Introducción de Linux

Angel Cruz Olvera

August 20, 2025

UNIX

Fue construido en 1969 por un equipo de desarrolladores de los laboratorios Bell en AT&T Dennis Ritchie, Ken Thompson, Douglas Mcllroy y Joe Osanna. Su nombre original seria UNICS que tiene como significado Uniplexed Information and Computing System.

Este sistema es de código abierto, lo que el desarrollo y actualización es contribución de los usuarios. Este ademas, es portable, multitarea y multiusuario. UNIX tiene dos componentes principales: la shell y el kernel.

Figure 1: Logotipo de sistema operativo UNIX

GNU

Es un sistema operativo de software libre, el cual consiste en paquetes desarrollado por el proyecto GNU, es decir programas publicados específicamente para el proyecto. Inicio en 1984 por Richard Stallman, su nombre es un acrónimo recursivo de GNU No es UNIX. Posteriormente en 1990, se desarrollo GNU Hurd como kernel propio del proyecto.

Figure 2: Logotipo del proyecto GNU.

Linux

Creado por Linus Torvalds en 1991, siguiendo el concepto de código abierto basado en UNIX. Se compone de varias partes, siendo el kernel el principal de ellos, puesto que es capaz de gestionar los recursos y permite comunicar el hardware y software del equipo.

Figure 3: Logotipo de sistema operativo Linux.

Arquitectura

La arquitectura de este sistema operativo se llama $\mathrm{GNU}/\mathrm{Linux}$, principalmente se divide en dos secciones el espacio del kernel y el espacio de usuario. Cada uno tiene partes diferentes, que ha continuación se enuncian.

Figure 4: Esquema de la arquitectura del sistema GNU/Linux.

Espacio del kernel

Kernel: es el programa central del sistema, inicia por el boot loader que es el encargado de las interacciones basicas del hardware con el sistema, ya sean tareas de lectura y escritura en disco duro, memoria RAM, controlares de dispositivos, asi como proporcionar un entorno virtual para iniciar las aplicaciones.

Subsistemas: son los programas que vienen instalados de manera predeterminada en el sistema, que se encargan de gestionar el acceso remoto, tener un bus central de mensajes/notificaciones y ejecutan acciones basadas en eventos de hardware o red.

Herramienta de linea de comandos: son programas pequeños que se ejecutan dentro de la linea de comandos o emulador de terminal, son capaces de editar texto, descargar archivos o administración del sistema.

Inter Process Communication: se encarga de tener una comunicación entre el kernel y las aplicaciones, por medio de un segmento compartido de memoria o un pequeño canal de comunicación creado por las aplicaciones para intercambio de datos. Otro método es a través del bus central de mensajes donde hay un intercambio de mensajes para comunicar todo el sistema.

Espacio del usuario

Librerías GNU: son programas pequeños que controlar las ventanas, gráficos o lectura/escritura de las aplicaciones. Están desarrolladas en lenguaje C y cada una de ellas puede tener mas librerías para poder ser utilizada.

Aplicaciones: son todos aquellos programas finales, con los que el usuario puede interactuar con el sistema. Entre ellos están los navegadores web, editores de texto, reproductores de video o sonido, visualizadores de imágenes/videos, editores de imagen/video, entre muchos otros mas.

¿Qué es una distribución?

Son configuraciones del kernel dependiendo de las necesidades de cierta comunidad, donde incluye una amplia gama de software, herramientas GNU, bibliotecas, interfaz grafica y aplicaciones. Cuenta con un administrador de paquetes para instalar, actualizar y eliminar software de manera sencilla. Algunas de las distribuciones mas populares son las siguientes:

Ubuntu: la mas popular por su facilidad de uso, documentación y soporte comunitario. Esta basado en Debian, lanzando cada seis meses nuevas versiones. Cuenta con versiones para escritorio, servers y cloud.

Figure 5: Logotipo distribución Ubuntu.

Linux Mint: enfocado en brindar una experiencia completa lista para usar al incluir complementos de navegador, codecs multimedia y soporte para reproducción de DVD.

Figure 6: Logotipo distribución Linux Mint.

Fedora: es patrocinado por Red Hat y es utilizado como distribución para su versión de empresa Red Hat Enterprise Linux.

Figure 7: Logotipo distribución Fedora.

Debian: es una de las mas antiguas, estable, seguridad y amplios repositorios de software. Utiliza una amplia gama de arquitecturas y ofrece más 59,000 paquetes de software, ademas de utilizar la gestión de paquetes con APT y su formato con extensión deb.

Figure 8: Logotipo distribución Debian.

Arch Linux: dirigido a usuarios mas experimentados, siguiendo un modelo de lanzamiento continuo ofreciendo las ultimas versiones manteniendo la simplicidad y personalización. Utiliza pacman como administrador de paquetes y es conocido por una documentación completa y detallada.

Figure 9: Logotipo distribución Arch Linux.

Comparativa

Comandos basicos

Administración

Networking

Ping: se utiliza para saber el estado de las interfaces de red instaladas en nuestro equipo, si hay un envió de paquetes quiere decir que tenemos una conexión fuera de nuestro entorno local, si existe una perdida revisar que pasa con la interfaz. El resultado de este comando se divide en dos partes: la secuencia de envió individual por paquete y las estadísticas globales del comando.

Información individual: muestra el envio de paquetes uno a uno.

Atributo	Descripción
icmp_seq	numero de la secuencia en el envió de paquetes para
	el Internet Control Message Protocol, este aumenta
	en 1 por cada paquete enviado, si existe un salto en
	la numeración nos indica un paquete perdido.
ttl(Time To Live)	es el número máximo de saltos que puede viajar el
	paquete antes de descartarse, por cada router vis-
	itado este valor disminuye en 1, si se llega a 0 se
	descarta el paquete y se envía un mensaje de error.
time (rtt)	tiempo de ida y vuelta que tarda un paquete en llegar
	al destino y volver, medido en milisegundos (ms)

 $Informaci\'on\ general$: estadísticas globales del proceso de envió para los paquetes, lleva el nombre de rtt(Round Trip Time)

Atributo	Descripción
packets transmitted	número total de paquetes enviados por ICMP
received	número de paquetes recibidos
packet loss (%)	porcentaje de paquetes perdidos en la transmisión
time (ms)	tiempo total transcurrido de la prueba de ping
min	menor tiempo de envió y recepción
max	máximo tiempo de envió y recepción
avg	tiempo promedio del envió y recepción de todos los
	paquetes
mdev	desviación estándar nos indica que tanto varían los
	tiempos de envió, si el valor es pequeño hay una
	conexión estable y un valor grande es una red in-
	estable

Opciones para el comando ping

Comando	Descripción
ping IP/host	realiza un envió de paquetes en bucle hasta terminar
	el proceso
ping localhost	realiza un ping de manera local
ping -c n IP/host	hace un envió de n paquetes
ping -i n IP/host	envía los paquetes en el intervalo de cada n segundos
ping -f IP/host	envía los paquetes lo mas rápido que permite la in-
	terfaz de red, si se cuenta con un limite de velocidad
	este comando no realiza nada y manda un mensaje
ping -s n IP/host	cambia el tamaño de Bytes de los paquetes a enviar
ping -q IP/host	realiza el ping y al finalizar solo muestra la informa-
	ción de resumen
ping -w n IP/host	se detiene el envió de paquetes pasados n segundos

Referencias

FYCGROUP. UNIX: La simplicidad del ingenio, fyccorp.com consultado el 17 de agosto de 2025, recuperado de https://fyccorp.com/unix-la-simplicidad-delingenio/

GNU. ¿Qué es GNU?, www.gnu.org, consultado el 17 de agosto de 2025, recuperado de https://www.gnu.org/home.es.html

Floriano, J.(2024). ¿Qué es el sistema Linux y cuáles son sus ventajas?, BlogSEAS, consultado el 17 de agosto de 2025, recuperado de https://www.seas.es/blog/informatica/que-es-el-sistema-linux-y-cuales-son-sus-ventajas/

Denisse. (2016). Una mirada dentro del núcleo de Linux, lignux.com, consultado el 18 de agosto de 2025, recuperado de https://lignux.com/una-mirada-dentro-del-nucleo-linux/

Spasojevic, A. (2024). ¿Qué es una distribución de Linux?, phoenixnap.mx, consultado el 18 de agosto de 2025, recuperado de https://phoenixnap.mx/glosario/que-es-una-distribucion-de-linux