

Compressed Conditional Mean Embeddings for Model-Based RL

Guy Lever¹

 1 University College London Centre for Computational Statistics and Machine Learning

February 16, 2016

Co-authors

Joint work with:

- John Shawe-Taylor
- Ronnie Stafford
- Csaba Szepesvári

Overview

System for model-based reinforcement learning:

- Model MDP transition dynamics using "conditional mean embeddings": induces <u>finite MDP</u>
- Optimize policy: policy/value iteration solves finite MDP exactly

<u>Related work</u>: KBRL [2], "Kernel CMEs" [1], "Pseudo-MDPs" [3] use finite MDP induced by model. We address some drawbacks:

- Compress the finite MDP to scale-up planning
- Scale-up model learning: <u>fast</u>, <u>online</u> using sparse-greedy kernel matching pursuit
- Model represented in rich RKHS function class
- Bound value of learned policy in terms of model error

Experiments on quadrotor simulator

Overview

System for model-based reinforcement learning:

- Model MDP transition dynamics using "conditional mean embeddings": induces finite MDP
- Optimize policy: policy/value iteration solves finite MDP exactly

<u>Related work</u>: KBRL [2], "Kernel CMEs" [1], "Pseudo-MDPs" [3] use finite MDP induced by model. We address some drawbacks:

- Compress the finite MDP to scale-up planning
- Scale-up model learning: <u>fast</u>, <u>online</u> using sparse-greedy kernel matching pursuit
- Model represented in rich RKHS function class
- Bound value of learned policy in terms of model error

Experiments on quadrotor simulator

Reinforcement learning: agent sequentially interacts with unknown environment, receiving rewards
Formalized as MDP $\mathcal{M} = \{S, A, r, P\}$

- \circ S state space
- A action set
- $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ reward function (known)
- P(s'|s,a) transition dynamics (Markovian, unknown)

Agent controls trajectory $s_1, a_1, s_2, ...$, where $S_{i+1} \sim P(\cdot|s_i, a_i)$, using policy π where $A_t \sim \pi(\cdot|s_t)$, receives $r(s_t, a_t)$ Goal: find policy π^* maximizing cumulative reward:

$$J^{\pi} := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t); \pi\right]$$

Reinforcement learning: agent sequentially interacts with unknown environment, receiving rewards
Formalized as MDP $\mathcal{M} = \{S, A, r, P\}$

- ullet ${\cal S}$ state space
- \bullet \mathcal{A} action set
- $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ reward function (known)
- P(s'|s, a) transition dynamics (Markovian, unknown)

Agent controls trajectory $s_1, a_1, s_2, ...$, where $S_{i+1} \sim P(\cdot|s_i, a_i)$, using policy π where $A_t \sim \pi(\cdot|s_t)$, receives $r(s_t, a_t)$ Goal: find policy π^* maximizing cumulative reward:

$$J^{\pi} := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t); \pi\right]$$

Reinforcement learning: agent sequentially interacts with unknown environment, receiving rewards

Formalized as MDP $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, r, P\}$

- ullet ${\cal S}$ state space
- \bullet \mathcal{A} action set
- $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ reward function (known)
- P(s'|s, a) transition dynamics (Markovian, unknown)

Agent controls trajectory $s_1, a_1, s_2, ...$, where $S_{i+1} \sim P(\cdot | s_i, a_i)$, using policy π where $A_t \sim \pi(\cdot | s_t)$, receives $r(s_t, a_t)$

Goal: find policy π^* maximizing cumulative reward

$$J^{\pi} := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t); \pi\right]$$

Reinforcement learning: agent sequentially interacts with unknown environment, receiving rewards

Formalized as MDP $\mathcal{M} = \{S, A, r, P\}$

- ullet ${\cal S}$ state space
- \bullet \mathcal{A} action set
- $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ reward function (known)
- P(s'|s,a) transition dynamics (Markovian, unknown)

Agent controls trajectory $s_1, a_1, s_2, ...$, where $S_{i+1} \sim P(\cdot|s_i, a_i)$, using policy π where $A_t \sim \pi(\cdot|s_t)$, receives $r(s_t, a_t)$

Goal: find policy π^* maximizing cumulative reward:

$$J^{\pi} := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t); \pi\right]$$

Value function methods

$$V^{\pi}(s) := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t) \middle| S_1 = s; \pi\right]$$
policy/value iteration learns $V^*(s) = \sup_{\pi \in \Pi} V^{\pi}(s)$

Dynamics unknown ⇒ Model-based RL

Value function methods

$$V^{\pi}(s) := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t) \middle| S_1 = s; \pi\right]$$

policy/value iteration learns $V^*(s) = \sup_{\pi \in \Pi} V^{\pi}(s)$

$$V^*(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \mathbb{E}_{S' \sim P(\cdot | s, a)}[V^*(S')] \}$$

Dynamics unknown ⇒ Model-based RL

Value function methods

$$V^{\pi}(s) := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t) \middle| S_1 = s; \pi\right]$$

policy/value iteration learns $V^*(s) = \sup_{\pi \in \Pi} V^{\pi}(s)$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \mathbb{E}_{S' \sim P(\cdot | s, a)} [V_k(S')] \}$$

Dynamics unknown \Rightarrow Model-based RL

Value function methods

$$V^{\pi}(s) := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t) \middle| S_1 = s; \pi\right]$$

policy/value iteration learns $V^*(s) = \sup_{\pi \in \Pi} V^{\pi}(s)$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \mathbb{E}_{S' \sim P(\cdot | s, a)}[V_k(S')] \}$$

Dynamics unknown ⇒ Model-based RL

Value function methods

$$V^{\pi}(s) := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(S_t, A_t) \middle| S_1 = s; \pi\right]$$

policy/value iteration learns $V^*(s) = \sup_{\pi \in \Pi} V^{\pi}(s)$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \mathbb{E}_{S' \sim P(\cdot | s, a)}[V_k(S')] \}$$

Dynamics unknown ⇒ Model-based RL

What do we need from a model? Consider generalized linear value representation $V_k(s) \approx \langle w_k, \phi(s) \rangle_{\mathcal{F}}$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \mathbb{E}_{S' \sim P(\cdot | s, a)}[V_k(S')] \}$$

We need to learn "conditional mean embedding"

$$\mu(s,a) := \mathbb{E}_{S' \sim P(\cdot | s,a)}[\phi(S')]$$

No generative model, no density, no sampling Incorporate approximate model $\hat{\mu} \approx \mu$ into policy/value iteration

What do we need from a model? Consider generalized linear value representation $V_k(s) \approx \langle w_k, \phi(s) \rangle_{\mathcal{F}}$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \langle w_k, \mathbb{E}_{S' \sim P(\cdot | s, a)} [\phi(S')] \rangle_{\mathcal{F}} \}$$

We need to learn "conditional mean embedding"

$$\mu(s,a) := \mathbb{E}_{S' \sim P(\cdot | s,a)}[\phi(S')]$$

No generative model, no density, no sampling Incorporate approximate model $\hat{\mu} \approx \mu$ into policy/value iteration

What do we need from a model? Consider generalized linear value representation $V_k(s) \approx \langle w_k, \phi(s) \rangle_{\mathcal{F}}$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \langle w_k, \mathbb{E}_{S' \sim P(\cdot | s, a)} [\phi(S')] \rangle_{\mathcal{F}} \}$$

We need to learn "conditional mean embedding"

$$\mu(s,a) := \mathbb{E}_{S' \sim P(\cdot | s,a)}[\phi(S')]$$

No generative model, no density, no sampling

Incorporate approximate model $\hat{\mu} pprox \mu$ into policy/value iteration

What do we need from a model? Consider generalized linear value representation $V_k(s) \approx \langle w_k, \phi(s) \rangle_{\mathcal{F}}$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \langle w_k, \mathbb{E}_{S' \sim P(\cdot | s, a)} [\phi(S')] \rangle_{\mathcal{F}} \}$$

We need to learn "conditional mean embedding"

$$\mu(s,a) := \mathbb{E}_{S' \sim P(\cdot | s,a)}[\phi(S')]$$

No generative model, no density, no sampling Incorporate approximate model $\hat{\mu} \approx \mu$ into policy/value iteration

Given system data, $\mathcal{D} = \{(s_i, a_i), \phi(s_i')\}_{i=1}^n$, find

$$\hat{\mu} = \operatorname*{argmin}_{\mu:\mathcal{S}\times\mathcal{A}\to\mathcal{F}} \sum_{i=1}^{n} ||\phi(s_i') - \mu(s_i,a_i)||_{\mathcal{F}}^2$$

e.g. kernel smoothing (KBRL), kernel least-squares Induced Finite MDP:

Models have form $\hat{\mu}(s,a) := \sum_{j=1}^n lpha_j(s,a) \phi(s_j')$ so

$$\mathbb{E}[V(S')|s,a] \approx \sum_{i=1}^{n} \alpha_i(s,a) V(s_i')$$

Given system data, $\mathcal{D} = \{(s_i, a_i), \phi(s_i')\}_{i=1}^n$, find

$$\hat{\mu} = \operatorname*{argmin}_{\mu:\mathcal{S}\times\mathcal{A}\to\mathcal{F}} \sum_{i=1}^{n} ||\phi(s_i') - \mu(s_i, a_i)||_{\mathcal{F}}^2$$

e.g. kernel smoothing (KBRL), kernel least-squares

Induced Finite MDP

Models have form $\hat{\mu}(s,a) := \sum_{j=1}^n \alpha_j(s,a)\phi(s_j')$ so

$$\mathbb{E}[V(S')|s,a] \approx \sum_{i=1}^{n} \alpha_{i}(s,a) V(s'_{i})$$

Given system data, $\mathcal{D} = \{(s_i, a_i), \phi(s_i')\}_{i=1}^n$, find

$$\hat{\mu} = \operatorname*{argmin}_{\mu:\mathcal{S}\times\mathcal{A}\to\mathcal{F}} \sum_{i=1}^{n} ||\phi(s_i') - \mu(s_i,a_i)||_{\mathcal{F}}^2$$

e.g. kernel smoothing (KBRL), kernel least-squares Induced Finite MDP:

Models have form $\hat{\mu}(s,a) := \sum_{j=1}^n \alpha_j(s,a) \phi(s'_j)$ so

$$\mathbb{E}[V(S')|s,a] \approx \sum_{i=1}^{n} \alpha_{i}(s,a)V(s'_{i})$$

Given system data, $\mathcal{D} = \{(s_i, a_i), \phi(s_i')\}_{i=1}^n$, find

$$\hat{\mu} = \operatorname*{argmin}_{\mu:\mathcal{S} imes\mathcal{A} o\mathcal{F}} \sum_{i=1}^n ||\phi(s_i') - \mu(s_i,a_i)||_{\mathcal{F}}^2$$

e.g. kernel smoothing (KBRL), kernel least-squares Induced Finite MDP:

Models have form $\hat{\mu}(s,a) := \sum_{j=1}^n \alpha_j(s,a) \phi(s'_j)$ so

$$\mathbb{E}[V(S')|s,a] \approx \sum_{i=1}^{n} \alpha_i(s,a) V(s_i')$$

i.e. we only need to maintain V on samples

If $||\alpha(s,a)||_1 \leq 1$, $\alpha_i(s,a)$, plan exactly on finite (pseudo-)MDP...

Given system data, $\mathcal{D} = \{(s_i, a_i), \phi(s_i')\}_{i=1}^n$, find

$$\hat{\mu} = \operatorname*{argmin}_{\mu:\mathcal{S}\times\mathcal{A}\to\mathcal{F}} \sum_{i=1}^{n} ||\phi(s_i') - \mu(s_i,a_i)||_{\mathcal{F}}^2$$

e.g. kernel smoothing (KBRL), kernel least-squares Induced Finite MDP:

Models have form $\hat{\mu}(s,a) := \sum_{j=1}^n \alpha_j(s,a) \phi(s'_j)$ so

$$\mathbb{E}[V(S')|s,a] \approx \sum_{i=1}^{n} \alpha_i(s,a) V(s_i')$$

Algorithm: Online Policy Optimization with CME model

Repeat:

1: Update data $\mathcal{D} = \{(s_i, a_i, s_i')\}_{i=1}^n$

2: Update dynamics model $\hat{\mu}(s, a) = \sum_{i=1}^{n} \alpha_i(s, a) \phi(s_i')$

3: Value iteration with approximate model: for $s \in \{s_1', ..., s_n'\}$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \mathbb{E}_{S' \sim P(\cdot | s, a)} [V_k(S')] \}$$
$$\approx \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{j=1}^{n} \alpha_j(s, a) V_k(s'_j) \}$$

4: Act greedily $\pi_K(s) = \operatorname{argmax}_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{j=1}^n \alpha_j(s, a) V_K(s_j') \}$

Advantages: value iteration converges; avoid approx. dynamic programming; good performance bounds

Problems: planning scales poorly $O(|A|kn^2)$; model learning can

be slov

Algorithm: Online Policy Optimization with CME model

Repeat:

- 1: Update data $\mathcal{D} = \{(s_i, a_i, s_i')\}_{i=1}^n$
- 2: Update dynamics model $\hat{\mu}(s,a) = \sum_{j=1}^{n} \alpha_j(s,a) \phi(s_j')$
- 3: Value iteration with approximate model: for $s \in \{s_1', ..., s_n'\}$

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \mathbb{E}_{S' \sim P(\cdot | s, a)} [V_k(S')] \}$$
$$\approx \max_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{j=1}^{n} \alpha_j(s, a) V_k(s'_j) \}$$

4: Act greedily $\pi_K(s) = \operatorname{argmax}_{a \in \mathcal{A}} \{ r(s, a) + \gamma \sum_{j=1}^n \alpha_j(s, a) V_K(s_j') \}$

<u>Advantages</u>: value iteration converges; avoid approx. dynamic

programming; good performance bounds

<u>Problems</u>: planning scales poorly $O(|\mathcal{A}|kn^2)$; model learning can

be slow

Fast Planning with a Compressed Model

Compress the induced MDP without losing performance: Maintain a " δ -lossy compression" $\mathcal{C} = \{c_1,...,c_m\}$ of $\{s'_1,...,s'_n\}$ s.t.

$$\max_{1 \le j \le n} \min_{b: ||b||_1 \le 1} ||\sum_{i=1}^m b_i \phi(c_i) - \phi(s_j')||_{\mathcal{F}} \le \delta$$

Represent $\hat{\mu}$ on \mathcal{C} : $\hat{\mu}(s, a) = \sum_{j=1}^{m} \alpha_{i}(s, a) \phi(c_{j})$: planning $\mathcal{O}(|\mathcal{A}|km^{2})$

Algorithm: augmentCompressionSet (C, δ, s)

Input: Initial compression set $\mathcal{C}=c_1,...,c_m$, candidate $s\in\mathcal{S}$,

if
$$\min_{b\in\mathbb{R}^m,||b||_1\leq 1}||\sum_{i=1}^m b_i\phi(c_i)-\phi(s)||_{\mathcal{F}}\!>\!\delta$$
 then

Augment: $C \leftarrow C \cup s$

end if

minimization is a Lasso

Fast Planning with a Compressed Model

Compress the induced MDP without losing performance: Maintain a " δ -lossy compression" $\mathcal{C} = \{c_1, ..., c_m\}$ of $\{s'_1, ..., s'_n\}$ s.t.

$$\max_{1 \le j \le n} \min_{b: ||b||_1 \le 1} ||\sum_{i=1}^m b_i \phi(c_i) - \phi(s_j')||_{\mathcal{F}} \le \delta$$

Represent
$$\hat{\mu}$$
 on \mathcal{C} : $\hat{\mu}(s, a) = \sum_{j=1}^{m} \alpha_{i}(s, a)\phi(c_{j})$: planning $O(|\mathcal{A}|km^{2})$

Algorithm: augmentCompressionSet (C, δ, s)

Input: Initial compression set $\mathcal{C}=c_1,...,c_m$, candidate $s\in\mathcal{S}$, tolerance δ

if
$$\min_{b \in \mathbb{R}^m, ||b||_1 \le 1} ||\sum_{i=1}^m b_i \phi(c_i) - \phi(s)||_{\mathcal{F}} > \delta$$
 then

Augment: $C \leftarrow C \cup s$

end if

minimization is a Lasso

Fast Planning with a Compressed Model

Compress the induced MDP without losing performance: Maintain a " δ -lossy compression" $\mathcal{C} = \{c_1, ..., c_m\}$ of $\{s'_1, ..., s'_n\}$ s.t.

$$\max_{1 \le j \le n} \min_{b: ||b||_1 \le 1} ||\sum_{i=1}^m b_i \phi(c_i) - \phi(s_j')||_{\mathcal{F}} \le \delta$$

Represent $\hat{\mu}$ on \mathcal{C} : $\hat{\mu}(s, a) = \sum_{j=1}^{m} \alpha_i(s, a) \phi(c_j)$: planning $O(|\mathcal{A}|km^2)$

Algorithm: $augmentCompressionSet(\mathcal{C}, \delta, s)$

Input: Initial compression set $\mathcal{C}=c_1,...,c_m$, candidate $s\in\mathcal{S}$, tolerance δ

if $\min_{\boldsymbol{b} \in \mathbb{R}^m, ||\boldsymbol{b}||_1 \le 1} ||\sum_{i=1}^m b_i \phi(c_i) - \phi(s)||_{\mathcal{F}} > \delta$ then

Augment: $\mathcal{C} \leftarrow \mathcal{C} \cup s$

end if

minimization is a Lasso

◆ロト ◆部ト ◆注ト ◆注ト 注 ・ 夕久○

Theorem

Bound for value iteration with CME $\hat{\mu}$: for any $\tilde{V}^* \in \mathcal{F}$

$$||V^{\pi_{k}} - V^{*}||_{\infty} \leq \frac{2\gamma}{(1 - \gamma)^{2}} (\gamma^{k} ||V^{\pi_{1}} - V^{\pi_{0}}||_{\infty} + 2||V^{*} - \tilde{V}^{*}||_{\infty} + \sup_{s,a} ||\mathbb{E}_{S' \sim P(\cdot|s,a)} [\phi(S')] - \hat{\mu}(s,a)||_{\mathcal{F}} ||\tilde{V}^{*}||_{\mathcal{F}})$$
$$=: B_{k}(\hat{\mu})$$

Theorem

$$||V^{\pi_k}-V^*||_{\infty} \leq B_k(\hat{\mu}) + \frac{2\gamma\delta}{(1-\gamma)^2}||\tilde{V}^*||_{\mathcal{I}}$$

Theorem

Bound for value iteration with CME $\hat{\mu}$: for any $ilde{V}^* \in \mathcal{F}$

$$||V^{\pi_{k}} - V^{*}||_{\infty} \leq \frac{2\gamma}{(1 - \gamma)^{2}} (\gamma^{k} ||V^{\pi_{1}} - V^{\pi_{0}}||_{\infty} + 2||V^{*} - \tilde{V}^{*}||_{\infty} + \sup_{s, a} ||\mathbb{E}_{S' \sim P(\cdot|s, a)}[\phi(S')] - \hat{\mu}(s, a)||_{\mathcal{F}}||\tilde{V}^{*}||_{\mathcal{F}})$$
$$=: B_{k}(\hat{\mu})$$

Theorem

$$||V^{\pi_k} - V^*||_{\infty} \le B_k(\hat{\mu}) + \frac{2\gamma\delta}{(1-\gamma)^2}||\tilde{V}^*||_{\mathcal{F}}$$

Theorem

Bound for value iteration with CME $\hat{\mu}$: for any $ilde{V}^* \in \mathcal{F}$

$$||V^{\pi_{k}} - V^{*}||_{\infty} \leq \frac{2\gamma}{(1 - \gamma)^{2}} (\gamma^{k} ||V^{\pi_{1}} - V^{\pi_{0}}||_{\infty} + 2||V^{*} - \tilde{V}^{*}||_{\infty} + \sup_{s, a} ||\mathbb{E}_{S' \sim P(\cdot|s, a)}[\phi(S')] - \hat{\mu}(s, a)||_{\mathcal{F}}||\tilde{V}^{*}||_{\mathcal{F}})$$
$$=: B_{k}(\hat{\mu})$$

Theorem

$$||V^{\pi_k} - V^*||_{\infty} \le B_k(\hat{\mu}) + \frac{2\gamma\delta}{(1-\gamma)^2}||\tilde{V}^*||_{\mathcal{F}}$$

Theorem

Bound for value iteration with CME $\hat{\mu}$: for any $ilde{V}^* \in \mathcal{F}$

$$||V^{\pi_{k}} - V^{*}||_{\infty} \leq \frac{2\gamma}{(1 - \gamma)^{2}} (\gamma^{k} ||V^{\pi_{1}} - V^{\pi_{0}}||_{\infty} + 2||V^{*} - \tilde{V}^{*}||_{\infty} + \sup_{s,a} ||\mathbb{E}_{S' \sim P(\cdot|s,a)} [\phi(S')] - \hat{\mu}(s,a)||_{\mathcal{F}} ||\tilde{V}^{*}||_{\mathcal{F}})$$
$$=: B_{k}(\hat{\mu})$$

Theorem

$$||V^{\pi_k}-V^*||_{\infty} \leq B_k(\hat{\mu}) + \frac{2\gamma\delta}{(1-\gamma)^2}||\tilde{V}^*||_{\mathcal{F}}$$

Theorem

Bound for value iteration with CME $\hat{\mu}$: for any $ilde{V}^* \in \mathcal{F}$

$$||V^{\pi_{k}} - V^{*}||_{\infty} \leq \frac{2\gamma}{(1 - \gamma)^{2}} (\gamma^{k} ||V^{\pi_{1}} - V^{\pi_{0}}||_{\infty} + 2||V^{*} - \tilde{V}^{*}||_{\infty} + \sup_{s, a} ||\mathbb{E}_{S' \sim P(\cdot|s, a)} [\phi(S')] - \hat{\mu}(s, a)||_{\mathcal{F}} ||\tilde{V}^{*}||_{\mathcal{F}})$$
$$=: B_{k}(\hat{\mu})$$

Theorem

$$||V^{\pi_k} - V^*||_{\infty} \le B_k(\hat{\mu}) + \frac{2\gamma\delta}{(1-\gamma)^2}||\tilde{V}^*||_{\mathcal{F}}$$

Fast Model Learning with Matching Pursuit

Optimize the model: Kernel smoothing, Kernel least-squares?

We use the (vector-valued) kernel regressor: put kernel K on input space $\mathcal{S} imes \mathcal{A}$,

$$\hat{\mu}(s,a) := \sum_{i=1}^{n} \sum_{j=1}^{m} K((s,a),(s_i,a_i)) W_{ij} \phi(c_j),$$

Learn W by sparse-greedy kernel matching pursuit:

- fast, online and W row sparse.
 - ullet models dynamics in rich kernel-defined RKHS \mathcal{H}_K

Project:
$$\alpha(s, a) = \operatorname{argmin} \beta : ||\beta||_1 \le 1\{||\sum_{j=1}^m \beta_j(s, a)\phi(s_j') - \sum_{i=1}^n \sum_{j=1}^m K((s, a), (s_j, a_j))W_{ij}\phi(c_j')||_{\mathcal{F}}^2\}$$
 (Lasso)

Fast Model Learning with Matching Pursuit

Optimize the model: Kernel smoothing, Kernel least-squares? We use the (vector-valued) kernel regressor: put kernel K on input space $\mathcal{S} \times \mathcal{A}$,

$$\hat{\mu}(s,a) := \sum_{i=1}^{n} \sum_{j=1}^{m} K((s,a),(s_i,a_i)) W_{ij} \phi(c_j),$$

Learn W by sparse-greedy kernel matching pursuit:

- fast, online and W row sparse.
 - ullet models dynamics in rich kernel-defined RKHS \mathcal{H}_K

Project:
$$\alpha(s, a) = \operatorname{argmin} \beta : ||\beta||_1 \le 1\{||\sum_{j=1}^m \beta_j(s, a)\phi(s'_j) - \sum_{i=1}^n \sum_{j=1}^m K((s, a), (s_i, a_i)) W_{ij}\phi(c'_j)||_{\mathcal{F}}^2\}$$
 (Lasso)

Experiments

Mountain Car and Cart-Pole benchmark MDPs: rewards

faster planning using compact data-defined representation

Simulated quadrotor experiments, dim(S) = 13.

Experiments

Mountain Car and Cart-Pole benchmark MDPs: rewards

faster planning using compact data-defined representation

Simulated quadrotor experiments, dim(S) = 13.

Conclusions

A system for general reinforcement learning:

- Learn system transition dynamics using CME
- Compress the model for fast planning
- Rich, data-dependent, RKHS model class
- Optimize policy with value/policy iteration on induced finite MDP
- Performance guarantee

Future work

- Represent $\mu(s,a)$ using neural nets
- Connection to subgoals

References

S. Grunewalder, G. Lever, L. Baldessarre, M. Pontil, A. Gretton *Modelling transition dynamics in MDPs with RKHS embeddings*. ICML 2012.

D. Ormoneit, S. Sen

Kernel-based reinforcement learning.

Machine Learning 2002.

H. Yao, Cs. Szepesvári, B.A. Pires and X. Zhang *Pseudo-MDPs and Factored Linear Action Models*. IEEE ADPRL, 2014.