cost function

Training set

features size in feet ² (x)	targets price \$1000's (y)
2104	460
1416	232
1534	315
852	178

$$f_{W,b}(x) = wx + b$$

W,b :- povameters

3	f(x) = 0x + 1.5
2	ŷ = 1·5
0	1 2 3
	$\rightarrow \omega = 0$ $\rightarrow b = 1.5$
	Gy-interapt

y (x⁽ⁱ⁾, y⁽ⁱ⁾) t_w, b,

-> difference between

if and y

since y = b

In application

tw, b, bunch of points marked

Our job is to choose the closest function f(x) = wx + b such that it comprises most of the points (best case:- all points)

Q. How can we decide which function best measures the dataset?

A. For that we're going to take a cost function.

prediction value

$$(\hat{y} - y) \rightarrow \text{error}$$
target value

The less the ever the better the function.

Since in data below, the difference can be less than O, we square the ever.

cost function:-
$$\sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^{2}$$
error

m = no. of training examples

→ We also need to make sure that the over doesn't get bigger when the dataset pigger.

we compute the average squared over

Conventionally, cost function = $\frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$

There we different functions for different machine learning problems. Squared over function is the most used function

for linear regression.