Notes on Baire's Category Theory

Z. Zhang *

November 14, 2020 (revised on November 17, 2020)

1 Basics

Definition 1.1. Let X be a topological space and S be a set in X.

- 1. The interior of S is defined as $int(S) = \bigcup \{U : U \subset S \text{ and } U \text{ is open in } X\}.$
- 2. The closure of S is defined as $cl(S) = \bigcap \{G : G \supset S \text{ and } G \text{ is closed in } X\}.$

Proposition 1.1. Let A and B be two sets in a topological space X.

- 1. Duality between interior and closure: $int(A) = cl(A^c)^c$, $cl(A) = int(A^c)^c$.
- 2. For any $x \in X$, $x \in \text{int}(A)$ if and only if there exists an open set U such that $x \in U \subset A$.
- 3. For any $x \in X$, $x \in cl(A)$ if and only if $U \cap A \neq \emptyset$ for any open set U such that $x \in U$.
- 4. $int(A \cap B) = int(A) \cap int(B)$.
- 5. $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$.

Proposition 1.2. Let X be a topological space and Y be its subspace

- 1. For any $S \subset Y$, $\operatorname{int}_Y(S) \supset \operatorname{int}_X(S)$; if Y is open in X, then $\operatorname{int}_Y(S) = \operatorname{int}_X(S)$.
- 2. For any $S \subset Y$, $\operatorname{cl}_Y(S) = \operatorname{cl}_X(S) \cap Y$.

In Proposition 1.2, we use a subscript to indicate the topological space which the interior or closure is defined with respect to. We will always do this if the context does not suffice to avoid confusion.

- **Proof.** 1. $\operatorname{int}_X(S)$ is open in X and $\operatorname{int}_X(S) \subset S \subset Y$. Thus $\operatorname{int}_X(S)$ is an open subset of S in Y, leading to $\operatorname{int}_X(S) \subset \operatorname{int}_Y(S)$. If Y is open, then $\operatorname{int}_Y(S)$ is an open subset of S in X, implying that $\operatorname{int}_Y(S) \subset \operatorname{int}_X(S)$ and hence $\operatorname{int}_Y(S) = \operatorname{int}_X(S)$.
- 2. Since $\operatorname{cl}_Y(S)$ is closed in Y, there exists a closed set G in X such that $\operatorname{cl}_Y(S) = G \cap Y$. Thus $S \subset G$, implying that $\operatorname{cl}_X(S) \subset G$. Therefore, $\operatorname{cl}_X(S) \cap Y \subset G \cap Y = \operatorname{cl}_Y(S)$. On the other hand, $\operatorname{cl}_X(S) \cap Y$ is a closed set in Y and it contains S, implying that $\operatorname{cl}_X(S) \cap Y \supset \operatorname{cl}_Y(S)$. Hence $\operatorname{cl}_X(S) \cap Y = \operatorname{cl}_Y(S)$.

^{*}Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China (zaikun.zhang@polyu.edu.hk).

Definition 1.2. Let A and B be two sets in a topological space X

- 1. If cl(A) = X, then A is said to be dense in X.
- 2. If $A \subset B$ and A is dense in B with respect to the subspace topology on B, then we will simply say that A is dense in B.

Proposition 1.3. Let A and B be two sets in a topological space X such that $A \subset B$. Then A is dense in B if and only if $cl(A) \supset B$.

Proof. A is dense in
$$B \Leftrightarrow \operatorname{cl}_B(A) = B \Leftrightarrow \operatorname{cl}(A) \cap B = B \Leftrightarrow \operatorname{cl}(A) \supset B$$
.

Proposition 1.4. Let A and B be two sets in a topological space X.

- 1. $A \subset cl(B)$ if and only if $int(B^c) \subset int(A^c)$.
- 2. $A \subset cl(B)$ if and only if $U \cap B \neq \emptyset$ for any open set U such that $U \cap A \neq \emptyset$
- 3. If A is open, then $A \subset cl(B)$ if and only if $U \cap B \neq \emptyset$ for any nonempty open set $U \subset A$.
- 4. If $A \subset cl(B)$, then $A \cap U \subset cl(B \cap U)$ for any open set U.
- 5. If A is open and $A \subset cl(B)$, then $A \cap B$ is dense in A.
- 6. $\operatorname{int}(\operatorname{cl}(A)) \cap A$ is dense in $\operatorname{int}(\operatorname{cl}(A))$.

Proof. 1. $A \subset cl(B) \Leftrightarrow (cl(B))^c \subset A^c \Leftrightarrow int(B^c) \subset A^c \Leftrightarrow int(B^c) \subset int(A^c)$.

- 2. Suppose that $A \subset \operatorname{cl}(B)$. For any open set U such that $U \cap A \neq \emptyset$, we have $U \cap \operatorname{cl}(B) \neq \emptyset$, and hence $U \cap B \neq \emptyset$. If $A \not\subset \operatorname{cl}(B)$, then $U = (\operatorname{cl}(B))^c$ is an open set such that $U \cap A \neq \emptyset$ while $U \cap B = \emptyset$.
- 3. Suppose that $A \subset \operatorname{cl}(B)$. For any nonempty open set $U \subset A$, we have $U \cap A = U \neq \emptyset$, and hence $U \cap B \neq \emptyset$ according to 2. If $A \not\subset \operatorname{cl}(B)$, then $U = A \cap (\operatorname{cl}(B))^c$ is a nonempty open set such that $U \subset A$ while $U \cap B = \emptyset$.
- 4. Since $A \subset cl(B)$, for any open set V such that $A \cap U \cap V \neq \emptyset$, we have according to 3 that $B \cap U \cap V \neq \emptyset$. This implies $A \cap U \subset cl(B \cap U)$ according to 3.
 - 5. According to 4, $A = A \cap A \subset \operatorname{cl}(A \cap B)$ since A is open.
- 6. Since $\operatorname{int}(\operatorname{cl}(A))$ is open, and $\operatorname{int}(\operatorname{cl}(A)) \subset \operatorname{cl}(A)$, we know from 5 that $\operatorname{int}(\operatorname{cl}(A)) \cap A$ is dense in $\operatorname{int}(\operatorname{cl}(A))$.

2 Cantor's theorem and its consequences

Theorem 2.1 (Cantor's theorem). Let X be a topological space, and $\{C_n\}$ be a sequence of closed sets such that $C_{n+1} \subset C_n$ for each $n \geq 1$.

- 1. If X is complete metric space and diam $(C_n) \to 0$, then $\bigcap_{n=1}^{\infty} C_n$ is a singleton.
- 2. If each C_n is compact, then $\bigcap_{n=1}^{\infty} C_n$ is nonempty.

Theorem 2.2 ([3, Theorems 1.4.5–1.4.6]). Let X be a complete metric space and $\{S_n\}_{n=1}^{\infty}$ be a sequence of sets in X.

- 1. If each S_n is open, then $\operatorname{cl}(\bigcap_{n=1}^{\infty} S_n)$ and $\bigcap_{n=1}^{\infty} \operatorname{cl}(S_n)$ have the same interior.
- 2. If each S_n is closed, then $\operatorname{int}(\bigcup_{n=1}^{\infty} S_n)$ and $\bigcup_{n=1}^{\infty} \operatorname{int}(S_n)$ have the same closure.

Proof. Due to the duality between closure and interior, we only prove 1, for which it suffices to show that $\operatorname{int}(\bigcap_{n=1}^{\infty}\operatorname{cl}(S_n))\subset\operatorname{cl}(\bigcap_{n=1}^{\infty}S_n)$. By item 3 of Proposition 1.4, we only need to prove for a given nonempty open set $U\subset\bigcap_{n=1}^{\infty}\operatorname{cl}(S_n)$ that

$$U \cap \left(\bigcap_{n=1}^{\infty} S_n\right) \neq \emptyset. \tag{2.1}$$

To this end, we will define a sequence of closed balls $\{B_n\}_{n=0}^{\infty}$ such that

$$0 < \operatorname{diam}(B_n) < 2^{-n}, \quad B_{n+1} \subset B_n \subset U \cap \left(\bigcap_{k=1}^n S_k\right) \quad \text{for each} \quad n \ge 0,$$
 (2.2)

where $\bigcap_{k=1}^{0} S_k = X$. We will obtain (2.1) once this is done, as Cantor's theorem will yield

$$\emptyset \neq \bigcap_{n=1}^{\infty} B_n \subset U \cap \left(\bigcap_{n=1}^{\infty} S_n\right). \tag{2.3}$$

We define $\{B_n\}$ inductively. As U is a nonempty open set, we can take a closed ball $B_0 \subset U$ such that $0 < \operatorname{diam}(B_0) < 1$. Assume that the closed ball B_n is already defined for an $n \ge 0$ so that $0 < \operatorname{diam}(B_n) < 2^{-n}$ and $B_n \subset U \cap (\bigcap_{k=1}^n S_k)$. Recalling that $U \subset \operatorname{cl}(S_{n+1})$, we have $\operatorname{int}(B_n) \subset \operatorname{cl}(S_{n+1})$, which implies that $\operatorname{int}(B_n) \cap S_{n+1} \ne \emptyset$. Since $\operatorname{int}(B_n) \cap S_{n+1}$ is open, we can take a closed ball $B_{n+1} \subset \operatorname{int}(B_n) \cap S_{n+1}$ such that $0 < \operatorname{diam}(B_{n+1}) < 2^{-(n+1)}$. It is easy to see that $B_{n+1} \subset B_n$ and $B_{n+1} \subset B_n \cap S_{n+1} \subset U \cap (\bigcap_{k=1}^{n+1} S_k)$. This finishes the induction and completes the proof.

Theorem 2.3. Theorem 2.2 still holds if X is a locally compact Hausdorff space.

Proof. The proof duplicates that of Theorem 2.2, except that $\{B_n\}$ is now a sequence of compact sets with nonempty interior such that $B_{n+1} \subset B_n \subset U \cap (\bigcap_{k=1}^n S_k)$, the existence of which can be established by the local compactness of X. Since X is a Hausdorff space, each B_n is closed, and hence $\bigcap_{n=1}^{\infty} B_n$ is nonempty by Cantor's theorem.

3 Baire's category theorem

Definition 3.1. Let X be a topological space.

- 1. A set in X is said to be rare (or nowhere dense) if its closure has empty interior.
- 2. A set in X is said to be meager if it is a countable union of rare sets.
- 3. The complement of a meager set is called a comeager (or residual) set.
- 4. A meager set is also said to be of the first category; other sets are of the second category.

Proposition 3.1. Rare sets, subsets of meager sets, and countable unions of meager sets are all meager sets.

Example 3.1. Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of all the rational numbers. Define

$$S = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \left(r_n - \frac{1}{m \, 2^n}, \ r_n + \frac{1}{m \, 2^n} \right).$$

It is easy to check that S is comeager. Meanwhile, the Lebesgue measure of S is 0.

Definition 3.2. A topological space X is called a Baire space if every meager set in X has empty interior.

Proposition 3.2. Let X be a topological space. The following statements are equivalent.

- 1. X is a Baire space.
- 2. Any comeager set in X is dense.
- 3. Any nonempty open set in X is not meager.
- 4. Any countable intersection of dense open sets in X is still dense.
- 5. Any countable union of rare closed sets in X has empty interior.

Proof. $1 \Rightarrow 2$. Let S be a comeager set in X. Then S^c is a meager set in X. Thus S has empty interior, which implies that S is dense in X.

- $2 \Rightarrow 3$. Let U be an open set in X. If U is meager, then U^c is dense in X. Thus $U = \text{int}(U) = \emptyset$.
- $3 \Rightarrow 4$. Let $\{U_n\}$ be a sequence of dense open sets in X. Then $(\bigcap_{n=1}^{\infty} U_n)^c$ is meager. Its interior is an open meager set in X, and hence empty. Thus $\bigcap_{n=1}^{\infty} U_n$ is dense.
- $4 \Rightarrow 5$. Let $\{C_n\}$ be a sequence of rare closed sets in X. Then $\{C_n^c\}$ is a sequence of dense open sets. Thus $\bigcap_{n=1}^{\infty} C_n^c$ is dense in X. Taking the complement, we know that $\bigcup_{n=1}^{\infty} C_n$ has empty interior.
- $5 \Rightarrow 1$. Let S be a meager set in X. Then there exists a sequence of rare sets $\{S_n\}$ such that $S = \bigcup_{n=1}^{\infty} S_n$. Thus $S \subset \bigcup_{n=1}^{\infty} \operatorname{cl}(S_n)$, the latter of which has empty interior because $\{\operatorname{cl}(S_n)\}$ is a sequence of rare closed sets. Hence S has empty interior.

Proposition 3.3. Let X be a topological space and S be a set in X. Then S is rare in X if and only if $int(cl(S)) \cap S = \emptyset$.

Proof. By item 6 of Proposition 1.4, $\operatorname{int}(\operatorname{cl}(S)) \cap S$ is dense in $\operatorname{int}(\operatorname{cl}(S))$. Thus $\operatorname{int}(\operatorname{cl}(S)) = \emptyset$ if and only if $\operatorname{int}(\operatorname{cl}(S)) \cap S = \emptyset$.

Lemma 3.1. Let X be a topological space, Y be its open subspace, and S be a subset of Y.

- 1. S is rare in X if and only if S is rare in Y.
- 2. S is meager in X if and only if S is meager in Y.

Proof. 1. Since Y is open in X, we have

$$\operatorname{int}_{Y}(\operatorname{cl}_{Y}(S)) = \operatorname{int}_{X}(\operatorname{cl}_{Y}(S)) = \operatorname{int}_{X}(\operatorname{cl}_{X}(S) \cap Y) = \operatorname{int}_{X}(\operatorname{cl}_{X}(S)) \cap Y. \tag{3.1}$$

If S is rare in X, then $\operatorname{int}_X(\operatorname{cl}_X(S)) = \emptyset$, and hence $\operatorname{int}_Y(\operatorname{cl}_Y(S)) = \emptyset$ by (3.1), implying that S is rare in Y. If S is rare in Y, then (3.1) leads to $\operatorname{int}_X(\operatorname{cl}_X(S)) \cap Y = \emptyset$, which implies $\operatorname{int}_X(\operatorname{cl}_X(S)) \cap S = \emptyset$, ensuring that S is rare in X by Proposition 3.3.

2. If S is meager in X, then $S = \bigcup_{n=1}^{\infty} S_n$ with a sequence of rare sets $\{S_n\}$ in X. Each S_n is a subset of S, and hence of Y, and it is rare in Y according to 1. Thus S is meager in Y. If S is meager in Y, then $S = \bigcup_{n=1}^{\infty} S_n$ with a sequence of rare sets $\{S_n\}$ in Y. Each S_n is rare in in X according to 1. Thus S is meager in X.

Theorem 3.1. Let X be a topological space. The following statements are equivalent.

- 1. X is a Baire space.
- 2. Any open subspace of X is a Baire space.
- 3. For any sequence $\{S_n\}$ of open sets in X, $\operatorname{cl}(\bigcap_{n=1}^{\infty} S_n)$ and $\bigcap_{n=1}^{\infty} \operatorname{cl}(S_n)$ have the same interior.
- 4. For any sequence $\{S_n\}$ of closed sets in X, $\operatorname{int}(\bigcup_{n=1}^{\infty} S_n)$ and $\bigcup_{n=1}^{\infty} \operatorname{int}(S_n)$ have the same closure.

Proof. $1 \Rightarrow 2$. Let Y be an open subspace of X, and S be a meager set in Y. Then S is meager in X by Lemma 3.1. Since X is a Baire space, we have $\operatorname{int}_X(S) = \emptyset$, which implies $\operatorname{int}_Y(S) = \emptyset$ as Y is open in X. Hence Y is a Baire space.

 $2 \Rightarrow 3$. It suffices to prove that $\operatorname{int}(\bigcap_{n=1}^{\infty}\operatorname{cl}(S_n)) \subset \operatorname{cl}(\bigcap_{n=1}^{\infty}S_n)$. Let $Y = \operatorname{int}(\bigcap_{n=1}^{\infty}\operatorname{cl}(S_n))$. Then Y is a Baire space. Define $T_n = S_n \cap Y$ for each $n \geq 1$. Then each T_n is open in Y. Since Y is open and $Y \subset \operatorname{cl}(S_n)$, we know from item 5 of Proposition 1.4 that T_n is dense in Y. Hence $\bigcap_{n=1}^{\infty}T_n$ is dense in Y. Therefore, $Y \subset \operatorname{cl}(\bigcap_{n=1}^{\infty}T_n) \subset \operatorname{cl}(\bigcap_{n=1}^{\infty}S_n)$ as desired.

- $3 \Rightarrow 4$. Obvious by the duality between interior and closure.
- $4 \Rightarrow 5$. Let $\{S_n\}$ be a sequence of closed sets in X with empty interior. Then we have $\operatorname{cl}(\operatorname{int}(\bigcup_{n=1}^{\infty} S_n)) = \operatorname{cl}(\bigcup_{n=1}^{\infty} \operatorname{int}(S_n)) = \emptyset$. Thus $\operatorname{int}(\bigcup_{n=1}^{\infty} S_n) = \emptyset$. Hence X is a Baire space. \square

Theorems 2.2, 2.3, and 3.1 lead us to Baire's Category Theorem.

Theorem 3.2 (Baire's Category Theorem, [1, Theorem 48.2]). Complete metric spaces and locally compact Hausdorff spaces are Baire spaces.

4 Baire's category in topological vector spaces

Definition 4.1. A topological vector space X is a vector space over a topological field \mathbb{K} (most often the real or complex numbers with their standard topologies) that is endowed with a topology such that the vector addition $(x, y) \mapsto x + y$ and scalar multiplication $(\lambda, x) \mapsto \lambda x$ are continuous functions, where the domains of these functions are endowed with product topologies.

Proposition 4.1. Suppose that X be a topological vector space and U is a neighborhood of 0. Then $X = \bigcup_{n=1}^{\infty} (nU)$.

Proof. For any $x \in X$, $n^{-1}x \to 0$ due to the continuity of the scalar multiplication. Since U is a neighborhood of 0, $n^{-1}x$ falls inside U when n is sufficiently large, which implies $x \in nU$. \square

Theorem 4.1 ([2, Theorem 11.6.7]). If X is a topological vector space, then X is a Baire space if and only if it is not meager.

Proof. If X is a Baire space, then it is not meager as an open subset of itself. If X is not a Baire space, then there exists a nonempty open set U that is meager. Take $x \in U$ and set V = U - x. Then V is a meager neighborhood of 0. Thus $X = \bigcup_{n=1}^{\infty} (nV)$ is meager.

5 Examples

Proposition 5.1. Let $f:(0,+\infty)\to\mathbb{R}$ be a continuous function. If $\lim_{n\to\infty} f(nx)=0$ for all x>0, then $\lim_{x\to+\infty} f(x)=0$.

Proof. We give two proofs.

1. Proof by Cantor's theorem. Assume that $f(x) \to 0$ when $x \to +\infty$. Then there exists a constant $\epsilon > 0$ such that there exists $x \geq M$ with $|f(x)| > \epsilon$ for any M > 0. We will define a strictly increasing sequence of integers $\{n_k\}$ and a decreasing nested sequence of closed intervals $\{[a_k, b_k]\}$ such that $b_k > a_k > 0$ and

$$|f(n_k x)| > \epsilon \quad \text{for all} \quad x \in [a_k, b_k] \quad \text{and} \quad k \ge 1.$$
 (5.1)

Once this is done, then there exists $y \in \bigcap_{k=1}^{\infty} [a_k, b_k]$, and $f(n_k y) > \epsilon$ for each $k \ge 1$, contradicting the assumption.

We define the aforementioned $\{[a_k, b_k]\}$ and $\{n_k\}$ inductively. Let $n_1 = 1$. By the continuity of f, there exists an interval $[a_1, b_1]$ such that $b_1 > a_1 > 0$ and $f(n_1 x) > \epsilon$ for all $x \in [a_1, b_1]$. Assume that n_k and $[a_k, b_k]$ has been defined for a $k \ge 1$ so that $b_k > a_k > 0$. Note that there exists M > 0 such that

$$[M, +\infty) \subset \bigcup_{n > n_k} n[a_k, b_k]. \tag{5.2}$$

Take $a \ge M$ such that $|f(a)| > \epsilon$. By the continuity of f, there exists b > a such that $|f(x)| > \epsilon$ for all $x \in [a,b]$. According to (5.2), there exists $n_{k+1} > n_k$ such that $[a,b] \subset n_{k+1}[a_k,b_k]$. Let $a_{k+1} = a/n_{k+1}$ and $b_{k+1} = b/n_{k+1}$. Then $b_{k+1} > a_{k+1} > 0$, $[a_{k+1},b_{k+1}] \subset [a_k,b_k]$, and $f(n_{k+1}x) > \epsilon$ for all $x \in [a_{k+1},b_{k+1}]$. This finishes the induction and completes the proof.

2. Proof by Baire's Category Theorem. Let ϵ be a positive constant. Since $f(nx) \to 0$ for all x > 0, we have

$$\bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{ x > 0 : |f(nx)| \le \epsilon \right\} = (0, +\infty). \tag{5.3}$$

By the continuity of f, $\bigcap_{n=N}^{\infty} \{x > 0 : |f(nx) \le \epsilon|\}$ is closed for each $N \ge 1$. As \mathbb{R} is a Baire space, $(0, +\infty)$ is not meager. Thus there exists N and an open interval (a, b) such that

$$(a,b) \subset \bigcap_{n=N}^{\infty} \{x > 0 : |f(nx)| \le \epsilon \}.$$
 (5.4)

Therefore

$$n(a,b) \subset \{x > 0 : |f(x)| \le \epsilon\}$$
 for each $n \ge N$. (5.5)

Note that there exists M > 0 such that

$$[M,\infty) \subset \bigcup_{n=N}^{\infty} n(a,b). \tag{5.6}$$

Combining (5.5)–(5.6), we have

$$[M, \infty) \subset \{x > 0 : |f(x)| \le \epsilon\}, \tag{5.7}$$

which completes the proof.

Proposition 5.2. Let $f:(0,+\infty)\to\mathbb{R}$ be a continuous function. If $\lim_{n\to\infty} f(nx)$ exists for all x>0, then $\lim_{x\to+\infty} f(x)$ exists.

References

- [1] J. R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, second edition, 2000.
- [2] L. Narici and E. Beckenstein. *Topological Vector Spaces*. Chapman & Hall/CRC Pure Appl. Math. CRC Press, Boca Raton, FL, second edition, 2010.
- [3] C. Zălinescu. Convex Analysis in General Vector Spaces. World scientific, Singapore, 2002.