On Generalizing Permutation-Based Representations for Approximate Search

Lucia Vadicamo, Claudio Gennaro, Giuseppe Amato Institute of Information Science and Technologies (ISTI), CNR, Pisa, Italy

Background: Permutation-based methods

- Data objects are represented as **permutations** of a finite set of integers: $\Pi_o = [i_1, ..., i_N], i_k \in \{1, ..., N\}$
- Similarity queries are executed in the permutation space
- Permutations can be **efficiently indexed and searched** (e.g., using inverted files)

Our generalization: Permutations induced by a space transformation f

Def. The *permutation representation* of an object $o \in (D, d)$ induced by the function $f:(D, d) \to \mathbb{R}^N$ is the sequence $\Pi_o^f = [\pi_1, ..., \pi_N]$ that lists the *permutants* $\{1, ..., N\}$ in an order such that $\forall i \in \{1, ..., N-1\}$

$$f(o)_{\pi_i} < f(o)_{\pi_{i+1}}$$
 or $[f(o)_{\pi_i} = f(o)_{\pi_{i+1}}] \land [\pi_i < \pi_{i+1}]$

Permutants: 1 2 3 4 5 2 1 3 5 4
$$o \in (D,d) \rightarrow f(o) = [0.3,0.1,0.4,2.4,1.1] \in \mathbb{R}^N \rightarrow sort(f(o)) = [0.1,0.3,0.4,1.1,2.4] \rightarrow \Pi_o = [2,1,3,5,4]$$

 \succ novel permutation-based representations can be defined (assuming a suitable $f:(D,d) \to \mathbb{R}^N$ is used!)

Pivot Pair Permutations

Basic idea using 2 pivots:

PP-Perms: best trade-off between recall, search cost and the cost for computing the permutations

Future work: what properties should a function $f:(D,d) \to \mathbb{R}^N$ satisfy to produce good permutations for approximate search? Can we learn f?

Search Cost (MB), (log scale)

Clustered Euclid30

Gaussian Euclid30