

## My Progress

# MonoHiggs to $b\bar{b}$

Prayag Yadav

Last updated: 2024-01-02 10:53:22+05:30

University of Hyderabad

#### Table of contents

1. Thu, 5<sup>th</sup> October 2023

Basic kinematic plots (Without any scale factors or corrections)

2. Thu, 26<sup>th</sup> October 2023 MET Filters / MET Flags

3. 2024-01-02 Tue, 2<sup>nd</sup> January 2024

## Basic kinematic plots

#### BTag Scores: MC



- Btagger used : btagDeepFlavB
- Sample used:MonoHTobb\_ZpBaryonic
- Lots of bjets in Signal MC

Figure 1: BTag score for signal MC sample

## BTag Scores: Data



- Btagger used : btagDeepFlavB
- Sample used: Run2018A/MET
- Less number of bjets in Data

Figure 2: BTag score for Data samples

## Jet $p_t$ : MC



- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$
- Btagger used : btagDeepFlavB
- Sample used: MonoHTobb\_ZpBaryonic
- Medium Weight Parameter used for ak4bjets: 0.3040

Figure 3: Jet  $p_t$  of signal MC samples

#### Jet $p_t$ : Data



Figure 4: Jet  $p_t$  of Data samples

- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$
- Btagger used : btagDeepFlavB
- Sample used: Run2018A/MET
- Medium Weight Parameter used for ak4bjets: 0.3040
- Not as predictable as signal MC

#### DiJet mass: MC



Figure 5: DiJet mass of signal MC samples

- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$  for each jet
- Btagger used : btagDeepFlavB
- Sample used:MonoHTobb\_ZpBaryonic
- Medium Weight Parameter used for ak4bjets selection: 0.3040
- Peaks around SM Higgs mass

#### DiJet mass: Data



Figure 6: DiJet mass of Data samples

- Basic selections :  $p_t > 25 GeV$  and  $|\eta| < 2.5$  for each jet
- Btagger used:btagDeepFlavB
- Sample used: Run2018A/MET
- Medium Weight Parameter used for ak4bjets selection: 0.3040
- Lot of noise, no clear structure

#### $MET p_t : MC$



 No filters or Trigger applied

Figure 7: MET  $p_t$  for signal MC samples

#### MET $p_t$ : Data



- No filters or Trigger applied
- Looks similar to the Jet data

Figure 8: MET  $p_t$  for Data samples

## **MET Filters**

#### MET $p_t$ : MET2018A



 Compared how the MET pt looks with and without MET triggers on Data

•

Figure 9: MET  $p_t$  for MET2018A

#### MET $\phi$ : MET2018A



- Compared how the MET  $\phi$  looks with and without MET triggers
- .jf

Figure 10: MET  $\phi$  for MET2018A

#### MET $p_t$ : MonoHtobb\_ZpBaryonic



- Compared how the MET p<sub>t</sub> looks with and without MET triggers on Signal MC
- · .jf

Figure 11: MET  $p_t$  for MonoHtobb\_ZpBaryonic

#### MET $\phi$ : MonoHTobb\_ZpBaryonic



• Compared how the MET  $\phi$  looks with and without MET triggers on Signal MC

•

Figure 12: MET  $\phi$  for MC

## Contribution of various

contribution of variou.

backgrounds

#### Contribution of various backgrounds: Resolved $b\bar{b}$ bar in 2018



Figure 13: Simulated contribution of various backgrounds to the signal in the resolved  $b\bar{b}$  bar case for 2018

# Selections Applied: Event Selections:

- MET > 200 GeV
- · no leptons
- · no photons

#### Object Selections:

- jet  $p_t > 30 \text{ GeV}$
- jet  $|\eta| < 2.5$
- Δφ(Jet, MET)
- · at least 2 tight bjets (algorithm:DeepFlavB)
- leading bjet p<sub>t</sub> > 50 GeV
- subleading bjet  $p_t > 30$  GeV
- atmost 2 additional jets
- dijet = leading bjet + subleading bjet
- · dijet mass between (100 GeV,150 GeV)
- dijet p<sub>t</sub> > 100 GeV

#### References i