

FOUNDATIONS OF COMPUTER SCIENCE LECTURE 7: Non-Context-free languages

Prof. Daniele Gorla

Are all possible languages context-free?

We proved that $\{a^nb^n \mid n \ge 0\}$ is not regular

 \rightarrow intuitively a DFA/NFA has no way to remember how many a's has received so far (for arbitray n), since it has finitely many states

Similarly, we shall now prove that $\{a^nb^nc^n \mid n \ge 0\}$ is not context-free

- here the intuitive idea is that a PDA can use the stack for accepting as many b's as the a's (indeed, $\{a^nb^n \mid n \ge 0\}$ is C.F.)
- → but in doing so it empties the stack
- \rightarrow so there is no more way of remembering how many a's and b's received
- \rightarrow no way for accepting the very same number of c's

Like for regular languages, we shall have a Pumping Lemma for C.F. languages

To better understand how it works, we first introduce the notion of *parse tree* of a string

Parse trees for a C.F. Grammar

Consider the following grammar for arithmetic expressions over the letter a

EXPR ::= EXPR + EXPR | EXPR x EXPR |
$$(EXPR)$$
 | a

and the expression $a + a \times a$

This string can be derived in two ways:

$$\mathsf{EXPR} \Rightarrow \mathsf{EXPR} \times \mathsf{EXPR} \Rightarrow \mathsf{EXPR} + \mathsf{EXPR} \times \mathsf{EXPR} \Rightarrow \Rightarrow \mathsf{a} + \mathsf{a} \times \mathsf{a}$$

$$\mathsf{EXPR} \Rightarrow \mathsf{EXPR} + \mathsf{EXPR} \Rightarrow \mathsf{EXPR} + \mathsf{EXPR} \times \mathsf{EXPR} \Rightarrow \Rightarrow \mathsf{a} + \mathsf{a} \times \mathsf{a}$$

The derivations can be more easily depicted as a trees, whose leaves are terminal symbols, internal nodes are variables, and the root is the starting variable:

SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI INFORMATICA

The Pumping Lemma for C.F. languages

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i x y^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \leq p$.
- Notice that cond. 2 states that at least one between v and y (the pumped parts) must be non-empty (needed for the meaningfulness of the lemma)
- Cond. 3 is similar to cond. 3 for the pumping lemma for regular languages and will be useful in proving that some languages are not C.F.
- The P.L., more precisely:

$$A \text{ C.F.} \Rightarrow \exists p \in \mathbb{N} \ \forall s \in A \ (|s| \ge p \Rightarrow \exists u, v, x, y, z \text{ s.t.} \ (s = uvxyz \land v, y, y, z)$$

 $|vy| > 0 \land |vxy| \le p \land \forall i \in \mathbb{N}. \ uv^i x y^i z \in A)$

The Proof, intuitively

- Let A be a CFL, G be a CFG that generates it, and s be a "very long" string in A
- Because s is in A, it is derivable from G and so it has a parse tree
- Since s is "very long", the parse tree must contain some "long" path from the start variable at the root to one of the terminal symbols at a leaf
- On this "long" (i.e., greater than the number of variables) path, some variable R must repeat because of the pigeonhole principle:

- So, we may cut s into five pieces uvxyz
- Hence, we may repeat (or cancel) the second and fourth pieces at will to obtain strings that

are still in the language:

u x z, i.e. pump vy 0 times

Thus, uv^ixy^iz is in A, for any $i \ge 0$.

The Proof, formally (1)

- Let G be a CFG for the CFL A
- Let b be the maximum number of symbols in the right-hand side of a rule in G longest RHS
- In any parse tree for G, every internal node has at most b children
 - \rightarrow a tree of height h has at most b^h leaves
- Hence, a string of length b^h+1 has parse trees of height at least h+1
- Let the pumping length p be $b^{|V|+1}$, where V are the variables of G
- Now, if a string $s \in A$ is long p or more, its parse trees must all be at least |V|+1 high (indeed, $b^{|V|+1} \ge b^{|V|}+1$)
- Let τ be a parse tree for s (if many exist, choose one with the smallest number of nodes)
- The longest path in τ has length at least |V|+1 and so it has at least |V|+2 nodes
 - \rightarrow the last one is a terminal, all the others (at least |V|+1) are variables
- Since G has only |V| variables, some variable R appears more than once on this path
- Let R be the first variable that repeats along this path
- Then, by working like in the intuitive proof, we have condition 1 of the Lemma.

The Proof, formally (2)

- For condition 2, we work by contradiction:
 - Imagine that $v = y = \varepsilon$
 - The parse tree obtained by substituting the smaller subtree for the larger would have fewer

nodes than τ does and would still generate s:

- This isn't possible because we chose τ to be a parse tree for s with the smallest number of nodes so there cannot be a smaller tree equivalent to the one chosen
- For condition 3:
 - In the parse tree for s, the upper occurrence of R generates vxy look ad u v x y z tree
 - We chose R so that both occurrences fall within the bottom |V|+1 variables on the path
 - So the subtree where R generates vxy is at most |V|+1 high. trivially, in the example |V|=2 and the tree has an height of 3
 - A tree of this height can generate a string of length at most $b^{|V|+1} = p$.

Q.E.D.

Example of use

Like for regular languages, we use the contrapositive:

$$\forall p \in \mathbb{N} \exists s \in A \ (|s| \ge p \land \forall u, v, x, y, z \ (s \ne uvxyz \lor |vy| = 0 \lor |vxy| > p \lor \exists i \in \mathbb{N}. \ uv^i xy^i z \notin A)$$
$$\Rightarrow A \text{ is not C.F.}$$

or equivalently:

$$\forall p \in \mathbb{N} \exists s \in A (|s| \ge p \land \forall u, v, x, y, z ((s = uvxyz \land |vy| \ge 0 \land |vxy| \le p) \Longrightarrow \exists i \in \mathbb{N}. \ uv^i xy^i z \notin A))$$

\$\Rightarrow A \text{ is not C.F.}\$

EXAMPLE:

Let us show that the language $B = \{a^n b^n c^n \mid n \ge 0\}$ is not context free.

- Fix a generic p
- Let $s = a^p b^p c^p$ $(s \in B \text{ and } |s| > p)$
- Let s be split into uvxyz, with either v or y nonempty:
 - If both v and y contain only one type of alphabet symbol:
 - $\rightarrow uv^2xy^2z$ cannot contain an equal numbers of a's, b's, and c's !!
 - If either v or y contains more than one type of symbol
 - $\rightarrow uv^2xy^2z$ may contain an equal number of a's, b's, and c's but not in the correct order

A more delicate example of use

We prove that $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not a CFL

Like before, consider a generic p and use again the string $s = a^p b^p c^p$, a decomposition uvxyz and the two cases considered before:

- I. When v or y contains more types of symbol, uv^2xy^2z has symbols in the wrong order
- II. When both v and y contain only one type of symbol, one of the symbols doesn't appear therein
- 1. a doesn't appear: Consider $uv^0xy^0z = uxz$ that contains p a's but less than p b's or c's \rightarrow it is not a member of C!!
- 2. c doesn't appear: Consider uv^2xy^2z that contains p c's but more than p a's or b's \rightarrow it is not a member of C!!
- 3. b doesn't appear:
 - If a appears in v or y, the string uv^2xy^2z contains more a's than b's, so it is not in C
 - If c appears in v or y, the string uv^0xy^0z contains more b's than c's, so it is not in C

An example where condition 3 is crucial

Prove that $D = \{ww \mid w \in \{0,1\}^*\}$ is not a CFL

Fix a p and consider the string $s = 0^p 1^p 0^p 1^p$ (it is of the form ww, for $w = 0^p 1^p$, so it belongs to D) Let us now divide s into uvxyz, where $|vxy| \le p$

- 1. |vxy| must be even, otherwise uv^2xy^2z would have an odd length (and so cannot belong to D)
- 2. If vxy lies within the leftmost 0^p1^p , then uv^0xy^0z could be decomposed in two substrings, one ending with 0 and the other one with 1 (so, it would not be of the form w'w', for some w'):

- 3. Dually, if vxy lies within the rightmost $0^p 1^p$, then uv^0xy^0z could be decomposed in two substrings, one starting with 0 and the other one with 1 (so, it would not be of the form w'w', for some w')
- 4. If vxy lies within 1^p0^p , then uv^0xy^0z is of the form $0^p1^i0^j1^p$ (for at least one between i and j strictly smaller than p). Hence, it cannot belong to D, since it can only be seen as the justapoxition of two (equal length) strings, one ending with 0 and the other one with 1 (if i < j), or one starting with 0 and the other one with 1 (if i > j) or with different numbers of 0's and 1's (if i = j).