Christopher Lum lum@uw.edu

Lecture 04b

Scalar Functions, Vector Functions, and Vector Derivatives

Lecture is on YouTube

The YouTube video entitled 'Scalar Functions, Vector Functions, and Vector Derivatives' that covers this lecture is located at https://youtu.be/haJVEtLN6-k.

Outline

- -Scalar Functions
- -Vector Functions
- -Vector Derivatives

Scalar Functions

We can define functions which map from \mathbb{R}^n to \mathbb{R} . These are sometimes referred to as scalar functions as the output of them are scalars.

$$f: \mathbb{R}^n \to \mathbb{R}$$

In many engineering applications we consider n = 2 (the function can be visualized with a planar, 2D plot) or n = 3 (requiring a 3D plot for visualization). For more information on 3D plotting see the following videos:

- '3D Plotting in Matlab' at https://youtu.be/OUwfE_-tcfo
- '3D Plotting in Mathematica' at https://youtu.be/s_ehZc5N7Lg

Example: 2D Scalar Function

Consider the population density of group of animals in a rectangular region to be defined as

$$p(x, y) = 3x^2 + y^2$$

We see that this function assigns a scalar value (the population of animals) to each 2-element input vector (an x, y position).

$$ln[\cdot]:= p[x_, y_] = 3x^2 + y^2;$$

We can visualize this function using Mathematica's 'Plot3D' function. Note that in general, if Mathematica has a function that generates a 2D graphic, its equivalent in 3D simply has the suffix '3D'.

Matlab also provides the functions to create 3 dimensional plots of 2D scalar functions. Pseudo-code using 'surf', 'surfc', and the resulting output is shown below.

Example: 3D Scalar Function

Consider the temperature in Fahrenheit inside a 3D object to be described by

$$T(x, y, z) = 4 x y + z^{2}$$
 $In[*]:= T[x_{y}, y_{y}] = 4 x y + z^{2};$

In this scenario, it becomes somewhat difficult to visualize this function because at each point in 3D space, we need to visualize a scalar value. Instead, it may be easier to visualize isotherms, or surfaces where T(x, y, z) = constant. To do this, Mathematica provides a function 'ContourPlot3D' which can be used to visualize these isotherm surfaces. For example, to visualize the surface where the temperature is $5^{\circ} F$, we can use

We can use multiple plots to show different temperatures

```
In[*]:= Legended[
     Show
       (*T=5°F*)
       ContourPlot3D[T[x, y, z] == 5, \{x, -3, 3\}, \{y, -3, 3\}, \{z, -3, 3\},
        ContourStyle → Directive[Blue, Opacity[0.8], Specularity[White, 30]]
       ],
       (*Plot 2*)
       ContourPlot3D[T[x, y, z] = 10, \{x, -3, 3\}, \{y, -3, 3\}, \{z, -3, 3\},
        ContourStyle → Directive[Yellow, Opacity[0.8], Specularity[White, 30]]
       ],
       (*Plot 3*)
       ContourPlot3D[T[x, y, z] == 15, \{x, -3, 3\}, \{y, -3, 3\}, \{z, -3, 3\},
        ContourStyle → Directive[Red, Opacity[0.8], Specularity[White, 30]]
       ],
       (*Plot Options*)
       PlotLabel \rightarrow "Isothermal Surfaces of T(x,y,z)=constant",
       AxesLabel \rightarrow {"x", "y", "z"}
      ],
      (*Add legend information*)
      SwatchLegend[{Blue, Yellow, Red},
       {"T(x,y,z) = 5°F", "T(x,y,z) = 10°F", "T(x,y,z) = 15°F"}
```


In[@]:= Clear[T]

Vector Functions

We can also define functions which map from \mathbb{R}^2 to \mathbb{R}^2 or from \mathbb{R}^3 to \mathbb{R}^3 . These are sometimes referred to as vector functions or vector fields.

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 (planar vector function)

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 (3D vector function)

These are referred to as vector functions because their outputs are vectors instead of scalars.

Example: 2D Vector Function (Velocity Field)

Consider the vector field described by

$$\overline{v} = 50 \cos(x) \hat{i} + x y^2 \hat{j}$$

$$ln[a]:= v[x_, y_] = {50 \cos [x] \choose x y^2};$$

In this case, the function assigns a 2-element vector, \overline{v} , for each input vector (also a 2-element vector).

For example we can physically interpret the input vector $(x \ y)^T$ as a 2D position and the output vector, $\overline{v} = (v_x \ v_y)^T$ as the velocity of a fluid at this location $(x \ y)^T$.

Mathematica provides the 'VectorPlot' function to visualize 2D vector fields

Matlab also provides the function' quiver' to produce similar output. Pseudo-code and Matlab output is shown below

Example: 3D Vector Function (Velocity Field)

Consider a rigid body such as an asteroid rotating in space. We fix a coordinate system to the body as shown below

If the object is rotating about the origin of the coordinate system with angular velocity $\overline{\omega}$, we can find the velocity of any point on the object \overline{v} by constructing a vector, \overline{r} , from the origin of the coordinate system to the point of interest and using

where
$$\overline{r} = (x \ y \ z)^T$$
 (position of point of interest)
$$\overline{\omega} = (\alpha \ \beta \ \gamma)^T$$
 (rotational velocity vector)
$$In[*] := \mathbf{r} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\};$$

$$\omega = \{\alpha, \beta, \gamma\};$$

$$\mathbf{v} = \mathbf{Cross}[\{\alpha, \beta, \gamma\}, \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}];$$

$$\mathbf{v} / / \mathbf{MatrixForm}$$

$$Out[*] / \mathbf{MatrixForm} = \begin{pmatrix} z \beta - y \gamma \\ -z \alpha + x \gamma \\ y \alpha - x \beta \end{pmatrix}$$

We can plot this vector field (assuming $\alpha = 2$, $\beta = 1$, $\gamma = -4$) using the 'VectorPlot3D' function.

```
ln[\sigma]:= replaceString = \{\alpha \rightarrow 2, \beta \rightarrow 1, \gamma \rightarrow -4\};
      (*define the vector function/field*)
      vPlot = v /. replaceString;
      (*Plot the vector \omega*)
      \omegaPlot = \omega /. replaceString;
      p1 = ListLinePlot3D[{{0, 0, 0}, \omegaPlot}, PlotStyle \rightarrow {Red, Thickness[0.02]}];
      (*Plot the vector function*)
      p2 = VectorPlot3D[vPlot, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}];
      (*Show plots on top of each other*)
      Show[p1, p2,
       AxesLabel \rightarrow \{x, y, z\},
       PlotRange → All,
       ViewPoint \rightarrow \{0, -\infty, 0\}]
Out[ • ]=
```

Matlab also provides the function' quiver3' to produce similar output. Pseudo-code and Matlab output is shown below

```
Adefine the points where we would
Alike to draw the vectors
x = linspace(-2, 2, 5);
y = linspace(-2, 2, 7);
z = linspace(-2, 2, 9);
[X, Y, Z] = ndgrid(x,y,z);
*Define the function
alpha = 2;
beta = 1;
gamma = -4;
U = Z*beta - Y*gamma;
V = -Z*alpha + X*gamma;
W = Y*alpha - X*beta;
APLot the vector field using 'quiver3'
quiver3(X, Y, Z, U, V, W)
xlabel('x')
ylabel('y')
ylabel('s')
title('Using ''quiver3'' command')
grid on
```


Figure 1: Using 'quiver3' command

Vector Derivatives

The vector function defines a vector field. Similarly, a scalar function defines a scalar field. The vector and scalar functions may also depend on time or on other parameters. We can therefore define the derivative of a vector or scalar field as how this field changes as a function of the appropriate independent variable.

A vector function $\overline{v}(t)$ is said to be differentiable at a point t if the following limit exists

$$\overline{v}'(t) = \lim_{\Delta t \to 0} \frac{\overline{v}(t + \Delta t) - \overline{v}(t)}{\Delta t}$$

We can differentiate each component separately to compute the derivative of the vector function

$$\overline{V}'(t) = (v_1'(t) \ v_2'(t) \ v_3'(t))$$

Differentiation Rules

$$(\overline{u}\cdot\overline{v})' = \overline{u}'\cdot\overline{v} + \overline{u}\cdot\overline{v}'$$

$$(\overline{u} \times \overline{v})' = \overline{u}' \times \overline{v} + \overline{u} \times \overline{v}'$$

Partial Derivatives of a Vector Function

If the components of the vector field \overline{v} are a function of multiple variables, t_1 , t_2 , ..., t_n , then the partial derivative of \overline{v} w.r.t. a particular variable is defined in the normal fashion

$$\overline{V}(\overline{t}) = V_1(\overline{t}) \hat{i} + V_2(\overline{t}) \hat{j} + V_3(\overline{t}) \hat{k}$$

$$\frac{\partial \overline{v}(\overline{t})}{\partial t_l} = \frac{\partial v_1(\overline{t})}{\partial t_l} \hat{i} + \frac{\partial v_2(\overline{t})}{\partial t_l} \hat{j} + \frac{\partial v_3(\overline{t})}{\partial t_l} \hat{k}$$

where
$$\overline{t} = (t_1 \ t_2 \ \dots \ t_n)$$

Example

Consider a vector function $\overline{r}: \mathbb{R}^2 \to \mathbb{R}^3$.

$$\overline{r}(\overline{t}) = \begin{pmatrix} a\cos(t_1) \\ a\sin(t_1) \\ t_2 \end{pmatrix}$$

We can then easily calculate the partial derivative of this vector function with respect to both t_1 and t_2

$$\frac{\partial \bar{r}(\bar{t})}{\partial t_1} = \begin{pmatrix} -a\sin(t_1) \\ a\cos(t_1) \\ 0 \end{pmatrix}$$

$$\frac{\partial \overline{r}(\overline{t})}{\partial t_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

If we consider $\overline{r}(t_1, t_2)$ to be the position vector at a given t_1 and t_w , then we can interpret $\frac{\partial \overline{r}(\overline{t})}{\partial t_1}$ as how this position vector changes as t_1 changes and $\frac{\partial \overline{r}(\overline{t})}{\partial t_2}$ describes how the position changes with t_2 .

For example holding t_2 = constant = 4 and varying $t_1 \in [0, 3/2 \pi]$ yields (with a = 2, b = 1)

```
t2constant = 4;  
ParametricPlot3D[  
   {rx[t1, t2constant], ry[t1, t2constant], rz[t1, t2constant]} /. {a \rightarrow 2, b \rightarrow 1},  
   {t1, 0, 3 / 2 \pi},  
AxesLabel \rightarrow {"x", "y", "z"}]  

1.0  
0.5  
0.0  
2  
-0.5
```

-1.0

For example holding t_1 = constant = $\pi/2$ and varying $t_2 \in [-3, -1]$ yields

```
t1constant = \pi / 2;

ParametricPlot3D[

{rx[t1constant, t2], ry[t1constant, t2], rz[t1constant, t2]} /. {a \rightarrow 2, b \rightarrow 1},

{t2, -3, -1},

AxesLabel \rightarrow {"x", "y", "z"}]
```

