Projet 7:Réaliser des indexations automatiques des images

Réalisé par : Taher Haggui

Plan:

Problématique:

Réaliser un algorithme de détection de la race du chien sur une photo, afin d'accélérer leur travail d'indexation.

Comment?

1. Une approche classique de classification.

2.L'approche CNN.

3.Développer un programme python mettant en oeuvre les deux approches .

Résultat attendus:

Un programme python permettant de détecter la race de chien à partir de sa photo.

Pré-processing des images: Débruitage

Filtre utilisé: Filtre Gaussien

Illustration:

Pré-processing: égalisation d'histogramme d'images

Objectif: Améliorer le contraste des images

Démarche: harmoniser la distribution des niveaux de couleur de l'image, de sorte que chaque niveau de l'histogramme contient idéalement le même nombre de pixels.

Égalisation d'histogramme d'images: Illustration

Keypoints et leur descripteurs:

Méthode permettant de détecter les keypoints de chaque image et leurs descripteurs.

Keypoints et leur descripteurs (Illustration):

Images matches:

Descripteurs des images:

→ Appliquer la fonction qui permet de détecter les keypoints et les descripteurs de chaque image.

→ Stocker dans une liste les descripteurs de chaque image.

→ Stocker tous les descripteurs verticalement dans un seul array à l'aide de méthode vstack de numpy.

Clustering:

Méthode de clustering: KMean

Nous n'avons pas pu déterminer le meilleur nombre de cluster pour des contraintes de mémoire. Ainsi nous avons choisi un nombre de 500 clusters à identifier.

Nous n'avons pas pu déterminer le coefficient de silhouette de cette clustering pour des raisons de limite de mémoire.

Bag of visual word:

- → Nous avons crée un array de dimension nbreimage x 500.
- → Dans chaque ligne, correspond à chaque image. Nous avons calculé à l'aide d'une boucle le nombre d'occurence de chaque cluster pour chaque image.

Classification:

- Nous avons séparé les données en données test et données d'entraînement . 60% des données sont des données d'entraînement.
- → Nous avons choisi, la méthode SVM pour faire notre classification des données.

Classification : Performance de modèle

- Nous avons utilisé la méthode GridsearchCV pour déterminer le meilleur coefficient de régularisation de cette méthode par rapport à nos données . Nous avons trouvés un meilleur coefficient correspond à 1,5...
- → La performance de cette méthode sur les données test révèle un coefficient de performance de 23%.

Classification: Approche CNN

Choix du modèle:

Nous avons choisi d'utiliser :

- → Le transfert learning.
- → Le réseau VGG16

Approche CNN: Implémentation

Implémentation du modèle :

- Utiliser les couches de convolution de modèle pré entraîné VGG16.
- 2. Ajouter une couche dense avec 210 sorties et ayant comme activation la fonction Relu.
- 3. Ajouter une deuxième couche dense avec 200 sorties et ayant comme activation la fonction Relu.
- 4. Ajouter une dernière couche dense avec un nombre de sortie correspond au nombre de classe et la fonction softmax comme fonction d'activation.
- 5. Réentraîner les couches supérieur à la cinquième couche sur nos données.

Approche CNN: Préparation des données

→ Split automatique des images en deux dossiers d'entraînement et de validation.

→ Data augmentation

Approche CNN: Compilation

Fonction d'erreur: Entropie croisée (cross entropy).

Optimiseur: SGD (taux d'apprentissage: 0.001).

Métrique : La fonction de précision accuracy.

Approche CNN: Entraînement sur toutes les classes

Fonction d'apprentissage : fit_generator.

époque: 600 époques.

Pas par époque: 16.

Verbose: 2.

Approche CNN: Entraînement sur toutes les classes

Fonction d'apprentissage : fit_generator.

époque: 600 époques.

Pas par époque: 16.

Verbose: 2.

Entraînement sur toutes les classes: illustration

Les premières époques:

```
Epoch 1/600
 - 373s - loss: 4.8920 - acc: 0.0078 - val loss: 4.8445 - val acc: 0.0234
Epoch 2/600
 - 395s - loss: 4.8641 - acc: 0.0000e+00 - val loss: 4.8442 - val acc: 0.0000e+00
Epoch 3/600
 - 395s - loss: 4.8386 - acc: 0.0000e+00 - val loss: 4.8066 - val acc: 0.0117
Epoch 4/600
 - 425s - loss: 4.7966 - acc: 0.0039 - val loss: 4.8003 - val acc: 0.0117
Epoch 5/600
 - 397s - loss: 4.7997 - acc: 0.0078 - val loss: 4.7979 - val acc: 0.0117
Epoch 6/600
 - 423s - loss: 4.7917 - acc: 0.0117 - val loss: 4.7897 - val acc: 0.0195
Epoch 7/600
 - 426s - loss: 4.7911 - acc: 0.0000e+00 - val loss: 4.7886 - val acc: 0.0040
Epoch 8/600
 - 442s - loss: 4.7815 - acc: 0.0039 - val loss: 4.7885 - val acc: 0.0195
Epoch 9/600
 - 409s - loss: 4.7932 - acc: 0.0156 - val loss: 4.7840 - val acc: 0.0156
Epoch 10/600
```

Les dernières époques:

```
- 372s - loss: 0.9497 - acc: 0.7188 - val loss: 1.9597 - val acc: 0.4883
Epoch 593/600
 - 370s - loss: 1.1929 - acc: 0.6328 - val loss: 1.9798 - val acc: 0.5312
Epoch 594/600
 - 373s - loss: 1.2628 - acc: 0.6250 - val loss: 1.9476 - val acc: 0.4922
Epoch 595/600
- 372s - loss: 1.3570 - acc: 0.6055 - val loss: 1.7975 - val acc: 0.5352
Epoch 596/600
- 370s - loss: 1.2560 - acc: 0.6562 - val loss: 1.9010 - val acc: 0.4922
Epoch 597/600
 - 370s - loss: 1.1187 - acc: 0.6758 - val loss: 2.1196 - val acc: 0.4531
Epoch 598/600
 - 369s - loss: 1.1618 - acc: 0.6406 - val loss: 2.1356 - val acc: 0.4492
Epoch 599/600
 - 369s - loss: 1.0207 - acc: 0.6836 - val loss: 2.1774 - val acc: 0.4453
Epoch 600/600
 - 369s - loss: 1.2990 - acc: 0.5742 - val loss: 1.8888 - val acc: 0.4453
<keras.callbacks.History at 0x7f6dca9405c0>
```

Entraînement sur toutes les classes: Principaux résultats

Résultat initial (époque 1)

Loss de validation=4.84

Résultat final (après 600 époques)

Accuracy de validation=0.44

Loss de validation=1.89

Accuracy de validation=0.44

Loss de validation=1.89

Accuracy de validation=0.44

Accuracy de validation=0.44

Approche CNN: 10 classes

Modèle: même architecture du modèle choisie.

Compilation: méme paramètres de compilation.

Apprentissage:

- époques = 50
- verbose=2
- -pas par époque = 12
- -callbacks: checkpoints et un early stopping (min_delta=0.05 , patience=20,monitor=accuracy de validation)

Approche CNN: 10 classes

Modèle: même architecture du modèle choisie.

Compilation: méme paramètres de compilation.

Apprentissage:

- époques = 50
- verbose=2
- -pas par époque = 12
- -callbacks: checkpoints et un early stopping (min_delta=0.05 , patience=20,monitor=accuracy de validation)

Entraînement sur 10 classes: Illustration

Les premières époques

```
Epoch 1/50
- 389s - loss: 0.6495 - acc: 0.7852 - val loss: 0.9185 - val acc: 0.6911
Epoch 2/50
- 374s - loss: 0.9011 - acc: 0.6726 - val loss: 1.0560 - val acc: 0.6289
Epoch 3/50
- 385s - loss: 0.6782 - acc: 0.7969 - val loss: 0.8623 - val acc: 0.7073
Epoch 4/50
- 367s - loss: 0.7132 - acc: 0.7656 - val loss: 0.7288 - val acc: 0.7422
Epoch 5/50
- 361s - loss: 0.6192 - acc: 0.7656 - val loss: 0.7208 - val acc: 0.7439
Epoch 6/50
- 365s - loss: 0.8104 - acc: 0.6953 - val loss: 0.9435 - val acc: 0.6953
Epoch 7/50
- 356s - loss: 0.6291 - acc: 0.7730 - val loss: 0.7847 - val acc: 0.7109
Epoch 8/50
- 361s - loss: 0.5921 - acc: 0.7734 - val loss: 1.0894 - val acc: 0.6789
Epoch 9/50
- 365s - loss: 0.5243 - acc: 0.8398 - val loss: 0.5284 - val acc: 0.7969
Epoch 10/50
- 360s - loss: 0.6065 - acc: 0.7812 - val loss: 1.0012 - val acc: 0.6789
Epoch 11/50
- 365s - loss: 0.5088 - acc: 0.8320 - val loss: 0.6518 - val acc: 0.7930
Epoch 12/50
- 352s - loss: 0.4957 - acc: 0.8356 - val loss: 0.5397 - val acc: 0.8089
Epoch 13/50
- 365s - loss: 0.3515 - acc: 0.8867 - val loss: 0.8654 - val acc: 0.7305
Epoch 14/50
- 368s - loss: 0.6135 - acc: 0.7930 - val loss: 0.8290 - val acc: 0.7480
Epoch 15/50
- 367s - loss: 0.3876 - acc: 0.8672 - val loss: 0.5237 - val acc: 0.8438
Epoch 16/50
- 364s - loss: 0.4535 - acc: 0.8633 - val loss: 0.7747 - val acc: 0.7266
```

Les dernières époques

```
Epoch 28/50
 - 361s - loss: 0.1693 - acc: 0.9375 - val loss: 0.8589 - val acc: 0.8049
Epoch 29/50
 - 365s - loss: 0.1447 - acc: 0.9531 - val loss: 0.6208 - val acc: 0.8320
Epoch 30/50
- 361s - loss: 0.2074 - acc: 0.9258 - val loss: 0.5663 - val acc: 0.8415
Epoch 31/50
 - 365s - loss: 0.1677 - acc: 0.9453 - val loss: 0.6417 - val acc: 0.8242
Epoch 32/50
 - 361s - loss: 0.1365 - acc: 0.9491 - val loss: 1.3858 - val acc: 0.7195
Epoch 33/50
 - 368s - loss: 0.3802 - acc: 0.8633 - val loss: 0.6817 - val acc: 0.8086
Epoch 34/50
 - 365s - loss: 0.1974 - acc: 0.9492 - val loss: 0.5916 - val acc: 0.8477
Epoch 35/50
 - 362s - loss: 0.2192 - acc: 0.9453 - val loss: 0.5479 - val acc: 0.8496
Epoch 36/50
 - 366s - loss: 0.1960 - acc: 0.9453 - val loss: 0.6992 - val acc: 0.7773
Epoch 37/50
 - 352s - loss: 0.2038 - acc: 0.9178 - val loss: 0.8030 - val acc: 0.7764
Epoch 38/50
 - 365s - loss: 0.1216 - acc: 0.9609 - val loss: 0.7018 - val acc: 0.8164
Epoch 39/50
 - 361s - loss: 0.2121 - acc: 0.9375 - val loss: 0.6654 - val acc: 0.8293
Epoch 40/50
 - 366s - loss: 0.1329 - acc: 0.9609 - val loss: 0.6297 - val acc: 0.8320
Epoch 41/50
 - 362s - loss: 0.0843 - acc: 0.9727 - val loss: 0.8634 - val acc: 0.7683
Epoch 42/50
 - 356s - loss: 0.1678 - acc: 0.9209 - val loss: 0.7204 - val acc: 0.8281
Epoch 43/50
 - 366s - loss: 0.1444 - acc: 0.9570 - val loss: 0.9738 - val acc: 0.7461
```

Entraînement sur 10 classes : Principaux résultats

★ Entrainement s'arrête à 43 ème époque.

★ Meilleur performance obtenue à l'époque 23 , avec une valeur de loss égal 0.47 et une accuracy de 85% .

Programme Python

Programme Python:

Nous avons développé un programme python permettant de déterminer la race du chien en se basant sur les deux approches:

- → L'approche Classique .
- → L'approche CNN.

Conclusion:

→ Dans ce projet , nous avons pu mettre en oeuvre l'avantage majeure de l'approche CNN par rapport à l'approche classique pour le cas de classification des images.

→ La performance de notre algorithme pour l'approche CNN, reste insatisfaisant pour toutes les classes.

Ainsi l'amélioration de cette algorithme est fortement recommandée pour améliorer les performances de notre modèle de classification.