Lesson x: Module title

Paul Macklin, Ph.D.

PhysiCell Project

last updated: August ?, 2019

Context

Context

Phenotype

- Motility
- Cell Cycle
- Death
- Mechanics
- Geometry
- Molecular
- Volume

Background

- Cells can actively move through their environment by motility.
- Mathematically, this is often modeled as a biased Random walk.
- Cells may

Mathematics: Variables and Definitions

- Migration bias direction: plain English description
- Migratation bias: plain English description ...
- Migration speed
- (Mean) persistence time
-

Mathematics: Assumptions

Okay to write "no extra assumptions"

Mathematics: Models

How often cells change motility direction

How motility direction is chosen

How motility velocity is computed

How motility velocity is added to overall velocity

Demonstration

- Describe the nanoHUB app for this.
- Hyperlink and QR code.
- Any special instructions. (We'll do a generic "how to use a nanoHUB app" in another slide deck.)
- Show a screenshot or two, and a sample output.

 We encourage you to open this model now while reading about its parameters.

Class structure: Data

Class structure: Methods

Example

dfdf df dfdf dfd

Caveats, notes, and best practices

Okay to write "no extra notes"

Next steps

Super fast: Please proceed to 02

(How to use a PhysiCell App on nanoHUB)

Intermediate: Please proceed to 02

(How to use a PhysiCell App on nanoHUB)

Full training: Please proceed to 02

(How to use a PhysiCell App on nanoHUB)

link: https://www.github.com/PhysiCell-Training/....

More materials: https://github.com/physicell-training/master-list

Credits

Module Planning: Paul Macklin

Slides: Paul Macklin

Recording: Paul Macklin

Post-production: Paul Macklin, Drew Willis*, Kali Konstantinopoulos*

Microapps: not applicable

* denotes undergraduate researcher

Funding:

PhysiCell Development:

- Breast Cancer Research Foundation
- Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625)

Training materials:

* Administrative supplement to NCI U01CA232137 (Year 2)