# THE MADE LET IN THE LOCK WAS TRUE

SEQ ID NO:1 Size: 410 DNA--BAP-1

```
1 gcccgttgtc tgtgtgtggg actgaggggc cccggggggcg gtgggggctc ccggtggggg
  61 cagcggtggg gagggagggc ctggacatgg cgctgagggg ccgcccgcg ggaagatgaa
 121 taagggctgg ctggaagctgg agagcgaccc aggcctcttc accctgctcg tggaagattt
 181 cggtgtcaag ggggtgcaag tggaggagat ctacgacctt cagagcaaat gtcagggcc
 241 tgtatatgga tttatcttcc tgttcaaatg gatcgaagag cgccggtccc ggcgaaaggt
 301 ctctaccttg gtggatgata cgtccgtgat tgatgatgat attgtgaata acatgttctt
 361 tgcccaccag ctgataccca actcttgtgc aactcatgcc ttgctgagcg tgctcctgaa
 421 ctgcagcage gtggacctgg gacccaccct gagtcgcatg aaggacttca ccaagggttt
 481 cagccctgag agcaaaggat atgcgattgg caatgccccg gagttggcca aggcccataa
 541 tagccatgcc aggcccgagc cacgccacct ccctgagaag cagaatggcc ttagtgcagt
 601 gcggaccatg gaggcgttcc actttgtcag ctatgtgcct atcacaggcc ggctctttga
 661 gctggatggg ctgaaggtèt accccattga ccatgggccc tggggggagg acgaggagtg
 721 gacagacaag gcccggcggg tcatcatgga gcgtatcggc ctcgccactg caggggagcc
 781 ctaccacgac atccgcttca acctgatggc agtggtgccc gaccgcagga tcaagtatga
 841 ggccaggetg catgtgctga aggtgaaccg tcagacagta ctagaggetc tgcagcagct
 901 gataagagta acacagccag agctgattca gacccacaag tctcaagagt cacagctgcc
 961 tgaggagtcc aagtcagcca gcaacaagtc cccgctggtg ctggaagcaa acagggcccc
1021 tgcagcetet gagggcaace acacagatgg tgcagaggag gcggetggtt catgcgcaca
1081 agecceatee cacagecete ceaacaaace caagetagtg gtgaageete caggeageag
1141 cctcaatggg gttcacccca accccactcc cattgtccag cggctgccgg cctttctaga
1201 caatcacaat tatgccaagt cccccatgca ggaggaagaa gacctggcgg caggtgtggg
1261 ccgcagccga gttccagtcc gcccacccca gcagtactca gatgatgagg atgactatga
1321 ggatgacgag gaggatgacg tgcagaacac caactctgcc cttaggtata aggggaaggg
1381 aacagggaag ccaggggcat tgagcggttc tgctgatggg caactgtcag tgctgcagcc
1441 caacaccatc aacgtettgg etgagaaget caaagagtee cagaaggace tetcaattee
1501 tetgtecate aagactagea geggggetgg gagteegget gtggeagtge ceacacacte
1561 gcagccctca cccaccccca gcaatgagag tacagacacg gcctctgaga tcggcagtgc
1621 tttcaactcg ccactgcgct cgcctatccg ctcagccaac ccgacgcggc cctccagccc
1681 tgtcacctcc cacatctcca aggtgctttt tggagaggat gacagcctgc tgcgtgttga
1741 ctgcatacgc tacaaccgtg ctgtccgtga tctgggtcct gtcatcagca caggcctgct
1801 gcacctggct gaggatgggg tgctgagtcc cctggcgctg acagagggtg ggaagggttc
1861 ctcgccctcc atcagaccaa tccaaggcag ccaggggtcc agcagcccag tggagaagga
1921 ggtcgtggaa gccacggaca gcagagagaa gacggggatg gtgaggcctg gcgagccctt
1981 gagtgggag aaatactcac ccaaggagct gctggcactg ctgaagtgtg tggaggctga
2041 gattgcaaac tatgaggcgt gcctcaagga ggaggtagag aagaggaaga agttcaagat
2101 tgatgaccag agaaggaccc acaactacga tgagttcatc tgcaccttta tctccatgct
2161 ggctcaggaa ggcatgctgg ccaacctagt ggagcagaac atctccgtgc ggcggcgcca
2221 aggggtcagc atcggccggc tccacaagca gcggaagcct gaccggcgga aacgctctcg
2281 cccctacaag gccaagcgcc agtgaggact gctggccctg actctgcagc ccactcttgc
2341 cgtgtggccc tcaccagggt ccttccctgc cccacttccc cttttcccag tattactgaa
2401 tagtcccage tggagagtcc aggccctggg aatgggagga accaggccac attccttcca
2461 tegtgecetg aggeetgaca eggeagatea geceeatagt geteaggagg cageatetgg
2521 agttggggca cagcgaggta ctgcagcttc ctccacagcc ggctgtggag cagcaggacc
2581 tggcccttct gcctgggcag cagaatatat attttaccta tcagagacat ctattttct
2641 gggctccaac ccaacatgcc accatgttga cataagttcc tacctgacta tgctttctct
2701 cctaggaget gteetggtgg geecaggtee ttgtateatg ccaeggteec aactacaggg
2761 tectagetgg gggeetgggt gggeeetggg etetgggeee tgetgeteta geeceageea
2821 ccagcctgtc cctgttgtaa ggaagccagg tcttctctct tcattcctct taggagagtg
2881 ccaaactcag ggacccagca ctgggctggg ttgggagtag ggtgtcccag tggggttggg
2941 gtgagcaggc tgctgggatc ccatggcctg agcagagcat gtgggaactg ttcagtggcc
3001 tgtgaactgt cttccttgtt ctagccaggc tgttcaagac tgctctccat agcaaggttc
3061 tagggetett egeetteagt gttgtggeee tagetatggg cetaaattgg getetaggte
3121 tetgtecetg gegettgagg etcagaagag ectetgteca geceetcagt attaccatgt
```

5. . . . . . .

# 10/510903\_

```
3181 ctecetetea ggggtageag agacagggtt gettatagga agetggeace acteagetet 3241 teetgetaet ceageteet cageetetge aaggeactea gggtggggga cageaggate 3301 aagacaacee gttggageee etgtgtteea gaggaeetga tgeeaagggg taatgggeee 3361 ageagtgeet etggageeea ggeeeeaaca cageeeeatg geetetgeea gatggetttg 3421 aaaaaggtga teeaageagg eeeetttate tgtacatagt gaetgagtgg ggggtgetgg 3481 caagtgtgge agetgeetet gggetgagea cagettgaee eetetageee etgtaaatae 3541 tggateaatg aatgaataaa acteteetaa gaateteetg agaaaaaaaa aaaaaaaaa
```

SEQ ID NO:2 Size: 729 PRT--BAP-1

MNKGWLELESDPGLFTLLVEDFGVKGVQVEEIYDLQSKCQGPVYGFIFLFKWIEERRSRRKVSTLVDDTSVIDDD IVNNMFFAHQLIPNSCATHALLSVLLNCSSVDLGPTLSRMKDFTKGFSPESKGYAIGNAPELAKAHNSHARPEPR HLPEKQNGLSAVRTMEAFHFVSYVPITGRLFELDGLKVYPIDHGPWGEDEEWTDKARRVIMERIGLATAGEPYHD IRFNLMAVVPDRRIKYEARLHVLKVNRQTVLEALQQLIRVTQPELIQTHKSQESQLPEESKSASNKSPLVLEANR APAASEGNHTDGAEEAAGSCAQAPSHSPPNKPKLVVKPPGSSLNGVHPNPTPIVQRLPAFLDNHNYAKSPMQEEE DLAAGVGRSRVPVRPPQQYSDDEDDYEDDEEDDVQNTNSALRYKGKGTGKPGALSGSADGQLSVLQPNTINVLAE KLKESQKDLSIPLSIKTSSGAGSPAVAVPTHSQPSPTPSNESTDTASEIGSAFNSPLRSPIRSANPTRPSSPVTS HISKVLFGEDDSLLRVDCIRYNRAVRDLGPVISTGLLHLAEDGVLSPLALTEGGKGSSPSIRPIQGSQGSSSPVE KEVVEATDSREKTGMVRPGEPLSGEKYSPKELLALLKCVEAEIANYEACLKEEVEKRKKFKIDDQRRTHNYDEFI CTFISMLAQEGMLANLVEQNISVRRQGVSIGRLHKQRKPDRRKRSRPYKAKRQ

1510903

# G3-2D8 / BRCA1-Associated Protein-1 (BAP1)

The G3-2D8 sequence is identical to BRCA1-Associated Protein-1 (BAP1), 729aa Orientation: Antisense



GTACAAGGAGGAGGCCGCCAAGGCN

GGTGGCAGCGGTGGCT*CCAGTGTGCTGGAAAG* CTAAGGGCAGAGTTGGTGTTCTGCACGTCATCCTC In frame stop ш ר ≻ S

 $\mathsf{GCACCATCTGTGTGGTTGCCCTCAGAGGCTGCAGGGGCCCTGTTTGCTTCCAGCACCAGCGGGGGAC\, ctr}$ TCGTCATCCTCATAGTCATCCTCATCATCTGAGTACTGCTGGGGTGGGCGGACTGGAACTCGGCTGCGG ACCACTAGCTTGGGTTTGTTGGGAGGGCTGTGGGATGGGGCTTGTGCGCATGAACCAGCCGCCTCCTC CCCACACCTGCCGCCAGGTCTTCTTCCTCCTGCATGGGGGACTTGGCATAATTGTGATTGTCTAGAAAG GCCGGCAGCCGCTGGACAATGGGAGTGGGGTTGGGGTGAACCCCCATTGAGGCTGCTGCCTGGAGGCT

CTTTCCAGCACAGTGG = BstXI linker CCAGTGTGCTGGAAAG,

UCH(4-216): Ubiquitin carboxyl-terminal hydrolase, family 1, DNA binding (625-640): 7kD DNA-binding domain

G3-2D8

378 bp insert



#### SEQ ID NO:3

Size: 437 DNA--NP95

1 CGACTCCTTA GAGCATGGCA TGGCTCAGAG GTGCTGGTAA AACTGATGGG GGTTTTTGCT 61 GTCCCTCCCC TCAGCGCCGA CACCATGTGG ATCCAGGTTC GGACCATGGA CGGGAGGCAG 121 ACCCACACGG TGGACTCGCT GTCCAGGCTG ACCAAGGTGG AGGAGCTGAG GCGGAAGATC 181 CAGGAGCTGT TCCACGTGGA GCCAGGCCTG CAGAGGCTGT TCTACAGGGG CAAACAGATG 241 GAGGACGGCC ATACCCTCTT CGACTACGAG GTCCGCCTGA ATGACACCAT CCAGCTCCTG 301 GTCCGCCAGA GCCTCGTGCT CCCCCACAGC ACCAAGGAGC GGGACTCCGA GCTCTCCGAC 361 ACCGACTCCG GCTGCTGCCT GGGCCAGAGT GAGTCAGACA AGTCCTCCAC CCACGGCGAG 421 GCGGCCGCG AGACTGACAG CAGGCCAGCC GATGAGGACA TGTGGGATGA GACGGAATTG 481 GGGCTGTACA AGGTCAATGA GTACGTCGAT GCTCGGGACA CGAACATGGG GGCGTGGTTT 541 GAGGCGCAGG TGGTCAGGGT GACGCGGAAG GCCCCTCCC GGGACGAGCC CTGCAGCTCC 601 ACGTCCAGGC CGGCGCTGGA GGAGGACGTC ATTTACCACG TGAAATACGA CGACTACCCG 661 GAGAACGGCG TGGTCCAGAT GAACTCCAGG GACGTCCGAG CGCGCCCCG CACCATCATC 721 AAGTGGCAGG ACCTGGAGGT GGGCCAGGTG GTCATGCTCA ACTACAACCC CGACAACCCC 781 AAGGAGCGGG GCTTCTGGTA CGACGCGGAG ATCTCCAGGA AGCGCGAGAC CAGGACGGCG 841 CGGGAACTCT ACGCCAACGT GGTGCTGGGG GATGATTCTC TGAACGACTG TCGGATCATC 901 TTCGTGGACG AAGTCTTCAA GATTGAGCGG CCGGGTGAAG GGAGCCCCAT GGTTGACAAC 961 CCCATGAGAC GGAAGAGCGG GCCGTCCTGC AAGCACTGCA AGGACGACGT GAACAGACTC 1021 TGCCGGGTCT GCGCCTGCCA CCTGTGCGGG GGCCGGCAGG ACCCCGACAA GCAGCTCATG 1081 TGCGATGAGT GCGACATGGC CTTCCACATC TACTGCCTGG ACCCGCCCCT CAGCAGTGTT 1141 CCCAGCGAGG ACGAGTGGTA CTGCCCTGAG TGCCGGAATG ATGCCAGCGA GGTGGTACTG 1201 GCGGGAGAGC GGCTGAGAGA GAGCAAGAAG AAGGCGAAGA TGGCCTCGGC CACATCGTCC 1261 TCACAGCGGG ACTGGGGCAA GGGCATGGCC TGTGTGGGCC GCACCAAGGA ATGTACCATC 1321 GTCCCGTCCA ACCACTACGG ACCCATCCCG GGGATCCCCG TGGGCACCAT GTGGCGGTTC 1381 CGAGTCCAGG TCAGCGAGTC GGGTGTCCAT CGGCCCCACG TGGCTGGCAT ACACGGCCGG 1441 AGCAACGACG GAGCGTACTC CCTAGTCCTG GCGGGGGGCT ATGAGGATGA CGTGGACCAT 1501 GGGAATTTTT TCACATACAC GGGTAGTGGT GGTCGAGATC TTTCCGGCAA CAAGAGGACC 1561 GCGGAACAGT CTTGTGATCA GAAACTCACC AACACCAACA GGGCGCTGGC TCTCAACTGC 1621 TTTGCTCCCA TCAATGACCA AGAAGGGGCC GAGGCCAAGG ACTGGCGGTC GGGGAAGCCG 1681 GTCAGGGTGG TGCGCAATGT CAAGGGTGGC AAGAATAGCA AGTACGCCCC CGCTGAGGGC 1741 AACCGCTACG ATGGCATCTA CAAGGTTGTG AAATACTGGC CCGAGAAGGG GAAGTCCGGG 1801 TTTCTCGTGT GGCGCTACCT TCTGCGGAGG GACGATGATG AGCCTGGCCC TTGGACGAAG 1861 GAGGGGAAGG ACCGGATCAA GAAGCTGGGG CTGACCATGC AGTATCCAGA AGGCTACCTG 1981 CAGGAGGGG GCTTCGCGTC CCCCAGGACG GGCAAGGGCA AGTGGAAGCG GAAGTCGGCA 2041 GGAGGTGGCC CGAGCAGGGC CGGGTCCCCG CGCCGGACAT CCAAGAAAAC CAAGGTGGAG 2101 CCCTACAGTC TCACGGCCCA GCAGAGCAGC CTCATCAGAG AGGACAAGAG CAACGCCAAG 2161 CTGTGGAATG AGGTCCTGGC GTCACTCAAG GACCGGCCGG CGAGCGGCAG CCCGTTCCAG 2221 TTGTTCCTGA GTAAAGTGGA GGAGACGTTC CAGTGTATCT GCTGTCAGGA GCTGGTGTTC 2281 CGGCCCATCA CGACCGTGTG CCAGCACAAC GTGTGCAAGG ACTGCCTGGA CAGATCCTTT 2341 CGGGCACAGG TGTTCAGCTG CCCTGCCTGC CGCTACGACC TGGGCCGCAG CTATGCCATG 2401 CAGGTGAACC AGCCTCTGCA GACCGTCCTC AACCAGCTCT TCCCCGGCTA CGGCAATGGC 2461 CGGTGATCTC CAAGCACTTC TCGACAGGCG TTTTGCTGAA AACGTGTCGG AGGGCTCGTT 2521 CATCGGCACT GATTTGTTC TTAGTGGGCT TAACTTAAAC AGGTAGTGTT TCCTCCGTTC 2581 CCTAAAAAGG TTTGTCTTCC TTTTTTTTTA TTTTTTTTT TCAAATCTAT ACATTTTCAG 2641 GAATTTATGT ATTCTGGCTA AAAGTTGGAC TTCTCAGTAT TGTGTTTAGT TCTTTGAAAA 2701 CATAAAAGCC TGCAATTTCT CGACAAAACA ACACAAGATT TTTTAAAGAT GGAATCAGAA 2761 ACTACGTGGT GTGGAGGCTG TTGATGTTTC TGGTGTCAAG TTCTCAGAAG TTGCTGCCAC 2821 CAACTCTTTA AGAAGGCGAC AGGATCAGTC CTTCTCTAGG GTTCTGGCCC CCAAGGTCAG 2881 AGCAAGCATC TTCCTGACAG CATTTTGTCA TCTAAAGTCC AGTGACATGG TTCCCCGTGG 2941 TGGCCCGTGG CATGCCGTGG CTCAGCTGTC TGTTGAAGTT GTTGCAAGGA 3001 AAAGAGGAAA CATCTCGGGC CTAGTTCAAA CCTTTGCCTC AAAGCCATCC CCCACCAGAC 3061 TGCTTAGCGT CTGAGATCCG CGTGAAAAGT CCTCTGCCCA CGAGAGCAGG GAGTTGGGGC 3121 CACGCAGAAA TGGCCTCAAG GGGACTCTGC TCCACGTGGG GCCAGGCGTG TGACTGACGC

```
3181 TGTCCGACGA AGGCGGCCAC GGACGACGC CAGCACACGA AGTCACGTGC AAGTGCCTTT
3241 GATTCGTTCC TTCTTTCTAA AGACGACAGT CTTTGTTGTT AGCACTGAAT TATTGAAAAT
3301 GTCAACCAGA TTCTAGAAAC TGCGGTCATC CAGTTCTTCC TGACACCGGA TGGGTGCTTG
3361 GGAACCGTTT GAGCCTTATA GATCATTTAC ATTCAATTTT TTTAACTCAG CAAGTGAGAA
3421 CTTACAAGAG GGTTTTTTT TAATTTTTT TTCTCTTAAT GAACACATTT TCTAAATGAA
3481 TTTTTTTGT AGTTACTGTA TATGTACCAA GAAAGATATA ACGTTAGGGT TTGGTTGTTT
3541 TTGTTTTGT ATTTTTTTC TTTTGAAAGG GTTTGTTAAT TTTTCTAATT TTACCAAAGT
3601 TTGCAGCCTA TACCTCAATA AAACAGGGAT ATTTTAAATC ACATACCTGC AGACAAACTG
3661 GAGCAATGTT ATTTTTAAAG GGTTTTTTTC ACCTCCTTAT TCTTAGATTA TTAATGTATT
3721 AGGGAAGAAT GAGACAATTT TGTGTAGGCT TTTTCTAAAAAA AAAAAAAA
```

#### SEQ ID NO:4

Size: 135
 PRT-NP95

MWIQVRTMDGRQTHTVDSLSRLTKVEELRRKIQELFHVEPGLQRLFYRGKQMEDGHTLFDYEVRLNDTIQLLVRQ SLVLPHSTKERDSELSDTDSGCCLGQSESDKSSTHGEAAAETDSRPADEDMWDETELGLYKVNEYVDARDTNMGA WFEAQVVRVTRKAPSRDEPCSSTSRPALEEDVIYHVKYDDYPENGVVQMNSRDVRARARTIIKWQDLEVGQVVML NYNPDNPKERGFWYDAEISRKRETRTARELYANVVLGDDSLNDCRIIFVDEVFKIERPGEGSPMVDNPMRRKSGP SCKHCKDDVNRLCRVCACHLCGGRQDPDKQLMCDECDMAFHIYCLDPPLSSVPSEDEWYCPECRNDASEVVLAGE RLRESKKKAKMASATSSSQRDWGKGMACVGRTKECTIVPSNHYGPIPGIPVGTMWRFRVQVSESGVHRPHVAGIH GRSNDGAYSLVLAGGYEDDVDHGNFFTYTGSGGRDLSGNKRTAEQSCDQKLTNTNRALALNCFAPINDQEGAEAK DWRSGKPVRVVRNVKGGKNSKYAPAEGNRYDGIYKVVKYWPEKGKSGFLVWRYLLRRDDDEPGPWTKEGKDRIKK LGLTMQYPEGYLEALANREREKENSKREEEEQQEGGFASPRTGKGKWKRKSAGGGPSRAGSPRRTSKKTKVEPYS LTAQQSSLIREDKSNAKLWNEVLASLKDRPASGSPFQLFLSKVEETFQCICCQELVFRPITTVCQHNVCKDCLDR SFRAQVFSCPACRYDLGRSYAMQVNQPLQTVLNQLFPGYGNGR

# G1-2635 / Np95

The G1-2635 sequence is identical to a nuclear zinc finger protein, Np95, 793aa

Orientation of cDNA: Sense

Pfam HMM search was done at the Washington University web site

and the state

506:AEQSCDQKLTNTNRALALNCFAPINDQEGAEAKDWRSGKPVRVVR NVKGGKNSKYAPAEGNRYDGIYKVVKYWPEKGKSGFLVWRYLLRRDD G1-2635 **DEPGPWTKEGKDRIKKLGLTMQYPEGYLEALANREREKENSKRE** G9a Np95

UBQ(14-89): Ubiquitin like domain,

PHD(330-379): PHD-Zn finger, It could be important for the assembly or activity of multicomponent complexes

G9a(427-599): It is found in a nuclear protein associated with cell proliferation

RING(737-775): Zinc finger, C3HC4 type (RING finger), E3 ubiquitin-protein ligase activity is intrinsic to the RING domain of c-Cbl and is likely to be a general function of this domain; Various RING fingers exhibit binding to E2 ubiquitin-conjugating enzymes

FIG. 5



#### FIG. 7 (1/5)

# 10/510903







Nucleotide Protein Genome Structure Taxonomy OMIM Search Nucleotide for **Clear** Limits Preview/Index History Clipboard Details Display ... default Add to Clipboard

1: NM\_000135. Homo sapiens Fanc...[gi:4503654]

Related Sequences, OMIM, Protein, PubMed, Taxonomy, UniSTS, LinkOut

FANC A

LOCUS NM\_000135 5503 bp mRNA linear PRI 05-JUL-2001 DEFINITION Homo sapiens Fanconi anemia, complementation group A (FANCA), mRNA.

ACCESSION NM\_000135

VERSION NM\_000135.1 GI:4503654 KEYWORDS .

SOURCE human.

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 5503)

AUTHORS Pronk JC, Gibson RA, Savoia A, Wijker M, Morgan NV, Melchionda S, Ford D, Temtamy S, Ortega JJ, Jansen S and et al.

TITLE Localisation of the Fanconi anaemia complementation group A gene to chromosome 16q24.3

JOURNAL Nat. Genet. 11 (3), 338-340 (1995)

MEDLINE <u>96042586</u> PUBMED <u>7581462</u>

REFERENCE 2 (bases 1 to 5503)

AUTHORS Lo Ten Foe, J.R., Rooimans, M.A., Bosnoyan-Collins, L., Alon, N., Wijker, M., Parker, L., Lightfoot, J., Carreau, M., Callen, D.F., Savoia, A., Cheng, N.C., Van Berkel, C.G.M., Strunk, M.H.P., Gille, J.J.P., Pals, G., Kruyt, F.A.E., Pronk, J.C., Arwert, F.,

Buchwald, M. and Joenje, H.

TITLE Expression cloning of a cDNA for the major Fanconi anaemia gene,

JOURNAL Nat. Genet. 14 (3), 320-323 (1996)

MEDLINE <u>97051928</u>

REFERENCE 3 (bases 1 to 5503)

AUTHORS Ianzano L, D'Apolito M, Centra M, Savino M, Levran O, Auerbach AD, Cleton-Jansen AM, Doggett NA, Pronk JC, Tipping AJ, Gibson RA, Mathew CG, Whitmore SA, Apostolou S, Callen DF, Zelante L and Savoia A.

Savoia A.

TITLE The genomic organization of the Fanconi anemia group A (FAA) gene JOURNAL Genomics 41 (3), 309-314 (1997)

MEDLINE <u>97312685</u> PUBMED <u>9169126</u>

REFERENCE 4 (bases 1 to 5503)

AUTHORS Joenje H, Oostra AB, Wijker M, di Summa FM, van Berkel CG, Rooimans MA, Ebell W, van Weel M, Pronk JC, Buchwald M and Arwert F.

TITLE Evidence for at least eight Fanconi anemia genes

JOURNAL Am. J. Hum. Genet. 61 (4), 940-944 (1997)

MEDLINE <u>98018453</u> PUBMED <u>9382107</u>

REFERENCE 5 (bases 1 to 5503)

AUTHORS Kupfer GM, Naf D, Suliman A, Pulsipher M and D'Andrea AD.

TITLE The Fanconi anaemia proteins, FAA and FAC, interact to form a

FIG. 7 (2/5)

```
10/510903
```

```
nuclear complex
            Nat. Genet. 17 (4), 487-490 (1997)
  JOURNAL
  MEDLINE
            98061104
   PUBMED
            9398857
COMMENT
            PROVISIONAL REFSEQ: This record has not yet been subject to final
            NCBI review. The reference sequence was derived from X99226.1.
FEATURES
                     Location/Qualifiers
    source
                     1..5503
                     /organism="Homo sapiens"
                     /isolate="healthy control"
                     /db_xref="taxon:9606"
                     /chromosome="16"
                     /map="16q24.3"
                     /clone="D"
                     /cell line="HSC93"
                     /cell_type="lymphoblastoid"
                     /clone_lib="pREP4"
                     1..5503
    gene
                     /gene="FANCA"
                     /note="FA; FA1; FAA; FACA; FANCH"
                     /db_xref="LocusID:2175"
                     /db_xref="MIM:227650"
                     /db_xref="MIM:603468"
    CDS
                     32..4399
                     /gene="FANCA"
                     /function="acts with other genes to control FA pathway"
                     /note="Fanconi anemia, complementation group H"
                     /codon_start=1
                     /db xref="LocusID:2175"
                     /db xref="MIM: 227650"
                     /db xref="MIM:603468"
                     /product="Fanconi anemia, complementation group A"
                     /protein id="<u>NP 000126.1</u>"
                     /db_xref="GI:4503655"
                     translation="MSDSWVPNSASGQDPGGRRRAWAELLAGRVKREKYNPERAQKLK/
                    ESAVRLLRSHQDLNALLLEVEGPLCKKLSLSKVIDCDSSBAYANHSSSFIGSALQDQA
                    SRLGVPVGILSAGMVASSVGQICTAPAETSHPVLLTVEQRKKLSSLLEFAQYLLAHSM
                    FSRLSFCQELWKIQSSLLLEAVWHLHVQGIVSLQELLESHPDMHAVGSWLFRNLCCLC
                    EQMEASCQHADVARAMLSDFVQMFVLRGFQKNSDLRRTVEPEKMPQVTVDVLQRMLIF
                    ALDALAAGVQEESSTHKIVRCWFGVFSGHTLGSVISTDPLKRFFSHTLTQILTHSPVL
                    KASDAVQMQREWSFARTHPLLTSLYRRLFVMLSAEELVGHLQEVLETQEVHWQRVLSF
                    VSALVVCFPEAQQLLEDWVARLMAQAFESCQLDSMVTAFLVVRQAALEGPSAFLSYAD
                    WFKASPGSTRGYHGCSKKALVFLFTFLSELVPFESPRYLQVHILHPPLVPSKYRSLLT
                    DYISLAKTRLADLKVSIENMGLYEDLSSAGDITEPHSQALQDVEKAIMVFEHTGNIPV
                    TVMEASIFRRPYYVSHFLPALLTPRVLPKVPDSRVAFIESLKRADKIPPSLYSTYCQA
                    CSAAEEKPEDAALGVRAEPNSABEPLGQLTAALGELRASMTDPSQRDVISAQVAVISE
                    RLRAVLGHNEDDSSVEISKIQLSINTPRLEPREHIAVDLLLTSFCQNLMAASSVAPPE
                    RQGPWAALFVRTMCGRVLPAVLTRLCQLLRHQGPSLSAPHVLGLAALAVHLGESRSAL
                    PEVDVGPPAPGAGLPVPALFDSLLTCRTRDSLFFCLKFCTAAISYSLCKFSSQSRDTL
                    CSCLSPGLIKKFQFLMFRLFSEARQPLSEEDVASLSWRPLHLPSADWORAALSLWTHR
```

QSRQQAAPDADLSOEPHLF"

TFREVLKEEDVHLTYQDWLHLELEIQPEADALSDTERQDFHQWAIHEHFLPESSASGG CDGDLQAACTILVNALMDFHQSSRSYDHSENSDLVFGGRTGNEDIISRLQEMVADLEL QQDLIVPLGHTPSQEHFLFEIFRRRLQALTSGWSVAASLQRQRELLMYKRILLRLPSS VLCGSSFQAEQPITARCEQFFHLVNSEMRNFCSHGGALTQDITAHFFRGLLNACLRSR DPSLMVDFILAKCQTKCPLILTSALVWWPSLEPVLLCRWRRHCQSPLPRELQKLQEGR QFASDFLSPEAASPAPNPDWLSAAALHFAIQQVREENIRKQLKKLDCEREELLVFLFF FSLMGLLSSHLTSNSTTDLPKAFHVCAAILECLEKRKISWLALFQLTESDLRLGRLLL RVAPDQHTRLLPFAFYSLLSYFHEDAAIREEAFLHVAVDMYLKLVQLFVAGDTSTVSP PAGRSLELKGQGNPVELITKARLFLLQLIPRCPKKSFSHVAELLADRGDCDPEVSAAL

#### FIG. 7 (3/5)

```
variation
                      4 R
                      /allele="A"
                      /allele="T"
                      /db xref="dbSNP:1800282"
                      1174
     variation
                      /allele="G"
                      /allele="T"
                      /db_xref="dbSNP: 1800331"
     variation
                      1321
                      /allele="A"
                      /allele="G"
                      /db xref="dbSNP: 1800332"
                      complement (1532)
     variation
                      /allele="C"
                      /allele="T"
                      /db xref="dbSNP:2239359"
                      3214
     variation
                      /allele="C"
                      /allele="T"
                      /db_xref="dbSNP: 1800346"
                      3685
     <u>variation</u>
                      /allele="A"
                      /allele="G"
                      /db_xref="dbSNP: 1800358"
                      4553
     variation
                      /allele="A"
                      /allele="G"
                      /db xref="dbSNP: 1230"
               1208 a
BASE COUNT
                         1527 c 1492 g 1276 t
ORIGIN
```

1 agccgccgcc ggggctgtag gcgccaaggc catgtccgac tcgtgggtcc cgaactccgc 61 ctcgggccag gacccagggg gccgccggag ggcctgggcc gagctgctgg cgggaagggt 121 caagagggaa aaatataatc ctgaaagggc acagaaatta aaggaatcag ctgtgcgcct 181 cctgcgaage catcaggace tgaatgeeet tttgettgag gtagaaggte caetgtgtaa 241 aaaattgtet eteageaaag tgattgaetg tgacagttet gaggeetatg etaateatte 301 tagttcattt ataggetetg etttgcagga teaageetea aggetggggg tteeegtggg 361 tattetetea geegggatgg ttgeetetag egtgggacag atetgeaegg etecagegga 421 gaccagtcac cetgtgetge tgactgtgga geagagaaag aagetgtett eeetgttaga 481 gtttgctcag tatttattgg cacacagtat gttctcccgt ctttccttct gtcaagaatt 541 atggaaaata cagagttett tgttgettga ageggtgtgg catetteaeg tacaaggeat 601 tgtgagcctg caagagctgc tggaaagcca tcccgacatg catgctgtgg gatcgtggct 661 cttcaggaat ctgtgctgcc tttgtgaaca gatggaagca tcctgccagc atgctgacgt 721 cgccagggcc atgctttctg attttgttca aatgtttgtt ttgaggggat ttcagaaaaa 781 ctcagatctg agaagaactg tggagcctga aaaaatgccg caggtcacgg ttgatgtact 841 gcagagaatg ctgatttttg cacttgacgc tttggctgct ggagtacagg aggagtcctc 901 cactcacaag atcgtgaggt gctggttcgg agtgttcagt ggacacacgc ttggcagtgt 961 aatttccaca gatcctctga agaggttctt cagtcatacc ctgactcaga tactcactca 1021 cagecetgtg etgaaageat etgatgetgt teagatgeag agagagtgga getttgegeg 1081 gacacaccct ctgctcacct cactgtaccg caggctcttt gtgatgctga gtgcagagga 1141 gttggttggc catttgcaag aagttctgga aacgcaggag gttcactggc agagagtgct 1201 etectttgtg tetgeeetgg ttgtetgett tecagaageg cageagetge ttgaagaetg 1261 ggtggcgcgt ttgatggccc aggcattcga gagctgccag ctggacagca tggtcactgc 1321 gttcctggtt gtgcgccagg cagcactgga gggcccctct gcgttcctgt catatgcaga 1381 ctggttcaag geeteetttg ggageacaeg aggetaecat ggetgeagea agaaggeeet 1441 ggtcttcctg tttacgttct tgtcagaact cgtgcctttt gagtctcccc ggtacctgca 1501 ggtgcacatt ctccacccac ccctggttcc cagcaagtac cgctccctcc tcacagacta 1561 catctcattg gccaagacac ggctggccga cctcaaggtt tctatagaaa acatgggact 1621 ctacgaggat ttgtcatcag ctggggacat tactgagccc cacagccaag ctcttcagga 1681 tgttgaaaag gccatcatgg tgtttgagca tacggggaac atcccagtca ccgtcatgga 1741 ggccagcata ttcaggaggc cttactacgt gtcccacttc ctccccgccc tgctcacacc

#### FIG. 7 (4/5)

1801 tegagtgete eccaaagtee etgacteeg tgtggegttt atagagtete tgaagagage 1861 agataaaatc cccccatctc tgtactccac ctactgccag gcctgctctg ctgctgaaga 1921 gaagccagaa gatgcagccc tgggagtgag ggcagaaccc aactctgctg aggagcccct 1981 gggacagete acagetgeae tgggagaget gagageetee atgacagace ccagecageg 2041 tgatgttata tcggcacagg tggcagtgat ttctgaaaga ctgagggctg tcctgggcca 2101 caatgaggat gacagcagcg ttgagatatc aaagattcag ctcagcatca acacgccgag 2161 actggagcca cgggaacaca ttgctgtgga cctcctgctg acgtctttct gtcagaacct 2221 gatggctgcc tccagtgtcg ctcccccgga gaggcagggt ccctgggctg ccctcttcgt 2281 gaggaccatg tgtggacgtg tgctccctgc agtgctcacc cggctctgcc agctgctccg 2341 tcaccagggc ccgagcctga gtgccccaca tgtgctgggg ttggctgccc tggccgtgca 2401 cetgggtgag tecaggtetg egeteecaga ggtggatgtg ggteeteetg cacetggtge 2461 tggccttcct gtccctgcgc tctttgacag cctcctgacc tgtaggacga gggattcctt 2521 gttcttctgc ctgaaatttt gtacagcagc aatttcttac tctctctgca agttttcttc 2581 ccagtcacga gatactttgt gcagctgctt atctccaggc cttattaaaa agtttcagtt 2641 ceteatgtte agattgttet cagaggeeeg acageetett tetgaggagg acgtageeag 2701 cettteetgg agaceettge acetteette tgcagactgg cagagagetg cectetetet 2761 ctggacacac agaaccttcc gagaggtgtt gaaagaggaa gatgttcact taacttacca 2821 agactggtta cacctggagc tggaaattca acctgaagct gatgctcttt cagatactga 2881 acggcaggac ttccaccagt gggcgatcca tgagcacttt ctccctgagt cctcggcttc 2941 agggggctgt gacggagacc tgcaggctgc gtgtaccatt cttgtcaacg cactgatgga 3001 tttccaccaa agctcaagga gttatgacca ctcagaaaat tctgatttgg tctttggtgg 3061 ccgcacagga aatgaggata ttatttccag attgcaggag atggtagctg acctggagct 3121 gcagcaagac ctcatagtgc ctctcggcca cacccttcc caggagcact tcctctttga 3181 gattttccgc agacggctcc aggctctgac aagcgggtgg agcgtggctg ccagccttca 3241 gagacagagg gagctgctaa tgtacaaacg gatcctcctc cgcctgcctt cgtctgtcct 3301 ctgcggcagc agcttccagg cagaacagcc catcactgcc agatgcgagc agttcttcca 3361 cttggtcaac tctgagatga gaaacttctg ctcccacgga ggtgccctga cacaggacat 3421 cactgcccac ttcttcaggg gcctcctgaa cgcctgtctg cggagcagag acccctccct 3481 gatggtegac ttcatactgg ccaagtgcca gacgaaatgc cccttaattt tgacctctgc 3541 tetggtgtgg tggccgagcc tggagcctgt gctgctctgc cggtggagga gacactgcca 3601 gagcccgctg ccccgggaac tgcagaagct acaagaaggc cggcagtttg ccagcgattt 3661 cetetecet gaggetgeet ecceageace caaceeggae tggeteteag etgetgeact 3721 gcactttgcg attcaacaag tcagggaaga aaacatcagg aagcagctaa agaagctgga 3781 ctgcgagaga gaggagctat tggttttcct tttcttcttc tccttgatgg gcctgctqtc 3841 gtcacatctg acctcaaata gcaccacaga cctgccaaag gctttccacg tttgtgcagc 3901 aatcctcgag tgtttagaga agaggaagat atcctggctg gcactctttc agttgacaga 3961 gagtgacete aggetgggge ggeteeteet eegtgtggee eeggateage acaceagget 4021 getgeettte getttttaca gtettetete etaetteeat gaagaegegg ceateaggga 4081 agaggeette etgeatgttg etgtggaeat gtaettgaag etggteeage tettegtgge 4141 tggggataca agcacagttt cacetecage tggcaggage etggagetea agggteaggg 4201 caaccccgtg gaactgataa caaaagctcg tctttttctg ctgcagttaa tacctcggtg 4261 cccgaaaaag agetteteac acgtggcaga getgetgget gategtgggg actgegacee 4321 agaggtgagc gccgccctcc agagcagaca gcaggctgcc cctgacgctg acctgtccca 4381 ggagecteat etettetgae gggacetgee actgeacace ageceagete cegtgtaaat 4441 aatttattac aagcataaca tggagctctt gttgcactaa aaagtggatt acaaatctcc 4501 tcgactgctt tagtggggaa aggaatcaat tatttatgaa ctgtccggcc ccgagtcact 4561 cagcgtttgc gggaaaataa accactggtc ccagagcaga ggaaggctac ttgagccgga 4621 caccaagece geeteeagea ecaagggegg geageaceet eegaecetee catgegggtg 4681 cacacgaagg gtgaggctga cacagccact gcggagtcca ggctgctaga ggtgctcatc 4741 ctcactgccg tectcaggtg ggtteggget teacegeetg geeetetgtg gtcacagagg 4801 ggctcggtgg cccaggtggt ggttccgcct ccaggggcag ggccttgtcc tgggtctgtg 4861 teagegggtg caecatggae atgtgtacat tgaggttgtg ggcettetea aacegeegge 4921 cacactggtc acaggcaaag tccagctcag tctcagcctt gtgtttggtc atgtggtact 4981 tgagggatgc ccgctgcctg cactggaacc cacagacctc acacctgggg gacagaggca 5041 gataagaagg tgcgaggcca cagccctggg agggggtcct gactcacact tactgcaaag 5101 gcttggctcc cgaatgtcgc atttggtgga cgagaaggtg cttccgctgc ttgaaggttt 5161 gtccacattc gtcacagata tagttccgca cctctgagag gggagagtcc agtgagtcca 5221 ggcccctgat gctccaacct cccgggggga cgacgatgac aatgtgaaac catcacagct 5281 gggaagacat ttctgcacat ggttcaccat gcagtgggcc caagcaaggg gcctatgagg 5341 gcctcgttta ttaagatctt taaactgctt tatacactgt cacgtggctt catcagctgt

Revised: October 24, 2001.

11

Disclaimer | Write to the Help Desk NCBI | NLM | NIH



Nucleotide **PubMed** Nucleotide Protein Genome Structure **PopSet** Taxonomy OMIM Search Nucleotide ≝ for l Clear Limits Preview/Index History Clipboard Details Display default 172AdditoxClipboard 1: NM 030588. Homo sapiens Related Sequences, OMIM, Protein, PubMed, Taxonomy, DEAD...[gi:13514821] UniSTS, LinkOut LOCUS NM 030588 1378 bp mRNA linear PRI 02-APR-2001 Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 9 (RNA DEFINITION helicase A, nuclear DNA helicase II; leukophysin) (DDX9), transcript variant 2, mRNA. **ACCESSION** NM 030588 NM 030588.1 GI:13514821 VERSION DDX9 KEYWORDS SOURCE human. ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE (bases 1 to 1378) **AUTHORS** Lee, C.G. and Hurwitz, J. TITLE A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3' to 5' direction J. Biol. Chem. 267 (7), 4398-4407 (1992) **JOURNAL** 

MEDLINE 92165790 **PUBMED** 1537828

REFERENCE (bases 1 to 1378)

**AUTHORS** Lee, C.G., Zamore, P.D., Green, M.R. and Hurwitz, J.

TITLE RNA annealing activity is intrinsically associated with U2AF

J. Biol. Chem. 268 (18), 13472-13478 (1993) **JOURNAL** 

MEDLINE 93293869 PUBMED 7685763

REFERENCE (bases 1 to 1378)

**AUTHORS** Lee, C.G. and Hurwitz, J.

TITLE Human RNA helicase A is homologous to the maleless protein of

Drosophila

JOURNAL J. Biol. Chem. 268 (22), 16822-16830 (1993)

MEDLINE 93346440 PUBMED 8344961

REFERENCE (bases 1 to 1378)

**AUTHORS** Abdelhaleem, M.M., Hameed, S., Klassen, D. and Greenberg, A.H. Leukophysin: an RNA helicase A-related molecule identified in TITLE

cytotoxic T cell granules and vesicles

JOURNAL J. Immunol. 156 (6), 2026-2035 (1996)

MEDLINE 96310937 PUBMED 8690889

REFERENCE (bases 1 to 1378)

**AUTHORS** Zhang, S. and Grosse, F.

TITLE Domain structure of human nuclear DNA helicase II (RNA helicase A)

JOURNAL J. Biol. Chem. 272 (17), 11487-11494 (1997)

MEDLINE 97269062 PUBMED 9111062

REFERENCE (bases 1 to 1378)

AUTHORS Nakajima, T., Uchida, C., Anderson, S.F., Lee, C.G., Hurwitz, J.,

# FIG. 8 (2/4)

Parvin, J.D. and Montminy, M. RNA helicase A mediates association of CBP with RNA polymerase II TITLE Cell 90 (6), 1107-1112 (1997) JOURNAL MEDLINE 97462911 9323138 PURMED (bases 1 to 1378) REFERENCE Lee, C.G., da Costa Soares, V., Newberger, C., Manova, K., Lacy, E. and AUTHORS Hurwitz,J. TITLE RNA helicase A is essential for normal gastrulation Proc. Natl. Acad. Sci. U.S.A. 95 (23), 13709-13713 (1998) JOURNAL MEDLINE 99030634 9811865 PUBMED REFERENCE (bases 1 to 1378) Lee, C.G., Eki, T., Okumura, K., Nogami, M., Soares, Vd., Murakami, Y., **AUTHORS** Hanaoka, F. and Hurwitz, J. TITLE The human RNA helicase A (DDX9) gene maps to the prostate cancer susceptibility locus at chromosome band 1q25 and its pseudogene (DDX9P) to 13q22, respectively Somat. Cell Mol. Genet. 25 (1), 33-39 (1999) **JOURNAL** MEDLINE 20381755 PUBMED 10925702 COMMENT REVIEWED REFSEQ: This record has been curated by NCBI staff. The reference sequence was derived from U03643.1. Summary: DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene includes 2 alternatively spliced transcripts, encoding 2 different isoforms. The larger isoform is a DEAD box protein with RNA helicase activity. It may participate in melting of DNA:RNA hybrids, such as those that occur during transcription, and may play a role in X-linked gene expression. It contains 2 copies of a double-stranded RNA-binding domain, a DEXH core domain and an RGG box. The RNA-binding domains and RGG box influence and regulate RNA helicase activity. The smaller isoform is a lymphocyte granule protein. It lacks RNA-binding domains and DEXH core domain, but contains an RGG box, which may render this isoform RNA binding function. Transcript Variant: This variant (2) is missing a 104 nt internal fragment, in addition to 2722 nt in the 5' UTR, as compared to variant 1. It encodes the smaller isoform, which is associated with lymphocyte granules. COMPLETENESS: complete on the 3' end. **FEATURES** Location/Qualifiers 1..1378 source /organism="Homo sapiens" /db\_xref="taxon:9606"

/chromosome="1" /map="1q25"

gene 1..1378 /gene="DDX9"

> /note="LKP; NDHII; RHA" /db\_xref="LocusID: 1660" /db\_xref="MIM:603115"

variation 35

/allele="A" /allele="G"

BASE COUNT

ORIGIN

369 a

261 c

```
10/510903
                                  FIG. 8 (3/4)
                  /db_xref="dbSNP: 1049264"
 variation
                  /allele="A"
                  /allele="G"
                  /db_xref="dbSNP: 1049265"
 <u>variation</u>
                  /allele="A"
                  /allele="G"
                  /db_xref="dbSNP: 1049266"
 CDS
                  358..1065
                  /gene="DDX9"
                  /note="isoform 2 is encoded by transcript variant 2; RNA
                  helicase A; leukophysin; DEAD/H box-9; nuclear DNA
                  helicase II; ATP-dependent RNA helicase A"
                  /codon_start=1
                  /db_xref="LocusID: 1660"
                  /db_xref="MIM:603115"
                  /product="DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 9,
                  isoform 2"
                  /protein_id="NP_085077.1"
                  /db_xref="GI:13514822"
                  translation="MKYPSPFFVFGEKIRTRAISAKGMTLVTPLQLLLFASKKVQSDG/
                 QIVLVDDWIKLQISHEAAACITGLRAAMEALVVEVTKQPAIISQLDPVNERMLNMIRQ
                  ISRPSAAGINLMIGSTRYGDGPRPPKMARYDNGSGYRRGGSSYSGGGYGGGYSSGGYG
                 SGGYGGSANSFRAGYGAGVGGGYRGVSRGGFRGNSGGDYRGPSGGYRGSGGFQRGGGR
                 GAYGTGYFGQGRGGGGY"
misc feature
                 760..1062
                 /note="Arg/Gly/Ser/Tyr-rich domain; Region: RGG box"
<u>variation</u>
                 1146
                 /allele="A"
                 /allele="T"
                 /db xref="dbSNP:861"
<u>variation</u>
                 1187
                 /allele="G"
                 /allele="T"
                 /db_xref="dbSNP:865"
variation
                 1236
                 /allele="G"
                 /allele="T"
                 /db_xref="dbSNP:<u>860</u>"
variation
                 1240
                 /allele="A"
                 /allele="T"
                 /db_xref="dbSNP:<u>864</u>"
variation
                 1293
                 /allele="C"
                 /allele="T"
                 /db_xref="dbSNP:863"
variation
                 1297
                 /allele="A"
                 /allele="T"
                 /db_xref="dbSNP:866"
<u>variation</u>
                 1318
                 /allele="A"
                 /allele="T"
                 /db_xref="dbSNP:862"
polyA signal
                 1362..1367
polyA site
                 1378
```

397 t

351 g

# SECTION OF THE STATES

# FIG. 8 (4/4)

| 1    | cattgctgct | gctacctgct | ttccagagcc | tttcatcaat | gaaggaaagc | ggctgggcta |
|------|------------|------------|------------|------------|------------|------------|
| 61   | tatccatcga | aattttgctg | gaaacagatt | ttctgatcac | gtagcccttt | tatcagtatt |
|      |            |            |            |            | gagatacgtt |            |
| 181  | caaaagactt | aatatggcta | cactaagaat | gacctgggaa | gccaaagttc | agctcaaaga |
| 241  | gattttgatt | aattctgggt | ttccagaaga | ttgtttgttg | acacaagtgt | ttactaacac |
| 301  | tggaccagat | aataatttgg | atgttgttat | ctccctcctg | gcctttgtag | ccaagacatg |
| 361  | aagtacccat | ctcccttctt | tgtatttggt | gaaaagattc | gaactcgagc | catctctgct |
| 421  | aaaggcatga | ctttagtcac | cccctgcag  | ttgcttctct | ttgcctccaa | gaaagtccaa |
| 481  | tctgatgggc | agattgtgct | tgtagatgac | tggattaaac | tgcaaatatc | tcatgaagct |
| 541  | gctgcctgta | tcactggtct | ccgggcagcc | atggaggctt | tggttgttga | agtaaccaaa |
| 601  | caacctgcta | tcatcagcca | gttggacccc | gtaaatgaac | gtatgctgaa | catgatccgt |
| 661  | cagateteta | gacceteage | tgctggtatc | aaccttatga | ttggcagtac | acggtatgga |
| 721  | gatggtccac | gtcctcccaa | gatggcccga | tacgacaatg | gaagcggata | tagaagggga |
|      |            |            |            |            | gcagtggagg |            |
| 841  | ggaggctatg | gtggcagcgc | caactccttt | cgggcaggat | atggtgcagg | tgttggtgga |
|      |            |            |            |            | ctggaggaga |            |
|      |            |            |            |            | gaggtggtag |            |
|      |            |            |            |            | attaaaactt |            |
| 1081 | gttcctgtgt | gtagacagta | aggaaaaaaa | ggcatgctat | gtgttacgtg | ttttttccag |
| 1141 | tatgtttatt | tgccaccaaa | aagtaaatgc | attttcaccc | attctgtggt | tcattgtagt |
|      |            |            |            |            | tatattatgt |            |
|      |            |            |            |            | gagtaaagat |            |
| 1321 | ataacttggt | attttcctgg | ctttcgttta | atacaataga | aaataaagta | ttacaccg   |
|      |            |            |            |            |            |            |

Revised: October 24, 2001.

//

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

TITLE

JOURNAL

MEDLINE

PUBMED

92268129

1316909



Insulin-like growth factor I receptor gene structure

J. Biol. Chem. 267 (15), 10759-10763 (1992)

```
REFERENCE
               (bases 1 to 4989)
            Werner H, Karnieli E, Rauscher FJ and LeRoith D.
  AUTHORS
            Wild-type and mutant p53 differentially regulate transcription of
  TITLE
            the insulin-like growth factor I receptor gene
            Proc. Natl. Acad. Sci. U.S.A. 93 (16), 8318-8323 (1996)
  JOURNAL
            96323219
  MEDLINE
   PUBMED
            8710868
REFERENCE
               (bases 1 to 4989)
            Grant ES, Ross MB, Ballard S, Naylor A and Habib FK.
  AUTHORS
            The insulin-like growth factor type I receptor stimulates growth
  TITLE
            and suppresses apoptosis in prostatic stromal cells
  JOURNAL
            J. Clin. Endocrinol. Metab. 83 (9), 3252-3257 (1998)
  MEDLINE
            98417960
   PUBMED
            9745438
COMMENT
            REVIEWED REFSEO: This record has been curated by NCBI staff. The
            reference sequence was derived from X04434.1, M69229.1.
           On Nov 1, 2000 this sequence version replaced gi:4557664.
           Summary: This receptor binds insulin-like growth factor with a high
           affinity. It has tyrosine kinase activity. The insulin-like growth
           factor I receptor plays a critical role in transformation events.
           Cleavage of the precursor generates alpha and beta subunits. It is
           highly overexpressed in most malignant tissues where it functions
           as an anti-apoptotic agent by enhancing cell survival.
FEATURES
                    Location/Qualifiers
    source
                    1..4989
                    /organism="Homo sapiens"
                    /db xref="taxon:9606"
                     /chromosome="15"
                    /map="15q25-q26"
                    /clone="(lambda)IGF-1-R.85, (lambda)IGF-1-R.76"
                    /tissue_type="placenta"
                    /clone_lib="(lamda)gt10"
                    1..4989
    gene
                    /gene="IGF1R"
                    /note="JTK13"
                    /db_xref="LocusID:3480"
                    /db_xref="MIM: 147370"
    CDS
                    46..4149
                    /gene="IGF1R"
                    /EC number="2.7.1.112"
                    /codon_start=1
                    /db_xref="LocusID:3480"
                    /db_xref="MIM:147370"
                    /product="insulin-like growth factor 1 receptor precursor"
                    /protein_id="NP_000866.1"
                    /db_xref="GI:4557665"
                    /translation="MKSGSGGGSPTSLWGLLFLSAALSLWPTSGEICGPGIDIRNDYO
                    QLKRLENCTVIEGYLHILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPN
                    LTVIRGWKLFYNYALVIFEMTNLKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLI
                    LDAVSNNYIVGNKPPKECGDLCPGTMEEKPMCEKTTINNEYNYRCWTTNRCQKMCPST
                    CGKRACTENNECCHPECLGSCSAPDNDTACVACRHYYYAGVCVPACPPNTYRFEGWRC
                    VDRDFCANILSAESSDSEGFVIHDGECMQECPSGFIRNGSQSMYCIPCEGPCPKVCEE
                    EKKTKTIDSVTSAQMLQGCTIFKGNLLINIRRGNNIASELENFMGLIEVVTGYVKIRH
                    SHALVSLSFLKNLRLILGEEQLEGNYSFYVLDNQNLQQLWDWDHRNLTIKAGKMYFAF
                    NPKLCVSEIYRMEEVTGTKGRQSKGDINTRNNGERASCESDVLHFTSTTTSKNRIIIT
                    WHRYRPPDYRDLISFTVYYKEAPFKNVTEYDGQDACGSNSWNMVDVDLPPNKDVEPGI
                    LLHGLKPWTQYAVYVKAVTLTMVENDHIRGAKSEILYIRTNASVPSIPLDVLSASNSS
                    SQLIVKWNPPSLPNGNLSYYIVRWQRQPQDGYLYRHNYCSKDKIPIRKYADGTIDIEE
                    VTENPKTEVCGGEKGPCCACPKTEAEKQAEKEEAEYRKVFENFLHNSIFVPRPERKRR
                    DVMQVANTTMSSRSRNTTAADTYNITDPEELETEYPFFESRVDNKERTVISNLRPFTL
```

sig peptide

46..123

## FIG. 9 (3/6)

10/510903

YRIDIHSCNHEAEKLGCSASNFVFARTMPAEGADDI PĞPVTWEPRPENSTFLKWPEPE NPNGLILMYEIKYGSQVEDQRECVSRQEYRKYGGAKLNRLNPGNYTAR IQATSLSGNG SWTDPVFFYVQAKTGYENFIHLI IALPVAVLLIVGGLVIMLYVFHRKRNNSRLGNGVL YASVNPEYFSAADVYVPDEWEVAREKITMSRELGQGSFGMVYEGVAKGVVKDEPETRV AIKTVNEAASMRERIEFLNEASVMKEFNCHHVVRLLGVVSQGQPTLVIMELMTRGDLK SYLRSLRPEMENNPVLAPPSLSKMIQMAGEIADGMAYLNANKFVHRDLAARNCMVAED FTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMSPESLKDGVFTTYSDVWSFGVVLWE IATLAEQPYQGLSNEQVLRFVMEGGLLDKPDNCPDMLFELMRMCWQYNPKMRPSFLEI ISSIKEEMEPGFREVSFYYSEENKLPEPEELDLEPENMESVPLDPSASSSSLPLPDRH SGHKAENGPGPGVLVLRASFDERQPYAHMNGGRKNERALPLPQSSTC"

```
mat peptide
                 121..4134
                 /product="IGF-I receptor"
misc feature
                 122..2251
                 /note="alpha-subunit (AA 1 - 710)"
misc feature
                 /note="pot.N-linked glycosylation site (AA 21 - 23)"
misc feature
                 /note="Recep_L domain; Region: Receptor L domain"
<u>misc</u> feature
                 /note="pot.N-linked glycostlation site (AA 72 - 74)"
misc feature
                 /note="pot.N-linked glycostlation site (AA 105 - 107)"
misc feature
                 /note="Furin-like; Region: Furin-like cysteine rich
                 region"
misc feature
                 724..852
                 /note="FU; Region: Furin-like repeats"
misc feature
                 761..769
                 /note="pot.N-linked glycostlation site (AA 214 - 216)"
                 971..979
misc feature
                 /note="pot.N-linked glycostlation site (AA 284 - 286)"
misc feature
                 1162..1410
                 /note="Recep L domain; Region: Receptor L domain"
misc feature
                 1280..1288
                 /note="pot.N-linked glycostlation site (AA 387 - 389)"
misc feature
                1343..1351
                 /note="pot.N-linked glycosylation site (AA 408 - 410)"
misc feature
                1631..1639
                 /note="pot.N-linked glycostlation site (AA 504 - 506)"
variation
                 1731
                 /allele="A"
                 /allele="G"
                 /db xref="dbSNP:2228531"
misc feature
                 1850..1858
                 /note="pot.N-linked glycosylation site (AA 577 - 579)"
<u>misc feature</u>
                 1895..1903
                 /note="pot.N-linked glycosylation site (AA 592 - 594)"
misc feature
                1949..1957
                 /note="pot.N-linked glycosylation site (AA 610 - 612)"
<u>misc</u> feature
                2240..2251
                 /note="putative proreceptor processing site (AA 707 -
                 710) "
misc feature
                2252..4132
                 /note="beta-subunit (AA 711 - 1337)"
misc feature
                2270..2278
                 /note="pot.N-linked glycosylation site (AA 717 - 719]"
misc feature
                2297..2305
                 /note="pot.N-linked glycosylation site (AA 726 - 728)"
misc feature
                2321..2329
```

# FIG. 9 (4/6)

```
/note="pot.N-linked glycosylation site"(森水 734 🖑 736)
      misc feature
                      2548..2796
                      /note="fn3; Region: Fibronectin type III domain"
      misc feature
                      2729..2737
                      /note="pot.N-linked glycosylation site (AA 870 - 872)"
     misc feature
                      2768..2776
                      /note="pot.N-linked glycosylation site (AA 883 - 885)"
     misc feature
                      2836..2910
                      /note="transmembrane region (AA 906 - 929);
                      transmembrane-region site"
     misc feature
                      2918..2926
                      /note="pot.N-linked glycosylation site (AA 933 - 935)"
     misc feature
                      3040..3834
                      /note="pkinase; Region: Eukaryotic protein kinase domain"
     misc feature
                      3040..3843
                      /note="TyrKc; Region: Tyrosine kinase, catalytic domain"
     misc feature
                      3047..3049
                     /note="pot.ATP binding site (AA 976)"
     misc feature
                     3052..3807
                     /note="S_TKc; Region: Serine/Threonine protein kinases,
                     catalytic domain"
     misc feature
                     3053..3055
                     /note="pot.ATP binding site (AA 978)"
     misc feature
                     3062..3064
                     /note="pot.ATP binding site (AA 981)"
     misc feature
                     3128..3130
                     /note="pot.ATP binding site (AA 1003)"
     variation
                     4267
                     /allele="A"
                     /allele="T"
                     /db_xref="dbSNP:1065304"
     variation
                     4268
                     /allele="A"
                     /allele="T"
                     /db_xref="dbSNP:1065305"
BASE COUNT
               1216 a
                        1371 c
                                 1320 g. 1082 t
ORIGIN
        1 ttttttttt ttttgagaaa gggaatttca tcccaaataa aaggaatgaa gtctggctcc
       61 ggaggagggt ccccgacctc gctgtggggg ctcctgtttc tctccgccgc gctctcgctc
```

```
121 tggccgacga gtggagaaat ctgcgggcca ggcatcgaca tccgcaacga ctatcagcag
 181 ctgaagcgcc tggagaactg cacggtgatc gagggctacc tccacatcct gctcatctcc
 241 aaggccgagg actaccgcag ctaccgcttc cccaagctca cggtcattac cgagtacttg
 301 ctgctgttcc gagtggctgg cctcgagagc ctcggagacc tcttccccaa cctcacggtc
 361 atccgcggct ggaaactett ctacaactac gccctggtca tettcgagat gaccaatete
 421 aaggatattg ggctttacaa cctgaggaac attactcggg gggccatcag gattgagaaa
 481 aatgctgace tetgttacet etceaetgtg gactggteec tgateetgga tgeggtgtee
 541 aataactaca ttgtggggaa taagccccca aaggaatgtg gggacctgtg tccagggacc
 601 atggaggaga agccgatgtg tgagaagacc accatcaaca atgagtacaa ctaccgctgc
 661 tggaccacaa accgctgcca gaaaatgtgc ccaagcacgt gtgggaagcg ggcgtgcacc
721 gagaacaatg agtgctgcca ccccgagtgc ctgggcagct gcagcgcgcc tgacaacgac
 781 acggcctgtg tagettgeeg ceactactae tatgeeggtg tetgtgtgee tgeetgeeeg
 841 cccaacacct acaggtttga gggctggcgc tgtgtggacc gtgacttctg cgccaacatc
 901 ctcagcgccg agagcagcga ctccgagggg tttgtgatcc acgacggcga gtgcatgcag
961 gagtgcccct cgggcttcat ccgcaacggc agccagagca tgtactgcat cccttgtgaa
1021 ggtccttgcc cgaaggtctg tgaggaagaa aagaaaacaa agaccattga ttctgttact
1081 tetgeteaga tgetecaagg atgeaceate tteaagggea atttgeteat taacateega
1141 cgggggaata acattgcttc agagctggag aacttcatgg ggctcatcga ggtggtgacg
1201 ggctacgtga agatccgcca ttctcatgcc ttggtctcct tgtccttcct aaaaaacctt
1261 cgcctcatcc taggagagga gcagctagaa gggaattact ccttctacgt cctcgacaac
1321 cagaacttgc agcaactgtg ggactgggac caccgcaacc tgaccatcaa agcagggaaa
```

#### FIG. 9 (5/6)

# 10/510903

1381 atgtactttg ctttcaatcc caaattatqt gtttccgaaa ttttaccgcar ggaggaaqtg 1441 acggggacta aagggcgcca aagcaaaggg gacataaaca ccaggaacaa cggggagaga 1501 gcctcctgtg aaagtgacgt cctgcatttc acctccacca ccacgtcgaa gaatcqcatc 1561 atcataacct ggcaccgqta ccqqcccct gactacaggg atctcatcag cttcaccqtt 1621 tactacaagg aagcaccett taagaatgte acagagtatg atgggcagga tgcctqcqqc 1681 tccaacagct ggaacatggt ggacgtggac ctcccgccca acaaggacgt ggagcccggc 1741 atcttactac atgggctgaa gccctggact cagtacgccg tttacgtcaa ggctgtgacc 1801 etcaccatgg tggagaacga ccatatecgt ggggccaaga gtgagatett gtacattege 1861 accaatgett cagtteette catteeettg gaegttettt cagcategaa eteetettet 1921 cagttaatcg tgaagtggaa coctcoctct ctgcccaacg gcaacctgag ttactacatt 1981 gtgcgctggc agcggcagcc tcaggacggc tacctttacc ggcacaatta ctgctccaaa 2041 gacaaaatcc ccatcaggaa gtatgccgac ggcaccatcg acattgagga ggtcacagag 2101 aaccccaaga ctgaggtgtg tggtggggag aaagggcctt gctgcgcctg ccccaaaact 2161 gaagecgaga ageaggecga gaaggaggag getgaatace geaaagtett tgagaattte 2221 ctgcacaact ccatcttcgt gcccagacct gaaaggaagc ggagagatgt catgcaagtg 2281 gccaacacca ccatgtccag ccgaagcagg aacaccacgg ccgcagacac ctacaacatc 2341 accgacccgg aagagctgga gacagagtac cctttctttg agagcagagt ggataacaag 2401 gagagaactg teatttetaa cetteggeet tteacattgt acegeatega tatecacage 2461 tgcaaccacg aggctgagaa gctgggctgc agcgcctcca acttcgtctt tgcaaggact 2521 atgcccgcag aaggagcaga tgacattcct gggccagtga cctgggagcc aaggcctgaa 2581 aactccatct ttttaaagtg geeggaacet gagaateeca atggattgat tetaatgtat 2641 gaaataaaat acggatcaca agttgaggat cagcgagaat gtgtgtccag acaggaatac 2701 aggaagtatg gaggggccaa gctaaaccgg ctaaacccgg ggaactacac agcccggatt 2761 caggccacat ctctctctgg gaatgggtcg tggacagatc ctgtgttctt ctatgtccag 2821 gccaaaacag gatatgaaaa cttcatccat ctgatcatcg ctctgcccgt cgctgtcctg 2881 ttgatcgtgg gagggttggt gattatgctg tacgtcttcc atagaaagag aaataacagc 2941 aggetgggga atggagtget gtatgeetet gtgaaceegg agtaetteag egetgetgat 3001 gtgtacgttc ctgatgagtg ggaggtggct cgggagaaga tcaccatgag ccgggaactt 3061 gggcaggggt cgtttgggat ggtctatgaa ggagttgcca agggtgtggt gaaagatgaa 3121 cctgaaacca gagtggccat taaaacagtg aacgaggccg caagcatgcg tgagaggatt 3181 gagtttctca acgaagcttc tgtgatgaag gagttcaatt gtcaccatgt ggtgcgattg 3241 ctgggtgtgg tgtcccaagg ccagccaaca ctggtcatca tggaactgat gacacggggc 3301 gateteaaaa gttateteeg gtetetgagg eeagaaatgg agaataatee agteetagea 3361 cctccaagcc tgagcaagat gattcagatg gccggagaga ttgcagacgg catggcatac 3421 etcaaegeea ataagttegt ecaeagagae ettgetgeee ggaattgeat ggtageegaa 3481 gatttcacag tcaaaatcgg agattttggt atgacgcgag atatctatga gacagactat 3541 taccggaaag gaggcaaagg gctgctgccc gtgcgctgga tgtctcctga gtccctcaag 3601 gatggagtet teaceaetta eteggaegte tggteetteg gggtegteet etgggagate 3661 gccacactgg ccgagcagcc ctaccagggc ttgtccaacg agcaagtcct tcgcttcgtc 3721 atggagggcg gccttctgga caagccagac aactgtcctg acatgctgtt tgaactgatg 3781 cgcatgtgct ggcagtataa ccccaagatg aggccttcct tcctggagat catcagcagc 3841 atcaaagagg agatggagcc tggcttccgg gaggtctcct tctactacag cgaggagaac 3901 aagetgeeeg ageeggagga getggaeetg gageeagaga acatggagag egteeeetg 3961 gacccetegg cetectegte etecetgeca etgecegaca gacacteagg acacaaggee 4021 gagaacggcc ccggccctgg ggtgctggtc ctccgcgcca gcttcgacga gagacagcct 4081 tacgcccaca tgaacggggg ccgcaagaac gagcgggcct tgccgctgcc ccagtcttcg 4141 acctgctgat cettggatee tgaatetgtg caaacagtaa cgtgtgcgca cgcgcagcgg 4201 ggtgggggg gagagagagt tttaacaatc cattcacaag cctcctgtac ctcagtggat 4261 cttcagttct gcccttgctg cccgcgggag acagcttctc tgcagtaaaa cacatttggg 4321 atgttccttt tttcaatatg caagcagctt tttattccct gcccaaaccc ttaactgaca 4381 tgggccttta agaaccttaa tgacaacact taatagcaac agagcacttg agaaccagtc 4441 tecteactet greectgree treectgree tecettrete terectetet getreataac 4501 ggaaaaataa ttgccacaag tccagctggg aagccctttt tatcagtttg aggaagtggc 4561 tgtccctgtg gccccatcca accactgtac acaccegcct gacaccgtgg gtcattacaa 4621 aaaaacacgt ggagatggaa atttttacct ttatctttca cctttctagg gacatgaaat 4681 ttacaaaggg ccatcgttca tccaaggctg ttaccatttt aacgctgcct aattttgcca 4741 aaateetgaa ettteteeet eateggeeeg gegetgatte etegtgteeg gaggeatggg 4801 tgagcatggc agctggttgc tccatttgag agacacgctg gcgacacact ccgtccatcc 4861 gactgcccct gctgtgctgc tcaaggccac aggcacacag gtctcattgc ttctgactag 4921 attattattt gggggaactg gacacaatag gtctttctct cagtgaaggt ggggagaagc

FIG. 9 (6/6)

4981 tgaaccggc

//

Revised: October 24, 2001.

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

**AUTHORS** 

TITLE





THE PROPERTY AND A

# V162 Nucleotide

Nucleolide Protein Genome **PopSet** Structure OMIM Search Nucleotide 5 Clear for Limits Preview/Index History Clipboard Detai Display default Save Add to Clipboard 1: NM 003349. Homo sapiens Related Sequences, OMIM, Protein, PubMed, Taxonomy, ubiq...[gi:15718757] UniSTS, LinkOut LOCUS NM 003349 2394 bp mRNA linear PRI 21-SEP-2001 Homo sapiens ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1), DEFINITION transcript variant 2, mRNA. **ACCESSION** NM 003349 VERSION NM\_003349.3 GI:15718757 UBE2 V1 KEYWORDS SOURCE human. ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. REFERENCE (bases 1 to 2394) **AUTHORS** Rothofsky, M.L. and Lin, S.L. TITLE CROC-1 encodes a protein which mediates transcriptional activation of the human FOS promoter **JOURNAL** Gene 195 (2), 141-149 (1997) MEDLINE 97449289 PURMED 9305758 REFERENCE (bases 1 to 2394) **AUTHORS** Sancho, E., Vila, M.R., Sanchez-Pulido, L., Lozano, J.J., Paciucci, R., Nadal, M., Fox, M., Harvey, C., Bercovich, B., Loukili, N., Ciechanover, A., Lin, S.L., Sanz, F., Estivill, X., Valencia, A. and Thomson, T.M. TITLE Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells JOURNAL Mol. Cell. Biol. 18 (1), 576-589 (1998) MEDLINE 98078713 PUBMED 9418904 REFERENCE (bases 1 to 2394) **AUTHORS** Ma, L., Broomfield, S., Lavery, C., Lin, S.L., Xiao, W. and Bacchetti, S. Up-regulation of CIR1/CROC1 expression upon cell immortalization TITLE and in tumor-derived human cell lines Oncogene 17 (10), 1321-1326 (1998) JOURNAL MEDLINE 98442973 9771976 PUBMED REFERENCE (bases 1 to 2394) **AUTHORS** Hofmann, R.M. and Pickart, C.M. TITLE Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair JOURNAL Cell 96 (5), 645-653 (1999) MEDLINE 99189750 **PUBMED** 10089880 REFERENCE (bases 1 to 2394)

Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J.,

Activation of the IkappaB kinase complex by TRAF6 requires a

Slaughter, C., Pickart, C. and Chen, Z.J.

#### FIG. 10 (2/4)

```
dimeric ubiquitin-conjugating enzyme complex and a unique
             polyubiquitin chain
  JOURNAL
            Cell 103 (2), 351-361 (2000)
  MEDLINE
            20509589
   PUBMED
            11057907
REFERENCE
                (bases 1 to 2394)
  AUTHORS
            Thomson, T.M., Lozano, J.J., Loukili, N., Carrio, R., Serras, F.,
            Cormand, B., Valeri, M., Diaz, V.M., Abril, J., Burset, M., Merino, J.,
            Macaya, A., Corominas, M. and Guigo, R.
  TITLE
            Fusion of the human gene for the polyubiquitination coeffector UEV1
            with Kua, a newly identified gene
  JOURNAL
            Genome Res. 10 (11), 1743-1756 (2000)
            20530912
  MEDLINE
   PUBMED
            11076860
COMMENT
            REVIEWED REFSEQ: This record has been curated by NCBI staff. The
            reference sequence was derived from <u>U39361.1</u>, <u>AL110132.1</u>.
            On Sep 21, 2001 this sequence version replaced gi: 12025659.
            Summary: Ubiquitin-conjugating enzyme E2 variant proteins
            constitute a distinct subfamily within the E2 protein family. They
            have sequence similarity to other ubiquitin-conjugating enzymes but
            lack the conserved cysteine residue that is critical for the
            catalytic activity of E2s. The protein encoded by this gene is
            located in the nucleus and can cause transcriptional activation of
            the human FOS proto-oncogene. It is thought to be involved in the
            control of differentiation by altering cell cycle behaviour.
            Multiple alternatively spliced transcripts encoding different
            isoforms have been described for this gene.
            Transcript Variant: This variant (2) encodes the longest isoform
            (b) of this protein.
            COMPLETENESS: complete on the 3' end.
FEATURES
                     Location/Qualifiers
     source
                     1..2394
                     /organism="Homo sapiens"
                     /db_xref="taxon:9606"
                     /chromosome="20"
                     /map="20q13.2"
    gene
                     1..2394
                     /gene="UBE2V1"
                     /note="CIR1; UEV-1; UEV1; UEV1A; CROC-1; CROC1"
                     /db_xref="LocusID: 7335"
                     /db_xref="MIM:602995"
    CDS
                     70..735
                     /gene="UBE2V1"
                     /note="isoform b is encoded by transcript variant 2;
                     DNA-binding protein"
                     /codon_start=1
                     /db_xref="LocusID: 7335"
                     /db_xref="MIM:602995"
                     /product="ubiquitin-conjugating enzyme E2 variant 1,
                     isoform b"
                     /protein id="NP 003340.1"
                     /db_xref="GI:4507795"
                     /translation="MAYKFRTHSPEALEQLYPWECFVFCLIIFGTFTNOIHKWSHTYF
                     GLPRWVTLLQDWHVILPRKHHRIHHVSPHETYFCITTGVKVPRNFRLLEELEEGQKGV
                     GDGTVSWGLEDDEDMTLTRWTGMIIGPPRTIYENRIYSLKIECGPKYPEAPPFVRFVT
                     KINMNGVNSSNGVVDPRAISVLAKWQNSYSIKVVLQELRRLMMSKENMKLPQPPEGQC
                     YSN"
    misc feature
                     334..714
                     /note="UBCc; Region: Ubiquitin-conjugating enzyme E2,
                     catalytic domain homologues"
```

# FIG. 10 (3/4)

10/510903

```
misc feature
                     337..555
                     /note="UQ_con; Region: Ubiquitin-conjugating enzyme.
                     Proteins destined for proteasome-mediated degradation may
                     be ubiquitinated. Ubiquitination follows conjugation of
                     ubiquitin to a conserved cysteine residue of UBC
                     homologues. TSG101 is one of several UBC homologues that
                     lacks this active site cysteine"
     misc feature
                     643..714
                     /note="Region: DNA-binding domain"
                     1117
     variation
                     /allele="C"
                     /allele="T"
                     /db xref="dbSNP:8585"
                     1257
     variation
                     /allele="C"
                     /allele="T"
                     /db xref="dbSNP:1049679"
     variation
                     complement (1968)
                     /allele="A"
                     /allele="G"
                     /db xref="dbSNP:2733"
                     2017
     variation
                     /allele="A"
                     /allele="C"
                     /db xref="dbSNP:15218"
                     2112..2117
     polyA signal
     polyA site
                     2135
                     /evidence=experimental
     variation
                     complement (2179)
                     /allele="G"
                     /allele="T"
                     /db_xref="dbSNP:2664563"
                     2249
     <u>variation</u>
                     /note="WARNING: map location ambiguous"
                     /allele="A"
                     /allele="T"
                     /db_xref="dbSNP: 1049871"
                     complement (2259)
     variation
                     /allele="A"
                     /allele="G"
                     /db xref="dbSNP:2664532"
     polyA signal
                     2350..2355
                     /evidence=experimental
     polyA site
                     2373
BASE COUNT
                658 a
                         605 C
                                  481 g
                                           650 t
ORIGIN
        1 ttcacacggc acgacttcat cgagaccaac ggggacaact gcctggtgac actgctgccg
       61 ctgctaaaca tggcctacaa gttccgcacc cacagccctg aagccctgga gcagctatac
      121 ccctgggagt gcttcgtctt ctgcctgatc atcttcggca ccttcaccaa ccagatccac
      181 aagtggtcgc acacgtactt tgggctgcca cgctgggtca ccctcctgca ggactggcat
      241 gtcatcctgc cacgtaaaca ccatcgcatc caccacgtct caccccacga gacctacttc
      301 tgcatcacca caggagtaaa agtccctcgc aatttccgac tgttggaaga actcgaagaa
      361 ggccagaaag gagtaggaga tggcacagtt agctggggtc tagaagatga cgaagacatg
      421 acacttacaa gatggacagg gatgataatt gggcctccaa gaacaattta tgaaaaccga
      481 atatacagcc ttaaaataga atgtggacct aaatacccag aagcaccccc ctttgtaaga
      541 tttgtaacaa aaattaatat gaatggagta aatagttcta atggagtggt ggacccaaga
      601 gccatatcag tgctagcaaa atggcagaat tcatatagca tcaaagttgt cctgcaagag
      661 cttcggcgcc taatgatgtc taaagaaaat atgaaactcc ctcagccgcc cgaaggacag
```

721 tgttacagca attaatcaaa aagaaaaacc acaggccctt ccccttcccc ccaattcgat 781 ttaatcagtc ttcattttcc acagtagtaa attttctaga tacgtcttgt agacctcaaa

The same of the second

# 10/510903

# FIG. 10 (4/4)

|         |            |                                            | 110. 20 (  | •                        |            |            |  |
|---------|------------|--------------------------------------------|------------|--------------------------|------------|------------|--|
| 841     | gtaccggaaa | ggaageteee                                 | attcaaagga | aatttatctt               | aagatactgt | aaatgatact |  |
|         |            | ccatttgaaa                                 | tatataagtt | gtyctataac               | adattatte  | gecaagegea |  |
|         |            | acataattaa                                 | actronoga  | CCaayaaayc               | Ctatttaaat | cgaccccac  |  |
|         |            | aaaaaaaatc                                 | taactcaact | gtyaaaayac               | acaccacaca | accaccege  |  |
| 1       |            | acaacctaaa                                 | atctctacct | ECLUCATION               | ccccccgcc  | CCCCACCCC  |  |
| 44      |            | cancecteta                                 | acctagaaaa | CLLYLLAYAY               | cagacgcgaa | 3300000    |  |
|         |            | aggactacta                                 | chaddedede | agggugue                 | gcccgcaccc | ccggccccc  |  |
|         |            | atastacccc                                 | rrccaaacca | Coaccegee                | cccacgcccc |            |  |
|         |            | 2200212021                                 | raraaccccc | CCACCCCC                 | CCGagaccg  | 0000330303 |  |
|         |            | otttcccccat                                | atcttctctc | CCCCCACCCC               | Lacegaggg  | -33        |  |
|         | L-L        | actopaatto                                 | ctttttacac | Calcaccacc               | Caacacccc  | cacgacacc  |  |
| 3 - 0 3 |            | CCC2C2ACCC                                 | arcaddtaad | qttyyaaaya               | gccccgacc  | cooccagoos |  |
| 4001    |            | ccatactcac                                 | reactettea | CCAYCCCGGG               | addegadede | 033300000  |  |
|         |            | cetetactat                                 | catcagctga | Lacategeee               | ccageceagg | coocgacaag |  |
|         |            | tantrarrad                                 | gartactcag | accegccage               | ccccggagcc |            |  |
| 1       |            | 222222222                                  | rossostact | LULAAYCACA               | Catgattet  | 003440300  |  |
| 1741    | gaacttggag | atasetectt                                 | ttacttttaa | aaattgaaga               | agttttaaac | agggctttca |  |
| 1801    | ttactttcct | gtaactgccc                                 | attagaatet | agtttggaat               | ctgacaactg | gaacaaaaag |  |
| 1861    | tttggtcatc | cergeaate                                  | cettaatttt | ggtgctgctg               | ctgcttccca | agatecteag |  |
| 1921    | aaccttgaat | coggracacacacacacacacacacacacacacacacacaca | catatacaca | gcagatcccc               | gaaattggtg | ggcttgacct |  |
| 1981    | cagggattaa | gaaggaaccc                                 | ttccacttcc | tgttcaggac               | cactaaatgc | tgaaatgtgg |  |
| 2041    | cctggcaaat | tgetgegtet                                 | anttgattgt | gtactaaagg               | tttttttt   | ttttttaatt |  |
| 2101    | atgeataceg | addiddddyc                                 | attttaaaa  | agcaactatc               | aagtetgaaa | agcaattgat |  |
| 2161    | tagtatttgt | gtaaaaccac                                 | ccccgaage  | ccttagttct               | aaggatttaa | catcctqtaa |  |
| 2221    | gtttccatta | accettete                                  | ggggggaaaa | cagcettttt               | attotcagac | cattgcctga |  |
| 2281    | gtgaagttta | acataacagt                                 | accodacaag | cagccttttt<br>aataaaaaaa | aaaaaaaaaa | aaaa       |  |
| 2341    | ttttaatata | ataaaaaaaa                                 | agtgtgcgtt | aucuauauau               |            |            |  |

Revised: October 24, 2001.

//

Disclaimer | Write to the Help Desk NCBI | NLM | NIH



Cloning of a cDNA encoding a constitutively expressed rat liver

(bases 1 to 1506)

Kathmann, E.C. and Lipsky, J.J.

REFERENCE AUTHORS

TITLE

## FIG. 11 (2/3)

```
cytosolic aldehyde dehydrogenase
            Biochem. Biophys. Res. Commun. 236 (2), 527-531 (1997)
 JOURNAL
 MEDLINE
            97382470
            PROVISIONAL REFSEQ: This record has not yet been subject to final
COMMENT
            NCBI review. The reference sequence was derived from AF003341.1.
FEATURES
                     Location/Qualifiers
                     1..1506
    source
                     /organism="Homo sapiens"
                     /db xref="taxon:9606"
                     /chromosome="9"
                     /map="9q21"
                     /tissue_type="liver"
                     1..1506
     <u>gene</u>
                     /qene="ALDH1"
                     /note="PUMB1"
                     /db xref="LocusID:216"
                     /db_xref="MIM: 100640"
    <u>CDS</u>
                     1..1506
                     /gene="ALDH1"
                     /EC number="1.2.1.3"
                     /note="cytosolic protein; class 1"
                     /codon start=1
                     /db_xref="LocusID:216"
                     /db_xref="MIM: 100640"
                     /product="aldehyde dehydrogenase 1, soluble"
                     /protein_id="NP_000680.1"
                     /db_xref="GI:4502031"
                     /translation="MSSSGTPDLPVLLTDLKIQYTKIFINNEWHDSVSGKKFPVFNPA
                     TEEELCQVEEGDKEDVDKAVKAARQAFQIGSPWRTMDASERGRLLYKLADLIERDRLL
                     LATMESMNGGKLYSNAYLSDLAGCIKTLRYCAGWADKIQGRTIPIDGNFFTYTRHEPI
                     GVCGQIIPWNFPLVMLIWKIGPALSCGNTVVVKPAEQTPLTALHVASLIKEAGFPPGV
                     VNIVPGYGPTAGAAISSHMDIDKVAFTGSTEVGKLIKEAAGKSNLKRVTLELGGKSPC
                     IVLADADLDNAVEFAHHGVFYHQGQCCIAASRIFVEESIYDEFVRRSVERAKKYILGN
                     PLTPGVTQGPQIDKEQYDKILDLIESGKKEGAKLECGGGPWGNKGYFVQPTVFSNVTD
                     EMRIAKEEIFGPVQQIMKFKSLDDVIKRANNTFYGLSAGVFTKDIDKAITISSALQAG
                     TVWVNCYGVVSAQCPFGGFKMSGNGRELGEYGFHEYTEVKTVTVKISQKNS"
    misc feature
                     82..1488
                     /note="aldedh; Region: Aldehyde dehydrogenase family"
    variation
                     /allele="A"
                     /allele="G"
                     /db_xref="dbSNP: 1049981"
    variation
                     1337
                     /allele="A"
                     /allele="C"
                     /db xref="dbSNP: 1803054"
                     1397
    variation
                     /allele="A"
                     /allele="T"
                     /db_xref="dbSNP: 1063447"
BASE COUNT
                441 a
                         293 C
                                  391 g
                                            381 t
ORIGIN
        1 atgtcatcct caggcacgcc agacttacct gtcctactca ccgatttgaa gattcaatat
       61 actaagatet teataaacaa tgaatggeat gatteagtga gtggeaagaa attteetgte
      121 tttaatcctg caactgagga ggagctctgc caggtagaag aaggagataa ggaggatgtt
      181 gacaaggcag tgaaggccgc aagacaggct tttcagattg gatctccgtg gcgtactatg
      241 gatgcttccg agagggggcg actattatac aagttggctg atttaatcga aagagatcgt
      301 ctgctgctgg cgacaatgga gtcaatgaat ggtggaaaac tctattccaa tgcatatctg
      361 agtgatttag caggetgeat caaaacattg egetaetgtg caggttggge tgacaagate
      421 cagggccgta caataccaat tgatggaaat ttttttacat atacaagaca tgaacctatt
```

#### FIG. 11 (3/3)

```
481 ggtgtatgtg gccaaatcat teettggaat tteeegttgg ttatgeteat ttggaagata
     541 gggcctgcac tgagctgtgg aaacacagtg gttgtcaaac cagcagagca aactcctctc
     601 actgetetee acgtggcate tttaataaaa gaggcagggt tteeteetgg agtagtgaat
     661 attgttcctg gttatgggcc tacagcaggg gcagccattt cttctcacat ggatatagac
     721 aaagtageet teacaggate aacagaggtt ggcaagttga teaaagaage tgeegggaaa
     781 agcaatctga agagggtgac cctggagctt ggaggaaaga gcccttgcat tgtgttagct
     841 gatgccgact tggacaatgc tgttgaattt gcacaccatg gggtattcta ccaccagggc
     901 cagtgttgta tagccgcatc caggattttt gtggaagaat caatttatga tgagtttgtt
     961 cgaaggagtg ttgagcggc taagaagtat atcettggaa atcetetgac cccaggagte
    1021 actcaaggcc ctcagattga caaggaacaa tatgataaaa tacttgacct cattgagagt
    1081 gggaagaaag aaggggccaa actggaatgt ggaggaggcc cgtgggggaa taaaggctac
    1141 tttgtccagc ccacagtgtt ctctaatgtt acagatgaga tgcgcattgc caaagaggag
    1201 atttttggac cagtgcagca aatcatgaag tttaaatctt tagatgacgt gatcaaaaga
    1261 gcaaacaata ctttctatgg cttatcagca ggagtgttta ccaaagacat tgataaagcc
    1321 ataacaatot cototgotot goaggoagga acagtgtggg tgaattgota tggcgtggta
    1381 agtgcccagt gcccctttgg cggattcaag atgtctggaa atggaagaga actgggagag
    1441 tacggtttcc atgaatatac agaggtcaaa acagtcacag tgaaaatctc tcagaagaac
    1501 tcataa
//
```

Revised: October 24, 2001.

<u>Disclaimer</u> | Write to the Help Desk NCBI | NLM | NIH Protein Genome

Structure

PopSet

Taxonomy

OMIMO

Search Nucleotide ≝ for l

Limits Preview/Index Saves Text

History

Clipboard

Details

default

rga Addito Clipboard

1: XM\_037768. Homo sapiens simi...[gi:14750404]

Related Sequences, Protein, Taxonomy, LinkOut

LOCUS

XM 037768

2282 bp

mRNA

linear

PRI 07-FEB-2002

DEFINITION

Homo sapiens similar to pyruvate kinase, muscle (H. sapiens)

PCT/US03/11867

(LOC145710), mRNA. XM\_037768

ACCESSION

XM 037768.1 GI:14750404

PYRUVATE KINASE

VERSION KEYWORDS

SOURCE human.

ORGANISM

Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE

(bases 1 to 2282)

**AUTHORS** 

NCBI Annotation Project.

TITLE

Direct Submission

**JOURNAL** 

Submitted (06-FEB-2002) National Center for Biotechnology

Information, NIH, Bethesda, MD 20894, USA

COMMENT

GENOME ANNOTATION REFSEQ: This model reference sequence was predicted from NCBI contig NT 010235 by automated computational

analysis using gene prediction method: BLAST. -Also see:-Documentation of NCBI's Annotation Process~

Evidence Viewer :

alignments supporting this model.

**FEATURES** 

Location/Qualifiers

1..2282 source

/organism="Homo sapiens" /db xref="taxon:9606"

/chromosome="15"

gene

1..2282

/gene="LOC145710"

/note="Located on Accession NT\_010235"

/db xref="InterimID: 145710"

CDS

109..1704

/gene="LOC145710"

/note="Located on Accession NT\_010235"

/codon start=1

/product="similar to pyruvate kinase, muscle (H. sapiens)"

/protein\_id="XP\_037768.1" /db xref="GI:14750405"

/translation="MSKPHSEAGTAFIQTQQLHAAMADTFLEHMCRLDIDSPPITARN TGIICTIGPASRSVETLKEMIKSGMNVARLNFSHGTHEYHAETIKNVRTATESFASDP ILYRPVAVALDTKGPEIRTGLIKGSGTAEVELKKGATLKITLDNAYMEKCDENILWLD YKNICKVVEVGSKIYVDDGLISLQVKQKGADFLVTEVENGGSLGSKKGVNLPGAAVDL PAVSEKDIQDLKFGVEQDVDMVFASFIRKASDVHEVRKVLGEKGKNIKIISKIENHEG VRRFDEILEASDGIMVARGDLGIEIPAEKVFLAQKMMIGRCNRAGKPVICATQMLESM IKKPRPTRAEGSDVANAVLDGADCIMLSGETAKGDYPLEAVRMQHLIAREAEAAIYHL QLFEELRRLAPITSDPTEATAVGAVEASFKCCSGAIIVLTKSGRSAHQVARYRPRAPI IAVTRNPOTAROAHLYRGIFPVLCKDPVQEAWAEDVDLRVNFAMNVGKARGFFKKGDV

VIVLTGWRPGSGFTNTMRVVPVP"

misc feature

223..1293

```
FIG. 12 (2/2)
```

```
/note="PK; Region: Pyruvate kinase, barrel domain"
     variation
                     546
                     /allele="C"
                     /allele="T"
                     /db_xref="dbSNP: 10514"
                     1333..1695
     misc feature
                     /note="PK C; Region: Pyruvate kinase, alpha/beta domain"
     variation
                     2168
                     /allele="C"
                     /allele="T"
                     /db_xref="dbSNP: 1062430"
BASE COUNT
                499 a
                         646 C
                                  654 g
                                           483 t
ORIGIN
        1 ggctgaggca gtggctcctt gcacagcagc tgcacgcgcc gtggctccgg atctcttcqt
       61 ctttgcagcg tagcccgagt cggtcagcgc cggaggacct cagcagccat gtcgaagccc
      121 catagtgaag cegggactge etteatteag acceageage tgeaegeage catggetgae
      181 acattectgg ageacatgtg cegeetggae attgatteae caedeateae ageeeggaae
      241 actggcatca tetgtaccat tggcccaget teeegateag tggagaegtt gaaggagatg
     301 attaagtctg gaatgaatgt ggetegtetg aacttetete atggaactea tgagtaceat
      361 gcggagacca tcaagaatgt gcgcacagcc acggaaagct ttgcttctga ccccatcctc
      421 taccggcccg ttgctgtggc tctagacact aaaggacctg agatccgaac tgggctcatc
      481 aagggcagcg gcactgcaga ggtggagctg aagaagggag ccactctcaa aatcacgctg
      541 gataacgcct acatggaaaa gtgtgacgag aacatcctgt ggctggacta caagaacatc
      601 tgcaaggtgg tggaagtggg cagcaagatc tacgtggatg atgggcttat ttctctccag
      661 gtgaagcaga aaggtgccga cttcctggtg acggaggtgg aaaatggtgg ctccttgggc
      721 agcaagaagg gtgtgaacct tcctggggct gctgtggact tgcctgctgt gtcggagaag
     781 gacatccagg atctgaagtt tggggtcgag caggatgttg atatggtgtt tgcgtcattc
     841 atccgcaagg catctgatgt ccatgaagtt aggaaggtcc tgggagagaa gggaaagaac
     901 atcaagatta tcagcaaaat cgagaatcat gagggggttc ggaggtttga tgaaatcctg
     961 gaggccagtg atgggatcat ggtggctcgt ggtgatctag gcattgagat tcctgcagag
     1021 aaggtettee ttgeteagaa gatgatgatt ggacggtgea accgagetgg gaageetgte,
     1081 atctgtgcta ctcagatgct ggagagcatg atcaagaagc cccgccccac tcgggctgaa
     1141 ggcagtgatg tggccaatgc agtcctggat ggagccgact gcatcatgct gtctggagaa
     1201 acagecaaag gggactatee tetggagget gtgegeatge ageacetgat tgeeegtgag
     1261 gcagaggctg ccatctacca cttgcaatta tttgaggaac tccgccgcct ggcgcccatt
     1321 accagegace ccaeagaage caeegeegtg ggtgeegtgg aggeeteett caagtgetge
     1381 agtggggcca taatcgtcct caccaagtct ggcaggtctg ctcaccaggt ggccagatac
     1441 egeceacgtg eccecateat tgetgtgace eggaateece agacageteg teaggeceae
     1501 ctgtaccgtg gcatcttccc tgtgctgtgc aaggacccag tccaggaggc ctgggctgag
     1561 gacgtggacc tccgggtgaa ctttgccatg aatgttggca aggcccgagg cttcttcaag
     1621 aagggagatg tggtcattgt gctgaccgga tggcgccctg gctccggctt caccaacacc
     1681 atgcgtgttg ttcctgtgcc gtgatggacc ccagagcccc tcctccagcc cctgtcccac
     1741 ccccttcccc cagcccatcc attaggccag caacgcttgt agaactcact ctgggctgta
     1801 acgtggcact ggtaggttgg gacaccaggg aagaagatca acgcctcact qaaacatqqc
     1861 tgtgtttgca gcctgctcta gtgggacagc ccagagcctg gctgcccatc atgtggcccc
     1921 acccaatcaa gggaagaagg aggaatgctg gactggaggc ccctggagcc agatggcaag
     1981 agggtgacag cttcctttcc tgtgtgtact ctgtccagtt cctttagaaa aaatggatgc
    2041 ccagaggact cccaaccctg gcttggggtc aagaaacagc cagcaagagt taggggcctt
    2101 agggcactgg gctgttgttc cattgaagcc gactctggcc ctggccctta cttgcttctc
    2161 tageteteta ggeeteteea gtttgeacet gteeceacee tecaeteage tgteetgeag
    2221 caaacactcc accetecace ttecatttte ecceaetact geageacete caggeetgtt
    2281 qc
//
```

Revised: October 24, 2001.







PubMed Search Nucleotide

Nucleolide

Protein

Structure **PopSet** 

Clear

Limits

Preview/Index

History

Clipboard

Details

в

default

: XM 049337. Homo sapiens gluc...[gi:14768486]

图 for l

Related Sequences, Protein, Taxonomy, LinkOut

LOCUS DEFINITION XM\_049337

2631 bp

mRNA

linear

G6PD

PRI 07-FEB-2002

ACCESSION

Homo sapiens glucose-6-phosphate dehydrogenase (G6PD), mRNA. XM 049337

XM 049337.1 GI:14768486

**VERSION KEYWORDS** 

human.

SOURCE ORGANISM

Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE

(bases 1 to 2631)

**AUTHORS** TITLE

NCBI Annotation Project.

Direct Submission

JOURNAL

Submitted (06-FEB-2002) National Center for Biotechnology

Information, NIH, Bethesda, MD 20894, USA

COMMENT

GENOME ANNOTATION <u>REFSEQ</u>: This model reference sequence was predicted from NCBI contig NT\_025965 by automated computational

analysis using gene prediction method: BLAST. ~Also see:~

Documentation of NCBI's Annotation Process- Evidence Viewer -

alignments supporting this model.

**FEATURES** 

Location/Qualifiers

source 1..2631

> /organism="Homo sapiens" /db xref="taxon:9606"

/chromosome="X"

gene

1..2631

/gene="G6PD"

/note="G6PD1; Located on Accession NT\_025965"

/db xref="LocusID: 2539" /db\_xref="MIM:305900"

CDS

475..2022

/gene="G6PD"

/note="Located on Accession NT\_025965"

/codon start=1

/product="glucose-6-phosphate dehydrogenase"

/protein\_id="XP\_049337.1" /db xref="GI:14768487"

/translation="MAEQVALSRTQVCGILREELFQGDAFHQSDTHIFIIMGASGDLA KKKIYPTIWWLFRDGLLPENTFIMGYARSRLTVADIRKQSEPFFKATPEEKLKLEDFF ARNSYVAGOYDDAASYORLNSHMDALHLGSQANRLFYLALPPTVYEAVTKNIHESCMS QIGWNRIIVEKPFGRDLQSSDRLSNHISSLFREDQIYRIDHYLGKEMVQNLMVLRFAN RIFGPIWNRDNIACVILTFKEPFGTEGRGGYFDEFGIIRDVMQNHLLQMLCLVAMEKP ASTNSDDVRDEKVKVLKCISEVQANNVVLGQYVGNPDGEGEATKGYLDDPTVPRGSTT ATFAAVVLYVENERWDGVPFILRCGKALNERKAEVRLQFHDVAGDIFHQQCKRNELVI RVOPNEAVYTKMMTKKPGMFFNPEESELDLTYGNRYKNVKLPDAYERLILDVFCGSQM HFVRSDELREAWRIFTPLLHQIELEKPKPIPYIYGSRGPTEADELMKRVGFQYEGTYK

WVNPHKL"

variation

507

FIG. 13 (2/3)

```
10/510903
                    /allele="C"
                    /allele="G"
                    /db xref="dbSNP:1050827"
    misc feature
                    553..1104
                    /note="G6PD; Region: Glucose-6-phosphate dehydrogenase,
                    NAD binding domain"
                    676
    variation
                    /allele="A"
                    /allele="G"
                    /db xref="dbSNP:1050828"
    variation
                    850
                    /allele="A"
                    /allele="G"
                    /db xref="dbSNP:1050829"
                    1108..1992
    misc feature
                    /note="G6PD C; Region: Glucose-6-phosphate dehydrogenase,
                    C-terminal domain"
                    2379
    variation
                    /allele="A"
                    /allele="G"
                    /db_xref="dbSNP: 1050757"
                    2392
    variation
                    /allele="A"
                    /allele="G"
                    /db xref="dbSNP: 1063529"
                    2490
    variation
                    /allele="A"
                    /allele="G"
                    /db xref="dbSNP:1050830"
                    2553
    variation
                    /allele="C"
                    /allele="T"
                    /db xref="dbSNP: 1050773"
                    2555
    <u>variation</u>
                    /allele="C"
                    /allele="T"
                    /db_xref="dbSNP:1050774"
                    2593
    variation
                    /allele="C"
                    /allele="T"
                    /db xref="dbSNP: 1050831"
                                          423 t
BASE COUNT
                        884 C
                                 797 g
ORIGIN
       1 agggacagec cagaggagge gtggccacge tgccggcgga agtggagece tccgcgagcg
      61 cgcgaggccg ccggggcagg cggggaaacc ggacagtagg ggcggggccg ggccggcgat
     121 ggggatgcgg gagcactacg cggagctgca cccgtgcccg ccggaattgg ggatgcagag
     181 cageggeage gggtatggea ggeageegge gggeeggeet ceagegeagg tgeeegagag
     301 gtggtggccg aggccccgcc ccgcacgcct cgcctgaggc gggtccgctc agcccaggcg
     361 cccgccccg ccccgccga ttaaatgggc cggcggggct cagcccccgg aaacggtcgt
     421 acacttcggg gctgcgagcg cggagggcga cgacgacgaa gcgcagacag cgtcatggca
     481 gagcaggtgg ccctgagccg gacccaggtg tgcgggatcc tgcgggaaga gcttttccag
     541 ggcgatgcct tccatcagtc ggatacacac atattcatca tcatgggtgc atcgggtgac
     601 ctggccaaga agaagatcta ccccaccatc tggtggctgt tccgggatgg ccttctgccc
     661 gaaaacacct tcatcatggg ctatgcccgt tcccgcctca cagtggctga catccgcaaa
     721 cagagtgagc ccttcttcaa ggccacccca gaggagaagc tcaagctgga ggacttcttt
     781 gcccgcaact cctatgtggc tggccagtac gatgatgcag cctcctacca gcgcctcaac
     841 agccacatgg atgccctcca cctggggtca caggccaacc gcctcttcta cctggccttg
     901 cccccgaccg tctacgaggc cgtcaccaag aacattcacg agtcctgcat gagccagata
      961 ggctggaacc gcatcatcgt ggagaagccc ttcgggaggg acctgcagag ctctgaccgg
```

WO 03/088910 PCT/US03/11867

# 10/510903

#### FIG. 13 (3/3)

```
1021 ctgtccaacc acateteete cetgtteegt gaggaccaga tetacegeat egaccaetae
1081 ctgggcaagg agatggtgca gaacctcatg gtgctgagat ttgccaacag gatcttcggc
1141 cccatctgga accgggacaa catcgcctgc gttatcctca ccttcaagga gccctttggc
1201 actgagggtc gcgggggcta tttcgatgaa tttgggatca tccgggacgt gatgcagaac
1261 cacctactgc agatgctgtg tctggtggcc atggagaagc ccgcctccac caactcagat
1321 gacgtccgtg atgagaaggt caaggtgttg aaatgcatct cagaggtgca ggccaacaat
1381 gtggtcctgg gccagtacgt ggggaacccc gatggagagg gcgaggccac caaagggtac
1441 ctggacgacc ccacggtgcc ccgcgggtcc accaccgcca cttttgcagc cgtcgtcctc
1501 tatgtggaga atgagaggtg ggatggggtg cccttcatcc tgcgctgcgg caaggccctg
1561 aacgagcgca aggccgaggt gaggctgcag ttccatgatg tggccggcga catcttccac
1621 cagcagtgca agcgcaacga gctggtgatc cgcgtgcagc ccaacgaggc cgtgtacacc
1681 aagatgatga ccaagaagcc gggcatgttc ttcaaccccg aggagtcgga gctggacctg
1741 acctacggca acagatacaa gaacgtgaag ctccctgacg cctacgagcg cctcatcctg
1801 gacgtettet gegggageea gatgeactte gtgegeageg aegageteeg tgaggeetgg
1861 cgtattttca ccccactgct gcaccagatt gagctggaga agcccaagcc catcccctat
1921 atttatggca gccgaggccc cacggaggca gacgagctga tgaagagagt gggtttccag
1981 tatgagggca cctacaagtg ggtgaacccc cacaagctct gagecctggg cacccacctc
2041 caccccgcc acggccaccc tccttcccgc cgcccgaccc cgagtcggga ggactccggg
2101 accattgace teagetgeac attectggee eeggetetg gecaecetgg eeggeeete
2161 getgetgeta etaccegage ceagetacat tecteagetg ceaageacte gagaceatee
2221 tggcccctcc agaccctgcc tgagcccagg agctgagtca cctcctccac tcactccagc
2281 ccaacagaag gaaggaggag ggcgcccatt cgtctgtccc agagcttatt ggccactggg
2341 teteaeteet gagtggggee agggtgggag ggagggacaa ggggggaggaa aggggegage
2401 acccacgtga gagaatetge etgtggeett geeegeeage eteagtgeea ettgaeatte
2461 cttgtcacca gcaacatctc gagccccctg gatgtcccct gtcccaccaa ctctgcactc
2521 catggccace cegtgecace egtaggeage etetetgeta taagaaaage agaegeagea
2581 gctgggaccc ctcccaacct caatgccctg ccattaaatc cgcaaacagc c
```

Revised: October 24, 2001.

//

<u>Disclaimer</u> | Write to the Help Desk NCBI | NLM | NIH

A



BASE COUNT 455 a 365 C 413 q 331 t ORIGIN

> 1 ctttegeteg eceteteete gaggategag gggaetetga ecacageetg tggetgggaa 61 gggagacaga ggcggcggcg gctcagggga aacgaggctg cagtggtggt agtaggaaga 121 tgtcgggcga ggacgagcaa caggagcaaa ctatcgctga ggacctggtc gtgaccaagt 181 ataagatggg gggcgacatc gccaacaggg tactteggtc cttggtggaa gcatctagct 241 caggtgtgtc ggtactgagc ctgtgtgaga aaggtgatgc catgattatg gaagaaacag 301 ggaaaatett caagaaagaa aaggaaatga agaaaggtat tgetttteee accageattt 361 cggtaaataa ctgtgtatgt cactteteee etttgaagag cgaccaggat tatattetea 421 aggaaggtga cttggtaaaa attgaccttg gggtccatgt ggatggcttc atcgctaatg

## 10/510903

### FIG. 14 (2/2)

```
481 tageteacae ttttgtggtt gatgtagete aggggaecea agtaacaggg aggaaageag
     541 atgttattaa ggcagctcac ctttgtgctg aagctgccct acgcctggtc aaacctggaa
     601 atcagaacac acaagtgaca gaagcctgga acaaagttgc ccactcattt aactgcacgc
     661 caatagaagg tatgctgtca caccagttga agcagcatgt catcgatgga gaaaaaacca
     721 ttatccagaa tcccacagac cagcagaaga aggaccatga aaaagctgaa tttgaggtac
     781 atgaagtata tgctgtggat gttctcgtca gctcaggaga gggcaaggcc aaggatgcag
     841 gacagagaac cactatttac aaacgagacc cctctaaaca gtatggactg aaaatgaaaa
     901 etteacgtge ettetteagt gaggtggaaa ggegttttga tgccatgccg tttactttaa
     961 gagcatttga agatgagaag aaggctcgga tgggtgtggt ggagtgcgcc aaacatgaac
    1021 tgctgcaacc atttaatgtt ctctatgaga aggagggtga atttgttgcc cagtttaaat
    1081 tracagttet geteatgeec aatggeecca tgeggataac cagtggteec tregageetg
    1141 acctetacaa gtetgagatg gaggtecagg atgeagaget aaaggeeete etecagagtt
    1201 ctgcaagtcg aaaaacccag aaaaagaaaa aaaagaaggc ctccaagact gcagagaatg
    1261 ccaccagtgg ggaaacatta gaagaaatg aagctgggga ctgaggtggg tcccatctcc
    1321 ccagettget getectgeet cateccette ccaccaaace ccagaetetg tgaagtgeag
    1381 ttetteteca ectaggaceg ceageagage ggggggatet ecetgeecee accecagtte
    1441 cccaaccac tcccttccaa caacaaccag ctccaactga ctctggtctt gggaggtgag
    1501 gcttcccaac cacggaagac tactttaaat gaaaaaaaga aattgaataa taaaatcagg
    1561 agtc
//
```

Revised: October 24, 2001.

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

PCT/US03/11867 WO 03/088910







PubMed

Nucleotide

E for

Protein Genome Structure

PopSet Taxonomy

ОМІМ Clear

Search Nucleotide

Limits El Save Preview/Index

History

Clipboard

Details

default XM 052326[gi:14748477]

XM 052326 LOCUS

mRNA 3273 bp

linear

PRI 16-JUL-2001

DEFINITION

(DDX21), mRNA.

Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 21

XM 052326

ACCESSION

**VERSION** 

XM 052326.1 GI:14748477

DDX21

KEYWORDS

SOURCE human.

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE

(bases 1 to 3273)

**AUTHORS** TITLE

NCBI Annotation Project. Direct Submission

JOURNAL

Submitted (12-JUL-2001) National Center for Biotechnology

Information, NIH, Bethesda, MD 20894, USA

**FEATURES** 

Location/Qualifiers

source

1..3273

/organism="Homo sapiens" /db\_xref="taxon:9606"

/chromosome="10"

gene

1..3273

/gene="DDX21"

/note="GURDB; RH-II/GU" /db xref="LocusID: 9188"

CDS

35..1711

/gene="DDX21" /codon start=1

/product="DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 21"

/protein id="XP 052326.1"

/db xref="GI:14748478"

/translation="MPGKLRSDAGLESDTAMKKGETLRKQTEEKEKKEKPKSDKTEEI **AEEEETVFPKAKOVKKKAEPSEVDMNSPKSKKAKKKEEPSQNDISPKTKSLRKKKEPI** EKKVVSSKTKKVTKNEEPSEEEIDAPKPKKMKKEKEMNGETREKSPKLKNGFPHPEPD CNPSEASEESNSEIEQEIPVEQKEGAFSNFPISEETIKLLKGRGVTFLFPIQAKTFH HVYSGKDLIAQARTGTGKTFSFAIPLIEKLHGELQDRKRGRAPQVLVLAPTRELANQV SKDFSDITKKLSVACFYGGTPYGGQFERMRNGIDILVGTPGRIKDHIQNGKLDLTKLK HVVLDEVDOMLDMGFADQVEEILSVAYKKDSEDNPQTLLFSATCPHWVFNVAKKYMKS TYEQVDLIGKKTQKTAITVEHLAIKCHWTQRAAVIGDVIRVYSGHQGRTIIFCETKKE AQELSQNSAIKODAQSLHGDIPQKQREITLKGFRNGSFGVLVATNVAARGLDIPEVDL

VIQSSPPKGCRVLHSSIRADRQSWKDGGVHLLLSAQGRISVSTSGAKSGN"

BASE COUNT

ORIGIN

1068 a

603 C

773 q

829 t

1 gaagaccggt cggcctgggc aacctgcgct gaagatgccg ggaaaactcc gtagtgacgc

61 tggtttggaa tcagacaccg caatgaaaaa aggggagaca ctgcgaaagc aaaccgagga

121 gaaagagaaa aaagagaago caaaatotga taagaotgaa gagatagoag aagaggaaga

181 aactgttttc cccaaagcta aacaaqttaa aaagaaagca gagccttctg aagttgacat

241 gaatteteet aaateeaaaa aggeaaaaaa gaaagaggag eeateteaaa atgacattte

### FIG. 15 (2/2)

```
301 tcctaaaacc aaaagtttga gaaagaaaaa ggagccdatt gaaaagaaag tggtttcttc
 361 taaaaccaaa aaagtgacaa aaaatgagga gccttctgag gaagaaatag atgctcctaa
 421 gcccaagaag atgaagaaag aaaaggaaat gaatggagaa actagagaga aaagccccaa
 481 actgaagaat ggatttcctc atcctgaacc ggactgtaac cccagtgaag ctgccagtga
 541 agaaagtaac agtgagatag agcaggaaat acctgtggaa caaaaagaag gcgctttctc
 601 taattttccc atatctgaag aaactattaa acttctcaaa ggccgaggag tgaccttcct
 661 atttcctata caagcaaaga cattccatca tgtttacagc gggaaggact taattgcaca
 721 ggcacggaca ggaactggga agacattete etttgecate cetttgattg agaaacttea
 781 tggggaactg caagacagga agagaggccg tgcccctcag gtactggttc ttgcacctac
 841 aagagagttg gcaaatcaag taagcaaaga cttcagtgac atcacaaaaa agctgtcagt
 901 ggcttgtttt tatggtggaa ctccctatgg aggtcaattt gaacgcatga ggaatgggat
 961 tgatatcctg gttggaacac caggtcgtat caaagaccac atacagaatg gcaaactaga
1021 teteaceaaa ettaageatg ttgteetgga tgaagtggae cagatgttgg atatgggatt
1081 tgctgatcaa gtggaagaga ttttaagtgt ggcatacaag aaagattctg aagacaatcc
1141 ccaaacattg ctttttctg caacttgccc tcattgggta tttaatgttg ccaagaaata
1201 catgaaatct acatatgaac aggtggacct gattggtaaa aagactcaga aaacggcaat
1261 aactgtggag catctggcta ttaagtgcca ctggactcag agggcagcag ttattgggga
1321 tgtcatccga gtatatagtg gtcatcaagg acgcactatc atcttttgtg aaaccaagaa
1381 agaagcccag gagctgtccc agaattcagc tataaagcag gatgctcagt ccttgcatgg
1441 agacattcca cagaagcaaa gggaaatcac cctgaaaggt tttagaaatg gtagttttgg
1501 agttttggtg gcaaccaatg ttgctgcacg tgggttagac atccctgagg ttgatttggt
1561 tatacaaagc tetecaceaa agggatgtag agteetacat teategatee gggeggacag
1621 gcagagctgg aaggacgggg gtgtgcatct gcttttatca gcacaaggaa gaatatcagt
1681 tagtacaagt ggagcaaaaa gcgggaatta agttcaaacg aataggtgtt ccttctgcaa
1741 cagaaataat aaaagettee ageaaagatg ecateagget tttggattee gtgeeteeca
1801 ctgccattag tcacttcaaa caatcagctg agaagctgat agaggagaag ggagctgtgg
1861 aagetetgge ageageactg geceatattt eaggtgeeac gteegtagae eagegeteet
1921 tgatcaactc aaatgtgggt tttgtgacca tgatcttgca gtgctcaatt gaaatgccaa
1981 atattagtta tgcttggaaa gaacttaaag agcagctggg cgaggagatt gattccaaag
2041 tgaagggaat ggtttttctc aaaggaaagc tgggtgtttg ctttgatgta cctaccgcat
2101 cagtaacaga aatacaggag aaatggcatg attcacgacg ctggcagctc tctgtggcca
2161 cagagcaacc agaactggaa ggaccacggg aaggatatgg aggcttcagg ggacagcggg
2221 aaggcagtcg aggcttcagg ggacagcggg acggaaacag aagattcaga ggacagcggg
2281 aaggcagtag aggcccgaga ggacagcgat caggaggtgg caacaaaagt aacagatccc
2341 aaaacaaagg ccagaagcgg agtttcagta aagcatttgg tcaataatta gaaatagaag
2401 atttatatag caaaaagaga atgatgtttg gcaatataga actgaacatt atttttcatg
2461 caaagttaaa agcacattgt gcctcctttt gaccacttgc caagtccctg tctctttcag
2521 acacagacaa getteattta aattattea tetgateatt ateatttata aetttattgt
2581 tacttettea teagttttte ettttgaaag gtgtatgaat teattacttt tttattetaa
2641 tgtattatct gtagattaga agataaaatc aagcatgtat ctgcctatac tttgtgagtt
2701 cacctgtctt tatactcaaa agtgtccctt aatagtgtcc ttccctgaaa taaataccta
2761 agggagtgta acagtctctg gaggaccact ttgagccttt ggaagttaag gtttcctcag
2821 ccacctgccg aacagtttct catgtggtcc tattatttgt ctactgagac ttaatactga
2881 gcaatgtttt gaaacaagat ttcaaactaa tctgggttgt aatacagttt ataccagtgt
2941 atgctctaga cttggaagat gtagtatgtt tgatgtggat tacctatact tatgttcgtt
3001 ttgatacatt tttagcttct cattataagg tgattcatgc tttagtgaat tcttcataga
3061 tagtatatat aaaagtacat tttaatagaa agccagggtt ttaaggaatt tcacatgtat
3121 aaggtggctc catagcttta tttgtaagta ggctggataa atggtgctta aatggtaatg
3181 tactccactt cttcctattg gaagattaac attatttacc aagaaggact taagggagta
3241 gggggcgcag attagcattg ctcaagagta tgt
```

Revised: October 24, 2001.

11

### 10/510903



WO 03/088910 PCT/US03/11867

## 10/510903

### ORIGIN

### FIG. 16 (2/2)

| _ | 7.4   |             |            |            |             | annaget ace | tttcaggacc  |
|---|-------|-------------|------------|------------|-------------|-------------|-------------|
|   | 1     | cttgggtcct  | tgggtcgcag | gcatcatgga | ccgatctada  | gaaaaccgca  | accepttcc   |
|   | 61    | tattagggct  | acagetecag | ttagaggtcc | aaaacgcgc   | cccgcgaccc  | ageaactee   |
|   | 121   | ttatcagaat. | ccattacctq | taaataqtqq | ccaggettag  | cgggccccgc  | 500000      |
|   | 101   | ++attcccaq  | cacattcctt | tocaaocaca | aaaquuuguu  | cccagccaca  | 490099      |
|   | 241   | anatagaaa   | cagaagcaat | tacaggcaac | caqtqtactt  | Cattergett  | ccaggoone   |
|   | 201   | annth acacc | caaaagagca | accacccct  | qccalcggca  | cccgaaaaca  | 4666634334  |
|   | 261   | aassataaca  | tcaaaacaga | aaaatdaada | accaaaaaa   | 4990490999  | 0000555-    |
|   | 421   | atttassatt  | gateacete  | raaataaagg | aaaquuuggu  | aacycccacc  | -555        |
|   | 401   | 222222227   | aagtttattc | rooctcttaa | agequiation | adagetedge  |             |
|   | 541   | cagaatagag  | catcagétea | gaagagaagt | agaaatacay  | CCCCaccccc  | ggcaccoua   |
|   | C 0 1 | tattattaga  | ctatataatt | artrocatga | Edctaccaga  | gcccacccaa  | ccccaaaaa   |
|   | 661   | tacaccactt  | ggaacagttt | atagagaact | Cagaaaccc   | Ccaaageeeg  | acgageagag  |
|   | 721   | aactgctact  | tatataacag | aattqqcaaa | Egecergee   | Lacigicate  | cadaaaaa    |
|   | 721   | tattcataga  | gacattaagc | cagagaactt | acticityga  | ccagccggag  | ageceaaaa   |
|   | 841   | tgcagatttt  | agatagtcag | tacatqctcc | atetteeagg  | aggaccaccc  | cccgcggcac  |
|   | 901   | cctggactac  | ctaccccta  | aaatqattqa | aggtcggatg  | Catgatgaga  | aggeggaeee  |
|   | 961   | ctggaggett  | agagttettt | qctatqaatt | tttagttggg  | aageecceccc | LLgaggcaaa  |
|   | 1021  | cacataccaa  | gagacctaca | aaaqaatatc | acgggttgaa  | LLCacallec  | ccgaccccgc  |
|   | 1001  | aacagagga.  | gccagggacc | tcatttcaaq | actgttgaag  | Cataattica  | gccagaggcc  |
|   | 3141  | aatoctcaga  | gaagtacttg | aacacccctq | gatcacagca  | aatttattaa  | aaccaccaaa  |
|   | 1201  | ttgccaaaac  | aaagaatcag | ctaqcaaaca | gtcttaggaa  | ccgcgcaggg  | ggagaaaccc  |
|   | 1261  | ttgagccagg  | gctgccatat | aacctgacag | gaacatgcta  | ctgaagttta  | LLLLACCALL  |
|   | 1321  | gactgctgcc  | ctcaatctag | aacqctacac | aagaaatatt  | Lycticactic | agcaggegeg  |
|   | 1221  | ccttaacctc  | cctattcaga | aagctccaca | tcaataaaca  | cgacactctg  | aagtgaaagt  |
| • | 1441  | agecaegaga  | attotoctac | ttatactqqt | tcataatctg  | gaggcaaggc  | ccgaccgcag  |
|   | 1501  | ccaccccatc  | agectatact | aggcatggtg | tetteacagg  | aggcaaaccc  | agageeegge  |
|   | 1561  | tatagggaaa  | gtgaccactc | taccctacc  | ccgatcagtt  | aaggagetgt  | gcaacaaccc  |
|   | 1621  | tectagtace  | taaataaata | tqtaacttat | tgggttggcg  | aageerggra  | aageegeegg  |
|   | 1681  | aatgagtatg  | tgattcttt  | taaqtatgaa | aataaagata  | tatgtataga  | CEEGCACCE   |
|   | 1741  | ttctctggtg  | gcattccttt | aggaatgctg | tgtgtctgtc  | eggeaceceg  | graggerega, |
|   | 1801  | traggtttct  | agtcctcctt | aaccacttat | ctcccatatg  | agagtgtgaa  | aaacaggaac  |
|   | 1861  | acgtgctcta  | cctccattta | aggatttqct | tgggatacag  | aagaggccac  | gegeeeeaga  |
|   | 1921  | gctgttaagg  | gcttattttt | ttaaaacatt | ggagtcatag  | catgtgtgta  | aactttaaat  |
|   | 1981  | atqcaaataa  | ataagtatct | atgtc      |             |             |             |
|   |       |             | •          | _          |             |             |             |

Revised: October 24, 2001.

//

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

10/510903





### Wes zNucleotide

**Nucleotide** 

default

Protein Genome Structure

**PopSet** Taxonomy

ОМІМ \*Clear

Search Nucleotide E for l

Limits

Preview/Index

History

Clipboard

Details

1: BC008442. Homo sapiens,

Sim...[gi:14250074]

Related Sequences, Protein, Taxonomy, UniSTS.

PRI 12-JUL-2001 1584 bp mRNA linear LOCUS

Homo sapiens, Similar to transmembrane 4 superfamily member 1, DEFINITION

clone MGC:14656 IMAGE:4101110, mRNA, complete;cds.

BC008442 ACCESSION

BC008442.1 GI:14250074 VERSION

TM4 SF1

KEYWORDS MGC. SOURCE human.

Homo sapiens ORGANISM

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE (bases 1 to 1584)

**AUTHORS** Strausberg, R. TITLE Direct Submission

Submitted (25-MAY-2001) National Institutes of Health, Mammalian JOURNAL

Gene Collection (MGC), Cancer Genomics Office, National Cancer Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590,

NIH-MGC Project URL: http://mgc.nci.nih.gov REMARK

COMMENT

Contact: MGC help desk Email: cgapbs-r@mail.nih.gov Tissue Procurement: ATCC

cDNA Library Preparation: CLONTECH Laboratories, Inc.

cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)

DNA Sequencing by: Sequencing Group at the Stanford Human Genome Center, Stanford University School of Medicine, Stanford, CA 94305

http://www-shgc.stanford.edu Web site: Contact: (Dickson, Mark) mcd@paxil.stanford.edu

Dickson, M., Schmutz, J., Grimwood, J., Rodriquez, A., and Myers,

R. M.

Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov

Series: IRAL Plate: 21 Row: 1 Column: 7

This clone was selected for full length sequencing because it passed the following selection criteria: Similarity but not

identity to protein.

**FEATURES** 

Location/Qualifiers

source

1..1584

/organism="Homo sapiens"

/db xref="taxon:9606" /clone="MGC:14656 IMAGE:4101110"

/tissue\_type="Bone marrow, chronic myelogenous leukemia"

/clone\_lib="NIH\_MGC\_54"

/lab host="DH10B"

/note="Vector: pDNR-LIB"

CDS 102..710

PCT/US03/11867 WO 03/088910

### 10/510903

### FIG. 17 $(2/2)_{c}$

/codon\_start=1

```
/product="Similar to transmembrane 4 superfamily member 1"
                     /protein_id="AAH08442.1"
                     /db xref="GI:14250075"
                    /translation="MCYGKCARCIGHSLVGLALLCIAANILLYFPNGETKYASENHLS
                    RFVWFFSGIVGGGLLMLLPAFVFIGLEQDDCCGCCGHENCGKRCAMLSSVLAALIGIA
                    GSGYCVIVAALGLAEGPLCLDSLGQWNYTFASTEGQYLLDTSTWSECTEPKHIVEWNV
                     SLFSILLALGGIEFILCLIQVINGVLGGICGFCCSHQQQYDC"
                                           476 t
                460 a
                         311 c
                                  337 g
BASE COUNT
ORIGIN
       1 gtggtgtttg ctttctccac cagaagggca cactttcatc taatttgggg tatcactgag
      61 ctgaagacaa agagaagggg gagaaaacct agcagaccac catgtgctat gggaagtgtg
      121 cacgatgcat cggacattet etggtgggge tegeeeteet gtgcategeg getaatattt
      181 tgctttactt tcccaatggg gaaacaaagt atgcctccga aaaccacctc agccgcttcg
      241 tgtggttett ttetggcate gtaggaggtg geetgetgat geteetgeea geatttgtet
     301 tcattgggct ggaacaggat gactgctgtg gctgctgtgg ccatgaaaac tgtggcaaac
      361 gatgtgcgat gctttcttct gtattggctg ctctcattgg aattgcagga tctggctact
      421 gtgtcattgt ggcagccctt ggcttagcag aaggaccact atgtcttgat tccctcggcc
      481 agtggaacta cacctttgcc agcaccgagg gccagtacct tetggatacc tecacatggt
      541 ccgagtgcac tgaacccaag cacattgtgg aatggaatgt atctctgttt tctatcctct
      601 tggctcttgg tggaattgaa ttcatcttgt gtcttattca agtaatadat ggagtgcttg
      661 gaggcatatg tggcttttgc tgctctcacc aacagcaata tgactgctaa aagaaccaac
      721 ccaggacaga gccacaatct tectetattt cattgtaatt tatatattte acttgtatte
      781 atttgtaaaa ctttgtatta gtgtaacata ctccccacag tctactttta caaacgcctg
```

841 taaagactgg catcttcaca ggatgtcagt gtttaaattt agtaaacttc ttttttgttt 901 gtttatttgt ttttgttttt tttttaggaa tgaggaaaca aaccaccctc tgggggtagt 961 ttacagactg agtgacagta ctcagtatat ctgagataaa ctctataatg ttttggataa 1021 aaataacatt ccaatcacta ttgtatatat gtgcatgtat tttttaaatt aaagatgtct 1081 agttgctttt tataagacca agaaggagaa aatccgacaa cctggaaaga tttttgtttt

1141 cactgettgt atgatgttte ceatteatae acetataaat etetaacaag aggeeetttg 1201 aactgeettg tgttetgtga gaaacaaata tttaettaga gtggaaggae tgattgagaa 1261 tgttccaatc caaatgaatg catcacaact tacaatgctg ctcattgttg tgagtactat 1321 gagattcaaa tttttctaac atatggaaag ccttttgtcc tccaaagatg agtactaggg

1381 atcatgtgtt taaaaaaaag aaaggctacg atgactgggc aagaagaaag atgggaaact 1441 gaataaagca gttgatcagc atcattggaa catggggacg agtgacggca ggaggaccac 1501 gaggaaatac cctcaaaact aacttgttta caacaaaata aagtattcac tacgaaaaaa

1561 aaaaaaaaaa aaaaaaaaaa aaaa

Revised: October 24, 2001.

11

Disclaimer | Write to the Help Desk NCBI | NLM | NIH





10/510903 5762 Nucleotide

**PubMed** Search Nucleotide

E for

Genome **Protein** 

Structure

PosSct

Taxonomy

OMIM

default

Limits

Preview/Index

History

Clipboard

**Details** 

XM 027538[gi:14768648]

LOCUS

XM 027538

1025 bp

mRNA

linear

PRI 16-JUL-2001

DEFINITION

Homo sapiens excision repair cross-complementing rodent repair

deficiency, complementation group 1 (includes overlapping antisense sequence) (ERCC1), mRNA.

XM 027538 ACCESSION

VERSION

XM\_027538.1 GI:14768648

ERCC1

KEYWORDS

human. SOURCE

ORGANISM

Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE

**AUTHORS** 

(bases 1 to 1025) NCBI Annotation Project.

TITLE

Direct Submission

**JOURNAL** 

Submitted (12-JUL-2001) National Center for Biotechnology

Information, NIH, Bethesda, MD 20894, USA

**FEATURES** 

Location/Qualifiers

source

1..1025

/organism="Homo sapiens" /db\_xref="taxon:9606"

/chromosome="19"

gene

1..1025

/gene="ERCC1" /note="UV20"

/db\_xref="LocusID:2067" /db\_xref="MIM: 126380"

CDS

63..956

/gene="ERCC1" /codon start=1

/product="excision repair cross-complementing rodent repair deficiency, complementation group 1 (includes

overlapping antisense sequence) "

/protein id="XP 027538.1" /db xref="GI:14768649"

/translation="MDPGKDKEGVPQPSGPPARKKFVIPLDEDEVPPGVAKPLFRSTQ SLPTVDTSAQAAPQTYAEYAISQPLEGAGATCPTGSEPLAGETPNQALKPGAKSNSII **VSPRQRGNPVLKFVRNVPWEFGDVIPDYVLGQSTCALFLSLRYHNLHPDYIHGRLQSL** GKNFALRVLLVQVDVKDPQQALKELAKMCILADCTLILAWSPEEAGRYLETYKAYEQK PADLLMEKLEQDFVSRVTECLTTVKSVNKTDSQTLLTTFGSLEQLIAASREDLALCPG

LGPQKARRLFDVLHEPFLKVP"

BASE COUNT

326 C

289 g

176 t 234 a ORIGIN

1 ccaagaccag caggtgaggc ctcgcggcgc tgaaaccgtg aggcccggac cacaggctcc

61 agatggaccc tgggaaggac aaagaggggg tgccccagcc ctcagggccg ccagcaagga

121 agaaatttgt gatacccctc gacgaggatg aggtccctcc tggagtggcc aagcccttat

181 tecgatetae acagageett eccaetgtgg acaeetegge ceaggeggee eeteagaeet 241 acgccgaata tgccatctca cagcctctgg aaggggctgg ggccacgtgc cccacagggt

WO 03/088910 PCT/US03/11867

### 10/510903

### FIG. 18 (2/2)

```
301 cagagecet ggeaggaga acgeecaace aggeetgaa accegggga aaatecaaca
361 geateattgt gageectegg cagagggga atceegtaet gaagttegtg egeaatgtge
421 cetgggaatt tggegaegta atteeegaet atgtgetggg ceagageace tgtgeeetgt
481 teeteageet eegetaeea aacetgeaee eagaetaeat eeatgggegg etgeagagee
541 tggggaagaa ettegeettg egggteetge ttgteeaggt ggatgtgaaa gateeeage
601 aggeeeteaa ggagetgget aagatgtgta teetggeega etgeacattg ateetegeet
661 ggageeeega ggaagetggg eggtaeetgg agaeetaeaa ggeetatgag eagaaaeeag
721 eggaeeteet gatggagaag etagageagg aettegtee eegggtgaet gaatgtetga
781 eeacegtgaa gteagteaae aaaaeggaea gteagaeeet eetgaeeae tttggatete
841 tggaacaget eategeegea teaagagaag atetggeett atgeeeage etgggeeete
901 agaaageeeg gaggetgttt gatgteetge aegageeett ettgaaagta eeetgatgae
961 eecagetgee aaggaaaeee eeagtgtaat aataaategt eeteecagge eaggeteetg
1021 etgge
```

Revised: October 24, 2001.

<u>Disclaimer</u> | <u>Write to the Help Desk</u> <u>NCBI</u> | <u>NLM</u> | <u>NIH</u>

# G2-2F3 // Fanconi Anemia Group A (FAN

The G2-2F3 sequence is identical to Fanconi Anemia Group A,

FANCA, 1340aa

Orientation: Sense

cis-trans isomerase signature 1 FKBP-type peptidyl-prolyl

Peptidase S8 FANCA Aldehyde dehydrogenases cysteine active site

G2-2F3

1183:RKISWLALFQLTESDLRLGRLLLRVAPDQHTRLLPFAFYSLLSYF

Pfam HMM search was done at the Washington University web site

Aldehyde dehydrogenases cysteine active site (3-14): It is found in a nuclear protein associated with cell proliferation

FKBP-type peptidyl-prolyl cis-trans isomerase signature 1(159-175): One of two signature pattems for FKBP

PX(189-320); Novel domains in NADPH oxidase subunits, sorting nexins, and PI3-kinases: binding partners of SH3 domains?

PeptidaseS8(660-688): Subtilase family motif

FIG. 19



FIG. 20

# Box

The G3-2H6 sequence is identical to DEAD/H box polypeptide 9 (DDX9), 1279aa Orientation: Antisense

DEAD

RBY IN THE

G3-2H6(572bp) 603 bp insert

CLN3

C-teminus of GFP

GAGITCGIGACCGCCCCCGGGAICACICICGGCAIGGACGAGCTGIACAAGGAGGAGGCC GCCAAGGCC

GCCAGTTCC

**ATAGGCCCCCCTACCACCTCCTCGCTGGAATCCCCCAGATCCTCTGTAGCCTCCACTAGGC** GGSGGSSVLESATSSSLSKVASS

I G P P T T S S L E S P R S S V A S T R P S V
GTCTCCAGAGTTGCCTCTAAAGCCACCTCGGGAGACTCCTCTATAGCCTCCACCAACA CCTCTGTA

V S S R V A S K A T S G D S S I A S T N T C T ATATCCTGCCCGAAAGGAGTTGGCGCTGCCACATAGCCTCCACTG

**ACCGCATAGCCTCCACCACTGTAACTAGAACCTCCCCTTCTATATCCGCTTCCATTGTCGTA** SCPKGVGAATIASATIASTAIA CTATAGCC

PEAP (ଏଞ୍ଜିମ୍ପିୟ ଓ ମୁକ୍ତି ମଧ୍ୟ ନ୍ୟେମ୍ୟ ହେଉମ୍ପର୍ଗ ଓ ସେଟ ଓ ସେଟ । ଓ ସେଟ । ଓ ସେଟ । ଓ ସେ । ଓ ସେ । ଓ ସେ । ଓ ସେ । ଓ ସ ଧନ୍ୟତ (ଷ୍ଟେମ୍ପର୍ଗ ଓ ): Helicase conserved C-terminal domain Pouble-stranded RNA binding motif

**Gentifagackutijgs**ocksaptorasitcagcatacettcatttacggggtccaactggctgat



FIG. 22

# ke Growth Factor 1 Recep

The G3-2H2\_1 sequence is identical to Insulin-like growth factor receptor (IGF1R)

Orientation: Sense

1367 G3-2H2\_1 111/2.2 786:ERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFV 823 786 GF1R

Leader sequence (1-30)

L (51-172, 352-472): Receptor L domain, the L domains from insulin-like growth factor receptors make up the bilobal ligand binding site.

FNIII(489-587, 835-917): Fibronectin type III domain, the majority of which are involved in cell surface F (175-333): Furin-like cysteine rich region, which involves receptor aggregation

binding in some manner, or are receptor protein tyrosine kinases, or cytokine receptors.

Fransmembrane (936-958)

Kinase (999-1266): Protein tyrosine kinase catalytic domain



51/91

The G3-2D8 sequence is identical to Ubiquitin-conjugating enzyme E2 variant 1 147aa Orientation: Antisense



FIG.



53/91

UBE2V1 has 4 alternatively spliced UBE2V1 transcripts that encode proteins with the conserved Ubc domain of E2 enzymes and unique N-terminal sednences

G3\_2H2 UbGE2v1 UbGE2v1\_2 UbGE2v1\_1 UbGE2v1\_1 UbGE2v2

GAAGGCCAGAAAGGAGTAGGAGATGGCACAGTTAGCTGGGGTCTAGAAGATGACGAAGACATGACATTACAGATGGACAGGGATGATAATTGGGCCTCCAAGAACAATTA GAAGGCCAGAAAGGAGTAGGAGATGGCACAGTTAGCTGGGGTCTAGAAGATGACGAAGACATGACACTTACAAGATGGACAGGGGATGATAATTGGGCCTCCAAGAACAATTTA GAAGGCCAGAAAGGAGTAGGAGATGGCACAGTTAGCTGGGGTCTAGAAGATGACGAAGACATGACACTTACAAGATGGACAGGGGATGATAATTGGGCCTCCAAGAACAATTTA GAAGGCCAGAAAGGAGTAGGAGAATGGCAGATTAGCTGGGGTCTAGAAGATGAAGAAGAATGACATTACAAGATGGACGAGGGATGATAATTGGGCCTCCAAGAACAATTTA &AAGGCCAQAAAGGAGTAGGAGATGGCACAGTTAGCTGGGGTCTAGAAGATGACGAAGACATGACACTTACAAGATGGACAGGGATGATAATTGGGCCTGCAAGAACAATT

G3\_2H2 UbcE2v1 UbcE2v1\_2 UbcE2v1\_1 UbcE2v1\_1 UbcE2v1Bs

CGAATATACAGCCTTAAAATAGAATGTGGACCTAAATACCCAGAAGCACCCCCTTTGTA 265 CGAATATACAGCCTTAAAATAGAATGTGGACCTAAATACCCAGAAGCAC... G3\_2H2 UbcE2v1 UbcE2v1\_2 UbcE2v1\_1 UbcE2v1Bs

CGAATATACAGCCTTAAAATAGAATGTGGACCTAAATACCCAGAAGCACCCCCCTTTGTA 337
CGAATATACAGCCCTAAAATAGAATGTGGACCTAAATACCCAGAAGCACCCCCCTTTGTA 384
CGAATATACAGCCTTAAAATAGAATGTGGACCTAAATACCCAGAAGCACCCCCCTTTGTA 259
AGAATATATAGCCTGAAAGTAGAATGTGGACCTAAATACCCAGAAGCTCCTCCGTCAGTT 281

WO 03/088910

PCT/US03/11867

FIG. 28 (1/2)

10/510903

SEQ ID NO:29

Size: 181 DNA FANCA

CCAGTGTGCTGGAAAGGAGGAAGATATCCTGGCTGGCACTCTTTCAGTTGACAGAGAGTGACCTCAGGCTGGGGC GGCTCCTCCTCCGTGTGGCCCCGGATCAGCACCAGGCTGCTGCCTTTCGCTTTTTACAGTCTTCTCCTACT TCCATGAAGACGCGGCTTTCCAGCACAGTGG

SEQ ID NO:30

Size: 603 DNA DDX9

CCAGTGTGCTGGAAAGCGCCACCTCCTCTTCCCTGTCCAAAGTAGCCAGTTCCATAGGCCCCCTACCACCWCCT CGCTGGAATCCCCCAGATCCTCTGTAGCCTCCACTAGGCCCTCTGTAGTCTCCTCCAGAGTTGCCTCTAAAGCCA CCTCGGGAGACTCCTCTATAGCCTCCACCAACACCTGCACCATATCCTGCCCGAAAGGAGTTGGCGCTGCCACCA TAGCCTCCGCTACCATAGCCTCCACTGCTATAGCCACCGCATAGCCTCCACCACTGTAACTAGAACCTCCCCTTC TATATCCGCTTCCATTGTCGTATCGGGCCATCTTGGGAGGACCATCTCCATGCCGTGTACTGCCAATCA TAAGGTTGATACCAGCAGCTGAGGGTCTAGAGATCTGACGGATCATGTTCAGCATACGTTCATTTACGGGGTCCA ACTGGCTGATGATAGCAGGTTGTTTGGTTACTTCAACAACCAAAGCCTCCATGGCTGCCCGGAGACCAGTGATAC AGGCAGCAGCTTCATGAGATATTTGCAGTTTAATCCAGTCATCTACAAGCACAATCTGCCCACTTTCCAGCACAG

SEQ ID NO:31

Size: 145 DNA IGF1R

CCAGTGTGTTGGAAAGGGAGAACTGTCATTTCTAACCTTCGGCCTTTCACATTGTACCGCATCGATATCCACAGCTGCAACCACGAGGCTGAGAAGCTGGGCTGCAGCGCCTCCAACTTCGTCTTTGCTTTCCAGCACAGTGG

SEQ ID NO:32

Size: 269 DNA UBEV2V1

CCAGTGTGCTGGAAAGGTGCTTCTGGGTATTTAGGTCCACATTCTATTTTAAGGCTGTATATTCGGTTTTCATAA
ATTGTTCTTGGAGGCCCAATTATCATCCCTGTCCATCTTGTAAGATGTCATGTCTTCGTCATCTTCTAGACCCCA
GCTAACTGTGCCATCTCCTACTCCTTTCTGGCCTTCTTCGAGATTCCTCCAACAGTCGGAAATTGCGAGGGACTT
TATACATCCCGAGCCCGTGGTGGCTGCCCTTTCCAGCACACTGG

SEQ ID NO:33

Size: 499

DNA aldehyde dehydrogenase

CCAGTGTGCTGGAAAGGAGCAAACTCCTCTCACTGCTCTCCACGTGGCATCTTTAATAAAAGAGGCAGGGTTTCC
TCCTGGAGTAGTGAATATTGTTCCTGGTTATGGGCCTACAGCAGGGGCAGCCATTTCTTCTCACATGGATATAGA
CAAAGTAGCCTTCACAGGATCAACAGAGGTTGGCAAGTTGATCAAAGAAGCTGCCGGGAAAAGCAATCTGAAGAG
GGTGACCCTGGAGCTTGGAGGAAAGAGCCCTTGCATTGTGTTAGCTGATGCCGACTTTGGACAATGCTGTTGAATT
TGCACACCATGGGGTATTCTACCACCAGGGCCAGTGTTGTATAGCCGCATCCAGGATTTTTTGTGGAAGAATCAAT
TTATGATGAGTTTTTGTTCGAAGGAGTGTTGAGCGGGCTAAGAACGTATATCCTTGGAAACATCCTCTGACCCCAG
GAGTCACTCAAAGGCCCTCAGATTGACAAGGACTTTCCAGACACAGTGG

SEQ ID NO:34

Size: 425

DNA pyruvate kinase

WO 03/088910

PCT/US03/11867

बंधी को हु १ सम्बद्धान काम गाउँ FIG. 28 (2/2)

10/510903

CCAGTGTGCTGGAAAGGCTGCCCACTTCCACCACCTTGCAGATGTTCTTGTAGTCCAGCCACAGGATGTTCTCGT CACACTTTTCCATGTAGGCGTTATCCAGCGTGATTTTGAGAGTGGCTCCCTTCTTCAGCTCCACCTCTGCAGTGC CGCTGCCCTTGATGAGCCCAGTTCGGATCTCAGGTCCTTTAGTGTCTAGAGCCACAGCAACGGGCCGGTAGAGGA TGGGGTCAGAAGCAAAGCTTTCCGTGGCTGTGCGCACATTCTTGATGGTCTCCGCATGGTACTCATGAGTTCCAT GAGAGAAGTTCAGACGAGCCACATTCATTCCAGACTTAATCATCTCCTTCAACGTCTCCACTGGATCGGAAGCT GGGCCAATGGTACAGATGATGCCAGTGTTCCGGGCTTTCCAGCACAGTGG

SEQ ID NO:35 Size: DNA G6PD

CCAGTGTGCTGGAAACTTTCCAGTTCTCCATGGCCACCANACACAGCATCTGCAGTAGGTGGTTCTGCATCACGT CCCGGATGATCCCAAATTCATCGAAATAGCCCCCGCGACCCTCAGTGCCAAAGGGCTCCTTGAAGGTGAGGATAA CGCAGGCGATGTTGTCCCGGTTCCANATGGGGCCGAAGATCCTGTTGGCAAATCTCAGCACCATGAGGTTCTCTT TCCAGCACAGTGG

## Dominant Negative Mutants of BAP-1

Point mutants: C91A, H169A- catalytic residues in the protease domain. (EMBO J. 1997 Jul 1;16(13):3787-96. PMID: 9233788)

CLUSTAL W (1.8) multiple sequence alignment

MEGORWLPLEANPEVTNOFLKOLGLHPNWOFVDVYGMDPELLSMVPRPVCAVLLLFPITE MNKGWLELESDPGLFTLLVEDFGVKG-VQVEEIY----DLQSKCQGPVYGFIFLFKWIE Uch-13 BAP-1

ERRSRRKVSTLVDDTSVIDDDIVNNMFFAHQLIPNSCATHALLSVLLNCSS----VDLGPT KYEVFR--TEEEEKIKSQGQDVTSSVYFMK**Q**TISNA**C**GTIGLIHAIANNKDKMHFESGST 

LSRMKDFTKGFSPESKGYAIGNAPELAKAHNSHARPEPRHLPEKQNGLSAVRTMEAF**H**FV \*\* LKKFLEESVSMSPEERARYLENYDAIRVTHETSAHEGQTEAP-----SIDEKVDLÄFI ... \*\*\*.. .. .. .. .. .

SYVPITGRLFELDGLKVYPIDHGPWGEDEEWTDKARRVIMERIGLATAGEPYHDIRFNLM ALVHVDGHLYELDGRKPFPINHGETS-DETLLEDAIEVCKKFMERDPD----ELRFNAI Uch-13

BAP-1

**Bold: Catalytic residue** 

FIG. 29

Uch-13

BAP-1

Uch-13

BAP-1



1.57 4370















## GST-Bap1 was produced using the baculovirus transfer vector pDEST20 along with the Bac-to-Bac baculovirus expression system (invitrogen). GST-Bap1(1) and GST-Bap1(2) refer to two different - GST-Bap1 Soluble GST-Bap1 Protein can be **Expressed from SF9 Cells** (2)10kg, 50 α-GST (2) LOB 1 150 1 FIG. 38 Coomassie \*30H virus dilutions used for expression. 86 62 49 38 28 188 KD







































## 10/510903













. ........



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| ☐ BLACK BORDERS                                         |
|---------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
| FADED TEXT OR DRAWING                                   |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                    |
| SKEWED/SLANTED IMAGES                                   |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS                    |
| ☐ GRAY SCALE DOCUMENTS                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| □ other:                                                |

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.