Acta Crystallographica Section E

### **Structure Reports Online**

ISSN 1600-5368

# ( $\mu$ -Piperazine-1,4-dicarbodithioato- $\kappa^4 S^1, S^{1'}: S^4, S^{4'}$ )bis[bis(triphenylphos-phane- $\kappa P$ )gold(I)] chloroform disolvate

### Ilia A. Guzei, a\* Lara C. Spencer, a Stacy Lillywhite and James Darkwa

<sup>a</sup>Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and <sup>b</sup>Department of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa Correspondence e-mail: iguzei@chem.wisc.edu

Received 18 October 2011; accepted 24 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma(C-C) = 0.006 \text{ Å}$ ; R factor = 0.028; wR factor = 0.074; data-to-parameter ratio = 16.0.

In the title compound,  $[Au_2(C_6H_8N_2S_4)(C_{18}H_{15}P)_4]\cdot 2CHCl_3$ , the digold complex resides on a crystallographic inversion center and co-crystallizes with two molecules of chloroform solvent. The piperazine-1,4-dicarbodithioate linker has an almost ideal chair conformation. The geometry about the gold atoms is severely distorted tetrahedral punctuated by a very acute S-Au-S bite angle.

#### Related literature

For stabilization of gold salts by dithiocarbonates, see: Fernandez *et al.* (1998). For use of piperazine dithiocarbamates as ligands used to engineer multimetallic assemblies, see: Wilton-Ely *et al.* (2008); Knight *et al.* (2009*a,b*); Oliver *et al.* (2011). For the copper analgoue, see: Kumar *et al.* (2009). For other related gold complexes, see: Razak *et al.* (2000); Jian *et al.* (2000). A molecular geometry check was performed with *Mogul*, see: Bruno *et al.* (2002). Related compounds were found in the Cambridge Structural Database (Allen, 2002). For ring analysis, see: Cremer & Pople (1975).



#### **Experimental**

Crystal data

Data collection

Bruker SMART APEXII 30338 measured reflections diffractometer 7089 independent reflections Absorption correction: multi-scan (SADABS; Bruker, 2007)  $T_{\min} = 0.083, \ T_{\max} = 0.140$   $R_{\inf} = 0.031$ 

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.028 & 442 \ \text{parameters} \\ WR(F^2) = 0.074 & \text{H-atom parameters constrained} \\ S = 1.15 & \Delta\rho_{\text{max}} = 2.40 \ \text{e} \ \text{Å}^{-3} \\ 7089 \ \text{reflections} & \Delta\rho_{\text{min}} = -1.35 \ \text{e} \ \text{Å}^{-3} \end{array}$ 

**Table 1** Selected geometric parameters (Å, °).

| 2.2994 (8) | Au1-S2                                 | 2.6133 (8)                                                   |
|------------|----------------------------------------|--------------------------------------------------------------|
| 2.3233 (8) | Au1-S1                                 | 2.7414 (8)                                                   |
| 124.65 (2) | D2 Au1 S1                              | 107.34 (3)                                                   |
| ( )        |                                        | 99.39 (3)                                                    |
| 107.10 (3) | S2-Au1-S1                              | 67.03 (2)                                                    |
|            | 2.3233 (8)<br>134.65 (3)<br>116.81 (3) | 2.3233 (8) Au1-S1  134.65 (3) P2-Au1-S1 116.81 (3) P1-Au1-S1 |

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008), *FCF\_filter* (Guzei, 2007) and *INSerter* (Guzei, 2007); molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*, *publCIF* (Westrip, 2010) and *modiCIFer* (Guzei, 2007).

We acknowledge support from the University of Johannesburg for this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5253).

#### References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *APEX2*, *SADABS* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B**58**, 389–397.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358-1367.

Fernandez, E. J., Lopez-de-Luzuriaga, J. M., Monge, M., Olmos, E., Gimeno, M. C., Laguna, A. & Jones, P. G. (1998). *Inorg. Chem.* **37**, 5532–5536.

Guzei, I. A. (2007). In-house Crystallographic Programs: FCF\_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Jian, F., Lu, L., Wang, X., Shanmuga Sundara Raj, S., Razak, I. A. & Fun, H.-K. (2000). Acta Cryst. C56, 939–940.

### metal-organic compounds

- Knight, E. R., Leung, N. H., Lin, Y. H., Cowley, A. R., Watkins, D. J., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009a). Dalton Trans. pp. 3688–3697.
- Knight, E. R., Leung, N. H., Thompson, A. L., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009b). *Inorg. Chem.* 48, 3866–3874.
- Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720–2725.
- Oliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852–5864.
- Razak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Jian, F., Bei, F., Yang, X., Lu, L. & Wang, X. (2000). *Acta Cryst.* C**56**, 666–667.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wilton-Ely, J. D. E. T., Solanki, D., Knight, E. R., Holt, K. B., Thompson, A. L. & Hogarth, G. (2008). *Inorg. Chem.* 47, 9642–9653.

| supplementa | ry materials |  |  |
|-------------|--------------|--|--|
|             |              |  |  |
|             |              |  |  |
|             |              |  |  |
|             |              |  |  |

Acta Cryst. (2011). E67, m1629-m1630 [doi:10.1107/S1600536811044229]

 $(\mu$ -Piperazine-1,4-dicarbodithioato- $\kappa^4 S^1$ , $S^1$ ': $S^4$ , $S^4$ ')bis[bis(triphenylphosphane- $\kappa P$ )gold(I)] chloroform disolvate

### I. A. Guzei, L. C. Spencer, S. Lillywhite and J. Darkwa

#### Comment

Dithiocarbamates have long been used as ligands to stabilize gold(I) and gold(III) salts (Fernandez *et al.*, 1998), but piperazine dithiocarbamates are currently receiving a lot more attention as ligands that can be used to engineer multimetallic assemblies including making gold nanoparticles (Wilton-Ely *et al.*, 2008; Knight *et al.* 2009*a*; Knight *et al.*, 2009*b*; Oliver *et al.*, 2011). We recently isolated the title compound (I) *via* a slight modification of one of the routes described in the aforementioned literature.

The crystal structure of (I) contains the digold complex residing on a crystallographic inversion center and two molecules of solvent chloroform solvent per digold complex. The piperzine dithiocarbamate linker exhibits an almost ideal chair conformation (puckering coordinates  $\theta$ =177.97 (1)°  $\varphi$ =0°, Cremer & Pople, 1975) similar to the analogous compounds with group ten square-planar metal centers nickel, palladium, and platinum (Knight *et al.*, 2009*a*) and the tetrahedral copper analogue (Kumar *et al.*, 2009). All bond distances and angles are typical as confirmed by a *Mogul* geometry check except for the S1—C1—S2, S1—C1—N1, and S2—C1—N1 angles (Bruno *et al.*, 2002). However these angles in (I) are similar to those in the closely related compounds (*N*,*N*-diisopropyldithiocarbamato-*S*,*S*')-bis(triphenylphosphane-P)-gold(I) (Jian *et al.*, 2000) and (piperidine-1-carbodithioato-*S*,*S*')-bis(triphenylphosphane-P)-gold(I) (Razak *et al.*, 2000).

The geometry about the gold atom is severely distorted tetrahedral with the dihedral angle between the planes defined by atoms S1, Au1, S1 and P1, Au1, P1 measuring 88.77 (3)°. Such a distorted tetrahedral geometry and acute S—Au—S bite angle (67.03 (2)°) are typical of complexes where gold is bonded to two phosphorous atoms and two sulfur atoms of a bidentale ligand forming a four-membered metallocycle. For eight such compounds in the Cambridge Structural Database (CSD; August 2011 update; Allen, 2002) the S—Au—S bite angle has an average of 66 (3)°. These compounds also have very large P—Au—P angles with a 135 (5)° average corresponding well to the 134.65 (3)° value found in (I). The copper analogue of (I) also exhibits a similarly distorted tetrahedral geometry but with a larger S—Cu—S bite angle of 75.41 (2)° (Kumar *et al.*, 2009). The group ten analogues exhibit distorted square planar geometries with larger S—metal—S bite angles that average 77 (3)° (Knight *et al.*, 2009*a*). The Au—S distances in (I) differ by 0.1281 Å; this value agrees well with the differences in the two Au—S bonds in the eight related compounds in the CSD where such distances differ by an average of 0.18 (11) Å.

### **Experimental**

To a solution of potassium piperazine-1,4-bis(dithiocarbamate) (0.17 g, 0.57 mmol) in water (10 mL) was added a solution of [AuCl(PPh<sub>3</sub>)] (0.40 g, 0.81 mmol) in dichloromethane (10 mL). The biphasic reaction mixture was stirred for 30 minutes. The organic layer was separated and layered with chloroform and hexane to yield a yellow solid. Yield: 0.32 g (69%).  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$  7.53 (m, 12H), 7.42 (m, 18H), 4.30 (s, 8H).  $^{13}$ C{ $^{1}$ H} NMR (CDCl<sub>3</sub>):  $\delta$  208.2 (2 C, C=S), 134.1, 130.7, 128.9, 50.1.  $^{31}$  P{ $^{1}$ H} NMR (CDCl<sub>3</sub>):  $\delta$  28.9. ESI-MS (m/z): 1155 ([M], 5%), 721 [Au(PPh<sub>3</sub>)<sub>2</sub>]<sup>+</sup>, 100%). IR (ATR, cm<sup>-1</sup>):

 $\upsilon(C_N) = 1451$ ,  $\upsilon(C_S) = 1026$ ,  $\upsilon(C_S) = 997$ . Anal. Calc. for  $C_{78}H_{68}Au_2N_2P_2S_4$ . CHCl<sub>3</sub>: C 50.09, H 3.68, N 1.46. Found: C 49.73, H 3.76, N 1.60%.

#### Refinement

All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients  $U_{iso}(H) = 1.2$  times  $U_{eq}$ (bearing atom). Default effective X—H distances for T = -173.0°C C(sp 3)-1H=1.00, C(sp 3)-2H=0.99, C(sp 2)-H=0.95. The final difference map had a peak and a hole in the vicinities of Au.

### **Figures**



Fig. 1. Molecular structure of (I) (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted. Symmetry code: (i) -x,2-y, 2-z.

# $(\mu\text{-Piperazine-1,4-dicarbodithioato-} \kappa^4 S^1, S^{1'}: S^4, S^{4'})$ bis[bis(triphenylphosphane- $\kappa P$ )gold(I)] chloroform disolvate

### Crystal data

| $[Au_2(C_6H_8N_2S_4)(C_{18}H_{15}P)_4]\cdot 2CHCl_3$ | Z=1                                                   |
|------------------------------------------------------|-------------------------------------------------------|
| $M_r = 1918.13$                                      | F(000) = 948                                          |
| Triclinic, $P\overline{1}$                           | $D_{\rm x} = 1.681 \; {\rm Mg \; m}^{-3}$             |
| Hall symbol: -P 1                                    | Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ |
| a = 12.8455 (17)  Å                                  | Cell parameters from 9936 reflections                 |
| b = 13.2879 (10)  Å                                  | $\theta = 3.6-71.7^{\circ}$                           |
| c = 13.4197 (9)  Å                                   | $\mu = 11.30 \text{ mm}^{-1}$                         |
| $\alpha = 119.572 (2)^{\circ}$                       | T = 100  K                                            |
| $\beta = 101.544 (2)^{\circ}$                        | Block, colourless                                     |
| $\gamma = 96.039 (2)^{\circ}$                        | $0.44\times0.35\times0.29~mm$                         |
| $V = 1895.2 (3) \text{ Å}^3$                         |                                                       |
|                                                      |                                                       |

#### Data collection

| Bruker SMART APEXII diffractometer                                | 7089 independent reflections                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                          | 7080 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                          | $R_{\rm int} = 0.031$                                                     |
| $0.50^{\circ}~\omega$ and $0.5~^{\circ}~\phi$ scans               | $\theta_{\text{max}} = 72.3^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ |
| Absorption correction: multi-scan ( <i>SADABS</i> ; Bruker, 2007) | $h = -15 \longrightarrow 14$                                              |
| $T_{\min} = 0.083, T_{\max} = 0.140$                              | $k = -16 \rightarrow 16$                                                  |

30338 measured reflections

 $l = -16 \rightarrow 16$ 

### Refinement

Refinement on  $F^2$ 

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 

 $wR(F^2) = 0.074$ 

. ( )

S = 1.15

7089 reflections 442 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0416P)^2 + 3.5159P]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\text{max}} = 0.001$ 

 $\Delta \rho_{\text{max}} = 2.40 \text{ e Å}^{-3}$ 

 $\Delta \rho_{min} = -1.35 \text{ e Å}^{-3}$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|      | X             | y             | Z             | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|---------------|---------------|---------------------------|
| Au1  | 0.234436 (10) | 0.776500 (10) | 0.653197 (10) | 0.01426 (6)               |
| S1   | 0.25387 (6)   | 0.94442 (7)   | 0.88645 (7)   | 0.01770 (16)              |
| S2   | 0.04873 (6)   | 0.82819 (7)   | 0.68645 (7)   | 0.01689 (16)              |
| P1   | 0.24564 (7)   | 0.61270 (7)   | 0.67150 (7)   | 0.01428 (16)              |
| P2   | 0.32654 (7)   | 0.86933 (7)   | 0.57904 (7)   | 0.01350 (16)              |
| N1   | 0.0585 (2)    | 0.9761 (2)    | 0.9150(2)     | 0.0168 (5)                |
| C1   | 0.1155 (3)    | 0.9217 (3)    | 0.8365 (3)    | 0.0156 (6)                |
| C2   | 0.1115 (3)    | 1.0645 (3)    | 1.0418 (3)    | 0.0195 (7)                |
| H2AB | 0.1051        | 1.1446        | 1.0584        | 0.023*                    |
| H2AA | 0.1903        | 1.0655        | 1.0614        | 0.023*                    |
| C3   | 0.0590(3)     | 1.0359 (3)    | 1.1199 (3)    | 0.0192 (7)                |
| H3AA | 0.0737        | 0.9608        | 1.1113        | 0.023*                    |
| H3AB | 0.0913        | 1.1005        | 1.2050        | 0.023*                    |
| C4   | 0.3628 (3)    | 0.6456 (3)    | 0.7941 (3)    | 0.0183 (7)                |
| C5   | 0.4568 (3)    | 0.7301 (3)    | 0.8254 (3)    | 0.0215 (7)                |
| H5AA | 0.4581        | 0.7723        | 0.7854        | 0.026*                    |
| C6   | 0.5488 (3)    | 0.7527 (4)    | 0.9152 (3)    | 0.0285 (8)                |

| H6AA       | 0.6130      | 0.8098     | 0.9357     | 0.034*     |
|------------|-------------|------------|------------|------------|
| C7         | 0.5471 (3)  | 0.6927 (4) | 0.9744 (3) | 0.0311 (9) |
| H7AA       | 0.6101      | 0.7085     | 1.0357     | 0.037*     |
| C8         | 0.4537 (3)  | 0.6093 (4) | 0.9447 (3) | 0.0301 (8) |
| H8AA       | 0.4526      | 0.5687     | 0.9863     | 0.036*     |
| C9         | 0.3620 (3)  | 0.5849 (3) | 0.8550(3)  | 0.0238 (7) |
| H9AA       | 0.2985      | 0.5270     | 0.8346     | 0.029*     |
| C10        | 0.2675 (3)  | 0.4871 (3) | 0.5424 (3) | 0.0159 (6) |
| C11        | 0.3632 (3)  | 0.4487 (3) | 0.5474 (3) | 0.0203 (7) |
| H11A       | 0.4171      | 0.4825     | 0.6223     | 0.024*     |
| C12        | 0.3813 (3)  | 0.3601 (3) | 0.4429 (3) | 0.0245 (7) |
| H12A       | 0.4475      | 0.3346     | 0.4470     | 0.029*     |
| C13        | 0.3025 (3)  | 0.3101(3)  | 0.3339 (3) | 0.0229 (7) |
| H13A       | 0.3145      | 0.2498     | 0.2631     | 0.027*     |
| C14        | 0.2067 (3)  | 0.3477 (3) | 0.3280(3)  | 0.0215 (7) |
| H14A       | 0.1527      | 0.3128     | 0.2530     | 0.026*     |
| C15        | 0.1887 (3)  | 0.4362(3)  | 0.4311 (3) | 0.0190(7)  |
| H15A       | 0.1228      | 0.4624     | 0.4262     | 0.023*     |
| C16        | 0.1298 (3)  | 0.5531 (3) | 0.7022 (3) | 0.0168 (6) |
| C17        | 0.0658 (3)  | 0.4376 (3) | 0.6282 (3) | 0.0187 (7) |
| H17A       | 0.0823      | 0.3836     | 0.5574     | 0.022*     |
| C18        | -0.0229 (3) | 0.4005 (3) | 0.6578 (3) | 0.0236 (7) |
| H18A       | -0.0670     | 0.3215     | 0.6065     | 0.028*     |
| C19        | -0.0467 (3) | 0.4788 (3) | 0.7617 (3) | 0.0243 (7) |
| H19A       | -0.1067     | 0.4534     | 0.7820     | 0.029*     |
| C20        | 0.0174 (3)  | 0.5941 (3) | 0.8355 (3) | 0.0248 (7) |
| H20A       | 0.0017      | 0.6474     | 0.9072     | 0.030*     |
| C21        | 0.1042 (3)  | 0.6322 (3) | 0.8060 (3) | 0.0204 (7) |
| H21A       | 0.1464      | 0.7121     | 0.8561     | 0.025*     |
| C22        | 0.2798 (3)  | 0.9894 (3) | 0.5672 (3) | 0.0169 (6) |
| C23        | 0.1719 (3)  | 0.9678 (3) | 0.5049 (3) | 0.0218 (7) |
| H23A       | 0.1233      | 0.8929     | 0.4726     | 0.026*     |
| C24        | 0.1338 (3)  | 1.0550 (3) | 0.4894 (3) | 0.0269 (8) |
| H24A       | 0.0604      | 1.0382     | 0.4438     | 0.032*     |
| C25        | 0.2025 (3)  | 1.1658 (3) | 0.5399 (3) | 0.0262 (8) |
| H25A       | 0.1764      | 1.2252     | 0.5293     | 0.0202 (0) |
| C26        | 0.3099 (3)  | 1.1904 (3) | 0.6063 (3) | 0.0242 (7) |
| H26A       | 0.3567      | 1.2672     | 0.6431     | 0.0242 (7) |
| C27        | 0.3491 (3)  | 1.1018 (3) | 0.6189 (3) | 0.0207 (7) |
| H27A       | 0.4230      | 1.1181     | 0.6628     | 0.0207 (7) |
| C28        | 0.4678 (3)  |            |            |            |
| C28<br>C29 | ` '         | 0.9384 (3) | 0.6736 (3) | 0.0157 (6) |
|            | 0.4856 (3)  | 1.0177 (3) | 0.7967 (3) | 0.0187 (7) |
| H29A       | 0.4249      | 1.0341     | 0.8276     | 0.022*     |
| C30        | 0.5910 (3)  | 1.0720 (3) | 0.8732 (3) | 0.0214 (7) |
| H30A       | 0.6027      | 1.1262     | 0.9563     | 0.026*     |
| C31        | 0.6797 (3)  | 1.0473 (3) | 0.8284 (3) | 0.0208 (7) |
| H31A       | 0.7520      | 1.0844     | 0.8812     | 0.025*     |
| C32        | 0.6637 (3)  | 0.9691 (3) | 0.7077 (3) | 0.0206 (7) |
| H32A       | 0.7247      | 0.9524     | 0.6776     | 0.025*     |
|            |             |            |            |            |

| C33  | 0.5574(3)    | 0.9145 (3)   | 0.6298 (3)   | 0.0177 (6) |
|------|--------------|--------------|--------------|------------|
| H33A | 0.5464       | 0.8610       | 0.5467       | 0.021*     |
| C34  | 0.3386(3)    | 0.7666 (3)   | 0.4312 (3)   | 0.0154 (6) |
| C35  | 0.3435 (3)   | 0.7995 (3)   | 0.3476 (3)   | 0.0205 (7) |
| H35A | 0.3372       | 0.8769       | 0.3657       | 0.025*     |
| C36  | 0.3575 (3)   | 0.7189 (3)   | 0.2381 (3)   | 0.0247 (7) |
| H36A | 0.3597       | 0.7410       | 0.1810       | 0.030*     |
| C37  | 0.3683 (3)   | 0.6067 (3)   | 0.2119 (3)   | 0.0220 (7) |
| H37A | 0.3790       | 0.5524       | 0.1374       | 0.026*     |
| C38  | 0.3635 (3)   | 0.5729 (3)   | 0.2941 (3)   | 0.0220 (7) |
| H38A | 0.3715       | 0.4960       | 0.2763       | 0.026*     |
| C39  | 0.3470(3)    | 0.6526 (3)   | 0.4026 (3)   | 0.0184 (7) |
| H39A | 0.3413       | 0.6288       | 0.4578       | 0.022*     |
| C11  | 0.15739 (10) | 0.41053 (9)  | 0.95175 (11) | 0.0451 (3) |
| C12  | 0.14677 (11) | 0.15846 (10) | 0.81701 (11) | 0.0455 (3) |
| C13  | -0.05265 (9) | 0.24127 (10) | 0.82114 (9)  | 0.0383 (2) |
| C40  | 0.0848 (3)   | 0.2721 (4)   | 0.8232 (4)   | 0.0305 (8) |
| H40A | 0.0863       | 0.2762       | 0.7511       | 0.037*     |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| Au1 | 0.01735 (9) | 0.01435 (8) | 0.01405 (8) | 0.00500 (5) | 0.00798 (6) | 0.00817 (6) |
| S1  | 0.0143 (4)  | 0.0222 (4)  | 0.0133 (3)  | 0.0047 (3)  | 0.0051(3)   | 0.0065(3)   |
| S2  | 0.0149 (4)  | 0.0209 (4)  | 0.0123 (3)  | 0.0050(3)   | 0.0044 (3)  | 0.0066(3)   |
| P1  | 0.0157 (4)  | 0.0147 (4)  | 0.0139 (4)  | 0.0043 (3)  | 0.0058 (3)  | 0.0080(3)   |
| P2  | 0.0156 (4)  | 0.0141 (4)  | 0.0136 (4)  | 0.0045 (3)  | 0.0063 (3)  | 0.0084(3)   |
| N1  | 0.0135 (14) | 0.0212 (14) | 0.0138 (13) | 0.0050 (11) | 0.0049 (10) | 0.0073 (11) |
| C1  | 0.0168 (16) | 0.0153 (15) | 0.0155 (15) | 0.0025 (12) | 0.0057 (12) | 0.0085 (13) |
| C2  | 0.0175 (17) | 0.0210 (16) | 0.0151 (16) | 0.0036 (13) | 0.0056 (13) | 0.0058 (14) |
| C3  | 0.0156 (17) | 0.0260 (17) | 0.0147 (15) | 0.0079 (13) | 0.0062 (12) | 0.0086 (14) |
| C4  | 0.0197 (17) | 0.0199 (16) | 0.0145 (15) | 0.0068 (13) | 0.0062 (13) | 0.0077 (13) |
| C5  | 0.0224 (18) | 0.0199 (16) | 0.0170 (16) | 0.0042 (13) | 0.0077 (13) | 0.0054 (14) |
| C6  | 0.0201 (19) | 0.0315 (19) | 0.0225 (18) | 0.0079 (15) | 0.0067 (14) | 0.0057 (16) |
| C7  | 0.028(2)    | 0.041 (2)   | 0.0168 (17) | 0.0185 (17) | 0.0045 (15) | 0.0091 (16) |
| C8  | 0.035(2)    | 0.043 (2)   | 0.0243 (19) | 0.0203 (18) | 0.0115 (16) | 0.0225 (18) |
| C9  | 0.027(2)    | 0.0289 (18) | 0.0237 (18) | 0.0109 (15) | 0.0102 (15) | 0.0175 (16) |
| C10 | 0.0218 (18) | 0.0128 (14) | 0.0159 (15) | 0.0054 (12) | 0.0090 (13) | 0.0080 (12) |
| C11 | 0.0209 (18) | 0.0190 (16) | 0.0211 (17) | 0.0069 (13) | 0.0052 (14) | 0.0105 (14) |
| C12 | 0.0243 (19) | 0.0223 (17) | 0.0285 (19) | 0.0087 (14) | 0.0117 (15) | 0.0124 (15) |
| C13 | 0.030(2)    | 0.0157 (15) | 0.0219 (17) | 0.0062 (14) | 0.0130 (15) | 0.0071 (14) |
| C14 | 0.0243 (19) | 0.0198 (16) | 0.0166 (16) | 0.0027 (14) | 0.0037 (13) | 0.0084 (14) |
| C15 | 0.0199 (18) | 0.0184 (16) | 0.0200 (16) | 0.0053 (13) | 0.0060 (13) | 0.0108 (14) |
| C16 | 0.0155 (17) | 0.0200 (16) | 0.0204 (16) | 0.0062 (13) | 0.0053 (12) | 0.0143 (14) |
| C17 | 0.0193 (18) | 0.0195 (16) | 0.0206 (16) | 0.0062 (13) | 0.0061 (13) | 0.0125 (14) |
| C18 | 0.0196 (18) | 0.0260 (18) | 0.0286 (19) | 0.0013 (14) | 0.0043 (14) | 0.0185 (16) |
| C19 | 0.0173 (18) | 0.037 (2)   | 0.0321 (19) | 0.0067 (15) | 0.0089 (14) | 0.0270 (17) |
| C20 | 0.026(2)    | 0.0334 (19) | 0.0237 (18) | 0.0115 (15) | 0.0123 (15) | 0.0189 (16) |
|     |             |             |             |             |             |             |

| C21                                                                                                                                                        | 0.0233 (18)    | 0.0206 (16)                                                                                                                                                                           | 0.0202 (16)                                                                                                   | 0.0052 (13)                                                                                                  | 0.0079 (13)                                                                                                  | 0.0122 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C22                                                                                                                                                        | 0.0216 (18)    | 0.0187 (15)                                                                                                                                                                           | 0.0169 (15)                                                                                                   | 0.0095 (13)                                                                                                  | 0.0105 (13)                                                                                                  | 0.0113 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C23                                                                                                                                                        | 0.0222 (18)    | 0.0218 (17)                                                                                                                                                                           | 0.0239 (17)                                                                                                   | 0.0069 (14)                                                                                                  | 0.0073 (14)                                                                                                  | 0.0132 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C24                                                                                                                                                        | 0.027(2)       | 0.032(2)                                                                                                                                                                              | 0.0281 (19)                                                                                                   | 0.0129 (16)                                                                                                  | 0.0090 (15)                                                                                                  | 0.0191 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C25                                                                                                                                                        | 0.032(2)       | 0.0299 (19)                                                                                                                                                                           | 0.0308 (19)                                                                                                   | 0.0190 (16)                                                                                                  | 0.0162 (16)                                                                                                  | 0.0216 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C26                                                                                                                                                        | 0.030(2)       | 0.0188 (16)                                                                                                                                                                           | 0.0276 (18)                                                                                                   | 0.0067 (14)                                                                                                  | 0.0125 (15)                                                                                                  | 0.0134 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C27                                                                                                                                                        | 0.0203 (18)    | 0.0218 (17)                                                                                                                                                                           | 0.0244 (17)                                                                                                   | 0.0077 (14)                                                                                                  | 0.0080 (14)                                                                                                  | 0.0142 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C28                                                                                                                                                        | 0.0176 (17)    | 0.0152 (14)                                                                                                                                                                           | 0.0173 (15)                                                                                                   | 0.0045 (12)                                                                                                  | 0.0047 (12)                                                                                                  | 0.0108 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C29                                                                                                                                                        | 0.0180 (17)    | 0.0222 (16)                                                                                                                                                                           | 0.0182 (16)                                                                                                   | 0.0062 (13)                                                                                                  | 0.0068 (13)                                                                                                  | 0.0114 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C30                                                                                                                                                        | 0.0228 (18)    | 0.0239 (17)                                                                                                                                                                           | 0.0165 (16)                                                                                                   | 0.0060 (14)                                                                                                  | 0.0044 (13)                                                                                                  | 0.0104 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C31                                                                                                                                                        | 0.0158 (17)    | 0.0238 (17)                                                                                                                                                                           | 0.0240 (17)                                                                                                   | 0.0056 (13)                                                                                                  | 0.0027 (13)                                                                                                  | 0.0143 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C32                                                                                                                                                        | 0.0203 (18)    | 0.0236 (17)                                                                                                                                                                           | 0.0252 (18)                                                                                                   | 0.0114 (14)                                                                                                  | 0.0110 (14)                                                                                                  | 0.0154 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C33                                                                                                                                                        | 0.0199 (17)    | 0.0192 (15)                                                                                                                                                                           | 0.0199 (16)                                                                                                   | 0.0070 (13)                                                                                                  | 0.0080 (13)                                                                                                  | 0.0132 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C34                                                                                                                                                        | 0.0129 (16)    | 0.0172 (15)                                                                                                                                                                           | 0.0152 (15)                                                                                                   | 0.0041 (12)                                                                                                  | 0.0048 (12)                                                                                                  | 0.0075 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C35                                                                                                                                                        | 0.0275 (19)    | 0.0193 (16)                                                                                                                                                                           | 0.0176 (16)                                                                                                   | 0.0062 (13)                                                                                                  | 0.0086 (14)                                                                                                  | 0.0109 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C36                                                                                                                                                        | 0.031(2)       | 0.0309 (19)                                                                                                                                                                           | 0.0186 (17)                                                                                                   | 0.0078 (15)                                                                                                  | 0.0111 (14)                                                                                                  | 0.0162 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C37                                                                                                                                                        | 0.0231 (18)    | 0.0237 (17)                                                                                                                                                                           | 0.0152 (16)                                                                                                   | 0.0053 (14)                                                                                                  | 0.0097 (13)                                                                                                  | 0.0059 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C38                                                                                                                                                        | 0.0239 (19)    | 0.0192 (16)                                                                                                                                                                           | 0.0224 (17)                                                                                                   | 0.0064 (13)                                                                                                  | 0.0102 (14)                                                                                                  | 0.0093 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C39                                                                                                                                                        | 0.0196 (17)    | 0.0208 (16)                                                                                                                                                                           | 0.0169 (15)                                                                                                   | 0.0051 (13)                                                                                                  | 0.0068 (13)                                                                                                  | 0.0109 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C11                                                                                                                                                        | 0.0397 (6)     | 0.0299 (5)                                                                                                                                                                            | 0.0451 (6)                                                                                                    | -0.0012 (4)                                                                                                  | 0.0001 (5)                                                                                                   | 0.0112 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C12                                                                                                                                                        | 0.0608 (7)     | 0.0342 (5)                                                                                                                                                                            | 0.0547 (7)                                                                                                    | 0.0180 (5)                                                                                                   | 0.0278 (6)                                                                                                   | 0.0276 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C13                                                                                                                                                        | 0.0355 (5)     | 0.0420 (5)                                                                                                                                                                            | 0.0346 (5)                                                                                                    | -0.0020 (4)                                                                                                  | 0.0028 (4)                                                                                                   | 0.0230 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C40                                                                                                                                                        | 0.035 (2)      | 0.030(2)                                                                                                                                                                              | 0.0264 (19)                                                                                                   | 0.0009 (16)                                                                                                  | 0.0048 (16)                                                                                                  | 0.0183 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                            | ,              | . ,                                                                                                                                                                                   | ,                                                                                                             |                                                                                                              | ,                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <i>C</i>                                                                                                                                                   | ( 8 0)         |                                                                                                                                                                                       |                                                                                                               |                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geometric par                                                                                                                                              | ameters (A, °) |                                                                                                                                                                                       |                                                                                                               |                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Au1—P2                                                                                                                                                     |                | 2.2994(8)                                                                                                                                                                             | C17—                                                                                                          | U17A                                                                                                         | 0.95                                                                                                         | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A., 1 D1                                                                                                                                                   |                | ( )                                                                                                                                                                                   | 017                                                                                                           | -п1/А                                                                                                        | 0.93                                                                                                         | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Au1—P1                                                                                                                                                     |                | 2.3233 (8)                                                                                                                                                                            | C18—                                                                                                          |                                                                                                              |                                                                                                              | 88 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Au1—S2                                                                                                                                                     |                |                                                                                                                                                                                       | C18—                                                                                                          |                                                                                                              |                                                                                                              | 88 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                            |                | 2.3233 (8)                                                                                                                                                                            | C18—                                                                                                          | -C19<br>-H18A                                                                                                | 1.38<br>0.95                                                                                                 | 88 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Au1—S2                                                                                                                                                     |                | 2.3233 (8)<br>2.6133 (8)                                                                                                                                                              | C18—<br>C18—<br>C19—                                                                                          | -C19<br>-H18A                                                                                                | 1.38<br>0.95                                                                                                 | 88 (6)<br>600<br>84 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Au1—S2<br>Au1—S1                                                                                                                                           |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)                                                                                                                                                | C18—<br>C18—<br>C19—                                                                                          | -C19<br>-H18A<br>-C20<br>-H19A                                                                               | 1.38<br>0.95<br>1.38<br>0.95                                                                                 | 88 (6)<br>600<br>84 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Au1—S2<br>Au1—S1<br>S1—C1                                                                                                                                  |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)                                                                                                                                   | C18—<br>C18—<br>C19—<br>C19—<br>C20—                                                                          | -C19<br>-H18A<br>-C20<br>-H19A                                                                               | 1.38<br>0.95<br>1.38<br>0.95                                                                                 | 88 (6)<br>600<br>64 (5)<br>600<br>83 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Au1—S2<br>Au1—S1<br>S1—C1<br>S2—C1                                                                                                                         |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)                                                                                                                      | C18—<br>C18—<br>C19—<br>C19—<br>C20—<br>C20—                                                                  | -C19<br>-H18A<br>-C20<br>-H19A<br>-C21                                                                       | 1.38<br>0.95<br>1.38<br>0.95<br>1.38                                                                         | 8 (6)<br>600<br>64 (5)<br>600<br>63 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Au1—S2<br>Au1—S1<br>S1—C1<br>S2—C1<br>P1—C10                                                                                                               |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)<br>1.818 (3)                                                                                                         | C18—<br>C18—<br>C19—<br>C19—<br>C20—<br>C20—                                                                  | -C19<br>-H18A<br>-C20<br>-H19A<br>-C21<br>-H20A<br>-H21A                                                     | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>0.95                                                         | 8 (6)<br>600<br>64 (5)<br>600<br>63 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Au1—S2<br>Au1—S1<br>S1—C1<br>S2—C1<br>P1—C10<br>P1—C4                                                                                                      |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)<br>1.818 (3)<br>1.823 (4)                                                                                            | C18—<br>C18—<br>C19—<br>C19—<br>C20—<br>C20—<br>C21—                                                          | -C19<br>-H18A<br>-C20<br>-H19A<br>-C21<br>-H20A<br>-H21A                                                     | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>0.95                                                         | 8 (6)<br>000<br>44 (5)<br>000<br>33 (5)<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Au1—S2<br>Au1—S1<br>S1—C1<br>S2—C1<br>P1—C10<br>P1—C4<br>P1—C16                                                                                            |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)<br>1.818 (3)<br>1.823 (4)<br>1.825 (3)                                                                               | C18—<br>C19—<br>C19—<br>C20—<br>C20—<br>C21—<br>C22—                                                          | -C19<br>-H18A<br>-C20<br>-H19A<br>-C21<br>-H20A<br>-H21A<br>-C23<br>-C27                                     | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>0.95<br>1.38<br>1.39                                         | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34                                                                                                       |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)<br>1.818 (3)<br>1.823 (4)<br>1.825 (3)<br>1.822 (3)                                                                  | C18— C19— C19— C20— C20— C21— C22— C22— C22— C22—                                                             | -C19<br>-H18A<br>-C20<br>-H19A<br>-C21<br>-H20A<br>-H21A<br>-C23<br>-C27                                     | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>0.95<br>1.38<br>1.39                                         | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>68 (5)<br>63 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28                                                                                                |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)<br>1.818 (3)<br>1.823 (4)<br>1.825 (3)<br>1.822 (3)<br>1.823 (3)                                                     | C18— C19— C19— C20— C20— C21— C22— C22— C22— C22—                                                             | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A                                                  | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>0.95<br>1.38<br>1.39<br>0.95                                 | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>68 (5)<br>63 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1                                                                                   |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)<br>1.818 (3)<br>1.823 (4)<br>1.825 (3)<br>1.822 (3)<br>1.823 (3)<br>1.829 (3)<br>1.354 (4)                           | C18— C18— C19— C19— C20— C20— C21— C22— C22— C23— C23— C24—                                                   | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25                                             | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>0.95<br>1.38<br>1.39<br>0.95                                 | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>68 (5)<br>63 (5)<br>600<br>62 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup>                                                                |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.823 (3) 1.829 (3) 1.354 (4) 1.454 (4)                                                  | C18— C18— C19— C19— C20— C20— C21— C22— C22— C23— C23— C24— C24—                                              | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25                                             | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>1.39<br>1.39<br>0.95<br>1.38                                 | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>88 (5)<br>63 (5)<br>600<br>62 (6)<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2                                                          |                | 2.3233 (8)<br>2.6133 (8)<br>2.7414 (8)<br>1.706 (3)<br>1.718 (3)<br>1.818 (3)<br>1.823 (4)<br>1.825 (3)<br>1.822 (3)<br>1.823 (3)<br>1.829 (3)<br>1.354 (4)<br>1.454 (4)<br>1.460 (4) | C18— C19— C19— C20— C20— C21— C22— C22— C23— C23— C24— C24— C25—                                              | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A                                       | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>1.39<br>0.95<br>1.38                                 | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>88 (5)<br>63 (5)<br>600<br>62 (6)<br>600<br>62 (6)<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2 C2—C3                                                    |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.823 (3) 1.829 (3) 1.354 (4) 1.454 (4) 1.460 (4) 1.524 (5)                              | C18— C18— C19— C19— C20— C20— C21— C22— C22— C23— C23— C24— C24— C25— C25—                                    | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A -C26 -H25A                            | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>1.39<br>0.95<br>1.38<br>0.95                         | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>88 (5)<br>63 (5)<br>600<br>62 (6)<br>600<br>69 (6)<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2 C2—C3 C2—H2AB                                            |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.829 (3) 1.354 (4) 1.454 (4) 1.460 (4) 1.524 (5) 0.9900                                 | C18— C18— C19— C19— C20— C20— C21— C22— C22— C23— C24— C24— C25— C25— C25— C26—                               | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A -C26 -H25A                            | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>1.39<br>1.39<br>0.95<br>1.38<br>0.95<br>1.38                 | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>68 (5)<br>68 (5)<br>63 (5)<br>600<br>62 (6)<br>600<br>69 (6)<br>600<br>77 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2 C2—C3 C2—H2AB C2—H2AA                                    |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.829 (3) 1.354 (4) 1.454 (4) 1.460 (4) 1.524 (5) 0.9900 0.9900                          | C18— C19— C19— C20— C20— C21— C22— C23— C23— C24— C24— C25— C25— C26— C26—                                    | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A -C26 -H25A -C27 -H26A                 | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>1.39<br>0.95<br>1.38<br>0.95<br>1.38                 | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>68 (5)<br>63 (5)<br>600<br>62 (6)<br>600<br>69 (6)<br>600<br>77 (5)<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2 C2—C3 C2—H2AB C2—H2AA C3—N1 <sup>i</sup>                 |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.829 (3) 1.354 (4) 1.454 (4) 1.460 (4) 1.524 (5) 0.9900 0.9900 1.454 (4)                | C18— C18— C19— C19— C20— C20— C21— C22— C22— C23— C23— C24— C25— C25— C26— C26— C26— C26—                     | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A -C26 -H25A -C27 -H26A -H27A           | 1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>1.38<br>1.39<br>0.95<br>1.38<br>0.95<br>1.38<br>0.95<br>1.39 | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>68 (5)<br>63 (5)<br>600<br>62 (6)<br>600<br>69 (6)<br>600<br>77 (5)<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2 C2—C3 C2—H2AB C2—H2AA C3—N1 <sup>i</sup> C3—H3AA         |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.829 (3) 1.354 (4) 1.454 (4) 1.524 (5) 0.9900 0.9900 1.454 (4) 0.9900                   | C18— C18— C19— C19— C20— C20— C21— C22— C22— C23— C24— C24— C25— C25— C26— C26— C26— C27— C28—                | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A -C26 -H25A -C27 -H26A -H27A           | 1.38 0.95 1.38 0.95 1.38 0.95 1.38 1.39 1.39 1.39 0.95 1.38 0.95 1.38 0.95 1.39 0.95 1.39 0.95               | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>88 (5)<br>63 (5)<br>600<br>62 (6)<br>600<br>69 (6)<br>600<br>67 (5)<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2 C2—C3 C2—H2AB C2—H2AA C3—N1 <sup>i</sup> C3—H3AA C3—H3AB |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.829 (3) 1.354 (4) 1.454 (4) 1.460 (4) 1.524 (5) 0.9900 0.9900 1.454 (4) 0.9900 0.9900  | C18— C18— C19— C19— C20— C20— C21— C22— C23— C23— C24— C24— C25— C25— C26— C26— C26— C27— C28— C28—           | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A -C26 -H25A -C27 -H26A -H27A -C33 -C29 | 1.38 0.95 1.38 0.95 1.38 0.95 0.95 1.38 1.39 1.39 0.95 1.38 0.95 1.38 0.95 1.38 0.95 1.39 1.40               | 88 (6)<br>600<br>64 (5)<br>600<br>63 (5)<br>600<br>66 (5)<br>88 (5)<br>63 (5)<br>600<br>62 (6)<br>600<br>77 (5)<br>600<br>72 (5)<br>73 (5)<br>74 (5)<br>75 (5)<br>76 (6)<br>77 (5)<br>77 (5)<br>78 (6)<br>79 (6)<br>70 (6)<br>70 (7)<br>70 (7)<br>71 (7)<br>72 (7)<br>73 (7)<br>74 (7)<br>75 (7)<br>76 (7)<br>77 (7)<br>77 (7)<br>78 (7) |
| Au1—S2 Au1—S1 S1—C1 S2—C1 P1—C10 P1—C4 P1—C16 P2—C34 P2—C28 P2—C22 N1—C1 N1—C3 <sup>i</sup> N1—C2 C2—C3 C2—H2AB C2—H2AA C3—N1 <sup>i</sup> C3—H3AA         |                | 2.3233 (8) 2.6133 (8) 2.7414 (8) 1.706 (3) 1.718 (3) 1.818 (3) 1.823 (4) 1.825 (3) 1.822 (3) 1.829 (3) 1.354 (4) 1.454 (4) 1.524 (5) 0.9900 0.9900 1.454 (4) 0.9900                   | C18— C18— C19— C19— C20— C20— C21— C22— C22— C23— C23— C24— C25— C25— C26— C26— C26— C26— C27— C28— C28— C29— | -C19 -H18A -C20 -H19A -C21 -H20A -H21A -C23 -C27 -C24 -H23A -C25 -H24A -C26 -H25A -C27 -H26A -H27A -C33 -C29 | 1.38 0.95 1.38 0.95 1.38 0.95 0.95 1.38 1.39 1.39 0.95 1.38 0.95 1.38 0.95 1.38 0.95 1.39 1.40               | 88 (6)<br>600<br>64 (5)<br>600<br>66 (5)<br>68 (5)<br>68 (5)<br>63 (5)<br>600<br>69 (6)<br>600<br>77 (5)<br>600<br>72 (5)<br>600<br>72 (5)<br>73 (5)<br>74 (5)<br>75 (5)<br>76 (6)<br>77 (5)<br>77 (5)<br>78 (7)<br>78 (7) |

| C5—C6                  | 1.392 (5)   | C30—C31      | 1.387 (5) |
|------------------------|-------------|--------------|-----------|
| C5—H5AA                | 0.9500      | C30—H30A     | 0.9500    |
| C6—C7                  | 1.378 (6)   | C31—C32      | 1.381 (5) |
| С6—Н6АА                | 0.9500      | C31—H31A     | 0.9500    |
| C7—C8                  | 1.386 (6)   | C32—C33      | 1.397 (5) |
| С7—Н7АА                | 0.9500      | C32—H32A     | 0.9500    |
| C8—C9                  | 1.380 (5)   | C33—H33A     | 0.9500    |
| С8—Н8АА                | 0.9500      | C34—C39      | 1.390 (5) |
| С9—Н9АА                | 0.9500      | C34—C35      | 1.400 (5) |
| C10—C11                | 1.381 (5)   | C35—C36      | 1.390 (5) |
| C10—C15                | 1.403 (5)   | C35—H35A     | 0.9500    |
| C11—C12                | 1.402 (5)   | C36—C37      | 1.383 (5) |
| C11—H11A               | 0.9500      | C36—H36A     | 0.9500    |
| C12—C13                | 1.382 (5)   | C37—C38      | 1.389 (5) |
| C12—H12A               | 0.9500      | C37—H37A     | 0.9500    |
| C13—C14                | 1.378 (5)   | C38—C39      | 1.392 (5) |
| C13—H13A               | 0.9500      | C38—H38A     | 0.9500    |
| C14—C15                | 1.390 (5)   | C39—H39A     | 0.9500    |
| C14—H14A               | 0.9500      | Cl1—C40      | 1.758 (4) |
| C15—H15A               | 0.9500      | C12—C40      | 1.754 (4) |
| C16—C17                | 1.386 (5)   | Cl3—C40      | 1.762 (4) |
| C16—C21                | 1.402 (5)   | C40—H40A     | 1.0000    |
| C17—C18                | 1.398 (5)   |              |           |
| P2—Au1—P1              | 134.65 (3)  | C21—C16—P1   | 116.5 (3) |
| P2—Au1—S2              | 116.81 (3)  | C16—C17—C18  | 120.1 (3) |
| P1—Au1—S2              | 107.10 (3)  | C16—C17—H17A | 120.0     |
| P2—Au1—S1              | 107.34 (3)  | C18—C17—H17A | 120.0     |
| P1—Au1—S1              | 99.39 (3)   | C19—C18—C17  | 120.2 (3) |
| S2—Au1—S1              | 67.03 (2)   | C19—C18—H18A | 119.9     |
| C1—S1—Au1              | 84.64 (11)  | C17—C18—H18A | 119.9     |
| C1—S2—Au1              | 88.55 (12)  | C20—C19—C18  | 119.6 (3) |
| C10—P1—C4              | 103.04 (16) | C20—C19—H19A | 120.2     |
| C10—P1—C16             | 106.19 (15) | C18—C19—H19A | 120.2     |
| C4—P1—C16              | 103.85 (15) | C21—C20—C19  | 120.6 (3) |
| C10—P1—Au1             | 113.94 (10) | C21—C20—H20A | 119.7     |
| C4—P1—Au1              | 112.18 (11) | C19—C20—H20A | 119.7     |
| C16—P1—Au1             | 116.33 (11) | C20—C21—C16  | 120.1 (3) |
| C34—P2—C28             | 104.10 (15) | C20—C21—H21A | 120.0     |
| C34—P2—C22             | 104.72 (15) | C16—C21—H21A | 120.0     |
| C28—P2—C22             | 103.69 (15) | C23—C22—C27  | 119.1 (3) |
| C34—P2—Au1             | 113.39 (11) | C23—C22—P2   | 118.6 (3) |
| C28—P2—Au1             | 109.59 (10) | C27—C22—P2   | 122.3 (3) |
| C22—P2—Au1             | 119.85 (11) | C22—C23—C24  | 120.6 (3) |
| C1—N1—C3 <sup>i</sup>  | 123.8 (3)   | C22—C23—H23A | 119.7     |
| C1—N1—C2               | 122.7 (3)   | C24—C23—H23A | 119.7     |
| C3 <sup>i</sup> —N1—C2 | 113.0 (3)   | C25—C24—C23  | 120.2 (4) |
| N1—C1—S1               | 120.2 (2)   | C25—C24—H24A | 119.9     |
| N1—C1—S2               | 120.3 (3)   | C23—C24—H24A | 119.9     |
|                        |             |              |           |

| S1—C1—S2                 | 119.56 (19) | C24—C25—C26  | 119.9 (3) |
|--------------------------|-------------|--------------|-----------|
| N1—C2—C3                 | 110.7 (3)   | C24—C25—H25A | 120.1     |
| N1—C2—H2AB               | 109.5       | C26—C25—H25A | 120.1     |
| C3—C2—H2AB               | 109.5       | C25—C26—C27  | 119.9 (3) |
| N1—C2—H2AA               | 109.5       | C25—C26—H26A | 120.0     |
| C3—C2—H2AA               | 109.5       | C27—C26—H26A | 120.0     |
| Н2АВ—С2—Н2АА             | 108.1       | C26—C27—C22  | 120.2 (3) |
| N1 <sup>i</sup> —C3—C2   | 110.2 (3)   | C26—C27—H27A | 119.9     |
| N1 <sup>i</sup> —C3—H3AA | 109.6       | C22—C27—H27A | 119.9     |
| C2—C3—H3AA               | 109.6       | C33—C28—C29  | 119.1 (3) |
| N1 <sup>i</sup> —C3—H3AB | 109.6       | C33—C28—P2   | 123.2 (3) |
| C2—C3—H3AB               | 109.6       | C29—C28—P2   | 117.7 (3) |
| НЗАА—СЗ—НЗАВ             | 108.1       | C30—C29—C28  | 120.4 (3) |
| C5—C4—C9                 | 119.1 (3)   | C30—C29—H29A | 119.8     |
| C5—C4—P1                 | 119.3 (3)   | C28—C29—H29A | 119.8     |
| C9—C4—P1                 | 121.6 (3)   | C29—C30—C31  | 119.9 (3) |
| C6—C5—C4                 | 120.2 (3)   | C29—C30—H30A | 120.0     |
| C6—C5—H5AA               | 119.9       | C31—C30—H30A | 120.0     |
| C4—C5—H5AA               | 119.9       | C32—C31—C30  | 120.5 (3) |
| C7—C6—C5                 | 120.2 (4)   | C32—C31—H31A | 119.8     |
| C7—C6—H6AA               | 119.9       | C30—C31—H31A | 119.8     |
| C5—C6—H6AA               | 119.9       | C31—C32—C33  | 119.9 (3) |
| C6—C7—C8                 | 120.0 (4)   | C31—C32—H32A | 120.0     |
| C6—C7—H7AA               | 120.0       | C33—C32—H32A | 120.0     |
| C8—C7—H7AA               | 120.0       | C28—C33—C32  | 120.2 (3) |
| C9—C8—C7                 | 120.5 (4)   | C28—C33—H33A | 119.9     |
| C9—C8—H8AA               | 119.8       | C32—C33—H33A | 119.9     |
| C7—C8—H8AA               | 119.8       | C39—C34—C35  | 119.2 (3) |
| C8—C9—C4                 | 119.9 (4)   | C39—C34—P2   | 118.2 (2) |
| C8—C9—H9AA               | 120.0       | C35—C34—P2   | 122.6 (2) |
| C4—C9—H9AA               | 120.0       | C36—C35—C34  | 120.0(3)  |
| C11—C10—C15              | 119.0 (3)   | C36—C35—H35A | 120.0     |
| C11—C10—P1               | 122.6 (3)   | C34—C35—H35A | 120.0     |
| C15—C10—P1               | 118.0 (3)   | C37—C36—C35  | 120.2 (3) |
| C10—C11—C12              | 120.6 (3)   | C37—C36—H36A | 119.9     |
| C10—C11—H11A             | 119.7       | C35—C36—H36A | 119.9     |
| C12—C11—H11A             | 119.7       | C36—C37—C38  | 120.3 (3) |
| C13—C12—C11              | 119.8 (3)   | C36—C37—H37A | 119.8     |
| C13—C12—H12A             | 120.1       | C38—C37—H37A | 119.8     |
| C11—C12—H12A             | 120.1       | C37—C38—C39  | 119.5 (3) |
| C14—C13—C12              | 120.1 (3)   | C37—C38—H38A | 120.2     |
| C14—C13—H13A             | 120.0       | C39—C38—H38A | 120.2     |
| C12—C13—H13A             | 120.0       | C34—C39—C38  | 120.7 (3) |
| C13—C14—C15              | 120.4 (3)   | C34—C39—H39A | 119.6     |
| C13—C14—H14A             | 119.8       | C38—C39—H39A | 119.6     |
| C15—C14—H14A             | 119.8       | C12—C40—C11  | 110.6 (2) |
| C14—C15—C10              | 120.1 (3)   | C12—C40—C13  | 110.7 (2) |
| C14—C15—H15A             | 120.0       | C11—C40—C13  | 110.3 (2) |
|                          |             |              | . /       |

| C10—C15—H15A              | 120.0        | Cl2—C40—H40A    | 108.4      |
|---------------------------|--------------|-----------------|------------|
| C17—C16—C21               | 119.4 (3)    | C11—C40—H40A    | 108.4      |
| C17—C16—P1                | 124.1 (3)    | Cl3—C40—H40A    | 108.4      |
| P2—Au1—S1—C1              | 115.18 (11)  | C13—C14—C15—C10 | -0.8(5)    |
| P1—Au1—S1—C1              | -101.89 (11) | C11—C10—C15—C14 | 0.7 (5)    |
| S2—Au1—S1—C1              | 2.79 (11)    | P1—C10—C15—C14  | 173.9 (3)  |
| P2—Au1—S2—C1              | -101.30 (11) | C10—P1—C16—C17  | -7.7 (3)   |
| P1—Au1—S2—C1              | 90.39 (11)   | C4—P1—C16—C17   | -116.0 (3) |
| S1—Au1—S2—C1              | -2.76 (11)   | Au1—P1—C16—C17  | 120.2 (3)  |
| P2—Au1—P1—C10             | -40.63 (13)  | C10—P1—C16—C21  | 174.0 (3)  |
| S2—Au1—P1—C10             | 124.64 (13)  | C4—P1—C16—C21   | 65.7 (3)   |
| S1—Au1—P1—C10             | -166.64 (13) | Au1—P1—C16—C21  | -58.0(3)   |
| P2—Au1—P1—C4              | 75.96 (12)   | C21—C16—C17—C18 | -0.4(5)    |
| S2—Au1—P1—C4              | -118.77 (12) | P1—C16—C17—C18  | -178.6(3)  |
| S1—Au1—P1—C4              | -50.05 (12)  | C16—C17—C18—C19 | -0.6(5)    |
| P2—Au1—P1—C16             | -164.70 (12) | C17—C18—C19—C20 | 0.4(5)     |
| S2—Au1—P1—C16             | 0.57 (13)    | C18—C19—C20—C21 | 0.7 (5)    |
| S1—Au1—P1—C16             | 69.29 (13)   | C19—C20—C21—C16 | -1.7(5)    |
| P1—Au1—P2—C34             | 48.64 (13)   | C17—C16—C21—C20 | 1.6 (5)    |
| S2—Au1—P2—C34             | -115.56 (12) | P1—C16—C21—C20  | 179.9 (3)  |
| S1—Au1—P2—C34             | 171.92 (12)  | C34—P2—C22—C23  | 74.3 (3)   |
| P1—Au1—P2—C28             | -67.20 (12)  | C28—P2—C22—C23  | -176.8(3)  |
| S2—Au1—P2—C28             | 128.61 (11)  | Au1—P2—C22—C23  | -54.3 (3)  |
| S1—Au1—P2—C28             | 56.08 (11)   | C34—P2—C22—C27  | -105.8(3)  |
| P1—Au1—P2—C22             | 173.21 (13)  | C28—P2—C22—C27  | 3.1 (3)    |
| S2—Au1—P2—C22             | 9.01 (13)    | Au1—P2—C22—C27  | 125.6 (3)  |
| S1—Au1—P2—C22             | -63.52 (13)  | C27—C22—C23—C24 | 2.8 (5)    |
| C3 <sup>i</sup> —N1—C1—S1 | 178.5 (2)    | P2—C22—C23—C24  | -177.3 (3) |
| C2—N1—C1—S1               | 6.3 (4)      | C22—C23—C24—C25 | -2.4(6)    |
| C3 <sup>i</sup> —N1—C1—S2 | -2.2 (4)     | C23—C24—C25—C26 | 0.1 (6)    |
| C2—N1—C1—S2               | -174.4 (2)   | C24—C25—C26—C27 | 1.8 (5)    |
| Au1—S1—C1—N1              | 174.8 (3)    | C25—C26—C27—C22 | -1.5(5)    |
| Au1—S1—C1—S2              | -4.50 (17)   | C23—C22—C27—C26 | -0.8(5)    |
| Au1—S2—C1—N1              | -174.6 (3)   | P2—C22—C27—C26  | 179.3 (3)  |
| Au1—S2—C1—S1              | 4.70 (18)    | C34—P2—C28—C33  | 2.9(3)     |
| C1—N1—C2—C3               | -131.2 (3)   | C22—P2—C28—C33  | -106.4(3)  |
| C3 <sup>i</sup> —N1—C2—C3 | 55.8 (4)     | Au1—P2—C28—C33  | 124.5 (2)  |
| N1—C2—C3—N1 <sup>i</sup>  | -54.2 (4)    | C34—P2—C28—C29  | -175.9 (2) |
| C10—P1—C4—C5              | 92.7 (3)     | C22—P2—C28—C29  | 74.8 (3)   |
| C16—P1—C4—C5              | -156.7 (3)   | Au1—P2—C28—C29  | -54.3 (3)  |
| Au1—P1—C4—C5              | -30.2 (3)    | C33—C28—C29—C30 | 0.5 (5)    |
| C10—P1—C4—C9              | -85.0 (3)    | P2—C28—C29—C30  | 179.4 (3)  |
| C16—P1—C4—C9              | 25.6 (3)     | C28—C29—C30—C31 | -0.6(5)    |
| Au1—P1—C4—C9              | 152.0 (3)    | C29—C30—C31—C32 | 0.3 (5)    |
| C9—C4—C5—C6               | 0.6 (5)      | C30—C31—C32—C33 | 0.1 (5)    |
| P1—C4—C5—C6               | -177.2 (3)   | C29—C28—C33—C32 | -0.1(5)    |
| C4—C5—C6—C7               | -0.7(5)      | P2—C28—C33—C32  | -178.9 (2) |
| C5—C6—C7—C8               | 0.1 (6)      | C31—C32—C33—C28 | -0.2(5)    |
|                           |              |                 |            |

| C6—C7—C8—C9                                  | 0.6 (6)    | C28—P2—C34—C39  | 86.8 (3)  |
|----------------------------------------------|------------|-----------------|-----------|
|                                              | * /        | C26—1 2—C34—C39 | ` '       |
| C7—C8—C9—C4                                  | -0.6(6)    | C22—P2—C34—C39  | -164.7(3) |
| C5—C4—C9—C8                                  | 0.0 (5)    | Au1—P2—C34—C39  | -32.3(3)  |
| P1—C4—C9—C8                                  | 177.8 (3)  | C28—P2—C34—C35  | -91.1 (3) |
| C4—P1—C10—C11                                | -8.8 (3)   | C22—P2—C34—C35  | 17.5 (3)  |
| C16—P1—C10—C11                               | -117.7 (3) | Au1—P2—C34—C35  | 149.9 (3) |
| Au1—P1—C10—C11                               | 113.0 (3)  | C39—C34—C35—C36 | -0.6(5)   |
| C4—P1—C10—C15                                | 178.2 (3)  | P2—C34—C35—C36  | 177.2 (3) |
| C16—P1—C10—C15                               | 69.4 (3)   | C34—C35—C36—C37 | -0.9(6)   |
| Au1—P1—C10—C15                               | -60.0 (3)  | C35—C36—C37—C38 | 1.0(6)    |
| C15—C10—C11—C12                              | 0.0 (5)    | C36—C37—C38—C39 | 0.5 (6)   |
| P1—C10—C11—C12                               | -172.9 (3) | C35—C34—C39—C38 | 2.1 (5)   |
| C10—C11—C12—C13                              | -0.5 (5)   | P2—C34—C39—C38  | -175.8(3) |
| C11—C12—C13—C14                              | 0.3 (5)    | C37—C38—C39—C34 | -2.0(5)   |
| C12—C13—C14—C15                              | 0.3 (5)    |                 |           |
| Symmetry codes: (i) $-x$ , $-y+2$ , $-z+2$ . |            |                 |           |

Fig. 1

