on Computational RFIDs with Energy-Aware Checkpointing and Voltage-Aware Scheduling

Benjamin Ransford, Shane Clark, Mastooreh Salajegheh, Kevin Fu

Department of Computer Science University of Massachusetts Amherst

Scenario: RFID Sensor Network

- Maintenance-free
- Batteryless nodes
- RF power harvesting

 Try to do public-key crypto.

Scenario: RFID Sensor Network

- Maintenance-free
- Batteryless nodes
- RF power harvesting

 Try to do public-key crypto.

Photos: Impinj, M. W. Moss Ltd., reinforcedearth.com

HotPower '08 — Ben Ransford — 2

Scenario: RFID Sensor Network

- Maintenance-free
- Batteryless nodes
- RF power harvesting

 Try to do public-key crypto.

Photos: Impinj, M. W. Moss Ltd., reinforcedearth.com

HotPower '08 - Ben Ransford - 2

The next 15 minutes

- 1. Batteryless computing with computational RFID (CRFID)
- 2. Obstacles to computing on harvested energy
 - Fluctuating supply, power loss
- 3. Mementos: s/w for getting things done
 - Checkpointing, program reordering

Batteries constrain design.

Big & heavy relative to circuits.

Must be replaced or recharged.

Energy density *slooooowly* increasing. (1991: 204 Wh/I ... 2005: 514 Wh/I)

How can we do useful computation without a battery?

How can we do useful computation without a battery?

Focus on energy harvesting.

Perils of RF harvesting

- Devices become dependent on energy supply
- Unpredictable supply
- Fluctuating voltage
- Frequent loss of power/state

Today's batteryless computers

must finish in one energy lifecycle

non-programmable circuitry

Computational RFID

(new term)

- Modern ultra-low-power (1.5µA sleep, 600µA active) programmable microcontroller
- von Neumann architecture
- RAM, flash memory

No battery... **RF harvesting.**

Computational RFID

(new term)

- Modern ultra-low-power (1.5μA sleep, 600μA active) programmable microcontroller
- von Neumann architecture
- RAM, flash memory

No battery... **RF harvesting.**

RFID:

Reader

Computational RFID:

RFID:

Reader

Computational RFID:

Reader

Power + Query

Ox1234CAFE

Results of

computation or sensing

Perils of RF harvesting

- Devices become dependent on energy supply
- Unpredictable supply
- Fluctuating voltage
- Frequent loss of power/state

Perils of RF harvesting

- Devices become dependent on energy supply
- Unpredictable supply
- Fluctuating voltage
- Frequent loss of power/state

We can address these.

Getting things done

Major goal: help programs on CRFIDs make forward progress despite fluctuating voltage and constant interruption.

Our system: Mementos

Designed to aid forward progress.

- Execution checkpointing (suspend, resume)
- Program reordering

Our system: Mementos

Designed to aid forward progress.

- Frequent loss of power/state
 Execution checkpointing (suspend, resume)
- Program reordering

Our system: Mementos

Designed to aid forward progress.

- Frequent loss of power/state
 Execution checkpointing (suspend, resume)
- Program reordering
 - Fluctuating voltage

CheckpointingFrequent loss of power/state

- Idea: save state to flash before dying
- Problem: flash writes consume significant energy when it's least available.
 - Flash vs. register: 400x more energy
 - Flash vs. memory: 40x more energy

Checkpointing

- Compile time static analysis:
 - Compute per-block energy estimates
- Run time:
 - CRFID checks own voltage
 - Dynamic checkpointing decision

Energy estimation

at compile time

Instr.	Dest.	Src.	Energy/Instr. (nJ)
NOP	_		2.0
		reg	1.1
MOV	reg	flash	5.2
		mem	6.3
		reg	8.1
MOV	mem	flash	11.8
		mem	11.7
MOV		reg	461.0
	flash	flash	350.3
		mem	1126.2

label1:
MOV R11, R12 1 nJ
ADD R12, R8 1 nJ
(Flash write) 461 nJ
JMP label2 --

Platform-specific energy profile

Annotated instruction stream

e.g.: modexp

- Halve 32-bit exponent, square 32-bit base
 - No checkpointing: dies before finishing

e.g.: modexp

- Halve 32-bit exponent, square 32-bit base
 - No checkpointing: dies before finishing

e.g.: modexp

- Halve 32-bit exponent, square 32-bit base
 - No checkpointing: dies before finishing
 - Checkpoint halfway through:
 - Save base, exp., accumulated result after 15 iterations; die before finishing
 - Restore from checkpoint; 17 more iterations; complete.

Program reordering • Fluctuating voltage

- Observations:
 - Some operations require higher voltage
 - Voltage tends to decline during each device lifecycle

 Microcontrollers don't like continuously varying voltage (PLL logic limitations)

Program reordering

- Static analysis at compile time
 - Estimate energy requirements
 - Derive dependency graph
- Must not violate program semantics!

Program reordering

 Voltage declines: reorder independent code chunks at compile time to execute high-V ops when voltage is high

Program reordering

 Smaller timescale: adaptively reschedule program chunks at run time to avoid logjams

Challenges

- Predicting program behavior is hard.
- Balance checkpointing behavior:
 - How much state to save
 - How often to checkpoint
- Program reordering:
 - Finding dependencies can be hard

Physical barriers

- Can't harvest RF energy at arbitrary distances (current prototypes: ≤ 10 m)
- Diode drop limits energy harvesting

CRFID applications

- Medical implants [Oakland '08]
- RFID Sensor Networks [HotNets '08]

Computation in inaccessible locations.
 fragile
 hazardous

Future developments

- Our work:
 - Fully implement checkpointing, reordering
 - Device profiling
- CRFIDs:

Intel Looks To Blanket The World With Self-Powered Sensors

By Antone Gonsalves
InformationWeek

 Intel Research competition (Google intel wisp challenge) December 5, 2008 05:37 PM

Summary

- Computational RFIDs: general-purpose batteryless computers
- Mementos for forward progress
 - Checkpointing to cope with constant power interruptions
 - Program reordering to cope with fluctuating voltage

Applications? Challenges? Alternatives?

ransford@cs.umass.edu