שיעור 9 מבוא לסיבוכיות

9.1 הגדרה של סיבוכיות

9.1 הערה

 $f\left(|w|
ight)$ על קלט w, נמדד ביחס לגודל הקלט M על מ"ט אמן ריצה של מ"ט M

הגדרה 9.1

נאמר כי ניתן להכריע שפה L ולכן קלט u המm המיט אם קיימת m בזמן בזמן בזמן להכריע שפה בזמן f(n) אם בזמן להכריע ניתן להכריע ע"ט הריצה של f(|w|) ע"י חסום ע"י חסום של הריצה של הריצה של היי

דוגמה 9.1

 $L = \left\{ a^n b^n \mid n \geqslant 0
ight\}$ נבנה מ"ט M המכריעה השפה

$\cdot M$ התאור של

:w על קלט

- אם התו שמתחת לראש הוא \perp מקבלת. (1)
 - בוחה. b אם התו שמתחת לראש הוא (2)
 - X מוחקת את התו שמתחת לראש ע"י (3)
- $_{-}$ מזיזה את הראש ימינה עד התו הראשון משמאל ל-
 - . דוחה $\Leftarrow X$ או a התו הוא \bullet
- X מוחקת את התו שמתחת לראש ע"י $_{-}$, מזיזה את הראש שמאלה עד התו הראשון מימין ל $_{-}$ וחוזרת ל- (1).

זמן הריצה

- איטרציות. $\frac{|w|}{2}$
- . צעדים $O\left(|w|\right)$ צעדים בכל איטרציה מבצעים •

$$\frac{|w|}{2} \cdot O\left(|w|\right) = O\left(|w|^2\right) \ .$$

הגדרה 9.2 זמן הריצה

אמן הריצה של מ"ט M על קלט w היא פונקציה $f\left(|w|\right)$ השווה למספר הצעדים הנדרש בחישוב של M על w אמן הריצה של מ"ט.

9.2 הערה

.|w| מ"ט נמדד ביחס לגודל הקלט ומן הריצה של

הגדרה 9.3

אמן את כך שלכל L אם המכריעה M המf(n) אם בזמן בזמן בזמן להכריעה אומרים כי ניתן להכריעה שפה בזמן f(|w|) און להכריעה של שלכל של הריצה של M על חסום ע"י חסום ע"י ווע

דוגמה 9.2

 $L = \left\{ a^n b^n \mid n \geqslant 0
ight\}$ נבנה מ"ט M עם סרט יחיד שמכריעה את מ"כריעה את מ"ט

:M התאור של

:w על קלט

- אם התו שמתחת לראש הוא = מקבלת.
 - בוחה. b אם התו שמתחת לראש הוא (2)
 - X מוחקת את התו שמתחת לראש ע"י (3)
- ._ ל- מזיזה את הראש ימינה עד התו הראשון משמאל ל-
 - . דוחה $\Leftarrow X$ או a התו הוא \bullet
- X מוחקת את התו שמתחת לראש ע"י ב, מזיזה את הראש שמאלה עד התו הראשון מימין ל \bullet וחוזרת ל- (1).

זמן הריצה

- . איטרציות $\frac{|w|}{2}$ איטרציות M
- $O\left(|w|
 ight)$ איטרציה וזה חסרט את סורקת חסרס סורקת סורקת
 - ע"י חסום M אסום ע"י ullet

$$\frac{|w|}{2} \cdot O(|w|) = O(|w|^2) .$$

O(|w|) :(3-5) שלבים

דוגמה 9.3

 $L = \left\{ a^n b^n \mid n \geqslant 0
ight\}$ נבנה מ"ט מרובת סרטים M' שמכריעה את נבנה

$\underline{:}M'$ התאור ש

:w על קלט

$$. \underbrace{O(|w|)}$$
 מעתיקה את ה- b -ים לסרט 2 (ותוך כדי בודקת האם w מהצורה (1)

$$O\left(|w|\right)$$
 מזיזה את הראשים לתחילת הסרטים.

. אם שני הראשען מצביעים על
$$\leftarrow$$
 מקבלת.

. אם אחד הראשים מצביע על
$$_{-}$$
 והשני לא \Leftrightarrow לא.

זמן הריצה

 $O\left(|w|
ight)$ הוא M' אמן הריצה של

9.2 יחס בין הסיבוכיות של מ"ט סרט יחיד ומטמ"ס

9.1 משפט

לכל מ"ט מרובת סרטים M הרצה בזמן f(n) קיימת מ"ט סרט יחיד 'M השקולה ל- M ורצה בזמן . $O\left(f^2(n)\right)$

הוכחה:

בהינתן מ"ט מרובת סרטים M, הרצה בזמן f(n), נבנה מ"ט עם סרט יחיד M' באותו אופן כמו בהוכחת השקילות במשפט 3.1.

כלומר, M' שומרת את התוכן של k סרטים של M על הסרט היחיד שלה (עם הפרדה ע"י #), ובכל צעד חישוב, מלומר, M' סורקת את הסרט שלה כדי לזהות שת האותיות שמתחת לראשים (שמסומנות ב- k) ואחרי זה, משתמשת M' בפונקצית המעברים של k, וסורקת את הסרט פעם נוספת כדי לעדכן את התוכן בכל אחד מהסרטים ואת מיקום הראש בכל אחד מהסרטים.

•

כמה לוקח ל- M' לסרוק את הסרט שלה? מכיוון שהסרט של M' מכיל את התוכן של M הסרטים של M', והגודל של כל אחד מהסרטים של M' חסום ע"י M', גודל הסרט של M', גודל הסרט של M'

$$k \cdot f(n) = O(f(n)) .$$

. על הקלט M' אישוב בריצה של אנד עלות עלות אל ואה היא $O\left(f(n)\right)$ אלה היא לסרט לסרט M' אל הסריקה של העלות אל

ע"י חסום M' אמן היצרה של ,f(n) חסום ע"י מכיוון ש-

$$f(n) \cdot O(f(n)) = O(f^2(n))$$
.

9.3 יחס בין הסיבוכיות של מ"ט דטרמיניסטית ומ"ט א"ד

<u> 9.4</u> הגדרה

בחישוב בחישוה למספר הצעדים בחישוב $f\left(|w|\right)$ היא פונקציה Mעל של הריצה הצעדים בחישוב בהינתן מ"ט א"ד של הריצה של Mעל של הריצה המקסימלי של Mעל איד של Mעל של המקסימלי של המקסימלי של הריצה של הריצה

9.2 משפט

 $(2^{(f(n))}$ ורצה בזמן א"ד א הרצה השקולה ל-, קיימת מ"ט דטרמיניסטית קיימת א"ד א הרצה בזמן א קיימת מ"ט א

הוכחה:

.4.1 בהינתן מ"ט א"ד N הרצה בזמן f(n) מ"ט דטרמיניסטית באותו אופן כמו בהוכחת השקילות במשפט

כלומר, בהינתן קלט p, תסרו' את עץ החישוב של p ו- p לרוחב ותקבל כל אחד החישובים של p המסתיים ב- p.

:n בהינתן קלט w באורך

- f(n) על על חסום ע"י אחישוב של N על החישוב ע"י ullet
- w ו- N ו- N מסטר החישובים בעץ החישוב של D מסטר החישוב של D מסטר החישובים Φ
 - מכיוון שמספר הבנים של כל קודקוד בעץ החישוב חסום ע"י

$$C = 3|Q| \cdot |\Gamma|$$

מספר הקודקודים בעץ החישוב חסום ע"י

$$C^0 + C^2 + \dots + C^{f(n)} \le C^{f(n)+1} = C \cdot C^{f(n)}$$
.

ימן חסום D אלכן זמן הריצה של

$$f(n) \cdot C \cdot C^{f(n)} \leqslant C^{f(n)} \cdot C^{f(n)} = C^{2f(n)} = \left(C^2\right)^{f(n)} = 2^{C' \cdot f(n)} = 2^{O(f(n))} \ .$$

נתייחס כאן לשני החסמים הבאים:

- . תכטר c>0 עבטר n^c מהצורה חסם פולינומיאלי הוא חסם (1
- . תסם אקספוננציאלי הוא חסם מהצורה 2^{n^c} עבור (2

הגדרה 9.5 בעיית הכרעה

בעיית הכרעה מוגדרת באופן הבא:

"בהינתן קלט כלשהו, האם הקלט מקיים תנאי מסוים"

דוגמה 9.4

בהינתן מספר n, האם n ראשוני?

כל בעיית הכרעה ניתן לתאר כפשה שקולה:

$$L_{\mathsf{prime}} = \{\langle n \rangle \mid \mathsf{rweite} \mid n \}$$
 .

משפט 9.3

שפה \equiv בעיית הכרעה .

הגדרה 9.6 אלגוריתם זמן פולינומיאלי

על A אומרים כי אלגוריתם א מכריעה בעייה בזמן פולינומיאלי אם קיים קבוע מכריעה בעייה ביים אומרים כי אלגוריתם $O\left(|w|^c\right)$ כך אומרים כל קלט w חסום ע"י

(Church Thesis) משפט 9.4 התזה של צירץ'

אם קיים אלגוריתם המכריע בעייה בזמן פולינומיאלי, אז קיימת מ"ט דטרמיניסטית המכריעה את השפה השקולה לבעייה זו בזמן פולינומיאלי.

. מכונת טיורינג = אלגוריתם מכריעה

P המחלקה 9.4

P הגדרה 9.7 המחלקה

המכריע (מכונת טיורינג דטרמיניסטית) המכריע (השפות) שקיים עבורן אלגוריתם (מכונת טיורינג דטרמיניסטית) המכריע אותן בזמן פולינומיאלי.

דוגמה 9.5

$$L = \left\{ a^n b^n \mid n \geqslant 0 \right\} \in P .$$

PATH בעיית 9.5

הגדרה 9.8 בעיית המסלול בגרף מכוון

 $s,t\in V$ ושני קודקודים G=(V,E) קלט: גרף מכוון

t -ל s מ- מ- מסלול ב- מ- s ל-

 $PATH = ig\{ \langle G, s, t
angle \ | \ t$ -ל מ- G מ- מסלול ב-

9.5 משפט

 $PATH \in P$.

$$:\langle G,s,t\rangle$$
 על קלט $=A$

- .s צובע את (1
- :פעמים |V|-1 פעמים (2
- $:(u,\mathbf{v})\in E$ לכל צלע
- v אם צבוע v צבע את v
 - "כן "כן בוע \leftarrow אם t צבוע \bullet
 - \star אחרת \Rightarrow החזיר "לא".

|V| פולינומיאלי במספר הקודקודים $O\left(|V|\cdot|E|
ight)$ האלגוריתם הוא

 $|\langle G \rangle|$ האם זה פולינומיאלי בגודל הקלט

 ${}^{\circ}G$ איך נקודד את

- $.V = \{1,2,3, \quad \cdots \quad ,n\}$ ר- |V| = n נניח כי
- -ע כך n imes n בגודל בגודל M כך שי הצלעות נתונות ע"י מטריצה -

$$M_{ij} = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}.$$

- נניך כי מספרים מקודדים בבסיס ביניארי.
- כלומר , $n^2 + n \log_2 n$ שווה של של הקידוד של •

$$|\langle G \rangle| = \Omega(|V|^2) \quad \Rightarrow \quad |V| = O(|\langle G \rangle|).$$

 $|\langle G
angle$ ולכן כל אלגוריתם הרץ בזמן פולינומיאלי במספר הקודקודים ו|V| ירוץ בזמן פולינומיאלי בגודל הקידוד

ולכן A רץ בזמן פולינומיאלי בגודל הקלט.

RELPRIME בעיית 9.6

(Relatively prime) מספרים זרים 9.9 מספרים

.1 שווה $\gcd(x,y)$ ארים אם המחלק המשותף הגדול ביותר, מסומן ארים אם זרים שני מספרים אווה ו

הגדרה 9.10 בעיית אדרה

y -ו x פלט: שני מספרים

פלט: האם x ו-y זרים?

 $RELPRIME = \{ \langle x, y \rangle \mid \gcd(x, y) = 1 \}$.

משפט 9.6

$RELPRIME \in P$.

. נבנה אלגוריתם A המכריע את RELPRIME בזמן פולינומיאלי.

-האלגוריתם מבוסס על העובדה ש

$$gcd(x,y) = 1 \Leftrightarrow \langle x,y \rangle \in RELPRIME$$
.

ולכן נשתמש באלגוריתם האוקלידי לחישוב gcd:

$$\gcd(x,y) = \begin{cases} x & y = 0\\ \gcd(y,x \mod y) & y \neq 0 \end{cases}.$$

x=qy+r א"א $x=x \mod y$ נסמן נסמן s,t נסמן אזי קיימים שלמים s,t כך ש- א t מימים אזי קיימים שלמים . $t=\gcd(x,y)$ לכן

$$s(qy+r)+ty=d \quad \Rightarrow \quad sr+(t+sq)y=d \quad \Rightarrow \quad \gcd(x,y)=d=\gcd(y,r) \ .$$

לדוגמה:

$$\gcd(18,32) = \gcd(32,18) = \gcd(18,14) = \gcd(14,4) = \gcd(4,2) = \gcd(2,0) = 2$$
.

האלגוריתם האוקלידי:

y -וx על קלט

- $y \neq 0$ כל עוד (1)
- $x \mod y \to x \bullet$
 - $swap(x,y) \bullet$

(y - 1) x (כלומר מחליפים בין

x מחזירים את (2)

:RELPRIME האלגוריתם A המכריע

$$:\langle x,y \rangle$$
 על קלט $=A$

- y -ו x את האלגוריתם האוקלידי על ו- (1)
- אם האלגורים האוקלידי החזיר = 1 מקבל.
 - אחרת ⇒ דוחה.

נכונות האלגוריתם נובעת מנכונות האלגוריתם האוקלדי.

נוכיח כי A רץ בזמן פולינומיאלי בגודל הקלט.

:טענת עזר

 $x \mod y < \frac{x}{2}$ איז x > y אם

:הוכחה

יש שתי אפשרויות:

אזי $y\leqslant \frac{x}{2}$ אזי •

- $x \mod y < y \leqslant \frac{x}{2} \ .$
- . $\frac{x}{2} < y < x$ נניח ש- $x = y + (x \mod y)$ ולכן q < 2 אז בהכרח $x = y + (x \mod y)$ ולכן $x = qy + (x \mod y)$ ולכן $x = qy + (x \mod y)$ ולכן $x = qy + (x \mod y)$

לפיכך $x \mod y = x - y < \frac{x}{2} \ .$

. לפי טענת העזר, אחרי כל איטרציה x קטן בלפחות חצי

מכיוון שבכל איטרציה מחליפים בין x ו- y, אחרי כל שתי איטרציות גם x וגם איטרציה מחליפים בלפחות חצי.

.0ל- שווים y או לפחות לפחות איטרציות $\log_2 x + \log_2 y$ לאחר ולכן ולכן

Aהאלגוריתם האוקלידי זמן וזה בדיוק ווה גווריתם ע"י חסום ע"י חסום ע"י באלגוריתם באלגוריתם האיטרציות מספר וולכן איי

ולכן A רץ בזמן פולינומיאלי בגודל הקלט.

ולכן

 $RELPRIME \in P$.