本试卷适应范围 本科一年级

课程

南京农业大学试题纸

2015 级高等数学课程第二次分层考试

一填空: (每题 3 分 1.设 f(x) 的定义域	、,共 15 分) 为 [0,1] ,则 <i>f</i> (ln <i>x</i>) 的短	定义域是	
$2.\lim_{x\to 1} \frac{2x}{3x^2 + 1} = -$	·		
$\lim_{x \to \infty} \frac{\sin x}{2x} = $	·		
4.设 f 可导,则 $y = f(x^2)$ 的导数为			
5.设 $\lim_{x\to 1} f(x)$ 存在,且 $f(x) = 3x^2 + 2x \cdot \lim_{x\to 1} f(x)$,则 $f(x) = $			
二.选择题: (每题 3 分, 共 15 分) 1.下列数列中, 发散的是()			
(A) $(-1)^n \frac{1}{n}$	(B) $\frac{1}{n}\cos\frac{n}{2}\pi$	(C) $\left(\frac{2}{3}\right)^n$	(D) $[(-1)^n + 1] \frac{n}{n+1}$
2.设 $y = e^{-x}$, 则 $y^{(n)}$ 是 ()			
$(A) -e^{-x}$	(B) $-e^x$	(C) $(-1)^n e^{-x}$	(D) $(-1)^n e^x$
3.设 $f(x) = \frac{\sin(x-\pi)}{ x-\pi }$,则 $x = \pi $ 是 $f(x)$ 的()			
(A) 无穷间断点	(B) 跳跃间断点	(C) 可去间断点	(D) 振荡间断点
4.设 $f(x) = x \sin x$	$x+1$, $\bigcup f(x)$ ()		
(A) $\exists x \to \infty$ $\exists x$			当 x → ∞ 时是无界变量
(C) 当 $x \rightarrow 0$ 时是 5.若 $\lim_{x \to 0} f(x)$ 存在	官无労小里 , $\lim_{\substack{x \to x_0 \ x \to x_0}} g(x)$ 不存在,则)当 $x \rightarrow 0$ 时是无界变量
$(A) \lim_{x \to x_0} \left[f(x) + g(x) \right] = \lim_{x \to x_0} \left[f(x) \cdot g(x) \right]$ 都不存在.			
$x \to x_0$ $x \to x_0$ $x \to x_0$			

(B)
$$\lim_{x\to x_0} [f(x)+g(x)]$$
与 $\lim_{x\to x_0} [f(x)\cdot g(x)]$ 都存在.

(C)
$$\lim_{x\to x_0} [f(x)+g(x)]$$
可能存在, $\lim_{x\to x_0} [f(x)\cdot g(x)]$ 不存在.

(D)
$$\lim_{x\to x_0} [f(x)+g(x)]$$
不存在, $\lim_{x\to x_0} [f(x)\cdot g(x)]$ 可能存在.

三.计算题: (每题6分,共48分)

1.
$$\lim_{x \to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right]$$
 (2) $\lim_{x \to 0} (x+e^x)^{\frac{1}{x}}$

3.
$$\lim_{n \to \infty} \cos \frac{x}{2} \cos \frac{x}{4} \cdots \cos \frac{x}{2^n} \qquad (x \neq 0)$$

4.设
$$f(x) = \arcsin x \cdot \sqrt{\frac{\ln(e+x)}{e^x + 3}}$$
 , 求 $f'(0)$.

5.求由方程 $xe^y - y + 1 = 0$ 所确定的曲线在x = -1处的切线方程.

6.设
$$\begin{cases} x = a\cos t \\ y = b\sin t \end{cases}, \quad 求 \frac{d^2y}{dx^2}.$$

7. 设 $y = (x^2 + 1)^x$, 求 dy.

8.已知
$$\lim_{x\to 0} \frac{\ln(1+\frac{f(x)}{\cos 2x})}{x(e^x-1)} = 3$$
,求 $\lim_{x\to 0} \frac{f(x)}{1-\cos x}$.

四.证明题: (每题 5 分, 共 15 分)

1.用定义证明: [u(x)+v(x)]'=u'(x)+v'(x).

2.证明恒等式: $\arcsin x + \arccos x = \frac{\pi}{2}(-1 \le x \le 1)$.

3.设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 $f(x) \neq 0, x \in (a,b)$,而 f(a) = f(b) = 0,证明:

对任意实数 λ , 在 (a,b) 内至少存在一点 ξ , 使得 $f'(\xi) + \lambda f(\xi) = 0$.

五.综合题: (7分)

讨论
$$f(x) = \lim_{n \to \infty} \frac{\ln(e^n + x^n)}{n} (x > 0)$$
 的连续性.