BIERMANS et al Serial No. 10/541,516 November 20. 2007

AMENDMENT TO THE CLAIMS:

The following claim set replaces all prior versions, and listings, of claims in the application:

- 1. (Currently Amended) Process for separating NH₃ from a mixture containing NH₃, CO₂ and H₂O which comprises an NH₃ rectification step carried out in an NH₃ separation device to which one or more streams containing NH₃, CO₂ and H₂O, including the mixture, are fed <u>from elsewhere in the process</u>, with a stream consisting substantially of gaseous NH₃ being formed in the NH₃ separation device, separated from the mixture and discharged, characterized in that a condensation step is carried out on at least one of the stream consisting substantially of gaseous NH₃ or the one or more streams containing NH₃, CO₂ and H₂O supplied to the NH₃ separation device, in which at least a part of the existing CO₂ is converted to a liquid phase.
- (original) Process according to claim 1, in which the condensation step is carried out by cooling the stream to be condensed and/or bringing it into contact with an absorbing medium.
- 3. (previously presented) Process according to claim 1, the process further comprising, in order to separate CO₂ and H₂O from the mixture:
- a CO_2 rectification step, which is applied in a CO_2 separation device to the mixture coming from the NH_3 separation device while a stream coming from a desorption device is supplied, with a stream consisting substantially of CO_2 being formed in the CO_2 separation device and being separated from the mixture, and
- a desorption step, which is applied in the desorption device to the mixture coming from the CO_2 separation device, with a stream consisting substantially of H_2O being formed and being separated from the mixture, after which the mixture is returned to the NH_3 separation device and/or the CO_2 separation device,

BIERMANS et al Serial No. 10/541,516 November 20, 2007

in which the condensation step is carried out on the stream consisting substantially of gaseous NH_3 from the NH_3 separation device and/or on at least a part of the stream that comes from the desorption device and that is supplied to the NH_3 separation device.

- 4. (previously presented) Process according to claim 1, in which the condensation step is carried out on the stream consisting substantially of gaseous NH₃ from the NH₃ separation device in a submerged condenser while an aqueous stream and/or liquid NH₃ is supplied as absorbing medium.
- (original) Process according to claim 4, in which after the condensation step an absorption step is applied to the stream consisting substantially of gaseous NH₃, in which the said stream is brought into contact with liquid NH₃.
- 6. (currently amended) Process according to claim 1, in which the condensation step is carried out as a partial condensation step, by means of indirect cooling with a cooling medium, on the a stream that comes from the a desorption device and that is supplied to the NH₃ separation device.
- (original) Process according to claim 6, in which the mixture present in the NH₃ separation device is used as cooling medium in the partial condensation step.