$Suites et \, S\acute{e}ries - TD_8 - Complément$

Devoir surveillé 2021-2022

Exercice 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée telle que la suite $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ soit monotone.

- 1. Montrer que la suite $(u_{n+1} u_n)_{n \in \mathbb{N}}$ est convergente.
- 2. Montrer par l'absurde que $u_{n+1} u_n \xrightarrow[n \to +\infty]{} 0$.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge. Ce résultat est-il encore vrai si on ne suppose plus $(u_n)_{n\in\mathbb{N}}$ bornée?

Exercice 2.

Soit la suite récurrente définie par

$$\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{u_n^5} \end{cases}$$

1. Montrer que

$$\forall n \in \mathbb{N}, \ u_n \in]0, +\infty[$$

- 2. Montrer que $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- 3. On souhaite trouver un équivalent de u_n lorsque n tend vers $+\infty$. Pour cela, on pose pour tout $n \in \mathbb{N}^*$: $v_n = \frac{u_n^6}{6}$ et $w_n = v_{n+1} v_n$.
 - (a) Donner un équivalent de w_n lorsque $n \to +\infty$. En déduire la nature de la série $\sum_n w_n$.
 - (b) Donner un équivalent de v_n lorsque $n \to +\infty$. En déduire un équivalent de u_n .
- 4. Donner le terme suivant du développement asymptotique de u_n lorsque n tend vers $+\infty$.

Exercice 3.

On définit la série $\sum_n u_n$ de terme général u_n donné par :

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{\ln(n)}{1 + (-1)^{n+1}n}.$$

On rappelle que pour tout $(\alpha, \beta) \in \mathbb{R}^2$, la série de Bertrand $\sum_n \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ converge si et seulement si :

$$(\alpha > 1)$$
 ou $(\alpha = 1 \text{ et } \beta > 1)$

- 1. Donner un équivalent de u_n lorsque n tend vers $+\infty$.
- 2. Montrer que la série $\sum_{n} u_n$ est convergente.
- 3. On pose, pour tout $n \in \mathbb{N}^*$, $v_n = u_{2n-1} + u_{2n}$. Donner un équivalent de $R_n(v) = \sum_{k=n+1}^{+\infty} v_k$ quand $n \to +\infty$.
- 4. En déduire un équivalent de $R_n(u)$ quand $n \to +\infty$.