Санкт-Петербургский Политехнический Университет Петра Великого

Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе $\mathbb{N}4$

Курс: «Теория автоматического управления»

Тема: «Синтез управляющего устройства»

Выполнил студент:

Бояркин Никита Сергеевич Группа: 43501/3

Проверил:

Нестеров Сергей Александрович

Содержание

1	Лаб	бораторная работа №4	2
	1.1	Цель работы	2
	1.2	Программа работы	2
	1.3	Индивидуальное задание	2
	1.4	Ход работы	3
		1.4.1 Подключение управляющего устройства	3
		1.4.2 Определение области устойчивости	3
		1.4.3 Нахождение коэффициента обратной связи	3
		1.4.4 Нахождение коэффициента масштабирования	4
		1.4.5 Изучение влияния весовых коэффициентов на характеристики системы	5
		1.4.6 Моделирование работы системы	7
	1.5	Вывод	7

Лабораторная работа №4

1.1 Цель работы

Научиться синтезировать оптимальные управляющие устройства.

1.2 Программа работы

• Синтезировать оптимальное управляющее устройство при условии полной измеряемости переменных объекта и полной управляемости системы. В качестве критерия оптимальности использовать интегральный критерий:

$$\int_0^\infty (\begin{bmatrix} x & x' \end{bmatrix} Q \begin{bmatrix} x \\ x' \end{bmatrix} + RU^2) dt, \ \text{где} \ R = E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, Q = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$$

Структура управляющего устройства описывается уравнением:

$$U = -k_0 x - k_1 x' + gV$$

- Проанализировать влияние параметров а и b (матрицы Q) на коэффициенты регулятора и показатели качества.
- Промоделировать работу системы при оптимальных параметрах регулятора.

1.3 Индивидуальное задание

$$y'' + 25y' = 5u' + 25u, y(0) = 0, y'(0) = 0, u = 1(t)$$

$$W(p) = \frac{y}{u} = \frac{5p+25}{p^2+25p}$$

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -25 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 25 & 5 \end{bmatrix}$$

Рис. 1.1: Структурная схема НФУ

1.4 Ход работы

1.4.1 Подключение управляющего устройства

При подключении управляющего устройства со структурой $U = -k_0 x - k_1 x' + gV$ получим, предполагая что $x_2 = x', x_1 = x$:

Рис. 1.2: Система с подключённым управляющим устройством

Составим передаточную функцию результирующей системы:

$$W(p) = g \cdot W_1(p) \cdot W_2(p) = g \cdot \frac{5p + 25}{p^2 + (25 + k_1)p + k_0}$$

Характеристический полином результирующей системы:

$$D(p) = p^2 + (25 + k_1)p + k_0$$

1.4.2 Определение области устойчивости

Согласно критерию Гурвица для систем второго порядка, для устойчивости необходимо и достаточно, чтобы коэффициенты характеристического полинома были положительны, следовательно:

$$\begin{cases} k_0 > 0 \\ k_1 > -25 \end{cases}$$

1.4.3 Нахождение коэффициента обратной связи

Синтезируем устройство, оптимальное по интегральному критерию:

$$\int_0^\infty (\begin{bmatrix} x & x' \end{bmatrix} Q \begin{bmatrix} x \\ x' \end{bmatrix} + RU^2) dt$$
, где $R = E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $Q = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ Воспользуемся уравнением Рикатти:

$$A^TS + SA - (SB + N)R^{-1}(B^TS + N^T) + Q = 0, \text{ где } S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, R = E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, Q = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}, N = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Вычислим коэффициенты обратной связи при Q=E:

$$\begin{bmatrix} 0 & 1 \\ 0 & -25 \end{bmatrix}^T \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -25 \end{bmatrix} - (\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}) \cdot (\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 - bc & a - 25b - bd \\ a - 25c - cd & -d^2 - 50d + b + c + 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Таким образом, при учете, что все элементы матрицы S положительные:

$$\begin{cases} 1-bc=0\\ a-25b-bd=0\\ a-25c-cd=0\\ -d^2-50d+b+c+1=0\\ a>0\\ b>0\\ c>0\\ d>0 \end{cases} \Longrightarrow \begin{cases} a=2\sqrt{157}\\ b=1\\ c=1\\ d=2\sqrt{157}-25 \end{cases}$$
 Таким образом, $S=\begin{bmatrix} 2\sqrt{157}&1\\ 1&2\sqrt{157}-25 \end{bmatrix}$, $K=B^TS=\begin{bmatrix} 1&2\sqrt{157}-25 \end{bmatrix}$. Данное решение удовлетворяет ем критериям устойчивости.

Нахождение коэффициента масштабирования

Чтобы вычислить коэффициент g, масштабирующий входной сигнал, воспользуемся тем, что в установившемся режиме выход системы будет определяться как $y=gV_0\cdot \frac{M}{M+1}$. Тогда при $g=\frac{M+1}{M},y=V_0,$ чего и требуется достичь.

Передаточная функция замкнутой системы:

$$W_3(p)=rac{B(p)}{B(p)+C(p)}=rac{5p+25}{p^2+(25+k_1)p+k_0}$$
 Тогда:

$$W_3(p)=\frac{B(p)+C(p)}{B(p)+C(p)}=\frac{p^2+(25+k_1)p+k_0}{p^2+(25+k_1)p+k_0}$$
 Тогда:
$$W_p(p)=\frac{B(p)}{C(p)}=\frac{5p+25}{p^2+(25+k_1)p+k_0-5p-25}=\frac{5p+25}{p^2+(20+k_1)p+(k_0-25)}$$
 Тогда:
$$M-W_1(0)=-\frac{25}{p^2+(25+k_1)p+k_0}$$

$$M = W_p(0) = \frac{25}{k_0 - 25}$$

$$M=W_p(0)=rac{25}{k_0-25}$$
 Для ранее вычисленных значений: $K=\left[1 \quad 2\sqrt{157}-25\right], M=-rac{25}{24}, g=rac{1}{25}$

1.4.5 Изучение влияния весовых коэффициентов на характеристики системы

Исследуем, как изменение элементов весовой матрицы Q влияет на результирующие коэффициенты регулятора и на качество системы. Для этого будем решать уравнение Риккати для различных значений элементов матрицы Q.

$$Q = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$$

Выведем три типа зависимостей:

- В зависимости от α , где $\beta = 1$.
- В зависимости от β , где $\alpha = 1$.
- В зависимости от α и β одновременно, где $\alpha = \beta$.

Изучение влияния весовых коэффициентов на параметры регулятора

Получим следующие зависимости параметров регулятора от коэффициентов:

По полученным данным можно заключить, что с увеличением параметра α также увеличиваются коэффициенты k_0, k_1, g , в то время как параметр β увеличивает только коэффициент k_1 , однако, делает это намного быстрее, чем α .

Изучение влияния весовых коэффициентов на качество системы

Аналогично изучим влияние весовых коэффициентов на показатели качества. Будем оценивать его по корневым критериям - среднему геометрическому корней характеристического полинома и степени устойчивости (минимальный модуль вещественной части корней).

Оценим колебательность системы аналитически:

$$D(p) = p^2 + (25 + k_1)p + k_0$$

$$p_{12} = \frac{-25 - k_1 \pm \sqrt{(25 + k_1)^2 - 4k_0}}{2}$$

Таким образом, можно считать, что комплексных корней не возникает, так как обычно коэффициент k_0 увеличивается вместе с k_1 .

Построим зависимости весовых коэффициентов от корневых показателей качества:

Как и ожидалось, с увеличением весовых коэффициентов матрицы Q, мнимые части корней равнялись нулю, что означает, что система не имеет колебательности. На показатель быстродействия наилучшим образом влияет параметр α , однако он также негативно влияет на степень устойчивости. Единственной характеристикой, на которую благоприятно влияет параметр β является степень устойчивости.

Таким образом, можно компенсировать недостатки от увеличения параметра α одновременным увеличением параметра β . Если увеличивать их одновременно, возрастает быстродействие системы, а отклонение вещественных частей корней от мнимой оси возрастает незначительно и имеет верхнюю границу.

В общем случае рекомендуется увеличивать параметры α и β одновременно, а для обеспечения необходимого уровня степени устойчивости сохранять соотношение $\beta > \alpha$.

1.4.6 Моделирование работы системы

Смоделируем систему при:

$$Q = \begin{bmatrix} 1000 & 0 \\ 0 & 1000 \end{bmatrix}, k_0 = 31.6228, k_1 = 16.0883, q = 1.2649$$

Рис. 1.3: Диаграмма Боде

Рис. 1.4: Переходная характеристика

Увеличение быстродействия действительно заметно: для выбранных параметров установление процесса происходит примерно за 6 секунд, в то время как при $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1000 \end{bmatrix}$ установление процесса происходит за 250 секунд.

1.5 Вывод

При условии полной наблюдаемости системы регулятор может быть реализован через обратную связь от переменных пространства состояния. Результирующая система может быть путём структурных преобразований представлена в виде системы с обратной связью, что позволяет применить для неё весь математический аппарат, рассмотренный в предыдущих работах.

Для линейных стационарных систем оптимальное решение может быть найдено путём решения матричного уравнения Риккати. Оно связывает матрицы системы и оптимальные коэффициенты для управления вида U=-KX. В качестве показателя оптимальности используется интегральный критерий.

Для различных значений параметров α и β матрицы Q было экспериментально доказано, что с ростом обоих параметров одновременно корневые критерии качества увеличиваются (или незначительно уменьшаются в случае со степенью устойчивости). В случае, если степень устойчивости является критической, должно сохраняться соотношение $\beta > \alpha$, если критично быстродействие, то $\beta < \alpha$.