

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Engenharia Elétrica Campus Apucarana

Laboratório de Análise de Circuitos Elétricos 1 (FUCO5A) 6º Experimento: Fonte Dependente de Tensão

1) Objetivos

- Compreender os conceitos de fonte dependente;
- Analisar experimentalmente o comportamento de uma fonte dependente;

2) Material utilizado

- Multímetro;
- Matriz de contato (protoboard);
- Resistores;
- Amplificador Operacional LM741.

3) Amplificador Operacional

Amplificador operacional (Amp-Op) é um elemento de circuito ativo projetado para executar operações matemáticas de adição, subtração, multiplicação, divisão, diferenciação e integração. Os amplificadores operacionais são encontrados no mercado em diversas formas de circuitos integrados (CI).

O Amp-Op LM741 a ser utilizado nessa prática experimental é mostrado na Figura 1, enquanto na Figura 2 está a forma representativa desse CI em circuitos.

Figura 1. Pinagem do CI LM741

Figura 2. Símbolo representativo do Amp-Op

Os pinos de interesse para esse experimento são:

- Entrada inversora, pino 2.
- Entrada não inversora, pino 3.
- Saída, pino 6.
- Fonte de alimentação positiva $+V_{cc}$, pino 7.
- Fonte de alimentação negativa $-V_{cc}$, pino 4.

As fontes de alimentação $+V_{cc}$ e $-V_{cc}$ deverão ser fontes simétricas, geralmente de +15V e -15V.

A fonte controlada por tensão será realizada através da topologia de Amplificador Inversor, que inverte a polaridade do sinal de entrada além de amplificar o sinal, com um ganho g,

conforme mostra a Figura 3. A tensão de saída V_{O} é relacionada com a tensão de entrada V_{i} por meio da equação (1).

Figura 3. Circuito de Amplificador inversor

OBS: Caso desejar um melhor conhecimento a respeito de Amp-Op, consultar o Capítulo 5 do livro Fundamentos de Circuitos Elétricos [1].

4) Parte prática

4.1 Amplificador Operacional

Para conhecer melhor o comportamento do Amp-Op, monte o circuito da Figura 4.

Figura 4. Circuito de Amplificador Inversor com a carga R3.

- i) Obtenha o ganho g (Equação 1) e a tensão de saída V_o teóricos.
- ii) Meça V_o e compare com o esperado.
- iii) Obtenha o ganho g experimental e compare com o teórico.
- iv) Qual o valor e o sentido da corrente no resistor R3? E, por que nesse sentido?
- v) Substitua o resistor R1 por um de $22 k\Omega$ e o R2 por um potenciômetro de $100 k\Omega$.
- vi) Aumente a resistência do potenciômetro gradativamente (obtenha ao menos 10 valores), anotando a tensão V_o na Tabela 1.

Tabela 1 – Tensões de saída para cada variação de resistência R2.

		1	2	3	4	5	6	7	8	9	10	11	12
Γ	V_o												

vii) Para cada anotação da Tabela 1, encontre o valor experimental da resistência do potenciômetro.

viii) Para cada anotação da Tabela 1, encontre o ganho g.

4.2 Fonte dependente ou controlada por tensão.

A equivalência mostrada na Figura 5, é de uma fonte de tensão controlada por tensão.

Figura 5. Relação da Fonte de Tensão controlada com Amp-Op.

A partir do circuito da Figura 6, faça o que se pede nos itens a seguir.

Figura 6. Circuito proposto para análises.

- i) Obtenha a V_5 teórica.
- ii) Obtenha a V_5 simulada no LTspice.
- iii) Desenhe o circuito da Figura 6 substituindo a equivalência mostrada na Figura 5.
- iv) Encontre o valor de R1 e R2 da Figura 5, para se obter o ganho g próximo ao desejado.
- v) Monte o circuito do item (iii) substituindo os valores encontrados em (iv).
- vi) Obtenha V_5 e g experimental.
- vii) Compare os valores de V_5 teórico, simulado e experimental
- viii) Compare os valores de g teórico e experimental

5) Referência Bibliográficas

[1] ALEXANDER, Charles K.; SADIKU, Matthew N. O. Fundamentos de circuitos elétricos. 5. ed. São Paulo, SP: McGraw-Hill, 2013. xxii, 874 p.