

R.Nandha kumar

Syllabus

Module No. 1	Introduction	6 Hours
Computer network and its history, progress and application, Internet, Network architecture,		
Networking devices. OSI Model, TCP/IP Protocol stack, Networking in different OS.		
Module No. 2	Physical Layer	8 Hours
Data communication technologies, Analog and digital communication. Encoding mechanisms,		
Packet Switching, Circuit Switching.		
Module No. 3	Data Link Layer	8 Hours
Framing, HDLC, PPP, Error detection, Error Correction, MAC Protocols, Reliable Transmission,		
Ethernet, 802.3, 802.5, 802.11, PPP,ATM.		
Module No. 4	Network Layer	7 Hours
IP addressing schemes, IPV4, Subnetting, IPV6, shift from IPV4 to IPV6, ICMP, DHCP, ARP.		
Routing Protocols: Distance-vector and link-state routing. RIP, OSPF, BGP		
Multicasting.		
Module No. 5	Transport Layer	8 Hours
Connection Oriented and connection less service, TCP and UDP, Port Addressing, Remote Procect		
Call, Flow Control vs Congestion Control, Quality of Service.		
Module No. 6	Application Layer Protocols	8 Hours
Application Layer Protocols: World wide web and HTTP, HTTPS, Domain names: DNS, File		
Transfer: FTP, Electronic mail: SMTP, Peer to peer networking, Torrent, VPS ession managemen		
Data compression techniques.		

CAT - I

Introduction

Computer network and its history

progress and application

Internet

Network architecture

Networking devices

OSI Model

TCP/IP Protocol stack

Networking in different OS.

Physical Layer

Data communication

technologies

Analog and digital

communication

Encoding mechanisms

Packet Switching

Circuit Switching

Data Link Layer

Framing

HDLC

PPP

Error detection

Error Correction

Network Operating Systems

- Computer network is to allow users
 - to share resources located on other computers,
 - to share peripheral hardware devices such as printers and fax machines, and
 - to communicate electronically.
- A network operating system (NOS)
 - It is a specialized operating system designed
 - to provide networking functionality.
- The most widely used network operating systems today include
 - Microsoft Windows Server,
 - Novell Open Enterprise Server, and various flavours of UNIX.

Functions of NOS

- Creating and managing network user accounts
- Configuring and managing network resources
- Controlling access to network resources
- Providing communication services
- Monitoring and troubleshooting the network

Network Operating System

- It is deployed on network servers
 - to enable administrators
 - to manage network resources such as
 - data storage areas,
 - network printers and
 - communication services.

Network Operating System

- Most organisations are increasingly dependent
- On computing services, and also partly due
 - to the phenomenal growth of the Internet and
 - the World Wide Web
- The number of users on a typical enterprise LAN is growing almost daily.
- Keeping track of all these users and the resources
 - They need is becoming increasingly
 - difficult,
 - time consuming and
 - costly.
- NOS ability to create and manage user accounts effectively.

Network Operating System

- One of the first tasks of the network administrator will be
 - to create a directory services structure and
 - a network file system.
- NOS provides the required functionality

Other facilitated by NOS

- Implementation of network security policies,
- Optimisation of system performance,
- Backing up and restoring data,
- Installing and configuring distributed applications, and
- Monitoring and managing network usage and performance.

OS

- Determine which application can use the CPU at any given time, and
- Ensure that processor time is fairly allocated between multiple processes.
- It will also manage the use of main memory and secondary storage,
- Control access to hardware, and
- Provide a user interface.
- NOS has similar functionality,
 - but also enables applications running on different computers
 - to communicate with each other.

OS

- Operating systems have tended to fall into one of two categories in the past either
 - Multi-user systems such as UNIX or Linux, or
 - Single-user desktop systems such as MS-DOS.
- GUI-based desktop operating systems such as
 - Windows 95 and its descendants have increased the functionality of desktop systems to include multitasking
- UNIX was designed from the start
 - to support networking,
- while modern desktop operating systems have adapted to a networking environment.

Unix / Windows

- The necessary functionality required
 - to configure and manage a client-server network of any size,
 - it is necessary to employ a fully-featured and
 - scalable network operating system.
- These powerful and network-oriented operating systems will be installed on network servers
 - to provide centralised management of network resources and
 - network security.

NOS

- Appropriate software must also be installed on client computers
 - to allow users to log on to a server and access network resources.
 - The client software allows legitimate users of the network
 - to authenticate themselves by providing a valid username and password.
- Network operating systems are defined by their ability
 - to maintain information about all of the resources on the network, and
 - to provide a comprehensive range of network management facilities.

Contents and copyrights

- Digital House appliances Forum, 2002
- Digital information are easy to copy
 - Network enables sharing of the information
- Digital copyright protection
 - CSS (Contents scramble system)
 - AEA (Advanced Encryption standard)
 - CPPM (Content Protection for Prerecorded Media)
 - CPRM (Content Protection for Recordable Media)
 - DTCP (Digital Transmission Content Protection)
 - DDCP (High-bandwidth Digital Content Protection)

