CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Lecture 30: Turing machines, computability

March 30, 2017

At the end of last class

Introduction to Turing machines

Undecidability of the following languages:

$$A_{TM} = \{(M, w) \mid M \text{ accepts } w\}.$$

$$Halt = \{(M, w) \mid M \text{ hants on } w\}.$$

$$E_{TM} = \{\langle M \rangle \mid L(M) = \varnothing\}.$$

$$EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}.$$

$$REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular}\}.$$

Note that undecidability of REG_{TM} and E_{TM} can be proved using Rice's theorem.

Rice's theorem: A systematic way of proving undecidability of languages.

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages.

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

For any property P, let $\mathcal{L}_P = \{M \mid L(M) \in P\}$

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

For any property P, let $\mathcal{L}_P = \{M \mid L(M) \in P\}$, i.e. the set of all Turing machine such that $L(M) \in P$.

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

For any property P, let $\mathcal{L}_P = \{M \mid L(M) \in P\}$, i.e. the set of all Turing machine such that $L(M) \in P$.

We say that a property P is trivial if either $\mathcal{L}_P = \emptyset$ or \mathcal{L}_P is the set of all the Turing recognizable languages.

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

For any property P, let $\mathcal{L}_P = \{M \mid L(M) \in P\}$, i.e. the set of all Turing machine such that $L(M) \in P$.

We say that a property P is trivial if either $\mathcal{L}_P = \emptyset$ or \mathcal{L}_P is the set of all the Turing recognizable languages.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}.$

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

For any property P, let $\mathcal{L}_P = \{M \mid L(M) \in P\}$, i.e. the set of all Turing machine such that $L(M) \in P$.

We say that a property P is trivial if either $\mathcal{L}_P = \emptyset$ or \mathcal{L}_P is the set of all the Turing recognizable languages.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Rice's theorem: A systematic way of proving undecidability of languages.

Definition

A property P is simply a subset of Turing recognizable languages. We say that a language L satisfies a property P, if $L \in P$.

For any property P, let $\mathcal{L}_P = \{M \mid L(M) \in P\}$, i.e. the set of all Turing machine such that $L(M) \in P$.

We say that a property P is trivial if either $\mathcal{L}_P = \emptyset$ or \mathcal{L}_P is the set of all the Turing recognizable languages.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Theorem

Let P be a property such that it is not trivial. Recall that

$$\mathcal{L}_P = \{ M \mid L(M) \in P \}.$$

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{ M \mid L(M) \in P \}$. Then \mathcal{L}_P is undecidable.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

When is the theorem NOT applicable?

Rice's theorem cannot be used to prove undecidability of languages which deal with machine behaviour.

 $\{\langle M \rangle \mid M \text{ has at least ten states}\}.$

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

When is the theorem NOT applicable?

Rice's theorem cannot be used to prove undecidability of languages which deal with machine behaviour.

 $\{\langle M \rangle \mid M \text{ has at least ten states}\}.$

 $\{\langle M \rangle \mid M \text{ never moves left on any input string } \}$.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

When is the theorem NOT applicable?

Rice's theorem cannot be used to prove undecidability of languages which deal with machine behaviour.

```
\{\langle M \rangle \mid M \text{ has at least ten states}\}.
```

```
\{\langle M \rangle \mid M \text{ never moves left on any input string } \}.
```

```
\{\langle M \rangle \mid M \text{ has no useless state } \}.
```

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

When is the theorem NOT applicable?

Rice's theorem cannot be used to prove undecidability of languages which deal with machine behaviour.

```
\{\langle M \rangle \mid M \text{ has at least ten states}\}.
```

 $\{\langle M \rangle \mid M \text{ never moves left on any input string } \}$.

 $\{\langle M \rangle \mid M \text{ has no useless state } \}.$

To prove non-recognizability of a property of languages.

Rice's theorem cannot be used to prove non-recognizability of languages.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

When is the theorem NOT applicable?

Rice's theorem cannot be used to prove undecidability of languages which deal with machine behaviour.

```
\{\langle M \rangle \mid M \text{ has at least ten states}\}.
```

$$\{\langle M \rangle \mid M \text{ never moves left on any input string } \}.$$

$$\{\langle M \rangle \mid M \text{ has no useless state } \}.$$

To prove non-recognizability of a property of languages.

Rice's theorem cannot be used to prove non-recognizability of languages.

It is only used to prove undecidability.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

When is the theorem NOT applicable?

Rice's theorem cannot be used to prove undecidability of languages which deal with machine behaviour.

```
\{\langle M \rangle \mid M \text{ has at least ten states}\}.
```

$$\{\langle M \rangle \mid M \text{ never moves left on any input string } \}.$$

$$\{\langle M \rangle \mid M \text{ has no useless state } \}.$$

To prove non-recognizability of a property of languages.

Rice's theorem cannot be used to prove non-recognizability of languages.

It is only used to prove undecidability.

We now learn how to apply Rice's theorem

 $\{\langle M \rangle \mid M \text{ runs for atmost } 10 \text{ steps on } aab\}.$ Not applicable, but language decidable.

We now learn how to apply Rice's theorem

We now learn how to apply Rice's theorem

```
\{\langle M\rangle \mid M \text{ runs for atmost } 10 \text{ steps on } aab\}. Not applicable, but language decidable.
```

 $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with at least 10 states} \}.$ Applicable, but property is trivial.

 $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with atmost 10 states}\}.$ Applicable and property is not trivial, therefore undecidable.

We now learn how to apply Rice's theorem

```
\{\langle M \rangle \mid M \text{ runs for atmost } 10 \text{ steps on } aab\}.
Not applicable, but language decidable.
\{\langle M \rangle \mid I(M) \text{ is recognized a TM with at least } 10 \text{ steps on } 10 \text{ st
```

 $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with at least 10 states} \}.$ Applicable, but property is trivial.

 $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with atmost 10 states}\}.$ Applicable and property is not trivial, therefore undecidable.

 $\{\langle M \rangle \mid M \text{ has at most 10 states} \}$. Not applicable, but the language is decidable.

We now learn how to apply Rice's theorem

```
\{\langle M \rangle \mid M \text{ runs for atmost } 10 \text{ steps on } aab\}.
Not applicable, but language decidable.
```

- $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with at least 10 states} \}.$ Applicable, but property is trivial.
- $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with atmost 10 states}\}.$ Applicable and property is not trivial, therefore undecidable.
- $\{\langle M \rangle \mid M \text{ has at most } 10 \text{ states} \}.$ Not applicable, but the language is decidable.
- $\{M \mid L(M) \text{ contains } \langle M \rangle \}$. Applicable, the property is not trivial, therefore undecidable.
- $\{M \mid L(M) \text{ is finite } \}.$ Applicable, the property is not trivial, therefore undecidable.

We now learn how to apply Rice's theorem

```
\{\langle M \rangle \mid M \text{ runs for atmost } 10 \text{ steps on } aab\}.
Not applicable, but language decidable.
```

- $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with at least 10 states}\}.$ Applicable, but property is trivial.
- $\{\langle M \rangle \mid L(M) \text{ is recognized a TM with atmost 10 states}\}.$ Applicable and property is not trivial, therefore undecidable.
- $\{\langle M \rangle \mid M \text{ has at most } 10 \text{ states} \}.$ Not applicable, but the language is decidable.
- $\{M \mid L(M) \text{ contains } \langle M \rangle \}$. Applicable, the property is not trivial, therefore undecidable.
- $\{M \mid L(M) \text{ is finite } \}.$ Applicable, the property is not trivial, therefore undecidable.

We now learn how to apply Rice's theorem $\{M \mid M \text{ has a useless state }\}.$

We now learn how to apply Rice's theorem

 $\{M \mid M \text{ has a useless state }\}.$

Not applicable, but the language is in fact undecidable.

We now learn how to apply Rice's theorem

 $\{M \mid M \text{ has a useless state }\}.$

Not applicable, but the language is in fact undecidable.

Rice's theorem cannot be used to prove the undecidability of this language!

We now learn how to apply Rice's theorem

 $\{(M, w) \mid M \text{ writes a symbol a on the tape on input } w\}.$

We now learn how to apply Rice's theorem

 $\{(M, w) \mid M \text{ writes a symbol a on the tape on input } w\}.$

Not applicable, but the language is in fact undecidable.

We now learn how to apply Rice's theorem

 $\{(M, w) \mid M \text{ writes a symbol a on the tape on input } w\}.$

Not applicable, but the language is in fact undecidable.

Rice's theorem cannot be used to prove the undecidability of this language!

We now learn how to apply Rice's theorem

```
\left\{ \begin{array}{ll} M & \text{M tries to write on the left of the cell when it} \\ & \text{is at the leftmost bit of the input} \end{array} \right\}.
```

We now learn how to apply Rice's theorem

```
\begin{cases}
M & M \text{ tries to write on the left of the cell when it} \\
& \text{is at the leftmost bit of the input}
\end{cases}
```

Not applicable, but the language is in fact undecidable.

We now learn how to apply Rice's theorem

```
\begin{cases}
M & M \text{ tries to write on the left of the cell when it} \\
& \text{is at the leftmost bit of the input}
\end{cases}
```

Not applicable, but the language is in fact undecidable.

Rice's theorem cannot be used to prove the undecidability of this language!

Proof of Rice's theorem

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{ M \mid L(M) \in P \}.$

Proof of Rice's theorem

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Proof Idea:

Let P be a non-trivial property.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Proof Idea:

Let P be a non-trivial property.

Assume that \mathcal{L}_P is decidable.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Proof Idea:

Let P be a non-trivial property.

Assume that \mathcal{L}_P is decidable.

Using this assumption prove that A_{TM} is decidable.

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Proof Idea:

Let P be a non-trivial property.

Assume that \mathcal{L}_P is decidable.

Using this assumption prove that A_{TM} is decidable.

More specifically:

$$(M, w) \longrightarrow N$$

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Proof Idea:

Let P be a non-trivial property.

Assume that \mathcal{L}_P is decidable.

Using this assumption prove that A_{TM} is decidable.

More specifically:

$$(M, w) \longrightarrow N$$

if
$$w \in L(M) \longrightarrow \langle N \rangle \in \mathcal{L}_P$$

Theorem

Let P be a property such that it is not trivial. Recall that $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Proof Idea:

Let P be a non-trivial property.

Assume that \mathcal{L}_P is decidable.

Using this assumption prove that A_{TM} is decidable.

More specifically:

$$\begin{array}{cccc} (M,w) & \longrightarrow & N \\ \\ \text{if } w \in L(M) & \longrightarrow & \langle N \rangle \in \mathcal{L}_P \\ \\ \text{if } w \notin L(M) & \longrightarrow & \langle N \rangle \notin \mathcal{L}_P \end{array}$$

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let $\mathcal{L}_P = \{M \mid L(M) \in P\}.$

Theorem

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Design of N

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Design of N

Let M_1 be the TM s.t. $L(M_1)$ has Property P.

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Design of N

Let M_1 be the TM s.t. $L(M_1)$ has Property P.

Let $L(M_2)$ be the TM s.t. $L(M_2) = \emptyset$.

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Design of N

Let M_1 be the TM s.t. $L(M_1)$ has Property P.

Let $L(M_2)$ be the TM s.t. $L(M_2) = \emptyset$.

we assume that \varnothing does not have property P

Theorem

Let P be a non-trivial property of Turing recognizable languages. Let $\mathcal{L}_P = \{M \mid L(M) \in P\}$. Then \mathcal{L}_P is undecidable.

Design of N

Let M_1 be the TM s.t. $L(M_1)$ has Property P.

Let $L(M_2)$ be the TM s.t. $L(M_2) = \emptyset$.

we assume that \varnothing does not have property P^1

Theorem

```
Design of N
Let M_1 be the TM s.t. L(M_1) has Property P.
Let L(M_2) be the TM s.t. L(M_2) = \emptyset.

we assume that \emptyset does not have property P
on input X
{

if M accepts W
then if M_1 accepts X
then accept
```

Theorem

```
Design of N
Let M_1 be the TM s.t. L(M_1) has Property P.
Let L(M_2) be the TM s.t. L(M_2) = \emptyset.

we assume that \emptyset does not have property P
on input \times
{
Claim: w \in L(M) if and only if \langle N \rangle \in \mathcal{L}_P
if M accepts w
then if M_1 accepts \times
then accept
}
```

Theorem

```
Design of N
Let M_1 be the TM s.t. L(M_1) has Property P.
Let L(M_2) be the TM s.t. L(M_2) = \emptyset.

we assume that \emptyset does not have property P
on input x
{
Claim: w \in L(M) if and only if \langle N \rangle \in \mathcal{L}_P
if M accepts w
then if M_1 accepts x
then accept
}
```

Theorem

```
Design of N
Let M_1 be the TM s.t. L(M_1) has Property P.
Let L(M_2) be the TM s.t. L(M_2) = \varnothing.

we assume that \varnothing does not have property P
on input \times
{
Claim: w \in L(M) if and only if \langle N \rangle \in \mathcal{L}_P
if M accepts w
then if M_1 accepts \times
then accept

if w \notin L(M) then L(N) = \varnothing.
}
```

Theorem

```
Design of N
Let M_1 be the TM s.t. L(M_1) has Property P.
Let L(M_2) be the TM s.t. L(M_2) = \varnothing.

we assume that \varnothing does not have property P
on input \times
{
Claim: w \in L(M) if and only if \langle N \rangle \in \mathcal{L}_P
if M accepts w
then if M_1 accepts \times
then accept

if w \notin L(M) then L(N) = \varnothing.
}
```

We now show how to get around the assumption.

Suppose \emptyset has property P.

We now show how to get around the assumption.

Suppose \emptyset has property P.

Consider \overline{P} .

We now show how to get around the assumption.

Suppose \emptyset has property P.

Consider \overline{P} .

Now \varnothing does not have property \overline{P} .

We now show how to get around the assumption.

Suppose \emptyset has property P.

Consider \overline{P} .

Now \varnothing does not have property \overline{P} .

Use Rice's theorem on $\mathcal{L}_{\overline{P}}$ to prove undecidibility.

We now show how to get around the assumption.

Suppose \emptyset has property P.

Consider \overline{P} .

Now \varnothing does not have property \overline{P} .

Use Rice's theorem on $\mathcal{L}_{\overline{P}}$ to prove undecidibility.

Conclude undecidibility of \mathcal{L}_P .

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*)

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w. Formally,

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

if
$$w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$$

Lemma

 $ALL_{CFL} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \}$ is undecidable.

Proof Strategy

For a TM M and input w we create a PDA $N_{M,w}$ such that

 $N_{M,w}$ accepts all string (i.e. accepts Σ^*) if M accepts w, and

 $N_{M,w}$ rejects at least one string if M does not accept w.

Input
$$(M, w) \longrightarrow N_{M,w}$$

if
$$w \in L(M) \longrightarrow \exists x \in \Sigma^*$$
, s.t. $x \notin L(N_{M,w})$

if
$$w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$$

Filling in the details

The following two details need to be addressed.

 Q_1 How should we design $N_{M,w}$?

Filling in the details

The following two details need to be addressed.

 Q_1 How should we design $N_{M,w}$?

Input
$$(M, w) \longrightarrow N_{M, w}$$

$$\begin{array}{cccc} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \end{array}$$

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

$$\begin{array}{lll} \text{Input } (M,w) & \longrightarrow & N_{M,w} \\ \\ \text{if } w \in L(M) & \longrightarrow & \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w}) \\ \\ \text{if } w \notin L(M) & \longrightarrow & L(N_{M,w}) = \Sigma^* \end{array}$$

Assume that ALL_{CFL} is decidable.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Input
$$(M, w)$$
 \longrightarrow $N_{M,w}$
if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*$, s.t. $x \notin L(N_{M,w})$
if $w \notin L(M)$ \longrightarrow $L(N_{M,w}) = \Sigma^*$

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

Input
$$(M, w)$$
 \longrightarrow $N_{M,w}$ For an M, w pair, create $N_{M,w}$.

if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*$, s.t. $x \notin L(N_{M,w})$ create $N_{M,w}$.

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

Input
$$(M, w) \longrightarrow N_{M,w}$$
 For an M, w pair, create $N_{M,w}$.

if $w \in L(M) \longrightarrow \exists x \in \Sigma^*, \text{ s.t. } x \notin L(N_{M,w})$

if $w \notin L(M) \longrightarrow L(N_{M,w}) = \Sigma^*$ Feed $\langle N_{M,w} \rangle$ to C .

Assume that *ALL_{CFL}* is decidable.

C be the TM deciding it.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Design A as follows:

Input
$$(M, w)$$
 \longrightarrow $N_{M,w}$
if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*$, s.t. $x \notin L(N_{M,w})$
if $w \notin L(M)$ \longrightarrow $L(N_{M,w}) = \Sigma^*$

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

If *C* accepts then reject;

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Input (M, w) \longrightarrow $N_{M,w}$ if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*$, s.t. $x \notin L(N_{M,w})$ if $w \notin L(M)$ \longrightarrow $L(N_{M,w}) = \Sigma^*$

Design A as follows:

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

If *C* accepts then reject;

else accept.

 Q_2 If such an $N_{M,w}$ is designed then why have we proved that ALL_{CFL} is undecidable?

Input (M, w) \longrightarrow $N_{M,w}$ if $w \in L(M)$ \longrightarrow $\exists x \in \Sigma^*$, s.t. $x \notin L(N_{M,w})$ if $w \notin L(M)$ \longrightarrow $L(N_{M,w}) = \Sigma^*$

Design A as follows:

For an M, w pair, create $N_{M,w}$.

Feed $\langle N_{M,w} \rangle$ to C.

Assume that ALL_{CFL} is decidable.

C be the TM deciding it.

If *C* accepts then reject;

else accept.

 Q_1 How should we design $N_{M,w}$?

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations: C_1, C_2, \ldots, C_ℓ such that

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 $\textit{C}_1, \textit{C}_2, \ldots, \textit{C}_\ell$ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 $\textit{C}_{1},\textit{C}_{2},\ldots,\textit{C}_{\ell}$ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations: C_1, C_2, \ldots, C_ℓ such that

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 $C_1,\,C_2,\ldots,\,C_\ell$ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is a rejecting configuration.

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is a rejecting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

 Q_1 How should we design $N_{M,w}$?

Main idea

Use computational history of M on w.

Accepting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is an accepting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Rejecting computation history is a sequece of configurations:

 C_1, C_2, \ldots, C_ℓ such that

 C_1 is a start configuration.

 C_{ℓ} is a rejecting configuration.

for each $1 \le i \le \ell$, C_i yields C_{i+1} .

Interprete input x to $N_{M,w}$ as a computational history of M on w.

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds: x does not have the pattern of a computational history of x

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds: x does not have the pattern of a computational history of x OR

x is a computational history, but C_1 is not a start configuration

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:

- x does not have the pattern of a computational history of x OR
- x is a computational history, but C_1 is not a start configuration OR
- x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds:

x does not have the pattern of a computational history of x OR

x is a computational history, but C_1 is not a start configuration OR

x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR

x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell-1$ and C_i does not yield C_{i+1} .

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds: x does not have the pattern of a computational history of x OR

x is a computational history, but C_1 is not a start configuration OR

x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR

x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell-1$ and C_i does not yield C_{i+1} .

If M accepts w, let \tilde{x} be a accepting computation history of M on w. $N_{M,w}$ will reject \tilde{x}

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds: x does not have the pattern of a computational history of x OR

x is a computational history, but C_1 is not a start configuration OR

x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR

x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell-1$ and C_i does not yield C_{i+1} .

If M accepts w, let \tilde{x} be a accepting computation history of M on w. $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds: x does not have the pattern of a computational history of x OR

x is a computational history, but C_1 is not a start configuration OR

x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR

x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell - 1$ and C_i does not yield C_{i+1} .

- If M accepts w, let \tilde{x} be a accepting computation history of M on w. $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.
- If M does not accept w, then no matter what x is, $N_{M,w}$ will accept x

Interprete input x to $N_{M,w}$ as a computational history of M on w. Design $N_{M,w}$ s.t. it accepts x if any of the following conditions holds: x does not have the pattern of a computational history of x OR

x is a computational history, but C_1 is not a start configuration OR

x is a computational history, C_1 is a start configuration, but C_ℓ is not an accepting configuration OR

x is a computational history, C_1 is a start configuration, C_ℓ is an accepting configuration, but there exists an i s.t. $1 \le i \le \ell - 1$ and C_i does not yield C_{i+1} .

- If M accepts w, let \tilde{x} be a accepting computation history of M on w. $N_{M,w}$ will reject \tilde{x} , i.e. $\tilde{x} \notin L(N_{M,w})$.
- If M does not accept w, then no matter what x is, $N_{M,w}$ will accept x, i.e. $L(N_{M,w}) = \sum^*$.