NE 155/255, Fall 2019

Nuclear Physics Terms, continued September 11, 2019

3. **double-differential scattering x-sec** $(\sigma_s(E, \hat{\Omega} \to E', \hat{\Omega}')dE'd\hat{\Omega}')$: measure of the probability that a neutron of energy E and moving in direction $\hat{\Omega}$ scatters off of a specific nucleus into energy range [E', E' + dE'] and direction range $[\hat{\Omega}', \hat{\Omega}' + d\hat{\Omega}']$.

We can think of this as the fractional probability multiplied by the total scattering cross section

$$\begin{split} \sigma_s(E,\hat{\Omega}\to E',\hat{\Omega}') &= \sigma_s(E) f_s(E,\hat{\Omega}\to E',\hat{\Omega}') \\ \text{where } \int_0^{E_0} dE' \int_{4\pi} d\hat{\Omega}' \; f_s(E,\hat{\Omega}\to E',\hat{\Omega}') &= 1 \\ \sigma_s(E) &= \int_0^{E_0} dE' \int_{4\pi} d\hat{\Omega}' \; \sigma_s(E,\hat{\Omega}\to E',\hat{\Omega}') \end{split}$$

- 4. **fission yield** $(\nu(E))$: average # of neutrons released by a fission induced by a neutron of energy E.
- 5. **fission spectrum** ($\chi(E)dE$): average # of neutrons produced from fission that are born with energy in [E, E+dE]. This is normalized such that

$$\int_0^\infty \chi(E)dE = 1 .$$

- U-235: $\chi(E) = 0.453e^{-1.036E} \sinh(\sqrt{2.29E})$
- Pu-239: $\chi(E) = 0.6739\sqrt{E}e^{-E/1.41}$
- 6. **particle angular density** $(n(\vec{r}, E, \hat{\Omega}, t)d\vec{r}d\hat{\Omega}dE)$: expected number of particles in volume element d^3r at \vec{r} whose energies are in [E, E+dE] and direction of motion is in $[\hat{\Omega}, \hat{\Omega}+d\hat{\Omega}]$ at time t.

Note:

$$n(\vec{r}, E, \hat{\Omega}, t) = \frac{1}{mv} n(\vec{r}, v, \hat{\Omega}, t)$$
$$n(\vec{r}, v, \hat{\Omega}, t) = v^2 n(\vec{r}, \vec{v}, t)$$
$$n(\vec{r}, \vec{v}, t) = \frac{m}{v} n(\vec{r}, E, \hat{\Omega}, t)$$

Figure 1: Differential volume, velocity (energy), and angle

7. **particle density**: $(N(\vec{r}, E, t)d^3rdE)$: expected number of particles in d^3r at \vec{r} whose energies are in [E, E + dE] at time t.

$$N(\vec{r}, E, t)d^3rdE = \int_{4\pi} d\hat{\Omega} \, n(\vec{r}, E, \hat{\Omega}, t)d^3rdE$$

- 8. **angular flux**: $\psi(\vec{r}, E, \hat{\Omega}, t) \equiv vn(\vec{r}, E, \hat{\Omega}, t)$ [neutrons / (cm² s MeV steradian)] can be thought of as path length per unit volume about \vec{r} passed by neutrons with energies...
- 9. **scalar flux**: $\phi(\vec{r}, E, t) \equiv vN(\vec{r}, E, t)$ [neutrons / (cm² s MeV)] can be thought of as the number of neutrons that penetrate a sphere of 1 cm² cross sectional area at \vec{r} with energies in dE about E at time t.

$$= \int_{A\pi} d\hat{\Omega} \, \psi(\vec{r}, E, \hat{\Omega}, t)$$

10. **interaction rate density**: expected number of j reactions per volume per energy at time t.

$$\int_{4\pi} d\hat{\Omega} \, \Sigma_j v n(\vec{r}, E, \hat{\Omega}, t) = \Sigma_j \phi(\vec{r}, E, t)$$

11. angular current density or partial current: $\vec{j}(\vec{r}, E, \hat{\Omega}, t) = \vec{v}n(\vec{r}, E, \hat{\Omega}, t)$;

 $\vec{j}(\vec{r},E,\hat{\Omega},t)\cdot\hat{e}\ dA\ dE\ d\hat{\Omega}$ is the expected number of particles crossing dA per second along unit direction \hat{e} with energy in [E,E+dE] and direction in $[\hat{\Omega},\hat{\Omega}+d\hat{\Omega}]$ at time t.

12. **net current**: $\vec{J}(\vec{r}, E, t)$ is the net # of particles crossing a unit area per second along a direction normal to that area with energies in [E, E + dE] at time t.

$$\vec{J}(\vec{r}, E, t) = \int_{4\pi} d\hat{\Omega} \, \hat{\Omega} \psi(\vec{r}, E, \hat{\Omega}, t)$$