Σειρά Θέση

ΦΥΣ. 131 2^η Πρόοδος: 24-Νοεμβρίου-2012

Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας).

Ονοματεπώνυμο	Αριθμός Ταυτότητας

Απενεργοποιήστε τα κινητά σας.

Η εξέταση αποτελείται από 6 προβλήματα. Γράψτε καθαρά τον τρόπο με τον οποίο δουλεύετε τις απαντήσεις σας.

Η συνολική βαθμολογία της εξέτασης είναι 100 μονάδες.

Μπορείτε να χρησιμοποιήσετε μόνο το τυπολόγιο που σας δίνεται και απαγορεύται η χρήση οποιοδήποτε σημειώσεων, βιβλίων, κινητών.

ΧΡΗΣΙΜΟΠΟΙΕΙΣΤΕ ΜΌΝΟ ΤΙΣ ΣΕΛΙΔΕΣ ΠΟΥ ΣΑΣ ΔΙΝΟΝΤΑΙ ΚΑΙ ΜΗΝ ΚΟΨΕΤΕ ΟΠΟΙΑΔΗΠΟΤΕ ΣΕΛΙΔΑ

Η διάρκεια της εξέτασης είναι 120 λεπτά. Καλή Επιτυχία!

Άσκηση	Βαθμός
$1^{\eta} (15\mu)$	
$2^{\eta} (15\mu)$	
$3^{\eta} (15 \mu)$	
4 ^η (15μ)	
5η (20μ)	
$6^{\eta} (20 \mu)$	
Σύνολο	

Τύποι που μπορεί να φανούν χρήσιμοι

Γραμμική κίνηση:

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Στροφική κίνηση:

1περιστροφή = 360° = 2π ακτίνια

$$\theta = \frac{s}{r}$$

$$\overline{\omega} = \frac{\Delta \theta}{\Delta t}$$
, $\overline{\alpha} = \frac{\Delta \omega}{\Delta t}$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

$$v_{\varepsilon\varphi} = \vec{\omega} \times \vec{r}$$
 $v_{\varepsilon\varphi} = \omega r$

$$\vec{\alpha}_{\gamma\omega\nu} = \frac{d\vec{\omega}}{dt} \quad \vec{a}_{\varepsilon\varphi} = \vec{\alpha} \times \vec{r} \Rightarrow \left| \vec{a}_{\varepsilon\varphi} \right| = \left| \alpha \right| |r|$$

$$\vec{a}_{\kappa \varepsilon \nu \tau \rho} = \vec{\omega} \times \vec{r} \Rightarrow \left| \vec{a}_{\kappa \varepsilon \nu \tau \rho} \right| = \frac{v_{\varepsilon \varphi}^2}{r} = \omega^2 r$$

$$\vec{a}_{\gamma\rho\alpha\mu} = \vec{a}_{\kappa\epsilon\nu\tau\rho.} + \vec{a}_{\epsilon\phi} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times \vec{v}$$

$$T = \frac{1}{f} = \frac{2\pi}{v_{\varepsilon\varphi}}$$

Περιστροφή σώματος:

$$I = \sum_{i} m_{i} r_{i}^{2}$$

$$E_{\kappa iv}^{\pi \varepsilon \rho \cdot} = \frac{1}{2} I \omega^2$$

$$\vec{\tau} = \vec{r} \times \vec{F} = I\alpha$$

$$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$$

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

Απομονωμένο σύστημα: $L_i = L_f$

μετάπτωση γυροσκοπίου $ω_{\mu} = \frac{\tau}{I\omega_{\text{peo}}}$

Συνθήκες στατικής ισορροπίας:

$$\sum \vec{F}_{εξ} = 0$$
 και $\sum \vec{\tau}_{εξ} = 0$

Έργο σταθερής δύναμης: $W = \vec{F} \cdot \vec{s}$

Έργο μεταβαλλόμενης δύναμης: $W = \int \vec{F} \cdot d\vec{s}$

$$\vec{F} = -\frac{dU}{d\vec{r}}$$

$$\Delta U = -\int_{r_i}^{r_f} \vec{F} \cdot d\vec{r}$$

$$U_{\varepsilon\lambda} = \frac{1}{2}kx^2$$

$$U_g = mgh \text{ (h<$$

$$W = \Delta E_{\kappa \nu}$$

 $W = -\Delta U$ (για συντηρητικές δυνάμεις)

$$E_{uny} = E_{\kappa iy} + U$$

$$E_{\kappa i \nu} = \frac{1}{2} m v^2$$

 $W = \Delta E_{\mu\eta\chi}$ (για μη συντηρητικές δυνάμεις)

$$\vec{F}_{\varepsilon\lambda} = -k\vec{x}$$

$$P = \frac{\Delta W}{\Delta t} = \frac{\Delta E}{\Delta t}$$

$$P = \vec{F} \cdot \vec{v}$$

Ορμή – Ώθηση - Κρούσεις:

$$\vec{p} = m\vec{v}$$

$$\Omega$$
θηση: $\vec{I} = \int F dt = \Delta \vec{p}$

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$$

Απομονωμένο σύστημα: $\vec{p}_i = \vec{p}_f$

Ελαστική κρούση: $\Delta \vec{p} = 0, \ \Delta E = 0$

Μη ελαστική κρούση: $\Delta \vec{p} = 0$, $\Delta E \neq 0$

Ελαστική κρούση σε 1-Δ: $\vec{v}_1 - \vec{v}_2 = -(\vec{v}_1' - \vec{v}_2')$

$$x_{CM} = \frac{1}{M_{cl}} \sum_{i} mx_{i}$$

$$\vec{v}_{CM} = \frac{1}{M_{ol}} \sum_{i} m v_{i}$$

$$\sum \vec{F}_{\varepsilon\xi} = M \vec{a}_{CM}$$

Ροπές αδράνειας, I_{CM} , διαφόρων σωμάτων μάζας M ως προς άξονα που περνά από το KM

Συμπαγής σφαίρα ακτίνας R: $I_{\rm CM} = 2MR^2/5$

Κοίλη σφαίρα ακτίνας R: $I_{\rm CM} = 2MR^2/3$

Συμπαγής κύλινδρος/δίσκος/τροχαλία ακτίνας R: $I_{\rm CM} = MR^2/2$

Κοίλος κύλινδρος/κυκλικό στεφάνι ακτίνας R: $I_{\rm CM} = MR^2$

Συμπαγής κυλινδρικός δακτύλιος ακτίνων \mathbf{R}_1 και \mathbf{R}_2 : $I_{\mathit{CM}} = M\left(R_1^2 + R_2^2\right)\!\!/\!2$

Συμπαγής ράβδος μήκους L: $I_{\it CM} = M L^2/12$

Συμπαγές παραλληλόγραμμο πλευρών α και β
: $I_{\mathit{CM}} = M \left(a^2 + \beta^2\right) \! / \! 12$

Άσκηση 1 [15μ]

Μια αβαρής ράβδος μήκους L μπορεί να περιστρέφεται ως προς το ένα άκρο της όπως στο σχήμα. Στο άλλο άκρο της υπάρχει στερεωμένη μια μάζα m. Το σύστημα κρατιέται σε οριζόντια θέση. Σε ποιο σημείο πάνω στην ράβδο θα πρέπει να τοποθετηθεί μια δεύτερη μάζα επίσης m ώστε

το σύστημα ράβδου-μαζών να πέφτει με την μέγιστη επιτάχυνση όταν αφαιθεί ελεύθερο να κινηθεί.

0
Eivai T= mgl + mgxl, onou
* Eiver n axvisory Deg con onoia
To node toite en 2º fina m.
χείναι η αγνωσες δέσς σεν οποία το ποδετούρε τη 2º fuifa m. Αφού η paboos είναι αβαρής η ροπή προκαλείται ρώνο από το βάρος των 2 μαβών.
Capos two & major.
Tipopara fer con 2 ropo con Newton you περισφοφική virgon:
IZ = IX Onor In pony asparenes our frafair us nos co enficio reprecepodois. I = ml² + mx²
οπιείο περιστροφής.
$I = ml + mx^2$
Enolières: II = (pl2+px2) x = pgl+pgx =>
ETOLIEVEDS:
D'Edorfie va boorfie to x water n & va ein fiejicay => ax =0
Exolieros: $\frac{d}{dx} \left[\frac{g(\ell+x)}{\ell^2+x^2} \right] = 0 \Rightarrow \frac{d}{dx} \left[\frac{\ell+x}{\ell^2+x^2} \right] = 0 \Rightarrow$
$\Rightarrow \frac{(\ell^2 + x^2)(1) - (\ell + x)(2x)}{(\ell^2 + x^2)^2} = 0 \Rightarrow \ell^2 + x^2 - 2\ell x - 2x^2 = 0 \Rightarrow$
$\Rightarrow 2^2 - 2lx - x^2 = 0 \Rightarrow x^2 + 2lx - l = 0$
Or discus ons Seuzepoloidies élieurs élieurs élieurs élieurs : X1,2 = 9l ±1/8l2
Energy x rpine va cia Decuio x = - \$2+\$ev2 => x=2(v2-1)

Άσκηση 2 [15μ]

Σώμα μάζας 2m, κινείται με ταχύτητα V και συγκρούεται ελαστικά με ένα άλλο σώμα μάζας m, το οποίο είναι αρχικά ακίνητο. Υποθέστε ότι τα δυο σώματα μετά την σύγκρουσή τους σκεδάζονται σε ίσες γωνίες, φ , ως προς την αρχική διεύθυνση κίνησης της μάζας 2m. Να βρεθεί η γωνία αυτή.

Άσκηση 3 [15μ]

Μια ράβδος μήκους L και μάζας M, είναι ακουμπισμένη σε λείο τοίχο με το $\frac{1}{4}$ του μήκους της να προεξέχει από ένα σκαλοπάτι, όπως στο διπλανό σχήμα. Υποθέστε ότι η

να προεξέχει από ένα σκαλοπάτι, όπως στο διπλανό σχήμα. Υποθέστε ότι η γωνία του σκαλοπατιού είναι αρκετά τραχιά ώστε υπάρχει αρκετή τριβή και η ράβδος είναι σε ισορροπία. Να βρεθεί η συνολική δύναμη που ασκεί η γωνία του σκαλοπατιού στην ράβδο. Θα πρέπει να εκφράσετε την δύναμη αυτή είτε δίνοντας το μέτρο και την κατεύθυνσή της ή τις συνιστώσες της.

Εφόςον ο κατακόρυφος τοίχος είναι θείος, δεν υπάρχει τριβή να η μόνη δύναμη από τον τοίχο στη φάβδο είναι η κάθετη δύναμη Εχ
σοίχο στη φάβδο είναι η κάθετη δύναμη Εχ
The mag toixo and gabdo sival of kadecy ocuates Fz
Σεη χωνία του σκαθοπατικό υπάρχα η δίνολη της τρεβής f που δεν επιτρέπα στη ράβδο να χθυστρά, και η κάθετη αντίδραση από τη χωνία στη ράβδο Ν. Αυτές οι 2 δυνάφεις είναι οι συνιστώσεις της συνοθικής αντίδρασης από την χωνία στη ράβδο.
and en juvia con pablo N. Autès or 2 Surapas sino or
GUVICEW GES ETS GUVOLIKAS avadpagas and et y xwia get pablo.
Σύμφωνα με α δανίεβεις, οι τρεις δυνάμεις που ενεργούν στη φάβδο, Ε, Μο και Ετοιχ δα πρέπει να περνούν από το ίδιο σημείο αφού η φάβδος εφορροπεί.
F, Ma kai Fronz da ripéries va reproir ano co iduo críscio
apoi n pabbos reopportei.
Or our Diver ropportes embalour IFx=0, SFy=0 var IZ=0
$JF_{x}=0 \Rightarrow F_{Z_{0 x}}-f=0 \Rightarrow f=F_{Z_{0 x}} $ (1)
$2F_y=0 \Rightarrow N-mg=0 \Rightarrow N=mg$ (2)
IZ=0 ως προς επν juvia του Gualoπακιού ju va findevicoufie.
zis 2 agrasses Serafiers fixar N.
· Eivas 38/4 και η αρόστιση του KM της ρόβδου από
Το μήνος της ράβδου μεταβό της χωνίας και του τοίχου είναι 31/4 και η απόστιση του ΚΜ της ράβδου από την χωνία δα είναι 1/4 αφού το ΚΜ είναι στο 42.
$Iz=0 \Rightarrow mg.(0z) = F_{toix}.(TP) \Rightarrow mg(0H)cos\theta = F_{toix}.(0T)sin\theta$
> mg & coso = Froix · 3/ sino > Froix = mg (3)
1: (1) = 0 - E = 0 - mag (4)
Ano znv (1) = 7 = 1 toix = 1 - 3 tone
And the (1) $\Rightarrow f = F_{\text{col}} \Rightarrow f = \frac{m_{\text{G}}}{3 \tan \theta}$ (4) Or estables (2) y (4) Sivour as our ornices as Singles F H Similaring and sinu: $\tan \theta_F = \frac{N}{2} \Rightarrow \tan \theta_F = 3 \tan \theta$ 3 dopin and in an passion
page of page of the page of th

Άσκηση 4 [15μ]

Μια ράβδος μήκους l, γλυστρά πάνω σε λεία οριζόντια επιφάνεια και συγκρούεται ελαστικά με μια μπάλα. Τόσο η μπάλα όσο και η ράβδος έχουν μάζα m. Η μάζα της ράβδου είναι κατανεμημένη με τέτοιο τρόπο ώστε η ροπή αδράνειάς της ως προς το κέντρο μάζας της CM (το οποίο είναι στο μέσο της ράβδου) δίνεται από την σχέση $I_{\rho}^{CM} = Aml^2$, όπου A μια αδιάστατη σταθερά. Ποια θα πρέπει να είναι η τιμή της σταθεράς A I ώστε η μπάλα και το κέντρο της ράβδου να κινούνται με την ίδια ταχύτητα μετά την σύγκρουση;

Άσκηση 5 [20μ]

Στο σύστημα αναφοράς του εργαστηρίου (ακίνητος παρατηρητής) μια μπάλα μάζας *m* κινείται προς τα δεξιά με ταχύτητα *v* και συγκρούεται με μια άλλη μπάλα μάζας 2*m* που είναι αρχικά ακίνητη. Παρατηρείται ότι στο σύστημα αναφοράς του κέντρου μάζας, CM, ³/₄ της ενέργειας έχουν χαθεί σε μορφή θερμότητας κατά την σύγκρουση. Υποθέστε ότι η σύγκρουση είναι μονοδιάστατη.

- (α) Ποιες είναι οι ταχύτητες των δυο σωμάτων στο σύστημα αναφοράς του CM πριν την σύγκρουση; [5μ]
- (β) Ποιες είναι οι ταχύτητες των δυο σωμάτων στο σύστημα αναφοράς του CM μετά την σύγκρουση; [10μ] (Προσοχή: Θα πρέπει να μελετήσετε την κρούση στο σύστημα αναφοράς του CM για να βαθμολογηθεί το ερώτημα αυτό).
- (γ) Ποιες είναι οι ταχύτητες των δυο σωμάτων στο σύστημα αναφοράς του εργαστηρίου μετά την σύγκρουση; [**5**μ]

(α) Στο σύστημα του ερχαστηρίου, πρίν αν προύση, η πατάσταση είναι:
m V 2m H caxienta con CM cun Suo hafin Da civa:
$O_{CM} = \frac{3}{3m} \Rightarrow O_{CM} = \frac{3}{3} (C1)$
Enofieros myairoras ca CM eur cufisaur or axioques aus de évai:
V3/Epy = V3/cm + Vcm/Epy => V3/cm = V3/Epy - Vcm/Epy => V1/cm = V- \frac{1}{3} = \frac{2V}{3}
V2/EPX = V2/CM + VCM/EPX > V2/CM = V2/EPX - VCM/EPX > V2/CM = 0 - \frac{1}{3} = - \frac{1}{3}
H raco Grasy There env reposed 600 escentra avadopas con KM einer:
H vaco Gracy Tipir en reposer Gro es escentra avapopas con KM eivar: 2/3 CM 7/3 2m Izo escentra avai to KM eivar axingeo nas enotienes y oppir tou eivar
a service sea chopsessos in open and and
(B) Episor co sissertia siva anoportiso y oppir Sucrepicar. I co
Kar Englisher Da eiver luser kar leter en Koober
και επομένως θα είναι μηδέν και μετά την κρούση $P_{03}^{\text{hera}} = \emptyset \Rightarrow mV_1 + 2mV_2' = 0 \Rightarrow V_1' = -2V_2'$
AndaSi o Jojos zwe zaxuzizwe zwe Suo prajur trapopèrer: \(\frac{V_1}{V_2} = \frac{V_1}{V_2} = \frac{1}{2}
Espoulie ozz naza zny kpowier fioro co 1/4 zns everyeurs eivai Surdicitio
Ξέρουμε όζι κατά την κρούς μόνο το $1/4$ της ενέργειας είναι δωθές μο και τα υπόθοιπα $3/4$ χάθηκαν σε μορφή θερμότητας. Επομένως: $E_{\text{kiv}} = \frac{1}{2} \text{m} V_{\text{ka}}^2 + \frac{1}{2} (2\text{m}) V_{2\text{ka}}^2 = \frac{1}{2} \text{m} (V_{1\text{ka}}^2 + 2 V_{2\text{kar}}) = \frac{1}{2} \text{m} (4 V_{2\text{kar}}^2) = 3\text{m} V_{2\text{kar}}$
Axpibios avaloga Exiv = 1 mVs/c+ 1 2mVs/cm = Exiv = 3mVg/m
Alla Exiv = 1 = 3m V2/cN = 1 = V2/cM =
Evà y caxiaga cou sciluatos hájasm da sivas: Vala = 2 Vala = Vala = 3

Άσκηση 6 [20μ]

Ένα νόμισμα (θεωρήστε ότι είναι δίσκος) ακτίνας R είναι στην κατακόρυφο θέση στο δεξί άκρο μιας σανίδας μήκους L και μάζας M, όπως στο σχήμα. Το σύστημα αρχικά είναι ακίνητο. Μια σταθερή οριζόντια δύναμη F ασκείται στην σανίδα προς τα δεξιά. Υποθέστε ότι το νόμισμα δεν γλυστρά ως προς την σανίδα.

- (α) Να βρεθούν οι επιταχύνσεις της σανίδας και του νομίσματος. [15μ]
- (β) Να βρεθεί η απόσταση την οποία έχει κινηθεί το νόμισμα προς τα αριστερά, όταν το αριστερό άκρο της σανίδας έχει φθάσει στο νόμισμα. [**5**μ]

