Rethinking Common Practices in Deep Learning

Elad Hoffer

Deep Learning practices

- Deep learning is evolving fast, while many fundamental questions remain unanswered
 - Many heuristics and intuition-guided decisions
 - It works!
 - But some may prove misguided

We'll cover 5 of these

- 1. The impact of batch-size on generalization
- 2. Early-stopping and determining "over-fitting"
- 3. The role of the last classification layer
- 4. Batch-norm and regularization
- 5. "No free lunch" in CNNs

1) Closing the "generalization gap"

"Train longer, generalize better: closing the generalization gap in large batch training of neural networks" (NIPS 2017 oral)

Elad Hoffer*, Itay Hubara*, Daniel Soudry

Better models - parallelization is crucial

Model parallelism:Split model (same data)

AlexNet [Krizhevsky et al. 2012]: model split on two GPUs

Data parallelism:Split data (same model)

$$\Delta \mathbf{w} \propto -\frac{1}{b} \sum_{n=1}^{b} \nabla_{\mathbf{w}} L_n (\mathbf{w})$$

SGD: weight update proportional to gradients averaged over mini batch

Can we increase batch size and improve parallelization?

Large batch size hurts generalization?

Dataset: CIFAR10, Architecture: Resnet44, Training: SGD + momentum (+ gradient clipping)

 Generalization gap persisted in models trained "without any budget or limits, until the loss function ceased to improve"
 _[Keskar et al. 2017]

Observation

Weight distances from initialization increase

logarithmically with iterations

Why logarithmic behavior? Theory later...

Experimental details

- We experiment with various datasets and models
- Optimizing using SGD + momentum + gradient clipping
 - Usually generalize better than adaptive methods (e.g Adam)
 - Grad clipping effectively creates a "warm-up" phase
- Noticeable generalization gap between small and large batch

Network	Dataset	SB	LB
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%

Closing the generalization gap (2/4)

- Adapt learning rate. In CIFAR $\propto \sqrt{b}$
 - Idea: mimic small batch gradient statistics (dataset dependent)
- Noticeably improves generalization, the gap remains

Network	Dataset	SB	LB	+LR
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%

Closing the generalization gap (3/4)

Ghost batch norm

- Idea again: mimic small batch size statistics
- Also: reduces communication bandwidth
- Further improves generalization without incurring overhead

Network	Dataset	SB	LB	+LR	+GBN
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%	97.60%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%	86.4%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%	90.50%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%	91.50%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%	57.5%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%

Graph indicates: not enough iterations?

- Using these modifications distance from initialization now better matched
- However, graph indicates: insufficient iterations with large batch

Network	Dataset	SB	LB	+LR	+GBN
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%	97.60%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%	86.4%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%	90.50%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%	91.50%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%	57.5%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%

Train longer, generalize better

• With sufficient iterations in "plateau" region, generalization gap vanish:

Closing the generalization gap (4/4)

- Regime Adaptation train so that the number of iterations is fixed for all batch sizes (train longer number of epochs)
 - Completely closes the generalization gap

Network	Dataset	SB	LB	+LR	+GBN	+RA
F1 (Keskar et al., 2017)	MNIST	98.27%	97.05%	97.55%	97.60%	98.53%
C1 (Keskar et al., 2017)	Cifar10	87.80%	83.95%	86.15%	86.4%	88.20%
Resnet44 (He et al., 2016)	Cifar10	92.83%	86.10%	89.30%	90.50%	93.07%
VGG (Simonyan, 2014)	Cifar10	92.30%	84.1%	88.6%	91.50%	93.03%
C3 (Keskar et al., 2017)	Cifar100	61.25%	51.50%	57.38%	57.5%	63.20%
WResnet16-4 (Zagoruyko, 2016)	Cifar100	73.70%	68.15%	69.05%	71.20%	73.57%

ImageNet (AlexNet):

LB size	Dataset	SB	LB^8	+LR ⁸	+GBN	+RA
4096 8192	ImageNet ImageNet					

Why weight distances increase logarithmically?

Hypothesis:

During initial high learning rate phase:

"random walk on a random potential" where

std
$$\triangleq \sqrt{\mathbb{E}\left(L\left(\mathbf{w}\right) - L\left(\mathbf{w}(0)\right)\right)^{2}} \sim \|\mathbf{w} - \mathbf{w}(0)\|^{\gamma}$$

Marinari et al., 1983: $\mathbf{w}\left(t
ight) \sim \log^{\frac{1}{\gamma}}\left(t
ight)$ "ultra-slow diffusion"

Ultra-slow diffusion: Basic idea

Time to pass tallest barrier: $t \propto \exp(d^{\gamma})$ $\Rightarrow d \propto \log^{\frac{1}{\gamma}}(t)$

Summary so far

• Q: Is there inherent generalization problem with large batches?

A: Observed: no, just adjust training regime.

Q: What is the mechanism behind training dynamics?

A: Hypothesis: "random walk on a random potential"

Q: Can we reduce the total wall clock time?

A: Yes, in some models

Significant speed-ups possible

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Goyal et al. (Facebook whitepaper, two weeks after us)

- Large scale experiments: ResNet over ImageNet, 256 GPUs
- Similar methods, except learning rate
- X29 times faster than a single worker
- More followed:
 - Large Batch Training of Convolutional Networks (You et al.)
 - ImageNet Training in Minutes (You et al.)
 - Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes (Akiba et al.)

2) Why "Overfitting" is good for generalization?

 In contrast to common practice: good generalization results from many gradient updates in an "overfitting regime"

Peculiar generalization dynamics - summary

- Validation Loss increases
- Training error + loss goes to zero
- Weight Norm diverges

Looks like we are overfitting... but

• Validation error (classification) seems to never stop decreasing (slowly)

Conclusion: No need for early stopping (!)

How all of this makes sense?

Why "Overfitting" is good for generalization?

- Can be shown to happen for logistic regression on separable data!
- Slow convergence to max-margin solution

The Implicit Bias of Gradient Descent on Separable Data (ICLR 2018)

• Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Nati Srebro

Main Theorem

Gradient descent on logistic loss: $\Delta \mathbf{w} = -\eta \nabla \mathcal{L}(\mathbf{w})$

Theorem 1:
$$\mathbf{w}(t) = \hat{\mathbf{w}} \log t + \boldsymbol{\rho}(t)$$
,

 $\hat{\mathbf{w}}$ is the (L2) max margin vector

 $\boldsymbol{\rho}(t)$ is bounded, for almost every dataset.

Therefore:
$$\frac{\mathbf{w}(t)}{\|\mathbf{w}(t)\|} o \frac{\hat{\mathbf{w}}}{\|\hat{\mathbf{w}}\|}$$

... While expected loss (and test loss) increases

$$\mathbf{w}\left(t\right) = \hat{\mathbf{w}}\log t + \boldsymbol{\rho}\left(t\right)$$

Expected loss:

$$\mathbb{E}[\mathcal{L}(\mathbf{w})] = \Omega(\log t).$$

Also true for test loss

Validation loss is expected to increase, although accuracy may still improve!

3) The role of the final classifier

Fix your classifier: the marginal value of training the last weight layer

Elad Hoffer, Itay Hubara, Daniel Soudry

Fully connected classifier

We focus on the final representation obtained by the network F before the classifier $x = F(z; \theta)$ (the last hidden layer).

Fully connected classifier

• In common NN models, this representation is followed by an additional affine transformation on $x \in \mathbb{R}^C$ to all possible classes C.

$$y = W^T x + b$$

• where the number of parameters is dependent on number of classes $W \in \mathbb{R}^{N \times C}$ (can grow to be very large)

Fully connected classifier

Training is done using cross-entropy loss, by feeding the network outputs through a softmax activation

$$v_i = \frac{e^{y_i}}{\sum_{j}^{C} e^{y_j}}, \ i \in \{1, \dots, C\}$$

and reducing the expected negative log likelihood with respect to ground-truth target

$$\mathcal{L}(x,t) = -\log v_t = -w_t \cdot x - b_t + \log \left(\sum_{j=0}^{C} e^{w_j \cdot x + b_j} \right)$$

where w_i is the *i*-th column of W.

Fully connected classifier?

But the final fully-connected transform is a linear classifier:

- The network learns features that are already separable at this point.
- They fully-connected layers are also notoriously redundant -- easily compressed and discarded

Can they be removed completely?

Fixed classifier

• To evaluate our conjecture, we replaced the trainable parameter matrix W with a fixed orthonormal projection

$$Q \in \mathbb{R}^{N \times C}$$
 such that $QQ^T = I_n$

• As the rows of classifier weight matrix are fixed with an equal L_2 norm, we also restrict the representation of x to reside on the n-dimensional sphere

$$\hat{x} = \frac{x}{\|x\|_2}$$

Fixed classifier

Since $-1 \le q_i \cdot \hat{x} \le 1$ and softmax function is scale-sensitive, we introduce another temperature scaling coefficient α

$$v_i = \frac{e^{\alpha q_i \cdot \hat{x} + b_i}}{\sum_{j=1}^{C} e^{\alpha q_j \cdot \hat{x} + b_j}}, i \in \{1, \dots, C\}$$

and we minimize the loss:

$$\mathcal{L}(x,t) = -\alpha q_t \cdot \frac{x}{\|x\|_2} + b_t + \log\left(\sum_{i=1}^C \exp\left(\alpha q_i \cdot \frac{x}{\|x\|_2} + b_i\right)\right)$$

Hadamard classifier

The fixed orthogonal weights can be chosen to be a Hadamard matrix:

$$H^T H = nI_n$$
, $H \in \{-1,1\}^n$

- A deterministic, low-memory and easily generated matrix that can be used to classify.
- Removal of the need to perform a full matrix-matrix multiplication -as multiplying by a Hadamard matrix can be done by simple sign manipulation and addition.

Learned vs. Fixed classifier

- We compare the training of a fully-learned classifier with a fixed classifier (Cifar10, ResNet)
 - Training error is lower when using a learned classifier.
 - Both achieve the same accuracy on the validation set.

Empirical results

We find that this behavior remains in other datasets and models

- Negligible decrease in accuracy when final layer is fixed
- Reduces number of weights -- e.g ShuffleNet, where most of the parameters are in the last layer

Network	Dataset	Learned	Fixed	# Params	% Fixed params
Resnet56	Cifar10	93.03%	93.14%	855,770	0.07%
DenseNet(k=12)	Cifar100	77·73%	77.67%	800,032	4.2%
Resnet50	ImageNet	75·3 [%]	75·3 [%]	25,557,032	8.01%
DenseNet169	ImageNet	76.2%	76%	14,149,480	11.76%
ShuffleNet	ImageNet	65.9%	65.4%	1,826,555	52.56%

4) Batch-norm and regularzation

"Norm matters: efficient and accurate normalization schemes in deep networks"

Elad Hoffer, Ron Banner, Itay Golan, Daniel Soudry

Batch normalization

- Batch-norm (loffe, 15') is widely used, and allowed us to train deeper models, faster and with better final accuracy.
- However, it also has several shortcomings:
 - Assumes independence between samples (problem when modeling timeseries, RL, GANs, metric-learning etc.)
 - Requires high-precision operation and accumulation ($\sqrt{\sum}x^2$) and may be numerically instable
 - Significant computational and memory impact, with data-bound operations makes up to 25% of computation time in current models (Gitman, 17')
 - Not clear why it works so well ("reducing covariate shift"???)

Batch-norm Leads to norm invariance

The key observation regarding Batch-norm:

- Given an input x
- Channels' weight vector w, where its direction is $\widehat{w} = \frac{w}{\|w\|}$
- Batch-norm is norm invariant:

$$BN(||w||\widehat{w}x) = BN(\widehat{w}x)$$

 Weight-decay on these weights is just a learning-rate scaling (see paper for details)

Replacing Batch-norm with weight-norm

Can we do better than batch-norm?

• We can fix weight-norm (Salimans, 16') which had issues in large scale models (Gitman, 17') by detaching the norm from the weights completely:

In weight norm, for a channel i:

$$w_i = g_i \frac{v_i}{\|v_i\|}$$

We now suggest to completely remove the norm by parameterizing

$$w_i = \rho \frac{g_i}{\|g\|} \frac{v_i}{\|v_i\|}$$

Where ρ is a constant determined from chosen initialization

Improving weight-norm

This can help to make weight-norm work for large-scale models

Replacing Batch-norm – switching norms

- In fact, Batch-normalization is just a scaled $\,L^2$ normalization
- We can use other, more numerically stable norms:

$$||x||_1 = \frac{1}{N} \sum |x|$$
 $||x||_{\infty} = \max\{|x|\}$

We use additional scaling constants so that the norm will behave similarly to L^2

We can also use a "Top(k)" that bridges these two norms $||x||_{Top(k)} = \frac{1}{K} \sum \max_{1 \le k} \{|x|\}$

$$|x||_{Top(k)} = \frac{1}{K} \sum \max_{1..k} \{|x|\}$$

$L^1, L^{\infty}, L^{Top(10)}$ Batch-norm (Imagenet, Resnet)

Low precision batch-norm

Using L^1 batch-norm alleviates some of the low-precision difficulties of batch-norm. We can now train without issues on FP16:

4) Acknowledging blindspots of CNNs

"On the Blindspots of Convolutional Networks" Elad Hoffer*, Shai Fine*, Daniel Soudry

CNN blindspots

- Choosing a CNN model for a particular class enforces a strong (and useful) prior on the data:
 - Information exhibits local properties (stationarity)
 - Not too local...

This means that on some tasks, these models will perform worst than much simpler approaches ("No free lunch theorem")

CNN blindspots

We use "truth-revealing" signals in images to show several of these blindspots:

- 1. Label is encoded within a specific pixel
- 2. Label is encoded over several specific, distant, pixels
- 3. Label is encoded by location of specific pixels (value may change)
- 4. Label is encoded globally using image-sized orthogonal vectors
- 5. Label is encoded globally using the image mean-value

CNN blindspots

• While CNNs (Resnet) completely miss these signals (same accuracy as original images), "classic" ML models find them easily

Truth Signal	ConvNet	Best Model	
One Pixel	84.9%	100%	Dec. Tree
Pattern Pixels	84.9%	100%	Dec. Tree
Random Pixel	84.9%	100%	Shallow NN
Multiple Locations	84.9%	98.4%	QDA
Noise	84.9%	100%	Perceptron
Mean	84.9%	100%	Shallow NN

Similar results appear for text-based CNNs

Know your model

- Our main message know your model
- Choosing a CNN as your model makes strong assumption about your data
 - High dimensional information (global signal) may be lost
 - Low dimensional information (very local) may be lost
 - Relational data (location) may be lost

Convolutional networks are not always the right solution

Summary

- Large batch training ⇒ generalization decrease
- Validation loss increases ≠ overfitting occurs
- Validation error monotonically decreases: no early stopping
- Linear classification layers have marginal effect on accuracy
- Batch-norm success might have a different reason than believed. Alternatives may prove better.
- Be aware of CNNs inductive bias "No Free Lunch"

Thank you for your time! Questions?

For more information, visit my page at: www.DeepLearning.co.il