Q2

Power Block

Features

- Dual asymmetric N-channel OptiMOS™5 MOSFET
- Logic level (4.5V rated)
- · Pb-free lead plating; RoHS compliant
- Optimized for high performance Buck converter
- Qualified according to JEDEC¹⁾ for target applications
- Halogen-free according to IEC61249-2-21
- Monolithic integrated Schottky like diode

Product Summary

$V_{ t DS}$		25	25	٧
$R_{\mathrm{DS(on),max}}$	<i>V</i> _{GS} =10 V	3	0.85	mΩ
	V _{GS} =4.5 V	4	1.2	
I _D		50	50	Α

Q1

Туре	Package	Marking
BSG0810NDI	PG-TISON8-4	0810NDI

Parameter	Symbol	Conditions	Va	Unit	
			Q1	Q2	
Continuous drain current	I _D	T _C =70 °C, V _{GS} =10 V	50	50	А
		T _C =70 °C, V _{GS} =4.5 V	50	50	
		T _A =25 °C, V _{GS} =4.5 V ³⁾	31	50	
		T _A =25 °C, V _{GS} =4.5 V ⁴⁾	19	39	
Pulsed drain current	I _{D,pulse}	T _C =70 °C	160	160	
Avalanche energy, single pulse	E _{AS}	Q1: I_D =10 A, Q2: I_D =20 A, R_{GS} =25 Ω	30	90	mJ
Gate source voltage	V _{GS}	<i>T</i> _j =25 °C	±	16	V
Power dissipation	P_{tot}	T _A =25 °C ³⁾	6.25	6.25	W
		T _A =25 °C ⁴⁾	2.5	2.5	
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150		°C
IEC climatic category; DIN IEC 68-1			55/150/56		
1) LSTD20 and JESD22					

¹⁾ J-STD20 and JESD22

Parameter		Symbol Conditions	Values			Unit	
				min.	typ.	max.	
Thermal characteristics							
Thermal resistance, junction -	Q1	R_{thJC}		-	-	4.3	K/W
case	Q2	1		-	-	1.8	1
Thermal resistance, junction - ambient ²⁾	Q1 Q2	R_{thJA}	Application specific board ³⁾	-	-	20	
	Q1		C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			50	
	Q2]	6 cm ² cooling area ⁴⁾	-	_	50	

Electrical characteristics, at T_j =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	Q1	$V_{(BR)DSS}$	$V_{\rm GS}$ =0 V, $I_{\rm D}$ =1 mA	25 ⁶⁾	-	-	V
	Q2						
Breakdown voltage temperature			I _D =10 mA, referenced	_	15	_	mV/K
coefficient	Q2	/d $T_{\rm j}$	to 25 °C		.0		
Gate threshold voltage	Q1	.,					
	Q2	$V_{\mathrm{GS(th)}}$	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 250 \mu{\rm A}$	1.2	1.6	2	V
Zero gate voltage drain current	Q1	I _{DSS}	V _{DS} =25 V, V _{GS} =0 V,	1	-	1	μΑ
	Q2		T _j =25 °C	1	1	500	
	Q1		V _{DS} =20 V, V _{GS} =0 V,	-	-	100	
	Q2		T _j =125 °C	-	3	-	mA
Gate-source leakage current	Q1	I _{GSS}	V _{GS} =16 V, V _{DS} =0 V			100	nA
	Q2		V _{GS} =10 V, V _{DS} =0 V	-	-	100	IIIA
Drain-source on-state	Q1	$R_{\mathrm{DS(on)}}$	V _{GS} =4.5 V, I _D =20 A	-	3.2	4.0	mΩ
resistance	Q2		V _{GS} =4.5 V, I _D =20 A	-	1.0	1.1	
	Q1		V _{GS} =10 V, I _D =20 A	-	2.4	3.0	
	Q2		V _{GS} =10 V, 7 _D =20 A	-	0.7	0.9	
Gate resistance	Q1	R_{G}		-	0.7	1.2	Ω
	Q2			-	0.8	1.3	
Transconductance	Q1	g_{fs}	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max}$	47	94	-	S
	Q2		I _D =20 A	55	110	-	

²⁾ Remark: only one of both transistors active

Parameter		Symbol	Conditions		Values		Unit
				min.	typ.	max.	
Dynamic characteristics							
Input capacitance	Q1	C_{iss}		-	770	1040	pF
	Q2			-	2300	3100	
Output capacitance	Q1	Coss	V _{GS} =0 V,	-	390	520	
	Q2		$V_{\rm DS}$ = 12 V, f =1 MHz	-	1400	1900	
Reverse transfer capacitance	Q1	C _{rss}		-	33	-	
	Q2			-	110	-	
Turn-on delay time	Q1	$t_{d(on)}$		-	4.3		ns
	Q2		$V_{\rm IN}$ =12 V, $V_{\rm DRV}$ =5 V, $F_{\rm SW}$ =500 KHz,	-	5.1	-	-
Rise time	Q1	t _r		-	4.7	-	
	Q2			-	4.0	-	
Turn-off delay time	Q1	$t_{d(off)}$	I _{OUT} =30 A ⁵⁾	-	4.3	-	
	Q2			-	8	-	
Fall time	Q1	$t_{\rm f}$		-	1.4	-	
	Q2			-	2.4	-	
Gate Charge Characteristics							
Gate to source charge	Q1	Q_{gs}		-	2.2	-	nC
Gate to drain charge		Q_{gd}		-	1.6	-	
Gate charge total		Q_{g}		-	5.6	8.4	
Gate plateau voltage		V _{plateau}	V _{DD} =12 V, I _D =20 A,	-	2.9	-	V
Gate to source charge	Q2	Q_{gs}	$V_{\rm GS} = 0 \text{ to } 4.5 \text{ V}$	-	5.9	-	nC
Gate to drain charge		Q_{gd}		-	4.2	-	
Gate charge total		Q_{g}]	-	16	25	
Gate plateau voltage		V _{plateau}		-	2.6	-	٧
Output charge	Q1		V _{DD} =12 V, V _{GS} =0 V	-	8	-	nC
	Q2		V DD=12 V, V GS=U V	-	26	-	

³⁾ 8 Layers copper 70µm thickness. PCB in still air

⁴⁾ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

Parameter		Symbol Conditions		Values			Unit
				min.	typ.	max.	
Reverse Diode				•			
Diode continuous forward current	Q1	Is		-	-	29	А
	Q2		- 7 _c =25 °C			50	
Diode pulse current	Q1	I _{S,pulse}	7 _C =25 C	-	-	160	
	Q2			-	-	160	
Diode forward voltage	Q1	$V_{ ext{SD}}$	$V_{\rm GS} = 0 \text{ V}, I_{\rm F} = 20 \text{ A},$ $T_{\rm j} = 25 \text{ °C}$	-	0.85	1	V
	Q2		V _{GS} =0 V, I _F =11 A, T _j =25 °C	-	0.49	0.7	
Reverse recovery charge	Q1	$Q_{\rm rr}$	V _R =12 V, I _F =I _S ,		10		nC
	Q2		$di_F/dt = 100 \text{ A/}\mu\text{s}$	-	10	-	

 $^{^{5)}}$ For more information see application note n° TBD

 $^{^{6)}}$ The device can withstand a pulse of not more than 30V for a duration of up to 2ns at a frequency of 600KHz with maximum buck converter input voltage V_{IN} =16 V

1 Power dissipation (Q1)

$$P_{\text{tot}} = f(T_A)^{4)}$$

2 Power dissipation (Q2)

$$P_{\text{tot}} = f(T_A)^{4)}$$

3 Drain current (Q1)

 $I_{D}=f(T_{C})$

parameter: V_{GS}≥10 V

4 Drain current (Q2)

 I_{D} =f(T_{C})

parameter: V_{GS}≥10 V

5 Safe operating area (Q1)

 $I_{D}=f(V_{DS}); T_{C}=25 \text{ °C}; D=0$

parameter: t_p

6 Safe operating area (Q2)

 $I_D=f(V_{DS}); T_C=25 \text{ °C}; D=0$

parameter: t_p

7 Max. transient thermal impedance (Q1)

 $Z_{\text{thJC}} = f(t_p)$

parameter: $D = t_p/T$

8 Max. transient thermal impedance (Q2)

 $Z_{\text{thJC}} = f(t_p)$

parameter: $D = t_p/T$

9 Typ. output characteristics (Q1)

 $I_{D}=f(V_{DS}); T_{i}=25 \text{ °C}$

parameter: $V_{\rm GS}$

10 Typ. output characteristics (Q2)

 $I_D=f(V_{DS}); T_i=25 °C$

parameter: V_{GS}

11 Typ. drain-source on resistance (Q1)

 $R_{DS(on)}=f(I_D); T_j=25 °C$

parameter: V_{GS}

12 Typ. drain-source on resistance (Q2)

 $R_{DS(on)}=f(I_D); T_j=25 \text{ °C}$

parameter: V_{GS}

13 Typ. transfer characteristics (Q1)

 $I_{D}=f(V_{GS}); |V_{DS}|>2 |I_{D}| R_{DS(on)max}$

parameter: T_i

14 Typ. transfer characteristics (Q2)

 $I_{D}=f(V_{GS}); /V_{DS} > 2 | I_{D}/R_{DS(on)max}$

parameter: T_i

15 Drain-source on-state resistance (Q1)

 $R_{DS(on)}$ =f(T_j); I_D =20 A; V_{GS} =10 V

$$R_{DS(on)}$$
=f(T_j); I_D =20 A; V_{GS} =10 V

17 Typ. gate threshold voltage (Q1)

$V_{GS(th)} = f(T_i); V_{GS} = V_{DS}; I_D = 250 \mu A$

18 Typ. gate threshold voltage (Q2)

$$V_{GS(th)}=f(T_i); V_{GS}=V_{DS}; I_D=10 \text{ mA}$$

19 Typ. capacitances (Q1)

$$C=f(V_{DS}); V_{GS}=0 V; f=1 MHz$$

20 Typ. capacitances (Q2)

$$C=f(V_{DS}); V_{GS}=0 V; f=1 MHz$$

21 Forward characteristics of reverse diode (Q1) 22 Forward characteristics of reverse diode (Q2)

$I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$

parameter: T_i

 $I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$

parameter: T_i

23 Avalanche characteristics (Q1)

 I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: $T_{j(start)}$

24 Avalanche characteristics (Q2)

 I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: $T_{j(start)}$

25 Typ. gate charge (Q1)

 V_{GS} =f(Q_{gate}); I_D =20 A pulsed

parameter: V_{DD}

26 Typ. gate charge (Q2)

 $V_{\rm GS}$ =f($Q_{\rm gate}$); $I_{\rm D}$ =20 A pulsed

parameter: $V_{\rm DD}$

27 Drain-source breakdown voltage (Q1)

 $V_{BR(DSS)}=f(T_j); I_D=1 \text{ mA}$

28 Typ. drain-source leakage current (Q2)

 $I_{DSS}=f(V_{DS}); V_{GS}=0 V$

parameter: $T_{\rm j}$

Package Outline

PG-TISON8-4

DIM	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
A	0.90	1.15	0.035	0.045
ь	0.31	0.51	0.012	0.020
Ь1	0.00	0.05	0.000	0.002
С	0.10	0.30	0.004	0.012
D	4.90	5.10	0.193	0201
D2	4.12	4.32	0.162	0.170
D3	1.99	2.19	0.078	0.086
D4	2.69	2.89	0.106	0.114
E	5.90	6.10	0.232	0.240
E2	2.22	2.42	0.087	0.095
E3	1.35	1.55	0.053	0.061
E4	0.10	0.30	0.004	0.012
E5	020	0.40	0.008	0.016
E6	1 29	1.49	0.051	0.059
E7	0.90	1.10	0.035	0.043
e	1.27	(BSC)	0.05 ((BSC)
N		8	8	3
L	0.38	0.58	0.015	0.023
L1	1.38	1.58	0.054	0.062
K1	1 20	1.40	0.047	0.055
K2	0.35	0.55	0.014	0.022
K3	0.50	0.70	0.020	0.028
K4	029	0.49	0.011	0.019

DOCUMENT NO.
Z8 B00176527
SCALE 0
0 25 5 5mm
EURO PEA N PROJECTIO N
ISSUE DATE 13-03-2015
REVISION 01

Boardpads & Apertures

PG-TISON8-4

copper

stencil apertures
All the dimensions in mm

25V OptiMOS™5 Power MOSFET

BSG0810NDI

Revision History

BSG0810NDI

Revision: 2016-03-24, Rev. 2.1

Previous Revision

Revision	Date	ubjects (major changes since last revision)			
2.0	2015-11-11	Release of final version			
2.1	2016-03-24	Update package drawing			

Trademarks of Infineon Technologies AG

 $AURIX^{\intercal}, C166^{\intercal}, CanPAK^{\intercal}, CIPOS^{\intercal}, CoolGaN^{\intercal}, CoolMOS^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, CoolSet^{\intercal}, Corecontrol^{\intercal}, Crossave^{\intercal}, Dave^{\intercal}, Di-Pol^{\intercal}, DrBlade^{\intercal}, EasyPIM^{\intercal}, EconoBRIDGE^{\intercal}, EconoDual^{\intercal}, EconoPiM^{\intercal}, EiceDRIVER^{\intercal}, eupec^{\intercal}, FCOS^{\intercal}, HITFET^{\intercal}, HybridPack^{\intercal}, Infineon^{\intercal}, ISOFACE^{\intercal}, IsoPack^{\intercal}, i-Wafer^{\intercal}, MIPAQ^{\intercal}, ModSTack^{\intercal}, my-d^{\intercal}, NovalithIC^{\intercal}, OmniTune^{\intercal}, OPTIGA^{\intercal}, OptiMOS^{\intercal}, ORIGA^{\intercal}, POWERCODE^{\intercal}, PRIMARION^{\intercal}, PrimePack^{\intercal}, PrimeStack^{\intercal}, PROFET^{\intercal}, PRO-SIL^{\intercal}, RASIC^{\intercal}, REAL3^{\intercal}, ReverSave^{\intercal}, SatRIC^{\intercal}, SIEGET^{\intercal}, SIPMOS^{\intercal}, SmartLEWIS^{\intercal}, SOLID FLASH^{\intercal}, SPOC^{\intercal}, TEMPFET^{\intercal}, thinQ!^{\intercal}, TRENCHSTOP^{\intercal}, TriCore^{\intercal}.$

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.