My formalization project

0.1 Green's preorders (from MyProject/GreensRelations.lean)

Definition 1 (Green's *R*-preorder). Let *M* be a monoid and $x, y \in M$. We define $x \leq_R y$ iff there exists $z \in M$ with $x \cdot z = y$. This relation is reflexive and transitive.

Lemma 2 (Reflexivity of \leq_R). For every $x \in M$, $x \leq_R x$.

Lemma 3 (Transitivity of \leq_R). If $x \leq_R y$ and $y \leq_R z$, then $x \leq_R z$.

0.2 Duality via MulOpposite (from MyProject/MulOpposite.lean)

Lemma 4 (Opposite monoid correspondence for R). For $x, y \in M$,

$$RRel(\operatorname{op} x, \operatorname{op} y) \iff RRel(x, y).$$

Equivalently, the R-preorder on M corresponds to the R-preorder on MulOpposite M via op.