WHAT IS CLAIMED IS:

1	1. A system for controlling the temperature in a network interface device
2	that connects a communications channel in a communications network to a subscriber
3	premises, the communications channel carrying communications signals to the subscriber
4	premises, the system comprising:
5	a temperature controlling device; and
6	a power regulating circuit receiving the communications signals and providing
7	power from the communications signals that may be used for powering the temperature
8	controlling device.
1	2. The system of claim 1, further comprising:
2	a storage device for storing the power that may be used for powering the
3	temperature controlling device.
1	3. The system of claim 1, further comprising an auxiliary power source
2	that may be used for powering the temperature controlling device when the power from the
3	communications signals is insufficient for powering the temperature controlling device.
1	4. A system for controlling the temperature in a network interface device
2	that is located at a subscriber premises and that connects a communications channel in a
3	communications network to the subscriber premises, the system comprising:
4	a temperature controlling device;
5	a storage device for storing electrical power that may be used for powering the
6	temperature controlling device; and
7	a server for selectively passing electrical power from the communications
8	channel to the storage device.
1	5. The system of claim 4, further comprising a power regulating circuit
2	for generating electrical power from the communications channel, whereby the electrical
3	power may be passed by the server to the storage device.
1	6. The system of claim 4, wherein the server selectively passes electrical
2	power from the storage device to the temperature controlling device.

1 7. The system of claim 4, further comprising an auxiliary power source that may be used for powering the temperature controlling device when the power from the 2 3 communications channel is insufficient for powering the temperature controlling device. 8. The system of claim 7, wherein the auxiliary power source is a solar 1 2 panel. 1 9. The system of claim 7, wherein the auxiliary power source is a 2 household electrical power source at the subscriber premises. 1 10. The system of claim 4, wherein the communications channel is a 2 telephone line comprised of a twisted pair of wires. 11. The system of claim 4, wherein the communications channel is a 1 2 coaxial cable. 12. 1 The system of claim 4, wherein the storage device is a capacitor. 13. 1 The system of claim 12, wherein the server passes current from the 2 communications channel to the capacitor when the charge maintained by the capacitor falls 3 below a predetermined level. 1 14. The system of claim 4, wherein the network interface device comprises 2 a processing device for processing signals received over the communications channel, and 3 wherein the temperature controlling device dissipates heat generated during operation of the 4 processing device. 1 The system of claim 14, wherein the temperature controlling device 15. 2 comprises a fan. 1 16. The system of claim 15, wherein the server comprises a temperature 2 sensor for sensing the temperature at the processing device and for causing the temperature

controlling device to be activated when the temperature at the processing device reaches a

3

4

predetermined level.

1	17. The system of claim 14, wherein the communications channel
2	comprises a telephone line having a twisted pair of conductors, and wherein the processing
3	device comprises DSL modem.
1	18. The system of claim 4, wherein the network interface device is located
2	at the exterior of the subscriber premises.
1	19. The system of claim 4, wherein the communications channel is a
2	telephone line comprised of a twisted pair of conductors, wherein the telephone line carries
3	telecommunications signals for providing telecommunications services to the subscriber
4	premises, and wherein the telecommunications signals are used to provide electrical current
5	that may be stored at the storage device.
1	20. The system of claim 4, wherein the telecommunications services
2	comprise digital subscriber line (DSL) service using both low frequency signals that may
3	provide voice communications and high frequency signals that may provide data
4	communications, and wherein the low frequency signals are regulated for providing the
5	electrical power.
1	21. In a telecommunications network wherein a service provider network
2	provides telecommunications services to a subscriber over a telecommunications line
3	connected to a network interface device (NID) at the subscriber premises, a system for
4	cooling the NID comprising:
5	temperature controlling means for controlling the temperature at the NID;
6	storing means for storing electrical power at the NID; and
7	server means at the NID for selectively passing electrical power from the
8	telecommunications line to the storing means, so that the storing means may be used to
9	provide electrical power to the temperature controlling means.
1	22. The network of claim 21, wherein the telecommunications line is a
2	twisted pair telephone line, wherein the telephone line carries telecommunications signals for
3	providing both voice service and data service to the subscriber, wherein the NID further
4	comprises processing means that generate heat when using the telecommunications signals to

provide the data service, and wherein the telecommunications signals have electrical current

that may be selectively passed by the server means to the storing means for use in powering

5

6

7	the temperature controlling means, thereby dissipating heat generated at the processing
8	means.
1	23. The system of claim 21, further comprising auxiliary power means for
2	supplementing the electrical power at the storing means.
1	24. A network interface device (NID) located at a subscriber premises for
2	connecting a communications line to the subscriber premises, comprising:
3	an enclosure;
4	an electrically powered cooling device;
5	an storage device for storing electrical power for use in powering the cooling
6	device;
7	a sensor for sensing the temperature within the enclosure, so that the storage
8	device can be used to power the cooling device in response to a predetermined temperature
9	within the enclosure; and
10	a server for selectively passing current from telecommunications line to the
11	electrical storage device.
1	25. The NID of claim 24, further comprising:
2	a vent at the enclosure, so that the cooling device may be used for passing air
3	through the vent to thereby cool the NID.
1	26. The NID of claim 25, further comprising:
2	an active service component within the enclosure that is used to provide
3	telecommunications services to the subscriber and that generates heat, and wherein the
4	cooling device is used for dissipating the heat from the component.
1	27. A method for cooling a network interface device (NID) located at a
2	subscriber premises, the NID connecting a telecommunications line to the subscriber
3	premises, the method comprising:
4	providing a temperature controlling device at the NID;
5	powering the temperature controlling device with electrical power from a
6	storage device at the NID; and
7	using current from telecommunications signals on the telecommunications line
8	to store electrical power at the storage device.
-	to store discurrent porter at the storage device.

1	28. The method of claim 27, further comprising.
2	periodically checking the level of power stored at the storage device, and
3	selectively passing current on the telecommunications line to the storage device when the
4	level of power stored is below a predetermined level.
1	29. The method of claim 28, wherein the temperature controlling device is
2	a cooling device, the method further comprising:
3	sensing the temperature at the NID; and
4	powering the cooling device when the temperature at the NID reaches a
5	predetermined level.
1	30. The method of claim 29, wherein the telecommunications line provides
2	DSL service to the subscriber premises, wherein the NID includes a DSL device, and wherein
3	the cooling device is powered to dissipate heat at the DSL device.
1	31. The method of claim 30, wherein the NID includes subscriber
2	telecommunications devices, wherein the subscriber premises includes subscriber equipment,
3	and wherein the method further comprises:
4	sensing the current level on the telecommunications line;
5	providing an alarm signal if the current level on the telecommunications line is
6	insufficient to properly power the devices within the NID and the equipment within the
7	subscriber premises.
1	32. The method of claim 27, further comprising:
2	supplementing the power from the storage device with power from an
3	auxiliary power source, when the power from the storage device is insufficient to power the
4	temperature controlling device.
1	33. A network interface device (NID) located at a subscriber premises for
2	connecting a communications line to the subscriber premises, comprising:
3	an enclosure;
4	an electrically powered device within the enclosure;
5	an storage device for storing electrical power for use in powering the
6	electrically powered device; and

- a server for selectively passing current from
- 8 telecommunications line to the storage device.

7