3/4/2018 Homogeneous catalyst: same phase as reactants Heterogeneous ratelyst: different phase " ---ex: H2O2(ag) - cat > H2O(l) + 2O2(g) cat: I (as) homog. Ptis) heterog. Ch 15: Chemical equilibrium Ch14: How FAST chem An occus Ch15: How FAR chem in goes. Dynamic egm - fwds rxn ex: H₂(g) + I₂(g) = 2 HI(g) When fud rate = NSE rate @ EOM! Dynamic eam 1 H2 1 - concs are no longer changing - they are constant time

	The equilibrium constant, K
K=rate constant	
K = egm constau	t de la company de la comp
-	if aA+bB=cC+dD
	Kc = [C][D] } The law of
	eam cone [A] B] Mass eam (molar) Action
	constant (molar) Action
	eam []'s
	given: N2(g) + 3H2(g) = 2NH3(g)
	2
	what's Kc = [NH3]
	[N2][H2]3
	M (K? (D. 1.1.)
	Meaning of K' [Products] (~ = roughly) Kc ~ [Reactant] Speaking
	if Kc>>1, [Products] > [Reactant] (@ eo=)
	Kc «1, [Producto] < [Reactants] "
	, Littoricis C , Li crici , Li
	Ke ~ 1 [Products] ~ [Reactants] "

ex:
$$H_2(g) + Br_2(g) \supseteq 2HBr(g)$$
 ; $K_c = 1.9 \times 10^{19}$ @ 25°c mainly >>1

proble ear $R \rightarrow P$

ex:
$$N_2(g) + O_2(g) \stackrel{\sim}{=} 2NO(g)$$
; $K_c = 4.1 \times 10^{-31}$ @ 25°c $<<1$ mainly reactants $R \stackrel{\sim}{=} P$

How K varies of the way we write the chemea consides:
$$A + 2B \rightleftharpoons 3C$$
, $K = [C]$

$$[A][B]^{2}$$

$$3C \Longrightarrow A + 2B$$
, $K_1 = [A][B]$

$$CC]^3$$