

# DEEP MULTI-STREAM CONVOLUTIONAL NEURAL NETWORKS IN HUMAN RE-ID

A new Architecture for improved Human Re-ID

# TRIPLET LOSS RECAP





# EMBEDDINGS (DISTANCE, SIMILARITY)





#### TRIPLET LOSS





$$||f_a - f_p||_2^2 \le ||f_a - f_n||_2^2$$

$$||f_a - f_p||_2^2 - ||f_a - f_n||_2^2 \le 0$$

$$||f_a - f_p||_2^2 - ||f_a - f_n||_2^2 + \alpha \le 0$$

$$L(a, p, n) = \max(||f_a - f_p||_2^2 - ||f_a - f_n||_2^2 + \alpha, 0)$$

# TRAINING OF TRIPLET LOSS



# ONLINE TRIPLETS & BATCH ALL

Very cost intensive Batch means that all possible Triplets are generated



#### HARD TRIPLETS & HARD TRIPLET MINING

Easy Triplet

Network doesn't learn much



Hard Triplet

Network learns faster



#### HARD TRIPLET MINING



- Using distance matrix for all points in a batch (e.g. 128 embeddings) [128,128]
- Taking maximum of rows for each in order to find points which are not in their cluster

| Dist | Α    | В    | C    | D    | E    | F    |   |
|------|------|------|------|------|------|------|---|
| A    | 0.00 | 0.71 | 5.66 | 3.61 | 4.24 | 3.20 |   |
| В    | 0.71 | 0.00 | 4.95 | 2.92 | 3.54 | 2.50 |   |
| c )  | 5.66 | 4.95 | 0.00 | 2.24 | 1.41 | 2.50 |   |
| D    | 3.61 | 2.92 | 2.24 | 0.00 | 1.00 | 0.50 | 1 |
| E    | 4.24 | 3.54 | 1.41 | 1.00 | 0.00 | 1.12 |   |
| F    | 3.20 | 2.50 | 2.50 | 0.50 | 1.12 | 0.00 | J |

### PROPOSED NEW LOSS FUNCTION

#### Using center of gravity of each cluster for online training



# **NEW LOSS FUNCTION**



- 1. Get Center of Gravity for each cluster (for each identity/label)
  - 2. Create Distance Matrix just with Center of Gravity



3. Loss function: points of cluster must be nearer to their Center of Gravity then

To the closest different center of gravity



#### NEW LOSS FUNCTION: CENTER OF GRAVITY



The Average point is less distant from Its center of gravity R, then from the Closest other center of Gravity R'

$$\frac{1}{N} \sum_{n=1}^{N} \|R - x_i\|_2^2 + \alpha \le \frac{1}{2} \|R - \bar{R}\|_2^2$$

Alpha is the margin

#### **NEW LOSS FUNCTION**



$$\frac{1}{N} \sum_{n=1}^{N} \|R - x_i\|_2^2 + \alpha \le \frac{1}{2} \|R - \bar{R}\|_2^2$$

$$\frac{1}{N} \sum_{n=1}^{N} \|R - x_i\|_2^2 - \frac{1}{2} \|R - \bar{R}\|_2^2 + \alpha \le 0$$

$$L(x_i, R, \bar{R}) = max(\frac{1}{N} \sum_{n=1}^{N} \|R - x_i\|_2^2 - \frac{1}{2} \|R - \bar{R}\|_2^2 + \alpha, 0)$$

#### DISTANCE OF CENTER FACTOR



Add Factor in order to get equal distance of centers of gravity from each other



$$\alpha_2 \left\| \delta_{ij} - c \right\|_2^2$$

$$L(x_i, R, \bar{R}) = \max(\frac{1}{N} \sum_{n=1}^{N} \|R - x_i\|_2^2 - \frac{1}{2} \|R - \bar{R}\|_2^2 + \alpha + \alpha_2 \|\delta_{ij} - c\|_2^2, 0)$$