

Reducing the feature divergence of RGB and nearinfrared images using Switchable Normalization

Agriculture-Vision Workshop @ CVPR 2020

Siwei Yang*, Shaozuo Yu*, Bingchen Zhao*, Yin Wang Tongji University, Shanghai, China

^{*} Equal contribution

Multi-modality Nature of Agriculture Data

Figure 3: For each class, top: RGB image; bottom: NIR image; line: ground truth; mask: prediction. All predictions are given by IBN-Net101-s trained with BCE+Dice+Lovasz as loss function.

Feature Divergence

We use symmetric KL divergence to measure the difference of between features on RGB and NIR images.

$$KL(F_{iA}||F_{iB}) = log \frac{\sigma_{iA}}{\sigma_{iB}} + \frac{\sigma_{iA}^2 + (\mu_{iA} - \mu_{iB})^2}{2\sigma_{iB}^2} - \frac{1}{2}$$
(1)

$$D(F_{iA}||F_{iB}) = KL(F_{iA}||F_{iB}) + KL(F_{iB}||F_{iA})$$
 (2)

$$D(L_A || L_B) = \frac{1}{C} \sum_{i=1}^{C} D(F_{iA} || F_{iB})$$
 (3)

 μ_A and σ_A stand for mean and standard deviation of the output of a certain channel from a certain layer over modality A.

Check out our paper for more details.

Feature Divergence

	mIoUs(%)				
	Train on RGB	Train on NIR			
Test on RGB	46.05	23.39			
Test on NIR	18.29	44.22			
Perf. Decay	27.76	20.83			

Table 1: 'Perf. Decay' stands for "Performance decay". When models are trained on NIR images alone, NIR images with a single channel will be duplicated channel-wise to transform into a three-channel images. All the other settings about the experiment regarding this table are the same as ones in Section 5. Testing on different modalities from training can reduce the performance by a huge margin. This phenomenon suggests that the feature divergence between RGB and NIR can be huge.

Figure 2: Both figures represent feature divergence between RGB images and NIR images. The vertical axis indicates the feature divergence between RGB images and NIR images. IBN-Net101-a reduces the feature divergence dramatically when trained on RGB images or NIR images.

Methodology

Figure 1: Instance-batch normalization (IBN) block. IBN-a and IBN-b are the variants of IBN-Net proposed in [16], we change the first BN to Switchable-Normlization for better performance.

ResNet101

20

IBN-Net101-a

30

Figure 2: Both figures represent feature divergence between RGB images and NIR images. The vertical axis indicates the feature divergence between RGB images and NIR images. IBN-Net101-a reduces the feature divergence dramatically when trained on RGB images or NIR images.

Methodology

Figure 1: Instance-batch normalization (IBN) block. IBN-a and IBN-b are the variants of IBN-Net proposed in [16], we change the first BN to Switchable-Normlization for better performance.

	IoUs(%)							
Backbone	Background	Cloud shadow	Double plant	Planter skip	Standing Water	Waterway	Weed Cluster	Mean IoU
ResNet50	79.95	45.75	36.98	1.18	59.67	58.03	48.58	47.16
IBN-Net50-a	80.51	53.67	40.87	1.83	64.44	61.67	49.71	50.39
IBN-Net50-b	80.41	52.48	39.32	4.19	62.82	57.91	49.36	49.50
IBN-Net50-s	80.82	53.52	43.63	3.59	65.44	60.20	50.84	51.15
ResNet101	79.32	47.95	39.77	0.98	62.47	61.17	49.36	48.72
IBN-Net101-a	80.79	52.64	38.27	2.72	67.52	61.96	48.52	50.35
IBN-Net101-b	80.88	52.05	40.75	3.19	64.21	59.88	51.05	50.29
IBN-Net101-s	80.78	52.69	44.53	3.34	66.26	62.26	50.39	51.46

Table 2: Different backbones setting with DeepLabV3+ architecture and BCE+Dice as loss function on NRGB images. The detailed loss defintion is given in 4. IBN-Net101-s achieves highest mIoU of 51.46% on val set.

$$L_{hybrid} = \frac{1}{1 + \lambda_1 + \lambda_2} (L_{BCE} + \lambda_1 L_{Dice} + \lambda_2 L_{Lovasz})$$

	IoUs(%)								
$\lambda_1 \lambda_2$	Background	Cloud shadow	Double plant	Planter skip	Standing Water	Waterway	Weed Cluster	Mean IoU	
0	80.49	51.09	40.98	3.77	63.75	57.01	49.75	49.55	
0	80.79	52.64	38.27	2.72	67.52	61.96	48.52	50.35	
1	81.35	55.43	40.33	1.42	65.70	64.30	48.83	51.05	
1	81.06	57.56	46.30	12.45	65.11	60.63	51.55	53.52	
	0	Background 0 80.49 0 80.79 1 81.35	Background Cloud shadow 0 80.49 51.09 0 80.79 52.64 1 81.35 55.43	Background Cloud shadow Double plant 0 80.49 51.09 40.98 0 80.79 52.64 38.27 1 81.35 55.43 40.33					

Table 3: Different loss settings with IBN-Net101-a+DeepLabV3+ on NRGB images. (λ_1, λ_2) =(1, 1) achieves highest mIoU of 53.52% on val set.

Tricks used in competition

Train-time Augmentation	IoU on Test Set				
Scale Ratio ~ U(-1.0, -1.0)	Class	loU	Rank		
Aspect Ratio ~ U(-1.0, -1.0) Shift Ratio ~ U(-1.0, -1.0)	Background	0.799	12		
Vertical Flip	Cloud shadow	0.366	24		
Horizontal Flip	Double plant	0.548	6		
Rotate 90°	Planter skip	0.414	8		
Test-time Augmentation	Standing water	0.698	16		
Vertical Flip	Waterway	0.669	4		
Horizontal Flip	Weed cluster	0.520	15		
Rotate 90°	Mean	0.574	9		

Thank you

Link to Github:

https://github.com/LAOS-Y/AgriVision

