Data Science (Prof. Neff)

Abgabedatum 17.11.2020

Durchführung einer MSA nach Verfahren 1 und 2

Gruppe 6: Benjamin Hamm (2060696), Jan Klotter (2060690),

Anna Kuhn (2051063), Michael Schulze (2061282)

MSA Verfahren 1

%Messwerte des Verfahren 1
data jan = readtable("MSA Verfahren1 200ml Jan.csv")

data -	ian -	25×1	+ - 1 - 1 -
uata_	Jan -	Gewich	
1			
'			199
2			213
3			185
4			198
5			205
6			191
7			184
8			193
9			199
10			206
11			207
12			210
13			213
14			197
15			205
16			203
17			196
18			206
19			197
20			204
21			210
22			193
23			195

24

196

	Gewicht_in_g
25	196

data_benni = readtable("MSA_Verfahren1_200ml_Benjamin.csv")

data_l	penni = 25×1 table
	Gewicht_in_g
1	195
2	199
3	201
4	209
5	192
6	193
7	199
8	192
9	201
10	202
11	205
12	210
13	196
14	197
15	195
16	192
17	202
18	205
19	200
20	202
21	198
22	193
23	195
24	196
25	199

data_anna = readtable("MSA_Verfahren1_200ml_Anna.csv")

 $data_anna = 25 \times 1 table$

	Gewicht_in_g
1	201

	Gewicht_in_g	
2		194
3		192
4		195
5		195
6		204
7		201
8		202
9		195
10		201
11		203
12		201
13		198
14		202
15		200
16		204
17		205
18		201
19		201
20		195
21		203
22		204
23		197
24		198
25		202

data_michael = readtable("MSA_Verfahren1_200ml_Michael.csv")

data_michael = 25×1 table

	Gewicht_in_g
1	205
2	209
3	210
4	204
5	208
6	209

	Gewicht_in_g	
7		208
8		206
9		208
10		205
11		202
12		209
13		204
14		207
15		208
16		204
17		210
18		206
19		209
20		206
21		204
22		209
23		206
24		208
25		208

```
%Statistische Kenngrößen
Mean_Jan = mean(data_jan.Gewicht_in_g)
```

 $Mean_{Jan} = 200.0400$

```
Std_Jan = std(data_jan.Gewicht_in_g)
```

 $Std_Jan = 7.8818$

```
Mean_Benni = mean(data_benni.Gewicht_in_g)
```

Mean_Benni = 198.7200

```
Std_Benni = std(data_benni.Gewicht_in_g)
```

 $Std_Benni = 5.0705$

```
Mean_Anna = mean(data_anna.Gewicht_in_g)
```

 $Mean_Anna = 199.7600$

```
Std_Anna = 3.6774

Mean_Michael = mean(data_michael.Gewicht_in_g)

Mean_Michael = 206.8800

Std_Michael = std(data_michael.Gewicht_in_g)

Std_Michael = 2.2045

Messmittel der verschiedenen Kandidaten

% Fähigkeitskennzahl (Messmittelfähigkeit) cg
% cg = (a * Tb) / (6 * Std_g)
% a - Faktor, typisch 0.2
% Tb - Toleranzbreite (Messbereich, z.B. 500 ml)
% Std_g - Standardabweichung des Messmittels
```

% kritische Fähigkeitskennzahl (kritische Messmittelfähigkeit) cgk % cgk = (a/2 * Tb - abs(mean - Refwert) / (3 * Std_g) % a - Faktor, typisch 0.2 % Tb - Toleranzbreite (Messbereich, z. B. 500 ml) % mean - Mittelwert der Messwerte, z. B. aus 25 mal 200 ml messen % Std_g - Standardabweichung des Messmittels cg_Jan = 0.2 * 500 / (6*Std_Jan) cg_Jan = 2.1146 cg_k_Jan = ((0.2/2)*500-abs(Mean_Jan-200))/(3*Std_Jan) cg_k_Jan = 2.1129 cg_Benni = 0.2 * 500 / (6*Std_Benni) cg_Benni = 3.2870 cg_k_Benni = ((0.2/2)*500-abs(Mean_Benni-200))/(3*Std_Benni) cg_k_Benni = 3.2028 cg_Anna = 0.2 * 500 / (6*Std_Anna)

```
cg_Anna = 0.2 * 500 / (6*Std_Anna)

cg_Anna = 4.5322

%cg_anna_matlab = capability(data_anna.Gewicht_in_g,[0,200])
cg_k_Anna = ((0.2/2)*500-abs(Mean_Anna-200))/(3*Std_Anna)
```

```
cg_k_Anna = 4.5104

cg_Michael = 0.2 * 500 / (6*Std_Michael)
```

 $cg_Michael = 7.5602$

 $cg_k_Michael = ((0.2/2)*500-abs(Mean_Michael-200))/(3*Std_Michael)$

```
% Beurteilung Messgerätefähigkeit
cg min = 1.0;
cgk min = 1.33;
text = sprintf("cg Jan: %0.4f %s %0.4f und cg k Jan: %0.4f %s %0.4f, ..." + ...
    "somit Messgerät fähig",cg Jan, char(8805), cg min, cg k Jan, ...
    char(8805), cgk min);
disp(text)
cg Jan: 2.1146 \geq 1.0000 und cg k Jan: 2.1129 \geq 1.3300, ...somit Messgerät fähig
text = sprintf("cg Benni: %0.4f %s %0.4f und cg k Benni: %0.4f %s %0.4f, ..." + ..
    "somit Messgerät fähig",cg Benni, char(8805), cg min, cg k Benni, ...
    char(8805), cgk_min);
disp(text)
cq Benni: 3.2870 \ge 1.0000 und cq k Benni: 3.2028 \ge 1.3300, ...somit Messgerät fähiq
text = sprintf("cg Anna: %0.4f %s %0.4f und cg k Anna: %0.4f %s %0.4f, somit ..." +
    "Messgerät fähig",cg Anna, char(8805), cg min, cg k Anna, ...
    char(8805), cgk min);
disp(text)
cg Anna: 4.5322 \ge 1.0000 und cg k Anna: 4.5104 \ge 1.3300, somit ...Messgerät fähig
text = sprintf("cg Michael: %0.4f %s %0.4f und cg k Michael: %0.4f %s %0.4f, ..." +
    "somit Messgerät fähig",cg Michael, char(8805), cg min, cg k Michael, ...
    char(8805), cgk min);
disp(text)
```

cg Michael: $7.5602 \ge 1.0000$ und cg k Michael: $6.5199 \ge 1.3300$, ...somit Messgerät fähig

Lineare Anpassung

```
%Prüfung auf auf Wiederholpräzision
x = (1:1:25);
linreg_jan = fitlm(x,data_jan.Gewicht_in_g,"linear")
linreg_jan =
```

Linear regression model: $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	199.36	3.3157	60.126	8.4599e-27
x1	0.052308	0.22304	0.23452	0.81665

Number of observations: 25, Error degrees of freedom: 23 Root Mean Squared Error: 8.04 R-squared: 0.00239, Adjusted R-Squared: -0.041

linreg benni = fitlm(x,data benni.Gewicht in g,"linear")

linreg_benni =
Linear regression model:
 y ~ 1 + x1

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	199.38	2.1298	93.615	3.3318e-31
x1	-0.050769	0.14326	-0.35437	0.72629

Number of observations: 25, Error degrees of freedom: 23 Root Mean Squared Error: 5.17

R-squared: 0.00543, Adjusted R-Squared: -0.0378

F-statistic vs. constant model: 0.126, p-value = 0.726

linreg anna = fitlm(x,data anna.Gewicht in g,"linear")

linreg_anna =
Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	197.49	1.4512	136.09	6.1999e-35
x1	0.17462	0.097617	1.7888	0.086832

Number of observations: 25, Error degrees of freedom: 23

Root Mean Squared Error: 3.52

R-squared: 0.122, Adjusted R-Squared: 0.084

F-statistic vs. constant model: 3.2, p-value = 0.0868

linreg michael = fitlm(x,data michael.Gewicht in g,"linear")

linreg_michael =
Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	206.9	0.92849	222.83	7.4203e-40
x1	-0.0015385	0.062457	-0.024632	0.98056

Number of observations: 25, Error degrees of freedom: 23

Root Mean Squared Error: 2.25

R-squared: 2.64e-05, Adjusted R-Squared: -0.0435

F-statistic vs. constant model: 0.000607, p-value = 0.981

slope_jan = linreg_jan.Coefficients.Estimate(2);
intercept_jan = linreg_jan.Coefficients.Estimate(1);

```
y_jan = slope_jan * x + intercept_jan;

slope_benni = linreg_benni.Coefficients.Estimate(2);
intercept_benni = linreg_benni.Coefficients.Estimate(1);
y_benni = slope_benni * x + intercept_benni;

slope_anna = linreg_anna.Coefficients.Estimate(2);
intercept_anna = linreg_anna.Coefficients.Estimate(1);
y_anna = slope_anna * x + intercept_anna;

slope_michael = linreg_michael.Coefficients.Estimate(2);
intercept_michael = linreg_michael.Coefficients.Estimate(1);
y_michael = slope_michael * x + intercept_michael;
```

Plot aller Messwerte und der Ausgleichsgerade

```
figure
hold on
ms1 jan = plot(x, data jan.Gewicht in g, "rx");
plt linreg jan = plot(x, y jan, "r");
ms1 benni = plot(x, data benni.Gewicht in g, "b+");
plt linreg benni = plot(x, y benni, "b");
ms1 anna = plot(x,data anna.Gewicht in g, "go");
plt linreg anna = plot(x, y anna, "g");
ms1 michael = plot(x, data michael.Gewicht in g, "ms");
plt_linreg_michael = plot(x, y_michael, "m");
hold off
title("Messwerte und Ausgleichsgeraden");
xlabel("Messung");
ylabel("Gewicht in g");
legend([ms1 jan ms1 benni ms1 anna ms1 michael], ...
    ["Jan", "Benni", "Anna", "Michael"]);
xlim([0.0000 26]);
ylim([180 220]);
grid on
```


MSA Verfahren 2

%Messwerte Verfahren 2
data_ms2_jan = readtable('Messwerte_MSA2_Jan.xlsx')

 $data_ms2_jan = 30 \times 4 table$

	Operator	Part	Repetition	Measurement
1	'Jan'	1	1	102
2	'Jan'	2	1	200
3	'Jan'	3	1	301
4	'Jan'	4	1	399
5	'Jan'	5	1	502
6	'Jan'	1	2	98
7	'Jan'	2	2	200
8	'Jan'	3	2	299
9	'Jan'	4	2	400
10	'Jan'	5	2	501
11	'Jan'	1	3	NaN

	Operator	Part	Repetition	Measurement
12	'Jan'	2	3	NaN
13	'Jan'	3	3	NaN
14	'Jan'	4	3	NaN
15	'Jan'	5	3	NaN
16	'MJ'	1	1	98
17	'MJ'	2	1	202
18	'MJ'	3	1	302
19	'MJ'	4	1	401
20	'MJ'	5	1	500
21	'MJ'	1	2	100
22	'MJ'	2	2	200
23	'MJ'	3	2	302
24	'MJ'	4	2	399
25	'MJ'	5	2	500
26	'MJ'	1	3	NaN
27	'MJ'	2	3	NaN
28	'MJ'	3	3	NaN
29	'MJ'	4	3	NaN
30	'MJ'	5	3	NaN

data_ms2_benni = readtable('Messwerte_MSA2_Benjamin.xlsx')

 $data_ms2_benni = 30 \times 4 table$

	Operator	Part	Repetition	Measurement
1	'Benjamin'	1	1	101
2	'Benjamin'	2	1	198
3	'Benjamin'	3	1	299
4	'Benjamin'	4	1	402
5	'Benjamin'	5	1	500
6	'Benjamin'	1	2	99
7	'Benjamin'	2	2	202
8	'Benjamin'	3	2	298
9	'Benjamin'	4	2	397
10	'Benjamin'	5	2	503
11	'Benjamin'	1	3	NaN

	Operator	Part	Repetition	Measurement
12	'Benjamin'	2	3	NaN
13	'Benjamin'	3	3	NaN
14	'Benjamin'	4	3	NaN
15	'Benjamin'	5	3	NaN
16	'Marie'	1	1	98
17	'Marie'	2	1	200
18	'Marie'	3	1	301
19	'Marie'	4	1	398
20	'Marie'	5	1	498
21	'Marie'	1	2	100
22	'Marie'	2	2	198
23	'Marie'	3	2	301
24	'Marie'	4	2	402
25	'Marie'	5	2	499
26	'Marie'	1	3	NaN
27	'Marie'	2	3	NaN
28	'Marie'	3	3	NaN
29	'Marie'	4	3	NaN
30	'Marie'	5	3	NaN

data_ms2_anna = readtable('Messwerte_MSA2_Anna.xlsx')

 $data_ms2_anna = 30 \times 4 table$

	Operator	Part	Repetition	Measurement
1	'Anna'	1	1	100
2	'Anna'	2	1	204
3	'Anna'	3	1	303
4	'Anna'	4	1	409
5	'Anna'	5	1	506
6	'Anna'	1	2	99
7	'Anna'	2	2	201
8	'Anna'	3	2	300
9	'Anna'	4	2	406
10	'Anna'	5	2	503
11	'Anna'	1	3	NaN

	Operator	Part	Repetition	Measurement
12	'Anna'	2	3	NaN
13	'Anna'	3	3	NaN
14	'Anna'	4	3	NaN
15	'Anna'	5	3	NaN
16	'JL'	1	1	103
17	'JL'	2	1	200
18	'JL'	3	1	305
19	'JL'	4	1	400
20	'JL'	5	1	502
21	'JL'	1	2	102
22	'JL'	2	2	198
23	'JL'	3	2	302
24	'JL'	4	2	399
25	'JL'	5	2	502
26	'JL'	1	3	NaN
27	'JL'	2	3	NaN
28	'JL'	3	3	NaN
29	'JL'	4	3	NaN
30	'JL'	5	3	NaN

data_ms2_michael = readtable('Messwerte_MSA2_Micha.xlsx')

 $data_ms2_michael = 30 \times 4 table$

	Operator	Part	Repetition	Measurement
1	'Michael'	1	1	106
2	'Michael'	2	1	205
3	'Michael'	3	1	302
4	'Michael'	4	1	407
5	'Michael'	5	1	507
6	'Michael'	1	2	105
7	'Michael'	2	2	205
8	'Michael'	3	2	303
9	'Michael'	4	2	407
10	'Michael'	5	2	507
11	'Michael'	1	3	105

	Operator	Part	Repetition	Measurement
12	'Michael'	2	3	205
13	'Michael'	3	3	302
14	'Michael'	4	3	408
15	'Michael'	5	3	507
16	'Michele'	1	1	105
17	'Michele'	2	1	205
18	'Michele'	3	1	302
19	'Michele'	4	1	407
20	'Michele'	5	1	507
21	'Michele'	1	2	106
22	'Michele'	2	2	205
23	'Michele'	3	2	302
24	'Michele'	4	2	407
25	'Michele'	5	2	507
26	'Michele'	1	3	105
27	'Michele'	2	3	204
28	'Michele'	3	3	302
29	'Michele'	4	3	406
30	'Michele'	5	3	506

Streudiagramme

```
%gruppiertes Streudiagramm Jan
figure
gscatter(data_ms2_jan.Part,data_ms2_jan.Measurement,...
    data_ms2_jan.Operator,"rbg","o+x")
xlabel("Teil")
ylabel("Gewicht in g")
title("Operator Jan und MJ")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
refline(100,0)
legend({'Jan','MJ','Referenz'})
grid on
```



```
%nur Operator Jan
figure
gscatter(data_ms2_jan.Part(1:10),data_ms2_jan.Measurement(1:10),...
    data_ms2_jan.Repetition(1:10),"rbg","o+x")
title("Wiederholungen Operator Jan")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```



```
%nur Operator MJ
figure
gscatter(data_ms2_jan.Part(16:25),data_ms2_jan.Measurement(16:25),...
    data_ms2_jan.Repetition(16:25),"rbg","o+x")
title("Wiederholungen Operator MJ")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```



```
%nur Operator Benni
figure
gscatter(data_ms2_benni.Part(1:10),data_ms2_benni.Measurement(1:10),...
    data_ms2_benni.Repetition(1:10),"rbg","o+x")
title("Wiederholungen Operator Benni")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```



```
%nur Operator Marie
figure
gscatter(data_ms2_benni.Part(16:25),data_ms2_benni.Measurement(16:25),...
    data_ms2_benni.Repetition(16:25),"rbg","o+x")
title("Wiederholungen Operator Marie")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```



```
%nur Operator Anna
figure
gscatter(data_ms2_anna.Part(1:10),data_ms2_anna.Measurement(1:10),...
    data_ms2_anna.Repetition(1:10),"rbg","o+x")
title("Wiederholungen Operator Anna")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```



```
%nur Operator JL
figure
gscatter(data_ms2_anna.Part(16:25),data_ms2_anna.Measurement(16:25),...
    data_ms2_anna.Repetition(16:25),"rbg","o+x")
title("Wiederholungen Operator JL")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```



```
%nur Operator Michael
figure
gscatter(data_ms2_michael.Part(1:15),data_ms2_michael.Measurement(1:15),...
    data_ms2_michael.Repetition(1:15),"rbg","o+x")
title("Wiederholungen Operator Michael")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```



```
%nur Operator Michele
figure
gscatter(data_ms2_michael.Part(16:30),data_ms2_michael.Measurement(16:30),...
    data_ms2_michael.Repetition(16:30),"rbg","o+x")
title("Wiederholungen Operator Michele")
xlabel("Teil")
ylabel("Gewicht in g")
set(gca,'xtick',0:10)
ylim([0 600])
xlim([0 6])
grid on
```


Boxplots

```
%Boxplot Jan
figure
boxplot(data_ms2_jan.Measurement, {data_ms2_jan.Part,...
        data_ms2_jan.Operator}, "Colors", "rg")
legend(findobj(gca,'Tag','Box'),'MJ','Jan')
```

```
legend('Location','southeast')
title("Boxplot gruppiert nach Teil und Operator")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_jan.Measurement,data_ms2_jan.Part)
title("Normteile")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_jan.Measurement,data_ms2_jan.Operator)
title("Operator")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
%Boxplot Benni
figure
boxplot(data_ms2_benni.Measurement, {data_ms2_benni.Part,...
    data_ms2_benni.Operator}, "Colors", "rg")
legend(findobj(gca,'Tag','Box'),'Marie','Benjamin')
```

```
legend('Location','southeast')
title("Boxplot gruppiert nach Teil und Operator")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_benni.Measurement,data_ms2_benni.Part)
title("Normteile")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_benni.Measurement,data_ms2_benni.Operator)
title("Operator")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
%Boxplot Anna
figure
boxplot(data_ms2_anna.Measurement, {data_ms2_anna.Part,...
        data_ms2_anna.Operator}, "Colors", "rg")
legend(findobj(gca,'Tag','Box'),'JL','Anna')
```

```
legend('Location','southeast')
title("Boxplot gruppiert nach Teil und Operator")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_anna.Measurement,data_ms2_anna.Part)
title("Normteile")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_anna.Measurement,data_ms2_anna.Operator)
title("Operator")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
%Boxplot Michael
figure
boxplot(data_ms2_michael.Measurement, {data_ms2_michael.Part,...
    data_ms2_michael.Operator}, "Colors", "rg")
legend(findobj(gca,'Tag','Box'),'Michele','Michael')
```

```
legend('Location','southeast')
title("Boxplot gruppiert nach Teil und Operator")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_michael.Measurement,data_ms2_michael.Part)
title("Normteile")
xlabel("Teil")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```



```
figure
boxplot(data_ms2_michael.Measurement,data_ms2_michael.Operator)
title("Operator")
ylabel("Gewicht in g")
ylim([0 600])
grid on
```


Gage R&R

title("Jan")

legend('Location', "northwest")

```
% GageErr
%Gage R&R durchführen
figure
gagerr(data_ms2_jan.Measurement, {data_ms2_jan.Part,...
     data_ms2_jan.Operator})
    {'Source'
                              {'Variance' }
                                                 {'% Variance'}
                                                                    {'sigma'
                                                                                     {'5.15*sigma'}
                                                                    {[ 1.3443]}
    { 'Gage R&R'
                              {[ 1.8071]}
                                                       0.0072]}
                                                                                         6.9231]}
                                                 { [
                                                                                     { [
                                                                                                        [ ]
    {' Repeatability' }
{' Reproducibility'}
                              { [
                                    1.8071]}
                                                 { [
                                                       0.0072]}
                                                                    [
                                                                       1.3443]}
                                                                                     [ ]
                                                                                            6.9231]}
                                                                                                        { [
                              [ ]
                                          0]}
                                                 { [
                                                             0]}
                                                                    [ ]
                                                                              0]}
                                                                                     [ ]
                                                                                                 0]}
                                                                                                        { [
    {' Operator'
                              { [
                                          0]}
                                                 [ ]
                                                             0]}
                                                                    { [
                                                                              0]}
                                                                                     [ ]
                                                                                                 0]}
                                                                                                        [ ]
    {'Part'
                              {[2.5087e+04]}
                                                      99.9928]}
                                                                    {[158.3902]}
                                                                                     {[ 815.7097]}
                                                 [ ]
                                                                                                        [ ]
                                                                                     {[ 815.7391]}
    {'Total'
                              {[2.5089e+04]}
                                                 [ ]
                                                           100]}
                                                                    {[158.3959]}
                                                                                                        \{0 \times 0 \text{ ch}
Number of distinct categories (NDC):167
% of Gage R&R of total variations (PRR): 0.85
Note: The last column of the above table does not have to sum to 100%
```



```
figure
gagerr(data ms2 benni.Measurement, {data ms2 benni.Part,...
    data ms2 benni.Operator})
    {'Source'
                             {'Variance' }
                                               {'% Variance'}
                                                                  {'sigma'
                                                                                  {'5.15*sigma'}
                                                                                                     { '% 5.1
    {'Gage R&R'
                             {[ 4.0500]}
                                                    0.0162]}
                                                                  {[ 2.0125]}
                                                                                  {[ 10.3642]}
                                               { [
                                                                                                     [ ]
    {' Repeatability'
                                                      0.0162]}
                                                                  {[ 2.0125]}
                             [ ]
                                   4.0500]}
                                               [ ]
                                                                                  { [
                                                                                       10.3642]}
                                                                                                     [ ]
    {' Reproducibility'}
                             { [
                                        0]}
                                               [ ]
                                                           0]}
                                                                           0]}
                                                                                  [ ]
                                                                                              0]}
                                                                                                     [ ]
                                                                  { [
    {' Operator'
                                         0]}
                                               [ ]
                                                           0]}
                                                                           0]}
                                                                                  [ ]
                                                                                              0]}
                                                                                                     [ ]
                             { [
                                                                  [ ]
    {'Part'
                             {[2.5062e+04]}
                                               [ ]
                                                     99.9838]}
                                                                  {[158.3083]}
                                                                                  {[ 815.2880]}
                                                                                                     [ ]
    {'Total'
                             {[2.5066e+04]}
                                               [ ]
                                                         100]}
                                                                  {[158.3211]}
                                                                                  {[ 815.3538]}
                                                                                                     \{0 \times 0 \text{ ch}
Number of distinct categories (NDC):111
% of Gage R&R of total variations (PRR): 1.27
Note: The last column of the above table does not have to sum to 100%
legend('Location', "northwest")
title("Benni")
```



```
figure
gagerr(data ms2 anna.Measurement, {data ms2 anna.Part,...
     data ms2 anna.Operator})
    {'Source'
                             {'Variance' }
                                                {'% Variance'}
                                                                  {'sigma'
                                                                                   {'5.15*sigma'}
                                                                                                     { '% 5.1
    {'Gage R&R'
                                                                  {[ 2.8964]}
                             { [
                                   8.3893]}
                                                      0.0331]}
                                                                                   {[ 14.9166]}
                                                                                                     { [
                                               { [
    {' Repeatability'
                                   7.5214]}
                             [ ]
                                                [ ]
                                                      0.0296]}
                                                                      2.7425]}
                                                                                  [ ]
                                                                                        14.1240]}
                                                                                                     [ ]
                                                                  { [
       Reproducibility'}
                             [ ]
                                   0.8679]}
                                                [ ]
                                                                      0.9316]}
                                                                                   [ ]
                                                                                        4.7977]}
                                                                                                     [ ]
                                                      0.0034]}
                                                                  { [
    {' Operator'
                                                                                   [ ]
                                                                                         4.7977]}
                                                                                                     [ ]
                             [ ]
                                   0.8679]}
                                                [
                                                      0.0034]}
                                                                  {[ 0.9316]}
    {'Part'
                             {[2.5362e+04]}
                                                [ ]
                                                     99.9669]}
                                                                  {[159.2552]}
                                                                                   { [
                                                                                      820.1644]}
                                                                                                     [ ]
    {'Total'
                             {[2.5371e+04]}
                                                [ ]
                                                         100]}
                                                                  {[159.2816]}
                                                                                   {[ 820.3000]}
                                                                                                     \{0 \times 0 \text{ ch}
Number of distinct categories (NDC):78
% of Gage R&R of total variations (PRR): 1.82
Note: The last column of the above table does not have to sum to 100%
legend('Location', "northwest")
title("Anna")
```



```
figure
gagerr(data ms2 michael.Measurement, {data ms2 michael.Part,...
    data ms2 michael.Operator})
    {'Source'
                             {'Variance' }
                                               {'% Variance'}
                                                                  {'sigma'
                                                                                  {'5.15*sigma'}
                                                                                                     { '% 5.1
    {'Gage R&R'
                                                                  {[ 0.5000]}
                             { [
                                   0.2500]}
                                               {[9.8961e-04]}
                                                                                  [ ]
                                                                                        2.5750]}
                                                                                                     { [
    {' Repeatability'
                                               {[8.2468e-04]}
                             [ ]
                                   0.2083]}
                                                                  {[ 0.4564]}
                                                                                  { [
                                                                                        2.3506]}
                                                                                                     [ ]
       Reproducibility'}
                             [ ]
                                   0.0417]}
                                               {[1.6494e-04]}
                                                                     0.2041]}
                                                                                  [ ]
                                                                                        1.0512]}
                                                                                                     [ ]
                                                                  { [
    {' Operator'
                                   0.0417]}
                                               {[1.6494e-04]}
                                                                                  [ ]
                                                                                        1.0512]}
                                                                                                     { [
                             [ ]
                                                                  {[ 0.2041]}
    {'Part'
                             {[2.5262e+04]}
                                               {[ 99.9990]}
                                                                  {[158.9406]}
                                                                                  { [
                                                                                      818.5441]}
                                                                                                     [ ]
    {'Total'
                             {[2.5262e+04]}
                                               { [
                                                        100]}
                                                                  {[158.9414]}
                                                                                  {[ 818.5481]}
                                                                                                     \{0 \times 0 \text{ ch}
Number of distinct categories (NDC):450
% of Gage R&R of total variations (PRR): 0.31
Note: The last column of the above table does not have to sum to 100%
legend('Location', "northwest")
title("Michael")
```

