Somith Das

Assignment ASN5b due 10/23/2019 at 04:59pm PDT

2019W1_ELEC_201_101102

12. (12 points)

Question: In the circuit in figure below, obtain the output voltage V_o , in volts, and current I_o , in mA. This exercise attempts to erase the misconception that the output current of the op amp is zero, that is almost never true! The values $R = 7 \text{ k}\Omega$ and $V_s = 16 \text{ volts}$.

Figure:

 $I_O = \underline{\hspace{1cm}} mA$

 $V_O = \underline{\hspace{1cm}} V$

Correct Answers:

- 1.98462
- 7.75385

13. (12 points)

For the instrumentation amplifier in the figure, R = 21 kilo ohms, $R_x = 34$ kilo ohms, $V_1 = 30$ millivolts, $V_2 = 15$ millivolts.

- (a) Compute and report V_O , in millivolts;
- (b) Now assume that the op amp is powered by a source V_{cc} = +/- 11 volts. What is the maximum input voltage difference (V_1 V_2) that will not saturate the op amp.

Hint: Work out V_O as a function of R_x , R, V_1 and V_2 first, and then substitute numerical values.

Figure:

 $V_O = \underline{\hspace{1cm}} mV$

 $(V_1 - V_2)_{\text{max}} = \underline{\hspace{1cm}} V$

Correct Answers:

- -33.5294
- 4.92105

14. (12 points)

In the circuit shown, R is 10 kilo-ohms. Both op amps are identical and powered from a -22/22 volts power supply. Determine:

- (a) what is the output voltage of each op amps, V_{oa} , V_{ob} and V_{na} , if we ignore the power supply; :
- **(b)** what is the output voltage of each op amp, V_{oa} , V_{ob} and V_{na} , if we consider the power supply;
- (c) To reduce the chance of saturation, should we increase or decrease R (enter 1 for increase, and minus 1 for decrease and 0 for no change).

Figure:

(a) $V_{oa} = _V V$

 $V_{na} = \underline{\qquad} V$

1

$$V_{ob} = \underline{\hspace{1cm}} V$$

(b)
$$V_{oa} = __V$$

$$V_{na} = \underline{\hspace{1cm}} V$$

$$V_{ob} = \underline{\hspace{1cm}} V$$

(c) To reduce the chance of saturation, should we increase or decrease R ____

Correct Answers:

- -36.6667
- 5
- 9.16667
- 22
- −3
- -5.5
- 0

15. (12 points)

In the circuit shown in the figure below, the feedback resistor R = 3 kilo-ohms.

- (a) What is the output voltage, V_o , in volts?;
- **(b)** If the op amp is powered from a -16/24 V power supply, what should be the value of R to saturate the amplifier, R_{sat} in kilo-ohms?

Figure:

$$V_o = \underline{\hspace{1cm}} V$$

$$R_{sat} = \underline{\hspace{1cm}} k\Omega$$

Correct Answers:

- 11.2
- 5

16. (12 points)

In the op amp circuit shown below, the feedback resistor is Rf = 5 kilo-ohms.

- (a) What is the output voltage, V_o , in volts, if we ignore the limits imposed by the power supply?;
- **(b)** If the op amp is powered from a -27/24 V power supply, what should be the minimum value of R_f that gets the amplifier into saturation, R_{sat} in kilo-ohms?
- (c) Under the saturation conditions attained in part (b) above, what is the output current of the op amp, I_o in milliamps, (assume the current I_o pointing to the right)?

Figure:

(a)
$$V_o = _V$$

(b)
$$R_{sat} = \underline{\hspace{1cm}} k\Omega$$

(c)
$$I_O = \underline{\hspace{1cm}} mA$$

Correct Answers:

- −3
- 29
- −2.35

17. (12 points)

In the circuit of the figure, $R = 8 k\Omega$.

- (a) What is the output voltage, V_o , in volts?;
- (b) What is the output current, I_o , in milliamps?

Figure:

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

(a)
$$V_o = __V$$

(b)
$$I_o = \underline{\hspace{1cm}} mA$$

Correct Answers:

- 153