Polynomial Equations

Polynomial

An algebraic expression of the type

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

is called polynomial.

where a_0 , a_1 , a_2 a_n are constants.

Polynomial Equation

An equation of the form

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a^n = 0$$

where $(a_0 \neq 0)$ and $a_1, a_2, a_3, \ldots, a_n$ are constants is called a **polynomial equation of degree** n.

Here a_0 is known as leading coefficient and a_0x^n is the leading term of the polynomial.

If the coefficients $a_0, a_1, a_2, \ldots, a_n$ are real, then it is called **real polynomial**.

If the coefficients $a_0, a_1, a_2, \ldots, a_n$ are complex numbers then it is called **complex polynomial**.

Degree of polynomial

Degree of polynomial is the degree of the highest power of a variable in the given polynomial.

Example

The degree of the polynomial equation $P(x)=3x^3-7x^2+5x-1=0$ is 3

The degree of the equation $3x^2-5x+4=0$ is 2

Roots or Zeros of the polynomial

If at x=lpha, the value of polynomial $f(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$ is zero, then lpha is a the root or zero of f(x).

That is, if $f(\alpha)=0$, lpha is a root or zero of f(x).

Note

i. Number of roots of the equation depends upon the degree of the equation.

i.e 2^{nd} degree equation has two roots and nth degree equation has n roots (real or imaginary, equal or distinct).

ii. A polynomial where all the coefficients are 0 is called zero polynomial.

Degree of zero polynomial is not defined $(-\infty)$.

iii. Every polynomial of degree $n\geq 1$ has at least one real or imaginary root. (Fundamental theorem of Algebra)

iv. If all terms of an equation are +ve and there is no term of odd power of x, then all its roots are complex numbers.

Special types of polynomial equations are

i. <u>Linear equation</u> : ax+b=0 (a
eq 0)

ii. Quadratic equation : $ax^2+bx+c=0 (a
eq 0)$

iii. <u>Cubic equation</u> : $ax^3 + bx^2 + cx + d = 0 (a
eq 0)$

iv. <u>Biquadratic equation</u> : $ax^4 + bx^3 + cx^2 + dx + e = 0 (a \neq 0)$

Division Algorithm:

For any two polynomials f(x) and $g(x) \neq 0$, there exist unique polynomials Q(x) and R(x) such that f(x) = g(x)Q(x) + R(x) where R(x) = 0 or $\deg R(x) < \deg g(x)$

Remainder Theorem

If a polynomial f(x) is divided by (x-a) then the remainder R=f(a).

Factor Theorem

f(x-a) is a factor of any polynomial function f(x) if remainder R=f(a)=0

If f(a) = 0 for polynomial f(x), then a is a zero or root of polynomial f(x).

Quadratic Equation

The equation of the form $ax^2 + bx + c = 0$, where a, b, c are constants and $a \neq 0$ is called a quadratic equation.

Degree of quadratic equation is two.

Quadratic equation cannot have more than two roots.

Methods of Factorization

Let $ax^2+bx+c=0, a
eq 0$ be the given quadratic equation and let the expression $ax^2+bx+c=0$ be capable of having (dx+e) and (fx+g) as two linear factors, where d
eq 0 and f
eq 0 then

$$ax^2 + bx + c = 0$$

 $(dx + e)(fx + g) = 0$

Then,

Either,

$$dx + e = 0$$

$$x = \frac{-e}{d}$$

Or

$$fx + g = 0$$

$$x = \frac{-g}{f}$$

$$\therefore$$
 the solution set $=\left\{\frac{-e}{d},\frac{-g}{f}\right\}$

Method of completing the square

Let the quadratic equation be:

$$ax^2+bx+c=0, a,b,c\in R$$
 and $a
eq 0$

$$ax^2 + bx = -c$$

$$x^2+rac{b}{a}x+\left(rac{b}{2a}
ight)^2=-rac{c}{a}+\left(rac{b}{2a}
ight)^2$$

$$\left(x+rac{b}{2a}
ight)^2=rac{b^2-4ac}{4a^2}$$

$$x+rac{b}{2a}=\pmrac{\sqrt{b^2-4ac}}{2a}$$

$$x=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac}}{2a}$$

$$=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Roots of the quadratic equation

Let α and β be the roots of the quadratic equation ax 2 +bx +c =0 then

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

where,

$$lpha = rac{-b + \sqrt{b^2 - 4ac}}{2a} \ eta = rac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$eta = rac{-b - \sqrt{b^2 - 4ac}}{2a}$$

i. Sum of the roots $(\alpha + \beta) = -b/a$

$$= \frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$

ii. product of the roots $(\alpha\beta)$ = c/a $= \frac{\text{constant tem}}{\text{coefficient of } x^2}$

iii. If two roots of the equation are equal in magnitude but opposite in sign, then sum of the roots

$$lpha + (-lpha) = 0$$
 $-b/a = 0$
i.e, $b = 0$

iv. lpha and eta be the roots which are reciprocal to each other, then product of the roots

$$lpha \cdot (1/lpha) = c/a$$
 i.e. $c = a$

Formation of quadratic equation

If lpha and eta are the roots of the quadratic equation, then the equation may be

$$(x-lpha)(x-eta)=0$$
 $x^2-(lpha+eta)x+lphaeta=0$ x^2- (sum of the roots) $x+$ product of the roots $=0$

Nature of the roots:- If $a,b,c\in R$

Nature of the roots depends upon the discriminant, $D=b^2\!-\!4ac$

i. If $b^2 - 4ac > 0$, then the roots are real and unequal

ii. If b² – 4ac < 0, then the roots are imaginary and unequal

iii. If $b^2 - 4ac = 0$, then the roots are real and equal and the equal root is -b/2a.

iv. If a, b, c are rational and (b^2-4ac) is a perfect square, then the roots are rational.

v. Irrational roots always occur in pair

If one root is p +
$$\sqrt{q}$$
,

then other root is p -
$$\sqrt{q}$$
.

vi. Complex roots are conjugate to each other:

If
$$\alpha$$
 = 2 +3i is one of the roots, then

$$\beta$$
 = 2 – 3i is the other root.

Some important results

If f(x)=0 has roots lpha and eta then

•
$$f(1/x) = 0$$
 has roots $\frac{1}{\alpha}, \frac{1}{\beta}$

•
$$f(\sqrt{x}) = 0$$
 has roots α^2 , β^2

•
$$f(x - a) = 0$$
 has roots $\alpha + a$, $\beta + a$

•
$$f(x/k) = 0$$
 has roots $k\alpha$, $k\beta$

•
$$f(-x) = 0$$
 has roots $-\alpha$, $-\beta$

•
$$f\left(\frac{x-q}{p}\right) = 0$$
 has roots $p\alpha + q$, $(p\beta+q)$

$$\left[\operatorname{as} \frac{xq}{p} = \alpha \ \mathsf{x} = \mathsf{p}\alpha + \mathsf{q}\right]$$

Note

If α , β , γ be the roots of the cubic equation $ax^3 + bx^2 + cx + d = 0$ then

(a) (sum of the roots
$$(\alpha + \beta + \gamma) = -b/a$$

(b)
$$\alpha\beta$$
 + $\beta\gamma$ + $\gamma\alpha$ = c/a

(c)
$$\alpha\beta\gamma = -d/a$$

Reciprocal roots:

The equation whose roots are the reciprocal of the roots of the equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ is:

$$\frac{a}{x^4} + \frac{b}{x^3} + \frac{c}{x^2} + \frac{d}{x} + e = 0$$

i.e. $ex^4 + dx^3 + cx^2 + bx + q = 0$

One Root Common

Let 'lpha' be the common root of the equation

$$a_1 x^2 + b_1 x + c_1 = 0$$

$$a_2x^2 + b_2x + c_2 = 0$$

then

$$a_1\alpha^2 + b_1\alpha + c_1 = 0$$

$$a_2\alpha^2 + b_2\alpha + c_2 = 0$$

By cross - multiplication:

$$rac{lpha^2}{b_1c_2-b_2c_1}=rac{lpha}{c_1a_2-c_2a_1}=rac{1}{a_1b_2-a_2b_1}$$

taking 1st two terms

$$lpha = rac{b_1 c_2 - b_2 c_1}{c_1 a_2 - c_2 a_1}$$

taking last two terms

$$lpha = rac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1}$$

Hence,

$$rac{b_1c_2-b_2c_1}{c_1a_2-c_2a_1} = rac{c_1a_2-c_2a_1}{a_1b_2-a_2b_1}$$

$$(b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1) = (c_1a_2 - c_2a_1)^2$$

is the required condition for one root common.

Two Roots Common

Let lpha and eta be the common roots of

$$a_1x^2 + b_1x + c_1 = 0$$

$$a_2x^2 + b_2x + c_2 = 0$$

then

sum of the roots (a+b) =
$$\dfrac{-b_1}{a_1}=\dfrac{-b_2}{a_2}$$

$$\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} - - - - (i)$$

product of the roots (ab) =
$$rac{c_1}{a_1} = rac{c_2}{a_2}$$

$$\therefore rac{c_1}{c_2} = rac{a_1}{a_2}$$
 -----(ii)

$$\therefore$$
 The required condition is $\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}$

Some Important Results

Let a and b be the roots of the quadratic equation $ax^2 + b|x| + c = 0$.

- (i) If a and b both are negative, no of real roots = 0
- (ii) If a and b both are positive, no. of real roots = 4
- (iii) If either a or b is negative and the other is positive. no. of real roots = 2

Equation	Root (a)	Root (b)	Number of real roots
$ax^2 + b x + c = 0$	+ve	+ve	no. of real roots =4
	-ve	-ve	no. of real roots = 0
	+ve	-ve	no. of real roots = 2
	-ve	+ve	no. of real roots = 2

Number of real roots

$x^2 + 5 x + 4 = 0$	x = -4 $ x = -1$	no. of real roots =0
$x^2 - 4 x + 3 = 0$	x = 3 x = 1	no. of real roots =4 ±1, ±3
$x^2 + x - 12 = 0$	x = 1 x = -4	no. of real roots =2 ±1

Note

- (i) If $ax^2 + bx + c = 0$ is satisfied by more than two distinct values of x, then a=b=c=0
- (ii) The graph $y = f(x) = ax^2 + bx + c$, $a \neq 0$ is a parabola whose axis is parallel to y-axis

The parabola will be upward or downward according as a >0 or a<0.

(iii) If both the roots of the equation $ax^2+bx+c=0$ are positive, then the sum of the roots and product of the roots are positive.

i.e. sum of the roots = -b/a > 0

(i.e., b and a have opposite signs.)

and product of the roots = c/a > 0

(i.e. b and a have same sign.)

c and a have same sign but oppositive to that of b.

(iv) If a and c have same sign, then ac > 0.

Symmetric functions of the roots

If α , β are the roots of ax^2 + bx + c = 0, and if in any expression involving α , β we interchange α , β and expression does not change, then the expression is called a symmetric function of roots α , β . E.g., $\alpha + \beta$, $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$, $\alpha^2 + \alpha\beta + \beta^2$ etc. are symmetric functions of α , β .

1. If lpha, eta are the roots of ax 2 + bx + c =0, then $lpha+eta=-rac{b}{a}$, $lphaeta=rac{c}{a}$ and $alpha^2+blpha+c=0$

$$\Rightarrow alpha+b+rac{c}{lpha}=0$$
 $\Rightarrow alpha+b=-rac{c}{-},$ similarly $aeta$

$$\Rightarrow alpha+b=-rac{c}{lpha},$$
 similarly $aeta+b=-rac{c}{eta}$ 2. $lpha^2+eta^2=(lpha+eta)^2-2lphaeta=rac{b^2-2ac}{lpha^2}$

3.
$$(lpha-eta)^2=(lpha+eta)^2-4lphaeta$$

$$=rac{b^2}{a^2}-4rac{c}{a} \ \Rightarrow lpha-eta=rac{\sqrt{b^2-4ac}}{a}$$

Maximum and minimum values of quadratic function

- If a > 0, then the minimum value of the expression $=rac{4ac-b^2}{4a}$ for $x=rac{-b}{2a}$
- If a < 0, then the maximum value of the expression $=rac{4ac-b^2}{4a}$ for $x=rac{-b}{2a}$