The cost of pre-training LMs

Scaling Llama-2

The cost of using LMs

```
[13] from transformers import AutoTokenizer, AutoModelForCausalLM
       tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v0.6")
       model = AutoModelForCausalLM.from pretrained("TinyLlama/TinyLlama-1.1B-Chat-v0.6").cuda()
       tokenizer.padding_side = "left"
       sentences = tokenizer([
           "<|user|>\n What is cheesecake? \n <|assistant|>\n",
           "<|user|>\n Where is Mars? \n <|assistant|>\n",
           "<|user|>\n Who is Obama? \n <|assistant|>\n",
           "<|user|>\n Write a letter for Santa. \n <|assistant|>\n",
           "<|user|>\n Write me a recommendation letter. \n <|assistant|>\n"]*20, return_tensors="pt", padding=True, truncation=True
       model_out = model(sentences["input_ids"].cuda())
       model out
                                                 Traceback (most recent call last)
       OutOfMemoryError
       <ipython-input-31-af62093f2f7c> in <cell line: 8>()
                   "<|user|>\n Write a letter for Santa. \n <|assistant|>\n",
                   "<|user|>\n Write me a recommendation letter. \n <|assistant|>\n"]*20, return_tensors="pt", padding=True, truncati
       ----> 8 model_out = model(sentences["input_ids"].cuda())
             9 model_out
                                       11 frames
       /usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py_in_forward(self, hidden states)
                       variance = hidden states.pow(2).mean(-1, keepdim=True)
                       hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
                       return self.weight * hidden_states.to(input_dtype)
       OutOfMemoryError: CUDA out of memory. Tried to allocate 18.00 MiB. GPU 0 has a total capacty of 14.75 GiB of which 11.06 MiB is
       use. Of the allocated memory 14.18 GiB is allocated by PyTorch, and 437.93 MiB is reserved by PyTorch but unallocated. If rese
       setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
```

Efficient training

Scaling Laws

• Scaling Laws for Neural Language Models (Kaplan et al. 2020)

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Chinchilla Scaling Laws

- Refinement using more data points & better training recipe
- ullet Given C FLOPS, what model size N and training tokens D should one use?

Chinchilla Scaling Laws

Propose a form for the final loss:

$$L(N,D) = E + rac{A}{N^lpha} + rac{B}{D^eta}$$

- Fit it on data points
 - E = 1.69 ("entropy of natural language")
 - \circ A = 406.4, B = 410.7, α = 0.34, β = 0.28

Chinchilla Scaling Laws

- ullet Compute C=O(ND) ($C\simeq 6ND$)
- ullet For a given compute level C, there exist an optimal N^* and D^*
 - Training a bigger model on less data => worse
 - Training a smaller model on more data => worse

8

Chinchilla Scaling Laws - In practice

- Train for longer than announced by laws
 - Why?
- Over-train smaller models
 - Trade training compute for inference compute
- Example: Mistral-7B model

Chinchilla Scaling Laws - In practice

Training LMs

- Batch size matters:
 - No bigger than 1-2M tokens (Kaplan et al., 2020)
 - Maximize parallel computation
- Float precision:
 - ofloat16: reduces memory usage, good with V100-gen GPUs
 - o bfloat16: more stability, but only usable with A100-gen GPUs

Training LMs - Efficient implementations

• FlashAttention (Dao et al. 2022)

Training LMs - Efficient implementations

• FlashAttention2 (Dao et al. 2023)

Training LMs - Efficient implementations

- xFormers & Memory-efficient attention (Rabe et al. 2021)
 - Classical implementation

$$s_i = \operatorname{dot}(q, k_i), \qquad s_i' = \frac{e^{s_i}}{\sum_j e^{s_j}}, \qquad \operatorname{attention}(q, k, v) = \sum_i v_i s_i'.$$

Memory-efficient implementation

$$s_i = \operatorname{dot}(q, k_i), \qquad s_i' = e^{s_i}, \qquad \operatorname{attention}(q, k, v) = \frac{\sum_i v_i s_i'}{\sum_j s_j'}.$$

~SOTA on V100-gen GPUs

Training LMs - Efficient variants

• Linear attention (e.g. Beltagy et al. 2020)

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

- Can be used to adapt model for efficient inference
- Used in Mistral-7B

Training LMs - Large-scale training

- Dream scenario:
 - Model fits on the GPU
 - Forward + backward fit with the batch_size
 - Optimization fits memory

Training LMs - Large-scale training

- Optimization OOM scenario
 - Model fits on the GPU
 - Forward + backward fit with the batch_size
 - Optimization saturates GPU
- Use memory-efficient optimizers
 - Adafactor: factor momentum matrix in Adam
 - CAME: regularize Adafactor
 - LION: only tracks momentum

Training LMs - Large-scale training

- Forward/backward OOM scenario
 - Model fits on the GPU
 - Forward + backward saturates with the batch_size
- Use gradient accumulation
 - \circ Compute forwards with <code>micro_batch_size</code> \ll <code>batch_size</code>
 - o Sum micro_batch_size//batch_size gradients
 - Backward once

Training LMs - Multi-GPU training

- Distirbuted Data Parallel (DDP) with k GPUs
 - Copy the model on the k GPUs
 - Send a micro-batch to each GPU
 - Compute forward/backward in parallel on each GPU
 - Send gradients to one GPU & optimize
 - Send weight updates to each GPU

Training LMs - Multi-GPU training

- Model OOM scenario
 - Model does not fit on one GPU (e.g. micro_batch_size=1 fails)
- Model parallelism

Training LMs - FSDP

Fully sharded data parallel training

Training LMs - DeepSpeed

- Similar to FSDP:
 - Shares model weights...
 - but also optimizer states...
 - and gradients
- For relevant sizes: not that different in speed

Adapting LMs - Adapters

Parameter-Efficient Transfer Learning for NLP (Houlsby et al. '19)

Adapting LMs - LoRA

• Low-Rank Adaptation of Large Language Models (Hu et al. '21)

Adapting LMs - LoRA vs Adapters

• Better + more stable results across hyper-parameters

Efficient inference

Previous methods hold

- Efficient attention implementations & variants
 - FlashAttention / xFormers
 - Linear attention
- Model parallelism (FSDP & DeepSpeed)
- LORA weights for fast model "switching"
 - Keep big model in memory
 - Load task-specific LoRA when required

Quantization

- Changes the data type of a model (e.g. float32 -> int4)
- Models are usually trained in float16 or bfloat16 for stability
- Needs rescaling:

$$Q_{i_4}(0.3) \neq 0$$

LM quantization

• GPTQ (Frantar et al. 2023)

Figure 1: Quantizing OPT models to 4 and BLOOM models to 3 bit precision, comparing GPTQ with the FP16 baseline and round-to-nearest (RTN) (Yao et al., 2022; Dettmers et al., 2022).

Consider quantization as an optimization problem:

$$|\langle \operatorname{argmin}_{\hat{W}}||WX - \hat{W}X||_2^2$$

where W is a weight matrix to quantize into \dot{W} , and X are data points (e.g. token sequences)

- ullet For each row, quantize some W_{ij} by solving the quadratic problem and adjust the non-quantized coefficients of W_i to minimize impact
- *Empirical*: update order does not matter
- Update at smaller scale and batch whole matrix updates
- Precompute Hessian (needed for adaptation) on non-quantized coefficients since they can be taken left-to-right

• A matter of minutes/hours (on a single A100 GPU)

OPT	13B	30B	66B	175B
Runtime	20.9m	44.9m	1.6h	4.2h
BLOOM	1.7B	3B	7.1B	176B
Runtime	2.9m	5.2m	10.0m	3.8h

Table 2: GPTQ runtime for full quantization of the 4 largest OPT and BLOOM models.

• Inference speed/memory is greatly increased:

GPU	FP16	3bit	Speedup	GPU reduction
A6000 – 48GB A100 – 80GB				$\begin{vmatrix} 8 \to 2 \\ 5 \to 1 \end{vmatrix}$

Table 6: Average per-token latency (batch size 1) when generating sequences of length 128.

While performance is maintained (OPT perplexity

Managing KV cache - vLLM

Paged Attention (Kwon et al. 2023)

0. Before generation.

Seq Prompt: "Alan Turing is a computer scientist"
Completion: ""

Logical KV cache blocks

Block 0		
Block 1		
Block 2		
Block 3		

Block table

Physical block no.	# Filled slots
_	_
_	_
_	_
_	_

Physical KV cache blocks

Block 0		
Block 1		
Block 2		
Block 3		
Block 4		
Block 5		
Block 6		
Block 7		

Managing KV cache - vLLM

Better throughput + parallelization across requests

Long KV cache - StreamingLLM

• Efficient Streaming Language Models with Attention Sinks (Xiao et al. 2023)

Model reduction

DistilBERT (Sanh et al. 2019)

DistilBERT (Sanh et al. 2019)

- Can be expensive if teacher is big
- Still loses performance

Sheared Llama (Xia et al. 2023)

Remove weights that minimize loss increase

Continue the pretraining of the obtained reduced model

Sheared Llama (Xia et al. 2023)

Get a good model with much less data/compute

