幾何数理工学ノート

位相幾何:基本群

平井広志

東京大学工学部 計数工学科 数理情報工学コース 東京大学大学院 情報理工学系研究科 数理情報学専攻

> hirai@mist.i.u-tokyo.ac.jp 協力:池田基樹(数理情報学専攻D1)

5 基本群

目標とするのは、位相空間から群への写像で、2つの空間がホモトピー同値ならば対応する群が同型となるような写像の構成である。群の復習から始める。群 (G,\cdot) とは、以下の条件を満たす集合 Gと演算・の組のことをいう:

- 単位元 $e \in G$ の存在: $e \cdot x = x \cdot e = x \ (\forall x \in G)$.
- 結合律: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.
- 逆元の存在: $x \cdot x^{-1} = x^{-1} \cdot x = e$.

群 G から G' への写像が準同型とは、

$$\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) \quad (x, y \in G)$$

を満たすことである. G と G' が同型とは, G と G' の間に準同型全単射写像が存在することである. このとき逆写像も準同型になる. 実際, φ の準同型性から

$$\varphi(\varphi^{-1}(a \cdot b)) = a \cdot b = \varphi(\varphi^{-1}(a)) \cdot \varphi(\varphi^{-1}(b)) = \varphi(\varphi^{-1}(a) \cdot \varphi^{-1}(b))$$

が成り立ち、 φ の全単射性から $\varphi^{-1}(a \cdot b) = \varphi^{-1}(a) \cdot \varphi^{-1}(b)$ を得る.

X を位相空間とする. [0,1] から X への連続写像をパスと呼んでいたことを思い出す.

定義 5.1 ((パスの) ホモトピー). パスのホモトピーとは、連続写像の族 $\{f_t:[0,1]\to X\}_{t\in[0,1]}$ で以下の条件を満たすもの(図 1):

- $\forall t \in [0,1], f_t(0) = x_0, f_t(1) = x_1$
- $F:[0,1]\times[0,1]\to X$ を $F(s,t):=f_t(s)$ と定義すると、F は連続.

定義 5.2. 2 つのパス f', f'' をつなぐホモトピー f_t ($f_0 = f', f_1 = f''$) が存在するとき,f' と f'' はホモトープといい, $f' \simeq f''$ で表す.

以前と同様に次が示される.

命題 5.3. ∼ は同値関係.

パスfの \simeq による同値類をfのホモトピー類といい, [f]で表す.

図 1: パスのホモトピー.

図 2: パスの積のホモトピー.

定義 **5.4** (パスの積 (合成)). $f,g:[0,1]\to X$ を, f(1)=g(0) を満たすパスとする. 次で定義されるパス $f\cdot g:[0,1]\to X$ を f と g の合成という:

$$f \cdot g(s) := \begin{cases} f(2s) & (0 \le s \le 1/2), \\ g(2s-1) & (1/2 \le s \le 1). \end{cases}$$

注意 **5.5.** $f \simeq f', g \simeq g'$ なら $f \cdot g \simeq f' \cdot g'$. 実際, $(f \cdot g)_t := f_t \cdot g_t$ とおけば $(\{f_t\}, \{g_t\}$ はそれぞれ f と f', g と g' を繋ぐホモトピー(図 2)),これは $f \cdot g$ と $f' \cdot g'$ を繋ぐホモトピーになる.

定義 5.6. x_0 を基点とするループ (loop) とは、パス $f:[0,1] \to X$ で $f(0)=f(1)=x_0$ を満たすもの.

 $x_0 \in X$ に対し,

$$\pi_1(X,x_0) := \{ [f] \mid f:x_0 \text{ を基点とするループ} \}$$

と定義する. $\pi_1(X,x_0)$ に積・を

$$[f] \cdot [q] := [f \cdot q]$$

で定義すると、これは well-defined である。実際 $f \simeq f', \ g \simeq g'$ とすると、先の注意より $f \cdot g \simeq f' \cdot g'$ が成り立つ。また、ループの合成も x_0 を基点とするループであるから、積・は $\pi_1(X,x_0)$ の上での二項演算となる。

命題 **5.7.** $\pi_1(X, x_0)$ は積 · の下で群になる.

 $\pi_1(X, x_0)$ を x_0 を基点とする X の基本群 (fundamental group) という.

証明. まず準備として、 $\varphi(0)=0$ 、 $\varphi(1)=1$ を満たすような連続写像 $\varphi:[0,1]\to[0,1]$ について、 $[f\circ\varphi]=[f]$ が成り立つことに注意する。実際、ホモトピーを $(f\circ\varphi)_t:=f\circ((1-t)\varphi+t\mathbf{1}_{[0,1]})$ と定義すると、 $f\circ\varphi$ と f を繋ぐホモトピーになる。

単位元の存在: 定数関数 $c:[0,1]\to X$ を $c(s)=x_0$ $(s\in S)$ で定義すると, [c] が単位元になる. 実際, 任意のループ f について $c\cdot f$ を考えると, $\varphi:[0,1]\to[0,1]$ を

$$\varphi(s) := \begin{cases} 0 & (0 \le s \le 1/2), \\ 2(s - 1/2) & (1/2 \le s \le 1) \end{cases}$$

と定義すれば (図 3), $f \simeq f \circ \varphi = c \cdot f$ より $[f] = [c \cdot f] = [c] \cdot [f]$ となる. $[f] = [f] \cdot [c]$ も同様に示される.

図 3: 単位元の存在の証明.

図 4: 結合律の証明.

図 5: 逆元の存在の証明.

結合律:任意のループ f,g,h について $[f\cdot(g\cdot h)]=[(f\cdot g)\cdot h]$ を示せばよい. $\varphi:[0,1]\to[0,1]$ を

$$\varphi(s) := \begin{cases} s/2 & (0 \le s \le 1/2), \\ s - 1/4 & (1/2 \le s \le 3/4), \\ 2s - 1 & (3/4 \le s \le 1) \end{cases}$$

と定義すれば(図 4), $(f\cdot(g\cdot h))\circ\varphi=(f\cdot g)\cdot h$ となる. よって $[f\cdot(g\cdot h)]=[(f\cdot g)\cdot h]$.

<u>逆元</u>: $f:[0,1]\to X$ に対し, $\bar{f}:[0,1]\to X$ を $\bar{f}(s):=f(1-s)$ とすると, $[\bar{f}]$ が [f] の逆元になる.実際, $f_t:[0,1]\to X$ $(t\in[0,1])$ を

$$f_t(s) := \begin{cases} f(s) & (0 \le s \le t), \\ f(t) & (t \le s \le 1), \end{cases}$$

 $g_t: [0,1] \to X \ (t \in [0,1]) \$

$$g_t(s) := \begin{cases} f(t) = \bar{f}(1-t) & (0 \le s \le 1-t), \\ f(1-s) = \bar{f}(s) & (1-t \le s \le 1) \end{cases}$$

とおくと, $f_t\cdot g_t$ は $f\cdot \bar{f}$ と c を繋ぐホモトピー(図 5).よって $[f]\cdot [\bar{f}]=[c]$. $[\bar{f}]\cdot [f]=[c]$ も同様に示される.

図 6: 基点の取り換え.

 $\pi_1(X,x_0)$ は基点を x_0 に定めたときの群構造である。 $x_0,x_1\in X$ を $x_0\neq x_1$ とし,基点 x_0 の基本群と基点 x_1 の基本群の関係を調べる。 x_0 から x_1 へのパス $h:[0,1]\to X$, $h(0)=x_0$, $h(1)=x_1$ の存在を仮定し, $\bar{h}:[0,1]\to X$ を x_1 から x_0 へのパス $\bar{h}(s):=h(1-s)$ と定義する。f を x_1 を基点とするループとすると, $h\cdot f\cdot \bar{h}$ は x_0 を基点とするループになる(図 6)。 $f\simeq f'$ なら $h\cdot f\cdot \bar{h}\simeq h\cdot f'\cdot \bar{h}$ が成り立つ。実際,f と f' を繋ぐホモトピーを f_t とすると, $h\cdot f_t\cdot \bar{h}$ は $h\cdot f\cdot \bar{h}$ と $h\cdot f'\cdot \bar{h}$ を繋ぐホモトピーになる。したがって $\beta_h:\pi_1(X,x_1)\to\pi_1(X,x_0)$ を

$$\beta_h([f]) = [h \cdot f \cdot \bar{h}]$$

と定義すると、 β_h は well-defined である.

命題 **5.8.** β_h は $\pi_1(X, x_1)$ から $\pi_1(X, x_0)$ への同型写像.

証明. 準同型性: $f,g \in \pi_1(X,x_1)$ とすると

$$\beta_h([f] \cdot [g]) = [h \cdot f \cdot g \cdot \bar{h}] = [h \cdot f \cdot \bar{h} \cdot h \cdot g \cdot \bar{h}] = [h \cdot f \cdot \bar{h}] \cdot [h \cdot g \cdot \bar{h}] = \beta_h([f]) \cdot \beta_h([g]).$$

全単射: $\beta_{\bar{h}}:\pi_1(X,x_0)\to\pi_1(X,x_1)$ を考える. $f\in\pi_1(X,x_1)$ とすると

$$\beta_{\bar{h}}(\beta_h([f])) = \beta_{\bar{h}}([h \cdot f \cdot \bar{h}]) = [\bar{h} \cdot h \cdot f \cdot \bar{h} \cdot h] = [f]$$

であるから, $\beta_{\bar{h}}\circ\beta_h=\mathbf{1}$ が成り立つ. $\beta_h\circ\beta_{\bar{h}}=\mathbf{1}$ も同様に成り立つ.よって β_h と $\beta_{\bar{h}}$ は互いに逆写像の 関係にあるので, β_h は全単射.

特に、X が弧状連結のときは基点によらず基本群が決まる. (つまり、任意の基点 $x_0, x_1 \in X$ について $\pi_1(X,x_0) \simeq \pi_1(X,x_1)$ となる.) これを $\pi_1(X)$ と書く.

例 5.1. $X \subseteq \mathbb{R}^n$ を凸集合とすると、任意のループ f は定数ループ c とホモトープである。よって $\pi_1(X)$ は単位元 e のみを含む群 $\{e\}$ になる。同様に、X が可縮(1 点とホモトピー同値)なら $\pi_1(X)=\{e\}$ 、実際、 $Y=\{y\}$ への連続写像 $f:X\to Y$ と連続写像 $g:Y\to X$ で、 $g\circ f\simeq \mathbf{1}_X$ を満たすものが存在するので、X から g(y) への変形レトラクションが存在する。 $\pi_1(X)=\{e\}$ のとき、基本群が自明 (trivial) などという。

定義 5.9. X が単連結 (simply connected) $\stackrel{\text{def}}{\Longleftrightarrow}$ 弧状連結かつ $\pi_1(X)=\{e\}$.

命題 **5.10.** X が単連結 $\Leftrightarrow \forall x, y \in X$ と x から y へのパス f, g について $f \simeq g$.

証明. (\Leftarrow). $f \in x_0$ を基点とするループ, $g \in x_0$ を基点とする定数ループとすると, $f, g \in x = y = x_0$ を つなぐパスをみることにより, $f \simeq g$ となる. つまり, X は単連結.

$$(\Rightarrow) f \cdot \bar{g} \ \text{はループなので,} \ \pi_1(X) = \{e\} \ \text{より} \ f \simeq f \cdot \bar{g} \cdot g \simeq e \cdot g \simeq g.$$

位相空間 X,Y がホモトピー同値のときに、 $\pi_1(X)$ と $\pi_1(Y)$ が同型であることを見る.

定義 5.11. $\varphi: X \to Y$ を連続写像, $y_0 = \varphi(x_0)$ とする. $\varphi_*: \pi_1(X, x_0) \to \pi_1(X, y_0)$ は

$$\varphi_*([f]) = [\varphi \circ f]$$

と定義される.

補題 **5.12.** φ_* は well-defined で準同型.

証明. $f \simeq f'$ とすると f と f' を繋ぐホモトピー f_t が存在し、 $\varphi \circ f_t$ は $\varphi \circ f$ と $\varphi \circ f'$ を繋ぐホモトピーになる. よって $\varphi \circ f \simeq \varphi \circ f'$ で、 φ_* は well-defined. また、 $f,g \in \pi_1(X,x_0)$ とすると

$$\varphi_*([f] \cdot [g]) = \varphi_*([f \cdot g]) = [\varphi \circ (f \cdot g)] = [(\varphi \circ f) \cdot (\varphi \circ g)] = [\varphi \circ f] \cdot [\varphi \circ g] = \varphi_*([f]) \cdot \varphi_*([g])$$

より
$$\varphi_*$$
は準同型.

補題 5.13.

- (1) $\varphi: X \to Y, \ \phi: Y \to Z$ に対し $(\phi \circ \varphi)_* = \phi_* \circ \varphi_*$.
- (2) $(\mathbf{1}_X)_* = \mathbf{1}_{\pi_1(X,x_0)}$.

証明. (1) 任意のループ f について,

$$(\phi \circ \varphi)_*([f]) = [\phi \circ \varphi(f)] = \phi_*([\varphi(f)]) = \phi_* \circ \varphi_*([f]).$$

まず、 $X \ge Y$ が同相の場合に基本群が同型であることを示す.

定理 5.14. $\varphi: X \to Y$ を同相写像, $x_0 \in X$ とすると, $\varphi_*: \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0))$ は同型写像.

証明. $\varphi^{-1} \circ \varphi = \mathbf{1}_X$ から $(\varphi^{-1})_* \circ \varphi_* = \mathbf{1}_{\pi_1(X,x_0)}$. 同様に $\varphi_* \circ (\varphi^{-1})_* = \mathbf{1}_{\pi_1(Y,\varphi(x_0))}$. よって φ_* は全単射なので同型写像.

定理 5.16. $\varphi: X \to Y$ をホモトピー同値写像, $x_0 \in X$ とすると, $\varphi_*: \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0))$ は同型写像.

証明. 定義より連続写像 $\phi: Y \to X$ が存在して、 $\phi \circ \varphi \simeq \mathbf{1}_X$ 、 $\varphi \circ \phi \simeq \mathbf{1}_Y$ を満たす. $\phi \circ \varphi$ と $\mathbf{1}_X$ を繋ぐホモトピーを ρ_t とする. パス $h: [0,1] \to X$ を

$$h(s) := \rho_s(x_0) \quad (s \in [0, 1])$$

と定義すると、 $\phi_* \circ \varphi_* = \beta_h$ が成り立つ。これは、任意の x_0 を基点とするループ f について、 $\phi \circ \varphi(f)$ と $h \cdot f \cdot \bar{h}$ がホモトープであることを言えばよい。パス $h_t : [0,1] \to X$ $(t \in [0,1])$ を

$$h_t(s) := \begin{cases} h(s) & (0 \le s \le t), \\ h(t) & (t \le s \le 1) \end{cases}$$

とおき、 $\psi_t:[0,1]\to X\;(t\in[0,1])$ を $\psi_t:=h_t\cdot(\rho_t\circ f)\cdot \bar{h}_t$ とすれば、 ψ_t が $\phi\circ\varphi(f)$ と $h\cdot f\cdot \bar{h}$ を繋ぐホモトピーとなる(図 7).よって命題 8 より $\phi_*\circ\varphi_*=\beta_h$ は同型写像であり、 ϕ_* は全射、 φ_* は単射.同様に $\varphi_*\circ\phi_*$ も同型写像なので、 φ_* は全射、 ϕ_* は単射.よって φ_* は全単射.

6 基本群の例

最初に球面 S^n $(n \ge 2)$ を考える.

定理 6.1. $\pi_1(S^n) = \{e\} \ (n \geq 2)$. つまり 2 次元以上の球面は単連結.

図 7: $\phi \circ \varphi(f)$ と $h \cdot f \cdot \bar{h}$ のホモトープ性.

証明. f を S^n の基点 x_0 の任意のループとして, f が 1 点にホモトピー同値にであることを示す. $y \in S^n \setminus \{x_0\}$ を任意にとる. もしも, $y \not\in f([0,1])$ なら, $S^n \setminus \{y\}$ は \mathbb{R}^n と同相なので, f を \mathbb{R}^n のループ と見ると 1 点にホモトピー同値.

そうでない場合を考える。y を含む十分小さな開球(と S_n との交わり)B を考える。 $x_0 \not\in B$ としてよい。 $f^{-1}(B)$ は,[0,1] の互いに交わらない開区間の和集合である(無限和かもしれない)。 1 つの開区間 (t,t') をとる。f(t) と f(t') をつなぐ f の部分パスをホモトピーでずらすことで,f を $f' \simeq f$ であって, $f'([t,t']) \cap B = \emptyset$ となるパス f' に変形できる。もしも, $f^{-1}(B)$ を構成する開区間が有限個であれば,f を f' を含まないパス f' に変形できて, $f \simeq f' \simeq 1$ 点 となる。

しかし, $f^{-1}(B)$ は,無限個の開区間からなっているかもしれない. $f^{-1}(\{y\})$ を考えると,連続性より,[0,1] の閉集合でありコンパクトである. $f^{-1}(B)$ を構成する開区間は, $f^{-1}(\{y\})$ の開被覆とみることができる.したがって,有限個の開区間を選ぶことで $f^{-1}(\{y\})$ を被覆できる.それらの開区間に対して,上に述べたずらしをおこなうことで,f を y を含まないように変形できる.

 S^1 の基本群はどうなるだろうか? ループ f が S^1 を n 回「まわり」,ループ g が S^1 を m 回「まわる」とすれば,このとき $f\cdot g$ は S^1 を n+m 回「まわる」ことになる($n,m\in\mathbb{Z}$).このように,ループに対してそれが S^1 をまわった回数を対応させる写像 $\pi_1(S^1)\to\mathbb{Z}$ を考えると,これは同型写像のように思われる.

定理 **6.2.** $\pi_1(S^1) \simeq \mathbb{Z}$.

証明. $S^1=\{(\cos 2\pi t,\sin 2\pi t)\mid 0\leq t\leq 1\}$ とし、ループの基点をしては、(0,1) を考える。上でのべた n 回まわるループ f_n は、 $f_n(s)=(\cos 2\pi ns,\sin 2\pi ns)$ とかける。スピードの変換と $f_{-n}\cdot f_n\simeq e$ に注意すると、以下がわかる。

$$f_n \cdot f_m \simeq f_{n+m}$$
.

したがって, $n \mapsto [f_n]$ が同型写像(すなわち, $\pi_1(S^1) \simeq \mathbb{Z}$)になるには, 以下がいえればよい.

- (a) $n \neq m$ $\Leftrightarrow f_n \not\simeq f_m$.
- (b) 任意のループ f に対して、ある $n \in \mathbb{Z}$ が(一意に)存在して、 $f \simeq f_n$.

全射 $p: \mathbb{R} \to S^1$ を $t \mapsto (\cos 2\pi t, \sin 2\pi t)$ で定義する. $p^{-1}(\{(0,1)\}) = \mathbb{Z}$ に注意する. このとき,以下が成り立つ:

(1) S^1 のループ f (基点 (0,1)) に対して, \mathbb{R} の 0 を始点とするパス \tilde{f} が一意に存在して $p \circ \tilde{f} = f$ となる. \tilde{f} を f のリフトという. \tilde{f} の終点は整数 m である.

(2) S^1 のパスのホモトピー $\{f_t\}$ に対して, \mathbb{R} の 0 を始点とするパスのホモトピー $\{\tilde{f}_t\}$ が一意に存在して, $p\circ \tilde{f}_t=f_t$ となる.

ここで, $p^{-1}(\{(0,1)\})$ が離散位相空間 $\mathbb Z$ なので, $\tilde f_t$ の終点は t によらず,ある一定の整数 m をとることに注意する.

- (1), (2) は次節において,より一般的な枠組み(被覆空間)のもと証明する。(1), (2) を仮定して,(a), (b) を示す.まず, f_n のリフト \tilde{f}_n を考えてみる.それは,0 から n まで,一定のスピードすすむパスであることに注意する. S^1 の任意のループ f をとる.f のリフト \tilde{f} は,0 からある整数 m までのパスである. \mathbb{R} は単連結なので $\tilde{f} \simeq \tilde{f}_m$,すなわち \tilde{f} と \tilde{f}_n をつなくホモトピー $\{\tilde{f}_t\}$ が存在する.すると, $\{p\circ \tilde{f}_t\}$ は, S^1 において f と f_m をつなくホモトピーであり,(b) $f\simeq f_m$ がいえる.
- (a) については, $f_n \simeq f_m$ なら,その間のホモトピー $\{f_t\}$ のリフト $\{\tilde{f}_t\}$ は, \tilde{f}_n と \tilde{f}_m の間のホモトピーで,上で注意したように終点は一定の値をとらなければならない.つまり,n=m.

定理 6.3 (直積の基本群). $\pi_1(X \times Y, (x_0, y_0)) \simeq \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

証明. f を基点が (x_0, y_0) であるような $X \times Y$ のループとすると, $f: [0,1] \to X \times Y$ なので,

$$f = (g, h), g : [0, 1] \to X, g(0) = g(1) = x_0,$$

 $h : [0, 1] \to Y, h(0) = h(1) = y_0$

と表せる. すなわち g,h は X,Y 上のループ. [f] を ([g],[h]) に写す写像 $\varphi:\pi_1(X\times Y,(x_0,y_0))\to\pi_1(X,x_0)\times\pi_1(Y,y_0)$ は well-defined で (ホモトピーは $f_t=(g_t,h_t)$), 準同型写像になる. 逆写像 φ^{-1} は $\varphi^{-1}([g],[h])=[(g,h)]$ と自然に定義される. すなわち φ は全単射.

系 6.4 (トーラスの基本群). $\pi_1(T^2) \simeq \mathbb{Z} \times \mathbb{Z}$.

証明.
$$T^2 = S^1 \times S^1$$
 より.

X と Y の wedge 和 $X \vee Y$ は $X \vee Y := (X \coprod Y)/x \sim y$ と定義されていたことを思い出す.すると, $\pi_1(X)$ と $\pi_1(Y)$ を「繋げる」ことで $\pi_1(X \vee Y)$ が得られそうに思える.

準備として、群の自由積 (free product) を導入する. 群 G,G' の自由積 G*G' は、

$$G * G' := \{ g_1 g_2 \cdots g_n \mid n \ge 0, \ g_i \in G \text{ or } G', \ g_i \ne e \}$$

と定義される。 ただし, $g_1\cdots g_ig_{i+1}\cdots g_n$ が $g_i,g_{i+1}\in G$ または $g_i,g_{i+1}\in G'$,および $g_i\cdot g_{i+1}=h$ を満たすなら $g_1\cdots h\cdots g_n$ と同一視する(h=e なら h を除く)。 G*G' 上の積・を列の連結として定義する。 すなわち

$$(g_1g_2\cdots g_n)\cdot (h_1h_2\cdots h_m):=g_1g_2\cdots g_nh_1h_2\cdots h_m.$$

命題 6.5. $(G*G',\cdot)$ は群. 単位元は空列.

証明は自明ではない. G*G'は,一般に非可換群である.

問題 6.1. 証明せよ.

定理 6.6. $\pi_1(X \vee Y) \simeq \pi_1(X) * \pi_1(Y)$.

特に、基本群は非可換になりえることに注意する(例えば $\pi_1(S^1*S^1)=\mathbb{Z}*\mathbb{Z}$).

系 6.7. $\pi_1(S^1 \vee S^1 \cdots \vee S^1) \simeq \mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$.

問題 **6.2.** 上の定理は Seifert-van Kampen の定理と呼ばれるものの特殊ケースである. これについて調べ (証明して) いろいろな空間・曲面の基本群を計算せよ.