18 | Compactification

18.1 Proposition. Let X be a topological space. If there exists an embedding $j: X \to Y$ such that Y is a compact Hausdorff space then there exists an embedding $j_1: X \to Z$ such that Z is compact Hausdorff and $\overline{j_1(X)} = Z$.

18.2 Definition. A space Z is a *compactification* of X if Z is compact Hausdorff and there exists an embedding $j: X \to Z$ such that $\overline{j(X)} = Z$.

18.3 Corollary. Let X be a topological space. The following conditions are equivalent:

- 1) There exists a compactification of X.
- 2) There exists an embedding $j: X \to Y$ where Y is a compact Hausdorff space.

Proof. Follows from Proposition 18.1.

18.4 Example.

18.5 Example.

18.6 Example.

18.7 Theorem . A spa <i>T</i> _{31/2} -space).	uce X has a compactificat	tion if and only if X is c	completely regular (i.e. it is a

18.9 Definition. Let X be a completely regular space and let $j_X: X \to \prod_{f \in C(X)} [0,1]$ be the embedding defined in the proof of Theorem 18.7 and let $\beta(X)$ be the closure of $j_X(X)$ in $\prod_{f \in C(X)} [0,1]$. The compactification $j_X: X \to \beta(X)$ is called the $\check{C}ech$ -Stone compactification of X.

18.10 Definition. Let X be a space and let $i_1: X \to Y_1$, $i_2: X \to Y_2$ be compactifications of X. We will write $Y_1 \ge Y_2$ if there exists a continuous function $g: Y_1 \to Y_2$ such that $i_2 = gi_1$:

18.11 Proposition. Let $i_1: X \to Y_1$, $i_2: X \to Y_2$ be compactifications of a space X.

1) If $Y_1 \ge Y_2$ then there exists only one map $g: Y_1 \to Y_2$ satisfying $i_2 = gi_1$. Moreover g is onto.

2) $Y_1 \ge Y_2$ and $Y_2 \ge Y_1$ if and only if the map $g: Y_1 \to Y_2$ is a homeomorphism.

Proof. Exercise.

18.12 Theorem. Let X be a completely regular space and let $j_X \colon X \to \beta(X)$ be the Čech-Stone compactification of X. For any compactification $i \colon X \to Y$ of X we have $\beta(X) \geq Y$.

18.13 Lemma. If $f: X_1 \to X_2$ is a continuous map of compact Hausdorff spaces then $f(\overline{A}) = \overline{f(A)}$ for any $A \subseteq X_1$.

Proof. Exercise. □

18.19 Theorem. Let X be a non-compact topological space.	The following conditions are equivalen	nt:		
1) The space X is locally compact and Hausdorff.				
2) There exists a one-point compactification of X.				
18.20 Corollary. If X is a locally compact Hausdorff space then X is completely regular.				
<i>Proof.</i> Follows from Theorem 18.7 and Theorem 18.19.	I			

18.21 Corollary. Let X be a topological space. The following conditions are ed	quivalent:
1) The space X is locally compact and Hausdorff.	
2) There exists an embedding $i: X \to Y$ where Y is compact Hausdorff spaces set in Y .	te and $i(X)$ is an open
18.22 Proposition. Let X be a non-compact, locally compact space and let $j: X$ – compactification of X . For every compactification $i: X \to Y$ of X we have $Y \ge X$	
Proof. Exercise.	