

Is a motrix is invertible (=) det $A \neq 0$, $A^{-1} = \frac{1}{\det A} A^{+}$ Kvonecker-Capelli: a system is compatible if Rank (A) = Rank (\overline{A}) where \overline{A} is the matrix A with a column consisting of the frue terms

$$\begin{vmatrix} a_{11} \times_1 + \cdots + a_{1n} \times_n = b_1 \\ a_{21} \times_1 + \cdots + a_{2n} \times_n = b_2 \\ \vdots \\ a_{n1} \times_1 + \cdots + a_{nn} \times_n = b_n \end{vmatrix} + \cdots + x_n \cdot \begin{pmatrix} a_{n1} \\ a_{21} \\ \vdots \\ a_{nn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

the system is compatible iff $\exists x_1,...x_n$ s.t. (*) is two $\Longrightarrow \sigma = x_1\sigma_1 + ... + x_n v_n$ $\sigma \in \langle \sigma_1,...,\sigma_n \rangle$

Roudu: a system is compatible if all the characteristics determinants

Cramer $3\epsilon_i = \frac{\det(A_i)}{\det A}$ are the solution

Gaux- Jordan 2070s under the main diagonal

Servinar 9

inverting a matrix wing Gauss-Yordan $A \in \mathcal{U}_h(K)$ $(A \mid \mathcal{I}_n) \sim \sim (\mathcal{I}_n \mid A_n^{-1})$

* use Gauss elimination to extract a basis out of a sijetem of generators.

Place the generators as rows in a matrix, bring it to the echalon form.

The rows will form a basis.

* dim <x> = rank (echalon form of matrix)
barris <x> is given by the non-zero rows

Seminar 10

 $A: V \rightarrow V'$ A: $V \rightarrow V'$ $A: V \rightarrow V'$ $A: V \rightarrow V'$

$$\left[\left\{ \left[\left\{ \left(\alpha' \right) \right]^{B_{i}} \cdots \left[\left\{ \left(\alpha'' \right) \right]^{B_{j}} \right) \right] \right]$$

$$G' \in Imf \iff J \in Imf = I$$

$$[J_{\epsilon}, \begin{bmatrix} x_{i} \\ x_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow a \text{ basis of kerly}$$

Geninar 11

Let
$$V, V' - K$$
 vector spaces; B, B' born's of V, V' with $B = (\sigma_1, ..., v_n)$ $B' = (v', ..., v')$

$$\begin{cases} e \text{ How}_{K}(V, V') \end{cases}$$

$$\mathbb{E}_{B,B'} = \left(\mathbb{E}_{B'} \left[\mathcal{E}_{B'} \left[\mathcal{E}_{B'} \right] \right]_{B'} \dots \left[\mathcal{E}_{B'} \left[\mathcal{E}_{B'} \right]_{B'} \right]_{B'} \right)$$

Change of bases for a K-linear map

B₁, B₂ basis of V

B₁, B₂ basis of V

$$\Gamma(d) = \Gamma(d)^{-1}$$
 $B_{2}, B_{1} = \Gamma(d)^{-1}$

to convert vectors from a barn's to another: [v]B' = [id] B' [v]B $f(v) = \lambda \cdot v$ where λ is on eigenvalue, and v is the eigenvector $P_A(x) = (x-\lambda_1)(x-\lambda_2) = \lambda^2 - \lambda \cdot Tr(A) + det(A)$ Steps: 1) while f in a convenient basis (such as e) 2) find the characteristic polinomial of $A = [f]_e$ $P_{pr}(x) = \det (A - x J_n)$ 3) the eigenvalues of A are the distinct roots of the polynomial h) for every eigenvalue, there's an eigenspace X vectors from different eigenspaces on by default linearly independent Seminar 12 $\mathcal{F}(\mathcal{L}_{2}[X])$ of degree $n-k \to a$ generator of a polynomial code (n,k) whose words over $\mathcal{F}(n,k)$ polynomial code we have \mathcal{L}^{k} code words posity check matrix $H=(J_{n-k}|P)$ $u\in\mathcal{H}_{n,n}(\mathbb{Z}_2) \Leftrightarrow H\cdot u=0$, $G=J_{m} \in \mathbb{Z}_2^n$ hamming distance: u, v orce the same length => the number of positions in which they differ w(0,0') = # of 1's in 0-0' eucoder $\gamma: \mathbb{Z}_2^h \to \mathbb{Z}_2^h$ $[\gamma]_{\epsilon e^i} = G = ([\gamma(\epsilon)]_{\epsilon}...[\gamma(\epsilon)]_{\epsilon})$ - generator matrix check digits message $G = \left(\frac{7}{7_{L}}\right) \qquad [\chi(m)]_{\epsilon'} = G \cdot [m]_{\epsilon}$ We can detect at most d(C)-1 errors and can correct $\left\lfloor \frac{d(C)-1}{2} \right\rfloor$ errors d(b) = min # of columns in H that add up to 0 (n,k) polynomial code generated by PEZ2[x]

if deg P = m-k => the code is linear

Steps: 1) eucode m as a selynomial

2) multiply fm by xn-k

3) devide Fu by p

4) Compute gm = Fm+ Rm (the multiplied poly. + the remainder)

5) convert back to a vector

* Proofs

1) Let $f: V \to V'$ be a K-linear map, B-ban's of V, B'-ban's of V' and $u \in V$.

There that $f(o)_{B'} = \{f(o)_{B'}, f(v)_{B'}\}$

• Let $f \in End_{\kappa}(V)$ a scalar λ is called an eigenvalue of f if there exists a non-2010 vector $v \in V$ s. t. $f(v) = \lambda \cdot \nabla$ ex: A = [0 3] - the eigenvalues of the endomorphism represented by the matrix A ore 2 and 3 The Let V be a vector space over K, B-basis of V and ge Endk (V) with the matic $[g]_8 = A = (a_{ij}) \in \mathcal{H}_h(1)$, then $h \in I$ is an eigenvalue of g iff det (A -) Jn) = 0 Proof: X EK - eigenvalue of fiff 3 v EV s.t. f(v) = 2 v consider $[v]_{B} = \begin{pmatrix} x_1 \\ \vdots \\ y \end{pmatrix}$ δ(v) = λσ (δ) - λσ = 0 (δ - λ 1v) (v) = 0() [(λ - λ 1v) (v)] = [0] = => [(1-1.1/)] B. [1] B= [0] B= ([]] B-). [1] B= [0] B= (A- X-), [v] = [0] = [0] (=) $\begin{pmatrix} a_{11} - \lambda & a_{12} & a_{14} \\ a_{21} & a_{22} - \lambda & \vdots \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{nn} - \lambda \end{pmatrix}$ ($\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ $\Rightarrow \lambda$ -eigenvalue (=) Sijsten has a non-zero solution