Lecture 6

\$5.4 Why is this true?

RECALL: Mean Value 7hm. Let F(x) be a continuous function on [a,b] and differentiable in (a,b). Then $\exists c \in (a,b) s.t.$

$$\frac{\mathsf{E}(\mathsf{b}) - \mathsf{F}(\mathsf{a})}{\mathsf{b} - \mathsf{a}} = \mathsf{F}'(\mathsf{c})$$

Thm: (Attractive fixed Pts) Let P be an attractive fixed pt for F. Then \exists an open interval I with $P \in I$ st. if $x \in I$ then $X_n = F(x) \in I$ for all nEN And Xn->P

Proof: We know that P is an attractive fixed point so F(p)=p and |F'(p)|<1 (By definition)

Then
$$\exists 0 < \lambda < 1 \text{ s.t.} | F'(p) | < \lambda < 1$$

So $\exists 6 > 0 \text{ s.t.} | F'(x) | < \lambda \text{ for all } x \in (p-\delta, p+\delta)$
This is

Then $\exists 0 < \lambda < 1 \text{ s.t.} | F'(x) | < \lambda < 1$
Then $\exists 0 < \lambda < 1 \text{ s.t.} | F'(x) | < \lambda < 1$
This is

Define $I = (p - \delta, p + \delta)$ which is an open interval. Let $x_0 \in I$ and $x_n = F'(x_0)$.

$$\frac{So[F(x_0)-F(p)]}{x_0-p}=|F'(c)|<\lambda \text{ because } c\in I$$

Thus
$$|F(x_0) - F(p)| < \lambda |x_0 - p|$$

$$|x_i-p|<\lambda|x_-p|$$

So we can prove by induction (exercise) that

Remark: to choose find the interval I, we need I to satisfy $\cdot |F'(x)| < \lambda < 1$ for all $x \in I$ $\cdot I$ is symmetric around p.

Thm: (Repelling fixed pts) Assume F is differentiable Let P be an repelling fixed pt for F. Then I an open interval I with PEIst. if x ∈ I, x ≠ p, then |F(x₀)-p|>|x₀-p|

Proof: We know that P is a repelling fixed pt, so F(p)=P and |F'(p)|>1 (By defition)

Then $\exists \lambda > 1 \text{ s.t. } |F'(p)|>\lambda > 1 \text{ and }\exists \delta > 0 \text{ satisfying }|F'(x)|>\lambda \text{ for all }} \times \in (P-\delta, P+\delta)$. Define $I=(P-\delta, P+\delta)$ and let $\chi_0 \in I$. $\chi_0 \neq P$

By MVT \exists c between x_0 and p s.t. $\frac{[F(x_0) - F(p)]}{[X_0 - P]} = |F'(c)| > \lambda$ Thus $|F(x_0) - F(p)| > \lambda |x_0 - p|$ $so |F(x_0) - p| > |x_0 - p|$

Remark: From the proof we actually have

 $|\chi_n-p|>\lambda^n|\chi_{0-p}|$ if $\chi_{0},\chi_{1},...,\chi_{n-1}\in I$

=> The orbit will escape I. i.e. $\exists N s.t. \chi_N \notin I$

Ex: F(x) = 2x(2-x) has 2 fixed pts x=0 has x=3/2and F'(0) = 4 > 1 so 0 is a repelling fixed point.