Clusters Beat Trend!? Testing Feature Hierarchy in Statistical Graphics

Susan VanderPlas & Heike Hofmann

Iowa State University

Graphics and Perception

The greatest value of a picture is when it forces us to notice what we never expected to see.

John Tukey

Gestalt Laws of Perception

The whole is different than the sum of the parts

- Rules that make sense of complex visual information using experience
- Information organized hierarchically
- Subconscious process to order and group visual input

Gestalt Plots

How do plot aesthetics change our perception of the plotted data?

Statistical Lineups

Which plot is the most different?

Null plot data is from a datagenerating method consistent with the null hypothesis

The nullabor package helps with null data creation

• 22 Evaluations

22 Evaluations

• Plot 12: 59.1%

22 Evaluations

• Plot 12: 59.1%

• Plot 5: 9.1%

22 Evaluations

• Plot 12: 59.1%

• Plot 5: 9.1%

• Other: 31.7%

31 Evaluations

- 31 Evaluations
- Plot 12: 9.7%

31 Evaluations

• Plot 12: 9.7%

• Plot 5: 29.0%

31 Evaluations

• Plot 12: 9.7%

• Plot 5: 29.0%

• Plot 18: 32.3%

31 Evaluations

• Plot 12: 9.7%

• Plot 5: 29.0%

• Plot 18: 32.3%

• Other: 29.1%

Two-Target Lineups

- Modify lineup protocol for tests of competing hypotheses H_1 and H_2
- ullet H_1 and H_2 target plots
- 18 null plots generated using a mixture model consistent with $H_{
 m 0}$

Data Generating Mechanism

- ullet Generate data from a linear model M_T (trend)
- ullet Generate data from a k cluster model M_C
- ullet Generate null data from a mixture model M_0
 - ullet n_c observations from M_C
 - $ullet n_t = N n_c$ observations from M_T

Linear Model

Cluster Model

Parameters: K clusters, σ_C cluster variability

- 1. Generate K cluster centers c^x, c^y on a K imes K grid such that $cor(c^x, c^y) \in [.25, .75]$
- 2. Center and standardize c^x, c^y
- 3. Determine cluster size $g_1,...,g_K \sim Multinomial(K,p)$
- 4. Generate points around cluster centers: $(x_i,y_i)=(c^x_{g_i},c^y_{g_i})+(e^x_i,e^y_i)$ where $e_i\sim N(0,\sigma^2_c)$
- 5. Center and scale x_i,y_i

Cluster Model

Mixture Model

- ullet n_c points from M_C , where $n_c \sim Binomial(N,\lambda)$
- $ullet N-n_c=n_T$ points from M_T

Groups created by k-means clustering

Mixture Model

Experimental Design - Data Parameters

•
$$K = 3, 5$$

•
$$N = 15K$$

•
$$\sigma_T = 0.25, 0.35, 0.45$$

$$ullet \sigma_C = egin{array}{ll} 0.25, 0.30, 0.35 (K=3) \ 0.20, 0.25, 0.30 (K=5) \end{array}$$

• $\lambda = 0.5$

18 combinations of plot parameters ($2K imes 3\sigma_T imes 3\sigma_C$)

3 replicates of each parameter set; 54 total lineup data sets

Experimental Design - Plot Aesthetics

10 Aesthetics \times 54 data sets = 540 plots

Experimental Design

- 1201 participants from Mechanical Turk
- Each participant evaluates 10 plots (12010 evaluations)
 - ullet Each $\sigma_C imes \sigma_T$ value with one replicate, randomized across K values
 - All 10 aesthetic types
- Participants select the plot or plots which are most different
 - Provide a short explanation
 - Rate confidence level

Results

Most participants identified a mix of cluster and trend targets

Results

Faceoff Model

- Examine trials in which participants identified at least one target (9959)
- Compare P(select cluster target) to P(select trend target)

$$C_{ijk} := \left\{egin{array}{l} ext{Participant k selects the cluster target} \ ext{for dataset j with aesthetic i} \end{array}
ight\}$$

Faceoff Model

$$ext{logit} P(C_{ijk}|C_{ijk} \cup T_{ijk}) = \mathbf{W} lpha + \mathbf{X} eta + \mathbf{J} \gamma + \mathbf{K} \eta$$

- ullet lpha: vector of fixed effects describing the effect of data parameters σ_C, σ_T, K
- ullet eta: vector of fixed effects describing the effect of aesthetics $1 \leq i \leq 10$
- ullet γ_j : random effect of dataset, $\gamma_j \sim N(0, \sigma_{
 m data}^2)$
- η_k : random effect of participant $\eta_k \sim N(0, \sigma_{ ext{participant}}^2)$
- $m{\epsilon}_{ijk}$: error associated with single evaluation of plot ij by participant k, $\epsilon_{ijk}\sim N(0,\sigma_e^2)$

Faceoff Model

Participant Reasoning: Plain plots

Cluster Target

Participant Reasoning: Trend plots

almost compared complete

Participant Reasoning: Color plots

Cluster Target

Participant Reasoning: Color + Ellipse plots

Participant Reasoning

Conclusion

- Plot aesthetics matter
 - non-additive effects
 - what do you want to emphasize?
- Multiple encoding is useful -

"show the data" in a way that makes it easy to understand

Conclusion

- Error bands and cluster ellipses highlight important features in the data:
 outliers, group size inequality, variability, clustering
- Null data-generating models are hard!
 The brain runs 100s of visual "tests" and designing for all of them simultaneously is impossible