Functional Analysis

Kexing Ying

March 13, 2023

Abstract

This note contains parts of the course *Functional Analysis* taught by András Zsák for Part III students at the University of Cambridge. I will omit the initial parts of the course reviewing linear operator theory and numerous Hahn-Banach theorems. I will also omit the proof of the Radon-Nikodym theorem.

Contents

1	The	Dual of L_p and $C(K)$	2
	1.1	Dual of L_p	2
		Dual of <i>C(K)</i>	
		1.2.1 Preliminary definitions	6
		1.2.2 Topological preliminaries	9
		1.2.3 Riesz-Markov representation theorem	11
2	Weak Topology		
	2.1	General weak topology	15
	2.2	Weak topology on vector spaces	16
3	Banach Algebra		
	3.1	Definitions	19
	3.2	Constructions	20
	3.3	Spectrum	23
	3.4	Commutative Banach algebra	26
4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		29
	4.1	Vector-valued integration	29
	4.2	Proof of HFC	30
5	C*-5	algebra	34

1 The Dual of L_p and C(K)

We will always work in the measure space $(\Omega, \mathscr{F}, \mu)$. We recall the Radon-Nikodym theorem and its related results.

Theorem 1 (Hahn decomposition). Given a signed measure $\nu : \mathscr{F} \to \mathbb{R}$, there exists a disjoint partition $A, B \in \mathscr{F}, A \sqcup B = \Omega$ such that for all $S \subseteq A$, $\nu(S) \ge 0$ and for all $S \subseteq B$, $\nu(S) \le 0$.

Corollary 1.1 (Hahn-Jordan decomposition of a signed measure). Given a signed measure ν , there exists unique measures ν^+ , ν^- such that for all $S \in \mathcal{F}$, $\nu(S) = \nu^+(S) - \nu^-(S)$.

Theorem 2 (Radon-Nikodym). Given μ is σ -finite, $\nu : \mathscr{F} \to \mathbb{C}$ is a complex measure such that $\nu \ll \mu$, there exists a unique $f \in L_1(\mu)$ such that for all $S \in \mathscr{F}$,

$$\nu(A) = \int_A f \, \mathrm{d}\mu.$$

Remark. This f is said to be the Radon-Nikodym derivative of ν with respect to μ and we denote it by $d\nu/d\mu$.

Remark. In the case ν is not necessarily absolutely continuous with respect to μ , we can decompose $\nu = \nu_1 + \nu_2$ where ν_1 , ν_2 are complex measures such that $\nu_1 \ll \mu$ and $\nu_2 \perp \mu$ (i.e. there exists some $S \in \mathcal{F}$ such that $\nu_2(S) = 0 = \mu(S^c)$).

1.1 Dual of L_p

Utilizing the Radon-Nikodym theorem, we in this section show that for all $p \in [1, \infty)$, L_p^* is isometrically isomorphic to L_q for p, q Hölder conjugates.

The map we consider is

$$\phi:L_q\to L_p^*:g\mapsto\phi_g$$

where we define $\phi_g(f) := \int f g d\mu$. This map is well defined since $|\phi_g(f)| \le ||g||_q ||f||_p$ and so $||\phi_g|| \le ||g||_q < \infty$. As ϕ is clearly linear, this furthermore shows that ϕ is bounded.

Theorem 3. For $p \in (1, \infty)$, ϕ is a isometric isomorphism between L_q and L_p^* . Furthermore, in the case that μ is σ -finite, the same remains to hold for p = 1.

Proof. We first consider the case $p \in (1, \infty)$ and we show that ϕ is isometric.

Let $g \in L_q$, we have already shown that $\|\phi_g\| \le \|g\|_q$. We now show the converse inequality. Define

$$f = \begin{cases} \frac{|g|^q}{g}, & g \neq 0, \\ 0, & g = 0. \end{cases}$$

It suffices to show $|\phi_g(f)|/||f||_p$ achieves $||g||_q$. Indeed,

$$\int |f^p| \mathrm{d}\mu = \int |g|^{(q-1)p} \mathrm{d}\mu = \int |g|^q \mathrm{d}\mu < \infty$$

and so $f \in L_p$ and $||f||_p^p = ||g||_q^q$. Thus,

$$|\phi_g(f)| = \int |g|^q d\mu = ||g||_q^q = ||f||_p^p,$$

implying

$$\frac{|\phi_g(f)|}{\|f\|_p} = \|f\|_p^{p-1} = \|g\|_q^{\frac{q(p-1)}{p}} = \|g\|_q$$

as claimed.

We now show that ϕ is surjective. We first consider the case that μ is finite.

Fix $\psi \in L_p^*$. Define

$$\nu(A) = \psi(1_A).$$

I claim that ν is a complex measure. Indeed,

- $v(\emptyset) = \psi(0) = 0$, and
- for $(A_n) \subseteq \mathscr{F}$ disjoint,

$$\left| v\left(\bigcup_{n} A_{n}\right) - \sum_{n=1}^{N} v(A_{n}) \right| = \left| \psi\left(1_{\bigcup_{n} A_{n}} - \sum_{n=1}^{N} 1_{A_{n}}\right) \right|$$

$$\leq \left\| \psi \right\| \left\| 1_{\bigcup_{n} A_{n}} - \sum_{n=1}^{N} 1_{A_{n}} \right\|_{p} = \left\| \psi \right\| \mu\left(\bigcup_{n=N}^{\infty} A_{n}\right)^{1/p}$$

which converges to 0 as $N \to \infty$ implying σ -additivity.

Furthermore, it is clear that $v \ll \mu$ and so by the Radon-Nikodym theorem, there exists a unique $g \in L_1(\mu)$ such that for all $S \in \mathcal{F}$,

$$\psi(1_S) = \nu(S) = \int_S g \,\mathrm{d}\mu.$$

Thus, it follows that for any simple function f, $\int f g d\mu = \psi(f)$.

Now approximating $f \in L_{\infty}$ by simple functions $f_n \uparrow f$, we have

$$\psi(f) = \lim_{n \to \infty} \psi(f_n) = \lim_{n \to \infty} \int f_n g \, \mathrm{d}\mu \stackrel{\text{MCT}}{=} \int f \, g \, \mathrm{d}\mu.$$

With this, we would like to conclude by the density of L_{∞} in L_p (this is what requires μ to be finite). However to do so, we need to first check that $g \in L_q$ and so ϕ_g is in fact in L_p^{∞} . Let us check this now:

For $n \in \mathbb{N}$, let $A_n = \{0 < |g| < n\}$ and $f = 1_{A_n} |g|^q / g \in L_{\infty} \subseteq L_p$. Then,

$$\int |g|^{q} d\mu = \int f g d\mu = \psi(f) \le ||\psi|| ||f||_{p} = ||\psi|| \left(\int_{A_{n}} |g|^{q} d\mu \right)^{1/p}.$$

Thus, taking $n \to \infty$, we have by the monotone convergence theorem

$$\|\psi\| \ge \left(\int_{A_n} |g|^q d\mu\right)^{1-1/p} = \|g\|_q$$

and so $g \in L_q$ as required. With this, by the previous remark, we conclude that $\phi_g = \psi$ for μ finite case by leveraging the density of L_{∞} in L_p .

Before proving the general case, let us first introduce the following notations: given $B \in \mathscr{F}$, we denote $\mathscr{F}_B = \{A \in \mathscr{F} \mid A \subseteq B\}$ and $\mu_B = \mu|_B$ so $(\Omega, \mathscr{F}_B, \mu_B)$ is a measure space and $L_p(\mu_B) \subseteq L_p(\mu)$. Furthermore, given $\psi \in L_p(\mu)^*$, we denote $\psi_B = \psi|_{L_p(\mu_B)}$ so $\psi_B \in L_p(\mu_B)^*$ and $\|\psi_B\| \le \|\psi\|$. We note the following claim:

Given $B, C \in \mathscr{F}$ are disjoint, $\|\psi_{B \cup C}\|^q = \|\psi_B\|^q + \|\psi_C\|^q$.

Proof of claim. Let $f \in L_p(\mu_{B \cup C})$. Then,

$$\begin{split} |\psi_{B \cup C}(f)| &= |\psi_B(f|_B) + \psi_C(f|_C)| \\ &\leq |\psi_B(f|_B)| + |\psi_C(f|_C)| \\ &\leq |\|\psi_B\| \|f|_B\|_p + \|\psi_C\| \|f|_C\|_p \\ &\stackrel{\text{H\"older}}{\leq} (\|\psi_B\|^q + \|\psi_C\|^q)^{1/q} (\|f|_B\|_p^p + \|f|_C\|_p^p)^{1/p} \\ &= (\|\psi_B\|^q + \|\psi_C\|^q)^{1/q} \|f\|_p \end{split}$$

implying $\|\psi_{B \cup C}\|^q \le \|\psi_B\|^q + \|\psi_C\|^q$.

On the other hand, for the reverse direction, fix $a, b \ge 0$ such that $a^p + b^q = 1$ and

$$a\|\psi_B\| + b\|\psi_C\| = (\|\psi_B\|^a + \|\psi_C\|^b)^{1/q}.$$

Then, given $f \in L_p(\mu_B)$, $g \in L_p(\mu_C)$, with $||f||_p$, $||g||_p \le 1$, α, β scalars such that $|\alpha| = |\beta| = 1$ and

$$\alpha \psi_B(f) = |\psi_B(f)|$$
 and $\beta \psi_C(g) = |\psi_C(g)|$,

we observe

$$a|\psi_{B}(f)| + b|\psi_{C}(g)| = \psi_{B \cup C}(a\alpha f + b\beta g) \le ||\psi_{B \cup C}|| ||a\alpha f + b\beta g||_{p} \le ||\psi_{B \cup C}||$$

implying $\|\psi_{B\cup C}\|^q \ge \|\psi_B\|^q + \|\psi_C\|^q$ as required.

Let us now consider the case μ is σ -finite. In this case, by definition, there exists a countable measurable partition of Ω : (A_n) such that $\mu(A_n) < \infty$ for all n. So, for $\psi \in L_p(\mu)^*$, we can restrict ψ onto A_n and apply the previous case. Namely, for all n, there exists some $g_n \in L_q(\mu_{A_n})$ such that

$$\psi_{A_n}(f) = \int f g_n d\mu_{A_n} = \int_{A_n} f g_n d\mu.$$

Observe that for all $N \in \mathbb{N}$,

$$\sum_{n=1}^{N} \|g_n\|_q^q = \sum_n^{N} \|\psi_{A_n}\| \stackrel{(*)}{=} \|\psi_{\bigcup_{n=1}^{N} A_n}\| \le \|\psi\| < \infty.$$

where (*) follows by the claim.

So, by defining $g = g_n$ on A_n , we have by the monotone convergence theorem $g \in L_q(\mu)$ and $\phi_g = \psi$ on $L_p(\mu_{A_n})$ for all n. Hence, as $\bigcup L_p(\mu_{A_n})$ has dense linear span, $\psi = \phi_g$ as required.

Finally, for the general case, take $\psi \in L_p(\mu)^*$ and choose (f_n) to be a sequence in $L_p(\mu)$ such that $||f_n|| \le 1$ for all n and

$$\psi(f_n) \to ||\psi|| \text{ as } n \to \infty.$$

Recall that for $f \in L_p(\mu)$,

$${f \neq 0} = \bigcup_{n} {\{|f| > n^{-1}\}}$$

which is σ -finite as by Markov's inequality,

$$\mu(\{|f| > n^{-1}\}) \le n^p ||f||_p^p < \infty$$

for all n. Thus, defining $B = \bigcup_n \{f_n \neq 0\}$, B is σ -finite and by the σ -finite case, there exists some $g \in L_q(\mu_B)$ such that $\phi_g = \psi_B$. Now, by the claim,

$$\|\psi\|^q = \|\psi_B\|^q + \|\psi_{\Omega\setminus B}\|^q$$

while by construction, $\|\psi\|^q = \|\psi_B\|^q$. Thus, $\psi_{\Omega \setminus B} = 0$ and $\psi = \phi_g$.

We now start proving the case $p=\infty$ and μ is σ -finite. We first show ϕ is isometric. Let $g\in L_\infty(\mu)$. We've already shown $\|\phi_g\|\leq \|g\|_\infty$ so it suffices to show the reverse inequality. WLOG. assume that $g\neq 0$ and fix $0< s<\|g\|_\infty$ and define $A=\{|g|>s\}$. Straightaway, we note $\mu(A)>0$ and so, as μ is σ -finite, there exists some $B\subseteq A$, $0<\mu(B)<\infty$. Defining $f=1_B|g|/g$, we have $f\in L_1$ and

$$s \le \int_{B} |g| d\mu = \phi_{g}(f) \le ||\phi_{g}|| ||f||_{1} = ||\phi_{g}|| \mu(B).$$

Hence, $s \le \|\phi_g\|$ and as $s < \|g\|_{\infty}$ was arbitrary, we have $\|\phi_g\| \ge \|g\|_{\infty}$ as required.

For subjectivity, we proceed similarly to the first case. Given $\psi \in L_1^*$, define

$$\nu(A) = \psi(1_A)$$
, for all $A \in \mathcal{F}$.

 ν is a complex measure and by Radon-Nikodym, there exists some $g \in L_1$, $\nu(A) = \int_A g \, d\mu$ for all $A \in \mathcal{F}$. Then, by approximating with simple functions, it is clear that $\psi(f) = \int f g \, d\mu$ for all $f \in L_{\infty}$.

We now show $g \in L_{\infty}$. Fix

$$t > ||\psi||, A = \{|g| > t\}, f = 1_A \frac{|g|}{g}.$$

Then $f \in L_{\infty}$ and thus,

$$t\mu(A) \le \int_A |g| d\mu = \int f g d\mu = \psi(f) \le ||\psi|| ||f||_1 = ||\psi|| \mu(A).$$

However, as $t > ||\psi||$ by definition, we have $\mu(A) = 0$ implying $g \in L_{\infty}$.

So far we've shown $\psi = \phi_g$ on L_∞ . To show $\psi = \phi_g$ on L_1 , we use the fact that $L_\infty \subseteq L_1$ is dense for all *finite* measures μ . As μ is σ -finite, let (A_n) be a measurable partition of Ω of finite measures. Then For all $\psi \in L_1(\mu)^*$, as $\mu_n = \mu|_{A_n}$ is finite, there exists some $g_n \in L_\infty(\mu_n)$ such that

$$\psi_n(f) = \psi|_{A_n}(f) = \int_{A_n} f g_n d\mu_n = \int g_n f d\mu.$$

Now, as ϕ is isometric, $\|g_n\|_{\infty} = \|\psi_n\| \le \|\psi\|$. Hence, taking $g = g_n$ on A_n , $g \in L_{\infty}$ and $\phi_g = \psi$ as required.

Corollary 3.1. For all $1 , <math>L_p(\mu)$ is reflexive.

Proof. The previous theorem provides the isometric isomorphism

$$\phi: L_q \to L_p^*, \langle f, \phi(g) \rangle = \int f g d\mu.$$

Then, its dual (see example sheet 1) $\phi^*:(L_p^*)^*\to L_q^*$ is also an isometric isomorphism. Now, denoting $\psi:L_p\to L_q^*$ the isometric isomorphism from L_p to L_q^* (constructed the same way as ϕ), It suffices to show that $(\phi^*)^{-1}\circ\psi:L_p\to (L_p^*)^*$ is the canonical embedding. Indeed, for all $f\in L_p,g\in L_q$,

$$\langle g, \phi^*(\hat{f}) \rangle = \langle \phi(g), \hat{f} \rangle = \langle f, \phi(g) \rangle = \int f g d\mu = \langle g, \psi(f) \rangle,$$

so $\phi^*(\hat{f}) = \psi(f)$ as claimed.

1.2 Dual of C(K)

1.2.1 Preliminary definitions

For this section, we take K to be a compact Hausdorff space and introduce the following notations:

- $C(K) = \{f : K \to \mathbb{C} \mid f \text{ continuous}\}\$ equipped with the sup-norm;
- $C^{\mathbb{R}}(K) = \{ f : K \to \mathbb{R} \mid f \text{ continuous} \};$
- $C^+(K) = \{ f \in C^{\mathbb{R}}(K) \mid f \ge 0 \};$
- $M(K) = C(K)^*$;
- $M^{\mathbb{R}}(K) = \{ \phi \in M(K) \mid \forall \phi \in C^{\mathbb{R}}(K), \phi(f) \in \mathbb{R} \};$
- $M^+(K) = \{ \phi : C(K) \to \mathbb{C} \mid \phi \text{ linear and } \forall f \in C^+(K), \phi(f) \ge 0 \}.$

We call elements of $M^+(K)$ positive linear functionals.

Lemma 1.1. Given $\phi \in M(K)$, there exists unique $\phi_1, \phi_2 \in M^{\mathbb{R}}(K)$ such that $\phi = \phi_1 + i\phi_2$.

Proof. Uniqueness: We observe for $f \in C^{\mathbb{R}}(K)$, if $\phi = \phi_1 + i\phi_2$,

$$\phi(f) = \phi_1(f) + i\phi_2(f)$$
 and $\overline{\phi(f)} = \phi_1(f) - i\phi_2(f)$.

Thus,

$$\begin{cases} \phi_1(f) = \text{Re}(\phi(f)) = \frac{\phi(f) + \overline{\phi(f)}}{2}, \\ \phi_2(f) = \text{Im}(\phi(f)) = \frac{\phi(f) - \overline{\phi(f)}}{2i}, \end{cases}$$

so ϕ_1 and ϕ_2 are uniquely determined by ϕ on $C^{\mathbb{R}}(K)$ and hence also on $C(K) = C^{\mathbb{R}}(K) + iC^{\mathbb{R}}(K)$.

Existence: This works:

$$\begin{cases} \phi_1(f) = \frac{\phi(f) + \overline{\phi(f)}}{2}, \\ \phi_2(f) = \frac{\phi(f) - \overline{\phi(f)}}{2i}. \end{cases}$$

Lemma 1.2. The map

$$\phi \mapsto \phi|_{C^{\mathbb{R}}(K)} : M^{\mathbb{R}}(K) \to C^{\mathbb{R}}(K)^*$$

is an isometric isomorphism.

Proof. Take $\phi \in M^{\mathbb{R}}(K)$. It is clear that $\|\phi\|_{C^{\mathbb{R}}(K)}\| \leq \|\phi\|$. On the other hand, for $f \in C(K)$, take $\lambda \in S^1 \subseteq \mathbb{C}$ such that $\lambda \phi(f) = |\phi(f)|$. Then,

$$|\phi(f)| = \phi(\lambda f) = \phi(\text{Re}(\lambda f)) + i\phi(\text{Im}(\lambda f)).$$

However, as the left hand side is real, $\phi(\text{Im}(\lambda f)) = 0$ and so

$$|\phi(f)| = \phi(\text{Re}(\lambda f)) \le ||\phi|_{C^{\mathbb{R}(K)}}||||\text{Re}(\lambda f)|| = ||\phi(f)||||f||$$

proving isometry.

To prove subjectivity, take $\psi \in C^{\mathbb{R}}(K)$. Then, defining

$$\phi(f) = \phi(\text{Re}(f)) + i\psi(\text{Im}(f))$$

for all $f \in C(K)$. It is clear $\phi \in M(K)$ and $\phi|_{C^{\mathbb{R}}(K)} = \psi$ as required.

Lemma 1.3. $M^+(K) \subseteq M(K)$ (and in particular are continuous) and

$$M^+(K) = \{ \phi \in M(K) \mid ||\phi|| = \phi(1_K) \}.$$

Proof. Let $\phi \in M^+(K)$ and $f \in C^{\mathbb{R}}(K)$, $||f||_{\infty} \le 1$ so that $1_K \pm f \ge 0$. Then,

$$0 \le \phi(1_K \pm f) = \phi(1_K) \pm \phi(f)$$

implying $\phi(1_K) \ge |\phi(f)|$ and hence $\|\phi\|_{C^{\mathbb{R}}(K)} = \phi(1_K)$. Thus, by the previous lemma, $\phi \in M^{\mathbb{R}}(K)$ with $\|\phi\| = \phi(1_K)$, i.e. we've shown

$$M^+(K) \subseteq \{ \phi \in M(K) \mid ||\phi|| = \phi(1_K) \}$$

Now, suppose $\phi \in M(K)$ is such that $\|\phi\| = \phi(1_K)$, we want to show $\phi \in M^+(K)$. WLOG. assume $\|\phi\| = 1$. Then, taking $f \in C^{\mathbb{R}}(K)$, $\|f\|_{\infty} \leq 1$, let us denote $\phi(f) = a + ib$ for some $a, b \in \mathbb{R}$. Observe, for $t \in \mathbb{R}$,

$$|\phi(f+it1_K)|^2 = |a+(b+t)i|^2 = a^2 + b^2 + 2bt + t^2$$

while on the other hand,

$$|\phi(f+it1_K)|^2 \le ||\phi||^2 ||f+it1_K||^2 \le 1+t^2$$

and so $a^2 + b^2 + 2bt \le 1$ for all t which is only possible if b = 0. Thus, ϕ takes value in \mathbb{R} .

Now taking $f \in C^+(K)$, $||f||_{\infty} \le 1$, we have $0 \le f \le 1_K$ and so

$$-1_{\kappa} \le 1_{\kappa} - 2f \le 1_{\kappa}$$

implying $||1_K - 2f||_{\infty} \le 1$. Hence

$$1 - 2\phi(f) = \phi(1_K - 2f) \le 1$$

implying $\phi(f) \ge 0$ and so $\phi \in M^+(K)$ as claimed.

Lemma 1.4. For all $\phi \in M^{\mathbb{R}}(K)$, there exists unique $\phi^+, \phi^- \in M^+(K)$ such that $\phi = \phi^+ - \phi^-$ and $\|\phi\| = \|\phi^+\| + \|\phi^-\|$.

Proof. Existence: Define ϕ^+ on $C^+(K)$ as follows: for all $f \in C^+(K)$, take

$$\phi^+(f) = \sup \{ \phi(g) \mid g \in C^+(K), g \le f \}.$$

It is clear that $\phi^+(f) \ge \phi(0) = 0$ and $\phi^+(f) \ge \phi(f)$. Furthermore, ϕ^+ is additive since for all $f_1, f_2 \in C^+(K)$, $0 \le g_1 \le f_1$ and $0 \le g_2 \le f_2$, we have

$$\phi^+(f_1+f_2) \ge \phi(g_1+g_2) = \phi(g_1) + \phi(g_2).$$

Hence, taking the supremum over g_1 and g_2 provides

$$\phi^+(f_1+f_2) \ge \phi^+(f_1) + \phi^+(f_2).$$

One the other hance, given $0 \le g \le f_1 + f_2$,

$$\phi(g) = \phi(g \wedge f_1) + \phi(g - (g \wedge f_1)) \le \phi^+(f_1) + \phi^+(f_2)$$

since $g \wedge f_1 \leq f_1$ and $g - (g \wedge f_1) \leq g - f_1 \leq f_2$.

Now, we define ϕ^+ on $C^{\mathbb{R}}(K)$. such that for all $f \in C^{\mathbb{R}}(K)$, by writing $f = f^+ - f^-, f^{\pm} \in C^+(K)$, we take

$$\phi^+(f) = \phi^+(f^+) - \phi^+(f^-).$$

Finally, to define ϕ^+ on C(K), for all $f \in C(K)$, we take

$$\phi^+(f) = \phi^+(f_1) + i\phi^+(f_2)$$

where $f_1, f_2 \in C^{\mathbb{R}}(K)$ are such that $f = f_1 + if_2$.

Of course, now we've defined $\phi^+ \in M^+(K)$, we take $\phi^- = \phi^+ - \phi$. $\phi^- \in M^+(K)$ also, since for all $f \in C^+(K)$,

$$\phi^{-}(f) = \phi^{+}(f) - \phi(f) \ge 0.$$

It remains to show $\|\phi\| = \|\phi^+\| + \|\phi^-\|$. Indeed, by considering

$$\|\phi\| \le \|\phi\|^+ + \|\phi^-\| = \phi^+(1_{\kappa}) + \phi^-(1_{\kappa}) = 2\phi^+(1_{\kappa}) - \phi(1_{\kappa}). \tag{1}$$

On the other hand, for all $0 \le f \le 1_K$, we have

$$-1_K \le 2f - 1_K \le 1_f$$

and so $||2f - 1_K||_{\infty} \le 1$. Hence,

$$2\phi(f) - \phi(1_K) = \phi(2f - 1_K) \le ||\phi||.$$

Thus, taking the supremum over f, the right hand side of equaton (1) is less equal to the operator norm of ϕ implying

$$\|\phi\| = \|\phi\|^+ + \|\phi^-\|$$

as required.

Uniqueness: Suppose $\phi = \psi_1 - \psi_2$ and $\|\phi\| = \|\psi_1\| + \|\psi_2\|$ for some $\psi_1, \psi_2 \in M^+(K)$. Then, for all $0 \le g \le f$,

$$\phi(g) = \psi_1(g) - \psi_2(g) \le \psi_1(g) \le \psi_1(f)$$

implying $\psi_1 \ge \phi^+$ and $\psi_1 - \phi^+ \in M^+(K)$. Thus, we also have $\psi_2 - \phi^- = \psi_1 - \phi^+ \in M^+(K)$. Then,

$$\begin{split} \|\psi_1 - \phi^+\| + \|\psi_2 - \phi^-\| &= \psi_1(1_K) - \phi^+(1_K) + \psi_2(1_K) - \phi^-(1_K) \\ &= (\psi_1(1_K) + \psi_2(1_K)) - (\phi^+(1_K) + \phi^-(1_K)) \\ &= (\|\psi_1\| + \|\psi_2\|) - (\|\phi^+\| + \|\phi^-\|) \\ &= \|\phi\| - \|\phi\| = 0 \end{split}$$

providing uniqueness.

1.2.2 Topological preliminaries

We recall the following facts:

- K is said to be normal if for all disjoint closed subsets $E_1, E_2 \subseteq K$, there exists disjoint open sets $U_1, U_2 \subseteq K$ such that $E_1 \subseteq U_1$ and $E_2 \subseteq U_2$.
 - Equivalently, if $E \subseteq U \subseteq K$ are such that E is closed and U is open, then there exists a open V such that $E \subseteq V \subseteq \overline{V} \subseteq U$.
- *Urysohn's lemma*: Given disjoint closed subsets $E_1, E_2 \subseteq K$, there exists a continuous function $f: K \to [0,1]$ such that f=0 on E_1 and f=1 on E_2 .

Notations: $f \prec U$ denotes the fact that

- *U* is open,
- $f: K \to [0,1]$ is continuous,
- and supp $(f) = \overline{\{x \mid f(x) \neq 0\}} \subseteq U$.

On the other hand, $E \prec f$ denotes

- *E* is closed;
- $f: K \to [0,1]$ is continuous,
- and f = 1 on E.

Using this notation, Urysohn's lemma provides the existence of a f such that $E \prec f \prec U$.

Lemma 1.5. Let $E \subseteq K$ be closed and let $U_j \subseteq K$ be open sets such that $E \subseteq \bigcup_{j=1}^n U_k$. Then,

- there exists open V_j such that $\overline{V_j} \subseteq U_j$ and $E \subseteq \bigcup_{j=1}^n V_j$.
- there exists $f_j \prec U_j$ such that $\sum_{j=1}^n f_j \leq 1$ on K and $\sum_{j=1}^n f_j = 1$ on E.

Proof. For the first part we induct on n.

Since $E \setminus U_n \subseteq \bigcup_{j=1}^{n-1} U_j$ and $E \setminus U_n$ is closed, we can apply the inductive hypothesis to obtain V_j for $j = 1, \dots, n-1$ such that $\overline{V_j} \subseteq U_j$ and $E \setminus U_n \subseteq \bigcup_{j=1}^{n-1} V_j$. Then,

$$E\setminus\bigcup_{j=1}^{n-1}V_j\subseteq U_n,$$

and thus, by the normality of K, there exists some open set V, such that

$$E \setminus \bigcup_{j=1}^{n-1} V_j \subseteq V \subseteq \overline{V} \subseteq U_n.$$

Hence, we have $E \subseteq \bigcup_{j=1}^{n} V_j$ where $\overline{V_j} \subseteq U_j$ for all j.

For the second part, choose V_j as in the first part. Then, by Urysohn's lemma, there exists g_j such that $\overline{V_j} \prec g_j \prec U_j$ and $K \setminus \bigcup V_j \prec g_0 \prec K \setminus E$. So, defining $g = \sum_{j=0}^n g_j$, g is continuous and satisfies $g \geq 1$ on K. Thus, setting $f_j = g_j/g$ for $j = 1, \dots, n$, we have $f_j : K \to [0, 1]$ is continuous and satisfies

$$\sum_{j=1}^{n} f_j = \sum_{j=1}^{n} \frac{g_j}{g} \le 1$$

on K, and by noting $g_0 = 0$ on E,

$$\sum_{j=1}^{n} f_j = \sum_{j=1}^{n} \frac{g_j}{g} = 1$$

on E.

Definition 1.1 (Regular). A Borel measure μ on the Borel space X is said to be regular if

- for all compact $E \subseteq X$, $\mu(E) < \infty$,
- for all $A \in \mathcal{B}(X)$,

$$\mu(A) = \inf{\{\mu(U) \mid A \subseteq U \in \mathscr{G}\}}$$

where \mathcal{G} is the collection of all open sets in X.

• for all $U \in \mathcal{G}$,

$$\mu(U) = \sup{\{\mu(E) \mid E \subseteq U, E \text{ compact}\}}.$$

A compact measure ν is said to be regular if $|\nu|$ is.

Proposition 1.1. If *X* is compact Hausdorff, then TFAE:

- The Borel measure μ is regular;
- $\mu(X) < \infty$ and for all $A \in \mathcal{B}(X)$,

$$\mu(A) = \inf{\{\mu(U) \mid A \subseteq U \in \mathcal{G}\}};$$

• $\mu(X) < \infty$ and for all $A \in \mathcal{B}(X)$,

$$\mu(A) = \sup{\{\mu(E) \mid E \subseteq A, E \text{ closed}\}}.$$

1.2.3 Riesz-Markov representation theorem

If v is a complex Borel measure on K, for any $f \in C(K)$, we have f is Borel-measurable and by observing

$$\int |f| \mathrm{d} |\nu| \le ||f||_{\infty} |\nu|(K) < \infty,$$

f is also v-integrable. Thus, we may define the bounded linear functional

$$\phi: C(K) \to \mathbb{C}: f \mapsto \int f \, \mathrm{d}\nu.$$

 ϕ is clearly linear and it is bounded since

$$|\phi(f)| \le \int |f| \mathrm{d} |\nu| \le ||f||_{\infty} |\nu|(K)$$

so $\phi \in M(K) = C(K)^*$ and $\|\phi\| \le \|\nu\|_1$. If ν is a signed measure, then $\phi \in M^{\mathbb{R}}(K) \simeq C^{\mathbb{R}}(K)^*$ and if ν is a positive measure, then $\phi \in M^+(K)$. It turns out that the converse is also true, namely elements of M(K) can also be represented by complex measures.

Theorem 4 (Riesz-Markov representation). Given $\phi \in M^+(K)$, there exists a unique regular Borel measure μ on K such that for all f μ -integrable, $\phi(f) = \int f d\mu$. Furthermore, $\|\phi\| = \mu(K) = \|\mu\|_1$.

Proof. Uniqueness: Suppose we have two regular Borel measures μ_1, μ_2 both representing ϕ in the sense as above. Then for all $E \subseteq U \subseteq K$ with E closed and U open, by Urysohn's lemma, there exists some $f: K \to [0,1]$ such that $E \prec f \prec U$. Hence,

$$\mu_1(E) \le \int f \, \mathrm{d}\mu_1 = \phi(f) = \int f \, \mathrm{d}\mu_2 \le \mu_2(U).$$

So, as both μ_1 and μ_2 are regular, this implies $\mu_1 \le \mu_2$. By symmetry, we also have $\mu_2 \le \mu_1$ providing the uniqueness.

Existence: We would like to define a measure akin to $\mu(A) = \phi(1_A)$. However, as 1_A is not continuous, we will approximate this construction by defining an outer measure μ^* .

Given $U \in \mathcal{G}$ (recall that \mathcal{G} is the set of all open sets in K), we define

$$\mu^*(U) := \sup \{ \phi(f) \mid f \prec U \}.$$

Observe straightaway that $\mu^*(\emptyset) = 0$ and $\mu^*(K) = \phi(1_K) = ||\phi||$.

We will now show μ^* satisfies sub- σ -additivity. Suppose we have $U \subseteq \bigcup_{k=1}^{\infty} U_k$ for some $U, U_k \in \mathscr{G}$. Then, given $f \prec U$, by compactness, there exists some n such that

$$\operatorname{supp}(f) \subseteq \bigcup_{k=1}^{n} U_{k}.$$

By the partition of unity, for each $k = 1, \dots, n$, there exists some $h_k \prec U_k$ such that $\sum h_k \leq 1$ on K and $\sum h_k = 1$ on supp(f). Thus,

$$\phi(f) = \phi\left(\sum_{k=1}^{n} h_k f\right) = \sum_{k=1}^{n} \phi(h_k f) \le \sum_{k=1}^{n} \mu^*(U_k) \le \sum_{k=1}^{\infty} \mu^*(U_k).$$

Hence, as this inequality holds for all $f \prec U$, we have $\mu^*(U) \leq \sum_{k=1}^{\infty} \mu^*(U_k)$. Furthermore, it follows that given $U, V \in \mathcal{G}$, $U \subseteq V$, we have $\mu^*(U) \leq \mu^*(V)$ and so,

$$\mu^*(U) = \inf\{\mu^*(V) \mid U \subseteq V \in \mathcal{G}\}.$$

With this in mind, we extend μ^* to all of 2^K by defining

$$\mu^*(A) = \inf\{\mu^*(V) \mid A \subseteq V \in \mathcal{G}\}\$$

for any $A \subseteq K$.

Again, it is clear that $\mu^*(\emptyset) = 0$ and $\mu^*(K) = \|\phi\|$. For sub- σ -additivity, let $A \subseteq \bigcup_{k=1}^{\infty} A_n$. Then, for any $\epsilon > 0$, for each n, we may choose $U_n \in \mathscr{G}$ such that $A_n \subseteq U_n$ and

$$\mu^*(U_n) < \mu^*(A_n) + \epsilon 2^{-n}$$
.

Hence, $A \subseteq \bigcup_{k=1}^{\infty} U_k$ and so,

$$\mu^*(A) \leq \mu^*\left(\bigcup_{k=1}^{\infty} U_k\right) \leq \sum_{k=1}^{\infty} \mu^*(U_k) \leq \sum_{k=1}^{\infty} \mu^*(A_k) + \epsilon.$$

Thus, as $\epsilon > 0$ was arbitrary, it follows $\mu^*(A) \leq \sum_{k=1}^\infty \mu^*(A_k)$ and μ^* is an outer measure on K. Now, by Carathéodory extension, μ^* restricts to a measure on the set of sets which are μ^* -measurable. Thus, by showing all open sets of K are μ^* -measurable, we may restrict μ^* on to $\mathscr{B}(K)$ to obtain the desired Borel measure. Take $U \in \mathscr{G}$ and $A \subseteq K$, we need to show

$$\mu^*(A) \ge \mu^*(A \cap U) + \mu^*(A \setminus U).$$

First, let us consider the cas that $A = V \in \mathcal{G}$. Then, taking $f \prec U \cap V$ and $g \prec V \setminus \text{supp}(f)$ so that f, g are disjointedly supported on V, we have $f + g \prec V$ and so,

$$\mu^*(V) \ge \phi(f + g) = \phi(f) + \phi(g).$$

Taking the supremum over *g*, we have

$$\mu^*(V) \ge \phi(f) + \mu^*(V \setminus \text{supp}(f)) \ge \phi(f) + \mu^*(V \setminus U).$$

Now, taking the supremum over f,

$$\mu^*(V) \ge \mu^*(U \cap V) + \mu^*(V \setminus U)$$

as required.

For general A, let $V \in \mathcal{G}$ such that $A \subseteq V$. Then,

$$\mu^*(V) \ge \mu^*(V \cap U) + \mu^*(V \setminus U) \ge \mu^*(A \cap U) + \mu^*(A \setminus U).$$

Hence, taking the infimum over V, it follows

$$\mu^*(A) \ge \mu^*(A \cap U) + \mu^*(A \setminus U)$$

as required.

Thus, $\mu := \mu^*|_{\mathscr{B}}$ is a Borel measure on K and it is regular by construction. It remains to show that μ represents ϕ . It is sufficient to show $\phi(f) \leq \int f \, d\mu$ for all $f \in C^{\mathbb{R}}(K)$ since if this holds, then

$$-\phi(f) = \phi(-f) \le \int -f \,\mathrm{d}\mu = -\int f \,\mathrm{d}\mu$$

providing the reverse inequality.

Let $f \in C^{\mathbb{R}}(K)$ and choose $a < b \in \mathbb{R}$ so that $f(K) \subseteq [a, b]$. WLOG. assume a > 0 and fix $\epsilon > 0$ and choose

$$0 < y_0 < a < y_1 < \dots < y_n = b$$

such that $y_j - y_{j-1} < \epsilon$. Let $A_j := f^{-1}((y_{j-1}, y_j])$ so $K = \bigcup_{j=1}^n$ is a Borel partition of K. For each j, choose $U_j \in \mathcal{G}$ such that $A_j \subseteq U_j \subseteq f^{-1}((y_{j-1}, y_j + \epsilon))$ and

$$\mu(U_j) < \mu(A_j) + \frac{\epsilon}{n}.$$

Then by the partition of unity, there exists $h_j \prec U_j$ such that $\sum_{j=1}^n h_j = 1_K$ so

$$\phi(f) = \sum_{j=1}^{n} \phi(h_{j}f) \leq \sum \phi((y_{j} + \epsilon)h_{j}) = \sum (y_{j} + \epsilon)\phi(h_{j})$$

$$\leq \sum (y_{j} + \epsilon)\mu(U_{j}) \leq \sum (y_{j} + \epsilon)\left(\mu(A_{j}) + \frac{\epsilon}{n}\right)$$

$$= \int \sum y_{j}1_{A_{j}}d\mu + 2\epsilon\mu(K) + (b + 2\epsilon)\epsilon$$

$$\leq \int f d\mu + C\epsilon.$$

Hence, as ϵ was arbitrary, $\phi(f) \leq \int f d\mu$ are required.

Corollary 4.1. For all $\phi \in M(K)$, there exists a unique regular Borel complex measure ν such that for all $f \in C(K)$, $\phi(f) = \int f \, d\nu$ and $\|\phi\| = \|\nu\|_1$. Furthermore, if $\phi \in M^{\mathbb{R}}(K)$, then ν is a signed measure.

Proof. Existence follows by Jordan decomposition while uniqueness follows from $\|\phi\| = \|\nu\|_1$. We will show $\|\phi\| = \|\nu\|_1$. We've seen that $\|\phi\| \le \|\nu\|_1$ so it remains to show the reverse. Recall that

$$\|\nu\| = |\nu|(K) = \sup \left\{ \sum_{j=1}^{n} |\nu(A_j)| \mid (A_j)_{j=1}^n \text{ is a Borel partition of } K \right\}.$$

So, taking (A_i) a Borel partition of K, for each j let us choose E_i closed such that $E_i \subseteq A_i$ and

$$|\nu|(A_j\setminus E_j)<\frac{\epsilon}{n}$$

which exists by regularity. Noting that $E_j \subseteq K \setminus \bigcup_{i \neq j} E_i$ which is open, there exists some open U_j such that $E_j \subseteq U_j \subseteq K \setminus \bigcup_{i \neq j} E_i$ and

$$|v|(U_j\setminus E_j)<\frac{\epsilon}{n}.$$

Then, $E:=\bigcup_{j=1}^n E_j\subseteq \bigcup_{j=1}^n U_j$ and by the partition of unity, there exists $h_j\prec U_j$ such that $\sum h_j\leq 1$ on K and $\sum h_j=1$ on E. Now, as E_j are disjoint, $h_j=1$ on E_j . Thus, choosing $\lambda_j\in\mathbb{C}$, $|\lambda|=1$ such that $|\nu|(E_j)=\lambda_j\nu(E_j)$, we have

$$\begin{split} \left| \sum |\nu(E_j)| - \phi \left(\sum \lambda h_j \right) \right| &= \left| \sum \lambda_j \int (1_{E_j} - h_j) \mathrm{d} \nu \right| \\ &\leq \sum \int |1_{E_j} - h_j| \mathrm{d} \nu \leq \sum |\nu| (U_j \setminus E_j) < \epsilon. \end{split}$$

Hence,

$$\begin{split} \sum |\nu(A_j)| &\leq \sum |\nu(E_j)| + \epsilon \\ &\leq \left|\phi\left(\sum \lambda_j 1_{E_j}\right)\right| \leq \|\phi\| \left\|\sum \lambda_j h_j\right\|_{\infty} + 2\epsilon \leq \|\phi\| + 2\epsilon, \end{split}$$

implying $||v||_1 = ||\phi||$ as required.

Corollary 4.2. The space of regular complex Borel measures is a complex Banach space with the total variation norm and it is isometrically isomorphic to $M(K) = C(K)^*$.

2 Weak Topology

2.1 General weak topology

Let X be a set and \mathscr{F} be a collection of functions such that for each $f \in \mathscr{F}$, $f: X \to Y_f$ where Y_f is a topological space. Then the weak topology $\sigma(X,\mathscr{F})$ is the smallest topological space such that for all $f \in \mathscr{F}$, f is continuous. We have the following straight forward properties about the weak topology.

Proposition 2.1. Taking X, \mathcal{F} as above,

- $S := \{f^{-1}(U) \mid f \in \mathcal{F}, U \text{ open in } Y_f\} \text{ generates } \sigma(X, \mathcal{F}).$
- $V \subseteq X$ is open in $\sigma(X, \mathscr{F})$ iff for all $x \in V$, there exists $f_1, \dots, f_n \in \mathscr{F}$ and open sets U_1, \dots, U_n such that $U_i \subseteq Y_{f_i}$ and

$$x \in \bigcap_{j=1}^n f_j^{-1}(U_j) \subseteq V.$$

- If S_f generates the topology of Y_f for all $f \in \mathcal{F}$, then $\{f^{-1}(U) \mid U \in S_f, f \in \mathcal{F}\}$ generates $\sigma(X, \mathcal{F})$.
- If Y_f is Hausdorff for all $f \in \mathscr{F}$ and \mathscr{F} separates points, then, so is $\sigma(X, \mathscr{F})$ Hausdorff.
- If $Y \subseteq X$, then $\sigma(X, \mathcal{F})|_Y = \sigma(Y, \mathcal{F}|_Y)$.
- (universal property) Given Z a topological space and $g: Z \to X$, then g is continuous with respect to $\sigma(X, \mathcal{F})$ iff for all $f \in \mathcal{F}$, $f \circ g: Z \to Y_f$ is continuous.

The weak topology generalizes the subspace topology by considering $\sigma(Y, \{\iota\})$ for $\iota: Y \hookrightarrow X$ the inclusion map and the product topology which has the topology

$$\sigma\left(\prod_{\gamma\in\Gamma}X_{\gamma}, \{\pi_{\gamma}\mid \gamma\in\Gamma\}\right),\,$$

where $\pi_{\gamma}: \prod_{\gamma \in \Gamma} X_{\gamma} \to X_{\gamma}$ is the projection map.

Proposition 2.2. Let X be a set and for each $n \in \mathbb{N}$, let (Y_n, d_n) be metric spaces. Then, if $\mathscr{F} := \{f_n : X \to Y_n \mid n \in \mathbb{N}\}$ separates points, then $\sigma(X, \mathscr{F})$ is metrizable.

Proof. WLOG. by replacing d_n by $d_n \wedge 1$ which is equivalent, we may assume that $d_n \leq 1$. Then, it is easy to check that

$$d(x,y) := \sum_{n=1}^{\infty} 2^{-n} d_n(f_n(x), f_n(y)),$$

form a metric on X.

By noting that any f_n in the above proposition is Lipschitz with respect to the topology generated by d, f_n is \mathscr{T}_d -continuous and so $\sigma(X,\mathscr{F}) \subseteq \mathscr{T}_d$. Conversely, as each f_n is $\sigma(X,\mathscr{F})$ -continuous, the map

$$(x, y) \mapsto d_n(f_n(x), f_n(y))$$

is also $\sigma(X, \mathcal{F})$ -continuous. Hence, by the Weierstass-M-test, it follows d is also $\sigma(X, \mathcal{F})$ -continuous implying

$$\mathcal{T}_d = \sigma(X, \mathcal{F})$$

П

as required.

Theorem 5 (Tychonov). The product of compact spaces is compact in the product topology.

Proof. Let Γ be the index set and for each $\gamma \in \Gamma$, let X_{γ} be a compact space and denote $X = \prod_{\gamma \in \Gamma} X_{\gamma}$. We will show X is compact by showing: for any non-empty family of closed sets \mathscr{A} with the finite intersection property (fip.), that is, for all $A_1, \dots, A_n \in \mathscr{A}$, we have $\bigcap_{i=1}^n A_i \neq \emptyset$, then $\bigcap_{A \in \mathscr{A}} A \neq \emptyset$.

By Zorn's lemma, there exists a maximal family \mathcal{B} of (not necessarily closed) subsets of X with fip. and satisfies $\mathcal{A} \subseteq \mathcal{B}$. Then,

$$\bigcap_{A \in \mathcal{A}} A \supseteq \bigcap_{B \in \mathcal{B}} B$$

and so, it suffices to show $\bigcap_{B \in \mathcal{B}} B \neq \emptyset$.

By the maximality of \mathscr{B} , we observe that if $A \subseteq X$ satisfies $A \cap B \neq \emptyset$ for all $B \in \mathscr{B}$, then $A \in B$. Fix $\gamma \in \Gamma$, $\{\pi_{\gamma}(B) \mid B \in \mathscr{B}\}$ has fip. and hence, as X_{γ} is compact, it follows $\bigcap_{B \in \mathscr{B}} \overline{\pi_{\gamma}^{-1}(B)} \neq \emptyset$. Choose $x_{\gamma} \in \bigcap_{B \in \mathscr{B}} \overline{\pi_{\gamma}^{-1}(B)}$, we will show $x = (x_{\gamma})_{\gamma \in \Gamma} \in \bigcap_{B \in \mathscr{B}} \overline{B}$. Let V be an open neighborhood of X, we need to show $V \cap B \neq \emptyset$ for all $B \in \mathscr{B}$. WLOG. write

$$V = \bigcap_{i=1}^n \pi_{\gamma_i}^{-1}(U_i)$$

for some $\gamma_1, \dots, \gamma_n \in \Gamma$ and U_1, \dots, U_n open neighborhoods of x_{γ_i} .

Since $x_{\gamma_i} \in \bigcap_{B \in \mathscr{B}} \pi_{\gamma_i}^{-1}(B)$, we have $U_{\gamma_i} \cap \pi_{\gamma_i}(B) \neq \emptyset$ for all $B \in \mathscr{B}$. Thus, by maximality, we have $\pi_{\gamma_i}^{-1}(U_i) \in \mathscr{B}$ and so

$$V = \bigcap_{i=1}^{n} \pi_{\gamma_i}^{-1}(U_i) \in \mathscr{B}$$

implying $V \cap B \neq \emptyset$ for all $B \in \mathcal{B}$. Hence, as V was chosen arbitrarily, $x \in B$ for all $B \in \mathcal{B}$ as required.

2.2 Weak topology on vector spaces

Let *E* be a real or complex vector space and *F* a subspace of the space of all linear functionals on *E* that separates points of *E*. We will in this section consider $\sigma(E, F)$. We recall that $U \subseteq E$ is weakly open iff for all $x \in U$, there exists $f_1, \dots, f_n \in F$, $\epsilon > 0$ such that

$$\{y \in E \mid |f_i(y-x)| < \epsilon, i = 1, \dots, n\} \subseteq U.$$

For $f \in F$, define $p_f : E \to \mathbb{R}$ by $p_f(x) = |f(x)|$. Then,

$$\mathscr{P} := \{ p_f \mid f \in F \}$$

is a family of semi-norms which separates points of E. Thus, the weak topology on E generated by F is the same as the LCS topology generated by \mathcal{P} .

Lemma 2.1. Let *E* be a real or complex vector space and f, g_1, \dots, g_n linear functionals on *E* such that

$$\bigcap_{i=1}^{n} \ker g_i \subseteq \ker f_i.$$

Then, $f \in \langle g_1, \cdots, g_n \rangle$.

Proof. Define $T: E \to \mathbb{F}^n$ by $Tx = (g_i(x))_{i=1}^n$. Then, $\ker T \subseteq \ker f$. Thus, there exists some linear $h: \operatorname{Im}(T) \to \mathbb{F}$ such that $f = h \circ T$. Thus, by Hahn-Banach, extending h to $\mathbb{F}^n \to \mathbb{F}$, we can write $h(y) = \sum_{i=1}^n a_i y_i$ for all $y = (y_i)_{i=1}^n \in \mathbb{R}^n$. Hence, for all $x \in E$,

$$f(x) = h(Tx) = \sum_{i=1}^{n} a_i g_i(x),$$

implying $f \in \langle g_1, \dots, g_n \rangle$ as required.

Proposition 2.3. Let E, F as above. A linear functional f on E is weakly continuous iff $f \in F$. Namely, $(E, \sigma(E, F))^* = F$.

Proof. The converse is true by definition. For the other direction, let f be a weakly continuous linear functional. Then, $V := f^{-1}(B_1(0))$ is an open neighborhood of 0 in $(E, \sigma(E, F))$. Thus, there exists $g_1, \dots, g_n \in F$ and $\epsilon > 0$ such that

$$U := \{x \in E \mid |g_i(x)| < \epsilon, i = 1, \dots, n\} \subseteq V.$$

Then, for all $x \in \bigcap_{i=1}^n \ker g_i$, for all $\lambda \in \mathbb{F}$ such that $\lambda x \in U \subseteq V$ and so, $|f(\lambda x)| = |\lambda||f(x)| < 1$ implying $x \in \ker f$. Thus, by the previous lemma $f \in \langle g_1, \cdots, g_n \rangle$ and so $f \in F$.

If X is a normed space, the weak topology on X is $w := \sigma(X, X^*)$. By Hahn-Banach, X^* separates points of X and so the weak topology is Hausdorff. As before, a subset $U \subseteq X$ is weakly open iff for all $X \in U$, there exists $f_1, \dots, f_n \in X^*$ and $\epsilon > 0$ such that

$$\{y \in X \mid |f_i(y-x)| < \epsilon, i = 1, \dots, n\} \subseteq U.$$

Now, by identifying X in $(X^*)^*$ by the canonical embedding, we define the weak-* topology on X^* by $w^* := \sigma(X^*, X)$. A subset $U \subseteq X^*$ is weak-* open iff for all $f \in U$, there exists $x_1, \dots, x_n \in X$ and $\epsilon > 0$ such that

$$\{g \in X^* \mid |g(x_i) - f(x_i)| < \epsilon, i = 1, \dots, n\} \subseteq U.$$

Proposition 2.4. (X, w), (X^*, w^*) are locally convex spaces. In particular, they are Hausdorff and their vector space operations are continuous. Furthermore,

- $w \subseteq ||\cdot||$ topology with equality iff X is finite dimensional.
- $w^* \subseteq \sigma(X^*, (X^*)^*) \subseteq ||\cdot||$ topology with the first inclusion becoming an equality iff X is reflexive and the second inclusion becoming an equality iff X is finite dimensional.
- if $Y \leq X$, then

$$\sigma(X, X^*)|_{Y} = \sigma(Y, \{f|_{Y} \mid f \in X^*\}) = \sigma(Y, Y^*)$$

where the last equality follows by Hahn-Banach.

• The canonical embedding $X \to (X^*)^*$ is a w-to-w* homeomorphism between X and \hat{X} .

Proposition 2.5. Let *X* be a normed space. Then,

- a linear functional f on X is weakly continuous iff $f \in X^*$.
- a linear functional ϕ on X^* is weak-* continuous iff $\phi \in \hat{X}$.
- $\sigma(X^*, X) = \sigma(X^*, (X^*)^*)$ iff X is reflexive.

Proof. The only slightly non-trivial part is the forward direction of the third statement. But this is also straight forward. Let $\phi \in (X^*)^*$, we need to show $\phi \in \hat{X}$. Since $\sigma(X^*,X) = \sigma(X^*,(X^*)^*)$, f is weak-* continuous and the result follows by the second claim.

Definition 2.1. Let *X* be a normed space, $A \subseteq X$ is said to be weakly bounded if $\{f(x) \mid x \in A\}$ is bounded for all $f \in X^*$.

Clearly, as all $f \in X^*$ are bounded, bounded in $\|\cdot\|$ implies weakly bounded.

We recall the principle of uniformly boundedness (PUB).

Theorem 6. Let X be a Banach space, Y a normed space and $\mathcal{T} \subseteq \mathcal{B}(X,Y)$. Then, if \mathcal{T} is point-wise bounded, i.e.

$$\sup_{T\in\mathscr{T}}\|Tx\|<\infty,$$

then $\sup_{T \in \mathcal{T}} ||T|| < \infty$.

Proposition 2.6. If *X* is a normed space,

- if $A \subseteq X$ is weakly bounded, then A is $\|\cdot\|$ -bounded.
- if *X* is in addition complete, then if $B \subseteq X^*$ is w*-bounded, then *B* is $\|\cdot\|$ -bounded.

Proof. Firstly, defining $\hat{A} = \{\hat{x} \mid x \in A\}$, as A is weakly bounded, for all $f \in X^*$,

$$\sup_{\hat{x}\in\hat{X}}\|\hat{x}(f)\|=\sup_{x\in A}\|f(x)\|<\infty.$$

Thus, by PUB (note that we are using the fact $(X^*)^*$ is complete), $\sup_{x \in A} ||x|| = \sup_{\hat{x} \in \hat{A}} ||\hat{x}|| < \infty$ as required.

On the other hand, if X i complete and $B \subseteq X^*$ is w^* -bounded, then we may directly apply PUB to obtain the bound in $\|\cdot\|$ as required.

3 Banach Algebra

3.1 Definitions

Definition 3.1 (Algebra). A real or complex algebra is a real or resp. complex vector space A with a multiplication

$$A \times A \rightarrow A : (a, b) \mapsto ab$$

such that

- (ab)c = a(bc),
- a(b+c) = ab + ac,
- (a+b)c = ac + bc,
- for all $\lambda \in \mathbb{R}$ or resp. \mathbb{C} , $\lambda(ab) = (\lambda a)b = a(\lambda b)$.

Definition 3.2 (Unital). An algebra is said to be *unital* if there exists a $1 \neq 0 \in A$ such that for all $a \in A$,

$$a1 = 1a = a$$
.

Such an element is unique and is called the unit of *A*.

Definition 3.3 (Algebra norm). An algebra norm on an algebra *A* is a vector norm $\|\cdot\|$ such that for all $a, b \in A$,

$$||ab|| \le ||a|| ||b||$$
.

This property implies that multiplication is continuous wrt. the topology induced by the norm.

Definition 3.4 (Normed algebra). A normed algebra is an algebra with an algebra norm.

Definition 3.5 (Banach algebra). A Banach algebra is a complete normed algebra.

Definition 3.6 (Unital normed algebra). A unital normed algebra is a unital algebra with a algebra norm such that ||1|| = 1.

If *A* is a unital algebra with an algebra norm $\|\cdot\|$, then defining another norm

$$||a||' := \sup\{||ab|| \mid ||b|| \le 1\}.$$

 $\|\cdot\|$ and $\|\cdot\|'$ are equivalent and $\|1\|'=1$. Thus, we can always make a unital algebra with an algebra norm into a unital normed algebra with the same topology.

Definition 3.7 (Algebra homomorphism). Let A, B be algebras. A homomorphism from A to B is a linear map $\theta: A \to B$ such that

$$\theta(xy) = \theta(x)\theta(y)$$

for all $x, y \in A$. If A, B are in addition unital, then we also require $\theta(1_A) = 1_B$.

If θ is bijective, then we say it is an isomorphism.

We note that for *A*, *B* normed algebras, a homomorphism is *not* assumed to be continuous while isomorphism is assumed to be continuous with a continuous inverse.

As our focus is on spectral theory, from this point forward, we will assume the scalar field is \mathbb{C} .

Example 3.1. Let K be a compact Hausdorff space. Then C(K) is a commutative unital Banach algebra under pointwise multiplication.

Furthermore, a uniform algebra on K is a closed subalgebra of C(K) which separates points of K and contain the constant functions. In the real case, Stone-Weierstrass implies that it must be all of C(K). In our case however (with complex scalar field), Stone-Weierstrass in addition requires the subalgebra to be closed under conjugation.

An example of this is

$$A(\Delta) = \{ f \in C(\Delta) \mid f \text{ holomorphic on } \Delta^{\circ} \}$$

where $\Delta = \{z \in \mathbb{C} \mid |z| \le 1\}.$

More generally, let $K \subseteq \mathbb{C}$ be a non-empty compact subset. Then, we have the following uniform algebras on K:

$$\mathscr{P}(K) \subseteq \mathscr{R}(K) \subseteq \mathscr{O}(K) \subseteq A(K) \subseteq C(K)$$
,

where $\mathscr{P}(K)$, $\mathscr{R}(K)$, $\mathscr{O}(K)$ are the closures of resp. polynomials, rational functions without poles in K and holomorphic functions on some open neighborhood of K. We shall see later that $\mathscr{R}(K) = \mathscr{O}(K)$ (always) and

$$\mathscr{P}(K) = \mathscr{R}(K) \iff \mathbb{C} \setminus K$$
 is connected.

On the other han, $\mathcal{R}(K) \neq A(K)$ and

$$A(K) = C(K) \iff K^{\circ} = \emptyset.$$

Example 3.2. $L_1(\mathbb{R})$ with the L_1 -norm and convolution as multiplication is a commutative Banach algebra without a unit (Riemann-Lebesgue lemma).

Example 3.3. Let X be a Banach space. Then $\mathcal{B}(X)$ (bounded linear operators from X to itself) with the operator norm and composition as multiplication is a unital Banach algebra. It is not commutative if $\dim X \geq 2$.

In the special case that X is a Hilbert space, then $\mathcal{B}(X)$ is what is known as a C^* -algebra.

3.2 Constructions

Subalgebra: Let *A* be an algebra and *B* a subalgebra of *A*. If *A* is unital with unit 1, then *B* is unital if $1 \in B$. If *A* is a normed algebra, then \overline{B} is also a subalgebra.

Unitization: If *A* is a normed algebra. The unitization of *A* is the vector space $A_+ = A \oplus \mathbb{C}$ with multiplication

$$(a, \lambda)(b, \mu) = (ab + \lambda a + b\mu, \lambda \mu).$$

Then, A_+ is a unital algebra with the unit (0,1). The set $\{(a,0) \mid a \in A\}$ is an ideal of A_+ and is isomorphic as an algebra to A. We write

$$A_+ = \{a + \lambda 1 \mid a \in A, \lambda \in \mathbb{C}\}.$$

If A is a normed algebra, then so is A_+ with the norm

$$||a + \lambda 1|| = ||a|| + |\lambda|$$

and in this case, A is a closed ideal of A_+ . Furthermore, if A is a Banach algebra, so is A_+ .

Ideals: Let *A* be a normed algebra. If $J \subseteq A$, then also $\overline{J} \subseteq A$. If *J* is a closed ideal of *A*, then we can define A/J which is a normed algebra with the quotient norm.

If *A* is in addition unital, and *J* is a proper ideal, then A/J is a unital normed algebra with the unit 1+J.

Completion: Let *A* be a normed algebra and \tilde{A} be its completion. For $a, b \in \tilde{A}$, by construction, we may choose sequences $(a_n), (b_n) \subseteq A$ such that $a_n \to a$ and $b_n \to b$. Then, defining

$$ab = \lim_{n \to \infty} a_n b_n$$

where the right hand side exists and it's Cauchy, \tilde{A} is a Banach algebra which contains A as a dense subalgebra.

Operator algebra: Let *A* be a unital Banach algebra. For each $a \in A$, we define

$$L_a: A \rightarrow A: x \mapsto ax$$
.

 L_a is clearly linear, and is bounded as $||ax|| \le ||a|| ||x||$. The map $a \mapsto L_a : A \to \mathcal{B}(A)$ is an isometric homomorphism. Thus, every Banach algebra is a closed subalgebra of $\mathcal{B}(X)$ for some X.

Lemma 3.1. Let *A* be a unital Banach algebra and let $a \in A$. Then, *a* is invertible if ||a-1|| < 1. Furthermore,

$$||a^{-1}|| \le \frac{1}{1 - ||1 - a||}.$$

Proof. Let h=1-a so a=1-h, ||h||<1 and $||h^n||\leq ||h||^n$. Thus, $\sum_{n=0}^{\infty} ||h^n||$ converges in $\mathbb R$ and so $b:=\sum_{n=0}^{\infty} h^n$ converges in A (as A is a Banach space). With this in mind, we observe

$$ab = (1-h)\sum_{n=0}^{\infty} h^n = \sum h^n - \sum h^{n+1} = 1.$$

Similarly ba = 1 so a is invertible. Moreover,

$$||a^{-1}|| \le \sum_{n=0}^{\infty} ||h||^n = \frac{1}{1 - ||h||} = \frac{1}{1 - ||1 - a||}$$

as required.

We introduce the notation

$$G(A) = \{a \in A \mid a \text{ invertible}\}.$$

Corollary 6.1. Let *A* be a unital Banach algebra, then

- 1. G(A) is open.
- 2. $x \mapsto x^{-1} : G(A) \to G(A)$ is continuous.
- 3. If $(x_n) \subseteq G(A)$ converges to $x \notin G(A)$, then $||x_n^{-1}|| \to \infty$.

4. If $x \in \partial G(A)$, then there exists a sequence (z_n) with $||z_n|| = 1$ for all n such that

$$z_n x \to 0$$
 and $x z_n \to 0$.

It follows that *x* has no left or right inverse (even in any unital Banach algebra containing *A* isometrically).

Proof.

1. Let $x \in G(A)$, $y \in A$. If $||y - x|| < ||x^{-1}||^{-1}$, then

$$||1 - x^{-1}y|| = ||x^{-1}(x - y)|| \le ||x^{-1}|| ||x - y|| < 1$$

and so, $x^{-1}y \in G(A)$ and hence also $y \in G(A)$.

2. Fix $x, y \in G(A)$, then

$$||y^{-1} - x^{-1}|| = ||y^{-1}(x - y)x^{-1}|| \le ||y^{-1}|| ||x^{-1}|| ||x - y||.$$

Then, if $||x - y|| < (2||x^{-1}||)^{-1}$, we have

$$||y^{-1}|| - ||x^{-1}|| \le ||y^{-1} - x^{-1}|| \le \frac{1}{2}||y^{-1}||$$

implying $||y^{-1}|| \le 2||x^{-1}||$. Thus,

$$||y^{-1} - x^{-1}|| \le ||y^{-1}|| ||x^{-1}|| ||x - y|| \le 2||x^{-1}||^2 ||x - y||$$

which converges to 0 as $y \rightarrow x$.

- 3. From 1, for all $y \in A$ and $||y x_n|| < ||x_n^{-1}||^{-1}$, we have $y \in G(A)$. Hence, $||x_n x|| \ge ||x_n^{-1}||^{-1}$ implying $||x_n^{-1}|| \to \infty$ as claimed.
- 4. Choose (x_n) in G(A) such that $x_n \to x$. Then, defining

$$z_n := \frac{x_n^{-1}}{\|x_n^{-1}\|},$$

we have $||z_n|| = 1$ and

$$||z_n x|| = ||z_n x + z_n (x - x_n)|| \le \frac{1}{||x_n^{-1}||} + ||z_n|| ||x - x_n||.$$

Now, as $\|x_n^{-1}\|^{-1}$ converges to 0 by 3, the right hand side converges to 0 as $n\to\infty$ allowing us to conclude.

3.3 Spectrum

Definition 3.8 (Spectrum). Let *A* be an algebra and let $x \in A$. We define the spectrum $\sigma_A(x)$ of x to be

$$\sigma_A(x) := \{ \lambda \in \mathbb{C} \mid \lambda 1 - x \notin G(A) \}$$

if A is unital and

$$\sigma_A(x) := \sigma_{A_+}(x)$$

if *A* is not unital.

Example 3.4. If $A = M_n(\mathbb{C})$, then $\sigma_A(x)$ is the set of eigenvalues of x.

Example 3.5. If A = C(K) for a compact Hausdorff K, $f \in A$, then $\sigma_A(f) = f(K)$ since $g \in A$ is invertible if and only if $0 \notin g(K)$.

Example 3.6. If *X* is a Banach space, $A = \mathcal{B}(X)$, $T \in A$. Then,

$$\sigma_A(T) = \{\lambda \in \mathbb{C} \mid \lambda \mathrm{id} - T \text{ is not an isomorphism}\}.$$

Theorem 7. Let *A* be a Banach algebra and $x \in A$. Then $\sigma_A(x)$ is non-empty compact subset of $\{\lambda \in \mathbb{C} \mid |\lambda| \leq ||x||\}$.

Proof. By unitization, we may assume A is unital. Consider that the map

$$\lambda \mapsto \lambda 1 - x : \mathbb{C} \to A$$

is continuous and $\sigma_A(x)$ is the inverse image of $A \setminus G(A)$ under this map, $\sigma_A(x)$ must be closed. Now, if $|\lambda| > ||x||$, then $||x/\lambda|| < 1$ and so by the previous theorem, $1 - x/\lambda \in G(A)$. Thus, as $\lambda \neq 0$, $\lambda(1 - x/\lambda) = \lambda 1 - x \in G(A)$ and hence, $\lambda \notin \sigma_A(x)$. As we've shown that $\sigma_A(x) \subseteq \mathbb{C}$ is closed and bounded, it is thusly compact.

Finally, we will show it is non-empty. Suppose otherwise, then we can define the (resolvent) map

$$R: \mathbb{C} \to G(A): \lambda \mapsto (\lambda 1 - x)^{-1}$$

which in particular is holomorphic since

$$R(\lambda) - R(\mu) = R(\lambda)((\mu 1 - x) - (\lambda 1 - x))R(\mu) = (\mu - \lambda)R(\lambda) - R(\mu).$$

Thus,

$$\frac{R(\lambda) - R(\mu)}{\lambda - \mu} = -R(\lambda)R(\mu) \to -R(\mu)^2$$

as $\lambda \to \mu$ since *R* is continuous.

Now, for $|\lambda| > ||x||$, $R(\lambda) = \lambda^{-1}(1 - x/\lambda)^{-1}$ and so,

$$||R(\lambda)|| \le \frac{1}{|\lambda|} \frac{1}{1 - ||x/\lambda||} = \frac{1}{|\lambda| - ||x||}$$

which converges to 0 as $|\lambda| \to \infty$. Hence, R = 0 by the vector valued Liouville's theorem which is a contradiction.

Corollary 7.1 (Gelfand-Mazur). A complex unital normed division algebra (i.e. $G(A) = A \setminus \{0\}$) is isometrically isomorphic to C.

Proof. The map we want is

$$\theta: \mathbb{C} \to A: \lambda \mapsto \lambda 1.$$

It is clear that θ is an isometric homomorphism.

For surjectivity, let B be a completion of A, so B is a unital Banach algebra. Given $x \in A$, by the previous theorem $\sigma_B(x)$ is non-empty and so we may choose $\lambda \in \sigma_B(x)$. Then, $\lambda 1 - x \notin G(B)$ and so $\lambda 1 - x \notin G(A)$. However, as A is a division algebra, this means $\lambda 1 - x = 0$ and so $\theta(\lambda) = x$ as required.

Definition 3.9 (Spectral radius). Let *A* be a Banach algebra and $x \in A$. The spectral radius of *x* is defined to be

$$r_A(x) := \sup\{|\lambda| \mid \lambda \in \sigma_A(x)\} \le ||x||.$$

Lemma 3.2. If *A* is a unital algebra, $x, y \in A$ and xy = yx, then $x, y \in G(A)$ if and only if $xy \in G(A)$.

Proof. Let
$$b = (xy)^{-1}$$
, then, $(by)x = b(yx) = b(xy) = 1 = (xy)b = x(yb)$.

Lemma 3.3 (Polynomial spectral mapping theorem). Let *A* be a unital Banach algebra and let $x \in A$. Then, for any complex polynomial $p(x) = \sum_{k=0}^{n} a_k z^k$, we have

$$\sigma_A(p(x)) = \{p(\lambda) \mid \lambda \in \sigma_A(x)\}.$$

Proof. The lemma is clear for constant polynomials as $\sigma_A(\lambda 1) = {\lambda}$.

Assume now $n \ge 1$ and $a_n \ne 0$. Then, fixing $\mu \in \mathbb{C}$, we write

$$\mu - p(z) = c \prod_{\gamma=1}^{n} (\lambda_{\gamma} - z)$$

for some $c \neq 0$, $\lambda_1, \dots, \lambda_n \in \mathbb{C}$. Then, by the above lemma,

$$\mu 1 - p(x) = c \prod_{\gamma=1}^{n} (\lambda_{\gamma} 1 - x)$$

is invertible if and only if $\lambda_{\gamma} 1 - x$ is invertible for all γ . Thus, $\mu \in \sigma_A(p(x))$ if and only if one of the $\lambda_{\gamma} \in \sigma_A(x)$ which occurs if and only if $p(\lambda_{\gamma}) = \mu$.

Theorem 8 (Beurling-Gelfand spectral radius formula). Let *A* be a Banach algebra and let $x \in A$. Then,

$$r_A(x) = \lim_{n \to \infty} ||x^n||^{1/n} = \inf_n ||x^n||^{1/n}.$$

Proof. By unitization, we may assume A is unital.

Observe that for $\lambda \in \sigma_A(x)$, $\lambda^n \in \sigma_A(x^n)$ (by polynomial spectral mapping) and so $|\lambda^n| \le ||x^n||$. Thus, $|\lambda| \le ||x^n||^{1/n}$ and it follows that $r_A(x) \le \inf_n ||x^n||^{1/n}$.

Consider again the resolvent operator

$$R: \{\lambda \in \mathbb{C} \mid |\lambda| > r_{\Delta}(x)\} \to G(A): \lambda \to (\lambda 1 - x)^{-1}.$$

We've previously shown R is holomorphic and hence, for any $\phi \in A^*$, $\phi \circ R$ has a Laurent expansion. In particular, for $|\lambda| > ||x|| (\geq r_A(x))$, we have

$$R(\lambda) = \frac{1}{\lambda} \left(1 - \frac{x}{\lambda} \right)^{-1} = \frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{x^n}{\lambda^n}.$$

Hence,

$$\phi \circ R(\lambda) = \frac{1}{\lambda} \sum_{n=0}^{\infty} \phi\left(\frac{x^n}{\lambda^n}\right) = \sum_{n=0}^{\infty} \frac{\phi(x^n)}{\lambda^{n+1}}$$

implying $\sum_{n=0}^{\infty} \frac{\phi(x^n)}{\lambda^{n+1}}$ is the Laurent expansion of $\phi \circ R$. Thus, for all $\lambda \in \mathbb{R}$ with $|\lambda| > r_A(x)$, $\phi(x^n/\lambda^n) \to 0$ for any $\phi \in A^*$. With this, $\{x^n/\lambda^n \mid n \in \mathbb{N}\}$ is weakly bounded and hence is bounded in norm by some constant M. Then, for all n, $\|x^n/\lambda^n\| \le M$ and so,

$$||x^n||^{1/n} \le M^{1/n} |\lambda|$$
 implying $\limsup ||x^n||^{1/n} \le |\lambda|$

for every λ satisfying $|\lambda| > r_A(x)$. Thus, we have

$$r_A(x) \le \inf \|x^n\|^{1/n} \le \liminf \|x^n\|^{1/n} \le \limsup \|x^n\|^{1/n} \le r_A(x).$$

Theorem 9. Let *A* be a unital Banach algebra and *B* a unital subalgebra of *A*. Then, given $x \in B$,

$$\sigma_B(x) \supseteq \sigma_A(x)$$
 and $\partial \sigma_B(x) \subseteq \partial \sigma_A(x)$.

It follows that $\sigma_B(x)$ is the union of $\sigma_A(x)$ with some of the bounded components of $\mathbb{C} \setminus \sigma_A(x)$.

Proof. If $\lambda \notin \sigma_B(x)$, then $\lambda 1 - x \in G(B)$ and so, $\lambda 1 - x \in G(A)$ implying $\lambda \notin \sigma_A(x)$.

On the other hand, let us take $\lambda \in \partial \sigma_B(x)$ ($\lambda \in \sigma_B(x)$ as $\sigma_B(x)$ is compact and hence closed). So, choosing $(\lambda_n) \subseteq \mathbb{C} \setminus \sigma_B(x) \subseteq \mathbb{C} \setminus \sigma_A(x)$ such that $\lambda_n \to \lambda$, it suffices to show that $\lambda \in \sigma_A(x)$. Observe that $\lambda_n 1 - x \in G(B) \subseteq G(A)$ for all n and $\lambda_n 1 - x \to \lambda 1 - x \notin G(B)$. Namely, $\lambda 1 - x \in \partial G(B)$. Thus, if $\lambda 1 - x \in G(A)$, by the continuity of the inverse,

$$(\lambda_n 1 - x)^{-1} \to (\lambda 1 - x)^{-1}$$
.

However, as $(\lambda_n 1 - x)^{-1} \in B$, and B is closed, it follows $(\lambda 1 - x)^{-1} \in B$ contradicting $\lambda 1 - x \notin G(B)$. Hence, $\lambda 1 - x \notin G(A)$ implying $\lambda \in \sigma_A(x)$ as required.

Proposition 3.1. Let *A* be a unital Banach algebra and *C* a maximal commutative subalgebra of *A*. Then *C* is closed, unital and for all $x \in C$, we have $\sigma_A(x) = \sigma_C(x)$.

Proof. As multiplication is continuous, it follows \overline{C} is also a commutative subalgebra. Thus, for C to be maximal, $C = \overline{C}$ implying C is closed. C is unital as 1 commutes with all elements of C and so can always be added in to create a larger commutative subalgebra.

Fix $x \in C$. We already know $\sigma_C(x) \supseteq \sigma_A(x)$. Now, for $\lambda \notin \sigma_A(x)$, there exists some $y \in A$,

$$y(\lambda 1 - x) = (\lambda 1 - x)y = 1.$$

On the other hand, as $\lambda 1 - x \in C$, it commutes with any $z \in C$. Thus,

$$yz = yz(\lambda 1 - x)y = y(\lambda 1 - x)zy = zy$$

implying $y \in C$ by maximality. Thus $\lambda \notin \sigma_C(x)$ as required.

3.4 Commutative Banach algebra

Definition 3.10 (Character). A character on an algebra A is a non-zero homomorphism $\phi: A \to \mathbb{C}$. We denote the set of all characters on A by Φ_A and we call it the spectrum of A (when it is equipped with the Gelfand topology, see below).

In the case *A* is unital, then for all $\phi \in \Phi_A$, $\phi(1) = 1$.

Lemma 3.4. Let *A* is a Banach algebra, $\phi \in \Phi_A$, then ϕ is bounded and $\|\phi\| \le 1$. Moreover, if *A* is unital, then $\|\phi\| = 1$.

Proof. By defining $\phi_+: A_+ \to \mathbb{C}$, $\phi_+(x+\lambda 1) = \phi(x) + \lambda$, we have $\phi_+ \in \Phi_+$ with $\phi_+|_A = \phi$. Thus, it suffices to show $||\phi_+|| \le 1$ allowing us to assume *A* is unital.

Let $x \in A$ and suppose $\phi(x) > ||x||$. Then, $\phi(x)1-x \in G(A)$ (since for all $\lambda \in \sigma_A(x)$, $|\lambda| \le ||x||$). Thus, there exists some $y \in A$ such that $(\phi(x)1-x)y=1$ and applying ϕ on both sides results in

$$1 = \phi(1) = (\phi(\phi(x)1) - \phi(x))\phi(y) = (\phi(x) - \phi(x))\phi(y) = 0$$

which is a contradiction. Thus, $\phi(x) \le ||x||$. On the other hand, as $||\phi(1)|| = 1$, it follows $||\phi|| = 1$.

Lemma 3.5. Let *A* be a unital Banach algebra. If *J* is a proper ideal of *A*, then so is \overline{J} . Hence, maximal ideals are always closed.

Proof. Since J is proper, $J \cap G(A) = \emptyset$. Thus, as G(A) is open, we also have $\overline{J} \cap G(A) = \emptyset$. Hence, \overline{J} is a proper ideal of A as required.

We introduce the notation \mathcal{M}_A for the set of all maximal ideals of A.

Theorem 10. Let *A* be a commutative unital Banach algebra. Then the map

$$\phi \mapsto \ker \phi : \Phi_A \to \mathcal{M}_A$$

is a bijection.

Proof. Firstly, the map is well-defined as it is clear ker ϕ is an ideal of A while it is maximal since $\operatorname{codim}(\phi) = 1$.

Injectivity: Let $\phi, \psi \in \Phi_A$ with $\ker \phi = \ker \psi$. Then, for all $x \in A$, $\phi(x)1 - x \in \ker \psi$ and thus, $\phi(x) - \psi(x) = 0$ as required.

Surjectivity: Let $M \in \mathcal{M}_A$ so A/M is a field and a unital Banach algebra. By Gelfand-Mazur, A/M is isometrically isomorphic to \mathbb{C} and thus the quotient map is a character with kernel M

Corollary 10.1. Let A be a commutative unital Banach algebra with $x \in A$. Then,

- $x \in G(A)$ if and only if for all $\phi \in \Phi_A$, $\phi(x) \neq 0$.
- $\sigma_A(x) = {\phi(x) \mid \phi \in \Phi_A}.$
- $r_A(x) = \sup\{|\phi(x)| \mid \phi \in \Phi_A\}.$

Proof.

- If $x \in G(A)$, then for all $\phi \in \Phi_A$, $1 = \phi(1) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1}) = 0$ if $\phi(x) = 0$. On the other hand, if $x \notin G(A)$, we can define M to be a maximal ideal containing x. Thus, by the above theorem, there exists some $\phi \in \Phi_A$ such that $\ker \phi = M \ni x$.
- By the first part, $\lambda \in \sigma_A(x)$ if and only if there exists some $\phi \in \Phi_A$ such that $\phi(\lambda 1 x) = 0$. Namely $\lambda \in \sigma_A(x)$ if and only if there exists some $\phi \in \Phi_A$ such that $\phi(x) = \lambda$.

• Clear by the second part.

Corollary 10.2. Let *A* be a Banach algebra and $x, y \in A$ such that xy = yx. Then,

$$r_A(x + y) \le r_A(x) + r_A(y)$$
 and $r_A(xy) \le r_A(x)r_A(y)$.

Proof. By unitization we may assume *A* is unital. By consider the subalgebra generated by x, y, we can also assume *A* is commutative. Thus, the conclusion is clear by the third part of the above corollary.

Example 3.7. Let A = C(K) where K is a compact Hausdorff space. Then

$$\Phi_A = \{ \delta_k \mid k \in K \}$$

where $\delta_k(f) = f(k)$.

Clearly $\delta_k \in \Phi_A$ for any k so we will only consider the reverse inclusion. Let $M \in \mathcal{M}_A$ and we need to show that there is some $k \in K$ such that

$$M = \{ f \mid f(k) = 0 \}.$$

Suppose otherwise, then for all $k \in K$, there exists some $f_k \in M$ such that $f_k(k) \neq 0$. Then, for each k, f_k is not zero on a open neighborhood of k. Let us denote this neighborhood by U_k and it is clear that $\{U_k\}_{k \in K}$ form an open cover of K. Thus, by compactness, there exists k_1, \dots, k_n such that $\{U_k\}_{k=1}^n$ covers K. Now, defining

$$g := \sum_{i=1}^{n} |f_{k_i}|^2,$$

by construction, g does not have any 0 in K and in particular, $g \in G(A)$. However, since $g = \sum_{i=1}^{n} \overline{f_{k_i}} f_{k_i} \in M$, it follows that M = A which is a contradiction.

Example 3.8. Let $K \subseteq \mathbb{C}$ be a non-empty compact set. Then $\Phi_{C(K)} = \{\delta_{\omega} \mid \omega \in K\}$.

Example 3.9. For $A(\Delta)$ the disk algebra, $\Phi_{A(\Delta)} = \{\delta_n \mid n \in \Delta\}$.

Example 3.10. Denote the Wiener algebra

$$W = \left\{ f \in C(\mathbb{T}) \mid \sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty \right\}$$

where $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$, $\hat{f}(n) = (2\pi)^{-1} \int_0^{2\pi} f(e^{i\theta}) e^{-in\theta} d\theta$. Then, W is a commutative unital Banach algebra with pointwise operations and norm

$$||f||_1 = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|.$$

This is isometrically isomorphic to the commutative unital Banach algebra $l_1(\mathbb{Z})$ with pointwise vector operations, the l_1 -norm and convolution as multiplication:

$$(a*b)_n = \sum_{j+k=n} a_j b_k.$$

In this case, $\Phi_W = \{ \delta_\omega \mid \omega \in \mathbb{T} \}$ and so $f \in W$ is invertible if and only if f is nowhere 0 (Wiener's theorem).

Let A be a commutative unital Banach algebra. Then, we may write

$$\Phi_{A} = \{ \phi \in B_{A^{*}} \mid \phi(1) = 1, \phi(xy) = \phi(x)\phi(y), \ \forall x, y \in A \}
= B_{A^{*}} \cap \hat{1}^{-1}(1) \cap \bigcap_{x,y \in A} (\hat{xy} - \hat{x}\hat{y})^{-1}(0).$$

which is a w*-closed subset of A. So, Φ_A is a *compact* Hausdorff space in the w*-topology and this topology is known as the Gelfand topology. We call Φ_A equipped with the Gelfand topology the spectrum of A.

For $x \in A$, we define its Gelfand transform to be

$$\hat{x}:\Phi_{A}\to\mathbb{C}:\phi\mapsto\phi(x).$$

The map $x \mapsto \hat{x} : A \to C(\Phi_A)$ is called the Gelfand map.

Theorem 11 (Gelfand representation theorem). The Gelfand map $A \to C(\Phi_A)$ is a continuous, unital homomorphism. Moreover, for $x \in A$,

- $\|\hat{x}\|_{\infty} = r_A(x) \le \|x\|$.
- $\sigma_{C(\Phi_A)}(\hat{x}) = \sigma_A(x)$.
- $x \in G(A)$ if and only if $\hat{x} \in G(C(\Phi_A))$.

Proof. Continuity and the first part of the theorem follows as

$$\|\hat{x}\| = \sup\{|\hat{x}(\phi)| \mid \phi \in \Phi_A\} = \sup\{\phi(x) \mid \phi \in \Phi_A\} = r_A(x) \le \|x\|.$$

The second part of the theorem follows as

$$\sigma_{C(\Phi_A)}(\hat{x}) = {\phi(x) \mid \phi \in \Phi_A} = \sigma_A(x)$$

where the first equality holds since by the above example, $\Phi_{C(\Phi_A)} = \{ \delta_\phi \mid \phi \in \Phi_A \}$. Finally, the third part follows directly from the second.

We remark that the Gelfand map is in general *not* injective nor surjective. The Gelfand map has kernel

$$\{x \in A \mid r_A(x) = 0\} = \{x \mid \liminf_{n \to \infty} ||x^n||^{1/n} = 0\} = \bigcap_{\phi \in \Phi_A} \ker \phi = \bigcap_{M \in \mathcal{M}_A} M.$$

We call $x \in A$ quasi-nilpotent if $\liminf_{n \to \infty} ||x^n||^{1/n} = 0$. The ideal $J(A) := \bigcap_{M \in \mathcal{M}_A} M$ is known as the Jacobson radical and we say A is semi-simple if J(A) = 0.

4 Holomorphic Functional Calculus

Let $U \subseteq \mathbb{C}$ be non-empty and open. Recall that

$$\mathcal{O}(U) := \{ f : U \to \mathbb{C} \mid f \text{ holomorphic} \}$$

which is a locally convex space with seminorms

$$||f||_K = \sup_{x \in K} |f(x)|$$

for all $K \subseteq U$ non-empty and compact.

 $\mathcal{O}(U)$ is an algebra with pointwise multiplication.

We introduce the notation $e, u \in \mathcal{O}(U)$ where e(z) = 1, u(z) = z for all $z \in U$. $\mathcal{O}(U)$ is then unital with the unit e.

The main theorem of the chapter is the following.

Theorem 12 (Holomorphic functional calculus, HFC). Let A be a commutative Banach algebra with $x \in A$. Let $U \subseteq \mathbb{C}$ be a non-empty open set with $\sigma_A(x) \subseteq U$. Then, there exists a unique, continuous, unital homomorphism

$$\Theta_x : \mathcal{O}(U) \to A$$
, such that $\Theta_x(u) = x$.

Moreover, for all $\phi \in \Phi_A$, $f \in \mathcal{O}(U)$ we have $\phi(\Theta_x(f)) = f(\phi(x))$ and

$$\sigma_A(\Theta_x(f)) = \{f(\lambda) \mid \lambda \in \sigma_A(x)\}.$$

Heuristically, we can think of Θ_x as the evaluation at x and we write f(x) for $\Theta_x(f)$.

Since $e(x) = \Theta_x(e) = 1$, $u(x) = \Theta_x(u) = x$ and Θ_x is a homomorphism, it follows that if $p(z) = \sum_{k=0}^n a_k z^k$ is a complex polynomial, then $p(x) = \Theta_x(p) = \sum_{k=0}^n a_k x^k$.

To prove this theorem, we will need Runge's approximation theorem which allows us to approximate holomorphic functions by rational functions.

Theorem 13 (Runge's approximation theorem). Let $K \subseteq \mathbb{C}$ be a non-empty compact set. Then, $\mathcal{O}(K) = \mathcal{R}(K)$, i.e. if f is holomorphic on some open set containing K, then for all $\epsilon > 0$, there exists a rational function r without poles in K such that $||f - r||_K < \epsilon$.

More precisely, given a set Λ which contains a point from each bounded component of $\mathbb{C} \setminus K$. For any $\epsilon > 0$ and f holomorphic on some open set containing K, there exists a rational function r with poles in Λ such that $||f - r||_K < \epsilon$.

We remark that if $\mathbb{C} \setminus K$ is connected, then taking $\Lambda = \emptyset$, we have $\mathcal{O}(K) = \mathcal{P}(K)$.

4.1 Vector-valued integration

Let a < b be in \mathbb{R} , X a Banach space, $f : [a, b] \to X$ a continuous function. We define the integral of f over [a, b] as follows:

Take sequences \mathcal{D}_n : $a = t_0^{(n)} < t_1^{(n)} < \dots < t_{k_n}^{(n)} = b$ such that $|\mathcal{D}_n| = \max_{1 \le j \le k_n} |t_j^{(n)} - t_{j-1}^{(n)}| \to 0$ as $n \to \infty$.

Since f is continuous on a compact set, it is uniformly continuous and so the limit

$$\lim_{n\to\infty}\sum_{j=1}^{k_n}f(t_j^{(n)})(t_j^{(n)}-t_{j-1}^{(n)})$$

exists and is independent of the choice of \mathcal{D}_n . We denote this limit by $\int_a^b f(t) dt$. We note that for $\phi \in X^*$,

$$\phi\left(\int_a^b f(t)dt\right) = \int_a^b \phi(f(t))dt.$$

If ϕ is the norming functional of $\int_a^b f(t) dt$, then

$$\left\| \int_{a}^{b} f(t) dt \right\| = \phi \left(\int_{a}^{b} f(t) dt \right) = \int_{a}^{b} \phi(f(t)) dt \le \int_{a}^{b} \|\phi\| \|f(t)\| dt = \int \|f(t)\| dt.$$

Next, let $\gamma:[a,b]\to\mathbb{C}$ be a path (i.e. γ continuously differentiable) and $f:[\gamma]\to X$ a continuous function $([\gamma]=\gamma([a,b]))$. Define

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

For a chain $\Gamma = (\gamma_1, \dots, \gamma_n)$ and $f : [\Gamma] \to X$ (where $[\Gamma] = \bigcup_{i=1}^n [\gamma_i]$), we define

$$\int_{\Gamma} f(z) dz = \sum_{i=1}^{n} \int_{\gamma_{i}} f(z) dz.$$

From this, we observe

$$\left\| \int_{\Gamma} f(z) dz \right\| \leq \sum_{i=1}^{n} \left\| \int_{\gamma_{i}} f(z) dz \right\| \leq l(\Gamma) \sup_{z \in \Gamma} \|f(z)\|$$

where $l(\Gamma)$ denotes the length of Γ , i.e. $l(\Gamma) = \sum_{i=1}^{n} l(\gamma_i)$ where $l(\gamma) = \int_a^b |\gamma'(t)| dt$ for any path γ .

4.2 Proof of HFC

Theorem 14 (Vector valued Cauchy theorem). Let $U \subseteq \mathbb{C}$ be an open set, Γ a cycle in U such that $n(\Gamma, \omega) = 0$ for all $\omega \notin U$. Then, for a holomorphic function $f: U \to X$, we have

$$\int_{\Gamma} f(z) \mathrm{d}z = 0.$$

Proof. Indeed, for all $\phi \in X^*$,

$$\phi\left(\int_{\Gamma} f(z)dz\right) = \int_{\Gamma} \phi(f(z))dz = 0$$

as $\phi \circ f$ is holomorphic. Hence, the result follows by Hahn-Banach.

Lemma 4.1. Let *A* be a unital Banach algebra and $x \in U \subseteq \mathbb{C}$ for some non-empty open set *U*. Furthermore, denote $K = \sigma_A(x)$. Then, for a cycle Γ in $U \setminus K$, with

$$n(\Gamma, \omega) = \begin{cases} 1, & \omega \in K, \\ 0, & \omega \notin K, \end{cases}$$

defining

$$\Theta_x: \mathcal{O}(U) \to A, \ f \mapsto \frac{1}{2\pi i} \int_{\Gamma} f(z)(z1-x)^{-1} dz,$$

then Θ_x is well-defined, unital, linear and continuous. Furthermore,

- For a rational function r without poles in U, we have $\Theta_r(r) = r(x)$.
- For all $\phi \in \Phi_A$ and $f \in \mathcal{O}(Y)$,

$$\phi(\Theta_{x}(f)) = f(\phi(x))$$
 and $\sigma_{A}(\Theta_{x}(f)) = f(\sigma_{A}(x))$.

We remark that the above lemma is not quite HFS. Indeed, it is missing the condition that Θ_x is multiplicative.

Proof. Well-defined: By construction, as $\Gamma \cap K = \emptyset$, for all $z \in [\Gamma]$, $z1-x \in G(A)$ and so $f(z)(z1-x)^{-1}$ is defined on $[\Gamma]$ and furthermore is continuous.

Linearity: follows as the integral is linear.

Continuity:

$$\|\Theta_x(f)\| \le \frac{1}{2\pi} l(\Gamma) \sup_{z \in [\Gamma]} |f(z)| \|(z1-x)^{-1}\| = M \sup_{z \in [\Gamma]} |f(z)| = M \|f\|_{[\Gamma]}$$

with $\|\cdot\|_{[\Gamma]}$ being one of the semi-norms used to define the LCS topology on $\mathcal{O}(U)$ implying Θ_x is continuous.

Unital:

$$\Theta_{x}(e) = \frac{1}{2\pi i} \int_{\Gamma} (z1 - x)^{-1} dz = \frac{1}{2\pi i} \int_{|z| = R} (z1 - x)^{-1} dx = \frac{1}{2\pi i} z^{-1} \int_{|z| = R} (1 - x/z)^{-1} dz$$

where the second equality holds as Γ and $\{|z| = R\}$ are homologous in $\mathbb{C} \setminus K$ for sufficiently large R. Thus, taking R > ||x||, we have

$$\Theta_{x}(e) = \frac{1}{2\pi i} \int_{|z|=R} \sum_{n=0}^{\infty} \frac{x^{n}}{z^{n+1}} dz = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|z|=R} \frac{dz}{z^{n+1}} \right) x^{n} = 1$$

Now, given rational function r without poles in U, we can write $r = p/q \in \mathcal{O}(U)$ where p,q are complex polynomials where q does not have any zeros in U. By the polynomial spectral mapping theorem, we know that

$$\sigma_{\Delta}(q(x)) = \{q(\lambda) \mid \lambda \in \sigma_{\Delta}(x)\}.$$

Thus, $0 \notin \sigma_A(q(x))$ implying $q(x) \in G(A)$ and we may define $r(x) = p(x)q(x)^{-1}$. Denote s the complex polynomial in two variables such that for all $z, w \in \mathbb{C}$, we have

$$p(z)q(w) - q(z)p(w) = (z - w)s(z, w).$$

Hence,

$$p(z)q(x) - q(z)p(x) = (z1 - x)s(z, x)$$

implying

$$r(z)1(z1-x)^{-1}-r(x)(z1-x)^{-1}=s(z,x)q(z)^{-1}q(x)^{-1}.$$

Thus,

$$\Theta_{x}(r) = \frac{1}{2\pi i} \int_{\Gamma} r(z)(z1-x)^{-1} dz = \frac{1}{2\pi i} \int_{\Gamma} (z1-x)^{-1} dz r(x) + \frac{1}{2\pi i} \int_{\Gamma} s(z,x)q(z)^{-1} dz q(x)^{-1}$$

where $\frac{1}{2\pi i} \int_{\Gamma} (z1-x)^{-1} dz = \Theta_x(e) = 1$ and the second term vanishes by the scalar Cauchy integral formula resulting in $\Theta_x(r) = r(x)$ as required.

Finally, fixing $\phi \in \Phi_A$ and $f \in \mathcal{O}(U)$, we have

$$\phi(\Theta_x(f)) = \phi\left(\frac{1}{2\pi i} \int_{\Gamma} f(z)(z1-x)^{-1} dz\right) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z-\phi(x)} dz$$
$$= n(\Gamma, \phi(x))f(\phi(x)) = f(\phi(x))$$

where $n(\Gamma, \phi(x)) = 1$ since $\phi(x) \in \sigma_A(x) = K$. With this, we have

$$\sigma_{A}(\Theta_{x}(f)) = \{\phi(\Theta_{x}(f)) \mid \phi \in \Phi_{A}\} = \{f(\phi(x)) \mid \phi \in \Phi_{A}\} = \{f(\lambda) \mid \lambda \in \sigma_{A}(x)\}$$

as required.

Proof of Rangu's theorem. Let $U \subseteq \mathbb{C}$ be open such that $U \supseteq K$. Let $A = \mathcal{R}(K)$, $x \in A$ be such that x(z) = z for all $z \in K$. Then,

$$\sigma_A(x) = \{\phi(x) \mid \phi \in \Phi_A\} = \{\delta_z(x) \mid z \in K\} = K.$$

Then, for all $f \in \mathcal{O}(U)$, $z \in K$, we have $\Theta_x(f) = \delta_z(\Theta_x(f)) = f(\delta_z(x)) = f(z)$, namely $\Theta_x(f) = f|_K$. Next, taking B to be the closed subalgebra of A generated by $1, x, (\lambda 1 - x)^{-1}$, for all $\lambda \in \Lambda$, i.e. B is the closure in C(K) of rational functions whose poles are in Λ (recall that $\Lambda \subseteq \mathbb{C}$ is a given set which contains a point from each bounded components of $\mathbb{C} \setminus K$). It is clear that B is a closed unital subalgebra of A.

If V is a bounded component of $\mathbb{C} \setminus K = \mathbb{C} \setminus \sigma_A(x)$, then there exists some $\lambda \in \Lambda \cap V$ such that $\lambda 1 - x$ is invertible in B, namely $\lambda \notin \sigma_B(x)$. It follows then $\sigma_B(x) = \sigma_A(x) = K$. Hence, Θ_X takes value in B.

Corollary 14.1. Let $U \subseteq \mathbb{C}$ be a non-empty open set. Then, the subalgebra rational functions of $\mathcal{O}(U)$ is dense, i.e. $\mathcal{R}(U) = \mathcal{O}(U)$.

Proof. Let $K \subseteq U$ be a non-empty compact set. Let $\hat{K} = K \cup$ bounded components of $\mathbb{C} \setminus K$ in U. Then, \hat{K} is compact and $\hat{K} \subseteq U$. For every bounded component V of $\mathbb{C} \setminus \hat{K}$, we know $V \setminus U \neq \emptyset$, so we can pick $\lambda_V \in V \setminus U$. Let Λ be the set of all such λ_V s. By Rangu's theorem, given $f \in \mathcal{O}(U)$, $\epsilon > 0$, there exists a rational function r whose poles lie in Λ and $||f - r||_{\hat{K}} < \epsilon$. Thus, $r \in \mathcal{R}(U)$ and $||f - r||_{K} < \epsilon$ as required.

Proof of HFC. Let A, x, U be as in the theorem.

Existence: Since, we have already defined Θ_x and shown it is unital, linear and continuous, we just need to check $\Theta_x(fg) = \Theta_x(f)\Theta_x(g)$ for all $f,g \in \mathcal{O}(U)$. However, we have already shown this for rational functions, and thus, we may conclude by using the density of rational functions in $\mathcal{O}(U)$ and the continuity of Θ_x .

Uniqueness: If $\Psi : \mathcal{O}(U) \to A$ is another continuous unital homomorphism such that $\Psi(u) = x$, then, as Ψ is a homomorphism, $\Psi(r) = r(x)$ for all rational functions r. Thus, $\Theta_x = \Psi$ by continuity and density.

5 C^* -algebra

Definition 5.1 (*-algebra). A *-algebra is a complex algebra A with an involution operation, that is, a map

$$A \rightarrow A : x \mapsto x^*$$

such that

- $(\lambda x + \mu y)^* = \bar{\lambda} x^* + \bar{\mu} y^*$ for all $\lambda, \mu \in \mathbb{C}$ and $x, y \in A$,
- $(xy)^* = y^*x^*$ for all $x, y \in A$,
- $(x^*)^* = x$ for all $x \in A$.

If *A* is in addition unital, then $1^* = 1$ and hence $1^* = 1$.

Definition 5.2 (C^* -algebra). A C^* -algebra A is a Banach algebra with an involution such that the C^* equation holds:

$$||x^*x|| = ||x||^2$$

for all $x \in A$.

Namely, a C^* is a *-algebra with a complete algebra norm satisfying the C^* equation. Such a norm is called a C^* -norm.

We remark that $||x^*|| = ||x||$ since $||x^*|| ||x|| \ge ||x^*x|| = ||x||^2$ implying $||x|| \le ||x^*||$ while $||x|| = ||(x^*)^*|| \le ||x^*||$. Thus, the involution operation is continuous and isometric.

Definition 5.3. A Banach-*-algebra *A* is a Banach algebra with an involution such that for all $x \in A$, $||x|| = ||x^*||$.

If A is a C^* -algebra with multiplicative unit $1 \neq 0$, then ||1|| = 1 since $||1|| = ||1^*1|| = ||1||^2$.

Definition 5.4. A *-subalgebra of a *-algebra *A* is a subalgebra which is closed under involution.

Definition 5.5. A closed *-subalgebra of a C^* -algebra is a C^* -subalgebra.

Since the closure of a *-subalgebra is also a *-subalgebra, it is a C^* -subalgebra.

Definition 5.6. A algebra homomorphism $\theta: A \to B$ between *-algebras is a *-homomorphism if for all $x \in A$, $\theta(x^*) = \theta(x)^*$. A *-isomorphism is a bijective *-homomorphism.

Example 5.1. C(K) for K a compact Hausdorff space is a commutative unital C^* -algebra with the involution $f^*(z) = \overline{f(z)}$.

Example 5.2. Given a Hilbert space H, the space of bounded linear maps from H to itself $\mathcal{B}(H)$ with the involution $T \mapsto T^*$ where T^* it the adjoint of T is a unital C^* -algebra.

Example 5.3. Any C^* -subalgebra of $\mathcal{B}(H)$ is obviously a C^* -algebra. However, it turns out that any C^* -algebra is isometrically *-isomorphic to a C^* -subalgebra of $\mathcal{B}(H)$ for some Hilbert space H. This is the Gelfand-Naimark theorem.

From now on, we will always take A to be a C^* algebra.

Definition 5.7. For $x \in A$, we say it is

- hermitian (or self-adjoint) if $x^* = x$,
- unitary if *A* is unital and $x^*x = xx^* = 1$,
- normal if $x^*x = xx^*$.

Example 5.4. If *A* is unital, then 1 is hermitian and unitary. In general, both hermitian and unitary elements are normal.

In C(K), $f \in C(K)$ is hermitian if and only if $f(K) \subseteq \mathbb{R}$ and it is unital if and only if $f(K) \subseteq \mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}.$

For $x \in A$, there exists unique hermitian $h, k \in A$ such that x = h + ik. Indeed, by observing if x = h + ik then $x^* = h - ik$, it follows

$$h = \frac{x + x^*}{2}, k = \frac{x - x^*}{2i}.$$

By checking, we see that this choice works. Furthermore, we note that x is normal if and only if hk = kh.