Algoritmi Numerici (Parte I) [Lezione 2] Il complemento a due (Numeri interi)

Alessandro Antonucci alessandro.antonucci@supsi.ch

https://colab.research.google.com/drive/1651n86ZQ3RASkAz6sgNR8D66w5L4Gax8

I Numeri Naturali e l'Addizione

- Numero = quantità elementi in un insieme (cardinalità)
- Es. card(studenti I1A) = 23, card(docenti I1A) = 7
- Numeri cardinali detti naturali (unsigned int)
- Proprietà ordinale $\mathbb{N} = \{0, 1, 2, \dots, 31, \dots\}$
- Addizione: cardinalità dell'insieme unione

N (cardinalità infinita) chiuso rispetto all'addizione
 la somma di due numeri naturali è un numero naturale

$$a \in \mathbb{N}, b \in \mathbb{N} \Rightarrow \text{SOMMA}(a, b) \in \mathbb{N}$$

SOMMA(31, 7) = 38

I Numeri Interi e la Sottrazione

- Sottrazione: operazione inversa rispetto all'addizione Se $b = \mathrm{SOMMA}(\alpha, c)$ e noto c, trovare α
- I1A totale 38, 7 docenti, quanti studenti?
 SOTTRAZIONE(38,7) = 31
- $a \in \mathbb{N}$, $b \in \mathbb{N} \Rightarrow \text{SOTTRAZIONE}(a,b) \in \mathbb{N}$ solo se $a \ge b$
- Se $\alpha < b$: SOTTRAZIONE (α, b) è numero negativo e SOTTRAZIONE $(\alpha, b) := -$ SOTTRAZIONE (b, α) SOTTRAZIONE(5, 7) = -SOTTRAZIONE(7, 5) = -2
- Unione naturali e negativi è l'insieme numeri interi Z
- $\mathbb{Z} = \{\ldots, -1, 0, +1, +2, \ldots\}$ (cardinalità infinita come \mathbb{N})

Memorie a *n* bit

- Singolo bit (binary digit) solo valori 0 o 1
- Memoria a n bit? 2ⁿ configurazioni
- Rappr. naturali? Sistema posizionale Con n bit, range $\{\mathbf{0},\mathbf{1},\ldots,\mathbf{2}^n-\mathbf{1}\}\subset\mathbb{N}$
- Rappresentare gli interi? Idee?
- Un bit per il segno, il resto posizionale?
- Non compatto e no somma in colonna
- Metodo alternativo: complemento a due!

Il Complemento a due

linguaggio rappresentazione interi con memoria a ${\it n}$ bit

ALGORITMO DI LETTURA

- INPUT = sequenza di *n* bit
- Leggi la sequenza come un naturale con Horner
 x = HORNER(sequenza)
- SE primo bit = 0 ALLORA OUTPUT = x
- ALTRIMENTI (primo bit = 1) OUTPUT = $-(2^n x)$

- 0111 ... 1 è il numero più grande (positivo)
- 1000 ... 0 il più piccolo (negativo)
- Range coperto $\{-2^{n-1},\ldots,-1,0,1,\ldots,2^{n-1}-1\}\subset\mathbb{Z}$

Un Algoritmo Migliore per il Complemento a Due

ALGORITMO DI LETTURA (bis)

- INPUT = sequenza di *n* bit
- SE primo bit = 0

ALLORA OUTPUT = HORNER(sequenza)

- ALTRIMENTI
 - Leggi bit da dx verso sx e ricopiali FINCHÉ non trovi 1
 - Quando trovi un 1 ricopialo, poi nega tutti i bit successivi
 - Chiama y il risultato
 - OUTPUT = HORNER(y)

L'algoritmo funziona perché implementa la sottrazione $2^n - x$ in maniera automatica

Nota: NEGAZIONE(1) = 0, NEGAZIONE(0) = 1

Esercizio su complemento a 2

Leggere sequenza di 8 bit (compattata) **F2**₁₆ secondo regole complemento a due (ad 8 bit)

- Metodo 1
 - $F2 \rightarrow 11110010$
 - HORNER(11110010) = 242₁₀
 - numero = $-(2^8 242) = -(256 242) = -14$
- Metodo 2
 - Nego bit 11110010 che diventani 00001110
 - HORNER(00001110) = HORNER(1110) = 14
 - numero = -14

Esercizio su complemento a 2 (inverso)

Rappresenta il numero
$$-34$$

col complemento a due a 8 bit

 $-34 = -(2^n - x)$
 $x = 2^n - 34 = 256 - 34 = 222$

Horner inverso su 222 (in base 2)

 $-34 \rightarrow 11011110$

222 mod 2 = 0
111 mod 2 = 1
27 mod 2 = 1
13 mod 2 = 1
6 mod 2 = 0
3 mod 2 = 1
1 mod 2 = 1
0

Esercitazione (Es. 1 prova scritta 2009)

Il formato int rappresenta i numeri interi mediante complemento a due a 32 bit

short/long int fanno lo stesso con 16/64 bit

Eseguire la seguente somma binaria (compattata in esadecimale) ed interpretarla come somma di short int (ovvero interi) e di unsigned short int (ovvero naturali):

8EE8₁₆+ 2028₁₆

Esercitazione (soluzione)

8EE8	1000 1110 1110 1000	36'584	-28'952
2028	0010 0000 0010 1000	8'232	+8'232
AF10	1010 1111 0001 0000	44'816	-20'720

Esercitazione (Es. prova scritta 2015)

Ricostruire la sequenza di 16 bit che corrisponde al numero -32'700 secondo le regole del formato short int.

$$-32'700 = -(2^{16} - x) \Rightarrow x = 65'536-32'700 = 32'836$$

Rappresento x in base 2 (mi appoggio alla base 16)

 $32'836 \mod 16 = 4$ $2'052 \mod 16 = 4$ $128 \mod 16 = 0$ $8 \mod 16 = 8$

La sequenza è $8044 \rightarrow 1000|0000|0100|0100$