Лабораторная работа № 4

Приближенное вычисление площади фигуры методом Монте-Карло

Цель: изучение метода Монте-Карло (метода статистических испытаний) на примере вычисления площади фигуры.

Метод Монте-Карло

Методы Монте-Карло или методы статистических испытаний — это группа численных методов, основанных на воспроизведении большого числа реализаций случайного процесса. Таким образом, суть метода заключается в статистическом моделировании случайных процессов, численном моделировании реализаций случайных процессов и оценивании параметров по реализациям случайных процессов методами математической статистики. Под численным статистическим моделированием обычно понимают реализацию с помощью компьютера вероятностной модели некоторого объекта с целью оценивания изучаемых интегральных характеристик на основе закона больших чисел. Свое экзотическое название метод получил от города Монте-Карло (княжество Монако), который известен благодаря своему казино, поскольку именно рулетка является одним из самых широко известных генераторов случайных чисел. Станислав Улам пишет в своей автобиографии «Приключения математика», что название было предложено Николасом Метрополисом в честь его дяди, который был азартным игроком.

Основоположники метода Монте-Карло

Николас Метрополис

Джон фон Нейман

Статистическое моделирование широко применяется для решения задач из различных областей человеческого знания. Среди них такие актуальные области как биология, химия, физика, экономика и другие.

К задачам, где широко используется этот подход, можно отнести следующие:

- численное интегрирование,
- расчеты в системах массового обслуживания,
- расчеты качества и надежности изделий,
- расчеты прохождения нейтронов и других частиц через вещество,
- передача сообщений при наличии помех,
- задачи теории игр,
- задачи динамики разреженного газа,
- задачи дискретной оптимизации,
- задачи финансовой математики.

Алгоритм вычисления площади фигуры

Применим метод статических испытаний или метод Монте-Карло к задаче вычисления площади геометрической фигуры на плоскости.

Метод заключается в следующем. Поместим данную фигуру в квадрат и будем наугад бросать точки в этот квадрат. Будем исходить из того, что чем больше площадь фигуры, тем чаще в нее будут попадать точки. Таким образом, при большом числе N точек, наугад выбранных внутри квадрата, доля точек, содержащихся в данной фигуре k, приближенно равна отношению площади этой фигуры и площади квадрата:

Если площадь квадрата равна S_0 и в результате N испытаний, из которых при k исходах случайные точки оказались внутри фигуры, то площадь фигуры S будет определяться выражением

$$S = \frac{k}{N} S_0 .$$

Рассмотрим алгоритм решения задачи на конкретном примере.

Рассмотрим фигуру, представленную на рис. 1а., площадь которой нам заранее известна и равна $S_{\mathrm{T}}=8{,}38404$. Вообще говоря, фигура может быть любой, но обязательно должны быть известны границы фигуры, в виде аналитического выражения или совокупности таких выражений и логических условий.

В нашем примере множество точек фигуры определяется следующей системой неравенств:

$$\begin{cases}
-2x^2 + y^3 < -1 \\
x^3 + 2y < 3 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

Площадь этой фигуры составляет часть прямоугольника площадью $S_0 = 4 \times 4 = 16$.

1. Генерируем случайные числа x и y равномерно распределенные на отрезке[-2,2]. Это будут координаты случайной точки в квадрате, в которую заключена фигура, площадь которой требуется найти. Полученная точка может как попасть в исследуемую фигуру, так и не

не попасть (рис. 1б).

2. Проверяем принадлежность точки (x,y) к исследуемой фигуре. Если попадания нет, т.е. не выполняется хотя бы одно из неравенств системы, то переходим к пункту 1 и генерируем координаты новой точки. Если попадание есть, то фиксируем это попадание. Значение счетчика числа попаданий увеличиваем на единицу и снова переходим к пункту 1.

Заметим, что попадание случайной точки точно на границу фигуры можно отнести как к первому, так и ко второму исходу.

Пункты 1 и 2 следует повторить в цикле достаточно большое число N раз. От этого, в конечном итоге, зависит точность вычислений. После проведения N повторов площадь фигуры найдем по формуле:

$$S = S_0 \frac{k}{N} .$$

Блок-схема алгоритма приведена на рис. 2.

Рис. 2

Пример текста программы на VBA:

```
Function mk(n)
Randomize
s = 0
For i = 1 To n
x = -2 + 4 * Rnd(1)
y = -2 + 4 * Rnd(1)
If (-2 * x ^ 2 + y ^ 3 < -1) And (x ^ 3 + 2 * y < 3) Then k = k + 1
Next
mk = 16 * k / n
End Function</pre>
```

Функция mk(n) возвращает значение площади фигуры при заданном числе испытаний n. Условия принадлежности случайной точки фигуре заданы в теле подпрограммы-функции.

На рабочем листе Excel, использую данную функцию, составим таблицу:

N	S	δ
10	4,8	0,427484
100	8,96	0,068697
1000	8,272	0,013363
10000	8,3664	0,002104
100000	8,36512	0,002257
1000000	8,37656	0,000892

В столбцах таблицы приведены соответственно число испытаний, найденная площадь и относительная погрешность метода Монте-Карло

$$\delta = \frac{|S - S_{\rm T}|}{S_{\rm T}} \ .$$

Задание 1

Составить и отладить программу определения площади фигуры методом Монте-Карло в соответствии с индивидуальным заданием.

Задание 2

Вычислить методом Монте-Карло определенный интеграл. Сравните результат со значением, полученным аналитическим путем при значениях N=10, 100, 1000, 10000, 100000, 1000000. Выразите относительную погрешность метода Монте-Карло при каждом значении N.

Исходные данные к заданию 1

Условия, ограничивающие область фигуры

1.
$$\begin{cases} x^2 - y^3 < 2 \\ x + y < 1 \\ -2 < x < 2 \\ -2 < y < 2 \end{cases}$$

$$\begin{cases} 2x^2 + y^3 < 2 \\ x + y < 1 \\ -2 < x < 2 \\ -2 < y < 2 \end{cases}$$

$$\begin{cases} 2x^2 + y^3 < 2 \\ x - y < 1 \\ -2 < x < 2 \\ -2 < y < 2 \end{cases}$$

$$\begin{cases}
-x^3 + y^5 < 2 & \begin{cases}
x - y < 1 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}
\end{cases}$$

$$\begin{cases}
-x^2 + y^3 < 2 & \begin{cases}
x - y < 1 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}
\end{cases}$$

$$\begin{cases}
-x^3 + y^4 < 3 \\
x - y < 1 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

$$\begin{cases}
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

7.
$$\begin{cases}
-x^3 + y^3 < 1 \\
-x + y < 1 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$
8.
$$\begin{cases}
-x^3 + 10y^3 < 2 \\
-x + y < 2 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$
9.
$$\begin{cases}
-x^3 - 5y^3 < 2 \\
-x + y < 2 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

$$\begin{cases}
-x^3 - y^3 < 2 \\
-x + y^2 < 2 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

$$\begin{cases}
-x^3 - y^4 < 2 \\
3x + y^2 < 2 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

$$\begin{cases}
-x^2 + y^3 < -1 \\
x + y < 1 \\
-2 < x < 2 \\
-2 < y < 2
\end{cases}$$

Контрольные значения площадей фигур по вариантам

Вариант	$S_{\scriptscriptstyle m T}$
1	6,37517
2	6,94246
3	4,82702
4	6,57343
5	9,39411
6	6,33624
7	9,92969
8	9,64255
9	8,38467
10	9,37331
11	7,13684
12	6,84359

Исходные данные к заданию 2

1
$$\int_{0}^{2} x^{2} dx$$
 2
$$\int_{\pi/2}^{4} \sqrt{x} dx$$
 3
$$\int_{0}^{\pi} \sin x dx$$
4
$$\int_{0}^{2} x^{3} dx$$
 5
$$\int_{-\pi/2}^{\pi/2} \cos x dx$$
 6
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx$$
7
$$\int_{0}^{\pi/4} \operatorname{tg} x dx$$
 8
$$\int_{0}^{1} (1+x)^{2} dx$$
 9
$$\int_{0}^{8} \sqrt[3]{x} dx$$
10
$$\int_{\pi/4}^{1} \operatorname{ctg} x dx$$
 11
$$\int_{0}^{1} \cos 2x dx$$
 12
$$\int_{0}^{1} \frac{x}{1+x^{2}} dx$$