Туре		Description		Examples	
1□ Supervised Learning		Model learns from labeled data (data with known outputs)		Regression, Classification	
Z Olisupei viseu		Model learns from unlabeled data (no known outputs)		Clustering, Dimensionality Reduction	
□ Inside Super	vised Lo	earning, w	e have:		
Subtype	Outp	ut Type	Examples		
Regression	Continu output	Jous	Linear Regression, Polynomial Regression		
Classificatio n	Catego output	rical	Logistic Regression, Decision Tree, Random Ford SVM, etc.		
Artificial Intellige		na			
☐ Machine Learning ☐ Supervised Learning ☐ Regression ☐ Classification ☐ Unsupervised Learning ☐ Clustering ☐ Dimensionality Reduction					

Linear Regression

Linear Regression is a method used to find a linear relationship between independent variable(s) (X) and a dependent variable (Y).

Formula

Y = mx + c

If there are multiple variables (multiple linear regression):

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Symbo I	Meaning	Analogy
Y	Dependent variable (the value you're predicting)	e.g., Life Expectancy
X	Independent variable (the input)	e.g., GDP
b ₀	Intercept \rightarrow value of Y when X = 0	Like "c" in y = mx + c
b ₁	Slope \rightarrow how much Y changes when X increases by 1 unit	Like "m" in y = mx + c
8	Error term \rightarrow difference between actual and predicted Y	The leftover or noise

B0 = Intercept(c) B1 = the slope(m)

Type Description

Simple Linear Regression

One independent variable

Multiple Linear Regression

More than one independent variable

Polynomial Linear

Regression

Uses higher powers of X (like X², X³) to model curved relationships

m = coefficient(s) → how much Y changes when X changes

 $c = intercept \rightarrow value of Y when X = 0$

Best fit line: The **best fit line** is also called the **prediction line**, because it represents the model's predicted values.

The closer the actual (dependent variable) points are to this line, the **better the model fits** the data — meaning the **prediction error is low** and the model is **accurate**.

Regression Evaluation Metrics

Metric	What It Means (Simple Words)	Good Score Means
MSE (Mean Squared Error)	It shows how far your predictions are from the real values — it squares the errors, so big mistakes count more.	□ Lower is better (closer to 0 means your model is accurate)
RMSE (Root Mean Squared Error)	Same as MSE, but in the same units as your target (e.g., years). It tells how much your predictions differ from the real values on average.	□ Lower is better
MAE (Mean Absolute Error)	It's the average of all absolute differences between predicted and actual values — simple average error.	□ Lower is better
R² (R-Square)	It tells how much of the variation in the actual data your model can explain. (e.g., $R^2 = 0.85$ means your model explains 85% of the data.)	☐ Higher is better (closer to 1 means more accurate)
Adjusted R ²	Similar to R ² , but it gives a small penalty when you add useless features. Helps in comparing models with different numbers of predictors.	☐ Higher is better (should be close to R², not much lower)

Where:

Symbol Meaning

R² Normal R-squared value

N Total number of observations (rows)

p Number of independent variables (features/predictors)

☐ Why we need Adjusted R²

You said it perfectly —

R² always increases when you add more independent variables, even if those variables are **not actually useful** in prediction.

□ So, R² can **mislead you** — it'll look like your model is improving, but in reality, the model might just be becoming more complex and overfitted.

☐ How Adjusted R² fixes that

- Adjusted R^2 penalizes unnecessary variables (via the term p).
- If you add a new variable that **actually helps**, Adjusted R² will **increase**.
- If you add a variable that **doesn't help**, Adjusted R² will **decrease**.

This makes it a **better**, **fairer measure** of model performance when multiple predictors are used.

Variable R² Adjusted R²

1 Predictor 0.75 0.74

3 Predictors 0.80 0.77

□ Notice: even though R² keeps rising,

Adjusted R² starts dropping because not all predictors are useful.

☐ In short:

Metric	Meaning	Problem / Solution		
R²	% of variation in Y explained by X	Always increases with new variables		
Adjusted R²	Penalizes unnecessary predictors	Only increases if the new variable adds real value		

☐ Case 1 – Few useful variables

Model	Independent Variables (p)	What they represent	R²	Adjusted R ²
Model 1	1 → engine_size	Bigger engine → higher price	0.7 0	0.69
Model 2	$2 \rightarrow \text{engine_size}, \text{mileage}$	Mileage also affects price	0.8	0.81
Model 3	$3 \rightarrow \text{engine_size}, \text{mileage},$ brand_rating	Brand also important	0.8 8	0.87

 $[\]checkmark$ Here every new p (variable) adds real information, so $R^2 \uparrow$ and Adjusted $R^2 \uparrow$. The model truly got better.

☐ Case 2 – Adding useless variables

Now you start adding random columns like the color of the dashboard, number of cup holders, or serial number.

Model	Independent Variables (p)	Are they useful?	R²	Adjusted R ²	
Model 4	+ dashboard_color	XNo relation to price	0.885	0.86	
Model 5	+ cup_holders, serial_number	XStill no relation	0.89	0.84	
□ R² keeps increasing a little (because adding any variable can always fit the data a tiny bit more), but Adjusted R² drops — it's punishing you for adding useless features.					

When we add more independent variables (**p increases**), the denominator N - p - 1 **decreases**. As a result, the fraction value **increases**.

Since this entire fraction is **subtracted from 1**, the overall Adjusted R² **decreases** — unless the new variable actually improves R² a lot.

This means Adjusted R² **penalizes** the model for adding too many variables that don't truly help in prediction.

Case 2 = If p decreases denominator N - p - 1 increases and the fraction gets smaller, hence R square goes up.

☐ In short:

Change in p	Effect on Denominator	Effect on Fraction	Effect on Adjusted R ²
p increases	Denominator ↓	Fraction ↑	Adjusted R² ↓
p decreases	Denominator ↑	Fraction ↓	Adjusted R² ↑