Conversão Digital - Analógica

José Humberto de Araújo¹

¹DFTE-UFRN

14 de julho de 2022

Sumário

- Introdução
 - Representações Digital e Analógica
 - Conversores AD

Técnicas de Conversão Digital-Analógico

Aspectos Gerais da Conversão Digital-Analógico.

- Aspectos Gerais da Conversão Digital-Analógico.
- Conversores AD

- Aspectos Gerais da Conversão Digital-Analógico.
- Conversores AD
- Técnicas de Conversão Digital-Analógico.

- Aspectos Gerais da Conversão Digital-Analógico.
- Conversores AD
- Técnicas de Conversão Digital-Analógico.
- Operações de código binário ponderado.

- Aspectos Gerais da Conversão Digital-Analógico.
- Conversores AD
- Técnicas de Conversão Digital-Analógico.
- Operações de código binário ponderado.
- Características de um Conversor Digital-Analógico

Representações Digital e Analógica

 Um sinal Analógico pode ser representado com valores digitais em algum intervalo de tempo.

1	Representation		
Time (ms)	Analog	Digital	
1	3	0011	
2	5	0101	
3	9	1001	
4	10	1010	
5	13	1101	
6	14	1110	
7	13	1101	
8	11	1011	
9	10	1010	
10	10	1010	
11	8	1000	
12	5	0101	

Conversor AD SAR simplificado

|--|

DAC Input	$\mathbf{DAC}\ \boldsymbol{V_{\mathrm{out}}}$
D_7	5.0000
D_6	2.5000
D_5	1.2500
D_4	0.6250
D_3	0.3125
D_2	0.15625
D_1	0.078125
D_0	0.0390625

Figura 1: Forma dos sinais para aproximação sucessiva de uma conversão A/D

Circuitos Integrados- Conversores AD

Figura 2: Diagrama de blocos e pinagem do CI-NE5034

Figura 3: Diagrama de blocos e pinagem do CI-ADC0804


```
#define RESOLUCAO 5.0/1024.0
void setup() {
  Serial.begin (9600); // Inicializa a serial 9600 bps
} // Fim da void setup ()
void loop() {
  int valorLido = 0;
  float valorConvertido = 0.0;
  // Lê a entrada no pino analógico 0:
  valorLido = analogRead (A0);
  // Converte para tensão:
  valorConvertido = valorLido * RESOLUCAO;
  // Imprime na saída o valor lido:
 Serial.print ("Valor da tensao: ");
  Serial.print (valorConvertido, 2);
 Serial.println ("V");
  delay (1); // Atraso entre leituras para estabilidade
  // Fim da void loop ()
```


Conversor DA-Resistências Ponderadas

$$v_o = \frac{10}{32} \cdot b_0 + \frac{10}{16} \cdot b_1 + \frac{10}{8} \cdot b_2 + \frac{10}{4} \cdot b_3 + \frac{10}{2} \cdot b_4 + 10 \cdot b_5$$

Resistências binárias ponderadas

Utiliza uma rede de resistores cujos valores são ponderados em função do bit que representam.

Digital			Analog	
D_3	D_2	D_1	D_0	V _{out} (-V)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Conversor D/A-Escada R/2R

D_3	D_2	D_1	D_0	$V_{\text{out}}(V)$
0	0	0	0	0.000
0	0	0	1	-0.625
0	0	1	0	-1.250
0	0	1	1	-1.875
0	1	0	0	-2.500
0	1	0	1	-3.125
0	1	1	0	-3.750
0	1	1	1	-4.375
1	0	0	0	-5.000
1	0	0	1	-5.625
1	0	1	0	-6.250
1	0	1	1	-6.875
1	1	0	0	-7.500
1	1	0	1	-8.125
1	1	1	0	-8.750
1	1	1	1	-9.375

CI DAC0808

Aplicação do DAC0808

