Étale groupoids and inverse semigroups

David Milan¹ Benjamin Steinberg²

¹University of Texas at Tyler, ²Carleton University

bsteinbg@math.carleton.ca

http://www.mathstat.carleton.ca/~bsteinbg

July 14, 2010

- Ruy Exel suggested the following paradigm for the study of "combinatorial C^* -algebras."
 - Start with a combinatorial object (e.g., a graph or a tiling).
 - Construct an inverse semigroup.
 - From the semigroup construct an étale groupoid.
 - From the groupoid construct a C*-algebra.
- One can hope to use the algebra to understand the combinatorial object (as in the case of tilings);
- Or use the combinatorial object to understand the algebra (assist the case of graphs).

- Ruy Exel suggested the following paradigm for the study of "combinatorial C^* -algebras."
 - Start with a combinatorial object (e.g., a graph or a tiling).
 - Construct an inverse semigroup.
 - From the semigroup construct an étale groupoid.
 - From the groupoid construct a C*-algebra.
- One can hope to use the algebra to understand the combinatorial object (as in the case of tilings);
- Or use the combinatorial object to understand the algebra (assist the case of graphs).

- Ruy Exel suggested the following paradigm for the study of "combinatorial C^* -algebras."
 - Start with a combinatorial object (e.g., a graph or a tiling).
 - Construct an inverse semigroup.
 - From the semigroup construct an étale groupoid.
 - From the groupoid construct a C^* -algebra.
- One can hope to use the algebra to understand the combinatorial object (as in the case of tilings);
- Or use the combinatorial object to understand the algebra (as in the case of graphs).

- ullet Ruy Exel suggested the following paradigm for the study of "combinatorial C^* -algebras."
 - Start with a combinatorial object (e.g., a graph or a tiling).
 - Construct an inverse semigroup.
 - From the semigroup construct an étale groupoid.
 - From the groupoid construct a C^* -algebra.
- One can hope to use the algebra to understand the combinatorial object (as in the case of tilings);
- Or use the combinatorial object to understand the algebra (as in the case of graphs).

- ullet Ruy Exel suggested the following paradigm for the study of "combinatorial C^* -algebras."
 - Start with a combinatorial object (e.g., a graph or a tiling).
 - Construct an inverse semigroup.
 - From the semigroup construct an étale groupoid.
 - ullet From the groupoid construct a C^* -algebra.
- One can hope to use the algebra to understand the combinatorial object (as in the case of tilings);
- Or use the combinatorial object to understand the algebra (as in the case of graphs).

- Ruy Exel suggested the following paradigm for the study of "combinatorial C^* -algebras."
 - Start with a combinatorial object (e.g., a graph or a tiling).
 - Construct an inverse semigroup.
 - From the semigroup construct an étale groupoid.
 - ullet From the groupoid construct a C^* -algebra.
- One can hope to use the algebra to understand the combinatorial object (as in the case of tilings);
- Or use the combinatorial object to understand the algebra (as in the case of graphs).

- ullet Ruy Exel suggested the following paradigm for the study of "combinatorial C^* -algebras."
 - Start with a combinatorial object (e.g., a graph or a tiling).
 - Construct an inverse semigroup.
 - From the semigroup construct an étale groupoid.
 - ullet From the groupoid construct a C^* -algebra.
- One can hope to use the algebra to understand the combinatorial object (as in the case of tilings);
- Or use the combinatorial object to understand the algebra (as in the case of graphs).

- It is by now well known that natural notions for étale groupoids translate into natural notions for C*-algebras.
- For instance, Morita equivalent groupoids have strongly Morita equivalent algebras.
- The (partial action) semidirect product of a group with a space yields a (partial action) cross product of the group with a commutative C*-algebra.
- The algebra of a groupoid of germs of an inverse semigroup action on a space translates to an inverse semigroup cross product algebra.

- It is by now well known that natural notions for étale groupoids translate into natural notions for C^* -algebras.
- For instance, Morita equivalent groupoids have strongly Morita equivalent algebras.
- The (partial action) semidirect product of a group with a space yields a (partial action) cross product of the group with a commutative C*-algebra.
- The algebra of a groupoid of germs of an inverse semigroup action on a space translates to an inverse semigroup cross product algebra.

- It is by now well known that natural notions for étale groupoids translate into natural notions for C*-algebras.
- For instance, Morita equivalent groupoids have strongly Morita equivalent algebras.
- ullet The (partial action) semidirect product of a group with a space yields a (partial action) cross product of the group with a commutative C^* -algebra.
- The algebra of a groupoid of germs of an inverse semigroup action on a space translates to an inverse semigroup cross product algebra.

- It is by now well known that natural notions for étale groupoids translate into natural notions for C*-algebras.
- For instance, Morita equivalent groupoids have strongly Morita equivalent algebras.
- ullet The (partial action) semidirect product of a group with a space yields a (partial action) cross product of the group with a commutative C^* -algebra.
- The algebra of a groupoid of germs of an inverse semigroup action on a space translates to an inverse semigroup cross product algebra.

- It seems to be less well known what happens when passing from an inverse semigroup to a groupoid.
- Does Morita equivalence pass through to the groupoids?
- Do (partial action) semidirect products become (partial action) semidirect products?
- Functoriality seems not to have been addressed.
- It is also not universally agreed upon which groupoid to assign to an inverse semigroup.
- There are Paterson's universal groupoid, Kellendonk's groupoid and Exel's tight groupoid.
- Here we will focus on Paterson's groupoid, as the others are reductions. All of our results so far are valid for any of these groupoids.

- It seems to be less well known what happens when passing from an inverse semigroup to a groupoid.
- Does Morita equivalence pass through to the groupoids?
- Do (partial action) semidirect products become (partial action) semidirect products?
- Functoriality seems not to have been addressed.
- It is also not universally agreed upon which groupoid to assign to an inverse semigroup.
- There are Paterson's universal groupoid, Kellendonk's groupoid and Exel's tight groupoid.
- Here we will focus on Paterson's groupoid, as the others are reductions. All of our results so far are valid for any of these groupoids.

- It seems to be less well known what happens when passing from an inverse semigroup to a groupoid.
- Does Morita equivalence pass through to the groupoids?
- Do (partial action) semidirect products become (partial action) semidirect products?
- Functoriality seems not to have been addressed.
- It is also not universally agreed upon which groupoid to assign to an inverse semigroup.
- There are Paterson's universal groupoid, Kellendonk's groupoid and Exel's tight groupoid.
- Here we will focus on Paterson's groupoid, as the others are reductions. All of our results so far are valid for any of these groupoids.

- It seems to be less well known what happens when passing from an inverse semigroup to a groupoid.
- Does Morita equivalence pass through to the groupoids?
- Do (partial action) semidirect products become (partial action) semidirect products?
- Functoriality seems not to have been addressed.
- It is also not universally agreed upon which groupoid to assign to an inverse semigroup.
- There are Paterson's universal groupoid, Kellendonk's groupoid and Exel's tight groupoid.
- Here we will focus on Paterson's groupoid, as the others are reductions. All of our results so far are valid for any of these groupoids.

- It seems to be less well known what happens when passing from an inverse semigroup to a groupoid.
- Does Morita equivalence pass through to the groupoids?
- Do (partial action) semidirect products become (partial action) semidirect products?
- Functoriality seems not to have been addressed.
- It is also not universally agreed upon which groupoid to assign to an inverse semigroup.
- There are Paterson's universal groupoid, Kellendonk's groupoid and Exel's tight groupoid.
- Here we will focus on Paterson's groupoid, as the others are reductions. All of our results so far are valid for any of these groupoids.

- It seems to be less well known what happens when passing from an inverse semigroup to a groupoid.
- Does Morita equivalence pass through to the groupoids?
- Do (partial action) semidirect products become (partial action) semidirect products?
- Functoriality seems not to have been addressed.
- It is also not universally agreed upon which groupoid to assign to an inverse semigroup.
- There are Paterson's universal groupoid, Kellendonk's groupoid and Exel's tight groupoid.
- Here we will focus on Paterson's groupoid, as the others are reductions. All of our results so far are valid for any of these groupoids.

- It seems to be less well known what happens when passing from an inverse semigroup to a groupoid.
- Does Morita equivalence pass through to the groupoids?
- Do (partial action) semidirect products become (partial action) semidirect products?
- Functoriality seems not to have been addressed.
- It is also not universally agreed upon which groupoid to assign to an inverse semigroup.
- There are Paterson's universal groupoid, Kellendonk's groupoid and Exel's tight groupoid.
- Here we will focus on Paterson's groupoid, as the others are reductions. All of our results so far are valid for any of these groupoids.

- Inverse semigroups are the abstract counterparts of pseudogroups of partial homeomorphisms of a space.
- If X is a topological space, then I_X is the pseudogroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense: if $f: U \longrightarrow V$ and $g: U' \longrightarrow V'$, then

$$f \circ g \colon g^{-1}(U \cap V') \longrightarrow f(U \cap V').$$

- Inverse semigroups are the abstract counterparts of pseudogroups of partial homeomorphisms of a space.
- If X is a topological space, then I_X is the pseudogroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense: if $f: U \longrightarrow V$ and $g: U' \longrightarrow V'$, then

$$f \circ g \colon g^{-1}(U \cap V') \longrightarrow f(U \cap V').$$

- Inverse semigroups are the abstract counterparts of pseudogroups of partial homeomorphisms of a space.
- If X is a topological space, then I_X is the pseudogroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense: if $f: U \longrightarrow V$ and $g: U' \longrightarrow V'$, then

$$f \circ g \colon g^{-1}(U \cap V') \longrightarrow f(U \cap V').$$

- Inverse semigroups are the abstract counterparts of pseudogroups of partial homeomorphisms of a space.
- If X is a topological space, then I_X is the pseudogroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense: if $f: U \longrightarrow V$ and $g: U' \longrightarrow V'$, then

$$f \circ g \colon g^{-1}(U \cap V') \longrightarrow f(U \cap V').$$

ullet Formally, an inverse semigroup is a semigroup S such that for all $s\in S$, there is a unique element s^* such that

$$ss^*s = s, \ s^*ss^* = s^*$$

- Munn and Penrose proved that the idempotents of S commute and hence E(S) is a subsemigroup.
- ullet E(S) is ordered by $e \leq f$ iff ef = e and then $ef = e \wedge f$.
- ullet So E(S) is a meet semilattice.
- The order extends to S by putting $s \leq t$ if s = te for some idempotent e.
- For I_X , the ordering is restriction

ullet Formally, an inverse semigroup is a semigroup S such that for all $s\in S$, there is a unique element s^* such that

$$ss^*s = s, \ s^*ss^* = s^*$$

- Munn and Penrose proved that the idempotents of S commute and hence E(S) is a subsemigroup.
- ullet E(S) is ordered by $e \leq f$ iff ef = e and then $ef = e \wedge f$.
- So E(S) is a meet semilattice.
- The order extends to S by putting $s \leq t$ if s = te for some idempotent e.
- For I_X, the ordering is restriction.

ullet Formally, an inverse semigroup is a semigroup S such that for all $s\in S$, there is a unique element s^* such that

$$ss^*s = s, \ s^*ss^* = s^*$$

- Munn and Penrose proved that the idempotents of S commute and hence E(S) is a subsemigroup.
- ullet E(S) is ordered by $e \leq f$ iff ef = e and then $ef = e \wedge f$.
- So E(S) is a meet semilattice.
- The order extends to S by putting $s \leq t$ if s = te for some idempotent e.
- For I_X , the ordering is restriction

ullet Formally, an inverse semigroup is a semigroup S such that for all $s\in S$, there is a unique element s^* such that

$$ss^*s = s, \ s^*ss^* = s^*$$

- ullet Munn and Penrose proved that the idempotents of S commute and hence E(S) is a subsemigroup.
- E(S) is ordered by $e \leq f$ iff ef = e and then $ef = e \wedge f$.
- ullet So E(S) is a meet semilattice.
- The order extends to S by putting $s \leq t$ if s = te for some idempotent e.
- For I_X , the ordering is restriction.

ullet Formally, an inverse semigroup is a semigroup S such that for all $s\in S$, there is a unique element s^* such that

$$ss^*s = s, \ s^*ss^* = s^*$$

- ullet Munn and Penrose proved that the idempotents of S commute and hence E(S) is a subsemigroup.
- E(S) is ordered by $e \leq f$ iff ef = e and then $ef = e \wedge f$.
- ullet So E(S) is a meet semilattice.
- The order extends to S by putting $s \le t$ if s = te for some idempotent e.
- For I_X , the ordering is restriction.

ullet Formally, an inverse semigroup is a semigroup S such that for all $s\in S$, there is a unique element s^* such that

$$ss^*s = s, \ s^*ss^* = s^*$$

- ullet Munn and Penrose proved that the idempotents of S commute and hence E(S) is a subsemigroup.
- E(S) is ordered by $e \leq f$ iff ef = e and then $ef = e \wedge f$.
- ullet So E(S) is a meet semilattice.
- The order extends to S by putting $s \le t$ if s = te for some idempotent e.
- For I_X , the ordering is restriction.

- Identifying two elements of S with a common lower bound (i.e., the same germ) yields a congruence.
- ullet The quotient is a group G(S) called the maximal group image
- The canonical projection $\sigma \colon S \longrightarrow G(S)$ is universal to groups.
- Clearly $E(S) \subseteq \sigma^{-1}(1)$.
- S is called E-unitary if $E(S) = \sigma^{-1}(1)$.
- S is called F-inverse if $eSf \cap \sigma^{-1}(g)$ has a maximum elementum for all $e, f \in E(S)$ and $g \in G(S)$.
- F-inverse semigroups are E-unitary.

- Identifying two elements of S with a common lower bound (i.e., the same germ) yields a congruence.
- ullet The quotient is a group G(S) called the maximal group image.
- The canonical projection $\sigma \colon S \longrightarrow G(S)$ is universal to groups.
- Clearly $E(S) \subseteq \sigma^{-1}(1)$.
- ullet S is called E-unitary if $E(S) = \sigma^{-1}(1).$
- S is called F-inverse if $eSf \cap \sigma^{-1}(g)$ has a maximum elementum for all $e, f \in E(S)$ and $g \in G(S)$.
- F-inverse semigroups are E-unitary.

- Identifying two elements of S with a common lower bound (i.e., the same germ) yields a congruence.
- ullet The quotient is a group G(S) called the maximal group image.
- The canonical projection $\sigma \colon S \longrightarrow G(S)$ is universal to groups.
- Clearly $E(S) \subseteq \sigma^{-1}(1)$.
- S is called E-unitary if $E(S) = \sigma^{-1}(1)$.
- S is called F-inverse if $eSf \cap \sigma^{-1}(g)$ has a maximum element for all $e, f \in E(S)$ and $g \in G(S)$.
- F-inverse semigroups are E-unitary

- Identifying two elements of S with a common lower bound (i.e., the same germ) yields a congruence.
- ullet The quotient is a group G(S) called the maximal group image.
- The canonical projection $\sigma \colon S \longrightarrow G(S)$ is universal to groups.
- Clearly $E(S) \subseteq \sigma^{-1}(1)$.
- S is called E-unitary if $E(S) = \sigma^{-1}(1)$.
- S is called F-inverse if $eSf \cap \sigma^{-1}(g)$ has a maximum element for all $e, f \in E(S)$ and $g \in G(S)$.
- \bullet F-inverse semigroups are E-unitary.

- Identifying two elements of S with a common lower bound (i.e., the same germ) yields a congruence.
- ullet The quotient is a group G(S) called the maximal group image.
- The canonical projection $\sigma \colon S \longrightarrow G(S)$ is universal to groups.
- Clearly $E(S) \subseteq \sigma^{-1}(1)$.
- S is called E-unitary if $E(S) = \sigma^{-1}(1)$.
- S is called F-inverse if $eSf \cap \sigma^{-1}(g)$ has a maximum element for all $e, f \in E(S)$ and $g \in G(S)$.
- F-inverse semigroups are E-unitary.

- Identifying two elements of S with a common lower bound (i.e., the same germ) yields a congruence.
- ullet The quotient is a group G(S) called the maximal group image.
- The canonical projection $\sigma \colon S \longrightarrow G(S)$ is universal to groups.
- Clearly $E(S) \subseteq \sigma^{-1}(1)$.
- S is called E-unitary if $E(S) = \sigma^{-1}(1)$.
- S is called F-inverse if $eSf \cap \sigma^{-1}(g)$ has a maximum element for all $e, f \in E(S)$ and $g \in G(S)$.
- \bullet F-inverse semigroups are E-unitary.

- Identifying two elements of S with a common lower bound (i.e., the same germ) yields a congruence.
- ullet The quotient is a group G(S) called the maximal group image.
- The canonical projection $\sigma \colon S \longrightarrow G(S)$ is universal to groups.
- Clearly $E(S) \subseteq \sigma^{-1}(1)$.
- S is called E-unitary if $E(S) = \sigma^{-1}(1)$.
- S is called F-inverse if $eSf \cap \sigma^{-1}(g)$ has a maximum element for all $e, f \in E(S)$ and $g \in G(S)$.
- F-inverse semigroups are E-unitary.

- ullet If E is a meet semilattice, then E is an inverse semigroup of "projections."
- Meet semilattices are to inverse semigroups as spaces are to étale groupoids.
- A group is an inverse semigroup.
- If a group G acts on a semilattice E, the semidirect product $E \rtimes G$ is an F-inverse semigroup.
- If G acts partially on E, then E × G is E-unitary and by a theorem of McAlister all E-unitary inverse semigroups arise in this way.

- ullet If E is a meet semilattice, then E is an inverse semigroup of "projections."
- Meet semilattices are to inverse semigroups as spaces are to étale groupoids.
- A group is an inverse semigroup.
- If a group G acts on a semilattice E, the semidirect product $E \rtimes G$ is an F-inverse semigroup.
- If G acts partially on E, then E × G is E-unitary and by a theorem of McAlister all E-unitary inverse semigroups arise in this way.

- \bullet If E is a meet semilattice, then E is an inverse semigroup of "projections."
- Meet semilattices are to inverse semigroups as spaces are to étale groupoids.
- A group is an inverse semigroup.
- If a group G acts on a semilattice E, the semidirect product $E \rtimes G$ is an F-inverse semigroup.
- If G acts partially on E, then E × G is E-unitary and by a theorem of McAlister all E-unitary inverse semigroups arise in this way.

- \bullet If E is a meet semilattice, then E is an inverse semigroup of "projections."
- Meet semilattices are to inverse semigroups as spaces are to étale groupoids.
- A group is an inverse semigroup.
- If a group G acts on a semilattice E, the semidirect product $E \rtimes G$ is an F-inverse semigroup.
- If G acts partially on E, then $E \rtimes G$ is E-unitary and by a theorem of McAlister all E-unitary inverse semigroups arise in this way.

- ullet If E is a meet semilattice, then E is an inverse semigroup of "projections."
- Meet semilattices are to inverse semigroups as spaces are to étale groupoids.
- A group is an inverse semigroup.
- If a group G acts on a semilattice E, the semidirect product $E \rtimes G$ is an F-inverse semigroup.
- If G acts partially on E, then $E \rtimes G$ is E-unitary and by a theorem of McAlister all E-unitary inverse semigroups arise in this way.

- The bicyclic monoid is the inverse semigroup B generated by a unilateral shift and its adjoint.
- Its semilattice of idempotents is (\mathbb{N}, \geq) .
- It is E-unitary with maximal group image is \mathbb{Z} (given by the Fredholm index).
- The polycyclic (or Cuntz) inverse semigroup is given by the presentation $P_X = \langle X \mid x^*y = \delta_{x,y} \rangle$ (as an inverse semigroup with 0).
- It is a (congruence) simple inverse semigroup and can be identified with the inverse semigroup generated by the generators of the Cuntz algebra.
- Similarly, there is a graph inverse semigroup associated to any directed graph which is analogous to the graph C*-algebra.

- The bicyclic monoid is the inverse semigroup *B* generated by a unilateral shift and its adjoint.
- Its semilattice of idempotents is (\mathbb{N}, \geq) .
- It is E-unitary with maximal group image is \mathbb{Z} (given by the Fredholm index).
- The polycyclic (or Cuntz) inverse semigroup is given by the presentation $P_X = \langle X \mid x^*y = \delta_{x,y} \rangle$ (as an inverse semigroup with 0).
- It is a (congruence) simple inverse semigroup and can be identified with the inverse semigroup generated by the generators of the Cuntz algebra.
- Similarly, there is a graph inverse semigroup associated to any directed graph which is analogous to the graph C*-algebra.

- The bicyclic monoid is the inverse semigroup B generated by a unilateral shift and its adjoint.
- Its semilattice of idempotents is (\mathbb{N}, \geq) .
- It is E-unitary with maximal group image is \mathbb{Z} (given by the Fredholm index).
- The polycyclic (or Cuntz) inverse semigroup is given by the presentation $P_X = \langle X \mid x^*y = \delta_{x,y} \rangle$ (as an inverse semigroup with 0).
- It is a (congruence) simple inverse semigroup and can be identified with the inverse semigroup generated by the generators of the Cuntz algebra.
- Similarly, there is a graph inverse semigroup associated to any directed graph which is analogous to the graph C^* -algebra.

- The bicyclic monoid is the inverse semigroup B generated by a unilateral shift and its adjoint.
- Its semilattice of idempotents is (\mathbb{N}, \geq) .
- It is E-unitary with maximal group image is \mathbb{Z} (given by the Fredholm index).
- The polycyclic (or Cuntz) inverse semigroup is given by the presentation $P_X = \langle X \mid x^*y = \delta_{x,y} \rangle$ (as an inverse semigroup with 0).
- It is a (congruence) simple inverse semigroup and can be identified with the inverse semigroup generated by the generators of the Cuntz algebra.
- Similarly, there is a graph inverse semigroup associated to any directed graph which is analogous to the graph C^* -algebra.

- The bicyclic monoid is the inverse semigroup B generated by a unilateral shift and its adjoint.
- Its semilattice of idempotents is (\mathbb{N}, \geq) .
- ullet It is E-unitary with maximal group image is $\mathbb Z$ (given by the Fredholm index).
- The polycyclic (or Cuntz) inverse semigroup is given by the presentation $P_X = \langle X \mid x^*y = \delta_{x,y} \rangle$ (as an inverse semigroup with 0).
- It is a (congruence) simple inverse semigroup and can be identified with the inverse semigroup generated by the generators of the Cuntz algebra.
- ullet Similarly, there is a graph inverse semigroup associated to any directed graph which is analogous to the graph C^* -algebra.

- The bicyclic monoid is the inverse semigroup *B* generated by a unilateral shift and its adjoint.
- Its semilattice of idempotents is (\mathbb{N}, \geq) .
- ullet It is E-unitary with maximal group image is $\mathbb Z$ (given by the Fredholm index).
- The polycyclic (or Cuntz) inverse semigroup is given by the presentation $P_X = \langle X \mid x^*y = \delta_{x,y} \rangle$ (as an inverse semigroup with 0).
- It is a (congruence) simple inverse semigroup and can be identified with the inverse semigroup generated by the generators of the Cuntz algebra.
- ullet Similarly, there is a graph inverse semigroup associated to any directed graph which is analogous to the graph C^* -algebra.

- Let G be a group with generators X and corresponding Cayley graph Γ .
- $M_A(G)$ consists of all equivalence classes of triples $[g,\Lambda,h]$ where Λ is a finite connected subgraph of Γ and g,h are vertices of Λ .
- Equivalence is up to translation by G.
- The product is given by

$$[g, \Lambda, h][g', \Lambda', h'] = [g, \Lambda \cup h\Lambda', hh'].$$

- ullet $M_A(G)$ is E-unitary with maximal group image G.
- If G is free on A, then $M_A(G)$ is a free inverse monoid on A
- Free inverse monoids classify graph immersions over a bouquet.

- Let G be a group with generators X and corresponding Cayley graph Γ .
- $M_A(G)$ consists of all equivalence classes of triples $[g,\Lambda,h]$ where Λ is a finite connected subgraph of Γ and g,h are vertices of Λ .
- ullet Equivalence is up to translation by G.
- The product is given by

$$[g,\Lambda,h][g',\Lambda',h']=[g,\Lambda\cup h\Lambda',hh'].$$

- M_A(G) is E-unitary with maximal group image G.
- ullet If G is free on A, then $M_A(G)$ is a free inverse monoid on A
- Free inverse monoids classify graph immersions over a bouquet.

- Let G be a group with generators X and corresponding Cayley graph Γ .
- $M_A(G)$ consists of all equivalence classes of triples $[g,\Lambda,h]$ where Λ is a finite connected subgraph of Γ and g,h are vertices of Λ .
- Equivalence is up to translation by G.
- The product is given by

$$[g, \Lambda, h][g', \Lambda', h'] = [g, \Lambda \cup h\Lambda', hh'].$$

- $M_A(G)$ is E-unitary with maximal group image G.
- If G is free on A, then $M_A(G)$ is a free inverse monoid on A.
- Free inverse monoids classify graph immersions over a bouquet.

- Let G be a group with generators X and corresponding Cayley graph Γ .
- $M_A(G)$ consists of all equivalence classes of triples $[g,\Lambda,h]$ where Λ is a finite connected subgraph of Γ and g,h are vertices of Λ .
- Equivalence is up to translation by G.
- The product is given by

$$[g, \Lambda, h][g', \Lambda', h'] = [g, \Lambda \cup h\Lambda', hh'].$$

- $M_A(G)$ is E-unitary with maximal group image G.
- If G is free on A, then $M_A(G)$ is a free inverse monoid on A.
- Free inverse monoids classify graph immersions over a bouquet.

- Let G be a group with generators X and corresponding Cayley graph Γ .
- $M_A(G)$ consists of all equivalence classes of triples $[g,\Lambda,h]$ where Λ is a finite connected subgraph of Γ and g,h are vertices of Λ .
- Equivalence is up to translation by G.
- The product is given by

$$[g, \Lambda, h][g', \Lambda', h'] = [g, \Lambda \cup h\Lambda', hh'].$$

- $M_A(G)$ is E-unitary with maximal group image G.
- If G is free on A, then $M_A(G)$ is a free inverse monoid on A.
- Free inverse monoids classify graph immersions over a bouquet.

- Let G be a group with generators X and corresponding Cayley graph Γ .
- $M_A(G)$ consists of all equivalence classes of triples $[g,\Lambda,h]$ where Λ is a finite connected subgraph of Γ and g,h are vertices of Λ .
- Equivalence is up to translation by G.
- The product is given by

$$[g, \Lambda, h][g', \Lambda', h'] = [g, \Lambda \cup h\Lambda', hh'].$$

- $M_A(G)$ is E-unitary with maximal group image G.
- If G is free on A, then $M_A(G)$ is a free inverse monoid on A.
- Free inverse monoids classify graph immersions over a bouquet.

- Let G be a group with generators X and corresponding Cayley graph Γ .
- $M_A(G)$ consists of all equivalence classes of triples $[g,\Lambda,h]$ where Λ is a finite connected subgraph of Γ and g,h are vertices of Λ .
- Equivalence is up to translation by G.
- The product is given by

$$[g, \Lambda, h][g', \Lambda', h'] = [g, \Lambda \cup h\Lambda', hh'].$$

- $M_A(G)$ is E-unitary with maximal group image G.
- If G is free on A, then $M_A(G)$ is a free inverse monoid on A.
- Free inverse monoids classify graph immersions over a bouquet.

- ullet Let ${\mathcal T}$ be a tiling of ${\mathbb R}^d$.
- Kellendonk's tiling semigroup has elements 0 and equivalence classes [t, P, u] where P is a pattern and t, u are tiles of P.
- Equivalence is up to translation in \mathbb{R}^d .
- The product [t,P,u][t',P',u'] is non-zero iff there are $v,v'\in\mathbb{R}^d$ such that u+v=t'+v' and $(P+v)\cup(P'+v')$ is a pattern.
- In this case, the product is $[t+v, (P+v) \cup (P'+v'), u'+v']$

- Let \mathcal{T} be a tiling of \mathbb{R}^d .
- Kellendonk's tiling semigroup has elements 0 and equivalence classes [t, P, u] where P is a pattern and t, u are tiles of P.
- Equivalence is up to translation in \mathbb{R}^d .
- The product [t,P,u][t',P',u'] is non-zero iff there are $v,v'\in\mathbb{R}^d$ such that u+v=t'+v' and $(P+v)\cup(P'+v')$ is a pattern.
- In this case, the product is $[t+v,(P+v)\cup(P'+v'),u'+v']$.

- Let \mathcal{T} be a tiling of \mathbb{R}^d .
- Kellendonk's tiling semigroup has elements 0 and equivalence classes [t, P, u] where P is a pattern and t, u are tiles of P.
- ullet Equivalence is up to translation in \mathbb{R}^d .
- The product [t,P,u][t',P',u'] is non-zero iff there are $v,v'\in\mathbb{R}^d$ such that u+v=t'+v' and $(P+v)\cup(P'+v')$ is a pattern.
- In this case, the product is $[t+v,(P+v)\cup(P'+v'),u'+v']$.

- Let \mathcal{T} be a tiling of \mathbb{R}^d .
- Kellendonk's tiling semigroup has elements 0 and equivalence classes [t, P, u] where P is a pattern and t, u are tiles of P.
- Equivalence is up to translation in \mathbb{R}^d .
- The product [t,P,u][t',P',u'] is non-zero iff there are $v,v'\in\mathbb{R}^d$ such that u+v=t'+v' and $(P+v)\cup(P'+v')$ is a pattern.
- In this case, the product is $[t+v,(P+v)\cup(P'+v'),u'+v']$.

- Let \mathcal{T} be a tiling of \mathbb{R}^d .
- Kellendonk's tiling semigroup has elements 0 and equivalence classes [t, P, u] where P is a pattern and t, u are tiles of P.
- Equivalence is up to translation in \mathbb{R}^d .
- The product [t,P,u][t',P',u'] is non-zero iff there are $v,v'\in\mathbb{R}^d$ such that u+v=t'+v' and $(P+v)\cup(P'+v')$ is a pattern.
- In this case, the product is $[t+v,(P+v)\cup(P'+v'),u'+v'].$

- Let X be an irreducible algebraic variety and S_X the inverse semigroup of isomorphisms between open subvarieties.
- Then S_X is an F-inverse monoid and the maximal group image is the group of birational automorphisms of X.
- When $X = \mathbb{P}^1$, then S_X is the Möbius inverse semigroup and $G(S_X)$ is the group of linear fractional transformations.
- Let $\{a,b\}^*$ be a free monoid on $\{a,b\}$ and S the inverse semigroup of isomorphisms between finitely generated essential right ideals of $\{a,b\}^*$.
- Then S is an F-inverse monoid with maximal group image Thompson's simple group V.
- If G is a group and S is the inverse semigroup of virtual automorphisms of G, then S is F-inverse and the maximal group image is the abstract commensurator of G.

- Let X be an irreducible algebraic variety and S_X the inverse semigroup of isomorphisms between open subvarieties.
- Then S_X is an F-inverse monoid and the maximal group image is the group of birational automorphisms of X.
- When $X = \mathbb{P}^1$, then S_X is the Möbius inverse semigroup and $G(S_X)$ is the group of linear fractional transformations.
- Let $\{a,b\}^*$ be a free monoid on $\{a,b\}$ and S the inverse semigroup of isomorphisms between finitely generated essential right ideals of $\{a,b\}^*$.
- ullet Then S is an F-inverse monoid with maximal group image Thompson's simple group V.
- If G is a group and S is the inverse semigroup of virtual automorphisms of G, then S is F-inverse and the maximal group image is the abstract commensurator of G.

- Let X be an irreducible algebraic variety and S_X the inverse semigroup of isomorphisms between open subvarieties.
- Then S_X is an F-inverse monoid and the maximal group image is the group of birational automorphisms of X.
- When $X = \mathbb{P}^1$, then S_X is the Möbius inverse semigroup and $G(S_X)$ is the group of linear fractional transformations.
- Let $\{a,b\}^*$ be a free monoid on $\{a,b\}$ and S the inverse semigroup of isomorphisms between finitely generated essential right ideals of $\{a,b\}^*$.
- Then S is an F-inverse monoid with maximal group image Thompson's simple group V.
- If G is a group and S is the inverse semigroup of virtual automorphisms of G, then S is F-inverse and the maximal group image is the abstract commensurator of G.

- Let X be an irreducible algebraic variety and S_X the inverse semigroup of isomorphisms between open subvarieties.
- Then S_X is an F-inverse monoid and the maximal group image is the group of birational automorphisms of X.
- When $X = \mathbb{P}^1$, then S_X is the Möbius inverse semigroup and $G(S_X)$ is the group of linear fractional transformations.
- Let $\{a,b\}^*$ be a free monoid on $\{a,b\}$ and S the inverse semigroup of isomorphisms between finitely generated essential right ideals of $\{a,b\}^*$.
- ullet Then S is an F-inverse monoid with maximal group image Thompson's simple group V.
- If G is a group and S is the inverse semigroup of virtual automorphisms of G, then S is F-inverse and the maximal group image is the abstract commensurator of G.

- Let X be an irreducible algebraic variety and S_X the inverse semigroup of isomorphisms between open subvarieties.
- Then S_X is an F-inverse monoid and the maximal group image is the group of birational automorphisms of X.
- When $X = \mathbb{P}^1$, then S_X is the Möbius inverse semigroup and $G(S_X)$ is the group of linear fractional transformations.
- Let $\{a,b\}^*$ be a free monoid on $\{a,b\}$ and S the inverse semigroup of isomorphisms between finitely generated essential right ideals of $\{a,b\}^*$.
- ullet Then S is an F-inverse monoid with maximal group image Thompson's simple group V.
- If G is a group and S is the inverse semigroup of virtual automorphisms of G, then S is F-inverse and the maximal group image is the abstract commensurator of G.

- Let X be an irreducible algebraic variety and S_X the inverse semigroup of isomorphisms between open subvarieties.
- Then S_X is an F-inverse monoid and the maximal group image is the group of birational automorphisms of X.
- When $X = \mathbb{P}^1$, then S_X is the Möbius inverse semigroup and $G(S_X)$ is the group of linear fractional transformations.
- Let $\{a,b\}^*$ be a free monoid on $\{a,b\}$ and S the inverse semigroup of isomorphisms between finitely generated essential right ideals of $\{a,b\}^*$.
- ullet Then S is an F-inverse monoid with maximal group image Thompson's simple group V.
- If G is a group and S is the inverse semigroup of virtual automorphisms of G, then S is F-inverse and the maximal group image is the abstract commensurator of G.

- ullet Exel associated to every group G an F-inverse monoid S(G) whose actions correspond to partial actions of G.
- The same semigroup was discovered earlier by Birget and Rhodes in a different context.
- Szendrei had shown S(G) is the universal F-inverse cover of G.
- In some sense, F-inverse monoid covers of G and partial group actions of G are the same subject.

- Exel associated to every group G an F-inverse monoid S(G) whose actions correspond to partial actions of G.
- The same semigroup was discovered earlier by Birget and Rhodes in a different context.
- Szendrei had shown S(G) is the universal F-inverse cover of G.
- In some sense, F-inverse monoid covers of G and partial group actions of G are the same subject.

- Exel associated to every group G an F-inverse monoid S(G) whose actions correspond to partial actions of G.
- The same semigroup was discovered earlier by Birget and Rhodes in a different context.
- Szendrei had shown S(G) is the universal F-inverse cover of G.
- In some sense, F-inverse monoid covers of G and partial group actions of G are the same subject.

- Exel associated to every group G an F-inverse monoid S(G) whose actions correspond to partial actions of G.
- The same semigroup was discovered earlier by Birget and Rhodes in a different context.
- Szendrei had shown S(G) is the universal F-inverse cover of G.
- In some sense, F-inverse monoid covers of G and partial group actions of G are the same subject.

Strongly 0-*E*-unitary inverse semigroups

- An inverse semigroups with 0 cannot be *E*-unitary without being a semilattice.
- So one needs an appropriate variation of the concept for this context.
- If S is an inverse semigroup with 0, the universal group U(S) is the group with generators $S\setminus\{0\}$ and relations given $s\cdot t=st$ if $st\neq 0$.
- The natural map $\sigma \colon S \setminus \{0\} \longrightarrow U(S)$ satisfies $\sigma(s)\sigma(t) = \sigma(st)$ whenever $st \neq 0$ and is universal for this property.
- S is called strongly 0-E-unitary if $\sigma^{-1}(1) = E(S) \setminus \{0\} \setminus \{0\}$

Strongly 0-*E*-unitary inverse semigroups

- An inverse semigroups with 0 cannot be *E*-unitary without being a semilattice.
- So one needs an appropriate variation of the concept for this context.
- If S is an inverse semigroup with 0, the universal group U(S) is the group with generators $S\setminus\{0\}$ and relations given $s\cdot t=st$ if $st\neq 0$.
- The natural map $\sigma\colon S\setminus\{0\}\longrightarrow U(S)$ satisfies $\sigma(s)\sigma(t)=\sigma(st)$ whenever $st\neq 0$ and is universal for this property.
- S is called strongly 0-E-unitary if $\sigma^{-1}(1) = E(S) \setminus \{0\}$

Strongly 0-*E*-unitary inverse semigroups

- An inverse semigroups with 0 cannot be *E*-unitary without being a semilattice.
- So one needs an appropriate variation of the concept for this context.
- If S is an inverse semigroup with 0, the universal group U(S) is the group with generators $S\setminus\{0\}$ and relations given $s\cdot t=st$ if $st\neq 0$.
- The natural map $\sigma \colon S \setminus \{0\} \longrightarrow U(S)$ satisfies $\sigma(s)\sigma(t) = \sigma(st)$ whenever $st \neq 0$ and is universal for this property.
- S is called strongly 0-E-unitary if $\sigma^{-1}(1) = E(S) \setminus \{0\}$.

- An inverse semigroups with 0 cannot be *E*-unitary without being a semilattice.
- So one needs an appropriate variation of the concept for this context.
- If S is an inverse semigroup with 0, the universal group U(S) is the group with generators $S\setminus\{0\}$ and relations given $s\cdot t=st$ if $st\neq 0$.
- The natural map $\sigma\colon S\setminus\{0\}\longrightarrow U(S)$ satisfies $\sigma(s)\sigma(t)=\sigma(st)$ whenever $st\neq 0$ and is universal for this property.
- S is called strongly 0-E-unitary if $\sigma^{-1}(1) = E(S) \setminus \{0\}$.

- An inverse semigroups with 0 cannot be *E*-unitary without being a semilattice.
- So one needs an appropriate variation of the concept for this context.
- If S is an inverse semigroup with 0, the universal group U(S) is the group with generators $S\setminus\{0\}$ and relations given $s\cdot t=st$ if $st\neq 0$.
- The natural map $\sigma\colon S\setminus\{0\}\longrightarrow U(S)$ satisfies $\sigma(s)\sigma(t)=\sigma(st)$ whenever $st\neq 0$ and is universal for this property.
- S is called strongly 0-E-unitary if $\sigma^{-1}(1) = E(S) \setminus \{0\}$.

- The polycyclic inverse monoid (or Cuntz semigroup) P_X is strongly 0-E-unitary with universal group the free group on X.
- The map σ takes uv^* to uv^{-1} .
- More generally, graph inverse semigroups are strongly 0-E-unitary.
- Tiling inverse semigroups are strongly 0-E-unitary (Lawson/Kellendonk).
- It seems most of the inverse semigroups appearing in the C*-algebra literature are strongly 0-E-unitary.
- A graph immersion over a bouquet of circles can be extended to a regular covering iff the associated inverse semigroup is strongly 0-E-unitary.
- I showed it is undecidable whether a finite inverse semigroup is strongly 0-E-unitary.

- The polycyclic inverse monoid (or Cuntz semigroup) P_X is strongly 0-E-unitary with universal group the free group on X.
- $\bullet \ \ {\rm The \ map} \ \sigma \ {\rm takes} \ uv^* \ {\rm to} \ uv^{-1}.$
- More generally, graph inverse semigroups are strongly 0-E-unitary.
- Tiling inverse semigroups are strongly $0-\overline{E}$ -unitary (Lawson/Kellendonk).
- It seems most of the inverse semigroups appearing in the C^* -algebra literature are strongly 0-E-unitary.
- A graph immersion over a bouquet of circles can be extended to a regular covering iff the associated inverse semigroup is strongly 0-E-unitary.
- I showed it is undecidable whether a finite inverse semigroup is strongly 0-E-unitary.

- The polycyclic inverse monoid (or Cuntz semigroup) P_X is strongly 0-E-unitary with universal group the free group on X.
- The map σ takes uv^* to uv^{-1} .
- More generally, graph inverse semigroups are strongly 0-E-unitary.
- Tiling inverse semigroups are strongly 0-E-unitary (Lawson/Kellendonk).
- It seems most of the inverse semigroups appearing in the C^* -algebra literature are strongly 0-E-unitary.
- A graph immersion over a bouquet of circles can be extended to a regular covering iff the associated inverse semigroup is strongly 0-E-unitary.
- I showed it is undecidable whether a finite inverse semigroup is strongly 0-E-unitary.

- The polycyclic inverse monoid (or Cuntz semigroup) P_X is strongly 0-E-unitary with universal group the free group on X.
- $\bullet \ \ {\rm The \ map} \ \sigma \ {\rm takes} \ uv^* \ {\rm to} \ uv^{-1}.$
- More generally, graph inverse semigroups are strongly 0-E-unitary.
- Tiling inverse semigroups are strongly 0-E-unitary (Lawson/Kellendonk).
- It seems most of the inverse semigroups appearing in the C^* -algebra literature are strongly 0-E-unitary.
- A graph immersion over a bouquet of circles can be extended to a regular covering iff the associated inverse semigroup is strongly 0-E-unitary.
- I showed it is undecidable whether a finite inverse semigroup is strongly 0-E-unitary.

- The polycyclic inverse monoid (or Cuntz semigroup) P_X is strongly 0-E-unitary with universal group the free group on X.
- The map σ takes uv^* to uv^{-1} .
- More generally, graph inverse semigroups are strongly 0-E-unitary.
- Tiling inverse semigroups are strongly 0-E-unitary (Lawson/Kellendonk).
- It seems most of the inverse semigroups appearing in the C^* -algebra literature are strongly 0-E-unitary.
- A graph immersion over a bouquet of circles can be extended to a regular covering iff the associated inverse semigroup is strongly 0-E-unitary.
- I showed it is undecidable whether a finite inverse semigroup is strongly 0-*E*-unitary.

- The polycyclic inverse monoid (or Cuntz semigroup) P_X is strongly 0-E-unitary with universal group the free group on X.
- The map σ takes uv^* to uv^{-1} .
- More generally, graph inverse semigroups are strongly 0-E-unitary.
- Tiling inverse semigroups are strongly 0-E-unitary (Lawson/Kellendonk).
- It seems most of the inverse semigroups appearing in the C^* -algebra literature are strongly 0-E-unitary.
- A graph immersion over a bouquet of circles can be extended to a regular covering iff the associated inverse semigroup is strongly 0-E-unitary.
- I showed it is undecidable whether a finite inverse semigroup is strongly 0-*E*-unitary.

- The polycyclic inverse monoid (or Cuntz semigroup) P_X is strongly 0-E-unitary with universal group the free group on X.
- \bullet The map σ takes uv^* to uv^{-1} .
- More generally, graph inverse semigroups are strongly 0-E-unitary.
- Tiling inverse semigroups are strongly 0-E-unitary (Lawson/Kellendonk).
- It seems most of the inverse semigroups appearing in the C^* -algebra literature are strongly 0-E-unitary.
- A graph immersion over a bouquet of circles can be extended to a regular covering iff the associated inverse semigroup is strongly 0-E-unitary.
- I showed it is undecidable whether a finite inverse semigroup is strongly 0-*E*-unitary.

- ullet It was observed independently by McAlister and by me and Margolis that S is strongly 0-E-unitary iff there is:
 - an E-unitary inverse semigroup T (with maximal group image U(S))
 - and an ideal I such that $S \cong T/I$.
- This allows a partial action semidirect product type description of S and turns out to be useful for understanding the C*-algebra of S.

- It was observed independently by McAlister and by me and Margolis that S is strongly 0-E-unitary iff there is:
 - \bullet an E-unitary inverse semigroup T (with maximal group image U(S))
 - and an ideal I such that $S \cong T/I$.
- This allows a partial action semidirect product type description of S and turns out to be useful for understanding the C*-algebra of S.

- ullet It was observed independently by McAlister and by me and Margolis that S is strongly 0-E-unitary iff there is:
 - \bullet an E-unitary inverse semigroup T (with maximal group image U(S))
 - and an ideal I such that $S \cong T/I$.
- This allows a partial action semidirect product type description of S and turns out to be useful for understanding the C^* -algebra of S.

- ullet It was observed independently by McAlister and by me and Margolis that S is strongly 0-E-unitary iff there is:
 - \bullet an E-unitary inverse semigroup T (with maximal group image U(S))
 - and an ideal I such that $S \cong T/I$.
- ullet This allows a partial action semidirect product type description of S and turns out to be useful for understanding the C^* -algebra of S.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X
- $\bullet [s,x]: x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- \bullet $S \times X$ is an étale groupoid, but in general non-Hausdorff
- When S is a group, this is the usual semidirect product

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X
- \bullet $[s,x]: x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- ullet $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff
- \bullet When S is a group, this is the usual semidirect product.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X.
- $\bullet | s, x | : x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- ullet $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff
- \bullet When S is a group, this is the usual semidirect product.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X.
- $\bullet [s,x] \colon x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- ullet $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff
- \bullet When S is a group, this is the usual semidirect product.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X.
- $[s,x]: x \longrightarrow sx$.
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- \bullet $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff
- \bullet When S is a group, this is the usual semidirect product.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- \bullet The unit space is X.
- $[s,x]: x \longrightarrow sx$.
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff
- \bullet When S is a group, this is the usual semidirect product.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- \bullet The unit space is X.
- \bullet $[s,x]: x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff.
- ullet When S is a group, this is the usual semidirect product

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X.
- \bullet $[s,x]: x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff.
- ullet When S is a group, this is the usual semidirect product.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X.
- \bullet $[s,x]: x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff.
- When S is a group, this is the usual semidirect product.

- An action $S \curvearrowright X$ of an inverse semigroup on a space X is a homomorphism $\theta \colon S \longrightarrow I_X$.
- We always assume that $X = \bigcup_{e \in E(S)} X_e$ where X_e is the domain of e.
- Note $\theta(s): X_{s^*s} \longrightarrow X_{ss^*}$.
- Let us call the action special if X_e is clopen for each $e \in E(S)$.
- The groupoid of germs $S \ltimes X$ has arrow space $(S \times X)/\sim$ where $(s,x) \sim (t,y)$ iff x=y and $\exists u \leq s,t$ with $x \in X_{u^*u}$.
- The unit space is X.
- \bullet $[s,x]: x \longrightarrow sx.$
- $[s, ty][t, y] = [st, y], [s, x]^{-1} = [s^*, sx].$
- $S \ltimes X$ is an étale groupoid, but in general non-Hausdorff.
- When S is a group, this is the usual semidirect product.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0 we assume characters preserve 0.
- ullet Elements of \widehat{E} can also be identified with filters on E.
- Then $S \cap E$ by putting $E_{\mathfrak{C}} = \{ \varphi \mid \varphi(e) = 1 \}$ and $s\varphi(f) = \varphi(s^*fs)$ for $\varphi \in \widehat{E}_{s^*s}$.
- This is a special action.
- ullet The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S \ltimes \widehat{E}$.
- Paterson showed that the universal and reduced C^* -algebras for $\mathcal{G}(S)$.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0, we assume characters preserve 0.
- Elements of \widehat{E} can also be identified with filters on E.
- Then $S \curvearrowright \widehat{E}$ by putting $\widehat{E}_e = \{ \varphi \mid \varphi(e) = 1 \}$ and $s\varphi(f) = \varphi(s^*fs)$ for $\varphi \in \widehat{E}_{s^*s}$.
- This is a special action.
- ullet The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S \ltimes E$
- Paterson showed that the universal and reduced C^* -algebras of S are isomorphic to the corresponding algebras for $\mathscr{G}(S)$.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0, we assume characters preserve 0.
- ullet Elements of \widehat{E} can also be identified with filters on E
- Then $S \curvearrowright \widehat{E}$ by putting $\widehat{E}_e = \{ \varphi \mid \varphi(e) = 1 \}$ and $s\varphi(f) = \varphi(s^*fs)$ for $\varphi \in \widehat{E}_{s^*s}$.
- This is a special action.
- ullet The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S \ltimes E$
- Paterson showed that the universal and reduced C^* -algebras for $\mathscr{G}(S)$.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0, we assume characters preserve 0.
- Elements of \widehat{E} can also be identified with filters on E.
- Then $S \curvearrowright \widehat{E}$ by putting $\widehat{E}_e = \{ \varphi \mid \varphi(e) = 1 \}$ and $s\varphi(f) = \varphi(s^*fs)$ for $\varphi \in \widehat{E}_{s^*s}$.
- This is a special action.
- The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S \ltimes \widehat{E}$.
- Paterson showed that the universal and reduced C^* -algebras for $\mathscr{G}(S)$.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0, we assume characters preserve 0.
- Elements of \widehat{E} can also be identified with filters on E.
- $\bullet \ \, \text{Then} \,\, S \curvearrowright \widehat{E} \,\, \text{by putting} \,\, \widehat{E}_e = \{\varphi \mid \varphi(e) = 1\} \,\, \text{and} \,\, s\varphi(f) = \varphi(s^*fs) \,\, \text{for} \,\, \varphi \in \widehat{E}_{s^*s}.$
- This is a special action.
- The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S \ltimes \widehat{E}$.
- Paterson showed that the universal and reduced C^* -algebras of S are isomorphic to the corresponding algebras for $\mathscr{G}(S)$.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0, we assume characters preserve 0.
- Elements of \widehat{E} can also be identified with filters on E.
- $\bullet \ \, \text{Then} \,\, S \curvearrowright \widehat{E} \,\, \text{by putting} \,\, \widehat{E}_e = \{\varphi \mid \varphi(e) = 1\} \,\, \text{and} \,\, s\varphi(f) = \varphi(s^*fs) \,\, \text{for} \,\, \varphi \in \widehat{E}_{s^*s}.$
- This is a special action.
- ullet The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S\ltimes\widehat{E}.$
- Paterson showed that the universal and reduced C^* -algebras of S are isomorphic to the corresponding algebras for $\mathscr{G}(S)$.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0, we assume characters preserve 0.
- ullet Elements of \widehat{E} can also be identified with filters on E.
- $\bullet \ \, \text{Then} \,\, S \curvearrowright \widehat{E} \,\, \text{by putting} \,\, \widehat{E}_e = \{\varphi \mid \varphi(e) = 1\} \,\, \text{and} \,\, s\varphi(f) = \varphi(s^*fs) \,\, \text{for} \,\, \varphi \in \widehat{E}_{s^*s}.$
- This is a special action.
- The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S \ltimes \widehat{E}$.
- Paterson showed that the universal and reduced C^* -algebras of S are isomorphic to the corresponding algebras for $\mathscr{G}(S)$.

- ullet Fix an inverse semigroup S with semilattice of idempotents E.
- Let \widehat{E} be the character space of E, that is, the space of non-zero homomorphisms $E \longrightarrow \{0,1\}$ equipped with the topology of pointwise convergence.
- When working in the category of inverse semigroups with 0, we assume characters preserve 0.
- Elements of \widehat{E} can also be identified with filters on E.
- $\bullet \ \, \text{Then} \,\, S \curvearrowright \widehat{E} \,\, \text{by putting} \,\, \widehat{E}_e = \{\varphi \mid \varphi(e) = 1\} \,\, \text{and} \,\, s\varphi(f) = \varphi(s^*fs) \,\, \text{for} \,\, \varphi \in \widehat{E}_{s^*s}.$
- This is a special action.
- ullet The universal groupoid $\mathscr{G}(S)$ is the germ groupoid $S\ltimes\widehat{E}.$
- ullet Paterson showed that the universal and reduced C^* -algebras of S are isomorphic to the corresponding algebras for $\mathscr{G}(S)$.

• Khoshkam and Skandalis proved the following result.

Theorem

- F-inverse semigroups satisfy the Khoshkam-Skandalis condition since $eSf \cap \sigma^{-1}(g)$ has a maximum.
- The proof uses a generalization of the enveloping action of a partial group action.
- An inverse semigroup S is locally E-unitary if eSe is E-unitary for all $e \in E(S)$.
- We have observed that the Khoshkam-Skandalis result also applies to locally E-unitary inverse semigroups.

• Khoshkam and Skandalis proved the following result.

Theorem

- F-inverse semigroups satisfy the Khoshkam-Skandalis condition since $eSf \cap \sigma^{-1}(g)$ has a maximum.
- The proof uses a generalization of the enveloping action of a partial group action.
- An inverse semigroup S is locally E-unitary if eSe is E-unitary for all $e \in E(S)$.
- We have observed that the Khoshkam-Skandalis result also applies to locally E-unitary inverse semigroups.

• Khoshkam and Skandalis proved the following result.

Theorem

- F-inverse semigroups satisfy the Khoshkam-Skandalis condition since $eSf \cap \sigma^{-1}(g)$ has a maximum.
- The proof uses a generalization of the enveloping action of a partial group action.
- An inverse semigroup S is locally E-unitary if eSe is E-unitary for all $e \in E(S)$.
- We have observed that the Khoshkam-Skandalis result also applies to locally E-unitary inverse semigroups.

• Khoshkam and Skandalis proved the following result.

Theorem

- F-inverse semigroups satisfy the Khoshkam-Skandalis condition since $eSf \cap \sigma^{-1}(g)$ has a maximum.
- The proof uses a generalization of the enveloping action of a partial group action.
- An inverse semigroup S is locally E-unitary if eSe is E-unitary for all $e \in E(S)$.
- We have observed that the Khoshkam-Skandalis result also applies to locally E-unitary inverse semigroups.

• Khoshkam and Skandalis proved the following result.

Theorem

- F-inverse semigroups satisfy the Khoshkam-Skandalis condition since $eSf \cap \sigma^{-1}(g)$ has a maximum.
- The proof uses a generalization of the enveloping action of a partial group action.
- An inverse semigroup S is locally E-unitary if eSe is E-unitary for all $e \in E(S)$.
- ullet We have observed that the Khoshkam-Skandalis result also applies to locally E-unitary inverse semigroups.

A result of Khoshkam and Skandalis

• Khoshkam and Skandalis proved the following result.

Theorem

Let S be an E-unitary inverse semigroup such that $eSf \cap \sigma^{-1}(g)$ is finitely generated as a downset for all $e, f \in E(S)$ and $g \in G(S)$. Then there is an action $G(S) \curvearrowright X$ such that $\mathscr{G}(S)$ is Morita equivalent to $G(S) \ltimes X$.

- F-inverse semigroups satisfy the Khoshkam-Skandalis condition since $eSf \cap \sigma^{-1}(g)$ has a maximum.
- The proof uses a generalization of the enveloping action of a partial group action.
- An inverse semigroup S is locally E-unitary if eSe is E-unitary for all $e \in E(S)$.
- ullet We have observed that the Khoshkam-Skandalis result also applies to locally E-unitary inverse semigroups.

• There is another way to view the Khoshkam-Skandalis result.

Theorem (Milan, BS)

- Here the partial action semidirect product is as in the sense of Abadie
- The enveloping action is Hausdorff precisely when the Khoshkam-Skandalis condition holds and so Abadie's results also imply the Morita equivalence.
- ullet In the locally E-unitary case there is no partial group action

• There is another way to view the Khoshkam-Skandalis result.

Theorem (Milan, BS)

- Here the partial action semidirect product is as in the sense of Abadie
- The enveloping action is Hausdorff precisely when the Khoshkam-Skandalis condition holds and so Abadie's results also imply the Morita equivalence.
- ullet In the locally E-unitary case there is no partial group action.

• There is another way to view the Khoshkam-Skandalis result.

Theorem (Milan, BS)

- Here the partial action semidirect product is as in the sense of Abadie.
- The enveloping action is Hausdorff precisely when the Khoshkam-Skandalis condition holds and so Abadie's results also imply the Morita equivalence.
- ullet In the locally E-unitary case there is no partial group action.

• There is another way to view the Khoshkam-Skandalis result.

Theorem (Milan, BS)

- Here the partial action semidirect product is as in the sense of Abadie.
- The enveloping action is Hausdorff precisely when the Khoshkam-Skandalis condition holds and so Abadie's results also imply the Morita equivalence.
- ullet In the locally E-unitary case there is no partial group action.

• There is another way to view the Khoshkam-Skandalis result.

Theorem (Milan, BS)

- Here the partial action semidirect product is as in the sense of Abadie.
- The enveloping action is Hausdorff precisely when the Khoshkam-Skandalis condition holds and so Abadie's results also imply the Morita equivalence.
- ullet In the locally E-unitary case there is no partial group action.

- ullet Let S be an inverse semigroup and I an ideal.
- \bullet Then E(S/I) can be identified with those characters of E(S) vanishing on I.
- If S is E-unitary, then $\widehat{E(S/I)}$ is invariant under the partial action of G(S).

Theorem (Milan, BS)

- A similar result holds for Exel's tight groupoid and explains a number of partial action cross product results in the literature
- An analogue of the Khoshkam-Skandalis result holds in the strongly 0-E-unitary setting.

- ullet Let S be an inverse semigroup and I an ideal.
- \bullet Then $\widehat{E(S/I)}$ can be identified with those characters of E(S) vanishing on I.
- \bullet If S is $E\text{-unitary, then }\widehat{E(S/I)}$ is invariant under the partial action of G(S).

Theorem (Milan, BS)

- A similar result holds for Exel's tight groupoid and explains a number of partial action cross product results in the literature.
- An analogue of the Khoshkam-Skandalis result holds in the strongly 0-E-unitary setting.

- ullet Let S be an inverse semigroup and I an ideal.
- \bullet Then $\widehat{E(S/I)}$ can be identified with those characters of E(S) vanishing on I.
- \bullet If S is $E\text{-unitary, then }\widehat{E(S/I)}$ is invariant under the partial action of G(S).

Theorem (Milan, BS)

- A similar result holds for Exel's tight groupoid and explains a number of partial action cross product results in the literature.
- An analogue of the Khoshkam-Skandalis result holds in the strongly 0-E-unitary setting.

- ullet Let S be an inverse semigroup and I an ideal.
- \bullet Then $\tilde{E}(S/\tilde{I})$ can be identified with those characters of E(S) vanishing on I.
- If S is E-unitary, then $\widehat{E(S/I)}$ is invariant under the partial action of G(S).

Theorem (Milan, BS)

- A similar result holds for Exel's tight groupoid and explains a number of partial action cross product results in the literature.
- An analogue of the Khoshkam-Skandalis result holds in the strongly 0-*E*-unitary setting.

- ullet Let S be an inverse semigroup and I an ideal.
- \bullet Then $\tilde{E}(S/\tilde{I})$ can be identified with those characters of E(S) vanishing on I.
- \bullet If S is $E\text{-unitary, then }\widehat{E(S/I)}$ is invariant under the partial action of G(S).

Theorem (Milan, BS)

- A similar result holds for Exel's tight groupoid and explains a number of partial action cross product results in the literature.
- \bullet An analogue of the Khoshkam-Skandalis result holds in the strongly 0-E-unitary setting.

- ullet Let S be an inverse semigroup and I an ideal.
- \bullet Then $\tilde{E}(S/\tilde{I})$ can be identified with those characters of E(S) vanishing on I.
- \bullet If S is $E\text{-unitary, then }\widehat{E(S/I)}$ is invariant under the partial action of G(S).

Theorem (Milan, BS)

- A similar result holds for Exel's tight groupoid and explains a number of partial action cross product results in the literature.
- An analogue of the Khoshkam-Skandalis result holds in the strongly 0-E-unitary setting.

- The Khoshkam-Skandalis result gives a condition that guarantees $C^*(S)$ is strongly Morita equivalent to $C_0(X) \rtimes G(S)$ for some action $G(S) \curvearrowright X$.
- What are conditions on a homomorphism $S \xrightarrow{\varphi} T$ that guarantee that $C^*(S)$ is strongly Morita equivalent to a cross product $C_0(X) \rtimes T$?
- In other words, when is $\mathscr{G}(S)$ Morita equivalent to a groupoid of germs of an action of T?
- First we need to address the issue of functoriality of the universal groupoid.

- The Khoshkam-Skandalis result gives a condition that guarantees $C^*(S)$ is strongly Morita equivalent to $C_0(X) \rtimes G(S)$ for some action $G(S) \curvearrowright X$.
- What are conditions on a homomorphism $S \xrightarrow{\varphi} T$ that guarantee that $C^*(S)$ is strongly Morita equivalent to a cross product $C_0(X) \rtimes T$?
- In other words, when is $\mathcal{G}(S)$ Morita equivalent to a groupoid of germs of an action of T?
- First we need to address the issue of functoriality of the universal groupoid.

- The Khoshkam-Skandalis result gives a condition that guarantees $C^*(S)$ is strongly Morita equivalent to $C_0(X) \rtimes G(S)$ for some action $G(S) \curvearrowright X$.
- What are conditions on a homomorphism $S \xrightarrow{\varphi} T$ that guarantee that $C^*(S)$ is strongly Morita equivalent to a cross product $C_0(X) \rtimes T$?
- In other words, when is $\mathscr{G}(S)$ Morita equivalent to a groupoid of germs of an action of T?
- First we need to address the issue of functoriality of the universal groupoid.

- The Khoshkam-Skandalis result gives a condition that guarantees $C^*(S)$ is strongly Morita equivalent to $C_0(X) \rtimes G(S)$ for some action $G(S) \curvearrowright X$.
- What are conditions on a homomorphism $S \xrightarrow{\varphi} T$ that guarantee that $C^*(S)$ is strongly Morita equivalent to a cross product $C_0(X) \rtimes T$?
- In other words, when is $\mathscr{G}(S)$ Morita equivalent to a groupoid of germs of an action of T?
- First we need to address the issue of functoriality of the universal groupoid.

- If $E \xrightarrow{\varphi} F$ is a semilattice homomorphism, then there is a natural cts map $\widehat{F} \longrightarrow \widehat{E}$ given by "pulling back."
- But we want a map the other way and there is one.
- If \mathscr{F} is a filter on E, then $\varphi(\mathscr{F})$ is a filter base on F and hence yields a filter $\varphi_*(\mathscr{F})$.
- However, φ_* need not be cts.

- If $E \xrightarrow{\varphi} F$ is a semilattice homomorphism, then there is a natural cts map $\widehat{F} \longrightarrow \widehat{E}$ given by "pulling back."
- But we want a map the other way and there is one.
- If \mathscr{F} is a filter on E, then $\varphi(\mathscr{F})$ is a filter base on F and hence yields a filter $\varphi_*(\mathscr{F})$.
- However, φ_* need not be cts.

- If $E \xrightarrow{\varphi} F$ is a semilattice homomorphism, then there is a natural cts map $\widehat{F} \longrightarrow \widehat{E}$ given by "pulling back."
- But we want a map the other way and there is one.
- If $\mathscr F$ is a filter on E, then $\varphi(\mathscr F)$ is a filter base on F and hence yields a filter $\varphi_*(\mathscr F)$.
- However, φ_* need not be cts.

- If $E \xrightarrow{\varphi} F$ is a semilattice homomorphism, then there is a natural cts map $\widehat{F} \longrightarrow \widehat{E}$ given by "pulling back."
- But we want a map the other way and there is one.
- If $\mathscr F$ is a filter on E, then $\varphi(\mathscr F)$ is a filter base on F and hence yields a filter $\varphi_*(\mathscr F)$.
- However, φ_* need not be cts.

- ullet The Alexandrov topology on a poset takes the downsets as the open sets. (It is T_0 .)
- The quasi-compact open sets are the finitely generated downsets.
- A map of spaces is coherent if the inverse image of a quasi-compact open is quasi-compact open.
- It is a folklore fact from the theory of locales that φ_* is cts iff φ is locally coherent.

Theorem (Milan.BS)

The universal groupoid is functorial on the category of inverse semigroups with maps that are locally coherent on the semilattices of idempotents.

- ullet The Alexandrov topology on a poset takes the downsets as the open sets. (It is T_0 .)
- The quasi-compact open sets are the finitely generated downsets.
- A map of spaces is coherent if the inverse image of a quasi-compact open is quasi-compact open.
- It is a folklore fact from the theory of locales that φ_* is cts iff φ is locally coherent.

Theorem (Milan,BS)

The universal groupoid is functorial on the category of inverse semigroups with maps that are locally coherent on the semilattices of idempotents.

- ullet The Alexandrov topology on a poset takes the downsets as the open sets. (It is T_0 .)
- The quasi-compact open sets are the finitely generated downsets.
- A map of spaces is coherent if the inverse image of a quasi-compact open is quasi-compact open.
- It is a folklore fact from the theory of locales that φ_* is cts iff φ is locally coherent.

Theorem (Milan,BS)

The universal groupoid is functorial on the category of inverse semigroups with maps that are locally coherent on the semilattices of idempotents.

- ullet The Alexandrov topology on a poset takes the downsets as the open sets. (It is T_0 .)
- The quasi-compact open sets are the finitely generated downsets.
- A map of spaces is coherent if the inverse image of a quasi-compact open is quasi-compact open.
- It is a folklore fact from the theory of locales that φ_* is cts iff φ is locally coherent.

Theorem (Milan,BS)

The universal groupoid is functorial on the category of inverse semigroups with maps that are locally coherent on the semilattices of idempotents.

- ullet The Alexandrov topology on a poset takes the downsets as the open sets. (It is T_0 .)
- The quasi-compact open sets are the finitely generated downsets.
- A map of spaces is coherent if the inverse image of a quasi-compact open is quasi-compact open.
- It is a folklore fact from the theory of locales that φ_* is cts iff φ is locally coherent.

Theorem (Milan, BS)

The universal groupoid is functorial on the category of inverse semigroups with maps that are locally coherent on the semilattices of idempotents.

• The maximal group image homomorphism $S \stackrel{\sigma}{\longrightarrow} G(S)$ belongs to this category for instance.

- ullet The Alexandrov topology on a poset takes the downsets as the open sets. (It is T_0 .)
- The quasi-compact open sets are the finitely generated downsets.
- A map of spaces is coherent if the inverse image of a quasi-compact open is quasi-compact open.
- It is a folklore fact from the theory of locales that φ_* is cts iff φ is locally coherent.

Theorem (Milan, BS)

The universal groupoid is functorial on the category of inverse semigroups with maps that are locally coherent on the semilattices of idempotents.

- An inverse semigroup homomorphism $S \xrightarrow{\varphi} T$ is idempotent-pure if $\varphi^{-1}(E(T)) = E(S)$.
- For example, S is E-unitary iff the maximal group image homomorphism $S \xrightarrow{\sigma} G(S)$ is idempotent-pure.
- O'Carroll showed that every idempotent-pure morphism is equivalent to a partial action semidirect product projection
- Let us say $S \stackrel{\varphi}{\longrightarrow} T$ is locally idempotent-pure if $\varphi|_{eSe}$ is idempotent-pure for each $e \in E(S)$.
- So S is locally E-unitary iff $S \xrightarrow{\sigma} G(S)$ is locally idempotent-pure.

- An inverse semigroup homomorphism $S \xrightarrow{\varphi} T$ is idempotent-pure if $\varphi^{-1}(E(T)) = E(S)$.
- For example, S is E-unitary iff the maximal group image homomorphism $S \xrightarrow{\sigma} G(S)$ is idempotent-pure.
- O'Carroll showed that every idempotent-pure morphism is equivalent to a partial action semidirect product projection
- Let us say $S \stackrel{\varphi}{\longrightarrow} T$ is locally idempotent-pure if $\varphi|_{eSe}$ is idempotent-pure for each $e \in E(S)$.
- So S is locally E-unitary iff $S \xrightarrow{\sigma} G(S)$ is locally idempotent-pure.

- An inverse semigroup homomorphism $S \xrightarrow{\varphi} T$ is idempotent-pure if $\varphi^{-1}(E(T)) = E(S)$.
- For example, S is E-unitary iff the maximal group image homomorphism $S \xrightarrow{\sigma} G(S)$ is idempotent-pure.
- O'Carroll showed that every idempotent-pure morphism is equivalent to a partial action semidirect product projection.
- Let us say $S \stackrel{\varphi}{\longrightarrow} T$ is locally idempotent-pure if $\varphi|_{eSe}$ is idempotent-pure for each $e \in E(S)$.
- So S is locally E-unitary iff $S \xrightarrow{\sigma} G(S)$ is locally idempotent-pure.

- An inverse semigroup homomorphism $S \xrightarrow{\varphi} T$ is idempotent-pure if $\varphi^{-1}(E(T)) = E(S)$.
- For example, S is E-unitary iff the maximal group image homomorphism $S \xrightarrow{\sigma} G(S)$ is idempotent-pure.
- O'Carroll showed that every idempotent-pure morphism is equivalent to a partial action semidirect product projection.
- Let us say $S \stackrel{\varphi}{\longrightarrow} T$ is locally idempotent-pure if $\varphi|_{eSe}$ is idempotent-pure for each $e \in E(S)$.
- So S is locally E-unitary iff $S \xrightarrow{\sigma} G(S)$ is locally idempotent-pure.

- An inverse semigroup homomorphism $S \xrightarrow{\varphi} T$ is idempotent-pure if $\varphi^{-1}(E(T)) = E(S)$.
- For example, S is E-unitary iff the maximal group image homomorphism $S \xrightarrow{\sigma} G(S)$ is idempotent-pure.
- O'Carroll showed that every idempotent-pure morphism is equivalent to a partial action semidirect product projection.
- Let us say $S \stackrel{\varphi}{\longrightarrow} T$ is locally idempotent-pure if $\varphi|_{eSe}$ is idempotent-pure for each $e \in E(S)$.
- So S is locally E-unitary iff $S \stackrel{\sigma}{\longrightarrow} G(S)$ is locally idempotent-pure.

The Khoshkam-Skandalis condition

- Inspired by the result of Khoshkam and Skandalis, we say $S \stackrel{\varphi}{\longrightarrow} T$ satisfies the Khoshkam-Skandalis (KS) condition if $\varphi|_{eSf}$ is coherent for all $e, f \in E(S)$.
- For the case of $S \xrightarrow{\sigma} G(S)$, this is the original Khoshkam-Skandalis condition.

Theorem (Milan, BS)

Let $S \xrightarrow{\varphi} T$ be a locally idempotent-pure homomorphism satisfying the Khoshkam-Skandalis condition. Then there is an action $T \curvearrowright X$ such that $\mathscr{G}(S)$ is Morita equivalent to the groupoid of germs $T \ltimes X$.

The Khoshkam-Skandalis condition

- Inspired by the result of Khoshkam and Skandalis, we say $S \stackrel{\varphi}{\longrightarrow} T$ satisfies the Khoshkam-Skandalis (KS) condition if $\varphi|_{eSf}$ is coherent for all $e, f \in E(S)$.
- For the case of $S \xrightarrow{\sigma} G(S)$, this is the original Khoshkam-Skandalis condition.

Theorem (Milan, BS)

Let $S \stackrel{\psi}{\longrightarrow} T$ be a locally idempotent-pure homomorphism satisfying the Khoshkam-Skandalis condition. Then there is an action $T \curvearrowright X$ such that $\mathscr{G}(S)$ is Morita equivalent to the groupoid of germs $T \ltimes X$.

The Khoshkam-Skandalis condition

- Inspired by the result of Khoshkam and Skandalis, we say $S \stackrel{\varphi}{\longrightarrow} T$ satisfies the Khoshkam-Skandalis (KS) condition if $\varphi|_{eSf}$ is coherent for all $e, f \in E(S)$.
- For the case of $S \xrightarrow{\sigma} G(S)$, this is the original Khoshkam-Skandalis condition.

Theorem (Milan, BS)

Let $S \stackrel{\varphi}{\longrightarrow} T$ be a locally idempotent-pure homomorphism satisfying the Khoshkam-Skandalis condition. Then there is an action $T \curvearrowright X$ such that $\mathscr{G}(S)$ is Morita equivalent to the groupoid of germs $T \ltimes X$.

Cocycles

- Khoshkam and Skandalis proved their result along the following lines.
- First they gave a general condition on a functor $\mathscr{G} \longrightarrow G$ from a groupoid to a group (a cocycle) that guarantees \mathscr{G} is Morita equivalent to $G \ltimes X$ for an appropriate action $G \curvearrowright X$.
- The results for inverse semigroups are obtained by considering the cocycle $\mathscr{G}(S) \longrightarrow G(S)$.
- Since an inverse semigroup is not an étale groupoid, we need to be more careful in how to proceed in the general case.

Cocycles

- Khoshkam and Skandalis proved their result along the following lines.
- First they gave a general condition on a functor $\mathscr{G} \longrightarrow G$ from a groupoid to a group (a cocycle) that guarantees \mathscr{G} is Morita equivalent to $G \ltimes X$ for an appropriate action $G \curvearrowright X$.
- The results for inverse semigroups are obtained by considering the cocycle $\mathscr{G}(S) \longrightarrow G(S)$.
- Since an inverse semigroup is not an étale groupoid, we need to be more careful in how to proceed in the general case.

Cocycles

- Khoshkam and Skandalis proved their result along the following lines.
- First they gave a general condition on a functor $\mathscr{G} \longrightarrow G$ from a groupoid to a group (a cocycle) that guarantees \mathscr{G} is Morita equivalent to $G \ltimes X$ for an appropriate action $G \curvearrowright X$.
- The results for inverse semigroups are obtained by considering the cocycle $\mathscr{G}(S) \longrightarrow G(S)$.
- Since an inverse semigroup is not an étale groupoid, we need to be more careful in how to proceed in the general case.

Cocycles

- Khoshkam and Skandalis proved their result along the following lines.
- First they gave a general condition on a functor $\mathscr{G} \longrightarrow G$ from a groupoid to a group (a cocycle) that guarantees \mathscr{G} is Morita equivalent to $G \ltimes X$ for an appropriate action $G \curvearrowright X$.
- The results for inverse semigroups are obtained by considering the cocycle $\mathscr{G}(S) \longrightarrow G(S)$.
- Since an inverse semigroup is not an étale groupoid, we need to be more careful in how to proceed in the general case.

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - p(x)x = x;
 - $\bullet \ g(hx) = (gh)x;$
 - p(gx) = r(g)
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{G}^0} X$
- The unit space is X.
- One has $x \stackrel{(g,x)}{\longrightarrow} ax$
- \bullet $(g,hx)(h,x) = (gh,x), (g,x)^{-1} = (g^{-1},gx).$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G}\ltimes X$ has arrow space $\mathscr{G} imes_{\mathscr{G}^0}X$.
- ullet The unit space is X.
- One has $r \stackrel{(g,x)}{=} ar$
- $(g, hx)(h, x) = (gh, x), (g, x)^{-1} = (g^{-1}, gx).$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{G}^0} X$.
- ullet The unit space is X.
- One has $x \stackrel{(g,x)}{\longrightarrow} ax$
- \bullet $(g, hx)(h, x) = (gh, x), (g, x)^{-1} = (g^{-1}, gx).$
- ullet If $\mathscr G$ is étale, then so is $\mathscr G\ltimes X$

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - \bullet g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{G}^0} X$.
- ullet The unit space is X.
 - One has (g,x)
- $(q, hx)(h, x) = (qh, x), (q, x)^{-1} = (q^{-1}, qx)$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - \bullet g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{Q}^0} X$.
- ullet The unit space is X.
- One has $x \xrightarrow{(g,x)} qx$.
- $(g, hx)(h, x) = (gh, x), (g, x)^{-1} = (g^{-1}, gx)$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - \bullet g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{Q}^0} X$.
- The unit space is X.
- One has $x \stackrel{(g,x)}{\Longrightarrow} gx$.
- $(g, hx)(h, x) = (gh, x), (g, x)^{-1} = (g^{-1}, gx).$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$.

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - \bullet g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{Q}^0} X$.
- The unit space is X.
- One has $x \xrightarrow{(g,x)} gx$.
- $(g, hx)(h, x) = (gh, x), (g, x)^{-1} = (g^{-1}, gx).$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$.

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \xrightarrow{p} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - \bullet g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{Q}^0} X$.
- The unit space is X.
- One has $x \xrightarrow{(g,x)} gx$.
- $(g, hx)(h, x) = (gh, x), (g, x)^{-1} = (g^{-1}, gx).$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$.

- An action $\mathscr{G} \curvearrowright X$ of a groupoid \mathscr{G} on a space X consists of a cts map $X \stackrel{p}{\longrightarrow} \mathscr{G}^0$ and a map $\theta \colon \mathscr{G} \times_{\mathscr{G}^0} X \longrightarrow X$ such that:
 - \bullet p(x)x = x;
 - \bullet g(hx) = (gh)x;
 - p(gx) = r(g).
- The semidirect product $\mathscr{G} \ltimes X$ has arrow space $\mathscr{G} \times_{\mathscr{G}^0} X$.
- The unit space is X.
- One has $x \xrightarrow{(g,x)} gx$.
- $(g, hx)(h, x) = (gh, x), (g, x)^{-1} = (g^{-1}, gx).$
- If \mathscr{G} is étale, then so is $\mathscr{G} \ltimes X$.

Theorem (Milan, BS)

Let $\varphi: \mathscr{G} \longrightarrow \mathscr{H}$ be a cts functor with \mathscr{G} locally compact and \mathscr{H} étale. Suppose that:

$$ullet$$
 the map $\mathscr{G} \longrightarrow \mathscr{G}^0 imes_{\mathscr{H}^0} \mathscr{H} imes_{\mathscr{H}^0} \mathscr{G}^0$ given by

$$g \longmapsto (d(g), \varphi(g), r(g))$$

is injective and closed;

• the map $\mathcal{H} \times_{\mathcal{H}^0} \mathcal{G} \longrightarrow \mathcal{H} \times_{\mathcal{H}^0} \mathcal{G}^0$ given by

$$(h,g) \longmapsto (h\varphi(g),d(g))$$

is open.

Theorem (Milan, BS)

Let $\varphi: \mathscr{G} \longrightarrow \mathscr{H}$ be a cts functor with \mathscr{G} locally compact and \mathscr{H} étale. Suppose that:

• the map $\mathscr{G} \longrightarrow \mathscr{G}^0 \times_{\mathscr{H}^0} \mathscr{H} \times_{\mathscr{H}^0} \mathscr{G}^0$ given by

$$g\longmapsto (d(g),\varphi(g),r(g))$$

is injective and closed;

• the map $\mathcal{H} \times_{\mathcal{H}^0} \mathcal{G} \longrightarrow \mathcal{H} \times_{\mathcal{H}^0} \mathcal{G}^0$ given by

$$(h,g) \longmapsto (h\varphi(g),d(g))$$

is open.

Theorem (Milan, BS)

Let $\varphi: \mathscr{G} \longrightarrow \mathscr{H}$ be a cts functor with \mathscr{G} locally compact and \mathscr{H} étale. Suppose that:

• the map $\mathscr{G} \longrightarrow \mathscr{G}^0 \times_{\mathscr{H}^0} \mathscr{H} \times_{\mathscr{H}^0} \mathscr{G}^0$ given by

$$g \longmapsto (d(g), \varphi(g), r(g))$$

is injective and closed;

• the map $\mathscr{H} \times_{\mathscr{H}^0} \mathscr{G} \longrightarrow \mathscr{H} \times_{\mathscr{H}^0} \mathscr{G}^0$ given by

$$(h,g) \longmapsto (h\varphi(g),d(g))$$

is open.

Theorem (Milan, BS)

Let $\varphi: \mathscr{G} \longrightarrow \mathscr{H}$ be a cts functor with \mathscr{G} locally compact and \mathscr{H} étale. Suppose that:

• the map $\mathscr{G} \longrightarrow \mathscr{G}^0 \times_{\mathscr{H}^0} \mathscr{H} \times_{\mathscr{H}^0} \mathscr{G}^0$ given by

$$g \longmapsto (d(g), \varphi(g), r(g))$$

is injective and closed;

• the map $\mathscr{H} \times_{\mathscr{H}^0} \mathscr{G} \longrightarrow \mathscr{H} \times_{\mathscr{H}^0} \mathscr{G}^0$ given by

$$(h,g) \longmapsto (h\varphi(g),d(g))$$

is open.

 To apply the previous situation, we need to identify groupoids of germs as semidirect products.

- **①** There is a bijection between special actions $T \curvearrowright X$ and actions $\mathscr{G}(T) \curvearrowright X$.
- **2** Moreover, the groupoid of germs $T \ltimes X$ is isomorphic to the semidirect product $\mathscr{G}(T) \ltimes X$.
 - For instance, if $\mathscr{G}(T)$ acts on X with $X \stackrel{p}{\longrightarrow} \widehat{E}(T)$, then we put $X_e = p^{-1}(\widehat{E}_e)$.
 - For $x \in X_{t^*t}$, we define tx = [t, p(x)]x.
 - Conversely, if $T \cap X$, then $X \xrightarrow{p} E(T)$ is given by the "neighborhood filter:" $p(x) = \{e \mid x \in X_e\}$.
 - One has $[s, \varphi]x = sx$.

 To apply the previous situation, we need to identify groupoids of germs as semidirect products.

- **1** There is a bijection between special actions $T \curvearrowright X$ and actions $\mathscr{G}(T) \curvearrowright X$.
- **2** Moreover, the groupoid of germs $T \ltimes X$ is isomorphic to the semidirect product $\mathscr{G}(T) \ltimes X$.
 - For instance, if $\mathscr{G}(T)$ acts on X with $X \xrightarrow{p} \widehat{E(T)}$, then we put $X_e = p^{-1}(\widehat{E}_e)$.
 - For $x \in X_{t^*t}$, we define tx = [t, p(x)]x.
 - Conversely, if $T \cap X$, then $X \xrightarrow{F} E(T)$ is given by the "neighborhood filter:" $p(x) = \{e \mid x \in X_e\}$.
 - One has $|s, \varphi| x = sx$.

 To apply the previous situation, we need to identify groupoids of germs as semidirect products.

- **1** There is a bijection between special actions $T \curvearrowright X$ and actions $\mathscr{G}(T) \curvearrowright X$.
- **2** Moreover, the groupoid of germs $T \ltimes X$ is isomorphic to the semidirect product $\mathscr{G}(T) \ltimes X$.
 - For instance, if $\mathscr{G}(T)$ acts on X with $X \xrightarrow{p} \widehat{E(T)}$, then we put $X_e = p^{-1}(\widehat{E}_e)$.
 - For $x \in X_{t^*t}$, we define tx = [t, p(x)]x.
 - Conversely, if $T \curvearrowright X$, then $X \xrightarrow{P} E(T)$ is given by the "neighborhood filter:" $p(x) = \{e \mid x \in X_e\}$.
 - One has $|s, \varphi| x = sx$.

 To apply the previous situation, we need to identify groupoids of germs as semidirect products.

- **1** There is a bijection between special actions $T \curvearrowright X$ and actions $\mathscr{G}(T) \curvearrowright X$.
- **2** Moreover, the groupoid of germs $T \ltimes X$ is isomorphic to the semidirect product $\mathscr{G}(T) \ltimes X$.
 - For instance, if $\mathscr{G}(T)$ acts on X with $X \xrightarrow{p} \widehat{E(T)}$, then we put $X_e = p^{-1}(\widehat{E}_e)$.
 - For $x \in X_{t^*t}$, we define tx = [t, p(x)]x.
 - Conversely, if $T \curvearrowright X$, then $X \xrightarrow{p} \widehat{E(T)}$ is given by the "neighborhood filter:" $p(x) = \{e \mid x \in X_e\}$.
 - One has $[s, \varphi]x = sx$.

 To apply the previous situation, we need to identify groupoids of germs as semidirect products.

- **1** There is a bijection between special actions $T \curvearrowright X$ and actions $\mathscr{G}(T) \curvearrowright X$.
- **2** Moreover, the groupoid of germs $T \ltimes X$ is isomorphic to the semidirect product $\mathscr{G}(T) \ltimes X$.
 - For instance, if $\mathscr{G}(T)$ acts on X with $X \xrightarrow{p} \widehat{E(T)}$, then we put $X_e = p^{-1}(\widehat{E}_e)$.
 - For $x \in X_{t^*t}$, we define tx = [t, p(x)]x.
 - Conversely, if $T \curvearrowright X$, then $X \xrightarrow{p} E(T)$ is given by the "neighborhood filter:" $p(x) = \{e \mid x \in X_e\}$.
 - One has $[s, \varphi]x = sx$.

 To apply the previous situation, we need to identify groupoids of germs as semidirect products.

- **1** There is a bijection between special actions $T \curvearrowright X$ and actions $\mathscr{G}(T) \curvearrowright X$.
- **2** Moreover, the groupoid of germs $T \ltimes X$ is isomorphic to the semidirect product $\mathscr{G}(T) \ltimes X$.
 - For instance, if $\mathscr{G}(T)$ acts on X with $X \xrightarrow{p} \widehat{E(T)}$, then we put $X_e = p^{-1}(\widehat{E}_e)$.
 - For $x \in X_{t^*t}$, we define tx = [t, p(x)]x.
 - Conversely, if $T \curvearrowright X$, then $X \xrightarrow{p} \widehat{E(T)}$ is given by the "neighborhood filter:" $p(x) = \{e \mid x \in X_e\}$.
 - One has $[s, \varphi]x = sx$.

 To apply the previous situation, we need to identify groupoids of germs as semidirect products.

- **1** There is a bijection between special actions $T \curvearrowright X$ and actions $\mathscr{G}(T) \curvearrowright X$.
- **2** Moreover, the groupoid of germs $T \ltimes X$ is isomorphic to the semidirect product $\mathscr{G}(T) \ltimes X$.
 - For instance, if $\mathscr{G}(T)$ acts on X with $X \xrightarrow{p} \widehat{E(T)}$, then we put $X_e = p^{-1}(\widehat{E}_e)$.
 - For $x \in X_{t^*t}$, we define tx = [t, p(x)]x.
 - Conversely, if $T \curvearrowright X$, then $X \xrightarrow{p} \widehat{E(T)}$ is given by the "neighborhood filter:" $p(x) = \{e \mid x \in X_e\}$.
 - One has $[s, \varphi]x = sx$.

The Khoshkam-Skandalis condition: revisited

- To prove our main result, one verifies that if $S \xrightarrow{\varphi} T$ is a locally idempotent-pure morphism satisfying the KS condition, then the induced map $\mathscr{G}(S) \longrightarrow \mathscr{G}(T)$ satisfies the conditions of our Morita theorem.
- Thus $\mathscr{G}(S)$ is Morita equivalent to $\mathscr{G}(T) \ltimes X \cong T \ltimes X$.
- Therefore, $C^*(S)$ is strongly Morita equivalent to $C_0(X) \rtimes T$.

The Khoshkam-Skandalis condition: revisited

- To prove our main result, one verifies that if $S \stackrel{\varphi}{\longrightarrow} T$ is a locally idempotent-pure morphism satisfying the KS condition, then the induced map $\mathscr{G}(S) \longrightarrow \mathscr{G}(T)$ satisfies the conditions of our Morita theorem.
- Thus $\mathscr{G}(S)$ is Morita equivalent to $\mathscr{G}(T) \ltimes X \cong T \ltimes X$.
- Therefore, $C^*(S)$ is strongly Morita equivalent to $C_0(X) \rtimes T$.

The Khoshkam-Skandalis condition: revisited

- To prove our main result, one verifies that if $S \stackrel{\varphi}{\longrightarrow} T$ is a locally idempotent-pure morphism satisfying the KS condition, then the induced map $\mathscr{G}(S) \longrightarrow \mathscr{G}(T)$ satisfies the conditions of our Morita theorem.
- Thus $\mathscr{G}(S)$ is Morita equivalent to $\mathscr{G}(T) \ltimes X \cong T \ltimes X$.
- Therefore, $C^*(S)$ is strongly Morita equivalent to $C_0(X) \rtimes T$.

- Let S be an inverse semigroup.
- Let S-**Set** be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is F-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S = STS and T = TST.
- ullet In this case S and T are Morita equivalent
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

- ullet Let S be an inverse semigroup.
- Let S-Set be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is F-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S = STS and T = TST.
- In this case S and T are Morita equivalent
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

- Let S be an inverse semigroup.
- Let S-Set be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is F-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S = STS and T = TST.
- In this case S and T are Morita equivalent
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

- Let S be an inverse semigroup.
- Let S-Set be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- ullet For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is F-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S = STS and T = TST.
- \bullet In this case S and T are Morita equivalent.
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

- Let S be an inverse semigroup.
- Let S-Set be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- ullet For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is F-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S = STS and T = TST.
- ullet In this case S and T are Morita equivalent.
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

- Let S be an inverse semigroup.
- Let S-Set be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- ullet For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is *F*-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S=STS and T=TST.
- ullet In this case S and T are Morita equivalent.
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

- Let S be an inverse semigroup.
- Let S-Set be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- ullet For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is F-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S=STS and T=TST.
- In this case S and T are Morita equivalent.
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

- Let S be an inverse semigroup.
- Let S-Set be the category of sets X equipped with an action $S \times X \longrightarrow X$ by total functions such that SX = X.
- Talwar defined two inverse semigroups S and T to be Morita equivalent if S-Set is equivalent to T-Set.
- ullet For example, if S is an inverse monoid, then S and T are Morita equivalent iff there is an idempotent e with T=TeT and $S\cong eTe$.
- An inverse semigroup is F-inverse iff it is Morita equivalent to a semidirect product of a group and a semilattice.
- Lawson calls S an enlargement of a subsemigroup T if S=STS and T=TST.
- In this case S and T are Morita equivalent.
- Two inverse semigroups are Morita equivalent iff they have a common von Neumann regular enlargement (Lawson).

Strong Morita equivalence

- I defined inverse semigroups S and T to be strongly Morita equivalent if there is an equivalence bimodule for S and T.
- ullet By definition, this consists of a set X, which is an (S,T)-biset equipped with surjective "inner products"

$$\langle -, - \rangle \colon X \times X \longrightarrow S$$
, and $[-, -] \colon X \times X \longrightarrow T$

such that the following axioms hold, where $x,y,z\in X$, $s\in S$, and $t\in T$:

- ullet For instance, if S is an enlargement of T, then X=ST is an equivalence bimodule.

Strong Morita equivalence

- I defined inverse semigroups S and T to be strongly Morita equivalent if there is an equivalence bimodule for S and T.
- ullet By definition, this consists of a set X, which is an (S,T)-biset equipped with surjective "inner products"

$$\langle -,-\rangle \colon\thinspace X\times X \longrightarrow S \;, \text{ and } [-,-] \colon\thinspace X\times X \longrightarrow T$$

such that the following axioms hold, where $x,y,z\in X$, $s\in S$, and $t\in T$:

- $\begin{array}{ll} \bullet \ \langle sx,y\rangle = s\langle x,y\rangle & \quad [x,yt] = [x,y]t \\ \bullet \ \langle y,x\rangle = \langle x,y\rangle^* & \quad [x,y] = [y,x]^* \end{array}$
- $\langle x, x \rangle x = x$ x[x, x] = x
- ullet For instance, if S is an enlargement of T, then X=ST is an equivalence bimodule.

Strong Morita equivalence

- I defined inverse semigroups S and T to be strongly Morita equivalent if there is an equivalence bimodule for S and T.
- By definition, this consists of a set X, which is an (S, T)-biset equipped with surjective "inner products"

$$\langle -, - \rangle \colon\thinspace X \times X \longrightarrow S \;, \text{ and } [-, -] \colon\thinspace X \times X \longrightarrow T$$

such that the following axioms hold, where $x, y, z \in X$, $s \in S$, and $t \in T$:

- $\begin{array}{ll} \bullet \ \langle sx,y\rangle = s\langle x,y\rangle & [x,yt] = [x,y]t \\ \bullet \ \langle y,x\rangle = \langle x,y\rangle^* & [x,y] = [y,x]^* \end{array}$
- $\bullet \langle x, x \rangle x = x$ x[x, x] = x
- $\bullet \langle x, y \rangle z = x[y, z].$
- \bullet For instance, if S is an enlargement of T, then X=ST is an equivalence bimodule.

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(E) \rtimes G(S)$
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- ullet Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(E) \rtimes G(S)$.
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- ullet Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(\widehat{E}) \rtimes G(S)$.
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same.

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- ullet Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(\widehat{E}) \rtimes G(S)$.
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false.

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- ullet Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(\widehat{E}) \rtimes G(S)$.
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false.

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same.

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- ullet Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(\widehat{E}) \rtimes G(S)$.
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false.

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same.

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- ullet Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(\widehat{E}) \rtimes G(S)$.
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false.

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same.

Theorem (BS)

If S and T are strongly Morita equivalent, then $\mathscr{G}(S)$ and $\mathscr{G}(T)$ are Morita equivalent.

- Every F-inverse semigroup S has an enlargement $E \rtimes G(S)$.
- Thus $C^*(S)$ is strongly Morita equivalent to $C_0(\widehat{E}) \rtimes G(S)$.
- This yields an alternative proof to that of Khoshkam and Skandalis.
- It is easy to see that strong Morita equivalence implies Morita equivalence.
- I had conjectured the converse is false.

Theorem (Funk, Lawson, BS)

Morita equivalence and strong Morita equivalence are the same.

Thanks for your attention!

Je vous remercie de votre attention!

Obrigado pela sua atenção!