COURSE: DATA STRUCTURES AND ALGORITHMS

LECTURER: ALBIN SHEMA

LINKED LIST MID SEMESTER PREPARATION

I. LINKED LIST AND RECURSION

1. What does the following function do for a given Linked List?

```
void fun1(struct Node* head)
{
  if(head == NULL)
    return;

fun1(head->next);
  printf("%d ", head->data);
}
```

2. What does the following function do for a given Linked List?

```
void fun2(struct Node* head)
{
  if(head == NULL)
    return;
  printf("%d ", head->data);

if(head->next != NULL)
  fun2(head->next->next);
  printf("%d ", head->data);
}
```

II. SINGLY LINKED LIST

1. Write a program in C to create and display Singly Linked List.

Test Data:

Input the number of nodes: 3

Input data for node 1:5

Input data for node 2:6

Input data for node 3:7

Expected Output:	
Data entered in the list: Data = 5 Data = 6 Data = 7	
2. Write a program in C to create a singly linked list of n nodes and count the number of	of nodes.
Test Data :	
Input the number of nodes : 3	
Input data for node 1:5	
Input data for node 2 : 6	
Input data for node 3 : 7	
Expected Output :	
Data entered in the list are: Data = 5 Data = 6 Data = 7	
Total number of nodes = 3	
3. Write a program in C to search an existing element in a singly linked list.	
Test Data and Expected Output:	
Input the number of nodes: 3	
Input data for node 1: 2 Input data for node 2: 5 Input data for node 3: 8	
Data entered in the list are: Data = 2 Data = 5 Data = 8	
Input the element to be searched: 5 Element found at node 2	

III. DOUBLY LINKED LIST

1. Write a program in C to find the maximum value from a doubly linked list.

Test Data:

Input the number of nodes: 3

Input data for node 1:5
Input data for node 2:9
Input data for node 3:1

Expected Output:

Data entered in the list are:

node 1: 5 node 2: 9 node 3: 1

The Maximum Value in the Linked List: 9

- 2. Write a search function for a doubly linked list.
- 3. Remove duplicates from a doubly linked list.

IV. CIRCULAT LINKED LIST

1. Write a program in C to create and display a circular linked list.

Test Data:

Input the number of nodes: 3

Input data for node 1: 2
Input data for node 2: 5

Input data for node 3: 8

Expected Output:

Data entered in the list are:

Data 1 = 2

Data 2 = 5

Data 3 = 8

- 2. Write a search function for a circular linked list.
- 3. Write a function to search for the maximum number in a circular linked list.