# **Anomaly Detection**

# Principles of Data Mining Xiaowei Jia

# Anomaly/Outlier Detection

- What are anomalies/outliers?
  - The set of data points that are considerably different than the remainder of the data

- Natural implication is that anomalies are relatively rare
  - One in a thousand occurs often if you have lots of data
  - Context is important, e.g., freezing temps in July
- Can be important or a nuisance
  - 200 pound, 2 year old
  - Unusually high blood pressure

### Importance of Anomaly Detection

#### Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as outliers by a computer program and discarded!



#### Source:

http://www.epa.gov/ozone/science/hole/size.html

#### Causes of Anomalies

- Data from different classes
  - Measuring the weights of oranges, but a few grapefruit are mixed in
- Natural variation
  - Unusually tall people
- Data errors
  - 200 pound 2 year old

#### Distinction Between Noise and Anomalies

Noise doesn't necessarily produce unusual values or objects

Noise is not interesting

Noise and anomalies are related but distinct concepts

### General Issues: Anomaly Scoring

- Many anomaly detection techniques provide only a binary categorization
  - An object is an anomaly or it isn't
  - This is especially true of classification-based approaches
- Other approaches assign a score to all points
  - This score measures the degree to which an object is an anomaly
  - This allows objects to be ranked
- In the end, you often need a binary decision
  - Should this credit card transaction be flagged?
  - Still useful to have a score

### Variants of Anomaly Detection Problems

 Given a data set D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D

- Given a data set D, find all data points  $\mathbf{x} \in D$  with anomaly scores greater than some threshold t
- Given a data set D, find all data points  $\mathbf{x} \in D$  having the top-n largest anomaly scores

## Model-Based Anomaly Detection

#### Unsupervised

- Anomalies are those points that don't fit well
- Anomalies are those points that distort the model

#### Supervised

- Anomalies are regarded as a rare class
- Need to have training data
- Often the underlying assumption is that the most of the points in the data are normal

### Anomaly Detection Techniques

Statistical Approaches

- Proximity-based
  - Anomalies are points far away from other points
- Clustering-based
  - Points far away from cluster centers are outliers
- Reconstruction Based

### Statistical Approaches

**Probabilistic definition of an outlier:** An outlier is an object that has a low probability with respect to a probability distribution model of the data.

- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
  - Data distribution
  - Parameters of distribution (e.g., mean, variance)
  - Number of expected outliers (confidence limit)
- Issues
  - Identifying the distribution of a data set
    - Heavy tailed distribution
  - Number of attributes
  - Is the data a mixture of distributions?

### Normal Distributions



# One-dimensional Gaussian

Two-dimensional Gaussian

#### Grubbs' Test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
  - $H_0$ : There is no outlier in data
  - H<sub>A</sub>: There is at least one outlier
- Grubbs' test statistic:

$$G = \frac{\max \left| X - \overline{X} \right|}{s}$$

• Reject H<sub>0</sub> if:

$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N,N-2)}^2}{N-2+t_{(\alpha/N,N-2)}^2}}$$

#### Statistically-based — Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
  - M (majority distribution)
  - A (anomalous distribution)
- General Approach:
  - Initially, assume all the data points belong to M
  - Let L₁(D) be the log likelihood of D at time t
  - For each point x<sub>t</sub> that belongs to M, move it to A
    - Let L<sub>t+1</sub> (D) be the new log likelihood.
    - Compute the difference,  $\Delta = L_{t+1}(D) L_t(D)$
    - If  $\Delta$  > c (some threshold), then  $x_t$  is declared as an anomaly and moved permanently from M to A

#### Statistically-based — Likelihood Approach

- Data distribution, D =  $(1 \lambda)$  M +  $\lambda$  A
- M is a probability distribution estimated from data
  - Can be based on any modeling method (naïve Bayes, maximum entropy, etc.)
- A is initially assumed to be uniform distribution
- Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left( (1 - \lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left( \lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$

$$LL_{t}(D) = \left| M_{t} \middle| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \left| A_{t} \middle| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i}) \right|$$

#### Strengths/Weaknesses of Statistical Approaches

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution

### Distance-Based Approaches

 The outlier score of an object is the distance to its kth nearest neighbor

### One Nearest Neighbor - One Outlier



### One Nearest Neighbor - Two Outliers



### Five Nearest Neighbors - Small Cluster



### Five Nearest Neighbors - Differing Density



#### Strengths/Weaknesses of Distance-Based Approaches

- Simple
- Expensive O(n<sup>2</sup>)
- Sensitive to parameters
- Sensitive to variations in density
- Distance becomes less meaningful in high-dimensional space

#### Density-Based Approaches

- Density-based Outlier: The outlier score of an object is the inverse of the density around the object.
  - Can be defined in terms of the k nearest neighbors
  - One definition: Inverse of distance to kth neighbor
  - Another definition: Inverse of the average distance to k neighbors
  - DBSCAN definition
- If there are regions of different density, this approach can have problems

### Relative Density

- Consider the density of a point relative to that of its k nearest neighbors
- Let  $y_1, ..., y_k$  be the k nearest neighbors of x  $density(x, k) = \frac{1}{dist(x, k)} = \frac{1}{dist(x, y_k)}$

relative density(
$$\mathbf{x}, k$$
) = 
$$\frac{\sum_{i=1}^{k} density(\mathbf{y}_{i}, k)/k}{density(\mathbf{x}, k)}$$

Can use average distance instead

# Relative Density Outlier Scores



### Relative Density-based: LOF approach

- ☐ For each point, compute the density of its local neighborhood
- ☐ Compute local outlier factor (LOF) of a sample *p* as the average of the ratios of the density of sample *p* and the density of its nearest neighbors
- ☐ Outliers are points with largest LOF value



In the NN approach,  $p_2$  is not considered as outlier, while LOF approach find both  $p_1$  and  $p_2$  as outliers

#### Strengths/Weaknesses of Density-Based Approaches

- Simple
- Expensive O(n<sup>2</sup>)
- Sensitive to parameters
- Density becomes less meaningful in high-dimensional space

### Clustering-Based Approaches

- Clustering-based Outlier: An object is a cluster-based outlier if it does not strongly belong to any cluster
  - For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
  - For density-based clusters, an object is an outlier if its density is too low
  - For graph-based clusters, an object is an outlier if it is not well connected
- Other issues include the impact of outliers on the clusters and the number of clusters



### Distance of Points from Closest Centroids



#### Relative Distance of Points from Closest Centroid



#### Strengths/Weaknesses of Clustering-Based Approaches

Simple

- Many clustering techniques can be used
- Can be difficult to decide on a clustering technique
- Can be difficult to decide on number of clusters

Outliers can distort the clusters

#### Reconstruction-Based Approaches

- Based on assumptions there are patterns in the distribution of the normal class that can be captured using lower-dimensional representations
- Reduce data to lower dimensional data
  - Can use Principal Components Analysis (PCA) or other dimensionality reduction techniques
  - Can also use neural networks
- Measure the reconstruction error for each object
  - The difference between original and reduced dimensionality version

#### Reconstruction Error

- Let x be the original data object
- Find the representation of the object in a lower dimensional space
- Project the object back to the original space
- Call this object  $\hat{\mathbf{x}}$

Reconstruction Error(
$$\mathbf{x}$$
)=  $\|\mathbf{x} - \hat{\mathbf{x}}\|$ 

Objects with large reconstruction errors are anomalies

### Reconstruction of two-dimensional data



#### Basic Architecture of an Autoencoder

- An autoencoder is a multi-layer neural network
- The number of input and output neurons is equal to the number of original attributes.



### Strengths and Weaknesses

Does not require assumptions about distribution of normal class

Can use many dimensionality reduction approaches

- The reconstruction error is computed in the original space
  - This can be a problem if dimensionality is high

#### One Class SVM

- Use an SVM approach to classify normal objects
- Uses the given data to construct such a model
- This data may contain outliers
- But the data does not contain class labels
- How to build a classifier given one class?

#### How Does One-Class SVM Work?

- Uses the "origin" trick
- Use a Gaussian kernel  $\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\frac{||\mathbf{x} \mathbf{y}||^2}{2\sigma^2})$ 
  - Every point mapped to a unit hypersphere

$$\kappa(\mathbf{x}, \mathbf{x}) = \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle = ||\phi(\mathbf{x})||^2 = 1$$

Every point in the same orthant (quadrant)

$$\kappa(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle \geq 0$$

Aim to maximize the distance of the separating plane from the origin

### Two-dimensional One Class SVM



### **Equations for One-Class SVM**

- Equation of hyperplane
- $\langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \rho$
- ullet  $\phi$  is the mapping to high dimensional space
- Weight vector is  $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x_i})$
- v is fraction of outliers
- Optimization condition is the following

$$\min_{\mathbf{w}, \ \rho, \ \xi} \ \frac{1}{2} ||\mathbf{w}||^2 - \rho + \frac{1}{n\nu} \sum_{i=1}^n \xi_i,$$

subject to: 
$$\langle \mathbf{w}, \phi(\mathbf{x_i}) \rangle \geq \rho - \xi_i, \ \xi_i \geq 0$$

# Finding Outliers with a One-Class SVM

• Decision boundary with  $\nu = 0.1$ 



# Finding Outliers with a One-Class SVM

• Decision boundary with  $\nu=0.05$  and  $\nu=0.2$ 



# Strengths and Weaknesses

Strong theoretical foundation

• Choice of v is difficult

Computationally expensive

## Evaluation of Anomaly Detection

- If class labels are present, then use standard evaluation approaches for rare class such as precision, recall, or false positive rate
  - FPR is also know as false alarm rate
- For unsupervised anomaly detection use measures provided by the anomaly method
  - Reconstruction error or gain
- Can also look at histograms of anomaly scores.

# Distribution of Anomaly Scores

Anomaly scores should show a tail



**Figure 10.17.** Anomaly score based on average distance to fifth nearest neighbor.





**Figure 10.18.** Anomaly score based on LOF using five nearest neighbors.

