Irriducibilità in $\mathbb{Z}[x]$ e in $\mathbb{Q}[x]$

§1.1 Criterio di Eisenstein e proiezione in $\mathbb{Z}_p[x]$

Prima di studiare le irriducibilità in \mathbb{Z} , si guarda alle irriducibilità nei vari campi finiti \mathbb{Z}_p , con p primo. Questo metodo presenta un vantaggio da non sottovalutare: in \mathbb{Z}_p per ogni grado n esiste un numero finito di polinomi monici¹ – in particolare, p^n – e quindi per un polinomio di grado d è sufficiente controllare che questo non sia prodotto di tali polinomi monici per $1 \le n < d$.

In modo preliminare, si definisce un omomorfismo fondamentale.

Definizione 1.1.1. Sia il seguente l'omomorfismo di proiezione da \mathbb{Z} in \mathbb{Z}_p :

$$\hat{\pi}_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x], \ a_n x^n + \ldots + a_0 \mapsto [a_n]_p \ x^n + \ldots + [a_0]_p.$$

Osservazione. Si dimostra facilmente che $\hat{\pi}$ è un omomorfismo di anelli. Innanzitutto, $\hat{\pi}(1) = [1]_p$. Vale chiaramente la linearità:

$$\hat{\pi}_p(a_n x^n + \ldots + a_0) + \hat{\pi}_p(b_n x^n + \ldots + b_0) = [a_n]_p x^n + \ldots + [b_n]_p x^n + \ldots = [a_n + b_n]_p x^n + \ldots = \hat{\pi}_p(a_n x^n + \ldots + a_0 + b_n x^n + \ldots + b_0).$$

Infine vale anche la moltiplicatività:

$$\hat{\pi}_{p}(a_{n}x^{n} + \ldots + a_{0})\hat{\pi}_{p}(b_{n}x^{n} + \ldots + b_{0}) = ([a_{n}]_{p}x^{n} + \ldots)([b_{n}]_{p}x^{n} + \ldots) =$$

$$= \sum_{i=0}^{n} \sum_{j+k=i} [a_{j}]_{p} [b_{k}]_{p} x^{i} = \sum_{i=0}^{n} \sum_{j+k=i} [a_{j}b_{k}]_{p} x^{i} = \hat{\pi}_{p} \left(\sum_{i=0}^{n} \sum_{j+k=i} a_{j}b_{k}x^{i} \right) =$$

$$= \hat{\pi}_{p} \left((a_{n}x^{n} + \ldots + a_{0})(b_{n}x^{n} + \ldots + b_{0}) \right).$$

Prima di enunciare un teorema che si rivelerà importante nel determinare l'irriducibilità di un polinomio in $\mathbb{Z}[x]$, si enuncia una definizione che verrà ripresa anche in seguito

¹Si prendono in considerazione solo i polinomi monici dal momento che vale l'equivalenza degli associati: se a divide b, allora tutti gli associati di a dividono b. \mathbb{Z}_p è infatti un campo, e quindi $\mathbb{Z}_p[x]$ è un anello euclideo.

Definizione 1.1.2. Un polinomio $a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$ si dice **primitivo** se $MCD(a_n, \ldots, a_0) = 1$.

Teorema 1.1.3

Sia p un primo. Sia $f(x) = a_n x^n + \ldots \in \mathbb{Z}[x]$ primitivo. Se $p \nmid a_n$ e $\hat{\pi}_p(f(x))$ è irriducibile in $\mathbb{Z}_p[x]$, allora anche f(x) lo è in $\mathbb{Z}[x]$.

Dimostrazione. Si dimostra la tesi contronominalmente. Sia $f(x) = a_n x^n + \ldots \in \mathbb{Z}[x]$ primitivo e riducibile, con $p \nmid a_n$. Dal momento che f(x) è riducibile, esistono g(x), h(x) non invertibili tali che f(x) = g(x)h(x).

Si dimostra che $\deg g(x) \geq 1$. Se infatti fosse nullo, g(x) dovrebbe o essere uguale a ± 1 – assurdo, dal momento che g(x) non è invertibile, f – o essere una costante non invertibile. Tuttavia, nell'ultimo caso, risulterebbe che f(x) non è primitivo, poiché g(x) dividerebbe ogni coefficiente del polinomio. Analogamente anche $\deg h(x) \geq 1$.

Si consideri ora $\hat{\pi}_p(f(x)) = \hat{\pi}_p(g(x))\hat{\pi}_p(h(x))$. Dal momento che $p \nmid a_n$, il grado di f(x) rimane costante sotto l'operazione di omomorfismo, ossia deg $\hat{\pi}_p(f(x)) = \deg f(x)$.

Inoltre, poiché nessuno dei fattori di f(x) è nullo, $\deg f(x) = \deg g(x) + \deg h(x)$. Da questa considerazione si deduce che anche i gradi di g(x) e h(x) non devono calare, altrimenti si avrebbe che $\deg \hat{\pi}_p(f(x)) < \deg f(x)$, f. Allora $\deg \hat{\pi}_p(g(x)) = \deg g(x) \ge 1$, $\deg \hat{\pi}_p(h(x)) = \deg h(x) \ge 1$.

Poiché deg $\hat{\pi}_p(g(x))$ e deg $\hat{\pi}_p(h(x))$ sono dunque entrambi non nulli, $\hat{\pi}_p(g(x))$ e $\hat{\pi}_p(h(x))$ non sono invertibili². Quindi f(x) è prodotto di non invertibili, ed è dunque riducibile.

Teorema 1.1.4 (*Criterio di Eisenstein*)

Sia p un primo. Sia $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$ primitivo tale che:

- (1) $p \nmid a_n$,
- (2) $p \mid a_i, \forall i \neq n,$
- (3) $p^2 \nmid a_0$

Allora f(x) è irriducibile in $\mathbb{Z}[x]$.

²Si ricorda che $\mathbb{Z}_p[x]$ è un anello euclideo. Pertanto, non avere lo stesso grado dell'unità equivale a non essere invertibili.

Dimostrazione. Si ponga f(x) riducibile e sia pertanto f(x) = g(x)h(x) con g(x) e h(x) non invertibili. Analogamente a come visto per il Teorema 1.1.3, si desume che deg g(x), deg $h(x) \ge 1$.

Si applica l'omomorfismo di proiezione in $\mathbb{Z}_p[x]$:

$$\hat{\pi}_p(f(x)) = \underbrace{[a_n]_p}_{\neq 0} x_n,$$

da cui si deduce che deg $\hat{\pi}_p(f(x)) = \deg f(x)$.

Dal momento che $\hat{\pi}_p(f(x)) = \hat{\pi}_p(g(x))\hat{\pi}_p(h(x))$ e che $\mathbb{Z}_p[x]$, in quanto campo, è un dominio, necessariamente sia $\hat{\pi}_p(g(x))$ che $\hat{\pi}_p(h(x))$ sono dei monomi.

Inoltre, sempre in modo analogo a come visto per il *Teorema 1.1.3*, sia $\deg \hat{\pi}_p(g(x))$ che $\deg \hat{\pi}_p(h(x))$ sono maggiori o uguali ad 1.

Combinando questo risultato col fatto che questi due fattori sono monomi, si desume che $\hat{\pi}_p(g(x))$ e $\hat{\pi}_p(h(x))$ sono monomi di grado positivo. Quindi p deve dividere entrambi i termini noti di g(x) e h(x), e in particolare p^2 deve dividere il loro prodotto, ossia a_0 . Tuttavia questo è un assurdo, f.

Osservazione. Si consideri $x^k - 2$, per $k \ge 1$. Per il *Criterio di Eisenstein*, considerando come primo p = 2, si verifica che $x^k - 2$ è sempre irriducibile. Pertanto, per ogni grado di un polinomio esiste almeno un irriducibile – a differenza di come invece avviene in $\mathbb{R}[x]$ o in $\mathbb{C}[x]$.

Teorema 1.1.5

Sia $f(x) \in \mathbb{Z}[x]$ primitivo e sia $a \in \mathbb{Z}$. Allora f(x) è irriducibile se e solo se f(x+a) è irriducibile.

Dimostrazione. Si dimostra una sola implicazione, dal momento che l'implicazione contraria consegue dalle stesse considerazioni poste studiando prima f(x + a) e poi f(x).

Sia f(x) = a(x)b(x) riducibile, con a(x), $b(x) \in \mathbb{Z}[x]$ non invertibili. Come già visto per il Teorema~1.1.3, $\deg a(x)$, $\deg b(x) \geq 1$.

Allora chiaramente f(x+a) = g(x+a)h(x+a), con $\deg g(x+a) = \deg g(x) \ge 1$, $\deg h(x+a) = \deg h(x) \ge 1$. Pertanto f(x+a) continua a essere riducibile, da cui la tesi.

Esempio 1.1.6

Si consideri $f(x) = x^{p-1} + \ldots + x^2 + x + 1 \in \mathbb{Z}[x]$, dove tutti i coefficienti del polinomio sono 1. Si verifica che:

$$f(x+1) = \frac{(x+1)^p - 1}{x} = p + \binom{p}{2}x + \dots + x^{p-1}.$$

Allora, per il *Criterio di Eisenstein* con p, f(x+1) è irriducibile. Pertanto anche f(x) lo è.

§1.2 Alcuni irriducibili di $\mathbb{Z}_2[x]$

Tra tutti gli anelli $\mathbb{Z}_p[x]$, $\mathbb{Z}_2[x]$ ricopre sicuramente un ruolo fondamentale, dal momento che è il meno costoso computazionalmente da analizzare, dacché \mathbb{Z}_2 consta di soli due elementi. Pertanto si computano adesso gli irriducibili di $\mathbb{Z}_2[x]$ fino al quarto grado incluso, a meno di associati.

Sicuramente $x \in x+1$ sono irriducibili, dal momento che sono di primo grado. I polinomi di secondo grado devono dunque essere prodotto di questi polinomi, e pertanto devono avere o 0 o 1 come radice: si verifica quindi che $x^2 + x + 1$ è l'unico polinomio di secondo grado irriducibile.

Per il terzo grado vale ancora lo stesso principio, per cui $x^3 + x^2 + 1$ e $x^3 + x + 1$ sono gli unici irriducibili di tale grado. Infine, per il quarto grado, i polinomi riducibili soddisfano una qualsiasi delle seguenti proprietà:

- 0 e 1 sono radici del polinomio,
- il polinomio è prodotto di due polinomi irriducibili di secondo grado.

Si escludono pertanto dagli irriducibili i polinomi non omogenei – che hanno sicuramente 0 come radice –, e i polinomi con 1 come radice, ossia $x^4+x^3+x+1,\ x^4+x^3+x^2+1$, e x^4+x^2+x+1 . Si esclude anche $(x^2+x+1)^2=x^4+x^2+1$. Pertanto gli unici irriducibili di grado quattro sono $x^4+x^3+x^2+x+1$, x^4+x^3+1 , x^4+x+1 .

Tutti questi irriducibili sono raccolti nella seguente tabella:

- (grado 1) x, x + 1,
- (grado 2) $x^2 + x + 1$,
- (grado 3) $x^3 + x^2 + 1$, $x^3 + x + 1$,
- (grado 4) $x^4 + x^3 + x^2 + x + 1$, $x^4 + x^3 + 1$, $x^4 + x + 1$.

Esempio 1.2.1

Il polinomio $51x^3 + 11x^2 + 1 \in \mathbb{Z}[x]$ è primitivo dal momento che MCD(51, 11, 1) = 1. Inoltre, poiché $\hat{\pi}_2(51x^3 + 11x^2 + 1) = x^3 + x + 1$ è irriducibile, si deduce che anche $51x^3 + 11x^2 + 1$ lo è per il *Teorema 1.1.3*.

§1.3 Teorema delle radici razionali e lemma di Gauss

Si enunciano in questa sezione i teoremi più importanti per lo studio dell'irriducibilità dei polinomi in $\mathbb{Q}[x]$ e in $\mathbb{Z}[x]$, a partire dai due teoremi più importanti: il classico *Teorema delle radici razionali* e il *Lemma di Gauss*, che si pone da ponte tra l'analisi dell'irriducibilità in $\mathbb{Z}[x]$ e quella in $\mathbb{Q}[x]$.

Teorema 1.3.1 (Teorema delle radici razionali)

Sia $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$. Abbia f(x) una radice razionale. Allora, detta tale radice $\frac{p}{q}$, già ridotta ai minimi termini, questa è tale che:

- (i.) $p \mid a_0$,
- (ii.) $q \mid a_n$.

Dimostrazione. Poiché $\frac{p}{q}$ è radice, $f\left(\frac{p}{q}\right)=0$, e quindi si ricava che:

$$a_n \left(\frac{p}{q}\right)^n + \ldots + a_0 = 0 \implies a_n p^n = -q(\ldots + a_0 q^{n-1}).$$

Quindi $q \mid a_n p^n$. Dal momento che MCD(p,q) = 1, si deduce che $q \mid a_n$.

Analogamente si ricava che:

$$a_0q^n = -p(a_np^{n-1} + \ldots).$$

Pertanto, per lo stesso motivo espresso in precedenza, $p \mid a_0$, da cui la tesi.

Teorema 1.3.2 (*Lemma di Gauss*)

Il prodotto di due polinomi primitivi in $\mathbb{Z}[x]$ è anch'esso primitivo.

Dimostrazione. Siano $g(x) = a_m x^m + \ldots + a_0$ e $h(x) = b^n x^n + \ldots + b_0$ due polinomi primitivi in $\mathbb{Z}[x]$. Si assuma che f(x) = g(x)h(x) non sia primitivo. Allora esiste un p primo che divide tutti i coefficienti di f(x).

Siano a_s e b_t i più piccoli coefficienti non divisibili da p dei rispettivi polinomi. Questi sicuramente esistono, altrimenti p dividerebbe tutti i coefficienti, e quindi o g(x) o h(x) non sarebbe primitivo, f.

Si consideri il coefficiente di x^{s+t} di f(x):

$$c_{s+t} = \sum_{j+k=s+t} a_j b_k = \underbrace{a_0 b_{s+t} + a_1 b_{s+t-1} + \dots}_{\equiv 0 \pmod p} + a_s b_t + \underbrace{a_{s+1} b_{t-1} + \dots}_{\equiv 0 \pmod p},$$

dal momento che $p \mid c_{s+t}$, si deduce che p deve dividere anche $a_s b_t$, ossia uno tra a_s e b_t , che è assurdo, f. Quindi f(x) è primitivo.

Teorema 1.3.3 (Secondo lemma di Gauss)

Sia $f(x) \in \mathbb{Z}[x]$. Allora f(x) è irriducibile in $\mathbb{Z}[x]$ se e solo se f(x) è irriducibile in $\mathbb{Q}[x]$ ed è primitivo.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Si dimostra l'implicazione contronominalmente, ossia mostrando che se f(x) non è primitivo o se è riducibile in $\mathbb{Q}[x]$, allora f(x) è riducibile in $\mathbb{Z}[x]$.

Se f(x) non è primitivo, allora f(x) è riducibile in $\mathbb{Z}[x]$. Sia quindi f(x) primitivo e riducibile in $\mathbb{Q}[x]$, con f(x) = g(x)h(x), g(x), $h(x) \in \mathbb{Q}[x] \setminus \mathbb{Q}[x]^*$.

Si descrivano g(x) e h(x) nel seguente modo:

$$g(x) = \frac{p_m}{q_m} x^m + \ldots + \frac{p_0}{q_0}, \quad MCD(p_i, q_i) = 1 \ \forall 0 \le i \le m,$$

$$h(x) = \frac{s_n}{t_n} x^n + \ldots + \frac{s_0}{t_0}, \quad MCD(s_i, t_i) = 1 \ \forall 0 \le i \le n.$$

Si definiscano inoltre le seguenti costanti:

$$\alpha = \frac{\operatorname{mcm}(q_m, \dots, q_0)}{\operatorname{MCD}(p_m, \dots, p_0)}, \quad \beta = \frac{\operatorname{mcm}(t_n, \dots, t_0)}{\operatorname{MCD}(s_n, \dots, s_0)}.$$

Si verifica che sia $\hat{g}(x) = \alpha g(x)$ che $\hat{h}(x) = \beta h(x)$ appartengono a $\mathbb{Z}[x]$ e che entrambi sono primitivi. Pertanto $\hat{g}(x)\hat{h}(x) \in \mathbb{Z}[x]$.

Si descriva f(x) nel seguente modo:

$$f(x) = a_k x^k + \dots + a_0, \quad MCD(a_k, \dots, a_0) = 1.$$

Sia $\alpha\beta=\frac{p}{q}$ con $\mathrm{MCD}(p,q)=1,$ allora:

$$\hat{g}(x)\hat{h}(x) = \alpha\beta f(x) = \frac{p}{q}(a_k x^k + \dots + a_0),$$

da cui, per far sì che $\hat{g}(x)\hat{h}(x)$ appartenga a $\mathbb{Z}[x]$, q deve necessariamente dividere tutti i coefficienti di f(x). Tuttavia f(x) è primitivo, e quindi $q = \pm 1$. Pertanto $\alpha\beta = \pm p \in \mathbb{Z}$.

Infine, per il Lemma di Gauss, $\alpha\beta f(x)$ è primitivo, da cui $\alpha\beta=\pm 1$. Quindi $f(x)=\pm \hat{g}(x)\hat{h}(x)$ è riducibile.

(\Leftarrow) Se f(x) è irriducibile in $\mathbb{Q}[x]$ ed è primitivo, sicuramente f(x) è irriducibile anche in $\mathbb{Z}[x]$. Infatti, se esiste una fattorizzazione in irriducibili in $\mathbb{Z}[x]$, essa non include alcuna costante moltiplicativa dal momento che f(x) è primitivo, e quindi esisterebbe una fattorizzazione in irriducibili anche in $\mathbb{Q}[x]$.