Задание №2. Решение систем линейных алгебраических уравнений

Цель задания: практическое освоение точных и итерационных методов решения систем линейных алгебраических уравнений

1. Решить СЛАУ с помощью программной реализации ниже указанных методов:

Точные методы:

- Метод Гаусса
- Метод Отражений (метод Хаусхолдера)

Итерационные методы:

- Метод простой итерации
- Метод Зейделя

Примечание: пользоваться встроенными функциями языка программирования можно только при вычислении абсолютной погрешности решения для заполнения таблиц «Результаты тестирования». Операции с матрицами и векторами необходимо запрограммировать самостоятельно. Для вычисления квадратного корня используйте итерационную формулу Герона.

2. Используя программную реализацию методов из п. 1, заполнить таблицы «*Результаты тестирования*» для тестов №1 - №5.

Примечание: Параметр *N* в тестах №1 – №5 должен совпадать с Вашим номером в списке группы.

Tecm №1.

$$A = \begin{pmatrix} N+2 & 1 & 1\\ 1 & N+4 & 1\\ 1 & 1 & N+6 \end{pmatrix} \quad b = \begin{pmatrix} N+4\\ N+6\\ N+8 \end{pmatrix}$$

Tecm №2.

$$A = \begin{pmatrix} -(N+2) & 1 & 1\\ 1 & -(N+4) & 1\\ 1 & 1 & -(N+6) \end{pmatrix} \quad b = \begin{pmatrix} -(N+4)\\ -(N+6)\\ -(N+8) \end{pmatrix}$$

Tecm №3.

$$A = \begin{pmatrix} -(N+2) & N+3 & N+4 \\ N+5 & -(N+4) & N+1 \\ N+4 & N+5 & -(N+6) \end{pmatrix} \quad b = \begin{pmatrix} N+4 \\ N+6 \\ N+8 \end{pmatrix}$$

Tecm №4.

$$A = \begin{pmatrix} N+2 & N+1 & N+1 \\ N+1 & N+4 & N+1 \\ N+1 & N+1 & N+6 \end{pmatrix} \quad b = \begin{pmatrix} N+4 \\ N+6 \\ N+8 \end{pmatrix}$$

Тест №5. Плохо обусловленная СЛАУ

$$A = \begin{pmatrix} 1 & -1 & -1 & \dots & -1 \\ 0 & 1 & -1 & \dots & -1 \\ 0 & 0 & 1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} + \varepsilon N \begin{pmatrix} 1 & -1 & -1 & \dots & -1 \\ 1 & 1 & -1 & \dots & -1 \\ 1 & 1 & 1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}$$
$$b = (-1, -1, \dots, -1, 1)^{T}.$$

Здесь ε можно брать в широком диапазоне от 10^{-3} до 10^{-6} . Систему следует решать при увеличивающейся размерности матрицы A и вектора b.

Обозначения в таблицах №1 – 2:

х – решение, полученное с помощью программной реализации соответствующего метода

 \bar{x} – «точное» решение, полученное с помощью встроенных функций (или внешних сервисов)

е – допустимая погрешность решения (требуемая точность решения)

 Δ — абсолютная погрешность решения х

Таблица № 1. Результаты тестирования № 1 – №4.

№ теста	\bar{x}	e	МПИ		М-д Зе	йделя	М-д Гаусса		М-д Хаусхолдера	
			X	Δ	X	Δ	X	Δ	X	Δ
1		10^{-2}								
2		10^{-2}								
		• • •								
		•••								
3		10-2								
		•••								
		•••								
4		10-2								
		•••								

Таблица №2. Результаты тестирования №5.

№ теста	n	ε	\bar{x}	е	МПИ		М-д Зейделя		М-д Гаусса		М-д Хаусхолдера	
					X	Δ	X	Δ	X	Δ	X	Δ
5	4	10^{-3}		10^{-2}								
		10^{-6}		10^{-2}								
	5	10^{-3}		10^{-2}								
		10^{-6}		10^{-2}								
				•••								
		10-3		10^{-2}								
		10-6	5	10^{-2}								