HW3 Report

ID: 111062107

Name: 鄧弘利

Exercise 1	. 1
Exercise 2	. 3
Exercise 3	. 9
Exercise 4	. 9

Exercise 1

```
Loading configuration from file "../config_examples/default_config.yaml"... Done Loading power configurations from file "power.yaml"... Done Reset for 1000 cycles... done!
Now running for 10000 cycles...
Noxim simulation completed. (11000 cycles executed)

% Total received packets: 1463
% Total received flits: 11698
% Received/Ideal flits Ratio: 1.01545
% Average wireless utilization: 0
% Global average delay (cycles): 11.7765
% Max delay (cycles): 77
% Network throughput (flits/cycle): 1.29978
% Average IP throughput (flits/cycle/IP): 0.0812361
% Total energy (J): 2.12491e-06
% Dynamic energy (J): 1.49656e-07
% Static energy (J): 1.97525e-06
[ts111062107@linuxcad30 bin]$ ■
```

- 1 Total Received Flit
 - 1.1 Flit (Flow Control Unit) 是在網絡傳輸過程中最小的數據單位。Total Received Flit 表示整個模擬過程中,目標節點接收到的 Flit 數量。
 - 1.2 The total number of flits received by target nodes is accumulated.
- 2 Total Received Packet
 - 2.1 Packet (數據包) 是由若干個 Flit 組成的完整數據單位。Total Received Packet 表示在模擬過程中,目標節點接收到的完整數據包的總數。
 - 2.2 Each packet consists of a head flit (starting flit) and a tail flit (ending flit). When all flits of a packet are received, the Total Received Packet is

incremented by 1.

- 3 Global Average Delay
 - 3.1 Global Average Delay 是指數據包從 source 發送到 destination 所花費 的平均時間,通常以 cycle 來衡量。
 - 3.2 Global Average Delay =

Total Delay Time for All Packets / Total Number of Received Packets

- 4 Network throughput
 - 4.1 Network Throughput 是整個網絡的吞吐量,表示網絡在單位時間內 (每個時鐘周期)成功傳輸的 Flit 數量。
 - 4.2 Network Throughput (flits/cycle) = total received flit / total clock 11698 / 9000 = 1.29978
- 5 Average IP throughput
 - 5.1 Average IP Throughput 表示每個 IP 節點(網絡上的處理單元)平均在單位時間內(每個時鐘周期)傳輸的 Flit 數量。
 - 5.2 Average IP Throughput (flits/cycle/IP) = total received flit / (total clock * total number of IP node)
 - = Network Through / total number of IP node
 - = 1.29978 / 16 = 0.08123

Exercise 2

1 packet_size (min & max)

```
149 min_packet_size: 8
150 max_packet_size: 8
151 packet_injection_rate: 0.01
152 probability_of_retransmission: 0.01
```

```
Loading configuration from file "../config_examples/my_config.yaml"... Done
Loading power configurations from file "power.yaml"... Done
Reset for 1000 cycles... done!
Now running for 10000 cycles...
Noxim simulation completed. (11000 cycles executed)

% Total received packets: 1435
% Total received flits: 11483
% Received/Ideal flits Ratio: 0.996788
% Average wireless utilization: 0
% Global average delay (cycles): 11.6446
% Max delay (cycles): 58
% Network throughput (flits/cycle): 1.27589
% Average IP throughput (flits/cycle/IP): 0.0797431
% Total energy (J): 2.11887e-06
% Dynamic energy (J): 1.43623e-07
% Static energy (J): 1.97525e-06
```

```
148
149 min_packet_size: 4
150 max_packet_size: 4
151 packet_injection_rate: 0.01
152 probability_of_retransmission: 0.01
153
```

```
% Total received packets: 1485
% Total received flits: 5943
% Received/Ideal flits Ratio: 1.03177
% Average wireless utilization: 0
% Global average delay (cycles): 8.18182
% Max delay (cycles): 24
% Network throughput (flits/cycle): 0.660333
% Average IP throughput (flits/cycle/IP): 0.0412708
% Total energy (J): 2.04891e-06
% Dynamic energy (J): 7.36611e-08
% Static energy (J): 1.97525e-06
```

```
149 min_packet_size: 12
150 max_packet_size: 12
151 packet_injection_rate: 0.01
152 probability_of_retransmission: 0.01
```

```
% Total received packets: 1446
% Total received flits: 17363
% Received/Ideal flits Ratio: 1.0048
% Average wireless utilization: 0
% Global average delay (cycles): 22.1369
% Max delay (cycles): 167
% Network throughput (flits/cycle): 1.92922
% Average IP throughput (flits/cycle/IP): 0.120576
% Total energy (J): 2.19679e-06
% Dynamic energy (J): 2.21537e-07
% Static energy (J): 1.97525e-06
```

```
149 min_packet_size: 16
150 max_packet_size: 16
151 packet_injection_rate: 0.01
152 probability_of_retransmission: 0.01
```

```
% Total received packets: 1435
% Total received flits: 22967
% Received/Ideal flits Ratio: 0.996832
% Average wireless utilization: 0
% Global average delay (cycles): 39.2794
% Max delay (cycles): 270
% Network throughput (flits/cycle): 2.55189
% Average IP throughput (flits/cycle/IP): 0.159493
% Total energy (J): 2.26161e-06
% Dynamic energy (J): 2.86361e-07
% Static energy (J): 1.97525e-06
```

我們可以觀察出以下結果

- 1.1 Total Received Flit: packet size 變大 , Total Received Flit 增加
- 1.2 Total Received Packet:數量不變

(因為 Total Received Flit = Total Received Packet * Average Packet Size,所以隨著 packet size 增加,傳送的 packet 數量不變, Total Received Flit 就會增加。)

- 1.3 Global Average Delay:packet size 增加,Global Average Delay 增加 (當 packet size 增加,傳輸資料的時間本來就會增加,再加上當 packet size 增加,每個 node 需要更多時間處理單個節點,這會導致排隊時間增長。)
 - 1.4 Network throughput:數量隨 packet size 變大而增加
 - 1.5 Average IP throughput:數量隨 packet size 變大而增加

(Network throughput, Average IP throughput 的計算公式裡面,與 Total Received Flit 成正比,所以當 Total Received Flit,他們也會增加。)

2 packet_injection_rate

0.005

```
% Total received packets: 716
% Total received flits: 5727
% Received/Ideal flits Ratio: 0.994271
% Average wireless utilization: 0
% Global average delay (cycles): 9.40363
% Max delay (cycles): 51
% Network throughput (flits/cycle): 0.636333
% Average IP throughput (flits/cycle/IP): 0.0397708
% Total energy (J): 2.04881e-06
% Dynamic energy (J): 7.35538e-08
% Static energy (J): 1.97525e-06
```

0.01

```
% Total received packets: 1415
% Total received flits: 11325
% Received/Ideal flits Ratio: 0.983073
% Average wireless utilization: 0
% Global average delay (cycles): 11.1576
% Max delay (cycles): 54
% Network throughput (flits/cycle): 1.25833
% Average IP throughput (flits/cycle/IP): 0.0786458
% Total energy (J): 2.1184e-06
% Dynamic energy (J): 1.43145e-07
% Static energy (J): 1.97525e-06
```

0.05

```
% Total received packets: 4784
% Total received flits: 38266
% Received/Ideal flits Ratio: 0.66434
% Average wireless utilization: 0
% Global average delay (cycles): 1656.85
% Max delay (cycles): 4833
% Network throughput (flits/cycle): 4.25178
% Average IP throughput (flits/cycle/IP): 0.265736
% Total energy (J): 2.46747e-06
% Dynamic energy (J): 4.92221e-07
% Static energy (J): 1.97525e-06
```

```
% Total received packets: 4667
% Total received flits: 37354
% Received/Ideal flits Ratio: 0.324253
% Average wireless utilization: 0
% Global average delay (cycles): 3583.04
% Max delay (cycles): 6986
% Network throughput (flits/cycle): 4.15044
% Average IP throughput (flits/cycle/IP): 0.259403
% Total energy (J): 2.4622e-06
% Dynamic energy (J): 4.86951e-07
% Static energy (J): 1.97525e-06
```

我們可以觀察出以下結果

- 2.1 Total Received Flit: 隨 packet injection rate 變大而增加
- 2.2 Total Received Packet: 隨 packet_injection_rate 變大而增加

(因為 Packet Injection Rate 是指每個時間單位內注入網絡的 packet 數量,所以當其增加,packet 的總數量就會增加,所以 Total Received Packet 會增加,當 packet 數量增加,Total Received Flit 也就會跟著增加。)

- 2.3 Global Average Delay: 隨 packet_injection_rate 變大而增加 (當越來越多 packet 在網路裡面,這就會導致競爭變得更激烈,增加每個 node 的平均排隊等待時間,所以 Average Delay 就會跟著增加。)
 - 2.4 Network throughput: 隨 packet_injection_rate 變大而增加
 - 2.5 Average IP throughput: 隨 packet_injection_rate 變大而增加

(由公式可以得知,Network throughput 與 Average IP throughput 與 Total Received Flit 成正比,所以當 Total Received Flit 增加,他們也會跟著增長。)

3 simulation_time

5000

```
% Total received packets: 621
% Total received flits: 4977
% Received/Ideal flits Ratio: 0.97207
% Average wireless utilization: 0
% Global average delay (cycles): 12.1739
% Max delay (cycles): 52
% Network throughput (flits/cycle): 1.24425
% Average IP throughput (flits/cycle/IP): 0.0777656
% Total energy (J): 1.06004e-06
% Dynamic energy (J): 7.24192e-08
% Static energy (J): 9.87626e-07
```

10000

```
% Total received packets: 1400
% Total received flits: 11197
% Received/Ideal flits Ratio: 0.971962
% Average wireless utilization: 0
% Global average delay (cycles): 11.765
% Max delay (cycles): 66
% Network throughput (flits/cycle): 1.24411
% Average IP throughput (flits/cycle/IP): 0.0777569
% Total energy (J): 2.11658e-06
% Dynamic energy (J): 1.41334e-07
% Static energy (J): 1.97525e-06
```

15000

```
% Total received packets: 2228
% Total received flits: 17826
% Received/Ideal flits Ratio: 0.994754
% Average wireless utilization: 0
% Global average delay (cycles): 11.7522
% Max delay (cycles): 72
% Network throughput (flits/cycle): 1.27329
% Average IP throughput (flits/cycle/IP): 0.0795804
% Total energy (J): 3.18346e-06
% Dynamic energy (J): 2.2058e-07
% Static energy (J): 2.96288e-06
```

20000

```
% Total received packets: 3138
% Total received flits: 25114
% Received/Ideal flits Ratio: 1.03265
% Average wireless utilization: 0
% Global average delay (cycles): 11.702
% Max delay (cycles): 85
% Network throughput (flits/cycle): 1.32179
% Average IP throughput (flits/cycle/IP): 0.0826118
% Total energy (J): 4.25023e-06
% Dynamic energy (J): 2.99725e-07
% Static energy (J): 3.9505e-06
```

我們可以觀察出以下結果

- 3.1 Total Received Flit: 隨 simulation_time 變長而增加
- 3.2 Total Received Packet: 隨 simulation_time 變長而增加

(我們可以得知,當模擬時間增加,總共需要傳送的封包還有 flit 的數量本來就會增長。)

3.3 Global Average Delay:不變

3.4 Network throughput:不變

3.5 Average IP throughput:不變

(因為這三個數據都是在系統穩定後所得出的結果,所以當模擬時間增長,這些平均的數據不會有太大變化。)

Exercise 3

injection rate	average delay
0.006	9.74421
0.007	9.75202
0.008	10.8879
0.009	10.907
0.01	11.8422
0.02	22.5466
0.03	132.446
0.035	376.099
0.04	818.985
0.045	1260.84
0.05	1662.78

saturation point 大約在 injection rate 為 0.03 的時候。

Exercise 4

buffer_depth: 2

Total energy (J): 1.37358e-06

% Dynamic energy (J): 1.34331e-07

% Static energy (J): 1.23925e-06

buffer_depth: 4

Total energy (J): 2.11667e-06

% Dynamic energy (J): 1.41415e-07

% Static energy (J): 1.97525e-06

buffer_depth: 8

Total energy (J): 2.17037e-06

% Dynamic energy (J): 1.71122e-07

% Static energy (J): 1.99925e-06

buffer_depth: 16

Total energy (J): 3.87253e-06

% Dynamic energy (J): 2.2528e-07

% Static energy (J): 3.64725e-06

buffer_depth: 32

Total energy (J): 9.23416e-06

% Dynamic energy (J): 3.54904e-07

% Static energy (J): 8.87925e-06

當 buffer_depth 增加,我們可以發現消耗的 energy 也會跟著增加,這是因為當 buffer_depth 增加,硬體需要更多的記憶單元來存儲數據,當有更多的記憶單元,就需要更多的 power 以維持其狀態,這就會導致 Static Energy 增加。