Machine Learning Regression

Charlotte Pelletier *Univ. Bretagne Sud – IRISA Vannes* Based on C. Friguet's lecture.

28 September 2021

Content

Introduction

Logistic mode

Bernoulli's law

Logistic function

Logistic regression by using the gradient descent algorithm

Recal.

For the logistic regression

Optimisation

Regression

Recall

- Modelling the relationship between the target variable y and the explanatory variables X₁, X₂, · · · , X_d
 - *y* is the **qualitative** (binary) variable to be explained
 - X_i are quantitative or qualitative explanatory variables
- → The linear model is not tailored

Regression

Recall

- Modelling the relationship between the target variable y and the explanatory variables X₁, X₂, · · · , X_d
 - *y* is the **qualitative** (binary) variable to be explained
 - X_i are quantitative or qualitative explanatory variables
- → The **linear model** is **not tailored** because the variable *y* is not **quantitative**!

Example B

We want to evaluate the risk of myocardial infarction (heart attack) on women from a case-study. The collected factors are: taking contraceptive, age, weight, smoking, high blood pressure, a family history of cardiovascular disease, etc.

Data subset:

Infarction	Taking contraceptive	Age	Weight	
no	no	47	48	
no	no	35	53	
no	yes	62	41	
yes	yes	47	45	
yes	yes	63		
yes	no	45	69	
yes	no	90	84	
:	:	:	:	1

Data from Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux Source: http://www.biostatisticien.eu/springeR/jeuxDonnees5.html

Content

Introduction

Logistic model

Bernoulli's law

Logistic function

Logistic regression by using the gradient descent algorithm

Recal

For the logistic regression

Optimisation

Some probabilities

Adjustment

- we do not modelled Y by a linear relationship
- we look at the probabilities: P(Y = 0|X = x) and P(Y = 1|X = x)
- the knowledge of P(Y = 1|X = x) induces the knowledge of P(Y = 0|X = x) because

Some probabilities

Adjustment

- we do not modelled Y by a linear relationship
- we look at the probabilities: P(Y = 0|X = x) and P(Y = 1|X = x)
- the knowledge of P(Y = 1|X = x) induces the knowledge of P(Y = 0|X = x) because P(Y = 0|X = x) = 1 P(Y = 1|X = x)

Bernoulli's law

Let us write out

$$\mathbf{P}(Y=1|X=x)=\pi(x)$$

and

$$P(Y = 0 | X = x) = 1 - \pi(x),$$

where $\pi(x) \in [0, 1]$.

We can model Y by

$$Y|X = x \sim \mathcal{B}(\pi(x))$$

(Bernoulli's law)

Properties (Bernoulli's law)

$$\mathbf{P}(Y = y | X = x) = \pi(x)^{y} (1 - \pi(x))^{1-y}$$

$$\mathbb{E}(Y|X=x) = \pi(x) \qquad Var(Y|X=x) = \pi(x) (1 - \pi(x))$$

categ.	n_c	#0	#1	$\hat{\pi}(x)$

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00
(30,35]	958	913	45	0.04

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00
(30,35]	958	913	45	0.04
(35,40]	780	709	71	0.10

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00
(30,35]	958	913	45	0.04
(35,40]	780	709	71	0.10
(40,45]	608	505	103	0.17

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00
(30,35]	958	913	45	0.04
(35,40]	780	709	71	0.10
(40,45]	608	505	103	0.17
(45,50]	554	355	199	0.36

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00
(30,35]	958	913	45	0.04
(35,40]	780	709	71	0.10
(40,45]	608	505	103	0.17
(45,50]	554	355	199	0.36
(50,55]	134	30	104	0.78

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00
(30,35]	958	913	45	0.04
(35,40]	780	709	71	0.10
(40,45]	608	505	103	0.17
(45,50]	554	355	199	0.36
(50,55]	134	30	104	0.78
(55,60]	33	0	33	1.00

categ.	n_c	#0	#1	$\hat{\pi}(x)$
[25,30]	454	454	0	0.00
(30,35]	958	913	45	0.04
(35,40]	780	709	71	0.10
(40,45]	608	505	103	0.17
(45,50]	554	355	199	0.36
(50,55]	134	30	104	0.78
(55,60]	33	0	33	1.00
(60,65]	17	0	17	1.00

- $\pi(x)$ is not a linear function of x!
- We rather want to model $\pi(x)$ by a function with a "S" shape \Rightarrow one possibility is the logistic function

Logistic function

$$s : \mathbb{R} \to]0,1[$$

$$x \to s(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$

It is a specific case of the sigmoid function.

Shape of the function curve (more general)

$$s : \mathbb{R} \to]0,1[$$

$$x \to s(x) = \frac{1}{1 + e^{-x\beta}} = \frac{e^{x\beta}}{1 + e^{x\beta}}$$

for several β values

- $\beta = 0 \Rightarrow$ constant function
- "small" β values ⇒ wide range of x values for which the function is around 0.5 ⇒ difficult discrimination
- "big" β values \Rightarrow small range of x values for which the function is around $0.5 \Rightarrow$ easier discrimination

 \triangle It depends on the scale of x!

Logistic model

$$\pi(\mathbf{x}) = \frac{e^{\tilde{\mathbf{x}}\boldsymbol{\beta}}}{1 + e^{\tilde{\mathbf{x}}\boldsymbol{\beta}}} = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d}}$$

$$\updownarrow$$

$$logit\left(\pi(\mathbf{x})\right) = log\left(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right) = \tilde{\mathbf{x}}\boldsymbol{\beta} = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

• Transformation g that creates a linear link between $g(\pi(\mathbf{x}))$ and \mathbf{x} : link function

$$\begin{array}{ll} \mathit{logit} & : &]0,1[\to \mathbb{R} \\ \\ p & \to \mathit{logit}(p) = \mathit{log}\Big(\frac{p}{1-p}\Big) \end{array}$$

• Let us write out:

$$f_{\boldsymbol{\beta}}(\mathbf{x}_i) = \frac{e^{\tilde{\mathbf{x}}_i \boldsymbol{\beta}}}{1 + e^{\tilde{\mathbf{x}}_i \boldsymbol{\beta}}} = \mathbb{P}(Y = 1 | X = \tilde{\mathbf{x}}_i)$$

• We want β such that $f_{\beta}(\mathbf{x}_i)$ is as closed as possible of y_i for all the training data $\{\mathbf{x}_i, y_i\}_{i=1}^m$ where $\mathbf{x}_i \in \mathbb{R}^d$

• Model likelihood:

$$L(\beta, y) = \prod_{i=1}^{m} \mathbf{P}(Y = y_i | X = \mathbf{x}_i) = \prod_{i=1}^{m} f_{\beta}(\mathbf{x}_i)^{y_i} \times (1 - f_{\beta}(\mathbf{x}_i))^{1 - y_i}$$

• Model likelihood:

$$L(\beta, y) = \prod_{i=1}^{m} \mathbf{P}(Y = y_i | X = \mathbf{x}_i) = \prod_{i=1}^{m} f_{\beta}(\mathbf{x}_i)^{y_i} \times (1 - f_{\beta}(\mathbf{x}_i))^{1 - y_i}$$

• Log-likelihood

$$\mathcal{L}(\boldsymbol{\beta}, y) = \sum_{i=1}^{m} \left[y_i log \left(f_{\boldsymbol{\beta}}(\mathbf{x}_i) \right) + (1 - y_i) log \left(1 - f_{\boldsymbol{\beta}}(\mathbf{x}_i) \right) \right]$$

• Model likelihood:

$$L(\beta, y) = \prod_{i=1}^{m} \mathbf{P}(Y = y_i | X = \mathbf{x}_i) = \prod_{i=1}^{m} f_{\beta}(\mathbf{x}_i)^{y_i} \times (1 - f_{\beta}(\mathbf{x}_i))^{1 - y_i}$$

· Log-likelihood

$$\mathcal{L}(\beta, y) = \sum_{i=1}^{m} \left[y_i log \left(f_{\beta}(\mathbf{x}_i) \right) + (1 - y_i) log \left(1 - f_{\beta}(\mathbf{x}_i) \right) \right]$$

- Maximisation of (log-)likelihood
 ⇒ cancel the derivatives of L(β, y)
 - no explicit analytical solution
 - there is a need for optimisation iterative algorithms

Cost function

• **Objective**: find the best β to minimise the global (quadratic) cost:

$$\mathop{\rm argmin}_\beta \Bigl({\bf J}(\beta) \Bigr)$$

where

$$\mathbf{J}(\boldsymbol{\beta}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y_i log \left(f_{\boldsymbol{\beta}}(\mathbf{x}_i) \right) + (1 - y_i) log \left(1 - f_{\boldsymbol{\beta}}(\mathbf{x}_i) \right) \right]$$

Content

Introduction

Logistic mode

Bernoulli's law

Logistic function

Logistic regression by using the gradient descent algorithm

Recall

For the logistic regression

Optimisation

Principle

- Objective: find the minimum of the cost-function
- Principle: iterative algorithm
 - 1. initialisation: $\beta^{(0)}$
 - 2. at each step k, change the $\beta^{(k-1)}$ value to decrease $J(\beta^{(k)})$
 - 3. stop the process when a minimum is reached

Iteration *k* of the gradient descent algorithm

For the β_i parameter

$$\beta_j^{(k)} := \beta_j^{(k-1)} - \alpha \frac{\partial}{\partial \beta_j} \mathbf{J}(\boldsymbol{\beta}^{(k-1)})$$

where:

- $\frac{\partial}{\partial \beta_i}$:
- α:

Principle

- Objective: find the minimum of the cost-function
- Principle: iterative algorithm
 - 1. initialisation: $\beta^{(0)}$
 - 2. at each step k, change the $\beta^{(k-1)}$ value to decrease $\mathbf{J}(\beta^{(k)})$
 - 3. stop the process when a minimum is reached

Iteration k of the gradient descent algorithm

For the β_i parameter

$$\beta_j^{(k)} := \beta_j^{(k-1)} - \alpha \frac{\partial}{\partial \beta_j} \mathbf{J}(\boldsymbol{\beta}^{(k-1)})$$

where:

- $\frac{\partial}{\partial \beta_i}$: partial derivatives
- α : learning rate (hyperparameter to be determined by the user)

For the logistic regression

• Iteration *k* of the gradient descent algorithm?

Iteration k of the gradient descent algorithm - logistic regression

$$\beta_j^{(k)} := \beta_j^{(k-1)} - \alpha \frac{1}{m} \sum_{i=1}^m (f_{\beta^{(k-1)}}(\mathbf{x}_i) - y_i) x_{ij}$$

Note: $\forall i, x_{i0} = 1$

For the logistic regression

- Iteration *k* of the gradient descent algorithm?
- Same formula than for the linear regression...

Iteration *k* of the gradient descent algorithm - logistic regression

$$\beta_j^{(k)} := \beta_j^{(k-1)} - \alpha \frac{1}{m} \sum_{i=1}^m (f_{\beta^{(k-1)}}(\mathbf{x}_i) - y_i) x_{ij}$$

Note: $\forall i, x_{i0} = 1$

Optimisation

There are more advanced versions of the gradient descent algorithm:

- conjugated gradient, BFGS¹, (limited-memory) L-BFGS
 - no need to fix α (it is done automatically by the algorithm)
 - faster (it requires less iterations) than the classical gradient descent algorithm
 - but more complex to implement (these variants are avaible in most of the software/programming languages)

¹Broyden-Fletcher-Goldfarb-Shanno