COMP 3005 Assignment #3

Due: October 19

Instruction

- 1. You should do the assignments independently. Copying is not allowed.
- 2. Submit your assignment as a single word/PDF document on culearn.

Part 1 Concepts (20 marks)

Explain the following terms as complete as possible. Simply give full name is not acceptable. Each question is 2 marks.

- 1. Mini World:
 - part of the real world for which the database system is developed with its data stored in the database.
- 2. Data Model
 - Specifies how data is structured and operated.
- 3. Database System
 - The database and the applications developed for the users on top of DBMS
- 4. Domain
 - Consist of a name, and a set of atomic values, may also have a data-type/format
- 5. Relational Model
 - Data is represented in terms of tuples (records), grouped into relations (files).
- 6. Attribute
 - a column name of the relation indicating the meaning of the data items in that column.
- 7. Relation
 - A scheme with a relation name and a set of attributes, and an instance that is a set of tuples.
- 8. Primary Key
 - A chosen key that has minimum set of attributes uniquely identifying tuples in a relation.
- 9. Logical Data Independence
 - The capacity to change the conceptual schema without having to change the external schemas and their associated application programs
- 10. SQL
 - Standard database language for data definition, data manipulation and data querying.

Part 2 Queries (70 marks)

Given the **Person-Hobby** database shown below. Use Domain Relational Calculus (DRC) to expression the following queries. Submit your query expressions. Each query is 5 marks. You should use one DRC query *when possible* and use more than one in this case will not get any mark.

Person

<u>P#</u>	Name	Age
P1	Smith	20
P2	Jones	30
P3	Blake	25
P4	Lastname	20
P5	Adams	30

Hobby

•		
<u>H#</u>	Name	
H1	Bowling	
H2	Chess	
H3	Dancing	
H4	Hiking	
H5	Skating	
H6	Ski	

Play

<u>P#</u>	<u>H#</u>	Times
P1	H1	3
P1	H2	2
P1	Н3	4
P1	H4	2
P1	H5	1
P1	Н6	1
P2	H1	3
P2	H2	4
P2	Н3	5
P2	H4	2
P3	H2	2
P3	Н3	3
P4	H2	3
P4	Н3	4

1. Get the names of hobbies that "lastname" plays.

{N | (exists P,H)(Person(P, 'Lastname', _) and Play(P,H,_) and Hobby(H,N))};

2. Get the names of persons who play Bowling.

{N | (exists P,H)(Person(P, N, _) and Play(P,H,_) and Hobby(H, 'Bowling'))};

3. Get the names of persons who play a hobby more than 3 times.

 $\{N \mid (exists P,T)(Person(P, N, _) \text{ and } Play(P,_,T) \text{ and } T \ge 3)\};$

4. Get the names of persons who play either chess or dancing.

{N | (exists P,H)(Person(P, N, _) and Play(P,H,_) and (Hobby(H, 'Chess',_) or Hobby(H, 'Dancing')))};

5. Get the names of persons who play both chess and dancing.

{N | (exists P,H1,H2)(Person(P, N, _) and Play(P,H1,_) and Hobby(H1, 'Chess',_) and Play(P,H2,_) and Hobby(H2, 'Dancing',_))};

6. Get the person name/hobby name pairs such that the indicated person plays the indicated hobby.

 $\{PN,HN \mid (exists \ P,H)(Person(P,\ PN,\ _) \ and \ Hobby(H,HN) \ and \ Play(P,\ H,\ _))\};$

7. Get the names of persons who do not play Ski.

{N | (exists P)(Person(P, N, _) and not(exists H)(Play(P,H,_) and Hobby(H, 'Ski'_)))};

8. Get the names of persons who do not play any hobby.

{N | (exists P)(Person(P, N, _) and not (exists H)(Play(P,H,_)))};

9. Get the names of persons who play all hobbies.

{N | (exists P,H)(Person(P, N, _) and (forall H)(not Hobby(H, _) or Play(P,H,_)))};

10. Get the names of persons who play all hobbies that "lastname" plays.

{N | (exists P',P)(Person(P', N, _) and person(P, 'Lastname', _) and (forall H)(not (Hobby(H,) and Play(P,H,) or Play(P',H))))};

11. Get the names of persons who play only all the hobbies that "*lastname*" plays.

 $\{N \mid (exists \ P',P)(Person(P',\ N,\ _) \ and \ person(P,\ `Lastname',\ _) \ and \ (forall \ H)(not \ (Hobby(H,\ _) \ and \ Play(P,H,\ _) \ or \ Play(P',H,\ _)))\};$

12. Get the names of persons who play all hobbies except Skating and Ski.

```
{N | (exists P)(Person(P, PN, _) and (forall H) (not (exist N)(Hobby(H,N) and N != 'Skating' and N != 'Ski') or Play(P,H,_)) or not (exist N)(Hobby(H N) and (N = 'Skating' or N = 'Ski') or not Play(P H )))}:
```

13. Get the names of persons who play hobbies, the number of hobbies and total number of times they play those hobbies.

```
{N, count(H), sum(T) | (exists P)(Person(P, N, _) and Play(P,H,T))};
```

14. Get the names of persons who play hobbies but play the least number of hobbies.

```
T := \{N, sum(T) \mid (exists P,H,T)(Person(P, N, \_) \text{ and } Play(P,H,T)); \{N \mid (exist C)(T(N,C) \text{ and } min(C)); \}
```