Devoir maison n°9 : Fonction du Boulanger

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Problème 1 -

1)

Si
$$x \in \left[0, \frac{1}{2}\right]$$
, $f(x) = 2x$ donc
$$0 \le x \le \frac{1}{2}$$

$$\Leftrightarrow 0 \le 2x \le 1$$

$$\Leftrightarrow f\left(\left[0, \frac{1}{2}\right]\right) = [0, 1]$$

Si
$$x \in]\frac{1}{2}, 1], f(x) = 2(1-x)$$
 donc
$$\frac{1}{2} < x \le 1$$

$$\Leftrightarrow 0 \le 1 - x < \frac{1}{2}$$

$$\Leftrightarrow 0 \le 2(1-x) < 1$$

$$\Leftrightarrow f\left(\left\lceil\frac{1}{2}, 1\right\rceil\right) = [0, 1[$$

Donc nous avons bien f([0,1]) = [0,1]

Représentation graphique de f sur [0,1]

²⁾ La fonction suite repose naturellement sur de la récursivité. Nous allons donc la programmer dans un language qui supporte de manière optimale les fonctions récursives.

Voici suite a p en OCaml 🍐 .

```
let f x =
    if x >= 0.0 && x <= 0.5 then 2.0 *. x
    else if x <= 1.0 then 2.0 *. (1.0 -. x)
    else failwith "x doit être dans l'intervalle [0, 1]"

let rec suite x p =
    if p > 0 then begin
        let x' = f x in
        Printf.printf "%.5f\n" x';
        suite x' (p - 1)
    end

let () =
    suite (2. /. 5.) 25
```

Voici suite(a, p) en Python.

```
def f(x):
    if 0 <= x <= 1/2:
        return 2*x
    elif 1/2 < x <= 1:
        return 2*(1-x)

def suite(a, p):
    u = [a]
    for _ in range(p-1):
        u.append(f(u[-1]))
    return u</pre>
```

```
3) a)
```

- Si $a = \frac{1}{3}$:
 - $u_0 = \frac{1}{3}$

►
$$u_1 = f(u_0) = \frac{2}{3} \operatorname{car} u_0 < \frac{1}{2}$$

► $u_2 = 2(1 - \frac{2}{3}) = \frac{2}{3} \operatorname{car} u_1 > \frac{1}{2}$

On remarque que $u_1=u_2=\frac{2}{3}$ puisque $f\left(\frac{2}{3}\right)=\frac{2}{3}$, donc la suite $\left(u_n\right)_{n\in\mathbb{N}}$ sera constante pour $n\geq 1$.

Avec $a = \frac{1}{3}$:

$$u_n = \begin{cases} \frac{1}{3} & \text{si } n = 0\\ \frac{2}{3} & \text{si } n \ge 1 \end{cases}$$

• Si a = 0.33, On obtient : (0.33, 0.66, 0.68, 0.64, 0.72, 0.56, 0.88, 0.24, 0.48)

On remarque que, bien que $\frac{1}{3}\approx 0.33$, la suite ne devient pas constante pendant les 9 premiers termes.

b)

Soit $k \in \mathbb{N}^*$ et $a = \frac{1}{2^k}$. $\forall k \in \mathbb{N}^*, \frac{1}{2^k} \leq \frac{1}{2}$, donc

$$u_0 = \frac{1}{2^k}$$
 $u_1 = 2\left(\frac{1}{2^k}\right) = \frac{1}{2^{k-1}}$ $u_2 = \frac{1}{2^{k-2}}$

Cela ne varie pas tant que n < k.

$$u_k = \frac{1}{2^{k-k}} = 1 \qquad \qquad u_{k+1} = 0 \qquad \qquad u_{k+2} = 0$$

Or, f(0) = 0, donc

Avec $a = \frac{1}{2^k}$:

$$u_n = \begin{cases} \frac{1}{2^{k-n}} & \text{si } n \in \llbracket 0, k \rrbracket \\ 0 & \text{si } n > k \end{cases}$$

c)

Soit $k\in\mathbb{N}^*$ et $a=\frac{1}{3\times 2^k}$. $\forall k\in\mathbb{N}^*, \frac{1}{3\times 2^k}\leq \frac{1}{3\times 2}<\frac{1}{2}$, donc

$$u_0 = \frac{1}{3 \times 2^k} \qquad \qquad u_1 = 2\left(\frac{1}{3 \times 2^k}\right) = \frac{1}{3 \times 2^{k-1}} \qquad \qquad u_2 = \frac{1}{3 \times 2^{k-2}}$$

Cela ne varie pas tant que n < k.

$$u_k = \frac{1}{3 \times 2^{k-k}} = \frac{1}{3}$$
 $u_{k+1} = \frac{2}{3}$ $u_{k+2} = \frac{2}{3}$

Or, $f(\frac{2}{3}) = \frac{2}{3}$, nous l'avions déjà observé à la question 3) a).

Avec $a = \frac{1}{3 \times 2^k}$:

$$u_n = \begin{cases} \frac{1}{3 \times 2^{k-n}} & \text{si } n \in \llbracket 0, k \rrbracket \\ \frac{2}{3} & \text{si } n > k \end{cases}$$

4) a) Choisissons a=0, comme f(0)=0, la suite $(u_n)_{n\in\mathbb{N}}$ sera bien constante. Nous aurions aussi pu choisir $a=\frac{2}{3}$.

- **b)** Choisissons $a=\frac{2}{5}$, comme $f\left(\frac{2}{5}\right)=\frac{4}{5}$, $f\left(\frac{4}{5}\right)=\frac{2}{5}$, la suite $\left(u_n\right)_{n\in\mathbb{N}}$ est bien périodique de période 2. Nous aurions bien-sûr aussi pu choisir $a=\frac{4}{5}$.
- c) Choisissons $a=\frac{2}{7}$, comme $f\left(\frac{2}{7}\right)=\frac{4}{7}$, $f\left(\frac{4}{7}\right)=\frac{6}{7}$ et $f\left(\frac{6}{7}\right)=\frac{2}{7}$, la suite $\left(u_n\right)_{n\in\mathbb{N}}$ sera bien périodique de période 3. Nous aurions bien-sûr aussi pu choisir $a=\frac{4}{7}$ ou $a=\frac{6}{7}$.

5)

Si k=2, comme vu auparavant, la suite $(u_n)_{n\in\mathbb{N}}$ est constante, nous n'étudierons donc pas ce cas afin de simplifier le raisonnement.

Soit un entier k tel que k > 2.

On a $2^k-1\geq 7$, donc : $0<\frac{2}{2^k-1}<\frac{1}{2}$. Ainsi, $a\in \left[0,\frac{1}{2}\right]$, ce qui garantit que la suite $\left(u_n\right)_{n\in\mathbb{N}}$ est bien définie par f.

On remarque de manière évidente que si tous les termes de la suite u_n sont inférieurs à $\frac{1}{2}$ jusqu'à un rang $n,n\in\mathbb{N}$, on a :

$$u_n = 2^n \cdot a = \frac{2^{n+1}}{2^k - 1}$$

Or, $2^n \cdot a$ tend vers $+\infty$ lorsque n tend vers $+\infty$, donc il adviendra un moment où $2^n \cdot a > \frac{1}{2}$

D'où, au rang k-1, car

$$u_{k-3} = \tfrac{2^{k-2}}{2^k-1} < \tfrac{1}{2} \qquad \qquad \text{et} \qquad \qquad u_{k-2} = \tfrac{2^{k-1}}{2^k-1} > \tfrac{1}{2}$$

On a:

$$u_{k-1} = 2\left(1 - \frac{2^{k-1}}{2^k - 1}\right) = 2 - \frac{2^k}{2^k - 1} = 1 - \frac{1}{2^k - 1} > \frac{1}{2}$$

$$u_k = 2\left(1 - \left(1 - \frac{1}{2^k - 1}\right)\right) = 2 - 2 - \frac{2}{2^k - 1} = a$$

Et la suite $(u_n)_{n\in\mathbb{N}}$ est donc périodique de période k.

Problème 2 - Galette des rois

Fig. 2. – Bon appétit!¹

Fig. 3. – Avec une jolie fève :)

 $^{^{\}scriptscriptstyle 1}$ L'aire de cette galette $\overline{\text{est }4r^2}$.