Chương 4 Tầng mạng

Computer
Networking: A Top
Down Approach
7th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2017

Người dịch: Nguyễn Thanh Thủy

Tài liệu được dịch cho mục đích giảng dạy (được sự đồng ý của tác giả).

© All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Tầng mạng 4-1

Chương 4: Tầng mạng

Muc tiêu:

- Hiểu được nguyên lý của các dịch vụ tầng mạng:
 - Các mô hình dịch vụ tầng mạng
 - Chuyển tiếp (forwarding) và định tuyến (routing)
 - Bộ định tuyến làm việc như thế nào
 - Định tuyến (chọn đường)
- Cài đặt hiện thực trong mạng Internet

Chương 4: Nội dung

4.1 Giới thiêu

- 4.2 Các mạng mạch ảo và mạng chuyển gói
- 4.3 Kiến trúc của bộ định tuyến
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Định địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Link state
 - Distance vector
 - Hierarchical routing
- 4.6 Định tuyến trong mạng Internet
 - RIP
 - OSPF
 - BGP

Tầng mạng 4-3

Tầng mạng

- Chuyển các segment từ host gửi sang host nhận
- Bên gửi sẽ đóng gói các segment vào trong các datagram
- Bên nhận sẽ phân phối các segment đến tầng giao vận
- Các giao thức tầng mạng được cài đặt trong mỗi host và router
- Router kiểm tra các trường trong tiêu đề của tất cả các gói tin IP datagram để chuyển nó đi tiếp

Hai chức năng chính của tầng mạng

- Chuyển tiếp (forwarding): chuyển các gói tin từ đầu vào tới đầu ra phù hợp của router
- Định tuyến (routing): xác định tuyến đường đi cho các gói tin từ nguồn đến đích.
 - Các thuật toán định tuyến

Tương tự:

- Định tuyến: tiến trình lập kế hoạch chuyến đi từ nguồn đến đích
- Chuyển tiếp: tiến trình vận chuyển qua một giao điểm (nút)

Thiết lập kết nối

- Chức năng quan trọng thứ 3 trong một số kiến trúc mạng:
 - ATM, frame relay, X.25
- Trước khi các datagram chuyển đi, hai host đầu cuối và các router trung gian thiết lập kết nối ảo
 - Các router cũng liên quan
- Dịch vụ kết nối tầng mạng và tầng giao vận:
 - Tầng mạng: giữa hai host (cũng có thể chứa các router trung gian trong trường hợp kết nối ảo)
 - Tầng giao vận: giữa hai tiến trình

Tầng mạng 4-7

Mô hình dịch vụ tầng mạng

Hỏi: Mô hình dịch vụ nào cho "kênh" vận chuyển các datagram từ bên gửi đến bên nhân?

Ví dụ các dịch vụ cho các datagram riêng:

- Giao nhân đảm bảo
- Giao nhận đảm bảo với trễ nhỏ hơn 40 msec

Ví dụ các dịch vụ cho một luồng datagram:

- Giao nhận datagram theo đúng thứ tự
- Đảm bảo băng thông tối thiểu cho luồng
- Hạn chế những thay đổi trong khoảng trống giữa các gói tin

Các mô hình dịch vụ tầng mạng

k	(iến trúc mạng	Mô hình dịch vụ	Bảo đảm?				Phản hồi
			Băng thông	Mất mát	Đúng thứ tự	Thời gian thực	tắc nghẽn
	Internet	best effort	Không	Không	Không	Không	Không (phát hiện thông qua mất mát)
	ATM	CBR	Tốc độ ổn định	Có	Có	Có	Không tắc nghẽn
	ATM	VBR	Đảm bảo tốc độ	Có	Có	Có	Không tắc nghẽn
	ATM	ABR	Bảo đảm tối thiểu	Không	Có	Không	Có
	ATM	UBR	Không	Không	Có	Không	Có

Tầng mạng 4-9

Chương 4: Nội dung

- 4.1 Giới thiêu
- 4.2 Các mạng mạch ảo và mạng chuyển gói
- 4.3 Kiến trúc của bộ định tuyến
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Định địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Link state
 - Distance vector
 - Hierarchical routing
- 4.6 Định tuyến trong mạng Internet
 - RIP
 - OSPF
 - BGP

Dịch vụ hướng kết nối và không kết nối

- Mạng chuyển gói (datagram network) cung cấp dịch vụ hướng không kết nối tầng mạng
- Mạng mạch ảo (virtual-circuit network) cung cấp dịch vụ hướng kết nối tầng mạng
- Tương tự với các dịch vụ hướng kết nối/không kết nối TCP/UDP tầng giao vận, nhưng:
 - Dich vu: host-to-host
 - Không lựa chọn: tầng mạng chỉ cung cấp hoặc dịch vụ này, hoặc dịch vụ kia
 - Cài đặt: bên trong phần lõi của mạng

Tầng mạng 4-11

Mạch ảo (Virtual circuit - VC)

"Cách xử lý đường từ nguồn đến đích giống như mạch điện thoại"

- Hiệu suất tốt
- Mạng hoạt động theo đường từ nguồn đến đích
- Thiết lập cuộc gọi, chia nhỏ mỗi cuộc gọi trước khi dữ liệu được truyền đi
- Mỗi gói tin mang định danh mạch ảo (không phải là địa chỉ của host đích)
- Mỗi router trên đường đi từ nguồn đến đích duy trì "trạng thái" cho mỗi kết nối qua.
- Kết nối, các tài nguyên router (băng thông, đệm) có thể được cấp phát cho mạch ảo (Các tài nguyên dành riêng = dịch vụ dự đoán trước được).

Cài đặt mạch ảo

Một mạch ảo bao gồm:

- 1. Đường từ nguồn đến đích
- Số hiệu mạch ảo, mỗi số dành cho một liên kết dọc theo đường
- 3. Các điểm đăng ký vào các bảng chuyển tiếp trong các router dọc theo đường
- Gói thuộc về mạch ảo sẽ mang số hiệu của mạch ảo (không phải là địa chỉ đích)
- Số hiệu mạch ảo có thể được thay đổi trên mỗi liên kết
 - Số hiệu mạch ảo mới được cung cấp từ bảng chuyển tiếp

Tầng mạng 4-13

Bảng chuyển tiếp mạch ảo

Ví dụ bảng chuyển tiếp của router:

Giao diện đến	Số hiệu VC đến	Giao diện đi	Số hiệu VC đi
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

Các router mạch ảo duy trì thông tin trạng thái kết nối!

- Được sử dụng để thiết lập, duy trì phân mạch ảo
- Được dùng trong ATM, frame-relay, X.25
- Không được dùng trong mạng Internet ngày nay

Mạng chuyển gói

- Không có thiết lập cuộc gọi tại tầng mạng
- Các router: Không lưu giữ trạng thái về các kết nối giữa các đầu cuối (end-to-end)
 - Không có khái niệm "kết nối" mức mạng
- Các gói tin được chuyển tiếp bằng cách sử dụng địa chỉ host đích

Bảng chuyển tiếp datagram

Dãy địa chỉ đích	Giao diện liên kết
11001000 00010111 00010000 00000000 đến	0
11001000 00010111 00010111 11111111	
11001000 00010111 00011000 00000000 đến	1
11001000 00010111 00011000 11111111	
11001000 00010111 00011001 00000000 đến	2
11001000 00010111 00011111 11111111	
khác	3

Hỏi: Nhưng điều gì sẽ xảy ra khi các dãy không được phân chia hợp lý?

So khớp tiền tố dài nhất

So khớp tiền tố dài nhất -

Khi tìm kiếm mục vào trong bảng chuyển tiếp cho một địa chỉ đích xác định, dùng tiền tố địa chỉ *dài nhất* giống với địa chỉ đích.

Dãy địa chỉ đích	Giao diện liên kết
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *******	2
khác	3

Ví dụ:

DA: 11001000 00010111 00010110 10100001 Giao diện nào?

DA: 11001000 00010111 00011000 10101010 Giao diện nào?

Tầng mạng 4-19

Chuyển mạch gói hay chuyển mạch ảo: Tại sao?

Internet (datagram)

- Dữ liệu trao đổi giữa các máy tính
 - Dịch vụ "mềm dẻo", không giới hạn yêu cầu thời gian
- Nhiều loại liên kết
 - Các đặc tính khác nhau
 - Khó khăn khi đồng nhất dịch vụ
- Các hệ thống đầu cuối "thông minh" (máy tính)
 - Có thể đáp ứng, điều thực thi khiển, khôi phục lỗi
 - Mạng bên trong đơn giản, sự phức tạp nằm ở "phần cạnh"

ATM (VC)

- Phát triển từ hệ thống điện thoai
- Hội thoại của con người:
 - Giới hạn thời gian, yêu cầu độ tin cậy
 - Cần dịch vụ đảm bảo
- Các hệ thống đầu cuối "ít thông minh"
 - Máy điện thoại
 - Sự phức tạp ở bên trong mạng

Chương 4: Nội dung

- 4.1 Giới thiêu
- 4.2 Các mạng mạch ảo và mạng chuyển gói
- 4.3 Kiến trúc của bộ định tuyến
- 4.4 IP: Internet Protocol
 - Định dạng gói tin
 - Định địa chỉ IPv4
 - ICMP
 - IPv6

- 4.5 Các giải thuật định tuyến
 - Link state
 - Distance vector
 - Hierarchical routing
- 4.6 Định tuyến trong mạng Internet
 - RIP
 - OSPF
 - BGP

Tầng mạng 4-21

Khái quát kiến trúc của bộ định tuyến

Hai chức năng chính của bộ định tuyến:

- Chạy các giải thuật/giao thức định tuyến (RIP, OSPF, BGP)
- · Chuyển tiếp các datagram từ liên kết vào tới liên kết ra

Chuyển mạch qua memory

Các bộ định tuyến thế hệ đầu tiên:

- Các máy tính truyền thống với các bộ chuyển mạch được điều khiển trực tiếp bởi CPU
- ❖ Gói tin được sao chép vào trong bộ nhớ của hệ thống
- Tốc độ bị giới hạn bởi băng thông bộ nhớ

Tầng mạng 4-25

Chuyển mạch qua bus

- Datagram từ bộ nhớ cổng vào tới bộ nhớ cổng ra thông qua một bus chung
- Tranh chấp bus: tốc độ chuyển mạch bị giới hạn bởi băng thông của bus
- 32 Gbps bus, Cisco 5600: tốc độ đủ cho các router truy nhập và các router của tổ chức.

bus

Chuyển mạch thông qua mạng kết nối nội bộ

- Vượt qua các giới hạn về băng thông của bus
- Các mạng ban đầu được phát triển để két nối các bộ vi xử lý thành một bộ đa xử lý
- Thiết kế nâng cao: phân mảnh datagram thành các cell có độ dài cố định, chuyển mạch các cell qua fabric.
- Cisco 12000: chuyển mạch 60 Gbps qua mạng kết nối nội bộ

Tầng mạng 4-27

Các cổng ra

- Việc đệm được yêu cầu khi các datagram đến từ fabric nhanh hơn tốc độ truyền đi
- Lịch truyền sẽ lựa chọn các datagram trong hàng đợi để truyền

Xếp hàng tại cổng ra

- Việc đệm khi tốc độ đến qua chuyển mạch vượt quá tốc độ dòng ra
- Xếp hàng (trễ) và mất mát là do tràn bộ đệm cổng ra!

Tầng mạng 4-29

Cần bao nhiêu cho bộ đệm?

- Chuẩn RFC 3439: đệm trung bình bằng một RTT "điển hình" (là 250msec) nhân với tốc độ C của liên kết.
 - Ví dụ: liên kết C = 10 Gpbs thì đệm là 2.5 Gbit
- Khuyến nghị hiện tại: với N luồng, đệm được tính bằng:

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

Xếp hàng tại cổng vào

- Nếu fabric chậm hơn so với các cổng vào được kết nối, thì cần phải xếp hàng tại hàng đợi vào.
 - Trễ xếp hàng và mất mát là do tràn bộ đệm vào!
- Khóa đầu hàng (Head-of-the-Line HOL): datagram đã được xếp hàng tại phía trước của hàng đợi ngăn cản các datagram khác trong hàng di chuyển về phía trước

