

神經元結構

神經元細胞

神經元細胞本身會長出像樹枝形狀的樹突(dendrite), 右邊伸出去的是神經細胞的軸突(axon)。 樹突負責接收訊號,軸突負責把訊號傳遞出去, 兩個神經元的軸突和樹突之間,會有神經突觸(synapse)。

神經元運算模型

1943年,Warren McCulloch和Walter Pitts提出模仿神經元的運算模型。

感知器

1957年,Frank Rosenblatt提出**感知器**(Perceptron)結構 實現神經元模型。

感知器從前端接收訊息,將這些訊息依據權重(weight)加權後加總,再加上偏差值(bias),透過激活函數(activation function)轉換成新訊息傳送出去。

感知器學習演算法

- → 目的:透過資料訓練,調整權重使誤差最少。
- ➡ 學習演算法的步驟
 - **1.** 初始值:設定權重w₁, w₂, ..., w_n、偏差值b 和閥值θ的初始值。
 - 2. **計算輸出值**:根據輸入值 $x_1, x_2, ..., x_n$ 、 權重 $w_1, w_2, ..., w_n$ 和閥值θ計算感知器的輸出值 y。
 - 3. 調整權重:

$$w_i^{t+1} = w_i^t + \Delta w_i^t$$

$$\Delta w_i^t = \alpha \times x_i^t \times (\hat{y} - y) \quad (\alpha : 學習率常數)$$

4. 重複步驟2至3。

感知器範圍說明

我們用一個感知器實作AND運算:

輸 <i>入</i>	輸出端	
Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

感知器範例說明 - 初始值

設定權重 $w_1=1$, $w_2=1$ 、偏差值b=-1和閥值 $\theta=0$

$$z = 1x_1 + 1x_2 - 1$$

$$y = \sigma(z) = \begin{cases} 1 & \text{if } z \ge \theta = 0 \\ 0 & \text{if } z < 0 \end{cases}$$

感知器範例說明 - 計算輸出值

輸入訓練資料

Epoch	輸入		期望輸出]始]重	實際輸出	誤差
	<i>X</i> ₁	<i>X</i> ₂	ŷ	W_1	W ₂	У	e
1	0	0	0	1	1	0	0

$$z = 1x_1 + 1x_2 - 1$$
 $y = \sigma(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$

Epoc	輸	入	期望 輸出		始 重	實際輸出	誤差	最 權	終 重
h	<i>X</i> ₁	<i>X</i> ₂	ŷ	W_1	W_2	У	e	W_1	W_2
1	0	0	0	1	1	0	0	1	1

$$w_1^1 = w_1^1 + \alpha \times x_1^1 \times (\hat{y} - y) = 1 + 0.1 \times 0 \times 0 = 1$$

$$w_2^1 = w_2^1 + \alpha \times x_2^1 \times (\hat{y} - y) = 1 + 0.1 \times 0 \times 0 = 1$$

Epoc	輸入		期望輸出	初始 權重		實際輸出	誤差		終 重
h	<i>X</i> ₁	<i>X</i> ₂	ŷ	W_1	W_2	У	e	W_1	W_2
1	0	0	0	1	1	0	0	1	1
1	0	1	0	1	1	1	-1	1	0.9

$$w_1^2 = w_1^2 + \alpha \times x_1^2 \times (\hat{y} - y) = 1 + 0.1 \times 0 \times -1 = 1$$

$$w_2^2 = w_2^2 + \alpha \times x_2^2 \times (\hat{y} - y) = 1 + 0.1 \times 1 \times -1 = 0.9$$

Epoc	輸	入	期望輸出	初始 權重		實際輸出	誤差	最終權重	
h	<i>X</i> ₁	<i>X</i> ₂	ŷ	W_1	W_2	У	e	W_1	W_2
	0	0	0	1	1	0	0	1	1
1	0	1	0	1	1	1	-1	1	0.9
	1	0	0	1	0.9	1	-1	0.9	0.9

$$w_1^3 = w_1^3 + \alpha \times x_1^3 \times (\hat{y} - y) = 1 + 0.1 \times 1 \times -1 = 0.9$$

$$w_2^3 = w_2^3 + \alpha \times x_2^3 \times (\hat{y} - y) = 0.9 + 0.1 \times 0 \times -1 = 0.9$$

Epoc	輸入		期望輸出	初始 權重		實際輸出	誤差	最終權重	
h	X_1	<i>X</i> ₂	ŷ	W_1	W_2	У	e	W_1	W_2
	0	0	0	1	1	0	0	1	1
1	0	1	0	1	1	1	-1	1	0.9
1	1	0	0	1	0.9	1	-1	0.9	0.9
	1	1	1	0.9	0.9	1	0	0.9	0.9

$$w_1^4 = w_1^4 + \alpha \times x_1^4 \times (\hat{y} - y) = 0.9 + 0.1 \times 1 \times 0 = 0.9$$

$$w_2^4 = w_2^4 + \alpha \times x_2^4 \times (\hat{y} - y) = 0.9 + 0.1 \times 1 \times 0 = 0.9$$

神經元範例說明

輸え	輸出端	
А	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

$$z = 0.9x_1 + 0.9x_2 - 1$$
 $\hat{y} = \sigma(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$

類神經網路 (Artificial Neural Network)

很多個神經元連接成網路 (network)

