### Master of Aerospace Engineering - Research Project

# HALE AEROECODESIGN

Progress Presentation – 20/05/2020

Víctor Manuel GUADAÑO MARTÍN

Tutors: J. Morlier & E. Duriez



### **OUTLINE**

- GOAL OF THE PROJECT
- MILESTONES OF THE PROJECT
- RESULTS
- CONCLUSION

## GOAL OF THE PROJECT

- Refine a modified version of OpenAeroStruct presented in [1]
- MDO of a HALE to minimize the CO<sub>2</sub> footprint
  - MD0 ➤ Multidisciplinary Design Optimization
  - HALE ➤ High-Altitude Long Endurance Drone
- Compromise solution between:
  - Convergence of the optimization > Efficiency
  - Complexity of the model ➤ Realistic



Fig. 1: PHASA-35 HALE

<sup>[1]</sup> E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.

## MILESTONES OF THE PROJECT

- Task 1: Add a constraint on the wing surface
- Task 2: Fix some design variables
- Task 3: Turn material function into OpenMDAO component ✓
- Task 4: Set different materials for different parts of the wing
- Task 5: Introduce a more complex buckling model
- Task 6: Add engines as point masses √
- Task 7: Model a two dimensional discrete gust

#### ADD A CONSTRAINT ON THE WING SURFACE

- Reduce snowball effect > Prevent the optimization from diverging
  - Maximum wing surface threshold ➤ 200 m<sup>2</sup>

### FIX SOME DESIGN VARIABLES

- Make the problem more computationally efficient
  - Fix some optimization variables > tapper ratio, root chord...
  - Finally not used to compare the results in a better way

# TURN MATERIAL FUNCTION INTO OPENMDAO COMPONENT

- Component 
   More efficient for gradient-based optimization
- Replace the existing function by the component
- Access to material properties database and interpolate:
  - Young's modulus (E)
- Failure strength

Shear modulus (G)

- CO<sub>2</sub> emissions
- Get to know the OpenMDAO methodology

#### ADD ENGINES AS POINT MASSES

- Two symmetrical engines > Two symmetrical point masses
- New design variable 
   Engines location
- Same mass as FB single-boom HALE [2]
- Reduce the bending moment on the wing due to lift



Fig. 2: Bending moment distribution along wing span

[2] D. Colas, N. H. Roberts, and V. S. Suryakumar, "Hale multidisciplinary design optimization part i: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

### **RESULTS**

Table 1: Design variable values for validation case

| Variable                   | Units | HALE of [1] | FB HALE [2] | Results w/o engines | Results w/<br>engines |
|----------------------------|-------|-------------|-------------|---------------------|-----------------------|
| Span                       | m     | 97.5        | -           | 93.5                | 73.7                  |
| Root chord                 | m     | 1.4         | -           | 1.4                 | 1.4                   |
| Taper ratio                | -     | 0.32        | -           | 0.33                | 0.30                  |
| Total mass                 | kg    | 378         | 320         | 435                 | 392                   |
| Wing surface               | m²    | 86.6        | 71.8        | 83.4                | 64.3                  |
| Aspect ratio               | -     | 94          | 29          | 105                 | 84                    |
| $C_L^cruise$               | -     | 1.31        | 1.33        | 1.56                | 1.83                  |
| $(C_L^{3/2}/C_D)^{cruise}$ | -     | 44.1        | 40.1        | 57.8                | 75.3                  |

<sup>[1]</sup> E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.

<sup>[2]</sup> D. Colas, N. H. Roberts, and V. S. Suryakumar, "Hale multidisciplinary design optimization part i: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

### **RESULTS**

Table 2: Performance values of the optimization for validation

| Performance  | Units | HALE of [1] | Results w/o<br>engines | Results w/<br>engines |
|--------------|-------|-------------|------------------------|-----------------------|
| Cases        | -     | 24          | 24                     | 24                    |
| Convergences | -     | 7           | 12                     | 9                     |
| Time         | h     | 2           | 3                      | 2                     |

<sup>[1]</sup> E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.

### CONCLUSIONS

- Without engines 
   Better convergence and better results than in [1]
- With engines 
   — Worse convergence than without engines but better results
- Same differences with respect to [2] as in [1]
   Very high aspect ratio
- Need for 1-cosine gust and more complex buckling model

- [1] E. Duriez and J. Morlier, "Hale multidisciplinary design optimization with a focus on eco-material selection," ISAE Supaero, 2020.
- [2] D. Colas, N. H. Roberts, and V. S. Suryakumar, "Hale multidisciplinary design optimization part i: Solar-powered single and multiple-boom aircraft," in 2018 AviationTechnology, Integration, and Operations Conference, p. 3028, 2018.

# THANKS FOR YOUR ATTENTION!

# ANY QUESTION?