CS3331 – Assignment 2 due Oct. 17, 2019 (latest to submit: Oct. 20)

1. (30pt) Consider the alphanumeric alphabet $\Sigma = \{a, b, ..., z, A, B, ..., Z, 0, 1, ..., 9\}$ and let L be the language of all regular expressions over Σ :

 $L = \{w \in (\Sigma \cup \{\emptyset, (,), \cup, \cdot, *\})^* \mid w \text{ is a syntactically legal regular expression over } \Sigma\}$.

- (a) Give an unambiguous context-free grammar that generates L. The grammar should use the following precedence levels, from highest to lowest:
 - (1) * (Kleene star) highest precedence
 - (2) · (concatenation)
 - $(3) \cup (union) lowest precedence$
- (b) Show the parse tree that your grammar produces for the string $a(a \cup b)^*$.
- 2. (30pt) For each of the following languages L, prove whether L is regular, context-free but not regular, or not context-free:
 - (a) $L = \{xy \mid x, y \in \{a, b\}^* \text{ and } |x| = |y|\}.$
 - (b) $\{a^m b^n \mid m, n \ge 0 \text{ and } m \ge 2n\}.$
 - (c) $\{w^R w w^R \mid w \in \{a, b, c\}^*\}.$
- 3. (10pt) Consider the language $L = \{ww^R | w \in \{a, b\}^*\}$. Below are two proofs, one showing L is context free, the other showing the opposite. Which proof is correct and why?

L is context-free. Here is a context free grammar that generates L:

 $S \longrightarrow aA$

 $A \longrightarrow Se$

 $S \longrightarrow bB$

 $B \longrightarrow Sb$

 $S \longrightarrow \varepsilon$

L is not context-free. Consider the string $w_k = a^k bba^k \in L$. Because $|w| \ge k$, using pumping theorem, w_k can be written as $w_k = uvxyz$. Put $v = a^p$, $y = a^q$, where at least one of p and q is not 0. Then, according to the pumping theorem, $uv^2xy^2z \in L$. But $uv^2xy^2z = a^{k+p+q}bba^k$ cannot be written as ww^R , for any string w, therefore $uv^2xy^2z \notin L$, a contradition. This implies that L is not context-free.

4. (30pt) Show that the following problem is decidable: Given a context-free grammar G, does G generate any odd-length, nonempty strings?

Note Submit your solution as a pdf file on owl.uwo.ca.