

Grundlagen der Technischen Informatik 2 Sommersemester 25

Musterlösung Übungsblatt 1

Aufgabe 1: COMS

Konstruieren Sie die folgenden Logikschaltungen in CMOS Logik.

1. $a \overline{\wedge} b$ Lösung:

2. $a \wedge b \wedge c$ Lösung:

Gegeben sei die folgende Wahrheitswertetabelle.

A	В	С	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

1. Formulieren Sie eine Logikformel, die X in Abhängigkeit zu A, B und C beschreibt. *Lösung:*

$$f(A,B,C) = \overline{ABC} \vee \overline{ABC} \vee A\overline{BC} = \overline{AB} \vee A\overline{BC}$$

2. Konstruieren Sie aus Ihrer Logikformel eine Logikschaltung. (Verwenden Sie die logischen Gatter: { AND, OR, NOT })
Lösung:

Abbildung 1: Logikschaltung aus Gattern

1. Zeichnen Sie den Schaltplan eines Tiefpassfilters. Markieren Sie die Messpunkte für die Eintagsund Ausgangsspannung und beschreiben Sie kurz die Funktionsweise.

Lösung:

Abbildung 2: Schaltplan Tiefpassfilter

Ein Tiefpassfilter lässt Signale mit einer Frequenz niedriger als der Grenzfrequenz passieren. Frequenzen, die größer sind als die Grenzfrequenz werden gedämpft.

Aufgabe 4: Normalformen

Wahrheitswertetabelle zur Funktion $f_3(x_2, x_1, x_0)$:

x_2	x_1	x_0	f_3
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

1. Stellen Sie zu der Funktion f_3 die DNF (disjunktive Normalform) und die KNF (konjunktiven Normalform) auf.

Lösung:

DNF:
$$f_3(X_2, X_1, X_0) = \overline{X_2 X_1 X_0} \vee X_2 \overline{X_1 X_0} \vee X_2 \overline{X_1} X_0 \times X_2 \overline{X_1} X_0 \times X_2 \overline{X_1} X_0 \wedge X_2 \overline{X_1} X$$