## MLDS 2017 Spring HW4 - Seq2Seq + Reinforcement Learning

# B03901056 孫凡耕 B03901070 羅啟心 B03901032 郭子生 B03901003 許晉嘉

#### 1 Environment

| OS              | CPU        | CPU Memory | GPU         | GPU Memory |
|-----------------|------------|------------|-------------|------------|
| Arch linux 4.10 | i7 3.6 GHz | 32 GB      | GTX 1080 Ti | 11 GB      |

#### 2 Data Sets

- Open subtitles(http://opus.lingfil.uu.se/download.php?f=OpenSubtitles/en.tar.gz)
- Movie subtitles(http://www.mpi-sws.org/~cristian/Cornell Movie-Dialogs Corpus.html)

## 3 Model description

1. Seq2Seq 模型:

典型的 encoder-decoder 的模型,也就是利用 LSTM 把不同長度的輸入,轉化為固定大小的 state,然後將此 state 傳遞給另個 LSTM,並依序輸出當前最佳解直到遇到 <eos> 為止。 模型所使用的參數如下:

- learning rate = 0.5
- learning rate decay factor = 0.99
- $\max \text{ gradient norm} = 5.0$
- batch size = 64
- vocab size = 100000
- size of each model layer = 256, 512, 1024
- number of layers = 4
- 2. Reinforment Learning 模型:

我們的模型參考自 Adversarial Learning for Neural Dialogue Generation \* 這篇 paper,並改寫自該 篇 paper 所提供的程式<sup>†</sup>,模型所使用的參數如下:

- (a) Generator 與 Discriminator update 的比例為 Generator 一次及 Discriminator 四次。
- (b) Generator: 大部分參與與上方 Seg2Seg 相同。
  - dropout = 0.5
- (c) Disciminator:
  - Hierarchical encoder<sup>‡</sup>
  - size per layer = 512
  - number of layers = 4
  - learning rate = 0.2
  - dropout = 0.5
  - $\max \text{ gradient norm} = 5$

<sup>\*</sup>Jiwei Li, 2017, Adversarial Learning for Neural Dialogue Generation

<sup>†</sup>https://github.com/liuyuemaicha/Adversarial-Learning-for-Neural-Dialogue-Generation-in-Tensorflow

<sup>&</sup>lt;sup>‡</sup>Jiwei Li, 2015, A Hierarchical Neural Autoencoder for Paragraphs and Documents

(d) Reward function: 跟 GAN 的概念一樣,Generator 讀進來一個句子之後,會產生相對應的回答,Discriminator 再根據回答計算有多少機率是人或機器所產生的句子,若某個回答越接近人所產生的句子,則 reward 越接近 1, 反之,則越接近 0。

以 x 表示前兩句話,y 表示 Generator 所產生的句子,以  $Q_+(\{x,y\})$  表示爲人所產生的機率。則 reward function 爲  $J(\theta) = \mathbb{E}_{y \sim p(y|x)}(Q_+(\{x,y\})|\theta)$ 。則以 likelihood ratio trick 近似後可得  $\Delta J(\theta) \approx [Q_+(\{x,y\}) - b(\{x,y\})] \Delta \sum_t \log p(y_t|x,y_{1:t-1})$ 。

此外,爲了增加 reward 對於 Generator 的影響,對於 Generator 所產生的每個子句,都會以蒙地卡羅搜尋五次,以五次的平均作爲這個子句的 reward。最後,爲了讓 Generator 能持續產生好的句子,而不是突然找不到好的方向,每次 update 完 Discriminator 及 Generator 後,還會在 true data 上對 Generator 進行 update (Teacher forcing)。

#### 4 Improvement

1. 在 Seq2Seq 模型中,我們嘗試在相同的 data set 之下,去調整模型的大小,也就是每層 layer 中所 含的 cell 數量,對於不同 cell 數量,perplexity 下降的速度可以從 Figure 1 以及 Figure 2 中看出。 對於相同的 data set,如果一層的 cell 數量越多,所能蘊含的資訊量便越多,因此 cell 數量越多的情況下,perplexity 下降的速度便會越快。也就是說,模型中的大小越大,訓練的速度也會較爲快速。





Figure 1: 以 Movie subtitles 作爲 data set

Figure 2: 以 Open subtitles 作爲 data set

2. 我們以 movie subtitles 作為 data set 時,將太短(少於三個字)以及太長(長於四十個字)的句子 先刪除,以及出現特殊符號(非字母數字)的句子也剔除,之後便剩下約莫 12 萬句對,大約剩下 原先的一半。同時將單字量調整至三萬及五萬,所訓練出來的結果如下:

| 單字量                 | 30000                   | 50000                       |
|---------------------|-------------------------|-----------------------------|
| how are you?        | hello, secure.          | fine . domestic .           |
| how old are you?    | I 'm a little nervous . | gibarian . buckle wallace . |
| Where are you from? | my room 's here .       | she 's a lawyer owen owen   |
| What's your name?   | you know my name .      | gibarian fidget .           |
| Sounds great!       | what 's he got?         | muskets . buckle jeff .     |
| Looks funny!        | I 've got a trunk       | i dined to see.             |
| What's that?        | half-red , half-black – | denning 's log .            |

從上表可以看出,將短的句子去掉,可以使輸出更爲有趣,將長的句子去掉,可以加速訓練的過程,但由於句子的減少,單字量也必須減少,否則,會使模型無法訓練起來。

3. 在 Reinforcement Learning 的模型中,雖然我們所參考的 paper <sup>§</sup> 中表示,Discriminator 與 Generator 更新的比例為 5:1,但是我們發現 Generator 更新次數較多有利於讓 Generator 回答的結果 較為符合。這是由於每次更新 Generator 都會做 Teacher Forcing,因此能使 Generator 產生更為

<sup>§</sup> Jiwei Li, 2017, Adversarial Learning for Neural Dialogue Generation

合理的句子。

| 輸入句子                | 輸出回應                       |
|---------------------|----------------------------|
| how are you?        | fine, macaulay.            |
| how old are you?    | i 'm thirty-seven .        |
| Where are you from? | my russian _UNK .          |
| What's your name?   | someone else . called me . |
| Sounds great!       | he 's eating the realm!    |
| Looks funny!        | you once you 're onto .    |
| What's that?        | half-red , half-black –    |

## 5 Experiment

1. 在 Seq2Seq 模型中,我們實驗將相同 data set 相同模型下,不同 perplexity 時,模型所作出的回 應如下:

(a) data set 爲 movie subtitles 、模型大小爲 4×512:

| iaua sc | My IIIOVIC BUBLICE ( |                | 014  |                     |             |
|---------|----------------------|----------------|------|---------------------|-------------|
| perp    | 輸入句子                 | 輸出回應           | perp | 輸入句子                | 輸出回應        |
| 30      | how are you?         | no .           | 10   | how are you?        | fine, fine. |
|         | how old are you?     | no .           |      | how old are you?    | older .     |
|         | Where are you from?  | no .           |      | Where are you from? | west city.  |
| 1       | how are you?         | fine, fine.    |      |                     |             |
|         | how old are you?     | twenty-eight . |      |                     |             |
|         | Where are you from?  | california .   |      |                     |             |
|         |                      |                |      |                     |             |

(b) data set 爲 movie subtitles 、模型大小爲 4 × 256:

| perp | 輸入句子                | 輸出回應          | perp | 輸入句子                | 輸出回應         |
|------|---------------------|---------------|------|---------------------|--------------|
| 30   | how are you?        | no .          | 10   | how are you?        | i 'm fine .  |
|      | how old are you?    | i have him .  |      | how old are you?    | 0.           |
|      | Where are you from? | i have him .  |      | Where are you from? | california . |
| 1    | how are you?        | fine.         |      |                     |              |
|      | how old are you?    | thirty-five . |      |                     |              |
|      | Where are you from? | meet me .     |      |                     |              |

從不同的 perplexity 之間可以看出,明顯地,perplexity 越低,所回答出的句子越佳,其中模型大小為  $4\times512$  的部分在 perplexity 為 1 時,所回答出的句子幾乎完全可以視為人話。但模型大小為  $4\times256$  的部分在 perplexity 為 1 時,仍然有若干的句子回答不佳。我們認為這是由於模型大小較小,因此所能儲存的資訊量較小的緣故所致。

2. 在 Seq2Seq 模型中,我們嘗試以相同的模型,以不同的 data set 作為訓練資料,來比較以不同 data set 訓練後的模型,對於同樣的問句會有如何的回答。(以下結果皆為 perplexity< 3 的情況)

(a) 以下爲模型大小爲 4×256 的結果:

| 輸入句子                | open subtitles           | movie subtitles                       |
|---------------------|--------------------------|---------------------------------------|
| how are you?        | i'm fine.                | fine.                                 |
| how old are you?    | 00 .                     | thirty-five .                         |
| Where are you from? | i 'm from the new york . | meet me .                             |
| What's your name?   | i'm your name.           | star.                                 |
| Sounds great!       | what?                    | yeah, i got it!                       |
| Looks funny!        | you ' re a good man .    | is this your shovel and your husband? |
| What's that?        | what?                    | what?                                 |
|                     |                          |                                       |

(b) 以下爲模型大小爲 4×512 的結果:

| 輸入句子                | open subtitles      | movie subtitles         |
|---------------------|---------------------|-------------------------|
| how are you?        | good .              | fine, fine.             |
| how old are you?    | 00 .                | twenty-eight.           |
| Where are you from? | you' re from texas. | southern california .   |
| What's your name?   | you know what?      | lisette.                |
| Sounds great!       | no .                | let 's get out of here. |
| Looks funny!        | you know what?      | what?                   |
| What's that?        | what?               | what do you mean?       |

從以上的結果可以看出,在模型大小不夠大的時候,以 open subtitles 及 movie subtitles 爲 data set 的結果相去不遠,又以 open subtitles 的部分較爲像人所作出的回應。但將模型大小擴大之後,可以看出 open subtitles 的部分並沒有顯著的進步,因此可以推斷出 open subtitles 的資料量也許較爲簡單,而將模型擴大之後,movie subtitles 的結果便有十分顯著的進步,幾乎所有的回應都有相當程度的貼近人話。可以推斷,movie subtitles 的資訊量較爲完整,但也需要較大的模型。

3. 在 Reinforcement Learning 的部分,由於我們 data 的量並不夠多,加上 model pretrained 的部分也不夠多,以及我們的 RL model 是基於前兩句來推測下一句,但實際上我們的資料是一句對一句,因此,模型實際上並不太正確。而且當 Discriminator 更新次數比較少的時候,便會出現答非所問的現象,這個現象在訓練越久便會越明顯!下表爲 Reinforcement Learning Generate 更新次數與 Discriminator 更新次數爲 1:1 時的結果。

| 輸入句子                | 輸出回應                            |
|---------------------|---------------------------------|
| how are you?        | head for bridge .               |
| how old are you?    | i didn't see her .              |
| Where are you from? | my russian boys .               |
| What's your name?   | william simpson . robert rath . |
| Sounds great!       | sally, kitchen.                 |
| Looks funny!        | i 'm sorry lee lother 's a very |
| What's that?        | i 'm getting .                  |

4. 因為 Generator 與 Discriminator 需要保持平衡的狀態,我們所訓練出來的模型,所觀察到的 Reward per sentence 大致上維持在 0.4 左右。然而,如果去掉 Teacher Focing,則 Generator 即使 在有 pretrain 的情況下,仍然很難獲得 Reward。如 Figure 3 所示,Reward 基本都維持一致。但 不確定原因為何如 Figure 4 所示 Teacher Loss 會上升。



Figure 3: Reward



Figure 4: Teacher Loss

## 6 Team division

| 孫凡耕 | RL、分配組內工作、教導組員     |
|-----|--------------------|
| 羅啟心 | 協助餘項事務             |
| 郭子生 | 協助餘項事務             |
| 許晉嘉 | Seq2Seq、統整撰寫報告、跑實驗 |