Basic Equivalences

Equivalence	Name
$p \wedge T \equiv p$ $p \vee F \equiv p$	Identity Laws
$p \lor T \equiv T$ $p \land F \equiv F$	Domination Laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent Laws
$\neg(\neg p) \equiv p$	Double Negation
$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$	Commutative Laws
$(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative Laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive Laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's Laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption Laws
$p \wedge \neg p \equiv F$	Contradiction
$p \vee \neg p \equiv T$	Excluded Middle
$p \to q \equiv \neg p \lor q$	Implication simplification
$p \to q \equiv \neg q \to \neg p$	Contrapositive
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	Biconditional