Stereochemie

mit Vitamin C

Süßstoff Aspartam
Enthält eine Phenylalaninquelle

L(+)-Milchsäure

Zuckeraustauschstoff **Sorbit**

Isomerie organischer Verbindungen

Isomere

Konstitutionsisomere

Struktur-Isomere

Stellungs-Isomere

$$\begin{array}{ccc} \text{COOH} & \text{COOH} \\ \text{H}_2\text{N}-\text{C}-\text{H} & \text{CH}_2 \\ \text{CH}_3 & \text{H}_2\text{N}-\text{CH}_2 \\ & \text{\alpha-Alanin} & \text{\beta-Alanin} \end{array}$$

Konfigurationsisomere

cis-trans-

Isomere

Enantiomere

Stereoisomere

COOH

COOH

Konformere

Konstitution, Strukturisomerie

Konfiguration, Stereoisomerie

Konformation, Rotation um Einfachbindungen

Enantiomerie

schematische Darstellung eines Enantiomerenpaares

Enantiomere

Enantiomere verhalten sich geometrisch wie Bild und Spiegelbild man bezeichnet sie als chiral (griech. Händigkeit).

Eigenschaften von Enantiomeren

gleiche skalare Eigenschaften

Siedepunkt

Löslichkeit

Dichte

 Reaktivität (mit achiralen Stoffen)

verschiedene vektorielle Eigenschaften

• optische Aktivität

Reaktionen mit anderen chiralen Substanzen

Optische Aktivität

Die Schwingungsebene linear polarisierten Lichtes wird beim Durchdringen einer Lösung chiraler Substanzen gedreht.

Beide Enantiomere drehen, bei gleicher Konzentration, die Polarisationsebene um den gleichen Betrag, aber in entgegengesetzter Richtung.

Chiralität

4 verschiedene Substituenten am C-Atom

Beispiele:

Glycerinaldehyd

Chiralitätszentren

sp³-C-Atome; 4 verschiedene Substituenten

Penicillin G

Fischer-Projektion 1: D,L-Nomenklatur

- längste Kohlenstoffkette senkrecht stellen
- höchstoxidiertes C-Atom nach oben
- Kette so drehen, daß die seitlichen Substituenten nach vorne weisen
- D Substituent steht rechts (lat.: dexter = rechts)
- L Substituent steht links (*lat.:* laevus = links)

D-Glycerinaldehyd:

Fischer-Projektion

Fischer-Projektion 2

Die Fischer-Projektion wird heute vor allem bei Aminosäuren und Zuckern verwendet.

- Aminosäuren: Stellung der Amino-Gruppe
- Zucker: Stellung der OH-Gruppe an dem vom höchstoxidierten C-Atom am weitesten entfernten chiralen C-Atom

Merke: Der D,L-Deskriptor wird für ein ganzes Molekül angegeben!

R,S-Nomenklatur

universell verwendbar!

- Priorität der Liganden nach der Ordnungszahl, vom Chiralitätszentrum in Sphären nach außen
- Ligand mit niedrigster Priorität nach hinten stellen
- Kreisbewegung Liganden $1 \rightarrow 2 \rightarrow 3$
- R Bewegung im Uhrzeigersinn
- **S** Bewegung gegen den Uhrzeigersinn

Merke: Der R,S-Deskriptor muß für jedes Chiralitätszentrum angegeben werden!

R-Glycerinaldehyd

Prochiralität

Prochirale Verbindungen gehen durch Austausch eines Wasserstoffatoms gegen einen anderen Substituenten oder durch Addition an eine Doppelbindung in chirale Moleküle über.

Enantiomere - Diastereomere

Es gibt bei **n** chiralen C-Atomen **2**ⁿ Stereoisomere: Enantiomere verhalten sich wie Bild und Spiegelbild, alle anderen Stereoisomere nennt man Diastereomere.

Threonin

$$O_{C}$$
OH

 H_2N-C-H
 $H-C-OH$
 CH_3

$$O_{C}$$
OH
 O_{C} OH

2S,3R-Threonin

Diastereomere

Diastereomere unterscheiden sich in ihren physikalischen und chemischen Eigenschaften!

	O OH	O _C OH	O _C OH	O _{NC} ∕OH
	H-C-NH ₂	H_2N-C-H	H—C—NH ₂	H_2N-C-H
	HO—C—H	H—Ċ—OH	H—C—OH	HO-C-H
	ĊH ₃	ĊH ₃	ĊH ₃	ĊH ₃
	D-Threonin	L-Threonin	D-Allothreonin	L-Allothreonin
Schmelzpunkt:	Zers.: 250°C	Zers.: 250°C	276°C	276°C
$[\alpha]_D^{20}$:	+33,9°	-33,9°	-9,0°	+9,0°
	H_C_O	H_C_O	H_C_O	H_C=O
	н-ср-он	но-с-н	но-с-н	н—сॄ—он
	но-¢-н	H-Ċ-OH	но-с-н	HO-Ċ-H
	н-ср-он	но—сॄ−н	н—с—он	но—сॄ−н
	н—ç <mark>—он</mark>	но-с-н	H—Ç— <mark>OH</mark>	H-Ċ- <mark>OH</mark>
	ĊН₂ОН	ĊН₂ОН	ĊH₂OH	ĊH₂OH
	D-Glucose	L-Glucose	D-Mannose	D-Galactose
Schmelzpunkt:	150°C	150°C	132°C	Zers.: 167°C
$[\alpha]_{D}^{20}$:	+53,3°	-53,3°	+13,8°	+80,0°

Stereoisomerie der Glucose

2⁴ = 16 Stereoisomere

- 1. D-Glucose
- 2. 1 Enantiomer:

L-Glucose

3.-16. 14 Diastereomere(7 Enantiomerenpaare):

D-, L-Allose

D-, L-Altrose

D-, L-Mannose

D-, L-Gulose

D-, L-Idose

D-, L-Galactose

D-, L-Thalose

Racemat = 1:1-Gemisch beider Enantiomere

Umsetzung mit einem chiralen Reagens:

weitere Trennverfahren:

- enzymatische Umsetzung eines Enantiomers
- chromatographische Trennung durch chirale Säulen

Weinsäure

Weinsäure besitzt zwei chirale C-Atome, es gibt jedoch nur drei Stereoisomere:

(+)-Weinsäure (-)-Weinsäure

Enantiomere

O
$$C$$
 OH C OH

D-Penicillamin kommt als Therapeutikum zum Einsatz:

- bei der Wilsonschen Krankheit als Chelatbildner zur Kupferionen-Ausscheidung
- bei Vergiftungen mit Schwermetallen, die hohe Schwefel-Affinität besitzen
- bei Cystinurie zur Auflösung von Cystin-Steinen (Spaltung von Disulfid-Brücken).

L-Penicillamin ist aufgrund seiner Ähnlichkeit mit den proteinogenen Aminosäuren sehr giftig.

Zahlreiche Aromastoffe sind chiral. Ihr Geruch bzw. Geschmack hängt von der Konfiguration ab.

