ECE 498/598 Midterm 2 2023

Instructor: Vikas Dhiman

Nov 8th, 2023

(1) Student name:

Student email:

About the exam

- 1. There are total 4 problems. You must attempt all 4.
- 2. Maximum marks: 50.
- 3. Maximum time allotted: 50 min
- 4. Calculators are allowed.
- 5. One US Letter size or A4 size cheat sheet (both-sides) is allowed.

Problem 1 Find the 4x4 transformation matrix ${}^{1}T_{0}$ that transforms coordinates from coordinate frame 1 to coordinate frame 0 (5 marks).

•

Problem 2 Consider a coordinate system OUVW whose ordered set of basis vectors given by $\mathbf{u} = [3/7, 2/7, 6/7]^{\top}$, $\mathbf{v} = [2/7, 6/7, 3/7]^{\top}$ and $\mathbf{w} = [4, 5, 6]^{\top}$. Another coordinate system OXYZ whose order set of basis vectors is, $\mathbf{x} = [2/7, 6/7, -3/7]^{\top}$, $\mathbf{y} = [-6/7, 3/7, 2/7]^{\top}$ and $\mathbf{z} = [3/7, 2/7, 6/7]^{\top}$. Find the rotation matrix ouvw R_{oxyz} that converts coordinates from frame OXYZ to frame OUVW. (10 marks)

Problem 3 (Rodrigues formula) In the figure below, we are rotating point \mathbf{v} around axis unit-vector $\hat{\mathbf{k}}$ by an angle θ . A unit vector $\hat{\mathbf{w}}$ is perpendicular to the both \mathbf{v} and $\hat{\mathbf{k}}$. Another vector \mathbf{v}_{\perp} is the projection of \mathbf{v} onto a plane that is perpendicular to $\hat{\mathbf{k}}$. Note that \mathbf{v}_{\perp} is perpendicular to both $\hat{\mathbf{w}}$ and $\hat{\mathbf{k}}$. First, (a) write the unit-vector $\hat{\mathbf{w}}$ in terms of \mathbf{v} and $\hat{\mathbf{k}}$. (b) Then write the vector (including the correct magnitude) \mathbf{v}_{\perp} in terms of \mathbf{v} and $\hat{\mathbf{k}}$. (c) A vector $\mathbf{v}_{\perp,rot}$ is obtained by rotating \mathbf{v}_{\perp} by an angle θ . Write the vector $\mathbf{v}_{\perp,rot}$ in terms of \mathbf{v}_{\perp} , $\hat{\mathbf{w}}$ and θ . (15 marks)

Problem 4 The Euler angles of rotation YZX are given as θ , ϕ and ψ . Derive the rotation matrix corresponding to the Euler angle representation $R = R_x(\psi)R_z(\phi)R_y(\theta)$. Also derive an expression to convert the rotation matrix back to Euler angles. (20 marks).