Intergenerational Dilemmas and Sequential Dictator Games

Silvio Ravaioli (Columbia University, Economics) Franco Palazzi (New School, Philosophy)

Columbia University - Experimental Lunch

March 15, 2019

Sequential Dictator Games

Classic Dictator Game (1 dictator, 1 receiver)

Sequential Dictator Game (Consecutive)

► Sequential Dictator Game (Simultaneous)

Sequential Dictator Games

Classic Dictator Game (1 dictator, 1 receiver)

Sequential Dictator Game (Consecutive)

Sequential Dictator Game (Simultaneous)

Sequential Dictator Games

Classic Dictator Game (1 dictator, 1 receiver)

Sequential Dictator Game (Consecutive)

Sequential Dictator Game (Simultaneous)

Motivating Example - Climate Change

- The economic analysis of climate change presents an incredibly difficult intellectual challenge.
- Major issues include:
 - Uncertainty and ambiguity
 - Time scale and discounting
 - Irreversibilities
 - Global public good USA vs China
 - ► Intergenerational welfare
 Current vs future generation
 It is impossible to create a binding commitment
 Rangel (2000) Forward and backward intergenerational goods

Research Question

- ► Can we characterize multiplayer allocation choices by using preferences over final distributions?
 - If yes, effect of manipulation of the action space
 - If no, effect of manipulation of the decision process
- ▶ What can economists and moral philosophers learn in the lab?
 - Previous experimental evidence suggest that behavioral aspects including social norms (imitate others) and responsibility (credit or blame) may be relevant
- Experiment contribution: Sequential Dictator Games
- ▶ Model contribution: *responsibility* effect on dictators' choices

Research Question

- Can we characterize multiplayer allocation choices by using preferences over final distributions?
 - If yes, effect of manipulation of the action space
 - If no, effect of manipulation of the decision process
- What can economists and moral philosophers learn in the lab?
 - Previous experimental evidence suggest that behavioral aspects including social norms (imitate others) and responsibility (credit or blame) may be relevant
- Experiment contribution: Sequential Dictator Games
- ▶ Model contribution: responsibility effect on dictators' choices

Today's Presentation

- Introduction: moral philosophy meets game theory
- Related literature
- Sequential Dictator Games
- Theoretical framework and predictions
- Experimental design
- Hypothesis (reduced-form)
- Current challenges

Introduction: Moral Philosophy Meets Game Theory

 Climate change is an exemplary case of conflict between generations, whose relationship is temporally and causally asymmetrical

Stephen Gardiner (2006) - A Perfect Moral Storm

The nature of the intergenerational problem is easiest to see if we compare it to the traditional Prisoner's Dilemma. Suppose we consider a pure version of the intergenerational problem, where the generations do not overlap. Call this the Pure Intergenerational Problem (PIP). In that case, the problem can be (roughly) characterised as follows:

(PIP 1) It is collectively rational for most generations to cooperate (PIP2) It is individually rational for all generations not to cooperate

Introduction: Moral Philosophy Meets Game Theory

 Climate change is an exemplary case of conflict between generations, whose relationship is temporally and causally asymmetrical

Stephen Gardiner (2006) - A Perfect Moral Storm

The nature of the intergenerational problem is easiest to see if we compare it to the traditional Prisoner's Dilemma. Suppose we consider a pure version of the intergenerational problem, where the generations do not overlap. Call this the Pure Intergenerational Problem (PIP). In that case, the problem can be (roughly) characterised as follows:

(PIP 1) It is collectively rational for most generations to cooperate (PIP2) It is individually rational for all generations not to cooperate

Related Literature

Social preference

Charness & Rabin 2002, Cason & Mui 1998, Fehr, Fischbacher & Tougarova 2002, Ferguson et al 2014, Cappelen et al 2007, Toussaert 2017, Dana et al 2007, Macro and Wessie 2016

Power and responsibility

Pikulina & Tergiman 2018, Bartling, Fehr and Herz 2014, Fehr, Herz and Wilkening 2013 (power), Blount 1995, Falk, Fehr & Fischbacher 2003, 2008, Charness 2004, Charness & Levine 2007 (intention-based preference)

Social norm

Falk, Fehr & Zehnder 2006, Fehr and Fischbacher 2004, Andreoni and Bernheim 2009, Berg, Dickhaut and McCabe 1995, Fehr, Fischbacher & Gachter 2002

► Climate change lab experiments Barrett & Dannenberg 2012, 2014, Milinski et al. 2008 (international treaty), Hauser et al. 2014 (scarce resource)

Sequential Dictator Games (SDG)

- ► Games A: focus on the first dictator (effect of setting)
- ► Games B: focus on the second dictator (effect of history)

Sequential Dictator Games (SDG)

- ► Games A: focus on the first dictator (effect of setting)
- ► Games B: focus on the second dictator (effect of history)

Theoretical Framework - Simple case

- ▶ x_i is the share of Player $i \in \{A, B, C\}$
- ► E_i indicates the Endowment of Player i, $E_A = 1 = x_A + x_B + x_C$
- ► CRRA utility $u_{\alpha}(x) = \frac{1}{1-\alpha}x^{1-\alpha}$ if $\alpha \neq 1$, $u_{\alpha}(x) = log(x)$ if $\alpha = 1$
- $\triangleright \alpha$ risk aversion coefficient
- \blacktriangleright β other regarding preference

$$x_A^* = argmax \ U(x_A, x_B, x_C) \equiv u_\alpha(x_A) + \beta[u_\alpha(x_B) + u_\alpha(x_C)]$$

Preference over Resource Distributions

Theoretical Framework - Simple case

Simultaneous choice (A chooses for all)

$$x_A^* = E_A \cdot \frac{\beta^{-\frac{1}{\alpha}}}{2 + \beta^{-\frac{1}{\alpha}}}$$

Consecutive choice (A passes a share E_B to B)

$$x_{B}^{*} = E_{B} \cdot \frac{1}{1 + \beta^{\frac{1}{\alpha}}} \qquad x_{A}^{*} = E_{A} \cdot \frac{\beta^{-1/\alpha} \cdot \left(\left(\frac{1}{1 + \beta^{1/\alpha}} \right)^{1 - \alpha} + \left(\frac{\beta^{1/\alpha}}{1 + \beta^{1/\alpha}} \right)^{1 - \alpha} \right)^{-1/\alpha}}{1 + \beta^{-1/\alpha} \cdot \left(\left(\frac{1}{1 + \beta^{1/\alpha}} \right)^{1 - \alpha} + \left(\frac{\beta^{1/\alpha}}{1 + \beta^{1/\alpha}} \right)^{1 - \alpha} \right)^{-1/\alpha}}$$

Theoretical Framework - Simple case

Under CRRA these two cases coincide when α = 1

$$x_A^* = E_A \cdot \frac{1}{1 + 2\beta}$$

Note that dictator A keeps for herself an higher share in the consecutive case only if $\alpha < 1$ [regardless of β]

If we use the average estimates of α = 0.54 [from Harrison-Rutstrom 2008, Holt-Laury elicitation] and β = 0.4 [from Charness-Rabin] we get that the allocation of a unit across three agents is

- ► Simultaneous allocation: 0.73 / 0.13 / 0.13
- Consecutive allocation: 0.76 / 0.20 / 0.04

Theoretical Framework - More complex case

- ▶ x_i is the share of Player $i \in \{A, B, C\}$
- ► E_i indicates the Endowment of Player i, $E_A = 1 = x_A + x_B + x_C$
- ► CRRA utility $u_{\alpha}(x) = \frac{1}{1-\alpha}x^{1-\alpha}$ if $\alpha \neq 1$, $u_{\alpha}(x) = log(x)$ if $\alpha = 1$
- $ightharpoonup \alpha$ (own) risk aversion coefficient
- $ightharpoonup \gamma$ (other) risk aversion coefficient
- \triangleright β other regarding preference

$$x_A^* = argmax \ U(x_A, x_B, x_C) \equiv u_\alpha(x_A) + \beta[u_\gamma(x_B) + u_\gamma(x_C)]$$

Theoretical Framework - More complex case

Simultaneous choice (A chooses for all)

$$\beta^{-\frac{1}{\gamma}} \cdot x_A + 2 \cdot x_A^{\alpha \gamma = E_A \cdot \beta^{-\frac{1}{\gamma}}}$$

$$x_A + 2 \cdot \beta^{\frac{1}{\gamma}} \cdot x_A^{\frac{\alpha}{\gamma}} - 1 = 0$$

Consecutive choice (A passes a share E_B to B)

- Second stage (B chooses $\pi_B \equiv \frac{x_B}{E_B}$)

$$\beta^{\frac{1}{\gamma}} \cdot \pi_B^{\frac{\alpha}{\gamma}} + \pi_B - 1 = 0$$

- Dictator B kept share π_B depends on $\alpha_B, \gamma_B, \beta_B$

Theoretical Framework - More complex case

Preference over Resource Distributions

 x_A selected after observing $\frac{x_B}{E_B}$. α = 0.8, γ = 0.5, β = 0.3 (Charness Rabin 02)

SDG predictions - Different values of β

Lighter colors correspond to higher values of β

SDG predictions - Different values of α

Lighter colors correspond to higher values of $\boldsymbol{\alpha}$

SDG predictions - Different values of γ

Lighter colors correspond to higher values of $\boldsymbol{\gamma}$

SDG Design - Potential Concerns

We want to minimize the number of confounding factors in the experimental setting:

- Learning: no interaction between participants during the experiment
- Reputation: actions are anonymous, B cannot observe A, temporal asymmetry
- Uncertainty about the parameters of the problem: the only uncertainty is about other players' actions
- ▶ **Efficiency** concerns: focus on social preferences
- ► Intertemporal **discounting**: all future players are peers

SDG Design - Interface

SDG Design - Main tasks

- ► Traditional 2-players DG A $(x_A + x_B)$
- ► Observational DG $A(x_B + x_C)$
- Simultaneous SDG $A(x_A + x_B + x_C)$
- ► Consecutive SDG A $(x_A + E_B)$, B $(x_B + x_C)$
- ► Risk attitude elicitation: Holt & Laury (2002)
 - Choices for herself + Choices for another participant
- ▶ Binary choice over distributions (tradeoff own share fairness)
- n-players Simultaneous SDG
- n-players Consecutive SDG

SDG Design - Part 2

- Consecutive SDG, but dictator B action is fixed
- Dictator B action is observable
- ► Four possible values: share of the remaining endowment that B will keep for herself
- ► Values: 50% (equal), 65%, 80%, 95% (unequal)
- \triangleright Dictator A chooses x_A and determines the final outcome

Preference over Resource Distributions

SDG Design - Part 3

- Consecutive SDG, dictator B action is fixed but A can change it by paying a price
- Each trial is characterized by
 - ▶ *Default* and *Alternative* dictator B actions $(\pi_B \equiv \frac{x_B}{E_B})$
 - Price p for changing it
- ▶ Dictator A choose whether to pay p as well as x_A
 - ▶ Default: get $x_A + p$, implement π_B^H
 - ▶ Alternative: get x_A , implement π_B^L

SDG Design - Part 4

- Consecutive SDG, dictator B binary choice but A can lock it by paying a price
- Each trial is characterized by
 - ► Two feasible dictator B actions $\pi_B^H > \pi_B^L \ge 50\%$
 - Price p for locking it
- ▶ Dictator A choose whether to pay p as well as x_A
 - ▶ Default: get $x_A + p$, implement π_B^H
 - ▶ Alternative: get x_A , implement π_B^L

Hypothesis

- ► Hp 0: Selfish behavior $x_A = E_A$
- ▶ Hp 1: Social preference $x_A < E_A$
 - \triangleright x_A difference when x_B , x_C are also chosen
 - ▶ Preference over final distribution $x_A(\pi_B)$
- ▶ Hp 2: Preference for power positive WTP to fix π_B
- ► Hp 3: Responsibility and complicity effect
 - ▶ The level x_A depends on the process

Conjecture: x_A in part 2 (no power, full responsibility) is consistent with part 3 (power, full responsibility) but lower than in part 4 (power, shared responsibility)

Current Challenges

Experimental Design

- Is this the simplest design to answer my question?
- Statistical power (lab experiment, not online)
- Order effect during the lab session

Model comparison

- Elicit preference over final distributions?
- Still not clear what is the benchmark power model
- Nor how I should cluster the subjects (heterogeneity)
- Avoid 6-parameters model fitting (Charness & Rabin 2002)

Intergenerational Dilemmas and Sequential Dictator Games

Silvio Ravaioli (Columbia University, Economics) Franco Palazzi (New School, Philosophy)

Columbia University - Experimental Lunch

March 15, 2019

Experimental Design - Asymmetric Reciprocity

Experimental Design - Asymmetric Reciprocity

Research question: How does the history (past actions) affect the current dictator?

- ► Hypothesis: asymmetric reciprocity. If A is generous towards B, then B will be more generous towards C
- ▶ Design: Dictator B endowment orthogonal to Dictator A action
- ► Stage 0: E_A is E_A^L =\$20 or E_A^H =\$40
- ► Stage 1: Dictator A can pass \$2, \$10, or \$20
- ► Stage 2: Dictator B chooses $x_B \in [0, E_B]$
- Note that choosing E_B =\$10 is generous if E_A^L and selfish if E_A^H
- Action elicitation by strategic method (no learning)

Experimental Design - Asymmetric Reciprocity

Research question: How does the history (past actions) affect the current dictator?

- ► Hypothesis: asymmetric reciprocity. If A is generous towards B, then B will be more generous towards C
- ▶ Design: Dictator B endowment orthogonal to Dictator A action
- ► Stage 0: E_A is E_A^L =\$20 or E_A^H =\$40
- ► Stage 1: Dictator A can pass \$2, \$10, or \$20
- ▶ Stage 2: Dictator B chooses $x_B \in [0, E_B]$
- ▶ Note that choosing E_B =\$10 is generous if E_A^L and selfish if E_A^H
- Action elicitation by strategic method (no learning)