Use this document as a template

My PhD Thesis

Customise this page according to your needs

Tobias Hangleiter*

May 1, 2025

^{*} A LaTeX lover/hater

The kaobook class

Disclaimer

You can edit this page to suit your needs. For instance, here we have a no copyright statement, a colophon and some other information. This page is based on the corresponding page of Ken Arroyo Ohori's thesis, with minimal changes.

No copyright

© This book is released into the public domain using the CC0 code. To the extent possible under law, I waive all copyright and related or neighbouring rights to this work.

To view a copy of the CC0 code, visit:

http://creativecommons.org/publicdomain/zero/1.0/

Colophon

This document was typeset with the help of KOMA-Script and LATEX using the kaobook class.

The source code of this book is available at:

https://github.com/fmarotta/kaobook

(You are welcome to contribute!)

Publisher

First printed in May 2019 by

Contents

Co	ontents	•
I	A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY	1
1	Introduction	3
2	Theory of spectral noise estimation 2.1 Spectrum estimation from time series 2.2 Window functions 2.3 Welch's method 2.4 Parameters & Properties of the PSD	10
3	The python_spectrometer software package 3.1 Package design and implementation	13 13 15 16 17 20
4	Conclusion and outlook	23
II	Characterization and Improvements of a Millikelvin Confocal Microscope	27
5	Introduction	29
6	Characterization of electrical performance 6.1 Electron temperature	3 1
7	Characterization and improvements of the optical path	33
8	Vibration performance8.1 Accelerometric vibration spectroscopy8.2 Optical vibration spectroscopy	35 35 36
9	Conclusion & outlook	39
II	I Optical Measurements of Electrostatic Exciton Traps in Semiconductor Membranes	41
IV	A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS	43
10	Introduction	47
11	Filter function formalism for unital quantum operations 11.1 Transfer matrix representation of quantum operations	5 1 51 51

	11.2	Calculating the decay amplitudes	57
		11.2.1 Control matrix of a gate sequence	58
		11.2.2 Control matrix of a single gate	60
	11.3	Calculating the frequency shifts	61
		Computing derived quantities	63
		11.4.1 Average gate and entanglement fidelity	63
		11.4.2 State fidelity and measurements	64
		11.4.3 Leakage	64
	11.5	Performance analysis and efficiency improvements	65
		Periodic Hamiltonians	65
		Extending Hilbert spaces	66
			67
		Operator bases	
	11.9	Computational complexity	68
12	Soft	ware implementation	73
~~		Package overview	73
		Workflow	74
	12.2	WOIKHOW	74
13	Exa	mple applications	77
		Singlet-triplet two-qubit gates	77
		Rabi driving	79
		Randomized Benchmarking	81
		Quantum Fourier transform	84
	13.4	Qualitum Fourier transform	04
14	Furt	her considerations	87
15	Con	clusion and outlook	89
16	Mor	nte Carlo and Lindblad master equation simulations	91
10	16.1	Validation of QFT fidelities	91
	10.1	variation of \$11 intenties	71
17	Reco	onstruction by frequency-comb time-domain simulation	93
Αı	PPEN	NDIX	95
A	Filte	er Functions	97
	A.1	Additional derivations	97
		A.1.1 Derivation of the single-qubit cumulant function in the Liouville representation	97
		A.1.2 Evaluation of the integrals in Equation 11.39	98
		A.1.3 Simplifying the calculation of the entanglement infidelity	98
	A.2	Singlet-Triplet Gate Fidelity	99
	A.3	GRAPE-optimized gate set for QFT	101
	A.4	Convergence Bounds	101
	11.4	A.4.1 Magnus Expansion	102
			102
	٨ =	A.4.2 Infidelity	
	A.5	occond-order concatenation	104
Lis	st of T	Terms	105

List of Figures

2.1	Generated by img/tikz/spectrometer/lockin_dut.tex	5
2.2	Generated by img/code/spectrometer/lorentz.py	7
2.3	Generated by img/code/spectrometer/pyspeck.py	9
2.4	Generated by img/code/spectrometer/pyspeck.py	9
2.5	Generated by img/code/spectrometer/pyspeck.py	10
2.6	Generated by img/tikz/spectrometer/daq_settings.tex	11
3.1	Generated by img/tikz/spectrometer/speck_tree.tex	13
3.2	Generated by img/code/spectrometer/pyspeck_workflow.py	17
3.3	Generated by img/code/spectrometer/pyspeck_workflow.py	18
3.4	Generated by img/code/spectrometer/pyspeck_workflow.py	19
3.5	Generated by img/code/spectrometer/pyspeck_workflow.py	19
3.6	Generated by img/code/spectrometer/pyspeck_workflow.py	19
3.7	Generated by img/code/spectrometer/pyspeck_workflow.py	20
3.8	Generated by img/code/spectrometer/pyspeck_live_view.py	21
6.1	Generated by img/code/setup/transport.py	32
6.2	Generated by img/code/setup/transport.py	32
6.3	Generated by img/code/setup/transport.py	32
8.1	Generated by img/code/setup/vibrations.py	36
8.2	Generated by img/code/setup/vibrations.py	36
8.3	Generated by img/code/setup/vibrations.py	36
8.4	Generated by img/code/setup/vibrations.py	36
8.5	Generated by img/code/setup/vibrations.py	37
11.1 11.2	Illustration of gate sequence	70
13.1	(a) Exchange interaction $J(\epsilon_{ij})$ for the CNOT gate presented in Reference Cerfontaine2020b as function of time. (b) Filter functions $F_{\epsilon_{ij}}$ for noise in the detunings evaluated on the computational subspace. The filter functions are modulated by oscillations at high frequencies due to numerical artifacts of the finite step size for the time evolution. The inset shows the filter functions in the DC regime on a linear scale with distinct peaks around $\omega = 2\pi/\tau$ and $\omega = 50/\tau$ ($\tau = 50$ ns). (c)–(e) Computational subspace block of the first order approximation of the error transfer matrix, given by the cumulant function $\mathcal{K}_{\alpha\alpha}$ excluding second order contributions, for the CNOT gate and the three detunings $\alpha \in \{\epsilon_{12}, \epsilon_{23}, \epsilon_{34}\}$. Note that in panel (e) the order of the rows and columns was permuted for better comparability.	70
	permuted for better comparability	79

13.2	Filter functions for weak (a) and strong (b) Rabi driving (20 identity gates in total). Grey dashed (dotted) lines indicate the respective drive (Rabi) frequencies ω_0 ($\Omega_{\rm R}$). (a) Weak driving with $A/\omega_0\ll 1$. The filter function F_{xx} for noise operator σ_x is approximately constant up to the	
	resonance frequency where it peaks sharply and then aligns with the filter function F_{zz} for σ_z . F_{zz} peaks at the Rabi frequency before rolling off with ω^{-2} and a DC level that is almost ten orders of magnitude larger than the DC level of the transverse filter function F_{xx} . (b) Strong driving with	
13.3	$A/\omega_0 \sim 1$. Again F_{zz} peaks at $\Omega_{\rm R}$ whereas F_{xx} has three distinct peaks at ω_0 and $\omega_0 \pm \Omega_{\rm R}$. These features also appear at slightly higher frequencies in F_{zz} due to the strong coupling Simulation of a standard randomized benchmarking (SRB) experiment using 100 random sequences per point for different gate and noise types (see the main text for an explanation of the gate type monikers). Dashed lines are fits of Equation 13.3 to the data while the solid black lines correspond to a zeroth-order SRB model with $A=B=0.5$ and the true average gate infidelity per Clifford r . Errorbars show the standard deviation of the SRB sequence fidelities, illustrating	81
13.4	that for the "single" gate set noise correlations can lead to amplified destructive and constructive interference of errors. The same noise spectrum is used for all three error channels $(\sigma_x, \sigma_y, \sigma_z)$ and the large plots show the sum of all contributions. (a) Uncorrelated white noise with the noise power adjusted for each gate type so that the average error per gate r is constant over all gate types. No notable deviation is seen between different gate types. (b) Correlated $1/f$ -like noise with noise power adjusted to match the average Clifford fidelity in (a). The decay of the "single" gateset differs considerably from that of the other gate sets and the SRB decay expected for the given average gate fidelity, whereas "naive" and "optimized" gates match the zeroth order SRB model well, indicating that correlations in the noise affect the relation between SRB decay and average gate fidelity in a gateset-dependent way. Inset: contributions from σ_z -noise show that the sequence fidelity can be better than expected for certain gate types and noise channels	84 86
A.1	Filter functions of the voltage detunings ϵ_{ij} excluding (a) and including (b) the zero-padded identity matrix basis element $C_0^c \propto \mathrm{diag}(1,1,1,0,0)$ for the computational subspace. Evidently, including C_0^c removes the DCG character, namely that $F_{\epsilon_{ij}}(\omega) \to 0$ as $\omega \to 0$, of the gates but has little effect on the high-frequency behavior. As the pulse optimization minimizes, among other figures of merit, the infidelity of the final propagator mapped to the closest unitary on the computational subspace due to quasistatic and fast white noise, this indicates that excluding	
A.2	C_0^c from the filter function corresponds to partially neglecting non-unitary components of the propagator on the computational subspace	101
	are not subject to any constraints	102

Part I

A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY

Part II

CHARACTERIZATION AND IMPROVEMENTS OF A MILLIKELVIN CONFOCAL MICROSCOPE

Introduction 5

OISE

Characterization of electrical performance

6.1 Electron temperature

Figure 6.1

Figure 6.2

Figure 6.3

Characterization and improvements of the optical path

OISE

Vibration performance

OISE

8.1 Accelerometric vibration spectroscopy

Figure 8.1

8.2 Optical vibration spectroscopy

Figure 8.2

Figure 8.3

Figure 8.5

Conclusion & outlook

OISE OISE

Part III

OPTICAL MEASUREMENTS OF ELECTROSTATIC EXCITON TRAPS IN SEMICONDUCTOR MEMBRANES

Part IV

A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS

Special Terms

```
F
FF filter function. vii

M
MC Monte Carlo. vii

P
PSD power spectral density. v

Q
QFT quantum Fourier transform. viii

S
SRB standard randomized benchmarking. viii
```