Zbrani zapiski za 3. letnik

Patrik Žnidaršič

Prevedeno dne 15. november 2023

Kazalo

1	Ana	iza 3	5
	1.1	Splošno	6
	1.2	Linearna NDE prvega reda	7
	1.3	Prvi integral enačbe	
2	Meł	anika 1	1
	2.1	Osnove Newtonove mehanike	2
	2.2	Premočrtno gibanje	8
3	Uvo	I v numerične metode 2	1
	3.1	Računske napake	2
	3.2	Nelinearne enačbe	3
		3.2.1 Bisekcija	4
		3.2.2 Navadna iteracija	
		3.2.3 Tangentna metoda	
		3.2.4 Sekantna metoda	6
		3.2.5 Ostale metode	7
4	Verj	etnost 29	9
	4.1	Izidi, dogodki, verjetnosti	0
		4.1.1 Pogojna verjetnost in neodvisnost	2
		4.1.2 Neodvisnost dogodkov	
	12	Slučajne spremenlijske in porazdelitve	

1 Analiza 3

1.1 Splošno

Definicija. Naj bo $F: I \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ zvezna funkcija in I interval v \mathbb{R} . NAVADNA DIFERENCIALNA ENAČBA PRVEGA REDA je enačba oblike F(x, y(x), y'(x)) = 0, kjer je y(x) neka funkcija. Rešitev enačbe je vsaka funkcija $y_r(x): I \to \mathbb{R}$, za katero velja enačba.

Opomba. NDE n-tega reda definiramo podobno kot enačbo oblike

$$F(x, y, y', y'', \dots, y^{(n)}) = 0.$$

Opomba. Smiselno je opazovati tudi enačbe, kjer je $F=(F_1,\ldots,F_m)$ vektorska funkcija. Temu pravimo SISTEM NDE.

Opomba. Naj bo $y^{(n)} = F(x, y, y', \dots, y^{(n-1)})$ enačba reda n. Ta enačba je ekvivalentna primernemu sistemu $n \times n$ prvega reda; definirajmo $y_1 = y, y_2 = y', \dots, y_{n-1} = y^{n-2}$. Tedaj dobimo enačbo $y'_n = F(x, y_1, \dots, y_n)$.

Definicija. INTEGRALSKA KRIVULJA γ vektorskega polja $F: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$ skozi točko $x_0 \in \Omega$ je krivulja $\gamma: [0,b) \to \Omega$, za katero velja

- v vsaki točki t je $\dot{\gamma}(t) = F(\gamma(t)),$
- $\gamma(0) = x_0$.

Vprašanje 1. Definiraj integralske krivulje.

Če prvi pogoj iz definicije zapišemo v koordinatah,

$$\begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} (t) = \begin{bmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{bmatrix},$$

dobimo sistem n NDE prvega reda z n neznankami. Ta sistem ni eksplicitno odvisen od t; takim sistemom pravimo AVTONOMNI SISTEMI. Pokazali bomo, da za vsako izbiro x_0 obstajata interval [0,a) in krivulja γ , za katero veljata pogoja v definiciji.

Vsak neavtonomen sistem lahko prepišemo v avtonomnega, z uvedbo nove odvisne spremenljivke v(t) = t. Dobimo nov sistem

$$\dot{v} = 1,$$

$$\dot{x}_1 = F_1(v, x_1, \dots, x_n),$$

$$\vdots$$

$$\dot{x}_n = F_n(v, x_1, \dots, x_n).$$

Partikularna rešitev tega sistema je tedaj integralska krivulja vektorskega polja $\vec{F}(v, \vec{x})$ v razširjenem faznem prostoru $\mathbb{R} \times \Omega$ (Ω je običajen fazni prostor), ki ustreza primernemu začetnemu pogoju.

Vprašanje 2. Kako spremenimo neavtonomni sistem v avtonomnega?

V nekaterih primerih poznamo rešitev NDE. Če imamo enačbo z ločljivima spremenljiv-kama

$$\dot{x} = f(t)g(x),$$

lahko enačbo delimo z g(x), in definiramo h(x) = 1/g(x). Dobimo

$$h(x)\dot{x} = f(t).$$

Sedaj definiramo H(x) kot primitivno funkcijo h(x), in F(t) kot primitivno funkcijo f(t). Velja $\dot{H}(x) = \dot{F}(t)$, torej je $x(t) = H^{-1}(F(t) + C)$.

Vprašanje 3. Kako rešiš enačbo z ločljivima spremenljivkama?

Če imamo enačbo s homogeno desno stranjo, torej $\dot{x} = f(t,x)$, kjer velja $f(t,x) = f(\lambda t, \lambda x)$ za $\lambda \in \mathbb{R} \setminus \{0\}$, potem velja f(t,x) = f(1,x/t). Vpeljemo novo spremenljivko v = x/t, in s kratkim računom pridemo do $\dot{x} = t\dot{v} + v$. Po drugi strani velja $\dot{x} = f(1,v)$, torej

$$\dot{v} = \frac{1}{t} \left(f(1, v) - v \right).$$

To je enačba z ločljivima spremenljivkama, ki jo znamo rešiti.

Vprašanje 4. Kako rešiš enačbo s homogeno desno stranjo?

1.2 Linearna NDE prvega reda

LINEARNA NDE PRVEGA REDA je enačba oblike

$$y' = f(x)y + g(x),$$

kjer sta f(x) in g(x) znani funkciji. Ta enačba je nehomogena z nehomogenostjo g(x). Njena homogenizacija je enačba

$$y' = f(x)y$$
.

Predpostavimo, da je $y(x) \in \mathcal{C}^1([a,b])$. Oglejmo si operator $A: \mathcal{C}^1([a,b]) \to \mathcal{C}([a,b])$, definiran kot

$$Ay(x) = y'(x) - f(x)y.$$

Trditev. Preslikava A je linearen operator.

Dokaz je trivialen, in zato izpuščen. Vidimo, da je y rešitev homogene enačbe natanko tedaj, ko je A(y) = 0. Rešitev homogene enačbe je torej jedro preslikave A. Homogena enačba je enačba z ločljivimi spremenljivkami, torej jo znamo rešiti. Rešitve so oblike

$$y(x) = C \exp\left(\int_{a}^{x} f(\xi)d\xi\right)$$

za $C \in \mathbb{R}$. Množico teh rešitev označimo z R_h .

Trditev. Naj bosta y_1, y_2 rešitvi nehomogene enačbe. Tedaj je $y(x) = y_1(x) - y_2(x)$ rešitev homogene enačbe.

Dokaz. Izračun odvoda nam da

$$(y_1(x) - y_2(x))' = f(x)y_1(x) + g(x) - (f(x)y_2(x) + g(x)) = f(x)(y_1(x) - y_2(x)).$$

Definicija. Naj bo V nek vektorski prostor in $W \subseteq V$. Če obstaja tak vektorski podprostor $H \subseteq V$, da za poljubna $w_1, w_2 \in W$ velja $w_1 - w_2 \in H$, je W AFIN PODPROSTOR v V, modeliran z vektorskim podprostorom H.

Rešitve nehomogene enačbe so torej afin prostor, modeliran s prostorom R_h rešitev homogene enačbe. Če želimo poiskati splošno rešitev, poiščemo rešitev homogenega sistema, in neko partikularno rešitev. Partikularno rešitev dobimo z nastavkom

$$y_p(x) = C(x) \exp\left(\int_a^x f(\xi)d\xi\right),$$

temu postopku pravimo VARIACIJA KONSTANTE.

Vprašanje 5. Kako rešiš linearno NDE prvega reda? Utemelji postopek.

S tem znanjem lahko rešimo še dve posebni NDE. Prva je Bernoulijeva enačba

$$p(x)y' + q(x)y = r(x)y^{\alpha}(x)$$

za $\alpha \in \mathbb{R}$. V primeru $\alpha = 0$ ali $\alpha = 1$, je to nehomogena linearna enačba prvega reda. Sicer vpeljemo $z(x) = (y(x))^{1-\alpha}$ in računamo

$$p(x)z'(x)\frac{1}{1-\alpha} + q(x)z(x) = r(x)$$

oziroma

$$z'(x) + \frac{q(x)}{p(x)}(1 - \alpha)z(x) = \frac{r(x)}{p(x)}(1 - \alpha).$$

To je nehomogena linearna NDE prvega reda, torej jo znamo rešiti.

Vprašanje 6. Kako rešiš Bernoulijevo enačbo?

Druga taka enačba je Riccatijeva enačba

$$y'(x) = a(x)y^{2}(x) + b(x)y(x) + c(x),$$

ki je v splošnem ne znamo rešiti. Poznamo pa dva načina obravnave, ki nas lahko včasih pripeljeta do rešitve. Denimo, da uganemo neko partikularno rešitev $y_p(x)$. Enačbo tedaj rešujemo z nastavkom $y(x) = y_p(x) + z(x)$ za neko neznano funkcijo z. Če to vstavimo v enačbo, dobimo

$$y_p' + z' = ay_p^2 + 2ay_pz + az^2 + by_p + bz + c,$$

členi y_p' , ay_p^2 , by_p in c odpadejo, ker tvorijo rešitev enačbe. Ostane torej

$$z' = (2ay_p + b)z + az^2,$$

kar je Bernoulijeva enačba, ki jo znamo rešiti.

Drug način za reševanje Riccatijeve enačbe je s pretvorbo na linearni sistem prvega reda. Vpeljemo y = u/v, s čimer dobimo

$$u'v - uv' = au^2 + buv + cv^2.$$

Ker imamo dve neznanki, potrebujemo še eno enačbo. Izberemo $u'v = buv + cv^2$. Iz tega izpeljemo v' = -au in u' = bu + cv. Zapisano matrično

$$\begin{bmatrix} v' \\ u' \end{bmatrix} = \begin{bmatrix} 0 & -a \\ c & b \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix}$$

Sistema v splošnem ne znamo rešiti, ker funkcije a,b,c niso konstantne. Lahko pa rešitev zapišemo v obliki neskončne vrste.

Vprašanje 7. Kako rešiš Riccatijevo enačbo?

1.3 Prvi integral enačbe

Splošna rešitev enačbe y'=f(x,y) je enoparametrična družina funkcij $y=\phi(x,C)$. Denimo, da obstaja taka funkcija $u(x,y):[a,b]\times M\to\mathbb{R}$ na razširjenem faznem prostoru, da zanjo velja u(x)y(x,C)= konst. za vsak C (konstanta je lahko drugačna za različne C). Taki funkciji pravimo PRVI INTEGRAL ENAČBE. Recimo, da velja $\partial_y u\neq 0$. Potem lahko iz enakosti izračunamo funkcijo y(x,D), da velja u(x,y(x,D))=D.

Trditev. Vsaka krivulja y(x), ki je implicitno podana z enačbo u(x,y) = D, kjer je u prvi integral enačbe y' = f(x,y), je rešitev te enačbe.

Dokaz. Naj bo $y_0(x)$ dana krivulja. Tedaj velja $u(x,y_0(x))=D.$ Če odvajamo pox, dobimo

$$\partial_x u + y_0' \partial_y u = 0,$$

torej

$$y_0' = -\frac{\partial_x u}{\partial_u u}.$$

Po drugi strani za vsako rešitev velja y' = f(x, y), iz česar izpeljemo

$$f(x,y) = -\frac{\partial_x u}{\partial_y u}.$$

Sledi, da je y_0 res rešitev enačbe.

Vsaka diferencialna enačba ima neskončno mnogo prvih integralov, vsakega lahko še transformiramo s poljubno $\psi : \mathbb{R} \to \mathbb{R}$.

Vprašanje 8. Kaj je prvi integral enačbe? Kako iz njega dobiš rešitev enačbe?

Imejmo dano vektorsko polje $F: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}^2$, podano z

$$F(x,y) = \begin{bmatrix} P(x,y) \\ Q(x,y) \end{bmatrix}$$

Poiščimo družino krivulj, ortogonalnih na polje F(x,y), in jih parametrizirajmo z $\gamma(x)=(x,y(x))$. Izpeljemo lahko pogoj

$$y'(x) = -\frac{P(x,y)}{Q(x,y)},$$

kar je diferencialna enačba prvega reda. Recimo, da je polje potencialno. Tedaj obstaja taka funkcija $u:[a,b]\times\mathbb{R}\to\mathbb{R}$, da velja $\partial_x u=P$ in $\partial_y u=Q$. Krivulje, ki so ortogonalne na ∇u , so natanko izohipse ploskve (x,y,u(x,y)). Za izohipso velja u(x,y(x))=C, iz česar z odvajanjem izpeljemo

$$y' = -\frac{\partial_x u}{\partial_u u}.$$

Potencial u je torej prvi integral zgornje enačbe. Ker lahko potencial poiščemo z integralom, enačbo v tem primeru znamo rešiti.

Če polje ni potencialno, imamo še vedno ortogonalne krivulje, torej še vedno velja y'=-P/Q. Denimo, da je y(x,C) splošna rešitev. Če lahko poiščemo prvi integral u, mora obstajati funkcija $\lambda(x,y)$, za katero je polje $(\lambda P,\lambda Q)$ potencialno, oziroma $\partial_x u=\lambda P$ in $\partial_y u=\lambda Q$. Taki funkciji pravimo integrirujoči množitelj. Če ga lahko najdemo, lahko rešimo enačbo; tega pa v splošnem ne znamo.

Vprašanje 9. Kako poiščeš družino krivulj, pravokotnih na dano vektorsko polje F? Kaj je integrirujoči množitelj?

2 Mehanika

2.1 Osnove Newtonove mehanike

Definicija. Afin prostor \mathcal{A} nad vektorskim prostorom V je množica z binarno operacijo $+: \mathcal{A} \times V \to \mathcal{A}$, za katero velja:

- Za poljuben $A \in \mathcal{A}$ ter $\mathbf{a}, \mathbf{b} \in V$ velja $(A + \mathbf{a}) + \mathbf{b} = A + (\mathbf{a} + \mathbf{b})$
- Za poljubna $A, B \in \mathcal{A}$ obstaja natanko določen $\mathbf{a} \in V$, da je $B = A + \mathbf{a}$.

DIMENZIJA afinega prostora je enaka dimenziji vektorskega prostora V.

Definicija. Naj bo \mathcal{A} afin prostor nad vektorskih prostorom V. Definiramo operacijo odštevanja $\mathcal{A} \times \mathcal{A} \to V$ s predpisom

$$B - A = \mathbf{a} \Leftrightarrow B = A + \mathbf{a}$$
.

Trditev. V afinem prostoru veljajo naslednje zveze:

- A A = 0.
- $(A-B) + (B-A) = \mathbf{0}$.
- $(A-B) + (B-C) + (C-A) = \mathbf{0}$.
- $(A B) + \mathbf{a} = (A + \mathbf{a}) B$.
- (A B) + C = (C B) + A.

Definicija. Preslikava $g: \mathcal{A} \to \mathcal{A}'$ med afinima prostoroma je AFINA, če obstaja $dg \in L(V, V')$, da za vsaka $A, B \in \mathcal{A}$ velja g(A) - g(B) = dg(A - B).

Za afino preslikavo g si lahko izberemo POL O, ter izpeljemo

$$g(A) = g(O) + dg(A - O).$$

Vrednosti funkcije seveda niso odvisne od izbire pola.

Vprašanje 1. Definiraj afin prostor in afino preslikavo.

Definicija. Galilejeva struktura je trojica $\mathcal{G} = (\mathcal{A}, \mathfrak{t}, \rho)$, kjer je \mathcal{A} štirirazsežni afin prostor nad V, $\mathfrak{t} \in L(V, \mathbb{R})$ in ρ ekvlidska metrika na ker \mathfrak{t} , porojena z normo $\|\cdot\|$. Funkciji \mathfrak{t} pravimo časovnost, elementom \mathcal{A} pa pravimo dogodki. Pretečeni čas med dogodkoma A in B označimo s $\mathfrak{t}(A, B)$. Dogodka sta istočasna, če je $\mathfrak{t}(A, B) = 0$. Za istočasne dogodke lahko definiramo razdaljo $\rho(A, B) = \|B - A\|$ (uporabimo isto oznako kot za metriko v ker \mathfrak{t}).

Definicija. Galilejevi strukturi $\mathcal{G} = (\mathcal{A}, \mathfrak{t}, \rho)$ in $\mathcal{G}' = (\mathcal{A}', \mathfrak{t}', \rho')$ sta EKVIVALENTNI, če obstaja afina bijekcija $g : \mathcal{A} \to \mathcal{A}'$, ki ohranja časovnost in razdaljo med istočasnimi dogodki;

$$\mathfrak{t}'(q(A) - q(B)) = \mathfrak{t}(A, B), \qquad \rho'(q(A), q(B)) = \rho(A, B).$$

Taki transformaciji pravimo Galilejeva transformacija.

Vprašanje 2. Definiraj Galilejevo strukturo in Galilejeve transformacije.

Modelni primer je naravna Galilejeva struktura na $\mathcal{A} = \mathbb{R} \times \mathbb{E}$, kjer je \mathbb{E} trirazsežni Evklidski prostor. Za elemente $A_i = (t_i, \mathbf{P}_i) \in \mathcal{A}$ naravne strukture velja

- $\mathfrak{t}(A_1 A_2) = t_1 t_2$,
- $\rho(A_1, A_2) = \|\mathbf{P}_1 \mathbf{P}_2\|.$

Definicija. KOORDINATNI SISTEM na \mathcal{A} je bijekcija $\phi : \mathcal{A} \to \mathbb{R} \times \mathbb{E}$ s komponentami $\phi(A) = (\tau \phi(A), \pi \phi(A))$, in pri kateri je $\tau \circ \phi$ linearna preslikava.

Opomba. Če sta ϕ in ϕ' koordinatna sistema, je preslikava $\phi' \circ \phi^{-1} : \mathbb{R} \times \mathbb{E} \to \mathbb{R} \times \mathbb{E}$ bijekcija.

Vprašanje 3. Kaj je koordinantni sistem?

Izrek. Galilejeva transformacija $g: \mathbb{R} \times \mathbb{E} \to \mathbb{R} \times \mathbb{E}$ je oblike

$$g(t, \mathbf{P}) = (t_0' + t, \mathbf{P}_0' + \vec{c}t + Q(\mathbf{P} - \mathbf{P}_0)),$$

kjer je $Q \in O(3)$ ortogonalna transformacija.

Dokaz. Ker je g afina preslikava, jo lahko zapišemo kot

$$g(t, \mathbf{P}) = g(t_0, \mathbf{P}_0) + dg(t - t_0, \mathbf{P} - \mathbf{P}_0),$$

kjer je $dg \in L(\mathbb{R}^4, \mathbb{R}^4)$. Če označimo $g(t_0, \mathbf{P}_0) = (t'_0, \mathbf{P}'_0)$, in zapišemo dg kot bločno matriko, dobimo

$$g(t,\mathbf{P}) = (t_0',\mathbf{P}_0') + \begin{bmatrix} \alpha & \vec{a}^T \\ \vec{c} & Q \end{bmatrix} \begin{bmatrix} t - t_0 \\ \mathbf{P} - \mathbf{P}_0 \end{bmatrix} = (t_0',\mathbf{P}_0') + \begin{bmatrix} \alpha(t-t_0) + \vec{a} \cdot (\mathbf{P} - \mathbf{P}_0) \\ (t-t_0).\vec{c} + Q(\mathbf{P} - \mathbf{P}_0) \end{bmatrix}.$$

Za dogodka (t_1, \mathbf{P}_1) in (t_2, \mathbf{P}_2) zahtevamo

$$t_2 - t_1 = \tau(g(t_2, \mathbf{P}_2) - g(t_1, \mathbf{P}_1)).$$

Če razvijemo desno stran zahteve po izpeljani formuli, dobimo pogoj

$$t_2 - t_1 = \alpha(t_2 - t_1) + \vec{a} \cdot (\mathbf{P}_2 - \mathbf{P}_1).$$

Iz tega sledi $\alpha=1$ in $\vec{a}=\vec{0}$. Drug pogoj je, da se mora razdalja med istočasnimi dogodki ohranjati. Iz spodnjega dela bločne matrike dobimo pogoj

$$\|\mathbf{P}_2 - \mathbf{P}_1\| = \|Q(\mathbf{P}_2 - \mathbf{P}_1)\|,$$

torej mora biti Q ortogonalna.

Vprašanje 4. Kakšno obliko imajo Galilejeve transformacije $\mathbb{R} \times \mathbb{E} \to \mathbb{R} \times \mathbb{E}$? Dokaži.

Če definiramo $\vec{v} = \dot{\mathbf{P}}$ in $\vec{a} = \dot{\vec{v}}$, lahko opazujemo, kako se ti količini obnašata pri Galilejevi transformaciji. V koordinatnem sistemu $\phi'(t', \mathbf{P}')$ velja $\vec{v}' = \partial_{t'}\mathbf{P}' = \dot{\mathbf{P}}'$ in $\vec{a}' = \dot{\vec{v}}'$. Izpeljemo $\vec{v}' = \vec{c} + Q\dot{\mathbf{P}}(t' - t'_0) = \vec{c} + Q\dot{\mathbf{P}}(t)$ in $\vec{a}' = Q\ddot{\mathbf{P}}(t)$.

Za sistem materialnih točk $\mathcal{P} = \{\mathbf{P}_1, \dots, \mathbf{P}_n\}$ lahko definiramo

$$\underline{\mathbf{P}} = (\mathbf{P}_1, \dots, \mathbf{P}_n)
\underline{\mathbf{P}}'_0 = (\mathbf{P}'_0, \dots, \mathbf{P}'_0)
\underline{\vec{c}} = (\vec{c}, \dots, \vec{c})
\underline{\mathbf{P}}' = (\mathbf{P}'_1, \dots, \mathbf{P}'_n) = \underline{\mathbf{P}}'_0 + \underline{\vec{c}}t + Q(\underline{\mathbf{P}} - \underline{\mathbf{P}}_0)$$

Gibanje lahko tedaj zapišemo s tremi principi.

• Princip determiniranosti: Trajektorija sistema materialnih točk \mathcal{P} je v danem koordinantnem sistemu natanko določena z začetnim položajem in hitrostjo. To pomeni, da obstaja funkcija interakcije \vec{f} , da velja

$$\ddot{\underline{\mathbf{P}}} = \vec{f}(t, \underline{\mathbf{P}}, \dot{\underline{\mathbf{P}}}).$$

• Princip relativnosti: Obstaja tak razred koordinatnih sistemov, v katerem je funkcija interakcije invariantna na Galilejeve transformacije. Temu razredu pravimo RAZRED INERCIALNIH KOORDINATNIH SISTEMOV. To pomeni, da je funkcija interakcije invariantna v tem razredu,

$$\ddot{\mathbf{P}}' = \vec{f}(t', \mathbf{P}', \dot{\mathbf{P}}').$$

• Princip o sorazmernosti: Obstajajo pozitivne konstante α_{ij} , da za vsako interakcijo med materialnimi točkami sistema $\mathcal{P} = (\mathbf{P}_1, \dots, \mathbf{P}_n)$ velja

$$\vec{f_i} = -\sum_{j \neq i} \alpha_{ji} \vec{f_j}.$$

Te konstante so enake za vse možne interakcije v sistemu.

Vprašanje 5. Kateri so principi gibanja?

Z ozirom na princip relativnosti izpeljemo $\underline{Q}\underline{\ddot{\mathbf{P}}} = \underline{Q}\underline{\ddot{f}}(t,\underline{\mathbf{P}},\underline{\dot{\mathbf{P}}})$. Če v to enakost vstavimo vrednosti $t' = t'_0 + t$, $\vec{c} = \vec{0}$, Q = I ter $\mathbf{P}'_0 = \mathbf{P}_0$, dobimo $\underline{\ddot{f}}(t'_0 + t,\underline{\mathbf{P}},\underline{\dot{\mathbf{P}}}) = \underline{\ddot{f}}(t,\underline{\mathbf{P}},\underline{\mathbf{P}}_0)$, kar mora veljati za vsak t'_0 . Sledi, da funkcija \vec{f} ne mora biti eksplicitno odvisna od časa. Tej ugotovitvi pravimo HOMOGENOST ČASA.

Če sedaj vstavimo $\vec{c} = \vec{0}$, Q = I in $\mathbf{P}_0' = \mathbf{P}_0 + \vec{a}$, kjer je \vec{a} poljuben vektor (in ne pospešek), izpeljemo $\mathbf{P}' = \mathbf{P} + \vec{a}$, in sledi $\underline{\vec{f}}(\mathbf{P} + \underline{\vec{a}}, \dot{\mathbf{P}}) = \underline{\vec{f}}(\mathbf{P}, \dot{\mathbf{P}})$, torej \vec{f} ne more biti odvisna od absolutnih položajev. Seveda je še vedno lahko odvisna od relativnih položajev (v tem primeru se \vec{a} odšeteje). Tej lastnosti pravimo HOMOGENOST PROSTORA.

S poljubno izbiro vektorja \vec{c} in Q = I lahko podobno izpeljemo, da je \vec{f} lahko odvisna le od relativnih hitrosti, čemur pravimo HOMOGENOST PROSTORA HITROSTI.

Če nenazadnje relaksiramo še pogoj na Q, dobimo

$$\vec{f}(Q(\mathbf{P}_i - \mathbf{P}_j), Q(\dot{\mathbf{P}}_i, \dot{\mathbf{P}}_j)) = Q\vec{f}(\mathbf{P}_i - \mathbf{P}_j, \dot{\mathbf{P}}_i - \dot{\mathbf{P}}_j).$$

Funkcijam, ki zadoščajo ta pogoj, pravimo izotropične funkcije.

V posebnem primeru za n=1 je \vec{f} konstantna funkcija (ker ne more biti odvisna od ničesar). Ker za vsak $Q \in O(3)$ velja $\vec{f} = Q\vec{f}$, mora biti $\vec{f} = \vec{0}$. Torej se prosta materialna točka v inercialnem koordinantem sistemu premika premočrtno s konstantno hitrostjo. To je ena od implikacij v prvem Newtonovem zakonu.

Vprašanje 6. Izpelji homogenost časa in faznega prostora iz principov gibanja.

Definicija. Interakcija \vec{f} je PARSKA, če lahko zapišemo

$$\vec{f_i} = \sum_{j \neq i} \vec{f_{ji}} (\mathbf{P}_i - \mathbf{P}_i, \dot{\mathbf{P}}_j - \dot{\mathbf{P}}_i)$$

za vse indekse i.

Definicija. Interakcija \vec{f} je LOKALNA, če je parska in če velja

$$\lim_{\mathbf{P}_i - \mathbf{P}_i \to \infty} \vec{f}_{ji} = \vec{0}.$$

Vprašanje 7. Definiraj parske in lokalne interakcije.

Lema. Za števila α_{ij} iz principa sorazmernosti velja

- $\alpha_{ij}\alpha_{ji}=1$,
- $\alpha_{ij}\alpha_{jk}\alpha_{kj} = 1$.

Dokaz. Prva točka: Izberemo si take interakcije $\vec{f_k}$, ki so parske in lokalne in ki so neodvisne od relativnih hitrosti. Vse točke razen i in j pošljemo v neskončnost, da je njihov vpliv ničeln. Tedaj velja $\vec{f_i} = -\alpha_{ji}\vec{f_j}$ in $\vec{f_j} = -\alpha_{ij}\vec{f_i}$, torej $\vec{f_i} = \alpha_{ij}\alpha_{ji}\vec{f_i}$.

Druga točka: Izberemo si indekse i, j, k in podobno kot prej pošljemo druge točke v neskončnost. Ob predpostavki parske in lokalne interakcije tako dobimo

$$\vec{f_i} = -\alpha_{ji}\vec{f_j} - \alpha_{ki}\vec{f_k},$$

$$\vec{f_j} = -\alpha_{ij}\vec{f_i} - \alpha_{kj}\vec{f_k}.$$

Če vstavimo drugo enačbo v prvo,

$$\vec{f_i} = \alpha_{ji}\alpha_{ij}\vec{f_i} + \alpha_{ji}\alpha_{kj}\vec{f_k} - \alpha_{ki}\vec{f_k},$$

nam člen na levi in prvi člen na desni po prvi točki odpadeta. Dobljeno enačbo še pomnožimo z α_{ik} in nam ostane

$$\vec{f_k} = \alpha_{ji} \alpha_{kj} \alpha_{ik} \vec{f_k}.$$

Lema. Naj za pozitivna števila α_{ij} velja ugotovitev prejšnje leme. Potem obstajajo števila m_i , da je $\alpha_{ji} = m_j/m_i$.

Dokaz. Števila α_{ij} so definirana le za $i \neq j$. Definicijo lahko razširimo, da je $\alpha_{ii} = 1$. Definiramo $l_{ij} = \log \alpha_{ij}$. Velja $l_{ii} = 0$ in $L_{ij} = -l_{ji}$, poleg tega pa tudi $l_{ij} + l_{jk} + l_{ki} = 0$.

Izberemo si indeks i_0 , ki nam bo definiral enoto mase. Velja $l_{i_0j} + l_{jk} + l_{ki_0} = 0$, kar odštejemo od prejšnje vsote treh členov in dobimo

$$l_{ij} - l_{i_0j} + l_{ki} - l_{ki_0} = 0.$$

Od tu izpeljemo, da za poljubna j in k velja

$$l_{ij} - l_{i_0j} = l_{ik} - l_{i_0k},$$

torej je $n_{ii_0} = l_{ij} - l_{i_0j}$ dobro definirana količina. Opazimo, da za i = j velja $n_{ii_0} = l_{ii_0}$. Definiramo $m_i = \exp n_{ii_0}$. Sledi

$$\log \alpha_{ij} = l_{ij} = l_{i0j} + n_{ii_0} = -l_{ji} + n_{ii_0} = -n_{ji_0} + n_{ii_0} = \log m_i - \log m_j = \log \frac{m_i}{m_j}.$$

Opomba. Številom m_i pravimo inercijske mase.

Vprašanje 8. Kaj so inercijske mase? Dokaži, da res obstajajo.

Produktu $m\vec{f} = \vec{F}$ pravimo SILA. Iz parskosti sledi

$$\vec{F}_i = \sum_{i \neq i} \vec{F}_{ji} (\mathbf{P}_i - \mathbf{P}_j, \dot{\mathbf{P}}_i - \dot{\mathbf{P}}_j).$$

Naj velja $\sum_{i\neq j} \vec{F}_{ji} = \vec{0}$. Predpostavimo, da so sile lokalne, in fiksiramo indeksa $k \neq l$. Če vsa ostala telesa pošljemo v neskončnost, ostane

$$\vec{F}_{kl} + \vec{F}_{lk} = \vec{0}.$$

S tem smo dokazali tretji Newtonov zakon.

Trditev (tretji Newtonov zakon). Če so vse sile parske in lokalne, velja $\vec{F}_{kl} = -\vec{F}_{lk}$.

Za nadaljevanje potrebujemo še dodaten princip gibanja, ki ga imenujemo princip o masi. Pravi, da je inercijska masa enaka v vseh koordinatnih sistemih.

Vprašanje 9. Kaj je princip o masi?

Najpreprostejši primer sile je gravitacija. Med točkama (m_1, \mathbf{P}_1) in (m_2, \mathbf{P}_2) deluje sila

$$\vec{F}_{21} = \frac{\kappa M_1 M_2}{|\mathbf{P}_1 - \mathbf{P}_2|^2} \frac{\mathbf{P}_2 - \mathbf{P}_1}{|\mathbf{P}_2 - \mathbf{P}_1|}.$$

Številoma M_1 in M_2 pravimo GRAVITACIJSKI MASI. Z eksperimentiranjem je Newton ugotovil, da so pravzaprav enake inercijskim masam.

Definicija. Zunanja sila $\vec{F} = \vec{F}(t, \mathbf{P}, \dot{\mathbf{P}})$ je potencialna, če obstaja potencial U, da je $\vec{F} = -\vec{\nabla}.\mathbf{p}U$.

Definicija. Delo sile \vec{F} pri gibanju materialne točke od \mathbf{P}_1 do \mathbf{P}_2 je krivuljni integral

$$A = \int_{\mathbf{P}_1}^{\mathbf{P}_2} \vec{F} \cdot d\mathbf{P} = \int_{t_1}^{t_2} \vec{F} \cdot \dot{\mathbf{P}} dt,$$

kjer smo pot parametrizirali s $\mathbf{P}(t)$. Produktu $\vec{F} \cdot \dot{\mathbf{P}}$ pravimo MOČ.

Definicija. Kinetična energija T je enaka $\frac{1}{2}m\left|\dot{\mathbf{P}}\right|^2$.

Za rezultanto vseh sil \vec{F} na telo m lahko izpeljemo

$$A = \int_{t_1}^{t_2} \vec{F} \cdot \dot{\mathbf{P}} dt = \int_{t_1}^{t_2} m \ddot{\mathbf{P}} \cdot \dot{\mathbf{P}} ddt = m \int_{t_1}^{t_2} \partial_t (\frac{1}{2} \dot{\mathbf{P}} \cdot \dot{\mathbf{P}}) dt = T_2 - T_1,$$

kar lahko zapišemo v izrek.

Izrek (izrek o delu). Delo rezultante vseh sil je enako razliki kinetične energije telesa.

Vprašanje 10. Povej in dokaži izrek o delu.

Definicija. Sila je KONZERVATIVNA v danem razredu inercialnih koordinatnih sistemov, če obstaja inercialni koordinatni sistem, v katerem je \vec{F} potencialna in odvisna samo od položaja.

Tedaj je \vec{F} potencialna, torej velja $\vec{F} = -\vec{\nabla}.U$ za nek potencial U, ki mu pravimo POTENCIALNA ENERGIJA. Velja

$$A = \int_{t_1}^{t_2} \vec{F} \cdot \dot{\mathbf{P}} dt = -\int_{t_1}^{t_2} \vec{\nabla} \cdot U \cdot \dot{\mathbf{P}} dt = U(\mathbf{P}_1) - U(\mathbf{P}_2).$$

Vidimo, da je delo odvisno le od začetnega in končnega položaja. Sledi $T_2 - T_1 = U_1 - U_2$, torej je $T_1 + U_1 = T_2 + U_2 = E_0$ konstantna vrednost.

Izrek (izrek o energiji). Če je rezultanta vseh sil konzervativna, je vsota kinetične in potencialne energije konstanta gibanja.

Vprašanje 11. Povej in dokaži izrek o energiji.

2.2 Premočrtno gibanje

Definicija. Gibanje je PREMOČRTNO, če ima pospešek konstantno smer.

Primer takega gibanja je poševni met. Opazimo, da lahko vedno izberemo koordinatni sistem, v katerem tir poti leži na premici: Če je $\vec{a} = a\vec{e}$, kjer je \vec{e} konstanten vektor, velja

$$\vec{v} = \vec{e} \int_{t_0}^t a dt + \vec{v}_0.$$

Izberemo lahko sistem, kjer je \vec{v}_0 enak $\vec{0}$, in bo torej \vec{v} vzporeden \vec{e} .

Če gibanje poteka pod vplivom konzervativne sile, lahko zapišemo potencial U, in velja izrek o energiji

$$\frac{1}{2}m\dot{x}^2 + U(x) = E_0.$$

Od tod izpeljemo

$$\dot{x} = \pm \sqrt{\frac{2}{m} \left(E_0 - U(x) \right)}.$$

Enačbo z ločljivimi spremenljivkami tedaj integriramo in dobimo

$$\pm \int_{x_0}^{x} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}} = \int_{t_0}^{t} dt = t - t_0.$$

Dobimo funkcijo t = t(x). Če se na poti ne ustavimo, po izreku o inverzni preslikavi obstaja funkcija x = x(t). Pravimo, da je premočrtno gibanje INTEGRABILNO.

Če v kvalitativni analizi ugotovimo, da je neko gibanje periodično med točkama a in b, lahko periodo izračunamo kot

$$T = \int_{x_0}^{b} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}} - \int_{a}^{b} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}} + \int_{a}^{x_0} \frac{dx}{\sqrt{\frac{2}{m} (E_0 - U(x))}}$$
$$= \sqrt{2m} \int_{a}^{b} \frac{dx}{\sqrt{E_0 - U(x)}}.$$

Ker je E=U(x) v krajiščih, je to posplošen integral. Situacija v obeh krajiščih je simetrična, torej preverimo le za levo krajišče, da integral res konvergira. V prvem koraku razvijemo preslikavo U v Taylorjev polinom prve stopnje v točki a, kjer se pojavi vrednost odvoda U v neki točki ξ blizu a. Ker je odvod zvezen, obstaja tak $\delta>0$, da za $\xi\in[a,a+\delta)$ velja $2\partial_x U(a)<\partial_x U(\xi)<\frac{1}{2}\partial_x U(a)$, torej

$$\int_a^{a+\delta} \frac{dx}{\sqrt{E_0 - U(x)}} = \int_a^{a+\delta} \frac{dx}{\sqrt{-\partial_x U(\xi)(x-a)}} \le \int_a^{a+\delta} \frac{1}{\sqrt{-\frac{1}{2}\partial_x U(a)}} \frac{1}{\sqrt{x-a}} dx < \infty.$$

Vprašanje 12. Izpelji izraz za periodo premočrtnega potencialnega gibanja.

Lema. $Za \ a < b \ velja$

$$\int_{a}^{b} \frac{dx}{\sqrt{(b-x)(x-a)}} = \pi.$$

Dokaz. Uvedemo novo spremenljivko $x = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)z$, s čimer se integral spremeni v

$$\int_{-1}^{1} \frac{dz}{\sqrt{(1-z)(1+z)}} = \pi.$$

Primer. Oglejmo si harmonični oscilator, ki deluje pod potencialom $U = \frac{1}{2}kx^2$. Tedaj velja $F = -\partial_x U = -kx$, torej $m\ddot{x} = -kx$. Rešitev tega sistema je $x = A\cos\omega t + B\sin\omega t$ za $\omega = \sqrt{k/m}$. Iz tega lahko kar direktno preberemo $T = 2\pi/\omega$. Posebnost harmoničnega oscilatorja je, da je T neodvisen od E_0 . Takemu gibanju pravimo IZOHRONIČNO, harmonični potencial je edini primer izohroničnega potenciala, ki je simetričen glede na svoj minimum.

Če ima potencial lokalni minimum v x_0 , lahko za določanje potenciala uporabimo harmonično aproksimacijo. Zapišemo

$$\hat{U}(x) = U(x_0) + \partial_x U(x_0)(x - x_0) + \frac{1}{2}\partial_{x^2} U(x_0)(x - x_0)^2,$$

kar je harmonični potencial s periodo

$$T = 2\pi \sqrt{\frac{m}{\partial_{x^2} U(x_0)}}.$$

Ta aproksimacija je dobra, če velja $E_0 - U(x) \ll 1$.

Vprašanje 13. Izpelji harmonično aproksimacijo.

Druga vrsta aproksimacije, ki jo lahko uporabimo, je LIBRACIJSKA. Računamo

$$t = \operatorname{sgn} \dot{x} \int_{x_0}^{x} \frac{dx}{\sqrt{\frac{2}{m}(E_0 - U(x))}} = \sqrt{\frac{m}{2}} \operatorname{sgn} \dot{x} \int_{\theta_0}^{\theta} \frac{\frac{1}{2}(b - a)(-\sin\theta)d\theta}{\frac{1}{2}(b - a)\sqrt{\chi(\theta)}\sqrt{1 - \cos^2\theta}}$$

za substitucijo $x = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\theta$. Pri tem smo si x predstavljali kot kosinus kota v krožnici, ki poteka skozi točki a in b in ima središče na njuni zveznici. Če računamo dalje, dobimo

$$t = \sqrt{\frac{m}{2}} \int_{\theta_0}^{\theta} \frac{1}{\sqrt{\chi(\theta)}} d\theta.$$

Če želimo dobiti periodo gibanja, bo θ tekel od 0 do π .

$$T = 2\sqrt{\frac{m}{2}} \int_0^{\pi} \frac{d\theta}{\sqrt{\chi(\theta)}}.$$

Ta integral aproksimiramo s trapezno formulo, ki je natančna v primeru, da je funkcija v integralu afina. Rešitev je tedaj

$$T \doteq \pi \sqrt{\frac{m}{2}} \left(\frac{1}{\sqrt{\chi(a)}} + \frac{1}{\sqrt{\chi(b)}} \right).$$

Vprašanje 14. Izpelji libracijsko aproksimacijo.

Trditev. Za premočrtno potencialno periodično gibanje velja $\frac{dA}{dE_0} = \frac{T}{m}$ na poti med robnima točkama energijskega nivoja.

Dokaz. Velja $A = 2\sqrt{\frac{m}{2}} \int_a^b \sqrt{E_0 - U} dx$, torej

$$\frac{dA}{dE_0} = 2\sqrt{\frac{m}{2}}\left(b'\sqrt{E_0 - U(b)} - a'\sqrt{E_0 - U(a)} + \int_a^b \frac{dx}{2\sqrt{E_0 - U}}\right).$$

Ker je $U(a)=U(b)=E_0$, sta prva dva člena v oklepaju enaka 0, torej

$$\frac{dA}{dE_0} = \sqrt{\frac{m}{2}} \int_a^b \frac{dx}{\sqrt{E_0 - U}} = \frac{m}{T}.$$

Vprašanje 15. Kako se opravljeno delo v nihaju spreminja z energijskim nivojem E_0 ?

3 Uvod v numerične metode

3.1 Računske napake

Kadar z numerično metodo nekaj izračunamo, ne dobimo točne vrednosti, vendar nek približek. Absolutno napako definiramo kot razliko med približkom in točno vrednostjo:

$$d_a = \hat{x} - x$$
.

Po drugi strani je relativna napaka kvocient

$$d_r = \frac{\hat{x} - x}{x}.$$

Približek lahko izrazimo kot $\hat{x} = x(1 + d_r)$.

Vprašanje 1. Definiraj absolutno in relativno napako.

Števila predstavljamo s plavajočo vejico, ki je pravzaprav eksponentni zapis

$$x = \pm m \cdot b^e$$
,

kjer je m mantisa, zapisana kot $m=0.c_1c_2\ldots c_t$ za $c_i\in\{0,\ldots,b-1\}$, število b je baza zapisa, e pa eksponent v mejah $L\leq e\leq U$. Števila običajno zapišemo normalizirana, torej s $c_1\neq 0$. V primeru najnižje možne potence dovoljujemo tudi subnormalizirana števila, kjer je $c_1=0$. Predstavljiva števila v takšnem zapisu označujemo s P(b,t,L,U).

V standardu IEEE imamo dve števili:

- Enojni zapis: P(2, 24, -125, 128),
- Dvojni zapis: P(2, 53, -1021, 1023).

Vprašanje 2. Kaj je P(b, t, L, U)? Kakšne vrednosti imata float in double?

Pri zaokoževanju številu odrežemo decimalke za neko vrednostjo, in po potrebi prištejemo b^{-t} . Boljšega od teh približkov označimo s fl(x).

Izrek. Če za x velja, da |x| leži na intervalu med najmanjšim in največjim pozitivnim predstavljivim normaliziranim številom, potem velja

$$\frac{|\mathrm{fl}(x) - x|}{|x|} \le u,$$

za osnovno zaokrožitveno napako $u=\frac{1}{2}b^{1-t}.$

Vprašanje 3. Kaj je osnovna zaokrožitvena napaka? Povej izrek.

Standard IEEE zagotovlja omejeno napako tudi pri osnovnih operacijah:

- $f(x \oplus y) = (x \oplus y)(1 + \delta)$ za $|\delta| \le u$ za osnovne operacije $+, -, \cdot, /,$
- $\operatorname{fl}(\sqrt{x}) = \sqrt{x}(1+\delta) \operatorname{za} |\delta| < u$.

Drug vir napak je občutljivost problema, ki ni povezana z numeriko. Obravanavamo vprašanje, kako se pri majhni spremembi v vhodnih podatkih spremeni pravilni odgovor. Za zvezno odvedljivo f lahko absolutno občutljivost merimo z odvodom

$$|f(x + \delta x) - f(x)| \approx |f'(x)| |\delta x|$$
.

Poznamo tri vrste napak, ki skupaj sestavljajo celotno napako:

- Neodstranljiva napaka: napaka zaradi zaokroževanja podatkov
- Napaka metode: nenatančnost metode
- Zaokrožitvena napaka: napaka zaradi zaokroževanja znotraj metode

Vprašanje 4. Katere vrste napak poznamo?

3.2 Nelinearne enačbe

Iščemo rešitve enačbe f(x)=0 za nek $f:\mathbb{R}\to\mathbb{R}$. Pri tem lahko pridemo do več različnih situacij glede obstoja in enoličnosti rešitve; možnost je, da rešitve obstaja in je ena sama, da je rešitve več, ampak končno mnogo, da jih je neskončno mnogo, ali pa da rešitve sploh ni.

Naj bo α ničla za zvezno odvedljivo f. Ničla je enostavna natanko tedaj, ko je $f'(\alpha) \neq 0$. Če ni enostavna, je m-kratna natanko tedaj, ko je prvi neničelni odvod v α reda m. V primeru enostavne ničle lokalno obstaja inverzna funkcija, da je $\alpha = f^{-1}(0)$. Absolutna občutljivost problema je tedaj enaka $|(f^{-1})'(0)| = \frac{1}{|f'(\alpha)|}$. Če je α dvojna ničla, uporabimo Taylorjev približek druge stopnje

$$f(x) \approx \underbrace{f(\alpha)}_{=0} + \underbrace{f'(\alpha)}_{=0} (x - \alpha) + \frac{1}{2} f''(\alpha) (x - \alpha)^2,$$

torej za $|f(x)| \le \varepsilon$ velja

$$|x - \alpha| \le \sqrt{\frac{2\varepsilon}{|f''(\alpha)|}}.$$

Višje kot so ničle, bolj občutljiv je problem iskanja. Za večkratno ničlo v splošnem velja

$$|x - \alpha| \le \left(\frac{m!\varepsilon}{|f^{(m)}(\alpha)|}\right)^{1/m}$$

Vprašanje 5. Analiziraj problem iskanja ničel.

3.2.1 Bisekcija

Pri implementaciji bisekcije si hranimo zaporedja $(a_n)_n$ levih mej, $(b_n)_n$ desnih mej, $(c_n)_n$ sredinskih približkov, in $(e_n)_n$ polovičnih velikosti intervala. Nove člene izračunamo po predpisih

$$e_{n+1} = e_n/2,$$

 $a_n = a_{n-1}$ ali $c_{n-1},$
 $b_n = b_{n-1}$ ali $c_{n-1},$
 $c_n = a_n + e_n.$

Pri tem zmanjšamo število računskih operacij, se izognemo problemom glede možnih nepredvidenih zaokrožitev, skokov izven območja ali računskih napak. Bisekcija nam lahko poišče liho ničlo, ne pa sode, prav tako lahko poišče lih pol (ne pa sodega).

Vprašanje 6. Opiši delovanje bisekcije.

3.2.2 Navadna iteracija

Pri navadni iteraciji iskanje rešitve enačbe f(x)=0 prevedemo na iskanje rešitve enačbe x=g(x) za ustrezno izbrano funkcijo g. Splošna primerna izbira je recimo g(x)=x-f(x), ali pa g(x)=x-h(x)f(x) za neničelno funkcijo h. Da postopek $x_{r+1}=g(x_r)$ konvergira, mora biti g v okolici α skrčitev.

Izrek. Naj bo $\alpha = g(\alpha)$ in naj g na intervalu $I = [\alpha - \delta, \alpha + \delta]$ za nek $\delta > 0$ zadošča Lipschitzovem pogoju $|g(x) - g(y)| \le m |x - y|$ za nek $m \in [0, 1)$, in poljubna $x, y \in I$. Potem za vsak $x_0 \in I$ zaporedje $x_{r+1} = g(x_r)$ konvergira $k \in [0, 1)$, in velja

- $|x_r \alpha| \leq m^r |x_0 \alpha|$,
- $|x_{r+1} \alpha| \le \frac{m}{1-m} |x_{r+1} x_r|$.

Dokaz. Dokažimo prvo, da zaporedje ne zapusti intervala I; če velja $x_r \in I$, je $|x_r - \alpha| \le \delta$, torej

$$|x_{r+1} - \alpha| = |g(x_r) - g(\alpha)| \le m |x_r - \alpha| < |x_r - \alpha| \le \delta,$$

torej je tudi $x_{r+1} \in I$. S ponavljanjem tega postopka tudi dokažemo prvo točko, za drugo točko pa ocenimo

$$|x_{r+1} - \alpha| = |x_{r+1} - x_{r+2} + x_{r+2} - x_{r+3} + x_{r+3} - \dots - \alpha| \le |x_{r+1} - x_{r+2}| + |x_{r+2} - x_{r+3}| + \dots \le (m + 1)$$

Posledica. Če je $\alpha = g(\alpha)$, če je g zvezno odvedljiva in če velja $|g'(\alpha)| < 1$, potem obstaja nek $\delta > 0$, da za vsak x_0 , $|x_0 - \alpha| < \delta$, zaporedje $x_{r+1} = g(x_r)$ konvergira $k \alpha$.

24

Vprašanje 7. Povej in dokaži izrek o navadni iteraciji.

Definicija. Naj bo $\lim x_r = \alpha$. Pravimo, da $(x_r)_r$ KONVERGIRA K α Z REDOM p, če velja

$$\lim_{r \to \infty} \frac{|x_{r+1} - \alpha|}{|x_r - \alpha|^p} = C$$

za neko konstanto C > 0.

Izrek. Naj bo $\alpha = g(\alpha)$ za p-krat zvezno odvedljivo funkcijo g in naj velja $g'(\alpha) = \ldots = g^{(p-1)}(\alpha) = 0$ ter $g^{(p)}(\alpha) \neq 0$. Tedaj v bližini α zaporedje $x_{r+1} = g(x_r)$ konvergira k α z redom p.

Dokaz. Izraz $x_{r+1}=g(x_r)$ v okolici α razvijemo v Taylorjevo vrsto:

$$x_{r+1} = g(\alpha) + g'(\alpha)(x_r - \alpha) + \ldots + \frac{g^{(p-1)}(\alpha)}{(p-1)!}(x_r - \alpha)^{p-1} + \frac{g^{(p)}(\xi)}{p!}(x_r - \alpha)^p$$

za nek ξ v bližini α . Sledi

$$\frac{x_{r+1} - \alpha}{(x_r - \alpha)^p} = \frac{g^{(p)}(\xi)}{p!}.$$

Vprašanje 8. Kaj je red konvergence zaporedja? Kako ga poiščeš z odvodom?

3.2.3 Tangentna metoda

Če vzamemo $\alpha = x_r + \Delta x_r$, in razvijemo dva člena Taylorjeve vrste

$$0 = f(x_r + \Delta x_r) = f(x_r) + f'(x_r)\Delta x_r + \frac{1}{2}f''(\xi_r)\Delta x_r^2,$$

ter nato zanemarimo zadnji člen, dobimo

$$\Delta x_r = \frac{-f(x_r)}{f'(x_r)},$$

s čimer smo izpeljali tangentno metodo, ki je pravzaprav poseben primer naravne iteracije. Če je α enostavna ničla, lahko izračunamo, da ima g(x) = x - f(x)/f'(x) ničelni odvod v α (ob predpostavki $f \in \mathcal{C}^2$), in je torej konvergenca vsaj kvadratična. V primeru m-kratne ničle za $m \geq 2$ pa po dolgopisni izpeljavi dobimo, da je konvergenca zagotovljena, a linearna. Za dvakrat zvezno odvedljive funkcije je vsaka ničla f torej privlačna negibna točka.

Vprašanje 9. Izpelji tangentno metodo in pokaži, kakšen red konvergence ima.

Izrek. Naj bo f na $I = [0, \infty)$ dvakrat zvezno odvedljiva, strogo naraščajoča, konveksna in naj ima na I ničlo α . Potem za vsak $x_0 \in I$ tangenta metoda konvergira k α .

Dokaz. Velja f'(x) > 0 in f''(x) > 0. Z oceno

$$x_1 - \alpha = \frac{f''(\xi)}{2f'(x_0)}(x_0 - \alpha)^2 \ge 0$$

pokažemo, da je ne glede na x_0 točka x_1 vedno desno od α . Dokažimo še, da je x_{r+1} nujno med α in x_r :

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)} < x_r,$$

vedno pa velja $x_r > \alpha$. To je torej strogo padajoče omejeno zaporedje, ki mora nekam konvergirati; to bo seveda α .

Vprašanje 10. Za kakšne funkcije lahko globalno zagotoviš konvergenco tangentne metode? Dokaži.

3.2.4 Sekantna metoda

Če je izračun odvoda zahteven, ga lahko aproksimiramo z diferenčnim kvocientom. Namesto tangente na f v točki x_r tako uporabimo sekanto skozi točki $(x_r, f(x_r))$ in $(x_{r-1}, f(x_{r-1}))$. Dobljena metoda tehnično ni navadna iteracija, ker uporablja zadnja dva približka, vendar se obnaša sorodno. Naslednji približek izračunamo s predpisom

$$x_{r+1} = x_r - \frac{f(x_r)(x_r - x_{r-1})}{f(x_r) - f(x_{r-1})}.$$

Analiza sekantne metode je težja kot analiza metod navadne iteracije. Izkaže se, da velja

$$|e_{r+1}| \approx c |e_r| |e_{r-1}|$$

za neko konstanto c, ki je pravzaprav enaka

$$c = \frac{|f''(\alpha)|}{2|f'(\alpha)|}.$$

Označimo red sekantne metode s p. Obstaja konstanta D > 0, da je $|e_{r+1}| \approx D |e_r|^p$, torej

$$|e_{r+1}| \approx CD |e_{r-1}|^{p+1} = D^{p+1} |e_{r-1}|^{p^2}$$

iz česar sledi $p^2 = p + 1$ oziroma $p = \phi$, torej je konvergenca superlinearna.

Vprašanje 11. Razloži sekantno metodo in izpelji njen red konvergence.

3.2.5 Ostale metode

Pri Mullerjevi metodi uporabimo tri približke x_r , x_{r-1} in x_{r-2} , ter skozi točke $(x_r, f(x_r))$, $(x_{r-1}, f(x_{r-1}))$, $(x_{r-2}, f(x_{r-2}))$ potegnemo polinom stopnje 2. Za naslednji približek vzamemo tisto izmed dveh ničel polinoma, ki je bližnja x_r . Ena od prednosti te metode je, da lahko išče kompleksne ničle tudi z realnimi začetnimi približki. Izkaže se, da je red konvergence približno 1.84.

Vprašanje 12. Razloži Mullerjevo metodo.

Če zamenjamo vlogi x in y, in najdemo polinom p(y), ki poteka skozi točke $(f(x_r), x_r)$, $(f(x_{r-1}), x_{r-1})$, $(f(x_{r-2}), x_{r-2})$, dobimo približek za f^{-1} , in lahko za naslednji približek vzamemo $x_{r+1} = p(0)$. Metodo imenujemo inverzna interpolacija, ima pa isti red konvergence kot Mullerjeva metoda.

Vprašanje 13. Razloži metodo inverzne interpolacije.

4 Verjetnost

Komentar za učenje: poglej si tudi vserazne primere v zvezku, in jih poračunaj za vajo.

4.1 Izidi, dogodki, verjetnosti

Vprašanje 1. Kaj je množica Ω vseh možnih izidov? Povej nekaj primerov.

Odgovor: To je množica, ki hrani vse možne rezultate nekega poskusa. Pri mešanju kupa n kart velja $\Omega = S_n$, pri n-kratnem metu kovanca je to $\Omega = \{G, S\}^n$, itd. \boxtimes

Definicija. Družina \mathcal{F} podmnožic množice Ω je σ -ALGEBRA, če velja:

- $\Omega \in \mathcal{F}$,
- $A \in \mathcal{F} \implies A^{\mathsf{c}} \in \mathcal{F}$,
- $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_i A_i \in \mathcal{F}.$

Definicija. Naj bo Ω množica možnih izidov, in \mathcal{F} σ-algebra nad Ω . VERJETNOST je preslikava $P: \mathcal{F} \to [0,1]$, za katero velja $P(\Omega) = 1$, in kjer za disjunktne dogodke $A_1, A_2, \ldots \in \mathcal{F}$ velja $P(\bigcup_i A_i) = \sum_i P(A_i)$.

Opomba. To sta aksioma Kolmogorova.

Vprašanje 2. Kaj je verjetnost?

Izrek (Formula za vključitve in izključitve). Naj bodo A_1, \ldots, A_n dogodki. Potem velja

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_i).$$

Dokaz. Definirajmo dogodke

 $B_r = \{ \omega \in \Omega \, | \, \omega \text{ je vsebovan v natanko } r \text{ množicah } A_i \}.$

To so disjunktni dogodki, za katere velja $\bigcup_i A_i = \bigcup_r B_r$. Sledi

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{r=1}^{n} P(B_r).$$

Poglejmo si, kolikokrat smo v formuli v izreku šteli vsako izmed množic B_r . Ta množica je vsebovana v preseku do r dogodkov, torej se v prvem členu pojavi r-krat, v drugem $\binom{r}{2}$, v tretjem $\binom{r}{3}$, itd. Vsota je tedaj

$$\binom{r}{1} - \binom{r}{2} + \binom{r}{3} - \ldots + (-1)^r \binom{r}{r} = 1,$$

kar lahko izpeljemo iz razvoja izraza $0 = (1-1)^r$.

Vprašanje 3. Povej formulo za izključitve in izključitve. Kaj je ideja dokaza?

Lema. Naj bodo A_1, A_2, \ldots dogodki. Če je $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$, je verjetnost unije

$$P(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} P(A_n).$$

 $\check{C}e \ namesto \ tega \ velja \ A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots, \ je$

$$P(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} P(A_n).$$

Dokaz. Druga formula sledi iz De Morganovih pravil, dokažemo samo prvo. Zapišemo

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \backslash A_1) \cup (A_3 \backslash (A_1 \cup A_2)) \cup \dots$$

To so disjunktni dogodki, torej zanje velja

$$P(\bigcup_{i=1}^{\infty} A_i) = P(A_1) + \sum_{k=2}^{\infty} P(A_k \setminus (A_1 \cup \ldots \cup A_{k-1}))$$

$$= \lim_{n \to \infty} (P(A_1) + \sum_{k=2}^{n} P(A_k \setminus (A_1 \cup \ldots \cup A_{k-1})))$$

$$= \lim_{n \to \infty} P(\bigcup_{k=1}^{n} A_k \setminus (A_1 \cup \ldots \cup A_{k-1}))$$

$$= \lim_{n \to \infty} P(A_n).$$

Lema (Prva Borel-Cantorjeva lema). Naj bodo A_1, A_2, \ldots dogodki, za katere velja $\sum_i P(A_i) < \infty$. Definiramo $\overline{A} = \{ \omega \in \Omega \mid \omega \text{ je vsebovan v neskončno mnogo } A_k \}$. Tedaj velja $P(\overline{A}) = 0$.

Dokaz. Prepričamo se lahko, da velja $\overline{A} = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$. Te unije so padajoče za $n \to \infty$, zatorej po prejšnji lemi velja

$$P(\overline{A}) = \lim_{n \to \infty} P(\bigcup_{m=n}^{\infty} A_m).$$

Iz dokaza prešnje leme vidimo, da velja sklep

$$P(\bigcup_{k=1}^{n} A_k) \le \sum_{k=1}^{n} P(A_k) \implies P(\bigcup_{k=1}^{\infty}) \le \sum_{k=1}^{\infty} P(A_k).$$

Torej velja

$$P(\overline{A}) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} P(A_k).$$

Izraz na desni pa je rep konvergenčne vrste, torej je limita enaka 0.

Vprašanje 4. Povej in dokaži prvo Borel-Cantorjevo lemo.

4.1.1 Pogojna verjetnost in neodvisnost

Definicija. Naj boBdogodek sP(B)>0. POGOJNA VERJETNOST dogodka A glede na Bje

 $P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$

Vprašanje 5. Kaj je pogojna verjetnost?

Primer (Bertrandov paradoks). Imamo tri škatle. V prvi sta dva zlatnika, v drugi zlatnik in srebrnik, in v zadnji dva srebrnika. Izberemo eno škatlo tako, da ima vsaka verjetnost 1/3. Iz izbrane škatle tedaj naključno izberemo kovanec. Definiramo dogodka A, drugi kovanec v škatli je zlatnik, in B, izbrani kovanec je zlatnik. Z izpisom izidov izračunamo $P(A \mid B) = 2/3$.

Definicija. Družina dogodkov $\{H_1, \ldots, H_n, \ldots\}$ je PARTICIJA Ω , če je njihova unija enaka Ω in če so paroma disjunktni.

Vprašanje 6. Kaj je družina dogodkov? Izpelji formulo za popolno verjetnost.

Odgovor: Za definicijo glej zgoraj. Naj bo A dogodek. Računamo

$$P(A) = P(A \cap \Omega)$$

$$= P(A \cap \bigcup_{i} H_{i})$$

$$= P(\bigcup_{i} A \cap H_{i})$$

$$= \sum_{i} P(A \cap H_{i})$$

$$= \sum_{i} \frac{P(A \cap H_{i})}{P(H_{i})} P(H_{i})$$

$$= \sum_{i} P(A \mid H_{i}) P(H_{i}).$$

Če je $P(H_i) = 0$, lahko člen izpustimo.

4.1.2 Neodvisnost dogodkov

Definicija. Dogodki $\{A_i\}_{i\in I}$ so NEODVISNI, če za vsako končno poddružino A_1,A_2,\ldots,A_n velja

$$P(A_1 \cap \ldots \cap A_n) = P(A_1) \ldots P(A_n).$$

Vprašanje 7. Kdaj so dogodki neodvisni?

Definicija. Družina dogodkov $\mathcal{P} = \{A_1, \dots, A_n\}$ je π -SISTEM, če za vsaka $A_i, A_j \in \mathcal{P}$ velja $A_i \cap A_j \in \mathcal{P}$.

Opomba. Če π -sistemu dodamo \varnothing in Ω , spet dobimo π -sistem.

Izrek. Če je $\mathcal{P} = \{B_1, \dots, B_n\}$ π -sistem in je A neodvisen od vseh B_k , je A neodvisen od vseh dogodkov, ki jih lahko sestavimo iz dogodkov v \mathcal{P} s komplementiranjem, preseki in unijami.

Dokaz. S preprostim izračunom lahko pokažemo, da če je A neodvisen od dogodkov C_1, \ldots, C_m , ki so vsi disjunktni od A, je A neodvisen tudi od njihove unije. Poleg tega opazimo, da so vsi dogodki, ki jih sestavimo v izreku, končne unije dogodkov $B_1^* \cap \ldots \cap B_m^*$, kjer je B_i^* bodisi enak B_i bodisi B_i^c .

V luči teh ugotovitev je dovolj dokazati, da je A neodvisen od vsakega dogodka $B_1^* \cap \ldots \cap B_m^*$. Če izberemo vse dogodke, kjer ni komplementa, je presek v \mathcal{P} , zato jih lahko nadomestimo z enim samim. Brez škode za splošnost se torej omejimo na dogodke oblike $B_1^* \cap \ldots \cap B_m^* \cap B_{m+1}$. Velja

$$P\bigg(A\cap \left(\bigcup_i B_i\right)^{\mathsf{c}}\cap B_{m+1}\bigg) = P(A\cap B_{m+1}) - P\bigg(\left(\bigcup_i B_i\right)\cap A\cap B_{m+1}\bigg)\,,$$

kjer smo uporabili pomožni sklep $P(A \cap B^c) = P(A) - P(A \cap B)$, ki ga izpeljemo iz dejstva $P(A) = P(A \cap B) + P(A \cap B^c)$. Zgornji izraz je nadalje enak

$$P(A)P(B_{m+1}) - P\left(\bigcup_{i} A \cap B_i \cap B_{m+1}\right),$$

ker sta A in B_{m+1} neodvisna. Drugi člen razvijemo po formuli za vključitve in izključitve in dobimo

$$P(A)P(B_{m+1}) - \sum_{i} P(A \cap B_i \cap B_{m+1}) + \sum_{i} P(A \cap B_i \cap B_j \cap B_{m+1}) - \ldots + (-1)^m P(A \cap B_1 \cap \ldots \cap B_{m+1}).$$

V vseh členih dobimo presek A z dogodkom v \mathcal{P} , torej lahko izpostavimo P(A);

$$P(A)\left(P(B_{m+1})-\sum_{i}P(B_{i}\cap B_{m+1})+\ldots\right).$$

V drugem členu produkta smo dobili razvoj dogodka po formuli za vključitve in izključitve, ki ga lahko skrčimo v

$$P(A)\left(P(B_{m+1})-P\left(\bigcup_{i}B_{i}\cap B_{m+1}\right)\right).$$

Nazadnje še uporabimo zgornji sklep v drugo smer in dobimo

$$P(A)P\left(B_{m+1}\left(\bigcup_{i}B_{i}\right)^{c}\right),$$

kar zaključi dokaz.

4.2 Slučajne spremenljivke in porazdelitve

Definicija. Slučajna spremenljivka X je funkcija $\Omega \to \mathbb{R}$, da je za a < b množica $X^{-1}((a,b])$ dogodek v σ -algebri dogodkov \mathcal{F} .

Opomba. Ekvivalentno definicijo dobimo, če namesto polodprtih intervalov vzamemo odprte ali zaprte. Izbiro je predpisal ISO standard.

Opomba. Funkcija sama po sebi je popolnoma deterministična, naključna je izbira argumenta.

Definicija. Slučajna spremenljivka je DISKRETNA, če je njena zaloga vrednosti števna ali končna množica.

Definicija. Porazdelitev diskretne slučajne spremenljivke X z vrednostmi $(x_i)_i$ je dana z verjetnostmi $P(X^{-1}(x_i))$.

Vprašanje 8. Definiraj slučajne spremenljivke. Kdaj je slučajna spremenljivka diskretna? Kaj je porazdelitev?

Obstaja nekaj standardnih diskretnih porazdelitev.

Primer (Hipergeometrijska porazdelitev). Imamo posodo z B belimi in R rdečimi kroglicami. Označimo N=B+R in naključno izberemo $n\leq N$ kroglic tako, da so vse podmnožice enako verjetne. Če z X označimo število izbranih belih kroglic, dobimo slučajno spremenljivko. Za $\max\{0, n-R\} \leq k \leq \min\{n, B\}$ je

$$P(X = k) = \frac{\binom{B}{k} \binom{R}{n-k}}{\binom{N}{k}}.$$

Na kratko označimo $X \sim \text{HiperGeom}(n, B, N)$.

Vprašanje 9. Opiši hipergeometrijsko porazdelitev.

Primer (Binomska porazdelitev). Kovanec z maso m vržemo n-krat zaporedoma, pri čemer so vsi meti medsebojno neodvisni, verjetnost grba pa je $p \in (0,1)$. Naj bo X število grbov v teh n metih. Tedaj za $k=0,\ldots,n$ velja

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Označimo $X \sim \text{Bin}(n, p)$.

Vprašanje 10. Opiši binomsko porazdelitev.

Primer (Geometrijska porazdelitev). Naj bo X število metov kovanca, potrebnih, da pade prvi grb. Pri tem so meti neodvisni, kovanec pade na grb z verjetnostjo p. Možne vrednosti za X so vsi $k \in \mathbb{N}$, velja

$$P(X = k) = (1 - p)^{k-1}p.$$

Na kratko označimo $X \sim \text{Geom}(p)$.

Vprašanje 11. Opiši geometrijsko porazdelitev.

Primer (Negativna binomska porazdelitev). Mečemo kovanec in čakamo na m grbov; naj bo X število potrebnih metov. Možne vrednosti X so tedaj $k=m,m+1,\ldots$, pri čemer velja

$$P(X = k) = \binom{k-1}{m-1} p^m (1-p)^{k-m}.$$

Oznaka je $X \sim \text{NegBin}(m, p)$.

Vprašanje 12. Opiši negativno binomsko porazdelitev.

Definicija. Pochhammerjev simbol $(a)_n$ je definiran kot

$$(a)_n = a(a+1)\dots(a+n-1).$$

Opomba. Izračunamo ga lahko tudi kot

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}.$$

Primer (Poissonova porazdelitev). Oglejmo si dogajanje binomske porazdelitve, ko velja $np = \lambda$ konstanta, in ko $n \to \infty$. Tedaj

$$\lim_{n\to\infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k} = \lim_{n\to\infty} \frac{\lambda^k}{k!} \frac{n(n-1)\dots(n-k+1)}{n^k} \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-k} = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Če je za $k = 0, 1, \dots$ verjetnost

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!},$$

pravimo, da ima X Poissonovo porazdelitev, in označimo $X \sim Po(\lambda)$.

Vprašanje 13. Opiši Poissonovo porazdelitev.

Definicija. Porazdelitev zvezne slučajne spremenljivke je podana z verjetnostmi $P(X \in (a, b])$ za a < b.

Opomba. Pogosto želimo izračunati $P(X \in A)$, kjer $A \subseteq \mathbb{R}$ ni interval. V tem primeru lahko verjetnost izračunamo, če je A sestavljena iz števnih unij, števnih presekov in komplementov polodprtih intervalov. Taki družini pravimo BORELOVE MNOŽICE, in jo označimo z $B(\mathbb{R})$. Tehnično so to najmanjša σ-algebra na \mathbb{R} , ki vsebuje vse polodprte intervale.

Definicija. Slučajna spremenljivka X ima ZVEZNO PORAZDELITEV, če obstaja nenegativna funkcija $f_X : \mathbb{R} \to [0, \infty)$, da je

$$P(X \in (a,b]) = \int_a^b f_X(x)dx.$$

Funkciji f_X pravimo GOSTOTA PORAZDELITVE.

Vprašanje 14. Definiraj zvezno porazdelitev in gostoto porazdelitve.

Primer (Normalna porazdelitev). Pravimo, da ima X normalno porazdelitev s parametroma μ in σ^2 , če je gostota enaka

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Pri tem je σ razdalja od μ do prevoja, μ pa središče porazdelitve.

Vprašanje 15. Opiši normalno porazdelitev.

Primer (Eksponentna porazdelitev). Pravimo, da ima X eksponentno porazdelitev s parametrom λ , če velja

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$

Označimo z $X \sim \exp(\lambda)$.

Primer (Gama porazdelitev). Slučajna spremenljivka Xima gama porazdelitev s parametroma $a,\lambda>0$, če je gostota enaka

$$f_X(x) = \begin{cases} \frac{\lambda^a}{\gamma(a)} x^{a-1} e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Oznaka: $X \sim \Gamma(a, \lambda)$.

Primer (Enakomerna porazdelitev). Predvidljivo je

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b, \\ 0 & \text{sicer.} \end{cases}$$

Oznaka: $X \sim U(a, b)$.

Primer (Beta porazdelitev). Spremenljivka X ima beta porazdelitev, če je

$$f_X(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & 0 < x < 1, \\ 0 & \text{sicer.} \end{cases}$$

Oznaka: $X \sim \text{Beta}(a, b)$.

Vprašanje 16. Opiši eksponentno, gama, enakomerno in beta porazdelitev.