1. Pravděpodobnost náhodného jevu

1.1. Pravděpodobnostní prostor

Definice (Pravděpodobnostní prostor). Trojice $(\Omega, \mathcal{F}, \mathbb{P})$, kde $\Omega \neq \emptyset$... množina všech možných výsledků náhodného pokusu, $\mathcal{F} \subset 2^{\Omega}$... systém podmnožin Ω a platí

- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(A) \ge 0 \quad \forall A \in \mathcal{F}$
- $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) \quad \forall A_i \in \mathcal{F} \text{ po dvou disjunktn}$

Terminologie

 $\omega \in \Omega$. . . elementární jev $A \subset \Omega$. . . náhodný jev

Definice (Speciální příklad: Klasický pravděpodobnostní prostor). Množina Ω je neprázdná a obsahuje konečný počet prvků, tj. $\Omega = \{\omega_1, \dots, \omega_n\}$. Dále předpokládáme $\mathcal{F} = 2^{\Omega}$ a všechny elementární jevy jsou stejně pravděpodobné ($\mathbb{P}(\omega_1) = \dots = \mathbb{P}(\omega_n) = \frac{1}{n}$). Pravděpodobnost náhodného jevu $A \subset \Omega$ odpovídá

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{|A|}{n}.$$

Příklad (Hod kostknou)

náhodný pokus: hod kostkou $\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{F} = 2^{\Omega} = \{\{\emptyset\}\}$

 $\Omega = \{1, 2, 3, 4, 5, 6\}, \ \mathcal{F} = 2^{\Omega} = \{\{\emptyset\}, \{1\}, \{2\}, ..., \{1, 2\}, ..., \{1, 2, 3\}, ..., \Omega\}$ příklad elementárního jevu: padla šestka ... $\omega = \{6\}$

příklad náhodného jevu: padlo sudé číslo ... $A = \{2, 4, 6\}$

Příklad (Dva hody jednou mincí) V tomto příkladě záleží na pořadí. Označme jevy H = padla hlava, O = padl orel.

náhodný pokus: dva hody jednou mincí

 $\Omega = \{HH, HO, OH, OO\},$

 $\mathcal{F} = 2^{\Omega} = \{\{\emptyset\}, \{HH\}, \{HO\}, ..., \{HH, HO\}, ..., \{HH, HO, OH\}, ..., \Omega\}$

příklad elementárního jevu: padla hlava a pak orel ... $\omega = \{HO\}$

příklad náhodného jevu: padlo dvakrát to samé ... $A = \{HH, OO\}$

Příklad Jak by se dal zapsat náhodný pokus jednoho hodu dvěma mincemi?

Užitečné vztahy pro výpočet pravděpodobnosti

- $0 \le \mathbb{P}(A) \le 1$, $\forall A \in \mathcal{F}$
- $\mathbb{P}(A^c) = 1 \mathbb{P}(A), \quad A^c = \Omega \setminus A$
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B), \ \mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$
- $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(A \cap B^c), \ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Princip inkluze a exkluze (PIE):

$$\mathbb{P}(A_1 \cup ... \cup A_n) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{1 \le i_1 < i_2 \le n} \mathbb{P}(A_{i_1} \cap A_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n} \mathbb{P}(A_{i_1} \cap A_{i_2} \cap A_{i_3}) ... + (-1)^{n+1} \mathbb{P}(A_1 \cap ... \cap A_n)$$

Připomenutí definic z kombinatoriky

Vybíráme prvky z množiny $\{1,\ldots,n\}$ a zajímá nás, kolik existuje uspořádání různého typu.

- 1. **Permutace**: uspořádaná n-tice, která má stejný počet prvků jako množina, ze které vybíráme
 - počet všech permutací bez opakování prvků: n!
 - počet všech permutací s opakováním prvků (*i*-tý prvek se opakuje k_i -krát): $\frac{k_1+\ldots+k_n}{k_1!\cdots k_n!}$
- 2. Variace: uspořádaná k-tice, která může mít jiný počet prvků než množina, ze které vybíráme
 - počet všech variací bez opakování prvků: $\frac{n!}{(n-k)!}$
 - počet všech variací s opakováním prvků (i-tý prvek se může opakovat nejvýše k-krát): n^k
- 3. Kombinace: neuspořádaná k-tice, která může mít jiný počet prvků než množina, ze které vybíráme
 - počet všech kombinací bez opakování prvků: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{\text{variace}}{\text{permutace}}$
 - počet všech kombinací s opakováním prvků (i-tý prvek se může opakovat nejvýše k-krát): $\binom{n+k-1}{k}$

I.2. Podmíněná pravděpodobnost

 $\bf Definice$ (Podmíněná pravděpodobnost). Podmíněná pravděpodobnost jevu Aza podmínky jevu B je definována jako

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Poznámky

1. Často známe $\mathbb{P}(A|B)$ a pomocí toho dopočítáme $\mathbb{P}(A\cap B)$ nebo $\mathbb{P}(B)$ ze vztahu

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B).$$

- 2. Pro pevné B definujeme zobrazení $P_B(A) = \mathbb{P}(A|B)$. Toto zobrazení splňuje definici pravděpodobnosti. POZOR: Pro zobrazení $P_B(A) = \mathbb{P}(B|A)$ toto tvrzení neplatí.
- 3. $\mathbb{P}(B|B) = 1$, $\mathbb{P}(B^c|B) = 0$

Věta (Věta o úplné pravděpodobnosti). Buďte $A, B_1, B_2, \ldots \in \mathcal{F}, B_i \cap B_j = \emptyset \, \forall i \neq j, \, \cup_i B_i = \Omega, \, \mathbb{P}(B_i) > 0 \, \forall i.$ Pak

$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A \cap B_i) = \sum_{i} \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i).$$

Věta (Bayesova věta). Buď te $A, B_1, B_2, \ldots \in \mathcal{F}, B_i \cap B_j = \emptyset \, \forall i \neq j, \cup_i B_i = \Omega, \mathbb{P}(B_i) > 0 \, \forall i, \mathbb{P}(A) > 0.$ Pak

$$\mathbb{P}(B_i|A) \stackrel{def}{=} \frac{\mathbb{P}(B_i \cap A)}{\mathbb{P}(A)} \stackrel{VoUP}{=} \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_j \mathbb{P}(A|B_j) \cdot \mathbb{P}(B_j)}.$$

Věta (Věta o násobení pravděpodobnosti - o postupném podmiňování). Buď te $B_1, \ldots, B_n \in \mathcal{F}, \mathbb{P}(\cap_i B_i) > 0$. Pak

$$\mathbb{P}(\cap_{i=i}^n B_i) = \mathbb{P}(B_1) \cdot \mathbb{P}(B_2|B_1) \cdot \mathbb{P}(B_3|B_1 \cap B_2) \cdot \ldots \cdot \mathbb{P}(B_n|\cap_{i=1}^{n-1} B_i).$$

I.3. Nezávislost náhodných jevů

Definice. (Nezávislé jevy) Jevy $A_1, \ldots, A_n \in \mathcal{F}$ jsou **nezávislé**, pokud pro každé $r \leq n$ a každou $\{i_1, \ldots, i_r\} \subset \{1, \ldots, n\}$ platí

$$\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_r}) = \mathbb{P}(A_{i_1}) \cdot \cdots \cdot \mathbb{P}(A_{i_r}).$$

Speciálně dva jevy $A, B \in \mathcal{F}$ jsou nezávislé, pokud

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Definice. (Po dvou nezávislé jevy) Jevy $A_1, \ldots, A_n \in \mathcal{F}$ jsou **po dvou nezávislé**, pokud pro každé $i, j \in \{1, \ldots, n\}, i \neq j$ platí

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \cdot \mathbb{P}(A_j).$$

Poznámka (Vztah nezávislosti a podmíněné pravděpodobnosti) Jevy $A, B \in \mathcal{F}$ jsou nezávislé právě když $\mathbb{P}(A|B) = \mathbb{P}(A)$, má-li tato podmíněná pravděpodobnost smysl.

II. NÁHODNÉ VELIČINY

II.1. Rozdělení náhodné veličiny

Definice (Náhodná veličina). (Reálná) náhodná věličina X je měřitelné zobrazení (funkce) z prostoru (Ω, \mathcal{F}) do prostoru $(\mathbb{R}, \mathcal{B})$, kde \mathcal{B} značí Borelovskou σ -algebru. Prvkům $\omega \in \Omega$ tedy přiřazuje reálné číslo $X(\omega) \in \mathbb{R}$.

Definice (Rozdělení náhodné veličiny). Buď $X:\Omega\to\mathbb{R}$ náhodná veličina. Rozdělení náhodné veličiny X je pravděpodobnostní míra P_X na \mathbb{R} definovaná předpisem

$$P_X(B) = \mathbb{P}(X \in B) \quad B \in \mathcal{B}$$

Definice (Distribuční funkce). Distribuční funkcí náhodné veličiny rozumíme funkci $F_X: \mathbb{R} \to [0,1]$ definovanou předpisem

$$F_X(x) := \mathbb{P}(X < x) = P_X((-\infty, x]), \quad x \in \mathbb{R}.$$

Poznámka Rozdělení náhodné veličiny X je jednoznačně určeno jeho distribuční funkcí F_X .

Poznámka (Vlastnosti distribuční funkce) Pro distribuční funkci F_X vždy platí

- je neklesající
- je zprava spojitá
- $\lim_{x\to-\infty} F_X(x) = 0$
- $\lim_{x\to\infty} F_X(x) = 1$
- $\mathbb{P}(a < X \leq b) = F_X(b) F_X(a)$, pro libovolné a < b

Definice (Diskrétní náhodná veličina). Diskrétní náhodná veličina nabývá nejvýše spočetně mnoha hodnot $x_1, x_2, ... \in \mathbb{R}$.

Definice (Spojitá náhodná veličina). Spojitá náhodná veličina nabývá nespočetně mnoha hodnot z nějakého podintervalu \mathbb{R} .

II.2. DISKRÉTNÍ A SPOJITÉ NÁHODNÉ VELIČINY

Definice (Diskrétní náhodná veličina). Náhodná veličina je **diskrétní**, pokud nabývá nejvýše spočetně mnoha hodnot (např. $x_1, x_2, \in \mathbb{R}$).

Definice (Spojitá náhodná veličina). Náhodná veličina je **spojitá**, pokud nabývá nespočetně mnoha hodnot (např. interval $[a, b] \subset \mathbb{R}$).

Poznámka (Rozdělení)

(a) Rozdělení diskrétní náhodné veličiny X je jednoznačně určeno pravděpodobnostmi

$$p_k := \mathbb{P}(X = x_k), k \in \mathbb{N}.$$

Vždy platí

$$\sum_{k \in \mathbb{N}} p_k = 1.$$

(b) Rozdělení spojité náhodné veličiny X je jednoznačně určeno **hustotou** $f_X: \mathbb{R} \to \mathbb{R}_+$, pro níž

$$\mathbb{P}(X \in B) = \int_{B} f_X(x) \, \mathrm{d}x \quad \forall B \in \mathcal{B}.$$

Tedy např. pro B = [a, b], a < b, je $\mathbb{P}(a < X < b) = \int_a^b f_X(x) \, \mathrm{d}x$, pro $B = \{a\}, a \in \mathbb{R}$, je $\mathbb{P}(X = a) = \int_a^a f_X(x) \, \mathrm{d}x = 0$. Vždy platí

$$\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1.$$

Poznámka (Distribuční funkce)

(a) Distribuční funkce diskrétní náhodné veličiny nabývající hodnot $x_k, k \in \mathbb{N}$, je skokovitá, po částech konstantní se skoky v x_k o velikosti $p_k = \mathbb{P}(X = x_k)$.

(b) Distribuční funkce spojité náhodné veličiny je spojitá a platí

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t, \quad f_X(x) = F_X'(x),$$
 pokud derivace v tomto bodě existuje.

Pro libovolné a < b pak

$$\mathbb{P}(a < X < b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a \le X \le b) = \mathbb{P}(a \le X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) \, dx.$$

1

Opakování (Základní vzorce pro integrály a derivace)

Tvar základních primitivních funkcí $F \stackrel{c}{=} \int f(x) dx$: Základní vzorce pro derivace:

•
$$\int x^a dx \stackrel{c}{=} \frac{x^{a+1}}{a+1}, \quad a \neq -1$$

•
$$(x^n)' = nx^{n-1}$$
 $x \in \mathbb{R}, n \in \mathbb{N}$

•
$$\int \frac{1}{x} dx \stackrel{c}{=} \ln|x|, \quad x \neq 0$$

•
$$(x^a)' = ax^{a-1}$$
 $x > 0, a \in \mathbb{R}$

•
$$\int e^x dx \stackrel{c}{=} e^x$$

$$\bullet \ (\mathbf{e}^x)' = \mathbf{e}^x$$

•
$$\int \sin(x) dx \stackrel{c}{=} -\cos(x)$$

$$\bullet \ (\sin(x))' = \cos(x)$$

•
$$\int \cos(x) dx \stackrel{c}{=} \sin(x)$$

$$\bullet \ (\cos(x))' = -\sin(x)$$

Určitý integrál pak počítáme jako $\int_a^b f(x) dx = \lim_{x \to b^-} F(x) - \lim_{x \to a^+} F(x)$.

Linearita neurčitého integrálu: $\int af(x) + bg(x) dt \stackrel{c}{=} aF + bG$

Věta o substituci: $\int f(\Phi(t)) \cdot \Phi'(t) dt \stackrel{c}{=} F(\Phi(t))$

Derivace složené funkce: $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

II.3. Momenty náhodné veličiny

Definice (Střední hodnota). Buď X náhodná veličina.

1. Je-li X diskrétní náhodná veličina, pak její střední hodnotu počítáme jako

$$\mathbb{E} X = \sum_{k} x_k p_k, \quad \text{(existuje-li)},$$

kde $p_k = \mathbb{P}(X = x_k)$ a sčítáme přes všechna k, pro která X nabývá nějaké hodnoty $x_k \in \mathbb{R}$.

2. Je-li X **spojitá** náhodná veličina, pak její střední hodnotu počítáme jako

$$\mathbb{E} X = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x, \quad \text{(existuje-li)},$$

kde f je hustota náhodné veličiny X.

Definice (Obecný moment). Buď X náhodná veličina a $h : \mathbb{R} \to \mathbb{R}$.

1. Je-li X diskrétní náhodná veličina, pak střední hodnota h(X) je

$$\mathbb{E} h(X) = \sum_{k} h(x_k) p_k, \quad \text{(existuje-li)}.$$

2. Je-li X spojitá náhodná veličina, pak střední hodnota h(X) je

$$\mathbb{E} h(X) = \int_{-\infty}^{\infty} h(x)f(x) dx, \quad \text{(existuje-li)}.$$

Definice (Rozptyl). Buď X náhodná veličina, rozptyl X spočítáme jako

$$var X = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

Poznámka.

- 1. Střední hodnota nám říká, jakou hodnotu bychom očekávali, že bude mít náhodná veličina X. Rozptyl je míra variability a říká nám, jak moc se náhodná veličina může lišit od očekávané hodnoty.
- 2. Z první rovnosti v definici rozptylu vidíme, že při výpočtu sčítáme a nebo integrujeme nezáporná čísla (druhou mocninu $X \mathbb{E}X$). A tedy...

Rozptyl nikdy nemůže vyjít záporný!

Vlastnosti střední hodnoty.

- 1. Pro každé $a, b \in \mathbb{R}$ a náhodnou veličinu X platí: $\mathbb{E}(a + bX) = a + b\mathbb{E}X$.
- 2. Pro každé dvě náhodné veličiny X, Y platí: $\mathbb{E}(X + Y) = \mathbb{E}X + \mathbb{E}Y$.

Vlastnosti rozptylu.

- 1. Pro každé $a,b\in\mathbb{R}$ a náhodnou veličinu X platí: $\mathrm{var}(a+bX)=b^2\mathrm{var}X.$
- 2. Obecně **neplatí**, že var(X + Y) = varX + varY, pouze pokud X a Y jsou nezávislé (bude vysvětleno příště).

Připomenutí - integrace per partes.

$$\int u \cdot v' = u \cdot v - \int u'v$$

II.4. NÁHODNÉ VEKTORY

Pod pojmem náhodný vektor v rámci tohoto cvičení chápeme dvojici náhodných veličin (X, Y). Navíc se zde omezíme jen na případy, kdy jsou obě náhodné veličiny diskrétní a nebo jsou obě spojité.

Definice. (Náhodný vektor)

- Diskrétní náhodný vektor je dvojice (X,Y) nabývající nejvýše spočetně mnoha hodnot (x_i,y_i) .
- \bullet Spojitý náhodný vektor je dvojice (X,Y) nabývající nekonečně mnoha hodnot.

Definice. (Sdružené rozdělení)

 \bullet Sdružené rozdělení diskrétního náhodného vektoru (X,Y) je určeno pravděpodobnostmi

$$p_{i,j} = \mathbb{P}(X = x_i, Y = y_i)$$

a platí $\sum_{i} \sum_{j} p_{i,j} = 1$.

• Sdružené rozdělení spojitého náhodného vektoru (X,Y) je určeno sdruženou hustotou $f: \mathbb{R}^2 \to \mathbb{R}_+$, pro kterou platí

$$\mathbb{P}((X,Y) \in B) = \iint_{B} f(x,y) \, dx \, dy, \quad B \subset \mathbb{R}^{2}$$

a platí $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$

Definice. (Marginální rozdělení)

• Marginální rozdělení diskrétního náhodného vektoru (X,Y) nabývající hodnot $(x_i,y_j);i,j\in\mathbb{N}$ jsou určena marginálními pravděpodobnostmi

$$p_i^X = \mathbb{P}(X = x_i) = \sum_i \mathbb{P}(X = x_i, Y = y_j),$$

$$p_j^Y = \mathbb{P}(Y = y_j) = \sum_i \mathbb{P}(X = x_i, Y = y_j).$$

 \bullet Marginální rozdělení spojitého náhodného vektoru (X,Y) jsou určena marginálními hustotami

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y,$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}x.$$

Definice. (Nezávislost náhodných veličin)

• Dvě diskrétní náhodné veličiny X,Y jsou nezávislé, pokud sdružené pravděpodobnosti vektoru (X,Y) spočítáme jako součin marginálních pravděpodobností X a Y, tj.

$$\mathbb{P}(X = x_i, Y = y_i) = \mathbb{P}(X = x_i) \cdot \mathbb{P}(Y = y_i)$$

pro každé (i, j), pro které (X, Y) nabývá nějakou hodnotu (x_i, y_i) .

• Dvě spojité náhodné veličiny X, Y jsou nezávislé, pokud sdruženou hustotu vektoru (X, Y) spočítáme jako součin sdružených hustot X a Y, tj.

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

pro skoro všechny $(x, y) \in \mathbb{R}^2$.

II.5. KOVARIANCE A KORELACE

Definice (Rozptyl). Pro náhodnou veličinu X definujeme **rozptyl** jako

$$\operatorname{var} X = \mathbb{E}(X - \mathbb{E}X)(X - \mathbb{E}X).$$

Definice (Kovariance). Pro dvě náhodné veličiny X, Y s $\mathbb{E}X^2, \mathbb{E}Y^2 < \infty$ definujeme kovarianci jako

$$cov(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$$

Definice (Korelace). Pro dvě náhodné veličiny $X, Y \le 0 < \text{var} X, \text{var} Y < \infty$ definujeme **korelaci** jako

$$\operatorname{corr}(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var} X} \cdot \sqrt{\operatorname{var} Y}}.$$

Definice (Varianční matice). Pro dvě náhodné veličiny X,Y s $\mathbb{E}X^2,\mathbb{E}Y^2<\infty$ definujeme **varianční matici** jako

$$\operatorname{Var}(X,Y) = \begin{pmatrix} \operatorname{var} X & \operatorname{cov}(X,Y) \\ \operatorname{cov}(Y,X) & \operatorname{var} Y \end{pmatrix}.$$

Poznámka.

- (a) $\operatorname{var} X \ge 0, \operatorname{cov}(X, Y) \in \mathbb{R}, \operatorname{corr}(X, Y) \in [-1, 1]$
- (b) X, Y nezávislé, pak cov(X, Y) = corr(X, Y) = 0
- (c) (Linearita rozptylu) Pro X,Y náhodné veličiny a $a,b\in\mathbb{R}$ platí

$$var(aX + bY) = a^{2}varX + b^{2}varY + 2abcov(X, Y)$$

Speciálně pro X, Y nezávislé je

$$var(X + Y) = varX + varY.$$

III.1. NÁHODNÝ VÝBĚR

Definice (Náhodný výběr). Náhodný výběr je posloupnost náhodných veličin X_1, \ldots, X_n , které jsou nezávislé a mají všechny stejné rozdělení.

Definice (Bodový odhad). Buď X_1, \ldots, X_n náhodný výběr z rozdělení daného distribuční funkcí F a $g_n : \mathbb{R}^n \to \mathbb{R}$ funkce, jejíž předpis nezávisí na F. Bodovým odhadem rozumíme náhodnou veličinu

$$T_n := g_n(X_1, \dots, X_n).$$

Příklady.

- (a) $g_n(X_1, ..., X_n) = \min_{i=1,...,n} X_i$
- (b) $g_n(X_1, ..., X_n) = \max_{i=1,...,n} X_i$
- (c) výběrový průměr: $g_n(X_1,\ldots,X_n)=\frac{1}{n}\sum_{i=1}^n X_i=:\bar{X}_n$
- (d) výběrový rozptyl: $g_n(X_1,\ldots,X_n)=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X}_n)^2=:S_n^2$
- (e) empirická distribuční funkce: $g_n(X_1,\ldots,X_n)=\frac{1}{n}\sum_{i=1}^n\mathbf{1}\{X_i\leq x\}=:\hat{F}_n(x)$

III.1. NÁHODNÝ VÝBĚR

Zkoumané vlastnosti bodových odhadů Nechť bodový odhad T_n je odhadem parametru θ rozdělení daného distribuční funkcí F (např. $\mathbb{E}X, \mathbb{P}(X \leq b), ...$). Parametr θ může nabývat hodnot v nějaké množině $\Theta \subset \mathbb{R}$. Pro posouzení kvality odhadu T_n vyšetřujeme následující dvě vlastnosti.

1. Nestrannost T_n je nestranným odhadem θ , pokud

$$\mathbb{E}T_n = \mathbb{E}_{\theta}T_n = \theta, \quad \forall \theta \in \Theta.$$

2. Konzistence T_n je konzistentním odhadem θ , pokud pro všechna $\varepsilon > 0$ je

$$\mathbb{P}(|T_n - \theta| > \varepsilon) \xrightarrow{n \to \infty} 0, \quad \forall \theta \in \Theta.$$

Věta (Čebyševova nerovnost). Buď X náhodná veličina s $\mathbb{E}|X| < \infty$. Pak

$$\mathbb{P}(|X - \mathbb{E}X| \ge \varepsilon) \le \frac{\text{var}X}{\varepsilon^2}.$$

Odhad momentovou metodou Nechť X_1, \ldots, X_n je náhodný výběr z rozdělení, které závisí na neznámém parametru $\theta \in \Theta$ (např. $Alt(\theta), Exp(\theta), Hypergeom(100, \theta, 5)$). Předpokládejme, že jsme schopni najít spojitou funkci $g: \mathbb{R} \to \mathbb{R}$ tak, že

$$\mathbb{E}X = q(\theta).$$

Odhad momentovou metodou je odhad $\hat{\theta}_n$ splňující rovnost

$$\bar{X}_n = g(\hat{\theta}_n).$$

Poznámka Pokud $\mathbb{E}X$ nezávisí na θ , využijeme některý z odhadů momentů vyšších řádů, tj.

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k, \quad k \ge 2$$

III.2. CENTRÁLNÍ LIMITNÍ VĚTA

Definice (Normální rozdělení). Normální rozdělení $N(\mu, \sigma^2)$ má hustotu

$$\varphi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \quad x \in \mathbb{R}.$$

Věta (Centrální limitní věta). Máme posloupnost $X_1, X_2, ...$ nezávislých, stejně rozdělených náhodných veličin, pro které je $0 < \text{var} X_1 < \infty$. Pak

$$\mathbb{P}\left(\frac{\sum_{i=1}^{n} X_i - n\mathbb{E}X_1}{\sqrt{n}\sqrt{\text{var}X_1}} \le x\right) \xrightarrow{n \to \infty} \Phi(x), \quad x \in \mathbb{R},$$

kde $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left\{-x^2/2\right\} dx$ je distribuční funkce normovaného normálního rozdělení N(0,1).

Tabulka hodnot Φ a Φ^{-1}

Hodnoty distribuční funkce $\Phi(x)$ lze počítat jen numericky a lze je najít v následující tabulce pro $x \ge 0$. Ostatní hodnoty dopočítáme ze vztahu $\Phi(-x) = 1 - \Phi(x)$.

\overline{x}	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\Phi(x)$	0.500	0.540	0.579	0.618	0.655	0.691	0.726	0.758	0.788	0.816	0.841
\overline{x}		1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
$\Phi(x)$		0.864	0.885	0.903	0.919	0.933	0.945	0.955	0.964	0.971	0.977
\overline{x}		2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
$\Phi(x)$		0.982	0.986	0.989	0.992	0.994	0.995	0.997	0.997	0.998	0.999

Někdy se nám budou hodit hodnoty inverzní funkce, tzv. kvantily N(0,1) definované jako

$$q_{\alpha} = \Phi^{-1}(\alpha), \quad \alpha \in [0, 1].$$

Ty najdeme v tabulce pro $\alpha \geq 0.5$. Ostatní hodnoty dopočítáme ze vztahu $q_{\alpha} = -q_{1-\alpha}$

$=$ α	0.5	0.8	0.9	0.95	0.975	0.99	0.995
$\Phi^{-1}(\alpha) = q_{\alpha}$	0	0.842	1.282	1.645	1.960	2.326	2.576

Součty náhodných veličin

Jsou-li $X_1,...,X_n$ náhodné veličiny a $a_1,...,a_n$ reálná čísla, pak (za předpokladu, že obě strany existují)

$$\mathbb{E}\sum_{i=1}^{n} a_i X_i = \sum_{i=1}^{n} a_i \mathbb{E}X_i$$

$$\operatorname{var} \sum_{i=1}^{n} X_{i} = \sum_{i=1}^{n} a_{i}^{2} \operatorname{var} X_{i} + \sum \sum_{i \neq j} a_{i} a_{j} \operatorname{cov}(X_{i}, X_{j})$$

Věta (Centrální limitní věta). Máme posloupnost $X_1, X_2, ...$ nezávislých, stejně rozdělených náhodných veličin, pro které je $0 < \text{var} X_1 < \infty$. Pak

$$\mathbb{P}\left(\frac{\sum_{i=1}^{n} X_i - n\mathbb{E}X_1}{\sqrt{n}\sqrt{\text{var}X_1}} \le x\right) \xrightarrow{n \to \infty} \Phi(x), \quad x \in \mathbb{R}.$$

Věta (Slabý zákon velkých čísel). Máme posloupnost $X_1, X_2, ...$ nezávislých, stejně rozdělených náhodných veličin s konečnou střední hodnotou $\mathbb{E}X_1 = \mu$ a konečným rozptylem. Pak

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} \mu$$

Věta (Věta o spojité transformaci). Jestliže pro posloupnost náhodných veličin $\{Y_n\}_{n\geq 1}$ a $a\in\mathbb{R}$ platí $Y_n\stackrel{p}{\to}a$ a g je spojitá funkce, pak

$$g(Y_n) \xrightarrow{p} g(a)$$
.

Přehled momentů základních rozdělení

Název	Hodnoty	Rozdělení	Střední hodnota	Rozptyl
Alternativní $Alt(p)$	{0,1}	$p_1 = p, p_0 = 1 - p$	p	p(1-p)
$egin{aligned} ext{Binomick\'e} \ Bi(n,p) \end{aligned}$	$\{0,\ldots,n\}$	$p_k = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Poissonovo $Poiss(\lambda)$	$\left \; \{0,1,2,\ldots \} \right $	$p_k = \frac{\lambda^k}{k!} e^{\lambda}$	λ	λ
Hypergeometrické $Hg(N,K,n)$	$\{\max(0, K - N + n), \dots, \min(n, K)\}$	$p_k = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$
Rovnoměrné $R(a,b)$	a, b	$f_X(x) = \frac{1}{b-a}, x \in [a, b]$ $= 0 \text{ jinak}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponenciální $Exp(\lambda)$	$\boxed{[0,\infty)}$	$f_X(x) = \lambda e^{-\lambda x}, x \ge 0$ = 0 jinak	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normální $N(\mu,\sigma^2)$	\mathbb{R}	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$ $x \in \mathbb{R}$	$igg ~\mu$	σ^2

Opakování

Věta (Centrální limitní věta). Máme posloupnost $X_1, X_2, ...$ nezávislých, stejně rozdělených náhodných veličin, pro které je $0 < \text{var} X_1 < \infty$. Pak

$$\mathbb{P}\left(\frac{\sum_{i=1}^{n} X_i - n\mathbb{E}X_1}{\sqrt{n}\sqrt{\text{var}X_1}} \le x\right) \xrightarrow{n \to \infty} \Phi(x), \quad x \in \mathbb{R}.$$

Věta (Sluckého věta). Nechť X_n, Y_n, Z_n jsou posloupnosti náhodných veličin takových, že $X_n \xrightarrow{D} N(0,1)$, $Y_n \xrightarrow{P} c$ a $Z_n \xrightarrow{P} d$, kde $c, d \in \mathbb{R}$ jsou reálné konstanty. Pak

$$Y_n \cdot X_n + Z_n \xrightarrow{D} N(d, c^2).$$

III.3. Intervalové odhady

Definice (Intervalový odhad). Buď $X_1,...,X_n$ náhodný výběr z rozdělení, které závisí na neznámém parametru $\theta \in \Theta \subset \mathbb{R}$. Zvolme hladinu $\alpha \in (0,1)$. Intervalový odhad parametru θ na hladině α je interval [D,H], jehož meze tvoří náhodné veličiny $D=D(X_1,...,X_n), H=H(X_1,...,X_n)$ splňující

$$\mathbb{P}(\theta \in [D, H]) \ge 1 - \alpha, \quad \forall \theta \in \Theta.$$

Poznámka. Někdy je obtížné nalézt přesný intervalový odhad a spokojíme se s asymptotickým intervalovým odhadem (založeným na CLV), který uvedenou podmínku splňuje pro $n \to \infty$ (viz cvičení 1).

IV.1. Podmíněné rozdělení

Definice (Podmíněné rozdělení). Nechť (X,Y) je náhodný vektor s diskrétním rozdělením s hodnotami v \mathbb{N}^2 a nechť $n \in \mathbb{N}$ je takové, že $\mathbb{P}(Y=n) > 0$. Pak definujeme podmíněné rozdělení X za podmínky Y=n jako

$$\mathbb{P}(X = k | Y = n) = \frac{\mathbb{P}(X = k, Y = n)}{\mathbb{P}(Y = n)}.$$

Definice (Podmíněná střední hodnota). Je-li $\mathbb{E}X < \infty$, pak definujeme podmíněnou střední hodnotu X za podmínky Y = n jako

$$\mathbb{E}[X|Y=n] = \sum_{k \in \mathbb{N}} k \mathbb{P}(X=k|Y=n).$$

TABULKA ZÁKLADNÍCH ROZDĚLENÍ

1. Příklady diskrétních rozdělení

Název	Značení	Hodnoty	Rozdělení	Interpretace
Alternarivní	$X \sim Alt(p)$ $p \in (0,1)$	{0,1}	$p_1 = p, p_0 = 1 - p$	Výsledek jednoho pokusu, který dopadne úspěchem s pravděpodobností p
Binomické	$X \sim Bi(n, p)$ $n \in \mathbb{N}, p \in (0, 1)$	$\{0,\cdots,n\}$	$p_k = \binom{n}{k} p^k (1-p)^{n-k}$	Výsledek n nezávislých pokusů, které dopadnou úspěchem s pravděpodobností $p, Bi(1, p) =$ Alt(p)
Geometrické	$X \sim Ge(p)$ $p \in (0,1)$	$\{0,\cdots,\infty\}$	$p_k = p(1-p)^k$	Počet neúspěchů před prvním úspěchem, kde úspěch nastane s pravděpodobností p
Poissonovo	$X \sim Poiss(\lambda)$ $\lambda > 0$	$\{0,\cdots,\infty\}$	$p_k = \frac{\lambda^k}{k!} e^{\lambda}$	Počet výskytu nějaké události v daném časovém intervalu, kde události nastávají nezávisle na sobě, λ určuje intenzitu výskytů
Hyper- geometrické	$X \sim Hg(N, K, n)$ $N \in \mathbb{N},$ $n, K \in \{1,, N\}$	$ \{\max(0, K - N + n), \dots, \min(n, K)\} $	$p_k = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$	Máme množinu N prvků, z nichž K má zkoumanou vlastnost. Vybíráme náhodně bez vracení n z nich a zkoumáme, kolik vybraných mělo danou vlastnost

2. Příklady spojitých rozdělení

Název	Značení	Hodnoty	${f Rozd} f elen {f i}$	Interpretace
Rovnoměrné	$X \sim R(a, b)$ $a < b, a, b \in \mathbb{R}$	[a,b]	$f_X(x) = \frac{1}{b-a}, x \in [a, b]$ = 0 jinak	Generátor náhodných čísel z intervalu $[a, b]$
Exponenciální	$X \sim Exp(\lambda)$ $\lambda > 0$	$[0,\infty)$	$f_X(x) = \lambda e^{-\lambda x}, x \ge 0$ = 0 jinak	Doba do výskytu události (např. poruchy), λ určuje intenzitu výskytu událostí
Normální (Gaussovo)	$X \sim N(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \sigma^2 \ge 0$	\mathbb{R}	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$ $x \in \mathbb{R}$	Dobrá aproximace pro neznámé rozdělení (např. rozdělení IQ v populaci, náhodná odchylka měření, apod.). Parametr μ je očekávaná hodnota, parametr σ^2 určuje variabilitu. Rozdělení $N(0,1)$ se nazývá standardní normální.