	, 2025 10:07 PM	((()					
1) 4 -	(05(B) sin (B)	- Sin (b)	0				
K-	SINTO	C65 (θ)	0)				
	1						
i) RT	R :						
'							
	/ cos(0)	sin(0)	0 // (05(8	$\begin{array}{ccc} (\theta) & -\sin(\theta) \\ (\theta) & \cos(\theta) \end{array}$	0		
	- Sin(0)	(05(0)	O) Sin LE)) ωs(θ)	0		
			1 // 0	O	1 /		
	/(05 ² (0) ,	+ sin 2 (θ) +	0	-Sin (B)65(θ) + sin(θ)ωs(θ) +	0 0-0-0	
	- Sin (t) (c	25(U)+ SN	~(θ)(σs(θ)+C) Sin * (0)) + (os = (0) + O	0+0+0	
	\ 0	+0+0		0)+0+0	0+0+	
		0					
	0 1	0					
	00	1 /					
RR	Τ.						
	(05(O)	-sin(0)	0 / 605(θ) sin(θ) θ) cos(θ)	0		
	$sin(\theta)$	ωs(θ)	0 - sin(E	;) (o 5(0)	0)		
	1 0	0	1/\ 0	0			
	/ (05°(A) +	- Sin2(0) + O	>	sin(0) cos(0)) - sh(0)(os(0)+0	0+0+0	
		$Sin(\theta)\cos(\theta) - Sin(\theta)\cos(\theta) = 0$					
					51/2(0) +(052(0) +0		
	0+	0 + 0		0+0+	- O	0+0+1	
		0					
	000	1)					
		1					
RTK	e = RRT =	·I /					

$$R(-\theta) = \begin{pmatrix} \omega_{S}(-\theta) & -\sin(-\theta) & 0 \\ \sin(-\theta) & \omega_{S}(-\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

making use of sine being an odd function and cosine being even, we get:

$$R(-\theta) = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$50 \quad \chi(-0) = \chi^{T} = \chi^{-1}$$

$$2) \int_{X_{1}} dx_{2} dx_{3} = \left\| \frac{\partial(x_{1}, \chi_{2}, \chi_{3})}{\partial(x_{1}, \chi_{2}, \chi_{3})} \right\| dx_{1}^{1} dx_{2}^{1} dx_{3}^{1}$$

$$\mathcal{J}_{i,\gamma} = \frac{\partial x_i}{\partial x_{\gamma}^{\prime}}$$

i) to convert from cartesian to spherical coordinates, we use X=rsin(θ)cos(4) y=rsin(θ)sin(4) z=rcos(θ)

$$\int \sin(\theta)\cos(\theta) & \cos(\theta) & \cos(\theta) & -r\sin(\theta)\sin(\theta) \\
J = \sin(\theta)\sin(\theta) & r\cos(\theta)\sin(\theta) & r\sin(\theta)\cos(\theta) \\
\cos(\theta) & -r\sin(\theta) & 0$$

(i)
$$r(0) cos(\theta) sin(\theta) rsin(\theta) cos(\theta) - rsin(\theta) cos(\theta)$$

=
$$sin(\theta)cos(\varphi)\left[0 + r^2 sin^2(\theta) cos(\varphi)\right]$$

=
$$\gamma^2 \sin^3(\theta) \cos^2(\varphi)$$
 (1)

$$r\cos(\theta)\cos(\theta)$$
 $\cos(\theta)$
 $\cos(\theta)$
 $\cos(\theta)$

$$r\cos(\theta)\cos(\theta)$$
 $\cos(\theta)$

= rws(0)cos(4) [0- rsin(0)cos(0)cos(4)]

$$-rsin(\theta)sin(q) \qquad rcos(\theta)sin(q)$$

$$-rsin(\theta)sin(q) \qquad -rsin(\theta)$$

$$\omega_{S}(\theta)$$

=-
$$rsin(\theta)sin(4)[-rsin^2(\theta)sin(4)-rcos^2(\theta)sin(4)]$$

=
$$r^2 \sin^3(\theta) \sin^2(4) + r^2 \cos^2(\theta) \sin^2(4) \sin(\theta)$$

=
$$r^2 \sin^2(\Psi) \left(\sin^3(\theta) + \cos^2(\theta) \sin(\theta) \right)$$

$$\sqrt{\sin^2(4)}\sin(\theta)$$
 (3)

$$r^2 sin(\theta) \left[sin^2(\theta) \cos^2(\theta) + \cos^2(\theta) \cos^2(\theta) + sin^2(\theta) \right]$$

$$r^2 \sin(\theta) \left[\cos^2(\theta) \left(\sin^2(\theta) + \cos^2(\theta)\right) + \sin^2(\theta)\right]$$

$$r^2 \sin(\theta) \left[\cos^2(\theta) - \sin^2(\theta) \right]$$

$$r^2 sin(\theta)$$

ii)
$$x^{n+1} = x^n - \frac{f(x^n)}{f(x^n)}$$

$$f'(y) = 4$$
 $y_1 = y_0 - \frac{4y_0 + 12}{4}$
 $y_1 = y_0 - y_0 + 3$

For any linear function, the derivative will simply be the constant multiple of the independent variable. Dividing the original function by that multiple will yield simply the independent variable and any other constant term in the function also divided by the constant multiple, which is what you end up with when algebraically solving a linear equation. Alternatively, we consider that a linear polynomial is exactly defined by two parameters, and with the two pieces of information we need to use the Newton-Rhapson method, we can exactly define the linear polynomial, and thus we can use it in one step to exactly solve an equation.