Problema: Arquitectura 8 bits

Dado un conjunto de 4 instrucciones para un procesador de tamaño de palabra de 8 bits, dos registros R0 y R1 y una memoria de 64 bytes:

Instrucción	Acción	Formato de instrucción								
ADI rd, rs, cte	rd 4 ro + EvtSig(oto)	Opcode rd rs cte								
	rd ← rs + ExtSig(cte)	0 1								
ADM rd, rs	rd ←rd + M(rs[5:0])	Opcode rd rs								
		1 0 x x x x								
STM rd, rs	M(ro[5:0]) /- rd	Opcode rd rs								
	$M(rs[5:0]) \leftarrow rd$	1 1 x x x x								
BBQ dir	If R1 <r0, dir<="" pc="" td="" ←=""><td>Opcode dir</td></r0,>	Opcode dir								
	II RI~RU, FC ← dii	0 0								

donde cte es un entero representado en complemento a 2.

a) Inicialmente el contenido de los registros es 0 (incluido el contador de programa, PC).
 Describe la evolución del contenido de los registros y de la memoria (traza de ejecución) si se ejecutan 10 instrucciones.

Memoria							
Pos	Contenido						
0	62 _{hex}						
1	55 _{hex}						
2	e0 _{hex}						
3	a0 _{hex}						
4	02 _{hex}						
5	59 _{hex}						
6	00 _{hex}						
7	00 _{hex}						

Traz	a de ejecución				
	Instrucción (Ej. ADI R1, R0, 3)	Registro o posición de memoria a escribir	Valor a escribir		
0					

- b) Diseña una unidad de datos para poder ejecutar esas cuatro instrucciones, en base a los elementos hardware proporcionados en la siguiente página. Además puedes utilizar los elementos hardware adicionales que creas oportunos (registros, multiplexores, sumadores, comparadores, etc). Indica claramente los puntos de control necesarios.
- c) Construye la tabla de control donde se indique claramente qué señales de control deben activarse (1) y cuales no (0) para cada instrucción.

 Tabla de control:

	Señales de control											
ADI												
ADM												
STM												
BBQ												

d) La latencia de la memoria de datos e instrucciones es de 10 ticks, la del banco de registros y la ALU es de 5 ticks. ¿Cuál es el mínimo ciclo de reloj que debes utilizar para tu implementación monociclo para que todas las instrucciones terminen de ejecutarse correctamente?

