CS 427, Assignment 1

Cody Malick malickc@oregonstate.edu

January 18, 2017

1

We can find the value of k by xoring m and c

 $m \oplus c$:

 $110101100010110\\100111011011111$

010010111001001

Then, k = 010010111001001. We can use this info to then xor the value of m' with the value of k:

 $m' \oplus k$:

 $010010111001001\\001000000101111$

0110101111100110

Then our encrypted m', lets call it c' = 0110101111100110

2

We can show that these two libraries are not interchangable by inspecting the distribution of each library:

 \mathcal{L}_1 has a probability distribution of $\{0,1\}^{\lambda} - 0^{\lambda}$

 \mathcal{L}_2 , on the other hand, has a probability distribution of $\{0,1\}^{\lambda}$

This makes it quite obvious that there is a difference between the two distributions. Specifically, that \mathcal{L}_2 can produce the key consisting of only 0's, while \mathcal{L}_1 cannot. While a key consisting of only zeroes isn't ideal, it is a difference in behavior which Eve can exploit. In an example case:

If calling program $prog(m_1)$ which calls \mathcal{L}_1 or \mathcal{L}_2 , the adversary Eve can't choose the function, but she can choose the message m_1 . In the case of \mathcal{L}_2 , it simply returns a random ciphertext $c \leftarrow \{0,1\}^{\lambda}$, while \mathcal{L}_2 returns an OTP encrypted ciphertext with a random key without the possibility of an all zero key. The probabilities of \mathcal{L}_1 and \mathcal{L}_2 are as follows (where P(x) is the probability of x):

$$P(\mathcal{L}_1) = 1 - P(0^{\lambda})$$

$$P(\mathcal{L}_2) = 1$$

Because the probabilities differ, there is a case where Eve can find a difference in behavior, specifically that \mathcal{L}_1 cannot produce an all zero key.

3

We can show these two functions, \mathcal{L}_1 , \mathcal{L}_2 are interchangable by slowly changing bits of \mathcal{L}_1 to look like \mathcal{L}_2 . Our end goal is to show that \mathcal{L}_1 values in the same range that \mathcal{L}_2 does:

- 1. change \mathcal{L}_2 to include: $c = c \mod n$ This doesn't change the calling function as the modulus function is the size of \mathbb{Z} , effectively leaving the output unchanged
- 2.
- 3.
- 4.

4