DERIVATIVES & ANTIDERIVATIVES

GENERAL RULES

Above: $a \in \mathbb{R}$ is a constant, and f and g functions.

ELEMENTARY FUNCTIONS

f(x)	f'(x)	$\int f(x) dx$
а	0	ax+C
X	1	$\frac{x^2}{2}$ + C
x ^α	$\alpha x^{\alpha-1}$	$\frac{x^{\alpha+1}}{\alpha+1} + C (\alpha \neq -1)$ $\ln x + C (\alpha = -1)$
ln <i>x</i>	$\frac{1}{x}$	+C
e ^x	e ^x	$e^x + C$
$\log_b x$	$\frac{1}{(\ln b)x}$	+C
b^x	$(\ln b)b^x$	$\frac{1}{\ln b}$ b ^x +C
sin <i>x</i>	COS <i>X</i>	-cos <i>x</i> +C
COS <i>X</i>	-sin <i>x</i>	sin <i>x</i> +C
tan <i>x</i>	$\frac{1}{\cos^2 \mathbf{x}} = 1 + \tan^2 \mathbf{x}$	+C
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	+C
$\arccos(\mathbf{x})$	$\frac{-1}{\sqrt{1-x^2}}$	+C
$\arctan(x)$	$\frac{1}{1+x^2}$	+C

Above: $\mathbf{a} \in \mathbb{R}$, $\mathbf{b} > 0$ and $\mathbf{\alpha} \in \mathbb{R}$ are constants, and C the antiderivative constant.