CS43L22: audio DAC, speaker driver

Extra ports that was opened and generated by STMCube.

- I2C: using I2C interface to control ports operations.
- I2S: using I2S standard format on digital interface.
- TIM1: a timer with internal clock.
- UART2 : for sent data via USB by UART protocol.

```
41 /* Private variables
42 I2C_HandleTypeDef hi2c1;
43
44 I2S_HandleTypeDef hi2s3;
45
46 TIM_HandleTypeDef htim1;
47
48 UART_HandleTypeDef huart2;
49
50 /* USER CODE BEGIN PV */
51 /* Private variables
```

I2C1 Configuration

Clock speed: 50000 Addressing mode: 7 bits Others: default

I2S3 Configuration

Mode: Master Transmit Standard: MSB Data Format: 16 Bytes Audio Frequency: 44K Others: default

TIM1 Configuration

Prescaler : 1680 Counter Mode : Up Period : 99

Others: default

```
319
       static void MX_USART2_UART_Init(void)
320
         huart2.Instance = USART2;
         huart2.Init.BaudRate = 115200;
323
324
         huart2.Init.WordLength = UART_WORDLENGTH_8B;
         huart2.Init.StopBits = UART_STOPBITS_1;
        huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
326
327
         huart2.Init.OverSampling = UART_OVERSAMPLING_16;
         if (HAL_UART_Init(&huart2) != HAL_OK)
{
329
330
331
332
           Error_Handler();
334
335
```

UART2 Configuration

use default configuration (Baud rate = 115200)

All variable that used in this project.

Initial Codes

```
104
          /*Initialize CS43L22*/
105
          HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4, 0);
106
         HAL GPIO WritePin(GPIOD, GPIO PIN 4, 1);
107
          initV[0] = 0x47; initV[1] = 0x80;
108
109
          HAL_I2C_Master_Transmit(&hi2c1, 0x94, initV, 2, 50);
110
          initV[0] = 0x32; initV[1] = 0x80;
111
112
         HAL_I2C_Master_Transmit(&hi2c1, 0x94, initV, 2, 50);
113
114
          initV[0] = 0x32; initV[1] = 0x00;
115
         HAL_I2C_Master_Transmit(&hi2c1, 0x94, initV, 2, 50);
116
117
          initV[0] = 0x1C; initV[1] = 0xAF;
118
         HAL_I2C_Master_Transmit(&hi2c1, 0x94, initV, 2, 50);
119
120
          initV[0] = 0x1E; initV[1] = 0xE0;
121
         HAL_I2C_Master_Transmit(&hi2c1, 0x94, initV, 2, 50);
122
123
          initV[0] = 0x02; initV[1] = 0x9E;
124
         HAL_I2C_Master_Transmit(&hi2c1, 0x94, initV, 2, 50);
125
126
          /*Show LED for initializing complete*/
127
         HAL_GPIO_WritePin(GPIOD, GPIO_PIN_13,1);
128
```

Objective: to prepare speaker driver and setting an initial note to be played in the while-loop codes.

4.11 Required Initialization Settings

Various sections in the device must be adjusted by implementing the initialization settings shown below after power-up sequence step 3. All performance and power consumption measurements were taken with the following settings:

- 1. Write 0x99 to register 0x00.
- 2. Write 0x80 to register 0x47.
- 3. Write '1'b to bit 7 in register 0x32.
- 4. Write '0'b to bit 7 in register 0x32.
- 5. Write 0x00 to register 0x00.

^{*}Using this guideline in datasheet.

While-Loop Codes

1st Part: Checking if user pressing some key (sending a char through USB by UART protocol), If it happen send that char back to display in serial port terminal (putty).

2nd Part: Checking if that char is the correct note (CDEFGAB), If corrected it will preparing to change note to the note relate to that char by 4 steps.

- 1. Send a signal for prepare changing note. (lines: 145,146)
- 2. Changing note to specific value. (lines: 148-156)
- 3. Send a signal to finish changing note. (lines: 158,159)
- 4. Playing a sound in 1000 times loop (lines: 162)

7.15.1 Beep Frequency

Sets the frequency of the beep signal.

FREQ[3:0]	Frequency (Fs = 12, 24, 48 or 96 kHz)	Pitch
0000	260.87 Hz	C4
0001	521.74 Hz	C5
0010	585.37 Hz	D5
0011	666.67 Hz	E5
0100	705.88 Hz	F5
0101	774.19 Hz	G5
0110	888.89 Hz	A5
0111	1000.00 Hz	B5
1000	1043.48 Hz	C6
1001	1200.00 Hz	D6
1010	1333.33 Hz	E6
1011	1411.76 Hz	F6
1100	1600.00 Hz	G6
1101	1714.29 Hz	A6
1110	2000.00 Hz	B6
1111	2181.82 Hz	C7
Application:	"Beep Generator" on page 22	

DANUPAT KHAMNUANSIN 5730196321

7.15.2 Beep On Time

Sets the on duration of the beep signal.

ONTIME[3:0]	On Time (Fs = 12, 24, 48 or 96 kHz)	
0000	~86 ms	
0001	~430 ms	
0010	~780 ms	
0011	~1.20 s	
0100	~1.50 s	
0101	~1.80 s	
0110	~2.20 s	
0111	~2.50 s	
1000	~2.80 s	
1001	~3.20 s	
1010	~3.50 s	
1011	~3.80 s	
1100	~4.20 s	
1101	~4.50 s	
1110	~4.80 s	
1111	~5.20 s	
Application:	"Beep Generator" on page 22	

^{*}Showing how long that sound will be played.

** If we want to play sound C5 as long time as it provide we need to send 0x1F via function HAL_I2S_TRANSMIT

^{*}Showing value of each note in 0-16. (EX. C5 = 0x01)

3rd Part: Showing Blue LED to let me know that it's working in waiting state.

```
/*Show LED for waiting state*/
HAL_Delay(50);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12,0);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14,0);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_15,1);

HAL_GPIO_WritePin(GPIOD, GPIO_PIN_15,1);

/* USER CODE END 3 */
```

For more information about how it works, you can read it in datasheet of CS43L22 F2