Calculation matrix elements in XMS-CASPT2

Peter John Cherry Shiozaki group meeting September 6th 2017

Derivatives of XMS-CASPT2 wavefunctions

- The XMS-CASPT2 energy is not minimized with respect to the CI and orbital coefficients obtained in the CASSCF calculation.
- This makes differentiating it with respect to perturbations of the Hamiltonian difficult.
- Accordingly, a Lagrangian is defined, which is minimized with respect to these variables:

$$L(\mathbf{t}, \mathbf{c}, \mathbf{z}, \boldsymbol{\lambda}) = E(\mathbf{t}, \mathbf{c}) + \mathbf{z}^{\dagger} \mathbf{g}(\mathbf{c}) + \boldsymbol{\lambda}^{\dagger} \mathbf{g}'(\mathbf{t})$$

• Typically, differentiating this Lagrangian with respect to some perturbative parameter is much easier than differentiating the XMS-CASPT2 energy.

CI derivatives

$$\frac{\partial L}{\partial \tilde{c}_{Q,K}} = \sum_{M} \langle \tilde{M} | \hat{H} | K \rangle R_{MP}^* R_{QP} + \sum_{N} \langle K | \hat{H} | \tilde{N} \rangle R_{QP}^* R_{KP}$$

$$+ \sum_{L} R_{LP}^* \left(\sum_{M} \langle \tilde{M} | \hat{T}_{LM}^{\dagger} \hat{H} | K \rangle R_{QP} + \sum_{N} \langle K | \hat{T}_{LQ}^{\dagger} \hat{H} | \tilde{N} \rangle R_{NP} \right)$$

$$- E_s \sum_{L} \left(\sum_{M} \langle \tilde{M} | \hat{T}_{LM}^{\dagger} \hat{T}_{LQ} | K \rangle + \sum_{N} \langle K | \hat{T}_{LQ}^{\dagger} \hat{T}_{LN} | \tilde{N} \rangle \right)$$

$$+ \sum_{L} \left(\sum_{M} \langle \tilde{M} | \hat{\lambda}_{LM}^{\dagger} (\hat{f} - \epsilon_{L}^{(0)} + \epsilon_{s}) \hat{T}_{LQ} | K \rangle + \sum_{N} \langle K | \hat{\lambda}_{LQ}^{\dagger} (\hat{f} - \epsilon_{L}^{(0)} + \epsilon_{s}) \hat{T}_{LN} | \tilde{N} \rangle \right)$$

$$+ \sum_{Ts} \left(\langle K | \hat{E}_{Ts} | \tilde{M} \rangle + \langle \tilde{M} | \hat{E}_{Ts} | K \rangle \right) [W_{M} \mathbf{g}(\mathbf{d}^{(2)}) - N_{M} \mathbf{f}]_{Ts}$$

Calculation of matrix elements for many electron operators

Need a generic approach for evaluating terms of the form

$$\sum_{\substack{ijkl\\wxyz}} \sum_{J} T_{ijkl}^{\dagger} g_{wxyz} q_{uv} \langle I | a_i a_j a_k^{\dagger} a_l^{\dagger} a_w^{\dagger} a_x^{\dagger} a_y a_z a_u^{\dagger} a_v | J \rangle c_J$$

- SMITH3 generates code of evaluating these integrals.
- Jae developed and implemented and algorithm such that the most costly term is

$$\sum_{ijklmn}^{act} \sum_{J} \langle I | a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l a_m a_n | J \rangle c_J A_{ijklmn}$$

• This is highly efficient, but unfortunately, it is not as well suited to the cases with spin-flipping interactions.

Derivatives of XMS-CASPT2 wavefunctions

 In a relativistic framework, magnetic properties are often obtained via the principal of minimal coupling:

$$\hat{\mathbf{p}} \rightarrow \hat{\mathbf{p}} + i\mathbf{A}(\boldsymbol{\mu})$$

- ullet Here ${f A}$ is a vector potential associated with some magnetic field vector ${m \mu}$.
- In the relativistic scheme, magnetic property tensor components may be obtained by differentiating the energy with respect to a component of this magnetic field:

$$X_{uv} = \frac{1}{\langle \tilde{S}_v \rangle} \frac{dE(\boldsymbol{\mu})}{d\mu_u} \bigg|_{\mathbf{B}=0}$$

• This change in the Hamiltonian will change several of the terms in the expression for the CI-derivatives.

CI derivatives

$$\frac{\partial L}{\partial \tilde{c}_{Q,K}} = \sum_{M} \langle \tilde{M} | \hat{H} | K \rangle R_{MP}^* R_{QP} + \sum_{N} \langle K | \hat{H} | \tilde{N} \rangle R_{QP}^* R_{KP}$$

$$+ \sum_{L} R_{LP}^* \left(\sum_{M} \langle \tilde{M} | \hat{T}_{LM}^{\dagger} \hat{H} | K \rangle R_{QP} + \sum_{N} \langle K | \hat{T}_{LQ}^{\dagger} \hat{H} | \tilde{N} \rangle R_{NP} \right)$$

$$- E_s \sum_{L} \left(\sum_{M} \langle \tilde{M} | \hat{T}_{LM}^{\dagger} \hat{T}_{LQ} | K \rangle + \sum_{N} \langle K | \hat{T}_{LQ}^{\dagger} \hat{T}_{LN} | \tilde{N} \rangle \right)$$

$$+ \sum_{L} \left(\sum_{M} \langle \tilde{M} | \hat{\lambda}_{LM}^{\dagger} (\hat{f} - \epsilon_{L}^{(0)} + \epsilon_{s}) \hat{T}_{LQ} | K \rangle + \sum_{N} \langle K | \hat{\lambda}_{LQ}^{\dagger} (\hat{f} - \epsilon_{L}^{(0)} + \epsilon_{s}) \hat{T}_{LN} | \tilde{N} \rangle \right)$$

$$+ \sum_{Ts} \left(\langle K | \hat{E}_{Ts} | \tilde{M} \rangle + \langle \tilde{M} | \hat{E}_{Ts} | K \rangle \right) [W_{M} \mathbf{g}(\mathbf{d}^{(2)}) - N_{M} \mathbf{f}]_{Ts}$$

CI derivatives

$$\begin{split} \frac{\partial L}{\partial \tilde{c}_{Q,K}} &= \sum_{M} \langle \tilde{M} | \hat{H} | K \rangle R_{MP}^* R_{QP} + \sum_{N} \langle K | \hat{H} | \tilde{N} \rangle R_{QP}^* R_{KP} \\ &+ \sum_{L} R_{LP}^* \Biggl(\sum_{M} \langle \tilde{M} | \hat{T}_{LM}^\dagger \hat{H} | K \rangle R_{QP} + \sum_{N} \langle K | \hat{T}_{LQ}^\dagger \hat{H} | \tilde{N} \rangle R_{NP} \Biggr) \\ &- E_s \sum_{L} \Biggl(\sum_{M} \langle \tilde{M} | \hat{T}_{LM}^\dagger \hat{T}_{LQ} | K \rangle + \sum_{N} \langle K | \hat{T}_{LQ}^\dagger \hat{T}_{LN} | \tilde{N} \rangle \Biggr) \\ &+ \sum_{L} \Biggl(\sum_{M} \langle \tilde{M} | \hat{\lambda}_{LM}^\dagger (\hat{f} - \epsilon_L^{(0)} + \epsilon_s) \hat{T}_{LQ} | K \rangle + \sum_{N} \langle K | \hat{\lambda}_{LQ}^\dagger (\hat{f} - \epsilon_L^{(0)} + \epsilon_s) \hat{T}_{LN} | \tilde{N} \rangle \Biggr) \\ &+ \sum_{rs} \Biggl(\langle K | \hat{E}_{rs} | \tilde{M} \rangle + \langle \tilde{M} | \hat{E}_{rs} | K \rangle \Biggr) [W_M \mathbf{g}(\mathbf{d}^{(2)}) - N_M \mathbf{f}]_{rs} \end{split}$$

Calculation of matrix elements for many electron operators

- Main differences in new code:
 - Takes advantage of time reversal symmetry in the relativistic case.
 - Does not express the matrix element as a sum of normal ordered terms, instead uses alternating order, e.g.,

$$\langle M|a_i^{\dagger}a_ja_k^{\dagger}a_ma_n^{\dagger}a_o|N\rangle$$
 not $\langle M|a_i^{\dagger}a_j^{\dagger}a_k^{\dagger}a_ma_na_o|N\rangle$

- Operators may be repeatedly reordered so as to take advantage of symmetry conditions.
- Currently does not generate code; instead uses a generic algorithm.

Method outline

Step 1 : Read in tensors corresponding to operators represented in the molecular orbital basis.

Step 2 : Use constraints and symmetry conditions to determine unique blocks.

Step 3 : Determine all possible contractions, $A_{ijk...}$, of these tensors.

Step 4 : Calculate γ^{IJ} matrices for the relevant spin sector.

Step 5: Contract γ^{IJ} matrices with the relevant $A_{ijk...}$.

Guiding principal: Relativistic and non-relativistic cases should be treated using the same basic algorithm.

Methodological outline

Step 1a : Read molecular orbital representations of operators, their symmetry conditions and constraints.

Step 1b: Flatten pairs of indices, e.g,

$$T_{ij,kl} \rightarrow T'_{(ij),(kl)} = T'_{ab}$$

Step 1c: Decompose the matrix into blocks, and using the constraints and symmetry relations to determine which ones vanish or are equivalent, e.g.,

$$T_{(ij),(kl)} = T_{(kl),(ij)} = T_{(lk),(ji)} = T_{(ji),(kl)}$$

Step 1d: Construct a map which can be used to identify only those matrix elements which are necessary.

Example : CASPT2 perturbation coefficients $T_{(ij),(kl)}$.

Possible transitions

 $closed \rightarrow active$

 $closed \rightarrow virtual$

 $active \rightarrow active$

 $active \rightarrow virtual$

Example : CASPT2 perturbation coefficients $T_{(ij),(kl)}$.

	$c \to a$	$c \to v$	$a \rightarrow a$	$a \rightarrow v$
$c \to a$				
$c \to v$				
$a \rightarrow a$				
$a \rightarrow v$				

Possible transitions

 $closed \rightarrow active \\ closed \rightarrow virtual \\ active \rightarrow active \\ active \rightarrow virtual$

Example : CASPT2 perturbation coefficients $T_{(ij),(kl)}$.

	$c \rightarrow a$	$c \rightarrow v$	$a \rightarrow a$	$a \rightarrow v$
$c \to a$				
$c \to v$				
$a \rightarrow a$				
$a \to v$				

Possible transitions

 $closed \rightarrow active \\ closed \rightarrow virtual \\ active \rightarrow active \\ active \rightarrow virtual$

Example : CASPT2 perturbation coefficients $T_{(ij),(kl)}$.

	$c \rightarrow a$	$c \to v$	$a \rightarrow a$	$a \rightarrow v$
$c \to a$				
$c \to v$				
$a \rightarrow a$				
$a \rightarrow v$				

Possible transitions

 $closed \rightarrow active \\ closed \rightarrow virtual \\ active \rightarrow active \\ active \rightarrow virtual$

Block specific permutation symmetry

- Within each block the ranges of the indices are constrained to specific ranges.
- For a given block, it may be that two indexes cannot be interchanged, as their ranges are different.
- Hence the permutation symmetry varies between blocks.

Application of symmetry

Example : CASPT2 perturbation coefficients $T_{(ij),(kl)}$.

Possible transitions

 $closed \rightarrow active$ $closed \rightarrow virtual$ $active \rightarrow active$ $active \rightarrow virtual$

Method outline

Step 1 : Read in tensors corresponding to operators represented in the molecular orbital basis.

Step 2 : Use constraints and symmetry conditions to determine unique blocks.

Step 3: Determine all possible contractions, $A_{ijk...}$, of these tensors.

Guiding principal: Relativistic and non-relativistic cases should be treated using the same basic algorithm.

→ Relativistic wavefunctions just have twice as many blocks (from spin), and extra symmetry relations.

Contraction of tensor blocks

Step 3a: Contract over all possible pairs of indexes, e.g.,

$$\hat{H}\hat{T} \to \sum_{wxyz} \sum_{ijkl} H_{wxyz} a_w^{\dagger} a_x^{\dagger} a_y a_z T_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l$$

$$A_{abcdef}^{HT,st} = \sum_{wxyz} \sum_{ijkl} H_{wxyz} T_{ijkl} \delta_{st}$$

$$s := w, x, i, \text{ or } j$$

 $t := y, z, k \text{ or } l$

Step 3b: Use the block range constraints to rule out possible contractions, e.g.

$$A_{abcdef}^{HT,st} = \begin{cases} A_{abcdef}^{HT,st} & \text{if} \quad rng(s) = rng(t) \\ 0 & \text{otherwise} \end{cases}$$

Method outline

Step 1 : Read in tensors corresponding to operators represented in the molecular orbital basis.

Step 2 : Use constraints and symmetry conditions to determine unique blocks.

Step 3: Determine all possible contractions, $A_{ijk...}$, of these tensors.

Step 4 : Calculate γ^{IJ} matrices for the relevant spin sector.

Guiding principal: Relativistic and non-relativistic cases should be treated using the same basic algorithm.

→ Relativistic wavefunctions just have twice as many blocks (from spin), and extra symmetry relations.

Calculation of $\gamma^I_{ijk...}$

Step 4a: First take creation and annihilation operators in order specified by input operator, e.g.,

$$\langle I|a_la_i^{\dagger}a_ma_i^{\dagger}a_na_k^{\dagger}|J\rangle$$

Step 4b: Rewrite in normal order:

$$= \langle I | a_i^{\dagger} a_j^{\dagger} a_k^{\dagger} a_l a_m a_n | J \rangle + (s_{m'n'} \delta_{m'n'} + \dots) \langle I | a_{i'}^{\dagger} a_{j'}^{\dagger} a_{k'} a_{l'} | J \rangle$$

$$+ (s_{k'l'm'n'} \delta_{m'n'} \delta_{k'l'} + \dots) \langle I | a_{i'}^{\dagger} a_{j'}^{\dagger} | J \rangle + \dots$$

Step 4c: Remove terms which known to be zero from index ranges.

Step 4d: Repeat process, but reorder to alternating order

$$\langle I | a_i^{\dagger} a_k^{\dagger} a_j^{\dagger} a_l a_m a_n | J \rangle \rightarrow \langle I | a_i^{\dagger} a_l a_j^{\dagger} a_m a_k^{\dagger} a_n | J \rangle$$

$$= \gamma_{ijklmn}^{IJ}$$

Calculation of $\gamma^I_{ijk...}$

Step 4e : Calculate $\gamma_{ijk...}^{I}$ from a product of γ_{ij}^{I} , e.g.,

$$\gamma^{I}_{ijklmn} = \sum_{JKL} \langle I | a_i^{\dagger} a_j | K \rangle \langle K | a_k^{\dagger} a_l | L \rangle \langle L | a_m^{\dagger} a_n | J \rangle c_J$$

• Alternating order facilitates merging of terms and has some useful qualities.

 Representation in terms of individual transitions can help with application of symmetry:

Spin sector	$ \{ J angle\}$	$ \{ K angle\} $	$\Big \left\{ L angle ight\}\Big $	$ \{ I angle\}$
$7\alpha 0\beta$				
$\boxed{[6\alpha1\beta]}$				
$\boxed{[5\alpha2\beta]}$				1
$\boxed{[4\alpha 3\beta]}$				
$\overline{[3\alpha 4\beta]}$		A /		
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				
$\boxed{[0\alpha7\beta]}$				

$$|J\rangle \in [4\alpha 3\beta]$$

$$\gamma_{\alpha\beta}^{KL} = \langle K|a_{\alpha}^{\dagger}a_{\beta}|L\rangle$$

$$\gamma^{IK}_{\alpha\beta}\gamma^{KL}_{\alpha\beta}\gamma^{LJ}_{\beta\alpha}$$

• "Forwards" and "backwards" transitions are connected by time reversal

Spin sector	$\{ J angle\}$	$ \{ K angle\} $	$\Big \{ L angle\}\Big $	$\{ I angle\}$
$[7\alpha 0\beta]$				
$\boxed{[6\alpha1\beta]}$				
$\boxed{[5\alpha2\beta]}$				/
$\boxed{[4\alpha 3\beta]}$	×		/	
$\boxed{[3\alpha 4\beta]}$		×		
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				
$\boxed{[0\alpha7\beta]}$				

$$|J\rangle \in [4\alpha 3\beta]$$

$$\gamma_{\beta\alpha}^{KL} = \langle K|a_{\beta}^{\dagger}a_{\alpha}|L\rangle$$

$$\gamma_{\beta\alpha}^{JK}\gamma_{\beta\alpha}^{KL}\gamma_{\alpha\beta}^{LI}$$

$$\gamma_{\beta\alpha}^{KL} = (\gamma_{\alpha\beta}^{LK})^*$$

• Application of spin constraints is more straightforward

Spin sector	$ \;\{ J angle\}$	$\Big \{ K angle\}\Big $	$\{ L angle\}$	$\{ I angle\}$
$[7\alpha 0\beta]$				
$\boxed{[6\alpha1\beta]}$				
$\boxed{[5\alpha2\beta]}$				
$\boxed{[4\alpha 3\beta]}$				
$\boxed{[3\alpha 4\beta]}$				
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				#
$\boxed{[0\alpha7\beta]}$			#	
		\	'	

$$|J\rangle \in [0\alpha 7\beta]$$

$$\to \gamma_{\beta\alpha}^{KJ} = 0$$

$$\to \gamma_{\alpha\beta}^{IK} \gamma_{\alpha\beta}^{KL} \gamma_{\beta\alpha}^{LJ} = 0$$

• Application of spin constraints is more straightforward

Spin sector	$\Big \; \{ J angle \}$	$\Big \{ K angle\}\Big $	$\{ L angle\}$	$\Big \{ I angle\}\Big $
$7\alpha 0\beta$				
$\boxed{[6\alpha1\beta]}$				
$\boxed{[5\alpha2\beta]}$				
$\boxed{[4\alpha 3\beta]}$				
$\boxed{[3\alpha 4\beta]}$				
$\boxed{[2\alpha 5\beta]}$				
$\boxed{[1\alpha6\beta]}$				#
$\boxed{[0\alpha7\beta]}$			#	
!		O		'

$$|J\rangle \in [0\alpha7\beta]$$

$$\to \gamma_{\beta\alpha}^{KJ} = 0$$

$$\to \gamma_{\alpha\beta}^{IK} \gamma_{\alpha\beta}^{KL} \gamma_{\beta\alpha}^{LJ} = 0$$

Calculation of $\gamma^I_{ijk...}$

Step 4 : Calculate $\gamma^I_{ijk...}$ from a product of γ^I_{ij} , e.g.,

$$\gamma^{I}_{ijklmn} = \sum_{JKL} \langle I | a_i^{\dagger} a_j | K \rangle \langle K | a_k^{\dagger} a_l | L \rangle \langle L | a_m^{\dagger} a_n | J \rangle c_J$$

- Alternating order enables merging of terms and some useful properties.
- All indexes must be active, but can be $\,lpha\,$ or $\,eta\,$.
- The program is designed so that arbitrary range constraints, not necessarily involving spin, can be placed upon the indexes.

Method outline

Step 1 : Read in tensors corresponding to operators represented in the molecular orbital basis.

Step 2 : Use constraints and symmetry conditions to determine unique blocks.

Step 3: Determine all possible contractions, $A_{ijk...}$, of these tensors.

Step 4 : Calculate γ^{IJ} matrices for the relevant spin sector.

Step 5 : Contract γ^{IJ} matrices with the relevant $A_{ijk...}$.

Guiding principal: Relativistic and non-relativistic cases should be treated using the same basic algorithm.

→ Relativistic wavefunctions just have twice as many blocks (from spin), and extra symmetry relations.

Contraction of γ^I_{ijklmn} and A_{ijklmn}

Step 5 : Perform contraction in two steps:

$$\sum_{\sigma_3} \sum_{ijklmn} \gamma_{ij,kl,mn}^{IJ\sigma_3} A_{ij,kl,mn}^{\sigma_3} c_J = \sum_{\sigma_1} \sum_{ij} \sum_{K} \gamma_{ij}^{IK\sigma_1} \tilde{\gamma}_{ij}^{K\sigma_1}$$

Where

$$\tilde{\gamma}_{ij}^{K\sigma_1} = \sum_{\sigma_2} \sum_{LJ} \sum_{klmn} \gamma_{kl,mn}^{KJ\sigma_2} A_{ij,kl,mn}^{\prime\sigma_1 \otimes \sigma_2}$$

and

$$\sigma_3 = \sigma_1 \cup \sigma_1 \cup \sigma_1 = \{s_1 s_2 s_3 s_4 s_5 s_6\}$$

• This step should be comparable in speed to the most expensive step of the current algorithm.

Calculation of $\gamma^I_{ijk...}$

• Use CAR relations to minimize the number of spin flipping terms, and ensure they are always grouped on the right, i.e.,

$$(\alpha\alpha)(\alpha\alpha)(\alpha\alpha) \qquad (\beta\beta)(\beta\beta)(\beta\beta) \qquad (\beta\alpha)(\beta\alpha)(\beta\alpha) \qquad (\alpha\beta)(\alpha\beta)(\alpha\beta)$$

$$(\alpha\alpha)(\alpha\alpha)(\beta\alpha) \qquad (\beta\beta)(\beta\beta)(\beta\alpha)$$

$$(\alpha\alpha)(\beta\alpha)(\beta\alpha) \qquad (\beta\beta)(\beta\beta)(\alpha\beta)$$

$$(\alpha\alpha)(\alpha\alpha)(\alpha\beta) \qquad (\beta\beta)(\alpha\beta)(\alpha\beta)$$

$$(\alpha\alpha)(\alpha\beta)(\alpha\beta) \qquad (\beta\beta)(\beta\alpha)$$

$$(\alpha\alpha)(\beta\beta)(\beta\beta)$$

$$(\alpha\alpha)(\beta\beta)(\beta\alpha)$$

$$(\alpha\alpha)(\beta\beta)(\alpha\beta)$$

$$(\alpha\alpha)(\beta\beta)(\alpha\beta)$$

$$(\alpha\beta) = \langle I | a_{i \in \{\alpha\}}^{\dagger} a_{i \in \{\beta\}}^{\dagger} | J \rangle$$

• Guarantees that the number of contractions to be performed in step 5 is at worst 16 (typically far fewer due to symmetry).

Method outline

Step 1 : Read in tensors corresponding to operators represented in the molecular orbital basis.

Step 2 : Use constraints and symmetry conditions to determine unique blocks.

Step 3: Determine all possible contractions, $A_{ijk...}$, of these tensors.

Step 4 : Calculate γ^{IJ} matrices for the relevant spin sector.

Step 5 : Contract γ^{IJ} matrices with the relevant $A_{ijk...}$.

Guiding principal: Relativistic and non-relativistic cases should be treated using the same basic algorithm.

→ Relativistic wavefunctions just have twice as many blocks (from spin), and extra symmetry relations.