DocuQuest: Optimizing Large Language Model

Inference with a Hybrid Cloud-Edge System for

Document Summarization

Motivation

• Large Language Models (LLMs) excel in tasks like summarization and question-answering but are resource-intensive and challenging to deploy due to high latency and memory usage.

 A hybrid system combining local and cloud LLMs offers a balanced solution by dynamically assigning tasks based on complexity, optimizing latency, memory utilization, and performance.

System Design

Low Level Design (/summarize)

Low Level Design (/ask)

Decision Module

 Objective: Efficiently allocate tasks to either the local or cloud LLM based on complexity to optimize resource usage

System Health Evaluation

- Check CPU Usage and Available memory
- If not sufficient, routes to cloud

Document Complexity Prediction

- Calculates document complexity based on metrics like type-token ratio, average sentence length, Flesch-Kincaid score
- A trained classifier predicts document complexity based on this score
- If low, use local, else use cloud

Tech Stack

- **Frontend:** Streamlit, providing a user-friendly interface for uploading documents and asking questions.
- **Backend:** FastAPI for efficient task handling and routing between local and cloud models, with additional support from MLX (for mac), and LangChain.
- Models:
 - Local LLM: LLaMA 3.2 (1B parameters).
 - Cloud LLM: LLaMA 3.1 (8B parameters).

Evaluation Metrics:

Datasets: XSum, Arxiv, Gov-Report

Latency: Time taken for task completion.

Quality: Measured using ROUGE scores and BERTScore F1 for summarization tasks.

Metric	Local	Cloud
Time taken(s)	7.721500	2.349000
rougeL	0.137550	0.116912
BERTScore F1	0.855441	0.858433

Mean values for Local and Cloud-based summarization for the X-Sum dataset

Metric	Local	Cloud
time taken(s)	34.276100	4.770200
rougeL	0.193011	0.182547
BERTScore F1	0.827140	0.835522

Mean values for Local and Cloud summarization for the ARXIV dataset

Metric	Local	Cloud
time taken (s)	31.98	4.599000
rougeL	0.122849	0.165567
BERTScore F1	0.833495	0.855592

Mean values for Local and Cloud summarization for the GOV-REPORT dataset

- Local LLMs are suitable for handling simpler tasks with significantly lower latency.
- Cloud LLMs excel in complex tasks, providing superior quality at the cost of higher latency.

Conclusion

- Developed a hybrid system that dynamically allocates tasks to local or cloud-based LLMs based on complexity
- Demonstrated the feasibility of deploying LLMs on edge devices for simpler tasks, reducing latency and resource consumption

Weaknesses and Future Work

- Speculative Decoding: Implemented as a stretch goal but not analyzed due to resource limitations, such as storage capacity (256GB SSD) and free-tier memory constraints on cloud platforms.
- Mac-Specific Limitations: The implementation is macOS-dependent, reducing portability and applicability across other platforms.
- Hardware Metrics Analysis: GPU and RAM usage analysis was restricted due to macOS incompatibility with tools like pynvml.
- Decision Module Accuracy: Limited testing under varying system loads and with diverse documents, leaving its robustness and accuracy unverified.

Thank You