Computação Gráfica:

Aula 2: Conceitos Básicos

Prof. Dr. rer.nat. Aldo von Wangenheim

O que é computação Gráfica?

Conjunto de métodos e técnicas computacionais para a representação de forma gráfica, através de um computador, de objetos de um mundo real (ou virtual).

Implica:

- Em um modelo interno deste mundo a ser representado
- Em um conjunto de transformações para representar este modelo em um dispositivo de saída de um computador (vídeo, plotter, etc)

O que é computação Gráfica?

Histórico: A representação gráfica detalhada e realística de modelos em um mundo virtual começou com a necessidade de se utilizar o computador para substituir a prancheta de desenho.

Surgiu o Projeto Auxiliado por Computador - CAD (Computer-Aided Design).

Disciplina Computação GráficaCurso de Ciência da Camputação INE/CTC/UFSC

Parte I: CAD - Autodesk AutoCAD

Curso de Ciência da Camputação INE/CTC/UFSC

Parte I: IBM Catia para Visualização Científica

Displays Vetoriais (Random Scan Displays)

Primeiros dispositivos desenvolvidos para representar objetos gráficos foram os displays vetoriais (random scan displays).

- Não tinham memória de vídeo
- Cada objeto era desenhado separadamente pelo canhão de vídeo (não existia o conceito de pixel)
- Canhão tinha que repetidamente redesenhar toda a cena
 - Displays caligráficos

Displays Vetoriais (Random Scan Displays)

Random Scan Display:

 Motivou o Display File: Lista de todos os objetos constantemente redesenhados na tela.

Disciplina Computação Gráfica Curso de Ciência da Camputação

Curso de Ciência da Camputação INE/CTC/UFSC

Parte I: 1. Conceitos Básicos

Display File: Lista de todos os objetos do mundo representado

- Percorrida em um loop infinito em random scan displays
- Também usada para armazenar objetos em displays mais modernos

Raster Scan Displays: Vídeos onde o canhão sempre faz

Representação do Display File no Vídeo (Frame Buffer):

- Parcialmente realizada pelo sistema operacional e pelo hardware da máquina
 - Escrita na memória de vídeo
 - Leitura da memória de video
 - Aceleração gráfica
 - Representação de objetos na forma de pixel
- Parcialmente realizada pelo programa gráfico:
 - Transformada de Viewport (porta de visualização)

Parte I: 2. Sistema Básico em 2D

Representação do Display File no Vídeo (Frame Buffer):

Parte I: 2. Sistema Básico em 2D Conceitos de Representação do Display File no Vídeo:

- Window: Retângulo que representa um recorte do mundo 2D representado pelo Display File que será mostrado no vídeo.
 - Representado no sistema de coordenadas cartesiano.
 - Tamanho variável (Zoom).
 - Posição variável (navegação)
- Viewport: a Porta de Visualização é a área do vídeo onde será desenhado o que se deseja mostrar.
 - Representado num sistema de coordenadas parcialmente invertido, onde o eixo Y aponta para baixo.
 - Tamanho fixo ou não controlado pela aplicação.

Parte I: 2. Sistema Básico em 2D Conceitos de Representação do Display File no Vídeo:

Window: Deve ser representado por uma estrutura de dados:

- Xw_{min}, Yw_{min}, Xw_{max}, Yw_{max}
- Viewport: Deve ser representado por outra estrutura de dados:
 - Xvp_{min}, Yvp_{min}, Xvp_{max}, Yvp_{max}

Parte I: 2. Sistema Básico em 2D

Transformada de Viewport

(porta de visualização):

$$x_{vp} = \frac{x_w - x_{wmin}}{x_{wmax} - x_{wmin}} \cdot (x_{vpmax} - x_{vpmin})$$

$$y_{vp} = \left(1 - \frac{y_w - y_{wmin}}{y_{wmax} - y_{wmin}}\right) \cdot (y_{vpmax} - y_{vpmin})$$

Visão Geral de um Sistema Gráfico

Modelo de Aplicação

- application object
 - data
 - geometric/procedural description
- primitives shape
- attributes
- spatial relationships
- postprocessing data
- Display File

Programa Aplicativo

- interface between model and graphics system
- creates application model
- handles user interaction

Sistema Gráfico

- produces picture from model
- graphics subroutines
- Transformada de Viewport

Parte I: 2. Sistema Básico em 2D

Sistema Gráfico Interativo Básico em 2D

Display File simples para 2D

- Pontos
- Retas
- Polígonos (listas de pontos interconectados)

Sistema de Coordenadas do Mundo e Viewport em 2D

Transformação de Viewport em 2D

Trabalho #1: Sistema Básico

- Implemente o sistema básico de CG contendo:
 - Display file capaz de representar retas, polígonos e pontos
 - Cada objeto possui um nome
 - Cada objeto possui um tipo
 - Cada objeto possui sua lista de coordenadas
 - Funções de navegação 2D (movimentação do window)
 - Funções de Zoom (modificação do tamanho do window)

The Cyclops Project German-Brazilian Cooperation Programme on IT CNPq GMD DLR

Disciplina Computação Gráfica

Curso de Ciência da Camputação INE/CTC/UFSC

Computação Gráfica		_ _
Menu de Funções Objetos	Viewport	
Reta(Reta1) Wireframe(cubo1)	Incluir Objeto Nome	
Window Passo: 10 % Up In Left Right Down Out Rotação Graus: 45 * X Y Z	Ponto Reta Wireframe Curvas Coordenadas do Ponto Inicial x1: y1: z1: 0 Coordenadas do Ponto Final x2: y2: z2: 0	
Zoom + - Set Window Projeção Paralela Perspectiva	Cancel OK	