

Engenharia Elétrica

Projeto Theoprax de Conclusão de Curso

Desenvolvimento do robô de inspeção.

Apresentada por: Michael Faraday

John Nash

James Clerk Maxwell

Nikola Tesla

Orientador: Prof. Marco Reis, M.Eng.

Setembro de 2018

Michael Faraday John Nash James Clerk Maxwell Nikola Tesla

Desenvolvimento do robô de inspeção.

Projeto Theoprax de Conclusão de Curso apresentada ao , Curso de Engenharia Elétrica do Centro Universitário SENAI CIMATEC, como requisito parcial para a obtenção do título de **Bacharel em Engenharia**.

Área de conhecimento: Interdisciplinar Orientador: Prof. Marco Reis, M.Eng.

Salvador Centro Universitário SENAI CIMATEC 2016

Resumo

Escreva aqui o resumo da dissertação, incluindo os contextos geral e específico, dentro dos quais a pesquisa foi realizada, o objetivo da pesquisa, assunção filosófica, os métodos de pesquisa usados e as possíveis contribuições que o que é proposto pode trazer à sociedade.

Palavra-chave: Palavra-chave 1, Palavra-chave 2, Palavra-chave 3, Palavra-chave 4, Palavra-chave 5

Abstract

Escreva aqui, em inglês, o resumo da dissertação, incluindo os contextos geral e específico, dentro dos quais a pesquisa foi realizada, o objetivo da pesquisa, assunção filosófica, os métodos de pesquisa usados e as possíveis contribuições que o que é proposto pode trazer à sociedade.

Keywords: Keyword 1, Keyword 2, Keyword 3, Keyword 4, Keyword 5

Sumário

1	Intr	rodução 1
	1.1	Objetivos
		1.1.1 Objetivos Específicos
	1.2	Justificativa
	1.3	Requisitos do cliente
	1.4	Organização do Projeto Theoprax de Conclusão de Curso
2	Cor	nceito do Sistema
_	2.1	Estudo do estado da arte
	2.2	Descrição do sistema
	2.2	2.2.1 Especificação técnica
		2.2.2 Arquitetura geral do sistema
		2.2.3 Arquitetura de software
	2.3	Desdobramento da função qualidade
	2.0	2.3.1 Requisitos técnicos
		2.5.1 Requisitos tecnicos
3		teriais e Métodos 5
	3.1	Especificação dos componentes
		3.1.1 Estrutura analítica do protótipo
		3.1.2 Lista de componentes
	3.2	Diagramas mecânicos
	3.3	Modelo esquemático de alimentação e comunicação
		3.3.1 Diagramas elétricos
		3.3.2 Esquemas eletrônicos
	3.4	Especificação das funcionalidades
		3.4.1 Fluxo das informações 6
		3.4.2 Motion Planning
		3.4.2.1 Definição da funcionalidade
		3.4.2.2 Dependências
		3.4.2.3 Premissas Necessárias 6
		3.4.2.4 Descrição da Funcionalidade
		3.4.2.5 Saídas
		3.4.3 Actuation
		3.4.3.1 Definição da funcionalidade
		3.4.3.2 Dependências
		3.4.3.3 Premissas Necessárias
		3.4.3.4 Descrição da Funcionalidade
		3.4.3.5 Saídas
		3.4.4 Power Management
		3.4.4.1 Definição da funcionalidade
		3.4.4.2 Dependências
		3.4.4.3 Premissas Necessárias
		3.4.4.4 Descrição da Funcionalidade
		3.4.4.5 Saídas
		3.4.5 System Integrity Check
		O.T.O DYBUOHI HIUCKIIUY CHCCK

SUMÁRIO SUMÁRIO

. 13 . 13 . 14 . 15 . 15 . 16 . 16 . 16
. 13 . 13 . 14 . 15 . 15 . 15 . 16 . 16 . 16
. 13 . 14 . 15 . 15 . 15 . 16 . 16 . 16
. 14 . 15 . 15 . 15 . 16 . 16 . 16
. 15 . 15 . 15 . 16 . 16 . 16 . 16
. 15 . 15 . 16 . 16 . 16 . 16
16 . 16 . 16 . 16
. 16 . 16 . 16
. 16 . 16 . 16
. 16 . 16
. 16
. 16
17
. 17
18
19
20
20
21
22
•

Lista de Tabelas

Lista de Figuras

3.1	Fluxograma de funcionamento da funcionalidade de Motion Planning	8
3.2	Fluxograma da funcionalidade Actuation	10
3.3	Fluxograma de funcionamento da funcionalidade de Power Management	12
3.4	Fluxograma da rotina para checagem do sistema	14

Lista de Siglas

THEOPRAX

WWW World Wide Web

Lista de Simbolos

∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble

Introdução

O mundo é - e sempre foi - um mundo de rede. Todavia apenas nas últimas duas décadas a teoria de redes tornou-se um tópico que atraido atenção de pesquisadores e da mídia (refletida nos trabalhos de (BARABÁSI, 2003), (WATTS, 2003), (NEWMAN; WATTS, 2006)), especialmente em relação às redes sociais: os relacionamentos entre os terroristas do 11/9, a forma como a SARS se espalhou em 2002/03 e o mito dos "6 graus de separação" entre dois indivíduos. Até mesmo a forma como a obesidade se espalha pode ser explicada através da análise de redes. O aumento da popularidade dos sites de rede social como Facebook, Google+ ou LinkedIn (ou a Plataforma Lattes brasileira) aumenta a nossa percepção de rede formada por nossos amigos, colegas e família e isso constitui a base invisível de nossa vida social.

1.1 Objetivos

Nesta seção os objetivos principal (também pode-se se utilizar a palavra meta) da monografia de graduação ou especialização, dissertação de mestrado ou tese de doutorado são apresentados.

1.1.1 Objetivos Específicos

Nesta seção os objetivos específicos (também pode-se se utilizar a palavra meta) da monografia de graduação ou especialização, dissertação de mestrado ou tese de doutorado são apresentados.

1.2 Justificativa

O pesquisador/estudante deve apresentar os aspectos mais relevantes da pesquisa ressaltando os impactos (e.g. científico, tecnológico, econômico, social e ambiental) que a pesquisa causará. Deve-se ter cuidado com a ingenuidade no momento em que os argumentos forem apresentados.

1.3 Requisitos do cliente

asjdflkasjdlfjsdlk;f

1.4 Organização do Projeto Theoprax de Conclusão de Curso

Este documento apresenta x capítulos e está estruturado da seguinte forma:

- Capítulo 1 Introdução: Contextualiza o âmbito, no qual a pesquisa proposta está inserida. Apresenta, portanto, a definição do problema, objetivos e justificativas da pesquisa e como este projeto theoprax de conclusão de curso está estruturado;
- Capítulo 2 Nome do capítulo: XXX;
- Capítulo 5 Conclusão: Apresenta as conclusões, contribuições e algumas sugestões de atividades de pesquisa a serem desenvolvidas no futuro.

Conceito do Sistema

Quanto maior for a rapidez de transformação de uma sociedade, mais temporárias são as necessidades individuais. Essas flutuaçõess tornam ainda mais acelerado o senso de turbilh da sociedade.

(Alvin Toffler)

Quanto maior for a rapidez de transformação de uma sociedade, mais temporárias são as necessidades individuais. Essas flutuações tornam ainda mais acelerado o senso de turbilhão da sociedade.

(Alvin Toffler)

2.1 Estudo do estado da arte

flkjasdlkfjasdlkfjs

2.2 Descrição do sistema

lasdjflsadjf

2.2.1 Especificação técnica

lakjfldksjfdslakjf

2.2.2 Arquitetura geral do sistema

lkasjdflksdajflk;

2.2.3 Arquitetura de software

2.3 Desdobramento da função qualidade

asdfsdafsf

2.3.1 Requisitos técnicos

asdfsadfdsf

Materiais e Métodos

asdfasdfsdf

3.1 Especificação dos componentes

asjdflkdjsaf

3.1.1 Estrutura analítica do protótipo

asdkjfsdalkjf

3.1.2 Lista de componentes

asfkjdsahfkjs

3.2 Diagramas mecânicos

asdfsdaf

3.3 Modelo esquemático de alimentação e comunicação

asdfadsfsdfs

3.3.1 Diagramas elétricos

asdfsdaf

3.3.2 Esquemas eletrônicos

asdfsdaf

3.4 Especificação das funcionalidades

asdfadsfsdfs

3.4.1 Fluxo das informações

asdfsaf

3.4.2 Motion Planning

3.4.2.1 Definição da funcionalidade

A funcionalidade de *Motion Planning* é responsável por realizar o planejamento da trajetória do Robô, utilizando o software *MoveIt!* que realiza o cálculo da cinemática inversa para encontrar a melhor forma de ultrapassar os obstáculos.

3.4.2.2 Dependências

O software moveit pode utilizar o modelo matemático da cinemática inversa do robô ou um arquivo do tipo URDF. O nome URDF é uma sigla para *Unified Robot Description Format*, esse arquivo é uma especificação em XML utilizada para descrever robôs. Modelos em URDF apresentam uma simplicidade na descrição do robô, e para o caso do Robô *Elir*, utilizar o modelo URDF possibilitará uma aproximação fiel ao modelo real do robô, assim para o cálculo da cinemática inversa será utilizado o seu modelo URDF e não o seu modelo matemático.

3.4.2.3 Premissas Necessárias

Para o correto funcionamento dessa funcionalidade as seguintes premissas são necessárias:

- A configuração dos limites de giro das juntas do robô estarão compatíveis com os comandos enviados
- O modelo URDF do robô estará adequado com o modelo físico
- O pacote gerado pelo MoveIt! Setup Assistant estará configurado adequadamente

3.4.2.4 Descrição da Funcionalidade

A movimentação do robô na linha acontecerá por movimentos de translação e transposição de obstáculos. A translação na linha será feita por controladores de torque nas rodas do robô, enquanto a transposição do obstáculos utilizará o moveit. Por meio da ferramenta *MoveIt! Setup Assistant*, se utiliza o modelo do robô para criar um pacote do ROS com os principais arquivos pelo moveit. A configuração correta do moveit possibilita que se utilizem as funções da sua biblioteca para o cálculo da trajetória, levando em consideração também obstáculos no caminho.

O moveit fornece uma user interface que recebe o end-effector, a nomenclatura atribuída ao node feito em python que recebe o end-effector é moveit_commander. O node responsável por fazer a integração da user interface com os parâmetros recebidos pelo ROS Parameter Server com o end-effector para fazer os cálculos é denominado move_group. O node move_group também pode receber parâmetros como leituras dos sensores do robô e nuvens de pontos.

Figura 3.1: Fluxograma de funcionamento da funcionalidade de Motion Planning

Fonte: Própria

3.4.2.5 Saídas

Por meio da compatibilização do MoveIt! com o ROS, a saída dessa funcionalidade são os comandos de velocidade, esforço e posição para cada junta do robô.

3.4.3 Actuation

3.4.3.1 Definição da funcionalidade

A funcionalidade de Actuation tem como objetivo mover a estrutura física do robô, possibilitando o controle dos movimentos das juntas, garras e unidades de tração.

3.4.3.2 Dependências

Essa funcionalidade depende das funcionalidades de *Power Management* e *Motion Planning*. O *Power Management* será responsável por fazer alimentação dos motores, possibilitando controlar a corrente máxima fornecida para cada grupo. A dependência em relação à funcionalidade de *Motion Planning* está atrelada principalmente com o software *MoveIt!*, que ao receber um *end-effector*, realiza o cálculo de trajetória e envia os comandos de velocidade, esforço e posição para os controladores das juntas, garras e unidades de tração.

3.4.3.3 Premissas Necessárias

Para o correto funcionamento desse módulo, devem ser consideradas as seguintes premissas:

- Os motores devem estar configurados de acordo com o padrão de ID determinado pela equipe, fazendo parte da mesma malha de controle;
- Os controladores das juntas, garras e unidades devem estar configurados de acordo com os comandos que serão recebidos pelo MoveIt!;
- Os 3 grupos de motores estarão em malhas de alimentação de 12V individuais.

3.4.3.4 Descrição da Funcionalidade

O ROS disponibiliza uma série de drivers para compatibilização dos motores dynamixel, possibilitando a criação de controladores específicos no seu ambiente. Serão criados os controladores referentes as juntas e unidades de tração do robô. Os controladores receberão comandos de *velocity* e *position* do *MoveIt!* junto com os comandos para movimentar o

robô na linha. Após os comandos serem recebidos pelos controladores, eles serão enviados para o *hardware* do robô, de acordo do padrão de comunicação dos motores, por meio de comunicação serial.

Figura 3.2: Fluxograma da funcionalidade Actuation

Fonte: Própria

3.4.3.5 Saídas

A saída desta funcionalidade é o movimento da estrutura física do robô, que estará de acordo com o planejamento de trajetória do *MoveIt!* e com as instruções para operação na linha

3.4.4 Power Management

3.4.4.1 Definição da funcionalidade

A funcionalidade de *Power Management* é responsável por administrar o fornecimento de energia para os dispositivos eletrônicos do robô, nos níveis adequados de tensão e corrente.

3.4.4.2 Dependências

Essa funcionalidade depende da comunicação serial por meio da biblioteca *rosserial* e da operacionalização do firmware embarcado no hardware (placa) de acordo com as necessidades do projeto.

3.4.4.3 Premissas Necessárias

Para o correto funcionamento desse módulo de *Power Management*, devem ser consideradas as seguintes premissas:

- \bullet A placa multiplexadora estará conectada diretamente ao módulo de $Power\ Management$
- Todos os dispositivos estarão conectados nas suas respectivas entradas
- A placa deverá ser alimentada por 2 baterias
- A placa estará conectada diretamente na NUC, por meio de uma USB

3.4.4.4 Descrição da Funcionalidade

A placa de *Power Management* fornece diversos recursos para integração com o ROS. Seu firmware, além de realizar as medições e controle dos níveis de tensão e corrente para alimentação do robô, estará adaptado com as seguintes funcionalidades para que haja integração do hardware com o ROS:

• Publishers que contém os status das portas em níveis de tensão e corrente; avisos de surtos de corrente ou sobre-corrente; disponibilidade do hardware de Power Management

Figura 3.3: Fluxograma de funcionamento da funcionalidade de Power Management

Fonte: Própria

• Serviços para realizar a verificação dos níveis de corrente; definição dos limites de corrente nas portas; realização de comandos on-off

O conjunto de baterias fornecerá a energia para o sistema, a placa de *Power Management* irá administrar a distribuição da energia para os seguintes componentes:

- Grupos de servo motores
- Grupo de sensores de corrente
- NUC
- Interface HUB
- Câmera LWIR
- Sensor ultrassônico

3.4.4.5 Saídas

A funcionalidade irá disponibilizar a energia para o robô e as seguintes estruturas no ambiente ROS:

- Tópicos com informações de tensão e corrente nas portas
- Tópico para aviso de sobre-corrente
- Tópico para informar disponibilidade da placa
- Serviços para ler e configurar limite de corrente das portas
- Serviço para ligar ou desligar energia em uma porta

3.4.5 System Integrity Check

3.4.5.1 Definição da funcionalidade

É a funcionalidade responsável por checar a integridade do sistema antes do início da missão, verificando os subsistemas e suas variáveis.

3.4.5.2 Dependências

A funcionalidade receberá informações dos seguintes componentes

- Sensor de Temperatura
- Servomotores
- Câmera IR
- Câmera Stéreo
- IMU
- Sensor de Proximidade
- Placa de Power Management
- Sonar
- Baterias

Todas as informações serão enviadas por meio do ambiente ROS, na forma de Services ou Publishers.

3.4.5.3 Premissas Necessárias

As premissas necessárias para o funcionamento dessa funcionalidade são:

- Os subsistemas do robô irão disponibilizar o seu status no ambiente ROS por meio de tópicos ou serviços
- A checagem fará parte do planejamento de missão

3.4.5.4 Descrição da Funcionalidade

A checagem da integridade do sistema é uma funcionalidade essencial para garantir o sucesso da missão e preservar a integridade do robô. O ROS facilita essa comunicação entre os subsistemas, possibilitando que seja criada uma rotina de checagem antes de cada missão.

Será disponibilizado no sistema uma rotina para iniciar a missão. Ao receber o comando para início de missão, os sistemas serão checados sequencialmente, utilizando estrutura de Services e Publishers do ROS. Caso algum sistema apresente falha, a missão não se iniciará e o erro será mostrado no terminal e registrado no arquivo de log. Se todos os sistemas estiverem em funcionamento, se iniciará a missão. O fluxograma da funcionalidade está ilustrado na figura 3.4.

Figura 3.4: Fluxograma da rotina para checagem do sistema

Fonte: Própria

3.4.5.5 Saídas

No início da rotina de inspeção, a funcionalidade será responsável por enviar o sinal inicia a missão. Caso todos os sistemas checados estejam funcionando, a inspeção ocorrerá normalmente, se algum sistema apresentar defeitos, o defeito será mostrado no terminal, registrado em log e a missão será abortada.

3.5 Interface do Usuário

asdfadsfsdfs

3.6 Simulação do sistema

asdfadsfsdfs

asdfdsfdsf

4.1 Testes unitários

asdfadsfsdfs

4.2 Testes integrados

asdfadsfsdfs

4.3 Avaliação da prontidão tecnológica

asdfadsfsdfs

4.4 Trabalhos futuros

asdfadsfsdfs

Capítul	o Cinco

Conclusão

Chegou a hora de apresentar o apanhado geral sobre o trabalho de pesquisa feito, no qual são sintetizadas uma série de reflexões sobre a metodologia usada, sobre os achados e resultados obtidos, sobre a confirmação ou rechaço da hipótese estabelecida e sobre outros aspectos da pesquisa que são importantes para validar o trabalho. Recomendase não citar outros autores, pois a conclusão é do pesquisador. Porém, caso necessário, convém citá-lo(s) nesta parte e não na seção seguinte chamada **Conclusões**.

5.1 Considerações finais

Brevemente comentada no texto acima, nesta seção o pesquisador (i.e. autor principal do trabalho científico) deve apresentar sua opinião com respeito à pesquisa e suas implicações. Descrever os impactos (i.e. tecnológicos, sociais, econômicos, culturais, ambientais, políticos, etc.) que a pesquisa causa. Não se recomenda citar outros autores.

·	Apêndice A	
	\mathbf{QFD}	

	Apêndice B		
Diagramas mecânicos			

	Apêndice C
Diagrama	as eletro-eletrônicos

Ap	pêndice D
Wireframes	

Apêno	dice E
Log	book

Referências Bibliográficas

BARABÁSI, A. L. *Linked: A Nova Ciência dos Networks*. São Paulo: Leopardo Editora, 2003. 1

NEWMAN, A.-L. B. M.; WATTS, D. J. *The Structure and Dynamics of Networks*. Princeton, NJ, USA: Princeton University Press, 2006. 1

WATTS, D. J. Six Degrees: The Science of a Connected Age. New York: W W Norton & Co., 2003. 1