JUSTIFIQUEU TOTES LES RESPOSTES

1. (3 punts)

- (a) Siguin G un graf d'ordre n i mida m, i a = xy una aresta de G. Doneu l'ordre i la mida dels grafs G x, G a, $G \{x, y\}$ i G^c en funció de n, m i dels graus dels vèrtexs (no cal justificar-ho).
- (b) Definiu graf bipartit i doneu-ne una caracterització.
- (c) Demostreu que si tots els vèrtexs d'un graf G tenen grau almenys 2, aleshores G conté algun cicle.
- 2. (4 punts) Considerem dos grafs $G_1 = (V_1, A_1)$ i $G_2 = (V_2, A_2)$ d'ordres n_1 i n_2 respectivament, tals que $V_1 \cap V_2 = \emptyset$, i siguin $w, w' \notin V_1 \cup V_2$. Definim el graf G = (V, A) on:

$$V = V_1 \cup V_2 \cup \{w, w'\}$$

$$A = A_1 \cup A_2 \cup \{wv : v \in V_1 \cup V_2\} \cup \{w'v : v \in V_1 \cup V_2\}$$

És a dir, G s'obté a partir de $G_1 \cup G_2$ afegint dos vèrtexs addicionals w, w' adjacents a tots els vèrtexs de G_1 i a tots els vèrtexs de G_2 .

- (a) Calculeu el radi, el diàmetre i els vèrtexs centrals de G. Determineu quantes arestes pont té G.
- (b) Si G_1 i G_2 són hamiltonians, podem concloure que G és hamiltonià?
- (c) Digueu quines condicions han de complir G_1 i G_2 per tal que G sigui eulerià.
- (d) Suposem que G_1 i G_2 són grafs complets d'ordre 4 i que etiquetem els vèrtexs de G_1 de 1 a 4, i els vèrtexs de G_2 de 5 a 8. Dibuixeu els arbres generadors que s'obtenen aplicant els algorismes BFS i DFS començant pel vèrtex w si considerem l'ordenació w, w', 1, 2, 3, 4, 5, 6, 7, 8 dels vèrtexs de G.
- 3. (3 punts) Considerem un graf G d'ordre $n \geq 3$ i mida m on cada vèrtex té grau k ó k+3. Sigui r el nombre de vèrtexs de grau k.
 - (a) Comproveu que $r = \frac{(k+3)n-2m}{3}$. Deduïu que si G és un arbre, aleshores $r = \frac{2n+2}{3}$ i n+1 ha de ser múltiple de 3.
 - (b) Demostreu que si G és un arbre, aleshores el subgraf induït pels vèrtexs de grau almenys 2 és connex.
 - (c) Trobeu, llevat d'isomorfismes, tots els arbres d'ordre 10 i d'ordre 14 tals que cada vèrtex té grau k ó k+3.

1-4-2019

1. (a) Siguin G un graf d'ordre n i mida m, i a = xy una aresta de G. Doneu l'ordre i la mida dels grafs G - x, G - a, $G - \{x,y\}$ i G^c en funció de n, m i dels graus dels vèrtexs (no cal justificar-ho).

	G-x	G-a	$G - \{x, y\}$	G^c
ordre	n-1	n	n-2	n
mida	n-g(x)	m-1	m - g(x) - g(y) + 1	$\frac{n(n-1)}{2}-m$

(b) Definiu graf bipartit i doneu-ne una caracterització.

Definició. Un graf G = (V, A) és bipartit si existeixen dos conjunts V_1 i V_2 no buits tals que $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, i tota aresta té un extrem en V_1 i l'altre en V_2 .

Caracterització. Un graf és bipartit si i només si té ordre almenys 2 i no conté cicles de longitud senar.

(c) Demostreu que si tots els vèrtexs d'un graf G tenen grau almenys 2, aleshores G conté algun cicle.

 $Demostració\ I.$ Suposem que G no té cap cicle. Aleshores, G és un bosc. Considerem un component connex qualsevol de G. Si el component connex té només un vèrtex, aleshores G conté un vèrtex de grau 0. Si té almenys dos vèrtexs, el component connex és un arbre d'ordre almenys dos i per tant té almenys dues fulles. En qualsevol cas, es contradiu la hipòtesi de que G té tots els vèrtexs de grau almenys 2.

Demostració II. Suposem que G = (V, A) té ordre n.

Sigui k la longitud màxima d'un camí en G. Observem que $1 \le k \le n-1$, ja que per una banda, el graf G no pot ser el graf nul per tenir vèrtexs de grau almenys 2 i una sola aresta és un camí de longitud 1, i per altra banda, els camins tenen longitud màxima n-1, ja que no es poden repetir vèrtexs.

Considerem un camí de longitud k en G, $x_0x_1 \dots x_k$. El vèrtex x_0 no pot ser adjacent a un vèrtex $y \in V \setminus \{x_1, x_2, \dots, x_k\}$, ja que en cas contrari, $yx_0x_1 \dots x_k$ seria un camí de longitud k+1, i això contradiria que el camí tingués longitud màxima k. Però x_0 té grau almenys 2, per tant, és adjacent a x_1 i a algun altre vèrtex x_j de $\{x_2, \dots, x_k\}$. Aleshores, G té almenys un cicle, x_0, x_1, \dots, x_jx_0 .

Demostració III. Trobarem un cicle constructivament.

Com que $g(v_0) \ge 2$, hi ha un vèrtex v_1 adjacent a v_0 ; igualment, com que $g(v_1) \ge 2$, hi ha un altre vèrtex $v_2 \ne v_0$ adjacent a v_1 . Per tant, hem construït un camí $v_0v_1v_2$. De nou, $g(v_2) \ge 2$. Poden passar dues coses: o bé v_2 és adjacent a v_0 i acabem perquè hem trobat un cicle, o bé v_2 és adjacent a un vèrtex v_3 diferent de v_0 i de v_1 . En aquest cas, continuem de la mateixa manera, o bé trobem un cicle, o bé podem allargar el camí. Fem l'argument en general: suposem que hem construït un camí $v_0v_1 \dots v_i$. El vèrtex

 v_i té grau ≥ 2 . Si v_i és adjacent a algun dels vèrtexs $v_k \in \{v_0, v_1, \ldots, v_{i-2}\}$ el graf conté un cicle $v_k v_{k+1} \ldots v_i v_k$; altrament, hi ha un vèrtex v_{i+1} tal que $v_0 v_1 \ldots v_i v_{i+1}$ és un camí. Com que el graf és finit, no pot ser que estiguem en la segona situació per a tot $i \geq 2$, per tant en algun moment trobarem un cicle.

2. Considerem dos grafs $G_1 = (V_1, A_1)$ i $G_2 = (V_2, A_2)$ d'ordres n_1 i n_2 respectivament, tals que $V_1 \cap V_2 = \emptyset$, i siguin $w, w' \notin V_1 \cup V_2$. Definim el graf G = (V, A) on:

$$V = V_1 \cup V_2 \cup \{w, w'\}$$

$$A = A_1 \cup A_2 \cup \{wv : v \in V_1 \cup V_2\} \cup \{w'v : v \in V_1 \cup V_2\}$$

És a dir, G s'obté a partir de $G_1 \cup G_2$ afegint dos vèrtexs addicionals w, w' adjacents a tots els vèrtexs de G_1 i a tots els vèrtexs de G_2 .

(a) Calculeu el radi, el diàmetre i els vèrtexs centrals de G. Determineu quantes arestes pont té G.

El vèrtex w té excentricitat 2 en G, ja que per definició de G, d(w,x) = 1, si $x \in V_1 \cup V_2$ i d(w,w') = 2, ja que w no és adjacent a w' en G, però wxw' és un camí en G per a qualsevol vèrtex $x \in V_1 \cup V_2$. Anàlogament, per simetria, w' té excentricitat 2 en G. Si $x \in V_1 \cup V_2$, aleshores d(x,w) = d(x,w') = 1, i $d(x,y) \le 2$ per a qualsevol vèrtex $y \in V_1 \cup V_2$ diferent de x, ja que xwy és un camí en G. A més, si $x \in V_1$ i $y \in V_2$, aleshores d(x,y) = 2. Per tant, els vèrtexs de $V_1 \cup V_2$ tenen excentricitat 2 en G. Per tant, e(u) = 2, per a tot vèrtex u de G i consegüentment, G té radi G0, diàmetre G1 tots els vèrtexs són centrals.

Per altra banda, G no té arestes pont, ja que tota aresta és d'algun cicle. En efecte, si l'aresta és de la forma xw, $x \in V_1$, aleshores és del cicle wxw'yw, per a qualsevol vèrtex $y \in V_2$. Anàlogament, es demostra que les arestes de la forma wy, $y \in V_2$, i de la forma w'z, $z \in V_1 \cup V_2$, són d'algun cicle. Si xy és una aresta de G_1 , aleshores xwyx és un cicle de G. Anàlogament, es demostra que les arestes de G_2 són d'algun cicle.

(b) $Si G_1 i G_2$ són hamiltonians, podem concloure que G és hamiltonià?

Sí. Suposem que $x_1, \ldots, x_{n_1}, x_1$ i $y_1, \ldots, y_{n_2}, y_1$ són cicles hamiltonians de G_1 i de G_2 , respectivament. Aleshores, $w, x_1, \ldots, x_{n_1}, w', y_1, \ldots, y_{n_2}, w$ és un cicle hamiltonià en G.

(c) Digueu quines condicions han de complir G_1 i G_2 per tal que G sigui eulerià.

G és eulerià si i només si G és connex i tot vèrtex té grau parell.

Hem vist al primer apartat que el diàmetre de G és 2, per tant, G és connex.

El grau dels vèrtexs de G és $g(w) = g(w') = n_1 + n_2$ i $g(x) = g_i(x) + 2$, si $x \in V_i$, on g_i denota el grau en el graf G_i . Tots els vèrtexs de G tindran grau parell si, i només si, $n_1 + n_2$ és parell i tots els vèrtexs de $V_1 \cup V_2$ tenen grau parell en el graf corresponent. Per tant, G és eulerià si i només si $n_1 + n_2$ és parell, tot vèrtex de V_1 té grau parell en G_1 i tot vèrtex de V_2 té grau parell en G_2 .

(d) Suposem que G_1 i G_2 són grafs complets d'ordre 4 i que etiquetem els vèrtexs de G_1 de 1 a 4, i els vèrtexs de G_2 de 5 a 8. Dibuixeu els arbres generadors que s'obtenen aplicant els algorismes BFS i DFS començant pel vèrtex w si considerem l'ordenació w, w', 1, 2, 3, 4, 5, 6, 7, 8 dels vèrtexs de G.

A la figura següent teniu el graf G i els arbres generadors obtinguts amb els algorismes BFS i DFS:

- 3. Considerem un graf G d'ordre $n \geq 3$ i mida m on cada vèrtex té grau k ó k+3. Sigui r el nombre de vèrtexs de grau k.
 - (a) Comproveu que $r=\frac{(k+3)n-2m}{3}$. Deduïu que si G és un arbre, aleshores $r=\frac{2n+2}{3}$ i n+1 ha de ser múltiple de 3.

Pel Lema de les Encaixades, sabem que la suma dels graus és dues vegades la mida. Per tant, $2m = \sum_{u \in V(G)} g(u) = kr + (k+3)(n-r)$, ja que hi ha r vèrtexs de grau k i n-r vèrtexs de grau k+3. Si aïllem r d'aquesta igualtat, obtenim $r = \frac{(k+3)n-2m}{3}$. Si G és un arbre d'ordre almenys 3, aleshores G té alguna fulla, per tant, ha de ser k=1. Per altra banda, si G és arbre es compleix m=n-1. Per tant,

$$r = \frac{(k+3)n - 2m}{3} = \frac{(1+3)n - 2(n-1)}{3} = \frac{2n+2}{3}.$$

A més, per ser r enter, 2n+2 ha de ser múltiple de 3. I això és equivalent a que n+1 sigui múltiple de 3.

(b) Demostreu que si G és un arbre, aleshores el subgraf induït pels vèrtexs de grau almenys 2 és connex.

Suposem que x i y són dos vèrtexs del subgraf G' induït pels vèrtexs de grau almenys 2 en G. Per a demostrar que G' és connex, veurem que hi ha almenys un x-y camí en G'.

Per ser G arbre, hi ha un x-y camí en G. Tots els vèrtexs del camí son de G', ja que x i y els hem triat de G' i la resta de vèrtexs del camí tenen grau almenys 2 en G, ja que són adjoents a almenys dos vèrtexs en G. Per tant, el mateix x-y camí de G és també un camí en G'.

4

(c) Trobeu, llevat d'isomorfismes, tots els arbres d'ordre 10 i d'ordre 14 tals que cada vèrtex té grau k ó k+3.

Dels apartats anteriors, deduïm per una banda que no n'hi ha cap d'ordre 10, ja que 10 + 1 no és múltiple de 3.

Per altra banda, els arbres d'ordre 14 amb tots els vèrtexs de grau k o k+3 són arbres amb només vèrtexs de grau 1 i 4 que tenen exactament $r=\frac{2\cdot 14+2}{3}=10$ fulles. També de l'apartat anterior sabem que els 4 vèrtexs restants indueixen un graf connex, o sigui, un arbre d'ordre 4. Els únics arbres d'ordre 4 llevat isomorfismes són T_4 i $K_{1,3}$. Si pengem les 10 fulles als vèrtexs d'aquests dos arbres, tenint en compte que en el arbre inicial aquests quatre vèrtexs tenen grau 4, obtenim els dos arbres de la figura:

