INTRODUÇÃO À PROGRAMAÇÃO

As operações no MATLAB podem ser feitas de 2 formas:

- Modo interativo comandos inseridos diretamente na janela de comandos
- Arquivo script rodando um programa MATLAB armazenado em um arquivo script.

Arquivos script

- São editados e gravados em aquivos M (arquivos com extensão .m)
- O editor do MATLAB pode ser utilizado para escrever e salvar os arquivos M
- Os arquivos M podem também serem escritos em outros editores (Ex: Notepad++)

Criando e utilizando um arquivos script

- O símbolo % é utilizado para criar um comentário no MATLAB. Comentários são utilizados para documentar os arquivos.
- O símbolo de comentário pode ser inserido em qualquer lugar da linha de comando.
- O MATLAB desconsidera tudo que estiver à direita do símbolo %.

```
>> % Isto é um comentário
>> x = 2 + 3 % Isto também é
```

 $\chi =$

5

Nunca salvar script com o nome de funções ou comandos já existentes no MATLAB.

O comando exist verifica se uma determinada variável já exite, se o retorno da função for 0 a variável não existe, se o retorno for 1 a variável existe.

```
>> exist('ifpe')
ans =
0
```

>>

O comando exist também pode ser usado para verificar se um arquivo já existe, retorna 0 se não existir, ou 2 se o arquivo existir.

```
>> exist('exemplo_1')
ans =
   2
>> exist('exemplo_1', 'file')
ans =
  2
>>
```

Debugando arquivos de script

Debugar um programa é o processo de encontrar e remover os erros ou "bugs"

- 1. Erros de Sintaxe Omissão de parênteses, vírgulas, digitações incorretas.
 - O MATLAB detecta os erros e exibe uma mensagem descrevendo o erro e sua localização.
- 2. Erros em tempo de execução.

São erros devido a um procedimento matemático incorreto. Ex: divisão por zero.

Debugando arquivos de script

Debugar um programa é o processo de encontrar e remover os erros ou "bugs"

1. Erros de Sintaxe – Omissão de parênteses, vírgulas, digitações incorretas.

O MATLAB detecta os erros e exibe uma mensagem descrevendo o erro e sua localização.

2. Erros em tempo de execução.

São erros devido a um procedimento matemático incorreto. Ex: divisão por zero.

Encontrando os erros

- 1. Sempre realizar um teste com problemas simples, cuja resposta pode ser checada por cálculos a mão.
- 2. Exiba alguns cálculos intermediários removendo o sinal de ponto e vírgula no final das sentenças.
- 3. Utilizar as funcionalidades do Editor/Debugador, que serão introduzidas mais adiante.

Estilo de programação

- 1. Seção de comentários
 - 1. Nome do programa e algumas palavras-chave na primeira linha.
 - 2. Data de criação do programa e nome do criador na segunda linha.
 - 3. As definições dos nomes paras as variáveis de entrada e saída, criar uma subseção de entrada e outra subseção de saída. Pode ser criada também subseção para variáveis utilizadas nos cálculos.

Estilo de programação

1. Seção de Entrada

Nesta seção insira os dados de entrada e/ou funções de entrada.

2. Seção de cálculos

Insira os cálculos nesta seção. Inclua comentários quando apropriado.

3. Seção de saída

Insira as funções de saída. Inclua comentários quando apropriado.

Controlando Entradas e Saídas

disp(A) – Exibe o conteúdo, mas não o nome do Arranjo A.

$$>> A = 2$$

A =

2

>> disp(A)

2

Controlando Entradas e Saídas disp('texto') -> Exibe o texto entre aspas simples. >> disp('A velocidade prevista é:') A velocidade prevista é: x = input('texto') -> Exibe o texto entre aspas simples na tela, espera pela entrada do usuário a partir do teclado, e armazena o valor em x. >> x = input('entre com o valor de x :') entre com o valor de x:10

10

x =

Controlando Entradas e Saídas

x = input('texto', 's') -> Exibe o texto entre aspas simples na tela, espera pela entrada.

do usuário a partir do teclado, e armazena a entrada como uma string em x.

>> Calendario = input('Entre com o dia da semana: ','s')

Entre com o dia da semana: Quarta-feira

Calendario =

Quarta-feira

Controlando Entradas e Saídas

k = **menu**('title', 'option1', 'option2',...) -> Exibe um menu cujo título é a variável string 'title' e cujas opções são 'option1', 'option2', e assim por diante.

>> k = menu('Escolha o numero k: ','opção 1: k =1','opção 2: k =2')

k =

1

Exemplo de um arquivo de script

```
1
       % Programa Velocidade de Queda.m: plota a velocidade de queda de um objeto.
 2
       % Criado em 01/03/2009, por W. Palm III
 3
       % Variável de entrada:
 4
 5
       % tfinal = tempo final (em segundos)
       용
 6
       % Variáveis de saída:
       % t = arranjo de instantes de tempo em que a velocidade é calculada
 8
 9
       % (Segundos)
       % v = arranjo de velocidades (metros/segundo)
10
       % Valor de parâmetro:
11
       q = 9.81; % Aceleração em unidades do SI (m/(s^2))
12 -
13
14
       % Seção de entrada:
15 -
       tfinal = input ('Entre com o tempo final em segundos: ');
16
       응
17
       % Seção de cálculo:
      dt = tfinal/500;
18 -
      t = 0:dt:tfinal; % Cria um arranjo com 501 valores de tempo.
19 -
       v = q*t; % Movimento uniformemente variado
20 -
21
22
       % Seção de saída:
23 -
       plot(t,v);
24 -
       xlabel('Tempo (s)');
       ylabel('Velocidade (m/s)');
25 -
```

Exemplo de um arquivo de script

tfinal = 100;

O Navegador de Funções

Funções de Ajuda

A função help

> help plot

```
New to MATLAB? See resources for Getting Started.
  >> help plot
   plot
        Linear plot.
      plot(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
      then the vector is plotted versus the rows or columns of the matrix,
      whichever line up. If X is a scalar and Y is a vector, disconnected
      line objects are created and plotted as discrete points vertically at
      Χ.
      plot(Y) plots the columns of Y versus their index.
      If Y is complex, plot(Y) is equivalent to plot(real(Y), imaq(Y)).
      In all other uses of plot, the imaginary part is ignored.
      Various line types, plot symbols and colors may be obtained with
      plot(X,Y,S) where S is a character string made from one element
      from any or all the following 3 columns:
                                                                   solid
                                        point
             b
                   blue
                                        circle
                                                                   dotted
             q
                   green
                   red
                                        x-mark
                                                                   dashdot.
                                        plus
                                                                  dashed
                   cyan
                                                          (none) no line
                   magenta
                                        star
             m
                   yellow
                                        square
             У
                   black
                                        diamond
                                        triangle (down)
                   white
```

Funções de Ajuda

A função doc

> doc plot

Funções de Ajuda

A função doc

> doc

