### Resolução de Problemas por Busca Busca Informada Algoritmo de Busca Local

Inteligência Artificial – 2020/1

- Os algoritmos estudados até agora são adequados para situações em que a solução é uma sequência de ações.
- Os Algoritmos de Busca Local não se enquadram nesse modelo clássico de busca pois avaliam e modificam apenas um ou mais estados atuais em vez de explorar sistematicamente os caminhos a partir de um estado inicial
- São mais adequados para problemas em que o caminho para a solução não importa.
- A solução é o estado final.
- Os algoritmos de busca local usam apenas um estado corrente e em geral se movem apenas para os estados vizinhos desse estado.

- Exemplos de problemas para os quais a busca local é mais adequada:
  - Problema das oito rainhas
  - Projetos de circuitos integrados
  - Leiaute de instalações industriais
  - Escalonamento de jornadas de trabalho
  - Programação automática

#### Vantagens:

- Usam pouca memória;
- Geralmente encontram soluções razoáveis em grandes espaços de busca.

#### • Limitações:

- Movimentos são irrevogáveis (nunca volta a um estado anterior para tentar caminhos alternativos);
- Pode levar a uma solução sub-ótima ou não levar a uma solução.

- Problemas de otimização:
  - Os algoritmos de busca local são adequados para tratar problemas de otimização:
  - O objetivo é encontrar o melhor estado de acordo com uma função objetivo

#### Topologia do espaço de estados

Tem uma posição (espaço de estados) e uma elevação (heurística)

Se a elevação representa custo, o objetivo será encontrar o Valor mais baixo – mínimo global

Se a elevação representa a função objetivo, o objetivo será Encontrar o valor mais alto – **máximo global**.



## Algoritmo de Subida da colina (Hill-Climbing)

- Enquadra-se na categoria de algoritmos de busca local
- Consiste nos seguintes passos:
  - Expande um nó, avalia seus descendentes;
    - (Não armazena irmãos nem pais);
  - Seleciona o melhor entre os descendentes para continuar;
  - Para quando encontrar um nó melhor que todos os descendentes.

## Algoritmo de Subida da colina (Hill-Climbing)

#### Variáveis locais: Corrente (nó corrente) Vizinho (próximo nó)

#### Procedure subida-da-colina

```
Corrente = estado inicial;
Repeat
Gere todos os filhos de Corrente e avalie;
Vizinho = sucessor de Corrente com valor mais alto;
If (valor de Vizinho <= valor de Corrente)
    retorne Corrente;
Corrente = Vizinho;
```

Se fosse usada uma estimativa de custo heurística h, encontraríamos o vizinho com o h mais baixo.

- Usa formulação de estados completos: cada estado tem 8 rainhas, uma em cada coluna.
- Função sucessora: retorna todos os estados possíveis gerados pela movimentação de uma única rainha para outro quadrado na mesma coluna
- Cada estado tem 8X7 = 56 sucessores
- Função heurística: número de pares de rainhas que estão atacando umas às outras, direta ou indiretamente.
- Caso exista mais de um melhor sucessor, a escolha é aleatória

• Estado inicial: 8 rainhas são colocadas aleatoriamente, uma em cada coluna



Movimentos: cada rainha pode mudar para uma das outras 7 linhas, na mesma coluna (8X7 = 56 movimentos)

Heurística: número de pares de rainhas que estão atacando umas às outras, direta ou indiretamente.

Estado com estimativa heurística h=17

| 18    | 12                                     | 14 | 13                                      | 13      | 12                                     | 14      | 14                                     |
|-------|----------------------------------------|----|-----------------------------------------|---------|----------------------------------------|---------|----------------------------------------|
| 14    | 16                                     | 13 | 15                                      | 12      | 14                                     | 12      | 16                                     |
| 14    | 12                                     | 18 | 13                                      | 15      | 12                                     | 14      | 14                                     |
| 15    | 14                                     | 14 | £ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 13      | 16                                     | 13      | 16                                     |
| £ 200 | 14                                     | 17 | 15                                      | ZWZ ZWZ | 14                                     | 16      | 16                                     |
| 17    | ************************************** | 16 | 18                                      | 15      | ************************************** | 15      | ************************************** |
| 18    |                                        |    | 15                                      | 15      | 14                                     | ZWZ ZWZ | 16                                     |
| 14    | 14                                     |    |                                         |         | 14                                     | 12      |                                        |

Os números em cada casa indicam o valor da função heurística caso a rainha da coluna correspondente mude para essa posição

Heurística: número de pares de rainhas que estão atacando umas às outras, direta ou indiretamente.

Os melhores movimentos tem h=12

Estado com estimativa heurística h=17

| 18                                     | 12      | 14      | 13                                      | 13         | 12      | 14      | 14                                     |
|----------------------------------------|---------|---------|-----------------------------------------|------------|---------|---------|----------------------------------------|
| 14                                     | 16      | 13      | 15                                      | 12         | 14      | 12      | 16                                     |
| 14                                     | 12      | 18      | 13                                      | 15         | 12      | 14      | 14                                     |
| 15                                     | 14      | 14      | £ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 13         | 16      | 13      | 16                                     |
| ************************************** | 14      | 17      | 15                                      | ZWZ<br>Zwz | 14      | 16      | 16                                     |
| 17                                     | Zwz Zwz | 16      | 18                                      | 15         | £ 200 2 | 15      | ************************************** |
| 18                                     | 14      | ZWZ ZWZ | 15                                      | 15         | 14      | ZWY ZWY | 16                                     |
| 14                                     |         |         |                                         |            |         |         |                                        |

5 passos são necessários para sair da configuração da esquerda para a configuração da direita

Estado com heurística h=17



Estado com heurística h=1



Essa configuração é um Mínimo local no espaço de estados das 8-rainhas Tem h=1 mas todo sucessor tem custo mais alto



A busca local termina aqui, sem encontrar o mínimo global

Fim do tópico Busca Informada