Sequential Decision Making Problems

Changhoon Kevin, Jeong Seoul National University chjeong@bi.snu.ac.kr

References

- ➤ RL Course by David Silver, DeepMind

 The presentation is referenced a lot in this material
- ➤ Artificial Intelligence Course by Prof. Zhang, Seoul National University
- ➤ Artificial Intelligence: A Modern Approach(3rd Edition), by S Russell, et al.
- ➤ Reinforcement Learning: An Introduction, by Richard S. Sutton, et al.
- ➤ CS 330: Deep Multi-Task and Meta Learning, Stanford University
- ➤ CS238: Decision Making under Uncertainty, Stanford University

Contents

- I. Sequential Decision Problem
 - Markov Processes
 - Markov Reward Processes
 - Markov Decision Processes

II. Dynamic Programming

- Value Iteration
- Policy Iteration

III. Model-Free Reinforcement Learning

- Monte Carlo Learning
- Temporal Difference Learning

IV. POMDPs(Partially Observable Markov Decision Processes)

- Definition of POMDPs
- Example of POMDPs
- V. Meta Reinforcement Learning as POMDPs

I. Sequential Decision Problem

Sequential Decision Problem

Model

- A model predicts what the environment will do next
- P predicts the next state : $P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- R predicts the next (immediate) reward : $R_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- Two fundamental problems in sequential making
 - Reinforcement Learning
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
 - Planning
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy

Markov Processes

- Markov Property
 - The future is independent of the past given the present $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$
 - State transition matrix *P*:

$$P_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

$$P = \begin{pmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{pmatrix}$$

- Markov Process (or Markov Chain) is a tuple (S, P)
 - S is a (finite) set of states
 - P is a state transition probability matrix, $P_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$

- A Markov Reward Process is a tuple (S, P, R, γ)
 - S is a finite set of states
 - P is a state transition probability matrix, $P_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$
 - R is a reward function, $R_s = \mathbb{E}[R_{t+1}|S_t = s]$
 - γ is a discount factor, $\gamma \in [0,1]$
- Return
 - The return G_t is the total discounted reward from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Trade-off?
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation

- Why are most Markov reward and decision processes discounted?
 - Mathematically convenient to discount rewards
 - Avoids infinite returns in cyclic Markov processes
 - Uncertainty about the future may not be fully represented
 - If reward is financial, immediate rewards may earn more interest than delayed rewards
 - Animal/human behavior shows preference for immediate reward
 - It is sometimes possible to use undiscounted Markov reward processes (i.e. $\gamma = 1$)

- Value function v(s)
 - The state value function v(s) of an MRP is the expected return starting from state s $v(s) = \mathbb{E}[G_t | S_t = s]$
 - Bellman Equation for MRPs

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$

• The Bellman equation can be expressed concisely using matrices $v = R + \gamma P v$

$$\begin{pmatrix} v(1) \\ \vdots \\ v(n) \end{pmatrix} = \begin{pmatrix} R_1 \\ \vdots \\ R_n \end{pmatrix} + \gamma \begin{pmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{pmatrix} \begin{pmatrix} v(1) \\ \vdots \\ v(n) \end{pmatrix}$$

• The Bellman equation is a linear equation, and can be solved directly;

$$v = R + \gamma P v$$
$$(I - \gamma P)v = R$$
$$v = (I - \gamma P)^{-1} R$$

- Computational complexity is $O(n^3)$ for n states
- Direct solution only possible for small MRPs

- A Markov Decision Process is a tuple (S, A, P, R, γ)
 - S is a finite set of states
 - A is a finite set of actions
 - P is a state transition probability matrix : $P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - R is a reward function : $R_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - γ is discount factor $\gamma \in [0,1]$
- Policies π is a distribution over actions given states

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

- A policy fully defines the behavior of an agent
- MDP policies depend on the current state(not history)

- Value function $v_{\pi}(s)$
 - The state value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s]$$

- Q-function $q_{\pi}(s,a)$
 - The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$a_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s|A_t = a]$$

- Bellman Expectation Equation
 - State-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

• Action-value function

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

• Relationship between and v_{π} and q_{π}

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s, a)$$

$$q_{\pi}(s, a) = R_{s}^{a} + \gamma \sum_{s' \in S} P_{ss'}^{a} v_{\pi}(s')$$

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) \left(R_{s}^{a} + \gamma \sum_{s' \in S} P_{ss'}^{a} v_{\pi}(s') \right)$$

$$q_{\pi}(s, a) = R_{s}^{a} + \gamma \sum_{s' \in S} P_{ss'}^{a} \sum_{a \in A} \pi(a'|s') q_{\pi}(s', a')$$

- Bellman Expectation Equation(Matrix Form)
 - The Bellman expectation equation can be expressed concisely using the induced MRP,

$$v_{\pi} = R^{\pi} + \gamma P^{\pi} v_{\pi}$$

• With direct solution

$$v_{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

- Computational complexity is $O(n^3)$ for n states
- Direct solution only possible for small MDPs

- Optimal Value Function $v_*(s)$
 - The optimal state-value function $v_*(s)$ is the maximum value function over all policies $v_*(s) = \max_{\pi} v_{\pi}(s)$
 - The optimal action-value function $q_*(s,a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Optimal Policies

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \underset{a \in A}{\operatorname{argmax}} q_*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy

- Bellman Optimality Equation
 - Optimal state-value function $v_*(s)$

$$v_*(s) = \max_{a} q_*(s, a)$$

$$v_*(s) = \max_{a} \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s') \right)$$

• Optimal action-value function $q_*(s, a)$

$$q_{*}(s,a) = R_{s}^{a} + \gamma \sum_{s' \in S} P_{ss'}^{a} v_{*}(s')$$

$$q_{*}(s,a) = R_{s}^{a} + \gamma \sum_{s' \in S} P_{ss'}^{a} \max_{a'} q_{*}(s',a')$$

- Bellman Optimality Equation
 - Optimal state-value function $v_*(s)$

$$v_*(s) = \max_{a} q_*(s, a)$$

$$v_*(s) = \max_{a} \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s') \right)$$

• Optimal action-value function $q_*(s, a)$

$$q_*(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$

$$q_*(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \max_{a'} q_*(s',a')$$

non-linear

In general, no closed form solution Solutions;

- Policy iteration(Planning)
- Value iteration(Planning)
- Sarsa(Learning)
- Q-learning(Learning)

II. Dynamic Programming

Dynamic Programming

- ✓ Dynamic : sequential or temporal component to the problem
- ✓ Programming: optimizing a "program", i.e. a policy
- A method for solving complex problems
- By breaking them down into sub-problems
 - Solve the sub-problems
 - Combine solutions to sub-problems
- DP assumes full knowledge of the MDP
- Prediction: MDP(S, A, P, R, γ) and policy π are given as inputs, and value function v_{π} is calculated as output
- Control: MDP(S, A, P, R, γ) is given as input, and optimal value function v_* and optimal policy π_* are calculated as outputs

4 × 3 Grid World Environment

- A simple example of sequence decision problem
- Markov Decision Processes (S, A, P, R, γ)
 - S: (1,1), (1,2), ..., (4,2), (4,3) except (2,2)
 - A: Up, Down, Left, Right
 - *P*: "Intended" outcome with probability 0.8
 - R: S(4,2) = -1, S(4,3) = 1, otherwise -0.04
 - $\gamma \in [0,1]$

Value Iteration

- If we know the solution to sub-problems $v_*(s')$
- Then solution $v_*(s')$ can be found by one-step lookahead;

$$v(s) = R_s^a + \gamma \max_{a \in A} \sum_{s' \in S} P_{ss'}^a v(s')$$

• The idea of value iteration is to apply these updates iteratively

$$v(1,1) = -0.04 + \gamma \max \begin{bmatrix} 0.8v(1,2) + 0.1v(2,1) + 0.1v(1,1), \\ 0.9v(1,1) + 0.1v(1,2), \\ 0.9v(1,1) + 0.1v(2,1), \\ 0.8v(2,1) + 0.1v(1,2) + 0.1v(1,1) \end{bmatrix}$$
Up Left Down Right

Convergence of Value Iteration

- Contraction
 - A function when applied to two difference inputs, produces two output values that are "close together", by some constant factor, than the original inputs
 - A function "divided two" → a contraction

$$4 \div 2 = 2$$
$$6 \div 2 = 3$$

A fixed point = 0(unchanged)

- Two properties of contractions
 - A contraction has only one fixed point
 - The value must get closer to the fixed point(repeated application of a contraction always reaches the fixed point in the limit)

Convergence of Value Iteration

- Contraction
 - Suppose Bellman update as operator B, and V_k as vector of value function $V_{k+1} \leftarrow BV_k$
 - L_p norm

$$||x||_p = \left(\sum_{i \in I} |x_i|^p\right)^{1/p} = (|x_1|^p + \dots + |x_1|^p)^{1/p}$$
$$||x||_{\infty} = \max(|x_1|, \dots, |x_n|)$$

- The max norm(L_{∞} norm) between two vectors ||V V'||
 - The maximum difference between any two corresponding elements $||BV_k BV_k'|| \le \gamma ||V_k V_k'||$
 - That is, the Bellman update is a contraction by factor of $\gamma(\gamma < 1)$

Policy Iteration

- Policy Iteration alternate the following two steps:
 - Policy Evaluation : evaluate policy π using Bellman expectation equation (for all states)

$$v_{k+1}(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$

• Policy Improvement : improve the policy by acting greedily with respect to v_{π} $\pi' = \operatorname{greedy}(v_{\pi})$

Limitation of DP and Open Challenges

- Limitation of Dynamic Programming
 - High computation in large scale MDPs
 - Need known model
- One of Solutions : (Reinforcement) Learning
 - Monte carlo, Sarsa, Q-learning, ...
 - For overcoming tabular MDPs → Deep Reinforcement Learning

Limitation of DP and Open Challenges

- Limitation of Dynamic Programming
 - High computation in large scale MDPs
 - Need known model
- One of Solutions : (Reinforcement) Learning
 - Monte carlo, Sarsa, Q-learning, ...
 - For overcoming tabular MDPs → Deep Reinforcement Learning
- What should be next challenge? → Sequential Reasoning!
- But how?(Gary Marcus vs Yoshua Bengio)

III. Model-Free Reinforcement Learning

Model-Free Reinforcement Learning

- Dynamic Programming
 - Solve a known MDPs using planning method
- Reinforcement Learning
 - Estimate the value function(or policies) of unknown MDPs
- Model-based Reinforcement Learning
 - Not cover in this presentation
 - Advantages
 - Can efficiently learn model by SL methods
 - Can reason about model uncertainty
 - Disadvantages
 - Two sources of approximation error (model, value/policy)

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC method: Model-Free(No knowledge of MDP transition / rewards)
- Can only apply MC to episodic MDPs
 - All episodes must terminate
- Goal: learn v_{π} from episodes of experience under policy π
 - $G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$
- MC policy evaluation uses *empirical mean return* instead of *expected return*

Monte-Carlo Incremental Implementation

$$v_{\pi}(s) \sim \frac{1}{N(s)} \sum_{i=1}^{N(s)} G_i(s) \rightarrow Estimate \ a \ value \ fuction \ as \ the \ average \ of \ the \ returns$$

Proof of Monte Carlo Prediction

$$V_{n+1} = \frac{1}{n} \sum_{i=1}^{n} G_i = \frac{1}{n} (G_n + \sum_{i=1}^{n-1} G_i)$$

$$= \frac{1}{n} \left(G_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} G_i \right)$$

$$= \frac{1}{n} (G_n + (n-1)V_n)$$

$$= V_n + \frac{1}{n} (G_n - V_n)$$

$$\therefore V_{new}(s) \leftarrow V_{old}(s) + \alpha(G(s) - V_{old}(s))$$

Monte-Carlo Incremental Implementation

$$v_{\pi}(s) \sim \frac{1}{N(s)} \sum_{i=1}^{N(s)} G_i(s) \rightarrow Estimate \ a \ value \ fuction \ as \ the \ average \ of \ the \ returns$$

Proof of Monte Carlo Prediction

$$V_{n+1} = \frac{1}{n} \sum_{i=1}^{n} G_i = \frac{1}{n} (G_n + \sum_{i=1}^{n-1} G_i)$$

$$= \frac{1}{n} \left(G_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} G_i \right)$$

$$= \frac{1}{n} (G_n + (n-1)V_n)$$

$$= V_n + \frac{1}{n} (G_n - V_n)$$

$$V_{new}(s) \leftarrow V_{old}(s) + \alpha(G(s) - V_{old}(s))$$

Temporal-Difference Reinforcement Learning

- TD methods learn directly from episodes of experience
- TD methods: Model-Free(No knowledge of MDP transition / rewards)
- TD learns from incomplete episodes(guess towards a guess)
- Goal: learn v_{π} from episodes of experience under policy π
- Incremental Implementation(vs MC)
 - Monte-Carlo

$$V(S_t) \leftarrow V(S_t) + \alpha(\underline{G_t} - V(S_t))$$

unbiased estimation(high variance, zero bias)

• Temporal-Difference: TD(0), Bootstrapping

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

biased estimation(low variance, some bias) but can be online learned

Model-Free Control: Exploration & Exploitation

- ϵ -Greedy Exploration
 - Simplest idea for ensuring continual exploration
 - All actions are tried with non-zero probability
 - With probability 1ϵ choose the greedy action
 - With probability ϵ choose an action at random

$$\pi(a|s) = \begin{cases} \frac{\epsilon}{|A(S_t)|} + 1 - \epsilon & \text{if } a^* = \operatorname{argmax}_{a \in A} Q(s, a) \\ \frac{\epsilon}{|A(S_t)|} & \text{otherwise} \end{cases}$$

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in A(s)
    Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
        G \leftarrow G + R_{t+1}
        Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
            Append G to Returns(S_t, A_t)
            Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
           A^* \leftarrow \arg\max_a Q(S_t, a)
                                                                              (with ties broken arbitrarily)
            For all a \in \mathcal{A}(S_t):
```

Model-Free Control

- For more details...(Not cover in this presentation)
 - On policy / Off policy Control(Sarsa vs Q-learning)
 - Function Approximation(Deep Reinforcement Learning, e.g. Deep Q Networks)
 - Policy-based RL / Value-based RL
 - Various exploration method(e.g. Maximum Entropy RL)
 - etc.

절대 바빴거나 몰라서 안 다루는 것이 아닙니… 오늘 스터디 발표 시간을 지키기 위해…ㅎ

IV. POMDPs(Partially Observable Markov Decision Processes)

Definition of POMDPs

- A POMDP is an MDP with hidden states(hidden Markov model with actions)
- A POMDP is a tuple $(S, A, 0, P, R, Z, \gamma)$
 - S is a finite set of states
 - A is a finite set of actions
 - *O* is a finite set of observations
 - P is a state transition probability matrix : $P_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - R is a reward function : $R_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - Z is an observation function : $Z_{s'o}^a = \mathbb{P}[O_{t+1} = o | S_{t+1} = s', A_t = a]$
 - γ is discount factor $\gamma \in [0,1]$
- A History H_t is a sequence of actions, observations and rewards $H_t = A_0, O_1, R_1, ..., A_{t-1}, O_t, R_t$

Belief States

• A belief state b(h) is a probability distribution over states, conditioned on the history h

$$b(h) = (\mathbb{P}[S_t = s^1 | H_t = h], \dots, \mathbb{P}[S_t = s^n | H_t = h])$$

Example of observation;

Example of POMDPs

- Crying Baby Problem
 - Need to decide whether to feed baby given whether baby is crying
 - Crying is a noisy indication that the baby is hungry

Transition model

$$P(c^1|h^0) = 0.2$$
 (cry when not hungry)
 $P(c^1|h^1) = 0.8$ (cry when hungry)

Example of POMDPs

- Computing Belief States
 - Begin with some initial belief state b prior to any observations
 - Compute new belief state b' based on current belief state b, action a, observation o

$$b'(s') = P(s'|o, a, b)$$

$$= P(o|s', a, b)P(s'|a, b)$$

$$= O(o|s', a)P(s'|a, b)$$

$$= O(o|s', a) \sum_{s \in S} P(s'|a, b, s)P(s|a, b)$$

$$= O(o|s', a) \sum_{s \in S} T(s'|s, a)b(s)$$

Example of POMDPs

- Computing Belief States
 - Begin with some initial belief state b prior to any observations
 - Compute new belief state b' based on current belief state b, action a, observation o

$$b'(s') = P(s'|o, a, b)$$

$$= P(o|s', a, b)P(s'|a, b)$$

$$= O(o|s', a)P(s'|a, b)$$

$$= O(o|s', a) \sum_{s \in S} P(s'|a, b, s)P(s|a, b)$$

$$= O(o|s', a) \sum_{s \in S} T(s'|s, a)b(s)$$

$$b = (h^0, h^1) = (0.5, 0.5)$$
No feed, cry
$$b = (0.0928, 0.9072)$$
Feed, no cry
$$b = (1, 0)$$
No feed, no cry
$$b = (0.9759, 0.0241)$$
No feed, no cry
$$b = (0.9701, 0.0299)$$
No feed, cry
$$b = (0.4624, 0.5376)$$

V. Meta Reinforcement Learning as POMDPs

Meta Reinforcement Learning as POMDPs

- What can we do for AGI?
- I think RL is not enough, we need RL+sth
- Can we meta-learn reinforcement learning algorithm that are much more efficient?
- Reinforcement Learning

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \mathbb{E}_{\pi_{\theta}(\tau)}[R(\tau)]$$
$$= f_{RL}(\mathcal{M})$$

Meta Reinforcement Learning

$$heta^* = \operatorname*{argmax} \sum_{i=1}^n \mathbb{E}_{\pi_{\phi_i}(\tau)} \left[R(\tau) \right]$$
 where $\phi_i = f_{\theta}(\mathcal{M}_i)$

Problem Definition

• We can do this Black-box adaptation approach(with recurrent nets), or as optimization problem(e.g. MAML), but my research focus on...

- Meta Reinforcement Learning as partially observable RL;
 - Control-Inference duality problem
 - $\pi_{\theta}(a|s,z)$, $z_t \sim p(z_t|s_{1:t}, a_{1:t}, r_{1:t})$
 - $z \rightarrow$ everything needed to solve the task
- That is,
 - Learning a task = inferring z
 - Encapsulated information policy $\pi_{\theta}(a|s,z)$ must solve current task

Meta Reinforcement Learning as POMDPs

Model belief over latent task variables

POMDP for unobserved state

Goal state Where am I? p(h|c) \odot $\mathrm{S0} \quad \mathrm{S1} \quad \mathrm{S2}$

s = S0

POMDP for unobserved task

$$s = S0$$

$$a = \text{``left''}, s = S0, r = 0$$

Meta Reinforcement Learning as POMDPs

Model belief over latent task variables

POMDP for unobserved state

POMDP for unobserved task

So how to estimate the belief state for infer the task identity?

e.g. Self-supervised learning, Bayesian networks,
Unsupervised representation learning,
Reinforcement Learning + Planning

a = ``left'', s = S0, r = 0

a = "left", s = S0, r = 0

Thank you for your attention!