

Artificial Neural Network EVOLUTION

Dr. Trần Vũ Hoàng

Generative Adversarial Network

- GAN was first introduced by Ian Goodfellow et al in 2014
- Have been used in generating images, videos, poems, some simple conversation.
- Note, image processing is easy (all animals can do it), NLP is hard (only human can do it).
- This co-evolution approach might have far-reaching implications. Bengio: this may hold the key to making computers a lot more intelligent.
- Ian Goodfellow:
 - https://www.youtube.com/watch?v=YpdP_0-IEOw
- Radford, (generate voices also here)
 https://www.youtube.com/watch?v=KeJINHjyzOU
- Tips for training GAN: https://github.com/soumith/ganhacks

Autoencoder

Randomly generate a vector as code

Autoencoder with 3 fully connected layers

Training: model.fit(X,X)

Cost function: $\Sigma_{k=1..N} (x_k - x'_k)^2$

Large → small, learn to compress

Auto-encoder

Auto-encoder

Auto-encoder

VAE

$$oldsymbol{\mu}_x, oldsymbol{\sigma}_x = M(\mathbf{x}), \Sigma(\mathbf{x})$$

$$oldsymbol{\epsilon} \sim \mathcal{N}(0,1)$$

$$\mathbf{z} = \epsilon \boldsymbol{\sigma}_x + \boldsymbol{\mu}_x$$

$$\mathbf{x}_r = p_{m{ heta}}(\mathbf{x} \mid \mathbf{z})$$

 $\operatorname{recon. loss} = \operatorname{MSE}(\mathbf{x}, \mathbf{x}_r)$

Compute reconstruction loss

 $ext{var. loss} = - ext{KL}[\mathcal{N}(oldsymbol{\mu}_x, oldsymbol{\sigma}_x) \| \mathcal{N}(0, I)]$

Compute variational loss

L = recon. loss + var. loss

Combine losses

Why re-parameter?

Let's say we want to take the gradient w.r.t. θ of the following expectation,

$$\mathbb{E}_{p(z)}[f_{ heta}(z)]$$

where p is a density. Provided we can differentiate $f_{\theta}(z)$, we can easily compute the gradient:

$$egin{aligned}
abla_{ heta} \mathbb{E}_{p(z)}[f_{ heta}(z)] &=
abla_{ heta} igg[\int_{z} p(z) f_{ heta}(z) dz igg] \ &= \int_{z} p(z) igg[
abla_{ heta} f_{ heta}(z) igg] dz \ &= \mathbb{E}_{p(z)} igg[
abla_{ heta} f_{ heta}(z) igg] \end{aligned}$$

Why re-parameter?

what happens if our density p is also parameterized by θ ?

$$egin{aligned}
abla_{ heta} \mathbb{E}_{p_{ heta}(z)}[f_{ heta}(z)] &=
abla_{ heta} igg[\int_{z} p_{ heta}(z) f_{ heta}(z) dz igg] dz \ &= \int_{z} f_{ heta}(z)
abla_{ heta} p_{ heta}(z) dz + \int_{z} p_{ heta}(z)
abla_{ heta} f_{ heta}(z) dz \ &= \underbrace{\int_{z} f_{ heta}(z)
abla_{ heta} p_{ heta}(z) dz}_{ ext{What about this?}} + \mathbb{E}_{p_{ heta}(z)} igg[
abla_{ heta} f_{ heta}(z) igg] \end{aligned}$$

Why re-parameter?

Re-parameter:

$$oldsymbol{\epsilon} \sim p(oldsymbol{\epsilon})$$

$$\mathbf{z} = g_{m{ heta}}(m{\epsilon}, \mathbf{x})$$

$$\mathbb{E}_{p_{m{ heta}}(\mathbf{z})}[f(\mathbf{z}^{(i)})] = \mathbb{E}_{p(m{\epsilon})}[f(g_{m{ heta}}(m{\epsilon},\mathbf{x}^{(i)}))]$$

$$abla_{ heta} \mathbb{E}_{p_{oldsymbol{ heta}}(\mathbf{z})}[f(\mathbf{z}^{(i)})] =
abla_{ heta} \mathbb{E}_{p(oldsymbol{\epsilon})}[f(g_{oldsymbol{ heta}}(oldsymbol{\epsilon}, \mathbf{x}^{(i)}))]$$
 (1)

$$= \mathbb{E}_{p(\boldsymbol{\epsilon})}[\nabla_{\boldsymbol{\theta}} f(g_{\boldsymbol{\theta}}(\boldsymbol{\epsilon}, \mathbf{x}^{(i)}))] \qquad (2)$$

$$pprox rac{1}{L} \sum_{l=1}^{L}
abla_{m{ heta}} f(g_{m{ heta}}(\epsilon^{(l)}, \mathbf{x}^{(i)})) \quad (3)$$

Entropy

- averageBit= $p_1*n_1+p_2*n_2+...+p_n*n_n$ n_i: #bits used to encode signal with probability of occurrence p_i
- With N types of signal, we need $n = log_2 N$ bits to encode
- assuming all signals have the same probability of occurrence: p = 1/N

$$n_p = log_2 N = log_2 \frac{1}{p} = -log_2 p$$

• Entropy = $\sum_{i=1}^{n} p_i * n_i = -\sum_{i=1}^{n} p_i * log_2 p_i$

Weather distribution: sunny - rainy - cloudy -snowy

sunny - 0 rainy - 1 cloudy - 10 snow: 11 rainy - 11 cloudy - 0 snow: 1

Encode Table 1

Encode Table 2

Cross entropy

- 2022: $Q = \{0.1, 0.3, 0.4, 0.2\}$
- In beginning of 2023: use Q to encode the signals
- In the end of 2023: re-statistics, we obtain: $P = \{0.11, 0.29, 0.41, 0.19\}$
- The average bit used in 2023:

CrossEntropy(P,Q) = $-\sum_{i}^{n} p_{i} * log_{2}q_{i}$

• Minimum if P==Q

Weather distribution: sunny - rainy - cloudy -snowy

sunny - 0 rainy - 1 cloudy - 10 snow: 11 sunny - 11 rainy - 01 cloudy - 0 snow: 1

Encode Table 1

Encode Table 2

KL (Kullback-Leibler) divergence

• Discrete:

$$D_{KL}(P||Q) = \sum_{i} P(i) \log[P(i)/Q(i)]$$

• Continuous:

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) \log [p(x)/q(x)]$$

• Explanations:

```
Entropy: - \Sigma_i P(i) log P(i) - expected code length (also optimal)

Cross Entropy: - \Sigma_i P(i) log Q(i) - expected coding length using optimal code for Q

D_{KL} = \Sigma_i P(i) log [P(i)/Q(i)] = \Sigma_i P(i) [log P(i) - log Q(i)], extra bits

JSD(P||Q) = \frac{1}{2} D_{KL}(P||M) + \frac{1}{2} D_{KL}(Q||M), M = \frac{1}{2} (P+Q), symmetric KL
```

* JSD = Jensen-Shannon Divergency

Why KL divergence?

• Bayes' rule:

$$P(x|z).P(z) = P(z|x).P(x)$$

 KL-divergence term encourages the approximate posterior P(z|x) to be close to the prior P(z)

$$\rightarrow P(x|z) = P(x)$$

$$\mathcal{L}^B = - ext{KL}[\overbrace{q_{\phi}(\mathbf{z} \mid \mathbf{x}^{(i)})}^{ ext{Encoder}} \| \overbrace{p_{ heta}(\mathbf{z})}^{ ext{Fixed}}] + rac{1}{L} \sum_{l=1}^{L} \log \overbrace{p_{oldsymbol{ heta}}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(l)})}^{ ext{Decoder}}$$

Problems of VAE

• It does not really try to simulate real images

VAE treats these the same

Gradual and step-wise generation

GAN – Learn a discriminator

GAN – Learn a generator

Randomly sample a vector

Updating the parameters of generator

The output be classified as "real" (as close to 1 as possible)

Generator + Discriminator = a network

Using gradient descent to update the parameters in the generator, but fix the discriminator

Generating 2nd element figures

You can use the following to start a project (but this is in Chinese):

Source of images: https://zhuanlan.zhihu.com/p/24767059 From Dr. HY Lee's notes.

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

GAN – generating 2nd element figures

100 rounds

This is fast, I think you can use your CPU

1000 rounds

GAN – generating 2nd element figures

2000 rounds

5000 rounds

10,000 rounds

20,000 rounds

50,000 rounds

Next few images from Goodfellow lecture

Next Video Frame Prediction

Single Image Super-Resolution

(Ledig et al 2016)

Last 2 are by deep learning approaches.

Image to Image Translation

DCGANs for LSUN Bedrooms

(Radford et al 2015)

Similar to word embedding (DCGAN paper)

Vector Space Arithmetic

Woman with Glasses

(Radford et al, 2015)

256x256 high resolution pictures by Plug and Play generative network

PPGN Samples

From natural language to pictures

PPGN for caption to image

oranges on a table next to a liquor bottle

Basic Idea of GAN

- Generator G
 - G is a function, input z, output x
 - Given a prior distribution $P_{prior}(z)$, a probability distribution $P_G(x)$ is defined by function G
- Discriminator D
 - D is a function, input x, output scalar
 - Evaluate the "difference" between $P_G(x)$ and $P_{data}(x)$
- In order for D to find difference between P_{data} from P_{G} , we need a cost function V(G,D):

 $G*=arg min_G max_D V(G,D)$

Basic Idea

$$G^* = arg min_G max_D V(G,D)$$

Pick JSD function: $V = E_{x\sim P_data} [log D(x)] + E_{x\sim P_G} [log(1-D(x))]$

Given a generator G, $\max_D V(G,D)$ evaluates the "difference" between P_G and P_{data} Pick the G s.t. P_G is most similar to P_{data}

$Max_DV(G,D)$, $G*=arg min_Gmax_DV(G,D)$

• Given G, what is the optimal D* maximizing

$$V = E_{x \sim P_{data}} [log D(x)] + E_{x \sim P_{G}} [log(1-D(x))]$$

= $\Sigma [P_{data}(x) log D(x) + P_{G}(x) log(1-D(x))]$

Thus:
$$D^*(x) = P_{data}(x) / (P_{data}(x) + P_G(x))$$

Assuming D(x) can have any value here

• Given x, the optimal D* maximizing is:

$$f(D) = alogD + blog(1-D) \rightarrow D^* = a/(a+b)$$

$\max_{D} V(G,D)$, $G^* = \arg\min_{G} \max_{D} V(G,D)$

$\max_{\mathbf{D}} \mathbf{V}(\mathbf{G},\mathbf{D})$

 $V = E_{x \sim P_{data}} [log D(x)] + E_{x \sim P_{G}} [log(1-D(x))]$

```
max_D V(G,D)
      = V(G,D^*), where D^*(x) = P_{data} / (P_{data} + P_G), and
                                1-D^*(x) = P_G / (P_{data} + P_G)
      = E_{x\sim P \text{ data}} \log D^*(x) + E_{x\sim P \text{ G}} \log (1-D^*(x))
      \approx \Sigma \left[ P_{data}(x) \log D^*(x) + P_G(x) \log (1-D^*(x)) \right]
      = -2\log 2 + 2 JSD(P_{data} || P_G),
JSD(P||Q) = Jensen-Shannon divergence
               = \frac{1}{2} D_{KI} (P||M) + \frac{1}{2} D_{KI} (Q||M)
where M = \frac{1}{2} (P + Q).
   D_{KI}(P||Q) = \sum P(x) \log P(x) / Q(x)
```

Summary:

$$V = E_{x \sim P_data} [log D(x)] + E_{x \sim P_G} [log(1-D(x))]$$

- Generator G, Discriminator D
- Looking for G* such that

$$G^* = arg min_G max_D V(G,D)$$

• Given G, $\max_{D} V(G,D)$

$$= -2\log 2 + 2JSD(P_{data}(x) || P_G(x))$$

• What is the optimal G? It is G that makes JSD smallest = 0:

$$P_{G}(x) = P_{data}(x)$$

<u>Algorithm</u>

Initialize θ_d for D and θ_g for G

In each training iteration

Ian Goodfellow comment: this is also done once

Learning D

Repeat k times

Learning G

Only Once

- Sample m examples $\{x^1, x^2, \dots x^m\}$ from data distribution $P_{data}(x)$
- Sample m noise samples $\{z^1, \ldots, z^m\}$ from a simple prior $P_{prior}(z)$
- Obtain generated data $\{x^{*1}, \dots, x^{*m}\}, x^{*i}=G(z^i)$
- Update discriminator parameters θ_d to maximize
 - $V' \approx 1/m \sum_{i=1..m} log D(x^i) + 1/m \sum_{i=1..m} log (1-D(x^{*i}))$
 - $\theta_d \leftarrow \theta_d + \eta \Delta V'(\theta_d)$ (gradient ascent)
- Sample another m noise samples $\{z^1,z^2,\dots z^m\}$ from the prior $P_{prior}(z)$, $G(z^i)=x^{*i}$
- Update generator parameters θ_g to minimize

$$V' = 1/m \Sigma_{i=1..m} \log D(x^{i}) + 1/m \Sigma_{i=1..m} \log (1-D(x^{*i}))$$

$$\theta_{g} \leftarrow \theta_{g} - \eta \Delta V'(\theta_{g}) \quad \text{(gradient descent)}$$

Objective Function for Generator in Real Implementation

$$V = E_{x\sim P_data} [log D(x) + E_{x\sim P_G} [log(1-D(x))]$$

Training slow at the beginning

$$V = E_{x \sim P G} [-log (D(x))]$$

Real implementation: label x from P_G as positive

GAN training process

Some issues in training GAN

M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, 2017.

Evaluating JS divergence

Discriminator is too strong: for all three Generators, JSD = 0

Martin Arjovsky, Léon Bottou, Towards Principled Methods for Training Generative Adversarial Networks, 2017, arXiv preprint

Evaluating JS divergence

https://arxiv.org/abs/1701.07875

• JS divergence estimated by discriminator telling little information

Weak Generator

Strong Generator

Discriminator

1 for all positive examples

0 for all negative examples

$$V = E_{x \sim P_data} [log D(x)] + E_{x \sim P_G} [log(1-D(x))]$$

= 1/m $\Sigma_{i=1..m} logD(x^i) + 1/m \Sigma_{i=1..m} log(1-D(x^{*i}))$

$$max_DV(G,D) = -2log2 + 2 JSD(P_{data} || P_G)$$

log 2 when P_{data} and P_G differ completely

Reason 1. Approximate by sampling

Weaken your discriminator?

Can weak discriminator compute JS divergence?

Discriminator

Reason 2. the nature of data

 $P_{data}(x)$ and $P_{G}(x)$ have very little overlap in high dimensional space

Evolution

http://www.guokr.com/post/773890/

Evolution needs to be smooth:

One simple solution: add noise

- Add some artificial noise to the inputs of discriminator
- Make the labels noisy for the discriminator

Discriminator cannot perfectly separate real and generated data

 $P_{data}(x)$ and $P_{G}(x)$ have some overlap

Noises need to decay over time

Mode Collapse

Converge to same faces

Sometimes, this is hard to tell since one sees only what's generated, but not what's missed.

Mode Collapse Example

8 Gaussian distributions:

What we want ...

In reality ...

<u>Algorithm</u> WGAN

• In each training iteration

lan Goodfellow comment: this is also done once

Learning D

Repeat k times

Learning G

Only Once

- Sample m examples $\{x^1, x^2, \dots x^m\}$ from data distribution $P_{data}(x)$
- Sample m noise samples $\{z^1, \ldots, z^m\}$ from a simple prior $P_{prior}(z)$
- Obtain generated data $\{x^{*1}, \dots, x^{*m}\}, x^{*i}=G(z^i)$
- Update discriminator parameters θ_d to maximize
 - $V' \approx \sum_{i=1..m} \frac{\log D(x^i) + 1/m \sum_{i=1..m} \frac{\log (1-D(x^{*i}))}{\log (1-D(x^{*i}))}$
 - $\theta_d \leftarrow \theta_d + \eta \Delta V'(\theta_d)$ (gradient ascent plus weight clipping)
 - Sample another m noise samples $\{z^1,z^2,\dots z^m\}$ from the prior $P_{prior}(z),\ G(z^i)=x^{*i}$
- Update generator parameters θ_g to minimize

$$V' = \frac{1}{m} \frac{\log D(x^i)}{\log D(x^i)} + \frac{1}{m} \sum_{i=1..m} \frac{\log (1 - D(x^{*i}))}{\log (1 - D(x^{*i}))}$$

$$\theta_g \leftarrow \theta_g - \eta \Delta V'(\theta_g)$$
 (gradient descent)

Experimental Results

• Approximate a mixture of Gaussians by single mixture

train \ test	KL	KL-rev	JS	Jeffrey	Pearson
KL	0.2808	0.3423	0.1314	0.5447	0.7345
KL-rev	0.3518	0.2414	0.1228	0.5794	1.3974
JS	0.2871	0.2760	0.1210	0.5260	0.92160
Jeffrey	0.2869	0.2975	0.1247	0.5236	0.8849
Pearson	0.2970	0.5466	0.1665	0.7085	0.648

WGAN Background

- We have seen that JSD does not give GAN a smooth and continuous improvement curve.
- We would like to find another distance which gives that.
- This is the Wasserstein Distance or earth mover's distance.

Earth Mover's Distance

- Considering one distribution P as a pile of earth (total amount of earth is 1), and another distribution Q (another pile of earth) as the target
- The "earth mover's distance" or "Wasserstein Distance" is the average distance the earth mover has to move the earth in an optimal plan.

Earth Mover's Distance: best plan to move

JS vs Earth Mover's Distance

$$JS(P_{G_0}, P_{data}) = log2$$

$$JS(P_{G_50}, P_{data}) = log2$$

$$JS(P_{G 100}, P_{data}) = 0$$

$$W(P_{G_0}, P_{data})=d_0$$

$$W(P_{G_{-50}}, P_{data}) = d_{50}$$

$$W(P_{G_{-100}}, P_{data})=0$$

Explaining WGAN

• Let W be the Wasserstein distance.

$$W(P_{data}, P_G) = \max_{D \text{ is } 1\text{-Lipschitz}} [E_{x \sim P_data} D(x) - E_{x \sim P_G} D(x)]$$

Where a function f is a k-Lipschitz function if

$$||f(\mathbf{x}_1)| - f(\mathbf{x}_2)||$$

How to guarantee this?

Weight clipping: for all
parameter updates, if w>c

Then w=c, if w<-c, then w=-c.

Earth Mover Distance Examples:

Generator iterations

• Let's build the first GAN model's generator and discriminator as a fully connected neural network with one or more hidden layers

• Let's define the two helper functions for the two neural networks.

```
[5] import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np
import matplotlib.pyplot as plt
```

```
## Define the generator function:
def make_generator_network(
        num_hidden_layers=1,
        num_hidden_units=100,
        num_output_units=784):
    model = tf.keras.Sequential()
   for i in range(num_hidden_layers):
        model.add(
            tf.keras.layers.Dense(
                units=num_hidden_units,
                use_bias=False)
        model.add(tf.keras.layers.LeakyReLU())
    model.add(tf.keras.layers.Dense(
        units=num_output_units, activation='tanh'))
    return model
```

```
## Define the discriminator function:
def make_discriminator_network(
        num_hidden_layers=1,
        num_hidden_units=100,
        num output units=1):
    model = tf.keras.Seguential()
    for i in range(num hidden layers):
        model.add(tf.keras.layers.Dense(units=num_hidden_units))
        model.add(tf.keras.layers.LeakyReLU())
        model.add(tf.keras.layers.Dropout(rate=0.5))
    model.add(
        tf.keras.lavers.Dense(
            units=num_output_units,
            activation=None)
    return model
```


• Building generator and discriminator neural network

```
image size = (28, 28)
z_size = 20
mode z = 'uniform' # 'uniform' vs. 'normal'
                                                          Model: "sequential"
gen hidden layers = 1
                                                                                                               Param #
                                                           Laver (type)
                                                                                      Output Shape
gen hidden size = 100
disc_hidden_layers = 1
                                                          dense (Dense)
                                                                                      (None, 100)
                                                                                                               2000
disc_hidden_size = 100
                                                           Teaky_re_Tu (LeakyReLU)
                                                                                      (None, 100)
tf.random.set seed(1)
                                                                                      (None, 784)
                                                           dense 1 (Dense)
                                                                                                               79184
gen model = make generator network(
                                                           Total params: 81,184
    num_hidden_layers=gen_hidden_layers,
                                                          Trainable params: 81,184
                                                          Non-trainable params: 0
    num_hidden_units=gen_hidden_size,
    num_output_units=np.prod(image_size))
gen model.build(input shape=(None, z size))
gen_model.summary()
```


• Building generator and discriminator neural network

```
disc_model = make_discriminator_network(
    num_hidden_layers=disc_hidden_layers,
    num_hidden_units=disc_hidden_size)
disc_model.build(input_shape=(None, np.prod(image_size)))
disc_model.summary()
                                  Model: "sequential 1"
                                  Laver (type)
                                                             Output Shape
                                                                                      Param #
                                  dense_2 (Dense) (None, 100)
                                                                                      78500
                                   leaky_re_lu_1 (LeakyReLU) (None, 100)
                                  dropout (Dropout) (None. 100)
                                  dense_3 (Dense)
                                                            (None, 1)
                                  Total params: 78,601
                                  Trainable params: 78,601
                                  Non-trainable params: 0
```


• Define test dataset

- The range of pixel values of the synthetic image is (-1, 1) since the output layer of the generator uses the tanh activation function.
- pixel intensity range: [0, 1], Multiply 2 and subtract 1 to adjust the pixel intensity range to [-1, 1]
- create a random vector z based on a random distribution

```
mnist_bldr = tfds.builder('mnist')
mnist_bldr.download_and_prepare()
mnist = mnist_bldr.as_dataset(shuffle_files=False)
def preprocess(ex, mode='uniform'):
    image = ex['image']
    image = tf.image.convert_image_dtype(image, tf.float32)
    image = tf.reshape(image, [-1])
    image = image*2 - 1.0
    if mode == 'uniform':
        input_z = tf.random.uniform(
            shape=(z_size,), minval=-1.0, maxval=1.0)
    elif mode == 'normal':
        input_z = tf.random.normal(shape=(z_size,))
    return input_z, image
```


• Let's examine the dataset object:

```
[8] mnist trainset = mnist['train']
   print('before preprocessing: ')
   example = next(iter(mnist_trainset))['image']
   print('dtype: ', example.dtype, ('minimum: {}, maximum: {}'.format(np.min(example), np.max(example))))
   mnist trainset = mnist trainset.map(preprocess)
   print('after preprocessing: ')
   example = next(iter(mnist trainset))[0]
   print('dtype: ', example.dtype, ('minimum: {}, maximum: {}'.format(np.min(example), np.max(example))))
   before preprocessing:
   dtype: <dtype: 'uint8'> minimum: 0, maximum: 255
   after preprocessing:
   dtype: <dtype: 'float32'> minimum: -0.8737728595733643, maximum: 0.9460210800170898
```


• In the following code, let's print the input vector and the image array shape by extracting a batch:

```
mnist_trainset = mnist_trainset.batch(32, drop_remainder=True)
input_z, input_real = next(iter(mnist_trainset))
print('input-z -- shape:', input_z.shape)
print('input-real -- shape:', input_real.shape)
input-z -- shape: (32, 20)
input-real -- shape: (32, 784)
```


• let's run the front-propagation computation of the generator and discriminator to understand the general data flow

```
g_output = gen_model(input_z)
   print('Generator output -- shape:', g_output.shape)
   d_logits_real = disc_model(input_real)
   d_logits_fake = disc_model(g_output)
   print('discriminator (real) -- shape:', d_logits_real.shape)
   print('discriminator (fake) -- shape:', d_logits_fake.shape)
Generator output -- shape: (32, 784)
   discriminator (real) -- shape: (32, 1)
   discriminator (fake) -- shape: (32, 1)
```

Training GAN model

```
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)

## Generator loss
g_labels_real = tf.ones_like(d_logits_fake)
g_loss = loss_fn(y_true=g_labels_real, y_pred=d_logits_fake)
print('Generator loss: {:.4f}'.format(g_loss))
Generator loss: 0.6961
```

$$V(\theta^{(D)}, \theta^{(G)}) = \mathbb{E}_{z \sim p_z(z)}[\log[D(G(z))]]$$

Training GAN model

$$V(\theta^{(D)}, \theta^{(G)}) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log[1 - D(G(z))]]$$

• Final Training (1/6)

```
import time
num_epochs = 100
batch_size = 64
image_size = (28, 28)
z size = 20
mode_z = 'uniform'
gen_hidden_layers = 1
gen_hidden_size = 100
disc hidden layers = 1
disc_hidden_size = 100
tf.random.set seed(1)
np.random.seed(1)
```

```
if mode z == 'uniform':
    fixed z = tf.random.uniform(
        shape=(batch_size, z_size),
        minval=-1, maxval=1)
elif mode z == 'normal':
    fixed_z = tf.random.normal(
        shape=(batch size, z size))
def create_samples(g_model, input_z):
    g_output = g_model(input_z, training=False)
    images = tf.reshape(g_output, (batch_size, *image_size))
    return (images+1)/2.0
```


• Final Training (2/6)

```
## Prepare dataset
mnist_trainset = mnist['train']
mnist_trainset = mnist_trainset.map(
    lambda ex: preprocess(ex, mode=mode_z))

mnist_trainset = mnist_trainset.shuffle(10000)
mnist_trainset = mnist_trainset.batch(
    batch_size, drop_remainder=True)
```


• Final Training (3/6)

```
## Prepare model
with tf.device(device_name):
    gen_model = make_generator_network(
        num_hidden_layers=gen_hidden_layers,
        num_hidden_units=gen_hidden_size,
        num_output_units=np.prod(image_size))
    gen_model.build(input_shape=(None, z_size))

disc_model = make_discriminator_network(
    num_hidden_layers=disc_hidden_layers,
    num_hidden_units=disc_hidden_size)
disc_model.build(input_shape=(None, np.prod(image_size)))
```

```
## Loss function and optimizer

loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)

g_optimizer = tf.keras.optimizers.Adam()

d_optimizer = tf.keras.optimizers.Adam()
```


• Final Training (4/6)

```
all_losses = []
all_d_vals = []
epoch_samples = []
start_time = time.time()
for epoch in range(1, num_epochs+1):
     epoch_losses, epoch_d_vals = [], []
     for i.(input_z,input_real) in enumerate(mnist_trainset):
         ## Calculate the loss of generator.
         with tf.GradientTape() as g_tape:
             g_output = gen_model(input_z)
             d_logits_fake = disc_model(g_output, training=True)
             labels_real = tf.ones_like(d_logits_fake)
             g_loss = loss_fn(y_true=labels_real, y_pred=d_logits_fake)
         # Calculate the gradient of g_loss.
         g_grads = g_tape.gradient(g_loss, gen_model.trainable_variables)
         # Optimizer: Apply gradients.
         g_optimizer.apply_gradients(
             grads_and_vars=zip(g_grads, gen_model.trainable_variables))
```


• Final Training (5/6)

```
## Calculate the loss of discriminator.
with tf.GradientTape() as d_tape:
    d_logits_real = disc_model(input_real, training=True)
    d labels real = tf.ones like(d logits real)
    d_{loss_real} = loss_fn(
        y_true=d_labels_real, v_pred=d_logits_real)
    d_logits_fake = disc_model(g_output, training=True)
    d_labels_fake = tf.zeros_like(d_logits_fake)
    d_{loss_fake} = loss_fn(
        y_true=d_labels_fake, y_pred=d_logits_fake)
    d loss = d_loss_real + d_loss_fake
## Calculate the gradient of d_loss.
d_grads = d_tape.gradient(d_loss, disc_model.trainable_variables)
```


• Final Training (6/6)

```
## Opmizer: Apply gradients
    d optimizer.apply gradients(
        grads and vars=zip(d grads, disc model.trainable variables))
    epoch losses.append(
        (g loss.numpy(), d loss.numpy(),
         d loss real.numpy(), d loss fake.numpy()))
    d probs real = tf.reduce mean(tf.sigmoid(d logits real))
    d probs fake = tf.reduce mean(tf.sigmoid(d logits fake))
    epoch d vals.append((d probs real.numpy(), d probs fake.numpy()))
all losses.append(epoch losses)
all d vals.append(epoch d vals)
print(
    'epoch {:03d} | time {:.2f} min | Average loss >>'
    ' Generator/Discriminator {:.4f}/{:.4f} [Discriminator-Real]: {:.4f} Discriminator-Fake: {:.4f}]'
    .format(
        epoch, (time.time() - start time)/60,
        *list(np.mean(all losses[-1], axis=0))))
epoch samples.append(
    create samples(gen model, fixed z).numpy())
```

```
epoch 001
                            Average loss >> Generator/Discriminator 3.0232/0.3027 [Discriminator-Real: 0.0320 Discriminator-Fake: 0.2707]
            time 1.23 min
epoch 002
           time 2.01 min
                            Average loss >> Generator/Discriminator 4.9142/0.3012 [Discriminator-Real: 0.0941 Discriminator-Fake: 0.2071]
epoch 003
           time 2.77 min
                            Average loss >>Generator/Discriminator 3.9093/0.6338 [Discriminator-Real: 0.2792 Discriminator-Fake: 0.3546]
epoch 004
           time 3.54 min
                            Average loss >> Generator/Discriminator 1.9743/0.9225 [Discriminator-Real: 0.4597 Discriminator-Fake: 0.4628]
                            Average loss >> Generator/Discriminator 2.2160/0.7707 [Discriminator-Real: 0.4182 Discriminator-Fake: 0.3525]
epoch 005
           time 4.90 min
                            Average loss >> Generator/Discriminator 1.9331/0.8516 [Discriminator-Real: 0.4704 Discriminator-Fake: 0.3812]
                            Average loss >>Generator/Discriminator 1.7033/0.9588 [Discriminator-Real: 0.5177 Discriminator-Fake: 0.4411]
            time 6.41 min
```


- Also, it is helpful to print the average probability of the real and fake samples computed by the discriminator for each iteration.
- If this probability is close to 0.5, the discriminator cannot distinguish between real and fake images.

```
import itertools
fig = plt.figure(figsize=(16, 6))
  ## Loss graph
ax = fig.add\_subplot(1, 2, 1)
g_losses = [item[0] for item in itertools.chain(*all_losses)]
d_losses = [item[1]/2.0 for item in itertools.chain(*all_losses)]
plt.plot(g_losses, label='Generator loss', alpha=0.95)
plt.plot(d_losses, label='Discriminator loss', alpha=0.95)
plt.legend(fontsize=20)
ax.set_xlabel('lteration', size=15)
ax.set_ylabel('Loss', size=15)
epochs = np.arange(1, 101)
epoch2iter = lambda e: e*len(all_losses[-1])
epoch_ticks = [1, 20, 40, 60, 80, 100]
newpos = [epoch2iter(e) for e in epoch_ticks]
ax2 = ax.twinv()
ax2.set_xticks(newpos)
ax2.set_xticklabels(epoch_ticks)
ax2.xaxis.set_ticks_position('bottom')
ax2.xaxis.set_label_position('bottom')
ax2.spines['bottom'].set_position(('outward', 60))
ax2.set_xlabel('Epoch', size=15)
ax2.set_xlim(ax.get_xlim())
ax.tick_params(axis='both', which='major', labelsize=15)
ax2.tick_params(axis='both', which='major', labelsize=15)
```

```
## Print discriminator
ax = fig.add\_subplot(1, 2, 2)
d_vals_real = [item[0] for item in itertools.chain(*all_d_vals)]
d_vals_fake = [item[1] for item in itertools.chain(*all_d_vals)]
plt.plot(d_vals_real, alpha=0.75, label=r'Real: $D(\mathbf{x})$')
plt.plot(d_vals_fake, alpha=0.75, label=r'Fake: $D(G(\mathbf{z}))$')
plt.legend(fontsize=20)
ax.set_xlabel('lteration', size=15)
ax.set_ylabel('Discriminator output', size=15)
ax2 = ax.twinv()
ax2.set_xticks(newpos)
ax2.set_xticklabels(epoch_ticks)
ax2.xaxis.set_ticks_position('bottom')
ax2.xaxis.set_label_position('bottom')
ax2.spines['bottom'].set_position(('outward', 60))
ax2.set_xlabel('Epoch', size=15)
ax2.set_xlim(ax.get_xlim())
ax.tick_params(axis='both', which='major', labelsize=15)
ax2.tick_params(axis='both', which='major', labelsize=15)
plt.show()
```


- Also, it is helpful to print the average probability of the real and fake samples computed by the discriminator for each iteration.
- If this probability is close to 0.5, the discriminator cannot distinguish between real and fake images.

Training GAN model

```
In [25]: selected_epochs = [1, 2, 4, 10, 50, 100]
         fig = plt.figure(figsize=(10, 14))
         for i,e in enumerate(selected_epochs):
             for j in range(5):
                 ax = fig.add\_subplot(6, 5, i*5+j+1)
                 ax.set_xticks([])
                 ax.set_yticks([])
                 if j == 0:
                     ax.text(
                         -0.06, 0.5, 'Epoch {}'.format(e),
                         rotation=90, size=18, color='red',
                         horizontalalignment='right',
                         verticalalignment='center'.
                         transform=ax.transAxes)
                 image = epoch_samples[e-1][i]
                 ax.imshow(image, cmap='gray_r')
         plt.show()
```


• Training GAN model

