McGill University ECN 467 Econ 469: Econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

30 points

1. Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:

(a)
$$\gamma(0) = Var(X_t)$$
 et $\gamma(k) = \gamma(-k)$, $\forall k \in \mathbb{Z}$;

- (b) $|\gamma(k)| \leq \gamma(0)$, $\forall k \in \mathbb{Z}$;
- (c) the function $\gamma(k)$ is positive semi-definite.

40 points

2. Consider the following models:

$$X_t = 10 + 0.7 X_{t-1} - 0.2 X_{t-2} + u_t (0.1)$$

where $\{u_t: t\in \mathbb{Z}\}$ is an i.i.d. N(0,1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:

i.
$$E(X_t)$$
;

ii.
$$\gamma(k)$$
, $k = 1, ..., 8$;

iii.
$$\rho(k)$$
, $k = 1, 2, ..., 8$.

- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .

(f) Compute the first four partial autocorrelations of X_t .

30 points 3. Let X_1, X_2, \ldots, X_T be a time series.

- (a) Define:
 - i. the sample autocorrelations for this series;
 - ii. the partial autocorrelations for this series.
- (b) Discuss the asymptotic distributions of these two sets of autocorrelations in the following cases:
 - i. under the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.);
 - ii. under the hypothesis that the process follows a moving average of finite order.
- (c) Describe how you would identify the process described in equation (0.1) in question 2.