第8届伊朗几何奥林匹克试题与解析

甘润知¹ 杨皓晨² 陈昱达³

(1. 华东师范大学第二附属中学, 201203;

2. 天津市南开中学, 300100; 3. 天津市新华中学, 300204)

第8届伊朗几何奥林匹克于2021年11月5日举行,本届共有57个国家或地区参加.考试时长为4.5小时,共有5道题,每道题8分.参赛选手分为初级,中级,高级三个年级组.中国代表队在本届比赛中,初级组获4枚金牌(4人满分),中级组获4枚金牌(3人满分),高级组获4枚金牌(2人满分).

下面我们给出试题的解答与评析, 解答人姓名随解答给出. 同时感谢杨丕业老师, 在我们撰写解答时提供宝贵的建议.

I. 试 题

1 初级组

1.1 将下图中绘制出的四个图形拼在一起, 使得拼出的图形有两条对称轴.

图 1.1

1.2 若 K, L, M, N 分别在正方形 ABCD 的边 AB, BC, CD, DA 上, 且满足四边形 KLMN 的面积为 ABCD 的一半. 求证: 四边形 KLMN 的某条对角线平行于 ABCD 的某条边.

修订日期: 2022-01-27.

1.3 如下图, 给定一个由三个分别以 AB, BC, AC 为直径的半圆组成的 心形 ω , 其中 B 为线段 AC 的中点. 当 ω 上的 P 和 P' 平分其周长时, 称 (P, P') 为"平分对". 已知 (P, P') 和 (Q, Q') 均为平分对. 在 P, P', Q, Q' 处关于 ω 的 切线构成了凸四边形 XYZT. 若四边形 XYZT 为圆内接四边形, 求直线 PP' 和 QQ' 的夹角.

1.4 在等腰梯形 $ABCD(AB/\!\!/CD)$ 中, 点 E 和 F 均在 CD 上, 且 D, E, F, C 满足 DE = CF. X 和 Y 分别为 E 和 C 关于 AD 和 AF 的对称点. 求证: $\triangle ADF$ 的外接圆和 $\triangle BXY$ 的外接圆是同心圆.

1.5 平面上有 2021 个点, 分别为 A_1 , A_2 , ..., A_{2021} , 其中无三点共线, 且 $\angle A_1 A_2 A_3 + \angle A_2 A_3 A_4 + \cdots + \angle A_{2021} A_1 A_2 = 360^\circ$,

其中 $\angle A_{i-1}A_iA_{i+1}$ 均表示由 $A_{i-1}A_i$ 和 A_iA_{i+1} 构成的小于 180° 度的角(规定 $A_{2022}=A_1$ 和 $A_0=A_{2021}$). 求证: 这些角中, 某些角之和为 90°.

2 中级组

2.1 在满足 AB = AC 的 $\triangle ABC$ 中, H 为其垂心. E 是 AC 的中点, D 在边 BC 上, 且满足 3CD = BC. 求证: $BE \perp HD$.

2.2 平行四边形 ABCD 中, E, F 分别在边 AB, CD 上, 且满足 $\angle EDC = \angle FBC$ 和 $\angle ECD = \angle FAD$. 求证: $AB \ge 2BC$.

图 2.2

2.3 给定满足 AB = BC 和 $\angle ABD = \angle BCD = 90^{\circ}$ 的凸四边形 ABCD, 对角线 AC 和 BD 交于 E. F 在边 AD 上, 满足 $\frac{AF}{FD} = \frac{CE}{EA}$. 以 DF 为直径的圆 ω 和 $\triangle ABF$ 的外接圆再次交于 K. EF 和 ω 再次交于 L. 求证: 直线 KL 平分 CE.

图 2.3

2.4 非等腰 $\triangle ABC$ 中, 内心为 I, 外接圆为 Γ . AI 再次交 Γ 于 M. N 为 BC 中点, T 在 Γ 上且满足 IN \bot MT. 过 I 的 AI 的垂线与 TB 和 TC 分别交于 P 和 Q. 求证: PB = CQ.

图 2.4

2.5 给定凸五边形 ABCDE, 动点 X 在 CD 上. 若 K, L 在线段 AX 上, 满足 AB=BK 和 AE=EL, 且 $\triangle CXK$ 的外接圆和 $\triangle DXL$ 的外接圆再次交于 Y. 当 X 运动时, 求证: XY 恒过定点, 或所有的 XY 均平行.

3 高级组

3.1 给定锐角 $\triangle ABC$ 及其外接圆 ω . D 为 AC 中点, E 为 A 关于 BC 的垂足, F 为 AB 和 DE 的交点. H 在 ω 的不含 A 的 \widehat{BC} 上, 且满足 $\angle BHE = \angle ABC$. 求证: $\angle BHF = 90^\circ$.

图 3.1

3.2 圆 Γ_1 和圆 Γ_2 交于两个不同的点 A 和 B. 一条经过 A 的直线分别再次交 Γ_1 和 Γ_2 于 C 和 D, 且 A 在 C 和 D 之间. A 处 Γ_2 的切线再次交 Γ_1 于 E. F 在 Γ_2 上且 F 和 A 在边 BD 的异侧, 满足 $2\angle AFC = \angle ABC$. 求证: F 处 Γ_2 的切线, 直线 BD 和直线 CE 三线共点.

3.3 给定 $\triangle ABC$ 及其三条高 AD, BE, CF 和垂心 H. H 关于 EF 的垂线 分别交 EF, AB, AC 于 P, T, L. K 在边 BC 上且满足 BD = KC. ω 是过 H 和 P, 并与 AH 相切的圆. 求证: $\triangle ATL$ 的外接圆和 ω 相切, 且 KH 经过切点.

- **3.4** 给定平面上可以构成凸 2021 边形的 2021 个点, 这些点中无三点共线或四点共圆. 求证:其中存在两个点, 且通过这两个点的所有圆均至少包含 673 个其余的点.
- **3.5** 给定 $\triangle ABC$ 及其内心 I. $\triangle ABC$ 的内切圆切 BC 于 D. P 和 Q 均在 边 BC 上, 且分别满足 $\angle PAB = \angle BCA$ 和 $\angle QAC = \angle ABC.$ K 和 L 分别为 $\triangle ABP$ 和 $\triangle ACQ$ 的内心. 求证: AD 是 $\triangle IKL$ 的 Euler 线.

II. 解答与评注

1 初级组

题 1.1 将下图中绘制出的四个图形拼在一起, 使得拼出的图形有两条对称轴.

图 1.1-1

解 如下图进行拼接即可.

图 1.1-2

题 **1.2** 若 K, L, M, N 分别在正方形 ABCD 的边 AB, BC, CD, DA 上, 且满足四边形 KLMN 的面积为 ABCD 的一半. 求证:四边形 KLMN 的某条对角线平行于 ABCD 的某条边.

证明 (陈昱达)

图 1.2

如图, 不妨设正方形 ABCD 边长为1, AK=a, BL=b, CM=c, DN=d. 则四边形 KLMN 的面积为 ABCD 的一半等价于

$$\frac{a(1-d)+b(1-a)+c(1-b)+d(1-c)}{2}=\frac{1}{2},$$

即

$$a+b+c+d-ab-bc-cd-da=1.$$

注意到上式可以进行因式分解:

$$(a+c-1)(b+d-1) = 0,$$

即 a+c=1 或 b+d=1, 这说明 KM 和 NL 至少有一者与正方形 ABCD 的某 边平行.

评注 本题难度不大,可首先考虑代数化,再结合要证明的内容观察出因式分解即可.

题 1.3 如下图, 给定一个由三个分别以 AB, BC, AC 为直径的半圆组成的 心形 ω , 其中 B 为线段 AC 的中点. 当 ω 上的 P 和 P' 平分其周长时, 称 (P, P') 为"平分对". 已知 (P, P') 和 (Q, Q') 均为平分对. 在 P, P', Q, Q' 处关于 ω 的 切线构成了凸四边形 XYZT. 若四边形 XYZT 为圆内接四边形, 求直线 PP' 和 QQ' 的夹角.

解(杨皓晨) 先证明: P, B, P' 共线.

由对称性, 不妨设 P' 在以 BC 为直径的圆上. 设 BC = 2r, 则 ω 的周长 为 $4\pi r$. 设 $\angle PBC = \theta$, $\angle P'BC = \varphi$, 由于 PP' 平分 ω 的周长, 即 $\widehat{P'C}$ 与 \widehat{PC} 的长度之和为 $2\pi r$. \widehat{PC} 长度为半圆 AC 长度的 $\frac{\theta}{\pi}$, 即 $2r\theta$. 类似地, $\widehat{P'C}$ 长度为

 $\pi r \cdot \frac{2\varphi}{\pi} = 2r\varphi$. 故有 $2r\theta + 2r\varphi = 2r\pi$, 故 $\theta + \varphi = \pi$, 此即 P, B, P' 共线, 得证. 同理可得, Q, B, Q' 亦共线.

图 1.3-2

再证明: PP' 与 QQ' 所夹锐角为 $\frac{\pi}{3}$.

不妨设 P, Q 均在以 AC 为直径的圆上, P' 在以 BC 为直径的圆上. 设 $\angle PBA = \alpha$, $\angle QBC = \beta$, 设在 Q', P' 处的 ω 的切线交于 X, 设在 P, Q 处的 ω 的切线交于 Z.

若 Q' 在以 AC 为直径的圆上, 由于 ZP, ZQ 均为切线, 故 B, P, Z, Q 共圆, $\angle PZQ = \pi - \angle PBQ = \alpha + \beta$. 由于 XYZT 为圆内接四边形, 此即 $\angle P'XQ' = \pi - \angle PZQ = \pi - \alpha - \beta$. 在四边形 XQ'BP' 中, $\angle XQ'B = \angle Q'AB = \frac{\pi}{2} - \beta$, 同理 $\angle XP'B = \frac{\pi}{2} - \alpha$, 它的四个内角之和为 2π , 故有

$$\angle XQ'B + \angle XP'B + \angle P'XQ' + \angle P'BQ' = 2\pi,$$

此即

$$(\frac{\pi}{2} - \alpha) + (\frac{\pi}{2} - \beta) + (\pi - \alpha - \beta) + (\pi - \alpha - \beta) = 2\pi,$$

解得 $\alpha + \beta = \frac{\pi}{3}$, 即 PP' 与 QQ' 所夹锐角为 $\frac{\pi}{3}$.

若 Q' 在以 BC 为直径的圆上, 设 $\angle PBQ = \gamma$, 类似可知 $\angle PZQ = \pi - \gamma$, $\angle P'XQ' = \pi - 2\gamma$, 于是 XYZT 为圆内接四边形等价于 $\angle PZQ + \angle P'XQ' = \pi$, 即 $2\pi - 3\gamma = \pi$, 解得 $\gamma = \frac{\pi}{3}$, 从而亦有 PP' 与 QQ' 所夹锐角为 $\frac{\pi}{3}$ 成立.

综上讨论可知即 PP' 与 QQ' 所夹锐角为 $\frac{\pi}{3}$.

评注 本题构图新颖, 难度较低, 核心在于处理"平分周长"这一条件, 只要将 其等价地转化为三点共线的条件, 后续的倒角工作就不困难了.

题 1.4 在等腰梯形 $ABCD(AB \parallel CD)$ 中, 点 E 和 F 均在 CD 上, 且 D, E, F, C 满足 DE = CF. X 和 Y 分别为 E 和 C 关于 AD 和 AF 的对称点. 求证: $\triangle ADF$ 的外接圆和 $\triangle BXY$ 的外接圆是同心圆.

证明 (杨皓晨)

设 $\triangle ADF$ 的外心为 O, 即证 OB = OX = OY.

先证明: OB = OY.

设 AF 中点为 M, 过 M 作 DF 的平行线 l, 设 O 关于 AF 的对称点为 O_1 , 则 O, M, O_1 共线, 且 $OY = O_1C$. 设 O_1 , C 关于 l 的对称点分别为 O_2 , K, 则 O, O_2 关于过 M 的 DF 的垂线对称, 有 $O_1C = O_2K$, 且 $OO_2 /\!\!/ DF /\!\!/ BK$. 我们 在以 DC 为 x 轴的直角坐标系下考虑问题, 对平面上一点 I, 设它的横坐标为 x_I , 则

$$x_O - x_{O_2} = 2(x_O - x_M) = x_D - x_A = x_B - x_C = x_B - x_K,$$

结合 $OO_2 /\!\!/ BK$ 知 $OO_2 = BK$, 故 OO_2KB 是平行四边形, 有 $OB = O_2K = O_1C = OY$, 故得证.

再证明: OY = OX.

由对称关系及条件有 DX = DE = CF = YF, 且 OD = OF. 由于

$$\angle ODX = 2\angle ADE + \angle ODE$$
$$= 2\angle ADE - 90^{\circ} + \angle DAF$$
$$= \angle ADF - \angle AFD + 90^{\circ}.$$

且

$$\angle OFY = \angle AFY - \angle OFA$$

$$= (180^{\circ} - \angle AFD) - (90^{\circ} - \angle ADF)$$

$$= \angle ADF - \angle AFD + 90^{\circ},$$

故 $\angle OFY = \angle ODX$, 这表明 $\triangle OFY \cong \triangle ODX$, 故 OY = OX, 得证.

综上可知, O 为 $\triangle BXY$ 外心, 结论得证.

评注 本题难度适中,只要发现上文中的这个全等结构,便可消去 *X*, *Y* 两点中的一个,极大简化命题.此后,利用对称构型常见的辅助线,不断作对称构造平行四边形即可完成证明.

题 1.5 平面上有 2021 个点, 分别为 A_1 , A_2 , ···, A_{2021} , 其中无三点共线, 且

$$\angle A_1 A_2 A_3 + \angle A_2 A_3 A_4 + \dots + \angle A_{2021} A_1 A_2 = 360^\circ,$$

其中 $\angle A_{i-1}A_iA_{i+1}$ 均表示由 $A_{i-1}A_i$ 和 A_iA_{i+1} 构成的小于 180° 度的角(规定 $A_{2022}=A_1$ 和 $A_0=A_{2021}$). 求证: 这些角中, 某些角之和为 90°.

证明 (杨皓晨) 考虑 2021 边形 $P: A_1A_2\cdots A_{2021}$, 它的 2021 个内角之和为 2019 π . 设这些角为 $\alpha_1, \alpha_2, \cdots, \alpha_{2021}$, 不妨设其中 $\alpha_1, \alpha_2, \cdots, \alpha_k$ 小于 π , 剩余的角大于 π , 则由条件, 有

$$(\alpha_1 + \dots + \alpha_k) + [(2\pi - \alpha_{k+1}) + \dots + (2\pi - \alpha_{2021})] = 2\pi,$$

$$\alpha_1 + \alpha_2 + \dots + \alpha_{2021} = 2019\pi.$$

记 $T = \alpha_1 + \cdots + \alpha_k$, 则有

$$T + (2021 - k) \cdot 2\pi - (2019\pi - T) = 2\pi,$$

解得

$$T = (2k - 2021) \cdot \frac{\pi}{2}.$$

可见 T 必为 $\frac{\pi}{2}$ 的奇数倍. 由于 $T < 2\pi$, 故 $T = \frac{\pi}{2}$ 或 $\frac{3\pi}{2}$.

于是, 在题目所述的这和为 2π 的 2021 个角中, 或者 $\alpha_1, \alpha_2, \cdots, \alpha_k$ 之和为 $\frac{\pi}{2}$, 或者剩余所有角之和为 $\frac{\pi}{2}$, 结论得证.

评注 本题难度较低,但有明显的组合风格.一旦我们意识到这一点,采用组合问题中"设出未知数""寻找表达式"的思路,此题便可迎刃而解.

2 中级组

题 2.1 在满足 AB = AC 的 $\triangle ABC$ 中, H 为其垂心. E 是 AC 的中点, D 在边 BC 上, 且满足 3CD = BC. 求证: $BE \perp HD$.

证明 (甘润知)

图 2.1

设 $\triangle ABC$ 的重心为 G, 显然它是 BE 与 AH 的交点, 设 BC 中点是 M, 由 重心的性质有

$$GM = \frac{1}{3}AM.$$

由于 3CD = BC, 因此有 $D \not\in BM$ 靠近 M 的三等分点, 由此 $MG \not\mid AC$, 由于 $BH \perp AC$, $AH \perp BC$, 因此 H 是三角形 GMB 的垂心, 从而 $HD \perp BG$, 即 $BE \perp HD$.

评注 十分基础的一个几何题, 三等分点与中点条件让人不免联系到添出重心, 随后由待证明垂直反推证明垂心便可完成此题证明.

题 2.2 平行四边形 ABCD 中, E, F 分别在边 AB, CD 上, 且满足 $\angle EDC = \angle FBC$ 和 $\angle ECD = \angle FAD$. 求证: $AB \ge 2BC$.

证明 (甘润知)

图 2.2

设 DE 交 BC 的延长线于 G, CE 交 DA 的延长线于点 H, 根据题目条件, 容易得到 C, F, A, H 和 B, F, D, G 四点共圆.

引理 $BG + AH \geqslant 2BC$.

证明 设 $\frac{AE}{EB} = x$,那么根据平行线分线段成比例,

$$\frac{DA}{BG} = \frac{AE}{EB} = x, \ \frac{BC}{AH} = \frac{EB}{AE} = \frac{1}{x}.$$

由于 AD = BC, 那么

$$BG + AH = \left(x + \frac{1}{x}\right)BC \geqslant 2BC.$$

从而证明了引理.

回到原题,由圆幂定理可知

$$DF \cdot DC = DA \cdot DH, \ CF \cdot CD = CB \cdot CG.$$

两个式子相加得到

$$AB^2 = CD^2 = BC(2BC + BG + AH) \geqslant 4BC^2.$$

因此 $AB \ge 2BC$. 至此, 完成了证明.

评注 中等偏易的一个几何不等式题, 所给的题目条件让人联想到补出四点 共圆, 随之联想到圆幂定理, 之后利用平行线分线段成比例即可完成本题的证明.

题 2.3 给定满足 AB = BC 和 $\angle ABD = \angle BCD = 90^\circ$ 的凸四边形 ABCD, 对角线 AC 和 BD 交于 E. F 在边 AD 上, 且满足 $\frac{AF}{FD} = \frac{CE}{EA}$. 以 DF 为直径的圆 ω 和 $\triangle ABF$ 的外接圆再次交于 K. EF 和 ω 再次交于 L. 求证:直线 KL 平分 CE.

证明 (甘润知)

图 2.3

设 AB 交 DC 的延长线于 P. 首先证明:

断言 BF // CD.

证明 设 F' 满足 $BF' \not\parallel CD$, 为证明 F = F', 只需要证明 $\frac{CE}{EA} = \frac{AB}{BP}$. 根据射影定理和分角定理, 有

$$\frac{DP}{DC} = \frac{DP^2}{DP \cdot CD} = \frac{DP^2}{BD^2} = \sin^2 \angle CBD = \frac{CE^2}{EA^2}.$$

又由 Menelaus 定理,有

$$\frac{AB}{BP} \cdot \frac{PD}{CD} \cdot \frac{CE}{EA} = 1.$$

从而有 $\frac{CE}{EA} = \frac{AB}{BP}$, 进而证明了 F = F', 故 $BF \parallel CD$. 至此完成了断言的证明.

因此 $\angle ABF = \angle P = \angle CBD$, 从而 $\triangle ABF$ 的外接圆直径为

$$\frac{AF}{\sin \angle ABF} = \frac{AF}{\sin \angle CBE} = AF \cdot \frac{AE}{CE} = FD.$$

故 $\triangle ABF$ 的外接圆与 ω 是等圆, 从而 AK = KD. 注意到

$$\angle ECD = \frac{\pi}{2} - \angle BCA = \frac{\pi}{2} - \frac{1}{2} \angle CBP = \frac{\pi}{2} = \angle CDE,$$

因此, $\triangle CDE$ 是等腰三角形(CD = ED). 从而

$$\angle AKD = \frac{\pi}{2} + \angle AKF = \frac{\pi}{2} + \angle CBD = 2\angle ACD.$$

故 $\angle KDA = \frac{\pi}{2} - \angle ACD = \frac{1}{2}CDE$. 设 M 为 CE 的中点, 注意到 CD = ED, 那 么由 $\angle DLE = \angle DME$ 可知 L, D, E, M 四点共圆. 又

$$\angle ELK = \frac{1}{2} \angle CDE = \angle EDM = \angle ELM,$$

从而 L, K, M 三点共线, 因此 KL 过 CE 中点 M. 至此, 完成了证明.

评注 本题是中等难度的几何题. 在本题中, 点 F 的性质较多, 难以入手, 如果从结论反推来做反而可能容易一些. 因本题中 L 点几乎形如虚设, 如果将待证明结论转化成 $\angle KDA = \frac{1}{2} \angle CDE$, 则可以直接消去 L. 因此, 从这个待证结论入手, 便可以比较轻松地解决本题.

题 2.4 非等腰 $\triangle ABC$ 中, 内心为 I, 外接圆为 Γ . AI 再次交 Γ 于 M. N 为 BC 中点, T 在 Γ 上且满足 IN \bot MT. 过 I 的 AI 的垂线与 TB 和 TC 分别交于 P 和 Q. 求证: PB = CQ.

证明 1 (陈昱达) 首先取 M 关于 Γ 的对径点 D, 则 $MT \perp DT$, DT //IN. 记 $\angle D = \alpha$, 则 $\tan \alpha = \frac{c-b}{2r}$ (不妨设 c > b). 由正弦定理, 有

$$\frac{PI}{\sin\left(\frac{B}{2} + \frac{A}{2} + \alpha\right)} = \frac{BI}{\sin\left(\frac{B}{2} + \frac{A}{2} + \alpha - \frac{C}{2}\right)},$$

而

$$PI = \frac{\cos\left(\alpha - \frac{C}{2}\right)BI}{\cos(C - \alpha)} = \frac{\cos\left(\alpha - \frac{C}{2}\right)}{\cos(C - \alpha)} \cdot \frac{r}{\sin\frac{B}{2}}.$$

下证 $PI = 2R\cos\frac{A}{2}$. 由上式,有

$$PI = \frac{\left(\cos\alpha\cos\frac{C}{2} + \sin\alpha\sin\frac{C}{2}\right)r}{\left(\cos\alpha\cos C + \sin\alpha\sin C\right)\sin\frac{B}{2}}$$
$$= \frac{\left(\cos\frac{C}{2} + \tan\alpha\sin\frac{C}{2}\right)r}{\left(\cos C + \tan\alpha\sin C\right)\sin\frac{B}{2}}$$
$$= \frac{\left(\cos\frac{C}{2} + \frac{c-b}{2r}\sin\frac{C}{2}\right)r}{\left(\cos C + \frac{c-b}{2r}\sin C\right)\sin\frac{B}{2}}.$$

利用 $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$, 则等价于证明

$$\frac{2\left(\cos\frac{C}{2} + \frac{c-b}{2r}\sin\frac{C}{2}\right)\sin\frac{C}{2}}{\cos C + \frac{c-b}{2r}\sin c} = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}}.$$

再由 $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$, 则只需证

$$\frac{4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} + 2(\sin C - \sin B)\sin^2\frac{C}{2}}{4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} + (\sin C - \sin B)\sin C} = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}}.$$

由结论 $\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$, 即证

$$\frac{(\cos A + \cos B + \cos C - 1)\sin C + (1 - \cos C)(\sin C - \sin B)}{(\cos A + \cos B + \cos C - 1)\cos C + (\sin C - \sin B)\sin C} = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}.$$

化简后等价于

$$\frac{\sin A - \sin B + \cos A \sin C}{(1 - \cos A)(1 - \cos C)} = \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}.$$

再利用结论 $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$,知只需证

$$\frac{\sin\frac{A}{2} - \cos\frac{B}{2}\cos\frac{C}{2} + \cos\frac{A}{2}\sin\frac{C}{2}\cos\frac{C}{2}}{\sin\frac{A}{2}\sin^2\frac{C}{2}} = 1.$$

利用 $\cos\frac{B}{2}=\sin\frac{A+C}{2}=\sin\frac{A}{2}\cos\frac{C}{2}+\sin\frac{C}{2}\cos\frac{A}{2}$ 进行代换可知上式等号两边相等, 故有 $PI=2R\cos\frac{A}{2}$, 同理 $QI=2R\cos\frac{A}{2}=PI$, 则 $MI\perp PQ$.

由 $\frac{PI}{MI}=\frac{BN}{MN}$ 知 $\triangle PBM\sim \triangle INM$. 则同理有 $\triangle QCM\sim \triangle INM$, 再由 MB=MC 知 $\triangle PBM\cong \triangle QCM$. 因此 PB=CQ.

证明 2 (甘润知)

图 2.4-2

设 U 是 \widehat{BAC} 的中点, 设直线 QC 交 AM 于 K, IN 交直线 QC 于 L. 断言 $ML \perp QC$.

证明 注意到 $IN \perp MT$, $UT \perp MT$, 因此 $UT \parallel IN$. 从而

$$\angle MNL = \angle INU = \angle NUT = \angle MCL$$
,

从而 M, N, C, L 共圆. 从而 $\angle MLC = \angle MNB = \frac{\pi}{2}$. 从而完成断言的证明.

注意到 $\angle MIQ = \frac{\pi}{2}$, 因此 I, M, L, Q 共圆, 从而 $\angle MQC = \angle NIM$. 由对称性, $\angle NIM = \angle MPB$. 因此 $\angle MQC = \angle MPB$, 进一步有 P, Q, M, T 四点共圆. 从而 $\angle QPM = \angle MTC = \angle MTB = \angle MQP$, 故 MP = MQ. 结合

$$\angle MCQ = \angle PBM, \ \angle MQC = \angle MPB$$

得到

 $\triangle BPM \cong \triangle CQM$

15

从而 BP = CQ, 这就完成了本题的证明.

证明 3

图 2.4-3

设 P 和 Q 是在 I 处与 AI 垂直的直线上且满足 $\triangle MBC$ 与 $\triangle MPQ$ 顺相似的点. 由 MB = MC 可知 MP = MQ. 由于 N 和 I 分别为 BC 和 PQ 的中点, 由顺相似可知 $\triangle MPB \sim \triangle MIN \sim \triangle MQC$. 又由这组相似可得 $\angle MPB = \angle MQC$, 这意味着若 T 为 CQ 和 PB 的交点, 则有 P, T, Q, M 四点 共圆, 则 $180^{\circ} - \angle CTB = \angle QTP = \angle QMP = \angle CMB$, 因此 T 在 Γ 上. 则只需说明 $IN \perp MT$ 即可:

$$\angle MIN + \angle TMI = \angle MIN + \angle TMQ + \angle QMI$$

= $\angle MPB + \angle TPQ + \angle IMP$
= $\angle MPI + \angle IMP = 90^{\circ}$.

评注 方法一首先要考虑到对 T 点的刻画方式, 由弦 $MT \perp IN$ 可以想到作出 M 的对径点. 另一方面, 由 MB = MC 可以联想到 $\triangle PBM \cong \triangle QCM$, 因此可以对相关量进行计算, 虽然计算过程略显冗长, 但思路较为自然. 方法二的思路是猜到 $\triangle BPM \cong \triangle CQM$ 来一步一步反推到 U, I, C, Q 共圆, 再将结论转化为 $ML \perp CQ$, 最后完成了本题的证明. 方法三则是利用同一法解决的本题. 本题看似是一个通过倒角就能完成的简单题, 但是其中思维量依旧不小, 是一个很不错的练习题.

题 2.5 给定凸五边形 ABCDE, 动点 X 在 CD 上. 若 K, L 在线段 AX 上, 满足 AB = BK 和 AE = EL, 且 $\triangle CXK$ 的外接圆和 $\triangle DXL$ 的外接圆再次交于 Y. 当 X 运动时, 求证: XY 恒过定点, 或所有的 XY 均平行.

证明 (杨皓晨) 先证明 $\triangle CXK$ 的外接圆过定点.

事实上, 以 B 为圆心, BA 为半径作圆 ω_1 , 设 AC 与 ω_1 的另一交点为 M, 则

www.nsmath.cn 16

M 是定点. 设经过点 C, M 且与 CD 相切的圆与 ω_1 的另一交点为 G, 则 G 亦是 定点. 由于 $\angle XCG = \angle GMC = 180^{\circ} - \angle GKA = \angle GKX$, 可知 G, X, K, C 共圆, 得证. 同理, $\triangle DXL$ 的外接圆过定点, 记为 H.

再证明 XY 过定点(或所有的 XY 相互平行).

- (1) 若 Y 不在 GH 上, 考虑 $\triangle GHY$ 的外接圆 Ω . 由于 G, H 均是定点, 且 $\angle GYH = \angle GYX + \angle XYH = \angle GCD + \angle HDC$ 为定值, 故 Ω 是定圆. 设 YX 与 Ω 的另一交点为 S, 有 $\angle GYS = \angle GCD$ 为定值, 故 S 为定点.
- (2) 若 Y, G, H 共线, 则由 (1) 中结论可知 $\angle GYH = 180^{\circ}$ 为定值, 由于 $\angle GYX = \angle GCD$ 为定值, 此即直线 XY 与定直线 GH 张的角度为定值, 故所有的 XY 相互平行.

综合(1),(2)知原命题成立.

评注 本题是常见的定值定点问题, 难度中等. 本题由于定点过多(有 5 个定点, 一般的问题只会给出一个三角形的 3 个定点), 因此直接猜问题中的这两圆根轴过的定点的位置, 并不是明智的选择. 可以先来研究这两圆本身, 发现它们都过定点, 这时再研究其根轴就不困难了.

3 高级组

题 3.1 给定锐角 $\triangle ABC$ 及其外接圆 ω . D 为 AC 中点, E 为 A 关于 BC 的垂足, F 为 AB 和 DE 的交点. H 在 ω 的不含 A 的 \widehat{BC} 上, 且满足 $\angle BHE = \angle ABC$. 求证: $\angle BHF = 90^{\circ}$.

证明1(陈昱达)

由 $\angle BHE = \angle ABC$ 知 $\odot (BHE)$ 与 AB 相切. 延长 HE 交 $\odot (ABC)$ 于 A', 而 $\angle ABC = \angle BHE = \angle BHA' = \angle A'CB$, 故 $AA' \not \mid BC$ 设 AE 交 $\odot (BHE)$ 于 P, 则 BP 为该圆直径.

下面利用同一法证明. 设 PH 交 AB 于 F', DE 交 AB 于 F. 为了叙述方便, 在下面的证明中, 简记 $AB=c,\ BC=a,\ CA=b$. 则有

$$\frac{AF}{BF} = \frac{S_{\triangle DBE}}{S_{\triangle DBE}} = \frac{\frac{S_{\triangle ACE}}{2}}{\frac{S_{\triangle ABE}}{2}} = \frac{CE}{BE} = \frac{\tan B}{\tan C},$$

$$BH = \frac{BE}{\sin B} \cdot \sin \angle BEH = \frac{BE}{\sin B} \cdot \sin \angle AA'E$$

$$= \frac{BE}{\sin B} \cdot \sin \angle A'EB = \frac{c \sin \angle A'EB}{\tan B},$$

$$BH = \frac{BE}{\sin B}$$

$$BF' = \frac{BH}{\cos \angle ABH} = \frac{BE}{\sin B} \cdot \tan \angle ABH$$
$$= \frac{BE}{\sin B} \cdot \tan \angle AA'H = \frac{BE}{\sin B} \cdot \frac{AE}{AA'}.$$

则

$$BF' = \frac{c}{\tan B} \cdot \frac{b \sin C}{a - 2b \cos C}.$$

故

$$\frac{AF'}{BF'} = 1 - \frac{AB}{BF'}$$

$$= 1 - \frac{(a - 2b\cos C)\tan B}{b\sin C}$$
$$= 1 - \frac{a - 2b\cos C}{c\cos B}$$
$$= \frac{\cos B + 2b\cos C - a}{c\cos B}.$$

注意到 $\cos B + b \cos C = a$, 故

$$\frac{AF'}{BF'} = \frac{b\cos C}{c\cos B} = \frac{\tan B}{\tan C} = \frac{AF}{BF}.$$

因此 F' = F, 即 F, H, P 共线, 故 $\angle BHF = 90^{\circ}$.

证明2(甘润知)

设 E' 是 E 关于点 D 的对称点. 设 HE 交 ω 于 H, L, 设 K 是 B 关于 ω 的 对径点, 由于

$$\angle BHE = \angle BCL = \angle ABC$$
,

因此 $AL \parallel BC$. 由于 $AE \perp BC$, 又 E' 是 E 关于点 D 的对称点. 因此, 容易得到: E', L, A 和 E', K, C 分别三点共线, 这是 A, E, C, E' 构成了矩形, 而 $KC \perp BC$, $AL \perp AE$, 利用 Pascal 定理, 考察广义六边形 ALHKCB 和已知条件中的 D, E, F 三点共线可以得到: F, H, K 三线共点, 利用 K, B 的对径点关系, 容易知道,

$$\angle BHK = \angle BHF = 90^{\circ}.$$

评注 本题是较简单的几何题. 本题最简单的思路是导角法, 不难可以观察 出这其中有一个四点共圆, 利用这个共圆和角的关系便可以轻松解决本题. 在这

里我们给出两个别于导角的做法,一者是利用计算法,在没有观察出四点共圆的情况下可以用计算的方法解决,计算量没有很大,读者可以参考;二者是利用 Pascal 定理,考场中笔者利用该方法很快地解决了本题,因为通过这样的辅助线 很容易可以将条件转化为证明三点共线,也是相对较自然的方法.

题 3.2 圆 Γ_1 和圆 Γ_2 交于两个不同的点 A 和 B. 一条经过 A 的直线分别再次交 Γ_1 和 Γ_2 于 C 和 D,且 A 在 C 和 D 之间. A 处 Γ_2 的切线再次交 Γ_1 于 E. F 在 Γ_2 上且 F 和 A 在边 BD 的异侧, 满足 $2\angle AFC = \angle ABC$. 求证: F 处 Γ_2 的切线,直线 BD 和直线 CE 三线共点.

证明(甘润知)

图 3.2

设 M 是 \widehat{AC} 的中点, FC 交 Γ_2 于 K, EK 交 Γ_2 于 G. 首先证明 C, E, F, G 共圆. 注意到:

$$\angle AFC = \frac{1}{2} \angle ABC = \angle KAE = \angle MEA,$$

因此, AK // EM, 那么

 $\angle EGF = \angle AGF - \angle AGK = \angle AKC - \angle KAE = \angle AKC - \angle MEC = \angle ECF$. 其中, 等号的最后一步用到了 $AK \parallel EM$ 条件. 因此, C, E, F, G 共圆, 利用根心定理 (考察该圆与 Γ_1 , Γ_2), 有 CE, AB, FG 共点. 利用 Pascal 定理, 考察广义六边形 FAADGK, 可知 FA, DG 交于 CE 上一点. 利用 Pascal 定理, 考察广义六边形 FFABDG, 可知 FF, BD 交于 CE 上一点. 这样, 便得到了结论成立.

题 3.3 给定 $\triangle ABC$ 及其三条高 AD, BE, CF 和垂心 H. H 关于 EF 的垂线分别交 EF, AB, AC 于 P, T, L. K 在边 BC 上且满足 BD = KC. ω 是过 H 和 P, 并与 AH 相切的圆. 求证: $\triangle ATL$ 的外接圆和 ω 相切, 且 KH 经过切点.

证明 (杨皓晨)

记 Γ 为 $\triangle ATL$ 的外接圆, 记 ω_0 为以 AH 为直径的圆, 设 KH 与 ω 的另一 交点为 Q, 我们证明 Γ 与 ω 切于点 Q.

(1) 先证明 Q 在 ω 上, 此即 $\triangle HPQ$ 的外接圆与 AH 相切.

设直线 EF, BC 交于 S, 设 BC 中点为 M, 熟知 MH 与 ω_0 的另一交点 Y 亦在 $\triangle ABC$ 的外接圆上, 于是由 Monge 定理知 AY, FE, BC 共点, 记为 S, 此即 $MH \perp AS$, 故 H 为 $\triangle AMS$ 垂心, 即 $AM \perp SH$. 设直线 AM, SH 交于 R, 则

R 在 ω_0 上; 又记 ω_1 为 $\triangle BHC$ 的外接圆,则由 $SB \cdot SC = SE \cdot SF = SH \cdot SR$ 知 R 亦在 ω_1 上.

由于 $\angle KDA = \angle KQA = 90^\circ$, 有 K, D, Q, A 四点共圆, 于是 $HK \cdot HQ = HD \cdot HA = HR \cdot HS$, 即 K, R, Q, S 共圆.

设 AM 与过 K 的 BC 的垂线交于 N, 由 BK = CD 知 MK = MD, 可 知 N, A 关于点 M 对称, 故 N 在 ω_1 上; 由于 $\angle NBH = \angle NBC + \angle CBH = \angle ACB + \angle CBH = 90^\circ$, 知 HN 为 ω_1 的直径, 故 $\angle NRH = \angle NKS = 90^\circ$. 设 AH 中点为 Z, 由 ZE = ZF, ME = MF 知 $EF \perp ZM$, 由于 MZ 是 $\triangle ANH$ 的中位线, 故又有 $EF \perp NH$, 即 N, H, P 共线, $\angle SPN = 90^\circ$, 故 N, S, R, K, P 共圆, 综上可得 N, S, R, K, P, Q 六点共圆.

于是, 利用上述共圆及 $AH /\!\!/ NK$ 可知 $\angle PQH = \angle PQK = \angle PNK = \angle PHA$, 即 $\triangle HPQ$ 的外接圆与 AH 相切, 得证.

(2) 再证明 Q 在 Γ 上, 只需证 $\triangle QAT$ 的外接圆与 AH 相切, 这样由于对称性, $\triangle QAL$ 的外接圆亦与 AH 相切, 于是 Q, A, T, L 共圆即可得证.

我们证明 T, Q, K, B 四点共圆. 事实上, 由 (1) 中结论知 K, D, Q, A 四点共圆, 故是 $HK \cdot HQ = HD \cdot HA = HE \cdot HB$, 故 B, K, E, Q 四点共圆. 设 NK 交 CA 于 X, 则由 $XN \perp BS$, $XA \perp BH$, $AN \perp HS$ 容易推出 $\triangle XAN \sim \triangle BHS$. 又由 $TA \perp FH$, $TN \perp SF$, $AN \perp SH$ 容易推出 $\triangle TAN \sim \triangle FHS$, 可知 T, F 为 $\triangle XAN \sim \triangle BHS$ 的一组对应点, 于是 $\angle XTA = \angle BFH = 90^\circ$. 结合 $\angle BKX = \angle BEX = 90^\circ$, 可知 X, T, E, K, B 五点共圆, 综上可得 X, T, Q, E, K, B 六点共圆, 结论获证.

因此, $\angle ATQ = 180^{\circ} - \angle BKQ = \angle CKQ = \angle HAQ$, 即 $\triangle QAT$ 的外接圆与 AH 相切, 得证.

- (3) 最后证明 Γ 与 ω 切于点 Q.
- 由 (1) 及 (2) 可知 Γ 与 ω 均与 AH 相切. 设 O_1 , O_2 分别为 Γ 与 ω 的圆 ω . 由于 AH 中点 Z 为 ω_0 的圆心, 故 ZH = ZQ, $O_2H = O_2Q$, 由对称性知 $\angle ZQO_2 = \angle ZHO_2 = 90^\circ$, 即 O_2 在点 Q 处的 ω 的切线上, 同理由 Γ 过点 A, Q 知 O_1 亦在 Q 处 ω 的切线上, 故 O_1 , O_2 , Q 共线, 即 Γ 与 ω 切于点 Q, 得证.

综合 (1), (2), (3) 知原命题成立. □

评注 本题是基于垂心的常规几何问题, 难度较大, 较依赖于画图的准确性. 需大胆猜出切点 Q 的位置, 用类似同一法的叙述方式, 分别证明 Q 在题目所述的两圆上, 最后证明 Q 与两圆心共线, 得到相切关系. 在证明" Q 在两圆上"的过

www.nsmath.cn 22

程中,用到证明四点共圆的常见套路,即找第五个点,证明两组四点共圆,这个第五点一般利用直径构造.因此,虽然过程篇幅较长,但思路并不复杂.

题 3.4 给定平面上可以构成凸 2021 边形的 2021 个点,这些点中无三点共线或四点共圆. 求证:其中存在两个点,且通过这两个点的所有圆均至少包含 673 个其余的点.

证明 (杨皓晨) 记 S 为 P 的顶点集, 称 S 中三点构成的三角形是"好的",若其外接圆覆盖了 S 中的所有点. 先证明: 存在 P 的一个三角剖分 Γ , 使得 Γ 的 所有三角形都是好的.

固定 P 的一条边(记为 AB), 找剩余 2019 个点中满足 $\angle ACB$ 最小的点 C, 则对 P 的顶点中任意一点 X, 有 X, C 在 AB 同侧且 $\angle AXB > \angle ACB$, 故 X 在 $\triangle ACB$ 的外接圆内部, 此即 $\triangle ACB$ 为好三角形.

不妨设 $\triangle ACB$ 的边 AC 是 P 的一条对角线, 仿上文找点 D 满足 D, B 在 AC 异侧且 $\angle ADC$ 最小, 这样 $\triangle CAD$ 的外接圆可覆盖与 B 在 AC 异侧的点. 对与 B 在 AC 同侧的点 Y, 注意到 Y 在 $\triangle ABC$ 外接圆内部, 故有 $\angle ADC$ + $\angle AYC$ > $\angle ADC$ + $\angle ABC$ > 180° , 故 Y 也在 $\triangle ADC$ 外接圆内部. 以上说明 $\triangle ADC$ 也是好的.

因此我们从已知的好三角形 $\triangle ABC$ 找到了新的好三角形 $\triangle ADC$. 不断重复此操作, 最终即会得到P的一个三角剖分, 从而结论 (\star) 获证.

对于本题, 考虑上文所述的 P 的三角剖分 Γ . 若对角线 MN 包含在 Γ 中, 且在 MN 的两侧均有S中除 M, N 以外至少 673 个点, 则称之为"强的". 注意到, 若存在强的对角线, 则本题已得证. (这是因为, 设 Γ 包含了 $\triangle MNK$, 则对任意在 MN 异侧的两点 X, Y, 有 $\angle MXN + \angle MYN > \angle MKN + \angle MYN > 180°, 容易推出过 <math>M$, N 两点的任意一圆至少过 MN 一侧的所有点.)以下证明: P 存在强的对角线.

设 P 为 $A_1A_2 \cdots A_{2021}$, Q 为正 2021 边形 $B_1B_2 \cdots B_{2021}$, B_i , B_j 连边当且 仅当 A_i , A_j 连边,即将 P 与 Q, 按相同方式三角剖分. Q 的中心一定在此三角 剖分的某个三角形中,记为 $\triangle B_iB_jB_k$, 则 $\triangle B_iB_jB_k$ 是锐角三角形. 不妨设 B_iB_j 为其最长边,由抽屉原理知,与 B_k 在 B_iB_j 异侧的点的个数至少为 $\frac{2021-2}{3} = 673$. 又由 $\angle B_iB_kB_j < 90^\circ$,知与 B_k 在 B_iB_j 同侧的点的个数至少为 $\frac{2021-2}{2} > 673$,从而 B_iB_j 是 Q 的一条强对角线. 由于 P 与 Q 的剖分方式相同,故 A_iA_j 是 P 的一条强对角线,结论获证.

综上知原命题成立.

评注 本题是典型的组合几何问题,结论新颖,难度较大.本题最大的困难在于入手,事实上上文的结论(*)是一道陈题,是 1998 年全俄数学竞赛十年级的第7题的一个关键引理*.以此作为入手点,后续再处理"强对角线的存在性"问题,就不困难了,这里用"正 2021 边形"只是为书写简便.但若未积累过相关结论,联想到"三角剖分"是比较困难的,很可能刚入手就会越走越偏.

题 3.5 给定 $\triangle ABC$ 及其内心 I. $\triangle ABC$ 的内切圆切 BC 于 D. P 和 Q 均在边 BC 上, 且分别满足 $\angle PAB = \angle BCA$ 和 $\angle QAC = \angle ABC.$ K 和 L 分别为 $\triangle ABP$ 和 $\triangle ACQ$ 的内心. 求证: AD 是 $\triangle IKL$ 的 Euler 线.

证明 (陈昱达)

首先由题目条件可直接得到 $\triangle PBA \sim \triangle ABC$, $\triangle QCA \sim \triangle ACB$, 且 K, I 和 L, I 分别为上述相似的对应点. 可知

$$\frac{BP}{AB} = \frac{AB}{BC} = \frac{BK}{BI}.$$

以 $\triangle ABC$ 的外心为原点建立复平面, 不妨设 $\triangle ABC$ 的外接圆为单位圆. 设 $A=a^2,\ B=b^2,\ C=c^2,$ 为保证其唯一性, 不妨再设 $0<\arg A<\arg B<\arg C<2\pi,\ 0<\arg a<\pi,\ \pi<\arg b<2\pi,\ 0<\arg c<\pi.$ 由熟知结论得 I=-ab-bc-ca.

点 D 为 I 在 BC 上的投影, 故

$$D = \frac{B + C + I - BC\overline{I}}{2} = \frac{1}{2} \left(b^2 + c^2 - ab - ac + \frac{bc^2 + b^2c}{a} \right).$$

下面对 K 进行计算. 由上述比例关系可得

$$\frac{B-K}{B-I} = \sqrt{\frac{B-P}{B-C}} = \sqrt{\frac{(B-P)(B-A)}{(B-A)(B-C)}} = \frac{c(a^2-b^2)}{a(b^2-c^2)} \left(注意到 \frac{c(a^2-b^2)}{a(b^2-c^2)} 为正实数 \right)$$

^{*}附链接:https://artofproblemsolving.com/community/c6h270406p1464816

化简知
$$K = \frac{ab^3 - a^3c + b^3c - a^2bc}{a(b-c)}$$
, 同理有 $L = \frac{ac^3 - a^3b + bc^3 - a^2bc}{a(c-b)}$.

设 $\triangle IKL$ 的重心为 G, 外心为 O, 下面对这两个点进行计算.

$$G = \frac{I + K + L}{3} = \frac{a^3 + ab^2 + b^2c - ba^2 + bc^2 - a^2c + ac^2}{3a},$$

$$O = -\frac{\begin{vmatrix} I\overline{I} & I & 1 \\ K\overline{K} & K & 1 \\ L\overline{L} & L & 1 \end{vmatrix}}{\begin{vmatrix} I & \overline{I} & 1 \\ K\overline{K} & \overline{K} & 1 \\ L\overline{L} & \overline{I} & \overline{I} \end{vmatrix}} = -\frac{\begin{vmatrix} K\overline{K} - I\overline{I} & K - I \\ L\overline{L} - I\overline{I} & L - I \end{vmatrix}}{\begin{vmatrix} K - I & \overline{K} - \overline{I} \\ L - I & \overline{L} - \overline{I} \end{vmatrix}}.$$

化简得

$$O = (a^{2} - bc) \frac{ab^{2} + ac^{2} + b^{2}c + bc^{2}}{a(b - c)^{2}}.$$

下证 G, O 均在 AD 上. 只需证

$$A(\overline{D-G})+D(\overline{G-A})+G(\overline{A-D})=0,\ A(\overline{D-O})+D(\overline{O-A})+O(\overline{A-D})=0.$$
 前者等价于

$$(a+c)(a+b)\frac{ab+ac-2bc}{6b^2c^2} \\ + (a+c)(a+b)(ab+ac-2bc)\frac{ab^2-a^2b+b^2c+bc^2-ca^2+c^2a}{6a^3b^2c^2} \\ + (-a-c)(a+b)(ab+ac-2bc)\frac{a^3-a^2b+ab^2+b^2c+bc^2-ca^2+c^2a}{6a^3b^2c^2} = 0,$$
 通分上式知成立. 后者等价于

$$(b^{2} + c^{2}) (a + b) (a + c) \frac{ab + ac - 2bc}{2b^{2}c^{2} (b - c)^{2}}$$

$$+ (-a - c) (a + b) (ab + ac - 2bc) \frac{-a^{2}b + ab^{2} + b^{2}c + bc^{2} + c^{2}a - ca^{2}}{2a^{3}bc (b - c)^{2}}$$

$$+ (a + b) (a + c) (bc - a^{2}) (ab + ac - 2bc) \frac{ab^{2} + b^{2}c + bc^{2} + c^{2}a}{2a^{3}b^{2}c^{2} (b - c)^{2}} = 0.$$

通分上式知成立. 故 G, O 均在 AD 上. 又由于 G, O 均在 $\triangle IKL$ 的 Euler 线上,则这表明 AD 即为其 Euler 线.

评注 本题较为困难,若不采用复数法或解析法,则需要有很强的纯几何功底才能解决本题.而由题目中等价的相似以及 K, L 的位置可以考虑到利用计算比例的方法来刻画 K, L, 由此可以考虑复数法. 在此基础上, 笔者选择了证明 AD 通过 $\triangle IKL$ 的重心和外心, 这是由于复数法对重心和外心的刻画均只需要三角形的三个顶点(例如若刻画 $\triangle IKL$ 的垂心,则需要在求得其外心之后才能

得到垂心的表示方法). 本题的计算较为繁琐, 但若能观察出许多式子可进行因式分解, 则计算的复杂度也会大大降低.

www.nsmath.cn 26