ZAVRŠNI ISPIT IZ MATEMATIKE 3R

(upute i rješenja) 30. 01. 2007.

1. (3 boda) Ispitaj koji su od nacrtanih grafova izomorfni, a koji nisu? Obrazložiti tvrdnje. Rješenje: $G_1\cong G_3\cong Q_3$, a G_1 i G_2 nisu izomorfni jer G_2 jer ima ciklus duljine 5, a G_1

nema.

2. (**2 boda**) Dan je potpuni graf K_n s n vrhova. Koliko se jedinica nalazi u matrici susjedstva grafa $K_n - e$, gdje je e neki brid od K_n ?

Rješenje: $n^2 - n - 2$

3. (3 boda) Neka je G graf sa 6 vrhova. Dokaži da barem jedan od grafova G i \overline{G} , gdje je \overline{G} komplement grafa G, mora sadržavati trokut.

Rješenje: Promotrimo bridove 12, 13, 14, 15, 16. Barem tri brida su u E(G) ili u $E(\overline{G})$. Ne smanjujući općenitost možemo kazati da su 12, 14, 16 u E(G), a ako su neki od 24, 26, 46 u E(G) imamo trukut, a ako nisu imamo trokut u $E(\overline{G})$.

- 4. (**2** boda)
 - (a) Definiraj povezan graf.
 - (b) Neka je G povezan jednostavan graf sn vrhova i b bridova. Dokaži da je

$$n-1 \le b \le \frac{n(n-1)}{2}.$$

Rješenje: vidi predavanja

- 5. (**2 boda**)
 - (a) Definiraj skoro-eulerovski graf.
 - (b) Odredi jednu skoro-eulerovsku stazu zapisanu kao šetnju po vrhovima A,B,C,D za graf na slici

Rješenje: $B \to A \to D \to B \to C \to D$

6. (2 boda) Koliko hamiltonovskih ciklusa ima potpun graf K_n , $n \geq 3$. Odgovor detaljno obrazložiti.

Rješenje: $\frac{(n-1)!}{2}$.

7. (3 boda) Za težinski graf sa slike nađi najkraći put od vrha A do vrha G.

Rješenje: $A \to B \to D \to C \to F \to E \to G$, duljina puta je 154.

8. ($\mathbf{3}\ \mathbf{boda}$) Kolika je duljina obilaska za kineski problem poštara koji je dan slikom?

Rješenje: 33.

PITANJA IZ CIJELOG GRADIVA

1. (3 boda) Funkciju zadanu formulom

$$f(x) = \begin{cases} -x + \pi, & \text{ako je } x \in \langle 0, \pi \rangle \\ -x - \pi, & \text{ako je } x \in \langle -\pi, 0 \rangle \end{cases}$$

razviti u trigonometrijski Fourierov red i pomoću tog razvoja naći sumu reda $\sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}$

Rješenje:

$$S(x) \sim \sum_{n=0}^{\infty} \frac{2}{n} \sin nx,$$
$$\sum_{n=0}^{\infty} \frac{\pi}{4}.$$

2. (3 boda) Primjenom Laplaceove transformacije odredi struju i(t) u strujnom krugu na slici, uz priključeni napon $e(t) = \cos(2t)u(t)$.

Rješenje: $i(t) = \frac{1}{2}(\sin 2t + \cos 2t)u(t)$.

3. (3 boda) Koliko ima različitih putova od 11 koraka između točaka A(0,0) i B(7,4) u ravnini, ako je svaki korak pomak desno za duljinu 1 ili pomak gore za duljinu 1? Koliko ima takvih putova koji ne prolaze točkom C(4,2)?

Rješenje: $\binom{11}{7} = 330$, a broj putova koji ne prolaze točkom C je $\binom{11}{4} - \binom{4}{4}\binom{5}{3} = 180$.

- 4. (**3 boda**)
 - (a) Riješi rekurzivnu relaciju

$$a_n = a_{n-1} + a_{n-2}, \ n \ge 2, \ a_0 = 1, \ a_1 = 1.$$

(b) Nađi funkciju izvodnicu niza (a_n) .

Rješenje:

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right],$$
$$f(x) = \frac{1}{1 - x - x^2}.$$

5. (3 boda) Trgovački lanac ima 5 trgovačkih centara T_1, T_2, T_3, T_4, T_5 . Cijena prijevoza robe od centra T_i do centra T_j zapisana je kao element na mjestu (i,j) sljedeće matrice (znak ∞ znači da nema direktne veze između između dva pripadna centra.)

$$\begin{pmatrix} 0 & 12 & 15 & 20 & 10 \\ 12 & 0 & \infty & 25 & 15 \\ 15 & \infty & 0 & \infty & 12 \\ 20 & 25 & \infty & 0 & 14 \\ 10 & 15 & 12 & 14 & 0 \end{pmatrix}.$$

Izračunaj tablicu najjeftinijih ruta između svaka dva trgovačka centra.

Rješenje: Neka su retci i stupci numerirani trgovačkim centrima $_1,\ T_2,\ T_3,\ T_4,\ T_5.$ Tražena tablica je:

$$\left(\begin{array}{cccccc} 0 & 12 & 15 & 20 & 10 \\ 12 & 0 & 27 & 25 & 15 \\ 15 & 27 & 0 & 26 & 12 \\ 20 & 25 & 26 & 0 & 14 \\ 10 & 15 & 12 & 14 & 0 \end{array}\right).$$

Grafovi iz 1. zadatka Završnog ispita iz Matematike 3R (30.1.07)

G_3

Graf iz 5. zadatka Završnog ispita iz Matematike 3R (30.1.07)

Graf iz 8. zadatka Završnog ispita iz Matematike 3R (2007)

Strujni krug za zadatak 2. iz «Pitanja iz cijelog gradiva»

i(t)

