

Simulating Competing Risk Survival Settings

With High-Dimensional Data

Lukas Burk

Leibniz Institute for Prevention Research & Epidemiology – BIPS

2023-05-13

BioWiMium

2

Simulation setup part of ongoing project

Motivation

- Variable selection in high-dimensional settings with competing risks
- Focus more on high-dimensional setting than sophisticated survival outcome

Outcome

• 2 competing events, censoring approx. equal prevalence

Generating Survival Times (I)

3

BIOINFORMATICS

ORIGINAL PAPER

Vol. 25 no. 7 2009, pages 890–896 doi:10.1093/bioinformatics/btp088

Gene expression

Boosting for high-dimensional time-to-event data with competing risks

Harald Binder^{1,2,*}, Arthur Allignol^{1,2}, Martin Schumacher² and Jan Beyersmann^{1,2}

¹ Freiburg Center for Data Analysis and Modeling, University of Freiburg, Eckerstr. 1 and ²Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany

Received on October 16, 2008; revised on January 19, 2009; accepted on February 12, 2009

Advance Access publication February 25, 2009

Associate Editor: Joaquin Dopazo

Binder et al. (2009)

Generating Survival Times (II)

4

Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples

Harald Binder & Martin Schumacher

Universität Freiburg i. Br.

Nr. 100

December 2007

5

Generating Survival Times to Simulate Cox Proportional Hazards Models

Ralf Bender¹, Thomas Augustin², Maria Blettner¹

¹Dept. of Epidemiology and Medical Statistics, School of Public Health University of Bielefeld, Germany

²Department of Statistics, University of Munich, Germany

Bender et al. (2005)

- N = 400, p = 5000, 16 informative (12 per event)
- Organized in 4 blocks á 250 correlated variables + uncorrelated noise

Blocks

- Block 1: $ho \approx 0.5$
- Block 2: ho pprox 0.35
- Block 3: $\rho \approx 0.05$
- Block 4: ho pprox 0.32
- $\bullet \ \ {\rm Rest:} \ \rho \approx 0$

- $$\begin{split} \bullet & j=1,\dots,p \text{ and } i=1,\dots,N \\ \bullet & \epsilon_{ij} \sim \mathcal{N}(0,1) \text{ and } u_{i\{1,2,3\}} \sim \mathcal{U}(0,1) \end{split}$$

$$x_{ij} = \begin{cases} -1 + \epsilon_{ij} & \text{for } i \leq 0.5n \text{ and } j \leq 0.05p \\ 1 + \epsilon_{ij} & \text{for } i > 0.5n \text{ and } j \leq 0.05p \\ 1.5 \cdot \mathbf{1}\{u_{i1} < 0.4\} + \epsilon_{ij} & \text{for } 0.05p < j \leq 0.1p \\ 0.5 \cdot \mathbf{1}\{u_{i2} < 0.7\} + \epsilon_{ij} & \text{for } 0.1p < j \leq 0.2p \\ 1.5 \cdot \mathbf{1}\{u_{i3} < 0.3\} + \epsilon_{ij} & \text{for } 0.2p < j \leq 0.3p \\ \epsilon_{ij} & \text{for } j > 0.3p \end{cases}$$

- ullet Cause-specific hazards for events k=1,2 and coefficients $oldsymbol{eta}^{(k)}$
- $\beta_j^{(k)} = \pm 0.5$ for effect variables
- Block 1 (Mutual): 4 effect variables
 - ullet same effect on both $oldsymbol{eta}^{(1,2)}$ cause-specific hazards
- Block 2 (Reversed): 4 effect variables
 - positive effect in $\pmb{\beta}^{(1)}$ and negative in $\pmb{\beta}^{(2)}$
- Block 3 (Disjoint): 8 variables
 - ullet 3.1: 4 effect variables in $oldsymbol{eta}^{(1)}$ only
 - ullet 3.2: 4 effect variables $oldsymbol{eta}^{(2)}$ only

Event and Censoring Times (I)

- Cox-exponential model for events k=1,2
- ullet $\lambda_{1,2,C}$: Baseline hazards for event times $T_i^{(k)}$, and censoring times C_i
- Simple setting: $\lambda_1=\lambda_2=\lambda_C=0.1$

$$\begin{split} T_i^{(k)} &= \frac{-\log(U_i)}{\lambda_k \exp(\mathbf{x}_i^T \pmb{\beta}^{(k)})} \\ C_i &= \frac{-\log(U_i)}{\lambda_C} \end{split}$$

$$U_i \sim \mathcal{U}(0,1) \Rightarrow -\log(U_i) \sim \text{Exponential}(\lambda = 1)$$

Assign observed event times t_i and censoring δ_i indicator accordingly

$$t_i = \min(T_i^{(1)}, T_i^{(2)}, C_i) \qquad \qquad \delta_i = \begin{cases} 0 & \text{if } t_i = C_i \\ 1 & \text{if } t_i = T_i^{(1)} \\ 2 & \text{if } t_i = T_i^{(2)} \end{cases}$$

П

- $\pmb{\beta}^{(k)}$ sparse with 12 non-zero entries, $\sum_{i=1}^p \beta_j^{(k)} = 2$
- $\bullet \ \exp(\mathbf{x}_i^T \pmb{\beta}^{(k)})$ in range of $[10^{-4}, 10^3]$

Event prevalences

Mean event counts and prevalence after 100 replicates with N=400:

δ	n (min - max)	% (min - max)
0	118.0 (97 - 136)	29.5% (24.2% - 34.0%)
1	165.1 (142 - 190)	41.3% (35.5% - 47.5%)
2	116.9 (93 - 141)	29.2% (23.2% - 35.2%)

Thanks for listening!

Buffer Slide

13

Next up: Implementation details nobody will want to see but I put them on here any just in case anyone asks because I don't have too much else to talk about in this regard sorry Mensa anyone?

```
X <- matrix(rnorm(n * p), nrow = n, ncol = p)</pre>
ui1 <- runif(n); ui2 <- runif(n); ui3 <- runif(n)
j seq <- seq len(p)</pre>
block1 <- which(j seq <= 0.05 * p)
X[seq len(n/2), block1] < -1 + X[seq len(n/2), block1]
X[-seq len(n/2), block1] \leftarrow 1 + X[-seq_len(n/2), block1]
block2 <- which((j seq > (0.05 * p)) & (j seq <= (0.1 * p)))
X[, block2] \leftarrow 1.5 * (ui1 < 0.4) + X[, block2]
block3 <- which((0.1 * p < j_seq) & (j_seq <= 0.2 * p))
X[, block3] \leftarrow 0.5 * (ui2 < 0.7) + X[, block3]
block4 \leftarrow which((0.2 * p < j seq) & (j seq <= 0.3 * p))
X[, block4] \leftarrow 1.5 * (ui3 < 0.3) + X[, block4]
```

```
)
```

```
ce < -0.5
# first block
j block1 <- which(j seq <= 0.05 * p)</pre>
beta1[j block1[1:4]] <- ce
beta2[j block1[1:4]] <- ce
# second block
j block2 <- which((j seq > (0.05 * p)) & (j seq <= (0.1 * p)
beta1[j block2[1:4]] <- ce
beta2[j block2[1:4]] <- -ce
# third block
j_block3 < - which((0.1 * p < j_seq) & (j_seq <= 0.2 * p))
beta1[j block3[1:4]] <- -ce
beta2[j block3[5:8]] <- ce # offset by 4
```

Event Times: Code


```
lp1 <- X %*% beta1
lp2 <- X %*% beta2
Ti1 <- -log(runif(n)) / (lambda1 * exp(lp1))
Ti2 <- -log(runif(n)) / (lambda2 * exp(lp2))
Ci <- -log(runif(n)) / lambda c
ti <- pmin(Ti1, Ti2, Ci)
di <- as.integer(Ti1 <= Ci | Ti2 <= Ci)</pre>
di[which(Ti2 <= Ti1 & Ti2 <= Ci)] <- 2
```

Thank you for your attention

www.leibniz-bips.de/en

Contact Lukas Burk Leibniz Institute for Prevention Research and Epidemiology – BIPS Achterstraße 30 D-28359 Bremen Germany burk@leibniz-bips.de

Bender, R., Augustin, T., & Blettner, M. (2005).Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine, 24(11), 1713–1723. https://doi.org/10.1002/sim.2059

Binder, H., Allignol, A., Schumacher, M., & Beyersmann, J. (2009).Boosting for high-dimensional time-to-event data with competing risks.

Bioinformatics, 25(7), 890–896.

https://doi.org/10.1093/bioinformatics/btp088

Binder, H., & Schumacher, M. (2008). Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular Biology, 7(1), Article 12. https://doi.org/10.2202/1544-6115.1346