一. 方阵对角化.

F域、V线堤空间 dingV=n 丛(V)=产4:以水线收映)

1. 基变换: V — V 与基(lei…en)(lei…fn).

(e, ... en) P = (f, ... fn)

 $\frac{(e_1 \cdots e_n) \binom{x_1}{y_n}}{(e_1 \cdots e_n) \binom{x_1}{y_n}} = (f_1 \cdots f_n) \binom{y_1}{y_n} = (e_1 \cdots e_n) P\binom{y_1}{y_n}}{(e_1 \cdots e_n) \binom{x_1}{y_n}}$ $= (f_1 \cdots f_n) \binom{y_1}{y_n} = (f_1 \cdots f_n) \binom{y_1}{y_n} = (f_1 \cdots f_n) \binom{y_1}{y_n}$

相1的。 线性映射不依赖基的选取.

 $\Psi: V \rightarrow V$

A,(B)为 中在基心心的 . (f,... fn) 下对应的矩阵.

应有: $P^{T}A = BP^{T}$ i.e. $B = P^{T}AP$ $F^{n} \xrightarrow{A} F^{n}$ $F^{n} \xrightarrow{A} F^{n}$ $F^{n} \xrightarrow{B} F^{n}$

2. (Cayley-Hamilton) $\Psi_{A}(\lambda) = \det(\lambda \mathbf{I} - A) \in \mathbb{F}[]$. $\Pi_{A}(A) = 0$.

· $\Psi_{A}(\lambda) = \frac{1}{\pi} (\lambda - \lambda_i)^{n_i}$ n; 村 数重数

$m_i = \dim \ker(\lambda_i I - A)$ 几何重數。
Pem: 从 Jondon 标、准型看.
3. V. Y E L(V). M 为 Y - 不衰 3 空间
岩中可对南比,四 中1 μ 可对南化
4. V. 46 L(V).
4 可对角水 (4) 对任意 4- 不变正空间 M. 存在
Y-N愛空间N、彼V=MBN.
Hint: 中可对南比() V= BVxi Vx; = kur (\illa, I-A).
5. AE Mn(C). A 相似于上流阵. (113物).
b. A, Az = M,(C). A, Az = Az A,
M A、的特征了定同为A的不变了空间
7. A, Az & Ma(C). A, Az = Az A,
刚 A.A.可可对上海化.
Proof: (= 6. # n 1127 21th).
8. J为集合、AjeMn(6) VjeJ.
∀injeJ. A: Aj = AjAi.
MI在在PEGLn(C), s.t. PTA, P为上海阵.
Proof: 放X= {Wev(YjeJ, Aj(W) = W).
D W # o

定义偏序: W, ←W, 若 W2 ⊆ W.
O XIΦ. ← V∈X.
②取(Wk) REK. 度W= ∩Wk keK
KEK
· W: YjeJ, Aj(W) & W.
· W = foll is m = min din Wx Kek
R1 m 3 +1.
RUZIKEK sit dim WKZM.
往证 Wx=W.
• 2
· C kil, PZ.
Z_{rin} 程本在极大元 $W_{o} \in X$, $W_{o} \neq 0$.
Claim: $\forall j \in J$, $\exists \lambda_j \in C$, s,t $\forall s \in \ker(\lambda_j I - A_{\tilde{s}})$
prof. Billy KerlisI-AsInw, & Wa
124 6= KerlasI-AsIn W. EX
与W极小性矛盾。
最后,利用旧动流、【对dim U 旧的)

9. 丁为集合、Aj EMn(6). VjEJ. 可对南北
∀ijeJ. A: Aj = AjAi.
MI在在PEGLn(C), st. PTA, P为对角阵
10(随便看看)G有限Abel群、中:G→GLnC)是自己态。
TEPA: O 486G. 4(8) N = In. N = 161.
图 4 3 6 G. 4(9) 可对南化,
③ JPE GLn(G). PTOO)P对南阵. YgeG.
(中] n,···nk 使 (G) ~ 3/n,2 →··· +2/n,2
Abu \$4 PE
B & C[G] = { I by [g] by EC. YgeG}
JEG.
13 { [8]; 86G] 为基的 C-线性空间、
G到G[G]上的作用:
$h.(\Sigma\lambda_3 \mathcal{I}_{37}) := \Sigma \lambda_3 \mathcal{I}_{3h}$
h. (エカナ87) = エカg [gh] sen gen gen is. G → GL(C[G]) 単同志
73. 01 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
$\mathfrak{G} \Rightarrow G \cong \mathcal{Y}(G) \cong \mathcal{Y}_{n,2} \oplus \cdots \oplus \mathcal{Y}_{n,3}$
多 3 G ⊇ Y(G) ⊇ 型/12 ●··· ●光/2. ig. 有限 Abel 君 同构于一些循环程的直和".
Abu # 4 60 to to.

11. 沒
$$f(x) \in C[X]$$
. $f_1 \dots f_k \in C[X]$.

 $f_1 \dots f_k$ 两两互素. $f_2 = f_1 \dots f_k$
若 $A \in GL(V)$. $f(A) = 0$
 RI $V = \bigoplus_{i=1}^{k} kor f_i(A)$.

Hint: 1月3的.

12.
$$\Psi_{A}(x) = \frac{1}{\pi} (x - \lambda;)^{m} \Rightarrow V = \frac{1}{\pi} \ker (\lambda; I - A;)^{m}$$
.

$$d_{A}(x) = \bigcup_{i=1}^{k} (x - \lambda_i)^{t_i} = \bigvee_{i=1}^{k} \bigcup_{j=1}^{k} \lambda_j (x - \lambda_j)^{t_i}$$

13. Jordan 标准型:

四:必须在 (上)或其他代数闭域 R L 入行

「 igng: SPT展がFA, B如加人⇔ Pa(a)=PB(a), Ola(N)=dB(a) 打ちには 2 み足V上戦中変元 且V中行意小参与参のおみがが配向着 別分が持行信意物がn=dimV

- · 注意必须是ES阶、 直接利用 Jordan标准型。
- 2. $V = \bigoplus_{i=1}^{k} \ker(\lambda i J A)^{m_i} = \ker(\lambda I A)^{m_k}$

lemme: V, V, ..., Vn 残性空间. V=V, ●Vn ⇒ ÛVz ⊊V.

Fact: V、 \$ V ··· Vn \$ V 有脚R - 线性空间. ⇒ ① V; \$ V ···

D. S. · 这个Fact 纯代数方法要难证的.

·无限雅是错的

14. A 会算 Jordan标准型