第二章 VerilogHDL 作业题:

1. 是否会产生 latch

哪种写法会产生 latch?

答: a, c 会产生 latch

写法 a, c 中当变量 d 处于某一种 case 时变量 a 或 c 的状态不能同时更新,总有一个变量会保持前一个状态,从而产生 latch

2. 锁存器比寄存器省面积,但为什么在数字芯片设计中通常使用寄存器?

答: 锁存器不利于静态时序分析, 且会导致毛刺传播

```
3
      (20分) module DDFornet(rst,clk,a,b,c,data_out);
                input rst,clk;
                input a,b,c;
                output data out;
                reg data_out;
                reg data_temp;
                always @(posedge clk or negedge rst)
                if(!rst)
                  data temp<=1'b0;
                else
                  data_temp<=a&b&data_out;
                always @(*)
                  data_out=data_temp|c;
                endmodule
                问题:请画出代码对应的电路结构
```

答:

这个题目考察的要点是,要理解 DFF 的电路结构,理解时序逻辑和组合逻辑的描述方法,理解 DFF 存在反馈路径

第三章 电路结构设计作业题

1. 异步 FIF0, 若深度为 8 时, 如何设置指针来保证在跨时钟域传播

时,尽可能地消除亚稳态,请写出具体的指针数值;若深度不是2次幂时,则采用何种方法如何设置其读写指针。

答: 0_000, 0_001, 0_011, 0_010, 0_110, 0_111, 0_101, 0_100 1_100, 1_101, 1_111, 1_110, 1_010, 1_011, 1_001, 1_000

对于任意深度为偶数 N 的 FIFO, 我们可以在对称轴(在除去 MSB 位的情况下, 011 和 111 是对称的, 010 和 110 是对称的)上下取 N/2 个格雷码

比如: 深度为 6 的 FIF0, 读写指针就可设置为 0_000, 0_001, 0_011, (去掉 0_010, 0_110) 0_111, 0_101, 0_100

也可以回答如下文字:

在非 2 次幂深度情况下,格雷码已经不再适用,此时的解决方法通常有:

- 1) 若深度为偶数,可采用最接近的2次幂的格雷码编码,在此基础上修改:
- 2) 深度为一般数值时,可自行设计一种逻辑电路,或者查找表,实现指针每次只跳变一次的功能:
- 3) 以上方法通常在设计层面较为复杂,若无特定需求,可将 FIF0 深度设置为 2 次幂,浪费一些存储空间,来化简控制电路的复杂度。
- 2. 系统时钟 12M (source clock), 分频出来 8K 和 1M 的时钟 (generated clock)。请问这种情况下, 数据从 12M 到 8K 传输和

8K 到 12M 间传输是跨时钟域吗? 为什么?

答:不是,他们来自同一个时钟源,相位和倍数是可控的,所以不属于跨时钟域。

跨时钟域是指时钟来自两个不同的时钟源,相互之间的相位和倍数关系彼此不可控制

3. 若写时钟 50MHz, 读时钟 40MHz, 如果不丢失地将 10 万个数据送入读时钟域下游节点,则 FIF0 深度应设置为多少?

答:将 10万个数据送入 fifo 需要的时间为 10万/50Mhz=2ms 在极端的背靠背情况下,两个突发传输持续发生,中间的盈余数据 需要 fifo 缓存,这就是其最小深度在 2ms 内送出数据 40Mhz*2ms=8 万,所以在读写都是相同位宽的情况下,fifo 的最小深度为 2 万 4.请画出异步复位、同步释放的电路结构

答:

第四章 逻辑综合作业题

请根据下图将design、cell、net、pin、port、reference、clock等填入图1所示的电路框图中。

答: 1. port 2. design 3. net 4. clk 5. pin 6. reference 7. cell 2.

请根据下图回答:

- (1)在逻辑综合中,加哪几条关于延时或时间的约束,能使DC对logicl进行逻辑综合?
- (2)在逻辑综合中,加哪几条关于延时或时间的约束,能使DC对logic2进行逻辑综合?
- (3)在逻辑综合中,加哪几条关于延时或时间的约束,能使DC对logic3进行逻辑综合?

答案:

考察要点:理解 STA 关于 timing path 的划分要求,理解 STA 对时序路径的约束。

不一定把指令写出来(不需要背指令),大概意思对就可以了

- 1、input delay、时钟周期(虚拟时钟)
- 2、时钟周期
- 3、(1) input delay、output delay、时钟周期(虚拟时钟),输出port 的 load

或者(2) input delay、output delay,加上 set_max_delay 约束组合逻辑,以及输出 port 的 load

请根据下图回答问题

- (1) 如何书写TCL指令,查看design当中有没有一个port叫做CLK?
- (2) 如何书写TCL指令,查看design当中所有的port
- (3) 如何书写TCL指令,得到所有方向是input的port
- (4) 请写出图中reference name?
- (5) 请写出图中instance name?

答: 1. get_ports CLK

- 2. get_ports *
- 3. get_ports * -f "direction=in"
- 4. encoder inv regfile
- 5. U1 U2 U3 U4

第五章 静态时序分析作业题

1.

- (1)[10分]请问对于flop2,其建立时间裕量为多少?
- (2)[10分]请问对于flop2,其保持时间裕量为多少?
- 1. T=10 Tcapture=0. 6, Tlaunch=0. 2, Tck2q=0. 65, Tdp=0. 35
 Tsetup<0. 6+10-0. 2-0. 65-0. 35=9. 4 余量: 9. 4-0. 45=8. 95
- 2. Tcapture=0. 6, Tlaunch=0. 2, Tck2q=0. 25, Tdp=0. 15
 Thold<0. 2+0. 25+0. 15-0. 6=0 余量: 0-0. 1=-0. 1

2.

如果把上述电路整体看为一个触发器,请回答如下问题

- (1)[20分]该电路的有效建立时间和保持时间是多少?请写出计算过程。
- A. Tsetup = 4 ns, Thold = 1 ns
- B. Tsetup = 3 ns, Thold = 0 ns
- C. Tsetup = 3 ns, Thold = 1ns
- D. Tsetup = 2 ns, Thold = 0 ns
- (2) [20分]该电路的最高时钟频率为多少?请写出计算过程。
- A. 250 MHz
- B. 80 MHz
- C. 125 MHz
- D. 166.7 MHz
- (3) [10分]该电路的功能与下列哪个触发器相似?[B]
- A. D flip flop with enable
- B. T flip flop
- C. JK flip flop
- D. SR flip flop
- (4) [10分]对于一个同步电路,以下哪个公式可以用于计算最高工作频率?
- A. Max Freq = 1/(Tprop_delay + Tsu + Thold)
- B. Max Freq = 1/(Tprop_delay + Tsu + Tco + Thold)
- C. Max Freq = 1/(Tsu + Tco + Thold + Tclock_skew)
- D. Max Freq = 1/(Tprop_delay + Tsu + Tco + Tclock_skew)
- E. Max Freq = 1/(Tprop_delay + Tsu + Thold + Tco + Tclock_skew)

1. 答: setup=2+2-1=3ns; hold=2-2+1=1ns

2. T>2+4+2=8ns, f=125M

4. D

3.

Please reference the following for the next group of questions

Startpoint: fifo_rd_pd_reg_16_

(rising edge-triggered flip-flop clocked by my_clock)

Endpoint: we_bank_0_reg_2_

(rising edge-triggered flip-flop clocked by my_clock)

Path Group: my_group

Path Type: max

Point	Cap	Trans	Incr	Path	
clock my_clock (rise edge)			0.0000	0.0000	
clock network delay (ideal)			0.0000	0.0000	
fifo_rd_pd_reg_16_/CK (p_SDFFHX4)		0.0000	0.0000	0.0000 r
fifo_rd_pd_reg_16_/Q (p_SDFFHX4)		0.0226	0.0542	0.1166	0.1166 f
obuf_U1904/Y (NAND3BX4)		0.0095	0.0643	0.0915	0.2082 f
obuf U1903/Y (INVX8)	0.0188	0.0450	0.0385	0.2467	-
obuf buf 1 add 524 U14/Y (NAND2X4)				0.0374	
	0.0111		0.0781		
	0.0054	0.0481	0.0294		
obuf U9743/Y (OAI21X4)	0.0067	0.0772	0.0638	0.4554	r
obuf_buf_1_add_524_U57/Y (XNOR2X4)	C	0.0098	0.1071	0.0769).5323 r
DP_OP_248_5346_8_U51/CO0 (AFCSHC	INX2)	0.0037	0.0970	0.1378	0.6702 r
obuf_U9662/Y (MX2X4)	0.0077	0.0382	0.0825	0.7527	r
DP_OP_248_5346_8_U44/S (AFCSHCINX	X4)	0.0075	0.0462	0.1200	0.8726 f
obuf_U9746/Y (INVX6)	0.0174	0.0463	0.0394	0.9120	r
obuf_U1772/Y (NOR2X4)	0.0113	0.0554	0.0294	0.9414	f
U17999/Y (OA22X4)	0.0058	0.0398	0.1128	1.0542 f	•
obuf_U1852/Y (NOR2X4)	0.0116	0.0909	0.0686	1.1228	r
U26782/Y (INVX10)	0.0549	0.0558	0.0538	1.1765 f	
U7011/Y (OA22X4)	0.0092	0.0465	0.0982	1.2747 f	•

U27252/Y (CLKNAND2X2)	0.0057	0.0484	0.0402	1.3149 r
U24494/Y (XOR2X3)	0.0058	0.0531	0.0386	1.3536 f
obuf_U3105/Y (NOR2X4)	0.0056	0.0583	0.0497	1.4033 r
obuf_U3097/Y (NAND2X4)	0.0056	0.0341	0.0329	1.4362 f
obuf_U3094/Y (NOR2X4)	0.0053	0.0534	0.0421	1.4784 r
obuf_U1886/Y (AOI21X4)	0.0157	0.0607	0.0580	1.5364 f
obuf_U1861/Y (NOR3X4)	0.0101	0.1561	0.1036	1.6400 r
U24496/Y (INVX4)	0.0073	0.0442	0.0351	1.6751 f
obuf_U1760/Y (OR2X4)	0.0135	0.0378	0.0731	1.7481 f
obuf_U9462/Y (INVX12)	0.0325	0.0428	0.0358	1.7839 r
U17857/Y (OAI211X4)	0.0062	0.0992	0.0506	1.8345 f
U24495/Y (CLKINVX6)	0.0036	0.0334	0.0188	1.8533 r
we_bank_0_reg_2_/D (p_SDFFRHQX4)		0.033	0.000	00 1.8533 r
data arrival time			1.8533	
clock my_clock (rise edge)			1.8000	1.8000
clock network delay (ideal)			0.0000	1.8000
we_bank_0_reg_2_/CK (p_SDFFRH	QX4)		0.0000	1.8000 r
library setup time			-0.070	1 1.7299
data required time				1.7299
data required time				1.7299
data arrival time			-1	.8533
slack (VIOLATED)				-0.1234

分]根据以下静态时序分析报告回答问题。

- (1) 这个报告是哪个EDA工具产生的? [2分]
- (2) 报告最右侧一列中的"f"和"r"表示什么含义?[2分]
- (3) 该报告描述的是建立时间还是保持时间?
- (4) 该电路能跑的最高时钟频率为多少?[4分]
- (5) 该报告是否能够求出保持时间?[4分]
- (6) 该报告的数据与芯片布局布线之后的数据是否相同?芯片布局布线阶段与DC综合阶段,在处理时钟网络时有何不同?[4分]

1. design compiler 或者 PT

2. f 表示数据下降翻转, r 表示数据上升翻转

- 3. 建立时间
- 4. t=1.8533+0.0701=1.9234ns f=1/t=519.9MHZ
- 5. 不能
- 6. 不同, DC 时时钟网络是理想的, 布局布线后时钟网络有延迟

第六章 作业题

- 1 (100分) 参考ASIC的设计流程,判断如下FPGA硬件开发的陈述是否正确。
 - 1. FPGA的开发代码不需要可综合。
 - 2. FPGA不需要进行静态时序分析。
 - 3. FPGA不需要做时序约束。
 - 4. FPGA不需要检查建立时间和保持时间。
 - 5. FPGA通常也会存在亚稳态的同步问题。
 - 6. FPGA硬件资源无限大。
 - 7. FPGA通常有很对IP核可以调用。
 - 8. PYNQ开发板中,Python程序运行在FPGA的PL部分。
 - 9. FPGA的bit文件可以在不同FPGA开发板之间随意迁移。
 - 10. FPGA完成bit文件下载后,需要使用片内逻辑分析仪来完成debug。
- 1. 错 2. 错 3. 错 4. 错 5. 对 6. 错 7. 对 8. 错 (PS) 9. 错 (芯片不同, 架构不同, 引脚不同) 10. 对; 片内主要是虚拟逻辑分析仪, 片外是真实的逻辑分析仪。