Model building in MoBi

Moriah Pellowe

Two compartment model in MoBi

Live demo

Two compartment model

Two compartment model

Inhalation model

Integration of MoBi with ospsuite R toolbox

Disclaimer

► Funding for the work presented here was made possible, in part, by the Food and Drug Administration through grant U01FD006549. This presentation reflects the views of the authors and should not be construed to represent FDA's views or policies. Views expressed in written materials or publications do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organizations imply endorsement by the United States Government.

Outline

- ▶ **Objective:** Demonstrate integration of MoBi with the ospsuite R toolbox
 - ► Case study: Mechanistic inhalation model for dry powder inhalation within the Open Systems Pharmacology framework (MoBi)
- Inhalation model Boger & Wigström (2018) PDE model
 - Lung structure
 - Particle deposition
 - Particle dissolution
 - Mucociliary clearance
- ▶ Integration of MoBi and ospsuite R toolbox for particle deposition

Lung structure

- ▶ Weibel et al., 1963
- Symmetric branching
- ▶ 24 generations
 - ► Generations 1-16: tracheobronchial region
 - ► Generations 17-24: alveolar region
- Three main compartments
 - Epithelial lining fluid (solid and liquid drug)
 - Epithelium
 - Subepithelium

	_	_		
	4	8	0.479	0.65
	5	16	0.385	1.086
=	6	32	0.299	0.915
	7	64	0.239	0.769
	8	128	0.197	0.65
	9	256	0.159	0.547
	10	512	0.132	0.462
	11	1024	0.111	0.393
	12	2048	0.093	0.333
	13	4096	0.081	0.282
	14	8192	0.070	0.231
	15	16384	0.063	0.197
	16	32768	0.056	0.171
	17	65536	0.051	0.141
	18	131072	0.046	0.121
	19	262144	0.043	0.10
	20	524288	0.040	0.085
	21	1048576	0.038	0.071
	22	2097152	0.037	0.060
	23	4194304	0.035	0.050
	24	8388608	0.035	0.043

 N_i

 D_i

[cm]

1.539

1.043

0.71

 L_i

[cm]

10.26

4.07

1.624

Lung structure

- Weibel et al., 1963
- Symmetric branching
- ▶ 24 generations
 - ► Generations 1-16: tracheobronchial region
 - ► Generations 17-24: alveolar region
- ► Three main compartments
 - Epithelial lining fluid (solid and liquid drug)
 - Epithelium
 - Subepithelium

Particle deposition

- Deposition in lung and in extrathoracic region (before trachea)
 - Drug deposited in the extrathoracic region is subject to oral absorption
- Inhale phase, breath hold phase, exhale phase
- Deposition mechanisms
 - Inertial impaction
 - Gravitational sedimentation
 - Diffusion
 - Empirical equations for each mechanism (Yu & Diu, 1982)
- Alternatively, custom deposition

Particle deposition

- Deposition is calculated in R and interfaces with MoBi using the R toolbox
- Input :
 - ▶ Particle radius mean and SD (normal distribution)
 - ▶ Number of particle size bins to consider
 - Drug density
 - (optionally) Breathing parameters
- Output :
 - Proportion of drug in each generation for each particle size
 - Number of particles in a volume of 1 L for each particle size bin
 - ▶ Used to calculate the number of particles in each bin

ĒΤ	0.104796
1	0.016083
2	0.013948
3	0.012638
4	0.012038
5	0.024138
6	0.027856
7	0.028657
8	0.026391
9	0.026352
10	0.023941
11	0.02129
12	0.019646
13	0.017085
14	0.016138
15	0.017045
16	0.021227
17	0.027639
18	0.044106
19	0.07218
20	0.121111
21	0.204382
22	0.101314
23	0
24	0

Particle dissolution

- Noyes-Whitney dissolution
- ▶ Modified PK-Sim particle dissolution for the lung (Willmann et al., 2010)
- Assumptions:
 - Particles do not precipitate
 - Solubility is constant, i.e. no local solubilities
 - Only unbound drug in the ELF

$$-\frac{dX_{s}}{dt} = \frac{DS}{h} \left(C_{s} - \frac{X_{d}}{V}\right)$$

Mucociliary clearance (MCC)

- Maximum MCC rate of 0.36 cm/min
- ► The MCC rate for generation i is proportional to the ratio of the cross-sectional areas of generation i and generation 1

$$\alpha(x) = -\alpha_0 \frac{A(x)}{A(x_{\min})}$$

- The residence time for each generation was calculated based on this MCC rate and the length of the generation
- Assumptions:
 - Only solid drug particles are moving upwards

\overline{i}	N_i	D_i	L_i
		[cm]	[cm]
1	1	1.539	10.26
2	2	1.043	4.07
3	4	0.71	1.624
4	8	0.479	0.65
5	16	0.385	1.086
6	32	0.299	0.915
7	64	0.239	0.769
8	128	0.197	0.65
9	256	0.159	0.547
10	512	0.132	0.462
11	1024	0.111	0.393
12	2048	0.093	0.333
13	4096	0.081	0.282
14	8192	0.070	0.231
15	16384	0.063	0.197
16	32768	0.056	0.171
17	65536	0.051	0.141
18	131072	0.046	0.121
19	262144	0.043	0.10
20	524288	0.040	0.085
21	1048576	0.038	0.071
22	2097152	0.037	0.060
$_{\sim}23$	4194304	0.035	0.050
24	8388608	0.035	0.043

Mucociliary clearance (MCC)

Generation #	Residence time (Boger & Wigström, 2018)	Approximation [min]	Number of slices
	[min]		
1	28.5	30	2
2	24.62	30	2
3	21.2	15	1
4	18.64	15	1
5	48.2	45	3
6	67.34	60	4
7	88.57	90	6
8	110.19	105	7
9	140.35	135	9
10	174.45	180	12
11	209.86	210	14
12	253.31	255	17
13	282.78	285	19
14	310.16	315	21
15	326.56	330	22
16	358.75	360	24
SUM	2463.48	2460	164

Mucociliary clearance (MCC)

► Every 15 minutes, solid drug is moved from one slice to the slice above for the tracheobronchial region

Particle deposition using the R toolbox

Model structure

- Inhalation model is connected to two-compartment model for evaluation
- Parameters concerning disposition are fit to IV and oral data
- Deposition is either:
 - Calculated using deposition equations OR
 - Manually input based on additional information

Ciprofloxacin

- Solubility: 38.4e-3 mg/L
- Well-described by the model
- Custom deposition based on additional information (Stass et al., 2017)
 - ET:0% (with oral charcoal),39.4% (without oral charcoal)
 - Lung: 38.1%
- Lung deposition may be overestimated

Inhalation model on GitHub

References

- Boger, Elin, and Markus Fridén. 2018. "Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling Accurately Predicts the Better Bronchodilatory Effect of Inhaled Versus Oral Salbutamol Dosage Forms." Journal of Aerosol Medicine and Pulmonary Drug Delivery 32(1): 1-12.
- ► Boger, Elin, and Oskar Wigström. 2018. "A Partial Differential Equation Approach to Inhalation Physiologically Based Pharmacokinetic Modeling." CPT: Pharmacometrics & Systems Pharmacology 7(10): 638-46.
- Cheng, Yung Sung. 2003. "Aerosol Deposition in the Extrathoracic Region." Aerosol Science and Technology 37(8): 659-71.
- Weibel, Ewald R., Andre Cournand, and Dickinson Richards. 1963. Morphometry of the Human Lung. Berlin: Springer.
- Willmann, Stefan et al. 2010. "Mechanism-Based Prediction of Particle Size-Dependent Dissolution and Absorption: Cilostazol Pharmacokinetics in Dogs." European Journal of Pharmaceutics and Biopharmaceutics 76(1): 83-94.
- Yu, C.p., and C.k. Diu. 1982. "A Comparative Study of Aerosol Deposition in Different Lung Models." American Industrial Hygiene Association Journal 43(1): 54-65.