AD No.

DEVELOPMENT

OF THE

XM88 ELECTRIC PRIMER

RUTH E. TREZONA

AMCMS 5530.12.543A

COPY NO. 29 OF 36

APRIL 1963

PICATINNY ARSENAL DOVER, NEW JERSEY

1960 J. 1960 J. 1512

The findings in this report are not to be construed as an official Department of the Army Position.

DISPOSITION

Destroy this report when it is no longer needed. Do not return.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA.

TECHNICAL REPORT 3067 AMMUNITION GROUP

DEVELOPMENT
OF THE
XM88 ELECTRIC PRIMER

 \mathbf{BY}

RUTH E. TREZONA

AMCMS 5530.12.543A

APRIL 1963

SUBMITTED BY:

D. F. SEEGER Chief, Explosives Initiation Section REVIEWED BY:

E. H. BUCHANAN Chief, Artillery

Ammunition Laboratory

APPROVED BY:

R. W. VOGEL

Chief, Ammunition Development Division

PICATINNY ARSENAL DOVER, NEW JERSEY

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
II	SUMMARY	3
Ш	CONCLUSION	5
IV	RECOMMENDATION	5
v	STUDY	7
	APPENDICES	
	A. Tables	A1-21
	B. Figures	B1-17
	TABLE OF DISTRIBUTION	i

SECTION I

INTRODUCTION

Design of the XM88 Electric Primer was initiated for use in the PIBD, XM539

Fuze. The delay initiator requirement for this fuze was later cancelled. However, development work was continued on the XM88 for use in Fuzes PIBD, T370, PD, T212 and PD, XM566. During the development the PIBD, T370 Fuze was cancelled and primer development was continued and completed for incorporation in the PD, T212E6 and PD, XM566 Fuzes. These fuzes have been released for industrial engineering.

The XM88 Electric Primer was intended to be a "cut-down" version of the 50-millisecond delay T68 Electric Detonator. Early in the development, however, it was found that a complete redesign was necessary to achieve the required delay reliably and to perform satisfactorily on side initiation.

This report summarizes the development of the XM88, a 50-millisecond delay primer, which initiates a superquick electric detonator with side initiation.

SECTION II

SUMMARY

Development of the XM88 Electric Primer:

A button-contact type primer, designated Primer, Electric XM88 was developed and meets the following design requirements. Also included in this summary are performance characteristics of the primer.

- Physical: The maximum dimensions of the primer assembly body are 0.195" diameter and 0.315" long; the contact pin is 0.337" diameter and 0.120" long.
- Electrical: The primer has a carbon bridge with 1000 to 10,000 ohms resistance and functions in 50 milliseconds ±25% from the discharge of a 0.004 microfarad-capacitor charged to 100 volts.
- Output: The primer will initiate a superquick electric detonator by side initiation across a 0.040" air gap.
- Performance: Groups of 25 primers functioned satisfactorily at 125°F, -65°F and at ambient after 30 day storage at 160°F; at ambient after being subjected to MIL-STD tests for Jolt, Jumble, Transportation Vibration, Temperature and Humidity Cycle. Twelve primers functioned satisfactorily after being subjected to 30,000 g's in the air gun with primer contact pin positioned forward in line of travel. Eight of 25 failures occurred after the primer was subjected to 30,000 g's

positioned base forward; however, the item for present applications is not positioned to receive the acceleration forces in this manner. Two primers of 25 failed to fire after water immersion; it is believed that improvements can be made in the plug design which will improve the cup-to-case fit and correct the weakness in the seal. No failures occurred in 416 primers fired at ambient indicating a functioning reliability of better then 99.2% at the 95% confidence level. The average firing delay time of all groups tested was 52 milliseconds.

SECTION III

CONCLUSION

The XM88 Electric Primer meets the design and performance requirements for a delay initiator to be used in parallel with a superquick initiator.

SECTION IV

RECOMMENDATION

Studies should be made of methods for improving the design of the plug assembly.

SECTION V

STUDY

The final design of the XM88 Electric Primer is shown in Figures 1-7.

A test fixture was designed conforming to Figure 8. Output tests were conducted by firing the XM88 assembled in the fixture with the RDX lead centered over a lead disc (1.22 dia x 0.135, 8-lb lead). The primer was fired with the discharge of a 0.004-microfarad capacitor charged to 100 volts. In a group of nine primers fired at ambient temperature and a group of ten primers fired at -65° F. the XM88 Primer, in every case, initiated the XM65 Detonator which in turn initiated the RDX lead. Holes produced in the lead disc by the RDX lead were 7/16" diameter minimum.

Groups of primers were fired during the manufacture of the pilot lot. The results are in Table 1. The 122 tested fired in an average time of 55.5 milliseconds with the min. and max. times being 37.2 milliseconds and 61.4 milliseconds, respectively.

Results of evaluation tests of the pilot lot of XM88 Electric Primers are summarized in Table 2. Detailed results are recorded in Tables 3-8.

The knowledge gained in developing the 50-millisecond T68 Electric Detonator on contracts ORD-3183 and ORD-3213 was applied in developing the XM88 Electric Primer. The XM88 is essentially the T68 without the base charge. The T68 was being redesigned when the request was received for a 50-millisecond delay primer for use in the PIBD XM539 Fuze for Shillelagh. Then work on the T68 Detonator was cancelled and the

components on hand were used for development of the XM88 Primer.

One of the problems encountered in designing the pin and plug assembly was the tendency for the insulation around the pin to exude above the surface of the plug when heat or pressure was applied to the plug. This insulation flow usually occurred during the bridging operation when heated under an infra-red lamp. It was found that swaging on the face, (Figure 3) instead of on the side of the contact pin as previously swaged, relieved the pressure which forced the insulation toward the surface to be bridged. This change is an improvement but is not a completely satisfactory design. Even though it improves the exudation problem the swaging operation deforms the outer surface of the plug. The effect of deforming the plug is discussed elsewhere in this study.

The advantages of the machined body (Figure 4) which is used in lieu of a drawn cup are:

- A. Charges can be loaded from both ends with the delay mixture in the center consolidated at a higher pressure.
- B. For better confinement the portion of the case to hold the delay charge is machined with a thick wall.
- C. The portion holding the delay is threaded to prevent movement of the delay column upon high acceleration of the primer and as a deterrent to "blow-through."

After cancellation of the requirements for a delay primer for the Shellelagh program, development of the XM88 Primer for use in Fuzes PIBD T370, PD T212 and PD XM566 continued. To adopt for use in all three fuzes, the length of the primer

was changed from 0.210" - 0.010" to 0.315" - 0.010". The increased length allowed better control over the delay time. More space allows adjustment of the time delay to be made by varying the column length rather than changing the barium chromate/boron mixture which can vary from 88/12 to 92/8.

In testing early groups the delay times were erratic. Investigation revealed that the delay column was cracked on the surface due to movement of the loading fixture during withdrawal of the punch. To correct the condition a spring-loaded punch (Figure 9) was used to hold the loading guide firmly. This change eliminated cracking of the delay column and resulted in more consistent delay times.

Sealing the XM88 Electric Primer is a problem. One disadvantage of using a machined case is that both top and bottom of the primer are crimped and sealed.

Since it may be necessary to depend on the surface of the base for one electrical contact a conductive adhesive is used in waterproofing the base. The conductive epoxy adhesive selected is easily applied, has good adhesion, excellent conductivity and does not appear to affect functioning. A good seal at the top depends not only upon a good crimp and an effective sealant but upon the fit of the plug in the case or cup.

If the side surface of the plug is deformed in the swaging operation, a poor fit between case and plug could result in a weak seal. The fact that two XM88 Primers in 25 failed after the water test indicates a possible weakness in the plug design. In present applications, however, the primer is sealed in the fuze and waterproofness is not a requirement.

In the pilot lot 416 primers were functioned at ambient temperature with no failure to fire. This result indicates better than a 99.2% reliability with 95% confidence.

APPENDIX A

TABLES

TABLE I

XM88 Primer Test Results

Functioning Times (milliseconds)

Group	No.	No.	×	High	Low		Reco	Recorded Times	50	
No.	Tested	Failed	İ	Recorded	Recorded					1
Н	14	0	58.37	61.37	54.13	61.37	60.16	54.13	58.27	
						58.22	55.44	58.17	57.21	
						60.74	59.50	57.29	58.97	
						60.17	57.52			
8	101	0	55.44	60.69	41.97	59.27	56.23	56.50	41.97	İ
						54.17	57.62	69.09	57.41	
						50.85	59.65			
က	6	0	55.45	59. 25	53.39	1	56.22	59.25	53.39	
						55.14	54.36	55.61	 	
						54.18				
4	7	0	50.88	54.86	46.65	52.20		54.86	51.08	
			İ			48.86	51.67	46.65		
5	1	0	50.97	53.81	44.94	52.11	51.71	44.94	52.19	
:						53.81		51.04		
9	6	0	48.70	51.94	41.44	49.78	42.11	50.12	51.02	Ì
						49.96	41.44	50.72	51.94	
						51.26				İ
2	10	0	47.79	56. 41	37.21	39.90	43.13	37.21	52.56	
						43.32	48.84	53.13	50.40	
						56.41	53.02			
8	6	0	55.23	59.97	49.25	58.23	57.81	51.36	56.07	
						49.25	53.60	56.05	59.97	
						54.69				
6	10	0	54.18	56. 63	50.87	53.99	53.22	56.63	54.14	
						56.62	54.32	50.87	55.10	
						52.78	54.12			

TABLE I (Continued)

XM88 Primer Test Results

milliseconds)	
Functioning Times (

		İ	,	•	•		į		
%		×	High	Low		Recorded Times	d Times		
ed Failed	~		Recorded	Recorded					
0	ı	50.72	53.13	44.31	51.92	53.13	49.98	50.23	
					44.31	52.82	52.79	48.73	
					52.54				
0 01		54.90	58.12	51.97	52.74	54.15	57.77	55.10	ı
					56.62	51.97	54.96	58.12	
					54.62	52.92		,	
0		56.89	58.04	55.13	55.13	56.78	56. 22	57.56	1
					58.04	56.29	57.22	56.88	
					57.87				
0		52.56	57. 23	50.00	53.10	57.23	50.22	52.64	
					50.00	52.44	50.52	52.90	
			İ		53.98				
122 0		53.53	61.37	37.21					
				(next low					
				39.90)					

Notes:

Functioning at 100 volts, 0.004 microfarads (200 ergs) G & E

Delay powder is 92/8 barium chromate/boron

Standard Deviation of functioning delay time is 4.56 and the coefficient of variation, C.V. = 8.5%

=1	EVALUATION TESTS
ABLE	XXX88
н	ELECTRIC:
	PRIMER,

	Number	L Q	Avg. Resistance, K Ohms	C Ohms	Punctio	ming Time	Functioning Time, Milliseconds	conde		No. Items Functioning Out of Spec. Banca	tioning
Condition	is betseT 001\lu 100 . V	Failed to	Before Conditioning	After Conditioning	muminiM	Aver age	mumbaM	Standard Deviation	Coefficient of Variation	Leas than 76 confilm 76	Greater than 62 millimes
Water Immersion (under 12"/24 hrs)	52	64	2.21	2. 23	16.97	49.21	54.36	2. 55	5.2%	ı	•
Hot Functioning (after 18 hrs at 125°F)	22	0	2.18	2. 92 (2)	45. 42	49.63	52.65	1.78	3.6%	0	•
Cold Functioning (after 6 hrs at ~65°F)	52	0	2.05	2. (3	44. 25	49.94	54.40	2.75	5.1%	•	0
Hot Storage (30 days at 160° F)	35	•	2.54	3.31	36.85	53.05 (4)	60.18	5.28	9.9%	7	•
Transportation Vibration MIL-STD-303	32	•	3.08	3. 27	46.24	52.36	60.23	3. 22	6.1%	0	0
Temp. & Humidity Cyc MIL-STD-304	3 2	•	2. 23	3.75 (3)	24. 32	50.37	65.20	10. 47	20.8%	m	-
Acceleration to 30K G's Button Forward	12	•	2.34	2.56	40.88	48.26	53.04	3.22	6.7%	0	0
Acceleration to 30K G's Base Forward	12	œ	2.35	(2)	38. 29	41.40	45.03			0	•
Jolt, MIL-STD-300	52	o <u>©</u>	2.61	3.32	22. 11	59.01	72.45	8.91	15.0%	1	w
Jumble, MIL-STD-301	32	0	2.21	2.61	46.84	58.09	66.34	4.35	7.5%	0	4
Unconditioned Ambient	416	0	2. 75 (7)		25.81	52. 17 (4)	67.12	5.30 (4)	30.1%	1	15

XM88 Primer Test Results

Omitted the out-of-spec. time of 16.97 milliseconds in calculations NOTES: 1.

Omitted the out-of-spec resistance of 13.0 K ohms in calculations

Omitted out-of-spec resistances of 16.0, 12.0 and 29.0K ohms in calculations е •

Included the out-of-spec times in the calculations

Except for one resistance of 1.2 K ohms the average was 334 K ohms and ranged from 15K ohms to 600 K ohms . 2

Two primer cases were damaged during jolt. However, resistances were normal and they functioned in 22.11 and 60.35 milliseconds. 6

7. Omitted out-of-spec resistances (18K, 16K, 12K ohms) in calculations.

TABLE III

XM88 Electric Primer

Ambient Functioning at 0.004 uf/100V

N		•	ectioning ne, Millisec	No. F	kesistance, Kilohm	Function Time,	oning Millisec
	1 1	. 1	50. 53	27	2.7	49.	28
	2 4	. 0	52. 71	28	4. 4	49.	36
	3 3	. 2	50. 31	29	2.1	50.	46
	4 1	. 8	48. 43	30	1. 6	53.	97
	5 2	. 8	Lost	31	1.3	54.	03
	6 1	. 5	46. 69	32	1.2	51.	92
	7 2	.1	48.71	33	1.4	43.	63
	8 8	. 1	50. 28	34	2. 0	58.	55
	9 2	. 9	51. 73	35	2.3	59 .	74
1	.0 1	. 9	Lost	36	0.7	67.	12
1	.1 1	. 0	49. 61	37	1. 6	67.	00
1	.2 1	. 4	51.95	38	2. 4	60.	08
1	.3 1	. 5	49. 49	39	1.0	53.	54
1	.4 4	. 2	51.14	40	3.1	56.	59
1	.5 2	.1	45. 69	41	1.3	56 .	75
1	.6 2	.1	49.04	42	1.9	51.	98
1	.7 2	. 0	52. 26	43	2.4	58.	10
1	18 3	. 2	52. 98	44	1.8	57.	12
1	.9 2	3. 2	47.81	45	1.7	62.	. 93
2	20 2	3. 2	49.92	46	3.0	57.	. 87
2	21 1	2	48.16	47	1.3	53.	. 99
2	22 4	l. 8	49.51	48	1.0	52 .	. 84
2	23 5	5. 2	37. 29	49	5. 2	52.	. 54
2	24 3	3.3	50. 92	50	3.0	53.	. 96
2	25 2	2. 5	49. 20	51	4. 5	56.	. 00
2	26 7	7.8	57.79	52	2.8	54.	. 03 _A

XM88 Electric Primer

Ambient Functioning at 0.004 uf/100V

No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec
53	2. 1	52. 85	79	1.3	52. 42
54	4.6	53.01	80	1.7	42.04
55	1.8	5 6. 23	81	2. 1	48.51
56	1.8	52.32	82	4. 5	52. 58
57	1.2	53.82	83	1.8	54. 69
58	2.0	51.33	84	1. 2	50. 51
59	1. 2	49.89	85	3.2	Lost
60	2.1	50.11	8 6	12.0	Lost
61	4.9	50.16	87	3.4	37.18
62	5. 4	48.69	88	2.5	49.60
63	1.9	51.03	89	3.3	50. 22
64	1.7	Lost	90	1.8	51.84
65	4.0	49.19	91	2. 0	53.87
66	4. 5	47.30	92	1. 2	48.31
67	4. 0	42.11	93	1.7	54. 29
6 8	2.3	51.79	94	2. 1	53.96
69	8 . 9	48.33	95	2.9	48.82
70	1. 2	Lost	96	8.5	Lost
71	3.6	56. 52	97	1.6	51.80
72	5.4	50. 44	98	2.0	50.82
73	2.7	54.15	99	2.8	47.57
74	1. 2	55. 2 0	100	2. 2	49.82
75	2.0	42.13	101	1. 2	52.71
76	3.8	51. 2 0	102	1.6	53.6 8
77	3.4	52. 86	103	4. 5	54. 29
78 A-6	3.1	37.95	104	2.3	51.63

TABLE III (Continued)

XM88 Electric Primer

Ambient Functioning at 0.004uf/100V

No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec
105	2.1	Lost	131	1.5	47.00
106	3.0	53 . 4 5	132	2.7	47.32
107	1.5	50.83	133	0.9	48.48
108	1.3	49.38	134	1.6	49.31
109	4. 2	50.49	135	1.8	47.90
110	2.2	51.12	136	6.6	42.05
111	3.3	51.20	137	1.9	47.35
112	1.9	51.79	138	1.7	51.28
113	0.9	Lost	139	1.5	46.49
114	1.7	51.4 4	140	2.1	49.23
115	1.2	53.96	141	1.3	48.21
116	1.7	55.35	142	1.5	51.32
117	1.5	50.96	143	1.8	55.17
118	4.9	52 . 85	144	2.2	50.93
119	2.1	52 . 87	145	1.8	38.91
120	4.8	49.93	146	2.3	48.39
121	2. 1	51.79	147	1.4	47.54
122	1.8	49.45	148	2.4	47.55
123	3.1	52. 21	149	1.3	46.62
124	3.9	49.50	150	2.3	51.37
125	1.8	49.26	151	1.7	37. 50
126	3.7	50.99	152	5.1	49.19
127	1.6	48.00	153	2.3	49.35
128	3.2	4 8.78	154	2.0	44.59
129	2.9	47.97	155	2.2	45.11
130	2.3	47.56	156	6.5	48.18

TABLE III (Continued)
XM88 Electric Primer

Ambient Functioning at 0.004 uf/100V

No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec
157	1.4	48.60	183	8.0	50.14
158	4.0	48. 62	184	2.4	52. 59
159	3.0	47.58	185	3.7	50.55
160	1.5	41.68	186	3.5	48.76
161	1.1	48.80	187	1.8	48.79
162	2.1	43.17	188	2.9	48.24
163	1.7	50. 28	189	4.3	49.45
164	2. 9	49.46	190	8.8	54.07
165	1.4	45.66	191	2.2	50.92
166	1.5	51 . 55	192	3.4	Lost
167	3.6	47.60	193	1.8	44. 63
1 6 8	2.2	50.30	194	4.9	Lost
169	1.7	49. 21	195	1.3	51.02
170	1.5	47.83	196	4.4	50.91
171	1.2	46.46	197	1.8	Lost
172	2. 1	49.37	198	17.0	51. 50
173	3.6	49.71	199	1.1	Lost
174	2. 5	47.52	200	2.4	Lost
175	1.2	47.61	201	1.0	48.03
176	1. 2	50.63	202	1.1	53.05
177	2. 7	49.84	203	1.0	Lost
178	2. 1	46.10	204	1.3	54.34
179	8.9	47.02	205	1.6	54. 22
180	1.9	46. 91	206	1.7	54. 22
181	1.8	52. 78	207	3.4	56. 52
182	2. 0	55.63	208	1.1	53.46

XM88 Electric Primer

Ambient Functioning at 0.004 uf/100V

No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec
209	3.0	57. 63	235	3.0	55.31
210	2.4	49.06	236	4.5	51.34
211	4.1	56. 50	237	1.3	59.15
212	1.2	55. 51	238	1.6	54.35
213	2.8	53. 6 5	239	1.0	44.60
214	2.8	56. 64	240	3. 2	57.71
215	2.7	56. 34	241	1.8	51.80
216	2.7	50. 55	242	6.0	58.66
217	2.8	61. 03	243	18.0	58.94
218	4. 1	58. 02	244	3.0	58.02
219	1.6	56. 74	245	2.1	60.52
220	2. 4	53.77	246	3.2	54. 01
221	1.5	52. 28	247	2.8	44.15
222	4.0	53. 21	248	1.1	50.35
223	1.4	56. 2 5	249	1.3	58.33
224	1.2	53. 21	250	2. 0	47.05
225	3.2	51.96	251	2.6	54. 51
226	1.3	55. 70	252	2.4	46. 19
227	2.0	54.95	253	3.6	43.66
228	1.2	47.55	254	4.5	50. 22
229	1.8	43.15	255	2.0	52.06
230	3.8	46. 92	256	8.1	53.46
231	2.7	58.06	257	1.6	57.02
232	1.2	57. 26	258	6. 7	51. 51
233	4.8	48.18	259	10.0	52.87
234	1.9	55. 61	260	2. 7	25.81

XM88 Electric Primer

Ambient Functioning at 0.004uf/100V

No.	Resistance,	Functioning	No.	Resistance,	Functioning
	Kilohms	Time, Millisec		Kilohms	Time, Millisec
261	1. 4	55.37	287	1.8	62.15
262	0.6	53.22	288	2.0	57.20
263	8.0	39.3 0	289	1.7	57.76
264	3. 1	54. 56	290	1.2	Lost
26 5	1. 2	53.79	291	2.9	52.60
266	1.4	49.79	292	4.5	63.77
267	3.0	49.99	293	1.0	64.4 8
268	2. 3	54 . 06	294	1.3	66.06
269	3.9	52.37	295	3.0	59.08
270	3.8	49.72	296	3.3	61.30
271	2. 6	55.15	297	4.1	Lost
272	4. 6	Lost	298	1.9	51.90
273	2. 1	52.37	299	6.2	57.2 8
274	4. 3	51.28	300	1.5	47.72
275	5.6	56. 13	301	1.3	50.42
276	5.7	47.45	302	1.2	57.36
277	2. 0	50.18	303	1.8	65.32
278	6. 4	53.09	304	1. 2	56.15
279	1.7	Lost	305	2.8	53.21
280	4. 6	Lost	306	7.7	51.47
281	2. 6	58.89	307	2.1	57.17
282	7.1	Lost	308	3.0	64.15
283	1.9	Lost	309	2.8	57. 20
284	5. 1	56. 22	310	3.8	54. 93
285	1. 2	62.22	311	4.6	57.83
286	3.6	53.91	312	2.0	63.66
A-10	1				

XM88 Electric Primer

Ambient Functioning at 0.004 uf/100V

No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec
313	3.1	57.97	339	2.1	46. 10
314	2. 2	54.77	340	8.9	47.02
315	1.1	53.21	341	1.9	46.91
316	4.8	55.79	342	6.4	53.09
317	3.5	43.01	343	1.7	Lost
318	1.1	58.77	344	4.6	Lost
319	2.5	61.46	345	2.6	58.89
320	2. 2	54. 23	346	7.1	Lost
321	2.0	58.65	347	1.9	Lost
322	2. 6	49.12	348	5.1	56. 22
323	1.4	59 . 01	349	1. 2	62. 22
324	4.8	56.86	350	3.6	53.91
325	2.5	56. 67	351	1.8	62.15
326	2.8	57.4 0	352	2.0	57. 20
327	1.5	51.55	353	1.7	57.76
328	3.6	47.60	354	1.2	Lost
329	2.2	50.30	355	2.9	52. 6 0
330	1.7	49. 21	356	4.5	63.77
331	1.5	47.83	357	1.0	64. 48
332	1.2	46. 46	358	1.3	66.06
333	2. 1	49.37	359	3,0	59.08
334	3.6	49.71	360	3.3	61.30
335	2.5	47.52	361	4.1	Lost
336	1.2	47.61	362	1.9	51.90
337	1.2	50. 63	363	6. 2	57. 2 8
338	2.7	49.84	364	1.5	47.72

XM88 Electric Primer

Ambient Functioning at 0.004 uf/100V

		Ambient Funçtio		•	The second secon
No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec
365	1.3	50.42	391	2.8	57.4 0
366	1. 2	57.36	392	3.8	53.19
367	1.8	65. 32	393	7.7	Lost
3 6 8	1. 2	56. 15	394	2. 0	47. 20
369	2.8	53.21	395	4.0	Lost
370	7.7	51.47	396	1.5	Lost
371	2. 1	57.17	397	2.2	52.06
372	3.0	64. 15	39 8	2.1	50.86
373	2.8	57 . 20	399	2.7	47.75
374	3.8	54. 93	400	1.6	50.80
375	4.6	57.83	401	3.1	45.37
376	2. 0	63.66	402	5. 2	48.41
377	3.1	57.97	403	3.2	45.95
378	2. 2	54.77	404	1.7	51.46
379	1.1	53.99	405	1.7	46. 53
380	4.0	55. 21	406	1.8	48.08
381	4.8	55.79	407	1.5	50. 57
382	3.5	43.01	408	2.9	48.57
383	1.1	58.77	409	1.5	47.74
384	2. 5	61.46	410	4. 5	48.36
385	2. 2	54. 23	411	1.9	48.21
386	2.0	58.65	412	1.4	46. 25
387	2.6	49.12	413	1. 5	48.81
388	1.4	59.01	414	5.0	50.66
389	4.8	56.86	415	3.0	48.60
390	2.5	56. 67	416	6. 6	49.50

TABLE IV
XM88 Electric Primer

Firing Energy 0.004 uf/100V

Water Immersion Test (Under 12" for 24 hrs) Hot Storage Test (30 days @ 160°F)

	,			(9 = 11
No.	Resistance, Kilohm	Functioning Time, Millisec	No.	Resistance, Kilohm	Functioning Time, Millisec
1	2. 2	16.97	1	3.6	58.19
2	3.7	54.36	2	2. 7	46. 33
3	2. 0	51.72	3	3.9	55. 52
4	1.9	Failed	4	2.9	55.10
5	1.7	48.80	5	1.1	51.39
6	3. 2	50.77	6	1.5	58.33
7	2. 1	Failed	7	3.2	36.85
8	1.6	Lost	8	2.8	58.70
9	1.6	50.92	9	2.2	53.05
10	1.7	50.32	10	3.3	60.18
11	1.3	47. 58	11	2. 1	Lost
12	3.9	46.32	12	8.4	53.90
13	2. 1	48.60	13	2.7	57.63
14	1.3	51.00	14	5. 5	53.77
15	4. 2	45. 4 8	15	3.6	47.95
16	1.3	44. 08	16	1.7	50.35
17	1.7	48.60	17	1.9	48.66
18	1. 2	49. 46	18	2.7	56. 91
19	2. 3	45.85	19	1.8	Lost
20	3.1	46. 32	20	1.3	50.41
21	4. 7	49.98	21	7.3	53.01
22	1.2	52. 58	22	4. 2	47.32
23	1.1	50.87	23	1.8	53.44

XM88 Electric Primer

Firing Energy 0.004 uf/100V

Hot Storage Test

(Under 12" for 24 hrs)			(30 days @ 160°F)		
No.	Resistance, Kilohm	Functioning Time, Millisec	No.	Resistance, Kilohm	Functioning Time, Millisec
24	2.7	49. 57	24	2. 1	56. 80
25	1.4	50. 25	25	6. 0	5 6. 3 8
Avg	2. 29	49. 21	Avg	3. 21	53.05

(w/o #1)

Water Immersion Test

TABLE V XM88 Electric Primer Firing Energy 0.004 uf/100V

Cold Functioning Test

Hot Functioning Test (After 6 hrs at -65°F) (After 18 hrs at 125°F) Functioning Resistance, No. Functioning Resistance, No. Time, Millisec **Kilohms** Time, Millisec Kilohms Lost 1.5 1 1.7 49.46 1 51.09 1.2 2 50.80 5. 2 2 53.54 1.4 3 2.8 51.09 3 46.34 1.4 4 50.50 1.0 4 49.00 2.5 50.40 3.0 5 54.40 2.9 6 2.3 48.16 6 52.33 1.2 7 50.98 2, 9 7 49.67 4.1 8 50.15 1.7 8 50.17 1.3 9 50.39 1.7 9 47.33 3.4 10 49.31 10 2.4 Lost 1.6 11 48.13 2. 2 11 51.40 1.7 12 45.42 4.0 12 53.20 2.8 13 49.89 4.7 13 47.57 2.0 14 1.2 50.24 14 48.42 3.0 15 2.1 51.18 15 50.00 1.4 16 45.58 3.6 16 1.8 53.47 17 50.89 5.9 17 46.68 2.9 18 52.65 5.6 18 51.59 1.0 49.24 19 2.7 19 44.25 1.7 20 48.47 3.8 20 51.22 1.2 21 48.75 3.1 21 46.70 2.7 22 51.18 22 3.5 Lost 3.2 23 46.96 13.0 23

TABLE V (Continued)

XM88 Electric Primer

Firing Energy 0.004 uf/100V

Hot Functioning Test (After 18 hrs at 125°F)				Cold Functioning Test (After 6 hrs at -65° F)		
No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec	
24	2.7	51.76	24	1.8	50.42	
25	2.9	49.22	25	1.0	Lost	
Avg	2. 92 (w/o #23)	49.63	Avg	2. 03	49.94	

TABLE VI

XM88 Electric Primer

Firing Energy 0.004 uf/100V

Jolt Test (MIL-STD-300) Jumble Test (MIL-STD-301)

	(MID-DID-900)		(4.2.2 - 2.2.2)		
No.	Resistance, Kilohm	Functioning Time, Millisec	No.	Resistance, Kilohm	Functioning Time, Millisec
1	2.8	58.6 0	1	1.7	55. 4 5
2	3.4	52. 22	2	1.2	53.76
3	1.6	63.92	3	2.3	56. 03
4	2. 7*	22.11	4	5. 9	56. 65
5	4. 0	56. 81	5	1.6	46.84
6	2.7	60.83	6	1.7	60.81
7	9.5	62. 33	7	1. 2	65.34
8	1.8	62. 46	8	4.7	57.67
9	6.5*	60.35	9	1.1	56.4 0
10	1.8	58.84	10	3.0	55.50
11	9.2	65. 25	11	2.0	56.71
12	2.3	58.76	12	1.0	59.35
13	2.2	67.84	13	5. 0	58.22
14	2.2	59. 51	14	2.7	61.22
15	6. 1	58.04	15	2.0	62.71
16	1.7	51.73	16	3.4	51.53
17	1.6	72. 45	17	6. 3	57.55
18	1.5	59.01	18	1.8	54.81
19	2. 1	58. 25	19	2.6	57.31
20	1.8	60.66	20	3.6	60.68
21	1.2	65.10	21	1.8	63. 53
22	4.5	64.75	22	2. 2	66.34
23	1.1	57.96	23	1.0	57.69

XM88 Electric Primer

Firing Energy 0.004 uf/100V

Jolt Test (MIL-STD-300) Jumble Test (MIL-STD-301)

No.	Resistance, Kilohm	Functioning Time, Millisec	No.	Resistance, Kilohm	Functioning Time, Millisec
24	6. 2	62. 01	24	1. 2	63.64
25	2. 4	55. 55	25	4.3	56.63
Avg	3.32	59. 01	Avg	2. 61	58.09

^{*}Case was battered

TABLE VII

XM88 Electric Primer

Firing Energy 0.004 uf/100V

	Transportation Vibration, MIL-STD-303			Temperature & Humidity Cycle 28 day, MIL-STD-304		
No.	Resistance, Kilohms	Functioning Time, Millisec	No.	Resistance, Kilohms	Functioning Time, Millisec	
1	5.0	57.03	1	2.4	44. 54	
2	1.0	54.32	2	2.8	37.05	
3	2.0	52. 26	3	3.1	48.27	
4	3.0	50.86	4	1.1	50.54	
5	10.0	56. 61	5	12.0	54.39	
6	3.6	48.76	6	1.5	55.32	
7	3.4	52.7 8	7	2.4	44.62	
8	6.3	53.9 5	8	3.1	26. 58	
9	6.3	60. 23	9	6. 3	50.95	
10	6. 2	49. 21	10	1.4	53.94	
11	7.5	54. 40	11	3.5	53.29	
12	2.6	49.58	12	2.8	50.11	
13	2.5	47.81	13	2.0	60.68	
14	3.3	52.79	14	1.9	52.54	
15	1.3	51.94	15	3.3	59.33	
16	4.3	46.24	16	3.0	65.20	
17	2.9	50.90	17	6.3	61.53	
18	2. 0	49.28	18	7.1	52.95	
19	1.0	51.6 8	19	2.3	60.11	
20	1.8	53.62	20	4.3	53.76	
21	1.4	51.20	21	16.0	32.56	
22	1.0	51.52	22	10.0	24.32	
23	1.6	55.01	23	9.2	57.04	

XM88 Electric Primer

Firing Energy 0.004 uf/100V

Transportation Vibration, MIL-STD-303				Temperature & Humidity Cycle 28 day, MIL-STD-304	
No.	Resistance, Kilohm	Functioning Time, Millisec	No.	Resistance, Kilohm	Functioning Time, Millisec
24	1.3	56. 60	24	2. 6	58.25
25	1.5	50.39	25	29. 0	51.4 8
Avg	3.27	52.36	Avg	3.27 w/o #5, 21,25	50.37

TABLE VIII

XM88 Electric Primer

Firing Energy 0.004uf/100V

Air Gun Tests, 30,000 G's Acceleration Pin Contact Forward in line of travel

No.	Resistance, Kilohms	Functioning Time, Millisec
1	1.8	44.34
2	1.9	49.75
3	1.8	47.84
4	1.4	48.48
5	4.0	50.16
6	1.0	49.11
7	6. 0	50.75
8	2. 2	50.31
9	1.8	53.04
10	1. 2	46.14
11	3.0	40.88
12	4.7	48.30
Avg	2. 56	48.26

Base Forward in line of travel

1	1.2	38.29
2	OPEN	
3	OPEN	
4	100.0	43.25
5	OPEN	
6	OPEN	
7	OPEN	
8	OPEN	
9	OPEN	
10	20.0	39.01
11	15.0	45.03
12	OPEN	
Avg		

APPENDIX B
FIGURES

Figure 1. Primer, Electric, XM88

Figure 2. Bridge And Plug Assembly

f

Figure 5. Disc, Bottom

-ASAEMTika		^	PPLICATION	A XP-118286				
9		HERT ASSY	URED ON			XP-1106		-09
T6		<u> </u>		SYM	REVISIONS DESCRIPTION	1.	DATE	APPROVAL
- RA					- Carrier III		-	
DH						一		
Ī			35 PRIMER, ELEC, XM 08					
Pool			EERING RECORDS					
		DO NOT	APPLY PART NO.	<u> </u>	<u></u>			
	.03/2 ± .00/0							
NOTES: I - SPEC MIL-A-2550 APPLIES. 2-MATERIAL: STEEL, CORROSION RESISTING, COMP 304, SPEC QQ-W-423 CONDA. 3-COAT PIN WITH LECTON ACRYLIC RESIN INSULATION .0010 ± .0005 ON RADIUS.(NOTE 4) 4-APPROVED SOURCE; E.I.DUPONT, WILMINGTON, DEL. ALL SOURCES MUST SUPPLY AN ITEM EQUIVALENT TO THE MANUFACTURER'S ITEM INDICATED. ORDNANCE CORPS APPROVAL REQUIRED. ORDNANCE PART NO.								
DECIMALS PRACTIONS AMPLES MATERIAL MEAT TR	• •	IN MONES ES OM. VOTE 2	ORIGINAL DATE OF DRAWING AUG /4-/ SHEATHAN TRACER CHECKER RINGA (FF) OF THE BUSHATTED APPROVED BY BASER OF THE OHIEF OF ORDRAMOR		PIN SOALE G/I WHIT	DOVEL DOVE	NANC F OF R, NE	ARSENAL E CORPS THE ARMY W JERSEY

Figure 6. Pin

- ASSESSMEN	T	APPLICATION			7	
YP	HEXT ASSY			A	XP-1.	18287
TS				REVISION		
ELS:			BYM	DESCRIPTION	DATE	APPROVAL
RA						
BH						
		3 PRIMER, ELEC, XM88				
RH		NEERING RECORDS				
\	BO NOT	APPLY PART NO.				
	DO	AS SPECIFIED	L	<u></u>		
UNLESS OTHER	2-MA RES 3-SLIC FRO	TC MIL-A-A TERIAL: S ISTING, CL GHT BOW A	TEE ASS AND ING IVE	TO APPLIES TO APPLIES TO BARS, CORING TO BURR PERMI OPERATION.	ROSIO OQ-S-7	0W 063. D
DIMENSIONS /		OF DRAWING AUG 14, /.	200		PICATIN	NY ARSENAL
DECIMALS		TRACER CHECKER	\leftrightharpoons		ORDNA	NCE CORPS
FRACTIONS AMOLES		ENGR ALLE ENGR DU	rightarrow	DILLO	DEPT C	F THE ARMY
MATERIAL		SUBMITTED		PLUG		
SEE N	OTE 2	(1)5.C.	- 1		DOVER,	NEW JERSEY
HEAT TREATMENT		(Ve Verger)	IRD CORPS		DWG T	
		APPROVED BY COER OF THE			NIZE X	P-118287
FINAL PROTECTIVE	PINISH	CHIEF OF ORDMANCE	[$lackbox{}\Delta$	110201
			00 00RPS	SOALE G// UNIT	SHEE	07
			لمسمح			

Figure 7. Plug

Figure 8. Output Test Set-Up

ABSTRACT DATA

ABSTRACT DATA

Accession	No.	AD	1

Picatinny Arsenal, Dover, New Jersey

DEVELOPMENT OF THE XM88 ELECTRIC PRIMER

Technical Report 3067, April 1963, 40 pp, figures, tables. Unclassified report from the Artillery Ammunition Laboratory, Ammunition Group.

A button-type, 50-millisecond delay primer, designated Primer, Electric: XM88, was developed for incorporation in the PD, T212E6 and PD, XM566 Fuzes.

Groups of primers were function tested (at extreme and ambient temperatures) after water immersion, environmental conditioning, ballistic firing and subjection to 30,000 Gs, with the primer contact pin forward and base forward.

The development product fulfills the requirements for a delay initiator to be used in parallel with a superquick initiator, but the problem of sealing exists with the design of the plug assembly.

UNCLASSIFIED

- Electric Primers Development
- 2. Point-Detonating Fuzes
- I. Trezona, Ruth E.
- II. XM88 Electric Primer
- III. T212E6 PD Fuze
- IV. XM566 PD Fuze

UNITERMS

XM88
Primer
50-Millisecond
Delay
XM566
T212E6
Point-Detonating Fuze
Initiator
Trezona, Ruth E.

	TABLE OF DISTRIBUTION
	INDIE OF DISTRIBUTION
·	
· .	
•	

•

.

TABLE OF DISTRIBUTION

		Copy Number
1.	Commanding General	
	U.S. Army Materiel Command	
	Washington 25, D.C.	
	ATTN: AMCOR- Mr. Rosenberg	1
2.	Commanding General	
	U.S. Army Munitions Command	
	Dover, New Jersey	
	ATTN: AMSMU-A	2
3.	Commanding Officer	
	Picatinny Arsenal	
	Dover, New Jersey	
	ATTN: SMUPA-VA6	3-7
	SMUPA-DR4	8-17
	SMUPA-DR5	18-19
	SMUPA-NR2	20-21
	SMUPA-DX1	22-23
4.	Commander	
	Armed Services Technical Information Agency	
	Arlington Hall Station	
	Arlington 12, Virginia	
	ATTN: TIPDR	24-33
5.	Commanding Officer	
	Diamond Ordnance Fuze Laboratories	
	Washington 25, D.C.	
	ATTN: Technical Reference Section	34 - 35
6.	Commander	
	Naval Ordnance Laboratory	
	White Oak, Silver Spring	
	Maryland	
	ATTN: Library	36