- Caraduação

CONTEÚDO DO CURSO

OBJETIVO

- Conhecer o conceito de sinais analógicos;
- Conhecer o conceito de sinais digitais;
- Saber a conversão entre sinal analógico e digital (A/D);
- Aplicar a conversão A/D no PIC18F

Conversor Analógico para Digital.

- Um Engenheiro da Computação responsável pela produção de música que envolve diversos artistas, precisa processar as gravações originais, feitas por meio de um microfone, para que possuam a melhor qualidade possível.
- Para isso, o engenheiro utilizará para melhoramento do sinal adquirido (voz e instrumentos); softwares que possam manipular tais sinais.
- Como converter os sinais gerados. para que, dentro de um sistema microprocessado possam, ser analisados e modificados de modo a melhorar a qualidade da música?
- A reposta para essa e outras perguntas estão nessa aula sobre conversores "analógicos para digital", mais conhecidos como A/D.

- Um Engenheiro da Computação responsável pela produção de música que envolve diversos artistas, precisa processar as gravações originais, feitas por meio de um microfone, para que possuam a melhor qualidade possível.
- Para isso, o engenheiro utilizará para melhoramento do sinal adquirido (voz e instrumentos); softwares que possam manipular tais sinais.
- Como converter os sinais gerados. para que, dentro de um sistema microprocessado possam, ser analisados e modificados de modo a melhorar a qualidade da música?
- A reposta para essa e outras perguntas estão nessa aula sobre conversores "analógicos para digital", mais conhecidos como A/D.

- Um Engenheiro da Computação responsável pela produção de música que envolve diversos artistas, precisa processar as gravações originais, feitas por meio de um microfone, para que possuam a melhor qualidade possível.
- Para isso, o engenheiro utilizará para melhoramento do sinal adquirido (voz e instrumentos); softwares que possam manipular tais sinais.
- Como converter os sinais gerados. para que, dentro de um sistema microprocessado possam, ser analisados e modificados de modo a melhorar a qualidade da música?
- A reposta para essa e outras perguntas estão nessa aula sobre conversores "analógicos para digital", mais conhecidos como A/D.

- Um Engenheiro da Computação responsável pela produção de música que envolve diversos artistas, precisa processar as gravações originais, feitas por meio de um microfone, para que possuam a melhor qualidade possível.
- Para isso, o engenheiro utilizará para melhoramento do sinal adquirido (voz e instrumentos); softwares que possam manipular tais sinais.
- Como converter os sinais gerados. para que, dentro de um sistema microprocessado possam, ser analisados e modificados de modo a melhorar a qualidade da música?
- A reposta para essa e outras perguntas estão nessa aula sobre conversores "analógicos para digital", mais conhecidos como A/D.

- Imagine a medição de temperatura ambiente utilizando um termômetro;
- Pode-se para isso utilizar um termômetro a base de mercúrio, como o mostrado a seguir:

- O termômetro de mercúrio é consiste basicamente de um tubo capilar (fino como o cabelo) de vidro, fechado a vácuo, e um bulbo (espécie de bolha arredondada) em uma extremidade contendo mercúrio.
- O mercúrio, como todos os materiais, dilata-se quando aumenta a temperatura. Por ser extremamente sensível, ele aumenta de volume à menor variação de temperatura, mesmo próxima à do como número.
- O volume do mercúrio aquecido se expende no tubo capilar do termômetro. E essa expansão é medida pela variação do comprimento, numa escala graduada.
- É dessa forma, por la comparatura em geral
 Lemperatura em geral

- O termômetro de mercúrio consiste basicamente de um tubo capilar (fino como o cabelo) de vidro, fechado a vácuo, e um bulbo (espécie de bolha arredondada) em uma extremidade contendo mercúrio.
- O mercúrio, como todos os materiais, dilata-se quando aumenta a temperatura. Por ser extremamente sensível, ele aumenta de volume à menor variação de temperatura, mesmo próxima à do corpo humano.
- O volume do mercúrio aquecido se expande no tubo capilar do termômetro. E essa expansão é medida pela variado do comprimento, numa escala graduada.
- É dessa forma, pela compansão do líquido, que observamos a variação da temperatura em geral

- O termômetro de mercúrio consiste basicamente de um tubo capilar (fino como o cabelo) de vidro, fechado a vácuo, e um bulbo (espécie de bolha arredondada) em uma extremidade contendo mercúrio;
- O mercúrio, como todos os materiais, dilata-se quando aumenta a temperatura. Por ser extremamente sensível, ele aumenta de volume à menor variação de temperatura, mesmo próxima à do corpo humano.
- O volume do mercúrio aquecido se expande no tubo capilar do termômetro. E essa expansão é medida pela variação do comprimento, numa escala graduada.
- É dessa forma, policionario do líquido, que observamos a variação da temperatura em geral

- O termômetro de mercúrio consiste basicamente de um tubo capilar (fino como o cabelo) de vidro, fechado a vácuo, e um bulbo (espécie de bolha arredondada) em uma extremidade contendo mercúrio;
- O mercúrio, como todos os materiais, dilata-se quando aumenta a temperatura. Por ser extremamente sensível, ele aumenta de volume à menor variação de temperatura, mesmo próxima à do corpo humano.
- O volume do mercúrio aquecido se expande no tubo capilar do termômetro. E essa expansão é medida pela variação do comprimento, numa escala graduada.
- É dessa forma, pela expansão do líquido, que observamos a variação da temperatura em geral

- Como "Engenheiros da Computação", nosso objetivo é realizar tal leitura, utilizando um dispositivo computacional;
- Como trazer as leituras realizadas no meio físico para o meio digital?
- Como o computador pode nos auxiliar nessas medidas?

- A resposta para essas perguntas está no: Conversor Analógico Digital.(A/D).
- Consiste em um dispositivo (componente eletrônico, ou parte de um microcontrolador) responsável por realizar a conversão de números analógicos (1; 1,5; 2.34; etc) para a forma como o computador os entende: (0001, 00010,10; etc.)

Exemplos:

Características:

- -Alimentação de 2,7V a 5,5V
- Resolução de 10-bits
- Encapsulamento DIP de 8 pinos
- Interface SPI de 3 contatos
- Até 75.000 amostras por segundo

Exemplos:

Características:

- -Alimentação de 2,7V a 5,5V
- Resolução de 10-bits
- Encapsulamento DIP de 8 pinos
- Interface SPI de 3 contatos
- Até 75.000 amostras por segundo

Exemplos:

➤ AD7705 Conversor Analógico Digital de 16 Bits;

Pequeno dispositivo digital capaz de realizar a conversão de sinais analógicos em sinais digitais quando aplicado em projetos com microcontroladores;

Exemplos:

Características:

- ➤ Ideal para microcontroladores sem conversor integrado;
- ➤ Converte sinais analógicos em digitais;
- ➤ Resolução de 16-bits;
- ➤ Amplificador de ganho programável de até 128X integrado;
- ➤ Tensão de operação: 3.3V-5VDC;
- ➤ Comunicação: SPI;
- ➤ Resolução: 16-bits;

Exemplos:

Exemplo: DAC - MCP4725

Dados Analógicos x Dados Digitais.

Dados analógicos

Conversor A/D

Dados Digitais

1. Introdução Exemplos:

Dados Analógicos x Dados Digitais.

Sinal analógico, em azul, é lido pelo A/D.

Sinal digitalizado, em vermelho, pelo A/D.

Exemplo:

Exemplo:

Voltando ao estúdio de gravação...

PIC18F452 Conversor A/D

- > O microcontrolador PIC18F452 possui um conversor A/D embarcado.
- ➤ Permite a conversão de um sinal analógico de entrada ao seu correspondente digital com resolução de 10 bits.
- **▶** Registradores IMPORTANTES:
- **➤ ADRESH Armazena o resultado dos bits mais significativos.**
- **≻ADRESL** Armazena o resultado dos bits menos significativos.
- ➤ ADCON0 Registrador de controle nº 0
- **≻ADCON1** Registrador de controle nº1

- ➤ O microcontrolador PIC18F452 possui um conversor A/D embarcado.
- ➢ Permite a conversão de um sinal analógico de entrada ao seu correspondente digital com resolução de 10 bits.
- **➤** Registradores IMPORTANTES:
- **➤ ADRESH Armazena o resultado dos bits mais significativos.**
- **➤ ADRESL Armazena o resultado dos bits menos significativos.**
- **≻ADCON0** Registrador de controle nº 0
- **≻ADCON1** Registrador de controle nº1

>ADCON0:

- Controla a operação do módulo A/D;

>ADCON1:

- Configura a função dos pinos de entrada.

>ADCON0:

- Controla a operação do módulo A/D;

≻ADCON1:

- Configura a função dos pinos de entrada.

Diagrama de Blocos (A/D)

REGISTRADOR ADCONO

ADCON0 REGISTER											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0				
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON				
bit 7					•		bit 0				

ADCON0 REGISTER										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON			
bit 7					•		bit 0			

ADCON0 - bits 7:6 e bit 6 ADCON1

ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in bold)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

ADCON0 REGISTER										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON			
bit 7				•	•		bit 0			

Bits utilizados para selecionar o canal desejado: ADCONO – bits 5 a 3 <CHS2>, <CHS1>, <CHS0>

```
CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (AN0)

001 = channel 1, (AN1)

010 = channel 2, (AN2)

011 = channel 3, (AN3)

100 = channel 4, (AN4)

101 = channel 5, (AN5)

110 = channel 6, (AN6)

111 = channel 7, (AN7)
```


ADCON0 REGISTER										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON			
bit 7							bit 0			

Bit de status da conversão:

ADCON0 – bit
$$2 < GO/\overline{DONE} >$$

- 1 = Processo do conversão em andamento;
- 0 = Não há processo de conversão

ADCON0 REGISTER										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON			
bit 7					•		bit 0			

Bit de *Habilitação* do A/D:

ADCON0 - bit 0 < ADON>

1 = Conversor A/D ligado;

0 = Conversor A/D desligado.

REGISTRADOR ADCON1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Bit de formatação do resultado

ADCON1 - bit 7 < ADFM>

1 = Justificado à direita. Os 6 bits mais significativos do Reg. ADRESH têm valor = 0

2 = Justificado à esquerda. Os 6 bits menos significativos do Reg. ADRESL têm valor = 0

REGISTRADOR ADCON1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

ADCON1 – bit 6 <ADCS2> - Utilizado em conjunto com <ADCS1:ADCS0>

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

REGISTRADOR ADCON1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Bits de controle para configuração dos pinos do A/D: ADCON1 – bits 3 ao 0 - <PCFG3:PCFG0>

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	_	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	_	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

CHS<2:0>

Fórmula da Conversão:

Resultado = (Vin - Vref-) * 1023 / (Vref+ - Vref-)

Onde:

Vin = tensão de entrada no pino do A/D;

Vref+ = Valor de tensão de referência máxima;

Vref- = Valor de tensão de referência mínima;

Lembrete:

1023 é o valor máximo de conversão do A/D (10 bits).

Os valores convertidos sempre estarão entre 0 e 1023.

Exemplo:

Implementar um trecho programa que efetue a leitura do sinal analógico proveniente do potenciômetro ligado a RAO (canal 0) e mostrar o resultado de forma binária no PORTC e PORTD. O programa deverá efetuar a leitura e mostrar o resultado a cada 250ms.

ORG ORG	OXOO GOTO OXO8 RETFIE	INICIO
ORG	OX18 RETFIE	
INICIO	CLRF CLRF BSF MOVLW MOVWF	TRISC TRISD TRISA,0; RAO=ENTRADA B'10000001' ADCONO; FOSC/64, canal 0, ;A/D habilitado
ESPERA_1	MOVLW MOVWF CALL	B'11001110' ADCON1; ESPERA_CONF; aprox. 13us para conf.
ESPERA	BSF BTFSC GOTO MOVFF MOVFF CALL GOTO END	ADCONO, GO; inicia conversão ADCONO, DONE; aguarda fim da conversão ESPERA ADRESL, PORTC; byte baixo para o PORTC ADRESH, PORTD; byte alto para o PORTD DELAY_250ms; ESPERA_1

Copyright © 2018 Prof. Tiago

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).