# Cloud Computing

Chapter 9 in Unix and Linux System Administration Handbook

Haakon André Reme-Ness

HVL

Haakon. Andre. Reme-Ness@hvl. no

February 5, 2025

## Cloud Computing

- ▶ Practice of leasing computer resources from a pool of shared capacity
- Provision resources on demand and charge by consumptions

#### Advantages:

- ► Faster time to market
- ► Greater flexibility
- ► Lower capital and operating expenses

# Cloud Computing<sup>1</sup>

A realisation of "utility computing" 1

Utility: package of system resources

- computation
- storage
- networking

<sup>&</sup>lt;sup>1</sup>First conceived by John McCarthy

# What makes Cloud Computing possible?

#### Some major advances in technologies:

- ► Reliable allocation of CPU, memory, storage and network resources on demand by virtualisation software
- Robust security layers
- Standardised hardware components
- A reliable global network connects everything

## Cloud Computing

- On-demand network access to computing resources.
- Resources can rapidly be provisioned and released with minimal management effort.
- Autoscaling features
- Customer can increase capacity or add resources without investing in new infrastructure, training new personnel or licensing new software.
- Except for Microsoft Azure, Linux is at the heart of all cloud solutions.



## Cloud Computing - Towards a definition

#### From A Break in the Clouds: Towards a Cloud Definition

- Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, Maik Lindner: Clouds are a large pool of easily usable and accessible virtualised resources (such as hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an optimum resource utilisation. This pool of resources is typically exploited by a payper-use model in which guarantees are offered by the Infrastructure Provider by means of customised SLAs.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>SLA: Service Level Agreement: A legal contract between the service providers and customers.

## Types of Clouds – Public

vendor: controls all the physical hardware and affords access to systems over the Internet

user: no hardware installation and maintenance, but less control over the features and characteristics of the platform

E.g., Amazon Web Services (AWS), Google Cloud Platform (GCP), DigitalOcean (DO)

## Types of Clouds – Private

- ► Similar to public cloud
- ► Hosted within an organisation's own data centre, or managed by a vendor on behalf of a single customer
- ➤ Servers are single-tenant, i.e., not shared with other customers E.g., OpenStack

## Types of Clouds – Hybrid

- ► Combination of public and private cloud
- Useful for:
  - Initial migration from local servers to a public cloud
  - Temporary additional capacity to handle peak loads
  - A variety of other organisation-specific scenarios

e.g., VMware vCloud Air

# Cloud Platforms

| Provider              | Notable qualities                                                                                          |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Amazon Web Services   | 900lb gorilla. Rapid innovation. Can be expensive. Complex.                                                |  |  |  |
| DigitalOcean          | Simple and reliable. Lovable API. Good for development.                                                    |  |  |  |
| Google Cloud Platform | Technically sophisticated and improving quickly. Emphasizes performance. Comprehensive big-data services.  |  |  |  |
| IBM Softlayer         | More like hosting than cloud. Has a global private network.                                                |  |  |  |
| Microsoft Azure       | A distant second in size. Has a history of outages. Possibly worth consideration for Microsoft shops.      |  |  |  |
| OpenStack             | Modular DIY open source platform for building private clouds. AWS-compatible APIs.                         |  |  |  |
| Rackspace             | Public and private clouds running OpenStack. Offers managed services for AWS and Azure. Fanatical support. |  |  |  |
| VMware vCloud Air     | Buzzword-laden service for public, private, and hybrid clouds. Uses VMware technology. Probably doomed.    |  |  |  |

# Cloud Computing Service Categories

Mainly three categories:

Infrastructure as a service (laaS):

- Vendors provide virtual private servers (VPSs), including computing power, memory, network and storage
- Users maintain everything above the hardware

#### Platform as a service (PaaS):

- Vendors provide computing platforms to customers
  - ► A computing platform will usually be a virtual computer with OS and software
- Users submit the application<sup>3</sup> and maintain its code running on the platform

#### Software as a service (SaaS):

- Vendors provide access to applications (on-demand software, e.g., WordPress) to customers
- Users maintain neither the OS nor the application.

<sup>&</sup>lt;sup>3</sup>wrapped in a format specified by the vendor

# Cloud Computing Service Categories

| Layer                                 | Local | laaS | PaaS | SaaS |
|---------------------------------------|-------|------|------|------|
| Application                           | •     | ~    | ~    |      |
| Databases                             | ~     | ~    | ~    |      |
| Application runtime                   | ~     | ~    | ~    |      |
| Operating system                      | ~     | •    |      |      |
| Virtual network, storage, and servers | ~     | ~    |      |      |
| Virtualization platform               | ~     |      |      |      |
| Physical servers                      | ~     |      |      |      |
| Storage systems                       | ~     |      |      |      |
| Physical network                      | ~     |      |      |      |
| Power, space, and cooling             | ~     |      |      |      |

a. Local: local servers and network

laas: Infrastructure-as-a-Service (virtual servers)

PaaS: Platform-as-a-Service (e.g., Google App Engine)

Saas: Software-as-a-Service (e.g., most web-based services)

## Cloud Computing Service Categories – examples

- ► IaaS Amazon Web Services, Microsoft Azure, GoGrid, etc.
- ► PaaS All examples are web development:
  - Heroku
    - Ruby, Java, Node.js, Scala, Clojure, Python and PHP.
  - Google App te Engine (GAE)
    - Python, Java, Groovy, JRuby, Scala, Clojure, Go and PHP.
  - AWS Elastic Beanstalk (AEB)
    - Ruby, PHP and Python, .NET, Java and Node.js.
  - Microsoft Azure
    - ASP.NET, PHP, Node.js and Python.
- ► SaaS Office 365, Google Docs, Dropbox.



#### Access to the cloud

- ► Web-based GUI: primary interface to the cloud
- ► APIs are also available to access the same underlying functionality as that of the web console
- Also command-line tools for automation and repeatability
- In general, users uses SSH to access UNIX and Linux systems running in the cloud

## Regions and availability zones

- region:
  - a location where a cloud provider maintains data centers
  - usually named after the territory of intended service
- ► availability zones:
  - collections of data centres within a region
  - inter-zone communication is fast
  - zones are independent of one another regarding power and cooling
  - geographically dispersed to reduce the effect from a natural disaster
- fundamental to build highly available network services
  - multiregion deployments may allow higher availability, but more complex

## Virtual private servers (VPS)

#### The cloud's flagship service

- virtual machine that runs on the provider's hardware
- sometimes called instances
- customers can create as many instances as they need, and run their preferred OS and applications
- configurable virtual machines
- pay for what is used
- created from "images" (a saved state of an OS),
   which contains at least a root filesystem and a boot loader

## Networking

- ➤ Virtual networks with custom topologies can be created to isolate customers' systems from each other and from the Internet, by
  - Setting the address ranges of the networks, define subnets, configure routes, set firewall rules, and construct VPNs
- Systems on the Cloud without public addresses are not directly accessible from the Internet
  - Need to use e.g., VPN that connects to the Cloud network
- Or, customers can rent publicly routable address to make the servers on the Cloud accessible to the Internet
- Users in general have less control over virtual networks than over traditional networks

### Storage

- A major part of cloud computing
- Charge by the amount of data stored
- Some important ways to store data in the cloud:
  - object stores:
    - contain collections of discrete objects (e.g., files)
    - can store virtually unlimited amount of data with high reliability but relatively slow performance
    - design for a read-mostly access pattern
    - E.g., AWS S3 and Google Cloud Storage
  - block storage devices:
    - virtualised hard disks that can be attached to a virtual server.
    - can be moved among nodes
    - E.g., AWS EBS and Google persistent disks
  - ephemeral storage:
    - local disk space on VPS, which is fast and capacious
    - data is lost when the VPS is deleted
    - best of temporary files
    - E.g., store volumes on AWS and local SSDs on GCP

## Identity and authorisation

- ► AWS is exceptionally strong in controlling access
- ► IAM (Identity and Access Management) from Amazon provides advanced authorisation features for specifying access control
  - Can define users and groups, as well as roles for systems
  - Provides an API for key management
- Azure uses Microsoft's Active Directory
- Google's access control service (called IAM also) is relatively coarse-grained and incomplete compared with AWS IAM

#### Automation

- ► Tool to facilitate orchestrating large collection of resources, like
  - creating new network
  - configuring firewall
  - launching several VPS

E.g., AWS CloudFormation uses JSON or YAML for describing the details about desired resources and associated configuration

#### Serverless functions

- ▶ One of the most innovative features in the Cloud
- ► Aka cloud function services or functions-as-a-service
- A model of code execution that does not require long-lived infrastructure
- ► Functions execute in response to an event e.g., the arrival of a new HTTP request
- ► E.g., Lambda in AWS

## Example: AWS

- Install it with pip install awscli
- Runs aws configure to set API credential and default region

# \$ aws configure AWS Access Key ID: AKIAIOSFODNN7EXAMPLE AWS Secret Access Key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY Default region name [us-east-1]: <return> Default output format [None]: <return>

- Generate the credentials in IAM web console
  - access key ID
  - secret access key

# Example: AWS (creating an EC2 instance)

Use aws ec2 run-instances to create an EC2<sup>4</sup> instance. For example:

- \$ aws ec2 run-instances --image-id ami-d440a6e7
  --instance-type t2.nano --associate-public-ip-address
  --key-name admin-key
- ► The base system image: an Amazon-supplied version of CentOS 7, named ami-d440a6e7
  - ami: Amazon Machine Images
  - use aws ec2 describe-images to decode the image id
- ► The instance type: t2.nano (the smallest instance type)
  - one CPU core and 512 MiB of RAM
- --associate-public-ip-address
  - allows reaching the EC2 instance directly from the Internet;
  - otherwise, by default, only accessible from other systems within the same virtual private cloud (VPC)
- A preconfigured key pair is assigned to control SSH access

<sup>&</sup>lt;sup>4</sup>EC2: Elastic Compute Cloud

## Example: AWS (creating an EC2 instance – output)

```
"OwnerId": "188238000000",
"ReservationId": "r-83a02346",
"Instances": [
    "PrivateIpAddress": "10.0.0.27",
    "InstanceId": "i-c4f60303",
    "ImageId": "ami-d440a6e7",
    "PrivateDnsName": "ip-10-0-0-27.us-west-2.compute.internal",
    "KeyName": "admin-key",
    "SecurityGroups": [
            "GroupName": "default",
            "GroupId": "sg-9eb477fb"
    "SubnetId": "subnet-ef67938a",
    "InstanceType": "t2.nano",
. . .
```

"security group" refers to firewalls in EC2, default means no access

## Example: AWS (Stopping and terminating instances)

- Can stop the instance for shutting down but retaining it for later use;
   or
- ► Can **terminate** it to delete the instance entirely
  - A terminated instance can never be resurrected

```
$ aws ec2 stop-instances --instance-id i-c4f60303
    "StoppingInstances": [
            "InstanceId": "i-c4f60303",
            "CurrentState": {
                "Code": 64,
                "Name": "stopping"
            "PreviousState": {
                "Code": 16,
                "Name": "running"
```

#### Cost

#### Cloud tariffs generally consist of the followings:

- ► The compute resources of virtual private servers, load balancers, and whatever consumes CPU cycles to run the customer's services
  - charge by the hour
- Internet data transfer, and traffic among zones and regions
  - Charge by the GiB/TiB transferred
- Storage
  - Charge by the GiB/TiB stored per month