

Workshop on High-Performance and Reliable Big Data (co-located with SRDS 2021)

Geolocate: A geolocation-aware scheduling system for Edge Computing

João Vilaça, João Paulo, Ricardo Vilaça HASLab - High-Assurance Software Lab, INESC TEC & U. Minho, Portugal

September 20, 2021

Motivation

- Computational and Storage Capabilities of IoT devices
 - Recent proliferation of cheaper but more advanced edge computing solutions
- 5G Networking
 - Seamlessly connect a massive number of IoT devices with extremely lean and low-cost connectivity
- Virtualization and Orchestration Technologies
 - Easy management and orchestration of distributed services running at heterogeneous nodes

Problem

- Globally distributed Edge nodes
 - Global data exchanges are significantly affected by high latencies
- Data protection and privacy laws/regulations
 - Limits to the transfer and processing of personal data outside of geographic/economic regions
- Business Objectives and Service Demand
 - Schedule workloads accordingly to the origin and type of the data

Related Work

- Zenith [1] and Dyme [2]
 - resource allocation and scheduling systems
 - no concept of geographic location

- Hydra [3]
 - complete self-contained container-orchestration system
 - concept of geographic location

[1] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, "Zenith: Utility-aware resource allocation for edge computing," in 2017 IEEE International Conference on Edge Computing (EDGE), 2017, pp. 47–54.

[2] A. Samanta and J. Tang, "Dyme: Dynamic microservice scheduling in edge computing enabled iot," IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6164–6174, 2020.

[3] L. L. Jimenez and O. Schelen, "Hydra: Decentralized location-aware orchestration of containerized applications," IEEE Transactions on Cloud Computing, pp. 1–1, 2020.

KubeEdge

- Container-orchestration system for Edge
- Kubernetes extension for the Edge
- No edge related alternatives to default scheduler

Contributions

- Scheduling framework for Cloud/Edge Computing
- Fully functional prototype, integrating the scheduling system with KubeEdge
- Placement algorithm based on nodes' geographic location and resource availability
- A preliminary experimental evaluation of our prototype in a real deployment and comparing different scheduling approaches

Overview

Geolocate

Prototype

Evaluation

- Verify the execution performance of the different scheduling algorithms
- Gains in terms of latency between services by scheduling method
- "Data Analytics with Apache Beam"
 - o analytics service to get data from the MQTT broker in-stream format
 - apply rules on incoming data in real-time

Cluster setup

- KubeEdge cluster with 6 nodes
 - 2 Cloud Nodes (1 master 1 worker)
 - 4 Edge Nodes
- Latency across regions simulation with Chaos Mesh (ms)

City	Austin	Dublin	Sydney	Tokyo
Austin	-	-	-	-
Dublin	107	-	-	-
Sydney	191	274	-	-
Tokyo	137	240	160	-

Scheduler overhead

- KubeEdge scheduling algorithm
 - \circ $\mu = 312 \, \mu s$
 - \circ $\sigma = 104 \mu s$
- Geolocate scheduling algorithm
 - μ = 286 μs
 - \circ $\sigma = 174 \mu s$

Location-aware scheduling gains

- 50 ms latency => 400 ms response time
- 250 ms latency => 1s response time
- On average: 157 ms latency => 700 ms response time
- Location-aware: 62% gain in service response times

Geolocate with continuous producer

- (Dublin, Austin)
 - M2500 => 8 min delay
 - M5000 => 16 min delay

- (Dublin, Dublin)
 - M2500 => 253 ms delay
 - M5000 => 253 ms delay

- (Dublin, Sydney)
 - M2500 => 18 min delay
 - M5000 => 45 min delay

Conclusions

 Existing solutions don't handle geographic location well or have limited performance

- New scheduling solution for globally distributed data-centric workloads
 - Easy integration with state of the art orchestration systems
 - Modularity and algorithm extensibility
 - Good algorithm execution performance

Future Work

- Additional evaluation experiments
- Implementation with other orchestration solutions
- Automatic and adaptable scheduling
- Scalability and fault-tolerance

Workshop on High-Performance and Reliable Big Data (co-located with SRDS 2021)

Geolocate: A geolocation-aware scheduling system for Edge Computing

João Vilaça, João Paulo, Ricardo Vilaça HASLab - High-Assurance Software Lab, INESC TEC & U. Minho, Portugal

September 20, 2021

