Mathematical Statistics

Felix Chen

Contents

1	Introduction	1
	1.1 Basic concepts of statistics	$\frac{2}{2}$
	§1 Introduction	
	Teacher: Liu Liping	
	References:	
	\bullet Chen Jiading, ${\it Mathematical~Statistics~handouts},$ third edition;	
	• D. Freedman, <i>Statistics</i> ;	
	• Lehmann, Theory of Point Estimation, John Wiley and Sons;	
	• Lehmann, Testing Statistical Hypothesis, John Wiley and Sons.	
	Differences between Statistics and Probablistics:	
	• Clearer backgrounds;	
	• "right" or "wrong" vs. "good" or "bad";	
	• Different research method, more computation and simulation;	
	• Different ways of thinking.	
	Contents of this course:	
	• Focusing on common backgrounds, common thoughts and classic methods, don't focus rigorous proofs.	on

Statistical regularity: Law of large numbers, Central limit theorem, Law of iterated loga-

• Chapter 2–4, first 2 sections of chapter 5, first 2 sections of chapter 7.

rithm, etc.

1 INTRODUCTION Statistics

§1.1 Basic concepts of statistics

- Totality and individuals: denoted by distribution function $F(\cdot)$ or random variable X.
- Samples: denoted by X_1, \ldots, X_n or x_1, \ldots, x_n . We call n the sample size. If we assume independent random identically distribution (iid), call them simple random samples.
- Statistical magnitude: (measurable) sample function $g(x_1, \ldots, x_n)$.
- and more...

§1.2 Parameter estimation

Backgrounds: We already know the distribution type, but do not know the parameters. We hope to give an estimation of parameters from sample data.

Maximum Likelihood Estimate (MLE)

Definition 1.1 (Likelihood function). We call

$$L(x_1,\ldots,x_n;\theta) = \prod_{i=1}^n f(x_i;\theta).$$

is the likelihood function of parameter θ about samples x_1, \ldots, x_n .

We say the maximum point of likelihood function $\hat{\theta}_n = \hat{\theta}$ is the MLE of this sample.

MLE is the most important method in classic statistics, and it should be considered first.