(DONNOT WRITE YOUR ANSWER IN THIS AREA)

WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

Linear Algebra and Geometry

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	I	II	III	IV	V	VI	VII	VIII	Sum
Score									

1. (12 points) Let

$$A = \begin{bmatrix} 1 & 3 & 2 & -7 \\ -2 & -2 & -8 & 6 \\ 2 & 3 & 7 & 1 \\ 3 & 4 & 11 & -7 \end{bmatrix}.$$

(1) (6 points) Find a set of basis for col A.

(2) (3 points) What's rank A?

(3) (3 points) Is the matrix equation AX = b consistent for all possible **b**?

- 2. (10 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that $T(x_1, x_2, x_3) = (x_1 3x_2 + 2x_3, -2x_1 + 7x_2 + x_3, -4x_1 + 6x_2 + hx_3)$ with a scalar h. Note that x_1, x_2 and x_3 are entries in a \mathbb{R}^3 vector.
- (1) (4 points) Find the standard matrix of T.

(2) (6 points) For what values of h the linear transformation T maps \mathbb{R}^3 onto \mathbb{R}^3 .

3. (10 points) Let
$$A = \begin{bmatrix} 0 & 4 & 5 & -6 \\ -3 & -6 & 2 & 3 \\ 3 & 10 & 0 & 1 \\ 3 & 14 & 6 & -8 \end{bmatrix}$$

(1) (7 points) Find the determinant of A.

(2) (3points) Is adj A invertible?

- 4. (20 points) Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -4 \\ -1 \\ 2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ -7 \end{bmatrix}$ and $W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}$.
- (1) (4 points) what's the distance between u_1 and u_2 ?
- (2) (4 points) Are u_1 and u_2 orthogonal?
- (3) (6 points) Find the distance from y to the subspace W.

(4) (6 points) Find a set a basis for the orthogonal compliment W^{\perp} of W.

- 5. (15 points) Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$, $\mathbf{c}_3 = \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}$ and consider the basis for \mathbb{R}^3 given by $\mathbf{B} = \{ \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 \}$ and $\mathbf{C} = \{ \mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3 \}$.
- (1) (6 points) Find $[X]_B$, the B-coordinate vector of $X = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$.

(2) (6 points) Find the change-of-coordinate matrix from B to C: $P_{C \leftarrow B}$

(3) (3 points) Find $[X]_C$, the C-coordinate vector of $X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

6. (16 points) For the following quadratic form

$$\mathbf{x}^T A \mathbf{x} = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$$

(1) (4 points) Give the matrix A of the quadratic form and indicate which type this quadratic form is? (For example, positive definite, negative definite or indefinite).

(2) (12 points) Find an orthogonal matrix P such that the change of variable $\mathbf{x} = P\mathbf{y}$ transforms $\mathbf{x}^T A \mathbf{x}$ into a new quadratic form with no cross-product term.

- 7. (9 points) Let $A = \begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -5 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 4 & 3 \end{bmatrix}$
- (1) (6 points) Compute A^{-1} and B^{-1} .

(2) (3 points) Find a matrix X such that AXB = C.

8. (8 points) Let A be an $n \times n$ matrix. Show that if A has an eigenvalue 0, so is A^2 .