

Mann-Whitney U Test

What is it?

Mann-Whitney U Test (aka Wilcoxon Rank-Sum test) is a non-parametric test used to compare two independent groups when the data does not meet the assumptions of normality required for a t-test.

Kinds

- Two-Sample (Independent):
 Compares two independent groups to test whether their distributions are the same.
- One-Tailed or Two-Tailed: Can test for a specific direction (e.g., one group is greater than the other) or a general difference between the two groups.

Mann-Whitney U Test

Key Steps

- 1. Combine and rank the data
- 2. Calculate the sum of ranks for the two groups
- 3. Calculate the U-statistic

Mann-Whitney U-Test: Mathematical Formulation

Combine and Rank the Data

- Combine all observations into a single data set, but keep a record of which belongs to which group
- Assign ranks to each observation, starting with 1; ties all get the same rank

U Statistic

$$U_{i} = n_{1}n_{2} + \frac{n_{i}(n_{i} + 1)}{2} - R_{i}$$

$$U = \min(U_{1}, U_{2})$$

Where:

- $R_i = \text{Sum of ranks for group i}$
- n_i: Size of group i

Mann-Whitney U Test

When to use it

- Non-Normal Data
- Ordinal or continuous data
- Two independent groups

When not to use it

- More than 2 groups
- Paired/matched data
- Parametric data (e.g. data is normally distributed)

Hypothesis Testing Framework: Expanded

1. State the Hypotheses:

- **Null Hypothesis** (**H**₀): The default assumption (e.g., there is no effect or difference).
- Alternative Hypothesis (H₁): What you're trying to prove (e.g., there is an effect or difference).

2. Choose the Significance Level:

• Typically α =0.05. This is the threshold for deciding whether to reject the null hypothesis and acts as a bound on the false positive rate

3. Choose the Power Level:

• Typically β =0.20. This gives us a statistical power of 80% as a bound on our false negative rate

4. Determine the sample size

Using the sample size formula

Hypothesis Testing Framework: Expanded

- 5. Run your experiment and collect the results
- 6. Calculate the Test Statistic:
 - Based on the test you're using (e.g., Z, t, F, χ2).
- 4. Find the p-value:
 - The p-value tells you the probability of observing the data, or something more extreme, assuming the null hypothesis is true.
- 5. Make a Decision:
 - Reject H₀ if the p-value is less than α, otherwise fail to reject H₀.

