Calculadora em Assembly x86 Escola Superior de Tecnologia de Tomar Arquitetura de Computadores

Rúben Cardoso

Rodrigo Serra

Janeiro, 2022

Resumo

No âmbito da unidade curricular Arquitetura de Computadores, foi solicitado um algoritmo em Assembly x86 (desenvolvido utilizando o Emu8086) que fosse capaz de calcular Divisões e Raízes Quadradas, utilizando valores fornecidos pelo utilizador através de uma interface gráfica que permitisse a escolha entre ambos os algoritmos previamente mencionados. O utilizador teria ainda a opção de optar por utilizar o teclado ou selecionar botões na interface de forma a escolher os valores pretendidos.

Palavras-chave — Assembly x86, Divisão Inteira, Raiz Quadrada, Emu8086

Conteúdo

	Interface Gráfica	3
	1.1 abcd	3
2	Algoritmo da Divisão	4
	2.1 Objetivo	4
	2.2 Pseudocódigo	
3	Algoritmo da Raiz Quadrada	5
	3.1 Objetivo	5
	3.2 Pseudocódigo	5

Capítulo 1

Interface Gráfica

1.1 abcd

Capítulo 2

Algoritmo da Divisão

2.1 Objetivo

Este algoritmo pretende receber as variáveis, dividendo, e divisor (podendo estas ser negativas) e em seguida executar o algoritmo da divisão de forma a devolver o resultado da divisão, bem como, o resto da mesma

2.2 Pseudocódigo

- 1. Inicialização das variáveis necessárias $^{\rm I}$
- 2. Retirar o primeiro HighOrder do dividendo e atribuir o seu valor á variável Resto
- 3. Iterar as vezes necessárias até a operação $i^{\rm II} \times Divisor > Resto$
- 4. Após a condição ser satisfeita:
 - (a) Utilizar o valor atual da variável i caso, $i \times Divisor = Resto$
 - (b) Realizar o cálculo i = i 1, caso, $i \times Divisor > Resto$
- 5. Concatenar o valor de i á variável Quociente
- 6. Verificar se existem mais algarismos no dividendo
 - (a) Caso existam, voltar ao passo 3. com o novo valor retirado do dividendo
 - (b) Caso não existam, obter o valor do resultado a partir da expressão, $Resto = Resto (i \times Divisor)$

^IEste pseudocódigo assume que as variáveis Divisor e Dividendo já foram obtidas através da interface gráfica

 $^{^{\}rm II}{\rm A}$ variável ié utilizada como variável de iteração em ciclos

Capítulo 3

Algoritmo da Raiz Quadrada

3.1 Objetivo

Este algoritmo tem como objetivo receber o valor do Radicando e em seguida calcular a raiz quadrada do valor inserido, e devolver o seu resultado.

3.2 Pseudocódigo

- 1. Inicializar as variáveis necessárias^I
- 2. Utilizar divisões consecutivas por 10 de forma a obter o número de dígitos do Radicando e armazenar o resultado em nAlgarismos
- 3. Obter o número de pares possíveis através da formula, $nGrupos = \frac{nAlgarismos}{2}$
 - (a) Caso o resto da divisão do passo anterior seja igual a 1, realizar nGrupos = nGrupos + 1
- 4. Verificar o valor de nGrupos
 - (a) Caso existam múltiplos grupos, ou seja nGrupos>1, obter o grupo de HighOrder através da fórmula, $HighOrder=\frac{Radicando}{10^{(nGrupos)}}$
 - (b) Caso exista um único grupo atribuir o valor do Radicando ao HighOrder
- 5. Caso seja a primeira iteração, realizar $aux \times aux^{II}$ de forma a encontrar o maior número possível que não ultrapasse o HighOrder e armazenar a variável valor da variável aux na variável Elevado
- 6. Caso não seja a primeira iteração, concatenar o novo HighOrder á variável aux
 - (a) Caso seja a primeira iteração saltar para o passo 9.
- 7. Calcular $(2 \times Elevado: a) \times a$, incrementado o valor de a enquanto o resultado não for superior a aux
- 8. Concatenar o valor de a obtido no passo anterior á variável Elevado
- 9. Parar a execução do algoritmo caso nGrupos = 1 e armazenar o valor de Elevado na variável Resultado
- 10. Calcular $Aux = HighOrder Elevado^2$
- 11. Calcular $Radicando = Radicando (HighOrder \times 10^{nGrupos})$, de forma a remover o grupo mais á esquerda.
- 12. Saltar para o passo 4.

^IEste pseudocódigo assume que a variável Radicando já foi obtida através da interface gráfica

^{II}Variável auxiliar inicializada a 0