Assignment 5 - Dimitar Dimitrov - s1018291

5.1 convolution

5.1

```
load('twitch.mat');
```

5.1 - a)

```
stim1 = zeros(1,100);
stim1(10) = 1;
```

5.1 - b) - CODE

```
c = conv(stim1, twitch);
time = 1:length(c);
```

5.1 - b) - ANSWER

I think it is (stimulus + twitch - 1) because the moment of excitation coincides

5.1 - c)

```
plot(time, c);
xlabel('time (ms)');
ylabel('amplitude');
title('stimulus 1');
```


5.1 - d)

```
stim2 = stim1;
stim2(50) = 1;
```

5.1 - e)

```
c2 = conv(stim2, twitch);
plot(time, c2);
xlabel('time (ms)');
ylabel('amplitude');
title('stimulus 2');
```


5.1 - f)

```
stim3 = stim1;
stim3(20) = 1;
c3 = conv(stim3, twitch);
plot(time, c3);
xlabel('time (ms)');
ylabel('amplitude');
title('stimulus 3');
```


5.1 - g)

they add up together to form an even bigger excitation it will spasm/contract harder

5.1 - h)

```
stim4 = zeros(1,100);
targets = 10:2:40;
stim4(targets) = 1;
```

```
c4 = conv(stim4, twitch);
plot(time, c4);
xlabel('time (ms)');
ylabel('amplitude');
title('stimulus 4');
```


5.1 - h) answer

it looks like a single huge spike with long build-up, which meets my expectations

6.4 regression

6.4 load data

```
load('alcohol.mat');
```

6.4 expectations

i expect to find a positive correlation because a young brain is more mallible and susceptable to manipulation by advertisement (citations needed)

6.4 plot data

relationship between alcohol consumption of adolescents and advertisement duration

6.4 regression

```
[R,p] = corrcoef(reclametijd, alcoholconsumptie);
beta = polyfit(reclametijd, alcoholconsumptie, 1);
```

6.4 verify they are significantly correlated

p < 0.05 therefore the findings are significant and the null hypothesis (no correlation) can be rejected

6.4 plot residuals

```
alcoholfit = polyval(beta, reclametijd);
res = alcoholconsumptie - alcoholfit;
scatter(reclametijd, res, 'k');
xlabel('advertisement time (minutes)');
ylabel('residuals');
title('Residuals plot of alcohol consumption and advertisement time')
```

Residuals plot of alcohol consumption and advertisement time

6.4 plot residuals - answer

the residuals vary between a relatively tight domain [-3;3], so there is indeed a linear relationship

6.4 predict 15 minutes

```
slope = beta(1);
intercept = beta(2);
prediction15 = 15*slope + intercept;
```

6.4 predict 15 minutes conclusion

prediction15 = 4.3533, so we expect an adolescent to drink 4.3533 dl of alcohol on average after having watched 15 minutes of alcohol adverts

6.4 draw regression line

relationship between alcohol consumption of adolescents and advertisement duration

6.4 brief recommendation

since the regression line shows a positive relationship between advertisement time and alcohol consumption amongst adolescents I would recommend the government limit the time alcohol ads can run or ban them

6.4 function

```
function [slope, intercept, sqRes] = lin_regression(x, y)
% function [slope, intercept] = lin_regression(x, y)
% takes two vectors, performs linear regression on them, returns the
% resulting slope, intercept and sum of squared residuals returned
% and plots the original data with the regression line as well as the
% residuals graph

[R,p] = corrcoef(x, y);
beta = polyfit(x, y, 1);
slope = beta(1);
intercept = beta(2);
yfit = polyval(beta, x);
res = y - yfit;
```

```
sqRes = sum(res.^2);
subplot(2,1,1);
scatter(x,y, 'DisplayName', 'data points');
hold on;
plot(x, yfit, 'r-', 'DisplayName', 'regression line');
title([{'original data + regression line'},
    {strcat('correlation coeficient = ', num2str(R(1,2)))},
    \{strcat('p = ', num2str(p(1,2)))\}]);
xlabel('1st variable');
ylabel('2nd variable');
legend;
subplot(2,1,2);
scatter(x, res);
title('residuals of the data');
xlabel('1st variable');
ylabel('residuals of 2nd variable');
set(gcf, 'position', [10,10,400,800]);
hold off
```

6.5 multiple regression

6.5

```
load('testresult.mat')
```

6.5 - a)

dependent variable: test score predictive variables: everything else (so study duration, coffee, ADHD medication intake, placebo drink units)

Personally, I think Study Time will show effect.

6.5 - b)

```
D = [ones(100,1), ADHDmedicijn, Koffie, Placebo, Studietijd];
```

6.5 - c)

```
[B, BINT] = regress(Testscore, D);
```

6.5 - d) - CODE

```
disp(BINT);
```

```
0.0172 1.3764
-0.0907 0.1236
-0.0867 0.0568
-0.0700 0.0778
0.1569 0.1846
```

6.5 - d) - ANSWER

only study time's confidence interval doesn't contain 0, so it is the only significant predictor/influencer

(the ones vector also returned an interval without 0 but that's not a predictor)

since placebo's confidence interval contains 0, there probably was no placebo effect taking place

6.5 - e) - CODE

```
disp(B(5));
disp(1/B(5));
disp(strcat( num2str(floor(1/B(5))),  " hours and ",  num2str( round( 60* (1/B(5)-floor(1/B(5)) ) )) ,  " minutes" ));
```

```
0.1708
5.8560
5 hours and 51 minutes
```

Test Score = Variable * Variable's Regression Coefficient

The Regression Coefficient of Study Time is equal to 0.1708 (given by B(5))

therefore 1 Test Point = Study Time for 1 point * 0.1708

Study Time for 1 point = 5.8560 hrs

around 5 hours and 51 minutes of studying are needed to get an extra point on the test

6.6 FMRI

6.6A

```
load('exercise_fMRI_small.mat');
```

6.6B

6.6B - a)

```
s1 = zeros(1,50);
s1(25) = 1;
```

6.6B - b)

```
c1 = conv(s1, hrf);
```

6.6B - c)

```
clt = 0:3.22: 3.22*(length(c1)-1);
slt = 0:3.22: 3.22*(length(s1)-1);

plot(clt, c1, 'DisplayName', 'Convolution Signal', 'LineWidth', 1);
hold on;
plot(slt, s1, 'DisplayName', 'Stimulus Presentation', 'LineWidth', 1 );
legend
xlabel('time (s)');
xlim([50 125]);
ylabel('amplitude');
```


6.6B - d)

the new graph isn't as smooth and doesn't reach as high as the one in 6.2B, probably the result of convolution with a different HRF vector

6.6B - e)

the signal spike happens about 6.5 seconds after the stimulus, and it is returned to baseline level at 109.48 seconds, about 29 seconds after its onset

6.6C

6.6C - a)

6.6C - b)

```
time = 0:3.22: 3.22*(length(bold) -1);
subplot(4,2,2:2:8);
imagesc(D);
colormap gray;
title('Design Matrix');
actual_time = 3.22 * size(D,1);
ytick = 1 : 200/3.22 : actual_time;
yticklabels = 0 : 200 : 200 * ceil( actual_time /200);
set(gca, 'YTick', ytick, 'YTickLabel', yticklabels);
set(gca, 'XTick', [1 2 3 4], 'XTickLabel', conditions);
ylabel('time (s)');
xlabel('Regression');
idx = 1;
for i=1:2:7
         subplot(4,2,i);
         area(time, D(:,idx));
         ylim([-0.1 1.1]);
         xlim([0 time(end)]);
         title(strcat("condition ", conditions(idx)));
         xlabel('time (s)');
         ylabel('presentation');
         set(gca, 'YTick', [0, 1], 'YTickLabel', ["hidden", "shown"]);
         idx = idx + 1;
end
subplot(4,2,3);
set(gcf, 'position', [10,10,800,1000]);
shg;
```


6.6C - c)

condition:

fix: 16 timesstat: 4 timesatt: 8 timesnatt: 8 times

fixed order:

- there is a fix (fixation point probably) between every stimulus except before stat
- in the first half it goes [att-natt-att-natt-stat] x2
- in the second half it goes [natt-att-natt-att-stat] x2

each stimulus was presented for about 10 scans, each scan takes 3.22 seconds which means each stimulus presentation lasted about 32.2 seconds

6.6C - d)

```
DHRF = conv2(hrf, D);
```

6.6C - e) - CODE

```
subplot(4,2,2:2:8);
imagesc(DHRF);
```

```
colormap gray;
actual_duration_HRF = 3.22 * size(DHRF,1);
ytick = 1 : 200/3.22 : actual_duration_HRF;
yticklabels = 0 : 200 : 200 * ceil( actual_
                                     : 200 * ceil( actual_duration_HRF /200);
set(gca, 'YTick', ytick, 'YTickLabel', yticklabels);
set(gca, 'XTick', [1 2 3 4], 'XTickLabel', conditions);
title('Design Matrix HRF');
ylabel('time (s)');
xlabel('Regression');
time_HRF = 0:3.22: 3.22*(length(DHRF) -1);
idx = 1;
for i=1:2:7
         subplot(4,2,i);
         plot(time_HRF, DHRF(:,idx));
         xlim([0 time_HRF(end)]);
         title(strcat("HRF condition ", conditions(idx)));
         xlabel('time (s)');
         ylabel('activation');
         idx = idx + 1;
end
set(gcf, 'position',[10,10,800,1000])
```


6.6C - e) - ANSWER

there is a difference between the two design matrices, because the convolution with HRF introduced a few more values that appear as black in the graph. They are the inhibitory part of the response, so it has negative values which are interpreted as a 0, or black in the graph.

```
DHRF = [ones(size(DHRF,1), 1) DHRF];
```

6.6D

6.6D - a) - CODE

6.6D - a) - ANSWER

- condition fix all voxels exhibit decrease in excitation during condition fix but voxel 1's amplitude doesn't decrease that much, while voxel 2 and 3 drop really low
- condition natt voxel 2 and 3 get more excited in response to natt
- condition stat all voxels exhibit decrease in excitation during condition stat but voxel 3's amplitude doesn't decrease that much, while voxel 1 experiences a moderate drop and voxel 2 - a steep drop
- condition att all 3 voxels get excited during presentation of condition att

6.6D - b)

```
XD = DHRF(1:360,:);
betas = [];
for vox=1:3
```

```
betas = [betas regress(bold(:, vox), XD)];
end
```

6.6D - c)

```
fitted_bold = XD*betas;
error = bold - fitted_bold;
```

6.6D - d)

6.6D - e) - CODE

```
8.6371 6.0223 3.4187
```

6.6D - e) - ANSWER

The 3rd voxel has the smallest sum of squared errors therefore its regression model is the best

6.6E - a) - CODE

```
condition_betas = betas(2:5,:).';
bar(condition_betas);
legend(conditions, "Location", "southeast");
ylabel('coefficient size');
title('regression coefficients');
set(gca, 'XTick', [1 2 3], 'XTickLabel', ["Voxel 1","Voxel 2","Voxel 3"] );
```


6.6E - a) - ANSWER

- Voxel 1's activation is explained mostly by att
- Voxel 2's activation is explained mostly by att and natt
- Voxel 3's activation is explained mostly by att, natt and stat

6.6E - b) - CODE

```
statfix = zeros(1,4);
statfix( conditions == "stat") = 1;
statfix( conditions == "fix") = -1;
nattstat = zeros(1,4);
nattstat( conditions == "natt") = 1;
nattstat( conditions == "stat") = -1;
attnatt = zeros(1,4);
attnatt( conditions == "att") = 1;
attnatt( conditions == "natt") = -1;
contrasts_idx = [ statfix; nattstat; attnatt].';
contrasts = condition_betas*contrasts_idx;
subplot(1,2,1);
bar(contrasts);
set(gca, 'XTick', [1 2 3], 'XTickLabel', ["Voxel 1", "Voxel 2", "Voxel 3"] );
legend(["stat-fix", "natt-stat", "att-natt"], "Location", "northwest");
title('Grouped by voxel');
subplot(1,2,2);
contrastst= contrasts.';
bar(contrastst);
```

```
set(gca, 'XTick', [1 2 3], 'XTickLabel', ["stat-fix", "natt-stat", "att-natt"] );
legend(["Voxel 1","Voxel 2","Voxel 3"]);
title('Grouped by contrast');
set(gcf,'position',[10,10,1000,500])
```


6.6E - b) - ANSWER

these results indicate the contrast (difference/amplitude) in activity with respect to a condition and its opposite. The higher the contrast the more it is likely that the voxel's activity is coded for that type of contrast

- Voxel 1 (from primary visual cortex) is most sensitive to attention vs no attention).
- Voxel 2 (from MT) is most sensitive to motion vs no motion (which iirc makes sense given past research into that area showing neurons there code for specific motion direction).
- Voxel 3 (from IPS) is most sensitive to abesence vs presence of a stimulus.