

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B. Tech, 2024

Minor Degree in

Control Engineering

Offered By: (Electrical Engineering)

CURRICULUM

	Minor (Control Engineering)										
Sl. N o:	Se mes ter	Course Code	Course Title (Course Name)	Credit Structure		it Structure SS		Total M	Total Marks		Hrs./ Week
				L	Т	P		CIA	ESE		
1	3	MNEET329	Introduction to Control Engineering/ MOOC#	3	1	0	5	40	60	4	4
2	4	MNEET429	Modern Control Engineering*/	3	1	0	5				
			MOOC#	3	0	2&	5.5	40	60	4	4/5
3	5	MNEET529	Advanced Control System Design / MOOC	3	1	0	5	40	60	4	4
4	6	MNEET629	Control of Robotic Systems/ MOOC	3	0	0	4.5	40	60	3	3
	•		Total				20/ 21			15	15/ 17

^{*}Students must register for theory courses listed in the 3rd and 4th semesters of the Minor curriculum.

^{*}Students who fail a theory course listed in the Minor curriculum are permitted to register for an alternate MOOC course specified in the Minor curriculum.

[&]amp; The courses offered in the third and fourth semesters can be structured as either theory-based courses or a combination of theory and lab-based courses.

SYLLABUS

SEMESTER 3

SEMESTER 3 INTRODUCTION TO CONTROL ENGINEERING

Course Code	MNEET329	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	BEE/BME	Course Type	Theory

Course Objectives:

- 1. To introduce various classical tools for analysis of linear control system in time domain
- 2. To introduce various classical tools for analysis of linear control system in frequency domain

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to Control Systems: Open loop and Closed loop control systems; Automatic control systems; Necessity and significance. (2 hours) Modelling of LTI systems: Differential equations and transfer function representation of electrical, translational & rotational mechanical systems and DC servo-motor. Poles and zeros. (6 hours). Block diagram representation - block diagram reduction. Signal flow graph Mason's gain formula. (4 hours)	12
2	Performance Analysis of Control Systems: Time domain analysis of control systems: Impulse and Step responses of first and second order systems - Pole dominance for higher order systems. Time domain specifications. Steady state error analysis and static error constants. (6 hours) Stability analysis: Characteristic equation. Routh stability criterion. (3 hours) Matlab Demo - Impulse and Step response. Time domain specifications (2 hours)	11
3	Root locus technique: Construction of Root locus - stability analysis-effect of addition of poles and zeros. (5 hours) Frequency domain analysis: Bode Plot: Construction, Concept of gain margin and phase margin-stability analysis. (4 hours) Matlab Demo - Root locus and Bode Plot (1 hour)	10
4	Frequency domain analysis: Frequency domain specifications - correlation between time domain and frequency domain responses (Resonant peak and resonant frequency). (3 hours) Polar plot: Gain margin and phase margin, Stability analysis. (3 hours) Nyquist stability criterion. (4 hours) Matlab Demo - Polar plot, Nyquist plot. (1 hour)	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand fundamental concepts of control systems and model physical systems using differential equations and transfer functions.	K2
CO2	Analyse the time domain responses and steady state errors of linear systems for standard input functions.	К3
CO3	Analyse dynamical systems for their performance and stability using Root locus	К3
CO4	Apply frequency domain tools to analyse the performance of linear dynamical systems	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Control Systems Engineering	Norman S. Nise	Wiley	5th edition, 2009					
2	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th edition, 2009					
3	MATLAB for Control Engineers	Katsuhiko Ogata	Pearson Prentice Hall	1st edition, 2007					
4	Modern Control Systems	Dorf R. C. and R. H. Bishop	Pearson Education	14th edition, 2011					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Automatic Control Systems,	Kuo B. C.	Prentice Hall of India	9th edition, 2014					
2	Control Systems Principles and Design	Gopal M.	Tata McGraw Hill.	4th edition, 2012					
3	Modern Control Engineering	Katsuhiko Ogata	Pearson Prentice Hall	5th edition, 2009					

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/108106098				
2	https://nptel.ac.in/courses/108106098				
3	https://nptel.ac.in/courses/108106098				
4	https://nptel.ac.in/courses/108102043				

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR

		Course Code: Course Name:		
Ma	x. M	arks: 60 Duration: 2 Hours 3	0 Min	utes
		PART A		
		Answer all questions. Each question carries 3 marks	CO	Marks
1		Distinguish between open loop and closed loop system.		(3)
2		Derive the transfer function of an RLC series circuit with input voltage $V_i(s)$ and output voltage $V_o(s)$ being the voltage across the capacitor.		(3)
3		Determine the type and error constants of the for the step input if the		(3)
3		open loop transfer function is $\frac{12(s+2)}{s^2(s^2+7s+12)}$.		
4		A unity feedback control system is characterised by an open loop		(3)
		transfer function $G(s) = \frac{K}{s(s+10)}$. Determine the value of K so that the		
		system will have a damping ratio of 0.5.		(2)
5		What is magnitude and angle criterion?		(3)
6		Explain how the stability of a system is analysed using Bode plot?		(3)
7		Sketch the polar plot of type 1 second order system?		(3)
8		Explain the Nyquist stability criterion.		(3)
		PART B		
		Answer any one full question from each module. Each question carries 9	marks	;
		Module 1		
9	a)	Derive the transfer function of the mechanical system of Fig.1, where forces f_i and f_2 are the inputs and y_i and y_2 are the outputs.		
		K_1 M_1 M_2 K_2 K_2 K_2 Fig. 1		(4)
	b)	Reduce the block diagram shown in Fig. 2 using Mason's gain formula.		(5)

	1		
10	a)	R $+$ G_1 $+$ G_2 $+$ G_3 $+$ Y $+$ G_4 $+$ G_4 $+$ G_5 $+$ G_6 $+$ G_7 $+$ G_8 $+$ G_8 $+$ G_9 $+$ $+$ G_9 $+$ $+$ G_9 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	(5)
	b)	Obtain the transfer function of the system described by,	(4)
		$y''' + 6\ddot{y} + 11\dot{y} + 6y = u''' + 8\ddot{u} + 17\dot{u} + 8u$	(4)
		Module 2	
11	a)	A unity feedback system is characterised by an open loop transfer function $G(s) = \frac{20}{s^2 + 5s + 5}$. Determine the transient response when subjected to a unit step input and sketch the response. Evaluate the maximum overshoot and the corresponding peak time of the system.	(4)
	b)	Define the time domain specifications with a neat sketch of step response	(5)
12	a)	of an underdamped second order system. Using Routh-Hurwitz criterion, find the number of poles on the left half of s-plane and comment on the stability of the system with characteristic equation $F(s) = s^6 + 2s^5 + 7s^4 + 10s^3 + 14s^2 + 8s + 8$.	(5)
	b)	Derive the expression for maximum peak overshoot and peak time of a second order system for a step input?	(4)
		Module 3	
13		Construct the bode plot for the system with open loop transfer function $G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$. Also, determine the gain margin and phase margin of the system.	(9)
14	a)	Check whether the point $s = -1$ lies on the root locus of the open loop system $G(s)H(s) = \frac{K}{s(s+2)(s+3)}$ using angle condition.	(5)
	b)	How do you determine the angle of departure of root locus branch from an open loop pole, using angle criterion.	(4)
		Module 4	
15	a)	Plot the polar plot of the system with loop gain $G(j\omega)H(j\omega) = \frac{1}{j\omega+1}$.	(3)
	b)	Test the stability using Nyquist criterion, for the system with open loop transfer function $G(s)H(s) = \frac{2}{s(s+2)(s+4)}$.	(6)
16	a)	Derive and explain the dependence of damping factor on the resonant peak of a second order system?	(4)
	b)	Draw the Nyquist plot of a unity negative feedback system with open loop transfer function $G(s) = \frac{5}{s(s-2)}$ and determine the closed loop stability of the system.	(5)

SEMESTER 4

SEMESTER 4

MODERN CONTROL ENGINEERING

Course Code	MNEET429	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:2	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	MNEET309	Course Type	Theory + Lab

Course Objectives:

1. To get a foundation on state space modelling of systems in continuous and discrete time.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to state-space modelling: State variables, state equations. State-space modelling - advantages. State-space representation of electrical, mechanical systems and DC servo motor. (5 hours) Controllable, Observable and Diagonal/Jordan canonical forms. Introduction to similarity transformations (concept only). (5 hours). Derivation of transfer functions from state equations. (1 hour)	11
2	Solution of state equations: State transition matrix - Properties of state transition matrix- Computation of state transition matrix using Laplace transform and Cayley Hamilton method. (4 hours) Solution of state equations: Solution of time response of autonomous systems and forced systems. (4 hours)	8
3	State Feedback Controller Design Controllability & observability: Kalman's and Gilbert's test. (2 hours).	8

	State feedback controller and Observer Design: State feed-back	
	design via pole placement technique. Duality principle. Design of	
	full order observer. (6 hours)	
	State space modelling of Discrete Time control systems:	
	Introduction to Discrete time control systems: Elements of discrete	
	time control systems. Block diagram. Sampling process - sampling	
	theorem - Aliasing effect. (4 hour)	
4	Signal reconstruction - Zero-order and First-order hold circuits (3	9
	hours).	
	Conversion from continuous to discrete time state space model.	
	(2 hours)	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Model physical systems in state-space form and represent systems in canonical forms using similarity transformations.	К2
CO2	Solve state equations of dynamic systems using state transition matrices and analyze the time-domain response of both autonomous and non-autonomous systems.	К3
CO3	Design state feedback controllers and observers using pole placement technique.	К3
CO4	Understand discrete-time control systems and, convert continuous-time state-space models to discrete-time equivalents.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Modern Control Engineering	Katsuhiko Ogata	Pearson	5th edition, 2009				
2	Control Systems Engineering	I. J. Nagrath, M. Gopal	New Age	5th edition, 2009				
3	MATLAB for Control Engineers	Katsuhiko Ogata	Pearson Prentice Hall	1st edition, 2007				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Control Systems	Dorf R. C. and R. H. Bishop	Pearson Education	14th edition, 2011			
2	Control Systems Engineering	Norman S. Nise	Wiley	5th edition, 2009			
3	Digital Control System Analysis and Design	Charles L Phillips, James Brickley, Aranya Chakrabortty and H Trou Nagle	Pearson education	4th Edition, 2014			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	NPTEL course on Advanced linear continuous control systems: applications with Matlab programming and Simulink - Yogesh Vijay Hote, Indian Institute of Technology, Roorkee https://archive.nptel.ac.in/courses/108/107/108107115/				
2	NPTEL course on Advanced linear continuous control systems: applications with Matlab programming and Simulink - Yogesh Vijay Hote, Indian Institute of Technology, Roorkee https://archive.nptel.ac.in/courses/108/107/108107115/				
3	NPTEL course on Advanced linear continuous control systems: applications with Matlab programming and Simulink - Yogesh Vijay Hote, Indian Institute of Technology, Roorkee https://archive.nptel.ac.in/courses/108/107/108107115/				

1. Continuous Assessment (5 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (3 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

Final Marks Averaging: The final marks for preparation and conduct of experiments are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Internal Lab Examination (10 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (3 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (5 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (2 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

(Maximum 8 Experiments)

Experiment No.	Experiment
	Step Response Analysis of an RLC Circuit in State-Space Form:
1	Analyze the step response of an RLC circuit modelled in state-space form for various
	damping ratios using MATLAB. Study the system's dynamic behaviour under
	underdamped, overdamped, and critically damped conditions.
	Stability, Controllability, and Observability of a DC Servo Motor:
2	Model an armature-controlled DC servo motor in state-space form and evaluate its open-
	loop stability, controllability, and observability using MATLAB tools.
	Diagonalization and Transfer Function Comparison via Similarity
_	Transformation:
3	Apply similarity transformation to convert a state-space model into diagonal canonical
	form. Derive the transfer function from both the original and transformed models, and
	compare their characteristics.
	Position and Velocity Profile Simulation of a Mass-Spring-Damper System:
	Simulate the motion of a mass-spring-damper system and obtain position and velocity
4	profiles using:
7	a) Numerical methods in MATLAB, and
	b) Simulation in Simulink.
	Compare the results from both approaches.
	State Feedback Controller Design Using Pole Placement:
5	Design a state feedback controller for a linear system using the pole-placement
	technique in MATLAB. Analyze system performance and verify the placement of
	closed-loop poles.
	Speed Control of a DC Servo Motor Using State Feedback:
6	Develop a state feedback controller for an armature-controlled DC servo motor using
	pole-placement. Evaluate the controller's effectiveness in achieving desired speed
	control.
	Speed Control of a DC Servo Motor Using State Feedback:
7	Develop a state feedback controller for an armature-controlled DC servo motor using
	pole-placement. Evaluate the controller's effectiveness in achieving desired speed
	control.
	Speed Control of a DC Servo Motor Using State Feedback:
8	Develop a state feedback controller for an armature-controlled DC servo motor using
	pole-placement. Evaluate the controller's effectiveness in achieving desired speed
	control.

MODEL QUESTION PAPER

APJ ARDIJI, KALAM TECHNOLOGICAL UNIVERSITY

E)	OH	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY RTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MO	NTH	AND
1.	OUI	YEAR	<i>)</i>	AND
		Course Code:		
		Course Name:		
Ma	x. M	arks: 60 Duration: 2 hours 3	0 mini	ıtes
		PART A		
		Answer all questions. Each question carries 3 marks	СО	Marks
1		A series RLC circuit with $R=1\Omega$, $L=1H$ and $C=1F$ is excited by v		(3)
		=10V. Write state equations in matrix form.		, ,
2		Explain the terms (i) state (ii) state variables (iii) state vector		(3)
3		Determine state transition matrix for the system described by,		(3)
		$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix} x(t)$		
4		State the properties of state transition matrix.		(3)
5		Define observability. Explain with a suitable example, how can we		(3)
3		check the observability of a system?		
6		Find the complete controllability for the system described by,		(3)
		$x(t) = \begin{bmatrix} -0.2 & 0.4 \\ 0.1 & -0.1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		c = [1 0]x(t)		
7		Find the state variable representation of SISO LTI discrete system		(3)
		given by, $y(k+2) - 1.7y(k+1) + 0.72y(k) = u(k)$, ,
8		State Sampling theorem.		(3)
		PART B		1
	A	Inswer any one full question from each module. Each question carries 9	mark	S
		Module 1		
9	a)	Obtain the state model of the system described by,		(5)
	ĺ	$\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = \ddot{u} + 8\ddot{u} + 17\dot{u} + 8u$		
		using phase variables.		
	b)	Obtain the state model of the system for the system shown in Fig. 1		(4)
		R ₁ L ₁ L ₂		(1)
		L		
		$v_c + c$ $v_c $		
		- 7		
		F: .		
10	9)	Fig. 1 Convert the given state space model of the system described below to		(3)
10	a)	transfer function		
		$x\dot{(}t) = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t)$		
		- 5 12-		
	1	$C = \begin{bmatrix} 1 & 2 \end{bmatrix} x(t)$		l

	b)	Obtain the state space model of the system in Jordan canonical form for the system transfer function given by,	(6)
		1	
		$F(s) = \frac{1}{s^3 + 4s^2 + 5s + 2}$ Module 2	
- 1 - 1			(0)
11	a)	Compute the solution of the system described by, $x(t) = \begin{bmatrix} -8 & 6 \\ -6 & 4 \end{bmatrix} x(t) + \begin{bmatrix} 4 \\ -6 \end{bmatrix} u(t)$	(9)
		$C = \begin{bmatrix} 1 & -1 \end{bmatrix} x(t)$	
		For a unit step input.	
12	a)	$\operatorname{Find} f(A) = A^{10} \operatorname{for} A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}.$	(6)
	b)	Derive the state transition matrix using Laplace transforms for a non-homogeneous system.	(3)
		Module 3	
13	a)	Given $\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} U$. Check controllability and design a state feedback controller for the system with closed loop poles at $(-1 \pm j1)$ and -2 .	(6)
	b)	How the state controllability differs from the output controllability?	(3)
14	a)	How will you assess the controllability, when the system is in Jordan canonical form? Explain with an example.	(3)
	b)	Consider the system described by the state model: $ \dot{X} = AX; Y = CX $ where, $A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \end{bmatrix}$	(6)
		Design a full order state observer for the desired Eigen values at $\mu_1 = -5$ and at $\mu_2 = -5$	
		Module 4	
15	a)	Derive the transfer function for Zero-order and First-order hold circuit.	(6)
	b)	Explainaliasing effect.	(3)
16	a)	Explain the process of sampling and reconstruction.	(5)
	b)	Obtain the discrete time state space model of the system described by, $F(s) = \frac{2s + 2}{s^3 + 3s^2 + 3s + 2}$	(4)

SYLLABUS

SEMESTER 5

SEMESTER 5

ADVANCED CONTROL SYSTEM DESIGN

Course Code	MNEET529	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	MNEET309/409	Course Type	Theory

Course Objectives:

- 1. To introduce various classical controller and compensator design using root- locus and frequency domain techniques
- 2. To introduce non-linear system behavior and assessment of stability using Lyapunov method

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	PID controllers: Effect of P/I/D terms in a P/PI/PD controller design. (2 hours) PID controllers: PID tuning using Ziegler-Nichols methods. (2 hours) PID controller tuning using time-domain and frequency domain specifications. (5 hours)	9
2	Compensators basics: Lag compensator-lead compensator and lag lead compensator transfer function and characteristics. (2 hours) Compensators design: Design of lag, lead and lag-lead compensators using Root locus technique. (7 hours)	9
3	Compensator Realisation: Compensator realisation using passive and active networks. (2 hours) Compensators design: Design of lag, lead and lag-lead compensators using frequency domain specifications. (7 hours)	9
4	Nonlinear systems: Linear and nonlinear systems-characteristics (2 hours) Singular points and phase portrait (only approximate construction) (3 hours) Lyapunov stability - Lyapunov functions - Lyapunov direct and indirect methods. (4 hours)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one

full question out of two questions.

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To design P/PI/PID controllers using time domain and frequency domain specifications.	K3
CO2	To design compensators using root-locus techniques.	K3
CO3	To design compensators using frequency domain specifications.	K3
CO4	To understand the characteristics of non-linear systems	K2
CO5	To determine the stability of the system using Lyapunov method	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Modern Control Engineering	K. Ogata	Pearson College Div.	Fifth Edition, 2009
2	Control Systems: Principles and Design	M. Gopal	McGraw Hill Education	Fourth Edition, 2012
3	Nonlinear Systems	H.K. Khalil	Pearson India Education Pvt. Ltd.	Third Edition, 2014

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Automatic Control Systems	Kuo B. C.	Prentice Hall of India	9th edition, 2014
2	Control Systems Engineering	Norman S. Nise	Wiley	5th edition, 2009
3	Modern Control Systems	Dorf R. C., Bishop R. H	Pearson Education India	12th edition, 2013

	Video Links (NPTEL, SWAYAM)		
Module No.	Link ID		
1	https://nptel.ac.in/courses/108106098		
2	https://nptel.ac.in/courses/108106098		
3	https://nptel.ac.in/courses/108106098		
4	https://nptel.ac.in/courses/108101002		

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR

FIF	TH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH	AND	YEAK
	Course Code: MNEET509		
	Course Name: Advanced Control System Design		
Max	x. Marks: 60 Duration: 2 Hours 3	0 Min	utes
	PART A		
1	Answer all questions. Each question carries 3 marks	CO	Marks
1	Briefly explain the individual effect of proportional (P), integral (I), and		(3)
	derivative (D) terms on the transient and steady-state behavior of a control system.		
2	Write the transfer function for a PI controller? What is the effect of adding I		(3)
	term in the PI controller design?		
3	Why are lag-lead compensators called so? Also draw the pole-zero plot		(3)
	of the lag-lead compensator after writing its transfer function.		
4	Draw the ideal frequency response characteristics of a lead compensator.		(3)
5	Explain how to realise a lag compensator using passive components.		(3)
6	Explain how to realise a lead compensator using active components.		(3)
7	Explain with the help of an example the characteristics to be satisfied by		(3)
	a Lyapunov function to qualify itself as a suitable candidate to ascertain		
	asymptotic stability of a system.		(2)
8	List any three unique characteristics exhibited by a nonlinear system with examples.		(3)
	PART B		
	Answer any one full question from each module. Each question carries 9	marks	<u> </u>
	Module 1		
9	Explain the steps involved in the design of the PID controller using any one of		(9)
	the Ziegler-Nichols tuning methods.		
10	Consider a unity feedback system with open loop transfer function,		(9)
	$\frac{100}{(s+1)(s+2)(s+5)}$. Design a PI controller so that the phase margin of the system is		
	60° at a frequency of 0.5 rad/sec.		
	Module 2		
11	Explain the steps involved in the design of a lead compensator using root-locus		(9)
10	techniques		(0)
12	Consider a unity feedback system with open loop transfer function,		(9)
	$\frac{K}{s(s+l)(s+l0)}$. It is required that the velocity error constant $K_v \ge 50$, while		
	the damping ratio is 0.707. Design a suitable compensator to meet the		
	given specifications.		
	Module 3		
13	Explain the steps involved in the design of a lag compensator using frequency		(9)
14	domain specifications. Design a lead compensator for a unity feedback system with open loop		(9)
14	Design a lead compensator for a unity recuback system with open loop		(2)

	transfer function, $\frac{K}{s(s+l)(s+5)}$, to satisfy the following specifications of velocity	
	error constant, $K_v \ge 50$, and phase margin $\ge 20^0$.	
	Module 4	
15	Identify the singular points and draw the approximate phase portrait around the equilibrium points for	(9)
	$\ddot{y} - \left(0.1 - \frac{10}{3}\dot{y}^2\right)\dot{y} + y + y^2 = 0$	
16	Apply Lyapunov's indirect method and determine the stability about the origin for the following system for constants b,a >0 $\dot{x}_1 = x_2, \qquad \dot{x}_2 = -asinx_1 - bx_2$	(9)

SEMESTER 6

SEMESTER 6 CONTROL OF ROBOTIC SYSTEMS

Course Code	MNEET629	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	MNEET309/409/509	Course Type	Theory

Course Objectives:

- To introduce the fundamentals of robotic systems and their electric actuator control mechanisms
- Obtain the kinematic model of mobile robots and robotic manipulators
- Design kinematic controllers for mobile robots and robotic manipulators
- Obtain the dynamic model of robotic manipulators and design a controller for the same

SYLLABUS

Module No.	Syllabus Description		
1	Introduction to Robotic Systems and Control of actuators for robots Overview of robotic systems and applications, Necessity of a control system in a robot. Bird's eye view of typical actuators in robot control systems-hydraulic, pneumatic and electric actuators- Position Control of DC and AC servo motors, Speed control of DC motor, speed control of Brushless DC motors, control of linear actuation mechanisms. Basic idea of feedbacks in robotic systems-sensors-eg. Linear and rotary encoders.	11	
2	Kinematic Modelling and control of Mobile Robots Kinematic model of Differential drive robot, Control based on this kinematic model- Controller for moving to a point, following a line and following a path. Kinematic model of steered robot, Control based on this kinematic model-Controller for moving to a point, following a line and following a path.	11	
3	Kinematic modelling and Control of robotic manipulators Forward and inverse Kinematics: Coordinate frames, rotations and translations, Transformation matrix, Composite Transformation, Jacobian Matrix. Kinematic modelling of 1 and 2 DoF planar manipulator.Kinematic position	11	

	Control and Kinematic Velocity Control using Jacobian (Resolved Motion Rate Control)	
4	Dynamic Modelling and Control of robotic manipulator Dynamic model of 1 DoF manipulator using Lagrange's equation, dynamic modelling of 1DOF robot including motor and gearbox	11
	PID control of a single link manipulator, selection of PID controller gains; PD gravity control, computed torque control, Resolved Motion acceleration control	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60