2024 秋数值代数-实验报告 #5

姓名: 李奕萱 学号: PB22000161

2024年11月24日

运行环境: win11,vscode,py3

1 实验内容与要求

利用最小二乘法预测未来人口

下表为最近若干年的人口数据

年份	总人口	出生人口	死亡人口	出生率	死亡率	城镇人口	乡村人口	城镇化率
	(亿人)	(万人)	(万人)	(‰)	(‰)	(亿人)	(亿人)	(‰)
2010	13.4091	1588	948	11.84	7.07	6.6978	6.7113	49.9
2011	13.4916	1599	957	11.85	7.09	6.9927	6.4989	51.8
2012	13.5922	1630	966	11.99	7.11	7.2175	6.3747	53.1
2013	13.6726	1635	969	11.96	7.09	7.4502	6.2224	54.5
2014	13.7646	1683	974	12.23	7.08	7.6738	6.0908	55.8
2015	13.8326	1655	975	11.96	7.05	7.9302	5.9024	57.3
2016	13.9232	1786	977	12.83	7.02	8.1924	5.7308	58.8
2017	14.0011	1723	986	12.31	7.04	8.4343	5.5688	60.2
2018	14.0541	1523	993	10.84	7.07	8.6433	5.4108	61.5
2019	14.1008	1465	998	10.39	7.05	8.8426	5.2582	62.7
2020	14.1212	1202	997.6	8.51	7.06	9.022	5.0992	63.9
2021	14.1260	1062	1014	7.52	7.18	9.1425	4.9835	64.7
2022	14.1175	956	1041	6.77	7.37	9.2071	4.9104	65.22
2023	14.1000	902	1110	6.40	7.87	9.3267	4.7733	66.15

实验内容:

利用最小二乘法,分别构造三次多项式和五次多项式,去拟合以上人口数据,并预测2024,2030,以及2040年年底的**总人口**(精确到小数点后 3 位,以**亿**为单位)和出生人口(精确到小数点后 1 位,以**万**为单位)。

实验要求:

- 1. 请画出图(总人口和出生人口变化趋势)和表。
- 2. 分析并比较两种拟合方法的优劣;结合国情实际,你觉得哪种预测结果更靠谱更合理。

2 计算结果

预测年份	总人口(亿人)3次	出生人口(万人)3次	总人口(亿人)5次	出生人口(万人)5次
2024	14.036	612.7	14.320	1164.2
2030	13.051	-932.8	14.704	1264.5
2040	7.915	-4567.2	15.455	2156.5

3 算法分析

三次拟合多项式:

优点:

- 模型简单: 三次多项式模型复杂度较低,可以避免过拟合。
- 稳定性高: 适合拟合数据量较少且趋势较平稳的情况,能够捕捉总体变化趋势。
- 易于解释: 三次曲线常用于描述缓慢变化的非线性趋势,符合人口增长的长期特性。

缺点:

- 局部拟合能力弱: 三次多项式可能无法准确刻画数据的短期波动或复杂变化。
- 预测精度有限:对于远期预测,三次多项式容易出现偏差。

次拟合多项式:

优点:

- 灵活性强: 五次多项式能更好地拟合复杂的非线性变化,特别是数据点多时,可以捕捉细微波动。
- 拟合误差低: 拟合时残差较小,能够准确描述现有数据。

缺点:

- 过拟合风险: 五次多项式可能过度关注现有数据的局部特征,导致模型在新数据上的泛化能力差。
- 模型复杂性高: 高次项的引入可能导致远期预测出现不合理的剧烈变化, 违背实际增长规律。
- 易受边界影响:对边界点的波动较为敏感,可能导致预测结果偏差较大。

4 结合国情实际的分析

中国人口增长现状

• 总人口:

近年来,中国人口增速放缓,受出生率持续下降影响,总人口增速趋于零甚至开始负增长。人口增长符合长期的缓慢变化趋势,过于复杂的模型(如五次多项式)可能会导致预测偏离实际。

• 出生人口:

出生率明显下降,尤其在政策调整和社会经济发展的影响下,呈现波动性减少趋势。三次多项式可以反映总体下降趋势,而五次多项式可能会过度拟合导致不合理波动。

哪种方法更靠谱?三次多项式更靠谱:三次多项式更能反映总人口和出生人口随时间的平稳变化趋势。由于高次模型(如五次多项式)容易因局部波动或边界效应导致预测值偏离实际,而中国的人口变化趋势较为平稳,因此三次多项式更适合作为人口数据的长期预测模型。

5 实验小结

结果对比

• 拟合效果:

三次多项式模型在拟合精度上稍逊于五次多项式,但在总体趋势的捕捉上表现良好。五次多项式模型拟合残差更小,但容易受到边界点的影响,远期预测不稳定。

• 预测结果合理性:

三次多项式预测结果更符合中国人口增长的现实趋势,尤其在考虑到未来的低出生率和老龄化趋势时, 其预测结果更具参考价值。五次多项式的远期预测波动较大,可能出现不切实际的结果。

实验结论

- 三次多项式更适合实际应用,能够提供稳定且合理的人口趋势预测,尤其适用于长期政策制定和研究分析。
- 五次多项式可作为补充分析工具,在短期预测或研究数据局部变化时具有一定优势,但需注意避免过拟合。