Day 1 – PySpark Core Fundamentals (L4 Google/Uber Interview Level)

1. What is the architecture of Spark and how does it process a PySpark job?

Problem Context:

You need to explain how Spark executes PySpark code end-to-end and how it scales computation.

Explanation:

- PySpark is a Python API on top of Apache Spark.
- Spark runs in a cluster (YARN/Mesos/K8s or Standalone) with 3 main components:
 - o **Driver:** Initiates SparkSession, parses the job, creates DAG.
 - Cluster Manager: Allocates resources.
 - **Executors:** Perform the actual computation.
- A PySpark job is translated to a DAG of stages → tasks → executed by executors.

Trade-offs / Design Insights:

- Centralized driver becomes a bottleneck for long lineage.
- Need careful executor memory tuning.

Real-world Example (Uber):

Fare prediction job: PySpark script reads ride logs, cleans data, computes features
 → DAG splits into 2 stages due to shuffle.

Key Takeaways:

- Always visualize Spark DAGs for performance bottlenecks.
- Spark jobs = Logical DAG → Physical Plan → Tasks.

2. RDD vs DataFrame vs Dataset. Why is DataFrame preferred?

Explanation:

- RDD: Low-level, strongly-typed distributed collection. Full control.
- **DataFrame:** Optimized, schema-aware tabular structure.
- Dataset: Java/Scala only. Combines both worlds.

Why DataFrame:

- Catalyst Optimizer → Logical to Physical plan conversion
- Tungsten engine → Code generation
- Less boilerplate code, better performance

Trade-offs:

- RDD needed for fine control (e.g., custom partitioners).
- DataFrames hide complexity but reduce flexibility.

Example (Uber):

Fraud detection → DataFrame for SQL-style joins on large volumes.

Takeaway:

Use DataFrame unless deep customization is needed.

3. Lazy Evaluation in Spark

Explanation:

- Transformations (map, filter, join) are lazy → Not executed immediately
- Actions (count, collect, write) trigger execution

Why important:

- Enables pipeline optimization
- Minimizes data shuffling

Trade-off:

Harder debugging; need .explain() to verify plan

Uber Use Case:

• ETL pipeline does filter → map → write. Spark optimizes this chain before execution.

Takeaway:

Understand how lazy evaluation builds DAG → always inspect before triggering.

4. Transformations vs Actions

Transformations:

- Return a new RDD/DataFrame
- Examples: map, filter, join, select

Actions:

- Trigger execution
- Examples: count, show, write, collect

Trade-off:

Using too many actions like .collect() → driver OOM.

Uber Use Case:

• Driver behavior aggregation → groupBy (transformation), count (action)

Takeaway:

Minimize actions; avoid collect on large datasets.

5. What is Lineage in Spark?

Explanation:

- Tracks all transformations applied to data → like a recipe
- Enables Fault Tolerance: lost partitions can be recomputed

Trade-off:

Long lineage chains = expensive to recompute → use checkpoint()

Uber Example:

• Long transformation chain on ride events → checkpoint at critical points

Takeaway:

Checkpoint periodically for resilience in large jobs

6. What is DAG in Spark?

Explanation:

- Directed Acyclic Graph: Nodes = stages; Edges = dependencies
- Built during job creation → optimized before execution

Trade-off:

• Wide dependencies = shuffle = expensive

Uber Example:

• groupBy → join → write: generates multiple stages; must visualize DAG

Takeaway:

Use Spark UI to understand DAG execution, stage splits.

7. Partitioning in Spark

Explanation:

- Controls parallelism and data locality
- repartition(n) \rightarrow full shuffle
- $coalesce(n) \rightarrow reduce partitions without shuffle$

Trade-off:

• Over-partitioning = overhead; Under-partitioning = skew

Uber Example:

Repartition by driver ID before join → avoids skewed join

Takeaway:

Use repartition before wide ops; coalesce before sink.

8. Narrow vs Wide Transformation

Narrow:

• No shuffle. Example: map, filter

Wide:

• Requires shuffle. Example: groupBy, join

Trade-off:

• Wide = costly in network I/O

Uber Example:

Join ride data with payment = wide → optimize via bucketing

Takeaway:

Minimize wide transformations or optimize them with partitions.

9. Shuffle in Spark

Explanation:

- Data movement across partitions → triggered by wide transformations
- Requires sorting, aggregating, writing to disk

Downside:

• High network + disk I/O, slows down jobs

Uber Example:

ullet groupBy location causes huge shuffle o use salting to reduce skew

Takeaway:

Shuffle = bottleneck; reduce keys, pre-partition when possible.

10. Stages and Tasks in Spark

Explanation:

- Stage: Set of tasks with no shuffle boundary
- Task: Unit of work per partition

Uber Use Case:

• Job split into 2 stages: Read, Transform (Stage 1); Shuffle & Write (Stage 2)

Takeaway:

Check Spark UI for stage durations; optimize stages that take longest.

11. What are UDFs in PySpark?

UDFs (**User Defined Functions**) let you apply **custom row-level logic** using Python/Scala/Java when built-in functions don't suffice.

Why UDFs Are Slow and Not Optimized (Trade-offs)

Not Treated as black-box \rightarrow no predicate pushdown, column pruning, **Catalyst-Optimized** or query plan rewrites.

Bypass Tungsten No JVM codegen or low-level memory optimization → slower execution.

Serialization Data shuffles between JVM \leftrightarrow Python (via Py4J) \rightarrow high latency **Overhead** and CPU cost.

Overall SLOW compared to native functions — bad for large data or critical paths.

Better Alternatives

✓ Option Why It's Better

Built-in SQL Fully optimized by Catalyst + Tungsten → fastest, supports pushdowns.

Pandas UDFs Vectorized, Arrow-based → faster than row-wise Python UDFs.

 $\begin{array}{ll} \textbf{expr(),} & \textbf{Native SQL} \rightarrow \textbf{enables Catalyst optimization and efficient query} \\ \textbf{selectExpr()} & \textbf{planning.} \end{array}$

Scala/Java UDFs

JVM-native \rightarrow better than PySpark UDFs but still lacks Catalyst support.

When to Use UDFs

- ✓ Use only when logic cannot be expressed using SQL or built-in functions.
- **X** Avoid in joins, filters, or performance-critical pipelines.

12) SparkContext vs SparkSession:

Aspect	SparkContext	SparkSession
API Level	Low-level (RDD only)	High-level (DataFrame, SQL, RDD, Streaming, etc.)
Version	Legacy (Spark ≤1.x)	Modern (Spark ≥2.0)
Features Supported	RDD, Accumulators, Broadcast	All features (SQL, Hive, Catalog, UDFs, RDD, etc.)
Entry Point For	Core engine	Full Spark stack
Optimization Support	X No Catalyst / Tungsten	✓ Supports Catalyst + Tungsten (SQL/DataFrame)
Usage in Modern Apps	Not used directly	✓ Preferred interface

Production level Scenario Question

1) You notice your PySpark job is running slower than expected. After investigating, you realize it's processing a large number of small files (a classic small-file problem). How would you solve this issue and improve performance?

Ans: Repartition/ Coalesce the DF before writing

Trade-offs:

- Coalesce reduces partitions but no shuffle, efficient but limited control.
- Repartition triggers shuffle, higher overhead but better data balancing.

Takeaway:

Always validate using Spark UI \rightarrow check if your stages have many small tasks (e.g., 1–2 MB input each).

Use coalesce during writes to minimize file explosion.

I answered: Broadcast Join - Which is somewhat wrong

- 2) Over time, your Spark job is consuming **more memory and slowing down**. You suspect **unused cached data** is bloating memory.
- How would you fix or prevent this in a production pipeline?

Ans: In one case, replacing .cache() with

- .persist(StorageLevel.MEMORY_AND_DISK_SER) and explicitly calling
- .unpersist() after joins saved 6GB memory per executor and cut job time by 20%.

I answered - only persist - memory and disk