Chapitre 12 - Lunette astronomique - Corrigé

QCM

1 B; 2 A et B; 3 A; 4 ; 5 B; 6 B; 7 A; 8 A;

9 (

Exercice

Sens de propagation de la lumière

2. a., b. et c.

On effectue la construction en deux étapes.

Étape 1 : construction du faisceau émergeant de l'objectif

Étape 2 : construction du faisceau émergeant de l'oculaire

3. a. Le point A étant à l'infini, son image A_1 est confondue avec F_1' . Le triangle $A_1O_1B_1$ est rectangle en A_1

donc
$$\tan \theta = \frac{A_1 B_1}{O_1 F_1'} \text{ et } A_1 B_1 = O_1 F_1' \times \tan \theta,$$

soit $A_1B_1 = 800 \text{ mm} \times \tan(0.020 \text{ rad}) = 16 \text{ mm}$.

b. Le triangle $A_1O_2B_1$ est rectangle en A_1 donc $\tan \theta' = \frac{A_1B_1}{O_2F_2}$ soit $\tan \theta' = \frac{16,0 \text{ mm}}{100 \text{ mm}}$ d'où $\theta' = 0,160 \text{ rad}$.

c.
$$G = \frac{\theta'}{\theta} = \frac{0.160 \text{ rad}}{0.020 \text{ rad}} = 8.0.$$

4. Les deux triangles A₁O₁B₁ et O₂A₁B₁ sont rectangles en A₁.

Les angles θ et θ' sont petits. S'ils sont exprimés en radian, on peut écrire : $\tan\theta=\theta$ et $\tan\theta'=\theta'$.

Donc
$$\theta = \frac{A_1 B_1}{O_1 F_1'}$$
 et $\theta' = \frac{A_1 B_1}{O_2 F_2}$

$$G = \frac{\theta'}{\theta} = \frac{\frac{A_1 B_1}{O_2 F_2}}{\frac{A_1 B_1}{O_2 F_2}} = \frac{O_1 F_1'}{O_2 F_2}$$

Le grossissement est $G = \frac{f_1^1}{f_2^1} = \frac{800 \text{ mm}}{100 \text{ mm}} = 8,00.$

On retrouve bien le grossissement calculé à la question 3.c.

Grossissement et œil réduit

1. a. La définition du grossissement d'une lunette astronomique est : $G = \frac{\theta'}{\theta}$

Ь.

2. a. et b.

c. On a : $\tan \theta = \frac{A_3 B_3}{O_3 A_3}$ mais A_3 est confondu avec F_3 car l'image est dans le plan contenant le foyer image F_3 et perpendiculaire à l'axe optique.

Donc $\tan \theta = \frac{A_3 B_3}{f_3'}$; on obtient : $\theta = 3.7^{\circ}$ ou 0,065 rad; c'est un

petit angle de sorte que l'on peut confondre $\tan \theta$ avec θ (rad).

3. a. A'B' joue le rôle d'objet pour la lentille L₃.

Ь.

c. On a maintenant $\tan \theta' = \frac{A_3' B_3'}{f_3'}$ et l'on calcule : $\theta' = 36,7^\circ$ ou 0.640 rad.

4. On en déduit
$$G = \frac{0,640 \text{ rad}}{0,065 \text{ rad}}$$
 soit $G = 9,8$.

5. a. Pour cette lunette afocale :

On a :
$$\frac{\tan \theta'}{\tan \theta} = \frac{O_1 F_1'}{O_2 F_2'} = \frac{f_1'}{f_2'}$$
; si les angles sont petits, $\tan \theta = \theta$.

D'où:
$$G = \frac{\theta'}{\theta} = \frac{f_1'}{f_2'}$$
.

$$G = \frac{f_1'}{f_2'} = \frac{50.0 \text{ cm}}{5.0 \text{ cm}} = 10.$$

39 1., **2.a.** et **c.**

2. b. On vérifie graphiquement que l'image $A_V B_V$ est renversée par rapport $A_1 B_1$ ($\overline{\gamma} < 0$) et de même taille : $|\overline{\gamma}| = 1$.

3. L'ajout du véhicule permet d'observer une image à l'endroit.

4. a. D'après le schéma :

$$\tan(\theta) \approx \theta = \frac{\overline{A_1 B_1}}{f_1'} \text{ et } \tan(\theta') \approx \theta' = \frac{\overline{A_V B_V}}{-f_2'} = \frac{-\overline{A_1 B_1}}{-f_2'}$$

Soit:
$$\overline{G} = \frac{\theta'}{\theta} = \frac{f_1'}{f_2'} = \frac{10}{2.0} = 5.$$

La présence du véhicule ne modifie pas la valeur du grossissement mais son signe.

b. En appliquant l'approximation des petits angles

$$\left(\tan\left(\frac{\theta}{2}\right) \approx \frac{\theta}{2} = \frac{h/2}{D}\right)$$
, il vient :

$$\theta' = \overline{G} \cdot \theta = \overline{G} \cdot \frac{h}{D} = 5 \times \frac{210}{6000} \approx 0,18 \text{ rad} \approx 10^{\circ}$$