

$$(S_n^{(1)} - np_1) + (S_n^{(2)} - np_2) + \cdots + (S_n^{(8)} - np_8)$$

$$(S_n^{(1)} - np_1)^2 + (S_n^{(2)} - np_2)^2 + \dots + (S_n^{(8)} - np_8)^2$$

$$\frac{\left(S_{n}^{(1)}-np_{1}\right)^{2}}{np_{1}}+\frac{\left(S_{n}^{(2)}-np_{2}\right)^{2}}{np_{2}}+\cdots+\frac{\left(S_{n}^{(8)}-np_{8}\right)^{2}}{np_{8}}$$

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

The basis of a statistical test:

* Select a 95% confidence interval: $P\{a < \chi^2 < b\} = 0.95$.

0.08

0.06

0.04

0.02

5

10

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

15

20

25

The basis of a statistical test:

- * Select a 95% confidence interval: $P\{a < \chi^2 < b\} = 0.95$.
 - * Left quantile a = 1.69: $P\{\chi^2 \le a\} = 0.025$.

0.06

0.04

0.02

5

10

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

15 b

20

25

- * Select a 95% confidence interval: $P\{a < \chi^2 < b\} = 0.95$.
 - * Left quantile a = 1.69: $P\{\chi^2 \le a\} = 0.025$.
 - * Right quantile b = 17.01: $P\{\chi^2 \ge b\} = 0.025$.

0.12

0.10

0.08

0.06

0.04

0.02

5

10

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

15 b

20

The basis of a statistical test:

- * Select a 95% confidence interval: $P\{a < \chi^2 < b\} = 0.95$.
 - * Left quantile a = 1.69: $P\{\chi^2 \le a\} = 0.025$.
 - * Right quantile b = 17.01: $P\{\chi^2 \ge b\} = 0.025$.

* Rejection criteria:

25

0.08

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

The basis of a statistical test:

- * Select a 95% confidence interval: $P\{a < \chi^2 < b\} = 0.95$.
 - * Left quantile a = 1.69: $P\{\chi^2 \le a\} = 0.025$.
 - * Right quantile b = 17.01: $P\{\chi^2 \ge b\} = 0.025$.

0.04 0.02 a 5 10 15 b 20 25

* Rejection criteria:

* If $\chi^2 \ge 17.01$, reject on grounds of excessive irregularity.

0.12

0.10

0.08

0.06

0.04

0.02

5

10

$$\chi^{2} = \frac{\left(S_{n}^{(1)} - np_{1}\right)^{2}}{np_{1}} + \frac{\left(S_{n}^{(2)} - np_{2}\right)^{2}}{np_{2}} + \dots + \frac{\left(S_{n}^{(8)} - np_{8}\right)^{2}}{np_{8}}$$

15b

20

- * Select a 95% confidence interval: $P\{a < \chi^2 < b\} = 0.95$.
 - * Left quantile a = 1.69: $P\{\chi^2 \le a\} = 0.025$.
 - * Right quantile b = 17.01: $P\{\chi^2 \ge b\} = 0.025$.

* Rejection criteria:

25

- * If $\chi^2 \ge 17.01$, reject on grounds of excessive irregularity.
- * If $\chi^2 \le 1.69$, reject on grounds of a too suspicious regularity!