

MATERIA: PROYECTO INTEGRADOR

PROFESOR: GONZALO VERA

ALUMNO: RIOS LIONEL

AÑO: 2024

ACTIVIDADES

¿Qué es un diodo rectificador?

Un diodo rectificador es un componente electrónico que permite el paso de corriente en una sola dirección y bloquea el paso en la dirección opuesta. Su principal función es convertir corriente alterna (CA) en corriente continua (CC), un proceso conocido como rectificación.

Características de un diodo rectificador:

- 1. **Polaridad**: Tiene dos terminales, el ánodo y el cátodo. La corriente fluye del ánodo al cátodo cuando el diodo está polarizado directamente (es decir, cuando el ánodo es más positivo que el cátodo).
- Umbral de Conducción: Hay una tensión umbral (generalmente alrededor de 0.7V para diodos de silicio) que debe superarse para que el diodo conduzca corriente.
- 3. **Bloqueo en Polarización Inversa**: Cuando el diodo está polarizado inversamente (el cátodo es más positivo que el ánodo), no permite el paso de corriente, excepto por una pequeña corriente de fuga.

Aplicaciones comunes de los diodos rectificadores:

- Fuentes de Alimentación: Se utilizan en fuentes de alimentación para convertir la CA del enchufe en CC necesaria para alimentar dispositivos electrónicos.
- Circuitos de Protección: Protegen los circuitos electrónicos al permitir el paso de corriente sólo en la dirección deseada y evitar posibles daños por corrientes inversas.
- 3. **Modulación de Señales**: En ciertos circuitos de radio y comunicaciones, se usan para demodular señales.

Tipos de diodos rectificadores:

- 1. **Diodos de Silicio**: Los más comunes, adecuados para la mayoría de las aplicaciones estándar.
- 2. **Diodos Schottky**: Tienen una caída de tensión más baja y son más rápidos, utilizados en aplicaciones de alta frecuencia y alta eficiencia.
- 3. **Diodos de Avalancha**: Diseñados para operar en condiciones de alta tensión inversa y se utilizan en aplicaciones de protección contra sobretensiones.

Funcionamiento básico:

En una fuente de alimentación básica, un diodo rectificador puede formar parte de un rectificador de media onda, donde se utiliza un solo diodo, o un rectificador de onda completa, donde se utilizan varios diodos (generalmente cuatro, en una configuración de puente) para convertir toda la señal de CA en una señal de CC más constante.

Otros tipos de diodos

existen varios tipos de diodos además de los diodos rectificadores, cada uno diseñado para aplicaciones específicas. Aquí están algunos de los tipos más comunes:

1. Diodo Zener:

- **Función:** Permite el paso de corriente en la dirección inversa cuando se alcanza una tensión específica conocida como tensión Zener.
- Aplicaciones: Regulación de voltaje, protección contra sobretensiones.

2. Diodo LED (Light Emitting Diode):

- Función: Emite luz cuando pasa corriente a través de él.
- Aplicaciones: Indicadores de estado, iluminación, pantallas.

3. Diodo Schottky:

- Función: Tiene una caída de tensión directa baja y una recuperación rápida.
- Aplicaciones: Fuentes de alimentación conmutadas, rectificación de alta frecuencia.

4. Diodo de Avalancha:

- **Función:** Diseñado para operar en el modo de avalancha, donde puede soportar altos voltajes inversos sin daño.
- Aplicaciones: Protección contra sobretensiones.

5. Diodo Túnel:

- Función: Utiliza el efecto túnel para permitir la conducción a través de una barrera potencial a niveles de voltaje muy bajos.
- Aplicaciones: Osciladores de alta frecuencia, amplificadores.

6. Diodo Varactor (Varicap):

 Función: Actúa como un condensador variable controlado por la tensión inversa.

 Aplicaciones: Sintonización de circuitos de radiofrecuencia, filtros de frecuencia variable.

7. Diodo Láser:

- Función: Emite luz coherente (láser) cuando se polariza en directa.
- Aplicaciones: Comunicaciones ópticas, lectores de discos, punteros láser.

8. Diodo Fotovoltaico:

- Función: Convierte la luz en electricidad (efecto fotovoltaico).
- Aplicaciones: Paneles solares, detectores de luz.

9. Diodo Gunn:

- Función: Utiliza el efecto Gunn para generar microondas.
- Aplicaciones: Osciladores de microondas, radares.

10. Diodo PIN:

- **Función:** Tiene una región intrínseca entre las regiones P y N, lo que le permite manejar altas frecuencias y potencias.
- Aplicaciones: Conmutadores de RF, atenuadores, fotodetectores.

11. Diodo de Recuperación Rápida:

- Función: Tiene un tiempo de recuperación inversa muy corto, lo que permite su uso en aplicaciones de alta velocidad.
- Aplicaciones: Convertidores de potencia, circuitos de alta frecuencia.

12. Diodo Emisor de Microondas:

- Función: Diseñado para operar en frecuencias de microondas.
- Aplicaciones: Comunicaciones por satélite, radares.

Cada tipo de diodo tiene características específicas que lo hacen adecuado para ciertas aplicaciones, y los ingenieros eligen el tipo de diodo en función de los requisitos particulares de su circuito o sistema.