Esercitazione 3

Argomento: sistemi lineari

1. Selezionare il formato di output format long e e risolvere i sistemi lineari $\mathbf{A}\mathbf{x} = \mathbf{b}$ con \mathbf{A} matrice di Hilbert di ordine n = 5, 10, 15 e \mathbf{b} definito in modo tale che il corrispondente vettore soluzione \mathbf{x} coincida con il vettore unitario.

Per ciascun valore di n, calcolare l'errore relativo della soluzione e il numero di condizionamento in norma ∞ . Commentare i risultati.

2. Implementare in una function denominata elleu, il calcolo dei fattori \mathbf{L} e \mathbf{U} della fattorizzazione $\mathbf{A} = \mathbf{L}\mathbf{U}$ della matrice \mathbf{A} .

Successivamente, generare la matrice \mathbf{A} di ordine n = 100, i cui elementi sono $a_{ij} = \max(i, j)$ e il vettore \mathbf{b} definito in modo tale che la soluzione \mathbf{x} del sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{b}$ coincida con il vettore unitario.

Infine, risolvere il sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{b}$, utilizzando dapprima la fattorizzazione $\mathbf{A} = \mathbf{L}\mathbf{U}$ della matrice \mathbf{A} ottenuta mediante la function elleu, e successivamente la fattorizzazione $\mathbf{P}\mathbf{A} = \mathbf{L}\mathbf{U}$ ottenuta mediante la function lu di MATLAB.

In entrambi casi calcolare l'errore relativo associato alla soluzione in norma ∞ e, in base ai risultati ottenuti e dandone una giustificazione, dedurre quale delle due soluzioni sia più accurata.

3. Generare la matrice **A** di ordine n = 100, i cui elementi sono $a_{ij} = i \max(i, j)$.

Determinare le matrici \mathbf{P} , \mathbf{L} e \mathbf{U} della fattorizzazione $\mathbf{PA} = \mathbf{LU}$ della matrice \mathbf{A} mediante la function \mathbf{lu} di Matlab.

Successivamente, utilizzare i suddetti fattori per invertire la matrice **A**. Utilizzare la function inv di MATLAB per verificare la correttezza del risultato.

4. Generare una matrice **A** di ordine n = 100 di numeri pseudo-casuali.

Risolvere in modo efficiente, minimizzando il numero di operazioni aritmetiche, i seguenti sistemi lineari

$$\left\{ egin{array}{l} \mathbf{A}\mathbf{x}_1 = \mathbf{b}_1 \ \mathbf{A}\mathbf{x}_2 = \mathbf{b}_2 \ \mathbf{A}\mathbf{x}_3 = \mathbf{b}_3 \ \dots \ \mathbf{A}\mathbf{x}_{30} = \mathbf{b}_{30} \end{array}
ight.$$

aventi tutti la stessa matrice dei coefficienti \mathbf{A} ; il termine noto \mathbf{b}_1 sia definito in modo tale che la corrispondente soluzione \mathbf{x}_1 coincida con il vettore unitario e $\mathbf{b}_i = \mathbf{x}_{i-1}, i = 2, \dots, 30$.

Successivamente, risolvere ciascuno dei suddetti sistemi mediante il comando \ di Matlab. Utilizzando i comandi tic e toc, confrontare i tempi di calcolo delle due procedure e commentare i risultati.

5. Generare la matrice tridiagonale \mathbf{B} di ordine n=100, i cui elementi della diagonale principale sono tutti uguali a 10 e quelli delle codiagonali inferiore e superiore sono rispettivamente uguali a -5 e a 5.

Tenendo conto che \mathbf{B} è non singolare e, quindi, $\mathbf{A} = \mathbf{B}^T \mathbf{B}$ è simmetrica e definita positiva, utilizzare la function chol di MATLAB per determinare la decomposizione di Choleski $\mathbf{A} = \mathbf{R}^T \mathbf{R}$.

1

Successivamente, utilizzare la suddetta decomposizione per calcolare la matrice inversa di \mathbf{A} e per risolvere il sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{b}$, con \mathbf{b} definito in modo tale che la corrispondente soluzione \mathbf{x} coincida con il vettore unitario.

Verificare infine la correttezza dei risultati ottenuti mediante i comandi inv e \ di MATLAB.

6. Generare una matrice pseudo-casuale \mathbf{A} di ordine n e calcolare la fattorizzazione QR della matrice \mathbf{A} .

Successivamente usare i fattori \mathbf{Q} ed \mathbf{R} per risolvere un sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{b}$ con \mathbf{b} definito in modo tale che la corrispondente soluzione \mathbf{x} coincida con il vettore unitario.

Facendo variare l'ordine della matrice, per esempio $n=100,200,\ldots,500$ e $n=1000,2000,\ldots,5000$, calcolare il rapporto tra il costo computazionale della risoluzione del sistema lineare mediante la fattorizzazione $\mathbf{PA}=\mathbf{LU}$ di \mathbf{A} e quello mediante la fattorizzazione QR. Commentare i risultati.

7. Si consideri il seguente sistema lineare sovradeterminato

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 1$$

$$-x_1 + 4x_3 + x_4 = 2$$

$$3x_1 + 5x_2 + x_3 = 3$$

$$2x_1 - x_2 + x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = 5$$

$$2x_1 - x_2 + 3x_4 = 6$$

Calcolare il rango della matrice dei coefficienti del sistema e, successivamente, calcolare la soluzione del sistema assegnato nel senso dei minimi quadrati. Verificare la correttezza del risultato utilizzando il comando \ di Matlab.

8. Implementare il procedimento di ortonormalizzazione di Gram-Schmidt e utilizzarlo per generare una base ortonormale di \mathbb{R}^5 , a partire dai seguenti vettori linearmente indipendenti

$$v_1 = (4, 2, 1, 5, -1)^T$$
, $v_2 = (1, 5, 2, 4, 0)^T$, $v_3 = (3, 10, 6, 2, 1)^T$
 $v_4 = (3, 1, 6, 2, -1)^T$, $v_5 = (2, -1, 2, 0, 1)^T$

Denotata con \mathbf{Q} la matrice le cui colonne coincidono con i vettori generati, verificare la correttezza dei risultati ottenuti mediante l'ortogonalità di \mathbf{Q} .