МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра инфокоммуникаций

Лабораторная работа 2.21

Взаимодействие с базами данных SQLite3 с помощью языка программирования Python

Выполнил студент группы	ы ИВТ-б-о-20-1
Симанский М.Ю « »	20r.
Подпись студента	
Работа защищена « »	20r
Проверил Воронкин Р.А.	
	(подпись)

Цель работы: исследовать базовые возможности системы управления базами данных SQLite3.

Индивидуальное задание

Для своего варианта лабораторной работы 2.17 необходимо реализовать хранение данных в базе данных SQLite3.

С помощью команд sqlite3 создадим базу данных, а затем в ней создадим таблицы(рис.1).

Рисунок 1 – Созданная БД

Добавим магазины и товары в них с помощью команд консоли, а затем отобразим содержимое таблицы (рис. 2).

Рисунок 2 – Содержимое таблицы с магазинами

При помощи команды выбора магазина найдем нужный магазин (рис. 3).

No		Название.		Товар		Цена		
	-+ lenta		+ kolbasa			233		
PS C:\Users\maxim\YandexDisk\Лабы 4 семестр\Технологии программирования\2.21>								

Рисунок 3 – Нужный магазин найден

Задание повышенной сложности

Самостоятельно изучите работу с пакетом python-psycopg2 для работы с базами данных PostgreSQL. Для своего варианта лабораторной работы 2.17 необходимо реализовать возможность хранения данных в базе данных СУБД PostgreSQL.

Установим PostgreSQL и запустим его на компьютере, его интерфейс изображен на рисунке 4.

Рисунок 4 – Интерфейс СУБД PostegreSQL

Создадим таблицы и связи между ними, наполним их данными и отобразим(рис. 5).

Рисунок 5 - Таблица с данными

Реализуем поиск и используем его (рис. 6).

Stru	+ 	No	-+ 	Название.	+ا ا		+ Товар	 Цена	+
Bookmarks	+ 	1	-+ magnit		+ا ا	 kola		 45	3
Bool	+		-+						+

Рисунок 6 – Результат поиска

Вывод: в результате выполнения работы были приобретены навыки по работе с базовыми возможностями системы управления базами данных SQLite3.

Ответы на контрольные вопросы

- 1. Непосредственно **модуль sqlite3** это API к СУБД SQLite. Своего рода адаптер, который переводит команды, написанные на Питоне, в команды, которые понимает SQLite. Как и наоборот, доставляет ответы от SQLite в python-программу.
- 2. Для взаимодействия с базой данных SQLite3 в Python необходимо создать объект cursor. Вы можете создать его с помощью метода cursor() . Курсор SQLite3 – это метод объекта соединения. Для выполнения инструкций SQLite3 сначала устанавливается соединение, а затем создается объект курсора с использованием объекта соединения
- 3. При создании соединения с SQLite3 автоматически создается файл базы данных, если он еще не существует. Этот файл базы данных создается на диске, мы также можем создать базу данных в оперативной памяти с помощью функции :memory: with the connect. Такая база данных называется базой данных в памяти.
 - 4. С помощью команды закрытия close().
- 5. Чтобы вставить данные в таблицу, используется оператор INSERT INTO.

- 6. Чтобы обновить данные в таблице, просто создайте соединение, затем создайте объект курсора с помощью соединения и, наконец, используйте оператор UPDATE.
- 7. Оператор SELECT используется для выбора данных из определенной таблицы. Если вы хотите выбрать все столбцы данных из таблицы, вы можете использовать звездочку (*).
- 8. SQLite3 rowcount используется для возврата количества строк, которые были затронуты или выбраны последним выполненным SQL-запросом.
- 9. Чтобы перечислить все таблицы в базе данных SQLite3, вы должны запросить данные из таблицы sqlite_master, а затем использовать fetchall() для получения результатов из инструкции SELECT
- 10. При создании таблицы мы должны убедиться, что она еще не существует. Аналогично, при удалении/удалении таблицы она должна существовать. Чтобы проверить, не существует ли таблица уже, мы используем IF NOT EXISTS с оператором CREATE TABLE следующим образом.
- 11. Метод executemany можно использовать для вставки нескольких строк одновременно.
- 12. В базе данных Python SQLite3 мы можем легко хранить дату или время, импортируя модуль datetime. Следующие форматы являются наиболее часто используемыми форматами для datetime::