25

Pages on SecuRity by Ruxandra F. Olimid

DLP

- \mathcal{A} is given: (G,q,g,A) with G cyclic group of order q, q generator and $A = g^a$, $a \leftarrow R Z_a$
- \mathcal{A} returns: a' in Z_{α}

The experiment outputs:

1 if $A = g^{a'}$, 0 otherwise $\forall \mathcal{A} \text{ PPT, } \exists \varepsilon(n) \text{ negligible such that:}$ $Pr[DLP_{\alpha}(n)=1] \leq \varepsilon(n)$

CDH

- \mathcal{A} is given: (G,q,g,A,B) with G cyclic group of order q, q generator, $A = g^a, B = g^b$, $a, b \leftarrow RZ_a$
- \mathcal{A} returns: K in Z_{α}

The experiment outputs:

1 if $K = g^{ab}$, 0 otherwise $\forall \mathcal{A} \text{ PPT}, \exists \varepsilon(n) \text{ negligible such that:}$ $Pr[CDH_{\alpha}(n)=1] \leq \varepsilon(n)$

DDH

 $\forall \mathcal{A}$ PPT, $\exists \varepsilon(n)$ negligible such that: $Pr[A(G,q,g,g^a,g^b,g^c)=1]$ - $\Pr[\mathcal{A}(G,q,g,g^a,g^b,g^{ab})=1] \leq \varepsilon(n)$ for a,b,c \leftarrow ^R Z_q

DLP: Discrete Logarithm Problem DDH: Decisional Diffie-Hellman Problem CDH: Computational Diffie-Hellman Problem

Attacks: no authentication of parties, Man-in-the-Middle

