CENG 463 Machine Learning

Lecture 06 - Logistic Regression

Classification

- Logistic Regression is a classification method!
- Examples:
 - Email: Spam / Not Spam?
 - Brain tumor: Malignant / Benign?
- $y \in \{0,1\}$
 - 0: Negative class (e.g. benign tumor)
 - 1: Positive class (e.g. malignant tumor)
- $y \in \{0,1,2,...\}$ if there are more than two classes.

Why not using Linear Regression?

- Threshold classifier output $h_{\theta}(x)$ at 0.5:
 - o If $h_{\theta}(x) > 0.5$, predict 'malignant', otherwise predict 'benign'.

Why not using Linear Regression?

- But, what if we have an extreme case sample in the training set?
 - For the above scenario, linear regression is not suitable.
 - The best fitting line changed significantly because of a single very large tumor size.

Why not using Linear Regression?

- In fact, for most of the classification problems, linear regression, even polynomial regression is not suitable.
- We also want $h_{\theta}(x)$ to take values between 0 and 1. With linear regression $h_{\theta}(x)$ can take <0 and >1 values.
- One solution is: **Logistic Regression**, where $0 < h_{\theta}(x) < 1$

Logistic Regression

• In logistic regression, we model our hypothesis $h_{\theta}(x)$, so that it takes values between 0 and 1. **How?**

Logistic Regression

$$h_{\theta}(x) = g(\theta^{T} \cdot x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} \cdot x}}$$

- g(z) is called Logistic or Sigmoid function.
- Logistic regression fits the parameters (θ) to this model.
- θ here are not the same with linear regression parameters.

As we wanted, 0 < h_e (x) < 1.

Logistic Regression

- We interpret the logistic regression output as follows: $h_{\theta}(x)$ = estimated probability that y = 1 on input x
- For tumor example, if $h_{\theta}(x) = 0.7$, we say that the patient has 70% chance to have a malignant tumor.
- In statistics notation:

$$h_{\theta}(x) = P(y=1 \mid x; \theta)$$

- In words:
 - "probability that y = 1, given x, parameterized by θ "
- Keep in mind that: $P(y=0 \mid x; \theta) + P(y=1 \mid x; \theta) = 1$

Decision Boundary

- One strategy for decision is to predict:
 - o y=1 if $h_{\theta}(x) > 0.5$
 - o y=0 if $h_{\theta}(x) <= 0.5$
- This means to predict:
 - o y=1 if $\theta^T \cdot x > 0$
 - o y=0 if $\theta^T \cdot x \le 0$

$$h_{\theta}(x) = g(\theta^{T} \cdot x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Decision Boundary

Decision Boundary

 An example to non-linear decision boundary:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2$$

Let's say:

$$\theta_0 = -1, \ \theta_1 = \theta_2 = 0, \ \theta_3 = \theta_4 = 1$$

Using the same strategy, we predict:

$$y=1 \text{ if } -1+x_1^2+x_2^2>0$$

$$\circ$$
 y=0 if -1+ x_1^2 + x_2^2 <= 0

- Now, we need to estimate parameters (θ) for the decision boundary.
- If we have m samples, n features, 2 classes:

$$\circ$$
 $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$

$$y \in \{0,1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} \cdot x}} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ ... \\ y^{(m)} \end{bmatrix} \qquad X = \begin{bmatrix} ... & x^{(1)^{T}} & ... \\ ... & x^{(2)^{T}} & ... \\ ... & ... & ... \\ ... & x^{(m)^{T}} & ... \end{bmatrix}$$

Remember the cost function in linear regression:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left| h_{\theta}(x^{(i)}) - y^{(i)} \right|^{2}$$

 It turns out that, because of the non-linearity of the sigmoid function that we use in h_θ(x), this cost function becomes non-convex (i.e. contains local minima).

- We need another function which is <u>convex</u>.
- Logistic regression cost function:

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y=1 \\ -\log(1-h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

- For y = 1:
 - o cost=0 if $h_{\theta}(x)=1$, cost $\to \infty$ as $h_{\theta}(x) \to 0$
- For y = 0:
 - cost=0 if $h_{\theta}(x)=0$, cost $\rightarrow \infty$ as $h_{\theta}(x) \rightarrow 1$
- If we predict 0 when y=1, or 1 when y = 0, we are penalized by a very large cost.

cost

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y=1 \\ -\log(1-h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

 Knowing that y is always equal to 0 or 1, we can define the cost function with a single line.

Cost
$$(h_{\theta}(x), y) = -y \cdot \log(h_{\theta}(x)) - (1-y) \cdot \log(1-h_{\theta}(x))$$

- If y=1, cost becomes $-log(h_{\theta}(x))$
- If y=0, cost becomes $-\log(1-h_{\theta}(x))$

Gradient Descent

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1-y) \log(1 - h_{\theta}(x^{(i)})) \right)$$

- We need to find the parameters that minimize θ.
- It turns out that, the derivative computed using calculus is identical to the derivative term in linear regression:

$$\frac{\partial J(\theta)}{\partial \theta_i} = \frac{1}{m} \sum_{i=1}^m \left(\left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x_j^{(i)} \right)$$

Gradient Descent

Algorithm is also identical to linear regression:

repeat until convergence {
$$x_0^{(i)} = 1$$

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\dots$$

$$\theta_n \coloneqq \theta_n - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_n^{(i)}$$
}

Multi-class Classification

- Examples:
 - Email tagging: Work, Friends, Family, Hobby
 - Weather: Sunny, Cloudy, Rain, Snow
 - Sports: Win the match, Lose the match, Draw
- Graphical representation for 3 classes and 2 features:

Multi-class Classification

One versus rest:

- Take y=1 for class 1 and y=0 for the rest. Train a two-class classifier: h_θ⁽¹⁾(x)
- Take y=1 for class 2 and y=0 for the rest. Train a two-class classifier: h_θ⁽²⁾(x)
- Take y=1 for class 3 and y=0 for the rest. Train a two-class classifier: $h_{\theta}^{(3)}(x)$

$$h_{\theta}^{(i)}(x) = P(y=i \mid x; \theta)$$
 where $i=1,2,3$

Generative vs. Discriminative

- There are two main methods for learning algorithms:
 - Generative
 - Discriminative

Discriminative Methods

- Logistic regression is an example to a learning algorithm that models p(y|x), i.e. the conditional (posterior) probability of y given x. It is not interested in modeling classes y=1 or y=0.
- This kind of learning algorithms are called discriminative.
- Example: Direct modeling of p(zebra|image) and p(horse|image) based on some features of an animal.

Generative Methods

- A different approach is first looking at samples of classes, and building separate models for them (e.g. building different models for zebra and horse).
- To classify a new animal, we compare it with the built models.
 - e.g. matching a new animal with zebra model and horse model, to see if it looks more like zebras or more like horses
- Such methods are called generative.
- That is what we did for Gaussian discriminant functions. We first built likelihoods, then obtained posteriors using the Bayes' rule.

$$p(zebra | image) = \frac{p(image | zebra) \cdot p(zebra)}{p(image)}$$

Generative Methods

Generative vs. Discriminative

- None of these methods can be called 'the best'.
- Performance of these approaches depends on the problem.
- In general, if the distribution assumptions for the data (e.g. Gaussian) are correct, generative methods are expected to be better.
- On the other hand, if we are not sure about the underlying functions of the distributions, discriminative methods create more robust classifiers.

Summary

- We have learned about:
 - Logistic Regression
 - Decision Boundaries
 - Logistic Regression Cost Function
 - Multi-class Classification with Logistic Regression
 - Generative and Discriminative Methods