МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки «Прикладная математика и информатика» Магистерская программа «Системное программирование»

Отчет по лабораторной работе

«Применение автокодировщиков для начальной настройки весов нейронных сетей для распознавания жестов ASL»

Выполнил: студент группы 381606-2м Пауль Э.А.

Нижний Новгород 2018

СОДЕРЖАНИЕ

1	ПОСТАНОВКА ЗАДАЧИ	3
2	АВТОКОДИРОВЩИК	4
3	ПРОВЕДЕННЫЕ ЭКСПЕРИМЕНТЫ	5
3.1	Автокодировщик для полностью связанной сети	5
3.2	Автокодировщик для сверточной сети	6
3.3	Стек автокодировщиков для сверточной сети	7
4	РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ	8
5	вывол	9

1 Постановка задачи

Целью данной лабораторной работы является изучение применения методов обучения без учителя для настройки начальных весов нейронных сетей, построенных при выполнении предшествующих практических работ.

В ходе данной лабораторной работы будут решены следующие задачи:

- 1. Выбор архитектур нейронных сетей, построенных при выполнении предшествующих практических работ.
- 2. Выбор методов обучения без учителя для выполнения настройки начальных значений весов сетей.
- 3. Применение методов обучения без учителя к выбранному набору сетей

.

2 Автокодировщик

В качестве метода обучения без учителя был выбран метод с использованием автокодировщика.

Автокодировщик (Autoencoder) — нейронная сеть, которая пытается максимально приблизить значения выходного сигнала к входному, т.е. наилучшим образом аппроксимировать тождественное преобразование.

Общую логику работы с автокодировщиком можно описать следующим образом:

- Реализация двух частей сети:
 - о Кодирующая
 - о Декодирующая
- Обучение сети на нашем наборе данных. Целью является максимально приблизить выходную картинку к входной.
- Конфигурация основной сети, слои которой аналогичны со слоями кодирующей части
- Инициализация весов начальными значениями, полученными из автокодировщика
- Тренировка основной сети

3 Проведенные эксперименты

Для проведения экспериментов нами были выбраны две сети, показавшие одни из самых высоких результатов в предыдущих работах. Одна полностью связанная и одна сверточная сети. К сожалению, в библиотеке Caffe нет поддержки слоя unpooling, для решения этой проблемы мы видоизменили конфигурацию, убрав pooling слои.

3.1 Автокодировщик для полностью связанной сети

Рис. 1. Автокодировщик для полносвязанной сети

Параметры:

• Вход: 128х128

Скрытый слой: 1000

3.2 Автокодировщик для сверточной сети

Рис. 2. Автокодировщик для сверточной сети

• Свертка1: kernel_size 5x5; num_output 32

Параметры:

• Свертка2: kernel_size 5x5; num_output 32

3.3 Стек автокодировщиков для сверточной сети

Рис. 3. Стек автокодировщиков для сверточной сети

4 Результаты экспериментов

Конфигурация сети	Точность
FCNN	0.925968
CNN	0.998548
Stack CNN	0.999032

5 Вывод

В данной лабораторной работе нами были реализованы автокодировщики для нескольких типов сетей. В случае с CNN прироста точности не наблюдалось. Возможно, это связано с и без того высокой точностью решения. Однако, в случае с FCNN заметен прирост точности с 86% до 92%, что доказывает эффективность метода предварительной установки весов.