EXPLICIT UPPER BOUNDS FOR THE REMAINDER TERM IN THE DIVISOR PROBLEM AND TWO APPLICATIONS

D. BERKANE, O. BORDELLÈS, AND O. RAMARÉ

ABSTRACT. We first report on computations made using the GP/PARI package that show that the error term $\Delta(x)$ in the divisor problem is $= \mathscr{M}(x,4) + \mathcal{O}^*(0.35\,x^{1/4}\,\text{Log}\,x)$ when x ranges $[1\,081\,080,10^{10}]$, where $\mathscr{M}(x,4)$ is a smooth approximation. The remaining part (and in facct most) of the paper is devoted to showing that $|\Delta(x)| \leq 0.397\,x^{1/2}$ when $x \geq 5\,560$ and that $|\Delta(x)| \leq 0.764\,x^{1/3}\,\text{Log}\,x$ when $x \geq 9\,995$. Several other bounds are also proposed. We also formulate a positivity conjecture concerning $\Delta(x)$.

1. Introduction

The object of this paper is to study for an explicit viewpoint the remainder term of the summatory function of the τ -function, where $\tau(n)$ denotes the number of (positive) divisors of n, i.e. to study

(1.1)
$$\Delta(x) = \sum_{n \le x} \tau(n) - x(\operatorname{Log} x + 2\gamma - 1)$$

This function has been extensively studied, and the reader will find in [7] a good survey. It is known in particular that

$$\Delta(x) \ll_{\varepsilon} x^{131/416 + \varepsilon}$$

for any $\varepsilon > 0$. We want to get fully explicit bounds of this shape here, and the best exponent we reach is 1/3 (see Theorem 1.4 below). Note that $131/416 = 0.314 \cdots$ is not so much smaller than $1/3 = 0.333 \cdots$. Note further that Theorem 1.1 hereafter proposes an upper bound with a worse exponent, but which is better on a large range. The divisor function has been studied from this viewpoint in several papers, and we quote here [11], [18], [4] and [14]

Here are our core results:

Theorem 1.1. When $x \ge 1$, we have $|\Delta(x)| \le 0.961 x^{1/2}$.

Theorem 1.2. When $x \ge 1981$, we have $|\Delta(x)| \le 0.482 x^{1/2}$.

Theorem 1.3. When $x \ge 5560$, we have $|\Delta(x)| \le 0.397 x^{1/2}$.

Since bounds are sharp since $|\Delta(x)| > 0.5 x^{1/2}$ when x = 1980 while $|\Delta(x)| > 0.4 x^{1/2}$ when x = 5559.

Theorem 1.4. When $x \ge 9995$, we have $|\Delta(x)| \le 0.764 x^{1/3} \log x$.

2010 Mathematics Subject Classification. Primary: 11N56, Secundary: 11N37.

This bound is also sharp since $|\Delta(x)| > 0.80 x^{1/3} \log x$ when $x = 9\,994$. This bound is of course asymptotically better than the one given by Theorem 1.3, but this latter one still prevails when $x \le 59\,576\,122\,384$.

There are two usual paths to study $\Delta(x)$, that can be broadly described by either using a Voronoï-like formula as in [12], or using the fractional part-function, expanding it in Fourier series and using exponential sums, and using for instance [1, Lemma 8.4] (see also [2] for similar material, as well as [6, section 8]). We use the first technique, but rely on an earlier paper of Voronoï where a very explicit result is proved.

We rely also on some rather extensive computations detailled in section 5 made with the help of the PARI/GP program (see [19]) and its auxiliary GP2C. One of the main problem with such extensive computations is always how to store them, since tables are difficult to use. We again use the Voronoï formula to get such a model and prove that

Theorem 1.5. We have

$$\forall x \in [3, 10^{10}], \quad \Delta(x) = \mathcal{M}(x, 4) + \mathcal{O}^*(0.9 \, x^{1/4} \log x)$$

and

$$\forall x \in [1.081.080, 10^{10}], \quad \Delta(x) = \mathcal{M}(x, 4) + \mathcal{O}^*(0.35 \, x^{1/4} \, \text{Log} \, x)$$

with

$$\mathcal{M}(x,4) = \frac{x^{1/4}}{\pi\sqrt{2}} \left(\cos\left(4\pi\sqrt{x} - \frac{\pi}{4}\right) + 2^{1/4}\cos\left(4\pi\sqrt{2x} - \frac{\pi}{4}\right) + \frac{2}{3^{3/4}}\cos\left(4\pi\sqrt{3x} - \frac{\pi}{4}\right) + \frac{3}{4^{3/4}}\cos\left(4\pi\sqrt{4x} - \frac{\pi}{4}\right)\right).$$

Section 5 contains more bounds of this shape. Note that the constant 0.35 is very good and fairly stable, since, for instance

$$|\Delta(x_0) - \mathcal{M}(x_0, 4)| \ge 0.289 x_0^{1/4} \operatorname{Log} x_0 \text{ when } x_0 = 9137256975.$$

A constant of 0.30 would require us to start at least at $2.7 \cdot 10^9$ which renders the preliminary computations difficult. It would valuable to extend Theorem 1.5 to a larger range.

We end this introduction by mentionning a curious conjecture upon which we stumbled:

Conjecture 1.6. We have

$$\forall T \ge 1, \quad \int_{T}^{\infty} \frac{\Delta(u)du}{u^{7/4}} \ge 0.$$

See section 7 for more background on this conjecture.

An application to number fields. Let \mathbb{K}/\mathbb{Q} be a number field of degree n, class number $h_{\mathbb{K}}$, signature (r_1, r_2) and let $d_{\mathbb{K}}$ be the absolute value of its discriminant. We set $b_{\mathbb{K}}$ to be a real number such that each ideal class contains a nonzero ideal A satisfying $\mathcal{N}(A) \leq b_{\mathbb{K}} \sqrt{d_{\mathbb{K}}}$, where \mathcal{N} denotes the ideal-norm operator in \mathbb{K} . It is well-known that one can take for $b_{\mathbb{K}}$ the Minkoswki bound $(4/\pi)^{r_2} n! n^{-n}$. If \mathbb{K} is an imaginary quadratic field, then the better bound $b_{\mathbb{K}} = 3^{-1/2}$, due to Gauss, can be used instead of the Minkowski constant.

It has been shown by the second named author in [1] that the inequality

(1.2)
$$h_{\mathbb{K}} \leqslant 2^{2-n} b_{\mathbb{K}} d_{\mathbb{K}}^{1/2} \left(\log \left(b_{\mathbb{K}}^2 d_{\mathbb{K}} \right) \right)^{n-1}$$

holds for all number fields \mathbb{K} subject to the condition $d_{\mathbb{K}} \geq 36b_{\mathbb{K}}^{-2}$. In the case of real quadratic fields, using Dirichlet's analytic class number formula and precise estimates for $L(1,\chi)$ (where χ is the primitive real Dirichlet character attached to \mathbb{K}) and the fondamental unit of \mathbb{K} , Maohua Le [10] proved that

$$h_{\mathbb{K}} \leqslant \sqrt{d_{\mathbb{K}}}/2$$

A simpler proof of this bound has been provided by the third author in [15]. Using Theorem 1.3 we deduce the following slight improvement of (1.2) in the case of imaginary quadratic fields.

Corollary 1.7. Let $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$ an imaginary quadratic field with d > 0 square-free and $d_{\mathbb{K}}$ is the absolute value of its discriminant. If $d_{\mathbb{K}} \ge 108$, then we have

$$h_{\mathbb{K}} \leqslant \sqrt{\frac{d_{\mathbb{K}}}{12}} \log d_{\mathbb{K}}.$$

Examples. In what follows, we set $\mathcal{B}_{\mathbb{K}} = \left[\sqrt{d_{\mathbb{K}}/12} \log d_{\mathbb{K}}\right]$ and \mathbb{K} is an imaginary quadratic subfield of the cyclotomic field $\mathbb{Q}(\zeta_d)$ where ζ_d is a primitive d-th root of unity. The computations has been made using PARI system.

d	$h_{\mathbb{K}}$	$\mathcal{B}_{\mathbb{K}}$
311	19	29
1559	51	83
149159	597	1328
300119	781	1994

An application to averages of multiplicative functions. [14, Lemma 3.2] proposes an automatic way of deriving an explicit bound for averages of multiplicative nonnegative functions that are close enough to a given model. The two models proposed are the constant function 1 and the divisor function. In this latter case, using this Lemma requires an explicit bound for $\sum_{n\leq t} \tau(n)/n$ and the above paper relies on [18, Lemma 1] (this is also the second part of [14, Lemma 3.3]). We improve this Lemma to the following one:

Corollary 1.8. We have, for all t > 0,

$$\sum_{n \le t} \frac{\tau(n)}{n} = \frac{1}{2} \operatorname{Log}^2 t + 2\gamma \operatorname{Log} t + \gamma^2 - \gamma_1 + \mathcal{O}^*(1.16/t^{1/3})$$

where γ_1 is the second Laurent-Stieljes constant, see for instance [9] and [3]. In particular, we have

$$(1.3) \quad \gamma_1 \quad = \quad -0.0728158454836767248605863758749013191377 \ + \ \mathcal{O}^*(10^{-40}).$$

Notation. We use $\psi(x) = x - [x] - 1/2$, where [x] is the integer part of x. We shall also need the following multiplicative function:

(1.4)
$$\tilde{\tau}(n,D) = \sum_{\substack{uv = n, \\ (u,v,D) = 1}} 1$$

for some parameter D, where (u, v, D) denotes the gcd of u, v and D.

2. Borrowing from Dirichlet

Let us first recall a result of Dirichlet, namely:

Lemma 2.1 (Dirichlet). When $x \ge 1$ is a real number, we have

$$\left| \Delta(x) + 2 \sum_{n < \sqrt{x}} \psi(x/n) \right| \le \frac{1}{2}.$$

The proof we present is somewhat more complete than the one of [1, Lemma 8.1], since we express $\mathcal{R}(x)$ below fully in terms of ψ_2 .

Proof. Set $\psi_2(t) = \frac{1}{2}\psi(t)^2$. We first notice that the function $x \mapsto \frac{1}{8} + \int_1^x \psi(t)dt$ is periodical of period 1, and that, when $0 \le y < 1$

$$\int_{1}^{1+y} \psi(t)dt + \frac{1}{8} = \int_{0}^{y} (t - \frac{1}{2})dt + \frac{1}{8} = \psi_{2}(y) = \psi_{2}(1+y)$$

and thus ψ_2 is a primitive of ψ . By Dirichlet's Hyperbola Principle and Euler-MacLaurin's Summation Formula we get

$$\begin{split} \sum_{n \leqslant x} \tau(n) &= 2 \sum_{n \leqslant x^{1/2}} \left[x/n \right] - \left[\sqrt{x} \right]^2 \\ &= 2x \sum_{n \leqslant x^{1/2}} \frac{1}{n} - 2 \sum_{n \leqslant x^{1/2}} \psi\left(\frac{x}{n}\right) + \frac{1}{2} - x + 2\sqrt{x}\psi\left(\sqrt{x}\right) - \psi\left(\sqrt{x}\right)^2 - \frac{1}{4} \\ &= 2x \left(\frac{\log x}{2} + \gamma - \frac{\psi\left(\sqrt{x}\right)}{\sqrt{x}} - \frac{\psi_2\left(\sqrt{x}\right)}{x} + 2 \int_{\sqrt{x}}^{\infty} \frac{\psi_2(t)}{t^3} \mathrm{d}t \right) \\ &- 2 \sum_{n \leqslant x^{1/2}} \psi\left(\frac{x}{n}\right) + \frac{1}{4} - x + 2\sqrt{x}\psi\left(\sqrt{x}\right) - \psi\left(\sqrt{x}\right)^2 \\ &= x \left(\log x + 2\gamma - 1 \right) - 2 \sum_{n \leqslant x^{1/2}} \psi\left(\frac{x}{n}\right) + \mathcal{R}(x) \end{split}$$

where

$$\mathcal{R}(x) = \frac{1}{4} - 3\psi_2\left(\sqrt{x}\right) + 4x \int_{\sqrt{x}}^{\infty} \frac{\psi_2(t)}{t^3} dt.$$

The inequality $0 \leqslant \psi_2(t) \leqslant 1/8$ implies that

$$\left|\frac{1}{4} - 3\psi_2\left(\sqrt{x}\right)\right| \leqslant \frac{1}{4}$$

and

$$4x \left| \int_{\sqrt{x}}^{\infty} \frac{\psi_2(t)}{t^3} dt \right| \leqslant \frac{x}{2} \int_{\sqrt{x}}^{\infty} \frac{dt}{t^3} = \frac{1}{4}$$

which concludes the proof.

Corollary 2.2. When $x \ge 1$ is a real number, we have $|\Delta(x)| \le \sqrt{x} + \frac{1}{2}$.

3. Auxiliaries

Let us start with a generic formula, valid for any sequence (φ_n) . We define an abstract remainder term by

$$\Delta_{\varphi}(t) = \sum_{n \le t} \varphi_n - (at \operatorname{Log} t + bt)$$

for some real numbers a and b. The following formula holds true for any complex number $s \neq 1$:

(3.1)
$$\sum_{n \le T} \frac{\varphi_n}{n^s} = \frac{aT^{1-s} \log T}{1-s} + \frac{b(1-s) - as}{(1-s)^2} T^{1-s} + \frac{s(a-b(1-s))}{(1-s)^2} + T^{-s} \Delta_{\varphi}(T) + s \int_1^T \Delta_{\varphi}(u) du / u^{s+1}.$$

This is most readily obtained by summation by parts.

From $\tilde{\tau}(\cdot, D)$ to $\tau(\cdot)$. The gcd condition in $\tilde{\tau}(\cdot, D)$ is easily handled by using the Moebius function. Indeed, on using the following easily proved formula

(3.2)
$$\mathbb{1}_{(u,v,D)=1} = \sum_{\substack{\delta \mid u,\delta \mid v,\\\delta \mid D}} \mu(\delta),$$

we readily get, for T > 0,

$$\sum_{n \le T} \frac{\tilde{\tau}(n, D)}{n^s} = \sum_{\delta \mid D} \mu(\delta) \sum_{\substack{\delta \mid u, \\ \delta \mid v, \\ uv \le T}} \frac{1}{(uv)^s} = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2s}} \sum_{n \le T/\delta^2} \frac{\tau(n)}{n^s}.$$

On selecting s = 0, this leads to the asymptotic

(3.3)
$$\sum_{n \le T} \tilde{\tau}(n, D) = A(D)T \operatorname{Log} T + B(D)T + \Delta(T, D)$$

where A(D) and B(D) are defined by

(3.4)
$$A(D) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^2}, \quad B(D) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^2} (2\gamma - 1 - 2\log \delta)$$

while $\Delta(\cdot, D)$ is expressed in terms of $\Delta(\cdot)$ by

(3.5)
$$\Delta(T, D) = \sum_{\delta \mid D} \mu(\delta) \Delta(T/\delta^2).$$

Some formulae with $\tilde{\tau}(n, D)$. We select a = A(D), b = B(D), s = 1/2 and s = 3/4 in formula (3.1) and quote explicitely:

(3.6)
$$\sum_{n \le T} \frac{\tilde{\tau}(n, D)}{n^{1/2}} = 2A(D)T^{1/2} \log T + 2(B(D) - A(D))T^{1/2} + 2A(D) - B(D) + \frac{\Delta(T, D)}{T^{1/2}} + \frac{1}{2} \int_{1}^{T} \frac{\Delta(u, D)du}{u^{3/2}}$$

which is case s = 1/2 from above, while case s = 3/4 reads

(3.7)
$$\sum_{n \le T} \frac{\tilde{\tau}(n, D)}{n^{3/4}} = 4A(D)T^{1/4} \log T + 4(B(D) - 3A(D))T^{1/4} + 12A(D) - 3B(D) + \frac{\Delta(T, D)}{T^{3/4}} + \frac{3}{4} \int_{1}^{T} \frac{\Delta(u, D)du}{u^{7/4}}.$$

A generic integral. We note that, when $s \neq 1, 2$,

(3.8)
$$\int \frac{t(\operatorname{Log} t + c) + d}{t^s} dt = \frac{\operatorname{Log} t + (s - 2)^{-1} + c}{(2 - s)t^{s - 2}} + \frac{d}{(1 - s)t^{s - 1}}.$$

Proof. Take the derivative of the right-hand side and check it is the integrand. \Box

4. Borrowing from Voronoï

The purely elementary method of Voronoï, which improves on the Dirichlet hyperbola formula by using triangles instead of rectangles beneath the hyperbola mn = x, yields the following result [20, pages 280-281]

Lemma 4.1. When $x \ge 1$, $T \ge 1$ and $D \ge 1$ are real numbers, we have

$$\begin{split} |\Delta(x)| & \leq \frac{19}{12} \sum_{n \leq T} \tilde{\tau}(n,D) + \left(\frac{\sqrt{x}}{4T} + \frac{\sqrt{T}}{6}\right) \sum_{n \leq T} \frac{\tilde{\tau}(n,D)}{\sqrt{n}} \\ & + \frac{3x^{1/4}}{4} \sum_{n \leq T} \frac{\tilde{\tau}(n,D)}{n^{3/4}} + \frac{T}{6} + \sqrt{\frac{x}{T}} + \frac{7}{4} \end{split}$$

where $\tilde{\tau}$ is defined in (1.4).

Comparing with [21, page 209, Théorème] and [22, page 429, paragraphe 49, théorème I], or with [12], we see that, in case D=1, one can asymptotically dispense with the first two sums at the cost of a $\mathcal{O}_{\varepsilon}(x^{\varepsilon})$ for any $\varepsilon>0$, and that the constant 3/4 in front of the third one can be reduced to $1/(\pi\sqrt{2})$. The advantage of the above Lemma relies in its range of validity. The parameter D (or the fact that we can replace the τ -function by the number of coprime divisors – that's $D=\infty$ –) is a distinct feature of the above bound. We shall select D=6, reducing the total bound by a factor of size about $(1-\frac{1}{4})(1-\frac{1}{9})=2/3$.

Proof. The paper contains the required estimates, but the following notes may be helpful to the reader: equation (17) of page 280 contains the function F which is generally defined at equation (1) at the very beginning of the paper; it is also expressed at the beginning of section 26, page 275. To read equation (17) the reader will need equation (10), page 279, which contains the definition of R. This definition comes in fact from (18), page 271.

Voronoï continues by bounding $\tilde{\tau}$ by τ (see equation (19) and (20) of [20, pages 280, 281]). On using (3.6) and (3.7) and shortening A(D) and B(D) to A and B

respectively, we reach

$$(4.1) \quad |\Delta(x)| \le \frac{T}{12} (23A \log T + 23B - 19A + 2) + 3(xT)^{1/4} (A \log T + B - 3A)$$

$$+ \sqrt{\frac{x}{T}} \left(A \frac{\log T}{2} + \frac{B - A}{2} + 1 \right) + \frac{36A - 9B}{4} x^{1/4}$$

$$+ \frac{2A - B}{4} \frac{\sqrt{x}}{T} + \frac{2A - B}{6} \sqrt{T} + G(D, x, T)$$

with

$$(4.2) \quad G(D, x, T) = \frac{7}{4} + \left(7 + (xT^{-3})^{1/4} + (xT^{-3})^{1/2}\right) \frac{\Delta(D, T)}{4} + \left(\frac{\sqrt{x}}{8T} + \frac{\sqrt{T}}{12}\right) \int_{1}^{T} \frac{\Delta(D, u)du}{u^{3/2}} + \frac{9x^{1/4}}{16} \int_{1}^{T} \frac{\Delta(D, u)du}{u^{7/4}}.$$

The introduction of the parameter D in Lemma 4.1 will be numerically interesting. We will use only small D's, like 1, 2 or 6.

5. Numerically comparing Δ with a model

We need to compute values of $\Delta(x)$ for fairly large x. The first idea is to compute it directly, take its absolute value, divide it by \sqrt{x} and look for the point when it is less than a given bound, say 0.5. The drawback of this method is that one would have to redo all the computations with the bound 0.3. To avoid that, one can store the value on short enough ranges, say every $5 \cdot 10^7$, but we would have to store these tables and they would be very bulky to use in computations. Musing on this idea, we readily discover that a better idea would be to compare $\Delta(x)$ with a model and bound the resulting error term. This is a very general idea, and one that we have already used in [16, Theorem 2]; the difficulty is always to guess a proper model. However this issue is most easily solved here, since a model is provided to us by the Voronoï formula. We define

(5.1)
$$\mathscr{M}(x,M) = \frac{x^{1/4}}{\pi\sqrt{2}} \sum_{m \le M} \frac{\tau(m)}{m^{3/4}} \cos\left(4\pi\sqrt{mx} - \frac{\pi}{4}\right).$$

We look for numerical bounds for $|\Delta(x) - \mathcal{M}(x, M)|/[x^{1/4} \operatorname{Log} x]$ for some small M. Note that $\mathcal{M}(x, M)$ is anyway of size $x^{1/4}$ in that case. We have found that, when M = 1 or M = 4, the function $x^{1/4}$ is too small to evaluate $|\Delta(x) - \mathcal{M}(x, M)|$ while $x^{1/4} \operatorname{Log} x$ seems just too large. The bounds got are however better when substracting $\mathcal{M}(x, 1)$, and even better when substracting $\mathcal{M}(x, 4)$.

The computations necessitate some care. When the real number x lies between N (included) and N+1 (excluded), we consider the function

(5.2)
$$f(x) = \left[\sum_{n < N} \tau(n) - \left(x \log x + (2\gamma - 1)x \right) - \mathcal{M}(x, M) \right] / [x^{1/4} \log x].$$

We find that, with $S = \sum_{n \le N} \tau(n)$,

$$\begin{split} x^{1/4} \log x \, f'(x) &= -\frac{S}{4x} - \frac{S}{x \log x} - \frac{3 \log x - 6\gamma + 3}{4} + \frac{2\gamma - 1}{\log x} \\ &+ \sum_{m \leq M} \frac{\sqrt{2}\tau(m)}{m^{1/4}x^{1/4}} \sin\left(4\pi\sqrt{mx} - \frac{\pi}{4}\right) \\ &- \frac{1}{\sqrt{2}\pi \log x} \sum_{m \leq M} \frac{\tau(m)}{m^{3/4}x^{3/4}} \cos\left(4\pi\sqrt{mx} - \frac{\pi}{4}\right). \end{split}$$

Since $S \ge 2x - 1$, we are sure this derivative is non-positive when

$$3 \operatorname{Log} x - 6\gamma + 5 \ge \frac{1}{x} + \frac{4}{x \operatorname{Log} x} + \frac{8\gamma + 4}{\operatorname{Log} x} + \sum_{m \le M} \frac{4\sqrt{2}\tau(m)}{m^{1/4}x^{1/4}} + \frac{2\sqrt{2}}{\pi \operatorname{Log} x} \sum_{m \le M} \frac{\tau(m)}{m^{3/4}x^{3/4}}.$$

The difference between the left-hand side and the right hand side is an increasing function, from which it follows immediately that there exists an integer $N_0(M)$, such that, when $N \geq N_0(M)$, the function $x \mapsto (\Delta(x) - \mathcal{M}(x,M))/[x^{1/4} \log x]$ is non-increasing in each interval [N,N+1). The parameter M being fixed, $N_0(M)$ is a fixed (and small) value, and for instance $N_0(1) = 2$ and $N_0(4) = 5$ (We find that, in case M = 4, f'(x) < 0 when $x \geq 11.062$, and is not an integer). Finding of the maximum of $|\Delta(x) - \mathcal{M}(x,M)|/[x^{1/4} \log x]$ below this value can be automated, but it is more expedient, as well as less error-prone, to simply plot the function in each of the remaining unit intervals.

Numerical experiments show that $\mathcal{M}(x,1)$ is already a good model! For small values, we find that

	Using the model $\mathcal{M}(x,1)$					
Beginning	End	Max ≤	Where	Sum there		
9	10 001	0.689848	12	35		
10 001	20 001	0.442832	15120-	147800		
20 001	30 001	0.440962	25200	259338		
30 001	40 001	0.405939	30240-	316597		
40 001	50 001	0.400379	49140	538485		
50 001	60 001	0.406026	50400	553570		
60 001	70 001	0.379055	60480-	675163		
70 001	80 001	0.379005	75600-	860836		
80 001	90 001	0.382929	83160-	954846		
90 001	100 001	0.410340	97020	1129117		

We have used the function MajoreDelta between 1 and 10^{10} and of the following script:

```
endloc = min(beg + (k+1)*whentotell, end)-1;
   maxloc = 0;
   previouscostimescoef = cos(Pi*(4*sqrt(begloc)-0.25))*coef;
   previousmt = begloc*(log(begloc)+(2*Euler-1));
   for(n = begloc, endloc.
      somme += numdiv(n);
      aux = abs((somme-previousmt)/n^(1/4)
                 - previouscostimescoef)/log(n);
      if(aux > maxloc, maxloc = aux; ouloc = n;
         sommeouloc = somme; sideloc = 1,);
      previousmt = (n+1)*(\log(n+1)+(2*Euler-1));
      previouscostimescoef = cos(Pi*(4*sqrt(n+1)-0.25))*coef;
      aux = abs((somme-previousmt)/(n+1)^(1/4)
                 -previouscostimescoef)/log(n+1);
      if(aux > maxloc, maxloc = aux; ouloc = n+1;
         sommeouloc = somme; sideloc = -1,));
   if(verbose, Output(1, begloc, endloc, maxloc, ouloc,
                      sommeouloc, sideloc, OnFile, TexFormat),);
   if(maxloc > maximum,
      maximum = maxloc; ou = ouloc;
sommeou = sommeouloc; side = sideloc,);
if(verbose, Output(1, max(beg, NOM), end, maximum, ou, sommeou,
                   side, OnFile, TexFormat),);
return([somme, maximum]);}
```

We include the part of the script containing the function Output in section 13. We have converted this function into a C-program and have compiled it with GP2C via the command

```
gp2c -g ModeleDelta-special.gp > MajoreDelta-special.gp.c
```

This step speeds the computations by a large factor (about 10). We then started GP with the option -p 10000000000 and *installed* the compiled functions as described in the GP2C manual.

Here is the table obtained, each entry requiring at the beginning nearly 40 minutes (on my desktop computer).

Using the model $\mathcal{M}(x,1)$					
Beginning	End	Max ≤	Where	Sum there	
9	50 000 001	0.689848	12	35	
50000001	100 000 001	0.362373	82882820	1523997698	
100 000 001	150 000 001	0.335167	134603040	2540265823	
150000001	200 000 001	0.340907	165765640	3162894841	
200 000 001	250 000 001	0.302913	203898905	3932714293	
250000001	300 000 001	0.305402	274266920	5371256127	
300 000 001	350 000 001	0.324542	302325156	5950196787	
350000001	400 000 001	0.285504	365148280	7255586684	
400 000 001	450 000 001	0.326125	441535536	8857292252	
450000001	500 000 001	0.311085	479524060	9658927478	
500 000 001	550 000 001	0.298151	543810960	11022257029	
550000001	600 000 001	0.314576	591645600	12041674931	
600 000 001	650 000 001	0.301294	639685376	13069360680	
650000001	700 000 001	0.315219	660261970	13510663499	
700000001	750 000 001	0.276965	728973036	14988837355	
750000001	800 000 001	0.272097	772166412	15921409781	
800 000 001	850 000 001	0.316275	838474560	17357704112	
850 000 001	900 000 001	0.299946	855884040	17735695879	
900 000 001	950 000 001	0.294188	921729600	19168468472	
950 000 001	1 000 000 001	0.321118	959528080	19993096164	

When modeling the error term by $x^{1/4}$, the local maxima happened to be slightly increasing, which is why we multiplied by an additionnal Log x getting this slightly decreasing local maxima.

Increasing M yields better results, though the improvement is slow to catch.

	Using the model $\mathcal{M}(x,4)$					
Beginning	End	Max ≤	Where	Sum there		
74	10 001	0.520207	120	602		
10 001	20 001	0.436010	15120-	147800		
20 001	30 001	0.403803	25200	259338		
30 001	40 001	0.377591	30240-	316597		
40 001	50 001	0.399680	49140	538485		
50 001	60 001	0.392255	50400	553570		
60 001	70 001	0.367556	65520	736809		
70 001	80 001	0.359261	75240-	856382		
80 001	90 001	0.353541	83160-	954846		
90 001	100 000	0.397458	98280	1145047		

Using the model $\mathcal{M}(x,4)$					
Beginning	End	Max ≤	Where	Sum there	
74	50 000 001	0.520207	120	602	
50 000 001	100 000 001	0.332461	82882820	1523997698	
100 000 001	150 000 001	0.320852	134603040	2540265823	
150000001	200 000 001	0.317678	165765640	3162894841	
200 000 001	250 000 001	0.289804	232589280	4516702124	
250000001	300 000 001	0.301569	274266920	5371256127	
300 000 001	350 000 001	0.319558	319842688	6312982612	
350 000 001	400 000 001	0.271346	365148280	7255586684	
400 000 001	450 000 001	0.303091	419237280	8388259211	
450000001	500 000 001	0.289065	465178560	9355841003	
500 000 001	550 000 001	0.288701	522937800	10578721101	
550000001	600 000 001	0.289808	583222500	11861877982	
600 000 001	650 000 001	0.296236	639685376	13069360680	
650000001	700 000 001	0.292158	678391200	13900010069	
700 000 001	750 000 001	0.267957	730296576	15017376156	
750000001	800 000 001	0.263906	772166412	15921409781	
800 000 001	850 000 001	0.306857	838474560	17357704112	
850000001	900 000 001	0.283255	868746501	18015191334	
900 000 001	950 000 001	0.267106	913641302	18992209828	
950000001	1 000 000 000	0.300615	959528080	19993096164	

See section 15 for a detailled output. Here are the main corollaries, beside Theorem 1.5, that arise from these computations:

Corollary 5.1. We have

$$\forall x \in [1440, 10^{10}], \quad \Delta(x) = \mathcal{M}(x, 1) + \mathcal{O}^*(0.45x^{1/4} \log x)$$

and we can replace $\mathcal{M}(x,1)$ by $\mathcal{M}(x,4)$ in this equality. Moreover

$$\forall x \in [2017, 10^{10}], \quad \Delta(x) = \mathcal{M}(x, 4) + \mathcal{O}^*(0.44x^{1/4} \log x).$$

Here is the counterpart of Theorem 1.5, when using $\mathcal{M}(x,1)$ as a model.

Corollary 5.2. We have

$$\forall x \in [4221010, 10^{10}], \quad \Delta(x) = \mathcal{M}(x, 1) + \mathcal{O}^*(0.35x^{1/4} \log x).$$

Corollary 5.3. We have

$$\forall x \in [3, 10^{10}], \quad \Delta(x) = \mathcal{M}(x, 1) + \mathcal{O}^*(x^{1/4} \log x).$$

Going below x=3 does not make much sense: if we extend the range to cover [2,3], the constant 0.9 when M=4 becomes 1.7 and we anyway cannot reach x=1 for our upper bound vanishes (since Log 1=0) but not the difference. A similar remark applies to the case M=1.

6. Numerically comparing
$$\Delta(x)$$
 to \sqrt{x}

It is easy to use the bounds of the previous section to compare $\Delta(x)$ with \sqrt{x} when x is somewhat large. The results are then most easily extended to smaller values of x by short computations. We have used the function MajoreDelta with beg = 1, and D = 1 of the following script:

```
{MajoreDelta(beg, end, OnFile = 0, verbose = 1,
              TexFormat = 0, whentotell = 5*10^7) =
   local(maximum = 0, maxloc = 0, ou = beg, ouloc = beg, aux,
    startat = 1, sommeou, sommeouloc, side, sideloc, somme = 0,
    ad = 1, bd = 2*Euler-1, begloc, endloc);
   for(n = startat, beg-1, somme += numdiv(n));
   for(k = 0, ceil((end-beg)/whentotell-1),
      begloc = beg + k*whentotell;
endloc = min(begloc + whentotell, end)-1;
       maxloc = 0;
       for(n = begloc, endloc,
          somme += numdiv(n);
          /* The function with 'somme' fixed is decreasing */
          aux = abs(somme-n*(ad*log(n)+bd))/sqrt(n);
          if(aux > maxloc, maxloc = aux; ouloc = n;
          sommeouloc = somme; sideloc = 1,);
aux = abs(somme-(n+1)*(ad*log(n+1)+bd))/sqrt(n+1);
          if(aux > maxloc, maxloc = aux; ouloc = n+1;
              sommeouloc = somme; sideloc = -1,));
       if(verbose, Output(begloc, endloc, maxloc, ouloc,
                             sommeouloc, sideloc, OnFile, TexFormat),);
       if(maxloc > maximum,
         maximum = maxloc; ou = ouloc;
          sommeou = sommeouloc; side = sideloc,));
   if(verbose, Output(beg, end, maximum, ou,
                        sommeou, side, OnFile, TexFormat),);
   return([somme, maximum]);}
```

Section 13 contains a function that is close enough to the one used above that we do not copy here the code of the one used here.

Here is the table obtained, each entry requiring at the beginning about ten minutes and about twenty-five at the end (on my desktop computer).

Beginning	End	Max ≤	Where	Sum there
1	50 000 001	0.960695	12	35
50 000 001	100 000 001	0.070919	82882820	1523997698
100 000 001	150 000 001	0.058336	135408288	2556270358
150 000 001	200 000 001	0.058275	165765640	3162894841
200 000 001	250 000 001	0.048470	219367470	4247106335
250 000 001	300 000 001	0.047795	253159920	4937622542
300 000 001	350 000 001	0.049268	302325156	5950196787
350 000 001	400 000 001	0.041915	353687040	7016569614
400 000 001	450 000 001	0.044068	403507656	8058104197
450000001	500 000 001	0.043468	479524060	9658927478
500 000 001	550 000 001	0.039691	529621200	10720648283
550 000 001	600 000 001	0.040632	562282656	11415433396
600 000 001	650 000 001	0.039443	639685376	13069360680
650 000 001	700 000 001	0.041340	660261970	13510663499
700 000 001	750 000 001	0.035375	728973036	14988837355
750 000 001	800 000 001	0.033995	768928275	15851410875
800 000 001	850 000 001	0.037986	838474560	17357704112
850 000 001	900 000 001	0.036950	855884040	17735695879
900 000 001	950 000 001	0.035765	921729600	19168468472
950 000 001	1 000 000 001	0.036828	959528080	19993096164

Here are some more corollaries:

(6.1)
$$\begin{cases} \max_{59200 < x \le 10^{10}} |\Delta(x)| / \sqrt{x} & \le 0.175, \\ \max_{7880000 < x \le 10^{10}} |\Delta(x)| / \sqrt{x} & \le 0.101, \\ \max_{1.8 \cdot 10^7 < x \le 10^{10}} |\Delta(x)| / \sqrt{x} & \le 0.05 \end{cases}$$

Looking for the bound 0.5, we find that

Lemma 6.1. When $1981 \le x \le 10^{10}$, we have $|\Delta(x)| \le 0.482 x^{1/2}$.

7. Bounding two integrals with Δ

We consider here, for $\sigma > 1$, the integral

(7.1)
$$I(D,T,\sigma) = \int_{1}^{T} \frac{\Delta(D,u)du}{u^{\sigma}}$$

with the aim of bounding I(D, T, 3/2) and I(D, T, 7/4) explicitely. We use the shortcut $I(1, T, \sigma) = I(T, \sigma)$. We define, for $\sigma > 1$,

(7.2)
$$\kappa(D,\sigma) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \frac{\zeta(\sigma-1)^2}{\sigma-1} + \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^2} \frac{-2\log\delta - \frac{1}{2-\sigma} + 2\gamma - 1}{2-\sigma}$$

and

(7.3)
$$I_{\sharp}(D,T,\sigma) = \frac{1}{2i\pi} \int_{c'-i\infty}^{c'+i\infty} \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2(s+1-\sigma)}} \frac{\zeta^2(s)T^s ds}{s(s-\sigma+1)}$$

for $0 < c' < \sigma - 1$.

Lemma 7.1. We have, when $\sigma \in]1,2[$,

$$I(D, T, \sigma) = \kappa(D, \sigma) + \frac{I_{\sharp}(D, T, \sigma)}{T^{\sigma - 1}}.$$

This shows that $I(D,T,\sigma)$ tends to a limit when T goes to infinity (on selecting for instance $c'=(\sigma-1)/2$). Note that $\kappa(1,3/2)=0.57413324\cdots$ which numerically fits, and that $\kappa(1,7/4)=0.40765213\cdots$.

Proof. We start with the case D = 1. We define

(7.4)
$$I_0(T,\sigma) = \int_1^T \frac{\sum_{n \le u} \tau(n) du}{u^{\sigma}}.$$

We rewrite this function as follows:

$$I_0(T,\sigma) = \sum_{n \le T} \tau(n) \int_n^T \frac{du}{u^{\sigma}} = \sum_{n \ge 1} \frac{\tau(n)}{n^{\sigma - 1}} f_{\sigma}(n/T)$$

where

(7.5)
$$f_{\sigma}(v) = \begin{cases} \int_{v}^{1} \frac{dw}{w^{2-\sigma}} = \frac{1 - v^{\sigma - 1}}{\sigma - 1} & \text{when } v \leq 1, \\ 0 & \text{when } v \geq 1. \end{cases}$$

We consider the Mellin transform of f_{σ} , which is easy enough to compute:

(7.6)
$$\check{f}_{\sigma}(s) = \int_0^\infty f_{\sigma}(v)v^{s-1}dv = \frac{1}{s(s+\sigma-1)}$$

so that

(7.7)
$$f_{\sigma}(v) = \frac{1}{2i\pi} \int_{2-i\infty}^{2+i\infty} \check{f}_{\sigma}(s) v^{-s} ds.$$

This gives us

$$I_0(T,\sigma) = \frac{1}{2i\pi} \int_{2-i\infty}^{2+i\infty} \sum_{n\geq 1} \frac{\tau(n)}{n^{s+\sigma-1}} \check{f}_{\sigma}(s) T^s ds$$
$$= \frac{1}{2i\pi} \int_{2-i\infty}^{2+i\infty} \zeta^2(s+\sigma-1) \frac{T^s ds}{s(s+\sigma-1)}.$$

The poles of the integrand are in $2 - \sigma$ (a double pole), in 0 (a simple pole) and in $1 - \sigma$ (a simple pole). Note that, in the vicinity of $s = 2 - \sigma$, we have

$$\zeta^{2}(s+\sigma-1) = \frac{1}{(s+\sigma-2)^{2}} + \frac{2\gamma}{s+\sigma-2} + \mathcal{O}(1)$$

and that

$$\frac{T^s}{s(s+\sigma-1)} = \frac{T^{2-\sigma}}{2-\sigma} \bigg(1 + (s+\sigma-2) \Big(\operatorname{Log} T - \frac{1}{2-\sigma} - 1 \Big) \bigg) + \mathcal{O}((s+\sigma-2)^2)$$

so that

$$\frac{\zeta^2(s+\sigma-1)T^s}{s(s+\sigma-1)} = \frac{T^{2-\sigma}}{2-\sigma} \left(\frac{1}{(s+\sigma-2)^2} + \frac{1}{s+\sigma-2} \left(\text{Log } T - \frac{1}{2-\sigma} - 1 + 2\gamma \right) \right) + \mathcal{O}(1)$$

The Cauchy residue Theorem yields:

$$I_0(T,\sigma) = \frac{T^{2-\sigma}}{2-\sigma} \left(\text{Log } T - \frac{1}{2-\sigma} - 1 + 2\gamma \right) + \frac{\zeta(\sigma-1)^2}{\sigma-1} + \frac{1}{2i\pi} \int_{c-i\infty}^{c+i\infty} \zeta^2(s+\sigma-1) \frac{T^s ds}{s(s+\sigma-1)}$$

for any $1 - \sigma < c < 0$. We need the condition $c > 1 - \sigma$ to ensure the convergence of the integral. Indeed, we know that

$$|\zeta^2(a+ib)| \ll (|b|+2)^{-(1-a)} \operatorname{Log}^2(|b|+2)$$

when $0 \le a \le 1$. Better bounds are known, but the size of $|\zeta^2(a+ib)|$ can indeed be as large as |b|, and this implies that we can ensure the convergence of the integral only when $c > 1 - \sigma$.

Let us remark here that

$$\int_{1}^{T} \frac{u(\operatorname{Log} u + 2\gamma - 1)}{u^{\sigma}} du = T^{2-\sigma} \frac{\operatorname{Log} T + (\sigma - 2)^{-1} + 2\gamma - 1}{2 - \sigma} - \frac{(\sigma - 2)^{-1} + 2\gamma - 1}{2 - \sigma}$$

The Lemma follows readily when D = 1. For a general D, we appeal to (3.5), and deduce that

(7.8)
$$I(D,T,\sigma) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \Big(I(T/\delta^2,\sigma) - \int_{1/\delta^2}^1 \frac{\log u + 2\gamma - 1}{u^{\sigma-1}} du \Big).$$

We notice that

$$\int_{1/\delta^2}^1 \frac{\log u + 2\gamma - 1}{u^{\sigma - 1}} du = \frac{(\sigma - 2)^{-1} + 2\gamma - 1}{2 - \sigma} - \frac{(\sigma - 2)^{-1} + 2\gamma - 1 - 2\log \delta}{(2 - \sigma)\delta^{2(2 - \sigma)}}$$

We need to bound $I_{t}(T, 1/2)$ and $I_{t}(T, 3/4)$ explicitely.

Lemma 7.2. We have

$$I_{\sharp}(T,3/2) = I_{\sharp}(T,7/4) + \frac{1}{2} + \mathcal{O}^*(\frac{9}{2}/T^{0.22}).$$

Proof. Let us first compute the derivative of $I_{\sharp}(T,\sigma)$ with respect to σ . We readily find that

$$I'_{\sharp}(T,\sigma) = \frac{-1}{2i\pi} \int_{c'-i\infty}^{c'+i\infty} \frac{\zeta^2(s)T^s ds}{s(s-\sigma+1)^2}$$
$$= \frac{-1}{4(\sigma-1)^2} - \frac{1}{2i\pi} \int_{-\frac{1}{4}-i\infty}^{-\frac{1}{4}+i\infty} \frac{\zeta^2(s)T^s ds}{s(s-\sigma+1)^2}.$$

At this level, we employ the functional equation of the Rieman zeta function in the form:

(7.10)
$$\zeta(s) = 2^{s} \pi^{s-1} \sin(\pi s/2) \Gamma(1-s) \zeta(1-s)$$

to get, when $\sigma \in [3/2, 7/4]$, and with $c' = -\delta > -1/4$

$$\left| \frac{1}{2i\pi} \int_{-\delta - i\infty}^{-\delta + i\infty} \frac{\zeta^2(s) T^s ds}{s(s - \sigma + 1)^2} \right| \le \frac{\zeta(1 + \delta)^2}{T^\delta \pi^{3 + 2\delta} 2^{2\delta}} \int_0^\infty \frac{|\sin(\pi(-\delta + iy)/2)\Gamma(1 - \delta + iy)|^2 dy}{|\delta + iy| |(\delta - \frac{1}{4}) + iy|^2}$$

On selecting $\delta = 0.22$, we compute that

$$I'_{\sharp}(T,\sigma) = \frac{-1}{4(\sigma-1)^2} + \mathcal{O}^*(18/T^{0.22}).$$

First, we use GP to get:

Lemma 7.3. We have

$$\max_{1 \le T \le 100\,000} T^{1/4} |I(T, 7/4) - \kappa(7/4)| \le 0.302$$

and also

$$\max_{\substack{1\,260 \le T \le 10\,000\,000}} T^{1/4} |I(T,7/4) - \kappa(7/4)| \le 0.00979$$

Proof. This is obtained by using the function MajoreResteJ.

Let us now evaluate I(T, 7/4) by using Lemma 2.1.

Lemma 7.4. We have $\max_{T>1} T^{1/4} |\kappa(7/4) - I(T, 7/4)| \le 4.000\,001$.

Proof. We find that, on using (2.1) and noticing that $I(\infty, 7/4) = \kappa(7/4)$,

$$|\kappa(7/4) - I(T,7/4)| \leq \int_T^\infty \frac{du}{u^{5/4}} + \tfrac{1}{2} \int_T^\infty \frac{du}{u^{7/4}} \leq \frac{4 + \tfrac{2}{3} T^{-1/2}}{T^{1/4}}.$$

Lemma 7.3 takes care of the small values of T.

Once Lemma 8.3 will be established, we will have access to the following improvement:

Lemma 7.5. We have $\max_{T>1} T^{1/4} |\kappa(7/4) - I(T, 7/4)| \le 1.90$.

See Lemma 10.1 for a further improvement.

Lemma 7.6. We have $\max_{T>1} |I(T, 7/4)| \leq 0.479$.

The computations we ran make us think plausible that $I(T, 3/4) \le \kappa(3/4)$. We formulate the following general question:

Question 7.7. Is is true that, for $\sigma \in [3/2, 7/4]$, we have

$$\forall T \ge 1, \quad I(T, \sigma) \le \kappa(\sigma) \quad ?$$

This question is surprising as some positivity mecanism seems hidden. A proof (or disproof) assuming GRH would also be welcome. The range [3/2,7/4] may be extended, but $\sigma=2$ seems to have a special status. The reader will understand the conjecture stated in the introduction on noticing that $I(\infty,\sigma)=\kappa(\sigma)$. We mention here the papers [17, (2.2)], [8] and [5] where the Dirichlet series $\int_1^\infty \Delta(u) du/u^s$ is studied.

Proof. A numerical computation using the GP calculator and the function MajoreJ below shows that

$$\max_{1 < T < 10^7} |I(T, 7/4)| \le 0.4077$$

and, on using Lemma 7.4, the Lemma follows readily.

Lemma 7.8. We have $\max_{T>1} |I(T, 3/2)| \le 4.71$.

This bound is fairly poor since we believe that $|I(T, 3/2)| \le \kappa(3/2) = 0.574 \cdots$. Once Lemma 8.3 will be established, we will have access to the following improvement:

Lemma 7.9. We have $\max_{T\geq 1} |I(T, 3/2)| \leq 2.61$.

Proof. We have, by Lemma 7.1 and 7.2

$$\begin{split} I(T,3/2) &= \kappa(3/2) + \frac{I_{\sharp}(T,3/2)}{T^{1/2}} \\ &= \kappa(3/2) + \frac{1}{2T^{1/2}} + \frac{I_{\sharp}(T,7/4)}{T^{1/2}} + \mathcal{O}^*(\frac{9}{2}/T^{0.22}) \\ &= \kappa(3/2) + \frac{1}{2T^{1/2}} + T^{1/4} \left(I(T,7/4) - \kappa(7/4) \right) + \mathcal{O}^*(\frac{9}{2}/T^{0.22}). \end{split}$$

We appeal to Lemma 7.4 or to Lemma 7.5 to bound the third summand. A numerical computation using the GP calculator shows that

$$\max_{1 \le T \le 10^7} |I(T, 3/2)| \le \kappa(3/2).$$

8. A FIRST BOUND

We use Corollary 2.2 with D = 1 to get

$$|G(x,T)| \le \frac{7}{4} + \left(7 + (xT^{-3})^{1/4} + (xT^{-3})^{1/2}\right) \frac{\sqrt{T} + \frac{1}{2}}{4} + \left(\frac{\sqrt{x}}{8T} + \frac{\sqrt{T}}{12}\right) \int_{1}^{T} \frac{\Delta(u)du}{u^{3/2}} + \frac{9x^{1/4}}{16} \int_{1}^{T} \frac{\Delta(u)du}{u^{7/4}}.$$

We appeal to Lemma 7.6 and 7.8 to get

$$\begin{split} |G(x,T)| & \leq \tfrac{7}{4} + \left(7 + (xT^{-3})^{1/4} + (xT^{-3})^{1/2}\right) \frac{\sqrt{T} + \frac{1}{2}}{4} \\ & + 4.71 \left(\frac{\sqrt{x}}{8T} + \frac{\sqrt{T}}{12}\right) + 0.479 \frac{9x^{1/4}}{16}. \end{split}$$

We select

(8.1)
$$T = \left(\frac{\sqrt{357}}{6} + \frac{3}{2}\right)^{-4/3} x^{1/3} = cx^{1/3}$$

say, and get

$$|G(x,T)| \le \frac{7}{4} + \left(7 + c^{-3/4} + c^{-3/2}\right) \frac{\sqrt{c}x^{1/6} + \frac{1}{2}}{4} + 4.71\left(\frac{x^{1/6}}{8c} + \frac{\sqrt{c}x^{1/6}}{12}\right) + 0.479 \frac{9x^{1/4}}{16}.$$

i.e.

$$|G(x,T)| \le 0.27x^{1/4} + 7.7x^{1/6} + 6.0.$$

Here is the global bound we get:

$$|\Delta(x)| \le 1.146x^{1/3} \log x - 10.5x^{1/3} + 8.93x^{1/4} + 11.4x^{1/6} + 5.91.$$

When we divide by $x^{1/3} \log x$, the function is decreasing and then increases till 1.146. It is ≤ 1.146 when $x \geq 379$.

Lemma 8.1. We have

$$\max_{14 \leq x \leq 10^6} \frac{|\Delta(x)|}{x^{1/3} \log x} = \frac{|\Delta(36)|}{36^{1/3} \log 36} = \frac{140}{36^{1/3} \log 36} \leq 0.4593.$$

Lemma 8.2. When $x \ge 3$, we have $|\Delta(x)| \le 1.146x^{1/3} \log x$.

See also Lemma 9.7. As a consequence:

Lemma 8.3. When $x \ge 121$, we have $|\Delta(x)| \le 0.76x^{1/2}$.

See also Lemma 9.6. As a further consequence:

Lemma 8.4. When $x \ge 4033$, we have $|\Delta(x)| \le 0.475x^{1/2}$.

We have $|\Delta(x)| > 0.48x^{1/2}$ when x = 4032.

9. Taking advantage of D

We can now use Lemma 7.9 and also use the parameter D.

Lemma 9.1. We have $\max_{1 \le x \le 10^7} |\Delta(2, x)| \le 0.883 x^{1/2}$. We have $\max_{1 \le x \le 10^7} |\Delta(6, x)| \le 0.927 x^{1/2}$.

Proof. MajoreDelta(1,
$$10^7$$
, 2) and MajoreDelta(1, 10^7 , 6).

Lemma 9.2. We have $\max_{x\geq 1} |\Delta(2,x)| \leq 0.883 \, x^{1/2}$. We have $\max_{x\geq 1} |\Delta(6,x)| \leq 0.950 \, x^{1/2}$.

Proof. We use (3.5) together with Lemma 8.4 when available, as well as Lemma 9.1 for the smaller values.

Lemma 9.3. We have $\max_{1 \le T \le 10^7} |I(2, T, 7/4)| \le 0.902$.

We have $\max_{1 \le T \le 10^7} |I(6, \overline{T}, \overline{7}/4)| \le 0.0945$.

We have $\max_{1 \le T \le 10^7} |I(2, T, 3/2)| \le \kappa(2, 3/2)$.

We have $\max_{1 \le T \le 10^7} |I(6,T,3/2)| \le 0.131$. We have also $I(6,10^7,3/2) = -0.056667 + \mathcal{O}^*(10^{-6})$.

Proof. We use MajoreJ(1, 10^7 , 7/4, 2) and MajoreJ(1, 10^7 , 7/4, 6), then MajoreJ(1, 10^7 , 3/2, 2) and MajoreJ(1, 10^7 , 3/2, 6).

Lemma 9.4. We have, for all $T \ge 1$, $|I(2, T, 7/4)| \le 0.953$. We have, for all $T \ge 1$, $|I(6, T, 7/4)| \le 0.163$.

Proof. We use, when $T \ge T_0 = 10^7$ and on using Lemma 8.4

$$|I(D, T, 7/4)| \le |I(D, T_0, 7/4)| + \int_{T_0}^{T} \sum_{\delta \mid D} 0.475 \frac{du}{\delta u^{5/4}}$$

$$\le |I(D, T_0, 7/4)| + 1.90 \frac{\sigma(D)}{DT_0^{1/4}}.$$

A numerical application using Lemma 9.3 concludes.

Lemma 9.5. We have, for all $T \ge 1$, $|I(2, T, 3/2)| \le 3.91$. We have, for all $T \ge 1$, $|I(6, T, 3/2)| \le 5.98$.

Proof. We reuse (7.8) together with (7.9) to write

$$I(D,T,\sigma) = \sum_{\delta|D} \frac{\mu(\delta)I(T/\delta^2,\sigma)}{\delta^{2(\sigma-1)}} - \sum_{\delta|D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \frac{(\sigma-2)^{-1} + 2\gamma - 1}{2 - \sigma} + \sum_{\delta|D} \frac{\mu(\delta)}{\delta^2} \frac{(\sigma-2)^{-1} + 2\gamma - 1 - 2\log\delta}{2 - \sigma}.$$

On using (3.4), we get

$$I(D,T,\sigma) = \sum_{\delta \mid D} \frac{\mu(\delta)I(T/\delta^2,\sigma)}{\delta^{2(\sigma-1)}} - \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \frac{(\sigma-2)^{-1} + 2\gamma - 1}{2 - \sigma} + B(D) - \frac{A(D)}{(2-\sigma)^2}$$

and this leads to

$$I(D, T, 3/2) = \sum_{\delta \mid D} \frac{\mu(\delta)I(T/\delta^2, 3/2)}{\delta} - 2(2\gamma - 3)\frac{\phi(D)}{D} + B(D) - 4A(D).$$

We get, by appealing to Lemma 7.2

$$\begin{split} I(D,T,3/2) &= \kappa(D,3/2) \frac{\phi(D)}{D} + \sum_{\delta \mid D} \frac{\mu(\delta)I_{\#}(T/\delta^2,3/2)}{\sqrt{T}\delta} \\ &- 2(2\gamma - 3) \frac{\phi(D)}{D} + B(D) - 4A(D) \\ &= \frac{\phi(D)}{2D\sqrt{T}} + \mathcal{O}^* \Big(\sum_{\delta \mid D} \frac{1}{\delta^{0.56}T^{0.72}} \Big) + \sum_{\delta \mid D} \frac{\mu(\delta)I_{\#}(T/\delta^2,7/4)}{\sqrt{T}\delta} \\ &+ \kappa(D,3/2) \frac{\phi(D)}{D} - 2(2\gamma - 3) \frac{\phi(D)}{D} + B(D) - 4A(D). \\ &= \mathcal{O}^* \Big(\sum_{\delta \mid D} \frac{1}{\delta^{0.56}T^{0.72}} \Big) + \sum_{\delta \mid D} \frac{\mu(\delta)T^{1/4}(I(T/\delta^2,7/4) - \kappa(7/4))}{\delta} \\ &+ \kappa(D,3/2) \frac{\phi(D)}{D} + \frac{\phi(D)}{2D\sqrt{T}} - 2(2\gamma - 3) \frac{\phi(D)}{D} + B(D) - 4A(D). \end{split}$$

Lemma 7.5 applies. See MajoreJ32asymp.

We use MajDelta with T and c from (8.1) and get, with D=6:

$$(9.2) |\Delta(x)| \le 0.764x^{1/3} \log x - 4.505x^{1/3} + 4.755x^{1/4} + 10.30x^{1/6} + 7/4.$$

As a consequence:

Lemma 9.6. When $x \ge 421$, we have $|\Delta(x)| \le 0.688 x^{1/2}$.

Proof. Use the above inequality (9.2) when $x \ge 10^9$, Lemma 6.1 when $x \ge 1981$ and MajoreDelta otherwise.

Lemma 9.7. When x > 9995, we have $|\Delta(x)| < 0.764 x^{1/3} \log x$.

Proof. The right-hand side of inequality (9.2) divided by $x^{1/3} \operatorname{Log} x$ is decreasing and then increasing.

Theorem 1.3 is a further consequence of this bound.

10. Second round

We can try to use our better estimates to improve on the final result. The next Lemma indeed improves on Lemma 7.5, but the global improvement is of no consequence.

Lemma 10.1. We have $\max_{T>1} T^{1/4} |\kappa(7/4) - I(T, 7/4)| < 1.83$.

Proof. For $T \le 10^7 = T_0$, this follows from Lemma 7.3. For larger T's, we use (9.2) to show that $|\kappa(D, 7/4) - I(D, T, 7/4)|$ is not more than

$$\int_{T}^{\infty} \left(0.764u^{1/3} \log u - 4.505u^{1/3} + 4.755u^{1/4} + 10.30u^{1/6} + 7/4 \right) \frac{du}{u^{7/4}}$$

i.e. $T^{1/4}|\kappa(7/4) - I(T, 7/4)|$ is not more than

$$0.764 \frac{\frac{12}{5} \log T + (\frac{12}{5})^2}{T^{1/6}} - 4.505 \frac{\frac{12}{5}}{T^{1/6}} + 4.755 \frac{2}{T^{1/4}} + 10.30 \frac{\frac{12}{7}}{T^{1/3}} + \frac{7}{4} \frac{\frac{3}{4}}{T^{1/2}}.$$

This function is decreasing, and takes a value ≤ 1.83 at $T=10^7$. See function betterI.

We thus get $\max_{T\geq 1} |I(2,T,3/2)| \leq 3.79$ and $\max_{T\geq 1} |I(2,T,3/2)| \leq 5.79$ We use MajDelta with T and c from (8.1) and get, with D=6:

$$(10.1) \qquad |\Delta(x)| \le 0.764x^{1/3} \log x - 4.505x^{1/3} + 4.755x^{1/4} + 10.11x^{1/6} + 7/4.$$

which is a very modest improvement.

11. Proof of Corollary 1.7

Since $\zeta_{\mathbb{K}}(s) \leq \zeta(s)^n$ for every s > 1 and every number field of degree n (see [13, Chapter 7, Corollary 3]), we find that (since n = 2 here)

$$h_{\mathbb{K}} \le \sum_{m \leqslant b_{\mathbb{K}} \sqrt{d_{\mathbb{K}}}} \tau(m)$$

On invoking Theorem 1.1 we get

$$h_{\mathbb{K}} \leqslant \sqrt{\frac{d_{\mathbb{K}}}{12}} \log d_{\mathbb{K}} + \sqrt{\frac{d_{\mathbb{K}}}{3}} \left(2\gamma - 1 - \log \sqrt{3} + 0.961 \left(\frac{d_{\mathbb{K}}}{3} \right)^{-1/4} \right)$$

and it is easily seen that

$$2\gamma - 1 - \log\sqrt{3} + 0.961 \left(d_{\mathbb{K}}/3\right)^{-1/4} < 0$$

as soon as $d_{\mathbb{K}} \geqslant 108$.

12. Proof of Corollary 1.8

An integration by parts yields:

$$\sum_{n \le t} \frac{\tau(n)}{n} = \sum_{n \le t} \tau(n) \left(\int_n^t \frac{dt}{t} + \frac{1}{t} \right)$$

$$= \int_1^t (u \operatorname{Log} u + (2\gamma - 1)u + \Delta(u)) \frac{du}{u^2} + \operatorname{Log} t + 2\gamma - 1 + \frac{\Delta(t)}{t}$$

$$= \frac{1}{2} \operatorname{Log}^2 t + A \operatorname{Log} t + B + \frac{\Delta(t)}{t} - \int_t^\infty \frac{\Delta(u) du}{u^2}$$

for some constants A and B that we know are respectively equal to 2γ and to $\gamma^2 - \gamma_1$. By Theorem 1.1, we find that

$$R(t) = t^{1/3} \left| \frac{\Delta(t)}{t} - \int_{t}^{\infty} \frac{\Delta(u)du}{u^2} \right| \le 3 \cdot 0.961/t^{1/6}$$

which is not more than 1.16 provided t be larger than 236. We readily write a script to complete the proof. Here are some partial results,

Interval	$R(t) \leq$	
[0,1]	1.16	
[1,2]	0.60	
[2,3]	0.57	
[3,4]	0.72	
[4,5]	0.48	

Interval	$R(t) \leq$
[5,6]	0.48
[6,7]	0.74
[7,8]	0.43
[8,9]	0.61
[9,10]	0.52

13. Output scripts

```
Here is the basis of most of our computed outputs.
default(format, "g0.6");
{trim(result) = return(ceil(result*10^6+1)/10^6+0.0);}
{spacenbr(nbr, base) =
     local(tobewritten);
     tobewritten = nbr % 1000:
     nbr = (nbr-tobewritten)/1000;
     if(nbr == 0,
           return(Str(tobewritten, base)),
           if(tobewritten < 10,
                 return(spacenbr(nbr, Str( "\\,", 0, 0, tobewritten, base))),
           if(tobewritten < 100,
                return(spacenbr(nbr, Str( "\\,", 0, tobewritten, base))),
                 return(spacenbr(nbr,Str( "\\,", tobewritten, base))))));}
{spacenumber(nbr) = spacenbr(nbr, "");}
{Output(bigM, beg, end, maximum, where, sumthere, side,
       OnFile = 0. TexFormat = 0) =
     local(thesign, OutputFileName = "ModeleDelta-special.gp.txt");
     if(side == 1, thesign = "", thesign = "-");
         if ( TexFormat,
              \label{eq:write} write(OutputFileName, $$ ''Max of |Delta(x)-M(x, ", bigM,")|/[x^(1/4) Log x] over [", "], $$ (1/4) Log x. 
                       beg, ", ", end+1, "[ is = " , trim(maximum),
                       "\nand is reached at ", where, thesign,
           "where the sum = ", sumthere, "\n----")),
print("Max of |Delta(x)-M(x, ", bigM,")|/[x^(1/4) Log x] over [",
beg, ", ", end+1, "[ is = ", trim(maximum),
                       "\nand is reached at ", where, thesign,
" where the sum = ", sumthere, "\n----"));}
                                                                     14. Diverse scripts
\{\text{numDdiv}(n, D = 1) =
     local(aux = factor(n)~, res = 1);
     for( j = 1, length(aux),
           if(D % (aux[1,j]) == 0, res = res*2, res = res*(aux[2,j]+1)));
     return(res);}
\{modele(m) = m^(1/3)*log(m)\};
{MajoreDeltabis(bornedebut, bornefin, D = 1, verbose = 1) =
     local(maximum = 0, ou = bornedebut, sommeou, somme = 0, aux, ad = 0, bd = 0);
     fordiv(D, d, ad += moebius(d)/d^2);
     fordiv(D, d, bd += moebius(d)/d^2*(2*Euler-1-2*log(d)));
     for(n = 1, bornedebut-1, somme += numDdiv(n, D));
     for(n = bornedebut, bornefin,
           somme += numDdiv(n, D);
           aux = abs(somme-n*(ad*log(n)+bd))/modele(n);
           if(aux > maximum, maximum = aux; ou = n; sommeou = somme);
           aux = abs(somme-(n+1)*(ad*log(n+1)+bd))/modele(n+1);
           if(aux > maximum, maximum = aux; ou = n; sommeou = somme));
     if(verbose,
           return([somme, maximum]);}
{TP(t, ad = 1, bd = 2*Euler-1) = t*(ad*log(t)+bd)};
{invTPbetter(u, a, b, ad, bd) = solve(t = a, b, TP(t, ad, bd)-u)};
```

```
/* Integral of (t*(log(t)+c)+d) / t^sig */
{genericInt(t, co, c, d, sig) =
   (co*log(t)+co/(sig-2)+c)/(2-sig)/t^(sig-2)+d/(1-sig)/t^(sig-1);
{partialInt(a, b, co, c, d, sig) =
  genericInt(b, co, c, d, sig) - genericInt(a, co, c, d, sig)};
{MajoreJInternal(debut, fin, sig, somme, valeur, maxvaleur, Tformax, ad, bd)=
   if((somme - TP(debut, ad, bd))*(somme-TP(fin, ad, bd)) < 0,</pre>
      aux = invTPbetter(somme, debut, fin, ad, bd);
      valeur += -partialInt(debut, aux, ad, bd, -somme, sig);
      if( maxvaleur < abs(valeur),</pre>
         maxvaleur = abs(valeur);
         Tformax = aux,);
      valeur += -partialInt(aux, fin, ad, bd, -somme, sig);
      if( abs(valeur) > maxvaleur,
         maxvaleur = abs(valeur);
         Tformax = fin,),
      valeur += -partialInt(debut, fin, ad, bd, -somme, sig);
      if(maxvaleur < abs(valeur),</pre>
         maxvaleur = abs(valeur):
         Tformax = fin,));
   return([valeur, maxvaleur, Tformax]);}
{MajoreJ(bornedebut, bornefin, sig, D = 1, verbose = 1)=
   local(maximum = 0, ou = floor(bornedebut), valeur = 0.0,
         maxvaleur = 0.0, Tformax, somme = 0, aux, ad = 0, bd = 0);
   fordiv(D, d, ad += moebius(d)/d^2):
   fordiv(D, d, bd += moebius(d)/d^2*(2*Euler-1-2*log(d)));
   for(n = 1, ou, somme += numDdiv(n, D));
    /* Calcul entre ou et bornedebut (si ce dernier n'est pas un entier) : */  
   aux = MajoreJInternal(bornedebut, ou+1, sig, somme, valeur, maxvaleur, Tformax, ad, bd);
   valeur = aux[1]; maxvaleur = aux[2]; Tformax = aux[3];
   for(n = ou+1, floor(bornefin)-1,
      somme += numDdiv(n, D);
      valeur = aux[1]; maxvaleur = aux[2]; Tformax = aux[3]);
    /* Calcul entre ou=floor(bornefin) et bornefin : */
   ou = floor(bornefin);
   aux = MajoreJInternal(ou, bornefin, sig, somme, valeur, m
                           axvaleur, Tformax, ad, bd);
   valeur = aux[1]; maxvaleur = aux[2]; Tformax = aux[3];
      print("[MajoreJ]\nMax of |\int_", bornedebut,"^t Delta(",
        D , ", x)/x^(", sig, ")| for t in [",
        bornedebut, ", ", bornefin, "]\n = ", maxvaleur,
        "\nattained at ", Tformax),);
   return([Tformax, maxvaleur]);}
{MajoreresteJInternal(debut, fin, sig, somme, valeur, maxvaleur, Tformax,
   ad = 1, bd = 2*Euler-1, D = 1)=
local(aux, kap = kappa(sig, D));
if((somme - TP(debut, ad, bd))*(somme-TP(fin, ad, bd)) < 0,</pre>
      aux = invTPbetter(somme, debut, fin, ad, bd);
      valeur += -partialInt(debut, aux, ad, bd, -somme, sig);
      if( maxvaleur < aux^(1/4)*abs(kap-valeur),</pre>
         maxvaleur = aux^(1/4)*abs(kap-valeur);
         Tformax = aux,);
      valeur += -partialInt(aux, fin, ad, bd, -somme, sig);
if( fin^(1/4)*abs(kap-valeur) > maxvaleur,
         maxvaleur = fin^(1/4)*abs(kap-valeur);
         Tformax = fin,),
```

```
valeur += -partialInt(debut, fin, ad, bd, -somme, sig);
      if( fin^(1/4)*abs(kap-valeur)> maxvaleur,
         maxvaleur = fin^(1/4)*abs(kap-valeur);
         Tformax = fin,));
  return([valeur, maxvaleur, Tformax]);}
{MajoreResteJ(bornedebut, bornefin, D = 1, verbose = 1)=
   local(maximum = 0, ou = floor(bornedebut), valeur = 0.0, aux, sig = 7/4,
         maxvaleur = 0.0, Tformax=bornedebut, somme = 0, ad = 0, bd = 0);
  fordiv(D, d, ad += moebius(d)/d^2);
  fordiv(D, d, bd += moebius(d)/d^2*(2*Euler-1-2*log(d)));
  for(n = 1, ou-1,
      somme += numDdiv(n, D);
      valeur += -partialInt(n, n+1, ad, bd, -somme, sig));
  somme += numDdiv(ou, D);
    /* Calcul entre ou et bornedebut : */
   aux = MajoreresteJInternal(bornedebut, ou+1, sig, somme,
                              valeur, maxvaleur, Tformax, ad, bd, D);
  valeur = aux[1]; maxvaleur = aux[2]; Tformax = aux[3];
  for(n = ou+1, floor(bornefin)-1,
      somme += numDdiv(n, D);
      aux = MajoreresteJInternal(n, n+1, sig, somme,
                                  valeur, maxvaleur, Tformax, ad, bd, D);
      valeur = aux[1]; maxvaleur = aux[2]; Tformax = aux[3]);
    /* Calcul entre ou=floor(bornefin) et bornefin : */
  ou = floor(bornefin);
  aux = MajoreresteJInternal(ou, bornefin, sig, somme,
                               valeur, maxvaleur, Tformax, ad, bd, D);
  valeur = aux[1]; maxvaleur = aux[2]; Tformax = aux[3];
  if(verbose.
      "]\n = ", maxvaleur, "\nand is attained at ", Tformax),);
return([Tformax, maxvaleur]);}
{\text{kappa(sig, D = 1)}} =
  local(aux = 0.0, toto1 = zeta(sig-1)^2/(sig-1),
         toto2 = -1/(2-sig)+2*Euler-1);
  fordiv(D, d, aux += moebius(d)*(toto1/d^(2*(sig-1))
                                  +(toto2-2*log(d))/(2-sig)/d^2));
  return(aux)};
{MajoreJ32asymp(D = 1, T0 = 10^7)} =
  local(ad=0, bd=0, cd = 0, ud = 0, kap = kappa(3/2, D),
\\ yol = 1.9 /* first round */
yol = 1.83 /* second round */
  fordiv(D, d,
          ad += moebius(d)/d^2; bd += moebius(d)/d^2*(2*Euler-1-2*log(d));
          cd += 1/d^0.56; ud += 1/sqrt(d);
   return(cd/T0^0.72 + ud*yol
      + abs((kap+1/2/sqrt(T0)
             -2*(2*Euler-3))*eulerphi(D)/D + bd-4*ad));}
   return(b^(2-exposant)*(log(b)+(2*Euler-1-1/(2-exposant)))/(2-exposant));}
/* exposant est entre 0 et 1 exclus. */
{Integration(exposant, borne, verbose = 1, tellwhennegative = 1) =
  local(somme = 0, aux, integrale);
  for(n = 1, borne-1,
      somme += numdiv(n);
      integrale += somme*((n+1)^(1-exposant)-n^(1-exposant))/(1-exposant);
```

```
integrale += -(f(exposant, n+1) - f(exposant, n));
       if(tellwhennegative,
         if(integrale <= 0,
           print("[Integration]L'integrale est negative en ", n))));
   if(verbose.
      print("[Integration]\nL'integrale de Delta(u)/u^{", exposant,
             "} sur [1, ", borne, "]",
"\nvaut = ", integrale),);
   return(integrale);}
{majG(c) = }
   print("|G(x,T)| <= ",
0.479*9/16, " x^{1/4}\n
          " x^{1/6}\n + ", 7/4+(7+c^(-3/4)+c^(-3/2))/8,
          "\n when T / x^{1/3} = ", c);
{select(D, val1, val2, val6) =
  if(D == 1, return(val1),
    if(D == 2, return(val2),
        if(D == 6, return(val6),
             print("D has to be 1, 2 or 6."))));}
{majDelta(c, D = 1, verbose = 1)=
  local(a1, a2, a3, a4, a5, ad, bd);
   a1 = 23*ad*c/36+ad*c^{(1/4)}+ad*c^{(-1/2)}/6;
   a2 = (23*ad*log(c)+23*bd-19*ad+2)/12*c
        +3*c^{(1/4)}*(ad*log(c)+bd-3*ad)
        +c^(-1/2)*(ad*log(c)/2+(bd-ad)/2+1);
   a3 = (36*ad-9*bd)/4
        + select(D, 9/16*0.479, 9/16*0.953, 9/16*0.163);
   a4 = (2*ad-bd)/4/c + (2*ad-bd)/6*sqrt(c)
         + select(D, (7+c^{(-3/4)}+c^{(-3/2)})*sqrt(c)/4
                         + 4.71*(1/8/c+sqrt(c)/12),
                       (7+c^{-3/4}+c^{-3/2})*sqrt(c)/4*0.883
                         \\ +3.91*(1/8/c+sqrt(c)/12),/* first round */
                       +3.79*(1/8/c+sqrt(c)/12),/* second round */(7+c^{(-3/4)}+c^{(-3/2)})*sqrt(c)/4*0.950
                          \\ +5.98*(1/8/c+sqrt(c)/12),/* first round */
                         + 5.79*(1/8/c+sqrt(c)/12) /* second round */
   a5 = 7/4 + select(D, (7+c^{-3/4})+c^{-3/2})/8, 0, 0);
   if(verbose == 1.
      print("|Delta(x)| <= ",
             a1, " x^{1/3}\Log x\n + ", a2,
a3, " x^{1/4}\n + ", a4,
                                                              " x^{1/3}\n
                                                              " x^{1/6}\n
             a5, "\n pour T / x^{1/3} = ", c),);
   /* Y = x^{(1/12)}, L = log(x)*/
   return(a1*Y^4*L+a2*Y^4+a3*Y^3+a4*Y^2+a5);}
cc = (sqrt(357)/6+1.5)^{-4/3};
\{betterI(D, T0 = 10^7) =
   local(aux = 0.0, s23 = 0.0, s12 = 0.0, s13 = 0.0);
fordiv(D, d, aux += (4.505+0.764*2/3*log(d))/d^(2/3);
s23 += d^(-2/3);
          s12 += d^{(-1/2)};
          s13 += d^{(-1/3)};
   \texttt{return}(0.764*s23*(12/5*log(T0) + (12/5)^2)/T0^(1/6)
      - aux*12/5/T0^(1/6) + 4.755*s12*2/T0^(1/4)
+ 10.30*s13*12/7/T0^(1/3) + 7/4*3/4/T0^(1/2))}
```

15. Tables

We give the values obtained at some points, so that future authors can check their and our results. We can also start computations anew from one of these points. These computations have taken about ten days on a decent computer.

	Using the model $\mathcal{M}(x,4)$					
Beginning	End	Max ≤	Where	Sum there		
1 000 000 000	1 050 000 000	0.274960	1033783300	21617363398		
1050000000	1 100 000 000	0.300485	1061260200	22219769642		
1 100 000 000	1 150 000 000	0.289880	1124565312	23610355396		
1 150 000 000	1 200 000 000	0.309673	1183291200	24903544168		
1 200 000 000	1 250 000 000	0.281165	1209300625	25477231529		
1250000000	1 300 000 000	0.259583	1286477760	27182768219		
1 300 000 000	1 350 000 000	0.278165	1349790904	28585396325		
1 350 000 000	1 400 000 000	0.287948	1357738256	28761673191		
1 400 000 000	1 450 000 000	0.271429	1449339220	30796727408		
1 450 000 000	1 500 000 000	0.260179	1493821875	31787089049		
1 500 000 000	1 550 000 000	0.283459	1536464160	32737721129		
1550000000	1 600 000 000	0.270070	1591890300	33975109938		
1 600 000 000	1 650 000 000	0.285854	1619982000	34602998536		
1 650 000 000	1 700 000 000	0.292418	1678295250	35907926633		
1 700 000 000	1 750 000 000	0.281376	1732250520	37117138632		
1750000000	1 800 000 000	0.288213	1774936800	38074990519		
1 800 000 000	1 850 000 000	0.269459	1814760150	38969526424		
1850000000	1 900 000 000	0.259731	1853948320	39850647721		
1 900 000 000	1 950 000 000	0.277342	1919056152	41316379639		
1950000000	2 000 000 000	0.243022	1980250000	42696013532		

Using the model $\mathcal{M}(x,4)$					
Beginning	End	Max ≤	Where	Sum there	
2 000 000 000	2 050 000 000	0.293896	2035173616	43935895580	
2050000000	2 100 000 000	0.276613	2067566622	44667854438	
2100000000	2150000000	0.251389	2122520400	45910757214	
2150000000	2 200 000 000	0.252292	2190178000	47442935997	
2200000000	2250000000	0.280737	2242590948	48631324066	
2250000000	2 300 000 000	0.248571	2272574080	49311700641	
2 300 000 000	2350000000	0.268572	2325892808	50522582467	
2350000000	2400000000	0.279156	2366582400	51447477213	
2400000000	2450000000	0.256179	2401245000	52235927480	
2450000000	2500000000	0.270924	2458573065	53541031206	
2500000000	2550000000	0.264865	2545875360	55531071836	
2550000000	2 600 000 000	0.269957	2559702020	55846525595	
2600000000	2650000000	0.249882	2618708448	57193584643	
2650000000	2 700 000 000	0.270260	2670564018	58378495847	
2700000000	2750000000	0.300742	2731307040	59767766081	
2750000000	2 800 000 000	0.275779	2750075328	60197295267	
2800000000	2850000000	0.246828	2814240537	61666736191	
2850000000	2 900 000 000	0.263185	2851560000	62522060994	
2 900 000 000	2950000000	0.261988	2934660966	64428396764	
2950000000	3 000 000 000	0.283013	2987643784	65645054999	

	Using the model $\mathcal{M}(x,4)$					
Beginning	End	Max ≤	Where	Sum there		
3 000 000 000	3 050 000 000	0.273352	3023790600	66475644081		
3 050 000 000	3 100 000 000	0.296701	3072928352	67605433767		
3 100 000 000	3 150 000 000	0.244745	3130246086	68924291232		
3 150 000 000	3 200 000 000	0.279620	3183780600	70157047562		
3 200 000 000	3 250 000 000	0.261684	3239964000	71451767900		
3250000000	3 300 000 000	0.259188	3277140048	72309009478		
3 300 000 000	3 350 000 000	0.246630	3339610560	73750462665		
3 350 000 000	3 400 000 000	0.265684	3367538928	74395265220		
3 400 000 000	3 450 000 000	0.260423	3413610945	75459468392		
3 450 000 000	3 500 000 000	0.263876	3480115590	76996733092		
3 500 000 000	3 550 000 000	0.279600	3549873600	78610565016		
3 550 000 000	3 600 000 000	0.285749	3576846340	79234940728		
3 600 000 000	3 650 000 000	0.263195	3622600800	80294547476		
3 650 000 000	3 700 000 000	0.260356	3650296881	80936229741		
3 700 000 000	3 750 000 000	0.282580	3726736650	82708325799		
3 750 000 000	3 800 000 000	0.247660	3786588436	84096959797		
3 800 000 000	3 850 000 000	0.260401	3839553025	85326592376		
3 850 000 000	3 900 000 000	0.236244	3883096910	86338060202		
3 900 000 000	3 950 000 000	0.250083	3904000500	86823797338		
3 950 000 000	4 000 000 000	0.246883	3987985851	88776488468		

It is not apparent here, but the maxima have all been attained at the beginning of the intervals [N, N+1), for the program would otherwise have attached a minus sign at the back of the data "Where".

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there
4 000 000 000	4 050 000 000	0.245688	4025648718	89652741254
4 050 000 000	4100000000	0.290455	4096960560	91312823163
4 100 000 000	4150000000	0.257367	4116441888	91766549369
4 150 000 000	4200000000	0.248970	4176455300	93164858229
4 200 000 000	4250000000	0.251872	4214402192	94049464392
4250000000	4300000000	0.248332	4289204400	95794228028
4 300 000 000	4350000000	0.252001	4334643000	96854722988
4 350 000 000	4400000000	0.242011	4372030080	97727660193
4 400 000 000	4450000000	0.263651	4434229920	99180648960
4 450 000 000	4500000000	0.258938	4485181896	100371538069
4500000000	4550000000	0.249314	4500699138	100734334151
4 550 000 000	4600000000	0.257573	4599891522	103054728842
4 600 000 000	4650000000	0.268573	4635160200	103880282398
4650000000	4700000000	0.280269	4651785616	104269535886
4 700 000 000	4750000000	0.271884	4747743000	106517355799
4750000000	4800000000	0.253353	4797640320	107686979253
4 800 000 000	4850000000	0.272364	4843238478	108756281301
4 850 000 000	4900000000	0.265096	4864923000	109264946520
4 900 000 000	4950000000	0.238144	4917146130	110490367074
4 950 000 000	5000000000	0.248641	4973705100	111818154382

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there
5 000 000 000	5 050 000 000	0.286181	5027022945	113070441623
5050000000	5 100 000 000	0.244395	5091750720	114591475202
5100000000	5 150 000 000	0.258298	5119404040	115241550386
5150000000	5 200 000 000	0.261626	5176785636	116590954111
5200000000	5 250 000 000	0.251771	5240781400	118096648865
5250000000	5 300 000 000	0.247590	5262850320	118616068971
5300000000	5 350 000 000	0.253317	5308652478	119694375880
5350000000	5 400 000 000	0.277900	5379593492	121365298487
5400000000	5 450 000 000	0.245229	5449523400	123013321106
5450000000	5 500 000 000	0.264486	5462614192	123321929177
5500000000	5 550 000 000	0.281960	5500150656	124207003555
5550000000	5 600 000 000	0.241436	5560748820	125636390340
5600000000	5 650 000 000	0.253000	5615407644	126926247584
5650000000	5 700 000 000	0.246390	5668548484	128180792385
5700000000	5 750 000 000	0.261162	5746455792	130020921855
5 750 000 000	5 800 000 000	0.261145	5779524000	130802295723
5800000000	5 850 000 000	0.235602	5849192160	132449113120
5 850 000 000	5 900 000 000	0.258207	5869321932	132925096267
5 900 000 000	5 950 000 000	0.243802	5929741468	134354172920
5 950 000 000	6 000 000 000	0.247427	5975287568	135431862589

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there
6 000 000 000	6 050 000 000	0.257078	6047581276	137143152604
6050000000	6100000000	0.264247	6076125240	137819065525
6100000000	6150000000	0.237060	6145856660	139470848065
6150000000	6 200 000 000	0.254862	6183777600	140369443674
6200000000	6250000000	0.250717	6240605010	141716492287
6250000000	6 300 000 000	0.258793	6269789344	142408485236
6300000000	6350000000	0.236728	6337831710	144022371582
6350000000	6 400 000 000	0.257214	6367561200	144727750832
6400000000	6450000000	0.234042	6430236132	146215266132
6450000000	6500000000	0.243262	6456122508	146829827370
6500000000	6550000000	0.229275	6529368096	148569291100
6550000000	6 600 000 000	0.262629	6588000720	149962313570
6600000000	6650000000	0.256246	6627458574	150900066265
6650000000	6 700 000 000	0.247609	6686825190	152311411807
6700000000	6750000000	0.276045	6727772700	153285180309
6750000000	6 800 000 000	0.236609	6760131840	154054885524
6800000000	6850000000	0.256445	6822102224	155529366196
6850000000	6 900 000 000	0.251456	6862382760	156488075487
6 900 000 000	6 950 000 000	0.245043	6914587680	157730946631
6950000000	7000000000	0.267887	6960231180	158817929605

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max <	Where	Sum there
7 000 000 000	7 050 000 000	0.238635	7045913952	160859238973
7 050 000 000	7100000000	0.261163	7095895040	162050472517
7 100 000 000	7150000000	0.260647	7123107862	162699202748
7 150 000 000	7200000000	0.245588	7153692680	163428442105
7 200 000 000	7250000000	0.272719	7245201600	165611085040
7250000000	7300000000	0.253628	7289919000	166678092011
7 300 000 000	7350000000	0.261667	7329609000	167625369333
7 350 000 000	7400000000	0.246222	7351690752	168152485810
7 400 000 000	7450000000	0.235580	7436388960	170174940560
7 450 000 000	7500000000	0.258627	7453473300	170583004109
7 500 000 000	7550000000	0.236566	7549916010	172887291892
7 550 000 000	7600000000	0.236878	7559867700	173125136377
7 600 000 000	7650000000	0.235268	7611602866	174361811910
7 650 000 000	7700000000	0.267827	7679106060	175975934558
7 700 000 000	7750000000	0.250518	7742196000	177485064361
7 750 000 000	7800000000	0.237627	7794947646	178747294449
7 800 000 000	7850000000	0.240256	7808001006	179059687402
7 850 000 000	7900000000	0.241885	7870262400	180550027446
7 900 000 000	7950000000	0.240581	7905966138	181404884029
7950000000	8 000 000 000	0.276060	7961011704	182723158806

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there
8 000 000 000	8 050 000 000	0.250616	8003807296	183748324280
8 050 000 000	8 100 000 000	0.237212	8055421920	184985053658
8 100 000 000	8 150 000 000	0.224514	8126722674	186694022338
8 150 000 000	8 200 000 000	0.267527	8193921120	188305238294
8 200 000 000	8 250 000 000	0.249990	8222771718	188997157791
8 250 000 000	8 300 000 000	0.239580	8264446302	189996811511
8 300 000 000	8 350 000 000	0.236183	8308550250	191054967561
8 350 000 000	8 400 000 000	0.254539	8375178258	192653972096
8 400 000 000	8 450 000 000	0.250009	8403113964	193324558500
8 450 000 000	8 500 000 000	0.253240	8458325316	194650159683
8 500 000 000	8 550 000 000	0.236732	8547846636	196800293764
8 550 000 000	8 600 000 000	0.231778	8586658080	197732763494
8 600 000 000	8 650 000 000	0.247982	8613789264	198384712006
8 650 000 000	8 700 000 000	0.251100	8669286000	199718536031
8 700 000 000	8 750 000 000	0.244156	8747676300	201603194893
8 750 000 000	8 800 000 000	0.247581	8766483264	202055456509
8 800 000 000	8 850 000 000	0.248287	8825690880	203479517971
8 850 000 000	8 900 000 000	0.234675	8882685504	204850727934
8 900 000 000	8 950 000 000	0.248082	8944167540	206330308775
8 950 000 000	9 000 000 000	0.243354	8951421360	206504901825

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there
9 000 000 000	9 050 000 000	0.275712	9001398276	207707961207
9 050 000 000	9 100 000 000	0.238592	9072415200	209417978179
9 100 000 000	9 150 000 000	0.289532	9137256975	210979790121
9 150 000 000	9 200 000 000	0.242404	9169786080	211763475672
9 200 000 000	9250000000	0.235055	9229445316	213201075792
9 250 000 000	9 300 000 000	0.225647	9269774283	214173095441
9 300 000 000	9 350 000 000	0.246018	9303571200	214987813705
9 350 000 000	9 400 000 000	0.235136	9385928200	216973647295
9 400 000 000	9 450 000 000	0.239579	9432100650	218087297681
9 450 000 000	9 500 000 000	0.265125	9495486000	219616479788
9 500 000 000	9 550 000 000	0.229020	9532008024	220497772162
9 550 000 000	9 600 000 000	0.246084	9562200508	221226435660
9 600 000 000	9 650 000 000	0.241961	9614588560	222490991420
9 650 000 000	9 700 000 000	0.272435	9686476956	224226715659
9 700 000 000	9 750 000 000	0.240663	9712890915	224864607349
9 750 000 000	9 800 000 000	0.240285	9789225600	226708477160
9 800 000 000	9 850 000 000	0.232302	9834292260	227797345066
9 850 000 000	9 900 000 000	0.222418	9880665810	228918004951
9 900 000 000	9 950 000 000	0.223151	9924314400	229973012094
9 950 000 000	10 000 000 000	0.259598	9976913352	231244609722

References

- [1] O. Bordellès. Explicit upper bounds for the average order of $d_n(m)$ and application to class number. JIPAM. J. Inequal. Pure Appl. Math., 3(3):Article 38, 15 pp. (electronic), 2002.
- [2] Y. Cheng and S.W. Graham. Explicit estimates for the Riemann zeta function. *Rocky Mountain J. Math.*, 34(4):1261–1280, 2004.
- [3] M.W. Coffey. New results on the Stieltjes constants: asymptotic and exact evaluation. J. Math. Anal. Appl., 317(2):603–612, 2006.
- [4] J.-M Deshouillers and F. Dress. Sommes de diviseurs et structure multiplicative des entiers. *Acta Arith.*, 49(4):341–375, 1988.

- [5] J. Furuya, Y. Tanigawa, and W. Zhai. Dirichlet series obtained from the error term in the Dirichlet divisor problem. *Monatsh. Math.*, 160(4):385–402, 2010.
- [6] A. Granville and O. Ramaré. Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients. Mathematika, 43(1):73-107, 1996.
- [7] M.N. Huxley and A. Ivić. Subconvexity for the Riemann zeta-function and the divisor problem. Bull. Cl. Sci. Math. Nat. Sci. Math., (32):13–32, 2007.
- [8] A. Ivić. On the integral of the error term in the Dirichlet divisor problem. Bull. Cl. Sci. Math. Nat. Sci. Math., (25):29-45, 2000.
- [9] R. Kreminski. Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants. Math. Comp., 72(243):1379–1397 (electronic), 2003.
- $[10] \ \ \text{M. Le. Upper bounds for class numbers of real quadratic fields.} \ \textit{Acta Arith.}, 68:141-145, 1994.$
- [11] Ž. Linkovskiĭ. The lower and upper bound estimates of the mean values of numerical functions. Rev. Roumaine Math. Pures Appl., 15:69–73, 1970.
- [12] T. Meurman. On the mean square of the Riemann zeta-function. Quart. J. Math. Oxford Ser. (2), 38(151):337–343, 1987.
- [13] W. Narkiewicz. Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics. Springer-Verlag, Berlin, third edition, 2004.
- [14] O. Ramaré. On Snirel'man's constant. Ann. Scu. Norm. Pisa, 21:645-706, 1995. http://math.univ-lille1.fr/~ramare/Maths/Article.pdf.
- [15] O. Ramaré. Approximate Formulae for $L(1,\chi)$. Acta Arith., 100:245–266, 2001.
- [16] O. Ramaré and R. Rumely. Primes in arithmetic progressions. Math. Comp., 65:397–425, 1996.
- [17] R. Sitaramachandra Rao. An integral involving the remainder term in the Piltz divisor problem. Acta Arith., 48(1):89–92, 1987.
- [18] H. Riesel and R.C. Vaughan. On sums of primes. Arkiv för mathematik, 21:45-74, 1983.
- [19] PARI/GP, version 2.4.3. Bordeaux, 2008. http://pari.math.u-bordeaux.fr/.
- [20] G. Voronoï. Sur un problème de calculs des fonctions asymptotiques. J. reine angew. Math., 126:241–282, 1903.
- [21] G. Voronoï. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann. Sci. École Norm. Sup. (3), 21:207–267, 1904.
- [22] G. Voronoï. Sur une fonction transcendante et ses applications à la sommation de quelques séries (suite). Ann. Sci. École Norm. Sup. (3), 21:459–533, 1904.

DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE BLIDA, 270 ROUTE DE SOUMAA, 09 000 BLIDA, ALGÉRIE

E-mail address: djameberkan@gmail.fr

22, rue Jean Barthélémy, 43 000 Le Puy-en-Velay, France

 $E ext{-}mail\ address: borde43@wanadoo.fr}$

CNRS / Laboratoire Paul Painlevé, Université Lille 1, 59 655 Villeneuve d'Ascq cedex. France

 $E ext{-}mail\ address: ramare@math.univ-lille1.fr}$