Lecture 3

Models and support

Bootstrapping

The bootstrap is non parametric

- Uncertainty in the tree estimate can be inferred indirectly using bootstrap analysis
- "Pulling oneself up by one's bootstraps"

- Bootstrap analysis can be performed when using a range of phylogenetic methods:
 - Maximum parsimony
 - Distance-matrix based methods
 - Maximum likelihood

Bootstrap

CGTTAGTACACT brown bear CGATAGTTCACT cave bear CGTTAGTTTACC Repeat 1000 times black bear CATTGGTTTACT giant panda Pseudoreplicate brown bear brown bear **ATACTGTCCCT** cave bear **ATACTGTCCCA** cave bear black bear **EXCACTGTTCCT** black bear

GTGCTATTCCT

giant panda

giant panda

Bootstrap

ML tree

Bootstrap

ML tree

Interpreting bootstrap values

Felsenstein (1985)

The bootstrap gives us a confidence interval that contains the tree that would be estimated when repeatedly sampling sites from the existing distribution

- Bootstrap values are measures of repeatability
 - High when lots of data are available
 - · Has little meaning when genome-scale data are available

Popular methods in phylogenetics

- 1. Maximum parsimony
- Distance methods
- Maximum likelihood
- 4. Bayesian inference

Statistical methods

Substitution models

DNA substitution models

Rates matrix

Base frequencies

$$\int_{C} \int_{f} \Pi_{A} + \Pi_{C} + \Pi_{G} + \Pi_{T} = 1$$

HKY
a=c=d=f, b=e
$$\pi_A$$
, π_C , π_G , π_T

GTR
a, b, c, d, e, f
$$\pi_A$$
, π_C , π_G , π_T

Medium Slow Fast

Identical among all sites

Proportion of invariable sites (+I models)

Gamma distributed rates across sites (+G models)

 Rates across sites are assumed to follow a gamma distribution and a portion of invariable sites (+G+I models)

DNA substitution models

Rates matrix

Base frequencies

Site rates

$$\begin{array}{c} A & \longleftrightarrow G \\ \stackrel{a}{\longleftrightarrow} C & \stackrel{f}{\longleftrightarrow} T \end{array}$$

$$\pi_A + \pi_C + \pi_G + \pi_T = 1 + I + G$$

HKY
a=c=d=f, b=e
$$\pi_A$$
, π_C , π_G , π_T

GTR G
a, b, c, d, e, f a, l
$$\pi_A$$
, π_C , π_G , π_T π_A ,

GTR+I+G
a, b, c, d, e, f
$$\pi_A$$
, π_C , π_G , π_T
I, G

DNA substitution models

Rates matrix

Base frequencies Site rates

$$A \longleftrightarrow G$$

$$\uparrow \qquad \uparrow$$

$$C \longleftrightarrow T$$

$$\pi_A + \pi_C + \pi_G + \pi_T = 1 \qquad + I + G$$

Number of models

203

15

x = 12,180

In phylogenetics we explore a small portion of these

Proportion of invariable sites

- Often over-estimated in species-level analyses
- Do not distinguish:
 - Sites that are invariable and cannot change
 - Sites that are constant and for stochastic reasons do not have any subtitutions
- Little biological meaning
- Site rates can be adequately described using +G

We use +G models to account for variable rates across sites

Fundamental assumptions

Reversible

Stationary

$$\pi_A + \pi_C + \pi_G + \pi_T = 1$$

CGTTAGTACACT
CGATAGTTCACT
CGTTAGTTTACC
CATTGGTTTACT

Homogeneous

Independent sites

Amino acid substitution matrices

- Matrix has size 20x20
- Too many parameters to estimate
 - GTR model for DNA: 6 parameters
 - GTR model for proteins: 190 parameters
- Transition probabilities come from vast data sets
 - PAM
 - BLOSUM
 - JTT
 - WAG

1. Subjective model selection

- Choosing a model that seems sensible
- Balancing the number of parameters against the amount of data available
- Biological motivation

2. Objective model selection

- Automated using information theory
- Statistical motivation

- Adding parameters always improves model fit
- But adding parameters leads to greater variance in estimates

Is the cost of additional parameters worthwhile?

- Likelihood-ratio test (LRT)
 Used for comparing nested models
- Akaike information criterion (AIC) AIC = -2ln(likelihood) + 2k
- Bayesian information criterion (BIC) BIC = $-2\ln(\text{likelihood}) + k\ln(n)$

Substitution models in practice

- The tree topology is highly robust to the model used for inference
- GTR+G is acceptable for the majority of data sets

Useful references

- Model selection in phylogenetics
 Sullivan & Joyce (2005) Annual Review
 of Ecology, Evolution, and
 Systematics,
 36: 445–466.
- The effects of partitioning on phylogenetic inference
 Kainer & Lanfear (2015) Molecular Biology and Evolution, 32: 1611– 1627.

