Week 12

Nguyen Hoang Tran

Based on slides prepared by Chang Xu and Caren Han

Reference can be found in the end of this lecture slide

Today's Lecture

Lecture 12: Reinforcement Learning

- Markov Decision Processes (MDP)
- 2. Q-Learning
- 3. Deep Q Learning
- 4. Applications

Supervised Learning

Supervised Learning algorithms tried to make their outputs mimic the labels y given in the training set.

The labels gave a clear "right answer" for each of the inputs x

Supervised Learning

Supervised Learning algorithms tried to make their outputs mimic the labels y given in the training set.

Supervised Learning

Supervised Learning algorithms tried to make their outputs mimic the labels y given in the training set.

What about sequential decision-making problems?

- Difficult to define what the correct actions are to make it ride a bike
- Difficult to give explicit supervision for a learning algorithm to try to mimic. (like supervised learning)

→ "Reinforcement Learning"

Today's Lecture

Reinforcement Learning

- We Learn from past experiences.
 - When an infant plays, waves its arms, or looks about, it has no explicit teacher
 - But it does have direct interaction to its environment
 - Years of positive compliments as well as negative experience (e.g. criticism) have all helped shape who we are today.
- Reinforcement learning is a computational approach to learning from interaction.

What is a reinforcement learning?

Learn to make good sequence of decisions

Provide our algorithms only a *reward function*

indicates to the learning agent

- when it is **doing well 🖒**
- when it is doing poorly

What is a reinforcement learning?

Learn to make good sequence of decisions

Provide our algorithms only a *reward function*

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward

Reward hypothesis

"All goals can be described by the maximization of expected cumulative reward"

Example of Rewards

- Make a humanoid robot walk/robot bicycle riding
 - (positive reward) for forward motion
 - (negative reward) for falling over

- > Play many different Atari games better than human
 - (positive reward) for increasing score
 - (negative reward) for decreasing score

What is a reinforcement learning?

At each step t the agent:

- Executes action a_t
- Receives state s_t
- Receives scalar reward r_t

The environment:

- Receives action a_t
- Emits state s_{t+1}
- Emits scalar reward r_{t+1}

t increments at env. step

 \rightarrow The history H_t is the sequence of observations, actions, rewards

$$H_t = s_1, r_1, a_1, ..., a_{t-1}, s_t, r_t$$

* What happens next depends on the history

ightarrow State S_t is the information used to determine what happens next

Environment

At each step t the agent:

- Executes action a_t
- Receives state s_t
- Receives scalar reward r_t

The environment:

- Receives action a_t
- Emits state s_{t+1}
- Emits scalar reward r_{t+1}

t increments at env. step

$$(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$$

 ${\cal S}$: set of possible states

 ${\cal A}$: set of possible actions

 ${\cal R}$: distribution of reward given (state, action) pair

p : transition probability

i.e. distribution over next state given (state, action) pair

 γ : discount factor

$$H_t = s_1, r_1, a_1, ..., a_{t-1}, s_t, r_t$$

Major Components of an RL Agent

An RL agent may include one or more of these components:

- > **Policy:** agent's behaviour function
- > Value Function: how good is each state and/or action
- > **Model:** agent's representation of the environment

Let's try to work on a simple Markov Decision Process (MDP) example

"Reach one of terminal states (greyed out) in least number of actions"

states

Set a negative "reward" for each transition (e.g. r = -1)

Let's try to work on a simple Markov Decision Process (MDP) example

"Reach one of terminal states (greyed out) in least number of actions"

Random Policy

Optimal Policy

Let's try to work on a simple Markov Decision Process (MDP) example

"Reach one of terminal states (greyed out) in least number of actions"

Random Policy

Optimal Policy

Definition: Policy and the optimal policy π^*

- > We want to find optimal policy π^* that maximizes the sum of rewards.
- How do we handle the randomness (initial state, transition probability...)?
 - Maximize the expected sum of rewards!

Optimal Policy

Formally:
$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | \pi\right]$$
 with $s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$

Definitions: Value function and Q-value function

- > Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...
- > State-Value Function (How good is a state?)
 - The value function at state s, is the expected cumulative reward from following the policy from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi
ight]$$

- Action-Value Function (How good is a state-action pair?)
 - The Q-value function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

 Q* satisfies the following Bellman equation, i.e., immediate reward plus discounted value of successor state

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

> Intuition: if the optimal state-action values for the next time-step Q*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of

$$r + \gamma Q^*(s', a')$$

 \rightarrow The optimal policy π * corresponds to taking the best action in any state as specified by Q*

Initializing the Q(s, a) function

states

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Up	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Down	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

actions

Q-Learning

$$Q^*(s,a) = \mathbb{E}\left\{R(s,a,s') + \max_{a'} \gamma Q^*(s',a')\right\}$$

Initialize Q(s, a) arbitrarily.

Start with s.

Before taking action a, we calculate the current expected return as

After taking action a, and observing r and s', we calculate the target expected return as

$$R(s, a, s') + \max_{a'} \gamma Q(s', a')$$

$$\Delta Q(s, a) = R(s, a, s') + \max_{a'} \gamma Q(s', a') - Q(s, a)$$
$$Q(s, a) \leftarrow Q(s, a) + \alpha \Delta Q(s, a)$$

Reinforcement learning approaches

- Monte-Carlo Learning (MC)
- Temporal-difference learning (TD)
- > Q-Learning
- Policy Gradient (PG)
- Actor-Critic (AC)
- Advantage Actor-Critic (A2C)
- Asynchronous advantage actor-critic (A3C)

Lecture 12: Reinforcement Learning

- 1. Markov Decision Processes (MDP)
- 2. Q-Learning
- 3. Deep Q Learning
- 4. Applications

160

													5								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Noop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Fire	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
actions																					
	Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ر -																					

#states = $256^{210 \times 160}$

Value Function Approximation

$$Q(s,a) = f(s,a,w)$$

> Represent the state-action value function (discrete actions) by Q-network with weights w

$$Q_w(s,a) \approx Q^*(s,a)$$

- > End-to-end learning of state-action values from raw pixels
- > Input state is stack of raw pixels from last 4 frames
- > Output are state-action values from all possible actions

From the Tutorial: Deep Reinforcement Learning by David Silver, Google DeepMind

Optimal Q-values obey Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left\{r + \gamma \max_{a'} Q(s',a')|s,a\right\}$$

> Treat right-hand size as a target and minimize MSE loss by SGD

$$I = \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right)^2$$

Target

- > Divergence issues using neural networks due to
 - Correlations between samples
 - Non-stationary targets

Experience replay

- Build data set from agent's own experience
- Sample experiences uniformly from data set to remove correlations

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N

Initialize action-value function Q with random weights

for episode = 1, M do

Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for t = 1, T do

With probability ϵ select a random action a_t

otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

 ϵ -greedy

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}

Set
$$y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to

end for

end for

Improvements: Target Network

- To deal with non-stationarity, target parameters \hat{w} are held fixed

$$I = \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right)^2$$

$$I = \mathbb{E}_{(s, a, r, s') \sim U(D)} \left\{ \left(r + \gamma \max_{a'} Q_{\hat{w}}(s', a') - Q_w(s, a)\right)^2 \right\}$$

Improvements: Double DQN

- > Q-learning is known to overestimate state-action values
 - The max operator uses the same values to select and evaluate an action

$$Q^*(s,a) = \mathbb{E}_{s'}\left\{r + \gamma \max_{a'} Q(s',a')|s,a\right\}$$

- > The upward bias can be removed by decoupling the selection from the evaluation
 - Current Q-network is used to select actions
 - Older Q-network is used to evaluate actions

$$I = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left\{ \left(r + \sqrt{Q_{\hat{w}_i}} (s', \operatorname{arg\,max} Q_{w_i}(s', a')) - Q_{w_i}(s, a) \right)^2 \right\}$$

Improvements: Prioritized Replay

- > Uniform experience replay samples transitions regardless of their significance
- > Can weight experiences according to their significance
- > Prioritized replay stores experiences in a priority queue according to the TD error
- > Use stochastic sampling to increase sample diversity

$$|r + \gamma \max_{a'} Q_{\hat{w}}(s', a') - Q_w(s, a)|$$

$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$

$$p_i = |\delta_i| + \epsilon$$

Lecture 12: Reinforcement Learning

- Markov Decision Processes (MDP)
- 2. Q-Learning
- 3. Deep Q Learning
- 4. Applications

AlphaGo and AlphaZero

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play learning

(Science, 2018)

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis Hassabis

AlphaGo and AlphaZero

Deep Learning in AlphaGo: Policy Network

Deep Learning in AlphaGo: Value Network

Training AlphaGo

Exhaustive Search

Reducing breadth with the policy network

Reducing depth with the value network

aZero

AlphaGo won the match 4-1

AlphaZero: One Algorithm, Three Games

Chess Shogi Go

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science 2018, Joint work with: **David Silver**, **Thomas Hubert**, **Julian Schrittwieser**, Arthur Guez, Ioannis Antonoglou, Matthew Lai, Karen Simonyan, Marc Lanctot, Timothy Lillicrap, Laurent Siffre, Dharshan Kumaran, and Demis Hassabis

Reinforcement Learning in AlphaZero

AlphaZero plays games against itself

Reinforcement Learning in AlphaZero

New policy network P' is trained to predict AlphaGo's moves

Reinforcement Learning in AlphaZero

New value network V' is trained to predict winner

Reinforcement Learning in AlphaZero

New policy/value network is used in next iteration of AlphaGo Zero

Deep Learning enables us to search the huge search space of complex board games

Self-play produces large amounts of data necessary for training the deep neural networks

Self-play provides an automatic curriculum, starting from simple opponents to stronger and stronger opponents.

System discovers new knowledge

New directions: Learn rules of the game, more than two players, imperfect information, larger action spaces etc.

Reinforcement learning (RL)

RL is a general-purpose framework for decision-making

- RL is for an agent with the capacity to act
- Each action influences the agent's future state
- Success is measured by a scalar reward signal
- Goal: select actions to maximise future reward

Deep learning (DL)

DL is a general-purpose framework for representation learning

- Given an objective
- Learn representation that is required to achieve objective
- Directly from raw inputs
- Using minimal domain knowledge

Deep reinforcement learning: AI = RL + DL

We seek a single agent which can solve any human-level task

- RL defines the objective
- DL gives the mechanism
- RL + DL = general intelligence

Reference

- > Ng, A. (2016). Reinforcement learning and control. CS229, Machine Learning, Lecture Notes. Stanford University, Stanford, Calif., nd http://cs229. stanford. edu/notes/cs229-notes12. pdf. Accessed July.
- Mitchell, T. M. (1997). Machine learning: Chapter 13 Reinforcement Learning
- Silver. D. (2015). UCL Course on Reinforcement Learning: Lecture 1: Introduction to Reinforcement Learning.
- > Silver. D. (2015). UCL Course on Reinforcement Learning: Lecture 2: Markov Decision Process.