

ELETROTECNIA TEÓRICA

Ensaio de um transformador monofásico e previsão do funcionamento em carga

Classificação:	

Trabalho realizado pelos estudantes:

Nome: Simão Maravilhas Charrua Número: 63422

Nome: Gonçalo Filipe Cabaço Santos Número: 63235

Nome: Tiago Capelo Monteiro Número: 63368

Índice:

1-Objetivo do trabalho	3
2-Resultados obtidos experimentalmente	4
3-Determinação dos parâmetros do transformador	6
5-Conclusão	. 15

1-Objetivo do trabalho

Este trabalho visa realizar uma análise abrangente da operação de um transformador, comparando o seu funcionamento teórico previsto com o seu desempenho real sob carga.

O principal objetivo é identificar as disparidades entre a teoria e a prática, procurando detalhes sobre os diferentes valores do funcionamento de um transformador em condições teóricas e reais.

Também se procura, através do ensaio em carga, o rendimento do transformador. Desta maneira, obtendo a eficiência do dispositivo quando submetido a condições operacionais reais. Usando como parâmetro de referência um rendimento de pelo menos 99%.

Dessa forma, este trabalho contribuirá para uma compreensão aprofundada das complexidades associadas ao desempenho de transformadores, unindo a teoria a e prática para nos fornecer uma visão abrangente e informada sobre a matéria a ser estudada.

2-Resultados obtidos experimentalmente

Neste Capítulo vão ser apresentado os valores obtidos através do laboratório em cada um dos ensaios feitos.

O primeiro ensaio feito foi o ensaio em vazio, para tal deixamos o enrolamento do secundário vazio e aplicamos, no enrolamento primário, uma tensão, no nosso caso 400 V, referente á tensão nominal no enrolamento primário, é então medido três valores de tensão, U_{1vazio} , U_{2vazio} e U_{3vazio} um valor de corrente, I_{1vazio} e um valor de potência que nos auxilia no calculo da fase da impedância. Os valores obtidos no laboratórios estão escritos na tabela abaixo.

Resultados obtidos através do ensaio em vazio

$U_{1vazio}(V)$	$I_{1vazio}(mA)$	$P_{1vazio}(W)$	$U_{3vazio}(V)$	$U_{2vazio}(V)$
400	138	16.4	9.11	25.2

Tabela 1- Resultados obtidos através do ensaio em vazio.

O segundo ensaio realizado foi o ensaio em curto-circuito, para este ensaio deixamos o secundário em curto-circuito ligando os respetivos terminais um ao outro. Começamos por aplicar uma tensão mínima e fomos aumentando até obtermos um valor no amperímetro perto da corrente nominal no primário e medimos a tensão, U_{1CC} , a corrente I_{1CC} e a potência P_{1CC} . Os valores obtidos estão apresentados na tabela abaixo.

Uma adenda é que na aula pratica não foi possível realizar este ensaio pratico com sucesso então usamos os valores fornecidos pelo docente para realizar os cálculos.

Resultados obtidos através do ensaio em curto-circuito

$U_{1CC}(V)$	$I_{1CC}(A)$	$P_{1CC}(W)$	
24.4	3.72	87	

Tabela 2- Resultados obtidos através do ensaio em curto-circuito.

O último ensaio realizado foi o ensaio de carga, para tal foi ligado uma impedância ao primário e outra ao secundário. Fomos aumentando a tensão no primário até obtermos a tensão nominal do secundário, no nosso caso 24V. Com isto tiramos dois valores de tensão, U_1 , U_2 , dois valores para a corrente I_1 , I_2 e dois valores de potência P_1 , P_2 . Os valores obtidos estão apresentados na tabela abaixo.

Resultados obtidos através do ensaio em carga

$U_1(V)$	$I_1(A)$	$P_1(W)$	$U_2(V)$	$I_2(A)$	$P_2(W)$
408.6	2.705	278	23.6	10.48	248

Tabela 3- Resultados obtidos através do ensaio em curto-circuito.

3-Determinação dos parâmetros do transformador

 Determinar os parâmetros do ramo transversal e longitudinal do esquema equivalente de Steinmetz deste transformador reduzido ao primário;

Para conseguir determinar os parâmetros do diagrama de Steinmetz vamos utilizar os valores obtidos experimentalmente, para o ramo transversal vamos usar os valores do ensaio em vazio, para o ramos longitudinal iremos usar os valores obtidos do ensaio em curto-circuito.

Para obter os valores do ramo transversal vamos analisar o **ensaio em vazio**. Começamos por calcular a admitância em vazio, Y_{1vazio} , a parte real da admitância está relacionada com as perdas por efeito de joule no núcleo de ferro e a parte imaginaria representa as o fluxo de indução magnética do transformador.

Para chegar ao valor da admitância, vamos calcular primeiramente a impedância em vazio, Z_{1vazio} , esta é dada por:

$$Z_{1vazio} = \frac{U_{1vazio}}{I_{1vazio}} = \frac{400}{0.138} = 2898.55 \,\Omega \approx 2898 \,\Omega$$

A fase pode ser obtida através do valor de potência medio no ensaio em questão e é dado por:

$$P_{1vazio} = U_{1vazio} I_{1vazio} cos(\varphi) \leftrightarrow \varphi = \arccos\left(\frac{P_{1vazio}}{U_{1vazio} I_{1vazio}}\right) \leftrightarrow \varphi = 72.7164 \,^{\circ} \approx 73^{\circ}$$

Desta forma, a impedância em vazio complexa, \bar{Z}_{1vazio} , é dada por:

$$\bar{Z}_{1vazio} = 2898 < 73 \,^{\circ} \, \Omega$$

Como estamos a trabalhar com componentes em paralelo teremos de verificar a Admitância:

Sendo:
$$\bar{Y} = \frac{1}{\bar{z}}$$

Então:

$$\bar{Y}_{1vazio} = \frac{1}{\bar{Z}_{1vazio}}$$

$$\bar{Y}_{1vazio} = 3.45 * 10^{-4} < -73 ° S$$

Em coordenadas retangulares:

$$\bar{Y}_{1\nu azio} = 1*10^{-4} - 3.3*10^{-4}$$
j S

Com isto temos que:

$$\begin{split} \overline{Y}_{1vazio} &= \frac{1}{R_{fe}} - \frac{1}{X_{fe}} j \, S \\ \frac{1}{R_{fe}} &= 1*10^{-4} \leftrightarrow R_{fe} = 10 k \Omega \\ \frac{1}{X_{fe}} &= 3.3*10^{-4} \leftrightarrow X_{fe} = 3.03 k \Omega \end{split}$$

Para os valores do ramo transversal vamos analisar o ensaio em **curto-circuito** e determinar a impedância em Curto-Circuito $\bar{Z}_{C.C}$ a parte real esta impedância está relacionada com as resistências que representam as perdas nas bobinas do primário e secundário, já a parte imaginaria representa a dispersão do fluxo magnético equivalente.

A impedância em curto-circuito, Z_{1cc} , pode ser obtida usando os valores de tensão de curto-circuito, U_{1cc} , e corrente de curto-circuito, I_{1cc} , obtidos ao longo do ensaio e é dada por:

$$Z_{cc} = \frac{U_{1cc}}{I_{1cc}} = \frac{24.4}{3.72} = 6.56 \,\Omega$$

A fase pode ser obtida através da potência de curto-circuito, P_{1cc} , e é dada por:

$$P_{1cc} = U_{1cc}I_{1cc}cos(\varphi) \leftrightarrow \varphi = \arccos\left(\frac{P_{1cc}}{U_{1cc}I_{1cc}}\right) \leftrightarrow \varphi = 17^{\circ}$$

Desta forma, a impedância complexa pode ser escrita como:

$$\bar{Z}_{CC} = 6.56 < 17^{\circ} \Omega$$

Em forma retangular é dada por:

$$\bar{Z}_{C.C} = 6.27 + 1.918j \Omega$$

Como:

$$\bar{Z}_{1C.C} = r'_{eq} + X'_{eq}j$$

Então podemos dizer que:

$$r'_{eq} = r_1 + r'_2 = 6.27 \Omega$$

 $X'_{eq} = X_1 + X'_2 = 1.918 \Omega$

Ficamos com:

$$r_1 = r_2' = 3.135 \Omega$$

 $X_1 = X_2' = 0.959\Omega$

 Determinar o número de espiras do enrolamento primário e secundário e calcular a respetiva relação de transformação através desses valores; comparar com a relação de transformação obtida através da razão entre as tensões nominais; comentar;

Para conseguir determinar o número de espiras do enrolamento podemos utilizar a tensão no enrolamento três e comparar a tensão deste com a tensão no primário e sabendo o número de espiras que existe no terciário calcular o número de espiras no enrolamento primário. Sabendo o número do espiras no enrolamento primário podemos usar a mesma logica e calcular o número de espiras no secundário.

Então:

$$\frac{U_1}{U_3} = \frac{N_1}{N_3} \leftrightarrow N_1 = \frac{U_1}{U_3} * N_3, \text{ sendo } N_3 = 10$$

$$N_1 = \frac{400}{9.11} * 10 \approx 440$$

Seguindo a mesma logica, mas para calcular o número de espiras do enrolamento dois, N_1 :

$$\frac{U_1}{U_2} = \frac{N_1}{N_2} \leftrightarrow N_2 = \frac{U_2}{U_1} * N_1$$
$$N_1 = \frac{25.5}{400} * 440 \approx 29$$

A relação de transformação obtida através dos resultados experimentais, m', é dada por:

$$m' = \frac{N_1}{N_2} = \frac{440}{29} = 15.17$$

Já a relação de transformação obtida através dos valores nominais da tensão, m, é dado por:

$$m = \frac{U_{1n}}{U_{2n}} = \frac{400}{24} = 16.(6)$$

Comparando os dois valores podemos ver que estes são diferentes, o valor obtido através do laboratório é ligeiramente menor, isto acontece, pois, foi usado para calcular m' o valor da tensão U_3 , como não estamos a trabalhar em condições perfeitas este acaba por ser afetado pelas condições dos materiais e do ambiente, assim, e apenas em condições perfeitas, estes valores de relação de transformação seriam iguais.

 Desenhar o respetivo esquema elétrico correspondente colocando os valores dos parâmetros determinados; dizer o que representa no transformador cada um dos parâmetros determinados;

Figura 1 - Esquema elétrico de Steinmetz.

- r1 é uma resistência que é usada para representar as perdas ohmicas no cobre usado na bobina do primário.
- r'2 é uma resistência que é usada para representar as perdas ohmicas no cobre usado na bobina do secundário, neste caso reduzido ao primário.
- X_1 é uma relutância que representa a dispersão da bobine do primário.
- X'_2 é uma relutância que representa a dispersão da bobine do secundário, neste caso reduzido ao primário.
- R_{fe} é uma resistência fictícia que representa as perdas magnéticas no núcleo do transformador.
- X_{fe} é uma relutância que representa a magnetização do núcleo do transformador.

 Determinar a tensão de curto-circuito por unidade do transformador e a impedância de curto-circuito por unidade;

A tensão de curto-circuito por unidade é dada por:

$$U_{T1cc}(pv) = \frac{U_{1cc}}{U_{1n}} = \frac{24.4}{400} * 100 = 6.1 \% pv$$

A impedância de curto-circuito por unidade é dada por:

$$Z_{T1cc}(p\Omega) = \frac{Z_{1cc}}{Z_{1n}} * 100 = \frac{\frac{U_{1cc}}{I_{1cc}}}{\frac{U_{1n}}{I_{1n}}} * 100 = \frac{\frac{24.4}{3.72}}{\frac{400}{3.75}} * 100 = 6,15 \% p\Omega$$

Cálculo auxiliar:

$$S_{1n} = U_{1n}I_{1n} VA \leftrightarrow I_{1n} = \frac{S_{1n}}{U_{1n}} \leftrightarrow I_{1n} = \frac{1500}{400} \leftrightarrow I_{1n} = 3.75$$

• Indicar as perdas no ferro do transformador e as perdas no cobre nominais;

$$P_{cun} = I_{cc}^2 R_{eq} = 3.72^2 * 6.27 = 86.7 w$$

 $P_{fe} = I_{10}^2 R_{fe} = \frac{U_{10}^2}{R_{fe}^2} * R_{fe} = \frac{U_{10}^2}{R_{fe}} = \frac{400^2}{10k} = 16 \text{ w}$

• Explicar para que serve o esquema equivalente do transformador

O esquema equivalente ao transformador, além de simplificar as contas matemáticas necessárias para o dimensionamento de um transformador, permite uma modelagem a análise de sistemas complexos mais eficaz.

4-Comportamento do transformador em carga e comparação com a previsão obtida pelo esquema de Steinmetz.

A partir dos valores medidos no ensaio em carga determinem:

i. A impedância de carga $\overline{Z}c$ que foi ligada ao transformador

Para conseguir obter a impedância de carga, Z_c , podemos usar os valore da tensão no secundário, U_2 , e a corrente do secundário, I_2 .

$$Z_c = \frac{U_2}{I_2} = \frac{23.6}{10.48} = 2.25 \,\Omega$$

Para obter a fase da impedância de carga podemos usar o valor da potência retirada do ensaio em laboratório.

$$P_2 = U_2 I_2 cos \varphi \leftrightarrow \varphi = \arccos \frac{P_2}{U_2 I_2} = \arccos \frac{248}{23.6 * 10.48} = 0^{\circ}$$

Assim a impedância complexa de carga é dada por:

$$\bar{Z}_C = 2.25 < 0^{\circ}$$

ii. A impedância do transformador vista da rede, \overline{Z} 1

Para conseguirmos calcular a impedância do transformador vista á rede, Z_1 , usamos os valores da tensão no enrolamento primário, U_1 , e a corrente, I_1 , do enrolamento primário.

$$Z_1 = \frac{U_1}{I_1} = 151.05 \,\Omega$$

Para obter a fase da impedância do transformador vista á rede, Z_1 , podemos usar o valor da potência vista do enrolamento primário, P_1 , retirada do ensaio em laboratório.

$$P_1 = U_1 I_1 \cos \varphi \leftrightarrow \varphi = \arccos \frac{P_1}{U_1 I_1} = \arccos \frac{278}{408.6 * 2.705} = 76^{\circ}$$

Então, a impedância complexa do transformador vista á rede, \bar{Z}_1 , pode ser escrita por:

$$\bar{Z}_1 = 151.05 < 76^{\circ}$$

iii. O rendimento do transformador; comentar os resultados obtidos.

No cálculo do rendimento estamos a compara duas tenções

$$\eta(\%) = \frac{P_2}{P_2 + P_{perdas}} * 100$$

Como:
$$P_1 = P_2 + P_{perdas}$$

Então:

$$\eta(\%) = \frac{P_2}{P_1} * 100 = \frac{248}{278} * 100 = 89.2\%$$

A partir do esquema equivalente de Steinmetz do transformador e para a carga $\overline{Z}c$ em questão, determinar:

i. A corrente absorvida pelo transformador à rede e a tensão no primário do transformador;

Uma vez que a corrente absorvida, \bar{I}_1 , pode ser escrita como:

$$\bar{I}_1 = \bar{I}_{10} + \bar{I'}_2$$

Temos de ir calcular o valor de \bar{I}'_2 e \bar{I}_{10} :

$$\bar{I'}_2 = \frac{\bar{U'}_2}{\bar{Z'}_c}$$

$$\overline{U}'_2 = m * U_2 = 16.(6) * 24 = 400 V$$

$$\bar{Z'}_c = m^2 * \bar{Z}_c = 16.(6)^2 * 2.25 < 0^\circ = 625 < 0^\circ \Omega$$

$$\bar{I'}_2 = \frac{\bar{U'}_2}{\bar{Z'}_c} = \frac{400}{625 < 0^{\circ}} = 0.64 < 0^{\circ} A$$

$$\overline{U}_{10} = \overline{\triangle} \ \overline{U}_2 + \overline{U}_2 = (r'_2 + jX'_2)\overline{I'}_2 + \overline{U'}_2 = (3.135 + 0.959j)0.64 + 400 = 402 < 0.1^{\circ} V$$

$$\bar{I'}_{10} = \frac{\bar{U'}_{10}}{\bar{Z'}_{10}} = \frac{\bar{U'}_{10}}{R_{fe}//jX_{fe}} = \frac{402 < 0.1^{\circ}}{2898 < 73^{\circ}} = 0.1387 < -73^{\circ} A$$

$$\bar{I}_1 = \bar{I}_{10} + \bar{I'}_2 = 0.1387 < -73^{\circ} + 0.64 < 0^{\circ} = 0.69 < -11^{\circ} A$$

$$\overline{U}_1 = \overline{\triangle} \ \overline{U}_1 + \overline{U}_{10} = (r_1 + jX1)\overline{I}_1 + \overline{U}_{10} = (3.135 + 1.918 \mathrm{j})0.69 < -11^\circ + 402 < 0.1^\circ = 404,11 < 1^\circ \mathrm{v}$$

ii. As potências de entrada e de saída do transformador

A potência é dada por:

$$P = U.I.\cos \varphi$$

Sendo:

$$\varphi_1 = 1 - (-11) = 12^{\circ}$$

$$\varphi_2=0^\circ$$

Então:

$$P_1 = U_1 I_1 cos \varphi = 404.11*0.69*cos (12°) = 272W$$

 $P'_2 = U'_2 I'_2 cos \varphi = 400*0.64*cos (0°) = 256W$

iii. As perdas no ferro e no cobre do transformador

Para calcular o valor das perdas no ferro e no cobre podemos seguir a fórmula:

$$P_{perdas} = R * I^2$$

Para as perdas no ferro:

$$P_{fe-perdas} = R_{fe} * I_{10}^{2} = \frac{U_{10}^{2}}{R_{fe}} = \frac{402}{10k} = 16.1W$$

$$P_{Cu-perdas} = R_{eq} * I_{1}^{2} = \frac{R_{eq} * I_{1} * I_{n}^{2}}{I_{n}^{2}} = K^{2}P_{cun} = 0.184^{2} * 86.7 = 2.935 W$$

Cálculo auxiliar:

A relação de carga, K, pode ser calculada da seguinte forma:

$$K = \frac{I_1}{I_{1n}} = \frac{0.69}{3.75} = 0.184$$

• Comparar todos os resultados obtidos a partir do ensaio em carga, com os resultados que se obtêm utilizando o esquema equivalente de Steinmetz (previsão do comportamento).

	Ensaio em Carga	Equivalente de	Erro relativo (%)
		Steinmetz	
Tensão no Primário	408.6	404,11	1.098
$U_1(V)$			
Corrente no Primário	2.705	0.69	74.49
$I_1(A)$			
Potencia vista do	278	272	2.158
primário			
$P_1(W)$			
Potencia vista do	248	256	3.125
secundário			
$P_2(W)$			
Rendimento	89.2	94.1	5.207
η(%)			

Tabela 4- Resultados obtidos através dos ensaio em carga e através do esquema equivalente.

• Cálculos auxiliares na construção da tabela:

O rendimento do ensaio em carga é dado por:

$$\eta(\%) = \frac{P_2}{P_1} * 100 = \frac{256}{272} * 100 = 94.1\%$$

Erro relativo:
$$E_r = \frac{Valor_{exato} - Valor_{experimental}}{Valor_{exato}}$$

Analisando os resultados por meio de comparação, podemos concluir que os resultados obtidos estão relativamente perto dos resultados medidos através do esquema equivalente de Steinmetz.

5-Conclusão

Este projeto foi uma grande oportunidade de aprofundarmos nosso conhecimento teórico e prático abordados em aula. Ao participarmos ativamente dos ensaios em laboratório e explorarmos o funcionamento de um transformador, adquirimos conhecimento prático que complementou nossa formação acadêmica.

Embora tenhamos enfrentado desafios durante o desenvolvimento, especialmente devido a problemas que ocorreram durante a aula prática com o transformador, que afetaram os valores iniciais, o processo acabou por nos proporcionar valiosas lições de resolução de problemas e adaptabilidade.

Concluindo, este projeto reforçou a nossa capacidade de aprender e aprofundou os nosso conhecimentos sobre transformadores. Este projeto não apenas contribuiu para nossa formação acadêmica, mas também fortaleceu várias das habilidades práticas e serviu para nos ajudar a superar futuros desafios na área das energia.