Proof of Theorem 1

Theorem 1: Assume a Raptor-Like base matrix ${\bf B}$ is defined as follows, with the first V>1 column punctured. If ${\bf B}$ has a non-zero minimum distance upper bound $d_{\min, \text{upp}}>0$ which can be computed as in [1], ${\bf B}$ has no parallel edges and all the punctured columns have not smaller than V non-zero elements in ${\bf B}_H$, then $d_{\min, \text{upp}}$ could be achieved in some $M\times (M+1)$ sub-matrix of ${\bf B}$, such that all the last (M-G) parity-check columns of ${\bf B}$ are in that sub-matrix.

$$\mathbf{B} = \begin{bmatrix} (\mathbf{B}_H)_{G \times (K+G)} & \mathbf{0}_{G \times (M-G)} \\ (\mathbf{B}_U)_{(M-G) \times (K+G)} & \mathbf{I}_{(M-G) \times (M-G)} \end{bmatrix}.$$

APPENDIX A PROOF OF THEOREM 1

Suppose $\mathcal S$ denotes a set of (M+1) columns in the total N=M+K columns of $\mathbf B$, and all the possible $\binom{N}{M+1}$ sets $\mathcal S$ forms a set Λ . $\mathcal P$ is the set of V punctured columns. It is further assumed that all the columns are indexed as 1 to N in order, and the punctured columns are the leftmost V columns indexed 1 to V, i.e., $\mathcal P=\{1,2,\cdots,V\}$. From [1], we have

$$d_{\min, \text{upp}} = \min_{S \in \Lambda}^* \sum_{i \in S \setminus \mathcal{P}} \text{Perm} \left(\mathbf{B}_{S \setminus i} \right) > 0, \tag{1}$$

where \min^* means the minimum of all the non-zero elements, Perm means the permanent of a $M \times M$ square matrix. $\mathbf{B}_{\mathcal{S} \setminus i}$ means the $M \times M$ sub-matrix composed of the M columns in $\mathcal{S} \setminus i$ in order. Then we only need to show that $\exists \mathcal{S} \in \Lambda, \{N-M+G+1,\cdots,N\} \subseteq \mathcal{S}, \mathrm{s.t.}$

$$d_{\min,\text{upp}} = \sum_{i \in \mathcal{S} \setminus \mathcal{P}} \text{Perm} \left(\mathbf{B}_{\mathcal{S} \setminus i} \right).$$
 (2)

For convenience, we denote $\mathcal{T} = \{N-M+G+1, \cdots, N\}$ as set of the last M-G columns in \mathbf{B} . Then we firstly prove the following lemma.

Lemma 1: If $\exists S \in \Lambda, |S \cap T| = t < M - G$, s.t.

$$d = \sum_{i \in \mathcal{S} \setminus \mathcal{P}} \text{Perm} \left(\mathbf{B}_{\mathcal{S} \setminus i} \right) > 0, \tag{3}$$

then $\exists \mathcal{S}^* \in \Lambda, |\mathcal{S}^* \cap \mathcal{T}| = t + 1, \text{s.t.}$

$$d \ge d^* = \sum_{i \in \mathcal{S}^* \setminus \mathcal{P}} \text{Perm}\left(\mathbf{B}_{\mathcal{S}^* \setminus i}\right) > 0.$$
 (4)

Proof: According to equation (3), There exists an bijection $\sigma: \mathcal{S} \to \{0, 1, 2, \cdots M\}$, s.t.

$$\forall i \in \mathcal{S} \setminus \sigma^{-1}(0), \mathbf{B}(\sigma(i), j) = 1.$$

Case 1: $\exists j_1 \in \mathcal{S} \setminus (\mathcal{P} \cup \mathcal{T} \cup \{\sigma^{-1}(0)\}), \sigma(j_1) > G$. Suppose that $\sigma(j_1) + K \neq \sigma^{-1}(0)$, otherwise there exists only one j_1 such that $\sigma(j_1) + K = \sigma^{-1}(0)$, and then we could change the bijection σ to σ^* such that $\sigma^*(j_1) = 0, \sigma^*(\sigma^{-1}(0)) = j_1$ and for other $j \in \mathcal{S}$, $\sigma(j) = \sigma^*(j)$. Then it can be convert to Case 2. Now that $\sigma(j_1) + K \neq \sigma^{-1}(0)$, and we can directly change the column j_1 in \mathcal{S} to the column $\sigma(j_1) + K \in \mathcal{T}$, to form a

new set $S^* = (S \setminus j_1) \cup \{\sigma(j_1) + K\}$. Since the set of non-zero entry positions in the column $\sigma(j_1) + K$ are included in the set of non-zero entry positions in the column j_1 , we have

$$d \ge d^* = \sum_{i \in \mathcal{S}^* \setminus \mathcal{P}} \text{Perm} \left(\mathbf{B}_{\mathcal{S}^* \setminus i} \right).$$

Note that we also have

$$d^* \geq \operatorname{Perm}(\mathbf{B}_{\mathcal{S}^* \setminus \sigma^{-1}(0)}),$$

and since $\mathbf{B}(j_1, \sigma(j_1)) = \mathbf{B}(\sigma(j_1) + K, \sigma(j_1)) = 1$, then

$$\operatorname{Perm}(\mathbf{B}_{\mathcal{S}^* \setminus \sigma^{-1}(0)}) \geq \prod_{j' \in \mathcal{S} \setminus \sigma^{-1}(0)} \mathbf{B}(j', \sigma(j')) > 0.$$

We also have $|S^* \cap T| = t + 1$, then Lemma 1 is valid.

Case 2: $\forall j \in \mathcal{S} \setminus (\mathcal{P} \cup \mathcal{T} \cup \{\sigma^{-1}(0)\}), \sigma(j) \leq G$. Then since $|\mathcal{S} \cap \mathcal{T}| = t < M - G$, $\exists j_1 \in \mathcal{P}$, s.t. $\sigma(j_1) > G$, otherwise all the columns $\sigma(j) > G$ are in \mathcal{T} and thus $|\mathcal{S} \cap \mathcal{T}| = M - G$, which contradicts. Now we could change the column j_1 in \mathcal{S} to the column $\sigma(j_1) + K \in \mathcal{T}$, to form a new set of columns $\mathcal{S}^* = (\mathcal{S} \setminus j_1) \cup \{\sigma(j_1) + K\}$. Then the set of punctured columns in \mathcal{S}^* is changed to $\mathcal{P}^* = \mathcal{P} \setminus j_1$. Similar to Case 1, we have

$$d^* = \sum_{i \in \mathcal{S} \setminus \mathcal{P}^*} \text{Perm}(\mathbf{B}_{\mathcal{S}^* \setminus i}) > 0.$$

Now we only need to prove $d-d^* \geq 0$, and since $|\mathcal{S}^* \cap \mathcal{T}| = t+1$, then Lemma 1 is valid. For simplicity, suppose \mathcal{W} is a set of M columns in \mathbf{B} , and $\omega_{\mathcal{W}}: \mathcal{W} \to \{1, 2, \cdots, M\}$ is a bijection. We define

$$p(\omega_{\mathcal{W}}, \mathcal{W}) = \prod_{j \in \mathcal{W}} \mathbf{B}(j, \omega_{\mathcal{W}}(j)) > 0.$$

Then we have

$$d - d^* = \sum_{i \in \mathcal{S} \setminus \mathcal{P}} \sum_{\omega \in \chi_1(\mathcal{S} \setminus i)} p(\omega, \mathcal{S} \setminus i) - \sum_{w \in \chi(\mathcal{S} \setminus j_1)} p(\omega, \mathcal{S} \setminus j_1),$$

where $\chi_1(S\backslash i)$ is the set of all the valid bijections $\omega: S\backslash i \to \{1,2,\cdots,M\}$ such that $\omega(j_1) \neq \sigma(j_1)$ and $\mathbf{B}(j,\omega(j)) = 1$ for any $j \in S\backslash i$, $\chi(S\backslash j_1)$ is the set of all the valid bijections $\omega: S\backslash j_1 \to \{1,2,\cdots,M\}$ such that $\mathbf{B}(j,\omega(j)) = 1, \forall j \in S\backslash j_1$. Then we would show that there exists an injection $q:\chi(S\backslash j_1) \to \{(i,\chi_1(S\backslash i))|i\in S\backslash \mathcal{P}\}$ such that if $(i,\omega^*) = q(\omega)$, then $p(\omega^*,S\backslash i) = p(\omega,S\backslash j_1)$. Thus $d-d^* \geq 0$.

Note that according to the assumptions in Theorem 1, for any $\omega \in \mathcal{S} \setminus j_1$, $\exists t \leq G$, s.t. $\mathbf{B}(t,j_1) = 1$ and $\omega^{-1}(t) \notin \mathcal{T} \cup \mathcal{P}$. That is because at most V-1 punctured columns are in $\mathcal{S} \setminus j_1$, and each punctured column has at least V non-zero elements in \mathbf{B}_H . Then we can construct $\omega^* : \mathcal{S} \setminus \omega^{-1}(t) \to \{1,2,\cdots M\}$ such that $\omega^*(j_1) = t$ and $\omega^*(j) = \omega(j), \forall j \in \mathcal{S} \setminus \{\omega^{-1}(t), j_1\}$. Obviously $p(\omega^*, \mathcal{S} \setminus \omega^{-1}(t)) = p(\omega, \mathcal{S} \setminus j_1) = 1$, and we define $(\omega^{-1}(t), \omega^*) = q(\omega)$. Now we show that q is an injection. For any $\omega_1, \omega_2 \in \mathcal{S} \setminus j_1$, if $q(\omega_1) = q(\omega_2)$, we denote the t chosen for ω_1, ω_2 as t_1, t_2 , respectively. Then because $\mathcal{S} \setminus \omega_1^{-1}(t_1) = \mathcal{S} \setminus \omega_2^{-1}(t_2)$, we have $\omega_1^{-1}(t_1) = \omega_2^{-1}(t_2)$. Then $\omega_1(j) = \omega_2(j)$

for all $j \in \mathcal{S} \setminus \omega_1^{-1}(t_1)$, according to the definition of ω^* . Since ω_1, ω_2 are both bijections, we have $t_1 = t_2$ and then $\omega_1 = \omega_2$. That completes the proof of Lemma 1.

According to Lemma 1 and mathematic induction, suppose that $\exists \mathcal{S} \in \Lambda, d_{\min, \text{upp}} = \sum_{i \in \mathcal{S} \setminus \mathcal{P}} (\mathbf{B}_{\mathcal{S} \setminus i})$, we have that $\exists \mathcal{S}^* \in \Lambda, |\mathcal{S}^* \cap \mathcal{T}| = M - G, d = \sum_{i \in \mathcal{S}^* \setminus \mathcal{P}} (\mathbf{B}_{\mathcal{S}^* \setminus i})$, s.t.

$$d_{\min, \text{upp}} \geq d \geq d_{\min, \text{upp}} \Rightarrow d = d_{\min, \text{upp}}.$$

That completes the proof of Theorem 1.

REFERENCES

 B. K. Butler and P. H. Siegel, "Bounds on the Minimum Distance of Punctured Quasi-Cyclic LDPC Codes," *IEEE Transactions on Informa*tion Theory, vol. 59, no. 7, pp. 4584–4597, 2013.