Baze de date

Universitatea "Transilvania" din Brasov

Lect.dr. Costel Aldea costel.aldea@gmail.com

- Asigurarea independenței fizice și logice a datelor impune adoptarea unei arhitecturi organizată pe cel puțin 3 nivele
- Arhitectura ANSI/SPARC este adoptată de majoritatea sistemelor moderne de baze de date. Ea este organizată astfel:
 - **nivelul intern** (baza de date fizică) se referă la modul fizic în care sunt stocate datele
 - **nivelul conceptual** este cel mai apropiat de utilizatori și se referă la modul în care aceștia pot vedea datele
 - **nivelul extern** este nivelul de interfață dintre celelalte două

- □ Avem
 - o vedere conceptuală
 - vederea internă corespunzătoare
 - două vederi externe, una pentru un utilizator PL/I și alta pentru un utilizator COBOL

- □ La nivel conceptual, baza de date conţine informaţii referitoare la o entitate numită EMPLOYEE. Fiecare apariţie din EMPLOYEE are
 - EMPLOYEE_NUMBER (6 caractere)
 - DEPARTMENT_NUMBER (4 caractere)
 - SALARY (10 cifre)
- □ La nivel intern, angajatii sunt reprezentaţi printr-o înregistrare numită STORED_EMP (20 de octeţi)
 - Prefix care conţine informaţie de control 6 octeţi
 - 3 câmpuri de date corespunzătoare celor trei proprietăți ale angajaților

```
□ Nivelul extern 1 (PL/I)
     DCL 1 EMPP,
          2 EMP# CHAR(6)
          2 SAL FIXED BIN(31);
□ Nivelul extern 2 (COBOL)
     01 EMPC.
        02 EMPNO PIC X(6).
        02 DEPTNO PIC X(4).
```

□ Nivelul conceptual

```
EMPLOYEE
```

EMPLOYEE NUMBER CHARACTER (6)

DEPARTMENT NUMBER CHARACTER (4)

SALARY NUMERIC (5)

□ Nivelul intern

```
STORED EMP LENGTH=20
```

PREFIX TYPE=BYTE(6),OFFSET=0

EMP# TYPE=BYTE(6),OFFSET=6,INDEX=EMPX

DEPT# TYPE=BYTE(4),OFFSET=12

PAY TYPE=FULLWORD, OFFSET=16

- □ Utilizatorul PL/I are o vedere externă a bazei de date în care fiecare angajat este reprezentat printr-o înregistrare PL/I care conţine două câmpuri
- □ Numărul departamentului nu prezintă interes pentru acest utilizator și a fost omis din vedere
- □ Tipul de înregistrare a fost definit printr-o structură obișnuită PL/I, conform regulilor acestui limbaj

- □ Utilizatorul COBOL are o vedere externă în care fiecare angajat este reprezentat printr-o înregistrare COBOL care conţine tot două câmpuri. De această data a fost omis salariul
- □ Înregistrarea COBOL a fost definită printr-o descriere tipică, conform regulilor acestui limbaj
- □ Corespondența între câmpurile de pe cele 3 nivele se face prin *mapare*, o operație realizată de sistemele relaționale

Obiectivul arhitecturii cu
3 nivele este separarea
vederii fiecărui
utilizator asupra bazei
de date de modul în care
este ea reprezentată fizic

- □ Este reprezentarea fizică a bazei de date pe calculator
- □ Descrie *CUM* sunt stocate datele în baza de date
- □ Nivelul intern (baza de date fizică) este o colecție de fișiere conținând datele fizice la care se adaugă diverse structuri auxiliare menite să asigure accesul operativ la date

- □ Structurile auxiliare pot fi
 - directoare
 - indecşi
 - pointeri
 - tabele de dispersie
- Modul de organizare a bazei de date fizice este în mare măsură influențat de
 - configurația echipamentelor hardware care suportă baza de date
 - sistemul de operare

- Schimbarea sistemului de operare sau modificări în configurația hardware pot atrage modificări ale bazei de date fizice
- □ Dacă este satisfăcută condiția de independență fizică, aceste modificări în nivelul intern al bazei de date nu vor afecta nivelele superioare ale acesteia

- □ Nivelul intern tratează chestiuni cum ar fi:
 - alocarea spaţiului de stocare pentru date şi indecşi
 - descrierea înregistrărilor pentru stocare (cu dimensiunile de stocare pentru date)
 - plasarea înregistrărilor
 - tehnici de comprimare a datelor şi de codificare a acestora

- □ *Vederea internă* este o reprezentare la nivelul de jos a întregii baze de date
- □ Constă dintr-o colecție de *înregistrări interne* (*internal records*)
- □ Vederea internă este diferită de nivelul fizic deoarece nu lucrează în mod direct cu *blocuri* sau pagini – unitățile de intrare / ieşire care, în mod obișnuit, au 1K, 2K sau 4K

- □ Vederea internă este descrisă de schema internă care
 - Definește diferitele modalități de stocare a datelor
 - Specifică indecşii, reprezentarea câmpurilor, care este secvenţa fizică din fiecare înregistrare etc.

- În anumite situații excepționale, programelor aplicație în particular aplicațiilor de natură utilitară li se permite să opereze direct la nivelul intern în loc de nivelul extern din considerente de performanță
- □ Această practică nu este recomandată pentru că
 - prezintă riscuri de securitate
 - prezintă riscuri de integritate
 - programul este dependent de date

- □ Este o vedere generală a bazei de date
- □ Acest nivel descrie *CE* date sunt stocate în bază de date și *RELAȚIILE* dintre acestea
- □ Conține *structura logică* a bazei de date, așa cum este ea văzută de administratorul bazei de date
- Fiecare bază de date are un model conceptual propriu prin care sunt numite şi descrise toate entitățile logice din baza de date împreună cu legăturile dintre acestea

- □ Vederea conceptuală este o reprezentare a întregului conţinut al bazei de date într-o formă care este abstractă în comparaţie cu modul fizic de stocare a datelor
- □ Este, de asemenea, diferită de modul în care datele sunt vizualizate de un anumit utilizator
- □ Vederea conceptuală se vrea a fi o vedere a datelor "așa cum sunt ele în realitate", în comparație cu modalitățile de vizualizare la care sunt constrânși utilizatorii

□ Vederea conceptuală constă dintr-o colecție de *înregistrări conceptuale* (*conceptual records*). Reprezintă o imagine completă a cerințelor organizației privind datele

Exemple

În descrierea bazei de date a unei societăți comerciale pot apărea concepte ca: angajat, produse, furnizor, beneficiar etc.

- □ Modelul conceptual *integrează vederile tuturor utilizatorilor* asupra bazei de date, fiind rezultatul unui compromis între cerințele diferiților utilizatori
- □ Nivelul conceptual reprezintă:
 - toate entitățile, atributele și relațiile dintre ele
 - constrângeri asupra datelor
 - informații semantice asupra datelor
 - informații privind securitatea și integritatea

- □ Vederea conceptuală este definită prin intermediul *schemei* conceptuale
- □ Aceasta include definiţiile diverselor tipuri de înregistrare conceptuale
- □ Vederea conceptuală este o vedere a întregului conţinut al bazei de date, iar schema conceptuală este o definiţie a acestei vederi
- □ Definițiile din schema conceptuală includ un număr mare de caracteristici adiționale, cum sunt regulile de securitate și integritate

- □ Reprezintă *vederea utilizatorului* asupra bază de date
- □ Acest nivel descrie acea parte a bazei de date care este relevantă pentru fiecare utilizator
- □ Este ceea ce vede acesta din baza de date, sau modul cum vede acesta baza de date
- ☐ Modelul extern este derivat din cel conceptual dar poate avea deosebiri substanțiale față de acesta

- □ Prin vederile externe utilizatorii au acces doar la părți bine definite din baza de date, fiindule ascunse părțile care nu îi interesează
- □ Prin modelul extern se realizează independența logică a datelor
- □ Fiecărei vederi îi corespunde o descriere în termenii entităților logice din modelul conceptual

□ Diferite vederi pot avea reprezentări diferite ale acelorași date

Exemplu

Un utilizator poate vedea datele calendaristice în format an-lună-zi, altul le poate vedea ca zi-lună-an

□ Vederile pot include chiar date combinate sau derivate din entități diferite

Limbajele bazelor de date

- □ Limbajele bazelor de date sunt împărțite în 2 categorii
 - limbaje de definire a datelor (**DDL**)
 - limbaje de manipulare a datelor (**DML**)
- □ DDL este utilizat pentru a specifica schema bazei de date
 - Exemplu instrucţiunile DECLARE scrise in PL/I sunt de tip DDL
- □ DML este utilizat pentru citirea și reactualizarea bazei de date
 - Exemplu instrucțiunile executabile scrise in PL/I, care transferă date din baza de date sunt de tip DML

Limbajele bazelor de date

- Aceste limbaje sunt numite **sublimbaje de date** deoarece ele nu includ construcții pentru toate necesitățile de calcul, cum sunt cele asigurate de limbajele de nivel înalt
- Multe SGBD au o facilitate de încorporare a sublimbajului într-un limbaj de programare de nivel înalt, cum sunt COBOL, Pascal, C, etc. În acest caz, limbajul de nivel înalt se numeşte *limbaj gazdă*
- □ Pentru a compila fișierul încorporat, mai întâi comenzile specifice sublimbajului de date sunt înlocuite prin apeluri de funcții
- Apoi fișierul preprocesat este compilat și rezultatul este plasat într-un modul obiect, legat la o bibliotecă de funcții înlocuite

Limbajele bazelor de date Data Definition Language (DDL)

- □ Este un *limbaj descriptiv*
- □ Permite administratorului bazei de date sau utilizatorului să descrie și să denumească
 - entitățile cerute de aplicație
 - relaţiile care pot exista între diferitele entităţi
- □ Rezultatul compilării instrucţiunilor DDL este *catalogul de* sistem. Acesta conţine metadatele adică datele care descriu obiectele din baza de date

Limbajele bazelor de date Data Manipulation Language (DML)

- Asigură un set de procedee ce permit operații de bază pentru manipularea datelor din bază de date:
 - inserarea de date noi
 - modificări de date
 - regăsirea datelor
 - ştergerea de date
- □ Limbajele DML pot fi de două tipuri:
 - **procedurale** specifică modul *cum* trebuie să fie obținut rezultatul unei instrucțiuni DML
 - neprocedurale descriu numai ce rezultat trebuie obţinut limbajul SQL

Modele de date și modelarea conceptuală

- □ Modelul de date
 - Este o colecție integrată de concepte necesare
 - □ *descrierii* datelor
 - □ *relațiilor* dintre date
 - □ *constrângerilor* impuse datelor

- □ Un model de date are următoarele trei componente:
 - o parte structurală
 - constă dintr-un set de reguli conform cărora sunt construite bazele de date
 - o parte de manipulare
 - definește tipurile de operații care sunt permise asupra datelor
 - un set de reguli de integritate
 - □ garantează că datele sunt corecte

- □ **Scopul** unui model este să reprezinte datele și să le facă înțelese
- □ Pentru arhitectura ANSI SPARC a bazei de date, se pot identifica trei modele de date:
 - un model de date extern
 - pentru a reprezenta vederea fiecărui utilizator
 - un model de date conceptual
 - pentru a reprezenta vederea logică, generală, care este independentă de SGBD
 - un model de date **intern**
 - pentru a reprezenta schema conceptuală, în așa fel încât să poată fi înțeleasă de SGBD

- Modelele de date se pot clasifica în trei categorii principale:
 - modele de date bazate pe obiecte
 - modele de date bazate pe înregistrări
 - modele de date fizice

- Modelele de date **fizice** descriu **cum** sunt stocate datele pe calculator
- □ Reprezintă informații despre
 - structura înregistrărilor
 - ordinea înregistrărilor
 - căile de acces
- □ Nu există la fel de multe modele de date fizice ca cele logice, motiv pentru care vom prezenta mai amănunțit numai primele două categorii de modele de date

Modele de date bazate pe obiecte

- În modelele de date **bazate pe obiecte** se utilizează concepte ca
 - entitate
 - atribut
 - relaţie
- O entitate este un obiect distinct (persoană, loc, lucru, concept, eveniment) care va fi reprezentat în baza de date
- □ Un **atribut** este o proprietate care descrie un anumit aspect al obiectului pe care dorim să-l înregistrăm
- □ O relație este o asociere între entități

Modele de date bazate pe obiecte

- Exemple
 - **■** Entitate/Relație (Semantic)
 - constituie una din tehnicile principale de proiectare conceptuală a bazelor de date
 - Orientat spre obiecte
 - extinde definiția unei entități, pentru a include
 - atributele care descriu starea obiectului
 - acțiunile acestuia, respectiv comportamentul
 - se spune că obiectul **încapsulează** atât starea cât și comportamentul

Modele de date bazate pe înregistrări

- ☐ Într-un astfel de model, baza de date constă dintr-un număr de înregistrări cu format fix, posibil de tipuri diferite
- ☐ Fiecare tip de înregistrare definește un număr fix de câmpuri, fiecare având o lungime fixă

Modele de date bazate pe înregistrări

- Există 3 tipuri principale de modele de date bazate pe înregistrări
 - relaţional
 - în reţea
 - ierarhic
- Ultimele două au fost realizate cu aproape 10 ani înaintea celui relațional, așa încât legăturile lor cu conceptele tradiționale de prelucrare a fișierelor sunt mai evidente

Modelul de date relațional

- □ Se bazează pe conceptul de relații matematice
- □ Datele şi relaţiile sunt reprezentate sub formă de **tabele**, fiecare având un număr de coloane cu o denumire unică

Modelul de date relațional

- Modelul de date relaţional necesită ca utilizatorul să perceapă baza de date ca fiind formată din tabele
- Această percepție se aplică numai la *structura logică* (*Nivelul Extern* și *Nivelul Conceptual* din arhitectura pe 3 nivele a bazei de date), nu și *structurii fizice*, care poate fi implementată utilizând o varietate de modalități de stocare
- Majoritatea sistemelor moderne sunt bazate pe modelul relaţional

Modelul de date relaţional

Exemplu

Presupunem că din baza de date a unei organizații cu mai multe filiale alegem să reprezentăm datele despre filiale și personalul angajat prin două tabele: *Filiale* și *Angajați*

Filiale

NrFil	Adresa	Orasul	CodPostal	Telefon	Fax
F3	Rozelor 25	Timişoara	1700	121212	121212
F4	Stejeriş 19	Brașov	2200	232323	232323
F5	Eroilor 35	Timişoara	1700	434343	434343
F6	Unirii 10	Focşani	1500	454545	454545

Modelul de date relaţional

Exemplu

Presupunem că din baza de date a unei organizații cu mai multe filiale alegem să reprezentăm datele despre filiale și personalul angajat prin două tabele

Angajaţi

NrMarca	Nume	Prenume	Adresa	Orasul	Functia	Salariul	NrFil
214	Burcea	Ion	Lalelelor 12	Timişoara	manager	5000	F3
215	Gheorghe	Alina	Cetății 21	Timişoara	contabil	4000	F3
216	Turcea	Elena	Warte 8	Braşov	secretară	3000	F4
217	Vasile	Valentin	Gării 32	Timişoara	portar	200	F5

Modelul de date în rețea

- □ Datele sunt reprezentate printr-o colecție de înregistrări
- □ Relațiile sunt reprezentate prin direcții
- □ Spre deosebire de modelul relaţional, aici relaţiile sunt modelate explicit prin direcţii, care devin pointeri în implementarea propriu-zisă
- □ Modelul poate fi asemănat cu o structură de **grafuri**
 - Înregistrările sunt reprezentate ca noduri
 - Direcţiile sunt reprezentate ca muchii

Modelul de date în rețea

Exemplu

Transpunem exemplul anterior într-un model de date în rețea

F3	Rozelor 25	Timişoara	1700	121212	121212
----	------------	-----------	------	--------	--------

١.		Burcea		Lalelelor 12	Timişoara	manager	5000	F3
¥	215	Gheorghe	Alina	Cetății 21	Timişoara	contabil	4000	F3

Modelul de date în rețea

Exemplu

Transpunem exemplul anterior într-un model de date în rețea

Modelul de date ierarhic

- □ Constituie un tip restrâns de model în rețea
- □ Datele sunt reprezentate printr-o colecție de înregistrări
- Relaţiile sunt reprezentate prin direcţii
- □ Permite ca un **nod să posede numai un singur părinte**
- □ Poate fi reprezentat ca un graf de tip arbore

Modelul de date ierarhic

Exemplu

Transpunem exemplul anterior într-un model de date ierarhic

Modele de date bazate pe înregistrări

- □ Sunt utilizate pentru a specifica
 - structura generală a bazei de date
 - o descriere de nivel superior a implementării acesteia
- □ Principalul lor dezavantaj este că nu pun la dispoziție facilități de specificare explicită a constrângerilor asupra datelor
- **Modelele relaționale** adoptă o abordare *declarativă* pentru procesarea bazei de date
 - specifică *ce* date vor fi regăsite
- □ Modelele în rețea și ierarhice adoptă o abordare *navigațională*
 - arată cum vor fi regăsite datele

Modelarea conceptuală

- □ Printr-o examinare a arhitecturii cu trei nivele, se poate observa că schema conceptuală este nucleul bazei de date
- □ Ea suportă toate vederile externe şi este suportată de schema internă
- □ Schema internă este doar o implementare fizică a schemei conceptuale

Modelarea conceptuală

- Schema conceptuală trebuie să fie o implementare completă și corectă a cerințelor companiei (organizației) privind datele
- □ Dacă acest lucru nu este realizat, o serie de informaţii despre companie vor lipsi sau vor fi reprezentate incorect, ceea ce va crea dificultăţi în implementarea completă a uneia sau mai multor vederi externe

Modelarea conceptuală

- Modelarea conceptuală sau proiectarea conceptuală a bazei de date este procesul de construire a unui model de informații utilizate într-o companie
- □ Este independent de
 - detaliile de implementare, cum ar fi sistemul SGBD
 - programele aplicație, limbajele de programare
 - orice alte tipuri de considerații fizice
- Acest model de date se numeşte model de date conceptual