

Lesson Objectives

- At the end of this lesson, you will be able to:
 - Create 2D parametric sketches using Autodesk Fusion 360
 - Build 3D parts using Autodesk Fusion 360
 - Create an assembly model
 - Inserting and orientating components in assembly file
 - Applying constrain to components
 - Utilize commonly used tools

Contents

- Introduction
- 2D Sketch Tools
- 3D Feature Tools
- Demonstration
 - Arm
- Practice

- Introduction
- Start new assembly file
- Place component
- Positioning
 - Move/ rotate component
 - Apply constrain
- Demonstration
- Practice

Introduction

Computer Aided Design (CAD)

- Using computer software tools to design products
 - Conceptualization of design onto CAD
 - Reduce prototype building
- Ability to translate design to manufacturing operations
- CAD is used extensively in automotive, shipbuilding, aerospace, machine, architectural industries

Part Modeling

- Creating 2D parametric sketch as a first feature
- Using the 2D sketch to create a 3D model
- Assembly of different 3D models together
- Assessment of design e.g. FEA Simulation
- Design Iterations

2D parametric sketch

- Using values and constraints to define the size, location and other properties of the sketch
- Defines the basic shape of the 3D model
- 2D sketch can be performed on planes or 2D faces

Commonly used sketch features

- Draw
 - Line
 - Circle
 - Arc
 - Rectangle
 - Spline
 - Point

- Constrain
 - Relation constrain
 - Dimension
- Pattern
 - Circular
 - Rectangular
 - Mirror

Good Practices

- Fully constrain sketches
 - Prevent accidental dimension change causing assembly or adaptive errors
- Insert most important feature for the components first and constrain them
 - Features where other components are to be mounted on
- Conduct sketch with origin in the center if component have symmetry features
 - Make use of origin planes and axis for rectangular, mirror and circular 3D pattern
 - Use Project Geometry to help you

3D Features

❖3D Feature

- Built upon closed 2D sketches
- Feature created through "growing" 2D sketch/s along a guided path or around an axis

3D Features

Commonly used 3D features

Extrude

Revolve

Loft

Sweep

3D Features

Good Practices

- Create 3D features from closed sketch
 - Open sketch create extruded surfaces
- Create base feature with origin in the center if there are symmetry features
 - Make use of the origin planes and axis for rectangular, mirror and circular 3D pattern
- For axis symmetry components, sketch a portion of the component and make use of circular pattern to create the whole component

- Creating a new project
 - Launch Fusion 360
 - Create new account using your NUS email and login
 - Select New Project → Name the Project → Select Named Project

Fusion 360 layout

Conclusion

- The class is now able to
 - Create 2D sketches and draw shapes
 - Create 3D features and construct models
 - Utilize tools to create 3D models

Introduction

- A lot of items we use daily are assemblies!
- Assembly modeling combines parts and sub assemblies to form a new single assembly

Place Components

Inserting Components

- Inserting component(s) in an assembly file
 - Insert a part or an assembly file
 - Create a new component from the assembly file

Rigid Group

Drive Joints
Motion Link
Enable Contact Sets
Enable All Contact
Motion Study

Move/ Rotate / Position

- Move/ Copy windows after insertion of component
 - Adjust location and orientation
 - Ground component (especially first inserted component)
 - Prevent floating

Joint

Allows components to fit together

Demonstration

Practice

- Locate your Project Folder.
- Open "Piston Linkage".
- Complete the assembly by inserting the following components
 - Arm
- Apply constrains such that all components are constraint as shown in the picture
- Save the assembly.

Assemblies

Good Practices

- Use sub assemblies as much as possible
 - Easy to perform localize modification or troubleshoot
 - Minimize rebuilding time after modification

File Conversions

STL format

- Primarily used for 3D printing
- Go to File → 3D Print
- Select component to be printed and click OK

Conclusion

- The class is now able to
 - Place components into an assembly file
 - Apply constrains to the components to create a single assembly model
 - Export Autodesk Fusion 360 CAD files to STL.

Questions?

