Cellular Mobile Networks - GSM GSM Security Concept

Contents - GSM - GSM Security Concept

- GSM Security Features Overview
- Authentication and Encryption
 - Basic Concept
 - Crypto algorithms (A3, A5, A8)
 - Security Data (RAND, SRES, K_c)
 - Generation and Distribution of Security Data
 - Subscriber Authentication
 - Encryption at the Air Interface
 - Summary
- Subscriber Identity Protection (Anonymity)
- ME Identity Check

GSM Security Features Overview

- Access Control / Authentication
 - subscriber ⇔ SIM: Personal Identification Number (PIN)
 activation of the ME and getting access to personal data
 - SIM

 network: via challenge-response method getting access to the network and network services
- Privacy (Encryption)
 - encryption at the air interface between MS and BTS encrypted transmission of voice and signaling data after successful authentication
- Anonymity (subscriber identity protection)
 - use of a temporary subscriber identity (TMSI)
 a new TMSI is assigned at every connection setup, location update or
 VLR change; usually the TMSI is encrypted before transmission
- ME Identity Check (optional)
 - IMEI verification through EIR query: identification of stolen, outdated and faulty MEs

Authentication & Encryption - Basic Concept

The GSM security concept for authentication and encryption comprises:

- the IMSI: stored in the SIM and in the AuC
- a set of crypto algorithms:
 - A3, A8: stored in the SIM and in the AuC
 - A5: stored in the ME and if necessary in the BTS
- two keys:
 - K_i: (secret) subscriber specific key for authentication stored in the SIM (not readable) and in the AuC
 - K_c: key for user data encryption on the air interface
 K_c is generated in the AuC and in the SIM with the algorithm A8
- random numbers RAND: generated in the AuC
- Signed Responses (SRES): generated in the AuC and in the SIM with the algorithm A3

Authentication & Encryption - Crypto Algorithms

In GSM 3 crypto algorithms are specified:

- Algorithm A3 for authentication (confidential but open interface): generation of the response value SRES out of a random number (RAND) and the subscriber specific key K_i
- Algorithm A5 for user data encryption (standardized):
 uses the key K_c (session key)
- Algorithm A8 for key generation (confidential but open interface): generation of the key K_c (session key) which is used for symmetric encryption of user data; K_c is generated out of a random number (RAND) and the subscriber specific key K_i

Authentication & Encryption - Security Data

The subscriber specific security data ("Triples") RAND, SRES, K_c are required for authentication and encryption

- they are usually generated in the AuC and forwarded to the HLR or VLR
- it is also possible to generate the security data in the VLR, but this is less secure as for that the key K_i has to be transmitted from the AuC to the VLR therefore this method is only used in the home network

Authentication & Encryption - Security Data Distribution

Generation and distribution of security data:

- on request of the HLR the AuC generates (several) security data triples
 - each triple is used only once
 - the triples can be generated in advance
 - K_i resides in the AuC only!
- the VLR requests a triple from the HLR, when the subscriber wants to establish a radio connection
- during a location area change the triples are transferred from the old to the new VLR
- alternatively K_i is transferred to the VLR and the triples are generated locally in the VLR (however this procedure is less secure)

Authentication & Encryption - Subscriber Authentication

Subscriber authentication:

- the authentication takes place e.g.:
 - during an location update
 - during the connection setup
- authentication is performed via SRES which is calculated via A3 by using the security data (only once in time) and a random number (RAND) (challengeresponse method)
 - thereby attacks through interception and repetition of data are avoided
- if the authentication fails the MS can only make emergency calls - all other functions are blocked

Authentication & Encryption - Subscriber Authentication

Authentication & Encryption - Encryption at the Air Interface

Encryption of user data:

- symmetric encryption
 - stream cipher with key K_c
 - only used for one "session"
- K_c is transferred from the MSC to the BTS
- the MS generates K_c out of RAND and K_i
- K_c is used for encrypting user and signaling data on the air interface between BTS and MS
- the encryption process is synchronized by using the frame number of the TDMA hyperframe

Authentication & Encryption - Summary

Subscriber Identity Protection via TMSI

- To activate the encryption during connection setup the subscriber identity (IMSI) needs to be known by the network (required for the mapping subscriber ↔ security data (triples)); an unencrypted transmission of the IMSI over the air interface should be avoided - therefore the TMSI is transmitted instead of the IMSI
- The TMSI is assigned by the VLR that serves the location area in which the MS currently stays - only this VLR knows the mapping TMSI ↔ IMSI
- At a VLR change, the old VLR has to be queried to obtain the IMSI belonging to the TMSI (therefore the MS sends the TMSI and the LAI to the network)
- If the VLR doesn't know the TMSI (possible reasons: data base error, first registration at the PLMN, first use of a SIM) the IMSI has to be send by the MS
- The algorithm for TMSI generation is not standardized
- After activation of the user data encryption, also new TMSIs are encrypted

Subscriber Identity Protection via TMSI

ME Identity Check via IMEI

- The Equipment Identity Register (EIR) contains informations about MEs; MEs are uniquely identified by the so called "International Mobile Equipment Identity" (IMEI)
- IMEI structure:

SVN: Software Version Number

SNR: Serial Number

FAC: Final Assembly Code

TAC: Type Approval Code

ME Identity Check via IMEI

- The network (MSC/VLR) initiates the authentication of the ME (during the registration of the MS):
 - the IMEI is requested from the MS (IDENT_REQ)
 - the IMEI is checked by querying the EIR
 - the EIR stores the status of the ME: ME that are faulty, unapproved or registered as stolen can be blocked

