Rigorous Definition to Order: Ω

- Definition: (Asymptotic Lower Bound)
 - For a given complexity function f(n), $\Omega(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and some non-negative integer N such that for all $n \ge N$,

$$g(n) \ge c \times f(n)$$

• $g(n) \in \Omega(f(n))$

Illustrating "big O", Ω , and Θ

Ω Notation: Definition

- Meaning of $g(n) \in \Omega(f(n))$
 - Although g(n) starts out below cf(n) in the figure, eventually it goes above cf(n) and stays there.
 - If g(n) is the time complexity for some algorithm, eventually the running time of the algorithm will be at least as bad as f(n)
 - f(n) is called as an asymptotic lower bound (of what?) (i.e. g(n) cannot run faster than f(n), eventually)

Ω Notation: Example

- Meaning of $n^2+10n \in \Omega(n^2)$
 - Take c = 1 and N = 0.
 - For all integer $n \ge 0$, it holds that $n^2 + 10n \ge n^2$
 - Therefore, n^2 is an asymptotic lower bound for the time complexity function of n^2+10n . (I.e., n^2+10n belongs to $\Omega(n^2)$)
- $5n^2 \in \Omega(n^2)$
 - Take c = 1 and N = 0.
 - For all integer $n \ge 0$, it holds that $5n^2 \ge 1 \times n^2$
 - Therefore, n^2 is an asymptotic lower bound for the time complexity function of $5n^2$.

Ω Notation: More Examples

- $T(n) = \frac{n(n-1)}{2}$
 - Because, for $n \ge 2$, $n 1 \ge n/2$, so it holds that $\frac{n(n-1)}{2} \ge \frac{n}{2} \times \frac{n}{2} = \frac{1}{4}n^2$
 - Therefore, we can take c = 1/4 and N = 2, to conclude that $T(n) \in \Omega(n^2)$.
- $n^3 \in \Omega(n^2)$
 - Because, for $n \ge 1$, it holds that $n^3 \ge 1 \times n^2$
 - Therefore, we can take c = 1 and N = 1, to conclude that $n^3 \in \Omega(n^2)$

Ω Notation: Last Example

- $n \in \Omega(n^2)$
 - Proof by contradiction.
 - Suppose it is true that $n \in \Omega(n^2)$.
 - Then, for all integer $n \ge N$, there must exist some positive real number c > 0, and non-negative integer N.
 - Let's divide both sides by cn.
 - Then, we will get $1/c \ge n$, which is impossible.
 - Therefore, n does not belong to $\Omega(n^2)$.

Figure 1.6 The sets $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$. Some exemplary members are shown.

Rigorous Definition to Order: ⊕

- Definition: (Asymptotic Tight Bound)
 - For a given complexity function f(n), $\Theta(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constants c and d and some non-negative integer N such that for all $n \ge N$,

$$c \times f(n) \le g(n) \le d \times f(n)$$

- $g(n) \in \Theta(f(n))$, we say that g(n) is order of f(n).
- Example: $T(n) = \frac{n(n-1)}{2}$ $T(n) \in \Theta(n^2)$

Illustrating "big O", Ω , and Θ

Figure 1.6 The sets $O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$. Some exemplary members are shown.

Rigorous Definition to Order: Small o

Definition:

■ For a given complexity function f(n), o(f(n)) is the set of complexity functions g(n) satisfying the following: For **every** positive real constant c there exists a non-negative integer N such that for all $n \ge N$,

$$g(n) \le c \times f(n)$$

 $g(n) \in o(f(n))$

Big Ovs. Small o

Difference

- Big O: For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists **some** positive real constant c and some non-negative integer N such that for all $n \ge N$
- Small o: For a given complexity function f(n), o(f(n)) is the set of complexity functions g(n) satisfying the following: For *every* positive real constant c there exists a non-negative integer N such that for all $n \ge N$,

$$g(n) \le c \times f(n)$$

• If $g(n) \in o(f(n))$, g(n) is eventually much better than f(n).

Small o Notation: Example

- $n \in o(n^2)$
 - Suppose c > 0. We need to find an N such that, for $n \ge N$, $n \le cn^2$.
 - If we divide both sides by cn,
 - Then, we get $1/c \le n$
 - Therefore, it suffice to choose any $N \ge 1/c$.
 - For example, if c=0.00001, we must take equal to at least 100,000. That is, for $n \ge 100,000$, $n \le 0.00001n^2$.

Small o Notation: Example2

- $n \in o(5n)$?
 - Proof by contradiction.
 - Let c = 1/6. If $n \in o(5n)$, then there must exist some N such that, for $n \ge N$, $n \le \frac{1}{6} \times 5n = \frac{5}{6}n$
 - But it is impossible.
 - This contradiction proves that n is not in o(5n).

Properties of Order Functions

- $g(n) \in O(f(n))$ iff $f(n) \in \Omega(g(n))$
- $g(n) \in \Theta(f(n))$ iff $f(n) \in \Theta(g(n))$
- If b > 1 and a > 1, then $\log_a n \in \Theta(\log_b n)$.
- If b > a > 0, then $a^n \in o(b^n)$.
- For all a > 0, $a^n \in o(n!)$.
- See the following ordering, where k>j>2 and b>a>1.

$$\Theta(\lg n), \Theta(n), \Theta(n \lg n), \Theta(n^2), \Theta(n^j), \Theta(n^k), \Theta(a^n), \Theta(b^n), \Theta(n!)$$

• If $c \ge 0$, $d \ge 0$, $g(n) \in O(f(n))$, and $h(n) \in \Theta(f(n))$, then $c \times g(n) + d \times h(n) \in \Theta(f(n))$

Using a Limit to Determine Order (1/2)

Theorem 1.3

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \begin{cases} c > 0 & g(n) \in \Theta(f(n)) \\ 0 & g(n) \in o(f(n)) \\ \infty & f(n) \in o(g(n)) \end{cases}$$

Example: Theorem 1.3 implies

$$\frac{n^2}{2} \in O(n^3) \quad \text{because} \quad \lim_{n \to \infty} \frac{n^2/2}{n^3} = \lim_{n \to \infty} \frac{1}{2n} = 0$$

Using a Limit to Determine Order (2/2)

Theorem 1.4 (L'Hopital's Rule)

If
$$\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$$
, then

$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = \lim_{n\to\infty} \left(\frac{g'(n)}{f'(n)} \right)$$

Example:

$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln 2}}{1} \right) = 0$$

$$\lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln a}}{\frac{1}{n \ln b}} \right) = \frac{\log b}{\log a} > 0$$