

Teste Wilcoxon-Mann-Whitney

Professor: Pedro M. Almeida-Junior

22 de agosto de 2021

Departamento de Estatística (UEPB)

Teste Wilcoxon-Mann-Whitney

 Quando são obtidas pelo menos mensurações ordinais para as variáveis estudadas, o teste de Wilcoxon-Mann-Whitney, mais conhecido como soma de postos de Wilcoxon, pode ser usado para testar se dois grupos independentes foram extraídos de uma mesma população.

 Este é um dos testes não paramétricos mais poderosos, sendo uma alternativa muito útil para o teste paramétrico t quando o pesquisador deseja evitar as suposições do teste t ou quando a mensuração na pesquisa é mais fraca do que a dada em escala intervalar.

Hipóteses do Teste

- O teste Wilcoxon-Mann-Whitney tem interesse em testar a diferença entre medianas de duas amostras independentes;
- Suponha que tenhamos amostras de duas populações, X e Y. A hipótese do teste é que a mediana de X é igual a mediana de Y, isto é, $H_0: \tilde{\mu}_x = \tilde{\mu}_y$. Dessa forma, a hipótese alternativa pode ser definida como $H_1: \tilde{\mu}_x \neq \tilde{\mu}_y$ (bilateral), $H_1: \tilde{\mu}_x > \tilde{\mu}_y$ ou $H_1: \tilde{\mu}_x < \tilde{\mu}_y$, para o caso unilateral;

- Seja m o número de casos na amostra do grupo X e n o número de casos na amostra do grupo Y. Assumimos que as duas amostras sao independentes.
- Para aplicar o teste Wilcoxon-Mann-Whitney, primeiro combinamos as observações ou escores de ambos os grupos e os dispomos em postos em ordem crescente de tamanho.
- Agora focamos sobre um dos grupos, digamos, o grupo X com m casos. O valor de W_X (a estatística usada neste teste) é a soma dos postos do menor grupo.

- Por exemplo, suponha que tivéssemos um grupo experimental de 3 casos e um grupo-controle de 4 casos. Aqui m = 3 e n = 4.
- Suponha que os escores fossem:

Escores experimentais X: 9 11 15 Escores-controle Y: 6 8 10 13

Para encontrar W_x , primeiro colocamos nos postos estes escores em ordem crescente de tamanho, tendo cuidado para reter a identidade de cada escore como um escore X ou Y:

Escore: 6 8 9 10 11 13 15 Grupo: Y Y X Y X Y X Posto: 1 2 3 4 5 6 7 Agora considere o grupo experimental e calcule a soma dos postos para tal grupo. Então

$$W_{\rm x} = 3 + 5 + 7 = 15$$

De uma forma similar,

$$W_y = 1 + 2 + 4 + 6 = 13$$

Lembrando que a soma dos primeiros N números naturais é

$$1+2+3+\ldots+N=\frac{N(N+1)}{2}$$

• Portanto, para nosso exemplo de tamanho N=m+n=7, a soma dos postos é 7(7+1)/2=28. Também a soma dos postos para os dois grupos deve ser igual à soma dos postos para o grupo combinado. Isto é,

$$W_x + W_y = \frac{N(N+1)}{2}$$

- Se H₀ é verdadeira, esperaríamos que a média dos postos em cada um dos dois grupos fosse quase a mesma. Se a soma dos postos para um grupo é muito grande (ou muito pequena), então podemos ter razão para suspeitar que as amostras não foram extraídas da mesma população.
- A distribuição amostral de W_x quando H₀ é verdadeira é conhecida, e com este conhecimento podemos determinar a probabilidade associada com a ocorrência sob H₀ de qualquer W_x tão extremo quanto o valor observado.

Pequenas amostras

- Quando m e n são menores ou iguais a 10, a Tabela J do Apêndice apresentado por **Siegel** pode ser usada para determinar a probabilidade exata associada com a ocorrência, quando H_0 é verdadeira, de qualquer W_x tão extremo quanto um valor observado de W_x .
- Em nosso exemplo, m=3, n=4 e $W_x=15$. A subtabela para m=3 na Tabela J do Apêndice de Siegel mostra que para n=4 a probabilidade de observar um valor de $W_x\geq 15$ quando H_0 é verdadeira é 0,200.

Exemplo: Para pequenos amostras. Solomon e Coles estudaram ratos para saber se eles generalizariam a aprendizagem por meio de imitação quando colocados sob um novo desafio em uma nova situação. Cinco ratos foram treinados para imitar ratos líderes em um labirinto. Eles foram treinados a seguir os líderes quando estivessem com fome a fim de obter alimento como recompensa. Depois, os 5 ratos foram transferidos para uma nova situação na qual a imitação dos ratos líderes os tornaria capazes de evitar choques elétricos. Seus comportamentos na situação de evitar choques foram comparados com os de 4 controles que não tiveram prévio treinamento para seguir líderes. A hipótese foi de que os 5 ratos que já tinham recebido treinamento para imitar transfeririam este treinamento para a nova situação e, assim, atingiriam os critérios de aprendizagem na situação de evitar choques mais cedo do que o fariam os 4 ratos-controle. A comparação é feita em termos de quantos ensaios cada rato executou para chegar ao critério de 10 respostas corretas em 10 ensaios.

Hipóteses do teste

- Hipótese nula: H₀: o número de ensaios necessários para alcançar o critério na situação de evitar choques é o mesmo tanto para ratos previamente treinados para seguir um líder por uma recompensa alimentar como para ratos não-treinados previamente.
- Hipótese alternativa: H₁: ratos treinados para seguir um líder por uma recompensa alimentar atingirão o critério na situação de evitar choques em menos ensaios do que o farão os ratos não-treinados previamente.

Dados observados

O número de ensaios até atingir o critério requerido pelos ratos experimentais e de controle foram:

Ratos-controle: 110 70 53 51 Ratos-Experimentais: 78 64 75 45 82

- Nível de significância: Sejam $\alpha = 0,05, m = 4$ (ratos-controle) e n = 5 (ratos experimentais).
- Distribuição amostral: As probabilidades associadas com a ocorrência sob H₀ de valores tão grandes quanto um valor observado W_x, para m e n pequenos, são dados na Tabela J do Apêndice em Siegel.
- Região de rejeição: Como H₁ estabelece a direção da diferença predita, a região de rejeição é unilateral. Ela consiste de todos os valores de W_x que sejam tão grandes que a probabilidade associada com sua ocorrência, quando H₀ é verdadeira, é menor ou igual a α = 0,05. (Como o grupo-controle é denotado X, a hipótese alternativa é H₁: θ_x > θ_y, isto é, a mediana do grupo controle é maior do que a mediana do grupo experimental.)

 Decisão. O número de ensaios até atingir o critério requerido pelos ratos experimentais e de controle foram:

Organizamos estes escores em ordem de magnitude, retendo a identidade de cada um:

Decisão do teste

- Desses dados, podemos verificar que a soma dos postos para o grupo-controle é $W_x=2+3+5+9=19$. e $W_y=1+4+6+7+8=26$.
- Na Tabela J do Apêndice, localizamos a subtabela para m = 4.
- Quando H_0 é verdadeira, vemos que $P[W_x \ge 19] = 0,6349$.
- Nossa decisão é que os dados não fornecem evidência que justifique rejeitar H_0 no nível de significância previamente estabelecido.

Grandes amostras

• Quando m e n crescem em tamanho, a distribuição amostral de W_x aproxima-se da distribuição normal com

$$\mathsf{M\'edia} = \mu_{W_x} = \frac{m(N+1)}{2} \tag{1}$$

Variância =
$$\sigma_{W_x}^2 = \frac{mn(N+1)}{12}$$
 (2)

• Isto é, quando m>10 ou n>10, podemos determinar a significância de um valor observado de $W_{\rm x}$ por

$$z = \frac{W_{x} \pm 0.5 - \mu_{W_{x}}}{\sigma_{W_{x}}} = \frac{W_{x} \pm 0.5 - m(N+1)/2}{\sqrt{mn(N+1)/12}}$$
(3)

O qual tem, assintoticamente, distribuição normal com média 0 e variância unitária. Isto é, a probabilidade associada com a ocorrência quando H₀ é verdadeira de valores tão extremos quanto um z observado, baseado na distribuição normal padrão. É adicionado o valor +0,5 se desejamos encontrar probabilidades na cauda esquerda da distribuição e é adicionado -0,5 se desejamos encontrar probabilidades na cauda direita da distribuição.

- Distribuição amostral: Para n > 10, a Equação (3) dá valores de z. A probabilidade associada com a ocorrência sob H₀ de valores tão extremos quanto um z observado pode ser determinada por meio da distribuição normal padrão.
- Região de rejeição: Como H₁ prediz a direção da diferença, a região de rejeição é unilateral. Ela consiste de todos os valores de z que são tão extremos (na direção predita) que a probabilidade associada sob H₀ é menor ou igual a α = 0,01.

Decisão do teste

• **Decisão:** As taxas atribuídas a cada uma das 39 sociedades são mostradas na Tabela seguinte, junto com o posto de cada uma no grupo combinado. Note que os postos empatados são substituídos pela média dos postos empatados. Para estes dados $W_x = 200, 0$ e $W_y = 580, 0$. Podemos encontrar o valor de z substituindo estes valores em:

$$z = \frac{W_{x} \pm 0, 5 - m(N+1)/2}{\sqrt{mn(N+1)/12}}$$
$$= \frac{200 + 0, 5 - 16(39+1)/2}{\sqrt{(16)(23)(39+1)/12}}$$
$$= -3, 41$$

Sociedades com explanações orais ausentes	Taxas sobre ansiedade de socialização da oralidade	Posto	Sociedades com explanações orais presentes	Taxas sobre ansiedade de socialização da oralidade	Posto
Lapp	13	29,5	Marquesans	17	39
Chamorro	12	24,5	Dobuans	16	38
Samoans	12	24,5	Baiga	15	36
Arapesh	10	16	Kwoma	15	36
Balinese	10	16	Thonga	15	36
Hopi	10	16	Alorese	14	33
Tanala	10	16	Chagga	14	33
Paiute	9	12	Navaho	14	33
Chenchu	8	9,5	Dahomeans	13	29,5
Teton	8	9,5	Lesu	13	29,5
Flathead	7	5	Masai	13	29,5
Papago	7	5 5 5	Lepcha	12	24,5
Venda	7	5	Maori	12	24,5
Warrau	7	5	Pukapukans	12	24,5
Wogeo	7	5	Trobrianders	12	24,5
Ontong-Javanese	6	1,5	Kwakiutl	11	20,5
		$W_{\rm x} = 200.0$	Manus	11	20,5
			Chiricahua	10	16
			Comanche	10	16
			Siriono	10	16
			Bena	8	9,5
			Slave	8	9,5
			Kurtatchi	6	1,5
					$W_{y} = 580,0$

Empates

 O efeito de postos empatados é a alteração da variabilidade do conjunto de postos. Então, a correção para empates precisa ser aplicada na variância da distribuição amostral de W_x. Corrigida para empates, a variância transforma-se em

$$\sigma_{W_x}^2 = \frac{mn}{N(N-1)} \left(\frac{N^3 - N}{12} - \sum_{j=1}^g \frac{t_j^3 - t_j}{12} \right)$$

onde N=m+n,g é o número de agrupamentos de postos empatados diferentes e t_i é o número de postos empatados no j-ésimo agrupamento. Usando essa correção para empates, o valor de z transforma-se em

$$z = \frac{\textit{W}_x \pm 0,5 - \textit{m}(\textit{N}+1)/2}{\sqrt{\left[\textit{mn}/\textit{N}(\textit{N}-1)\right]\left[\left(\textit{N}^3 - \textit{N}\right)/12 - \sum_{j=1}^g \left(t_j^3 - t_j\right)/12\right]}}$$

Passos no uso do teste Wilcoxon-Mann-Whitney

Estes são os passos no uso do teste Wilcoxon-Mann-Whitney:

- 1. Determine o valor de m e de n.
- Atribua postos aos escores em conjunto para ambos os grupos, atribuindo o posto 1 ao escore que é o menor, algebricamente.
- 3. Determine o valor de W_x somando os postos no grupo X.
- 4. O método para determinar a significância de W_x depende do tamanho de m e de n:
 - (i) Se $m \le 10$ e $n \le 10$ (ou $n \le 12$ para m = 3 ou 4), a probabilidade exata associada com um valor tão grande (ou tão pequeno) quanto um W_x observado é tabelado.
 - (ii) Se m>10 ou n>10, a probabilidade associada com um valor tão extremo quanto o valor observado de $W_{\rm x}$ pode ser determinada calculando a aproximação normal
- 5. Se o número de empates é grande, aplique a correção para empates.
- 6. Se o valor observado de W_x tem uma probabilidade associada menor ou igual a α , rejeite H_0 em favor de H_1 .