Lineare Algebra 1 Hausaufgabenblatt Nr. 3

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 3, 2023)

Problem 1. Entscheiden Sie zu jedem der folgenden Objekte, welche der Bezeichnungen aus Definition 2.3.3 darauf zutreffen

- (a) $(\mathbb{R}, *, -2)$, wobei $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ durch a * b := a + b + 2 definiert ist.
- (b) $(\mathbb{R},\cdot,1)$
- (c) $(\mathbb{Z}/7\mathbb{Z}, -, 0)$, wobei $\overline{a} \overline{b} := \overline{a} + (-\overline{b})$
- (d) $(\mathbb{Z}\setminus\{0\},*,4)$ mit $*:\mathbb{Z}\setminus\{0\}\times\mathbb{Z}\setminus\{0\}\to\mathbb{Q},(a,b)\to ab^{-1}$

Proof. (a) Eine abelsche Gruppe. Es ist assoziativ:

$$a*(b*c) = a + (b+c+2) + 2$$

= $(a+b+2) + c + 2$
= $(a*b)*c$

Es gilt auch (-2)*x = (-2)+x+2 = x und auch x*(-2) = x für alle x, also e = -2 ist ein neutrales Element. Für jeder x gibt es auch $y = -(x+4) \in \mathbb{R}$, damit

$$y * x = -(x + 4) + x + 2 = -2 = e.$$

- (b) Kommutatives Monoid. Per Definition ist 1 das neutrale Element, und für jeder $0 \neq x \in \mathbb{R}$ gibt es $1/x \in \mathbb{R}$, und x(1/x) = 1. Aber es existiert keine $x \in \mathbb{R}$, so dass x0 = 1.
- (c) Magma. Es gilt

$$\overline{a} - (\overline{b} - \overline{c}) = \overline{a} + \left[-\left(\overline{b} - \overline{c}\right) \right]$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

$$= \overline{a} + (-\overline{b}) + \overline{c}$$
$$(\overline{a} - \overline{b}) - \overline{c} = \overline{a} + (-\overline{b}) + (-\overline{c})$$
$$\neq \overline{a} - (\overline{b} - \overline{c})$$

Deswegen ist – nicht assoziativ.

(d) Nichts. * ist keine Verknüpfung.

Problem 2. Es sei (M,\cdot) ein Magma, (H, \odot) eine Halbgruppe und $\alpha: H \to M$ eine surjektive Abbildung, die die Bedingung α $(a \odot b) = \alpha(a) \cdot \alpha(b)$ für alle $a,b \in H$ erfüllt. Zeigen Sie

- (a) Dann ist auch *M* eine Halbgruppe.
- (b) Ist H ein Monoid mit neutralem Element e, dann ist M ein Monoid mit neutralem Element $\alpha(e)$.
- (c) Ist (H, \odot, e) sogar eine Gruppe, dann ist $(M, \cdot, \alpha(e))$ eine Gruppe.
- *Proof.* (a) Sei β , γ , $\delta \in M$. Weil α surjektiv ist, gilt $\beta = \alpha(a)$, $\gamma = \alpha(b)$, $\delta = \alpha(c)$, a, b, $c \in H$. Es gilt

$$\beta \cdot (\gamma \cdot \delta) = \alpha(a) \cdot (\alpha(b) \cdot \alpha(c))$$

$$= \alpha(a) \cdot (\alpha(b \cdot c))$$

$$= \alpha(a \cdot (b \cdot c))$$

$$= \alpha((a \cdot b) \cdot c)$$

$$= \alpha(a \cdot b) \cdot \alpha(c)$$

$$= (\alpha(a) \cdot \alpha(b)) \cdot \alpha(c)$$

$$= (\beta \cdot \gamma) \cdot \delta$$

(b) Sei $\beta \in M$. Noch einmal haben wir $\beta = \alpha(b), b \in H$. Es gilt

$$\beta \cdot \alpha(e) = \alpha(b) \cdot \alpha(e)$$
$$= \alpha(b \bullet e)$$

$$=\alpha(b)$$

 $=\beta$

und ähnlich auch für $\alpha(e) \cdot \beta = \beta$.

(c) Wir müssen nur zeigen, dass es ein Inverse gibt. Sei $M \ni \beta = \alpha(a), a \in H$. Weil H eine Gruppe ist, existiert $a^{-1} \in H$, so dass $a \odot a^{-1} = e$. Es gilt

$$\beta \cdot \alpha \left(a^{-1} \right) = \alpha(a) \cdot \alpha \left(a^{-1} \right)$$
$$= \alpha \left(a \odot a^{-1} \right)$$
$$= \alpha(e)$$

Problem 3. Wir wollen die folgende Verknüpfungstabelle so vervollständigen, dass $(\{\partial, \eta, L\}, \bullet, \eta)$ zu einer Gruppe wird.

•	9	η	L
9			
η			
L			

- (a) Begründen Sie, dass es nur höchstens eine solche Verknüpfungstafel geben kann.
- (b) Füllen Sie die Tafel so, dass eine Gruppe entsteht und begründen Sie, dass Sie die Verknüpfungs-tafel einer Gruppe gefunden haben.

Proof. Notation: Ich schreibe ab statt $a \odot b$, für $a,b \in \{\partial,\eta,L\}$. Weil η das neutrale Element ist, muss die Verknüpfungstabelle so aussehen:

•	6	η	L
6		9	
η	9	η	L
L		L	

Wir brauchen Bedingungen, die mögliche Gruppe einzuschränken.

Lemma 1. Sei G eine Gruppe, $x, y, z \in G$, und

$$zx = zy$$
.

Es gilt dann x = y

Proof.

$$x = z^{-1}zx = z^{-1}zy = y.$$

Corollary 2. In jeder Zeile und Spalte kommt jedes Element nur einmal vor.

Leider ist es noch nicht genug, die Verknüpfungstabelle einzuschränken. Wir fangen deswegen an, und nehme an, dass $\partial^2 = L$ ist. Wir betrachten die erste Spalte und Zeile, und kommen zu die Schlussfolgerung, dass $\partial L = L\partial = \eta$.

•	9	η	L
6	η	9	
η	9	η	M
L	L	L	

Hier gibt es ein Problem: $L\partial = L$, und auch $L\eta = L$. Daraus folgt $\partial = \eta$, ein Widerspruch. Wir nehmen jetzt an, $\partial^2 = L$. Man kann die Verknüpfungstabelle ausfüllen.

•	6	η	L
6	L	9	η
η	6	η	L
L	η	L	9

Das ist die einzige Lösung (es gibt keine Möglichkeiten mehr). Die Gruppe ist $\cong C_3$. Man kann beachten, dass $\partial^2 = L, L^2 = \partial$. Per Definition ist es abgeschlossen. Es gilt auch

$$\partial^{-1} = \partial^2 = L$$

$$L^{-1} = L^2 = \partial$$

Jetzt beweisen wir Assoziativität. Wir betrachten

$$a(bc) \stackrel{?}{=} (ab)c, \qquad a,b,c \in \{\partial,\eta,L\}.$$

Im Fall, worin a,b oder c das neutrale Element η ist, folgt die Gleichung. Im Fall, worin nichts η ist, können wir $L=\partial^2$ einsetzen. Jetzt ist die Gleichung

$$\partial^{x} (\partial^{y} \partial^{z}) = (\partial^{x} \partial^{y}) \partial^{z}, \quad x, y, z \in \{1, 2\},$$

was immer gilt, weil die beide Seite gleich ∂^{x+y+z} sind. Deswegen ist \odot assoziativ. \square

Problem 4. Wir definieren die drei Abbildungen $c_1, c_2, c_3 : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ durch die Abbildungsvorschriften

$$c_1(1) = 2$$
 $c_1(2) = 1$ $c_1(3) = 4$ $c_1(4) = 3$ $c_2(1) = 3$ $c_2(2) = 4$ $c_2(3) = 1$ $c_2(4) = 2$ $c_3(1) = 4$ $c_3(2) = 3$ $c_3(3) = 2$ $c_3(4) = 1$

Zeigen Sie: $U := \{id, c_1, c_2, c_3\}$ ist eine Untergruppe von $S(\{1, 2, 3, 4\})$.

Proof. Die folgende Aussagen können durch direkte Verkettung bewiesen werden:

$$c_1 \circ c_2 = c_3$$

$$c_2 \circ c_3 = c_1$$

$$c_3 \circ c_1 = c_2$$

$$c_1 \circ c_1 = id$$

$$c_2 \circ c_2 = id$$

$$c_3 \circ c_3 = id$$

Deswegen ist jede Elemente invertierbar. Es folgt daraus auch, dass U abgeschlossen ist. id ist natürlich das neutrale Element.

Problem 5. Es sei

 $\mathcal{L} := \{ f : \mathbb{R} \to \mathbb{R} | \text{ ex existieren } a, b \in \mathbb{R}, a \neq 0, \text{ sodass für alle } x \in \mathbb{R} f(x) = ax + b \}.$

(a) Zeigen Sie: (\mathcal{L}, \circ, id) ist eine Gruppe, aber nicht abelsch.

(b) Wir definieren die Relation $\sim \subseteq \mathcal{L} \times \mathcal{L}$ durch die Festlegung $f \sim g$ genau dann, wenn f(x) - f(0) = g(x) - g(0) für alle $x \in \mathbb{R}$ gilt.

Zeigen Sie, dass dies eine Äquivalenzrelation ist und bestimmen Sie die Menge aller Äquivalenzklassen von \sim .

Proof. (a) Sei $f, g \in \mathcal{L}$, f = ax + b, g = cx + d, $a \neq 0 \neq c$. Es gilt

$$(f \circ g)(x) = a(cx+d) + b$$
$$= acx + ad + b$$

Weil $a \neq 0 \neq 0$, gilt $ac \neq 0$. Deswegen gilt, für

$$h: \mathbb{R} \to \mathbb{R}, h(x) = acx + ad + b$$

 $h \in \mathcal{L}$. $(\mathcal{L}, \circ, \mathrm{id})$ ist dann unter \circ abgeschlossen. Die Verkettung von Abbildungen ist immer assoziativ. Sei jetzt $e \in \mathcal{L}$, e(x) = 1x + 0 = x. Es gilt dann

$$e \circ f = f \circ e = f$$
,

also e ist ein neutrales Element. Sei $f^{-1}: \mathbb{R} \to \mathbb{R}$, $f^{-1}(x) = \frac{1}{a}x - \frac{b}{a}$. Weil $a \neq 0$, sind 1/a und b/a wohldefiniert, und $1/a \neq 0$. Es gilt

$$(f \circ f^{-1})(x) = a\left(\frac{x}{a} - \frac{b}{a}\right) + b$$

$$= x - b + b$$

$$= x$$

$$\left(f^{-1} \circ f\right) = \frac{1}{a}(ax + b) - \frac{b}{a}$$

$$= x + \frac{b}{a} - \frac{b}{a}$$

$$= x$$

Deswegen gilt $f \circ f^{-1} = e = f^{-1} \circ f$, also f^{-1} ist die Inverse von f. \mathcal{L} ist dann eine Gruppe.

(b) (i) (Reflexivität) Es gilt

$$f(x) - f(0) = f(x) - f(0)$$

für alle $x \in \mathbb{R}$.

(ii) (Symmetrie) Falls gilt

$$f(x) - f(0) = g(x) - g(0)$$

für alle $x \in \mathbb{R}$, gilt auch

$$g(x) - g(0) - f(x) - f(0), x \in \mathbb{R}.$$

(iii) (Transitivität) Sei $f, g, h \in \mathcal{L}$, für die gilt

$$f \sim g \iff f(x) - f(0) = g(x) - g(0), x \in \mathbb{R}$$

 $g \sim h \iff g(x) - g(0) = h(x) - h(0), x \in \mathbb{R}$

Es gilt, von die Transitivät der $=\subseteq \mathbb{R} \to \mathbb{R}$, dass

$$f(x) - f(0) = h(x) - h(0), x \in \mathbb{R},$$

also $f \sim h$

Ich vermute, dass die Äquivalenzklasse sind $f,g\in\mathcal{L}, f(x)=ax+b, g(x)=cx+d, a\neq 0\neq c$, so dass

$$f \sim g \iff a = c$$
.

Wir beweisen es: f(0) = b, g(0) = d, und daher f(x) - f(0) - ax, g(x) - g(0) = cx. Falls

$$ax = cx \forall x \in \mathbb{R}$$
,

muss a=c. Für $a \neq c$ gilt es, dass es mindestens ein Punkt $x_0 \in \mathbb{R}$ gibt, worauf $ax_0 \neq cx_0$. Deswegen sind die Äquivalenzklassen, für $f,g \in \mathcal{L}$, f=ax+b,g=cx+d

$$f \sim g \iff a = c.$$