Математический анализ

zimch

4 октября 2022 г.

Повторение

Линейные и нормированные пространства

L – линейное пространство

$$\|\cdot\|$$
 – норма

$$\|\alpha x\| = |\alpha| \|x\|, \forall \alpha \in \mathbb{R}(\mathbb{C}), x \in L$$

Нормированное пространство

$$||x + y|| \le ||x|| + ||y||$$

 $||x|| = 0 \Rightarrow x = 0$

Замечание. Норма всегда порождает метрику (нормированное ⇒ метрическое).

Замечание. ∀ конечномерное пространство полное.

Определение. Полное нормированное пространство = банохово.

Пример 1. Неполное нормированное пространство:

$$C([0;1]), \quad ||f||_{<} = \int_{0}^{1} |f(x)| dx$$

$$\int_{0}^{\frac{1}{2}} f_{n}(x) dx \to 0 \quad \exists N : n > N < \frac{\varepsilon}{2}$$

$$\int_{\frac{1}{2}}^{1} (1 - f_{n}(x)) dx \to 0 \quad \exists N : n > N < \frac{\varepsilon}{2}$$

$$\forall \varepsilon \ \exists N \ \forall n, m > \int_{0}^{1} |f_{n}(x) - f_{m}(x)| dx < \varepsilon$$

$$L(0,1) = \{f : [0,1] \to \mathbb{R} : \int_{0}^{1} |f_{n}(x)| dx < \infty\}$$

Линейные операторы

Определение. Линейный оператор

$$A(\alpha x+\beta y)=\alpha Ax+\beta Ay$$
 $A:L\to M$, где $M=\mathbb{R}\setminus\mathbb{C}, A$ - функционал(?)

Замечание. Операторы из \mathbb{R}^m в $\mathbb{R}^n \leftrightarrow$ матрицы $\mathrm{Mat}^{n,m}$

$$\|A\|=\sup_{x\neq 0} \frac{\|Ax\|_M}{\|x\|_L}, \quad M,L$$
 - нормированные пространства

Пример 2. Неограниченный оператор:

$$L = C'([0,1]), \quad M = C([0,1]) \quad ||f|| = \sup_{[0,1]} |f|$$

$$||f|| = \max_{[0,1]} |f|$$

$$(Af)(x) = f'(x)$$

$$f_n(x) = x^n \quad ||f_n|| = 1 \ \forall n \quad Af_n = f'_n = nx^{n-1} \quad ||Af|| = n$$

$$\frac{\|Af_n\|}{\|f_n\|} \xrightarrow[n \to \infty]{} \infty$$

Предложение.

$$\|A\| = \sup_{x \in B_1(x) \backslash \{0\}} \|Ax\| = \sup_{a \in S_1(0)} \|Ax\| = \sup_{x \in B_1(0) \backslash \{x\}} = \inf\{c : \|Ax\| \le c \|x\|\} \quad \forall x \in L$$

 $B_r(x) = \{y \in L : \|y - x\| < r\}$ – открытый шар радиуса r

 $B_r[x] = \{y \in L : \|y - x\| \le r\}$ – замкнутый шар радиуса r

 $\bar{B}_r(x) \neq B_r[x]$, где $\bar{B}_r(x)$ – замыкание

 $S_r(x) = \{ y \in L : ||y - x|| = r \} - c\phi epa$

Предложение. $A \in B(L) \Leftrightarrow A$ непр. в точке $0 \Leftrightarrow A$ непр. в $\forall x \in L \Leftrightarrow A$ равн. непр. на L.

Замечание.

$$||A_1 \cdot A_2|| \le ||A_1|| \cdot ||A_2||$$

$$A: \mathbb{R}^n \to \mathbb{R}^n, \ A \in \mathrm{Mat}^{n,n} \quad \|A\| \leq \sqrt{\sum_{i,k=1}^n |a_{i,k}^2|}$$

Определение. Матрицы $\|\cdot\|$ и $|\cdot|$ эквивалентны, если $\exists c_1, c_2 > 0$ т. ч.

$$\forall x \in L \ c_1 ||x|| \le |x| \le c_2 ||x_2||$$

Тогда
$$||A|| \sim \sum_{i,k=1}^{n} |a_{ik}| \sim \max_{i,k \in \{1,\dots,n\}} |a_{ik}| \sim \sqrt{\sum_{i,k=1}^{n} |a_{ik}|^2}$$

Замечание.

$$A: \mathbb{R}^n \to \mathbb{R} \ \exists a \in \mathbb{R}^n \ \forall x \in \mathbb{R}^n : Ax = (a; x) \quad \|A\| \underset{B(\mathbb{R}^n \mathbb{R})}{=} \|a\|_{\mathbb{R}^n}$$

$$A: \mathbb{R} \to \mathbb{R}^n \ \exists a \in \mathbb{R}^n \ \exists x \in \mathbb{R}: Ax = a \cdot x \quad \|A\| \underset{B(\mathbb{R}, \mathbb{R}^n)}{=} \|a\|_{\mathbb{R}^n}$$

Обратный оператор

 $A:L \to M$ – линейный оператор

- 1. $\exists A: M \to L : AB = I_M$ ед. оператор в пространстве M $B \leftrightharpoons$ правый обратный
- 2.
 $\exists C: M \to L \; : \; CA = I_l$ ед. оператор в пространстве
 L $C \leftrightarrows$ левый обратный
- 3. \exists оба и равны, ьл $A^{-1} \leftrightharpoons$ обратный оператор

$$A \in \operatorname{Mat}^n : \exists A^{-1} \Leftrightarrow \det A \neq 0 \Leftrightarrow \operatorname{Ker} A = \{0\} \Leftrightarrow \cdots \Leftrightarrow \operatorname{rank} A = n$$

Теорема 1. $A \in B(\mathbb{R}^n), \exists A^{-1}, B \in B(\mathbb{R}^n), \|B - A\| < \frac{1}{\|A^{-1}\|}$ Тогда B обратим,

$$||B^{-1}|| \le \frac{1}{\left\|\frac{1}{A^{-1}}\right\| - ||B - A||}, ||B^{-1} - A^{-1}|| \le \frac{||A^{-1}|| \cdot ||B - A||}{\left\|\frac{1}{A^{-1}}\right\| - ||B - A||}$$

Доказательство. $x \in \mathbb{R}^n$

$$\|Bx\| = \|Ax - (A - B)x\| \ge \|Ax\| - \|(B - A)x\| \ge \frac{\|x\|}{\|A^{-1}\|} - \|B - A\| \cdot \|x\| = (\frac{1}{\|A^{-1}\|} - \|B - A\| \|x\|)$$

Так как:

$$||Ax|| \ge \frac{||x||}{||A^{-1}||} \quad x = (A^{-1})(Ax) \quad ||x|| \le ||A^{-1}|| \cdot ||Ax||$$

$$Bx = 0 \Rightarrow ||x|| = 0 \Rightarrow x = 0 \quad \text{Ker } B = \{0\} \Rightarrow \exists B^{-1}$$

$$y = Bx$$

$$x = B^{-1}y \quad ||y|| \ge \left(\frac{1}{||A^{-1}||} - ||B - A||\right) ||B^{-1}y||, \ \forall y \in \mathbb{R}^n$$

$$\Rightarrow ||B^{-1}|| \le \frac{1}{\frac{1}{||A^{-1}||} - ||B - A||}$$

$$B^{-1}A^{-1} = B^{-1}(I - BA^{-1}) = B^{-1}(A - B)A^{-1}$$

$$||B^{-1} - A^{-1}|| \le \frac{||A^{-1}|| \cdot ||B - A||}{\frac{1}{||A^{-1}||} - ||B - A||}$$

Замечание.

- 1. Множество операторов открыто
- 2. Отображение $A \mapsto A^{-1}$ непрерывно

4

Дифференцирование обратной функции

$$D \subset \mathbb{R}^n$$
 $f: D \to \mathbb{R}^n$ $x \in \text{Int } D \quad \exists A \in B(\mathbb{R}^n.\mathbb{R})$

Определение. Если $f(x+h) = f(x) + Ah + o(\|h\|)$, $h \to 0$, тогда говорят A - npouseoдная f в точке <math>x.

Рассмотрим
$$f^{-1} \circ f = \mathrm{id}_D$$

Продифференцируем : $(f^{-1})'(\underbrace{f(x_0)}) \cdot f'(x_0) = I$

Пусть теперь есть функция на открытом множестве: D открыто $f \in C'(D, \mathbb{R}^n)$ $x_0 \in D$ $f'(D_0)$ обратима

Пример 3.

1.
$$f(x,y) = \begin{pmatrix} e^x \cos y \\ e^x \sin y \end{pmatrix}$$
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$f'(x,y) = \begin{pmatrix} e^x \cos y - e^x \sin y \\ e^x \sin y + e^x \cos y \end{pmatrix}$$

2.
$$n=1$$
 $f\in C^1(D,\mathbb{R})$
$$f'(x_0)\neq 0$$

$$f\big|_U - \mathit{биекция между}\ U\ u\ V$$

$$\exists (f^{-1})'(y) = \frac{1}{f(f^{-1}(y))} \quad f \in C^{1}(U, V)$$
$$f^{-1} \in C^{1}(V, U)$$

Теорема 2.
$$D \subset \mathbb{R}^n$$
 открыто, $f \in C^1(D, \mathbb{R}^n)$ $x_0 \in D$, $f^{-1}(x_0)$ – обратимая матрица Тогда \exists окрестность $x_0, U \subset D$