

Micromechanical Models of Transverse Cracking in Ultra-thin Fiber-Reinforced Composite Laminates

Luca Di Stasio ^{1,2} Zoubir Ayadi ¹ Janis Varna ²

École Européenne d'Ingénieurs en Génie des Matériaux, Université de Lorraine, Nancy, France
 Avdelningen för materialvetenskap, Luleå tekniska universitet, Luleå, Sverige

Ultra-thin Fiber Reinforced Polymer Composite (FRPC) Laminates: an Introduction Technological origins and applications Damage in FRPCs: a visual introduction The thin ply effect In the transfer broken of the transfer or transfer o

Objectives & Approach

By Prof. Dr. E. K. Gamstedt, KTH, SE.

What do we want to achieve?

Nuon Solar team's car, from [2].

- ► Investigate the influence of volume fraction, material properties, thin ply thickness and bounding plies' thicknesses on crack initiation
- $\blacktriangleright G_{*c} = G_{*c} \left(\theta_{debond}, \Delta \theta_{debond}, E_{(\cdot \cdot)}, \nu_{(\cdot \cdot)}, G_{()}, VF_f, t_{ply}, \frac{t_{ply}}{t_{bounding plies}} \right)$

Solar Impulse 2, from [1].

How do we want to achieve it?

Measurements of in-situ transverse strength from Flaggs & Kural, 1982 [3].

- ▶ Design and categorization of several Representative Volume Elements (RVEs)
- ► Automated generation of RVEs geometry and FEM model
- ► Finite Element Simulations (in Abaqus)

Design & Analysis of Representative Volume Elements (RVEs) VCCT: G₁ = \frac{d_{1}}{d_{1}} G_{2} = \frac{d_{2}}{d_{2}} G_{3} = \frac{d_{2}}{

Conclusions & Perspectives

What has been accomplished?

- ▶ 2D micromechanical models have been developed to investigate crack initiation in thin ply laminates
- ► A numerical procedure has been devised and implemented to automatize the creation of FEM models
- lacktriangle Validation for $VF_f o 0$ (matrix dominated RVE) with respect to previous literature [4, 5]

What's next?

- Investigate the dependence on VF_f , t_{ply} , $t_{ply}/t_{bounding\ plies}$ and different material systems
- Study numerical performances with respect to model's parameters
- ► Repeat for different RVEs and compare

Acknowledgements

The support of the European Commission through the Erasmus Mundus Programme is thankfully aknowledged.

References

NTPT makes world's thinnest prepeg even thinner. (2017, February 10). Retrieved from http://www.thinplytechnology.com/news-159-ntpta-makes-world-s-thinnest-prepreg-even-thinner oxeon TECHNOLOGIES. (2017, February 10). Retrieved from http://oxeon.se/technologies/

Donald L. Flaggs, Murat H. Kural; Experimental Determination of the In Situ Transverse Lamina Strength in Graphite/Epoxy Laminates. Journal of Composite Materials, 1982; 16(2).

Toya, M.; A crack along the interface of a circular inclusion embedded in an infinite solid. Journal of the Mechanics and Physics of Solids, 1974; 22(5), pp. 325-348.

París, F., Cano, J., and Varna, J.; The fiber-matrix interface crack - a numerical analysis using boundary elements. Int. J. Fract., 1990; 82(1), pp. 11-29.

