Kelsey Neis, neis@umn.edu CSCI 5421 - HW 3

31.5 1

Find all solutions to $X = 4 \pmod{5}$ and $X = 5 \pmod{11}$

n	0	1	2	3	Ч	5	6	7	8	9	10	11	12	13	
h mod 5	0	i	2	3	Ч	0	ı	2	3	Ч	0	ſ	2	3	
n mod 11	0	1	2	3	4	5	6	7	8	9	10	0	1	2	
n	14	۱5	16	17	1.8	19	20	21	22	2 3	2 4	2 5	24	27	
h mod 5	4	0	1	2	3	Ч	0	ι	2	3	ų	0	ſ	2	
n mod 11	3	4	5	6	7	8	9	10	0	1	2	3	ч	S	
, N	26	?	29	30	3 1	32	33	3	ч з	s 36	37	3	8 3	9 40	
h mod 5	3		4	6	l	2	3	L	1 6) i	2	3	٧	0	
4 med 11	6		フ	8	9	10	0	1	7	2 3	4	5	6	7	
И	Ч	1	પ ર	પ	3	44 4	5 4	ь ч	7 4	8 49	So	sı s	.7 23	SЧ	5
h mod 5	1		2	3		4 0	1	2	. 3	4	0	1 2	2 3	Ч	0
n mod 11	8		9	10		0 1	2	<u> </u>	3 4	2	6	7	8 9	10	٥

Assuming x must satisfy X = 4 mod 5 and X = 5 mod 11 at once, the solution will be Y9 and Y9 + m. 55, since the pattern repeats itself with an interval of 65.

find all x that lowe remainders 1, 2,3 when divided by 9,8,7

pairwise relatively prime

Chinese remainder theorem provides correspondence blue a system of equations modulo a set of coprime moduli

n = 9.8.7 = 504

 $a \rightleftharpoons (a_1, a_2, a_3)$, $a_i = a \mod n_i$ for i = 1, 2, 3 $a = 1 \mod q$ a = 2 mod 8

m= n, n2 n3, j+i a = 3 mod 7

Ci = mi(mi-1 modn)

a = (a,C,+ a,C2...+a,CK) (mod n)

mi = n2. n3 = 56 = 2 mod 9 -> Ci = 56 (mi-1 mod n) x mod 8 ... 2 ... $m_2 = n_1 \cdot n_3 = 63 = 7 \mod 8 \longrightarrow C_2 = 63 (m_2^{-1} \mod n)$ $m_3 = N_1 \cdot n_2 = 72 = 2 \mod 7 \longrightarrow C_5 = 72 (m_3^{-1} \mod n)$ X mod 7 \.. . . 3

> 2x6=10=1 mod 9 -> m,-1=5 7x7=49= | mud 8 -> m2-1=7 2x4 = 8 = 1 mod 7 -> m3-1 = 4

 $C_{8} = 63.7 = 441$ a = 1.280 + 2.491 + 5.288 = 2026 = 10 and soy $C_2 = 72.9 = 2.88$

10, 10+ m. 504 for any integer m

```
Argue if gcd(a, n)=1, thun (a^{-1} \mod n) \longleftrightarrow ((a_i^{-1} \mod n_i), (a_i^{-1} \mod n_i)...)

31.7 a \longleftrightarrow (a_i, a_i, ..., a_k), a \in Z_n, a_i \in Z_n;

a_i = a \mod n;

- Since a and n are coprime, every element in Z_n^* has an inverse, which maps uniquely to Z_n^*...

- If there is a bijection between a \mod n \longleftrightarrow a_i \mod n with addition, multiplication, and subtraction, then there must be a bijection for division, and thus for inverse.
```

31.6

1

l ———	0	l	2	3	4	5	6	7	8	9	10	//		12	e	
[1 mod 1)	1	1	2			5	6	7	8	9	10	0	1 T)		
2 mod 11	1	2	Ч		5	/0	9	7	3	6	1	2	Ų			
3º mod 11	1	3	9	5	4	1	3	9	5	4	l	3	_			-
y' mod 11	1	4	5	9	3		9	5	9	3)	4	e -	-		
5 mod 11	1	5	3	4	9	1	5	3	4	9	l	5		-		
i mod 11	<u> </u>	6	3	7	9	10	5	8	Ч	2)	6	` -			
7 i mod 11	1	7	5	2	3) D	Ŋ	6	9	8		7 -	. –	٦	- ,	
3 mod 11	1	8	9	6	η	10	3	2	S	7	1	8 -				-
		9	4	3	5	,)	9	4	3		1	9 -	-	_		_
o mod II	<u> </u>	טן:	,		[10		(0	(10 .		-		
L->2	15	a	pri	mitiv	r r	001	,	0(2) =	10						

To reverse the modular exponentiation algorithm, let's compare what happens when we all a 0 or I to the end of a binary string to what happens when we add a 0 or I to the beginning:

forwards: a 37 210 xx 211 39 110...

backwards: qo xa 200 xa 200 57 2010 57

So we can reverse the operations meaning when $b_i = 0$, C = C+1 and $d = a \cdot d$

and when $b_1 = 1$, C = 2C and $d = d \cdot d$

Modular - Exponentiation - Reversed (a, b, n):

3.

In the example where d=7, the inverse of a mod 56) is 560, because it is the first power where $7^c=1 \mod 561$. So, given any number E \mathbb{Z}_a^* , we can find its inverse by recording the value of \mathbb{C} when d=1.

31.7

By the Chinese Remainder theorem (abmoder & Ribinal) $P_A(M_1)P_A(M_2) = M_1^e M_2^e \mod K$ $P_A(M_1)P_A(M_2) = M_1^e M_2^e \mod K$ Given someone knows how to decrypt 2% of the messages, they

can obtain the exponent e from 2% of the messages

can perform the mapping from C to M, $S_A(P_A(N_1))$.

Since $P_A(M_1)P_A(M_2)P_A(M_1)$

Nove: If x is non-trivial sgrt of 1, then: $g \in J(X+1,n) \mid N \text{ and } g \in J(X+1,h) \neq 1$ $g \in J(X-1,n) \mid h \text{ and } g \in J(X-1,n) \neq 1$

Non-trivial squ't means.

 $\chi^2 - 1 = 0$ (mod n) has solution not ± 1 $\chi^2 - 1 = 0$ can be rewritten as:

(X+1)(X-1)=0

If X cannot be ± 1 , then (X+1) and (X-1) are two numbers when unaltiplied, is a divisor of n. Since $X \neq 0$, it follows that there is some number, not 1. That satisfies $gcd(X\pm 1,n)$