```
import os
import pandas as pd
import numpy as np
```

student_df = pd.read_csv(f"C:\\Users\\DELL\\Downloads\\dev ansooriya\\student_data.csv")

student_df.head()

_		school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	• • •	famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
	0	GP	F	18	U	GT3	Α	4	4	at_home	teacher		4	3	4	1	1	3	6	5	6	6
	1	GP	F	17	U	GT3	Т	1	1	at_home	other		5	3	3	1	1	3	4	5	5	6
	2	GP	F	15	U	LE3	Т	1	1	at_home	other		4	3	2	2	3	3	10	7	8	10
	3	GP	F	15	U	GT3	Т	4	2	health	services		3	2	2	1	1	5	2	15	14	15
	4	GP	F	16	U	GT3	Т	3	3	other	other		4	3	2	1	2	5	4	6	10	10

5 rows × 33 columns

print(f"data has{student_df.shape[0]} and rows has{student_df.shape[1]} columns")

data has395 and rows has33 columns

student_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 395 entries, 0 to 394

Data	columns (to	tal 3	33 columns):	
#	Column	Non-	-Null Count	Dtype
0	school	395	non-null	object
1	sex	395	non-null	object
2	age	395	non-null	int64
3	address	395	non-null	object
4	famsize	395	non-null	object
5	Pstatus	395	non-null	object
6	Medu	395	non-null	int64
7	Fedu	395	non-null	int64
8	Mjob	395	non-null	object
9	Fjob	395	non-null	object
10	reason	395	non-null	object
11	guardian	395	non-null	object
12	traveltime	395	non-null	int64
13	studytime	395	non-null	int64
14	failures	395	non-null	int64
15	schoolsup	395	non-null	object
16	famsup	395	non-null	object

```
395 non-null
 17
    paid
                                 object
    activities 395 non-null
                                 object
 18
 19
    nursery
                 395 non-null
                                 object
 20
    higher
                                 object
                 395 non-null
 21 internet
                 395 non-null
                                 object
 22 romantic
                 395 non-null
                                 object
 23
    famrel
                 395 non-null
                                 int64
 24 freetime
                 395 non-null
                                 int64
    goout
 25
                 395 non-null
                                 int64
 26
    Dalc
                 395 non-null
                                 int64
 27
    Walc
                 395 non-null
                                 int64
 28
    health
                 395 non-null
                                 int64
 29
    absences
                 395 non-null
                                 int64
 30
    G1
                 395 non-null
                                 int64
 31 G2
                 395 non-null
                                 int64
 32 G3
                 395 non-null
                                 int64
dtypes: int64(16), object(17)
memory usage: 102.0+ KB
```

student_df.isna().sum()

```
school
              0
              0
sex
              0
age
address
              0
famsize
              0
Pstatus
              0
Medu
              0
              0
Fedu
Mjob
              0
Fjob
              0
reason
              0
guardian
              0
traveltime
              0
studytime
              0
failures
              0
schoolsup
              0
famsup
              0
paid
              0
activities
              0
nursery
higher
              0
              0
internet
romantic
              0
famrel
              0
freetime
              0
              0
goout
Dalc
              0
Walc
              0
health
              0
absences
              0
              0
G1
G2
              0
```

```
catcol = []
numcol = []
for i in student_df.columns:
    if student_df[i].dtype == 'object':
        catcol.append(i)
    else:
        numcol.append(i)

print("categorical columns:", catcol)
print("numerical columns:", numcol)

categorical columns: ['school', 'sex', 'address', 'famsize', 'Pstatus', 'Mjob', 'Fjob', 'reason', 'guardian', 'schoolsup', 'famsup', 'paid', 'activities'
    numerical columns: ['age', 'Medu', 'Fedu', 'traveltime', 'studytime', 'failures', 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'G
```

student_df[catcol].describe().T

_		_
	_	÷
	7	

	count	unique	top	freq
school	395	2	GP	349
sex	395	2	F	208
address	395	2	U	307
famsize	395	2	GT3	281
Pstatus	395	2	Т	354
Mjob	395	5	other	141
Fjob	395	5	other	217
reason	395	4	course	145
guardian	395	3	mother	273
schoolsup	395	2	no	344
famsup	395	2	yes	242
paid	395	2	no	214
activities	395	2	yes	201
nursery	395	2	yes	314
higher	395	2	yes	375
internet	395	2	yes	329
romantic	395	2	no	263

```
for i in catcol:
    print (i)
    print(student_df[i].unique())
    print(student_df[i].value_counts())
    print("\n")
```

```
school
['GP' 'MS']
school
GP 349
MS 46
Name: count, dtype: int64

sex
['F' 'M']
sex
F 208
M 187
```

Name: count, dtype: int64

```
address
     ['U' 'R']
     address
          307
           88
     Name: count, dtype: int64
     famsize
     ['GT3' 'LE3']
     famsize
     GT3
            281
     LE3
            114
     Name: count, dtype: int64
     Pstatus
     ['A' 'T']
     Pstatus
     T 354
           41
     Name: count, dtype: int64
     Mjob
     ['at_home' 'health' 'other' 'services' 'teacher']
     Mjob
     other
                 141
     services
                 103
     at home
                  59
     teacher
                  58
     health
                  34
     Name: count, dtype: int64
     Fjob
     ['teacher' 'other' 'services' 'health' 'at_home']
     Fjob
     other
                 217
     services
                 111
     teacher
                  29
     at_home
                  20
numeric_df = student_df.select_dtypes(include=['number'])
```

numeric_df.head()

→		age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
	0	18	4	4	2	2	0	4	3	4	1	1	3	6	5	6	6
	1	17	1	1	1	2	0	5	3	3	1	1	3	4	5	5	6
	2	15	1	1	1	2	3	4	3	2	2	3	3	10	7	8	10
	3	15	4	2	1	3	0	3	2	2	1	1	5	2	15	14	15
	4	16	3	3	1	2	0	4	3	2	1	2	5	4	6	10	10

sample_df = student_df.iloc[:,1:14]

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.pairplot(sample_df, diag_kind='kde')


```
plt.figure(figsize=(11,8))
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
```


student_df['pass_fail'] = student_df['G3'].apply(lambda x: 1 if x >= 10 else 0)

9 0 0 1 0 2 1 3 1 4 1

print(student_df['pass_fail'])

```
390
     391
            1
     392
     393
           1
     394
     Name: pass_fail, Length: 395, dtype: int64
x = student df.drop(['G3', 'pass fail'], axis=1)
y = student df['pass fail']
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import classification_report, confusion_matrix
x train, x test, y train, y test = train test split(x,y, test size=0.20, random state=42, stratify=y)
print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)
→ (316, 32) (79, 32) (316,) (79,)
cat cols = x train.select dtypes(include='object').columns
print(cat cols)
→ Index(['school', 'sex', 'address', 'famsize', 'Pstatus', 'Mjob', 'Fjob',
            'reason', 'guardian', 'schoolsup', 'famsup', 'paid', 'activities',
            'nursery', 'higher', 'internet', 'romantic'],
           dtype='object')
X train = pd.get dummies(x train, columns=cat cols)
X test = pd.get dummies(x test, columns=cat cols)
X_train, X_test = X_train.align(X_test, join='outer', axis=1, fill_value=0)
print(x train.shape, y train.shape)
print(x test.shape, y test.shape)
→ (316, 32) (316,)
     (79, 32) (79,)
import pandas as pd
scaler = StandardScaler()
x train scaled = pd.DataFrame(scaler.fit transform(X train), columns=X train.columns)
x_test_scaled = pd.DataFrame(scaler.fit_transform(X_test), columns=X_test.columns)
```

```
log = LogisticRegression(class_weight='balanced', max_iter=500)
log.fit(x_train_scaled, y_train)
₹
                       LogisticRegression
                                                          (i) (?)
     LogisticRegression(class_weight='balanced', max_iter=500)
log_train_pred = log.predict(x_train_scaled)
log_pred = log.predict(x_test_scaled)
print("y_test:", y_test.shape)
print("log_pred:", log_pred.shape)
print("y_train:", y_train.shape)
print("log_train_pred:", log_train_pred.shape)
→ y_test: (79,)
     log_pred: (79,)
     y_train: (316,)
     log_train_pred: (316,)
print("y_test class distribution:")
print(y_test.value_counts())
print("log_pred class distribution:")
print(pd.Series(log_pred).value_counts())
 → y_test class distribution:
     pass_fail
     1
          53
          26
     Name: count, dtype: int64
     log pred class distribution:
     1
          48
          31
     Name: count, dtype: int64
print(classification_report(log_train_pred, y_train))
print(confusion_matrix(log_train_pred, y_train))
```

		precision	recall	f1-score	support
	0	0.98	0.92	0.95	111
	1	0.96	0.99	0.97	205
acc	uracy			0.97	316
macr	o avg	0.97	0.95	0.96	316
weighte	d avg	0.97	0.97	0.96	316
[[102	9]				

```
print(classification report(log pred, y test))
print(confusion_matrix(log_pred, y_test))
₹
                   precision
                                recall f1-score
                                                   support
                0
                        0.88
                                  0.74
                                             0.81
                                                         31
                1
                        0.85
                                  0.94
                                             0.89
                                                         48
                                             0.86
                                                         79
         accuracy
                                                         79
        macro avg
                        0.87
                                  0.84
                                             0.85
     weighted avg
                                             0.86
                                                         79
                        0.86
                                   0.86
     [[23 8]
      [ 3 45]]
from sklearn.tree import DecisionTreeClassifier
dt model = DecisionTreeClassifier(criterion='gini')
dt_model.fit(X_train, y_train)
₹
      ▼ DecisionTreeClassifier ① ?
     DecisionTreeClassifier()
var_char_label = ['Yes', 'No']
reg_dt_model = DecisionTreeClassifier(criterion='gini', max_depth=6, min_samples_leaf=20, min_samples_split=22)
reg_dt_model.fit(X_train, y_train)
\overline{2}
                                DecisionTreeClassifier
     DecisionTreeClassifier(max_depth=6, min_samples_leaf=20, min_samples_split=22)
y_predict = dt_model.predict(X_test)
print(classification_report(y_test, y_predict))
₹
                   precision
                                recall f1-score
                                                   support
                0
                        0.74
                                  0.96
                                             0.83
                                                         26
                1
                        0.98
                                  0.83
                                             0.90
                                                         53
                                             0.87
                                                         79
         accuracy
```

[2 203]]

```
macro avg 0.86 0.90 0.87 79 weighted avg 0.90 0.87 0.88 79
```

ytrain_predict = reg_dt_model.predict(X_train)
ytest_predict = reg_dt_model.predict(X_test)

print(classification_report(y_train, ytrain_predict))
print(classification_report(y_test, ytest_predict))

→		precision	recall	f1-score	support
	0 1	0.87 0.97	0.93 0.93	0.90 0.95	104 212
	accuracy macro avg weighted avg	0.92 0.93	0.93 0.93	0.93 0.92 0.93	316 316 316
		precision	recall	f1-score	support
	0	0.74	0.96	0.83	26