SMART FARMERIoT ENABLED SMART FARMING APPLICATION

- BY
SRIVATSAN M
UDHAYAPRAKASH V
NIRANJANA VE
JAAJANA G

1. INTRODUCTION

1.1 Project overview

IoT-based agriculture system helps the farmer in monitoring different parameters of his field like soil moisture, temperature, and humidity using some sensors.

Farmers can monitor all the sensor parameters by using a web or mobile application even if the farmer is not near his field. Watering the crop is one of the important tasks for the farmers.

They can make the decision whether to water the crop or postpone it by monitoring the sensor parameters and controlling the motor pumps from the mobile application itself.

1.2 Purpose

The purpose of doing this project is to allow the farmer to remotely monitor the field and to control the motor present in the field through the mobile application itself. IoT plays a crucial role in smart agriculture. IoT sensors are capable of providing information about agriculture fields. We have proposed an IoT and smart agriculture system. This IoT based Agriculture monitoring system makes use of wireless sensor networks that collects data from different sensors deployed at various nodes and sends it through the wireless protocol. By regular monitoring of these parameters, we can add the necessary things to the soil in order to make the crops grow without any difficulties. The temperature sensor gives the temperature value of the field. Similarly, the humidity sensor and soil moisture sensor returns the humidity & moisture content of the soil respectively. The flame sensor gives the intensity of flame , if any , present in the field. The NPK sensor gives the Nitrogen, Phosphorus & Potassium level of the soil. If any of these

nutrient value is very less, then, a farmer can add that particular nutrient to the soil.

2. LITERATURE SURVEY

2.1 Existing Problem

- ➤ Manual monitoring of farm by the farmer appears to be a tedious job.
- ➤ Farmers are at the threat of facing financial risks when the crop yield is not better.
- ➤ Timely care should be given to the farm & all required components should be added to the soil if there is a need of any nutrient.
- ➤ Farmers are unaware of the new emerging technologies which help them in doing a smart agriculture.

2.2 References

[1] Bandara, Tharindu Madushan, Wanninayaka Mudiyanselage, and Mansoor Raza. "Smart farm and monitoring system for measuring the Environmental condition using wireless sensor network-IOT Technology in farming." In 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA), pp. 1-7. IEEE, 2020.

This paper concentrates on implementing a smart farming system in order to facilitate farmers. They have implemented the proposed system using IoT, wireless sensor technologies and nodes to connect the entire network. The data collected and monitored from the field are soil moisture content and temperature. The designed system collect data from farms and transfer these data to central server using wireless technology and then, the server assigns task to each device present in the field based on the inputs received. They have also designed the mobile application and using this, farmers can set threshold value for each sensor.

The different modules used here are:

Soil moisture measuring system: Using this, the moisture data from the field is collected and is sent to central server through WSU (Wireless Sensor Unit) and the received data is compared with inbuilt threshold value. If the collected data is lesser than threshold value, then, the system sends an signal to actuators through WIU (Wireless Information Unit) to turn on watering system and this continues as long as data from field is greater than the threshold.

WSU (Wireless Sensor Unit): To transfer data to central server and to connect all sensors to Arduino board.

WIU (Wireless Information Unit): To communicate between sensors and WSU.

Temperature monitoring system: To monitor the temperature level in the farm.

Mobile applications to farmers: To check the moisture and temperature and to set threshold for all the parameters.

Sensor monitoring system: To check whether all the sensors are working properly or not. It is accessible only by developers.

[2] Sushanth, G., and S. Sujatha. "IOT based smart agriculture system." In 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1-4. IEEE, 2018.

This paper proposed to develop a Smart agriculture System that uses advantages of cutting edge technologies such as Arduino, IOT and Wireless Sensor Network. The paper aims at making use of evolving technology i.e. IOT and smart agriculture using automation. Monitoring environmental conditions is the major

factor to improve yield of the efficient crops. The feature of this paper includes development of a system which can monitor temperature, humidity, moisture and even the movement of animals which may destroy the crops in agricultural field through sensors using Arduino board and in case of any discrepancy send a SMS notification as well as a notification on the application developed for the same to the farmer's smartphone using Wi-Fi/3G/4G. The system has a duplex communication link based on a cellular-Internet interface that allows for data inspection and irrigation scheduling to be programmed through an android application. Because of its energy autonomy and low cost, the system has the potential to be useful in water limited geographically isolated areas.

Components used

LM 35 temperature sensor

Humidity sensor

Moisture sensor

Motion sensor

Wi-Fi module

ESP8266

GSM module

Implementation and its application:

The sensing phase involves the sensing of the physical parameters which includes temperature, moisture, humidity and motion. All these sensors are attached to the Arduino Uno R3 micro-controller board. This board acts as the IoT gateway in the developed system as it has the capacity to transmit the data to the cloud. This transmission is done using Wi-Fi ESP8266 module. The processing phase takes place in the cloud. The cloud consists of a Web Server, a database where the sensed data is maintained and a decision logic which takes decisions based on the sensed data. In the information distribution phase, the output of the decision logic will be sent to the android application and then to the IOT gateway.

[3] Aditya Vadapalli, Swapna Peravali and Venkatarao Dadi, "Smart Agriculture system using IoT Technology" in 2020, International Journal of Advance Research in Science and Engineering.

Aim:

This paper highlights the disadvantages of conventional agricultural practices, how it drastically affects the Farmer's life and how Smart Farming using IoT methods such as Precision farming, Efficient Water Management can solve many problems. They highlight how the foreign return Citizens without any job during the pandemic shifted to Smart Agriculture and refuse to leave for their jobs.

Components Used:

Soil Moisture Sensor

Raindrop Sensor

Temperature & Humidity Sensor (DHT11)

Arduino Uno Board

Method:

They make use of Wireless Sensor Networking System as collection process for information needed by the farmers for cultivation such as changes in environmental conditions like climate, hydrology, plant physiology, humidity, temperature, rain dampness of soil and others and also as Input feeder control system on agricultural machinery. Soil moisture sensors are fixed under the ground in field. Initially the water level reading is taken and decisions are made according to it. The temperature sensor (DTH11) is fixed at the centre of the field to get the overall reading of temperature of the soil. These sensors are connected to Arduino where we will get the readings. All sensors will send data to Arduino and data will be forwarded to WSN systems. The threshold value will be set according to the crop. The threshold value will be marked based on the requirement of the crop specified and predefined in the raspberry pi for every sensor. Whenever any sensor reaches a threshold value, message alert is sent to the user and action is taken according to it. The system has checked for the performance with the help of thing speak.com platform to check the Temperature, humidity rain and soil parameters.

[4] Harrika Pendyala, Ganeshkumar Roda, Annoja Mamidi, Madhavi Vangala, Sathyam Bonala and Keerthi Kumar Kolrapati "IoT Based Smart Agriculture Monitoring System" in 2020, International Journal of Scientific Engineering and Research (IJSER).

Aim:

This paper develops an IoT based smart agriculture monitoring system that uses the advantages of IoT is to monitor the agriculture by using the wireless sensor networks and collect the data from different sensors which are deployed at various no des and send by wireless protocol. By using IoT system the smart agriculture is powered by NodeMCU. It includes the humidity sensor, temperature sensor, moisture sensor and DC motor. This system starts to check the humidity and moisture level. The sensors are used to sense the level of water and if the level

is below the range then the system automatically stars watering. According to the change in temperature level the sensor does its job. IoT also shows the information of humidity, moisture level by including date and time. The temperature level based on type of crops cultivated can also be adjusted.

Components used:

Soil moisture sensor

Temperature sensor (DHT-11)

Relay

Pump

IoT (WI-FI module ESP8266)

Power supply: 5V, 700mA Regulated power supply

Arduino IDE

Thingspeak website

Implementation and advantages:

The working of the system includes soil moisture sensor and it is tested under various climatic conditions. The moisture output readings at different weather is taken and updated. Wi-Fi is used to achieve the wireless transmission. The sensed value is sent to micro-controller through NodeMCU and motor gets pump. The function of a power supply is to convert electric current from a source to the correct voltage, current and frequency to power up the load. As a result, power supplies are also referred to as electric power converters. ThingSpeak is an IoT analytics platform which is used to aggregate, visualize, and analyse live data

streams in the cloud. When the data is sent to Thingspeak from the devices, it creates instant visualization of live data and sends an alert. It is easy to maintain and cost is reasonable to purchase. The components which are used are easily available. It has advantage to observe the status on smart phone or laptop using internet. The information is up to date even in absence of farmer.

2.3 Problem statement definition

Agriculture is considered as the basis of life for the human species as it is the main source of food grains and other raw materials. Hence there is need to implement modern science and technology in the agriculture sector for increasing the yield. We get better yield if we monitor the agriculture field carefully. Also, financial risk is one of the major problems of the farmers. If their crops are damaged by severe climatic conditions i.e. if the weather is too hot on one particular day, then, farmer should ensure that plants are watered sufficiently so that plants don't die because of lack of water. Additionally, the farmer should periodically check the soil quality of his land and add required nutrients to the farmland. Then, farmer should also ensure that all the available resources are utilized efficiently. The only solution for all these problems is smart agriculture by modernizing the current traditional methods of agriculture. Hence, the project aims at making agriculture smart using automation and IoT technologies. Controlling of some operations like humidity level, temperature level monitoring will be done through any remote smart device or computer connected to Internet and the required operations will be performed by interfacing sensors and actuators with micro-controller. Data analytics tools are used for making predictions and decisions.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Gain insight and understanding on solving customer problems.

Build empathy and keep your focus on the user by putting yourself in their shoes.

Share your feedback

3.2 Ideation & Brainstorming

Brainstorming:

Group ideas:

Prioritization of idea:

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Farmers are trying to overcome problems related to agriculture such as loss of crops due to fire accidents, improper growth of crops due to nutrition deficiency in soil and drying up of plants due to lack of moisture in agriculture field.
2.	Idea / Solution description	To design a self- reliant system that provides solution for above mentioned problems with the use of IoT technologies such as flame sensor, soil NPK sensor and soil moisture sensor.
3.	Novelty / Uniqueness	Integration flame sensor, NPK sensor and soil moisture sensor into a single unit, detection of number of damaged crops due to fire accident.
4.	Social Impact / Customer Satisfaction	Remote monitoring of farm land, reduction in loss of crops, reduction in financial risk, increasing in crop yield, efficient utilization of available resources.
5.	Business Model (Revenue Model)	Maintenance cost of sensors collected from farmers occasionally, installation cost, cost for app usage.
6.	Scalability of the Solution	Increase in accuracy of sensors and reduction in delay of data transfers while accommodating large number of users.

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration for app	Registration through App
FR-2	Real time monitoring of various parameters present in the field	Monitoring of soil moisture content Monitoring of fire Monitoring of temperature Monitoring of Soil nutrients

4.2 Non-Functional requirements

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	App should work without any complications.
NFR-2	Security	Each user should login using password.
NFR-3	Reliability	Fast and efficient data transfer between sensors and app High accuracy of data
NFR-4	Performance	Minimum usage of mobile data and battery Immediate notifications about the field parameters
NFR-5	Availability	24/7 service availability Saved data in the app should be available even if the app is re-installed again
NFR-6	Scalability	App should be compatible for all platforms App should serve efficiently when multiple activities are performed by multiple users at the same time

5. PROJECT DESIGN

5.1 Data Flow Diagrams

- . Flame, Nutrients, Moisture and Humidity Sensors are placed in the field and these values are generated using Python software.
- The Python software is connected to the IBM Cloud Platform through the Node Red Web GUI.
- The mobile application is developed using MIT app inventor.
- . The field conditions can be checked regularly from the Mobile app which is connected through the same Node Red.
- The soil moisture sensor monitors various climatic conditions. The moisture output readings at different weather conditions is taken and updated.
- The flame detector works by detecting the UV radiation at the point of ignition. The sensor would become aware of it and produce a series
 of the pulses that are converted by detector electronics into an alarm output.
- NPK sensor is based on reflectance spectroscopy, which detects the level of energy absorbed or reflected by soil particles.
- · All these information are collected regularly.
- Any changes or accidents are notified through the mobile app.
- Immediate action is also taken through the IBM cloud Platform.

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional	User	User Story	Acceptan	Priori	Relea
	Requireme	Story	/ Task	ce criteria	ty	se
	nt(Epic)	Numb				
		er				
Customer	Registration	USN-1	As a user,	I can access	High	Sprint-
(Mobileuse			I can	my account		1
r)			register for	/ dashboard		
			the			
			application			
			byentering			
			username			
			and			
			password.			
Customer	Login	USN-2	As a user,	I can login	High	Sprint-
(Mobile user)			I can log	into the app		1
			into the	upon giving		
			application	correct		
			byentering	credentials		
			username			
			&			
			Password.			
Customer	Establishing field	USN-1	As a user,	The values	High	Sprint-
(Mobileuse	parameter values		I can want	are being		2
r)			to ensure	published		
			that basic	in Python		
			field	IDLE		
			parameter			
			values are			
			updated			
			correctly			

User Type	Functional	User	User	Acceptan	Priori	Relea
	Requireme	Story	Story /	ce criteria	ty	se
	nt(Epic)	Numb	Task			
		er				
Custom	Dashboard	USN-1	As a user,	I can access	Medi	Sprint-
er (Web			I can enter	the	um	3
UI user)			into	Dashboard		
			dashboard	to view the		
			to view	displaying		
			the field	of data		
			parameter			
			values			
			through			
			Node-			
			Red.			
Custom	Establishing all	USN -2	As a user,	The values	High	Sprint-
er (Web	the required		I can want	are being		3
UI user)	field parameter		to ensure	published		
	values		that all the	in Python		
			required	IDLE		
			field			
			parameter			
			values are			
			updated			
			correctly			
Custom	Graphical	USN -3	As a user,	The data	Low	Sprint-
er (Web	representation of		I want to	can be		3
UI user)	data		view the	viewed		
			field	through		
			paramete	chart and		
			rs in	graph in		
			graphical	Node- Red		
			form	dashboard		

User Type	Functional	User	User Story /	Acceptance	Priori	Relea
	Require	Sto	Task	criteria	ty	se
	ment	ry				
	(Epic)	Nu				
		mb				
		er				
Customer	Controlling	USN -4	As a user, I	The motor can	High	Sprint-
(Web UI	of motor		want to operate	be switched		3
user)			the motor	On/Off		
			present in the	through the		
			field remotely	button present		
				in dashboard		
Customer	Alert	USN -5	As a user, I	The user will	High	Sprint-
(Web UI	messages		want to get	get alert		3
user/Mobi			notified when	message		
le user)			the field catches	through the		
			fire and when	SMS service		
			the soil	available in		
			moisture is	their phone		
			below the	when		
			threshed	moisture level		
				is below		
				threshold &		
				when field's		
				fame level is		
				above some		
				threshold		
Customer	Display all	USN -1	As a user, I	The parameter	High	Sprint-
(Mobile	values in		want the field	values are		4
user)	mobile app		parameters to	updated		
			be displayed in	periodically in		
			mobile	the app		
			application			

User Type	Functional	User	User Story /	Acceptance	Priori	Relea
	Require	Story	Task	criteria	ty	se
	ment	Number				
	(Epic)					
Customer	Controlling	USN -2	As a user, I	The motor	High	Sprint-
(Mobile	of motor		want to	can be		4
user)	through app		operate the	switched		
			motor	on/off		
			present in	through the		
			the field	button		
			remotely	present in the		
				арр		

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering username and password.	5	High	Srivatsan, Udhaya Prakash

Sprint	Functional	User	User Story /	Sto	Prior	Team
	Requireme	Story	Task	ry	ity	Members
	nt	Numb		Poi		
	(Epic)	er		nts		
Sprint-1	Login	USN-2	As a user, I can	5	High	Niranjana,
			log into the			Jaajana
			application by			
			entering			
			username &			
			Password.			
Sprint-2	Establishing field	USN-1	As a user, I can	3	High	Udhaya
	parameter values		want to ensure			Prakash,
			that basic field			Niranjana
			parameter values			
			are updated			
			correctly			
Sprint-3	Dashboard	USN-1	As a user, I can	3	Medi	Niranjana,
			enter into		um	Srivatsan
			dashboard to			
			view the field			
			parameter values			
			through Node-			
			Red.			
Sprint-3	Establishing all	USN -2	As a user, I can	3	High	Srivatsan,
Spriit-3	the required field	0511 -2	want to ensure that		ingn	Jaajana
	parameter values		all the required			
	parameter varues		field parameter			
			values are updated			
			correctly			
			Correctly			
						Niranjana,
Sprint-3	Graphical	USN -3	As a user, I want	2		jaajana
	representation of		to view the field		Low	
	data		parameters in			
			graphical form			

Sprint	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Sto ry Poi nts	Prior ity	Team Members Srivatsan,
Sprint-3	Controlling of motor	USN -4	As a user, I want to operate the motor present in the field remotely		High	Niranjana
Sprint-3	Alert messages	USN -5	As a user, I want to get notified when the field catches fire and when the soil moisture is below the threshed		High	Udhaya prakash, Jaajana
Sprint-4	Display all values in mobile app	USN -1	As a user, I want the field parameters to be displayed in mobile application	5	High	Niranjana, Udhaya Prakash
Sprint-4	Controlling of motor through app	USN -2	As a user, I want to operate the motor present in the field remotely		High	Jaajana, Srivatsan

6.2 Sprint Delivery Schedule

Sprint	Tot al Sto ry Poi nts	Durati on	Sprint StartDa te	Sprint End Date (Planne d)	Story Points Complet ed (ason Planned End Date)	Sprint Release Date(Actua l)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	29 Oct 2022
Sprint-2	5	6 Days	31 Oct 2022	05 Nov 2022	8	05 Nov 2022
Sprint-3	18	6 Days	07 Nov 2022	12 Nov 2022	8	12 Nov 2022
Sprint-4	10	6 Days	14 Nov 2022	19 Nov 2022	6	19 Nov 2022

6.3 Reports from JIRA

7. CODING & SOLUTIONING

7.1 Feature 1


```
when Clock1 · .Timer

do set Clock1 · . TimerEnabled · to false ·
open another screen screenName Screen2 ·
```

After scanning the QR code in MIT app Inventor,we can able to use the application in android.Here the picture of screen1, which is logo display.After 3 seconds, the screen 2 automatically appears.

7.2 Feature 2

After 3 seconds from the first screen, we will be directed to the login page where we can login user credentials.

7.3 Feature 3


```
when Clock1 .Timer
do set Web1 . Url . to http://169.51.205.41:32484/data
    call Web1 .Get
when Web1 .GotText
[url] [responseCode] [responseType] [responseContent]
do set (Label12 . Text to look up in pairs key "potassium"
                                                 call Web2 .JsonTextDecode
                                          pairs
                                                                    jsonText
                                                                              get responseContent *
                                      notFound ( " not found "
    set Label13 . Text to look up in pairs key
                                                 " flame "
                                          pairs call Web2 JsonTextDecode
                                                                              get responseContent
                                                                    jsonText
                                      notFound ( not found "
    set Label16 . Text to look up in pairs key temp
                                          pairs call Web2 JsonTextDecode
                                                                    jsonText get responseContent
                                      notFound 📜 " (not found) "
    set Label15 . Text to look up in pairs key "nitrogen"
                                          pairs call Web2 JsonTextDecode
                                                                              get responseContent *
                                                                    jsonText
```



```
when Button1 v .Click
do set Web2 v . Url v to http://169.51.205.41:32484/command?command=motoron v call Web2 v .Get

when Button2 v .Click
do set Web2 v . Url v to http://169.51.205.41:32484/command?command=motor... v call Web2 v .Get
```

The field parameters is displayed in the screen3 after the user's successfull login and MOTOR ON and OFF buttons are also displayed.

7.4 Feature 4

These is the Web UI which we have developed by the node-red.

8. TESTING

8.1 Test Cases

When the project is executed, we get the following results:

Python IDLE:

```
Python 3.8.0 Shell
File Edit Shell Debug Options Window Help
Published data Successfully: %s ('moisture': 5, 'temp': 35, 'humidity': 45, 'flame': 93, 'nitrogen': 3
9, 'phosporus': 5, 'potassium': 61}
Message received from IBM IoT Platform: motoron
Motor is switched ON
Published data Successfully: %s {'moisture': 45, 'temp': 54, 'humidity': 17, 'flame': 59, 'nitrogen': 0, 'phosporus': 73, 'potassium': 29}
Published data Successfully: %s {'moisture': 45, 'temp': 21, 'humidity': 83, 'flame': 16, 'nitrogen':
30, 'phosporus': 40, 'potassium': 22}
Published data Successfully: %s ('moisture': 89, 'temp': 23, 'humidity': 34, 'flame': 50, 'nitrogen':
54, 'phosporus': 31, 'potassium': 43)
Published data Successfully: %s {'moisture': 95, 'temp': 7, 'humidity': 0, 'flame': 73, 'nitrogen': 16
   'phosporus': 78, 'potassium': 89)
Published data Successfully: %s ('moisture': 80, 'temp': 62, 'humidity': 69, 'flame': 88, 'nitrogen':
32, 'phosporus': 16, 'potassium': 59)
Published data Successfully: %s ('moisture': 11, 'temp': 41, 'humidity': 69, 'flame': 43, 'nitrogen':
   'phosporus': 30, 'potassium': 6}
Published data Successfully: %s {'moisture': 78, 'temp': 19, 'humidity': 9, 'flame': 53, 'nitrogen': 1
   'phosporus': 91, 'potassium': 40}
Published data Successfully: %s {'moisture': 66, 'temp': 83, 'humidity': 55, 'flame': 0, 'nitrogen': 7
   'phosporus': 16, 'potassium': 79}
Published data Successfully: %s ('moisture': 60, 'temp': 50, 'humidity': 79, 'flame': 34, 'nitrogen':
70, 'phosporus': 86, 'potassium': 51)
Published data Successfully: %s ('moisture': 7, 'temp': 50, 'humidity': 39, 'flame': 100, 'nitrogen':
34, 'phosporus': 76, 'potassium': 55)
Published data Successfully: %s ('moisture': 17, 'temp': 54, 'humidity': 23, 'flame': 97, 'nitrogen':
44, 'phosporus': 92, 'potassium': 91}
Published data Successfully: %s ('moisture': 61, 'temp': 71, 'humidity': 92, 'flame': 67, 'nitrogen':
41, 'phosporus': 32, 'potassium': 19}
```

IBM cloud:

Web UI (Node- Red dashboard):

SMS alert when fire sensor & moisture sensor value is below threshold:

When "Motor ON" button is pressed in web UI, the output in Python is observed below:

Message received from IBM IoT Platform: motoron Motor is switched ON

When "Motor OFF" button is pressed in web UI, the output in Python is observed below:

Message received from IBM IoT Platform: motoroff Motor is switched OFF

When user credentials entered in the app are correct:

When user credentials entered in the app are incorrect:

App output:

8.2 User Acceptance Testing

Test case ID	Featur e Type	Component	Test Scenario	Pre- Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	S t a t u s	Comme nts	TC for Auto mati on(Y /N)	B U G I D	
LoginPage _TC_OO1	Functi onal	Login page	Verify user is able to log into application with Valid credentials	User should know how to use Smart phone	Open the MIT app Enter the valid User name S.Enter the password A.Click the signup/signup button	Username: ibm password: ibm	User should navigate to user account homepage	Worki ng as expect ed	Pass	Easy to follow steps	N	N I L	Scivatsan, Udhaya Brakash
LoginPage _TC_OO2	Functi onal	Login Page	Verify the login credentials and send message	User should know how to use Smart phone	Open the MIT app Enter the valid User name S.Enter the password Click the signup/signup button	Username: Udhaya password: Sajana	A warning message should pop out in case of false login credentials.	Worki ng as expect ed	Pass	Easy to follow steps	N	N I L	Nicaniana, Jaaiana
Homepag e_TC_OO 1	UI	Home page	Verify whether correct details of sensors are displayed in the homepage	User should know how to use Smart phone	1. Open the MIT app 2. Enter the valid User name 3. Enter the password 4. Click the signup/signup button	Random values generated through python code	User should be able to see the correct values.	Worki ng as expect ed	P a s	All field paramet ers should be displaye d in the homepa ge accurate ly.	N	N I L	Scixatsan, Micaniana
Homepag e_TC_00 2	Functi onal	Home page	Verify whether the motors can be controlled through smart phone	User should know how to use Smart phone	1. Open the MIT app 2. Enter the valid User name 3. Enter the password 4. Click the signup/signup button 5. In the homepage, click the motor ON/OFF Switch.	Moisture value generated in the python code.	Motors in the field should be turned ON/OFF as per the command given.	Worki ng as expect ed	P a s	Easy to follow steps	Y	N I L	Jaaiana. Udhaya Prakash

9. RESULTS

9.1 Performance Metrics

В	c	D	F	F	l G	Н	1	1 1
	- v	ĺ			v			
Project Name	Scope/feature	Functional Changes	Hardware Changes	Software Changes	Impact of Downtime	Load/Volume Changes	Risk Score	Justification
Smart farming-loT ena	New	Moderate	No Changes	No Changes		>5 to 10%	GREEN	As we have seen the changes
		S.No	Project Overview	NFT - Detailed T	imptions/Dependencies/	Approvals/SignOff		
			Smart farming-IoT enable smart farm		IBM watson IOT,Node-Red, MIT	11 , 0		
			Jonate lanning-to renable smare fam	apine testing	IDW Watson to T, Noue-Neu, Will	App inventor		
						Identified Defects		
Project Overview	NFT Test approach	NFR - Met	Test Outcome	GO/NO-GO decision	Recommendations	(Detected/Closed/Open)	Approvals/SignOff	
In our project we use Espike testing		met success GO			By increasing the processing spe	e In a web UI, registeration and login part to	By Srivatsan	

10. ADVANTAGES & DISADVANTAGES

Advantages:

In today's world, technology has become a vital part in our day-to-day life. And it's a pity if we don't use it to help our very food providers – Our farmers. Our project makes agriculture much easier for our farmers. It enables them to control what's going on in their field with much ease at their homes itself. The use of Moisture, Temperature, Humidity sensors make it known when to water the crops even if they are miles apart from their fields. It helps them to be prepared for other climatic conditions as well. The use of NPK sensor facilitates in keeping track of the soil fertility which is significant and unique to different crops. Thus a table of required nutrients for each crop is known from the app itself and this makes it much easier for the farmers to manage their land. And the use of flame sensors and water sprinklers makes it possible to act out on an emergency situation without the compulsion of the farmer being nearby.

Disadvantages:

One of the disadvantages is that it may take some time for data to be transmitted from the sensors to cloud, and then to the App. And since the sensors in the field are vulnerable, they make become less sensitive over a period of time or if any accident occurs. So regular maintenance of sensors is required. The farmers should be vigilant enough to turn ON the motor immediately after they

receive an alert SMS when there is low moisture content or when fire accidents occur in the field.

11. CONCLUSION

Thus, the project which we have designed mainly helps the farmer in increasing their crop yield by reducing their pain. This project allows remote monitoring of field parameters like soil moisture content, temperature, humidity and soil nutrient content. Also, an SMS alert is sent to the farmer when moisture level is below some threshold. In addition to this, SMS alert is also sent when the field catches fire i.e. when the value of flame sensor is above some threshold. So, according to the requirement, the farmer can switch ON and OFF the motor in his field. To replicate the real life application, we have used Python code simulation. It consists of Temperature sensor, Moisture sensor, Humidity sensor, NPK sensor(Nitogen, Phosphorus, Potassium sensor) and Flame sensor. All the above mentioned parameters are to be checked periodically so as to get a best yield from the farmland.

12. FUTURE SCOPE

- 1. Currently, only one user can access our app. In future works, we can make arrangements for multiple users to login/sign up simultaneously.
- 2. Many more sensors can also be included. For example, we can make room for pest control.
- 3. In the future, we can also move to automation. That is, when the moisture level decreases or a fire accident occurs, the water sprinklers get turned ON automatically.
- 4. We can also design drones to sprinkle fertilizers in accordance with NPK sensors.

13. APPENDIX

Source Code

```
lBM.py - C:\Users\aks\Downloads\IBM.py (3.10.0)
                                                                           \times
File Edit Format Run Options Window Help
import wiotp.sdk.device
import time
import os
import datetime
import random
myConfig = {"identity":{"orgId": "5t7qgw",
                        "typeId": "NodeMCU",
                        "deviceId": "12345"},
            "auth":{"token": "12345678"}}
client=wiotp.sdk.device.DeviceClient (config=myConfig, logHandlers=None)
client.connect()
def myCommandCallback(cmd):
     print ("Message received from IBM IoT Platform: %s" % cmd.data['command'])
     m=cmd.data['command']
     if (m=="motoron"):
         print ("Motor is switched ON")
     elif(m=="motoroff"):
          print ("Motor is switched OFF")
    print(" ")
while True:
     moisture = random.randint (0, 100)
     temp = random.randint (0,100) #in degree centigrade
     humidity = random.randint (0,100) #in percentage
     flame= random.randint(0,100)
     nitrogen=random.randint(0,100)
     phosporus=random.randint(0,100)
     potassium=random.randint(0,100)
     myData={'moisture': moisture, 'temp': temp, 'humidity': humidity,
             'flame': flame, 'nitrogen': nitrogen, 'phosporus': phosporus, 'pota
     client.publishEvent (eventId="status", msgFormat="json", data=myData, qos=0
     print("Published data Successfully: %s", myData)
     time.sleep (2)
     client.commandCallback = myCommandCallback
client.disconnect()
```

Moisture Sensor:

Temperature Sensor:

Humidity Sensor:

Flame Sensor:

NPK Sensor:

Data:

Motors:

GitHub & Project Demo:

Github link: https://github.com/IBM-EPBL/IBM-Project-509-1658304420

Project demo link:

```
The states of the state of the
```