TD 3 - Inégalité de Bienaymé-Tchebychev - Convergence en probabilité

Rappels:

• Inégalité de Bienaymé-Tchebychev pour une variable aléatoire d'espérance et de variance finies :

$$\forall t > 0, \ P(|X - E(X)| \geqslant t) \leqslant \frac{V(X)}{t^2}$$

- Inégalité de Markov $\forall Z$ variable aléatoire positive $\forall a > 0$ $P(Z > a) \leqslant \frac{E(Z)}{a}$
- Convergence en probabilité

Soit $(U_n)_{n\geq 1}$ une suite de v.a. On dit que U_n converge en probabilité vers $\mu\in\mathbb{R}$ si et seulement si :

$$\forall \varepsilon > 0, \ P(|U_n - \mu| > \varepsilon) \xrightarrow[n \to \infty]{} 0$$

• Loi (faible) des grands nombres

Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. indépendantes et de même espérance (finie) μ et de même variance (finie) σ^2 , alors

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow[n \to \infty]{P} \mu$$

Exercice 1

Soit X une variable aléatoire d'espérance et de variance toutes deux égales à 20. Que peut-on dire de $P(0 \le X \le 40)$.

Exercice 2

Soient X_i , $i = 1, 2 \cdot \dots \cdot 100$ des variables aléatoires uniformes sur l'intervalle [0; 1]. Évaluer approximativement $P\left(\sum_{i=1}^{100} X_i > 6\right)$.

Exercice 3

On suppose que le nombre de pièces sortant d'une usine donnée en l'espace d'une semaine est une variable aléatoire d'espérance 50.

- 1) Peut-on estimer la probabilité que la production de la semaine prochaine dépasse 75 pièces?
- 2) On sait, de plus, que la variance de la production hebdomadaire est de 25. Peut-on estimer la probabilité que la production de la semaine prochaine soit comprise entre 40 et 60?

Exercice 4

On effectue n lancers successifs supposés indépendants d'une pièce parfaitement équilibrée.

- 1) Soit S_n le nombre de piles obtenues au cours des n lancers. Quelle est la loi de S_n ? Calculer son espérance $E(S_n)$ et sa variance $Var(S_n)$.
- 2) Soit $F_n = \frac{S_n}{n}$ la proportion de piles obtenues au cours des n lancers. Calculer $E(F_n)$ et $Var(F_n)$.
- 3) Pour quels nombres n de lancers peut-on affirmer, avec un risque de se tromper inférieur à 5 %, que la proportion de piles au cours de ces n lancers diffère de $\frac{1}{2}$ d'au plus un centième.

TD 3 suite - Loi des grands nombres - Théorème Central Limite

Rappels de cours

Théorème Central Limite Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires iid de même espérance μ et de même variance σ^2 . On a alors :

$$\sqrt{n} \xrightarrow{\left(\overline{X}_n - \mu\right)} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1)$$

Interprétation du TCL Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires iid de même espérance μ et de même variance σ^2 .

Quand n est "grand", $\sqrt{n} \frac{(\overline{X}_n - \mu)}{\sigma}$ suit approximativement (ou peut être approximée par) une loi normale centrée réduite :

$$\sqrt{n} \frac{\left(\overline{X}_n - \mu\right)}{\sigma} \simeq \mathcal{N}(0, 1)$$

Ou aussi, quand n est "grand", \overline{X}_n suit approximativement (ou peut être approximée par) une loi normale d'éspérance μ et de variance $\frac{\sigma^2}{n}$:

$$\overline{X}_n \simeq \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

Corollaire (Moivre-Laplace) Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires iid de loi de Bernoulli de paramètre $p\in [0;1]$. On a :

$$\sqrt{n} \frac{\left(\overline{X}_n - p\right)}{\sqrt{p(1-p)}} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1)$$

Interprétation du corollaire de Moivre-Laplace pour la loi de Bernoulli Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires iid de loi de Bernoulli de paramètre $p\in [0;1]$.

Quand n est "grand", \overline{X}_n suit approximativement (ou peut être approximée par) une loi normale d'éspérance p et de variance $\frac{p(1-p)}{n}$:

$$\overline{X}_n \simeq \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Interprétation du corollaire de Moivre-Laplace pour la loi binômiale Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires iid de loi de Bernoulli de paramètre $p\in[0;1]$.

On remarque que $\sum_{i=1}^{n} X_i = n \ \overline{X}_n \sim \mathcal{B}(n,p)$. On en déduit :

$$\sum_{i=1}^{n} X_i \simeq \mathcal{N}\left(np, np(1-p)\right)$$

Exercice 5

Si $X \sim \mathcal{B}(n,p)$, déterminer au moyen de l'approximation la plus adéquate :

a)
$$P(X \le 4)$$
 si $n = 50$, $p = 0, 2$ **b)** $P(X \le 70)$ si $n = 200$, $p = 0, 5$

b)
$$P(X \le 70)$$
 si $n = 200, p = 0, 5$

Exercice 6

Une compagnie aérienne utilise un avion qui peut transporter au maximum 400 passagers. La probabilité pour qu'un passager, ayant réservé pour un vol donné, ne se présente pas à l'embarquement est de 0.08.

- 1) La compagnie accepte pour un vol 420 réservations. On note X la variable aléatoire qui compte le nombre de passagers qui se présentent à l'embarquement.
 - a- Quelle est la loi suivie par X?
 - b- Calculer la probabilité de l'événement ($X \leq 400$). La compagnie prend un risque en prenant 420 réservations; vous paraît-il important?
- 2) La compagnie accepte pour un vol donné n réservations (avec $n \geq 400$). Déterminer la valeur maximale de n pour que la probabilité de l'événement $(X \le 400)$ soit supérieure ou égale à 0,95.

Exercice 7

Loi du min et du max

Soient X_1, \ldots, X_n des variables aléatoires indépendantes et identiquement distribuées, définies sur un même espace Ω et à valeurs réelles. On note F la fonction de répartition de X_1 .

- 1) On lance un dé 2 fois, donc n=2. Soient X_1 et X_2 les résutats respectifs de ces 2 lancers. Soit $M_2 = \max\{X_1, X_2\}$ la variable aléatoire qui à tout $\omega \in \Omega$ associe la plus grande valeur parmi $X_1(\omega), X_2(\omega).$
 - (a) Écrire Ω , puis les évènements $E_1 = (M_2 = 1), E_2 = (M_2 = 2), E_3 = (M_2 = 3).$
 - (b) Déterminer la fonction de répartition F_{M_2} de M_2 .
- 2) Soit $M_n = \max_{1 \le i \le n} \{X_i\}$ la variable aléatoire qui à tout $\omega \in \Omega$ associe la plus grande valeur parmi $X_1(\omega), \ldots, X_n(\omega)$. Déterminer la fonction de répartition F_{M_n} de M_n .
- 3) On lance un dé 2 fois, donc n=2. Soient X_1 et X_2 les résutats respectifs de ces 2 lancers. Soit $m_2 = \min\{X_1, X_2\}$ la variable aléatoire qui à tout $\omega \in \Omega$ associe la plus petite valeur parmi $X_1(\omega), X_2(\omega).$
 - (a) Écrire Ω , puis les évènements $E_1 = (m_2 = 1), E_2 = (m_2 = 2), E_3 = (m_2 = 3).$
 - (b) Déterminer la fonction de répartition F_{m_n} de m_2 .
- 4) Soit $m_n = \min_{1 \le i \le n} \{X_i\}$ la variable aléatoire qui à tout $\omega \in \Omega$ associe la plus petite valeur parmi $X_1(\omega), \ldots, X_n(\omega)$. Déterminer la fonction de répartition F_{m_n} de m_n .
- 5) On suppose X_1, \ldots, X_n indépendantes et de même loi exponentielle de paramètre λ . Déterminer les lois de M_n et m_n .