[Magic Stones] Report for Experiment 1

Bonan Zhao (b.zhao@ed.ac.uk)

January 10, 2020

1 Participant data

Figure 1: Each figure is for one learning condition. Each learning condition has 15 trials (15 rows).

2 Stats

• Age: min 24, max 67, mean 41.1639, sd 11.1238

• Gender: female 28 (45.9%), male 33 (54.1%)

Condition	lition Description		Task dur. mean (min.)	S-Dfty. mean	Homogeneity	
1	To the same shape	8	5.1873	3.38	74.69%	
2	To a different shape	9	5.0942	3.45	57.10%	
4	To a different color	12	4.1504	5.17	34.06%	
5	To a different object*	11	5.2803	5.09	36.53%	
6	To the same object	10	5.0351	3.00	65.50%	
Total		61	4.8756 (sd 1.87)	4.65 (sd 3.16)		

Table 1: Basic stats per condition. S-Dfty.: Self-report difficulty. *: Same color + diff shape.

Homogeneity

Homogeneity is defined as a scaled variance of selection frequency. Homogeneity H for a trial t_i for condition C is calculated by

Figure 2: Homogeneity.

"To the same xx" V.S. "To a different xx"

Conditions 1, 3, and 6 can be classified as "to the same xx" group, where xx can be color, shape, or both (equivalent to the object), and conditions 2, 4, 5 can be classified as "to a different xx" group. Statistical test shows that compared to the "to a different xx" group, participant report the "to the same xx" group is significantly easier (p < 0.0001), and make more homogeneous predictions (p = 0.0001). However there is so significant difference for task duration between these two groups.

	Arrow	$o \rightarrow o$	$o \rightarrow c$	$o \rightarrow s$	$c \rightarrow o$	$c \rightarrow c$	$c \rightarrow s$	$s \rightarrow o$	$s \to c$	$s \rightarrow s$
	f	81	27	27	27	9	9	27	9	9
Ī	Total									225

Table 2: Number of causal power functions each arrow combination produces. o: object, c: color, s:shape.

3 Theories

Recall the nine theories in previous notes, as listed in Table 2. Figure 3 shows to what extent these nine theories predict the underlying rule or participant data separately.

Each cell is a summary of how well a theory predicts all the tasks for one condition, call it A (for agreement). For the "code setup" group, $A_C = N_C/15$ where N_C is the number of theory predictions that agree with condition C's underlying rule. When comparing with participant data, for each selection s in the theory predictions TP and participant selections PP, $A_C = (\sum_{i \in C} |P_{TH}(s_i) - P_{PP}(s_i)|)/15$.

Figure 3: Theory predictions versus data.