XV. Nemzetközi Magyar Matematika Verseny

Zenta, 2006. márc. 18-22.

12. osztály

1. feladat: Legyen x_1, x_2, \ldots, x_n egész számok olyan sorozata, amelyre fennáll, hogy $-1 \le x_i \le 2$, ha $i = 1, 2, \ldots, n, x_1 + x_2 + \ldots + x_n = 19$ és $x_1^2 + x_2^2 + \ldots x_n^2 = 99$. Legyen az $x_1^3 + x_2^3 + \ldots x_n^3$ kifejezés lehetséges legkisebb értéke m, illetve lehetséges legnagyobb értéke M. Mivel egyenlő $\frac{M}{m}$ értéke?

Kiss Sándor (Nyíregyháza)

2. feladat: Az adott konvex α szög belső tartományában van a P pont. Hogyan kell a P ponton keresztül meghúzni egy olyan egyenest, hogy a szög szárait B és C pontban messe, és az $\frac{1}{|BP|} + \frac{1}{|PC|}$ a lehető legnagyobb legyen?

Szabó Magda (Szabadka)

3. feladat: Hozzuk a legegyszerűbb alakra a $3+2\cdot 3^2+3\cdot 3^3+\ldots+2005\cdot 3^{2005}+2006\cdot 3^{2006}$ összeget.

Oláh György (Komárom)

4. feladat: Az ABCD paralelogrammában a BD átló 12, az átlók metszéspontja O. Az AOD és COD háromszögek köré írható körök középpontjainak a távolsága 16. Az AOB háromszög köré írt kör sugara 5. Határozzuk meg a paralelogramma területét.

Pintér Ferenc (Nagykanizsa)

5. feladat: Bizonyítsuk be, hogy nincs olyan P(x) egész együtthatós (nem azonosan nulla) polinom, amelyre léteznek x_1, x_2, \ldots, x_n (n > 2) különböző egész számok úgy, hogy $P(x_1) = x_2, P(x_2) = x_3, \ldots, P(x_n) = x_1$ teljesül.

Kántor Sándor (Debrecen)

6. feladat: Egy 10×10 -es négyzetbe beírjuk az $1, 2, 3, \dots, 100$ számokat úgy, hogy bármely két egymás utáni szám élben szomszédos négyzetbe kerüljön. Igazoljuk, hogy létezik legalább egy sor vagy oszlop, amelyik legalább két teljes négyzetet tartalmaz.

Bence Mihály (Brassó)