

AU OPTRONICS CORPORATION

() Pre	eliminar	y Spec	ification
`	,	Jiiiiiiii	, opec	

(V) Final Specification

Module	32.0" Color TFT-LCD
Model Name	M320QAN02.I

Customer Date	
Approved by	
Note: This Specification is subject to change without notice.	

Date					
<u>Jul. 26, 2019</u>					
Date					
<u>Jul. 26, 2019</u>					
AU Optronics corporation					

AU OPTRONICS CORPORATION

Contents

I Handling Precautions	5
2 General Description	
2.1 Display Characteristics	
2.2 Absolute Maximum Rating of Environment	8
2.3 Optical Characteristics	9
2.4 Mechanical Characteristics	14
3 TFT-LCD Module	15
3.1 Block Diagram	15
3.2 Interface Connection	16
3.2.1 Connector Type	16
3.2.2 Connector Pin Assignment	16
3.3 Electrical Characteristics	19
3.3.1 Absolute Maximum Rating	19
3.3.2 Recommended Operating Condition	19
3.4 Signal Characteristics	20
3.4.1 LCD Pixel Format	20
3.4.2 eDP Data Format	21
3.4.3 Color versus Input Data	22
3.4.4 eDP Specification (Follow as VESA DisplayPort Standard Version 1.2)	23
3.4.5 Input Timing Specification	23
3.5 Power ON/OFF Sequence	27
4 Backlight Unit	28
4.1 Block Diagram	28
4.2 Interface Connection	29
4.2.1 Connector Type	29
4.2.2 Connector Pin Assignment	31
4.3 Electrical Characteristics	32
4.3.1 Absolute Maximum Rating	32
4.3.2 Recommended Operating Condition	32
5 Reliability Test	35
6 Shipping Label	37
7 Mechanical Characteristics	
8 Packing Specification	39
8.1 Packing Flow	
8.2 Pallet and shipment information	
9 Design Guide for System	
9.I AHVA design guide	

AU OPTRONICS CORPORATION

Record of Revision

Version	Date	Page	Old description	New Description	Remark
0.1	2018/8/17	All	First version release	-	
9		9	-	Update Color Coordinates	
0.2	2019/3/29	9-13	-	Modify ordinal number of note	
		6	AG25%, 3H	SAG25%, 3H	
		6	Old HDR off power consumption is 45.36W	New HDR off power consumption is 40.32W	
1.0	2019/7/26	19	Old 3.3.2 recommended operating concdition Symbol Description Min. Typ. Nax. Uset Remark.	Update 3.3.2 recommended Operating concdition Symbol Description Min Typ Mac Unit Remark VOD Forest supply 10.8 12.5 Vol Vol	
		6/38	The thicken of module is 16.37mm	The thicken of module is 16.57mm	
38		38	The thicken of module is 16.37mm	The thicken of module is 16.57mm	

M320QAN02.1

AU OPTRONICS CORPORATION

M320QAN02.1

AU OPTRONICS CORPORATION

I Handling Precautions

- 1) Since polarizer is easily damaged, do not touch or press the surface of polorizer with hand.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case a TFT-LCD Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Otherwise the TFT-LCD Module may be damaged.
- 10) Insert or pull out the interface connector, be sure not to rotate nor tilt it of the TFT-LCD Module.
- 11) Do not twist nor bend the TFT -LCD Module even momentary. It should be taken into consideration that no bending/twisting forces are applied to the TFT-LCD Module from outside. Otherwise the TFT-LCD Module may be damaged.
- 12) Please avoid touching COF position while you are doing mechanical design.
- 13) When storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- 14) Do not apply the same pattern for a long time, it will enhance relevant defect.
- 15) When this reverse-type model(PCBA on bottom side) is used as forward-type model(PCBA on top side), AUO can not guarantee any defects of LCM.

AU OPTRONICS CORPORATION

2 General Description

This specification applies to the 32.0 inch wide Color a-Si TFT-LCD Module M320QAN02.1. The display supports the UHD - $3840(H) \times 2160(V)$ screen format and 1.07B colors (RGB 8bits + Hi-FRC). The input interface is 8-lanes eDP and this module doesn't contain an driver board for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 $^{\circ}$ C condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	812.8 (32.0")
Active Area	[mm]	708.48 (H) × 398.52 (V)
Pixels H x V	-	3840(x3) x 2160
Pixel Pitch	[um]	184.5 (per one triad) × 184.5
Pixel Arrangement	•	R.G.B. Vertical Stripe
Display Mode	-	AHVA Mode (Advances Hyper-Viewing Angle),Normally Black
HDR OFF White Luminance (Center of screen)	[cd/m ²]	400 (typ.)
HDR ON White Luminance (Center of screen)	[cd/m ²]	600 (min.)
Contrast Ratio	-	1000 (Typ.)
Response Time	[msec]	12 (Typ., Gray to Gray)
HDR OFF Power Consumption (LCD Module + Backligh unit)	[Watt]	40.32W (Typ.) LCD module : PDD(Typ.)=12.72W@white pattern,60Hz,12V Backlight unit : PBLU (Typ.) =27.6W @Is=55mA
HDR ON Power Consumption (LCD Module + Backligh unit)	[Watt]	64.46 (Typ.) LCD module : PDD(Typ.)=17.76W@white pattern,60Hz,12V Backlight unit : PBLU (Typ.) =46.7W @ls=90mA
Weight	[Grams]	3,900
Outline Dimension	[mm]	721.88 (H) × 417.93 (V) × 16.57 (D) Typ.
Electrical Interface	-	8-lanes eDP
Support Color	-	I.07B colors (RGB 8bits + Hi-FRC)
Surface Treatment	-	SAG25%, 3H

Product Specification AU OPTRONICS CORPORATION

M320QAN02.1

Temperature Range Operating Storage (Shipping)	[°C]	0 to +50 -20 to +60
RoHS Compliance	-	RoHS Compliance
TCO Compliance	-	TCO 7.0 Compliance

AU OPTRONICS CORPORATION

2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min.	Max.	Unit	Remark
ТОР	Operating Temperature	0	+50	[°C]	Note 2-1
TGS	Glass surface temperature (operation)	0	+68	[°C]	Note 2-1 Function judged only
НОР	Operation Humidity	5	90	[%RH]	Note 2-1
TST	Storage Temperature	-20	+60	[°C]	
HST	Storage Humidity	5	90	[%RH]	

Note 2-1: Temperature and relative humidity range are shown as the below figure.

- I. 90% RH Max (Ta \leq 39 $^{\circ}$ C)
- 2. Max wet-bulb temperature at 39°C or less. (Ta \leq 39°C)
- 3. No condensation

2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

I. Equipment setup: Please refer to Note 2-2.

2. Panel Lighting time: 30 minutes

3. VDD=12.0V, Fv=60Hz, Ta=25 $^{\circ}$ C

Symbol	Description		Min.	Тур.	Max.	Unit	Remark
Lw	HDR OFF White Luminance (C	350	400	-	[cd/m2]	Is=55mA Note 2-2 By SR-3	
HDR-Lw	HDR ON White Luminance (Co	600			[cd/m2]	Is=90mA Note 2-2 By SR-3	
L _{uni}	Luminance Uniformity (9 points)	75	80	-	[%]	Note 2-3 By SR-3
CR	Contrast Ratio (Center of screen)			1000	-	-	Note 2-4 By SR-3
$\theta_{\scriptscriptstyle R}$	Horizontal Viewing Angle	Right	75	89	-		
θ_{L}	(CR=5) Vertical Viewing Angle	Left	75	89	-	[degree]	Note 2-5
Фн		Up	75	89	-		By SR-3
Ф	(CR=5)	Down	75	89	•		
T _{GTG}	Response Time	Gray to Gray	-	12	-	[msec]	Note 2-6 By TRD-100
R _×		Red x	0.653	0.683	0.713		
R _y		Red y	0.280	0.310	0.340		
G _x		Green x	0.239	0.269	0.299		
G _y	Color Coordinates	Green y	0.647	0.677	0.707	_	By SR-3
B _x	(CIE 1931)	Blue x	0.123	0.153	0.183		
B _y		Blue y	0.016	0.046	0.076		
W _x		White x	0.283	0.313	0.343		
W _y		White y	0.299	0.329	0.359		
Ru'	Color Coordinates	Red u'	-	0.510	-		
Rv'	(CIE 1976)	Red v'	-	0.521	-	-	By SR-3
Gu'	, , , , , ,	Green u'	-	0.102	-		

Product Specification AU OPTRONICS CORPORATION

M320QAN02.1

Gv'		Green v'	-	0.576	-		
Bu'		Blue u'	-	0.189	ı		
Bv'		Blue v'	-	0.128			
Wu'		White u'	-	0.198	•		
Wv'		White v'	-	0.468	ı		
DCIP3 coverage ratio (CIE1976)				95		[%]	By SR-3

Note 2-2: Equipment setup:

Note 2-3: Luminance Uniformity Measurement

Definition:

Luminance Uniformity =
$$\frac{\text{M inimum Luminance of 9 Points (P1 } \sim \text{P9})}{\text{M aximum Luminance of 9 Points (P1 } \sim \text{P9})}$$

a. Test pattern: White Pattern

Note 2-4: Contrast Ratio Measurement

Definition:

Contrast Ratio = Luminance of White pattern
Luminance of Black pattern

a. Measured position: Center of screen (P5) & perpendicular to the screen $(\theta=\Phi=0^{\circ})$

Note 2-5: Viewing angle measurement

Definition: The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right $(\theta_L \& \theta_R)$ Vertical view angle: Divide to up & down $(\Phi_H \& \Phi_L)$

Note 2-6: Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Gray level A" to "Gray level B" (falling time, TF), and from "Gray level B" to "Gray level A" (rising time, TR), respectively. The response time is interval between the 10% and 90% of optical response.

The gray to gray response time is defined as the following table.

The gray to gray response time is defined as the following table.

Croy Lovel to C	way Layal		Tai	get gray level		
Gray Level to G	ray Level	L0	L63	L127	LI9I	L255
	L0					
	L63					
Start gray level	L127					
	LI9I					
	L255					

 \blacksquare $T_{GTG typ}$ is the total average time at rising time and falling time of gray to gray.

Note 2-7: Evaluation test and mass production inspection shall be applied with LED current Is @ HDR off condition if there is not specified condition.

2.8 Mechanical Characteristics

Symbol	Description	Min.	Max.	Unit	Remark
P_{bc}	Backside Compression	2.5	-	[Kgf]	Note 2-9

Note 2-9: a. Test Method:

The point is at a distance from right-downside 25mm x 25mm defined as the Start Point of Measure Points, and the point is at a distance 25mm from left-side & around 10mm from PCB defined as the End Point.

Align 50mm x 50mm block from Start Point on the Bezel Back, and the corners of each block are Measure Points.

If the distance from the last block to each side of the End Point \geq 25mm, add other blocks to make sure that most area of Bezel Back can be measured.

a. Test pattern: It is listed as following.

AU OPTRONICS CORPORATION

3 TFT-LCD Module

3.1 Block Diagram

The following shows the block diagram of the 32.0 inch Color TFT-LCD Module.

M320QAN02.1

AU OPTRONICS CORPORATION

3.2 Interface Connection

3.2.1 Connector Type

TFT-LCD	Manufacturer	JAE	P-TWO	STARCONN (CHIEF LAND)
Connector	Part Number	FI-RTE51SZ-HF	187059-5122	115E51-0000RA-M3-R
Mating	Manufacturer	JAE or Compatible		
Connector	Part Number	FI-RESICL (Locked Type	e)	

3.2.2 Connector Pin Assignment

PIN#	Symbol	Description	Remark
I	VDD	Power +12V	
2	VDD	Power +12V	
3	VDD	Power +12V	
4	VDD	Power +12V	
5	VDD	Power +12V	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	NC	No connection (for AUO test only. Do not connect)	
10	NC	No connection (for AUO test only. Do not connect)	
11	NC	No connection (for AUO test only. Do not connect)	
12	NC	No connection (for AUO test only. Do not connect)	
13	NC	No connection (for AUO test only. Do not connect)	
14	NC	No connection (for AUO test only. Do not connect)	
15	NC	No connection (for AUO test only. Do not connect)	
16	NC	No connection (for AUO test only. Do not connect)	
17	GND	Ground	
18	1st Lane3_N	Negative eDP differential data input	
19	1st Lane3_P	Positive eDP differential data input	
20	GND	Ground	

M320QAN02.1

AU OPTRONICS CORPORATION

21	1st Lane2_N	Negative eDP differential data input
22	Ist Lane2_P	Positive eDP differential data input
23	GND	Ground
24	Ist LaneI_N	Negative eDP differential data input
25	Ist LaneI_P	Positive eDP differential data input
26	GND	Ground
27	1st Lane0_N	Negative eDP differential data input
28	1st Lane0_P	Positive eDP differential data input
29	GND	Ground
30	Ist AUX_CH_P	Positive AUX Channel differential data input
31	Ist AUX_CH_N	Negative AUX Channel differential data input
32	GND	Ground
33	NC	No connection (for AUO test only. Do not connect)
34	GND	Ground
35	2nd Lane3_N	Negative eDP differential data input
36	2nd Lane3_P	Positive eDP differential data input
37	GND	Ground
38	2nd Lane2_N	Negative eDP differential data input
39	2nd Lane2_P	Positive eDP differential data input
40	GND	Ground
41	2nd LaneI_N	Negative eDP differential data input
42	2nd LaneI_P	Positive eDP differential data input
43	GND	Ground
44	2nd Lane0_N	Negative eDP differential data input
45	2nd Lane0_P	Positive eDP differential data input
46	GND	Ground
47	2nd AUX_CH_P	Positive AUX Channel differential data input
48	2nd AUX_CH_N	Negative AUX Channel differential data input
49	GND	Ground

Product Specification AU OPTRONICS CORPORATION

M320QAN02.1

50	HPD	Hot plug detection	
51	GND	Ground	

3.3 Electrical Characteristics

3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	14	[Volt]	Ta=25°C

3.3.2 Recommended Operating Condition

Symbol	Description	Min	Тур	Max	Unit	Remark
VDD	Power supply Input voltage	10.8	12.0	13.2	[Volt]	
IDD	Power supply	ı	1.06	1.28	[A]	VDD= 12V, Whie Pattern, Fv=60Hz
טטו	Input Current (RMS)	ı	1.11	1.34		VDD= 12V, Whie Pattern, Fv=65Hz
PDD	VDD Power	-	12.72	15.36	[Watt]	VDD= 12V, Whie Pattern, Fv=60Hz
סטיז	Consumption	•	13.32	16.08		VDD= 12V, Whie Pattern, Fv=65Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 3-2
VDDrp	Allowable VDD Ripple Voltage	1	-	500	[mVolt]	VDD= 12.0V, White pattern, Fv=60Hz

Note 3-1: Inrush Current measurement:

Test circuit: (Migh to Low) Control Signal R2 VDD (LCD Module Input) Control Signal R2 VRI OUTGON CONTROL SW MAC-SPST VRI OUTGON CONTROL CO

The duration of VDD rising time: 470us.

3.4 Signal Characteristics

3.4.1 LCD Pixel Format

Following figure shows the relationship between the input signals and LCD pixel format.

	1	.st	Lar I	ne0	1s	t L	ane	1	1st	Lar	ne2	1s	t Lai	ne3					2nc	l La:	ne0	2nd	l La:	ne1	2nc	l Lai	ne2	2nc	d La	ne3				
			1			2	2			3			▼				1920)		▼ 1921		1	1922	2		1923	,		▼ 1924	1			384(0
1	F	₹	G	В	R	(; I	В	R	G	В	R	G	В		R	G	В	R	G	В	R	G	В	R	G	В	R	G	В		R	G	В
2160	F	₹ T	G	В	R	T	; I	В	R	G	В	R	G	В		R	G	В	R	G	В	R	G	В	R	G	В	R	G	В		R	G	В

Note 3-2: The module use 8-Lanes eDP interface.

Ist port:

Ist Lane0: I+4n pixel

Ist Lane I: 2+4n pixel

Ist Lane2: 3+4n pixel

Ist Lane3: 4+4n pixel

2nd port:

2nd Lane0: 1921+4n pixel

2nd Lanel: 1922+4n pixel

2nd Lane2: 1923+4n pixel

2nd Lane3: 1924+4n pixel

n=0~479

M320QAN02.1

AU OPTRONICS CORPORATION

3.4.2 eDP Data Format

1st Lane0	lst Lanel	1st Lane2	1st Lane3						
R1-9:2	R2-9:2	R3-9:2	R4-9:2						
R1-1:0IG1-9:4	R2-1:0lG2-9:4	R3-1:0IG3-9:4	R4-1:0lG4-9:4						
G1-3:0IB1-9:6	G2-3:0IB2-9:6	G3-3:0IB3-9:6	G4-3:0IB4-9:6						
B1-5:0IR5-9:8	B2-5:0IR6-9:8	B3-5:0IR7-9:8	B4-5:0IR8-9:8						
R5-7:0	R6-7:0	R7-7:0	R8-7:0						
GS-9:2	G6-9:2	G7-9:2	G8-9:2						
GS-1:0IB5-9:4	G6-1:0IB6-9:4	G7-1:0IB7-9:4	G8-1:0IB8-9:4						
BS-3:0IR9-9:6	B6-3:0IR10-9:6	B7-3:0IR11-9:6	B8-3:0IR12-9:6						
R9-5:01G9-9:8	R10-5:0IG10-9:8	R11-5:0IG11-9:8	R12-5:0IG12-9:8						
G9-7:0	G10-7:0	G11-7:0	G12-7:0						
B9-9:2	B10-9:2	B11-9:2	B12-9:2						
B9-1:0IR13-9:4	B10-1:0IR14-9:4	B11-1:0IR15-9:4	B12-1:0IR16-9:4						
R13-3:0IG13-9:6	R14-3:0IG14-9:6	R15-3:0IG15-9:6	R16-3:0IG16-9:6						
G13-5:0IB13-9:8	G14-5:0IB14-9:8	G15-5:0IB15-9:8	G16-5:0IB16-9:8						
B13-7:0	B14-7:0	B15-7:0	B16-7:0						
	I .								

2nd Lane0	2nd Lanel	2nd Lane2	2nd Lane3
R1921-9:2	R1922-9:2	R1923-9:2	R1924-9:2
R1921-1:0IG1921-9:4	R1922-1:0IG1922-9:4	R1923-1:0IG1923-9:4	R1924-1:0lG1924-9:4
G1921-3:0IB1921-9:6	G1922-3:0IB1922-9:6	G1923-3:0IB1923-9:6	G1924-3:0IB1924-9:6
B1921-5:0IR1925-9:8	B1922-5:0IR1926-9:8	B1923-5:0IR1927-9:8	B1924-5:0IR1928-9:8
R1925-7:0	R1926-7:0	R1927-7:0	R 1928-7:0
G1925-9:2	G1926-9:2	G1927-9:2	G1928-9:2
G1925-1:0IB1925-9:4	G1926-1:0IB1926-9:4	G1927-1:0IB1927-9:4	G1928-1:0IB1928-9:4
B1925-3:0IR1929-9:6	B1926-3:0IR1930-9:6	B1927-3:0IR1931-9:6	B1928-3:0IR1932-9:6
R1929-5:0IG1929-9:8	R1930-5:0IG1930-9:8	R1931-5:0IG1931-9:8	R1932-5:0IG1932-9:8
G1929-7:0	G1930-7:0	G1931-7:0	G1932-7:0
B1929-9:2	B1930-9:2	B1931-9:2	B1932-9:2
B1929-1:0IR1933-9:4	B1930-1:0IR1934-9:4	B1931-1:0IR1935-9:4	B1932-1:0IR1936-9:4
R1933-3:0IG1933-9:6	R1934-3:0IG1934-9:6	R1935-3:0IG1935-9:6	R1936-3:0IG1936-9:6
G1933-5:0IB1933-9:8	G1934-5:0IB1934-9:8	G1935-5:0IB1935-9:8	G1936-5:0IB1936-9:8
B1933-7:0	B1934-7:0	B1935-7:0	B1936-7:0

M320QAN02.1

AU OPTRONICS CORPORATION

3.4.3 Color versus Input Data

The following table is for color versus input data (10bit). The higher the gray level, the brighter the color.

.

			Color Input Data																													
Color	Gary Level					RED B:R9		a 3 :R0)							G (MS	REEI B:G9									E (MS	B:B9						Remark
		R9	R8	R7	R6	R5	R4	R3	R2	R1	RO	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	В5	В4	ВЗ	В2	В1	ВО	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
L511	-	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	

AU OPTRONICS CORPORATION

3.4.4 eDP Specification (Follow as VESA DisplayPort Standard Version 1.2)

a. DisplayPort main link signal:

DisplayPort main link							
		Min	Тур	Max	unit		
Frequency	Main link Frequency	-	2.7	-	Gbps		
UI	Unit Interval	-	370	-	ps		
VCM	RX input DC Common Mode Voltage	-	0	-	[Volt]		
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	150	-	-	[mVolt]		
Down_Spread_Freq	Link clock down spread frequency	30	-	33	KHz		
Down_Spread_Amplitude	Link clock down spread amplitude	-	-	0.5	%		

Point	Time (UI)	Voltage (V)
1	0.245	100
2	0.5	75mV
3	0.755	THE R
4	0.5	-75mV

Figure 5.55.3 Downstream Device EYE Mask at Receiver Connector for HBR

b. DisplayPort AUX_CH signal:

	DisplayPort AUX_CH						
		Min	Тур	Max	unit		
VCM	AUX DC Common Mode Voltage	0	-	2.0	[Volt]		
VDiff _{P-P}	AUX Peak-to-peak voltage at a receiving device	0.27	-	1.36	[Volt]		

c. DisplayPort VHPD signal:

Display Port VHPD						
		Min	Тур	Max	unit	
VHPD	HPD Voltage	2.25	•	3.6	[Volt]	

M320QAN02.1

AU OPTRONICS CORPORATION

d. Intra-Pair skew

LRX-SKEW-INTRA_PAIR						
		Min	Тур	Max	unit	
LRX-SK						
EW-IN	Lana latera da Chara Talamana			70	F= -1	
TRA_P	Lane Intra-pair Skew Tolerance	-	-	60	[ps]	
AIR						

e. Inter-Pair Skew

	LRX-SKEW-INTER_PAIR							
		Min	Тур	Max	unit			
LRX-SK								
EW-IN	Lana ta Lana Chaucat BV andraga sina			E200	r1			
TER_PA	ane-to-Lane Skew at RX package pins	-	-	5200	[ps]			
IR								

3.4.5 Input Timing Specification

The input timing is shown as the following table.

Symbol	Description		Min.	Тур.	Max.	Unit	Remark
Tv		Period	2180	2200	4500	Th	
Tdisp (v)		Active	2160	2160	2160	Th	
Tblk (v)	Vertical Section	Blanking	20	40	2340	Th	
Fv		Frequency	29	60	65	Hz	Note 3-5
		' ' 29 60	80	63		Note 3-6	
Th		Period	2000	2100	3520	Tclk	
Tdisp (h)	Horizontal	Active	1920	1920	1920	Tclk	
Tblk (h)	Section	Blanking	80	180	1600	Tclk	
Fh		Frequency	40.0	131.9	144.0	kHz	Note 3-3
Tclk	Pixel Clock	Period	3.5	3.6	12.5	ns	I/Fclk
Fclk		Frequency	80.0	277.0	288.0	MHz	Note 3-4
	Link Rate per Lane	9		2.7		Gbps	

Note 3-3: The equation is listed as following. Please don't exceed the above recommended value.

Fh (Min.) = Fclk (Min.) / Th (Min.)

Fh (Typ.) = Fclk (Typ.) / Th (Typ.)

Fh (Max.)= Fclk (Max.) / Th (Min.)

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

1st Lane N & 2nd Lane N skew < 200ns

Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.)

Fclk (Min.) \leq Fv x Th x Tv \leq Fclk (Max.)

Note 3-5: The equation is listed as following. Please don't exceed the above recommended value.

 $Fv = Fclk(Typ.) / (Tv \times Th)$

Note 3-6: The optimal Vertical Frequency is 50~65 Hz for best picture quality.

AU OPTRONICS CORPORATION

3.5 Power ON/OFF Sequence

VDD power,eDP signal and backlight on/off sequence are as following. eDP signals from any system tshall be Hi-Z state when VDD is off.

Power Sequence Timing

Symphol	Value			1 1 1-4	Remark
Symbol	Min.	Тур.	Max.	Unit	
TI	0.5	-	10	[ms]	
T2	0	-	200	[ms]	
Т3	0	-	-	[ms]	Note 3-7
T4	500	-	-	[ms]	
T5	100		-	[ms]	
T6	0	-	50	[ms]	Note 3-8 Note 3-9
Т7	0	-	200	[ms]	Note 3-9 Note 3-10
Т8	1000	-	-	[ms]	

Note 3-7: During T3 period, eDP link training time by customer's system.

Note 3-8: Recommend setting T6 = 0ms to avoid electronic noise when VDD is off.

Note 3-9: During T6 & T7 period, please keep the level of input eDP signals with Hi-Z state.

Note 3-10: Voltage of VDD must decay smoothly after power-off.(customer system decide this value)

AU OPTRONICS CORPORATION

4 Backlight Unit

4.1 Block Diagram

The following shows the block diagram of the 32.0 inch Backlight Unit. And it includes 2 pcs LED light bar in Backlight Unit. Each LED light bar includes 44 pcs LED package. (4 strings and 11 pcs LED of one string).

AU OPTRONICS CORPORATION

4.2 Interface Connection

4.2.1 Connector Type

Backlight Connector	Manufacturer	Cvilux
Backlight Connector	Part Number	CII406MIVLD-NH
	Manufacturer	ENTERY
Mating Connector	Part Number	HII2K-P06N-00B (Non-Locking type) HII2K-P06N-IIB(White) (Locking type) HII2K-P06N-I3B(Black) (Locking type)

Backlight Connector dimension:

$$H \times V \times D = 13.9 \times 3.00 \times 4.25$$
, $Pitch = 1.0(unit = mm)$

M320QAN02.1

AU OPTRONICS CORPORATION

Mating Connector dimension:

AU OPTRONICS CORPORATION

4.2.2 Connector Pin Assignment

Pin#	Symbol	Description	Remark
I	Chl	LED Current Feedback Terminal (Channel I)	
2	Ch2	LED Current Feedback Terminal (Channel 2)	
3	V_{SLED}	LED Power Supply Voltage Input Terminal	
4	V_{SLED}	LED Power Supply Voltage Input Terminal	
5	Ch3	LED Current Feedback Terminal (Channel 3)	
6	Ch4	LED Current Feedback Terminal (Channel 4)	

4.3 Electrical Characteristics

4.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

(Ta=25°℃)

Symbol	Description	Min	Max	Unit	Remark
			150	[mA]	100% duty ratio
ls	LED String Current	0	240	[mA]	Duty ratio≦ 10% Pulse time=10 ms

Duty ratio= (A / B) X 100%; (A: Pulse time, B: Period)

4.3.2 Recommended Operating Condition

Symbol	Description	Min.	Тур.	Max.	Unit	Remark
ls	LED String Current		55	60	[mA]	@HDR off 100% duty ratio of LED chip; <i>Note 4-7</i>
ls	LED String Current		90	99	[mA]	@HDR on 100% duty ratio of LED chip; Note 4-7 & Note 4-8
Vs	LED String Voltage	59.4	62.7	67.I	[Volt]	Is=55mA @ 100% duty ratio; <i>Note 4-1&Note 4-5</i>
Vs	LED String Voltage	60.5	64.9	69.3		Is=90mA @ 100% duty ratio; <i>Note 4-1&Note 4-5</i>
ΔVs	Maximum Vs Voltage Deviation of light bar			2.2	[Volt]	Is=55mA @ 100% duty ratio; <i>Note 4-2</i>
P _{BLU}	LED Light Bar Power Consumption		27.6	29.5	[Watt]	@HDR off <i>Note 4-3</i>

Product Specification AU OPTRONICS CORPORATION

M320QAN02.1

P _{BLU}	LED Light Bar Power Consumption		46.7	49.9	[Watt]	@HDR on Note 4-3
LT _{LED}	LED Life Time	30000			[Hour]	Note 4-4
OVP	Over Voltage Protection in system board	Vs(Max.)			[Volt]	Note 4-5

M320QAN02.1

AU OPTRONICS CORPORATION

- **Note 4-1:** Vs (Typ.) = V_F (Typ.) X LED No. (one string);
 - a. V_E: LED chip forward voltage @HDR off, V_E (Min.)=5.4V, V_E(Typ.)=5.7V, V_E(Max.)=6.1V
 - b. V_F : LED chip forward voltage @HDR on, V_F (Min.)=5.5V, V_F (Typ.)=5.9V, V_F (Max.)=6.3V
 - c. The same eugation to calculate $V_s(Min.)$ & $V_s(Max.)$ for respective $V_s(Min.)$ & $V_s(Max.)$;

- **Note 4-2:** ΔVs (Max.) = $\Delta V_F X$ LED No. (one string);
 - a. ΔV_E LED chip forward voltage deviation (0.2V, each Bin of LED V_E)
- Note 4-3: P_{BLU} (Typ.) = Vs (Typ.) X Is (Typ.) X 8 (8 is total String No. of BLU) P_{BLU} (Max.) = Vs (Max.) X Is (Typ.) X 8
- *Note 4-4:* Definition of life time:
 - a. Brightness of LED becomes to 50% of its original value
 - b. Test condition: Is = 55mA and 25° C (Room Temperature)
- *Note 4-5:* Recommendation for LED driver power design:

Due to there are electrical property deviation in LED & monitor set system component after long time operation. AUO strongly recommend the design value of LED driver board OVP (over voltage protection) should be 10% higher than max. value of LED string voltage (Vs) at least.

- Note 4-6: AUO strongly recommend "Analog Dimming" method for backlight brightness control for Wavy Noise Free. Otherwise, recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency
- **Note 4-7** Ensure that the LED light bar is not subjected either forward or reverse voltage while monitor set is on standby mode or not in use.
- **Note 4-8:** Evaluation test and mass production inspection shall be applied with LED current Is @ HDR off condition if there is not specified condition.

M320QAN02.1

AU OPTRONICS CORPORATION

5 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Frequency:10~57Hz/Vibration width(one side):0.075mm : 58~500Hz/Acceleration:9.8 m/s2 Sweep time: I I minutes Test period: 3 hours(Ih for each direction of X,Y,Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	Note 5-1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Flooting Static Discharge)	Contact Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	Note 5-2
ESD (Electro Static Discharge)	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	
Altitude Test Operation:18,000 ft Non-Operation:40,000 ft		

- **Note 5-1**: a. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test.
 - b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost

Self-recoverable

No hardware failures.

ESD discharged points should avoid display area and periphery front bezel of

display area. Suggest points were 4 side parallel edge of display area surface.

Metal front bezel must cover half area of BM (black matrix), and metal front

bezel must connect with metal back bezel to protect source IC of panel by ESD damaged.

M320QAN02.1

AU OPTRONICS CORPORATION

Note 5-3: Result Evaluation Criteria:

TFT-LCD panels test should take place after gradually cooling enough at room temperature. In the normal application, there should be o particular problems that may affect the display function.

M320QAN02.1

AU OPTRONICS CORPORATION

6 Shipping Label

The label is on the panel as shown below:

- Note 6-1: For Pb Free products, AUO will add for identification.
- *Note 6-2:* For RoHS compatible products, AUO will add RoHS for identification.
- Note 6-3: For China RoHS compatible products, AUO will add of for identification.
- Note 6-4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

7 Mechanical Characteristics

8 Packing Specification

8.1 Packing Flow

8.2 Pallet and shipment information

16		Damanla			
ltem	Q'ty	Dimension	Weight(kg)	Remark	
Panel	I	721.88(H)mm x 417.93(V)mm x 16.37(D)mm	3.90		
Cushion	ı	-			
Вох	I	805(L)mm x 280(W)mm x 512(H)mm	6.88	without Panel	
Packing Box	7 pcs/Box	805(L)mm × 280(W)mm × 512(H)mm	34.18	with panel & cushion & Box	
Pallet	I	1150(L)mm x 840(W)mm x 132(H)mm	13.8		
Pallet after Packing	8 boxes/pallet	1150(L)mm × 840(W)mm × 1156(H)mm	287.24		

- 9 Design Guide for System
- 9.1 AHVA design guide
- 9.1.1 The gap between LCM and system rear bracket should be bigger than 0.5mm.
- 9.1.2 The system bracket should be fixed on back cover firmly.

9.1.3 The EMI gasket should be uniform and not push panel strongly.

9.1.4 For stable assembly, the system bracket should use 4 screws to fix system and panel by dual sides.

9.1.5 The system bracket and panel should be in parallel with having no gap after inserting screws.

9.1.6 Avoid scratching LCM, the rib on system front-cover should not exceed the bottom edge of LCM's front-bezel.

