

DEPARTAMENTO DE MATEMÁTICA

ANÁLISE NUMÉRICA

Exercícios sobre Teoria de Erros

- 1. Determine a representação decimal dos seguintes números: $(11001)_2$, $(427)_8$, $(27D)_{16}$ e $(2713)_{16}$.
- 2. Obtenha a representação do número $(1985)_{10}$ nas seguintes bases: 2, 3, 8 e 16.
- 3. Converta as seguintes fracções binárias em decimais: $(0.110001)_2$ e $(0.111111111)_2$.
- 4. Determine a representação binária dos números $(45.375)_{10}$, $(22.625)_{10}$ e $(2.3)_{10}$.
- 5. Liste todos os números positivos do sistema FP(2,3,-1,1) e converta-os para base decimal.
- 6. Represente os seguintes números em FP(10, 4, -99, 99, A) e em FP(10, 4, -99, 99, T):

- (a) $\frac{1}{6}$ (b) $\frac{1}{3}$ (c) $\sqrt{201}$ (d) -83785 (e) 83798 (f) 0.00113296 (g) tg(5) (h) $log_{10} 50$
- 7. Determine as representações de π em FP(10, 5, -99, 99, T) e em FP(10, 5, -99, 99, A).
- 8. Considere os números $x = \frac{1}{3}$ e $y = \frac{1}{3000}$ e as aproximações $\bar{x} = 0.3333$ e $\bar{y} = 0.0003$. Determine os respectivos erros absolutos e relativos. Comente.
- 9. Os resultados das medições de uma ponte e de uma viga foram, respectivamente, 9999 cm e 9 cm. Sabendo que as medidas exactas são, respectivamente, 10000 cm e 10 cm, calcule
 - (a) os erros absolutos de cada medição efectuada;
 - (b) as respectivas percentagens de erro relativo.
- 10. Considere o sistema FP(10, 4, -99, 99, T).
 - (a) Calcule o valor de $y = \left(\frac{4 \sqrt{15}}{4 + \sqrt{15}}\right)^3$.
 - (b) Calcule o valor das seguintes expressões, analiticamente equivalentes:

$$y = (31 - 8\sqrt{15})^3$$
 e $y = \frac{1}{(31 + 8\sqrt{15})^3}$.

11. Sejam $A = 0.7422 \times 10^{-1}$, $B = 0.1246 \times 10^3$ e $C = 0.7421 \times 10^{-1}$. Efectue os seguintes cálculos no sistema FP(10, 4, -99, 99, T):

(a)
$$(A+B)+C$$
 (b) $\frac{A}{C}$ (c) $A-C$ (d) $A \times \left(\frac{B}{C}\right)$.

12. Num sistema de ponto flutuante com mantissa até 4 dígitos, sejam

$$x = 0.4537 \times 10^4$$
 e $\bar{x} = 0.4501 \times 10^4$.

Determine o número de algarismos significativos de \bar{x} .

13. Determine os algarismos significativos do valor aproximado \bar{x} de x:

(a)
$$x = \pi$$
 e $\bar{x} = 3.1$ (b) $x = e^{-4}$ e $\bar{x} = 0.0185$ (c) $x = \pi \times 10^2$ e $\bar{x} = 314.16$ (d) $x = \pi \times 10^2$ e $\bar{x} = 314.15$

14. Dado um número aproximado com um erro absoluto $\Delta_{\bar{x}}$, indique o número de algarismos significativos e o número de casas decimais correctas em cada caso:

(a)
$$\bar{x} = 397.74$$
 e $\Delta_{\bar{x}} \leq 0.05$ (b) $\bar{x} = 0.01078$ e $\Delta_{\bar{x}} \leq 0.0008$

15. Considere um sistema de ponto flutuante normalizado, de base decimal, com 4 dígitos na mantissa, expoente a variar entre -99 e 99 e que opera por arredondamento. São dadas as aproximações $\bar{x} = 0.7237 \times 10^4$ e $\bar{y} = 0.2145 \times 10^{-1}$ das quantidades exactas x e y. Efectue as seguintes operações, representando o resultado do referido sistema e determine uma estimativa para os erros relativos de cada resultado:

(a)
$$S = x + y$$
 (b) $P = x \times y$ (c) $Q = \frac{x}{y}$.

- 16. Determine o número de algarismos significativos que se pode garantir quando se calcula x+y sabendo que as aproximações de x e y têm 3 algarismos significativos. Considere $\bar{x}=0.425\times 10^3$ e $\bar{y}=0.326\times 10^3$.
- 17. Admitindo que, no cálculo de $A=\frac{1}{(\sqrt{2}+\sqrt{3})^2}$, os valores de $\sqrt{2}$ e $\sqrt{3}$ estão afectados de iguais erros absolutos, isto é, $\Delta\sqrt{2}=\Delta\sqrt{3}=\Delta\varepsilon$ e tendo em consideração que $(\sqrt{2}+\sqrt{3})>3$, obtenha, em função de $\Delta\varepsilon$, uma estimativa do erro relativo que vem para A.
- 18. (a) Em 1837, Bessel determinou para o comprimento do semi-eixo maior do elipsóide terrestre o valor de a = 6377397m e, em 1910, Hayford determinou para a mesma grandeza o valor $a_1 = 6378388$ m. Supondo exacto o valor a_1 , calcule o erro absoluto e a percentagem de erro do valor aproximado a.
 - (b) O valor adoptado em 1948 para a constante de Planck foi $h_1 = 6.62 \times 10^{-34} J$, ao passo que o valor definido por Planck em 1899 foi $h = 6.41 \times 10^{-34} J$. Considerando exacto o valor h_1 , calcule o erro absoluto e a percentagem de erro de h.
 - (c) Compare os resultados obtidos nos dois casos anteriores e indique qual a determinação que foi mais precisa relativamente ao valor que foi considerado exacto.
- 19. Considere a função $f(x, y, z) = \frac{2xy}{z}$.
 - (a) Considere as aproximações $\bar{x} = 3.1$, $\bar{y} = 1.7$ e $\bar{z} = 1.4$. Calcule $f(\bar{x}, \bar{y}, \bar{z})$ e um majorante do erro absoluto cometido (despreze os erros de arredondamento);
 - (b) Determine uma estimativa do erro relativo cometido usando os resultados de a);
 - (c) Sabendo que $x = \pi$, $y = \sqrt{3}$ e $z = \sqrt{2}$, calcule o erro absoluto e relativo de $f(\bar{x}, \bar{y}, \bar{z})$ e compare com as estimativas obtidas nas alíneas anteriores.

20. Calcule um majorante do erro absoluto e uma estimativa para o erro relativo cometidos no cálculo do valor da função $f(x,y,z)=-x+y^2+\sin z$, sabendo que são usados os seguintes valores aproximados:

$$ar{x}=1.1 \; ext{tal que} \; \Delta_{ar{x}}\leqslant 0.05;$$
 $ar{y}=2.04 \; ext{tal que} \; \Delta_{ar{y}}\leqslant 0.005;$ $ar{z}=0.5 \; rad \; ext{tal que} \; \Delta_{ar{z}}\leqslant 0.05.$

- 21. Determine as derivadas parciais das seguintes funções:
 - (a) $f(x,y) = 2x^3y 3xy^2$;
 - (b) $g(x,y) = \frac{e^{x^2} y}{xy}$;
 - (c) $h(x,y) = e^x \sin y + e^y \cos x$;
 - (d) $i(x, y) = \ln(x 3y)$.