Step-1

Given that for a positive definite matrix A, the Cholesky decomposition is $A = LDL^T = R^T R$, where $R = \sqrt{D}L^T$.

We have to show that the condition number of c(R) is the square root of c(A).

Step-2

We know that

Def: 1: The *conditional number* of A is $c = ||A|| ||A^{-1}||$

Def: 2: The **norm** of a square matrix A is defined by $||A|| = \lambda_{\max}(A)$ and is the square root of the largest eigenvalue of $A^T A$; in other words,

Def: 3:
$$\left\|A^{-1}\right\| = \frac{1}{\lambda_{\min}(A)}$$

We know that if A is a positive definite matrix, then all the eigenvalues are positive.

The square root of a positive real number is a real number. $\hat{a} \in \hat{a} \in [\hat{a} \in (1)]$

Step-3

Given that A is a positive definite matrix and by the process of Cholesky decomposition, it can be written as $LDL^T = R^TR$ where $R = \sqrt{D}L^T$, D is the diagonal matrix, L is the lower triangular matrix.

Consequently, $R^T = \left(\sqrt{D}L^T\right)^T$

$$= \left(L^{T}\right)^{T} \sqrt{D}^{T}$$

$$= L\sqrt{D}^{T} \qquad \left(\text{Since } \left(L^{T}\right)^{T} = L\right)$$

Since D is the diagonal matrix, the diagonal entries are the eigenvalues of A whose roots are real numbers and other entries are zero.

So, we follow that $\sqrt{D}^T = \sqrt{D}$ and thus, $R^T = L\sqrt{D}$

Step-4

Now, in view of definition2, we write $\|R\|^2 = \lambda_{\max} (R^T R)$

$$= \lambda_{\max} \left(L \sqrt{D} \right) \left(\sqrt{D} L^{T} \right)$$

$$= \lambda_{\max} L D L^{T}$$

$$= \lambda_{\max} \left(A \right)$$

Since norm is a non negative quantity, we get $||R|| = \sqrt{\lambda_{\text{max}}(A)}$

By definition 3, we get
$$\left\|R^{-1}\right\| = \sqrt{\frac{1}{\lambda_{\min}(A)}}$$

Step-5

Multiplying the corresponding sides of these equations, we get

$$\|R\|\|R^{-1}\| = \sqrt{\lambda_{\max}(A)}\sqrt{\frac{1}{\lambda_{\min}(A)}}$$

$$\Rightarrow ||R|| ||R^{-1}|| = \sqrt{||A|| ||A^{-1}||}$$

$$\Rightarrow c(R) = \sqrt{c(A)} \qquad \text{(Since by def. 1)}$$

Therefore, the *conditional number* of *R* is nothing but the square root of the *conditional number* of *A*.