TD 1. Analyse : généralités.

Exercice 1. a) Montrer que, pour tous réels x, y:

$$2xy \le x^2 + y^2.$$

b) En déduire que, pour tous réels a, b, c:

$$a^2 + b^2 + c^2 \ge ab + bc + ac.$$

Exercice 2. À l'aide de l'inégalité triangulaire, montrer que pour tous réels x et y:

$$|x| + |y| \le |x + y| + |x - y|.$$

Exercice 3. Simplifier, pour tous réels a et b tels que $a \ge b \ge 0$, la quantité suivante :

$$\sqrt{a + 2\sqrt{a - b}\sqrt{b}} + \sqrt{a - 2\sqrt{a - b}\sqrt{b}}.$$

Exercice 4. Montrer que l'expression $x^4 - 3x^2 + 2$ admet un minimum sur \mathbb{R} et le calculer.

Exercice 5. Montrer que pour tout $n \in \mathbb{N}$:

$$(2n+3)\sqrt{n+1} \le (2n+1)\sqrt{n} + 3\sqrt{n+1}.$$

Exercice 6. Montrer que, pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}}.$$

Exercice 7. On pose, pour tout x > 0, $f(x) = \frac{x^2 + 2}{2x}$.

Montrer, sans étude de fonction, que pour tout $x \in [\sqrt{2}, 2]$, $f(x) \in [\sqrt{2}, 2]$ (on dit que l'intervalle $[\sqrt{2}, 2]$ est stable par f).

Indication : On pourra traduire le résultat à montrer par deux inégalités à démontrer.

Exercice 8. Démontrer l'inégalité suivante : $\forall x \in \mathbb{R}, e^x + e^{-x} \ge 2 + x^2$.

Exercice 9. Soient x et y des réels de]-1,1[.

- a) Montrer que -1 < xy < 1.
- b) Montrer que $\frac{x+y}{1+xy} \in]-1,1[.$

Indication: On pourra étudier, pour y fixé, la fonction $f_y: x \mapsto \frac{x+y}{1+xy}$.

Exercice 10. Factoriser : $x^3 - 4x^2 + 5x - 2$.

Exercice 11. Résoudre les équations ou inéquations suivantes :

a)
$$\sqrt{x-4\sqrt{x-4}}=1$$
 b) $|2x-4| \le |x-1|$ c) $x-1 \le \sqrt{x+2}$ d) $x-\sqrt{x}-2 \ge 0$ e) $\ln\frac{x+3}{4}=\frac{1}{2}(\ln x + \ln 3)$ f) $\ln|x-1|-2\ln|x|+\ln|x+1|<1$ g) $3^{2x}-2^{x+\frac{1}{2}}=2^{x+\frac{7}{2}}-3^{2x-1}$ h) $x^{\sqrt{x}}=\sqrt{x}$

Exercice 12. Calculer les limites suivantes :

a)
$$\lim_{x \to +\infty} \sqrt{x} - \ln(x)$$
 b) $\lim_{x \to 0} \frac{1}{\sqrt{x}} + \ln(x)$ c) $\lim_{x \to +\infty} \frac{e^{2x} (\ln x)^3}{x^4}$

d)
$$\lim_{x \to +\infty} \frac{x^2 \ln x}{e^{\sqrt{x}}}$$
 e) $\lim_{x \to +\infty} e^{x^2} - e^x$ f) $\lim_{x \to +\infty} \frac{\ln x \cdot \ln (\ln x)}{x}$

Exercice 13. On pose $f(x) = x^{\frac{\ln(\ln x)}{\ln x}}$. Déterminer le domaine de définition de f et simplifier f(x).

Exercice 14. Dans chacun des cas suivants, donner le domaine de définition de f, son domaine de dérivabilité et sa dérivée.

$$\mathbf{1}^{\circ}) \ f(x) = \ln(\ln x)$$

$$2^{\circ}$$
) $f(x) = xg\left(\frac{1}{x}\right)$, où $g: \mathbb{R} \to \mathbb{R}$ est dérivable.

$$\mathbf{3}^{\circ}$$
) $f(x) = x^x$ (à étudier sur \mathbb{R}_+^*)

$$4^{\circ}) \ f(x) = e^{\sqrt{\ln x}}$$

5°)
$$f(x) = x^{\sqrt{x^2-1}}$$

Exercice 15. Soit f la fonction définie par $f(x) = \ln(e^{2x} - 3e^x + 2)$.

 1°) Déterminer le domaine de définition de f, puis dresser son tableau de variations.

 $\mathbf{2}^{\circ}$) Calculer $\lim_{x \to +\infty} f(x) - 2x$. Interpréter graphiquement.

 3°) Tracer la courbe de f.

Exercice 16. Pour quels réels x peut-on écrire $\cos x = \sqrt{1 - \sin^2 x}$?

Exercice 17. Résoudre les équations suivantes sur \mathbb{R} :

a)
$$\cos x = \sin x$$

b)
$$\cos(x) + \sqrt{3}\sin(x) = 0$$

c)
$$\sqrt{2}\cos(2x) = \cos(x) - \sin(x)$$
 d) $2\sin^2(x) - \sqrt{3}\sin(2x) = 3$

d)
$$2\sin^2(x) - \sqrt{3}\sin(2x) = 3$$

e)
$$\cos 4x + \cos 5x + \cos 6x = 0$$

Exercice 18. Résoudre les inéquations suivantes sur \mathbb{R} :

a)
$$2\sin^2 x + 3\sin x - 2 < 0$$
 b) $\cos x - \cos(2x) > 0$

2

Exercice 19. On pose, pour tout réel x, $f(x) = \sin^2 x - \sin x + 2$.

- 1°) Étudier la périodicité de f.
- **2°**) Calculer $f(\pi x)$ pour $x \in \mathbb{R}$. En déduire qu'il suffit d'étudier f sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 3°) Dresser le tableau de variation de f sur cet intervalle.
- 4°) Tracer la courbe représentative de f.