| CONTRACTOR OF THE PARTY OF THE |                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>0.53<br>0.38<br>0.32<br>0.19<br>0.41 |  |
| 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |  |
| 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |  |
| 0-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |  |
| 0:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |  |
| 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |  |
| 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.40<br>0.22<br>0.35<br>0.26              |  |

① Compute the distance matrix, nong Encledian distance.  $d(P_1, P_2) = \sqrt{(0.22-0.40)^m + (0.38-0.53)^m} = 0.23$   $d(P_1, P_3) = \sqrt{(0.35-0.40)^m + (0.32-0.53)^m} = 0.22$   $\begin{cases} P_1 & P_2 & P_3 & P_4 \\ P_1 & P_2 & P_3 \\ P_1 & P_2 & P_3 \\ P_2 & 0.23 & P_4 \\ P_2 & 0.23 & P_4 \\ P_3 & 0.22 & 0.14 & 0 \\ P_3 & 0.37 & 0.19 & 0.13 & 0 \\ P_5 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_5 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_5 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_6 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.14 & 0.28 & 0.23 & 0 \\ P_7 & 0.34 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0.24 \\ P_7 & 0.24 & 0.24 & 0.24 & 0$ 

0.22

2 Merge 2 closest members.

0.24

Minimum value is 0.10 80 we combine P3 and P6.
Now, form charters corresponding to minimum value and inpolate distance matrix.

0.24 0.10

|   | P1 P2 P3, P6 P4 P5                                                                                                                                                                                                                       | 0,23                          | 0<br>0.14<br>0.19 | P3, P6  0  0.13  0.28 | 0,23      |      |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-----------------------|-----------|------|--|
|   | PS 0.34 0.14 0.28 0.23 0  We marged P3 and P6 where in obstance matrix P6 ron a column were removed.  3 We again need to find minimum distance from abone matrix. It is 0.13 for P4 row.  30, now we marge row and column of P4 with P3, |                               |                   |                       |           |      |  |
|   | P1 P2 P3,96,94                                                                                                                                                                                                                           | P1<br>0                       | ^P2               | 4 (01 00 0            | P6, P4    | ·bs/ |  |
|   | P5.  Do the common miles                                                                                                                                                                                                                 | 0.34<br>onesder 3 d           | Most app          | 0 1                   | 110 33 5  | O )  |  |
|   | P2, P5                                                                                                                                                                                                                                   | be removed<br>P1<br>0<br>0.23 | <b>P</b> 2        | -, P5                 | pand Ps m | 4    |  |
| 1 | P3, P6, P4                                                                                                                                                                                                                               | 0.22                          | 0                 | ·14                   | 0         |      |  |



- 6 Novo, 0-22 1/4 minimum value so we merge it with P1. so, the clusters that we get, [2(P3, P6), P4], (P2, P5)], P1.
- (B) We can't consider o because otherwise all mill be merged.

  (B) Word, we weate dendogram which is a tree structure sharing has elimbers are formed.

