Improvements on Self-attention

Baosong Yang

Contents

- Incorporating Relative Position Representations
 - Model
 - Experiments
 - Conclusion
- Directional Self-attention
 - Model
 - Experiments
 - Conclusion

Relative Position Representations

Relative positions:

Incorporating into self-attention:

K:
$$e_{ij} = rac{1}{\sqrt{d_z}} x_i W^Q (x_j W^K + a_{ij}^K)^T$$

v:
$$z_i = \sum_{j=1}^n lpha_{ij} (x_j W^V + a_{ij}^V)$$

Experiments

Evaluation on WMT14 En-De (4.5M) and En-Fr (36M)

Model	Position Information	EN-DE BLEU	EN-FR BLEU
Transformer (base)	Absolute Position Representations	26.5	38.2
Transformer (base)	Relative Position Representations	26.8	38.7
Transformer (big)	Absolute Position Representations	27.9	41.2
Transformer (big)	Relative Position Representations	29.2	41.5

Cliping distance k:

k	EN-DE BLEU
0	12.5
1	25.5
2	25.8
4	25.9
16	25.8
64	25.9
256	25.8

Keys and Values

a^V	a^K	EN-DE BLEU
Yes	Yes	25.8
No	Yes	25.8
Yes	No	25.3
No	No	12.5

Discussion

- The parameters are shared across different layers and different heads.
- Automatically model the cliping distance?
- Cliping distance conditioned on q? Maybe another choice for local attention.

Directional Self-Attention

Multi-dimentional: Feature-wise.

Output Element-wise Product Broadcasted Output Sum along Col. Σ Element-wise Product Sum along Col. $(\Sigma$ Softmax along Col. Softmax Alignment Score Alignment Score $f(x_i,q)$ $f(x_i,q)$ x_2 (a) (b)

Directional: Temporal order information is lost.

(a) Diag-disabled mask

Directional Self-Attention

Nature Language Inference. (549,367/9,842/9,824)

Model Name Unlexicalized features (Bowman et al. 2015)		T(s)/epoch	Train Accu(%)	Test Accu(%)
			49.4	50.4
+ Unigram and bigram features (Bowman et al. 2015)			99.7	78.2
100D LSTM encoders (Bowman et al. 2015)	0.2m		84.8	77.6
300D LSTM encoders (Bowman et al. 2016)	3.0m		83.9	80.6
1024D GRU encoders (Vendrov et al. 2016)	15m		98.8	81.4
300D Tree-based CNN encoders (Mou et al. 2016)	3.5m		83.3	82.1
300D SPINN-PI encoders (Bowman et al. 2016)			89.2	83.2
600D Bi-LSTM encoders (Liu et al. 2016)			86.4	83.3
300D NTI-SLSTM-LSTM encoders (Munkhdalai and Yu 2017b)			82.5	83.4
600D Bi-LSTM encoders+intra-attention (Liu et al. 2016)	2.8m		84.5	84.2
300D NSE encoders (Munkhdalai and Yu 2017a)	3.0m		86.2	84.6
Word Embedding with additive attention	0.45m	216	82.39	79.81
Word Embedding with s2t self-attention		261	86.22	83.12
Multi-head with s2t self-attention	1.98m	345	89.58	84.17
Bi-LSTM with s2t self-attention	2.88m	2080	90.39	84.98
DiSAN without directions	2.35m	592	90.18	84.66
Directional self-attention network (DiSAN)		587	91.08	85.62

Directional Self-Attention

Sentiment Analysis. (8,544/1,101/2,210)

Model	Test Accu	
MV-RNN (Socher et al. 2013)	44.4	
RNTN (Socher et al. 2013)	45.7	
Bi-LSTM (Li et al. 2015)	49.8	
Tree-LSTM (Tai, Socher, and Manning 2015)	51.0	
CNN-non-static (Kim 2014)	48.0	
CNN-Tensor (Lei, Barzilay, and Jaakkola 2015)	51.2	
NCSL (Teng, Vo, and Zhang 2016)	51.1	
LR-Bi-LSTM (Qian, Huang, and Zhu 2017)	50.6	
Word Embedding with additive attention	47.47	
Word Embedding with s2t self-attention	48.87	
Multi-head with s2t self-attention	49.14	
Bi-LSTM with s2t self-attention	49.95	
DiSAN without directions	49.41	
DiSAN	51.72	

Conclusion

- Multi-dimentional and Multi-head?
- Directional Attention, position embedding and RNN?
- An test: Multi-head with different masks + low-dimentional attetnion.