PROOF OF THEOREM 5.4

1. First definitions and comparisons

Let Γ denote the category of finite based sets and based maps, and k a fixed ground field.

Definition 1.1. A *left* Γ-module is a functor $\Gamma \to \text{Mod}_k$, while a *right* Γ-module is a functor $\Gamma^{op} \to \text{Mod}_k$.

Definition 1.2. Given a DGA Λ and a Λ -module R, the (graded) Loday functor is the left Γ-module

$$\mathcal{L}(\Lambda, R): \Gamma \to \mathsf{Mod}_k, \qquad [k] \mapsto \Lambda^{\otimes_R k}.$$

Definition 1.3. Let Lie^{*}_m denote the dual Lie representation. We define a functor Ξ from left Γ-modules to bicomplexes by

$$\Xi(F)_{p,q} = \mathcal{B}_p\left(\operatorname{Lie}_{q+1}^*, \Sigma_{q+1}, F(q+1)\right) = \operatorname{Lie}_{q+1}^* \otimes k\left[\Sigma_{q+1}^{\times p}\right] \otimes F(q+1).$$

One differential comes from the bar complex and is easy; the other is more complicated.

Definition 1.4. Given a DGA Λ and a Λ -module R, the Γ -cohomology of Λ over R is the bigraded abelian group

$$H\Gamma^{*,*}(\Lambda, R) := H^* \text{ Tot Hom}_R^* (\Xi(\mathcal{L}(\Lambda, R)), R).$$

The above clarifies the notation from both of [RW02, Rob03] by resolving the ambigous placements of Ξ and also identifing the bidegrees.

Proposition 1.5 ([Rob03, Cor 3.7] or [Rob18, Cor. 3.17]). There is an isomorphism

$$\pi_{\star}(F) \cong H_{\star} \operatorname{Tot} \Xi(F)$$

natural in left Γ -modules F.

We actually need the dual result, which is not stated in [Rob03].

Proposition 1.6 ([Rob18, Cor 3.17]). For any right Γ -module F, the stable cohomotopy $\pi^n(F)$ is the cohomology of the complex

$$\pi^*(F) = H^* \operatorname{Tot}_{p,q} \operatorname{Hom} \left(\operatorname{Lie}_{q+1}^* \otimes k[\Sigma_{q+1}]^{\otimes p}, F(q+1) \right). \tag{1.7}$$

Lemma 1.8 ([Rob18, §4.9]). A homotopy ring spectrum $V = (V, \mu, \eta)$ determines a graded right Γ -module

$$[k] \longmapsto V^*(V^{\wedge k}) = \pi_* \mathsf{End}(V)$$

Remark 1.9. If *V* satisfies a universal coefficient theorem as on the left below,

$$V^*(V^{\wedge k}) \simeq \operatorname{Hom}_{V_*}^* \left((V_* V)^{\otimes k}, V_* \right) \qquad V^*(V^{\wedge \bullet}) \equiv \operatorname{Hom}_{V_*}^* \left(\mathcal{L}(V_* V, V_*), V_* \right) \tag{1.10}$$

then we have an isomorphism of graded right Γ -modules as on the right.

COMP_COR Corollary 1.11. For V satisfing (1.10), we have an isomorphism between Γ -homology of V_*V and the cohomotopy of $V^*(V^{\wedge \bullet})$.

Date: August 13, 2020.

UCT_REM

1

Proof. When F^* is the graded Γ-module $\text{Hom}_{V_*}^*$ ($\mathcal{L}(V_*V), V_*$), V_*), V_*), (1.7) implies we have isomorphisms

$$\pi^* \operatorname{Hom}_{V_*}^* (\mathcal{L}(V_*V), V_*), V_*) = H^* \operatorname{Tot}_{p,q} \operatorname{Hom}_{V_*}^* \left(\operatorname{Lie}_{q+1}^* \otimes k[\Sigma_{q+1}]^{\otimes p} \otimes (V_*V)^{\otimes q+1}, V_* \right)$$

$$= H^* \operatorname{Tot} \operatorname{Hom}_{V_*}^* \left(\Xi \mathcal{L}(V_*V, V_*), V_* \right). \tag{1.12}$$

Thus we have

$$\pi^* V^*(V^{\wedge \bullet}) = \pi^* \operatorname{Hom}_{V_*}^* (\mathcal{L}(V_* V, V_*), V_*)$$

$$= H^* \operatorname{Tot} \operatorname{Hom}_{V_*}^* (\Xi \mathcal{L}(V_* V, V_*), V_*)$$

$$= H\Gamma^{*,*}(V_* V, V_*)$$
(1.13) \[\{ \text{COMP_EQ}\}

where the first equality is by Remark 1.9, the second is by (1.12), and the third is by definition. \Box

2. Results

2.1. **Version 1.** In [Rob18], the main result is of a more general nature, living in stable cohomotopy, which is then specified in the case V satisfies a universal coefficient isomorphism to Γ-cohomology.

Theorem 2.1 ([Rob18, Thm. 4.13]). Let V be a homotopy commutative ring spectrum. Then the obstruction to lifting an n-stage lives in π^n ($V^{2-n}(V^{\land \bullet})$).

Corollary 2.2. If V is homotopy commutative and satisfies (1.10), then the obstruction lives in $H\Gamma^{n,2-n}(V_*V,V_*)$.

2.2. **Version 2.** In [Rob03], the obstruction is found in an explicit group, which is defined(?) to be Γ -cohomology, which is then related to stable cohomotopy.

Proposition 2.3 ([Rob03, Prop. 5.4]). For a homotopy commutative ring spectrum satisfying (1.10), the obstruction lives in $H\Gamma^{n,2-n}(V_*V,V_*) := H^n$ Tot $Hom_{V_*}^{2-n}(\Xi \mathcal{L}(V_*V,V_*,V_*))$.

Proof. Suppose we have a cofiber sequence

$$\nabla^{n} \cup \partial \nabla^{n+1} \wedge_{\Sigma_{m}} V^{\wedge m} \longrightarrow \nabla^{n+1} \wedge_{\Sigma_{m}} V^{\wedge m} \longrightarrow \nabla^{n+1} / (\nabla^{n} \cup \partial \nabla^{n+1}) \wedge_{\Sigma_{m}} V^{\wedge m}. \tag{2.4}$$

Moreover, we have

$$\nabla^{n+1}/(\nabla^n \cup \partial \nabla^{n+1}) \simeq \left(\tilde{T}_m/\partial \tilde{T}_m\right) \wedge \left(E\Sigma_m^{n-m+1}/E\Sigma_m^{n-m}\right)$$

$$\simeq \left(\bigvee_{(m-1)!} S^{m-2}\right) \wedge \left(\bigvee_A S^{n-m+1}\right)$$

$$\simeq S^{n-1} \wedge ((m-1)! \times A)_+$$

where $A = \Sigma_m^{n-m+2}$ and $\mathbb{Z}[(m-1)!] = \operatorname{Lie}_m^*$. Thus, by the LES in cohomology associated to (2.4), the obstruction to lifting the n-stage to an (n+1)-stage (using that the n-stage automatically lifts to $\partial \nabla^{n+1}$) lives in

$$V^{1}\left(\nabla^{n+1}/(\nabla^{n}\cup\partial\nabla^{n+1})\wedge_{\Sigma_{m}}V^{\wedge m}\right) = V^{2-n}\left(\left((m-1)!\times A\right)_{+}\wedge_{\Sigma_{m}}V^{\wedge m}\right)$$
$$= V^{2-n}\left(\left((m-1)!\times \bar{A}\right)_{+}\wedge V^{\wedge m}\right)$$

where $\Sigma_m \times \bar{A} = A$. By the universal coefficient isomorphism, this group is also given by

$$\operatorname{Hom}_{V_{*}}^{2-n}(\operatorname{Lie}_{m}^{*} \otimes V_{*}[\bar{A}] \otimes V_{*}V^{\otimes m}, V_{*}) = \operatorname{Hom}_{V_{*}}^{2-n}(\Xi_{n-m+1,m-1}\mathcal{L}(V_{*}V, V_{*}), V_{*}).$$

These combine to form an *n*-cochain in Tot $\operatorname{Hom}_{V_*V}^{2-n}(\Xi \mathcal{L}(V_*V,V_*),V_*)$.

so this is an issue if $A = \operatorname{Conf}_{n-m+2}(\Sigma_m)$, so the number of Σ_m -s is wrong

The rest of the proof shows this obstruction class is in fact a well-defined cocycle, using explicit information about Lie_m^* .

Corollary 2.5. The obstruction lives in π^n ($V^{2-n}(V^{\wedge \bullet})$).

3. Questions

Question 3.1. Which side of (1.13) is more conceptual? Easier to compute? Useful?

REFERENCES

Rob03 [Rob03] A. Robinson, *Gamma homology*, *Lie representations and* E_{∞} *multiplications*, Invent. Math. **152** (2003), no. 2, 331–348. doi:10.1007/s00222-002-0272-5 1, 2

Rob18 [Rob18] _____, E_{∞} obstruction theory, Homology Homotopy Appl. **20** (2018), no. 1, 155–184. doi:10.4310/HHA.2018.v20.n1.a10 1, 2

[RW02] A. Robinson and S. Whitehouse, *Operads and Γ-homology of commutative rings*, Math. Proc. Cambridge Philos. Soc. **132** (2002), no. 2, 197–234. doi:10.1017/S0305004102005534 1