Determining an Architecture

- Profiled NCBI software
 - · made benchmark tests
 - use different databases and different length of queries
- Need to determine best benchmark set
 - Might ask NCBI to determine standard benchmark tests
 - They are not able to provide exact statistics
 - longest database is 4 million+ length
 - Can handle 500000 queries daily
 - · between one second to several minutes
- Must implement algorithms that take the longest
 - Some strings more and less similar
 - · some strings longer and shorter
 - Smaller the word size greater potential for more hits
- Mitrionic method
 - Bloom filter on query
 - · Creates some false positives but doesn't remove hits
 - Open-source
- Tasks for next week
 - Fully develop benchmark system
 - add more variance into queries
 - keep same database(s)
 - need much more than 100 queries
 - · One perfect hit
 - One hit that varies by a base

- What is in the NCBI benchmark?
 - · sort the queries by difference/similarity, length
- Beef up the benchmark
 - add longer/shorter queries that aren't there yet
 - Add parts to the benchmark that the standard system doesn't do
 - Throw cout statements into it to see when it gets executed

- · Understand functions that take the longest
 - start with Taylor's original profiling run
 - NCBI Software code review
 - determine stride length/hit length preferences
 - See if software has different options for specifying stride length/word length
 - How do these functions get called

- · Review papers methods
 - treeblast
 - megablast
 - mercuryblast
- Identify connection between blast methods and functions in profiling
 - information in treeblast paper

· Come up with initial architecture for our implementation