Section 14: Aspect-Based Sentiment Analysis

1. Aspect-Sentiment Dataset

Columns: Respondent_ID, Question_ID, Aspect, Raw_Text, Sentiment_Score

https://docs.google.com/spreadsheets/d/1ejnuioXFQa2MBZ4P95fUspL6CNPP3AqmDqG_eoeqtSc/edit?gid=469878737#gid=469878737

2. Aggregated Sentiment Table

o Rows: Aspect × Cohort (Packaging × Gender), Columns: Mean_Sentiment, n

Insights from the Chart: Gender Comparison by Product Aspect Ratings

1. Fragrance:

- Males rated fragrance slightly higher (4.15) than females (3.82).
- Suggests fragrance may play a marginally stronger role in male preference.

2. Functionality:

- Both genders rated it lower than other aspects.
- Males rated it slightly higher (3.26) than females (3.02), indicating minor gender-based difference in perceived effectiveness.

3. Packaging:

 Females rated packaging higher (4.24) than males (4.13), suggesting more visual or usability sensitivity in packaging appeal among females.

4. Sustainability:

- Perfect score (5.0) from both genders.
- Indicates universal appreciation and alignment on sustainability as a valued brand aspect.

5. Uncategorized:

- o Similar scores (Female: 4.06, Male: 4.07).
- No notable difference, implying consistent impressions across non-classified brand features.

Aspect	A 1	A2	В1	B2	C1	C2
Fragrance	3.50	4.40	3.67	3.97	4.11	4.13
Functionality	3.18	2.71	3.43	2.98	3.08	3.17
Packaging	4.04	4.40	4.13	4.17	4.23	4.19
Sustainability	5.00	5.00	5.00	5.00	5.00	5.00

Uncategorize 4.04 4.00 4.07 4.01 4.16 4.13 **d**

Insights:

1. Sustainability:

 All NCCS segments rated this a perfect 5.0, indicating strong universal appeal of sustainability features across all socioeconomic classes.

2. Fragrance:

- Highest rating from A2 (4.40) and relatively lower in A1 (3.50) and B1 (3.67).
- Suggests that fragrance appeal resonates more with upper-middle and lower NCCS segments.

3. Functionality:

- o B1 (3.43) leads slightly, while A2 (2.71) is the lowest.
- Functional benefits are better appreciated among middle NCCS groups, but generally rated modestly across the board.

4. Packaging:

- A2 (4.40) and C1 (4.23) rated highest.
- Indicates packaging appeal is particularly strong for visually-inclined or value-conscious consumers.

5. Uncategorized Aspects:

- Fairly consistent across segments (4.00–4.16 range).
- No strong variance, indicating general uniformity in how non-specific brand features are perceived.

none of the aspect groups had enough data across NCCS segments to perform ANOVA or Kruskal–Wallis. This can happen if

Description:

Section 14: Aspect-Based Sentiment Analysis (ABSA)

Scope: Identify sentiment tied to specific product aspects in open-ended responses using a BERT-based ABSA pipeline.

Objectives

- Quantify sentiment for aspects like Packaging, Fragrance, Ingredients, Sustainability, etc.
- Tag each response with relevant aspect(s).
- Use a BERT model to predict sentiment for each (aspect, response) pair.
- Analyze sentiment by demographic groups: Age, Gender, NCCS segment.

Analysis Tasks

Task	Details		Method
1. Aspect Dictionary	- Define key product aspects: Packaging, Fragrance, Ingredients, Functionalit y, Sustainabilit y Create keyword sets for each aspect.	Manual + lookup table	

2. Aspect - Use regex python import pandas as pd import re aspects Tagging or keyword = { "Packaging": ["packaging", "bottle", match to "design", "label"], "Fragrance": ["smell", tag each "fragrance", "scent"], "Ingredients": response ["ingredient", "content", "chemical", with one or "natural"], "Functionality": ["effect", more "result", "clean", "lather"], aspects. "Sustainability": ["eco", "green", "recyclable", "sustainable"] } def tag_aspects(text): tagged = [] for aspect, keywords in aspects.items(): if any(re.search(rf'\b{k}\b', text.lower()) for k in keywords): tagged.append(aspect) return tagged df = pd.read_csv("openends_responses.csv") df["Aspects"] = df["Raw_Text"].apply(tag_aspects) - Use 3. python from transformers import Sentiment pretrained AutoTokenizer, Scoring model: AutoModelForSequenceClassification from nlptown/b transformers import pipeline tokenizer = ert-base-AutoTokenizer.from_pretrained("nlptown/bert-b multiling ase-multilingual-uncased-sentiment") model = ual-uncas AutoModelForSequenceClassification.from_pretr ed-sentim ained("nlptown/bert-base-multilingual-uncased ent. -sentiment") sentiment_pipeline = - Predict pipeline("sentiment-analysis", model=model, sentiment tokenizer=tokenizer) def score (1–5) score_sentiment(text): result = for each sentiment_pipeline(text[:512])[0] return (aspect,

df.explode('Aspects')

expanded['Sentiment_Score'] =

int(result['label'].split()[0]) expanded =

expanded['Raw_Text'].apply(score_sentiment)

snippet).

```
4.
           - Compute
                      python # Mean sentiment by aspect and gender
Aggregati
           average
                      grouped = expanded.groupby(['Aspects',
on
           sentiment
                      'Gender'])['Sentiment_Score'].agg(['mean',
           per aspect
                      'count']).reset_index() grouped.columns =
           per
                      ['Aspect', 'Gender', 'Mean_Sentiment', 'n']
           respondent
           and per
           demographi
           c cohort.
5.
           - Use
                      python from scipy.stats import f_oneway
Statistical
           ANOVA or
                      age_groups = expanded.groupby(['Age_Bucket',
Testing
           Kruskal-Wa
                      'Aspects'])['Sentiment_Score'].apply(list).un
           llis to test
                      stack() for aspect in age_groups.columns:
           sentiment
                      scores = [group for group in
           variation
                      age_groups[aspect].dropna()] stat, p =
           across Age
           or Gender.
                      f_oneway(*scores) print(f"{aspect} - ANOVA
                      p-value:", p)
6.
           - Heatmap
                      python import seaborn as sns import
Visualizati
           of sentiment
                      matplotlib.pyplot as plt heat_data =
on
           scores
                      expanded.groupby(['Aspects',
           (Aspect ×
                      'Gender'])['Sentiment_Score'].mean().unstack(
           Demographi
                      ) sns.heatmap(heat_data, annot=True,
           c)
                      cmap="RdYlGn", center=3) plt.title("Mean
           - Bar charts
                      Sentiment Score by Aspect and Gender")
           for top
           sentiment
                      plt.show() sns.barplot(data=grouped,
           differences
                      x='Aspect', y='Mean_Sentiment', hue='Gender')
                      plt.xticks(rotation=45) plt.title("Sentiment
                      by Aspect and Gender") plt.tight_layout()
                      plt.show()
```

Deliverables

Aspect-Sentiment Dataset

File: aspect_sentiment_data.csv

Columns:

Respondent_ID, Question_ID, Aspect, Raw_Text, Sentiment_Score

Aggregated Sentiment Table

Rows: Each combination of Aspect × Demographic Group

Columns: Mean_Sentiment, n

Example:

Aspect	Gender	Mean_Sentiment	n
Packagin g	Male	3.8	124
Fragrance	Female	4.1	138

Visuals

• **Heatmap:** Mean sentiment across Aspects and Demographics

• Bar Charts: Aspect sentiments by Gender, Age, NCCS

ABSA Notebook

- Fully documented with code for:
 - Aspect dictionary creation
 - Tagging logic
 - Model-based sentiment prediction
 - o Group-level aggregation
 - Statistical tests and visualizations

Summary Report

- Top Positive Aspects: Sorted by average sentiment score
- **Top Negative Aspects:** Flag aspects with low average sentiment
- Group-Level Insights: Key differences by Age, Gender, NCCS
- Recommendations: e.g., "Improve packaging design for 18–25 segment"