Seminar 1

- 1. Let A be a continuous r.v. with distribution $\mathcal{U}[0,\pi]$, then
 - a. Draw the PDF of A
 - b. Compute the probability that X > 1
 - c. Compute the probability that $X \in (0,2)$
 - d. Draw the CDF function and write its mathematical expression
 - e. What is the distribution of B = A 2?
- 2. Let A be a r.v. with distribution \mathcal{N} ($\mu = 1, \sigma^2 = 2$).
 - a. Compute the probability that $A \in [2, 4]$
 - b. What is the distribution of B = A 2?
 - c. What is the maximum value of $w_A(x)$ and for what x is it reached?
- 3. Let A be a **discrete** random variable with uniform distribution \mathcal{U} [0, 10]
 - a. How many different realizations of A are possible?
 - b. Draw the PMF of A
 - c. Find the probability that A is an odd number
 - d. Find the probability that $A \in [3,7]$
- 4. Compute the probability that three r.v. X, Y and Z i.i.d. $\mathcal{N}(-1,1)$ are all positive simultaneously
- 5. Find the relation between the *erf()* function

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

and the Laplace function

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$