Neural Networks

Lecture 5: Sequence Learning

http://www.informatik.uni-hamburg.de/WTM/

Revision: Types of connectivity

- Feedforward networks
 - Compute a series of transformations
 - Typically, first layer is input and last layer is output
 - Efficient mappings

- Recurrent networks
 - Have directed cycles and can have more complex temporal dynamics
 - More biologically realistic

Sequence learning

Sequence learning

Recurrent Neural Networks

Softmax

- Usually desirable in classification to have output vector model the joint probability distribution
- For classification, we may have some generated output values using the cross-entropy loss:

 This can be normalized with softmax so that the values are in [0,1] and add up to 1

Softmax

Drawback: Computationally expensive for very large vectors (exp)

Example:

Character-level language model for prediction

Vocabulary: [h,e,l,o]

1 unit per char: "one-hot" encoding

Example training sequence: "hello"

Example continued: Generating text with character-based recurrent network (char-rnn):

100 iterations:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

300 iterations:

"Tmont thithey" fomesscerliund Keushey. Thom here sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

500 iterations:

we counter. He stutn co des. His stanted out one ofler that concossions and was to gearang reay Jotrets and with fre colt off paitt thin wall. Which das stimn

Example continued: Generating text with character-based recurrent network (char-rnn):

700 iterations:

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

1200 iterations:

"Kite vouch!" he repeated by her door. "But I would be done and quarts, feeling, then, son is people...."

2000 iterations:

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him. Pierre aking his soul came to the packs and drove up his father-in-law women

Why we want word-level learning rather than character-level

- Word-level:
 - + Predefined structure

- "run", "runs", "running":
 lexeme="run", morpheme="-s", "-ing"
- + Most NLP algorithms operate on words
- Word segmentation into lexemes and morphemes difficult
- Word boundary detection
- Char-level:
 - + Learning word segmentation as a side effect
 - + char2word mapping possible as intermediate step
 - No predefined structure, very long sequences

How can an SRN learn structure of lexical classes from word order?

- Humans learn from constrained ordered words
- Can a network learn structure from order?
- Sentence generator based on categories of lexical items
- Example: Each word represented by different 31 bit vector: one bit is on if word present (one-hot/localist encoding)
- 27,354 word vectors in the 10,000 sentences were

concatenated

Categories of lexical items

Category	Examples
NOUN-HUM	man, woman
NOUN-ANIM	cat, mouse
NOUN-INANIM	book, rock
NOUN-AGRESS	dragon, monster
NOUN-FRAG	glass, plate
NOUN-FOOD	cookie, sandwich
VERB-INTRAN	think, sleep
VERB-TRAN	see, chase
VERB-AGPA	move, break
VERB-PERCEPT	smell, see
VERB-DESTROY	break, smash
VERB-EA	eat

Templates for sentence generator

WORD 1	WORDS	WORD 3
NOUN-HUM	VERB-EAT	NOUN-FOOD
NOUN-HUM	VERB-PERCEPT	NOUN-INANIM
NOUN-HUM	VERB-DESTROY	NOUN-FRAG
NOUN-HUM	VERB-INTRAN	
NOUN-HUM	VERB-TRAN	NOUN-HUM
NOUN-HUM	VERB-AGPAT	NOUN-INANIM
NOUN-HUM	VERB-AGPAT	
NOUN-ANIM	VERB-EAT	NOUN-FOOD
NOUN-ANIM	VERB-TRAN	NOUN-ANIM
NOUN-ANIM	VERB-AGPAT	NOUN-INANIM
NOUN-ANIM	VERB-AGPAT	
NOUN-INANIM	VERB-AGPAT	
NOUN-AGRESS	VERB-DESTORY	NOUN-FRAG
NOUN-AGRESS	VERB-EAT	NOUN-HUM
NOUN-AGRESS	VERB-EAT	NOUN-ANIM
NOUN-AGRESS	VERB-EAT	NOUN-FOOD

Learning to predict successive words

INPUT		OUTPUT	
000000000000000000000000000000000000000	(woman)	000000000000000000000000000000000000000	(smash)
000000000000000000000000000000000000000	(smash)	000000000000000000001000000000	(plate)
00000000000000000001000000000	(plate)	000001000000000000000000000000000000000	(cat)
0000010000000000000000000000000	(cat)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	0000000000000010000000000000	(man)
00000000000000010000000000000	(man)	000100000000000000000000000000000000000	(break)
000100000000000000000000000000000000000	(break)	000010000000000000000000000000000000000	(car)
000010000000000000000000000000000000000	(car)	010000000000000000000000000000000000000	(boy)
010000000000000000000000000000000000000	(boy)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	0000000000100000000000000000	(girl)
0000000000100000000000000000	(girl)	000000000100000000000000000000	(eat)
000000000100000000000000000000	(eat)	001000000000000000000000000000000000000	(bread)
0010000000000000000000000000000	(bread)	000000010000000000000000000000	(dog)
000000010000000000000000000000	(dog)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	0000000000000000100000000000	(mouse)
00000000000000000100000000000	(mouse)	00000000000000001000000000000	(mouse)
00000000000000000100000000000	(mouse)	0000000000000000010000000000	(move)
00000000000000000010000000000	(move)	100000000000000000000000000000000000000	(book)
100000000000000000000000000000000000000	(book)	00000000000000100000000000000	(lion

Hierarchical cluster analysis of hidden layers: -- similarity structure emerges

inputs were presented in context; hidden unit vectors averaged across multiple contexts.

How can SRN deal with "noisy" sequences?

- Spoken language is very noisy
- "Incorrect" grammatical constructions
- Interjections and pauses (eh, ah)
- Word repairs, phrase repairs (in on the table)
- False starts
- Example: I would like eh to call a meeting pause a meeting on Wednesday no Thursday at four
- Speech recognizers add even more noise

Simplified word graph from speech recognizer

Dealing with incorrect sequences in recurrent networks

- Basic syntactic categories
 - noun (N), verb (V), preposition (R), pronoun (U), numeral (M), participle (P), pause (/), adjective (J), adverb (A), conjunction (C), determiner (D), interjection (I), other (O)
- Abstract syntactic categories
 - noun group (NG), verb group (VG), adverbial group (AG), prepositional group (PG), conjunction group (CG), modus group (MG), special group (SG), interjection group (IG)
- Goal: Learning a robust flat analysis at the level of phrasal syntactic categories
- Example:

I would suggest eh a meeting on Friday			
U V V	I D	VN R	Ν
NG VG	IG	NG	PG

Dealing with incorrect sequences in recurrent networks

Interpretation of system performance based on activation of networks

- Building larger architectures based on simple recurrent networks
- Detailed interpretation of learning capabilities
- Detailed interpretation of performance
- Example systems: SCREEN (Wermter, Weber 1997)
 (Symbolic Connectionist Robust Enterprise for Natural language)

SCREEN

architecture details

Examples for basic and abstract syntactic categories

Category	Examples
noun (N)	date, April
adjective (J)	late
verb (V)	meet, choose
adverb (A)	often
preposition (R)	at, in
conjunction (C)	and, but
pronoun (U)	I, you
determiner (D)	the, a
numeral (M)	fourteenth
interjection (I)	eh, oh
participle (P)	taken
other (O)	particles
pause (/)	pause

Category	Examples	
verb group (VG)	mean, would propose	
noun group (NG)	a date, the next possible slot	
adverbial group (AG)	later, as early as possible	
prepositional group (PG)	in the dining hall	
conjunction group (CG)	and, either or	
modus group (MG)	interrogatives, confirmations: when, how long, yes	
special group (SG)	additives like politeness: please, then	
interjection group (IG)	interjections, pauses: eh, oh	

Basic semantic ...

Category	Examples	
select (SEL)	select, choose	
suggest (SUG)	propose, suggest	
meet (MEET)	meet, join	
utter (UTTER)	say, think	
is (IS)	is, was	
have (HAVE)	had, have	
move (MOVE)	come, go	
aux (AUX)	would, could	
question (QUEST)	question words: where, when	
physical (PHYS)	physical objects: building, office	
animate (ANIM)	animate objects: I, you	
abstract (ABS)	abstract objects: date	
here (HERE)	time or location state words, prepositions: at, in	
source (SRC)	time or location source words, prepositions: from	
destination (DEST)	time or location destination words, prepositions: to	
location (LOC)	Hamburg, Pittsburgh	
time (TIME)	tomorrow, at 3 o'clock, April	
negative evaluation (NO)	no, bad	
positive evaluation (YES)	yes, good	
nil (NIL)	words "without" specific semantics, e.g. determiner: a	

... and abstract semantic categories

Category	Examples	
action (ACT)	action for full verb events: meet, select	
aux-action (AUX)	auxiliary action for auxiliary events: would like	
agent (AGENT)	agent of an action: I	
object (OBJ)	object of an action: a date	
recipient (RECIP)	recipient of an action: to me	
instrument (INSTR)	instrument for an action: using an elevator	
manner (MANNER)	how to achieve an action: without changing rooms	
time-at (TM-AT)	at what time: in the morning	
time-from (TM-FRM)	start time: after 6 am	
time-to (TM-TO)	end time: before 8 pm	
loc-at (LC-AT)	at which location: in Frankfurt, in New York	
loc-from (LC-FRM)	start location: from Boston, from Dortmund	
loc-to (LC-TO)	end location: to Hamburg	
confirmation (CONF)	confirmation phrase: ok great, yes wonderful	
negation (NEG)	negation phrase: no stop, not	
question (QUEST)	question phrase: at what time	
misc (MISC)	miscellaneous words, e.g., for politeness: please, eh	

 \Diamond

Interpretation of system performance based on activation

0

How to get from sound to the word level at all?

to the left of the cup is the box

Speech Recognition with RNNs

Traditional Speech Recognition Systems (before ~ 2013):

Sophisticated pipeline of algorithms to get from raw audio to coherent text.

[GMM: Gaussian Mixture Model, HMM: Hidden Markov Model]

"End-to-End" Speech Recognition (2013+):

End-to-End Speech Recognition with RNNs

- Neural Networks can:
 - learn features (feature extractor)
 - predict phonemes from features (acoustic model)
 - predict words from phonemes (language model)
- We can implement a network specialized on each task of the pipeline
- Stacking them into a single network is the hard part

learning

 The abstractions we get between the output text and the input sound are now part of a learning box: No phonemes, no hard-coded features

Example:

"Deep Speech 2" Architecture:

- Convolution Layer
- Recurrent Layer
- Fully Connected Layer

Connectionist Temporal Classification (CTC)

(Graves 2006)

- CTC is a loss function for temporal classification (speech recognition)
- When alignments between inputs and target labels unknown
- Does not require pre-segmented training data

Time

Word embeddings

Millions of words: Need distributed representations!

```
hotel (000000000...... 00100000000) AND motel (000000000..... 00000010000) = 0
```

- Approach: Learning word embeddings:
 - Map words to continuous, lower dimensional vectors
 - Captures word meaning in the semantic space
- Resulting word vector should contain linguistic context information, relating it to other words:

```
vec(Berlin) ≈ vec(Germany) + vec(capital)
vec(queen) ≈ vec(king) - vec(man) + vec(woman)
```

Lower-dimensional semantic space

Relationships within the semantic space

Learning word embeddings with word2vec

INPUT PROJECTION OUTPUT

INPUT PROJECTION OUTPUT

CBOW (continuous bag-of-words)

Skip-gram

Learning word embeddings with word2vec

INPUT PROJECTION OUTPUT

CBOW (continuous bag-of-words)

- "Given this set of context words, what missing word is also likely to appear?"
- Bag-of-words: order of words does not influence projection
- Projection layer is shared all words projected on same position (vectors averaged)

Learning word embeddings with word2vec

- "Given this single word, what other words are likely to appear with it?"
- Input to classifier with continuous projection layer
- Unlike CBOW, nearby context has more influence than more distant words

INPUT PROJECTION OUTPUT

Skip-gram

CBOW vs Skip-gram

INPUT PROJECTION OUTPUT

INPUT PROJECTION OUTPUT

CBOW: Faster to train than skip-gram,

slightly better accuracy for frequent words

Skip-gram: Works well with small amount of data,

represents well even rare words or phrases

word2vec for Machine Translation

[Mikolov 2013]

word2vec for Machine Translation

- word2vec on EN+ES language corpora
- 2. Learn mapping between spaces (translation matrix W)
- 3. Map new input: $Wx_i = z_i$
- 4. Choose word with closest distance to z_i

word2vec for Machine Translation

Spanish word	Computed English	Dictionary
	Translations	Entry
emociones	emotions	emotions
	emotion	
	feelings	
protegida	wetland	protected
	undevelopable	
	protected	
imperio	dictatorship	empire
	imperialism	
	tyranny	
determinante	crucial	determinant
	key	
	important	
preparada	prepared	prepared
	ready	
	prepare	
millas	kilometers	miles
	kilometres	
	miles	

From Autoassociator / Autoencoder to RAAM

- Autoassociator: Special case of MLP, as in word2vec
- Dimensionality reduction, representation learning
- Trained to reconstruct own input:
 - input = target
 - |x| = |y||h| < |x|
- unsupervised (often used for pretraining)

RAAM: Recursive Autoassociative Memory

- Compressor (encoder) maps input to internal reduced representation
- Reconstructor (decoder) decodes the internal representation into output
- Trained and applied recursively
- Can represent tree-like structures:

- (det (adj noun)) trained as
 - (adj noun)-> R(adj noun) -> (adj* noun*)
 - (det R(adj noun)) -> R(det adj noun) -> (det* R(adj noun)*)

Compressor and Reconstructor of binary trees

output pattern

input pattern

 $(A \quad B)$ $(C \quad D)$ $(R_1(t) \quad R_2(t))$

hidden pattern

 $\rightarrow \qquad (R_1(t)' \quad R_2(t)')$

RAAM Recursive autoassociative memory

RAAM Recursive autoassociative memory

RAAM

Learning representations for syntactic trees

Grammar

```
S -> NP VP | NP V
NP -> D AP | D N | NP PP
PP -> P NP
VP -> V NP | V PP
AP -> A AP | A N
```


Learned Internal Representations

Summary

- Sequence learning on character- and word-level
 - char-rnn, SCREEN
- Distributed word representations for sequence learning
 - RAAM, word2vec
 - Visualization of hidden layers (t-SNE, hierarchical clustering)

Further reading:
 Optional research papers at Commsy / Knowledge
 Technology website

http://www.informatik.uni-hamburg.de/WTM/