Permutation-based multiple testing with $\mbox{\it R}$ - theory 2/2

Livio Finos livio.finos@unipd.it

University of Padua

Ribno (Bled), Slovenia, 23/09/18

Outline

Introduction

Some examples
Some remarks

FamilyWise Error Rate (FWER)

Definition + Bonferroni Holm (step-wise) Closed Testing

FWER control by Permutations tests

Permutation Bonferroni Westfall & Young: permutation Holm¹ Closed Testing

Conclusion

Microarray study

Compare 20,000 genes activity between disease and control group:

Top 5 genes out of 20,000

Gene	p-value
OCIAD2	5.5e-6
NEK3	6.7e-6
TAF5	7.1e-6
FOXD4L6	7.5e-6
ADIG	8.8e-6
:	:
	•

Small p-value?

- \circ a p=5.5e-6: very unlikely (evidende in favour of H_1)
- o it is unlikely also on the light of 20,000 tested hypotheses?
- is OCIAD2 really differentially expressed?
- o what about NEK3?

Surveys

e.g. self report inventory (web), psychological tests or social surveys

For each question we can get one or more tests (e.g. comparing the opinions of two groups of people)

Surveys

e.g. self report inventory (web), psychological tests or social surveys

For each question we can get one or more tests (e.g. comparing the opinions of two groups of people)

Question: Do we need to control for multiple type I errors?

A map of brain activity for each subject

A map of brain activity for each subject
A p-value for each voxel (=pixel, point)

A map of brain activity for each subject

A p-value for each voxel (=pixel, point)

The output is a list of most significant

The output is a list of most significant voxels (among the thousands tested)

A map of brain activity for each subject

A p-value for each voxel (=pixel, point)

The output is a list of most significant voxels (among the thousands tested)

Question: Do we need to control for multiple type I errors?

Further examples

Kinematics of human movements

a test for each aspect of the movement

Regression models (e.g. LM e GLM)

a t-test for each parameter of the model

Anova

All pairs comparisons (post-hoc)

Every times we get more than one p-value ...

Question: Do we need to control for multiple type I errors?

Further examples

Kinematics of human movements

a test for each aspect of the movement

Regression models (e.g. LM e GLM)

a t-test for each parameter of the model

Anova

All pairs comparisons (post-hoc)

Every times we get more than one p-value ...

Question: Do we need to control for multiple type I errors?

Answer: Yes, of course!

Hypotesis testing, a single test

compare the two hypos:

- \circ H_0 : two groups are Equal, Y doesn't depend on X, nothing to publish :(
- H_1 : two groups are Different, Y does depend on X, publish it! :)

Each test produces a p-value p, if $p \le .05$ ($\alpha = .05$) reject H_0 (and incline to H_1)

Errors

- **Type I** (false positive): Reject H_0 when it is TRUE $P(Type\ I\ error) = P(p \le .05|H_0) = .05$
- Type II (false negative): Don't reject H_0 when it is FALSE $P(Type\ II\ error) = P(p > .05|H_1)$

Power:

$$P(p \le .05|H_1) = 1 - P(p > .05|H_1)$$
$$= 1 - P(Type\ II\ error)$$

Power is nothing without control (Asymmetric relevance of errors)

We control the $P(type\ I\ Error)$ (ie $\leq .05$) and (try) to maximize the power (i.e. minimize $type\ II\ error$)

$$P(p \le .05|H_0 = \text{groups are equal}) = ?$$

$$P(p \le .05|H_0 = \text{groups are equal}) = ?$$

$$P(p \le .05|H_0 = \text{groups are equal}) = ?$$

$$t = -2.484$$
, $p = 0.068$

$$P(p \le .05|H_0 = \text{groups are equal}) = ?$$

$$t = -2.602$$
, $p = 0.06$

$$P(p \le .05|H_0 = \text{ groups are equal}) = 0.05$$

$$P(p \le .05|H_1 = \text{ groups are NOT equal})$$

$$t = -3.426$$
, $p = 0.027$

$$P(p \le .05|H_1 = \text{ groups are NOT equal})$$

$$t = -3.154$$
, $p = 0.034$

$$P(p \le .05|H_1 = \text{ groups are NOT equal})$$

$$P(p \le .05|H_1 = \text{ groups are NOT equal})$$

$$P(p \le .05|H_1 = \text{ groups are NOT equal})$$

$$\mathbf{P}(\mathbf{p} \leq .05 | \mathbf{H_1} = \text{ groups are NOT equal})$$

e.g.: $Power: P(p \leq 0.05 | H_1) = 0.75$

Probability of at LEAST one (false) rejection?

$$= .05 + .05 - (.05 * .05) = 1 - (1 - .05)^{2} = .0975 = 1 - (1 - \alpha)^{2}$$

joint density

p-values test 2

Probability of false rejections

m independent tests (p-values)

Reject
$$H_0$$
 if $p \leq \alpha$

Probability of AT LEAST a rejection

$$P = 1 - (1 - \alpha)^m$$

Probability of AT LEAST one Type I error as a function of number of tests

Dependent tests

In most of the real cases:

joint density

Dependent tests

In most of the real cases:

$$P(\text{At least one false rejection}) > (!)1 - (1 - \alpha)^2$$

joint density

Type I errors

How to define the type I error when there are many hypotheses?

Which procedures control this error?

Outline

Introduction

Some examples
Some remarks

FamilyWise Error Rate (FWER)

Definition + Bonferroni Holm (step-wise) Closed Testing

FWER control by Permutations tests

Permutation Bonferroni Westfall & Young: permutation Holm² Closed Testing

Conclusion

FamilyWise Error Rate (FWER)

Probability of AT LEAST one false rejection

Bonferroni Inequality

Reject H_i if $p_i \leq \alpha/m$ (m = number of hypotheses)

control FWER

FWER =
$$P(p_i \le \alpha/m \text{ for at least one True null hypo})$$

= $P(\bigcup_{i \in \{\text{true null hypotheses}\}} \{p_i \le \alpha/m\})$
 $\le \sum_{i \in \{\text{true null hypotheses}\}} P(p_i \le \alpha/m)$
 $\le \#\{\text{true null hypotheses}\}\frac{\alpha}{m} \le \alpha$

Bonferroni procedure

Multiplicity-adjusted p-value

$$\tilde{p}_i = mp_i \ i = 1, \dots, m$$
 and rejects it if $\leq \alpha$

Pros

- Very easy
- Control the FWER under any dependence

Cons

Conservative (Adj. P-values very high, few rejections)

- **1.** First step: adjusted p-value: $p \cdot m$; reject if $\leq \alpha$
- **2.** After r rejections, adjusted p-value: $p \cdot (m-r)$
- **3.** just do not reject anything, Stop.

Bonferroni

Adj. p-value: p_A5 p_B5 p_C5 p_D5 p_E5 $\leq ?\alpha$

 $\mathcal{H} \setminus \mathcal{R}$: A B C D

 \mathcal{R} :

- **1.** First step: adjusted p-value: $p \cdot m$; reject if $\leq \alpha$
- **2.** After r rejections, adjusted p-value: $p \cdot (m-r)$
- **3.** just do not reject anything, Stop.

Suppose p_A and p_C significant

Adj. p-value: $p_A 5$ $p_B 5$ $p_C 5$ $p_D 5$ $p_E 5 \leq ?\alpha$

 $\mathcal{H} \setminus \mathcal{R}$:

 \mathcal{R} :

³Holm S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics; 6 (2): 65-70.

- **1.** First step: adjusted p-value: $p \cdot m$; reject if $\leq \alpha$
- **2.** After r rejections, adjusted p-value: $p \cdot (m-r)$
- **3.** just do not reject anything, Stop.

Adjusted p-value: $p \cdot 3$

Adj. p-value: - p_B3 - p_D3 p_E3 $\leq ?\alpha$

 $\mathcal{H} \setminus \mathcal{R}$:

³Holm S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics; 6 (2): 65-70.

- **1.** First step: adjusted p-value: $p \cdot m$; reject if $\leq \alpha$
- **2.** After r rejections, adjusted p-value: $p \cdot (m-r)$
- **3.** just do not reject anything, Stop.

Suppose p_D significant

Adj. p-value: - p_B3 - p_D3 $p_E3 \leq ?\alpha$

 $\mathcal{H} \setminus \mathcal{R}$:

³Holm S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics; 6 (2): 65-70.

- **1.** First step: adjusted p-value: $p \cdot m$; reject if $\leq \alpha$
- **2.** After r rejections, adjusted p-value: $p \cdot (m-r)$
- **3.** just do not reject anything, Stop.

Adjusted p-value: $p \cdot 2$

Adj. p-value: - $p_B 2$ - - $p_E 2 \leq ?\alpha$

 $\mathcal{H}\setminus\mathcal{R}$:

 $\mathcal{R}: A$

³Holm S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics; 6 (2): 65-70.

- **1.** First step: adjusted p-value: $p \cdot m$; reject if $\leq \alpha$
- **2.** After r rejections, adjusted p-value: $p \cdot (m-r)$
- 3. just do not reject anything, Stop.

No rejections: Stop

Adj. p-value: $-p_B2$ - $-p_E2 \leq ?\alpha$ $\mathcal{H} \setminus \mathcal{R}:$ \mathcal{B}

Closure of hypos (all possible intersections)

hypos to test

Α

В

С

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655+660.

Test the overall null hypo (eg MANOVA)

Closure

ABC

AB

AC

ВС

А

В

C

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

test at level α

ABC

AB AC BC

A B C

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Suppose significant

ABC

AB

AC

BC

Α

В

C

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

В

С

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655+660.

A is signif. if all above are signif.

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655+660.

Cons: too much tests very quickly: $=2^{\#hypos}-1$

A is signif. if all above are signif.

$$oxed{\mathsf{AB}}$$
 - $oxed{\mathsf{AC}}$ - $oxed{\mathsf{BC}}$ $lpha$

⁴R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Outline

Introduction

Some examples
Some remarks

FamilyWise Error Rate (FWER)

Definition + Bonferroni Holm (step-wise) Closed Testing

FWER control by Permutations tests

Permutation Bonferroni Westfall & Young: permutation Holm⁵ Closed Testing

Conclusion

Bonferroni is conservative

Bonferroni bound

Reject for p-values at most α/m

By Boole's inequality

Guaranteed: FWER $\leq \alpha$, but often FWER $< \alpha$

Can we improve?

Reject for p-values at most $\tilde{\alpha} > \alpha/m$, while keeping FWER control

Yes we can

By permutations

Improved Bonferroni

Reduced α

Reject H_i if $p_i \leq \tilde{\alpha}$

Control of FWER?

FWER =
$$P(p_i \le \tilde{\alpha} \text{ for at least one } i \text{ with } H_i \text{ true})$$

= $P(\bigcup_{i \in T} \{p_i \le \tilde{\alpha}\})$
= $P(\min_{i \in T} p_i \le \tilde{\alpha}) \le \alpha$

How can we determine the value of $\tilde{\alpha}$?

Using permutations to find the distribution of the minimum p-value

Multiple testing using permutations

The single step min-P method

- **1.** Calculate the smallest p-value m for the real data
- 2. Randomly permute the data
- 3. Calculate new p-values for all tests based on permuted data
- **4.** Calculate the smallest p-value m^{π} for permuted data
- **5.** Repeat permutation many (say k=1000) times: $m_1^{\pi}, \ldots, m_k^{\pi}$
- **6.** Calculate $\tilde{\alpha}$ as the α -quantile of $m_1^{\pi}, \ldots, m_k^{\pi}$

Multiple testing result

Reject all hypotheses with (non-permuted) p-values at most \tilde{lpha}

Histogram of the smallest p-value of 10 independent tests

Correlation structure of p-values

Permutation

- Destroys correlation between covariates and response
- Retains correlation among covariates

Consequence

- o P-values of correlated genes remain correlated in permutations
- Distribution of minimum p-value correctly takes correlations into account

Gain relative to Bonferroni

Min-P permutation critical value

In the example data: $\tilde{\alpha}=0.00527$ vs $\alpha/m=0.005$

When is the gain large?

Negatively correlated p-values: typically no gain

Independent p-values: minimal gain

Positively correlated p-values: gain can be large

Genomic data

Genes typically strongly positively correlated

Sequential permutation multiple testing

Single step

Single step min-P is permutation equivalent of Bonferroni

What about Holm?

Permutation equivalent of Holm's method: Westfall & Young

Westfall & Young min-P

The min-P algorithm

- Start with all hypotheses
- Repeat
 - \circ Do single step min-P to calculate $ilde{lpha}$
 - \circ Reject hypotheses with p-value $\leq \tilde{\alpha}$
 - Remove rejected hypotheses
- Until no new rejections occur

Westfall & Young min-p (and max-t)

Westfall & Young min-p: shortcut using min-p combining function (m tests).

Westfall & Young min-p (and max-t)

Westfall & Young min-p: shortcut using min-p combining function (m tests).

Suppose three hypotheses tested and $p_A \leq p_B \leq p_C$

- \circ Test H_A , H_B and H_C using min-p: p_{ABC}
 - if $p_{ABC} \leq \alpha$ reject H_A and go on
 - if $p_{ABC} > \alpha$ STOP
- \circ Test H_B and H_C using min-p: p_{BC}
 - if $p_{BC} \leq \alpha$ reject H_B and go on
 - if $p_{BC} > \alpha$ STOP
- \circ Test H_C : p_C
 - \circ if $p_C \leq \alpha$ reject H_C and STOP
 - if $p_C > \alpha$ STOP

For max-t procedure substitute $p_{ABC} \leq \alpha$ with $t_{ABC} \geq t_{\alpha}$

Test in each node: any multivariate permutation test (eg alternative to Manova)

Adjusted $\tilde{p}_A = \max(p_A, p_{AB}, p_{AC}, p_{ABC})$

⁶R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660. ▶ ■ ✓

Outline

Introduction

Some examples
Some remarks

FamilyWise Error Rate (FWER)

Definition + Bonferroni Holm (step-wise) Closed Testing

FWER control by Permutations tests

Permutation Bonferroni Westfall & Young: permutation Holm⁷ Closed Testing

Conclusion

Accounting for dependences: adjusted p-value lower (i.e. more rejections)

When?

Negative correlation: generally no gain p-value Independents: little or no gain Positive correlation: big gain, usually (NB: a test with bi-directional alternative and with negative correlation produce p-value positively correlated)

How?

```
in R: library(flip); flip(); flip.adjust()
```

Real data

The variables of real datasets are often correlated then . . .

Accounting for dependences: adjusted p-value lower (i.e. more rejections)

When?

Negative correlation: generally no gain p-value Independents: little or no gain Positive correlation: big gain, usually (NB: a test with bi-directional alternative and with negative correlation produce p-value positively correlated)

How?

```
in R: library(flip); flip(); flip.adjust()
```

Real data

The variables of real datasets are often correlated then ... permutations are (often) convenient

Error FamilyWise

Generalize the Type I error to the case of multiple hypotheses

Error FamilyWise

- Generalize the Type I error to the case of multiple hypotheses
- Control the probability of at LEAST a false rejections

Error FamilyWise

- Generalize the Type I error to the case of multiple hypotheses
- Control the probability of at LEAST a false rejections
- o corrects the p-value (adjusted p-value always equal to or greather than the unadjusted p-value)

Error FamilyWise

- Generalize the Type I error to the case of multiple hypotheses
- Control the probability of at LEAST a false rejections
- corrects the p-value (adjusted p-value always equal to or greather than the unadjusted p-value)

R Software

- Bonferroni and Holm library(stats); p.adjust()
- Testing Closed library(cherry); closed()
- Permutations Westfall & Young library(flip); flip.adjust()