金沢大	学大学院自然科学研究科	博士前期課程入学試験 問題用紙
対 象	機械科学専攻,電子情	報科学専攻、環境デザイン学専攻
試験科目名	数学	P. 1 / 1

2015年8月25日(火)10:00-11:00

[注意] 1. 問題 1, 2, 3, 4 のうち、2題を選択して解答すること.

2. 解答は各題ごとに分けて、1題を1枚の答案用紙の表に書くこと

1 (1) 次の微分方程式を解け.

(a)
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = 10x$$

(b)
$$(x-1)(y^2-9) dx - (x^2+1)(y+2) dy = 0$$

- (2) 微分方程式 $\frac{d^2y}{dx^2} + \frac{2}{x}\frac{dy}{dx} \frac{6}{x^2}y = 0$ を考える.
 - (a) $y=x^m$ がこの微分方程式の解となる様な m をすべて求めよ.
 - (b) (a) で求めた解が 1 次独立であることを示せ.
- ② ベクトル場 $A = (x(y-z)+z^2, y(z-x)+x^2, z(x-y)+y^2)$ と 2 つの曲面 $S: x^2+y^2+z^2=1, z\geqslant 0$ と $D: x^2+y^2\leqslant 1, z=0$ を考える. 次の問いに答えよ.
 - (1) div A と rot A を求めよ.
 - (2) $S \geq D$, それぞれの単位法線ベクトルでz成分が正であるものを求めよ.
 - (3) 面積分 $\iint_S \mathbf{A} \cdot \mathbf{n} \, dS$ の値を求めよ、ただし、 \mathbf{n} は (2) で求めた S 上の単位法線ベクトルとする、
- [3] 次の問いに答えよ.
 - (1) 積分

$$\int_C \frac{(z+1)^{2n}}{z^n} \, dz \qquad (n \geqslant 1)$$

の値を求めよ、ここで、C は正の向きを持つ原点 O を囲む単純閉曲線である。

(2) 積分

$$\int_0^\pi \frac{d\theta}{\cos\theta + a} \qquad (a > 1)$$

の値を求めよ.

(3) 積分

$$\int_{-\infty}^{\infty} e^{-x^2} e^{-i\omega x} \, dx \qquad (\omega \in \mathbb{R})$$

の値を求めよ. 必要であれば $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ を用いて良い.

|4| $t \ge 0$ で定義された関数 f(t) に対するラプラス変換を

$$\mathscr{L}[f(t)](s) = \int_0^\infty e^{-st} f(t) dt$$

とする.

- (1) 微分公式 $\mathcal{L}[f''(t)](s) = s^2 \mathcal{L}[f(t)](s) sf(+0) f'(+0)$ を示せ、ただし、 $\lim_{t \to \infty} e^{-st} f(t) = 0$ 、 $\lim_{t \to \infty} e^{-st} f'(t) = 0$ とする.
- (2) $\mathscr{L}[t](s)$ (s>0) と $\mathscr{L}[\sinh at](s)$ (s>|a|) を求めよ、ただし、 $\sinh at=\frac{e^{at}-e^{-at}}{2}$ $(a\in\mathbb{R})$ である.
- (3) 微分方程式の初期値問題

$$x''(t) - a^2x(t) = t,$$
 $x(0) = x'(0) = 0$

をラプラス変換の方法を用いて解け、ただし、a > 0 とする.