

Algorithmen I Tutorium 33

Woche 1 | 27. April 2018

Daniel Jungkind (daniel.jungkind@student.kit.edu)

Inhalt

Orga-Kram

Pseudocode

Algorithmenanalyse

Gestatten...

Daniel Jungkind

daniel.jungkind@student.kit.edu

Informatik, 6. Fachsemester (Bachelor).

In \heartsuit with Haskell and Functional Programming. :)

Kennenlernen 2.0

1	Programmieren ist noch ziemlich neu für mich.
2	Vor dem Studium habe ich nicht viel mit Programmieren zu tun gehabt, komme aber gut damit zurecht.
3	Ich konnte schon vor dem Studium einigermaßen programmieren und kannte daher vieles aus der Vorlesung schon.
4	In der Programmieren-Vorlesung habe ich eigentlich nichts neues gelernt, da ich auch so schon ganz gut programmieren konnte
5	Im Programmieren habe ich langjährige Erfahrung.
	Nieder mit Pauschalantworten! Ich formuliere selbst!

Was machen wir hier?

Tut-Folien bekommt ihr im ILIAS. Keine Panik.

Was machen wir hier?

- Tut-Folien bekommt ihr im ILIAS. Keine Panik.
- Inhalte der VL verstehen und anwenden
- Beispiele, Aufgaben (da kommt ihr ins Spiel! ⑤)
- Eure Fragen klären!

Was machen wir hier?

- Tut-Folien bekommt ihr im ILIAS. Keine Panik.
- Inhalte der VL verstehen und anwenden
- Beispiele, Aufgaben (da kommt ihr ins Spiel! ②)
- Eure Fragen klären!
- Den Stoff etwas weniger formal behandeln
 - \Rightarrow Formal-Kram kann trotzdem wichtig sein!
- Kein Ersatz für die VL.
 Was zeitlich hier nicht mehr reinpasst, kann trotzdem wichtig sein!
- Wenn ich / meine Folien Blödsinn reden: Schreien! / Mail an mich! ⇒ Sonst kann ich's nicht fixen... © Verbindlich **nur** Inhalt aus der VL/Übung!

Orga-Kram – Übungsblätter

- Freiwillig
- Ausgabe: Mi

Abgabe: Mi nächster Woche, 13 Uhr (das sind 7 Tage Zeit) im

Kasten im Untergeschoss des Infobaus

Orga-Kram - Übungsblätter

- Freiwillig
- Ausgabe: Mi
 - **Abgabe**: Mi nächster Woche, 13 Uhr (das sind 7 Tage Zeit) im Kasten im Untergeschoss des Infobaus
- Abgabe schwerstens empfohlen, gibt nämlich einen Klausurbonus:
 - ≥ 25% der Gesamtpunkte ⇒ 1 Bonuspunkt
 - \geqslant 50% der Gesamtpunkte \Rightarrow 2 Bonuspunkte
 - \geqslant 75% der Gesamtpunkte \Rightarrow 3 Bonuspunkte
 - (Die Bonuspunkte helfen nicht beim Bestehen!)

Orga-Kram – Übungsblätter

- Freiwillig
- Ausgabe: Mi
 - **Abgabe**: Mi nächster Woche, 13 Uhr (das sind 7 Tage Zeit) im Kasten im Untergeschoss des Infobaus
- Abgabe schwerstens empfohlen, gibt nämlich einen Klausurbonus:
 - \geqslant 25% der Gesamtpunkte \Rightarrow 1 Bonuspunkt
 - \geqslant 50% der Gesamtpunkte \Rightarrow 2 Bonuspunkte
 - \geqslant 75% der Gesamtpunkte \Rightarrow 3 Bonuspunkte (Die Bonuspunkte helfen nicht beim Bestehen!)
- Nicht abgeholte Blätter landen irgendwann irgendwo beim Übungsleiter

Orga-Kram - Übungsblätter

- Freiwillig
- Ausgabe: Mi

Abgabe: Mi nächster Woche, 13 Uhr (das sind 7 Tage Zeit) im Kasten im Untergeschoss des Infobaus

- Abgabe schwerstens empfohlen, gibt nämlich einen Klausurbonus:
 - \geqslant 25% der Gesamtpunkte \Rightarrow 1 Bonuspunkt
 - \geqslant 50% der Gesamtpunkte \Rightarrow 2 Bonuspunkte
 - \geqslant 75% der Gesamtpunkte \Rightarrow 3 Bonuspunkte (Die Bonuspunkte helfen nicht beim Bestehen!)
- Nicht abgeholte Blätter landen irgendwann irgendwo beim Übungsleiter
- Abschreiben: Böhse™. Wird geahndet.

Orga-Kram – Übungsblätter

- Freiwillig
- Ausgabe: Mi

Abgabe: Mi nächster Woche, 13 Uhr (das sind 7 Tage Zeit) im Kasten im Untergeschoss des Infobaus

- Abgabe schwerstens empfohlen, gibt nämlich einen Klausurbonus:
 - \geqslant 25% der Gesamtpunkte \Rightarrow 1 Bonuspunkt
 - \geqslant 50% der Gesamtpunkte \Rightarrow 2 Bonuspunkte
 - \geqslant 75% der Gesamtpunkte \Rightarrow 3 Bonuspunkte (Die Bonuspunkte helfen nicht beim Bestehen!)
- Nicht abgeholte Blätter landen irgendwann irgendwo beim Übungsleiter
- Abschreiben: Böhse™. Wird geahndet.
- Aber: Abgabe zu zweit erlaubt (und erwünscht! ②)

Orga-Kram - Klausur

Klausur ist am 04. September 2018 um 8 Uhr.

Details tba.

Fragen:

- Hier im Tut!
- Ins <u>ILIAS</u>. (Dann haben alle was davon. ②)

Fragen:

- Hier im Tut!
- Ins <u>ILIAS</u>. (Dann haben alle was davon. ②)
- Organisatorischer Spezialkram? ⇒ an Iser / Sinz (markus.iser@kit.edu / carsten.sinz@kit.edu)
 Bei Orga-Problemen aber Name und Matrikelnummer mitangeben!
- Tut-spezifisches an mich (daniel.jungkind@student.kit.edu)

Fragen:

- Hier im Tut!
- Ins <u>ILIAS</u>. (Dann haben alle was davon. ②)
- Organisatorischer Spezialkram? ⇒ an Iser / Sinz (markus.iser@kit.edu / carsten.sinz@kit.edu) Bei Orga-Problemen aber Name und Matrikelnummer mitangeben!
- Tut-spezifisches an mich (daniel.jungkind@student.kit.edu)

Content:

■ VL-Folien, Ü-Blätter...: im <u>ILIAS</u>.

Fragen:

- Hier im Tut!
- Ins <u>ILIAS</u>. (Dann haben alle was davon. ②)
- Organisatorischer Spezialkram? ⇒ an Iser / Sinz (markus.iser@kit.edu / carsten.sinz@kit.edu) Bei Orga-Problemen aber Name und Matrikelnummer mitangeben!
- Tut-spezifisches an mich (daniel.jungkind@student.kit.edu)

Content:

■ VL-Folien, Ü-Blätter...: im <u>ILIAS</u>.

Feedback:

- Zur VL? ⇒ Gerne anonym in Zettelform in die Algo-I-Abgabekästen Keine Stofffragen! (Antwort unmöglich...)
- Zum Tut? ⇒ Per Mail oder persönlich an mich. ⑤
 Zu schnell/langsam/leicht/schwer/viel/wenig/...? ⇒ direkt sagen!

PSEUDOCODE

Anleitung, wie man etwas macht – in einer Art "Programmiersprache"

- Anleitung, wie man etwas macht in einer Art "Programmiersprache"
- Es gibt keine exakte Sprachdefinition

- Anleitung, wie man etwas macht in einer Art "Programmiersprache"
- Es gibt keine exakte Sprachdefinition
 - Daher im Folgenden: Grobe Richtlinie für Pseudocode (ohne Anspruch auf Vollständigkeit)
 - Das Wichtigste: Es sollte klar werden, was gemeint ist, d.h.
 Pseudocode soll vor allem übersichtlich und verständlich sein

- Anleitung, wie man etwas macht in einer Art "Programmiersprache"
- Es gibt keine exakte Sprachdefinition
 - Daher im Folgenden: Grobe Richtlinie für Pseudocode (ohne Anspruch auf Vollständigkeit)
 - Das Wichtigste: Es sollte klar werden, was gemeint ist, d.h.
 Pseudocode soll vor allem übersichtlich und verständlich sein
 - Kommentare mit // (wie in Java), #, o.ä.
 - Semikolon am Ende eines Befehls unnötig

Variablendeklaration und -initialisierung

Schema: Variablenname = Wert : Typ

Variablendeklaration und -initialisierung

Schema: Variablenname = Wert : Typ

Bsp.:

 $var_1 = 42$: Int

var₂ = "algorilla" : String

*var*₃ := 1337 // *Typ weglassbar, falls offensichtlich*

 $var_4: \mathbb{R}$ // Ohne Initialisierung (aufpassen!)

 $\textit{bla} := \textcolor{red}{\text{new}}\, XYZ(\textit{Konstruktorparameter...})$

Variablendeklaration und -initialisierung

Mögliche Typen:

- \blacksquare \mathbb{R} , \mathbb{N} , \mathbb{Z} / Int(eger), \mathbb{B} / Bool(ean), String...
- Element als Platzhalter f
 ür beliebigen Typ (so wie Object in Java)
- Weitere Datenstrukturen aus der VL (more to come!)
- array (als im Speicher zusammenhängender "Datenblock")

Arrays

Schema: arr : array[Von..Bis] of T

Heißt: arr ist ein T-array. Der erste Index ist Von, der letzte ist Bis.

Arrays

Schema: arr : array[Von..Bis] of T

Heißt: arr ist ein T-array. Der erste Index ist Von, der letzte ist Bis.

Bsp.:

 $\emph{A}=(1,2,3): \underset{\mbox{array}}{\mbox{array}} [42..44] \ \mbox{of} \ \mathbb{Z}$

 \Rightarrow Dann ist A[42] = 1, A[44] = 3. A[0] ist undefiniert!

Arrays

Schema: arr : array[Von..Bis] of T

Heißt: arr ist ein T-array. Der erste Index ist Von, der letzte ist Bis.

Bsp.:

```
A = (1,2,3): array[42..44] of \mathbb Z
```

 \Rightarrow Dann ist A[42] = 1, A[44] = 3. A[0] ist undefiniert!

B: array[1..n] of Bool // Uninitialisiert; Zugriff mit B[1] bis B[n]

Arrays

Schema: arr : array[Von..Bis] of T

Heißt: arr ist ein T-array. Der erste Index ist Von, der letzte ist Bis.

Bsp.:

 $A = (1, 2, 3) : array[42..44] \text{ of } \mathbb{Z}$

 \Rightarrow Dann ist A[42] = 1, A[44] = 3. A[0] ist undefiniert!

B: array[1..n] of Bool // Uninitialisiert; Zugriff mit B[1] bis B[n]

Besondere Werte

- $-+\infty, -\infty$
- ⊥ für "undefiniert", "bottom"

Kontrollstrukturen

```
while x \neq y and y \neq z do

| // Anweisungen

if z = 42 then
| // Andere Anweisungen

else
| // Mehr andere Anweisungen
```

```
for i := 1 to n do

// Noch mehr Anweisungen
```

```
repeat
| // fußgesteuert
until x = y or y = z
```

```
for i := 1 to n step k do
     // Mit Schrittweite!
```


- Und viele mehr, z.B. do while, for each, ...
- Schlüsselworte wie continue, break, switch natürlich auch
- Trennzeichen für Anweisungsblöcke:
 - begin end
 - {...} (geschweifte Klammern)
 - Linien
 - Nur durch Einrückung (dann aber ordentlich!)

Mathe-Bequemlichkeit

```
M := \{1,2,3\} // ungeordnete Menge

S := \langle 1,2,3 \rangle // geordnete Folge (Elemente können an- und abgehängt

werden)

select any x \in M

foreach x \in M do

(a,b) := (3,5) // Tupel FTW! \odot

(a,b) := (b,a) // beguemes Vertauschen
```

·

ABER: Die Laufzeitkosten und Funktionsweise **jeder einzelnen Zeile** müssen bekannt sein!

(Heißt: Keine "magischen" Funktionen verwenden!)

div für Ganzzahl-Division, mod für Modulo (Divisionsrest)

Funktionen/Prozeduren

```
function / procedure name(name<sub>1</sub> : Typ<sub>1</sub>, ...) : Rückgabetyp // Knorker Code return ...
```

- Rückgabetyp wird weggelassen, wenn nichts zurückgegeben wird
- Konvention:

```
Kein Rückgabewert ("void") \Rightarrow procedure/method,
Rückgabe vorhanden \Rightarrow function
```


Anmerkungen:

- Selbsterklärende Bezeichner, z.B. print("...") statt t
- System.out.println("....")
- Momplexere Stellen bitte kommentieren, sonst versteht es keine
- Mehrere Funktionen (z.B. Hilfsfunktionen): Kenntlich machen, wo
 - Hauptfunktion!
- Im "Notfall": An Java orientieren
- Für mehr Pseudocode-Details siehe Buch vom

Anmerkungen:

Selbsterklärende Bezeichner, z.B. print("...") statt System.out.println("...")

Anmerkungen:

- Selbsterklärende Bezeichner, z.B. print("...") statt System.out.println("...")
- Komplexere Stellen bitte kommentieren, sonst versteht es keiner

Anmerkungen:

- Selbsterklärende Bezeichner, z.B. print("...") statt System.out.println("...")
- Komplexere Stellen bitte kommentieren, sonst versteht es keiner
- Mehrere Funktionen (z.B. Hilfsfunktionen): Kenntlich machen, wo Hauptfunktion!

Anmerkungen:

- Selbsterklärende Bezeichner, z.B. print("...") statt System.out.println("...")
- Komplexere Stellen bitte kommentieren, sonst versteht es keiner
- Mehrere Funktionen (z.B. Hilfsfunktionen): Kenntlich machen, wo Hauptfunktion!
- Im "Notfall": An Java orientieren

Anmerkungen:

- Selbsterklärende Bezeichner, z.B. print("...") statt System.out.println("...")
- Komplexere Stellen bitte kommentieren, sonst versteht es keiner
- Mehrere Funktionen (z.B. Hilfsfunktionen): Kenntlich machen, wo Hauptfunktion!
- Im "Notfall": An Java orientieren
- Für mehr Pseudocode-Details siehe Buch vom Sanders

Bearbeitungshinweise:

 Falls die Aufgabenstellung euch die Wahl lässt, könnt ihr selbst entscheiden, ob Pseudocode oder Fließtext

Bearbeitungshinweise:

- Falls die Aufgabenstellung euch die Wahl lässt, könnt ihr selbst entscheiden, ob Pseudocode oder Fließtext
- Mehr als zwei Seiten Pseudocode ⇒ Vermutlich viel zu kompliziert oder falsch

Bearbeitungshinweise:

- Falls die Aufgabenstellung euch die Wahl lässt, könnt ihr selbst entscheiden, ob Pseudocode oder Fließtext
- Mehr als zwei Seiten Pseudocode ⇒ Vermutlich viel zu kompliziert oder falsch
- Ist das Ergebnis für andere Personen verständlich?

Bearbeitungshinweise:

- Falls die Aufgabenstellung euch die Wahl lässt, könnt ihr selbst entscheiden, ob Pseudocode oder Fließtext
- Mehr als zwei Seiten Pseudocode ⇒ Vermutlich viel zu kompliziert oder falsch
- Ist das Ergebnis für andere Personen verständlich?
- Ist das Ergebnis angenehm zu lesen?

Aufgabe 1: Pseudocode schreiben

Als Eingabe erhält der Algorithmus eine natürliche Zahl *n*. Es wird ein Boolean-Array von 2..*n* angelegt und mit **false** initialisiert.

Dann wird eine Zahl i von 2 bis zur abgerundeten Wurzel von n iteriert. Falls im Schleifendurchlauf der i-te Boolean-Wert **false** ist, wird eine weitere Zahl j von 2i bis n durchlaufen und dabei in Schritten der Größe i inkrementiert. Darin wird jeweils der j-te Boolean-Wert auf **true** gesetzt.

Am Ende iteriert der Algorithmus erneut eine Zahl *i* von 2 bis *n*. Falls der *i*-te Boolean-Wert nicht **true** ist, wird ausgegeben, dass der Wert von *i* prima ist.

(Mögliche) Lösung von Aufgabe 1

```
procedure foo(n : \mathbb{N})
    werte = (false, ..., false) : array[2..n] of \mathbb{B}
    for i := 2 to |\sqrt{n}| do
        if not werte[i] then
            for i := 2i to n step i do
            werte[j] := true
    for i := 2 to n do
        if not werte[i] then
         print(i + " ist prima!")
```


Aufgabe 2: Mehr Pseudocode schreiben

Als Eingabe erhaltet ihr *n* Studenten, deren Matrikelnummer jeweils als Array von Ziffern gegeben ist.

Diese Studenten sollt ihr in zwei Gruppen einteilen: Eine Gruppe mit den Studenten, bei denen die Quersumme der Matrikelnummer gerade ist, und eine Gruppe für alle anderen.

Das Ergebnis wird als geordnetes Paar von Listen zurückgegeben.

(Mögliche) Lösung von Aufgabe 2

```
function groupStudents(students: array[1..n] of Student):
 (List of Student, List of Student)
   groups = (\langle \rangle, \langle \rangle): array of List of Student
   foreach student \in students do
        sum = 0: Int
        nr := student.matrikelnummer
       for i := 1 to |nr| do
           sum += nr[i]
       groups[sum mod 2].add(student)
   return groups
```


ALGORITHMENANALYSE

...damit ihr nicht zu viel Spaß habt

- Wie schnell ist der Algorithmus?
 - \Rightarrow O-Kalkül

- Wie schnell ist der Algorithmus?
 - ⇒ O-Kalkül
- Auf welcher Vorgehensweise basiert der Algorithmus?
 - ⇒ Verschiedene **Kategorien** von Algorithmen

- Wie schnell ist der Algorithmus?
 - ⇒ O-Kalkül
- Auf welcher Vorgehensweise basiert der Algorithmus?
 - ⇒ Verschiedene **Kategorien** von Algorithmen
- Tut der Algorithmus das, was er tun soll?
 - \Rightarrow Invarianten

O-Kalkül

- Betrachtung des asymptotischen Verhaltens
- Vernachlässigung konstanter Faktoren
- Zuordnung, welches Laufzeit-Verhalten der Algorithmus für sehr große Eingaben aufweist
- Rechenregeln: Siehe GBI, . . .

Alte Bekannte

$$\begin{aligned} O(f(n)) &:= \{g(n) \mid \exists \ c, n_0 > 0 \ \mathsf{mit} \\ &0 \leqslant g(n) \leqslant c \cdot f(n) \quad \forall n \geqslant n_0 \} \\ \Theta(f(n)) &:= \{g(n) \mid \exists \ c, c', n_0 > 0 \ \mathsf{mit} \\ &0 \leqslant c \cdot f(n) \leqslant g(n) \leqslant c' \cdot f(n) \quad \forall n \geqslant n_0 \} \\ \Omega(f(n)) &:= \{g(n) \mid \exists \ c, n_0 > 0 \ \mathsf{mit} \\ &0 \leqslant c \cdot f(n) \leqslant g(n) \quad \forall n \geqslant n_0 \} \end{aligned}$$

Alte Bekannte

$$O(f(n)) := \{g(n) \mid \exists c, n_0 > 0 \text{ mit } \\ 0 \leqslant g(n) \leqslant c \cdot f(n) \quad \forall n \geqslant n_0 \}$$

$$\Theta(f(n)) := \{g(n) \mid \exists c, c', n_0 > 0 \text{ mit } \\ 0 \leqslant c \cdot f(n) \leqslant g(n) \leqslant c' \cdot f(n) \quad \forall n \geqslant n_0 \}$$

$$\Omega(f(n)) := \{g(n) \mid \exists c, n_0 > 0 \text{ mit } \\ 0 \leqslant c \cdot f(n) \leqslant g(n) \quad \forall n \geqslant n_0 \}$$

Die Neuen

$$o(f(n)) := \{g(n) \mid \forall c > 0 \exists n_0 > 0 \text{ mit} \\ 0 \leqslant g(n) \leqslant c \cdot f(n) \quad \forall n \geqslant n_0 \} \\ \omega(f(n)) := \{g(n) \mid \forall c > 0 \exists n_0 > 0 \text{ mit} \\ 0 \leqslant c \cdot f(n) \leqslant g(n) \quad \forall n \geqslant n_0 \}$$

Anschaulich:

o(f(n))	\prec	echt schwächer wachsende Funktionen
O(f(n))	\preccurlyeq	schwächer oder gleich stark wachsende Funktionen
$\Theta(f(n))$	\asymp	genau gleich stark wachsende Funktionen
$\Omega(f(n))$	≻	stärker oder gleich stark wachsende Funktionen
$\omega(f(n))$	>	echt stärker wachsende Funktionen

$$n \in \Theta(\sqrt{n})$$
. ?

 $n \in \Theta(\sqrt{n})$. Falsch.

$$n \in \Theta(\sqrt{n})$$
. Falsch. $n^2 \in o(n^3)$. ?

$$n^2 \in o(n^3)$$
.

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. ?

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $2^{n+1} \in \Theta(2^n)$. ?

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $2^{n+1} \in \Theta(2^n)$. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $2^{n+1} \in \Theta(2^n)$. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $fpprox g:\Leftrightarrow f\in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^\mathbb{N}$.

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $2^{n+1} \in \Theta(2^n)$. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $fpprox g:\Leftrightarrow f\in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^\mathbb{N}$.

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $2^{n+1} \in \Theta(2^n)$. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $fpprox g:\Leftrightarrow f\in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^\mathbb{N}$.

$$o(f) = O(f) \setminus \Theta(f)$$
. ?

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $2^{n+1} \in \Theta(2^n)$. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $fpprox g:\Leftrightarrow f\in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^\mathbb{N}$.

$$o(f) = O(f) \setminus \Theta(f)$$
. Wahr.

 $n \in \Theta(\sqrt{n})$. Falsch.

 $n^2 \in o(n^3)$. Wahr.

 $n^3 \in \Omega(n^2)$. Wahr.

 $2^{n+1} \in \Theta(2^n)$. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $fpprox g:\Leftrightarrow f\in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^\mathbb{N}$.

(Aber: Ersetzt man O durch Θ , passt die Äquivalenzrelation.)

$$o(f) = O(f) \setminus \Theta(f)$$
. Wahr.

 $\forall c_1, c_2 \in \mathbb{N}, \ f \colon \mathbb{N}_+ \longrightarrow \mathbb{N}_+ : \quad c_1 \cdot f(n) + c_2 \in O(f(n)).$

$$n \in \Theta(\sqrt{n})$$
. Falsch.

$$n^2 \in o(n^3)$$
. Wahr.

$$n^3 \in \Omega(n^2)$$
. Wahr.

$$2^{n+1} \in \Theta(2^n)$$
. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $f pprox g :\Leftrightarrow f \in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^{\mathbb{N}}$.

$$o(f) = O(f) \setminus \Theta(f)$$
. Wahr.

$$\forall c_1, c_2 \in \mathbb{N}, \ f \colon \mathbb{N}_+ \longrightarrow \mathbb{N}_+ : \quad c_1 \cdot f(n) + c_2 \in O(f(n)).$$
 Wahr.

$$n \in \Theta(\sqrt{n})$$
. Falsch.

$$n^2 \in o(n^3)$$
. Wahr.

$$n^3 \in \Omega(n^2)$$
. Wahr.

$$2^{n+1} \in \Theta(2^n)$$
. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $f pprox g :\Leftrightarrow f \in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^{\mathbb{N}}$.

$$o(f) = O(f) \setminus \Theta(f)$$
. Wahr.

$$\forall c_1, c_2 \in \mathbb{N}, \ f \colon \mathbb{N}_+ \longrightarrow \mathbb{N}_+ \colon c_1 \cdot f(n) + c_2 \in O(f(n)).$$
 Wahr.

$$\forall c \in \mathbb{N}, \ f : \mathbb{N}_+ \longrightarrow \mathbb{N}_+ : (f(n))^c \in \omega(f(n)).$$
 ?

$$n \in \Theta(\sqrt{n})$$
. Falsch.

$$n^2 \in o(n^3)$$
. Wahr.

$$n^3 \in \Omega(n^2)$$
. Wahr.

$$2^{n+1} \in \Theta(2^n)$$
. Wahr. $(da \ 2^{n+1} = 2 \cdot 2^n)$.

 $f \approx g : \Leftrightarrow f \in O(g)$ definiert eine Äquivalenzrelation auf der Menge der Funktionen $\mathbb{N}^{\mathbb{N}}$.

$$o(f) = O(f) \setminus \Theta(f)$$
. Wahr.

$$\forall c_1, c_2 \in \mathbb{N}, \ f \colon \mathbb{N}_+ \longrightarrow \mathbb{N}_+ : \quad c_1 \cdot f(n) + c_2 \in O(f(n)).$$
 Wahr.

$$\forall c \in \mathbb{N}, \ f : \mathbb{N}_+ \longrightarrow \mathbb{N}_+ : (f(n))^c \in \omega(f(n)).$$
 Falsch. (\$\frac{1}{2}\$ für $c = 1$.)

O-Kalkül: Formeln

$f(n) \in o(g(n))$	\iff	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
$f(n) \in O(g(n))$	\iff	$0\leqslant\limsup_{n o\infty}rac{f(n)}{g(n)}=c<\infty$
$f(n) \in \Theta(g(n))$! ← !	$0<\lim_{n\to\infty}\frac{f(n)}{g(n)}=c<\infty$
$f(n) \in \Omega(g(n))$	\iff	$0<\liminf_{n o\infty}rac{f(n)}{g(n)}=c\leqslant\infty$
$f(n) \in \omega(g(n))$	\iff	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$

Lang ist's her: Logarithmus-Rechenregeln

• Für den Informatiker ist $\log n := \log_2(n)$

- Für den Informatiker ist $\log n := \log_2(n)$
- $a^{\log_a(b)} = b$

- Für den Informatiker ist $\log n := \log_2(n)$
- $a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$

- Für den Informatiker ist $\log n := \log_2(n)$
- $a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a \cdot b) = \log a + \log b, \quad \log(\frac{a}{b}) = \log a \log b$

- Für den Informatiker ist $\log n := \log_2(n)$
- $a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a^b) = b \cdot \log a$

- Für den Informatiker ist $\log n := \log_2(n)$
- $\bullet a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a^b) = b \cdot \log a$
- $a^{\log n} = n^{\log a}$

- Für den Informatiker ist $\log n := \log_2(n)$
- $\bullet a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a^b) = b \cdot \log a$
- $a^{\log n} = n^{\log a}$
- $x^{a \cdot b} = (x^a)^b = (x^b)^a, \quad x^{a+b} = x^a \cdot x^b$

- Für den Informatiker ist $\log n := \log_2(n)$
- $\bullet a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a^b) = b \cdot \log a$
- $a^{\log n} = n^{\log a}$
- $x^{a \cdot b} = (x^a)^b = (x^b)^a, \quad x^{a+b} = x^a \cdot x^b$
- Beispiele:

- Für den Informatiker ist $\log n := \log_2(n)$
- $a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a^b) = b \cdot \log a$
- $a^{\log n} = n^{\log a}$
- $x^{a \cdot b} = (x^a)^b = (x^b)^a, \quad x^{a+b} = x^a \cdot x^b$
- Beispiele:
 - $\log(10 \cdot n) \in O(\log n)$

- Für den Informatiker ist $\log n := \log_2(n)$
- $\bullet a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a^b) = b \cdot \log a$
- $a^{\log n} = n^{\log a}$
- $x^{a \cdot b} = (x^a)^b = (x^b)^a, \quad x^{a+b} = x^a \cdot x^b$
- Beispiele:
 - $\log(10 \cdot n) \in O(\log n)$
 - $n^n \in \Theta(2^{n \log n})$

- Für den Informatiker ist $\log n := \log_2(n)$
- $a^{\log_a(b)} = b$
- $\log_a(a) = 1, \log_a(1) = 0$
- $\log(a^b) = b \cdot \log a$
- $a^{\log n} = n^{\log a}$
- $x^{a \cdot b} = (x^a)^b = (x^b)^a, \quad x^{a+b} = x^a \cdot x^b$
- Beispiele:
 - $\log(10 \cdot n) \in O(\log n)$
 - $n^n \in \Theta(2^{n \log n})$
 - $\log_a n \in \Theta(\log_b n)$

Ein mysteriöser Algorithmus

```
procedure foo(a: array of \mathbb{Z})
     n := |a|
      flag: Bool
     repeat
           flag := true
           for i := 0 to n-2 do
                 if a[i] > a[i + 1] then
                      egin{pmatrix} a[i] \\ a[i+1] \end{pmatrix} := egin{pmatrix} a[i+1] \\ a[i] \end{pmatrix}
flag := false
     until flag
```


Das ist Bubblesort, der ein Array aufsteigend sortiert

- Das ist Bubblesort, der ein Array aufsteigend sortiert
- Best case?

- Das ist Bubblesort, der ein Array aufsteigend sortiert
- Best case?
 - \Rightarrow O(n), wenn das Array schon sortiert ist

- Das ist Bubblesort, der ein Array aufsteigend sortiert
- Best case?
 - \Rightarrow O(n), wenn das Array schon sortiert ist
- Worst case?

- Das ist Bubblesort, der ein Array aufsteigend sortiert
- Best case?
 - \Rightarrow O(n), wenn das Array schon sortiert ist
- Worst case?
 - \Rightarrow $O(n^2)$, wenn das Array absteigend ("falsch rum") sortiert ist

Korrektheitsbeweise

Korrektheitsbeweise sind zweiteilig:

- Korrektheitsbeweise sind zweiteilig:
 - 1. Teil Funktionalität: Mit Invariante beweisen, dass der Algorithmus ein korrektes Ergebnis erzeugt

- Korrektheitsbeweise sind zweiteilig:
 - 1. Teil Funktionalität: Mit Invariante beweisen, dass der Algorithmus ein korrektes Ergebnis erzeugt
 - 2. Teil Terminierung: Beweisen (ggf. anhand einer Invariante), dass der Algorithmus "irgendwann fertig wird". Manchmal trivial, manchmal knifflig (und damit aufwendig)

- Korrektheitsbeweise sind zweiteilig:
 - 1. Teil Funktionalität: Mit Invariante beweisen, dass der Algorithmus ein korrektes Ergebnis erzeugt
 - 2. Teil Terminierung: Beweisen (ggf. anhand einer Invariante), dass der Algorithmus "irgendwann fertig wird". Manchmal trivial, manchmal knifflig (und damit aufwendig)
- Aufgabenstellung beachten: Wenn ("nur") eine Invariante angegeben/bewiesen werden soll ⇒ Terminierungsbeweis nicht nötig!

Invarianten

gefragt

Induktion:

"IA": Invariante gilt bei **Beginn** des Algorithmus / der Schleife

Schlaifandurchlaufe gültig

"IS": Mithilfe der IV zeigen, dass die Invariante auch beim Ende det seldwallen Schleifenduschlaufe g

öltig ist.

Achtung: Invarianten müssen auch nach Ende der Schleife nochheile noch

Invarianten

 Invariante finden: Manchmal offensichtlich, manchmal Kreativität gefragt

- Invariante finden: Manchmal offensichtlich, manchmal Kreativität gefragt
- Korrektheitsbeweise über Invarianten gehen im Prinzip wie Induktion:

- Invariante finden: Manchmal offensichtlich, manchmal Kreativität gefragt
- Korrektheitsbeweise über Invarianten gehen im Prinzip wie Induktion:
- "IA": Invariante gilt bei Beginn des Algorithmus / der Schleife

- Invariante finden: Manchmal offensichtlich, manchmal Kreativität gefragt
- Korrektheitsbeweise über Invarianten gehen im Prinzip wie Induktion:
- "IA": Invariante gilt bei Beginn des Algorithmus / der Schleife
- "IV": Die Invariante war beim Ende des vorherigen Schleifendurchlaufs gültig

- Invariante finden: Manchmal offensichtlich, manchmal Kreativität gefragt
- Korrektheitsbeweise über Invarianten gehen im Prinzip wie Induktion:
- "IA": Invariante gilt bei Beginn des Algorithmus / der Schleife
- "IV": Die Invariante war beim Ende des vorherigen Schleifendurchlaufs gültig
- "IS": Mithilfe der IV zeigen, dass die Invariante auch beim Ende des aktuellen Schleifendurchlaufs gültig ist
- Achtung: Invarianten müssen auch nach Ende der Schleife noch gelten!

Beispiel SelectionSort

SelectionSort

```
procedure SelectionSort(A: array[1..n] of Element)

for i := 1 to n do

minIndex := i

for j := i + 1 to n do

if A[j] < A[minIndex] then

minIndex := j

assert A[minIndex] = min(A[i..<math>n])

swap(A[i], A[minIndex])
```

Beispiel SelectionSort

SelectionSort

```
procedure SelectionSort(A: array[1..n] of Element)

for i := 1 to n do

invariant A[1 ... i - 1] is sorted and \max(A[1 ... i - 1]) \leq \min(A[i..n])

minIndex := i

for j := i + 1 to n do

if A[j] < A[\min \text{Index}] then

minIndex := j

assert A[\min \text{Index}] = \min(A[i..<math>n])

swap(A[i], A[\min \text{Index}])
```


Definiere $max(()) := -\infty$ und $min(()) := +\infty$.

Definiere $max(()) := -\infty$ und $min(()) := +\infty$.

Beweis Invariante:

$$A[1 \dots i-1]$$
 is sorted and $\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$

IA.
$$(i = 1)$$
: $A[1..0] = ()$ ist sortiert und $-\infty = \max(A[1..0]) \le \min(A[1..n])$.

Definiere $max(()) := -\infty$ und $min(()) := +\infty$.

Beweis Invariante:

$$A[1 \dots i-1]$$
 is sorted and $\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$

IA.
$$(i = 1)$$
: $A[1..0] = ()$ ist sortiert und $-\infty = \max(A[1..0]) \le \min(A[1..n])$.

IV. (i > 1): Die Invariante gilt zu Beginn des Durchlaufs i für ein *festes i*.

Definiere $\max(()) := -\infty$ und $\min(()) := +\infty$. Beweis Invariante:

$$A[1 \dots i-1]$$
 is sorted and $\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$

IV. (i > 1): Die Invariante gilt zu Beginn des Durchlaufs i für ein festes i.

IS.
$$(i \leadsto i+1)$$
: Laut IV ist $A[1 \dots i-1]$ sortiert und $\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$ und $\min(A[i \dots n])$

Definiere $max(()) := -\infty$ und $min(()) := +\infty$. Beweis Invariante:

$$A[1 \dots i-1]$$
 is sorted and $\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$

IV. (i > 1): Die Invariante gilt zu Beginn des Durchlaufs i für ein festes i.

IS.
$$(i \rightsquigarrow i+1)$$
: Laut IV ist $A[1 \dots i-1]$ sortiert und $\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$ und $\min[\text{ndex} \in \{i, \dots, n\}]$ $\Rightarrow A[i-1] \leqslant A[\text{minIndex}]$ und $A[\text{minIndex}] \leqslant A[i]$.

Definiere $\max(()) := -\infty$ und $\min(()) := +\infty$. Beweis Invariante:

$$A[1 \dots i-1]$$
 is sorted and $\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$

- IV. (i > 1): Die Invariante gilt zu Beginn des Durchlaufs i für ein festes i.
- **IS**. $(i \leadsto i+1)$: Laut IV ist $A[1 \dots i-1]$ sortiert und

$$\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$$
 und $\min Index \in \{i, \dots, n\}$

- $\Rightarrow A[i-1] \leqslant A[\min Index] \text{ und } A[\min Index] \leqslant A[i].$
- \Rightarrow A[minIndex] kann zur Fortsetzung der Sortierung problemlos nach A[i] verschoben werden! Tauschen von A[i], A[minIndex]:

$$\Rightarrow$$
 A[1..i] ist sortiert,

$$A[i] = \max(A[1..i]) \leqslant \min(A[i+1 \dots n]). \quad \Box$$

Definiere $\max(()) := -\infty$ und $\min(()) := +\infty$. Beweis Invariante:

$$A[1 \dots i-1]$$
 is sorted and $\max(A[1 \dots i-1]) \leq \min(A[i \dots n])$

- IV. (i > 1): Die Invariante gilt zu Beginn des Durchlaufs i für ein festes i.
- **IS**. $(i \rightsquigarrow i+1)$: Laut IV ist $A[1 \dots i-1]$ sortiert und

$$\max(A[1 \dots i-1]) \leqslant \min(A[i \dots n])$$
 und $\min \{1, \dots, n\}$

- $\Rightarrow A[i-1] \leqslant A[\min Index] \text{ und } A[\min Index] \leqslant A[i].$
- \Rightarrow A[minIndex] kann zur Fortsetzung der Sortierung problemlos nach A[i] verschoben werden! Tauschen von A[i], A[minIndex]:

$$\Rightarrow$$
 $A[1..i]$ ist sortiert,
 $A[i] = \max(A[1..i]) \leq \min(A[i+1...n])$. \square

 \Rightarrow Nach dem *n*-ten Schleifendurchlauf gilt also: A[1..n] ist sortiert.

SelectionSort – Beweis Terminierung

In diesem Fall trivial:

- Schleifenvariable i nach oben durch n beschränkt
- ...und wird in jedem Durchlauf inkrementiert (und sonst nicht verändert)
- ⇒ SelectionSort terminiert
- ⇒ SelectionSort funktioniert! Yay! :D

Danke für die Aufmerksamkeit! ©

http://xkcd.com/1667

Credits

Vorgänger dieses Foliensatzes wurden erstellt von:

Christopher Hommel (urspr. Verfasser) Daniel Jungkind