Modulhandbuch

Bachelor-Studiengang

"Informatik"

Inhaltsverzeichnis

Modul: Algorithmen (3)	4
Modul: Bachelorprüfung - Bachelorarbeit (7)	5
Modul: Bachelorprüfung - Praktikum (7)	6
Modul: Basissysteme - Unit: Betriebssysteme (2)	7
Modul: Basissysteme - Unit: Kommunikationsnetze (2)	8
Modul: Betriebswirtschaftslehre (1)	9
Modul: Codierungstheorie (4)	10
Vertiefungsmodul: Datenmanagement - Unit: Data Mining	11
Vertiefungsmodul: Datenmanagement - Unit: Datenmanagement I	12
Vertiefungsmodul: Datenmanagement - Unit: Datenmanagement II	13
Modul: Digitale Systeme (1)	14
Modul: Einführung in Datenbanken (2)	15
Modul: Einführung in die Logik und Mengenlehre (1)	17
Modul: Einführung in die Softwaretechnik (3)	18
Modul: Englisch - Unit: Englisch I (1)	19
Modul: Englisch - Unit: Englisch II (2)	20
Vertiefungsmodul: GIS & Bildverarbeitung - Unit: Geoinformationssysteme I	
Vertiefungsmodul: GIS & Bildverarbeitung - Unit: Geoinformationssysteme II	22
Vertiefungsmodul: GIS & Bildverarbeitung - Unit: Bildverarbeitung	23
Vertiefungsmodul: Government-Komponentenentwicklung - Unit:	
Verwaltungsprozessmodellierung	
Vertiefungsmodul: Government-Komponentenentwicklung - Unit: Workflow-Management	25
Vertiefungsmodul: Government-Komponentenentwicklung - Unit: Transaktionen und	
Zahlungen	26
Modul: Grafentheorie (3)	
Modul: Grundlagen der Informatik - Unit: Grundlagen der Informatik I (1)	28
Modul: Grundlagen der Informatik - Unit: Grundlagen der Informatik II (2)	29
Vertiefungsmodul: Intelligente Programmierung - Unit: Operations Research	30
Vertiefungsmodul: Intelligente Programmierung - Unit: Computational Intelligence	
Vertiefungsmodul: Intelligente Programmierung - Unit: Intelligente Wissensverarbeitung	
Modul: Mathematik / Statistik I (1)	33
Modul: Mathematik / Statistik II (2)	34
Modul: Mathematik / Statistik III (3)	35
Modul: Mediengestaltung (1)	
Modul: Mensch-Computer-Interaktion - Unit: Benutzermodellierung (3)	37
Modul: Mensch-Computer-Interaktion - Unit: Graphische Nutzerschnittstellen (4)	39
Modul: Mikrocomputertechnik / Assemblerprogrammierung (3)	
Vertiefungsmodul: Multimedia - Unit: Einführung in Multimediale Systeme	41
Vertiefungsmodul: Multimedia - Unit: Multimediale Protokolle	42
Vertiefungsmodul: Multimedia - Unit: Entwicklung multimedialer Anwendungen	43
Modul: Objektorientierte Programmierung (4)	44
Modul: Paradigmen der Informatik I - Unit: Grundlagen der künstlichen Intelligenz (5)	45
Modul: Paradigmen der Informatik I - Unit: Parallele Algorithmen (5)	
Modul: Paradigmen der Informatik II - Unit: Spezifikation verteilter Systeme (6)	
Modul: Paradigmen der Informatik II - Unit: Web-Services und -Infrastrukturen (6)	
Modul: Physikalisch-Elektrotechnische Grundlagen (2)	

Modul: Programm- und Datenstrukturen - Unit: Programm- und Datenstrukturen I (1) 50
Modul: Programm- und Datenstrukturen - Unit: Programm- und Datenstrukturen II (2) 51
Modul: Projektarbeit (5+6)
Modul: Rechnernetze (4)
Modul: Rechnerkommunikation (5)
Vertiefungsmodul: Recht und Verwaltung - Unit: Verwaltungsrecht
Vertiefungsmodul: Recht und Verwaltung - Unit: Rechtsanwendung
Vertiefungsmodul: Recht und Verwaltung - Unit: Datenschutz, Medien-, Urheberrecht 58
Vertiefungsmodul: Recht und Verwaltung - Unit: Prozesse politisch-administrativen Handelns59
Modul: Sicherheit in Rechnernetzen (5)
Modul: Softwaretechnik-Teamprojekt (4+5)
Vertiefungsmodul: Softwaretechnik - Unit: Softwaretechnik-Methoden
Vertiefungsmodul: Softwaretechnik - Unit: CASE-Tools
Vertiefungsmodul: Softwaretechnik - Unit: Konzepte von Programmiersprachen
Modul: System- und Organisationsmodelle (3)
Modul: Theoretische Informatik - Unit: Einführung in die theoretische Informatik (4) 67
Modul: Theoretische Informatik - Unit: Formale Methoden (6)
Vertiefungsmodul: Vernetzte Unternehmen - Unit: Vernetzte Unternehmen I
Vertiefungsmodul: Vernetzte Unternehmen - Unit: Vernetzte Unternehmen II
Vertiefungsmodul: Vernetzte Unternehmen - Unit: Vernetzte Unternehmen III
Vertiefungsmodul: Verteilte Automatisierungssysteme - Unit: Industrielle
Kommunikationssysteme
Vertiefungsmodul: Verteilte Automatisierungssysteme - Unit: Steuerungssysteme
Vertiefungsmodul: Verteilte Automatisierungssysteme - Unit: Prozessleittechnik

Modul: Algorithmen (3)

Modulbezeichnung	Algorithmen
Semester	3.
Verantwortlich	Prof. Dr. Bernhard Zimmermann
Dozent(in)	Prof. Dr. Bernhard Zimmermann
Sprache	Deutsch
Zuordnung zum	Studiengang "Intelligente Automatisierungssysteme", Studienrichtung
Curriculum	"Industrie-Informatik", Pflichtfach, 3. Semester;
	Studiengang "Informatik", Pflichtfach, 3. Semester
	Studiengang "Informatik/E-Administration", Pflichtfach,
	3. Hauptsemester
Lehrform / SWS	2 SWS VL, Gruppengröße 30; 1 SWS Praktikum, Gruppengröße 15
	$(2 \text{ V} + 0 \ddot{\text{U}} + 1 \text{ P})$
Arbeitsaufwand	45h Präsenz, 75h Eigenstudium
Kreditpunkte	4
Empfohlene	Programm- und Datenstrukturen, Grundlagen der Informatik,
Voraussetzungen	Mathematik / Statistik I+II
Angestrebte	Die Teilnehmer kennen grundlegende und wichtige Algorithmen. Sie
Lernergebnisse	sind in der Lage diese Algorithmen anzuwenden.
Inhalt	Such- und Sortieralgorithmen, Aufwandsanalyse, Hash-Verfahren,
	Suchen in Texten, Versuch-Irrtum-Methode, Erzeugung von
	Zufallszahlen, Programmiersprache JAVA
Studien- und	Testat, Klausur K1, Entwurfsübung
Prüfungsleistungen	
Medienformen	Overhead, Whiteboard
Literatur	T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, The
	MIT Press
	N. Wirth: Algorithmen und Datenstrukturen, Teubner
	T. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen
	B. Eckel: Thinking in JAVA, Prentice Hall

Modul: Bachelorprüfung - Bachelorarbeit (7)

Modulbezeichnung	Bachelorprüfung
	Bachelorarbeit
	(Bachelor Thesis)
Semester	7
Verantwortlich	Verschiedene Hochschullehrer
Dozent(in)	Verschiedene Hochschullehrer
Sprache	i. d. R. Deutsch
Zuordnung zum	Studiengang "Mechatronik-Automatisierungssysteme"
Curriculum	Studiengang "Intelligente Automatisierungssysteme"
	Studiengang "Wirtschaftsingenieurwesen / Angewandte
	Automatisierungstechnik"
	Studiengang "Informatik"
	Studiengang "Informatik/E-Administration"
Lehrform / SWS	Betreute Projektarbeit / 12 Wochen
Arbeitsaufwand	450 h
Kreditpunkte	15 CP
Voraussetzungen	siehe Prüfungsordnung (abgeschlossene Fachprüfungen)
Angestrebte	Die Studierenden sind in der Lage, ein wissenschaftliches Projekt
Lernergebnisse	selbstständig innerhalb eines begrenzten Zeitraums zu bearbeiten. Sie
	können neue Aufgabengebiete analysieren und sich neue Konzepte
	fachlich erschließen. Sie sind in der Lage, alternative Lösungen für
	Teilaufgaben zu erkennen, zu bewerten, und geeignete Lösungen
	auszuwählen.
	Sie sind in der Lage, Lösungswege und Ergebnisse wissenschaftlich
	darzustellen. Sie können die wesentlichen Erkenntnisse vor einem
	Fachpublikum präsentieren und in einer wissenschaftlichen Diskussion
	verteidigen.
Inhalt	themenabhängig
Studien- und	HA Bachelorarbeit
Prüfungsleistungen	MP Bachelorkolloquium
Medienformen	
Literatur	themenabhängig
	"Anleitung zur Anfertigung von Praktikums-, Seminar- und
	Diplomarbeiten sowie Bachelor- und Masterarbeiten", Guido A. Scheld,
	Verlag Gertrud Scheld, 2004

Modul: Bachelorprüfung - Praktikum (7)

Modulbezeichnung	Bachelorprüfung
	Praktikum
	(Work Placement)
Semester	7
Verantwortlich	Verschiedene Hochschullehrer
Dozent(in)	Verschiedene Hochschullehrer
Sprache	i. d. R. Deutsch
Zuordnung zum	Studiengang "Mechatronik-Automatisierungssysteme"
Curriculum	Studiengang "Intelligente Automatisierungssysteme"
	Studiengang "Wirtschaftsingenieurwesen / Angewandte
	Automatisierungstechnik"
	Studiengang "Informatik"
	Studiengang "Informatik/E-Administration"
Lehrform / SWS	Betriebspraktikum / mind. 10 Wochen
Arbeitsaufwand	450 h
Kreditpunkte	15 CP
Voraussetzungen	siehe Praktikumsordnung
Angestrebte	Die Studierenden absolvieren ein Praktikum entsprechend der
Lernergebnisse	Praktikumsordnung in ihrem Ausbildungsbetrieb. Sie können sich in
	neue Aufgabengebiete einarbeiten und unter Anleitung Teilaufgaben
	eigenverantwortlich realisieren. Sie verstehen die Notwendigkeit,
	mögliche Lösungen unter dem Gesichtspunkt des Aufwandes zu
	bewerten und umzusetzen. Sie können ihre Arbeitsergebnisse
	Fachkollegen bzw. Anwendern vorstellen.
Inhalt	themenabhängig
Studien- und	T
Prüfungsleistungen	
Medienformen	
Literatur	keine

Modul: Basissysteme - Unit: Betriebssysteme (2)

Modulbezeichnung	Basissysteme
(engl.)	(Communication and Operation Systems)
Unitbezeichnung	Betriebssysteme
Semester	2
Verantwortlich	Prof. Dr. Günther
Dozent(in)	DiplInform., DiplIng. (FH) M. Wilhelm
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 2. Semester
Curriculum	
Lehrform / SWS	$2 V + 0 \ddot{U} + 1 P$
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenstudium
Kreditpunkte	3 (Modul 5CP)
Empfohlene	Grundlagen der Informatik
Voraussetzungen	
Angestrebte	Sie haben ein Verständnis über den Aufbau und die Struktur eines
Lernergebnisse	Betriebssystems und können wichtige Aspekte wie Threads in
	Programmen verwenden
Inhalt	Einordnen der Prozessverwaltung
	Kennenlernen und Anwenden von Threads in Java und C++
	Erkennen von Deadlocks
	Herausstellen der Unterschiede der verschiedenen Speichermodelle
	Untersuchen der Dateiverwaltung verschiedener Betriebssystemen
	Kenntnisse über die Ein- und Ausgabe
	Labore in Java, C / CPP
Studien- und	Testat, Klausur K1
Prüfungsleistungen	
Medienformen	Powerpoint, Tafel, viele Übungen
Literatur	Tanenbaum, A. S.: Moderne Betriebssysteme, 2. Auflage, 2003
	J. Archer Harris: Betriebssysteme, 1. Auflage, 2003
	Silberschatz, Galvin, Gange: Operations System Concepts, 7. Auflage,
	2005
	Eduard Glatz: Betriebsysteme, 1. Auflage, 2005
	Albrecht Achilles: Betriebsysteme, 1. Auflage, 2006

Modul: Basissysteme - Unit: Kommunikationsnetze (2)

Modulbezeichnung	Basissysteme
(engl.)	(Communication and Operation Systems)
Unitbezeichnung	Kommunikationsnetze
Semester	2
Verantwortlich	Prof. Dr. Fischer-Hirchert
Dozent(in)	Prof. Dr. Fischer-Hirchert
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 2. Semester
Curriculum	
Lehrform / SWS	$2(2 V + 0 \ddot{U} + 0 P)$
Arbeitsaufwand	30h Präsenzzeit, 30h Eigenstudium
Kreditpunkte	2 (Modul: 5CP)
Voraussetzungen	Mathematik / Statistik I
Angestrebte	Die Teilnehmer haben sich eine grundlegende Übersicht über die
Lernergebnisse	Telekommunikationsnetze (Mobilfunk, optisches Netz, Telefonnetz)
	und deren Basistechniken angeeignet.
Inhalt	Kommunikationsmodelle, öffentliche Kommunikationssysteme und
	notwendige Schnittstellen; Fernsprechnetz, Mobilfunk, optisches Netz.;
	Datennetze, ISDN, DSL; Telekommunikationsdienste; ATM;
	Vermittlungssysteme, analoge und digitale Modulationstechniken;
	Übertragungsmedien: Funk, Kabel, Glasfaser, Polymerfaser.
Studien- und	K1
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung
Literatur	W-D. Haaß, Handbuch der Kommunikationsnetze, Springer Verlag,
	1997
	Herter, Nachrichtentechnik, Hanser Verlag, München, 2000

Modul: Betriebswirtschaftslehre (1)

3.6 1.11	D 1 1 C 1 1
Modulbezeichnung	Betriebswirtschaftslehre
(engl.)	(Business Economics)
Semester	1
Verantwortlich	Prof. Burghard Scheel
Dozent(in)	Prof. Burghard Scheel
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtveranstaltung, 1. Semester
Curriculum	
Lehrform / SWS	$4 (4 V + 0 \ddot{U} + 0 P)$
Arbeitsaufwand	60h Präsenzzeit, 60h Eigenstudium
Kreditpunkte	4
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Übersicht über betriebliche Abläufe vermitteln;
Lernergebnisse	Kostenbewusstsein entwickeln
Inhalt	Einführung in
	Personalmanagement
	Materialmanagement
	Finanzmanagement
	Prozesse und Kosten
Studien- und	K1
Prüfungsleistungen	
Medienformen	PC-Präsentation
Literatur	wird in der Vorlesung bekannt gegeben

Modul: Codierungstheorie (4)

Modulbezeichnung (codierungstheorie (engl.) (Coding Theory) Semester 4 Verantwortlich Prof. Dr. Ingo Sch Dozent(in) Prof. Dr. Ingo Sch	nütt nütt
Semester 4 Verantwortlich Prof. Dr. Ingo Sch	nütt
Verantwortlich Prof. Dr. Ingo Sch	nütt
ξ	nütt
Dozent(in) Prof. Dr. Ingo Sch	
Sprache Deutsch	
Zuordnung zum Studiengang "Info	ormatik", Pflichtfach, 4. Semester
Curriculum	
Lehrform / SWS Vorlesung 2 SWS	, Übung 1 SWS
Arbeitsaufwand 45h Präsenzstudiu	ım, 45h Eigenstudium incl. Klausurvorbereitung
Kreditpunkte 3	
Empfohlene Mathematik / Stat	istik I-III, Grafentheorie
Voraussetzungen	
Angestrebte Die Teilnehmer ze	eigen grundlegende Kenntnisse der
Lernergebnisse Informationstheor	ie, Quellencodierung und Kanalcodierung auf.
Desweiteren verfü	igen sie über Kompetenzen hochentwickelter Codes
der Kanalcodierur	ng und können diese in kleinem Umfang anwenden.
Inhalt Grundlagen der In	formationstheorie
Information, Entre Quellencodierung	opie, Hauptsatz der Datenverarbeitung, Kanalkapazität
	ssatz, präfixfreie Codierung, Shanon – Fano –
Codierung, Huffm	
Kanalcodierung	
I	es, zyklische Codes, Polynom – Restklassenringe,
	Körpern, RS – Codes, BCH – Codes
Studien- und Klausur K1 (90 m	-
Prüfungsleistungen	,
	Beamer-Slides, Computeralgebra-System (MuPAD)
Literatur I. Schütt: Vorlesu	
	nalcodierung, Springer
	rmann: Kanalcodierung, Vieweg
	nformationtheorie, Addison-Wesley

Vertiefungsmodul: Datenmanagement - Unit: Data Mining

Modulbezeichnung	Datenmanagement
(engl.)	(Data Management)
Unitbezeichnung	Data Mining
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Schneider
Dozent(in)	Prof. Dr. Schneider
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Datenmanagement", Wahlfach
Curriculum	, · · · · · · · · · · · · · · · · · · ·
Lehrform / SWS	3 SWS (1V +1Ü+1P)
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Paradigmen der Informatik I, Mathematik / Statistik I-III
Voraussetzungen	,
Angestrebte	Die Teilnehmer besitzen grundlegende Kenntnisse über die Methoden
Lernergebnisse	des Data Minings und des Maschinellen Lernens. Sie können diese in
	konkreten Beispielen anwenden.
Inhalt	Aufgaben des Data Mining
	Klassifikation durch Entscheidungsbäume
	Cluster-Analyse
	Link-Analyse
	Neuronale Netzwerke
Studien- und	Labortestat, Klausur K1 (90min)
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung mit Beamerfolien, Laborpraktikum
Literatur	Michael J. A. Berry und Gordon Linoff: Data Mining Techniques - For
	Marketing, Sales, and Customer Support. John Wiley & Sons, Inc.,
	New York, Chichester, Weinheim, 1997.
	Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth und
	Ramasamy Uthurusamy (Hrsg.): Advances in Knowledge Discovery
	and Data Mining. AAAI Press, Menlo Park, CA, Cambridge, MA,
	London, England, 1996.
	Daniela Krahl, Ulrich Windheuser und Friedrich-Karl Zick: Data
	Mining - Einsatz in der Praxis. Addison-Wesley Longman, Inc., Bonn,
	Reading, MA, Menlo Park, CA, 1998.
	Tom M. Mitchell: Machine Learning. McGraw Hill, New York, St. Louis, San Francisco, 1997.
	Stuart Russell and Peter Norvig: Artificial Intelligence. A Modern
	Approach. Prentice Hall, Englewood Cliffs, NJ, 1995.
	Ian H. Witten und Eibe Frank: Data Mining - Praktische Werkzeuge
	und Techniken für das maschinelle Lernen. Carl Hanser Verlag,
	_
	München, Wien, 2001.

Vertiefungsmodul: Datenmanagement - Unit: Datenmanagement I

Modulbezeichnung	Datenmanagement
(engl.)	(Data Management)
Unitbezeichnung	Datenmanagement I
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. K. Schneider
Dozent(in)	Prof. Dr. K. Schneider
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Datenmanagement", Wahlfach
Curriculum	
Lehrform / SWS	Vorlesung mit Übungen und Praktika, 3 SWS (1 V + 1 Ü + 1 P)
Arbeitsaufwand	45h Präsenz, 75h Eigenstudium
Kreditpunkte	4 (Modul: 10CP)
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Die Studierenden verfügen über erweiterte und vertiefte theoretische
Lernergebnisse	Kenntnisse der wichtigsten Datenbankparadigmen (relationales Modell,
	OO-Datenbanken, XML-Datenbanken). Sie beherrschen die
	Programmiersprache SQL und können diese anwenden.
	Desweiteren sind die Studierenden in die Grundzüge von PL/SQL
	eingeführt wurden und besitzen nun Grundlagenwissen auf diesem
	Fachgebiet.
	Praktische Übungen zu den genannten Programmiersprachen fundieren
	das neuerworbene Wissen.
Inhalt	Erweiterung der Theorie zum relationalen Modell (insbesondere
	Datenintegrität und Trigger, Sichten, Replikation u.a.) und der weiteren
	Datenbankparadigmen; Vertiefung SQL; Einführung in PL/SQL; XML-
	Grundlagen; praktische Übungen zu den genannten Sprachen
Studien- und	Referat, Entwurfsübung
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung (Beamer, Whiteboard), praktische Übungen
Literatur	Silberschatz, A., Korth, H., Sudarshan, S. (2002) Database System
	Concepts. 4th ed. McGraw Hill, New York.
	Fritze, J., Marsch, J. (2002) Erfolgreiche Datenbankanwendung mit
	SQL3. vieweg-Verlag, Braunschweig/Wiesbaden.
	Schubert, M. (2004) Datenbanken – Theorie, Entwurf und
	Programmierung relationaler Datenabnken. Teubner, Stuttgart.

Vertiefungsmodul: Datenmanagement - Unit: Datenmanagement II

Modulbezeichnung	Datenmanagement
(engl.)	(Data Management)
Unitbezeichnung	Datenmanagement II
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. K. Schneider
Dozent(in)	Prof. Dr. K. Schneider
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Datenmanagement", Wahlfach
Curriculum	
Lehrform / SWS	Vorlesung mit Praktika, 2 SWS (1 V + 0 Ü + 1 P)
Arbeitsaufwand	30h Präsenz, 60h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Die Studierenden haben Vertrautheit auf den Fachgebieten PL/SQL und
Lernergebnisse	XML entwickelt. Aktuelle Themen und Tendenzen der
	Datenbanktechnologie, wie z. B. verteilte mobile Datenbanken oder
	Web-basierte Datenbanken, sind ihnen geläufig.
Inhalt	Vertiefung PL/SQL (Prozeduren, Funktionen); Vertiefung XML (native
	XMLDBMS; Abfrage; linking; Transformationen); XML-Derivate;
	Datentransfer und –austausch (ODBC, JDBC, XML-basiert); verteilte
	und mobile Datenbanken und Informationssysteme; Web-Technologien;
	Open-Source Datenbanken und zugehörige Sprachen
Studien- und	Entwurfsübung
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung (Beamer, Whiteboard), praktische Übungen
Literatur	Höpfner, H., Türker, C., König-Ries, B. (2005): Mobile Datenbanken
	und Informationssysteme. Dpunkt-Verlag, Heidelberg.
	Härder, T., Rahm, E. (2001): Datenbanksysteme – Konzepte und
	Techniken der Implementierung
	Graves, M. (2001) Designing XML Databases. Prentice-Hall, Boston.
	Silberschatz, A., Korth, H., Sudarshan, S. (2002) Database System
	Concepts. 4th ed. McGraw Hill, New York.
	Dadam, P. (1998): Verteilte Datenbanken und Client/Server-Systeme.
	Springer, Heidelberg, New York.
	Seeberger-Weichselbaum (2001) XML – Das Einsteigerseminar. Bhv
	Verlag, Kaarst.

Modul: Digitale Systeme (1)

Modulbezeichnung	Digitale Systeme
(engl.)	(Digital Systems)
Semester	1
Verantwortlich	Prof. Dr. Wöstenkühler
Dozent(in)	Prof. Dr. Wöstenkühler
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 1. Semester
Curriculum	,
Lehrform / SWS	$5(2 V + 2 \ddot{U} + 1 P)$
	(Erläuterung: 4 SWS Seminaristische Vorlesung, 1 SWS Labor (4
	Versuche in 2er Gruppen))
Arbeitsaufwand	75h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	6
Voraussetzungen	Keine
Angestrebte	Die Studierenden kennen die Grundelemente digitaler Verknüpfungen.
Lernergebnisse	Sie haben verschiedene Optimierungsverfahren zur Erstellung von
	Codekonvertern, Zählern und Steuerwerken angewandt und Wissen auf
	diesem Gebiet erworben.
Inhalt	Einleitung, Logische Verknüpfungen, Schaltalgebra,
	Schaltungssynthese, Schaltnetze, monostabile Kippstufen, Flip-Flops,
	Zähler, Steuerwerke (Mealy- und Moore-Automaten), Programmierbare
	Logikschaltungen (PLD)
Studien- und	T, K2
Prüfungsleistungen	
Medienformen	Whiteboard, Overhead, Script
Literatur	Borucki, L.: Digitaltechnik. Teubner Verlag, 5. Auflage, 2000
	Beuth, K.: Digitaltechnik. Vogel Verlag, 9. Auflage, 1992
	Pernards, P.: Digitaltechnik I. Hüthig Verlag, 4. Auflage, 2001
	Pernards, P.: Digitaltechnik II; Einf. in die Schaltwerke. Hüthig Verlag,
	1995
	Katz, R. H.: Contemporary Logic Design. Benjamin Cummings, 1994
	Palmer, J., and Perlman, D.: Introduction to Digital Systems, McGraw-
	Hill

Modul: Einführung in Datenbanken (2)

Modulbezeichnung	Einführung in Datenbanken
(engl.)	(Introduction to Data Base Systems)
Semester	2.
Verantwortlich	Prof. Dr. K. Schneider
Dozent(in)	Prof. Dr. K. Schneider
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik/E-Administration", Pflichtfach,
Curriculum	2. Hauptsemester
	Studiengang "Informatik", Pflichtfach, 2. Semester
Lehrform / SWS	Vorlesung mit Übungen und Laboren, 4 SWS (2 V + 1 Ü + 1 P)
Arbeitsaufwand	60h Präsenz, 90h Eigenstudium
Kreditpunkte	5
Empfohlene	Grundlagen der Informatik
Voraussetzungen	
Angestrebte	Die Studierenden können die verfolgten Ziele beim Einsatz von DBMS
Lernergebnisse	aufzeigen und können einen Überblick zu existierenden Datenmodellen
	wiedergeben. Sie kennen die grundlegenden Konzepte von
	Datenbanken und beherrschen die Vorgehensweise bei Entwurf und
	Implementierung einer Datenbank mittels ER-Modell bzw. UML und
	SQL. Sie sind in der Lage eine Normalisierung bis zur 3. Normalform
	zur Optimierung der Datenbeschreibung durchzuführen. Die
	Teilnehmer beherrschen die Datendefinition und Datenmanipulation mit
	SQL. Sie sind in der Lage, SQL-Abfragen auf Datenbestände zu
	formulieren. Die wichtigsten Aspekte bei der Definition und
	Verwaltung von Zugriffsrechten und der Verarbeitung von ACID-
	Transaktionen sind ihnen vertraut. Darüber hinaus wurde den
	Studierenden ein Ausblick auf aktuelle Entwicklungstendenzen
	aufgezeigt.
Inhalt	Grundlagen von Datenbanken
	Zielstellungen von Datenbanken
	Anforderungen an Datenbankmanagementsysteme
	Architektur von Datenbanksystemen
	Existierende Datenbankmanagementsysteme
	Datenbankentwurf
	Vorgehen bei Entwurf und Implementierung einer Datenbank
	Konzeptuelle Modellierung (ER-Modell, erweitertes ERM, UML)
	Das Relationale Modell
	Logischer Entwurf und Datendefinition (Objekt-Relational)
	Normalisierung zur Optimierung der Datenbeschreibung (3NF)
	SQL – Structured Query Language
	Datendefinition (Erzeugen, Ändern, Entfernen von Tabellen)
	Datenmanipulation (Einfügen, Aktualisieren, Löschen von Daten)
	Anfrageoperationen auf Tabellen (Selektion, Projektion, Verbund)
	Sortierfunktionen auf Ergebnisrelationen
	Aggregatsfunktionen und Gruppierung
	Verwendung von Sichten
	Sicherheitsaspekte und Verwaltung von Zugriffsrechten
	Grundlagen der Transaktionsverarbeitung (ACID-Transaktionen)
	Ausblick und Entwicklungstendenzen

Studien- und	Mündliche Prüfung
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung (Beamer, Whiteboard), praktische Übungen
	und Labore
Literatur	Elmasri, R.; Navathe, B.: Grundlagen von Datenbanksystemen,
	3. Auflage, Pearson-Studium, 2005
	Kemper, A.; Eickler, A.: Datenbanksysteme – Eine Einführung,
	Oldenbourg-Verlag, 6. Auflage, 2006
	Vossen, G.:
	Heuer, A.; Saake, G.; Sattler, K. U.: Datenbanken kompakt, mitp-
	Verlag, 2. Auflage Bonn, 2003
	Kudraß, T.: Handbuch Datenbanken, Hanser Verlag, 2007

Modul: Einführung in die Logik und Mengenlehre (1)

Modulbezeichnung	Einführung in die Logik und Mengenlehre
(engl.)	(Introduction to Logic and Set Theory)
Semester	1
Verantwortlich	Prof. Dr. F. Stolzenburg
Dozent(in)	Prof. Dr. F. Stolzenburg, Prof. Dr. I. Schütt, Dr. T. Schade, M.
	Neumann
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 1. Semester
Curriculum	
Lehrform / SWS	2 SWS Vorlesung, 1 SWS Übung
	$(2 \text{ V} + 1 \ddot{\text{U}} + 0 \text{ P})$
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenstudium
Kreditpunkte	3
Empfohlene	Schulmathematik
Voraussetzungen	
Angestrebte	Die Studierenden lernen Grundlagen der Mathematik und
Lernergebnisse	mathematische Grundlagen der theoretischen Informatik, künstlichen
	Intelligenz und formalen Methoden kennen. Sie beherrschen elementare
	aussagen- und prädikatenlogischer Kalküle und kennen elementare
	mengentheoretische Definitionen und Operationen.
Inhalt	Grundlagen
	-Mengen und Relationen
	-Algebraische Strukturen
	-Vollständige, strukturelle und transfinite Induktion
	Aussagenlogik
	-Syntax und Semantik
	-Äquivalenz und Normalformen
	-Resolution
	-Endlichkeitssatz
	Prädikatenlogik
	-Grundbegriffe -Normalformen
	-Herbrand-Theorie
	-Unifikation und Resolution
Studien- und	K1 (Klausur 90 min)
Prüfungsleistungen	Ki (Kidusui 70 iiiii)
Medienformen	Skript, Folien, seminaristische Vorlesung
Literatur	Chin-Liang Chang; Richard Char-Tung Lee: Symbolic Logic and
	Mechanical Theorem Proving. Academic Press, London, 1973. John W.
	Lloyd: Foundations of Logic Programming. Springer-Verlag, Berlin,
	Heidelberg, New York, 1987.
	William W. McCune: Otter – An Automated Deduction System.
	National Laboratory, Argonne, IL, 2003.
	Uwe Schöning: Logik für Informatiker. Spektrum Akademischer
	Verlag, 5. Auflage, 2000.

Modul: Einführung in die Softwaretechnik (3)

Einführung in die Softwaretechnik
(Introduction to Software Engineering)
3.
N.N., Prof. Dr. F. Stolzenburg
N.N., Prof. Dr. F. Stolzenburg
Deutsch
Studiengang "Informatik", Pflichtfach, 3. Hauptsemester
Studiengang "mormatik", i mentiaen, 3. Hauptsemester
6 (3 V + 2 Ü + 1 P)
90h Präsenzzeit, 90h Eigenstudium
6
Grundlagen der Informatik
D' 0, 1' 1 1 ', ' 1 1,1' 1 1 1 1 1 1 1 1 1 1
Die Studierenden besitzen inhaltliche und methodische Kompetenzen auf dem Gebiet der Softwaretechnik, einschließlich der Modellierung mit UML. Die Studierenden sind in der Lage, sich in typische Fragestellungen dieses Fachgebietes hineinzudenken und kleinere Aufgaben zu bearbeiten und zu lösen. Die Studierenden erwerben Kenntnisse über gängige und neue Methoden der Softwaretechnik und des Software Engineering (z. B. UML, Phasenmodelle). Methoden der Projektplanung und -durchführung sind bekannt. Mittels entsprechender Modellierungssprachen sind Kenntnisse über die adäquate Anwendung von Modellierungstechniken in allen Phasen des Software Engineering vorhanden. Softwareprozesse und Vorgehensmodelle Projektplanung (Netzpläne, Aufwandsabschätzung u.a.)
Anforderungsdefinitionen Objektorientierte Softwareentwicklung mit UML (Klassen- und Objektdiagramme, Datenfluss-, Kontrollflussbeschreibungen u.a.) Extreme Programming, Refactoring Software-Metriken und CMM
Testat, Klausur K1 (90min)
Overhead, Whiteboard, PC-Präsentation
Helmut Balzert: Lehrbuch der Software-Technik. Band 1+2. Heidelberg, Berlin: Spektrum Akademischer Verlag, 1998+2000. Mario Jeckle, Chris Rupp, Jürgen Hahn, Barbara Zengler, Stefan Queins: UML 2 glasklar. München, Wien: Carl Hanser, 2004. Bernd Oestereich: Objektorientierte Softwareentwicklung. Analyse und Design mit der Unified Modeling Language. München, Wien: R. Oldenbourg Verlag, 4. aktualisierte Auflage, 1999. Ian Sommerville: Software Engineering. München: Addison-Wesley, 6. Auflage, 2001.

Modul: Englisch - Unit: Englisch I (1)

F., 15, 4
Englisch
(English)
Englisch I
1.
J. Sendzik
J. Sendzik
Englisch
Studiengang "Informatik", Pflichtfach, 1. Semester
Übung 2 SWS (0 V + 2 \ddot{U} + 0 P)
30h Präsenzstudium, 30h Selbststudium
2 (Modul: 4CP)
Stufe B1 gemäß Common European Framework of Reference for
Languages (www.goethe.de)
Die Studierenden verfügen über die Stufe B1 gemäß Common
European Framework of Reference for Languages (www.goethe.de).
Desweiteren haben sie sich fachspezifisches Vokabular angeeignet und
können dieses in der Praxis anwenden.
Expressing time references
Presenting processes, facts and figures
Describing IT with a sufficient range of vocabulary
Reading articles and reports concerned with IT problems
Testat
Audiomaterialien, Beamer–Slides, Folien, Lehrbuch, Fachpresse
"Technical English" / Summertown Publishing-Langenscheidt
Texte aus englischsprachiger Fachpresse

Modul: Englisch - Unit: Englisch II (2)

Modulbezeichnung	Englisch
(engl.)	(English)
Unitbezeichnung	Englisch II
Semester	2.
Verantwortlich	J. Sendzik
Dozent(in)	J. Sendzik
Sprache	Englisch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 2. Semester
Curriculum	
Lehrform / SWS	Übung 2 SWS $(0 \text{ V} + 2 \text{ Ü} + 0 \text{ P})$
Arbeitsaufwand	30h Präsenzstudium, 30h Selbststudium
Kreditpunkte	2 (Modul: 4CP)
Empfohlene	Stufe B1+ gemäß Common European Framework of Reference for
Voraussetzungen	Languages (www.goethe.de)
Angestrebte	Die Studierenden verfügen über die Stufe B2 gemäß Common
Lernergebnisse	European Framework of Reference for Languages (www.goethe.de).
	Desweiteren haben sie sich fachspezifisches Vokabular angeeignet und
	können dieses in der Praxis anwenden.
Inhalte	Expansion of specific vocabulary
	Reading articles and reports concerned with IT problems
	Discussion of IT problems / Interaction
	Presenting in English
	Presentation of IT-related topic in class
Studien- und	Mündliche Prüfung bestehend aus:
Prüfungsleistungen	Referat zu einem selbstgewählten IT – Thema während der
	Lehrveranstaltung (25%)
	Referat zu einem selbstgewählten IT – Thema während der Prüfungszeit
	(50%)
	Prüfungsgespräch zu den Inhalten der Lehrveranstaltung (25%)
Medienformen	Audiomaterialien, Beamer–Slides, Folien, Lehrbuch, Fachpresse
Literatur	"Technical English" / Summertown Publishing-Langenscheidt
	Texte aus englischsprachiger Fachpresse

$\label{lem:conformation} \mbox{ Vertiefungsmodul: GIS \& Bildverarbeitung - Unit: Geoinformations systeme I }$

Modulbezeichnung	GIS & Bildverarbeitung
•	(Geographical Information Systems and Image Processing)
(engl.) Unitbezeichnung	Geoinformationssysteme I
	4. oder 5. oder 6.
Semester	
Verantwortlich	Prof. Dr. H. Pundt
Dozent(in)	Prof. Dr. H. Pundt
Sprache	Deutsch
Zuordnung zum	Studiengang Informatik, Vertiefung "GIS und Bildverarbeitung",
Curriculum	Wahlfach;
Lehrform / SWS	$3 \text{ SWS } (1\text{V} + 1\ddot{\text{U}} + 1\text{P})$
Arbeitsaufwand	45h Präsenz, 75h Eigenstudium
Kreditpunkte	4 (Modul: 10CP)
Empfohlene	keine
Voraussetzungen	
Angestrebte	Die Studierenden kennen spezielle räumliche Bezugssysteme und
Lernergebnisse	verstehen die Grundprobleme der Geometrie, Topologie, Thematik und
	Dynamik von Geodaten. Sie haben Wissen erworben über typische
	Methoden zur Verwaltung, Analyse und Präsentation von
	Geoinformationen. Sie beherrschen spezielle GIS-Techniken, haben den
	praktischen Umgang mit einem GIS erlernt und sind in der Lage,
	Geoinformationssysteme gegenüber anderen Systemen abzugrenzen
	und ihre Leistungsfähigkeit kritisch zu beurteilen.
Inhalt	Räumliche Bezugssysteme, Eigenschaften von Geodaten, Verwaltung
	von Geodaten, Abfrage von Geodaten (räumlich, attributiv),
	mathematische Hintergründe von GIS, räumliche Analysemethoden,
	kartographische Präsentation von Geodaten, Einführung in das Web-
	Mapping
Studien- und	Klausur (90 min), Testat für Labore
Prüfungsleistungen	\
Medienformen	Seminaristische Vorlesung (Beamer, whiteboard), praktische Übungen
Literatur	Bill, R.: Grundlagen der Geo-Informationssysteme: Band 1. Hardware,
	Software und Daten. 4. Auflage. Heidelberg: Herbert Wichmann, 1999.
	Bill, R.: Grundlagen der Geo-Informationssysteme: Band 2. Analysen,
	Anwendungen und Neue Entwicklungen. 2. Auflage. Heidelberg:
	Herbert Wichmann, 1999.
	Lange, Norbert de: Geoinformatik in Theorie und Praxis
	2002, XIV, 438 S. 175 illus., ISBN: 3-540-43286-8
	Liebig, W.: Desktop-GIS mit ArcView GIS: Leitfaden für Anwender. 2.
	neubearbeitete und erweiterte Auflage. Heidelberg: Herbert Wichmann,
	2001.
	Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W.:
	Geographical Information Systems: Principles, Techniques,
	Applications & Management. 2 Volumes, 2nd edition. London: John
	Wiley & Sons. Inc, 2003.
1	whey & solis. He, 2003.

Vertiefungsmodul: GIS & Bildverarbeitung - Unit: Geoinformationssysteme II

Modulbezeichnung	GIS & Bildverarbeitung
(engl.)	(Geographical Information Systems and Image Processing)
Unitbezeichnung	Geoinformationssysteme II
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. H. Pundt
Dozent(in)	Prof. Dr. H. Pundt
Sprache	Deutsch
Zuordnung zum	Studiengang Informatik, Vertiefung "GIS und Bildverarbeitung",
Curriculum	Wahlfach;
Lehrform / SWS	Vorlesung 2 SWS $(1V + 1\ddot{U} + 0P)$
Arbeitsaufwand	30h Präsenz, 60h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empf. Voraussetzg.	Keine
Angestrebte Lernergebnisse	Die Studierenden haben Kenntnisse über fortgeschrittene Analyse- und Präsentationsmethoden für Geodaten erworben. Sie verstehen neue Herausforderungen an GIS-Technologien, insbesondere in Hinblick auf Interoperabilität und WWW-gestützte Präsentationsformen. Sie beherrschen Web.Mapping – Software und wissen mit GPS-gestützten, mobilen Werkzeugen umzugehen. Dieses Wissen dient auch als Grundlage, Geodateninfrastrukturen (GDI) als neue Herausforderung des GI-Marktes zu verstehen und ihre Komponenten zu beurteilen.
Inhalt	3D-Analyse- und Präsentationsmethoden in GIS, Interoperabilität (technisch, semantisch), WWW-basierte Services, mobile GIS, GDI
Studien- und	Referat, Hausarbeit
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung (Beamer, whiteboard); praktische Übungen (auch ,outdoor'); Referate unter Einbeziehung dieser Medienformen, inkl. praktischer Demonstrationen
Literatur	Burrough, P.A., Mc Donnell R. A.: Principles of Geographical
	Information Systems. 2nd edition. New York, Oxford: Oxford University Press, 1998. Jankowski, P., Nyerges, T.: Geographic Information Systems for Group Decision Making: Towards a Participatory Infor. Science. 2001
	Konecny G.: Geoinformation: Remote Sensing, Photogrammetry and Geographic Information Systems. 2002.
	Worboys, M.F., Duckham, M.: GIS: A Computing Perspective. 2nd Edition. Taylor & Francis, 2004.
	Olbrich, G., Quick, M., Schweikart, J.: Desktop Mapping: Grundlagen und Praxis in Kartographie und GIS-Anwendungen. Heidelberg, New York: Springer, 2002.
	Strobl, J., Griesebner, G. (Hrsg.): geoGovernment. Wichmann-Verlag, Heidelberg, 2003.
	Zipf, A., Strobl, J. (Hrsg.): Geoinformation mobil. Wichmann-Verlag, Heidelberg, 2002.
	Coors, V., Zipf, A. (Hrsg.) 3D-Geoinformationssysteme
	Grundlagen und Anwendungen, Wichmann-Verlag, Heidelberg, 2005 Arctur, D., Zeiler, M.: Designing Geodatabases. ESRI Redlands, 2004.

Vertiefungsmodul: GIS & Bildverarbeitung - Unit: Bildverarbeitung

Modulbezeichnung	GIS & Bildverarbeitung
(engl.)	(Geographical Information Systems and Image Processing)
Unitbezeichnung	Bildverarbeitung
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. H. Pundt
Dozent(in)	Prof. Dr. H. Pundt
Sprache	Deutsch (Englisch möglich)
Zuordnung zum	Studiengang Informatik, Vertiefung "GIS und Bildverarbeitung",
Curriculum	Wahlfach;
Lehrform / SWS	Vorlesung mit Übungen, 3 SWS (2 V + 0 Ü + 1 P)
Arbeitsaufwand	45h Präsenz, 45h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Die Studierenden kennen die Grundlagen der Rechner-gestützten
Lernergebnisse	Darstellung und Manipulation digitaler Bilder. Sie verstehen den
	Bildverarbeitungszyklus. Sie beherrschen spezielle Filter- und
	Klassifikationsmethoden und können Operatoren zur Bildbe- und
	-verarbeitung selbständig implementieren.
Inhalt	Kenntnis der Grundlagen der Bildwahrnehmung und der statistischen
	Analyse digitaler Bilder (Kennwerte, Entropie), Kennen lernen von
	Histogramm und –manipulationen sowie einfacher Operatoren zur
	Bildverbesserung und lokaler Operatoren (Tiefpaß-, Hochpaßfilter),
	Wissen über Segmentierung, Klassifikationsmethoden (z. B. Minimum-
	Distance, Maximum-Likelihood, neuronale Netze)
Studien- und	Klausur K1, Testat für Labore
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung, praktische Übungen
Literatur	Nischwitz, A., Fischer, M., Haberäcker, P., 2007, Computergrafik und
	Bildverarbeitung, 2. Auflage, Vieweg, Wiesbaden.
	Young, I.T., Gerbrands, J.J., van Vliet, L.J., 2005: Fundamentals of
	Image Processing,
	http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip-istogram.html
	(Zugriff am 22.12.2006)
	Jähne, B., 2002: Digital Image Processing, Springer Verlag, Heidelberg,
	New York.
	Kopp, Herbert, 1997: Bildverarbeitung interaktiv. Teubner Verlag,
	Stuttgart.
	Abmayr, Wolfgang, 1997: Einführung in die digitale Bildverarbeitung.
	Teubner-Verlag, Stuttgart
	Haberäcker, P., 1995, Praxis der Digitalen Bildverarebitung und
	Mustererkennung. Carl Hanser Verlag, München, Wien.

$\label{lem:continuous} Vertiefungsmodul: Government-Komponentenentwicklung - Unit: Verwaltungsprozessmodellierung$

Modulbezeichnung	Covernment Komponentenentswicklung
(engl.)	Government-Komponentenentwicklung (Development of Government Moduls)
` ' '	
Unitbezeichnung	Verwaltungsprozessmodellierung
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Uthe
Dozent(in)	Prof. Uthe
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Government-
Curriculum	Komponentenentwicklung", Wahlfach;
Lehrform / SWS	2 SWS Vorlesung, 30 Studierende
Arbeitsaufwand	30h Präsenzstudium, 30h Eigenstudium
Kreditpunkte	2 (Modul: 10CP)
Empfohlene	keine
Voraussetzungen	
Angestrebte	Einblick in die Prozesse des politisch-administrativen Handelns und in
Lernergebnisse	die notwendigen gesellschaftlichen Wandlungsprozesse. Die
_	Studierenden können ausgewählte Politikfelder in ihren
	interdisziplinären Bezügen analysieren, Problemlösungspotentiale
	aufzeigen und in ihren Wirkungen reflektieren.
Inhalt	Einführung in Theorie des administrativen-politischen Systems und
	Entscheidungen und Handeln im PAS
	Politische Willensbildungs- und Entscheidungsprozesse
	Akteure und Instrumente
	Zusammenwirken von Verwaltung und nichtstaatlichen Akteuren
	Exemplarische Darstellung an ausgewählten Politikfeldern
	Policy-Analyse in einem ausgewählten Politikfeld (wie Verkehrs-,
	Finanz-, Wohnungsbaupolitik etc.)
	Empirische Erhebungen
Studien- und	Entwurfsarbeit
Prüfungsleistungen	
Medienformen	Overhead, Beamerslides
Literatur	Paul Ackermann u.a.: Grundwissen Politik, Stuttgart /Düsseldorf
	/Leipzig,1995
	Irene Gerlach: Bundesrepublik Deutschland, Opladen 2002
	Dieter Nohlen (Hrsg.): Lexikon der Politik, München 2001
	Werner Süß (Hrsg.): Deutschland in den Neunziger Jahren. Politik und
	Gesellschaft zwischen Wiedervereinigung und Globalisierung, Opladen,
	2002
	Anthony Giddens: Sociology, 2002, 4. überarb. Auflage, Cambridge,
	2001
	Franz Josef Floren: Politische Strukturen und Prozesse in Deutschland,
	Paderborn 2000
	raueroom 2000

$\label{lem:continuous} \begin{tabular}{ll} Vertiefungsmodul: Government-Komponentenentwicklung - Unit: Workflow-Management \\ \end{tabular}$

Modulbezeichnung	Government-Komponentenentwicklung
(engl.)	(Development of Government Moduls)
Unitbezeichnung	Workflow-Management
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Government-
Curriculum	Komponentenentwicklung", Wahlfach;
Lehrform / SWS	3 SWS (1 V + 1 Ü + 1 P) <= 55 Teilnehmer
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4 (Modul: 10CP)
Empfohlene	Rechnernetze, Programm- und Datenstrukturen, Einführung in
Voraussetzungen	Datenbanken, Einführung in Softwaretechnik, Sicherheit in
	Rechnernetzen
Angestrebte	Die Studierenden besitzen Kenntnisse des Workflow-Managements in
Lernergebnisse	E-Government und E-Commerce sowie in Workflow-Management-
	Systemen und Workflow-Standards. Sie sind in der Lage, inhaltliche
	und methodische Grundlagen des Fachgebietes zu erkennen und in
	Fallstudien anzuwenden. Desweiteren können die Teilnehmer mit
	Sicherheits- und Public-Key-Infrastrukturen umgehen und diese auf
	Anwendungen im Bereich des E-Government und E-Commerce
	übertragen.
Inhalt	OSCI-basierter Workflow im E-Government und VPS
	SAGA- und DOMEA-Standards
	Workflow-Management-Architekturen
	Integrierte Sicherheitsdienste/PKI-Anwendungen in E-Government und
	E-Commerce
Studien- und	Klausur K1 (90 min), Testat
Prüfungsleistungen	
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	IIN-Lehrmodul-CD zu E-Commerce/E-Government
	www.osci.de
	mediakomm.difu.de
	www.bundonline2005.de
	Schriftenreihe der KBST und des KoopA-DV
	BSI: E-Government-Handbuch
	Merz: E-Commerce und E-Business, dpunkt 2002
	Teichmann, Lehner: Mobile Commerce, Springer, 2002
	Intershop Enfinitiy V6 Dokumentation, Intershop 2005
	Nekolar: e-procurement, Springer, 2003
	Eberhart, Fischer: Web Services, Hanser 2003
	Wöhr: Web-Technologien, dpunkt, 2004
	Zimmermann, Tomlinson, Peuser: Perspectives on Web Services
	Springer, 2003

$\label{lem:continuous} \begin{tabular}{ll} Vertiefungsmodul: Government-Komponentenentwicklung - Unit: Transaktionen und Zahlungen \end{tabular}$

Modulbezeichnung	Government-Komponentenentwicklung
(engl.)	(Development of Government Moduls)
Unitbezeichnung	Transaktionen und Zahlungen
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum Curriculum	Studiengang "Informatik", Vertiefung "Government- Komponentenentwicklung", Wahlfach;
Lehrform / SWS	3 SWS (1V + 1Ü + 1P)
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenanteil
Kreditpunkte	4 (Modul: 10CP)
Empfohlene	Rechnernetze, Programm- und Datenstrukturen, Einführung in
Voraussetzungen	Datenbanken, Einführung in Softwaretechnik, Sicherheit in Rechnernetzen
A = = = = = = = = = = = = = = = = = = =	
Angestrebte	Die Studierenden kennen und verstehen Grundstrukturen, Funktionen
Lernergebnisse	und Beispiele für Transaktionsplattformen in E-Government und E-
	Commerce. Sie können die Nutzung dieser (hochintegrierten
	Infrastrukturen als) Transaktionsplattformen für die Entwicklung, die
	Administration und den Betrieb von Applikationen in E-Commerce und
	E-Government erläutern, einschliesslich der Integration von
	Sicherheitskomponenten, Zahlungssystemen und Zahlungsprotokollen.
	Sie können Einsatzvarianten der Plattformen und Zahlungssysteme für
T114	verschiedene Anwendungsszenarien beurteilen.
Inhalt	OSCI-basierte Anwendungen im E-Government; E-Government- und
	E-Commerce-Plattformen und Anwendungen;
	Zahlungssysteme/protokolle: SET, DigiCash/digitales Geld, blind
	Signature, Kartensysteme (Geldkarte), elektronische Börsen,
Duitfun aalai atuun aan	kontengebundene Verfahren, mobile Payment, aktuelle Fallbeispiele
Prüfungsleistungen	Klausur K1 (90 min), Testat
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	IIN-Lehrmodul-CD zu E-Commerce/E-Government
	www.osci.de, mediakomm.difu.de, www.bundonline2005.de
	Schriftenreihe der KBST und des KoopA-DV
	BSI: E-Government-Handbuch
	Merz: E-Commerce und E-Business, dpunkt 2002
	Teichmann, Lehner: Mobile Commerce, Springer, 2002
	Intershop Enfinitiy V6 Dokumentation, Intershop 2005
	Nekolar: e-procurement, Springer, 2003
	Lehner: Mobile und drahtlose Informationssysteme. Technologien,
	Anwendungen, Märkte, Springer, 2003
	Kou: Payment Technologies for E-Commerce, Springer, 2003
	Eberhart, Fischer: Web Services, Hanser 2003
	Wöhr: Web-Technologien, dpunkt, 2004
	Zimmermann, Tomlinson, Peuser: Perspectives on Web Services
	Springer, 2003

Modul: Grafentheorie (3)

Modulbezeichnung	Grafentheorie
(engl.)	(Graph Theory)
	3
Semester	
Verantwortlich	Prof. Dr. Bernhard Zimmermann
Dozent(in)	Prof. Dr. Bernhard Zimmermann
Sprache	Deutsch
Zuordnung zum Curriculum	Studiengang "Informatik", Pflichtfach, 3. Semester
Lehrform / SWS	2 SWS VL, Gruppengröße 30; 1 SWS Praktikum, Gruppengröße 15 (2 V + 0 P + 1 P)
Arbeitsaufwand	45h Präsenz, 75h Eigenstudium
Kreditpunkte	4
Empfohlene	Programm- und Datenstrukturen, Grundlagen der Informatik,
Voraussetzungen	Mathematik / Statistik I+II
Angestrebte	Die Studierenden haben grundlegende Kenntnisse über Konzepte und
Lernergebnisse	wichtige Algorithmen der algorithmischen Graphentheorie und deren
	effiziente Implementierungen.
Inhalt	Datenstrukturen für Graphen, Suchverfahren in Graphen, Kürzeste
	Wege, Färbungen von Graphen, Approximative Algorithmen
Studien- und	MP, Testat
Prüfungsleistungen	
Medienformen	Folien, Tafel
Literatur	T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, The
	MIT Press
	P. Läuchli: Algorithmische Graphentheorie, Akademische
	Verlagsgesellschaft
	K. Mehlhorn: Graphen and NP-Completeness, Springer
	G. Nägler, F. Stopp: Graphen und Anwendungen, Teubner
	P. Gritzmann, R. Brandenberg: Das Geheimnis des kürzesten Weges,
	Springer
	~Priniger

Modul: Grundlagen der Informatik - Unit: Grundlagen der Informatik I (1)

Madulharaiahayaa	Constitution of the form of the
Modulbezeichnung	Grundlagen der Informatik
(engl.)	(Foundations of Computer Science)
Unitbezeichnung	Grundlagen der Informatik I
Semester	1.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack, DiplMath. Michael Neumann
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 1. Semester;
Curriculum	Studiengang "Informatik/E-Administration", Pflichtfach, 1. Hauptsem.
Lehrform / SWS	$2 \text{ SWS } (1 \text{ V} + 1 \ddot{\text{U}} + 0 \text{ P})$
Arbeitsaufwand	30h Präsenzzeit, 60h Eigenstudium
Kreditpunkte	3 (Modul: 7CP)
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Die Studierenden besitzen Verständnis innerhalb der Zahlensysteme
Lernergebnisse	und Rechenoperationen, so dass sie in der Lage sind, einfache
	Aufgaben mittels eines Rechnersimulationsprogramms zu lösen. In
	einfache Codierungen können sich die Studierenden hineindenken und
	diese bearbeiten sowie selber erstellen.
Inhalt	Verständnis in den Zahlensystemen (2,8,16),
	Kenntnisse in Addition, Subtraktion (1er, 2er), Multiplikation mit
	unterschiedlichen Zahlensystemen
	Grundkenntnisse in der Rechnerarchitektur
	Kennen lernen einfache Codierungen
	viele Übungen in der Vorlesung und als Hausübung
Studien- und	Klausur K1
Prüfungsleistungen	
Medienformen	Tafel, PC-Präsentationen, Overhead, Übungen
Literatur	Ernst, H.: Grundlagen und Konzepte der Informatik, 2. Auflage, 2000
	Gumm, H.P.; Sommer, M.: Einführung in die Informatik, 4. Auflage,
	2000
Literatur	Gumm, H.P.; Sommer, M.: Einführung in die Informatik, 4. Auflage,

Modul: Grundlagen der Informatik - Unit: Grundlagen der Informatik II (2)

Modulbezeichnung	Grundlagen der Informatik
(engl.)	(Foundations of Computer Science)
Unitbezeichnung	Grundlagen der Informatik II
Semester	2.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Michael Wilhelm
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 2. Semester
Curriculum	Studiengang "Informatik/E-Administration", Pflichtfach,
	2. Hauptsemester
Lehrform / SWS	$3 \text{ SWS } (2 \text{ V} + 0 \ddot{\text{U}} + 1 \text{ P})$
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4 (Modul: 7CP)
Empfohlene	
Voraussetzungen	
Angestrebte	Die Studenten haben Kenntnisse im Erstellen von Internetsoftware und
Lernergebnisse	haben einen Überblick über den Aufbau von Betriebssystemen erhalten.
	Sie beherrschen die wichtigsten Unix-Befehle und können komplexe,
	rekursive Skripte in Unix schreiben.
Inhalt	Beherrschen der Grundlagen in HTML mit Absätzen, Überschriften,
	Listen, Tabellen etc,
	Verwendung von Cascading Stylesheet
	Erstellen von Formularen in Webseiten
	Der Student kann den Aufbau eines Betriebssystems (Prozesse,
	Speicher, Dateien, I/O-Geräte) beschreiben
	Verstehen und Anwenden der Unix-Shellprogrammierung mit der Bash
Studien- und	Testat, Klausur K1
Prüfungsleistungen	
Medienformen	Powerpoint, Tafel, Übungen
Literatur	Avci, Trittmann, Mellis: Web-Programmierung, Vieweg Verlag, 2003
	Rachel Andrew, Dan Shafer, CSS, 2. Auflage, 2006
	Martin Pollakowski, Grundkurs mySQL und PHP, 2. Auflage, 2005
	Günter Pomaska, Grundkurs Web-Programmierung, 1. Auflage, 2005
	Markus Nix, et al., Exploring PHP, entwicler.press, 1. Auflage, 2006
	Tanenbaum, A. S., Moderne Betriebssysteme, 2. Auflage, 2003
	Alexander Mayer, Shellprogrammierung in Unix, 1. Auflage, 2003
	Sven Haiges, Marcel May, Java Server Faces, 1. Auflage, 2006
	Stefan Mintert, Christoph Leisegang, Ajax, 1. Auflage, 2007

Vertiefungsmodul: Intelligente Programmierung - Unit: Operations Research

Modulbezeichnung	Intelligente Programmierung
(engl.)	(Intelligent Programming)
Unitbezeichnung	Operations Research
Semester	4
Verantwortlich	Prof. Dr. Pundt
Dozent(in)	Dr. T. Schade
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Intelligente Programmierung",
Curriculum	Wahlfach;
Lehrform / SWS	Vorlesung 1 SWS, Übung 1 SWS
Arbeitsaufwand	30h Präsenzstudium, 60h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Mathematik / Statistik I – III, Grafentheorie
Voraussetzungen	
Angestrebte	Die Studierenden besitzen Kenntnisse von Netzwerkalgorithmen und
Lernergebnisse	deren Anwendungen, z. B. in der Logistik und bei Datenflüssen im
	Internet. Ihnen sind viele Modelle bekannt und teilweise vertraut,
	insbesondere Netzwerkmodelle.
Inhalt	Modellbildung, insbes. Netzwerkmodelle,
	Transporte und Flüsse in Netzwerken,
	Primale- / Duale- Algorithmen,
	Anwendungen.
Studien- und	Referat, Hausarbeit
Prüfungsleistungen	
Medienformen	Vorlesungsskript, Beamer-Slides
Literatur	Domschke: "Logistik – Transport", Oldenbourg;
	Jungnickel: "Graphen, Netzwerke und Algorithmen", BI
	Wissenschaftsverlag bzw. Springer;
	Dantzig/Thapa: "Linear Programming", Springer;
	Artikel.
	A MUNCI.

Vertiefungsmodul: Intelligente Programmierung - Unit: Computational Intelligence

Modulbezeichnung	Intelligente Programmierung
(engl.)	(Intelligent Programming)
Unitbezeichnung	Computational Intelligence
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Klaus-Dietrich Kramer
Dozent(in)	Prof. Dr. Klaus-Dietrich Kramer
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Intelligente Programmierung",
Curriculum	Wahlfach;
Lehrform / SWS	$3 (1V + 1\ddot{U} + 1P)$
Arbeitsaufwand	45h Präsenzstudium, 75h Eigenstudium
Kreditpunkte	4 (Modul: 10CP)
Empfohlene	Grundlagen der Informatik, Einführung in die Logik und Mengenlehre
Voraussetzungen	Orandiagen der informatik, Einfamang in die Logik und Wengemeine
Angestrebte	Die Studierenden verfügen über konstitutive Kompetenzen zu
Lernergebnisse	unscharfen Mengen bzw. der Fuzzy-Set-Theorie. Auch
Lethergeomsse	Grundlagenwissen auf dem Gebiet Fuzzy Control und Fuzzy
	Datenanalyse gehören zum Kompetenzbereich der Teilnehmer.
	Daneben haben die Studierenden einen Überblick zu weiteren
	Verfahren der Computational Intelligence erhalten (Neuronale Netze,
	Genetische Algorithmen) und können ihre erworbenen Kenntnisse
	wiedergeben.
Inhalt	Einführung (unscharfe Mengen, Begriffe, etc.)
IIIIait	Fuzzy-Set-Theorie (Axiome, Algebra)
	Fuzzy Control (Verarbeitungsprozesse, Algorithmen, Anwendungen)
	Fuzzy Datenanalyse (Verfahren, Algorithmen, Applikationen)
	Überblick zu weiteren Verfahren der CI (Überblick zu Neuronalen
	Netzen, Gen. Algorithmen, etc.)
Studien- und	Klausur K1 (90 min)
	Thusbur III (50 mm)
	Tafel, Overhead, ppt-Präsentationen, PC-Präsentationen
	<u> </u>
	· · · · · · · · · · · · · · · · · · ·
	•••
Prüfungsleistungen Medienformen Literatur	Tafel, Overhead, ppt-Präsentationen, PC-Präsentationen M. Koch; T. Kuhn; J. Wernstedt: Fuzzy Control: optimale Nachbildung und Entwurf optimaler Entscheidungen; München [u.a.]: Oldenbourg, 1996; ISBN: 3-486-23355-6 C.H. Chen: Fuzzy logic and neural network handbook; New York, NY [u.a.]: McGraw-Hill, 1996; ISBN: 0-07-011189-8 HJ. Zimmermann; C. v. Altrock: Fuzzy Logic; München; Wien: Oldenbourg, 1995; ISBN: 3-486-23410-2 F. Hoeppner; F. Klawonn; R. Kruse: Fuzzy-Clusteranalyse: Verfahren für die Bilderkennung, Klassifizierung und Datenanalyse; Braunschweig [u.a.]: Vieweg, 1997; ISBN: 3-528-05543-X

Vertiefungsmodul: Intelligente Programmierung - Unit: Intelligente Wissensverarbeitung

Modulbezeichnung	Intelligente Programmierung
(engl.)	(Intelligent Programming)
Unitbezeichnung	Intelligente Wissensverarbeitung
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. F. Stolzenburg
Dozent(in)	Prof. Dr. F. Stolzenburg
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Intelligente Programmierung",
Curriculum	Wahlfach;
Lehrform / SWS	$3 \text{ SWS } (1\text{V} + 1\ddot{\text{U}} + 1\text{P})$
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Grundlagen der Künstlichen Intelligenz
Voraussetzungen	
Angestrebte	Die Studierenden haben Informatik-spezifische Grundlagen der
Lernergebnisse	Wissensverarbeitung erlernt und können diese auf typische
	Fragestellungen, Probleme und Aufgaben anwenden.
Inhalt	Wissen, Information und Experten-Systeme
	Programmieren in Prolog
	Wissensrepräsentationssysteme
	Induktive Logikprogrammierung
Studien- und	Labortestat, Klausur (90min)
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung mit Beamerfolien, Laborpraktikum
Literatur	W.F. Clocksin and C.S. Mellish: Programming in Prolog. Springer,
	Berlin, Heidelberg, New York, 3rd edition, 1987.
	Norbert E. Fuchs: Kurs in Logischer Programmierung. Springer, Wien,
	New York, 1990.
	Jochen Heinsohn und Rolf Socher-Ambrosius: Wissensverarbeitung -
	Eine Einführung. Spektrum Akademischer Verlag, Heidelberg, Berlin,
	Oxford, 1999.
	Hermann Helbig: Künstliche Intelligenz und automatische
	Wissensverarbeitung. Verlag Technik Berlin, 2. stark bearbeitete
	Auflage, 1996.
	Tom M. Mitchell: Machine Learning. McGraw Hill, New York, St.
	Louis, San Francisco, 1997.

Modul: Mathematik / Statistik I (1)

Modulbezeichnung	Mathematik / Statistik I
(engl.)	(Mathematics / Statistics I)
Semester	1
Verantwortlich	Prof. Dr. I. Schütt
Dozent(in)	Dr. T. Schade
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik/E-Administration", Pflichtfach,
Curriculum	1. Hauptsemester;
	Studiengang "Informatik", Pflichtfach, 1. Semester;
Lehrform / SWS	3 SWS Vorlesung, 1 SWS Übung
	$(3 \text{ V} + 1 \ddot{\text{U}} + 0 \text{ P})$
Arbeitsaufwand	60h Präsenzzeit, 90h Eigenstudium
Kreditpunkte	5
Empfohlene	Schulmathematik
Voraussetzungen	
Angestrebte	Elementare mathematische und analytische Grundlagen aller
Lernergebnisse	wissenschaftlichen Fächer. Rechnen in konkreten und abstrakten
	algebraischen Strukturen. Verständnis der Infinitesimalrechnunbg und
	elementarer Berechnungen. Kenntnis spezieller Funktionen der
	Naturwissenschften. Verständnis einfacher zufälliger Erscheinungen
Inhalt	Elementare Algebra: Zahlensysteme, natürliche, ganze, rationale, reelle
	und komplexe Zahlen, Maschinenzahlen, Halbgruppen, Monoide,
	Gruppen, Ringe, Körper
	Analysis: Funktionen, Folgen, Reihen, spezielle Funktionen, komplexe
	Rechnungen, Stetigkeit, Differentialrechnung, Integralrechnung
	Wahrscheinlichkeitsrechnung diskreter Verteilungen
Studien- und	K2 (Klausur 120 min)
Prüfungsleistungen	
Medienformen	Vorlesungsskript, Beamer
Literatur	Vorlesungsskript,
	Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, 3
	Bände, Vieweg-Verlag, Braunschweig, 2001

Modul: Mathematik / Statistik II (2)

Modulbezeichnung	Mathematik / Statistik II
(engl.)	(Mathematics / Statistics II)
Unitbezeichnung	Mathematik / Statistik II
Semester	2.
Verantwortlich	Prof. Dr. I. Schütt
Dozent(in)	Dr. T. Schade
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 2. Semester
Curriculum Lehrform / SWS	2 CWC V - 1 1 CWC ÜL
Lenriorm / SWS	3 SWS Vorlesung, 1 SWS Übung (3 V + 1 Ü + 0 P)
Arbeitsaufwand	60h Präsenzzeit, 90h Eigenstudium
Kreditpunkte	5
Empfohlene	Mathematik / Statistik I
Voraussetzungen	
Angestrebte	Mathematische und geometrische Grundlagen aller wissen-
Lernergebnisse	schaftlichen Fächer, elementare geometrische Berechnungen,
	Lösung linearer Gleichungssysteme, Verständnis der Eigen-
	schaften linearer Abbildungen und geeigneter Darstellungen,
	elementare Grundlagen der Graphentheorie, elementare Kenntnis
	stetiger Wahrscheinlichkeitsverteilungen
Inhalt	1. Lineare Algebra: Moduln und Vektorräume, Geometrie in der
	Ebene und im Raum, höherdimensionale Vektorräume,
	Matrizenrechnung, Determinanten, lineare Gleichungs-
	systeme, numerische Lösungsverfahren, lineare Abbildungen,
	äquivalente und ähnliche Matrizen, Eigenwerte und Eigen-
	räume, Orthonormalisierung
	2. Elementare Graphentheorie
	3. Wahrscheinlichkeitsrechnung stetiger Verteilungen
Studien- und	K2 (Klausur 120 min)
Prüfungsleistungen	
Medienformen	Vorlesungsskript, Beamer
Literatur	Vorlesungsskript,
	Howard Anton: Lineare Algebra, Spektrum Akademischer Verlag,
	Heidelberg 1998

Modul: Mathematik / Statistik III (3)

Modulbezeichnung	Mathematik / Statistik III
(engl.)	(Mathematics / Statistics III)
Semester	3
Verantwortlich	Prof. Dr. I. Schütt
Dozent(in)	Dr. T. Schade, Dipl. Math. M. Neumann
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtveranstaltung, 3. Semester
Curriculum	, , , , , , , , , , , , , , , , , , , ,
Lehrform / SWS	Vorlesung 2 SWS, Übung 1 SWS (2 V + 1 Ü + 0 P)
Arbeitsaufwand	45h Präsenzstudium, 105h Eigenstudium incl. Klausurvorbereitung
Kreditpunkte	5
Empfohlene	Mathematik / Statistik I+II
Voraussetzungen	
Angestrebte	Die Studierenden verfügen über höhere mathematische und analytische
Lernergebnisse	Grundlagen der Wissenschaften. Sie sind in der Lage Berechnungen
	endlichdimensionaler Approximationen von Funktionen durchzuführen.
	Desweiteren haben sie einen Überblick für höherdimensionaler
	Infinitesimalrechnung und für einfache Berechnungen erworben. Die
	Teilnehmer wurden an elementare gewöhnliche Differentialgleichungen
	herangeführt und können diese bearbeiten. Sie besitzen Kenntnisse
	algebraischer Grundlagen der Informatik und Informationstheorie.
	Darüber hinaus haben sie ein vertieftes Verständnis der Stochastik.
Inhalt	1 Funktionenreihen:
	Potenzreihen, Taylor-Reihen, Fourier-Reihen
	2 Mehrererdimensionale Analysis:
	Totales Differential, Richtungs Ableitung, Partielle Ableitung
	3 Gewöhnliche Differentialgleichungen: Lösungsbegriffe,
	Lösungsverfahren
	4 Algebra: Äquivalenzrelationen, -klassen, Gruppentheorie
	5. Bedingte Wahrscheinlichkeiten.
Studien- und	Klausur K2 (120min)
Prüfungsleistungen	
Medienformen	Vorlesungsskript, Beamer-Slides
Literatur	Vorlesungsskript;
	L. Papula: "Mathematik für Ingenieure und Naturwissenschaftler",
	Vieweg;
	H. Amann, J. Escher: "Analysis", Birkhäuser;
	H. Amann: "Gewöhnliche Differentialgleichungen", de Gruyter;

Modul: Mediengestaltung (1)

Modulbezeichnung	Mediengestaltung
(engl.)	(Media Design)
Semester	1.
Verantwortlich	Prof. E. Högerle
Dozent(in)	Prof. E. Högerle
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 1. Semester;
Curriculum	Studiengang "Informatik/E-Administration", Pflichtf., 1. Hauptsemester
Lehrform / SWS	Übung: 2 SWS, <= 55 Teilnehmer
Arbeitsaufwand	30h Präsenzzeit, 60h Eigenstudium
Kreditpunkte	3
Empf. Voraussetzg.	Keine
Angestrebte	Da die Studenten über keine gestalterischen Voraussetzungen verfügen,
Lernergebnisse	werden hier die grundlegenden theoretischen gestalterischen Konzepte
	vermittelt, die in praktischen kleineren Entwurfsübungen bearbeitet und
	in individuellen gestalterischen Lösungen umgesetzt werden. Erwartet
	wird die Reflexion und Anwendung der Gestaltgesetze, der elementaren
	makro- und mikrotypografischen Grundregeln und Rastergestaltung
	sowie die Fertigkeiten zur Realisierung einfacher praxisorientierter
	Aufgabenstellungen zu diesen Themen.
Inhalt	Einführung in die Theorie und Praxis der Mediengestaltung: Sehen und
	visuelle Grunderfahrungen, Elementare Kreativitätstechniken,
	Kommunikation, Zeichentheorie, Gestaltgesetze, Form- und Farbe
	(Grundlagen) Farbgesetze, Farbe im kulturellen Kontext), Grundlagen
	der Typografie (Makro- und Mikrotypografie und Layout für Print und
	Web (Ordnungsparameter, Raster, Flächengestaltung). Kurzeinführung
	Seminars in das Layoutprogramm InDesign, um die wichtigsten
	Arbeitstechniken zu den Aufgabenstellung realisieren zu können.
Prüfungsleistungen	Entwurfsarbeit
Medienformen	Beamer-Präsentationen, Whiteboard, Animation
Literatur	Böhringer u.a., Kompendium Mediengestaltung, Berlin 2000.
	Lewandowski/Zeischegg: Visuelles Gestalten mit dem Computer.
	Reinbeck 2002.; Fries: Mediengestaltung. Fachbuchverlag Leipzig
	2002; Kunz Willi: Typografie- Makro+Mikro-Ästhetik, Zürich 1997

Modul: Mensch-Computer-Interaktion - Unit: Benutzermodellierung (3)

Modulbezeichnung	Mensch-Computer-Interaktion
(engl.)	(Human Computer Interaction)
Unitbezeichnung	Benutzermodellierung
Semester	3
Verantwortlich	Prof. Dr. Schneider
Dozent(in)	Prof. Dr. Schneider
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 3. Semester
Curriculum	
Lehrform / SWS	2 SWS VL, 1 SWS Übung
	$(2V + 1\ddot{U} + 0P)$
Arbeitsaufwand	45h Präsenz, 45h Eigenstudium
Kreditpunkte	3 (Modul: 6CP)
Empfohlene	Grundlagen der Informatik
Voraussetzungen	
Angestrebte	Die Studierenden erlernen Methoden und Techniken zur
Lernergebnisse	Benutzermodellierung und zur Personalisierung von
	Anwendungssystemen. Sie kennen grundlegende Konzepte und
	Vorgehensweisen bei Erstellung und Einsatz von Benutzermodellen und
	die dabei zugrunde liegenden Annahmen sowie von Benutzerprofilen
	und die Techniken zum Erkennen und Identifizieren von
	Benutzerinformation. Die Studierenden beherrschen
	Personalisierungsmethoden und sind in der Lage diese einzuordnen. Sie
	kennen unterschiedliche Anwendungen von Personalisierung
	beispielsweise in den Gebieten E-Commerce, E-Learning, Smart
	Environments. Aspekte der Mensch-Maschine-Kommunikation in
	Bezug auf Personalisierung sind ihnen bekannt. Die Studierenden sind
	in der Lage Eigenschaften wie Privatheit und Transparenz des
	Personalisierungsprozesses zu beachten. Darüber hinaus wurde den
	Studierenden ein Ausblick auf aktuelle Entwicklungstendenzen
	aufgezeigt.
Inhalt	Grundlagen der Benutzermodellierung
	Aspekte der Benutzermodellierung
	Arten von Benutzermodellen
	Benutzerdaten und –profile
	Benutzeranforderungen und Beobachtungen von Benutzerinteraktionen
	Techniken der Benutzermodellierung
	Erstellung von Benutzermodellen.
	Grundlagen der Personalisierung
	Anpassung an Benutzeranforderungen
	Gemeinschaft-basierte Techniken z.B. Recommendersysteme, Adaptive
	Hypermedia
	Anwendungen von Personalisierung
	Adaptive Benutzerschnittstellen, Entscheidungsfindungsprozesse,
	Gruppenarbeit, E-Commerce, E-Learning, ubiquitäre Systeme, smarte
	Umgebungen, usw.
	Mensch-Computer-Interaktionen und Personalisierung
	Erkennen und Identifizieren von Benutzeranforderungen
	Benutzerzentriertes Design

	Inkrementelle Erstellungsprozesse
	Vor- und Nachteile von Personalisierung
	Personalisierung und Privatsphäre
	Ausblick und Entwicklungstendenzen
Studien- und	Entwurfsarbeit
Prüfungsleistungen	
Medienformen	Powerpoint, Tafel, Rechner
Literatur	Herczeg, M.; Software-Ergonomie - Grundlagen der Mensch-
	Computer-Kommunikation, Oldenbourg, 2004
	Preim B.; Entwicklung interaktiver Systeme - Grundlagen, Fallbeispiele
	und innovative Anwendungsfelder, Springer, 1999
	Shneiderman, B.; Designing the User Interface, Addison-Wesley, 1997,
	Eberleh E., Oberquelle H., Oppermann R.; Einführung in die Software-
	Ergonomie, Gruyter, 1994
	Markus Dahm: Grundlagen der Mensch-Computer-Interaktion, Pearson
	Studium, Dezember 2005

Modul: Mensch-Computer-Interaktion - Unit: Graphische Nutzerschnittstellen (4)

Modulbezeichnung	Mensch-Computer-Interaktion
(engl.)	(Human Computer Interaction)
Unitbezeichnung	Graphische Nutzerschnittstellen
Semester	4.
Verantwortlich	Prof. Dr. Günther
Dozent(in)	DiplInform., DiplIng. (FH) Michael Wilhelm
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 4. Semester
Curriculum	Stationgang informatik, i mentiaen, 4. Semester
Lehrform / SWS	2 SWS VL, Gruppengröße 30; 1 SWS Praktikum, Gruppengröße 15
Lemionii / 5 W 5	$(2V + 0\ddot{U} + 1P)$
Arbeitsaufwand	45h Präsenz, 45h Eigenstudium
Kreditpunkte	3 (Modul: 6CP)
Empfohlene	Grundlagen der Informatik
Voraussetzungen	
Angestrebte	Die Studierenden besitzen die Fähigkeit einfache und komplexe
Lernergebnisse	Programme mit grafischer Oberfläche mit verschiedenen Sprachen zu
	entwickeln.
Inhalt	Kennenlernen einfacher grafische Elemente (Editzeile, Radiobutton,
	Combobox, Liste, Tabelle und Tree etc.)
	Aufbau von modalen Dialogfenster mit Speicherung der Daten auf
	Festplatte
	Entwicklung von SDI, MDI-Programmen
	Verwendung von Plausibilitätskontrollen und Layertechnik,
	Verstehen der Konzepte von Design Pattern (Singleton und Observer)
	Anwenden dieser Pattern in Beispielprogrammen (Internationalisierung
	Entwurf von abgeleiteten neuen GUI-Klassen
	Beherrschen von Testroutinen (JUnit)
	Anwenden von GUI-Style Guide
Studien- und	Testat, Entwurfsarbeit
Prüfungsleistungen	
Medienformen	Powerpoint, Tafel, Rechner
Literatur	Dirk Frischalowski, Ulrike Böttcher: Java 6, 1. Auflage, 2007
	Georg Erwin Thaller: Interface Design, 1. Auflage, 2002
	Klaus Meffert: JUnit, Profi-Tipps, 1. Auflage, 2006
	Günter Born, Benjamin Born: Visual C# 2005, 1. Auflage, 2007
	Tanenbaum, A. S.: Moderne Betriebssysteme, 2. Auflage, 2003
	Gamma, Helm, Johnson, Vlissides: Design Pattern, 1. Auflage

Modul: Mikrocomputertechnik / Assemblerprogrammierung (3)

Modulbezeichnung	Mikrocomputertechnik / Assemblerprogrammierung
(engl.)	(Microcomputer and Assembler Programing)
Semester	3
Verantwortlich	Prof. Dr. Klaus-Dietrich Kramer
Dozent(in)	Prof. Dr. Klaus-Dietrich Kramer
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtveranstaltung, 3. Semester
Curriculum	
Lehrform / SWS	Vorlesung (2 SWS), Übung (1 SWS) und Labor (1 SWS) (2 V + 1 Ü + 1 P)
Arbeitsaufwand	60h Präsenzstudium, 90h Eigenstudium
Kreditpunkte	5
Empfohlene	Grundlagen der Informatik, Digitale Systeme
Voraussetzungen	
Angestrebte	Die Studierenden sind in der Lage, die Architektur/Grundstruktur eines
Lernergebnisse	Mikroprozessors/Mikrocomputers aufzuzeigen. Daneben beherrschen
	sie grundlegende Kenntnisse über Kommunikationsprozesse zwischen
	einem Mikroprozessor und der Peripherie (INT, DMA, etc.). Auf dem
	Gebiet der maschinenorientierten Programmierung (auf
	Assemblerniveau) verfügen die Studierenden über inhaltliches und
	methodisches Grundlagenwissen.
	Des weiteren sind die Teilnehmer in der Lage, Entwicklungstrends im
	Bereich der Mikroprozessortechnik aufzuzeigen und Informationen
	darüber wiederzugeben.
Inhalt	Einführung
	Überblick zu Rechnerarchitekturen
	16-/32-Bit-Universalprozessoren (80x86- Grundstruktur im Vergleich
	zu M68000, Befehlssatz 8086 (TASM), Grundlagen der
	maschinenorientierten Programmierung, Befehlsliste des 8086,
	Adressierungsarten, Betriebssystemschnittstellen,
	Mikroprozessorperipherie, Prinzipien des Datenaustausches zwischen
	CPU und Peripherie, Unterbrechungssysteme/Ausnahmesituationen,
	Parallele E/A, Serielle E/A, Counter/Timer, Bussysteme/Schnittstellen
	Assemblerprogrammierung (Softwareentwicklungsprozeß auf
	Maschinencodeebene, TASM 8086, Assemblerfunktionen, MACRO-
	Programmierung, bedingte Assemblierung)
	Vom 8086 zum P4 - Entwicklungstrends
Studien- und	Mündliche Prüfung, Testat
Prüfungsleistungen	
Medienformen	Whiteboard, Overhead, PC-Präsentationen
Literatur	T. Flik; H. Liebig: Mikroprozessortechnik (3. oder 4. Auflage),
	Springer-Verlag, 1990/1994/2003
	H. Bähring: Mikrorechnersysteme, Springer-Verlag, 1991/2003
	Hagenbruch, O., Beierlein, Th.: Taschenbuch Mikroprozessortechnik,
	Fachbuchverlag Leipzig, 2001/2003
	Ose,R., u.a.: Elektrotchnik für Ingenieure, Bd. 2, Fachbuchverlag
	Leipzig, 1999

Vertiefungsmodul: Multimedia - Unit: Einführung in Multimediale Systeme

Modulbezeichnung	Multimedia
(engl.)	(Multimedia)
Unitbezeichnung	Einführung in Multimediale Systeme
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. H. Reckter
Dozent(in)	Prof. H. Reckter
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Multimedia", Wahlfach;
Curriculum	Studiongang "mormatik", vertierung "wuntimedia", wannach,
Lehrform / SWS	1 SWS Vorlesung , 1 SWS Übung
Lemiom / 5 W 5	(1 V + 1 Ü + 0 P)
Arbeitsaufwand	30h Präsenzzeit, 20h Eigenstudium
Kreditpunkte	2 (Modul: 10CP)
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Eine wissenschaftliche Präsentation unter angemessenem Einsatz von
Lernergebnisse	technischen und rhetorischen Mitteln, inhaltlich sinnvoll aufbereitet,
	durchführen können.Die Studierenden verfügen über grundlegende
	Kenntnisse diskreter und kontinuierlicher Medientypen sowie deren
	Formate und Komprimierungsmöglichkeiten. Sie sind in der Lage,
	inhaltliche und methodische Grundlagen des Fachgebietes zu erkennen
	und in kleinen Fallstudien anzuwenden.
Inhalt	Grundlagen multimedialer Plattformen, Betriebsysteme und
Immunt	Untersuchung der Einsatzgebiete und des Potentials verteilter Systeme
	bei multimedialer Nutzung. Betrachten der Methoden für Navigation
	und Interaktion multimedialer Anwendungen. Vergleich zwischen
	linearen und non-linearen hypermedialen Informationsdarstellungen.
	Kennenlernen grundlegender Werkzeuge zur Erstellung medialer
	Anwendung und Systeme. Überblick und Anwendung von
	multimedialen Systemen im Einsatz von z.B. eLearning im Sinne von
G. 1: 1	Telekooperation und –kommunikation.
Studien- und	Klausur K1 (90min) oder Entwurfsarbeit
Prüfungsleistungen Madianformen	Cominguistical a Variagona mit Decare of 11 an
Medienformen	Seminaristische Vorlesung mit Beamerfolien
Literatur	M. Yass, Entwicklung multimedialer Anwendungen, dpunkt.verlag, 2000
	R. Steinmetz, Multimedia-Technologie, Springer Verlag, 3.Auflage,
	2000
	F. Biet, Multimediaprogrammierung, Addison-Wesley, 1. Auflage,
	2001
	2001

Vertiefungsmodul: Multimedia - Unit: Multimediale Protokolle

Modulbezeichnung	Multimedia
(engl.)	(Multimedia)
Unitbezeichnung	Multimediale Protokolle
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Multimedia", Wahlfach;
Curriculum	
Lehrform / SWS	Vorlesung: 1 SWS, <= 55 Teilnehmer
	Übung: 1 SWS, <= 55 Teilnehmer
	Labor: 1 SWS
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4 (Modul: 10CP)
Empf. Voraussetzg.	Rechnernetze
Angestrebte	Die Studierenden kennen den Schichtenaufbau im Bereich
Lernergebnisse	multimedialer Protokolle, sie können prioritäts- und reservierungs-
	basierende multimedialen Protokolle samt charakteristischer
	Eigenschaften in diesen Schichtenaufbau einordnen und entsprechenden
	Protokoll- und Managementstandards zuordnen.
	Die Teilnehmer erwerben Grundlagenwissen über
	Kompressionsverfahren und deren Integration in multimediale
	Protokolle, Standards und Plattformen. Auf dieser Basis können sie
	sich in die im Rahmen dieses Moduls behandelten multimedialen
	Anwendungen hineindenken, deren Charakteristika verstehen und diese
	für Planungen des praktischen Einsatzes anwenden und beurteilen.
	Insbesondere beherrschen die Studierenden entsprechendes Fachwissen
	in ausgewählten Anwendungsbereichen der Internettelefonie (und deren
	Standards), des Video-Konferencing und der Multimedia Security.
Inhalt	QoS und Dienste
	Familien multimedialer Protokolle im Internet: Intserv/Diffserv
	audiovisuelle Kompressionsverfahren (JPEG; MPEG; MP3)
	ITU-T: H.323, H.225, H.245, H.450; IETF: RTSP, SIP, SDP, SAP,
	GSLP, TBGP, TRIP, MGCP, MEGACOP
	Digitale Wasserzeichen und Multimedia-Verschlüsselung
Prüfungsleistungen	Referat und Hausarbeit
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	IIN-Lehrmodul-CD zu E-Commerce/E-Government
	Baumgarten: Mobile Distrubuted Systems, Wiley, 2003
	Steinmetz: MultiMedia-Technologie, Springer, 2000
	Rahman (ed.): Multimedia Networking: Technology, Management and
	Applications, idea publ., 2002
	LeBodic: Mobile Messaging Technologies & Services, Wiley, 2003
	Halsall: Computer Systems Architecture:a Networking Approach with
	Multimedia Communications: Applications, Networks, Protocols and
	Standards, Addison Wesley, 2003

Vertiefungsmodul: Multimedia - Unit: Entwicklung multimedialer Anwendungen

Modulbezeichnung	Multimedia
(engl.)	(Multimedia)
Unitbezeichnung	Entwicklung multimedialer Anwendungen
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Reckter
Dozent(in)	N.N.
Sprache	Deutsch
Zuordnung zum Curriculum	Studiengang "Informatik", Vertiefung "Multimedia", Wahlfach;
Lehrform / SWS	Vorlesung: 1SWS, Übung: 1 SWS, Labor: 1SWS
Lemioni / Sws	$(1V + 1\ddot{U} + 1P)$
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4 (Modul: 10CP)
Empf. Voraussetzg.	Keine
Angestrebte	Die Studierenden verfügen über grundlegende Kenntnisse bezüglich der
Lernergebnisse	Entwicklung multimedialer Applikationen mittels Authoringsoftware.
	Sie können kleinere Aufgaben bearbeiten und lösen.
Inhalt	Einführung und Vertiefung aktueller Programmiersprachen
	(Objectorientiertes Actionscript 3.0, Lingo) für multimediale
	Anwendungen - Typen, Variablen, Operatoren, Methoden, Behaviors,
	Medienobjekte, Ereignisstruktur und Synchronisation. Nutzung und
	Einführung in aktuelle Werkzeuge wie Eclipse mit FDT. Betrachtung
	des User Centered Design und der Usability multimedialer
	Anwendungen. Regeln des Interface-Designs
Prüfungsleistungen	Klausur K2 oder Entwurfsarbeit
Medienformen	Seminaristische Vorlesung mit Beamerfolien
Literatur	Using Actionsscript 2.0 Components with Macromedia 8, J. deHaan,
	Macromedia Press, Berkley 2006
	Director MX und Lingo - Kompendium (Marcus Eberl, Jens Jacobsen)
	Flash 8 und PHP, U. Mutz, T. Wegerer, Galileo Press, 2005
	J. Tidwell, Designing Interfaces, O'Reilly, 2005

Modul: Objektorientierte Programmierung (4)

Modulbezeichnung	Objektorientierte Programmierung
(engl.)	(Object-oriented Programming)
Semester	3. Hauptsemester
Verantwortlich	Prof. Dr. Bernhard Zimmermann
Dozent(in)	Prof. Dr. Bernhard Zimmermann
Sprache	Deutsch
Zuordnung zum	Studiengang "Intelligente Automatisierungssysteme", Pflichtfach,
Curriculum	4. Semester;
	Studiengang "Informatik", Pflichtfach, 4. Semester;
	Studiengang "Informatik/E-Administration", Pflichtfach,
	3. Hauptsemester;
	Studiengang "Mechatronik-Automatisierungssysteme", Pflichtfach,
	6. Semester;
Lehrform / SWS	2 SWS VL, Gruppengröße 30; 1 SWS Praktikum, Gruppengröße 15
	$(2V + 0\ddot{U} + 1P)$
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4
Empfohlene	Programm- und Datenstrukturen, Informatikgrundlagen
Voraussetzungen	
Angestrebte	Die Studierenden sind in der Lage, sich in die objektorientierte
Lernergebnisse	Programmierung in C++ hineinzudenken und diese anzuwenden.
	Desweiteren beherrschen sie weiterführende Techniken der
	objektorientierten Programmierung und verfügen über Kenntnisse von
	objektorientierten Werkzeugen, welche sie auch anwenden können
Inhalt	Konzepte der OO-Software-Entwicklung, OO-Programmierung mit
	C++, Konstruktion von Klassenbibliotheken, OO-Datenbanken,
	Konzepte von OO-Sprachen
Studien- und	Testat, Entwurfsübung
Prüfungsleistungen	
Medienformen	Whiteboard, Overhead
Literatur	B. Meyer: Objektorientierte Software-Entwicklung, Hanser
	N. Josuttis: Objektorientiertes Programmieren in C++, Addison-Wesley
	B. Stroustrup: The Design and Evolution of C++, Addison-Wesley
	M. Bertino: Object-Oriented Database Systems, Addison-Wesley
	E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns,
	Addison-Wesley

Modul: Paradigmen der Informatik I - Unit: Grundlagen der künstlichen Intelligenz (5)

Modulbezeichnung	Paradigmen der Informatik I
(engl.)	(Paradigms of Computer Science I)
Unitbezeichnung	Grundlagen der künstlichen Intelligenz
Semester	5
Verantwortlich	Prof. Dr. Stolzenburg
Dozent(in)	Prof. Dr. Stolzenburg
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 5. Semester
Curriculum	
Lehrform / SWS	$3(2 V + 0 \ddot{U} + 1 P)$
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenstudium
Kreditpunkte	3 (Modul: 6CP)
Empfohlene	Grundlagen der Informatik, Programmierung und Datenstrukturen
Voraussetzungen	
Angestrebte	Die Studierenden verstehen grundlegende Methoden der Künstlichen
Lernergebnisse	Intelligenz. Sie sind in der Lage, sich in Aufgaben und Anwendungen
	dieses Fachgebietes hineinzudenken und deren Methoden zu
	verwenden.
Inhalt	Historischer Überblick
	Suche und Suchstrategien
	Grundlagen der Logikprogrammierung
	Unsicheres Schließen
	Verarbeitung natürlicher Sprache
Studien- und	K1, Testat
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung mit Beamerfolien, Laborpraktikum
Literatur	W.F. Clocksin and C.S. Mellish: Programming in Prolog. Springer,
	Berlin, Heidelberg, New York, 3rd edition, 1987.
	Norbert E. Fuchs: Kurs in Logischer Programmierung. Springer, Wien,
	New York, 1990.
	David Poole, Alan Mackworth, and Randy Goebel: Computational
	Intelligence. Oxford University Press, New York, Oxford, 1995.
	Stuart Russell and Peter Norvig: Artificial Intelligence. A Modern
	Approach. Prentice Hall, Englewood Cliffs, NJ, 1995.

Modul: Paradigmen der Informatik I - Unit: Parallele Algorithmen (5)

Modulbezeichnung	Paradigmen der Informatik I
(engl.)	(Paradigms of Computer Science I)
Unitbezeichnung	Parallele Algorithmen
Semester	5
Verantwortlich	Prof. Dr. Zimmermann
Dozent(in)	DiplInform., DiplIng. (FH) Michael Wilhelm
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 5. Semester
Curriculum	Stationgang,, mormatik, i mentiaen, 3. Semester
Lehrform / SWS	$3 \text{ SWS } (2V + 0\ddot{U} + 1P)$
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenanteil
Kreditpunkte	3 (Modul: 6CP)
Empfohlene	Graphische Nutzerschnittstellen, Basissysteme
Voraussetzungen	Stapingone i tatzersemittisterien, Basissysteme
Angestrebte	Die Studierenden besitzen Verständnis über die verschiedenen
Lernergebnisse	Rechnerarchitekturen und können vorgegebene Algorithmen in das
	jeweilige Zielsystem umbauen
Inhalt	Kennenlernen der verschiedenen Rechnerarchitekturen (SMP, MIMD,
	SIMD)
	Anwenden von Threads
	Erkennen der Synchronisationsprobleme und verstehen, wie diese
	mittels Semaphore, Monitore etc. gelöst werden
	Analysieren der Unterschiede allgemeiner Thread zu Open MP
	Überblick über den Aufbau eines SIMD-Rechner
	Verstehen des Aufbaus eines MIMD-Rechners
	Anwenden dieser Technologie mittels Message Passing Interface (MPI)
	bzw. Parallel Virtuell Machine (PVM) an vielen Bespielen
	Ausarbeiten der Unterschiede zwischen Algorithmen auf verschiedenen
	Rechnerarchitekturen an Beispiel Matrix/Vektor, Matrizen-
	Multiplikation, Sortierung
	Kennenlernen der numerischen Probleme bei größeren Systemen
	Entwicklung eines numerisch stabilen Programms zur Lösung eines
	linearen Gleichungssystems
Studien- und	Klausur (90 min), Testat
Prüfungsleistungen	
Medienformen	Powerpoint, Tafel, Rechner
Literatur	Rauber, Rünger: Parallele und verteilte Programmierung, 2. Auflage,
Enteratur	2000,
	Bräunl, Thomas.: Parallele Programmierung, Vieweg: Braunschweig,
	1993.
	Tanenbaum, A. S.: Moderne Betriebssysteme, 2. Auflage, 2003
	Seyed H. Roosta, Parallel Processing and Parallel Algorithms, 1.
	Auflage, 2000
	Ananth Gama, Anshul Gupta: Introduktion to Parallel Computing
	r manus cana, r monar capas ma countron to r arance compating

Modul: Paradigmen der Informatik II - Unit: Spezifikation verteilter Systeme (6)

Modulbezeichnung	Paradigmen der Informatik II
(engl.)	(Paradigms of Computer Science II)
Unitbezeichnung	Spezifikation verteilter Systeme
Semester	6.
Verantwortlich	Prof. Dr. Günther
Dozent(in)	Prof. Dr. Günther
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtveranstaltung, 6. Semester;
Curriculum	Stationgang,, morniatik, i montveranstattung, v. semester,
Lehrform / SWS	$3(2V + 0\ddot{U} + 1P)$
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenstudium
Kreditpunkte	3 (Modul: 7CP)
Empfohlene	Programm- und Datenstrukturen, Objektoriente Programmierung,
Voraussetzungen	Grundlagen Informatik
Angestrebte	Die Studierenden können die Randbedingungen für reaktive Systeme
Lernergebnisse	analysieren. Sie kennen die Vorteile des Einsatzes von
Lethergeomsse	Spezifikationswerkzeugen und der Code-Generierung für die
	Systementwicklung. Sie kennen standardisierte Verfahren zur
	Modellierung der Architektur und des Verhaltens verteilter reaktiver
	Systeme. Sie beherrschen die Anwendung von Message Sequence
	Charts zur Spezifikation von zeitlichen Abläufen. Sie können reaktive
	Systeme als kooperierende endliche Automaten strukturieren und das
	Verhalten mit SDL spezifizieren. Sie können ein typisches CASE-Tool
	zur Spezifikation, Simulation und zur Code-Generierung anwenden.
Inhalt	Eigenschaften und Modellierung reaktiver Systeme, formale
Immart	Beschreibungsmöglichkeiten, Spezifikation der Benutzeranforderungen
	- Sequenzdiagramme mit MSC, Spezifikation von System- und
	Kommunikationsstrukturen und des Verhaltens kommunizierender
	endlicher Automaten; Abstrakte Datentypen, Objektorientierte
	Konzepte;
	Simulation und Code-Generierung, Einbinden externer Programme in
	SDL
Studien- und	Testat, Klausur K1 (90 Minuten)
Prüfungsleistungen	1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
Medienformen	PC-Präsentation, Übungen am PC
Literatur	L. Doldi: SDL Illustrated. Doldi (Eigenverlag), 2001
	R. Bræk, Ø. Haugen: Engineering Real-Time Systems. Prentice Hall,
	1993
	Olsen, A. u.a.: Systems engineering using SDL-92. Elsevier Science
	B.V. Amsterdam 1997

Modul: Paradigmen der Informatik II - Unit: Web-Services und -Infrastrukturen (6)

Modulbezeichnung	Paradigmen der Informatik II
(engl.)	(Paradigms of Computer Science II)
Unitbezeichnung	Web-Services und -Infrastrukturen
Semester	6.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 6. Semester
Curriculum	Studiengang "Informatik, F. Administration", Pflichtfach,
Curriculum	3. Hauptsemester
Lehrform / SWS	Vorlesung: 1 SWS, <= 55 Teilnehmer
Lemform / 5 W 5	Übung: 1 SWS, <= 55 Teilnehmer
	Labor: 1 SWS, <= 55 Teilnehmer
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4 (Modul: 7CP)
Empfohlene	Rechnernetze, Sicherheit in Rechnernetzen
Voraussetzungen	Recimentetze, Stenement in Recimentetzen
Angestrebte	Die Studierenden besitzen fundiertes Wissen bezüglich Strukturen und
Lernergebnisse	Anwendung von Web-Services. Sie können diese in Netzinfrastrukturen
Lernergeomsse	einordnen und kennen zugehörige Protokolle, Dienste und
	Architekturmerkmale. Sie kennen die entsprechenden Standards und
	deren Eigenschaften und können diese in ausgewählten Beispielen
	anwenden. Die Teilnehmer haben die Bedeutung von Web-Services und
	deren Integration für Geschäftsmodelle und verteilte IT-Architekturen
	erkannt und können das erworbene Wissen für Anwendungen und
	Bewertungen umsetzen. Desweiteren haben die Studierenden
	Fertigkeiten erlangt (durch Beispiele), so dass sie Web-Services
	entwerfen, entwickeln und integrieren können (in angemessenem
	Umfang).
Inhalt	Bedeutung von Web-Services, SOA und deren Integration für
	Geschäftsmodelle und verteilte IT-Architekturen (z.B. für E-Business-
	und E-Government-Anwendungen)
	Einordnung von Web-Services in die IT-Infrastruktur verteilter
	Anwendungen (OSI, WWW/N-Tier-Architekturen, XML, J2EE, .Net),
	Vergleich mit anderen Techniken (CORBA, Java RMI, RPC)
	Protokolle/Dienste: SOAP, WSDL, UDDI
	Tools u. Einbettung in Infrastrukturen: Apache, EJB
	Sicherheit u. Web-Services (WSS)
	Beispielanwendungen aus E-Business und E-Government
	Beziehung zu eGovernment-Standards wie OSCI
Prüfungsleistungen	Klausur K1 (90 min), Testat
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	Eberhart, Fischer: Web Services, Hanser 2003
	Wiehler: Mobility, Security u. Web Services, SIEMENS, PCP 2004
	Wöhr: Web-Technologien, dpunkt, 2004
	Zimmermann, Tomlinson, Peuser: Perspectives on Web Services
	Springer, 2003

Modul: Physikalisch-Elektrotechnische Grundlagen (2)

Modulbezeichnung	Physikalisch-Elektrotechnische Grundlagen
(engl.)	(Physics and Electrical Engineering)
Semester	2
Verantwortlich	Prof. DrIng. J. Krauser
Dozent(in)	Prof. DrIng. J. Krauser
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 2. Semester
Curriculum	
Lehrform / SWS	Vorlesung, 3 SWS, Übung, 1 SWS, Praktikum, 1 SWS (3 V + 1 Ü + 1 P)
Arbeitsaufwand	75h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	5
Empfohlene	Mathematische Grundlagen (Differential- und Integralrechnung)
Voraussetzungen	
Angestrebte	In der Vorlesung haben die Studierenden die Grundlagen der
Lernergebnisse	Gleichspannungstechnik sowie die Entstehung und Wirkung
	elektrischer und magnetischer Felder als ein Schwerpunkt erlernt. Dabei
	wird großer Wert auf eine gute physikalische Erklärung der betrachteten
	Phänomene gelegt.
Inhalt	Elektrischer Strom und elektrische Ladung, Elektrische Spannung,
	Elektrischer Widerstand, Ohmsches Gesetz und Kirchhoffsche Gesetze,
	Gleichstromkreise
	Elektrische Energie und elektrische Leistung, Elektrisches Feld,
	Elektrische Feldgrößen, Kraftwirkung im elektrischen Feld, Kapazität,
	Schaltungen mit Kondensatoren, Lade- und Entladevorgänge,
	Dielektrikum
	Magnetisches Feld, Kraftwirkung im magnetischen Feld, Materie im
	magnetischen Feld, Elektromagnetische Wellen
Studien- und	Klausur K2, Labor-Testat
Prüfungsleistungen	
Medienformen	Vorlesungen mit Demonstrationsversuchen, Computeranimationen und
	Videofilmen, Tafel, Beamer
	Übungen mit Beratung und Kontrolle,
	praktische Experimente (Laborpraktikum)
Literatur	Dobrinski, Krakau, Vogel: Physik für Ingenieure, B.G. Teubner
	Stuttgart
	Paus: Physik in Experimenten und Beispielen, Carl Hanser Verlag
	München Wien
	Moeller, Frohne, Löcherer, Müller: Grundlagen der Elektrotechnik, B.
	G. Teubner Stuttgart
	Lindner: Physik für Ingenieure, Fachbuchverlag Leipzig

Modul: Programm- und Datenstrukturen - Unit: Programm- und Datenstrukturen I (1)

3.6 1.11 .1	
Modulbezeichnung	Programm- und Datenstrukturen
(engl.)	(Programm- and Data Structures)
Unitbezeichnung	Programm- und Datenstrukturen I
Semester	1.
Verantwortlich	Prof. Dr. Bernhard Zimmermann
Dozent(in)	Prof. Dr. Bernhard Zimmermann
Sprache	Deutsch
Zuordnung zum	Studiengang "Intelligente Automatisierungssysteme", Pflichtfach,
Curriculum	1. Semester;
	Studiengang "Informatik", Pflichtfach, 1. Semester
	Studiengang "Informatik/E-Administration", Pflichtfach,
	1. Hauptsemester
	Studiengang "Mechatronik-Automatisierungssysteme", Pflichtfach,
	3. Semester
Lehrform / SWS	2 SWS VL, Gruppengröße 30; 1 SWS Praktikum, Gruppengröße 15 (2 V + 0 Ü + 1 P)
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4 (Modul: 8CP)
Empfohlene	keine
Voraussetzungen	Keine
Angestrebte	Die Studierenden beherrschen einfache und strukturierte Datentypen
Lernergebnisse	sowie Kontrollstrukturen und das Prozedurkonzept von Java. Sie sind in
8.2.	der Lage, typische Fragestellungen, Probleme und Aufgaben
	diesbezüglich zu bearbeiten. Darüber hinaus kennen sie grundlegende
	Problemlösungs- und Programmkonstruktionsmethoden der imperativen
	Programmierung und können diese anwenden. Auch das Arbeiten mit
	einer Programmierumgebung ist ihnen geläufig.
Inhalt	Algorithmus und Programm, Top-down Programmkonstruktion,
	iterative Programme, einfache und strukturierte Datentypen,
	Kontrollstrukturen, einfache Ein- und Ausgabe, Funktionen und
	Prozeduren, Rekursion, Programmiersprache JAVA
Studien- und	Testat
Prüfungsleistungen	
Medienformen	Whiteboard, Overhead
Literatur	T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, The
	MIT Press
	N. Wirth: Algorithmen und Datenstrukturen, Teubner
	B. Eckel: Thinking in JAVA, Prentice Hall

$\label{lem:modul: Programm- und Datenstrukturen - Unit: Programm- und Datenstrukturen \ II} \ (2)$

Modulbezeichnung	Programm- und Datenstrukturen
(engl.)	(Programm- and Data Structures)
Unitbezeichnung	Programm- und Datenstrukturen II
Semester	2.
Verantwortlich	Prof. Dr. Bernhard Zimmermann
Dozent(in)	Prof. Dr. Bernhard Zimmermann
Sprache	Deutsch
Zuordnung zum	Studiengang "Intelligente Automatisierungssysteme", Pflichtfach,
Curriculum	2. Semester;
	Studiengang "Informatik", Pflichtfach, 2. Semester
	Studiengang "Informatik/E-Administration", Pflichtfach,
	2. Hauptsemester
	Studiengang "Mechatronik-Automatisierungssysteme", Pflichtfach,
	4. Semester
Lehrform / SWS	2 SWS VL, Gruppengröße 30; 1 SWS Praktikum, Gruppengröße 15
	$(2 \text{ V} + 0 \ddot{\text{U}} + 1 \text{ P})$
Arbeitsaufwand	45h Präsenz, 75h Eigenstudium
Kreditpunkte	4 (Modul: 8CP)
Empfohlene	Mathematik I
Voraussetzungen	
Angestrebte	Die Studierenden kennen die wichtigsten Konzepte der
Lernergebnisse	objektorientierten Programmierung und können diese anwenden.
	Außerdem verfügen sie über Kenntnisse der wichtigsten dynamischen
	Datenstrukturen und sind in der Lage diese zu implementieren und
	anzuwenden. Schließlich können sie auch die Datenstrom-Ein- und
	Ausgabe anwenden.
Inhalt	Konzepte der objektorientierten Programmierung, Dynamische
	Datenstrukturen: Listen, Keller, Schlangen, Bäume, Balancierte Bäume,
~	Datenstrom-Ein- und Ausgabe, Programmiersprache JAVA
Studien- und	Testat, Klausur K2
Prüfungsleistungen	
Medienformen	Whiteboard, Overhead
Literatur	T. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, The
	MIT Press
	N. Wirth: Algorithmen und Datenstrukturen, Teubner
	M. Waite, R. Lafore: Data Structures & Algorithms in Java, Waite
	Group Press
	B. Eckel: Thinking in JAVA, Prentice Hall

Modul: Projektarbeit (5+6)

Modulbezeichnung	Projektarbeit
(engl.)	(Project Work Thesis)
Semester	5. und 6.
Verantwortlich	Verschiedene Hochschullehrer
Dozent(in)	Verschiedene Hochschullehrer
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 5. und 6. Semester
Curriculum	
Lehrform / SWS	$6 (0 V + 0 \ddot{U} + 6 P)$
	Konsultationen, Eigenstudium, selbständige praktische Erprobung
Arbeitsaufwand	90h Präsenzzeit, 90h Eigenstudium
Kreditpunkte	6
Empfohlene	
Voraussetzungen	
Angestrebte	Die Studierenden besitzen Spezialkenntnisse und Fertigkeiten auf einem
Lernergebnisse	wählbaren Gebiet, welches sie selbständig aufbauen (individuelle
_	Wissensaneignung).
	Sie verfügen über Techniken zur Einarbeitung in neue Fachthemen, die
	sie praktisch erproben. Sie sind in der Lage, eine
	Dokumentation und Präsentation von Projekten zu erstellen und zu üben.
Inhalt	individuelle Erarbeitung neuer fachlicher Schwerpunkte mit
	Unterstützung durch den Projektbetreuer
	selbständiges Einarbeit in das Thema
	Analyse der Aufgabe und Vergleich verschiedener Lösungsansätze
	Realisierung und Erprobung der gewählten Lösungsvariante
	Dokumentation und Präsentation der Ergebnisse
Studien- und	Testat
Prüfungsleistungen	
Medienformen	Konsultationen, Fachliteratur, Recherchen in Datenbanken und im
	Internet
Literatur	themenabhängig
	Metzig, W. u.a.: Lernen zu lernen: Lernstrategien wirkungsvoll
	einsetzen, Berlin, Springer, 2006

Modul: Rechnernetze (4)

Modulhozajahnung	Daahnamatza
Modulbezeichnung	Rechnernetze (Computernetworks)
(engl.) Semester	4.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 4. Semester
Curriculum	
Lehrform / SWS	2 SWS Vorlesung + 1 SWS Übung <= 55 Teilnehmer
	1 SWS Labor <= 15 Teilnehmer
A 1 1 C 1	(2 V + 1 Ü + 1 P)
Arbeitsaufwand	60h Präsenzzeit, 90h Eigenstudium
Kreditpunkte	5
Empfohlene	Grundlagen der Informatik, Basissysteme, Grafentheorie
Voraussetzungen	
Angestrebte	Nach dem Besuch dieser Vorlesung können die Studierenden grund-
Lernergebnisse	legende Kenntnisse bezüglich Netzwerkstrukturen und Netzwerkkom-
	ponenten aufzeigen, verstehen und anwenden. Sie verfügen über
	Kompetenzen im Umgang mit typischen Protokollen/Diensten und
	können diese anwenden, insbesondere für relevante Switching-/Rou-
	tingverfahren, deren Kooperation und Integration in das Netzwerk-
	management. Desweiteren sind die Teilnehmer in der Lage, ausge-
	wählte Netzwerkinfrastrukturen einzurichten und dabei Router und
	Switches (LAN/WAN) zu konfigurieren.
	Neben diesen Kompetenzen besitzen die Studierenden einen vertieften
	Überblick über Prinzipien, Aspekte und Tools für die Netzwerkplanung
	und das Netzwerkmanagement (insbes. Beispiele aus Verwaltungsnet-
	zen wie z.B. ITN-LSA, TESTA). Sie sind in der Lage ihr Wissen in
	verschiedenen Beispielen anzuwenden und Aufgaben zu diesem Thema
	zu lösen.
	Zu dem, in dieser Vorlesung erworbenen Wissen, gehören auch
	Grundlagen zu "Quality of Service" (QoS) und "Echtzeit-Diensten".
Inhalt	- Strukturen und Charakteristika von Netzwerken (LAN, MAN, WAN,
	Kopplungen)
	- typische Protokolle und Dienste (je nach OSI-Layer, Einsatzzweck,
	Netzwerkkomponenten: insbes. Protokolle IPv4/6, ARP, ICMP,
	TCP/UDP, SNMP, DNS, LDAP, sowie OSI-Layer2-Protokolle im
	LAN/WLAN/WAN (IEEE 802.x, PPP))
	- Switching- und Routingverfahren (insbes. für VLAN- und STP-
	Switching im LAN, Cell-Switching ATM, MPLS; Distanzvektor- und
	Link-State-Routing-Verfahren (RIP, IGRP, EIGRP, OSPF), Interior und
	Exterior Routing (EGP, BGP)) und deren Kooperation
	- entsprechende Netzwerke und Netzwerkkomponenten konfigurieren
	können (ausgewählte typische Beispiele)
	- Prinzipien, Aspekte und Protokolle/Tools für Netzwerkplanung und
	Netzwerkmanagement kennen und anwenden (SNMP, Scanner, SLA,
	Fehleranalyse, Dokumentation), Netzwerkaspekte LSA (ITN; TESTA)
	- QoS-Definition, Übersicht zu INTSERV/DIFFSERV der IP-Welt,
	Übersicht zu Echzeitdiensten der IP- und ATM-Welt.
	Coefficient Zu Denzentalenstein der if und 11111 Weit.

Studien- und	Klausur K2 (120 min), Testat
Prüfungsleistungen	
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	Orlamünder: High-Speed-Netze, Hüthig, 2000
	Huitema: Routing im Internet, Prentice Hall, 1996
	CISCO Interactive Mentor: IP-Routing Link-State Protocols (CD)
	Perlman: Bridges, Router, Switches, Addison-Wesley, 2001
	Tanenbaum: Computernetzwerke, 4. Aufl., Pearson Studium, 2003
	Ross, Kurose: Computernetze, Pearson Studium, 2002

Modul: Rechnerkommunikation (5)

Modulbezeichnung	Rechnerkommunikation
(engl.)	(Computer Communication)
Semester	5
Verantwortlich	Prof. Dr. Günther
Dozent(in)	Prof. Dr. Günther
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 5. Semester
Curriculum	Studiengang "Informatik/E-Administration", Pflichtfach,
	3. Zwischensemester
Lehrform / SWS	$3(2 V + 0 \ddot{U} + 1 P)$
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4
Empfohlene	Programm- und Datenstrukturen, Objektorientierte Programmierung,
Voraussetzungen	Rechnernetze
Angestrebte	Die Studierenden kennen die Vor- und Nachteile der Protokolle IP,
Lernergebnisse	UDP und TCP und einfache Testmöglichkeiten für verteilte
	Anwendungen. Die Studierenden können einfache Protokolle für die
	Realisierung konkreter Aufgabenstellungen entwerfen und
	implementieren.
	Die Studierenden beherrschen die Programmierung verteilter
	Anwendungen mit der Socket-Bibliothek in C und Java sowie mit RMI
	und RPC. Die Studierenden kennen das Konzept und Realisierung von
	konkurrierenden Servern und deren Umsetzung in Java und C.
	Sie kennen die Komponenten verteilter objektorientierter Systeme und
	die Eigenschaften asynchroner Kommunikationsverfahren
Inhalt	Übersicht zu den Protokollen IP, UDP und TCP, Spezifikation von
	Anwendungsprotokollen (Szenarien, Zustandsübergangsdiagramme),
	Entwurf und Implementierung von Client-Server-Anwendungen
	Socket-Programmierung mit Java und C, RMI, Sun-RPC und XDR,
	Realisierung konkurrierender Server, Verteilte objektorientierte
G 11 1	Systeme, Message Passing Orientierte Verfahren,
Studien- und	T, K1
Prüfungsleistungen	
Medienformen	Beamer-Präsentation (und Animationen), Übungen an der Tafel,
T '.	Laborpraktikum
Literatur	Hughes, u.a.: Java Network Programming. Manning Publ., 1999
	W. Richard Stevens: TCP/IP illustrated, Band1, Addison-Wesley, 1994
	W.Richard Stevens: Programmieren von UNIX-Netzen, Hanser-Verlag,
	1992 Androw S. Tononhoum / Moorton von Stohon: Vortoilto Systema
	Andrew S. Tanenbaum / Maarten van Stehen: Verteilte Systeme.
	Pearson Studium, 2004

Vertiefungsmodul: Recht und Verwaltung - Unit: Verwaltungsrecht

Modulbezeichnung	Recht und Verwaltung
(engl.)	(Law and Administration)
Unitbezeichnung	Verwaltungsrecht
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Beck
Dozent(in)	Prof. Wiegand, Prof. Wollschläger, Prof. Beck, N.N
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Recht und Verwaltung",
Curriculum	Wahlfach;
Lehrform / SWS	2 SWS Vorlesung, 30 Studierende pro Semester
	$(2 \text{ V} + 0 \ddot{\text{U}} + 0 \text{P})$
Arbeitsaufwand	30h Präsenz und 45h Eigenstudium
Kreditpunkte	2,5 (Modul: 10CP)
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Die Studierenden verstehen die Grundkategorien des Verwaltungsrechts
Lernergebnisse	und die Rechtsanwendung in der Verwaltung. Sie sind in der Lage,
	öffentliches Recht von privatem Recht abzugrenzen und verfügen über
	grundlegende Kenntnisse des Verwaltungsrechts. In kleine Fälle können
	sich Studierenden hineindenken und diese bearbeiten.
Inhalt	Allgemeines und Besonderes Verwaltungsrecht als Teile des
	öffentlichen Rechts und Abgrenzung zum Privatrecht
	Rechtsquellen des Verwaltungsrechts
	Grundsatz der Gesetzmäßigkeit der Verwaltung
	Formen des Verwaltungshandelns, dabei Handeln in den verschiedenen
	Rechtsbereichen
	Verwaltungsakt - Begriffsmerkmale, Arten, Nebenbestimmungen
	Zusage, Zusicherung, Vorbescheid, vorläufiger Verwaltungsakt
	Zuständigkeiten, Verwaltungsverfahren und Form
	Fehlerhaftes Verwaltungshandeln, Fehlerfolgen
	Aufhebung von Verwaltungsakten
	Rechtsbehelfe gegen Verwaltungsentscheidungen
	Überblick: Vorverfahren - Klage - Vorläufiger Rechtsschutz
G . 1' 1	Kooperatives Verwaltungshandeln
Studien- und	Klausur K1 (90 min)
Prüfungsleistungen	
Medienformen	Overhead, Beamerslides
Literatur	Erbguth, Wilfried: Allgemeines Verwaltungsrecht.1. Aufl. Baden-
	Baden, 2005
	Detterbeck, Steffen: Allgemeines Verwaltungsrecht: mit
	Verwaltungsprozessrecht. 2. Aufl. Beck, 2004
	Schmidt-Assmann, Eberhard (Hrsg.): Methoden der
	Verwaltungsrechts 10. Raden Raden 2004, 423 S
	Verwaltungsrechts 10, Baden-Baden, 2004, 423 S. Wiegend, Berndt Begleitheft zum Verwaltungsrecht mit
	Wiegand, Bernd: Begleitheft zum Verwaltungsrecht mit
	Verwaltungsprozessrecht (SS 2005)

Vertiefungsmodul: Recht und Verwaltung - Unit: Rechtsanwendung

Modulbezeichnung	Recht und Verwaltung
(engl.)	(Law and Administration)
Unitbezeichnung	Rechtsanwendung
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Beck
Dozent(in)	Prof. Wiegand, Prof. Beck
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Recht und Verwaltung",
Curriculum	Wahlfach;
Lehrform / SWS	2 SWS Vorlesung, 30 Studierende pro Semester
	$(2 \text{ V} + 0 \ddot{\text{U}} + 0\text{P})$
Arbeitsaufwand	30h Präsenz und 45h Eigenstudium
Kreditpunkte	2,5 (Modul: 10CP)
Empfohlene	Keine
Voraussetzungen	
Angestrebte	Die Studierenden-als Nicht-Juristen- wurden in juristische Denk- und
Lernergebnisse	Arbeitsweisen eingeführt, so dass die Kommunikationsfähigkeit mit
	Juristen gestärkt wurde. Die Studierenden sind in der Lage
	Auslegungsmethoden in kleineren Sachverhalten anzuwenden, um sich
	dadurch eine gutachterliche Entscheidung zu erarbeiten
Inhalt	Überblick über die Rechtsordnung und Rechtsgebiete
	Funktion der Rechtsanwendung
	Erschließung von Rechtsquellen
	Arten und Strukturen von Rechtsnormen
	Grundlagen der Rechtsanwendung
	Auslegung
	Die juristische Subsumtion
	Analogie und Umkehrschluss
	Vermittlung von methodischem Wissen
	Techniken: Bescheidtechnik – Verfügungstechnik - Vermerke –
C. 1' 1	Falllösungsschemata, Gutachtentechnik
Studien- und	Testat
Prüfungsleistungen	V 1 1' · D OI' 1 E I'
Medienformen	Vorlesungsskript, Beamer-Slides, Folien
Literatur	Schwacke, Peter: Juristische Methodik : mit Technik der
	Fallbearbeitung. 4., neubearb. Aufl. Kohlhammer [u.a.] 2003
	Wiegand, B.: Begleitheft zum Verwaltungsrecht mit
	Verwaltungsprozessrecht (SS 2005)
	Rechtmäßigkeit des Verwaltungsaktes (Schema)
	Ablauf des Vorverfahrens (Schema)
	Erstbescheid mit Kostenfestsetzung
	Zurückweisender Widerspruchsbescheid

Vertiefungsmodul: Recht und Verwaltung - Unit: Datenschutz, Medien-, Urheberrecht

Modulbezeichnung	Recht und Verwaltung
(engl.)	(Law and Administration)
Unitbezeichnung	Datenschutz, Medien-, Urheberrecht
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Beck
Dozent(in)	Prof. Beck, N.N.
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Recht und Verwaltung",
Curriculum	Wahlfach;
Lehrform / SWS	2 SWS Vorlesung
	$(2V + 0\ddot{U} + 0P)$
Arbeitsaufwand	30h Präsenz und 45h Eigenstudium
Kreditpunkte	2,5 (Modul: 10CP)
Empfohlene	keine
Voraussetzungen	
Angestrebte	Die Studierenden verfügen über vertiefte Rechtskenntnisse unter
Lernergebnisse	Berücksichtigung des Rechtsverkehrs und der Rechtsordnung im
Zeineigeemsse	Internet. Sie sind in der Lage inhaltliche Kenntnisse des jeweiligen
	Fachgebietes anzuwenden und zu erläutern.
Inhalt	E-Government und Datenschutz:
	Rahmenbedingungen für den Datenschutz,
	Personenbezogene Daten im E-Government,
	Datenverarbeitung durch Dritte - Auftragsdatenverarbeitung und
	Funktionsübertragung,
	Informationsfreiheit im Rahmen von E-Government-Anwendungen
	Rechtsverkehr im Internet
	Vertragsabschluß, Zahlungsverkehr, elektronische Signatur,
	Verbraucherschutz, Haftung, Zivilprozessrecht
	Rechtsstellung der Beteiligten
	Verantwortung/ Haftung der Anbieter und Netzbetreiber,
	Vertragsgestaltung zwischen den Beteiligten;
	Rechtsordnung im Internet
	Supra-internationaler Rechtsrahmen,
	Zulassung und Aufsicht Tele-Mediendienste,
	Urheberrecht/ Vertragsrecht, Marken- u. Kennzeichnungsrecht,
	Wettbewerbsrecht
Prüfungsleistungen	Klausur K2 (120 min)
Medienformen	Overhead, Beamerslides
Literatur	Merx/Tandler/Hahn (Hrsg), Multimedia-Recht f. d. Praxis, Berlin 2002
	Determann, Lothar: Kommunikationsfreiheit im Internet,
	Freiheitsrechte und gesetzliche Beschränkungen. Baden-Baden 1999
	Boehme-Neßler, Volker: CyberLaw. Lehrbuch zum Internet-Recht,
	Berlin, 2001
	Werner Faulstich: Medienrecht. in Faulstich, W. (Hrsg.): Grundwissen
	Medien, 4. Aufl., München 2000, S. 67 - 77
	Michael Lehmann (Hrsg): Internet u. Multimedia-Recht, Stuttgart 1997

$\label{lem:condition} \begin{tabular}{ll} Vertiefungsmodul: Recht und Verwaltung - Unit: Prozesse politisch-administrativen Handelns \\ \end{tabular}$

Modulbezeichnung	Recht und Verwaltung
(engl.)	(Law and Administration)
Unitbezeichnung	Prozesse politisch-administrative Handelns
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Uthe
Dozent(in) Sprache	Prof. Uthe, N.N. Deutsch
Zuordnung zum Curriculum	Studiengang "Informatik", Vertiefung "Recht und Verwaltung", Wahlfach;
Lehrform / SWS	2 SWS Vorlesung
Leili 101111 / SWS	$(2V + 0\ddot{U} + 0P)$
Arbeitsaufwand	30h Präsenz und 45h Eigenstudium
Kreditpunkte	2,5 (Modul: 10CP)
Empfohlene	keine
Voraussetzungen	Reme
Lernziele/	Einblick in die Prozesse des politisch-administrativen Handelns und in
Kompetenzen	die notwendigen gesellschaftlichen Wandlungsprozesse. Die
1	Studierenden sollen ausgewählte Politikfelder in ihren interdisziplinären
	Bezügen analysieren, Problemlösungspotentiale aufzeigen und in ihren
	Wirkungen reflektieren können.
Inhalt	Einführung in Theorie des administrativen-politischen Systems und
	Entscheidungen und Handeln im PAS
	Politische Willensbildungs- und Entscheidungsprozesse
	Akteure und Instrumente
	Zusammenwirken von Verwaltung und nichtstaatlichen Akteuren
	Exemplarische Darstellung an ausgewählten Politikfeldern
	Policy-Analyse in einem ausgewählten Politikfeld (wie Verkehrs-,
	Finanz-, Wohnungsbaupolitik etc.)
	Empirische Erhebungen
Studien- und	Referat
Prüfungsleistungen	
Medienformen	Overhead, Beamerslides
Literatur	Paul Ackermann u.a.: Grundwissen Politik, Stuttgart /Düsseldorf
	/Leipzig,1995
	Irene Gerlach: Bundesrepublik Deutschland, Opladen, 2002
	Dieter Nohlen (Hrsg.): Lexikon der Politik, München, 2001
	Werner Süß (Hrsg.): Deutschland in den Neunziger Jahren. Politik und
	Gesellschaft zwischen Wiedervereinigung und Globalisierung, Opladen,
	2002
	Anthony Giddens: Sociology, 2002, 4. überarb. Auflage, Cambridge,
	2001
	Franz Josef Floren: Politische Strukturen und Prozesse in Deutschland,
	Paderborn, 2000

Modul: Sicherheit in Rechnernetzen (5)

Modulbezeichnung	Sicherheit in Rechnernetzen
(engl.)	(IT Security in Computer Networks)
Semester	5
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 5. Semester
Curriculum	
Lehrform / SWS	Vorlesung: 3 SWS, <= 55 Teilnehmer
	Labor: 1 SWS, <= 15 Teilnehmer
	$(3 \text{ V} + 0 \ddot{\text{U}} + 1 \text{ P})$
Arbeitsaufwand	60h Präsenzzeit, 60h Eigenstudium
Kreditpunkte	4
Empfohlene	Rechnernetze
Voraussetzungen	
Angestrebte	Die Studierenden erwerben Grundkenntnisse über Phasen, Methoden,
Lernergebnisse	Elemente und Werkzeuge für die System- und Netzwerksicherung und
	können diese in angemessenem Umfang anwenden. Desweiteren
	verfügen die Studierenden über Kenntnisse auf dem Gebiet des
	Sicherheitsmanagements/Sicherheitskonzeptionierung und auf dem
	Gebiet der Sicherheitsbewertungen/Sicherheitsevaluierung an
	ausgewählten Beispielen. Sie sind in der Lage von ihrem Wissen
	Gebrauch zu machen und es auf Fallstudien zu übertragen. Neben
	diesen Anwendungen, können die Studierenden auch Einsatz- und
	Anwendungsaufgaben kryptographischer Sicherheitsfunktionen und
	Sicherheitsprotokolle in ausgewählten Szenarien analysieren,
	bearbeiten, beurteilen und lösen.
Inhalt	Sicherheitsfunktionen, -mechanismen, -protokolle, -architekturen
	symmetrische und asymmetrische Krypto-Infrastrukturen und
	Wirksamkeitsmodelle der Kryptographie
	Sicherheitsinfrastrukturen (Key-Distr., Public-Key-Infrastrukturen),
	einschließlich gesetzlicher Grundlagen und Policies (z.B.
	Signaturgesetz/verordnung, Datenschutzgesetze)
	Kryptofunktionen, Kryptographische Protokolle u. Protokollanalyse
	Sicherheitskriterien zur Konstruktion und Bewertung
	vertrauenswürdiger Systeme (ITSEC, Common Criteria – ISO/IEC
	15408)
	Einsatz von Sicherheitssystemen (Firewall, Chipkarten, VPN, IDS,
	Wasserzeichen), Sicherheitsanwendungen
	Sicherheitsmanagement (insbes. Grundschutz BSI, ISO 17799).
Studien- und	Klausur K2 (120 min), Testat
Prüfungsleistungen	
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	Schneier: Angewandte Kryptographie, Addison-Wesley, 1996
	Menezes, v. Oorschot, Vanstone: Handbook of Applied Cryptography,
	CRC Press, 1996
	Anderson: Security Engineering, Wiley, 2001
	Eckert: IT-Sicherheit, Oldenbourg, 2006
L	/

BSI (Hrsg.in D): ITSEC, Common Criteria, IT-Grundschutz
RegTP: Maßnahmenkataloge, Signaturgesetz/verordg. SigG/SigV
Schäfer: Netzsicherheit - Algorithmische Grundlagen und Protokolle,
dpunkt, 2003
Schmeh: Kryptografie, dpunkt, 2007

Modul: Softwaretechnik-Teamprojekt (4+5)

3.6 1.11 1.1	
Modulbezeichnung	Softwaretechnik-Teamprojekt
(engl.)	(Softwareengineering - Team Project)
Semester	4. und 5.
Verantwortlich	Verschiedene Hochschullehrer
Dozent(in)	Verschiedene Hochschullehrer
Sprache	i. d. R. Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 4. und 5. Semester
Curriculum	
Lehrform / SWS	$4 \text{ SWS } (0 \text{ V} + 0 \ddot{\text{U}} + 4 \text{ P})$
Arbeitsaufwand	60h Präsenz, 120h Eigenstudium
Kreditpunkte	6
Empfohlene	Prüfungen des ersten Studienabschnittes mgl. erfolgreich bestanden
Voraussetzungen	
Angestrebte	Die Studierenden kennen die grundlegenden Methoden des
Lernergebnisse	Projektmanagements und der Projektdurchführung. Diese werden
	anhand wechselnder Themen unter Moderation eines Hochschullehrers
	so selbständig wie möglich erarbeitet. Die Studierenden nehmen dabei
	spezielle Rollen ein, innerhalb derer sie Aufgaben eigenverantwortlich,
	aber im Team, bearbeiten und zur Gesamtlösung beitragen.
Inhalt	themenabhängig
Studien- und	Testat nach 4. Semester;
Prüfungsleistungen	Entwurfsarbeit nach 5. Semester
Medienformen	Multimediasimulation, Tafelbild, Experiment
Literatur	themenabhängig, wird in den Teamprojekt-Sitzungen bekannt gegeben

$\label{lem:continuous} Vertiefungs modul: Software technik - Unit: Software technik - Methoden$

Modulbezeichnung	Softwaretechnik
(engl.)	(Softwareengineering)
Unitbezeichnung	Softwaretechnik-Methoden
Semester	4. oder 5. oder 6.
Verantwortlich	N.N., Prof. Dr. F. Stolzenburg
Dozent(in)	N.N., Prof. Dr. F. Stolzenburg
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Softwaretechnik", Wahlfach;
Curriculum	studiengung "mioniaum , vertierung "sottwareteenim , vaniaum,
Lehrform / SWS	$2.5 (1 \text{ V} + 1 \ddot{\text{U}} + 0.5 \text{ P})$
Arbeitsaufwand	37,5h Präsenzzeit, 52,5h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Einführung in die Softwaretechnik
Voraussetzungen	
Angestrebte	Die Studierenden haben weitergehende Methoden der Softwaretechnik
Lernergebnisse	erlernt und können diese anwenden. Sie sind in der Lage projekt-
	spezifische Testbewertungen oder formale Verfahren des Softwaretests
	durchzuführen.
Inhalt	Verfahren des Software-Tests und Test-Dokumentation
	Projektspezifische Testbewertungen
	Offshoring
	semi-formale und formale Software-Spezifikation und -Validierung
Studien- und	Testat, Klausur K1 (90min)
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung mit Beamerfolien, Laborpraktikum
Lteratur	Helmut Balzert: Lehrbuch der Software-Technik. Band 1+2.
	Heidelberg, Berlin: Spektrum Akademischer Verlag, 1998+2000.
	Mario Jeckle, Chris Rupp, Jürgen Hahn, Barbara Zengler, Stefan
	Queins: UML 2 glasklar. München, Wien: Carl Hanser, 2004.
	Ebert, C.; Dumke, R.; Bundschuh, M.; Schmietendorf, A.: Best
	Practices in Software-Measurement, Springer-Verlag, 06/2004
	Object Management Group, Inc. OMG Unified Modeling Language
	Specification, March 2003. Version 1.5. See also OMG's UML 2.0
	Specification Box.
	Peter H. Schmitt: UML and its Meaning. Vorlesungsskript.
	Wintersemester 2002/3.
	Pol, M.; Koomen, T.; Spillner, A.: Management und Optimierung des
	Testprozesses, dpunkt-Verlag
	Spillner, A.; Linz, T.: Basiswissen Softwaretest - Aus- und
	Weiterbildung zum Certified Tester, dpunkt-Verlag
	William E. P.; Randall W. R.: Die 10 goldenen Regeln des Software-
	Testens, verlag moderne industrie Buch AG & Co. KG, Bonn

Vertiefungsmodul: Softwaretechnik - Unit: CASE-Tools

Modulbezeichnung	Softwaretechnik
(engl.)	(Softwareengineering)
Unitbezeichnung	CASE-Tools
Semester	4. oder 5. oder 6.
Verantwortlich	N.N., Prof. Dr. F. Stolzenburg
Dozent(in)	N.N.
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Softwaretechnik", Wahlfach;
Curriculum	
Lehrform / SWS	$3(1 V + 1 \ddot{U} + 1 P)$
Arbeitsaufwand	45h Präsenzzeit, 75h Eigenstudium
Kreditpunkte	4 (Modul: 10CP)
Empfohlene	Programm- und Datenstrukturen, Mathematik / Statistik I+II
Voraussetzungen	
Angestrebte	Die Studierenden verfügen über sichere Kenntnisse in der
Lernergebnisse	objektorientierten Programmierung und über einen sicheren Umgang
	mit der Standardsoftware (Together or Rational Rose) unter
	Verwendung von UML. Sie sind in der Lage, Anwendungsaufgaben zu
	analysieren und zu bearbeiten.
Inhalt	JBuilder - Projekte
	Erzeugung eines Hilfesystems
	Rational Rose – Visuelle Programmierung
	Use Case Diagram, Class Diagram, Interaction Diagram,
Studien- und	Entwurfsarbeit
Prüfungsleistungen	
Medienformen	Seminaristische Vorlesung mit Beamerfolien
Lteratur	M. Neumann: Vorlesungsskripte
	"Rational Rose und UML" Galileo Computing

Vertiefungsmodul: Softwaretechnik - Unit: Konzepte von Programmiersprachen

Modulbezeichnung	Softwaretechnik
(engl.)	(Softwareengineering)
Unitbezeichnung	Konzepte von Programmiersprachen
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Bernhard Zimmermann
Dozent(in)	Prof. Dr. Bernhard Zimmermann
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Softwaretechnik", Wahlfach;
Curriculum	
Lehrform / SWS	$2.5 (1 \text{ V} + 1 \ddot{\text{U}} + 0.5 \text{ P})$
Arbeitsaufwand	37,5h Präsenz, 52,5h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Programm- und Datenstrukturen, Grundlagen der Informatik,
Voraussetzungen	Objektorientierte Programmierung, Theoretische Informatik
Angestrebte	Die Studierenden kennen wichtige Konzepte von Programmiersprachen
Lernergebnisse	diverser Programmierparadigmen und können diese hinsichtlich Einsatz
	und Effizienz beurteilen.
Inhalt	Imperative Programmierung, Funktionen, Prozeduren, Datentypen,
	Kontrollstrukturen, Modularisierung, Abstraktion, Objektorientierte
	Programmierung, Nebenläufigkeit und Parallelität, Funktionale und
	Logische Programmierung
Studien- und	Testat, Klausur K1
Prüfungsleistungen	
Medienformen	Folien, Tafel
Literatur	J. Mitchell, Concepts in Programming Languages, Cambridge
	University Press
	A. Fischer, F. Grodzinsky: The Anatomy of Programming Languages,
	Prentice-Hall
	R. Stansifer: Theorie und Entwicklung von Programmiersprachen,
	Prentice-Hall

Modul: System- und Organisationsmodelle (3)

Modulbezeichnung	System- und Organisationsmodelle
(engl.)	(Systems and Organisational Models)
Semester	3
Verantwortlich	Prof. DrIng. Hartmut Hensel
Dozent(in)	Prof. DrIng. Hartmut Hensel
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Pflichtfach, 3. Semester
Curriculum	
Lehrform / SWS	Vorlesung, 3 SWS, gesamte Studiengruppe
Arbeitsaufwand	Präsenzstudium: 45h Eigenstudium: 45h
Kreditpunkte	3
Empfohlene	Mathematik, insbesondere komplexe Zahlen, Differentialrechnung und
Voraussetzungen	Wahrscheinlichkeitslehre
Angestrebte	Die Studierenden können in Form von Signalen und Systemen denken.
Lernergebnisse	Sie haben die grundlegenden Beschreibungsformen für Signale und
	Systeme sowie die dahinter liegende Systemtheorie erlernt. Die
	Studierenden sind in der Lage, Systeme und Organisationsabläufe zu
	analysieren und mit geeigneten Modellen zu beschreiben.
Inhalt	Grundbegriffe Signal, System und Modell
	Allgemeine Verfahren zur Modellierung von Systemen
	Mathematische Beschreibung kontinuierlicher dynamischer Systeme
	mittels systemtheoretischen Methoden
	Mathematische Beschreibung zeitdiskreter dynamischer Systeme
	mittels systemtheoretischen Methoden
	Mathematische Beschreibung stochastischer Organisationsabläufe
	(Warteschlangen) mittels der Theorie der Zufallsprozesse.
Studien- und	K1
Prüfungsleistungen	
Medienformen	Tafel, Overhead, PC-Präsentation und -Simulation
Literatur	Bossel, Modellbildung und Simulation, Vieweg, 1992
	Eckert, Objektorientierte Modellierung offener verteilter Systeme,
	GMD-Bericht, Oldenbourg, 1994
	Werner, M.: Signale uns Systeme, Vieweg, 2000
	Wunsch, Schreiber, Stochastische Systeme, Springer, 1992
	Gal, Grundlagen des Operation Research, Teil 3, Springer, 1992

Modul: Theoretische Informatik - Unit: Einführung in die theoretische Informatik (4)

Modulbezeichnung	Theoretische Informatik
	(Theoretical Computer Science)
(engl.)	
Unitbezeichnung	Einführung in die theoretische Informatik 4
Semester	
Verantwortlich	Prof. Dr. Bernhard Zimmermann
Dozent(in)	Prof. Dr. Bernhard Zimmermann
Sprache	Deutsch
Zuordnung zum	Studiengang "Intelligente Automatisierungssysteme", Studienrichtung
Curriculum	Industrie-Informatik, Pflichtfach, 4. Semester;
	Studiengang "Informatik", Pflichtfach, 4. Semester
Lehrform / SWS	$2 \text{ SWS } (1 \text{ V} + 1 \ddot{\text{U}} + 0 \text{ P})$
Arbeitsaufwand	30h Präsenzstudium, 30h Eigenstudium
Kreditpunkte	2 (Modul: 5CP)
Voraussetzungen	keine
Lernziele/	Die Studierenden beherrschen ausgewählte Konzepte und Methoden der
Kompetenzen	theoretischen Informatik. Darüber hinaus können sie sich in Aufgaben
	hineindenken und in kleinerem Umfang bearbeiten und lösen.
Inhalt	Formale Sprachen und abstrakte Maschinen, Endliche Automaten und
	reguläre Sprachen, Kontextfreie Sprachen und Kellerautomaten,
	Berechenbarkeit und Komplexität
Studien- und	Klausur K1
Prüfungsleistungen	
Medienformen	Overhead, Whiteboard
Literatur	U. Schöning, Theoretische Informatik – kurzgefaßt, Spektrum Verlag
	I. Wegener, Theoretische Informatik – eine algorithmische Einführung,
	Teubner
	A. Asteroth, C.Baier: Theoretische Informatik, Pearson Studium
	, , , , , , , , , , , , , , , , , , , ,

Modul: Theoretische Informatik - Unit: Formale Methoden (6)

Modulbezeichnung	Theoretische Informatik
(engl.)	(Theoretical Computer Science)
Unitbezeichnung	Formale Methoden
Semester	6
Verantwortlich	Prof. Dr. B. Zimmermann
Dozent(in)	Prof. Dr. B. Zimmermann
Sprache	Deutsch
Zuordnung zum	Studiengang "Intelligente Automatisierungssysteme", Studienrichtung
Curriculum	"Industrie-Informatik", Pflichtveranstaltung 5. Semester;
	Studiengang "Informatik", Pflichtveranstaltung 6. Semester
Lehrform / SWS	$3 \text{ SWS } (2 \text{ V} + 0 \ddot{\text{U}} + 1 \text{ P})$
Arbeitsaufwand	45h Präsenzzeit, 45h Eigenstudium
Kreditpunkte	3 (Modul: 5CP)
Empfohlene	Programm- und Datenstrukturen, Algorithmen, Informatikgrundlagen,
Voraussetzungen	Einführung in die theoretische Informatik, Mathematik / Statistik I+II
Angestrebte	Die Studierenden verfügen über Kenntnisse in der Anwendung von
Lernergebnisse	Methoden der theoretischen Informatik im Bereich der
	Programmgenerierung aus Spezifikationen, im Speziellen der
	Syntaxanalyse. Sie besitzen Fähigkeiten im Umgang mit gängigen
	Programm-Generatoren und können kleinere Aufgaben durch
	Spezifikation lösen.
Inhalt	Analyseverfahren: lexikalische Analyse, LL- und LR-Methode,
	Fehlerbehandlung, Anwendung XML, Benutzung von Werkzeugen:
	LEX und YACC
Studien- und	Klausur K2, Testat
Prüfungsleistungen	
Medienformen	Overhead, Whiteboard
Literatur	A. Aho, R. Sethi, J. Ullman: Compilers: Principles, Techniques, and
	Tools, Addison-Wesley
	N. Fischer, R. LeBlanc: Crafting a Compiler, Benjamin/Cummings
	G. Goos: Vorlesungen über Informatik, Band 3: Berechenbarkeit,
	formale Sprachen, Spezifikationen, Springer
	H. Herold: lex und yacc, Addison-Wesley

Vertiefungsmodul: Vernetzte Unternehmen - Unit: Vernetzte Unternehmen I

Modulbezeichnung	Vernetzte Unternehmen
(engl.)	(Distributed Application Infrastructures)
Unitbezeichnung	Vernetzte Unternehmen I
Semester	4. oder 5. oder 6.
Verantwortlich	
	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Vernetzte Unternehmen",
Curriculum	Wahlfach;
Lehrform / SWS	$2 \text{ SWS } (1\text{V} + 1\ddot{\text{U}} + 0\text{P})$
Arbeitsaufwand	30h Präsenzzeit, 60h Eigenanteil
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Rechnernetze, PDS, Einf. DB, Einf. SW-Technik
Voraussetzungen	
Angestrebte	Die Studierenden haben einen Überblick über Enterprise Application
Lernergebnisse	Integration (EAI) in verschiedenen Anwendungsszenarien und sind in
_	der Lage, Prinzipien und Beispiele für EAI aufzuzeigen. Als eine
	Anwendung von EAI-Architekturen, verfügen die Teilnehmer über
	vertieftes Wissen bzgl. der Strukturen für "Electronic-Shop-Systeme"
	(n-tier-Architekturen) und können Entwicklungsprinzipien an diesem
	Beispiel erläutern und beurteilen.
	Desweiteren verfügen die Studierenden über grundlegende Kenntnisse
	der Sprache XML und deren Einsatzbereich und Anwendung, sowie
	über den Aufbau von XML-Anwendungen.
Inhalt	Prinzipien und Beispiele für EAI (Electronic-Shop-Systeme, n-tier-
	Architekturen, Vergleich zu eGovernment-Systemen), Einführung in
	XML und den Aufbau von XML-Anwendungen
Studien- und	Klausur K1 (90 min), Testat
Prüfungsleistungen	Thusbur III (50 mm), 105th
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	Intershop Enfinitiy V6 Dokumentation, Intershop 2005
	Kaib: Enterprise Application Integration . Grundlagen,
	Integrationsprodukte, Anwendungsbeispiele, Deutscher Universitäts-
	Verlag, 2002
	Harold, Means: XML In A Nutshell, O'Reilly, 2001
	McLaughlin B.: Java & XML, O'Reilly, 2002
	Eberhart, Fischer: Web Services, Hanser 2003
	Wöhr: Web-Technologien, dpunkt, 2004
	Zimmermann, Tomlinson, Peuser: Perspectives on Web Services
	Springer, 2003

Vertiefungsmodul: Vernetzte Unternehmen - Unit: Vernetzte Unternehmen II

Modulbezeichnung	Vernetzte Unternehmen
(engl.)	(Distributed Application Infrastructures)
Unitbezeichnung	Vernetzte Unternehmen II
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Vernetzte Unternehmen",
Curriculum	Wahlfach;
Lehrform / SWS	$3 \text{ SWS } (1\text{V} + 1\ddot{\text{U}} + 1\text{P})$
Arbeitsaufwand	45h Präsenz, 45h Eigenanteil
Kreditpunkte	3 (Modul: 10CP)
Angestrebte	Die Studierenden können Prinzipien und Architekturen von Middleware
Lernergebnisse	für Groupware- und Workflowmanagementsysteme aufzeigen. Am
_	Beispiel "Lotus Notes" haben die Teilnehmer ein wichtiges
	Einsatzbeispiel in verschiedenen Einsatzszenarien erlernt und können
	dieses anwenden.
	Durch Einsatz von Java Enterprise Beans (J2EE) sind die Studierenden
	nun befähigt, verteilte Anwendungen (für ausgewählte Beispiele), z. B.
	für Middleware-Systeme im Bereich von Groupware und E-
	Commerce/E-Government, zu entwickeln.
Inhalt	Prinzipien, Architekturen und Einsatzbeispiele samt Anwendungs-
	integration für Workflowmanagementsysteme (Lotus Notes in
	verschiedenen Einsatzszenarien)
	Verteilte Anwendungen mit Java Enterprise Beans entwickeln
	(Beispiel: E-Commerce/E-Government)
Studien- und	Klausur K1 (90 min), Testat
Prüfungsleistungen	
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	Kolm et al.: Lotus Notes 6 und Domino - Arbeiten im Team, arbeiten
	im Web, 2003
	Intershop Enfinitiy V6 Dokumentation, Intershop 2005
	Langner: Verteilte Anwendungen mit Java . Enterprise-Architekturen
	im Web mit CORBA, XML/SOAP, JSP, (E)JB,Markt+Technik, 2002
	Langner: Web-basierte Anwendungsentwicklung Spektrum
	Akademischer Verlag, 2004
	Langner, Reiberg: J2EE mit JBoss, m. CD-ROM von Addison-Wesley, 2005
	Wöhr: Web-Technologien, dpunkt, 2004
	Zimmermann, Tomlinson, Peuser: Perspectives on Web Services
	Springer, 2003
	opringer, 2003

Vertiefungsmodul: Vernetzte Unternehmen - Unit: Vernetzte Unternehmen III

N. 1. 11 1	77
Modulbezeichnung	Vernetzte Unternehmen
(engl.)	(Distributed Application Infrastructures)
Unitbezeichnung	Vernetzte Unternehmen III
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Hermann Strack
Dozent(in)	Prof. Dr. Hermann Strack
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Vernetzte Unternehmen",
Curriculum	Wahlfach;
Lehrform / SWS	$3 \text{ SWS } (1\text{V} + 1\ddot{\text{U}} + 1\text{P})$
Arbeitsaufwand	45h Präsenz, 75h Eigenanteil
Kreditpunkte	4 (Modul: 10CP)
Angestrebte	Die Studierenden verfügen über vertiefte Kenntnisse in IT-
Lernergebnisse	Applikationsinfrastrukturen und deren Funktionen für hochintegrierte
	(verteilte bzw. vernetzte) Applikationen für verschiedene
	Anwendungsszenarien. Die Studierenden können kriterienorientiert an
	Beispielen beurteilen, wie komplexe Anwendungsszenarien mittels
	solcher Applikationsinfrastrukturen geeignet und wiederverwendbar
	abgebildet, entwickelt, administriert und betrieben werden können.
Inhalt	Werbeinfrastrukturen im Internet - Identity & Access Management,
	Accounting - Verzeichnisdienste - Zahlungssysteme im Internet
	Kartensysteme und Anwendungen -
	Netzwerkinfrastrukturen und Applikationen (P2P, Load Balancing,
	Location based Services, mobile Anwendungen auf GMS/UTMS, JINI,
	WLAN und Anwendungen, Web Services) - Application Service
	Providing - Multimediale Dienste & Sicherheit - Elektronische
	Wahlen/Abstimmungen - E-Commerce-
	Portale/Anwendungen/Standards -
	E-Government-Portale/Anwendungen/Standards - ERP-Systeme
Studien- und	Referat, Hausarbeit, Labortestat
Prüfungsleistungen	
Medienformen	Laptop+Beamer, Tafel, Laborgeräte
Literatur	Deutscher Multimediaverband: www.dmmv.de
	Zeitschrift Wirtschaftsinformatik
	CyberCash GmbH: www.cybercash.de
	TeleCash GmbH: Website; http://www.telecash.de
	Rankl, Effing: Handbuch der Chipkarten, Hanser, 2002
	LNCS 2819: Technologies for E-Services, Springer, 2003
	Merz: E-Commerce und E-Business, dpunkt 2002
	Teichmann, Lehner: Mobile Commerce, Springer, 2002
	Lehner: Mobile und drahtlose Informationssysteme. Technologien,
	Anwendungen, Märkte, Springer, 2003
	Kou: Payment Technologies for E-Commerce, Springer, 2003
	Nekolar: e-procurement, Springer, 2003
	Langner:Web-basierte Anwendungsentwicklung Spektrum
	Akademischer Verlag, 2004
	Wöhr: Web-Technologien, dpunkt, 2004
	Zimmermann, Tomlinson, Peuser: Perspectives on Web Services

Springer, 2003
Normore /1113
13171111201. 200.7

| Springer, 2003 | Vertiefungsmodul: Verteilte Automatisierungssysteme - Unit: Industrielle Kommunikationssysteme

Modulbezeichnung	Verteilte Automatisierungssysteme
(engl.)	(Distributed Automation Systems)
Unitbezeichnung	Industrielle Kommunikationssysteme
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. Dr. Günther
Dozent(in)	Prof. Dr. Günther
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Verteilte Automatisierungs-
Curriculum	systeme", Wahlfach;
Lehrform / SWS	2 SWS Vorlesung , 0,5 SWS Labor
	$(2 \text{ V} + 0 \ddot{\text{U}} + 0.5 \text{ P})$
Arbeitsaufwand	37,5h Präsenzzeit, 52,5h Eigenstudium
Kreditpunkte	3 (Modul: 10CP)
Empfohlene	Digitale Systeme, Mikrocomputertechnik, Kommunikationsnetze,
Voraussetzungen	Programm- und Datenstrukturen
Angestrebte	Die Studierenden kennen die Randbedingungen und Prinzipien der
Lernergebnisse	Kommunikation in industriellen Kommunikationssystemen. Sie können
	die Vor- und Nachteile von Zugriffs- und Übertragungsverfahren bei
	seriellen Bussystemen beurteilen. Außerdem sind Sie in der Lage,
	einfache Programme zum Zugriff auf Baugruppen in Bussystemen zu
	entwickeln und mit einfachen Mitteln zu testen.
	Die Studierenden kennen die Vor- und Nachteile der Anwendung von
	Internet-Protokollen für den Echtzeitbetrieb.
Inhalt	Randbedingungen für Bussysteme, Protokolle, Dienste,
	Schichtenmodell für Bussysteme, Basisfunktionen (Arbitrierung,
	Synchronisation, Alarmbehandlung, Fehlererkennung und -
	behandlung), Anwendungsschichten und Profile;
	Feldbussysteme (CAN, Profibus)
	Industrial Ethernet und Internet-Protokolle
Studien- und	Testat, K1 (Klausur 90 Minuten)
Prüfungsleistungen	
Medienformen	Overhead, Whiteboard, PC-Präsentation/-animationen
Literatur	W. Lawrenz: CAN. Hüthig, 2. Aufl. 1997
	B. Reißenweber: Feldbussysteme zur industriellen Kommunikation.
	Oldenbourg Industrieverlag, München, 2002

$Vertiefungsmodul: Verteilte \ Automatisierungssysteme \ - \ Unit: Steuerungssysteme$

Modulbezeichnung	Verteilte Automatisierungssysteme
(engl.)	(Distributed Automation Systems)
Unitbezeichnung	Steuerungssysteme
Semester	4. oder 5. oder 6.
Verantwortlich	Prof. DrIng. René Simon
Dozent(in)	Prof. DrIng. René Simon
Sprache	Deutsch
Zuordnung zum	Studiengang "Informatik", Vertiefung "Verteilte Automatisierungs-
Curriculum	systeme", Wahlfach;
Lehrform / SWS	Vorlesung: 2SWS, Teilnehmerzahl <=12
	Praktikum: 0,75SWS, Teilnehmerzahl <=12
Arbeitsaufwand	Präsenzstudium: 41,25h
	Eigenstudium: 63,75h
Kreditpunkte	3,5 (Modul: 10CP)
Empfohlene	Einführung in die Logik und Mengenlehre, Digitale Systeme,
Voraussetzungen	Grundlagen Informatik
Angestrebte	Die Studierenden verstehen den Aufbau, die Funktionsweise, die
Lernergebnisse	Programmierung und den Einsatz Speicherprogrammierbarer
	Steuerungen (SPSen). In den Laborpraktika wenden die Studierenden
	ihr erworbenes Wissen an.
Inhalt	Einführung (Automatisierungssystem, Weltmarkt für SPS)
	Theoretische Grundlagen
	Aufbau und Funktionsweise von SPSen
	Textuelle und graphische Programmiersprachen
	SIMATIC S7
Studien- und	T, K1
Prüfungsleistungen	
Medienformen	Folien (Präsentation, Datei), Vorführungen Entwicklungssoftware /
	SPS-Hardware (Projektdateien)
Literatur	Grötsch, E. E.: SPS, Speicherprogrammierbare Steuerungen als
	Bausteine verteilter Automatisierung, 5., überarbeitete Auflage,
	Oldenbourg Industrieverlag GmbH, München, ISBN 3-486-27043-5,
	2004.
	Neumann, P.; Grötsch, E.; Lubkoll, C.; Simon, R.: SPS-Standard:
	IEC61131, Programmierung in verteilten Automatisierungssystemen, 3.
	Auflage, R. Oldenbourg Verlag München, 2000.

$Vertiefungsmodul:\ Verteilte\ Automatisierungssysteme\ -\ Unit:\ Prozessleittechnik$

Vantailta Automoticiomen gagyatama
Verteilte Automatisierungssysteme
(Distributed Automation Systems)
Prozessleittechnik
4. oder 5. oder 6.
Prof. DrIng. Hartmut Hensel
Prof. DrIng. Hartmut Hensel, DrIng. Norbert Weinrich
Deutsch
Studiengang "Informatik", Vertiefung "Verteilte Automatisierungs-
systeme", Wahlfach;
$2,75 (2 V + 0 \ddot{U} + 0,75 P)$
Vorlesung: 2 SWS, Gesamtgruppe
Labor: 0,75 SWS, aufgetrennt in Gruppen von max. 16 Personen
Präsenzstudium: 41,25h
Eigenstudium: 63,75h
3,5 (Modul: 10CP)
Informatikgrundlagen, Digitale Systeme, Rechnernetze,
Rechnerkommunikation
Die Studierenden haben grundlegende Strukturen und Anforderungen in
der Prozessleittechnik erlernt. Sie verstehen die Systemarchitekturen
und die Gründe für die Wahl solcher Architekturen. Sie haben die
typischen Funktionen der Prozessleitsysteme kennengelernt und können
diese Systeme gemäß entsprechender Vorgaben auslegen.
Basismodelle der Leittechnik
Hardware und Softwarestrukturen von Leitsystemen
Automatisierungsfunktionen
Prozessvisualisierung
System-Engineering
Generelle Aspekte (z.B. Sicherheit, Explosionsschutz)
T, K1
Tafel, Overhead, PC-Präsentation, reales Prozessleitsystem
Polke M.: Prozessleittechnik, Oldenbourg Verlag, 1994
Strohrmann, G.: Automatisierungstechnik 1, Oldenbourg Verlag, 1998
Strohrmann, G.: Automatisierungstechnik 2, Oldenbourg Verlag, 1996
Johannsen, G.: Mensch-Maschine-Systeme, Springer Verlag, 1993
Ahrens, W.; Scheurlen, HJ.; Spohr, GU.: Informationsorientierte
Leittechnik, Oldenbourg Verlag, 1997
Süss, G.: Prozessvisualisierungssysteme, Hüthig Verlag, 2000
Schuler, H. (Herausg.): Prozessführung, Oldenbourg Verlag, 1999