

Universidade Federal do Rio Grande do Norte

Centro de Tecnologia

Departamento de Engenharia de Computação e Automação

DCA0118 - Processamento Digital de Sinais Docente: Luiz Felipe de Queiroz Silveira Discente: Vinícius Yan Tavares Nascimento

SIMULAÇÃO 2: Transformada de Fourier de Tempo Discreto

 O MATLAB pode ser utilizado para aproximar a transformada de Fourier de tempo discreto (TFTD) de sinais com duração finita por meio da seguinte expressão:

$$\mathbf{X} = \mathbf{x} \left[\exp \left(-j \frac{\pi}{M} \mathbf{n}^T \mathbf{k} \right) \right], \tag{1}$$

em que, ${\bf X}$ é um vetor linha com M amostras, equi-espaçadas entre 0 e π radianos, da TFTD da sequência ${\bf x}$, e ${\bf n}$ e ${\bf k}$ são vetores linhas dos índices de tempo e frequência, respectivamente, sendo ainda ${\bf n}^T$ a transposta do vetor linha ${\bf n}$.

Escreva uma função no MATLAB para estimar a TFTD de uma sequência de duração finita. O formato da função deve ser:

function [X] = dtft(x,n,k)

% X = valores da TFTD calculados em w pontos de frequências

% x = sequência de duração finita sobre n

% n = vetor de índices de tempo

% k = vetor de índices de frequência

Use essa função para estimar a TFTD da sequência $x[n] = (0.9 \exp(j\pi/3))^n$, $0 \le n \le 10$ e investigar sua periodicidade. As funções de magnitude e fase de $X(e^{j\omega})$ possuem simetria par? Justifique.

Resposta: Analisando os gráficos, não é possível identificar simetria par na magnitude ou na fase, bem como não foi possível observar comportamento ímpar para esses gráficos.

Universidade Federal do Rio Grande do Norte

Centro de Tecnologia

Departamento de Engenharia de Computação e Automação

DCA0118 - Processamento Digital de Sinais Docente: Luiz Felipe de Queiroz Silveira Discente: Vinícius Yan Tavares Nascimento

Código em python e gráficos:

```
import numpy as np
import matplotlib.pyplot as plt
# Função que faz a estimativa da TFTD
def dtft(x, n, k):
    M = 150
    X = np.zeros_like(k,dtype=np.complex128)
    for i, freq in enumerate(k):
        X[i] = np.sum(x*np.exp(-1j*(np.pi/M)*n*freq))
    return X
n = np.arange(0,10)
x = (0.9*np.exp(1j*np.pi/3))**n
k = np.arange(-400,401)
X = dtft(x,n,k)
# Plota a magnetude de X(e^(jw))
plt.subplot(2,1,1)
plt.plot(k, np.abs(X))
plt.title('Magnitude X(e^(jw))')
plt.xlabel('Frequência (k)')
plt.ylabel('|X(e^(jw))|')
plt.grid(True)
# Plota a fase de X(e^(jw))
plt.subplot(2,1,2)
plt.plot(k, np.angle(X))
plt.title('Fase de X(e^(jw))')
plt.xlabel('Frequência (k)')
plt.ylabel('Ângulo X(e^(jw))(rad)')
plt.grid(True)
plt.tight_layout()
plt.show()
```


Universidade Federal do Rio Grande do Norte

Centro de Tecnologia

Departamento de Engenharia de Computação e Automação

DCA0118 - Processamento Digital de Sinais Docente: Luiz Felipe de Queiroz Silveira Discente: Vinícius Yan Tavares Nascimento

