COVID-19 Data **Analysis and Predictive** Modeling **PREDICTION ANALYSIS**

TABLE OF CONTENTS

- 1 Introduction
- Data Overview and Methodology
- Data Cleaning and Preprocessing
- Exploratory Data
 Analysis

- Correlation
 5 Analysis
- Statistical Tests & Outlier Detection
- Regression
 Analysis

8

Recommendations and conclusion

1

Introduction

Introduction

COVID-19 Impact in India:

- India faced one of the world's largest outbreaks.
- Over 30 million cases and 400,000 deaths recorded.

Objective:

- To explore the factors affecting COVID-19 deaths in India.
- Analyze trends, regional differences, and the Case Fatality Rate (CFR).

Approach:

Focus on identifying patterns and relationships.

2

Data overview and Methodology

Data sources

Open with Microsoft Excel

S. No.	Date	Region	Confirmed Cases	Active Cases	Cured/Discharged	Death
1	12/03/2020	India	74	71	3	0
2	13/03/2020	India	75	71	3	1
3	14/03/2020	India	84	72	10	2
4	15/03/2020	India	107	95	10	2
5	16/03/2020	India	114	99	13	2

COVID-19 India dataset

confirmed cases, deaths, recoveries

Data sources

8 0	covid_19_ir	idia.csv				ı	<u> </u> Ор	en with Mi
Sno	Date	Time	State/UnionTerritory	ConfirmedIndianNational	ConfirmedForeignNational	Cured	Deaths	Confirmed
1	2020-01-30	6:00 PM	Kerala	1	0	0	0	1
2	2020-01-31	6:00 PM	Kerala	1	0	0	0	1
3	2020-02-01	6:00 PM	Kerala	2	0	0	0	2
4	2020-02-02	6:00 PM	Kerala	3	0	0	0	3
5	2020-02-03	6:00 PM	Kerala	3	0	0	0	3

COVID-19 Cases

confirmed cases, active cases, recovered, deaths by region

Methodology

Data Cleaning:

- Imputation (missRanger)
- Date format conversion
- Merging datasets

Feature Engineering:

- Case Fatality Rate (CFR)
- Weekly data extraction
- Outlier removal

Statistical Analysis:

- Correlation analysis
- Kruskal-Wallis test (regional comparison)

Regression Analysis:

- Week 5: Multivariate regression to predict deaths.
- Week 6: Auto-regression with Week 5 deaths.

3

Data cleaning and Preprocessing

Handling Missing Data:

Imputation using missRanger to fill missing values for key variables like Deaths, Active Cases, and Cured.

```
Step 2: Handling Missing Data
> covid_india <- missRanger(covid_india, pmm.k = 5)
Missing value imputation by random forests

Nothing to impute!
> covid_cases <- missRanger(covid_cases, pmm.k = 5)
Missing value imputation by random forests

Nothing to impute!
> cat("Missing data imputation completed for both datasets.\n")
Missing data imputation completed for both datasets.\n")
Missing data imputation completed for both datasets.
> |
```


Both datasets had no missing values after imputation, meaning no further imputation was needed.

Merging Datasets:

- Converted the Date column in both datasets to Date format for consistency.
- Merged the two datasets by the common Date column.

```
> # Step 3: Convert Date Column and Merge Datasets
> covid_india$Date <- as.Date(covid_india$Date, format = "%Y-%m-%d")
> covid_cases$Date <- as.Date(covid_cases$Date, format = "%d/%m/%Y")</pre>
> merged_data <- merge(
    covid_india [, c("Date", "State.UnionTerritory", "Cured", "Deaths", "Confirmed")],
    covid_cases[, c("Date", "Region", "Confirmed.Cases", "Active.Cases", "Cured.Discharged", "Death")],
   by = "Date", all = TRUE
> cat("Step 3: Merged Datasets by Date\n")
Step 3: Merged Datasets by Date
> cat("Dataset structure after merge:\n")
Dataset structure after merge:
> print(str(merged_data))
'data.frame': 509288 obs. of 10 variables:
 $ Date
                      : Date, format: "2020-01-30" "2020-01-31" "2020-02-01" ...
 $ State.UnionTerritory: chr "Kerala" "Kerala" "Kerala" "Kerala" ...
 $ Cured
                      : int 00000000000...
 $ Deaths
                      : int 00000000000...
 $ Confirmed
                      : num 1123333333...
 $ Region
                      : chr NA NA NA NA ...
$ Confirmed.Cases
                     : num NA ...
 $ Active.Cases
                      : int NA ...
 $ Cured.Discharaed
                    : int NA ...
$ Death
                      : int NA ...
NULL
```


Week Calculation & CFR (Case Fatality Rate) Calculation:

- Extracted the week number from the Date column using the format() function.
- CFR Formula: The ratio of deaths to confirmed cases, expressed as a percentage

```
> # Step 4: Add 'Week' Column and Calculate CFR (Case Fatality Rate)
> merged_data <- merged_data %>%
   mutate(Week = as.numeric(format(Date, "%U"))) %>%
   mutate(CFR = ifelse(Confirmed > 0, (Deaths / Confirmed) * 100, 0))
> cat("\nStep 4: Case Fatality Rate (CFR) Added\n")
Step 4: Case Fatality Rate (CFR) Added
> print(head(merged_data[, c("Date", "Deaths", "Confirmed", "CFR")]))
        Date Deaths Confirmed CFR
1 2020-01-30
2 2020-01-31
3 2020-02-01
4 2020-02-02
5 2020-02-03
6 2020-02-04
```


Removing Zero Variance Columns:


```
> # Step 5: Check and Remove Zero Variance Columns
> covid_india_numeric <- covid_india %>% select_if(is.numeric)
> covid_cases_numeric <- covid_cases %>% select_if(is.numeric)
> zero_variance_columns_india <- sapply(covid_india_numeric, function(x) sd(x, na.rm = TRUE) == 0)
> zero_variance_columns_cases <- sapply(covid_cases_numeric, function(x) sd(x, na.rm = TRUE) == 0)
> cat("\nStep 5: Columns with Zero Variance\n")
Step 5: Columns with Zero Variance
> cat("Zero variance columns in covid_india: ", names(zero_variance_columns_india[zero_variance_columns_i
ndia]), "\n")
Zero variance columns in covid india:
> cat("Zero variance columns in covid_cases: ", names(zero_variance_columns_cases[zero_variance_columns_c
ases]), "\n")
Zero variance columns in covid_cases:
> covid_india_no_zero_variance <- covid_india_numeric[, !zero_variance_columns_india]
> covid_cases_no_zero_variance <- covid_cases_numeric[, !zero_variance_columns_cases]</pre>
```


Week-Specific Data Extraction and Alignment:

- Extracted data for specific weeks (Week 4, Week 5, and Week 6) for focused analysis.
- Aligned data across weeks to ensure consistency for comparative analysis.

```
> # Step 8: Extract Week-Specific Data (For analysis)
> extract_week_data <- function(data, week_num) {</pre>
    week_data <- filter(data, Week == week_num) %>% filter(complete.cases(.))
    return(week_data)
+ }
>
> week_4_data <- extract_week_data(merged_data, 4)</pre>
> week_5_data <- extract_week_data(merged_data, 5)</pre>
> week_6_data <- extract_week_data(merged_data, 6)</pre>
> # Alian data across weeks
> min_rows <- min(nrow(week_4_data), nrow(week_5_data), nrow(week_6_data))</pre>
> week_4_data <- week_4_data[1:min_rows, ]</pre>
> week_5_data <- week_5_data[1:min_rows, ]</pre>
> week_6_data <- week_6_data[1:min_rows, ]</pre>
```


4

Exploratory DataAnalysis

Key Statistical Insights:

Summary statistics for Deaths and Confirmed cases to understand central tendency and range.

- > # Perform simple descriptive analysis on key variables
- > summary(merged_data\$Deaths)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0 13 348 2541 1935 134201
```

> summary(merged_data\$Confirmed)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0 2954 23902 142586 210268 743809
```


Scatter Plot: Deaths vs Confirmed Cases

- Relationship Between Deaths and Confirmed Cases
- **Interpretation:** A positive correlation suggests that more confirmed cases generally lead to more deaths.

Bar Plot: Total Deaths by Region

- Visualizes the total number of deaths across regions.
- **Interpretation:** Some regions may have significantly higher deaths, highlighting areas with the most severe impact.

Line Plot: Cumulative Deaths Over Time

- Shows the accumulation of deaths over time.
- Interpretation: Observing this trend will highlight significant spikes or declines during specific periods.

Scatter Plot: Deaths vs Active Cases

- Explore the correlation between active cases and deaths, helping understand the impact of ongoing infections.
- **Interpretation:** A positive correlation is observed, indicating that higher active cases tend to result in more deaths.

Scatter Plot: Deaths vs Active Cases

- Visualize the relationship between confirmed cases and the number of deaths.
- **Interpretation:** A positive correlation between confirmed cases and deaths. Higher confirmed cases tend to correlate with higher death rates.

Cured, Active and Deceased Cases Over Time

- Visualizes how the percentages of cured, active, and deceased cases evolved over time.
- **Interpretation:** A positive correlation between confirmed cases and deaths. Higher confirmed cases tend to correlate with higher death rates.

Heatmap: Deaths Over Time By Region:

Highlights patterns of death concentration across regions and times.

CFR By Region:

Exploratory Data Analysis

A boxplot to analyze the variation of case fatality rates (CFR) across different regions.

5

Correlation Analysis

Correlation Analysis - Covid India

Objective:

Analyze relationships among key variables such as confirmed cases, deaths, and cured cases.

Key Findings:

- Covid India Dataset:
 - Strong positive correlation between active cases and confirmed cases, as expected.
 - Notable correlation between deaths and confirmed cases, emphasizing the proportionality between these metrics.

```
> cat("Correlation Matrix for covid_india:\n")
Correlation Matrix for covid_india:
```

> print(correlation_matrix_india)

Prince Control of Cont							
	Sno	Cured	Deaths	${\tt Confirmed}$			
Sno	1.0000000	0.4084822	0.3017418	0.5200524			
Cured	0.4084822	1.0000000	0.9175294	0.7349504			
Deaths	0.3017418	0.9175294	1.0000000	0.5963692			
Confirmed	0.5200524	0.7349504	0.5963692	1.0000000			

Correlation Analysis - Covid India

Correlation Analysis - Covid Cases

Objective:

• Explore the relationship between confirmed cases, active cases, deaths, and other metrics.

Key Findings:

- Covid Cases Dataset:
 - High positive correlation between confirmed cases and deaths.
 - Moderate correlation between cured cases and confirmed cases, suggesting effective recovery management in some regions.

Correlation Matrix for covid_cases:

> print(correlation_matrix_cases)

ath
550
332
788
962
000
3

Correlation Analysis - Covid Cases

6

Statistical Tests & Outlier Detection

Outlier Detection

Outlier Identification and Capping:

Method:

- Interquartile Range (IQR) technique used to identify and cap extreme values.
- Extreme values were adjusted within acceptable limits for key variables, such as Confirmed Cases and Deaths.

Impact:

Outlier handling improved data consistency for meaningful analysis. 0

```
> # Step 7: Handle Outliers
> cap_outliers <- function(x) {</pre>
   Q1 \leftarrow quantile(x, 0.25, na.rm = TRUE)
  Q3 \leftarrow quantile(x, 0.75, na.rm = TRUE)
  IQR <- Q3 - Q1
  upper_limit <- Q3 + 1.5 * IQR
+ lower_limit <- Q1 - 1.5 * IQR
    pmin(pmax(x, lower_limit), upper_limit)
> covid_india$Confirmed <- cap_outliers(covid_india$Confirmed)</pre>
> covid_cases$Confirmed.Cases <- cap_outliers(covid_cases$Confirmed.Cases)</pre>
> cat("\nStep 7: Outliers Capped\n")
Step 7: Outliers Capped
```


Outlier Detection

Statistical Tests

Kruskal-Wallis Test (by Region):

- **Purpose:** Assess whether there are significant differences in Deaths across different regions.
- **Result:** Sugget significant differences in death counts across regions, indicating regional disparities.

```
> # Step 10: Kruskal-Wallis Test (Analyze by Region)
> cat("\nStep 10: Kruskal-Wallis Test by Region\n")
Step 10: Kruskal-Wallis Test by Region
> kruskal_test <- kruskal.test(Deaths ~ Region, data = merged_data)</pre>
> cat("Kruskal-Wallis Test Result: \n")
Kruskal-Wallis Test Result:
> print(kruskal_test)
        Kruskal-Wallis rank sum test
data: Deaths by Region
Kruskal-Wallis chi-squared = 4630.5, df = 38, p-value < 2.2e-16
```


7

Regression Analysis

Week 5: Multivariate Linear Regression

Variables Used: Confirmed Cases, Active Cases, Cured, CFR.

Key Insights:

- Predicted vs. actual Week 5 deaths comparison.
- Significant underestimation for values >30,000.
- Model needs refinement for extreme cases.

Week 5: Multivariate Linear Regression

Variables Used: Confirmed Cases, Active Cases, Cured, CFR.

Key Insights:

- Residuals vs. predicted Week 5 deaths.
- Most errors near 0 for predictions around 4,000–5,000.
- Large errors (>10,000) show underprediction.
- Model struggles with extreme cases

Week 6: Auto-Regression

8

Recommendations and conclusion

Recommendations

Model Improvement

- Add predictors like population density or healthcare infrastructure.
- Test non-linear models (e.g., GAM, polynomial regression).

Improve Data Quality:

Regularly update and verify case and death reports to enhance model accuracy.

Standardize data collection and reporting methods across all regions.

Recommendations

Conclusion

The analysis successfully predicted COVID-19 death trends using regression models, highlighting key drivers and regional variations.

While effective overall, further refinement is needed to improve accuracy for high-death regions. These insights provide a solid basis for informed, data-driven decisions.

THANKS FOR YOUR ATTENTION!

