AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (Cancelled)
- 2. (Previously Presented) A method of modulating a digital signal of width L in frequency on a given useful frequency band comprising:

separating the digital signal into N blocks b_n (1 \leq n \leq N),

splitting the given useful frequency band into N contiguous parts P_n,

defining channels C_n , of width I_n in frequency, lying within an associated part P_n , the channels C_n being separated, and

distributing each block of digital signals b_n over the associated channel C_n,

wherein the channels C_n are defined by taking account of a predetermined minimum distance between the channels to allow a predetermined maximum number of blocks to be affected by the phenomenon of flat fading,

wherein the predetermined minimum distance between the channels is determined as a function of the number N of channels, of their width I_n , and of a mean width of the frequency band affected by the phenomenon of flat fading.

3. (Cancelled)

4. (Previously Presented) The method of modulation as claimed in the claim 2, wherein the minimum distance is determined such that a minority of channels C_n are affected by the phenomenon of flat fading.

Application No.: 10/539,622 Docket No.: 4590-425

5. (Previously Presented) The method of modulation as claimed in the claim 2, wherein the channels C_n are of identical widths equal to an Nth of the width of the digital signal L: $I_n = L/N$, $\forall 1 \le n \le N$.

6. (Previously Presented) The method of digital modulation as claimed in the claim 2 wherein:

the digital signal is separated into N = 2 blocks b_n ,

the given useful frequency band is split into N = 2 parts P_n ,

the first block b_1 is distributed over a channel C_1 of width L/2 lying within the first part P_1 of the given useful frequency band and the second block b_1 is distributed over a channel C_2 of width L/2 lying within the second part P_2 of the given useful frequency band.

- 7. (Previously Presented) The method of modulation as claimed in the claim 2, wherein the given useful frequency band is the FM band.
- 8. (**Currently amended**) A modulator of digital signals over a given useful frequency band implementing the method of modulation as claimed in claim 2, comprising:

means of separation of for separating the digital signal into N blocks b_n $(1 \le n \le N)$,

means of splitting of for splitting the given useful frequency band into N contiguous parts P_{n} .

means of definition of for defining channels C_n of width I_n in frequency, lying within the associated part P_n ,

means of distributing of for distributing each block of digital signals b_n over the associated channel C_n .

9. (Previously Presented) A demodulator of digital signals conveyed on a given useful frequency band by a transmitter comprising a modulator as claimed in claim 8, comprising:

means of scanning of the N channels C_n enabling reading of the N blocks b_n of signals distributed over these channels,

means of recombination of the N blocks read \hat{b}_n in the N channels C_n into a digital signal $\hat{s}[m]$.

- 10. (Previously Presented) A transmitter of digital signals on a given useful frequency band comprising at least one transmission chain comprising a modulator as claimed in claim 8, wherein the transmission chain comprises an error corrector coder conveying the coded digital signal $c^q[m]$ to the modulator.
- 11. (Previously Presented) The transmitter as claimed in the claim 10, wherein the transmission chain comprises an interleaver placed between the error corrector coder and the modulator.
- 12. (Previously Presented) The transmitter as claimed in the claim 10, wherein a distinct set of channels $\{C_n^q\}$ is associated with each of the Q transmission chains.
- 13. (**Currently Amended**) A receiver of digital signals conveyed on a given useful frequency band by a transmitter as claimed in claim 10 comprising:

a demodulator comprising

means for scanning of the N channels C_n enabling reading of the N blocks b_n of signals distributed over these channels; and

Application No.: 10/539,622 Docket No.: 4590-425

wherein a decoder associated with a errorthe error corrector coder of the transmitter receiving the digital signal recombined $\hat{s}[m]$ by the demodulator,

wherein the given useful frequency band is the FM band.

14. (**Currently Amended**) A receiver of digital signals conveyed on a given useful frequency band by a transmitter as claimed in claim 11 comprising:

a demodulator comprising

means for scanning of the N channels C_n enabling reading of the N blocks b_n of signals distributed over these channels; and

means for recombination of the N blocks read \hat{b}_n in the N channels C_n into a digital signal $\hat{s}[m]$,

a demodulator, wherein

- a deinterleaver associated with [[a]]the interleaver of the transmitter receiving the digital signal recombined $\hat{s}[m]$ by the demodulator,
- a decoder associated with [[a]]an error corrector coder of the transmitter receiving the digital signal recombined deinterleaved $\hat{c}[m]$ by the deinterleaver,

wherein the given useful frequency band is the FM band.

- 15. (Previously Presented) Use of the transmitter as claimed in claim 10 or conveying digital signals in the FM band.
 - 16. (Cancelled)
 - 17. (Cancelled)
 - 18. (Cancelled)