FUNCTIONAL ANALYSIS - NOTES

Gal Anton Gorše

1 Convexity

1.1 Locally convex spaces

Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ be a field.

Definition 1.1. A topological vector space (TVS) is a \mathbb{F} -vector space that is also a topological space and the two structures are compatible. This means that the usual operations on vector spaces

$$V \times V \to v, \ (x,y) \mapsto x+y, \qquad \mathbb{F} \times V \to V, \ (\lambda,x) \mapsto \lambda x$$

are continuous maps.

Example 1.2. Normed spaces are TVS.

Definition 1.3. Let V be a \mathbb{F} -space. Map $p: V \to \mathbb{R}$ is a *seminorm* if:

- (1.) $p(x) \ge 0, \ \forall x \in V$ (positivity);
- (2.) $p(\lambda x) = |\lambda| p(x), \ \forall x \in V, \ \forall \lambda \in \mathbb{F}$ (positive homogeneity);
- (3.) $p(x+y) \le p(x) + q(x)$, $\forall x, y \in \mathbb{F}$ (triangle inequality).

A seminorm is therefore almost a norm, except that it's not necessarily positive definite.

Let V be a \mathbb{F} -vector space and \mathcal{P} a family of seminorms in V. Let \mathcal{T} be the topology in V with the following subbasis:

$$U(x_0, p, \varepsilon) = \{x \in V \mid p(x - x_0) < \varepsilon\}; \ x_0 \in V, \ p \in \mathcal{P}, \ \varepsilon > 0.$$

Basis of \mathcal{T} are finite intersections of such sets. The set $U \subseteq V$ is open iff for every $x_0 \in U$ there exist seminorms $p_1, \ldots, p_n \in \mathcal{P}$ and $\varepsilon_1, \ldots, \varepsilon_n > 0$ such that

$$U \supset \bigcap_{j=1}^{n} U(x_0, p_j, \varepsilon_j).$$

The space (V, \mathcal{T}) is then a TVS. If \mathcal{P} is a singleton and its element is a norm, then (V, \mathcal{T}) is a normed space.

Definition 1.4. A TVS X is a *locally-convex space* (LCS) if its topology is generated by a family of seminorms \mathcal{P} satisfying

$$\bigcap_{p\in\mathcal{P}}\{x\in X\mid p(x)=0\}=\{0\}.$$

Equivalently, for every $x \in X \setminus \{0\}$ there exists a seminorm $p \in \mathcal{P}$ such that $p(x) \neq 0$.

Corollary 1.5. Let X be a space with a topology generated by a family of seminorms \mathcal{P} . Then X is a LCS iff it is Hausdorff.

Proof. Start with (\Rightarrow) . Let $x, y \in X$ be two distinct points. There exists a seminorm $p \in \mathcal{P}$ such that $p(x-y) = b \neq 0$. Define the sets

$$V=U\left(x,p,\frac{b}{2}\right),\quad W=U\left(y,p,\frac{b}{2}\right).$$

By the triangle inequality property of a seminorm, V and W separate the points x, y. Now the converse (\Leftarrow). Choose a point $X \ni x \neq 0$. Then there exist open sets $0 \in V, x \in W$ that separate 0 from x. There exists an open basis set $\bigcap_{j=1}^n U(0, p_j, \varepsilon_j) \subseteq V$, so $x \notin U(0, p_j, \varepsilon_j)$ for some index j. Hence, $p_j(x-0) = p_j(x) \geq \varepsilon > 0$.

LCS generally aren't first-countable, so we need to go beyond the usual sequences to describe the topology.

Definition 1.6. Partially ordered set (I, \leq) is upwards-directed if

$$\forall i', i'' \in I : \exists i \in I : i \ge i', i \ge i''.$$

Example 1.7. (1.) Every linearly ordered set is upwards-directed.

(2.) Let (X, \mathcal{T}) be a topological space and $x_0 \in X$. Define a family of sets

$$\mathcal{U} = \{ U^{open} \subseteq X \mid x_0 \in U \}$$

and a relation $U \geq V \Leftrightarrow U \subseteq V$. Then (\mathcal{U}, \leq) is an upwards-directed set.

(3.) Let S be a set and \mathcal{F} a family of all finite subsets of S. Define $F_1 \geq F_2$ in \mathcal{F} if $F_1 \supseteq F_2$. Then (\mathcal{F}, \leq) is again an upwards-directed set.

Definition 1.8. A generalized sequence (net) is $((I, \leq), x)$, where (I, \leq) is upwards-directed and $x: I \to X$ is a function. We usually write $(x_i)_{i \in I}$ or $(x(i))_{i \in I}$.

Example 1.9. (1.) Every sequence is a net.

(2.) Let (X, \mathcal{T}) be a topological space, $x_0 \in X$ and \mathcal{U} a collection of all open sets which contain x_0 (see example 5.14). For each $U \in \mathcal{U}$ pick a $x_U \in U$. Then $(x_U)_{U \in \mathcal{U}}$ is a net.

Definition 1.10. Let X be a topological space. A net $(x_i)_{i\in I}$ converges to an $x\in X$ if

$$\forall U^{\text{open}} \subseteq X, \ x \in U: \ \exists i_0 \in I: \ \forall i \geq i_0: \ x_i \in U.$$

We write $\lim_{i \in I} x_i = x$, or alternatively, $x_i \xrightarrow[i \in I]{} x$. A point $x \in X$ is called a *cluster point* of a net $(x_i)_{i \in I}$ if

$$\forall U^{\text{open}} \subseteq X, \ x \in U: \ \forall i_0 \in I: \ \exists i \geq i_0: \ x_i \in U.$$

Example 1.11. Take the net $(x_U)_{U \in \mathcal{U}}$ from example 1.9. It follows from the definition that $x_U \xrightarrow[U \in \mathcal{U}]{} x_0$.

- **Proposition 1.12.** (1.) Let X be a topological space and $A \subseteq X$. Then $x \in \overline{A}$ iff there exists a net $(a_i)_{i \in I}$ in A such that $a_i \to x$.
- (2.) Let X, Y be topological spaces and $f: X \to Y$. Then f is continuous at $x_0 \in X$ iff $f(x_i) \to f(x_0)$ for every net $(x_i)_{i \in I}$ that converges to x_0 .
- *Proof.* (1.) We begin with the implication to the left (\Leftarrow) . Take any $U^{\text{open}} \subseteq X$ such that $x \in U$. Since $a_i \to x$, there exists an index $i_0 \in I$, such that for every $i \geq i_0$ we have $a_i \in U$. Hence $a_i \in A \cap U \neq \emptyset$ and $x \in \overline{A}$. The converse (\Rightarrow) is similar. Define $\mathcal{U} = \{U^{\text{open}} \subseteq X \mid x \in U\}$. Since $x \in \overline{A}$, for each $U \in \mathcal{U}$, we have $A \cap U \neq \emptyset$. Pick $a_U \in A \cap U$. Then the net $(a_U)_{U \in \mathcal{U}}$ in A converges to x.
- (2.) Start with the implication (\Rightarrow) . Let f be a continuous function and let $(x_i)_{i\in I}$ converge to x_0 . Let $f(x_0) \in U^{\text{open}} \subseteq Y$. Then $x_0 \in f^{-1}(U)^{\text{open}} \subseteq X$, which means there exists an $i_0 \in \mathbb{N}$ such that for every $i \geq i_0$, $x_i \in f^{-1}(U)$. But that implies that for every $i \geq i_0$, $f(x_i) \in U$, which is what we wanted. Now we prove the converse (\Leftarrow) . Let's say that for every net $(x_i)_{i\in I}$ that converges to x_0 , we have $f(x_i) \xrightarrow[i\in I]{} f(x_0)$. So for every set $A \subseteq X$, we have $f(\overline{A}) \subseteq \overline{f(A)}$ (using the first item), which proves that f is continuous.
- **Proposition 1.13.** (a) A net $(x_i)_{i\in I}$ in a LCS converges to x_0 iff a net $(p(x_i x_0))_{i\in I}$ converges to 0 for all $p \in \mathcal{P}$.
 - (b) The topology in a LCS X is the coarsest (smallest) topology in which all the maps $x \mapsto p(x-x_0)$ are continuous for every $x_0 \in X$ and $p \in \mathcal{P}$.
 - *Proof.* (a) Start with the implication (\Rightarrow). Take any $p \in \mathcal{P}$. If we take $U = U(x_0, p, \varepsilon)$ in the definition of a limit of a net, we get

$$\forall \varepsilon > 0 : \exists i_0 \in I : \forall i \ge i_0 : p(x_i - x_0) \in (-\varepsilon, \varepsilon).$$

This proves our claim. Now for the opposite direction (\Leftarrow) . For every $p \in \mathcal{P}$ and $\varepsilon_p > 0$ there exists an i_p such that for every $i \geq i_p$, $x_i \in U(x_0, p, \varepsilon_p)$. Now let U be an arbitrary basis set that includes the point x_0 . That means U is the finite intersection of the sets $U(x_0, p, \varepsilon_p)$. Now let i_0 be greater than all indices i_p . By our assumption, for every $i \geq i_0$ we have $x_i \in U$.

(b) Pick any point $x_0 \in X$ and a seminorm $p \in \mathcal{P}$. Denote

$$f_{x_0,p}: X \to \mathbb{R}, \quad f_{x_0,p}(x) = p(x - x_0).$$

We essentially have to prove that the sets

$$f_{x_0,p}^{-1}(V), \ V^{\text{open}} \subseteq \mathbb{R}, \ x_0 \in X, \ p \in \mathcal{P}$$

generate a subbasis for the seminorm topology of a LCS space. Since f_{p,x_0} are continuous functions (by the first item and Proposition 2.1), these are all open sets in the

seminorm topology. But on the other hand, all subbasis sets $U(x_0, p, \varepsilon)$ of the seminorm topology are of this type, so the above subbasis generates the seminorm topology, thus concluding our proof.

Example 1.14. Let X be a topological space. For every $K^{compact} \subseteq X$ we define a seminorm

$$p_K: C(X) \to \mathbb{R}, \quad f \mapsto \sup_{x \in K} |f(x)|.$$

We endow C(X) with the topology induced by the family of seminorms $\{p_K \mid K^{compact} \subseteq X\}$. It's trivial to see that C(X) is then a LCS. Moreover, we notice that the induced seminorm topology coincides with the topology of compact convergence on X. In the future, we will require X to be locally compact Hausdorff (this implies complete regularity) so that C(X) has nice properties. There are examples of not completely regular spaces X such that the only elements of C(X) are constant maps.

Example 1.15. Let $D^{open} \subseteq \mathbb{C}$ and let $\mathcal{H}(D)$ be the set of all holomorphic functions on D. As in the example 1.14, we define $\mathcal{P} = \{p_K \mid K^{compact} \subseteq D\}$. This endows $\mathcal{H}(D)$ with a topology and makes $\mathcal{H}(D)$ into a LCS. Convergence in this topology concides with the uniform convergence on compacts in D.

1.2 Weak topology

Let X be a normed space and let X^* be its dual. For every $f \in X^*$ we define a seminorm

$$p_f: X \to \mathbb{R}, \quad x \mapsto |f(x)|.$$

We claim that $\mathcal{P} = \{p_f \mid f \in X^*\}$ is a family of seminorms that induces a topology on X which makes X a LCS. Indeed, for any $x \in X \setminus \{0\}$ define a nonzero linear functional

$$f: \operatorname{span}(x) \to \mathbb{F}, \quad f(\lambda x) = \lambda$$

and extend it to $F: X \to \mathbb{F}$ using Hahn–Banach. Then $p_F(x) \neq 0$.

The induced topology is the weak topology on X. We denote it as $\sigma(X, X^*)$. A net $(x_i)_{i \in I}$ converges to $x_0 \in X$ with regards to the weak topology iff $p_f(x_i - x_0) \to 0, \forall f \in X^*$ which is then equivalent to $f(x_i) \to f(x_0), \forall f \in X^*$. We use the notation $x_i \xrightarrow{w} x_0$.

Remark. The closure of a set $A \subseteq X$ in the weak topology will be denoted as \overline{A}^w .

Example 1.16. Let $X = \mathbb{R}^n$. Then $X^* = \mathbb{R}^n$ and every linear functional f is of the form $f(x) = \langle x, y \rangle$ for some $y \in X$ (Riesz' representation theorem). The subbasis sets are

$$U(0, p_y, \varepsilon) = \{ x \in \mathbb{R}^n \mid |\langle x, y \rangle| < \varepsilon \}.$$

Weak topology in this case coincides with Euclidean topology.

Let X again be a normed space. To $x \in X$ we assign the seminorm

$$p_x: X^* \to \mathbb{R}, \quad f \mapsto |f(x)|.$$

The family $\{p_x \mid x \in X\}$ defines a topology in X^* in which X^* becomes a LCS. This topology is called weak-* topology and is denoted by $\sigma(X^*, X)$. We can easily check that $f_i \xrightarrow{w^*} f$ iff $f_i(x) \to f(x)$ for all $x \in X$. We can compare weak-* topology on X^* with its weak topology. As a consequence of Hahn-Banach, we have for every $x \in X$

$$||x|| = \sup\{|f(x)|| \ f \in X^*, \ ||f|| \le 1\},\$$

which implies that the map

$$\iota: X \hookrightarrow X^{**}, \quad x \mapsto (f \mapsto f(x))$$

is an isometry and therefore injective. This means that every seminorm in the weak-* topology is also a seminorm in a weak topology on X^* , so the weak topology is finer (stronger) than the weak-* topology on X^* .

Remark. Weak and weak-* topology can be defined even if X is merely a LCS. In that case, X^* is of course defined as the space of continuous linear functionals on X.

1.3 Banach-Alaoglu theorem

Theorem 1.17 (Banach-Alaoglu).

Let X be a normed space. Then the closed unit ball in X^* (denoted by $(X^*)_1$) is compact in the weak-* topology in X^* .

Proof. To $x \in X$ we assign $D_x = \{z \in \mathbb{F} \mid |z| \leq ||x||\}$ and endow D_x with the Euclidean topology. Then D_x is clearly compact. The set $P = \prod_{x \in X} D_x$ is compact in the product topology (Tychonoff theorem). Now we construct a map

$$\Phi: (X^*)_1 \to P, \quad f \mapsto (f(x))_{x \in X} \in P.$$

Clearly, Φ is well-defined and injective. We start by proving that Φ is continuous. Let $(f_i)_{i\in I}$ be a net in $(X^*)_1$ that converges to $f\in X^*$ in the weak-* topology. Then $f_i(x)\to f(x)$ for each $x\in X$. By the definition of the product topology in P, this means that $\Phi(f_i)\mapsto \Phi(f)$ in P. Hence Φ is continuous. Since Φ is injective, it induces an inverse map

$$\Phi^{-1} : \operatorname{im}(\Phi) \to (X^*)_1$$

that is also continuous (we read the previous argument backwards).

Finally, we prove that $\operatorname{im}(\Phi)$ is closed in P. Suppose that $(\Phi(f_i))_{i\in I}$ converges to $p=(p_x)_{x\in X}\in P$. By definition of the product topology, this means that $f_i(x)\to p_x$ for all $x\in X$. Define

$$f: X \to \mathbb{F}, \quad x \mapsto p_x.$$

Then f is linear and $f \in (X^*)_1$. Thus $p = \Phi(f) \in \operatorname{im}(\Phi)$. This in turn implies that $(\operatorname{im}\Phi)^{\operatorname{closed}} \subseteq P^{\operatorname{compact}}$. But we know that $(X^*)_1 \approx \operatorname{im}(\Phi)$, which implies that $(X^*)_1$ is also compact.

Corollary 1.18. Every Banach space X is isometrically isomorphic to a closed subspace of C(K) for some compact T_2 space K.

Proof. Denote $K=(X^*)_1$ endowed with the weak-* topology. By the Banach-Alaoglu theorem, K is compact and T_2 . We now define the map

$$\Delta: X \to C(K), \quad x \mapsto (f \mapsto f(x)).$$

First, we prove that Δ is isometric. By Hahn-Banach, for every $x \in X \setminus \{0\}$ there exists an $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||. Then we have

$$\|\Delta(x)\|_{\infty} = \sup_{g \in K} |g(x)| = \|x\|.$$

Since Δ is an isometry, its image is complete and thus closed in C(K). Obviously Δ is a linear map, so we are done.

1.4 Minkowski gauge

ADD MOTIVATION

Definition 1.19. Let X be a \mathbb{F} -vector space. A set $A \subseteq X$ is

• balanced if:

$$\forall x \in A : \forall \alpha \in \mathbb{F}, |\alpha| \le 1 : \alpha x \in A.$$

• absorbing if:

$$\forall x \in X : \exists \varepsilon > 0 : \forall t \in (0, \varepsilon) : tx \in A.$$

• absorbing in $a \in A$ if $A - a = \{x - a \mid x \in A\}$ is absorbing.

Example 1.20. Let X be a vector space and p a seminorm in X. Then

$$V = \{x \in X \mid p(x) < 1\}$$

is convex, balanced, absorbing in each of its points.

Theorem 1.21.

Let X be a vector space and $V \subseteq X$ convex, balanced and absorbing in each of its points. Then there exists a unique seminorm p on X such that

$$V = \{ x \in X \mid p(x) < 1 \}.$$

Proof. To V we associate the Minkowski gauge:

$$p(x) = \inf\{t \geq 0 \mid x \in t \cdot V\},\$$

where $t \cdot V = \{t \cdot v \mid v \in V\}$. First we prove that p is well defined. Since V is absorbing, we have $X = \bigcup_{n \in \mathbb{N}} n \cdot V$, so for every $x \in X$ the set $\{t \geq 0 \mid x \in t \cdot V\}$ is nonempty. It's also

clear to see that p(0) = 0. Next we check for homogeneity. Suppose $\alpha \neq 0$. Then

$$\begin{split} p(\alpha x) &= \inf\{t \geq 0 \mid \alpha x \in t \cdot V\} \\ &= \inf\left\{t \geq 0 \mid x \in \frac{t}{\alpha} \cdot V\right\} \\ &= \inf\left\{t \geq 0 \mid x \in \frac{t}{|\alpha|} \cdot V\right\} \\ &= \inf\left|\alpha\right| \left\{\frac{t}{|\alpha|} \geq 0 \mid x \in \frac{t}{|\alpha|} \cdot V\right\} \\ &= |\alpha| p(x). \end{split}$$

Now we do the same for triangle inequality: let $\alpha, \beta \geq 0$ so that $\alpha + \beta > 0$. Let $a, b \in V$. Then

$$\alpha a + \beta b = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} a + \frac{\beta}{\alpha + \beta} b \right) \in (\alpha + \beta) \cdot V.$$

This means that $\alpha \cdot V + \beta \cdot V \subseteq (\alpha + \beta) \cdot V$. Now let $x, y \in X$ and $p(x) = \alpha, p(y) = \beta$. Take $\delta > 0$. Then $x \in (\alpha + \delta) \cdot V, y \in (\beta + \delta) \cdot V$. Hence

$$x + y \in (\alpha + \delta) \cdot V + (\beta + \delta) \cdot V \subseteq (\alpha + \beta + 2\delta) \cdot V$$

and by definition, $p(x+y) \le \alpha + \beta + 2\delta$. Since $\delta > 0$ was arbitrary, we have $p(x+y) \le \alpha + \beta = p(x) + p(y)$. Now that we have proved that p is a seminorm, we can show that

$$V = \{ x \in X \mid p(x) < 1 \}.$$

The inclusion (\supseteq) is easy: if p(x) < 1, then $x \in (p(x) + \varepsilon) \cdot V$ for all $\varepsilon > 0$. By choosing $\varepsilon = 1 - p(x) > 0$, we get $x \in V$. Now we prove the other inclusion (\subseteq) . Let $x \in V$. Since V is absorbing in x, there exists an $\varepsilon > 0$ such that $y = x + tx \in V$ for all $t \in (0, \varepsilon)$. This means that $x = \frac{1}{t+1}y$, where $y \in V$. This implies that

$$p(x) = \frac{1}{t+1}p(y) \le \frac{1}{1+t} \le 1,$$

which proves the equality. Lastly, we prove the p is unique. Suppose there is some other seminorm q such that

$${x \in X \mid p(x) < 1} = {x \in X \mid q(x) < 1}.$$

Suppose $p \neq q$. W.l.o.g. there exists an $x \neq 0$ such that p(x) > q(x). By homogeneity, we can assume that p(x) = 1 > q(x), contradicting our assumption.

Remark. If X is a TVS and V is an open subset, then V is absorbing at each of its points.

Corollary 1.22. Let X be a TVS and \mathcal{U} a collection of all open convex balanced subsets of X. Then X is locally convex iff \mathcal{U} is a basis for the neighborhood system at 0.

1.5 Applications of Hahn-Banach

Recall: if X is a \mathbb{R} -vector space then $p: X \to \mathbb{R}$ is a sublinear functional if

$$p(x+y) \le p(x) + p(y), \ \forall x, y \in X$$

and

$$p(\alpha x) = \alpha x, \ \forall x \in X, \ \alpha > 0.$$

Theorem 1.23 (Hahn-Banach theorem).

- \mathbb{R} : Suppose X is a \mathbb{R} -vector space and $p: X \to \mathbb{R}$ is a sublinear functional. Given a linear functional f on $Y \leq X$ such that $f(y) \leq p(y)$ for every $y \in Y$, f extends to a linear functional $F: X \to \mathbb{R}$ such that $F(x) \leq p(x)$ for every $x \in X$.
- \mathbb{C} : Suppose X is a \mathbb{C} -vector space and $p: X \to \mathbb{R}$ is a seminorm. Given a linear functional f on $Y \leq X$ such that $|f(y)| \leq p(y)$ for every $y \in Y$, f extends to a linear functional $F: X \to \mathbb{R}$ such that $|F(x)| \leq p(x)$ for every $x \in X$.

Corollary 1.24 (Hahn-Banach extension theorem). Let X be a normed space, $f \in X^*$ and $Y \leq X$. Then there exists an $F \in X^*$ such that $F|_{Y} = f$ and ||F|| = ||f||.

Corollary 1.25 (Hahn-Banach separation theorem). Suppose X is a LCS and $A, B \subseteq X$ are disjoint closed convex sets. If B is compact then there exists an $f \in X^*$ that separates A from B:

$$\exists \alpha, \beta \in \mathbb{R} : \forall a, b \in B : \operatorname{Re} f(a) \leq \alpha < \beta \leq \operatorname{Re} f(b).$$

Theorem 1.26.

Let X be a LCS and $A \subseteq X$ convex. Then $\overline{A} = \overline{A}^w$.

Proof. Since the weak topology is weaker than the original topology, we have $\overline{A} \subseteq \overline{A}^w$. Let $x \notin \overline{A}$. We now separate \overline{A} and the compact set $\{x\}$: there exists $f \in X^*$ so that there exist $\alpha, \beta \in \mathbb{R}$ and we have

$$\operatorname{Re} f(a) \le \alpha < \beta \le \operatorname{Re} f(x)$$

for all $a \in \overline{A}$. This means that

$$\overline{A} \subseteq \{y \in X \mid \operatorname{Re} f(y) \le \alpha\} = (\operatorname{Re} f)^{-1}(-\infty, \alpha] = C.$$

Since C is closed in the weak topology, it follows from $A \subseteq C$ that $\overline{A}^w \subseteq \overline{C}^w = C$. Since $x \notin C$, we have $x \notin \overline{A}^w$.

Corollary 1.27. A convex set in a LCS is closed iff it is weakly closed.

Proposition 1.28. Let X be a TVS and $f: X \to \mathbb{F}$ a linear functional. The following is equivalent:

(1.) f is continuous;

- (2.) f is continuous in 0;
- (3.) f is continuous in some point;
- (4.) ker f is closed;
- (5.) $x \mapsto |f(x)|$ is a seminorm.

If X is a LCS, then these are also equivalent to

(6.) $\exists \alpha_1, \ldots, \alpha_n \in \mathbb{R}_{>0}$ and $\exists p_1, \ldots, p_n \in \mathcal{P}$ such that

$$|f(x)| \le \sum_{k=1}^{n} \alpha_k p_k(x), \ \forall x \in X.$$

Proof. Equivalence of the first five statements is routine. Assume that X is a LCS. We prove the equivalence of (2) and (6). We start with (6) \Rightarrow (2). Let $(x_i)_{i \in I}$ be a net in X that converges to 0. Then we have

$$0 \le |f(x_i)| \le \sum_{k=1}^n \alpha_k p_k(x_i) \xrightarrow[i \in I]{} 0.$$

This implies that $f(x_i) \xrightarrow[i \in I]{} 0$, proving the implication. Now the opposite: $(2) \Rightarrow (6)$. We know that $f^{-1}(B_1^{\circ}(0)) = \{x \in X \mid |f(x)| < 1\}$ is an open neighborhood of 0 in X. Then there exist $p_1, \ldots, p_r \in \mathcal{P}$ and an $\varepsilon > 0$ such that

$$0 \in \bigcap_{i=1}^{r} U(0, p_i, \varepsilon) \subseteq f^{-1}(B_1^{\circ}(0)).$$

If $p_i(x) < \varepsilon$ for all $i \le r$, then |f(x)| < 1. Pick any $\delta > 0$. Then

$$p_i\left(x \cdot \frac{\varepsilon}{\sum p_i(x) + \delta}\right) = \frac{\varepsilon}{\delta + \sum p_i(x)} \cdot p_i(x) < \varepsilon,$$

which implies

$$\left| f\left(x \cdot \frac{\varepsilon}{\sum p_i(x) + \delta} \right) \right| < 1.$$

From this we get $|f(x)| < \frac{1}{\varepsilon} \left(\sum p_i(x) + \delta \right)$. Since $\delta > 0$ was arbitrary, we get

$$|f(x)| \le \sum_{i=1}^{r} \frac{1}{\varepsilon} p_i(x).$$

Recall the following theorem from measure theory.

Theorem 1.29 (Riesz-Markoff theorem).

Let X be a compact T_2 space, $\Phi \in C(X)^*$. Then there exists a regular Borel measure μ such that

$$\Phi(f) = \int_X f \, d\mu, \ \forall f \in C(X).$$

Further, $\|\Phi\| = \|\mu\| = |\mu|(X)$.

Remark. The above also works if X is locally compact and $\Phi \in C_0(X)^*$.

As a corollary, we get the following proposition.

Proposition 1.30. Let X be completely regular. Endow C(X) with a topology induced by its seminorms. If $L \in C(X)^*$ then there exists a compact $K \subseteq X$ and a regular Borel measure on K such that

$$L(f) = \int_{K} f \, d\mu, \ \forall f \in C(X).$$

Conversely, every such pair (K, μ) defines $L \in C(K)^*$ with the above equation.

Proof. Begin with the implication (\Leftarrow). Given (K, μ) , we just need to prove that the induced functional L is continuous on X. We have

$$|L(f)| = \left| \int_K f \, d\mu \right| \le \|\mu\| \sup_K |f| = \|\mu\| p_K(f)$$

and L is continuous. Now the converse (\Rightarrow) . Let $L \in C(X)$. By the previous proposition, there exist compact sets $K_1, \ldots, K_p \subseteq X$ and $\alpha_1, \ldots, \alpha_p > 0$ such that

$$|L(f)| \le \sum_{j=1}^{p} \alpha_j p_{K_j}(f).$$

Let $K = \bigcup_{j=1}^p K_j$ and $\alpha = \max\{\alpha_1, \ldots, \alpha_p\}$. Then $||f|| \le \alpha p_K(f)$ for all $f \in C(X)$. Observe that if $f \in C(X)$ and $f|_K = 0$, then L(f) = 0. We now define a map $F : C(K) \to \mathbb{F}$. Since X is completely regular, we have a Tietze-like extension theorem: for any compact $K \subseteq X$ and a continuous function $g \in C(K)$, there exists an extension $\widetilde{g} \in C(X)$. Define $F(g) := L(\widetilde{g})$. First we need to check that F is well defined. Suppose we have two extensions \widetilde{g} and $\widetilde{\widetilde{g}}$ of $g \in C(K)$. Since $\widetilde{g} - \widetilde{\widetilde{g}}$ is evidently zero on K, we have

$$L(\widetilde{g}) - L(\widetilde{\widetilde{g}}) = L(\widetilde{g} - \widetilde{\widetilde{g}}) = 0$$

and F really is well defined. It is also clearly linear, so we just need to check continuity:

$$|F(g)| = |L(\widetilde{g})| \le \alpha \cdot p_K(\widetilde{g}) = \alpha \cdot ||g||_{\infty,K},$$

therefore $||F|| \le \alpha$ and F is continuous. Lastly we apply Riesz-Markoff: there exists a regular Borel measure μ on K so that $F(g) = \int_K g \, d\mu$. If $f \in C(X)$, then $g := f\big|_K \in C(K)$ and we have

$$L(f) = F(g) = \int_K g \, d\mu = \int_K f \, d\mu.$$

1.6 Krein-Milman theorem

Definition 1.31. Let X be a vector space and $C \subseteq X$ a convex subset.

(a) A nonempty convex subset $F \subseteq C$ is a *face* if for any $x, y \in C$ we have

$$(\exists t \in (0,1): \ tx + (1-t)y \in F) \Rightarrow x, y \in F.$$

(b) A point $x \in C$ is a called an *extreme point* if $\{x\} \subseteq C$ is a face. We use the notation ext(C) for the set of all extreme points of C.

Example 1.32. If we consider spaces of real sequences, we have

- $\operatorname{ext}((\ell^{\infty})_1) = \{(\pm 1, \pm 1, \dots)\};$
- $\operatorname{ext}((\ell^1)_1) = \{(0, 0, \dots, \pm 1, \dots)\}.$

Example 1.33. We prove that for c_0 (the space of complex sequences that converge to 0) we have $\operatorname{ext}(c_0)_1 = \emptyset$. Indeed, let $x = (x_n)_n \in (c_0)_1$. Since $\lim_n x_n = 0$, there exists $N \in \mathbb{N}$ such that $|x_n| < \frac{1}{2}$ for all n > N. Now define $y, z \in c_0$ by setting $y_n = z_n = x_n$ for $n \leq N$ and

$$y_n = x_n + \frac{1}{2^n}, \quad z_n = x_n - \frac{1}{2^n}$$

for n > N. Then $y, z \in (c_0)_1$ and $x = \frac{1}{2}(y+z)$, so $x \notin \text{ext}(c_0)_1$.

Example 1.34. Let us show that $\operatorname{ext}(L^1[0,1])_1 = \emptyset$. Take any $f \in (L^1[0,1])_1$. Then $\int_0^1 |f(t)| \, dt = 1$, so there must exist an $x \in [0,1]$ such that $\int_0^x |f(t)| \, dt = 1/2$. Now define $g := 2 \cdot f \cdot \chi_{[0,x]}$ and $h := 2 \cdot f \cdot \chi_{[x,1]}$. Now we have $g,h \in (L^1[0,1])_1$ and $f = \frac{1}{2}g + \frac{1}{2}h$, so f cannot be an extreme point.

Example 1.35. Finally, let us prove that $ext(C[0,1])_1 = \{\pm 1\}$ for real valued functions. Take any $f \in (C[0,1])_1$. Then define functions $g(t) = min\{2f(t)+1,1\}$ and $h(t) = max\{2f(t)-1,-1\}$. Clearly $g,h \in (C[0,1])_1$ and $f = \frac{1}{2}g + \frac{1}{2}h$. If f is an extreme point, then g = h, which happens only if $f = \pm 1$.

Definition 1.36. For a vector space X and $A \subseteq X$, define a *convex hull* co A as the intersection of all convex sets in X that contain A. If X is a TVS, then define a *closed convex hull* $\overline{\operatorname{co}}A$ as the intersection of all closed convex sets that contain A.

Convex hull of a set A can be given explicitly:

$$\operatorname{co} A = \left\{ \sum_{i=0}^{n} \alpha_{i} x_{i} \mid n \in \mathbb{N}, \alpha_{i} \geq 0, \sum_{i=0}^{n} \alpha_{i} = 1, x_{i} \in A \right\}.$$

If X is a TVS, then $\overline{\operatorname{co}}A = \overline{\operatorname{co}}A$.

Lemma 1.37. If $C \subseteq X$ is a convex subset of a vector space and $a \in C$, then the following is equivalent.

- (a) $a \in \text{ext } C$.
- (b) If $x_1, x_2 \in C$ and $a = \frac{1}{2}(x_1 + x_2)$, then $x_1 = x_2 = a$. (c) If $x_1, x_2 \in C$, $t \in (0,1)$ and $a = tx_1 + (1-t)x_2$, then $x_1 = x_2 = a$.
- (d) $C \setminus \{a\}$ is a convex set.
- (e) If $x_1, \ldots, x_n \in C$ and $a \in co\{x_1, \ldots, x_n\}$, then $a = x_k$ for some index k.

Proof. Items (a) and (c) are equivalent by definition.

(b) \Rightarrow (c): Let $a = tx_1 + (1 - t)x_2$. Then

$$a = \frac{1}{2}(2tx_1 + (1 - 2t)x_2) + \frac{1}{2}x_2,$$

so we get $2tx_1 + (1-2t)x_2 = x_2$, which gives us $x_1 = x_2$.

- (c) \Rightarrow (d): Take any $x_1, x_2 \in C \setminus \{a\}$. Since C is convex, $tx_1 + (1-t)x_2 \in C$. Now if $a = tx_1 + (1-t)x_2 \in \operatorname{co}\{x_1, x_2\}$, then $a = x_1 = x_2$, which contradicts our assumption. So $tx_1 + (1 - t)x_2 \in C \setminus \{a\}$ and $C \setminus \{a\}$ is convex.
- (d) \Rightarrow (e) If $x_1, \ldots, x_n \in C \setminus \{a\}$, then $co\{x_1, \ldots, x_n\} \subseteq C \setminus \{a\}$ by convexity, contradic-
- (e) \Rightarrow (b): Suppose $a = \frac{1}{2}(x_1 + x_2)$. Then either $x_1 = a$ or $x_2 = a$ by our assumption. W.l.o.g. assume $x_1 = \overline{a}$. Then $a = \frac{1}{2}(a + x_2)$, which implies $a = x_2$.

Lemma 1.38. Let X be a TVS and $C \subseteq X$ a nonempty compact convex set. Then for

$$F = \{ x \in C \mid \operatorname{Re} \Phi(x) = \min_{C} \operatorname{Re} \Phi \}$$

is a closed face of C.

Proof. Since C is compact and $x \mapsto \operatorname{Re} \Phi(x)$ is continuous, it attains its minimum on C. Hence F is nonempty. Since F is a continuous preimage of a point, it is also closed. By the linearity of Φ , F is convex. Now suppose that $t \in (0,1)$ and $x,y \in C$ are such that $tx + (1-t)y \in F$. Then

$$\begin{aligned} \min_{C} \operatorname{Re} \Phi &= \operatorname{Re} \Phi(tx + (1-t)y) \\ &= t \cdot \operatorname{Re} \Phi(x) + (1-t) \operatorname{Re} \Phi(y) \\ &\geq t \cdot \min_{C} \operatorname{Re} \Phi + (1-t) \min_{C} \operatorname{Re} \\ &= \min_{C} \operatorname{Re} \Phi. \end{aligned}$$

Since we have the equality in the second-to-last line, we have $\operatorname{Re}\Phi(x)=\min_{C}\operatorname{Re}\Phi$ and $\operatorname{Re} \Phi(y) = \min_{C} \operatorname{Re} \Phi$, meaning that $x, y \in F$.

Remark. Not all closed convex faces are of this form.

ADD A PIC-TURE

Theorem 1.39 (Krein-Milman).

Let X be a LCS and $C \subseteq X$ a nonempty compact convex subset. Then $C = \overline{\operatorname{co}}(\operatorname{ext} C)$. In particular, $\operatorname{ext} C \neq \emptyset$.

Proof. Let $\mathcal{F} = \{\text{closed faces in } C\}$ be ordered with \supset . Since $C \in \mathcal{F}$, it is nonempty. The set \mathcal{F} is then partially ordered. Since any increasing chain in \mathcal{F} has the finite intersection property, \mathcal{F} has a nonempty intersection due to C being compact. As a result, any increasing chain in \mathcal{F} has an upper bound. This tells us that we can apply Zorn's lemma to obtain a maximal element $F_0 \in \mathcal{F}$.

We prove that $F_0 = \{p\}$ for some $p \in X$. Assume for a contradiction that there are distinct $x, y \in F_0$. By Hahn-Banach, there exists a $\Phi \in X^*$ such that $\Phi(x) \neq \Phi(y)$. W.l.o.g. we assume that $\operatorname{Re} \Phi(x) < \operatorname{Re} \Phi(y)$. Define a set

$$F_1 = \{ z \in F_0 \mid \operatorname{Re} \Phi(z) = \min_{F_0} \operatorname{Re} \Phi \}.$$

Then $F_1 \subsetneq F_0$, since $y \notin F_0$. By the previous lemma, F_1 is a closed face in F_0 , so it is a closed face in C, contradicting maximality of F_0 . As a result, $F_0 = \{p\}$, which implies that $p \in \text{ext}(C)$ and the set of extreme points of C is non-empty.

Since we have $C \supset \text{ext } C$, we also have $C = \overline{\text{co}}(C) \supseteq \overline{\text{co}}(\text{ext } C)$. Suppose $x \in C \setminus \overline{\text{co}}(\text{ext } C)$. By Hahn-Banach, there exists a $\Psi \in X^*$ such that $\text{Re } \Psi(x) < \min_{\overline{\text{co}}(\text{ext } C)} \text{Re } \Psi$. So the set

$$F = \{ z \in C \mid \operatorname{Re} \Psi(z) = \min_{C} \operatorname{Re} \Psi \}$$

is a closed face in C. By the first part of this proof, there exists a $z \in \text{ext } F \subseteq \text{ext } C$. Hence

$$\min_{C}\operatorname{Re}\Psi=\operatorname{Re}\Psi(z)=\min_{\overline{\operatorname{co}}(\operatorname{ext}C)}\operatorname{Re}\Psi>\operatorname{Re}\Psi(x)\geq \min_{C}\operatorname{Re}\Psi,$$

which leads to a contradiction. Therefore $\overline{co}(\operatorname{ext} C) = C$.

Example 1.40. Let \mathcal{H} be a Hilbert space. Then

$$ext(\mathcal{H})_1 = \{ v \in \mathcal{H} \mid ||v|| = 1 \}.$$

First we prove the inclusion (\supseteq) . Suppose that ||v|| = 1 and v = tx + (1 - t)y, where $t \in (0,1)$ and $x,y \in (\mathcal{H})_1$. We have

$$1 = ||v||^{2}$$

$$= ||tx + (1 - t)y||^{2}$$

$$= \langle tx + (1 - t)y, tx + (1 - t)y \rangle$$

$$= t^{2}||x||^{2} + (1 - t)^{2}||y||^{2} + 2t(1 - t)\operatorname{Re}\langle x, y \rangle$$

$$\leq t^{2} + (1 - t)^{2} + 2t(1 - t) = 1.$$

We get equality in the Cauchy-Schwartz inequality, so x, y are linearly dependent and there-

for equal. For the reverse inclusion, let $v \in \text{ext}(\mathcal{H})_1$. If ||v|| < 1, then

$$v = \frac{1}{2} \cdot \frac{v}{\|v\|} + \frac{1}{2} \cdot (2\|v\| - 1) \frac{v}{\|v\|},$$

so v cannot be an extreme point of $(\mathcal{H})_1$.

Example 1.41. We have the identity

$$ext(\mathcal{B}(\mathcal{H}))_1 = \{ V \in \mathcal{B}(\mathcal{H}) \mid V \text{ or } V^* \text{ is an isometry} \}.$$

Here, we will just prove the inclusion (\supseteq) . Let $V \in \mathcal{B}(\mathcal{H})$ be an isometry and suppose V = tS + (1-t)T for $t \in (0,1)$ and $S,T \in (\mathcal{B}(\mathcal{H}))_1$. For $x \in \mathcal{H}$ we have:

$$||x|| = ||Vx||$$

$$= ||tSx + (1-t)Tx||$$

$$\leq t||Sx|| + (1-t)||Tx||$$

$$\leq t||S|||x|| + (1-t)||T|||x||$$

$$\leq t||x|| + (1-t)||x|| = ||x||.$$

Since we have equality, we get ||S|| = ||T|| = 1 and ||Sx|| = ||Tx|| = ||x||. So S, T are isometries. For every $x \in \partial(\mathcal{H})_1 = \text{ext}(\mathcal{H})_1$, we have

$$Vx = t \cdot Sx + (1 - t)Tx$$

and by the previous example that implies Tx = Sx = Vx, so we really have S = T = V. We use the same argument if V^* is an isometry. For now, we lack some tools to prove the reverse inclusion. However, we will later prove statement that is a generalization to C^* -algebras.

Example 1.42. If X be a Banach space, then $(X^*)_1$ is weak-* compact (by Banach-Alaoglu), so Krein-Milman gives us $(X^*)_1 = \overline{\operatorname{co}}(\operatorname{ext}(X^*)_1)$. Hence $(X^*)_1$ has a lot of extreme points. As a corollary, c_0 , $L^1[0,1]$ and C[0,1] are not duals of Banach spaces.

Theorem 1.43 (Milman).

Let X be a LCS, $K \subseteq X$ compact and assume $\overline{\operatorname{co}}(K)$ is compact. Then $\operatorname{ext}(\overline{\operatorname{co}}(K)) \subseteq K$.

Proof. Assume there exists $x_0 \in \text{ext}(\overline{\text{co}}(K)) \setminus K$. Then there exists a basis neighborhood V of 0 in X such that $(x_0 + \overline{V}) \cap K = \emptyset$, or equivalently, $x_0 \notin K + \overline{V}$. If we write $K \subseteq \bigcup_{x \in K} (x + V)$, we get

$$K \subseteq \bigcup_{j=1}^{n} (x_j + V).$$

Form $K_j = \overline{\operatorname{co}}(K \cap (x_j + V))$. Then K_j is convex and compact since $K_j \subseteq \overline{\operatorname{co}}(K)$. We also

have $K_j \subseteq \overline{x_j + V} = x_j + \overline{V}$ since V is convex. Also, $K \subseteq K_1 \cup \cdots \cup K_n$. Next we prove that $\operatorname{co}(K_1 \cup \cdots \cup K_n)$ is compact. Define

$$\Sigma = \{(t_1, \dots, t_n) \in [0, 1]^n \mid \sum_{i=1}^n t_i = 1\}$$

and the function

$$f: \Sigma \times K_1 \times \cdots \times K_n \to X, \quad (t, k_1, \dots, k_n) \mapsto \sum_{j=1}^k t_j k_j.$$

Denote $C := \operatorname{im} f$. Obviously, $C \subseteq \operatorname{co}(K_1 \cup \cdots \cup K_n)$ and C is a convex compact set. Furthermore, $C \supset K_j$ for each j, so $C = \operatorname{co}(K_1 \cup \cdots \cup K_n)$. From there, we get

$$\overline{\operatorname{co}}(K) \subseteq \overline{\operatorname{co}}(K_1 \cup \cdots \cup K_n) = \operatorname{co}(K_1 \cup \cdots \cup K_n).$$

But since $K_j \subseteq \overline{\operatorname{co}}(K)$ for all j, we deduce $\overline{\operatorname{co}}(K) = \overline{\operatorname{co}}(K_1 \cup \cdots \cup K_n)$. We know that $x_0 \in \overline{\operatorname{co}}(K)$, so

$$x_0 = t_1 y_1 + \dots + t_n y_n$$

for some $t_i \in [0,1]$, $\sum t_i = 1$ and $y_j \in K_j$. But $x_0 \in \text{ext}(\overline{\text{co}})(K)$, so $y_j = x_0$ for some j. So we get $x_0 \in K_j \subseteq x_j + \overline{V} \subseteq K + \overline{V}$, a contradiction.

Remark. (1.) In finite dimensions, the convex hull of a compact set is compact. In infinite dimensions this fails.

(2.) The set ext(C) is not always closed, even if $C \subseteq \mathbb{R}^3$ is convex and compact.

ADD A PICTURE

2 C^* -algebras and continuous functional calculus

2.1 Spectrum

Let A be a complex algebra with a unit 1 and

$$GL(A) = \{ a \in A \mid a \text{ is invertible} \}.$$

If $x \in A$, we define the spectrum

$$\sigma_A(x) = \{ \lambda \in \mathbb{C} \mid x - \lambda \cdot 1 \notin GL(A) \}.$$

Proposition 2.1. Let A be a complex algebra with unity 1 and $x, y \in A$. Then

$$\sigma_A(xy) \cup \{0\} = \sigma_A(yx) \cup \{0\}.$$

Proof. Suppose $1 - xy \in GL(A)$. Formally, we can write

$$(1-xy)^{-1} = 1 + xy + (xy)^2 + \cdots$$

and

$$(1 - yx)^{-1} = 1 + yx + (yx)^{2} + \dots = 1 + y(1 - xy)^{-1}x.$$

From this, we claim that indeed $1 - yx \in GL(A)$ and

$$(1 - yx)^{-1} = 1 + y(1 - xy)^{-1}x.$$

The proof is straightforward: we have

$$(1+y(1-xy)^{-1}x)(1-yx) = (1-yx) + y(1-xy)^{-1}(x-xyx)$$
$$= (1-yx) + y(1-xy)^{-1}(1-xy)x$$
$$= (1-yx) + yx = 1$$

and

$$(1 - yx)(1 + y(1 - xy)^{-1}x) = (1 - yx) + (y - yxy)(1 - xy)^{-1}x$$
$$= (1 - yx) + y(1 - xy)(1 - xy)^{-1}x$$
$$= (1 - yx) + yx = 1.$$

Now the proof of the statement is at hand: if $\lambda \in \sigma_A(xy) \setminus \{0\}$, then

$$\lambda - xy \notin \operatorname{GL}(A) \Rightarrow 1 - \frac{x}{\lambda}y \notin \operatorname{GL}(A) \Rightarrow 1 - y\frac{x}{\lambda} \notin \operatorname{GL}(A) \Rightarrow \lambda - yx \notin \operatorname{GL}(A).$$

Thus, $\lambda \in \sigma_A(yx)$. Similarly, if $\lambda \in \sigma_A(yx) \setminus \{0\}$, then $\lambda \in \sigma_A(xy)$.

Example 2.2. Let $S, S^* \in \mathcal{B}(\ell^2)$ be the right and left shift operators, respectively. Then $SS^* = I$, but

$$SS^*(x_1, x_2, \dots) = (0, x_1, x_2, \dots).$$

2.2 Banach and C^* -algebras

- **Definition 2.3.** A Banach algebra is a Banach space A that is also an algebra, satisfying $||xy|| \le ||x|| ||y||$ for all $x, y \in A$. If a Banach algebra has a unit 1, we also demand ||1|| = 1.
 - An involution on a Banach algebra A is a skew-linear map

$$*: A \to A, \quad a \mapsto a^*$$

satisfying

$$(xy)^* = y^*x^*, \quad (x^*)^* = x, \quad ||x^*|| = ||x||.$$

A C^* -algebra is a Banach *-algebra A that also satisfies $||x^*x|| = ||x||^2$ for all $x \in A$.

Unless otherwise mentioned, all algebras in this section are unital.

Are all our Banach algebras complex? We probably need that for nonempty spectra.

- **Proposition 2.4.** We collect some basic properties of Banach algebras.
- (1.) If A is a Banach *-algebra, then $(x^*)^{-1} = (x^{-1})^*$ and $\sigma_A(x^*) = (\sigma_A(x))^*$.

(2.) Let A be a Banach algebra. If
$$||x|| < 1$$
, then $1 - x \in GL(A)$ and
$$(1 - x)^{-1} = 1 + x + x^2 + \cdots$$

As a consequence, if ||1-x|| < 1, then $x \in GL(A)$.

- (3.) Let A be a Banach algebra. Then $GL(A) \subseteq A$ is open, and the map $x \mapsto x^{-1}$ is continuous on GL(A).
- (4.) If A is a Banach algebra and $x \in A$, then $\sigma_A(x)$ is a nonempty compact set.
- *Proof.* (1.) Suppose that the inverse $(x^*)^{-1}$ exists. Then $(x^*)^{-1} \cdot (x^*) = 1$, so starring gives us $(x^*)^* \cdot ((x^*)^{-1})^* = 1$ and $x \cdot ((x^*)^{-1})^* = 1$. Similarly, we have $(x^*) \cdot (x^*)^{-1} = 1$, which implies $((x^*)^{-1})^* \cdot x = 1$. This means that x is invertible and $((x^*)^{-1})^* = x^{-1}$. Starring this equation now gives us $(x^*)^{-1} = (x^{-1})^*$. For the opposite direction, suppose that x is invertible. Then

$$(x^{-1})^* \cdot x^* = (x \cdot x^{-1})^* = 1^* = 1$$

and

$$x^* \cdot (x^{-1})^* = (x^{-1} \cdot x)^* = 1^* = 1,$$

which means that x^* is invertible and $(x^*)^{-1} = (x^{-1})^*$. The rest is a matter of simple computation:

$$\lambda \in \sigma_A(x^*) \Leftrightarrow x^* - \lambda \notin \operatorname{GL}(A) \Leftrightarrow (x - \overline{\lambda})^* \notin \operatorname{GL}(A)$$
$$\Leftrightarrow (x - \overline{\lambda}) \notin \operatorname{GL}(A) \Leftrightarrow \overline{\lambda} \in \sigma_A(x)$$
$$\Leftrightarrow \lambda \in (\sigma_A(x))^*.$$

If $||x|| \leq 1$, then the series $\sum_{n=0}^{\infty} x^n$ converges in norm to some x'. Since multiplication between elements of a Banach algebra is norm-continuous, we get we get

$$(1-x)x' = (1-x) \cdot \lim_{k \to \infty} \sum_{n=1}^{k} x^n = \lim_{k \to \infty} (1-x) \cdot \sum_{n=1}^{k} x^n = \lim_{k \to \infty} 1 - x^{k+1} = 1$$

and similarly for x'(1-x). Let $y \in GL(A)$. If $||x-y|| \le \frac{1}{||y^{-1}||}$, then

$$||1 - xy^{-1}|| = ||(y - x)y^{-1}|| \le ||y - x|| ||y^{-1}|| \le 1,$$

which implies that $xy^{-1} \in GL(A)$, and thus $x = xy^{-1} \cdot y \in GL(A)$. We have shown that GL(A) is open. Using the same notation and noting that $(xy^{-1})^{-1} = (1 - (1 - xy^{-1}))^{-1}$, we get

$$\|(xy^{-1})^{-1}\| \le \sum_{n=0}^{\infty} \|(1-xy^{-1})\|^n \le \sum_{n=0}^{\infty} \|y^{-1}\|^n \|x-y\|^n \le \frac{1}{1-\|y^{-1}\|\cdot \|x-y\|}.$$

Now,

$$\begin{split} \|x^{-1} - y^{-1}\| &= \|x^{-1}(y - x)y^{-1}\| \\ &\leq \|y^{-1}(xy^{-1})^{-1}\| \|y - x\| \|y^{-1}\| \\ &\leq \|(xy^{-1})^{-1}\| \|y - x\| \|y^{-1}\|^2 \\ &\leq \frac{\|y^{-1}\|^2}{1 - \|y^{-1}\| \cdot \|x - y\|} \|y - x\|. \end{split}$$

Since the function $t \mapsto \frac{\|y^{-1}\|^2}{1-\|y^{-1}\| \cdot t}t$ is continuous at t=0, the map $x \mapsto x^{-1}$ is continuous. First, we prove compactness by showing that $\sigma_A(x)$ is bounded and closed. Suppose there exists $\lambda \in \sigma_A(x)$, such that $|\lambda| > \|x\|$. Then $\left(1 - \frac{x}{\lambda}\right)$ is invertible by (2.), so $(-\lambda) \cdot \left(1 - \frac{x}{\lambda}\right) = x - \lambda$ is invertible as well. But this contradicts the fact that $\lambda \in \sigma_A(x)$, so we have shown that $\sigma_A(x) \subseteq \overline{B(0,\|x\|)}$. Next, we prove that the spectrum is closed. Define a continuous map

$$\mathbb{C} \to A$$
, $\lambda \mapsto x - \lambda$

and notice that the inverse image of GL(A) (which is open by (3.)) is exactly $\mathbb{C} \setminus \sigma_A(x)$. This means that $\mathbb{C} \setminus \sigma_A(x)$ is open and $\sigma_A(x)$ is closed. For non-emptyness, we have to employ some standard Banach algebra techniques. We say that a function from f from a domain $\Omega \subseteq \mathbb{C}$ to a Banach space X is analytical if there exists a limit

$$f'(z_0) := \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

for every $z_0 \in \Omega$ and the function f' is continuous on Ω . A lot of theory for complex analytic functions also applies to Banach space-valued analytic functions; in particular, we have Cauchy's integral formula, Liouville's theorem and the fact that every vector valued analytic function can be locally expressed as a power series with coefficients in X. Now we can define the resolvent function

$$F: \mathbb{C} \setminus \sigma_A(x) \to A, \quad F(z) = (z - x)^{-1}.$$

It's routine to show that F is analytic and its derivative is $F'(z) = (z - x)^{-2}$. Now for $z \in \mathbb{C} \setminus \overline{B(0, ||x||)}$, we have $F(z) = z^{-1} \cdot (1 - a/z)$, which goes to 0 as $z \to \infty$. Now if $\sigma_A(x) = \emptyset$, then F would be an entire function that vanishes at ∞ . By Liouville's theorem, F is constant and so F' = 0. This is a contradiction.

Theorem 2.5 (Gelfand-Mazur).

If A is Banach algebra that is also a division ring, then $A = \mathbb{C}$.

Proof. Let $x \in A$ and $\lambda \in \sigma_A(x)$. Then $x - \lambda \cdot 1 \notin GL(A)$, implying $x - \lambda = 0$, hence $x = \lambda \in \mathbb{C}$.

Definition 2.6. If $f(x) = \sum_{j=0}^{n} a_j x^j$ is a polynomial and $a \in A$, we define $f(a) = \sum_{j=0}^{n} a_j a^j \in A$.

Theorem 2.7 (Spectral mapping theorem for polynomials).

Let A be a complex unitary algebra and $f \in \mathbb{C}[x]$. Then $f(\sigma_A(a)) = \sigma_A(f(a))$ for all $a \in A$.

Proof. First, we prove the inclusion (\subseteq). If $\lambda \in \sigma_A(a)$ and $f(x) = \sum_{j=0}^n a_j x^j$, then

$$f(x) - f(\lambda) = \sum_{j=1}^{n} a_j (x^j - \lambda^j) = (x - \lambda) \cdot \sum_{j=1}^{n} a_j \sum_{k=0}^{j-1} x^k \lambda^{j-1-k}.$$

Substituting x = a, we obtain

$$f(a) - f(\lambda) = (a - \lambda) \left(\sum_{j=1}^{n} a_j \sum_{k=0}^{j-1} a^k \lambda^{j-1-k} \right).$$

Since $a - \lambda$ commutes with the second factor, $f(a) - f(\lambda)$ is not invertible and $f(\lambda) \in \sigma_A(f(a))$. For the converse inclusion (\supseteq) , assume $\mu \notin f(\sigma_A(a))$. We factor

$$f(x) - \mu = a_n(x - \lambda_1) \cdots (x - \lambda_n).$$

Since $f(\lambda) - \mu \neq 0$ for any $\lambda \in \sigma_A(a)$, it follows that $\lambda_i \notin \sigma_A(a)$ for all i. Therefore, $f(a) - \mu \in GL(A)$.

Definition 2.8. Let A be a Banach algebra and $x \in A$. The spectral radius of x is

$$r(x) = \sup_{\lambda \in \sigma_A(x)} |\lambda|.$$

Remark. By proposition 2.1, we have r(xy) = r(yx).

In the introductory course, we proved the following.

Theorem 2.9 (Spectral radius formula).

Let A be a Banach algebra and $x \in A$. Then $\lim_{n\to\infty} \|x^n\|^{\frac{1}{n}}$ exists and is equal to r(x).

Definition 2.10. Let A be a Banach *-algebra and $x \in A$.

- x is normal iff $xx^* = x^*x$.
- x is self-adjoint iff $x^* = x$.
- x is skew self-adjoint iff $x^* = -x$.

The set of all self-adjoint operators is denoted as $A_{\rm sa}$.

Remark. Every $a \in A$ can be uniquely expressed as a sum of a self-adjoint and skew self-adjoint element:

$$a = \frac{a + a^*}{2} + \frac{a - a^*}{2}.$$

Alternatively, we can uniquely write it in the form of

$$a = \left(\frac{a+a^*}{2}\right) + i \cdot \left(\frac{a-a^*}{2i}\right)$$

where both terms in parentheses are self-adjoint.

Corollary 2.11. Let A be a Banach *-algebra and $x \in A$ normal. Then $r(x^*x) \le r(x)^2$. If A is a C^* -algebra, then $r(x^*x) = r(x)^2$.

Proof. We use the spectral radius formula:

$$r(x^*x) = \lim_{n \to \infty} \|(x^*x)^n\|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \|(x^*)^n x^n\|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \|(x^n)^* x^n\|^{\frac{1}{n}}$$

$$\leq \lim_{n \to \infty} \|x^n\|^{\frac{2}{n}} = r(x)^2.$$

If A is a C^* -algebra, we have an equality in the last line of the above calculation.

Proposition 2.12. Let A be a C^* -algebra and $x \in A$ normal. Then r(x) = ||x||.

Proof. First, assume x is self-adjoint. Then

$$||x^2|| = ||xx^*|| = ||x||^2.$$

By induction, we get $||x^{2^n}|| = ||x||^{2^n}$ for every $n \in \mathbb{N}$. Therefore,

$$r(x) = \lim_{n \to \infty} \|x^n\|^{\frac{1}{n}} = \lim_{n \to \infty} \|x^{2^n}\|^{\frac{1}{2^n}} = \|x\|.$$

If x is only normal, then

$$||x||^2 = ||x^*x|| = r(x^*x) = r(x)^2,$$

which implies ||x|| = r(x).

Corollary 2.13. Let A, B be C^* -algebras and $\Phi: A \to B$ a *-homomorphism $(\Phi(x^*) = \Phi(x)^*)$. Then Φ is a contraction. Furthermore, if Φ is a *-isomorphism, then it is isometric.

Proof. Clearly, Φ maps invertible elements to invertible elements, so $\Phi(GL(A)) \subseteq GL(B)$. This implies $\sigma_B(\Phi(x)) \subseteq \sigma_A(x)$, hence $r(\Phi(x)) \leq r(x)$. Then

$$\|\Phi(x)\|^2 = \|\Phi(x)\Phi(x)^*\| = \|\Phi(x)\Phi(x^*)\|$$
$$= \|\Phi(xx^*)\| = r(\Phi(xx^*))$$
$$\leq r(xx^*) = \|xx^*\| = \|x\|^2.$$

If Φ is a *-isomorphism, we apply the same reasoning to its inverse, which implies that Φ must be an isometry.

Corollary 2.14. If A is a *-algebra, then there exists at most one norm on A that makes it into a C^* -algebra.

Proof. Considering the identity map

$$(A, |||_1) \to (A, |||_2),$$

it is a *-isomorphism, so it preserves the norm by the previous corollary.

Lemma 2.15. Let A be a C^* -algebra and $x \in A$ self-adjoint. Then $\sigma_A(x) \subseteq \mathbb{R}$.

Proof. Suppose $\lambda = \alpha + i\beta \in \sigma_A(x)$ for some $\alpha, \beta \in \mathbb{R}$. Define $y = x - \alpha + it$ for $t \in \mathbb{R}$. Then $i(\beta + t) \in \sigma_A(y)$ and y is normal. Thus,

$$|i(\beta + t)|^2 = (\beta + t)^2 \le r(y)$$

$$= ||y||^2 = ||yy^*||$$

$$= ||(x - \alpha)^2 + t^2|| \le ||x - \alpha||^2 + t^2.$$

Simplifying, we get $\beta^2 + 2\beta t \leq ||x - \alpha||^2$, and since $t \in \mathbb{R}$ was arbitrary, we have $\beta = 0$. \square

Lemma 2.16. Let A be a Banach algebra and $x \notin GL(A)$. If $(x_n)_n \subseteq GL(A)$ satisfies $x_n \to x$, then $||x_n^{-1}|| \to \infty$.

Proof. If the sequence $||x_n^{-1}||$ is bounded, then

$$||1 - xx_n^{-1}|| = ||(x_n - x)x_n^{-1}|| \le ||x_n - x|| \cdot ||x_n^{-1}|| \to 0.$$

In particular, there exists some $n \in \mathbb{N}$ such that $||1-xx_n^{-1}|| < 1$, which implies $xx_n^{-1} \in GL(A)$ and therefore $x = (xx_n^{-1})x_n \in GL(A)$, a contradiction.

Proposition 2.17. Let B be a C^* -algebra and $A \subseteq B$ a unital C^* -subalgebra. Then for all

 $x \in A$, we have $\sigma_A(x) = \sigma_B(x)$.

Proof. Obviously, $GL(A) \subseteq GL(B)$. For a self adjoint $x \in A \setminus GL(A)$, we have $it \notin \sigma_A(x)$ for $t \in \mathbb{R}$. So there exists $(x - it)^{-1} \in A$. Clearly,

$$x - it \in GL(A) \xrightarrow[t \to 0]{} x \notin GL(A),$$

thus $\|(x-it)^{-1}\| \to \infty$. Since the inverse function is continuous, this immediately yields $x \notin GL(B)$. For general $x \in A$: if $x \in GL(B)$, then $x^*x \in GL(B)$ is self-adjoint. By the first part of the proof, $x^*x \in GL(A)$. It follows that

$$x^{-1} = (x^*x)^{-1}x^* \in A$$

so $x \in GL(A)$.

Example 2.18. Let X be a topological space and $C_b(X)$ be the set of continuous bounded complex functions on X, endowed with the sup metric. Then $C_b(X)$ is a C^* -algebra (where $f^*(x) = \overline{f(x)}$). If X is compact, then C(X) is also an C^* -algebra.

Example 2.19. Define $C_0(X)$ as the subset of $f \in C_b(X)$ that vanish at infinity $(\forall \varepsilon > 0)$: $\exists K \subseteq X$ compact, such that $\|f|_{X \setminus K} \| < \varepsilon$. Then $C_0(X)$ is a (possibly non-unital) C^* -subalgebra of $C_b(X)$.

Example 2.20. Let (X, μ) be a measure space. Then $L^{\infty}(X, \mu)$, the set of essentially bounded functions on X endowed with the essential supremum norm, is a unital abelian C^* -algebra.

Example 2.21. For a Hilbert space \mathcal{H} , $\mathcal{B}(\mathcal{H})$ is a non-abelian C^* -algebra: for all $x \in \mathcal{B}(\mathcal{H})$ we have $||x^*x|| = ||x||^2$.

Example 2.22. If Γ is a group, we define

$$\ell^1(\Gamma) = \{ (\alpha_s)_{s \in \Gamma} \mid \alpha_s \in \mathbb{C}, \ \sum_{s \in \Gamma} |\alpha_s| < \infty \}.$$

We can then introduce the convolution multiplication on $\ell^1(\Gamma)$:

$$(\alpha * \beta)_s = \sum_{t \in \Gamma} \alpha_{st} \beta_{t^{-1}}.$$

This is a Banach algebra; it is even a Banach *-algebra with involution $(\alpha^*)_s = \overline{\alpha_{s^{-1}}}$. However, it is not a C^* -algebra if the group Γ has more than one element. In that case,

there exists $z \in \Gamma$ such that $z \neq 1$. Define $\alpha = (\alpha_s) \in \ell^1(G)$ such that

$$\alpha_s = \begin{cases} 1; & s = 1 \\ i; & s = z, z^{-1} \\ 0; & otherwise \end{cases}$$

If $z \neq z^{-1}$, we have

$$\|\alpha\alpha^*\| = \sum_{s \in \Gamma} \left| \sum_{t \in \Gamma} \alpha_{st} \overline{\alpha_t} \right|$$

$$= \sum_{s \in \Gamma} (3 \cdot \mathbf{1}_{s=1} + \mathbf{1}_{s=z^2} + \mathbf{1}_{s=z^{-2}})$$

$$< \sum_{s \in \Gamma} (3 \cdot \mathbf{1}_{s=1} + 2 \cdot \mathbf{1}_{s=z} + 2 \cdot \mathbf{1}_{s=z^{-1}} + \mathbf{1}_{s=z^2} + \mathbf{1}_{s=z^{-2}})$$

$$= \sum_{s \in \Gamma} \sum_{t \in \Gamma} |\alpha_{st} \alpha_t| = \sum_{t \in \Gamma} |\alpha_t| \cdot \sum_{s \in \Gamma} |\alpha_{st}|$$

$$= \sum_{t \in \Gamma} |\alpha_t| \cdot \sum_{s \in \Gamma} |\alpha_s| = \|\alpha\|^2.$$

Otherwise, we get

$$\|\alpha\alpha^*\| = \sum_{s \in \Gamma} \left| \sum_{t \in \Gamma} \alpha_{st} \overline{\alpha_t} \right|$$

$$= \sum_{s \in \Gamma} (2 \cdot \mathbf{1}_{s=1})$$

$$< \sum_{s \in \Gamma} (2 \cdot \mathbf{1}_{s=1} + 2 \cdot \mathbf{1}_{s=z})$$

$$= \sum_{s \in \Gamma} \sum_{t \in \Gamma} |\alpha_{st} \alpha_t| = \sum_{t \in \Gamma} |\alpha_t| \cdot \sum_{s \in \Gamma} |\alpha_{st}|$$

$$= \sum_{t \in \Gamma} |\alpha_t| \cdot \sum_{s \in \Gamma} |\alpha_s| = \|\alpha\|^2.$$

Therefore, $\ell^1(\Gamma)$ is not a C^* -algebra if Γ has order greater than one.

2.3 Gelfand transform

Definition 2.23. Let A be an abelian Banach algebra. The *spectrum* of A is defined as

 $\sigma(A) := \{\varphi: A \to \mathbb{C} \ | \ \varphi \neq 0 \text{ continuous algebra homomorphism}\} \subseteq A^*$

endowed with a weak-* topology. Its elements are called *characters*.

If $\varphi \in \sigma(A)$, then $\ker \varphi \cap \operatorname{GL}(A) = \emptyset$. For $x \in A$, we have

$$\varphi(x - \varphi(x)) = \varphi(x) - \varphi(\varphi(x) \cdot 1)$$

$$= \varphi(x) - \varphi(x)\varphi(1)$$

$$= \varphi(x) - \varphi(x) = 0,$$

which implies that $\varphi(x) \in \sigma_A(x)$. Consequently, $|\varphi(x)| \leq r(x) \leq ||x||$, giving us the bound $||\varphi|| \leq 1$. But since $\varphi(1) = 1$, we get $||\varphi|| = 1$. We know that $\sigma(A)$ is closed in $(A^*)_1$, making $\sigma(A)$ is a compact Hausdorff space by Banach-Alaoglu.

Proposition 2.24. Let A be a C^* -algebra and $h: A \to \mathbb{C}$ a non-zero homomorphism (not necessarily a *-homomorphism). Then the following statements hold:

- (1.) $h(a) \in \mathbb{R}$ for self-adjoint a;
- (2.) $h(a^*) = \overline{h(a)}$ for all $a \in A$;
- (3.) $h(aa^*) \ge 0$ for all $a \in A$;
- (4.) if $uu^* = 1$ or u^*u , then |h(u)| = 1.

Remark. The first three item also hold for non-unital algebras.

Proof. (1.) Since $h(a) \in \sigma_A(a)$ and self-adjoint elements have real spectrum, this is trivial.

(2.) Let $a = a_1 + ia_2$, where a_1, a_2 are self-adjoint. Then $a^* = a_1 - ia_2$ and

$$h(a^*) = h(a_1 - ia_2) = h(a_1) - ih(a_2) = \overline{h(a_1) + ih(a_2)} = \overline{h(a)}.$$

- (3.) Follows from (b).
- (4.) If u is unitary, then $|h(u)|^2 = h(u)h(u^*) = h(uu^*) = h(1) = 1$.

Corollary 2.25. Every nonzero algebra homomorphism $h: A \to \mathbb{C}$ is a character.

Proposition 2.26. Let A be an abelian Banach algebra. Then the map $\varphi \mapsto \ker \varphi$ is a bijection from $\sigma(A)$ to the set of all maximal ideals of A.

Proof. If $\varphi \in \sigma(A)$, then $\ker \varphi \triangleleft A$. Suppose that $\ker \varphi \subsetneq I \triangleleft A$. Then there exists an element $x \in I \setminus \ker \varphi$. Thus, $\varphi(x) \neq 0$ and from $1 - \frac{x}{\varphi(x)} \in \ker \varphi$. From there, it follows that

$$1 = \left(1 - \frac{x}{\varphi(x)}\right) + \frac{1}{\varphi(x)} \cdot x \in I.$$

Hence, $\ker \varphi$ is a maximal ideal. Conversely, let $I \triangleleft A$ be a maximal ideal. Then $I \cap \operatorname{GL}(A) = \emptyset$ and since $\operatorname{GL}(A)$ is open, we also have $\overline{I} \cap \operatorname{GL}(A) = \emptyset$. Thus, $\overline{I} \triangleleft A$ and $1 \notin \overline{I}$, so $I \subseteq \overline{I} \subseteq A$. By maximality, $\overline{I} = I$. Then A/I is a Banach algebra and since I is maximal, every nonzero element in A/I is invertible. By Gelfand-Mazur, $A/I \cong \mathbb{C}$. The projection $\pi : A \to A/I \cong \mathbb{C}$ is in $\sigma(A)$ and $\ker \pi = I$.

Corollary 2.27. Let A be an abelian Banach algebra and $x \in A \setminus GL(A)$. Then there exists $\varphi \in \sigma(A)$ such that $\varphi(x) = 0$. In particular, $\sigma(A) \neq 0$.

Proof. If $x \notin GL(A)$, then it generates an ideal $\langle x \rangle \subsetneq A$. By Zorn's lemma, $\langle x \rangle$ has to be included in some maximal ideal $I \lhd A$. By the previous proposition, there exists a character $\varphi : A \to \mathbb{C}$ in $\sigma(A)$ such that $x \in I = \ker \varphi$.

Theorem 2.28 (Stone-Čech).

Let X be a topological space. For $x \in X$, let $\beta_x : C_b(X) \to \mathbb{C}$ be the evaluation homomorphism $f \mapsto f(x)$. Then

$$\beta: X \to \sigma(C_b(X)), \quad x \mapsto \beta_x$$

is a continuous map whose image is dense in the codomain and has the following universal property: if $\pi: X \to K^{T_2, compact}$ is continuous, then there exists a unique continuous mapping

$$\beta_{\pi}: \sigma(C_b(X)) \to K$$

such that $\pi(x) = \beta_{\pi}(\beta_x)$ for all $x \in X$. In particular, if X is compact T_2 , then β is a homeomorphism.

$$X \xrightarrow{\pi} K^{T_2, compact}$$

$$\downarrow^{\beta} \qquad \exists ! \beta_{\pi}$$

$$\sigma(C_b(X))$$

- *Proof.* (1.) First, we prove that β is continuous. Let $(x_i)_i$ ibes a net in X and $x_i \to x$, then for all $f \in C_b(X)$ we have $\beta_{x_i} = f(x_i) \to f(x) = \beta_x(f)$. Hence $\beta_{x_i} \to \beta_x$ in the weak-* topology.
 - (2.) Next, we prove that im β is dense. Assume otherwise and pick $\varphi \in \sigma(C_b(X)) \setminus \overline{\beta(X)}$. Define $I := \ker \varphi$. For all $\psi \in \overline{\beta(X)}$, there exists $f_{\psi} \in I$ such that $f_{\psi} \in \ker \psi$. Hence, there exists c_{ψ} and a neighborhood U_{ψ} of ψ such that $|\widetilde{\psi}(f)| > c_{\psi}$ for all $\widetilde{\psi} \in U_{\psi}$. Thus, $\overline{\beta(X)} \subseteq U_{\psi \in \overline{\beta(X)}}U_{\psi}$. By compactness, there exists a finite subcovering of $\overline{\beta(X)}$, so $\overline{\beta(X)} \subseteq \bigcup_{i=1}^n U_{\psi_i}$. Then there exist $f_{\psi_1}, \ldots, f_{\psi_n} \in I$ and c > 0 such that

$$\sum_{i=1}^{n} \psi(|f_{\psi_i}|^2) > c, \quad \forall \psi \in \overline{\beta(X)}.$$

Hence,

$$\sum_{i=1}^{n} |f_{\psi_i}|^2(x) = \sum_{i=1}^{n} \beta(x)(|f_{\psi_i}|^2) > c, \quad \forall x \in X.$$

- It follows that $\sum_{i=1}^n |f_{\psi_i}|^2 \in I$ and $(\sum |f_{\psi_i}|^2)^{-1} \in C_b(X)$. As a result, $I = C_b(X)$.
- (3.) If X is compact and Hausdorff, then β is surjective since $\beta(X)$ is dense and compact. Also, β is injective since $C_b(X)$ separates points. In that case, β is a continuous bijection between compact Hausdorff spaces, and therefore a homeomorphism.
- (4.) For the universal property: let $\pi: X \to K$, where K is compact Hausdorff. Then there exists a continuous map

$$\pi^*: C(K) \to C_b(X), \quad f \mapsto f \circ \pi.$$

This induces a continuous map

$$\widetilde{\pi}: \sigma(C_b(X)) \to \sigma(C(K)), \quad \varphi \mapsto \varphi \circ \pi^*.$$

Since K is compact Hausdorff, the map $\beta^K:K\to\sigma(C(K))$ is a homeomorphism. Define

$$\beta_{\pi}: \sigma(C_b(X)) \to K, \quad \beta_{\pi} = (\beta^K)^{-1} \circ \widetilde{\pi}.$$

Then we have

$$\widetilde{\pi}(\beta_x)(g) = \beta_x(\pi^*(g)) = \pi^*(g)(x) = g(\pi(x)) = \beta_{\pi(x)}^K(g).$$

By left multiplying by $(\beta^K)^{-1}$, we get $\beta_{\pi}(\beta_x) = \pi(x)$.

Definition 2.29. Let A be an abelian Banach algebra. The Gelfand transform of A is the map

$$\Gamma: A \to C(\sigma(A)), \quad x \mapsto (\varphi \mapsto \varphi(x)).$$

Theorem 2.30.

Let A be an abelian Banach algebra. Then Γ is a homomorphism, contraction and for $x \in A$ we have

$$\Gamma(x) \in \mathrm{GL}(C(\sigma(A))) \Leftrightarrow x \in \mathrm{GL}(A).$$

Proof. The homomorphism part is routine. We prove that Γ is a contraction as follows:

$$\|\Gamma(x)\| = \sup_{\varphi \in \sigma(A)} \|\Gamma(x)\varphi\| = \sup_{\varphi} |\varphi(x)| \leq \|x\|.$$

Next, we prove the equivalence. The right implication (\Rightarrow) is trivial, since

$$\Gamma(x^{-1})\Gamma(x) = \Gamma(x^{-1}x) = \Gamma(1) = 1.$$

Now the converse (\Leftarrow): if $x \notin \operatorname{GL}(A)$, then by corollary 2.27 there exists $\varphi \in \sigma(A)$ such that $\varphi(x) = 0$. Then $\Gamma(x)(\varphi) = \varphi(x) = 0$, so the continuous map $\Gamma(x)$ is not invertible.

Corollary 2.31. Let A be an abelian Banach algebra. Then we have

$$\sigma(\Gamma(x)) = \sigma(x)$$

and

$$\|\Gamma(x)\| = r(\Gamma(x)) = r(x).$$

Theorem 2.32 (Gelfand).

Let A be an abelian C^* -algebra. Then Γ is an isometric *-isomorphism.

Proof. For a self-adjoint $x \in A$ we have $\sigma(\Gamma(x)) = \sigma(x) \subseteq \mathbb{R}$. Then $\overline{\Gamma(x)} = \Gamma(x)$. An arbitrary $x \in A$ can be written as x = a + ib for self-adjoint $a = \frac{x + x^*}{2}$ and $b = \frac{i(x^* - x)}{2}$. Then

$$\Gamma(x^*) = \Gamma(a - ib) = \Gamma(a) - i\Gamma(b) = \overline{\Gamma(a) + i\Gamma(b)} = \overline{\Gamma(x)}.$$

This implies that Γ is a *-homomorphism. Since A is abelian, each $x \in A$ is normal so

$$||x|| = r(x) = r(\Gamma(x)) = ||\Gamma(x)||$$

and Γ is an isometry. In particular, Γ is injective. We know that $\Gamma(A)$ is closed under *. Since Γ is isometric, the subalgebra $\Gamma(A) \subseteq C(\sigma(A))$ is complete in the norm, so it is closed. It can be easily checked that $\Gamma(A)$ separates points. By Stone-Weierstrass, $\Gamma(A) = C(\sigma(A))$. \square

Remark. Let A be a C^* -algebra. If $x \in A$ is normal, then it generates an abelian C^* -subalgebra of A:

$$C^*(x) = \overline{\{p(x, x^*) \mid p \in \mathbb{C}[x, y]\}}.$$

Corollary 2.33. Let A be an abelian C^* -algebra, generated by $x \in A$. Then $\sigma(A) \cong \sigma(x)$.

Proof. Let $\Gamma: A \to C(\sigma(A))$ be the Gelfand transform. Define

$$\tau: \sigma(A) \to \sigma(x), \quad \varphi \mapsto \varphi(x) = \Gamma(x)(\varphi).$$

Clearly, τ is well-defined since $\varphi(x) \in \sigma(x)$ for all $\varphi \in \sigma(A)$. Next we show that τ is onto. For $\lambda \in \sigma(x)$ we have $x - \lambda \notin \operatorname{GL}(A)$, so there exists $\psi \in \sigma(A)$ such that $\psi(x) - \psi(\lambda) = \psi(x - \lambda) = 0$. We show that τ is injective. Let $\tau(\varphi_1) = \tau(\varphi_2)$. Then $\varphi_1(x) = \varphi_2(x)$. Since

$$\varphi_j(x^*) = \Gamma(x^*)(\varphi_j) = \overline{\Gamma(x)(\varphi_j)} = \overline{\varphi_j(x)},$$

we have $\varphi_1(x^*) = \varphi_2(x^*)$. Hence $\varphi_1(p(x,x^*)) = \varphi_2(p(x,x^*))$ for every polynomial $p \in \mathbb{C}[x,y]$. Since $\{p(x,x^*) \mid p \text{ polynomial}\}$ is dense in A, we have $\varphi_1 = \varphi_2$. Finally, we prove the continuity of τ . Let $(\varphi_\alpha)_\alpha$ be a net in $\sigma(A)$ such that $\varphi_\alpha \to \varphi$. Then $\varphi_\alpha(y) \to \varphi(y)$ for all $y \in A$, so in particular $\varphi_\alpha(x) \to \varphi(x)$, which proves that $\tau(\varphi_\alpha) \to \tau(\varphi)$. Since τ is a continuous bijection between compact Hausdorff spaces, it is a homeomorphism.

Remark. Since $\varphi \in \sigma(A)$ is an algebra homomorphism, we have $\varphi(p(x,x^*)) = p(\varphi(x),\overline{\varphi(x)})$ for a complex polynomial $p(z,\overline{z})$ in z and \overline{z} . Using the notation from above proof, we get $\Gamma(p(x,x^*)) = p \circ \tau$.

2.4 Continuous functional theorem

Now let A be any C^* -algebra and $x \in A$ normal. Then $C^*(x)$ is an abelian C^* -subalgebra of A. Since $\sigma(x) = \sigma_{C^*(x)}$, we have the map

$$\tau^{\#}: C(\sigma(x)) \to C(C^*(x)), \quad f \mapsto f \circ \tau,$$

which is a *-isomorphism and an isometry. Define a map $\rho = \Gamma^{-1} \circ \tau^{\#} : C(\sigma(x)) \to C^{*}(x)$.

$$C^*(x) \xrightarrow{\Gamma} C(\sigma(A))$$

$$C(\sigma(x))$$

We know that $C^*(x) = \overline{\{p(x,x^*) \mid p(z,\overline{z}) \text{ polynomial}\}}$ and $\Gamma(p(x,x^*)) = \tau^{\#}(p)$, which means that $\rho(p) = p(x,x^*)$ for any polynomial $p \in \mathbb{C}[x,y]$. This map $\rho: C(\sigma(x)) \to C^*(x) \subseteq A$ is called the continuous functional calculus. We use the notation $f(x) := \rho(f)$.

Theorem 2.34 (Continuous functional calculus).

Let A, B be C^* -algebras and let $x \in A$ be normal.

(1.) $f \mapsto f(x)$ is an isometric *-isomorphism $C(\sigma(x)) \to A$ and if

$$f = \sum_{j,k=0}^{n} a_{jk} z^{j} \overline{z}^{k}$$

is a polynomial, then

$$f(x) = \sum_{j,k=0}^{n} a_{jk} x^{j} (x^{*})^{k}.$$

In particular, if f(z) = z is the identity polynomial, then f(x) = x.

- (2.) For $f \in C(\sigma(x))$, we have $\sigma(f(x)) = f(\sigma(x))$.
- (3.) (Spectral mapping theorem) If $\Phi: A \to B$ is a *-homomorphism, then $\Phi(f(x)) = f(\Phi(x))$.
- (4.) Let $(x_n)_n$ be a sequence of normal elements of A that converge to x, Ω a compact neighborhood of $\sigma(x)$, and $f \in C(\Omega)$. Then for any sufficiently large n, we have $\sigma(x_n) \subseteq \Omega$ and $||f(x_n) f(x)|| \to 0$.

Proof. The items (1) and (2) follow directly from Gelfand theorem and properties of continuous functions on compact sets. The item (3) is obvious for polynomials f and the general case follows from Stone-Weierstrass. We prove the item (4). Let $C = \sup_n \|x_n\| < \infty$. First we need to show that $\sigma(x_n) \subseteq \Omega$ for large enough n. If that wasn't the case, then for every $n \in \mathbb{N}$ there would exist $N_n > n$ such that there exists $\lambda_n \in \sigma(x_{N_n}) \setminus \Omega \subseteq \overline{B_C(0)}$. Thus there exists a convergent subsequence $(\lambda_{n_k})_k$ such that $\lambda_{n_k} \to \lambda \in U$, where U is an open neighborhood of $\sigma(x)$ and $\lambda \notin \sigma(x)$. But then

$$\underbrace{x_{n_k} - \lambda_{n_k}}_{\notin \mathrm{GL}(A)} \to \underbrace{x - \lambda}_{\in \mathrm{GL}(A)},$$

which contradicts the openness of GL(A). For every $\varepsilon > 0$ there exists a polynomial $g: \Omega \to \mathbb{R}$

 \mathbb{C} such that $||f - g||_{\infty} < \varepsilon$. Now

$$\limsup_{n} \|f(x_n) - g(x_n)\| + \|g(x_n) - g(x)\| + \|g(x) - f(x)\|$$

$$\leq 2 \cdot C \cdot \varepsilon + \limsup_{n} \|g(x_n) - g(x)\|$$

$$= 2C\varepsilon$$

Since ε was arbitrary, we conclude that $\lim_{n\to\infty} ||f(x_n) - f(x)|| = 0$.

We illustrate the use of continuous functional calculus to obtain the strengthening of corollary 2.13.

Corollary 2.35. If A, B are C^* -algebras and $\Phi: A \to B$ is a *-monomorphism, then it is an isometry.

Proof. Let $a \in A$ be self-adjoint. Then $\Phi(a) \in B$ is self-adjoint as well. As in the proof of 2.13, we observe that $\sigma_B(\Phi(a)) \subseteq \sigma_A(a)$. Suppose that $\sigma_B(\Phi(a)) \neq \sigma_A(a)$. Since $\sigma_B(\Phi(a))$ is compact, it is closed in $\sigma_A(a)$. This implies that $U := \sigma_A(a) \setminus \sigma_B(\Phi(a))$ is a nonempty open set. It follows that there exists a function f which is zero on $\sigma_B(\Phi(a))$, but not identically zero on $\sigma_A(a)$ (take for example any bump function on U). Then $f(\Phi(a)) = 0$, but $f(a) \neq 0$. By Stone-Weierstrass, we can approximate f uniformly on $\sigma_A(a)$ by polynomials $\{p_n\}_{n\in\mathbb{N}}$. Thus $p_n(a) \to f(a)$ and $p_n(\Phi(a)) \to f(\Phi(a)) = 0$. On the other hand, $p_n(\Phi(a)) = \Phi(p_n(a)) \to \Phi(f(a))$, which implies that $\Phi(f(a)) = f(\Phi(a)) = 0$. But Φ was assumed injective, so f(a) = 0, contradiction. Therefore, $\sigma_B(\Phi(a)) = \sigma_A(a)$ for self-adjoint a and

$$||a|| = r(a) = r(\Phi(a)) = ||\Phi(a)||.$$

Now for a completely arbitrary $a \in A$, we have

$$||a||^2 = ||a^*a|| = ||\Phi(a^*a)|| = ||\Phi(a)^*\Phi(a)|| = ||\Phi(a)||^2,$$

concluding our proof.

The argument in this proof is very common. We first approximate some function on the spectrum with polynomials using Stone-Weierstrass. Then we observe that the CFC of a polynomial has desired properties and deduce the same for the CFC of the original function.

2.5 Application of the continuous functional theorem

Definition 2.36. Let A be a C^* -algebra and $x \in A$.

- x is positive if $x = y^*y$ for some $y \in A$ (i.e., x is a hernitian square). The set of positive elements is denoted A_+ .
- x is a projection if $x^2 = x^* = x$.
- x is unitary if $xx^* = x^*x = 1$. The set of positive elements is denoted U(A).
- x is an isometry if $x^*x = 1$.
- x is a partial isometry if x^*x is a projection.

Remark. The first three are automatically normal (the first two are even self-adjoint).

The set of all positive operators (denoted as A_+) induces a partial ordering on $A_{\rm sa}$: for two elements $a, b \in A_{\rm sa}$ we define

$$a \le b \Leftrightarrow b - a \in A_+$$
.

We notice that $x^*A_+x\subseteq A_+$ for every $x\in A$. For any $a,b\in A_{\operatorname{sa}}$ and $x\in A$, we have

$$a \le b \Rightarrow x^*ax \le x^*bx$$
.

Proposition 2.37. Let A be a C^* -algebra and $x \in A$. Then x is a linear combination of four unitaries.

Proof. Since $x = \operatorname{Re} x + i \operatorname{Im} x$, where $\operatorname{Re} x, \operatorname{Im} x \in A_{\operatorname{sa}}$, it's enough to show that every self-adjoint element is a linear combination of two unitaries. Without loss of generality, assume $||x|| \leq 1$, so $\sigma(x) \subseteq [-1, 1]$. Consider the continuous function

$$f: [-1,1] \to \mathbb{T}, \quad z \mapsto z + i(1-z^2)^{\frac{1}{2}}.$$

Since $f \cdot \overline{f} \equiv 1$ on [-1,1], it follows from continuous functional calculus that

$$f(x)f(x)^* = f(x)^*f(x) = 1.$$

Consequently, f(x) = u is unitary and $x = \frac{1}{2}(f(x) + f(x)^*)$ is a linear combination of two unitaries.

Remark. We use the notation $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}.$

Definition 2.38. Let $x \in A_{sa}$. Then $\sigma(x) \subseteq \mathbb{R}$ and we can define

$$x_{+} = \max\{0, z\}(x) \in A, \quad x_{-} = -\min\{0, z\}(x) \in A.$$

Then $\sigma(x_+), \sigma(x_-) \subseteq [0, \infty), x = x_+ - x_- \text{ and } x_+ x_- = x_- x_+ = 0.$

Lemma 2.39. Suppose $x, y \in A_{sa}$ satisfy $\sigma(x), \sigma(y) \subseteq [0, \infty)$. Then $\sigma(x + y) \subseteq [0, \infty)$.

ADD A PIC-TURE

Proof. Let $a:=\|x\|$ and $b:=\|y\|$. Since $x=x^*$ and $\sigma(x)\subseteq [0,a]$, we deduce that $\sigma(a-x)\subseteq [0,a]$, where $\|a-x\|=r(a-x)\le a$. Likewise, $\|b-y\|\le b$. Then

$$\sup_{\lambda \in \sigma(x+y)} \{a+b-\lambda\} = r(a+b-(x+y))$$

$$= \|(a+b) - (x+y)\|$$

$$\leq \|a-x\| + \|b-y\|$$

$$\leq a+b.$$

Theorem 2.40.

Let A be a C^* -algebra and $x \in A$ normal. Then:

(1.)
$$x \in A_{\mathrm{sa}} \Leftrightarrow \sigma(x) \subseteq \mathbb{R};$$

(2.)
$$x \in A_+ \Leftrightarrow \sigma(x) \subseteq [0, \infty);$$

(3.)
$$x \in U(A) \Leftrightarrow \sigma(x) \subseteq \mathbb{T}$$
;

$$(2.) \ x \in A_+ \Leftrightarrow \sigma(x) \subseteq [0, \infty);$$
$$(3.) \ x \in U(A) \Leftrightarrow \sigma(x) \subseteq \mathbb{T};$$
$$(4.) \ x^2 = x^* = x \Leftrightarrow \sigma(x) \subseteq \{0, 1\}.$$

Proof. Throughout this proof, let f(z) = z denote the identity polynomial.

$$x = x^* \Leftrightarrow f(x) = \overline{f}(x)$$

$$\Leftrightarrow f \equiv \overline{f} \text{ on } \sigma(x)$$

$$\Leftrightarrow z = \overline{z} \text{ for all } z \in \sigma(x)$$

$$\Leftrightarrow \sigma(x) \subseteq \mathbb{R}.$$

(2.) (\Rightarrow) Let $x=y^*y$ for some $y\in A$. Write $x=x_+-x_-$ and let $z:=y\cdot x_-$. Then

$$z^*z = x_-y^*yx_- = x_-xx_- = -x_-^3$$
.

From there we get

$$\sigma(zz^*) \subseteq \sigma(z^*z) \cup \{0\} \subseteq (-\infty, 0].$$

Let z = a + ib for $a, b \in A_{sa}$. Then $zz^* + z^*z = 2a^2 + 2b^2$, which implies that $\sigma(zz^* + z^*z) \subseteq [0, \infty)$. It follows that

$$\sigma(z^*z) = \sigma((2a^2 + 2b^2) - zz^*) \subseteq [0, \infty).$$

As a result,

$$\sigma(-x_-^3) = \sigma(z^*z) \subseteq \{0\},\,$$

so $x_{-}^{3}=0$ and $x_{-}=0$. This proves that $x=x_{+}$ has nonnegative spectrum. For the converse implication (\Leftarrow), apply the function $\sqrt{\cdot}:[0,\infty)\to\mathbb{R}$. Then

$$x = (\sqrt{x})^2 = (\sqrt{x})^* \cdot \sqrt{x} \in A_+.$$

(3.)

$$xx^* = 1 \Leftrightarrow f(x) \cdot \overline{f}(x) = 1$$

$$\Leftrightarrow f \cdot \overline{f} \equiv 1 \text{ on } \sigma(x)$$

$$\Leftrightarrow |z|^2 = 1 \text{ for all } z \in \sigma(x)$$

$$\Leftrightarrow \sigma(x) \subseteq \mathbb{T}.$$

(4.)

$$x^{2} = x^{*} = x \Leftrightarrow f(x) \cdot \overline{f}(x) = \overline{f}(x) = f(x)$$

$$\Leftrightarrow f \cdot \overline{f} \equiv \overline{f} \equiv f \text{ on } \sigma(x)$$

$$\Leftrightarrow |z|^{2} = \overline{z} = z \text{ for all } z \in \sigma(x)$$

$$\Leftrightarrow \sigma(x) \subseteq \{0, 1\}.$$

Corollary 2.41. Let A be a C^* -algebra and $x \in A$. Then x is a partial isometry iff x^* is a partial isometry.

Proof.

$$x$$
 partial isometry $\Leftrightarrow x^*x$ projection
$$\Leftrightarrow \sigma(x^*x) \subseteq \{0,1\}$$

$$\Leftrightarrow \sigma(xx^*) \subseteq \{0,1\}$$

$$\Leftrightarrow xx^* \text{ projection}$$

$$\Leftrightarrow x^* \text{ partial isometry.}$$

Corollary 2.42. Let A be a C^* -algebra.

- (1.) A_+ is a closed convex cone $(\lambda A_+ \subseteq A_+ \text{ for } \lambda \in \mathbb{R}_{>0}).$
- (2.) If $a \in A_{sa}$, then $a \leq ||a||$.

Proposition 2.43. Let A be a C^* -algebra and $x, y \in A_+$.

- (1.) If $x \leq y$, then $\sqrt{x} \leq \sqrt{y}$.
- (2.) If $x, y \in GL(A)$ and $x \le y$, then $y^{-1} \le x^{-1}$.

Proof. Let us prove the second point first. Suppose $x,y\in \mathrm{GL}(A)$. Then we have $y^{-\frac{1}{2}}xy^{-\frac{1}{2}}\leq 1$ and

$$\begin{split} x^{\frac{1}{2}}y^{-1}x^{\frac{1}{2}} &\leq \|x^{\frac{1}{2}}y^{-1}x^{\frac{1}{2}}\| \\ &= r(x^{\frac{1}{2}}y^{-1}x^{\frac{1}{2}}) \\ &= r(y^{-\frac{1}{2}}xy^{-\frac{1}{2}}) \\ &\leq 1. \end{split}$$

Multiplying on both sides by $x^{-\frac{1}{2}}$, we get $y^{-1} \le x^{-1}$. Now we prove the first point. For invertible $x \le y$, we have

$$||y^{-\frac{1}{2}}x^{\frac{1}{2}}||^{2} = ||(y^{-\frac{1}{2}}x^{\frac{1}{2}})(y^{-\frac{1}{2}}x^{\frac{1}{2}})^{*}||$$

$$= ||y^{-\frac{1}{2}}xy^{-\frac{1}{2}}||$$

$$\leq 1,$$

which implies

$$\begin{split} y^{-\frac{1}{4}}x^{\frac{1}{2}}y^{-\frac{1}{4}} &\leq \|y^{-\frac{1}{4}}x^{\frac{1}{2}}y^{-\frac{1}{4}}\| \\ &= r(y^{-\frac{1}{4}}x^{\frac{1}{2}}y^{-\frac{1}{4}}) \\ &= r(y^{-\frac{1}{2}}x^{\frac{1}{2}}) \\ &= \|y^{-\frac{1}{2}}x^{\frac{1}{2}}\| \leq 1. \end{split}$$

Multiplying on both sides by $y^{\frac{1}{4}}$, we get $y^{\frac{1}{2}} \leq x^{\frac{1}{2}}$. For general non-invertible $x \leq y$, pick $\varepsilon > 0$ and notice that

$$0 \le x + \varepsilon \le y + \varepsilon$$
.

However, since x, y are positive, we also have $x + \varepsilon, y + \varepsilon \in GL(A)$. We use the above calculation to obtain $(x + \varepsilon)^{\frac{1}{2}} \leq (y + \varepsilon)^{\frac{1}{2}}$. If we send $\varepsilon \to 0$, we get $x^{\frac{1}{2}} \leq y^{\frac{1}{2}}$.

Remark. Let $I \subseteq \mathbb{R}$ and $f: I \to \mathbb{R}$ be continuous. Then the function f is operator monotone if for every C^* -algebra A and $a, b \in A_{\operatorname{sa}}$ with $a \leq b$ and $\sigma(a), \sigma(b) \subseteq I$, we have $f(a) \leq f(b)$. By the above proposition, $z \mapsto \sqrt{z}$ and $z \mapsto \frac{1}{z}$ are operator monotone on $[0, \infty)$. Actually, this is also true for functions $z \mapsto z^r$ for $r \in [0, 1]$, but not for r > 1.

Definition 2.44. Absolute value of $x \in A$ is defined as

$$|x| = (x^*x)^{\frac{1}{2}} \in A_+.$$

Corollary 2.45. For $x, y \in A$, we have $|xy| \leq ||x|||y|$.

Proof. Notice that

$$|xy|^2 = y^*x^*xy \le y^*||x^*x||y = ||x||^2(y^*y)$$

and now apply the operator-monotone $\sqrt{\cdot}$ and the previous proposition.

Theorem 2.46.

Let A be a C^* -algebra.

- (1.) $\operatorname{ext}(A_+)_1 = \{ projections \ in \ A \}.$
- (2.) $ext(A)_1 \subseteq \{partial \ isometries \ in \ A\}.$
- (3.) $ext(A_{sa})_1 = U(A) \cap A_{sa}$.

Proof. (1.) Let $x\in (A_+)_1$. Then $x^2\leq 2x$, since $z^2-2z\leq 0$ on $[0,1]=\sigma(x)$. So $x=\frac{1}{2}x^2+\frac{1}{2}(2x-x^2)$. If x is an extreme point, then $x=x^2$ and $x\in A_+\subseteq A_{\mathrm{sa}}$, so x is an projection. For the converse, assume A is abelian, meaning A=C(K) for a compact K (by Gelfand). If $x\in A=C(K)$ is a projection, then $x=\chi_E$ for some clopen $E\subseteq K$. Since $\mathrm{ext}[0,1]=\{0,1\},\ \chi_E$ is an extreme point. Let A now be a general C^* -algebra and $p\in A^*$ a projection. Suppose $p=\frac{1}{2}(a+b)$ for some $a,b\in (A_+)_1$. Then $\frac{1}{2}a=p-\frac{1}{2}b\leq p$. Hence

$$0 \le (1-p)a(1-p) \le (1-p)2p(1-p) = 0,$$

so

$$(\sqrt{a}(1-p))^*(\sqrt{a}(1-p)) = (1-p)a(1-p) = 0.$$

This implies that $\sqrt{a}(1-p)=0$ and a(1-p)=0. It follows that

$$ap = a = a^* = (ap)^* = p^*a^* = pa.$$

- Similarly, we can show that a, b, p all commute, so the C^* -subalgebra $C^*(a, b, p)$ is abelian and we can just use the previous observation.
- (2.) Suppose $x \in (A)_1$ is not a partial isometry (alternatively, x^*x is not a projection). First, we notice that $||x^*x|| = ||x||^2 \le 1$. Since it is not a projection, $\sigma(x^*x) \subseteq (0,1)$. Then we apply continuous functional calculus to obtain a function $f: \sigma(x^*x) \to [0,1]$ such that $|t(1\pm f(t))^2| \le 1$ for $t \in \sigma(x^*x)$ (for example, f can be a small bump function on an interval $[a,b] \subseteq (0,1)$, where $[a,b] \cap \sigma(x^*x) \neq \emptyset$). Then $y:=f(x^*x) \in A_+$ gives us $yx^*x \neq x^*xy \neq 0$ and $||x^*x(1\pm y)^2|| \le 1$. Hence, $||x(1\pm y)||^2 \le 1$ and

$$x = \frac{1}{2}((x + xy) + (x - xy)) \notin \text{ext}(A)_1.$$

(3.) If $u \in U(A) \cap (A_{sa})$, then $x \mapsto ux$ is an isometry. As in the case of $\mathcal{B}(\mathcal{H})$, u is an extreme point, so $A_{sa} \cap U(A) \subseteq \text{ext}(A_{sa})_1$. For the converse, assume $x \in \text{ext}(A_{sa})_1$ and $x_+ = \frac{1}{2}(a+b)$ for $a, b \in (A_+)_1$. Then

$$0 = x_{-}x_{+}x_{-} = \frac{1}{2}(x_{-}ax_{-} + x_{-}bx_{-}) \ge 0.$$

From $x_-ax_-=0$, we get $(\sqrt{a}x_-)^*(\sqrt{a}x_-)=0$, which implies that $\sqrt{a}x_-=0$ and $ax_-=0$. Likewise, $x_-a=bx_-=x_-b=0$. By Gelfand, the commutative C^* -algebra $C^*(a,b,x_-)$ is isometrically *-isomorphic to C(K) for some compact K. This means that a and x_- are functions such that for every point in K, at least one of them is zero. Thus, $a-x_-$ is bounded above by 1, and we have $a-x_-\in (A_{\operatorname{sa}})_1$. Similarly, $b-x_-\in (A_{\operatorname{sa}})_1$, so

$$x = \frac{1}{2}((a - x_{-}) + (b - x_{-})) \in (A_{\text{sa}})_{1}.$$

But since x is an extreme point, we have $a - x_- = b - x_-$ and $a = b = x_+$. Thus, $x_+ \in \text{ext}(A_+)_1$ is a projection by (1), and by symmetry, so is x_- . Now we prove that x is unitary:

$$x^*x = x^2 = (x_+ - x_-)^2 = x_+^2 + x_-^2 = x_+ + x_- = |x|.$$

This implies that |x| is a projection. Now set q := 1 - |x|. Then x + q and x - q are both in $(A_{sa})_1$. But since

$$x = \frac{1}{2}((x+q) + (x-q)),$$

we obtain q = 0, which further implies |x| = 1 and $x^*x = xx^* = 1$.

3 Representations of C^* -algebras and states

3.1 States

Let A be a C^* -algebra, then A^* can be given an A-bimodule structure: if $\psi \in A^*$ and $a, b \in A$, then

$$(a \cdot \psi \cdot b)(x) = \psi(bxa), \quad \forall x \in A.$$

We have

$$||a \cdot \psi \cdot b|| = \sup_{x \in (A)_1} ||\psi(bxa)|| \le \sup_{x \in (A)_1} ||\psi|| ||bxa|| \le ||\psi|| ||a|| ||b||.$$

Definition 3.1. Let A be a C^* -algebra and $\varphi \in A^*$.

- We say that φ is positive if $\varphi(x) \geq 0$, $\forall x \in A_+$. If φ is positive and $a \in A$, then $a\varphi a^*$ is also positive.
- A positive element $\varphi \in A^*$ is faithful if $\varphi(x) \neq 0$, $\forall x \in A_+ \setminus \{0\}$.
- An element $\varphi \in A^*$ is a state if it is positive and $\|\varphi\| = 1$. The set of states is denoted $S(A) \subseteq (A^*)_1$.

Remark. The set S(A) is compact Hausdorff in the weak-* topology.

We notice that if $\varphi \in A^*$ is positive and $x \in A_{sa}$, then

$$\varphi(x) = \varphi(x_+ - x_-) = \varphi(x_+) - \varphi(x_-) \in \mathbb{R}.$$

If $y \in A$, then $y = y_1 + iy_2$, where y_1, y_2 are self-adjoint. Then

$$\varphi(y^*) = \varphi((y_1 + iy_2)^*) = \varphi(y_1 - iy_2)$$

$$= \varphi(y_1) - i\varphi(y_2) = \overline{\varphi(y_1) + i\varphi(y_2)}$$

$$= \overline{\varphi(y_1 + iy_2)} = \overline{\varphi(y)}$$

Such a functional $\varphi \in A^*$ is called hermitian. For any $\varphi \in A^*$, define $\varphi^*(y) = \overline{\varphi(y^*)}$. Then $\varphi + \varphi^*$ and $i(\varphi - \varphi^*)$ are hermitian. One can, of course, define these notions for unbounded linear functionals. However, positivity implies continuity: for every $a \in A_{\mathrm{sa}}$ we have $-\|a\| \cdot 1 \le a \le \|a\| \cdot 1$, which implies

$$-\|a\|\varphi(1) \le \varphi(a) \le \|a\|\varphi(1)$$

and φ is bounded. For $a \in A$, we can of course write a = b + ic for $b, c \in A_{sa}$. Here, $||b|| \le ||a||$ and $||c|| \le ||a||$. Let $\varphi(1) = C$. Then

$$|\varphi(a)|^2 = |\varphi(b) + i\varphi(c)|^2 = \varphi(b)^2 + \varphi(c)^2 < C^2(\|b\|^2 + \|c\|^2) < 2C^2\|a\|^2.$$

Lemma 3.2. Let $\varphi \in A^*$ be positive. Then $\forall x, y \in A$:

$$|\varphi(y^*x)|^2 \le \varphi(y^*y) \cdot \varphi(x^*x).$$

Proof. Consider the sesquilinear form $\langle x,y\rangle=\varphi(y^*x)$. Since φ is positive, this is a positive sesquilinear form and we can apply Cauchy-Schwartz.

Theorem 3.3.

An element $\varphi \in A^*$ is positive iff $\|\varphi\| = \varphi(1)$.

Remark. This implies that the set of states S(A) is convex.

Proof. First we prove the right implication (\Rightarrow) . We know that $x^*x \leq ||x^*x||$, so

$$\begin{aligned} |\varphi(x)|^2 &\leq \varphi(1)\varphi(x^*x) \\ &\leq \varphi(1)\varphi(||x^*x||) \\ &= \varphi(1)^2||x^*x|| \\ &= \varphi(1)^2||x||^2, \end{aligned}$$

so $|\varphi(x)| \le \varphi(1) ||x||$. From there we get $||\varphi|| \le \varphi(1) \le ||\varphi||$, so $\varphi(1) = ||\varphi||$. Now the converse (\Leftarrow) . Suppose $x \in A_+$ and $\varphi(x) = \alpha + i\beta$. For each $t \in \mathbb{R}$, we have

$$\alpha^{2} + (\beta + t \|\varphi\|)^{2} = |\alpha + i(\beta + t\varphi(1))|^{2}$$

$$= |\varphi(x + it)|^{2}$$

$$= \|x + it\|^{2} \cdot \|\varphi\|^{2}$$

$$\leq (\|x\|^{2} + t^{2}) \|\varphi\|^{2}.$$

From this it directly follows $2\beta t \|\varphi\| \le \|x\|^2 \cdot \|\varphi\|^2$. Since $t \in \mathbb{R}$ was arbitrary, we have $\beta = 0$ and $\varphi(x) = \alpha \in \mathbb{R}$. Lastly, we derive

$$\begin{split} \|x\|\cdot\|\varphi\| - \varphi(x) &= \varphi(\|x\| - x) \\ &\leq \|\|x\| - x\|\cdot\|\varphi\| \\ &\leq \|x\|\cdot\|\varphi\|, \end{split}$$

so $\varphi(x) \ge 0$.

Proposition 3.4. Let A be a C*-algebra and $x \in A$. Then $\forall \lambda \in \sigma(x)$ there exists a $\varphi \in S(A)$ such that $\varphi(x) = \lambda$.

Proof. We know that $\mathbb{C}x + \mathbb{C} \cdot 1 \subseteq A$. Define

$$\varphi_0: \mathbb{C}x + \mathbb{C}1 \to \mathbb{C}, \quad \alpha x + \beta \mapsto \alpha \cdot \lambda + \beta.$$

Since $\varphi_0(\alpha x + \beta) \in \sigma(\alpha x + \beta)$, we have

$$\|\varphi_0\| \le 1 = \varphi_0(1),$$

therefore $\|\varphi_0\|=1$. Now we apply Hahn-Banach to get an extension $\varphi\in A^*$ such that $\varphi\big|_{\mathbb{C}x+\mathbb{C}1}=\varphi_0$ and $\|\varphi\|=1=\varphi(1),$ so $\varphi\in S(A).$

Proposition 3.5. Let A be a C^* -algebra and $x \in A$.

- (1.) x = 0 iff $\varphi(x) = 0$, $\forall \varphi \in S(A)$.
- (2.) $x \in A_{\text{sa}} \text{ iff } \varphi(x) \in \mathbb{R}, \ \forall \varphi \in S(A).$
- (3.) $x \in A_+$ iff $\varphi(x) \ge 0$, $\forall \varphi \in S(A)$.

Proof. (1.) If $\varphi x = 0$ for all $\varphi \in S(A)$, then writing $x = x_1 + ix_2$ for self-adjoint x_1, x_2 gives

$$0 = \varphi(x) = \varphi(x_1) + i\varphi(x_2),$$

which implies $\varphi(x_1) = \varphi(x_2) = 0$. For the converse implication, use the previous proposition to get $\sigma(x) = \{0\}$, which can only imply x = 0.

(2.) If $\varphi(x) \in \mathbb{R}$ for all $\varphi \in S(A)$, then

$$\varphi(x - x^*) = \varphi(x) - \varphi(x^*) = \varphi(x) - \overline{\varphi(x)} = 0$$

and we use the previous item to show that $x - x^*$. The converse implication follows from positiveness.

(3.) If $\varphi(x) \geq 0$ for all $\varphi \in S(A)$, then $x \in A_{\text{sa}}$ by previous item and $\sigma(x) \subseteq [0, \infty)$, so $x \in A_+$. The converse once again follows from positiveness.

3.2 Gelfand-Naimark-Segal (GNS) construction

Definition 3.6. • A representation of a C^* -algebra is a *-homomorphism $\pi: A \to \mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} .

- If $\mathcal{K}^{\text{closed}} \leq \mathcal{H}$ and $\pi(x)\mathcal{K} \subseteq \mathcal{K}$, $\forall x \in A$ (\mathcal{K} is invariant for π), then the restriction of π to \mathcal{K} is a subrepresentation.
- If a representation has no other representations besides $\mathcal{K} = (0)$ and $\mathcal{K} = \mathcal{H}$ (equivalently, $\pi(A)$ only has (0) and \mathcal{H} as closed invariant subspaces), then π is called irreducible
- Representations $\pi: A \to \mathcal{B}(\mathcal{H})$ and $\rho: A \to \mathcal{B}(\mathcal{K})$ are equivalent if there exists a unitary $U: \mathcal{H} \to \mathcal{K}$ such that

$$U\pi(x) = \rho(x)U, \quad \forall x \in A.$$

• Vector $\mu \in \mathcal{H}$ is cyclic (for a representation $\pi : A \to \mathcal{B}(\mathcal{H})$) if

$$\pi(A)\mu := \{\pi(a)\mu \mid a \in A\}$$

is dense in \mathcal{H} (this means that $\overline{\pi(A)\mu} = \mathcal{H}$).

Example 3.7. Each $w \in \mathcal{H}$ define a subrepresentation in $K := \overline{\pi(A)w}$.

Example 3.8. Let $\pi: A \to \mathcal{B}(\mathcal{H})$ be a representation and $\mu \in \mathcal{H}$, $\|\mu\| = 1$. Then

$$\varphi_{\mu}: A \to \mathbb{C}, \quad x \mapsto \langle \pi(x)\mu, \mu \rangle$$

is a state. Indeed,

$$\varphi_{\mu}(1) = \langle 1 \cdot \mu, \mu \rangle = \|\mu\|^2 = 1$$

and

$$\varphi_{\mu}(x^*x) = \langle \pi(x^*x)\mu, \mu \rangle$$

$$= \langle \pi(x^*)\pi(x)\mu, \mu \rangle$$

$$= \langle \pi(x)^*\pi(x)\mu, \mu \rangle$$

$$= \langle \pi(x)\mu, \pi(x)\mu \rangle$$

$$= \|\pi(x)\mu\|^2 \ge 0.$$

Theorem 3.9 (GNS construction).

Let A be a C^* -algebra and $\rho \in S(A)$. Then there exists a Hilbert space $L^2(A, \varphi)$ and a unique (up to equivalence) representation $\pi : A \to \mathcal{B}(L^2(A, \varphi))$ and a unit cyclic vector 1_{φ} such that

$$\varphi(x) = \langle \pi(x) 1_{\varphi}, 1_{\varphi} \rangle, \quad \forall x \in A.$$

Proof. (1.) We start by defining

$$N_{\varphi} = \{ x \in A \mid \varphi(x^*x) = 0 \}$$

whose elements we call null vectors of φ . By Cauchy-Schwartz lemma, we have

$$N_{\varphi} = \{ x \in A \mid \varphi(yx) = 0, \ \forall y \in A \}.$$

Thus N_{φ} is a closed subspace of A.

(2.) We prove that N_{φ} is a left ideal: for $x \in N_{\varphi}$ and $a \in A$, we have $ax \in N_{\varphi}$. Indeed,

$$\varphi((ax)^*ax) = \varphi((x^*a^*a)x) = 0.$$

- (3.) Now $\mathcal{H}_0 = A/N_{\varphi}$ is a vector space and we can endow it with the dot product $\langle [x], [y] \rangle := \varphi(y^*x)$ for $x, y \in A$. It can easily be checked that this is a well-defined dot product in \mathcal{H}_0 . We denote the completion of \mathcal{H}_0 by $L^2(A, \varphi)$.
- (4.) To an arbitrary $a \in A$, we associate the map

$$\pi_0(a): \mathcal{H}_0 \to \mathcal{H}_0, \quad [x] \mapsto [ax].$$

Since N_{φ} is a left ideal of A, $\pi_0(a)$ is a well-defined linear map.

$$\|\pi_{0}(a)[x]\|^{2} = \|[ax]\|^{2}$$

$$= \langle [ax], [ax] \rangle$$

$$= \varphi((ax)^{*}ax)$$

$$= \varphi(x^{*}a^{*}ax)$$

$$\leq \|a\|^{2} \cdot \varphi(x^{*}x) \leq \|a\|^{2} \|x\|^{2}.$$

Since $\pi_0(a)$ is continuous, it exdends uniquely to $\pi(a) \in \mathcal{B}(L^2(A,\varphi))$ with $\|\pi(a)\| \le \|a\|$. Then we get

$$\pi: A \to \mathcal{B}(L^2(A,\varphi)), \quad a \mapsto \pi(a),$$

which is a homomorphism and has the property

$$\begin{split} \langle [x], \pi(a^*)[y] \rangle &= \langle [x], [a^*y] \rangle \\ &= \varphi((a^*y)^*x) \\ &= \varphi(y^*ax) \\ &= \langle [ax], [y] \rangle \\ &= \langle \pi(a)[x], [y] \rangle. \end{split}$$

So $\pi(a)^* = \pi(a^*)$ and π is a representation.

(5.) We define $1_{\varphi} := [1] \in \mathcal{H}_0 \subseteq L^2(A, \varphi)$ and notice that

$$\langle \pi(a)1_{\varphi}, 1_{\varphi} \rangle = \langle \pi(a)[1], [1] \rangle = \langle [a], [1] \rangle = \varphi(a).$$

Since $\{\pi(a)1_{\varphi} \mid a \in A\} = \mathcal{H}_0$, the vector 1_{φ} is cyclic for π .

(6.) Next we prove uniqueness: let $\rho: A \to \mathcal{B}(\mathcal{K})$ be a representation, $\mu \in \mathcal{K}$ a unit cyclic vector and assume $\varphi(a) = \langle \rho(a)\mu, \mu \rangle$, $\forall a \in A$. We will prove that ρ is equivalent to π . Define

$$U_0: \mathcal{H}_0 \to \mathcal{K}, \quad [x] \mapsto \rho(x)\mu.$$

Then we have

$$\langle U_0[x], U_0[y] \rangle_{\mathcal{K}} = \langle \rho(x)\mu, \rho(y)\mu \rangle$$

$$= \langle \rho(y)^* \rho(x)\mu, \mu \rangle$$

$$= \langle \rho(y^*x)\mu, \mu \rangle = \varphi(y^*x) = \langle [x], [y] \rangle_{L^2(A, \omega)},$$

so U_0 really is a well-defined isometry. For all $a, x \in A$:

$$U_0(\pi(a)[x]) = U_0([ax]) = \rho(ax)\mu = \rho(a)\rho(x)\mu = \rho(a)U_0[x].$$

Therefore, U_0 induces an isometry $U: L^2(A, \varphi) \to \mathcal{K}$ such that $U\pi(a) = \rho(a)U$ for all $a \in A$. Since μ is cyclic and $\rho(a)\mu \subseteq \operatorname{im} U$, it is dense in \mathcal{K} . It is also closed since U is isometric. We just proved that U is isometric and onto, so it is unitary.

Corollary 3.10. Every C^* -algebra has a faithful (i.e. injective) representation. In particular, every C^* -algebra is isometrically *-isomorphic to a closed subalgebra of $\mathcal{B}(H)$ for some Hilbert space \mathcal{H} .

Proof. Let π be a direct sum of all representations from GNS construction over all states. Then the proposition 3.5 tells us that π is injective. An injective *-monomorphism is isometric and we are done.

Definition 3.11. If $S \subseteq A$, then

$$S' := \{ x \in A \mid \forall s \in S : \ xs = sx \}$$

is a commutant.

Proposition 3.12 (Radon-Nikodym for linear functionals). Let φ, ψ be positive linear function-

als on a C^* -algebra A and $\varphi \in S(A)$. Then $\varphi \leq \psi$ iff there exists a unique $y \in \pi_{\psi}(A)'$ such that $0 \leq y \leq 1$ and

$$\varphi(a) = \langle \pi_{\psi}(a)y1_{\psi}, 1_{\psi} \rangle, \quad \forall a \in A.$$

Proof. Start with (\Leftarrow) . For $a \in A_+$ we have

$$\pi_{\psi}(a)y = \pi_{\psi}(a)^{\frac{1}{2}}y\pi_{\psi}(a)^{\frac{1}{2}} \le \pi_{\psi}(a).$$

Then

$$\varphi(a) = \langle \pi_{\psi}(a)y1_{\psi}, 1_{\psi} \rangle \leq \langle \pi_{\psi}(a)1_{\psi}, 1_{\psi} \rangle = \psi(a).$$

Now the opposite (\Rightarrow) . By Cauchy-Schwartz,

$$\begin{aligned} \varphi(b^*a)|^2 &\leq \varphi(a^*a)\varphi(b^*b) \\ &\leq \psi(a^*a)\psi(b^*b) \\ &= \|\pi_{\psi}(a)1_{\psi}\|^2 \cdot \|\pi_{\psi}(b)1_{\psi}\|^2. \end{aligned}$$

This means that $\langle \pi_{\psi}(a)1_{\psi}, \pi_{\psi}(b)1_{\psi}\rangle_{\varphi} := \varphi(b^*a)$ is a nonnegative sesquilinear form on $\pi_{\varphi}(A)1_{\psi}^{\text{dense}} \subseteq L^2(A,\psi)$, which is bounded by 1. This further implies that it is continuous and we can extend it to $L^2(A,\psi)$. By Riesz, there exists $y \in \mathcal{B}(L^2(A,\psi))$ such that

$$\varphi(b^*a) = \langle y\pi_{\psi}(a)1_{\psi}, \pi_{\psi}(b)1_{\psi}\rangle, \quad \forall a, b \in A$$

and $0 \le y \le 1$. For $a, b, c \in A$ we have

$$\langle y\pi_{\psi}(a)\pi_{\psi}(b)1_{\psi}, \pi_{\psi}(c)1_{\psi}\rangle = \langle y\pi_{\psi}(ab)1_{\psi}, \pi_{\psi}(c)1_{\psi}\rangle$$

$$= \varphi(c^* \cdot ab) = \varphi((a^*c)^*b)$$

$$= \langle y\pi_{\psi}(b)1_{\psi}, \pi_{\psi}(a^*)\pi_{\psi}(c)1_{\psi}\rangle$$

$$= \langle \pi_{\psi}(a)y\pi_{\psi}(b)1_{\psi}, \pi_{\psi}(c)1_{\psi}\rangle,$$

so $y\pi_{\psi}(a) = \pi_{\psi}(a)y$ for all $a \in A$ and $y \in \pi_{\psi}(A)'$. Finally, the uniqueness. Say that there exists a $z \in \pi_{\psi}(A)'$ such that $0 \le z \le 1$ and

$$\langle \pi_{\psi}(a)y1_{\psi}, 1_{\psi} \rangle = \langle \pi_{\psi}(a)z1_{\psi}, 1_{\psi} \rangle, \quad \forall a \in A.$$

Then

$$\begin{split} \langle \pi_{\psi}(b^*a)z1_{\psi},1_{\psi}\rangle &= \langle \pi_{\psi}(b^*a)y1_{\psi},1_{\psi}\rangle \\ &= \langle y\pi_{\psi}(a)1_{\psi},\pi_{\psi}(b)1_{\psi}\rangle \\ &= \langle z\pi_{\psi}(a)1_{\psi},\pi_{\psi}(b)1_{\psi}\rangle, \end{split}$$

which implies y = z.

Proposition 3.13. Suppose that A is a separable C^* -algebra. Then A has a faithful cyclic representation on a separable Hilbert space.

Proof. If A is separable, then it has a dense subset $\{a_i\}_{i=1}^{\infty}$. We can embed S(A) into a space $\prod_{i=1}^{\infty} \overline{B_1(0)}$, where $\overline{B_1(0)}$ is a closed unit ball in $\mathbb C$. The latter topological space is metrizable by metric $\rho(x,y) = \sum_{i=1}^{\infty} \frac{\rho_i(x_i,y_i)}{2^i(\rho_i(x_i,y_i)+1)}$, and so is S(A). Therefore, S(A) with the weak-* topology is a metrizable compact, therefore separable. Let $\{f_i\}_i^{\infty}$ countable weak-* dense subset of S(A). Then

$$f(a) := \sum_{i=1}^{\infty} 2^{-i} f_i(a)$$

defines a faithful $(f(a^*a) = 0 \text{ iff } a = 0)$ state on A. Then the GNS construction π_f is faithful: if $\pi_f(a) = 0$, then

$$f(b^*a^*ab) = \langle \pi_f(a)[b], \pi_f(a)[b] \rangle = 0$$

for every $b \in A$. In particular for b = 1, we get $f(a^*a) = 0$ and so a = 0. Since $a \mapsto [a]$ is a continuous map of A onto a dense subspace of some Hilbert space \mathcal{H}_f (induced by $\pi_f : A \to \mathcal{B}(\mathcal{H}_f)$), the latter space is separable.

Proposition 3.14. Every representation of a C^* -algebra is equivalent to a direct sum of cyclic representations.

Proof. Let $\pi: A \to \mathcal{B}(\mathcal{H})$ be some representation of A. Let \mathcal{E} be the collection of all subsets E of nonzero vectors in \mathcal{H} such that $\pi(A)e \perp \pi(A)f$ for any $e, f \in E$. If we order \mathcal{E} by inclusion, then Zorn's lemma tells us that \mathcal{E} has a maximal element E_0 . Let $\mathcal{H}_0 = \bigoplus_{e \in E_0} \overline{\pi(A)e}$. Take $h \in \mathcal{H}_0^{\perp}$ in \mathcal{H} . Then for any $a, b \in A$ and $e \in E_0$ we have

$$\langle \pi(a)e, \pi(b)h \rangle = \langle \pi(b)^*\pi(a)e, h \rangle = \langle \pi(b^*a)e, h \rangle = 0,$$

so $\pi(A)e \perp \pi(A)h$ for each $e \in E_0$. By maximality, h = 0 and $\mathcal{H} = \mathcal{H}_0$. For $e \in E_0$, define $\mathcal{H}_e := \overline{\pi(A)e}$. Obviously, \mathcal{H}_e is invariant for π , so $\pi_e := \pi\big|_{\mathcal{H}_e}$ is a cyclic representation of A. Clearly, $\pi = \bigoplus_{e \in E_0} \pi_e$.

3.3 Pure states and irregular representations

Definition 3.15. A state $\varphi \in S(A)$ is called pure if it's an extreme point of S(A).

Proposition 3.16. A state $\varphi \in S(A)$ is pure iff GNS $\pi_{\varphi} : A \to \mathcal{B}(L^2(A, \varphi))$ with a cyclic vector 1_{φ} is irreducible.

Proof. (\Rightarrow) Let $\mathcal{K} \leq L^2(A, \varphi)$ be a closed invariant subspace. Then \mathcal{K}^{\perp} is also a closed invariant subspace: for $a \in A$, $x \in \mathcal{K}^{\perp}$ and $k \in \mathcal{K}$ we have

$$\langle \pi_{\varphi}(a)x, k \rangle = \langle x, \pi_{\varphi}(a^*)k \rangle = 0.$$

Since $L^2(A,\varphi) = \mathcal{K} \oplus \mathcal{K}^{\perp}$ we write $1_{\varphi} = \underbrace{\mu_1}_{\in \mathcal{K}} + \underbrace{\mu_2}_{\in \mathcal{K}^{\perp}}$ and form

$$\varphi_j := \frac{\langle \pi_{\varphi}(x)\mu_j, \mu_j \rangle}{\|\mu_j\|^2}, \quad j = 1, 2.$$

These are states and so is

$$\varphi(x) = \|\mu_1\|^2 \varphi_1(x) + \|\mu_2\|^2 \varphi_2(x)$$

because $1 = \|1_{\varphi}\|^2 = \|\mu_1\|^2 + \|\mu_2\|^2$. Since $\varphi \in \text{ext } S(A)$, we either have $\mu_1 = 0$ or $\mu_2 = 0$, which implies that \mathcal{K} is either (0) or \mathcal{H} .

(\Leftarrow) Suppose $\varphi = \frac{1}{2}(\varphi_1 + \varphi_2)$ for $\varphi_1, \varphi_2 \in S(A)$. Define a linear map

$$U: L^2(A,\varphi) \to L^2(A,\varphi_1) \oplus L^2(A,\varphi_2), \quad \pi_{\varphi}(x)1_{\varphi} \mapsto \frac{1}{\sqrt{2}}\pi_{\varphi_1}(x)1_{\varphi_1} \oplus \frac{1}{\sqrt{2}}\pi_{\varphi_2}(x)1_{\varphi_2}.$$

First we notice that U preserves scalar product:

$$\begin{split} \langle \pi_{\varphi}(x) 1_{\varphi}, \pi_{\varphi}(y) 1_{\varphi} \rangle &= \varphi(x^* y) \\ &= \frac{1}{2} \varphi_1(x^* y) + \frac{1}{2} \varphi_2(x^* y) \\ &= \langle \frac{1}{\sqrt{2}} \pi_{\varphi_1}(x) 1_{\varphi_1} \oplus \frac{1}{\sqrt{2}} \pi_{\varphi_2}(x) 1_{\varphi_2}, \frac{1}{\sqrt{2}} \pi_{\varphi_1}(y) 1_{\varphi_1} \oplus \frac{1}{\sqrt{2}} \pi_{\varphi_2}(y) 1_{\varphi_2} \rangle \\ &= \langle U \pi_{\varphi}(x) 1_{\varphi}, U \pi_{\varphi}(y) 1_{\varphi} \rangle \end{split}$$

Additionally, U intertwines: for all $x \in A$, we have

$$U\pi_{\varphi}(x)(\pi_{\varphi}(y)1_{\varphi}) = U\pi_{\varphi}(xy)1_{\varphi}$$

$$= \frac{1}{\sqrt{2}}\pi_{\varphi_{1}}(xy)1_{\varphi_{1}} \oplus \frac{1}{\sqrt{2}}\pi_{\varphi_{2}}(xy)1_{\varphi_{2}}$$

$$= (\pi_{\varphi_{1}}(x) \oplus \pi_{\varphi_{2}}(x))(\pi_{\varphi_{1}}(y)1_{\varphi_{1}} \oplus \pi_{\varphi_{2}}(y)1_{\varphi_{2}})$$

$$= (\pi_{\varphi_{1}}(x) \oplus \pi_{\varphi_{2}}(x))U(\pi_{\varphi}(y)1_{\varphi}).$$

If we star the intertwining identity, we get

$$\pi_{\omega}(x^*)U^* = U^* (\pi_{\omega_1}(x^*) \oplus \pi_{\omega_2}(x^*)), \quad \forall x^* \in A.$$

If we plug in x instead of x^* , we get

$$\pi_{\omega}(x)U^* = U^* \left(\pi_{\omega_1}(x) \oplus \pi_{\omega_2}(x)\right), \quad \forall x \in A.$$

Now let

$$p_1 \in \mathcal{B}(L^2(A, \varphi_1) \oplus L^2(A, \varphi_2))$$

be orthogonal projection onto the first factor. Clearly, we have

$$p_1(\pi_{\varphi_1}(x) \oplus \pi_{\varphi_2}(x)) = (\pi_{\varphi_1}(x) \oplus \pi_{\varphi_2}(x)) p_1$$

Putting it all together, we get

$$\pi_{\varphi}(x)U^{*}p_{1}U = U^{*}(\pi_{\varphi_{1}}(x) \oplus \pi_{\varphi_{2}}(x))p_{1}U$$
$$= U^{*}p_{1}(\pi_{\varphi_{1}}(x) \oplus \pi_{\varphi_{2}}(x))U$$
$$= U^{*}p_{1}U(\pi_{\varphi_{1}}(x) \oplus \pi_{\varphi_{2}}(x))$$

so U^*p_1U commutes with $\pi_{\varphi}(x)$ for all $x \in A$. If $\sigma(U^*p_1U)$ has more than one element, then $\exists t \in (0,1]$ such that $\sigma(U^*p_1U-t)$ has both positive and negative elements. By

CFC, we can write $U^*p_1U=a-b$ for positive $0 \neq a,b$ such that ab=ba=0. Then a,b commute with $\pi_{\varphi}(A)$, so $\ker a \neq 0$ is an closed subspace of $L^2(A,\varphi)$ that is invariant under $\pi_{\varphi}(x)$, which is a contradiction. So U^*p_1U has a single element spectrum $\{\alpha\}$ and since U^*p_1U is normal (because it is positive), so is $U^*p_1U-\alpha I$. But now we can write

$$||U^*p_1U - \alpha I|| = r(U^*p_1U) = 0,$$

which proves that $U^*p_1U = \alpha I$. Then

$$\begin{split} &\alpha = \alpha \varphi(1) = \varphi(\alpha) \\ &= \langle \alpha 1_{\varphi}, 1_{\varphi} \rangle \\ &= \langle U^* p_1 U 1_{\varphi}, 1_{\varphi} \rangle \\ &= \left\langle \frac{1}{\sqrt{2}} 1_{\varphi_1} \oplus 0, \frac{1}{\sqrt{2}} 1_{\varphi_1} \oplus \frac{1}{\sqrt{2}} 1_{\varphi_2} \right\rangle \\ &= \left\langle \frac{1}{\sqrt{2}} 1_{\varphi_1}, \frac{1}{\sqrt{2}} 1_{\varphi_1} \right\rangle_{\varphi_1} = \frac{1}{2}. \end{split}$$

This means that we can write

$$\left(\sqrt{2}p_1U\right)^*\left(\sqrt{2}p_1U\right) = 1,$$

so

$$u_1 = \frac{1}{\sqrt{2}} p_1 U : L^2(A, \varphi) \to L^2(A, \varphi_1)$$

is an isometry. We also have the identities

$$u_1 1_{\varphi} = 1_{\varphi_1}, \quad u_1 \pi_{\varphi}(x) = \pi_{\varphi_1}(x) u_1.$$

It follows that

$$\varphi(x) = \langle \pi_{\varphi}(x) 1_{\varphi}, 1_{\varphi} \rangle$$

$$= \langle u_1^* u_1 \pi_{\varphi}(x) 1_{\varphi}, 1_{\varphi} \rangle$$

$$= \langle u_1^* \pi_{\varphi_1}(x) u_1 1_{\varphi}, 1_{\varphi} \rangle$$

$$= \langle \pi_{\varphi_1}(x) u_1 1_{\varphi}, u_1 1_{\varphi} \rangle$$

$$= \langle \pi_{\varphi_1}(x) 1_{\varphi_1}, 1_{\varphi_1} \rangle = \varphi_1(x)$$

and we are done.

Theorem 3.17.

A representation $\pi: A \to \mathcal{B}(\mathcal{H})$ if irreducible iff $\pi(A)' = \mathbb{C} \cdot \mathrm{id}$.

Proof. Start with (\Leftarrow) . Suppose there exists a closed invariant subspace $(0) \neq \mathcal{K} \subsetneq \mathcal{H}$. Let $p \in \mathcal{B}(\mathcal{H})$ be the orthogonal projection onto \mathcal{K} . Then $p \notin \mathbb{C} \cdot \mathrm{id}$. Now we prove that $p \in \pi(A)'$. let $a \in A$. For $\mu \in \mathcal{K}$, we have

$$(p\pi(a))\mu = p(\pi(a)\mu) = \pi(a)\mu = \pi(a)(p\mu) = (\pi(a)p)\mu.$$

Now for $\mu \in \mathcal{K}^{\perp}$, we get

$$(p\pi(a))\mu = p(\pi(a)\mu) = 0 = \pi(a)(0) = \pi(a)(p\mu) = (\pi(a)p)\mu.$$

For the converse (\Rightarrow) , suppose there exists a non-scalar self-adjoint $h \in \pi(A)'$. Then $\sigma(h)$ has at least two elements. By CFC, there exist nonzero $f,g \in C(\sigma(h))$ such that fg = 0. Then $f(h) \neq 0$ since $f \neq 0$. Then also $\mathcal{K} := \inf f(h) \leq \mathcal{H}$ is nonzero. Also, $g(h) \neq 0$ and $g(h)|_{\mathcal{K}} = 0$ since $g(h) \cdot f(h) = 0$. in particular, $\mathcal{K} \subsetneq \mathcal{H}$. From $h \in \pi(A)'$, we deduce $f(h) \in \pi(A)'$. We claim that \mathcal{K} is invariant; it's enough to show that $\inf f(h)$ is invariant. For $a \in A, \mu \in \mathcal{H}$ we have

$$\pi(a)(f(h)\mu) = \pi(a)f(h)\mu = f(h)\pi(a)\mu \in \operatorname{im} f(h).$$

In general, if $q \in \pi(A)'$, then $q^* \in \pi(A)'$ and we can reduce the problem to self-adjoint case above.

Corollary 3.18. Irreps of abelian C^* -algebras are 1-dimensional.

Proof. Let A be an abelian C^* -algebra and $\pi:A\to\mathcal{B}(\mathcal{H})$ an irrep. Then by theorem, $\pi(A)'=\mathbb{C}$. Moreover,

$$\pi(A) = Z(\pi(A)) = \pi(A)' \cap \pi(A) = \mathbb{C} \cdot \mathrm{id}$$
.

Corollary 3.19. If A is an abelian C^* -algebra, then $\operatorname{ext} S(A) = \sigma(A)$.

Proof. Let $\sigma \in \sigma(A)$. Then σ is 1-dimensional (therefore irreducible) representation and so $\sigma \in \text{ext } S(A)$. For the converse, take $\varphi \in \text{ext } S(A)$. Then the GNS construction π_{φ} is irreducible, therefore 1-dimensional. So $L^2(A,\varphi) = \mathbb{C}$ with the standard scalar product and $\varphi(x) = \langle \pi_{\varphi}(x) 1_{\varphi}, 1_{\varphi} \rangle = \pi_{\varphi}(x)$.

Proposition 3.20. Let A be a C^* -algebra. Then $\operatorname{co} \operatorname{ext} S(A)$ is weak-* dense in S(A).

Proof. We know that S(A) is compact Hausdorff wrt the weak-* topology. The conclusion follows from Krein-Milman.

Corollary 3.21. Let A be a C^* -algebra and $x \in A \setminus (0)$. Then there exist an irrep $\pi : A \to \mathcal{B}(\mathcal{H})$ such that $\pi(x) \neq 0$.

Proof. By proposition, there exists $\varphi \in S(A)$ such that $\varphi(x) \neq 0$. by previous proposition (Krein-Milman), there exists a $\tau \in \text{ext } S(A)$ such that $\tau(x) \neq 0$. Then apply GNS: π_{τ} is irreducible and $\pi_{\tau}(x) \neq 0$.

Theorem 3.22 (Jordan decomposition for linear functionals).

Let A be a C*-algebra and $\varphi \in A^*$ hermitian. Then there exist (unique - without proof) positive linear functionals $\varphi_+, \varphi_- \in A^*$ such that $\varphi = \varphi_+ - \varphi_-$ and $\|\varphi\| = \|\varphi_+\| = \|\varphi_-\|$.

Proof. WLOG $\|\varphi\| = 1$. Let Σ denote the set of positive linear functionals with norm ≤ 1 . By Banach-Alaoglu, Σ is weak-* compact and Hausdorff. Consider

$$\gamma: A \to C(\Sigma), \quad a \mapsto (\psi \mapsto \psi(a)).$$

This is an isometry and $\gamma(A_+) \subseteq C(\Sigma)_+$. By Hahn-Banach, there exists a $\widetilde{\varphi}: C(\Sigma) \to \mathbb{C}$ such that $\|\widetilde{\varphi}\| = \|\varphi\|$ and $\varphi = \widetilde{\varphi} \circ \gamma$. Assume $\widetilde{\varphi}$ is hermitian (otherwise, we can it by $\frac{\widetilde{\varphi} + \widetilde{\varphi}^*}{2}$). By Riesz-Markoff, there exists a regular Radon Measure μ on Σ such that $\widetilde{\varphi}(f) = \int f d\mu$ for all $f \in C(\Sigma)$. Then we use Jordan decomposition for measures to obtain μ_+, μ_- such that $\mu = \mu_+ - \mu_-$ and $\|\mu\| = \|\mu_+\| = \|\mu_-\|$. Now we just define $\varphi_{\pm}(a) := \int a d\mu_{\pm}$.

Corollary 3.23. For a C^* -algebra A, A^* is the span of positive linear functionals on A.

Corollary 3.24. Let A be a C^* -algebra and $\varphi \in A^*$. Then there exists a representation $\pi : A \to \mathcal{B}(\mathcal{H})$ and $\mu, \theta \in \mathcal{H}$ such that $\varphi(a) = \langle \pi(a)\theta, \mu \rangle$.

Proof. Unite $\varphi = \sum_{i=1}^{n} \alpha_i \psi_i$ for some $\psi_j \in S(A)$. Let π_i be the GNS representation of ψ_i . Define $\pi := \bigoplus_i \pi_i$, $\theta := \bigoplus_i \alpha_i 1_{\psi_i}$ and $\mu = \bigoplus_i 1_{\psi_i}$. The result then follows immediately. \square

3.4 Examples of C^* -algebras

Example 3.25. The most canonical example of a C^* -algebra is $\mathcal{B}(\mathcal{H})$. Similarly, the algebra of compact operators $\mathcal{K}(\mathcal{H})$ is a C^* -algebra (if dim $\mathcal{H} = \infty$, it is non-unital).

Example 3.26. If dim $\mathcal{H} = \infty$, then $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is a so-called Calkin algebra. It is simple and it does not have a separable representation.

Example 3.27. The algebra of matrices $M_n(\mathbb{C}) = \mathcal{B}(\mathbb{C}^n)$ is a C^* -algebra.

Proposition 3.28 (Artin-Wedderburn for C^* -algebras). Every finite-dimensional C^* -algebra A is

$$A \cong M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_r}(\mathbb{C})$$

for uniquely determined n_1, \ldots, n_r .

Proof. Since A is a finite-dimensional algebra over \mathbb{C} , it is artinian. It is enough to prove that it is J-semisimple. Denote $J=\operatorname{rad} A$, which is finitely-generated. By artinian property, the sequence

$$J \supseteq J^2 \supseteq J^3 \supseteq \dots$$

has to stabilize somewhere, so assume $J^n = J^{n+1}$. By Nakayama's lemma, we have $J \cdot J^n = J^n$, which implies $J^n = (0)$, so J is nilpotent. Take any $a \in J$. Then $a^*a \in J$ and so $(a^*a)^n = 0$. Then we have

$$0 = \|(a^*a)^{2^n}\| = \|a^*a\|^{2^n} = \|a\|^{2^{n+1}}$$

and a=0. So A is artinian and J-semisimple, therefore semisimple. Now we use Artin-Wedderburn for algebras, together with the fact that \mathbb{C} is an algebraically-closed field, so any finite-dimensional division algebra over \mathbb{C} is \mathbb{C} itself.

Let G be a group. Then the (complex) group algebra $\mathbb{C}[G]$ is the algebra with basis $\{u_g \mid g \in G\}$ and multiplication given by $u_g \cdot u_h = u_{gh}$. Then $\mathbb{C}[G]$ has the involution

$$\left(\sum_{g\in G}^{\text{finite}}a_gu_g\right)^* = \sum_g \overline{a_g}u_{g^{-1}}.$$

Multiplication is convolutive:

$$\left(\sum_{g} a_g u_g\right) \left(\sum_{h} b_h u_h\right) = \sum_{g,h} a_g b_h u_g u_h$$

$$= \sum_{g,h} a_g b_h u_{gh}$$

$$= \sum_{k} \left(\sum_{g} a_g b_{g^{-1}k}\right) u_k.$$

To introduce norms on $\mathbb{C}[G]$ we use representations $\pi:\mathbb{C}[G]\to\mathcal{B}(\mathcal{H})$. In such a case, we define the C^* -algebra

$$C_{\pi}^*(G) := \overline{\pi(\mathbb{C}[G])} \subseteq \mathcal{B}(\mathcal{H})$$
.

For $g \in G$, we get

$$\pi(u_g)\pi(u_g)^* = \pi(u_g) \cdot \pi(u_g^*)$$

$$= \pi(u_g) \cdot \pi(u_{g^{-1}})$$

$$= \pi(u_g \cdot u_{g^{-1}}) = \pi(u_e) = 1.$$

Similarly, $\pi(u_g)^*\pi(u_g) = 1$. Under any representation of $\mathbb{C}[G]$, each u_g is mapped to a unitary.

Example 3.29. Take $\mathcal{H} = \ell^2(G)$ (this is a Hilbert space with ONB $\{\delta_g \mid g \in G\}$). Then

$$\lambda: \mathbb{C}[G] \to \mathcal{B}(\ell^2(G)), \quad u_a \mapsto (\delta_h \mapsto \delta_{ah})$$

is a faithful representation. We call it the left regular representation of G. The induced group C^* -algebra $C^*_r(G) := \overline{\lambda(\mathbb{C}[G])} \subseteq \mathcal{B}(\ell^2(G))$.

Definition 3.30. Universal (or full) group C^* -algebra is $\mathbb{C}[G]$ where the norm of an element $a \in \mathbb{C}[G]$ is $||a||_u = \sup\{||\pi(a)|| \mid \pi \text{ rep of } \mathbb{C}[G]\}.$

Lemma 3.31. If π is a representation of $\mathbb{C}[G]$ and $a = \sum_{g \in G}^{\text{finite}} a_g u_g \in \mathbb{C}[G]$, then $\|\pi(a)\| \leq \sum |a_g|$.

Proof. Then $\pi(a) = \sum a_g \cdot \pi(u_g)$. Then

$$\|\pi(a)\| = \left\|\sum a_g \pi(u_g)\right\| \le \sum |a_g| \cdot \|\pi(u_g)\| = \sum |a_g|.$$

This implies that $\|\cdot\|_u$ is a norm on $\mathbb{C}[G]$. The universal C^* -algebra of G is $C^*(G)$ the completion of $\mathbb{C}[G]$ wrt $\|\cdot\|_u$.

Remark. Then $\mathbb{C}[G]$ is dense in both $C^*_{\lambda}(G)$ and $C^*(G)$.

Theorem 3.32 (Universal property).

For each representation π of $\mathbb{C}[G]$ there exists a surjective *-homomorphism $\widehat{\pi}: C^*(G) \to C^*_{\pi}(G)$ such that

Proof. Define first $\widehat{\pi}$ on $\mathbb{C}[G] \subseteq C^*G$ by $\widehat{\pi}(a) := \pi(a) \in C^*_{\pi}(G)$. Then $\widehat{\pi}$ on $\mathbb{C}[G]$. Firstly, $\widehat{\pi}$ on $\mathbb{C}[G]$ is contractive:

$$\|\widehat{\pi}(a)\| = \|\pi(a)\| \le \|a\|_u$$
.

By density, $\widehat{\pi}$ uniquely extends to a continuous *-homomorphism $\widehat{\pi}: C^*(G) \to C^*_{\pi}(G)$. This $\widehat{\pi}$ is contractive and im π is dense, so $\widehat{\pi}$ is onto.

Example 3.33. Let G be abelian and |G| = n. Then $\mathbb{C}[G] = \mathbb{C}^{|G|}$ as vector space. Hence $C^*G = \mathbb{C}[G] = C^*_r(G)$. Further, $\mathbb{C}[G]$ is commutative, so by structure theorem

$$\mathbb{C}[G] \cong \underbrace{\mathbb{C} \oplus \cdots \oplus \mathbb{C}}_{n \ times}.$$

For instance, $\mathbb{C}\left[\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}\right]=\mathbb{C}\left[\mathbb{Z}/4\mathbb{Z}\right]$.

Example 3.34. Let $G = S_3$. Then |G| = 6 and once again $C^*(G) = \mathbb{C}[G] = C_r^*(G)$. By structure theorem, $\mathbb{C}[G] \cong M_2(\mathbb{C}) \oplus \mathbb{C} \oplus \mathbb{C}$ (otherwise it would be commutative).

Example 3.35. Let $G = S_4$. Again, $C^*(G) = \mathbb{C}[G] = C_r^*(G)$. By Maschke's theorem, $\mathbb{C}[G]$ is semisimple, therefore it is a direct sum of matrix algebras over \mathbb{C} . Since S_4 has five conjugacy classes, there are five factors^a. Adding up all the dimensions, the only combination that works is 9 + 9 + 4 + 1 + 1 = 24, therefore

$$\mathbb{C}[G] = M_3(\mathbb{C}) \oplus M_3(\mathbb{C}) \oplus M_2(\mathbb{C}) \oplus \mathbb{C} \oplus \mathbb{C}.$$

 $[^]a\mathrm{Pierre}$ Antoine Grillet, $Abstract\ algebra,$ theorem IX.7.9.

Example 3.36. What is $C^*(\mathbb{Z})$? Representations $\pi(\mathbb{C}[Z]) \to \mathcal{B}(\mathcal{H})$ are determined by choice of unitary $U \in \mathcal{B}(\mathcal{H})$ such that $\pi(u_1) = U$. By universal property, for every \mathcal{H} and $U \in \mathcal{B}(\mathcal{H})$ there exists a unique *-homomorphism

$$\widehat{\pi}: C^*(\mathbb{Z}) \to C^*(\{U\}),$$

where the latter is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$, generated by U. We call $C^*(\mathbb{Z})$ the universal C^* -algebra, generated by a unitary.

3.5 Abelian group C^* -algebras

If G is abelian, then $\mathbb{C}[G]$ is commutative and $C_r^*(G)$ is abelian. By Gelfand, there exists a compact hausdorff space \widehat{G} such that $C_r^*(G) \cong C(\widehat{G})$ and $\widehat{G} = \sigma(C_r^*(G))$.

Definition 3.37. To each abelian group G we associate its Pontryagin dual

$$\widehat{G} = \{w : G \to \mathbb{T} \text{ group homomorphism}\}.$$

Then \widehat{G} is a group under pointwise multiplication. We endow \widehat{G} with the topology induced from $\widehat{G} \subseteq \mathbb{T}^G$. The basis sets for this topology are

$$B_{\varepsilon,F}(w) = \{ \eta \in \widehat{G} \mid |\eta(h) - w(h)| < \varepsilon, \ \forall h \in F \}$$

for $\varepsilon > 0$, $w \in \widehat{G}$ and $F \subseteq G$ finite. Notice that a net $(w_i)_{i \in I} \subseteq \widehat{G}$ is Cauchy iff $(w_i(g))_{i \in I} \subseteq \mathbb{T}$ is Cauchy for all $g \in G$.

Theorem 3.38.

The map

$$h: \widehat{G} \to \sigma(C_r^*(G)), \quad w \mapsto \left(\sum a_g u_g \mapsto \sum a_g w(g)\right)$$

is a homeomorphism.

Proof. First, we prove that $h(w) \in \sigma(C_r^*(G))$ for all $w \in \widehat{G}$. We begin by showing $h(w) : \mathbb{C}[G] \to \mathbb{C}$ is a homomorphism. Take $b = \sum b_k u_k \in \mathbb{C}[G]$. Then

$$h(w)(a \cdot b) = \sum_{g} \left(\sum_{h} a_h b_{h^{-1}g} \right) \cdot w(g)$$

and

$$h(w)(a) \cdot h(w)(b) = \left(\sum_g a_g w(g)\right) \cdot \left(\sum_h b_h w(h)\right) = \sum_k \left(\sum_h a_{kh^{-1}} b_h\right) w(k),$$

so h(w) is multiplicative. To extend it to C_r^* , we must prove that $|h(w)a| \leq ||a||_r$ for all $a \in \mathbb{C}[G]$. To $\chi \in \sigma(C_r^*(G))$ and $a \in \mathbb{C}[G]$ we associate

$$\widetilde{a} = \sum a_g w(g) \cdot \overline{\chi(u_g)} u_g,$$

so $h(w)a = \chi(\widetilde{a})$. By Gelfand,

$$\|\widetilde{a}\|_r = \sup\{|\mu(\widetilde{a})| \mid \mu \in \sigma(C_r^*(G))\} \ge |\chi(\widetilde{a})| = |h(w)a|.$$

Next, we show that $\|\widetilde{a}\|_r = \|a\|_r$: to $\theta \in \ell^2(G)$ assign $\widetilde{\theta}$ by $\widetilde{\theta_h} := \chi(u_{h^{-1}})\overline{w(h)}\theta_h$. Then $\|\theta\|_2 = \|\widetilde{\theta}\|_2$. Further, $\|\lambda(\widetilde{a})\widetilde{\theta}\|_2 = \|\lambda(a)\theta\|_2$ (short calculation), so

$$\|\widetilde{a}\|_r = \sup\{\|\lambda(\widetilde{a})\widetilde{\theta}\| \mid \|\widetilde{\theta}\|_2 = 1\} = \sup\{\|\lambda(\widetilde{a})\theta\| \mid \|\theta\|_2 = 1\} = \|a\|_r.$$

Next, we prove that h is continuous. Suppose the net $(w_i)_{i\in I}\subseteq \widehat{G}$ is Cauchy. We prove that for every $a\in C^*_r(G)$ the net $(h(w_i)(a))_{i\in I}$ is Cauchy. Pick $\varepsilon>0$. There exists J such that for every $i,j\geq J$, we have

$$|w_i(g) - w_j(g)| < \frac{\varepsilon}{|\{g \mid a_g \neq 0\}|}, \quad \forall g \in G.$$

Then for all $i, j \geq J$ we get $|h(w_i)(g) - h(w_j)(g)| < \varepsilon$. For the general case $a \in C_r^*(G)$, we can take a as a limit of a sequence $(a_n)_n \subseteq \mathbb{C}G$, approximate a with a_n and use the triangle inequality to establish that $(h(w_i)(a))_i$ is Cauchy. Now on to bijectivity of h. It's enough to check that it is surjective: take $\phi \in \sigma(C_r^*(G))$. Define

$$w_{\phi}: G \to \mathbb{C}, \quad g \mapsto \phi(u_g).$$

Since ϕ is a *-homomorphism, im $w_{\phi} \subseteq \mathbb{T}$. We have to prove that $w_{\phi} \in \widehat{G}$. We just check the multiplicativity:

$$w_{\phi}(g) \cdot w_{\phi}(h) = \phi(u_q)\phi(u_h) = \phi(u_q u_h) = \phi(u_q u_h) = w_{\phi}(gh).$$

For every $w \in \widehat{G}$, we get $w_{h(w)} = w$. So $w_{\phi} = w_{h(w_{\phi})}$, which gives us $h(w_{\phi}) = \phi$. Now since h is a bijective continuous map between compact and Hausdorff spaces, it is a homeomorphism.

Example 3.39. $\widehat{\mathbb{Z}/n\mathbb{Z}} = \mathbb{Z}/n\mathbb{Z}, \, \widehat{\mathbb{R}} = \mathbb{R}, \, \widehat{\mathbb{Z}} = \mathbb{T}, \, \widehat{\mathbb{T}} = \widehat{\mathbb{Z}}.$

Theorem 3.40 (Pontryagin).

If G is a locally compact abelian group (it's underlying topological space is locally compact Hausdorff), then $G \cong \widehat{\widehat{G}}$.

4 Bounded operators on Hilbert spaces

Let \mathcal{H} be a complex Hilbert space. Then $\mathcal{B}(\mathcal{H})$ is a \mathbb{C} -algebra with norm $||A|| = \sup_{\mu \in \mathcal{H}, ||\mu|| = 1} ||A\mu||$. Remark. Recall that $A \in \mathcal{B}(\mathcal{H})$ is:

- (1.) normal $\Leftrightarrow A^*A = AA^* \Leftrightarrow ||A\mu|| = ||A^*\mu||, \ \forall \mu \in \mathcal{H}$
- (2.) self-adjoint $\Leftrightarrow A^* = A \Leftrightarrow \langle A\mu, \mu \rangle \in \mathbb{R}, \ \forall \mu \in \mathcal{H}$
- (3.) positive $\Leftrightarrow A = B^*B$ for some $B \in \mathcal{B}(\mathcal{H}) \Leftrightarrow \langle A\mu, \mu \rangle \geq 0, \ \forall \mu \in \mathcal{H}$
- (4.) isometry $\Leftrightarrow A^*A = I \Leftrightarrow ||A\mu|| = ||\mu||, \ \forall || \in \mathcal{H}$
- (5.) projection $\Leftrightarrow A^2 = A = A^* \Leftrightarrow A$ is an orthogonal projection onto some closed subspace of \mathcal{H}

Lemma 4.1. An operator $A \in \mathcal{B}(\mathcal{H})$ is a partial isometry iff there exists a closed subspace $\mathcal{K} \leq \mathcal{H}$ such that $A|_{\mathcal{K}}$ is an isometry and $A|_{\mathcal{K}^{\perp}} = 0$.

Proof. We first prove (\Leftarrow). Obviously, $\mathcal{K}^{\perp} \subseteq \ker A$. From Ax = 0, where x = y + z and $y \in \mathcal{K}, z \in \mathcal{K}^{\perp}$, we have

$$0 = Ax = A(y+z) = Ay + Az = Ay.$$

But since $A|_{\mathcal{K}}$ is an isometry, ||Ay|| = ||y|| = 0, so y = 0 and $x \in \mathcal{K}^{\perp}$. Now we prove that $P = A^*A$ is a standard projection onto \mathcal{K} . For $x \in \mathcal{K}$, we have

$$\langle Px, x \rangle = \langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2 = ||x||^2,$$

so

$$||P|| = ||A^*A|| \le ||A|| ||A^*|| = ||A||^2 = 1.$$

From Cauchy-Schwartz:

$$\langle Px, x \rangle < ||Px|| ||x|| < ||P|| ||x||^2 < ||x||^2.$$

Since we have equality in Cauchy-Schwartz, there exists a $\lambda \in \mathbb{C}$ such that $Px = \lambda x$. But from $\langle Px, x \rangle = \|x\|^2$, it follows that $\lambda = 1$. So $P|_{\mathcal{K}} = \operatorname{id}$ and for $x \in \mathcal{K}^{\perp}$, $Px = A^*Ax = 0$. Therefore, $P = A^*A$ is indeed a projection. Now onto the opposite direction (\Rightarrow) . Suppose $P = A^*A$ is a projection and denote $\mathcal{K} = \operatorname{im} P$. Since $\mathcal{K} = \ker(I - P)$, it is a closed subspace of \mathcal{H} . For $x \in \mathcal{K}$, we have

$$||Ax||^2 = \langle Ax, Ax \rangle = \langle Px, x \rangle = \langle x, x \rangle = ||x||^2.$$

But for $x \in \mathcal{K}^{\perp}$, we use the identity

$$(\operatorname{im} P)^{\perp} = \ker P^* = \ker P$$

to get
$$Px = 0$$
, so $||Ax||^2 = \langle Px, x \rangle = 0$ and $||Ax|| = 0$.

Theorem 4.2.

Let \mathcal{H} be a Hilbert space and $x \in \mathcal{B}(\mathcal{H})$. Then there exists a partial isometry v such that $x = v \cdot |x|$ and $\ker v = \ker |x| = \ker x$. This decomposition is unique if x = wy for $y \geq 0$ and partial isometry w such that $\ker y = \ker w$. Then w = v and y = |x|.

Proof. First we prove the existence. Define

$$v_x : \operatorname{im} |x| \to \operatorname{im} x, \quad |x|y \mapsto xy.$$

Since

$$|||x|y||^2 = \langle |x|y, |x|y \rangle$$

$$= \langle |x|^2 y, y \rangle$$

$$= \langle x^* xy, y \rangle$$

$$= \langle xy, xy \rangle$$

$$= ||xy||^2.$$

The above v_x is well defined. It is also linear and isometric. By continuity, extend v_x to a map $\overline{\operatorname{im}|x|} \to \overline{\operatorname{im} x}$. Now v_0 can be extended to $v: \mathcal{H} \to \mathcal{H}$ by setting $v|_{(\operatorname{im}|x|)^{\perp}} = 0$. By previous lemma, v is a partial isometry. By definition, $x = v \cdot |x|$ and $\ker v = (\operatorname{im}|x|)^{\perp} = \ker |x| = \ker x$. Next, we prove uniqueness. If x = wy as in the statement, then $\ker w = \ker y = (\operatorname{im} y)^{\perp}$, so w is a partial isometry on $\overline{\operatorname{im} y}$. From there, we get

$$|x|^2 = (wy)^*(wy) = y^*w^*wy = y^*y = y^2,$$

which implies

$$|x| = (|x|^2)^{\frac{1}{2}} = (y^2)^{\frac{1}{2}} = y.$$

Now

$$w|x|\mu = wy\mu = x\mu$$

together with

$$\ker w = (\operatorname{im} y)^{\perp} = (\operatorname{im} |x|)^{\perp}$$

implies w = v.

4.1 Trace class operators

Recall that $A \in \mathcal{B}(\mathcal{H})$ has finite rank if rank $A = \dim \overline{\operatorname{im} A} < \infty$. We know that

$$\operatorname{im} A^* = \operatorname{im}(A^*|_{(\ker A^*)^{\perp}}) = \operatorname{im}(A^*|_{\overline{\operatorname{im} A}}).$$

So rank $A < \infty$ iff rank $A^* < \infty$. Define a set

$$\mathcal{F}(\mathcal{H}) = \{ A \in \mathcal{B}(\mathcal{H}) \mid \operatorname{rank} A < \infty \}$$

of finite rank operators. Now if $\alpha, \beta \in \mathcal{H}$, then we can define

$$\alpha \otimes \overline{\beta} : \mathcal{H} \to \mathcal{H}, \quad y \mapsto \langle y, \beta \rangle \cdot \alpha.$$

It is trivial to see that $\operatorname{rank}(\alpha \otimes \overline{\beta}) \leq 1$ and $(\alpha \otimes \overline{\beta})^* = \beta \otimes \overline{\alpha}$. If $\|\alpha\| = \|\beta\| = 1$, then $\alpha \otimes \overline{\beta}$ is a partial isometry with initial space $\mathbb{C}\beta$ and image $\mathbb{C}\alpha$. Then

$$\mathcal{F}(\mathcal{H}) = \operatorname{span} \{ \alpha \otimes \overline{\beta} \mid \alpha, \beta \in \mathcal{H} \}.$$

For $x, y \in \mathcal{B}(\mathcal{H})$ we have

$$x(\alpha \otimes \overline{\beta})y = (x\alpha) \otimes \overline{(y^*\beta)}.$$

Lemma 4.3. Let $x \in \mathcal{B}(\mathcal{H})$ have the polar decomposition $x = v \cdot |x|$. Then for all $y \in \mathcal{H}$, we have

$$2 |\langle xy, y \rangle| \le \langle |x|y, y \rangle + \langle |x|v^*y, v^*y \rangle.$$

Proof. Let $\lambda \in \mathbb{T}$. Then

$$\begin{split} 0 &\leq \|(|x|^{\frac{1}{2}} - \lambda |x|^{\frac{1}{2}} v^*) y \|^2 \\ &= \||x|^{\frac{1}{2}} y \|^2 - 2 \operatorname{Re} \overline{\lambda} \langle |x|^{\frac{1}{2}} y, |x|^{\frac{1}{2}} v^* y \rangle + \||x|^{\frac{1}{2}} v^* y \|^2. \end{split}$$

Now pick λ such that $\overline{\lambda}\langle |x|^{\frac{1}{2}}y, |x|^{\frac{1}{2}}v^*y\rangle \geq 0$ and we are done.

Definition 4.4. Let $(e_i)_{i\in I}$ be an orthonormal system for \mathcal{H} . For $x\in\mathcal{B}(\mathcal{H})_+$, define the trace

$$\operatorname{Tr}(x) = \sum_{i \in I} \langle x e_i, e_i \rangle \in [0, \infty].$$

We call $x \in \mathcal{B}(\mathcal{H})$ trace class if

$$||x|| = \operatorname{Tr}(|x|) < \infty.$$

The set of trace class operators on \mathcal{H} will be denoted by $L^1(\mathcal{B}(\mathcal{H}), \mathrm{Tr})$.

Remark. By $\sum_{i\in I}\langle xe_i,e_i\rangle$, we mean the limit of the net $a_F=\sum_{i\in F}\langle xe_i,e_i\rangle$, where $F\subseteq I$ is a finite subset. Indeed, one can check that finite subsets $F\subseteq I$ together with the inclusion relation form a directed set. Furthermore, the above net is monotone, therefore it either converges (if it is above bounded) or it goes to infinity. Therefore, it has a generalized limit. If the sum converges, then $\langle xe_i,e_i\rangle$ is non-zero for at most countable many e_i and our definition of the sum coincides with the usual sum of the series.

Lemma 4.5. For all $x \in \mathcal{B}(\mathcal{H})$ we have $\operatorname{Tr}(x^*x) = \operatorname{Tr}(xx^*)$.

Proof.

$$\begin{aligned} \operatorname{Tr}(x^*x) &= \sum_i \langle x^*xe_i, e_i \rangle = \sum_i \langle xe_i, xe_i \rangle \\ &= \sum_i \|xe_i\|^2 = \sum_i \sum_j \langle xe_i, e_j \rangle \overline{\langle xe_i, e_j \rangle} \\ &= \sum_j \sum_i \langle e_i, x^*e_j \rangle \overline{\langle e_i, x^*e_j \rangle} = \sum_j \sum_i \langle x^*e_j, e_i \rangle \overline{\langle x^*e_j, e_i \rangle} \\ &= \sum_j \|x^*e_j\|^2 = \sum_j \langle x^*e_j, x^*e_j \rangle \\ &= \sum_j \langle xx^*e_j, e_j \rangle = \operatorname{Tr}(xx^*) \end{aligned}$$

Corollary 4.6. If $x \in \mathcal{B}(\mathcal{H})_+$ and $u \in \mathcal{U}(\mathcal{H})$, then

$$Tr(u^*xu) = Tr(x).$$

In particular, the trace of a positive operator is independent of the choice of the orthonormal basis for \mathcal{H} .

Proof. Since $x \in \mathcal{B}(\mathcal{H})_+$, there exists a $y \in \mathcal{B}(\mathcal{H})$ such that $x = y^*y$. By lemma, we have

$$Tr(x) = Tr(y^*y) = Tr(yy^*)$$
$$= Tr(u^*y^*yu) = Tr(u^*xu).$$

If (f_i) is another ONB for \mathcal{H} , then there exists $u \in \mathcal{U}(\mathcal{H})$ such that $ue_i = f_i$ for all indices i:

$$\sum_{i} \langle x f_i, f_i \rangle = \sum_{i} \langle x u e_i, u e_i \rangle$$

$$= \sum_{i} \langle u^* x u e_i, e_i \rangle$$

$$= \operatorname{Tr}(u^* x u) = \operatorname{Tr}(x).$$

Definition 4.7. If (e_i) is ONB for \mathcal{H} and $x \in L^1(\mathcal{B}(\mathcal{H}))$, then its trace is

$$\operatorname{Tr}(x) := \sum_{i \in I} \langle x e_i, e_i \rangle.$$

By one of the lemmas above, this series is absolutely convergent:

$$2|\operatorname{Tr}(x)| \le \operatorname{Tr}(|x|) + \operatorname{Tr}(v|x|v^*) \le ||x||_1 + ||x||_1 = 2||x||_1.$$

This is the result of the following proof.

Theorem 4.8.

- (1.) $L^1(\mathcal{B}(\mathcal{H}))$ is a two-sided ideal in $\mathcal{B}(\mathcal{H})$ that is closed under involution.
- (2.) $L^1(\mathcal{B}(\mathcal{H}))$ is a linear span of all positive operators of finite trace.
- (3.) Trace is independent of the ONB and $\|\cdot\|_1$ is a norm on $L^1(\mathcal{B}(\mathcal{H}))$.

Proof. Let $A, B \in L^1(\mathcal{B}(\mathcal{H}))$ and satisfy the polar decompositions:

$$A + B = U|A + B|, \quad A = V|A|, \quad B = W|B|.$$

Let (e_i) be an ONB. Then

$$\begin{split} \sum_{i=1}^{N} \langle |A+B|e_i,e_i\rangle &= \sum_{n=1}^{N} |\langle U^*(A+B)e_n,e_n\rangle| \\ &\leq \sum_{n=1}^{N} |\langle U^*Ae_n,e_n\rangle| + \sum_{n=1}^{N} |\langle U^*Be_n,e_n\rangle| \\ &= \sum_{n=1}^{N} |\langle U^*V|A|e_n,e_n\rangle| + \sum_{n=1}^{N} |\langle U^*W|B|e_n,e_n\rangle|. \end{split}$$

We can bound the first term:

$$\begin{split} \sum_{n=1}^{N} |\langle U^*V|A|e_n, e_n\rangle| &= \sum_{n=1}^{N} |\langle |A|^{\frac{1}{2}}e_n, |A|^{\frac{1}{2}}V^*Ue_n\rangle| \\ &\leq \sum_{n=1}^{N} \||A|^{\frac{1}{2}}e_n\| \||A|^{\frac{1}{2}}V^*Ue_n\| \\ &\leq \left(\sum_{n=1}^{N} \||A|^{\frac{1}{2}}e_n\|^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{N} \||A|^{\frac{1}{2}}V^*Ue_n\|^2\right)^{\frac{1}{2}}. \end{split}$$

Since $||A|^{\frac{1}{2}}e_n||^2 = \langle |A|^{\frac{1}{2}}e_n, |A|^{\frac{1}{2}}e_n \rangle = \langle |A|e_n, e_n \rangle$, the expression in the first bracket goes to Tr |A|. Next, we prove that the expression in the second bracket is less or equal to Tr |A|:

$$\sum_{n=1}^{N} \langle |A|^{\frac{1}{2}} V^* U e_n, |A|^{\frac{1}{2}} V^* U e_n \rangle = \sum_{n=1}^{N} \langle U^* V |A| V^* U e_n, e_n \rangle \xrightarrow{N \to \infty} \operatorname{Tr} |A|.$$

Pick an ONB for \mathcal{H} as follows: each f_j should be in ker U or $(\ker U)^{\perp}$. Then

$$\operatorname{Tr}(U^*V|A|V^*U) \le \operatorname{Tr}(V|A|V^*).$$

By similar argument,

$$\operatorname{Tr}(V|A|V^*) < \operatorname{Tr}(|A|)$$

and we are done:

$$\sum_{n=1}^{N} |\langle U^*V|A|e_n, e_n\rangle| \le \text{Tr} |A|.$$

Similarly,

$$\sum_{n=1}^{N} |\langle U^* W | B | e_n, e_n \rangle| \le \text{Tr} |B|,$$

which implies $\operatorname{Tr} |A+B| \leq \operatorname{Tr} |A| + \operatorname{Tr} |B|$. We have proved that $L^1(\mathcal{B}(\mathcal{H}))$ is a vector space and $\|\cdot\|_1$ is a norm. Clearly, $L^1(\mathcal{B}(\mathcal{H}))$ contains all positive operators with finite trace, so also their linear span. Next we prove that it is a two-sided ideal of $\mathcal{B}(\mathcal{H})$. Let $A \in L^1(\mathcal{B}(\mathcal{H}))$ and $B \in \mathcal{B}(\mathcal{H})$. Since every operator is a linear combination of four unitaries, we can assume WLOG that B = U is a unitary. Then

$$|UA| = (A^*U^*UA)^{\frac{1}{2}} = (A^*A)^{\frac{1}{2}} = |A|,$$

so $BA = UA \in L^1(\mathcal{B}(\mathcal{H}))$. Furthermore,

$$|AU| = (U^*A^*AU)^{\frac{1}{2}} = U^*|A|U,$$

which implies

$$\operatorname{Tr}|AU| = \operatorname{Tr}(U^*|A|U) = \operatorname{Tr}|A|$$

and $AB = AU \in L^1(\mathcal{B}(\mathcal{H}))$. Now we prove that $L^1(\mathcal{B}(\mathcal{H}))$ is closed under involution. Let A = U|A| and $A^* = V|A^*|$ be polar decompositions. Then

$$|A^*| = V^*A^* = V^*(U|A|)^* = V^*|A|U^*.$$

If $A \in L^1(\mathcal{B}(\mathcal{H}))$, then $|A| \in L^1(\mathcal{B}(\mathcal{H}))$, so

$$|A^*| = V^*|A|U^* \in L^1(\mathcal{B}(\mathcal{H})).$$

This gives us $A^* \in L^1(\mathcal{B}(\mathcal{H}))$. Finally, we prove that $L^1(\mathcal{B}(\mathcal{H}))$ is a linear span of all positive operators of finite trace. Let $x \in L^1(\mathcal{B}(\mathcal{H}))$ and $a \in \mathcal{B}(\mathcal{H})$. The following glorization identity holds:

$$4a|x| = \sum_{k=0}^{3} i^k \underbrace{(a+i^k)|x|(a+i^k)^*}_{\text{positive and finite trace}}.$$

If a = v partial isometry from the polar decomposition theorem, then

$$x = v|x| = \sum_{k=0}^{3} \frac{i^{k}}{4} (v + i^{k})|x|(v + i^{k})^{*}.$$

is a linear combination of four positive operators with finite trace.

As an obvious corollary, the definition of trace is independent of the choice of an ONB of \mathcal{H} .

Proposition 4.9. Let $x \in L^1(\mathcal{B}(\mathcal{H}))$ and $a, b \in \mathcal{B}(\mathcal{H})$. Then

- $||x|| \le ||x||_1$;
- $||axb||_1 \le ||a|| ||b|| ||x||_1$;
- $\operatorname{Tr}(ax) = \operatorname{Tr}(xa)$.

Proof. (1.)

$$\begin{split} \|x\| &= \||x|\| = \||x|^{\frac{1}{2}}\|^2 \\ &= \sup_{\|\alpha\| = 1} \langle |x|^{\frac{1}{2}}\alpha, |x|^{\frac{1}{2}}\alpha \rangle = \sup_{\|\alpha\| = 1} \langle |x|\alpha, \alpha \rangle \\ &\leq \operatorname{Tr}|x| = \|x\|_1. \end{split}$$

(2.) We begin with

$$|ax|^2 = x^*a^*ax \le ||a^*a||x^*x = ||a^*a|| \cdot |x|^2 = ||a||^2 \cdot |x|^2$$

and since $|ax| \le ||a|| \cdot |x|$ we get $||ax||_1 \le ||a|| \cdot ||x||_1$. But $||x||_1 = ||x^*||_1$, we also get $||xb||_1 \le ||b|| \cdot ||x||_1$.

(3.) WLOG $a = u \in \mathcal{U}(\mathcal{H})$. Then

$$\operatorname{Tr}(xu) = \sum_{i} \langle xue_{i}, e_{i} \rangle = \sum_{i} \langle xue_{i}, u^{*}ue_{i} \rangle$$
$$= \sum_{i} \langle uxue_{i}, ue_{i} \rangle = \operatorname{Tr}(ux).$$

Remark. We have the following identities:

- (1.) $\operatorname{Tr}(\alpha \otimes \overline{\beta}) = \langle \alpha, \beta \rangle;$
- (2.) $\mathcal{F}(\mathcal{H})$ is dense in $(L^1(\mathcal{B}(\mathcal{H})), \|\cdot\|_1)$. Of course, we know that $\mathcal{F}(\mathcal{H})$ is dense in $(\mathcal{K}(\mathcal{H}), \|\cdot\|)$.

Theorem 4.10.

 $(L^1(\mathcal{B}(\mathcal{H})), \|\cdot\|_1)$ is a Banach space.

Proof. We only have to prove completeness. Let $(x_n)_n$ be a Cauchy sequence in $(L^1(\mathcal{B}(\mathcal{H})), \|\|_1)$. Since $\|\cdot\| \le \|\cdot\|_1$, (x_n) is a Cauchy sequence in $(\mathcal{B}(\mathcal{H}), \|\|)$. But $(\mathcal{B}(\mathcal{H}), \|\|)$ is a Banach space, so there exists $x \in \mathcal{B}(\mathcal{H})$ such that $x_n \to x$ in $\|\|$ -topology. Notice that

$$x^*x - x_n^*x_n = x^*(x - x_n) + (x - x_n)^*x_n.$$

By continuity of continuous functional calculus, this implies $|x_n| \to |x|$, meaning $||x_n| - |x||| \to 0$. Next we prove that $x \in L^1(\mathcal{B}(\mathcal{H}))$. For any ONB $(e_i)_i$, we have

$$\sum_{i=1}^{k} \langle |x|e_i, e_i \rangle = \lim_{n \to \infty} \sum_{i=1}^{k} \langle |x_n|e_i, e_i \rangle \le \lim_{n \to \infty} \operatorname{Tr} |x_n| = \lim_{n \to \infty} ||x_n||_1 < \infty.$$

Here, we used the fact that $||x_n - x_k||_1 \ge ||x_n||_1 - ||x_k||_1$, so the sequence $(||x_n||_1)_n$ is Cauchy and therefore has a limit. This proves that $x \in L^1(\mathcal{B}(\mathcal{H}))$ and $||x||_1 \le \lim_{n\to\infty} ||x_n||_1$. Finally, we have to show that $||x_n - x||_1 \to 0$. Let $\varepsilon > 0$. Pick $N \in \mathbb{N}$ such that for every n > N, we get $||x_n - x_N||_1 < \frac{\varepsilon}{3}$. Let $\mathcal{H}_0 \subseteq \mathcal{H}$ be a finite dimensional subspace such that

$$||x_N P_{\mathcal{H}_0^{\perp}}||_1, ||x P_{\mathcal{H}_0^{\perp}}||_1 < \frac{\varepsilon}{3}.$$

Then for every n > N, we have

$$||x - x_n||_1 \le ||(x - x_n)P_{\mathcal{H}_0}||_1 + ||(x - x_n)P_{\mathcal{H}_0^{\perp}}||_1$$

$$\le ||(x - x_n)P_{\mathcal{H}_0}||_1 + ||xP_{\mathcal{H}_0^{\perp}} - x_NP_{\mathcal{H}_0^{\perp}}||_1 + ||x_NP_{\mathcal{H}_0^{\perp}} - x_nP_{\mathcal{H}_0^{\perp}}||_1$$

$$\le ||(x - x_n)P_{\mathcal{H}_0}||_1 + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + ||x_N - x_n||_1 ||P_{\mathcal{H}_0^{\perp}}||$$

$$= ||(x - x_n)P_{\mathcal{H}_0}||_1 + \varepsilon$$

$$\le ||(x - x_n)|||P_{\mathcal{H}_0}||_1 + \varepsilon \xrightarrow[n \to \infty]{} \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, this shows $x_n \xrightarrow[\|\cdot\|_1]{} x$.

Theorem 4.11.

The map

$$\Psi: \mathcal{B}(\mathcal{H}) \to L^1(\mathcal{B}(\mathcal{H}))^*, \quad a \mapsto (\psi_a: x \mapsto \operatorname{Tr}(ax))$$

is an isometric isomorphism of Banach spaces.

Corollary 4.12. The map

$$\Phi: L^1(\mathcal{B}(\mathcal{H})) \to \mathcal{K}(\mathcal{H})^*, \quad x \mapsto (\varphi_x : a \mapsto \operatorname{Tr}(ax))$$

is an isometric isomorphism of Banach spaces.

Proof of the theorem. We notice that Ψ is linear and a contraction because the norms $\|\cdot\|$ and $\|\cdot\|_1$ are comparable. We will first show that Ψ is surjective. Let $\varphi \in L^1(\mathcal{B}(\mathcal{H}))^*$. Notice that

$$(\alpha, \beta) \mapsto \varphi(\alpha \otimes \overline{\beta})$$

is a bounded sesquilinear form in \mathcal{H} . By the introductory course, there exists an $a \in \mathcal{B}(\mathcal{H})$ such that

$$\varphi(\alpha \otimes \overline{\beta}) = \langle a\alpha, \beta \rangle = \operatorname{Tr}(a\alpha \otimes \overline{\beta}) = \operatorname{Tr}(a(\alpha \otimes \overline{\beta})) = \psi_a(\alpha \otimes \overline{\beta}).$$

So φ and ψ_a agree on $\mathcal{F}(\mathcal{H})$, so by bounded density $\varphi = \psi_a$. Finally,

$$||a|| = \sup_{\alpha,\beta \in (\mathcal{H})_1} |\langle a\alpha,\beta \rangle| = \sup_{\alpha,\beta \in (\mathcal{H})_1} |\operatorname{Tr}(a(\alpha \otimes \overline{\beta}))| \le ||\psi_a||_1.$$

But since

$$\|\psi_a\|_1 = \sup_{x \in (L^1(\mathcal{B}(\mathcal{H})))_1} |\operatorname{Tr}(ax)| = \sup_{x \in (L^1(\mathcal{B}(\mathcal{H})))_1} \|ax\|_1 \le \sup_{x \in (L^1(\mathcal{B}(\mathcal{H})))_1} \|a\| \|x\|_1 = \|a\|,$$

we have $||a|| = ||\psi_a||_1$ and ψ is isometric.

Recall that $T \in \mathcal{B}(\mathcal{H})$ is compact if $T((\mathcal{H})_1)$ is relatively compact. Equivalently, image under T of a bounded sequence in \mathcal{H} has a convergent subsequence. For Hilbert spaces, this is also equivalent to $T \in \overline{\mathcal{F}(\mathcal{H})}$ in the norm $\|\cdot\|$. For compact operators in Hilbert space, we have the singular value decomposition. For $K \in \mathcal{K}(\mathcal{H})$, then there exists an orthonormal basis $(e_i)_i$ and

 $(f_j)_j$ for \mathcal{H} and $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$ such that

$$Kx = \sum_{n=1}^{\infty} \sigma_n \langle x, e_n \rangle f_n.$$

This implies

$$|K|x = \sum \sigma_n \langle x, e_n \rangle e_n.$$

Theorem 4.13.

(1.) $L^1(\mathcal{B}(\mathcal{H})) \subseteq K(\mathcal{H})$.

(2.) $K \in \mathcal{H}$ is a $L^1(\mathcal{B}(\mathcal{H}))$ iff $\sum_{k=1}^{\infty} \sigma_n < \infty$.

Proof. (1.) If $x \in L^1(\mathcal{B}(\mathcal{H})) = \mathcal{F}$ then there exists $(x_n)_n$ in $\mathcal{F}(\mathcal{H})$ such that $||x_n - x||_1 \to 0$. Since $||\cdot|| \le ||\cdot||_1$, we get $||x_n - x|| \to 0$ and $x \in \overline{\mathcal{F}}^{||\cdot||} = \mathcal{K}(\mathcal{H})$. (2.) This follows from $\text{Tr}|K| = \sum \sigma_n$.

4.2Hilbert-Schmidt operators

Definition 4.14. An element $x \in \mathcal{B}(\mathcal{H})$ is a Hilbert-Schmidt operator if

$$|x|^2 = x^*x \in L^1(\mathcal{B}(\mathcal{H})).$$

The set of all such elements is denoted by $L^2(\mathcal{B}(\mathcal{H}), \mathrm{Tr})$.

Proposition 4.15. (1.) $L^2(\mathcal{B}(\mathcal{H})) \triangleleft \mathcal{B}(\mathcal{H})$ and is closed under *.

(2.) If $x, y \in L^2(\mathcal{B}(\mathcal{H}))$, then $xy, yx \in L^1(\mathcal{B}(\mathcal{H}))$ and Tr(xy) = Tr(yx).

Remark. Beware: $\exists a, b \in \mathcal{B}(\mathcal{H})$ such that $ab \in L^1(\mathcal{B}(\mathcal{H}))$ and $ba \notin L^1(\mathcal{B}(\mathcal{H}))$. However, if $ab, ba \in L^1(\mathcal{B}(\mathcal{H})), \text{ then } Tr(ab) = Tr(ba).$

Proof. For $\alpha \in \mathbb{C}$ and $x \in \mathcal{B}(\mathcal{H})$, we have $|\alpha x|^2 = |\alpha|^2 |x|^2$. Similarly, $|x+y|^2 \le |x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2)$, so $L^2(\mathcal{B}(\mathcal{H}))$ is a complex vector space. Since $|ax|^2 \le ||a||^2 \cdot |x|^2$, we have $L^2(\mathcal{B}(\mathcal{H}))$ is a left ideal of $\mathcal{B}(\mathcal{H})$. From

$$\operatorname{Tr}|x|^2 = \operatorname{Tr}(x^*x) = \operatorname{Tr}(xx^*) = \operatorname{Tr}|x^*|^2$$

we deduce that $L^2(\mathcal{B}(\mathcal{H}))$ is closed under involution. If $x \in L^2(\mathcal{B}(\mathcal{H}))$ and $b \in \mathcal{B}(\mathcal{H})$, then $x^* \in L^2$, which implies $b^*x^* \in L^2$ and finally $xb = (b^*x^*)^* \in L^2(\mathcal{B}(\mathcal{H}))$, so $L^2(\mathcal{B}(\mathcal{H})) \triangleleft \mathcal{B}(\mathcal{H})$. Next, we use the polarization identity

$$4y^*x = \sum_{k=0}^{3} i^k |x + i^k y|^2.$$

If $x, y \in L^2(\mathcal{B}(\mathcal{H}))$, then this shows $y^*x \in L^1(\mathcal{B}(\mathcal{H}))$ and

$$4\operatorname{Tr}(y^*x) = \sum_{k=0}^{3} i^k \operatorname{Tr}((x+i^k y)^*(x+i^k y))$$
$$= \sum_{k=0}^{3} i^k \operatorname{Tr}((x+i^k y)(x+i^k y)^*)$$
$$= 4\operatorname{Tr}(xy^*).$$

On $L^2(\mathcal{B}(\mathcal{H}))$ we have the sesquilinear form $\langle x,y\rangle_2 := \text{Tr}(y^*x)$. It is well-defined and positive definite, so it is a scalar product. The induced norm is denoted as $\|\cdot\|_2$. For every $y \in L^2(\mathcal{B}(\mathcal{H}))$, we have

$$||y|| = ||y^*y||^{\frac{1}{2}} \le ||y^*y||^{\frac{1}{2}} = ||y||_2.$$

Similarly, we have

$$||axb||_2 = ||a|| \cdot ||x||_2 \cdot ||b||$$

for all $x \in L^2(\mathcal{B}(\mathcal{H}))$ and $a, b \in \mathcal{B}(\mathcal{H})$. As before, $\mathcal{F}(\mathcal{H})$ are dense in $L^2(\mathcal{B}(\mathcal{H}))$ with regards to $\|\cdot\|_2$ and $L^2(\mathcal{B}(\mathcal{H}))$. Using singular values $(\sigma_n)_n$ of compact $K \in \mathcal{K}(\mathcal{H})$, we have $K \in L^2(\mathcal{B}(\mathcal{H}))$ iff $\sum_{k=0}^{\infty} \sigma_j^2 < \infty$. For every $x \in L^1(\mathcal{B}(\mathcal{H}))$, we have

$$\|x\|_2 = \sup_{y \in L^2(\mathcal{B}(\mathcal{H})), \ \|y\|_2 = 1} |\operatorname{Tr}(y^*x)| \leq \sup_{y \in L^2(\mathcal{B}(\mathcal{H})), \ \|y\|_2 = 1} \|y\| \cdot \|x\|_1 \leq \|x\|_1.$$

As a result $(L^2(\mathcal{B}(\mathcal{H})), \langle \cdot \rangle_2)$ is a Hilbert space.

Theorem 4.16 (Hölder inequality).

For all $x, y \in L^2(\mathcal{B}(\mathcal{H}))$ we have

$$||xy||_1 \le ||x||_2 ||y||_2.$$

Proof.

$$||xy||_1 = \operatorname{Tr} |xy| = |\operatorname{Tr}(v^*xy)|$$

$$= |\langle y, x^*v \rangle_2| \le ||x^*v||_2 ||y||_2$$

$$\le ||x^*||_2 ||v|| ||y||_2 \le ||x||_2 \cdot ||y||_2.$$

4.3 Hilbert-Schmidt integral operators

Let (X, μ) be a σ -finite measure space. This means that X is a countable union of finite-measure sets:

$$X = \bigcup_{j=1}^{\infty} A_j, \quad \mu(A_j) < \infty.$$

For $K \in L^2(X \times X, \mu \times \mu)$, then we can define a Hilbert-Schmidt integral operator with kernel K:

$$T_K: L^2(X,\mu) \to L^2(X,\mu), \quad f \mapsto \left(y \mapsto \int_X K(x,y) f(y) \, d\mu(x)\right).$$

Suppose $(\varphi_{\alpha})_{\alpha}$ is an ONB for $L^2(K,\mu)$. By Fubini, $(\overline{\varphi_a(x)}\varphi_{\beta}(y))_{\alpha,\beta}$ is an orthonormal basis for $L^2(X\times X,\mu\times\mu)$. Since $K\in L^2(X\times X,\mu\times\mu)$, there exist $c_{ij}\in\mathbb{C}$ such that

$$K(x,y) = \sum_{i,j} c_{ij} \overline{\varphi_i(x)} \varphi_j(y), \quad ||K||_{L^2(X \times X)}^2 = \sum |c_{ij}|^2 < \infty.$$

We show that T_K is well-defined: for $f \in L^2(X, \mu)$, we have $T_K f \in L^2(X, \mu)$. Indeed,

$$T_k f(y) = \sum_{i,j} c_{ij} \langle f, \varphi_i \rangle \varphi_j(y),$$

which implies

$$||T_K f||_{L^2(X)}^2 \le \sum_{i,j} |c_{ij}|^2 |\langle f, \varphi_j \rangle|^2 ||\varphi_j||_{L^2(X)}^2$$

$$\le ||f||_{L^2}^2 \sum_{i,j} |c_{ij}|^2 ||\varphi||_{L^2}^2 ||\varphi_j||_{L^2}^2$$

$$= ||f||_{L^2}^2 \sum_{i,j} |c_{ij}|^2$$

$$= ||f||_{L^2}^2 ||K||_{L^2(X \times X)}^2$$

and finally $||T_K|| \leq ||K||_{L^2}$. Suppose that $T_K^*: L^2(X,\mu) \to L^2(X,\mu)$ is the integral operator with kernel

$$K^*(y,x) := \overline{K(x,y)}.$$

Now

$$\langle T_K f, g \rangle = \int_Y \left(\int_X K(x, y) f(x) \, d\mu(x) \right) \cdot \overline{g(y)} \, d\mu(y)$$
$$= \int_X f(x) \cdot \left(\overline{\int_Y \overline{K(x, y)}} g(y) \, d\mu(y) \right) \, d\mu(x)$$
$$= \langle f, T_{K^*} g \rangle.$$

Remark (Fubini's theorem). If X,Y are measure spaces and $\int_{X\times Y} |f|d(x,y) < \infty$, then

$$\int_{X \times Y} f = \int_{Y} \left(\int_{X} f \, dx \right) \, dy = \int_{X} \left(\int_{Y} f \, dy \right) \, dx.$$

Theorem 4.17.

(1.) For
$$K \in L^2(X \times X, \mu \times \mu)$$
 we have $T_K \in L^2(\mathcal{B}(L^2(X, \mu)))$.

(2.) The mapping $\Phi: K \mapsto T_K$ is a unitary

$$L^2(X \times X, \mu \times \mu) \mapsto L^2(\mathcal{B}(L^2(X, \mu))).$$

Proof. (1.) We will prove that $||T_K||_2 = ||K||_{L^2}$. We want to approximate T_K with finite rank operators, so we first approximate K:

$$K(x,y) = \sum_{i,j=1}^{\infty} c_{ij} \overline{\varphi_i(x)} \varphi_j(x)$$

for orthonormal basis $(\varphi_{\alpha})_{\alpha}$ for $L^2(X,\mu)$. For $N \in \mathbb{N}$ let $K_N(x,y) = \sum_{i,j}^N c_{ij} \overline{\varphi_i(x)} \varphi_j(x)$. Then

$$T_{K_N} f = \sum_{i,j=1}^{N} c_{ij} \langle f, \varphi_i \rangle \varphi_j \in \mathcal{F}(L^2(X,\mu)).$$

By the above inequality,

$$||T_K - T_{K_N}|| \le ||K - K_N||_{L^2} \to 0,$$

so $T_K \in \overline{\mathcal{F}}^{\|\cdot\|} = \mathcal{K}(\mathcal{H})$. Then

$$||T_K||_2^2 = \sum_i ||T_K \varphi_i||_{L^2}^2 = \sum_{i,j,k} ||c_{jk} \varphi_j(x) \delta_{ik}||^2 = \sum_i |c_{ij}|^2 = ||K||_{L^2}^2.$$

(2.) It remains to prove surjectivity. Since Φ is isometric, im Φ is closed. So it suffices to show that im Φ is dense. In particular, we will show that im $\Phi \supseteq \mathcal{F}(L^2(X,\mu))$. Let $A \in \mathcal{F}(L^2(X,\mu))$, so rank $A < \infty$. Let (ψ_1, \ldots, ψ_m) be an orthonormal basis for im A. Then $A\varphi = c_1(\varphi)\psi_1 + \cdots + c_m(\varphi)\psi_m$ for some bounded linear functionals c_j on $L^2(X,\mu)$. By Riesz, there exist $\mu_j \in L^2(X,\mu)$ such that $c_j(\varphi) = \langle \varphi, \mu_j \rangle$. Hence

$$A\varphi(x) = \int_X \left(\sum_{j=1}^m \psi_j(x) \cdot \overline{\mu_j(y)} \cdot \varphi(y) \right) d\mu(y) = T_{\sum_{j=1}^m \psi_j(x) \overline{\mu_j(y)}} \in \operatorname{im} \Phi. \quad \Box$$

Now let \mathcal{H}, \mathcal{K} be Hilbert spaces and $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. We associate to A the map

$$\widetilde{A} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K}, \mathcal{H} \oplus \mathcal{K}), \quad \alpha \oplus \beta \mapsto 0 \oplus A\alpha$$

or in matrix form

$$\widetilde{A} = \begin{bmatrix} 0 & 0 \\ A & 0 \end{bmatrix}.$$

We denote the set of Hilbert-Schmidt operators $\mathcal{H} \mapsto \mathcal{K}$ as

$$HS(\mathcal{H}, \mathbb{C}) = \{ A \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \mid \widetilde{A} \in L^2(\mathcal{B}(\mathcal{H} \oplus \mathcal{K})) \}.$$

Using this notation, $HS(\mathcal{H}, \mathbb{C})$ is just the dual of \mathcal{H} , so \mathcal{H}^* . By Riesz, we have a natural anti-isomorphism

$$\mathcal{H} \to \mathcal{H}^*, \quad \alpha \mapsto \langle \cdot, \alpha \rangle =: \overline{\alpha}$$

and a natural anti-linear bijection

$$\mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}^*), \quad A \mapsto (\overline{A} : \overline{\alpha} \mapsto \overline{A\alpha}).$$

We denote the Hilbert space $\mathcal{H} \overline{\otimes} \mathcal{K} := HS(\mathcal{K}^*, \mathcal{H})$. This is called the tensor product of Hilbert spaces. If $(e_{\alpha})_{\alpha}$ is an ONB for \mathcal{H} and $(f_{\beta})_{\beta}$ for \mathcal{K} , then $(e_{\alpha} \otimes \overline{f_{\beta}})_{\alpha,\beta}$ is an ONB for $\mathcal{H} \overline{\otimes} \mathcal{K}$. The algebraictensor product $\mathcal{H} \otimes \mathcal{K}$ are exactly the operators in $HS(\mathcal{K}^*, \mathcal{H})$ that are of finite rank, which are span $\{\varphi \otimes \overline{\psi} \mid \varphi \in \mathcal{H}, \ \psi \in \mathcal{K}\}$.

4.4 Locally convex topologies on $\mathcal{B}(\mathcal{H})$

If \mathcal{H} is a Hilbert space, then $(\mathcal{B}(\mathcal{H}), \|\cdot\|)$ is a Banach algebra with its norm topology.

Definition 4.18. (1.) The weak operator topology (WOT) is given by the seminorms

$$T \mapsto |\langle T\alpha, \beta \rangle|, \quad \forall \alpha, \beta \in \mathcal{H}.$$

(2.) The strong operator topology (SOT) is given by the seminorms

$$T \mapsto ||T\alpha||, \quad \forall \alpha \in \mathcal{H}.$$

These topologies are comparable: WOT \subseteq SOT \subseteq uniform.

• Uniform topology has the subbasis

$${S \in \mathcal{B}(\mathcal{H}) \mid ||S - T|| < \varepsilon}$$

for $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. The net T_i converges to T iff $||T_i - T||$ converges to 0.

• WOT topology has the subbasis

$$\{S \in \mathcal{B}(\mathcal{H}) \mid \langle (S-T)\alpha, \beta \rangle < \varepsilon \}$$

for $\alpha, \beta \in \mathcal{H}$, $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. The net T_i converges to T iff $\langle T_i \alpha, \beta \rangle$ converges to $\langle T\alpha, \beta \rangle$ for all α, β .

• SOT topology has the subbasis

$$\{S \in \mathcal{B}(\mathcal{H}) \mid ||(S-T)\alpha|| < \varepsilon\}$$

for $\alpha \in \mathcal{H}$, $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$. The net T_i converges to T iff $||(T_i - T)\alpha||$ converges to 0 for all α .

Example 4.19. Let $\mathcal{H} = \ell^2(\mathbb{N})$ and denote $T_n = \frac{1}{n} \circ \mathrm{id}$. Then $T_n \to 0$ in the norm topology. Now if we introduce the operator

$$S(x_1, x_2, \dots) = (0, 0, \dots, 0, x_{n+1}, x_{n+2}, \dots),$$

then $S_n \to 0$ in SOT, but not in norm topology, since $||S_n|| = 1$. Lastly, we define

$$W_n(x_1, x_2, \dots) = (0, 0, \dots, x_1, x_2, \dots).$$

We get that $W_n \to 0$ in WOT, but not in SOT and norm topology.

Example 4.20. Let $(y_n)_n$ be a countable dense subset of $\mathcal{H} = \ell^2$. Consider the following metrics on $(\mathcal{B}(\mathcal{H}))_1$:

$$d_S(A,B) = \sum_{n=1}^{\infty} \frac{1}{2^n} \|(A-B)y_n\|, \quad d_W(A,B) = \sum_{n=1}^{\infty} \frac{1}{2^n} |\langle (A-B)y_n, y_n \rangle|.$$

Then d_S induces SOT and d_W induces WOT on $(\mathcal{B}(\mathcal{H}))_1$.

Example 4.21. The multiplication

$$\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), \quad (A, B) \mapsto A \cdot B$$

is not jointly continuous with regards to SOT or WOT. Indeed, if $S: \ell^2 \to \ell^2$ is right shift (and S^* left shift), then $S^n \to 0$ and $(S^*)^n \to 0$ in WOT, but $(S^*)^n S^n = I$. However, multiplication is WOT- and SOT- continuous in each factor separately. Suppose that $(x_{\alpha})_{\alpha} \to x$ in WOT and $y \in \mathcal{B}(\mathcal{H})$. Then for each $v, w \in \mathcal{B}(\mathcal{H})$, we have

$$|\langle x_{\alpha}yv - xyv, w \rangle| \to 0,$$

since $x_{\alpha} \to x$ in WOT. Similarly,

$$|\langle yx_{\alpha}v - yxv, w \rangle| = |\langle x_{\alpha}v - xv, y^*w \rangle| \to 0,$$

which implies $x_{\alpha}y \to xy$ and $yx_{\alpha} \to yx$ in WOT.

Example 4.22. The adjoint is isometric in uniform topology. It is also continuous in WOT:

$$|\langle x^*v - y^*v, w \rangle| < \varepsilon \Leftrightarrow |\langle xw - yw, v \rangle| < \varepsilon.$$

However, it is not continuous with regards to SOT. If $(e_n)_n$ is an ONB for \mathcal{H} , consider $e_1 \otimes \overline{e_n}$. Then for every $x \in \mathcal{H}$, we have

$$\|(e_1 \otimes \overline{e_n})x\| = |\langle x, e_n \rangle| \xrightarrow[n \to \infty]{} 0,$$

so $e_1 \otimes \overline{e_n} \to 0$ in SOT. However,

$$\|(e_1 \otimes \overline{e_n})^* x\| = \|(e_n \otimes \overline{e_1})x\| = |\langle x, e_1 \rangle|$$

does not go to 0 for all $x \in \mathcal{H}$, which proves our statement.

Remark. If $T: X \to Y$ is continuous, then T remains continuous if X is given a finer topology or Y is given a coarser topology. But if both topologies are made coarser or both finer, nothing can be said in general. In particular, if $T: X \to X$ is continuous with respect to a given topology on X in both domain and codomain, you cannot generally conclude anything about continuity of T when X is given a finer or coarser topology on both domain and codomain. The previous example illustrates this.

Lemma 4.23. Let $\varphi: \mathcal{B} \to \mathbb{C}$ be linear. The following is equivalent.

(1.) There exist $v_1, \ldots, v_n \in \mathcal{H}$ and $w_1, \ldots, w_n \in \mathcal{H}$ such that

$$\varphi(T) = \sum_{i=1}^{n} \langle Tv_i, w_i \rangle.$$

- (2.) φ is WOT-continuous.
- (3.) φ is SOT-continuous

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ is obvious. Let us prove $(3) \Rightarrow (1)$. By a proposition in chapter 1 (the application of Hahn-Banach), there exists a K > 0 and $v_1, \ldots, v_n \in \mathcal{H}$ such that

$$|\varphi(T)|^2 \le K \cdot \sum_{i=1}^n ||Tv_i||^2.$$

Define

$$\mathcal{H}_0 := \overline{\left\{ igoplus_{i=1}^n Tv_i \mid T \in \mathcal{B}(\mathcal{H}) \right\}} \leq \mathcal{H}^{\bigoplus n}.$$

The map

$$\mathcal{H}_0 \ni \bigoplus_{i=1}^n Tv_i \mapsto \varphi(T) \in \mathbb{C}$$

is a well-defined and bounded linear functional, which by continuity extends to $\mathcal{H}_0 \to \mathbb{C}$. By Riesz, there exist $w_1, \ldots, w_n \in \mathcal{H}$ such that

$$\varphi(T) = \sum_{i=1}^{n} \langle Tv_i, w_i \rangle.$$

Recall that $v \otimes \overline{w} \in \mathcal{FH}$ and $\text{Tr}(v \otimes \overline{w}) = \langle v, w \rangle$, so

$$\operatorname{Tr}(T(v \otimes \overline{w})) = \langle Tv, w \rangle.$$

The previous identity is really

$$\varphi(T) = \sum_{i=1}^{n} \operatorname{Tr}(T(v \otimes \overline{w})) = \operatorname{Tr}(T \cdot \sum_{i=1}^{n} v_i \otimes \overline{w}_i).$$

This means that $\varphi(T) = \text{Tr}(T \cdot A)$ for $A \in \mathcal{F}(\mathcal{H})$.

Corollary 4.24. If $K \subseteq \mathcal{B}(\mathcal{H})$ is convex, then

$$\overline{K}^{\text{WOT}} = \overline{K}^{\text{SOT}}.$$

Proof.

$$\overline{K}^{\mathrm{WOT}} = \overline{K}^{\mathrm{weak},WOT} = \overline{K}^{\mathrm{weak},SOT} = \overline{K}^{\mathrm{SOT}}$$

Definition 4.25. The σ -weak operator topology (σ -WOT or ultra-weak) is the topology in $\mathcal{B}(\mathcal{H})$ given by the seminorms

$$x \mapsto \left| \sum_{i=1}^{\infty} \langle x \alpha_i, \alpha_i \rangle \right|$$

for $\alpha_j \in \mathcal{H}$ with $\sum_{j=1}^{\infty} \|\alpha_j\|^2 < \infty$. A subbasis of open sets is thus $\left\{ x \in \mathcal{B}(\mathcal{H}) \mid \left| \sum_{i=1}^{\infty} \langle (x - x_0), \alpha_i, \alpha_i \rangle \right| < \varepsilon \right\}$

$$\left\{ x \in \mathcal{B}(\mathcal{H}) \mid \left| \sum \langle (x - x_0), \alpha_i, \alpha_i \rangle \right| < \varepsilon \right\}$$

for $\alpha_j \in \mathcal{H}$ with $\varepsilon > 0$, $x_0 \in \mathcal{B}(\mathcal{H})$ and $\sum \|\alpha_j\|^2 < \infty$.

Definition 4.26. The σ -strong operator topology (σ -SOT or ultra-strong) is the topology in $\mathcal{B}(\mathcal{H})$ given by the seminorms

$$x \mapsto \left(\sum_{i=1}^{\infty} \|x\alpha_i\|^2\right)^{\frac{1}{2}}$$

for $\alpha_j \in \mathcal{H}$ with $\sum_{j=1}^{\infty} \|\alpha_j\|^2 < \infty$. A subbasis of open sets is thus

$$\left\{ x \in \mathcal{B}(\mathcal{H}) \mid \left(\sum \|(x - x_0)\alpha_i\|^2 \right)^{\frac{1}{2}} < \varepsilon \right\}$$

for $\alpha_j \in \mathcal{H}$ with $\varepsilon > 0$, $x_0 \in \mathcal{B}(\mathcal{H})$ and $\sum \|\alpha_j\|^2 < \infty$.

Remark. σ -WOT can also be given by seminorms

$$x \mapsto |\operatorname{Tr}(xa)|$$

for $a \in L^1(\mathcal{B}(\mathcal{H}))$ positive. Let $(f_i)_i$ be an ONB for \mathcal{H} and define

$$b: \mathcal{H} \to \mathcal{H}, \quad f_i \mapsto \alpha_i.$$

Since $\sum \|\alpha_j\|^2 < \infty$, we can conclude $b \in L^2(\mathcal{B}(\mathcal{H}))$. Then:

$$\sum_{i} \langle x\alpha_{i}, \alpha_{i} \rangle = \sum_{i} \langle xbf_{i}, bf_{i} \rangle$$

$$= \sum_{i} \langle b^{*}xbf_{i}, f_{i} \rangle$$

$$= \operatorname{Tr}(b^{*}xb)$$

$$= \operatorname{Tr}(xbb^{*}).$$

where $a := bb^* \in L^1(\mathcal{B}(\mathcal{H}))$. Since $\mathcal{B}(\mathcal{H}) = L^1(\mathcal{B}(\mathcal{H}))^*$, the σ -WOT is just the weak-* topology (with regards to this pairing).

Remark. The map

$$id \otimes 1 : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H} \otimes \ell^2), \quad x \mapsto x \otimes 1$$

is an isometric *-isomorphism of C^* -algebras. It is neither SOT- nor WOT-continuous. Despite that, σ -WOT on $\mathcal{B}(\mathcal{H})$ is induced by WOT on $\mathcal{B}(\mathcal{H} \overline{\otimes} \ell^2)$ and the σ -SOT on $\mathcal{B}(\mathcal{H})$ is induced by SOT on $\mathcal{B}(\mathcal{H} \overline{\otimes} \ell^2)$. Indeed, if $(e_i)_{i \in \mathbb{N}}$ is an ONB for ℓ^2 , define $\alpha := \sum_{i=1}^{\infty} \alpha_i \otimes e_i \in \mathcal{H} \overline{\otimes} \ell^2$. Then

$$\sum_{i \in \mathbb{N}} \langle x \alpha_i, \alpha_i \rangle_{\mathcal{H}} = \langle (\mathrm{id} \otimes 1)(x) \alpha, \alpha \rangle_{\mathcal{H} \otimes \ell^2}$$

and similarly

$$\left(\sum_{i\in\mathbb{N}}\|x\alpha_i\|_{\mathcal{H}}^2\right)^{\frac{1}{2}} = \|(\mathrm{id}\otimes 1)(x)\alpha\|_{\mathcal{H}\overline{\otimes}\ell^2}$$

Lemma 4.27. Let $\varphi : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ be a linear functional operator. Then the following is equivalent.

- (1.) $\exists a \in L^1(\mathcal{B}(\mathcal{H})) \text{ such that } \varphi(x) = \text{Tr}(ax), \ \forall x \in \mathcal{B}(\mathcal{H});$
- (2.) φ is σ -WOT continuous;
- (3.) φ is σ -SOT continuous.

Proof. As previously, the implication $(1) \Rightarrow (2) \Rightarrow (3)$ is obvious. Let us prove $(3) \Rightarrow (1)$. Assume φ is σ -SOT continuous. By identifying $\mathcal{B}(\mathcal{H})$ via id $\otimes 1$ with a subspace in $\mathcal{B}(\mathcal{H} \otimes \ell^2)$, φ is SOT-continuous on this subspace. By Hahn-Banach, φ extends to a SOT-continuous linear functional on $\mathcal{B}(\mathcal{H} \otimes \ell^2)$. By the previous lemma, $\exists \alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathcal{H} \overline{\otimes} \ell^2$.

$$\varphi(x) = \sum_{i=1}^{n} \langle (\operatorname{id} \otimes 1)(x) \alpha_i, \beta_i \rangle.$$

With

$$\alpha_i \sum_{j=1}^{\infty} \alpha_{ij} \otimes e_j, \quad \sum_j \|\alpha_{ij}\|^2 < \infty$$

and

$$\beta_i \sum_{j=1}^{\infty} \beta_{ij} \otimes e_j, \quad \sum_j \|\beta_{ij}\|^2 < \infty.$$

Then

$$\varphi(x) = \sum_{i=1}^{n} \langle (x \otimes 1) \sum_{j=1}^{\infty} \alpha_{ij} \otimes e_j, \sum_{k=1}^{\infty} \beta_{ik} \otimes e_k \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \langle x \alpha_{ij}, \beta_{ik} \rangle \langle e_j, e_k \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{\infty} \langle x \alpha_{ij}, \beta_{ij} \rangle.$$

Define

$$A_i: \mathcal{H} \to \mathcal{H}, \quad A_i f_k = \alpha_{ik}$$

and

$$B_i: \mathcal{H} \to \mathcal{H}, \quad B_i f_k = \beta_{ik}$$

for an orthonormal basis $(f_k)_{k\in\mathbb{N}}$. By assumption, $A_i, B_i \in L^2(\mathcal{B}(\mathcal{H}))$. As before, this gives $\varphi(x) = \sum_i \operatorname{Tr}(B_i^* x A_i) = \operatorname{Tr}(x A_i B_i^*)$.

Corollary 4.28. The unit disk $(\mathcal{B}(\mathcal{H}))_1$ is compact with respect to σ -WOT topology.

Proof. σ -WOT on $\mathcal{B}(\mathcal{H})$ is the weak-* topology from $L^1(\mathcal{B}(\mathcal{H}))^* = \mathcal{B}(\mathcal{H})$. The statement now follows from Banach-Alaoglu.

Corollary 4.29. WOT and σ -WOT agree on bounded subsets $B \subseteq \mathcal{B}(\mathcal{H})$.

Proof. WLOG B is closed. Then the identity $(B, \sigma\text{-WOT}) \to (B, \text{WOT})$ is a continuous map from a T_2 compact (previous corollary) to a T_2 space. Therefore an identity map is a closed continuous bijection, so a homeomorphism.

We use the following notation: if A is vector space and $B \subseteq \mathcal{L}(A, \mathbb{C})$ is a set of linear functionals, then $\sigma(A, B)$ is the weakest topology in A such that linear functionals in B are continuous.

Definition 4.30. Let A be a vector space and $B \subseteq \mathcal{L}(A,\mathbb{C})$ a set of some of its linear functionals. Then we define $\sigma(A,B)$ as the weakest topology such that functionals in B are continuous.

Remark. σ -WOT is $\sigma(\mathcal{B}(\mathcal{H}), L^1(\mathcal{B}(\mathcal{H})))$.

Definition 4.31. Let us define the following topologies on $\mathcal{B}(\mathcal{H})$.

- (1.) Weak Banach topology is $\sigma(\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{H})^*)$.
- (2.) Ultrastrong-* topology is the weakest topology stronger than σ -SOT such that * is continuous.
- (3.) Strong-* topology is generated by seminorms $x \mapsto ||x\alpha||$ and $x \mapsto ||x^*\alpha||$ for $\alpha \in \mathcal{H}$.

In the end, we get the following diagram which demonstrates which topologies are comparable.

5 von Neumann algebras

5.1 Bicommutant theorem

Definition 5.1. A von Neumann algebra (on Hilbert space \mathcal{H}) is a *-subalgebra of $\mathcal{B}(\mathcal{H})$ that is WOT-closed. Equivalently, a *-subalgebras that is SOT-closed.

Definition 5.2. If $A \subseteq \mathcal{B}(\mathcal{H})$, then $W^*(A)$ denotes the vNa generated by A. This is equivalent to the smallest vNa in $\mathcal{B}(\mathcal{H})$ that contains A, which is equivalent to

$$\bigcap \{W \mid A \subseteq W, \ W \subseteq \mathcal{B}(\mathcal{H}) \text{ is vNa} \}.$$

Lemma 5.3. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a vNa. Then $(A)_1$ is WOT-compact.

Proof. Follows from Banach-Alaoglu and σ -WOT and WOT topologies being equivalent on bounded sets.

Corollary 5.4. Let $A \subseteq \mathcal{B}(\mathcal{H})$ vNa. Then $(A)_1$ and A_{sa} are SOT-closed and WOT-closed.

Proof. By the lemma above, * is continuous in WOT, so $A_{\rm sa}$ is closed in WOT. Since $A_{\rm sa}$ is convex, we use Hahn-Banach to see that it is also SOT-closed. The same exact argument applies for $(A)_1$.

Definition 5.5. Commutant of $B \subseteq \mathcal{B}(\mathcal{H})$ is

$$B' = \{ T \in \mathcal{B}(\mathcal{H}) \mid \forall S \in B : ST = TS \}.$$

Bicommutant is B'' := (B')'. By definition, $B'' \supseteq B$.

Theorem 5.6.

Suppose $A \subseteq \mathcal{B}(\mathcal{H})$ is closed under *. Then A' is vNa.

Proof. Obviously, A' is a subalgebra of $\mathcal{B}(\mathcal{H})$ closed under *. We prove that it is WOT-closed. Let $(x_{\alpha})_{\alpha}$ be a net in A' that WOT-converges to $x \in \mathcal{B}(\mathcal{H})$. Pick $a \in A$ and $\varphi, \mu \in \mathcal{H}$. Then

$$\begin{split} \langle [x,a]\varphi,\mu\rangle &= \langle (xa-ax)\varphi,\mu\rangle \\ &= \langle xa\varphi,\mu\rangle - \langle ax\varphi,\mu\rangle \\ &= \langle xa\varphi,\mu\rangle - \langle x\varphi,a^*\mu\rangle \\ &= \lim_{\alpha} \langle x_{\alpha}a\varphi,\mu\rangle - \langle x_{\alpha}\varphi,a^*\mu\rangle \\ &= \lim_{\alpha} \langle (x_{\alpha}a-ax_{\alpha})\varphi,\mu\rangle \\ &= \lim_{\alpha} \langle [x_{\alpha},a]\varphi,\mu\rangle = 0, \end{split}$$

so $x \in A'$ and we're done.

Corollary 5.7. Every vNa is unital.

Example 5.8. For an infinitely-dimensional Hilbert space \mathcal{H} , the set of all compact operators $\mathcal{K}(\mathcal{H})$ is not a vNa, since it doesn't include the identity (the latter is a consequence of Riesz lemma). Another way: as we'll see later, the finite-rank projections converge strongly to identity, $\mathcal{K}(\mathcal{H})$ is not SOT-closed, so it is also not WOT-closed.

Corollary 5.9. Suppose $A \subseteq \mathcal{B}(\mathcal{H})$ is a maximal commutative subalgebra and is closed under *. Then A is vNa.

Proof. Since A is commutative, $A'\supseteq A$. Take $b\in A'\subseteq A$ and consider the subalgebra, generated by A and b. This is an abelian algebra, so by maximality we have we have $b\in A$ and A=A'. Then by theorem, A is a vNa.

Lemma 5.10. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a *-subalgebra. Then $\forall \mu \in \mathcal{H}$ and $\forall x \in A''$ there exists a net $(x_{\alpha})_{\alpha}$ in A such that $\lim_{\alpha} \|(x_{\alpha} - x)\mu\| = 0$.

Proof. Define $\mathcal{K} := \overline{A\mu} \leq \mathcal{H}$. Let $p : \mathcal{H} \to \mathcal{K}$ be the orthogonal projection onto \mathcal{K} . By definition, $a\mathcal{K} \subseteq \mathcal{K}$, $\forall a \in A$. Equivalently, pap = ap. Then

$$pa = (a^*p)^* = (pa^*p)^* = pap = ap,$$

so $p \in A'$. But $x \in A''$, so

$$xp = xp^2 = pxp$$

and $x\mathcal{K} \subseteq \mathcal{K}$. In particular, since $\mu \in \mathcal{K}$, we have $x\mu \in \mathcal{K} = \overline{A\mu}$. So there must exist some net in $A\mu$ that converges to $x\mu$.

Theorem 5.11 (von Neumann's bicommutant theorem).

Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a *-subalgebra. Then $\overline{A}^{\text{WOT}} = A''$.

Proof. By the previous theorem, A'' is a vNa. In particular, it is WOT-closed. Since $A \subseteq A''$, it suffices to show that A is WOT-dense in A''. Because A is convex, it is enough to show that A is SOT-dense in A''. Let $x \in A''$ and $\mu_1, \ldots, \mu_n \in \mathcal{H}$. Form the following subalgebra of $\mathcal{B}(\mathcal{H}^n) \cong M_n(\mathcal{B}(\mathcal{H}))$. Define

$$\widetilde{A} = \left\{ \begin{bmatrix} a & & \\ & \ddots & \\ & & a \end{bmatrix} \in M_n(\mathcal{B}(\mathcal{H})) \mid a \in A \right\}.$$

Then $\widetilde{A}' = M_n(A')$. Hence we get

$$\widetilde{A''} \subseteq M_n(A')' = \widetilde{A}''.$$

This implies that

$$\begin{bmatrix} x & & \\ & \ddots & \\ & & x \end{bmatrix} \in \widetilde{A}'' \subseteq \widetilde{A}''.$$

Now we apply lemma to \widetilde{A} to get a net $(a_i)_i$ in A such that

$$\lim \|(x - a_i)\mu_j\| = 0, \quad \forall j = 1, \dots, n.$$

Corollary 5.12. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a *-subalgebra. Then A is a vNa iff A = A''.

Remark. WOT-closed implies norm-closed. In particular, every vNa is a C^* -algebra. However, the converse is not always true: $\mathcal{C}([0,1])$ is a C^* -algebra that is not vNa.

Corollary 5.13 (Polar decomposition in vNa). Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a vNa and $x \in A$. Then for its polar decomposition x = v|x| we have $v \in A$.

Proof. We know that

$$\ker v = (\operatorname{im}|x|)^{\perp} = \ker|x| = \ker x.$$

For $a \in A'$ and $\mu \in \ker x$ we have $a\mu \in \ker x$:

$$x(a\mu) = ax\mu = 0,$$

which implies $a \ker |x| \subseteq \ker |x|$. We know that $\mathcal{H} = \ker |x| \oplus \overline{\operatorname{im} |x|}$. Suppose that $|x|\mu \in \operatorname{im} |x|$. Then

$$[a, v]|x|\mu = (av - va)|x|\mu = av|x|\mu - va|x|\mu$$

= $ax\mu - v|x|a\mu = ax\mu - xa\mu$
= $[a, x]\mu = 0$.

But for $\beta \in \ker |x| = \ker v$, we have

$$[a, v]\beta = (av - va)\beta = av\beta - va\beta = 0.$$

Since av and va agree on $\ker |x| \oplus \overline{\operatorname{im} |x|} = \mathcal{H}$, we have $v \in A'' = A$.

Example 5.14 (Commutative vNa - IMPORTANT). Let (X, μ) be a σ -finite measure space and

$$M: L^{\infty}(X, \mu) \to B(L^p(X, \mu)), \quad q \mapsto M_q$$

where we define

$$(M_q f)(x) = g(x)f(x).$$

Then M is an isometric *-isomorphism $L^{\infty}(X,\mu) \to M(L^{\infty}(X,\mu))$ and $M(L^{\infty}(X,\mu))$ is

a maximal commutative vNa in $\mathcal{B}(L^2(X,\mu))$.

Remark. A measurable function $f: X \to \mathbb{C}$ is essentially bounded if there exists a real number M (called an essential bound) such that

$$\mu(\{x \in X \mid |f(x)| > M\}) = 0.$$

We define $||f||_{\infty}$ to be an essential supremum of f, which is the infimum of its essential bounds. If $\mathcal{L}^{\infty}(X,\mu)$ are essentially-bounded functions and $\mathcal{N}=\{f\mid ||f||_{\infty}=0\}$. Then $||\cdot||_{\infty}$ is a norm on the space $L^{\infty}(X,\mu)=\mathcal{L}^{\infty}(X,\mu)/\mathcal{N}$.

Proof of the example. Clearly, M is injective, additive and multiplicative. First, we prove that M is a *-homomorphism. This follows from the next calculation:

$$\langle M_{\overline{g}}\mu, \varphi \rangle = \int_{X} M_{\overline{g}}\mu \cdot \overline{\varphi} \, d\mu$$

$$= \int_{X} \overline{g}\mu \overline{\varphi}$$

$$= \int_{X} \mu \overline{g}\overline{\varphi} \, d\mu$$

$$= \langle \mu, M_{g}\varphi \rangle = \langle M_{g}^{*}\mu, \varphi \rangle,$$

so $M_{\overline{g}}=M_g^*$. Next, we prove that M is isometric. For $g\in L^\infty(X,\mu)$, there exists a sequence $E_n\subseteq X$ such that $0<\mu(E_n)<\infty$ and $|g|\big|_{E_n}\geq \|g\|_\infty-\frac{1}{n}$ for all $n\in\mathbb{N}$. Then

$$||M_g|| \ge \frac{||M_g 1_{E_n}||_2}{||1_{E_n}||_2} \ge ||g||_{\infty} - \frac{1}{n}, \quad \forall n \in \mathbb{N},$$

which implies $||M_g|| \ge ||g||_{\infty}$. For the reverse, notice that

$$||M_g 1_{E_n}||^2 = \int_X |g \cdot 1_{E_n}|^2 d\mu$$

$$= \int_{E_n} |g|^2 d\mu$$

$$\geq \int_{E_n} (||g||_{\infty} - \frac{1}{n})^2 d\mu$$

$$= (||g||_{\infty} - \frac{1}{n})^2 \cdot \mu(E_n)$$

and

$$||M_g||^2 = \sup_{\|\mu\|_2 = 1} ||M_g \mu||_2^2 = \sup_{\|\mu\|_2 = 1} \int_X |g\mu|^2 d\mu$$
$$\leq ||g||_{\infty}^2 \cdot \sup_{\|\mu\|_2 = 1} \int_X |\mu|^2 d\mu = ||g||_{\infty}^2.$$

We've just shown that $||Mg|| = ||g||_{\infty}$. Lastly, we prove that $M(L^{\infty}(X,\mu))$ is a maximal commutative subalgebra of $\mathcal{B}(L^2(X,\mu))$. Take $T \in \mathcal{B}(L^2(X,\mu))$ and assume it commutes with all M_g 's. Now pick a measurable sequence $E_n \subseteq X$ such that $0 < \mu(E_n) < \infty$,

 $E_n \subseteq E_{n+1}$ and $X = \bigcup_{n \in \mathbb{N}} E_n$. Define $f_n := T(1_{E_n}) \in (X, \mu)$. First we prove that $f_n \in L^{\infty}(X, \mu)$. If A is measurable and $0 < \mu(A) < \infty$, then

$$\begin{split} \frac{1}{\mu(A)} \int_X |f_n \cdot 1_A|^2 \, d\mu &= \frac{1}{\mu(A)} \cdot \|M_{1_A} T(1_{E_n})\|^2 \\ &= \frac{1}{\mu(A)} \cdot \|T(1_{A \cap E_n})\|^2 \\ &\leq \frac{1}{\mu(A)} \cdot \|T\|^2 \cdot \|1_A\|^2 = \|T\|^2. \end{split}$$

If $f \notin L^{\infty}$, then for all $M \in \mathbb{R}$ we have

$$0 < \mu(\underbrace{\{x \in X \mid |f_n(x)| > M\}}_{A_{n,M}}) < \infty,$$

since $f_n \in L^2$. By above calculation,

$$M^2 \le \frac{1}{\mu(A_{n,M})} \cdot \int_X |f \cdot 1_{A_{n,M}}|^2 d\mu \le ||T||^2,$$

which is of course a contradiction. This proves that $f_n \in L^{\infty}(X, \mu)$ and $||f_n||_{\infty} \leq ||T||$. For $n \leq m$ we have

$$\begin{split} 1_{E_n} \cdot f_m &= 1_{E_n} \cdot T(1_{E_m}) \\ &= M_{1_{E_n}}(T(1_{E_m})) \\ &= T(M_{1_{E_n}} 1_{E_m}) \\ &= T(1_{E_n} 1_{E_m}) = f_n. \end{split}$$

Therefore, $f_m\big|_{E_n}=f_n$. Sequence $(f_n)_n$ converges to a measurable $f:X\to\mathbb{C}$. From $\|f_n\|_\infty\leq \|T\|$ for all $n\in\mathbb{N}$ we also deduce $\|f\|_\infty\leq T$, so $f\in L^\infty(X,\mu)$. Lastly, we prove $T=M_f$. Note that simple functions $\sum_{j=i}^r \alpha_j 1_{A_j}$ are L^2 -dense. Let $A\subseteq X$ be measurable with $\mu(A)<\infty$. Then $\|1_{A\cap E_n}-1_A\|_2\xrightarrow{n\to\infty}0$. Hence

$$\|(T - M_f)1_A\|_2 = \lim_{n \to \infty} \|(T - M_f)1_{A \cap E_n}\|_2 = 0,$$

as we shall prove.

$$\begin{split} T(1_{A\cap E_n}) &= T(1_A \cdot 1_{E_n}) = T(M_{1_A} 1_{E_n}) \\ &= M_{1_A}(T(1_{E_n})) = M_{1_A}(f_n) \\ &= 1_A \cdot f_n. \end{split}$$

On the other hand,

$$M_f(1_{A \cap E_n}) = f \cdot 1_{A \cap E_n} = f \cdot 1_{E_n} \cdot 1_A = 1_A \cdot f_n$$

and we are done.

Another possible characterization of vNa's is given by the following.

Theorem 5.15 (Sakai).

Let A be a C^* -algebra such that for a Banach space there exists an isometric *-isomorphism $A \to E^*$. Then there exists a vNa $B \subseteq \mathcal{B}(\mathcal{H})$ such that $A \cong B$ as a C^* -algebra.

For the proof, see R.V.Kadison's The von Neumann algebra characterization theorems (1985).

5.2 Kaplansky's density theorem

Lemma 5.16. Multiplication $(A, B) \mapsto A \cdot B$ is SOT-continuous on bounded sets.

Proof. Let $(A_i)_i$ and $(B_i)_i$ be nets with $\sup ||A_i||, \sup ||B_i|| < M$ for some $M \in \mathbb{R}$. Suppose $A_i \to A$ and $B_i \to B$ in SOT. For any x, we get

$$||ABx - A_iB_ix|| = ||ABx - A_iBx + A_iBx - A_iB_ix||$$

$$\leq ||ABx - A_iBx|| + ||A_iBx - A_iB_ix||$$

$$\leq ||A(Bx) - A_i(Bx)|| + ||A_i|| \cdot ||Bx - B_ix||$$

$$\leq ||A(Bx) - A_i(Bx)|| + M \cdot ||Bx - B_ix|| \to 0,$$

so
$$A_i B_i \xrightarrow{\text{SOT}} AB$$
.

Proposition 5.17. Let $f \in C(\mathbb{C})$. Then $x \mapsto f(x)$ is SOT-continuous on each bounded set of normal operators in $\mathcal{B}(\mathcal{H})$.

Proof. By Stone-Weierstrass, we can uniformly approximate f by polynomials on a bounded subset $B_R(0) \subseteq \mathbb{C}$. By the previous lemma, multiplication is SOT-continuous on this bounded set of normal operators. But for normal operator A, we have $||Ax|| = ||A^*x||$ for every $x \in \mathcal{H}$, so * is also SOT-continuous on normal operators and we're done.

Theorem 5.18 (Cayley transform).

Mapping $x \mapsto (x-i)(x+i)^{-1}$ is SOT-continuous $\mathcal{B}(\mathcal{H})_{\mathrm{sa}} \to \mathcal{U}(\mathcal{H})$.

Proof. If $x \in \mathcal{B}(\mathcal{H})_{\mathrm{sa}}$, then $\sigma(x) \subseteq \mathbb{R}$ and $(x+i) \in \mathcal{B}(\mathcal{H})$ is invertible. We notice that $z \mapsto \frac{z-i}{z+i} : \mathbb{R} \to \mathbb{C}$ has its range in \mathbb{T} , so the Cayley transform does in fact map into the unitaries. Now onto the SOT-continuity: let $(x_k)_k$ be a net in $\mathcal{B}(\mathcal{H})_{\mathrm{sa}}$ with $x_k \to x$ in SOT.

By spectral mapping theorem, $\|(x_k+i)^{-1}\| \leq 1$. For each $\alpha \in \mathcal{H}$, we have

$$\|(x-i)(x+i)^{-1}\alpha - (x_k-i)(x_k+i)^{-1}\alpha\| = \|(x_k+i)^{-1} ((x_k+i)(x-i)(x+i^{-1}) - (x_k-i))\alpha\|$$

$$= \|(x_k+i)^{-1} ((x_k+i)(x-i) - (x_k-i)(x+i)) (x+i)^{-1}\alpha\|$$

$$= \|(x_k+i)^{-1} 2i(x-x_k)(x+i)^{-1}\alpha\|$$

$$\leq 2\|(x_k+i)^{-1}\|\|(x-x_k)\underbrace{(x+i)^{-1}\alpha}_{\beta}\|$$

$$\leq 2\|(x-x_k)\beta\| \to 0.$$

Corollary 5.19. If $f \in C_0(\mathbb{R})$, then $x \mapsto f(x)$ is SOT-continuous on $\mathcal{B}(\mathcal{H})_{sa}$.

Proof. Suppose

$$g(t) = \begin{cases} f\left(i\frac{1+t}{1-t}\right); & t \neq 1\\ 0; & t = 1 \end{cases}$$

which maps $\mathbb{T} \to \mathbb{C}$. By previous proposition, $x \mapsto g(x)$ is SOT-continuous on unitaries. Letting $U(z) = \frac{z-i}{z+i}$, denote the Cayley transform, we have that $f = g \circ U$ is a composite of two SOT-continuous maps, which is a SOT-continuous map of itself.

Theorem 5.20 (Kaplansky's density theorem).

Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a *-subalgebra and $B = \overline{A}^{SOT}$, then

(1.)
$$\overline{A_{\rm sa}}^{\rm SOT} = B_{\rm sa}$$

(1.)
$$\overline{A}_{\mathrm{sa}}^{\mathrm{SOT}} = B_{\mathrm{sa}};$$

(2.) $\overline{(A)_{1}}^{\mathrm{SOT}} = (B)_{1}.$

Proof. WLOG A is a C^* -algebra, so norm-closed.

(1.) First we prove that $\overline{A_{\operatorname{sa}}}^{\operatorname{SOT}} \subseteq B_{\operatorname{sa}}$. Since $\overline{A_{\operatorname{sa}}}^{\operatorname{SOT}} = \overline{A_{\operatorname{sa}}}^{\operatorname{WOT}}$, take $x \in \overline{A_{\operatorname{sa}}}^{\operatorname{SOT}}$ and the net $(x_k)_k \subseteq A_{\operatorname{sa}}$ converges to x. Since * is WOT continuous, $(x_k^*)_k = (x_k)_k$ converge to x^* , so $x = x^*$. Now the converse inclusion: suppose the net $(x_k)_k$ SOT-converges to $x \in B_{\text{sa}}$. Then $\frac{x_k + x_k^*}{2} \to x$ in WOT-topology, which implies

$$B_{\mathrm{sa}} \subseteq \overline{A_{\mathrm{sa}}}^{\mathrm{WOT}} = \overline{A_{\mathrm{sa}}}^{\mathrm{SOT}}.$$

(2.) Suppose the net $(y_i)_i$ in A_{sa} SOT-converges to $x \in B_{sa}$. Take $f \in C_0(\mathbb{R})$ such that for all we have f(t) = t, $\forall |t| \leq ||x||$ and $|f(t)| \leq ||x||$, $\forall t \in \mathbb{R}$. By functional calculus, $||f(y_k)|| \le ||x||$. By the previous corollary, $(f(y_i))_i \xrightarrow{\text{SOT}} f(x) = x$. This proves that $(A)_1 \cap A_{\mathrm{sa}}$ is SOT-dense in $(B)_1 \cap B_{\mathrm{sa}}$. Pass over to $M_2(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$. Then $M_2(A)$ is SOT-dense in $M_2(B)$ by assumption. For $x \in (B)_1$, we have

$$\widetilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix} \in (M_2(B))_1 \cap (M_2(B))_{\operatorname{sa}}.$$

That means there exists a net

$$\widetilde{x}_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \in (M_2(A))_1$$

such that $\widetilde{x}_i \to \widetilde{x}$ and therefore $b_i \in (A)_1$ converge to x.

Corollary 5.21. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a *-algebra. Then A is a vNa iff $(A)_1$ is SOT-closed.

5.3 Examples of vNa's

Definition 5.22. A vNa M is called a factor if $Z(M) = M \cap M' = \mathbb{C} \cdot 1$.

Example 5.23. Clearly, $\mathcal{B}(\mathcal{H})$ is a factor. If $n = \dim \mathcal{H} < \infty$, then $M_n(\mathbb{C})$ is a factor.

Let Γ be a group and $\mathcal{H} = \ell^2(\Gamma)$. Consider the left regular representation

$$\lambda: \Gamma \to \mathcal{B}(\ell^2(\Gamma)), \quad g \mapsto (\delta_h \mapsto \delta_{qh})$$

and extend linearly to $\lambda: \mathbb{C}[\Gamma] \to \mathcal{B}(\ell^2(\Gamma))$. The group vNa of Γ is $VN(\Gamma) := \lambda(\mathbb{C}[\Gamma])''$ in $\mathcal{B}(\ell^2(\Gamma))$. It has a trace, which is the linear functional

$$\tau: VN(\Gamma) \to \mathbb{C}, \quad x \mapsto \langle x\delta_e, \delta_e \rangle.$$

For $g \in \Gamma$, $\tau(\lambda(g)) = 1$ if g = e, otherwise zero. For $g_1, \ldots, g_r \in \Gamma$, we have

$$g_1 \dots g_r = e \Leftrightarrow \tau(\lambda(g_1) \dots \lambda(g_r)) = 1.$$

Since τ is a positive linear functional and $\tau(1) = 1$, τ is a state. For any two elements $g, h \in \Gamma$ we have $gh = e \Leftrightarrow hg = e$, which together with the above line implies

$$\tau(\lambda(g)\lambda(h)) = \tau(\lambda(h)\lambda(g)).$$

By linearity, τ has a cyclic property on $\lambda(\mathbb{C}[\Gamma])$. But since τ is, by definition, WOT-continuous and $VN(\Gamma) = (\lambda(\mathbb{C}[\Gamma]))'' = \overline{\lambda(\mathbb{C}[\Gamma])}^{\text{WOT}}$, τ is cyclic on the entire $VN(\Gamma)$. Now if $|\Gamma| = \infty$, then $VN(\Gamma) \neq \mathcal{B}(\mathcal{H})$, since the latter does not have a trace if dim $\mathcal{H} = \infty$. If Γ is Abelian, then $VN(\Gamma)$ is commutative.

Definition 5.24. Group Γ has icc (infinite conjugacy classes) if for all $g \in \Gamma \setminus \{e\}$ the set $\{f^{-1}gf \mid f \in \Gamma\}$ is infinite.

Example 5.25. The group

 $S_{\infty} = \{bijections \mathbb{N} \to \mathbb{N} \text{ that only permute finitely many elements}\}$

has icc.

Example 5.26. Free groups \mathbb{F}_n for n > 1 have icc.

Theorem 5.27.

If Γ has icc, then $VN(\Gamma)$ is a factor.

Definition 5.28. $VN(S_{\infty}) =: R$ is the hyperfinite II_1 -factor.

Open problem: does $VN(\mathbb{F}_2) \cong VN(\mathbb{F}_3)$ hold?

5.4 Operations with vNa's

Direct sums

Let $M_i \subseteq \mathcal{B}(\mathcal{H}_i)$ be vNa's. Define the isometric embedding

$$\iota_i: \mathcal{B}(\mathcal{H}_i) \to \mathcal{B}(\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n), \quad x \mapsto ((\alpha_1, \dots, \alpha_n) \mapsto (0, \dots, 0, x\alpha_i, 0, \dots, 0)).$$

This map is the $n \times n$ bounded matrix where the (j,j)-th element is x and the rest are zero. Then

$$M_1 \oplus \cdots \oplus M_n := \operatorname{span}\{\iota_j(x) \mid j = 1, \ldots, n, \ x \in M_j\}$$

is the direct sum of vNa's. If $n \geq 2$, then from

$$Z(M_1 \oplus \cdots \oplus M_n) = Z(M_1) \oplus \cdots \oplus Z(M_n),$$

we deduce that $M_1 \oplus \cdots \oplus M_n$ is not a factor.

Tensor products

The algebraic tensor product $\mathcal{B}(\mathcal{H}_1) \otimes \cdots \otimes \mathcal{M}(\mathcal{H}_n)$ acts on $\mathcal{H}_1 \overline{\otimes} \ldots \overline{\otimes} \mathcal{H}_n$ by

$$(x_1 \otimes \cdots \otimes x_n)(\alpha_1 \otimes \cdots \otimes \alpha_n) = (x_1 \alpha_1) \otimes \cdots \otimes (x_n \alpha_n)$$

for $x_j \in \mathcal{B}(\mathcal{H}_j)$ and $\alpha_j \in \mathcal{H}_j$, which implies

$$\mathcal{B}(\mathcal{H}_1) \otimes \ldots \otimes \mathcal{B}(\mathcal{H}_n) \subseteq \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \ldots \overline{\otimes} \mathcal{H}_n).$$

Finally, we define the tensor product of vNa's as

$$M_1 \overline{\otimes} \dots \overline{\otimes} M_n = (M_1 \otimes \dots \otimes M_n)'' \cap \mathcal{B}(\mathcal{H}_1 \overline{\otimes} \dots \overline{\otimes} \mathcal{H}_n).$$

Compressions

Definition 5.29. Let $M \subseteq \mathcal{B}(\mathcal{H})$ be a vNa and $p \in \mathcal{B}(\mathcal{H})$ a projection. A compression of M is $pMp = \{pxp \mid x \in M\}$. When $p \in M$, it is also called a corner.

If $\mathcal{H} = \operatorname{im} p \oplus (\operatorname{im} p)^{\perp} = \operatorname{im} p \oplus (1-p)$. In this basis, elements of pMp has the matrix form

$$\begin{bmatrix} pxp & 0 \\ 0 & 0 \end{bmatrix}.$$

If $M \ni p \neq 1$, then pMp is a *-algebra and $pMp \subseteq M$ but it is not a subalgebra since $1_M = 1_{\mathcal{B}(\mathcal{H})} \notin pMp$. However, pMp is a subalgebra of $\mathcal{B}(p\mathcal{H})$ with identity element p.

Definition 5.30. Let $\mathcal{K} \subseteq \mathcal{H}$ and $x \in \mathcal{B}(\mathcal{H})$.

- (1.) \mathcal{K} is invariant for x if $x\mathcal{K} \subseteq \mathcal{K}$;
- (2.) \mathcal{K} is reducing for x if \mathcal{K} is invariant for both x and x^* .

Now if $S \subseteq \mathcal{B}(\mathcal{H})$, then

- (1.) \mathcal{K} is invariant for S if $x\mathcal{K} \subseteq \mathcal{K}$ for all $x \in S$;
- (2.) \mathcal{K} is reducing for S if \mathcal{K} is reducing for all $x \in S$.

If $S \subseteq \mathcal{B}(\mathcal{H})$ is closed under *, then \mathcal{K} is invariant for S iff it is reducing for S.

Lemma 5.31. Let $\mathcal{K}^{\operatorname{closed}} \leq \mathcal{H}$ and $M \subseteq \mathcal{B}(\mathcal{H})$ an *-algebra. Let $p : \mathcal{H} \to \mathcal{K}$ be an orthogonal projection. Then \mathcal{K} is reducing for M iff $p \in M'$.

Theorem 5.32.

Let $M \subseteq \mathcal{B}(\mathcal{H})$ be a vNa and $p \in M$ a projection. Then pMp and M'p are vNa's in $\mathcal{B}(p\mathcal{H})$.

Proof. We will show that

$$(M'p)' \cap \mathcal{B}(p\mathcal{H}) = pMp, \quad (pMp)' \cap \mathcal{B}(p\mathcal{H}) = M'p.$$

Then the bicommutant theorem will take care of the rest. It is obvious that $(M'p)' \cap \mathcal{B}(p\mathcal{H}) \supseteq pMp$. For the converse, pick $x \in (M'p)' \cap \mathcal{B}(p\mathcal{H})$. Define $\widetilde{x} = xp = px \in \mathcal{B}(\mathcal{H})$. For $y \in M'$, we have

$$y\widetilde{x} = ypx = xyp = xpy = \widetilde{x}y,$$

which implies $\tilde{x} \in M'' = M$. Then $x = pxp = p\tilde{x}p \in pMp$. As before $(pMp)' \cap \mathcal{B}(p\mathcal{H}) \supseteq M'p$ is trivial and we just prove the converse. Take $y \in (pMp)' \cap \mathcal{B}(p\mathcal{H})$. Using CFC, we can write y as a linear combinations of 4 unitaries. Since pMp is closed under *, (pMp)' is a vNa (and therefore a C^* -algebra). So we can assume WLOG that y = u a unitary. Set $\mathcal{K} := \overline{Mp\mathcal{H}}$ and $g : \mathcal{H} \to \mathcal{K}$ an orthogonal projection. Since \mathcal{K} is reducing for M and M', which implies

$$q \in M' \cap M'' = M' \cap M = Z(M).$$

Next, we extend u to \mathcal{K} :

$$\widetilde{u}(\sum_{i}\underbrace{x_{i}}_{\in M}p\underbrace{\alpha_{i}}_{\in \mathcal{H}}) = \sum_{i}x_{i}up\alpha_{i}.$$

We shall show that this is a well-defined isometry in $Mp\mathcal{H}$:

$$\begin{split} \|\widetilde{u}\sum_{i}x_{i}p\alpha_{i}\|^{2} &= \sum_{i,j}\langle x_{i}up\alpha_{i},x_{j}up\alpha_{j}\rangle \\ &= \sum_{i,j}\langle (px_{j}^{*}x_{i}p)u\alpha_{i},u\alpha_{j}\rangle \\ &= \sum_{i,j}\langle upx_{j}^{*}x_{i}p\alpha_{i},u\alpha_{j}\rangle \\ &= \sum_{i,j}\langle px_{j}^{*}x_{i}p\alpha_{i},\alpha_{j}\rangle = \|\sum_{i}x_{i}p\alpha_{i}\|^{2}. \end{split}$$

So \widetilde{u} extends to an isometry on $\mathcal{K} = \overline{Mp\mathcal{H}}$. By definition, \widetilde{u} commutes with M on $Mp\mathcal{H}$, so also on \mathcal{K} . Thus for every $x \in M$ and $\alpha \in \mathcal{H}$, we have

$$x(\widetilde{u}q)\alpha = \widetilde{u}xq\alpha = (\widetilde{u}q)x\alpha,$$

which implies $\widetilde{u}q \in M' \cap \mathcal{B}(\mathcal{H})$. Then

$$\widetilde{u}qp\alpha = \widetilde{u}1p\alpha = 1up\alpha,$$

which implies $u = \widetilde{u}qp \in \mathcal{B}(\mathcal{H})$ and $u \in M'p$.

Corollary 5.33. Suppose the vNa $M \subseteq \mathcal{B}(\mathcal{H})$ is a factor and let $p \in M$ be a projection. Then pMp and M'p are factor (in $\mathcal{B}(p\mathcal{H})$).

Proof. Let $\mathcal{K} = \overline{Mp\mathcal{H}}$ and $q : \mathcal{H} \to \mathcal{K}$ a projection. From the previous proof, $q \in Z(M) = \mathbb{C}$. Then $q \in \{0,1\}$. WLOG $p \neq 0$, so q = 1. Thus $\mathcal{K} = \mathcal{H}$, so $Mp\mathcal{H}$ is dense in \mathcal{H} . Consider

$$\psi: M' \to M'p, \quad y \mapsto yp.$$

We will prove that ψ is an isomorphism of algebras. Obviously, it is additive. Since

$$\psi(xy) = xyp = xyp^2 = xpyp = \psi(x)\psi(y),$$

it is also multiplicative. Same calculation shows $\psi(y^*) = \psi(y)^*$. Obviously, ψ is surjective. Finally, we prove injectivity. Suppose $y \in M'$ satisfies yp = 0. Then for every $x \in M$ and $\alpha \in \mathcal{H}$, we get $yxp\alpha = x(yp)\alpha = 0$. Hence $y\big|_{Mp\mathcal{H}} = 0$, so by continuity, $y\big|_{\overline{Mp\mathcal{H}}} = y\big|_{\mathcal{K}} = 0$. But because $\mathcal{K} = \mathcal{H}$, this yields $y\big|_{\mathcal{H}} = 0$. As a result, we get

$$Z(M'p) = Z(M')p = \mathbb{C} \cdot p,$$

so M'p is a factor. Similarly,

$$Z(pMp) = (pMp) \cap (pMp)' = (M'p)' \cap M'p = Z(M'p) = \mathbb{C}p,$$

so pMp is a factor.

6 Spectral theorem and Borel functional calculus

6.1 Spectral theorem

Recall the spectral theorem for $\mathcal{K}(\mathcal{H})$. Let $T \in \mathcal{K}(\mathcal{H})$ be self-adjoint and for $\lambda \in \sigma_p(T)$, define $E(\lambda)$ as an orthogonal projection onto the eigenspace $\ker(T-\lambda I)$. For $\mu \neq \lambda$, we get $E(\lambda)E(\mu) = 0$ and

$$T = \sum_{\lambda \in \sigma_p(T) \setminus \{0\}} \lambda E(\lambda).$$

Our first goal will be to generalize this to non-compact self-adjoint operator.

Theorem 6.1 (Vigier).

Let (u_{λ}) be a net of increasing (decreasing) and above (below) bounded self-adjoint operators on \mathcal{H} . Then (u_{λ}) converges.

Proof. We prove the statement for above-bounded increasing net. We can assume (u_{λ}) has a lower bound m by considering a truncated net. WLOG we can assume u_{λ} are positive (otherwise we can consider $u_{\lambda} - m$). There exists $M \geq 0$ such that $||u_{\lambda}|| \leq M$ for indices λ . So the net $\langle u_{\lambda}x, x \rangle$ is real and increasing and bounded above by $M||x||^2$. Using the polarization identity

$$\langle u_{\lambda} x, x \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} \langle u_{\lambda}(x + i^{k}y), x + i^{k}y \rangle,$$

we see that $\langle u_{\lambda}x,y\rangle$ is an convergent net for all $x,y\in\mathcal{H}$. Letting $\sigma(x,y)$ denote its limit, we can easily check that σ is a bounded sesquilinear form $(|\sigma(x,y)|\leq M\|x\|\|y\|)$. By Riesz, there exists an operator $u\in\mathcal{B}(\mathcal{H})$ such that $\langle ux,y\rangle=\sigma(x,y)$. Then u is self-adjoint, $\|u\|\leq M$ and $u_{\lambda}\leq u$. Note that

$$||(u - u_{\lambda})x||^{2} \leq ||(u - u_{\lambda})^{\frac{1}{2}}(u - u_{\lambda})^{\frac{1}{2}}x||^{2}$$

$$\leq ||(u - u_{\lambda})|| ||(u - u_{\lambda})^{\frac{1}{2}}x||^{2}$$

$$\leq 2M\langle (u - u_{\lambda})x, x \rangle \to 0,$$

so u_{λ} converge strongly to u.

Remark. If (p_{λ}) is a net of projections converging strongly to some operator u, then u is also a projection. Clearly, u is self-adjoint and

$$\langle ux, y \rangle = \lim_{\lambda} \langle p_{\lambda}x, y \rangle = \lim_{\lambda} \langle p_{\lambda}x, p_{\lambda}y \rangle$$
$$= \langle ux, uy \rangle = \langle u^2x, y \rangle.$$

therefore $u^2 = u$.

Corollary 6.2. If $(p_n)_{n\in\mathbb{N}}$ is a sequence of pairwise orthogonal orthogonal projections in $\mathcal{B}(\mathcal{H})$, then $\left(\sum_{n=1}^N p_n\right)$ SOT-converges for $N\to\infty$ (we denote the limit by $\sum_{n=1}^\infty p_n$).

Definition 6.3. Let X be a set, Ω a σ -algebra in X and \mathcal{H} a Hilbert space. Then we define a projection-valued measure (PVM) for (X, Ω, \mathcal{H}) is a map $E : \Omega \to \mathcal{B}(\mathcal{H})$ such that

- (1.) E(S) is a projection for all $S \in \Omega$;
- (2.) $E(\emptyset) = 0$ and E(X) = 1;
- (3.) $E(S \cap T) = E(S)E(T)$ for all $S, T \in \Omega$;
- (4.) If $(S_n)_{n\in\mathbb{N}}\subseteq\Omega$ is a sequence of pairwise disjoint sets, then

$$E(\bigcup_{n=1}^{\infty} S_n) = \sum_{n=1}^{\infty} E(S_n).$$

Remark. Projections E(S) commute with each other (follows directly from the third point of the definition).

Example 6.4. Let (X, Ω, μ) be a σ -finite measure space. Let $\mathcal{H} = L^2(X, \mu)$ and $S \in \Omega$, then $\chi_S \in L^\infty(X, \mu) \subseteq \mathcal{B}(L^2(X, \mu))$ is a projection (with pointwise multiplication in $\mathcal{B}(\mathcal{H})$). Letting $E(S) := \chi_S \in \mathcal{B}(L^2(X, \mu))$, we get a PVM $E: \Omega \to \mathcal{B}(L^2(X, \mu))$.

Lemma 6.5. Let E be a PVM for (X, Ω, \mathcal{H}) . Then for all $\alpha, \beta \in \mathcal{H}$ the mapping

$$E_{\alpha,\beta}:\Omega\to\mathbb{C},\quad S\mapsto \langle E(S)\alpha,\beta\rangle$$

is a complex measure in Ω with total variation $\leq \|\alpha\| \|\beta\|$.

Proof. Let $\alpha, \beta \in \mathcal{H}$. Then $E_{\alpha,\beta}$ is σ -additive (countably-additive for disjoint sets) since E is σ -additive by (4). Total variation of a complex measure is

$$||E_{\alpha,\beta}|| := \sup\{\sum_{S \in \pi} |E_{\alpha,\beta}(S)|\},\,$$

where the sum is over all partitions of X into finitely many pieces of measurable sets. Let $\pi = \{S_1, \ldots, S_n\}$ be a partition of X with $S_j \in \Omega$. For each j pick $\alpha_j \in \mathbb{C}$ such that $|\alpha_j| = 1$ and

$$\alpha_i \cdot E_{\alpha,\beta}(S_i) = \alpha_i \langle E(S_i)\alpha, \beta \rangle = |\langle E(S_i)\alpha, \beta \rangle| = |E_{\alpha,\beta}(S_i)|.$$

Then

$$\sum_{j=1}^{n} |E_{\alpha,\beta}(S_j)| = \langle \sum_{j=1}^{n} \alpha_j E(S_j) \alpha, \beta \rangle | \leq \| \sum_{j=1}^{n} \alpha_j E(S_j) \alpha \| \cdot \| \beta \|.$$

For $i \neq j$ we have

$$E(S_i)E(S_j) = E(S_i \cap S_j) = E(\emptyset) = 0,$$

so $E(S_i)$ are pairwise orthogonal. Finally, we can use Pythagoras to get

$$\| \sum_{j=1}^{n} \alpha_{j} E(S_{j}) \alpha \|^{2} = \sum_{j=1}^{n} \| E(S_{j}) \alpha \|^{2}$$

$$= \| \sum_{j=1}^{n} E(S_{j}) \alpha \|^{2}$$

$$= \| E\left(\bigcup_{j=1}^{n} S_{j}\right) \alpha \|^{2}$$

$$= \| E(X) \alpha \|^{2} = \| \alpha \|^{2}.$$

Remark. Let E be a PVM for (X, Ω, \mathcal{H}) , $\alpha \in \mathcal{H}$ and $S \in \Omega$. Then

$$E_{\alpha,\alpha}(S) = \langle E(S)\alpha, \alpha \rangle$$

$$= \langle E(S)^2 \alpha, \alpha \rangle$$

$$= \langle E(S)\alpha, E(S)\alpha \rangle \ge 0,$$

so $E_{\alpha,\alpha}$ is a positive measure on X. Furthermore, if $\|\alpha\| = 1$, then $E_{\alpha,\alpha}$ is a probability measure.

Let

$$(\alpha, \beta) \mapsto \int_X 1 dE_{\alpha, \beta}.$$

Since $E_{\alpha+\lambda\alpha',\beta} = E_{\alpha,\beta} + \lambda E_{\alpha',\beta}$ and $E_{\alpha,\beta+\lambda\beta'} = E_{\alpha,\beta} + \overline{\lambda} E_{\alpha,\beta'}$, the above is a sesquilinear form on \mathcal{H} . In particular, it is bounded

$$\|\int_X dE_{\alpha,\beta}\| \le \|E_{\alpha,\beta}\| \le \|\alpha\| \|\beta\|.$$

Suppose $f: X \to \mathbb{C}$ is a bounded Ω -measurable function. Then

$$(\alpha,\beta) \mapsto \int_{Y} f dE_{\alpha,\beta}$$

is a bounded sesquilinear form:

$$\| \int_{Y} f \, dE_{\alpha,\beta} \| \le \|f\|_{\infty} \|E_{\alpha,\beta}\| \le \|f\|_{\infty} \|\alpha\| \|\beta\|.$$

So there exists an $x \in \mathcal{B}(\mathcal{H})$ such that $||x|| \leq ||f||_{\infty}$ and $\langle x\alpha, \beta \rangle = \int_X f \, dE_{\alpha,\beta}$. If $f = \chi_S$ for $S \in \Omega$, then x = E(S):

$$\int_X \chi_S dE_{\alpha,\beta} = E_{\alpha,\beta}(S) = \langle E(S)\alpha, \beta \rangle.$$

Definition 6.6. Let E be a PVM for (X, Ω, \mathcal{H}) and $f: X \to \mathbb{C}$ be a bounded Ω -measurable

function and $x \in \mathcal{B}(\mathcal{H})$. We call x the integral of f with regards to E if

$$\langle x\alpha, \beta \rangle = \int_X f \, dE_{\alpha,\beta}, \quad \forall \alpha, \beta \in \mathcal{H}.$$

We denote it by $x := \int_X f dE$.

Remark. Define $B(X,\Omega)$ as the set of all bounded Ω -measurable complex functions on X and endow it with the sup norm. If X is a topological space and $\Omega = \mathcal{B}_X$ is the Borel σ -algebra on X, then $B(X) = B(X, \mathcal{B}_X)$.

Proposition 6.7. Let E be a PVM for (X, Ω, \mathcal{H}) . Then

$$\rho: B(X,\Omega) \to \mathcal{B}(\mathcal{H}), \quad f \mapsto \int_X f \, dE.$$

is a *-homomorphism and contractive. Furthermore:

- (1.) If $(f_n)_n \subseteq B(X,\Omega)$ is an increasing sequence of nonnegative functions and $f = \sup_n f_n \in B(X,\Omega)$, then $\int_X f_n dE \to \int_X f dE$ in SOT.
- (2.) If X is compact and T_2 , then $\rho(B(X)) \subseteq \rho(C(X))''$.

Proof. We already saw that $\|\rho(f)\| \leq \|f\|_{\infty}$, hence ρ is contractive. It is also clear that ρ is linear and $\rho(f)^* = \rho(\overline{f})$. Next, we prove multiplicativity: $\rho(\chi_S) = E(S)$ for $S \in \Omega$. Then

$$\rho(\chi_S) \cdot \rho(\chi_T) = E(S) \cdot E(T) = E(S \cap T) = \rho(\chi_{S \cap T}) = \rho(\chi_S \cdot \chi_T).$$

Since ρ is linear, it is also multiplicative on simple functions (these are finite linear combinations of characteristic functions). Since each $f \in B(X,\Omega)$ is a uniform limit of a uniformly bounded sequence of simple functions, we deduce that $\rho(fg) = \rho(f)\rho(g)$ for all $f,g \in B(X,\Omega)$.

(1.) Let f, f_n be as in the statement. Since ρ is a *-homomorphism, $(\rho(f_n))_n$ is an increasing sequence of positive operators and $\sup_n \|\rho(f_n)\| \leq \sup_n \|f\|_{\infty} = \|f\|$. By Vigier, there exists $x \in \mathcal{B}(\mathcal{H})$ such that $\rho(f_n) \xrightarrow{\text{SOT}} x$. This x is a natural candidate for $\rho(f)$. Indeed, for $\alpha, \beta \in \mathcal{H}$, we have

$$\langle \rho(f)\alpha, \beta \rangle = \int_{X} f \, dE_{\alpha,\beta}$$

$$= \lim_{n \to \infty} \int_{X} f_n \, dE_{\alpha,\beta}$$

$$= \lim_{n \to \infty} \langle \rho(f_n)\alpha, \beta \rangle,$$

so $\rho(f_n) \xrightarrow{\text{WOT}} \rho(f)$ and therefore $\rho(f) = x$.

(2.) Let X be compact Hausdorff and $a \in \rho(C(X))'$. Take $\alpha, \beta \in \mathcal{H}$. Then for all $f \in C(X)$,

we have

$$0 = \langle (a\rho(f) - \rho(f)a)\alpha, \beta \rangle$$

= $\langle \rho(f)\alpha, a^*\beta \rangle - \langle \rho(f)(a\alpha), \beta \rangle$
= $\int_{Y} f dE_{\alpha, a^*\beta} - \int_{Y} f dE_{a\alpha, \beta},$

so by uniqueness from Riesz-Markoff we get $E_{\alpha,a^*\beta}=E_{a\alpha,\beta}$. This same calculation backwards tells us that a commutes with all $\rho(g)=\int_X g\,dE$ for $g\in B(X)$, so $\rho(B(X))\subseteq\rho(C(X))''$

Remark. The map ρ is not necessarily isometric. However, we can define E-null sets

$${S \in \Omega \mid E(S) = 0},$$

which gives us an equivalence relation on $B(X,\Omega)$ as follows: $f \sim_E g$ if f(x) = g(s) except possibly on some E-null set. Then we have

$$\ker \rho = \{ f \in B(X, \Omega) \mid f \sim_E 0 \}$$

and an essential supremum

$$\|\rho(f)\| = \|f\|_{\infty} := \inf\{t > 0 \mid E(\{x \in X \mid |f(x)| \ge t\}) = 0\}.$$

Define $L^{\infty}(X,E) = \frac{B(X,\Omega)}{\sim_E}$ with norm induced by an essential supremum above. Then the map ρ from the above proposition induces an isometric *-isomorphism $\widetilde{\rho}: L^{\infty}(X,E) \to \mathcal{B}(\mathcal{H})$.

Recall that for a commutative C^* -algebra A the Gelfand transform

$$\Gamma: A \to C(\sigma(A))$$

is an isometric *-isomorphism.

Theorem 6.8 (Spectral theorem).

Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a commutative C^* -algebra and $\mathcal{B}_{\sigma(A)}$ be the Borel σ -algebra on $\sigma(A)$. Then there exists a PVM E for $(\sigma(A), \mathcal{B}_{\sigma(A)}, \mathcal{H})$ such that

$$x = \int_{\sigma(A)} \Gamma(x) \, dE$$

for all $x \in A$.

Proof. For all $\alpha, \beta \in \mathcal{H}$ and

$$\varphi: C(\sigma(A)) \to \mathbb{C}, \quad f \mapsto \langle \Gamma^{-1}(f)\alpha, \beta \rangle$$

is a bounded linear functional. Indeed, since Γ is an isometry we get

$$\langle \Gamma^{-1}(f)\alpha, \beta \rangle \le ||f||_{\infty} |||\alpha|| ||\beta||.$$

By Riesz-Markoff, there exists a unique regular Borel measure $\mu_{\alpha,\beta}$ such that

$$\langle \Gamma^{-1}(f)\alpha, \beta \rangle = \int_{\sigma(A)} f \, d\mu_{\alpha,\beta}.$$

We will show that $\mu_{\alpha,\beta} = E_{\alpha,\beta}$ for a PVM E. For $f,g \in C(\sigma(A))$ we have

$$\int_{\sigma(A)} fg \, d\mu_{\alpha,\beta} = \langle \Gamma^{-1}(fg)\alpha,\beta\rangle = \langle \Gamma^{-1}(f)\Gamma(g)\alpha,\beta\rangle = \int_{\sigma(A)} f \, d\mu_{\Gamma^{-1}(g)\alpha,\beta}.$$

Now we notice that this is equal to

$$\langle \Gamma^{-1}(f)\alpha, \Gamma^{-1}(\overline{g})\beta \rangle = \int_{\sigma(A)} f \, d\mu_{\alpha, \Gamma^{-1}(\overline{g})\beta}.$$

From the uniqueness of Riesz-Markoff, we get

$$g d\mu_{\alpha,\beta} = d\mu_{\Gamma^{-1}(g)\alpha,\beta} = d\mu_{\alpha,\Gamma^{-1}(\overline{g})\beta}.$$

Finally, we have

$$\int_{\sigma(A)} f \, d\overline{\mu_{\alpha,\beta}} = \overline{\int \overline{f} \, d\mu_{\alpha,\beta}}$$

$$= \overline{\langle \Gamma^{-1}(\overline{f})\alpha, \beta \rangle}$$

$$= \overline{\langle \alpha, \Gamma^{-1}(f)\beta \rangle}$$

$$= \overline{\langle \Gamma^{-1}(f)\beta, \alpha \rangle}$$

$$= \int_{\sigma(A)} f \, d\mu_{\beta,\alpha}$$

for all $f \in C(\sigma(A))$, which implies $\overline{\mu_{\alpha,\beta}} = \mu_{\beta,\alpha}$. To each $S \in \mathcal{B}_{\sigma(A)}$ we assign the sesquilinear form

$$\mathcal{H} \times \mathcal{H} \to \mathbb{C}, \quad (\alpha, \beta) \mapsto \int_{\sigma(A)} \chi_S \, d\mu_{\alpha, \beta}.$$

This form is bounded by $\|\alpha\|\|\beta\| = \|\mu_{\alpha,\beta}\|$. Thus there exists $E(S) \in \mathcal{B}(\mathcal{H})$ such that

$$\int_{\sigma(A)} \chi_S \, d\mu_{\alpha,\beta} = \langle E(S)\alpha, \beta \rangle.$$

Now notice that

$$\langle E(S)^* \alpha, \beta \rangle = \langle \alpha, E(S) \beta \rangle$$

$$= \overline{\langle E(S) \beta, \alpha \rangle}$$

$$= \overline{\int_{\sigma(A)} \chi_S d\mu_{\beta, \alpha}}$$

$$= \int_{\sigma(A)} \chi_S d\overline{\mu_{\beta, \alpha}}$$

$$= \int_{\sigma(A)} \chi_S d\mu_{\alpha, \beta}$$

$$= \langle E(S) \alpha, \beta \rangle,$$

so $E(S) = E(S)^*$. For any $f \in C(\sigma(A))$, we get

$$\begin{split} \langle \Gamma^{-1}(f)E(S)\alpha,\beta \rangle &= \langle E(S)\alpha,\Gamma^{-1}(\overline{f})\beta \rangle \\ &= \int \chi_S \, d\mu_{\alpha,\Gamma^{-1}(\overline{f})} \\ &= \int \chi_S f \, d\mu_{\alpha,\beta}. \end{split}$$

By the lemma below, $C(\sigma(A))$ is weak-* dense in $C(\sigma(A))^{**}$. Furthermore, the latter set contains $B(\sigma(A))$: indeed, given any $\psi \in C(\sigma(A))^*$, we have that $\psi(\cdot) = \int \cdot d\mu$ for some measure μ . For any $r \in B(\sigma(A))$, we have $r(\psi) = \int_{\sigma(A)} r \, d\mu$. Hence, $i: C \to C^{**}$ extends to $\hat{i}: B \to C^{**}$. In particular, for $T \in \mathcal{B}_{\sigma(A)}$, there exists a net $(f_i)_i \subseteq C(\sigma(A))$ such that $f_i \xrightarrow{\text{weak-*}} \chi_T$. As a result, $\int_{\sigma(A)} f_i \, d\mu_{\alpha,\beta} \to \int_{\sigma(A)} \chi_T \, d\mu_{\alpha,\beta}$ for all $\alpha, \beta \in \mathcal{H}$, so $\Gamma^{-1}(f_i) \xrightarrow{\text{WOT}} E(T)$. Now

$$\langle E(T) \cdot E(S)\alpha, \beta \rangle = \lim_{i} \langle \Gamma^{-1}(f_{i})E(S)\alpha, \beta \rangle$$

$$= \lim_{i} \langle E(S)\alpha, \Gamma^{-1}(\overline{f_{i}})\beta \rangle$$

$$= \lim_{i} \int_{\sigma(A)} \chi_{S} f_{i} d\mu_{\alpha,\beta}$$

$$= \int_{\sigma(A)} \chi_{S} \cdot \chi_{T} d\mu_{\alpha,\beta}$$

$$= \int_{\sigma(A)} \chi_{S \cap T} d\mu_{\alpha,\beta} = \langle E(S \cap T)\alpha, \beta \rangle.$$

Since α, β were arbitrary, we get $E(S) \cdot E(T) = E(S \cap T)$ for all $S, T \in \mathcal{B}_{\sigma(A)}$. As a consequence, $E(S)^2 = E(S)$, so E(S) is a projection. Obviously, $E(\emptyset) = 0$. Further,

$$\langle E(\sigma(A))\alpha, \beta \rangle = \int_{\sigma(A)} 1 \, d\mu_{\alpha,\beta} = \langle \Gamma^{-1}(1)\alpha, \beta \rangle = \langle 1\alpha, \beta \rangle,$$

so $E(\sigma(A)) = 1$. Since all $\mu_{\alpha,\beta}$ are σ -additive, we have

$$\langle E\left(\bigcup_{i=1}^{\infty} S_i\right) \alpha, \beta \rangle = \mu_{\alpha,\beta} \left(\bigcup_{i=1}^{\infty} S_i\right)$$
$$= \sum_{i=1}^{\infty} \mu_{\alpha,\beta}(S_i)$$
$$= \langle \sum_{i=1}^{\infty} E(S_i) \alpha, \beta \rangle$$

for each sequence $(S_i)_i \subseteq \mathcal{B}_{\sigma(A)}$ of pairwise disjoint sets, so $E(\bigcup_{i=1}^{\infty} S_i) = \sum_{i=1}^{\infty} E(S_i)$. We have proved that E is a PVM for $(\sigma(A), \mathcal{B}_{\sigma(A)}, \mathcal{H})$. For any $\alpha, \beta \in \mathcal{H}$, we get

$$E_{\alpha,\beta}(S) = \langle E(S)\alpha, \beta \rangle = \int \chi_S d\mu_{\alpha,\beta} = \mu_{\alpha,\beta}(S),$$

so $E_{\alpha,\beta} = \mu_{\alpha,\beta}$ and therefore $\int f dE_{\alpha,\beta} = \langle \Gamma^{-1}\alpha, \beta \rangle$. But this proves that $x = \int_{\sigma(A)} \Gamma(x) dE$ for all $x \in A$. Uniqueness: suppose that E' is another such PVM. For $\alpha, \beta \in \mathcal{H}$ and $f \in C(\sigma(A))$, we have

$$\int_{\sigma(A)} f \, dE_{\alpha,\beta} = \langle \Gamma^{-1}(f)\alpha, \beta \rangle = \int_{\sigma(A)} f \, dE'_{\alpha,\beta},$$

which proves that $E_{\alpha,\beta} = E'_{\alpha,\beta}$ as elements in $C(\sigma(A))^*$. Thus

$$\langle E(S)\alpha, \beta \rangle = E_{\alpha,\beta}(S) = E'_{\alpha,\beta}(S) = \langle E'(S)\alpha, \beta \rangle.$$

Since α, β were arbitrary, E(S) = E'(S). But since S was also arbitrary, E = E'.

Lemma 6.9 (Goldstine's theorem). Let X be a Banach space. Then the image of

$$\iota: X \to X^{**}, \quad x \mapsto (f \mapsto f(x))$$

is dense in weak-* topology.

Proof. Let $\beta \in X^{**}$ and $f_1, \ldots, f_r \in X^*$ (WLOG linearly independent). Then

$$U = \{ \alpha \in X^{**} \mid |(\alpha - \beta)(f_j)| < \varepsilon, \ j = 1, \dots, r \}.$$

is a basic open set in weak-* topology in X^{**} . WLOG assume X is infinitely-dimensional. Consider the linear map

$$\Phi: X \to \mathbb{C}^r, \quad x \mapsto (f_1(x), \dots, f_r(x)).$$

This map is surjective. In particular, there exists $x_0 \in X$ such that

$$\Phi(x_j) = (f_1(x_0), \dots, f_r(x_0)) = (\rho_0(f_1), \dots, \rho_0(f_r)),$$

hence $\iota(x_0) \in U \cap \iota(X)$.

6.2 Borel functional calculus

Let $x \in \mathcal{B}(\mathcal{H})$ be normal $(x^*x = xx^*)$ and $A = C^*(x) \subseteq \mathcal{B}(\mathcal{H})$. Then $\sigma(A) \cong \sigma(x)$. By the spectral theorem, there exists a PVM E for $(\sigma(x), \mathcal{B}_{\sigma(x)}, \mathcal{H})$ and

$$B(\sigma(x)) \to \mathcal{B}(\mathcal{H}), \quad f \mapsto \int_{\sigma(x)} f \, dE$$

is a *-homomorphism and a contraction (proposition above). Furthermore, $f \in C(\sigma(x))$ maps into $\int_{\sigma(x)} f \, dE = \Gamma^{-1}(f)$, so the above map, when restricted to $C(\sigma(x))$, coincides with Γ^{-1} . Furthermore, If $f = \mathrm{id} \in B(\sigma(x))$, meaning f(z) = z for $z \in \sigma(x)$, then

$$\int_{\sigma(x)} id \ dE = \Gamma^{-1}(id) = x.$$

For $f \in B(\sigma(x))$, define

$$f(x) := \int_{\sigma(x)} f \, dE \in A'' = W^*(x),$$

which is a vNa generated by x.

Definition 6.10. Let $x \in \mathcal{B}(\mathcal{H})$ be normal. The mapping

$$B(\sigma(x)) \to W^*(x), \quad f \mapsto f(x)$$

is the Borel functional calculus.

Theorem 6.11 (Spectral mapping theorem).

Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a vNa and let $x \in A$ be normal. Then the Borel functional calculus has the following properties:

(1.) The map

$$B(\sigma(x)) \to A, \quad f \mapsto f(x)$$

is a bounded *-homomorphism.

- (2.) If $f \in C(\sigma(x))$, then this f(x) is the same f(x) as in continuous functional calculus.
- (3.) For $f \in B(\sigma(x))$, we have $\sigma(f(x)) \subseteq f(\sigma(x))$.

Proof. (1.) This is the above proposition.

- (2.) Obvious.
- (3.) For $\lambda \notin f(\sigma(x))$, then $f \lambda \in \mathcal{B}(\sigma(x))$ is invertible in $\mathcal{B}(\sigma(x))$, so there exists $g \in \mathcal{B}(\sigma^{-1})$ such that $(f \lambda)g = \text{id}$. By Borel functional calculus, $(f(x) \lambda I) \cdot g(x) = I$, so $\lambda \notin \sigma(f(x))$.

Corollary 6.12. Every vNa is the norm-closure of the linear span of the projections.

Proof. Let $M \subseteq \mathcal{B}(\mathcal{H})$ be a vNa and $x \in M$. By using $\operatorname{Re} x, \operatorname{Im} x \in M_{\operatorname{sa}}$, we may WLOG assume $x \in A_{\operatorname{sa}}$. Hence x is normal and for all $f \in B(\sigma(x))$ we have $f(x) \in M$. For $S \in \mathcal{B}_{\sigma(x)}, \chi_S(x) \in M$ is a projection. Now we can uniformly approximate id on $\sigma(x)$ by using simple functions. By BFC, x is uniformly approximated by linear combinations of projections.

Remark. There exist C^* -algebras without nontrivial projections. For example, for a compact Hausdorff connected X, the algebra C(X) only has trivial projections 0 and 1. There exist noncommutative examples, too.

6.3 Commutative von Neumann algebras

Definition 6.13. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a subalgebra. Vector $\alpha \in \mathcal{H}$ is:

- (1.) cyclic if A if $A\alpha$ is dense in \mathcal{H} .
- (2.) separating for A if $x\alpha = 0$ for $x \in A$ implies x = 0.

Proposition 6.14. Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a subalgebra.

- (1.) If $\alpha \in \mathcal{H}$ is cyclic for A, then it is separating for A'.
- (2.) Assume A is a *-subalgebra. Then if α is separating for A', it is cyclic for A.
- (3.) Suppose $W \subseteq \mathcal{B}(\mathcal{H})$ is a vNa. Then α is cyclic for M iff it is separating for M' and separating for M iff it is cyclic for M'.

Proof. (1.) Let α be cyclic for A. Let $y \in A'$ satisfy $y\alpha = 0$. Pick any $\beta \in \mathcal{H}$. there exists a sequence $(x_n)_n \subseteq A$ such that $||x_n\alpha - \beta|| \to 0$. Hence

$$y\beta = \lim_{n \to \infty} yx_n\alpha = \lim_{n \to \infty} x_n(y\alpha) = 0$$

and α is separating for A'.

(2.) Define $\mathcal{K} := (A\alpha)^{\perp} \leq \mathcal{H}$. Let $p : \mathcal{H} \to \mathcal{K}$ be the orthogonal projection. For $x_1, x_2 \in A$ and $\beta \in \mathcal{K}$ we have

$$\langle x_1 \beta, x_2 \alpha \rangle = \langle \beta, x_1^* x_2 \alpha \rangle = 0,$$

so $x_1\beta \in \mathcal{K}$ and \mathcal{K} is an invariant subspace for A. But since A is *-closed, \mathcal{K} is reducing and by lemma 5.31 $p \in A'$. Of course, $\alpha \in A\alpha$ and $p\alpha = 0$. Now we use the fact that α is separating for A' and therefore p = 0. This implies $\mathcal{K} = (0)$.

(3.) This follows immediately from M = M'' and the previous two points.

Example 6.15. Recall $VN(\Gamma) := \lambda(\mathbb{C}[\Gamma])'' \subseteq \mathcal{B}(\ell^2(\Gamma))$. Similarly, we can use the right regular map

$$\rho: \Gamma \to \mathcal{B}(\ell^2(\Gamma)), \quad g \mapsto (\rho_q: \delta_k \mapsto \delta_{kq^{-1}})$$

to define $VN_{\text{right}}(\Gamma) = \rho(\Gamma)'' \subseteq \mathcal{B}(\ell^2(\Gamma))$. Notice that $\delta_e \in \ell^2(\Gamma)$ is cyclic for $\lambda(\mathbb{C}[\Gamma])$ as well as $\rho(\mathbb{C}[\Gamma])$. This means that it is cyclic for both $VN(\Gamma)$ and $VN_{\text{right}}(\Gamma)$. It's easy to see that $VN(\Gamma)' = VN_{\text{right}}(\Gamma)$, so δ_e is separating for $VN(\Gamma)$ and $VN_{\text{right}}(\Gamma)$.

Corollary 6.16. If $A \subseteq \mathcal{B}(\mathcal{H})$ is commutative, then each cyclic vector for A is also separating for A.

Proof. If $\alpha \in \mathcal{H}$ is cyclic for A, then it is separating for A', but since $A \subseteq A'$ it is also separating for A.

Theorem 6.17 (Classification of commutative vNa's).

Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a commutative vNa with a cyclic vector $\alpha \in \mathcal{H}$. Suppose $A_0 \subseteq A$ is a C^* -algebra that is SOT-dense. Then there exists a finite regular positive Borel measure μ on $\sigma(A_0)$ and an isomorphism

$$\widetilde{\Gamma}: A \to L^{\infty}(\sigma(A_0), \mu) \subseteq \mathcal{B}(L^2(\sigma(A_0), \mu))$$

that extends the Gelfand transform $\Gamma: A_0 \to C(\sigma(A_0))$. Furthermore, $\widetilde{\Gamma}$ is spacial, that is induced by conjugation with a unitary $U: \mathcal{H} \to L^2(\sigma(A_0), \mu)$.

Proof. Since A_0 is a commutative C^* -algebra, the Gelfand transform $\Gamma: A_0 \to C(\sigma(A_0))$ is an isometric *-isomorphism. Define $\varphi_0: A \to \mathbb{C}$ by $x \mapsto \langle x\alpha_0, \alpha_0 \rangle$. Then $\varphi_0\Gamma^{-1}: C(\sigma(A_0)) \to \mathbb{C}$ is a bounded linear functional, so by Riesz-Markoff there exists a regular Borel measure μ on $\sigma(A_0)$ such that

$$\varphi_0 \Gamma^{-1}(f) = \int_{\sigma(A_0)} f \, d\mu.$$

For every positive function $f \in C(\sigma(A_0))$ we have

$$\int_{\sigma(A_0)} f \, d\mu = \int \sqrt{f}^2 \, d\mu = \varphi_0 \Gamma^{-1}(\sqrt{f}^2) = \langle \Gamma^{-1}(\sqrt{f}^2) \alpha_0, \alpha_0 \rangle$$
$$= \langle \Gamma^{-1}(\sqrt{f})^2 \alpha_0, \alpha_0 \rangle = \langle \Gamma^{-1}(\sqrt{f}) \alpha_0, \Gamma^{-1}(\sqrt{f}) \alpha_0 \rangle$$
$$= \|\Gamma^{-1}(\sqrt{f}) \alpha_0\|^2 \ge 0$$

and μ is a positive measure. Furthermore, μ is finite, since

$$\mu(\sigma(A_0)) = \varphi(1) = \|\alpha_0\|^2 < \infty.$$

Now we prove that supp $\mu = \sigma(A_0)$. If supp $\mu \subsetneq \sigma(A_0)$, then there exists $\emptyset \neq S^{\text{open}} \subseteq \sigma(A_0)$ with $\mu(S) = 0$. Consider a nonnegative $f \in C(\sigma(A_0)) \setminus (0)$ with $f|_{S^c} = 0$. Then

$$\|\Gamma^{-1}(\sqrt{f})\alpha_0\|^2 = \int_{\sigma(A_0)} f \, d\mu = \int_S f \, d\mu = 0.$$

We get $\Gamma^{-1}(\sqrt{f})\alpha_0 = 0$, which by cyclicity of α_0 implies $\Gamma^{-1}(\sqrt{f}) = 0$, $\sqrt{f} = 0$ and f = 0, a contradiction. Define

$$U_0: A_0\alpha_0 \to C(\sigma(A_0)) \subseteq L^2(\sigma(A_0), \mu), \quad x\alpha_0 \mapsto \Gamma(x).$$

Since α_0 is separating for A_0 , this U_0 is a well-defined linear map. For $x, y \in A_0$, we have

$$\langle U_0(x\alpha_0), U_0(y\alpha_0) \rangle = \langle \Gamma(x), \Gamma(y) \rangle_2$$

$$= \int_{\sigma(A_0)} \overline{\Gamma(y)} \Gamma(x) \, d\mu$$

$$= \int_{\sigma(A_0)} \Gamma(y^* x) \, d\mu$$

$$= \varphi(y^* x) = \langle y^* x \alpha_0, \alpha_0 \rangle = \langle x\alpha_0, y\alpha_0 \rangle$$

and so U_0 is an isometry! Since α_0 is cyclic for A and A_0 is SOT-dense in A, α_0 is cyclic for A_0 . So $A_0\alpha_0$ is dense in \mathcal{H} and the image of U_0 is the entire $C(\sigma(A_0))$. By continuity, U_0 extends to a surjective isometry

$$U: \mathcal{H} \to L^2(\sigma(A_0), \mu) = \overline{C(\sigma(A_0), \mu)}^{\langle \cdot, \cdot \rangle_2}$$

where U is unitary. Next, define

$$\widetilde{\Gamma}: A \to \mathcal{B}(L^2(\sigma(A_0), \mu)), \quad x \mapsto UxU^*.$$

We claim that $\widetilde{\Gamma}$ is an isometric *-homomorphism. Since U is unitary, the isometric part is obvious and the homomorphism soon follows. Now we claim that $\widetilde{\Gamma}(A) = M(L^{\infty}(\sigma(A_0), \mu))$. For $x \in A_0$ and $g \in C(\sigma(A_0))$, we have

$$\begin{split} \widetilde{\Gamma}(x)g &= UxU^*g = UxU^{-1}(\Gamma(\Gamma^{-1}(g))) \\ &= Ux(\Gamma^{-1}(g)\alpha_0) = \Gamma(x\Gamma^{-1}(g)) \\ &= \Gamma(x)g = M_{\Gamma(x)}g \end{split}$$

and since $C(\sigma(A_0))$ is dense in $L^2(\sigma(A_0), \mu)$, we get $\widetilde{\Gamma}(x) = M_{\Gamma(x)}$. It follows that

$$\widetilde{\Gamma}(A_0) = M(C(\sigma(A_0))) \subseteq M(L^{\infty}(\sigma(A_0), \mu)).$$

Then we use the fact that $\widetilde{\Gamma}$ is SOT-continuous (by definition) and $M(L^{\infty})$ is a vNa (example 5.14) to get

$$\widetilde{\Gamma}(A) = \widetilde{\Gamma}(\overline{A_0}^{\mathrm{SOT}}) \subseteq \overline{\widetilde{\Gamma}(A_0)}^{\mathrm{SOT}} \subseteq \overline{M(L^{\infty}(\sigma(A_0), \mu))}^{\mathrm{SOT}} = M(L^{\infty}(\sigma(A_0), \mu)).$$

The reverse inclusion is done by nets. Suppose $(\widetilde{\Gamma}(x_i))_i \subseteq \widetilde{\Gamma}(A_0)$ WOT-converges to $T \in B(L^2(\sigma(A_0), \mu))$. Then for all $\beta \mu \in \mathcal{H}$ we have

$$\begin{split} \langle TU\beta, U\mu \rangle &= \lim_{i} \langle \widetilde{\Gamma}(x_{i})U\beta, U\mu \rangle \\ &= \lim_{i} \langle Ux_{i}U^{*}U\beta, U\mu \rangle \\ &= \lim_{i} \langle x_{i}\beta, \mu \rangle \end{split}$$

and $(x_i)_i \xrightarrow{\text{WOT}} U^*TU \in \mathcal{B}(\mathcal{H})$. Since $\overline{A_0}^{\text{WOT}} = A$, we get $x = U^*TU \in A$ and $\widetilde{\Gamma}(x) = T$, so $\overline{\widetilde{\Gamma}(A_0)}^{\text{WOT}} \subseteq \widetilde{\Gamma}(A)$. Finally, we ask what is $\overline{M(C(\sigma(A_0)))}^{\text{WOT}}$? WOT on that set is generated by seminorms

$$|\langle M_g \alpha, \beta \rangle| = \left| \int_{\sigma(A_0)} g \alpha \beta \, d\mu \right|,$$

where $g \in C(\sigma(A_0))$ and $\alpha, \beta \in L^2(\sigma(A_0), \mu)$. Accordingly, weak-* topology on $L^{\infty}(\sigma(A_0), \mu)$ is generated by seminorms

$$\left| \int_{\sigma(A_0)} g \gamma \, d\mu \right|,$$

where $\mu \in L^1(\sigma(A_0), \mu)$ (this is because for a σ -finite X, $(L^1(X))^* = L^{\infty}(X)$). By Hölder, L^1 function is a product of two L^2 functions, so these two topologies coincide. By Goldstine's theorem, $C(\sigma(A_0))$ are weak-* dense in $L^{\infty}(\sigma(A_0), \mu)$. Then we have

$$M(L^{\infty}(\sigma(A_0), \mu)) = \overline{M(C(\sigma(A_0)))}^{\text{WOT}} = \overline{\widetilde{\Gamma}(A_0)}^{\text{WOT}} \subseteq \widetilde{\Gamma}(A)$$

and finally $\widetilde{\Gamma}(A) = M(L^{\infty}(\sigma(A_0), \mu)).$

Remark. Applying this theorem to $A_0 = A$ we get

$$M(L^{\infty}(\sigma(A), \mu)) = \widetilde{\Gamma}(A) = M(C(\sigma(A))).$$

The following statement from the above proof is important in its own right.

Lemma 6.18. $C(\sigma(A_0))$ are weak-* dense in $L^{\infty}(\sigma(A_0), \mu)$.

Proof. For any bounded measurable function $f \in B(\sigma(A_0))$, there exists a net $(f_i)_i \subseteq C(\sigma(A_0))$ such that $f_i \xrightarrow{\text{weak}-*} f$ by Goldstine (see the proof for theorem 6.8).

In the proof, we used the following theorem.

Theorem 6.19.

Suppose $1 \le p < \infty$ and μ is a σ -finite positive measure on X, and Φ is a bounded linear functional on $L^p(X,\mu)$. Then there is a unique $g \in L^q(X,\mu)$, where $\frac{1}{p} + \frac{1}{q} = 1$, such that

$$\Phi(f) = \int_X fg \, d\mu.$$

Moreover, $\|\Phi\| = \|g\|_q$.

The theorem tells us that under these conditions, $L^q(X,\mu)$ is isometrically isomorphic to the dual space of $L^q(X,\mu)$. In particular, we used the fact that $(L^1(X,\mu))^* = L^{\infty}(X,\mu)$. This is theorem 6.16 in W.Rudin's Real and complex analysis.

How crucial is the cyclicity assumption? Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a commutative vNa. Pick $0 \neq \alpha \in \mathcal{H}$. Define $\mathcal{K} := \overline{A\alpha}$ and let $p : \mathcal{H} \to \mathcal{K}$ be an orthogonal projection, so by reducibility of \mathcal{K} we get $p \in A'$. Therefore $pAp = Ap \subseteq \mathcal{B}(\mathcal{H})$ is a commutative vNa with a cyclic vector $\alpha \in \mathcal{K}$. Then, again by theorem, $Ap \cong L^{\infty}(X, \mu)$ for some (X, μ) . By Zorn's lemma, $A \cong L^{\infty}(Y, \nu)$ for some disjoint union of measure spaces (Y, ν) .

Proposition 6.20. Let \mathcal{H} be a separable Hilbert space and $A \subseteq \mathcal{B}(\mathcal{H})$ a commutative vNa. Then there exists a separating vector for A.

Proof. By Zorn, there exists a maximal set of unit vectors $(\alpha_k)_k$ such that $A\alpha_k \perp A\alpha_l$ for $k \neq l$. By maximality, $\sum_k A\alpha_k$ is dense in \mathcal{H} . Define $\alpha = \sum_{n=1}^{\infty} \frac{1}{2^n} \alpha_n$. We claim that

 α is separating for A. Indeed, let $x \in A$ such that $x\alpha = 0$. Then $\sum_{n=1}^{\infty} \frac{1}{2^n} x \alpha_n = 0$. By orthogonality, $x\alpha_n = 0$ for all indices n. For all $y \in A$, we get $xy\alpha_n = yx\alpha_n = 0$, so $x \big|_{A\alpha_n} = 0$ for all n. But since $\sum_n A\alpha_n$ is dense in A, we get x = 0.

Corollary 6.21. Let \mathcal{H} be a separable Hilbert space and $A \subseteq \mathcal{B}(\mathcal{H})$ is a maximal commutative vNa. Then there exists a cyclic vector for A.

Proof. By the proposition, there exists a separating vector α for A, which is then cyclic for A'. But since A is maximal, we get A = A'.

Theorem 6.22.

Let \mathcal{H} be a separable Hilbert space and $A \subseteq \mathcal{B}(\mathcal{H})$ a commutative vNa. Then there exists a compact Hausdorff space X and a finite regular Borel measure μ on X such that $A \cong L^{\infty}(X,\mu)$.

Proof. By proposition, there exists a separating vector $\alpha \in \mathcal{H}$ for A. Form $\mathcal{K} := \overline{A\alpha}$. Then the algebra $\{x|_{\mathcal{K}} \mid x \in A\} \subseteq \mathcal{B}(\mathcal{K})$ is *-isomorphic to A, has cyclic vector α and the above theorem applies.

Example 6.23. Let $\Gamma = \mathbb{Z}/n\mathbb{Z}$. Then the spectrum is $\sigma(VN(\Gamma)) = \{e^{\frac{2k\pi i}{n}} \mid 0 \leq k < n\}$ and $\mu(e^{\frac{2k\pi i}{n}}) = \frac{1}{n}$. Then

$$VN(\Gamma) = L^{\infty}(\sigma(VN(\Gamma)), \mu) \cong \mathbb{C}^n$$

as an algebra. The generator for $VN(\Gamma)$ is the matrix

$$\begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 \\ 1 & & & 0 \end{pmatrix}.$$

Example 6.24. Let $\Gamma = \mathbb{Z}$. Then \mathbb{T} is the Pontryagin dual of Γ , so $C^*(\Gamma) = C(\mathbb{T})$ and $VN(\Gamma) = L^{\infty}(\mathbb{T}, m)$, where m is the normalized Lebesque measure.