Tratamento Estatístico de Dados em Física Experimental - Atividade 06

Teorema Central do Limite e intervalos de confiança

Envie as respostas na forma de arquivos CSV ou arquivos de texto com colunas separadas por tabulação para o formulário https://forms.qle/aX1Kk8WeNek9Wqdx5. Essa atividade deve ser entregue até às **23h59** do dia 29/09 (quarta-feira). Até o final do prazo é possível mudar as respostas.

Recomenda-se iniciar o gerador de números aleatórios com a semente igual ao seu número USP. No Python, isso é feito pelo comando np.random.seed(nU) com nU o seu número USP.

Questão 1) Considere a função densidade de probabilidade definida por:

$$f(x) = \begin{cases} \frac{3}{2}x^2 & \text{se } |x| \le 1\\ 0 & \text{caso contrário} \end{cases}$$

cujo valor verdadeiro é $x_0=0$ e o desvio-padrão (verdadeiro) é $\sigma_x=\sqrt{3/5}$ (verifique)

Faça uma rotina para gerar valores de x de acordo com essa função de densidade de probabilidade.

a) Gere um conjunto com N=10.000 dados e preencha a coluna (1) do Quadro 1 com o número de valores observados em cada um dos intervalos indicados e com as estimativas amostrais dos indicadores de forma assimetria, \boldsymbol{A} (scipy.stats.skew), e de curtose excedente, \boldsymbol{K} (scipy.stats.kurtosis). Escreva os valores amostrais dos indicadores de forma usando 2 casas decimais.

Quadro 1 - Respostas numéricas da Questão 1.

	Quadro 1 Nespostas namenous da Questas 1.										
	(1)	(2)	(3) M=3	(4) M=5	(5) M=10	(6) M=100					
λ	$ n(x-x_0 \leq \lambda\sigma_x)$	$ n(y-y_0 \leq \lambda\sigma_y)$	$ n(S-S_0 \leq \lambda\sigma_S)$	$ n(S-S_0 \leq \lambda\sigma_S) $	$ n(S-S_0 \leq \lambda\sigma_S)$	$n(S-S_0 \leq \lambda\sigma_S)$					
1											
1,5											
2											
2,5											
3											
A											
K											

b) Considere agora que cada dado, y, seja a soma de dois valores que seguem a função f(x) (isto é, que $y=x_1+x_2$). Gere N=10.000 valores independentes de y (o que implica em gerar, 20.000 valores de x) e preencha a coluna (2) do Quadro 1 com o número de valores de y observados em cada um dos intervalos indicados. Note que $y_0=2x_0$ e que $\sigma_y=\sqrt{2}\sigma_x$. Calcule também as estimativas amostrais dos indicadores de forma, A e K, e os escreva com 2 casas decimais.

c) Faça uma rotina para calcular dados de uma variável S definida como $S = \sum_{i=1}^{M} x_i$, para os casos com M=3, 5, 10 e 100. Em seguida, preencha as colunas (3)-(6) do Quadro 1 com os resultados de conjuntos com N=10.000 valores independentes de S (o item **a** corresponde a M=1, quando $S=x=x_1$, e o item **b** ao caso M=2, quando $S=y=x_1+x_2$). Note que $S_0=Mx_0$ e que $\sigma_S=\sqrt{M}\sigma_x$. Calcule as estimativas amostrais dos indicadores de forma, $A \in K$, e os escreva com 2 casas decimais.

Questão 2) Considere agora a função densidade de probabilidade definida por:

$$f(x) = \begin{cases} e^{-x} & se \ x \ge 0 \\ 0 & caso \ contr\'ario \end{cases}$$

(Exemplo 3 do Tópico 2 com L=1), cujo valor verdadeiro é $x_0=1$ e o desvio-padrão é $\sigma_x=1$

Faça uma rotina para gerar valores de x de acordo com essa função de densidade de probabilidade. Note que é preciso usar o método da inversão neste caso, pois essa função tem domínio ilimitado.

- a) Gere um conjunto com N=10.000 dados e preencha a coluna (1) do Quadro 2 com o número de valores observados em cada um dos intervalos indicados e com as estimativas amostrais dos indicadores de forma assimetria, A (scipy.stats.skew), e de curtose excedente, K (scipy.stats.kurtosis) e os escreva com duas casas decimais.
- **b**) Considere agora que cada dado, y, seja a soma de dois valores que seguem a função f(x) (isto é, que $y=x_1+x_2$). Gere N=10.000 valores independentes de y (o que implica em gerar, 20.000 valores de x) e preencha a coluna (2) do Quadro 2 com o número de valores de y observados em cada um dos intervalos indicados. Note que $y_0=2x_0$ e que $\sigma_y=\sqrt{2}\sigma_x$. Calcule também as estimativas amostrais dos indicadores de forma, A e K, e os escreva com duas casas decimais.
- c) Faça uma rotina para calcular dados de uma variável S definida como $S = \sum_{i=1}^{M} x_i$, para os casos com M=3, 5, 10 e 100. Em seguida, preencha as colunas (3)-(6) do Quadro 2 com os resultados obtidos para conjuntos com N=10.000 valores independentes de S. Lembre-se que $S_0=Mx_0$ e que $\sigma_S=\sqrt{M}\sigma_x$. Calcule também as estimativas amostrais dos indicadores de forma, A e K, e os escreva com duas casas decimais.

Quadro 2 - Respostas numéricas da Questão 2.

	(1)	(2)	(3) M=3	(4) M=5	(5) M=10	(6) M=100
λ	$ n(x-x_0 \leq \lambda\sigma_x)$	$ n(y-y_0 \leq \lambda\sigma_y)$	$ n(S-S_0 \leq \lambda\sigma_S)$	$ n(S-S_0 \leq \lambda\sigma_S)$	$n(S-S_0 \leq \lambda\sigma_S)$	$ n(S-S_0 \leq \lambda\sigma_S) $
1						
1,5						
2						
2,5						
3						
A						
K						