Universidad de Granada. Ecuaciones Diferenciales I. Grupo A 16 de Marzo de 2017

NOMBRE:

1. Se considera la familia de curvas

$$xy = c$$

donde $c \in \mathbb{R}$ es un parámetro. Calcula la familia de trayectorias ortogonales y dibuja las dos familias de curvas sobre el plano (x, y).

Ec. diferencial de V:

What $V_0 = 0$ = $V_0 = -V_0 = V_0$ Ec. diferencial de V_0^{\perp} : $V_0^{\perp} = \frac{V_0}{V_0} = \frac{V_0}{V_0$

2. Demuestra que la ecuación

$$e^{x+t} + x = 0$$

define de forma implícita una función x = x(t) que es derivable y está definida en todo \mathbb{R} . Encuentra una ecuación diferencial que admita a esta función como solución.

Probemos que la ecuación define una función veamos $Y + e^{-1} = 1$ $X + e^{-1} = 1$ X +

Al ser continua y por el resultado de los Irmites, por ta Bolzano, es sobreyectiva.

Por tanto, F_{+} es biyectivo \Rightarrow VtelP, 3_{1} xelP/ $F_{+}(x) = 0$

Useunos To función implícito povo ver que F es derivable, aplicandolo VtEIR.

 $\frac{\partial F}{\partial x}(t,x) = e^{x+t} + 1 \neq 0 \qquad \forall (t,x(t)) \in \mathbb{R}^2$

 $\frac{\partial}{\partial t} \left[F(t_1 \times (t)) \right] = \frac{\partial F}{\partial t} (t_1 \times (t)) + \frac{\partial F}{\partial x} (t_1 \times (t)) \times (t) = \frac{\partial F}{\partial t} (t_1 \times (t)) \times (t) = \frac{\partial$

Son ec. diferenciales differentes con la misma solución.

3. El sistema

$$x' = y, \quad y' = x$$

admite la solución (x(t), y(t)) con $x(t) = y(t) = e^t$, definida para todo $t \in \mathbb{R}$. Dibuja la órbita asociada en el plano (x, y). Encuentra la ecuación diferencial de las órbitas de este sistema.

Orbita: [(et,et)/te/].

Los exponenciales toman valores
en 18t

 $\frac{dy}{dx} = \frac{e^{+}}{e^{+}} = 1$ seria la solución concreta de las órbitos, pero no su ecuación diferencial.

4. Se considera el cambio de variables

$$\varphi: s = x, y = t.$$

¿En qué circunstancias se puede asegurar que es un cambio admisible para la ecuación diferencial $\frac{dx}{dt} = f(t,x)$ con $f: \mathbb{R}^2 \to \mathbb{R}$ continua? Se considera la nueva ecuación $\frac{dy}{ds} = \hat{f}(s,y)$, ¿Qué relación hay entre f y \hat{f} ?

Para acequirar que el eambio sea admisible:

$$\frac{8(s_1 + s_2)}{8(s_1 + s_2)} = \frac{\frac{34^2}{34}(t_1 + s_2)}{\frac{34}{34}(t_1 + s_2)} = \frac{1}{8(t_1 + s_2)} = \frac{1}{8(t_$$

5. Dada una función $F: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto F(x,y)$ de clase C^1 y un punto $(x_0,y_0) \in \mathbb{R}^2$ tal que $F(x_0,y_0)=0$ se considera el problema de funciones implícitas

$$F(x, y(x)) = 0, y(x_0) = y_0.$$

Encuentra (si es que existen) una función F y un punto (x_0,y_0) en las condiciones anteriores y para los que el problema de funciones implícitas no admita solución.

Nota: se considera el problema local, la posible solución y(x) está definida en algún entorno de x_0