Análise Estatística de dados Inteligência Artificial

AULA 07 — PROBABILIDADE

Arturo Forner-Cordero Larissa Driemeier

PROGRAMA DO CURSO

Aula	Data	Conteúdo da Aula
01	27/02	Aula Inaugural
02	05/03	Introdução ao Curso. Noções de Álgebra Linear , Geometria Analítica Parte I
03	12/03	Noções de Álgebra Linear , Geometria Analítica Parte II
04	19/03	Decomposição de valor singular (SVD)
05		Otimização: derivadas, derivadas parciais (operadores gradiente, Jacobiano, Hessiano e Laplaciano), algoritmos de gradiente
06	02/04	Variáveis independentes e não independentes. Estatística Descritiva e Indutiva. Definições de medidas de dispersão e tendência central.
07	09/04	Modelos de probabilidade l
08	16/04	Modelos de probabilidade ll
09	23/04	Teoria da Informação
10	30/04	Modelo de Markov Modelo de Markov oculto.

BENJAMIN FRANKLIN ONCE SAID THAT TWO THINGS IN LIFE ARE CERTAIN: DEATH AND TAXES.

The remaining parts of life are least predictable.

RELEMBRANDO...

Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza. Dessa maneira, ela pode ser aferida, analisada e usada para a realização de previsões ou para a orientação de intervenções.

É a probabilidade que torna possível lidar de forma racional com problemas envolvendo o imprevisível.

QUAL É A VANTAGEM DA PROBABILIDADE E ESTATÍSTICA?

PECE Programa de Educação Continuada Escola Politécnica da USP

Uma de suas aplicações mais importantes é a tomada de decisão sob incerteza.

Quando decidimos sobre uma ação, estamos apostando que concluir a ação nos deixará melhor do que se não a tivéssemos feito.

Mas as apostas são inerentemente incertas, então como você decide se vai continuar com a ação ou não?

Implícita ou explicitamente, você estima uma probabilidade de sucesso - e se a probabilidade for maior que algum limite, você avança.

ANÁLISE ESTATÍSTICA DE DADOS

ONDE QUEREMOS CHEGAR HOJE?

Portanto, ser capaz de estimar com precisão essa probabilidade de sucesso é fundamental para tomar boas decisões.

Embora o acaso sempre tenha um papel importante no resultado, se você puder unir consistentemente as probabilidades a seu favor, deverá se sair muito bem ao longo do tempo.

ALGUMAS DEFINIÇÕES

O que é variável aleatória? Como se define a probabilidade? O que é um modelo probabilístico?

O que é um evento?

VARIÁVEL ALEATÓRIA

Quando os resultados de uma variável são determinados pelo acaso, trata-se de uma variável aleatória.

"Uma variável aleatória é uma função com valores numéricos, determinados por fatores de chance."

Stevenson, W. (Estatística aplicada à administração)

EXEMPLOS

Selecionando-se uma pessoa de um município através de sorteio, o **peso** é uma **variável aleatória**.

Sorteando-se um setor de uma empresa, o número de funcionários é uma variável aleatória.

Lança-se uma moeda várias vezes e verifica-se a face obtida (cara ou coroa):

- Face obtida em cada jogada variável qualitativa não é uma variável aleatória.
- Número de caras variável aleatória associada à variável qualitativa estudada.

INTRODUÇÃO AO ESTUDO DE PROBABILIDADE

Suponha que existam n possíveis resultados, igualmente prováveis de um experimento. A probabilidade de que um evento A ocorra é igual ao número de maneiras que o evento pode ocorrer, f, dividido pelo número de possíveis resultados, n,

$$P(A) = \frac{f}{n}$$

1. Qual a probabilidade de ocorrência da face 2 quando se joga um dado?

PEGE Programa de Educação Continuada

Escola Politécnica da USP

- 2. Qual a probabilidade de ocorrência de número par quando se joga um dado?
- 3. Você e seu amigo tiram a sorte com cara ou coroa para quem vai pagar o lanche hoje. Você escolhe cara. Qual é a probabilidade de você ser escolhido para pagar?

MODELO PROBABILÍSTICO

Modelo de probabilidade ou probabilístico, ou ainda distribuição de probabilidades indica, para uma variável aleatória, quais são os resultados que podem ocorrer e qual é a probabilidade de cada resultado acontecer.

MODELO PROBABILÍSTICO

Todo fenômeno ou experimento que envolva um elemento aleatório tem seu modelo probabilístico determinado, quando estabelecemos:

Um espaço amostral, Ω

No caso de uma variável discreta, o espaço amostral é a enumeração de todos os resultados possíveis do experimento:

$$\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}$$

Cada resultado possível ω_i é um ponto amostral.

Um exemplo simples é jogar uma moeda, enquanto observa se sai cara ou coroa. Um exemplo onde a variável é real é a observação de uma temperatura.

Uma probabilidade, $P(\omega_i)$

Para cada ponto amostral, podemos considerar a probabilidade como uma função que recebe um elemento do espaço amostral e mapeia o resultado para um número real não negativo e menor ou igual a l.

EVENTO

Em teoria das **probabilidades**, um **evento é um** conjunto de resultados (um subconjunto do espaço amostral) ao qual **é** associado um valor de **probabilidade**.

Por exemplo, quando lançamos dados, o conjunto de todos os números pares é um evento.

Portanto, se lançarmos os dados e sair o número 4, dizemos que o evento ocorreu.

Modelo Probabilístico Observação direta

Modelo Teórico

OBSERVAÇÃO DIRETA

- Joga-se o dado n vezes e conta-se o número f_i de vezes em que ocorre cada face i, i=1,2,3,4,5,6.
- As proporções f_i/n determinam a distribuição de freqüências do fenômeno.

Se jogarmos o dado um número n' vezes teremos outra distribuição de frequências, mas com um padrão que esperamos ser muito próximo ao anterior.

MODELO TEÓRICO

Mesmo sem observar diretamente o fenômeno é possível criar um modelo teórico, que reproduza bem a distribuição das frequências que se verifica quando se observa o próprio fenômeno.

Por exemplo, no lançamento de um dado, as suposições teóricas são:

- só podem ocorrer 6 faces;
- o dado seja perfeitamente equilibrado;
- cada face deve ocorrer o mesmo número de vezes na proporção de 1/6.

Modelo teórico de frequências:

Face	1	2	3	4	5	6
Frequência	1	1	1	1	1	1
teórica	6	6	6	6	6	- 6

Lança-se uma moeda e anota-se a face obtida. Construir a distribuição de probabilidades para a variável aleatória número de caras.

Resultados Possíveis	Variável aleatória (x)	Probabilidade $P(X = x)$
Coroa	0	0,5
Cara	1	0,5
	Total:	1

EXERCÍCIO

EXERCÍCIO

Lança-se a moeda 2 vezes, construir a distribuição de probabilidades para a variável aleatória **número de caras**.

Para construir a distribuição de probabilidades, preciso do espaço amostral:

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$$

- $\omega_1 = (Cara, Cara)$
- • $\omega_2 = (Cara, Coroa)$
- $\bullet \omega_3 = (Coroa, Cara)$
- $\bullet \omega_4 = (Coroa, Coroa)$

probabilidade de ocorrência de cada ponto amostral ω_i

É razoável supor que, em cada lance, existe a probabilidade de ½ de sair **Cara** e ½ de sair **Coroa**, se a moeda é perfeitamente simétrica e homogênea.

EXERCÍCIO

Resultados Possíveis	Variáveis aleatórias (x)	Probabilidade $P(X = x)$	
Coroa — Coroa	0	0.5x0.5 = 0.25	
Cara — Coroa	1	0.5x0.5 = 0.25	
Coroa — Cara	1	0.5x0.5 = 0.25	
Cara-Cara	2	0.5x0.5 = 0.25	
	Total:	1	

Ao repetir experimentos, uma suposição comum é que o resultado de um experimento não tem qualquer influência no resultado dos outros. Em outras palavras, os experimentos são independentes.

A probabilidade de que dois eventos **independentes** ocorram é igual à multiplicação das probabilidades individuais.

DIAGRAMA DE ÁRVORE

x	P(X=x)
0	0,25
1	0,50
2	0,25
Total:	1

A probabilidade de que um entre dois eventos **mutuamente excludentes** ocorra (OU) é igual à soma das probabilidades individuais.

Dois eventos são mutuamente excludentes, ou exclusivos, se a ocorrência de um impedir a ocorrência do outro.

GENERALIZANDO A PROBABILIDADE DE OCORRÊNCIA DE UM EVENTO

Se A é um evento, então:

$$P(A) = \sum P(\omega_j)$$
, para todos os $\omega_j \in A$.

Para um mesmo experimento podemos ter vários espaços amostrais, dependendo do nosso interesse.

Exemplo: Uma fábrica produz um determinado artigo. Da linha de produção são retirados 3 artigos, que são classificados como "bom (B)" ou "defeituoso (D)". Um espaço amostral desse experimento é:

```
\Omega = \{BBB, BBD, BDB, DBB, DDB, DBD, BDD, DDD\}
```

Se A é o evento "2 artigos defeituosos", então:

$$A = \{DDB, DBD, BDD\}$$

Se A é o evento "pelo menos 1 artigo bom", então:

$$A = \{BBB, BBD, BDB, DBB, DDB, DBD, BDD\}$$

EXERCÍCIO

Um grande lote de peças possui 60% dos itens com algum tipo de defeito. Construir a distribuição de probabilidades para a variável aleatória **número de itens com defeito dentre 2 sorteados aleatoriamente.**

EXERCÍCIO PARA VOCÊ TREINAR EM CASA

Um grande lote de peças possui 60% dos itens com algum tipo de defeito. Construir a distribuição de probabilidades para a variável aleatória número de itens com defeito dentre 3 peças sorteadas aleatoriamente.

Respostas possíveis	Resposta numérica (x)	Probabilidade
B B B	0	$0.4 \times 0.4 \times 0.4 = 0.064$
B B D	1	$0.4 \times 0.4 \times 0.6 = 0.096$
BDB	1	$0.4 \times 0.6 \times 0.4 = 0.096$
D B B	1	$0.6 \times 0.4 \times 0.4 = 0.096$
BDD	2	$0.4 \times 0.6 \times 0.6 = 0.144$
D B D	2	$0.6 \times 0.4 \times 0.6 = 0.144$
D D B	2	$0.6 \times 0.6 \times 0.4 = 0.144$
D D D	3	$0.6 \times 0.6 \times 0.6 = 0.216$

PEGE Programa de
PEGE Programa de Educação Continuada
Escola Politécnica da USP

x	P(X=x)
0	0,064
1	0,096x3 = 0,288
2	0,144x3 = 0,432
3	0,216

EXEMPLO FINAL...

Um lote com 20 peças contém 4 defeituosas. Se forem retiradas duas peças do lote, qual é a probabilidade de serem retiradas:

- a) duas peças boas?
- b) duas peças defeituosas?

SITUAÇÃO INICIAL,

PRIMEIRA PEÇA

$$P(B) = \frac{16}{20}$$

$$P(D) = \frac{4}{20}$$

RETIRADA DA SEGUNDA PEÇA,

Se a primeira peça for

Boa

P(2^a peça ser boa)

= 15/19

 $P(2^{\alpha} \text{ peça ser defeituosa}) = 4/19$

Defeituosa

P(2ª peça ser boa)

= 16/19

 $P(2^{\alpha} \text{ peça ser defeituosa}) = 3/19$

PORTANTO,

A. Probabilidade das duas peças serem boas,

$$P(BB) = \frac{16}{20} \times \frac{15}{19} = 63,16\%$$

B. Probabilidade das duas peças serem defeituosas,

$$P(DD) = \frac{4}{20} \times \frac{3}{19} = 3,16\%$$

E a probabilidade da primeira ser defeituosa e a segunda não???

MAIS UM...

A Petrobrás perfura um poço quando há probabilidade de, no mínimo, 40 % de encontrar petróleo. Foram encontrados dois poços, com probabilidade de haver petróleo de 40 % e 50 %.

Os dois poços são perfurados.

Qual é a probabilidade de que pelo menos um poço produza petróleo?

Sim: produz

Não: não produz

A probabilidade de que pelo menos um poço produza petróleo é de 70%.

RESOLVA...

A probabilidade de um aluno A resolver uma questão de prova é 0.80, enquanto que a do aluno B é 0.60. Qual a probabilidade de que a questão seja resolvida se os dois alunos tentarem resolvê-la independentemente.

PROPRIEDADES DA PROBABILIDADE

Dado um modelo probabilístico, pode-se verificar as seguintes propriedades,

Como toda frequência relativa é um número entre 0 e 1, tem-se que:

$$0 \le P(A) \le 1$$

para qualquer evento A.

CONT...

Se for considerado todo o espaço amostral (S) como evento, temse o denominado evento certo, portanto

$$P(S) = 1$$

Se for considerado um conjunto vazio como evento (\emptyset) , tem-se o denominado evento impossível, ou seja

$$P(\emptyset) = 0$$

EVENTO INTERSEÇÃO

O evento intersecção $(A \cap B)$ significa que A e B ocorrem simultaneamente. Esta probabilidade é calculada com o emprego do Teorema da Probabilidade Condicionada, a ser visto na seqüência desta aula.

EVENTO UNIÃO

O evento união $(A \cup B)$ significa que pelo menos um dos eventos ocorre, sendo calculado pela relação:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

POR EXEMPLO...

Suponha que você joga um dado, se A é o evento números pares e B é o evento números maiores ou iguais a 3, qual a probabilidade de ocorrer A e B ao mesmo tempo?

$$A = \{2 \quad 4 \quad 6\}$$
 $P(A) = \frac{3}{6} = \frac{1}{2}$

$$B = \{3 \quad 4 \quad 5 \quad 6\} \quad P(B) = \frac{4}{6} = \frac{2}{3}$$

$$A \cup B = \{2 \quad 3 \quad 4 \quad 5 \quad 6\}$$

$$A \cup B = \{2 \ 3 \ 4 \ 5 \ 6\}$$

 $P(A, B) = P(A \cup B) = \frac{5}{6}$

$$A \cap B = \{4 \ 6\}$$
 $P(A \cap B) = \frac{2}{6} = \frac{1}{3}$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{3}{6} + \frac{4}{6} - \frac{2}{6} = \frac{5}{6}$

EXEMPLO

A Petrobrás perfura um poço quando há probabilidade de, no mínimo, 40 % de encontrar petróleo. Foram encontrados dois poços, com probabilidade de haver petróleo de 40 % e 50 %.

Os dois poços são perfurados. Qual é a probabilidade de que pelo menos um poço produza petróleo?

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A) = 0.4$
 $P(B) = 0.5$
 $P(A \ e \ B) = P(A \cap B) = 0.4 \times 0.5 = 0.2$
 $P(A \ ou \ B) = P(A \cup B) = 0.4 + 0.5 - 0.2 = 0.7$

Resolva o problema do aluno respondendo às questões da prova usando a equação: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

EVENTO COMPLEMENTAR

O evento complementar de um evento A, denominado de $A^{\mathcal{C}}$, tem sua probabilidade calculada pela relação:

$$(A \cup A^C) = S \text{ ou } (A \cap A^C) = \emptyset$$

EVENTOS MUTUAMENTE EXCLUSIVOS

Dois eventos A e B são **mutuamente exclusivos** quando a intersecção desses dois eventos for o conjunto vazio:

$$P(A \cap B) = 0$$

Portanto

$$P(A \cup B) = P(A) + P(B)$$

RESOLVA O PROBLEMA DE UNIÃO (ou)

Quando um par de dados é jogado, qual a probabilidade de se obter um resultado que a soma total dos valores seja menor que 4 **OU** que contenha o número 4?

Espaço amostral:

Fonte: Krishnamoorthi, K.S. "Reliability Methods for Engineers", 1^a edição, ASQC Quality Press, 1992.

1,1	1,2	1,3	1,4	1,5	1,6
			2,4		
3,1	3,2	3,3	3,4	3,5	3,6
			4,4		4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

Evento A:

$$P(total < 4) = 3/36$$

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

Evento B:

P(sair o número 4)

= 11/36

$$\therefore P(A \cup B) = \frac{3}{36} + \frac{11}{36}$$
$$= 14/36 = 7/18$$

AGORA ESSE...

Quando um par de dados é jogado, qual a probabilidade de se obter um resultado que contenha os números 5 **OU** 6?

Espaço amostral:

Fonte: Krishnamoorthi, K.S. "Reliability Methods for Engineers", 1^a edição, ASQC Quality Press, 1992.

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

Evento A:

$$P(sair\ o\ n\'umero\ 5)\ =\ 11/36$$

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

Evento B:

P(sair o número 6)
= 11/36

$$P(sair \ 5 \ e \ 6) = 2/36$$

$$P(sair 5 ou 6) =$$
= 11/36 + 11/36 - 2/36
= 20/36 = 5/9
ANÁLISE ESTATÍSTICA DE DADOS

E SE A PERGUNTA FOSSE...

Jogando um par de dados, qual a probabilidade que a soma dos valores obtidos seja menor ou igual a 6 (evento B) **DADO QUE** um dos números obtidos em uma das faces é 3 (evento A).

Já sabemos que o evento A ocorreu, portanto, nosso espaço amostral mudou,

$$P(B|A) = \frac{5}{11}$$

B|A significa: ocorrer B dado que A ocorreu.

PROBABILIDADE CONDICIONADA

Em alguns casos, o fato de ser sabido, à priori, que um dado evento ocorreu, faz com que se modifique a probabilidade de ocorrência de um outro evento.

Foi o que aconteceu no exemplo: o fato de saber que o valor obtido em um dos dados foi 3 diminuiu o tamanho do espaço amostral de 36 para 11!

PRESTE ATENÇÃO

Os dados abaixo referem-se a 200 entrevistados em uma enquete feita pela prefeitura:

	HOMENS	MULHERES	TOTAL
FAVORÁVEIS	60	50	110
DESFAVORÁVEIS	80	10	90
	140	60	200

Qual a probabilidade de uma pessoa, aleatoriamente escolhida,

A. Ser favorável? 110/200

B. Ser favorável, dado ser homem? 60/140

C. Ser homem? 140/200

D. Ser homem, dado que é desfavorável? 80/90

E. Ser favorável, dado que é mulher? 50/60

Probabilidade conjunta (joint)

Probabilidade condicional Pro

Probabilidade marginal

DEFINIÇÃO DE PROBABILIDADE CONDICIONADA Socia Politécnica da USP

De novo: em alguns casos, o fato de ser sabido, à priori, que um dado evento ocorreu, faz com que se modifique a probabilidade de ocorrência de um outro evento.

Denomina-se de P(A|B) a probabilidade de ocorrência do evento A, sabendo-se que B ocorreu, ou probabilidade de A condicionada a B.

Tem-se que:

$$P(A|B) = \frac{P(A,B)}{P(B)}, P(B) \neq 0$$

onde P(A) e P(B) são a probabilidade incondicional do evento A e B ocorrerem, respectivamente.

PEGE Programa de Educação Continuada

EXEMPLO

A página seguinte apresenta a distribuição em níveis salariais (R_1,R_2,R_3,R_4) da carreira de um engenheiro em determinada empresa, de acordo com sua idade. Suponha que um engenheiro seja selecionado ao acaso.

- 1. Encontre a probabilidade de que o engenheiro selecionado esteja na casa dos 50 anos.
- 2. Encontre a possibilidade de que o engenheiro esteja na casa dos 50 anos, sabendo-se que foi selecionado um R_3 .

- 1. Encontre a probabilidade de que o engenheiro selecionado esteja na casa dos 50 anos.
- 2. Encontre a possibilidade de que o engenheiro esteja na casa dos 50 anos, sabendo-se que foi selecionado um R_3 .

	Posição na carreira				
	R_1	R_2	R_3	R_4	Total
< 30	2	3	57	6	68
30 - 39	52	170	163	17	402
40 - 49	156	125	61	6	348
50 – 59	145	68	36	4	253
≥60	75	15	3	0	93
Total	430	381	320	33	1164

RESPOSTA

1.
$$P(50) = \frac{253}{1164} = 0.217$$

2.
$$P(50|R_3) = \frac{P(50,R_3)}{P(R_3)} = \frac{36/1164}{320/1164} = 0,113$$

RESPONDA

Você encontrou os valores P(50) = 0.217 e $P(50|R_3) = 0.113$. O que significam esses valores? Interprete os resultados.

P(50) = 0.217 indica que **21.7% dos engenheiros da empresa** estão na casa dos 50.

 $P(50|R_3) = 0.113$ indica que 11,3% dos engenheiros nível R_3 estão na casa dos 50.

ANÁLISE ESTATÍSTICA DE DADOS

PARA VOCÊ FAZER EM CASA

$$A = \{Compra = 1, N\~ao\ compra = 0\}, B = \{Brasil, Peru, Bol\'ivia\}$$

Queremos saber,

$$P(Op\tilde{a}o = Y|Pa\hat{s} = X) = \frac{P(Y,X)}{P(X)} = ?$$

	Peru	Brasil	Bolívia	Total
Compra = 1	20	50	10	80
	300	500	200	1000
Total	320	550	210	1080

	Peru	Brasil	Bolívia	Total
Compra = 1	20	50	10	80
	300	500	200	1000
Total	320	550	210	1080

Probabilidade marginal P(X)

$$P(X = Peru) = 320/(210 + 550 + 320) = 0.30$$

$$P(X = Brasil) = 550/(210 + 550 + 320) = 0.51$$

$$P(X = Bolivia) = 210/(210 + 550 + 320) = 0.19$$

Probabilidade conjunta

$$P(1, X = Peru) = 20/(1080) = 0.0185$$

$$P(0, X = Peru) = 300/(1080) = 0.2778$$

$$P(1, X = Brasil) = 50/(1080) = 0.0463$$

$$P(0, X = Brasil) = 500/(1080) = 0.4629$$

$$P(1, X = Bolivia) = 10/(1080) = 0,0093$$

$$P(0, X = Bolivia) = 200/(1080) = 0,1852$$

PROBABILIDADE CONDICIONADA

$$P(1|Peru) = \frac{P(1, Peru)}{P(Peru)} = \frac{0,019}{0,30} = \mathbf{0}, \mathbf{06}$$

$$P(1|Brasil) = \frac{P(1,Brasil)}{P(Brasil)} = \frac{0,046}{0.51} = \mathbf{0},\mathbf{0}$$

$$P(1|Bolívia) = \frac{P(1,Bolívia)}{P(Bolívia)} = \frac{0,009}{0,19} = \mathbf{0},\mathbf{0}$$

$$P(0|Peru) = \frac{P(0,Peru)}{P(Peru)} = \frac{0.28}{0.30} = 0.93$$

$$P(0|Brasil) = \frac{P(0,Brasil)}{P(Brasil)} = \frac{0,46}{0,51} = \mathbf{0},\mathbf{91}$$

$$P(1|Bolívia) = \frac{P(1,Bolívia)}{P(Bolívia)} = \frac{0,009}{0,19} = \mathbf{0},\mathbf{05} \qquad P(0|Bolívia) = \frac{P(0,Bolívia)}{P(Bolívia)} = \frac{0,185}{0,19} = \mathbf{0},\mathbf{97}$$

UMA DEFINIÇÃO EXTRA...

$$P(A|B) = \frac{P(A,B)}{P(B)} \qquad P(B|A) = \frac{P(B,A)}{P(A)}$$

INTERSECÇÃO

Pode-se formular o Teorema do Produto da seguinte forma:

$$P(A \cap B) = P(B \cap A)$$

$$P(A, B) = P(B, A)$$

$$P(A|B)P(B) = P(B|A)P(A)$$

PEGE Programa de

EVENTOS INDEPENDENTES

No caso dos eventos serem independentes, isto é, a ocorrência do evento A não influencia a probabilidade de ocorrência do evento B, a probabilidade de ocorrência de $(A \cap B)$ é calculada pela relação:

$$P(A \cap B) = P(A)P(B)$$

ou seja

$$P(B|A) = P(B)$$
 ou $P(A|B) = P(A)$

$$A \cup B$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) \text{ eventos mutuamente exclusivos}$$

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

$$P(A \cap B) = P(A)P(B) \text{ eventos independentes}$$

$$P(A^c) = 1 - P(A)$$

TEOREMA DE BAYES

Uma das equações famosas do mundo da estatística e probabilidade.

$$P(A|B) = \frac{P(A,B)}{P(B)} = P(A)\frac{P(B|A)}{P(B)}, P(B) \neq 0$$

Regra de Bayes é apenas uma formalização da lógica que seguimos até agora...

Thomas BAYES (1702 - 1761)

TEOREMA DA PROBABILIDADE TOTAL

Vamos dividir um espaço amostral em subespaços, tal que:

$$S_i \cap S_j = \emptyset, i \neq j$$

Eventos mutuamente exclusivos e exaustivos.

CONT...

A probabilidade de ocorrência do evento A é definida pela relação:

$$P(A) = P(A/S_1)P(S_1) + P(A/S_2)P(S_2) + ... + P(A/S_k)P(S_k)$$

$$P(A) = \sum_{i=1}^{k} P(A/S_i)P(S_i)$$

EXEMPLO

Na escola de engenharia de uma Universidade, tem-se a seguinte distribuição de alunos por especialidade: 12% em eng. Produção, 19% em eng. Manufatura, 18% em eng. Civil, 26% em eng. Elétrica e 25% em eng. Mecânica. Dentro de cada especialidade, tem-se a seguinte porcentagem de alunos do sexo feminino: 45% em eng. Produção, 4% em eng. Manufatura, 8% em eng. Civil, 5% em eng. Elétrica, 10% em eng. Mecânica.

Caso um aluno seja escolhido ao acaso nesta escola, qual a probabilidade deste ser do sexo feminino?

TENTEM FAZER!!!!

A Probabilidade de ser do sexo feminino é dada pela relação:

$$P(F) = P(F|Pr)P(Pr) + P(F|Mn)P(Mn) + P(F|Cv)P(Cv) + P(F|El)P(El) + P(F|Mc)P(Mc)$$

$$P(F) = 0.45 \times 0.12 + 0.04 \times 0.19 + 0.08 \times 0.18 + 0.05 \times 0.26 + 0.10 \times 0.25$$

$$P(F) = 0.114$$

Tarefa: E qual a probabilidade de um estudante escolhido ao acaso ser da civil, dado que é do sexo feminino????

TEOREMA DE BAYES GENERALIZADO

Vamos unir o Teorema da Probabilidade Total em conjunto com o da Probabilidade Condicionada.

Este tem por objetivo definir a probabilidade de ocorrência de um dos eventos **mutuamente exclusivos e independentes** (B_i) , dada a ocorrência do evento A.

TEOREMA DE BAYES

$$P(B_j | A) = P(B_j) \frac{P(A/B_j)}{\sum_{i=1}^k P(A/B_i)P(B_i)}$$

sendo $i=1,\cdots,k$ o número de partições independentes do espaço amostral.

Veja que o teorema nada mais é do que a substituição de todas as fórmulas que aprendemos na fórmula da probabilidade condicionada!

APLICAÇÃO

Um aluno tem um despertador que toca na hora pretendida com probabilidade 0,7. Se tocar, a probabilidade do aluno acordar a tempo de ir às aulas é de 0,8, se não tocar, a probabilidade do aluno acordar a tempo de ir às aulas é 0,3. Qual a probabilidade do aluno chegar no horário à aula? E ainda, dado que o aluno chegou no horário, qual a probabilidade do despertador ter tocado?

RESPOSTA

 $P(T) = 0.70 \rightarrow \text{probabilidade do despertador tocar}$

 $P(nT) = 0.30 \rightarrow \text{probabilidade do despertador } \tilde{\textbf{nao}} \text{ tocar}$

P(A|T)=0.80
ightarrow probabilidade do aluno acordar a tempo de ir às aulas dado que o despertador tocou

P(A|nT)=0.30
ightarrow probabilidade do aluno acordar a tempo de ir às aulas dado que o despertador**não**tocou

CONT...

A probabilidade de ocorrência do evento A é definida pela relação:

$$P(A) = P(A/S_1)P(S_1) + P(A/S_2)P(S_2) + \dots + P(A/S_k)P(S_k)$$

$$P(A) = \sum_{i=1}^{k} P(A/S_i)P(S_i)$$

RESPOSTA

 $P(T) = 0.70 \rightarrow \text{probabilidade do despertador tocar}$

 $P(nT) = 0.30 \rightarrow \text{probabilidade do despertador } \tilde{\textbf{nao}} \text{ tocar}$

P(A|T)=0.80 o probabilidade do aluno acordar a tempo de ir às aulas dado que o despertador tocou

P(A|nT)=0.30 o probabilidade do aluno acordar a tempo de ir às aulas dado que o despertador **não** tocou

$$P(A) = P(A|T)P(T) + P(A|nT)P(nT) = 0.8 \times 0.7 + 0.3 \times 0.3 = 0.65$$

$$P(T|A) = P(T)\frac{P(A|T)}{P(A)} = 0.70\frac{0.80}{0.65}$$

RESOLVA...

Em uma fábrica, os setores A, B e C têm 40, 50 e 10% do total de operários, respectivamente. Dos operários de cada setor, 3, 5 e 2%, respectivamente, estão em férias. Escolhido ao acaso um operário desta fábrica, pede-se:

- a. Qual a probabilidade do operário estar em férias?
- b. Sabendo-se que o operário está em férias, qual a probabilidade dele ser do setor B?

REPAROS EM LINHA DE PRODUÇÃO

Mário é responsável por uma linha de produção automatizada, e recorre a companhias parceiras para fazerem reparos quando ocorrem falhas. A companhia $\bf A$ atende 20% das avarias e faz um reparo incompleto 1 vez em 20. A companhia $\bf B$ atende 60% das avarias e faz um reparo incompleto 1 vez em 10. A companhia $\bf C$ que atende 15% das avarias e faz uma reparo incompleto 1 vez em 10. A companhia $\bf D$ atende 5% das quebras e faz um reparo incompleto 1 vez em 20. Para o próximo problema com a linha de produção diagnosticada como sendo devido a um reparo inicial incompleto, qual é a probabilidade que esse reparo inicial tenha sido feito pela companhia $\bf A$?

RESPOSTA

$$P(A) = 0.20; P(B) = 0.60; P(C) = 0.15; P(D) = 0.05$$

$$P(I|A) = 1/20$$
; $P(I|B) = 1/10$; $P(I|C) = 1/10$; $P(I|D) = 1/20$

$$P(A|I) = P(A)\frac{P(I|A)}{P(I)} = 0.20\frac{1/20}{1/20 \times 0.20 + 1/10 \times 0.60 + 1/10 \times 0.15 + 1/20 \times 0.05}$$

$$P(A|I) = 11,429\%$$

APLICAÇÃO DE BAYES

Um exemplo excelente e amplamente utilizado dos benefícios do Teorema de Bayes está na análise de um teste de diagnóstico médico.

Testes não são o evento.

Os testes são falhos. Testes detectam coisas que não existem (falso positivo) e perdem coisas que existem (falso-negativo).

O **teorema de Bayes** converte os resultados do seu teste na probabilidade real do evento.

Leia o Andar do Bêbado, págs. 126-130.

DIAGNÓSTICO MÉDICO

A capacidade do teste para detectar uma doença é chamada de sensibilidade, e essa probabilidade é denominada de VPP (valor preditivo positivo).

$$VPP = P(Doente | Exame positivo)$$

Por outro lado, a capacidade do teste dar negativo, dado que a pessoa não está doente é chamada especificidade e essa probabilidade é denominada de VPN (valor preditivo negativo).

$$VPN = P(N\tilde{a}o\ Doente|Exame\ negativo)$$

Às vezes, uma pessoa tem determinada doença, mas o teste não a detecta (falso negativo). Ou a pessoa não tem a doença e o teste a detecta (falso positivo).

DIAGNÓSTICO MÉDICO

A capacidade do teste para detectar uma doença é denominada de **VPP** (valor preditivo positivo). VPP é a proporção de pessoas com teste positivo que realmente têm a doença,

 $VPP = P(Doente | Exame\ positivo)$

Por outro lado, a capacidade do teste dar negativo, dado que a pessoa não está doente é denominada de **VPN** (valor preditivo negativo). VPN é a proporção daqueles com resultado negativo que não têm a doença,

 $VPN = P(N\tilde{a}o\ Doente|Exame\ negativo)$

A **sensibilidade** é a taxa de verdadeiros positivos. A **especificidade** é a taxa de verdadeiros negativos. DOENTE

Verdadeiro Positivo (VP)

Falso Negativo (FN)

sensibilidade $\frac{VP}{VP + FN}$

SAUDÁVEL

Falso Positivo (FP)

$$VPP = \frac{VP}{VP + FP}$$

Verdadeiro Positivo (VP)

especificidade

$$\frac{VN}{VN + FP}$$

 $VPN = \frac{VN}{VN + FN}$

COMO ASSIM?

$$P(Do) = 0.001$$

Mário faz um exame para detectar uma rara e grave doença, que atinge 0.1% da população. O médico informa que o falso positivo do exame é de 2%, ou seja, apenas 2% das pessoas saudáveis recebem erradamente a indicação, pelo exame, de que estão com a doença. Por outro lado, se o P(+|Do) = 0.99 paciente tem a doença, o exame dá positivo em 99% dos casos. O resultado do exame de Mário é positivo. Ele se desespera, achando que tem 99% de chance de estar com a doença.

Você tem algo a dizer para ele?

Acalme o Mário afirmando que dizer que ele tem 99% de chance de estar com a doença é uma falácia!!!! Não deve ver a P(+|Do|) e sim P(Do|+). São duas coisas diferentes!

O termo falácia deriva do verbo latino fallere, que significa enganar.
Designa-se por falácia um raciocínio errado com aparência de verdadeiro.

PROBLEMA DO MÁRIO...

Diga que está mal em probabilidade, mas talvez não de saúde. Se fizer a análise correta, ele vai descobrir que a chance de ter a doença, com base nestas informações, é de 50%.

$$P(Do) = 0,001 : P(nDo) = 0,999$$

$$P(+|Do) = 0,99 : P(+|nDo) = 0,01$$

$$P(Do|+) = P(Do) \frac{P(+|Do)}{P(+)} = P(Do) \frac{P(+|Do)}{P(+|Do)P(Do) + P(+|nDo)P(nDo)}$$

$$P(Do|+) = 0,001 \frac{0,99}{0,99 \times 0,001 + 0,01 \times 0,999} = 0,09$$

Você, então, pode dizer: Mário...
A situação não é tão ruim assim....

DETECÇÃO DE SPAM

O Mário, que nunca teve a doença do problema anterior, está usando um novo software para detectar spam: **SpamAssassin**. O SpamAssassin é um sistema inteligente, que analisa cada mensagem que chega no servidor, e através de regras próprias, determina se o e-mail é um SPAM ou não. O programa é treinado pelos usuários. Ele procura padrões nas palavras dos e-mails marcados como spam pelo usuário. O software é atualizado regularmente, para que novas regras entrem no sistema, e passem a detectar os SPAMs com maior precisão.

Por exemplo, o software pode ter aprendido que a palavra "Rolex" aparece em 10% dos e-mails marcados como spam. Supondo que 0.1% dos e-mails não spam incluam a palavra "Rolex" e 50% de todos os e-mails recebidos pelo usuário são spam, encontre a probabilidade de um e-mail ser spam se a palavra "Rolex" aparecer nele.

$$P(Spam) = 50\%$$

 $P(Rolex|Spam) = 10\%$ $P(Rolex|nSpam) = 0.1\%$

O PROBLEMA DE MONTY HALL

Extraído do livro Think Bayes, de Allen B. Downey (livro pode ser baixado grátis pela interntet)

O problema de Monty Hall pode ser a questão mais controversa da história das probabilidades. O cenário é simples, mas a resposta correta é tão contraintuitiva que muitas pessoas simplesmente não a aceitam, e muitas pessoas inteligentes se envergonharam não apenas por errar, mas por argumentar agressivamente em público. Monty Hall foi o apresentador original do game show Let's make a deal. O problema do Monty Hall é baseado em um dos jogos regulares do programa:

Monty mostra três portas fechadas e diz que há um prêmio atrás de cada porta: um é um carro, os outros dois são menos valiosos, como manteiga de amendoim e unhas postiças. Os prêmios são organizados aleatoriamente. O objetivo do jogo é adivinhar em qual porta está com o carro. Se acertar, fica com o carro.

- Você escolhe uma porta, que chamaremos de porta A. Vamos chamar as outras portas de B e C.
- Antes de abrir a porta que você escolheu, Monty aumenta o suspense abrindo a Porta B ou C. Obviamente, abre a que não estiver com o carro. Se o carro está realmente atrás da porta A, Monty pode abrir aleatoriamente B ou C.
- Então Monty oferece a você a opção de manter sua escolha original ou mudar para a porta que ainda não foi aberta.

A questão é: avaliando a situação estatisticamente, você deve "manter" ou "trocar" de porta, ou não faz diferença?

Solution using Bayes Theorem

Suppose without loss of generality that the player chooses door 1 and that the host opens door 2 to reveal a goat.

Let A (B, C) be the event that the prize is behind door 1, (2, 3).

$$P(A) = P(B) = P(C) = \frac{1}{3}$$
.

 $P(\text{opens } 2|A) = \frac{1}{2}$. P(opens 2|B) = 0, P(opens 2|C) = 1.

$$P(\text{opens 2}) = P(\text{opens 2}|A)P(A) + P(\text{opens 2}|B)P(B) + P(\text{opens 2}|C)P(C)$$

$$= \frac{1}{2} \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3} = \frac{1}{2}$$

$$P(A|\text{opens 2}) = \frac{P(\text{opens 2}|A)P(A)}{P(\text{opens 2})} = \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2}} = \frac{1}{3}$$

so $P(C|\text{opens 2}) = \frac{2}{3}$ and it is better to switch.

MAS ONDE APLICAREMOS NOSSO MODELO?

A Posteriori: probabilidade da hipótese ser verdadeira, dada a ocorrência da evidência

 $P(Hip {o}tese|Evid {e}ncia) = P(Hip {o}tese)$

A Priori: aquilo que acreditamos antes de qualquer nova evidência. Nossa crença.

Redimensionador: probabilidade que a nova evidência ocorra, dada que a hipótese seja verdadeira. Conhecido como verossimilhança.

(Evidência|Hipótese) Evidência

Normalizador (marginal): para ajustar o numerador.

A proporção entre o redimensionador e o normalizador é muito importante.

Quando o redimensionador é maior que o normalizador, aumentamos a probabilidade anterior, caso contrário, a evidência diminui nossas probabilidades.

O TEOREMA DE BAYES EXPLICADO...

$$P(A|B) = P(A)\frac{P(B|A)}{P(B)}, P(B) \neq 0$$

A probabilidade a posteriori é condicionada à probabilidade a priori multiplicada pela verossimilhança normalizada.

A probabilidade a priori é baseada nas informações disponíveis separadamente do experimento. Representa o conhecimento do fenômeno antes dos dados serem observados.

A verossimilhança é deduzida dos dados e expressa todo o conhecimento do fenômeno contido nestes dados.

POR EXEMPLO...

Suponha que você esteja esperando a resposta de várias empresas a entrevistas que você fez. Como você está ficando nervoso, decide calcular a probabilidade de uma empresa específica fazer uma oferta, já que se passaram três dias e ela ainda não ligou para você.

A: receber uma oferta ("O")

B: nenhuma ligação por 3 dias ("NL")

20% Procura de emprego é um processo longo e árduo...

40% Not bad...

$$P(O|NL) = P(O) \frac{P(NL|O)}{P(NL)}$$

É difícil estimar direto!

90% existem vários motivos pelos quais eles podem não ter chamado

$$P(O|NL) = 0.20 \frac{0.4}{0.9} = 8.9\%$$

PROBLEMAS DE CLASSIFICAÇÃO

Por exemplo, problema de classificação em termos Bayesianos — onde temos um conjunto de crenças anteriores e atualizamos nossas crenças à medida que observamos e coletamos evidências.

O objetivo é prever a que classe uma determinada observação pertence, dadas suas características.

Y= o rótulo da classe que estamos tentando prever. No nosso caso, os rótulos das classes seriam hamster, gato e cachorro.

 X_1, X_2, X_3 , etc. = os recursos de nossa observação com os quais tentamos fazer uma previsão. Alguns recursos que podemos usar para diferenciar gatos, cães e ANÁLISE ESTATÍATICA DE DADO de tamanho e agilidade.

POR EXEMPLO

$$P(Y = \blacksquare | Tamanho = médio, Agilidade = Não) = ????$$

$$P(Y = \bigcup | M \in dio, N \in agil) = P(G) \frac{P(M \in dio e n \in agil|G)}{P(M \in dio e n \in agil)}$$

$$P(Y = Nedio, Não ágil) = P(C) \frac{P(Médio e não ágil|C)}{P(Médio e não ágil)}$$

$$P(Y = | M \neq dio, N \neq agil) = P(H) \frac{P(M \neq dio e n \neq agil|H)}{P(M \neq dio e n \neq agil)}$$

ACABOU...

Reveja a aula antes de resolver os exercícios.