A Time Series Is Worth 64 Words Long Term Forecasting With Transformers

https://arxiv.org/abs/2211.14730

0. Introduction

- 시계열 예측은 다양한 실세계 애플리케이션에서 중요하지만, 긴 범위의 예측은 여전히 어려움.
- 기존 Transformer 기반 모델들은 복잡하거나 비효율적.
- 저자는 간단하고 효율적인 구조인 TimesNet을 제안함.

1. Overview

- 핵심 아이디어: 시계열을 패치 단위의 토큰으로 나누어 처리 → 자연어처럼 취급
- 각 시계열을 64개 패치 토큰으로 줄여 Transformer 입력에 맞게 변환.
- 이 구조를 통해 연산량 감소 및 예측 정확도 향상을 도모.

2. Challenges

- 시계열 데이터는 길고, 연속적이며, 동적 주기성과 잡음이 포함됨.
- 기존 Transformer는 입력이 길어질수록 계산량이 급증 → 스케일 문제.
- 시계열은 자연어보다 구조적으로 시간 종속성이 강함.

3. Method

- 시계열을 윈도우로 나누고, 각 윈도우를 축약하여 64개의 단어로 표현.
- 이 과정을 통해 Transformer 구조에 자연스럽게 적합하게 조정.
- Multi-layer Transformer로 시계열 패턴을 학습하고 예측 수행.

- Channel-independence : 다채널 시계열 데이터를 각 채널별로 분리해 독립적으로 분석
- Channel-mixing : 여러 채널을 혼합해 채널 간 상호작용을 학습 (예: attention 메커니 즘)
- Channel-independent 모델
 - 채널 간 상호작용을 포착하기 어려울 수 있으나, 오히려 더 나은 성능을 보임
 - 유연성: 각 채널이 독립적으로 transformer layer를 통과 → 채널별 attention map 학습 → 다양한 패턴 학습 가능
 - 데이터 의존성: channel-mixing은 많은 데이터 필요 / channel-independence
 는 적은 데이터에도 효율적
 - 오버피팅: channel-mixing은 빠르게 오버피팅 / channel-independence는 안 정적인 최적화와 높은 예측 성능

(b) ~ Patching

- 정의: 인접한 데이터를 일정 단위(patch length)로 묶고 stride 단위로 슬라이딩
- 장점: token 수 감소 → 시간·공간 복잡도 낮춤 → 긴 시계열 학습 가능 → 예측 성능 향상
- 프로세스:

- o 채널 분리 + patching
- o vanilla transformer encoder 통과
- linear layer로 예측
- 확장: self-supervised learning을 추가 적용해 성능 향상 시도

(c) ~ Self-Supervised Representation Learning

- 정의: 라벨 없이 의미 있는 표현 학습
- 방식: 일부 patch를 마스킹 → 모델이 마스킹된 부분을 복원하도록 학습
- 설계: 마스킹된 patch와 인접 patch가 겹치지 않도록 구성 (patch length = stride)
- 효과:
 - 。 채널 내 패턴 이해도 증가
 - 。 일반화된 표현 학습
 - transfer learning에 활용 가능

4. Experiments

Datasets	Weather	Traffic	Electricity	ILI	ETTh1	ETTh2	ETTm1	ETTm2
Features	21	862	321 26304	7	7	7	7	7
Timesteps	52696	17544	26304	966	17420	17420	69680	69680

Table 2: Statistics of popular datasets for benchmark.

- 총 6개 시계열 데이터셋(ETT, Electricity, Exchange Rate 등)을 사용해 비교 실험.
- 기존 SOTA 모델들과 비교 (Informer, Autoformer, FEDformer 등).
- 평가 지표로는 Mean Squared Error와 Mean Absolute Error 사용
- 다양한 horizon(예측 범위)에 대한 성능 측정.

5. Results

Me	Models PatchTST/64		Patch'l	ST/42	DLi	ncar	FEDI	ormer	Autof	ormer	Info	rmer	Pyraf	ormer	Log	Frans	
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
-	96	0.149	0.198	0.152	0.199	0.176	0.237	0.238	0.314	0.249	0.329	0.354	0.405	0.896	0.556	0.458	0.490
e l	192	0.194	0.241	0.197	0.243	0.220	0.282	0.275	0.329	0.325	0.370	0.419	0.434	0.622	0.624	0.658	0.589
Weather	336	0.245	0.282	0.249	0.283	0.265	0.319	0.339	0.377	0.351	0.391	0.583	0.543	0.739	0.753	0.797	0.652
	720	0.314	0.334	0.320	0.335	0.323	0.362	0.389	0.409	0.415	0.426	0.916	0.705	1.004	0.934	0.869	0.675
	96	0.360	0.249	0.367	0.251	0.410	0.282	0.576	0.359	0.597	0.371	0.733	0.410	2.085	0.468	0.684	0.384
Traffic	192	0.379	0.256	0.385	0.259	0.423	0.287	0.610	0.380	0.607	0.382	0.777	0.435	0.867	0.467	0.685	0.390
E	336	0.392	0.264	0.398	0.265	0.436	0.296	0.608	0.375	0.623	0.387	0.776	0.434	0.869	0.469	0.734	0.408
	720	0.432	0.286	0.434	0.287	0.466	0.315	0.621	0.375	0.639	0.395	0.827	0.466	0.881	0.473	0.717	0.396
Ď.	96	0.129	0.222	0.130	0.222	0.140	0.237	0.186	0.302	0.196	0.313	0.304	0.393	0.386	0.449	0.258	0.357
io.	192	0.147	0.240	0.148	0.240	0.153	0.249	0.197	0.311	0.211	0.324	0.327	0.417	0.386	0.443	0.266	0.368
Electricity	336	0.163	0.259	0.167	0.261	0.169	0.267	0.213	0.328	0.214	0.327	0.333	0.422	0.378	0.443	0.280	0.380
H	720	0.197	0.290	0.202	0.291	0.203	0.301	0.233	0.344	0.236	0.342	0.351	0.427	0.376	0.445	0.283	0.376
	24	1.319	0.754	1.522	0.814	2.215	1.081	2.624	1.095	2.906	1.182	4.657	1.449	1.420	2.012	4.480	1.444
H	36	1.579	0.870	1.430	0.834	1.963	0.963	2.516	1.021	2.585	1.038	4.650	1.463	7.394	2.031	4.799	1.467
	48	1.553	0.815	1.673	0.854	2.130	1.024	2.505	1.041	3.024	1.145	5.004	1.542	7.551	2.057	4.800	1.468
	60	1.470	0.788	1.529	0.862	2.368	1.096	2.742	1.122	2.761	1.114	5.071	1.543	7.662	2.100	5.278	1.560
	96	0.370	0.400	0.375	0.399	0.375	0.399	0.376	0.415	0.435	0.446	0.941	0.769	0.664	0.612	0.878	0.740
ETTh1	192	0.413	0.429	0.414	0.421	0.405	0.416	0.423	0.446	0.456	0.457	1.007	0.786	0.790	0.681	1.037	0.824
ET	336	0.422	0.440	0.431	0.436	0.439	0.443	0.444	0.462	0.486	0.487	1.038	0.784	0.891	0.738	1.238	0.932
	720	0.447	0.468	0.449	0.466	0.472	0.490	0.469	0.492	0.515	0.517	1.144	0.857	0.963	0.782	1.135	0.852
	96	0.274	0.337	0.274	0.336	0.289	0.353	0.332	0.374	0.332	0.368	1.549	0.952	0.645	0.597	2.116	1.197
ETTh2	192	0.341	0.382	0.339	0.379	0.383	0.418	0.407	0.446	0.426	0.434	3.792	1.542	0.788	0.683	4.315	1.635
Ξ	336	0.329	0.384	0.331	0.380	0.448	0.465	0.400	0.447	0.477	0.479	4.215	1.642	0.907	0.747	1.124	1.604
	720	0.379	0.422	0.379	0.422	0.605	0.551	0.412	0.469	0.453	0.490	3.656	1.619	0.963	0.783	3.188	1.540
_	96	0.293	0.346	0.290	0.342	0.299	0.343	0.326	0.390	0.510	0.492	0.626	0.560	0.543	0.510	0.600	0.546
ETTm1	192	0.333	0.370	0.332	0.369	0.335	0.365	0.365	0.415	0.514	0.495	0.725	0.619	0.557	0.537	0.837	0.700
E	336	0.369	0.392	0.366	0.392	0.369	0.386	0.392	0.425	0.510	0.492	1.005	0.741	0.754	0.655	1.124	0.832
	720	0.416	0.420	0.420	0.424	0.425	0.421	0.446	0.458	0.527	0.493	1.133	0.845	0.908	0.724	1.153	0.820
-	96	0.166	0.256	0.165	0.255	0.167	0.260	0.180	0.271	0.205	0.293	0.355	0.462	0.435	0.507	0.768	0.642
ETTm2	192	0.223	0.296	0.220	0.292	0.224	0.303	0.252	0.318	0.278	0.336	0.595	0.586	0.730	0.673	0.989	0.757
E	336	0.274	0.329	0.278	0.329	0.281	0.342	0.324	0.364	0.343	0.379	1.270	0.871	1.201	0.845	1.334	0.872
_	720	0.362	0.385	0.367	0.385	0.397	0.421	0.410	0.420	0.414	0.419	3.001	1.267	3.625	1.451	3.048	1.328

Table 3: Multivariate long-term forecasting results with supervised PatchTST. We use prediction lengths $T \in \{24, 36, 48, 60\}$ for ILI dataset and $T \in \{96, 192, 336, 720\}$ for the others. The best results are in **bold** and the second best are underlined.

- PatchTST/42: 모든 벤치마크에서 기존 Transformer 모델 및 DLinear보다 우수
- PatchTST/64: 더 긴 입력으로 예측 성능 추가 향상
- Transformer 모델 대비 MSE 21.0%, MAE 16.7% 감소
- DLinear 대비도 대부분의 데이터셋에서 성능 우위

Mo	odels	PatchTST							DLinear		FEDformer		Autoformer		rmer
		Fine-tuning		Lin. Prob.		Sup.				1 Internation		/ tuttor to time t			
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
H	96	0.144	0.193	0.158	0.209	0.152	0.199	0.176	0.237	0.238	0.314	0.249	0.329	0.354	0.405
Ę	192	0.190	0.236	0.203	0.249	0.197	0.243	0.220	0.282	0.275	0.329	0.325	0.370	0.419	0.434
Weather	336	0.244	0.280	0.251	0.285	0.249	0.283	0.265	0.319	0.339	0.377	0.351	0.391	0.583	0.543
	720	0.320	0.335	0.321	0.336	0.320	0.335	0.323	0.362	0.389	0.409	0.415	0.426	0.916	0.705
-	96	0.352	0.244	0.399	0.294	0.367	0.251	0.410	0.282	0.576	0.359	0.597	0.371	0.733	0.410
Œ	192	0.371	0.253	0.412	0.298	0.385	0.259	0.423	0.287	0.610	0.380	0.607	0.382	0.777	0.435
Traffic	336	0.381	0.257	0.425	0.306	0.398	0.265	0.436	0.296	0.608	0.375	0.623	0.387	0.776	0.434
	720	0.425	0.282	0.460	0.323	0.434	0.287	0.466	0.315	0.621	0.375	0.639	0.395	0.827	0.466
5	96	0.126	0.221	0.138	0.237	0.130	0.222	0.140	0.237	0.186	0.302	0.196	0.313	0.304	0.393
C	192	0.145	0.238	0.156	0.252	0.148	0.240	0.153	0.249	0.197	0.311	0.211	0.324	0.327	0.417
Electricity	336	0.164	0.256	0.170	0.265	0.167	0.261	0.169	0.267	0.213	0.328	0.214	0.327	0.333	0.422
ă	720	0.193	0.291	0.208	0.297	0.202	0.291	0.203	0.301	0.233	0.344	0.236	0.342	0.351	0.427

Table 4: Multivariate long-term forecasting results with self-supervised PatchTST. We use prediction lengths $T \in \{96, 192, 336, 720\}$. The best results are in **bold** and the second best are underlined.

- Fine-tuning이 최상 성능, 그러나 linear probing만으로도 supervised보다 좋음
- 대형 데이터셋(Weather, Traffic, Electricity)에서 특히 뛰어난 일반화 성능을 보임

M	odolo		PatchTST							FEDformer		Autoformer		Informer	
Models		Fine-tuning		Lin. Prob.		Sup.		DLinear		FEDIOTHE		Autoroffice		morner	
Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
H .	96	0.145	0.195	0.163	0.216	0.152	0.199	0.176	0.237	0.238	0.314	0.249	0.329	0.354	0.405
ŧ.	192	0.193	0.243	0.205	0.252	0.197	0.243	0.220	0.282	0.275	0.329	0.325	0.370	0.419	0.434
Weather	336	0.244	0.280	0.253	0.289	0.249	0.283	0.265	0.319	0.339	0.377	0.351	0.391	0.583	0.543
-	720	0.321	0.337	0.320	0.336	0.320	0.335	0.323	0.362	0.389	0.409	0.415	0.426	0.916	0.705
-	96	0.388	0.273	0.400	0.288	0.367	0.251	0.410	0.282	0.576	0.359	0.597	0.371	0.733	0.410
Œ	192	0.400	0.277	0.412	0.293	0.385	0.259	0.423	0.287	0.610	0.380	0.607	0.382	0.777	0.435
Traffic	336	0.408	0.280	0.425	0.307	0.398	0.265	0.436	0.296	0.608	0.375	0.623	0.387	0.776	0.434
	720	0.447	0.310	0.457	0.317	0.434	0.287	0.466	0.315	0.621	0.375	0.639	0.395	0.827	0.466

Table 5: Transfer learning task: PatchTST is pre-trained on Electricity dataset and the model is transferred to other datasets. The best results are in **bold** and the second best are underlined.

- 일부 데이터셋에서는 fine-tune시 supervised보다 소폭 낮지만, 대부분의 기존 Transformer 모델보다 뛰어남
- 학습 횟수(epochs)가 적기 때문에 시간 효율도 우수함

M	odels	PatchTST									FEDformer	
Models		P+CI		(I	1	P	Orig	ginal	PEDIOTHE		
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
les.	96	0.152	0.199	0.164	0.213	0.168	0.223	0.177	0.236	0.238	0.314	
Weather	192	0.197	0.243	0.205	0.250	0.213	0.262	0.221	0.270	0.275	0.329	
Veg	336	0.249	0.283	0.255	0.289	0.266	0.300	0.271	0.306	0.339	0.377	
	720	0.320	0.335	0.327	0.343	0.351	0.359	0.340	0.353	0.389	0.409	
	96	0.367	0.251	0.397	0.271	0.595	0.376	-	-	0.576	0.359	
Traffic	192	0.385	0.259	0.411	0.276	0.612	0.387	-	-	0.610	0.380	
Tra	336	0.398	0.265	0.423	0.282	0.651	0.391	-	-	0.608	0.375	
	720	0.434	0.287	0.457	0.309	-	-	-	-	0.621	0.375	
ţ,	96	0.130	0.222	0.136	0.231	0.196	0.307	0.205	0.318	0.186	0.302	
ric	192	0.148	0.240	0.164	0.263	0.215	0.323	-	-	0.197	0.311	
Electricity	336	0.167	0.261	0.168	0.262	0.228	0.338	-	-	0.213	0.328	
Щ	720	0.202	0.291	0.219	0.312	0.244	0.345	-	-	0.233	0.344	

- PatchTST는 L이 증가할수록 예측 성능이 꾸준히 향상
- 기존 모델들은 L 증가 시 성능 개선이 거의 없음 -> 시계열 정보 흡수에 비효율
- 대부분의 데이터셋과 예측 길이에서 SOTA 성능 달성.
- 특히 긴 시계열 예측에서 성능 우수.
- 연산량 및 파라미터 수에서도 경량화된 모델 구조로 효율 확보.

6. Insight

• 시계열을 언어처럼 다룰 수 있다는 새로운 접근법 제시.

- 입력 압축(tokenization)과 간단한 구조만으로도 복잡한 모델보다 우수한 결과 가능.
- 미래의 시계열 연구에서 언어 모델 기반 접근의 가능성을 시사.
- 시계열 데이터 표현 학습 (Representation Learning for Time Series)을 활용하는 TS2Vec, TNC (Temporal Neighborhood Coding), CPC (Contrastive Predictive Coding) 논문 읽어볼 예정