Задачи для зачёта (2019)

1. Пусть система S' движется относительно системы S со скорость V вдоль оси z. Часы, по-
коящиеся в S' в точке (x'_0, y'_0, z'_0) , в момент t'_0 проходят мимо точки (x_0, y_0, z_0) в системе S
, где находятся часы, показывающие в этот момент время t_0 . Написать формулы преобразова-
ния Лоренца для этого случая.
2. Длину стержня, движущегося вдоль своей оси в некоторой системе отсчета, можно находите таким образом: измерять промежуток времени, в течение которого стержень проходит мимо фиксированной точки этой системы, и умножать его на скорость стержня. Показать, что при таком методе измерения получается обычное Лоренцево сокращение длины отрезка.
3. Пусть для измерения времени используется периодический процесс отражения светового "зайчика" попеременно от двух зеркал, укрепленных на концах стержня длиной l . Один период – это время движения "зайчика" от одного зеркала до другого и обратно. Световые часы неподвижны в системе S' и ориентированы параллельно направлению движения. Показать, что интервал собственного времени $d\tau$ выражается через промежуток времени dt в системе S формулой $d\tau = dt\sqrt{1-V^2/c^2}$.
друг другу параллельно общей оси x . Наблюдатель, связанный с одним из них, заметил, что между совпадениями левых и правых концов масштабов прошло время Δt . Какова относительная скорость масштабов?
$\sqrt{1-rac{v^2}{c^2}}=rac{\sqrt{1-{v'}^2/c^2}\cdot\sqrt{1-{V}^2/c^2}}{1+(ec v'\cdotec V)/c^2}$, в которой $ec v$ и $ec v'$ — скорости частицы в си-
стемах S и S' , $\vec{V} = V$ \vec{z}_0 — скорость S' относительно S .
6. Два масштаба, каждый из которых имеет в своей системе покоя длину l_0 , движутся навстречу друг другу с равными скоростями v относительно некоторой системы отсчета. Какова длина l каждого из масштабов, измеренная в системе отсчета, связанной с другим масштабом?
7. Найти частоту <i>ω</i> световой волны, наблюдаемую при поперечном эффекте Доплера (направление распространения света перпендикулярно направлению движения источника в системе связанной с приемником света). Каково направление распространения рассматриваемой волны в системе, связанной с источником?

8. Длина волны света, излучаемого некоторым источником в той системе, в которой источник покоится, равна λ_0 . Какую длину волны λ зарегистрируют: а) наблюдатель, приближающийся со скоростью V к источнику, и б) наблюдатель, удаляющийся с такой же скоростью от источника? 9. Монохроматичный свет частоты ω_0 падает нормально к поверхности плоского зеркалад движущегося равномерно со скоростью \vec{v} в направлении распространения падающего света. Определить частоту отражённого света.		
11. Масса покоя частицы m . Выразить ее скорость v через: 1) полную энергию W , 2) кинетическую энергию T и 3) импульс p .		
12. Неподвижный π -мезон распадается на μ -мезон и нейтрино (m =0). Зная массы π - и μ -мезонов, вычислить кинетическую энергию π -мезона.		
13. π_0 -мезон с массой покоя m , движущийся со скоростью v , распадается на два одинаковых γ -кванта. Определить угол разлета γ -квантов.		
14. Возбужденное атомное ядро переходит в основное состояние путем испускания γ -кванта. Масса ядра в основном состоянии m . Энергия возбуждения ΔW . Определить частоту γ -кванта.		
15. Найти скорость v частицы с массой m и зарядом e , прошедшей разность потенциалов V (начальная скорость равна нулю).		
16. Частица с массой m_{10} и скоростью v сталкивается с покоящейся частицей массы m_{20} и поглощается ею. Найти массу m_0 и скорость V образовавшейся частицы.		

•	E релятивистской заряженной частицы с зарядом e , массой m и началь в тормозящем однородном электрическом поле \vec{E} , параллельном скорости
-	ижение релятивистской заряженной частицы (m,q) в однородном посторм поле. Начальная скорость частицы равна нулю.
19. Определить дви янном магнитном п	жение релятивистской заряженной частицы (m,q) в однородном постооле $(ar{B})$.