P_R(r_j)$$

$$G(z_q) = (L-1)\sum_{i=0}^{q} P_Z(z_i)$$

**Step-1:** Compute the histogram,  $p_R(r)$  of the input image, and use it in following equation to map the intensities in the input image to the intensities in the histogram-equalized image. Round the resulting values,  $s_k$ , to the integer range [0, L-1].

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k P_R(r_j)$$

$$s_0 = 1.33 \rightarrow 1$$
  $s_4 = 6.23 \rightarrow 6$   
 $s_1 = 3.08 \rightarrow 3$   $s_5 = 6.65 \rightarrow 7$   
 $s_2 = 4.55 \rightarrow 5$   $s_6 = 6.86 \rightarrow 7$   
 $s_3 = 5.67 \rightarrow 6$   $s_7 = 7.00 \rightarrow 7$ 

| $r_k$     | $n_k$ | $p_r(r_k) = n_k/MN$ |
|-----------|-------|---------------------|
| $r_0 = 0$ | 790   | 0.19                |
| $r_1 = 1$ | 1023  | 0.25                |
| $r_2 = 2$ | 850   | 0.21                |
| $r_3 = 3$ | 656   | 0.16                |
| $r_4 = 4$ | 329   | 0.08                |
| $r_5 = 5$ | 245   | 0.06                |
| $r_6 = 6$ | 122   | 0.03                |
| $r_7 = 7$ | 81    | 0.02                |

**Step-2:** Compute all values of function  $G(z_q)$  using the following equation for q = 0,1, 2,...,L - 1, where  $p_z(z_i)$  are the values of the specified histogram. Round the values of G to integers in the range [0, L - 1]. Store the rounded values of G in a lookup table.

$$G(z_q) = (L-1)\sum_{i=0}^{q} p_z(z_i)$$

$$G(z_0) = 0.00 \to 0$$
  $G(z_4) = 2.45 \to 2$   
 $G(z_1) = 0.00 \to 0$   $G(z_5) = 4.55 \to 5$ 

$$G(z_2) = 0.00 \rightarrow 0$$
  $G(z_6) = 5.95 \rightarrow 6$ 

$$G(z_3) = 1.05 \rightarrow 1$$
  $G(z_7) = 7.00 \rightarrow 7$ 

| $z_q$     | Specified $p_z(z_q)$ |
|-----------|----------------------|
| $z_0 = 0$ | 0.00                 |
| $z_1 = 1$ | 0.00                 |
| $z_2 = 2$ | 0.00                 |
| $z_3 = 3$ | 0.15                 |
| $z_4 = 4$ | 0.20                 |
| $z_5 = 5$ | 0.30                 |
| $z_6 = 6$ | 0.20                 |
| $z_7 = 7$ | 0.15                 |

| $z_q$                  | $G(z_q)$ |
|------------------------|----------|
| $z_0 = 0$<br>$z_1 = 1$ | 0        |
| $z_2 = 2$              | 0<br>1   |
| $z_3 = 3$ $z_4 = 4$    | 2        |
| $z_5 = 5$<br>$z_6 = 6$ | 5<br>6   |
| $z_7 = 7$              | 7        |

**Step-3:** For every value of  $s_k$ , for k = 0,1, 2,..., L-1, use the stored values of G from Step-2 to find the corresponding value of  $z_q$  so that  $G(z_q)$  is closest to  $s_k$ .

- Store these mappings from s to z.
- When more than one value of  $z_q$  gives the same match in  $G(z_q)$  (i.e., the mapping is not unique), choose the smallest value by convention.

| $r_k$ | -> | S <sub>k</sub> | -> | z <sub>q</sub> |
|-------|----|----------------|----|----------------|
| 0     | -> | 1              | -> | 3              |
| 1     | -> | 3              | -> | 4              |
| 2     | -> | 5              | -> | 5              |
| 3     | -> | 6              | -> | 6              |
| 4     | -> | 6              | -> | 6              |
| 5     | -> | 7              | -> | 7              |
| 6     | -> | 7              | -> | 7              |
| 7     | -> | 7              | -> | 7              |

| $z_q$     | $G(z_q)$ |
|-----------|----------|
| $z_0 = 0$ | 0        |
| $z_1 = 1$ | 0        |
| $z_2 = 2$ | 0        |
| $z_3 = 3$ | 1        |
| $z_4 = 4$ | 2        |
| $z_5 = 5$ | 5        |
| $z_6 = 6$ | 6        |
| $z_7 = 7$ | 7        |
|           |          |

| $s_k$ | $\rightarrow$ | $z_q$ |
|-------|---------------|-------|
| 1     | $\rightarrow$ | 3     |
| 3     | $\rightarrow$ | 4     |
| 5     | $\rightarrow$ | 5     |
| 6     | $\rightarrow$ | 6     |
| 7     | $\rightarrow$ | 7     |
|       |               |       |

**Step-4:** Form the histogram-specified image by <u>mapping every</u> <u>equalized pixel</u> with value  $s_k$  to the corresponding pixel with value  $z_q$  in the histogram-specified image, using the mappings found in <u>Step-3</u>.

| $r_k$ | -> | s <sub>k</sub> | -> | z <sub>q</sub> |           | Specified  | Actual     |
|-------|----|----------------|----|----------------|-----------|------------|------------|
| 0     | -> | 1              | -> | 3              | $z_q$     | $p_z(z_q)$ | $p_z(z_k)$ |
| 1     | -> | 3              | -> | 4              | $z_0 = 0$ | 0.00       | 0.00       |
| 2     | -> | 5              | -> | 5              | $z_1 = 1$ | 0.00       | 0.00       |
| 3     | -> | 6              | -> | 6              | $z_2 = 2$ | 0.00       | 0.00       |
|       | -  | _              | -  |                | $z_3 = 3$ | 0.15       | 0.19       |
| 4     | -> | 6              | -> | 6              | $z_4 = 4$ | 0.20       | 0.25       |
| 5     | -> | 7              | -> | 7              | $z_5 = 5$ | 0.30       | 0.21       |
| 6     | -> | 7              | -> | 7              | $z_6 = 6$ | 0.20       | 0.24       |
|       |    |                |    |                | $z_7 = 7$ | 0.15       | 0.11       |
| 7     | -> | 7              | -> | 7              | ,         |            |            |

| c d .3                                                                      | $p_r(r_k)$                                  |                                       | $p_z(z_q)$ $30 + 25$                      | †       |
|-----------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|-------------------------------------------|---------|
| 3-bit image2                                                                | 25 + •                                      |                                       | .25 + .20 + .45                           |         |
| histogram.<br>(c) Transformation<br>function obtained<br>from the specified | 15 +                                        | , , , , , , , , , , , , , , , , , , , | .15 + .10 + .05 + .05 +                   | $z_q$   |
| histogram.<br>(d) Result of<br>histogram                                    | $0  1  2$ $G(z_q)$                          | 3 4 5 6 7                             | $0 \ 1 \ 2 \ 3 \ 4$ $p_z(z_q)$            | 4 5 6 7 |
| specification. Compare the histograms in (b) and (d).                       | 7<br>6 -<br>5 -<br>4 -<br>3 -<br>2 -<br>1 - |                                       | .25 -<br>.20 -<br>.15 -<br>.10 -<br>.05 - | $z_q$   |

| $r_k$     | $n_k$ | $p_r(r_k) = n_k/MN$ |
|-----------|-------|---------------------|
| $r_0 = 0$ | 790   | 0.19                |
| $r_1 = 1$ | 1023  | 0.25                |
| $r_2 = 2$ | 850   | 0.21                |
| $r_3 = 3$ | 656   | 0.16                |
| $r_4 = 4$ | 329   | 0.08                |
| $r_5 = 5$ | 245   | 0.06                |
| $r_6 = 6$ | 122   | 0.03                |
| $r_7 = 7$ | 81    | 0.02                |
|           |       |                     |

## **Equalization or Specification?**



## Equalization or Specification?



## Local Histogram Processing

- The histogram processing methods discussed thus far are global, in the sense that pixels are modified by a transformation function based on the intensity distribution of an entire image.
- The <u>global approach is suitable for overall enhancement</u>, but generally fails when the objective is to enhance details over small areas in an image.
- This is because the number of pixels in small areas have negligible influence on the computation of global transformations.
- The **solution** is to devise transformation functions based on the intensity distribution of pixel neighborhoods.

## Local Histogram Processing

- In *local histogram processing methods*, we follow these steps:
  - 1. Define a neighborhood and move its **center** from pixel to pixel in a horizontal or vertical direction.
  - 2. At each location, the histogram of the points in the neighborhood is computed, and either a histogram equalization or histogram specification transformation function is obtained.
  - 3. This function is used to map the intensity of the pixel centered in the neighborhood.
  - 4. The center of the neighborhood is then moved to an adjacent pixel location and the procedure is repeated.

# Local Histogram Processing



Original image



Result of global Histogram equalization



Result of local Histogram equalization

## Assignment 2

- Implement operations including:
  - Addition, subtraction, product, negative, log transform, power (Gamma) transform
  - Histogram equalization
  - Smoothing filters and sharpening filters
  - Connected component labeling

#### Next Lecture

- Fundamentals of Spatial Filtering
- Correlation and Convolution
- How to construct Spatial filter masks?
- Smoothing (Lowpass) spatial filters
  - Box filter kernels
  - Gaussian filter kernels
  - Smoothing Non-linear Filters