Лекция 1.

Косовский Н.Н.

11 февраля 2020 г.

Содержание

1	Метрическое пространство. Метрика.			3
	1.1	Прим	еры метрик	3
2 Открытые множества. Топол		рыты	е множества. Топологические пространства.	3
	2.1	Откри	ытые множества. Свойства	3
		2.1.1	Теорема об открытости шара	4
		2.1.2	Теорема о свойствах Ω	4
	2.2	Топол	огическое пространство. Топология	5
		2.2.1	Примеры топологических пространств.	5
	2.3	Окрес	тности. Теорема о дополнении подмножества	5
		2 3 1	Теорема о доподнении подмножества	5

1 Метрическое пространство. Метрика.

• Определение:

 $d: X \times X \to \mathbb{R}$ — метрика, если:

- 1. $d(x,y) \ge 0$; $d(x,y) = 0 \iff x = y$,
- 2. d(x,y) = d(y,x),
- 3. $d(x,y) + d(y,z) \ge d(x,z)$.
- (X, d) метрическое пространство.

1.1 Примеры метрик.

1. V - векторное пространство, $<\cdot,\cdot>$ - скалярное произведение.

$$\langle d(\vec{v_1}, \vec{v_2}) = \sqrt{\langle \vec{v_1} - \vec{v_2}, \vec{v_1} - \vec{v_2} \rangle} = |\vec{v_1} - \vec{v_2}|$$

- 2. (E, V) аффинное пространство, скалярное произведение на V.
- 3. Определение:

Hорм $a \mid \mid \cdot \mid \mid : V \to \mathbb{R}$

- 1. $||\vec{v}|| \ge 0$; $||\vec{v}|| = 0 \iff \vec{v} = \vec{0}$
- $2. ||\lambda \vec{v}|| = |\lambda| * ||\vec{v}||$
- 3. $||\vec{v_1} + \vec{v_2}|| \le ||\vec{v_1}|| + ||\vec{v_2}||$

Тогда $d(\vec{v_1}, \vec{v_2}) = ||\vec{v_1} - \vec{v_2}||$ - метрика.

3.1
$$V = \mathbb{R}^n$$
, $||x||_p = (\sum |x_i|^p)^{1/p}$, $p \ge 1$
 $||x||_{\inf} = \max_{1 \le i \le n} (|x_i|)$

- 4. S^2 сфера, 2 метрики:
 - $1.\mathbb{R}^3 \to \mathbb{R}$ (Стандартная метрика),
 - 2. Угловая метрика.

2 Открытые множества. Топологические пространства.

2.1 Открытые множества. Свойства.

• Определения:

- 1. $R>0,\; B(x_0,R)\stackrel{def}{=}\{x\in X|\;\; d(x_0,x)< R\}$ —открытый шар радиуса R с центром $x_0.$
- $2. \ S(x_0,R) \stackrel{def}{=} \{x \in X | \ d(x_0,x) = R\} \textit{cpepa}.$
- 3. (X,d) –метрическое пространство, $U\subseteq X$ $U-om\kappa p \omega m o$, если: $\forall x\in U\exists \varepsilon>0: \quad B(x,\varepsilon)\subseteq U.$

Открытый шар открыт.

Доказательство:

Рассмотрим $x \in B(x_0, R)$.

$$\varepsilon := R - d(x_0, x) > 0$$
 (t.k. $x \in B(x_0, R) \Rightarrow d(x_0, x) < R$)

Пусть
$$y \in B(x,\varepsilon) \Rightarrow d(x,y) < \varepsilon = R - d(x_0,x)$$

$$d(x_0, y) \le d(x_0, x) + d(x, y) < R \Rightarrow y \in B(x_0, R) \Rightarrow B(x, \varepsilon) \subseteq B(x_0, R).$$

QED.

2.1.2 Теорема о свойствах Ω

 $\Omega \stackrel{def}{=} \{U \subseteq X | \ U$ -открыто $\}; \ X$ -метрическое пространство.

Тогда:

- 1. \emptyset , $X \in \Omega$
- 2. $U, V \in \Omega \Rightarrow U \cap V \in \Omega$
- 3. $U_{\alpha} \in \Omega \Rightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \Omega$

Доказательство:

- 1. 1) \emptyset —очевидно. 2) Рассмотреть для каждого элемента $\varepsilon = 1$ (или любой другой, далее очевидно.)
- 2. Рассмотрим $y \in U \cap V$

$$y \in U \Rightarrow \exists \varepsilon_1 > 0 : \forall x \in X \ d(x,y) < \varepsilon_1 \Rightarrow x \in U$$

$$y \in V \Rightarrow \exists \varepsilon_2 > 0 : \forall x \in X \ d(x, y) < \varepsilon_2 \Rightarrow x \in V$$

 $\sphericalangle \varepsilon := min(\varepsilon_1, \varepsilon_2).$

Далее очевидно.

3.
$$x \in \bigcup_{\alpha \in I} U_{\alpha} \Rightarrow \exists i \in I : x \in U_i \Rightarrow \exists \varepsilon : (\forall y \in X \ d(x,y) < \varepsilon \Rightarrow y \in U_i \Rightarrow y \in \bigcup_{\alpha \in I} U_{\alpha})$$

QED.

2.2 Топологическое пространство. Топология.

• Определение:

 (X,Ω) — топологическое пространство, если:

- 1. \emptyset , $X \in \Omega$
- 2. $U, V \in \Omega \Rightarrow U \cap V \in \Omega$
- 3. $U_{\alpha} \in \Omega \Rightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \Omega$

 Ω – monoлогия, элементы Ω – открытые.

2.2.1 Примеры топологических пространств.

- 1. $\Omega = 2^X \partial u c \kappa p e m h a s monoлоги s$.
 - топология.
- 2. $\Omega = \{\emptyset, X\}$ антидискретная топология
- 3. $X = \mathbb{R}$; $\Omega = \{(a, +\inf) | a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ стрелка

2.3 Окрестности. Теорема о дополнении подмножества.

• Определения:

 $x_0 \in X$.

- 1. Окрестность точки x_0 произвольное открытое множество, содержащее x_0 .
- 2. ε -окрестность (.) x_0 - $B(x_0, \varepsilon)$. Определено только для метрических пространств.

2.3.1 Теорема о дополнении подмножества

 $F \subset X; X$ — метрическое пространство

- 1. $(\forall x \ \forall \varepsilon \ (B(x,\varepsilon)\setminus \{x\}\cap F\neq \emptyset)\Rightarrow x\in F)\Longleftrightarrow X\setminus F$ -открыто.
- $2. \ X$ топологическое пространство.

$$((\forall U_x$$
—откр. $U_x \cap F \setminus \{x\} \neq \emptyset) \Rightarrow x \in F) \iff X \setminus F$ — открыто.

Доказательство:

1. Если X— метрическое пространство, то $1. \iff 2.$:

$$1. \Leftarrow 2. : -$$
 очевидно ; $1. \Rightarrow 2. :$

Рассмотрим
$$U_x$$
 -откр. $\Rightarrow \exists \varepsilon : B(x,\varepsilon) \subseteq U_x \Rightarrow ((B(x,\varepsilon) \setminus \{x\}) \cap F \subset U_x \setminus \{x\} \cap F \Rightarrow U_x \setminus \{x\} \cap F \neq \emptyset.$

Достаточно доказать (2.)

1.
$$\Rightarrow$$
, т.е. $x \notin F \Rightarrow \exists U_x : U_x \setminus \{x\} \cap F = \emptyset \Rightarrow U_x \cap F = \emptyset \Rightarrow U_x \subseteq X \setminus F \Rightarrow \bigcup_{x \in X \setminus F} U_x \subseteq X \setminus F ; " \supseteq "- тоже(оч.), $\Rightarrow \bigcup_{x \in X \setminus F} U_x = X \setminus F$, но $\cup U$ - откр.$

QED.

$2. \leq :$

Пусть
$$X\backslash F$$
-откр. и $\forall U_x$ -откр. $(U_x\backslash \{x\}\cap F\neq\emptyset)$ Допустим, что $x\notin F \ \Rightarrow \ x\in (X\backslash F)$ Тогда $\emptyset\neq ((X\backslash F)\backslash \{x\})\cap F=((X\backslash F)\cap F)\backslash \{x\}=\emptyset$. Противоречие. 1

QED.

 $^{^{1}\}Pi$ оследняя часть доказательства является авторской. Лекционный вариант утерян бесследно.