Happy Subarrays

Problem

Let us define F(B,L,R) as the sum of a subarray of an array B bounded by indices L and R (both inclusive). Formally, $F(B,L,R)=B_L+B_{L+1}+\cdots+B_R$.

An array C of length K is called a happy array if all the prefix sums of C are non-negative. Formally, the terms $F(C,1,1), F(C,1,2), \ldots, F(C,1,K)$ are all non-negative.

Given an array $\bf A$ of $\bf N$ integers, find the result of adding the sums of all the happy subarrays in the array $\bf A$.

Input

The first line of the input gives the number of test cases, \mathbf{T} . \mathbf{T} test cases follow. Each test case begins with one line consisting an integer \mathbf{N} denoting the number of integers in the input array \mathbf{A} . Then the next line contains \mathbf{N} integers $\mathbf{A_1}, \mathbf{A_2}, \ldots, \mathbf{A_N}$ representing the integers in given input array \mathbf{A} .

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the result of adding the sums of all happy subarrays in the given input array A.

Limits

Time limit: 25 seconds. Memory limit: 1 GB. $1 \le T \le 100$. $-800 \le A_i \le 800$, for all i.

Test Set 1

1 < N < 200.

Test Set 2

For at most 30 cases: $1 \leq \mathbf{N} \leq 4 \times 10^5$. For the remaining cases: $1 \leq \mathbf{N} \leq 200$.

Sample

Sample Input

Sample Output

```
2
5
1 -2 3 -2 4
3
1 0 3
```

```
Case #1: 14
Case #2: 12
```

In Sample Case #1, the happy subarrays are [1], [3], [3, -2], [3, -2, 4], and [4] with their respective sums 1, 3, 1, 5, and 4. After adding the sums obtained, the result is 14.

In Sample Case #2, the happy subarrays are [1], [1,0], [1,0,3], [0], [0,3], and [3] with their respective sums 1,1,4,0,3, and 3. After adding the sums obtained, the result is 12.