TA 151 . H33

Jes. Horakkip

AND STATE OF

AND DE TREETENCH

de con the table of the

BOARS TO MARKETINE

CANALL SAME CANALLY

a superior of the state of the

MAY RELIEF RELIEF

nan - Table and the second

MECHANIC'S, MACHINIST'S, AND ENGINEER'S

PRACTICAL

BOOK OF REFERENCE:

CCNTAINING TABLES AND FORMULÆ FOR USE IN SUPERFICIAL AND SOLID MENSURATION; STRENGTH AND WEIGHT OF MATERIALS; MECHANICS; MACHINERY; HYDRAULICS, HYDRODYNAMICS; MARINE ENGINES, CHEMISTRY; AND MISCELLANEOUS RECIPES.

ADAPTED TO AND FOR THE USE OF

ALL CLASSES OF PRACTICAL MECHANICS.

TOGETHER WITH THE

ENGINEER'S FIELD BOOK:

CONTAINING FORMULÆ FOR THE VARIOUS METHODS OF RUNNING AND CHANGING LINES, LOCATING SIDE TRACKS AND SWITCHES, &C., &C.

TABLES OF RADII AND THEIR LOGARITHMS,

NATURAL AND LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS,

NATURAL SINES AND TANGENTS TO EVERY DEGREE AND MINUTE OF THE QUADRANT,

AND

LOGARITHMS OF NATURAL NUMBERS FROM 1 TO 10,000.

BY CHARLES HASLETT, Civil Engineer.

EDITED BY CHARLES W. HACKLEY, Professor of Mathematics in Columbia College, N. Y.

NEW YORK:

STRINGER & TOWNSEND, 222 BROADWAY.

1856.

HEALT PRAYERSAL TO HASSON OF REPEACE TO HASSON OF REPEACE OF THE LANGE OF THE LANGE

The second secon

Entered according to the Act of Congress, in the year 1855, by

STRINGER & TOWNSEND,

In the Clerk's Office of the District Court of the United States for the Southern

District of New York.

In Exchange The Univ. of Virginia.

OCT 1 1937

CAUC Courses

TINEST MINERAL

R. CRAIGHEAD, Stereotyper and Electrotyper, 53 Vesey Street, N. F.

PREFACE.

Juint months and the last of t

-mos a tasinger from the grow of all the con-

03

No more useful little works have ever been presented to the public than the various pocket companions of a character analogous to that here offered. These have been a good deal, though not yet too much, multiplied of late; and where the formulas, rules, and tables which they contain have been skilfully framed under the guidance of scientific men, they have afforded to the Practical Engineer, Architect, and Mechanic, the most welcome aid in the constructions and computations which make part of their daily occupation, and which, without the ever-at-hand suggestions and directions of these unpretending little servants, might consume hours and days in the turning over of large volumes, or in painful investigations based on general principles of science where the individual happened to be competent to conduct them.

The wants to be supplied in such a work are discovered by experience and observation in the different callings for which they are more especially intended. That these wants have not all been met in the works of a similar kind which have already appeared will be made evident by a simple inspection of the amount and variety of new matter contained in the present volume.

It is not every one, however practically expert he may be in his own pursuit, that is capable of arranging and digesting in the best manner the knowledge necessary for his own use which he may have been years in acquiring, so as to render it available for the use of others. Such a task, to be well performed, requires a combination of mental qualities not always, perhaps not often, found in the same individual.

A happy concurrence of circumstances has by accident secured for the composition of the present work the labors of several skilful hands, both as compilers from the best foreign sources, and as original producers of valuable material never before in print. The result of so much well directed industry is the rich collection, not a line of which is not invaluable, which, in the aptest form for immediate use, has been crowded into the space of a single small volume.

Steam and its application play so important a part in the economy of life at the present day, that the most useful practical rules and formulas for all the ordinary cases occurring, cannot with propriety be omitted in a work of this kind. A due attention will be found to have been paid to the matter, and some of the newest modes of managing in steam supplied with the means of the requisite computation.

The laying out of Railroad curves is one of the most important and at the same time laborious and troublesome duties which the Civil Engineer has to perform. So much of this occurring on every line of Railroad, any, however slight, improvement of method which may serve to facilitate or lessen the labor of this process is a real boon to that large and eminently useful and accomplished body of men to whom the supervision of such operations is committed.

The use of the more common trigonometric functions, to wit, sines, cosines, tangents, and cotangents, which ordinary tables furnish, is not well adapted to the peculiar problems which are presented in the construction of Railroad curves. The additional columns of secants and cosecants in the tables of Dr. Bowditch sometimes afford a slight additional facility, which would be much increased had we also columns of natural secants as well as logarithmic.

The state of the s

The state of the s

the second second second A THE PERSON OF STREET STREET, for the second of the second o

Completely and while the best of the Mary and the state of the state

and the second of the second or Berlin R. A. San and St. Commission of the Commi

Mary the barrier and the same of the same A feet feet to the control of the co the state of the state of the same of the state of the st

Contract the contract of the c the second secon Approximate the state of the large trans-

a toleran to the many that the the state of the land of the state of the st

and the state of t the state of the second second

AND THE RESERVED.

Portra Charles Advisor Bridge Advisor

SAME --- NE IT IN THE

And a commence of the same of

) F 1/M

MECHANIC'S, MACHINIST'S, AND ENGINEER'S

PRACTICAL

BOOK OF REFERENCE:

CCNTAINING TABLES AND FORMULÆ FOR USE IN SUPERFICIAL AND SOLID MENSURATION; STRENGTH AND WEIGHT OF MATERIALS; MECHANICS; MACHINERY; HYDRAULICS, HYDRODYNAMICS; MARINE ENGINES, CHEMISTEY; AND MISCELLARGOUS RECIPES.

ADAPTED TO AND FOR THE USE OF

ALL CLASSES OF PRACTICAL MECHANICS.

TOGETHER WITH THE

ENGINEER'S FIELD BOOK:

CONTAINING FORMULÆ FOR THE VARIOUS METHODS OF RUNNING AND CHANGING LINES, LOCATING SIDE TRACKS AND SWITCHES, &C., &C.

TABLES OF RADII AND THEIR LOGARITHMS,

NATURAL AND LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS,

NATURAL SINES AND TANGENTS TO EVERY DEGREE AND MINUTE OF THE QUADRANT,

AND

LOGARITHMS OF NATURAL NUMBERS FROM 1 TO 10,000.

BY CHARLES HASLETT,

Civil Engineer.

EDITED BY CHARLES W. HACKLEY,
Professor of Mathematics in Columbia College, N. Y.

NEW YORK:

STRINGER & TOWNSEND, 222 BROADWAY.

1856.

SEPTIMES WITH SERVICE THE CONTRACTOR

PPACTICAL

ROOM OF REFERENCE

The state of the s

20 (10 a) 10 a

Entered according to the Act of Congress, in the year 1855, by STRINGER & TOWNSEND,

In the Clerk's Office of the District Court of the United States for the Southern
District of New York.

at Sur Private States one of the so same a

STREET SHIPS OF TANASC AND THE STREET

AND THE SHE TO STORE USE.

Walter to the state of the stat

AF STATE OF STATE OF STATE

PRISON W AND YOUR PRINT

V 15 V

R. CRAIGHEAD, Stereotyper and Electrotyper, 53 Fescy Street, N. Y.

PREFACE.

proof upon for all all and the or the proof of the

once a sympo January by it at the prince

THE STREET SHARE SHOWN IN SHOW THE SAME SHOWN

No more useful little works have ever been presented to the public than the various pocket companions of a character analogous to that here offered. These have been a good deal, though not yet too much, multiplied of late; and where the formulas, rules, and tables which they contain have been skilfully framed under the guidance of scientific men, they have afforded to the Practical Engineer, Architect, and Mechanic, the most welcome aid in the constructions and computations which make part of their daily occupation, and which, without the ever-at-hand suggestions and directions of these unpretending little servants, might consume hours and days in the turning over of large volumes, or in painful investigations based on general principles of science where the individual happened to be competent to conduct them.

The wants to be supplied in such a work are discovered by experience and observation in the different callings for which they are more especially intended. That these wants have not all been met in the works of a similar kind which have already appeared will be made evident by a simple inspection of the amount and variety of new matter contained in the present volume.

It is not every one, however practically expert he may be in his own pursuit, that is capable of arranging and digesting in the best manner the knowledge necessary for his own use which he may have been years in acquiring, so as to render it available for the use of others. Such a task, to be well performed, requires a combination of mental qualities not always, perhaps not often, found in the same individual.

A happy concurrence of circumstances has by accident secured for the composition of the present work the labors of several skilful hands, both as compilers from the best foreign sources, and as original producers of valuable material never before in print. The result of so much well directed industry is the rich collection, not a line of which is not invaluable, which, in the aptest form for immediate use, has been crowded into the space of a single small volume.

Steam and its application play so important a part in the economy of life at the present day, that the most useful practical rules and formulas for all the ordinary cases occurring, cannot with propriety be omitted in a work of this kind. A due attention will be found to have been paid to the matter, and some of the newest modes of managing in steam supplied with the means of the requisite computation.

The laying out of Railroad curves is one of the most important and at the same time laborious and troublesome duties which the Civil Engineer has to perform. So much of this occurring on every line of Railroad, any, however slight, improvement of method which may serve to facilitate or lessen the labor of this process is a real boon to that large and eminently useful and accomplished body of men to whom the supervision of such operations is committed.

The use of the more common trigonometric functions, to wit, sines, cosines, tangents, and cotangents, which ordinary tables furnish, is not well adapted to the peculiar problems which are presented in the construction of Railroad curves. The additional columns of secants and cosecants in the tables of Dr. Bowditch sometimes afford a slight additional facility, which would be much increased had we also columns of natural secants as well as logarithmic.

Still there would be much labor of computation which may be saved by the use of tables of external secants and versed sines, which have been employed with great success recently by the Engineers on the Ohio and Mississippi Railroad, and which, with the formulas and rules necessary for their application to the laying down of curves, drawn up by Mr. Haslett, one of the Engineers of that Road, are now for the first time given to the public. This portion of the volume alone, by the great abridgment of labor for which it provides the means, and the simplicity and convenience of the matter which it furnishes, will give it an extensive circulation among Practical Engineers.

But besides this, the Architect, the Shipbuilder, the Mason, the Carpenter, the Joiner, the Manufacturer and Artisan in iron and every species of material, will find rules and recipes for all kinds of estimates, computations, constructions, compositions, mixtures, et cetera, which will excite surprise at their number, novelty, and value to every one.

The contents of this volume are of so varied a nature that it was not deemed necessary to make any strenuous efforts to arrange them systematically. Being solely intended for a book of reference, the relative order of the subjects is immaterial; and the copious Table of Contents and Index afford all the assistance that can be desired by those who wish to consult its pages.

THE EDITOR.

Columbia College, Sept. 1855. still there would be much labor of computation which may be saved by the use of tables of external secants and versed sines, which have been employed with great success recently by the Engineers on the Ohio and Missisippi Railroad, and which, with the formulas and rules, necessary for their application to the laying down of curves, drawn up by Ma. Hastern of a "I the Engineers of that Read, now for the first time given to the public. This portion of the solume alone, by the great abridgment of bor for which it provides the means and the simplicity and convenience of the matter villed in farnishes, will give it an extensive circulation among Precedences.

But besides, this, the Architect, the Shipbuild a tie Maron, the Carpenter, the Joiner, the Manufacturer and Arrive from and every species of moterial, will find rules and recipe the all kinds of estimates, computations, constructions, compositions in structions, which will excite surprise at their number, for edity, and the to every one.

The contents of this volume are of so varied a nature that it was not deemed necessary to make any strepuous effects to arrange them systematically. Itsing soldy intended for a book of reference, the relative order of the subjects is immaterial; and the copious Table of Contents and Index afford all the assistance that can be desired by those who wish to consult its pages.

Toria Larron

Columbia, College,

CONTENTS.

District Control of the Control of t	PAGE
ARITHMETICAL SIGNS,	13
ARITHMENICAL SHOWS,	13
ALGEBRAIC SYMBOLS,	15
PRACTICAL GEOMETRY,	16
 From any given point, in a straight line, to erect a perpendicular. When a perpendicular is to be made at or near the end of a given 	16
line,	16
4. To bisect any given angle,5. To find the centre of a circle, or radius, that shall cut any three	16
given points, not in a direct line,	17
6. To find the centre of a given circle,	17
8. Through any given point, to draw a tangent to a circle,	17 17
9. To draw from or to the circumference of a circle lines tending	
towards the centre, when the centre is inaccessible, 10, 11. To describe an arc, or segment of a circle, of large radii,	17 18
12. To describe an ellipse, having the two diameters given,	18
13, 14. To describe an elliptic arch, the width and rise of span being	
given,	18, 19
15. To describe a parabola, the dimensions being given,16. To obtain by measurement the length of any direct line, though	19
intercepted by some material object,	19
17. A round piece of timber being given, out of which to cut a beam of strongest section,	20
19. To measure the distance between two objects, both being inaccessible.	2)
19, 2). To ascertain the distance, geometrically, of any maccessible	4)
object on an equal plane,	23, 21
21. To find the proper position for an eccentric, in relation to the c ank in a steam-engine, the angle of eccentric rod, and travel of the	2 , 21
valve, being given,	21
22. The throw of an eccentric, and the travel of the valve in a steam-	
engine, also the length of one lever for communicating motion to the valve, being given, to determine the proper length for the	
other,	21
23. To inscribe any regular polygon in a given circle,	: 2
24. To construct a square upon a given right line,	22
25. To form a square equal in area to a given triangle,	22
25. To form a square equal in area to a given rectangle,	22
27. To find the length for a rectangle whose area shall be equal to that	0.3
of a given square, the breadth of the rectangle being also given,	22
23. To bi cet any given triangle,	23
2) To describe a circle of greatest diameter in a given triangle,	23
3). To form a rectangle of greatest surface, in a given triangle	
DECIMAL ARITHMETIC,	51
Reduction,	24

															PAGE
MENS	URA	TION, .													27
M	LENSI	JRATION	of Su	PERFIC	CIES.										27
	1.	To find	the ar	ea of a	ny į	aral	lelog	ram,							28
		To find													28
	3.	To find	thear	ea of a	tria	ingle	·, ·		٠.	٠.	٠.		٠.	. :	28
	4.	Any ty			rig	ht-a	ngled	tria	ingle	bein	ıg gi	ven,	to f	ind	00
	*	To find	ird sid	e,				· lrran		•	•	٠	•	•	29 30
	υ.	To find	of mul	tinliar	e for	egui	ur pe	s fro	m, th	ran t	o tw	olvo.	وزرامه	•	31
		1. Th	e bread	th of s	nol	room) giv	en to	fine	the	radii	is of	a cit	cle.	01
			contai					•	,					•.0	31
			e radiu					o fin	d the	e leng	th o	fside	, .		31
			e lengtl											٠.	31
	6.	Having										cumf	eren	ce;	-00
	~		circun							iamet	ter,	•	•	•	32
	7.	To find To find								tho	about	l and	***	i i	32
	0.	sine g		meter	. 01 4	ı cıı	cie, i	y na	ving	the c	CHOIC	1 anu	VCI	seu	52
	9	To find		a of a	n ell	insi	s or	oval.		•	-10	00 1	5. 10	HILL	. 33
		To find								ent.					33
			of the												33
•	11.	To find								4				14	34
	12	To find								-0101		1		11	34
	13.	To find			circ	ular	ring	or sp	pace	inclu	ded b	etwo	een t	WO	5 or
Q.s.	14		ntrie ci		n all	inai		• 1		•					35 35
	14.	To find	the are	aora	n en	ipsis	,, .		10	. 4	0	1.000	11.0		90
M	ENSI	RATION	OF SO	LIDS.						1	79	400	1004		36
		To find				ce a	nd so	lid c	onte	nt of	a cv	inde	r		36
		To dete												by	8.
		to con	tain th	e gre											5_
		super	ficial su	rface,		٠						0.7	4	٠.	36
		To find											d,		37
		To find										nia,	•	•	37 37
	о. 6	To find To find	the sol	id con	tent	OIL	ne ir	ustu	m of	a cor	ie,	1			38
	7	To find	the sol	idity	ofa	wed	oro	ustui	11 01	a py	аши	1, .		11	38
	8.	To find	the cor	vexs	urfac	e ar	id sol	lid ec	nter	t of a	sph	ere o	rglo	be.	. 138
	9.	To find	the con	nvex s	urfa	ce a	nd so	lid c	onte	nt of	the s	egm	ent c	fa	
	110	sphere	е, .							000					39
	10.	To find	the so	lidity-	of a	sphe	eroid			. 10					39
	11.	To find									d wl	ien t	he b	ase	40
	10	To find	ular or	parall	ei to	the	rev	olvin,	gaxi	18,					40 40
	14.	To find	the cor	1167 8	uria	ce a	iu 50	na ce	опте	it or	a cy	Indi	ic in	18,	-10
DECE	MAL	APPRO	XIMAT	TONS.	for	fa	cilit	atin	g C	alcu	latio	ons	in]	Mer	-10
	irat			,				10	9	1,000	10	- 70			41
			•	•	•			•		,i-	٠,	- 1	15-14		
INSTR	UME	NTAL A	RITHM	ETIC.	or	Uti	lity	of t	he S	Slide	Ru	le,			42
		ration,				. 0		0	111						42
		ltiply n	umbers	by th	ie ru	le.		1971							42
		ide nun						- 1		١					43
P	ropo	rtion, or	rule of	f three	dir	ect,									43
		f three i								0.		•	20.7	•	43
		and cu						- 70		•	•	•			43
		ean pro			een	two	num	pers,		1		101	1	•	43 44
		ration of			the	one	ringo	r's m	nla c	nd H	ne e	mm	on sl	ide	44
1.		le, .	Se.bom	101	LITE	CII	Since	1 5 F	uie i	iill li	10 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	711 81	Itte	45
M	ensu	ration o	f solidi	tv and	car	acit	v.			1 11	UNITY			11	46
L	and s	urveyir	ıg, .				,					3.44			46
		of stea		nes,								N.TY	1.	010	46
		ine boil										0. 0	0.	Wei	47

1	7	PAG	. w
TH	E LAWS OF MOTION.		7
97	To find the velocity of a falling body at the end of any number		
13.	seconds, To find the space passed over by a falling body in any number	. 4	47
10.0	seconds. To find the space passed over by a falling body when the velocity	15	13
	given,		13
175	Rules and formulæ when a body is acted on by any force, Rule for finding the accelerating force of a body,		18 19
	Time of a body falling down an inclined plane,	. 4	19
1	The time of oscillation of a simple pendulum,		49
3 F	Centrifugal force, The centre of gyration,		3
OT	The centre of percussion.		53
ON	Work.	. 5	4
	To find the units of work in raising a given weight a given height,		54
10	Horse-power,		55
	Man-power		55
801	Traction of horses at various rates of travelling,		56
581	Accumulated work,	. 5	6
	Work done by machines,		6
100	The horse-power of an engine,		57
To	Calculate the Different Parts of a Crane as respects M		1
10	chanical Advantage,		3
-		(A) 1111	٥
Eq	uilibrium and Pressure of Beams-the Parallelogram	of	a
	Forces,	. 5	9
SPE	ecific Gravity,		1
1000	Table of specific gravities, Weight of given bulks of water and air,		12
Тн	E MECHANICAL POWERS, AND THEIR APPLICATION,	. 6	3
1	The Lever,		3
-001	The Pulley,		55
35.7	The Wheel and Axle,		55
	The Wedge,	. 6	66
TAIL	The Screw,	. 6	7
Too	OTHED WHEELS,	. 6	8
On	THE VELOCITY OF WHEELS, DRUMS, PULLEYS, &c	. 6	8
STE	AM POWER AND THE STEAM-ENGINE	. 7	1
23.5	To estimate the amount of advantage gained by using steam expensively in a steam-engine,	in- . 7	1
NYT	To calculate the effect of a lever and weight upon the safety-valve o	f a	
101	steam boiler, &c.,. To find the proper diameter for a safety-valve,	7	3
8	General proportions of locomotive engines,		6
1.00	Steam-engine boilers, and their proportions,	. 7	7
100	Of the pressure of steam, in inches of mercury, at different temper	ra-	2
103	Temperature of steem at different pressures in atmospheres		9
644	Temperature of steam at different pressures in atmospheres, . The elastic force of steam, and corresponding temperature of the wa	ter	
	with which it is in contact,	. (7
8277	The force and temperature of steam in atmospheres,		1
	Table of the heating power of various substances, exhibiting the atm	380	2
790 L	quantity of water evaporated by given weights, &c., Nominal horse-power of low pressure engines,	. 8	3
1	Nominal horse-power of high pressure engines,	. s	1

	PAGE
Proportions of condensing engines. Revolutions per mile of driving wheels, and consumption of steam and	85
water for each sized wheel,	86
Pressure of steam exclusive of that of the atmosphere,	87
temperature,	88
Amalgams,	89
Varnishes,	89
PRACTICAL TABLES: WEIGHT OF METALS - WROUGHT IRON;	
SQUARE, ROUND, AND FLAT,	97
TABLE OF GRADIENTS, and Resistance per Ton for each,	118
Ultimate Breaking Weight in Tons of Cast-Iron Pillars,	119
Table of Strengths of Cast-Iron Shafts,	123
Strength of the Teeth of Cast-Iron Wheels,	127
	141
Method of Ascertaining the Weight of Pipes of Various Metals, and any Diameter,	128
Weight of Cast-Iron Balls,	129
Table of the Weight of Flat and Rolled Iron,	130
Weight of Cast-Iron Pipes,	131
Table of the Weight of Malleable Iron,	132
Dimensions and Weight of Coppers,	133
Weight of Cast-Iron Plates,	133
Bore and Weight of Cocks; Weight of Lead, Lead Pipe, and	-
Copper Tubing,	134
STRENGTH OF MATERIALS,	135
Table of tenacities, resistances to compression, &c., of the common	105
materials of construction,	135 136
Resistance to lateral pressure, or transverse action,	136
Elasticity and strength of various species of timber, Table showing the weight a beam of cast-iron one inch in breadth will	136
sustain,	137
Resistance of bodies to flexure by vertical pressure, Dimensions of cylindrical columns of cast-iron to sustain given loads,	141 142
Elasticity of torsion,	143
Table of the weight of a superficial foot of plate or sheet iron, copper, and brass,	144
Comparative weights of different bodies,	145
The mensuration of timber—flat or broad measure, cubic or solid measure,	146
Cast metal cylinders,	148
Table of the weight of cast-iron pipes, Strength of journals of shafts,	148 149
Table of the diameters of shafts,	151
Strength of wheels,	152 154
Alloys, or Miscellaneous Metals,	154
	104
MENSURATION OF CIRCLES: Table of the Diameters, Circumferences and Areas of Circles.	160
Table of the circumferences and areas of circles, from 1 to 50 feet,	
advancing by an inch,	167
Ivory,	174

	PAGE
Centre of Attraction, Equilibrium, &c.,	. 175
Cohesion,	. 176
MECHANICAL LAWS OF ELASTIC FLUIDS,	. 177
Boyle's or Mariotte's Law,	. 177
Dalton's and Gay-Lussac's Law, Amonton's Law,	. 177
Dalton's Experiment,	. 178
Illuminating gases,	. 178
TABLE OF SQUARES, CUBES, SQUARE AND CUBE ROOTS OF NUMBERS	s, 180
Blacking Recipes,	. 202
STRAIN AND STRESS OF MATERIALS,	. 204
Tensile strength of cast iron,	. 207
Tensile and compressive strength of wrought iron,	208
Transverse strength of beams,	. 209
Transverse strength of cast-iron bars,	211
Transverse flexure of a wrought-iron bar by horizontal pressure.	218
Hollow rectangular beams,	: 214
Experiments on the transverse strength of rectangular tubes of wrough iron,	. 215
Strength of cast-iron pillars,	. 216
Effects of temperature on the strength of cast iron, Comparative strength of long pillars; resistance to torsion,	· 217
Strength of ropes,	218
Processes for Staining Woods,	. 218
LOGARITHMS: Application and Utility of Common Logarithmi	c
Tables,	. 219
Table to determine the Distances of the Movable Points in	n.
Parallel Motion,	. 223
Capillary Attraction,	. 224
Woods, to Polish, Preserve, &c	. 226
STEAM ENGINE: To Estimate the Amount of Effective Power,	1
To determine the proper velocity for the piston,	227
Approximate velocities for pistons,	. 228
Parallel motion,	. 228
Properties and Miscellaneous Effects of Heat: with Table	
of Expansion and Dilatation of Liquids and Solids, .	. 228
Degrees of the three thermometrical scales,	. 232
Table of the Weight of Substances of Construction,	. 234
Conducting Power of Materials used in the Construction o	f
Houses,	. 235
Capacity of Bodies for transmitting Heat,	. 235
Solders,	. 235
Table of Proportions for Shafting with Half-lap Couplings,	. 236
Gradations of Temperature,	. 236
Properties of Numbers.	. 238
Table of useful numbers,	. 240
The same of the sa	
Surface of Boiler Tubes of different Lengths and Diameters,	. 241

The second secon	PAGE
Papers,	342
Bronzing,	347
Enamels,	348
MARBLE STAINING,	349
Compound Colors in Dyeing,	350
Polisnes,	351
BOOKBINDERS' RECIPES,	352
Crayons,	358
GILDING,	359
Glass Stains,	361
Factitious Stones,	362
	365
WAXES,	369
es	
PA	- 1
PA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
THE ENGINEER'S FIELD-BOOK,	371
FORMULE FOR RUNNING LINES, LOCATING SIDE TRACKS, &c.,	375
TABLE OF CHORDS CORRESPONDING TO EVERY 100 FEET ON CURVE	0.0
FROM 200 TO 1000 FEET, CALCULATED TO EVERY 15 MINUTES!	
RATE OF CURVATURE, FROM 15 MINUTES TO 8 DEGREES, RADIUS OF	
	408
TABLE OF RADII AND THEIR LOGARITHMS,	409
	414
TABLES OF NATURAL AND LOGARITHMIC VERSED SINES AND EXTER-	
NAL SECANTS,	415
NATURAL SINES AND TANGENTS TO EVERY DEGREE AND MINUTE OF	
THE QUADRANT,	
LOGARITHMS OF NUMBERS FROM 1 to 10,000,	483
TABLE OF THE LENGTHS OF CIRCULAR ARCS, RADIUS BEING UNITY, .	499
EXPLANATION OF THE USES AND APPLICATIONS OF THE TABLE OF	~ ~ ~
Long Chords,	501
	503
	505
MISCELLANEOUS NOTES AND EXAMPLES,	510
INDEX	513

THE

MECHANIC'S, MACHINIST'S, AND ENGINEER'S

PRACTICAL

BOOK OF REFERENCE:

CONTAINING

TABLES AND FORMULÆ

FOR USE IN

SUPERFICIAL AND SOLID MENSURATION; STRENGTH AND WEIGHT OF MATERIALS; MECHANICS; MACHINERY: HYDRAULICS; HYDRODYNAMICS; MARINE ENGINES; CHEMISTRY; AND MISCELLANEOUS RECIPES.

ADAPTED TO AND FOR THE USE OF

ALL CLASSES OF PRACTICAL MECHANICS.

EDITED BY

CHARLES W. HACKLEY, Professor of Mathematics in Columbia College, N. Y.

ALLON AND THE PARTY

Y 17 11 148 H

T

MODARCS MACREMETS VARIATION

CONTROPPONIES

BOOK OF REPERCENCES

TABLES AND TORRESALE

go mer ning kan madion constitut

All consules Of Philadellia Miller and

77 0 93007

CITALLIA W. IL (RI

Freeman of Mail in oder in Columbia Call 32, 14 ...

PRACTICAL BOOK OF REFERENCE.

ARITHMETICAL SIGNS.

THE following definitions of arithmetical signs which are em? ployed in mechanical calculations, will be found of great value to those who do not yet understand them, and of some interest to those who are already familiar with their meanings.

- = This is the sign of equality, and signifies equal to. For example: 12 inches = 1 foot (12 inches is equal to 1 foot).
- + This is the sign of addition, and signifies plus, or more. For example: 5 + 3 = 8 (5 added to 3 is equal to 8).
- This is the sign of subtraction, and signifies minus, or less. For example: 10 8 = 2 (10 minus 8 leaves or is equal to 2).
- \times This is the sign of multiplication, and signifies multiplied by, or into. For example: $10 \times 3 = 30$ (10 multiplied by 3 is equal to 30).
- \div This is the sign of division, and signifies divided by. For example: 156 \div 6 = 26 (156 divided by 6 is equal to 26); or, 24 \div 4 = 6 (24 divided by 4 is equal to 6); or $\frac{24}{4}$ = 6 (24 fourths are equal to 6)

wholes).

- : :: This is the sign of proportion, and signifies proportion. For example: 4:6::8:12 (as 4 is to 6, so is 8 to 12); or 3:5::9:15 (that is, as 3 is to 5, so is 9 to 15); $\frac{3}{5} = \frac{9}{15}$.
- $\sqrt{1}$ This is the sign of the SQUARE root. When it is placed before a number (as thus, $\sqrt{5} = 25$), it means that the square root of that number is required. For example: $\sqrt{25} = 5$, because $5 \times 5 = 25$; or, $\sqrt{9} = 3$, because $3 \times 3 = 9$; or, $\sqrt{64} = 8$, because $8 \times 8 = 64$.
- *\formular This is the sign of the cube root. When it is placed before a number, it means that the cube root of that number is required. For example: $\sqrt[3]{64} = 4$ (that is, $4 \times 4 = 16$, and $4 \times 16 = 64$); or, $\sqrt[3]{216} = 6$ (that is, $6 \times 6 = 36$, and $6 \times 36 = 216$).

- ² When this mark is added to a number (thus, 6^2), it means that that number is to be *squared*. For example: $5^2 = 25$ (that is, $5 \times 5 = 25$); or $6^2 = 36$ (that is, $6 \times 6 = 36$).
- ³ When this mark is added to a number, it means that that number is to be *cubed*. For example; $5^3 = 5 \times 5 \times 5 = 125$ (that is, $5 \times 5 = 25$, and $5 \times 25 = 125$; or, $7^3 = 343$ (that is, $7 \times 7 = 49$, and $7 \times 49 = 243$). The *index* or *power* (as the small figure annexed is called) shows how many times a number is to be multiplied by itself.
- This is called the bar. It signifies that all the numbers or quantities under it are to be taken together. For example: $3+5 \times 4=32$ (3 plus 5 are equal to 8, and that, multiplied by 4, is equal to 32); or, 7-3+8=12 (7 less 3 is equal to 4, and that, if added to 8, is equal to 12); or, $5\times 4+3=35$ (that is, 4 and 3 are 7, which, if multiplied by 5, is equal to 35); or, $5\times 6+4=50$ (that is, 6 and 4 are 10, and ten times 5 are 50). The parenthesis () is sometimes used in place of the bar, thus: $(6+4)\times 5=50$.
 - ... The meaning of this sign is therefore.
 - .. This sign signifies because.
 - 1 The meaning of this sign is perpendicular.
 - ∠ This sign signifies an angle.
- \sim This sign denotes difference, and is placed between two quantities (as $x\sim y$) when it is not known which of them is the greater.

> or \neg The meaning of these signs is greater than. For example: AB > CD (that is, AB is greater than CD).

< or \sqsubset The meaning of these signs is LESS than. For example: AB < CD (that is, AB is less than CD).

- This is a decimal point. When placed before a number (thus, .1), it means that that number has a unit (1) for its denominator. For example: .1 is the same as $\frac{1}{10}$; .125 is the same as $\frac{125}{1000}$; .01 is the same as $\frac{125}{1000}$; .001 is the same as $\frac{1}{1000}$; .201 is the same as $\frac{1}{1000}$; .217 is the same as $\frac{1}{1000}$; .42.85 is the same as $42\frac{85}{100}$; .57.217 is the same as $57\frac{217}{1000}$.
- ° This is a degree mark. It is written and printed as follows: 25° (that is, 25 degrees).
 - ' This is a minute sign.
 - "These two accents signify seconds.
- "These three accents signify thirds. They read thus: 57° 17' 43" 39" (that is, 57 degrees, 17 minutes, 43 seconds, and 39 thirds).

THE STREET WAS DECKED AND LESS THE LAND OF THE PARTY OF T

ALGEBRAIC SYMBOLS.

The advantage of these, in a work like the present, may be thus illustrated:

Let l denote the length, b the breadth, and d the depth of an iron beam. If it be desired to express the product of the length and breadth, divided by the depth, it is done as follows:

 $\frac{l\,b}{d}$

That is to say, multiplication is expressed by simply writing the letters which represent numbers one after the other; division, by drawing a line under the dividend, and writing the divisor below.

The sum of the length and breadth, divided by the depth, would be expressed briefly thus:

 $\frac{l+b}{d}$

The square of the length, multiplied by the cube of the breadth, thus:

 $l^2 \, b^3$

The square root of the length, divided by the fourth root of the breadth, thus:

 $\frac{\sqrt{l}}{\sqrt[4]{b}}$

The square root of the difference of the length and breadth, divided by the depth, thus:

$$\frac{\sqrt{l-b}}{d}$$

The square root of the quotient of the sum and difference of the length and breadth, thus:

$$\sqrt{\frac{l+b}{l-b}}$$

Any other letters—as a, b, c, &c.—may stand for the given dimensions.

These explanations will serve to give the sense of the symbols which will be met with throughout the work.

PRACTICAL GEOMETRY.

1. From any given point, in a straight line, to erect a perpendicular; or, to make a line at right angles with a given line.

On each side of the point A, from which the line is to be made, take equal distances, as A b, A c; and from b and c as centres, with any distance greater than b A or c A, describe arcs cutting each other at d; then will the line A d be the perpendicular required.

2. When a perpendicular is to be made at or near of the end of a given line.

With any convenient radius, and with any distance from the given line A b, describe a portion of a circle. as b A c, cutting the given point in A; draw, through the centre of the circle n, the line b n c; and a line from the point A, cutting the intersections at c, is the perpendicular required.

3. To do the same otherwise.

From the given point A, with any convenient radius, describe the arc d c b; from d cut the arc in c, and from c cut the arc in b; also from c and b as centres, describe arcs cutting each other in t; then will the line A t be the perpendicular as required.

Note.—When the three sides of a triangle are in the proportion of 3.4, and 5 equal parts, respectively, two of the sides form a right angle; and observe that in each of these or the preceding problems, the perpendiculars may be continued below the given lines, if necessarily required.

4. To bisect any given angle.

From the point A as a centre, with any radius less than the extent of the angle, describe an arc, as c d; and from c and d as centres, describe arcs cutting each other at b; then will the line A b bisect the angle as required.

5. To find the centre of a circle, or radius, that shall cut any three given points, not in a direct line.

From the middle point b as a centre, with any radius, as bc, bd, describe a portion of a circle, a as c sd; and from r and t as centres, with an equal radius, cut the portion of the circle in cs and ds; draw lines through where the arcs cut each other; and the intersection of the lines at s is the centre of the circle as required.

6. To find the centre of a given circle.

Bisect any chord in the circle, as A B, by a perpendicular, CD; bisect also the diameter \to in f; and the intersection of the lines at f is the centre of the circle required.

7. To find the length of any given arc of a circle.

With the radius AC, equal to $\frac{1}{2}$ th the length of the chord of the arc AB, and from A as a centre, cut the arc in c; also from B as a centre, with equal radius, cut the chord in b; draw the line Cb; and twice the length of the C line is the length of the arc nearly.

8. Through any given point, to draw a tangent to a circle.

Let the given point be at A; draw the line AC, on which describe the semicircle ADC; draw the line ADB, cutting the circumference in D, which is the tangent as required.

9. To draw from or to the circumference of a circle lines tending towards the centre, when the centre is inaccessible.

Divide the whole or any given portion of the circumference into the desired number of equal parts; then, with any radius less than the distance of two divisions, describe arcs cutting each other, as A I, B I, C 2, D 2, &c.; draw the lines C 1, B 2, D 3, &c., which lead

lines C 1, B 2, D 3, &c., which lead to the centre, as required.

To draw the end lines.

As Ar, Fr, from C describe the arc r, and with the radius C1,

from A or F as centres, cut the former arcs at r, or r, and the lines A r, F r, will tend to the centre as required.

10. To describe an arc, or segment of a circle, of large radii.

Of any suitable material, construct a triangle, as A B C; make

A B, B C, each equal in length to the chord of the arc D E, and height, twice that of the arc B b. At each end of the chord D E

fix a pin, and at B, in the triangle. fix a tracer (as a pencil), move the triangle along the pins as guides; and the tracer will describe the arc required.

11. Or otherwise.

Draw the chord ACB; also draw the line HDI, parallel with the chord, and equal to the height of the segment; bisect the chord

H 2 3 D 3 2 n 1 3 2 3 2 3 2 3 2 1 B

in C, and erect the perpendicular CD; join AD, DB; draw AH perpendicular to AD, and BI perpendicular to BD; erect also the perpendiculars An, Bn; divide

A B and H I into any number of equal parts; draw the lines 1 1, 2 2, 3 3, &c.; likewise divide the lines A n, B n, each into half the number of equal parts; draw lines to D from each division in the lines A n, B n, and, through where they intersect the former lines, describe a curve, which will be the arc or segment required.

12. To describe an ellipse, having the two diameters given.

On the intersection of the two diameters as a centre, with a

or the two diameters as a centre, with a radius equal to the difference of the semi-diameters, describe the arc ab; and from b as a centre, with half the chord bca, describe the arc cd; from o, as a centre, with the distance od, cut the diameters in dr, dt; draw the lines r, s, s, and t, s, s; then from r and t describe the arcs s, s, s, also from d and d, describe the smaller arcs

s, s, s, s, which will complete the ellipse as required.

13. To describe an elliptic arch, the width and rise of span being given.

Bisect with a line at right angles the chord or span AB; erect

the perpendicular A q, and draw the line q D equal and parallel to A C; bisect A C and A q in r and n; make C l l equal to C D, and draw the line l r q; draw also the line n s D; bisect s D with a line at right angles, and meeting the line C D in q; draw the line q q, make C P equal to C k, and draw the line q q p; then from q as a centre, with the radius q p, describe the arc s p p; and from p and p as centres, with the ra-

dius A k, describe the arcs A s and B i, which completes the arch as required. Or,

14. Bisect the chord AB, and fix at right angles any straight

guide, as bc; prepare, of any suitable material, a rod or staff, equal to half the chord's length, as def; from the end of the staff, equal to the height of the arch, fix a pin e, and at the extremity a tracer f; move the staff, keeping its end to the guide and the fixed pin to the chord, and the tracer will describe one half the arc required.

15. To describe a parabola, the dimensions being given.

Let AB equal the length, and CD the breadth of the required parabola; divide CA, CB into any number of equal parts; also divide the perpendiculars Aa and Bb into the same number of equal parts; then from a and b

draw lines meeting each division on the line ACB; and a curve line drawn through each intersection will form the parabola required.

16. To obtain by measurement the length of any direct line, though intercepted by some material object.

Suppose the distance between A and B is required, but the right line is intercepted by the object C. On the point d, with any convenient radius, describe the arc c, make the arc twice the radius in length, through which draw the line d c e; and on e describe another

arc equal in length to once the radius, as eff; draw the line efr equal to efd; on r describe the arc jj, in length twice the radius; continue the line through rj, which will be a right line, and de, or er, equal the distance between dr,

by which the distance between A and B is obtained as required.

17. A round piece of timber being given, out of which to cut a beam of strongest section.

Divide into three equal parts any diameter in the circle, as Ad, eC; from d or e, erect a perpendicular meeting the circumference of the circle, as dB; draw AB and BC, also AD equal to BC, and DC equal to AB, and the rectangle will be a section of the beam as required.

18. To measure the distance between two objects, both being inaccessible.

From any point C draw any line Ce, and bisect it in D; take any point E in the prolongation of AC, and draw the line Ee, making De equal to DE; in like manner take any point F in the prolongation of BC, and make Df equal to FD. Produce AD and ee till they meet in d, and also BD and fe till they meet in b; then a b equal AB, or the distance between the objects as required.

19. To ascertain the distance, geometrically, of any inaccessible object on an equal plane.

Let it be required to find the distance between A and B, A being inaccessible; produce the line in the direction of A B to any point, as D; draw the line D d at any angle to the line A B; bisect the line D d, through which draw the line B b, making cb equal to B c; draw the line db a; also through c, in the direction c A, draw the line a c A, intersecting the line d b a; then b a equal B A, the distance required.

20. Otherwise.

Prolong AB to any point D, making BC equal to CD; draw the line Da at any angle with DA, and the line Cb similar to Bc; draw also the line DEF, which intersects the line Ba; then ab equal BA, or the distance required.

21. To find the proper position for an eccentric, in relation to the crank in a steam engine, the angle of eccentric rod, and travel of the valve, being given.

Draw the right line AB, as the situation of the crank at commencement of the stroke; draw also the line Cd, as the proper given angle of eccentric rod with the crank; then from C as centre,

describe a circle equal to the travel of the valve; draw the line ef at right angles to the line Ca, draw also the lines 11, and 22, parallel to the line ef; and at a distance from ef on each side, equal to the lap and lead of the valve, draw the angular lines C1, C2, which are the angles of eccentric with the crank,

for forward or backward motion, as may be required.

22. The throw of an eccentric, and the travel of the valve in a steamengine, also the length of one lever for communicating motion to the valve, being given, to determine the proper length for the other.

On any right line, as AB, describe a circle AD, equal to the

throw of eccentric and travel of valve; then from C as a centre, with a radius equal to the length of lever given, cut the line A B, as at d, on which describe a circle, equal to the throw of eccentric or travel of valve, as may be

required; draw the tangents B a, B a, cutting each other in the line A B, and d B is the length of the lever as required.

Note.—The throw of an eccentric is equal to the sum of twice the distance between the centres of formation and revolution, as ab, or to the degree of eccentricity it is made to describe, as cd.

The travel of a valve is equal to the sum of the widths of the two steam openings, and the valve's excess of length more than just sufficient to cover the openings.

23. To inscribe any regular polygon in a given circle.

Divide any diameter, as AB, into so many equal parts as the polygon is required to have sides; from A and B as centres, with a radius equal to the diameter, describe arcs cutting each other in C; draw the line CD through the second point of division on the diameter e, and the line DB is one side of the polygon required.

24. To construct a square upon a given right line.

From A and B as centres, with the radius AB, describe the arcs Acb, Bcd, and from c, with an equal radius, describe the circle or portion of a circle ed, AB, bc; from bd cut the circle at e and c; draw the lines Ae, Bc, also the line st, which completes the square as required.

25. To form a square equal in area to a given triangle.

Let ABC be the given triangle; let fall the perpendicular Bd, and make Ae half the height dB; bisect eC, and describe the semicircle enC; erect the perpendicular As, or side of the square, then As tx is the square of equal area as required.

26. To form a square equal in area to a given rectangle.

Let the line A B equal the length and breadth of the given rec-

the square required.

the length and breadth of the given rectangle; bisect the line in e, and describe the semicircle ADB; then from A with the breadth, or from B with the length, of the rectangle, cut the line AB at C, and erect the perpendicular CD, meeting the curve at D, and CD equal a side of

27. To find the length for a rectangle whose area shall be equal to that of a given square, the breadth of the rectangle being also given.

Let ABCD be the given square and DE the given breadth of

rectangle; continue the line BC to F, and draw the line DF; also continue the line DC to g, and draw the line Ag parallel to DF; from the intersection of the lines at g, draw the line g d parallel to DE, and Ed parallel to Dg; then ED d g is the rectangle as required.

28. To bisect any given triangle.

Suppose ABC the given triangle; bisect one of its sides, as AB in e, from which describe the semicircle ArB; bisect the same in r, and from B, with the distance Br, cut the diameter AB in v; draw the line v y parallel to AC, which will bisect the triangle as required.

29. To describe a circle of greatest diameter in a given triangle.

Bisect the angles A and B, and draw the intersecting lines A D, B D, cutting each other in D; then from D as centre, with the distance or radius D C, describe the circle C e f, as required.

30. To form a rectangle of greatest surface, in a given triangle.

Let A B C be the given triangle; bisect any two of its sides, as A B, B C, in e and d; draw the line ed; also, at right angles with the line ed, draw the lines ep, dp, and eppd is the rectangle required.

RATIO OF THE HARDNESS OF METALS.

1. Iron,

4. Silver, 5. Gold.

6. Tin,

Platina,
 Copper.

7. Lead.

STRENGTH OF WOOD.

All woods are from 7 to 20 times stronger transversely than longitudinally. They become stronger both ways when dry.

DECIMAL ARITHMETIC.

Decimal Arithmetic is the most simple and explicit mode of performing practical calculations, on account of its doing away with the necessity of fractional parts in the fractional form, thereby reducing long and tedious operations to a few figures arranged and worked in all respects according to the usual rules

of common arithmetic.

Decimals simply signify tenths; thus, the decimal of a foot is the tenth part of a foot, the decimal of that tenth is the hundredth of a foot, the decimal of that hundredth is the thousandth of a foot, and so might the divisions be carried on and lessened to infinity: but in practice it is seldom necessary to take into account any degree of less measure than a one-hundredth part of the integer or whole And, as the entire system consists in supposing the whole number divided into tenths, hundredths, thousandths, &c., no peculiar notation is required, otherwise than placing a mark or dot to distinguish between the whole and any part of the whole, thus: 34.25 gallons signify 34 gallons, 2 tenths, and 5 hundredths of a gallon; 11.04 yards signify 11 yards and 4 hundredths of a yard; 16,008 shillings signify 16 shillings and 8 thousandth parts of a shilling; from which it must appear plain that ciphers on the right hand of decimals are of no value whatever, but placed on the left hand they diminish the decimal value in a tenfold proportion: for .6 signify 6 tenths; .06 signify 6 hundredths; and .006 signify 6 thousandths of the integer or whole number.

Reduction.

Reduction means the converting or changing of vulgar fractions to decimals of equal value; also finding the fractional value of any decimal given.

Rule I. Add to the numerator of the fraction any number of ciphers at pleasure, divide the sum by the denominator, and the

quotient is the decimal of equivalent value.

Rule 2. Multiply the given decimal by the various fractional denominations of the integer, or whole number, cutting off from the right hand of each product, for decimals, a number of figures equal to the given number of decimals, and thus proceed until the lowest degree, or required value, is obtained.

Ex. 1. Required the decimal equivalent, or decimal of equal

value, to $\frac{3}{12}$ of a foot.

 $\frac{3.00}{1.2}$ = .25, the decimal required.

Ex. 2. Reduce the fraction $\frac{1}{8}$ of an inch to a decimal of equal value. $\frac{1.000}{2} = 125$, the decimal required.

Ex. 3. What is the decimal equivalent to $\frac{7}{8}$ of a gallon? $\frac{7.0000}{3} = .875$, the decimal equivalent.

Ex. 4. Required the fractional value of the decimal .40625 of an inch.

Multiply by
$$\frac{1}{8}$$
 $\frac{8}{3 \cdot 25000}$
 $\times \frac{2}{16} = \frac{1}{8}$ $\frac{2}{\cdot 50000}$
 $\times \frac{2}{32} = \frac{1}{16}$ $\frac{2}{1 \cdot 00000}$ $\frac{3}{8}$ and $\frac{1}{32}$ of an inch, the value required.

Ex. 5. What is the fractional value of 625 of a cwt.?

Multiply by 4 qrs
$$\frac{4}{2.500}$$

× 28 lbs. $\frac{28}{14.000} = 2$ quarters and 14 lbs., the value required.

Ex. 6. Ascertain the fractional value of 875 of an imperial gallon.

Multiply by 4 quarts
$$\frac{.875}{4}$$
 $\times 2 \text{ pints} \quad \frac{2}{1.000} = 3 \text{ quarts and 1 pint, the value rerequired.}$

Ex. 7. What is the fractional value of 525 of a £. sterling?

Independent of the mark or dot which distinguishes between integers and decimals, the fundamental rules—viz. Addition, Subtraction, Multiplication, and Division—are in all respects the same as in Simple Arithmetic; and an example in each, illustrative of placing the separating point, will no doubt render the whole system sufficiently intelligible, even to the dullest capacity.

Ex. 1. Add into one sum the following integers and decimals:

16.625; 11.4; 20.7831; 12.125; 8.04; and 7.002.

16.625 11.4 20.7831 12.125

> 8.04 7.002

 $\overline{75.9751}$ = the sum required.

Ex. 2. Subtract 119.80764 from 234.98276.

234·98276 119·80764

115.17512 = the remainder required.

Valuation V

Ex. 3. Multiply 62:10372 by 16:732.

 $62 \cdot 10372$ $16 \cdot 732$

12420744

18631116

 $\frac{43472604}{37262232}$

6210372

 $1039 \cdot 11944304 =$ the product required.

Observe that the number of figures in the product from the right hand, accounted as decimals, are equal to the number of decimals in the multiplier and multiplicand taken together.

Ex. 4. Divide 39.375 by 9.25.

9.25) 39.375 (4.256 = the quotient required. 3700

700

Observe that the number of decimals, in the divisor and quotient together, must be equal to the number in the dividend.

Note.—The operation might be still continued, so as to reduce the quotient to a degree of greater exactitudes; but in practice it is quite unnecessary, being even now reduced to a measure of greater nicety than is commonly required.

Character are get boundance country as a schools a to MENSURATION.

Mensuration is the method of calculating the comparative magnitudes of figures, and it is divided into two parts-Mensuration of Superficies or Surfaces, and Mensuration of Solids.

The magnitude of a surface is called its area, and is the space

inclosed between its boundary lines.

story deposits as he fully

The magnitude of a body is called its solid contents, and is expressed in cubic feet, inches, &c. I and add the state of the state

Mensuration of Superficies.

A Square is a quadrilateral figure, which has all its sides equal, and all its angles right angles.

A RECTANGLE is a four-sided figure, which has its angles, right

angles, and its opposite sides parallel.

A Rhombus is a parallelogram, whose sides are equal, but whose angles are not right angles.

A Ruomboid is a parallelogram, whose adjacent sides are unequal,

and whose angles are not right angles.

A Trapezon is a four-sided figure, which has but two of its sides parallel.

A CIRCLE is a figure bounded by one line, ference, and is such that all lines drawn to the circumference from a certain point within the figure, called the centre, are equal to each other. Any of these lines is called a radius; and a line drawn through the centre, terminating both ways in the circumference, is called a dinnieter. The portion of circle cut off by a diameter is called a semicircle.

called the circum-

An Arc of a circle is any portion of the circumference.

A SEGMENT of a circle is a figure contained by an arc and its chord.

A VERSED SINE is a line drawn from the middle of a chord per-

pendicular to the circumference.

A Sector of a circle is a figure contained by two radii and an are, as A C B E.

To find the area of any parallelogram.

Rule. Multiply the length by the perpendicular height, and the product will be the area.

Example. Required the area of a rhomboid whose length AB=

20.5, and perpendicular height a A = 11.75.

$$20.5 \times 11.75 = 240.875$$
, the area.

Note.—In a square, or rectangle, the perpendicular height is the breadth: therefore, to find the areas of a square and rectangle, multiply the length by the breadth.

PROBLEM II.

To find the area of a trapezoid.

Rule. Add together the two parallel sides, multiply their sum by the breadth or height, and half the product is the area.

EXAMPLE. Required the area of a trapezoid whose sides A B and CD are 14.5 and 10.25, and breadth, $a \hat{A} = 7.25$.

$$\frac{\overline{14.5 + 10.25 \times 7.25}}{2} = 89.71875,$$
he area

the area.

PROBLEM III.

To find the area of a triangle.

RULE. Multiply one of its sides as a base by a perpendicular let fall from the opposite angle, and take half the product for the

Or, from half the sum of the three sides subtract each side separately, and multiply the three remainders so obtained and the half sum together, and the square root of the product will be the area.

Example 1. Required the area of a triangle ABC, whose base AB = 16.5, and perpendicular DC = 10.25.

$$\frac{16.5 \times 10.25}{2} = 84.5625,$$

the area.

EXAMPLE 2. What is the area of that triangle whose three sides are 8, 12, and 16 respectively?

then, 18 18 18
$$\frac{8+12+16}{2}=18$$
, the half sum of the sides;
$$\frac{8+12+16}{2}=18$$
, the half sum of the sides;
$$\frac{8+12+16}{2}=\frac{18}{10}$$

PROBLEM IV.

If any two sides of a right-angled triangle be given, the third side may be found by the following rules.

1.—To the square of the base add the square of the perpendicular; and the square root of the sum will be the hypothenuse or longest side.

2.—Multiply the sum of the hypothenuse, and one side by their difference; and the square root of the product will be the other

side.

EXAMPLE 1. Given the base AB = 16, and perpendicular BC = 12; required the length of the hypothenuse AC.

$$\sqrt{16^2 + 12^2} = 20$$
, the length of the hypothenuse A C.

Example 2. Given the base AB = 16, and hypothenuse AC = 20; required the length of the perpendicular BC.

$$\sqrt{20 + 16 \times 4} = 12$$
, length of the perpendicular BC.

Note.—The diagonal line, or hypothenuse in a square is equal to the square root of twice the square of the side. And the side of a square is equal to the square root of half the square of its diagonal.

Thus suppose each side of a square equal 12 feet:

$$12^2 \times 2 = \sqrt{288} = 16^{\circ}9705$$
 feet, the diagonal. Or, $\frac{16^{\circ}9705^2}{2} = \sqrt{144} = 12$ feet, the length of each side.

Similar triangles, or those which are equi-angular to each other, have the sides about their equal angles proportional; thus, in the annexed figure the triangles A B C and CDE are similar, and therefore have the sides about the equal angles proportional:

A C : B C : : C E : D E ; A B : B C : : C D : D E, &c.

The utility, then, of the above triangles for practical purposes, as, for instance, ascertaining the heights of buildings, &c., will be seen from the following:

Suppose D E to be an eminence, of which it is required to find the height, and E C the length of the shadow east by the sun; then, in order to find D E, we may erect perpendicularly at C a pole of any known length, as B C, and after measuring the length of its shadow A C, state—as the length of the pole's shadow is to the height of the pole itself, so is the length of the shadow of D E to the height of D E; or,

As A C: CB:: CE: ED;

and supposing A C = 6 feet, B C = 4 feet, and C E = 30 feet, then E D would be 20 feet.

Again, supposing we wished to find the distance between two objects A and B; draw D B of any length at right angles to A B, and in D B take any point C, through which draw A E; also, at D, at right angles to D B, draw D E, making the triangle D E C, and state,

As DC: DE:: BC: BA.

PROBLEM V.

To find the area of any regular polygon.

Rule. Multiply the sum of its sides by a perpendicular drawn from its centre to one of its sides, and take half the product for the area.

Or, multiply the square of the side of a polygon (from three to twelve sides) by the numbers in the fourth column of the table for polygons, opposite the number of sides required, and the product will be the area nearly.

Example 1. Required the area of the regular pentagon A B C D E, each side being 7.5, and perpendicular F G=6.4.

$$\frac{7.5 \times 5 \times 6.4}{2} = 120, \text{ the area.}$$

EXAMPLE 2. What is the area of a regular hexagon, each side being 8.75 in length?

 $8.75^2 \times 2.598 = 199.009375$, the area.

Table of multipliers for polygons from three to twelve sides.

Names.	Sides.	Multipliers.	Multipliers.	Multipliers.	Areas.
Trigon	3	2	1.73	.579	•433
Tetragon	4	1.41	1.412	.705	1.000
Pentagon	5	1.238	1.174	. 852	1.72
Hexagon	6	1.156	= Radius.	= Length of side.	2.598
Heptagon	7	1.11	.867	1.16	3.634
Octagon	8	1.08	765	1.307	4.828
Nonagon	9	1.062	.681	1.47	6.1818
Decagon	10	1.05	.616	1.625	7.694
Undecagon.	11	1.04	.561	1.777	9.365
Dodecagon	12	1.037	.515625	1.94	11.196

1. The breadth of a polygon given, to find the radius of a circle to contain that polygon.

RULE. Multiply half the breadth of the polygon by the numbers in the first column opposite to its name, or number of sides, and the product will be the radius of a circle to contain that polygon.

And if the polygon have an unequal number of sides, the half

breadth is accounted from its centre to one of its sides.

2. The radius of a circle given, to find the length of side.

Rule. Multiply the radius of any circle by the numbers in the second column opposite the polygon required, and the product will be the length of side nearly that will divide that circle into the proposed number of sides. And,

3. The length of side given, to find the radius.

RULE. Multiply the given length of side by the numbers in the third column opposite the polygon required, and the product will be the radius of a circle to contain that polygon.

B

EXAMPLE 1. Required the radius of a circle to contain an octagon, whose breadth AB = C 18.5 inches.

Half of 18.5 = 9.25, and $9.25 \times 1.08 = 9.99$ or ten inches nearly, the radius of the circle O D.

EXAMPLE 2. Given the radius O D = 9.99 inches, required the length of side D C.

 $9.99 \times .765 = 7.64235$, the length of side.

EXAMPLE 3. Given the length of side D C = 7.64235; required the radius D O.

 $7.64235 \times 1.307 = 9.98855145$, or 9.99 in. nearly.

PROBLEM VI.

Having the diameter of a circle given, to find the circumference; or the circumference given, to find the diameter.

RULE 1. As 7 is to 22, so is the diameter to the circumference. Or, as 22 is to 7, so is the circumference to the diameter.

2. As 1 is to 3 1416, so is the diameter to the circumference. Or, as 3 1416 is to 1, so is the circumference to the diameter.

EXAMPLE 1. Required the circumference of a circle when the diameter is 23 5.

$$\frac{23.5 \times 22}{7} = 73\frac{6}{7}$$
, the circumference.

EXAMPLE 2. The circumference of a circle is $73\frac{6}{7}$, required the diameter.

$$\frac{73\frac{6}{7}\times7}{22}\times23.5$$
, the diameter.

EXAMPLE 3. Required the circumference of a circle whose diameter is 30.

 $3.1416 \times 30 = 94.248$, the circumference.

EXAMPLE 4. What is the diameter of a circle when the circumference is 94.248?

 $94.248 \div 3.1416 = 30$, the diameter.

PROBLEM VII.

Regg. Multiply Inc. 1501 - of agr our

To find the length of any arc of a circle.

RULE. Subtract the chord of the whole arc from eight times the chord of half the arc; and ; of the remainder is the length of the arc nearly.

EXAMPLE. Required the length of the arc ABC; the chord of half the arc AB = 19.8, and chord of the whole arc AC = 34.4.

B
$$19.8 \times 8 = 158.4$$
, and $158.4 - 34.4 = 41.33$, the length of the arc.

PROBLEM VIIL

To find the diameter of a circle, by having the chord and versed sine given.

Rule. Divide the square of half the chord by the versed sine, to

the quotient of which add the versed sine, and the sum will be the diameter.

Or, if the sum of the squares of the semichord and versed sine be divided by the versed sine, the quotient will be the diameter of the circle to which that segment corresponds.

EXAMPLE. Given the chord AB = 24, and versed sine CD = 8; required the diameter of the circle CE.

Half the chord = 12, and $12^2 \div 8 = 18 + 8 =$

26, the diameter.

Or,
$$\frac{12^2 + 8^2}{8} = 26$$
, as before.

PROBLEM IX.

To find the area of an ellipsis, or oval.

Rule. Multiply the longest diameter by the shortest, and the product by 7854; the result is the area.

An oval is 25 inches by 16.5: what are its superficial contents?

$$25 \times 16.0 = 412.5 \times .7854 = 323.9775$$
 inches, the area.

Note.—Multiply half the sum of the two diameters by 3 1416, and the product is the circumference of the oval or ellipsis.

PROBLEM X.

To find the area of a parabola, or its segment.

Rule. Multiply the base by the perpendicular height, and two-thirds of the product is the area.

What is the area of a parabola whose base is 20 feet and height

 $20 \times 12 = \frac{240 \times 2}{3} = 160$ feet, the area.

Some of the properties of a circle.

1. It is the most capacious of all plane figures, or contains the greatest area within the same perimeter or outline.

2. The areas of circles are to each other as the squares of their diameters, or of their radii.

3. Any circle whose diameter is double that of another, contains four times the area of the other.

4. The area of a circle is equal to the area of a triangle whose base is equal to the circumference, and perpendicular equal to the radius.

5. The area of a circle is equal to the rectangle of its radius

and a right line equal to half its circumference.

6. The area of a circle is found by squaring the diameter, and multiplying by the decimal '7854; or by multiplying the circumference by the radius, and dividing the product by 2?

EXAMPLE 1. Required the area of a circle, the diameter being 30.5.

 $30.5^2 \times .7854 = 730.618350$, the area required.

EXAMPLE 2. What is the area of a circle when the diameter is 1? In this case the circumference is 3.1416, half of which is 1.5708. and half of 1 = .5; then $1.5708 \times .5 = .7854$, the area.

Having the area of a circle given, to find the diameter.

RULE. As 355 is to 452, so is the area to the square of the diameter.

Or, multiply the square root of the area by 1'12837, and the product will be the diameter.

Or, divide the area by the decimal 7854, and extract the square root.

Example. Required the diameter of that circle whose area is 122.71875.

$$\frac{\sqrt{122.71875 \times 452}}{355} = 12.5, \text{ diameter.}$$

Or, $\sqrt{122.71875} = 11.077$; and $11.077 \times 1.12837 = 12.49895$, or 12.5, diameter.

PROBLEM XI.

To find the area of a sector of a circle.

RULE. Multiply the length of the are by the radius of the circle, and half the product will be the area.

Example. Required the area of a sector of a circle whose are ABC = 26.666, and radius B O = 16.9.

$$\frac{26.666 \times 16.9}{2} = 225.3277$$
, the area.

PROBLEM XII.

To find the area of a segment of a circle.

RULE. Multiply the versed sine by the decimal 626, to the square of the product add the square of half the chord; multiply twice the square root of the sum by 3 of the versed sine, and the product will be the area. EXAMPLE. Required the area of a segment of a circle whose chord AB = 48, and versed sine CD = 18.

 $18 \times 626 = 11 \cdot 268^2 = 126 \cdot 967824$; which add to 576, being the square of half the chord = 702967824, twice the square root of which is 53.026×12 ; being $\frac{2}{3}$ of the versed sine = $636 \cdot 312$, the area.

The following is a near approximate to the preceding rule:

To the cube of the versed sine, divided by twice the length of the chord, add § of the product of the chord, multiplied by the versed sine; and the sum will be the area of the segment nearly. Take the last example:

Versed sine = 18, and chord 48, then,
$$\frac{18^3}{48 \times 2} = 60.7$$
; and $\frac{48 \times 18 \times 2}{48 \times 2} = 576 + 60.7 = 636.7$, the area nearly.

Or, the area of a segment may be found by finding the area of a sector having the same radius as the segment; then deducting the area of the triangle, leaves the area of the segment.

PROBLEM XIII.

To find the area of a circular ring or space included between two concentric circles.

RULE. Add the inside and outside diameters together, multiply the sum by their difference, and by 7854, and the product will be the area.

Example. The diameters of two concentric circles, AB and CD, are 10 and 6; required the area of the ring or space contained between them.

 $10 + 6 \times 4 \times 7854 = 50.2656$, the area.

PROBLEM XIV.

To find the area of an ellipsis.

Rule. Multiply the transverse or longer diameter by the conjugate or shorter diameter, and by 7854, and the product will be the area.

EXAMPLE. Required the area of an ellipsis whose longer diameter A B = 12, and shorter diameter C D = 9.

B

 $13 \times 9 \times 7854 = 84.8232$, the area.

Note.—If half the sum of the two diameters be multiplied by 3 1416, the product will be the circumference of the ellipsis.

Thus
$$12 + 9 = 21$$
, and $\frac{3.1416 \times 21}{2} = 36.1384$, the circumference.

Mensuration of Solids.

By solids are meant all bodies, whether solid, fluid, or bounded space, that can be comprehended within length, breadth, and thickness.

PROBLEM I.

To find the convex surface and solid content of a cylinder.

RULE 1. Multiply the circumference of the base by the height of the cylinder, and the product is the convex surface.

Rule 2. Multiply the area of the base by the height of the cylin-

der, and the product is the solid content.

Example 1. Required the convex surface of the cylinder A B C D, whose base A B = 32 inches, and perpendicular height B C = 6 feet.

 $3\cdot1416\times32\times72$ inches = $7238\cdot2464$ square or superficial inches, and $7238\cdot2464\div144=50\cdot2658$ superficial feet.

EXAMPLE 2. Required the solid content, in cubic inches and cubic feet, of the cylinder as above.

 $32^2 \times .7854 \times 72 = 57905.9712$ cubic inches, and $57905.9712 \div 1728 = 33.5104$ cubic feet.

EXAMPLE 3. Suppose the cylinder ABCD be intended to contain a fluid, and that the sides and bottom are each one inch in thickness, how many imperial gallons would it contain?

32-2=30 inches diameter; and 72-1=71 inches deep;

then $\frac{30^2 \times .7854 \times .71}{277 \cdot 274} = 181$ gallons.

Or, $50187.06 \times .003607 = 181$, as before.

PROBLEM II.

To determine the dimensions of any cylindrical vessel, whereby to contain the greatest cubical contents, bounded by the least superficial surface.

RULE. Multiply the given cubical contents by 2.56, and the cube root of the product equal the diameter, and half the diameter equal

the depth.

Example. Suppose a cylindrical vessel is to be made so as to contain 600 cubic feet, and of such dimensions as to require the least possible materials by which it is constructed, what must be its depth and diameter?

 $600 \times 2.56 = \sqrt[3]{1536} = 11.5379$ feet diameter, and $11.5379 \div 2 = 5.76895$ feet in depth.

Nate.—If the vessel is to be constructed with two ends, then the cube root of four times the solidity divided by 3 1416 equal both the length and diameter, so as to expose the least possible surface, or be composed of the least possible materials, of which to be constructed.

PROBLEM III.

To find the surface and solid content of a cone or pyramid.

RULE 1. Multiply the circumference of the base by the slant height, and half the product will be the slant surface; to which add the area of the base, and the product will be the whole surface.

RULE 2. Multiply the area of the base by the perpendicular height, and \(\frac{1}{2} \) of the product will be the solid content.

EXAMPLE 1. Required the convex surface of a cone whose base AB = 20 inches, and slant height BD = 29.5.

 $\frac{3.1416 \times 20 \times 29.5}{2} = 926.772 \text{ square inches,}$ and divided by 144 = 6.435 superficial feet,

EXAMPLE 2. Required the solidity of the cone as above, the perpendicular CD being 28 inches.

 $\frac{20^2 \times .7854 \times 28}{3} = 2932.16$ cubic inches, and divided by 1728 = 1.697 cubic feet.

PROBLEM IV.

To find the surface of the frustum of a cone or pyramid.

RULE. Multiply the sum of the perimeters of the two ends by the slant height, and half the product will be the slant surface; to which add the areas of the two ends, and the product will be the whole surface.

Example. Required the convex surface of the frustum of a cone ABCD, whose base AB = 20 inches, the slant height BC = 19, and top end CD = 11.

= 925.2012 square inches, and divided by 144 = 6.425 feet nearly.

PROBLEM V.

To find the solid content of the frustum of a cone.

RULE. To the product of the diameters of the two ends add the sum of their squares; multiply this sum by the perpendicular height and by 2618; the product is the solid content.

EXAMPLE 1. Required the solid content of the frustum in Problem IV., whose perpendicular EF = 18 inches.

 $20 \times 11 = 220$, and $220 + 20^2 + 11^2 \times 18 \times 2618 = 3491.8884$ cubic inches, and divided by 1728 = 2.0208 cubic feet nearly.

EXAMPLE 2. Required the content, in imperial gallons, of the inverted frustum of a cone A B C D, whose inner dimensions are 3½ feet deep, 18 inches diameter at bottom, and 22 inches diameter at top.

$$22 \times 18 = 396$$
, and $396 + 22^2 + 18^2 \times 42$
 $\times 2618 = \frac{132387024}{277.274} = 47.745$ galls, nearly.

Or, $13238.7024 \times 0.00360654 = 47.75$ gallons nearly, as before.

PROBLEM VI.

To find the solid content of the frustum of a pyramid.

Rule. To the sum of the areas of the two ends add the square root of their product; multiply this sum by the perpendicular height, and \(\frac{1}{2}\) of the product is the

EXAMPLE. Required the solid content of the frustum of a pyramid ABCD, whose perpendicular height = 24 inches, the area of the base = 144 inches, and area of the top end = 64.

 $\frac{144 + 64 = 208, \text{ and } \sqrt{144 \times 64} = 96; \text{ then } \frac{208 + 96 \times 24}{3} = 2432 \text{ cubic inches, and } \div 1728$ = 1.4074 cubic feet nearly.

Plaquited the tenyes re-ray

PROBLEM VII.

To find the solidity of a wedge.

Rule. To the length of the wedge add twice the length of the base; multiply that sum by the height, and by the breadth of the base, and one-sixth of the product will be the solidity.

EXAMPLE. Required the content in cubic inches of the wedge ABCDE, whose base ABC=12 inches long and 4 inches broad, the length of the edge DE=10 inches, and perpendicular height rE=20 inches.

$$\frac{\overline{10+24}\times20\times4}{6} = 452.33 \text{ cubic inches.}$$

PROBLEM VIII.

To find the convex surface and solid content of a sphere or globe.

RULE 1. Multiply the square of the diameter by 3.1416; the product will be the convex superficies.

RULE 2. Multiply the cube of the diameter by 5236, and the product is the solid content.

Example 1. Required the convex surface of a sphere, whose diameter $AB = 25\frac{1}{2}$ inches.

 $25 \cdot 5^2 \times 3 \cdot 1416 = 2042 \cdot 8254$ square inches, $\div 144 = 14 \cdot 1862$ square or superficial feet.

Example 2. Required the solid content of a sphere whose diameter $AB = 25\frac{1}{2}$ inches.

 $25 \cdot 5^{3} \times \cdot 5236 = 8682 \cdot 00795$ cubic inches; $\div 1728 = 5 \cdot 0243$ cubic feet.

PROBLEM IX.

To find the convex surface and solid content of the segment of a sphere.

RULE 1. Multiply the height of the segment by the whole circumference of the sphere, and the product is the curved surface,

RULE 2. Add the square of the height to three times the square of the radius of the base; multiply that sum by the height, and by 5236, and the pro-

duct is the solid content.

EXAMPLE 1. The diameter A B of the sphere A B C D = 20 inches; what is the convex surface of that segment of it whose height E D = 8 inches?

 $3.1416 \times 20 \times 8 = 502.656$ square inches; $\div 144 = 3.49$ superficial feet.

EXAMPLE 2. The base FG of the segment FDG = 18 inches, and perpendicular ED = 8; what is the solid content?

 $8^2 = 64$, and $9^2 \times 3 = 243$; then $243 + 64 \times 8 \times 5236 = 1285.9616$ cubic inches, $\div 1728 = .7441$ cubic feet.

EXAMPLE 3. Suppose ABCD to be a sugar-pan, and that the diameter of the mouth AB is 4 feet, the depth DC being 25 inches, how many imperial gallons will it contain?

 $25^2 = 625$, and $24^2 \times 3 = 1728$; then

 $\overline{1728 + 625} \times 25 \times .5236 = \frac{30800.77}{277.274} = 111.084 \text{ gallons.}$

mandy a to consiste off

PROBLEM X.

To find the solidity of a spheroid.

RULE. Multiply the square of the revolving axis by the fixed axis, and by 5236, and the product will be the solidity.

EXAMPLE 1. Required the solid content of the prolate spheroid ABCD, whose fixed axis AC is 50, and revolving axis BD 30.

 $30^2 \times 50 \times .5236 = 23562$, the solidity.

EXAMPLE 2. What is the solid content of an oblate spheroid, the fixed axis being 30, and revolving axis 50?

 $50^2 \times 30 \times .5236 = 39270$, the solid content.

PROBLEM XI.

To find the solidity of the segment of a spheroid when the base is circular or parallel to the revolving axis.

RULE. From triple the fixed axis take double the height of the segment; multiply the difference by the square of the height, and by 5236; then say, as the square of the fixed axis is to the square of the revolving axis, so is the former product to the solidity.

EXAMPLE 1. Required the solid content of the segment ABC, whose height Br is 10; the revolving axis EF being 40, and fixed axis BD 25.

 $\overline{25 \times 3} - \overline{10 \times 2} = 55$, and $55 \times 10^2 \times 5236 = 2879 \cdot 8$. Then, as $25^2 : 40^2 :: 2879 \cdot 8 : 7372 \cdot 3$ nearly.

EXAMPLE 2. What is the solid content of the segment of a spheroid whose height = 20 inches, the revolving axis being 25, and fixed axis 50?

 $50 \times 3 - 20 \times 2 = 110$, and $110 \times 20^2 \times 5236 = 230384$; then, as $50^2 : 25^2 :: 230384 : 57596$ inches, the solid content.

PROBLEM XII.

To find the convex surface and solid content of a cylindric ring.

RULE 1. Multiply the thickness of the ring added to the inner diameter by the thickness and by 9.8698, and the product will be the convex surface.

RULE 2. To the thickness of the ring add the inner diameter; multiply that sum by the square of the thickness and by 2 4674, and the product will be the solid content.

EXAMPLE 1. The thickness of a cylindric ring A C or D B = 2 inches, and inner diameter = 18, required the convex superficies.

 $\overline{18+2} \times 2 \times 9.8698 = 394.792$ square inches, and $\div 144 = 2.741$ superficial feet nearly.

Example 2. Required the solid content of the ring as above.

 $18 + 2 \times 2^2 \times 2 \cdot 4674 = 197 \cdot 392$ cubic inches, and $\div 1728 = 114$ cubic feet.

Note.—A cubic foot is equal to 1728 cubic inches, or 2200 cy lindrical inches, or 3300 spherical inches, or 6600 conical inches.

Decimal Approximations,

FOR FACILITATING CALCULATIONS IN MENSURATION.

Lineal feet multipli	ed by	.00019	=	miles.	P
" yards,	"	.000568	=	"	
Square inches,	"	.007	=	square feet	
" yards,	"	.0002067	=	acres.	
Circular inches,	46	.00546	<u></u>	square feet	
Cylindrical inches,	46	.0004546		cubic feet.	11 -00 -01
" feet,	66	.02909	=	cubic yard	S.
Cubic inches,	"	00058	=	cubic feet.	organic hour your
" feet,	"	.03704	$\dot{=}$	cubic yard	3.11 1. [10-11-0-79
" "	"	6.232	=	imperial ga	allons.
" inches,	"	.003607	=		"
Cylindrical feet,	44	4.895	=	44	"
" inches,	66	.002832	=	"	"
Cubic inches,	46 1910)	.263	4	lbs. avs. of	cast iron.
m u u u u u u u u u u u u u u u u u u u	66	281	=	146	wrought do.
	44	283	1	"	steel.
" "	46	.3225	=	46	copper.
	44	3037	_	66	brass.
46 46 46 17 10	66	.26	_	46.	zinc.
a a a a a a a a a a a a a a a a a a a	46	4103	ш	100	lead.
" " " " " " " " " " " " " " " " " " "	66	2636	I	46	tin.
"	44	4908	=	66	mercury.
Cylindrical inches,	44	2065	=	"	cast iron.
"	66	.2168	=	"	wrought iron.
the work of more	46	2223		**	steel.
"	66	.2533	=	46	copper.
. "	66	2385	==	"	brass.
"	-66	2042	_	"	zinc.
66	66	3223	=	"	lead.
"	66	207	=	"	tin.
"	"	3854	=	H 4	mercury.
Avoirdupois lbs.,	66	.009	=	cwts.	•
"	66	.00045	=	tons.	
A. Control of the con					

INSTRUMENTAL ARITHMETIC;

OR, UTILITY OF THE SLIDE RULE.

The slide rule is an instrument by which the greater portion of operations in arithmetic and mensuration may be advantageously performed, provided the lines of division and gauge points be made properly correct, and their several values familiarly understood.

The lines of division are distinguished by the letters ABCD, AB and C being each divided alike, and containing what is termed a double radius, or double series of logarithmic numbers, each series being supposed to be divided into 1000 equal parts, and distributed along the radius in the following manner:

From	1	to	2	contains	301	of	those	parts.	being	the log.	of 2.
44			3	"	477				44		3.
44			4	44	602				44	All over the	4.
44			5	- 66	699				56	and the same	5.
46			6	66 /	778				44		6
4.6			7	**	845		-		44		7.
			8	"	903				44		8.
			9	46 0	954	400	100		4.6		9.
					0001	he	ing the	a whol	o num	her	

The line D, on the improved rules, consists of only a single radius; and although of larger radius, the logarithmic series is the same, and disposed of along the line in a similar proportion, forming exactly a line of square roots to the numbers on the lines B C.

Numeration.

Numeration teaches us to estimate or properly value the num-

bers and divisions on the rule in an arithmetical form.

Their values are all entirely governed by the value set upon the first figure, and, being decimally reckoned, advance tenfold from the commencement to the termination of each radius: thus, suppose 1 at the joint be one, the 1 in the middle of the rule is ten, and 1 at the end one hundred. Again, suppose 1 at the joint ten, 1 in the middle is 100, and 1 or 10 at the end is 1000, &c., the intermediate divisions on which complete the whole system of its notation.

To Multiply Numbers by the Rule.

Set 1 on B opposite to the multiplier on A; and against the number to be multiplied on B is the product on A.

Multiply 6 by 4.

Set 1 on B to 4 on A: and against 6 on B is 24 on A. The slide thus set, against

7		is 28	on	A
8		32		44
9	6.6	36		44
10	- 44	40		66
11	- 44	44		"
12	4.6	48		£
15	66	60		"
25	44		&c.	., &c.

To divide Numbers upon the Rule.

Set the divisor on B to 1 on A, and against the number to be divided on B is the quotient on A.

Divide 63 by 3.

Set 3 on B to 1 on A, and against 63 on B is 21 on A.

Proportion, or Rule of Three Direct.

Rule. Set the first term on B to the second on A, and against the third upon B is the fourth upon A.

1. If 4 yards of cloth cost 38 shillings, what will 30 yards cost at

the same rate?

Set 4 on B to 38 on A, and against 30 on B is 285 shillings on A.

2. Suppose I pay 31s. 6d. for 3 cwt. of iron, at what rate is that per ton? 1 ton = 20 cwt.

Set 3 upon B to 31'5 upon A, and against 20 upon B is 210 upon A.

Rule of Three Inverse.

Rule. Invert the slide, and the operation is the same as direct

proportion.

1. I know that six men are capable of performing a certain given portion of work in eight days, but I want the same performed in three: how many men must there be employed?

Set 6 upon C to 8 upon A, and against 3 upon C is 16 upon A.

2. The lever of a safety valve is 20 inches in length, and 5 inches between the fixed end and centre of the valve: what weight must there be placed on the end of the lever to equipoise a force or pressure of 40 lbs. tending to raise the valve?

Set 5 upon C to 40 upon A, and against 20 on C is 10 on A.

3. If $8\frac{3}{4}$ yards of cloth, $1\frac{1}{2}$ yards in width, be a sufficient quantity, how much will be required of that which is only $\frac{7}{8}$ ths in width, to effect the same purpose?

Set 1.5 on C to 8.75 on A, and against 8.75 upon C is 15 yards upon A.

Square and Cube Roots of Numbers.

On the engineer's rule, when the lines C and D are equal at both ends, C is a table of squares, and D a table of roots, as—

Squares, 1 4 9 16 25 36 49 64 81 on C. Roots, 1 2 3 4 5 6 7 8 9 on D.

To find the geometrical mean proportion between two numbers.

Set one of the numbers upon C to the same number upon D, and against the other number upon C is the mean number or side of an equal square upon D.

Required the mean proportion between 20 and 45.

Set 20 upon C to 20 upon D, and against 45 upon C is 30 on D.

To cube any number, set the number upon C to 1 or 10 upon D, and against the same number upon D is the cube number upon C. Required the cube of 4.

Set 4 upon C to 1 or 10 upon D, and against 4 upon D is 64 upon C.

To extract the cube root of any number, invert the slide, and set the number upon B to 1 or 10 upon D, and where two numbers of equal value coincide, on the lines B D, is the root of the given number.

Required the cube root of 64.

Set 64 upon B to 1 or 10 upon D, and against 4 upon B is 64 upon D, or root of the given number.

On the common rule, when 1 in the middle of the line C is set opposite to 10 on D, then C is a table of squares, and D a table of roots.

To cube any number by this rule, set the number upon C to 10 upon D, and against the same number upon D is the cube upon C.

Mensuration of Surface.

1. Squares, Rectangles, &c.

Rule. When the length is given in feet, and the breadth in inches, set the breadth on B to 12 on A; and against the length on A is the content in square feet on B.

If the dimensions are all inches, set the breadth on B to 144 upon A; and against the length upon A is the number of square feet on B. Required the content of a board 15 inches broad and 14 feet long.

Set 15 upon B to 12 upon A; and against 14 upon A is 17'5 square feet on B.

2. Circles, Polygons, &c.

Rule. Set 7854 upon C to 1 or 10 upon D then will the lines C and D be a table of areas and diameters.

Areas, 3:14 7:06 12:56 19:63 28:27 38:48 50:26 63:61 upon C. Diameters, 2 3 4 5 6 7 8 9 upon D.

In the common rule, set 7854 on C to 10 on D; then C is a line or table of areas, and D of diameters, as before.

Set 7 upon B to 22 upon A; then B and A form or become a table of diameters and circumferences of circles.

Circumferences, 3'14 6'28 9'42 12'56 15'7 18'85 22 25'13 23'27 upon A. Diameters, 1 2 3 4 5 6 7 8 9 upon B.

Polygons from 3 to 12 sides. Set the gauge-point upon C to 1 or 10 upon D; and against the length of one side upon D is the area upon C.

Sides, 3 5 6 7 8 9 10 11 12. Gauge-points, 433 17 26 363 482 618 769 937 11 17.

Required the area of an equilateral triangle, each side 12 inches in length.

Set '433 upon C to 1 upon D; and against 12 upon D are 62'5 square inches upon C.

TABLE OF GAUGE-POINTS FOR THE ENGINEER'S RULE.

Names.	F, F, F.	F, I, I.	I, I, I.	F, I.	I, I.	F.	1.
Cubic inches,	578	83	1728	106	1273	105	121
Cubic feet,	1	144	1	1833	22	121	33
Imperial gallons, .	163	231	277	294	353	306	529
Water in lbs.,	16	23	276	293	352	305	528
Gold "	814	1175	141	149	178	155	269
Silver "	15	216	261	276	334	286	5
Mercury "	1118	169	203	216	258	225	389
Brass "	193	177	333	354	424	369	637
Copper "	18	26	319	331	397	345	596
Lead "	141	203	243	258	31	27	465
Wro't iron "	207	297	357	338	453	394	682
Cast " "	222	32	384	407	489	424	733
Tin "	219	315	378	401	481	419	728
Steel "	202	292	352	372	448	385	671
Coal "	127	183	22	33	28	242	42
Marble "	591	85	102	116	13	113	195
Freestone "	632	915	11	1162	14	141	21

FOR THE COMMON SLIDE RULE.

Dentile Very Law Indian Indian William Co.

Names.	F, F, F	F, I, I.	I, I, I.	F, I.	I, I.	F.	I.
Cubic inches, .	. 36	518	624	660	799	625	118
Cubic feet,	. 625	9	108	114	138	119	206
Water in lbs., .	. 10	144	174	184	22	191	329
Gold " .	. 507	735	88	96	118	939	180
Silver "	. 938	136	157	173	208	173	354
Mercury " .	738	122	127	132	162	141	249
Brass ".	. 12	174	207	221	265	23	397
Copper " .	. 112	163	196	207	247	214	371
Lead " .	. 880	126	152	162	194	169	289
Wro't iron " .	. 129	186	222	235	283	247	42:
Cast " " .	139	2	241	254	304	265	458
Tin "	. 137	135	235	25	300	261	454
Steel "	136	183	22	233	278	239	418
Coal "	795	114	138	146	176	151	269
Marble "	370	53	637	725	81	72	121
Freestone " .	. 394	57	69	728	873	755	13:

Mensuration of Solidity and Capacity.

General Rule. Set the length upon B to the gauge-point upon A; and against the side of the square, or diameter on D, are the cubic contents, or weight in lbs. on C.

1. Required the cubic contents of a tree 30 feet in length, and 10

inches quarter girt.

Set 20 upon B to 144 (the gauge point) upon A; and against 10 upon D is 2075 feet upon C.

2. In a cylinder 9 inches in length and 7 inches diameter, how many cubic inches?

Set 9 upon B to 1273 (the gauge-point) upon A; and against 7 on D is 346 inches on C.

3. What is the weight of a bar of cast iron 3 inches square, and 6 feet long?

Set 6 upon B to 32 (the gauge point) upon A; and against 3 upon D is 168 lbs. upon C.

By the common rule.

4. Required the weight of a cylinder of wrought iron 10 inches long, and 5½ diameter.

Set 10 upon B to 233 (the gauge-point) upon A; and against 5½ upon D is 66.65 lbs. on C.

5. What is the weight of a dry rope 25 yards long, and 4 inches circumference?

Set 25 upon B to 47 (the gauge-point) upon A; and against 4 on D is 53'16 lbs. on C.

6. What is the weight of a short linked chain 30 yards in length, and $\frac{1}{\sqrt{6}}$ ths of an inch in diameter?

Set 30 upon B to 52 (the gauge-point) upon A; and against 6 on D is 129 5 lbs. on C.

Land Surveying.

If the dimensions taken are in chains, the gauge-point is 1 or 10; if in perches, 160; and if in yards, 4840.

Rule. Set the length upon B to the gauge-point on A; and

against the breadth upon A is the content in acres upon B.

1. Required the number of acres or contents of a field 20 chains 50 links in length, and 4 chains 40 links in breadth.

Set 20 5 on B to 1 on A; and against 4'4 on A is 9 acres on B.

2. In a piece of ground 440 yards long, and 44 broad, how many acres?

Set 440 upon B to 4340 on A; and against 44 on A is 4 acres on B.

Power of Steam-Engines.

Condensing Engines—Rule. Set 3.5 on C to 10 on D; then D is a line of diameters for cylinders, and C the corresponding number of horse power; thus,

Horse power, . 3½ 4 5 6 8 10 12 16 20 25 30 40 50 on C. D. 10 in. 10½ 12 13½ 15½ 17 18½ 21½ 24 26% 29½ 33% 37% on D.

The same is effected on the common rule by setting 5 on C to 12 on D.

Non-condensing Engines.—Rule. Set the pressure of steam in lbs. per square inch on B to 4 upon A; and against the cylinder's diameter on D is the number of horse power upon C.

Required the power of an engine, when the cylinder is 20 inches

diameter, and steam 30 lbs. per square inch.

Set 30 on B to 4 on A; and against 20 on D is 30 horse power on C.

The same is effected on the common rule by setting the force of the steam on B to 250 on A.

Of Engine Boilers.

How many superficial feet are contained in a boiler 23 feet in length and $5\frac{1}{2}$ in width?

Set 1 upon B to 23 upon A; and against 5'5 upon B is 126'5 square feet upon A.

If 5 square feet of boiler surface be sufficient for each horse power, how many horse power of engine is the boiler equal to?

Set 5 upon B to 126'5 upon A; and against 1 upon B is 25'5 upon A.

The Laws of Motion.

If M = mass of a material body, And W = the weight of it.

$$W = M \times 32.19$$
;

Or the mass of a body is equal to its weight divided by 32·19. EXAMPLE. Find the weight of a body whose mass is 3½:

$$W = 3.5 \times 32.19 = 112.66$$
 lbs.

The gravity of a material body is its weight. Falling bodies fall through the same space in the same time, whatever may be their weight. A body one ton will fall to the ground no faster than a body one pound.

The velocity of a body is the number of feet passed over in one

second.

Put v = the velocity of a falling body, at the end of t seconds,

$$v = 32.19 \times t$$

The quantity 32:19 is the velocity of a falling body at the end of one second.

Rule, to find the Velocity of a Falling Body at the end of any Number of Seconds.

Multiply the number of seconds by 32.19, the product will be the velocity.

EXAMPLE. Find the velocity of a body falling from a height in nine seconds:

Velocity = $32.19 \times 9 = 289.71$.

Put s for the number of feet a falling body falls through in t seconds:

$$\therefore s = \frac{32\cdot19\ t^2}{2}.$$

Rule to find the Space passed over by a Falling Body in any Number of Seconds.

Square the number of seconds, and multiply the result by 16.09, the product will be the distance passed over in feet.

EXAMPLE. A stone fell from the top of a chimney to the bottom in four seconds; find the height of the chimney:

Height of chimney = $16.09 \times 16 = 257.44$ feet.

$$s = \frac{v^2}{64.39}$$
, where v is the velocity.

Rule to find the Space passed over by a Falling Body when the Velocity is given.

Square the velocity, and divide by 64:39; the quotient will be

the number of feet passed over.

The quantity 32.19 is frequently called the accelerating force of gravity, and is denoted by f. The following formulæ include all cases that can occur in falling bodies.

$$s = \text{space passed over} = \frac{ft^2}{2} = \frac{t}{2} = \frac{v^2}{2f};$$

$$v = \text{velocity at the end of } (t) \text{ seconds } = ft = \frac{2 s}{t} = \sqrt{2 f s};$$

$$t = time = \frac{v}{f} = \frac{2s}{v} = \sqrt{\frac{2s}{f}};$$

$$v = v^2 = 2s$$

$$f = \frac{v}{t} = \frac{v^2}{2 s} = \frac{2 s}{t^2}.$$

The above formulæ and rules are applicable only to the case when the body is acted upon by the force of gravity.

Rules and Formulæ when a body is acted on by any force.

Put M = mass acted on by a force of F pounds.

a = velocity at the end of a second, which is called accelerating force.

s =space passed over in (t) seconds, producing a velocity (v).

$$\therefore a = \frac{F}{M} = \frac{v}{t};$$
And $2 s = \frac{Ft^2}{M} = \frac{Mv^2}{F}$

Rule for finding the accelerating force of a body.

Divide the force by the mass (remembering that mass is equal to weight divided by 32:19) or the velocity by the time, either quotient will give the accelerating force.

EXAMPLE. A force of 25 lbs. acts on a body whose weight is 84 lbs. Find the accelerating force.

The mass =
$$\frac{84}{32 \cdot 19}$$
 = 2.6 nearly;
 $\therefore a = \frac{25}{2 \cdot 6}$ = 9.62 nearly.

The velocity at the end of 10 seconds = $9.62 \times 10 = 96.2$.

Time of a Body falling down an Inclined Plane.

Let ABC be an inclined plane, BC perpendicular, and AB parallel to the horizon.

The velocity at A in falling down A C is the same as it would be in falling perpendicularly down the height B C.

Put t = time in falling from C to A. l = A C the length of the inclined plane, h = B C the height of ditto.

$$\therefore t = \sqrt{\frac{2 l^2}{f h}}.$$

Let $A\ D\ E\ B$ be a circle whose diameter $A\ B$ is perpendicular to the horizon. The times of a body falling down any chords $A\ D$, $A\ E$ are equal, and equal to the time in falling vertically through $A\ B$.

The Time of Oscillation of a Simple Pendulum.

Let A B the length of the pendulum = l, And $\pi = 3.14159$, &c.; g = 32.19

T = time in seconds oscillating from the point B to D.

The arc $\widehat{BC} = \widehat{CD}$ is small.

$$\therefore \mathbf{T} = \pi \left(\frac{l}{g}\right)^{\frac{1}{2}}$$

Rule to find the Time of one Oscillation of a Simple Pendulum.

Divide the length of the pendulum by 32·19; extract the square root of this quotient, and multiply the result by 3·1416, and the product will be the time of oscillation in seconds.

If L be the length of a pendulum which oscillates in one second,

$$\therefore T = \left(\frac{l}{L}\right)^{\frac{1}{2}}.$$

The value of L for the latitude of London is 39·1386 inches. A pendulum $9\frac{3}{2}\frac{5}{2}$, $4\frac{2}{7}\frac{5}{2}$, $2\frac{5}{12}\frac{7}{8}$ inches long, will oscillate in a half, a third, a quarter seconds respectively.

If n be the number of oscillations made by a pendulum in one

hour, then

$$l = 3600^2 \times \frac{L}{n^2}$$

The time of oscillation is not dependent on the weight of the bob.

Centrifugal Force.

Let the weight W, placed at B, be connected with a cord, or wire, with the fixed point A round which it revolves with a uniform velocity.

Put V = velocity of rotation.

r = A B, the length of the cord in feet.

F = centrifugal force, or the force which is exerted to break the cord in the direction of its length.

$$\therefore F = \frac{WV^2}{32 \cdot 19 \times r}.$$

If n be the number of revolutions in one minute,

$$\therefore F = \frac{331}{1000000} \times Wr n^2.$$

If W be measured in tons, then F will be in tons also. If w be the angular velocity,

$$\therefore F = \frac{W r w^2}{q}$$

If T be the time of the weight making a complete revolution,

$$varrow w = \text{angular velocity} = \frac{2\pi}{T} = \frac{V}{r}$$
.

If there be several bodies at B, C, D, and revolving round the axis passing through A, and perpendicular to the plane A D B C,

$$\therefore F = \frac{w^2}{g} \left\{ r^1 W^1 + W^2 + r^3 W^3 + &c. \right\}$$

Where w = angular velocity, W^3 ; W^2 ; W^3 , &c.: the weights at B C D, &c., and r^1 , r^2 , r^3 , &c., the distances A B, A C, A D, &c.

EXAMPLE. Let the weights at B and C be 80 and 90 lbs. respectively, revolving at a distance A B=8 feet, A C=12 feet, with a velocity making 40 revolutions per minute. Find the centrifugal force, or the pressure on the axis passing through A.

$$w = \frac{2\pi \times 40}{60} = \frac{4\pi}{3};$$

$$\therefore F = \frac{16 \pi^2}{9} \left\{ 8 \times 80 + 12 \times 90 \right\} = 30178 \text{ lbs.}$$

The moment of inertia.

If
$$(W_1 + W_2 + W_3 + \&c.) k^2 = W_1 r_1 + W_2 r_2^2 + W_3 r_3^2 + \&c.$$

Each side of this equation is called the moment of inertia, and the distance k is called the radius of gyration of the revolving system.

Let a constant force F act at a distance A f = a from the axis of motion.

The angular velocity at the end of a second

$$= \frac{g \, F a}{(W_1 + W_2 + W_3 + \&c.) \, k^2}.$$

The angular velocity at the end of one revolution

$$= \frac{2 \sqrt{g F a \pi}}{\sqrt{W_1 + W_2 + W_3 + \&c. \times k}}.$$

If a point O be determined from the equation

$$A O = \frac{k^2}{A G'},$$

where G is the centre of gravity of the system, then O is called the centre of oscillation.

The values of k in Geometrical Solids.

A rectangular parallelopipedon revolving about an axis passing through its centre of gravity, and parallel to either of its edges.

$$k^2 = \frac{b^2 + c^2}{12},$$

where b c are the length and breadth at right angles to the axis of revolution.

An upright triangular prism about a vertical axis passing through its centre of gravity.

$$k^2 = \frac{a^2}{48} + \frac{c^2}{36}.$$

The section of the prism perpendicular to the revolving axis is an isosceles triangle, the base being denoted by (a), and the perpendicular upon it from the angle contained by the equal sides by (c).

In a cylinder, whose radius is (r), revolving about its axis,

$$k^2 = \frac{r^2}{2}.$$

In a hollow cylinder, whose internal and external radii are α and b respectively, revolving about its axis,

$$k^2 = \frac{a^2 + b^2}{2}$$

In a cylinder, whose radius is r and length l, revolving round a line at right angles to its axis, and passing through its middle,

$$k^2 = \frac{l^2}{12} + \frac{r^2}{4}.$$

In a sphere, whose radius is r, revolving about its diameter,

$$k^2=\frac{2\ r^2}{5}.$$

In a hollow sphere, whose internal and external radii are (a) and (b) respectively, revolving about its diameter,

$$k^2 = \frac{2(b^5 - a^5)}{5(b^3 - a^3)}.$$

In a cone, whose base is a circle, radius r,

$$k^2 = \frac{3 r^2}{10}$$
.

In a cone, whose radius of base is r and height h, revolving about a line at right angles to its axis, and passing through its centre of gravity,

$$k^2 = \frac{3 (4 r^2 + h^2)}{80}.$$

The square of the radius of gyration about any line in a revolving system, is equal to the square of the radius of gyration about a line parallel to it passing through the centre of gravity and the square of the distance from the centre of gravity to the line about which the system revolves.

Let G be the centre of gravity of any body; draw AB any line about which the system revolves. Let CD be parallel to AB, and draw GH perpendicular to AB.

Let K = radius of gyration when revolving about AB.

k = radius of gyration when revolving about CD.

 $\therefore K^2 = k^2 + G H^2.$

The Centre of Gyration

is that part of a body revolving about an axis, into which, if the whole quantity of matter were collected, the same moving force would generate the same angular velocity.

To find the centre of Gyration, multiply the weight of the several particles by the squares of their distances from the centre of motion, and divide the sum of the products by the weight of the whole mass; the square root of the quotient will be the distance of the centre of gyration, from the centre of motion.

The distances of the centre of gyration from the centre of

motion, of different revolving bodies, are as follows:

In a straight rod revolving about one end, the length × :5773. In a circular plate, revolving on its centre, the radius × :7071.

In a circular plate, revolving about one diameter, the radius × 5. In a thin circular ring, revolving about one diameter, radius × 7071.

In a solid sphere, revolving about one diameter, the radius

In a thin hollow sphere, revolving about one diameter, the radius × *8164.

In a cone, revolving about its axis, the radius of the base \times 5477.

In a right-angled cone, revolving about its vertex, the height \times 866.

In a paraboloid, revolving about its axis, the radius of the base \times 5773.

The Centre of Percussion

is that point in a body revolving about a fixed axis, into which the whole of the force or motion is collected.

It is, therefore, that point of a revolving body which would strike any obstacle with the greatest effect; and, from this property, it has received the name of the centre of percussion. The centres of oscillation and percussion are in the same point.

If a heavy straight bar, of uniform density, be suspended at one extremity, the distance of its centre of percussion is two-thirds of its length.

In a long slender rod of a cylindrical or prismatic shape, the centre of percussion is nearly two-thirds of the length from the axis

of suspension.

In an isosceles triangle, suspended by its apex, the distance of the centre of percussion is three-fourths of its altitude. In a line or rod whose density varies as the distance from the point of suspension, also in a fly-wheel, and in wheels in general, the centre of percussion is distant from the centre of suspension three-fourths of the length.

In a very slender cone or pyramid, vibrating about its apex, the distance of its centre of percussion is nearly four-fifths of its length.

On Work.

A unit of work is one pound avoirdupois raised vertically one foot.

If U denotes the units of work in raising W lbs. h feet-

$$\therefore U = Wh.$$

Rule to find the Units of Work in Raising a given Weight a given Height.

Multiply the height in feet by the weight in pounds, the product will be the units of work done.

Example. Find the units of work in raising half a ton 30 feet high.

 $U = 1120 \times 30 = 33600$ units of work.

It is important to observe, in the application of the above formula to practical cases, that the height (h) is the vertical distance through which the centre of gravity of the body whose weight is (W) is raised.

EXAMPLE. Find the units of work in lowering the surface of water in a well one yard; the depth to the surface of water being

40, and diameter 3 feet.

The weight of a cubic foot of water is $62\frac{1}{2}$ lbs.

The weight of water $= 9 \times 7854 \times 3 \times 62.5 = 1325.36$ lbs. The height through which the centre of gravity is raised = 41.5 feet.

 $U = 1325.36 \times 41.5 = 55002$ units of work.

The work done in raising a body up an inclined plane, or any curved surface, is equal to the work done in raising the body vertically through the height of the inclined plane.

There are 29000 units of work done in sawing a square foot of

green oak.

Horse Power.

A horse power is 33000 units of work done in one minute.

Put H, equal to the horse power, and U, the units of work done, in Thours:

 $\therefore 33000 H = \frac{U}{60 T}.$

The following results are taken from Morin:

A Man laboring Eight Hours per Day will perform the following

	Units of work.	
1	Raising his own body,	4250
	Drawing, or pushing horizontally,	3120
	Pushing and drawing alternately in a vertical direction,	2380
i	Turning a handle,	2600
	Working with his arms and legs, as in rowing,	4000
	A Man laboring Six Hours per Day.	12 /
	Raising material with a pulley,	1560
	Raising material with the hands,	1470
	Raising material upon the back, and returning empty,.	1126
-	A Man laboring Ten Hours per Day.	
	Raising material with a wheelbarrow on ramps,	720
	Throwing earth to the height of five feet,	470

Useful Work of a Man raising Water—Duration of Labor, Eight Hours per Day.

With a windlass from deep well	s,	. 4				2560
With an upright chain pump,					(- 10)	1730
With a Chinese wheel,	TVIII /	me.	W. Didd			2167
With an Archimedean screw,						1505
Raising water from a well with	a pail	and	rope,	•		1054

Work of Animals.

A horse, in a con	nmon	pun	ping	engir	ie,	•	Hig	200	17550
A mule, ditto,	_ •				_ • 1 .		1.00		11700
An ass, ditto,			at.						3510

EXAMPLE. Required the horse power of an engine that will saw 368 planks, each being 30 feet by 2 feet 6 inches, in twelve hours.

There are 29000 units of work done in sawing one square foot;

Then $30 \times 2.5 \times 368 \times 29000 =$ units of work done in sawing the planks.

Put x = the horse power of the engine;

Then $60 \times 12 \times 33000 \times x = \text{units}$ of work done by the engine in twelve hours.

Hence, $x = \frac{30 \times 2.5 \times 368 \times 29000}{60 \times 12 \times 33000} = 33.7$ horse power.

EXAMPLE. How many tons of coals would two men raise, working with a wheel and axle, from a pit whose depth is 20 yards, in 12 hours?

From the Table, a man working with a wheel and axle will do

2600 units of work in one minute.

Then, $2600 \times 60 \times 12 \times 2 = \text{work done by the two men.}$

Put x = the tons of coals raised.

Then, $2240 \times 20 \times 3 \times x = \text{work done by the two men.}$

$$\therefore x = \frac{2600 \times 60 \times 12 \times 2}{2240 \times 20 \times 3} = 27.85 \text{ tons raised.}$$

The Traction of Horses at various rates of Travelling.

It is a well known fact, that the traction or force which a horse can exert decreases with the increase of speed.

Rate in miles per hour, 2 3 $3\frac{1}{2}$ 4 $4\frac{1}{2}$ 5 Force exerted by the horse, 166 lbs. 125 104, 83, 62\frac{1}{2}, 41\frac{1}{2}.

Accumulated Work.

If a force be applied to move a body subject to no resistance whatever, it will be wholly occupied in increasing the speed of the body. In this case the work which is done by the action of the force applied is accumulated in the body, therefore it is called accumulated work.

Put V = the velocity of the body or feet per second.

And W = the weight of the body in pounds.

Accumulated work =
$$\frac{WV^2}{64}$$
.

If W be measured in tons, and V be measured in miles per hour,

Accumulated work =
$$\frac{3388}{45} W V^2$$

A railway train 80 tons moves uniformly at the rate of 30 miles per hour, find the accumulated work.

Accumulated work =
$$\frac{3388 \times 80 \times 900}{45}$$
 = 5420800.

The horse power of the engine
$$=\frac{5420800}{33000} = 164$$
 nearly.

Generally the horse power of the engine $=\frac{77 \ W \ V^2}{33750}$ where W is in tons and V in miles per hour.

The friction of a railway train is from 8 to 10 lbs. per ton.

Work done by Machines.

The moving power, which is applied to any machine moving uniformly, is employed in overcoming the resistance of friction, and useful work done at the working points of the machine. Hence,

the aggregate number of units of useful work yielded by any machine at its working point is less than the number received upon the machine directly from the moving power, by the number of units expended upon the resistance of friction. (The machine moving uniformly.)

General Rule to find the Work done by any Machine.

Find the distance through which the power (P) applied to the machine has travelled in one minute, and let this distance be called (a).

Find the distance through which the weight (W), producing useful work, has travelled in one minute, and let this distance

be (b).

Then a P - b W = work done by friction per minute.

And a P = work applied per minute. b W = useful work done per minute.

The Horse Power of an Engine.

Let P be the mean effective pressure of the steam on the piston.

l be the length of the stroke in feet.

n be the number of strokes per minute.

.: Horse power of the engine =
$$\frac{n l P}{33000}$$
.

The nominal horse power $=\frac{7 n l}{33000}$ as adopted by the Admiralty.

On the Strength of Animals.

Let P be the force in lbs. that any animal can exert when moving at (v) miles per hour.

Put K = the greatest effort the animal can exert when standing. And c = the greatest number of miles per hour the animal can give itself when unimpeded by any weight.

According to Bouguer, $P = (1 - \frac{v}{c})$. K.

" Euler,
$$P = (1 - \frac{v^2}{c^2})$$
. K.

" Euler,
$$P = \left(1 - \frac{v}{c}\right)^2$$
. K.

It is readily seen that (v) miles per hour is equal to (88 v) feet per minute. Put U the units of work done by the animal per minute,

Then, according to Bouguer,
$$U=$$
 88 ($v-\frac{v^2}{c}$) . K .

According to Euler,
$$U=88\left(v-rac{v^3}{c^2}
ight)$$
 . K .

 $U=88v(1-rac{v}{c})^2$

The values of U will be the greatest when

$$v = \frac{c}{2}$$
. According to Bouguer.

$$v=rac{c}{\sqrt[4]{3}}$$
. " Euler.

$$v = \frac{c}{3}$$
. Euler.

Substitute these values in the formula for P and U, then there will result:

 $\frac{K}{2}$ = the load of the animal when producing the greatest effect.

$$\frac{2K}{3}$$
 = " " " " "

22 cK = the greatest effect, by first formula.

$$\frac{176 \ c \ K}{3 \ \sqrt{3}} =$$
 ". by second formula.

$$\frac{35 \ 2 \ c \, k}{27} = \qquad \text{``by third formula.}$$

To Calculate the Different Parts of a Crane as respects Mechanical Advantage.

(1.) The number of revolutions of the pinion to one of the wheel, the length of the handle, and the force applied being given, to find the diameter of the barrel.

Rule. Multiply the diameter of the circle described by the winch, or handle, in inches, by the power applied in lbs, and by the number of revolutions of the pinion to one of the wheel; divide this product by the weight to be raised in lbs., and the quotient is the diameter of the barrel in inches.

(2.) The diameter of the barrel, the length of the handle, and the force applied given, to find the number of revolutions of the pinion to one of the wheel.

Rule. Multiply the weight to be raised in lbs. by the diameter of the barrel in inches, and divide the product by the diameter of the circle described by the handle in inches, multiplied by the power applied in lbs., and the quotient is the revolutions of the pinion to one of the wheel.

(3.) The diameter of the barrel, the number of revolutions of the pinion to one of the wheel, and the power applied given, to find the length of the handles.

RULE. Multiply the weight to be raised in lbs. by the barrel's diameter in inches, and divide the product by the power applied in lbs., multiplied by the number of revolutions of the pinion to one of the wheel, and half the quotient is the length of the handles.

(4.) The diameter of the barrel, the revolutions of the pinion to one of the wheel, and length of handles given, to find the power required.

Rule. Multiply the weight to be raised in lbs. by the diameter of the barrel in inches, and divide the product by the diameter of the circle described by the handle multiplied by the revolutions of the pinion to one of the wheel, and the quotient is the power applied.

The handles of a crane should not be less than 2 feet 11 inches or 3 feet from the ground, and the jib to stand at an angle of about 45 degrees.

Equilibrium and Pressure of Beams.

The Parallelogram of Forces.

It has been proved by experiment that three forces, proportional to the two sides of a parallelogram and its diagonal, are in a state of equilibrium when their directions are in the direction of these lines.

Let two forces, represented in direction and magnitude by the lines AO and BO, act at the point O, then a third force CO in direction and magnitude can be found, so that the three forces are in a state of equilibrium.

Draw A D, B D, parallel to O B, O A, respectively; join D O, and produce it to C, making C O equal to O D, then O C is the force required.

The two forces A O, B O are called components, and C O the resultant of the

components. The components and resultant are called the paral-

lelogram of forces.

Any resultant force can be readily decomposed into two components, which will be the sides of a parallelogram whose diagonal is the resultant.

Let the beams OE, OB sustain a weight (W) tons at the point O; draw OD vertical, and make it equal to (W) inches then draw DA, DB parallel to OF and OE respectively; measure DA, DB in inches which will be the pressure in tons in the directions OF and OE.

In this case EF is a tie beam to prevent the lower ends of the beams OE, OF from spreading. Draw OD vertically equal to (W) inches, then draw DA, DB parallel to OF, OE and aA, bB, parallel to EF, then AD will be

the thrust in OF, and DB in OE, and Aa equal to bB will be the thrust in the direction of the tie beam EF.

Draw O D vertically equal to (W) inches, and draw DA parallel to OF, and DB parallel to OE, then OB, OA will represent the pressures in the directions OF, OE.

Let AB be a beam whose centre of gravity is O, and resting against an upright wall BE, the lower end resting on an abutment cut in the beam AE at A.

Through the centre of gravity O draw the line CD vertically equal to the weight of the beam, draw BC, DF parallel to EA,

join CA; then CF represents the thrust at A in the direction CF, and FD represents the thrust at B, and also the horizontal thrust at A.

To Compute the Tension of the 'guise' and Shear-leg of a pair of Shears.

Let BC be the shear-leg and AC the guise, and (W) weight in tons supported at C.

Make C as many inches as (W) contains tons, draw D E parallel to A C, then D E measured in inches will be the tension in tons of the guise A C, and C E measured in inches will be the pressure in the direction of the shearleg C E.

To Compute the Tension on the guise arithmetically.

Put
$$AB = c$$
, $BC = a$, and $AC = b$.

Then, tension in $AC = \frac{b(b^2 - a^2 - c^2)W}{cV(a+b+c)(b+c-a)(a+c-b)(a+b-c)}$

And the pressure in
$$CB = \frac{a (b^2 + c^2 - a^2) W}{2c \sqrt{(a+b+c)(a+b-c)(b+c-a)(a+c-b)}}$$

SPECIFIC GRAVITY.

The comparative density of various substances, expressed by the term Specific Gravity, affords the means of readily determining the bulk from the known weight, or the weight from the known bulk; and this will be found more especially useful, in cases where the substance is too large to admit of being weighed, or too irregular in shape to allow of correct measurement. The standard with which all solids and liquids are thus compared, is that of distilled water, one cubic foot of which weighs 1000 ounces avoirdupois; and the specific gravity of a solid body is determined by the difference between its weight in the air and in water. Thus,

If the body be heavier than water, it will displace a quantity of fluid equal to it in bulk, and will lose as much weight on immersion as that of an equal bulk of the fluid. Let it be weighed first, therefore, in the air, and then in water, and its weight in the air be divided by the difference between the two weights, and the quotient will be its specific gravity, that of water being unity.

Example. A piece of copper ore weighs 564 ounces in the air, and 433 ounces in water: required its specific gravity.

56.25 - 43.75 = 12.5 and $56.25 \div 12.5 = 4.5$, the specific gravity.

If the body be lighter than water it will float, and displace a quantity of fluid equal to it in weight, the bulk of which will be equal to that only of the part immersed. A heavier substance

must therefore be attached to it, so that the two may sink in the fluid. Then, the weight of the lighter substance in the air must be added to that of the heavier substance in water, and the weight of both united, in water, be subtracted from the sum; the weight of the lighter body in the air must then be divided by the difference, and the quotient will be the specific gravity of the lighter substance required.

Example. A piece of fir weighs 40 ounces in the air, and, being immersed in water attached to a piece of iron weighing 30 ounces, the two together are found to weigh 3.3 ounces in water, and the iron alone 25.8 ounces in the water: required the specific gravity

of the wood.

40 + 25.8 = 65.8 - 3.3 = 62.5; and $40 \div 62.5 = 0.64$, the spe-

cific gravity of the fir.

The specific gravity of a *fluid* may be determined by taking a solid body, heavy enough to sink in the fluid, and of known specific gravity, and weighing it both in the air and in the fluid. The difference between the two weights must be multiplied by the specific gravity of the solid body, and the product divided by the weight of the solid in the air; the quotient will be the specific gravity of the fluid, that of water being unity.

Example. Required the specific gravity of a given mixture of muriatic acid and water; a piece of glass, the specific gravity of which is 3; weighing 3; ounces when immersed in it, and 6 ounces

in the air.

 $6 - 3.75 = 2.25 \times 3 = 6.75 \div 6 = 1.125$, the specific gravity.

Since the weight of a cubic foot of distilled water, at the temperature of 60 degrees (Fahrenheit), has been ascertained to be 1000 avoirdupois ounces, it follows that the specific gravities of all bodies compared with it, may be made to express the weight, in ounces, of a cubic foot of each, by multiplying these specific gravities (compared with that of water as unity) by 1000. Thus, that of water being 1, and that of silver, as compared with it, being 10 474, the multiplication of each by 1000 will give 1000 ounces for the cubic foot of water, and 10474 ounces for the cubic foot of silver.

and the state of t	Antimony, Zinc, Cast Iron, Steel, Steel		. 7·207 . 7·291	Organic Bodies. Flint glass,	2·488 3·329 2·653 3·501 0·715
THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN	Bismuth,	:	. 9·882 . 10·474 . 11·352 . 19·258 . 20·337	Bodies. Sea water, 1 Agate, 2:590 Milk, 1 Amber, 1:078 Nitric acid, 1	0.870 0.626 0.030 0.503 0.545

Weights of given bulks of water and air for calculating the absolute weights from the specific gravities of bodies.

Cubic inch of distilled water (bar. 30, therm. 62)	Logarithms.
	2.40219
	2.99875
	1.79463
Weight of 100 cubic in. of air in grains do. 30.49	1.48416

THE MECHANICAL POWERS, AND THEIR APPLICATION.

The simple Mechanical Powers are six in number, viz. the Lever, the Pulley, the Wheel and Axle, the Inclined Plane, the Wedge, and the Screw. All machines are formed by combinations to a greater or less extent of these six elements. The mechanical effects, however, of the whole, are ultimately resolvable into that of the lever.

By means of the Mechanical Powers a great weight may be sustained, or a great resistance slowly overcome, by the application of a small force. Or, a great velocity may be imparted to a small weight or resistance, by the use of a great force or power.

The Lever.

Levers are of three orders:

In the first order, the fulcrum is between the weight and the power.

In the second order, the weight is between the fulcrum and the power.

In the third order, the power is between the weight and the

The bent lever has no peculiarity except that of form, which is given to it for convenience in use. Its properties are those of the first order.

In order to preserve an equilibrium between the power and the weight, they must be to each other inversely as their distances from the fulcrum.

Case 1. When the Lever is of the first order, or when the fulcrum is between the power and the weight.

Rule. Divide the weight to be raised by the power to be applied;

the quotient will give the difference of leverage necessary to support the weight in equilibrio. Hence, a small addition either of leverage or weight will cause the power to preponderate.

EXAMPLE 1. A ball weighing 3 tons is to be raised by 4 men, who can exert a force of 12 cwt. Required the proportionate length of

lever.

3 tons = 60 cwt.; and $\frac{60}{12}$ = 5.

In this example, the proportionate lengths of the lever to maintain the weight in equilibrio, are as 5 to 1. But, although the ball is sustained by a force of only one fifth of its weight, no power is gained, for the weight passes through only one fifth of the space passed through by the power.

EXAMPLE 2. A weight of 1 ton is to be raised with a lever 8 feet in length, by a man who can exert, for a short time, a force of rather more than 4 cwt. Required at what part of the lever the fulcrum

must be placed.

 $\frac{20 \text{ cwt.}}{4 \text{ cwt.}} = 5$; i. e., the weight is to the power as 5 to 1; therefore,

 $\frac{8}{5 \times 1} = 1$ foot and a third from the weight.

EXAMPLE 3. A weight of 40 lbs. is placed one foot from the fulcrum of a lever. Required the power to raise the same when the length of the lever on the other side of the fulcrum is five feet.

$$\frac{40 \times 1}{5}$$
 = 8 lbs., the power.

Case 2. When the lever is of the second order, or when the fulcrum is at one end of the lever and the power at the other, with the weight between them.

RULE. As the distance between the power and the fulcrum is to the distance between the weight and the fulcrum, so is the effect to the power.

EXAMPLE 1. Required the power necessary to raise 120 lbs. when the weight is placed six feet from the power and two feet from the

fulcrum.

As 8:2:: 120: 30 lbs., the power.

EXAMPLE 2. A beam 20 feet in length, and supported at both ends, bears a weight of two tons at the distance of eight feet from one end. Required the weight on each support.

 $\frac{40 \text{ cwt.} \times 8 \text{ feet}}{20 \text{ feet}} = 16 \text{ cwt.}$ on the support that is furthest from the

weight; and $\frac{40 \times 12}{20 \text{ feet}} = 24 \text{ cwt.}$ on the support nearest to the weight.

Case 3. When the lever is of the third order, or the weight is at one end of the lever, the fulcrum at the other, and the power is applied between them.

Rule. As the distance between the power and the fulcrum is

to the length of the lever, so is the weight to the power.

Example. The length of the lever being eight feet, and the weight at its extremity 60 lbs., required the power to be applied six feet from the fulcrum to raise it.

As 6:8:: 60:80 lbs., Ans.

The Pulley.

Pulleys are of two kinds, fixed and movable.

The fixed pulley affords no economy of power, but merely changes its direction. The movable pulley changes its position with that of the weight, and effects a saving equal to half the power. An equilibrium is preserved between the power and weight, when the weight is equal to the product of the power and twice the number of movable pulleys.

RULE. Divide the weight to be raised by twice the number of pulleys in the lower block; the quotient will give the power neces-

sary to raise the weight.

EXAMPLE. Required the power to raise 600 lbs, when the lower block contains six pulleys.

$$\frac{600}{6 \times 2}$$
 = 50 lbs., the power.

The Wheel and Axle.

The wheel and axle act as a revolving lever; and in order to obtain an equilibrium between the power acting on the circumference of the wheel, and the weight or resistance acted on by the circumference of the axle, the power must be to the weight as the radius of the axle is to that of the wheel. One or more radii of the wheel, or winches, are often substituted for the wheel in the simple machine; and in compound machines the action is communicated by teeth or cogs, forming wheel-and-pinion work.

RULE. As the radius of the wheel is to the radius of the axle, so

is the effect to the power.

Example. A weight of 50 lbs. is exerted on the periphery of a wheel whose radius is 10 feet. Required the weight raised at the extremity of a cord wound round the axle, the radius being 20 inches.

$$\frac{50 \text{ lbs.} \times 10 \text{ feet} \times 12 \text{ inches}}{20 \text{ inches}} = 300 \text{ lbs., the weight.}$$

The Inclined Plane.

The inclined plane acts as a mechanical power by sustaining a portion of the weight to be raised, while the direction of the applied force is changed from the perpendicular to one more or less horizontal, and the weight moves upwards on it in a diagonal between them. Equilibrium is sustained when the power is to the weight as the perpendicular height of the inclined plane is to its inclined length or hypothenuse, when the power acts in a direction parallel to the inclination of the plane; but as the height is to the base when in a direction parallel to the base.

Rule. As the length of the plane is to its height, so is the weight

to the power.

EXAMPLE. Required the power necessary to raise 540 lbs. up an inclined plane 5 feet long and 2 feet high.

As 5:2:: 540:216 lbs., the power.

The length, in the above rule, must represent that of the inclined surface, or of the base, accordingly as the power acts parallel to either of these surfaces.

The Wedge.

The wedge may be regarded as two inclined planes, united by a common base, acting on two weights or resistances at once, or on a fulcrum and a weight, between which it moves, generally, in practice, by the impulse of successive blows.

As in the inclined plane, equilibrium consists in the power being to the resistance as the back of the wedge is to its length, or to the length of its side, accordingly as the resistance acts perpendicularly

to the central line of length or to that of the side.

Case 1. When two bodies are forced from one another by means of a wedge, in a direction parallel to its back.

RULE. As the length of the wedge is to half its back or head, so

is the resistance to the power.

EXAMPLE. The breadth of the back or head of the wedge being 3 inches, and the length of either of its inclined sides 10 inches, required the power necessary to separate two substances with a force of 150 lbs.

As $10:1\frac{1}{2}::150:22\frac{1}{2}$ lbs., the power.

Case 2. When only one of the bodies is movable.

RULE. As the length of the wedge is to its back or head, so is the resistance to the power.

Example. The breadth, length, and force, the same as in the last

example.

As 10:3::150:45 lbs., the power.

The Screw.

The screw is an inclined plane, and may be supposed to be generated by wrapping a triangle, or an inclined plane, round a cylinder. The base of the triangle is the circumference of the cylinder; its height, the distance between two consecutive cords or threads; and the hypothenuse forms the spiral cord or inclined plane.

RULE. To the square of the circumference of the screw, add the square of the distance between two threads, and extract the square root of the sum: this will give the length of the inclined plane. Its height is the distance between two consecutive cords or threads.

When a winch or lever is applied to turn the screw, the power of the screw is as the circle described by the handle of the winch, or lever, to the internal or distance between the spirals.

Case 1. When the weight to be raised is given, to find the power.

RULE. Multiply the weight by the distance between two threads of the screw, and divide the product by the circumference of the circle described by the lever. The quotient is the power.

EXAMPLE. Required the power to be applied to the end of a lever three feet long, to raise a weight of five tons with a screw of 11 inch between the threads.

 $\frac{11200 \text{ lbs.} \times 1.25}{36 \text{ inches} \times 2 \times 3.1416} = 61.9 \text{ lbs., the power.}$

Case 2. When the power is given, to find the weight it will raise.

RULE Multiply the power by the circumference of the circle described by the lever, and divide the product by the distance between two threads of the serew: the quotient will be the weight. The example is the converse of that in the former case.

To Harden and Polish Alabaster.—1. Take a strong solution of alum, strain it, and put it into a wooden trough sufficiently large to contain the figure, which must be suspended in it by means of a thread of silk; let it rest until a sufficient quantity of the salt is crystallized on the cast, then withdraw it, and polish it with a clean cloth and water.

2. Take white wax, melt it in a convenient vessel, and dip the east or figure into it; withdraw, and repeat the operation of dipping until the liquid wax rests upon the surface of the cast; then let it cool and dry, when it must be polished with a clean brush.

TOOTHED WHEELS.

The pitch (or the distance between the centres of two contiguous teeth) of cog-wheels is measured on the pitch-line, or extreme circumference of the wheel; and the distance between that line and the centre of the circle is reckoned as the radius of the wheel.

The following rules have been laid down for the diameters and

number of teeth for wheels and pinions.

RULE 1.

As the number of teeth in the wheel +2.25. Is to the diameter of the wheel, So is the number of teeth in the pinion +1.5, To the diameter of the pinion.

EXAMPLE. Given the number of teeth in the wheel = 210, the diameter of the wheel = 25 inches, and the number of teeth in the pinion = 30, to find the diameter of the pinion.

As 210 + 2.25 : 25 :: 30 + 1.5 : 3.7102, = the diameter of the pinion.

Rule 2.

As the number of teeth in the wheel +2.25, Is to the diameter of the wheel, So is (No. of teeth in pinion + No. of teeth in wheel) $\div 2$, To the distance of their centres.

EXAMPLE. Given the number of teeth in the wheel=210, the diameter of the wheel = 25 inches, and the number of teeth in the pinion = 30, to find the distance at which their centres should be placed.

As $210 + 2 \cdot 25 : 25 :: \frac{30 \times 210}{2} : 14 \cdot 1342$ inches, = the distance of their centres.

On the Velocity of Wheels, Drums, Pulleys, &c.

When wheels are applied to communicate motion from one part of a machine to another, their teeth act alternately on each other; consequently, if one wheel contains 60 teeth and another 20, the one containing 20 teeth will make three revolutions, while the other makes but one; and if drums or pulleys are taken in place of wheels, the result will be the same, because their circumferences, describing equal spaces, render their revolutions unequal; from this the rule is derived, namely,

Multiply the velocity of the driver by the number of teeth it contains, and divide by the velocity of the driven: the quotient will be the number of teeth it ought to contain. Or, multiply the velocity of the driver by its diameter, and divide by the velocity of the driven: the quotient will be the diameter of the driven.

If the velocities of driver and driven are given with the distance

of their centres,

Then the sum of the velocities: { velocity of driver } :: distance

of centres: { radius of driven. radius of driver.

EXAMPLE 1. If a wheel that contains 75 teeth makes 16 revolutions per minute, required the number of teeth in another to work in it, and make 24 revolutions in the same time.

Here
$$\frac{75 \times 16}{24}$$
 = 50 teeth. = Ans.

EXAMPLE 2. A wheel, 64 inches diameter, and making 42 revolutions per minute, is to give motion to a shaft at the rate of 77 revolutions in the same time; required the diameter of a wheel suitable for that purpose.

Here
$$\frac{64 \times 42}{77} = 34.9$$
 inches. = Ans.

EXAMPLE 3. Required the number of revolutions per minute made by a wheel or pulley 20 inches diameter, when driven by another of 4 feet diameter, and making 46 revolutions per minute.

Here
$$\frac{48 \times 46}{20} = 110.4$$
 revolutions. = Ans.

EXAMPLE 4. A shaft, at the rate of 22 revolutions per minute, is to give motion, by a pair of wheels, to another shaft at the rate of 15½; the distance of the shafts from centre to centre is 45½ inches; the diameters of the wheels at the pitch lines are required.

Here
$$22 + 15.5 : 22 :: 45.5$$
 in. $: \frac{22 \times 45.5}{22 + 15.5} = 26.69$ in.

the radius of the driven wheel; which, doubled, gives 53:38 inches, the diameter.=1st Ans.

Therefore 45.5 inches—26.69 inches = 18.81 inches, the radius of the driver; which, doubled, gives 37.62 inches, the diameter.=2d Ans.

Example 5. Suppose a drum to make 20 revolutions per minute, required the diameter of another to make 58 revolutions in the same time.

Here $58 \div 20 = 2.9$, that is, their diameters must be as 2.9 to 1; thus, if the one making 20 revolutions be called 30 inches, the other will be $30 \div 2.9 = 10.345$ inches diameter.

2d Ans.

EXAMPLE 6. Required the diameter of a pulley, to make 12½ revolutions in the same time as one of 32 inches making 26.

Here
$$\frac{32 \times 26}{12.5} = 66.56$$
 inches diameter.

EXAMPLE 7. A shaft, at the rate of 16 revolutions per minute, is to give motion to a piece of machinery, at the rate of 81 revolutions in the same time; the motion is to be communicated by means of two gearing wheels and two pulleys, with an intermediate shaft; the driving wheel contains 54 teeth, and the driving pulley on the axis of the driven wheel is 25 inches diameter; required the number of teeth in the other wheel, and the diameter of the other pulley.

Let the driven wheel have a velocity of 36, a mean proportional

between the extreme velocities 16 and 81;

then, $\frac{16 \times 54}{36} = 24$, the number of teeth in the driven wheel.= 1st Aas.

And $\frac{36 \times 25}{81} = 11.11$ inches, diameter of the driven pulley.=

EXAMPLE 8. Suppose in the last example the revolutions of one of the wheels to be given, the number of teeth in both, and likewise the diameter of each pulley, to find the revolutions of the last pulley.

Here
$$\frac{16 \times 54}{24} = 36$$
, velocity of the intermediate shaft.=Ans.

Also,
$$\frac{36 \times 25}{11 \cdot 11} = 81$$
, the velocity of the machine.

Gold Lustre for Stone-Ware.—Gold, 6 parts; aqua regia, 36 parts. Dissolve: then add, tin, 1 part. Next add balsam of sulphur, 3 parts; oil of turpentine, 1 part. Mix gradually in a mortar, and rub it in until the mixture becomes hard; then add oil of turpentine, 4 parts. It is then ready to be applied to a ground prepared for the purpose.

To Petrify Wood, &c.—Take equal quantities of gem-salt, rock-alum, white vinegal, chalk, and pebbles powdered. Mix all these ingredients: there will happen an ebullition. If, after it is over, you throw into this liquor any porous matter, and leave it there soaking four or five days, they will positively turn into petrifactions.

STEAM POWER AND THE STEAM-ENGINE.

STEAM is of great utility as a productive source of motive power: in this respect, its properties are-elastic force, expansive force. and reduction by condensation. Elastic signifies the whole urgency or power the steam is capable of exerting with undiminished effect. By expansive force is generally understood the amount of diminishing effect of the steam on the piston of a steam-engine, reckoning from that point of the stroke where the steam of uniform elastic force is cut off : but it is more properly the force which steam is capable of exerting, when expanded to a known number of times its original bulk. And condensation, here understood, is the abstraction or reduction of heat by another body, and consequently not properly a contained property of the steam, but an effect produced by combined agency, in which steam is the principal; because any colder body will extract the heat and produce condensation, but steam cannot be so beneficially replaced by any other fluid capable of maintaining equal results.

The rules formed by experimenters, as corresponding with the results of their experiments on the elastic force of steam at given temperatures vary, but approximate so closely, that the following rule, because of being simple, may in practice be taken in prefer-

ence to any other:

RULE. To the temperature of the steam, in degrees of Fahrenheit, add 100; divide the sum by 177; and the 6th power of the quotient will equal the force in inches of mercury.

EXAMPLE. Required the force of steam corresponding to a tem-

perature of 312°.

$$\frac{312 + 100}{177} = 23277^6 = 159$$
 inches of mercury.

To Estimate the Amount of Advantage Gained by Using Steam Expansively in a Steam-Engine.

When steam of a uniform elastic force is employed throughout the whole ascent or descent of the piston, the amount of effect produced is as the quantity of steam expended. But let the steam be shut off at any portion of the stroke—say, for instance, at one half—it expands by degrees until the termination of the stroke, and then exerts half its original force; hence an accumulation of effect in proportion to the quantity of steam.

RULE. Divide the length of the stroke by the distance or space into which the dense steam is admitted, and find the hyperbolic logarithm of the quotient, to which add 1; and the sum is the ratio

of the gain.

Example. Suppose an engine with a stroke of 6 feet, and the

steam cut off when the piston has moved through 2; required the ratio of gain by uniform and expansive force

 $6 \div 2 = 3$; hyperbolic logarithm of 3 = 1.0986 + 1 = 2.0986, ratio of effect; that is, supposing the whole effect of the steam to be 3, the effect by the steam being cut off at $\frac{1}{3} = 2.0986$.

Again, let the greatest elastic force of steam in the cylinder of an engine equal 48 lbs. per square inch, and let it be cut off from entering the cylinder when the piston has moved 4½ inches, the whole stroke being 18; required an equivalent force of the steam throughout the whole stroke.

 $18 \div 4.5 = 4$, and $48 \div 4 = 12$. Logarithm of 4 + 1 = 2.38629. Then $2.38629 \times 12 = 28.635$ lbs. per square inch.

In regard to the other case of expansion, when the temperature is constant, the bulk is inversely as the pressure; thus, suppose steam at 30 lbs. per square inch, required its bulk to that of original bulk, when expanded so as to retain a pressure equal to that of the atmosphere, or 15 lbs.

 $\frac{15+30}{15}$ = 3 times its original bulk.

It is because of the latent heat in steam, or water in an aëriform state, that it becomes of such essential service in heating, boiling, drying, &c. In the heating of buildings, its economy, efficiency, and simplicity of application are alike acknowledged; the steam being simply conducted through all the departments by pipes, by extent of circulation condenses—the latent heat being thus given to the pipes, and diffused by radiation. In boiling, its efficiency is considerably increased, if advantage be taken of sufficiently inclosing the fluid, and reducing the pressure on its surface, by means of an air-pump. Thus, water in a vacuum boils at about a temperature of 98°; and in sugar refining, where such means are employed, the syrup is boiled at 150°.

The latent heat of steam at the common pressure of the atmosphere, according to very accurate experiments, is found to be 1000°; and we know that the sensible, or thermometric heat = 212°. Now 212°-32° = 180°, and 1000° + 180° = 1180°; therefore, steam at 212° is simply highly rarified water, and contains 1180° of heat; hence, to find the latent heat of steam at any other temperature, subtract the sensible heat from 1180°, and add 32° =

the latent heat.

EXAMPLE. Required the latent heat of steam whose sensible heat is 224°.

 $1180^{\circ} - 224^{\circ} = 956^{\circ}$, And $956^{\circ} + 32^{\circ} = 988^{\circ}$ latent heat.

A cubic inch of water produces about 1700 cubic inches of steam

at 212°, or the common pressure of the atmosphere; but the boiling point varies considerably with the pressure on the surface of the fluid; thus, in a vacuum, water boils at about 90°; under common pressure, at 212°; and when pressed with a column of mercury 4 inches in height, at 216°; each inch of mercury producing by its pressure a rise of about 1° in the thermometer.

The pressure or force of steam in the boiler (less than the weight upon the safety-valve) is generally indicated by a column of mercury in a bent iron tube, which causes the range of the float to be only half the range of the mercury, 2 inches of mercury being

nearly equal to 1 lb. pressure of steam in the boiler, thus:

Each inch rise of the float indicates a pressure of nearly 1 lb.

-Level of the mercury when there is no force of steam above the pressure of the atmosphere.

To Calculate the Effect of a Lever and Weight upon the Safety-Valve of a Steam-Boiler, &c.

The lever, under all circumstances, is balanced by a known weight or weights, on the short end, making its point of rest on the valve the centre of motion; so that the weight, added to that of the lever, is the effective weight upon the valve, independent of any other additional weight, thus:

There are three different ways that it may be required to calculate the lever:

1. When a certain pressure is required upon the valve, the distance of the weight upon the lever, and the distance of the valve from the centre of motion given, to find what weight will be required upon the lever at that distance.

From the pressure on the valve in lbs, subtract the weight of the valve in lbs, and the effective weight of the lever, multiply the remainder by the distance between the fulcrum and the valve, and divide the product by the distance between the fulcrum and the

weight, and the quotient is the weight in lbs. required to be placed upon the lever at that distance.

2. When a certain pressure is required upon the valve, the weight upon the lever and distance of the valve from the centre of motion

given, to find where that weight must be placed.

From the required weight upon the valve in lbs. take the weight of the valve, add the effective weight of the lever, multiply the remainder by the distance between the fulcrum and the valve, and divide the product by the weight in lbs. upon the lever, and the quotient is the distance in inches from the fulcrum that the weight must be placed.

3. When the distance of weight, distance of valve from the centre of motion, and weight upon the lever are given, to find what pressure

is upon that valve.

Multiply the weight in lbs. upon the lever by the distance in inches to the fulcrum, divide the product by the distance between the fulcrum and the valve, and the quotient, plus the weight of the valve and effective weight of the lever, equal the weight upon the valve in lbs.

Example 1. Suppose the lever AB (as above) to be 24 inches in length, and the valve C placed 5 inches from the centre of motion A, what weight must be placed upon the lever 20 inches from A, to equal 80 lbs., on the valve C, the weight of the lever being 2 lbs., the weight D, which balances the lever, 41 lbs., and the weight of the valve 3 lbs.?

2 lbs. weight of the lever. 4.5 " to balance ditto. " weight of the valve. the ceitre of mount; so was une to entire

9.5 lbs.

Then
$$\frac{80 - 9.5 \times 5}{20} = 17.625$$
 lbs.

EXAMPLE 2. Suppose the weight upon the lever equal 17:625 lbs.. it is required at what distance from A the weight must be placed to equal 80 lbs. at C.

$$\frac{80 - 9.5 \times 5}{17.625} = 20$$
 inches.

Example 3. Suppose, as before, that a weight of 17.625 lbs. is placed upon the lever 20 inches from A, required the pressure at C, the distance from the centre of motion being 5 inches, and the effective weight of the lever at that point equal 61 lbs., also the weight of the valve 3 lbs.

$$\frac{17.625 \times 20}{5} = 70.5$$
and a view and a series of the series of t

In a To Find the Proper Diameter for a Safety-Valve.

Multiply the bottom surface of the boiler, or surface immediately exposed to the action of the fire, in feet, by the multiplier opposite to the pressure in lbs. on each square inch of the safety-valve, and the square root of the product is the valve's diameter in inches at the narrowest part. If the boiler is to have two safety-valves, then the square root of half the product equal the diameter of each.

Pressure in lbs. per square inch.	Multipliers.	Pressure in lbs. per square inch.	Multipliers.
3,,		15	
4		20	***************************************
5		25	293
6		30	
7		35	
1 . 8	336	40	275
÷ 10 ,		45	270
12	321	50	264

In constructing steam-engines, the following simple rule for obtaining the nominal horse power is now generally adopted:

The area of the cylinder in square inches multiplied by 7 lbs. pressure, multiplied into the speed of the piston in feet per minute, divided by 33000, equal the nominal horse power.

Thus, area of cylinder $\times 7$ lbs. \times feet per minute = nominal H. P. 33000

The length of stroke and relative speed of piston, and number of revolutions per minute, will be found by the following table. In calculating the gross horse power developed in any cylinder, as shown by the *indicator*, it has been customary to allow one-tenth, and sometimes one-eighth, for friction; this is now very properly abandoned, and the following rule for calculating the indicator diagram should be always adopted: the mean pressure as shown on the card, multiplied into the area of the cylinder, multiplied into the speed of piston, in feet per minute, when the card was taken; this product, divided by 33000, will give the gross or indicated horse power:

f	t. in.	A500.00 /	C SUPPL	masony of	Propagation,	1	ft.	160		
For :	3 0	stroke	30 rev	olutions	per minute	=	180	per 1	mini	ite.
mopa.	3 6		27	6	7 2 - 31 70.70	=	189	mill	66	
4	4 0	66	241	6	•	=	196		"	
1000	4 6	"	223	11 11 11 11 11	9.5	=	204	010.4	66	
	5 0	66	21	2070	15 17		210	ú.m/i	"	
dd Smil	5 6	66 -	191		of the Lower	=	216	(50,00	66	WE.
	6 0	68	181	61	1.0	=	222		"	- In
. (6 6	66	171	60		=	226		"	17.00
,	7 0	66	16½	4		=	231		66	10.7
2 -7 -17	7 6	66	15 1 1	10 11111 6	100 14 1	=	236	The Bi	46	
	8 0	66	15	DELL KIED GI	a year manage	=	240	1.5	66	di ot
17.00	8 6		14 6	A	The Wale		244	1 4	66	
Aug.	9 0	44.55	133	+ B × 4	of our air sob	=	247	10	66 -	muli

The Air-Pump. The diameter of the air-pump should be a little more than half the diameter of the cylinder, or the diameter of the cylinder in inches multiplied by 6 will give the diameter of the air-pump in inches, the length of stroke to be one-half the length of stroke of the piston.

The Condenser should never be less than half the capacity of the cylinder; and in engines where the pressure on the boiler ranges from twelve to twenty pounds on the square inch, a much larger

condenser should be given.

The foot and delivery-valve passages should have an area of one-

third of the air-pump.

The Steam-Ports. The area of the steam-ports on the cylinder should never be less than one-twentieth of the area of the cylinder. If the speed of the piston is above 250 feet per minute, the ports should never be less than one-fourteenth the area of the cylinders.

The Cold-Water Pump. The capacity of the cold-water pump should be not less than one-thirty-sixth of the capacity of the cylinder.

The Fly-Wheel. To find the weight of the fly-wheel rim the

following practical rule is generally adopted:

Horse power of the engine × 2000

(velocity of circumference of wheel in feet per second) 2 the weight of the fly-wheel in cwts.

The Fly-Wheel, or Crank-Shaft. The nominal horse power of the engine and speed of the shaft being given, the diameter of this shaft, whether cast or wrought iron, will be found in the Tables of Strength of Shafts.

The Governor. To find the number of revolutions, divide 375 by the square root of the length of the pendulum; half of this quotient is the number of revolutions the balls ought to make per minute.

To find the length of the pendulum, divide 375 by twice the number of revolutions; the quotient squared is the length of the pendulum.

General Proportions of Locomotive Engines.

For the area of the steam-ports when the stroke is 18 inches, the square of the diameter of the cylinder \times 068 = the area in square inches.

For the area of the eduction ports, the square of the diameter of the cylinder in inches \times 128 = the area in square inches.

The breadth of the bridges between the eduction ports and the induction $= \frac{3}{4}$ inch and 1 inch.

The diameter of the chimney = the diameter of the cylinder.

For the area of the fire-grate, the diameter of the cylinder in inches \times '77 = the area in superficial feet.

For the effective heating-surface of the boiler, the square of the diameter of the cylinder in inches \times 5 \div 2 = area in square feet.

For the diameter of the feed pump ram, the square of the diameter of the cylinder in inches × 011 = the diameter in inches.

For the cubical content of the steam-room, the square of the diameter of the cylinder in inches $\times 9 \div 40 =$ content in cubic feet.

For the cubical content of inside fire-box above fire-bars, the square of the diameter of the cylinder in inches +4=content in cubic feet.

For the inside diameter of the steam-pipe, the square of the diameter of the cylinder in inches \times 03 = the diameter in inches.

For the diameter of the branch steam-pipe, the square of the diameter of the cylinder in inches \times 021 = the diameter in inches.

For the diameter of the top of the blast-pipe, the square of the diameter of the cylinder in inches × 017 = the diameter in inches.

For the diameter of the feed pipes, the diameter of the cylinder in inches × 141 = the diameter in inches.

For the diameter of the piston-rod, the diameter of the cylinder in inches \div 7 = the diameter in inches.

For the thickness of the piston, the diameter of the cylinder in inches $\times 2 \div 7 =$ the thickness in inches.

For the diameter of the connecting-rod at the middle, the diameter of the cylinder in inches \times 21 = the diameter in inches.

For the diameter of the plain part and inside bearing of the crankaxle, the cube root of the square of the diameter of the cylinder in inches × '96 = the diameter in inches.

For the diameter of the outside bearings of the crank for axle, the cube root of the product of the square of the diameter of the cylinders in inches × 396 = the diameter in inches.

For the diameter of the crank-bearing, the diameter of the cylinder in inches \times 404 = the diameter in inches.

For the length of the crank bearing, the diameter of the cylinder in inches × 233 = the length in inches.

Remarks on Steam-Engine Boilers and their Proportions.

For engines designed to give a gross indicator horse power of at least twice the nominal horse power, the grate surface should be 66 or 69 square feet per nominal horse power, but may be increased to 75 square feet, and should never be diminished to less than 60 square feet as a minimum.

The area of opening over the bridges or through the tubes, should be 125 square feet, or 18 square inches per horse power, and may be increased to 143 square feet, or 20 square inches with advantage, particularly in tubular boilers, and should never be diminished to less than 15 square inches, or 109 square feet per horse power.

The area of chimney should be '076 square feet, or 11 square inches, but may be increased to 13 square inches, and should never be diminished to less than 10 square inches per horse power.

The heating surface in fire-places and flues should be 14 square feet per horse power, exclusive of all bottom surface, but may be increased to 15 square feet, and should never be diminished to less than 12 square feet per horse power.

In calculating tubular boilers the whole surface of the tubes should be taken, and there should be a total of 17 square feet per

horse power in the fire-places and tubes.

In engines designed to work to a gross power in the cylinder by the indicator greater than twice the nominal horse power, these proportions must be increased; or, if the reverse be intended, they may be diminished in proportion.

Of the Pressure of Steam, in Inches of Mercury, at Different Temperatures.

I.	IL.	III.	IV.	v.	VI.
Temperature, Fahrenheit.	Dalton.	Ure.	Young.	Macneill.	Tredgold.
LECTURE 1014	110 0	B) 19 - 175	ell meg	1.30 18343	2007
00	0.08	100		Southern by	SOLIGE IN
10	0.12		and the same	130 50 000	2000 100
20	0.17		0.11	OT IT TOUT I	m 1281_
32	0.26	0.20	0.18	BUT BUT IN	0.17
40	0.34	0.25	0.20	Y 70 3 HE	0.24
50	0.49	0.36	0.36	0.36	0.37
60	0.65	0.52	0.53	- A. Inchie	0.55
70	0.87	0.73	0.75	0.73	0.78
80	1.16	1.01	1.05	12/20 11/2	1.11
90	1.59	1.36	1.44	1.36	1.53
100	2.12	1.86	1.95		2.08
110	2.79	2.45	2.62	2.46	2.79
120	3.63	3.30	3.46	P. 100 15	3.68
130	4.71	4.37	4.54	4.41	4.81
140	6.05	5.78	5.88		6.21
150	7.73	7.53	7.55	7.42	7.94
160	9.79	9.60	9.62		10.05
170	12.31	12.05	12.14	12.05	12.60
180	15.38	15.16	15.23		15.67
190	18.98	19.00	18.96	18.93	19.00
200	23.51	23.60	23.44	- 1	23.71
210	28.82	28.88	28.81	28.81	28.86
212	30.00	30.00	30.00	30.00	30.00
220	35.18	35.54	35.19	COLUMN TO SERVICE	34.92
230	44.60	43.10	42.27	42.63	42.00
240	53.45	51.70	51.66		50.24

Of the Temperature of Steam at different Pressures in Atmospheres.

I. Femperature	II.	III.	IV.	V.	VI.
Fahrenheit.	French Acad.	Dr. Ure.	Young.	Macneill.	Tredgold.
1st At.	212·0°	212°	212°	212°	212°
- 2d "	250.5	250.0	240.3	249	250.+
3d "	275.2	275.0	271		274.+
4th "	293.7	291.5	288	290	294.+
5th "	308.8	304.5	302		309.+
6th "	320.4	315.5	100		322.—
7th "	331.7	325.5	100000 10	all I do	
8th "	342.0	336.0	2010	337	342.+
9th "	350.0	345			
10th "	358.9	A.C.		1.1.1	
11th "	366.8	E 3	310		0.0
12th "	374.0	10	2007		372.—
13th "	380.6	11			. 50
14th "	386.9	10			
15th "	392.8	21 70			11 11
16th "	398.5	4	FOR S	DIRECTOR	8 11
17th "	403.8	14 34		VALUE AND	
18th "	408.9	2.0		NOT THE	- 71
19th "	413.9	2001		F12 1 11	414
20011	418.5	Harrison .		200	414
90011	457.2			314 10	
40011	466.6	14		155 . 11.	- J
50th "	510.6	100		104	00 7
		1 1 17			

To Prevent Spontaneous Combustion.—It is a fact better ascertained than accounted for, that fixed oils, when mixed with any light kind of charcoal, or substances containing carbon, such as cotton, flax, or even wool, which is not of itself inflammable, heat by the process of decomposition, and after remaining in contact some time, at length burst into flame. This spontaneous combustion takes place in waste cotton which has been employed to wipe machines, and then thrown away and allowed to accumulate into a heap. We have known an instance of the kind in a manufactory for spinning worsteds, where the waste wool, or "slubbings," as it is termed in Yorkshire, was thrown into a corner and neglected. It then heated, and was on the point of bursting into flame, when the attention of the workmen was directed to the heap by the smoke and smell. In cotton mills the danger exists in a still greater degree, and it is believed that the destruction of many cotton factories has been occasioned by this means. The cause of this peculiar property of fixed oils deserves more attention than has hitherto been paid to it.

TABLE

Of the Elastic Force of Steam, and Corresponding Temperature of the Water with which it is in Contact.

Pressure on a SquareInch.	Elastic Force in Inches of Mercury.	Femperature in degrees of Fahrenheit.	Volume of Steam compared with the Volume of Water.	Pressure on a Square Inch.	Elastic Force in Inches of Mercury.	Temperature in degrees of Fahrenheit.	Volume of Steam compared with the Volume of Water.
Ţ.,	5	T.	5 7 7 7	Ÿ.	<u> </u>	Te	2 7
lbs. 14.7		0100	****	lbs.			
	30.00	212.0	1700	49	99.96	281.9	564
15	30.60	212.8	1669	50	102.00	283.2	554
16 17	32.64	216.3	1573	51	104.04	284.4	544
	34.68	219.6	1488	52	106.08	285.7	534
18	36.72	222.7	1411	53	108.12	286.9	525
19	38.76	225.6	1343	54	110.16	288.1	516
20	40.80	228.5	1281	55	112.20	289 3	508
21	42.84	231.2	1225	56	114.24	290.5	500
22	44.88	233.8	1174	57	116.28	291.7	492
23	46.92	236.3	1127	58	118.32	292.9	484
24	48.96	238.7	1084	59	120.36	294 2	477
25	51.00	241.0	1044	60	122.40	295.6	470
26	53.04	243.3	1007	61	124.44	296.9	463
27	55.08	245.5	973	62	126.48	298.1	456
28	57.12	247.6	941	63	128.52	299.2	449
29	59.16	249.6	911	64	130.56	300.3	443
30	61:21	251.6	883	65	132.60	301.3	437
31	63.24	253.6	857	66	134.64	302.4	431
32	65.28	255.5	833	67	136.68	303.4	425
33	67.32	257.3	810.	68	138.72	304.4	419
34	69.36	259.1	788	69	140.76	305.4	414
35	71.40	260.9	767	70	142.80	306.4	408
36	73.44	262.6	748	71	144.84	307.4	403
37	75.48	264.3	729	72	146.88	308.4	398
38	77.52	265.9	712	73	148.92	303.3	393
39	79.56	267.5	695	74	150.96	310.3	388
40	81.60	269 1	679	75	153.02	311.2	383
41	83.64	270.6	664	76	155 06	312.2	379
42	85.68	272.1	649	77	157.10	313.1	374
43	87.72	273.6	635	78	159.14	314.0	370
44	89.76	275.0	622	79	161.18	314.9	366
45	91.80	276.4	610	80	163.22	315.8	362
46	93.84	277.8	598	81	165.26	316.7	358
47	95.88	279 2	586	82	167.30	317.6	354
48	97.92	280.5	575	83	169.34	318.4	350

^{*} This includes the pressure of the atmosphere.

TABLE-(Continued).

Pressure on a Square Inch.	Elastic Force in Inches of Mercury.	Temperature in degrees of Fahrenheit.	Volume of Steam compared with the Volume of Water.	Pressure on a Square Inch.	Elastic Force in Inches of Mercury.	Temperature in degrees of Fahrenheit.	Volume of Steam compared with the Volume of Water.
lbs.	157.00	010.0	0.40	lbs.	100.00	000 5	001
84	171.38	319.3	346	98	199.92	330.5	301
85	173.42	320.1	342	99	201.96	331.3	298
86	175.46	321.0	339	100	204.01	332.0	295
87	177.50	321.8	335	110	224.40	339.2	271
88	179.54	322.6	332	120	244.82	345.8	251
89	181.58	323.5	328	130	265.23	$352 \cdot 1$	233
90	183.62	324.3	325	140	285.61	357.9	218
91	185.66	325.1	322	150	306.03	363.4	205
92	187.70	325.9	319	160	326.42	368.7	193
93	189.74	326.7	316	170	346.80	373.6	183
94	191.78	327.5	313	180	367.25	378.4	174
95	193.82	328.2	310	190	387.61	382.9	166
96	195.86	329.0	307	200	408.04	387.3	158
97	197.90	329.8	304	0	200 01		-00

TABLE

Of the Force and Temperature of Steam in Atmospheres.

Atmos.	Temp. Fah.	Atmos.	Temp. Fah.	Atmos.	Temp. Fah.
1	Deg. 212.00	10	Deg. 358.88	19	Deg. 413.78
2	250 52	11	366.85	20	418.46
3	275.18	12	374.00	21	422.96
4	293.72	13	380.66	22	427.28
5	307.50	14	386.94	23	431.42
6	320.36	15	392.86	24	435.56
7	331.70	16	398.48	25	439.34
8	341.78	17	403.82		
9	350.78	18	408.92	50	510.60

To write on Silver with a Black which will never go off.— Take burnt lead and pulverize it. Incorporate it next with sulphur and vinegar, to the consistency of a painting color, and write with it on any silver plate. Let it dry, then present it to the fire so as to heat the work a little, and it is finished.

TABLE

Of the Heating Power of various Combustible Substances, exhibiting the utmost Quantity of Water evaporated by the Given Weights, and the smallest Quantity of Air capable of producing Total Combustion.

Species of Combustible.	Pounds of Water which a Pound can heat, from 0° to 212°.	Pounds of Boiling Water evaporated by 1 Pound.	Weight of Atmospheric air at 32°, to burn 1 Pound.
Wood, in its ordinary state, .	26	4.72	4.47
Wood charcoal,	73	13.37	11.46
Pit coal,	60	10.90	9.26
Coke,	65	11.81	11.46
Turf,	30	5.45	4.60
Turf charcoal,	64	11.63	9.86
Carburetted hydrogen,	76	13.81	14.58
Oil,	78	14.18	15:00
Alcohol of commerce,	52	9.56	11.60

To Estimate Distance.—Observe how many seconds elapse between a flash of lightning and the thunder, and multiply them by 1142, the number of feet sound travels in a second, the product will be the distance in feet. The same process may be applied to the flash and report of a gun, or any other sound, provided we can ascertain the time at which it is produced, and the interval that elapses before it reaches the ear.

Illustration. Saw a flash of lightning five seconds before I heard the thunder: required the distance.

$$\frac{5 \times 1142}{3 \times 1760} = \frac{43}{1528}$$
 mile distant.

In the absence of a watch, the pulsations at the wrist may be counted as seconds, by deducting one from every seven or eight.

PRISMATIC DIAMOND CRYSTALS FOR WINDOWS.—A hot solution of sulphate of magnesia, and a clear solution of gum arabic, mixed together. Lay it on hot. For a margin or for figures, wipe off the part you wish to remain clear with a wet towel.

PERFECTLY BLACK HARD GLASS.—Plain paste, 600 parts; zaffre, 3 parts; manganese, 3 parts; iron, 3 parts.

TABLE

Of Nominal Horse Power of Low Pressure Engines.

der in Inches.	LENGTH OF STROKE IN FEET.											
der	1 0	1½	2 0	21/2	3 4	31/2	4	41/2	5	51/2	6	7
4	*34	'39	*43	146	*49	*52	*54	'56	'58	.60	62	
5	· 5 3	*61	:67	'72	'76	.81	*84	*88	.91	*94	*96	1
6	'76	'87	:96	1.04	1110	1.16	1.55	1.26	1.31	1.32	1.39	1
7	1:04	1'19	1.31	1'41	1.20	1.28	1 65	1.72	1.78	1.84	1.89	1
8	1.36	1:56	1.72	1.85	1.96	2'07	2.16	2.22	2.33	2.40	2.47	2
9	1.72	1.97	2'17	2.34	2'49	2.63	2:74	2'84	2.95	3 04	3.13	3
0	2'13	2'44	2.68	2.89	3.08	3.53	3.38	3'51	3'64	3.76	3.87	4
1	2.57	2.95	3.24	3'49 4'16	3.77	3'91	4.15	4 25 5 06	4'40 5'24	4.54	4.68	4
2	3.06	3 51 4 12	4'53	4 16	5 19	5'46	5'64	5 94	6.12	5'41 6'35	5°57 6°53	5
3	3.60 4.12	4.77	5.52	5.66	6.01	6.33	6.65	6.88	7'13	7'36	7.58	6
5	4.77	5.48	6.03	6.20	6.90	7.27	7.60	7.90	8.19	8.45	8'70	9
6	5.45	6.53	6.86	7'39	7.86	8.27	8.62	8.99	9.31	9 61	9.90	10
7	6.12	7'04	7.75	8.35	8.86	9.34	9'76	10.12	10.2	10.85	11'17	11
8	6.89	7'89	8.68	9.36	9.94	10.47	10'94	1.38	11'79	12'17	12'53	13
9	7.68	8'79	9.68	10'42	11'17	11'66	12'19	12.68	13'13	13.56	13.99	14
20	8.51	9'74	10.72	11'55	12.27	12'92	13'51	14 05	14'55	15'02	15*46	16
22	10:30	11'79	12'97	13'98	14.85	15.63	16'62	17:30	17.65	19'18	18'71	19
24	12'26	14'03	15'44	16 63	17'67	18 61	19'45	20.53	20 95	21.63	22.27	23
6	14.39	16'46	18'12	19'52	20.75	21'84	22 56	23.75	24 68	25 39	26.14	27
8	16.68	19.09	21.03	22.64	24.06	25.33	26'48	27 54	28.25	29'41	30.31	31
0	19'15	21.92	24'13	25.99	27.62	29 07	30'40	31.61	32.74	33 80	34'80	36
2	21'79	24'96	27'51	29.57	31 42	33.08	34'59	35.97	37'26	38'46	39'59	41
14	24.60	28.16	30.99	33.39	35'44	37.34	39.04	40.60	42.06	43'41	44.69	47
6	27 57 30 72	31.26	34.74 38.71	37 42 41 69	39.77	41'87	43.77	45 52 50 72	47°15 52°54	48'67 54'23	50°11	52
8	34 04	38 97	42.89	46'20	49 10	51'69	54.04	56'20	58.51	60.09	61.88	58 65
2	37 53	42.96	47.29	50 91	54.13	56.98	59.58	61.96	64'18	66 25	69.21	71
4	41'19	47.15	51.90	55'91	59.38	62 51	66'46	68.00	70'44	72.71	74'85	78
6	45 02	51.24	56.72	61.10	64.88	68.19	71.43	74.33	76.69	79'47	81 81	86
8	49 02	56.11	61'76	66 54	70.70	74.42	77'82	80.94	83.83	86 53	89'08	93
0	53'19	60.89	67'02	72'19	76 71	80'76	84'44	87.82	90.96	93 89	96.65	101
52	57'55	65'86	72'48	78'08	83.00	87:35	90.25	94'98	98'40	101'55	104'5	110
4	62'04	71.02	78'17	84.50	89'49	94'20	98'49	102.4	106'1	109'5	1127	.118
6	66'72	76 38	84.07	90.55	96.53	101.30	105.9	110.1	114'1	117'8	121.5	127
8	71'58	81.83	90.18	97'14	103.5	108 6	113.6	118.5	122.4	126 3	129.2	136
0	76'60	87'68	96'50	103.9	110.4	116.3	151.6	126'4	131.0	135 2	139 2	146
2	81.79	93.62	103.04	111.0	117'96	124.18	129 81	135 03	139'86	144 37	148'6	156
34	87:15	99'84	110.0	118.3	125.7	132.3	138.3	143.9	149'0	153.82	158'4	166
38	92'68	106.1	116.8	125 8	133.6	140'7	147'3	153 0	158'5	163'6 173'6	168'4 178'8	177
70	104'26	119.3	131.3	133.6	141'8 150'4	149'4 158 3	156.5	162'4 172'1	168°2 178°2	184.0	189'4	188 199
72	110.30	126.5	139.0	149 7	159.1	167'4	165.5 175.1	182.1	188.6	194.7	200'4	211
74	116.2	133.4	146.8	158 1	167.9	176.7	185.4	192.4	199.2	205.7	211'6	223
76	122'9	140.7	154'8	166.8	178.6	186.6	195.0	202.9	210.1	216.9	223'3	235
78	129'4	148'2	163.1	175.6	186.4	196.5	205.4	212.1	221'4	228.2	235.5	247
30	136'2	155'8	171'6	184'8	196'4	206.7	216.1	224.8	235.8	240'4	247 4	260
32	143.0	163'8	180'2	194'2	206.2	217'3	226.9	237.8	244 6	2525	260.0	273
34	150'1	171'8	189'1	203.8	216'5	227'9	238'3	247'8	256.7	265'0	272'8	287
86	157'4	180.1	198'2	213.6	227.0	237.8	247'4	258'2	269'1	277'8	286.0	301
88	164'8	188.6	207.6	223.6	237.5	250'2	261'6	272.0	281'7	290'8	299'4	315
90	172'3	197'3	217'1	233.9	248'6	261.7	273 6	284'5	291'7	304'2	313.5	3:29

TABLE.

Of Nominal Horse Power of High Pressure Engines.

der in Inches		LENGTH OF STROKE IN FEET.												
deri	1	11/2	2	21/2	3	31/2	4	41/2	5	5½	6	7		
2 1/2 3	'25	.29	.32	.35	.37	.38	'40	'42	.44	*45	*46	'49		
21/2	.39	*45	'50	'54	*57	*60	.63	'66	.68	'70	'72	76		
3	.57	*65	'72	.78	.83	87	191	'95	.98	1.01	1'04	1.10		
31/2	.78	.89	.98	1.06	1.13	1.19	1.24	1 29	1.34	1.38	1 42	1 4		
4	1.02	1.17	1.29	1 38	1 47	1.26	1.62	1.68	1'74	1 80	1.86	1.9		
41/2	1.29	1'48	1.63	1.75	1.86	2.43	2.05	2.13	2.21	2.58	2'35	2'4'		
51/2	1.59	1.83 5.51	2 01	2.16	2.28	2.93	2°52 3°12	2'64 3'18	2.43 3.30	3'42	2.88 3.21	3.0		
6	2 28	2.61	2.88	3.12	3.30	3 48	3.66	3 78	3.93	4'05	4.14	4.4		
61/2	2.69	3.09	3.39	3.66	3.90	4.08	4.53	4.44	4 62	4.77	4.89	5.1		
7	3.15	3.57	3.93	4 23	4.20	4.74	4 95	5 16	5 34	5'52	5 67	5.9		
71/2	3.60	4.11	4 53	4.86	5.19	5'46	5.70	5 94	6 15	6 33	6.21	6.8		
8	4.08	4 68	5.16	5 55	5 88	6.51	6'48	6.75	6.99	7.20	7'41	7'8		
81/2	4 62	5.58	5'82	6'27	6.63	6.99	7.32	7 62	7.89	8.13	8'37	8.8		
9	5.16	5.91	6'51	7.02	7'47	7 86	8.22	8'52	8.82	9.12	9 39	9.8		
91/2	5'76	6.60	7 26	7 80	8'37	8.76	9.12	9 51	9 84	10'17	10'47	10 0		
0	6.39	7.32	8'04	8 67	9.21	9.69	. 10 14	10.23	10'92	11.58	11 61	12'2		
01/2	7.05	8'04	8.88	9 54	10'14	10 68	11'16	11 61	12 03	12.45	12.78	13.4		
1	7.71	8 85	9.72	10.47	11.31	11.73	12'45	12.75	13.20	13.65	14 04	14'7		
1/2	8.43	9 66	10.62	11'46	12.12	12.78	13 80	13'92	14 61	14'91	15.33	16.1		
2	9.18	10.23	11 58	12 41	13.26	13 95	14 58	15 18	15.72	16.53	16'71	17.5		
2/2	9.96	11'40	12.57	13.23	14.37	15.12	15'84	16'47	17'04	17.58	18.15	19'0		
3	10.80	12 36	13 59	14 64	15.22	16:38	16 92	17.82	18'45	19.05	19.59	21'6		
3/2	11.64	13 32	14 64	15.78	16.77	17'67	18'48	19.20	19.89	20.25	21.12	22.5		
4 4 1/2	12.21	14'31	15 75 16 92	16.98	18 03 19:35	18.99	19.86	20'64	21 39 22 95	22'08 23 70	22'74 24'39	23'9		
5	13.41 14.31	15°36 16°44	18.09	19 50	20.70	21 81	21.30	23 70	24 57	25 35	26.10	27'4		
6	16.32	18.69	20.58	22.12	23.53	24.81	25.82	26.97	27.93	28.83	29.70	31.5		
7	18.45	21.15	23 25	22.05	26.28	28.03	29.58	30.42	31.26	32 55	33 57	35.5		
8	20.67	23.67	26 04	28.08	29.82	.31'41	32 82	34 14	35 37	36.21	37.59	39'5		
9	23.04	26 37	29.04	31.26	33.21	34 98	36.22	38:04	39.39	40'68	41.88	44'0		
0	25.53	29.22	32 16	34'65	36.81	38.76	40.23	42.15	43'65	45'06	46 38	48'8		
22	30.90	35'37	38.91	41'94	44'55	46'89	49.86	51'90	52'95	54'54	56.13	59'1		
24	36'78	42'09	46.35	49'89	53 01	55 83	58:35	60.69	62'85	64'89	66.81	70 3		
26	43'17	49'38	54 36	58'56	62.25	65 52	67.68	71.25	73.8	76'17	78 42	82'5		
28	50.04	57 27	63.06	67.92	72.18	75'99	79'44	82.65	85.26	88.35	90.93	95 7		
30	57.45	65'76	72.39	77'97	82.86	87'21	91.50	94 83	98.55	101'40	104'4	109'9		
32	65'37	74.88	82 53	88'71	94 26	99 24	103.7	107.9	111'8	115'4	118'7	125'0		
34	73.80	84.49	929	100 22	106.3	112.0	1171	121.8	126 2	130'2	134'0	141'1		
36	82.71	94'68	104 2	112.5	119 3	125 6	113.3	136 5	141'4	146'0	150.3	158'2		
38	92'16	105 5	116 1 129 6	125 0 128 6	134'0	136.9	146'3	152.1	157'6	162 7	167:5	176 3		
10	102.1	116 9	141.8	152.8	147 3 162 4	155 1 170 9	162.1	168·6 185·9	174'6 192'5	180'2	185'6 204'6	215 3		
14	112'6 123'5	141.4	155.7	167.7	162 4	187.6	199'4	204.0	211.3	218 1	224 5	236.3		
16	135 0	154 6	170'1	183.3	194 6	204 6	214'3	223 0	230 0	238.4	245'4	258 3		
18	147 0	168 3	185.3	199.6	212.1	223.2	233.4	242 8	251 5	259.6	267.2	281'3		
50	159 6	182 6	201.0	216.2	230.1	242.3	253 3	263.4	272.9	281.6	289.9	305 1		
52	172'6	197.6	217.4	224.5	249 0	262.0	270 7	284 9	295.2	304.6	313 5	330.0		
54	186 1	213.0	234 5	252.6	263 4	282.6	295.4	307 2	318.3	328.5	338.1	3561		
56	200.1	299.1	252 2	271.6	288.7	303.9	317.7	330.3	342'3	353 4	363.6	382.8		
58	214.7	245.8	270.2	291.4	309.6	325 8	340 8	354 6	367.2	378.9	389'7	410 1		
60	229'8	263 0	289'5	311.7	331.5	348.9	364.8	379 2	393.0	405.6	417'6	439'5		

Proportions of Condensing Engines.

Horse leaf of the control of the con																			
Dispersion of the confined by the confined b	neter	er.				20					r			38g					
Dispersion of the confined by the confined b	Diam	dens	11	9 -	4 24	00	9	X 15	192	24 ×	50	2 4	24	× 42	294	31.		par	d-¥
Diameter of Size of Pool Diameter of Size of Pool Diameter of China Diameter	1		:		N (C) 0	d4: 00/4	i oti d r	\$7.7¢							1	1-100	spc	st	ran
Conserved Cons	Pin	Dia.	"							33	337	ਦਾ ਦਾ	80/4	+ 10	5 5	9	1-10	nne	5
Conserved Cons		1,21	"	CC -44	H01 -	to 1 mlo	1-424									0	stoi	hir	er.
Conserved Cons	Ctu	Dia.	1,	500	0 CO C	ට දුර හ.ක\අ	84.	4	, Z	57	54	9 9	63	10	- 1	œ	pi.	<u>۔</u> د	nd
12 12 12 13 14 14 15 15 15 15 15 15			:							œ	00	2 2		22	12 1	133		22	$^{ m cyl}_{ m bil}$
124 2 6 4 3 × 15 15 15 15 15 15 15 15			=	C4 C	4 cct4 c	1 co	C1 C	27 CZ 04 CZ4	1 miss	33	331	4 4	4	44	¢₁ -¢	, 9		-roc	of of
124 2 6 4 3 × 15 15 15 15 15 15 15 15	Do H of	mud	=				-										ds f	ting	eter
124 2 6 4 3 × 15 15 15 15 15 15 15 15	ve-rod.	Val	2			-		- 00 0	-(x0		-140	rojao cajo	0	-64-	los rola		e-10	nec	liam liam
124 26 43 × 14 15 16 16 × 14 17 18 18 17 18 18 18 18	18 8 I	Tek.	=	60100 00	n copo o	olec ecles	ocho o	ajao mia	e et po	r-jer	19	€24 -45°	6 9	rojoo ro	00 -fc	10.	Sid	S	0.0
124 2 6 4 3 × 14 0 0 0 0 0 0 0 0 0	M. T.	Wth	:														Ġ.	-	
124 2 2 2 2 2 2 2 2 2		Tck.	:	ccipo														3	3
124 2 2 2 2 2 2 2 2 2	nks.	MIN	=	KA.	67 6	1 01	2 2	44 07	22	23	23	က္က	31	31	00 00 00 00 00 00 00 00 00 00 00 00 00	4			
124 2 4 4 4 4 4 4 4 4	23	Lgth	" "	:													lia.	3	3
124 2 6 7 2 2 2 2 2 2 2 2 2	.bot-no	rsiq	=	49 41	33 1-100	-60	1-100	-100 P-15	2		He	407 -40	3						
124 2 6 4 3 × 15 10 10 10 10 10 10 10			-	-44-4													10		
12 2 2 2 2 2 2 2 2 2	vels			8:4 C1 C	46120	4 84	64 64	<u>ര</u>	88	1	403		4	4	23 004	70	E	ass	adc:
124 2 6 4 3 × 1	feninof			34 1	10	- 00	100	10 G	0.	6014	_	20 02	2	40	9	9	lire	bra	co]
124 2 6 4 3 × 1	Journol	GTK.							_	6:14				-	to ook	*	100	:	=
Diameter of Chips Diam	lo .mi	BiQ	-							1-	0, ,	3 2	10	= :		-	du		
Diameter of Chips Diam			=												9	1	ınd-	: :	3
129 2 6 4 \frac{3}{4} \times 1 \text{Timester of Points} 1 \	100A to	əziS	:	53	10	0	o c	4 64	2	22	C1 ;	0 10	9	000	0 6	30			
12 12 12 13 14 15 15 15 15 15 15 15	'SOAIR		:	33	- FR FR	2 4	4 1	. ro	5					631	641	73.5	3.I.	3	: :
12 2 2 2 2 2 2 2 2 2	gainevil	De		××	X >	< X	X X	××	×					XX					: :
Diameter of Cycles Diamete	30 92	5	=	1-00	0 0	10	10	2 2	14	15	15	91	17	21	124	24			
Diameter			1		1.0	9	0	0 0	9				0	0 %	9	9	e di	10	
12 2 2 2 2 2 2 2 2 2	'dund-	TIA	_		1 0	\$ A	c ₂	107	(A)								he	11	-4.
17 17 17 17 17 17 17 17	19190	nsid	-			_		—	_	-	18	2 2	22	42.5	27	129	-10	pu	
Districted by the part of the	.23710	d	=														11		======================================
Districted by the part of the			-	and all		1											1-PO	hea	cen
th of of Oct 1975 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				90	0	00	0 10	010	010	0 14	0	0 12	0 16	0 18	0110	0 13	ston	-	in
	1	- 1	-							ಣ	9	0 0	4	41	-1-	_			nu
TD a Dia Power Property Proper	meter	Bia	11			- CJ	21	24	27	35	53	33	40	43	43	46			ckr
	9810 , 19.W.C	H H		40	000	15	15	200	25		30	4 4	20	900	100	80	Dia.	3 F	Thi

TABLE

Of the Revolutions per Mile of Driving Wheels, and Consumption of Steam and Water for each sized Wheel; taking the steam admitted to each cylinder as exactly one cube foot, at a gross pressure of 98lbs. or 83lbs. on the spring balance.

	WHEELS.	- Cylinder of Steam	- 1 WI 1	
Diameter.	Circumference.	Revolutions per Mile.	per Mile, and Consumption, taking Cylinder at one Cube Foot.	Water per Mile, taking Steam at 94lbs above atmosphere.
feet.	ft. in.	No.	cube feet.	gallons.
10	31 5	168	672	14.0
$9\frac{1}{2}$	29 101	176.9	707.6	14.74
9-	28 31	186.7	746.8	15 55
$8\frac{1}{2}$	26 83	197.4	789.6	16.44
8	25 11/2	210.1	840.4	17.5
$7\frac{1}{2}$	23 68	224	897.6	18.69
7	21 117	240	960	20.0
$6\frac{1}{2}$	20 5	258.6	1034	21.5
6	18 9.18	280.5	1122	23.37
$5\frac{1}{2}$	17 3.33	305.6	1222.4	25.45
5	15 8.48	336.3	1344.4	28.0
$4\frac{1}{2}$	13 11 1	379.0	1493.6	31.11
4	12 6.92	420.3	1680.4	35.0
384	11 9.37	441.1	1792.2	37.33
$3\frac{1}{2}$	10 11.94	480.1	1920.8	40.0
3	9 5.08	560.2	2240	46 67

Note. - As there are two cylinders at work in a locomotive, consequently there are four cylinders of steam for each revolution.

Modelling Wax.—This is made of white wax, which is melted and mixed with lard to make it malleable. In working it, the tools and the board or stone are moistened with water, to prevent its adhering; it may be colored to any desirable tint with dry color.

TABLE
Of Pressure of Steam, exclusive of that of the Atmosphere.

	PRESSURI	3.		1		-3300	
lbs, on the sq. iuch	In inches of mercury.	In atmo-	T'empera- ture in de- grees of Fahrenheit	lbs. on the sq. inch.	In inches of mercury.	In atmospheres.	Tempera- ture in degrees o Fahrenhei
1	2.04	*068	2130	51	104.04	3'468	3010
2	4.08	136	216	52	106.08	3 536	3021/2
3	6.15	204	2191/2	53	108.15	3.604	3031/2
4	8.16	272	223	54	110'16	3.672	2041/2
5	10.50	*340	2251/2	55	112.50	3 740	305 ½
6	12.24	408	2281/2	56	114'24	3 808	3061/2
7	14.28	476	231	57	116.58	3.876	3071/3
-8	16.35	*544	234	58	118'32	3 944	3081/2
9	18 36	612	236	59	120 36	4.015	309
10	20'40	680	239	60	122'40	4.080	310
11	22 44	748	241	61	124'44	4'148	311
12	24.48	'816	243	62	126'48	4'216	312
13	26 52	*884	2451/2	63	128'52	4'284	313
14	28'56	952	2471/2	64	130 56	4'352	314
15	30.60	1 020	2491/2	65	132 60	4'420	315
16	32'64	1 088	251/2	66	134'64	4'488	316
17	34.68	1 156	253½ 255½	67	136 68	4 556	317
18	36 72	1 '224	255/2	68	138.72	4'624	317/2
19	33.76	1 292	257	69	140 76	4 692	3181/2
20	40 80	1.360	259	70	142.80	4 760	319
21	42.84	1'428	261	71	144 84	4*828	320
22	41.83	1'496	2621/2	72	146 88	4.896	321
23	46 92	1 564	264	73	148 92	4 964	322
24	48 96	1 632	266	74	150.96	5.035	3221/2
25	51.00	1 700	2671/2	75	153 00	5.100	3231/2
26	53.04	1.768	269	76	155 04	5.163	324
27	55 03	1.836	2701/2	77	157 08	5.556	325
28	57 12	1 904	272	78	159 12	5 304	326
29	59.16	1'972	2731/2	79	161 16	5 372	327
30	61'20	2'040	275	80	163'20	5'440	3271/2
31	63 24 65 28	2°108 2°176	27672	81 82	165°24 167°28	5.508	328
33	67:32	2 244	279	83	169.32	5 576	329
34	69 36	2.315	2801/2	84	171 36	5'644 5'712	330 330½
35	71.40	2.312	282	85	173.40		
36	73.44	2.448	283	86	175.44	5.780 5.848	331
37	75'48	2 516	2841/2	87	177.48	5'916	332
38	77 53	2.234	286	88	179.52	5 984	333 333½
39	79.56	2.652	287	89	181 56	6.025	
40	81.60	2.720	288	90	183 60	6 120	334 335
41	83.64	2.788	289	91	185.64	6.188	3351/2
42	85 63	2.856	2901/2	92	187.68	6.256	336
43	87.72	2.951	292	93	189 72	6.354	337
44	89'76	2.993	293	94	189 72 191 76	6 392	338
45	91.80	3.060	294	95	193.80	6.460	3381/2
46	93'84	3.158	2951/2	96	195'84	6.28	339
47	95.88	3'196	297	97	197.88	6.28	340
48	97.92	3.261	293	98	199.93	6.664	3401/2
49	99 96	3.333	299	99	201'96	6.732	341
50	102.00	3'400	300	100	204.00	6.800	342

LINSEED OIL, CLARIFIED, FOR VARNISHES.—Heat in a copper boiler 50 gallons of linseed oil to 280° Fah.; add 2½ lbs. of calcined white vitriol, and keep the oil at the above temperature for half an hour; then remove it from the fire, and in twenty-four hours decant the clear oil, which should stand for a few weeks before it is used for varnish.

TABLE

Of the Pressure on a square and circular Inch, respectively, excrted by the elastic force of Steam at various degrees of Temperature, with the Height of the column of Mercury it will support.

1. PRESSURE ON A SQUARE INCH. 1. PRESSURE ON A CIRCULAR INCH. Pressure on a circular inch in lbs. Proportional pres-sure on a square inch in lbs. Inches of Mercury supported. Inches of Mercury supported. square inch in lbs. 2 Temperature, Fahrenheit. Proportional p sure on a ci Temperature, Fahrenheit. 0 220 21 222 21 1.963 5.15 3.183 6:56 222 3 6.18 224 2.356 3 3.819 7.87 223 31 2.749 7.21 226 31 4.456 9.18 225 4 4 3.141 8.24 228 5.093 10.5 227 43 3.534 9.27 230 41 5.729 11.8 228 5 3.927 10.3 232 6.366 13:1 5 230 53 4.320 11.3 234 54 7 002 14.4 231 6 4.712 12.3 235 7.639 15.7 6 63 233 61 5.105 13.4 236 8.276 17.0 7 234 5.498 14.4 238 7 8.912 18.3 73 235 5.890 15.4 239 73 9.549 19.7 8 236 6.283 16:5 241 8 10.18 21.0 81 6.676 17.5 237 242 81 10.82 22.3 239 9 7.068 18.5 244 9 11.45 23.6 240 $9\frac{1}{2}$ 7:461 19.6 245 91 12.09 24.9 20.6 247 12.73 26.2 241 10 7.85410 242 101 8.247 21.6 248 101 13.36 27.5 243 11 8.639 22.6 250 11 14.00 28 9 244 111 9.032 23.7 251 113 14.64 30.1 252 15.27 245 12 9.424 24.7 12 31.5 252 15 11.78 30.9 259 15 19.09 39.3 41.2 270 261 20 15.71 20 25.46 52.5 269 25 19.63 51.5 278 25 31.83 65.6 276 30 23:56 61.8 28730 38.19 78-7 283 35 27:49 72.1 294 35 44.56 91.8 289 40 31.41 82.4 300 40 50.92 105 294 45 35.34 92.7 305 45 57.20 118 300 39.27 309 63.66 131 50 103 50

AMALGAMS.

When mercury is alloyed with any metal the compound is called an amalgam of that metal; as, for example, an amalgam of tin, bismuth, &c.

Amalgam for Electrical Machines.

1. Fuse 1 oz. of zinc with $\frac{1}{2}$ oz. of tin, at as low a temperature as possible; then add $1\frac{1}{2}$ oz. of quicksilver, previously made hot; mix, pour out, and when cold reduce it to powder, and triturate it with sufficient quicksilver to bring it to a proper consistence.

2. Zinc 1 part; tin 1; quicksilver 2. Melt together.

3. Zinc 2 parts; tin 1; mercury 5.

4. La Beaume's. Pour into a chalked wooden box 6 oz. of quick-silver; put into an iron ladle $\frac{1}{2}$ cz. of beeswax, with 2 oz. of purified zine, and 1 oz. of grain tin; set it over a brisk fire, and when the metals are melted pour them into the box, avoiding the dross. When cold reduce it to powder, and mix it with lard. Keep it in a box covered with tallow, and spread it on leather for use.

Liquid Amalgam for Silvering Globes, &c.

Pure lead 1 oz; grain tin 1 oz.; melt in a clean ladle, and immediately add 1 oz. of bismuth. Skim off the dross, remove the ladle from the fire, and before the metal sets add 10 oz. of quicksilver. Stir together, avoiding the fumes.

Amalgam for Varnishing Plastic Figures.

Melt 2 oz. of tin with ½ oz. of bismuth, and add ½ oz. of quicksilver. When cold grind it with white of egg, and apply to the figure.

VARNISHES.

Preparations of Lac.

Stick-lac consists of twigs of several kinds of trees encrusted with a resinous matter, produced by the puncture of an insect called the cocus lacca. This, triturated with water, and dried, forms seedlac. The seed-lac, when heated and pressed in cotton bags, forms shell-lac. Lac dye is the coloring matter extracted from stick-lac by water, and evaporated to dryness, with the addition of earthy matters, and formed into square cakes. Seed-lac and shell-lac are chiefly used in varnishes, dissolved in rectified spirits, or rectified wood naphtha. The alcoholic solution is rendered paler, so that it may be used for polishing light colored woods, by digesting it in the sun, or near a fire, for two or three weeks, with good animal charcoai, and then filtering it through paper in a funnel heated with hot water. Shell-lac may be bleached by dissolving it in a solution of potash, or soda, and passing chlorine into the solution.

The precipitated lac is collected, and well washed. Kastner directs 3 parts of carbonate of potash to be dissolved in 24 of water, and 3 of lime added, and the whole digested in a close vessel for twenty-four hours. The clear liquor is poured off, and boiled with 4 parts of shell-lac. When cold, dilute with 4 times its bulk of water, and filter; then add chloride of lime, and afterwards diluted muriatic acid. With these preliminary remarks we come now to the lacquers, or varnishes.

The Famous Brilliant French Varnish for Boots and Shoes.

Take $\frac{3}{4}$ of a pint of spirits of wine; 5 pints white wine; $\frac{1}{2}$ pound of powdered gum senegal; 6 oz. loaf sugar; 2 oz. powdered galls; 4 oz. green copperas. Dissolve the sugar and gum in the wine. When dissolved, strain; then put it on a slow fire, being careful not to let it boil. In this state put in the galls, copperas, and the alcohol, stirring it well for five minutes. Then set off, and when nearly cool strain through flannel, and bottle for use. It is applied with a pencil brush. If not sufficiently black a little sulphate of iron, and half a pint of a strong decoction of logwood, may be added, with $\frac{1}{16}$ oz. pearlash.

Black Varnish,

Take any varnish, of the class you wish, 16 parts; lampblack 2 parts. Grind the black in a small quantity of the varnish, then mix it with the remainder.

Cabinet-makers' Varnish.

Pale shell-lac 700 parts; mastic 65 parts; strongest alcohol 1000 parts. Dissolve. Dilute with alcohol.

Callott's Soft Etching Varnish.

Linseed oil 8 parts; benzoin 1 part; white wax 1 part. Melt and keep it heated until reduced to two thirds.

Pale Carriage Varnish.

Copal 32 parts; pale oil 80 parts. Fuse and boil until stringy; then add dried white copperas 1 part; litharge 1 part. Boil again, then cool a little, and mix in spirits of turpentine 150 parts. Strain. While making the foregoing, take of gum animé 32 parts; pale oil 80 parts; dried sugar of lead 1 part; litharge 1 part; spirits of turpentine 170 parts. Pursue the same treatment as before, and mix the two compositions while hot.

Second Quality of Carriage Varnish.

Take of gum animé 32 parts; oil 100 parts; spirits of turpentine 150 parts; litharge 1 part; dried sugar of lead 1 part; dried copperas 1 part. Proceed as above.

Copal Varnish.

Copal 30 parts; drying oil 25 parts; spirits of turpentine 50 parts. Put the copal into a vessel capable of holding 200 parts,

and fuse it as quickly as possible, then add the oil, previously heated to nearly the boiling point. Mix well, then cool a little, and add the spirit of turpentine; again mix well, and cover up until the temperature has fallen to 140° Fah.; then strain.

To Dissolve Copal in Spirit.

Take the copal and expose it in a vessel formed like a colander to the front of a fire, and receive the drops of melted gum in a basin of cold water; then well dry them, in a temperature of about 95° Fah. By treating copal in this way it acquires the property of dissolving in alcohol.

Black Copal Varnish.

Take lamp-black, or ivory-black, in fine powder, and mix it with the varnish.

Blue Copal Varnish.

Indigo, Prussian blue, blue verditer, or ultra-marine. These substances must be powdered fine. Proceed as before.

Fine Pale Copal Varnish.

Pale African copal 1 part. Fuse, then add hot pale oil 2 parts. Boil until the mixture is stringy, then cool a little, and add 3 parts of pale spirits of turpentine. Mix well.

Flaxen Grey Copal Varnish.

Ceruse, which forms the ground of the paste, mixed with a small quantity of Cologne earth, as much English red, or carminated lake, and a particle of Prussian blue, and color the varnish therewith.

Green Copal Varnish.

Verdigris, crystallized verdigris, compound green (a mixture of yellow and blue). The first two require a mixture of white in proper proportions, from a fourth to two-thirds, according to the tint intended to be given. The white used for this purpose is ceruse, or the white oxide of lead, or Spanish white. Proceed as before.

Improved Copal Varnish.

Caoutchoucine (white and scentless), strong alcohol, equal parts; copal in the proportion of two pounds to a gallon. Digest in a close vessel, without heat, for one week.

Pearl Grey Copal Varnish.

White and black; white and blue; for example, ceruse and lamp-black; ceruse and indigo. Mix them with the varnish, according to the tint required.

Purple Copal Varnish.

Prussian blue and vermilion, or any other blue and red; then proceed as before.

Red Copal Varnish.

1. Vermilion, red oxide of lead (minium), red ochre, or Prussian red, &c., and proceed as before.

2. Dragon's blood, brick red, or Venetian red, &c., and proceed

as before.

Violet Copal Varnish.

Vermilion, blue, white, in proportions required to color the varnish.

White Copal Varnish.

Copal 16 parts; melt, and add hot linseed oil 8 parts; spirits of turpentine 15 parts; finest white lead to color.

Yellow Copal Varnish.

Yellow oxide of lead, or Naples and Montpelier, both reduced to impalpable powder. These yellows are hurt by contact with iron or steel. In mixing them, therefore, a horn spatula, with a glass mortar and pestle, must be employed. Or gum guttæ, yellow ochre, or Dutch pink, according to the nature and tone of the color to be imitated, and proceed as before.

Mastic Varnish.

Gum mastic 5 pounds; spirits of turpentine 2 gallons. Mix with a moderate heat (carefully applied), in a close vessel, then add pale turpentine varnish 3 pints. Mix well.

Another.

Mastic 1 pound; white wax 1 ounce; oil of turpentine 1 gallon. Reduce the wax and mastic small, then digest in a close vessel, with heat, until dissolved.

Common Oil Varnish.

Resin 4 pounds; genuine beeswax $\frac{1}{2}$ pound; boiled oil 1 gallon. Mix with heat, then add spirits of turpentine 2 quarts.

Turpentine Varnish.

Resin 1 part; boiled oil 1 part. Melt, then add turpentine 2 parts. Mix well.

White Hard Spirit Varnish.

Gum sandarach $2\frac{1}{2}$ pounds; alcohol (65 op.) 1 gallon. Place them in a strong, well closed vessel, and apply the heat of warm water, with occasional agitation, until dissolved; then add pale turpentine varnish 1 pint. Mix well, and let the whole rest for twenty-four hours, when it will be ready for use.

White Spirit Varnish.

Strongest alcohol 100 parts; sandarach 25 parts; tears mastic 6 parts; elemi 3 parts; Venice turpentine 3 parts. Dissolve in a closely corked vessel.

Varnish for Toys.

Copal 7 parts; mastic 1 part; Venice turpentine ½ part; strongest alcohol 11 parts. Dissolve the copal first, with the aid of a little camphor, then add the mastic, &c., and thin with alcohol, as required.

To Clean Varnish.

Use a ley of potash, or soda, mixed with a little powdered chalk. Do not make the liquor too strong of the alkali.

To Polish Varnish.

Take 2 oz. powdered tripoli, put it in an earthen pot, with water to cover it; then take a piece of white flannel, lay it over a piece of cork or rubber, and proceed to polish the varnish, always wetting it with the tripoli and water. It will be known when the process is finished by wiping a part of the work with a sponge, and observing whether there is a fair even gloss. When this is the case, take a bit of mutton suet and fine flour, and clean the work.

Varnish for Harness.

Take ½ pound of India-rubber; one gallon of spirit of turpentine; dissolve enough to make it into a jelly; then take equal quantities of good hot linseed oil, and the above mixture. Incorporate them well on a slow fire, and it is fit for use.

A Varnish for Fastening the Leather on Top Rollers in Factorics.

Dissolve $2\frac{3}{4}$ oz. of gum arabic in water; and a like amount of isinglass dissolved in brandy, and it is fit for use.

A Varnish to Preserve Glass from the Rays of the Sun.

Reduce a quantity of gum tragacanth to fine powder, and let it dissolve for twenty-four hours in white of eggs well beat up; then rub it gently on the glass with a brush.

A fine Black Varnish for Coaches and Iron Work.

Bitumen of Palestine 2 oz.; resin 2 oz.; umber 12 oz. Melt them separately, and then mix together over a moderate fire. Then pour upon them, while on the fire, 6 oz. clear boiled linseed oil, stirring the whole from time to time. Take it off the fire, and when moderately cool pour in 12 oz. of essence of turpentine.

Varnish for Clock Faces.

Spirits of wine 1 pint; divide it into four parts; mix one part with $\frac{1}{2}$ an oz. of gum mastic in a bottle by itself; one part of spirit and $\frac{1}{2}$ oz. gum sandarach in another bottle; and one part spirit and $\frac{1}{2}$ oz. whitest part of gum benzoin. Mix and temper them to suit; if too thick add spirit; if too thin a little mastic; if too soft some sandarach or benzoin. When about to use it warm the silvered plate before the fire, and with a flat camel-hair pencil stroke it over till no white streaks appear; this will preserve it for many years.

Brown Varnish.

Rectified spirit 2 gallons; sandarach 3 pounds; shell-lac 2 pounds; pale turpentine varnish 1 quart. Put them into a tin bottle, cork securely, and agitate frequently, placing the tin occasionally in hot water till the gum is dissolved, then add a quart of pale turpentine varnish.

Brilliant Amber Spirit Varnish.

Fused amber 4 oz; sandarach 4 oz; mastic 4 oz; highly rectified spirit 1 quart. Expose to the heat of a sand bath, with occasional agitation, till dissolved. The amber is fused in a close copper vessel, having a funnel-shaped projection, which passes through the bottom of the furnace by which the vessel is heated.

Chinese Varnish.

Mastic 2 oz.; sandarach 2 oz.; rectified spirit 1 pint. Close the matrass with bladder, with a pin hole for the escape of vapor; heat to boiling in a sand or water bath, and when dissolved strain through linen.

Crystal Varnish.

Picked mastic 4 oz.; rectified spirit 1 pint; animal charcoal 1 oz. Digest, and filter.

Picture Varnish.

Chio turpentine 2 oz.; mastic 12 oz.; camphor ½ drachm; pounded glass 4 oz.; rectified oil of turpentine 3 pints. This is for oil paintings.

Canada Varnish.

Clear balsam of Canada 4 oz.; camphene 8 oz. Warm gently, and shake together till dissolved. This varnish is for maps, drawings, &c., which must be first sized over with a solution of isinglass, taking care that every part is covered. When dry, the varnish is brushed over it.

Tingry's Essence Varnish.

Powdered mastic 12 oz.; pure turpentine $1\frac{1}{2}$ oz.; camphor $\frac{1}{2}$ oz.; powdered glass 5 oz.; rectified oil of turpentine 1 quart.

Common Turpentine Varnish.

This is merely clear pale resin, dissolved in oil of turpentine; usually 5 pounds of resin to 7 pounds of turpentine.

Amber Varnish.

Amber 16 oz; melt in an iron pot, and add ½ pint of drying linseed oil, boiling hot, and add 3 oz. resin, and 3 oz. asphalte, each in fine powder. Stir till they are thoroughly incorporated; remove from the fire, and add a pint of warm oil of turpentine.

Balloon Varnish.

Melt india-rubber in small pieces with its weight of boiled linseed oil, and thin it with oil of turpentine.

Varnish for Engraving on Copper.

Yellow wax 1 oz.; mastic 1 oz.; asphaltum ½ oz. Melt, pour into water, and form into balls for use. A softer varnish for engravers is made thus: Tallow 1 part, and 2 of yellow wax; or, with 2 oz. wax, 1 drachm common turpentine, and 1 drachm olive oil.

Etching Varnishes.

White wax 2 oz.; asphaltum 2 oz. Melt the wax in a clean pipkin, add the asphaltum in powder, and boil to a proper consistence. Pour it into warm water, and form it into balls, which must be kneaded, and put into taffeta for use.

Another.

White wax 2 oz.; Burgundy pitch $\frac{1}{2}$ oz.; black pitch $\frac{1}{3}$ oz.; melt together, and add by degrees 2 oz. powdered asphaltum, and boil it till a drop cooled on a plate becomes brittle.

Another.

Equal quantities of linseed oil and mastic, melted together.

Engraving Mixture for Writing on Steel.

Sulphate of copper 1 oz; sal ammoniac ½ oz. Pulverize separately, adding a little vermilion to color it, and mix with 1½ oz. vinegar. Rub the steel with soft soap, and write with a hard, clean pen, without a slit, dipped in the mixture.

Elching Fluids.

For Copper.—1. Aquafortis 2 oz.; water 5 oz. Mix.

2. Callot's Eau Forte for Fine Touches.—Dissolve 4 parts each of vordigris, alum, sea salt, and sal ammoniac, in 8 parts vinegar; add 16 parts water, boil for a minute, and let it cool.

For Steel.—1. Iodine 1 oz.; iron filings ½ drachm; water 4 oz.

Digest till the iron is dissolved.

2. Pyroligneous acid 4 parts by measure; alcohol 1 part. Mix, and add 1 part double aquafortis (sp. gr. 1.28). Apply it from 1½ to 15 minutes.

Varnish for Engraving on Glass.

Wax 1 oz.; mastic ½ oz.; asphaltum ¼ oz.; turpentine ½ drachm.

Another.

Mastic 15 parts; turpentine 7; oil of spike 4.

Le Blond's Varnish.

Keep 4 pounds balsam of copaiva warm in a sand or water bath, and add 16 oz. of copal, previously fused and coarsely powdered, by single ounces, daily, and stir it frequently. When dissolved add a little Chio turpentine.

Sealing Wax Varnish.

Black or colored sealing wax, broken small, and sufficient rectified spirit to cover it; digest till dissolved.

Black Japan.

Boil together a gallon of boiled linseed oil, 8 oz. umber, and 3 oz. asphaltum. When sufficiently cool thin it with oil of turpentine.

Brunswick Black.

Melt 4 pounds asphaltum, add 2 pounds hot linseed oil, and when sufficiently cool add 1 gallon oil of turpentine.

Varnish for Gun Barrels, after browning them.

Shell-lac 1 oz; dragon's blood \(\frac{1}{4} \) oz; rectified spirit 1 quart. Dissolve and filter.

Transfer Varnish.

Alcohol 5 oz.; pure Venice turpentine 4 oz.; mastic 1 oz.

Hair Varnish.

Dissolve 1 part of clippings of pigs' bristles, or horsehair, in 10 parts of drying linseed oil, by heat. Fibrous materials (cotton, flax, silk, &c.), imbued with the varnish and dried, are used as a substitute for hair cloth.

Glass Varnish.

This is a solution of soluble glass, and is thus made: Fuse together 15 parts powdered quartz (or fine sand), 10 parts potash, and I charceal. Pulverize the mass, and expose it for some days to the air; treat the whole with cold water, which removes the foreign salts, &c.; boil the residue in 5 parts of water until it dissolves. It is permanent in the air, and not dissolved by water. This varnish is used to protect wood, &c., from fire.

Varnish for Gilded Articles.

Gum-lac 4 parts; dragon's blood 4; annatto 4; gamboge 4; safiron 1. Dissolve each resin separately in 8 parts alcohol, and make a separate tincture with the dragon's blood and annatto, also in 8 parts alcohol each; then mix the former together, and add a sufficient quantity of the tinetures to give the required shade and color to the varnish.

Gold Varnishes.

Turmeric 1 drachm; gamboge 1 drachm; oil of turpentine 2 pints; shell-lac 5 ounces; sandarach 5 oz.; dragon's blood 7 drachms; thin mastic varnish 8 oz. Digest, with occasional agitation, for fourteen days, in a warm place; then set it aside to fine, and pour off the clear.

Another.

Dutch leaf 1 part; gamboge 4; gum dragon 4; proof spirit 18. Macerate for twelve hours, then grind on a stone slab.

Varnish for Water Color Drawings.

Canada balsam 1 pint; oil of turpentine 2 parts, mixed. Size the drawing before applying the varnish.

Earthenware Varnish.

Flint glass 1 part; soda 1. Mix.

Magilp.

Mastic varnish 1 part; drying oil 2. Mix.

Another.

Mastic varnish 1 part; drying oil 1. Mix.

Another.

Equal parts of mastic varnish, drying oil, and turpentine. Mix.

Metallic Varnish for Coach Work, &c.

Asphaltum 56 pounds. Melt, then add litharge 9 pounds; red lead 7 pounds; boil, then add boiled oil 12 gallons; yellow resin 12 pounds. Again boil, until in cooling the mixture may be rolled into pills; then add spirit of turpentine 30 gallons; lampblack 7 pounds. Mix well.

Impermeable Varnish.

Boiled oil 100 parts; finely powdered litharge 6 parts; genuine beeswax 5 parts. Boil until sufficiently thick and stringy, then pour off the clear.

Engravers' Stopping-out Varnish.

Take lampblack and turpentine to make a paste.

PRACTICAL TABLES.

WEIGHT OF METALS-WROUGHT IRON; SQUARE, ROUND, AND FLAT.

Table 1. contains the weight of Square Iron in sizes, from $\frac{1}{2}$ inch to six inches square, advancing by $\frac{1}{3}$ inch; and from 6 to 12 inches square, advancing by $\frac{1}{4}$ inch; and in lengths, from 1 foot to 18 feet. The sizes are arranged in the first column of each page, and the lengths along the top; the weight in lbs. immediately under the lengths, and in a line with the sizes.

Table II. contains the weight of Round Iron in sizes from $\frac{1}{4}$ inch to 6 inches diameter, advancing by $\frac{1}{6}$ inch; and from 6 to 12 inches diameter, advancing by $\frac{1}{4}$ inch; and in lengths, from 1 foot to 18 feet. The sizes, lengths, and weights are arranged as in Table I.

Table III. contains the weight of Flat Iron in widths, from 1 inch to 6 inches diameter, advancing by 1 inch; in thicknesses, from 1 inch to 1 inch, advancing by 1 inch; and in lengths, from 1 to 18 feet. The widths, lengths, and weights are arranged as in the preceding tables, and the thicknesses alongside of the widths.

The tables are all calculated to the nearest tenth of a pound. To the weights of bars of Wrought Iron add \(\frac{1}{160}\text{th}\) part for bars of soft steel; and from the same weights subtract \(\frac{1}{14}\text{th}\) part for bars

of Cast Iron.

TABLE I.

Size.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
Inch.	lbs.	ibs.	lbs.						
1	0.2	0.4	0.6	0.8	1.1	1.3	1.5	1.7	3.6
3	0.5	1.0	1.4	1.9	2.4	2.9	3.3	3.8	4.5
S 1/2 5/8 S 4 7/8	0.8	1.7	2.5	3.4	4.2	5.1	5.9	6.8	7.0
5	1.3	2.6	4.0	5.3	6.6	7.9	9.2	10.6	. 11:9
84	1.9	3.8	5.7	7.6	9.5	11.4	13.3	15.2	17:1
78	2.6	5.2	7.8	10.4	12.9	15.5	18.1	20.7	23.8
1	3.4	6 8	10.1	13.5	16.9	20.3	23.7	27.0	30.4
14	4.3	8.6	12.8	17.1	21.4	25.7	29.9	34.2	38.5
1\frac{1}{4} 1\frac{3}{8} 1\frac{1}{2}	5.3	10.6	158	21.1	26.4	31.7	37.0	42.2	47.5
18	6.4	12.8	19.2	25.6	32.0	38.3	44.7	51.1	57.5
$1\frac{1}{2}$	7.6	15.2	22.8	30.4	38.0	45.6	53.2	60.8	68.4
18	8.9	17.9	26.8	35.7	44.6	53.6	625	71.4	80.3
1\frac{3}{4} 1\frac{7}{8}	10.4	20.7	31.1	41.4	51.8	62 1	72.5	82.8	93.5
178	11 9	23.8	35.6	47.5	59.4	71.3	83.2	95.1	106.9
2	13.5	27.0	40.6	54.1	67.6	81.1	94.6	108.2	121.7
21	15.3	30.5	45.8	61.1	76.3	91.6	106.8	122.1	137.4
21	17.1	34.2	51.3	68.4	85.6	102.7	119.8	136.9	154.0
$2\frac{3}{8}$ $2\frac{1}{2}$	19.1	38.1	57.2	76.3	95.3	114.4	133.5	152.5	171.6
$2\frac{1}{2}$	21.1	42.2	63.4	84.5	105.6	126.7	147.8	169.0	190.1
25	23.3	46.6	69.9	93.2	116.5	139.8	163.0	186.3	209.6
$2\frac{3}{4}$ $2\frac{7}{8}$	25.6	51.1	76.7	102.2	127.8	153.4	178.9	204.5	530.0
$2\frac{7}{8}$	27.9	55.9	83.8	111.8	139.7	167.6	195.7	223.5	251.5
3	30.4	60.8	91.2	121.7	152.1	182.5	212.9	243.3	273.7
31/8	33.0	66.0	99.0	132.0	165.1	198.1	231.1	264.1	297.1
31	35.7	71.4	107.1	142.8	178.5	214.2	249.9	285.6	321.3
38	38.5	77.0	115.5	154.0	192.5	231.0	269.5	308.0	346.5
31	41.4	82.8	124.2	165.6	207.0	248.4	289.8	331.3	372.7
35	44.4	88.8	133.3	177.7	222.1	266.5	310.8	355.3	399.8
34	47.5	95.1	142.6	190.1	237.7	285.2	332.7	380:3	427.8
37	50.8	101.5	152.3	203.0	253.8	304.5	355.3	406.0	456.8

TABLE I.

Size.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
Inch.	lbs.	. lbs.	lbs.						
4	2.1	2.3	2.5	2.7	3.0	3.2	3.4	3.6	3.8
8	4.8	5.2	5.7	6.2	6.7	7.1	7.6		8.6
ıış	8.5	9.3	10.1	11.0	11.8	12.0	13.5		
5	13.2	14.5	15.8	17.2	18.5	19.8	21.1		23.8
84	19.0	20.9	22.8	24.7	26.6	28.5	30.4	32.3	34.2
Sto 1/21 5to std 7/8	25.9	28.5	31.1	33.6	36.2	38.8	41.4	44.0	46.6
1	33.8	37.2	40.6	43.9	47.3	50.7	54.1	57.5	60.8
11/8	42.8	47.1	51.3	55.6	59.9	64.2	68.4		77.0
11	52.8	58.1	63.4	68 6	73.9	79.2	84.5	89.8	95.0
18	63.9	703	76.7	83.1	89.5	95.9	102.2		115.0
11	76.0	83.6	91.2	95.9	106.5	114.1	121.7	129.3	136.9
18	89.3	98.2	107.1	116.0	125 0	133.9	142.8	151.7	160.7
13	103.5	133.9	124.2	134.6	144.9	1553	165.6	176.0	186.3
17/8	118.8	130.7	142.6	154.5	166.4	178.2	190.1	202.0	213.9
2	135.2	148.7	162.2	175.8	189.3	202.8	216.3	229.8	243.4
21	152.6	167.9	183.2	198.4	213.7	228.9	244.2	259 5	274.7
21	171.1	188.2	205.3	222.5	239.6	256.7	273.8	290.9	308.0
23	190.7	209.7	228.8	247.9	266.9	286.0	305.1	324.1	343.2
21	211.2	232.3	253.4	274.6	295.7	316.8	337.9	359.0	380.2
$2\frac{5}{8}$ $2\frac{3}{4}$	232.9	256.2	279.5	302.8	326.1	349.4	372.7	396.0	419.3
23	255.6	281.2	306.7	332.3	357.8	383.4	409.0	434.5	460.1
27/8	279.4	307.3	335.3	363.2	391.1	419.1	447.0	475.0	502.9
3	304.2	334.6	365.0	395.4	425.8	456.2	486.7	517.1	547.5
31	330.1	363.1	396.1	429.1	462.1	495.2	528.2	561.2	594.2
34	357.0	392.7	428.4	464.2	499.9	535.6	571.3	607.0	642.7
38	385.0	423.5	462.0	500.5	539.0	577.5	616.0	654.6	693.1
31/2	414.1	455.5	496.9	538 3	579.7	621:1	662.5	703.9	745.3
35	444.2	488.6	533.0	577.4	621.9	666.3	710.7	755.1	799.5
38	475.3	522.9	570.4	617.9	665.5	713.0	760.5	808.1	855.6
37	507.6	558.3	609.1	659.8	710.6	761.3	812.1	862.9	913.6

TABLE I.

SQUARE IRON.

				1	1		1		
Size.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
Inch.	lbs.	lbs.	lbs.	lbś.	lbs.	lbs.	lbs.	lbs.	lbs.
4	54.1	108.2	162.3	216.3	270.4	324.5	378.6	432.7	486.8
41	57.5	115.0	172.6	230.1	287.6	345.1	402.6	460.1	517.7
41	61.1	122.1	183.2	244.2	305.3	366.3	427.4	488.4	549.5
48	64.7	129.4	194.1	258.8	323.5	388.2	452.9	517.6	582.3
41	68.4	136.9	205 3	273.8	342.2	410.7	479.1	547.6	616.0
45	72.3	144.6	216 9	289.2	361.5	433.8	506.1	578.4	6507
43	76.3	152.5	228.8	305.1	381.3	457.6	533.8	610.1	686.4
$4\frac{7}{8}$	80.3	160.7	241.0	321.3	401.7	482.0	562.3	642.7	723.0
5	84.5	169.0	253.4	337.9	422.4	506.9	591.4	675.8	760.3
51	88.88	177.6	266.4	355.1	443.9	532.7	621.5	710.3	799.1
$5\frac{1}{4}$	93.2	186.8	279.5	372.7	4658	559.0	652.2	745.3	838.5
58	97.7	195.8	293.0	390.6	488.3	585.9	683.6	781.3	878.9
$5\frac{1}{2}$	102.2	204.5	306.7	409.0	511.2	613.4	715.7	817.9	920.2
5 5	107.0	213.5	350.8	427.8	534.8	641.7	748.7	855 €	962.6
$5\frac{3}{4}$	111.8	223:5	335.3	447.0	558.8	670.5	782.3	894.0	1005.8
5 7 8	116.7	233.3	350.0	466.7	583.4	700.0	816.7	933.4	1050.0
6	121.7	243.3	365 ·0	486.7	608.3	730.0		973.3	1095.0
61	132.0	264.1	396.1	528.2	660.2	792.2		1056.5	
$6\frac{1}{2}$	142.8	285℃	428.4	571.3	714.1	856.9		1142.5	1285.3
63	154.0	303.0	462.0	616.0	770.1	924.1	1078.1	1232-1	1386.1
7	165.6	331.2	496.9	662.5	828-2		1159.4		1490.7
71	177.7	355.3	533.0	710.7		1066.0			1599.0
71	190.1	380.3	570.4	760.5		1140.8			1711.2
73	203.0	406.0	609.1	812.1	1015.1	1218.1	1421.2	1624.2	1827.2
111	16			Abb w	44	148.9	Here's	17/2 0	-
8	216.3	432.7	649.0	865.3	1081.7	1298.0	1514.4	17307	1947.0
8‡	230.1	460.1	690.2	920.3	1150.3	1380.4	1610.5	1840.5	2070.6
$8\frac{1}{2}$	244.2	488 4	732.7	976.9	1221.1	1465.3	1709.5	1953.8	2198.0
834	258.8	517.6	776.4	1035.2	1294.0	1552.8	1811.6	2070.4	2329.2
9	273.8	547 6	821.4	1095.2	1369.0	1642.8	1916.5	2190.3	2564·1

TABLE I.

SQUARE IRON.

Size.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
Inch.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
4	540.8	594.9	649.0	703.1	757-2	811.3	865.3	919.4	973.5
41	575.2		690.2	747.7		862.8			1035.3
41	610.6			793.7				1037.9	
43	646.0	711.7	776.4	841.1		970.5		1099.9	
41	684 5	752.9	821.4	889.8		1026.7	1095.2	1163.6	
45	723.1	795.4			1012.3			1229.2	
48	762.6				1067.7				
47/8	803.3			1044.3			1285.3		
5				1098.2				1436.2	
51/8				1154.2			1420.5	1509.3	1598.1
$5\frac{1}{4}$				1211.2			1490.7	1583.9	1677.0
53	976.6	1074.2	1171.9	1269.5	1367.2	1464.9	1562.5	1660.2	1757.8
$5\frac{1}{2}$	1022.4	1124.6	1226.9	1329.1	1431.4	1533.6	1635.8	1738.1	1840.3
55	1069.5	1176.5	1283.4	1390.4	1497.3	1604.3	1711.2	1818.2	1925.2
54	1117.6	1229.3	1341.1	1452.8	1564.6	1676.3	1788.1	1899.9	2011.6
$5\frac{7}{8}$	1160.0	1283.4	1400.1	1516.7	1633.4	1750-1	1866.7	1983.4	2100.1
6								2068.3	
$6\frac{1}{4}$								2244.7	
$6\frac{1}{2}$								2427.9	
63	1540.1	1694.1	1848.1	2002.2	2056.2	2310.2	2464.2	2618.2	2772.2
7								28157	
74								3020.4	
$7\frac{1}{2}$								3232.3	
74	2030.2	2233:3	2436.3	2639.3	2842.3	3045.4	3248.4	3451.4	3654.4
8	2163.4	2379.7	2596.0	2812.4	3028.7	3245.0	3461.4	3677.7	3894.0
81	2300.7	2530.7	2760.8	2990.9	3220.9	3451.0	3681.1	3911.1	4141.2
$8\frac{1}{2}$	2442.2	2686.4	2930.6	3174.9	3419.1	3663.3	3907.5	4151.7	4396.0
8#	2588.0	2846.8	3105 6	3364.4	3623.2	3882.0	4140.8	4399.6	4658.4
9	2737.9	3011.7	3285.5	3 5 59·3	3833·1	4106.9	4380.7	4654.5	4928.3

TABLE I.

Size.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
Inch.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
91	289.2	578.4	867.7	1156.9	1446:1	1735.3	2024.5	2313.8	2603.0
$9\frac{1}{2}$	305.1	610.1	915.2	1220.2	1525.3	1830.3	2135.4	2440.4	2745.5
93	321.3	642.7	964.0	1285:3	1606 7	1928.0	2249.3	2570.7	2892.3
10	337.9			1351.7					
$10\frac{1}{4}$	355.1			1420.5					
$10\frac{1}{2}$	372.7			1490.7					
103	390.6	781.3	1171.9	1562.5	1953.1	2343.8	2734.4	3125.0	3515 7
11	409.0	817.9	1226.9	1635.8	2044.8	2453.8	28627	3271.7	36 8 0·6
111	427.8	855.6	1283.4	1711.2	2139.1	2566.9	2994.7	3422.5	3850.3
$11\frac{1}{2}$	447.0			1788.1					
118	466.7	933.4	1400.1	1866.7	2333.4	2800.1	3266.8	3733.5	4200.2
	100 5	0 10 0		1010		2010		2222	
12	486.7	973.3	1460.0	1946.6	2433.3	2919.9	3406.6	3893.2	4379.9

GLAZES.—Common earthenware is glazed with a composition containing lead, on which account it is unfit for many pharmaceutical purposes. The following glaze has been proposed, among others, as a substitute: 100 parts of washed sand, 80 of purified potash, 10 of nitre, and 20 of slaked lime; all well mixed, and heated in a blacklead crucible, in a reverberatory furnace, till the mass flows into a clear glass. It is then to be reduced to powder. The goods to be slightly burnt, placed under water, and sprinkled with the powder.

GLAZE FOR PORCELAIN.—Feldspar 27 parts, borax 18, Lynn sand 4, nitre 3, soda 3, Cornwall china clay 3 parts. Melt together to form a frit, and reduce it to a powder, with 3 parts of calcined borax.

Solvent for Old Putty and Paint.—Soft soap mixed with solution of potash or caustic soda; or pearlash and slaked lime mixed with sufficient water to form a paste. Either of these laid on with an old brush or rag, and left for some hours, will render it easily removable.

TABLE I.

SOUARE IRON.

Size.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
Inch.	lbs.								
91	2892.2	3181.4	3470.6	3759.9	4049.1	4338.3	4627.5	4916.7	5206.0
91	3050.6	3355.6	3660.7	3965.7	4270.8	4575.8	4880.9	5186.0	5491.0
93	3213.3	3534.7	3856.4	4177.3	4498.6	4820.0	5141.3	5462.6	5784.0
							100		
10	3379.2	3717.1	4055.0	4393.0	4730.9	5068.8	5406.7	5744.6	6082.6
101	3551.4	3906.5	4261.6	4616.8	4971.9	5327.0	5682.2	6037.3	6392.4
101	3726.7	4099.4	4472.1	4844.7	5217.4	5590.1	5962.8	6335.4	6708.1
103	3906.3	4297.0	4687.5	5078.2	5468.8	5859.4	6250.0	6644.7	7031.3
11	4089.6	4498.6	4907.4	5316.5	5725.4	6134.4	6543.4	6952.3	7361·3
111									7700.6
113	4470.2	4917.3	5364:3	5811.3	6258.3	6705.4	7152.4	7599.4	8046.4
113	4666.8	5133.5	5600.2	6066.9	6533.6	7000:3	7466.9	7933.6	8400.3
12	4866.6	5353.2	5839.9	6326.5	6813.2	7299.8	7786.5	8273.2	8759.8

Scouring Drops for Removing Grease.—1. Alcohol (pure) 6 oz., camphor 2 oz., rectified essence of lemon 8 oz.

- 2. Camphene 3 oz., essence of lemon 1 oz. Mix. Some direct them to be distilled together.
- 3. French. Camphene 8 oz., pure alcohol 1 oz., sulphuric ether 1 oz., essence of lemon 1 dr.
- 4. Spirits of wine 1 pint, white soap 3 oz., ox gall 3 oz., essence of lemon 1 oz.

Balls, Heel.—1. Melt together 4 oz. of mutton suet, 1 oz. of beeswax, 1 oz. of sweet oil, ½ oz. oil of turpentine, and stir in 1 oz.

of powdered gum arabic, and ½ oz. of fine lampblack.

2. Beeswax 8 oz., tallow 1 oz., powdered gum 1 oz., lampblack q. s. These are used not merely by the shoemaker, but to copy inscriptions, raised patterns, &c., by rubbing the ball on paper laid over the article to be copied. For copying ancient monumental brasses, a similar compound, colored with bronze powder instead of lampblack, is sometimes employed.

TABLE II.

ROUND IRON.

Size.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
Inch.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
1	0.2	0.3	0.5	0.7	0.8	1.0	1.2	1.3	1.5
3	0.4	0.7	1.1	. 1.5	1.9	2.2	2.6	3.0	3.4
1	0.7	1.3	2.0	2.7	3.3	4.0	4.6	5.3	6.6
5	1.0	2.1	3.1	4.2	5.2	6.3	7.3	8.3	9.4
3	1.5	3.0	4.5	6.0	7.5	9.0	10 5	11.9	13.4
14 550 1/2 550 8/4 7/8	2.0	4.1	6.1	8.1	10.2	12.2	14.2	16.3	18:3
1	2.7	5 ·3	8.0	10.6	13.3	15.9	18.6	21.2	23.9
11	3.4	6.7	10.1	13.4	16.8	20.2	23.5	26.9	30.2
14	4.2	8.3	12.5	16.7	20.9	25.0	29 2	33.4	37.5
18	5.0	10.0	15.1	20.1	25.1	30.1	35.1	40.2	45.2
18/8 11/2	6.0	11.9	17.9	23.9	29.9	35.8	41.8	47.8	53.7
15	7.0	14.0	21.0	28.0	35.1	42.1	49.1	56.1	63.1
15 13	8.1	16.3	24.4	32.5	40.6	48.8	56.9	65.0	73.2
17/8	9.3	18.7	28.0	37.3	46.7	56.0	65.3	74.7	84.0
. 2	10.6	21.2	31.8	42.5	53.1	63.7	74.3	84.9	95.5
	12.0	24.0	36.0	48.0	59.9	71.9	83.9	95.9	107.9
$ \begin{array}{c} 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{3}{8} \\ 2\frac{1}{4} \end{array} $	13.5	26.9	40.3	53.8	67.2	80.6	94.1	107.5	121.0
28	15.0	30.0	44.9	60.0	74 9	89.9	104.8	119.8	134.8
24	16.7	33.4	50.1	66.8	83.4	100.1	116.8	133.5	150.2
25	18.8	36.6	54.9	73.2	91.5	109.8	128.1	146.3	164:6
23	20.1	40.2	60.2	80.3	100.4	120 5	140.5	160.6	180.7
28 27 27	21.9	43.9	65.8	87 8	109.7	131.7	153.6	175.6	1,97;5
10					11	1200	1-0	27 10	Ba
3	23.9	47.8	71.7	95.6	119.4	143 ?	167.2	1911	215 0
31	25.9	51.9	77.8	1037	129.6	155.6	181.5	207.4	233-3
31	28.0	56.1	84.1	112.2	140.2	168.2	196.3	224.3	253.4
38	30.2	60.5	90.7	121.0	151.2	181.4	2117	241 9	272.2
314 314 38 312	32.5	65.0	97.5	130.0	162.6	195.1	227.6	260.1	292.6
35	34.9	69.8	104.7	139.5	174.4	209.3	244.2	279.1	314.0
38	37.3	74.7	112.0	149.3	186.7	224.0	261.3	298.7	336.0
37	39.9	79.7	119.6	159.5	199.3	239.2	279.0	318.9	358.8

TABLE II.

Size.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
Inch.	lbs.								
1	1.7	1.8	2.0	2.1	2.3	2 5	2.6	2.8	3.0
3	3.7	4.1	4.5	4.8	5.2	5.6	6.0	6.3	6.
14 30 12 50 34 78	6.6	7.3	8.0	8.6	9.3	99	10 6	11.3	11.
5 8	10.4	11.5	12.5	13.6	14.6	15.6	16.7	17.3	18
34	14.9	16.4	17.9	19.4	20.9	224	23.9	25.4	26
7 8	20.3	22.4	24.4	26.4	28.4	30.5	32.5	34.5	36.
1	26.5	29.2	31.8	34 5	37.2	39 8	42.5	45.1	47:
11	33.6	37.0	40.3	43.7	47.0	50.4	53.8	57.1	60
11	41.7	45.9	50.1	54.2	58.4	62.6	66.8	70.9	75.
18	50.2	55.2	60.2	65.2	70.3	75.3	803	853	90.
11	59.7	65.7	71.7	77.6	83.6	89.6	95 6	101.5	107
15	70.1	77.1	84.1	91.1	98.1	105.2	112.2	119.2	126
13	81.3	89.4	97.5	105.7	113.8	121.9	130.0	138.2	146
17/8	93.3	102.7	112.0	121.3	130.7	140.0	149.8	158.7	168
2	106.2	116.8	127.4	138.0	148.6	159 2	169.9	180.5	192:
21	119.9	131.9	143.9	155.8	167.8	179.8	181 8	193.8	205
21	134.4	147.8	161.3	174.7	188.2	201.6	215.0	228.5	241
28	149.8	164.7	179.7	194.7	209.7	224.6	239.6	254.6	269
$2\frac{1}{2}$	166.9	183.6	200.3	216.9	233.6	250.3	267.0	283.7	300:
25	182.9	201.2	219.5	237.8	256.1	274.4	292.7	311.0	329
24	200.8	220.8	240.9	261.2	281.1	301.1	321.2	341.3	361
27/8	219.4	241.4	263.4	285.3	307.2	329.2	351.1	373.0	395
3	238.9	262.8	286.7	310.5	334.4	358.3	382.2	406.1	430
31	259.3	285.2	311.1	337.0	363.0	388.9	414.8	440.7	466
31	280.4	308.4	336.5	364.5	392.6	420.6	448.6	476.7	504
38	302.4	332.6	362.9	393.1	423 4	453.6	483 8	514.1	544
31	325.1	357.6	390.1	422.7	455.2	487.7	520.2	552.7	585
35	348.9	383.7	418.6	455.5	488.4	523.3	558.2	593.1	627
38	373.3	410.7	448.0	486.3	522.6	560.0	597.3	634.6	672
37	398.6	438.5	478.3	518.2	558.1	598.0	637.8	677.7	717

TABLE IL

Size.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
Inch.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs,
4	42.5	84-9	127.4	169.9	212.3	254 8	297.2	339-7	382.2
41	45.2	90.3	135.5	180.7	225.9	271.0	316.2		
41	48.0	95.9	143.9	191.8	239.8	287.7			
48	50.8	101.6	152.4	203.3	254.1	304.9	355.7	406.5	457 8
41	53.8	107.5	161.3	215.0	268.8	322.6	376.3	430.1	483.8
45	56.8	113.6	170.4	227.2	283 9	340.7	397.5	454.3	511.1
48	60.0	119.8	179.7	239.6	299.5	359.4	419.3	479.2	539.1
$4\frac{7}{8}$	63.1	126.2	189.3	252.4	315.5	378.6	441.7	504.8	567.8
5	66.8	133.5	200.3	267.0	333.8	400.5	467.3	534.0	600.8
51	69.7	139.5	209.2	278.9	348.7	418.4	488-1	557.8	627.6
51	73.2	146.3	219.5	292.7	365.9	439.0			
5 3	76.7	153.4	230.1	306.8	383.5	460.2	536.9	613.6	690.3
51	80.3	160.6	240.9	321.2	401.5	481.8	562.1	642.4	7227
55	84 0	168.0	252.0	336.0	420.0	504.0	588.0	672.0	756.0
53	87.8	175.6	263.3	$351 \cdot 1$	438.9	526.7	614.4	702.2	790.0
5 7	91.6	183.3	274.9	366.5	458.2	549.8	641.4	733.1	824.7
6	95.6	191.1	286.7	382.2	477.8	573.3		764.4	860.0
61	103.7	207.4	311.1	414.8	518 5	622.2	725.9	829.6	
$6\frac{1}{2}$	112.2	224.3	336 5	4486	560.8	673.0			1009.4
63	121.0	241.9	362.9	483.8	604.8	725.8	846.7	967.6	1088-6
7	130.0	260.1	390.1	520.2	650.2	780.3		1040.4	
71	139.5	279.1	418.6	558.2	697.7	837.3	976.8	1116.4	1255.9
71	149.3	298.7	448 0	597.3	741.6	896.0	1045.3		
74	159.5	318.9	478.4	637.8	797 3	956.7	1116.2	1275.6	1435.1
8	169.9	339.7	509.6	679.4	849.3	1019-1	1189.0	1358.8	15287
84	180.7	361 4	542.1	722.8	903 5	1084.2	1264.9	1445.6	1626.3
81	191.8	383.6	595.4	767.2	959.0	1150.8		1534:5	
84	203 3	406 5	609.8	813.0	1016 3	1219 6	1422.8	1626.1	1829:3
9	215.0	430.1	645.1	860.9	1075.9	1990.9	1505.3	1720-3	1935.4

TABLE II.

Size.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
Inch.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
4	424.6	467-1	509.6	552.0	594.5	637.0	676.4	721.9	764.4
41	451-7	496.9	542.1	587.3	632.4	677.6	722.8	761.0	813.1
41	479.5	527.5	575.4	623.4	6713	719.3	767.2	815.2	863.1
4 3	508.2		609.8	660.6	711.4	762.2			914.7
41/2	537.6		645.1	698.9	752.6	806.4	1	913.9	967.7
45	567.9		681.5	738.2	795.0	851 8			1022-2
43	599.0		718:8	778.7	838.6	898.5			
478	630.9	694.0	757.1	820.2	883.3	946.4	1009.5	1072.6	1135 7
5	667.5	734.3	801.0	867.8	934 5	1001.3	1068.0	1134.8	1201.5
51	697.3		836.8	906.5			1115.7		
51	731.7		878.1				1170.8		
$5\frac{3}{8}$ $5\frac{1}{2}$	767.0		920.4				1227.2		
$5\frac{1}{2}$	803.0						1284.9		
55	840.0						1344.0		
54	877.8						1404.4		
578	916.3	1008 0	1099.6	191.2	1282.9	1374.9	14661	1557.8	1649.4
6		1051.1							
61		1140.7					1659.3		
$6\frac{1}{2}$		1233 8				682.4		906.7	
64	1209.6	1330.6	1451.5	572.5	693.4	1814.4	1935.4	2056.3	2177.3
Tie		*	No.		=				11.2
7		1430.5							
71		1535.0						2372.2 2	
71		1642.6							
73	1594.6	1754.0	1913.5 2	072.9	232.4	391.8	2551.3	710.8	870.2
8	1698.6	1868-4	2038.3	208.1	378.0 2	547.8	2717.7 2	887.63	057.4
81	1809.0	1987.7	2168.4 2	349.02	529.7 2	740.4 2	2891.1 3	071.8 3	252.5
	1918.1	2109.9	2301.7 2	493.5 2	685.3 2	879 1 8	3068.9	260.7 3	
84	2032.6	2235.9	2439.1 2	642.4 2	845.6	048.9	3252.2	455.43	658.7
9	2150.4	2365.4	2580.5 2	795.53	010.63	225.63	440.6	655.7 3	870.7

TABLE II.

Size.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
Inch.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
91	227.2	454.3	681.5	908.6	1135.8	1362.9	1590.1	1817.2	2044
91	239.6	479.2	718.8	958.4	1198.0	1437.6	1677.2	1916.8	2156.4
97	252.4	505.8	757:1	1009.5	1261.9	1514.3	1766.6	2019.0	2291.4
10	266.3	532.6	798.9	1065.2	1331.4	1597.7	1864.0	2130.3	2396.6
101	278.9	557.8	836.8	1115.7	1394.6	1673.5	1952.5	2231.4	2510.3
101	292.7	585.4	878.1	1170.8	1463.4	1756.1	2048.8	2341.5	2634.2
103	306.8	603.6	920.4	1227.2	1534.0	1840.8	2147.6	2454.4	2761.2
11	321.2	642.4	963.6	1284.9	1606.1	1927:3	2248.5	2569.7	2890.9
117	336.0	672.0	1008.0	1344.0	1680.0	2016.0	2352.0	2688 0	3024.0
111	351.1	702.2	1053.3	1404.4	1755.5	2106.6	24577	2808.8	3159.9
114	366.5	733.1	1099.6	1466.1	1832.7	2199.2	2565.8	2932.3	3298 8
		-			1:10				10
12	382.2	764.4 1	146.5	528.8	911.0	2293-2	2675.5	3057 7 3	3439.9

Bronzing Liquids, for Bronzing Copper Medals, Figures, Instruments, &c.—1. Sal ammoniac 1 dr., oxalic acid 15 gr., vinegar 1 pint. After well cleaning the article to be bronzed, warm it gently, and brush it over with the liquid, using only a small quantity at a time. When rubbed dry, repeat the application till the desired tint is obtained. [For copper medals, electrotype casts, &c.]

2. Sal ammoniae 1 oz., cream of tartar 3 oz, salt 6 oz. Dissolve in a pint of hot water, add 2 oz of nitre, and 2 oz of nitrate of copper dissolved in ½ pint of water.

3. Salt of sorrel 1 oz., sal ammoniac 2 oz., white vinegar 14 oz.

[To give an antique appearance to bronze figures, &c.]

4. A diluted solution of muriate of platina. [For copper binding screws, and other small articles.]

5. A weak solution of hydro-sulphuret of ammonia, or of sulphuret of potassium. [For electrotype medals. Another method is the following: Immediately on removing the electrotype cast from the solution, brush it over with good black lead; then heat it moderately, and brush it over with a painting brush, the slightest moisture being used.]

TABLE II.

	1					1	1	1	1
Size.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
				W 6 2 1	A. I.				
Inch.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	· lbs.
91	2271.5	2498.7	2725.8	2953.0	3180.1	3407.3	3634.4	3861.6	4088.7
91							3833.6		
98	2523.8	2776.1	3028.5	3280.9	3533.3	3785.6	4038.0	4290.4	4542.8
1.5		- 111				0	1		0 4
10									4793.2
101	2789.2	3068.2	3347.1	3626.0	3904.9	41838	4462.8	4741.7	5020.6
$10\frac{1}{2}$									5268.4
103	3068.0	3374.8	3681.6	3988.4	4295.2	4602.0	4908.8	5215.6	5522.4
24.	0010.0	0.500.4	0054.0	115-0	4405 0	10100	F100.F	- 400 F	rh01.0
11									5781.9
111							5376.1		
111									6319.9
113	3000-4	4091.8	1598.4	47650	9191.9	94980	9894.0	02511	6597.6
12	3822.1	4204 ·3	4586.5	4968.7	5350 9	5733.1	6115.3	6497.5	6879.7

SOLUTIONS USED IN ELECTROTYPE MANIPULATIONS, &c.

1. Acid Solution of Copper for the Decomposing Cell. Saturated solution of sulphate of copper 2 parts, sulphuric acid 2 parts, water 6 or 8 parts.

2. Gold Solution. Dissolve 2 oz. of cyanide of potassium (by Liebig's method) in a pint of warm distilled water, add \(\frac{1}{2}\) oz. of

oxide of gold, and agitate together.

3. Silver Solution. Dissolve 2 oz. of Liebig's cyanide of potassium in a pint of distilled water; add ½ oz. of moist oxide of silver (precipitated by lime water from a solution of the crystallized nitre), and agitate together till the oxide is dissolved.

4. Solution in which Steel Articles are dipped before Electroplating them. Nitrate of silver 1 part, nitrate of mercury 1 part, nitrie

acid (sp. gr. 1384) 4 parts, water 120 parts.

5. Solution, or Pickle, for immersing Copper Articles in before Electroplating. Sulphuric acid 64 parts, water 64, nitric acid 32, muriatic acid 1. Mix. The article, free from grease, is dipped in the pickle for a second or two.

TABLE III.

Thick.	Width.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
in.	in.	lbs.								
1	1	0.8	1.7	2.5	3.4	4.2	5.1	5.9	6.8	7.6
	11	1.1	2.1	3.2	4.2	5.3	6.3	7.4	8.4	9.5
41414	11	1.3	2.5	3.8	5.1	6.3	7.6	8.9	10.1	11.4
1	14	1.2	3.0	4.4	5.9	7.4	8.9	10.4	11.8	13 3
1	2	1.7	3 4	5.1	6.8	8.5	10.1	11.8	13.5	15.2
1	24	1.9	3.8	5.7	7.6	9.5	11.4	13.3	15.2	17.1
1	$2\frac{1}{2}$	2.1	4.2	6.3	8.4	10.6	12.7	14.8	16.9	19.0
14141414	$2\frac{3}{4}$	2.3	4.6	7.0	9.3	11.6	13.9	16.3	18.6	20.9
1	3	2.5	5.1	7.6	10.1	12.7	15.2	17.7	20.3	22.8
1	31	2.7	5.5	8.2	11.0	13.7	16.5	19.2	22.0	24.7
1	31	3.0	5.9	8.9	11.8	14.8	17.7	20.7	23.7	26.6
14141414	34	3.2	6.3	9.5	12.7	15.8	19.0	22.2	25.4	28.5
1	4	3.4	6.8	10.1	13.5	16.9	20.3	23.7	27.0	30.4
1	41	. 3.6	7.2	10.8	14.4	18.0	21.5	25.1	28.7	32 3
14141414	41	3.8	7.6	11.4	15.2	19.0	22.8	26 6	30.4	34.2
1	48	4.0	8.0	12.0	16.1	20.1	24 1	28.1	32.1	36.1
7	5	4.2	8.4	12.7	16.9	21.1	25.3	29.6	33.8	38.0
14141414	51	4.4	8.8	13.3	17.7	22.2	26.6	31.1	35.5	39.9
1	$5\frac{1}{2}$	4.6	9.3	13.9	18.6	23.2	27.9	32.5	37.2	41.8
_	54	4.9	9.7	14.6	19.4	24.3	29.2	34.0	38.9	43.7
1	6	5.1	10.1	15.2	20.3	25.3	30.4	35.5	40.6	45.6
. 3.	1	1.3	2.5	3.8	5.1	6.3	7.6	8.9	10.1	11.4
8	14	1.6	3.2	4.8	6.3	7.9	9.5	11.1	12.7	14.3
8	11	1.9	3.8	5.7	7.6	9.5	11.4	13.3	15 2	17.1
තේත ත්ත ත්ත ත්ත	184	2.2	4.4	6.7	8.9	11.1	13.3	15.5	17.7	20.0
8	2	2.5	5.1	7.6	10.1	12.7	15.2	17.7	20.3	22.8
क्षेक क्षेक क्षेक	21	2.9	5.7	8.3	11.4	14.3	17.1	20.0	22.8	25.7
3	21/2	3.2	6.3	9.5	12.7	15.8	19.0	22.2	25.4	- 28:5

TABLE III.

Thick.	Width	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
in.	in.	lbs.								
1	1	8.5	9.3	10.1	11.0	11.8	12.7	13.5	14.4	15.2
1	17	10.6	11.6	12.7	13.7	14.8	15.8	16.9	17.9	19.0
i	13	12.7	13.9	15.2	16.5	17.7	19.0	20.3	21.5	22.8
14141414	18	14.8	16.3	17.7	19.2	20.7	22.2	23.7	25.1	26.6
1	2	16.9	18.6	20.3	22.0	23.7	25.4	27.0	28.7	30.4
1	21	19.0	20.9	22.8	24.7	26.6	28.5	30.4	32.3	34.2
1	21	21.1	23.2	25.3	27.5	29.6	31.7	33.8	35.9	38.0
14141414	24	23.2	25.6	27.9	30.5	32.5	34.9	37.2	39.5	41.8
1	3	25.3	27.9	30.4	33.0	35.5	38.0	40.6	43.1	45.6
14141414	31	27.5	30.2	33.0	35.7	38.5	41.3	43.9	46.7	49.4
1	$3\frac{1}{2}$	29.6	32.5	35.5	38.5	41.4	44.4	47.3	50.3	53.2
1	83	31 7	34.9	38.0	41.2	44.4	47.5	50.7	53.9	57.0
14141414	4	33.8	37.2	40.6	43.9	47 3	50.7	54.1	57.5	60.8
1	41	35.9	39.5	43.1	46.7	50.3	53.9	57.5	61.0	64.6
1	41	38.0	41.8	45.6	49.4	53.2	57.0	60.8	64.6	68.4
4	44	40.1	44.1	48.2	52.2	56.2	60.2	64.2	68.2	72.2
14141414	5	42.2	46.5	50.7	54.9	59.1	63.4	65.6	71.8	76.0
1	51	41.4	48.8	53.2	57.7	62.1	66.5	71.0	75.4	79.9
4	$5\frac{1}{2}$	46.5	51.1	55.8	60.4	65.1	69.7	74 4	79.0	83.6
1	54	48.6	53.4	58.3	63.2	68.0	72.9	77.7	82.6	87.5
1	6	50.7	55 8	60.8	65.9	70.9	76.0	81.1	86.2	91.2
8	1	12.7	13.9	15.2	16.5	17.7	19.0	20.3	21.5	22.8
अंक कोक कोक कोक	11	15.8	17.4	19.0	20.6	22 2	23.8	25.3	28 9	28.5
8	11	19.0	20.9	22.8	24.7	26.6	28.5	30.4	32.3	34.2
8	18	22 2	24.4	26.6	28.8	31.1	33.3	35.5	37.7	39.9
8	2	25.3	27.9	30.4	33 0	35.5	38.0	40.6	43.1	45.6
क्षेत्र क्षेत्र क्षेत्र	21	28.5	31.4	34 2	37.1	39.9	428	45.6	48.5	51.3
8	21	31.7	34.9	38.0	41.2	44.4	47.5	50.7	53.9	57.0

TABLE III.

Thick.	Width.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
in.	in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
3	234	3.5	7.0	10.5	13.9	17.4	20.9	24.4	27.9	31:4
දේශ දේශ දේශ දේශ	$\frac{3}{3\frac{1}{4}}$	3·8 4·1 4·4	7·6 8·2 8·9	11·4 12·4 13·3	15·2 16·5 17·7	19.0 20.6 22.2	22·8 24·7 26·6	$26.6 \\ 28.8 \\ 31.1$	30·4 33 0 35·5	34·2 37·1 39·9
	34	4.8	9.5	14.3	19.0	23.8	28.5	33.3	38.0	42.8
ත්ය ත්ය ත්ය ත්ය	4 4 4 4 4 4 4 4 4	5 1 5 4 5 7 6 0	10·1 10·8 11·4 12·0	15·2 16·1 17·1 18·1	20·3 21·5 22·8 24·1	25·3 26·9 28·5 30·1	30·4 32·3 34·2 36·1	35.5 37.7 39.9 42.1	40.6 43.1 45.6 48.2	45.6 48.5 51.3 54.2
യിയ യിയ യിയ യിയ	5 5 ¹ / ₄ 5 ¹ / ₂ 5 ⁸ / ₄	6·3 6·7 7·0 7·3	12.7 13.3 13.9 14.6	19.0 20.0 20.9 21.9	25·3 26·6 27·9 29·2	31.7 33.3 34.9 36.4	38.0 39.9 41.8 43.7	44·4 46·6 48·8 51·0	50·7 53·2 55·8 58·3	57·0 59·9 62·7 65·6
3 8	6	7.6	15.2	22.8	30.4	38.0	45.6	53.2	60.8	68.4
12121212	1 1 ₄ 1 ₂ 1 ₈	1.7 2.1 2.5 3.0	3·4 4·2 5·1 5·9	5·1 6·3 7·6 8·9	6.8 8.4 10.1 11.8	8·5 10·6 12·7 14·8	10·1 12·7 15·2 17·7	11.8 14.8 17.7 20.7	13·5 16·9 20·3 23·7	15·2 19·0 22·8 26·6
12121212	$2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4}$	3·4 3·8 4·2 4·6	6·8 7·6 8·4 9·3	10·1 11·4 12·7 13·9	13.5 15.2 16.9 18.6	16.9 19.0 21.1 23.2	20·3 22·8 25·3 27·9	23.7 26.6 29.6 32.5	27 0 30 4 33 8 37 2	30 4 34·2 38·0 41·8
1	3 14 12 34	5·1 5·5 5·9 6·3	10·1 11·0 11·8 12·7	15·2 16·5 17·7 19·0	20·3 22·0 23·7 25·3	25.3 27.5 29.6 31.7	30·4 32·9 35·5 38·0	35·5 38·4 41·4 44·4	40.6 43.9 47.3 50.7	45.6 49.4 53.2 57.0
1/2	4	6.8	13.5	20.3	27.0	33.8	40.6	47.3	54.1	60.8

TABLE III.

Thick.	Width.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
in.	in.	lbs.								
38	24	34.9	36.3	41.8	45.3	48.8	52.3	55.8	59.3	62.7
දේන දේන දේන දේන	3	38.0	41.8	45.6	49.4	53.2	57.0	60.8	64.6	
8	31	41.2	45.3	49.4	53.6	57.7	61.8	65.9	70.0	74.2
용	$3\frac{1}{2}$	44.4	48.8	53.2	57.7	62.1	66 5	71.0	75.4	79.9
8	34	47.5	52.3	57.0	61.8	66.5	71.3	76.0	80 8	85.5
දේශ හද්ග හද්ග දේශ	4	50.7	55.8	60.8	65.9	70.9	76.0	81.1	86.2	91.2
8	41	53.9	59.8	64.7	70.0	75.4	80.8	86.2	91.6	97.0
8	$4\frac{1}{2}$	57.0	62.7	68.4	74.2	79.9	85.6	91.3	97.0	102.7
8	44	60.2	66.2	72.2	78.3	84.3	90.3	96.3	102.3	108.4
8	5	63.3	69.7	76.0	82.4	88.7	95.0	101.4	107.7	114.0
8	51	66 5	73 2	79.8	86.5	93.1	99.8	106.5	113.1	119.8
ක්ත ක්ත ක්ත ක්ත	51	69.7	76.7	83.7	90.6	97.6	104.5	111.2	118.5	125.5
8	54	72.9	80.2	87.5	94.7	102.0	109.3	116.6	123.9	131.2
3 8	6	76.0	83.6	91.2	98.9	106 5	114.1	121.7	129.3	136.9
1 2	1	16.8	18.6	20.3	22.0	23.7	25.4	27.0	28.7	30.4
	14	21.1	23.2	25.3	27 5	29.6	31.7	33.8	35.9	38.0
1/2	11	25.3	27.9	30.4	33.0	35.9	38.0	40.6	43.1	45.6
1/2	184	29.6	32.5	35.2	38.5	41.4	44.4	47.3	50.3	53.2
1	2	33.8	37.2	40.6	43.9	47.3	50.7	54.1	57.5	60.8
1	21	38.6	41.8	45.6	49.4	53.2	57.0	60.8	64.6	68.4
1212121	21	42.2	46.5	50.7	54 9	59.1	63.4	65.6	71.8	76.0
1 2	24	46.5	51 1	55 8	60.4	65.1	69.7	74.4	79.0	83 6
1	3	50.7	55.8	60.8	65.9	70.9	76 0	81.1	86.2	91.2
ī	31	54.6	60.4	65.9	71.4	76.9	82.4	87.9	93.3	98.8
1212121212	31	59.2	65.1	71.0	76.9	82.8	88.7	94.6	100.6	106.5
1	34	63.3	69.7	76.0	82.4	88.7	95.0	101.4	107.7	114.0
1.	4	67.6	74.4	84.1	87.9	94.6	101.4	108.2	114.9	121.7

TABLE III.

Thick.	Width.	1 ft.	²2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
in	in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
1	11	7.2	14.4	21.5	28.7	35.9	43.1	50.3	57.4	64.6
121212	11	7.6	15 2	22.8	30.4	38.0	45.6	53.2	60.8	68.4
$\frac{1}{2}$	184	8.0	16.1	24.1	32.1	40.1	48.2	56.2	64 2	72.2
12121212	5	8.4	16.9	25.3	33 8	42.2	50.7	59.1	67.6	
$\frac{1}{2}$	54	8.9	17.7	26.6	35.5	44.4	53.2	62.1	71.0	
1/2	$ 5\frac{1}{2} $	9.3	18.6	27.9	37.2	46.5	55.8	65.1	74.4	
$\frac{1}{2}$	54	9.7	19.4	29.2	38.9	48.6	58.3	68.0	0177.7	87 5
$\frac{1}{2}$	6	10.1	20.3	30.4	40.6	50.7	60.8	70:9	81.1	91.2
5	1	2.1	4.2	6.3	8.4	10.6	12.7	14:8	16.9	19.0
තුත තුත තුත ත්ත	11	2.6	5.3	7.9	10.6	13.2	15.8	18.5	21.1	23.8
5	13	3.2	6.3	9.5	12.7	15.8	19.0	22.2	25.4	28.5
5	184	3.7	7.4	11.1	14.8	18.5	22.2	25.9	29.6	33 3
orba oden orba oden	2	4.2	8.4	12.7	. 16.9	21.1	25.3	29.9	33.8	38.0
ŝ	21	4.8	9.5	14.3	19.0	23.8	28.5	33.3	38.0	42.8
8	$2\frac{1}{2}$	5.3	10.6	15.8	21.1	26.4	31.7	37.0	42.2	47.5
the state of	23	5.8	11.6	17.4	23.2	29.0	34.8	40.7	46.5	52.3
מוליז מיליז היליז מיוייז	3	6.3	12.7	19.0	25.3	31.7	38.0	44.4	50.7	57.6
5	31	6 9	13.7	20.6	27.5	34.3	41.2	48.1	54.9	61.8
8	3 3 3 4	7.4	14.8	22.2	29.6	37.0	44.4	51.8	59.2	66.5
8	33	7.9	158	23.8	31.7	39.6	47.5	55.2	63.4	71.3
anton action colors colors	4	8.4	16.9	25.3	33.8	42.2	50.7	59.1	67.6	76.0
5	41	9.0	18.0	26.9	35.9	44.9	53.9	62.9	71.8	80.8
58	$4\frac{1}{2}$	9.5	19.0	28.5	38.0	47.5	57.0	66.5	76.1	85.6
5	43	10.0	20.1	30.1	40.1	50.2	60.2	70.2	80.3	90.3
	5	10.6	21.1	31.7	42.3	52.8	63.4	73.9	84.5	95.1
5	51	11.1	22.2	33.3	44.4	55.5	66.5	77.6	88.7	998
5	$5\frac{1}{2}$	11.6	23 2	34.9	46.5	58.1	69.7	81.3	92.9	104.6
5	53	12.1	24.3	36.4	48 6	60.7	72.9	85.0	97.2	109.3

TABLE III.

Thick.	Width.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
in:	lbs.	lbs.	lbs.	lbs.	ibs.	lbs.	lbs.	°lbs.	lbs.	lbs.
1	41	71.8	79.0	86.2	93.4	100.5	107.7	114.9	122.1	129.3
121212	$4\frac{1}{2}$	760	83.6	91.2	98.9	106.5	114.1	121.7	129.3	136.9
1 2	4#	80.3	88.3	96.3	104.3	112.4	120.4	128.4	136.4	144.5
12 12 12 12	5	84 5	92.9	101.4	109.8	118.3	126.7	135.2	143.6	152.1
1/2	54	88.7	97 6	106.5	115.4	124.2	133.1	142.0	150.8	159.7
1/2	$5\frac{1}{2}$	93.0	102.2	111.5	120.8	130.1	1394	148.7	158 0	167.3
1/2	5#	97.2	106.9	116.6	126.3	136.0	145.8	155.5	165.2	174.9
$\frac{1}{2}$	6	101.4	111.5	121.7	131.8	141.9	152.1	162.2	172.4	182.5
5	1	21.1	23.2	25.3	27.5	29.6	31.7	33.8	35.9	38.0
5	14	26.4	29.0	31.7	34.3	37.0	39.6	42.2	44.9	47.5
מלכי מלכי מלכי	11/2	31.7	34.8	38.0	41.2	44.4	47.5	50.7	53.9	57.0
5	14	37.0	40.7	44.4	48.1	51.8	55.5	59.2	62.8	66.5
5	2	42.2	46.5	50.7	54.9	60.1	63.4	67.6	71.8	76.0
5	24	47.5	52.3	57.0	61.8	66.5	71.3	76.0	80.8	85.2
מלטי מלטי מלטי מלטי	$2\frac{1}{2}$	52.8	58.1	63.4	68.6	73.9	79.2	84.5	89.5	95.0
8	24	58.1	63.9	69.7	75.5	81.3	87.1	92 9	98.7	104.5
58	3	63.3	69.7	76.0	82.4	88.7	95.0	101.4	107.7	114.0
योग कोन कोन कोन	37	68.7	75.5	82.4	89.3	96.1	103.0	109.9	116.7	123 6
8	$3\frac{1}{2}$	73.9	81.3	88.7	96.1	103.5	110.9	118.3	125.7	133.1
8	34	79.2	87.1	95.1	103.0	110.9	118.8	126.8	134.7	142.6
5	4	84.5	92.9	101.4	109.8	118.3	126.7	135.2	143.6	152.1
8	41	89.8	98.8	107.8	116.7	125.7	134.7	143.7	152.6	161.6
ප්ප ප්ප ප්ප ත්ත	$4\frac{1}{2}$	95.1	104.6	114.1	123 6	133.1	142 6	152.1	161.6	171.1
	44	100.3	110.4	120.4	130.4	140.5	150.5	160.5	170.6	180.6
solar solar solar solar	.5	105.6	116.2	126.8	137.3	147.9	158.4	169 0	179.6	190.1
5	51	110.9	122.0	133.1	144.2	155.3	166.4	177.5	188.5	199.6
8	$5\frac{1}{2}$	116.2	127.8	139.4	151.0	162 6	174.3	185.9	197.5	209.1
8	53	121.5	133.6	145.7	157.9	170.0	182.2	194.3	206.5	218.6

TABLE III.

Thick.	Width.	1 ft.	2 ft.	3 ft.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.	9 ft.
in.	in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
58	6	12.7	25.8	38.0	50.7	63.4	76.0	88.7	101.4	114.1
34 84 34 84	1	2.5	5.1	7.6	10.1	12.7	15.2	17.7	20.3	22.8
3	14	3.2	6.3	9.5	12.7	15.8	19.0	22.2	25.4	28.5
3	$1\frac{1}{2}$	3.8	7.6	11.4	15.2	19.0	22.8	26.6	30.4	24.2
34	13	4.4	8.8	13.3	17.7	22.2	26.6	31.1	35.2	39.9
34 34 34 34	2	5.1	10.1	15.2	20.3	25 3	30.4	35.5	40.6	45.6
34	21	5.7	11.4	17.1	22.8	28.5	34.2	39.9	45.6	51.3
34	$2\frac{1}{2}$	6.3	12.4	19.0	25.3	31.7	38.0	. 44.4	50.7	57.0
3 4	$2\frac{8}{4}$	7.0	13 9	20.9	27.9	34.9	41.8	48.8	55.8	62.7
ळीच ळोच ळोच ळोच	3	7.6	15.2	22.8	30.4	38.0	45.6	53.2	60.9	68.4
8	31	8.2	16.5	24.7	33.0	41.2	49.4	57.7	65.9	74.2
34	$3\frac{1}{2}$	8.9	17.7	26.6	35.5	44.4	53.2	62.1	71.0	79.9
34	34	9.5	19.0	28 5	38.0	47.5	57.0	66.5	76.1	85.6
अंथ अंथ अंथ अंथ	4	10.1	20.3	30.4	40.6	50.7	60.8	70.9	81.1	91.2
84	41	10.8	21.5	32.3	43.1	53.9	64.6	75.4	86.2	97.0
4	$4\frac{1}{2}$	11.4	22.8	34.5	45.6	57.0	68.4	79.9	91.3	102.7
4	484	120	24.1	36.1	48.2	60.2	72.2	84.3	96.3	108.4
24 24 24 34	5	12.7	25.8	38.0	50.7	63.4	76.0	88.7	101.4	114.0
#	51	13 3	26.6	39.9	53.2	66.5	79.8	93 1	106.5	119.8
8	$5\frac{1}{2}$	13.9	27.9	41.8	55.8	69.7	83.7	97.6	111.2	125.5
$\frac{3}{4}$	54	14.6	29.1	43.7	58.3	72 9	87.4	102.0	116.6	131.2
84	6	15.2	30.4	45.6	60.8	76.0	91.2	106.5	121.7	136.9
1	11	5.1	10.1	15.2	20.3	25.3	30.4	35.5	40.6	45.6
1	2	6.8	13.5	20.3	27.0	33.8	40.6	47.8	54.1	60.8
1	3	10.1	20.3	30.4	40.6	50.7	60.8	-70.9	81.1	91.2
1	4	13.5	27.0	40.6	54.1	67.6	81.1	94.6	108.1	121.7
1	5	16.9	33.8	50.7	67.6	84.5	101.4	118.3	135.2	152.1
1	6	20.3	40.6	. 60.8	81.1	101.4	121.7	141.9	162.2	182.5

TABLE III.

TABLE OF HEADINESS

I DICK.	Width.	10 ft.	11 ft.	12 ft.	13 ft.	14 ft.	15 ft.	16 ft.	17 ft.	18 ft.
n.	in.	lbs.								
5	6	126.7	139.4	152.1	164.8	177·4	190.1	202.8	215.4	228
34	1.	25.3	27.9	30.4	33.0	35.5	38.0	40.6	43.1	45
8	14	. 31.7	34.9	38.0	41.2	44.4	47:5	50.7	53.9	57
84	11	.38.0	41.8	45.6	59.4	53.2		8.09	64.6	68:
34	13	44.4	48.8	53.2	57.7	62.1	66.5	71.0	75.4	79
3484	2	50.7	55.8	60.8	65.9	70.9	76.0	81.1	86.2	91.
2	21	57.0	62.7	68.4	74.2	79.9	85.5	91.3	97.0	102
84 84	21	63.3	69.7	76.0	82.4	88.7	95.0	101.4	107.7	114
3	23	69.7	76.7	83.7	90.6	97.6	104.5	111.9	118.5	125
and who who	3	76:0	83.6	91.2	98.9		114.1	121.7	129.3	136
1	31	82.4	90.6	98.9	107.1	115.3	,123.6	131.8	140.0	148
3	31	88.7	97.6	106.5	115.4	124.2	133.1	142.0	150.8	159
4	34	95:1	104.6	114.1	123 6	133.1	142.6	152.1	161.6	171
B	4	101.4	111.5	121.7	131.8	141.9	152.1	162.2	172.4	182
3	41	107.7	118.5	129.3	140.1	150.8	161.6	172.4	183.2	193
BH BH	41	114.1	125.5	136.9	148.3	159.7	171.1	182.5	193.9	205
8	434	120.4	132 4	144.5	156.5	168.6	180 6	192:6	204.7	216
3	5	126.7	139.4	152.1	164.8	177.4	190.1	202.8	215.4	228
8484	51	133.1	146.4	159.7	173.0	186.3	199.6	212.9	226.2	239
3484	$5\frac{1}{2}$	139.4	153.3	167.3	181.2	195.2	209.2	223.1	237.0	250
84	54	145.7	160.3	174.9	189.5	204.0	218.6	233.2	247.8	262
34	6	152.1	167.3	182.5	197.7	212.9	228.1	243.3	258.5	273
1	$1\frac{1}{2}$	50.7	55 8	60.8	65.9	70.9	76.0	81.1	86.2	
1	2	67.6	74.4	81.1	87.9	94 6	101.4	108.1	114.9	
1	3	101.4	111.5	121.7	131.7	141.9	152.1	162.2	172.4	
1	4	135.2	148.7	162.2	175.7	189.3	202.8	216.7	229 8	
1	5	169.0	185.9	202.8	219.7	236.6	253.5	270.4		
1	6	202.8	223 1	243.3	263.6	283.9	304.2	324.4	344.7	365

TABLE OF GRADIENTS

And Resistance per Ton for each.

Vertica	l Rise.	Gravity due to	Vertic	al Rise.	Gravity due to	Vertic	al Rise.	Gravity due to
Ratio.	Pr. Mile.	incline per ton.	Ratio.	Pr. Mile.	incline per ton.	Ratio.	Pr. Mile.	incline per ton.
one in	Feet.	lbs.	one in	Feet.	lbs.	one in	Feet.	lbs.
100	52.80	22.40	74	71.38	32.270	47	112.34	47.660
99	53.33	22.626	73	72.32	30.685	46	115.04	48.684
98	53.88	22.858	72	73.33	31.111	45	117.33	49.777
97	54.43	23.092	71	74.36	31.550	44	120.00	50.908
96	55.00	23.334	70	75.43	32.000	43	12278	52.092
95	55 60	23.579	69	76.49	32.464	42	125.71	53.333
94	56.17	23.830	68	77.64	32.940	41	128.78	54.634
93	56.77	24.086	67	78.81	33.432	40	132.00	56.00
92	57.52	24.342	66	80.0	33.940	39	135.38	57.436
91	58.02	24.614	65	81.23	34.460	38	138 95	58.944
90	58.66	24.888	64	82.50	35.0	37	14270	60.540
89	59.33	25.168	63	83.81	35.555	36	146.66	62.222
88	60.0	25.454	62	85.16	36.108	35	150:84	64.000
87	60.69	25.746	61	86.55	36 720	34	155.30	65.880
86	61.39	26.046	60	88 00	37.333	33	160.0	67.880
85.16	62.00	26.303	59	89.49	37 966	32	165 0	70.0
85	62.12	26.353	58	91.03	38.620	31	170.32	72.216
84	62.86	26.666	- 57	92.63	39.298	30	176:00	74.666
83	63.61	26.988	56 ·	94.28	40.0	29	182.06	77.240
82	64.39	27.317	55	96.00	40 726	28	188.56	80.00
81	65.20	27.718	. 54	97.77	41.480	27.	195.55	82.960
80	66.0	28.00	53	99 62	42.264	26	203.06	86.152
79	66.83	28.355	52	101.53	43.076	25	211.20	89.60
78	67.69	28.718	51	103.52	43.920	24	220.0	93.336
77	68.57	29.090	50	105.60	44 800	23	229.56	97.368
76	69.47	29.472	49	107.75	45.716	22	240	101.816
75	70.40	29.867	48	110.00	46.688	21	251.43	106.666

TO TAKE IMPRESSIONS FROM COINS, &c.—Make a thick solution of isinglass in water, and lay it hot on the metal; let it remain for twelve hours, then remove it, breathe on it, and apply gold or silver-leaf on the wrong side. Any color may be given to the isinglass instead of gold or silver, by simple mixture.

Variations in Tides.—The difference in time between high water averages about 49 minutes each day.

TABLE of the Ultimate Breaking Weight, in tons, of cast-iron pillars, calculated from Professor Hodgkinson's Formula.

The length includes every half-foot from 1 to 20, and the diameter every inch from 1 to 24.

ST.	DIA	METER O	F CAST-IR	ON PILLAR	RS IN INCH	IES.
LENGTH IN FEET.	1	2	3	4	5	6
T South	tons.	tons.	tons.	tons.	tons.	tons.
1	44.30	537	2312	6513	14544	28038
$1\frac{1}{2}$	22.23	269	1160	3269	7300	14073
2	13.63	165	711	2004	4476	8630
$\frac{2}{2\frac{1}{2}}$	9.33	113	487	1372	3064	5905
3	6.84	83	357	1006	2247	4331
$3\frac{1}{2}$	5.26	64	275	774	1729	3333
4	4.19	51	219	617	1378	2656
41/2	3.43	41.6	179	505	1127	2174
5	2.87	34.8	150	422	943	1817
$5\frac{1}{2}$	2.44	29.6	127	359	802	1545
6	2.11	25.5	110	309	691	1333
$6\frac{1}{2}$	1.84	22.3	96	270	603	1163
7	1.62	19.6	84.6	238	532	1026
71	1:44	17.5	75.2	212	473	912
8	1.29	15.6	67.4	190	424	817
81	1.16	14.1	60.8	171	382	737
9	1.06	12.8	55.2	155	347	669
91	.96	11.7	50.3	142	316	610
10	.88	10.7	46.1	130	290	559
101	.81	9.86	42.4	119	267	515
11	.75	9.11	39.2	110	246	475
111	.69	8.45	36.3	102	228	441
12	.65	7.86	33.8	95.3	212	410
121	-60	7.33	31.5	88.9	198	383
13	. 56	6.86	29.5	83.2	185	358
131	.53	6.43	27.7	78.0	174	336
14	.50	6.05	26.0	73.3	163	315
141	.47	5.70	24.5	69.1	154	297
15	•44	5.38	23.15	65.23	145.6	280.8
151	.42	5.09	21.90	61.69	137.7	265
16	•40	4.82	20.75	58.45	130.5	251
161	.377	4.57	19.69	55.47	123.8	238.8
17	.358	4.35	18.72	52.73	117.7	227.0
171	.341	4.14	17.82	50.19	112.1	216
18	325	3.94	16.98	47.85	106.8	205.9
181	310	3.77	16.21	45.67	101.9	196.0
19	297	3.60	15.49	43.64	97.45	187.8
191	'284	3.44	14.82	41.76	93.24	179.7
20	272	3.30	11.20	40.00	89.32	

TABLE of the Ultimate Breaking Weight, in tons, of cast-iron pillars.

(Continued.)

HTH ST.	DIA	METER OF	CAST IR	N PILLAF	s in inci	HES.
LENGTH IN FEET.	7	8	9	.10	. 11	12
	tons.	tons.	tons.	tons.	tons.	tons.
1	48838	78982	120691	176361	248552	339982
1 1	24513	39643	60579	88520	124756	170648
2	15031	24310	37147	54282	76501	104643
$2\frac{1}{2}$	10286	16635	25420	37145	52350	71607
3	7544	12202	18645	27246	38398	52523
$3\frac{1}{2}$	5805	9388	14347	20965	29546	40414
4	4626	7482	11433	16707	23546	32207
41/2	3787	6124	9358	13675	19273	26363
5	3166	5120	7824	11433	16113	22039
$5\frac{1}{2}$	2692	4354	6653	9722	13703	18743
6	2322*	3755	5738	8385	11818	16165
$6\frac{1}{2}$	2026	3277	5008	7319	10315	14109
7	1787	2889	4415	6452	9094	12439
71	1589	2570	3927	5738	8087	11062
8 8 1	1424	2302	3519	5142	7247	9913
81	1284	2077	3174	4638	6537	8942
9	1165	1885	2880	4209	5932	8114
$9\frac{1}{2}$	1063	1719	2627	3839	5411	7401
10	974	1575	2408	3519	4959	6783
101	897	1450	2216	3238	4564	6243
11	828	1340	2048	2992	4217	5769
111	768	1242	1898	2774	3910	5349
12	714	1156.	1766	2581	3637	4975
$12\frac{1}{2}$	666	1078	1647	2408	3393	4642
13	623	1008	1541	2252	3174	4343
131	585	946	1445	2112	2977	4073
14	550	889	1359	1986	2799	3828
143	518	838	1280	1871	2637	3607
15	489.1	791.0	1208	1766	2489	3405
151	462.6	748.1	1143	1671	2354	3220
16	438.3	708.8	1083	1583	2230	3051
161	415.9	672.6	1028	1502	2117	2895
17	395.3	639.4	977.0	1428	2012	2752
171	376.3	608.6	930.1	1359	1915	2620
18	358.7	580.2	886.5	1295	1826	2497
181	342.4	553 S	846.2	1236	1743	2384
19	327.2	529.2	808.7	1182	1665	2278
191	313.1	506.4	773.8	1131	1593	2179
20	299.9	485.0	741.2	1083	1526	2088

Note.—Example. Find the breaking weight of a cast-iron pillar whose external diameter is 17, and internal diameter 15 inches, and length 18 feet.

TABLE of the Ultimate Breaking Weight, in tons, of cast-iron pillars.
(Continued.)

A K	DIA	METER O	F CAST-IRO	ON PILLAI	RS IN INC	HES.
LENGTH 1N FEET.	-13	14	15	16	17	18
	tons.	tons.	tons.	tons.	tons.	tons.
1	453524	592195	759158	957714	1191290	1463470
$1\frac{1}{2}$	227638	297241	381039	480707	597950	734563
2	139588	182269	233660	294769	366664	450443
$2\frac{1}{2}$	95522	124729	159895	201717	250912	308238
3	70064	91486	117281	147955	184040	226088
$3\frac{1}{2}$	53912	70396	90243	113846	141614	173966
4	42963	56100	71917	90726	112853	138638
$4\frac{1}{2}$	35187	45920	58867	74263	92375	113481
5	29400	38390	49213	62085	77228	94871
51	25002	32647	41851	52798	65676	80680
6	21565	28158	36097	45538	56645	69586
$6\frac{1}{2}$	18821	24576	31505	39745	49439	60734
7~	16593	21667	27776	35040	43587	53545
7 1	14756	19269	24701	31163	38763	47619
8	13223	17267	22135	27924	34735	42671
81	11928	15576	19967	25190	31333	38492
9	10824	14133	18118	22857	28432	34928
91	9873	12892	16527	20850	25935	31861
10	9049	11815	15147	19109	23769	29200
$10\frac{1}{2}$	8329	10875	13941	17588	21877	26876
11	7695	10048	12882	16250	20214	24832
111	7135	9317	11944	15067	18743	23025
12	6637	8667	11110	14016	17434	21418
121	6192	8086	10365	13076	16265	19982
13	5793	7564	9697	12233	15216	18693
131	5433	7094	9094	11472	14271	17531
14	5107	6669	8549	10785	13415	16481
141	4811	6282	8054	10160	12638	15526
15	4542	5931	7603	9591	11930	14656
151	4296	5609	7191	9071	11283	13862
16	4070	5314	6813	8595	10691	13103
161	3863	5044	6466	8157	10146	12464
17	3671	4794	6146	7753	9424	11847
171	3495	4563	5850	7380	9180	11277
18	3331	4350	5577	7035	8571	10750
181	3180	4152	5323	6715	8353	10261
19	3039	3968	5087	6417	7983	9806
191	2908	3797	4867	6140	7638	9383
20	2785	3637	4662	5881	7316	8987

Along the line marked 18 feet, and in the vertical lines numbered 17 and 15 inches, take the numbers 8751 and 5577; the difference of which, namely 3174, will be the breaking

TABLE of the Ultimate Breaking Weight, in tons, of cast-iron Pillars.

ENGTH IN FEET.	DIAMETER OF CAST IRON PILLARS IN INCHES.						
LENGTH IN FEET,	19	20	21	22	23	24	
Print I	tons.	tons.	tons.	tons.	tons.	tons.	
1	1777940	2138510	2549140	3013880	3536910		
1 1/2	892404	1073380	1279490	1512760	1775280	2069230	
2	547224	658204	784589	927630	1088610	1268880	
$2\frac{1}{2}$	374471	450416	536902	634786	744947	868292	
3	274670	330374	393810	465605	546409	636880	
$3\frac{1}{2}$	211350	254212	303024	358269	420444	490059	
4	168428	$\begin{array}{c} 202586 \\ 165825 \end{array}$	241485 197666	285511 233703	335059	390543	
41	137865				274260	319671 267248 227278	
5	115257	138632	165251	195378	229286		
51	98017	117894	140532	166157	194988		
6	84539	101684	121210	143307	168177	196023	
61	73784	88748	105789	125047	146781	171083	
7	65051	78243	93266	110270	129406	150832	
73	57851	69584	82944	98067	115085	134140	
8	51840	62353	74326	87876	103126	120200	
81	46763	56247	67047	79271	93028	108430	
9	42433	51038	60840	71930	84414	98390	
91	38707	46557	55496	65614	77000	89750	
10	35474	42669	50862	60134	70571	8225	
101	32651	39272	46814	55348	64954	75708	
11	30168	36286	43254	51140	60014	6995	
$11\frac{1}{2}$	27973	33645	40106	47417	55646	6486	
12	26020	31297	37306	44108	51763	60333	
$12\frac{1}{2}$	24275	29199	34805	41150	48292	5628	
13	22710	27315	32560	38497	45178	5265	
$13\frac{1}{2}$	21298	25618	30537	36104	42370	4938	
14	20021	24082	28706	33940	39830	4642	
$14\frac{1}{2}$	18862	22687	27043	31974	37523	4373	
15	17806	21417	25529	30184	35421	4128	
$15\frac{1}{2}$	16840	20255	24145	28547	33501	3904	
16	15955	19191	22823	27047	31740	3699	
163	15142	18213	21711	25669	30123	3511	
17	14393	17312	20636	24398	28632	3337	
171	13701	16480	19644	23225	27255	3176	
18	13060	15709	18725	22139	25981	3028	
181	12466	14994	17873	21131	24799	2890	
19	11913	14330	17081	20195	23700	2762	
$19\frac{1}{2}$	11398	13710	16343	19322	22676	2643	
20	10918	13133	15654	18508	21721	2531	

weight in tons. For practical purposes the pillars should be calculated to bear one half more than the weight to which they are subjected.

TABLE OF STRENGTHS OF CAST-IRON SHAFTS.

The cube of the diameter of a journal or slaft of sufficient strength is directly as the horse power, and inversely as the number of revolutions of the shaft per minute. Mr. Robertson Buchanan deduced from several experiments that a journal suitable to a 50-horse engine, making 50 revolutions per minute, should be 7½ inches in diameter. is from these data the following table has been computed.

NUMBER OF REVOLUTIONS OF SHAFT PER MINUTE.

- 01101 1	.0 0
130	
120	
110	世 4 4 で で 5 5 6 6 1- 1- 8 8 14 4 4 4 4 4 4 m
100	F. 20 4 10 10 10 00 00 1- 1- 1- 00 00 00 1- 1- 1- 00 00 00 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
95	ii & 4 0 0 0 0 0 L L L 0 8 0
06	ii の 4 ちららららててて 8 8 6 ようする 10 0 0 0 1 1 1 1 8 8 8 9 9
85.	.g 4
08	.d. ಆ 4 ರ ರ ಎ ಎ ৮ ৮ ৮ ೦ ೦ ೦ ೦ ಪೂರಾ ಭಾರತಿಗಳಿಗೆ ಮಾಡು ತಟ್ಟಾರು
.75	й の 4 で 6 6 6 1- 1- 1- 8 8 6 6 8 mg em
102	ii
65	ii 4 で ら 9 の 17 ト 17 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10
09	ii 4 ru ru 3 t t t t 8 8 8 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
55	ii. 4 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20	ii. 44 .0. 00 00 00 00 00 00 00 00 00 00 00 00
45	ii. 44 70 60 60 77 7 60 60 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40	ii 4 10 30 14 88 88 88 89 80 11 11 12 12 12 12 12 12 12 12 12 12 12
, 69 ,70	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30	5 70 00 00 00 00 00 00 00 00 00 00 00 00
25.	. 70 0 1- 80 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20	. i. で た 8 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15	G 00 00 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10	C C C C C C C C C C C C C C C C C C C
Horse Power.	10 20 30 50 60 70 80 90 100 1150 1150

TABLE OF STRENGTHS OF CAST-TRON SHAFTS. (Continued.)

MINUTE.
FER
SHAFF
Of
REVOLUTIONS
O.
NUMBER

	AST-IRON SHAFTS
130	5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120	E x x x x 0 0 0 0 0 0 0 0 0 0
110	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
907	- cccc
- S	でののこのこれがはははははなるでののこのこれがははなるがははまるがは、はなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなるはなる
1 8	E 0000 - 111 0 0 0 0 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2
x x	5 0000
28	5 000-133888444666 mm-en men
12	E DOULT 2000 277 2000 5
02	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15	5
90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
99	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 8	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
5	5 00 00 00 00 00 00 00 00 00 00 00 00 00
9	5 31 21 21 21 21 21 21 21 21 21 21 21 21 21
32	- x x 4 4 x x 2 x 2 x 2 x 2 x 2 x 2 x 2 x
20	: 3 + 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
51 51	
91	E
10	
01	4 0 3 0 3 0 3 0 3 0 3 0 3 0 8 0 8 0 8 0 0 0 0
Нотзе Ротеп.	8 3 3 3 3 3 4 4 4 4 4 4 5 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

SHAFTS.
WROUGHT-IRON SHAFTS.
OF
TABLE, OF STRENGTHS
OF
TABLE

angerari a	. **	ROUGHI-INON CHAFTS. 129
3 2	130	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	120	: 82 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	110	: 12 00 4 4 4 00 00 00 00 1 1 1 1 1 1 1 1 1
==1	100	は 02 04 44 00 00 00 00 00 00 00 00 00 00 00
	95	8 8 4 4 70 70 70 70 70 70 70 70 70 70 70 70 70
1	06	
i i	85	
Міноте.	80	8 8 4 4 7 7 7 7 7 8 8 8 7 7 7 7 8 8 8 8
PER	15	: 1 名 4 4 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
SHAFT	10	: 0 4 4 4 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
REVOLUTIONS OF SE	65	9. 4. 4. 4. 6. 6. 6. 11. 14. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4
	09	ii. 33.1. 25. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
	55	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
of RE	20	:: 34 4 で 0 0 0 0 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0
	45	1
Number	40	0.5 110 0.7 11
	35	1 8 8 1 8 1 8 8 1
	30	88 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	25 5	
-	20 5	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
	15	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
200	0]	(a) (a) (b) (a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
Horse Pow'r.		10 68 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

TABLE OF STRENGTHS OF WROUGHT-IRON SHAFTS. (Continued.)

1	130	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	120	11. 10 10 10 10 10 10 10 10 10 10 10 10 10
	110	881-168 81-16 10 10 10 10 10 10 10 10 10 10 10 10 10
-	100	25 1 1 1 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2
	95	88 4.3 8 1.3 9 2 2 2 3 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	06	88 89 94 994 994 994 994 994 994 994 994
71.16.	33	88 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MINUTE.	80	10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
PER	72	10.3 10.3 10.3 10.3 10.3 11.3 12.3 13.3 14.3 15.3 16.3 17.3 18.3 18.3 19.3
SHAFT	04	913 913 913 913 10 10 10 11 11 12 12 13 13 13 13 13 13 14 14 14 14 14 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
OF	65	95. 100 5 100 5 100 5 110 5 111 13 112 13 113 14 113 14 113 14 113 14 113 14 113 14 114 14 115 1
TIONE	09	m. 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1
REVOLUTIONS	55	10 10 10 10 10 10 10 10 10 10 10 10 10 1
or R	20	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Момвек	45	111
Non	40	11.1.2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
= 100	35	11.1.2.2.2.4.4.1.2.2.2.4.4.1.2.2.2.4.4.1.2.2.2.2
= =	30	11. 12. 12. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15
1	252	18.1.3.4.1.1.3.4.1.1.3.4.1.1.3.4.1.1.3.4.1.1.3.4.4.4.4
3 8	20	10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	15	in. 1548. 1644. 1644. 1784. 1784. 1784. 1784. 1844. 1984. 2204. 2211. 3
-	10	18 188 194 194 194 204 204 204 204 204 204 204 204 204 20
.T'woT	Horse	222 250 240 300 350 400 500 500 700 700 700 700 700 800 800 800 800 8
		010

TABLE

Showing the Strength of the Tecth of Cast-Iron Wheels at a given Velocitu.

Pitch of	Thick- ness of	Breadth of teeth	Strength of teeth in horse power at							
teeth in inches	teeth in inches.	in inches.	3 feet per second.	4 feet per second.	6 feet per second.	8 feet pe second.				
3.99	1.9	7.6	20.57	27 · 43	41 · 14	54.85				
3.78	1.8	7.2	17.49	23.32	34.98	46.64				
3.57	1.7	6.8	14.73	19.65	29.46	$39 \cdot 28$				
3.36	1.6	6.4	12.28	16.38	24.56	32.74				
3.15	1.5	6	10.12	13.50	20.24	26.98				
2.94	1.4	5.6	8.22	10.97	16.44	$21 \cdot 92$				
2.73	1.3	5:2	6.58	8.78	13.16	17.54				
2.52	1.2	4.8	5.18	6.91	10.36	13.81				
2.31	1.1	4.4	3.89	5.32	7.98	10.64				
2.1	1.0	4	3.00	4.00	6.00	8.00				
1.89	.9	3.6	2.18	2.91	4.36	5.81				
1.68	.8	3.2	1.53	2.04	3.06	3.08				
1.47	.7	2.8	1.027	1.37	2.04	2.72				
1.26	.6	2.4	.64	.86	1.38	1.84				
1.05	.5	2	.375	. 50	.75	1.00				

FURNITURE OIL.—1. Linseed oil 1 pint, alkanet ½ oz. Digest in a warm place till colored, and strain.

2. The same, with \(\frac{1}{4} \) pint of oil of turpentine.

3. Linseed oil 1 pint, alkanet root 1 oz., rose pink 1 oz. Let them stand in an earthen vessel all night.

4. A quart of linseed oil, 6 oz. of distilled vinegar, 3 oz. of spirit of turpentine, 1 oz. of muriatic acid, and 2 oz. of spirit of wine.

5. Linseed oil 8 oz., vinegar 4 oz., oil of turpentine, mucilage, rectified spirit, each \(\frac{1}{2}\) oz.; butter of antimony \(\frac{1}{4}\) oz.; muriatic acid 1 oz. Mix.

6. Linseed oil 16 oz., black rosin 4 oz., vinegar 4 oz., rectified spirit 3 oz., butter of antimony 1 oz., spirit of salts 2 oz.; melt the rosin, add the oil, take it off the fire, and stir in the vinegar; let it boil for a few minutes, stirring it; when cool put it into a bottle, add the other ingredients, shaking all together. [The last two are especially used for reviving French polish.]

7. Linseed oil 1 pint, oil of turpentine $\frac{1}{2}$ pint, rectified spirit 4 oz., powdered rosin $1\frac{1}{2}$ oz., rose pink $\frac{1}{2}$ oz. Mix.

8. Linseed oil 14 oz., vinegar 1½ oz., muriatic acid ½ oz. Mix.

TABLE

Showing how to ascertain the weights of Pipes, of various Metals, and any diameter required.

Thick- ness in parts of an inch.	Wrought iron.					ad. 10 doti 1		
$\frac{1}{32}$	· 326 · 653	$11\frac{1}{2}$ lbs. plate, $23\frac{1}{2}$ " "	·38 ·76		bs. lead,	·483 ·967		
19-10331853167314	· 976 1 · 3	35 " " 46½ " "	1·14 1·52	$5\frac{1}{2}$		1·45 1·933		
5 3 16	1 · 627 1 · 95	58 " " 70 " "	1·9 2·28	34		$2.417 \\ 2.9$		
$\frac{7}{32}$ $\frac{1}{4}$	$ \begin{array}{c c} 2 & 277 \\ 2 & 6 \end{array} $	$80\frac{1}{2}$ " " 93 " "	$\begin{array}{c} 2.66 \\ 3.04 \end{array}$	10		3 · 383 3 · 867		

Rule. To the interior diameter of the pipe, in inches, add the thickness of the metal; multiply the sum by the decimal numbers opposite the required thickness, and under the metal's name; also, by the length of the pipe in feet; and the product is the weight of the pipe in lbs.

1. Required the weight of a copper pipe whose interior diameter is $7\frac{1}{2}$ inches, its length $6\frac{1}{4}$ feet, and the metal $\frac{1}{8}$ of an inch in

thickness.

$$7.5 + .125 = 7.625 \times 1.52 \times 6.25 = 72.4 \text{ lbs.}$$

2. What is the weight of a leaden pipe 18½ feet in length, 3 inches interior diameter, and the metal ½ of an inch in thickness?

$$3 + .25 = 3.25 \times 3.867 \times 18.5 = 232.5$$
 lbs. on 8 o

Note. - Weight of a cubic inch of

alter a man of the love of the same of

Assessment of the later of the

Lead	equal	*4103	lb.	0.61	11/190
Copper, sheet	24	3225	44	Aire	Cross I
Brass, do.	44	*3037	**		
Iron, do.	- 44	*279		69 0	Chille In
Iron, cast	44	'263	**		2173
Tin, do.	66	2636	46		2/12/2014
Zinc. do.	46	26	66	12	Town
Water	44	03617	46	- 60	THE STATE OF

mair, add the one offer call the

ifit us

To solder Tortoise-shell.—Bring the edges of the pieces of shell to fit each other, observing to give the same inclination of grain to each, then secure them in a piece of paper, and place them between hot irons or pincers; apply pressure, and let them cool. The heat must not be so great as to burn the shell, therefore try it first on a piece of white paper.

TABLE

Of the Weight of Cast-Iron Balls.

Diameter in inches.	Weight in lbs.	Diameter in inches.	Weight in lbs.	Diameter in inches.	Weight in lbs.
2	1.10	6	29.72	10	137 · 71
21	1.57	61	$33 \cdot 62$	10출	$148 \cdot 28$
$\frac{2\frac{1}{2}}{2\frac{8}{4}}$	2.15	$6\frac{1}{2}$	37.80	101	159.40
28	2.86	63	42.35	108	171.05
3	3.72	7	47.21	11	$183 \cdot 29$
31	4.71	71	52.47	111	196:10
31/2	5.80	$7\frac{1}{2}$	58.06	111	209.43
34	$7 \cdot 26$	$7\frac{3}{4}$	64.09	113	223.40
4	8.81	8	70.49	12	$237 \cdot 94$
41	10.57	81	$77 \cdot 32$	121	253 13
$4\frac{1}{4}$ $4\frac{1}{2}$	12.55	81/2	84.56	121	268 . 97
484	14.76	834	$92 \cdot 24$	124	285.37
5	$17 \cdot 12$	9	100.39	13	302.41
$5\frac{1}{4}$	$19 \cdot 93$	91	108.98	131	320.80
5½ 5¾	$22 \cdot 91$	$9\frac{1}{2}$	118.06	$13\frac{1}{2}$	338 · 81
58	26.18	93	127.63	133	$357 \cdot 93$

1. What will be the weight of a hollow ball or shell of cast-iron, the external diameter being 9½, and internal diameter 8¾ inches?

Opposite 9½ are 118.06, and Opposite 8¾ are 92.24, subtract

25.82 lbs., weight required.

2. Requiring to remove a east-iron ball 37.8 lbs. in weight, and in diameter $6\frac{1}{2}$ inches, and replace it by one of lead of an equal weight, what must be the diameter of the leaden ball?

Weight of lead to that of east-iron = 1.56,

Then
$$\frac{6\cdot5^3}{1\cdot56} = \sqrt[3]{176} = 5\cdot6$$
 inches, the diameter.

To transfer Engravings to Plaster Casts.—Cover the plate with ink, and polish its surface in the usual way; then put a wall of paper round it, and when completed pour in some finely powdered plaster of Paris mixed in water; jerk the plate repeatedly, to allow the air bubbles to fly upwards, and let it stand one hour; then take the cast off the plate, and a very perfect impression will be the result.

	Hc1	$0.21 \\ 0.31 \\ 0.42$	0.63	UAT			
	cc -4-		0.94 0 1.26 1.57	P. P. S. S.	- 1123		
707	orla.					ar las	imil (
	-	0.42 0.63 0.84	$\frac{1.26}{1.68}$	2.52 2.94	v 01		9
-	4	$0.52 \\ 0.78 \\ 1.05$	1.57 2.10 2.62	3.15 3.67 4.20	4.72	AT	12 60 20 10
	300		1.73 2.31 2.88	3.46 4.04 4.62	5.19	A	100
NCH.	12		1.89 2.52 3.15	3.78 4.41 5.04	5.67	Ť	L L
F AN INCH.	84		2.20 2.94 3.67	5.14	6.60 7.35 8.07	08.8	4.
RTS OF	61		2.52 2.36 4.20 3.23 3.23	5.04 5.88 6.72 5.88	7.56 6 8.40 7 9.24 8	8 80.01	19
AND PARTS							10 h
ES AN	24	0.94 1.41 1.89	2.83 3.78 4.72	5.66 6.61 7.56	8.50 9.45 10.39	11.34 13.23 15.12	\If
N INCHES	23	1.05 1.57 2.10	3.15 4.20 5.25	6.30 7.35 8.40	9.55 10.50 11.55	12.60 14.70 16.80	ein.
BREADTH IN	2. 4.	1.15 1.73 2.31	3.46 4.62 5.77	6.93 8.08 9.24	10.39 11.55	13.86 16.17 18.48	23.10
BAE	က်		3.78 5.04 6.30	7.56 8.82 10.08	11.34 1 12.60 1 13.86 1	15.12 17.64 20.16	25.20 2
	31	1.36 2.04 2.73	4.09 5.46 6.82	8.19 9.55 10.92	12.28 13.65 15.01	16.38 1 19.11 1 21.84 2	27 .89 2
	- 15 - 2 - 2	1.47 2.20 2.94	4.41 5.88 7.35 (8.82 10.29 11.76	13.20 15 14.70 15 16.16 15	64 50 52 52	29.40 27
6	ය 4	1.57 2.36 3.15 2	4.72 6.30 7.87	9.45 8 11.02 10 12.60 11	32.	18.90 17. 22.05 20. 25.20 23	31.50 29
7 6	4	1.68 1 2.52 2 3.36 3	40. 72. 40.	10.08 11.76 13.44 12	15·12. 14 16·80 15 18·48 17	20-18 18 23-54 22 26-88 25	33.65 31
89	Thickr in inch and pa	= ∞ω <mark>=</mark> 44 	edecularion ro so so	84448 0111 113	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 20 14 23 2 26	21 33

TABLE of the Weight of Cast-Iron Pipes, in lengths.

Bore.	Thick.	Long.	Weight.	Bore.	Thick.	Long.	Weight.	Bore.	Thick.	Long.	W	eight.
Inch.	In.	Ft.	C. qr. lb.	Inch.	In.	Ft.	C. qr. lb. 2 0 16	Inch.	In,	Ft.		qr. Ib
1	4	$3\frac{1}{2}$	12	61	00 - 00 P	9	2 3 20	112	215	9		0 7
11	8	$3\frac{1}{2}$	21 21		2	9	3 2 21	-	न्वाक्ष्यक व्यक्ष	9		$\begin{array}{ccc} 1 & 12 \\ 2 & 8 \end{array}$
11/2	व्यक्ति न्यं स्त्रंक	41	1 4		5 8	9	4 1 21		1	9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 4	No.	$4\frac{1}{2}$		-0.1	8 1	9	6 0 14	1		9	1	1 2
2.	14	6	1 8		1	9		12	1 2	9		24
0.00	न्यक्रिक्ष्यं व्यक्त	6	2 0	7	न्ध्रक्ष क्ष्म	9	3 0 7	1.	10 50 84	9		2 8
$2\frac{1}{2}$	1	6	1 16		5	9	3 3 20		34	9		3 20
· KO	38	6	2 10 3 10		84	9	4 3 5	101	1	9		3 0
70	2	6	3 10		1	9	6 2 4	$12\frac{1}{2}$	12 58 84	9	5	
3	4	9	2 20	$7\frac{1}{2}$	1 5 8 4	9	3 1 6	1 2	8	9	6	
TW		9	1 0 6		90	9	4 0 22		4	9	8	
> 0	1	9	1 1 12	1		9	$\begin{bmatrix} 5 & 0 & 10 \\ 7 & 0 & 0 \end{bmatrix}$	1	1	9	11 (21
14.0	5	9	1 3 6	10	1	9	7 0 0	13	1/2	9	5 5	2 20
5000	क्षेत्र न्या क्षेत्र क्षेत्र न्या क्षेत्र क्षेत्र न्या क्षेत्र क्षेत्र	9	2 1 0	8	5	9	3 2 4		12 58 84 1	9	7 (
31	1	9	3 0	Re	5	9	4 1 25		4	9	8 2	
70	8	9	1 0 21	2.6	500 34	9	5 1 18		1	9	11 2	
24	1/2	9	1 2 14	0.7	1	9	7 1 16	$13\frac{1}{2}$	1 5 8 8 4 1	9	5 8	
010	5	9	2 0 8	81	$\frac{1}{2}$	9	3 3 2	Te	8	9	7 1	
10	34	9	2 2 0	500	क्षेत्र क्षेत्र	9	4 2 26		4	9	8 3	
4	3	9	1 1 10	-7.0	4	9	5 2 22		1	9	11 8	24
85	व्यक्त न्या प्रदेश व्यक्ति व्यक्ति न्या प्रदेश व्यक्ति	9	1 3 12		1	9	7 3 8	14	1	9	6 (4
Po	55	9	2 1 12	9	1	9	4 0 0	-	121 500 314	9	7 2	16
Die	34	9	2 3 21	-	5	9	5 0 4	1.2	34	9	9 1	. 0
$4\frac{1}{2}$	8	9	1 2 2	60	125884 1	9	6 0 2	21	1	9	12 1	
	$\frac{1}{2}$	9	2 0 4	1.00	1	9	8 0 26	141	$\frac{1}{2}$	9	6 (
Nilly"	3	9	2 2 14	$9\frac{1}{2}$	125834	9	4 0 18	70	5	9	7 3	
	34	9	3 0 21	1,175	5	9	5 1 0		84	9	9 2	
5	8	9	1 2 22		4	9	6 1 6		1	9	12 3	6
No.	1 3	9	2 1 10		1	9	8 2 20	15	1/2	9	6 1	21
100	क्षेत्र नित्र क्षेत्र क्षेत्र नित्र क्षेत्र स्थ	9	2 3 17	10	1/2	9	4 1 10	_	34	9	9 8	7
	84	9	3 1 24	day's	125884 1	9	5 1 26	(4)	î	9	13 0	
$5\frac{1}{2}$	8	9	1 3 10	111	84	9	6 2 14	CHI-	14	9	16 8	
00	1/2	9	2 2 0	0.00		9	9 0 8	$15\frac{1}{2}$	14 12 84	9	6 2	
99	5	9	3 0 18	101	12 58 84	9	4 2 14		34	9	10 0	
-	3	9	3 3 7	184	5.	9	5 3 7		1	9	13 2	
7 0	1	9	5 0 12	100± ()	34	9	7 0 0		11	9	17 1	6
6	3	9	2 0 0		1	9	9 2 0	16	1/2	9	7 0	22
OF-	1	9	2 2 21	11	1	9	4 3 14		34	9	10 1	-
900	5	9	3 1 17	77 1	1250	9	6 0 11		1	9	14 0	
90-0	अंक मंत्र क्रंक क्षंस 1	9	4 0 16	100	1	9	7 1 7		11	9	17 3	1.4
	Î	9	5 2 20		1	9	9 3 20	- "	$1\frac{1}{2}$	9	21 8	4

TABLE

Of the weight of one foot length of Malleable Iron.

SQUA	RE IRON.		ROUN	D IRON.	3.3
Scantling.	Weight.	Diameter.	Weight.	Circumfer.	Weight.
Inches.	Pounds.	Inches.	Pounds.	Inches.	Pounds.
1	0.21	1	0.16	- 11	0.26
3	0.47	3	0.37	11	0.41
- 4 espo - 52 espo esp4 5- 8	0.84	नियं उद्देश नृत्य डांक्स्यूची रोक्स	0.66	1 1 1 1 1 2 1 3	0.59
5	1.34	5	1.03	13	0.82
3	1.89	3	1.48	2	1.05
7	2.57	1 2	2.02	21	· 1.34 ·
1	3.36	1	2.63	$2\frac{7}{2}$	1.65
11	4.25	11/8	3.33	24	2.01
14	5.25	14	4.12	3	2.37
13	6.35	18	4.98	1131	2.79
188 118 188 1188 1188	7.56	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	5.93	31 1	3.24
15	8.87	15	6.96	0 34 :	3.69
12	10.29	18	8.08	4	4.23
17	11.81	17	9.27	41	5.35
2 21	13.44	2	10.55	5	6.61
21	17.01	21	13.35	51	7.99
21	21.00	$2\frac{1}{2}$	16.48	6.	9.51
$2\frac{1}{2}$ $2\frac{8}{4}$	25.41	23/4	19.95	61	11.18
3	30.24	3	23.73	7~	12.96
31	41.16	34	27.85	$7\frac{1}{2}$	14.78
4	53.76	31	32.32	8	16.92
4-1	68.04	384	37.09	81	19.21
5	84.00	4	42 21	, 9	21.53
6	120.96	41/2	53.41	10	26.43
7	164.64	5	65.93	12	31.99

FRESCO PAINTING.—Apply any colors that are not injured by lime (according to taste), on a fresh mortared or plastered wall.

To take Fac-similes of Signatures.—Write your name on a piece of paper, and while the ink is wet sprinkle over it some finely powdered gum arable, then make a rim round it, and pour on it some fusible alloy, in a liquid state. Impressions may be taken from the plates formed in this way, by means of printing ink and the copperplate press.

WATCHMAKER'S OIL, WHICH NEVER CORRODES OR THICKENS.—Take olive oil and put it into a bottle, then insert coils of thin sheet lead. Expose it to the sun for a few weeks, and pour off the clear oil.

TABLE

Of the Dimensions and Weight of Coppers, from 1 to 208 gallons.

The Dimensions taken from lag to brim.

Inches lag to brim.	Gallons.	Weight in lbs.	Inches lag to brim.	Gallons.	Weight in lbs.	Inches lag to brim.	Gallons.	Weight in
98	1	11/2	24	15	$22\frac{1}{2}$	291	29	431
98 124	$\hat{2}$	3	241	16	24	30	30	45
14	2 3	$4\frac{1}{2}$	25	17	251	32	36	54
$14 \\ 15\frac{1}{2}$		6	254	18	27	34	43	641
164	4 5	$\begin{array}{c} 6 \\ 7\frac{1}{2} \end{array}$	26	19	281	35	48	72
$17\frac{1}{2}$ $18\frac{1}{2}$	6	9	261	20	30	36	53	791
181	7	$10\frac{1}{2}$	$26\frac{3}{4}$	21	311	37	58	87
191	8 .	12	27	22	33	38	63	941
201	9	$13\frac{1}{2}$	274	23	$34\frac{1}{2}$	39	67	$100\frac{1}{2}$
21	10	15	$27\frac{1}{2}$	24	36	40	71	$106\frac{1}{2}$
211	11	161	278	25	371	45	104	156
22	12	18	28	26	39	50	146	219
221	13	$19\frac{1}{2}$	281	27	$-40\frac{1}{2}$	55	208	312
231	14	21	29	28	42	A X		

Weight of Cast-Iron Plates, per superficial foot.

From one-eighth of an inch to one inch thick.

lbs. oz.	lbs, oz.	lbs. oz.	½ inch. lbs. oz. 19 5\frac{3}{8}	lbs. oz.	lbs. oz.	lbs. oz.	lbs. oz.
4 108	9 10%	14 8	19 58	24 24	29 0	35 138	38 104

THE MANNER OF SOLDERING FERRULES FOR TOOL HANDLES, &c.—Take your ferrule, lap round the jointing a small piece of brass wire, then just wet the ferrule, scatter on the joining ground borax, put it on the end of a wire, and hold it in the fire till the brass fuses. It will fill up the joining, and form a perfect solder. It may afterwards be turned in the lathe.

Cast Engravings.—Take the engraved plate you intend to copy, and arrange a support of suitable materials round it, then pour on it the following alloy in a state of perfect fusion: tin 1 part; lead 64 parts; antimony 12 parts. These "east plates" may be worked off on a common printing-press, and offer a ready mode of procuring cheap copies of the works of our celebrated artists.

TABLE
Of the Bore and Weight of Cocks.

Content of Copper.	Bore of Cock.	Weight of Cock.	Content of Copper	Bore of Cock.	Weight of Cock.
Gallons.	Inches.	Pounds.	Gallons.	Inches.	Pounds.
50	11/2	7	200	28	30
50	13/4	8	260	3	34
80	2	12	340	31	44
120	$2\frac{1}{4}$	19	420	$3\frac{1}{2}$	56
150	$2\frac{1}{2}$	26	430 and upwards.	$3\frac{3}{4}$	70

Three-fourths of the diameter of the bore, taken at the hinder part, will give the diameter of the cock at the mouth.

TABLE

Of the Weight of Lead, per superficial foot.

From one-sixteenth of an inch to one inch thick.

Thickness.	Weight.	Thickns.	Weight.	Thickns.	Weight.	Thickness.	Weight.
inch. 1-16th	lbs. 3 8 4	inch. 1-8th	lbs. 7 ½	inch. 1-4th	lbs. 1434	inch. 3-4ths.	ibs. 444
1-12th	5	1-6th	-10	1-3rd	191	1 inch	59
1-10th	6	1-5th	12	1-half	$29\frac{1}{2}$		

Weight of Lead Pipe of the usual thicknesses.

		Per fo	ot in length.			
1-inch bore		1 lb. 1 oz.				
3 "		1 lb. 8 oz.	- 1 lb.	12 oz.	- 2 lbs.	
-1 m) , " ofe)	(1	2 lbs.	- 2 lbs.	11 oz.	- 2 lbs.	14 oz.
11 "		3 lbs.	- 3 lbs.	11 oz.	- 4 lbs.	7 oz.
11/2		4 lbs.				
2 / "	147	5 lbs. 9 oz	. — 7 lbs.	- 10	— 8 lbs.	5 oz.
21 "	100	7 lbs.	- 8 lbs.	9 02	-10 lbs.	21. 31

Weight of Copper Tubing. Of the usual thickness.

allow the foreign of dequated your

When the inside diameter is $\frac{1}{4}$ of an inch, 3 ounces; $\frac{3}{4}$ of an inch, 5 ounces; $\frac{1}{2}$ of an inch, 6 ounces; $\frac{5}{4}$ of an inch, 8 ounces; and $\frac{3}{4}$ of an inch, 10 ounces per foot.

STRENGTH OF MATERIALS.

Materials of construction are liable to four different kinds of strain, viz., stretching, crushing, transverse action, and torsion or twisting: the first of which depends upon the body's tenacity alone; the second, on its resistance to compression; the third on its tenacity and compression combined; and the fourth, on that property by which it opposes any acting force tending to change from a straight line, to that of a spiral direction, the fibres of which the body is composed.

In bodies, the power of tenacity and resistance to compression, in the direction of their length is as the cross-section of their area multiplied by the results of experiments on similar bodies, as exhi-

bited in the following table:

TABLE

Showing the Tenacities, Resistances to Compression, and other Properties of the common Materials of Construction.

* 05 18 V	. Ab	solute.	Compa	red with C	ast Iron.
Names of Bodies.	Tenacity in lbs. per sq. inch.	Resistance to compres- sion in lbs per sq. in.	Its strength is	Its extensi- bility is	Its stiffness is
Ash	14130		0 23	2.6	0.089
Beech	12225	8548	0.15	2.1	0.073
Brass	17968	10304	0.435	0.9	0.49
Brick	275	562	_	-	
Cast iron	13434	86397	1.000	1.0	1.000
Copper (wrought)	33000	of the state of	Marie Walt	-	
Elm	9720	1033	0.21	2.9	0.073
Fir, or Pine, white	12346	2028	0.23	2.4	0.1
" " red	11800	5375	0.3	2.4	0.1
" yellow.	11835	5445	0.25	2.9	0.087
Granite	· - 0	10910		(_
Gun-metal (copper) 8, and tin 1	35838		0.65	1.25	0.535
Malleable iron	56000		1.12	0.86	1.3
Larch	12240	5568	0.136	2.3	0.058
Lead	1824	1	0.096	2.5	0.0385
Mahogany, Honduras	11475	8000	0.24	2.9	0.487
Marble	551	6060) 1	-	-
Oak	11880	9504	0.25	2.8	0.033
Rope (1in. in circum.)	200	<u> </u>		-	-
Steel	128000			- (-1)	-
Tin (cast)	4736		0.182	0.75	0.25
Zinc (sheet)	9120	7 1	0.365	0 5.	0.76

TABLE

Of the Comparative Strength and Weight of Ropes and Chains.

Circum, of rope in inches.	Weight per fathom in lbs.	Diameter of chain in inches.	Weight per fathom in lbs.	Proof strength in tons and cwt.	Circum. of rope in inches.	Weight per fathom in lbs.	Diameter of chain in inches.	Weight per futhom in lbs.	Proof strength in tons and cwt.
$3\frac{1}{2}$	23	5 16	$5\frac{1}{2}$	$1 5\frac{1}{2}$	10	23	7 8	43	10 0
41	43	8 8	8	1 163	108	28	1 5 1 6	49	11 11
5	$5\frac{8}{4}$	7 16	$10\frac{1}{2}$	2 10	$11\frac{1}{2}$	$30\frac{1}{2}$	1 in.	56	13 8
$5\frac{8}{4}$	7	1/2	14	$3 5\frac{1}{2}$	$12\frac{1}{4}$	36	116	63	14 18
$6\frac{1}{2}$	$9\frac{3}{4}$	9	18	4 31/2	13	39	11/8	71	16 14
7	114	5 8	22	5 2	133	45	3 16	79	18 11
8	15	11	27	$6 ext{ } 4\frac{1}{2}$	$14\frac{1}{2}$	$48\frac{1}{2}$	$1\frac{1}{4}$	87	20 8
83	19	34	32	7 7	$15\frac{1}{4}$	56	$1_{1\frac{5}{6}}$	96	22 13
$9\frac{1}{2}$	21	13	37	$8 \ 13\frac{1}{2}$	16	60	18	106	24 18

Note.—It must be understood, and also borne in mind, that in estimating the amount of tensile strain to which a body is subjected, the weight of the body itself must also be taken into account; for according to its position so may it approximate to its whole weight, in tending to produce extension within itself; as in the almost constant application of ropes and chains to great depths, considerable heights, &c.

Resistance to Lateral Pressure, or Transverse Action.

TABLE

Of Data, containing the Results of Experiments on the Elasticity
and Strength of various Species of Timber.

Species of Timber.	Value of E.	Value of S.	Species of Timber.	Value of E.	Value of 8.
Teak,	174.7	2462	Elm,	50.64	1013
Poona,	122.26	2221	Pitch pine, .	88.68	1632
English Oak, .	105	1672	Red pine,	133	1341
Canadian do., .	155.5	1766	New Eng. fir,	158.5	1102
Dantzie do., .	86.2	1457	Riga do.,	90	1100
Adriatic do., .	70.5	1383	Mar Forest do.	63	1200
Ash,	119	2026	Larch,	76	900
Beech,	98	1556	Norwayspruce,	105 47	1474

The strength of a square or rectangular beam to resist lateral pressure, acting in a perpendicular direction to its length, is as the breadth and square of the depth, and inversely as the length. Thus, a beam twice the breadth of another, all other circumstances being alike, equals twice the strength of the other; or twice the depth, equal four times the strength, and twice the length, equal only half the strength, &c., according to the rule.

To find the dimensions of a beam capable of maintaining a given weight, with a given degree of deflection, when supported at both ends.

Rule. Multiply the weight to be supported in lbs. by the cube of the length in feet; divide the product by 32 times the tabular value of E, multiplied into the given deflection in inches; and the quotient is the breadth multiplied by the cube of the depth in inches.

Note 1.—When the beam is intended to be square, then the fourth root of the quotient is the breadth and depth required.

Note 2.—If the beam is to be cylindrical, multiply the quotient by 17, and the fourth root of the product is the dameter.

EXAMPLE. The distance between the supports of a beam of Riga fir is 16 feet, and the weight it must be capable of sustaining in the middle of its length is 8000 lbs., with a deflection of not more than \$\frac{2}{3}\$ of an inch; what must be the depth of the beam, supposing the breadth 8 inches?

$$\frac{16 \times 8000}{90 \times 32 \times 75} = 15175 \div 8 = \sqrt[3]{1897} = 12.35$$
 in., the depth.

To determine the absolute strength of a rectangular beam of timber, when supported at both ends, and loaded in the middle of its length, as beams in general ought to be calculated to, so that they may be rendered capable of withstanding all accidental cases of emergency.

RULE. Multiply the tubular value of S by four times the depth of the beam in inches, and by the area of the cross section in inches; divide the product by the distance between the supports in inches, and the quotient will be the absolute strength of the beam in lbs.

Note 1.—If the beam be not laid horizontally, the distance between the supports, for calculation, must be the horizontal distance.

Note 2.—One fourth of the weight obtained by the rule is the greatest weight that ought to be applied in practice as permanent load.

Note 3.—If the load is to be applied at any other point than the middle, then the strength will be as the product of the two distances is to the square of half the length of the beam between the supports; or, twice the distance from one end, multiplied by twice from the other, and divided by the whole length, equal the effective length of the beam.

EXAMPLE. In a building 18 feet in width, an engine boiler of 5½ tons is to be fixed, the centre of which is to be 7 feet from the wall; and having two pieces of red pine, 10 inches by 6, which I can lay across the two walls for the purpose of slinging it at each end, may I with sufficient confidence apply them, so as to effect this object?

$$\frac{2240 \times 5.5}{4}$$
 = 6160 lbs. to carry at each end.

And 18 feet -7 = 11, double each, or 14 and 22, then

$$\frac{14 \times 22}{13}$$
 = 17 feet, or 204 inches, effective length of beam.

Tabular value of S, red pine,
$$=\frac{1341 \times 4 \times 10 \times 60}{204} = 15776$$
 lbs.

the absolute strength of each piece of timber at that point.

To determine the dimensions of a rectangular beam capable of supporting a required weight, with a given degree of deflection, when fixed at one end.

Rule. Divide the weight to be supported in lbs., by the tabular value of E, multiplied by the breadth and deflection, both in inches; and the cube root of the quotient, multiplied by the length in feet, equal the depth required in inches.

Example. A beam of ash is intended to bear a load of 700 lbs. at its extremity, its length being 5 feet, its breadth 4 inches, and the deflection not to exceed $\frac{1}{2}$ of an inch.

Tabular value of E = 119 \times 4 \times 5 = 238 the divisor; then 700 ÷ 238 = $\sqrt[3]{294} \times 5 = 7.25$ inches, depth of the beam.

To find the absolute strength of a rectangular beam, when fixed at one and loaded at the other.

RULE. Multiply the value of S by the depth of the beam, and by the area of its section, both in inches: divide the product by the leverage in inches, and the quotient equal the absolute strength of the beam in lbs.

EXAMPLE. A beam of Riga fir, 12 inches by $4\frac{1}{2}$, and projecting $6\frac{1}{2}$ feet from the wall; what is the greatest weight it will support at the extremity of its length?

Tabular value of S = 1100

$$12 \times 4.5 = 54$$
 sectional area,
Then, $\frac{1100 \times 12 \times 54}{78} = 9138.4$ lbs.

When fracture of a beam is produced by vertical pressure, the fibres of the lower section of fracture are separated by extension, whilst at the same time those of the upper portion are destroyed by compression; hence exists a point in section where neither the one nor the other takes place, and which is distinguished as the point

of neutral axis. Therefore, by the law of fracture thus established, and proper data of tenacity and compression given, as in the table (p. 135), we are enabled to form metal beams of strongest section with the least possible material. Thus, in cast iron, the resistance to compression is nearly as $6\frac{1}{2}$ to 1 of tenacity; consequently a beam of cast iron, to be of strongest section, must be of the following forms that the section of the section is the section of the section of

ing form, and a parabola in the direction of its length, the quantity of material in the bottom flange being about 6½ times that of the upper. But such is not the case with beams of timber; for although the tenacity of timber be on an average twice that of its resistance

to compression, its flexibility is so great that any considerable length of beam, where columns cannot be situated to its support, requires to be strengthened or trussed by iron rods, as in the following manner:

and these applications of principle not only tend to diminish deflection, but the required purpose is also more effectively attained, and that by lighter pieces of timber.

To ascertain the absolute strength of a cast-iron beam of the preceding form, or that of strongest section.

RULE. Multiply the sectional area of the bottom flange in inches by the depth of the beam in inches, and divide the product by the distance between the supports, also in inches; and 514 times the quotient equal the absolute strength of the beam in cwts.

The strongest form in which any given quantity of matter can be disposed is that of a hollow cylinder; and it has been demonstrated that the maximum of strength is obtained in cast iron when the thickness of the annulus or ring amounts to ½th of the cylinder's external diameter; the relative strength of a solid to that of a hollow cylinder being as the diameters of their sections.

TORTOISE-SHELL GROUND FOR METAL.—Cover the plates intended to represent the transparent parts of the tortoise-shell with a thin coat of vermilion in seed-lac varnish. Then brush over the whole with a varnish composed of linseed oil boiled with umber until it is almost black. The varnish may be thinned with oil of turpentine before it is used. When the work is done it may be set in an oven, with the same precautions as the black varnish

Force in Pile-Driving.—In a sandy soil the greatest force of a pile-driver will not drive a pile over fifteen feet.

TABLE

Showing the Weight or Pressure a Beam of Cast Iron, 1 inch in breadth, will sustain, without destroying its elastic force, when it is supported at each end, and loaded in the middle of its length, and also the deflection in the middle which that weight will produce.

Length.	6 fe	et.	7 fee	t.	8 fee	et.	, 9 fe	eet.	10 1	eet.
Depth in inches.	Weight in lbs.	Deflection in inches.	Weight in lbs.	Deflection in inches.	Weight in lbs.	Deflection in inches.	Weight in lbs.	Deflection in inches.	Weight in lbs.	Deflection in inches.
yro,00	ا مد ـ	127	40.00	O. K.	571-0	7.179	35,2910	1337	100 57	- Arppio
3 3½	$1278 \\ 1739$	·24 ·205		·33 ·28	$954 \\ 1298$	·426 ·365	1164	·54 ·46	765 1041	·66 ·57
4	2272	·18	1936	.245	1700	32	1520	405	1360	.5
$4\frac{1}{2}$	2875	16	2450	217	2146	284	1924	.36	1721	.443
5	3560	144	3050	196	2650	256	2375	.32	2125	•4
6	5112	12	4356	163	3816	213	3420	.27	3060	.33
7	6958	103	5929	14	5194	183	4655	23	4165	.29
8.	9088	.09	7744	123	6784	·16 ·142	6080	203	5440	25
10	role/ly		9801	109	8586		7695	18	6885	22
11			12100	.098	$10600 \\ 12826$	·128 ·117	9500	162	8500	2
12					15264	107	11495	15	10285	182
13	1	-5 g	010 - 110		19204	101	$\frac{13680}{16100}$		12240	17
14						1000	18600		$14400 \\ 16700$	·154 ·143
14							10000	110	10100	140
ota yd	12 fe	et.	14 fe	et.	16 fe	et.	18 fe	et.	20 f	eet.
6	2548	.48	2184	.65	1912	.85	1699	1.08	1530	1.34
7	3471	.41	2975	.58	2603	.73	2314	.93	2082	1.14
8	4532	.36	3884	.49	3396	.64	3020	.81	2720	1.00
9	5733	.32	4914	.44	4302	:57	3825	.72	3438	:89
10	7083	.28	6071	.39	5312	.51	4722	.64	4250	.8
11	8570	26	7346	:36	6428	.47	5714	.59	5142	.73
12	10192	.24	8736	.33	7648	43	6796	54	6120	:67
13	11971	.22	10260	.31	8978	.39	7980	.49	7182	.61
14	13883	.21	11900	28	10412	.36	9255	:46	8330	.57
15	15937	.19	13660	.26	11952	.34	10624	43	9562	.23
16	18128	.18	15536	.24	13584	.32	12080	•40	10880	:5
17	20500	.17	17500	.23	15353	.3	13647	.38	12282	:47
18	22935	.16	19656	.21	17208	.28	15700	.36	13752	:44
00.00		12.00	2 1000	di di	John St.	300	-d W	Jan	0.00	- Clar

Note.—This table shows the greatest weight that ever ought to be laid upon a beam for permanent load; and, if there be any liability to jerks. &c., ample allowance must be made; also, the weight of the beam itself must be included.

To find the weight of a cast-iron beam of given dimensions.

Rule. Multiply the sectional area in inches by the length in feet, and by 3.2, the product equal the weight in lbs.

Ex. Required the weight of a uniform rectangular beam of cast iron, 16 feet in length, 11 inches in breadth, and 1½ inch in thickness.

$11 \times 1.5 \times 16 \times 3.2 = 844.8$ lbs.

Resistance of Bodies to Flexure by Vertical Pressure.

When a piece of timber is employed as a column or support, its tendency to yielding by compression is different according to the proportion between its length and area of its cross section; and supposing the form that of a cylinder whose length is less than seven or eight times its diameter, it is impossible to bend it by any force applied longitudinally, as it will be destroyed by splitting before that bending can take place; but when the length exceeds this, the column will bend under a certain load, and be ultimately destroyed by a similar kind of action to that which has place in the transverse strain.

Columns of cast iron, and of other bodies, are also similarly circumstanced, this law having recently been fully developed by the experiments of Mr. Hodgkinson on columns of different diameters,

and of different lengths.

When the length of a cast-iron column with flat ends equals about thirty times its diameter, fracture will be produced wholly by bending of the material. When of less length, fracture takes place partly by crushing and partly by bending. But, when the column is enlarged in the middle of its length from one and a half to twice its diameter at the ends, by being cast hollow, the strength is greater by ½th than in a solid column containing the same quantity of material.

To determine the dimensions of a support or column to bear, without sensible curvature, a given pressure in the direction of its axis.

Rule.—Multiply the pressure to be supported in lbs. by the square of the column's length in feet, and divide the product by twenty times the tabular value of E; and the quotient will be equal to the breadth multiplied by the cube of the least thickness, both being expressed in inches.

Note 1.—When the pillar or support is a square, its side will be the fourth root of the quotient.

 $2\,$ If the pillar or column be a cylinder, multiply the tabular value of E by 12, and the fourth root of the quotient equal the diameter.

Ex. 1. What should be the least dimensions of an oak support, to bear a weight of 2240 lbs., without sensible flexure, its breadth being 3 inches, and its length 5 feet?

Tabular value of E = 105.

and
$$\frac{2240 \times 5^2}{20 \times 105 \times 3} = \sqrt[3]{8.888} = 2.05$$
 inches.

Ex. 2. Required the side of a square piece of Riga fir, 9 feet in length, to bear a permanent weight of 6000 lbs.

Tabular value of E = 96.

and
$$\frac{6000 \times 9^2}{20 \times 96} \times \sqrt[4]{253} = 4$$
 inches nearly.

TABLE

Of the Dimensions of Cylindrical Columns of Cast Iron to sustain a given load or pressure with safety.

S.			L	ENGTE	or :	Heigi	IT IN	FEET	JIA'0	10.0	V)01
che	g smf	0 0	1011	- (III)	valled	Torr	mal s	.011 111	Env	(1) L	
in inches.	4	6	8	10	12	14	16	18	20:	22	124)
ngel	in/li t	o o on	7	Veigi	IT OR	Loa	D IN	Cwts	E Tor	illou γ-γγjΣ γ/j γ	Period J. L. W.L.
2	72	60	49	40	32	26	22	18	15	13	11
$2\frac{1}{2}$	119	105	91	77	65	55	47	40	34	29	
3	178	163	145	128	111	97	84	73	64	56	49
$3\frac{1}{2}$	247	232	214	191	172	156	135	119	106	94	83
4	326	310	288	266	242	220	198	178	-160	144	130
$4\frac{1}{2}$	418	400	379	354	327	301	275	251	229	208	189
5	522	501	479	452	427	394	365	337	310	285	262
6	607	592	573	550	525	497	469	440	413	386	360
7	1032	1013	989	959	924	887	848	808	765	725	686
8	1333	1315	1289	1259	1224	1185	1142	1097	1052	1005	959
9	1716	1697	1672	1640	1603	1561	1515	1467	1416	1364	1311
10	2119	2100	2077	2045	2007	1964	1916	1865	1811	1755	1697
11	2570	2550	2520	2490	2450	2410	2358	2305	2248	2189	2127
12	3050	3040				2900					

Practical Utility of the preceding Table.

Ex. Wanting to support the front of a building with east-iron columns 18 feet in length, 8 inches in diameter, and the metal 1 inch in thickness; what weight may I confidently expect each column capable of supporting without tendency to deflection?

Opposite 8 inches diameter and under 18 feet = 1097
Also opposite 6 in. diameter and under 18 feet = 440
= 557 cwt,

Note.—The strength of cast iron as a column being 1 0000

steel = 2 518
wrought iron = 1745
(oak) Dantzic = 1088
red deal = 9785

Elasticity of Torsion, or Resistance of Bodies to Twisting.

The angle of flexure by torsion is as the length and extensibility of the body directly, and inversely as the diameter; hence the length of a bar or shaft being given, the power, and the leverage the power acts with, being known, and also the number of degrees of torsion that will not affect the action of the machine, to determine the diameter in cast iron, with a given angle of flexure.

Rule. Multiply the power in lbs. by the length of the shaft in feet, and by the leverage in feet; divide the product by fifty-five times the number of degrees in the angle of torsion; and the fourth root of the quotient equal the shaft's diameter in inches.

Ex. Required the diameters for a series of shafts 35 feet in length, and to transmit a power equal to 1245 lbs., acting at the circumference of a wheel $2\frac{1}{2}$ feet radius, so that the twist of the shafts on the application of the power may not exceed one degree.

$$\frac{1245 \times 35 \times 2.5}{55 \times 1} = \sqrt[4]{1981} = 6.67 \text{ inches in diameter.}$$

Relative Strength of Metals to resist Torsion.

 Cast iron
 . . . = 1.*
 Swedish bar iron
 . = 1.05

 Copper
 . . . = 48
 Euglish
 do. . . = 1.12

 Yellow Brass
 . = 511
 Shear steel
 . . . = 1.96

 Gun-metal
 . = 55
 Cast do. . . . = 2.1

Map Colors.

YELLOW.

1. Dissolve gamboge in water.

2. Make a decoction of French berries, strain, and add a little gum arabic.

RED.

1. Make a decoction of Brazil dust in vinegar, and add a little gum and alum.

2. Make an infusion of cochineal, and add a little gum.

BLUE.

A weak mixture of sulphate of indigo and water, to which add a little gum.

GREEN.

1. Dissolve crystals of verdigris in water, and add a little gum.

2. Dissolve sap green in water, and add gum.

TABLE

Of the Weight of a Superficial Foot of Plate or Sheet Iron, Copper, and Brass, in pounds.

	1	ron.		No.	Iron.	Copper.	Brass.		No	Iron.	Copr.	Brass.
	$\frac{1}{32}$	1.25		1	12.5	14.5	13.75	T	16	2.2	2.9	2.75
3	1 6	2.5		2	12	13.9	13.2		17	2.18	2.52	2.4
-	18	ő	e.	3	11	12.75	12.1	e.	18	1 · 86	2.15	2.04
Thickness in parts of an inch.	3	7.5	gauge.	4	10	11.6	11	gauge.	19	1.7	1 . 97	1 · 87
nu.	1	10	0	5	8.74	10.1	9.61	9	20	1.54	1.78	1.69
0 8	5	12.5	wire	6	8.12	9.4	8.83	Ĭ.	21	1.4	1 · 62	1:54
na.	8	15	the	7	7.5	8.7	8.25	the	22	1 · 25	1 - 45	1 · 37
E.	7 16	17.5	ž.	8.	6.86	7.9	7.54	b.	23	1:12	1 · 3	1 · 23
688	1	20	ex.	9	6 · 24	7.2	6.86	ess	24	1	1.16	1:1
ekn	9 16	22.5	Thickness	10	5.62	6.2	6.18	Thickne	25	.9	1.04	.99
	5 8	25	1	11	5	5:8	5.5	Thi	26	.8	.92	.88
	11	27.5		12	4.38	5.08	4.81		27	.72	-83	.79
	84	30		13	3.75	4.34	4.12		28	• 64	.74	.7
	7	35	-00	14	3.12	3.6	3.43	9	29	.56	· 64	.61
1	1	40		15	2.82	3 . 27	3.1		30	.5	-58	.55

Note.—No. 1 wire gauge equal \(\frac{5}{16} \) ths of an inch.

" 4 " \\ \frac{4}{4} " \\
" 7 " \\ \frac{3}{16} \\
" 11 " \\ \frac{8}{8} " \\
" 16 " \\ \frac{1}{16} \\
" 29 " \\ \frac{1}{16} \\
" 29 " \\
" 16 " \\
" 29 " \\
" 16 " \\
" 29 " \\
" 17 " \\
" 18 " \\
" 18 " \\
" 18 " \\
" 19 " \\
" 19 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
" 10 " \\
"

The great variety of thicknesses into which copper is manufactured, cause in trade the weight to be named whereby to determine the thickness required, the unit being that of a common sheet, so designated, viz 4 feet by 2 feet, in lbs. thus:

A 70 1	b. plate	is $\frac{3}{16}$ ths	of an inc	h in thickn	ess.
" 23	66	1	44	ee	20.65
- "-111	i.e	3 2	- 44		
" 6	u	34	45	a.	or lawel

The thickness of lead is also in common determined or understood by the weight, the unit being that of a square or superficial foot; thus:

4	lbs.	lead	is 16th	of an	inch	in thickness	ಕೆ.
6		"	1	**		**	
71		"	18	44		"	
11		"	16	66	-7-	"	
2 -		44	1	66		"	

Comparative Weights of Different Bodies.

Bar iron being 1,	Cast iron being 1,
Cast iron = .95	Bar iron $= 1.0$
Steel = 1.02	Steel = 1.08
Copper = 1.16	Brass $= 1.16$
Brass $= 1.09$	Copper $= 1.21$
Lead $= 1.48$	Lead = 1.56

1. Suppose I have an article of plate iron, the weight of which is 728 lbs., but want the same of copper, and of similar dimensions, what will be its weight?

$$728 \times 1.16 = 844.48$$
 lbs.

2. A model of dry pine, weighing 32½ lbs., and in which the iron for its construction forms no material portion of the weight, what may I anticipate its weight to be in cast iron?

$$32.5 \times 16 = 520$$
 lbs.

Note.—It frequently occurs, in the formation or construction of models, that neither the quality nor condition of the timber can be properly estimated; and, in such cases, may be a near enough approximation to reckou 15 lbs. of cast iron to each lb. of model.

SILVERING POWDER, &c., for silvering copper, covering the worn parts of plated goods, &c.—1. Nitrate of silver 30 gr., common salt 30 gr., cream of tartar $3\frac{1}{2}$ dr. Mix. Moistened with water, and rubbed on dial plates or other copper articles, it coats them with silver.

- 2. Silver precipitated from its nitric solution by copper 20 gr., alum 30 gr., cream of tartar 2 dr., salt 2 dr.
- 3. Precipitated silver ½ oz, common salt 2 oz., muriate of ammonia 2 oz., corrosive sublimate 1 dr. Make it into a paste with water. Copper utensils are previously boiled with tartar and alum, and rubbed with this paste, then made red hot, and afterwards polished.
- 4. Dissolve muriate of silver in a solution of hyposulphite of soda, and mix this with prepared hartshorn, or other suitable powder.

PLATINA FOR SPRINGS.—Platinum 1 part; gold 12 parts. Add the platinum to the gold in a state of fusion.

Tables by which to facilitate the Mensuration of Timber.

1. Flat or Board Measure.

Breadth in inches.	Area of a lineal foot.	Breadth in inches.	Area of a lineal foot.	Breadth in inches.	Area of a lineal foot.
1	.0208	4	.3334	8	.6667
1 1 2 8 4	.0417	414	.3542	81	6875
8	.0625	41/2	.375	81	.7084
1	.0834	43	.3958	83	-7292
11	1042	5	.4167	9	.75
$1\frac{1}{2}$	125	$5\frac{1}{4}$.4375	91	.7708
14	1459	51/2	.4583	91	:7917
2	1667	$5\frac{3}{4}$.4792	$9\frac{8}{4}$:8125
$2\frac{1}{4}$.1875	6	.5	10	*8334
$2\frac{1}{2}$.2084	61	• 5208	101	.8542
$2\frac{3}{4}$.2292	$6\frac{1}{2}$.5416	101	.875
3	.25	684	.5625	103	.8959
31	.2708	7	.5833	11	.9167
31	2916	71	6042	111	9375
33	:3125	71	.625	111	9583
•		73	.6458	113	97.92

Application and Use of the Table.

1. Required the number of square feet in a board or plank 16½ feet in length, and 9½ inches in breadth.

Opposite 9\frac{3}{4} is $8125 \times 16.5 = 13.4$ square feet.

2. A board 1 foot $2\frac{3}{4}$ inches in breadth, and 21 feet in length; what is its superficial content in square feet?

Opposite $2\frac{3}{4}$ is 2292, to which add the 1 foot.

Then $1.2292 \times 21 = 25.8$ square feet.

3. In a board $15\frac{1}{2}$ inches at one end, 9 inches at the other, and $14\frac{1}{2}$ feet in length, how many square feet?

 $\frac{15.5+9}{2} = 12\frac{1}{2}$, or 1.0208; and 1.0208 × 14.5 = 14.8 square feet.

To give Iron a temper to cut Porphyry.—Make your iron red hot, and plunge it into distilled water from nettles, acanthus, and pilosella, or in the very juice pounded out from these plants.

PASTE FOR CLEANING METALS.—Take oxalic acid I part; rottenstone 6 parts. Mix with equal parts of train oil and spirits of turpentine to a paste.

2. Cubic or Solid Measure.

Mean ¼ girth in inches.	Cubic feet in each lineal foot.	Mean 1/4 girth in inches.	Cubic feet in each lineal foot.	Mean ¼ girth in inches.	Cubic feet in each lineal foot.
6	.25	14	1.361	22	3.362
61	.272	144	1.41	221	3.438
$6\frac{1}{2}$	294	141	1.46	$22\frac{1}{2}$	3.516
$6\frac{8}{4}$	•317	148	1.511	224	3.598
7	.340	15	1.562	23	3.673
71	.364	151	1.615	284	3.754
71	.39	$15\frac{1}{2}$	1 668	$23\frac{1}{2}$	3.835
78	.417	15\frac{3}{4}	1.722	23 3	3.917
8	.444	16	1.777	24	4.
81	.472	161	1.833	241	4.084
81	.501	$16\frac{1}{2}$	1.89	241	4.168
8 3 4	.531	168	1.948	245	4.254
9	.562	17	2.006	25	4 - 34
91	• 594	171	2.066	251	4.428
$9\frac{1}{2}$.626	17.}	2.126	251	4.516
$9\frac{3}{4}$.659	173	2.187	25%	4.605
10	.694	18	2.25	26	4.694
101	.73	181	2.313	261	4.785
101	.766	181	2 376	261	4 876
$10\frac{3}{4}$.803	183	$2 \cdot 442$	264	4 . 969
11	•84	19	2.506	27	5 062
111	.878	191	2.574	274	5.158
$11\frac{1}{2}$	•918	191	2.64	27 1	$5 \cdot 252$
118	.959	193	2.709	27 \$	5.348
12	1:	20	2.777	28	5.444
124	1.042	201	2.898	281	5.542
$12\frac{1}{2}$	1.085	$20\frac{1}{2}$	2.917	$28\frac{1}{2}$	5.64
$13\frac{3}{4}$	1.129	$20\frac{3}{4}$	2.99	283	5.74
13	1.174	21	3.062	29	5.84
131	1.219	211	3.136	291	5.941
$13\frac{7}{2}$	1 · 265	$21\frac{1}{2}$	$3 \cdot 209$	291	6.044
$13\frac{3}{4}$	1.313	$21\frac{3}{4}$	3 · 285	298	6.146

In the cubic estimation of timber, custom has established the rule of \$\frac{1}{4}\$ the mean girt being the side of the square considered as the cross sectional dimensions; hence, multiply the number of cubic feet per lineal foot, as in the Table of Cubic Measure, opposite the \$\frac{1}{4}\$ girth, and the product is the solidity of the given dimensions in cubic feet.

Suppose the mean 4 girth of a tree 214 inches, and its length 16 feet, what are its contents in cubic feet?

 $3.136 \times 16 = 50.176$ cubic feet.

CAST METAL CYLINDERS.

The Cylinders are solid, each 1 foot in length.

Diameter.	Iron.	Copper.	Brass.	Lead.
inches.	lbs.	lbs.	lbs.	lbs.
1	2.5	3.0	2.9	3:9
2	9.8	12.0	11.4	15:5
- 3	22.1	27.0	25.8	34:8
4	39.3	47.9	45.8	61:9
5	61.4	74.9	71.6	96.7
6	88.4	107.8	103.0	139:3
7	120.3	146.8	140.2	189.6
8	157 · 1	191.7	183 · 2	247.7
8 9 .	198.8	242.7	231.8	313:4
10	$245 \cdot 4$	299.5	286 · 2	387:0

CAST-IRON PIPES.

Table showing the Weight of Pipes 1 foot long, of bores from 1 inch to 12 inches in diameter, advancing by \(\frac{1}{2}\) of an inch; and of thicknesses from \(\frac{1}{4}\) of an inch to 1\(\frac{1}{4}\) inches, advancing by \(\frac{1}{8}\) of an inch.

bore.	1	8	$\frac{1}{2}$	<u>5</u>	84	78	117	118	11
in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	; lbs.	lbs.
1	3.1	5.1	7.4	10.0	12.9	16.1	19.6	23.5	27-6
14	3.7	6.0	8.6	11.5	14.7	18.3	22.1	26.2	30.7
11	4.3	6.9	9.8	13.0	16.6	20.4	24.5	29.0	337
12	4.9	7.8	11.1	14.6	18.4	22.6	27.0	31.8	36.8
2	5.5	8.8	12.3	16.1	20.3	24.7	29.5	34.5	39.9
$2\frac{1}{4}$	6.1	9.7	13.2	17.6	22.1	26.8	31.9	37.3	43.0
21	6.7	10.6	14.7	19.2	23.9	28.9	34.4	40.0	46.0
$2\frac{3}{4}$	7.4	11.5	160	20.7	25.7	31.1	36 8	42.8	49.1
3	8.0	12.4	17.2	22.2	27.6	33.3	39.3	45.6	52.2
31	8.6	12.3	18.4	23.8	29.5	35.4	417	48.3	55.2
31	9.2	14.2	19.6	25.3	31.3	37.6	44.2	51.1	58.3
38	9.8	15.2	20.9	26.9	33.1	39.7	46.6	53.8	61.4
4	10.4	16.1	22.1	28.4	35.0	41.9	49.1	56.6	64.4
41	11.1	17.1	23.4	30.0	36.9	44.1	51.6	59.4	67.6
41	11.7	18.0	24.5	31.4	38.7	46.2	54.0	62.1	70.6
43	12.3	18.9	25.8	33.0	40.5	48.3	56.5	64.9	73 6
5	12.9	19.8	27.0	34.5	42.3	50.5	58.9	67.6	76.7
51	13.5	20.7	28.2	36.1	44.2	52.6	61.4	70.4	79.8
$5\frac{1}{2}$	14.1	21.6	29.5	37.6	46.0	54.8	63.8	73.2	82.8

CAST-IRON PIPES.

(Continued.)

bore.	1	8 -	1/2	5	34	7 8	1	11/8	11/4
in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
58	14.7	22.6	30.7	39.1	47.9	56.9	66.3	76.0	85.9
6	15.3	23.5	31.9	40.7	49.7	59.1	68.7	78.7	88.88
61	16.0	24.4	33.1	42.2	51.5	61.2	71.2	81.2	92.0
$6\frac{1}{2}$	16.6	25.3	34.4	43.7	53.4	63.4	73.4	84.2	95.1
64	17.2	26.2	35 6	45.3	55.2	65.3	76.1	87.0	98.2
7	17.8	27.2	36.8	46.8	56.8	67.7	78.5		101.2
71	18.4	28.1	38.1	48.1	58.9	69.8	81.0	92.5	104.2
71	19.0	29.0	39.1	49.9	60.7	72.0	83.5	95.3	107.4
74	19.6	29.7	40.5	51.4	62.6	74.1	85.9	98.0	110.5
8	20.0	30.8	41.7	52.9	64.4	76.2	88.4	100.8	113.5
81	20.9	31.7	43.0	54.5	66.3	78.4	90.8	103.5	116.6
$8\frac{1}{2}$	21.7	32.9	44.4	56.2	68.3	80.8	93.5	106.5	119.9
88	22.1	33.6	45.4	57.5	70.0	82.7	95.7	109.1	1227
9	22.7	34.5	46.6	59.1	71.8	84.8	98.2	111.8	125.8
91	23.3	35.4	47.9	60.6	73.6	87.0	100.6	114.6	128.9
91	23.9	36.4	49.1	62.1	75.5	89 1	103.1	117.4	131.9
94	24.6	37.3	50.3	63.7	77.3	91.3	105.5	120:1	135.0
10	25.2	38.2	51.5	65.2	79.2	93.4	108.0	122.8	138.1
101	25.8	39.1	52.8	667	81.0	95.6	110.4	125.6	141.1
$10\frac{1}{2}$	26.4	40.0	54.0	68.3	82.8	97.7	112.9	128.4	144.2
10星	27.0	41.0	55.2	69.8	84.7	99.9	115.4	131.2	147.3
11	27.6	41.9	56.5	71.3	86.5	102.0	117.8	133.9	150.3
114	28.2	42.8	57.7	72.9	88.4	104.2	120.3	136.7	153.4
112	28.8	43.7	58.9	74.4	90.2	106.3	122.7	139.4	156.4
114	29.5	44.6	60.1	75.9	92.0	108.5	125.2	142.2	159.5
12	30.1	45.6	61.4	77.5	93.6	110.6	127.6	145.0	162.6

Strength of Journals of Shafts.

Mr. Buchanan's rule is: The cube root of the weight in cwts is nearly equal to the diameter of the journal; it being prudent to make the journal a little more than less, and to make a due allowance for wearing.

Ex. What is the diameter of a journal of a water-wheel shaft, 13 feet long, the weight of the wheel being 15 tons?

By Mr. B.'s rule,

 $\sqrt[3]{15} \times 20 = 6.7$, or 7 inches diameter.

By Mr. Tredgold's rule.

Weight in the middle, $\times 13 = 873 \sqrt[3]{873} = 9\frac{1}{2}$ inches diam.

Weight equally distributed, $33600 \times 13 = 436800$ 7.65 inches.

To resist Torsion or Twisting.

It is obvious that the strength of revolving shafts* is directly as the cubes of their diameters and revolutions; and inversely as

the resistance they have to overcome.

Mr. Robertson Buchanan, in his Essay on the Strength of Shafts. gives the following data, deduced from several experiments, viz : That the fly-wheel shaft of a 50-horse power engine, at 50 revolutions per minute, requires to be 71 inches diameter: and therefore the cube of this diameter, which is = 421 875, serves as a multiplier to all other shafts in the same proportion; and, taking this as a standard, he gives the following multipliers, viz.:

For the shaft of a steam-engine, water-wheel, or any shaft connected with a first 400 For shafts in inside of mills to drive smaller machinery, or connected with the shafts above, For the small shafts of a mill or machinery, 200 100

From the foregoing, the following rule is derived, viz.: The number of horse power a shaft is equal to is directly as the cube of the diameter and number of revolutions; and inversely as the above multipliers.

Ex. 1. When the fly-wheel shaft of a 45-horse-power steam engine makes 90 revolutions per minute, what is the diameter of the journal?

$$\frac{45 \times 400}{90} = 200 \sqrt[3]{200} = 5\frac{3}{10}$$
 inches diameter.

Ex. 2. The velocity of a shaft is 80 revolutions per minute, and its diameter is 3 inches; what is its power?

$$\frac{3^3 \times 80}{400} = 5.4 \text{ horse power.}$$

Ex. 3. What will be the diameter of the shaft in the first example, when used as a shaft of the second mover:+

$$\frac{5.8}{1.25} = 4.64$$
, or $\frac{\sqrt[3]{45 \times 200}}{90} = 4\frac{6}{10}$ inches diameter.

* Shafts here are understood as the journals of shafts, the bodies of shafts being gene-

rally made square.

† The diameters of the second movers will be found by dividing the numbers in the table by 125, and the diameters of the third movers, by dividing the numbers by 156.

60																				Но	rse Po	wer.
13.6	13.4	12.6	12.	11.7	11.4	10.7	10.	9.3	9.	8.7	8:33	7.9	7.4	7.2	6.9	9.9	0.00	6.9	ۍ ن		10	
12.	111.4	11.	9.01	10.5	9.8	9.3	8:50	8.1	7.9	7.6	7.2	6.9	6.6	6.3	6.	5.8	5.5	5.1	4.8	-	15	
8.01	10.4	10.	9.7	9.3	8.9	8.4	8	7.7	7.5	7.1	6.7	6.3	5.9	5.7	0,0	5.5	01	4.7	4.5		20	
10.	9.8	9.3	9.2	8.8	8.4	6.4	7.4	7.2	7.	6.6	6.2	5° &	5.6	5.5	5.1	4.9	4.6	4.4	4.	7	25	0118
9.3	9.1	9.	8.7	8:3	7.9	7.4	7.1	6.8	6.6	6.1	5.9	5.6	5.2	Ö	4.8	4.6	4.4	4.1	S.7	00 10	30	-0
9.	80	8.5	8.1	7.8	7.4	7.1	6.8	6.4	6.2	8.0	5.6	5.4	4.9	4.8	46	4.4	4.1	39	သ တ	Tion,	ලා ලා	
8.6	8.4	ô	7.6	7.4	7.1	6.9	6.3	5.9	8.0	5.6	54	5.2	4.7	4.5	4.4	4.2	4.	23.7	ಲೇ .	o).	40	
8.2	8	37.8	7.4	7.2	6.9	6.7	6.	5.7	5.6	5.4	5.2	Ö	46	4.4	4.2	4.	3.8	3.6	င္း	1	44	Re
7.7	7.5	7.4	7.	6.9	6.6	6.5	5.9	5	5.4	5.2	٥,	4.8	4.4	4.2	4.1	8.9	3.7	30	39.29	INCHES	50	RE
7.6	7:4	7.3	8.9	6.7	6.5	6.3	5.6	5.4	5.5	Ot.	4.7	4.6	4.2	4.1	4.	3.7	3.6	ಬ	3.1		Ot Ot	REVOLUTIONS
7.4	7.3	7.2	6.7	6.6	6.3	5.9	5.5	5.2	Ö	4.8	4.5	4.4	4.1.	4.	3.9	3.6	3.0	3.3	ŵ	DIAMETER.	60	IONS.
7.3	7.2	6.9	6.5	6.4	6.1	5.8	5.4	5.1	4.9	4.7	4.4	4.3	4.	ಜ ⊗	တ်	3.6	00	3.5	2.9		<u>ල</u>	= (Ly
7.2	7.	8.9	6.4	6.2	5 9	5.7	0:00	O.	4.8	4.6	4.4	4.2	3.9	3.7	3.7	3.5	3.4	3.1	2.9	0 + 4X 0 = 4X	70	
6.9	6.7	9.6	6.2	6.	5.7	5.6	5.2	4.8	4.7	4.5	4.3	4.1	80.00	3.7	3.6	3.4	့	<u>ن</u>	2.8	10.	75	
8.9	6.6	6.5	6.1	6.9	5.6	٠ ن	5.1	4.6	4.6	4.4	4.2	4.	3.7	3.6	ಲೇ	3.4	00	ထ	2.7		80	
6.8	6.5	6.4	6.	5.8	5.5	5.3	4.9	4.6	4.5	4.4	4.1	3.9	3.7	3.6		89	3.2	2.9	27	0.000	800	LED
6.7	6.3	6.2	5.9	0.7	5.4	5.2	4.8	4.5	4.4	4.3	4.	သ	3.6	ಲ್ಟ	3.4	ಲ ಲ	33	2.9	2.6	0.0	90	130
6.6	6.2	6.	5. 8	5.6	5.3	1.9	4.7	4.5	4.3	4.2	4.	3.8	3.6	00	5.4	3.2	3.	2.8	2.6		95	
6.4	6.1	5.9	5.7	5.6	5.2	01	4.6	4.4	4.2	4.1	3.9	3.7	3.5	3.4	లు	3º:1	2.9	2.8	2.6	807	100	
6.2	6.	00	5.6	0,	5.2	4.9	4.6	4.4	4.2	4.	3.8	3.6	3.4	ေ	3.2	3.1	2.9	2.7	2:5	3.04	105	(36

It is a well known fact, that a cast-iron rod will sustain more torsional pressure than a malleable iron rod of the same dimensions; that is, a malleable iron rod will be twisted by a less weight than what is required to wrench a cast-iron rod of the same dimensions.

When the strength of malleable is less than that of cast iron to resist torsion, it is stronger than cast iron to resist lateral pressure,

and that is in proportion as 9 is to 14.

From the foregoing, it is easy for the millwright to make his shafts of the iron best suited to overcome the resistance to which they will be subject, and the proportion of the diameters of their journals, according to the iron of which they are made.

Ex. What will be the diameter of a malleable iron journal to sustain an equal weight with a cast-iron journal of 7 inches diameter?

 $7^3 = 343.$

As $14:343::9:220\frac{1}{2}$; now $\sqrt[3]{220\cdot 5}=6.04$ inches diameter.

Strength of Wheels.

The arms of wheels are as levers fixed at one end, and loaded at the other; and, consequently, the greatest strain is upon the end of the arm next the axle. For that reason, all arms of wheels should

be strongest at that part, and tapering toward the rim.

The rule for the breadth and thickness of arms, according to their length and number in the wheel, is as follows: Multiply the power or weight acting at the end of the arm by the cube of its length; the product of which, divided by 2656 times the number of arms multiplied by the deflection, will give the breadth and cube of the depth.

Ex. Suppose the force acting at the circumference of a spurwheel to be 1600 lbs, the radius of wheel 6 feet and number of arms 8, and let the deflection not exceed $\frac{1}{10}$ th of an inch.

$$\frac{1600 \times 6^3}{2656 \times 8 \times 1} = 163 = \text{breadth and cube of the depth.}$$

Let the breadth be 2.5 inches; therefore $\frac{163}{2.5} = 65.2$; which is

equal to the cube of the depth. Now the cube root of 65 2 is nearly 4 03 inches: this, consequently, is the depth or dimension of each arm in the direction of the force.

Note.—When the depth at the rim is intended to be half that of the axes, use 1640 as a divisor instead of 2656.

The teeth are as beams, or cantilevers, fixed at one end, and loaded at the other. The rule applying directly to them where the length of the beam is the length of the teeth and the depth the thickness of the teeth. For the better explanation of the rule the following example is given.

Ex. The greatest power acting at the pitch line of the wheel is

6000 lbs., and the thickness of the teeth $1\frac{1}{2}$ inch. the length of the teeth being 0.25 feet; it is required to determine the breadth of the teeth.

$$\frac{6000 \times 0.25}{212 \times 1.5^2} = \frac{1500}{477} = 3.2$$
 inches, the breadth required.

In order that the teeth may be capable of offering a sufficient resistance after being worn by friction, the breadth thus found should be doubled; therefore, in the above example, the breadth should be 64, or say 64 inches.

The following data are gleaned from experiments, which are therefore valuable, and of much use to the practical mechanic:

Rule. Multiply the breadth of the teeth by the square of the thickness, and divide the product by the length; the quotient will be the proportional strength in horse power, with a velocity of 2.27 feet per second.

Ex. What is the power of a wheel, the teeth of which are 6 inches broad, 1.5 inch thick, and 1.8 inch long, and revolving at

the velocity of 3 feet per second?

$$\frac{5^3 \times 6}{1 \cdot 8} \times \frac{13 \cdot 5}{1 \cdot 6} = 7 \cdot 5$$
, strength at 2.27 feet per second, then

$$2.27:7.5::3 = \frac{7.5 \times 3}{2.27} = 9.91$$
 horse power.

Rule. The pitch is found by multiplying the thickness by 2.1, and the length is found by multiplying the thickness by 1.2.

Ex. The thickness being 2 inches, what is the pitch and length?

$$2 \times 2.1 = 4.2$$
, pitch.
 $2 \times 1.2 = 2.4$, length.

For table of the proportions of wheels, see next page.

Note.—The breadth of the teeth, as commonly executed by the best mechanics, seems to be from about twice to thrice the pitch.

Bean Shor Copper —Take copper, melt it, and pour it in a small stream into boiling water.

FEATHER SHOT COPPER.—Take copper, melt it, and pour it in a

small stream into cold water.

TO PRESERVE WALLS FROM DAMPNESS.—When the walls are about two feet high, use for one row of stones or bricks a mixture of tar. pitch, and fine sand, in the same way as mortar. The composition must be previously melted to a proper consistence.

To PREVENT IRON FROM RUSTING.—Warm your iron till you cannot bear your hand on it without burning yourself. Then rub it with new and clean white wax. Put it again to the fire till it has soaked in the wax. When done rub it over with a piece of

serge. This prevents the iron from rusting afterwards.

	Table of the Proportions of Wheels.												
Pitch in in.	Thickness in	Breadth in in.	Length in in.	Horse power, at 2.27 feet per second.	Horse power, at 3 feet per second.	Horse power, at 6 leet per necond,							
4.2	2.	8.	2.40	13:33	17:61	35.23							
3 99	1.9	7.6	2-28	13.03	15.90	31.80							
3.78	1.8	7.2	2 16	10.80	14 27	28.54							
3.57	1.7	6.8	2.04	9.63	12.72	25.54							
3.36	1.6	6 4	1.92	8 53	11 27	22.54							
3.15	1.5	6.	1.80	7.50	9.91	19.82							
2.94	1.4	5 6	1.68	6.53	8.63	17.26							
273	1.3	5 2	1.56	5.63	7.44	14.88							
2.52	1.2	4.8	1.44	4.80	6:34	12.68							
2.31	1.1	4.4	1.32	4 03	5.32	10 64							
2.10	1:		1.20	3.33	4.40	8.81							
1.89	.9	4· 3 6	1.08	2.70	3.57	7.14							
1 68	.8	3.2	.96	2.13	2.81	5.62							
1.47	•7	2.8	.84	1.63	2.15	4.30							
1.26			72	1.20	1.59	3.18							
1.05	·6 ·5	$\frac{2\cdot 4}{2}$.	.60	-83	1.10	2.20							

ALLOYS, OR MISCELLANEOUS METALS.

Chaudet's Medal Metal.

Copper 100 parts; tin 4:17. Cast in moulds formed of cupel bone ash.

Lead in Grains.

Lead, melt it, and pour it in a small stream from a height of three or four feet into cold water.

Bell Metals.

1. Copper 25 parts; tin 5. Mix.

2. Copper 79 parts; tin 26. Mix.

3. Copper 78 parts: tin 22. Mix.

Common Bell Metal.

Copper 100 parts; tin 50. Mix.

Parisian Bell Metal.

Copper 72 parts; tin 261; iron 11. This alloy is used for the bells of small ornamental clocks.

Bath Metal.

Brass 32 parts; spelter 9. Mix.

Another.

Brass 35 parts; zinc 9. Mix.

Brass.

Copper 3 parts. Melt, then add zinc 1 part.

Button Makers' Fine Brass.

Brass 8 parts; zinc 5. Mix.

Button Makers' Common Brass.

Button brass 6 parts; tin 1; lead 1. Mix.

Bright Brass Color.

Brass reduced to fine powder.

Red Brass Color.

Copper filings 3 parts; bole 2. Mix.

Fine Brass.

Copper 2 parts; zinc 1. Mix.

Brass for Wire.

Copper 34 parts; calamine 56. Mix.

To give Plates of Copper a Brass Color.

Expose the plates, after being sufficiently heated, to the fumes of zinc.

To Brass Copper Vessels.

Argol 1 part; amalgam of zinc 1; muriatic acid 2; water to fill the vessel. Mix.

Brass or Hard Solder.

Brass 2 parts; zinc 1. A little tin is occasionally added.

Jewellers' Metal.

Copper 30 parts; brass 10; tin 7. Mix.

Fusible Alloys.

1. Bismuth 8 parts; lead 5; tin 3. This is fusible at boiling water heat.

2. Zinc, lead, and bismuth equal parts. This may be fused in a bit of writing paper, and will melt even in hot water.

3. Lead 3 parts; tin 2; bismuth 5. Mix. This alloy melts at 197° Fah. In using this composition to make casts of seals, gems, &c., it should be employed at the lowest possible temperature at which it will keep fluid; for this purpose it is as well to let it become pasty, and then forcibly impress the substances together.

4. Bismuth 2 parts; tin 3 parts; lead 5. Melt. This alloy fuses

in boiling water.

German Silver.

1. Nickel 1 part; zinc 1; copper 2.

When intended for rolling into plates, use the following:

2. Nickel 25 parts; zinc 20; copper 60; to which may be added 3 of lead.

3. Pure copper 55 parts; nickle 23; zinc 17; iron 3; tin 2.

Fine White German Silver.

Iron 1 part; nickel 10; zinc 10; copper 20. Mix.

German Silver for Castings, &c.

Lead 3 parts; nickel 20: zinc 20; copper 60. Mix.

Genuine German Silver.

Copper 401 parts: nickel 311: zinc 251; iron 21. Mix. Gilding Metal.

Copper 4 parts: brass 1: tin 1. Fuse together.

Another.

Copper 14 parts; zinc 6; tin 4.

To Separate Gold from Gilt Copper or Silver.

Take a solution of borax in water, apply to the gilt surface, and sprinkle over it some finely powdered sulphur; make the article red hot, and quench it in water; then scrape off the gold, and recover it by means of lead.

Gold in Grains.

Granulate by pouring it in a small Gold 3 parts: silver 1. stream, from a moderate height, into cold water; then dissolve the silver with nitric acid, and wash well in pure water; next heat the grains, to give them a proper lustre.

Common Gold.

Spanish copper 16 parts: silver 1: gold 2. Melt together.

Onian's Fusible Metal.

Tin 2 parts; lead 3: bismuth 5. Melt. This alloy melts at 197° Fah. The addition of a little mercury renders it still more fusible.

Alloy for Flute Key Valves

Lead 4 parts; antimony 2. Fuse.

Pewter.

1. Tin 100 parts; antimony 17. Mix.

2. Zinc 1 part; copper 3; lead 8; tin 60. Melt the copper then add the rest.

3. Fine. Tin 50 parts; antimony 4: bismuth 1; copper 1. Mix, as before.

4. French. Lead 9 parts; tin 41. Mix.

Keller's Medal Alloye.

Tin 9 parts; copper 89; zinc 2.

Gun Metal

Brass 100 parts; spelter 13; tin 6. Mix.

Another.

Copper 9 parts: tin 1.

Pinchbeck.

1. Brass 2 parts; copper 3. Melt under charcoal dust.

2. Copper 5 parts: zinc 1 Melt the copper, then add the zinc.

Tin Filings.

Take grain tin. melt it in an iron vessel, and stir it, while cooling, until it becomes a powder: then sift it.

ALLOYS. 157

Tin in Grains.

Take Cornish grain tin, melt it, and pour it into a wooden box, well rubbed on the inside with whiting or chalk; close the cover, and continue shaking it violently until the tin is reduced to powder; then wash it in clean water, and dry it immediately.

Mosaic Gold, or Molu.

Take copper and ziuc, equal parts. Melt at the lowest temperature that will fuse the former; then mix by stirring, and add more zinc, until the fused alloy becomes perfectly white; lastly, pour it into moulds. The proportion of zinc to the copper is from 50 to 55 per cent., exclusive of what is lost by the heat employed.

Hard White Metal.

Tin 1 part; spelter 3; brass 20. Mix.

Turners' Brass.

Brass 98 parts; lead 2. Mix.

Titania, or Britannia Metal.

1. Plate brass 2 parts; tin 2; bismuth 2; antimony 2; copper 1; arsenic 1. Mix, and add this alloy, at discretion, to melted tin.

2. Spanish. Of Spanish Titania metal there are two kinds. The first is made thus: Antimony 4 parts; tin 2; arsenic 1. The second is made in the following manner: Scrap iron 1 part; antimony 2; nitre a little. Melt, and harden one pound of tin with 2 oz. of this composition. A little arsenic improves the color of this alloy.

Tutenag.

Tin 2 parts; bismuth 1. Fuse.

Type Metal.

Lead 11 parts; antimony 2. Fuse.

Ring Gold.
Spanish copper 6 parts; silver 3; gold 5; Mix.

Prince Rupert's Metal.

Copper 2 parts; melt, and add zinc 1 part.

White Metal.

Brass 1 part; tin 2; antimony 4.

Another.

Lead 20 parts; bismuth 12; antimony 1. Fuse.

Yellow Dipping Metal.

Copper 19 parts; spelter 6. Mix.

A Metal that resembles Silver.

Tin 2 oz.; copper 1 lb. This alloy will make a pale bell metal that will roll and ring very near to sterling silver.

Silver Dust.

Take silver, dissolve it in nitric acid, and precipitate it with slips of bright copper; wash the powder in spirits, and dry it.

Imitation Platina.

Pale brass 8 parts; spelter 5. Mix.

Dessaussy's Steel.

Copper 100 parts; tin 14. This alloy may be hardened and sharpened in a similar way to steel.

Stereotype Metal.

Lead 18 parts; antimony 4 parts; bismuth 2 parts. Melt.

Another.

Lead 16 parts; antimony 3 parts; tin 5 parts; copper 2 parts. Another, and all a series and and and

Lead 20 parts; tin 8; antimony 1.

Speculum Metal.

Copper 43 parts; tin 20. Mix.

Another.

TOTAL STREET, SHARE SERVICE

The of landing course

Copper 7 parts; melt, and add zine 3 parts, tin 4.

Prince's Metal.

Copper 3 parts; zinc 1.

Another.

Brass 8 parts; zinc 1.

mark a mark damage to damage. Another.

Zinc and copper, equal parts. Mix.

To make Iron resemble Gold.

Take of linseed oil 3 oz.; tartar 2 oz.; yolk of eggs, boiled hard and beaten, 2 oz.; aloes ½ oz.; saffron 5 grains; turmeric 2 grains. Boil together in an earthen vessel, and with it wash the iron, and it will look like gold. Should there not be linseed oil enough more may be added.

Queen's Metal.

Lead 1 part; bismuth 1; antimony 1; tin 9. and the second state of

Another.

Tin 9 parts; bismuth 1; lead 2; antimony 1. Mix by melting.

Another.

Tin 1000 parts; regulus of antimony 80; bismuth 10; copper 40. Melt the copper, then expertly add the rest, and mix well together. plant Manual

Purified Quicksilver.

Quicksilver 1 part; iron filings 1. Distil in an iron retort, into a vessel containing water.

Mock Gold.

Platina 7 parts; copper 16; zinc 1. Fuse together.

Bronze Metals.

For medals, and small castings-copper 95 parts; tin 4.

Another. Copper 89 parts; tin 8; zinc 3.

Another.

Ancient. Copper 100 parts; tin 7; lead 7.

Another.

Kelly's. Copper 91 parts; zinc 6; tin 2; lead 1.

Blanched Copper.

Copper 8 parts; arsenic 1 part.

Manheim Gold.

Copper 3 parts; zinc 1. Melt separately, then suddenly mix them, and stir well.

Red Tombac.

Copper 11 parts; zinc 2. Mix.

FURNITURE PASTE.

1. Melt 1 pound of beeswax with $\frac{1}{4}$ pint of linseed oil, and add $\frac{1}{2}$ oz alkanet root; keep it at a moderate heat till sufficiently colored; then remove from the fire, add $\frac{1}{4}$ pint of oil of turpentine, strain through muslin; and put it into small gallipots to cool.

2. Scrape 4 oz. of wax, and put it into a pipkin with as much oil of turpentine as will cover it, and 4 oz. of powdered resin; melt with a gentle heat, and stir in sufficient Indian red to color it.

3. Equal weights of beeswax, spirit of turpentine, and linseed

oil.

Bronze Powder.

The best methods of preparing these powders are probably kept

secret. The following are some of the published recipes:

1. Gold leaf, or alloys of gold, reduced to powder by grinding them with sulphate of potash, or with honey, and washing away the extraneous matter with hot water, and drying the metallic powder.

2. Dutch metal, and other similar alloys, treated in the same

way.

3. Verdigris 4 oz.; tutty 2 oz.; sublimate 1 dr.; borax 1 dr.; nitre 1 dr. Mix them into a paste with oil, and fuse the mixture in a crucible. This has failed in some hands, perhaps from the tutty

being factitious.

4. Mix together 100 parts of sulphate of copper, and 50 of crystallized carbonate of soda; apply heat till they unite. Powder the mass, when cold, and add 15 parts of copper filings; mix well, and keep it at a white heat for twenty minutes. Wash and dry the product.

Balls for Scouring—Breeches Balls, Clothes Balls.

1. Bathbrick 4 parts; pipeclay 8; pumice 1; softsoap 1; ochre, umber, or other color, to bring it to the desired shade, q. s.; ox-gall to form a paste. Make it into balls, and dry them.

2. Pipeclay 4 oz.; fuller's-earth \(\frac{1}{2}\) oz.; whiting \(\frac{1}{2}\) oz.; white

pepper 4 oz; ox-gall sufficient to form it into a paste.

3. Pipcelay 3 oz.; white pepper 1 dr.; starch 1 dr, orris powder 1½ dr. It may be kept in powder, or formed into balls, as above.

MENSURATION OF CIRCLES.

Table of the Diameters, Circumferences, and Areas of Circles.

Diam. in inchas.	Circum.	Area in square inches.	Diam. in inches.	Circum, in niches.	Area in square inches.	Diamin inches.	Circum. in inches.	Area in square inches.
18	1963	•00306	4 18	12·566 12·959	12.566 13.364	9 1/8	28·274 28·667	63·617 65·396
16 18 3 16 18 5 18 87 16	.3927	01227	1 8 1 4	13.351	14.186	1814	29 059	67.200
1.6	.5890	.02761	8	13.744	15.033		29.452	69.029
1	.7854	.04909	80 1/21 5/s	14.137	15.904	60/00 migra union	29.845	70.882
1.6	.9817	.07670	<u>5</u>	14.529	16.800	5 8	30.237	72.759
8	1.1781	11044	8 4 7 8	14.922	17:720	8	30:630	74.662
16	1:3744	15033	. 7	15.315	18.665	84 7 8	31 023	76.588
1	1.5708	19635	5	15.708	19.635	10	31.416	78.540
9	1.7671	24850	18	16:100	20.629	1	31.808	80 515
129 8 58 1 1 8 4 3 6 7 8 5 5 6 1 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6	1.9635	30680		16.493	21.647		32.201	82 516
11	2 1598	37122	3	16.886	22.690	14 88 12 50	33.594	84 540
3 4	2.3562	44172	8	17.278	23.758	1	32 986	86.590
13	2.5525	•51849	5	17.671	24.850	5	33.379	88.664
7	2.7489	.60132	8	18.064	25.967		33.772	90:762
1.5	2.9452	69030	14 558 12 558 814 718	18.457	27.108	3 4 7 8	34 164	92.885
	7 (1)			0 00	W 1 5 6	D 200	0.01	0.5
1 1	3.141	*785	6	18.849	28.274	11	34.557	95.033
8	3.534	*994	8	19.242	29:464	1 8	34.950	97:205
4 8	3·927 4·319	1.227	4	19.635	30.679	1	35·343 35·735	99:402 101:623
8	4.712	1.484	8	$20\ 027$ 20.420	31·919 33·183	8	36.128	103.869
5	5.105	2.073	5	20.813	34.471	STO 1-122 5-100	36.521	106.139
8	5.497	2.405	8 .	21.205	35.784	8	36.913	108.434
न्छ न्य अंक न्य अंक व्यय न्छ	5.890	2.761	18 14 88 12 50 84 78	21.598	37.122	847 8	37.306	110.753
		. (4			Book but's	- 4	PRO SAIT	Character 1
2	6.283	3.141	7	21.991	38 484	12	37.699	113.097
8	6.675	3.246	8	22.383	39.871	8	38.091	115.466
4	7.068	3.976	4	22.776	41·282 42·718	4	38.484	117.859 120.276
8	7·461 7·854	4·430 4·908	8	23·169 23 562	44.178	8	39.270	120 270
5	8.246	5.411	1.5	23.954	45.663	5	39 662	125.184
8	8.639	5.939	8	24 347	47.173	8	40.055	127.676
10 14 80 12 50 84 78	9.032	6 491	18 14 88 12 58 84 78	24.740	48.707	10 14 90 10 50 84 78	40 448	130.192
						_		(T +)
3	9.424	7.068	8	25.132	50.265	13	40.840	132 732
16 14 38	9.817	7.669	8	25.525	51.848	8	41.233	
. 4	10.210	8.295	1 4	25.918	53.456	1 4	41 626 42 018	137.886 140.500
8	10.602	8.946	8	26.310	55.088	8	42.411	143.139
2 5	10.995	9.621	5	26.703	56.745	1 2 5	42.411	145 159
8	11·388 11·781	10·320 11·044	8	27·096 27·489	58·426 60·132	8	43.197	148 489
102 500 814 718	12.173	11.793	80 T2 50 84 70	27.881		50 34 70		151.201
8	12110	111 190 1	8	1 21 001;	01 0021	8	10 000	231 201

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
14	43.98	153.93	19	59.69	283.52	24	75.39	452.3
18	44.37	156.69	1	60.08	287.27	18	75.79	457.1
1 1	44.76	159.48	14	60.47	291.03	1	76.18	461.8
38	45.16	162.29	3 8	60.86	294.83	3	76.57	466.6
1	45.55	165.13	1/2	61.26	298.64	8 1 2	76.96	471.4
1 2 5 8	45.94	167.98	5 8	61.65	302.48	5.	77.36	476.2
34	46.33	170 87	B 4	62.04	306.35	34	77.75	481.1
78	46.73	173.78	7/8	62.43	310.24	78	78.14	485.9
15	47.12	176.71	20	62.83	314.16	25	78.53	490.8
18 1	47.51	179.67	18	63.22	318.09	1 8	78.93	495.7
1	47.90	182.65	1	63.61	322.06	4	79.32	500.7
8	48 30	185 66	38	64.01	326.05	8	79.71	505.7
1	48.69	188.69	1/2	64.40	330.06	$\frac{1}{2}$	80.10	510.7
8	49.08	191.74	5 8	64.79	334.10	5 8	80.20	515.7
84	49.48	194.82	4	65.18	338.16	3 4 7 8	80.89	520.7
78	49.87	197.93	78	65.28	342.25	78	81.28	525.8
16	50.26	201.06	21	65.97	346.36	26	81.68	530.9
18	50.65	204.21	18	66.36	350.49	18	82.07	536.0
1 4	51.05	207.39	14	66.75	354.65	1	82.46	541.1
8	51.44	210 59	8	67.15	358.84	8	82.85	546.3
1/2	51.83	213.82	$\frac{1}{2}$	67.54	363.05	$\frac{1}{2}$	83.25	551.5
5	52.22	217.07	5	67.93	367.28	8	83.64	556.7
8 4 7	52.62	220.35	84	68.32	371.54	8 4	84:03	562.00
78	53.01	223.65	7 8	68.72	375.82	78	84.43	567.26
17	53.40	226.98	22	69.11	380.13	27	84.82	572.58
8	53.79	230.33	8	69.50	384.46	18.	85.21	577.87
1 8	54.19	233.70	1 4	69.90	388.82	1	85.60	583.20
8 1 2	54·58 54·97	237.10	8	70.29	393.20	8	86.00	588.57
5 50	55.37	240·52 243·97	1/2	70.68	397.60	1/2	86.39	593 9
8	55.76	247.45	5 8	71.07	402.03	5 8	86.78	599.37
8478	56.15	250.94	8 4 7 8	71.47	406·49 410·97	84 78	87·17 87·57	604.80
18	56.54	254.46	23	72.25	415.47	28	87.96	615.75
18	56.94	258.01		72.64	420.00	1 8	88 35	621.26
1	57 33	261.58	1 4	73.04	424.55	8 1	88.75	626.79
4	57.72	265.18		73 43	429.13	8 8	89.14	632.33
1	58.11	268 80	0	73.82	433.73	1 2	89.53	637.94
5	58.51	272.44	4	74.21	438.36	5 8	89.92	643.54
3.4	58.90	276.11	8 8	74 61	443.01	8 8	90 32	649.18
7	59.29	279.81	7	75.00	447 69	7 7	90.71	654.83

Diam.	Circum.	·Area.	Diam.	Circum.	Атез.	Diam.	Circum.	Area.
29	91.10	660.52	34	106.8	907.92	39	122.5	1194.59
1	91.49	666.22	1	107.2	914.61	1	122.91	1202.20
18 14	91.89	671.95	1	107.5	921.32	ž	123.3	1209.98
8	92.28	677.71	14 500 101 500 514 70	107.9	928.06	8	123.7	1217 6
80 - 12150 84 78	92.67	683.49	1 1	108.3	934.82	1	124.0	1225.4
5	93.06	689 29	5 8	108.7	941 60		124.4	1233-1
34	93.46	695.12	84	109.1	948.41	84	124.8	1240.9
7 8	93.85	700.98	8	109.5	955.25	78	125.2	1248.7
30	94.24	706.86	35	109.9	962.11	40	125.6	1256.6
18 14 88 10 50 847	94.64	712.76	18	110.3	968.99	1 8	126.0	1264.5
1	95.03	718.60	1	110.7	975.90	1	126.4	1272.3
8	95.42	724.64	8	111.1	992.84	8	126.8	1280.3
1/2	95.81	730.61	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1115	989.80	1215084	127.2	1288.2
8	96.21	736.61	5	111.9	996.78	5	127.6	1296.2
3	96.60	742.64	4	112.3	1003.71	8 4	128.0	1304.2
7 8	96.99	748.69	7 8	112.7	1010.81	7/8	128.4	1312.2
31	97:38	754.76	36	113.0	1017 87	41	128.8	1320.2
1/8	97.78	760.86	18	113.4	1024.95	1 8	129.1	1328.3
1/20 1/40 copics 1/21 topics copid 1/40	98.17	766 99	1	113.8	1032.06	14	129.5	1336.4
8	98.56	773.14	8	114.2	1039.19	8	129.9	1344.5
$\frac{1}{2}$	98.96	779.31	122 580 84	114.6	1046.39	1 2	130.3	1352.6
8	99.35	785.51	8	115.0	1053.52	5 8	130.7	1360.8
4	99.74	791.73	4	115.4	1060.73	84	131.1	1369.0
78	100.13	797.97	7 8	. 115.8	1067.95	8	131.5	1377.2
32	100.5	804.24	37	116.2	1075.21	42	131.9	1385.4
1 8 1 4	100.9	810.54	1 8	116 6	1082.48	8	132.3	1393.7
1/4	101.3	816.86	1	117.0	1089.79	1	132.7	1401 9
용	101.7	823.21	8	117.4	1097.11	38	133.1	1410.2
$\frac{1}{2}$	102.1	829.57	2	117.8	1104.46	1 2	133.5	1418.6
क्षेत्र न्य क्षेत्र क्षेत्र क्षेत्र न्य	102.4	835.97	000 1/2 5/0 00/4 7/0	118.2	1111.84	5.	1339	1426.9
4	102.8	842:39	4	118.5	1119.24	84	134.3	1435.30
١	103.2	848.83	8	118.9	1126.66	8	. 1340	1443.7
33	103.6	855.30	38	119.3	1134.11	43	135.0	1452.20
8	104.0	861.79	1 8	1197	1141.59	8	135.4	1460.6
1	104.4	868.30	4	120.1	1149.08	1 4 8	135.8	1469·13
الم الم مام عدام مام حام	104.8	874.84	14 spo 1/21 spors/4	120.5	1156.61	8	136 2 136 6	1486.1
2	105.2	881.41	2 5	120.9	1164·15	12 5	137.0	1494.7
8.	105.6	888.00	83	121·3 121·7	1171 73	8 8	137.4	1503.3
4	106.0	894·61 901·25	7	1217	1179 32	7 8	137.8	1511.9
8	106.4	901 29	8	1221	1100 94	8	10.0	TOTI

A L

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
-44	138.2	1520.53	46	144.5	1661.90	48	150.7	1809:56
18	138.6	1529.18	1 8	144 9	1670 95	1/8	151.1	1818.99
1	139.0	1537.86	1 4	145.2	1680.01	4	151.5	1828.46
38	139.4	1546.55	- वि न वि अध्यानिय होत क्षेत्र न व	145.6	1689.10		151.9	1837.93
1	-139.8	1555.28	$\frac{1}{2}$	146.0	1698.23	$\frac{1}{2}$	152.3	1847.43
5	140.1	1564 03	5	146.4	1707:37	5	152.7	1856 99
84	140.5	1572.81	84	146.8	1716.54	122 588 34 7 8	153.1	1866.5
न्छ न्य छळ न्य छळ क्ष्म न्छ	140.9	1581.61	8	147.2	1725 73	78	153.5	1876.13
45	141.3	1590.43	47	147.6	1734.94	49	153.9	1885.74
1	141.7	1599.28	1 8	148.0	1744.18	1 8	154.3	1895.3
1	142.1	1608.15	1	148.4	1753.45	1	154.7	1905.03
8	142.5	1617.04	8	148.8	1762.73	38	155.1	1914.70
1	142.9	1625.97	1/2	149.2	1772.05	1/2	155.5	1924.45
5 8	143.3	1634.92	5	149.6	1781.39	\$	155.9	1934.13
10 14 000 12 150 mid 750	143.7	1643.89	14 000 12 500 m478	150.0	1790.76	3 4	156.2	1943.9
7	144.1	1652.88	7 8	150.4	1800.14	7	156.6	1953.69

Diam. in.	Circum, inches.	Area in square in.	Area in square feet.	Diam in.	Circum.	Area in square in.	Area in square feet
50	157.0	1963.5	13.63	55	172.7	2375.8	16:49
4	157.8	1983.1	13.77	4	173.5	2397.4	16.64
1	158.6	2002.9	13.90	1 2	174.3	2419.2	16.80
3	159.4	2022.8	14.04	34	175.1	2441.0	16.95
51	160.2	2042.8	14.18	56	175.9	2463.0	17.10
1	161.0	2062.9	14.32	1	1767	2485.0	17.25
1 2	161.7	2083.0	14.46	$\frac{1}{2}$	177.5	2507.1	17.41
84	162.5	2103.3	14 60	34	178.2	2529.4	17.56
52	163.3	2123.7	14.74	57	179.0	2551.7	17.72
1	164.1	2144.1	14 89	1	179.8	2574.1	17.87
1/2	164.9	2164.7	15.03	1 1	180.6	2596.7	18.03
14 12 84	165.7	2185.4	15.17	84	181.4	2619:3	18.19
53	166.5	2206.1	15.32	58	182.2	2642.0	18:34
1 1 2 8 4	167.2	2227.0	15.46	1	182.9	2664.9	18.50
1/2	168.0	2248.0	15.61	1/2	183.7	2687.8	18.68
34	168.8	2269 0	15.75	34	184.5	2710.8	18.82
54	169.6	2290.2	15.90	59	185.3	2733.9	18.98
- 1	170.4	2311.4	16.05	4	186.1	2757.1	19.14
1 2 8	171.2	2332.8	16.20	1/2	186.9	2780.5	19:30
8	172.0	2354.2	16.34	8	187.7	2803.9	19 47

Diam. in.	Circum. inches.	Area in square in.	Area in square feet.	Diam in.	Circum, inches.	Area in square in.	Area in square feet
60	188:4	2827.4	19:63	69	216.7	3739.2	25.96
1	189.2	2851.0	19.79	1 1	217.5	3766.4	26.15
4	190.0	2874.7	19.96.	1 1 2	218.3	3793.6	26.34
84	190-8	2898.5	20.12	8 4	219.1	3821.0	26.53
61	191.6	2922.4	20.29	70	219.9	3848.4	26.72
1	192.4	2946.4	20.46	1 4	220.6	3875.9	26.91
1 2 8	193.2	2970.5	20.62	1/2	221.4	3903.6	27.10
34	193.9	2994.7	20.79	3/4	222.2	3931.3	27.30
62	194.7	3019.0	20.96	71	223.0	3959.2	27.49
1 4	195.5	3043.4	21.13	1 4	223.8	3987.1	27.68
1/2	196.3	3067.9	21.20	$\frac{1}{2}$	224.6	4015.1	27.87
34	197.1	3092.5	21.47	34	225.4	4043.2	28.07
63	197.9	3117.2	21.64	72	226.1	4071.5	28.27
1	198.7	3142.0	21.81	1	226.9	4099.8	28.47
1/3	199.4	3166 9	21.98	1/2	227.7	4128 2	28.66
34	200.2	3191.9	22.16	34	228.5	4156 7	28.86
64	201.0	3216.9	22:34	73	229.3	4185.3	29.06
1	201.8	3242.1	22.51	1	230.1	4214.1	29.26
1/2	202.6	3267.4	22.68	1/2	230.9	4242.9	26.46
84	203.4	3292.8	22.86	34	231.6	4271.8	29.66
65	204.2	3318.3	23.04	74	232.4	4300.8	29.86
1	204.9	3343.8	23.22	4	233.2	4329.9	30.06
1/2	205.7	3369.5	23.39	1	234.0	4359.1	130.26
34	206.5	3395.3	23.57	34	234.8	4388.4	30.47
66	207.3	3421.2	23.75	75	235.6	4417.8	30.67
1	208.1	3447.1	23.93	1	236.4	4447:3	30.88
1/2	208.9	3473.2	24.11	1/2	237.1	4476.9	31.09
34	209.7	3499.3	24.30	34	237.9	4506.6	31.30
67	210.4	3525.6	24.48	76	238.7	4536.4	31.50
1	211.2	3552.0	24.66	14	239.5	4566.3	31.71
1	212 0	3578.4	24.84	$\frac{1}{2}$	240.3	4596.3	31.91
34	212.8	3605.0	25.03	34	241.1	4626.4	32.12
68	213.6	3631.6	25 22	77	241.9	4656.6	32.33
14	214.4	3658.4	25.40	1	242.6	4686 9	32.54
1	215.1	3685.2	25.59	12	243.4	4717.2	32.75
34	215.9	3712.2	25.77	34	244.2	4747.7	32.96

Diam. in.	Circum. inches.	Area in square in.	Area in square feet	Diam.	Circum.	Area in square in.	Area in square feet
78	245.0	4778:3	-33.18	87	273.3	5944.6	41.28
1	245.8	4809.0	33.39	1	274.1	5978.9	41.52
1	246.6	4839.8	33.60	$\frac{1}{4}$	274.8	6013.2	41.75
1 2 8 4	247.4	4870.7	33.81	84	275.6	6047.6	41.99
79	248.1	4901.6	34.03	88	276.4	6082.1	42.23
4	248.9	4932.7	34.24	1	277.2	6116.7	42.47
$\frac{1}{2}$	249.7	4963.9	34 46	$\frac{1}{2}$	278.0	6151.4	42.71
4	250.5	4995.1	34 68	84	278.8	6186.2	$42\ 95$
80	251.3	5026.5	34.90	89	279.6	6221.1	43.20
4	252.1	5058.0	35.12	4	280.3	6256.1	43.44
1/2	252.8	5089.5	35.34	1	281.1	6291.2	43.68
84	253.6	5121.2	35.26	84	281.9	6326.4	43.92
81	254.4	5153.0	35.78	90	282.7	6361.7	44 17
4	255.2	5184.8	36.00	4	283.5	6397-1	44.42
1 2 8 4	256.0	5216.8	36.22	$\frac{1}{2}$	284.3	6432.6	44 66
3 4	256.8	5248.8	36 44	4	285.1	6468.2	44.81
82	257.6	5281.0	36.67	91	285.8	6503.8	45.16
1	258.3	5313.2	36 90	1/4	286.6	6539.6	45 41
$\frac{1}{2}$	259.1	5345.6	37.12	1/2	287.4	6575.5	45.66
84	259.9	5378.0	37:34	84	288.2	6611.5	45*91
83	260.7	5410.6	37.57	92	289.0	6647.6	46.16
14 12 84	261.5	5443.2	37.79	4	289.8	6683.8	46 41
$\frac{1}{2}$	262.3	5476.0	38 02	$\frac{1}{2}$	290.5	6720.0	46.66
4	263.1	5508 8	38.25	34	291.3	6756.4	46.91
84	263.8	5541.7	38.48	93	292.1	6792.9	47.17
1	264.6	5574.8	38.71	4	292.9	6829.4	47.43
1/2	265.4	5607.9	38.94	1 2 8 4	293.7	6866.1	47.68
34	266.2	5641.1	39.07	34	294.5	6902.9	47.93
85	267.0	5674.5	39.40	94	295.3	6939.7	48.19
1	267.8	5707.9	39.63	1	296.0	6976.7	48.45
1 2	268.6	5741.4	39.87	$\frac{1}{2}$	296.8	7013.8	48.70
84	269.3	5775.0	40.10	84	297.6	7050.9	48.96
86	270.1	5808.8	40.33	95	298.4	7088.2	49.22
1	270.9	5842.6	40.57	4	299.2	7125.5	49.48
2 8	271.7	5876.5	40.80	1/2	300.0	7163.0	49.64
8	272.5	5910.5	41.04	4	300.8	7200.5	50.06

Diam. in.	Circum. inches.	Area in square in.	Area in square feet.	Diam. in.	Circum, inches.	Area in square in.	Area in square feet
96	301:5	7238.2	50.26	121	380.1	11499.0	79.85
1	302.3	7275 9	50.52	122	383.2	11689.9	81.18
1 2	303.1	7313:8	50.78	123	386.4	11882.3	82.51
34	303.9	7351.7	51.05	124	389.5	12076.3	83.86
4	0000		01 00	125	392.7	12271.8	85.22
97	304.7	7389.8	51.35		w Wi	10.5	7:
1	305.5	7427.9	51.57	100	00-0	C12001 W.3	
1	306.3	7466.2	51.84	126	395.8	12469.0	86.59
3	307.0	7504.5	52.11	127	398.9	12667.7	87.97
*				128	402.1	12867:9	89 36
98	807.8	7542.9	52.38	129	405.2	13069 8	90.76
1	308.6	7581.5	52.65	130	408.4	13273.2	92.17
1	309.4	7620.1	52.91	5.00	. 1.1.3	7.5	7 1.7
34	310.2	7658.8	53.18	131	411.5	13478.2	92.59
4		, , , , ,		132	414.6	13684.8	95 03
99	311.0	7697.7	53.45	133	417.8	13892.9	96.47
1	311.8	7736.6	53.72	134	420.9	14102.6	97 93
1	312.5	7775.6	53.99	135	424.1	14313.9	99.40
3	313.3	7814.7	54.26			3.00	7.7
100	314.1	7854.0	54.54		0.0	CA III	1.1.
-		.0010		136	427.2	14526.7	100.88
101	317:3	8011.7	55.63	137	430.3	14741.1	102.36
102	320.4	8091.2	56.74	138	433.5	14957.1	103.87
103	323.5	8332.3	57.86	139	436.6	15174.7	105.37
104	326.7	8494.9	58.99	140	439.8	15393.8	106.90
105	329.8	8659.0	60.13			1.0	
7.4		0.000		141	442.9	15614.5	108.43
106	333.0	8824.7	61.28	142	446.1	15836.8	109.97
107	336.1	8992.0	62.44	143	449.2	16060.6	111.53
108	339.2	9160 9	63:61	144	452.3	16286 0	113.09
109	342.4	9331.1	64.80	145	455.5	16513 0	114.67
110	345.5	9503.3	65.99		20 0.0	20021	- 100
677	1771.17			110			
111	348.7	9676.9	67.20	146	458.6	16741.5	116.26
112	351.8	9852.0	68:41	147	461.8	16971.7	117.86
113	355.0	10028.7	69.64	148	464.9	17203.4	119.46
114.	358.1	10207.0	70.88	149 150	468.0	17436.6	121.08
115	361.2	10386.9	72.13	150	471.2	17671.5	122.71
116	364.4	10568.3	73.39	151	474.3	17907.9	124.36
117	367.5	10751.3	74.66	152	477.5	18145.9	126.01
118	370.7	10935.9	75.94	153	480.6	18385.4	127.67
119	373.8	11122.0	77.23	154	483.8	18626.5	129.35
120	376.6	11309.7	78 54	155	486.9	18869.2	131.03

Of the Circumferences and Areas of Circles, from 1 to 50 feet, advancing by an inch.

Diam. ft. & in.	Circumference in feet and in.	Area in feet.	Diam. ft. & in.	Circumference in feet and in.	Area in feet
1 ft.	3 15	7854	3	13 41	14.1862
. 1	3 45	.9217	4	13 71	14.7479
2	3 8	1.0690	5	13 101	15.3206
3	3 11	1.2271	6	14 15	15.9043
4	4 21/8	1.3962	7	14 45	16.4986
5	4 58	1.5761	8	14 77	17.1041
6	4 84	1.7671	9	14 11	17.7205
7	4 115	1 9689	10	15 21	18:3476
8	5 24	2.1816	11	15 54	18.9858
9	5 5 7	2.4052	5 ft.	15 81	19.6350
10	5 9	2.6398	1	15 115	20.2947
11	6 21	2.8852	2	16 28	20.9656
2 ft.	6 3 8	3.1416	3	16 53	21 6475
1	6 61	3.4087	4	16 9	22:3400
2	6 95	3.6869	5	17 01	23.0437
3	7 03	3.9760	6	17 31	23.7583
4	7 3 7	4.2760	7	17 68	24.4835
5	7 7	4.5869	8	17 95	25.2199
6	7 101	4.9087	9	18 0%	25.9672
7	$8 \frac{13}{8}$	5.2413	10	18 37	26.7251
8	8 41/2	5.5850	11	18 7 1	27.4943
9	8 75	5.9395	6 ft.	$18 \ 10\frac{1}{8}$	28.2744
10	8 103	6 3049	1	19 11	29.0649
11	$9 1\frac{7}{8}$	6.6813	2	19 48	29.8668
3 ft.	9 5	7.0686	3	19 73	30.6796
1	9 81	7.4666	4	19 105	31.5029
2	9 118	7.8757	5	20 17	32.3376
3	10 21	8 2957	6	20 47	33.1831
4	$10 5\frac{2}{8}$	8.7265	7	20 81	34.0391
5	10 84	9.1683	8	20 111	34.9065
6	$10 \ 11\frac{7}{8}$	9.6211	9	21 25	35.7847
7	11 3	10.0846	10	$\frac{21}{21}$ $\frac{21}{51}$	36.6735
8	11 61	10.5591	11	21 84	37.5736
9	11 93	11.0446	7 ft.	21 117	38.4846
10	$12 5\frac{1}{2}$	11:5409	1 1	22 3	39 4060
11	12 35	12.0481	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.3388
4 ft.	12 64	12.5664	3	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	41.2825
1	12 97	13.0952	4	23 08	42.2367
2	13 1	13.6353	5	23 21	43.2022

Diam. ft. & in.	Circumference in teet and in.	Area in feet.	Diam. ft. & in.	Circumference in feet and in.	Area in feet.
6	23 63	44.1787	3	45 41	99.4021
7	23 11	45.1656	4	35 71	100.8797
8	24 11	46.1638	5	35 10\$	102:3689
9	24 41	47.1730	6	36 11	103.8691
10	24 74	48.1926	7		105:3794
11	24 108	49.2236	8	36 74	106.9013
8 ft.	25 1 1	50.2656	9	36 107	108.4342
1	25 48	51.3178	10	37 24	109.9772
2	25 77	52.3816	11	37 51	111.5319
3	25 11	53.4562	12 ft.	37 84	113.0976
4	26 21	54.5412	1	$37 \ 11\frac{1}{2}$	114 6732
5	26 51	55.6377	2	38 25	116:2607
6	26 83	56.7451	3	38 54	117.8590
.7	$26\ 11\frac{1}{3}$	57.8628	4	$38 8 \frac{7}{8}$	119.4674
. 8 :	$27 2\frac{3}{4}$	58 9920	5	39 0	121 0876
9	27 5\frac{3}{2}	60.1321	6	39 31	122 7187
10	27 9	61.2826	7	39 68	124:3598
11	28 01	62.4445	8	39 91	126 0127
9 ft.	28 31	63.6174	9.	40 05	127.6765
1	28 68	64.8006	10	40 33	129:3504
2	28 91	65.9951	11	40 67	131:0360
3	29 05	67.2007	13 ft.	40 10	132.7326
4	29 33	68.4166	1	41 11	134.4391
5	29 7	69.6440	2	41 43	136:1574
6	29 101	70.8823	3	41 71	137.8867
7	30 11	72.1309	4.	41 105	139.6260
8	30 48	73.3910	5	42 15	141.3771
9	$30 \ 7\frac{1}{2}$	74.6620	6	42 47	143:1391
10	30 115	75.9433	7	42 8	144:9111
11	31 14	77.2362	8	42 111	146:6949
10 ft.	31 5	78.5400	9	43 21	148:4896
1	31 81	79.8540	10	43 51	150.2943
2	31 111	81.1795	11	43 85	152-1109
3	32 28	82.5160	14 ft.	43 114	153.9384
4	32 51	83.8627	1	$44 \ 2\frac{7}{8}$	155 7758
5	32 85	85.2211	2	44 6	157.6250
6	32 113	86.5903	3	44 91	159:4852
7	33 27	87.9697	4	45 01	161.3553
8	33 61	89.3608	5	45 31	163.2373
9	33 91	90.7627	6	45 65	165.1303
10	34 08	92.1749	7	45 93	167.0331
11	34 31	93.5986	8	46 07	168.9479
11 ft.	34 65	95.0334	9	46 4	170.8735
1	34 94	96.4783	10	46 71	172.8091
2	35 07	97.9347	11	46 111	174.7565

Diam. ft, & in.	Circumference in feet and in.	Area in feet.	Diam. ft. & in.	Circumference in feet and in.	Area in feet
15 ft.	47 11	176.7150	9	58 103	276.1171
1	47 45	178.6832	10	59 2	278.5761
2	47 73	180.6634	11	59 51	281.0472
3	47 107	182.6545	19 ft.	59 81	283.5294
4.	48 21	184 6555	1	59 111	286.0210
5	48 51	186.6684	2	60 21	288.5249
6	48 81	188 6923	3	60 55	291.0397
3 7	48 113	190 7260	4	60 83	293.5641
8	$\frac{10}{49} \frac{11}{28}$	192.7716	5	60 117	296.1107
9	49 54	194.8282	6	61 31	298.6483
10	49 87	196.8946	7	$61 6\frac{1}{4}$	301.2054
11	50 0	198.9730	8	$61 9\frac{1}{3}$	303.7747
16 ft.	50 34	201.0624	9	$61 0\frac{1}{3}$	306.3550
10,7%	50 61	203.1615	10	$62 3\frac{5}{8}$	308.9448
2	$50 9\frac{4}{5}$	205.2726	11	$62 6\frac{3}{4}$	311.5469
3	$50 \frac{38}{51}$	207:3946	20 ft.	$62 9\frac{7}{8}$	314.1600
4	$51 3\frac{3}{4}$	209.5264	1	$63 1\frac{1}{8}$	316.7824
5	51 61	211.6703	2		319.4173
6	51 02	213.8251	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	322:0630
7	The second second	215.9896	4	63 111	324.7182
8	$\begin{array}{cccc} 52 & 1\frac{1}{8} \\ 52 & 4\frac{1}{4} \end{array}$	218 1662	5	- 2	327:3858
9	52 78	220.3537	6		330.0643
10		222.5510	7		332.7522
11	2	224.7603	8	64 77 64 11	335.4525
17 ft.		226.9806	9		1.1.4
1	OL1		-	65 24	338.1637
2	53 8	229.2105	10	65 58	340.8844
3	53 11\frac{1}{8} \\ 54 2\frac{1}{8}	231·4525 233·7055	01 6	65 81	343.6174
4		(1)	21 ft.	65 115	346.3614
5	54 58	235.9682	1	66 24	349.1147
	$54 8\frac{1}{2}$	238.2430	2	$66 5\frac{7}{8}$	351.8804
6	54 115	240.5287	3	66 9	354.6571
7	55 27	242.8241	4	66 01	357.4432
8 9	55 6	245.1316	5	67 38	360.2417
	55 91	247.4500	6	$67 6\frac{1}{2}$	363.0511
10	56 01	249.7781	7	67 95	365.8698
	56 31	252.1184	8	68 04	368.7011
18 ft.	$\frac{56}{56}$ $\frac{6\frac{1}{2}}{65}$	254.4696	9	68 37	371.5432
1	56 95	256.8303	10	68 7	374.3947
2	57 03	259.2033	11	68 101	377.2587
3	57 4	261.5872	22 ft.	69 18	380.1336
4	57 71	263.9807	1	$69 ext{ } 4\frac{1}{2}$	383.0177
5	57 101	266.3864	2	69 75	385.9144
6	58 18	268.8031	3	69 104	388.8220
7	58 41	271.2293	4	$70 ext{ } 1\frac{7}{8}$	391.7389
8	58 75	273 6678	5	70 5	394.6683

Diam. ft, & in,	Circumference in feet and in.	Area in feet.	Diam. ft. & in.	Circumference in feet and in.	Area in feet.
6	70 81	397.6087	3	82 5 1	541.1896
1070		400.5583	4	82 85	544.6299
8	$71 \ 2\frac{1}{2}$	403.5204	5	82 11 4	- 548 0830
9	71 55	406.4935	6	83 3	551.5471
10	71 83	409.4759	7	83 61	555.0201
11	71 117	412.4707	8	83 91	558.5059
23 ft.	72 3	415.4766	9	84 0	562.0027
1	$72 6\frac{1}{8}$	418.4915	10	84 31	565.5084
2	72 93	421.5192	11	84 65	569.0270
. 3	$73 0\frac{1}{2}$	424.5577	27 ft.	84 97	572.5566
4	73 35	427.6055	1	85 1	576.0949
5	73 63	430.6658	2	85 41	579.6463
6	$73 9\frac{7}{8}$	433.7371	3	85 81	583.2085
7	74 1	436.8175	4	85 113	586.7796
8	74 41	439.9106	5	86 11	590.3637
9	74 71	443.0146	6	86 45	593.9587
10	74 105	446.1278	7	86 77	597 5625
11	75 15	449.2536	8	86 11	601 1793
24 ft.	75 43	452 3904	9	87 21	604 8070
1	75 77	455.5362	10	87 51	608.4436
2	75 11	458.6948	011	87 82	612.0931
3	$76 \ 2\frac{1}{8}$	461.8642	28 ft.	87 111	615 7536
4	76 51	465.0428	1	88 25	619 4228
5	76 81	468 2341	2	88 54	623.1050
6	76 115	471.4363	3	88 9	626.7982
3 7	$77 2\frac{3}{4}$	474.6476	7. 4	89 01	630 5002
8	77 57	477.8716	5	89 31	634.2152
9	77 9	481 1065	6	89 63	637.9411
10	78 01	484 3506	7	89 91	641 6758
111	$78 3\frac{1}{4}$	487.6073	8	90 05	645.4235
25 ft.	78 63	490.8750	9	90 34	649.1821
2 1	78 91	494.1516	10	90 67	652.9495
	$79 0\frac{3}{4}$	497.4411	11:	90 111	656.7300
3	79 37	500.7415	29 ft.	91 11	660.5214
	$79 \frac{38}{1}$	504.0510	1	91 48	664 3214
5	79 111	507:3732	2.	$91 7\frac{1}{2}$	668.1346
6	80 11	510.7063	3	91 105	671.9587
-	80 48	514.0484	4	$92 1\frac{3}{4}$	675.7915
8	80 75	517.4034	5	92 47	679.6375
6 9	80 108	520.7692		$92 8\frac{1}{8}$	683.4943
10	81 17	524.1441	7	92 111	687.3598
11	81 5	527:5318	8	93 23	691-2385
26 ft.	81 81	530.9304	9	93 51	695.1280
1	81 114	534.3379	10	93 85	699.0263
88.2	82 23	537.7583	8 11.	$93\ 11\frac{7}{8}$	702.9377

3.0

Diam. ft. & in.	Circumference in feet and in.	Area in feet.	Diam. ft. & m.	Circumference in feet and in.	Area in feet.
30 ft.	94 27	706.8600	9	106 01	894.6196
1	94 6	710.7909	10		899.0413
2	94 84	714.7350	11	106 65	903.4763
. 3	95 98	718.6900	34 ft	106 98	907.9224
4	$95 \ 3\frac{1}{3}$	722.6537	1	107 07	912:3767
5	95 65	726.6305	2	107 4	916.8445
6	95 93	730.6183	3	107 71	921.3232
7	96 07	734 6147	4	107 101	925.8103
. 8	96 4	738.6242	5	108 18	930.3108
9	96 71	742.6417	6	108 45	934.8223
10	96 108	746.6738	7	108 74	939.3421
11	97 11	750.7161	8	108 107	943.8753
31 ft	97 45	754.7694	9	109 2	948.4195
1	97 74	758.8311	10	109 51	952.9720
81.2	97 107	762 9062	11	109 84	957.5380
3	98 2	766.9921	35 ft.	109 118	962.1150
. 4	98 51	771.0866	1	110 05	966 7001
5	98 84	775.1944	$\frac{1}{2}$	110 2景 110 5景	971 2989
6	98 111	779.3131	3	110 87	975.9085
7	$99 2\frac{5}{2}$	783.4403	4	111 0	980 5264
8	99 52	787.5808	5	111 31	985.1579
9	$99 8\frac{7}{8}$	791.7322	6	111 61	989.8003
10	100 0	795.8322	7	111 0 111 9 8	994.4509
11	100 0	800.0654	8	112 01	999.1151
32 ft.	100 68	804.2496	9	112 02	1003.7902
1	100 91	808.4422	10	$112 6\frac{7}{8}$	
2	$100 \frac{32}{101}$	812.6481	11	112 08	1008.4736
3	101 33	816.8650			1013 1705
4	101 67	821.0904	36 ft	- 8	1017.8784
5	101 10	825.3291	2		1022:5944
6	100 11	829.5787		. 0	1027:3240
7	$102 1\frac{1}{8}$ $102 4\frac{3}{8}$	833.8368	.3	113 10 § 114 14	1032.0646
8	102 71	838.1082	5	*	1036.8134
9	$102 10\frac{1}{8}$	842.3905	6	$114 4\frac{7}{8}$	1041.5758
10	103 13	846.6813	7	114 8.	1046.3491
11	103 47	\$50.9855	8	$114 \ 11\frac{1}{8}$ $115 \ 2\frac{1}{4}$	1051 1306
33 ft.	103 48	855.3006	8 9	-4	1055.9257
1	103 111	859.6240	10	115 58	1060.7317
2	103 11 8 104 24	863.9609	10	115 91	1065.5459
3	104 58	868.3087	37 ft.	115 115	1070.3738
4	104 85	872.6649	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1075.2126
5	104 114	877.0346	2		1080.0594
6	105 27	881.4151		$\frac{116}{117}$ $\frac{9\frac{1}{8}}{91}$	1084.9201
7	105 28	885.8040	3	117 01	1089.7915
8		890.2064	4	117 31	1094.6711
	105 91	000 2004	5	117 61	1099.5644

Diam. ft & in.	Circumference in feet and in.	Area in feet.	Diam. ft. & in.	Circumference in feet and in.	Area in feet.
. 6	117 95	1104.4687	3	129 7	1336.4071
7	118 04	1109.3810	4	129 101	1341.8101
8	118 4	1114.3071	5	130 1	1347.2271
9	118 71	1119.2440	6	130 41	1352.6551
10	118 101	1124 1891	1887	130 75	1358.0908
11	119 18	1129.1478	8	130 108	1363.5406
38 ft.	$119 ext{ } 4\frac{1}{2}$	1134.1176	9	$131 \ 1\frac{7}{8}$	1369.0012
1	119 75	1139.0953	10	131 5	1374.4697
2	119 10#	1144 0868	11	131 81	1379.9521
3	120 2	1149.0892	42 ft.	131 118	1385 4456
- 4	120 5	1154.0997	1	$132 2\frac{1}{2}$	1390.2467
5	120 8	1159.1239	2	$132 5\frac{5}{8}$	1396.4619
6	120 118	1164.1591	3	132 88	1401 9880
7	121 21	1169.2023	4	$132 \ 11\frac{7}{8}$	1407.5219
8	$121 5\frac{5}{8}$	$1174 \cdot 2592$	5	133 3	1413.0698
9	121 83	1179.3271	- 6	133 61	1418.6287
10	121 117	1184.4030	7	$133 9\frac{1}{4}$	1424.1952
11	122 31	1189.4927	8	134 01	1429.7759
39 ft.	122 61	1194.5934	9	134 35	1435.3675
1	122 91	1199.7195	10	134 63	1440.9668
2	123 01	1204 8244	11	134 97 5	1446.5802
3	123 35	1209.9577	43 ft.	135 1	1452.2046
4	123 68	1215.0990	1	135 41	1457.8365
5	$123 9\frac{7}{8}$	1220.2542	2	135 74	1463.4827
6	124 1	1225.4203	3	135 101	1469 1397
7	124 41	1230.5943	- 4	136 15	1474.8044
8	124 78	1235.7822	5	136 44	1480.4833
9	$124 \ 10\frac{1}{2}$	1240.9810	6	136 7 7	1486 1731
10	$-125 1\frac{5}{8}$	1246.1878	7	136 11	1491.8705
11	125 43	1251.4084	8	137 21	1497.5821
0 ft.	$125 7\frac{7}{8}$	1256.6400	9	$137 5\frac{1}{4}$	1503.3046
1	125 11	1261.8794	10	$137 8\frac{3}{8}$	1509.0348
2	$126 2\frac{1}{4}$	1267.1327	11	137 115	1514.7791
3	$126 5\frac{3}{8}$	1272.3970	44 ft.	138 23	1520.5344
4	$126 8\frac{1}{2}$	1277.6692	1	138 57	1526.2971
5	126 115	1282.9553	2	138 9	1532.0742
6	127 28	1288.2523	3	139 01	1537.8622
7	$127 5\frac{7}{8}$	1293.5572	4	139 31	1543.6578
8	127 9	1298 8760	5	139 68	1549.4776
9	128 01	1304.2057	6	139 95	1555.2883
10	128 38	1309.5433	7	140 08	1561.1165
11	128 61	1314.8949	8	140 37	1566-9591
1 ft.	128 95	1320.2574	9	140 71	1572.8125
1	129 08	1325.6276	10	140 101	1578.6735
2	129 37	1331.0119	11	141 11	1584.5488

Diam. ft. & in.	Circumference in feet and in.	Area in feet.	Diam, ft. & in.	Circumference in feet and in.	Area in feet
45 ft.	141 48	1590.4350	7	149 57	1778 2795
1	141 71	1596.3286	8	149 87	1784.5148
2	141 10%	1602 2366	9	1:0 01	1790.7610
. 3	142 17	1608.1555	10	150 34	1797.0145
r4	142 5	1614 0819	11	150 68	1803.2826
5	142 81	1620.0226	48 ft.	150 91	1899.5616
6	142 111	1625.9743	1	151 05	1815.8477
7	143 28	1631.9334	2	151 34	1822 1485
. 8	$143 5\frac{1}{2}$	1637 9068	3	151 67	1828:4602
9	143 83	1643.8912	4	$151 \ 10\frac{1}{8}$	1834 7791
10	143 117	1649 8831	5	152 11	1841.1127
11	144 3	1655.8892	6	152 48	1847:4571
46 ft.	144 61	1661.9064	7	152 71	1853.8087
int 1	144 94	1667.9308	8	152 105	1860.1750
2	145 08	1673.9698	9	153 14	1866 5521
3.	$145 3\frac{1}{2}$	1680.0196	10	153 47	1872 9365
4	145 65	1686.0769	11	153 81	1879.3355
5	145 97	1692.1485	49 ft.	153 114	1885.7454
6	146 11	1698-2311	- 1	154 28	1892.1724
7	146 41	1704.3210	2	$154 5\frac{1}{2}$	1898.5041
8	146 74	1710.4254	3	154 85	1905 0367
9	146 108	1716.5407	4	154 117	1911.4965
10	$147 1\frac{1}{2}$	1722.6634	5	155 27	1917.9609
-11	147 45	1728.8005	6	155 6	1924.4263
47 ft.	147 74	1734.9486	7	155 94	1930.9188
1 1	147 11	1741.1039	8	156 01	1937:3159
2	148 21	$1747 \cdot 2738$	9	$156 \ 3\frac{1}{2}$	1943:9140
3	148 51	1753.4545	10	156 65	1950.4392
4	148 8 8	1759.6426	11	$156 9\frac{8}{4}$	1956.9691
5	$148 \ 11\frac{1}{2}$	1765.8452	50 ft.	$157 0\frac{7}{8}$	1963.5000
6	149 25	1772:0587	0.000	of Burstelling	
One our	Common portion			Company of the last	

To PRESERVE STEEL GOODS.—Caoutchoue 1 part; turpentine 16 parts. Dissolve with a gentle heat, then add boiled oil 8 parts. Mix by bringing them to the heat of boiling water; apply it to the steel with a brush, in the way of varnish. It may be removed with turpentine. The oil may be wholly omitted.

Size.—Oil size is made by grinding yellow ochre or burnt red ochre with boiled linseed oil, and thinning it with oil of turpentine. Water size (for burnished gilding) is parchment size ground with yellow ochre.

SILICA AND CARRON.—Silica is the base of the mineral world. Carbon the base of the organized.

IVORY.

How to Soften it.—Take 3 oz. spirits of nitre, and 15 of spring water; mix together; drop in the Ivory, and let it soak. In three

or four days it will be so soft as to obey your fingers.

How to Dye Ivory when Softened.—If you desire to dye Ivory when thus softened, dissolve, in spirits of wine, such colors as you wish to use. When the spirit of wine is sufficiently tinged with the color you have put in plunge in your Ivory, and leave it there till it is dyed to suit you. Then take out the Ivory and give it what form you please.

How to Harden Ivory.—To harden the Ivory afterwards, wrap it up in a sheet of white paper, cover it with dry, decrepitated salt, and lay it by for twenty-four hours, when it will be restored to its

original hardness.

To re-Whiten Ivory which has Turned a Brown Yellow.—There are two ways of doing this, namely: 1. Slack some lime in water, into which drop the ivory; decant it gently, and boil till it looks quite white. 2. To polish it afterwards, set it in the turner's wheel, and after having worked it, take some rushes and pumice stone, mix a subtile powder with water, and rub till it becomes perfectly smooth: then heat it by turning it over a piece of linen or sheepskin, and when hot rub it with a little whitening diluted with olive oil; then rub it with a little dry whitening alone, and finally with a piece of soft white rag, and the Ivory will look remarkably white.

How to Dye Ivory Black.—Immerse the Ivory in a boiling solution of logwood, then take it out, and wash it in a solution of copperas.

Blue.—There are two ways of reaching this color. The first is to soak the Ivory in a solution of verdigris in nitric acid, which will make it green; then dip it into a solution of boiling hot pearlash, and it will turn blue. The second way is as follows: Immerse the Ivory in a solution of sulphate of indigo and water, partly neutralized with potash.

Green.—Steep blued Ivory in a solution of nitro-muriate of tin, and then in a decoction of fustic. Another and a more instantaneous plan is to immerse it in a solution of acetate of copper.

Yellow.—Steep the Ivory in a bath of neutral chromate of potash,

and afterwards in a boiling solution of acetate of lead.

Red.—Soak the Ivory for a short time in a solution of tin, and then in a decoction of cochineal.

Violet.—Moisten the Ivory with a solution of tin, as before; then immerse it in a decoction of logwood.

Purple.—Soak the Ivory in a solution of sal ammoniac into four times its weight of nitrous acid.

Fluid for Marking Ivory.—Take nitrate of silver, 2 parts; nitric

acid, 1 part; water, 7 parts. Mix.

Etching Fluid for Ivory .- Take of diluted sulphuric acid and diluted muriatic acid, equal parts. Mix.

Etching Varnish for Ivory .- White wax, 2 parts, tears of mastic,

2 parts. - Mix.

make the Secretary or Amelians

To Gild Ivory.—Immerse it in a solution of nitro-muriate of gold, and then, while yet damp, expose it to hydrogen gas. Wash it afterwards in clean water. Another plan of gilding Ivory is by immersing it in a fresh solution of proto-sulphate of iron, and afterwards in a solution of chloride of gold.

To Polish Ivory.—Use a rubber and putty and water.

The hardest, toughest, whitest, and most translucent ivory has the preference in the market; and the tusks of the sea horse are considered to afford the best. Ivory has the same constituents as the teeth of animals: three-fourths being phosphate, with a little carbonate of lime; one-fourth cartilage. With regard to dyeing Ivory, it may in general be observed, that the colors penetrate better before the surface is polished than afterwards. Should any dark spots appear, they may be cleared up by rubbing them with chalk; after which the Ivory should be dyed once more to produce a perfect uniformity of shade. On taking it out of the boiling hot dye bath, it should be plunged immediately into cold water, to prevent the chance of fissures being caused by the heat.

CENTRE,

to be again an establish the formation and the first problems.

man and the second of the second

In a general sense, denotes a point equally remote from the extremes of a line, surface, or solid.

Centre of Attraction

Of a body, is that point into which if all its matter is collected, its action upon any remote particle would still be the same.

Centre of Equilibrium

Is the same, in respect to bodies immersed in a fluid, as the centre of gravity is to bodies in free space.

Centre of Friction

Is that point in the base of a body on which it revolves, into which if the whole surface of the base and the mass of the body were collected, and made to revolve about the centre of the base of the given body, the angular velocity destroyed by its friction would be equal to the angular velocity destroyed in the given body by its friction in the same time.

Centre of Gravity

Of any body, or system of bodies, is that point upon which the body, or system of bodies, acted upon only by the force of gravity, will balance itself in all positions; hence it follows, that, if a line or plane, passing through the centre of gravity, be supported, the body or system will be also supported.

Centre of Gyration

Is that point into which, if the whole mass were collected, a given force, applied at a given distance, would produce the same angular velocity in the same time as if the bodies were disposed at their

respective distances.

This point differs from the Centre of Oscillation only in this, that, in the latter case, the motion is produced by the gravity of the body; but, in the former, the body is put in motion by some other force, acting at one place only.

COHESION

Is that species of attraction which, uniting particle to particle, retains together the component parts of the same mass; being thus distinguished from Adhesion. or that species of attraction which takes place between the surfaces of similar or dissimilar bodies. The absolute cohesion of solids is measured by the force necessary to pull them asunder. Thus, if a rod of iron be suspended in a vertical position, having weight attached to its lower extremity till the rod breaks, the whole weight attached to the rod, at the time of fracture, will be the measure of its cohesive force, or abso-

lute cohesion.

The particles of solid bodies, in their natural state, are arranged in such a manner, that they are in equilibrium in respect to the forces which operate on them; therefore, when any new force is applied, it is evident that the equilibrium will be destroyed, and that the particles will move among themselves till it be restored. When the new force is applied to pull the body asunder, the body becomes longer in the direction of the force, which is called the extension; and its area, at right angles to the direction of the force, contracts. When the force is applied to compress the body, it becomes shorter in the direction of the force, which is called the compression; and the area of its section, at right angles to the force, expands. In either case, a part of the heat, or any fluid that occupies the pores or interstices of the body, before the new force was made to act upon it, will be expelled.

PLATINA-MOHR.—Zinc two parts; platinum one part. Melt and reduce the alloy to powder, which must be treated with dilute sulphuric acid until all the zinc is washed out; then wash it with water, digest it in a ley of potash, and again wash it with water. This powder possesses the property of converting alcohol into vinegar.

THE VELOCITY OF SOUND.—It has been ascertained, by careful investigation, that sound passes in water at a speed of 4,708 feet

per second.

MECHANICAL LAWS OF ELASTIC FLUIDS.

Boyle's or Mariotte's Law.

The elastic force of a gas or air at a given temperature is inversely proportional to the space which it occupies.

Let p = elastic force of a gas when it occupies the space s, P = do. do. S.

$$\therefore P = \frac{p \, s}{S}$$

The elastic force of any gas at a given temperature is proportional to its density.

The density of any body is the weight of a cubic unit of it,

usually one cubic foot.

Let p = the elastic force when the density is d. And k = do. do. unit. $\therefore p = k d$.

Dalton's and Gay-Lussac's Law.

All gases, under the same pressure, undergo equal expansions

for equal increments of temperature.

It was ascertained by these eminent philosophers, that 100 measures of air expand to 137.5 measures on being heated from 32° to 212° of Fahrenheit's thermometer, hence

37.5 = increments of 100 measures for 180 degrees of heat.

$$\frac{37.5}{100}$$
 = do. 1 180 do $\frac{.375}{180}$ = do. 1 1 do.

$$=\frac{1}{480}=a$$

Let V = volume of any gas at the temperature t. V = do. do. t'.

Then,
$$V' = \frac{1+a(t'-32)}{1+a(t-32)} \cdot V$$
 accurately.
= $\left\{1+a(t'-t)\right\} V$ very nearly.

Amonton's Law.

This law is the relation between the elastic force, the density, and the temperature, of any gas. If, then, the volume of a gas be constant, its elastic force will increase; and, if the elastic force is constant, its volume will increase for every increase of temperature. It is important to connect these quantities by an equation.

Put p = elastic force of a gas at the temperature θ° and density d. Then, $p = k d (1 + a \theta)$

where k is a constant quantity depending on the nature of the gas,

and $a = \frac{1}{480}$. When a light and heavy gas are once mixed, they do not exhibit any tendency to separate; in this respect they differ from mixed liquids.

Dalton's Experiment.

The vessel a contains a light gas, as hydrogen, and the vessel b contains a heavy gas, as carbonic acid; the two gases are allowed to communicate by a narrow tube c. an interchange speedily takes place of a part of their contents, which their relative position might be supposed would prevent. Contrary to gravity, the heavy gas ascends, and the light one descends, till, in a few hours, the gases become perfectly mixed, and the proportion of the two gases is the same in both vessels.

Gases diffuse into the atmosphere and into each other with different degrees of rapidity. The velocity with which air will

rush into a vacuum is 1348 feet per second.

To determine the velocity with which the air of the atmosphere will rush into a space containing rarer air:

Let v = velocity of air, of density (d), rushing into a void.

V = velocity of air rushing into air of density D.

$$\therefore V = v \left(1 - \frac{D}{d}\right)$$

There will always be a current so long as (D) and (d) are unequal.

Illuminating Gases.

Pure hydrogen burns with too feeble a flame to be employed for the purpose of illumination. Carburetted hydrogen has the property of precipitating its carbon; in the act of burning, its solid particles become incandescent, and diffuse a strong light. The more carbon the gas contains the more brightly does it burn.

Two measures of hydrogen gas, with one measure of the vapor of carbon, form the carburetted hydrogen found in coal mines, and is also evolved in ditches, from decomposing vegetable matter. Another kind of carburetted hydrogen, called olefiant gas, is formed by two measures of hydrogen and two measures of gaseous This gas burns with a brighter flame than the common carburetted hydrogen.

The best substances for furnishing a gas rich in luminiferous materials are pit coal, resin, oil, fats of all kinds, tar, wax, &c.

The volume of gas discharged from the end of a pipe is directly proportional to the square of its diameter, and inversely as the square root of its length.

Let n = number of cubic feet of gas discharged per hour through a length of pipes l feet and diameter D.

$$\therefore n = \frac{3162 D^2}{\sqrt{l}}$$

This formula is applicable only when the gas is transmitted through the pipes, without being let off in its way by burners. If the main send off branches for burners, then, for the same length, the diameter may be reduced; or, for a like diameter, the length may be increased.

STAINS, TO REMOVE.—Stains of *iodine* are removed by rectified spirit. *Ink* stains by oxalic acid or superoxalate of potash. *Iron moulds* by the same; but if obstinate, it has been recommended to moisten them with *ink*, then remove them in the usual way.

Red spots on black cloth, from acids, are removed by spirits of

hartshorn, or other solutions of ammonia.

Stains of Marking Ink, or Nitrate of Silver, to remove. 1. Wet the stain with fresh solution of chloride of lime, and after ten or fifteen minutes, if the marks have become white, dip the part in solution of ammonia or of hyposulphite of soda. In a few minutes wash with clean water.

2. Stretch the stained linen over a basin of hot water, and wet

the mark with tincture of iodine.

Browning, or Bronzing Liquids, for Gun Barrels.—1. Aquafortis ½ oz., sweet spirit of nitre ½ oz., spirit of wine 1 oz., sulphate of copper 2 oz., water 30 oz., tineture of muriate of iron 1 oz. Mix.

2. Sulphate of copper 1 oz., sweet spirit of nitre 1 oz., water 1

pint. Mix. In a few days it will be fit for use.

3. Sweet spirit of nitre 3 oz., gum benzoin 1½ oz., tincture of muriate of iron ½ oz., sulphate of copper 2 dr., spirit of wine ½ oz.

Mix, and add 2 lbs. of soft water.

4. Tincture of muriate of iron $\frac{1}{2}$ oz., spirit of nitric ether $\frac{1}{2}$ oz., sulphate of copper 2 scruples, rain water $\frac{1}{2}$ pint. The above are applied with a sponge, after cleaning the barrel with lime and water. When dry, they are polished with a stiff brush, or iron scratch brush.

Bronzing Liquids for Tin Castings.—Wash them over, after being well cleaned and wiped, with a solution of 1 part sulphate of iron, and 1 of sulphate of copper, in 20 parts of water; afterwards with a solution of 4 parts verdigris in 11 of distilled vinegar; leave for an hour to dry, and then polish with a soft brush and coloothar.

Solvents for Gutta Percha—Benzole readily dissolves it: so do chloroform and bisulphuret of carbon.

TABLE

Of Squares, Cubes, Square and Cube Roots of Numbers.

Number.	Square.	Cube.	Square Root.	Cube Root.	Number.
		e of ot a		1	III de la compansión de
1	1	1	1.0	1.0	1 7
2	4	8	1.414213	1.25992	2 2 2 2 20
3	9	27	1.732050	1.44225	2
4	16	64	2.0	1.58740	4
5	25	125	2.236068	1 70997	5
6	36	216	2:449489	1.81712	6
7	49	343	2.645751	1.91293	7.30
8	64	512	2.828427	2.0	8
9	81	729	3.0	2.08008	9
10	100	1000	3 162277	2.15443	10
11	121	1331	3.316624	3.22398	11
12	144	1728	3.464101	2.28942	12
13	169	2197	3.605551	2 35133	7 13.14
14	196	2744	3.741657	2:41014	114 159
15	225	3375	3.872983	2.46621	15
16	256	4096	4.0	2.51984	16
17	289	4913	4.123105	2.57128	17-
18	324	5832	4.242640	2.62074	18
19	361	6859	4.358898	2.66840	19
20	400	8000	4.472136	2.71441	20
21	441	9261	4.582575	2.75892	21
22	484	10648	4.690415	2.80203	22
23	529	12167	4.795831	2.84386	23
24	576	13824	4.898979	2.88449	24
25	625	15625	50	2.92401	25
26	676	17576	5.099019	2.96249	26
27	729	19683	5.196152	3.0	27
28	784	21952	5.291502	3.03658	28
29	841	24389	5.385164	3.07231	29
30	900	27000	5.477225	3.10723	30
31	961	29791	5.567764	3.14138	31
32	1024	32768	5.656854	3.17480	32
33	1089	35937	5.744562	3.20753	33
34	1156	39304	5.830951	3.23961	34
35	1225	42875	5.916079	3.27106	35
36	1296	46656	6.0	3.30192	36
37	1369	50653	6.082762	3.33222	37
38	1444	54872	6.164414	3.36197	38
39	1521	59319	6.244998	3.39121	39
40	1600	64000	6.324555	3.41995	a 40 TO
41	1681	68921	6.403124	3.44821	1.41

Number.	Square.	Cube.	Square Root,	Cuhe Root.	Number.
42	1764	74988	6.480740	3.47602	42
43	1849	79507	6.557438	3.50339	43
44	1936	85184	6.633249	3.53034	44
45	2025	91125	6.708203	3.55689	45
46	2116	97336	6.782330	3.58304	46
47	2209	103823	6.855654	3.60882	47
48	2304	110592	6.928203	3.63424	- 48
49	2401	117649	7.0	3.65930	49
50	2500	125000	7.071067	3.68403	50
51	2601	132651	7.141428	3.70842	51
52	2704	140608	7.211102	3.73251	52
53	2809	148877	7.280109	3.75628	53
54	2916	157464	7:348469	3.77976	54
55	3025	166375	7.416198	3 80295	55
56	3136	175616	7.483314	3.82586	56
57	3249	185193	7.549834	3.84850	57
58	3364	195112	7:615773	3.87087	58
59	3481	205379	7.681145	3.89299	59
60	3600	216000	7.745966	3.91486	60
61	3721	226981	7.810249	3.93649	61
62	3844	238328	7.874007	3.95789	62
63	3969	250047	7.937253	3.97905	63
64	4096	262144	8:0	4.0	64
65	4225	274625	8.062257	4.02072	65
66	4356	287496	8.124038	4.04124	66
67	4489	300763	8.185352	4 06154	67
68	4624	314432	8.246211		68
69	4761	328509		4.08165	69
70	4900	343000	8·306623 8·366600	4.10156	70
71	5041	357911	8.426149	4.12128	71
72	5184	373248		4.14081	72
73	5329	389017	8.485281	4.16016	73
74	5476	405224	8.544003	4.17933	74
75	5625	421875	3.602325	4.19833	75
76	5776	438976	8.660254	4.21716	76
77	5929		8 717797	4.23582	77
78	6084	456533	8.774964	4.25432	78
79	6241	474552	8.831760	4.27265	79
80	6400	493039	8.888194	4.29084	80
81		512000	8.944271	4.30886	
82	6561	531441	9.0	4.32674	81
82	6724 6889	551368	9.055385	4.34448	82
83	7056	571787	9.110433	4.36207	83
		592704	9.165151	4.37951	84
85	7225	614125	9.219544	4.39682	85
86	7396	636056	9.273618	4.41400	86
87	7569	658503	9.327379	4.43104	87

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
88	7744	681472	9:380831	4.44796	88
89	7921	704969	9.433981	4.46474	89
90	8100	729000	9.486833	4.48140	90
91	8281	753571	9.539392	4.49794	91
92	8464	778688	9.591663	4.51435	92
93	8649	804357	9.643650	4.53065	93
94	8836	830584	9.695359	4.54683	94
95	9025	857375	9.746794	4.56290	9.5
96	9216	884736	9.797959	4.57885	96
97	9409	912673	9.848857	4.59470	97
98	9604	941192	9.899494	4.61043	98
99	9801	970299	9.949874	4.62606	99
100	10000	1000000	10.0	4.64158	100
101	10201	1030301	10.049875	4.65700	101
102	10404	1061208	10 099504	4.67232	102
103	10609	1092727	10.148891	4.68754	103
104	10816	1124864	10 198039	4.70266	104
105	11025	1157625	10.246950	4.71769	105
106	11236	1191016	10.295630	4.73262	106
107	11449	1225043	10.344080	4.74745	107
108	11664	1259712	10.392304	4.76220	108
109	11881	1295029	10.440306	4.77685	109
110	12100	1331000	10.488088	4.79141	110
111	12321	1367631	10.535653	4.80589	111
112	12544	1404928	10.583005	4.82028	112
113	12769	1442897	10.630145	4.83458	113
114	12996	1481544	10.677078	4.84880	114
115	13225	1520875	10.723805	4.86294	115
116	13456	1560896	10.770329	4.87699	116
117	13689	1601613	10.816653	4.89097	117
118	13924	1643032	10.862780	4.90486	118
119	14161	1685159	10.908712	4.91868	119
120	14400	1728000	10.954451	4.93242	120
121	14641	1771561	11.0	4 94608	121
122	14884	1815848	11.045361	4.95967	122
123	15129	1860867	11.090536	4.97318	123
124	15376	1906624	11.135528	4.98663	124
125	15625	1953125	11.180339	5.0	125
126	15876	2000376	11.224972	5.01329	126
127	16129	2048383	11.269427	5.02652	127
128	16384	2097152	11 313708	5.03968	128
129	16641	2146689	11.357816	5.05277	129
130	16900	2197000	11.401754	5.06579	130
131	17161	2248091	11.445523	5.07875	131
132	17424	2299968	11.489125	5.09164	132
133	17689	2352637	11.532562	5.10446	133
134.	17956	2406104	11.575836	5.11722	134

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
135	18225	2460375	11.618950	5.12992	135
136	18496	2515456	11.661903	5 14256	136
137	18769	2571353	11.704699	5.15513	137
138	19044	2628072	11.747340	5.16764	138
139	19321	2685619	11.789826	5.18010	139
140	19600	2744000	11.832159	5.19249	140
141	19881	2803221	11.874342	5.20482	141
142	20164	2863288	11.916375	5.21710	142
143	20449	2924207	11.958260	5.22932	143
144	20736	2985984	12.0	5.24148	144
145	21025	3048625	12.041594	5.25358	145
146	21316	3112136	12.083046	5.26563	146
147	21609	3176523	$12 \cdot 124355$	5.27763	147
148	21904	3241792	$12 \cdot 165525$	5.28957	148
149	22201	3307949	12.206555	5.30145	149
150	22500	3375000	12.247448	5.31329	150
151	22801	3442951	12.288205	5.32507	151
152	23104	3511808	12.328828	5.33680	152
153	23409	3581577	12.369316	5.34848	153
154	23716	3652264	12.409673	5.36010	154
155	24025	3723875	12.449899	5.37168	155
156	24336	3796416	12.489996	5.38321	156
157	24649	3869893	12.529964	5.39469	157
158	24964	3944312	12.569805	5.40612	158
159	25281	4019679	12.609520	5.41750	159
160	25600	4096000	12.649110	5.42883	160
161	25921	4173281	12.688577	5.44012	161
162	26244	4251528	12.727922	5.45136	162
163	26569	4330747	12.767145	5.46255	163
164	26396	4410944	12.806248	5.47370	164
165	27225	4492125	12.845232	5.48480	165
166	27556	4574296	12.884098	5.49586	166
167	27889	4657463	12.922848	5.50687	167
168	28224	4~41632	12.961481	5.51784	168
169	28561	4826809	13.0	5.52877	169
170	28900	4913000	13.038404	5.53965	170
171	29241	5000211	13.076696	5.55049	171
172	29584	5088448	13.114877	5.56129	172
173	29929	5177717	13.152946	5.57205	173
174	30276	5268024	13.190906	5.58277	174
175	30625	5359375	13.228756	5.59344	175
176	30976	5451776	13.266499	5.60407	176
177	31329	5545233	13 304134	5.61467	177
178	31634	5639752	13.341664	5.62522	178
179	32041	5735339	13:379088	-5.63574	179
180	32400	583200 0	13:416407	5.64621	180
181	32761	5929741	13.453624	5.65665	181

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
182	33124	6028568	13.490737	5.66705	182
183	33489	6128487	13.527749	5.67741	183
184	33856	6229504	13.564660	5.68773	184
185	34225	6331625	13.601470	5.69801	185
186	34596	6434856	13.638181	5.70826	186
187	34969	6539203	13.674794	5.71847	187
188	35344	6644672	13.711309	5.72865	188
189	35721	6751269	13.747727	5.73879	189
190	36100	6859000	13.784048	5.74889	190
191	36481	6967871	13.820275	5.75896	191
192	36864	7077888	13.856406	5.76899	192
193	37249	7189057	13.892444	5.77899	193
194	37636	7301384	13.928388	5.78896	194
195	38025	7414875	13.964240	5.79889	195
196	38416	7529536	14.0	5.80878	196
197	38809	7645373	14 035668	5.81864	197
198	39204	7762392	14.071247	5.82847	198
199	39601	7880599	14.106736	5.83827	199
200	40000	8000000	14.142135	5.84803	200
201	40401	8120601	14.177446	5.85776	201
202	40804	8242408	14.212670	5.86746	202
203	41209	8365427	14.247806	5.87713	203
204	41616	8489664	14 282856	5.88676	204
205	42025	8615125	14.317821	5.89636	205
206	42436	8741816	14.352700	5.90594	206
207	42849	8869743	14.387494	5.91548	207
208	43264	8998912	14.422205	5.92499	208
209	43681	9129329	14.456832	5.93447	209
210	44100	9261000	14.491376	5.94392	210
211	44521	9393931	14.525839	5.95334	211
212	41944	9528128	14.560219	5.96273	212
213	45369	9663597	14.594519	5.97209	213
214	45796	9800344	14.628738	5.98142	214
215	46225	9938375	14.662878	5.99072	215
216	46656	10077696	14.696938	6.0	216
217	47089	10218313	14.730919	6.00924	217
218	47524	10360232	14.764823	6.01846	218
219	47961	10503459	14.798648	6.02765	219
220	48400	10648000	14.832397	6.03681	220
221	48841	10793861	14.866068	6.04594	221
222	49284	10941048	14.899664	6.05504	222
223	49729	11089567	14.9331,84	6.06412	223
224	50176	11239424	14.966629	6.07317	224
225	50625	11390625	15.0	6.08220	225
226	51076	11543176	15.033296	6 09119	226
227	51529	11697083	15.066519	6.10017	227
228	51984	11852352	15.099668	6.10911	228

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
229	52441	12008989	15:132746	6.11803	229
230	52900	12167000	15.165750	6.12692	230
231	53361	12326391	15.198684	6.13579	231
232	53824	12487168	15.231546	6.14463	232
233	54289	12649337	15.264337	6.15344	233
234	54756	12812904	15.297058	6.16224	234
235	55225	12977875	15.329709	6.17100	235
236	55696	13144256	15.362291	6.17974	236
237	56169	13312053	15.394804	6.18846	237
238	56644	13481272	15.427248	6.19715	238
239	57121	13651919	15.459624	6.20582	239
240	57600	13824000	15.491933	6.21446	240
241	58081	13997521	15.524174	6.22308	241
242	58564	14172488	15.556349	6 23167	242
243	59049	14348907	15.588457	6:24025	243
244	59536	14526784	15.620499	6.24879	244
245	60025	14706125	15.652475	6.25732	244
246	60516			6.26582	246
247	61009	14886936	15.684387 . 15.716233	6.27430	247
		15069223		6.28276	248
248 249	61504	15252992	15.748015	6.29119	249
	62001	15438249	15.779733	6.29119	
250	62500	15625000	15.811388		250
251	63001	15813251	15.842979	6.30799	251
252	63504	16003008	15.874507	6.31635	252
253	64009	16194277	15.905973	6.32470	253
254	64516	16387064	15.937377	6.33302	254
255	65025	16581375	15.968719	6.34132	255
256	65536	16777216	16.	6.34960	256
257	66049	16974593	16:031219	6.35786	257
258	66564	17173512	16.062378	6.36609	258
259	67081	17373979	16.093476	6.37431	259
260	67600	17576000	16 124515	6.38250	260
261	68121	17779581	16.155494	6.39067	261
262	68644	17984728	16.186414	6.39882	262
263	69169	18191447	16.217274	6.40695	263
264	69696	18399744	16.248076	6.41506	264
265	70225	18609625	16.278820	$6\ 42315$	265
266	70756	18821096	16.309506	$6\ 43122$	266
267	71289	19034163	16.340134	6.43927	267
268	71824	19248832	16.370705	6.44730	268
269	72361	19465109	16:401219	6.45531	269
270	72900	19683000	16.431676	$6\ 46330$	270
271	73441	19902511	16.462077	6.47127	271
272	73984	20123648	16.492422	6.47922	272
273	74529	20346417	16.522711	$6\ 48715$	273
274	75076	20570824	16.552945	6.49506	274
275	75625	20796875	16.583124	6.50295	275

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
276	76176	21024576	16.613247	6.51083	276
277	76729	21253933	16.643317	6.51868	277
278	77284	21484952	16.673332	6.52651	278
279	77841	21717639	16.703293	6.53433	279
280	78400	21952000	16.733200	6.54213	280
281	78961	22188041	16.763054	6.54991	281
282	79524	22425768	16.792855	6.55767	282
283	80089	22665187	16.822603	6.56541	283
284	80656	22906304	16.852299	6.57313	284
285	81225	23149125	16.881943	6.58084	285
286	81796	23393656	16.911534	6.58853	286
287	82369	23639903	16.941074	6.59620	287
288	82944	23887872	16.970562	6.60385	288
289	83521	24137569	17.0	6.61148	289
290	84100	24389000	17.029386	6.61910	290
291	84681	24642171	17.058722	6.62670	291
292	85264	24897088	17:088007	6.63428	292
293	85849	25153757	17.117242	6.64185	293
294	86436	25412184	17:146428	6.64939	294
295	87025	25672375	17.175564	6.65693	295
296	87616	25934336	17.204650	6.66444	296
297	88209	26198073	17.233687	6.67194	297
298	88804	26463592	17.262676	6.67942	298
299	89401	26730899	17.291616	6.68688	299
300	90000	27000000	17.320508	6.69432	300
301	90601	27270901	17 349351	6.70175	301
302	91204	27543608	17.378147	6.70917	302
303	91809	27818127	17.406895	6.71657	303
304	92416	28094464	17.435595	6.72395	304
305	93025	28372625	17.464249	6.73131	305
306	93636	28652616	17.492855	6.73866	306
307	94249	28934443	17.521415	6.74599	307
308	94864	29218112	17.549928	6.75331	308
309	95481	29503629	17.578395	6.76061	309
310	96100	29791000	17.606816	6.76789	310
311	96721	30080231	17.635192	6.77516	311
312	97344	30371328	17.663521	6.78242	312
313	97969	30664297	17.691806	6.78966	313
314	98596	30959144	17.720045	6.79688	314
315	99225	31255875	17.748239	6.80409	315
316	99856	31554496	17.776388	6.81128	316
317	100489	31855013	17 804493	6.81846	317
318	101124	32157432	17.832554	6.82562	318
319	101761	32461759	17 860571	6.83277	319
320	102400	32768000	17.888543	6.83990	320
321	103041	33076161	17.916472	6.84702	321
322	103684	33386248	17.944358	6.85412	322

	Cube.	Square Root.	Cube Root	Numbe
104329	33698267	17:972200	6:86121	323
	34012224	18.0		324
	34328125			325
	34645976			326
				327
	35287552			328
	35611289			329
100000000000000000000000000000000000000				330
Artist State of the Control of the C				331
100000000000000000000000000000000000000				332
7 7 7 7 7 7 7 7 7				333
7 9 10 10 10 10 10				334
				335
				336
				337
				338
				339
7 7 7 7 7 7				340
				341
				342
				343
				344
				345
				346
				347
				348
				349
				350
				351
				352
				353
7 7 7 7 7 7 7 7 7				354
				355
	_			356
1.00				357
				358
				359
				360
				361
				362
				363
				364
1,856,0,876,0				365
A STATE OF THE PARTY OF THE PAR				366
				367
				368
10,000,000				369
	104329 104976 105625 106276 106929 107584 108241 108900 109561 110224 110889 111556 112225 112896 114244 114921 115600 116281 116964 117649 118336 119025 119716 120409 121104 121801 122500 123201 123904 124609 125316 126025 126736 127449 128164 128881 129600 130321 131044 131769 132496 133225 133956 134689 135424 136161	104976 34012224 105625 34328125 106276 34645976 106929 34965783 107584 35287552 108241 35611289 108900 35937000 109561 36264691 110224 36594368 110889 36926037 111556 37259704 112225 37595375 112896 37933056 113569 38272753 114244 38614472 114921 38958219 115600 39304000 116281 39651821 116964 40001688 117649 40353607 118336 40707584 119025 41063625 119716 41421736 120409 41781923 121104 42144192 121801 42508549 122500 42875000 123201 43243551 123904 43614208 124609 43986977 125316 44561864 126025 44738875 126736 45118016 127449 45499293 128164 45882712 128881 46268279 129600 46656000 130321 47045881 131044 47437928 131769 47832147 132496 48228544 133225 48627125 133956 49027896 134689 49430863 135424 49836032	104976 34012224 18·0 105625 34328125 18·027756 106929 34965783 18·035470 106929 34965783 18·083141 107584 35287552 18·110770 108241 35611289 18·138357 108900 35937000 18·165902 109561 36264691 18·193405 110224 36594368 18·220867 110889 36926037 18·248287 111556 37259704 18·275666 112225 37595875 18·303005 112896 37933056 18·330302 113569 38272753 18·357559 114244 38614472 18·34766 114921 38958219 18·411952 115600 39304000 18·439088 116281 39651821 18·466185 116964 40001688 18·493242 117649 40353607 18·520259 118336 40707584 18·547237 119716	104976 34012224 18·0 6·86828 105625 34328125 18·027756 6·87534 106276 34645976 18·055470 6·88228 106929 34965783 18·083141 6·88941 107584 35287552 18·110770 6·89643 108900 35937000 18·165902 6·91042 109561 36264691 18·193405 6·91739 110224 36594568 18·220867 6·92435 110889 36926037 18·248287 6·93130 111556 37259704 18·275666 6·93823 112295 37595375 18·303005 6·94514 112896 37933056 18·384776 6·96581 114241 38614472 18·384776 6·96581 114921 38958219 18·411952 6·97268 115600 39304000 18·439088 6·97953 116281 39651821 18·466185 6·98636 116964 40001688 18·493242 6·99319

Number.	Square.	Cube.	Square Root.	Cube Root.	Number
370	136900	50653000	19:235384	7.17905	370
371	137641	51064811	19.261360	7.18551	371
372	138384	51478848	19.287301	7.19196	372
373	139129	51895117	19.313207	7.19840	373
374	139876	52313624	19.339079	7.20483	374
375	140625	52734375	19.364916	7.21124	375
376	141376	53157376	19 390719	7.21765	376
377	142129	53582633	19.416487	7.22404	377
378	142884	54010152	19.442222	7.23042	378
379	143641	54439939	19.467922	7.23679	379
380	144400	54872000	19.493588	7.24315	380
381	145161	55306341	19.519221	7.24950	381
382	145924	55742968	19.544820	7.25584	382
383	146689	56181887	19.570385	7.26216	383
384	147456	56623104	19 595917	7.26848	384
385	148225	57066625	19.621416	7 27478	385
386	148996	57512456	19.646882	7.28107	386
387	149769	57960603	19.672315	7.28736	387
388	150544	5411072	19.697715	7.29363	388
389	151321	58863859	19.723082	7.29989	389
390	152100	59319000	19.748417	7.30614	390
391	152881	59776471	19.773719	7.21238	391
392	153664	60236288	19.798989	7.31861	392
393	154449	60698457	19.824227	7.32482	393
394	155236	61162984	19.849433	7.33103	394
395	156025	61629875	19.874606	7.33723	395
396	156816	62099136	19.899748	7.34342	396
397	157609	62570773	19.924858	$7\ 34959$	397
398	158404	63044792	19 949937	7.35576	398
399	159201	63521199	19 974984	7.36191	399
400	160000	64000000	20.0	7 36806	400
401	160801	64481201	20.024984	7.37419	401
402	161604	64964808	20.049937	7.38032	402
403	162409	65450827	20.074859	7.38643	403
404	163216	65939264	20.099751	7.39254	404
405	164025	66430125	20.124611	7.39863	405
406	164836	66923416	20.149441	7.40472	406
407	165649	67419143	20.174241	7.41079	407
408	166464	67917312	29.199009	7.41685	408
409	167281	68417929	20.223748	7.42291	409
410	168100	68921000	20.248456	7.42895	410
411	168921	69426531	20.273134	7.43499	411
412	169744	69934528	20.297783	7.44101	412
413	170569	70444997	20:322401	7.44703	413
414	171396	70957944	20:346989	7.45303	414
415	172225	71473375	20:371548	7.45903	415
416	173056	71991296	20:396078	7.46502	410

Number.	Square.	Cube.	Square Root.	Cuhe Root.	Numbe
417	173889	72511713	20.420577	7.47099	417
418	174724	73034632	20.445048	7.47696	418
419	175561	73560059	20.469489	7.48292	419
420	176400	74088000	20.493901	7.48887	420
421	177241	74618461	20.518284	7.49481	421
422	178084	75151448	20.542638	7.50074	422
423	178929	75686967	20.566963	7.50666	423
424	179776	76225024	20.591260	7.51257	424
425	180625	76765625	20.615528	7.51847	425
426	181476	77308776	20.639767	7.52436	426
427	182329	77854483	20.663978	7.53024	427
428	183184	78402752	20.688160	7.53612	428
429	184041	78953589	20.712315	7.54198	429
430	184900	79507000	20.736441	7.54784	430
431	185761	80062991	20.760539	7.55368	431
432	186624	80621568	20.784609	7.55952	432
433	187489	81182737	20.808652	7:56535	433
434	188356	81746504	20.832666	7.57117	434
435	189225	82312875	20.856653	7 57698	435
436	190096	82881856	20.880613	7.58278	436
437	190969	83453453	20.904545	7.58857	437
438	191844	84027672	20.928449	7.59436	438
439	192721	84604519	20.952326	7.60013	439
440	193600	85184000	20.976177	7.60590	440
441	194481	85766121	21.0	7.61166	441
442	195364	86350888	21.023796	7.61741	442
443	196249	86938307	21.047565	7.62315	443
444	197136	87528384	21.071307	7.62888	444
445	198025	88121125	21.095023	7.63460	445
446	198916	88716536	21.118712	7.64032	446
447	199809	89314623	21.142374	7.64602	447
448	200704	89915392	21.166010	7.65172	448
449	201601	90518849	21.189620	7.65741	449
450	202500	91125000	21.213203	7.66309	450
451	203401	91733851	21.236760	7.66876	451
452	204304	92345408	21.260291	7.67443	452
453	205209	92959677	21.283796	7.68008	453
454	206116	93576664	21:307275	7.68573	454
455	207025	94196375	21.330729	7.69137	455
456	207936	94818816	21.354156	7.69700	456
457	208849	95443993	21.377558	7.70262	457
458	209764	96071912	21.400934	7.70823	458
459	210681	96702579	21.424285	7.71384	459
460	211600	97336000	21:447610	7.71944	460
					461
					462
					463
461 462 463	212521 213444 214369	97972181 98611128 99252847	21·470910 21·494185 21·517434	7.72503 7.73061 7.73618	

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
464	215296	99897344	21.540659	7.74175	464
465	216225	100544625	21.563858	7 74731	465
466	217156	101194696	21.587033	7.75286	466
467	218089	101847563	21.610182	7.75840	467
468	219024	102503232	21.633307	7,76393	468
469	219961	103161709	21.656407	7.76946	469
470 [220900	103823000	21.679483	7.77498	470
471	221841	104487111	21.702534	7.78049	471
472	222784	105154048	21.725561	7 78599	472
473	223729	105823817	21.748563	7.79148	473
474	224676	106496424	21.771541	7.79697	474
475	225625	107171875	21.794494	7.80245	475
476	226576	107850176	21.817424	7.80792	476
477	227529	108531333	21.840329	7.81338	477
478	228484	109215352	21.863211	7.81884	478
479	229441	109902239	21.886068	7.82429	479
480	230400	110592000	21.908902	7.82973	480
481	231361	111284641	21.931712	7.83516	481
482	232324	111980168	21.954498	7.84059	482
483	233289	112678587	21.977261	7.84601	483
484	234256	113379904	22.0	7.85142	484
485	235225	114084125	22.022715	7.85682	485
486	236196	114791256	22.045407	7.86222	486
487	237169	115501303	22 068076	7.86761	487
488	238144	116214272	22.090722	7.87299	488
489	239121	116930169	22.113344	7.87836	489
490	240100	117649000	22.135943	7.88373	490
491	241081	118370771	22.158519	7.88909	491
492	242064	119095488	22.181073	7.89444	492
493	243049	119823157	22.203603	7.89979	493
494	244036	120553784	22.226110	7 90512	494
495	245025	121287375	22.248595	7.91045	495
496	246016	122023936	22.271057	7.91578	496
497	247009	122763473	22.293496	7.92109	497
498	248004	123505992	22.315913	7.92640	498
499	249001	124251499	22.338307	7.93171	499
500	250000	125000000	22 360679	7.93700	500
501	251001	125751501	22.383029	7.94229	501
502	252004	126506008	22.405356	7.94757	502
503	253009	127263527	22.427661	7.95284	503
504	254016	128024064	22.449944	7.95811	504
505	255025	128787625	22.472205	7.96337	505
506	256036	129554216	22.494443	7.96862	506
507	257049	130323843	22.516660	7.97387	507
508	258064	131096512	22.538855	7.97911	508
509	259081	131872229	22.561028	7.98434	509
510	260100	132651000	22.583179	7.98956	510

Number.	Square.	Cube.	Square Root.	Cube Root.	Number
511	261121	133432831	22.605309	7.99478	511
512	262144	134217728	22.627417	8.0	512
513	263169	135005697	22.649503	8.00520	513
514	264196	135796744	22.671568	8.01040	514
515	265225	136590875	22.693611	8.01559	515
516	266256	137388096	22.715633	8.02077	516
517	267289	138188413	22.737634	8.02595	517
518	268324	138991832	22.759613	8.03112	518
519	269361	139798359	22.781571	8.03629	519
520	270400	140608000	22.803508	8.04145	520
521	271441	141420761	22.825424	8.04660	521
522	272484	142236648	22.847319	8.05174	522
523	273529	143055667	22.869193	8.05688	523
524	274576	143877824	22.891046	8.06201	524
525	275625	144703125	22.912878	8.06714	525
526	276676	145531576	22.934689	8.07226	526
527	277729	146363183	22.956480	8.07737	527
528	278784	147197952	22.978250	8.08248	528
529	279841	148035889	23.0	8.08757	529
530	280900	148877000	23.021728	8.09267	530
531	281961	149721291	23.043437	8:09775	531
532	283024	150568768	23.065125	8.10283	532
533	284089	151419437	23.086792	8.10791	533
534	285156	152273304	23.108440	8.11298	534
535	286225	153130375	23.130067	8.11804	535
536	287296	153990656	23.151673	8.12309	536
537	288369	154854153	23.173260	8.12814	537
538	289444	155720872	23.194827	8.13318	538
539	290521	156590819	23.216373	8.13822	539
540	291600	157464000	23.237900	8.14325	540
541	292681	158340421	23.259406	8.14827	541
542	293764	159220088	23.280893	8.15329	542
543	294849	160103007	23.302360	3.15830	543
544	295936	160989184	23.323807	8.16331	544
545	297025	161878625	23 345235	8.16830	545
546	298116	162771336	23.366642	8.17330	546
547	299209	163667323	23.388031	8.17828	547
548	300304	164566692	23 409399	8.18326	548
549	301401	165969149	23.430749	8.18824	549
550	302500	166375000	23.452078	8.19321	550
551	303601	167284151	23.473389	8.19817	551
552	304704	168196608	23 494680	8:20313	552
553	305809	169112377	23.515952	8.20808	553
554	306916	170031464	23.537204	8.21302	554
555	308025	170953875	23.558438	8.21796	555
556	309136	171879616	23.579652	8.22289	556
		T11019010	20 01 0002	0 44400	000

umber	Square	Cube	Square Root	Cube Root.	Numbe
558	311364	173741112	23.622023	8.23274	558
559	312481	174676879	23.643180	8.23766	559
560	313600	175616000	23.664319	8.24257	560
561	314721	176558481	23:685438	8.24747	561
562	315844	177504328	23.706539	8.25237	562
563	316969	178453547	23.727621	8.25726	563
564	318096	179406144	23.748684	8.26214	564
565	319225	180362125	23.769728	8.26702	565
566	320356	181321496	23.790754	8.27190	566
567	321489	182284263	23.811761	8:27677	567
568	322624	183250432	23.832750	8.28163	568
569	323761	184220009	23.853720	8:28649	569
570	324900	185193000	23.874672	8.29134	570
571	326041	186169411	23.895606	8.29619	571
572	327184	187149248	23.916521	8.30103	572
573	328329	188132517	23.937418	8.30586	573
574	329476	189119224	23.958297	8.31069	574
575	330625	190109375	23.979157	8.31551	575
576	331776	191102976	24.0	8.32033	576
577	332929	192100033	24.020824	8:32514	577
578	334084	193100552	24.041630	8.32995	578
579	335241	194104539	24.062418	8 33475	579
580	336400	195112000	24.083189	8:33955	580
581	337561	196122941	24.103941	8.34434	581
582	338724	197137368	24.124676	8 34912	582
583	339889	198155287	24.145392	8.35390	583
584	341056	199176704	24.166091	8:35867	584
585	342225	200201625	24.186773	8.36344	585
586	343396	201230056	24.207436	8:36820	586
587	344569	202262003	24.228082	8:37296	587
588	345744	203297472	24.248711	8:37771	588
589	346921	204336469	24.269322	8.38246	589
590	348100	205379000	24.289915	8.38720	590
591	349281	206425071	24.310491	8.39194	591
592	350464	207474688	24.331050	8.39667	592
593	351649	208527857	24.351591	8.40139	593
594	352836	209584584	24.372115	8:40611	594
595	354025	210644875	24.392621	8:41083	595
596	355216	211708736	24.413111	8:41554	596
597	356409	212776173	24.433583	8.42024	597
598	357604	213847192	24 454038	8.42494	598
599	358801	214921799	24:474476	8'42963	599
600	360000	216000000	24.494897	8:43432	600
601	361201	217081801	24.515301	8 43900	601
602	362404	218167208	24.535688	8.44368	602
603	363609	219256227	24.556058	8.44836	603
604	364816	220348864	24.576411	8.45302	604
700	3 3 3 6	- Villian Vil		others.	557

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
605	366025	221445125	24.596747	8.45769	605
606	367236	222545016	24.617067	8.46234	606
607	368449	223648543	24.637370	8.46700	607
608	369664	224755712	24.657656	8.47164	608
609	370881	225866529	24.677925	8.47628	609
610	372100	226981000	24.698178	8.48092	610
611	373321	228099131	24.718414	8.48555	611
612	374544	229220928	24.738633	8.49018	612
613	375769	230346397	24.758836	8.49480	613
614	376996	231475544	24.779023	8.49942	614
615	378225	232608375	24.799193	8.50403	615
616	379456	233744896	24.819347	8 50864	616
617	380689	234885113	24.839484	8.51324	617
618	381924	236029032	24.859605	8.51784	618
619	383161	237176659	24.879710	8.52243	619
620	384400	238328000	24.899799	8.52701	620
621	385641	239483061	24.919871	8 53160	621
622	386884	240641848	24.939927	8.53617	622
623	388129	241804367	24.959967	8.54075	623
624	389376	242970624	24.979992	8.54531	624
625	390625	244140625	25.0	8.54987	625
626	391876	245314376	25.019992	8 55443	626
627	393129	246491883	25.039968	8.55898	627
628	394384	247673152	25.059928	8.56353	628
629	395641	248858189	25.079872	8.56808	629
630	396900	250047000	25.099800	8.57261	630
631	398161	251239591	25.119713	8.57715	631
632	399424	252435968	25.139610	8.58168	632
633	400689	253636137	25.159491	8 58620	633
634	401956	254840104	25.179356	8.59072	634
635	403225	256047875	25.199206	8.59523	635
636	404496	257259456	25.219040	8.59974	636
637	405769	258474853	25.238858	8.60425	637
638	407044	259694072	25.258661	8.60875	638
639	408321	260917119	25.278449	8.61324	639
640	409600	262144000	25.298221	8.61773	640
641	410881	263374721	25.317977	8.62222	641
642	412164	264609288	25.337718	8.62670	642
643	413449	265847707	25 357444	8.63118	643
644	414736	267089984	25.377155	8.63565	644
645	416025	268336125	25.396850	8.64012	645
646	417316	269586136	25.416530	8.64458	646
647	418609	270840023	25.436194	8.64904	647
648	419904	272097792	25.455844	8.65349	648
649	421201	273359449	25.475478	8.65794	649
650	422500	274625000	25.495097	8.66239	650
651	423801	275894451	25.514701	8.66683	651

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
652	425104	277167808	25 534290	8:67126	652
653	426409	278445077	25.553864	8.67569	653
654	427716	279726264	25.573423	8.68012	654
655	429025	281011375	25.592967	8.68454	655
656	430336	282300416	25.612496	8.68896	656
657	431649	283593393	25 632011	8.69337	657
658	432964	284890312	25.651510	8.69778	658
659	434281	286191179	25.670995	8.70218	659
660	435600	287496000	25.690465	8.70658	660
661	436921	288804781	25.709920	8.71098	661
662	438244	290117528	25 729360	871537	662
663	439569	291434247	25.748786	871975	663
664	440896	292754944	25.768197	8 72414	664
665	442225	294079625	25.787593	8 72851	665
666	443556	295408296	25.806975	8 73289	666
667	414889	296740963	25.826343	873726	667
668	446224	298077632	25.845696	874162	668
669	447561	299418309	25.865034	874598	669
670	448900	300763000	25.884358	8.75034	670
671	450241	302111711	25.903667	8 75469	671
672	451584	303464448	25-922962	875903	672
673	452929	304821217	25.942243	8 76338	673
674	454276	306182024	25:961510	8-76771	674
675	455625	307546875	25.980762	8 77205	675
676	456976	308915776	26.0	8.77638	676
677	458329	310288733	26-019223	8.78070	677
678	459684	311665752	26.038433	8.78502	678
679	461041	313046839	26.057628	878934	679
680	462400	314432000	26:076809	879365	680
681	463761	315821241	26:095976	8.79796	681
682	465124	817214568	26:115129	8.80227	682
683	466489	318611987	26.134268	8.80657	683
684	467856	320013504	26.153393	8:81086	684
685	469225	321419125	26.172504	8.81515	685
686	470596	322828856	26-191601	8.81944	686
687	471969	324242703	26.210684	8.82373	687
688	473344	325660672	26.222754	8-82800	688
689	474721	327082769	26-248809	8.83228	689
690	476100	328509000	26.267851	8.83655	690
691	477481	329939371	26-286878	8.84082	691
692	478864	331373888	26.305392	8 \$4508	692
693	480249	332812557	26.824893	8.84934	693
694	481636	334255384	26:343879	8.85359	694
695	483025	335702375	26:362852	8.85784	695
696	484416	337153536	26:381811	8.86209	696
697	485809	338608873	26:400757	8.86633	697
698	487204	340068392	26:419689	8-87057	698

Number.	Square.	Cube.	Square Root,	Cube Root.	Numbe
699	488601	341532099	26.438608	8.87480	699
700	490000	343000000	26.457513	8.87904	700
701	491401	344472101	26.476404	8.88326	701
702	492804	345948408	26.495282	8.88748	702
703	494209	347428927	26.514147	8.89170	703
704	495616	348913664	26.532998	8.89592	704
705	497025	350402625	26.551836	8.90013	705
706	498436	351895816	26.570660	8.90433	706
707	499849	353393243	26.589471	8.90853	707
708	501264	354894912	26.608269	8.91273	708
709	502681	356400829	26.627053	8.91693	709
710	504100	357911000	26.645825	8.92112	710
711	505521	359425431	26.664583	8.92530	711
712	507944	360944128	26.683328	8.92949	712
713	508369	362467097	26.702059	8 93366	713
714	509796	363994344	26.720778	8.93784	714
715	511225	365525875	26.739483	8.94201	715
716	512656	367061696	26.758176	8.94618	716
717	514089	368601813	26.776855	8.95034	717
718	515524	370136232	26.795522	8.95450	718
719	516961	371694959	26.814175	8.95865	719
720	518400	373248000	26.832815	8.96280	720
721	519841	374805361	26.851443	8.96695	721
722	521284	376367048	26.870057	8.97110	722
723	522729	377933067	26.888659	8.97524	723
724	524176	379503424	26.907248	8.97937	724
725	525625	381078125	26.925824	8.98350	725
726	527076	382657176	26.944387	8.98763	726
727	528529	384240583	26.962937	8.99176	727
728	529984	385828352	26.981475	8.99588	728
729	531441	387420489	27.0	9.0	729
730	532900	389017000	$\frac{27.01}{27.018512}$	9.00411	730
731	534361	390617891	27.037011	9.00822	731
732	535824	392223168	27.055498	9.00322 9.01232	732
733	537289	393832837	27.073972	9.01432	733
734	538756	395446904	27:092434	9.01043	734
735	540225	397065375	27 110883	9.02052	735
736	541696	398688256	27.129319	9.02402	736
737	543169	400315553	27.147743	9.03280	737
738	544644				738
739	546121	$\begin{array}{c c} 401947272 \\ 403583419 \end{array}$	27.166155 27.184554	9.03688 9.04096	739
740	547600	405583419		9.04096	740
741	549081	406869021	$27.202941 \\ 27.221315$	7 1000	741
741	550564			9.04911	741
743	552049	408518488	27.239676	9.05318	743
744		410172407 411830784	27.258026	9.05724	744
745	553536		27.276363	9.06130	
140	555025	413493625	27.294688	9.06536	745

Number.	Square.	Cube.	Square Root.	Cuhe Root.	Number
746	556516	415160936	27:313000	9.06942	746
747	558009	416832723	27:33130)	9-07347	747
718	559504	418508992	27:349588	9.07751	748
749	561001	420189749	27:367864	9.08156	749
750	562500	421875000	27:386127	9.08560	750
751	564001	423564751	27.404379	9.08963	751
752	565504	425259008	27:422618	9.09367	752
753	567009	426957777	27:440845	9.09770	753
754	568516	428661064	27:459060	9.10172	754
755	570025	430368875	27:477263	9.10574	755
756	571536	432081216	27.495454	9.10976	756
757	573049	433798093	27.513633	9.11378	757
758	574564	435519512	27.531799	9.11779	758
759	576081	437245479	27.549954	9.12180	759
760	577600	438976000	27.568097	9.12580	760
761	579121	440711081	27.586228	9.12980	761
762	580644	442450728	27.604347	9.13380	762
763	582169	444194947	27.622454	9.13779	763
764	583696	445943744	27.640549	9.14178	764
765	585225	447697125	27.658633	9.14577	765
766	586756	449455096	27:676705	9.14975	766
767	588289	451217663	27:694764	9.15373	767
768	589824	452984832	27 712812	9.15771	768
769	591361	454756609	27:730849	9.16168	769
770	592900	456533000	27.748873	9.16565	770
771	594441	458314011	27-766886	9.16962	771
772	595984	460099648	27.784888	9.17358	772
773	597529	461889917	27.802877	9.17754	773
774	599076	463684824	27.820855	9.18150	774
775	600625	465484375	27:838821	9.18545	775
776	602176	467288576	27.856776	9.18940	776
777	603729	469097433	27.874719	9.19334	777
778	605284	470910952	27.892651	9.19728	778
779	606841	472729139	27.910571	9-20122	779
780	608400	474552000	27-928480	9.20516	780
781	609961	476379541	27-946377	9-20909	781
782	611524	478211768	27.964262	9.21302	782
783	613089	480048687	27.982137	9.21695	783
784	614656	481890304	28.0	9-22087	784
785	616225	483736625	28:017851	9-22479	785
786	617796	485587656	28.035691	9-22870	786
787	619369	487443403	28.053520	9-23261	787
788	620944	489303872	28.071337	9.23652	788
789	622521	491169069	28.089143	9.24043	789
790	624100	493039000	28.106938	9-24433	790
791	625681	494913671	28.124722	9.24823	791
792	627264	496793088	28.142494	9.52213	792

Number.	Square.	Cube:	Square Root.	Cube Root.	Numbe
793	628849	498677257	28.160255	9:25602	793
794	630436	500566184	28.178005	9.25991	794
795	632025	502459875	28.195744	9.26379	795
796	633616	504358336	28.213472	9.26767	796
797	635209	506261573	28.231188	9.27155	797
798	636804	508169592	28.248893	9.27543	798
799	638401	510082399	28.266588	9.27930	799
800	640000	512000000	28.284271	9.28317	800
801	641601	513922401	28.301943	9.28704	801
802	643204	515849608	28.319604	9.29090	802
803	644809	517781627	28:337254	9.29476	803
804	646416	519718464	28.354893	9.29862	804
805	648025	521660125	28.372521	9.30247	805
806	649636	523606616	28.390139	9.30632	806
807	651249	525557943	28.407745	9.31017	807
808	652864	527514112	28.425340	9.31401	808
809	654481	529475129	28.442925	9.31785	809
810	656100	531441000	28.460498	9 32169	810
811	657721	533411731	28.478061	9.32553	811
812	659344	535387328	28.495613	9.32936	812
813	660969	537367797	28.513154	9.33319	813
814	662596	539353144	28.530685	9.33701	814
815	664225	541343375	28.548204	9 34083	815
816	665856	543338496	28.565713	9.34465	816
817	667489	545338513	28.583211	9.34847	817
818	669124	547343432	28 600699	9.35228	818
819	670761	549353259	28.618176	9.35609	819
820	672400	551368000	28.635642	9.35990	820
821	674041	553387661	28.653097	9.36370	821
822	675684	555412258	28.670542	9.36750	822
823	677329	557441767	28.687976	9.37130	823
824	678976	559476224	28.705400	9.37509	824
825	680625	561515625	28.722813	9.37888	825
826	682276	563559976	28.740215	9.38267	826
827	683929	565609283	28.757607	9.38646	827
828	685584	567663552	28.774989	9.39024	828
829	687241	569722789	28.792360	9.39402	829
830	688900	571787000	28.809720	9.39779	830
831	690561	573856191	28.827070	9.40156	831
832	692224	575930368	28.844410	9.40533	832
833	693889	578009537	28.861739	9.40910	833
834	695556	580093704	28.879058	9.41286	834
835	697225	582182875	28.896366	9.41280	835
836	698896	584277056		9.41662	836
837	700569	586376253	28:913664		837
838			28.930952	9.42414	
839	702244 703921	588480472	28.948229	9:42789	838
999	103921	590589719	28.965496	9.43164	839

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe
840	705600	592704000	28.982753	9.43538	840
841	707281	594823321	29.0	9.43913	841
842	708964	596947688	29.017236	9:44287	842
843	710649	599077107	29.034462	9.44660	843
844	712336	601211584	29.051678	9.45034	844
845	714025	603351125	29.068883	9.45407	845
846	715716	605495736	29.086079	9:45779	846
847	717409	607645423	29.103264	9:46152	847
848	719104	609800192	29.120439	9.46524	848
849	720801	611960049	29.137604	9.46896	849
850	722500	614125000	29:154759	9.47268	850
851	724201	616295051	29:171904	9.47639	851
852	725904	618470208	29.189039	9.48010	852
853	727609	620650477	29.206163	9.48381	853
854	729316	622835864	29.223278	9.48751	854
855	731025	625026375	29.240380	9:49122	855
856	732736	627222016	29.257477	9:49491	856
857	734449	629422793	29.274562	9:49861	857
858	736164	631628712	29.291637	9.50230	858
859	737881	633839779	29.308701	9.50599	859
860	739600	636056000	29.325756	9.50968	860
861	741321	638277381	29.342801	9.51336	861
862	743044	640503928	29.359836	9:51705	862
863	744769	642735647	29.376861	9.52073	863
864	746496	644972544	29.393876	9.52440	864
865	748225	647214625	29:410882	9.52807	865
866	749956	649461896	29.427877	9:53174	866
867	751689	651714363	29.444863	9.53541	867
868	753424	653972032	29.461839	9.53908	868
869	755161	656234909	29.478805	9.54274	869
870	756900	658503000	29.495762	9.54640	870
871	758641	660776311	29.512709	9.55005	871
872	760384	663054848	29.529646	9.55371	872
873	762129	665338617	29.546573	9 55736	873
874	763876	667627624	29.563491	9.56101	874
875	765625	669921875	29.580398	9.56465	875
876	767376	672221376	29.597297	9:56829	876
877	769129	674526133	29.614185	9.57193	877
878	770884	676836152	29.631064	9:57557	878
879	772641	679151439	29.647934	9.57920	879
880	774400	681472000	29.664793	9.58283	880
881	776161	683797841	29.681644	9.58646	881
882	777924	686128968	29.698484	9.59009	882
883	779689	688465387	29.715315	9.59371	883
884	781456	690807104	29.732137	9.59733	884
885	783225	693154125	29.748949	9.60095	885
886	784996	695506456	29.765752	9:60456	886

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe	
887	786769	697864103	29.782545	9.60818	887	
888	788544	700227072	29.799328	9.61179	888	
889	790321	702595369	29.816103	9.61539	889	
890	792100	704969000	29.832867	9.61900	890	
891	793881	707347971	29.849623	9.62260	891	
892	795664	709732288	29.866369	9.62620	892	
893	797449	712121957	29.883105	9.62979	893	
894	799236	714516984	29.899832	9.63339	894	
895	801025	716917375	29.916550	9.63698	895	
896	802816	719323136	29.933259	9:64056	896	
897	804609	721734273	29.949958	9.64415	897	
898	806404	724150792	29.966648	9.64773	898	
899	808201	726572699	29.983328	9.65131	899	
900	810000	729000000	30.0	9.65489	900	
901	811801	731432701	30.016662	9.65846	901	
902	813604	733870808	30.033314	9.66204	902	
903	815409	736314327	30.049958	9.66560	903	
904	817216	738763264	30.066592	9.66917	904	
905			30.083217	9.67274		
906	820836	743677416	30.099833	9.67630	906	
907	822649	746142643 30:116440		9.67986	907	
908	824464	748613312	30.133038	9.68341	908	
909	826281	751089429	30.149626	9.68697	909	
910	828100	753571000	30.166206	9.69052	910	
911	829921	756058031	30.182776	9.69406	911	
912	831744	758550528	30:199337	9.69761	912	
913	833569	761048497	30.215889	9.70115	913	
914	835396	763551944	30.232432	9.70469	914	
915	837225	766060875	30.248966	9.70823	915	
916	839056	768575296	30.265491	9.71177	916	
917	840889	771095213	30.282007	9.71530	917	
918	842724	773620632	30.298514	9.71883	918	
919	844561	776151559	30.315012	9.72236	919	
920	846400	778688000	30.331501	9.72588	920	
921	848241	781229961	30:347981	9.72941	921	
922	850084	783777448	30.364452	9.73293	922	
923	851929	786330467	30.380915	9.73644	923	
924	853776	788889024	30.397368	9.73996	924	
925	855625	791453125	30.413812	9.74347	925	
926	857476	794022776	30.430248	9.74698	926	
927	859329	796597983	30.446674	9.75049	927	
928	861184	799178752	30.463092	9.75399	928	
929	863041	801765089	30.479501	9.75750	929	
930	864900	804357000	30.495901	9.76100	930	
931	866761	806954491	30.512292	9.76449	931	
932	868624	809557568	30.528675	9.76799	932	
933	870489	812166237	30:545048	9.77148	933	

Number.	Square.	Cube.	Square Root.	Cube Root.	Numbe	
934	872356 81478050		30.561413	9.77497	934	
935	874225	817400375	30.577769	9.77846	935	
936	876096	820025856	30.594117	9 78194	936	
937	877969	822656953	30.610455	9.78542	937	
938	879844	825293672	30.626785	9.78890	938	
939	881721	827936019	30.643106	9.79238	939	
940	883600	830584000	30.659419	9.79586	940	
941	885481	833237621	30.675723	9.79933	941	
942	887364	835896888	30.692018	9.80280	942	
943	889249	838561807	30.708305	9.80627	943	
944	891136	841232384	30.724583	9.80973	944	
945	893025	843908625	30.740852	9.81319	945	
946	894916	846590536	30.757113	9.81665	946	
947	896809	849278123	30.773365	9.82011	947	
948	898704	851971392	30.789608	9.82357	948	
949	900601	854670349	30.805843	9.82702	949	
950	902500	857375000	30.822070	9.83047	950	
951	904401	860085351	30.838287	9.83392	951	
952	906304	862801408	30.854497	9.83736	952	
953	908209	865523177	30.870698	9.84081	953	
954	910116	868250664	30.886890	9.84425	954	
955	912025	870983875	30.903074	9 84769	955	
956	913936	873722816	30.919249	9.85112	956	
957	915849	876467493	30.935416	9.85456	957	
958	917764	879217912	30.951575	9 85799	958	
959	916681	881974079	30.967725	9.86142	959	
960	921600	884736000	30.983866	9.86484	960	
961	923521	887503681	31.0	9.86827	961	
962	925444	890277128	31.016124	9.87169	962	
963	927369	893056347	31.032241	9.87511	963	
964	929296	895841344	31.048349	9.87853	964	
965	931225	898632125	31 064449	9.88194	965	
966	933156	901428696	31.080540	9.88535	966	
967	935089	904231063	31.996623	9.88876	967	
968	937024	907039232	31.112698	9.89217	968	
969	938961	909853209	31.128764	9.89558	969	
970	940900	912673000	31.144823	9.89898	970	
971	942841	915498611	31.160872	9.90238	971	
972	944784	918330048	31.176914	9.90578	972	
973	946729	921167317	31.192947	9.90917	973	
974	948676	924010424	31.208973	9 91257	974	
975	950625	926859375	31 224990	9.91596	975	
976	952576	929714176	31.240998	9.91935	976	
977	954529	932574833	31.256999	9.92273	977	
978	956484	935441352	31.272991	9 92213	978	
979	958441	938313739	31.288975	9.92950	979	
980	960700	951192000	31 304951	9.93288	980	

Number. Square. 981 962361		Cube.	Square Root.	Cube Root.	Number 981	
		944076141	31:320919	9.93626		
982	964324	946966168	31.336879	9.93963	982	
983	966289	949862087	31.352830	9 94300	983	
984	968256	952763904	31.368774	9.94637	984	
985	970225	955671625	31.384709	9.94974	985	
986	972196	958585256	31.400636	9.95311	986	
987	974169	961504803	31.416556	9.95647	987	
988	976144	964430272	31.432467	9.95983	988	
989	978121	967361669	31.448370	9.96319	989	
990	980100	970299000	31.464265	9.96655	990	
991	982081	973242271	31.480152	9.96990	991	
992	984064	976191488	31.496031	9.97326	992	
993	986049	979146657	31.511902	9.97661	993	
994	988036	982107784	31.527765	9.97995	994	
995	990025	985074875	31.543620	9.98330	995	
996	992016	988047936	31.559467	9.98664	996	
997	994009	991026973	31.575306	9.98999	997	
998	996004	994011992	31.591138	9.99332	998	
999	998001	997002999	31.606961	9.99666	999	
1000	1000000	1000000000	31.623776	10.	1000	

SILVER, TO PURIFY AND REDUCE.—Silver, as used in the arts and coinage, is alloyed with a portion of copper. To purify it, dissolve the metal in nitric acid slightly diluted, and add common salt, which throws down the whole of the silver in the form of chloride. To reduce it into a metallic state several methods are used: 1. The chloride must be repeatedly washed with distilled water, and placed in a zinc cup; a little diluted sulphuric acid being added, the chloride is soon reduced. The silver when thoroughly washed is quite pure. In the absence of a zinc cup, a porcelain cup containing a zinc plate may be used. The process is expedited by warming the cup.

2. Digest the washed chloride with pure copper and ammonia. The quantity of ammonia need not be sufficient to dissolve the chloride. Leave the mixture for a day, then wash the silver

thoroughly.

3. Boil the washed and moist chloride in solution of pure potash, adding a little sugar: when washed it is quite pure.

Welding Composition.—Mix borax with \$\frac{1}{1}\$th of sal ammoniae, fuse the mixture, and pour it on an iron plate. When cold, pulverise it, and mix it with an equal weight of quick lime, sprinkle it on iron, which is heated to redness, and replace it in the fire. It may be welded below the usual heat.

BLACKING RECIPES.

Liquid Blacking, for Boots and Shoes.—1. Ivory black, 3 oz.; molasses, 2 oz.; sweet oil, $\frac{1}{2}$ oz. Mix to form a paste. Add gradually $\frac{1}{2}$ oz. of oil of vitriol, and then half a pint of vinegar, and $1\frac{3}{4}$ pint of water, or sour beer. Some prefer mixing the oil of vitriol with the sweet oil.

2. Ivory black, 2 lbs.; molasses, 2 lbs.; sweet oil, ½ lb. Mix, and add ¾ lb. oil of vitriol, and enough beer or vinegar to make up a

gallon.

3. Ivory black, 3 lbs.; molasses, 4 lbs.; vinegar, 1 pint; oil of

vitriol, 8 oz.; water, 1 gallon.

4. Ivory black, 2 lbs.; neat's-foot oil, 4 oz. Mix, and add 3 quarts of sour beer or vinegar, and a spoonful of any kind of spirits; stir till smooth, and add 2 oz. of oil of vitriol, and sprinkle on it ½ drachm of powdered resin. Then boil together 3 pints of sour ale with a little logwood, and ½ oz. of Prussian blue, 3 oz. of honey, and 8 oz. of molasses. Mix, but do not bottle it for two or three days.

5. Ivory black, 8 oz.; brown sugar, or molasses, 8 oz.; sweet oil, 1 oz.; oil of vitriol, $\frac{1}{2}$ oz.; vinegar, two quarts. Mix the oil with the molasses, then add the oil of vitriol and vinegar, and lastly the

ivory black.

Blacking for Dress Boots —1. Gum, 8 oz.; molasses, 2 oz.; ink, 1 pint; vinegar, 2 oz.; spirit of wine, 2 oz. Dissolve the gum and molasses in the ink and vinegar, strain, and add the spirit.

2. To the above add 1 oz. of sweet oil, and ½ oz. of lampblack. [These are applied with a sponge, and allowed to dry out of the

dust. They will not bear the wet.]

3. Beat together the whites of 2 eggs, a table-spoonful of spirit of wine, a lump of sugar, and a little finely powdered ivory black to thicken.

Blacking, without Polishing.—Molasses, 4 oz; lampblack, ½ oz; yeast, a table-spoonful; 2 eggs; a tea-spoonful of olive oil; a teaspoonful of turpentine. Mix well. To be applied with a sponge,

without brushing.

India Rubber Blacking.—Ivory black, 60 lbs.; molasses, 45 lbs.; vinegar (No. 24), 20 gallons; powdered gum, 1 lb.; India rubber oil, 9 lbs. (The latter is made by dissolving, by heat, 18 oz. of India rubber in 9 lbs. of rape oil,) Grind the whole smooth in a paint mill. Then add, by small quantities at a time, 12 lbs. of oil of vitriol, stirring it strongly for half an hour a day for a fortnight.

Paste Blacking. -1. Oil of vitriol, 2 parts; sweet oil, 1 part;

molasses, 3 parts; ivory black, 4 parts. Mix.

2. This may be made with the ingredients of liquid blacking, using sufficient vinegar, in which a little gum has been dissolved, to form a paste. Make it into cakes, and dry it.

3. (Bailey's Blacking Balls.) Bruised gum tragacanth, 1 oz.; water, 4 oz. Mix, and add 2 oz. of neat's foot oil, 2 oz. of fine ivory black, 2 oz. of Prussian blue. Mix, and evaporate to a proper consistence.

Blacking for Harness.—1. Isinglass or gelatine, \$\frac{1}{4}\$ oz.; powdered indigo, \$\frac{1}{4}\$ oz; soft soap, 4 oz.; logwood, 4 oz.; glue, 5 oz. Boil together in 2 pints of vinegar, till the glue is dissolved; then strain

through a cloth, and bottle for use.

2. Melt 8 oz. of beeswax in an earthen pipkin, and stir into it 2 oz. of ivory black, 1 oz. of Prussian blue ground in oil, 1 oz. of oil of turpentine, and ½ oz. of copal varnish. Make it into balls. To be applied with a brush, and polished with an old handkerchief.

3. Molasses ½ lb.; lampblack, 1 oz.; yeast, 1 spoonful; of sugar candy, olive oil, gum tragacanth, and isinglass, 1 oz. each; a cow's gall. Mix all together with 2 pints of stale beer, and let it stand

before the fire for an hour.

Heel Balls.—1. Melt together 4 oz. of mutton suet, 1 oz. of beeswax, 1 oz. of sweet oil, $\frac{1}{2}$ oz. oil of turpentine, and stir in 1 oz. of powdered gum arabic, and $\frac{1}{2}$ oz. of fine lampblack.

2. Beeswax, 8 oz.; tallow, 1 oz.; powdered gum, 1 oz.; lamp-

black, q. s.

Heel balls are used not merely by the shoemaker, but to copy inscriptions, raised patterns, &c., by rubbing the ball on paper laid over the article to be copied.

BLACKLEAD PENCILS.—The easiest way of producing, not only blacklead, but all sorts of pencils, is by the following process, which at once combines simplicity, cheapness, and the finest quality.

Take white or pipe-clay: put it into a tub of clean water, to soak for twelve hours, then agitate the whole, until it resembles milk, let it rest two or three minutes, and pour off the supernatant milky liquor into a second vessel, allow it to settle, pour off the clear, and dry the residue on a filter. Then add blacklead, any quantity. Powder it, and calcine it at a white heat in a loosely covered crucible, cool, and carefully pulverize, then add prepared clay, prepared plumbago, equal parts. Water to mix. Make them into a paste, and put it into oiled moulds of the size required, dry very gradually, and apply sufficient heat to give the required degree of hardness; lastly, the pieces should be taken carefully from the moulds, and placed in the grooves of the cedar. The more clay and heat employed the harder the crayon; less clay and heat of course produces a contrary effect. The shade of black may also be varied in the same way. Each mould must be made of four pieces of wood, nicely fitted together.

BLACK FOR MINIATURE PAINTERS.—Take camphor, and set it on the fire, and collect the soot by means of a saucer or paper funnel inverted over it.

STRAIN AND STRESS OF MATERIALS.

Let A B be a beam of timber, firmly fixed in a wall at A, and a weight, W, measured in pounds avoirdupois, acting at the extremity B, at right angles to A B.

If A B be one foot, and the weight W be one pound, then the strain produced at A is

called a unit of strain.

If the beam A B be (l) feet long, and the weight be (W) pounds, then the units of strain produced at A, by the weight acting at B, will be l W. And the units of strain

Let AB=10 feet, and the weight W be equal to 112 lbs., and BD=7 feet.

The units of strain at $A = 112 \times 10 = 1120$.

The units of strain at $D = 112 \times 7 = 784$.

The greatest strain on the beam is at A, at which place the beam would break if it was equally strong throughout.

If the weight W be uniformly distributed over the whole length of the beam A B, as in fig. 2, the *units of strain* at A will be only one-half as great as that produced by the weight W acting as in fig. 1.

The units of strain at A, which are produced by the beam itself, are equal to the weight of the beam multiplied by half its length.

The beam A B, fig. 3, is equally strong between the points A and B, when the underside of it is a common parabola.

Hence, from a square beam, one-third part of it may be cut off without diminishing its strength.

Fig. 1.

diminishing its strength.

If the weight W be uniformly distributed over the whole length of the beam A B, as in fig. 4; then the beam is equally strong when the underside of it is a straight line. In this case, one half the beam may be cut away without

Let the weight W (fig. 5) be sustained by a beam A B, which rests on two props at C and D.

The pressure on the prop at C is equal to W. B E: A B.

The pressure on the prop at D is equal to W. A E : A B.

The units of strain at E are equal to W. A E. B E: A B.

The units of strain at G are equal to W. A E. BG: AB.

The units of strain at F are equal to W. B E. A F: A B.

The greatest strain, which is produced by the weight W, is at E. The units of strain at the middle of the beam, produced by the weight W acting at E, are equal to $\frac{W.\ A\ E}{2}$.

Let A B = 18 feet, and a weight of 112 lbs. be placed at E, which is 8 feet from A.

Apply these numbers to the above formulæ and their results.

The pressure on the prop at C is equal to $\frac{10 \times 112}{18} = 62.5$ lbs.

The pressure on the prop at D is equal to $\frac{8 \times 112}{18} = 49.8$ lbs.

The units of strain at E are equal to $\frac{10 \times 8 \times 112}{18} = 497.77$.

The units of strain on the middle are equal to $\frac{8 \times 112}{2} = 448$.

When the weight W is laid on the middle of the beam A B, the units of strain on the middle are equal to $\frac{W.\ A\ B}{4}$.

If the weight W be uniformly distributed along the beam A B, the *units of strain* on the middle of it will be equal to $\frac{W. AB}{8}$; which is only one half the strain that is produced by the weight having been laid on the middle.

When the beam A B (fig. 6), supports a weight W, at E, it is equally strong between the points A and B, if the upper sides, A E, B E, be two parabolas whose vertex is A and B respectively.

Let the weight W have a bearing EF (fig. 7), equal on both sides of the centre G, and also let the weight be equally distributed on the bearing EF.

The units of strain at G are equal to $\frac{W.AB}{4} - \frac{W.EF}{8}$

Now, if the weight W were a sphere, and were laid on the middle of the beam at G, the *units of strain* at G would be equal to W. A B.

If the same weight be formed into a cube, whose side is EF, the units of strain at the centre G will be less than in the case of the sphere by $\frac{W.EF}{8}$.

Fig. 8.

Let A B be any beam suspended vertically from the point A (fig. 8): and let the sectional area be constant from A to B, where a weight W lbs. is acting to extend the beam.

Put a = area of the section of the beam in square inches.

l = length of the beam in feet before the weight is applied to elongate it.

e = the elongation produced by the weight W. E = weight which would be necessary to make e equal to l. The quantity E is called the modulus

Put c = compression produced by the weight W.

C = force which is necessary to make c equal to half of (l).
The quantity C is called the modulus of elasticity of the material, when it is subject to compression.

$$E = \frac{Wl}{ae}$$
 and $C = \frac{Wl}{ae}$

Units of work done to elongate the beam e feet $=\frac{We}{2}$.

Units of work done to compress the beam c feet $=\frac{Wc}{2}$.

Mean results of experiments on four different kinds of Cast-iron bars, 10 feet long and 1 square inch in section.

Weight laid on bar per square inch $= W$.	Extension of bar in inches = 12 e.	Set of bar in inches.	The value of $\frac{12 W}{e}$.
lbs.	inches.	00810-	7 AV 1
1054	.009	arrest.	117085
1581	.0137	.00022	115131
2108	.0186	.00055	113308
3161	.0287	.00107	110150
4215	.0391	.00175	107802
5269	.0500	.00265	105377
6323	.0613	.00372	103142
7376	.0734	.00517	100496
8430	.0859	.00664	98139
9484	.0995	.00844	95316
10538	.1136	.01062	92762
11591	.1283	.01306	90347
12645	.1448	.01609	87329
13700	.1668	.02097	82133
14793	.1859	.02410	79576

Hence, the breaking weight per square inch of section is 14793 lbs. = 6.6 tons nearly; and the ultimate extension is .1859 inches, or $\frac{1}{64}$, of the whole length, 10 feet.

If we deduct the set '0209 from '1859, we shall have '165 inches for the elongation produced by the weight 14793 lbs.

∴
$$E = \text{modulus of elasticity} = \frac{14793 \times 10 \times 12}{.165} = 10758545.$$

.. Breaking weight = 6.6 tons × area of section in square inches.

If the weight 5269 be taken, the modulus of elasticity will be considerably increased. Deduct .00175 the set from .05, leaving .04825 inches for the elongation due to the weight 5269 lbs.

$$E = \text{modulus of elasticity} = \frac{5269 \times 10 \times 12}{.04825} = 13104249.$$

This difference in the modulus of elasticity arises from the circumstance of the law of elasticity not being proportional to the weight.

TABLE

Of the Tensile Strength of Wrought Iron.
The Bar was 10 feet long and 1 square inch section.

Weight laid on the Bar W.	Extension of the Bar or value of 12 e.	Set of Bar.	The value of 12 W e
lbs.	inches.	inches.	
1262	.00520		242665
3785	.01690	.0005	223998
6309	.02772	.0005	227608
8833	.03790	.0005	233061
11356	.04854	.0005	233966
13880	.05950	.0007	233285
16404	.06980	.0007	235016
18928	:08170	.00130	231675
21452	.09310	.00270	230415
23975	.10570	.00410	226824
26499	12040	.00680	220092
29023	.14500	.0120	200157
30284	.19910	.0120	State Line
	23660	1082	after bearing the weight 17 hours.
31546	• 24200	•1083	130357
ditto	• 24490	·1111	after five minutes
35332	2.04	1.874	17320

The bar broke with a weight of 24 tons per square inch of section. Hence the tensile force of wrought iron is nearly four times as great as the tensile force of cast iron.

TABLE

Of the Compressive Strength of Wrought Iron.
The Bar was 10 feet long and 1 square inch section.

Weight laid on the Bar, or (W).	Decrement of length, or the value of 12 c.	Weight laid on the bar, or (W).	Decrement of length, or the value of 12 c.		
lbs.	inches.	lbs.	inches.		
5098	.028	23018	•119		
9578	.052	25258	•130		
14058	.073	27498	·142		
16298	.085	29738	.154		
18538	.096	31978	.174		
20778	•107	34218	•214		

The crushing force of wrought iron is 12 tons per square inch. It is a curious fact, that cast iron is decreased in length nearly double what wrought iron is, by the same weight; but the wrought iron bar will sink to any degree with little more than 12 tons per square inch, whilst cast iron will bear 43 56 tons to produce the same effect.

A wrought bar will bear a compression of $\frac{1}{863}$ of its length,

without its utility being destroyed.

Compression of Cast Iron.

Mean results of experiments on four different kinds of Cast Iron, 10 feet long, and 1 square inch in section.

Weight laid on the bar (W).	Decrement of length, or the value of 12 c.	Set of bar in mches.	The value of $\frac{12 W}{c}$.	
lbs.	inches.	inches.	- marily	
2065	.01875	.00047	110119	
4129	.03878	.00226	106485	
6194	.05978	.00400	103617	
8259	.07879	.00645	104822	
10324	.09944	.00847	103819	
12388	12030	.010875	102980	
14453	14163	.01405	102049	
16518	16338	.01712	101101	
18583	18505	.02051	100420	
20464	20624	.02484	100114	
24777	24961	.03220	99263	
28906	29699	.04300	97331	
33031	*35341	.06096	93463	

The crushing or compressive force of cast iron per square inch is 43.56 tons, which has been obtained from eleven kinds of cast iron. But the tensile force of cast iron is 6.6 tons; therefore the compressive force is equal to the square of the tensile force, or (6.6)².

Transverse Strength of Beams.

To find the neutral line, forces of extension, forces of compression, moments of extension, and moments of compression of a beam subject to transverse flexure,

Let the form of the section of the beam be that of the figure A B D E, where BC, HE, represent sections of the top and bottom ribs, FG that of the vertical one connecting them, and N O pass through the neutral line.

Put a, a' = NI, NK, respectively.

$$c, c' = D H, A C,$$
 respectively.
 $b, b' = D E, A B,$ do.

 β = the thickness of the vertical rib.

f, f' = tensile and compressive forces of the material, in a square inch of section, as exerted at a distance (a) on opposite sides of the neutral line.

For the determination of the neutral line

$$f \left\{ ba^2 - (b - \beta) (a - c)^2 \right\} = f' \left\{ b' a'^2 - (b' - \beta) (a' - c')^2 \right\}$$

And a + a' = D, where D is the whole depth of the beam. For moderate strains per square inch f = f'

For moderate strains per square inch
$$f = f'$$

 $\therefore ba^2 - (b - \beta)(a - c)^2 = b'(D - a)^2 - (b' - \beta)(D - a - c')^2$

Moments of extension =
$$\frac{f}{3} a \left\{ ba^3 - (b-\beta)(a-c)^3 \right\}$$

Moments of compression = $\frac{f}{3a} \left\{ b' a'^3 - (b' - \beta) (a' - c')^3 \right\}$

If W be the weight laid on the middle, and l equal length between supports,

If the form of the section be this,

Then $b' = \beta$

Therefore, for the neutral line $b a^2 - (b - \beta)(a - c)^2 = \beta (D - a)^2$. Moment of extension

$$=\frac{f}{3a}\left\{ba^3-(b-\beta)(a-c)^3\right\}$$

Moment of compression = $\frac{f\beta a'^3}{3a}$

$$\operatorname{And} \frac{Wl}{4} = \frac{f}{3a} \left\{ ba^3 + \beta a'^3 - (b-\beta)(a-c)^3 \right\}$$

If the form of the section be this,

Then $b = \beta$

Therefore, for the neutral line

$$\beta a^2 = b' (D - a)^2 - (b' - \beta) (D - a - c)^2$$

Moment of extension = $\frac{f\beta \alpha^2}{3}$

N

Moment of compression

$$= \frac{f}{3 a} \left\{ b' a'^3 - (b' - \beta) (a' - c')^3 \right\}$$

And
$$\frac{Wl}{4} = \frac{f}{3a} \left\{ \beta a^3 + b' a'^3 - (b' - \beta) (a' - c')^3 \right\}$$

If the form of the section be this,

Then, $b = \beta$ and $b' = \beta$

Therefore, for the neutral line 2a = D

or the neutral line is in the middle of the section.

Moment of extension =
$$\frac{f \beta D^2}{12}$$

Moment of compression = $\frac{f\beta D^2}{12}$

$$\therefore Wl = \frac{2f\beta D^2}{3}$$

Length of Bar between supports, with its dimensions.	Breaking weight laid on middle.	Ultimate deflexion in inches.	Mean of experi- ments.
4½ feet, with 1 inch square	lbs. 440	1.779	3
9 feet, with 2 inches square	1338	3.0035	6
13½ feet, with 3 inches square	2861	4.667	5
63 feet, with 3 inches square	6117	1.2916	3

From the three last experiments we find $\frac{2f}{3} = 1490$.

$$W = 1490 \times \frac{\beta D^2}{l}$$

For a cast-iron beam, where W is the breaking weight in lbs., β is the breadth of the beam measured in inches, D the depth of the beam measured in inches, and l the length of beam between supports measured in feet.

The best dimensions of a beam, whose section is given in the figure, are when the bottom flange contains six times as much area as the top flange. And the breaking weight of such beams may be found by the following admirable rule:

Multiply the sectional area of the bottom flange in square inches, by the depth of the

beam in inches, and divide the product by the distance between the supports, measured in feet, then 2:14 times the quotient will give the breaking weight in tons.

A cast-iron bar is not weakened by passing half the breaking weight over it 96,000 times, with a velocity of 81 feet per minute.

Deflection of Beams.

Let the beam be supported at A and B, and weight W applied at the middle C.

$$\therefore DC = \frac{Wl^3}{4 E\beta D^3}$$

E =the modulus of elasticity of the material.

 β = breadth of beam in in.

D =depth of beam in inches.

l = length of beam in inches.

Let the beam be supported at A, and a weight W applied at the other extremity.

$$\therefore B C = \frac{4 W l^3}{E \beta D^3}$$

Rule for finding the ultimate deflexion of a east-iron beam:

Ultimate deflexion D C in inches $=\frac{3 \ l^2}{40 \cdot D}$ for first figure.

Ultimate deflexion B C in inches = $\frac{6}{5} \frac{l^2}{D}$ for second figure,

where l is measured in feet and D in inches.

These values for the ultimate deflexion are independent of the breadth of the beam.

Find the ultimate deflexion of a cast-iron bar, the distance between the supports being 24 feet, and depth 4½ inches.

Ultimate deflexion =
$$\frac{3}{40} \frac{l^2}{D^2} = \frac{3 \times 24^2}{40 \times 4\frac{1}{2}} = 9.6$$
 inches.

If the weight W be uniformly distributed along the beam, the deflexion will be in all cases $\frac{x}{2}$ of the deflexion which is produced by the weight acting on the middle, or in the case of having only one support, acting at the extremity.

Transverse Flexure of a Wrought-Iron Bar by Pressure acting Horizontally.

Length of bar 14 feet $7\frac{1}{2}$ inches, depth of bar in direction of pressure 1.515 inches, breadth 5.523 inches, distance between supports 13 feet 6 inches. The experiment was continued to the limit of perfect elasticity, or to that point at which the elasticity was sensibly injured.

Weight applied, acting horizontally.	pplied, acting contally. Deflexions after five minutes.		Ratio of weights to deflexions.		
lbs.	inches.	inches.			
28	.051	.0	549 \		
56	.112	.0	500		
112	.232	.0	483		
168	.344	.001	488		
224	.458	.002	489		
280	.571	.003	490		
336	. 684	.003	491		
392	.800	.004	490		
448	.916	.006	489 86		
504	1.005	.007			
560	1.124	.008	498 \ E B 504 W		
616	$1 \cdot 222$.010	504		
672	1.332	•011	504		
728	1.434	.017	508		
784	1.547	•019	507		
840	1.693	.019	496		
896	1.823	.019	492		
952	1.933	.020	493		
1008	2.044	.021	493		
1064	2.165	.022	491/		

To find the weight which a wrought-iron beam is capable of bearing without injuring its elasticity.

$$W = \frac{1073 \beta D^2}{l}$$
 lbs. $= \frac{\beta D^2}{2 l}$ tons, nearly.

 β and D are measured in inches, and l in feet, being the distance between the supports.

What is the weight that can be laid on a wrought-iron bar, 20 feet long, 3 inches broad, and 6 inches deep, without injuring its elasticity?

$$W = \frac{3 \times 36}{40} = \frac{108}{40} = 2.7 \text{ tons.}$$

The deflexion of a wrought-iron beam, supported at each end, and loaded in the middle, when the elastic limit is obtained.

Deflexion in inches =
$$0167 \times \frac{l^2}{D}$$
.

The length, l, is measured in feet, and D, the depth, in inches. Taking the bar given in the last example,

Deflexion =
$$\cdot 0167 \times \frac{400}{6} = 1.11$$
 inches.

Hollow Rectangular Beams.

Let ABCD be the section of a hollow rectangular beam.

Let
$$AD = D$$
, and $ad = d$
 $AB = B$, and $ab = b$

$$\therefore \dot{W}l = \frac{2f}{3D} \left\{ BD^3 - bd^3 \right\}$$

where W is the weight applied at the middle between the supports, and f is a constant depending on the nature of the material.

FLUID FOR ETCHING ON COPPER.—Verdigris 4 parts; salt 4; sal ammoniac 4; alum 1; water 16; strong vinegar 12. Dissolve with heat.

ACID FOR ETCHING ON STEEL.—Pyroligneous acid 5 parts; alcohol 1; nitric acid 1. Mix the first two, then add the nitric acid.

TABLE

Of Experiments on the Transverse Strength of Rectangular Tubes of Wrought-Iron, supported at each end, and the weight laid on the middle.

Distance between the supports.	Weight of tubes between the sup- ports.	Breaking weights, exclu- sive of the weights of the tubes.	External depth of the tubes.	External breadth of the tubes.	Thickness of the plates of the tubes.
Feet.		Tons.	Inches.	Inches.	Inches.
30.0	42.62 ewt.	57.5	24	16	. 525
7.5	72.36 lbs.	4.454	6	4	·1325
30.0	23.09 cwt.	22.84	24	16	272
7.5	35.53 lbs.	1.409	6	4	.065
3.75	9.65 "	1.1	3	2	.061
3.75	4.34 "	• 3	3	2	.03
45.0	130.36 cwt.	114.76	36	24	.75
3.75	9.65 lbs.	1.1	3	2	.061
30.0	39 ewt.	54.3	24	16	• 50

In several of these experiments the tubes gave way by the metal at the top becoming wrinkled.

In similar tubes the strength, and consequently the breaking weight, is proportional to (1.9) power of the lineal dimensions.

From these experiments the breaking weight may be obtained as follows:

$$W = \frac{3}{4 l D} \left\{ B D^3 - b d^3 \right\}$$
 in tons.

The breadths and depths are measured in inches, and the length in feet.

If the thickness of the metal be equal to t inches completely round the section,

Then,
$$W = \frac{3}{4 D l} \left\{ B D^3 - (B - 2 t) (D - 2 t)^3 \right\}$$

the breaking weight in tons for a wrought-iron tube, whose form of section is

What is the breaking weight of a rectangular tube 40 feet long, depth 2 feet 6 inches, thickness of plate ‡ inch, and breadth 18 inches?

$$W = \frac{3}{4800} \left\{ 18 \times 30^3 - 17.5 \times 29.5^3 \right\}$$

$$=\frac{1}{1600}\left\{486000-449267\right\}=22.96$$
 tons.

From a great number of well arranged experiments, on the strength of iron beams and tubes, it follows that they may be safely reduced in strength from the middle towards the extremities in the ratio indicated by theory.

Let AB be a beam supported at its extremities E and F, and put F equal to the necessary strength at the middle of the beam.

Then, the necessary strength at
$$D=F imesrac{A~C^2-C~D^2}{A~C^2}$$

The tensile force of wrought iron is to its compressive force as 2 to 1.

Hence, the plate on the upper side of hollow wrought-iron tubes should contain an area twice as great as the plate on the under side.

Strength of Cast-Iron Pillars.

The breaking weight of solid cylindrical cast-iron pillars.

In solid pillars, with their ends rounded, and moveable,

Breaking weight in tons =
$$14.9 \times \frac{d^{3.6}}{h.7}$$
 . . . (1)

In solid pillars, with their ends flat, and incapable of motion,

Breaking weight in tons =
$$44.16 \times \frac{d^{3.6}}{l^{1.7}}$$
 . . . (2)*

where l is the length of pillar in feet, and d the diameter in inches. In hollow pillars of east-iron, where D, d are the external, internal diameters, and l the length: both ends of the pillar were moveable.

Breaking weight in tons =
$$13 \times \frac{\hat{D}^{3\cdot6} - d^{3\cdot6}}{D^{3\cdot6}}$$

In hollow cast-iron beams, whose ends were flat and firmly fixed,

Breaking weight in tons = 44.3
$$\frac{D^{3.6}-d^{3.6}}{D^{1.7}}$$

Of three cylindrical pillars of steel, wrought and cast iron, and wood, all of the same length and diameter, the first having its ends

^{*} Formula (1) was obtained from the mean result of eighteen pillars, varying in length from 121 times the diameter down to 15 times. The formula (2) was derived from eleven pillars, with flat ends, varying in length from 78 to 25 times the diameter.

rounded, the second with one end round and the other end flat, and the third with both ends flat, the strengths are as 1, 2, and 3.

These formula and results were obtained from experiments on pillars, varying in length from 121 times the diameter down to 15 times.

Effects of Temperature upon the Strength of Cast-Iron.

The strength of cast-iron is not reduced when its temperature is raised to 600°, which is nearly that of melting lead; and it does not differ very widely whatever the temperature may be, provided the bar be not heated so as to be red hot.

EXAMPLE.

Find the strength of a hollow cylindrical cast-iron pillar, 14 feet long, 6.2 inches external diameter, and 4.1 inches internal; the pillar being flat and well supported at the ends.

$$14^{1.7} = 88.801$$
 $6.2^{3.6} = 712.22$ and $4.1^{3.6} = 160.7$

.: Breaking weight in tons =
$$44.3 \times \frac{D^{3.6} - d^{3.6}}{l^{1.7}}$$

$$=44.3\times\frac{712.22-160.7}{88.801}$$

= 275

Comparative Strength of Long Pillars.

If the strength of cast-iron pillars be 1000, then wrought-iron will be 1745, cast-steel 2518, Dantzic oak 108.8, and red deal 78.5.

The strength of similar pillars is as the square of their linear dimensions.

Resistance to Torsion.

Let l = length of prism from the fixed end to the point of application of the lever used to twist it.

r = radius of prism, if round.

b, d = breadth and thickness, if rectangular.

W = the weight acting by means of the lever to twist the prism.

L =length of the lever to which the weight W is applied.

 $\theta =$ angle of torsion.

R = resistance to torsion at the time of fracture.

C =constant for each species of body.

$$\pi = 3.14159$$
, &c.

For a cylinder,

$$2 L l W = C \pi \theta r^4$$
 and $2 W L = \pi R r$.

For a square,

$$6 L l W = C \theta d^4 \text{ and } 6 W L = \sqrt{2 \cdot R} d^2.$$

For a rectangle,
$$3 L l W(b^2 + d^2) = C \theta b^3 d^3$$
 and $3 W L \sqrt{b^2 + d^2} = R b^2 d^3$

The Ultimate Resistance of a Cast-iron Beam to Torsion.

In a cylinder, $WL = 51055 r^3$. In a square prism, $WL = 7660 d^3$.

In a rectangular prism, WL = 10834 $\frac{b^2 d^2}{\sqrt{b^2 + d^2}}$.

All the dimensions are taken in inches.

Strength of Ropes.

The cohesion of hempen fibres is 6400 lbs. for every square inch of section.

Breaking weight in tons = $\frac{\text{circumference squared}}{4}$

the circumference being measured in inches.

Ex.—Find the breaking weight of a rope 6 inches in circumference.

Breaking weight $=\frac{36}{4}=9$ tons.

For a common cable,

Breaking weight in tons $=\frac{\text{circumference squared}}{5}$

These are practical rules and easy of application.

the part of the second second second to the second second

PROCESSES FOR STAINING WOODS.

Mehogany Color (Dark).—Boil ½ lb. of madder and 2 oz. of logwood in a gallon of water; then brush the wood well over with the hot liquid. When dry, go over the whole with a solution of 2

drachms of pearlash in a quart of water.

Mahogany Color (Light).—Brush over the surface with diluted nitrous acid, and when dry apply the following, with a soft brush: Dragon's blood, 4 oz.; common soda, 1 oz.; spirit of wine, 3 pints. Let it stand in a warm place, shake it frequently, and then strain. Repeat the application until the proper color is obtained.

To Stain Maple a Mahogany Color.—Dragon's blood, 1 oz.; alkanet, 1 oz.; aloes, 1 dr.; spirit of wine, 16 oz. Apply it with a

sponge or brush.

Rosewood.—Boil 8 oz. of logwood in 3 pints of water until reduced to half; apply it, boiling hot, two or three times, letting it dry between each. Afterwards put in the streaks, with a camel's hair pencil, dipped in a solution of copperas and verdigris in a decoction of logwood.

Ebony.—Wash the wood repeatedly with a solution of sulphate of iron; let it dry, then apply a hot decoction of logwood and nutgalls for two or three times. When dry, wipe it with a wet sponge; and when dry again, polish with linseed oil.

Red.—1. Take a pound of Brazil wood and mix it with a gallon of stale urine. Pour over the wood while boiling hot. Before it dries it should be laid over with alum water. 2. A fine red may also be obtained by a solution of dragon's blood in spirits of wine.

Yellow.—Nitric acid, lightly diluted, will produce a fine yellow on wood. Sometimes, if the wood is not in proper condition, it will create a brown. Care must be taken that the acid used be not too strong, or it will render the wood nearly black.

Blue. - Take of alum 4 parts; water 85 parts. Boil.

Purple.—To produce this color, take of logwood 11 parts; alum

3 parts; water 29 parts. Boil.

Mahogany.—1. Linseed oil 2 pounds; alkanet 3 ounces. Heat them together and macerate for six hours, then add resin 2 ounces; beeswax 2 ounces. Boiled oil may be advantageously used instead of the linseed oil.

2. Brazil-wood (ground); water sufficient; add a little alum and

potash. Boil.

3. Logwood 1 part; water 8 parts. Make a decoction, and apply it to the wood; when dry, give it two or three coats of the following varnish: dragon's blood 1 part; spirits of wine 20 parts. Mix.

To take Stains out of Mahogany.—Spirits of salts 6 parts; salt of lemons 1 part. Mix, then drop a little on the stains, and rub

them until they disappear.

To Stain Musical Instruments.—Crimson: Boil one pound of ground Brazil wood in three quarts of water for an hour; strain it, and add half an ounce of cochineal; boil it again for half an hour gently, and it will be fit for use.

Purple: Boil a pound of chip logwood in three quarts of water

for an hour; then add four ounces of alum.

LOGARITHMS.

Logarithms literally signify ratios of numbers; hence Logarithmic Tables may be various, but those in common use for the facilitating of arithmetical operations generally are of the following corresponding progressions, viz.:—

Arithmetical, 0, 1, 2. 3. &c., or series of logarithms. Geometrical, 1, 10, 100, 1000, &c., or ratio of numbers.

And thus it may be perceived, that if the log. of 10 be 1, the log. of any number less than 10 must consist wholly of decimals, because increasing by a decimal ratio. Again; if the log. of 100

be 2, the log. of any intermediate number between 10 and 100 must be 1, with so many decimals annexed; and in like manner, the log. of any intermediate number between 100 and 1000, must be 2, with decimals annexed proportionally, as before.

Application and Utility of Common Logarithmic Tables.

The whole numbers of the series of logarithms, as 1, 2, 3, &c., are called the indices, or characteristics of the logarithm, and which must be added to the logarithm obtained by the table, in proportion to the number of figures contained in the given sum. Thus suppose the logarithm be required for a sum of only two figures, the index is 1; if of three figures, the index is 2; and if of four figures, the index is 3, &c.; being always a number less by unity than the number of figures the given sum contains.

EXAMPLES.

The index of 8 is 0, because it is less than 10.

The index of 80 is 1, because it is less than 100.

The index of 800 is 2, because it is less than 1000.

The index of 8000 is 3, because it is less than 10,000, &c.

The index of a decimal is always the number which denotes the significant figure from the decimal point, and is marked with the sign, thus, —, to distinguish it from a whole number

EXAMPLES.

The index of 32549 is -1, because the first significant figure is the first decimal.

The index of '032549 is — 2, because the first significant figure is the second decimal.

The index of '0032549 is — 3, because the first significant figure is the third decimal, &c., of any other sum.

If the given sum for which the logarithm is required contains or consists of both integers and decimals, the index is determined by the integer part, without having any regard to the other.

To find the logarithm of any whole number under 100.

Look for the number under N in the first page of any Logarithmic Table; then immediately on the right of it is the logarithm required, with its proper index. Thus the log. of 64 is 1 806180, and the log. of 72 is 1 857332.

2 To find the logarithm of any number between 100 and 1000, or any sum not exceeding 4 figures.

Find the first three figures in the left-hand column of the page under N, in which the number is situated, and the fourth figure, at the top or bottom of the page; then the logarithm directly under the fourth figure, and in a line with the three figures in the column on the left, with its proper index, is the logarithm required. Thus, the log. of 450 is 2.653213, and the log. of 7464 is 3.872972. Or, the log. of 378.5 is 2.578066, and that of 7854 is —1.895091.

3. To find the number indicated by a given logarithm.

Look for the decimal part of the given logarithm in the different columns, and if it cannot be found exactly, take the next less. Then under N in the left-hand column, and in a line with the logarithm found, are three figures of the number required, and on the top of the column in which the found logarithm stands is one figure more; place the decimal point as indicated by the logarithmic index, which determines the sum properly valued as required.

which determines the sum, properly valued, as required.

If the logarithm cannot be found exactly in the tables, subtract from it the next less that can be found, and divide the remainder by the tabular difference; the quotient will be the rest of the figures of the given number, which, being annexed to the tabular number

already found, is the proper number required.

Ex. Required, the number answering to the logarithm 3.233568.

Given logarithm = 3.233568 Next less is the log. of 1712= 3.233504

Remainder 64

Tab. Diff. = 253, and $\frac{64}{253}$ = 2.5

Hence the number required = 1712.25.

For practical purposes in mechanics, logarithms are seldom resorted to, unless for the raising of the powers of numbers or extraction of their roots. These operations, when tables are at hand, they very much facilitate; involution or the raising of powers, being performed simply by multiplication, and evolution, or the extraction of roots, by division, as in simple arithmetic.

Ex. 1. Required, the square or second power of 25.791.

Log. of 25.791 = 1.411468
Multiplied by 2 the power required.

Logarithm 2.822936 indicated number or square required = 665.175.

Ex. 2. What is the cube of 30.7146?

Logarithm = 1.487345
Multiplied by 3 the power required.

Logarithm 4.462035 indicated number or cube required = 28975.7.

Ex. 3. Required, the square root of 365.

Log. $=\frac{2.562293}{2}=1.281146$ indicated number or root =19.105.

Ex. 4. Find the cube root of 12345.

 $Log. = \frac{4.091491}{3} = 1.363830$ indicated number or root = 23.116.

The part of the pa

The second of th

the great develop which many all the

For Table of Logarithms, see p. 483.

Engraving in Alto-Relievo.—In the common operation of engraving, the desired effect is produced by making incisions upon the copper-plate with a steel instrument of an angular shape, which incisions are filled with printing-ink, and transferred to the paper by means of a roller, which is passed over its surface. There is another mode of producing these lines or incisions, by means of diluted nitrous acid, in which the impression is taken in the same way. Another method of engraving is done upon a principle exactly the reverse, for instead of the subject being cut into the copper, it is the interstice between the lines which is removed by diluted aquafortis, and the lines are left as the surface, from which the impression is taken by means of a common type-printing press, instead of a copper-plate press.

This is effected by drawing with common turpentine varnish, covered with lampblack, whatever is required upon the plate; and when the varnish is thoroughly dry, the acid is poured upon it, and the interstice of course removed by its action upon the uncovered part of the copper. If the subject is very full of dark shadows, this operation will be performed with little risk of accident, and with the removal of very little of the interstice between the lines; but if the distance between the lines is great, the risk and difficulty is very much increased, and it will be requisite to cut away the parts which surround the lines with a graver, in order to prevent the dabber with the printing-ink from reaching the bottom, and thus producing a blurred impression. It is obvious, therefore, that the more the plate is covered with work, the less risk there will be in the preparation of it with the acid, after the subject is drawn, and the less trouble will there be in removing the interstice, if any, from those places where there is little shading.

GLASS, SOLUBLE.—Mix ten parts of carbonate of potash, fifteen of quartz (or of sand free from iron of alumina), and one part of charcoal. Fuse together. The mass is soluble in four or five parts of water; and the filtered solution evaporated to dryness yields a transparent glass, permanent in the air.

TABLE

By which to Determine the various Distances of the Movable Points in a Parallel Motion.

Radius of beams in feet.	Parallel bars in feet.	Length of radius	rods in feet and inches.	Radius of beams in feet.	Parallel bars in feet.	Length of radius rods in feet and inches.	Radius of beams in feet.	Parallel bars in feet.	Length of radius rods in feet and inches.	Radius of beams in feet.	Parallel bars in feet.	Length of radius rods in feet and
4 feet.	$\begin{array}{c} 2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{8}{4} \\ 3 \\ \hline 2 \end{array}$	$\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ \hline 3 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 4\frac{3}{8} \\ 10\frac{7}{8} \\ 6\frac{7}{8} \\ 4 \\ \hline 1\frac{1}{2} \end{array} $	6½ feet.	3 3 1 3 1 2 3 8 4 4 4 4 4 4 4 4 1 2	4 1 3 3 2 6 1 2 0 10 10 10 10 10 10 10 10 10 10 10 10 1	8½ feet.	384 4 414 412 484 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10½ feet.	5 5 1 5 5 5 6 6 1 4 1	6 0 5 3 4 6 3 11 3 3 2 10 2 5 2 1
4½ feet.	21 21 21 22 23 3 31	1 1 0 0	3 74 18 9 54	ئد	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 4 4 4	-	5½ 5½ 4 4¼	6 3 5 3 ³ / ₄	t.	6\frac{1}{4} 6\frac{1}{2} 6\frac{8}{4} 5\frac{1}{4} 5\frac{1}{2} 5\frac{8}{4}	6 3-
5 feet.	2 2 ¹ / ₄ 2 ¹ / ₂ 2 ⁸ / ₄ 3	4 3 2 1 1	6 48 6 101 4	7 feet.	4 4 4 4 4 4 2 4 8 4 5	$\begin{bmatrix} 3 & 6 \\ 3 & 2 \\ 2 & 3 \\ 1 & 9 \\ 1 & 4 \\ 1 & 0 \\ 0 & 9 \\ 1 \end{bmatrix}$	9 feet.	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 feet.	$6 \\ 6\frac{1}{4} \\ 6\frac{1}{2} \\ 6\frac{8}{4}$	4 2 3 7 3 1 2 8
5½ feet.	3 ¹ / ₄ 3 ¹ / ₂ 2 ¹ / ₄ 2 ¹ / ₂ 2 ⁸ / ₄ 3	0 0 4 3 2 2	11½ 7½ 88 7¼ 9 1	7½ feet.	$3\frac{1}{2}$ $3\frac{3}{4}$ 4 $4\frac{1}{4}$ $4\frac{1}{4}$ 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9½ feet.	6 4½ 4¾ 5 5¼ 5¼ 5½ 5¼	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11½ feet.	$\begin{array}{c} 5\frac{1}{2} \\ 5\frac{8}{4} \\ 6 \\ 6\frac{1}{4} \\ 6\frac{8}{4} \\ 7 \\ 7\frac{1}{4} \end{array}$	6 6 6 9 5 0 4 5 3 10 3 4 2 10 6 2 6
6 feet.	314 12 34 3 3 34 2 3 34 12 34 4 44	$\frac{1}{0}$ $\frac{3}{3}$ $\frac{2}{1}$ $\frac{1}{1}$ $\frac{1}{0}$	68 18 97 10 0 37 91 41 0 81	8 feet.	5 \frac{1}{4} \\ 3 \frac{1}{2} \frac{3}{4} \\ 4 \frac{1}{4} \\ 1 \\ 5 \\ 5 \\ 1 \\ 4 \\ 5 \\ 5 \\ 1 \\ 4 \\ 1 \\ 5 \\ 5	0 11½ 5 9½ 4 9½ 4 0 3 3½ 2 8½ 2 2¾ 1 9½ 1 5¼		6 44 5 5 5 5 5 5 6 6 6 6 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 feet.	584 6 612 6 6 6 7 7 1 1 2 8 4 7 7 7 8 4	6 82 6 0 5 3 4 7 4 1 3 6 3 1 4 2 8 2 4

CAPILLARY ATTRACTION.

If a number of glass tubes, open at both ends, be immersed, the water will rise to the same height in each tube, so long as the diameter of the tube exceeds the fifteenth of an inch; in all tubes less than this, the water will rise higher in the tube whose diameter is the least. Such tubes, whose diameters are less than one fifteenth of an inch, are called capillary tubes, from the Latin word capillus, signifying a hair.

Phenomena of Capillary Attraction.

Let PQRS be a vessel containing water to the line PS. The

ther to the line PS. The water will rise in the capillary tubes ABC to the heights mno, which are inversely proportional to their diameter. If B be broken at o, the water will not rise to the top of it, but will stand at b, a little below the top, whatever be the length or

diameter of the tube. And, if the tube be taken out of the water and laid horizontally, the water will recede from the end that was immersed.

If a tube D be composed of two different bores, the water will rise to the height p; and if another tube, E, of the same form and size, be immersed, with its smaller end downwards, the water will rise in it to the same height p.

If the vessel Fvw be plunged into water, and by exhaustion the water is raised to the capillary tube Ftw, it will afterwards ascend to the height r, which is just the same as in a capillary tube G of the same bore as Ftw, and length Fx.

In tubes of the same matter, immersed in the same fluid, the product of the elevations by the diameter is a constant quantity.

In a glass tube, immersed in water, this constant has been found by Muschenbrock, '039; by Weitbrecht, '0428; by Monge, '042; by Atwood '053.

From these numbers, the diameter of a tube may be found, in which the water will rise, by capillary attraction, the height 7 inches.

Diameter =
$$\frac{.039}{7}$$
 = .0056 inches, nearly.

The constant quantity, here referred to, is called the modulus of capillary attraction.

The following moduli are from Brewster; they were obtained

with a glass tube of '0561 of an inch diameter, by means of an improved apparatus:

Name of Fluid.	Modulus.	Name of Fluid.	Modulus	
Water,	.0327	Oil of hyssop,	.0195	
Very hot water,	.0301	Oil of rosemary,	.0193	
Muriatic acid,	.0248	Oil of bergamot,	0192	
Oil of boxwood,	.0240	Oil of amber,	.0192	
Oil of cassia,	.0236	Oil of anise seeds,	.0192	
Nitrous acid,	.0232	Oil of Barbadoes tar,	.0191	
Oil of rapeseed,	.0227	Laudanum,	.0191	
Castor oil,	.0226	Oil of cloves,	.0187	
Nitric acid,	.0222	Oil of turpentine,	.0187	
Oil of spermaceti,	.0220	Oil of lemon,	.0187	
Oil of almonds,	.0217	Oil of lavender,	.0184	
Oil of olives,	.0215	Oil of camomile,	.0184	
Balsam of Peru,	.0212	Oil of peppermint, .	.0184	
Muriate of antimony,	.0209	Oil of sassafras,	.0184	
Oil of rhodium,	.0205	Highland whisky,	.0184	
Oil of pimento,	0203	Brandy,	.0183	
Cajeput oil,	.0200	Oil of wormwood,	.0183	
Balsam of capivi, . :	.0200	Oil of dill seed,	.0182	
Oil of thyme,	.0199	Oil of ambergris,	.0181	
Oil of bricks, distilled)	.0199	Oil of juniper,	.0180	
from spermaceti oil,		Oil of nutmeg,	.0180	
Oil of caraway seeds,	.0198	Alcohol,	.0178	
Oil of rue,	.0198	Oil of savine,	.0174	
Oil of spearm nt,	.0197	Ether,	.0160	
Balsam of sulphur, .	.0196	Oil of wine,	.0153	
Oil of sweet fennel	.0195	Sulphuric acid,	.0112	

These experiments were made with a tube, carefully cleaned and dried after each experiment. A dry tube will raise the water to a less height than a wet one.

When capillary tubes are plunged into mercury, it falls instead of rising, as is the case with other fluids; and its fall is such, that when it is multiplied by the diameter of the tube, the product is a

constant quantity '015 (Cavendish).

When water is made to pass through a capillary tube of such a bore that the fluid is discharged only by successive drops, the tube, when electrified, will furnish a constant and accelerated stream; and the acceleration is proportional to the smallness of the bore. A jet of warm water will rise to a much greater height than a jet of cold water, though the water in both cases moved through the

same aperture, and was influenced by the same pressure. A syphon which discharges cold water only by drops, will furnish warm water in an uninterrupted stream.

Let CEEB, ADEB, be two plates of glass, having their sides

EB joined together with wax, and their surfaces smooth and clean; and also their sides, A D, CF, separated slightly so as to form the angle ABC. If this apparatus be plunged in a vessel, so that IHG represent the water's surface, then the water will rise between the plates of glass, by capillary attraction, to the height IEG, so that the boundary of the water on the planes FEBC, DEBA, will be the hyperbolas GE and IE, having for their asymptotes the surface of the fluid and the line EH.

The height, n m, to which the water will rise, is regulated entirely by the same laws which prevail in the case of the tubes; calling the distance, no, between the plates the diameter of

the tube.

Hence the height, nm, is equal to the height in a tube whose diameter

is equal to no; and so on for any other point.

All phenomena of capillary attraction are exhibited equally both in air and in vacuo, and they are entirely independent of the thick-

ness of the material composing the tubes and plates.

The elevation and depression is not proportional to the density of the liquid; water stands much higher in a glass tube than alcohol.

WOODS.

How to Polish Wood.

Take a piece of pumice-stone and water, and pass repeatedly over the work until the rising of the grain is cut down. Then take powdered tripoli and boiled linseed oil, and polish the work to a bright surface.

To Gather and Preserve Woods.

Woods should be gathered and exposed in a dry situation, to a heat of from 90° to 150° Fah., until sufficiently dry. The larger kinds are more easily chipped before drying.

To Preserve Woodwork.

Take boiled oil and finely powdered charcoal; mix to the consistence of paint, and give the woodwork two or three coats with it. This composition is well adapted for casks, water-spouts, &c.

To produce Figures on Wood.

Slack some lime in stale wine. Dip a brush in it, and form on the wood figures to suit your fancy. When dry, rub it well with a rind of pork.

STEAM-ENGINE.

To Estimate, by means of an Indicator, the Amount of Effective Power produced by a Steam-Engine.

Rule. Multiply the area of the piston in square inches by the average force of the steam in lbs., and by the velocity of the piston in feet per minute; divide the product by 33,000, and $\frac{7}{10}$ ths of the

quotient equal the effective power.

Ex. Suppose an engine with a cylinder of $37\frac{1}{2}$ inches diameter, a stroke of 7 feet, and making 17 revolutions per minute, or 238 feet velocity, and the average indicated pressure of the steam 16.73 lbs. per square inch; required the effective power.

Area = 1104.4687 inches × 16.73 lbs., × 238 feet.

$$=\frac{133.26 \times 7}{10}$$
 93.282 horse power.

To determine the proper Velocity for the Piston of a Steam-Engine.

Rule. Multiply the logarithm of the nth part of the stroke at which the steam is cut off by 2.3, and to the product of this add 7. Multiply the sum by the distance in feet the piston has travelled when the steam is cut off, and 120 times the square root of the product will equal the proper velocity for the piston in feet per minute.

Ex. Let the steam be cut off in an 8-feet stroke when the piston has travelled 1th of the length; required its proper velocity.

Logarithm of 4 = 0.60206Multiplied by 2.3

To which add 7 2.084738

 $\sqrt{4.169476} = 2.04 \times 120 = 245$ feet, velocity per minute.

TABLE
Of Approximate Velocities for the Pistons of Steam-Engines.

C	ONDENSING EN	IGINES.	NON-CO	NDENSING EN	GINES.	
Length of stroke in feet. Velocity in fe per minute.		Number of revolutions per minute.	Length of stroke in feet.	Velocity in feet per minute.	Number of revolutions per minute	
2	160	40	11/2	186	62	
$\frac{2}{2}$	1771	351	2	200	50	
3	192	32	21/2	2121	421	
$3\frac{1}{2}$	203	29	$2\frac{1}{2}$ $2\frac{3}{4}$ 3	2171	391	
4	214	268	3	222	37	
41	$220\frac{1}{2}$	$24\frac{1}{2}$	$3\frac{1}{2}$	231	33	
5	230	23	4.	236	$29\frac{1}{2}$	
$5\frac{1}{2}$	$236\frac{1}{2}$	$21\frac{1}{2}$	$4\frac{1}{2}$	243	- 27	
6	240	20	5	$247\frac{1}{2}$	24%	
7 8	245	17½	$5\frac{1}{2}$	253	23	
8	256	16	6	264	22	

Of the Parallel Motion in a Steam-Engine.

When the power from the piston is communicated by means of a beam or lever moving upon an axis, the parallel motion becomes a very important portion of the machine; for then it forms the link of connexion, and by its properties renders the action of alternate circular motion, and reciprocating vertical motion, mutually agreeable, thereby properly insuring to the piston-rod a truly direct line to that of the cylinder; but to effect this, the greatest degree of exactitude of the various parts is required, otherwise extra friction is created, and the effective power of the engine proportionately diminished.

THE PROPERTIES AND MISCELLANEOUS EFFECTS OF HEAT.

Linear Expansion of Metals from 32° to 212°. - FARADAY.

23010001	.Dupanou	,,,,	1 -	TE COULDS	Jrone 02 to 1	LIZDAN	ADZ		200
	1 part in			322 [Gold,	1 part in	315	4	682
Lead,	- "			351	Bismuth,				719
Tin, pure,	66			403	Iron,	**	(Q)	IL S	812
Tin, impure	, 66			500	Antimony,	"			923
Silver,	66			524	Palladium,	"			1000
Copper,	66			581	Platinum,	**			1100
Brass,	"	•		584	Flint Glass	, "	•	•	1248

TABLE

Of the Expansion of Water by Heat.—By Dalton.

Temperature.	Expansion.	Temperature.	Expansion
12° Fahrenheit.	100236	122° Fahrenheit.	101116
22	100090	132	101367
32	100022	142	101638
42	100000	152	101934
52	100021	162	102245
62	100083	172	102575
72	100180	182	102916
82	100312	192	103265
92	100477	202	103634
102	100672	212	104012
112	100880		

TABLE

Of the Heating Power of various Combustible Substances, exhibiting the utmost quantity of Water evaporated by the given Weights, and the smallest quantity of Air capable of producing total Combustion. Dr. Ure.

Species of Combustible.	Pounds of water which a pound can heat from 0° to 212°.	Pounds of boil-	Weight of at- mospheric air at 32° to burn 1 pound.
Perfectly dry wood,	35.00	6.36	Smallest quantity. 5.96
Wood in its ordinary state,	26.00	4.72	4 · 4·7
Wood charcoal,	73.00	13.27	11.46
Pit coal,	60.00	10.90	$9 \cdot 26$
Coke,	65.00	11.81	11.46
Turf,	30.00	5.45	4.60
Turf charcoal,	64.00	11.63	9.86
Carburetted hydrogen gas,	76.00	13.81	14.58
Oil,	78.00	14.18	15.00
Alcohol of the shops,	52.60	9.56	11.60

TABLE

Of boiling points of water holding various proportions of salt in solution.

					,		*	
ACT I	ljuž		6	1	Parts of Salt.	Degrees of Fahrenheit.	Degrees of Reaumer.	Degrees of Centigrade.
Saturated sol	ution				36.37	226.6	86.2	107:8
44	"				33.34	224.9	85.7	107.2
- "	66				30.30	223.7	85.2	106.5
44	66				27.28	222.5	84.7	105.8
66	66			. 1	24.25	221.4	84.1	105.2
66	66				21.22	220.2	83.6	104 6
66	44				18.18	219	83	103.9
"	66				15.15	217.9	82.6	103.3
"	66				12.12	216.7	82.1	102.6
66	66				9.09	215.5	81 6	102
66	66				6 06	214.4	81.1	101.3
Sea-water .					3.03	213.2	80.5	100.7
Common wat	er .				0.00	212	80	100
and the latest		è					O section	OCAL E

Expansion of Liquids in Volume from 32° to 212° Fahrenheit.

1000	parts of	f water	become	1046
"	- "	oil	"	1080
66	"	mercury	"	1018
66	44	spirits of win	e "	1110
66	"	air	66	1373

Of the Linear Dilatation of Solids by Heat. Dimensions which a bar takes at 212°, whose length at 32° is 1.000000.

Cast iron,	1.00111111	Cast brass,	1.0018750
Steel (rod),	1.00114470	Silver,	1.0018900
Steel, not tem-)	1.00107875	Tin,	1.0028400
pered,	1 00101010	Lead,	1.00284836
Ditto, temper-)	1.00136900	Zine,	1.00294200
ed yellow, . S	1 00130800	Glass from 32°)	1.00086130
Ditto, at a high-	1.00123956	to 212°,	1 00000150
er rate, \$		Glass from 212°	1.00091827
Iron,	1.00118203	to 392°,	1 00001021
Soft iron, forged, .	1.00122045	Glass from 392°	1.00101114
Gold,	1 00150000	to 572°,	, i odioriii
Copper,	1.00191000		nor representative agreemble and a series of the sets of

Of Capacities of Bod	ies	fo	or Heat	referred to Water as the Standard.
Water,				Iron,
Olive oil,			.7100	Hardened steel, 1230
Linseed oil,			.5280	Steel softened by fire, 1200
			4720	Soft bar iron, 1190
Quicksilver,				Brass,
Ice,			.9000	Copper,
Ice,			.2777	
Chalk,				Ashes of charcoal,
Sea salt,				
Sulphur,			1900	
Ashes of cinders			1855	White lead,
			1830	Gold,
Ashes of elm wood.			.1402	Lead,

TABLE

Of the Expansion of Atmospheric Air by Heat.

Degrees of Fahrenheit.	Bulk.	Degrees of Fahrenheit.	Bulk.	Degrees of Fahrenheit.	Bulk.
32°	1000	65°	1077	100°	1152
35	1007	70	1089	120	1194
40	1021	75	1099	140	1235 1275
45	1032	80	1110	160	
50	1043	85	1121	180	1315
55	1055	90	1132	200	1364
60	1066	95	1142	212	1376

The pressure or gravity of the atmosphere, being equal to a column of water 34 feet in height, is the means or principle on which rests the utility of the common pump, also of the syphon, and all other such hydraulic applications. In the pump, the internal pressure on the surface of the liquid is removed by the action of the bucket; and as by degrees the density becomes lessened, so the water rises by the external pressure to the above-named height; and at such height it will remain, unless by some derangement of construction taking place, the atmospheric fluid is allowed to enter and displace the liquid column. But observe, if the temperature of the water or other liquid be so elevated that steam or vapor arise through it, then, according to the vapor's accumulation of density, may the action of the pump be partially or wholly destroyed; and the only means of evasion in such cases is to place the working bucket beneath the surface of the liquid which is required to be raised.

TABLE Of the Degrees of the three Thermometrical Scales,
Above Boiling Point of Water.

Fahren- heit.	Centi- grade.	Reau- mur.	Fahren- heit.	Centi- grade.	Reau- mur.	Fahren- heit,	Centi- grade.	Reau- mur.	Fahren- heit.	Centi- grade.	Reau- mur.	Fahren- heit.	Centi- grade.	Reau-
392	200	160	356	180	144	320	160	128	284	140	112	248	120	96
391	199		355	179		319	159		283	139		247	119	11 8
390	100	159	354		143	318	100	127	282	100	111	246	70	95
389	198	100	353	178		317	158		281	138		245	118	1 1
388		158	352		142	316	047	126	280		110	244		94
387	197		351	177		315	157		279	137		243	117	M
386	1	157	350		141	314		125	278	- 3	109	242	1 110	93
385	196		349	176	i	$\frac{313}{312}$	156		277	136		241	116	
384	105	1 - 0	348		140	311			$\begin{array}{c} 276 \\ 275 \end{array}$			240		00
383	195	156	$\frac{347}{346}$	175	140	310	155	124	274	135	108	239 238	115	92
382 381	194		345	174	1	309	154	-0	273	134	1 1	237	114	
380	101	155	344	111	139	308	101	123	272	104	107	236	111	91
379	193		343	173		307	153	11	271	133		235	113	.().
378	0.0	154	342		138	306		122	270		106	234		90
377	192		341	172	-	305	152		269	132		233	112	
376		153	340		137	304		121	268		105	232	iue.	89
375	191		339	171		303	151		267	131	J	231	111	
374	190	152	338	170	136	302	150	120	266	130	104	230	110	88
373	190	102	337	110	130	301	130	120	265	130	104	229	110	00
372	189		336	169		300	149		264	129		228	109	
371	100	151	335		135	299		119	263		103	227		87
370	188		334	168		298	148		262	128		226	108	
369	11000	150	333		134	297		118	261		102	225		86
368	187	_	332	167		296	147		260	127	-	224	107	-
367	186	149	331	166	133	295	146	117	259	126	101	223	106	85
366	180	1	330	100		294	140		258	120		222	100	
365	185	148	329	165	132	293	145	116	257	125	100	221	105	84
364	100		328	100		292			256			220		
363	184		327	164		291	144		255	124		219	104	-14
362		147	326		131	290	7-5	115	254		99	218	in a	83
361	183	1.46	325	163	100	289	143		253	123	0.0	217	103	de
360	1.00	146	324		130	288		114	252		98	216		82
359	182	1.0	323	162	100	287	142	110	251	122	0.5	215	102	03
358		145	322		129	286		113	250	5.00	97	214	0.0	81
357	181	6	321	161		285	141		249	121	100	213	101	4

To convert the Degrees in the three Scales into each other.

To convert Centigrade or Reaumur's into Fohrenheit's Degrees.—Multiply the number of degrees by 9, divide the product by 5 for Centigrade, or by 4 for Reaumur's; add 32 to the quotient, and the sum will be degrees of Fahrenheit.

To convert Fahrenheit's into Centigrade or Reaumur's Degrees.—Subtract 32 from the number of degrees, and divide the remainder by 9; multiply the quotient by 5 for Centigrade, or 4 for Reaumur's; the products will be the required degrees respectively.

i .							
Comparative	Table of	the i	Degrees	of the	three	Thermometrical	Scales.

ahr't	Cent.	Rea.	Fahr't	Cent.	Ren.	Fahr't	Cent.	Rea.	Fahr't	Cent.	Rea.	Fahr't	Cent.	Re
212	100	80	167	75	60	122	50	40	77	25	20	32	0	-
211			166			121			76			31		
210	99	79	165	74	59	120	49	39	75	24	19	30	- 1	
209	200		164		-	119		-	74	23		29	0	-
208	98		163	73		118	48	00	73	20	18	28	- 2	
207	0.5	78	162	72	58	117	47	38	72	22	10	27	- 3	-
206	97		161	12		116	41		71	22		26	- 0	
205	96	77	160	71	57	115	46	37	70	21	17	25	- 4	5
204	30		159	11		114	10		69	-1		24		
203	95	76	158	70	56	113	45	36	68	20	16	23	- 5	_
202	100		157		00	112	10	90	67	-0	10	22	- 0	
201	94		156	69		111	44	0 -	66	19	1	21	- 6	
200		75	155	00	55	i	**	35			15	20		Ξ,
199	93			68		110	43		65	18			- 7	
		74	154		54	109		34	64		14	19		-
198	92		153	67	77.14	108	42		63	17		18	- 8	
197	00	-0	152		53	107	100	00	62	7	13	17	0.0	_ /
196	91	73	151	66	93	106	41	33	61	16	13	16	- 9	
195	5.5		150		000	105	100	10	60			15	200.00	
194	90	72	149	65	52	104	40	32	59	15	12	14	-10	-
193		7	148		110	103	120	9	58			13		
192	89	71	147	64	51	102	39	31	57	14	11	12	-11	
191	0.0		146			101		91	56		11	11		B
190	88		145	63	800	100	.38	7	55	13		10	-12	
189	- 107	70	144		50	99	0.5	30	54	10	10	9		-1
188	87		143	62		98	37		53	12		8	-13	
187	3.	69	142		49	97	0.0	29	52		9	7	-14	-1
186	86		141	61		96	36		51	11		6	-14	
185	0.5	00	141	20	. 40	95	95	00	50	10				
184	85	68		60	48		35	28		10	8	5	-15	1:
	84	70	139		30	94	0.4		49			4	10	
183	04	67	138	59	47	93	34	27	48	9	7	3	-16	-13
182	83	10	137	-0	150	92	33		47	8		2	-17	1
181	0.0	66	136	58	46	91	33	26	46	0	6	1	-11	1
180	82	50	135	57	40	90	32	20	45	7	0	0	-18	-1-
179			134	9.	74.1	89	02		44			- 1	- 1	
178	81	65	133	56	45	88	31	25	43	6	5	- 2	-19	-1
177	600		132	00	801	87			42	-		- 3		30
176	80	64	131	55	44	86	30	24	41	5	4	- 4	-20	-16
175	2.74		130		TI	85			40		-	- 5	20	1,
174	79	63	129	54	1,10.5	84	29	0.0	39	4		- 6	-21	22
173		00	128		43	83		23	38		3	- 7	-	-1'
172	78	1	127	53	100	82	28		37	3	1	- 8	-22	
171		62	126		42	81		22	36		2	- 8 - 9		-18
170	77	13		52	177	80	27			2			-23	- `
	200	61	125		41		2014	01	35		1	-10	1	-19
169	76	0.1	124	51	41	79	26	21	34	1		-11	-24	1
168			123			78	CD1-		33	1		-12		1
YA	FE	1	M891				Mel	-0	1,000	15 6		-13	-25	-20

Table of the Weight of Substances of Construction, showing the weight of a cubic inch, and a cubic foot, in ounces and pounds avoirdupois, and also the number of cubic inches in one pound, of the substances most used in construction.

Names of Bodies.	Weight of a cubic foot.		Weight of a cubic inch.		- 20 1
	in oz.	in lbs.	in oz.	in lbs.	Number of cubic inches in a pound.
Copper, cast, .	8788	549.25	5.086	3178	3.146
Copper, sheet, .	8915	557.18	5.159	3225	3.103
Brass, cast,	8396	524.75	4.852	.3037	3.293
Iron, cast,	7271	445.43	4.203	.263	3.802
Iron, bar,	7631	476.93	4.410	.276	3.623
Lead,	11344	709.00	6.456	4103	2.437
Steel, soft,	7833	489.56	4.527	.2833	3.230
Steel, hard	7816	488.50	4.517	.2827	3.537
Zinc, cast,	7190	449.37	4.156	.26	3.845
Tin, cast,	7292	455.75	4.215	.2636	3.790
Bismuth	9880	619.50	5.710	3585	2.789
Gun-metal,	8784	549.00	5.0075	3177	3.147
Sand	1520	95.00	.8787	.055	18.190
Coal	1250	78.12	.7225	.0452	22.120
Brick	2000	125.00	1.156	.0723	13.824
Stone, paving, .	2416	151.00	1.396	.0873	11.443
Slate,	2672	167.00	1.544	.0967	10.347
Marble.	2742	171.37	1.585	.0991	10.083
White lead	3160	197:50	1.826	1143	8.750
Glass.	2880	180.00	1.664	1042	9.600
Tallow,	945	59.06	.5462	0087	29:258
Cork.	240	15:00	.138	.0197	115.200
Larch.	544	34.00	315	.0201	50.823
Elm.	556	34.75	321	.0201	49.726
Pine, pitch,	660	41.25	.382	024	41.890
Beech,	696	43.50	403	0252	39.724
Teak,	745	46.56	431	.027	37.113
Ash.	760	47.50	.440	0275	36.370
Mahogany,	852	53.25	•493	:0308	32.449
Oak,	970	60.62	.561	.0351	28.505
Oil of turpentine,		54.37	.503	0315	31.771
Olive oil.	915	57.18	.529	0331	30.220
Linseed oil,	932	58.25	.539	0337	29.655
Spirits, proof,	927	57.93	.536	03352	29.288
Water, distilled,	1000	60.50	.578	03617	27.648
" sea,	1028	64.25	.594	0372	26.894
Tar,	1015	63.43	.587	0367	27.242
Vinegar,	1013	64.12	.593	037	26.949
Mercury,	13568	848.00	7.851	4908	2.037
mercury,	19900	340 00	1001	4000	2001

Conducting	Power of	Materials	used in the	Construction of	of Houses.
U					•

THE REST OF THE PARTY OF THE PA	A	s ob	served by	Mr. Hutchinson.					
Slate,	1		100	Oak wood,					33.66
Keene's cement, .			19.01	Asphalt, .					45.19
Plaster and sand, .			18.70	Chalk (soft)	,			•	56.38
Plaster of Paris, .			20.26	Stock brick,					60.14
Roman cement, .			20.80	Bathstone,					61.08
Beech wood,			22.44	Fire brick,					61.70
Lath and plaster, .			25.55	Lead,		200	0.0		521.34
Fir wood,			27.60	95					

Air and gases are very imperfect conductors. Heat appears to be propagated through them almost entirely by conveyance, the heated portions of air becoming lighter, and diffusing the heat through the mass in their ascent as in liquids. Hence, in heating a room with hot air, the hot air should be introduced at the lowest part. The advantage of double windows for warmth depends, in a great measure, on the sheet of air confined between them through which heat is very slowly transmitted.

Capacity of Bodies for Transmitting Heat.

The capacity which bodies possess of transmitting heat, does not depend upon their transparency; or bodies are not all transparent to heat in the same proportion that they are transparent to light. The following plates of an equal thickness of 1031 inches allowed very different proportions of heat to pass through them.

Of 100 rays transmitted from an Argand oil lamp there were: Rock salt, 92 | Emerald, . . . 29 . . 62 Gypsum, . Mirror glass, . 20 Rock crystal, 62 Fluor spar, . . . 62 Citric acid, . . Fluor spar, . . . Iceland spar, . . Rock crystal, smoky & brown 57 Rochelle salt, Carbonate of lead, 52 Alum, 33 Sulphate of copper, . . Sulphate of barytes,

SOLDERS.

For Lead.—Melt one part of block tin, and, when in a state of fusion, add 2 parts of lead. Resin should be used with this solder.

For Tin.—Pewter, 4 parts; tin, 1; bismuth, 1. Melt them together and run them into slips. Resin is also used with this solder.

For Gold.—Pure gold, 12 parts; silver, 2; copper, 4.

For Brass.—Brass, 2 parts; zinc, 1.

For Iron.—Good tough brass, with a small quantity of borax.

For Pewter.—Bismuth, 2 parts; lead, 1; tin, 2.

For Copper. - Copper, 2 parts; zinc, 1.

For Silver.—Silver, 5 parts; brass, 6; zinc, 2.

Hard Solder.—Copper, 2 parts; zine, 1.

Soft Solder.—Tin, 2 parts; lead, 1 part.

TABLE

Of proportions for making Shafting with Half-lap Couplings, showing length of Neck and sizes of Coupling-box, (Manchester Rules.)

Diameter of Neck.	Length of Neck.	Diameter of Coupling.	Length of Lap.	Length of Box.	Diameter of Box.
Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
2	4	31/4	$2\frac{1}{4}$	51/2	$5\frac{1}{2}$
$2\frac{1}{4}$	41/2	$3\frac{1}{2}$	$2\frac{8}{4}$	6	6
$2\frac{1}{2}$	5	4	3	61	$6\frac{3}{4}$
$2\frac{3}{4}$	$5\frac{1}{2}$	$rac{4rac{1}{2}}{4rac{8}{4}}$	3 1	7	$-7\frac{1}{2}$
3	6	484	$3\frac{1}{2}$	$7\frac{1}{2}$	72
$\frac{3\frac{1}{4}}{3\frac{1}{2}}$	61	5	314 512 34	8	$8\frac{1}{4}$
$3\frac{1}{2}$	61	_	or other section in	OLI I VI SHI MORE	103/16 10000
4	7	6	4	$8\frac{1}{2}$	$9\frac{1}{2}$
4½ 5	$7\frac{1}{2}$	$6\frac{1}{2}$	$4\frac{1}{2}$	9 ~	101
5	8	74	5	$9\frac{1}{2}$	117
5 ½	81	$8\frac{1}{2}$	$5\frac{1}{2}$	11.	$12\frac{1}{4}$
6	9	9	6	12	$13\frac{1}{2}$
$6\frac{1}{2}$	$9\frac{1}{2}$	9\$	$6\frac{1}{2}$	13	148
7	101	$10\frac{1}{2}$	71/2	14	16
$7\frac{1}{2}$	111		Lorent Lors	of Te la pa	resident ed
8	12	12	8	$16\frac{1}{2}$	18
81/2	$12\frac{1}{2}$	$12\frac{1}{2}$	81/2	17	19
9	$13\frac{1}{2}$	13	9	18	20
$9\frac{1}{2}$	14	(5 1)-		-	- La Berryll
10	141	14	10	181	22
11	15	16	11	20	24
12	. 16	$17\frac{1}{2}$.	12	21	26

Gradations of Temperature.

The following are interesting facts in the range of temperature:

166° Greatest artificial cold. (Faraday.)

150 Liquid nitrous oxide freezes.

122 Liquid sulphuretted hydrogen freezes.

105 Liquid sulphurous acid freezes.

Greatest artificial cold measured by Walker. 91

56 Greatest natural cold observed by a "verified" thermometer. (Sabine.)

Greatest natural cold observed at Fort Reliance by Back. 70 (Doubtful.)

58 Estimated temperature of planetary space. (Fourier.)

47 Sulphuric ether freezes.

39 Mercury freezes.

Below Zero (Fah.)

30 Liquid cyanogen freezes. (Faraday.)

Mean temperature at the Pole. (Arago.) 13

11 A mixture of two parts alcohol and one part water freezes.

7 A mixture of equal parts alcohol and water freezes.

20° Strong wine freezes. 28 Vinegar freezes.
Milk freezes. 30 32 Ice melts. Mean temperature at Edinburgh. 41 Mean temperature of London. 50.7 Mean temperature at Rome. 60 81.5 Mean temperature at the equator. Heat of the human blood. 98 98 Ether boils. 100 Phosphorus melts. 173 Alcohol boils. Highest natural temperature observed of a hot wind 117 in Upper Egypt, (Burckhardt.) Wood-spirit boils. 133 142 Spermaceti melts. 151:34 Beeswax melts. 212 Water boils. Above Zero (Fah.) 226 Sulphur melts. 2.12 Nitric acid boils. A compound of equal parts of tin and bismuth melts. 283 442 The surface of polished steel acquires a pale straw 460 color. 476 Bismuth melts. Phosphorus boils. 554 560 Oil of turpentine boils. 580 The surface of polished steel acquires a uniform deep terror and the state of blue. Sulphuric acid boils. (Dalton.) 590 594 Lead melts.
Linseed oil boils. 600 Lowest ignition of iron in the dark. 635 Mercury boils. 662 Zinc melts. 700 Iron bright red in the dark. 752 810 Antimony melts. Iron red hot in the twilight. 884 Red heat fully visible in the daylight. 1077 1141 Heat of a common fire. (Daniell.) Brass melts. 1869 Silver melts. 1873 1996

Copper melts.

Gold melts. 2016 2500

Steel melts. 2786 Cast-iron melts.

3080 Platinum melts.

The line of perpetual congelation has a variable altitude in different climates.

At the equator it is 14760 feet.
At the Alps "8120 "
In Iceland "3084 "

At the polar regions ice is perpetually observed at the surface of the earth.

PROPERTIES OF NUMBERS.

1. A Prime Number is that which can only be measured by 1 or unity.

2. A Composite Number is that which can be measured (or divided

without a remainder) by some number greater than unity.

3. A Perfect Number is that which is equal to the sum of all its

divisors, or aliquot parts: thus $6 = \frac{6}{2} + \frac{6}{3} + \frac{6}{6}$.

- 4. If an odd number divides an even number, it will also divide the half of it.
- 5. If the last digit of any number be divisible by 2, the whole number is divisible by 2.

6. If the two last digits be divisible by 4, the whole number is

divisible by 4.

7. If the three last digits be divisible by 8, the whole number is divisible by 8.

8. If a number terminate with 5, it is divisible by 5; and if it terminate with 0, it is divisible by either 10 or 5.

9. If the sum of the digits constituting any number be divisible by 3 or 9, the whole is divisible by 3 or 9; and if also the last digit is even, the whole number is divisible by 18.

10. If the sum of the digits of any number be divisible by 6, and

the right hand digit by 2, the whole is divisible by 6.

11. If the sum of the 1st, 3d, 5th, &c., digits of any number be equal to that of the 2d, 4th, 6th, &c., that number is divisible by 11.

Thus 327943 contains 11 = 29813 times exactly.

12. If a square number be either multiplied or divided by a square, the product or quotient is a square; and conversely, if a square number be either multiplied or divided by a number that is not a square, the product or quotient is not a square.

13. The product arising from two different prime numbers cannot

be a square number.

14. The product of no two different numbers prime to each other (that is, 1 being the common measure) can make a square, unless each of those numbers be a square.

15. The square root of an integral number, that is not a complete square, can neither be expressed by an integer nor by any rational

fraction; so with the cube root of an integer.

16. Every prime number greater than two, is made up of 4 times some number, +1 or -1; that is, of one of the forms 4n + 1, or 4n - 1.

17. Any prime number greater than 3, divided by 6, will leave a remainder of 1 or 5: that is, every number greater than 3, is one of the forms 6n + 1, or 6n - 1.

18. The number of prime numbers is infinite.

19. A square number cannot terminate with an odd number of cyphers.

20. If a square number terminate with 4, the last figure but one

will be an even number.

FTRE . I

21. If a square number terminate with 5, it will terminate with 25.
22. No square number can terminate with two equal digits, except two cyphers, or two fours.

23. No number whose last digit is 2, 3, 7, or 8, is a square number.

24. If a cube number be divisible by 7, it is also divisible by the

cube of 7.

25. The difference between any integral cube and its root is always divisible by 6.

26. Neither the sum nor the difference of two cubes can be a cube.

27. A cube number may end with any of the natural numbers. 28. All the powers of any number that end with 6, will terminate with 6; so with the numeral 5.

TABLE

Of the first Nine Powers of the first Nine Numbers.

100	144	- 1					(Animala)	
lst	2d	34	4th	5th	6th	7th	8th	9th
1	1	1	1	1	-1	1.	1 1	1
2	4	.8	16	- 32	64	128	256	512
3	9	27	81	243	729	2187	6561	19683
4	16	64	256	1024	4096	16384	65536	262144
5	25	125	625	3125	15625	78125	390625	1953125
6	36	216	1296	7776	46656	279936	1679616	10077696
7	49	343	2401	16807	117649	823543	5764801	40353607
8	64	512	4096	32768	262144	2097152	16777216	134217728
9	81	729	6561	59049	531441	4782969	43046721	387420489
		,		1				

SERVICE OF LOT A VALUE OF SERVICE

AND THE RESIDENCE OF THE PARTY	BLE
Of Useful	l Numbers.
π = 8·1415927	$\sqrt{2} \cdot \cdot \cdot \cdot = 14142136$
Log. π 0·4971499	$\frac{1}{\sqrt{\frac{2}{2}}}$ 0.7071068
Log. $_{\varepsilon^{\pi}}$ 1·1447299	$\tau \sqrt{\frac{2}{2}}$
$\frac{1}{\pi}$	$\frac{\pi}{\sqrt{\frac{2}{2}}}$
π ² 9 8696044	$\sqrt{\frac{2}{2}}$ 0.4501582
$\frac{1}{\pi^2}$ 0.1013212	$\frac{\pi}{\pi}$
$\sqrt{\pi}$ 1.7724538	$\sqrt{\frac{\pi}{2}} \cdot $
$\frac{1}{\sqrt{\pi}}$ 0.5641896	$\sqrt{\frac{2}{\pi}} \cdot \cdot \cdot \cdot \cdot 0^{7978846}$
	= 2.7182818
ε	$$ $$ $$ $$ 2.7182818 0.4342945
ε	= 27182818 04342945 434294482
Modulus of common logarithms .	04342945
Modulus of common logarithms. Log. of ditto	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Modulus of common logarithms . Log. of ditto	04342945 434294482 96377843 2219084
Modulus of common logarithms . Log. of ditto	04342945 434294482 96377843 3219084 567363
Modulus of common logarithms . Log. of ditto	04342945 434294482 96377843 3219084 567363
Modulus of common logarithms . Log. of ditto \sqrt{g}	04342945 434294482 96377843 3219084 567363 15077222 3987079
Modulus of common logarithms Log. of ditto	04342945 434294482 96377843 3219084 567363 15077222 3987079 15951741
Modulus of common logarithms Log. of ditto	04342945 434294482 96377843 3219084 567363 15077222 3937079 15951741 32808992 05159929
Modulus of common logarithms Log. of ditto g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are	04342945 434294482 96377843 3219084 567363 15077222 3937079 15951741 32808992 05159929
Modulus of common logarithms Log. of ditto g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are	04342945 434294482 96377843 32·19084 567363 1·5077222 39·37079 1·5951741 3·2808992 0·5159929 10·764297 0·024711
Modulus of common logarithms Log. of ditto g Log. g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme	04342945 434294482 96377843 32:19084 567363 1:5077222 39:37079 1:5951741 3:2808992 0:5159929 10:764297 0:024711 2:20548
Modulus of common logarithms Log. of ditto g Log. g Log. g Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Los. in a kilogramme Log. of ditto Indicate the Are Log. of ditto Indicate the Are Log. of ditto Imperial gallons in a litre	04342945 434294482 96377843 3219084 567363 15077222 39:37079 15951741 32808992 05159929 10764297 0024711 220548 03435031 02200967
Modulus of common logarithms Log. of ditto g \sqrt{g} Log. g Log. g Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Inperial gallons in a litre Lbs. per square inch in 1 kilograme	04342945 434294482 96377843 32·19084 5·67363 1·5077222 39·37079 1·5951741 3·2808992 0·5159929 10·764297 0·024711 2·20548 0·3435031 0·2200967
Modulus of common logarithms Log. of ditto g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Imperial gallons in a litre Lbs. per square inch in 1 kilogramillimetre	04342945 434294482 96377843 32·19084 5·67363 1·5077222 39·37079 1·5951741 3·2808992 0·5159929 10·764297 0·024711 2·20548 0·3435031 0·2200967
Modulus of common logarithms Log. of ditto g Log. g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Imperial gallons in a litre Lbs. per square inch in 1 kilogramillimetre Controlling 1	0'4342945 434294482 9'6377843 32'19084 567363 15077222 39'87079 15951741 32808992 05159929 10764297 0024711 220548 03435031 02200967 ramme per square 1422
Modulus of common logarithms Log. of ditto g Log. g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Imperial gallons in a litre Lbs. per square inch in 1 kilogramillimetre Cwts. ditto, ditto Volume of a sphere whose diame	0'4342945 434294482 9'6377843 32'19084 567363 15077222 39'87079 15951741 32808992 05159929 10764297 0024711 220548 03435031 02200967 ramme per square 1422
Modulus of common logarithms Log. of ditto g Log. g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Imperial gallons in a litre Lbs. per square inch in 1 kilogramillimetre Cwts. ditto, ditto Volume of a sphere whose diame Are of 1° to rad. 1	0'4342945 434294482 9'6377843 32'19084 567363 15077222 39'87079 15951741 32808992 05159929 10764297 0024711 220548 03435031 02200967 ramme per square 1422
Modulus of common logarithms Log. of ditto g Log. g Log. g Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Imperial gallons in a litre Lbs. per square inch in 1 kilogramillimetre Citte ditte	0.4342945 434294482 9.6377843 32.19084 5.67363 1.5077222 39.87079 1.5951741 3.2808992 0.5159929 0.5159929 10.764297 0.024711 2.20548 0.3435031 0.2200967 ramme per square 1422 12.7 o.5235988 0.017453293
Modulus of common logarithms Log. of ditto g Log. g Log. g Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Imperial gallons in a litre Lbs. per square inch in 1 kilogramillimetre Cwts. ditto, ditto Volume of a sphere whose diame Are of 1° to rad. 1 Are of 1" to rad. 1 Are of 1" to rad. 1	04342945 434294482 96377843 32:19084 567363 1:5077222 39:37079 1:5951741 3:2808992 0:5159929 10:764297 0:024711 2:20548 0:3435031 0:2200967 ramme per square 1422 12:7 0:5235988 0:000290888 0:000004888
Modulus of common logarithms Log. of ditto g Log. g Log. g Inches in a French mêtre Log. of ditto Feet in ditto Log. of ditto Square feet in the square mêtre Acres in the Are Lbs. in a kilogramme Log. of ditto Imperial gallons in a litre Lbs. per square inch in 1 kilogramillimetre Cwts. ditto, ditto Volume of a sphere whose diame Are of 1° to rad. 1 Are of 1' to rad. 1	04342945 434294482 96377843 32:19084 567363 1:5077222 39:37079 1:5951741 3:2808992 0:5159929 10:764297 0:024711 2:20548 0:3435031 0:2200967 ramme per square 1422 12:7 0:5235988 0:000290888 0:000004888

Grains in 1						1.0			7000
		ch of distilled	W	ate	r,	Bar		30	
in., Th	. 62° .			÷					252.458
Cubic inche	es in an o	ounce of water					۰		1.73298
Cubic inche	s in the	imperial gallon					١.		277.276
Feet in a ge	eographic	eal mile					1		6075.6
Log. of ditt	0							٠.	3.7835899
Feet in a st	atute mi	le			٠.				5280
Log. of dit	to							0	3.7226339
Length of s	econds' p	endulum in in	che	es					39.19084
Cubic inche	s in 1 cw	t. of east iron			1.	11.			430.25
"	66	Bar iron							397.60
"	46	Cast bras	S						368.88
	- 66	Cast copp	er			- 11			352.41
"	"	Cast lead					_		272.80
Cubic feet i	n 1 ton o	Cast lead f paving stone			ij		,		14.835
1 146	66	Granite					1		13.505
	66	Marble							13.070
66	"	Chalk				I		i	10.054
"	"	Limestone.				40		ij	12.874 11.273 64.460
24	66	Elm			0	00	i	ų.	64:460
86	66	Honduras ma	ho	ora เ	nv		·		64.000
84	46	Mar Forest fi	r	5	J	Line	i	0	51.650
86	46	Beech		·		-	Ů	01	51.494
46	66	Riga fir .			Ċ		m		47.762
46	"	Ash and Dar	tzi	e c	al	•			47.158
66	44	Ash and Dan Spanish mah	nors	int	7	300	i	•	42.066
"	"	English oak	95.	· L.J	•	•	•	•	36.205
To find th	e weight	in lbs. of 1	foc	t. o	f	eom	m	nn	30 400
rone n	ultinly 4	the square of it	s c	ire	in	nfar	an	00	100
in inch		one square or re	5 0		un	aret	CIL	CC	.044
III IIICI	es by .		•	•	•	•	•		to '046

TABLE
Surface of Boilers' Tubes of Different Lengths and Diameters.

Diameter.	neter. Length. Surface.		Diameter.	Length.	Surface.		
In.	Ft. in.	Sq. ft.	In.	Ft. in.	Sq. ft.		
21/2	5 0	3.27	3	6 6	5.1		
"	5 3	3.42	"	6 8	5.2		
"	5 6	3.6	66	7 0	5·2 5·5		
	5 9	3.75	66	7 6	5.89		
66	6 0	3.9	66	8 0	6.28		
3	6 0	4.7	"	8 6	6.67		
66	6 3	4.9					

RECIPES FOR MAKING DIFFERENT KINDS OF GLASS.

1. Bottle Glass.—1. Dry glauber salts, 11 pounds; soaper salts, 12 pounds; half a bushel of waste soap ashes; sand, 56 pounds; glass skimmings, 22 pounds; green broken glass, 1 cwt.; basalt, 25

pounds. This mixture affords a dark green glass.

2. Yellow or white sand, 100 parts; kelp, 30 to 40; lixiviated wood ashes, from 160 to 170 parts; fresh wood ashes, 30 to 40 parts; potter's clay, 80 to 100 parts; cullet, or broken glass, 100. If basalt be used, the proportion of kelp may be diminished.

2. Green Window, or Broad Glass.—Dry glauber salts, 11 pounds; soaper salts, 10 pounds; half a bushel of lixiviated soap waste; 50 pounds of sand; 22 pounds of glass pot skimmings; 1 cwt. of

broken green glass.

3. Crown Glass.—300 parts of fine sand; 200 of good soda ash; 33 of lime; from 250 to 300 of broken glass; 60 of white sand; 30 of purified potash; 15 of saltpetre; (1 of borax;) ½ of arsenious acid.

4. Nearly White Table Glass.—1. 20 pounds of potashes; 11 pounds of dry glauber salts; 16 of soaper salt; 55 of sand; 140 of cullet

of the same kind.

2. 100 parts of sand; 235 of kelp; 60 of wood ashes; 1\frac{1}{3} of manganese; 100 of broken glass.

5. White Table Glass. -1. 40 pounds of potashes; 11 of chalk;

78 of sand; ½ of manganese; 95 of white cullet.

2. 50 of purified potashes; 100 of sand; 20 of chalk, and 2 of saltpetre.

6. Crystal Glass.—1. 60 parts of purified potashes; 120 of sand; 24 of chalk; 2 of saltpetre; 2 of arsenious acid; $\frac{1}{16}$ of manganese.

2. Purified pearlashes, 70 parts; white sand, 120; saltpetre, 10;

1 of arsenious acid; 1 of manganese.

3. 67 of sand: 23 of purified pearlashes; 10 of sifted slaked lime; 4 of manganese; 5 to 8 of red lead.

4. 120 of white sand; 50 of red lead; 40 of purified pearlash;

20 of saltpetre; 1 of manganese.

5. 120 of white sand; 40 of pearlash purified; 35 of red lead; 13 of saltpetre; $\frac{1}{12}$ of manganese.

6. 30 of the finest sand; 20 of red lead; 8 of pearlash purified; 2 of saltpetre; a little arsenious acid and manganese.

7. 100 of sand; 45 of red lead; 35 of purified pearlashes; $\frac{1}{7}$ of

manganese; 1 of arsenious acid.

7. Plate Glass.—1. Very white sand, 300 parts; dry purified soda, 100 parts; carbonate of lime, 43 parts; manganese, 1; cullet, 300.

2. Finest sand, 720 parts; purified soda, 450; quicklime, 80;

saltpetre, 25; cullet, 425.

A little borax has also been prescribed; much of it communicates an exfoliating property to glass.

TABLE
Of Prime Numbers to 5000.

		,				
2	197	461	751	1051	1381	1697
3	199	463	757	1061	1399	1699
5	211	467	761	1063	1409	1709
7	223	479	769	1069	1423	1721
11	227	487	773	1087	1427	1723
13	229	491	787	1091	1429	1733
17	233	499	797	1093	1433	1741
19	239	503	809	1097	1439	1747
23	241	509	811	1103	1447	1753
29	251	521	821	1109	1451	1759
31	257	523	823	1117	1453	1777
37	263	541	827	1123	1459	1783
41	269	547	829	1129	1471	1787
43	271	557	839	1151	1481	1789
47	277	563	853	1153	1483	1801
53	281	569	857	1163	1487	1811
59	283	571	859	1171	1489	1823
61	293	577	863	1181	1493	1831
67	307	587	877	1187	1499	1847
71	311	593	881	1193	1511	1861
$7\overline{3}$	313	599	883	1201	1523	1867
79	317	601	887	1213	1531	1871
83	331	607	907	1217	1543	1873
89	337	613	911	1223	1549	1877
97	347	617	919	1229	1553	1879
101	349	619	929	1231	1559	1889
103	353	631	937	1237	1567	1901
107	359	641	941	1249	1571	1907
109	367	643	947	1259	1579	1913
113	373	647	953	1277	1583	1931
127	379	653	967	1279	1597	1933
131	383	659	971	1283	1601	1949
137	389	661	977	1289	1607	1951
139	397	673	983	1291	1609	1973
149	401	677	991	1297	1613	1979
151	409	683	997	1301	1619	1987
157	419	691	1009	1303	1621	1993
163	421	701	1013	1307	1627	1997
167	431	709	1019	1319	1637	1999
173	433	719	1021	1321	1657	2003
179	439	727	1031	1327	1663	2011
181	443	733	1033	1361	1667	2017
191	449	739	1039	1367	1669	2027
193	457	743	1049	1373	1693	2029
	1		1010	1010	1000	2020

2039	2399	2789	3203	3581	3967	4371
2053	2411	2791	3209	3583	3989	4391
2063	2417	2797	3217	3593	4001	4397
2069	2423	2801	3221	3607	4003	4409
2081	2437	2803	3229	3613	4007	4421
2083	2441	2819	3251	3617	4013	4423
2087	2447	2833	3253	3623	4019	4441
2089	2459	2837	3257	3631	4021	4447
2099	2467	2843	3259	3637	4027	4451
2111	2473	2851	3271	3643	4049	4457
2113	2477	2857	3299	3659	4051	4463
2129	2503	2861	3301	3671	4057	4481
2131	2521	2879	3307	3673	4073	4483
2137	2531	2887	3313	3677	4079	4493
2141	2539	2897	3319	3691	4091	4507
2143	2543	2903	3323	3697	4093	4513
2153	2549	2909	3329	3701	4099	4517
2161	2551	2917	3331	3709	4111	4519
2179	2557	2927	3343	3719	4127	4523
2203	2579	2939	3347	3727	4129	4547
2207	2591	2953	3359	3733	4133	4549
2213	2593	2957	3361	3739	4139	4561
2221	2609	2963	3371	3761	4153	4567
2237	2617	2969	3373	3767	4157	4583
2237		2909	3389	1 1 1 1 1 1 1 1	4157	4591
	2621			3769	4177	
2243	2633	2999	3391	3779	4201	4597
2251	2647	3001	3407	3793		4603
2267	2657	3011	3413	3797	4211	4621
2269	2659	3019	3433	3803	4217	4637
2273	2663	3023	3449	3821	4219	4639
2281	2671	3037	3457	3823	4229	4643
2287	2677	3041	3461	3833	4231	4649
2293	2683	3049	3463	3847	4241	4651
2297	2687	3061	3467	3851	4243	4657
2309	2689	3067	3469	3853	4253	4663
2311	2693	3079	3491	3863	4259	4673
2333	2699	3083	3499	3877	4261	4679
2339	2707	3089	3511	3881	4271	4691
2341	2711	3109	3517	3889	4273	4703
2347	2713	3119	3527	3907	4283	4721
2351	2719	3121	3529	3911	4289	4723
2357	2729	3137	3533	3917	4297	4729
2371	2731	3163	3539	3919	4327	4733
2377	2741	3167	3541	3923	4337	4751
2381	2749	3169	3547	3929	4339	4759
2383	2753	3181	3557	3931	4349	4783
2389	2767	3187	3559	3943	4357	4787
2393	2777	3191	3571	3947	4363	4789

101	10000	07-11-10	1 1 1 1	1	1	1.0
4793	4817	4877	4919	4943	4969	4999
4799	4831	4889	4931	4951	4973	5003
4801	4861	4903	4933	4957	4987	5009
4813	4871	4909	4937	4967	4993	

TABLE Of Solid Inches and Solid Feet.

Feet.	Inches.	Feet.	Inches.	Feet.	Inches.	Feet.	Inches.
1=	1728	26=	=44928	51=	= 88128	76=	=131328
2	3456	27	46656	52 .	88956	77	133056
3	5184	28	48384	53	91584	78	134784
4	6912	29	50112	54	93312	79	136512
5	8640	30	51840	55	95040	80	138240
6	10368	31	53568	56	96768	81	139968
7	12096	32	55296	57	98496	82	141696
8	13824	33	57024	58	100224	83	143424
9	15552	34	58752	59	101952	84	145152
10	17280	35	60480	60	103680	85	146880
11	19008	36	62208	61	105408	86	148608
12	20736	37	63936	62	107136	87	150336
13	22464	38	65664	63	108864	88	152064
14	24192	39	67392	64	110592	89	153792
15	25920	40	69120	65	112320	90	155520
16	27648	41	70848	66	114048	91	157248
17	29376	42	72576	67	115776	92	158976
18	31104	43	74304	68	117504	93	160704
19	32832	44	76032	69	119232	94	162432
20	34560	45	77760	70	120960	95	164160
21	36288	46	79488	71	122688	96	165888
22	38016	47	81216	72	124416	97	167616
23	39744	48	82944	73	126144	98	169344
24	41472	49	84672	74	127872	99	171072
25	43200	50	86400	75	129600	100	172800

TABLE
Showing the Weight of Cast-Iron Plates, 12 inches square, and from
\$ of an inch to 1 inch thick.

Width in Inches.	-]	$\frac{1}{8}$	1 25	37	5	ւ 5	•6	1 25	1 -7	5	.8	7 875	ne ch.
12	lbs.								lbs. 29		1		oz.

To find the Horse Power that a Cast-Iron Wheel is capable of transmitting.

Multiply the breadth of the teeth or face of the wheel in inches by the square of the thickness of one tooth, and divide by the length of the teeth, for the strength at a velocity of 136 feet per minute.

Thus a wheel with the breadth of teeth $=7\frac{1}{2}$ inches, thickness=1.4, and length =2, ought to transmit 7.35 horse power. For

$$1.4^2 = 1.96$$
, and $\frac{7.5 \times 1.96}{2} = 7.35$.

The strength at any other velocity is found by multiplying the power so obtained by any other required velocity, and by 0044.

Thus, the wheel as above, at the velocity of 320 feet per minute, would be capable of transmitting 10 3488 horse power.

TABLE
Of the Dimensions of Wheels in Actual Use.

Pitch in	Character of Wheel.	Number	Bre'dth	No. of revolu-	Hor	se Power.
inches.	Character of wheel.	teeth.	inches.	minute.	Actual.	Calculated
11/2	Spur Wheel,	72	41	120	8	7.5
$2\frac{1}{4}$	Spur Wheel,	95	6	25	11	1.676
31	Bevil Wheel,	40	7	$30\frac{1}{2}$	20	24.34
25	Cog Wheel,	60	6	40	12	15.82
$5\frac{1}{2}$	Bevil Wheel,	. 70	12	10	60	67.396
$2\frac{1}{2}$	Spur Wheel,	90	8	12	6	9.72
38	Internal,	80	9	20	41	48.8
3	Cog Spur Wheel, .	60	8	30	121	. 177
6	Spur Wheel,	30	14	7	21	•261
$\frac{4}{2\frac{7}{8}}$	Spur Wheel,	100	10	8	25	29.6
27	Spur Wheel,	33	7.0	55	23	.25
$2\frac{8}{4}$	Spur Wheel,	108	7	20	25	.26
$2\frac{1}{2}$	Internal,	100	7	10	87	90.4
5	Internal,	60	12	12	55	53.5
5	Spur,	41	10	20	61	•50
476	Spur,	50	12	23.	65	71.3
34	Bevil Wheel,	35	10	24	26	25.6
4	Cog Bevil Wheel, .	50	10	28	33	32:6
4		35	9	20 -	18	16.3
6	On Water Wheel, .	112	14	12	110	.168
$4\frac{8}{4}$	Spur Wheel,	55	10	16	56	54.56

TABLE

Showing the Circumference of a Rope equal to a Chain made of Iron of a given Diameter, and the Weight in Tons that each is proved to carry; also the weight of a Foot of Chain made from Iron of that dimension.

Rope's circum- ference in inches.	Chain Diameter in inches.	Proved to carry in tons.	Weight of a linear foot in lbs. avoir.
3	½ & 1/6	1	1.08
4	8 8	2	1.5
484	8 & 1 ₆	3	2
51/4	$\frac{1}{2}$	4	2.7
6	$\frac{1}{2} & \frac{1}{16}$	5	3.3
$6\frac{1}{2}$	<u>5</u>	6	4
7	5 & 1 16	8	4.6
$7\frac{1}{2}$.	, <u>3</u>	93	5.2
8	3 & 1 16	1114	6.1
9	78	13	7.2
$9\frac{1}{2}$	7 & 1 16	15	8.4
101	1 inch.	18	9.4
110 140			

The Transverse Strength of a body is that power which it exerts in opposing any force acting in a perpendicular direction to its length, as in the case of beams, levers, &c., it is inversely as their lengths, and directly as their breadths, and the square of their depths. But, if cylindrical, as the cubes of their diameters.

That is, if a beam 5 feet long, 2 inches broad, and 3 inches deep, can carry 1798 lbs., another beam of the same material, 10 feet long, 2 inches broad, and 3 inches deep, will only carry 899 lbs.,

being inversely as their lengths.

Again, if a beam 5 feet long, 2 inches broad, and 3 inches deep, can support 1798 lbs., another beam of the same material, 4 inches broad, and 3 inches deep, will support double that weight, being directly as their breadths.

A beam of the same material, 5 feet long, 2 inches broad, and 6 inches deep, will sustain 7192 lbs., being as the square of their

depths.

TABLE
Showing the Equivalents and Specific Gravities of sixty-two Simple
Substances.

Equivalent or Atomic Weight Specific Gravity Gravity Symbol. Name of Name of Symbol Substance. Substance. H. .0689 METALS Hydrogen, 1 Oxygen, . Oor. 8 1.026Continued. Nitrogen, N. $14 \cdot 2$ 1.529Chlorine, Cl. 35.5 2.444 Cr. 28 19 5 9 Chromium. C. $6 \cdot 1244 \cdot 1$ Carbon, . Mercury, . Hg. 203 13.5 Iodine. I. 126:5 4.948Silver, . Ag. 108.3 10.5 Sulphur, . S. 1.99 Gold. 16.1 Au. 200 19.3 P. 1.7 Phosphorus, 15.7 Platinum, . Pt. 98 . 84 21 . 5 F. 18.7 7.29 Fluorine,. Tin, . Sn. 58.9 Bromine, Br. 78.4 3. Cobalt. . Co. 29.5 7.83Boron, B. 11 Mn. $27 \cdot 7$ 8.0 Manganese, 40 4.5 Selenium. Se. Nickel. . Ni. 29.5 8.8 Sb. 64 . 6 Antimony, 6.7 As. 37 . 7 5.7Arsenic. Pd. METALS. Palladium, 53.35 11.5 R. Rhodium, . 52.2 111 Potassium, K. $39 \cdot 2$ 865 Os. 99.7 10 Asmium, Sodium. . Na. 23 . 5 .972 Iridium. Tr. 99.8 18.68 8.6 Lithium, . L. 10 Cadmium,. Cd. 55.8 Calcium, . Ca. 20.5 Molybde-Mo. 12.7 47.9 8:6 Magnesium, Mg. num, . . Silicon, . Si. 22 Tungsten, or Aluminum, W. 17 Al. 13.7Wolfram, 94.8 28 V. Iron, . Fe. Vanadium, 68.5 Lead. . Pb. 103.7 11.35 Uranium, . U. $217 \cdot 2$ Copper, . Cu 31.78.8 Titanium. . Ti. 24.5 Cm. 184 · 8 Ce. 46 Columbium. Cerium, Glucinum, G. 26 Niobium, Nr. Yltrium, Y. 32 Pelopium, . Pe. Zr. Zirconium, 34 Norium, No. Thorinum, D. Th. 60 Didymium, Strontium, Sr. 43.8 Lantanum, Ln. 48 Barium, . Ba. Tb. 68 . 6 Jerbium, Bismuth. Bi. 71.5 Erbium, E. Tellurium, Te. 64.2 Rutnheium, Ru. 32.3 Zinc, . Z. From 6.8 to 7.1

The Feeding Properties of different Vegetables.

In comparison with 10 lbs. of hay.

		•	The state of the s		
Hay,	1	10	Carrots,		35
Clover hay, .		8	Cabbage, .		30 to 40
Vetch hay, .		4	Pease and beans,		2 to 3
Wheat straw,		52	Wheat,		5
Barley straw,		52	Barley,	•	6
Oat straw, .		55	Oats,		5
Pea straw, .		6	Rye,		5
Potatoes, .		28	Indian corn, .		6
Old potatoes,		40	Bran,		5
Turnips, .		60	Oil-cake, .		${f 2}$

Thus 2 lbs. of oil-cake is worth as much as 55 lbs. of oat straw.

PENDULUMS.

A pendulum that vibrates seconds, or 60 in the latitude of London, is $39\cdot1393$ inches long; and $\sqrt{39\cdot1393}\times60=375\cdot36$, which serves as a constant number for other pendulums; thus, $375\cdot36$ divided by the square root of the pendulum's length, gives the number of vibrations per minute; and divided by the vibrations per minute, gives the square root of the length of pendulums.

EXAMPLE 1.—Required the number of vibrations a pendulum of 25 inches long will make per minute.

$$\frac{375\cdot36}{\sqrt{25}} = 75\cdot072 \text{ vibrations per minute.}$$

EXAMPLE 2.—Required the length of a pendulum to make 80 vibrations per minute.

$$\frac{375\cdot36}{80}$$
 = $4\cdot692^2$ = $22\cdot014864$ inches long.

Table containing the Length of Pendulums to vibrate Seconds in various parts of the World.

			P	.,		i
			Inches.			Inches.
At	Sierra Leone,		39.01954	At New York,		39.10153
66	Trinidad, .		39.01879	" Bordeaux, .		39.11282
"	Madras,		39.02630	" Paris,		39 12843
66	Jamaica, .		39.03508	" Edinburgh,		39.15540
46	Rio Janeiro,		39.01206	" Greenland,		39.20328

A pendulum vibrating half seconds in the latitude of London is 9.8 inches in length; and for quarter seconds, 2.5 inches.

TABLE Showing the Symbols and Equivalents of Binary Compounds.

				III An		MI	OUNI	Dis.							
${ m TABLE}$ Showing the Symbols and Equivalents of Binary Compounds.	Remarks,		Easily decomposed by the metals and metallic oxides.	Supports combustion; its taste is sweet and pleasant.	atmospheric air and oxygen. It is color-less at 0 degrees, hit onesn at common temporatures	Called cyanogen, cannot support combustion.	Its vapor is a deep red color, and is rapidly absorbed by water. Extremely acid and caustic, emits sufficient finnes	Sometimes called spirits of hartshorn, or volatile alkali.	Does not support respiration or combustion. Used in bleaching and diseases of the skin	Š		-		Fire-damp, which causes the explosions in coal mines. Very volatile. Evaporating rapidly at natural temperature.	
T ols and	Equiva- lent.	o	17	22-5 30-2	38.2	56.44	46.2	17	32.1	40.1	14.12	21.22	7.12	38.32	Ü
owing the Symb	Symbol.	но	O ² H	0 N O N	N _s O	C ₂ N	ZZ ÕÕ	H ₃ N	z Š	O.S.	000	*	HC H2 C	20 20 20	St. w
Sh	Name of Compound.	Woton	Binoxide of hydrogen,	Protoxide of nitrogen, Binoxide of nitrogen	Hyponitrous acid,	Bicarburet of nitrogen, .	Nitrous acid,	Ammonia,	Sulphurous acid,	Sulphuric acid,	Protoxide of carbon,	Carbonic acid,	Hydruret of carbon,	Bisulphuret of carbon,	27

									B	IN.	AR	Y	Co	M	PÕI	UN:	DS.										25	1
	Easily fused. Much used with soda as a flux.		Dissolves zinc and iron.	Muriatic acid. Great affinity for water. Possesses an acrid.	pungent, suffocating odor.		Detonates with violence when exposed to heat. Its odor	is penetrating and insupportable.	Composed of chlorine 1, water 1, and nitrous acid 1. Known	by the name of Aqua Regia, from its power of dissolving	gold.	Obtained from iodine and nitric acid.	Detonates by a slight pressure.	Acts powerfully upon mercury.	Its vapors highly irritating. Produces ulceration on the skin.		Powerful taste, and a disagreeable fætid smell. It is a pow-	erful deoxidating agent. Precipitates gold, silver, mercury,	and platinum in the metallic form.	Transparent and colorless. It detonates with oxygen when	heated to 300°, or when the electric spark passes through it.		Bears a great resemblance to sulphuric acid.		and the second countries down area	Or sesquioxide. The brown rust of iron consists of this oxide.	The color is red.	
	35	5	75.5	36.5			156.2					166.5	393.7	127.5	19.7	71.4	55.4			34.4		56	64	41	36	80		
He	Jog 5		0° CI	HCI	474 - VOOR		C140	Charlette.				10°	IsN	HI	HF	P^2O^3	P^2O^3		1000	$\mathrm{H}^{3}\mathrm{P}^{2}$		0^2 Se	O ³ Se	H Se	O Fe	O3 Fe2		
Ricarhunetted hydrogen	Boracic acid,	from anothern	Chloric acid,	Hydrochloric acid,		Quadrochlorine of nitro-	gen,	The second secon	Nitro-muriatic acid,			Iodic acid,	Teriodide of nitrogen,	Hydriodic acid,	Hydrofluoric acid,	Phosphoric acid,	Phosphorous acid,	The second secon	The second second	Phosphuretted hydrogen,		Selenious acid,	Selenic acid,	Selenureted hydrogen, .	Protoxide of iron,	Peroxide of iron,		

TABLE Showing the Symbols and Equivalents of Binary Compounds. (Continued.)

	a. Remarks.	This compound is formed when iron is oxidated in the air, or	Ö	Called red lead. Much employed as a pigment.	4 Called red oxide of copper. Native production. Found in copper mines in crystals of a red color.	ರ	The only combination of oxygen and zine we know.	-	Land in the proposition, of the	Sometimes called black oxide of tin; great attraction for oxygen	ŎĔ	bronze, termed bronze powder.
	Equiva- lent.	116	111.7	343.1	711.4	39.7	40.3	161-2		6.99	74.9	
	Symbol.	$0^4 \mathrm{Fe}^3$	O Pb	O'Pb	O Cu	0.0u	OS Cha	0.00		O Su	O.S. S. Sh	
S 01 11 11 11 11 11 11 11 11 11 11 11 11	Name of Compound.	Black oxide of iron,	Protoxide of lead,	Quadrotisoxide of lead, Binoxide of lead.	Dinoxide of copper,	Protoxide of copper, Binoxide of copper	Protoxide of zinc,	Antimonic soid	Protoxide of tin, or stan-		Binoxide of tin, Bisulphuret of tin,	The man was a second

					BIN	ARY	Сом	POU:	NDS.							253
Powerful deoxidating agent. Used in calico printing, and as a mordant fixing colors.	Called permuriate. Used in dyeing and calico printing.	It was formerly called butter of bismuth.	It occurs native; pure, and as a hydrate.	Used in the preparation of oxygen and chlorine. It is used to	give a dark coating to earthenware. Commonly called smalt when combined with a little silica and potassa. In this state it is much employed in coloring	glass and glazing of earthenware. Extremely poisonous, either internally or externally.	Considered as noxious as arsenious acid, or more so. Deleterious. Killed Geblen in 1815. It has an offensive	odor. Burns with a blue flame.	It occurs native, a brilliant yellow, Deed as a pigment, It occurs native, a brilliant yellow. Deed as a pigment, In occurs native, a brilliant yellow. Tood in online the	deoxidate indigo.	Artificial Cinnabar. When powdered it is vermillion.	Valled Catolier	Exposed to the sun becomes purple. It occurs native, and	much formed in chemical operations.	It has a dark green color.	Sometimes called suric acid.
94.4	129.9	107	79.4	43.7	37.5	99.4	115.4		123.7		219.1	238.5	143.8	808	216	224
Cl Sn	Cl ² Sn O Bi	CIBi	O. Mn.	O ² Mn	0 00	O ³ As ³	$O^5 As^2$ $H^3 As^2$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S As ²		S Hg	C High	CI Ag	0 Aŭ	O ^s Au	O ² Au
Chloride of tin,	Bichloride of tin, Protoxide of bismuth, .	Chloride of bismuth,	Frotoxide of manganese, . Sesquioxide of manganese, . Red oxide of manganese	Binoxide of manganese, .	Protoxide of cobalt,	Arsenious acid,	Arsenic acid,	Ducton beliance of current	Sesquisulphuret of arsenic,		Sulphuret of mercury,	Chloride of mercury, Protoxide of silver	Prochloride of silver,	Protoxide of gold,	Binoxide of gold,	Teroxide of gold,

TABLE

Showing the Symbols and Equivalents of Binary Compounds. (Continued.) VEGETABLE ACIDS AND SALTS.

Name of Compound.	Symbol.	Equiva-	Remarks.
Acetic acid,	O3 C4 H3	51 .48	Pungent and agreeable odor; crystallizes at a low temperature, blistone the chin
Tartaric acid,	O ⁶ C ⁴ H ²	66.48	solution in water, very sour; crystallizes in prisms.
Oxalic acid,	50°0	36.24	Powerful poison; two or three drachms produce death. It
Benzoic acid,	O3 C14 H5	114.68	is like Epsom satts in appearance. Is very white; its odor is fragrant and peculiar. Burns with a value 4 and
Gallie acid,	0° C' H³	85.84	Employed as a re-agent. It takes fire when exposed to heat, and produces safts of iron, the basis of black ink.
Hydrocyanic acid,	H C2N	27.44	and produces of the produce of the p
Ferrocyanic acid,	Ce H2 N Fe	109.32	Made infance, to the control of the control of the control of the control of different acids on alcohol
Sulphuric ether,	Och He	37.48	Used to produce artificial cold; is very inflammable.
Sulphate of iron,	O'S + OFe	1.92	Made from iron privite. Copperas and green vitriol are
Carbonate of iron,	0°C + 0 Fe	58.12	procured from this sate. Attracts oxygen from the air, and assumes the appearance of the rust of iron.

Much employed in dyeing and calico printing. Used in calico printing.	Insoluble. Usually ealled white lead.	Sugar of lead, used in dyeing and calico printing.	Patent yellow; is a mixture of chloride and oxide of lead.	Deliquescent, and kept in close vessels. Rue vitriol annioved as an escharation	Crystals of a bluish green color.	Crystallizes in four-sided prisms. Deliquescent.	White vitriol, rhombic prisms colorless.		Crystallizes in rhomboidal prisms with shining lustre.				Darkens when exposed to light. Common marking ink is	composed of this and a need muchage.							*
165·9 151·8	133.82	163.18		93.9	91.18	94.5	1.08	65.45	81.16	265 2	251.1	274	c.071	152.54		23.24	172.44	199.44	91.12	₹9.09	
$0^{6}N + 0 Pb$ $0^{3}N + 0 Pb$	$0^2C + 0$ Pb	A + O Pb $A + O^2 Pb^2$) - 	O ⁵ N + O Cu	A + 0 Cu	O ₅ N + O Z	O3N+OZ	$C^2N + OZ$	A + 0Z	0°N + 0 Hg	03N + O Hg	Cl*Hg	0.N + 0 Ag	$0^3 N + 0 Ag$	0° P2 + 0 Ag	O C' H'	On C' Hu	O* C* H. 3.3	O'C'H N'	2 (H2OCN)	
Acetate of iron,	Phosphate of lead, Carbonate of lead,	Acetate of lead,	Chloride of lead,	Nitrate of copper,	Acetate of copper,	Nitrate of zinc,	Sulphate of zine,	Carbonate of zine,	Acetate of zinc,	Nitrate of mercury,	Sulphate of mercury,	Bichloride of mercury,	Nitrate of silver,	Sulphate of silver,	Phosphate of silver,	Alcohol,	Common sugar,	Starch sugar,	Uric acid,	Urea,	

RECIPE FOR DYEING HATS.

The bath for dyeing hats, employed by the London manufacturers, consists, for 12 dozen, of

144 Pounds of logwood;

12 " green sulphate of iron or copperas,

7½ " verdigris.

The copper is made of a semi-cylindrical shape, and should be surrounded with an iron jacket, or case, into which steam may be admitted, so as to raise the temperature of the interior bath to 190° Fah., but no higher; otherwise the heat is apt to affect the stiffening varnish, called the gum, with which the body of the hat has been imbued. The logwood having been introduced and digested for some time, the copperas and verdigris are added in successive quantities, and in the above proportions, along with every successive two or three dozen of hats suspended upon the dipping machine. Each set of hats, after being exposed to the bath, with occasional airings, during 40 minutes, is taken off the pegs, and laid out upon the ground to be more completely blackened by the peroxydizement of the iron with the atmospheric oxygen. In 3 or 4 hours the dyeing is completed. When fully dyed, the hats are well washed in running water.

A skilful operator furnishes the following valuable information

relative to the stiffening of hats. He says:

All the solutions of gums which I have hitherto seen prepared by hatters, have not been perfect, but in a certain degree a mixture, more or less, of the gums, which are merely suspended, owing to the consistency of the composition. When this is thinned by the addition of spirit, and allowed to stand, it lets fall a curdy-looking sediment, and to this circumstance may be ascribed the frequent breaking of hats. My method of proceeding is, first, to dissolve the gums, by agitation, in twice the due quantity of spirits, whether of wood or wine, and then, after complete solution, draw off one half the spirit in a still, so as to bring the stiffening to a proper consistency. No sediment subsequently appears on diluting this solution, however much it may be done. Both the spirit and alkali stiffenings for hats made by the following recipes, have been tried by some of the first houses in the trade, and have been much approved of:

Spirit Stiffening.—7 pounds of orange shellae; 2 pounds of gum sandarae; 4 oz. of gum mastie; ½ pound of amber resin; 1 pint of solution of copal; 1 gallon of spirit of wine, or wood naphtha.

The shellac, sandarac, mastic, and resin, are dissolved in the

spirit, and the solution of copal is added last.

Alkali stiffening.—7 Pounds of common block shellac; 1 pound of amber resin; 4 oz. gum thus; 4 oz. gum mastic; 6 oz. borax; † pint of solution of copal.

The borax is first dissolved in a little warm water (say 1 gallon); this alkaline liquor is now put into a copper pan (heated by steam), together with the shellac, resin, thus, and mastic, and allowed to boil for some time, more warm water being added occasionally until it is of a proper consistence; this may be known by pouring a little on a cold slab, somewhat inclined, and if the liquor runs off at the lower end, it is sufficiently fluid. If, on the contrary, it sets before it reaches the bottom, it requires more water. whole of the gums seem dissolved, half a pint of wood naphtha must be introduced, with the solution of copal; then the liquor must be passed through a fine sieve, and it will be perfectly clear and ready This stiffening is used hot. The hat bodies, before they are stiffened, should be steeped in a weak solution of soda in water. to destroy any acid that may have been left in them (as sulphuric acid is used in the making of the bodies). If this is not attended to, should the hat body contain any acid when it is dipped into the stiffening, the alkali is neutralised, and the gums consequently precipitated. After the body has been steeped in the alkaline solution, it must be perfectly dried in the stove before the stiffening is applied; when stiffened and stoved, it must be steeped all night in water to which a small quantity of the sulphuric acid has been added; this sets the stiffening in the hat body, and finishes the process. A good workman will stiffen 15 or 16 hats a day. If the proof is required cheaper, more shellac and resin must be introduced.

TABLE

Of Pressures at which certain Gases are Liquified.

Gas is the name given to those elastic fluids which are permanent under a considerable pressure, and at the temperature zero.

Name of Gas.	B	ecomes liq	uid.	Calculated	boiling
Name of Gas.	Λt	Under a	pressure of	80 inc	hes.
Sulphurous Acid,	59 F.	3 atr	nospheres	4° F	ahr.
Chlorine,	CO	4	•€	22	
Ammonia,	50	6.2	"	64	
Sulphuretted Hydrog.	50 -	17	"	142	100
Carbonic Acid,	32	36	44	229	
Hydrochloric Acid, .	50	50	44	249	
Deutoxide of Azote, .	45	50	"	254	

TABLE

Showing the Proportionate Strength of Wheels in Horse Power, with a Velocity of 2:37 Feet ner Second

	Formula $\frac{3^{x}\cdot 26 \times 48.6}{3\cdot 9} = 117\cdot60$ strength, at 2.27 feet per second Ft. per. Strength Ft.per. sec. in H. p. sec. Then as 2.27: 117·60::5:259·9 h. p. The thickness of cog multiplied by 2:1 equals the pitch, and the thickness of cog multiplied by 1.2 equals the length.
H. P. at 30 feet per second.	1558.6 1466.7 1352.2 1134.84 975.42 984.74
H.P. at 25 feet per second.	1295.4 11221.9 1126.00 1016.5 945.79 945.70 786.95 708.00 633.19 594.71
H.P. at 20 feet per second.	1031-27 977-00 900-00 848-4 756-5 629-26 562-00 506-60 474-77 346-70 846-70 846-70 846-70
H. P. at 15 feet per second.	776.2 675.66 636.34 572.26 572.26 572.26 571.0 476.6 422.15 371.14 371.14 371.14 387.26 289.50 289.50 289.50 289.50 169.00
H. P at 10 feet per second.	488 76 459 38 424 22 376 38 276 78 225 39 242 24 1173 39 1173 36 1173
H. P. at 5 feet per second.	259 9 225 34 212 00 189 11 116 5 55 116 5 55 116 5 65 118 94 99 84 86 67 76 16 67 32 56 30 25 00 25 00
H.P.at 2°27 feet prosecond.	1117 ÷ 0 102 25 3 96 % 85 % 47 14 14 4 98 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Length in inches.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Breadth in inches.	48.5 5 6 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Thickness in inches.	3.25 3.125 3.00 2.450 2.450 2.625 2.625 2.250 2.2125 2.200 1.450 1.450 1.500 1.250 1.250
Pitch in inches.	6 6 7 2 5 6 6 7 2 5 6 6 7 2 5 6 6 7 2 5 6 6 7 2 5 6 7 7 7 7 7 7 7 7 2 7 2 7 2 7 2 7 2 7 2

KNOT TABLE.

The minutes and seconds of time in which a vessel passes over the measured knot being known, look for the corresponding number in this table, which will be the rate of the vessel in knots per hour.

	14m.	4 285	4.280	4.275	4.270	4.265	4.260	4.255	4.250	4.245	4.240	4.235	4.230	4.225	4.220	4.215	4.210	4.506	4.501	4.196	4.191	4.186	
-	13m.	4.615	4.609	4.603	4.597	4.591	4.585	1.580	4.574	4.568	4.562	4.556	4.551	4.545	4.539	4.534	4.528	4.522	4.516	4.511	4.505	4.500	
	12m.	5.000	4.993	4.986	4.979	4.972	4.965	4.958	4.951	4.945	4.938	4.931	4 924	4.918	4.911	4.904	4.897	4.891	4.884	4.878	4.871	4.864	
,	11m.	5.454	5.446	5.438	5 429	5.421	5.413	5.405	5.397	5.389	5.381	5.373	5.365	5.357	5.349	5.341	5.333	5.325	5.317	5.309	5.301	5.294	
	10m.	000.9	2.990	2.980	2.970	2.960	5.950	5.940	5.930	5 921	5.911	5.901	5.891	5.885	5,872	5.863	5.853	5.844	5.834	5.825	5.815	908.9	_
	9m.	999.9	6.654	6.642	6.629	6.617	6.605	6.293	6.581	6.269	6.557	6.545	6.533	6.521	6.203	6.498	6.486	6.474	6.463	6.451	6.440	6.458	_
	8m.	7.500	7.484	7.468	7.453	7.438	7.422	7.407	7.392	7.377	7.362	7.346	7.331	7.317	7.305	7.287	7.272	7.258	7.243	7.229	7.214	1.500	
	7 m.	8.571	8.551	8.530	8.510	8.490	8.410	8.420	8.430	8.413	8.331	8.372	8.352	8.333	8.314	8.295	8.275	8.256	8.238	8.219	8.500	8.181	
0	6m.	10.000	9.975	9.944	6.617	068.6	9.863	088.6	608.6	9-783	9.756	9.729	9 7 0 3	249.6	9.651	9.625	009.6	9.574	9.549	9.524	9.490	9.473	
	5m.	12.000	11.960	11.920	11.880	11.841	11.803	11.764	11.726	11.688	11.650	11.613	11.575	11.538-	11.501	11.465	11.428	11.392	11.356	11.323	11.285	11.250	
	4m.	15.000	14.938	14.876	14.815	14.754	14.694	14.634	14.575	14.516	14.457	14 400	14.342	14.285	14.220	14.173	14.118	14.063	14.008	13.953	13.900	13.846	
	3m.	20.000	19.890	19.780	19.672	19.564	19.460	19.355	19.251	19.150	19.047	18.947	18.848	18.750	18.652	18.556	18.491	18.367	18.274	18:181	18.090	18.000	
	Sec.	0	-	07	က	4	2	9	-	00	6	10	11	12	13	14	15	16	12	18	19	20	

KNOT TABLE—(Continued).

						_				-			•										
14m.	4.181	1.176	4.171	1.186	4.161	4.157	4.159	4.147	4.149	4.137	4.133	4.198	4.193	4.118	4.114	4.110	4.195	4.100	4.005	000.7	4.086	4.081	
13m.	4.494	4.488	4.489	4.474	4.479	4.466	4.460	4.455	4.449	4.444	4.438	4.433	4.498	4.422	4.417	4.411	4.406	4.400	4.395	4.300	4.384	4.379	
12m.	4.858	4.851	4.845	4.838	4.839	4.825	4 819	4.812	4.806	4.800	4.793	4.787	4.780	4774	4.768	4.761	4.755	4.749	4 743	4.738	4.730	4.734	
11m.	5.280	5.278	6.570	5.263	5.255	5.247	5.240	5.232	5.224	5.217	5.210	5.202	5.195	5.187	5.179	5.172	5 164	5.157	5.150	5.149	100	5.128	
10m.	267.9	5.787	877.9	692.9	5.760	5.750	5.741	5.732	5.723	5.714	5.705	5.696	5.687	5.678	5.669	5 666	5.651	5.642	5.633	5.625	5.616	2.607	
9m.	6.417	6.405	6.394	6.383	6.87.1	0989	6.349	888.9	6.327	6.315	6.304	6.293	6.282	6.271	6.260	6.250	6.539	6.228	6.217	6 207	961.9	6.185	186
8m.	7.185	7.171	7.157	7.142	7.128	7.114	7.100	7.086	7.072	4.059	7.045	7.031	7.017	7.004	066-9	446-9	6.963	6.950	6.936	6.923	606.9	968.9	15 15 15 15 15 15 15 15 15 15 15 15 15 1
7m.	8.163	8.144	8.127	8.108	8.090	8.071	8.053	8 035	8.017	8.000	7.985	7.964	7.947	7.929	7.912	7.895	7.877	098.4	7.843	7.826	608.4	7.792	1.3
6m.	9.418	9.424	9.399	9.375	9.320	9.356	9.305	9.278	9.254	9.530	9.507	9.183	9.160	9.137	9.113	060-6	890.6	9.045	9.055	000.6	8.977	8.955	
5m.	11.214	11.180	11.145	111111	11.077	11.043	11.009	10.975	10.943	10 909	10.876	10.843	10.810	10.778	10.764	10.714	10.682	10.651	10.619	10.588	10.557	10.526	
4m.	13.793	13.740	13.688	13.636	13 584	13.533	13.483	13.432	13.383	13.333	13.284	13.235	13.186	13.138	13.091	13.043	12.996	12.950	12.903	12.857	12.811	12.766	
3m.	17.910	17.823	17.734	17.647	17.260	17.475	17.391	17.307	17.225	17.143	12.061	186-91	16.901	16.822	16.744	16.667	16.230	16.214	16.438	16.363	16.289	16.216	
Sec	17	55	23	54	25	56	27	58	53	30	31	25	33	34	35	900	27	800	33	40	41	42	

KNOT TABLE—(Concluded).

Sec.	3m.	4m.	om.	6m.	'm'	Sm.	9m.	10m.	11m.	12m,	13m.	14m,
43	16.143	12.711	10.495	8.933	7.775	6.883	6.174	5.598	5.121	4.718	4.374	4.077
41	16.071	12.676	10.465	8.911	7.758	6.870	6.164	5.590	5.114	4.712	4.368	4 079
45	16.000	12.631	10.434	8.889	7.741	6.857	6.153	5.581	5.106	4.706	4.363	4.067
46	15.929	12.587	10.404	8.867	7.725	6.844	6.143	5.572	660.9	4.700	4.358	4.063
47	15.859	12.543	10.375	8.845	7 708	6.831	6.132	5.564	5.091	4.693	4.353	4.058
48	15.789	12.500	10.345	8.823	7 693	6.818	6.122	5.555	5.084	4.687	4.347	4 054
49	15.721	12.456	10.315	8.801	7.675	6.805	6.112	5.547	2.077	4.681	4.342	4.049
00	15.652	12.413	10.286	8.780	7.659	6.792	6.101	5.538	5.070	4.675	4.337	4.044
51	15.584	12.371	10.256	8.759	7.643	6.44.9	6 091	5.530	5.063	4.669	4.332	4.040
5.5	15.517	12.329	10.227	8.737	7.627	994.9	6.081	5.521	5.056	4.663	4.326	4.035
53	15.450	12-287	10.198	8.716	7.611	6.754	6.071	5.513	5.049	4.657	4.321	4.031
10	15.384	12.245	10.169	8.695	7.595	6.741	090.9	5.504	5 042	4.651	4.316	4.026
55	15.319	12.203	10.140	8.675	7.579	6.729	6.050	5.496	5.035	4.645	4.311	4 022
56	15.254	12.162	10.112	8.654	7.563	6.716	6.040	5.487	5.028	4.639	4.306	4.017
22	15.190	12.121	10.084	8.633	7.547	6.704	6.030	5.479	5.020	4.633	4.301	4.013
28	15.125	12.080	10.022	8 612	7.531	6.691	6.050	5.471	5.013	4.627	4.295	4.008
59	15.062	12040	10.027	8.591	7.515	6.679	6.010	5.463	5.006	4.621	4.290	4.004

CEMENTS.

Shell-lac Cement, or Liquid Gluc.—Fine orange shell-lac, bruised, 4 oz.; highly rectified spirit, 3 oz. Digest in a warm place, frequently shaking, till the shell-lac is dissolved. Rectified wood naphtha may be substituted for spirit of wine, where the smell is not objectionable. This is a most useful cement for joining almost any material.

Shell-lac Cement, without Spirit.—Boil 1 oz. of borax in 16 oz. water; add 2 oz. powdered shell-lac, and boil in a covered vessel till the lac is dissolved This is cheaper than the above, and for many purposes, answers very well. Both are useful in fixing paper labels to tin, and to glass when exposed to damp.

Keller's Armenian Cement, for Glass, China, &c.—Soak 2 dr. of cut isinglass in 2 oz. of water for 24 hours; boil to 1 oz.; add 1 oz. of spirit of wine, and strain through linen. Mix this, while hot, with a solution of 1 dr. of mastic in 1 oz. of rectified spirit, and triturate with ½ dr. powdered gum ammoniae, till perfectly homogeneous.

Dr. Ure's Diamond Cement.—Isinglass, 1 oz.; distilled water, 6 oz.; boil to 3 oz., and add $1\frac{1}{2}$ oz. of rectified spirit. Boil for a minute or two, strain, and add, while hot, first, $\frac{1}{2}$ oz. of a milky emulsion of ammoniae, and then 5 dr. of tineture of mastic.

Hoenle's Cement, for Glass or Earthenware.—Shell-lac, 2 parts; Venice turpentine, 1 part. Fuse together, and form into sticks.

Cheese Cement, for Earthenware, &c — Mix together white of egg, beaten to a froth, quick-lime, and grated cheese. Beat them to a paste, which forms an excellent cement.

Curd Cement.—Add $\frac{1}{2}$ pint of vinegar to $\frac{1}{2}$ pint of skimmed milk. Mix the curd with the whites of 5 eggs well beaten, and sufficient powdered quick-lime to form a paste. It resists water, and a moderate degree of heat.

Cement for joining Spar and Marble Ornaments, &c.—Melt together 8 parts of resin, 1 of wax, and stir in 4 parts, or as much as may be required, of Paris plaster. The pieces to be made hot.

Hensler's, Cement.—Grind 3 parts of litharge, 2 of recently burnt lime, and 1 of white bole, with linseed oil varnish. This is a very tenacious cement, but it takes considerable time to dry.

Singer's Cement, for Electrical Machines and Galvanic Troughs.—Melt together 5 lbs. of resin, and 1 lb. of beeswax, and stir in 1 lb of red ochre (highly dried, and still warm), and 4 oz. of Paris plaster, continuing the heat a little above 212°, and stirring constantly till all frothing ceases. Or (for troughs), resin, 6 lbs; dried red ochre, 1 lb.; calcined plaster of Paris, ½ lb.; linseed oil, ½ lb.

Composition for welding Cast Steel.—Take of borax, 10 parts, sal ammoniae, 1 part; grind or pound them roughly together; then fuse them in a metal pot over a clear fire, taking care to continue the heat until all spume has disappeared from the surface. When the liquid appears clear, the composition is ready to be poured out to cool and concrete; afterwards, being ground to a fine powder, it is ready for use. * * * To use this composition. The steel to be welded is first raised to a "bright yellow" heat, it is then dipped among the welding powder, and again placed in the fire, until it attains the same degree of heat as before; it is then ready to be placed under the hammer.

Cast-Iron Cement.—Take of clean iron borings, or turnings, 1 cwt.; of sal-ammoniac 8 oz.; and 1 oz. of flour of sulphur. Mix them thoroughly, and add sufficient water. If the cement is not to be immediately used, care should be taken to keep the mixture soaked in water; if left dry, the cement will heat, and be spoiled.

Cement for Steam Pipe Joints, &c., with Faced Flanges—To 2 parts of white lead mixed, add 1 part of red lead dry; grind, or otherwise mix them, to a consistence of thin putty; apply interposed layers, with one or two thicknesses of canvas or gauze wire, as the necessity of the case may require.

Glues.—1. A very strong glue is formed by throwing a small quantity of powdered chalk into melted common glue.

2. To make a glue which will resist the action of water—boil one pound of common glue in two quarts of skimmed milk.

Botany Bay Cement.—Take 1 part of Botany Bay gum, and melt and mix it with 1 part of brickdust.

Cap Cement.—As Singer's; but 1 pound of dried Venetian red may be substituted for the red ochre and Paris plaster.

Bottle Cement.—Resin 15 parts; tallow 4 (or wax 3) parts; highly dried red ochre 5 parts. The common kinds of sealing-wax are also used.

Turner's Cement.—Beeswax 1 oz.; resin $\frac{1}{2}$ oz.; pitch $\frac{1}{2}$ oz. Melt, and stir in fine brickdust.

Coppersmith's Cement.—Powdered quick-lime, mixed with bullock's blood, and applied immediately.

Engineers' Cement.—Equal weights of red and white lead, with drying oil, spread on tow or canvas. This is an admirable composition for uniting large stones in cisterns, &c.

Iron Cement for Closing the Joints of Iron Pipes.—Take of iron borings, coarsely powdered, 5 lbs.; of powdered sal-ammoniac 2 oz.; of sulphur 1 oz.; and water sufficient to moisten it. This composition hardens rapidly; but if time can be allowed it sets more firmly without the sulphur. It must be used as soon as mixed, and rammed tightly into the joints.

Cement for Steam Pipes.—Good linseed oil varnish ground, with equal weights of white lead, oxide of manganese, and pipeclay.

Gad's Hydraulic Cement.—Powdered clay 3 lbs.; oxide of iron 1 lb; and boiled oil to form a stiff paste.

Cements for Masonry of Chambers of Chlorine, &c. - Equal parts of pitch, rosin, and plaster of Paris.

Roman Cement.—1 bushel of slacked lime; 3½ lbs. of green copperas; and ½ bushel of fine gravel sand. The copperas should be dissolved in hot water. It must be stirred with a stick, and kept stirred continually while in use. Care should be taken to mix at once as much as may be requisite for one entire front, as it is very difficult to obtain the same shade or color a second time. It ought to be mixed the same day it is used. This is the English Roman cement

The genuine Roman cement consists of the pulvis puteolanus, or puzzolene, a ferruginous elay from Puteoli, calcined by the fires of Vesuvius, lime, and sand, mixed with soft water. The only preparation which the puzzolene undergoes is that of pounding and sifting; but the ingredients are occasionally mixed with bullock's blood and suet, to give the composition greater tenacity.

Seal Engravers' Cement.—Resin 1 part; brickdust 1 part. Mix, with heat.

Marine Cement, commonly called Marine Glue.—Cut eaoutchoue into small pieces, and dissolve it, by heat and agitation, in coal naphtha. Add to this solution powdered shell-lae, and heat the whole, with constant stirring, until combination takes place; then pour it, while hot, on metal plates, to form sheets. When used, it must be heated to 280° Fah., and applied with a brush.

Liquid Glue.—Dissolve bruised orange shell-lac in 3 of its weight of rectified spirit, or of rectified wood naphtha, by a gentle heat. It is very useful as a general cement and substitute for glue. Another kind may be made by dissolving 1 oz of borax in 12 oz of soft water, adding 2 oz of bruised shell-lac, and boiling till dissolved, stirring it constantly.

Bank Note Glue.—Dissolve 1 lb. of fine glue, or gelatine, in water; evaporate it till most of the water is expelled; add $\frac{1}{2}$ lb. of brown sugar, and pour it into moulds. Some add a little lemon juice. It is also made with 2 parts of dextrine, 2 of water, and 1 of spirit.

Maissiat's Cement, as an Air-Tight Covering for Bottles, &c.—Melt india-rubber (to which 15 per cent. of wax or tallow may be added), and gradually add finely powdered quick-lime, till a change of odor shows that combination has taken place, and a proper consistence is obtained.

Cement for Attaching Metal Letters on Plate Glass.—Copal varnish 15 parts; drying oil 5 parts; turpentine 3 parts; oil of turpentine CEMENTS. 265

2 parts; liquified glue 5 parts. Melt in a water bath, and add 10 parts of slacked lime.

Japan'se Cement.-Mix rice flour intimately with cold water, and boil gently.

French Cement .- Mix thick mucilage of gum arabic with powdered starch.

Stone Cement .- River sand 20 parts; litharge 2 parts; quick-lime 1 part. Mix, with linseed oil.

Plumbers' Cement .- Resin 1 part; brick-dust 2 parts. Mix, with

Parisian Cement.—Gum arabic 1 oz.; water 2 oz.; sufficient starch to thicken.

Cement for Floors.—The following style of floor is well adapted for plain country dwellings: Take two thirds of lime, and one of coal ashes, well sifted, with a small quantity of loam clay; mix the whole together, temper it well with water, and make it up into a heap; let it lie six or seven days, and then temper it again. After this, heap it up for three or four days, and repeat the tempering very high, till it becomes smooth, yielding, tough, and gluey. The ground being then levelled, lay the floor therewith about 21 or 3 inches thick, making it smooth with a trowel. The hotter the season is the better; when thoroughly dried it makes a capital floor. Should a better looking floor be desired, take lime of rag stones, well tempered with white of eggs, and cover the floor half an inch thick with it, before the under flooring is too dry. If this be well done, and the floor thoroughly dried, it will look, when rubbed with a little oil, as transparent as metal, or glass.

Common Paste.—To a table-spoonful of flour add gradually half a pint of cold water, and mix till quite smooth; add a pinch of powdered alum (some add a small pinch of powdered rosin), and boil for a few moments, stirring constantly. The addition of a little brown sugar, and a few grains of corrosive sublimate, will, it is said by practical chemists, preserve it for years.

Soft Cement.—Melt vellow wax with half its weight of common turpentine, and stir in a little Venetian red, previously well dried and finely powdered. This cement does very well as temporary stopping for joints and openings in glass and other apparatus,

where the heat and pressure are not great.

Lutes, or Cements, for Closing the Joints of Apparatus.-Mix Paris plaster with water to a soft paste, and apply it immediately. It bears nearly a red beat. It may be rendered impervious by rubbing it over with wax and oil.

Another.—Slacked lime, made into a paste with white of egg, or a solution of gelatine.

Another. Fat Lute.-Finely powdered clay, moistened with water, and beaten up with boiled linseed oil. Roll it into cylinders,

and press it on the joints of the vessels, which must be perfectly dry. It is rendered more secure by binding it with strips of linen moistened with white of egg.

Another.-Linseed meal beaten to a paste with water.

Another.—Slips of moistened bladder, smeared with white of egg.

Fire and Waterproof Cement.—To half a pint of milk put an equal quantity of vinegar, in order to curdle it; then separate the curd from the whey, and mix the latter with four or five eggs, beating the whole well together. When it is well mixed add a little lime through a sieve, until it has acquired the consistence of a thick paste. With this cement broken vessels may be united. It resists water, and, to a certain extent, fire.

Fire Lutes.—The following composition will enable glass vessels to sustain an incredible degree of heat: Take fragments of porcelain, pulverize, and sift them well, and add an equal quantity of fine clay, previously softened with as much of a saturated solution of muriate of soda as is requisite to give the whole a proper consistence. Apply a thin and uniform coat of this composition to the glass vessels, and allow it to dry slowly before they are put into the fire.

Another.—Equal parts of coarse and refractory clay, mixed with a little hair, form a good lute.

A Cement for Stopping the Fissures of Iron Vessels.—Take two ounces of muriate of ammonia, 1 ounce of flour of sulphur, and 16 ounces of east-iron filings, or turnings. Mix them well in a mortar, and keep the powder dry. When the cement is wanted take one part of this and twenty parts of clean iron filings, or borings; grind them together in a mortar, mix them with water to a proper consistence, and apply them between the joints. This cement answers for flanges of pipes, &c., about steam-engines.

Genuine Armenian Cement .- "The jewellers of Turkey, who are mostly Armenians," says Mr. Eton, a very intelligent traveller, and at one time a resident and consul in that country, "have a singular method of ornamenting watch cases, &c., with diamonds and other precious stones, by simply glueing or cementing them on. The stone is set in silver or gold, and the lower part of the metal made flat, or to correspond with the part to which it is to be fixed. It is then warmed gently, and the glue applied, which is so very strong that the parts thus cemented never separate. This glue, which will firmly unite bits of glass, and even polished steel, and may of course be applied to a vast variety of useful purposes, is thus made: - Dissolve five or six bits of gum mastic, each the size of a large pea, in as much spirits of wine as will suffice to render it liquid; in another vessel dissolve as much isinglass, previously a little softened in water (though none of the water must be used), in French brandy, or good rum, as will make a two ounce phial of very strong glue, adding two small bits of gum galbanum, or ammoniacum, which must be rubbed or ground till they are dissolved. Then mix the whole with a sufficient heat, keep the glue in a phial closely stopped, and when it is to be used set the phial in boiling water."

Another.—Thick isinglass glue 1 part; thick mastic varnish 1 part. Melt the glue, mix, and keep it in a closely corked phial. For use, put the phial in hot water.

Elastic Cement for Bells.—Dissolve in good brandy a sufficient quantity of isinglass, so as to be as thick as molasses.

A very strong Carpenters' Glue.—Dissolve an ounce of the best isinglass, with a moderate heat, in a pint of water. Take this solution, and strain it through a piece of cloth, and add to it a proportionate quantity of the best glue, which has been previously soaked for about twenty-four hours, and a gill of vinegar. After the whole of the materials have been brought into a solution, let it once boil up, and strain off the impurities. This glue is well adapted for any work which requires particular strength, and where the joints themselves to not contribute towards the combination of the work; or in small fillets and mouldings, and carved paters, that are held on the surface by the glue.

A Glue for Inlaying Brass or Silver Strings, &c.—Melt your glue as usual, and to every pint add of finely powdered rosin and finely powdered brickdust two spoonfuls each; incorporate the whole together, and it will hold the metal much faster than any common glue.

A strong Glue that will resist Moisture.—Dissolve gum sandarae and mastic, of each $\frac{1}{4}$ of an ounce, in $\frac{1}{4}$ of a pint of spirit of wine, to which add $\frac{1}{4}$ of an ounce of clear turpentine. Now take strong glue, or that in which isinglass has been dissolved; then, putting the gums into a double glue-pot, add by degrees the glue, constantly stirring it over the fire till the whole is well mixed; then strain it through a cloth, and it is ready for use. You may now return it into the glue pot, and add $\frac{1}{2}$ an ounce of very finely powdered glass; use it quite hot. If you join two pieces of wood together with it you may, when perfectly hard and dry, immerse it in water and the joint will not separate.

A Paste for laying Cloth or Leather on Table Tops.—To a pint of the best wheaten flour add two table spoonfuls of finely powdered rosin, and one spoonful of powdered alum. Mix them well together, put them into a pan, and add by degrees rain water, carefully stirring it till it is of the consistence of thinnish cream; put it into a saucepan over a clear fire, keeping it constantly stirred, that it may not get lumpy. When it is of a stiff consistence, so that the spoon will stand upright in it, it is done enough. Be careful to stir it well from the bottom, for it will burn if not well attended to. Empty it out into a pan, and cover it over till cold, to prevent a

skin forming on the top, which would make it lumpy. This paste is very superior for the purpose, and adhesive. To use it for cloth or baize spread the paste evenly and smoothly on the top of the table, and lay your cloth on it, pressing and smoothing it with a flat piece of wood; let it remain till dry; then trim the edges close to the cross-banding. If you cut it close at first it will, in drying, shrink and look bad where it meets the banding all round. If used for leather, the leather must be first previously dampened, and the paste then spread over it; then lay it on the table, and rub it smooth and level with a linen cloth, and cut the edges close to the banding with a short knife. Some lay their table-cover with glue instead of paste, and for cloth perhaps it is the best method; but for leather it is not proper, as glue is apt to run through. In using it for cloth, great care must be taken that your glue is not too thin, and that you rub the cloth well down with a thick piece of wood made hot at the fire, for the glue soon chills. You may by this method cut off the edges close to the border at once.

Cement Stopping.—Mix equal quantities of sawdust, of the same wood required to be stopped, and clear glue; and with this stop up the holes or defects of the wood. Where the surface is to be japanned or painted, whiting may be used instead of sawdust. Be sure to let the stopping dry before you attempt to finish the surface.

Mahogany-colored Cement.—Melt two ounces of beeswax, and half an ounce of rosin, together; then add half an ounce of Indian red, and a small quantity of yellow ochre to bring the cement to the desired color. Keep it in a pipkin for use.

A Cement to stop Flaws or Cracks in Wood of any Color.—Put any quantity of fine sawdust, of the same wood your work is made with, into an earthen pan, and pour boiling water on it, stir it well, and let it remain for a week or ten days, occasionally stirring it; then boil it for some time, and it will be of the consistence of pulp or paste; put it into a coarse cloth, and squeeze all the moisture from it. Keep for use, and when wanted mix a sufficient quantity of thin glue to make it into a paste; rub it well into the cracks, or fill up the holes in your work with it. When quite hard and dry, clean your work off, and, if carefully done, you will scarcely discover the imperfection.

Fireproof Stucco for Wood, &c.—Take moist gravelly earth (previously washed), and make it into stucco with the following composition: Pearlashes two parts; water five parts; common clay one part. It has been tried on a large scale and found to answer.

Terra Cotta—Potter's clay, Ryegate sand, and water, each a sufficient quantity. Model and bake.

Pew's Composition for covering Buildings.—Take the hardest and purest limestone (white marble is to be preferred), free from sand, clay, or other matter; calcine it in a reverberatory furnace, pulverize and pass it through a sieve. One part, by weight, is to be mixed

with two parts of clay well baked and similarly pulverized, conducting the whole operation with great care. This forms the first powder. The second is to be made of one part of calcined and pulverized gypsum, to which is added two parts of clay, baked and pulverized. These two powders are to be combined, and intimately incorporated, so as to form a perfect mixture. When it is to be used, mix it with about a fourth part of its weight of water, added gradually, stirring the mass well the whole time, until it forms a thick paste, in which state it is to be spread like mortar upon the desired surface. It becomes in time as hard as stone, allows no moisture to penetrate, and is not cracked by heat. When well prepared it will last any length of time. When in its plastic or soft state, it may be colored of any desired tint.

TABLE

Of Analysis of certain Organic Substances, from the best authorities.

	Carbon.	Hydrogen.	Oxygen.	Nitrogen.	Total
Sugar,	42.225	6.600	51.175		100
Starch,	44.250	6.674	49.076	10	100
Gum,	42.682	6.374	50.944		100
Lignin,	52.53	5.69	41.78		100
Tannin,	52.590	3.825	43.585	_	100
Indigo,	73.260	2.500	10.43	13.81	100
Camphor,	73.38	10.67	14.61	.34	100
Caoutchouc,	87.2	12.8	_		100
Albumen,	52.883	7.540	23.872	15.705	100
Fibrin,	53.36	7.021	19.685	19 934	100
Casein,	59.781	7.429	11.409	21.381	100
Urea,	18.9	9.7	26.2	45.2	100
Gelatine,	47.881	7.914	27 207	16.998	100
Picromel,	54.53	1.82	43.65	10 <u>1</u>	100
Hordein,	44.2	6.4	47.6	1.8	100
Emelin,	64.57	7.77	22.95	4.3	100
Veratrin,	66.75	8.54	19.60	5.04	100
Cinchonin,	77.81	7.37	5.93	8.89	100
Quinin,	75.76	7.52	8.61	8.11	100
Bruein,	70.88	6.66	17.39	5.07	100
Strychnin,	76.43	6.70	11.06	5.81	100
Narcotin,	65.00	5.50	26.99	2.51	100
Morphin,	72:340	6.366	16.299	4.995	100

TABLE

To Calculate the Pitch of a Toothed Wheel, when the radius and number of teeth are given; and the RADIUS, when the pitch and number of teeth are given, from 10 to 159 teeth.

No. of Teeth.	Radius.								
d o					31 M 6		dadw.o	24 20 10	10.840
10	1.618	40	6.373	70	11.144	100	15.918	130	20.692
11	1.774	41	6.532	71	11.303	101	16.077	131	20.851
12	1.932	42	6.691	72	11.463	102	16.236	132	21.010
13	2.089	43	6.850	73	11.622	103	16.395	133	21.169
14	2.247	44	7.009	74	11.781	104	16.554	134	21.328
15	2.405	45	7.168	75	11.940	105	16.713	135	21.488
16	2.563	46	7.327	76	12.099	106	16.873	136	21.647
17	2.721	47	7.486	77	12.258	107	17.032	137	21.806
18	2.879	48	7.645	78	12.417	108	17.191	138	21.965
19	3.038	49	7.804	79	12:576	109	17:350	139	22.124
20	3.196	50	7.963	80	12.735	110	17.509	140	22.283
21	3.355	51	8.122	81	12.895	111	17.668	141	22.442
22	3.513	52	8 281	82	13.054	112	17.827	142	22.602
23	3.672	53	8.440	83	13.213	113	17.987	143	22.761
24	3.830	54	8.599	84	13.370	114	18.146	144	22.920
25	3.989	55	8 7 5 8	85	13.531	.115	18:305	145	23.079
26	4.148	56	8.917	86	13.690	116	18.464	146	23.238
27	4.307	57	9.076	87	13.849	117	18.623	147	23 397
28	4.465	58	9.235	88	14.008	118	18.782	148	23.556
29	4.624	59	9.394	89	14.168	119	18.941	149	23.716
30	4.788	60	9.553	90	14.327	120	19.101	150	23.875
31	4.942	61	9.712	91	14.486	121	19.260	151	24.034
32	5.101	62	9.872	92	14.645	122	19.419	152	24.193
33	5.260	63	10.031	93	14.804	123	19.578	153	24.352
34	5.419	64	10.190	94	14.963	124	19.737	154	24.511
35	5.578	65	10.349	95	15.122	125	19 896	155	24.620
36	5.737	66	10 508	96	15.281	126	20.055	156	24.830
37	5.896	67	10.667	97	15.440	127	20.214	157	24.989
38	6.055	68	10.826	98	15.600	128	20.374	158	25.148
39	6.214	69	10.985	99	15.759	129	20.533	159	25.307
Lo				100	9			y+ 1.	17

RULE 1.—Divide the required radius by the radius opposite the given number of teeth in the table; the quotient will be the required pitch of the wheel.

Example. To find the pitch of a wheel whose radius is 43 inches, that shall contain 90 teeth:

Required radius 43 ÷ 14.327 = 3-inch pitch.

Rule 2.—Multiply the radius opposite the given number of

CABLES.

teeth in the table, by the pitch required; the product will be the required radius of the wheel.

Example. To find the radius of a wheel that shall contain 48 teeth of 2½-inch pitch:

In the Table, radius $7.645 \times 2.5 = 19\frac{1}{10}$ inches nearly.

CABLES.

TABLE

For finding the Strain that may safely be applied to a good Hempen Cable.

Circum.	Pounds.	Circumfer.	Pounds.	Circumfer.	Pounds.
6.	4320	10.25	12607 · 5	14.50	25230
6.25	4687.5	10.50	13230	14.75	26107.5
6.50	5070	10.75	13867.5	15.	27000
6.75	5467.5	11.	14520	15.25	27907 . 5
7.	5880	11.25	15187 . 5	15.50	28830
7:25	6307.5	11.50	15870	15.75	29767 . 5
7.50	6750	11.75	16567.5	16.	30720
7.75	7207 . 5	12.	17280	16.25	31687 . 5
8.	7680	12.25	18007.5	16.50	32670
8.25	8167.5	12.50	18750	16.75	33667 · 5
8.50	8670	12.75	19507.5	17.	34680
8.75	9187.5	13	20280	17.25	35707.5
9.	9720	13.25	21067.5	17.50	36750
9.25	10267 . 5	13.50	21870	17.75	37807.5
9.50	10830	13.75	22687 . 5	18.	38880.
9.75	11407.5	14.	23520	18.25	39967 · 5
10.	12000	14.25	24367.5	1 4	

To ascertain the Strength of Cables.—Multiply the square of the circumference in inches by 120, and the product is the weight the cable will bear in pounds, with safety.

To ascertain the Strength of Ropes.—Multiply the square of the circumference in inches by 200, and it gives the weight the rope will bear in pounds, with safety.

To ascertain the Weight of Manilla Ropes and Hawsers.—Multiply the square of the circumference in inches by '03, and the product is the weight in pounds of a foot in length.

This is but an approximation, sufficiently correct for many purposes.

TABLE
Showing the Size of Cables and Anchors proportional to the Tonnage of Vessels.

Tonnage of vessels.	Cables. Circumfer. in inches.	Chain Ca- bles. Diam. in inches.	Proof in tons.	Weight of Anchor in pounds.	Weight of a fathom of chain.	Weight of a fathom of Cable.
5	3.	• 5	• 8	56	5.7	2.1
8	4.	• 8	1.8	84	8.	4.
10	$4 \cdot \frac{1}{2}$.716	$2 \cdot \frac{1}{2}$	112	11.	4.6
15 .	$5 \cdot \frac{1}{2}$	· 1	4.	168	14.	6.2
25	6.	· 9 16	5.	224	17.	8.4
40	$6\cdot\frac{1}{2}$	· <u>\$</u>	6.	336	24.	9.8
60	7.	·11/16	7.	392	27.	11.4
75	$7 \cdot \frac{1}{2}$	· 8 4	9.	532	30.	13.
100	8.	· 13	10.	616	36.	15.
130	9.	• 7	12.	700	42.	18.9
150	$9 \cdot \frac{1}{2}$.15	14.	840	50.	21 ·
180	10.1	1.	16.	952	56.	25.7
200	11.	$1 \cdot \frac{1}{16}$	18.	1176	60.	28-2
24 0	12.	1.4	20.	1400	70.	33.6
270	$12 \cdot \frac{1}{2}$	$1 \cdot \frac{3}{16}$	21.	1456	78	36.4
320	13.1	1.4	$22 \cdot \frac{1}{2}$	1680	86.	42-5
360	14.	1.5	25.	1904	96	45.7
400	14.1	1.8	27 ·	2072	104	49.
440	15.4	1.7	30.	2240	115.	56 . r
480	16.	1.1	33.	2408	125.	59.5
520	$16 \cdot \frac{1}{2}$	$1 \cdot \frac{9}{16}$	36.	2800	136	63.4
570	17.	1.5	39.	3360	144.	67.2
620	$17 \cdot \frac{1}{2}$	1.11	42.	3920	152	71.1
680	18.	1.8	45.	4200	161.	75:6
740	19.	1.13	49:	4480	172.	84.2
820	20	1.7	52.	5600	184	93.3.
900	22.	1.15	56.	6720	196	112.9
1000	24.	1.	60.	7168	208 · ·	134.6

TABLE

For finding the Strain that may be applied to a Hempen Rope with safety.

ircum.	Pounds.	Circumfer.	Pounds.	Circumfer.	Pounds.
1.	200	3.50	2450	6.	7200
1.25	312.5	3.75	2812.5	6.25	7812.5
1.50	450	4.	3200	6.50	8450
1.75	612.5	4.25	3612.5	6.75	9112.5
2.	800	4.50	4050	7.	9800.
2.25	1012.5	4.75	4512.5	7 · 25	10512.5
2.50	1250	5.	5000.	7.50	11250
2.75	1512.5	$5 \cdot 25$	$5512 \cdot 5$	7.75	$12012 \cdot 5$
3.	1800	5.50	6050	8.	12800
3.25	2112.5	5.75	6612.5	2.7	

TABLE

Of Weight of Copper Rods or Bolts, from ¼ to 4 inches in diameter,
and 1 foot in length.

Diam.	Pounds.	Diameter.	Pounds.	Diameter.	Pounds.
·1	·1892	1:1/8	3.8312	2.8	17.0750
. 5	2956	$1\cdot\frac{3}{16}$	4.2688	$2\cdot\frac{1}{2}$	18.9161
1 6 .3 8	4256	1.4	4.7298	2.5	20.8562
16	.5794	1.5	5.2140	2.8	22.8913
•1	.7567	1.3	5.7228	$2 \cdot \frac{7}{8}$	25.0188
16	9578	$1 \cdot \frac{7}{16}$	6.2547	3.	27.2435
· <u>5</u>	1.1824	$1^{\frac{1}{2}}$	6.8109	3.1	29.5594
11	1.4307	$1 \cdot \frac{9}{16}$	7.3898	3.1	31.9722
·84	1.7027	1.5	7.9931	3.8	34.4815
13	1.9982	1.8	9.2702	3.1	37.0808
· 7	2.3176	1.4	10.6420	3.5	39.7774
15	2.6605	2.	12.1082	3.8	42.5680
	3.0270	2.1	13.6677	3.7	45.4550
1.1	3.4170	2.4	15.3251	4.	48.4330

Weight of a copper rod 12 inches long and 1 in. diameter = 3:039 lbs.

Weight of a brass rod 12 inches long and 1 inch diameter = 2.86 lbs.

TABLE

Of the Weight of Riveted Copper Pipes, from 5 to 30 inches in diameter, from 3 to $\frac{5}{10}$ thick, and 1 foot in length.

Diameter in inches.	Thickness in 16ths.	Weight in pounds.	Diameter in inches.	Thickness in 16ths.	Weight in pounds.	Diameter in inches.	Thickness in 16ths.	Weight in pounds.
5.	3	12:497	9.1	4	30.598	19.	4	60.142
5.	4	16.880	10.	4	32.208	19.	4 5	75.233
5.1	3	13.628	11.	4	35.200	20.		78.208
$5 \cdot \frac{1}{2}$ $5 \cdot \frac{1}{2}$	4	18.395	12.	4	38.456	21.	5 5	82.984
6.	3	14.765	13.	4	41.456	22.	5	86.771
6.	4	19.908	14.	4	44.640	23.	5	90.571
6.1	3	15.897	15.	4	47.646	24.	5	94.308
6·½ 6·½ 7·	4	21.415	15.	5	59.588	25.		98.122
7.	4 3	17.034	16.	4	50.752	26.	5 5	101.897
7.	4	22.932	16.	4 5	63.470	27.	5	105.700
7.1	4	24.447	17.	4	53.856	28.	5	109.446
8.	4	25.961	17.	5	67:344	29.	5	113.221
8.1	4	27.471	18.	4	57.037	30.	5	116.997
9.	4	28.985	18.	5	71.258			

The above weights include the laps on the sheets for riveting and caulking.

The weights of the rivets are not added; the number per linear foot of pipe depends upon the distance they are placed apart, and their size upon the diameter of the pipe.

TABLE

Showing the Capacity of Cisterns in Gallons.

For each 10 Inches in Depth.

Feet Feet Feet Feet Diam. Diam. Diam. Diam. 705. 2 19.5 5 122:40 8 313.33 12 30.6 13 827.4 21 51 148.10 81 353.72 3 44.06 6 176.25 9 396.56 14 959.6 1101.6 61 15 31 59.97 206.85 91 461.40 1958.4 4 78.33 239.88 10 489.20 20 275.40 3059.9 41 99.14 73 11 592.40 25

TABLE

Containing the weight of a Square Foot of Copper and Lead in lbs. avoirdupois, from $\frac{1}{32}$ to $\frac{1}{2}$ an inch in thickness, advancing by $\frac{1}{32}$.

Copper.	Lead.	Thickness.	Copper.	Lead.
1.45	1.85	$\frac{1}{4}$ and $\frac{1}{32}$	13.07	16.62
2.90	3.70	$\frac{1}{4}$ " $\frac{1}{16}$	14.52	18.47
4.35	5.54	$\frac{1}{4}$ " $\frac{3}{32}$	15.97	20.3
5.80	7:39	3 3	17:41	22 16
7.26	9.24	3 " 1 3 2	18:57	24.00
8.71	11.08		20.32	25.8
10.16	12.93		21.77	27.70
11.61	14.77	$\frac{1}{2}$	23.22	29.5
	1·45 2·90 4·35 5·80 7·26 8·71 10·16	1:45 1:85 2:90 3:70 4:35 5:54 5:80 7:39 7:26 9:24 8:71 11:08 10:16 12:93	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE

Of the Weight of a Square Foot of Sheet Iron in lbs. avoirdupois, the thickness being the number on the wire gauge.—No. 1 is $\frac{5}{16}$ of an inch; No. 4, $\frac{1}{4}$; No. 11, $\frac{1}{8}$, &c.

No. on wire gauge, .	1	2	3	4	5	6	7	8
Pounds avoirdu.,	12.5	12	11	10	9	8	7.5	7
No. on wire gauge, .	9	10	11	12	13	14	15	16
Pounds avoirdu.,	6	5.68	5	4.62	4.31	4	3.95	3
No. on wire gauge, .	17	18	19	20	21	22		
Pounds avoirdu.,	2.5	2.18	1.93	1.62	1.5	1.37		-01

TABLE

Of the Weight of a Square Foot of Boiler Plate Iron, from \(\frac{1}{8} \) to 1 inch thick, in lbs. avoirdupois.

18	$\frac{3}{16}$	14	16	3	7 16	$\frac{1}{2}$	16	8	$\frac{1}{1}\frac{1}{6}$	4	13	78	15	1 in.
				_	-			-		0		-		
5	7.5	10	12.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40

TABLE

Showing the Quantity of Water per Linear Foot in Pumps, or Vertical Pipes of different Diameters.

Diameter of pump in inches.	Number of gallons per linear foot.	Number of cubic feet per linear foot.	Diameter of pump in inches.	Number of gallous per linear foot.	Number of cubic feet per linear foot.
obrita.	firell			1,664	
$\frac{2}{2}$	136	.0218	8	2.176	•3490
$2\frac{1}{4}$.172	0276	81	2.314	.3712
$-2\frac{1}{2}$	212	.0340	$8\frac{1}{2}$	2.456	3940
$2\frac{3}{4}$	257	.0412	83	2:603	·4175
3	.306	.0490	9	2.754	•4417
$3\frac{1}{4}$.359	.0576	91	2.909	4666
$3\frac{1}{2}$	416	.0668	$9\frac{1}{2}$	3.068	4923
$3\frac{3}{4}$.478	.0766	98	3:232	.5184
4	.544	0872	10	3.400	•5454
41/4	614	.0985	101	3.572	•5730
$4\frac{1}{2}$.688	·1104	101	3.748	.6013
48	.767	.1230	104	3.929	6302
5	850	1363	11	4.114	.6599
$5\frac{1}{4}$.937	1503	111	4.303	6902
51	1.028	1649	111	4.496	7212
$5\frac{5}{4}$	1.124	.1803	113	4.694	.7529
6	1.224	.1963	12	4.896	7853
$6\frac{1}{4}$	1.328	2130	121	5:312	·8521
$6\frac{1}{2}$	1.436	2304	13	5.746	9217
$6\frac{3}{4}$	1.549	.2489	131	6.196	.9939
7	1.666	.2672	14	6.664	1.0689
$7\frac{1}{4}$	1.787	2866	15	7.650	1.2271
$7\frac{1}{3}$	1.912	3067	16	8.704	1.3962
$7\frac{1}{2}$ $7\frac{3}{4}$	2.042	3275	18	11.016	1.7670

Examples illustrative of the Utility of the Table.

1. Required the quantity of water lifted by each stroke of the bucket of a 9½-inch pump, the length of the stroke being 2½ feet.

 $3.068 \times 2.25 = 6.903$ gallons, each stroke.

2 What length of stroke with a 6-inch pump will be necessary to discharge 44 gallons of water per minute, the number of strokes being 18 in the given time?

 $\frac{44}{1.224 \times 18} = 2$ feet, the length of stroke.

3. What must be the diameter capable of raising 25 cubic feet of water per minute, the length of the stroke being 2½ feet, and making 16 effective strokes per minute?

$$\frac{25}{2.5 \times 16} = .625$$
, or $10\frac{3}{4}$ inches, nearly.

Properties of Atmospheric Air.—It is by the oxygen of the atmosphere that combustion is supported. The common combustibles of nature are chiefly compounds of carbon and hydrogen, which, during combustion, combine with the oxygen of the atmosphere, and are converted into carbonic acid and watery vapor, different spends of fuel requiring different quantities of oxygen. The quantity required for the combustion of a pound of coal varies from two to three lbs. Sixty cubic feet of atmospheric air will produce 1 lb. of oxygen.

The pressure or fluid properties of the atmosphere oppose bodies in passing through it, the opposing resistance increasing as the square of the velocity of the body, and the resistance per square foot in lbs. as its velocity in feet per second, multiplied into 002288. Thus, suppose a locomotive engine in a still atmosphere, at a velocity of 25 miles per hour, presents a resisting frontage of 20 feet; required the amount of opposing resistance at that velocity.

25 miles per hour equal 36.67 feet per second. Then $36.67^2 \times .002288 \times 20 = 61.5$ lbs., constant opposing force.

TABLE

Showing th	e Number	of Threads	to an Inch	in	V-thread Screws.
------------	----------	------------	------------	----	------------------

Diam. in inches,	1	5 16	8	16	$\frac{1}{2}$	5 8	34	78	1	11/8	14	18
Diam. in inches, No. of threads,	20	18	16	14	12	11	10	9	8	7	7	6
	1			1	1 9	8	<u>'</u>		·		<u>'</u>	
Diam. in inches, No. of threads,	11/2	15	184	17	2	21	$2\frac{1}{2}$	28	3	31	3 1/2	
No. of threads.	6	5	5	4.1	41	4	4	31	31	31	31	

The depth of the threads should be half their pitch. The diameter of a screw, to work in the teeth of a wheel, should be such that the angle of the threads does not exceed 10°.

TABLE

Of the component parts of one English pound avoirdupois of 7000 grains of the following varieties of Wood. [Mushet.]

Description of Wood.	Water, Hyd. gas, Carb. acid.	Carbon.	Ashes.	Color and degree of saturation of the alkaline principle:
Oak,	5382.6	1587.8	29.6	grey, sharply alkaline.
Ash,	5688.2	1258.0	53.8	whitish blue, shrp. alk.
Birch,	5650.2	1224.4	125.4	brownish red, shrp. alk.
Norway Pine, .	5630.9	1344.3	24.8	brown, not at all alk.
Mahogany,	5147.0	1784.4	68.6	grey, sharply alkaline.
Sycamore,	5544.0	1381.4	74.6	pure white, weakly alk.
Holly,	5524.4	1394.3	81.3	pure white, sharply alk.
Scotch pine, .	5816.7	1151.9	31.4	brown, perceptibly alk.
Beech,	5737.3	1395.9	66.8	grevish white, shrp. alk.
Elm,	5576.6	1370.2	53.2	grey, partially alkaline.
Walnut,	5496.5	1446.4	57.1	f pure white, light as down, weakly alk.
American Maple	5553.2	1393.1	53.7	dark grey, sharply alk.
Do. Black (Beech, .	5425.9	1301.8	72.3	brown, sharply alkaline.
Laburnum,	5196.4	1721.0	82.6	white & grey, partly alk.
Lignum Vitæ, .	5083.0	1880.0	35.0	grey, sharply alkaline.
Sallow,	5626.0	1294.8	79.2	light grey, sharply alk.
Chestnut,	5341.3	1629.6	29.1	grey, sharply alkaline.

TABLE

Of Properties of Gases.

Trans. In 1812 -

Atmospheric air being the standard of comparison, or 1000.

Names.	Specific gravity.	Names.	Specific gravity.
Hydriodic acid gas, . Chlorine "".	4340 2500	Carbonic oxide gas, .	972
Carbonic " " .	r1527 -	drogen "	972
Nitrous oxide . " .	1527	Liussic aciu	937
Cyanogen ".	1805	Ammoniacal " .	590
Oxygen ".	1111	Steam of water "	623
•		Hydrogen "	69

TABLE

Of Change Wheels for Screw-cutting; the leading Screw being of ½ inch pitch, or containing 2 threads in an inch.

aber of thread	0				umber	of teetl	n in	=======================================	Nu	mber o	f teeth	in
Number of threads in inch of screw.	Lathe spindle wheel.	Leading screw wheel.	Number of threads in inch of screw.	Lathe spindle- wheel.	Wheel in contact with spindle-wh.	Pinion in contact with spindle-wh.	Leading screw- wheel.	Number of threads in inch of screw.	Lathe spindle- wheel.	Wheei in contact with spindle-wh.	Pinion in contact with screw-wheel	Leading screw- wheel.
1	80	40	81	40	55	20	60	19	50	95	20	100
11	80	50	81	90	85	20	90	$19\frac{1}{2}$	80	120	20	130
11	80	60	83	60	70	20	75	20	60	100	20	120
$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{8}{4}$	80	70	81 81 81 81 91 91 91	90	90	20	95	$20\frac{1}{4}$	40	90	20	90
2	80	90	93	40	60	20	65	21	80	120	20	140
$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{8}{4}$	80	90	10	60	75	20	80	22	60	110	20	120
$2\frac{1}{2}$	80	100	$10\frac{1}{2}$	50	70	20	75	221	80	120	20	150
28	80	110	11	60	55	20	120	$22\frac{3}{4}$	80	130	20	140
3	80	120	12	90	90	20	120	233	40	95	20	100
31 31 32 38	80	130	$12\frac{3}{4}$	60	85	20	90	24	65	120	20	130
31	80	140	13 !	90	90	20	130	25	60	100	20	150
33	80	150	$13\frac{1}{2}$	60	90	20	90	$25\frac{1}{2}$	30	85	20	90
4	40	80	$13\frac{3}{4}$	80	100	20	110	26	70	130	20	140
	40 i	85	14	90	90	20	140	27	40	90	20	120
41	40	90	$14\frac{1}{4}$	60	90	20	95	$27\frac{1}{2}$	40	100	20	110
48	40	95	15	90	90	20	150	28	75	140	20	150
5	40	100	16	60	80	20	120	$28\frac{1}{2}$	30	90	20	95
	40	110	$16\frac{1}{4}$	80	100	20	130	30	70	140	20	150
6	40	120	$16\frac{1}{2}$	80	110	20	120	32	30	80	20	120
	40	130	17	45	85	20	90	33	40	110	20	120
7	40	140	$17\frac{1}{2}$	80	100	20	140	34	30	85	20	120
	40	150	18	40	60	20	120	35	60	140	20	150
8	30	120	183	80	100	20	150	36	30	90	20	120

Temperature and Weight of the Atmosphere at various heights.

Height.	Temperature.	Water heavier than the air.
Level of the sea,	60°	860 times.
One mile above,	. 43	1,083 "
Two miles above,	26	1,363 "
Three miles above,	9	1,716 "
Four miles above,	-8	2,160 "
Five miles above,	-25	2,719 "

TABLE

Showing how to discover the Quantity and Weight of Water in Pipes of any given size.

Diameter in inches.	Quantity in cubic inches.	Quantity in imperial gallons.	Weight in lbs. avoirdupois.
$\frac{1}{2}$	14.14	0.051	0.51
1 1	56.55	0.205	2.05
11	127.23	0.460	4.60
2	226.19	0.818	8.18
$2\frac{1}{2}$	353.43	1.278	12.78
-3	508 94	1.841	18.41
$3\frac{1}{2}$	692.72	2.506	25.06
4	904.78	3.272	32.72
$4\frac{1}{2}$	1145.11	4.142	41.42
5	1413.72	5.113	51.13
$5\frac{1}{2}$	1710.60	6.187	61.87
6	2035.75	7.363	73.63
$6\frac{1}{2}$	2389.18	8.641	86.41
7	2770.88	10.022	100.22
$7\frac{1}{2}$	3180.86	11.505	115.05
8	3619.11	13.090	130.90
81/2	4085.64	14.777	147.77
9	4580.44	16.567	165.67
$9\frac{1}{2}$	5103.52	18.459	184.59
10	5654.87	20.453	204.53
101	6234.49	22.550	225.50
11	6842.39	24 748	247.48
$11\frac{1}{2}$	7478.56	27.049	270.49
12	8143.01	29.452	294.52

This table shows the quantity and weight of water contained in one fathom of length of pipes of different bores from 1 inch to 12 inches in diameter, advancing by half inch. The weight of a cubic foot of water is taken at 1000 ounces avoirdupois, and the imperial gallon at 10 lbs.

Multipliers used for ascertaining the quantity of Tallow, Oakum, and Oil that can be contained in Tanks for use of Steam-vessels.

Seam	Tallow,		1. 1.	59 lbs. in a cubic foot.
				11 lbs. in a cubic foot.
	Oil, .		40-	6.23 galls. in a cubic foot.
	Coal, .		0	45 cubic feet to a ton.

Line on allow on The

and you do a line would

1	1	Note	Scale of wire-drawing ductility Scale as conducting Scale as	Names PROPERTIES OF	NAMETALES Names	Names PROPERTIES OF STONES, EARN In solid state.	NAMETALES. PROPERTIES OF STON Names Strength of an in.
		10	1	Names Scale of laminable ductility Names Scale of wire-drawing ductility	PROPERTIES OF STON St. Jissin in line Scale of laminable Scale of laminable ductility Scale as conductors of electricity. Ratio of hardness. Scale of laminable ductility Scale as conductors of electricity. Ratio of power in the conduction of heat. Scale of laminable ductility Ratio of hardness. 2720 2570 Scale of laminable ductility Ratio of hardness. 2720 Purbeck stone, 2570 Purbeck stone, 2570 Bristol do, 2574 Bristol do, 2574 Bristol do, 2484 Chalk, British, 2781 Brick, 2148 Chalk, British, 2781 Brick, 270 Coal, Scotch, 1300 Coal, Scotch, 1240 Cannel, 1228 Cannel, 1224 Cannel, 1228 Cannel, 1224 Cannel, 1228 Cannel, 1224 Cannel, 1224 Cannel, 1224 Cannel, 1224 Cannel, 1224 Cannel, 1224 Cannel,	Scale of laminable ductility Scale of laminable ductility	Scale of laminable ductility Scale of hardness Scale of laminable ductility
Scale of laminable	Scale of laminable ductility			Scale of laminable ductility Ratio of hardness. Ratio of hardness. 1 1.8 3 10.0 Granite, do. 1 2.4 2 9.7 Granite, do. 2 2.4 2 9.7 Bristol do., 2 2.8 1 8 9 Craigleith do., 3 10.0 Granite, do. Portland do., Portland do., Craigleith do., Grindstone, Craigleith do., Grindstone, Coal, Scotch, Wegree 4 3.7 "Staffordsh, Gegree 4 3.7 "Cannel, Cannel, Cannel,	PROPERTIES OF STON PROPERTIES OF STON	PROPERTIES OF STONES, EARN PROPERTIES OF STONES, EARN Page Page	PROPERTIES OF STONES, EARTHS, Scale of laminable ductility PROPERTIES OF STONES, EARTHS,
	A degree	Scale as conductors of electricity.	Scale as conductors of electricity. Scale of power in the conduction of the conduct	Scale as conductors of electricity. Ratio of power in the conduction of heat. Names. Ratio of power in the conduction of heat. Names. Names. Names. Names. Names. Names. Names. Partial do, Purbeck stone, Paring stone, Craigleth do, Grindstone, Chalk, British, Brick, Coal, Scotch, Coal, Scotch, Staffordsh, Wewcastle, Cannel, Cannel,	Scale as conductors of electricity. Ratio of power in the conduction of heat. Names. Scale as conductors of electricity. Ratio of power in the conduction of heat. Names. Ratio of power in the conduction of heat. Marble, average 2720 3 10-0 Purbeck stone, 2651 Portland do., 2570 Bristol do, 2554 Malistone, 2484 Craigleith do., 2484 Craigleith do., 2484 Brick,	Scale as conductors of electricity. Ratio of power in the conduction of electricity. Ratio of power in the conduction of electricity. Ratio of power in the conduction of heat. Names.	Scale as conductors of electricity. Names Startins Staffordsh 1240 77 - 50 29 77 - 50 20 77

Properties of Woods.

0	vity,	of a	na	esive an nism	Cor	nparat.	ive
Names.	Specific gravity, water, 1000.	Average wt. of a cubic foot in lbs.	Cubic feet in a ton.	Ultimate cohesive strength of an inch square piism in lbs.	Stiffness.	Strength.	Resilience.
English oak,	934	58	381	11880	100	100	100
Riga do,	872	-54	413	12888	93	108	125
Dantzie do.,	756	47	48	12780	117	107	99
American do.,	672	42	53	10253	114	86	64
Beech,	852	48	45	12225	77	103	138
Alder,	800	46	$48\frac{1}{2}$	9540	63	80	101
Plane,	640	40		10935	78	92	108
Sycamore,	604	38	59	9630	59	. 81	111
Chestnut,	610	38	59	10656	67	89	118
Ash,	845	52	43	14130	89	119	160
Elm,	673	42	53	9720	78	82	86
Mahogany, Spanish,	800	50	45	7560	73	67	61
" Honduras, .	637	-40	55	11475	93	96	99
Walnut,	671	42	53	8800	49	74	111
Teak,	750	46	$48\frac{1}{2}$	12915	126	109	94
Poona,	640	40	55	-12350	99	104	82
African oak,	911	$_{59}$	38	17200	101	144	138
Poplar,	383	34	66	5928	44	. 50	57
Cedar,	561	33	68	7420	28	62	106
Riga fir	753	47	48	9540	98	80	64
Memel do.,	546	34	66	9540	114	80	56
Scotch do.,	528	33	68	7110	55	60	65
Christ. white deal,	590	37	60	12346	104	104	104
American white spruce, .	551	34	66	10296	72	86	102
Yellow pine,	461	28	80	11853	95	99	103
Pitch pine,	660	41	$54\frac{1}{2}$	9796	73	82	92
Larch,	530	31	72	12240	79	103	134
Cork,	240	15	149	95			

Fusing Point of various Metals.

The fusing points of the more refractory substances are only to be ascertained approximately, on account of the doubtful accuracy of the indications given by the pyrometers at very high temperatures.

The pyrometer constructed of platinum is the most delicate, although the rate of its expansion must be uncertain as it approaches its own fusing point. The following are considered to be the fusing points of metals:

Platinum, .	-volley.	Fahr. 3080°	Silver, .	ı				Fahr. 1830°
Wrought iron,	100/45/16	2910	Zinc,					
Steel,	THOU	2500	Lead, .		1			590
Gold,			Bismuth,			1		500
Cast iron, .	(NY)	2100	Tin,					450
Conner		1920	0.000					

A dull red heat is estimated as 1480°; a bright red heat as 1830°; and a white heat as 2370° to 2910°, Fah.

Table of Properties of Liquids.

Names.	Specific grav. water, 1000.	Weight of an imp. gallon in lbs.	Names.	Specific grav. water, 1000.	Weight of an imp gallon in lbs.
Acid, sulphuric, .	1850	18.5	Oils, expressed:		11-1-
" nitric,	1271	12.7	linseed,	940	9.4
" muriatic, .	1200	12.0	sweet almond, .	932	9.3
" fluoric,	1060	10.6		923	9.2
" citric,	1034	10.3		926	9.3
" acetic,			hempseed,	915	9.3
accorc,	1062	10.6		915	9.2
Water from the	The Year		Oils, essential:	44.0	Valley.
Baltic,	1015	10.2	cinnamon,	1043	10.4
Water from the			lavender,	894	8.9
Dead Sea,	1240	12.4	turpentine,	870	8.7
Water from the			amber,	868	8.7
Mediterranean, .	1029	10.3	Alcohol,	825	8.2
Water, distilled, .	1000	10.0	Ether, nitric,	908	9.1
,, .			Proof spirit,	922	9.2
-0		71	Vinegar,	1009	10.1
Jonny of City		7			

Axle Grease.

1. The popular axle grease of the celebrated Mr. Booth is made as follows:

Dissolve ½ lb. common soda in 1 gallon of water, add 3 lbs. of tallow and 6 lbs. of palm oil (or 10 lbs. of palm oil only). Heat them together to 200° or 210° Fah.; mix, and keep the mixture constantly stirred till the composition is cooled down to 60° or 70°.

2. Another and thinner composition is made with ½ lb. of soda, 1 gallon of water, 1 gallon of rape oil, and ½ lb. of tallow, or palm oil.

3. The French compound, called Liard, is thus made:—Into 50 parts of finest rape oil put 1 part of caoutchouc, cut small. Apply heat, until it is nearly all dissolved.

4. Mankettrick's Jubricating compound consists of 4 lbs. of caoutchouc (dissolved in spirits of turpentine), 10 lbs. of common

soda, 1 lb. of glue, 10 gallons of oil, and 10 gallons of water. Dissolve the soda and glue in the water by heat, then add the oil, and lastly the caoutchoue, stirring them until perfectly incorporated.

5. The following is the ordinary kind of axle-grease in common use:—1 part of fine black lead, ground perfectly smooth, with 4

parts of lard. Some recipes add a little camphor.

TABLE

Of Fusibility of Metals.

As given by M. Thenard.

1.—Fusible below a red heat.

CENTIGRADE.

_	Mercury, .			-39~	
	Potassium, .			+58	Gay Lussac and Thenard.
	Sodium, .			90	Do. do.
	Tin,			210	Newton.
	Bismuth, .			256	Do.
	Lead,			260	Biot.
	Tellurium, .			a little less fus. than lead	Klaproth.
	Arsenic, .			undetermined	ethia v
	Zine,			370	Brongniart.
	Antimony, .		-	a little below a red heat	pit med north

2.—Infusible below a red heat.

PYROMETER OF WEDGWOOD.

		A	
Silver,		200	Kennedy.
Copper,		27	Wedgwood.
Gold,		32	Do.
Cobalt,		(a little less difficult) (b) to melt than iron	
Iron,		130	Wedgwood.
11011,		158	Sir G. McKenzie.
Manganese,		160	Guyon.
Nickel,		160	Richter
Palladium, .		Nearly infusible, and to	The other
Molybdenum,		be obtained at a forge	
Uranium,	>	heat only in small	The second second
Tungsten,			Town Street Street
Chromium, .		buttons.	
Titanium,		The state of the s	
		T. C. T.L 4 Ab. forms	I to the late of t
Cerium,		Infusible at the forge	A CONTRACTOR OF THE PARTY OF TH
Osmium, . :	1	furnace. Fusible at	VI - VIX - ITC.
Iridium,		the oxy - hydrogen	of the state of the state of
Rhodium,		blowpipe.	
Platinum,	-		Township West
Columbium,			
Columbium, .)		- (-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-

TABLE

Containing the Quantities of Water, in cubic feet, that will be discharged over a Weir per minute, for every inch in its breadth, when the depths of the Water from the surface to the top edge of the wasteboard do not exceed eighteen inches.

Depth of the Wa- ter in inches.	Cubic feet per mmute, according to Du Buat's formula.	Cubic feet per minute, according to experiments made in Scotland.	Depth of the Wa- ter in inches.	Cubic feet per minute, according to Du Buat's formula.	Cubic feet per minute, according to experiments made in Scotland
1	0.403	0.428	10	12.748	13.535
1 2 3	1.140	1.211	11	14:707	15.632
3	2.095	$2 \cdot 226$	12	16.758	17.805
4 5	3.225	3.427	13	18.895	20.076
	4.507	4.789	14	21.117	22.437
6	5.925	$6 \cdot 295$	15	23.419	24.883
7	7.466	$7 \cdot 933$	16	25.800	27.413
8	9.122	9.692	17	28 · 258	30.024
9	11.884	10.564	18	30.786	32.710

TABLE

Of the Composition of different Gunpowders.

KINDS.	Nitre.	Charcoal.	Sulphur.
Royal Mills at Waltham Ab-	13-07		
bey, England,	75	15	10
France, national establishm't.	75	12.5	12.5
French, for sportsmen,	78	12	10
French, for mining,	65	15	20
United States of America,	75	12.5	12.5
Prussia,	75	13.5	11.5
Russia,	73.78	13.59	12.63
Austria (musket),	72	17	16
Spain,	76.47	10.78	12.75
Spain,	76	15	9
Switzerland (a round powder)	76	14	10
Chinese,	75	14.4	9.9
Theoretical propor. (as above)	75	13.23	11.77

Alloys.

Alloys having a Density greater than the Mean of their Constituents.	Alloys having a Density less than the Mean of their Constituents.			
Gold and zinc. Gold and tin. Gold and bismuth. Gold and antimony. Gold and cobalt. Silver and zinc. Silver and lead. Silver and bismuth. Silver and antimony. Copper and zinc. Copper and zinc.	Gold and silver. Gold and iron. Gold and lead. Gold and copper. Gold and iridium. Gold and nickel. Silver and copper. Silver and iron. Iron and bismuth. Iron and antimony. Iron and lead. Tin and lead.			
Copper and palladium. Copper and bismuth. Lead and antimony. Platinum and molybdenum. Palladium and bismuth.	Tin and palladium. Tin and antimony. Nickel and arsenic. Zinc and antimony.			

TABLE
Showing the estimated Power of Man or Horse as applied to
Machinery.

Application of the Power.	Lbs. avr. at the rate of 220 feet per minute.	Lbs. avr. at the rate of one foot per minute.
A man is supposed to be capable of lifting	Texa Texa	00 / 1=1
or carrying	27.273	6000
A man is supposed to be capable of turning the winch of a crane with a force equal	- 1 to -	mons
to	28.637	6300
When the united efforts of two men are applied to the winch of a crane, the han- dles being at right angles, each man	1,4-1	or
exerts a force equal to	33.499	7350
A man is supposed to exert a power in	(Turn 7.4)	11 11 13178
pumping equal to	17:335	3814
In ringing, a man exerts a force equal to .	38:955	8570
And in rowing,	40.955	9010
The power of a horse is equal to	150 /	/33000

TABLE
Of the Speed and Force of Wind, at different velocities.

Velocity o	f the Wind in	Force in lbs. avoir-	Common Appenations given to			
Miles per hour.	Feet per second.	dupois per square foot.	the Wind.			
1	1.47	'005	Hardly perceptible.			
$\begin{bmatrix} 2\\3\\4 \end{bmatrix}$	2.93	.020	Just perceptible.			
3	4.40	'044	State perceptione.			
4	5.87	.079	Gentle, pleasant wind.			
5	7.33	123	Schoo, picasant wind.			
10	14.67	492	Pleasant, brisk gale.			
15	22.00	1.107	f leasant, brisk gate.			
20	29.34	1.968	Very brisk.			
25	36.67	3.075	Yery orisk.			
30	44.01	4.429	High winds.			
35	51.34	6.027	7 High whites.			
40	58.68	7.873	Very high			
45	66.01	9.963	Yery mgn			
50	73.35	12:300	A storm or tempest.			
60	88.02	17 715	A great storm.			
80	117:36	31.490	A hurricane.			
100	146.70	49.200	A violent hurricane, which wrenches and			
_		DW FT	tears up trees, forces dwellings and minor buildings from their			
	Thursd.		foundations, and drives them before it.			

Note.—The following rule is used to find the force of wind acting perpendicularly upon a surface:—Multiply the surface in feet by the square of the velocity in feet, and the product by '002238. The result is the force in pounds avoirdupois.

Table showing the Height of the Boiling Point, Fah., at different Heights of the Barometer.

Barometer.	Boiling Point.	Barometer.	Boiling Point.
Inches.	Degrees.	Inches.	· Degrees.
31	213.57	281	209.55
301	212.79	28	208.69
30	212.00	271	207.84
291	211.20	27	206.96
20	210.38		

In a vacuum water boils at 98° to 100°, according as the vacuum is more or less perfect.

TABLE

Of the sizes of Nuts, equal in strength to their Bolts.

Diam. of bolt in in.	Short diameter of nut in in.	Diam. of bolt in in		diameter of in inches.	Diam. of bolt in in.	Short diameter of nut in in.
- 1/2	38	1 3	L1(t)	2 7 6	$2\frac{1}{2}$	4 17
$\frac{3}{4}$	<u>5</u> 8	$1\frac{1}{2}$		211	25	484
$\frac{1}{2}$	78	15/8	£, -	$2\frac{7}{8}$	28	415
5 .	$1\frac{1}{16}$	18/4	1	31/8	27	51
84	1 5	1 7/8		38	3	58
78	$1\frac{9}{16}$	2	5 1	$3\frac{9}{16}$	31	57
1	18	21/8		334	$3\frac{1}{2}$	$6\frac{5}{16}$
1 1/8	. 2	21	9401	4	33	63
11	$2\frac{1}{4}$	28	11	$4\frac{1}{4}$	4	71

Note.—The depth of the head should equal the diameter of the bolt; the depth of the nut should exceed it, in the proportion of 9 or 10 to 8.

TABLE.

Showing the Power of various Species of Fuel.

Species of Fuel.	Effect in lbs of water heated to by one lb. of fuel. Effect in lbs. Of water converted into steam of 220°. Quantity to convert a cubic foot of water into low pressure steams.			Quantity to convert a cubic foot of water into steam, al- lowing, by per cent, for loss.		
	lbs:	lbs.	lbs.	lbs.		
Caking coal,	9800	8.4	7.45	8.22		
Coke,	9000	7.7	8.1	9.00		
Splint coal,	7900	6.75	9.25	10.28		
Oak wood, dry,	6000	5.13	12.2	13.6		
Ordinary oak,	3600	3.07	20.31	22 6		
Peat compact, of or-	3250	2-8	22.5	25.0		

TABLE

Of the Ratios of the Successive Hardnesses of Bodies.

Substances.	Hardness.	Specific Gravity.	Substances.	Hardness.	Specific Gravity.
Diamond from Ormus,	20	3.7	Sardonyx,	12	2.6
Pink Diamond,	19	3.4	Occidental amethyst,	11	2.7
Bluish Diamond,	19	3.3	Crystal,	11	2.6
Yellowish Diamond, .	19	3.3	Cornelian,	11	2.7
Cubic Diamond,	18	3.2	Green Jasper,	11	2.7
Ruby,	17	4.2	Reddish yellow do	9	2.6
Pale ruby, from Brazil,	16	3.5	Schoerl	10	3.6
Deep blue sapphire, .	16	3.8	Tourmaline,	10	3.0
Do., paler,	17	3.8	Quartz,	10	2.7
Topaz,	15	4:2	Opal	10	2.6
Whitish topaz,	14	3.5	Chrysolite, Zeolite,	10	3.7
Ruby spinell,	13	3.4	Zeolite,	8	2.1
Bohemian topaz,	11	2.8	Fluor,	7	3.5
Emerald,	12	2.8	Calcareous spar,	6	2.7
Garnet,	12	4.4	Gypsum,	5	2.3
Agate,	12	2.6	Gypsum,	3	2.7
Onyx,	12	2.6			

Ductility and Malleability of Metals.

Ductility is the property of being drawn out in length without breaking. This property is possessed in a pre-eminent degree by gold and silver, as also by many other metals, by glass in the liquid state, and by many semi-fluid resinous and gummy substances. The spider and the silkworm exhibit the finest natural exercise of ductility, upon the peculiar viscid secretions from which they spin their threads. When a body can be readily extended in all directions under the hammer it is said to be malleable; and when into fillets, under the rolling press, it is said to be laminable.

There appears, therefore, to be a real difference between ductility and malleability; for the metals which draw into the finest wire are not those which afford the thinnest leaves under the hammer, or in the rolling press. Of this fact iron affords a good illustration. Among the metals permanent in the air seventeen are ductile and sixteen are brittle. But the most ductile cannot be wire-drawn or laminated to any considerable extent without being annealed from time to time during the progress of the extension, or rather the sliding of the particles alongside of each other, so as to loosen their lateral cohesion.

oosen their lateral conesion.

TABLE Of the Ratio of the Ductility and Malleability of Metals.

Metals ductile and malleable, in alphabetical order.	Brittle metals in alphabetical order.	Metals in the order of their wire-drawing ductility.	Metals in the order of their laminable ductility
Cadmium. Copper. Gold. Iron. Iridium. Lead. Magnesium. Mercury. Nickel. Osmium. Palladium. Platinum. Potassium. Silver. Sodium. Tin. Zine.	Antimony. Arsenie. Bismuth. Cerium? Chromium. Cobalt. Columbium. Iridium. Manganese. Molybdenum. Osmium. Rhodium. Tellurium. Titanium. Tungsten. Uranium.	Gold. Silver. Platinum. Iron. Copper. Zinc. Tin. Lead. Nickel. Palladium? Cadmium?	Gold. Silver. Copper. Tin. Platinum. Lead. Zinc. Iron. Nickel. Palladium? Cadmium?

Conducting Powers of Various Substances.

The conducting power of wood is very low; the softer woods being lower in this respect than those which are harder. Of metals, and some other substances, the following is the order, according to Despretz:

Gold, .		1	١.			1000	Tin, 304
Silver, .				17	1	973	Lead, 180
Copper, .						898	Marble, 24
Platinum,						381	Porcelain, 12
Iron,			٠.			374	Tile,
Zinc, .	V,					363	a glody a new transfer of the stand

Radiating Power of Various Substances.

Bodies that have polished surfaces radiate heat less than those that are roughened, and metallic surfaces less than those of more imperfect conductors. The following are the proportions of some of each, according to Leslie:

reach, according to L		THE PERSON NAMED IN COLUMN TWO	
Lamp-black,	. 100 Roug	h lead,	45
Water,	. 100 Merci	iry,	20
Writing-paper,	. 98 Polish	ned lead,	19
Glass,	. 90 Polisl	ned iron,	1 15
Tissue-paper,		ilver, copper, and	
Ice.		a motion from total	1-74 00

Reflecting Powers of Various Substances.

Heat is reflected from the surface on which its rays fall, in the same manner as light; the angle of reflection being opposite and equal to that of incidence. The metals are the strongest reflectors of heat in the following order according to Leslie:

U	neat, m	U	16	101.	OW	1115	ζ (ruei,	according to Lesne.		
	Brass,	Ji.	Į.	m	N	1.	10	100			
	Silver,			9		1.4	13	90	Tinfoil rubbed with mer.,	10	
	Tinfoil,			avo	, IV		1	85	Glass,		
	Block-ti	n.						85	Glass, waxed or oiled, .	5	
	Steel								The state of the second		

Power of Various Substances to Transmit Heat.

All bodies capable of transmitting heat are, more or less, transparent, though their powers of transmitting heat and light are not in the same relative proportions; as the following list of the relative powers of equal masses, determined by Melloni, will show:

Air, 100	Rape-seed Oil, 2
Rock salt, transparent, . 92	Tourmaline, green, 7
Flint-glass, 67	Sulphuric Ether, 21
Bisulphuret of Carbon, . 63	Gypsum, 20
Calcareous spar, transparent, 62	Sulphurie Acid, 17
Rock-crystal, 62	Nitrie Acid, 15
Topaz, brown, 57	Alcohol, 15
Crown-glass, 49	Alum, in crystals, 12
Oil of turpentine, 31	

TABLE

Showing the Scale of Proofs for Chain Rigging close-linked, &c.; the extreme Length of Links not to exceed five diameters of their size in Iron.

Diam. of Links.	Testing Weight.	Max. Strain	Minimum Strain.	Diam. of Links.	Test. Wght.	Maximum Strain.	Minimum Strain.		
Inches.	Tons.	Tons.	Tons. Cwt	Inches.	Tons	Tons.	Tons. Cwt.		
15	315	75	68 0	$\frac{11}{16}$	55	14	13 10		
11/2	27	64	58 0	58	$ 4\frac{5}{8} $ 12		10 15		
18	225	54	49 0	<u>9</u>	3 10		$8\frac{8}{4}$ nearly.		
11	183	45	41 0	1/2	3	. 7.	6 18		
11/8	$15\frac{1}{4}$	37	34 0	7 16	21	6	.5 2		
1	12	30	28 0	8	15	4	3 0		
$\frac{15}{16}$	101	26	25 0	- 5 1 6	11	3	2 14		
7 8	91	23	22 0	$\frac{9}{32}$	7 8	none broken.	none broken.		
13	7-7	20	20.0	1	3	134	1 14 ,		
84	6ª	17	16 0	3	$\frac{13}{34}$	$1\frac{1}{10}$	0 19		

MASONRY.

Of the different kinds of Masonry.

Masonry, in the general acceptation of the term, is the art of cutting or squaring stones, to be applied to the purposes of building; or, in a more limited sense, it is the art of joining stones toge ther with mortar, or otherwise.

The ancients enumerate seven different methods in which they arranged the stones of their buildings. Vitruvius thus classes them: three of hewn or squared stones, threw of unhewn, and one

a mixture of both methods.

1. Net masonry.

This is represented in fig. 33, within the area DEFG, where the stones are squared and placed upon one of the angles, their joints thus forming a net-like appearance. This method, though very neat, is wanting in firmness and strength; for the oblique position of the stones, in regard to each other, gives them a tendency to separate rather than to form a compact assemblage of parts that unite in supporting each

other. Whenever this form of masonry is employed, it is consequently necessary to keep the work together by a border of stones, having some other arrangement, one that is not only capable of supporting itself, but of overcoming the resistance of the net-like form. This is shown in the same figure at ABC; and where the network is merely a casing of stone to the brickwork of a wall, it will be found to answer tolerably well, and looks very neat.

2. Bound masonry is that represented in fig. 2, and is remarkably strong. The perpendicular joints in each course fall directly in the middle of the stones composing the course below and above it; and while it has every requisite of solidity, the joints have, at the same time, a regular and pleasing appearance.

3. Greek masonry is that represented in fig. 3, where every alternate stone, as shown at AD, EF, and BC, is made of the whole thickness of the wall, and serves to bind together the stones

which compose the external and internal faces of the building; and this may be called double binding, as from the perpendicular joints being somewhat similarly situated to that in bound masonry, it has also an additional binding, by extending to the courses above and below it, thus forming a compact and durable wall, which resists every effort to separate in any direction.

4. Masonry by equal courses. This method of uniting stones is shown in fig. 4, and only differs from the bound masonry in its

shown in fig. 4, and only differs from the being composed of unhewn stones, or rather in being formed of stones that are not so accurately cut, nor the edges so perfectly squared; it being only necessary that the external face should be level, and the horizontal joints at equal distances from each other, care being taken at the same time that the perpendiculars are so situated as to bind the courses above and below them.

5. Masonry by unequal courses. This is represented in fig. 5, and is, like the last, formed of unhewn stones, without any regularity

as to their size, it being sufficient that each course is made to bind with the preceding, and the only regularity observed is in the joining which separates each course, the courses themselves being of unequal thickness, as shown at ABCD.

hewn stones of unequal courses, and the middle, as at D, is filled up with stones thrown in at random among the mortar.

7. Compound masonry is, as its name imports, a mixture of the other kinds. It is represented in fig. 7, where the external course Δ B is formed of bound masonry, and the corresponding internal course is at some distance from it, but held to the former by means of iron cramps, as shown at a, b, c, d, c, f, the space between being filled in with small stones or flints thrown into the mortar.

The Methods of Joining Stone.

As the strength and durability of masonry depend as much on the method employed, and the care taken in making all the joints to correspond accurately with each other, as in the quality of the material employed, some remarks will be required in explanation of the methods of joining stone. We shall, therefore, enumerate the several means adopted by workmen, and, where necessary notice the purposes to which each method is best adapted, giving some cautions to secure success in practice, and to save the workman unnecessary labor and trouble.

The joints in masonry are either secured by the means of mortar, cement, or plaster of Paris, or the courses are held together by

cramps, joggles, mortice, and tenoning, or dovetailing.

1. Joining by mortar, or cements. It is absolutely necessary that the joints should be perfectly smooth, and touch in every part; and the stones must be so square as to bed well on each other, that is to say, they must not have such irregular faces as to roll, or, in technical terms, be winding to each other. The greatest care must be taken by the workman to have his mortar of a proper consistence—not too thin, as in drying it would shrink from the work, nor too thick, for that would prevent the stones from bedding properly. The best way in irregular masonry, or in that composed of small stones thrown, as it were, between the regular work, as in compound masonry, is to saturate fresh lime with water, and, while hot, to pour it on the work, which hardens and consolidates the whole into one solid mass. This method is much used in joining soft stones and brickwork, and is calculated to promote the

strength and solidity of the work.

2. Joining by cramps. Cramping is performed by inserting into the two pieces of stone, which are to be bound together, a piece of iron or some other metal, the ends of which, bent at right angles, are inserted in a cavity cut in each stone, the cavities being so large as to admit the iron easily; melted lead is then poured in to fill the vacant space, and, when cold, a chisel is driven into it, so that it may press close to the work; for all metals expand by fusion, and obstacles may prevent them from contracting in cooling. Cramps composed of copper are, in many cases, very preferable to those made of iron, for they are less likely to oxidize, or rust, or to be affected by the lime or mortar. It would be of advantage to coat the cramps, if made of iron, with some substance that would defend them from the effects of damp. We may here remark, that the channel made to receive the cramp should be dovetailed, to prevent the lead from coming out, which it is otherwise apt to do, in the course of time. The only objection to the use of copper cramps, in preference to iron, is their expense, which in large public works is not of any importance, and, for common purposes, iron answers very well; but the more malleable or tough the iron

the better it is, as it is more calculated to resist the different tem-

peratures to which the work may be exposed.

3. Joining by joggles. The method of securing the joints of masonry by means of joggles is chiefly adopted for securing the joints of columns or pillars; and consists in sinking a cavity in the two pieces in such a manner as to make them correspond with each other, and inserting in that cavity a piece of metal, stone, or even wood, so that any lateral thrust may not be able to separate them. This method may, with very great advantage, be applied in the construction of domes, and works of the same nature, where it is necessary to avoid the lateral thrust as much as possible.

We may here take the opportunity of mentioning a plan proposed by Dr. Hutton, in his edition of Oznamare's Mathematical Recreations, for taking away the lateral thrust of domes and cupolas. The

following is the problem proposed, and the solution given:

"How to construct a hemispherical arch, or what the architects call an arc en cul-de-four, which shall have no thrust on its piers.

"Let A B, fig. 8, be two contiguous voussoirs, which we will suppose to be three feet in length, and eighteen inches in breadth.

Cut out on the contiguous sides two cavities, in the form of a dovetail, four inches in depth, with an aperture of the same extent, a, b, five or six

inches in length, and as much in breadth. This cavity will serve to receive a double key of cast-iron, as shown in fig. 9, or of common forged-iron, which is still more secure, as it

is not so brittle. These two voussoirs will thus be connected together in such a manner that they cannot be separated without breaking the dovetail at the re-entering angle; but, as each of its dimensions

in this place will be four inches, it will be easily seen that an immense force would be required to produce that effect; for we are taught, by well-known experiments on the strength of iron, that it requires a force of four thousand five hundred pounds to break a bar of forged iron an inch square, by the arm of a lever of six inches; consequently, two hundred and eighty-eight thousand pounds would be necessary to break a bar of sixteen square inches, like that in question. Hence there is reason to conclude, that these voussoirs will be connected together by a force of two hundred and eighty-eight thousand pounds; and as they will never experience an effort to disjoin them nearly so great, as might easily be proved by calculation, it follows that they may be considered as one piece."

They might be still further strengthened in a very considerable degree, for the height of these dovetails might be made double, and

a cavity might be cut in the middle of the bed of the upper voussoir, fit to receive it entirely: the dovetail could not then be broken without breaking the upper voussoir also; but it may be easily seen that, to produce this effect, an immense force would be required.

The second method proposed by Dr. Hutton is more properly by

the aid of joggles. Let A and B, fig. 10, be two contiguous voussoirs, and C, fig. 11, the inverted voussoir of the next course, which ought to cover the

joint between A and B. Each of the voussoirs A and B being

divided into two parts, as ab and cd; then if at ab and cd we sink an hemispherical cavity, in which to introduce a globe of very hard marble, and in the upper voussoir, fig. 10, we sink similar cavities, bc; this, when laid on bc, fig. 11, will form a secure

joint without any lateral thrust; and the two courses cannot be separated without a force adequate to either break the solid stone, or disunite the marble globe; a force almost inconceivable, or at least one far superior to that produced by the arch; the whole dome, or cupola, is, in fact, one solid mass, and can exert no lateral thrust upon the walls on which it is raised. Marble globes are recommended, because iron is liable to rust; but, if the joggles were made of iron, and covered with pitch before they were placed in the cavities, there would be little to fear from rust; and particularly as the iron is inclosed in the substance of the stone, and quite excluded from the action of atmospheric causes.

Little need be said in this place as to morticing and tenoning, or dovetailing, except that they differ slightly from the same operations in joiners' work; for, as cement is used in the joining, they need not be so accurately cut, and are made shorter and thicker than those formed by the joiner, it being sufficient that the parts of each piece to be joined enter into each other at most five or six inches, even in large masses of stone. In small pieces, an inch or an inch and a half is sufficient; for, if the tenon or dovetail be too long, it will decrease the solidity of the joint. For greater security, a small channel is frequently cut in the shoulder of the joint, and melted lead is poured into it, which, filling up the space round the tenon or dovetail, makes the joint more secure, and the work-firm and solid.

In laying some sorts of stones, it is desirable, as far as possible, to place them in the same direction as they had when in the quarry, or, as it is termed by workmen, bedways of the stone; for, if laid in other directions, they are liable to peel and split by the action of the atmosphere.

BRICKLAYING.

Foundations.

The best soils for building upon are gravel, chalk, and stone rock.

Those most to be guarded against are sands, bog earth, clays, and made earth (no matter how hard). Where these occur, avoid piling (except in water works); plank the foundations through the centre of the walls, place long tassels in the piers, lay in chain bond, let the plates be stout, and in one piece, the whole length of each wall; all that is required is to so bind the building that it

may settle altogether, and not partially.

In doubtful foundations, it is advisable to have a trench dug out to the depth of 2 feet to 3 feet below the footings of the brickwork, and about twice the width of the footings, which is to be filled up with concrete, composed of stone lime ground and ballast, or coarse gravel, to be mixed with water, in the proportion of one of lime to five or six of gravel; immediately that it is made up it must be shot into the trench from a stage, 6 feet above, which will cause it to fall in a solid mass; and in a few hours afterwards it will be as firm as a rock.

It is strongly recommended to have good plates; whatever may be slighted in other parts these should not be neglected—they are the soul and support of a building, and cannot, if put in too small, be taken out and replaced, as other timbers may; the difference in large houses will rarely amount to twenty-five dollars.

Bond the work—English bond—using all whole bricks, a course

of stretchers and headers alternately.

Particular care must be taken that all the internal joints of brickwork are well flushed up with mortar; too frequently the workmen are apt to neglect doing it; the consequence is, that all the interior joints are hollow, and allow the damp to penetrate to the inside, no matter how thick the wall may be. Another serious defect in brickwork is in not properly bonding the facing to the backing, particularly if the facing be malms or bricks, which cost an extra price; generally the headers are only bats or half bricks, instead of being a stretcher or a whole brick to bond in with the brickwork at the back; there ought to be at least one stretcher in every 3 feet to each course, if there be not the wall will split or divide into two thicknesses.

In building arches of a large span, it is advisable to build them in half brick rims, with vertical or radiating bond every 3 or 4 feet in the girt; if this latter precaution be not adopted, the consequence will be, that when the centre is struck, the rims will divide and weaken the arch, and perhaps cause a total failure.

In selecting bricks, clap them together-if they ring well, and,

when broken, show that they are burnt through, they will answer the purpose. A hard clamp burnt gray stock is all that is wanted for strength; for water-works and foundations use clinker burnt marl stocks. Avoid samnel or place bricks, and chuffy stocks, and

generally prefer hand tempering to pugging the clay.

In mixing of mortar, it is advisable to see that the laborer properly turns up the mortar, and that the lime is thoroughly incorporated with the sand throughout; avoid using too much water, as it drowns the lime and weakens it; in large works it is best to mix the lime and sand in a mill—cement must be mixed in small quantities.

TABLE

board on the plant of the state of the state of

Showing the Quantity of Earth to be removed, the Number of Bricks and Gallons in one foot in depth or length.

Diam.	1/2 I	Brick rin	n.	1 Brick rim.							
in the clear.	Feet cube	Number of bricks.		Feet cube	Number	Content in gallons					
ft. in.	digging.	laid dry.	in mortar	of digging.	laid dry.	in mortar					
	1 0	00	10.00	al design	00	The Paris	अंगी				
0 - 9	1 8	23	19	4 0	60	1 50 1	234				
1 0	2 4	28	23	4 9	70	58	5 ,				
1 3	3 1	33	27	5 9	80	66	$7\frac{1}{2}$				
1 6	4 0	38	31	7 1	90 /	74	11,				
1 9	4 9	43	35	8 3	102	82	10.15				
2 0	5 9	48	41	9-6	112	92	193				
2 3 2 6 3 0	7 1	53	44	11 0	122	100	25				
2.6	8 3	58	48	12 6	1324	108	$30\frac{1}{2}$				
3 0	11 0	68	57	15 9	154	126	44				
3 6	14 2	79	65	19.6	174	142	60				
4 0	17 7	89	73	23 8	194	159	. 78				
4 6	21 6	100	82	28 3	214	176	100				
5 0	26 0	110	90	33 2	234	192	122				
5 6	30 7	120	98	38 5	254	209	149				
6 0	35 8	130	107	. 44 2	276	226	176				
6 6	41 3	140	115	50 3	296	242	206.				
7 0	47 2	150	123	56 7	316	260	239				
7 6	53 5	160	131	63 6	336	276	275				
8 0	60 1	170	140	70 9	358.	292	313				
8 6	67 2	180	148	78 5	. 378	- 308	354				
9 0	74 7	191	156	86 6	398	326	396				
10,0	90 8	212	174	103 9	438	360	489				
	2071 0 0 1	Marian a	-0.1	at one had	A LITT	his helder	197 Fur				
ma Ji	2010	k la/c; ; ; ai2 1. − 1	1.0	119 -	راد الاياد المادا الاياد التاريات	अस्ति हो। हो छ्ट्रांकर्	197 10				

In the measurement of brickwork no allowance is to be made in quantity for small or difficult works.

Flues to be measured solid.

Timbers inserted in walls not to be deducted.

Two inches to be allowed for bedding plates, where no brickwork is over them.

All cuttings to be measured superficially, excepting to bird's mouths

and squint quoins, which are to be run.

The net quantity of brickwork being found, it is to be reduced to the standard thickness of a brick and a half, and brought into

statute rods of 5½ yards square, or 272 superficial.

Ovens, coppers, and solid walls, of irregular thickness, to be cubed and brought into the standard thickness, by multiplying by 8 (the number of $1\frac{1}{2}$ inches in a foot), and dividing by 9 (the number of $1\frac{1}{2}$ inches in a brick and a half, or $13\frac{1}{2}$ inches, the standard thickness).

Facings of all descriptions to be measured and charged extra, per

foot superficial.

272 feet superficial is a rod of brickwork, 1½ brick, or 13½ inches thick, the standard thickness, to which all brickwork, of whatever thickness, is reduced.

306 cubic feet, or 113 cubic yards, equal to 1 rod of reduced

rickwork.

4352 stock bricks to 1 rod reduced, 4 courses 1 foot high.

4533 ditto, if the 4 courses measure 11\frac{1}{2} inches high.

These calculations are without allowing any waste, which is more than amply compensated in dwelling-houses, by not deducting flues and bond timber; in such work, 4300 stocks, or 4500 place, are sufficient.

5371 bricks laid dry to 1 rod.

4900 ditto in wells and circular cesspools.

A rod of brickwork contains 235 feet cube of bricks, and 71 feet of mortar (4 courses to a foot); which will weigh, upon an average

calculation, 15 tons.

A rod of brickwork requires 1½ cubic yard of chalk lime, and 3 single loads or yards of drift; or 1 cubic yard of stone lime, and 3½ single loads or yards of sand; or 36 bushels of cement, and 36 of sharp sand.

16 bricks to a foot of reduced brickwork.

7 ditto to a foot super of facing.

10 ditto to a foot super of gauged arches.

30 bricks on edge, and 45 bricks flat, to 1 yard of brick-nogging.

36 stocks laid flat, and 52 ditto on edge, to 1 yard of paving.

36 paying bricks laid flat, and 82 ditto on edge, ditto.

A load of mortar, 27 feet cube, requires 9 bushels of lime and 1 yard of sand. A hod contains 20 bricks.

Lime and sand loses one third of its bulk when made into mortar

-likewise cement and sand.

300

The proportion of mortar, or cement, when made up, to the lime, or cement and sand before made up, is as 2 to 3.

Lime, or cement and sand, to make mortar, require as much water as is equal to one third of their bulk, or about 54 barrels for a rod of brickwork built with mortar.

Alternative state of the control sound state agreement

PLASTERING. To low outsites

Thickness of Compo.					Inch yards.			3/ i	nch y	1/4 is	1/2 inch yds	
1 bushe	l of ceme	ent wi	ll cover		11	7		100	11	10/3/3	1000	21
l do.	and 1 c	of sand	d do.		21			-17	3	V 1000	1007	41
l do.	and 2	do.	do.		31	-	101	140	41	UP/6	4	68
l do.	and 3	do.	do.		41				6	rr • c .	100	9
					-							COLETE

(4 inch is the usual thickness.)

1 cwt. of mastic and 1 gallon of oil . . . 11 21

1 cubic yard of chalk lime, 2 yards of road drift or sand, and 3 bushels of hair, will cover 75 yards of render and set on brick, and 70 yards on lath, or 65 yards plaster and render 2 coats and set on brick, and 60 yards on lath; floated work will require about the same as 2 coats and set.

1 bundle of laths and 500 nails will cover about 41 vards.

Mortar.

1 hundred of lime contains 25 striked bushels, or 100 pecks. It is a measure 3 feet square, and 3 feet 1 inch deep. 1 chaldron of lime is equivalent to 57.765 cubic feet, or rather more than 2 hundred.

18 heaped bushels, 22 striked bushels, or 1 yard cube, a single load of sand, mortar, &c.

1 double load is equal to 36 heaped bushels.

1 hod of mortar is equal to 1134 cubic inches, or 8 duodecimal inches, or 9×9 , and 14 inches long.

2 hods of mortar make a bushel nearly.

Cement.

1 barrel of cement is 5 bushels, and weighs 3 cwt. brickwork, in cement, requires 36 bushels of cement and 36 bushels of sand.

1 yard, or 9 feet superficial of 14 inches, or 11 brickwork, in cement, requires about 21 bushels.

1 yard superficial of pointing to brickwork, in cement, requires

about one eighth of a bushel. 1 yard square of plastering, in cement, requires three fourths of a

bushel.

Carpentry and Plastering are measured by the square foot or yard; or, in moulded and ornamental work, by the linear foot. In extensive work the square of 100 feet is also used.

Paving is measured by the square yard.

Digging, &c.

 $23\frac{1}{2}$ cubic feet of sand, $17\frac{1}{3}$ ditto clay, 18 ditto earth, 13 ditto chalk, equal to a ton.

A cubic yard of earth, before digging, will occupy about 11

cubic yard when dug.

27 cubic feet, or 1 cubic yard, contains 21 striked bushels, which is considered a *single load*, and double these quantities a *double load*.

18 cubic feet of night soil, 1 ton.

2½ tons of ditto is the quantity a cart contains; 6 feet long, 3 feet 3 inches wide, by 2 feet 4 inches deep, or 45 feet cube.

Coarse Stuff.

Coarse stuff, or lime and hair, as it is sometimes called, is prepared in the same way as common mortar, with the addition of hair procured from the tanner, which must be well mixed with the mortar by means of a three-pronged rake, until the hair is equally distributed throughout the composition. The mortar should be first formed, and when the lime and sand have been thoroughly mixed, the hair should be added by degrees, and the whole so thoroughly united that the hair shall appear to be equally distributed throughout.

Fine Stuff.

This is made by slaking lime with a small portion of water, after which so much water is added as to give it the consistence of cream. It is then allowed to settle for some time, and the superfluous water is poured off, and the sediment is suffered to remain till evaporation reduces it to a proper thickness for use. For some kinds of work it is necessary to add a small portion of hair.

Stucco for Inside of Walls.

This stucco consists of fine stuff already described, and a portion of fine washed sand, in the proportion of one of sand to three of fine stuff. Those parts of interior walls are finished with this stucco which are intended to be painted. In using this material, great care must be taken that the surface be perfectly level, and to secure this it must be well worked with a floating tool or wooden trowel. This is done by sprinkling a little water occasionally on the stucco, and rubbing it in a circular direction with the float, till the surface has attained a high gloss. The durability of the work very much depends upon the care with which this process is done, for if it be not thoroughly worked it is apt to crack.

Gauge Stuff.

This is chiefly used for mouldings and cornices which are run or formed with a wooden mould. It consists of about one fifth of plaster of Paris, mixed gradually with four fifths of fine stuff. When the work is required to set very expeditiously, the proportion of plaster of Paris is increased. It is often necessary that the plaster to be used should have the property of setting immediately it is laid on, and in all such cases gauge stuff is used, and consequently it is extensively employed for cementing ornaments to walls or ceilings, as well as for casting the ornaments themselves.

Higgins' Stucco.

To fifteen pounds of the best stone lime add fourteen pounds of bone ashes, finely powdered, and about ninety-five pounds of clean, washed sand, quite dry, either coarse or fine, according to the nature of the work in hand. These ingredients must be intimately mixed, and kept from the air till wanted. When required for use, it must be mixed up into a proper consistence for working with lime water, and used as speedily as possible.

Parker's Cement.

This cement, which is perhaps the best of all others for stucco, as it is not subject to crack or flake off, is now very commonly used, and is formed by burning argilfaceous clay in the same manner that lime is made; it is then reduced to powder, by the process described in a previous part of this work. The cement, as used by the plasterer, is sometimes employed alone, and sometimes it is mixed with sharp sand; and it has then the appearance, and almost the strength, of stone. As it is impervious to water, it is very proper for lining tanks and cisterns.

Hamelein's Cement.

This cement consists of earthy and other substances insoluble in water, or nearly so; and these may be either those which are in their natural state, or have been manufactured, such as earthenware and china; those being always preferred which are least soluble in water, and have the least color. When these are pulverized, some oxide of lead is added, such as litharge, gray oxide, or minium, reduced to a fine powder; and to the compound is added a quantity of pulverized glass or flint stones, the whole being thoroughly mixed and made into a proper consistence with some vegetable oil, as that of linseed. This makes a durable stucco or plaster, that is impervious to wet, and has the appearance of stone.

The proportion of the several ingredients is as follows:—to every five hundred and sixty pounds of earth, or earths, such as pit sand, river sand, rock sand, pulverized earthenware or porcelain, add forty pounds of litharge, two pounds of pulverized glass or flint, one pound of minium, and two pounds of gray oxide of lead. Mix

the whole together, and sift it through sieves of different degrees of fineness, according to the purposes to which the cement is to be

applied.

The following is the method of using it:—To every thirty pounds' weight of the cement in powder add about one quart of oil, either linseed, walnut, or some other vegetable oil, and mix it in the same manner as any other mortar, pressing it gently together, either by treading on it, or with the trowel; it has then the appearance of moistened sand. Care must also be taken that no more is mixed at one time than is required for use, as it soon hardens into a solid mass. Before the cement is applied, the face of the wall to be plastered should be brushed over with oil, particularly if it be applied to brick, or any other substance that quickly imbibes the oil; if to wood, lead, or any substance of a similar nature, less oil may be used.

Maltha, or Greek Mastic.

This is made by mixing lime and sand in the manner of mortar, and making it into a proper consistency with milk or size, instead of water.

Plaster in imitation of Marble.

This species of work is exquisitely beautiful when done with taste and judgment, and is so like marble to the touch, as well as appearance, that it is scarcely possible to distinguish the one from the other. We shall endeavor to explain its composition, and the manner in which it is applied; but so much depends upon the workman's execution, that it is impossible for any one to succeed in an attempt to work with it without some practical experience.

Procure some of the purest gypsum, and calcine it until the large masses have lost the brilliant sparkling appearance by which they are characterized, and the whole mass appears uniformly opaque. This calcined gypsum is reduced to powder, and passed through a very fine sieve, and mixed up, as it is wanted for use, with Flanders glue, isinglass, or some other material of the same kind. This solution is colored with the tint required for the seagliola, but when a marble of various colors is to be imitated, the several colored compositions required by the artist must be placed in separate vessels, and they are then mingled together in nearly the same manner that the painter mixes his color on the pallet. Having the wall or column prepared with rough plaster, it is covered with the composition, and the colors intended to imitate the marble, of whatever kind it may be, are applied when the floating is going on.

It now only remains to polish the work, which, as soon as the composition is hard enough, is done by rubbing it with pumicestone, the work being kept wet with water applied by a sponge. It is then polished with Tripoli and charcoal, with a piece of fine linen, and finished with a piece of felt, dipped in a mixture of oil

and Tripoli, and afterwards with pure oil.

Composition.

This is frequently used, instead of plaster of Paris, for the ornamental parts of buildings, as it is more durable, and becomes in time as hard as stone itself. It is of great use in the execution of the decorative parts of architecture, and also in the finishings of picture frames, being a cheaper method than carving, by nearly

eighty per cent.

It is made as follows: Two pounds of the best whitening, one pound of glue, and half a pound of linseed oil are heated together, the composition being continually stirred until the different substances are thoroughly incorporated. Let the compound cool, and then lay it on a stone covered with powdered whitening, and heat it well until it becomes of a tough and firm consistence. It may then be put by for use, covered with wet cloths to keep it fresh. When wanted for use it must be cut into pieces, adapted to the size of the mould, into which it is forced by a screw press. The ornament, or cornice, is fixed to the frame or wall with glue, or with white lead.

To make Glass Paper.

Take any quantity of broken glass (that with a greenish hue is the best), and pound it in an iron mortar. Then take several sheets of paper, and cover them evenly with a thin coat of glue, and, holding them to the fire, or placing them upon a hot piece of wood or plate of iron, sift the pounded glass over them. Let the several sheets remain till the glue is set, and shake off the superfluous powder, which will do again. Then hang up the papers to dry and harden. Paper made in this manner is much superior to that generally purchased at the shops, which chiefly consists of fine sand. To obtain different degrees of fineness, sieves of different degrees of fineness must be used.

To make Stone Paper.

As, in cleaning wood-work, particularly deal and other soft woods, one process is sometimes found to answer better than another, we may describe the manner of manufacturing a stone paper, which, in some cases, will be preferred to sand paper, as it produces a good face, and is less liable to scratch the work. Having prepared the paper as already described, take any quantity of powdered pumice-stone, and sift it over the paper through a sieve of moderate fineness. When the surface has hardened, repeat the process till a tolerably thick coat has been formed upon the paper, which, when dry, will be fit for use.

WOODWORK, CARPENTRY, &c.

Decay of Wood.

Some woods decay much more rapidly than others; but they will all, in some situations, lose their fibrous texture, and with it their properties. To ascertain the causes which act upon woods, and effect their destruction, is an important object both to the builder and to the public.

Cause of the Decay of Timber.

All vegetable as well as animal substances, when deprived of

life, are subject to decay.

If the trunk or branch of a tree be cut horizontally it will be seen that it consists of a series of concentric layers, differing from each other in color and tenacity. In distinct species of trees these layers present very different appearances, but in all cases the outer rings are more porous and softer than the interior. Wood is essentially made up of vessels and cells, and the only solid parts are those coats which form them. These vessels carry the sap which circulates through the tree, gives life and energy to its existence, and is the cause of the formation of leaves, flowers, and fruit. when the tree is dead, and the sap is still in the wood, it becomes the cause of vegetable decomposition by the process of FERMENTATION. There are five distinct species of vegetable fermentation—the saccharine, the coloring, the vinous, the acetous, and the putrefactive. We are indebted to Mr. Kvan for the discovery that albumen is the cause of putrefactive fermentation, and the subsequent decomposition of vegetable matter.

Circumstances favorable to Vegetable Decomposition.

Wood is not equally liable to decay under all circumstances. When thoroughly dried it is not so quickly decomposed as when in its green state, for in the latter condition it has in itself all the elements of destruction, and it is scarcely possible to prevent the effect if it be then used in building. But supposing the timber to be perfectly seasoned, it is more liable to decay under some circumstances than in others. Timber is most durable when used in very dry places.

When timber is constantly exposed to the action of water, the decomposition effected will depend upon the nature and chemical composition of the substance. A portion of wood may be soluble in water, but other parts are not; so that after a definite period, the continued action of water upon a piece of timber ceases, and if it can sustain the influence of this cause until that period there is no termination to its endurance, except from those casualties which it might have been able to bear in its original state, but cannot after the removal of that portion of its substance soluble in water.

Should a piece of timber that has been for a long time exposed to water be brought into the air and dried, IT WILL BECOME BRITTLE AND USELESS.

When wood is alternately exposed to the influence of dryness and moisture it decays rapidly. It appears, from experiments, that after all the matter usually soluble in water has been removed, a fresh maceration and contact of the air produces a state of matter in that which is left which renders it capable of solution. A piece of timber may then in this manner be more and more decomposed, until at last the whole mass is destroyed. The builder is sometimes compelled to use wood in places where it will be exposed to alternate dryness and moisture; fencing, weather boarding, and other works, are thus exposed. In all these cases he may anticipate the destructive process, and provide against it. The wood used in such situations should be thoroughly seasoned, and then painted or tarred; but, if it be painted when not thoroughly seasoned, The destruction will be hastened, for the evaporation of the contained

vegetable juices is prevented.

There is one other circumstance to be considered—the influence of moisture associated with heat. Within certain limits the decomposition resulting from moisture increases with the temperature. The access of the air is not absolutely necessary to the carrying on of this process, but water is; and as it goes on, carbonic acid gas and hydrogen gas are given off. The woody fibre itself is not free from this decomposition, for, as the carbonaceous matter is abstracted by fermentation, it becomes more susceptible of this change. This statement is proved by the circumstance, that when quicklime is added to the moisture the decomposition is accelerated, for it abstracts carbon; but the carbonate of lime produces no such effect: a practical lesson may be learnt from this fact; if timbers be bedded in mortar, decomposition must follow, for it is a long time before it can absorb sufficient carbonic acid to neutralize the effect, and the dampness which is collected by contact with the wet mortar increases the effect. When the wood and the lime are both in a dry state no injury results, and it is well known that lime protects wood from worms.

When the destructive process first becomes visible it is by the swelling of the timber, and the formation of a mould or fungus upon its surface. This fungus or cryptogamic plant rapidly increases, and soon covers over the whole surface of a piece of timber, having a white, grayish-white, or brownish hue. When the seeds of destruction are thus once sown they cannot be readily eradicated. Heat and moisture may be considered the prominent causes of the rapid decomposition of vegetable substances. When wood is completely and constantly covered with water this effect is not produced; and we have an example in the fact, that, although those parts of a vessel which are subject to an occasional moisture are liable to dry rot, yet those parts which are constantly beneath the water are not ever thus affected; and although the head of a pile, which may be now and then wetted by the casual rise of the tide,

and is then dried again by the sun, may be decomposed, yet those parts which are always covered with water have been found in a solid state after CENTURIES of immersion.

Means of Preventing Decay.

Something may be done towards the prevention of decay by felling the timber at a proper season. A tree may be felled too soon or too late, in relation to its age and to the period of the year. A tree may be so young that no part of it shall have the proper degree of hardness, and even its heart-wood may be no better than sap-wood; or a tree may be felled when it is so old that the wood, if not decayed, may have become brittle, losing all the elasticity of maturity. The time required to bring the several kinds of trees to maturity varies according to the nature of the tree and the situation in which it may be growing. Authors differ a century as to the age at which oak should be felled, some say one hundred, and others two hundred years; it must, then, be regulated according to circumstances.

But it is also necessary that the timber trees should be felled at a proper season of the year; that is to say, when their vessels are least loaded with those juices which are ready for the production of sap-wood and foliage. The timber of a tree felled in spring or in autumn would be especially liable to decay; for it would contain the element of decomposition. Midsummer and midwinter are the proper times for cutting, as the vegetative powers are then ex-

pended.

There are some trees, the bark of which is valuable, as well as the timber; and as the best time for felling is not the best for stripping the bark, it is customary to perform these labors at different periods. The oak-bark, for instance, is generally taken off in early spring, and the timber is felled as soon as the follage is DEAD; and this method is found to be highly advantageous to the durability of the timber. The sap-wood is hardened, and all the available vegetable juices are expended in the production of foliage. Could this plan be adopted with other trees, it would be desirable; but the barks are not sufficiently valuable to pay the expense of stripping.

Seasoning Timber.

Supposing all these precautions to be taken in felling timber, it is still necessary to season it; that is, to adopt some means by which it may be dried, so as to throw off all the juices which are still associated with the fibres of the wood. As soon as the timber is felled, it should be removed to some dry place; and, being piled in such a manner as to admit a circulation of air, remain in log for some time, as it has a tendency to prevent warping. The next process is to cut the timber into seantlings, and to place these upright in some dry situation, where there is a good current of air, avoiding the direct rays of the sun. The more gradually the

process of seasoning is carried on, the better will be the wood for all the purposes of building. Mr. Tredgold says, "It is well known to chemists, that slow drying will render many bodies less easy to dissolve; while rapid drying, on the contrary, renders the same bodies more soluble. Besides, all wood, in drying, loses a portion of its carbon, and the more in proportion as the temperature is higher. There is in wood that has been properly seasoned a toughness and elasticity which is not to be found in rapidly dried wood. This is an evident proof that firm cohesion does not take place when the moisture is dissipated in a high heat. Also, seasoning by heat alone, produces a hard crust on the surface, which will scarcely permit the moisture to evaporate from the internal part, and is very injurious to the wood.

"For the general purposes of carpentry, timber should not be used in less than two years after it is felled; and this is the least time that ought to be allowed for seasoning. For joiners' work it requires four years, unless other methods be used; but, for carpentry, natural seasoning should have the preference, unless the

pressure of the air be removed."

Many artificial methods of seasoning timber have been proposed; and a brief notice of some of those which have been found most useful will be required.

Seasoning by a Vacuum.

All the vegetable and animal juices are kept in their particular vessels by the pressure of the atmosphere: remove that pressure, and the animal fluids could no longer be retained by the veins and arteries; and the vegetable fluids would exude and appear on the surface of the plant. Place a small piece of wood beneath the receiver of an air-pump, and exhaust the air, and in a short time the wood will be covered with drops of the liquid which can no longer be retained, as the atmospheric pressure is removed. Mr. Langton thought that this might be applied to the extraction of those vegetable juices in timber, known to be the cause of its decay. An arrangement was therefore adopted, by which large masses of timber might be inclosed in a vessel having such machinery as would be necessary to exhaust the air, heat being at the same time employed so as to vaporize the exuded juices. vapor is conveyed away by pipes surrounded by cold water, and is condensed into liquid having a sweet taste. This process is deserving of more attention than has hitherto been given to it.

Water Seasoning.

It has been stated, by various writers, that wood immersed in water for about a fortnight, and then dried, is better suited for all the purposes of the joiner. There can be no doubt that immersion water tends to neutralize the effect of the saccharine matter, by dilution or an almost absolute removal. This process has also the effect of rendering the wood less liable to crack and warp; but, if

we judge by Duhamel's experiments, it injures the strength of the material, and should not, therefore, be adopted in any instance where the timber is to be employed by the carpenter. Evelyn recommends boards that are to be used for flooring to be seasoned in this way: "Lay your boards," he says, "a fortnight in water, (if running the better, as at a mill-pond head;) and then setting them upright in the sun and wind, so as it may pass freely through them, turn them daily; and thus treated, even newly-sawn boards will floor far better than those of a many years' dry seasoning, as they call it." Timber intended for ship building may be immersed in sea water; but that which is to be used for houses ought to be placed in fresh water; for if timber, or any other building material, be impregnated with salt, it will ever be wet, for salt attracts moisture so readily that it may be used approximately as a hygrometer. Plaster or mortar made with salt water will always sweat with a moist atmosphere; and timber intended for the house carpenter, if impregnated with salt, will always be damp, or covered with a crystallized efflorescence. Much injury, however, is sometimes done by not thoroughly immersing the timber; the carpenter should therefore be careful when he employs this method of seasoning, that the timber is entirely covered with water, and that it be not exposed to its action for too long a time.

Seasoning by Smoking and Charring.

Authors who have written upon the seasoning of timber have spoken of the effects of smoke, and the carbonization of the surface. We have adopted the same arrangement, but it will be necessary to caution the reader against a misconception of a very inaccurate expression. Timber cannot be seasoned by either smoking or charring, but seasoned timbers may be made more capable of resisting the effects of certain situations by these processes. Should a piece of timber, containing the vegetable juices, be smoked or charred, it would be a means of accelerating decomposition; for preventing all means of evaporation, the common sources of protection would become sources of destruction. But when timber is to be used in situations where it is liable to be attacked by worms, or to produce fungi, it may be desirable to smoke or to char it.

Seasoning by Boiling or Steaming.

Timber is sometimes seasoned by steaming or boiling, both of which means are frequently adopted by ship-builders. The strength of timber appears to be somewhat impaired by these processes, but it is generally less liable to shrink or crack. Duhamel states that he boiled a piece of wood, and then dried it upon a stove, but in drying it, it lost part of its substance, as well as the water contained, and, upon a repetition, he found that it had lost still more of its weight. Four hours' exposure to steam or boiling water is sufficient for timbers of ordinary dimensions, and the drying afterwards goes

on very rapidly, but it should be done as gradually as possible. The joiner frequently finds it necessary to steam or boil wood, to bend it into a particular curve, and also the ship-builder. It has been stated by writers on ship-building, that boiling increases the durability of timber; and, in proof of this, they inform us that the planks in the bow of a ship, which are bent in this way, are never

affected by the dry rot.

It may now be inquired whether, after the most perfect seasoning, timber is secured against the process of decay? To this question a negative answer must be given. However well the timber may be seasoned, it will certainly rot if placed in a damp situation. the rapidity of the decomposition depending upon the nature and state of the wood, and the activity of the destroying agent. As the builder seldom attempts any other seasoning than that which depends upon drying his timbers, it is absolutely necessary that he should carefully avoid the rise of damp, and adopt every means in his power to prevent this evil. Timbers are usually placed in contact with walls, but it must not be supposed that this is sufficient to keep them from the access of damp, for they are frequently the conducting media. Brickwork very readily absorbs moisture, and also throws it upwards, so that the ends of timbers are in contact with the very source of mischief. To prevent the rise of damp upwards, it is common to use, for a few feet above the foundations, cement, a substance impervious to water, instead of mortar, or to place between the courses zinc or slate. But that these plans may be effective, the basement walls should be surrounded with an open area, for, if in contact with the earth on their sides, they can be of no value. To prevent dampness from entering in front, the brickwork should be covered with compo, or some substance impermeable to water.

Another thing to be considered, for the security of timbers, is to arrange, in every plan of a building, for a perfect circulation of air. Ventilation is a most important requisite in the construction of a building, although it is generally a matter of very little importance in the consideration of those who have to plan or construct buildings. The ventilation of roofs is by no means difficult, but there are often so many obstacles to the ventilation of flooring that the designer will not give sufficient attention to his subject to provide against them. These things, however, are not matters of speculation, to be attended to by those who have no higher employment, but are absolutely necessary for the construction of a work that is

intended to survive the builder.

The attention of scientific men has been recently directed to the experiments made by Mr. Kyan. Having made a great number of experiments with a view to ascertain the primary cause of vegetable decomposition, he was at last convinced that albumen was that cause, and that to neutralize its effects would be to prevent decomposition. Some plan was required similar to that adopted in tanning. The gelatin in animal bodies is quite as liable to decom-

position as the albumen of vegetables; but when tannin, the infusion of oak bark, is combined with it, the destructive properties are lost, and the animal matter becomes durable, and almost incapable of decay. Reasoning upon this effect, Mr. Kyan imagined that it might be possible to prevent vegetable decomposition by causing the albumen to form a combination with some other substance; and, knowing the affinity of corrosive sublimate for the albumen, he entered upon a series of experiments, which led him to propose

the use of that substance as a protection for timber. Mr. Kyan inferred that, as wood consists of various successive layers, in which the albumen, or juices containing albumen, circulated freely, it is quite certain, as these juices within the wood, with the watery parts, fly off by the leaves, that the albumen remains behind, and it is probable that this albumen, which from its nature is peculiarly prone to enter into new combinations, is the thing in wood which begins the tendency to decomposition, and produces ultimate decay, whether that decomposition is attended with the formation of cryptogamic substances, or whether in the less organized form, the change occurs with the simple production of what has been called the dry rot. Mr. K. conceived, therefore, if albumen made a part of wood, the latter would be protected by converting that albumen into a compound of protochloride of mercury and albumen; and he proceeded to immerse pieces of wood in this solution, and obtained the same result as that which he had ascertained with regard to the vegetable decoctions. Having done so, it became necessary to employ various modes of experiment, as well as comparative experiments. Now it is not clear in what part of the wood the vegetable albumen may be found, though it exists more especially in that part of the tree which is denominated the alburnum or sap, and is found between the heart-wood and the innermost layer of bark. The experience of all practical men has confirmed the opinion, that this portion of wood is the first to decay.

It is probable that, as the alburnum becomes successive layers of wood, it loses a quantity of albumen; or that, in consequence of the pressure which takes place by the addition of each successive layer, it becomes so situated as to lose a part of its exposure to the vessels where a change may occur, and therefore becomes, in some measure, protected; for that which is one year alburnum or sap,

may be, and indeed generally is, proper wood the next.

The mode in which the application of the solution takes place is in tanks, which may be constructed of different dimensions, from twenty to eighty feet in length, six to ten in breadth, and three to eight in depth. The timber to be prepared is placed in the tank, and secured by a cross-beam to prevent its rising to the surface. The wood being thus secured, the solution is then admitted from the cistern above, and for a time all remains perfectly still. In the course of ten or twelve hours, the water is thrown into great agitation by the effervescence occasioned by the expulsion of the air

fixed in the wood, by the force with which the fluid is drawn in by chemical affinity, and by the escape of that portion of the chlorine, or muriatic acid gas, which is disengaged during the process. In the course of twelve hours this commotion ceases, and in the space of seven to fourteen days, varying according to the diameter of the wood, the change is complete, so that as the corrosive sublimate is not an expensive article, the albumen may be converted into an indecomposable substance at a very moderate rate, and the season-

ing will take place in the course of two or three weeks."

Mr. Kyan's method of seasoning has been already tested, under circumstances so severe, that they may be said to have proved its efficiency. A piece of oak was five years in the fungus pit in Woolwich yard, London, a place notorious for the rapid and almost instantaneous destruction of vegetable matter, and it was as sound when taken out as when put in. This was the most severe test to which the method could be subjected, and its having sustained the trial is a proof of the value of the discovery. It has, however, been objected to the process, that the impregnation of timber with corrosive sublimate must unfit it for use in ship-building; but Mr. Kyan has furnished evidence to the contrary, and proves that salubrity is one advantage. We strongly recommend the builder to make experiments himself upon wood prepared by Mr. Kyan, by using it in places where decay is rapid.

Framing of Timbers.

When timbers are framed together, it is with the intention of supporting some weight, or resisting the strains to which the materials may be exposed in the situations where they are to be placed. Horizontal or vertical timbers are not always of themselves sufficiently strong to sustain the pressure to which they may be subject, but they need assistance, and it then becomes a question, how can the materials intended to assist be best applied, and what are the smallest scantlings that can be adapted? Two things must be studied—stability and economy. It has been often stated that these two results cannot be accomplished by the same arrangement, but as the forces which are to be opposed have usually a direct application, so the system by which they are to be resisted may, usually, be of a simple construction.

Composition and Resolution of Forces.

Two great mechanical principles lie at the base of all proper attempts to estimate the nature of the forces which may be exerted upon substances in particular situations; these principles are called the composition and the resolution of forces.

The resolution of forces is the means of finding any two or more forces which may resist or control the pressure of any one force. The composition of forces consists in finding the direction and amount of one force that is capable of producing the same effect as two or more forces acting in different directions. This is, in fact, only the reverse of the resolution of forces, and the two are, strictly speaking, but one principle; and if the one process be understood, the other must be almost so of necessity. Nor may the student pass over this part of the work, under a fear that it is too mathematical for him to understand, for he can never be certain that the roofs or other framing which he may design will support the weights they are intended to carry, if he does not know how to calculate the action of the weights or forces by which they may be pressed.

Let B D, fig. 1, be the king-post of a roof, and let B A, B C, be

Fig. 1.

the rafters: they are framed together for the purpose of carrying some weight; and the question is this—are they sufficiently strong to carry the weight which is to be placed upon them? To determine this we must refer to the resolution of forces. Let us suppose some determined weight to rest upon the point B. Then, by some scale of equal parts, draw a line B d, equal to the number of pounds, hundred weights, or tons, resting upon the point B, and draw da parallel to BC, and dc parallel to BA. Now measure the line a B by the same scale, and it will give the number of pounds, hundred weights, or tons, by which AB is strained, and cB will give the strain upon BC. But, in the drawing affixed, the rafter BC is longer than the rafter BA; but this does not at all affect the weight, for it remains the same, whatever may be the length of the beam which carries it; but it is necessary to remember that, by increasing the length of the beam, it is rendered less capable of supporting the weight, and a proportionate increase of dimensions must be allowed. But should the direction of the beam be changed, a very different result will be obtained, for in every case the pressure will be increased or decreased. The strain upon the beam BA, fig. 2, will now be measured by the line ab, and that upon B c by b c. In fact, a very slight alteration of position may, under certain circumstances, enormously increase or decrease a strain. It will be scarcely necessary to explain how two or more

forces may be composed, and the single force, acting in a certain direction, be calculated.

Leaving the subject of the composition and resolution of forces, after a statement of the principle, we may proceed to explain the construction and arrangement of those parts of a building which be-

long to the carpenter. And, first of all, we may speak of roofs.

The Construction of Roofs.

The simplest method of constructing a roof is to place horizontal timbers from wall to wall, but this method is only suited to very short bearings, and does not readily throw off the water which may fall upon its covering. The Egyptians constructed flat roofs. To prevent this inconvenience, a roof may be made as an inclined plane; and such a construction has advantages, though its want of uniformity and beauty, and also its want of strength, proportioned to the amount of timber employed, are objections to its use; but still it is stronger than the flat roof, and readily carries off the water that may fall upon it. The best form for a roof is that in which there are two sides, equally inclined to the horizon, and resting in a line called the ridge of the roof. The angle which the inclined side forms with the horizon is called the pitch. In countries where there is a cold climate, and snow is apt to fall in large quantities, the roof is high; in warm countries the roof is low. In Gothic architecture the roof is generally high pitched, and it is so consonant with the style that it often forms a prominent feature in these buildings. There are not so many advantages in high pitched roofs as most persons suppose, and there are many disadvantages. The additional force of the wind upon a high roof is a serious objection, and when parapets are employed it is so far from preventing the effects of a heavy fall of rain or snow that the gutters are so filled that the pipes cannot carry off the water fast enough, or, being stopped by the dirt carried down by the velocity of the water, an overflow is occasioned. The height of roofs is now generally between one third and one sixth of the span.

It is the carpenter's business to frame the timbers of roofs, and sometimes he is required to design them, and he should therefore know how to obtain the strength and other qualities required, with

the smallest possible amount of timber.

A piece of timber, in whatever way it may be placed, except when vertical, will bend or sag, that is to say, its upper side will form itself into a concave surface. The more horizontal the timber is placed the more it will always sag, and as the distance between the points on which it rests is increased, so it has greater liabilities of bending. To prevent this effect as much as possible, arrangements must be made for the support of the beam in some intermediate points. Now, it may be supported from either above or below. If there should be any walls between those on which the ends of the timber rest, these will be sufficient for all the purposes required; if not, the same result must be produced by a system of framing.

The timbers which compose a roof are known by different names, according to the uses for which they are employed, and the situations in which they are placed. The principal timbers of a roof are the following, but they are not all used in every roof: the tiebeams, wall-plates, collar-beams, king-posts, queen-posts, struts, principal rafters, common rafters, ridge-piece, collar-beams, purlins,

and pole-plates.

The Tie-BEAM (A), fig. 3, is a horizontal piece of timber, which

Fig. 3

extends from wall to wall, and rests upon the Wall-plates (B) at each end. It is employed for the purpose of connecting the feet of the principal rafters (C), which would otherwise have a tendency to push out the walls by their own weight, and the weight of the materials placed upon them. In roofs of large span, it is necessary that the tie-beam should be well supported in some point or points, between the ends on which it is supported, for if this be not done it will sag and draw either one or both of the principal rafters towards its centre, and thus destroy the stability of the framing. The King-post (D) is sometimes used for this purpose. It

is a piece of timber placed in a vertical position, connecting the point where the two principal rafters meet, and the centre of the tie-beam.

When the king-post is not thought to be sufficient to support the pressure which may be on the framing, QUEEN-POSTS (B), fig. 4, may be used, which are pieces of timber placed in an upright position,

Fig. 4.

supporting severally the two rafters, and equidistant from the centre of the truss. The horizontal piece of timber (C) which connects the heads of the queen-posts, is called a straining-beam; and that which connects their base, so as to prevent the struts from pushing them nearer to each other, is called a straining cill. Those pieces which are placed in pairs, to assist in supporting the principal rafters, are called struts; they are frequently used to unite the rafters and the base of the king-post. Any horizontal timber above the tie-beam is called a collar-beam. The ridge-piece (H) is that piece of timber which forms the apex of the roof, and is supported by the heads of the principal rafters or the king-posts, and in its turn supports one end of the common rafters. A poleplate is a beam over the walls, supported by the principal rafters or the tie-beam, and is intended to carry the lower ends of the common rafters. Purlins (E) are horizontal timbers, between the pole-plates and ridge-piece. The small spars (cc), which are parallel to the principal rafters, and are supported by the ridgeplate, purlins, and pole-plates, are called common rafters.

The Dimensions of Timbers used in a Roof.

However accurately a roof may be designed, it is unfit for its purpose if the dimensions of the parts be not accurately proportioned. To accomplish this, some experience is required, and a

knowledge of the strength of timbers, under particular circumstances.

There are two things to be secured—a sufficient strength to support the weights to be carried without sagging, and to do that without burdening the walls or other parts of the building over which the roof is thrown. This is not always an easy task, for roofs are sometimes to be made in such forms as prevent the adoption of those means which would otherwise immediately accomplish the object. Sometimes a very large roof must be made flat, at other times a lantern-light must be provided in its centre; and, in a third case, it may be necessary to erect a dome. In designing for these and other roofs, attention should be paid to the character and success of similar works already executed, and the artist should study the points of similarity and difference between these and his own work, so as to provide against dangers, which may peculiarly affect his building.

Examples of Roofs.

Fig. 5 is a roof, the rafters of which are only supported by a collar-beam (C), which acts in part as a tie; but this arrangement is so feeble, that it should never be used over a space where the span is more than fifteen feet.

In fig. 6 there is the addition of a tie-beam (A), and the strain is here thrown from the collar to the tie-beam; the former being compressed, the latter in a state of tension. As there is no arrange-

ment in this truss to support the tie-beam, and to prevent it from sagging, it is unfit for a span of more than twenty-five feet.

To prevent the inconveniences resulting from the sagging of the tie-beam, a king-post (P) and struts (SS) may be introduced, as

Fig. 7.

shown in fig. 7. This form of roof is very well adapted for a span of twenty-five feet.

For a span of thirty to five-and-forty feet, the truss represented

Fig. 8.

in fig. 8 is very well suited, and is now very commonly adopted by architects and builders.

Floors.

The timbers which support the flooring boards, and the ceiling of a room beneath, are called, in carpentry, the naked flooring.

There are three kinds of naked flooring—single, double, and framed.

Single flooring is that in which there is but one series of joists, as shown in fig. 9, where AAA are joists, and B the flooring-boards. To make a single floor as strong as possible, the joists should be thin but deep, sufficient thickness being always allowed for the nailing of the flooring boards. Two inches by six is the smallest

Fig. 9.

dimension for joists; for a length of twenty feet they should be about three inches thick, and twelve inches deep.

Sometimes the joists cannot have in a particular place a bearing upon the walls, and then a piece of timber is framed between the nearest joists. This is done where flues, fire-places, and stairs interfere. The timber thus used is called a trimmer, and the two joists on which it is supported are called trimming-joists, and should be made a little stronger than the common joists. Thus, in fig. 10,

Fig. 10.

AA are common joists, BB trimming joists, and C a trimmer. When the bearing is more than seven or eight feet, the joists should be strutted; that is to say, short pieces of board should be fitted between the joists, so as to form a continued line from wall to wall. These struts greatly strengthen the floor, and prevent the joists from sinking; but it is not desirable to mortice them into the joists, as that process has the effect of weakening the joists themselves.

Double flooring is that in which there are two tiers of joists, the binding joists, as A A, in fig. 11, which in fact support the floor, and the bridging joists B B. In this kind of flooring, the binders extend from wall to wall, and the bridging joists are notched down upon them. Beneath the binders we have a third tier of timbers (D), which are pulley-morticed into the binders, and are called ceiling joists.

When the binding joists are framed into a large piece of timber, called a girder, the floor is said to be a double framed floor. Thus in fig. 12 A is the girder, B a binding joist, C a bridging joist, D D

ceiling joists, and E flooring boards. This kind of floor is decidedly the best when it is necessary to provide for a good and even ceiling, for although single floors may be made very strong for a

great bearing, yet the ceilings are always liable to crack.

It is not easy to obtain timber for girders of much more than twenty feet scantling, and they are therefore trussed. Trusses are used in both floors and roofs, but we have not thought it desirable to interrupt the course of explanation we have given, by a reference to any particulars concerning this branch of carpenter's work; yet it is necessary that we should now make a few remarks upon it.

Trusses.

When timbers are so framed together as to support weights, they are called trusses. It frequently happens that a piece of timber, in itself incapable of supporting a weight, may, when cut into scantlings of different dimensions, and framed together, only carry that weight, but also support a much greater. The bow and string roof, invented by Mr. Smart, is an example in point.

Let A A, in fig. 13, be a piece of timber, which we will suppose to be insufficient of itself to carry a particular weight; from this cut the pieces o, s, e, b, and o, s, d, c. Then let these pieces be raised as in fig. 14, and a key be placed between them at the apex; and

it will form a very strong truss, which may be made still more capable of resisting a strain, by the application of struts.

The principal rafters of a roof are so called because they are trussed. It is not necessary to truss all the rafters in a roof, and it would be very expensive to do so; and therefore trusses are placed at particular distances from each other, according to the weight to be carried; and they are formed in different ways, according to the span over which they are thrown.

It has been already stated, that girders are sometimes trussed, and should always be when their bearing is much more than twenty feet. We have often seen trusses which, so far from strengthening the girders, have decidedly weakened them. Large girders are sometimes sawn down the middle, and when reversed, are bolted together with slips of wood between them. It has been supposed that this strengthens, and is adopted for this purpose; but the supposition is erroneous, though the plan is certainly a good one, for it allows a free circulation of air between the pieces, and facilitates the emission of any dampness that may be in the timber.

A strong girder may be made as strong, in fact, as any truss of the same depth, by bolting two pieces of timber together, or by confining them with iron hoops, the ends of the girder being smaller than the centre, so as to allow the hoops to be driven tighter, and confine the beams.

In fig. 15 we have given a representation of a strong truss

Fig. 15.

girder, the truss post and the abutment pieces being made of wrought iron.

Of Connecting Timbers.

It is sometimes impossible to obtain timbers of the length required for the several parts of a building, and it is then necessary to join two or more pieces together, so as to form them into one piece, and to injure the stability as little as possible. This process is called scarfing, and the parts of the joints which come in contact are called scarfs, and are usually connected by iron bolts.

There are many ways of scarfing, every builder adopting that one which appears to him the best under the circumstances in which the timber is to be employed. Two or three different methods may be mentioned, leaving the workman to examine those which he may happen to meet with in practice, and the various designs which have been given by writers on the art of building.

Fig. 16 shows the means of scarfing without diminishing the

Fig. 16.

length of the pieces. This is done by the introduction of a third piece, having the form of steps, and all the pieces being united together by bolts and plates.

Fig. 17 is a representation of a scarfing, which is very simple, and frequently used, though there is a considerable loss of timber.

The pieces to be united are connected by iron bolts, an iron plate being placed on both sides.

Fig. 18 represents a form of scarfing, adapted to a beam, which

has to support a cross strain. In many arrangements, the whole strain is supported by the straps and bolts, but in this they do not, in consequence of the indentation.

Timber Partitions.

Rooms and passages are often separated by timber partitions, which are so formed as to be covered with lath and plaster. In fig. 19 we have given a design for the framing of a partition, with a door through it; AA are the door-posts, B the head, C the sill, DD are braces which support the quartering, and are assisted by

the struts, E.E. It will be quite evident from a glance at the drawing, that the door-posts help to sustain the braces and struts; while they in return prevent the fall of the door-posts. Braces may be introduced in various ways, but strength is the object for which they ought to be introduced, a circumstance which is very frequently entirely forgotten by carpenters. In some instances, it may be found desirable to introduce a simple truss into a design for partitions.

The carpenter usually connects his timbers either by notching, or by mortice and tenon. Dovetail joints are sometimes used in carpentry, but they ought never to be adopted, for they will always draw when the timber shrinks, and the oblique surface of the dovetail tends to force the timbers apart, acting as though it were a wedge.

Gluing Joints.

In general, nothing more is necessary to glue a joint, after the joint is made perfectly straight, or, in technical terms, out of winding, than to glue both edges while the glue is quite hot, and rub them lengthwise until it has nearly set. When the wood is spongy, or sucks up the glue, another method must be adopted, one which strengthens the joints, while it does away with the necessity of using the glue too thick, which should always be avoided; for the less glue there is in contact with the joints, provided they touch, the better; and when the glue is thick, it chills quickly, and cannot be well rubbed out from between the joints. The method to which we refer is, to rub the joints on the edge with a piece of soft chalk, and, wiping it so as to take off any lumps, glue it in the usual manner; and it will be found, when the wood is porous, to hold much faster than if used without chalking.

Of the different Methods of joining Woodwork.

Many workmen are not aware of the proportion which a piece made to fit into another should have towards that into which it is

fitted, so as to produce the greatest strength with the least possible waste of material; or how to proportion a joint, so that it shall not fail or give way before another. In too many instances, the method of joining woodwork is regulated by no other rule than the fancy of the workman. It is not difficult to explain why joiners' work so frequently fails; why the parts separate with a trifling strain: or, from being bound too tightly together, fly and split in all directions. It is not so frequently from the bad execution of the work, as from the want of an adequate estimate of the strength required to resist the stress on the joint. We shall, then, describe the several kinds of joints, or the methods of framing and joining timber; and, under each head, give such directions, founded on the principles of mechanics, as will enable the workman to proceed with some degree of certainty; and not, as is too frequently the case with artisans, observe no other rules than those which custom has authorized, and practice made familiar.

Dovetailing.

We have given, in the cuts, several examples of dovetailing. The parts which fit into each other are known by different names; the projecting piece, represented in fig. 20, is called the pin of the dovetail; and the aperture into which it is fitted, as shown in fig.

Fig. 20.

Fig. 21.

21, is called the socket. Now the strength of a dovetail depends upon so proportioning the pin and the socket as to enable them to support, rather than destroy, each other. Let ABCD, fig. 20, be a scantling, which is required to be joined to another, by means of a single dovetail. The strength of the joint depends on the form of the dovetail, as well as on the proportion it bears to the parts cut away. We shall endeavor to lay down the principle on which the greatest strength may be secured. Having squared the end of the scantling, and gauged it to the required thickness, AIKLM, divide IM into three equal parts, at K and L. Let KL be the small end of the dovetail, and make the angles IKG and MLH equal to about 75 and 80 degrees respectively; and make GE and HF parallel to AN and BO. Then cut away the parts AIKGEN, and BMLHFO, and having formed the socket to correspond, by

marking the form of the dovetail on the top of the piece ABCD, fig. 21, and cutting away accordingly, the pieces may be fitted together, as shown in fig. 22. It may be here observed, that the

bevel of the dovetail, that is, the angle IKG, fig. 20, may be either more or less than has been mentioned, according to the texture of the wood. Hard, close-grained woods, not apt to rive or split, will admit of a greater bevel than those which are soft, or subject to split; thus the bevel of a dovetail in deal must be less than in hard oak, or in mahogany. It is a great fault to make a dovetail too beveling, for instead of adding

to the strength of the joint, as some persons suppose, it weakens it; for provided the bevel is sufficient to prevent the possibility of pulling the pieces apart, the less the bevel that is given the better. It must have been observed, that there is a great difference between the dovetail made by the cabinet-maker and by the joiner; the former has very little bevel, the latter very much; the former looks neat, and is at the same time strong; while the latter, appearing to aim at strength, looks clumsy, and is at the same time much the weaker of the two.

Fig. 23 represents the dovetail in common use for drawer-fronts. When it is required to hide the appearance of the joint in front, the board ABCD is cut with the pin, and AEFB with the socket. The pins in this sort of dovetail are in general from about three quarters of an inch to an inch apart, according to the size of the pieces to be joined.

Fig. 24 represents the pin part of a lap dovetail, which, when put together, shows only a joint, as if the pieces were rebated together, as shown in fig. 25. ABCD represents the pin, EFGH the socket, and when put together the line HG is only seen as a joint; and if the corner AB is rounded to the joint GH, it will appear as if only mitred together. This kind of dovetail is very useful for many purposes where neatness is required, such as in making boxes.

Fig. 26 represents a still neater dovetail; and, as the edges are mitred together, it is termed a mitred dovetail; and is the same as that shown in fig. 6, except that instead of the square shoulder, or rebat, in AB, it is cut into a mitre, and the other piece is made to correspond.

Another very neat as well as expeditious method of joining pieces of wood, and it is somewhat analogous to dovetailing, is shown in fig. 27. The joint is first formed into a mitre, and the pieces are then keyed together, either by making a saw kerf in a slanting direction, as at AB, or by cutting out a piece, as at CD, in the form of a dovetail. The first method, AB, is called, amongst workmen, keying together; the second, CD, key-dovetailing.

Fig. 28.

The last method to be mentioned is that shown in fig. 28, and may be termed mitre dovetail grooving; the part A B being formed with shoulders cut to the required bevel, and a piece left for the pin dovetail, which is inserted into the socket dovetail, made to correspond to it in the piece CD, which has been previously formed into a mitre. This method, though not much employed, may be used with great advantage in many instances, particularly when it is required to join pieces together the lengthway of the grain.

Mortice and Tenon.

Under this head, we shall endeavor to give some rules necessary to be observed in attempting to proportion the parts of the mortice and tenon, so that they may be equally strong, or that the tenon may not be more likely to give way than the checks of the mortice; for this is the principal thing to be avoided. The workman frequently allows too little substance for the tenon, lest he should weaken the mortice; and sometimes he falls into the opposite error; facts which clearly prove that he is not acquainted with a means of obtaining a maximum of strength with a given quantity of material.

Figs. 29 and 30 represent a simple mortice and tenon. The dotted

Fig. 29.

Fig. 30.

lines show the parts to be cut away. To show the thickness of the tenon, and consequently the width of the mortice, we have here one tenon and two shoulders, that is, three parts; one of which is to be allowed for the tenon, and two for the shoulders; and this will in general be found the best proportion, for if the tenon be more than that, it will weaken the shoulders of the mortice. Now if we have, as is frequently the case, two tenons in one piece, as represented in fig. 31, there will be five parts, two tenons, and three shoulders; so that each tenon will be one fifth of the thick-

ness of the stuff, for the shoulders are all equal to the tenons. This rule may be generally observed, unless the tenon is at a considerable distance from the end of the stuff, and then something more may be allowed for its thickness, as the mortice is then not so liable to split; but it should in no case, however sound the timber, or tough the

material, be more than two out of four parts; that is to say, it can never be safe to make the tenon more than half the thickness of the stuff, and that only under particular circumstances, when the mortice is near the middle of the scantling, for the piece in which the mortice is cut would, in other cases, be considerably weakened.

There is frequently in joiners' work a shoulder at the bottom of

the tenon that fits into the piece in which the mortice is cut, as represented in fig. 32; and the tenon is divided into two parts, as there shown, which, when the stuff is wide, is a good method, as it strengthens the piece in which the mortice is cut, without weakening, in the same proportion, the mortice itself; and we would suggest, in this case, that the piece BC, cut out from between the tenons AB

and DC, be nearly, if not quite, one third of the distance AD; for if much less, the piece left between the mortice will add but very little to the strength of the piece in which the mortice is made; and the tenon would be stronger in proportion to the mortice-piece than necessary. It may be here observed, that if the width of the tenon be much more than four times its thickness, additional strength will be gained by dividing the tenons into two or more parts, as shown in the figure, particularly if we allow a small piece at the bottom of the tenon, as represented in the drawing.

Grooving and Lapping.

This method of joining wood-work is analogous to that of morticing and tenoning. When it is required to join two boards together by means of a tongue and groove, the groove should never exceed one third of the thickness; and often, if the piece for the tongue be formed of hard wood and liable to split, one quarter of the thickness will be sufficient. When a panel is let into a groove in the style, the joiner is often guided by the thickness of the panel itself, which should never be less than one third the thickness of

the style.

In making a groove across the grain, as for partitions, it will be best, in most cases, to make it about a fifth or sixth of the substance of the stuff. But, if the groove be formed into a dovetail, one quarter the thickness will be better, and the dovetail should be made a little tapering, but not too much. It should, in fact, be so made as to go almost home without requiring a blow from a hammer or mallet to drive it into its place until it has nearly attained it; and all joints should be easily separated with a gentle blow before they are glued. In a lap-joint, that is, in lapping two pieces together, supposing them of equal thickness, half the substance of each should be cut away; and, if of unequal thickness, the lap should be made in the thinner piece, of about two thirds or three quarters of its thickness, according to the substance of the thicker piece; thus endeavoring in this, as in all other cases, to avoid weakening one piece more than another.

Bending and Gluing-up.

In bending and gluing-up stuff for sweep-work, much judgment is necessary, and, as the methods are various, we shall mention a few which the workman may apply, as occasion may require, one method being preferable to another, according to the nature of the work in hand.

The first and most simple method is that of sawing kerfs or notches on one side of the board, thereby giving it liberty to bend in that direction; but this method, though very ready and useful for many purposes, weakens the work, and may cause it to break when strains are thrown on the piece. But a tolerably strong sweep may be made in this manner, if, after sawing the kerfs

(particular care being taken to make them regular and even, and to saw them at regular depths), some strong glue be rubbed into each kerf. When bent into the required sweep, a piece of strong canvas should be glued over the kerfs themselves, and the glue be left to harden in the position to which the stuff is bent.

Another method is to glue up the stuff in thin thicknesses, in a cawl or mould, made with two pieces of thick wood cut into the required sweep. This method, if done with care, that is, making the several pieces of equal thickness throughout, of wood free from knots, is perhaps the best that can be devised for strength and accuracy. It is also a practice sometimes to glue up a sweep in three thicknesses, making the middle piece the contrary way of the grain to the outside and inside pieces, which run lengthwise. This method, though frequently used for expedition, is much inferior to the above, as the different pieces cannot shrink together, and consequently the joint between them is apt to give way.

A solid piece, if not too thick, may be sometimes bent into the form required. If a piece of timber be well soaked upon the intended outside of the curve, it may be bent into position, and if kept in that position till cold will retain the curvature that is given

to it.

The only other method of forming a curve, necessary for us to mention, is that of cutting out solid pieces to the required sweep, and gluing them upon one another till they have the thickness required, taking care that the joints are alternately in the centre of each piece below it, something in the manner of courses of bricks one above the other. In this case, it will be necessary, if the work be not painted, to veneer the whole with a thin piece, after it has been thoroughly dried and planed level, and then made somewhat rough with either a rasp or toothing-plane. But the joiner must adopt one plan or another, according to circumstances.

Scribing.

Scribing is the operation by which a piece of wood-work is made to fit against an irregular surface. Thus, for instance, the plinth of a room is made to meet or correspond with the unevenness of the floor. To determine the portion which is to be cut off from a partition, or any wood-work where a floor or ceiling is irregular, it is only necessary to open the compasses to a width equal to the greatest distance between the plinth and the floor; and, passing one leg over the uneven surface, the other leg will leave a mark on the plinth. If the wood be cut away on that line, a surface will be obtained which will make a good joint with the floor or ceiling. But the chief use of the art of scribing is to enable the joiner so to connect the moulding of panels or cornices, that when placed together, they shall seem to form a regular mitre-joint. This method has certainly one advantage over the common method of mitring, for, if the stuff should shrink, little or no alteration will be made in the appearance, but, under the same circumstances, a mitre

would open, and the joint would be shown. The method adopted is this: To cut one piece of the moulding to the required mitre, and then, instead of cutting the other to correspond with it, cut away the parts of the first piece to the edge of the first moulding, which will then fit to the other moulding, and appear as a regular mitre.

Finishing of Joiners' Work.

Joiners' work is generally intended to increase the beauty of a building. When a joiner works in wainscot, oak, or mahogany, his chief object must be to obtain a surface perfectly smooth and When the framing is glued together, the glue which oozes out, and may be spilt upon the work, must be allowed to remain a few minutes and chill, and may then be carefully scraped off with a chisel; and the parts which cannot be thus cleaned may be washed with a sponge dipped in hot water and squeezed nearly This not only saves trouble in operations which follow, but prevents staining, always produced when glue is suffered to remain till quite hard, particularly on wainscot, which turns black in every joint or place where the glue is suffered to remain. After this operation, which, though it may appear tedious to some workmen, will be found a saving of time, the work should remain till perfectly dry; and, when the joints and other parts have been levelled with a smoothing plane, the whole surface may be passed under a smooth scraper, and finished with fine glass paper. It will be sometimes necessary, when the grain is particularly cross, to damp the entire surface with a sponge "to raise the grain," and then again to apply the glass-paper. The work will then be ready for polishing with wax, or varnishing, and the good appearance of the work will be in proportion to the time and trouble expended in

In cleaning pine, the same precautions must be taken for the removal of glue left upon the joints, or spilt upon the work, as already described. This being done, the work may be cleaned off with a piece of glass-paper that has been rubbed with chalk, or, in some cases, with a piece of hearthstone. The work is then ready for the painter; but as there are knots and other places where the turpentine contained in the wood is apt to ooze out, either with or without the increase of heat, and thus spoil the appearance of the finishing, those parts are done over with a composition, and the process is called priming. This is properly the painter's business; but it must sometimes be done by the joiner, for the sake of saving his work. The composition used for this purpose is made with red lead, size, and turpentine, to which is sometimes added a small quantity of linseed oil. Priming has also the advantage of preventing the knots from being seen through the paint. Some workmen omit in this composition the oil and the turpentine, but the size of itself is apt to peel off, and does not thoroughly unite itself

with the wood.

Another method of cleaning-off pine is sometimes adopted. When the surface has been made quite smooth with the plane, it is rubbed with a piece of chalk, and the whole is cleaned with a piece of fine pumice-stone, as in the former process it was done with glasspaper; but if the grain should be still rough, the work may be damped with a sponge, and the operation repeated when dry.

As, in finishing interior work, it is now customary to imitate the graining of different kinds of wood, it is necessary that the joiners' work should be well finished; for if a good even surface be not provided, it will be impossible for the painter to produce the effect he desires. Every defect in the ground will, in fact, be more visible under a delicate graining than when the surface is covered with successive coats of color; but, even in the latter case, work well prepared will not only look better, but the color will not be so apt to chip and peel off as when the surface is not properly levelled.

TERMS USED IN BUILDING.

Abacus.—The upper member of the capital of a column, that on which the architrave rests. It has different forms in the several orders: In the Tuscan or Doric, it is a square tablet; in the Ionic, its edges are moulded; in the Corinthian, its sides are concave, and frequently enriched with carving.

Abutment.—That part of a pier from which the arch springs.

Acanthus.—A plant whose leaves are carved on the Corinthian and Composite capital. They are differently disposed, according to circumstances; and the leaves of the laurel and parsley are sometimes employed in their place.

Acroterium.—A pedestal on the angle or apex of a pediment,

intended as a base for sculpture.

Altitude.—The perpendicular height of anything in the direction of the plumb line. The length of a body is measured on the body itself, and remains constant, its altitude varies according to its inclination to or from the perpendicular.

Alto Relievo.—A sculpture, the figures of which project from the

surface on which they are carved.

Amphiprostylos —An order of Grecian temples, having columns

in the back as well as the front.

Amphitheatre.—A double theatre, employed by the ancients for public amusements. The colosseum at Rome, built by Vespasian, is one of these.

Annulet.—A small square moulding, used to separate others; the fillet which separates the flutings of a column is sometimes known by this term.

Ante.—Pilasters attached to a wall, receiving an entablature, and having bases and capitals differing according to the order employed, but always unlike those of the columns.

Antepagmenta. - A term in ancient architecture, the architraves

round doors.

Apophyge.—That part of a column which connects the upper fillet of the base and the under one of the capital with the cylindrical

part of the shaft.

Aræostylos —That style of building in which the columns are distant from one another from four to five diameters. Strictly speaking, the term should be limited to an intercolumniation of four diameters, which is only suited to the Tuscan order.

Arch.—Such an arrangement, in a concave form, of building materials, as enables them, supported by piers or abutments, to

carry weights and resist strains.

Arch-buttress. - Sometimes called a flying buttress; an arch

springing from a buttress or pier against a wall.

Architrave.—That part of the entablature which rests upon the capital of a column, and is beneath the frieze. It is supposed to

represent the principal beam of a timber building.

Area.—This term is applied to superficies, whether of timber, stone, or other material, and is the superficial measurement; that is, the length multiplied into the breadth. The word area sometimes signifies an open space.

Arris -The line in which two surfaces meet each other.

Ashler.—Common freestone, as it comes from the quarry, generally about nine inches thick, but of different superficial dimensions.

Ashtering. - Quartering, to which laths are nailed.

Astragal.—A small moulding with a semicircular profile, some-

times plain and sometimes ornamented.

Attic Order.—A term used to denote the low pilasters which are placed over orders of columns or pilasters, and frequently employed in the decorations of an attic.

shoot had no have a second a most = B.

Baluster.—A small pillar or pilaster, supporting a rail.

Balustradz.—A series of balusters connected by a rail.

Band.—A square member. To distinguish the situation in which it is placed, or the order in which it is used, an adjective is frequently prefixed; thus, a dentil or a modillion band.

Base.—The lower division of a column. The Grecian Doric has

no base, and the Tuscan has only a single torus on a plinth.

Bead.—A circular moulding, which lies level with the surface of the material in which it is formed. When the moulding projects, or several are joined, it is called reeding.

Beak .- A small fillet in the under edge of a projecting cornice,

intended to prevent the rain from passing between the cornice and fascia.

Beam.—A piece of timber in a building laid horizontally, and intended to support a weight, or to resist a strain.

Beam-filling.—The masonry, or brickwork, between beams or joists.

Bearer.—A vertical support.

Bearing.—The length between bearers, or walls; thus, if a beam rests on walls twenty feet apart, the bearing is said to be twenty feet.

Bed Mouldings.—Those mouldings between the corona and the frieze.

Bevil.—An instrument used by workmen for taking angles. In form it resembles a square, but the blade is moveable about a centre. When the two sides of any solid body have such an inclination to each other as to form an angle greater or less than a right angle, the body is said to be beviled.

Bond.—A term used to signify the connection between the parts of a piece of workmanship. In bricklaying and masonry, it is that connection between bricks, or pieces of stone, which prevents one

part of the building from separating itself from another.

Bond Timber.—Timber laid in walls to tie or bind them together.

Brace.—A piece of timber placed in an inclined position, and used in partitions or roofs, to strengthen the framing. When a brace is employed to support a rafter, it is called a strut.

Bressummer.—A beam, or iron tie, intended to carry an external

wall, and itself supported by piers or posts.

Bricknoggin.—Brickwork between quartering.

Buttress.—A mass of stone or brick-work intended to support a wall, or to assist it in sustaining the strain that may be upon it. Buttresses in Gothic architecture are used for ornament as well as strength.

C.

Cabling.—Cylindrical pieces filling up the lower part of the flutes of a column.

Camber.—To give a convexity to the upper surface of a beam.

Cantalivers.—Pieces of wood or stone beneath the eaves to support them, or mouldings above them.

Capital.—That part of a column or pilaster beneath the entablature; or, in other words, the uppermost member of a column or pilaster. The capital is variously formed, according to the order: Thus, we have the Tusean, Doric, Ionic, Corinthian, and Composite capitals, and many others, that have been invented since the times of the Greeks and Romans.

Caryatides.-Figures of women, introduced to support an enta-

blature, instead of columns.

Casement.—Applied to a window which is hung upon hinges in

place of lines and weights.

Casting.—The warping or shrinking of timber or wood-work, occasioned by an insufficient strength, or by an unequal exposure to the weather, and want of proper seasoning.

Cavetto.—A concave moulding, the quadrant of a circle. Centering.—The framing upon which an arch is turned.

Clamping.—When one piece of wood is so fixed into the end of another as to prevent it from splitting or easting, it is said to be clamped. The pieces may be united with a mortice and tenon, or with a groove and tongue.

Collar Beam.—A beam framed between two principal rafters.

Console.—An ornament cut on the key-stone of an arch, sometimes in the form of a scroll, at other times to represent a human face.

Content.—The amount of any substance in rods, yards, feet, or

inches whether solid or superficial.

Coping.—The stone which covers the top of a wall or parapet.

Corbel.—A bracket, or piece of timber projecting from a wall: in

Gothic architecture, usually carved with some grotesque figure.

Cornice.—The combination of mouldings which finishes or crowns an entablature.—The term is also applied to the mouldings which finish the walls and ceiling of a room, hall, or passage, filling up the angle which they make.

Crown .- A term applied to the uppermost or highest part of an

arch, that in which the key-stone is fixed.

Cyma.—A moulding with a waved or crooked profile, partly convex, partly concave. It is called by workmen an ogee. When the hollow part of the moulding is uppermost, it is called a cymarecta; when the convex part is above, a cymareversa.

D.

Dado.—That flat part of the base of a column between the plinth and the cornice. It is of a cubical form, and from thence takes its name.

Dentils.—Square blocks introduced as ornaments into cornices of the Doric, Ionic, and Corinthian orders. A small circular piece is sometimes cut out, and at other times they are fluted.

Die.—A square cube.

Door Frame.—The case in which a door opens and shuts, consisting of two uprights and one horizontal piece, connected together by mortices and tenons.

Dormer.—A window made in the sloping part of a roof, or above

the entablature.

Dovetailed —When two pieces of wood are fastened together, by letting the pieces of one into apertures formed in the other, of a

shape somewhat resembling a fan or dovetail, they are said to be dovetailed.

Drops—Ornaments in the Doric entablature resembling bells placed immediately under the triglyphs.

Dwarf Wall.—A wall that has a less height than that of the story in which it is used.

E.

Eaves.—The edge of a roof or slating which overhangs a wall, and is designed to carry off the water, without flowing down the wall.

Echinus.—A moulding, the profile of which is the quadrant of a circle turned outwards, or in some instances a conic section. It is said to resemble the shell of the chestnut.

Ellipse.—That curve called by workmen an oval.

Entablature.—That assemblage of mouldings, &c., which are supported by the column. It consists of three parts—the architrave, frieze, and cornice.

Entasis.—The swelling of a column.

Eustylos-That intercolumniation in which the columns are

placed two diameters and a quarter from each other.

Eye.—A term sometimes used in architecture to denote a small window in a pediment. The middle of the Ionic volute, that is, the circle within which the different centres for drawing it are found, is known by the same name.

F.

Façade.—The face or front of a building; strictly speaking, the

principal front.

Fuscia.—A flat broad member, in architecture, but of small projection. It is used to denote the flat members into which the architrave is divided, and these are called fasciæ.

Feather-edged .- Boards or planks thicker at one edge than the

other.

Fillet.—A small square moulding, of slight projection. In carpentry, it means a piece of wood to which boards are nailed.

Flashings.—Pieces of lead so let into the wall as to lap over a

gutter.

Flatting .- Painting, which has no gloss on its surface, being

worked with turpentine. It is used for finishing.

Flutes.—Vertical channels cut in the shafts of columns and pilasters, sometimes meeting one another at a sharp edge, and at other times having a fillet between them.

Flyers.—Stairs which rise without winding.

Flue.—The aperture of a chimney.

Footings.—The courses of brick or stone at the foundation of a wall.

Frieze.—The flat member in an entablature, separating the architrave from the cornice.

Furring.—A means of restoring an irregular framing by the addition of small pieces of wood nailed to the framing itself.

Fust.—The shaft of a column.

G.

Gable.—The upright triangular end of a building at the ends of a roof.

Girder.—The largest piece of timber in a floor, that into which the joists are framed.

Groin.—The intersection of two arches.

Groove.—A rectangular channel cut in stone or timber; such as that which is cut in the stiles to receive the panel of a door.

Grounds.—Those pieces of wood imbedded in the plastering of walls to which skirting and other joiners' finishings are attached.

Guttæ.—See "Drops."

Gutter.—A valley between the parts of a roof, or between the roof and parapet, intended to carry off the rain.

H.

Half Round.—A moulding in a semicircular form, projecting from the surface.

Headers .- Bricks laid with their short face in front.

Hips.—Those pieces of timber placed in an inclined position at the corners or angles of a roof.

I.

Impost.—The combination of mouldings which form the capital of a pier.

Insulated.—A term applied to a column which is unconnected with a wall, or to a building, that stands detached from others.

Intercolumniation.—The space between two columns.

Intertie.—Small pieces of timber placed horizontally between, and framed into, vertical pieces to tie them together.

J.

Jambs.—The side pieces of an opening in a wall, such as doorposts, and the uprights at the side of window frames.

Joggle-piece.—A post to receive struts.

Joists.—Those pieces of timber which are framed into a girder, bressummer, or otherwise, to support a ceiling or a floor.

K.

Key-stone.—That stone in the top or crown of an arch which is in a perpendicular line with the centre.

King-post.—The centre post of a trussed framing, intended to

support the tie-beam and struts.

Knee.—A piece of timber bent to receive some weight, or to

T.

Lantern.—A frame in the dome or cupola of a building to give light. The term is applied to some kinds of fanlights, that is, the frame over a door to light a passage or corridor.

Lining.—That joiners' work which covers an interior surface.

Lintels.—The pieces of timber which lie horizontally over the jambs of windows and doors.

M.

Mantel.—The cross-piece which rests on the jamb of a chimney.

Metopa.—The interval between the triglyphs in the Doric order.

Minute.—The sixtieth part of the diameter of a column.

Modillion.—An ornament in the Ionic, Corinthian, and Composite orders. It is a sort of bracket, and should be placed under the corona.

Module.—The semi-diameter of a column, and is divided into thirty minutes. It is the measure by which the architect deter-

mines the proportions between the parts of an order.

Mortise.—A method of joining two pieces of wood; a hole being made in one of such a size as to receive the tenon or projecting

piece formed on the other.

Mosaic.—A term applied to pavements, and other work, when formed of various materials of different shapes and colors, laid in a kind of stucco, so as to present some pattern or device. The ancients were very successful in the execution of Mosaic, and many fine specimens remain to this day.

Mullion.-Upright posts or bars which divide the lights in a

Gothic window.

N.

Naked.—This term is applied, in architecture, to a plain surface, or that which is unfinished; as the naked walls, the naked flooring—that is, uncovered. The word is sometimes applied to flat surfaces before the mouldings and other ornaments have been fixed.

Newel .- The centre round which the stairs wind in a circular

staircase.

Nosings.—The rounded and projecting edges of the treads of stairs.

0

Obelisk.—A slender pyramid.

Ogee.—A moulding, consisting of a portion of two circles turned in contrary directions, so that it is partly concave and partly convex, and somewhat resembles the letter S.

Order.—An assemblage of parts having certain proportions to one another. There are five orders of architecture—Tuscan, Doric, Ionic, Corinthian, and Composite—all of which were invented by

the ancients, and are now employed by the moderns.

Oval.—A curve line, the two diameters of which are of unequal length, and is allied in form to the ellipse. An ellipse is that figure which is produced by cutting a cone or cylinder in a direction oblique to its axis, and passing through its sides. An oval may be formed by joining different segments of circles, so that their meeting shall not be perceived, but form a continuous curve line. All ellipses are ovals, but all ovals are not ellipses; for the term oval may be applied to all egg-shaped figures, those which are broader at one end than the other, as well as to those whose ends are equally curved.

Ovolo.-A convex projecting moulding whose profile is the qua-

drant of a circle.

Ρ.

Panel.—A compartment inclosed in a frame, into which it is framed or grooved.

Parapet.—A low wall generally about breast-high, on the top of

bridges or buildings.

Pargetting.—Rough plastering, commonly adopted for the inte-

rior surface of chimneys.

Pedestal.—That arrangement on which columns are sometimes placed: it is divided into three parts—the cornice, the die, and the base.

Pediment.—A low triangular crowning ornament in the front of a building, and over doors and windows. Pediments are sometimes

made in the form of a segment of a circle.

Pier.—A square, or other formed mass, used to strengthen or support a building; it sometimes signifies that mass of stone or brickwork between the arches of a bridge, and from which they spring, or against which they abut. But the term is usually employed to designate the solid part between the doors or windows of a building.

Pilaster.—A square pillar insulated, or engaged to the wall, and

is usually enriched with a capital and base.

Piles.-Large timbers, usually shod with pointed iron caps,

driven into the ground for the purpose of making a secure foundation.

Pillar.—An irregular, insulated column. It differs from a column in having no architectural proportion, being either too massive or too slender.

Pinnacle.—A small spire used to ornament Gothic buildings.

Pitch of a Roof.—The proportion obtained by dividing the span by the height; thus we speak of its being one half, one third, one fourth.

Plinth—The solid support of a column or pedestal.

Plumb·line.—An instrument to determine perpendiculars; it consists of a piece of lead attached to a string.

Porch.—The vestibule or entrance to a building.

Portico.—A kind of gallery or piazza, frequently erected in front of large buildings.

Posts.—Square timbers set on end; the term is especially applied to those which support the corners of a building, and are then framed into the bressummer or cross-beam, under the walls.

Pricking-up.—The first coat of plaster worked upon laths.

Profile. The outline; the contour of a part, or the parts compassing an order.

Pugging.—The stuff laid upon sound boarding to prevent the passage of sound from one story to another.

Passage of sound from one story to another.

Puncheons.—Short pieces of timber employed to support a weight when the bearing is too distant.

Purlines.—Those pieces of timber which lie across the rafters to

prevent them from sinking.

Putlogs.—Pieces of timber used in building a scaffold; they are those which lie at right angles to the line of wall, and rest on the scaffold poles or ledgers.

Pyramid.—A solid massive edifice which rises from a square or rectangular base, and terminates in a point called the vertex.

Q.

Quarter Round .- See "Ovolo."

Quarters.—Pieces of timber used in an upright position for partitions. Quarters may be either single or double; the single are generally two inches thick, and four inches broad; the double are four inches square. The quarters are never placed at a greater distance than fourteen inches from each other.

Quirk.—A piece of ground taken out of a plot. The term is also applied to a particular form of moulding, one which has a sudden

convexity.

Quoins.—The corners of a building; they are called rustic quoins when they project from the wall, and have their edges chamfered off.

R.

Rabbet or Rebate.—A groove or channel in the edge of a board.

Rafters.—Those timbers which form the inclined sides of a roof.

Raking.—Means literally inclining, and is applied to those mouldings which, instead of maintaining the horizontal line, are suddenly

bent out of their course.

Rails.—Those pieces in framing which lie in a horizontal position are called rails; those which are perpendicular are called stiles; hence two rails and two stiles inclose a panel. The term is also applied to those pieces in fences or paling which go from post to post.

Relief.—The projection which a figure has from the ground on

which it is carved.

Return.—That part of any work which falls away from the line in front,

Ridge.—The highest part of a roof, or the timber against which the rafters patch.

Riser -That board in stairs set on edge under the tread or step

of the stair.

Rustic.—This term is applied to those courses of stone-work, the face of which is jagged or pecked so as to present a rough surface. That work also is called rustic in which horizontal and vertical channels are cut in the joinings of the stones, so that when placed together an angular channel is formed at each joint.

S

Sash.—The framework which holds the squares of glass in a window.

Sash-frame.—The frame which receives the sash.

Scantting.—The measure to which a material is to be or has been cut.

Scotia.—A semicircular concave moulding, chiefly used between the tori in the base of a column.

Scribing.—Fitting wood-work to an irregular surface.

Scroll.-A carved curvilinear ornament, somewhat resembling in

profile the turnings of a ram's horn.

Sill.—The horizontal piece of timber at the bottom of framing; the term is chiefly applied to those pieces of timber or stone at the bottom of doors or windows.

Shaft.—The body of a column; that part between the base and

eapital.

Shore.—A piece of timber placed in an oblique direction to support a building or wall.

Skirting.—The narrow boards placed round an apartment against

the walls, and standing vertically on the floor.

Sleepers.—Pieces of timber placed on the ground to support the ground-joists, or other woodwork.

Soffit.—A term applied to a frame or paneling overhead, or to a lining, such as that which is fixed in the underside of the tops of windows.

Stiles.—The upright pieces in framing or paneling.

Struts.—Pieces of timber which support the rafters.

Summer.—A large piece of timber supported by piers or posts; when it supports a wall, it is called a breast-summer, or bressummer.

T.

Tenon.—A piece of wood so formed as to be received into a hole in another piece called a mortice.

Throat.—That hollow which terminates the upper end of the

shaft of a column.

Tongue.—That projecting piece at the end of a board which is formed to be inserted into a groove.

Torus.-A moulding that has a convex semicircular or semi-

elliptical profile.

 $Transon - \Lambda$ piece that is framed across a double window-light. $Trellis. - \Lambda$ n open framing, pieces crossing each other so as to form

diamond or lozenge-shaped openings.

Tryglyphs.—Ornaments in the Doric frieze consisting of a square projection with two angular channels, the edges of each forming half a channel. They are placed immediately over the centre of a column; their width is generally one module.

Trimmers.—Pieces of timber framed at right angles to the joist

for chimneys, and the well-holes of stairs.

Tympanum.—The space inclosed by the inclined and horizontal sides of a pediment.

V.

Valley — The space between two inclined sides of a roof.

Vaults.—Underground buildings with arched ceilings, whether circular or elliptical.

Vertex.—The top or summit of a pointed body, as of a cone.

Volute.—The scroll in the capital of the Ionic order.

Voussoirs.—The stones which compose the face of an arch, having a somewhat wedge-shaped form.

W.

Wall-plates.—The timbers built up with a wall, to carry the joists.

Weather-boarding.—Weather-edge boards, fixed vertically, so as to lap over one another.

Well-hole.—The aperture left in floors to bring up the stairs.

GLUES.

Parchment Glue.

Parchment shavings 1 pound; water 6 quarts. Boil until dissolved, then strain and evaporate slowly to the proper consistence. Use a water bath if you want it very light colored.

Japanese Cement, or Rice Glue.

Rice flour; water, sufficient quantity. Mix together cold, then bring the mixture to a boil, stirring it all the time. Observe to boil it in a vessel that will not color it.

Japanners' Gold Size.

Gum ammoniac 1 pound; boiled oil 8 ounces; spirits of turpentine 12 ounces. Melt the gum, then add the oil, and lastly the spirits of turpentine.

Gold Size.

Yellow ochre 1 part; copal varnish 2 parts; linseed oil 3 parts; turpentine 4 parts; boiled oil 5 parts. Mix. The ochre must be in the state of the finest powder, and ground with a little of the oil before mixing.

Glue Liquid.

Glue, water, vinegar, each 2 parts. Dissolve in a water-bath, then add alcohol 1 part. An excellent cement.

Transparent Liquid Japan for Metal.

Copal varnish 35 parts; camphor 1 part; boiled oil 2 parts. Mix.

Portable Glue for Draughtsmen, &c.

Glue 5 parts; sugar 2 parts; water 8 parts. Melt in a water-bath, and cast it in moulds. For use, dissolve in warm water.

Waterproof Glue.

1. Glue 1 part; skimmed milk 8 parts. Melt and evaporate in a

water-bath to the consistence of strong glue.

2. Glue 12 parts; water sufficient to dissolve. Then add yellow resin 3 parts, and when melted add turpentine 4 parts. Mix thoroughly together. This should be done in a water-bath.

PAPERS.

Fire-proof Paper.

Take a solution of alum and dip the paper into it, then throw it over a line to dry. This is suitable to all sorts of paper, whether plain or colored, as well as textile fabrics. You must try a slip of the paper in the flame of a candle, and if not sufficiently prepared dip and try it a second time.

Black Edge Paper.

Blacklead 11 parts; common ink 22 parts; dissolved gum-arabic 1 part. Mix. Then with a sponge lay the color on the edge of the paper, previously placed in the cutting-press, rub it in with a piece of cloth, and burnish. The edge of the paper must be rendered perfectly smooth before applying the black.

To Stain Paper or Parchment.

Red.—Brazil 12 parts; water 70 parts; alum 5 parts. Boil.

1. Blue.—Sulphate of indigo. Water to dilute.

Prussian blue 2 parts; muriatic acid 1 part. Water to dilute.
 Logwood 4 parts; water 30 parts; sulphate of copper 1 part.

Green.—Crystals of verdigris 2 parts; vinegar 1 part. Water to dilute.

Yellow.-French berries, water, and a little alum. Boil.

Purple.—Logwood 2 parts; alum 1 part; water 20 parts. Boil. The addition of a little gum to the above renders them suitable for coloring maps, &c.

Paper for Draughtsmen, &c.

Powdered tragacanth 1 part; water 10 parts. Dissolve and strain through clean gauze, then lay it smoothly with a painter's brush on the paper, previously stretched on a board. This paper will take either oil or water colors.

Copying Paper.

Lay open your quire of paper (clean white, of large size), take the brush and cover it with the following varnish, then hang it up on the line; take another sheet and repeat the operation, until you have finished your quantity. If not clear enough, give each sheet another coat when dry:—Canada balsam, turpentine, equal parts. Mix.

Liquid Gold, for Vellum, &c.

Take gold-leaf and grind it with gum-water; then add a small quantity of bichloride of mercury, and bottle for use.

Liquid Silver, for Vellum, &c.

Take silver-leaf and grind it, with gum-water or glair of egg.

Paper that Resists Moisture.

Take unsized paper, lay it flat on a clean surface, and brush it over with a solution of mastic in oil of turpentine; or plunge it into the solution and hang it up to dry. This paper possesses all the usual qualities of writing paper, with the advantage of resisting moisture.

To Detect the presence of Plaster in Paper.

Calcine the paper in a close vessel, and dilute the residue with

PAPERS.

vinegar, in a silver spoon; if sulphuretted hydrogen is disengaged, which blackens the spoon, the presence of a sulphate (plaster) will be shown. This adulteration has lately become very common among the paper-makers, with the view of increasing the weight.

Waxed Paper.

Take cartridge or other paper, place it on a hot iron and rub it with beeswax, or make a solution of the wax in turpentine, and apply it with a brush. Useful for making water or air-proof pipes, for chemical experiments, &c.

To extract Grease Spots from Paper.

Apply a little powdered pipe-clay, on which place a sheet of paper, then use a hot iron. Remove the adhering powder with a piece of India-rubber.

Papier Mâché.

Take paper, any quantity. Boil it well, then pound it to a paste, and mould. Used in making toys, snuff-boxes, &c.

To Gild the Edges of Paper.

Armenian bole 4 parts; sugar candy 1 part. White of egg to mix. Apply this composition to the edge of the leaves, previously firmly screwed in the cutting-press; when nearly dry smooth the surface with the burnisher; then take a damp sponge and pass over it, and with a piece of cotton-wool take the leaf from the cushion and apply it to the work; when quite dry burnish, observing to place a piece of silver or India paper between the gold and the agate.

Tracing Paper.

Nut oil 4 parts; turpentine 5 parts. Mix, and apply it to the paper, then rub it dry with wheat flour, and brush it over with oxgall. This will bear writing on.

Lithographic Paper.

Give the paper 3 coats of thin size, 1 of starch, and 1 of solution of gamboge. Each to be applied with a sponge, and allowed to dry before the next is applied.

Hydrographic Paper.

This name has been given to paper which may be written on with water. It may be made by rubbing paper over with a mixture of finely powdered galls and sulphate of iron heated till it becomes white. The powder may be pressed into the paper by passing it between rollers, or passing a heavy iron over it. A mixture of dried sulphate of iron and ferro-prussiate of potash may be used for blue writing. Or the paper may be imbued with a strong solution of one ingredient thoroughly dried, and the other applied in powder. Paper which has been wet with a solution of ferro-

PAPERS.

345

prussiate of potash also serves for writing on with a colorless solution of persulphate of iron.

Iridescent Paper.

Nut-galls 8 parts; sulphate of iron 5; sal-ammoniac 1; sulphate of indigo 1; gum-arabic \(\frac{1}{5}\). To be boiled in water, and the paper washed with it exposed to ammonia.

To give Paper the Appearance and Toughness of Parchment.

Dip white unsized paper for half a minute in strong sulphuric acid, and afterwards in water containing a little ammonia. When dried it will look like, and be as strong as parchment.

Photographic Papers.

The following papers should be the finest satin post, of uniform texture, free from the maker's mark, speeks, and all imperfections. The papers must be prepared by candle-light, and kept in the dark till used.

- 1. Simple Nitrated Paper.—This is merely paper brushed over with a strong solution of nitrate of silver. In brushing over the paper it must be crossed. Its sensitiveness is increased by using spirit of wine instead of water. This paper only requires washing in water to fix the drawing.
- 2. Muriated Paper.—The paper is first soaked in solution of copper salt, pressed with a linen cloth or blotting paper, and dried. It is then brushed over on one side (which should be marked near the edge) with the solution of nitrate of silver, and dried at the fire. The stronger the solution the more sensitive the paper. If dipped in a solution consisting of 35 grains of chloride of barium and 2 oz. of distilled water, richer shades of color are obtained.
- 3. Iodized Paper.—Brush over the paper on one side (which should be marked) with strong solution of nitrate of silver (100 gr. to 1 oz); then dip it in a solution consisting of 100 gr. of iodide of potassium dissolved in 4 oz. of distilled water. Wash it in distilled water, drain, and dry it.
- 4. Bromide Paper.—Soak the paper in a solution composed of 40 gr. bromide of potassium dissolved in 1 oz. of distilled water; then brush it over with a strong solution of nitrate of silver, and dry in the dark.
- 5. Calotype Paper.—Dissolve 100 gr. of crystallized nitrate of silver in 2 oz. of distilled water, and add 2 fluid dr. and 40 minims of acetic acid. Mix these at the time of using with an equal measure of cold saturated recently prepared solution of gallic acid. Brush iodized paper with this solution, and mark the side; in half a minute dip it into water, and press it between blotting paper. It is then ready for the camera, where it remains from half a minute to 5 minutes. When removed from the camera dip it into water,

press it between blotting paper, and wash it with a solution of 100 gr. of bromide of potassium in 8 or 10 oz. of water.

- 6. Chromotype Paper.—Soak the paper in a solution of bichromate of potash (in which solution a little sulphate of indigo is sometimes added to vary the color), and dry it at a brisk fire. To fix the drawing careful immersion in warm water is all that is required. It is not sufficiently sensitive for the camera.
- 7. Compound Chromotype Paper.—Dissolve 10 gr. of bichromate of potash, and 20 gr. of sulphate of copper, in an ounce of water. Wash the paper in this solution, and dry it. After the paper has been exposed to the sun, with the article to be copied superposed upon it, it is washed over in the dark with a solution of nitrate of silver of moderate strength. A vivid picture makes its appearance, which is sufficiently fixed by washing in pure water. This is for copying engravings, &c. Another method is to brush writing paper over with a solution of 1 dr. of sulphate of copper in 1 oz. of water; and when dry with a strong, but not saturated, solution of bichromate of potash.
- 8. Cyanotype Paper.—Brush the paper over with a solution of ammonio-citrate of iron. Expose the paper in the usual way, then wash it over with a solution of ferro-cyanide of potassium.
- 9. Crysotype Paper.—Wash the paper with solution of ammoniocitrate of iron, dry it, and afterwards brush it over with a solution of ferro-cyanide of potassium. Dry it in a dark room. The image is brought out by brushing it over with a neutral solution of gold or silver.
- 10. Catalisotype.—Steep paper in water, with a drop or two of hydrochloric acid; absorb the superfluous moisture with blotting paper; brush over with a mixture of $\frac{1}{2}$ dr. syrup of iodide of iron, $2\frac{1}{2}$ dr. of water, and a drop or two of tincture of iodine. Dry with blotting paper, and brush over with a solution of 12 gr. of nitrate of silver to 1 oz. of distilled water. It is then ready for the camera. The picture is fixed by washing in water, and afterwards in a solution of 20 gr. of bromide to 1 oz. of potassium.
- 11. Paper for Positive Photographs.—Most of the preceding give negative pictures, the lights and shadows being reversed; in the following they are correct: Dissolve 40 gr. of muriate of ammonia in 4 oz. of water. Wash highly glazed paper in this solution, dry it, and brush it over with the following solution: Dissolve 120 gr. of crystallized nitrate of silver in $1\frac{1}{2}$ oz. of distilled water; and add $1\frac{1}{2}$ oz of alcohol; after it has stood a few hours filter it. Expose the paper thus washed to the sunshine, till it is darkened; if mottled, wash it a second time, and expose it again. Before using the paper make up the following solution: Hydriodate of barytes 40 gr.; water 1 oz.; pure sulphate of iron 5 gr. Mix, filter, add a drop or two of diluted sulphuric acid, and when settled decant the clear liquor for use. Wash the paper over in this solution, expose

it in the damp state, with the engraving or other object on it to the light, and fix the drawing by washing with water only.

Photographs.

To copy objects, lay them on a plate of clear glass, fixed in a frame; place the prepared paper over them; and fix a back, with a cushion attached to it, so as to press the paper closely on the glass. The glass is then exposed to the light, and the drawing afterwards fixed, as described above. For feathers, lace-work, and other objects which freely admit light through them, the nitrated paper and less sensitive muriated papers may be used. For copying engravings, leaves, and other botanical objects, or entomological specimens, the more sensitive muriated papers, or the bromide paper, or other sensitive kinds, may be used. Engravings should be wetted, and placed with their face to the prepared side of the paper, and kept in close contact with it. Leaves should have their under surface next the glass. For the camera, the most sensitive samples of the muriated papers, made with not less than 100 gr. of nitrate of silver to the ounce, are selected. The calotype is still The papers intended for the camera require to be very carefully prepared. Glass is used instead of paper, after being coated with white of egg, or collodion, with which the compounds of silver are mixed, or over which they are brushed.

BRONZING.

Bronzing Sculpture, Wood, &c.

Bronze of a good quality acquires, by oxidation, a fine green tint, called patina antiqua. Corinthian brass receives, in this way, a beautiful clear green color. This appearance is imitated by an artificial process, called bronzing. A solution of sal-ammoniac and salt of sorrel in vinegar is used for bronzing metals. Any number of layers may be applied, and the shade becomes deeper in proportion to the number applied. For bronzing sculptures of wood, plaster figures, &c., a composition of yellow ochre, Prussian blue, and lamp-black, dissolved in glue-water, is employed.

Bronze.

- 1. Copper 83 parts; zinc 11 parts; tin 4 parts; lead 2 parts. Mix.
 - 2. Copper 14 parts; melt, and add zinc 6 parts; tin 4 parts.

Ancient Bronze.

Copper 100 parts; lead and tin each 7 parts. Mix.

To give an Antique Appearance to Bronze Figures.

Salt of sorrel 1 part; sal ammoniac 4 parts; white vinegar 224 parts. Dissolve, and apply with a camel-hair pencil, just sufficient to damp the bronze, previously warmed. Repeat the operation if required.

Keller's Bronze.

Copper 91 parts; tin 2 parts; zinc 6 parts; lead 1 part. Mix.

Bronze Powder.

Bichloride of mercury 1 part; borax and nitre each 8 parts; tutty 16 parts; verdigris 32 parts; oil to make into a paste. Melt.

Beautiful Red Bronze Powder.

Sulphate of copper 100 parts; carbonate of soda 60 parts. Apply heat until they unite into a mass, then cool, powder, and add copper filings 15 parts. Well mix, and keep them at a white heat for twenty minutes, then cool, powder, and wash and dry.

Bronzing Fluid for Guns, &c.

Nitric acid sp. gr. 1.2, nitric ether, alcohol, muriate of iron, each 1 part. Mix, then add sulphate of copper 2 parts; dissolved in water 10 parts.

ENAMELS.

White Enamel.

Tin 2 parts; lead 1 part. Calcine, then take of the above oxides 1 part; crystal 2 parts; manganese a small portion. Grind well together, fuse, and pour the mass into cold water; dry, grind again to powder, and fuse; repeat the process four or five times, observing great care to prevent any contamination from smoke, or iron, or copper.

Another.

Arsenic 14 parts; potash 25 parts; nitre 12 parts; glass 13 parts; flint 5 parts; litharge 3 parts.

Blue Enamel.

Fine paste (not metallic) 10 parts; nitre 3 parts. Oxide of cobalt to color.

Green Enamel.

Frit 1 pound; oxide of copper 1 ounce; red oxide of iron 12 grains.

Fluxes of Enamel Colors.

1. Flint powder 1 part; calcined borax 1 part; flint glass 3 parts; red lead 4 parts. Keep them in a state of fusion, in a Hessian crucible, for three hours; then pour into cold water, dry, and powder.

2. Glass powder 11 parts; white arsenic 1 part; nitre 1 part.

Mix.

Yellow Enamel.

White oxide of antimony 1 part; white lead 2 parts; alum and sal-ammoniac each 1 part. Mix in fine powder, and apply just sufficient heat to decompose the ammoniac.

Black Enamel.

Clay 2 parts; protoxide of iron 1 part. Mix.

MARBLE STAINING.

To Stain Marble.

It is necessary to heat the marble hot, but not sufficiently so as to injure it, the proper heat being that at which the colors nearly boil.

Blue.—Alkaline indigo dye, or turnsole with alkali.

Red.—Dragon's blood in spirits of wine.

Yellow.—Gamboge in spirits of wine.

Gold Color.—Sal-ammoniac, sulphate of zinc, and verdigris, equal parts.

Green.—Sap green, in spirits, with potash.

Brown.—Tincture of logwood.

Crimson.—Alkanet root in turpentine.

The marble may be veined according to taste. To stain marble well is a tedious and difficult operation.

To Stain White Marble.

Apply with a brush a strong alcohol tineture, made from the root alkanet.

To Clean Marble.

Chalk (in fine powder) 1 part; pumice 1 part; common soda 2 parts. Mix. Wash the spots with this powder, mixed with a little water; then clean the whole of the stone, and wash off with soap and water.

To Extract Oil from Stone or Marble.

Soft soap 1 part; Fuller's earth 2 parts; potash 1 part; boiling water to mix. Lay it on the spots of grease, and let it remain for a few hours.

COMPOUND COLORS IN DYEING.

Are produced by mixing together two simple ones; or, which is the same thing, by dyeing cloth first of the simple color, and then by another. These colors vary to infinity, according to the proportions of the ingredients employed. From blue, red, and yellow, red-olives, and greenish-grevs are made.

From blue, red, and brown, olives are made from the lightest to the darkest shades; and by giving a greater shade of red, the

slated and lavender-greys are made.

From blue, red, and black, greys of all shades are made, such as sage, pigeon, slate, and lead-greys. The king's or prince's color is duller than usual; this mixture produces a variety of hues or colors almost to infinity.

From yellow, blue, and brown, are made the goose-dung and

olives of all kinds.

From brown, blue, and black, are produced brown-olives, and

their shades.

From the red, yellow, and brown, are derived the orange, gold color, feuille-mort or faded leaf, dead carnations, cinnamon, fawn, and tobacco, by using two or three of the colors as required.

From yellow, red, and black, browns of every shade are made.

From blue and vellow, greens of all shades.

From red and blue, purples of all kinds are formed.

Dyer's Spirit.

Aquafortis 10 parts; sal-ammoniae 5 parts; tin 2 parts. Dissolve.

Japan Grounds.

Red.—Vermillion makes a fine scarlet, but its appearance in japanned work is much improved by glazing it with a thin coat of

lake, or even rose pink.

Yellow.—King's yellow, turpeth mineral, and Dutch pink, all form very bright yellows, and the latter is very cheap. Seed-lac varnish assimilates with yellow very well; and when they are required very bright, an improvement may be effected by infusing turmeric in the varnish which covers the ground.

Green.—Distilled verdigris laid on a ground of leaf gold produces the brightest of all greens; other greens may be formed by mixing King's yellow and bright Prussian blue, or turpeth mineral

and Prussian blue, or Dutch pink and verdigris.

Blue.-Prussian blue, or verditer glazed with Prussian blue or

smalt.

White.—White grounds are obtained with greater difficulty than any other. One of the best is prepared by grinding up flock-white, or zinc-white, with one sixth of its weight of starch, and drying it; it is then tempered, like the other colors, using the mastic varnish for common uses; and that of the best copal for the finest.

ticular care should be taken that the copal for this use be made of the clearest and whitest pieces. Seed-lac may be used as the uppermost coat, where a very delicate white is not required, taking care to use such as is least colored.

Black.-Ivory-black, or lamp-black; but if the lamp-black be used it should be previously calcined in a closed crucible. Black grounds may be formed on metal, by drying linseed oil only, when mixed with a little lamp-black. The work is then exposed in a stove, to a heat which will render the oil black. The heat should be low at first, and increased very gradually, or it will blister. This kind of japan requires no polishing. It is extensively used for defending iron articles from rust.

POLISHES.

To Polish Brass Inlaid Work.

File the brass very clean with a smooth file; then take some tripoli powdered very fine, and mix it with the linseed oil. Dip in this a rubber of hat, with which polish the work until the desired effect is obtained.

If the work is ebony, or black rosewood, take some elder-coal powdered very fine, and apply it dry after you have done with the

tripoli, and it will produce a superior polish.

and the Design of any

The French mode of ornamenting with brass differs widely from ours, theirs being chiefly water-gilt (or molu), excepting the flutes of columns, &c., which are polished very high with rotten stone, and finished with elder-coal.

To Brass Plates of Copper.

The plates previously sufficiently heated, expose them to the fumes of zinc.

To Clean Brass.

1. Finely powdered sal-ammoniac; water to moisten.

2. Roche alum 1 part; water 16 parts. Mix. The articles to be cleaned must be made warm, then rubbed with either of the above mixtures, and finished with fine tripoli. This process will give them the brilliancy of gold.

To Brass Vessels of Copper.

Argol 1 part; amalgam of zine 1 part; muriatic acid 2 parts; water to fill the vessel. Boil.

Method of Cleaning Brass Ornaments.

Brass ornaments that have not been gilt or lacquered may be cleaned, and a very brilliant color given to them, by washing them with alum boiled in strong ley, in the proportion of an ounce to a pint, and afterwards rubbing them with strong tripoli.

French Polish.

Alcohol 260 parts; copal varnish 13 parts; sandarach (powdered) 1 part; mastic (powdered) 1 part; shell-lac (powdered) 24 parts. Mix, and digest in a moderate heat, in a strong close vessel.

To French Polish.

The varnish being prepared (shell-lac), the article to be polished being finished off as smooth as possible with glass paper, and your rubber being prepared as directed below, proceed to the operations as follows: The varnish, in a narrow necked bottle, is to be applied to the middle of the flat face of the rubber, by laying the rubber on the mouth of the bottle and shaking up the varnish once, as by this means the rubber will imbibe the proper quantity to varnish a considerable extent of surface. The rubber is then to be inclosed in a soft linen cloth, doubled, the rest of the cloth being gathered up at the back of the rubber, to form a handle. Moisten the face of the linen with a little raw linseed oil, applied with the finger to the middle of it. Placing your work opposite the light, pass your rubber quickly and lightly over its surface until the varnish becomes dry, or nearly so; charge your rubber as before with varnish (omitting the oil), and repeat the rubbing, until three coats are laid on, when a little oil may be applied to the rubber, and two coats more given to it. Proceeding in this way, until the varnish has acquired some thickness, wet the inside of the linen cloth, before applying the varnish, with alcohol, and rub quickly, lightly, and uniformly the whole surface. Lastly, wet the linen cloth with a little oil and alcohol without varnish, and rub as before till dry.

To make the Rubber.—Roll up a strip of thick woollen cloth which has been torn off, so as to form a soft elastic edge. It should form a coil from one to three inches in diameter, according to the

size of the work.

BOOKBINDERS' RECIPES.

Japan Coloring, for Leather Book-Covers, &c.

After the book is covered and dry, color the cover with potashwater mixed with a little paste, give it two good coats of Brazil wash, and glair it. Put the book between wands, allowing the boards to slope a little. Dash on copperas water, then with a sponge full of red liquid, press out on the back and on different parts large drops, which will run down each board, and make a fine shaded red. When the cover is dry wash it over two or three times with Brazil wash, to give it a brighter color.

Blue Sprinkle for Bookbinders.

Strong sulphuric acid 8 ounces; Spanish indigo, powdered, 2 oz. Mix in a bottle that will hold a quart, and place it in a water-bath to promote solution. For use, dilute a little to the required color in a teacure.

Bive Marble for Books, &c.

Color the edges with King's yellow, and when dry tie the book between boards. Throw on blue spots in the gum trough, wave them with the iron pin, and apply the edges thereon.

Brown Color for Marbling or Sprinkling Books.

1. Logwood chips 1 part; annatto 1 part; boil in water 6 parts. If too light, add a piece of copperas about the size of a pea.

2. Umber, any quantity. Grind it on a slab with ox gall and a

little lampblack. Dilute with ale.

Gold Sprinkle for Books._

Put into a marble mortar half an ounce of pure honey and one book of gold leaf, rub them well together until they are very fine, add half a pint of clear water, and mix them well together: when the water clears, pour it off, and put in more, till the honey is all extracted, and nothing remains but the gold. Mix one grain of corrosive sublimate in a teaspoonful of spirits of wine, and when dissolved, put the same, together with a little gum-water, to the gold, and bottle it close for use. The edges of the book may be sprinkled or colored very dark, with green, blue, or purple, and lastly with the gold liquid, in small or large spots, very regular, shaking the bottle before using. Burnish the edges when dry, and cover them with paper to prevent the dust falling thereon. This sprinkle will have a most beautiful appearance on extra work; ladies may use it for ornamenting their fancy work, by putting it on with a pen or camel's-hair brush, and when dry burnish it with a dog's tooth.

Marble for Leather Book-covers.

Wash the cover and glair it, take a sponge charged with water, having the book between wands, and drop the water from the sponge on the different parts of the cover, sprinkle very fine with vinegar black, then with brown, and lastly with vitriol water. Observe to sprinkle on the colors immediately after each other, and to wash the cover over with a clean sponge and water.

Chinese Edge for Books.

1. Color the edge with light liquid blue and dry; then take a sponge charged with vermillion, and dab on spots according to fancy; next throw on rice, and finish the edge with dark liquid blue.

2. Color light blue on different parts of the edge with a sponge; do the same where there are vacancies with yellow and Brazil red;

dry and dab on a little vermillion in spots; then throw on rice, and finish with a bold sprinkle of dark blue. Burnish.

Wax Marble for Leather Book-covers, &c.

This marbling must be done on the fore edge, before the back of the book is rounded, or becomes round, when in boards, and finished on the head and foot. Take beeswax and dissolve it over the fire in an earthen vessel; take quills stripped of their feathers, and tie them together; dip the quill-tops in the wax, and spot the edge, with large and small spots; take a sponge charged with blue, green, or red, and smear over the edge; when done, dash off the wax, and it will be marbled. This will be useful for stationery work, or for folios and quartos.

Egyptian Marble for Leather Book-covers.

1. Yellow.—Boil quereitron bark with water and a little powdered alum, over a slow fire, until it is a good strong yellow. Pour the liquid into a broad vessel, sufficiently large to contain the cover when extended. Before the liquid is cool, take the dry cover, and lay the grain side flat on the color; press it lightly that the whole may receive the liquid; let it soak some time, and then take it from the vessel. The book must be covered in the usual manner, and permitted to dry from the fire. Glair the book; when dry, place it between the wands; take a sponge and water, and press large spots thereon; dip a quill-top into the vinegar black, with it touch the water on the cover in different parts, which will have a fine effect when managed with care. Let it stand a few minutes, then take off the water with a clean sponge.

2.—Green.—Color the cover in a large vessel, as mentioned before, with Scott's liquid blue; when done, put it into a vessel of clear water for an hour. Take it out and press out the water, then cover the book. Glair the cover; when dry, place it between wands, and drop weak potash water from a sponge thereon; dip the quill-top into the strong black, and touch the water with it. This must be repeated till you have a good black. When dry,

clear it with a sponge and water.

3. Red.—Boil Brazil dust in rain-water on a slow fire, with a little powdered alum and a few drops of solution of tin, till a good color is produced. Dip a piece of calf leather into the liquid, and you may ascertain the color wanted. If too light, let it boil till it is reduced to one half of the quantity; take it from the fire, add a few more drops of the solution of tin, and pour it into a large vessel. Put the dry cover on the liquid, and let it remain for a quarter of an hour, then press out the water. Color it over with a sponge and the quercitron bark water, and cover the book. Glair the cover, place it between wands, dash on water with a brush, also potash water; and, lastly, finish it with the strong vinegar black, with the quill-top. Observe that too much black is not put

on; the intention of the marble is to show the red as transparently as possible.

French Marble for Books.

Provide a wooden trough, two inches deep, six inches wide, and the length of a super-royal sheet. Boil in a brass or copper pan any quantity of linseed and water, until a thick mucilage is formed; strain it into the trough and let it cool; then grind on a marble slab any of the following colors in small-beer: Prussian blue, kings yellow, rose pink, vermillion, flake white, lamp-black, brown umber, green, blue, and yellow, orange, red, and yellow, purple, red, and blue, brown, black, and yellow, or red.

The lamp-black and umber must be burnt over the fire to deprive

them of their greasy nature.

For each color you must have two cups, one for the color after grinding, the other to mix it with ox-gall, which must be used to thin the colors at discretion. If too much gall is used the colors will spread; when they keep their place on the surface of the trough, when moved with a quill, they are fit for use.

To prevent the water entering between the leaves of the book, tie it tight between cutting-boards of the same size, and place the trough in a steady situation, to prevent the colors from moving.

Having all things in perfect readiness for marbling, supposing you begin with the blue, throw on with the brush bold spots of blue, sprinkle very fine with the white on the blue spots, fill up the spaces with red and yellow, by dipping first the quill-top into the yellow, and touching the gum therewith, then with the red. The red and yellow may be waved or drawn round the blue spots with an iron pin, or as the marbler may think proper, according to fancy.

Hold the book with its edge downwards, and press it lightly on the colors so disposed on the gum, and the edge will be immediately marbled. The colors that may remain on the gum must be taken off, by applying paper thereon, before you prepare for marbling again. In this manner you may marble the edges to resemble the

end-papers, which will have a pleasing effect.

Chinese Marble for Leather Book-covers, &c.

Color the cover of the book dark brown, and when dry put it into the cutting-press, with the boards perfectly flat; mix whiting and water of a thick consistence and throw it on, in spots or streaks, some large and some small, which must remain till dry. Spot or sprinkle the cover with liquid blue, and lastly throw on large spots of liquid red. The colors must be dry before washing off the whiting.

Orange Sprinkle for Books.

Color the edge with King's yellow, mixed in weak gum-water, then sprinkle with vermillion mixed in the same manner.

Green Sprinkle for Books.

1. Yellow the edge, then sprinkle with dark blue.

2. French berries 1 part; soft water 8 parts. Boil, and add a little powdered alum; then bring it to the required shade of green, by adding liquid blue.

Green Marble for Leather Book-covers, &c.

The edge must be marbled with a good bright green only. When the color is prepared with the ox-gall, and ready for use, a few drops of sweet oil must be mixed therein, the color thrown on with a brush, in large spots, till the gum is perfectly covered. The oil will make a light edge round each spot, and have a good effect.

Blue, green, and brown may be also used separately in like

mannei

Sheets of paper may be done, having a trough large enough, and the sheets damped as for printing, before marbling.

Spirits of turpentine may be sprinkled on the colors, which will make white spots.

Binder's Thread Murble.

Yellow the edge; when dry, cut pieces of thick thread over the edge, which will fall on different parts irregularly; give it a fine dark sprinkle, and shake off the thread.

Rice Marble, for Leather Book-covers, &c.

Color the cover with spirits of wine and turmeric, then place on rice in a regular manner; throw on a very fine sprinkle of copperas-water till the cover is nearly black, and let it remain till dry. The cover may be spotted with the red liquid or potash-water, very freely, before the rice is thrown off the boards.

Orange Color for Marbling or Sprinkling Books, &c.

Ground Brazil-wood 16 parts; annotto 4 parts; alum, sugar, and gum-arabic, each 1 part; water 70 parts. Boil, strain, and bottle.

Tree Marble, for Leather Book-covers ..

A marble in the form of trees may be done by bending the boards a little on the centre, using the same method as the common marble, having the cover previously prepared. The end of a candle may be rubbed on different parts of the boards, which will form knots.

Vinegar Black for Bookbinders, &c.

Steep iron filings or rusty iron in good vinegar for two or three days, then strain off the liquor.

To Sprinkle Books.

Take a stiff brush made of hogs' bristles, perfectly clean, dip it in the color; squeeze out the superfluous liquid; then rub a

folding-stick across the brush, and a fine sprinkle will fall on the edge of the book, which should be previously screwed tight in the cutting press. Repeat the operation until the color is thrown equally on every part of the leaves. The brush should be held in the left hand, and the stick in the right.

Purple Sprinkle for Bookbinders.

Logwood chips 4 parts; powdered alum 1 part; soft water 24 parts. Boil until reduced to sixteen parts, and bottle for use.

2. Brazil dust (fine), and mix it with potash-water for use.

Soap Marble for Books.

This is applicable for marbling stationery, book edges, or sheets

of paper for ladies' fancy work.

Grind, on a marble slab, Prussian blue, with water, and a little brown soap, to a fine pliable consistence, that it may be thrown on with a small brush.

Grind King's yellow, in the same manner, with water and white

soap.

When green is intended for the ground color, grind it with brown soap, and King's yellow with white soap. Lake may be used for a ground color, and Prussian blue ground with white soap; brown umber for a ground color, and flake-white ground with white soap. Any color of a light substance may be ground for marbling.

Spotted Marble for Books, &c.

After the fore-edge of the book is cut, let it remain in the press, and throw on linseeds in a regular manner; sprinkle the edge with any dark color, till the white paper is covered, then shake off the seeds. Various colors may be used. The edge may be colored with yellow or red before throwing on the seeds and sprinkling with blue. The seeds will make a fine fancy edge when placed very thick on different parts, with a few slightly thrown on the spaces between.

Brown Sprinkle for Leather Book-covers, &c.

Pearlash or potash 1 part; soft water 4 parts. Dissolve and strain.

Red Sprinkle for Binders.

Brazil-wood (ground) 4 parts; alum 1 part; vinegar 4 parts; water 4 parts. Boil until reduced to seven parts, then add a small quantity of loaf-sugar and gum. Bottle for use.

Black Sprinkle for Leather Book-covers, &c.

Green copperas 1 part; soft water, hot, 6 parts. Dissolve.

Stone Marble for Leather Book-covers, &c.

Glair the cover, and when dry put the book into the cuttingpress, with the boards sloping, to cause the colors to run gently down. Throw on weak copperas-water with a brush; dip a sponge into the strong potash-water, and press out the color from the sponge on different parts of the back, so that the colors may run down each side from the back. Where the brown has left a vacancy apply vitriol-water in the same manner. The book must remain till perfectly dry before washing it.

CRAYONS.

DISTANCE OF STREET

Lithographic Crayons.

1. Take white wax 4 parts; gum-lac 2 parts. Melt over a gentle fire, then add dry tallow soap in shavings 2 parts. Stir until dissolved. Next add white tallow 2 parts; copal varnish 1 part; lampblack 1 part. Mix well, and continue the heat and stirring until, on trial by cooling a little, it appears of a proper quality, which should be that it will bear cutting to a fine point, and trace delicate lines without breaking.

2. Take dry white tallow soap 6 parts; white wax 6 parts;

lampblack 1 part. Fuse in a covered vessel.

3. Take lampblack 1 part; tallow soap 2 parts; shell-lac 2 parts; wax 4 parts. Mix, with heat, and mould.

4. Take dried tallow soap 5 parts; wax 4 parts; lampblack 1 part. Mix as before.

Crayons.

1. Shell-lac 6 parts; spirit 4 parts; turpentine 2 parts; color 12 parts; pale clay 12 parts. Mix.

2. Pipe-clay, color as required, water to mix. Form into a stiff

paste, and roll it into crayons.

To Fix Crayon Colors.

Paste your paper on canvass, in a frame, in the usual way, then brush over the back two or three times with the following mixture, and when the last coat is dry give the face of the picture one or two coats in the same way. This will make it resemble an oil painting. Spirits of turpentine 10 parts; boiled oil 6 parts. Mix.

To render permanent Chalk or Pencil Drawings.

Lay the drawing on its face, and give the back two or three thin coats of the following (No. 1) mixture; let it dry, and turn it with the chalk upwards, and give that side one or two coats also; lastly, if you choose, give it one or two coats of No. 2.

1. Isinglass or gum-arabic 5 parts; water 12 parts. Mix.

2. Canada balsam 4 parts; turpentine 5 parts. Mix. 199 199

Wash to fix Blacklead Peneil Drawings.

1. Isinglass 1 part; water 50 parts. Dissolve with heat, and filter.

GILDING.

359

2. Take skimmed milk, and strain. For use, pour the liquid on a surface sufficiently large, and take the drawing by the corners, lay it flat on the wash, then carefully remove it, and place it on a slanting surface to drain and dry. This will also answer for chalk drawings.

GILDING.

To Gild or Silver Leather.

Finely powder resin, and dust it over the surface of the leather, then lay on the leaf, and apply (hot) the letters or impression you wish to transfer; lastly, dust off the loose metal with a cloth. The cloths used for this purpose become, in time, very valuable, and are often sold to the refiners for \$5 to \$7.

To gild on Calf and Sheep Skin.

Wet the leather with the white of eggs; when dry rub it with your hand and a little olive oil, then put the gold leaf, and apply the hot iron to it. Whatever the hot iron shall not have touched will go off by brushing.

To gild Copper, Brass, &c. (Patent.)

Fine gold 5 parts; nitric acid (sp. g. 145) 21 parts; hydrochloric acid (sp. g. 115) 17 parts; pure water 14 parts. Digest with heat in a glass vessel until all the gold is dissolved, and till red or yellow fumes cease to rise. Decant the clear liquid into some convenient vessel, and add water, 500 to 600 parts. Boil for two hours, let it stand to settle, and pour off the clear into a suitable vessel. For use, heat the liquid and suspend the articles (previously well cleaned) by means of a hair or fine wire, until sufficiently coated with gold, then well wash them in pure water.

To gild Glass and Porcelain.

1. Apply to the part a surface of gold size; when nearly dry lay on the leaf.

2. Gold powder 2 parts; borax 1 part; turpentine to mix. Mix and apply to the surface to be gilded with a camel-hair pencil; when quite dry, heat it in a stove until the borax vitrifies. Burnish. Platina, silver, tin, bronze, &c., may be applied in a similar manner.

To give Iron the color of Copper.

Take 1 oz. of copper-plates, cleansed in the fire; 3 oz. of aquafortis; dissolve the copper, and when it is cold use it by washing your iron with it by the help of a feather; it is presently cleansed and smooth, and will be of a copper color; by much using or rubbing it will wear off, but may be renewed by the same process.

A way of Gilding with Gold upon Silver.

Beat a ducat thin, and dissolve in it two ounces of aqua-regia; dip clean rags in it, and let them dry; burn the rags, and, with the tinder thereof, rub the silver with a little spittle; be sure first that the silver be cleansed from grease.

Gilder's Wax.

1. Yellow wax 3 pounds; verdigris 1 pound; sulphate of zinc 1 pound; red oxide of iron $2\frac{1}{2}$ pounds. Powder the last three articles very fine.

2. Yellow wax 7 pounds; colcothar 7 pounds; verdigris 3

pounds; borax 1 pound; alum 1 pound.

To dye in Gold Silver Medals, or Laminas, through and through.

Take glauber salt, dissolve it in warm water, so as to form a saturated solution. In this solution put a small proportionate quantity of calx, or magister of gold. Then put and digest in it silver laminas cut small and thin, and let them lie twenty-four hours over a gentle fire. At the end of this term you will find them thoroughly dyed gold color inside and out.

To gild Silks, Satins, &c.

Nitromuriate of gold, in solution, 1 part; distilled water 3 parts. Mix. Lay out any design with this fluid, and expose it, while wet, to a stream of hydrogen gas; then wash it with clear water.

To make Transparent Silver.

Refined silver one ounce; dissolve it in two ounces of aquafortis; precipitate it with a pugil (a quantity that may be taken up between the thumb and finger) of salt, then strain it through a paper, and the remainder melt in a crucible for about half an hour, and pour it out, and it will be transparent.

To make Copper into a Metal like Gold.

Distilled verdigris 4 oz.; Tutiæ Alexandrinæ præparatæ two oz.; saltpetre 1 oz.; borax ½ oz. Mix all together with oil, till they be as thick as pap; then melt it in a crucible, and pour it into a fireshovel, first well warmed.

Mercurial Plating.

Quicksilver 4 parts; nitric acid 4 parts; finely powdered cream of tartar 2 parts; finely powdered salt of sorrel 1 part. Dissolve the silver in the acid, then add the rest, and stir until dissolved. This imparts a pleasing silvery appearance to articles formed of copper, by merely applying it with the finger.

Grecian Gilding.

Take sal-ammoniac and bichloride of mercury, equal parts,

dissolve in nitric acid, and make a solution of gold with this fluid, lay it on the silver, and expose it to a red heat; it will then be gilded.

To gill or silver Writing.

Let there be a little gum and lump-sugar in the ink you write with; when dry, breathe on it and apply the leaf.

To whiten Copper throughout.

Take thin plates of copper, as thin as a knife, heat them six or seven times, and quench them in water; then melt them, and to each pound add 4 ounces of saltpetre and 4 ounces of arsenic, well powdered and mixed, and first melted apart in another crucible, by gentle degrees; then take them out, and powder them; then take Venetian borax and white tartar, of each an ounce and a half; then melt these, with the former powder, in a crucible, and pour them out into some iron receiver; it will appear as clear as crystal, and is called crystallinum fixum arsenicum. Of this clear matter, broken into little pieces, throw into the melted copper (by small pieces at a time, staying five or six minutes between each injection) 4 ounces; when all is thrown in, increase the fire, till all be well melted together for a quarter of an hour; then pour it out into an ingot.

To gild Steel.

Apply an etherial solution of gold. This is equally adapted to lettering, as wholly covering the object. It may be applied with a pen, or otherwise.

GLASS STAINS.

Red Stain for Glass.

1. Rust of iron 100 parts; glass of antimony 99 parts; yellow glass of lead 98 parts; sulphuret of silver 3 parts. Mix.

2. White hard enamel 100 parts; red chalk 50 parts; peroxide of copper 5 parts. Reduce to fine powder, and mix.

Blue Glass.

Plain paste 300 parts; zaffre 3 parts; manganese 1 part. If the glass should be of too deep a blue, use less zaffre and manganese; if too purple, omit the manganese altogether.

Black Stain for Glass.

1. Black scales of iron 29 parts; white crystal glass 4 parts; antimony 2 parts; manganese 1 part; vinegar to mix.

2. Glass of antimony 1 part; oxide of copper 2 parts; crystal

glass 3 parts. Mix.

Orange Stain for Glass.

Precipitated silver powder, yellow ochre, red ochre, equal parts. Turpentine to mix.

Brown Stain for Glass.

White glass 2 parts; manganese 1 part. Mix.

Flesh Color for staining Glass.

Red lead 1 part; red enamel 2 parts. Mix with alcohol.

Yellow Stain for Glass. Day 1314 11 738

Chloride of silver 1 part; burnt pipeclay 3 parts. Reduce to fine powder, and mix. This stain must be applied to the back of the glass.

To Marble a Glass Globe.

Grind well on a stone, minium for red, turmerie or rather cerussa citrina, for yellow, smalt for blue, verdigris for green, ceruse, or chalk, for white. Work each in oil separate, and with a hog's hair peneil, single or mixed, as you think fit, seatter the same into the glass, and roll it, or dispose the colors, as you like. Then, last of all, fling a little mead amongst them, which covers all.

For the Magic Lantern, paint the glasses with transparent colors,

Apply as element administrational

1 Number 100 sames of

tempered with oil of spike.

FACTITIOUS STONES.

Factitious Amethyst.

1. Take strass 5000 parts; oxide of manganese 37 parts; oxide of cobalt 25 parts; purple of Cassius 1 part. Fuse for twenty-six hours, and cool slowly.

2. Take paste or strass 10,000 parts; oxide of manganese 25

parts; oxide of cobalt 1 part.

Factitious Emerald.

1. Oxide of chrome 1 part; green oxide of copper 20 parts; strass 2300 parts. Fuse with care for twenty-six hours, then cool slowly.

2. Strass 10,000 parts; acetate of copper 150 parts; protoxide of

iron 3 parts. As before.

3. Strass 6600 parts; carbonate of copper 60 parts; glass of anti-

mony 6 parts. Fuse with care.

4. Strass 500 parts; glass of antimony 20 parts; oxide of cobalt 3 parts. As before.

Artificial Coral.

Yellow resin 4 parts; vermillion 1 part. Melt. This gives a very pretty effect to glass, twigs, cinders, stones, &c., dipped into

it. It is also useful for a cement for ladies' fancy work, such as grottoes, &c.

Paste resembling the Red Cornelian.

Plain paste 1000 parts; glass of antimony 500 parts; calcined vitriol 63 parts or less; manganese 4 parts. Melt together.

Paste resembling the White Cornelian.

Plain paste 1000 parts; yellow ochre 8 parts; calcined bones 31 parts. As before.

Factitious Opal.

1. Strass 500 parts; horn silver 10 parts; calcined magnetic ore 2 parts; chalk marl 25 parts. Mix in fine powder, and fuse with great care.

2. Plain paste 100 parts; calcined bones 6 parts.

Factitious Oriental Ruby.

Strass 7000 parts; precipitate of Cassius and nitric peroxide of iron each 165 parts; golden sulphuret of antimony 160 parts; manganese calcined with nitre 150 parts; rock crystal 1000 parts. Mix in fine powder, and carefully melt.

Factitious Sapphire.

1. Oxide of cobalt 1 part; strass 80 parts.

2. Paste or strass 2300 parts; oxide of cobalt 34 parts. Fuse carefully for thirty hours.

3. Plain paste 100 parts; smalts 12 parts; manganese 1 part. As

before.

4. Plain paste 10 pounds; zaffre 3 drachms; precipitate of gold and tin 1 drachm. As before.

Factitious Topaz.

Strass 1000 parts; glass of antimony 42 parts; purple of Cassius 1 part. Fuse for twenty-four hours, and cool slowly.
 Strass 4000 parts; saffron of Mars 40 parts. As before.

To solder together Rubies.

Apply them to a strong flame by means of the blow-pipe, and when sufficiently soft unite them with care; they will neither lose their color nor weight.

Factitious Ruby.

Strass 40 parts; oxide of manganese 1 part. Mix, and treat as for topaz.

White Crystal, or Factitious Diamond.

Manganese 1 part; rock crystal 2800 parts; borax 1900 parts; white lead 5700 parts. Mix in fine powder, then fuse in a clean crucible, pour it into water, dry, powder, and repeat the process two or three times.

Composition for Fixed Brilliants.

Meal gunpowder 16 parts; zinc, or steel, or cast-iron borings 6 parts. Mix.

Paste resembling Vinegar Garnet.

Plain paste 1000 parts; glass of antimony 500 parts; calcined iron 16 parts. Add the antimony last.

Gold or Yellow Paste.

Take plain paste (made without the saltpetre) 100 parts; oxide of iron 1 part. Fuse.

Factitious Lapiz Lazuli.

Plain paste 1000 parts; calcined bones 73 parts; zaffre 7 parts; magnesia 5 parts. If it is desired to vein it with gold—gold powder and borax, equal parts; vein the cakes to taste, and then heat them sufficiently hot for cementation.

Foils for Crystals, Pastes,

Put two or three layers of tin-foil into the socket made for the stone, heat it gently, and fill it with quicksilver, let it rest two or three minutes, then pour it out, and place in the stone.

Factitious Yellow Diamond.

Strass 500 parts; glass of antimony 10 parts. Fuse.

Another.

Strass 500 parts; chloride of silver 25 parts. Mix, and fuse.

Strass, or Mayence Base.

1. Pure rock crystal, or flint, 8 parts; salt of tartar 25 parts. Powder, mix well, bake, and cool, then put it into a basin of water, and add dilute nitric acid until effervescence ceases; collect, wash, and dry the powder; next add fine white-lead 12 parts. Levigate and well wash it with pure water, then of the above mixture dried 12 parts; calcined borax I part. Triturate them together, melt in a clean crucible, and pour the mixture into cold water; dry, powder, and melt it in the same manner, a third time, always in a fresh crucible, observing to separate any lead that may be revived. To the third frit, ground to powder, add purified nitre \$\frac{1}{2}\$ parts. Remelt, and a mass of crystal will be found in the crucible of a beautiful and diamond-like lustre.

2. Arsenic 1 part; borax 23 parts; pure pearlash 180 parts;

minium 525 parts; rock crystal 338 parts. Mix, as before.

3. Arsenic 1 part; borax 30 parts; potash 105 parts; carbonate of lead 709 parts; fine white sand 315 parts. Mix with care.

4. Arsenic 1 part; borax 35 parts; potass 325 parts; minium

900 parts; rock crystal 580 parts. Treat as before.

5. Rock crystal 400 parts; pure white lead 945 parts; pure potash 140 parts; borax 41 parts.

Inks. 365

6. Pure potash 2 parts; fine white sand 15 parts; litharge 20 parts. See also Paste.

poreind. Add during the boiling 2 dividual of slam, as voyed at

INKS.

Indestructible Ink.

1. Powdered copal 25 parts; oil of lavender 200 parts; lamp-

black 2 parts; indigo 1 part. Dissolve.

2. Asphaltum 1 part; lamp-black ½ part. Melt, then add oil prepared for printers' ink, by boiling and burning until sufficiently stringy, 1½ part. Mix together, and add spirits of turpentine 3 or 4 parts. We would propose this ink, made with less turpentine, so as to be sufficiently thick for stamping, as the most perfect preventive of fraud, as when applied to the surface of an engraving, or letter-press, nothing will remove it that will not also discharge the ink of the stamp. It will stand the action of the alkalies, chlorine, acids, &c., even in a heated state, when they will at once destroy the texture of the paper.

Lithographic Ink.

1. Take Venice turpentine 1 part; lamp-black 2 parts; tallow 6 parts; hard tallow soap 6 parts; mastic in tears 8 parts; shell-lac 12 parts; wax 16 parts. Melt, and pour it out on a slab.

2. Take dry tallow soap 5 parts; mastic in tears 5 parts; Scotch soda 5 parts; shell-lac 25 parts; lamp-black 2 parts. Fuse the

soap and lac, then add the remainder.

For use, this ink must be rubbed down with water in a saucer (warmed), until an emulsion is formed of a proper consistence to flow easily from a pen or pencil.

Blue Writing Fluid.

1. Ferrocyanide of iron, powdered, and strong hydrochloric

acid, each 2 parts. Dissolve, and dilute with soft water.

2. Indestructible.—Shell-lac 4 parts; borax 2 parts; soft water 36 parts; boil in a close vessel till dissolved; then filter, and take of gum-arabic 2 parts; soft water 4 parts. Dissolve, and mix the two solutions together, and boil for five minutes as before, occasionally stirring to promote their union; when cold, add a sufficient quantity of finely powdered indigo and lamp-black to color; lastly, let it stand for two or three hours, until the coarser powder has subsided, and bottle for use. Use this fluid with a clean pen, and keep it in glass or earthen inkstands, as many substances will decompose it while in the liquid state. When dry, it will resist the action of water, oil, turpentine, alcohol, diluted sulphuric acid, diluted hydrochloric acid, oxalic acid, chlorine, and the caustic alkalics and alkaline earths.

Red Ink for Writing.

Boil over a slow fire 4 ounces of Brazil wood, in small raspings or chips, in a quart of water, till a third part of the water is evaporated. Add during the boiling 2 drachms of alum in powder. When the ink is cold steam it through a fine cloth. Vinegar or stale urine is often used instead of water. In case of using water adding a very small quantity of sal-ammoniac would improve this ink.

Fine Black Writing Ink.

Take 2 gallons of a strong decoction of logwood, well strained, and then add 1½ pounds blue galls in coarse powder; 6 ounces sulphate of iron; 1 ounce acetate of copper; 6 ounces of well ground sugar; and 12 ounces of gum-arabic. Set the above on the fire until it begins to boil, then set it away until it has acquired the desired black.

Black Ink improved. It is heart to synthey

To 1 pint of common black ink add 1 drachm of impure carbonate of potassa, and in a few minutes it will be a jet black. Be careful that the ink does not run over, during the effervescence caused by the potassa.

Green Ink.

1. Cream of tartar 1 part; verdigris 2 parts; water 8 parts. Boil until reduced to a proper color.

2. Crystallized acetate of copper 1 ounce; soft water 1 pint. Mix.

Marking Ink. Was ; strag & ele-

Lunar caustic 2 parts; sap green and gum-arabic each 1 part; distilled water. Dissolve.

The Preparation.—Soda 1 ounce; water 1 pint; sap green 1 drachm. Dissolve, and wet the linen (where you intend to write) with this mordant, then well dry it.

Printing Ink.

1. (Very fine.)—Balsam of capaivi 9 parts; fine lamp-black 4 parts; indigo 1 part; dry yellow soap 3 parts. Grind perfectly smooth.

2. (Extemporaneous.)—Balsam of capaivi, lamp-black to color.

Grind well together with a little soap.

3. Take linseed oil; heat it in a proper vessel until it begins to boil, then remove it from the fire, and kindle the vapor; allow it to burn till it becomes stringy when tried between the fingers, then add gradually to every quart black resin 1 pound. Dissolve, and add very cautiously dry brown soap in shavings, 4½ ounces to every quart. Set it upon the fire, and stir the mixture until the combination is complete; next, put into a suitable pot, finely ground indigo 1 ounce; fine Prussian blue 1 ounce; fine lamp-black 18

INKS. 367

ounces. For every pound of resin employed pour the liquid on the color, well mix, and lastly, subject it to the action of a mill.

Indelible Ink for Marking Linen.

1. The juice of sloes 1 pint; gum ½ ounce. This requires no mordant, and is very durable.

2. Nitrate of silver 1 part; water 6 parts; gum 1 part. Dissolve.

If too thick dilute with warm soft water.

Autographic Ink for Lithographers.

White soap 25 parts; white wax 25 parts; mutton suet 6 parts; lamp-black 6 parts; shell-lac 10 parts; mastic 10 parts. Mix with heat, and proceed as for lithographic ink.

To restore Writing effaced with Chlorine.

1. Expose it to the vapor of sulphuret of ammonia, or dip it into

a solution of the sulphuret.

2. Ferrocyanide of potass 5 parts; water 85 parts. Dissolve, and immerse the paper in the fluid, then slightly acidulate the solution with sulphuric acid.

To give an appearance of Age to Writing.

Infuse a drachm of saffron in half a pint of ink, then write with it.

Perpetual Ink for Tombstones, Marble, &c.

Pitch 11 parts; lamp-black 1 part; turpentine sufficient. Mix, with heat.

Blue Ink.

Take sulphate of indigo, dilute it with water till it produces the color required. It is with sulphate very largely diluted, that the faint blue lines of ledgers and other account books are ruled. If the ink were used strong, it would be necessary to add chalk to it to neutralize the acid. The sulphate of indigo may be had of the woollen dyers.

Copying Ink.

Add 1 ounce of moist sugar to every pint of common ink.

Red Permanent Ink.

Vermillion 4 parts; sulphate of iron 1 part; drying oil to mix. Any other color will answer besides red. This ink will resist most of the usual reagents.

Black Permanent Ink.

Nitrate of silver 2 parts; distilled water 28 parts; sap green 1

part. Dissolve.

For the Mordant.—Common soda 2 parts; gum-arabic 1 part; soft water 8 parts. Mix, and moisten the linen with this fluid, and well dry before using the ink.

Yellow Ink.

1. French berries 1 pound; alum 2 ounces; water 1 gallon. Boil and strain, then add gum-arabic 4 ounces.

2. Water 30 parts; Avignon berries 7 parts; gum and alum each

5 parts. Boil for one hour, and strain.

Blue Ink for Ruling.

Take 4 ounces of vitriol, best quality, to 1 ounce of indigo; pulverize the indigo very fine; put the indigo on the vitriol, let them stand exposed to the air for six days, or until dissolved; then fill the pot with chalk, add half a gill of fresh gall, boiling it before use.

Black Ink for Ruling.

Take good black ink, and add gall as for blue; do not cork it, as it will prevent it from turning black.

Red Ink for Ruling. 1877 563 1879 1101 1171

One pound of Brazil wood to one gallon of the best vinegar; let the vinegar simmer before you add the wood, then let them simmer together for half an hour, then add three quarters of a pound of alum to set the color; strain it through a woollen or cotton cloth, cork it tight in a stone or glass bottle. For ruling, add half a gill of fresh gall to 1 quart of red ink, then cork it up in a bottle for use.

Indian Ink.

1. Take finest lamp-black, and make it into a thick paste with thin isinglass; size, then mould it; attach the gold leaf, and scent with a little essence of musk.

2. Take lamp-black, make it into a thick paste with gum-water,

and mould it.

DESTRUCTION OF THE O

Carbon Ink.

Dissolve real India ink in common black ink; or add a small quantity of lamp-black, previously heated to redness, and ground perfectly smooth with a small portion of the ink.

Gold and Silver Ink.

Fine bronze powder, or gold or silver leaf, ground with a little sulphate of potash, and washed from the salt, is mixed with water and a sufficient quantity of gum.

Gluten Ink. a gradie to marif.

Dissolve wheat gluten, free from starch, in weak acetic acid of the strength of common vinegar; mix 10 gr. of lamp-black and 2 gr. of indigo with 4 oz. of the solution, and a drop or two of oil of cloves.

Ink for writing on Zinc Labels-Horticultural Ink.

1. Dissolve 100 gr. of chloride of platina in a pint of water. A little mucilage and lamp-black may be added.

2. Sal-ammoniac 1 dr., verdigris 1 dr., lamp-black 1 dr., water

10 dr. Mix.

Chrome Ink.

Extract of logwood $\frac{1}{2}$ oz; gum $\frac{1}{4}$ oz; water a pint. Dissolve also in 12 oz. of water $\frac{1}{2}$ oz. of yellow chromate of potash (or $\frac{1}{4}$ oz. each of bichromate and bicarbonate of potash). Mix the two solutions. The ink is ready for immediate use.

Ink for writing on Steel, Tin Plate, or Sheet Zinc.

Mix 1 ounce of powdered sulphate of copper and $\frac{1}{2}$ ounce of powdered sal-ammoniac, with 2 ounces of diluted acetic acid; adding lamp-black or vermillion.

WAXES.

Black Sealing-wax.

1. Shell-lac 2 parts; yellow resin 3 parts; ivory black 2 parts. Powder fine, and mix by melting carefully.

2. Yellow resin 15 pounds; lard 1 pound; beeswax 1 pound;

lamp-black 3 pounds. Mix with heat.

Soft Sealing-wax.

Yellow resin 1 part; beeswax 4 parts; lard 1 part; Venice turpentine 1 part; color to fancy. Mix with a gentle heat.

Gold Colored Sealing-wax.

1. Bleached shell-lac 1 pound; Venice turpentine 4 ounces.

Melt, and add gold colored tale as required.

2. Bleached shell-lac 3 pounds; turpentine 1 pound; Dutch leaf, ground fine, 1 pound or less. Mix with a gentle heat. The leaf should be ground or powdered sufficiently fine without being reduced to dust.

Green Sealing-wax.

Shell-lac 2 parts; yellow resin 1 part; verdigris 1 part. Powder and mix by heating slowly.

Scented Sealing-wax.

1. Balsam of Peru 2 parts; sealing-wax composition 130 parts. Mix, with a gentle heat

2. Sealing-wax composition 99 parts; essence of musk 3 parts.

Add the latter when the wax is cooling, and stir well.

3. Wax composition 96 parts; oil of lavender 4 parts; oil of lemon 3 parts. As before.

Blue Sealing-wax.

Shell-lac 2 parts; smalts 1 part; yellow resin 2 parts. Powder. and mix carefully with heat.

Red Sealing-wax.

1. Shell-lac 2 parts; resin 1 part; vermillion 1 part. Powder fine, and melt over a slow fire, ne, and melt over a slow fire, 2. Yellow resin 14 parts; Venetian turpentine 4 parts; beeswax

1 part; red or orange lead 5 parts. Mix, with heat.

3. Oil of turpentine 1 part; lard 1 part; vermillion 2 parts; gum-lac 12 parts. Mix, with a gentle heat.

4. (Very fine.)—Shell-lac 4 parts; Venice turpentine 1 part; vermillion 3 parts, Mix. and there you all was - seems

Engravers' Border Wax.

Beeswax 1 part; pitch 2 parts; tallow 1. Mix.

MINDERS FILE

Black Bottle Wax.

Common resin 20 pounds; tallow 5 pounds; lamp-black 4 pounds. Mix, with heat.

" Red Rottle Wax.

Common resin 15 pounds; tallow 4 pounds; red lead 5 pounds. Mix, with heat. Any color may be employed.

Marbled Sealing-wax. amang a male-conf

Take wax of different colors and melt them in separate vessels. and when they begin to cool a little stir them all together, and form the mass into sticks, united to the second or its of

a Househol melblar i gound. Veater in moving a concer-

2. Like a holy should be a made; thought plant in the deal least est of I much brought side with a circle beauty I see beginned and runter som I when brut you so bonony at blance

Shell the 2 mile vector is a first colour four Power

money land, but no L. Balte in of Peru 2 per , welfiness of our model in page

J. Reading-war composition to years me of anick a part.

Add the mires were the wax is cooling and also well.

Most, and add gold cotored rate as regular-

provide marketing to six hire

der one die ode

THE DESCRIPTION OF THE PROPERTY OF THE PROPERT

-regard to really to the state of the state

RECOMMENDATIONS.

The west of a set of the City Course with the 1852.

ENGINEER'S FIELD BOOK:

CONTAINING FORMULE

FOR THE VARIOUS METHODS OF RUNNING—AND CHANGING LINES, LOCATING SIDE TRACKS AND SWITCHES, Etc.

hard all the partition and the the and the stage of the solution

TABLES

OF RADII AND THEIR LOGARITHMS, NATURAL AND LOGARITHMIC VERSED SINES, AND EXTERNAL SECANTS, &c.

TOGETHER WITH A TABLE OF

NATURAL SINES AND TANGENTS, ETC.,

TO EVERY DEGREE AND MINUTE OF THE QUADRANT.

AND LOGARITHMS OF NUMBERS FROM 1 TO 10,000.

I wanter with his thought on by an ileast the Mar spring I

CHARLES HASLETT,
Cibil Engineer.

on the Long out of the control of th

From the fire-congression of the control of the control of the control of

= 10 good 7 18 15

minimal and 0.2

S Strain of the 170 miles of

... of the man finding to different

RECOMMENDATIONS.

Office of the O. & M. R. R. Co., Cincinnati, May, 1854.

Having examined Mr. Haslett's Field Book for Railroad Engineers, and made use of the rules he has laid down in many instances in field work, on the division of which I have had charge, I am satisfied of its superiority to any similar work yet published, in comprehensiveness and the ready application of the rules. The introduction of versed sines and external secants into the calculations very much reduces the time and labor required by the usual method of calculations for locating lines.

I recommend it to engineers, as being a book combining accuracy

and a ready application to field practice.

J. B. Cummings, Engineer Eastern Div. Ohio and Mississippi R. R.

I most fully concur in recommending Mr. Haslett's work to the attention of Engineers, believing it better than anything of the kind yet published.

N. A. Gurney, Chief Engineer, Indiana South Western R. R.

C. A. Haslett, Esq.—Dear Sir:—I have examined with considerable care the work you propose to publish for the use of engineers in the field, and I have no hesitancy in saying that it will be the most useful of any work of its character yet offered to the public.

Yours very truly,

A. S. Osgood,
Division Engineer, Ohio and Mississippi R. R.

I concur with Mr. Cummings in the opinion that Mr. Haslett's mode of locating lines very much reduces the time and labor required by the usual method.

S. S. Post. Chief Engineer, Ohio and Mississippi R. R.

From statements received from engineers of the Ohio and Mississippi Railroad who have used Mr. Haslett's method, I have every reason to believe it to be an improvement in simplicity and accuracy over the old methods commonly in use.

O. M. MITCHELL, Con. Engineer, Ohio and Mississippi R. R.

From the foregoing recommendation, with a hasty examination of the tables, I concur in the opinion of Messrs. Post & Mitchell.

E. Gest. Engineer.

PREFACE.

Is presenting this work to the public, the Author claims for it the adaptation of a new principle in trigonometrical analysis of the formulas generally used in field calculations. Experience has shown, that versed sines and external secants as frequently enter into calculations on curves as sines and tangents; and by their use, as illustrated in the examples given in this work, it is believed that many of the rules in general use are much simplified, and many calculations concerning curves and running lines made less intricate, and results obtained with more accuracy and far less trouble, than by any methods laid down in works of this kind.

The examples given have all been suggested by actual practice, and will explain themselves. It has not been thought necessary to enter into all the details of demonstration, as this book is intended expressly for use in the field; and engineers seldom have time to enter into tedious geometrical demonstrations, when direct application of rules is required.

As a book for practical use in field work, it is confidently believed that this is more direct in the application of rules and facility of calculation than any work now in use.

In addition to the tables generally found in books of this kind, the author has prepared, with great labor, a Table of Natural and Logarithmic Versed Sines and External Secants, calculated to degrees, for every minute; also, a Table of Radii and their Logarithms, from 1° to 60°. Rules and examples are also given for running curves without the use of an instrument; also for locating turnouts, side tracks, switches, &c.

Having been for several years engaged in surveys and locations of railroads, and practically convinced of the great saving of time

and trouble gained by using the rules and principles given in this book, the Author submits it, without further preface, to the profession, fully confident that its use will be practical proof of its merits.

The tables and examples have been prepared with great care, and their accuracy may be relied-upon.

While the Author claims a fair share of originality in the following work, he would acknowledge many valuable suggestions derived from Mifflin's Piagrams, as also from Henck on Compound and Reversed Curves, authors to whom he would refer those wishing to follow the subject at greater length. On the manner of working an instrument Mifflin is very clear and concise. This work is designed especially for practical field engineers, already familiar with minor details. and the second second second regular

Note: Note: Nation will of Explorer part of the

had full been in importationer related to militie in and Lyan San of the arm of Larger to make you was partied and art francis Voyel Sage and Pasent courts relegant to Leave, the energy infrared with a 7 th - 1 to 10 th 1 th 1 th 1 th 1 in the many many that are the property of the state of Constant of the form the good of the Sin Son to the source of the source

and a fille coarse in a consequent of the and a side in the and hanging there on his branking their of he with me I

Cincinnati, 1855.

foundly, than by the most form to a grand of and the second second and general water deber into all the delection described and the section

Laprendy for the death and a second make a construction of the

malay - www.nufr.stalous

Thomas of the second or the second or

ENGINEER'S FIELD BOOK.

FORMULÆ FOR RUNNING LINES, LOCATING SIDE-TRACKS, &c.

PROPOSITION I. Fig. 1.*

To change the origin of a curve so that it shall terminate in a tangent parallel to a given tangent.

Suppose the curve A C to have been described containing 60° of curvature, and that the distance G D equal 50 feet.

We have by logarithms:

Sine 60° (total amount of curvature),					9.937531
Is to R	10 . 3				10.000000
So is G D, 50 feet, .					1.698970
To $AB = 57.73$ feet,	0. 1		W. 60		1.761439
Or by nat. sines $=\frac{\text{G D}}{\sin 60^{\circ}} = \frac{50}{.86603} = 57.73.$					

Produce the tangent from A to B = 57.73 feet; then make the

^{*} The diagrams in this work are not drawn to any exact scale, but are designed to represent merely the abstract geometrical relation of lines.

curve BD equal AC; that is AMC=BND; then the tangents will be parallel.

This rule will apply to the origin of a compound curve, using the

total amount of curvature run.

PROPOSITION IL Fig. 2.

Having a curve AB terminating in a tangent DF, it is required to find the radius of a curve that will give a tangent CG parallel to DF at any given distance therefrom, as at DC say 30 feet.

Let AM be the given radius = 1146 feet, the arc AB = 800 feet, containing 40° , and DC perpendicular distance 30 feet. By logarithms:

Then we have $1146 + 128 = 1272 = \text{radius of a 4}^{\circ}$ 30' curve. Then say: 1146 : 1272 :: 800 : 888 = arc A C.

This case is equally applicable to changing the last radius used in a compound curve terminating in a parallel tangent.

PROPOSITION III. Fig. 2.

In case the preceding method should consume too much of the tangent C G, it is required to change the origin of the curve, also the length of radius, so that the required tangent may commence opposite to B, running parallel to B H.

In this case the radiating point will be changed from M towards A and B, the radius shortened, and the point A moved towards K. Let the required distance between tangents, the given radius, and curvature be as in Proposition II., then we have by logarithms:

By natural external secants = $\frac{30}{305407}$ = 98.

And 1146 — 98 = 1048 = radius of a 5° 28' curve.

Then, as 1146: 1048::800: 732 = length of 5° 28' eurve.

198 (natural tangent of $40^{\circ} = 83910$) = 82 feet.

Produce tangent 82 feet from A to K, and curve from thence 732 feet of a 5° 28' curve.

PROPOSITION IV. Fig. 3.

Having located a curve with a given radius, terminating in a given point, it is required to change the origin of the curve, also the radius, so as to pass through the same terminating point, with a different direction of tangent.

Let the given radius MB equal 2292 feet; the given are BD equal 1000 feet, containing 25° of curvature; the given tangents DF and DE make an angle of (say) 4°, DF being 400 feet, and EF = 28 feet.

We have $\frac{28}{4 \times 175} = 4^{\circ}$ = angle EDF, consequently the angle

 $CLD = 25^{\circ} + 4^{\circ} = 29^{\circ}.$

By logarithms:

By tables 1714 feet = radius of 3° $20\frac{1}{2}$ curve.

PROPOSITION V. Fig. 4.

Having produced the two tangents to their intersection, it is required to connect them by a curve passing a given distance from the vertical point.

Given the angle $LCB = 31^{\circ} 44'$, and CE = 50 feet, to find the

radius M A. By geometry, the angle A M E = $\frac{1}{2}$ L C B = 15° 52′.

By logarithms we have:

J	8							
	As extern	nal s	ecant	15° 5	$52' = \frac{1}{2}$	LC	$^{\circ}$ B	8.597789
	Is to 50			11	1. 9			1.698970
	So is R.		• •					10.000000
	To M A=	=126	2=R.	of a	4° 324	' cu	rve	3.101181

By natural external secants $\frac{50}{\text{ex. sec. }15^{\circ} \cdot 52'} = \frac{50}{039603} = 1262 \text{ ft.}$

CASE 2D.

To find the tangent AC, or CB; or point of curve. By logarithms:

As R					10.000000
Is to $AM = 1262$	- 011	1.0			3.101181
So is tangent 15°	52 ^r				9.453668
To A C = 388.8	41=	THE	9.6	10.0	2.554849

By natural tangents:

 $1262 \times (\text{natural tangent } 15^{\circ} 52' = \cdot 26546) = 388 \text{ feet}$ = C A = C B.

PROPOSITION VI. Fig. 5.

Having located a curve connecting two tangents, it is required to move the middle of the curve any given distance, either towards or from the vertex.

Let the angle TLG = 36° = whole amount of curvature; the

arc A B C = 1200 feet; the radius A N = C N = 1910 feet, and I B = B F = 10 feet.

It is required to find the radii HM and EO.

We have by logarithms:

By natural external secants: $\frac{10}{054595} = 183$ ft.

1910 + 183 = 2093 = MH = radius of a 2° 44' eurve; and 1910 - 183 = 1727 = OE = radius of a 3° 19' eurve.

By natural tangents:

 $183 \times (\text{natural tangent } 18^{\circ} = 32429) = 59.4 = \text{HA} = \text{AE}$

PROPOSITION VIL. Fig. 6.

It is required to locate a tangent from an inaccessible point on a curve.

Let ABC be the given curve with a R. of 1637 feet curving 3° 30' per 100 feet; C the inaccessible point. Assume a point B, if convenient, at a given distance, say 300 feet, from C. Throw off a tangent, and measure, at right angles therefrom, BE = external

secant of arc BC; then to find by logarithms the distance BE, we have:

As radius		10.000000
Is to $OC = 1637$		3.214122
So is external secant 10° 30' = angle COI	3.	8.231221
To B E = 27.88		1:445343

By natural external secants:

 $1637 \times (\text{nat. ex. sec. } 10^{\circ} 30' = .017030) = 27.88.$

Measure the line BE=27.88 feet at right angles to BH. Set the instrument over E, and turn off the angle $BEC=79^{\circ}.30'=$ complement of $10^{\circ}.30'$. ECF will be the direction of the tangent required.

CASE 2D.

Suppose there be no convenient accessible point between A and C, produce the curve to D, measure the external secant DF as before, place the instrument at F, and turn off the angle DFC. This will give the direction of the tangent FC as before.

CASE 3D.

Should the lines AI and IC be more practicable for operating

than the curve ABC, calculate and produce the tangent from A to I, the vertex of the curve ABC, and turn off the angle KIF = AOC, and make IC = AI, as calculated.

CASE 4TH.

Again, should the last method be found impracticable, and the chord AD clear from obstructions, measure the chord AD, and turn off tangent from D.

Suppose angle KAD = 25°, then we have 1637 x (nat. sine 25°

= .42262) 2 = A D = 1384 feet.

Note.-The arc A B C D contains 50° curvature.

PROPOSITION VIII. Fig. 7.

It is required to find a curve which will connect two lines without producing the tangents to an intersection.

Let the line be either a curve L A, H A, or a tangent D A, as the case may be. Suppose it impracticable, by reason of buildings or

other obstructions, to produce the tangent to a vertex x.

At A lay off with the instrument a right angle to tangent, and produce it till it meets FB produced in E. Measure this distance, and the angle AEB; then its complement AOB will be the amount of curvature required to curve on to the tangent BF.

Suppose the angle $A \to B = 65^{\circ}$, then $A \cap B = 25^{\circ}$. Let $A \to B$ be

= 120 feet, then we have by logarithms:

And $1160.8 \times (tangent 25^{\circ} = .46631) = EB = 541.28$ feet.

Then will be 25° of curvature \div 4° $56\frac{1}{3}' =$ the rate of curvature, give the length of curve between the two given points A and B = 506.2 feet.

PROPOSITION IX. Fig. 8.

To draw a tangent to two curves already located.

Let the curve CRAGH, of 2000 feet radius, be located from tangent CK; and let ESBD be a curve of 2605 feet radius, located from tangent EF. We are required to find the points A

and B having a tangent common to both.

Suppose R to be the point in the first curve, and S the point in the second. There being obstructions in the way, we will run the zigzag line RLPS, making RL tangent to R, and PS tangent to S.

Suppose R L Q = 20° and T P S = 15° ; let R L = 1100 feet, L P = 1300, and P S = 1400.

Assume radius NR as a meridian; that is, suppose NR to be due north. Then will RL be due west, LP south 70° west, PS south 85° west, and radius SM north 5° west. These artificial courses, then, will show the *relative* bearings, with which we obtain the following traverse:

Course.	Distance.	Northing.	Southing.	Easting.	Westing.	
North	2000	2000	0000	0000	0000	
West	1100	0000	0000	0000	1100	
S. 70° W.	1300	0000	444.63	0000	1221.60	
8. 85° W.	1400	0000	122.02	0000	1394.66	
N. 5° W.	2605	2595 07	0000.	0000	227.05	
		4595.07	566.65	0000	3943:31	

of N M = N. 44° 23' west, and angle S M D = 39.23, or 44° 23' - 5°.

To calculate M N make the difference of latitude 4028.42 = cosine 44° 23', and the required distance N M = radius. Then we have

by natural cosines $\frac{4028\cdot42}{\cos \ln e} = \frac{4028\cdot42}{71468} = 5636\cdot7 = M \text{ N.}$

Or by logarithms:

The triangles ANI and BMI being similar, we have by logarithms (Davies' Legendre, book II., prop. X)—that is, by "composition and division:"

Having now determined the angle RNI = 44° 23', and the angle ANI = 35° 13', the angle RNA becomes = to their differ-

ence = 9° 10'.

Therefore continue the curve from R towards A, 9° 10′ of curvature, and we have the tangent point A required. Again, we have S M I = 39° 23′, and the angle B M I = 35° 13′, consequently curve from S to B 4° 10′ of curvature, and we have the tangent point B required.

Now to find the length of tangent AB, multiply the sum of the radii 4605 by the natural tangent of 35° 13', and we have the

length required.

Suppose the two curves to be connected by a common tangent, instead of running in opposite directions as in Case 1st, curve the same way, as GHS and CDEL. It is required to find the

position of the tangent S D.

Assume the points H and E; from H lay off tangent H I; from E lay off tangent E F; join F and I by a straight line, if convenient, or by a traverse, if there be obstructions. Let A H be an artificial meridian, and, as in Case 1st, calculate the distance A B, also its course = angle H A G; this will give also the angle E B A.

Suppose radius A H = 1432.5, tangent H I = 500 feet, angle M I F = 6°, I F = 1000 feet, N F T = 8°, E F = 600 feet, and radius E B = 2865 feet. We will then have the following traverse, by

which to find the course and distance of AB:

Course.	Distance.	Northing.	Southing.	Easting.	Westing.	
I San Tir	1	F 100451	n fortyll till	er le prince	el Gra	
North	1432.5.	1432.50	TERMS 7	· A · me	9 07	
East	500	7 - 308	AL COMP	500	2017675	
S. 84° E	1000	5/ A 15 W	104.50	1984.60	T L A soons	
S. 76° E	600		145.20	582.20	1 V = 0000	
S. 14° W.	2865	Maria Promis	2780.07	200	692.72	
in promise	Total	1432.50	3029.77	2066.80	69272	

Difference of latitude = 1597.27; departure = 1374.08. 70

 $\frac{\text{Departure}}{\text{diff. lat.}} = \frac{1374.08}{1597.27} = .86026 = \text{natural tangent 40° 42'} =$

I dans T

course AB = angle HAG.

 $\frac{\text{Diff. lat.}}{\text{cosine course}} = \frac{1597 \cdot 27}{\text{cosine } 40^{\circ} 42'} = \frac{1597 \cdot 27}{75813} = 2106 \cdot 86 = \text{distance}$

AB.

Then $\frac{\text{diff. radii}}{A B} = \frac{1432 \cdot 50}{2106 \cdot 86} = \cdot 67992 = \text{natural cosine } 47^{\circ} \cdot 10' =$

DBA = SAG.

Now 47° $10'-40^{\circ}$ $42'=6^{\circ}$ 28'=H AS. Then curve from H 6° 28'=162 feet nearly to S. Now AB makes with BE an angle of 40° $42'+8^{\circ}+6^{\circ}=54^{\circ}$ 42' Hence we must curve from E to D 54° $42'-47^{\circ}$ $10'=7^{\circ}$ 32' curvature = 377 feet distance. The points S and D will be the termini of the required tangent.

Then difference of radii \times natural tangent (DBE = 47° 10') = $1432 \cdot 5 \times 1 \cdot 07864 = 1545 \cdot 15 = AK = SD = length of tangent. Now when the two curves are so situated as to be seen the one from the other, assume two points as near as you can judge to the true termini of common tangent. Cause about a dozen small$

straight stakes or pins to be set up endway about twenty feet apart from one of the assumed points or curves. Then set the instrument at the other, and see how tangent from instrument strikes the row of stakes. Note the difference, and move the instrument until tangent therefrom strikes as tangent to the row of stakes. Make a point where it does. Set the instrument over said point, and in like manner see how tangent from instrument strikes the other curve. Thus we dispense with all the previous calculation.

PROPOSITION X. Fig. 10.

Having located two curves connected by a tangent, as in Case 2d, Prop. IX., it is required to throw out the tangent, and introduce instead a curve with given radius.

Let the radius AS = 1432.5 feet, BD = 1637 feet, and their common tangent SD = 220 feet. It is required to find on the two

curves two tangent points, X and Y, from which, if the required radius (say 2865 feet) be drawn, it will pass through the points A and B, intersecting in the centre P, equi-distant from X and Y.

Now in the triangle BAK we have given, difference of radii

B K = 1637 - 1432.5 = 204.5; also, A K = S D = 220, to find the angle K AB, its complement K B A = S A G,* and the distance AB.

Then
$$\frac{B \text{ K}}{A \text{ K}} = \frac{204.5}{220} = .92954 = \text{natural tangent of } 42^{\circ} 544' = \text{K A B}.$$

Therefore its complement KBA = $SAG = 47^{\circ}.5\frac{1}{2}$. Now BK × secant KBA = $204.5 \times 1.468801 = 300.37 = AB$; call it 300 feet. Again, in the triangle BAP we have AB = 300, AP = 2865 - 1432.5 = 1432.5, BP = 2865 - 1637 = 1228. To find the angles ABP, BPA, and BAP, make AP = 1432.5 feet the base, and let Q be the foot of the perpendicular from B. Then by trigonometry we have:

A P: BP + BA:: BP - BA: PQ - QA, or 1432.5:1228+300::1228-300:989.8=PQ-QA. Then $\frac{1432.5+989.8}{2}=PQ=1211.15$, and $\frac{1432.5-989.8}{2}=QA=221.35$.

Then
$$\frac{AQ}{AB} = \frac{221.35}{300} = 73783 = \text{nat. cos. of B A P} = 42^{\circ} 27'$$
.

Again,
$$\frac{PQ}{PA} = \frac{1211 \cdot 15}{1228} = 98628 = \text{nat. cos. of BPA} = 9^{\circ} 30'$$
.

Now YBP being a straight line, the angle YBA = 42° 27' + 9° 30' = 51° 57' and XAP being a straight line, the angle XAG = BAP = 42° 27'. Now the angle SAG being 47° $5\frac{1}{2}'$ the angle SAX will equal 47° $5\frac{1}{2}'$ — 42° 27' = 4° $38\frac{1}{2}'$, and YBD = 51° 57' — 47° $5\frac{1}{2}'$ = 4° $51\frac{1}{2}'$.

We therefore move back from S 4° 38½' of curvature, or 116 feet to X; also from D 4° 51½' of curvature, or 139 feet to Y; we then have the points X and Y, which are to be connected with a 2°

curve of 2865 feet radius.

PROPOSITION XI. Fig. 11.

Having located a compound curve terminating in a given tangent, it is required to change the p. c. c., also the length of the last radius, so as to pass through the same terminating point with a given difference in the direction of the tangent.

Let the given curve H A be a 2° of 2865 feet radius compounded to A B, a 2° 30′ curve 2292 feet radius, 800 feet in length, and containing 20° of curvature; it is required to move the p. c. c. forward from A towards B, curving therefrom with a shorter radius than 2292 feet, passing through the fixed point B on to tangent with 2° 30′ additional curvature.

The following method, though not perfectly accurate, will be

^{*}Because the three angles in the triangle KAB = 180°. Also the sum of the angles on one side the line BG = 180°. Subtracting from 180° the angle A and the right angle at K, we have left the angle at B. Subtracting from 180° the angle A (as before) and the right angle SAK, we have the angle SAG; hence the angle KBA = the angle SAG.

found sufficiently so for most practical purposes. Had the 2° curve H A been continued 800 feet farther, to a point C, the variation B C would be equal 28 feet.* Now by compounding to a 2° 30′ curve I turn off with the instrument for the chord AB 2°

more than I would for the chord AC; for $\frac{20^{\circ}-16^{\circ}}{2}=2^{\circ}$; but if

the instrument set at the required point P, with a backsight on A, and a foresight on B, I turn off $\frac{20^{\circ} + 2^{\circ} 30'}{2} = 11^{\circ} 15'$, that is $3^{\circ} 15'$

instrumental deflection over and above that required for a continuous 2° curve to C; the curve PB will therefore be shorter than AB in the ratio of 3° 15′ to 2°; hence the proportion:

$$3\frac{1}{4}:2::800:492 = length of curve P B.$$

A P then will equal 800-492=308 feet of 2° curve; but 308 feet of a 2° curve gives 6° 10′ of curvature; hence PB contains 22° $30'-6^{\circ}$ $10'=16^{\circ}$ 20' of curvature in 492 feet distance; then

we have $\frac{16.333...}{4.92} = 3.3198^{\circ} = 3^{\circ} 19'$, or 1728 feet radius for the

curve PB. It will be sufficiently accurate, however, to continue the 2° curve 310 feet to P, and then run 490 feet of a 3° 20' curve.

Were HA a tangent by making AP the same length and rate of curvature as above, the curve PB would be the same also.

* $2^{\circ} \times 1.75 \times 8 = 28$.

PROPOSITION XII.

Having located a compound curve terminating in a tangent, it is required to change the point of compound curvature so that the curve will terminate in a tangent parallel to a given tangent at any required distance perpendicular thereto.

RULE. Divide the required distance between parallel tangents by the difference of radii of the two last branches of curve. From the cosine of total amount of curvature in last branch subtract this quotient; the remainder will be the natural cosine of amount of

curvature required for last radius.

Given a curve 600 feet long, 2865 feet radius, compounded with a curve of 1910 feet radius 400 feet long, then tangent; required to fix point of compounding, to give parallel tangent 30 feet outside or inside of tangent given:

$$\frac{30}{955} = .03141$$

400 feet curvature = 12° cosine 12° = .97815

less <u>'03141</u>

cosine of curvature required $18^{\circ} 47'$ — 94674 $18^{\circ} 47'$ — $12^{\circ} = 6^{\circ} 47'$ curvature to be used in moving p. c. c. back

to throw a tangent 30 feet inside.

If we move tangent inside 6° $47' \div 2^{\circ} = 339$ feet. Length of 2° curve = 600 - 339 = 261. Length of 3° curve = 400 + 226 = 626 ft.

The entire length of curve by alteration becomes 261 + 626 = 887 instead of 1000 feet as before, admitting of more tangent at the end.

This last rule is applicable when the movement of the p. c. c. is retrograde or from the terminating tangent, thereby increasing the amount of curvature in last curve, and diminishing that of the pre-

ceding curve.

When it is required to move the point c. c. forward, diminishing the amount of curvature in last curve, add the quotient of the required distance divided by difference of radii, to the cosine of given amount of curvature; and the sum will be the cosine of the amount of curvature required in the last curve. Find the distance as before, always reckoning said difference according to the rate of curvature back of p. c. c.

PROPOSITION XIII. Fig. 12.

Having located a curve between two tangent points, it is proposed to lengthen the radii at the two termini, and shorten the radius in the middle.

Let the proposed curve be one of 1146 feet radius = 5°, 800 feet in length, and containing 40° of curvature. It is proposed to introduce at each end 100 feet of a 2° 30′ curve = 2292 feet radius. Required the other radius.

From the t. p. to the centre is 400 feet, or 20° of curvature.

Introducing 100 feet of a 2° 30′ 2292 feet R., there will be 2° 30′ of 2292 feet radius + 17° 30′ of a shorter radius.

By logarithms:

As sine 17° 30'	-				9.478142
Is to 2° 30'.			1	+ •	8.639680
So is diff. radii =	1146	feet :	=01	M .	3.059185
		is	12 32 6 20		
and required =	: 167	= 0	L.		2.220723

Given radius being 1146, radius required will be $1146 - 167 = 979 = LC = a 5^{\circ} 51'$ curve.

PROPOSITION XIV. (LEMMA. Fig. 13.)

To divide a given angle into two parts, so that the tangents of the angles will be in a given ratio.

Let the required ratio be as three to five, and the given angle $ADC = 30^{\circ}$; let the straight line ABC be = 8. Make AC a chord of 60°, or twice 30°. Describe the circle ACD passing

through A and C. At B, a distance of three from A, erect the perpendicular BD, produce it to L, then ADB and BDC will be the angles required. For BD is common to two right angled triangles, and hence the tangents of the vertical angles are as AB to BC.

To calculate the required vertical angles let ADB = x, BDC = y, then AEL = 2x, and LEC = 2y = central angle. Then AEC

 $= 2(x + y) = 60^{\circ}$.

Erect a perpendicular from E upon H, then will $A \to H = H \to C$ = x + y. Then $L \to M$ (H being produced to M) equals x + y - 2x = y - x; then $E \to L = E \to R$, and $L \to M = B \to M$. Then

H C : (L M = B H) :: sine (x + y) : sine (y - x).

But HC is half of AC, and BH is half BC—AB, therefore $(BC+AB):(BC-AB)::\sin(x+y):\sin(y-x)$, that is, as the sum of the numbers expressing the ratio is to difference, so is sine of the given angle to sine of the difference required.

By logarithms:

	So is sine 30° . To sine $y - x = 0$	7° 10′	38″	11 15 1	41.	$\frac{9.698970}{9.096910}$
	Is to $5 - 3 = 2$	•				0.301030
•	As $3 + 5 = 8$.		OFOR.	7047	d.	0.903090
	garronins.					

 $y + x = 30^{\circ}, y - x = 7^{\circ} 10' 38'',$

therefore $2y = 37^{\circ} 10' 38''$, $y = 18^{\circ} 35' 19''$, $x = 11^{\circ} 24' 41''$.

PROPOSITION XV. Fig. 14.

From two fixed points, having produced tangents uniting in a vertex at unequal distances from them, it is required to locate a compound curve.

Suppose the tangents produced to E, and let A E = 505.7 feet,

EB = 6206 feet, the angle FEA = 40°. Required the radii of a c. c. to join A and B, and also the point of compound curvature.

We observe the external secant E C is common to both curves. Now by construction of the tables we have: external secant a =tangent $a \times$ tangent $\frac{1}{2}a$, radius being unity. The angles EBC and EA C are measured by half their arcs CB and CA.

Call these angles x and y respectively. Then $x + y = \frac{40^{\circ}}{2} =$

20°; then $620.6 \times \text{tangent } x = 505.7 \times \text{tangent } y$, or 620.6 : 505.7 = tangent y: tangent x. Then by previous proposition

 $620^{\circ}6 + 505^{\circ}7 : 620^{\circ}6 - 505^{\circ}7 :: sine (x + y = 20^{\circ}) : sine (x - y)$ or, $1126^{\circ}3 : 114^{\circ}9 :: sine 20^{\circ} : y - x$.

Neither of the radii being given, we will assume the condition, that the p. c. C shall be in line with the vertex E and the centres O and D. We have by logarithms:

Now x + y = 20. Then $x = 9^{\circ} + 2^{\circ} = 11^{\circ}$; consequently COB = 18°, and ADC = 22°. Now we have the length of tangent and curvature given, to find the radius,

By logarithms:

To find AD:

1910 (external secant $18^{\circ} = .051462$) = 1251 6 × (external secant $22^{\circ} = .078535$) = C E = 98 2 feet.

PROPOSITION XVI. Fig. 15.

Let B be a point in a curve whose radius BF is given, and let D be another fixed tangent point. It is required to find point of c. c., the curve AB being produced, from which to start a curve to terminate in tangent at D, also the radius of last curve.

Given the angles MDB, MBD, distance BD, and radius BF. Imagine the simple curve BCL to be run with a given radius BF till LN becomes parallel to DM. Now by the nature of a curve,

upon whatever point on the curve the transit be placed, the difference between backsight on B and foresight on I, is always the

same, namely, $\frac{B+D}{2}$. Now at the true point of c. curvature C,

the difference between backsight on B and foresight on D is also equal to $\frac{B+D}{2}$, therefore the transit reading the same on D as on

L, CLD must be in the same straight line.

Hence whenever the nature of the ground will admit of it, erect a flagstaff at D, curve round from B towards L until taking a back-sight the foresight necessary to fall upon L should strike the flagstaff at D. The transit will then be at the point of c. curvature sought.

Then measure CD, and make this proportion: sine HCL*: ½ CD

:: R: x = 0 D.

Suppose $HCL = 8^{\circ}$, and the distance CD = 600 feet. Then by substituting in the above proportion, we have by logarithms:

As sine 8° = HCL			9.143555
Is to $\frac{1}{3}$ C D = 300			2.477121
So is R.	 otro-	٠.	10.000000
To $x = 0.0 = 2855.6$	4	12	3:333566

^{*} Because HCL = $\frac{1}{4}$ COD.

When the ground will not admit of this method, ascertain by measurement or calculation the distance from B to D.

 $2 (B F) \times \frac{B+D}{2} = B L$ Now angle $L B D = \frac{B-D^*}{2}$. The triangle will then have the two sides B D and B L, and the included angle B, to find the angle L D B = C D B.

Now in the triangle B C D we have the angle B C D = to the supplement of $\frac{B+D}{2}$, also the angle at D, consequently the angle at B.

These angles, together with base B D, determine the chord C D; from which, with the angle H C L, calculate R as before. H C L becomes known from the fact, that C B D gives C B M = G C B, C B M being B — C B D. This taken from $\frac{B+D}{2}$ will give the angle H C L required.

PROPOSITION XVII. Fig. 16.

Between two tangents to locate a curve passing through a given point. Suppose AB and CD to be the tangents permanently fixed with

* Because N B L (isosceles) = $\frac{1}{2}$ exterior angles at N and M = $\frac{B+D}{2}$, B being = N B D, and B - $\frac{B+D}{2}$ = $\frac{B-D}{2}$ = L B D.

 $\uparrow LDB = \left(CLB = \frac{B + D}{4}\right) - LBD$ which will make all the angles known.

reference to some agreement between individuals; and let F be the given point at which it is necessary to keep a given distance from some building or other object. Suppose AB and CD produced to meet in E. The angle O E D, and consequently its half E B D, are known. The distance I E is also known.

Let the angle O E D = 60° , let I F = 17.5 feet. It is required to

find the point B, so that the angle F B I shall = 30° .

By natural sines:

$$-\frac{17.5}{\text{sine } 30^{\circ}} = 35 = \text{FB} = \text{H D}.$$

Now $\sqrt{(35+17.5)\times(35-17.5)}$ = $\sqrt{52.5\times17.5}$ = 30.3 = IB.

Suppose I E measures 462 feet. Then B E will equal 462 + 30.3 = 492.3.

By similar triangles FB: BE:: BI: BK, or

 $35:492\cdot3::30\cdot3:426\cdot2=BK=DK.$

Then B D = 852.4 and B H = 852.4 - 35 = 817.4.

Now we have by geometry $\sqrt{BH \times BF} = BA$, or $\sqrt{817.3 \times 35} = 169.1 = BA$.

Hence AB + BE = AE, or 169.1 + 492.3 = 661.4.

To find radius:

$$\frac{\text{A E}}{\text{tangent } 30^{\circ}} = \frac{661 \cdot 4}{0 \cdot 57755} = 1145 \cdot 5 = \text{R}.$$

Now suppose it is inexpedient to produce the tangents to a vertex, the angle $O \to D$ being known, find the point B as before, and turn off $E \to D = \frac{1}{2} O \to D$, measure B D, and calculate by trigonometry the side $E \to D \to E$, and also B A as before.

Again, suppose the angle at E is not known, neither is it practicable to measure a direct line between the two tangents, calculate by traverse the true course and distance between any two convenient points on the tangents by Proposition VIII., from which calculate the position of E.

Without ascertaining the distance to E, the radius AG can be

calculated thus:

$$\frac{A F^2}{2 I F}$$
 = A G, or let A F = 200, then $\frac{200^2}{17.5 \times 2}$ = $\frac{4000}{3.5}$ = 1146 = AG.

Therefore commence at A, and run 800 feet of a 5° curve to C.

PROPOSITION XVIII. Fig. 17.

Given the length of a common tangent D G = a, and the angles of intersection n and m, to determine the common radius C E = C F = radius of a reversed curve to unite the tangents HD and BL.

Now D C = R × tangent
$$\frac{1}{2}n$$
, and
C G = R × tangent $\frac{1}{2}m$; we have therefore
D G tangent = 800 ft., $n = 16^{\circ}$ and $m = 12^{\circ}$.

^{*}The sum of two quantities multiplied by their difference is equal to the difference of their squares.

Confidence of

$$R = \frac{a}{\tan \frac{1}{2}n + \tan \frac{1}{2}m} = \frac{800}{\tan \frac{8}{2} + \tan \frac{6}{2}} = \frac{800}{14054 + 10510} = 32567$$

$$32567 \times 14054 = D C = D A = 45769$$

$$32567 \times 10510 = C G = G B = \frac{34227}{79996}$$

Suppose it to be required to introduce 200 feet of tangent between the curves, that portion of the tangent DG taken by the two curves will be 600 feet. Then we have:

800: 600::3256.7 : 2442.5 radius:

 $800:600::457\cdot69:343\cdot27$ $800:600::342\cdot27:256\cdot70$ = new tangent.

599.97 = "

ON REVERSED CURVES, TURNOUTS, ETC. Fig. 18.

A F = 98 feet, A D = 102 feet, and D E = 102 feet. Let G = gauge of track, and R = radius of turnout, x = distance

on chord from A, the origin of curve, to F, the point of frog; then will

$$x = \sqrt{2 R \cdot G}$$

Now suppose R = 800 feet, and G = 6 feet, then will

$$x = \sqrt{2 \times 800 \times 6} = \sqrt{9600} = 98$$
 feet nearly.

Or let x = distance on main track to a point opposite of the frog. Then will

$$x = \sqrt[4]{G(2 R - G)}$$
 or $\sqrt{6(2 \times 800) - 6} = \sqrt{6 \times 1594} = \sqrt{9564} = 97.79$ feet.

Hence the following rule is sufficiently correct for all practical purposes:

Multiply twice the radius by the gauge of track, extract the square root of the product, and we have the distance from origin of curve to point of frog.

Formula for angle of frog: $G \div R =$ versed sine of curvature to

frog = angle of frog. Ex.
$$\frac{6}{800}$$
 = 0075 = 7° 2′.

Make the movable end of the switch rail such a distance from the origin of the curve, that the departure of a curve of that radius for that distance will be equal to the opening of that rail at the movable end, say 5½ inches.

With an 800 feet radius, the distance from origin of curve to

opening of switch rail will be = 27 feet, for
$$\frac{27 \times 27}{1600} = \frac{11}{24} = 5\frac{1}{2}$$

inches nearly.

It will appear therefore that the opening of a 20 feet rail, with an 800 feet radius curve commencing at the other end, will be only

3 inches, for
$$\frac{20 \times 20}{1600}$$
 = 3 inches.

If we consider the movable rail as a movable tangent, and the origin of the curve as the opening of the rail, the angle of frog and length of curve will be obtained by Proposition XII.

EXAMPLE.

A 20 feet rail, with $5\frac{1}{2}$ inches opening, makes an angle with the main track = 1° 18′, then on 6 feet gauge the distance from opening to other side = 5 feet $6\frac{1}{2}$ inches = 5.54 feet. Then by Proposition XII. we have:

cosine 1° 8' = '99974
$$\frac{554}{800} = \frac{.00692}{.99282} = \text{cosine 6° 52'}$$
= angle of frog.

And 6° 52′ — 1° 18′ = 5° 34′ = amount of curvature between opening of rail and point of frog.

By the first method, when the distance between tracks = 13

feet we have $\sqrt[4]{13 \times 800} = 102$ feet nearly for distance from origin of curve to point of reversion.

But if the point of reversion be made at the point of frog, the distance between nearest rails of tracks being 7 feet, we have 6:7::800:933.3 = radius of curve with which to leave frog, and 6:7::98:114.3 = distance from frog to end of turnout.

Or making the movable rail tangent, and its opening 5½ inches, angle of opening being 1° 18', the point of reversion being made at

frog, to find the angle of frog, we have:

cosine 1° 18′ = .99974
$$\frac{6.54}{933.3} = .00780$$

99274 = cosine 6° 55' nearly the same as before.

TURNOUTS ON CURVES. Fig. 19.

Suppose the turnout is on a curve running in the same direction, say a 2°, with a radius of 2865 feet. Now an 800 feet radius gives a 7° 10′ curve, and 7° 10′ - 2° = 5° 10′ = relative departure from main track. But the radius of a 5° 10′ = 1109 feet; then

 $\sqrt{2} \times 1109 \times 6 = x = 115.3$ — distance from origin of curve to point of frog.

Therefore to make a turnout from a 2° curve and running the same way would require 115 feet.

If it were required to keep the distance the same as on a straight line, it would be necessary to make the 7° 10' curve a 9° 10' curve of 625 feet radius.

If the 2° curve run in the opposite direction of the turnout, and the radius was 800 feet, then the convergence will be $7^{\circ} 10' + 2^{\circ} = 9^{\circ} 10'$ curve, and the radius of a $9^{\circ} 10'$ curve being 625 feet, we have:

 $x = \sqrt{2 \times 625 \times 6} = \sqrt[4]{7500} = 86.6$ — distance from origin of curve to point of frog.

When the main track is a curve, and it is required to get on to a side track running parallel thereto.

Note.—In treating of turnouts, When the main and side track are curves, the movable rail is considered a part of the curve used for turnout, according to method 1st.

Let E M be the main track on a curve of 2865 feet radius. It is proposed with a turnout from E, with a curve of 800 feet radius, to fall upon the side track B N, distant 13 feet from the main track, and running parallel thereto. Now 2865 feet radius denotes a 2° curve, and 800 feet radius is a 7° 10′ curve. Therefore the divergence of the curve E f from the curve E M is equal to $(7^{\circ}\ 10'-2^{\circ})=5^{\circ}\ 10'$ curve; and the radius of a 5° 10′ curve being 1109 feet, the divergence of the curve E F from the curve E M is equal to that of a curve of 1109 feet radius.

By similar reasoning, the convergence of the curve FB towards being parallel with EM is 9° 10′ per hundred feet, which may be expressed by a radius of 625 feet from tangent. Then we have $1109 + 625 = 1734:1109::13:8\cdot31 = \text{distance of point of reversion from main track.}$ Now since $x = \sqrt[4]{2} \, \text{R. G}$, we have by substituting $\sqrt{2 \times 1109 \times 8\cdot31} = 135\cdot7 = \text{distance from origin of curve to point of reversion, radius used being 800 feet. The radius of relative curvature being expressed in the formula, we have the proportion <math>1109:625::135\cdot7:76\cdot56$ distance from reversion to 2d track.

Suppose it be required to put the side track on the opposite side, then we have $1734:625::13:4\cdot68 =$ distance of point of reversion from side track. Then we have the formula $\sqrt{2 \times 625 \times 4\cdot68} = 76\cdot48$ distance from origin of curve to point of reversion. Then $625:1109::76\cdot48:135\cdot7 =$ distance from point of reversion to side track.

ON RUNNING CURVES BY OFFSETS, OR WITHOUT THE USE OF AN INSTRUMENT FOR MEASURING ANGLES.
Fig. 20.

From a tangent EA let it be required to run a curve ABCD, having for its radius OC. To do this we have only to find HC and its half MC = GB.

Suppose the chords A B, B C, C D are equal in length, being 100 feet each. The chords, and consequently the ares, being equal, the angle H B C is twice the angle G A B. But G A B is measured by half the arc A B = B C, consequently the angle H B C is measured by the whole arc B C. But the angle B O C is also measured by the arc B C, consequently the angles H B C and B O C are equal. Now triangle B O C is isosceles, and B H being equal to B C triangle H B C is isosceles also; consequently the two triangles are similar, and we have the proportion:

HC: BC:: BC: BO, consequently HC =
$$\frac{BC^2}{BO}$$
, or HC=

Therefore M C = G B = $\frac{A B^2}{2 R}$; hence the following rule:

The square of the uniform length of chord divided by radius will give the linear deflection from chord produced to curve, or half of this will give the deflection from tangent produced to curve.

EXAMPLES.

Suppose A O = 2500 feet, then $\frac{10000}{2500}$ = H C = 4 feet, and G B

= 2 feet.

Suppose A O = 2865 feet, the radius of a 2° curve, then we have

H C =
$$\frac{10000}{2865}$$
 = 3.49 or 3.5 feet nearly; and G B= $\frac{1}{2}$ of 3.5=1.75.

Since the angle GAB = 1° the deflection for 1° per hundred

feet is 1.75, or
$$0^{\circ}$$
 1' = $\frac{1.75}{60}$ = .029, and one minute for one foot =

00029, as by tables of natural sines.

Case 2d.

Suppose we run the curve around to a point which we will call station 10, or 1000 feet from beginning. The point Q, which is less than 100 feet distant from station 10, say 50 feet, being at station 10 + 50.

Suppose this a 2° curve compounded at station 10 + 50 to a 3° curve of 1910 feet radius. Now the instrument setting on station 10 with a backsight on station 9, the instrumental deflection to 10 + 50, 150 feet, will be 1° 30′. Now since 1° per 100 feet is 1.75, that of 1° 30′ will be 2.62 feet. But the last chord being but 50 feet, or half of a hundred, the deflection will be half of 2.62 = 1.31; hence we have the following rule:

Multiply together half the curvature in degrees = instrumental deflection between the backsight and point required, the length of the last chord and 1.75, and the product is the distance from chord

produced to point required.

Case 3d.

Suppose the curve from 10 + 50 to station 11 is a 3° curve of 1910 feet radius. Now the deflection from chord to tangent, from station 10 to station 10 + 50, is 0° 30′, and the deflection from tangent to chord between 10 + 50 and 11 is 0° 45′, therefore the entire deflection = $30' + 45' = 1^{\circ} 15'$. Now 1° 15′ in a hundred = $1.75 \times 1\frac{1}{4} = 2.18$, and for 50 feet will be = 1.09 feet.

Find station 12 by Case 2d, thus $2\frac{1}{4}^{\circ}$ (= instrumental deflection for 150 feet) \times 1.75 = 3.93 = deflection from chord produced to

station 12 on curve.

Continue the curve around as at first, observing to measure from curve to tangent the same deflection as from tangent to curve, or half the usual chord deflection; the tangent point being supposed a full station. If not a full station, ascertain the tangent point by Case 2d, and the next full station on tangent by Case 3d.

Having produced two tangents to an intersection at C, it is required to connect them with a curve of given length. Fig. 21.

When the angle made by tangents is not greater than 15° the distance from vertex to the two ends of the curve will not differ materially from half the length of the curve.

Suppose the tangent D C produced 100 feet to E, measure C X = 100 feet, measure E X. Now suppose it is 21 feet.

Now the deflection of 1° for 100 feet is 1.75, and $\frac{21}{1.75} = 12^{\circ}$ cur-

Suppose it is required to divide the curve into 6 stations. Then $\frac{21}{6} = 3.5$, the deflection for 2° in 100 feet. Hence it is a 2° curve.

Or 12° divided by 6 stations gives a 2° curve also. The deflection being =1.75 from tangent to curve.

Between two fixed points to supply the intermediate points by ordinates from the chord. Fig. 22.

By what has been previously demonstrated, the middle ordinate 4 to 4 will be expressed by $\frac{4 \times 4}{2 R}$. At 3 the deflection from tan-

gent run each way from 4 to curve is $\frac{1 \times 1}{2 R}$ at 2 it is $\frac{2 \times 2}{2 R}$.

Hence the ordinate 4 to $4 = \frac{4 \times 4}{2 R}$. Or 2 R being a common

denominator, its relative value may be expressed by 4×4 . At points 3 and 5 on chord the distance will be $(4 \times 4) - (1 \times 1) = 3 \times 5 = 15$. At 6 and $2 = (4 \times 4) - (2 \times 2) = 2 \times 6 = 12$. At 7 and $1 = (4 \times 4) - (3 \times 3) = 1 \times 7 = 7$.

The ordinates are as follows:

Then we observe that the sum of the two factors is equal, namely

the length of chord. Hence the following rule:

Multiply together the two segments of the chord or distance, divide by twice the radius, and the result is the distance from chord to curve.

Suppose for example the radius = 5000 feet, then at points 1 and 7 we have $\frac{100 \times 700}{10000} = \frac{70000}{10000} = 7$ feet = offset at station 1 from end.

For 2 and 6
$$\frac{200 \times 600}{10000} = 12 = 2d$$
 offset.

For 3 and
$$5\frac{300 \times 500}{10000} = 15 = 3d$$
 offset,

and the entire length being 8 stations $\frac{400 \times 400}{10000} = 16 = \text{greatest}$

or middle ordinate.

Had it been a 1° curve of 5730 feet radius, the ordinates would have been:

$$1 \times 7 \times \frac{7}{8} = 6.12$$

 $2 \times 6 \times \frac{7}{8} = 10.50$
 $3 \times 5 \times \frac{7}{8} = 13.12$

 $4 \times 4 \times \frac{7}{8} = 14.00 =$ middle ordinate; and

so in proportion to any other rate of curvature in degrees.

Hence when the rate of curvature is in degrees and no minutes, we have the following rule:

Multiply together the distances in stations each side of the point, and the rate of curvature, deduct from this product \(\frac{1}{8} \) of itself, the remainder will be the ordinate required.

^{*} The departure in 100 ft. of a 1° curve from tangent being = 75 = 3 of a foot.

CASE 2D.

Suppose that between the points 0 and 8 there occurs a point of c. c., for instance at 3 or 5, the curves compound from a 5000 feet radius to a 4000 feet radius.

By 1st method
$$\frac{300 \times 300}{8000} = 11.25 = \text{distance from end of chord}$$

to tangent run from p.c. c., and $\frac{500 \times 500}{10000} = 25 = \text{distance from}$

other end to said tangent.

Measure from ends of chords respectively 11.25 and 25 feet; on this line, at a distance 300 feet from 11.25 offset, and 500 feet from 25 feet offset, would be the point of compound curvature sought.

Or imagine either curve produced to a point opposite the end of the other; calculate by Proposition XI., and measure the distance between the two curves, then on the new chord find the p. c. c. as by simple curves. Thus:

$$\frac{300 \times 300}{8000} - \frac{300 \times 300}{10000} = 2.25.$$

Measure 2.25 from the old chord, and you have the direction of the new. Having found the p. c. c. calculate the offsets from each

chord separately.

The above rule for ordinates, although not perfectly accurate, considering the divisor always = 2 R, while it is variable, is sufficiently near for centres to grade by, when the chord subtends not more than 20° curvature.

This rule will also apply to placing centre points between

stations. Thus:

On a chord of 100 feet, radius 1000 feet, let it be required to locate a point 30 feet from one end and 70 feet from the other.

Then we have
$$\frac{30 \times 70}{2000} = 1.05$$
.

FOR SPRINGING RAILS.

Linear season for an incident and their he seems for more to had

Let L = length of rail and R = length of radius. Then:

$$\left(\frac{L}{2}\right)^2 = \frac{L^2}{8R} = \text{spring in feet.}$$

$$\frac{L^2 \times 1\frac{1}{2}}{R} = \text{spring in inches.}$$

.
$$\frac{L^2 \times 12}{R}$$
 = spring in eighths of an inch.

$$\left(\frac{-24\,\mathrm{L^2}}{\mathrm{R}}\right) = \mathrm{spring}$$
 in sixteenths of an inch.

EXAMPLE.

Let the rail be 20 feet long, and the radius 1200 feet. Then

$$\frac{24 \times 20^2}{1200} = \frac{9600}{1200} = \frac{8}{16}.$$

Hence the rule:

24 times the square of the length of rail in feet divided by length of radius in feet, will give the spring in middle in sixteenths of an inch.

To find the length of chord for any rate of curvature (less than 8°) not specified in the Table of Chords (p 414.)

EXAMPLE.

Let it be required to find the length of chord corresponding to 800 feet of curve for a 7° 10' curve.

7° curve gives . 769.017° 15′ curve gives . 766.79Difference . . 2.22

Then 15:10:: 2.22:1.48, and 769.01 - 1.48 = 767.53;

or 15: 5:: 2.22: 74, and 766.79 + 0.74 = 767.53.

The result, as obtained by the table of sines, is 767.54, only $\frac{1}{100}$ of a foot difference.

That is, sine 28° 40' \times radius 800 \times 2 = 767.54.

Suppose now it be required to find the length of chord corresponding to 950 feet of a 6° curve.

Now sine 28° 30′ × radius 955·37 × 2 = length of chord = 911·71, being only $\frac{3}{10}$ of a foot difference, so that this table will be sufficient for ordinary purposes. For common rates of curvature for a less distance, say 650 feet, the variations from the true length would be scarcely perceptible.

PROBLEM.-Let A and C be two fixed tangent points, the positions of whose tangents are determined by the angles $D A C = m = 18^{\circ}$, B C E = $n = 6^{\circ}$, and the perpendicular distance D C = $p = 463\frac{1}{2}$ ft.* Required the amount of curvature in the arc A B, its reversion BC, and the length of the common radius OB = MB by which the arcs A B and B C are described.

Let m = nat. vers. sine DAC, and n = nat. vers. sine BCE. Let x = nat. vers. sine (A O B - m) = (B M C - n).Or curvature A B = m + x, and curvature B C = n + x.

m + n v. s. $18^{\circ} + v.$ s. 6° To find x we have, $x = \frac{1}{2} = \frac{1}{2}$

0.048944 + 0.005478=0'027211 = nat. vers. sine 13° 23' 48".

Therefore arc A B = $18^{\circ} + 13^{\circ} 23' 48'' = 31^{\circ} 23' 48''$ and B C = $6^{\circ} +$ 13° 23' 48" = 19° 23' 48". Then by principles from which Proposition XII. is derived, to find OB = R,

perpd. dist. D C = ptwice nat. vers. sine AB – nat. vers. sine (m-n) = R, Or

463:5 p = 463.5nat. v.s. $31^{\circ} 23' 45'' \times 2$ — nat. v.s. $12'' = 0.146420 \times 2 - 0.021852$

> 463.5 = 1710.4 = 0B = radius of a 3° 21' curve. 0.270988

 $\frac{1^{\circ} 24'}{3^{\circ} 21'}$ gives 937 ft. = arc AB, and $\frac{19^{\circ} 24'}{3^{\circ} 21'}$ gives 579 ft = arc BC.

 4 If D C cannot be measured, measure A C and calculate D C. Thus if A C = 1500 ft, we have $1500 \times \sin 15^\circ = 1500 \times 0.83902 = 463.58$, $^+$ D G E being equal to A O B, A O B - m=A L G = C L G. Therefore x= nat, vers. sine A L G = 13° 23. 48°.

(THE CURVATURE IS SUBTENDED BY A CHORD OF 100 FEET,)

0 DEGREE.				1 DEG	REE.	1	2 DEGI	REES.
М.	Radius Infinite.	Logarithm Infinite.	М.	Radius.	, Logarithm.	М.	Radius.	Logarithms
			0	5730	3.758128	0	2865	3.457115
1	343775	5.536274	1	5636	3.750949	1	2841	3.453511
	171887	5.235244	2	5545	3.743888	2	2818	3.449937
3	114592	5.059153	3	5457	3.736940	3	2795	3.446391
4	85944	4.934214	4	5372	3.730106	4	2772	3.442876
5	68755	4.837304	5	5289	3.723367	5	2750	3.439387
6	57296	4.758123	6	5209	3.716737	6	2729	3.435928
7	49111	4.691176	7	5131	3.710206	7	2707	3.432493
8	42922	4.633184	8	5056	3.703772	8	2686	3.429089
9	38197	4.582031	9	4982	3.697432	9	2665	3.425708
10	34377	4.536274	10	4911	3.691183	10	2645	3.422356
11	31252	4.494881	11	4842	3.685023	11	2624	3.419028
12	28648	4.457093	12	4775	3.678947	12	2605	3.415727
13	26444	4.422331	. 13	4709	3.672958	13	2585	3.412448
14	24555	4.390146	14	4646	3.667057	14	2566	3.409197
15	22918	4.360183	15	4584	3.661220	15	2547	3.405967
16	21486	4.332154	16	4523	3.655469	16	2528	3.402763
17	20222	4.305825	17	4465	3.649792	-17	2509	3.399581
18	19099	4.281002	18	4407	3.644189	18	2491	3.396424
19	18093	4.257520	19	4352	3.638656	19	2473	3.393288
20	17189	4.235245	20	4297	3.633194	20	2456	3.390176
21	16370	4.214055	21	4244	3.627800	21	2438	3.387085
22	15626	4.193852	22	4192	3.622470	22	2421	3.384016
23	14947	4.174546	23	4142	3.617196	23	2404	3.380968
24	14324	4.156064	24	4093	3.612005	24	2387	3.377943
25	13751	4.138334	25	4045	3.606866	25	2371	3.374937
26	13222	4.121802	26	3997	3.601787	26	2355	3.371954
27	12732	4.104910	27	3952	3.596766	27	2339	3.368989
28	12278	4.089117	28	3907	3.591803	23	2323	3.366046
29	11854	4.073876	29	3863	3.586896	29	2307	3.363121
30	11459	4.059154	30	3820	3.582044	30	2292	3.360217
31	11090	4.044912	31	3778	3.577246	31	2277	3.357331
32	10743	4.031125	32	3737	3.572499	32	2261	3.354466
33	10417	4.017760	33	3697	3.567804	33	2247	3.351618
34	10111	4.004797	34	3657	3.263160	34	2232	3.348789
85	9822		35		3.558564	35	2218	3.345978
36	9549	3.992206	36	3619		36	2204	3.343187
37	9291	3.979973	37	3581	3.554011	37	2190	3.340411
38	9047	3.968072	38	3544	3.549516			
39	8815	3.956498	39	3508	3.545963	38	2176	3.337655
		3.945209		3473	3.540654	39	2162	3.834915
40	8594	3.934216	40	3438	3.536289	40	2149	3.382193
41	8385	3.923490	41	3404	3.531968	41	2135	3.329487
42	8185	3.913029	42	3370	3.527690	42	2122	3.326799
43	7995	3.902806	43	3338	3.523452	43	2109	3.324120
44	7813	3.892824	44	3306	3.519257	44	2096	3.321471
45	7639	3.883063	45	3274	3.515100	45	2083	3.318831
46	7473	3.873519	46	3243	3.510.985	46	2071	3.316208
47	7314	3.864179	47	3213	3.506907	47	2059	3.313600
48	7162	3.855036	48	3183	3.502868	48	2046	3.311068
49	7016	3.846081	49	3154	3.498866	49	2034	3.308430
50	6876	3.837308	50	3125	3.494900	50	2022	3.305869
51	6741	3.828708	51	3097	3.490970	51	2010	3.303323
52	6611	3.820275	52	3069	\$.487075	52	1999	3.300797
53	6486	3.812002	53	3042	3.483205	58	1987	3.298274
54	6366	3.803885	54	3016	3.479389	54	1976	3.295771
55	6250	3.795915	55	2989	3.475596	55	1965	3.293283
56	6139	3.788091	56	2964	3.471836	56	1953	3.290809
57	6021	3.780403	57	2938	3.468108	57	1942	2.288349
58	5927	8.772851	58	2913	3.464413	58	1931	3.285902
59	5827	3.765426	59	2889	3.460748	59	1921	3.283470
60	5780	3.758128	60	2865	8.457115	60	1910	3.281051

. 1	3 DEGI	REES.		4 DEGI	REES.		5 DEGI	REES.
M.	Radius,	Logarithm.	м.	Radius.	Logarithm.	м.	Radius.	Logarithm
()	1910	3.281051	0	1433	3.156151	0	1146	8.059290
1	1900	3.278646	1	1427	3.154544	1	1142	3.05784
2	1889	3.276253	2	1421	3.152548	2	1189	3.05640
3	1879	3.273875	3	1415	3.150758	3	1135	3.05501
4	1869	3.271508	4	1409	3.148975	4	1131	3.05354
5	1858	3.209155	- 5	1403	3.147100	5	1127	3.05211
6	1848	3.262814	6	1398	3.145431	6	1124	3.05069
7	1839	3.264486	7	1392	3.143670	7	1120	3.04927
8	1829	3.262170	8	1386	3.141916	8	1116	3.04780
9	1819	3.259867	9	1381	3.140170	9	1113	3.04646
10	1810	3.257576	10	1375	3.138430	10	11(9	3.04505
11	1800	3.255297	11	1370	3.136697	11	1106	3.04366
12	1791	3.253029	12	1364	3.134977	12	1102	8.04226
13	1781	3.250771	13	1359	3.133251	13	1(99	3.04087
14	1772	3.248530	14	1854	3.131539	14	1(95	3.(3949
15	1763	3.246297	15	1348	3.129833	15	1092	3.03811
16	1754	3.244077	16	1343	3.128134	16	1088	3.03674
17	1745	3.241867	17	1338	3.126441	17	1085	3.03536
18	1736	3.239669	18	1333	3.124756	18	1081	3.03400
19	1728	3.237481	19	1328	3.123075	19	1078	3.03263
20	1719	3.235305	20	1322	3.121404	20	1075	3.63128
21	1710	3.233140	21	1317	3.119737	21	1071	3.02992
22	1702	3.230985	22	1312	3.118078	22	1068	3.02857
23	1694	3.228841	23	1307	3.116423	23	1065	3.02723
24	1686	3.226707	24	1302	3.114773	24	1061	- 3.02589
25	1677	3.224584	25	1298	3.113134	25	1058	3.02455
26	1669	3.222479	26	1293	3.111401	26	1055	3.02321
27	1661	3.220369	27	, 1288	3.1(9871	27	1052	3.02188
28	1653	3.218277	28	1283	3.108249	28	1048	3.02056
29	1645	3.216128	29	1278	3.106632	29	1045	3.01924
30	1637	3.214122	30	1273	3.105022	30	1042	3.01792
31	1630	3.212060	31	1269	3.103418	31	1029	3.01661
32	1622	3.210007	32	1264	3.101818	32	1086	3.01530
33	1614	3.207963	33	1260	3.100225	83	1083	3.01399
34	1607	3.205930	34	1255	3.098638	34	1030	3.01269
35	1599	3.203906	35	1250	3.(97(56	35	1027	3.01140
36	1592	3.201892	36	1246	3 (95481	36	1024	3.01010
37	1584	3.199891	37	1241	3.(93910	37	1021	3.00881
38	1577	3:197890	38	1237	3 (92374	38	1017	3.00753
39	1570	3.195903	39	1232	· 3·(90788	39	1014	3.00624
40	1563	3.193925	40	1228	£·089236	40	1011	3.00497
41	1556	3.191957	41	1224	3.37689	41	1008	3.00369
42	1549	3.189996	42	1219	3.0S6147	42	1006	3.00242
43	1542	3.188045	43	1215	3.084610	43	1003	3.00115
44	1535	3.186103	44	1211	3·0S3079	44	1000	2.99989
45	1528	3.184168	45	1207	3.081553	45	996.9	2.99863
46	1521	3.182244	46	1202	3.080033	46	994.0	2.99738
47	1515	8.180327	47	1193	3.078518	47	991.1	2.99612
48	1508	3.178419	48	1194	3.077002	48	988.3	2.99488
49	1501	3.176519	49	1190	3.075503	49	985.4	2.99363
50	1495	3.174627	50	1186	3.074005	50	982.6	2.99289
51	1489	3.172742	51	1182	3.072511	51	979.8	2.99115
52	1482	3.170868	52	1178	3.071022	52	977.1	2.98992
53	1476	3.169001	53	1174	3.069537	53	974.3	2.98869
54	1469	3.167142	54	1170	3.068059	54	971.5	2.98746
55	1463	3.165290	55	1166	3.366584	55	968.7	2.98619
56	1457	3.163447	56	1162	3.065116	56	966.1	2.98501
57	1451	3.161612	57	1158	3.063648	57	963.4	2.98386
58	1445	3.159784	58	1154	3.062194	58	960.7	2.98258
59	1439	3.157963	59	1150	3.060738	59	958.0	2.98137
60	1433	3.156151	60	1146	3.059290	60	955.4	2.98017

	6 DEGI	REES.		7 DEG	REES.		8 DEGR	EES.
м.	Radius.	Logarithm.	М.	Radiu.	Logarithm.	м.	Radius,	Logarithm
0	955.4	2.980170	0	819.0	2.913295	0	716.8	2.85538
1	952.7	2.978967	1	817.1	2.912266	1	715.3	2.85448
2	950.1	2.977766	2	815.1	2.911234	2	713.8	2·8535S
3	947.5	2.976569	3	813.2	2.910208	3	712.3	2.85268
4	944.9	2.975375	4	811.3	2.9 9183	4	710.9	2.85178
5	942.3	2.974186	5	8.9.4	2.938161	5	709.4	2.85089
6	939.7	2.972997	6	807.5	2.937142	6	707.9	2.34999
7	937.2	2.971814	7	835.6	2.936124	7	706.5	2.84910
8	934.6	2.970633	8	803.7	2.905111	8	705.0	2.84821
9	932.1	2.909456	9	801.9	2.934097	9	703.6	2.84732
10	929.6	2.968282	10	800.0	2.903090	10	702.2	2.84644
11	927.1	2.937111	11	793.1	2.902082	11	700.7	2.84556
12	924.0	2.935943	12	796.3	2.9.1076	12	699.3	2.34467
13	922.1	2.934778	13	794.5	2.900073	13	697.9	2.84379
14	919.6	2.363616	14	792.6	2.899073	14	693.5	2.34292
15	917.2	2.962458	15	790.8	2.893075	15	695.1	2.84204
16	914.3	2.931303	16	789.0	2.397078	16	693.7	2.34116
17	912.3	2.960150	17	787.2	2.893085	17	692.3	2.84029
18	909.9	2.959301	13	785.4	2.395094	18	690.9	2.83942
19	9.7.5	2.957854	19	783.6	2.894103	19	689.5	2.33855
2)	905.1	2.956711	2)	781.8	2.893118	20	688.2	2.83768
21	9)2.8	2.955572	21	780.1	2.892134	21	686.8	2.83682
22	930.4	2.954434	22	778.3	2.891151	22	685.4	2.33595
23	893.0	2.953300	23	776.6	2.890171	23	684.1	2.83509
24	895.7	2.952168	24	774.8	2.889193	24	682.7	2.83423
25	893.4	2.951049	25	773.1	2.888218	25	681.4	2.33337
26	891.1	2.949915	26	771.3	2.887244	26	680.0	2.83251
27	888.8	2.948792	27	769.6	2.886272	27	678.7	2.83165
28	886.5	2.947673	28	767.9	2.885303	28	677.4	2.33080
29 30	884·2 882·0	2.946555	29	766·2 764·4	2.384336	29 30	676.0	2.82995
		2.945452	30	762.8	2.883371		674.7	2.82910
31 32	879·7 877·5	2.944330	31	761.1	2.882409	31	673·4 672·1	2.82825
33	875.2	2.943223	32 33	759.4	2.881445	32	670.7	2.82740
34	873.0	2.942116		757·S	2.380490	34	669.4	2.82656
S5	870.8	2.941015	34	756.1	2.879534	35	668.1	2.82571
36	868-3	2·939914 2·938819	35	754.4	2.878580	36	666.9	2·82487 2·32433
37	866.4		36	752.8	2·877627 2·876678	37	665.6	
38	864.2	2·937722 2·936633	38	751.2	2.875730	33	664.3	2.32319
39	862.1	2.935543	39	749.5	2.874783	39	663.0	2·32235 2·32151
40	859.9	2.934459	40	747.9	9.270040	40	661.7	2·32131
41	857.7	2.9333337	41	746.3	2·373840 2·872900	41	660.5	2.81985
42	855.6	2.932295	42	744.7	2.871959	42	659.2	2.81933
43	853.2	2 932293	43	743.1	2.871022	43	657.9	2.81932
44	851.4	2.931218	44	741.5	2.370086	44	656.7	2.31519
45	849.3	2.929370	45	739.9	2.869153	45	655.4	2.31653
46	847.2	2.928000	46	738.3	2.868221	46	654.2	2.81571
47	845.1	2.926933	47	736.7	2.867291	47	653.0	2.81488
48	843.1	2.925867	48	735.1	2.866363	48	651.7	2.81496
49	841.0	2.924306	49	733.6	2.865438	49	650.5	2.31324
50	839.0	2.923747	59	732.0	2.864514	50	649:3	2.81242
51	836.9	2.922691	51	730.5	2.863593	51	645.1	2.81161
52	834.9	2.921637	52	728.9	2.862673	52	646.8	2.81079
53	832.9	2.92)585	53	727.4	2.861756	53	645.6	2.30998
54	830.9	2.919586	54	725.8	2.860840	54	641.4	2.80916
55	828.9	2.918489	55	724.3	2.859926	55	643.2	2.80835
56	826.9	2.917446	56	722.8	2.859.014	56	642.9	2.80759
57	824.9	2.916403	57	721.3	2.858104	57	640.8	2.80674
58	822.9	2.915365	58	719·S	2.857196	58	639.6	2.83593
59	821.0	2.914327	59	715-3	2.856289	59	638.5	2.80513
60	819.0	2.913295	60	716.8	2.855385	60	637.3	2.80432

9 DEGREES.				10 DEG	REES.		11 DEG	REES.
M,	Radius.	Logarithm.	M.	Rad'u .	Logarithm.	M.	Radius.	Logarithm.
0	637.3	2.804327	0	573.7	2.758674	0	521.7	2.71739
1	636.1	2.803526	1	572.7	2.757953	1	520.9	2.71674
2	634.9	2.802724	2	571.8	2.757232	2	520.1	2.71608
3	633.8	2.801926	3	570.8	2.756514	3	519.3	2.71543
4	632.6	2.801128	4	569.9	2.755796	4	518.5	2.71478
4 5 6	631.4	2.800332	5	569.0	2.755079	5	517.8	2.71413
6	633.3	2.799538	6	568.0	2.754364	6	517.0	2.71347
8	629.1	2.793745	7	567.1	2.753650	7	516.2	2.71283
8	628.0	2.797953	8	566.2	2.752937	8	515.4	2.71218
9	626.8	2.797163	9	565.2	2.752225	9	514.7	2.71153
1)	625.7	2.796374	10	564.3	2.751514	10	513.9	2.71088
11	624.6	2.795587	11	563.4	2.750804	11	513.1	2.71024
12	623.5	2.794801	12	562.5	2.750096	12	512.4	2.70959
13	622.3	2.794017	13	561.6	2·749 38 9	13	511.6	2.70895
14	621.2	2.793234	14	560.6	2·748683	14	510.9	2.70831
15	62).1	2.792452	15	559.7	2.747978	15	510.1	2.70766
16	619.0	2.791673	16	558.8	2.747274	16	509.3	2.70702
17	617.9	2.790894	17	557.9	2.746572	17	508.6	2.70638
18	616.8	2.79)117	18	557.0	2.745870	18	507.9	2.70574
19	615.7	2.789340	19	556.1	2.745170	19	507.1	2.70511
20	614.6	2.788566	20	555.2	2.744471	20	506.4	2.70447
21	613.5	2.787794	21	554.3	2.743773	21	505.6	2.70383
22	612.4	2.787021	22	553.4	2.743076	22	504.9	2.70320
23	611.3	2.786252	23	552.6	2.742380	23	504.1	2.70256
24	610.2	2.785482	24	551.7	2.741686	24	503.4	2.70193
25	639.1	2.784715	25	550.8	2.740990	25	502.7	2.70130
26	608.1	2.783948	26	549.9	2.740300	26	501.9	2.70067
27	607.0	2·7S3183	27	549.0	2.739609	27	501.2	2.70004
28	605.9	2.782420	28	548.2	2.738918	28	500.5	2.69941
29	604.9	2.781657	29	547.3	2.738229	29	499.8	2.69878
30	603.8	2.780897	30	546.4	2.737541	30	499.0	2.69815
31	602.8	2.780138	31	545.6	2.736854	31	498.3	2.69752
32	601.7	2.779379	32	544.7	2.736169	32	497.6	2.69690
33	600.7	2.778622	33	543.8	2.735484	33	496.9	2.69627
34	599.6	2.777863	34	543.0	2.734830	34	493-2	2.69565
35	598.6	2.777113	35	542.1	2.734118	35	495.5	2.69502
36	597.5	2.776360	36	541.3	2.733436	36	494.8	2.69440
37	596.5	2.775608	37	543.4	2.732756	37	494.1	2.69378
38	595.5	2.774858	38	539.6	2.732077	38	493.4	2.69316
39	594.4	2.774108	39	538.8	2.731398	39	492.7	2.69254
49	593.4	2.773361	40	537.9	2.730721	40	492.0	2.69192
41	592.4	2.772616	41	537.1	2.730045	41	491.3	2.69130
42	591.4	2.771870	42	536.3	2.729370	42	490.6	2.69069
43	590.4	2.771124	43	535.4	2.728696	43	489.9	2.69007
44	589.4	2·7703S3	41	534.6	2.728023	44	489.2	2.68946
45	538.4	2.769642	45	533·S	2.727351	45	488.5	2.68884
46	587.4	2.768902	46	532.9	2.726684	46	487.8	2.68823
47	586.4	2.768163	47	532.1	2.726010	47	487.1	2.68762
48	585.4	2.767426	48	531.3	2.725342	48	486.4	2.68700
19	584.4	2.766689	49	530.5	2.724674	49	485.7	2.68639
50	583.4	2.765955	50	529.7	2.724008	50	485.0	2 68578
51	582.4	2.765223	51	528.9	2.723342	51	484.4	2.68517
52	581.4	2.764489	52	528.0	2.722677	52	483.7	2.68457
58	580.4	2.763758	53	527.2	2.722014	53	483.0	2.68396
54	579.5	2.763028	54	526.4	2.721351	54	482.3	2.68335
55	578.5	2.762299	55	525.6	2.720690	55	481.7	2.68275
56	577.5	2.761572	56	524.8	2.720019	56	481.0	2.68214
57	576.6	2.760845	57	524.0	2.719370	57	480.3	2.68154
58	575.6	2.760120	58	523.2	2.718711	58	479.7	2.68093
59	574.6	2.759398	59	522.5	2.718054	59	479.0	2.68033
60	573.7	2.758674	60	521.7	2.717397	60	478.3	2.67973

12 DEGREES.				13 DEC	FREES.	14 DEGREES.			
М.	Radius,	Logarithm.	M.	Radius.	Logarithm.	M.	Radius,	Logarithm.	
0	478.3	2.679735	0	441.7	2.645111	0	410.3	2.613075	
1	477.7	2.679185	1	441.1	2.644557	1	409.8	2.612561	
2	477.0	2.678535	2	440.5	2.644004	2	409.3	2.612048	
3	476.3	2.677936	3	440.0	2.643451	3	468.8	2.611535	
4	475.6	2.677238	4	489.4	2.642900	4	408.3	2.611023	
5	475·0 474·4	2.676741	5	438.9	2.642348	5 6	407.9	2.610511	
7	473.8	2.676145	7	438·3 437·8	2.641798	7	467·4 406·9	2.610000 2.6(9490	
8	473.1	2·675549 2·674954	8	437.2	2·641248 2·640699	8	406.4	2.608980	
9	472.5	2.674360	9	436.7	2.640150	9	406.0	2.608471	
10	471.8	2.678767	10	436.1	2.639603	10	405.5	2.607962	
11	471.2	2.673175	11	435.6	2.629056	11	405.0	2.607454	
12	470.5	2.672584	12	435.0	2.638510	12	404.5	2.606946	
13	469-9	2.671993	13	434.5	2.637964	13	404.0	2.606439	
14	469.2	2.671403	14	433.9	2.637419	14	403.6	2.605933	
15	468.6	2.670814	15	433.4	2.636875	15	403.1	2.605428	
16	468.0	2.670226	16	432.8	2.636332	16	462.6	2.604923	
17	467.3	2.669638	17	432.3	2.635789	17	402.2	2.604418	
18 19	466.7	2.669052	18	431.8	2.685247	18	401.7	2.603914	
20	466·1 465·5	2.668466	20	431.2	2.634705	19	401.2	2.608411	
21	464.8	2.667881 2.667297	21	430.7 430.2	2.634164	20 21	400·8 400·3	2.602908	
22	464.2	2.066713	22	429.6	2·633624 2·633685	21 22	399.9	2.602406 2.601905	
23	463.6	2.666131	23	429.1	2.632546	23	399.4	2.601404	
24	463.0	2.665549	24	428.6	2.682008	24	39S·9	2.600904	
25	462.3	2.664968	25	428.0	2.631471	25	398.5	2.600404	
26	461.7	2.664387	26	427.5	2.63(934	26	398.0	2.599905	
27	461.1	2.663808	27	427.0	2.630388	27	397.6	2.599406	
28	460.5	2.663229	28	426.4	2.629863	28	397.1	2.598908	
29	459.9	2.662651	29	425.9	2.629328	29	396.7	2.598411	
30	459.2	2.662074	30	425.4	2.628794	30	£96.2	2.597914	
31	458.6	2.661498	31	424.9	2.628261	31	. 395.7	2.597418	
33	458.0	2.660922	32	424.4	2.627728	32	895.8	2.596922	
34	457.4	2.660347	33 34	423.8	2.627196	33	394.8	2.596427	
35	456·8 456·2	2.659773	35	423·3 422·8	2.626665	34	394·4 593·9	2.595938	
36	455.6	2.659200 2.658628	36	422 3	2.626134 2.625604	35 36	393.5	2·595439 2·594946	
37	455.0	2.658056	37	421.8	2.625074	37	393.0	2.594453	
38	454.4	2.657485	38	421.3	2.624546	38	892.6	2.593961	
39	453.8	2.656915	39	420.7	2.624018	39	392.2	2.593469	
40	453.2	2.656345	40	420.2	2.623490	40	391.7	2.592978	
41	452.7	2.655776	41	419.7	2.622963	41	391.2	2.592487	
42	452.1	2.655208	42	419.2	2.622437	42	390.8	2.591997	
43	451.5	2.654641	43	418.7	2.621912	48	390.4	2:591508	
44	450.9	2.654075	44	418.2	2.621387	44	390.0	2.591019	
45 46	450.3	2.653509	45	417.7	2.620863	45	389.5	2.590531	
	449.7	2.652944	46	417.2	2.620339	46	389.1	2.590043	
47 48	449.1	2.652380	47	416.7	2.619816	47	388.6	2.589556	
49	448·6 448·0	2.651816	49	416.2	2.619294	48	388.2	2.589069	
50	447.4	2.651254 2.650691	50	415.7	2.618772	49	387·8 387·3	2.588583	
51	446.8	2.650130	51	414.7	2.618251	50	386.9	2.588(97 2.587612	
52	446.2	2.649570	52	414.2	2.617731 2.617211	51 52	386·5	2.587012	
53	445.7	2.649010	53	413.7	2.616692	53	386.0	2.586644	
54	445.1	2.648451	54	413.2	2.616173	54	385.6	2.586161	
55	444.5	2.647892	55	412.7	2.615655	55	385.2	2.585678	
56	444.0	2.647335	56	412.2	2.615138	56	384.8	2.585196	
57	443.4	2.646778	57	411.7	2.614622	57	384.3	2.584714	
58	442.8	2.646222	58	411.2	2.614106	58	888.9	2.584283	
59	442.2	2.645666	59	410.8	2.613590	59	383.5	2.583752	
60	441.7	2.645111	60	410.3	2.613075	60	383.1	2.583272	

TABLE

Of Chords corresponding to every 100 feet on curve from 200 to 1000 feet, calculated to every 15 minutes' rate of curvature, from 15 minutes to 8 degrees, radius of 1° being 5730 feet.

Rate of curvature.	200 feet.	300 feet.	400 feet.	500 feet.	600 feet.	700 feet.	800 feet.	900 feet.	1000 ft
Cm			1						
15'	200.00	300.00	400.00	499-99	599-98	699-97	799-96	899-94	999.92
30'	200.00	299.99	399-98	499.96	599.93	699.89	799.84	899.77	999.69
45	200	299.98	399.95	499-91	599.84	699.76	799.64	899.49	999.30
1°	199.99	299.97	399-92	499.85	599.73	699.57	799.36	899.69	998-7
1° 15'	199.99	299.95	399.88	499.76	599.58	699.33	799.00	898.57	998-05
1° 30′	199.98	299.93	399.83	499.66	599.40	699.04	798.56	897.95	997.18
1° 45′	199.98	299.91	399.77	499.53	599.18	698.69	798.04	897-20	996.18
2°	199.97	299.88	399.70	499.39	598.94	698.30	797.44	896.35	994.98
2° 15′	199.96	299.85	399.61	499-23	598-65	697.84	796.76	895.38	993.6
2° 30'	199.95	299.81	399.52	499.05	598.34	697.34	796.01	894.30	992.1
2° 45′	199.94	299.77	399.42	498.85	597.99	696.78	795.17	893.10	990.5
g°	199.93	299.73	399.32	498.63	597.61	696.17	794.25	891.80	988-7
3° 15′	199.92	299.68	399.19	498.39	597.19	695.50	793.26	890.38	986.7
3° 30'	199.91	299.63	399.07	498.14	596.74	694.79	792.18	888.85	984.68
3° 45'	199.89	299.57	398-93	497.86	596-26	694.02	791.03	887.21	982.4
4°	199.88	299.51	398.78	497.57	595.74	693.20	789-80	885.45	979-9
4° 15'	199.86	299.45	398.63	497.25	595.20	692-32	788.49	883.58	977.4
4° 30'	199.85	299.38	398.46	496.92	594.62	691.40	787.11	881.61	974.7
4° 45'	199.83	299.31	398.28	496.57	594.00	690.42	785.64	879.52	971.8
5°	199.81	299:24	398.10	496.20	593.36	689.39	784.10	877-32	968.8
5° 15'	199.79	299-16	397.90	495.81	592.68	688.30	782.48	875.02	965.7
5° 30'	199.77	299.08	397.70	495.40	591.97	687.17	780.79	872.61	962.4
5° 45'	199.75	299.00	397.49	494.98	591.22	685.93	779.01	870.08	958.9
6°	199.73	298.90	397.26	494.53	59045	684.75	777.16	867.45	955.3
6° 15'	199.70	298.81	397.03	494.07	589.64	683.46	775-24	864.72	951.6
6° 39'	199.68	298.72	396.80	493.60	588.81	682.13	773-26	861.90	947.7
6° 45'	199.65	298.61	396.54	493.09	587.93	680.73	771.16	85S·93	943.7
70	199.63	298.51	396.28	492.57	587.02	679.29	769:01	855.87	939.5
7° 15'	199.60	298.40	396.01	492.03	586.08	677.79	766.79	852.72	935-2
7° 30'		298.29	395.73	491.47	585.11	676.25	764.49	849.45	930-7
7° 45'		298.17	495.44	490.90	584.12	674.66	762.12	846.09	926-2
S°	199.51	298.05	395.14	490.31	583.08	673.01	759.67	842-62	921.4

TABLES OF NATURAL AND LOGARITHMIC VERSED SINES, AND EXTERNAL SECANTS.

On the Construction of the Tables of Versed Sines and External Secants.

In the above figure it is required to find the value of versed sine FB = CG, of are BC = AB angle a, and of external secant CD in terms of sine CF and tangent BD.

The chord BC = 2 sine $\frac{1}{2}BC$, and angle FCB is measured by

 $\frac{1}{2}$ are AB = $\frac{1}{2}$ are BC.

Therefore making chord B C radius, B F will be the sine of angle F C B, and we have:

Versed sine B F = $2 \times \overline{\sin F \cdot C \cdot B}^2 = 2 \times (\sin \frac{1}{2} a)^2$. That is, twice the square of sine of half given are = versed sine. Making C F radius. B F becomes tangent, and we have, versed sine B F = CF × tangent F CB, or sine $a \times \overline{A}$ tangent $\frac{1}{2} a$.

Now by similar triangles v. s. a : ex. sec. a :: cos. a : radius; and v. s. a : ex. sec. a :: sine a : tangent a;

or, ex. sec. $a = \underbrace{\text{v. s. } a \times \text{ radius}}_{\text{cosine } a}$ = tan. $a \times \text{ tangent } \frac{1}{2} a$.

Then log. v. s. $a = \log$, sine $a + \log$, tan. $\frac{1}{2}a - (10 = \log$, of R.), and \log ex. sec. $a = \log$, v. s. $a + 10 - \log$, cos. a; or, \log ex. sec. $a = \log$, tan. $a + \log$, tan. $\frac{1}{2}a - 10$.

EXAMPLE,

Log. sine 40° = 9·808067 Log. tan. 20° = 9·561066 Log. v. s. 40° = 9·369133 Log. tan. 40° = 9·923813 Log. tan. 20° = 9·561066 Ex. sec. 40° = 9·484879

	0 DEGR	EE.		1 DEGR	EE.		2 DEGRI	EES.
Min.	Nat. No	Logarithm.	Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logari:hu
0	0.000000	0.000000	0	0.000152	6.182714	0	0.000609	6.784740
1	.000000	2.621422	1	.000157	197071	1	.000619	·791948
2	.000000	3-228482	2	.000162	211194	. 2	.000630	·799 9
8	.000000	580664	3	.000168	225091	3	.000640	*80618
4	.000000	·S30542	4	.000173	238770	4	*000650	*81321
5	.000001	4.024362	5	.000179	252227	5	-000661	*82019
6	.300002	182724	6	·000184	265496	6.	.000672	*827114
7	.300002	316618	7	.000190	278557	7	.000682	*83398
8	.300003	432602	8	.000196	291426	8	.000693	*84079
9	.000003	.534906	9	.000201	*304106	9	.000704	84755
10	.000004	626422	10	*000207	316604	10	.000715	*85425
11	300005	709206	11	.000213	328925	11	000726	86091
12	.300006	.784784	12	.000219	*341072	12	000737	86751
13	-300007	·S54306	13	.000225	253051	13	.000748	87407
14	.300008	918678	14	000232	364868	14	.000759	*88057
15	•300010	978602	15	000238	·37652S	15	*000771	*88703
16	.300011	5.034662	16	·000244	*388032	16	000782	*89344
17	•300012	.087316	17	.000251	·3993S7	17	.000794	89980
18	•300014	136966	18	000257	410592	18	:000805	90612
19	·J00015	183924	19	.000264	·421657	19	·000817	91239
20	*300017	228480	20	.000271	432582	20	.000829	91861
21	•300018	270856	21	.006278	443372	21	*000841	92480
22	*300020	311266	22	·000284	·454030	22	*000853	93093
23	•300022	*349877	23	.000291	•464538	23	-000865	93703
24	∙∂00024	*386842	24	.000298	•474960	24	•000877	94308
25	*000026	422302	25	.000306	•485238	25	*000889	94909
26	*300029	*456366	26	*000313	•495396	26	.000962	95506
27	.000031	489140	27	.000320	505438	27	*000914	96099
2S 29	.000033	520736	28	.000328	515364	28	*000926	96687
	*000035	·551216	29	.000335	•525179	29	-000939	97272
30 31	000038	580662	30	.000343	534882	30	000952	97853
32	*300040	669143	31	.000350	•544480	31 32	000964	93430
33	*300048	*636720	32	.000358	553972	33	•000977	99003
34	*000046 *000049	*663449	33 34	.000366	568362	34	·000990 ·001013	99573
35		689376		:000374	572651	35		7.00139
36	-000052 -000055	·714558 ·739024	35	*000382	581841	36	·001016 ·001029	00701
37	000058	·762821	36	•000390	*596937	37	001029	01239
38	.000061	·785984	38	·000398 ·000406	•599936 •608845	38	001056	02366
39	000001	808549	39	000406	617662	39	-001050	02913
40	·000068	·830538	40	000413	626393	40	001083	02313
41	-300071	851985	41	000423	635034	41	-001097	03999
42	-300075	872916	42	000431	643591	42	001031	04537
43	.000078	893353	43	000440	652064	43	001114	05071
44	000013	913322	44	000449	660456	44	001124	-05662
45	.500005	932845	45	000466	668768	45	-001152	06130
46	.000090	951932	46	000400	676999	46	001166	06655
47	-000093	970611	47	.000484	685156	47	001180	07177
48	·300097	988898	48	000493	693234	48	.001194	07695
49	.000102	6.006770	49	.000503	701240	49	-001208	08211
50	300106	024354	50	000503	709171	50	.001222	08728
51	-300110	•041559	51	000512	717032	51	001237	09232
52	.900114	058420	52	-000531	724820	52	001251	-09738
53	.300119	074965	53	•300540	732540	53	-001266	10242
54	000113	-091200	54	·000550	•740192	54	001281	10742
55	.000128	107146	55	000559	747778	55	.001295	11240
56	- 000133	122788	56	000569	755297	56	.001310	11735
57	*300137	138167	57	-000579	762752	57	.01325	12227
58	.000142	153268	58	-000589	.770144	58	.001340	12716
59	000147	.168116	59	-000599	.777472	59	*001355	13208
60	000152	182714	60	-000609	784740	60	-001370	13686

	0 DEGR	EE.		1 DEGR	EE.		2 DEGRI	EES.
Min.	Nat. No.	Logarithm,	Min.	Nat No.	Logarithm.	Min.	Nat. No.	Logarithm
0	0.000000	.000000	0	0.000152	6.182780	0	0.000610	6.785005
1	.000000	2.626422	1	.000157	·197139	1	.000620	·792217
2	.000000	3.228482	2	.000163	•211265	2	.000630	•799371
3	-000000	•580604	3	.000168	225164	3	*000640	*806465
4	.000000	830542	4	000173	•238845	4	.000651	813502
5	.000000	4.024362	5	*000179	252305	5	.000661	*820481
6	.000001	182725	6	*000184	265576	6 7	000672	*827400
7	•000002	*316619	7	*000190	278639	7	.000683	·S3427
8	*000003	·432603	8	*000196 *000201	*291511 *304193	8 9	·000694 ·000704	84109
10	·000003 ·000004	·534907 ·626424	10	000201	316694	10	000715	*84785° *854568
11	000004	•709209	11	000201	329018	11	000726	86122
12	-000006	·784787	12	-000219	*841167	12	000738	·S6783
13	-000007	854309	13	.000225	353149	13	.000749	·S7439
14	-000008	918682	14	.000232	364969	14	.000760	88090
15	-000010	978606	15	.000238	376631	15	.000772	887368
16	-000011	5.034667	16	.000244	*388138	16	*000783	89378
17	-000012	.087321	17	.000251	*899486	17	.000795	90015
18	.000014	·136974	18	*000257	410704	18	.000806	90647
19	-000015	183933	19	.000264	421772	19	.000818	912748
20	-000017	-228487	20	000271	432700	20	.000830	918978
21	-000018	270864	21	•000278	•443493	21	.000842	92516
22	-000020	*811275	22	·0002S5	454154	22	*000854	931308
23	0000022	*349882	23	*000292	*464685	23	*000866	937408
24 25	0000024	*386853	24 25	*000299	475090	24	000878	94346
26 26	-000026 -000029	*422314 *456378	26	*000306 *000313	*485371 *495532	25 26	*000903	94947
27	-000029	489153	27	000313	505577	27	000905	*95545 *96138
28	-000033	520750	28	•000328	515506	28	000927	96728
29	-000036	551280	29	•000335	525325	29	000940	97313
30	-000038	580679	30	.000343	•535031	30	*000953	97895
31	-000040	619151	31	.000350	•544632	31	.000965	98472
32	-000043	.636739	32	.000358	.554128	32	.000978	99046
33	-000046	.663469	33	.000366	568521	33	.000991	99616
34	-000049	.689397	34	.000374	.572813	34	.001014	7.00182
35	•000052	·714581	35	.000382	582007	35	.001017	00745
36	•000055	•739048	36	.000390	•591106	36	.001031	*01304
37	.000058	.762846	37	.000398	.600169	37	001044	.01860
38	-000061	.786013	38	.000406	*609022	38	*001057	02411
39	•000064	*808577	89	•000415	*617842	39	.001071	*02960
40	•000068	*830567	40	*000423	*626577	40	001084	03505
41 42	000071	*852016	41 42	·000432 ·000440	635222	41	*001098	04047
43	-060078	·872948 ·893387	42	000440	643782 652259	42	001111	*04585 *05120
44	·000082	913358	44	000449	660655	44	001123	05652
45	-000086	932882	45	000466	668771	45	001153	03032
46	-000690	951971	46	000476	677206	46	001167	06706
47	-000094	970652	47	-000485	685366	47	001181	07228
48	-000097	988940	48	.000494	693448	48	001195	07747
49	-000102	6.006814	49	.000503	.701458	49	.001210	08264
50	.000106	.024400	50	.000512	·709393	50	*001224	.08776
51	-000110	.041607	51	.000522	·717258	51	.001238	(9286
52	-000114	.058470	52	.000531	725051	52	.001253	(9793
53	•000119	.075017	53	.000540	.732775	53	001268	10297
54	•000123	.091254	54	.000550	.740431	54	001282	10798
55	•000128	107202	55	000560	·74S021	55	001297	*11296
56	•000133	122846	56	.000570	755544	56	001312	11792
57	·000137 ·000142	128227	57	*000579	*763004	57	001327	12284
58 59	000142	·153330 ·168180	58	000589	770400	58	·001342 ·001357	12774
60	000152	182780	60	000599	·777732 ·785005	59 60	001337	·13262 ·13746
UU	000102	102100	00	000010	100000	1 00	001312	19140

	3 DEGR	EES.		4 DEGRI	EES.	1	5 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min.	, Nat No	Logarithm.	Min.	Nat. No.	Logarithm
0	0:001370	7.136868	0	0.002436	7.386669	0	0.003805	7.586389
1	·001386	141679	1	002456	290273	1	.003831	583275
2	*001401	146464	2	.002477	393524	2	*003856	*586156
3	.001417	151225	3	.002497	397455	3	003882	589020
4	061432	155955	4	062518	·401019	4	.0089.7	591886
5	*001448	·160661	3 4 5 6 7	062538	•464572	5	.)08933	59473
6	.001463	165342	6	*002559	408108	6	.003959	597578
ī	001479	169999	7	*002580	411629	1	002985	600410
8	*001479 *001495 *001511	·174629 ·179256	8	*002601	415137	8	004010	60323
9	*001511	179236	9	*062622	418632	9	004037	606048
10	*001527	183819	10	*002643	422111	10	04063	608852
11	*001543	198877	11	*002664	425577	11	004089	611647
12	•001559	192912	12	*002685	•429029	12	004116	614434
13	001576	197422	13	062707	432463	13	004142	:617210
14	.061592	201910 206876	14	*06272S	435892	14	004169	·61993
15	001608	200516	15	*002750	439303	15	0004195	622740
16	001025	216817	16	002771	442702	16	004222	*625490
17	001641	215237	17	062793	446087	17		*628234
13	001058	219602	18	062815	449458	18	004275	*630.966
19 20	*061675	224018	19 20	*062887	452817	19	004302	-633699
21	-001692	228860	21	002859	456162	20	004329	636409
22	0617.9	282092	22	002881	459494 462815	22	004356	-689117
23	001726	287000	23	062935	466121	23	004382	641816
24	·001743	·241289 ·245555	24	002925	469417	24	'064410 '064438	647176
25	001760	249802	25	002941	469414	25		647170
26	-301777		26	002910	·472099 ·475969	26	004466	*649864
27	·001795 ·001813	254026 258282	27	002992	479227	27	004521	652532 655196
28	001515	262416	28	003037	482472	23	004543	657840
29	001550	266582	29	003060	485705	29	004576	660482
30	001341	270725	30	.003083	488926	20	004604	663116
31	*001883	274852	31	'003106	492137	31	004682	665748
32	·001931	278957	32	003129	495334	32	004660	668360
33	·C01919	283043	33	063152	498523	33	004688	67(972
34	·001937	287109	34	003175	561694	34	004716	673574
35	001955	291156	35	.003193	*504857	35	064744	676168
36	001973	295187	36	'063221	508008	36	004773	678759
37	·001902	299196	37	003244.	511147	37	004801	681334
38	.002010	-203190	38	003268	514275	38	004830	688900
39	.002028	307162	39	003291	517891	39	004858	686470
40	-062047	311119	40	0003315	520498	40	004887	689626
41	002066	315056	41	.003339	•523593	41	004916	691574
42	.002085	·212077	42	003362	526677	42	004944	-894116
43	.002103	·822879	43	003386	529750	43	004973	696649
41	002103	326764	44	003410	532812	44	005002	699176
45	-062141	*330634	45	.003434	535863	45	005031	-701696
46	-002160	*334483	46	.003459	*538904	46	005061	704208
47	.002179	338316	47	'003483	*541933	47	*005090	-706718
48	.002198	342133	48	'003507	544953	48	'005119	•709210
49	.002218	*845932	49	'002531	547961	49	'005149	•711700
50	.002237	*349716	50	002556	550961	50	'005178	·714184
51	.002257	*353482	51	'003581	553948	51	'005208	•716658
52	.002276	357233	52	*003605	556927	52	*005238	•719128
53	-002296	360967	53	'003630	559895	53	'005267	721589
54	*002316	*364687	54	'003655	562852	54	.005297	724044
55	*002336	*368390	55	'003680	*565800	55	005327	726493
56	*002355	*372076	56	003705	568737	56	'005357	728934
57	*002375	375746	57	'003730	571665	57	305387	*731367
58	002396	.379403	58	'003755	574582	58	*005417	733796
59	*002416	*883043	59	.003780	577492	59	1005448	736217
60	.002436	·3S6669	60	*003805	*580389	60	.005478	738630

	8 DEGR	EES.	-	4 DEGR	EES.	-	5 DEGRE	ES.
Min.	Nat. No.	lo, r thm.	Min.	Na , No	Log.rt .	Min.	Nat. No.	Log rithn
0	0.301372	7.137464	0	0.002442	7.387728	0	0.003820	7.58204
1	. 001388	142281	1	.002462	•391346	1	*003845	.58494
2	.)01403	147073	2	*002483	394951	2	.008871	•58793
3	.301419	151841	3	.002503	. 393541	3	.003897	.59071
4	.301434	- 156577	4	.002524	. 4:2114	4	.003923	•59358
5	.001450	161290	5	.002545	. 405676	5	·003 9 49	•59644
6	*001465	165978	6	.002566	•409221	6	.008975	•59930
7	.301481	170642	7	.002587	. 412751	7	.004001	*60214
8	*001497	-175279	8	.002608	416268	8	.004027	*60497
9	*001513	179893	9	002629	·419772	9	.004053	·60780
10	. 001529	184483	10	.002650	423261	10	·004080	*61062
11	*001545	189048	11	002671	·426736	11	004107	·61342
12	*001562	193590	12	- 002693	430197	12	004133	61622
13	*001578	198107	13	.002714	433645	13	.004159	61901
14	001594	202602	14	002736	·437079	14	.004186	62179
15	. 001611	207075	15	.002757	·440499	15	.004213	62456
16	001628	211523	16	.002779	·443907	16	.004240	62732
17	001644	215951	17	*002301	447302	17	.004267	63018
18	001661	220353	18	*002823	450682	18	.004294	63282
19	001678	224736	19	*002845	454051	19	•304921	*63556
20	*001695	229095	20	. 002867	457405	20	•004348	*63829
21	. 001712	•233435	21	·002889	460747	21	•004375	*64101
22	001729	237750	22	*002911	*464077	22	*004403	*64372
23.	001746	242047	23	*002934	467393	23	*004430	*64642
24 25	001763	•246320	24	*002956	470699	24 25	004458	64910
	*001781	250575	. 25	*002978	473991		.004485	65180
26	001793	254896	26	.003001	477210	26	004513	65448
27 28	*001816	259020	27 28	003024	480538	27 28	004541	65715
29	*001839 *001851	·263211 ·267385	29	·003046 ·003069	*483793 *487036	29	·004569 ·004597	*659S2 *66247
30	001869	271536	30	003003	490267	30	004625	66512
31	. 001803	275671	31	003332	493488	31	004653	*66775
32	001935	279783	32	003113	496694	32	·0046S1	67038
33	001923	283377	33	003161	499894	33	.004710	67301
34	001941	287951	34	.303185	503075	34	·004738	67562
35	. 001959	292006	.35	003208	506248	35	.004767	67823
36	001977	296045	36	*003232	509409	36	.004796	·6S083
37	001996	300062	37	*003255	512558	37	·004S24	·6S342
38	.002014	*304064	38	003279	515697	38	·004853	*68600
39	.002032	- 308044	39	*003302	518823	39	·304882	*68858
40	. 002051	312009	40	003326	521940	40	.304911	*69115
41	. 002070	315954	41	.003850	525045	41	.004940	69371
42	*002J89	·3193S3	42	*003374	528140	42	•004969	69626
43	*002108	*323793	43	•303398	531223	43	.004993	69381
44	'002127	327688	44	.003422	*534296	44	.005028	.70185
45	002146	*331565	45	.003446	537357	45	.005057	.70388
46	'002165	335422	46	.003471	540409	46	*005086	.70641
47	'002184	*339263	47	*003495	543448	47	.005116	70892
48	002203	343089	48	*003519	546479	48	.005146	·71143
49	002223	*346896	49	*003544	549497	49	*005175	.71394
50	.002242	·3506S9	50	*003569	552508	50	*005205	71643
51	002262	354463	51	.003593	555596	51	005235	.71892
52	002281	358223	52	.008618	553496	52	.005265	72140
53	002301	361965	58	.003643	561474	53	*005295	·72388
54	***002321	365694	54	•008668	564442	54	*005325	*72635
55	002341	*369406	55	.003693	567401	55	005356	·72881
56	002361	373100	56	·003718	570349	56	·005386	.73126
57	.002381	376779	57	003744	573288	57	.005416	·73871
58	002401	*380445	58	.003769	576216	58	.005447	·78615
59	.302422	681093	59	003794	579137	59	.005478	73858
60 I	002442	387728	60	.003820	582045	60	.005508	.71161

	6 DEGR	EES.		7 DEGR	EES.		8 DEGR	EES.
Min.	Nat. No.	Logarithm,	Min	Nat. No.	Logarithm.	Min.	Nat No.	Logarith
0	0.005478	7.738630	0	0.007454	7.872380	0	0.009732	7-98819
1	.005509	.741038	1	.007489	··874444	1	.009772	•99000
2	.005539	·743438	2	.007525	.876502	2	*009803	99180
3	005570	.745831	3	.007561	878555	3	.009854	99360
4	.005600	·74S220	4	.007596	880603	4	009894	99539
5	.005631	·750601	5	.007632	882647	5	.009935	99718
6	.005662	. 752974	6	.007668	·8S46S6	6	.009976	99397
7	005693	755342	67	007704	836719	7	010017	8.00075
8	005724	.757704	8	007740	888749	8	010058	00253
9	005755	•760057	9	-007776	890773	9	010099	00430
10	005786	.762406	10	007813	892793	10	010033	*00607
11	·005518	.764749	11	007849	894808	11	010181	00784
12	005849	.767084	12	007835	896818	12	010131	00164
13			13	007922	898824	13	010265	011371
14	*005830 *005912	.769413	14	001922	900825	14	010203	
		.771738	15			15		*013128
15	005944	·774055		007995	902821		010348	014888
16	*005975	•776364	16	008032	934813	16	010390	*016632
17	.006007	•778671	17	008069	906800	17	010432	018379
18	.006039	780968	18	008106	908783	18	010474	020121
19	.006071	·783261	19	.008143	910761	19	010516	021861
20	.006103	·785547	20	.008180	•912734	20	010558	023597
21	.006135	787829	21	.008217	914704	21	.010600	025329
22	.006167	790102	22	.008254	916670	22	.010643	027058
23	.006200	•792369	23	.008291	918623	23	010685	028783
2	.006232	·794633	24	.008329	920584	24	010728	030505
25	006265	·796S91	25	008366	922536	25	010770	032223
26	.006297	.799140	26	.008404	•924483	26	:010813	033939
27	.006330	801385	27	.008442	•926425	27	010856	035651
28	.006362	803624	28	.008479	•928363	28	.010898	*037359
29	006395	*805859	29	·00S517	-930297	29	010941	*039064
30	006428	-808086	30	.008555	932227	30	.010984	.040766
31	.006461	810307	31	008593	934152	31	011027	.042465
32	006494	812524	32	008631	936074	32	011070	.044159
33	.006527	·814734	33	.008669	937990	33	.011113	.045850
34	.006560	·816939	34	.008708	939903	34	011157	047539
35	.006594	819139	35	.008746	941811	35	.011200	049225
36	006627	821332	36	.008784	943715	36	.011243	*0509.16
37	.006661	·S23521	37	008823	945615	37	.011287	052584
38	.006694	.825704	38	008862	947511	38	.011331	054260
39	.006728	·S27881	39	-008930	949403	39	011374	(55931
10	006762	830052	40	.008939	951290	40	011418	057601
11	-006795	·S32218	41	008978	953173	41	011462	059266
12	006829	·834379	42	.009017	955(52	42	011506	060928
13	006863	·S36535	43	009056	956927	43	011550	062588
14	006897	·S38685	44	009095	958799	44	011594	064243
15	006932	·840830	45	009134	960666	45	011638	065896
16	006966	842969	46	009134	962529	46	011682	067546
17	007000			009213	964338	47	011727	069192
18	007034	·845115 ·847232	48	009218	966243	48	011772	009192
19		·847232 ·S49356		009292	968094		011772	070536
	*007069		49		969342	49		
50	007104	851475	50	009331		50	011860	074113
51	007138	853589	51	*009371	971784	51	011905	075747
52	007173	855697	52	009411	973624	52	011950	077378
53	007208	857800	53	009450	975459	53	011995	079007
54	007243	859898	54	009491	977291	54	012040	080631
55	007278	-861991	55	009531	979118	55	012385	082253
66	007313	864079	56	.009552	930942	56	012130	083872
7 -	007348	·866162	57	.009311	992762	57	012175	085488
8	.007383	.868240	58	•009351	984578	58	012220	087100
9 .	067418	·S70312	59	·009391	936390	59	012266	088710
66	007454	872380	60	.009782	933199	60	012311	.090316

	6 DEGR	EES.		7 DEGR	EES.		8 DEGR	EES.
Min.	Nat. No	Logarithm,	Min	Nat. No.	Logarithm.	Mm.	Nat No.	Logarithm
0	0.005508	7.741016	0	0.007510	7.875628	0	0.009828	7.992447
1	.005539	•743437	1	.007546	877708	1	.009873	994268
2	.005570	•745850	2	.007581	879782	2	.009910	996087
3	*005601	.748257	3	007618	881851	3	.009952	997902
4	.005632	·750659	4	.007654	883915	4	.009993	99971
5	.005663	753054	5	.007691	885974	5	.010035	8.001521
6 7 8 9	*005694	.755440	6	.007727	888029	6	.010077	.003326
7	-005726	.757822	7	.007764	890078	7	·010119	.005126
8	.005757	760197	8	.007801	892124	8	010160	.006921
9	005788	762564	9	007837	894163	9	010203	.008716
10	.005820	764926	10	007874	896199	10	.616245	010505
11	.005852	·767283	11	007911	898230	11	.016287	-012292
12	·005883	769632	12	.007948	900256	12	010329	.014074
13	.005915	771974	13	•007985	992278	13	010372	015852
14	.005947	•774313	14	008022	904295	14	*010414	017627
15	.005979	776644	15	008059	906307	, 15	010457	019401
16	.006011	778967	16	·008097 ·008134	908315	16	010499	021148
17 18	*006043	781288	17 18	008172	910518	17	010542	022938
19	.006076	783599	19	068259	912318	18	010585	024694
20	006108	785906	20	008247	·914312 ·916301	20	010628	026452
20 21	006141	788206	21	008285	918287	21	010671	(28207
22	·006178 ·006206	790502	$\frac{21}{22}$	008323	920270	22	010714	·629957
23	000200	792789	23	008323	922244	23	·016757 ·016860	083449
24	006271	795070	$\frac{23}{24}$	·008399	924216	24	010844	035189
25	006304	·797348 ·799620	25	008437	926185	25	010844	186926
26	006337		26	008475	928148	26	010331	C\$8661
27	006370	·801883 ·804143	27	008513	930107	27	01(975	·040391
28	000310	·806396	28	068552	932061	28	011018	042118
29	000436	:808645	29	008590	934012	29	011062	·042842
30	.006470	810887	30	-008629	935958	30	-011106	·045568
31	.006508	813122	31	-0(8668	937900	31	.011150	·C47281
32	.006537	815354	32	-008706	939839	32	.011194	·C48994
33	.006570	·817578	33	-008745	941771	33	011238	.050704
34	.006604	819798	34	-008784	943701	34	.011282	052412
35	.006638	822012	35	-008823	945026	35	.011326	·C54117
36	.006671	*824220	36	.008862	947547	36	.011371	.055817
37	.006705	*826423	37	∙008901	949464	37	.011416	.057514
38	.006739	.828621	38	-068941	951377	38	.011461	059209
39 .	.006773	*830813	39	-008980	953286	39	.011506	.060898
40	.006898	*832993	40	-009020	955190	40	.011550	.062588
41	.006842	*835179	41	-009059	957090	41	011595	064278
42	.006876	837355	42	069099	958986	42	.011640	.065954
43	.006911	*839526	43	-009139	966878	43	.011685	.067638
44	.006945	841691	44	-009178	962767	44	011730	.009308
45	.006980	843851	45	009218	964651	45	011776	.07(980
46	-007015	846005	46	009258	966531	46	011821	.072650
47	.007049	·848155	47	009298	968468	47	.011866	074315
48	007084	.859298	48	009339	970280	48	011912	.675979
49	007119	*852437	49	009379	972148	49	011957	077688
50	007154	*854571	50	009419	974013	50	.012003	079295
51	007189	856700	51	009460	975873	51	012049	-080 949
52	007225	*858823	52	009500	977730	52	012095	(82599
53	.007260	860942	53	009541	979583	58	012140	·(84248
54	007295	863055	54	009581	981432	54	012187	(.85892
55	.007331	855163	55	009622	983277	55	012232	087584
56	007367	867267	56	009663	985119	56	012279	(89172
57	.007402	869365	57	009704	986956	57	1012325	(9)(808
58	007438	·ST1458	58	009745	988793	58	012372	(92440
59	007474	*873546	59	009786	990619	59	012418	(94060
60	.007510	875628	60	009828	·992446	60	012465	(95696

	9 DEGRI	EES.		10 DEGRI	EES.	1	1 DEGRE	EES.
Min.	Nat No	Logarithm	Mir.	Nat. No.	Logarithm.	Min.	Nat. No	Logarithm
0	0.012311	8.090316	0	0.015192	8.181622	0	0.018373	8.264170
1	.012357	.691920	1	*015242	183065	1	.018428	265480
2	*012403	. 093521	2	.015293	184595	2	*018484	266790
3	012448	•095119	3	.015349	185943	3	018541	26813
4	.012494	.693714	4	015395	187378	4	018596	269407
5	012540	698306	5	015446	188811	. 5	018651	270711
6	012586	099894	6	015497	190242	6	018767	272012
7	012632	10148)	7	015548	191671	7	018762	273299
8	*312678	103064	8 9	015599	193097	8	018819	2746:8
10	012724	104644	10.	*015650 *015701	194520 195942	10	·018876 ·018932	·2759 4 ·27719
11	012817	107793	11	015752	197361	11	018988	278487
12	012864	109367	12	015804	198778	12	019045	279777
13	012910	110936	13	015856	200192	13	019101	28106
14	-312957	112501	14	015938	201604	14	-019158	282350
15	013003	114065	15	015959	203014	15	.019215	233634
16	-013050	115625	16	016011	204421	16	.019272	28491
17	013097	·117182	17	*016363	205826	17	·019328	-28619-
18	.013144	118737	18	*016115	207229	18	.019385	287474
19	.013191	120238	19	*016167	208639	19	·019442	288749
20	.013238	121838	20	*016219	210028	20	·019499	290628
21	013286	123384	21	016271	211424	21	•019557	29129
22	.013333	124927	22	016323	212827	22	.019614	29256
23	013383	126468	23	016376	214209	23	•019671	29383
$\frac{24}{25}$	013428	128306	24	016428	215598	24	019729	29510
$\frac{25}{26}$	·013475 ·013523	129542 131074	25 26	016481	216986	25 26	·019786 ·019844	29636
27	013570	132303	27	016586	218371 219753	27	019902	29762
28	013318	154131	28	016639	221134	28	019959	30014
29	013366	135635	29	016692	222502	29	020017	30040
30	013714	137176	30	016745	223887	30	.020075	30266
31	.013762	138695	31	016798	225261	31	.020133	30391
32	013810	.140212	32	'016851	226633	32	-020191	30516
33	013859	141726	33	.016934	·228002	33	.020250	30641
34	-013907	143236	34	*016958	229370	34	.020308	30766
35	013955	:144745	35	017011	230734	35	•020366	30891
36	•014003	146251	36	017065	232097	36	.020425	31015
37	014052	147754	37	017118	233458	37	-020483	31139
38	-014101	149255	33	017171	234817	38	•020541	31263
39	014149	150752	39	017225	236173	39	020600	31389
40 41	·014193 ·014247	152248	49 41	017279	237528	49	•020659 •020718	31511 31635
41	014247	155231	41	017333	·238SS0 · ·240230	41	020777	31635
43	014345	156719	43	017441	241578	43	020836	\$1831
44	014394	158203	41	017495	242924	44	020895	32004
45	014443	159686	45	017550	244267	45	020954	-32127
46	.014493	161165	46	017604	245609	46	:021014	32250
47	.014542	162343	47	017658	216949	47	-021073	32378
48	.014592	164118	48	017712	248286	48	.021133	32495
49	•014641	165589	49	:017767	-249621	49	.021192	-32617
5 :	014691	16706)	50	017822	250955	50		32739
51		168527	51	.017377	252286	51	021811	32861
52	014791	169992	52	*017931	253615	52	021371	82982
53	014841	171454	53	017986	254942	53	021431	33104
54		172914	54		256267	54	021491	33225
55 56		174372	55		257591	55	021551	38340
57	014991	175827	56	·018151 ·018206	-258911 -260230	56	·021611 ·021671	33588
58		·177279 ·178789	58		261548	58	021071	337(.9
59		187177	59		262862	59		33828
60		181622	60		264176	60		

	9 DEGRI	EES.		10 DEGR	EES.	1	1 DEGRI	EES.
Min.	Nat. No.	Loga: ithm.	Min.	Nat No.	Logarithm.	Min.	Nat. No.	Logarithm
0	0.012465	-8.095696	0	0.015426	8.188271	0	0.018717	8-272229
1	.012512	.097320	1	.015478	189732	1	·618774	273564
2	.012559	.093941	2	· C15530	·191198	2	.018832	274899
3	.012605	100559	3	- 015583	192658	3	-018891	276260
4	-012652	102174	4	.015636	194116	4	·018948	277559
5	-012699	103787	5	·015688	195571	5	-019006	278585
6	-012746	105395	6	015749	197025	6	·019064	280213
7	•012794	107001	7	•015793	193476	7	-019122	28152
8	-012841	108605	8	·015846	199925	8	·019180	282859
9	-012889	110206	9	015899	201371	9	•019239	-284180
10	-012936	111804	10	015952	202815	10	·019297	28549
11	-012984	113399	. 11	•016005	204257	11	019356	28681
12	•013031	114990	12	016058	205697	12	019415	288128
13	•013079	116579	13	.016111	207133	13	019473	28944
14	•013127	113165	14	.016164	208568	14	019552	29075
15	•013175	119749	15	.016218	210001	15	·019591	29206
16	•013223	121330	16	.016271	211431	16	019650	29336
17	. 013271	·122908	17	016325	212859	17	•019709	29467
18	013319	124483	18	016379	214285	18	•019769	29597
19	013367	126055	19	•016433	215718	19	-019828	29727
20	013416	127626	20	016486	217130	20	•019837	29857
21	-013464	129193	21	016540	218549	21	•019947	29987
22	.013513	130756	22	016594	219965	22	•020006	30116
23	013561	132318	23	016649	221380	23	•020066	30246
24	013610	133877	24	016703	-222792	24	•020126	30375
25	018659	135434	25	016757	-224203	25	•020186	30504
26	013708	136987	26	016811	225612	26	020246	30633
27	013757	138537	27	·016866 ·016920	227017	27 28	·020306 ·020366	30761
28 29	013856	141691	28 29	016920	·228421 ·229922	29	020300	30890
30	013905	141631 -143174	30	017030	220022	30	·020426	31018 31146
31	013954	144714	31	017085	232618	31	·020430	31140
32	014004	146252	32	017140	234014	32	020608	31402
33	014054	147787	33	017195	235406	33	-020668	31530
34	-014163	149318	34	-017250	236798	34	020729	31657
35	014158	150819	35	017305	238185	35	.020790	31784
36	-014203	152376	36	-017360	239572	36	02.851	31911
37	.014253	153900	37	017416	-24:957	37	02.912	32038
38	-014302	155423	38	-017472	242339	33	02.973	32164
39	•014353	156941	89	017527	243719	39	021034	32292
40	.014403	158458	40	017582	245.98	40	.021095	32418
41	014453	-159973	41	-017638	246474	41	-021156	32544
42	.014503	161485	42	·C17695	247848	42	021218	32670
43	.014554	162994	43	017751	249219	43	-021280	32796
44	.014605	-164500	44	0178 7	253589	41	-021341	-32922
45	014655	-166004	45	.017863	251956	45	-021403	.33047
46	-014706	167505	46	.017919	2533322	46	.021465	33172
47	-014757	169005	47	017975	254686	47	-021527	33297
48	-0148)8	170502	4.8	*018;32	256047	48	.021589	33422
49	-314859	171995	49	.018089	257407	49	•021651	33547
50	-014939	173488	50	018145	258765	50	-021713	33672
51	•614961	174977	51	018202	260120	51	-021776	*83796
52	•015013	173464	52	018258	261473	52	•021838	33921
53	-015064	177948	53	018315	262825	53	.021900	34045
54		179430	54	018372	264174	54	-021963	34169
55	•015167	183910	55	018430	265522	55	-022026	*34298
56		182387	56	18487	266867	56	-022089	*34410
57	.015270	183361	57	018544	268210	57	022151	34540
58		185343	58		269552	58	022214	34668
59		183873	59	018659	270891	59	022277	.84780
60	-015426	188271	60	018717	272229	60	023341	34909

	12 DEGR	EES.		13°DEGRI	EES.	1	4 DEGRI	EES.
Min.	Nat. No.	Logari hr.	Nin.	Nat No	Logarithm.	Min.	Nat. No.	Logarithm
0	0.021852	8-259499	0	0.025630	8.408747	0	0.629704	8.472819
1	021913	.340700	1	.025695	•409356	1	029775	473848
2	.021974	·341900	2	(25761	41(962	2	029845	474874
3	.022034	•343097	3	025827	·412067	3	·029916	47589
4	.022095	*344293	4	.025892	413171	4	·C29986	47692
5	022156	345488	5	*025958	414273	5	.030057	47794
6	022217	·346681	6	.026024	415374	6	.030127	47897
7	022278	-347877	7	*026(90	416474	7	.030199	47999
8	.022338	•349062	8	.026156	417573	8	.03(270	·4S101
9	.022400	*350249	9	.026222	418669	9	.030341	*48202
10	.022461	.351435	10	.026288	419764	10	.030412	•48304
11	·C22528	352620	11	*026355	-420858	11	030483	48406
12	·022584	*355S02	12	*026421	421951	12	030555	48507
13	*022646	*354984	13	26498	423042	13	030626	48609
14	022707	356163	14	*026564	·424131 ·425219	14 15	*030697	48710
15	022769	357342	15	026621	425219	16	*030709 *03.841	48811
16 17	*022831 *022892	*358518	16 17	·026754	427893	17	(3, 912	48912
18	·022892 ·022954	*859693 *360867	18	*026821	429477	18	C3(984	·49018 ·49114
19	-023016	362989	19	026888	429560	19	031(56	49114
20	-023079	363268	20	*026955	430641	20	031128	49315
21	023013	364376	21	027022	·481722	21	·C31200	49415
22	023203	365543	22	·027089	·482S00	22	·031272	49516
23	-023266	366719	23	127157	433877	23	·031845	49616
24	.023328	367872	24	127224	434954	24	.031417	49716
25	-023390	369035	25	.027292	436029	25	.031489	49816
26	.023453	370195	26	027859	487102	26	131562	49916
27	.023515	.371354	27	.027427	438174	27	*031634	50015
28	-023578	372511	28	027494	489244	28	031707	-50115
29	.023641	.373667	29	.027562	440314	29	*031780	50214
30	.023704	374822	30	.027639	441382	30	031852	•50314
31	-023767	*375974	31	027693	412419	31	031925	50413
32	.023830	*327125	32	*027766	443514	32	·03199S	-50512
33	·023S93	378275	33	-027834	144578	33	.032071	50611
34	.023956	.379423	34	.027992	445641	34	.032144	50710
35	.024320	380569	35	*027971	446762	35	032218	50809
36	024983	*381715	36	*028039	447762	36	*032291	•50907
37	-024147	*382858	37	028107	·44SS21	37	032364	51006
38	024210	384001	38	028176	449878	3S 39	*032438	51104
39	·024279 ·024338	385141	39	·028245 ·028313	·450935 ·451990	40	032511	·01203 ·51301
40	024550	386279	40	028382	453043	41	032659	51399
42	024465	387417 388553	42	028451	454096	42	032732	51497
43	024529	388687	43	028431	455147	43	032132	51595
41	024594	393821	44	·02S5S9	456196	44	032580	•51693
45	024658	391952	45	028658	457244	45	632954	51793
46	024722	-893082	46	028727	458291	46	033028	-51888
47	-024786	.394210	47	028796	·45933S	47	033102	51985
48	024851	·39533S	48	028866	460382	48	033177	-52088
49	.024915	*396463	49	.028935	•461425	49	033251	-52180
50	.024930	*397587	50	.029005	*462468	50	033325	•52277
51	.025044	*393710	51	-029074	-463508	51	*033400	•52374
52	025109	399831	52	029144	*464547	52	033475	52471
53	025174	400951	53	.029214	*465586	53	033549	•52568
54		402069	54	029233	466623	54	033624	52664
55		403185	55	029353	467659	55	033699	52761
56		404300	56	029423	468693	56	033774	52857
57	025434	405414	57	029493	469726	57	033849	-52954
58		406527	58	029564	470759	58	033924	-53050
59		407637	59		471789	59	033999	53146
60	025630	408747	60	029704	472819	60	034074	53249

	12 DEGR	EES.		13 DEGR	EES.	1	4 DEGRE	ES.
Min	Nat. No.	Loga, ichm.	Mir.	Nat. No.	Logari bm.	Min.	Nat. No.	Logarithm
0	0.022341	8.349.395	0	0.026304	8.420023	0	0.030614	8.48591
1	.022434	*350322	1	.026373	•421161	1	-030688	48697
2	.022467	*351549	2	026442	•422296	2	-030763	48803
3	.022531	352773	3	026511	423431	3	·030838	·48909
4	.022594	*353996	.4	·0265S1	•424564	4	.030913	•49014
5	'022658	*355218	5	026650	•425695	5	-030983	•49120
6	022722	•356439	6	.026720	•426826	6	•331064	49225
7	022786	*357662	7	026789	427955	7	.031139	*49330
8	022349	·35S374	8	026859	·429084	8	031215	•49436
9	022913	360088	9	.026928	430209	9	•031290	*49541
10	022977	361301	10	026998	431334	10	•031366	49645
11	023042	*862513	11	.027068	432457	11	031442	49750
12	023106	*363723	12	027138	433580	12	*031518	49855
13 14	023170	*364932	13	*027208 *027278	484700	13 14	*081594	49950
	023233	366138	14	021218	435819	15	*031670	50064
15 16	023299	-867845 -868548	15 16	·027349 ·027419	·436937 ·438055	16	·031746 ·031822	50168 50273
17	023429	369751	17	027419	439170	17	:031899	50377
18	023994	370952	18	027560	·4402S4	18	031975	50481
19	023559	372152	19	027631	441397	19	032052	50584
2)	023524	·373348	2)	027702	442508	20	-032128	50033
21	023689	374541	21	027773	•443619	21	032205	50792
22 .	023754	•375739	22	027844	•444727	22	032282	•50895
23	023820	376942	23	027915	445834	23	.032359	50999
21	023885	•378123	24	027986	416941	24	.032436	51102
25	.023950	379314	25	028057	•448046	25	.032513	•512058
26	'024016	380502	26	*028129	•449149	26	.032590	513089
27	024082	*331639	27	.028200	.450252	27	.032668	514119
23	'024148	·3S2S74	23	*028272	451352	23	.032745	515140
29	024214	*384958	29	*028343	452452	29	.032823	•516174
30	024280	3S5240	30	•028415	·453551	30	•032900	•517200
31	024346	386421	31	028487	·454648	31	.032978	51822
82	024412	387600	32	.028559	455743	32	•033056	519249
83	021478	388778	33	028631	456838	33	.033134	52027:
34	024544	389954	34	.028703	457931	34	•033212	•52129-
35 36	024611	391128	35	028775	459023	35	.033290	•522313
	024678	-892332	36	*023248	460113	35	033368	52333
37 38	024744	393474	37 33	*028920 *028993	461203	37 38	·033447 ·033525	52435
39	024378	·394645 ·395313	39	025935	462290	39	033604	·525370 ·526380
40	024945	396979	40	029303	464464	40	033682	52740
41	025012	398146	41	029133	465547	41	033761	528410
42	025079	399310	42	029284	466631	42	•033340	529429
43	025146	490473	43	029357	467713	43	033919	•530441
44	025214	401635	44	029430	468793	44	033998	53145
45	025281	402795	45	.029598	469872	45	.034077	•53246
46	025343	403954	43	029577	470950	46	.034156	533470
47	025416	•405110	47	.029650	472023	47	.084236	534478
48	*025484	*406267	48	029724	478103	48	034315	.535483
49	'025552	·407421	49	029797	474177	49	.034395	536490
50	*025620	408573	57	029871	475251	50	.034474	53749
51	025633	409725	51	029945	476322	51	034554	.53849
52	025755	410875	52	030019	477392	52	034634	539501
53	*025824	412024	53	.030093	·478462	53	034714	•540501
54	025892	•413171	54	030167	:479031	54	034794	•541509
55	025961	414316	55	030241	480593	55	034874	*542501
56	026029	415460	56	030315	481663	56	034954	. 543490
57	026093	•416603	57	030390	482728	57	*035035	544490
59 59	*026166 *026235	417745	53	080464	483792	58	085115	54549
60	026235	·418884 ·420028	59 60	·030539 ·030614	484853	59 60	*085195 *085276	*546487 *547481
00	020004	420025	00	000014	485915	00	000210	04149

	15 DEGR	EES.		16 DEGR	EES.		17 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min	Nat. No.	Logarithm.	Min,	Nat No.	Logarithm
0	0.034074	9.532425	0	0.038738	8:588140	0	0.043695	8.640434
1	*034150	·5333S4	1	.038818	·599.3S	1	*04378)	. 641279
2	034225	534342	2	·038899	599936	2	·043S65	:642128
3	034300	•535299	3	038979	•590833	3	043951	642960
4 5	034376	•536255	4	.039060	591728	4	*044036	643809
5	034452	•537210	5	*039140	592623	5	044121	644650
6	034527	538163	6	*039221	593517	6	044207	64549
0	034603	539116	8	*039301 *039382	594409 595301	8	*044292 *044378	*646330
9	*034679 *034755	•540068 •541018	9	039463	596193	9	044464	·647169 ·648008
10	034831	541968	10	039544	597083	10	044550	64884
11	034907	•542916	11	039625	597971	11	044636	649682
12	034983	•543863	12	.039706	598859	12	.044722	650517
13	.035060	•544809	13	.039787	.599747	13	.044808	651352
14	*035136	•545755	14	.039369	600633	14	044894	652187
15	.035213	546699	15	.039950	601518	15	.044980	653020
16	.035289	547642	16	.040032	602403	16	*045066	653852
17	.035366	548584	17	040113	603286	17	045153	654683
18	.035443	549525	18	040195	•604169	18	.045239	655514
19	.035520	550466	19	.040276	·6050 51	19	045326	656345
00	035596	•551405	2)	•040358	•605931	23	045412	657174
21	035673	552342	22	040440	606811	21	045499	658002
23	035750	·558279 ·554215	23	·040522 ·040604	607699	22 23	045586	658830
24	·035827 ·035905	555159	24	040686	·608568 ·609445	24	045760	659657
25	035933	556034	25	040768	610322	25	045847	661308
26	036059	*557017	26	040850	-611196	26	045934	662132
7	036137	.557948	27	040933	612071	27	046021	:662956
28	036214	553880	28	·041015	612945	23	046109	663779
29	-036292	559309	29	.041093	613817	29	046196	664601
30.	.036370	560738	30	.041180	614689	30	046283	665422
31	036447	561665	31	.041233	615560	31	046370	666242
32	036525	562592	32	041346	·616437	32	046458	667061
33	.036603	563518	83	.041428	617299	33 ,	*046546	667881
34	036681	561143	34	.041511	618167	34	:046633	.668698
55	.036759	565366	35	041594	·619035	35	046721	*669516
36.	036837	566289	36	041678	-619901	36	046809	670333
37	036916	567211 568132	38	·041761 ·041844	·620766 ·621631	37 38	046897	·671148 ·671963
39	036994	569952	39	041927	622495	39	047073	672776
10	037151	569971	40	042010	623357	40	047162	673590
11	037230	•570888	41	042094	624223	41	047250	674408
12	.037308	571805	42	.042178	625081	42	047339	675215
3	.037387	572721	43	.042261	625941	43	.047427	676025
4	.037466	573635	41	.042345	626890	44	047516	676836
5	.037545	574550	45	.042429	- 627659	45	.047604	.677646
6	037624	575462	46	042513	628517	46	047693	678454
7	037703	•576374	47	042597	629373	47	047782	679262
18	037782	577285	48	.042681	630230	48	.047871	680069
9	037861	578194	49	.042765	631085	49	047960	680875
50	037940	579103	50	042349	631939	50	043049	681681
1	038020	580012	51 52	042933	-632792 -633645	51	·048138 ·048227	682485
3	038100	580919 581825	53	·043017 ·043102	634496	52 53	048227	·683290 ·684093
14	038259	582730	54	043102	635347	54	048406	684896
55	038338	583634	55	043180	636197	55	048495	685698
56	038418	584537	56	043355	637046	56	048584	686498
57	033498	585439	57	043441	637895	57	048674	687298
58	038578	586341	58	043525	638742	58	048764	688098
59	038658	587241	59	.043619	639588	59	048854	-688896
30	038738	588140	60	.043695	640434	60	048944	689694

	15 DEGR	EES.		16 DEGR	EES.	17 DEGREES.			
Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm.	Mm.	Nat No.	Logarithm	
0	0.035276	8:547481	0	0.040299	3.605299	0	0.045692	8.659838	
ĭ	035357	548473	1	.040386	.606233	-1	.045785	660721	
2	035438	•549466	2	.040473	.607167	2	·C45878	661604	
3	035519	550457	3	.040560	608100	3	045971	662486	
4	.035600	551447	4	.040647	609032	4	.046065	663367	
5	035681	552436	5	.040735	.609963	5	.046158	664247	
6	035762	553423	6	.040822	610893	6	.046252	665127	
7	.035843	554400	7	.040909	611822	7	.046345	·6660C	
8	035925	.555396	8	.040997	612750	8	.046439	-666585	
9	.036006	.556381	9	.041085	613679	9	·C46533	66776	
10	036088	*557364	10	.041172	614605	10	.046627	.66863	
11	036170	.558347	11	.041260	615530	11	.046721	.669518	
12	036252	•559328	12	.041348	616455	12	046815	.670383	
13	.036334	560309	13	.041437	617380	13	.040910	671261	
14	036416	561289	14	.041524	618362	14	·C47004	672135	
15	.036498	562267	15	.041613	619224	15	·C47C99	.673008	
16	.036580	563245	16	.041701	620146	-16	.047193	673879	
17	.036662	564221	17	.041789	621066	17	.047288	674749	
18	036745	565197	18	.041878	621982	18	047383	.675619	
19	.036828	566172	19	041967	622905	19	.047478	.676490	
20	.036910	567146	20	.042055	623822	20	047573	.677358	
21	.036993	. 568118	21	.042144	624739	21	.047668	.678220	
22	.037076	569089	22	.042233	625655	22	.047763	.6790.98	
23	037159	570060	23	.042322	626570	23	047859	.679960	
24	037242	571030	24	.042412	627484	24	.047954	680827	
25	.037325	571999	25	*042501	628398	25	.048050	.681690	
26	037408	572967	26	. 042590	629310	26	.048145	*682558	
27	037492	573937	27	*042680	630222	27.	.048241	.683417	
28	.037575	574899	28	.042770	.631133	28	048337	684280	
29	.037658	575863	29	.042859	632043	29	*048433	685142	
30	.037742	576827	30	.042949	632952	30	.048529	.686002	
31	037826	577790	31	.043039	633861	31	.048625	686862	
32	-037910	578752	32	043129	634768	32	.048722	687721	
33	.037994	579713	33	.043219	635674	33	.048818	688581	
34	.038078	580673	34	.043309	636580	34	048915	.689438	
35	038162	581631	35	.043400	637486	35	*049011	€9029€	
36	038246	582589	36	.043490	638389	36	.049108	.691158	
37	038331	583547	37	043580	639292	37	·C49205	.692008	
38	.038415	584503	38	.043671	640195	38	*049302	692868	
39	.038500	585458	39	.043762	641096	39	.049399	693717	
40	038585	586412	40	043853	641997	40	049296	694571	
41	038669	587365	41	043943	642890	41	.049593	695424	
42	038754	588318	42	044035	643796	42	.049691	696276	
43	038839	589269	43	044126	644694	43	.049788	€97127	
44	038924	590219	44	.044217	645591	44	.049886	697978	
45	039009	591169	45	044309	646488	45	.049983	698829	
46	039095	592117	46	.044400	647384	46	.050081	699677	
47	039181	593075	47	.044491	648272	47	050179	.700520	
48	039266	594012	48	.044583	649173	48	.050277	701378	
49	039351	594958	49	.044676	650076	49	.050376	.702220	
50	039437	595902	50	044767	650958	50	.040474	703060	
51	.039523	596846	51	044859	651850	51	*050572	703911	
52	.039603	597789	52	.044951	652741	52	.050671	704757	
53	.039695	.598731	53	.045043	653630	58	.050769	705600	
54	039781	*599672	54	.045136	654520	54	.020868	70644	
55	.039867	600612	55	045228	655408	55	050967	.707287	
56	.039953	601551	56	045321	656296	56	.051066	708128	
57	.040040	602489	57	045413	*657183	57	.051165	708969	
58	.040126	603427	58	045506	658969	58	051264	709810	
59	.040203	604263	59	045599	*658953	59	051363	710649	
60	040299	605299	60	045692	•659883	60	051462	.711489	

	18 DEGRI	EES.		10 DEGR.	EES.		20 DEGRI	EES.
Min.	Nat No	Loga ithm.	Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithn
0	0.048944	8.689694	0	0.054481	8.736248	0	0.060308	8.78037
1	*040)33	690492	1	.054.76	·737003	1	*060407	·7810S
2	·049123	691288	2	.054671	737758	$\tilde{2}$	-060507	:78183
3	*049213	.692084	3	.054766	738510	3	.060606	.78251
4	*049304	·692S80	4	.054861	·739263	4	-060706	·7S323
5	.049394	· ·690674	5	.054956	740014	5	•060806	. 78394
6	.049484	694467	6	.055051	.740766	6	-060906	·78465
7	.049575	*695260	7	055146	.741517	7	.061006	.78537
8	*049365	•696052	8	355242	.742266	8	.061106	.78608
9	*049756	·696S43	9	.055837	743015	9	-061206	:78679
10	*049346	.697633	10	*055432	•743764	10	.061306	:78750
11	.049937	*698423	11	*055527	•744512	11	-061407	78821
12	050028	.699213	12	*655623	.745259	12	-061507	•78892
13	.050119	.700001	13	*055719	•746005	13	.061608	78963
1.1	*050210	·700788	14	*055S15	.746752	14	·061708	:79034
15	-050301	.701576	15	.055911	747497	15	-061809	•79104
16	.050392	·702361	16	1056007	748241	16	-061909	:79175
17	·050483	.703147	17	*056103	•748945	17	·262010	:79246
18	-050574	.703931	18	.056199	749728	18	.062111	·79316
19	050666	.704716	19	*056295	.750472	19	.062212	·79387
20	.050757	·705498	20	056891	751213	20	-062313	:79457
21	·050S49	·706232	21	*056483	751955	21	062414	79528
22	.050941	.707063	22	656581	.752096	22	-062515	:79598
23	.051032	707845	23	.056681	.753436	23	-062617	•79669
24	051124	·70S624	24	.056777	.754175	24	.062718	.79739
25	.051216	709404	25	.056874	.754913	25	•062820	.79809
26	.051308	·7101S3	26	*056971	•755652	26	-062921	-79879
27	.051400	·710961	27	*057068	•756393	27	-063023	•79949
28	.051492	711739	23	.057164	.757126	28	.063124	-80019
29	051584	•712516	29	057261	757862	29	-063226	80089
30	.051676	·713291	30	*057858	.758597	30	063328	80159
31	.051769	•714067	31	057456	•759333	31	-063430	:80229
32	.051861	714842	32	*057553	.760067	32	•063532	80299
33	.051953	·715615	33	.057650	•760800	33	.063634	.80368
34	*052046	.716389	34	'057748	.761534	34	-068736	80438
35	052139	•717162	35	057845	-762266	35	-063838	80508
36	052232	.717933	36	057942	762992	36	-063940	:80577
37	052324	·718704	37	058040	763728	37	-064043	80647
33	052417	.719474	38	058138	764459	38	-064145	-80716
39	052510	.720244	39	058236	765189	39	-064248	8078
40	052603	-721013	40	058334	765918	40.	.064350	80855
41	052697	-721782	41	058432	766647	41	00453	80924
42	052790	722549	42	053432	767375	42	064556	-80998
43	052883	723316	43	058628	768101	43	064659	81062
44	052976	724082	44	058726	768829	44	064762	81131
45	053970	724848	45	058824	769555	45	-064865	81200
46	053163	725613	46	058922	.770279	46	·064968	·S1369
47	055257	726377	47	-059021	771005	47	065071	81939
48	0553551	727140	48	059119	771729	48	065174	81407
49	053444	-727903	49	059218	772453	49	005173	S147
50	053538	728666	50	059316	773175	50	065381	8154
51	053632	729427	51	059415	-773897	51	065485	8161
52	053726	730183	52	059514	774619	52	005485	8168
53	053820	·730947	53			53	-065692	
54				059613	775349		065796	8175
	053915	731706	54	059712	776069	54		81819
55	054009	732465	55	059811	776780	55	•065899	-81889
56	054103	733224	. 56	059910	777500	56	066003	81950
57	054193	733981	57	0600009	-778218	57	-966167	S202
58	054292	784787	58	360109	.778986	- 58	•366211	·82098 ·82161
59	054387	735493	59	060208	779653	59	066815	8216
60	054481	-736243	60	-060308	780371	60	.066420	82229

	18 DEGRI	EES.		19 DEGR	EES.		20 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min.	Nat No.	Logarithm.	Min.	Nat. No.	Logarithn
0	0.051462	8.711489	0	0.057621	8.760578	0	0.064178	8.80788
1	.051562	•712327	1	.057727	·761376	1	-664290	·80814
2	•051661	•713164	2	.057833	.762174	2	.064403	*80890
3	.051761	·714001	3	057939	·762971	3	-064511	80966
4	-051861	714838	4	058045	.763767	4	•06469	81043
5	•051960	•715673	5	058152	764562	5	•064743	·S1119
6	-052060 -052161	·716508 ·717842	7	*058258 *058365	·765858 ·766152	6	-064856 -064969	81195
8	-052161	7111542	8	058472	•766945	8	-665083	·S1270
9	-052361	•7190(8	9	·05S579	767738	9	-06,197	·S1422
10	-052461	•719839	10	058686	•768531	10	-065310	-81498
11	-052562	-72.671	11	.058793	769323	11	.065424	81573
12	-052663	-721502	12	.058900	.770114	12	065538	*81649
13	.052763		13	.059307	.77(904	13	•065652	·81724
14	-052864	•723160	14	.059115	.771695	14	065766	·\$1800
15	-052965	-723990	15	059222	•772484	15	·0658S1	·S1S75
16	-053066	•724817	16	•059330	773272	16	065995	81951
17	-053167 -053268	·725644 ·726470	17	·059438 ·059545	·774960 ·774848	17	*066110 *066224	*82026
18 19	-053370	-727297	19	059654	.775636	18 19	-0663:9	·82101 ·82176
20	-053471	758122	20	059762	776421	23	066454	82252
21	-053573	728947	21	-059870	777207	21	.066569	82327
22	-053675	-729770	22	-059978	.777993	22	-066684	82402
23	-053777	·730594	23	-060087	•778777	23	-066800	*82477
24	-053879	•781415	24	-060195	.779561	24	•066915	182552
25	-053981	•732237	25	•060304	·780343	25	•067030	·S2627
26	-054083	733058	26	•060412	·7S1127	26	•067146	82701
27	-054185	•733878	27	-060521	·781969	27	.067262	82776
28 29	-054287 -054390	*734698	28 29	060630	·782090	28	067377	*82851
30	054492	·735517 ·736335	30	·060740 ·060849	·783471 ·784252	29 30	·067493 ·067609	*82926 *83000
31	•054595	737153	31	060958	785031	31	-067726	*83075
32	054698	•737970	32	•061068	-785810	32	067842	*83149
83	-054801	.738785	33	-061177	·786588	33	·067958	83224
34	-054904	.734602	34	-061287	787367	34	-068075	*83298
35	-055007	•740417	35	.061397	·78S144	35	•068191	*83372
36	•055110	•741231	36	•061506	·7SS915	36	•068308	83447
37	-055213	•742044	37	-061616	789696	37	068425	83521
38	055317	*742857	38	061726	*790472	83	068542	83595
39 40	·055420 ·(55524	·743670 ·744482	39	·061837 ·061947	·791247 ·792021	39	·068669 ·068775	*83669
41	055628	745293	41	·062058	792795	41	·068893	*83743 *S3S17
42	055732	746103	42	•062168	.793568	42	003333	83891
43	-055836	•746912	43	.062279	•794340	43	-069129	83965
44	.055940	•747721	44	•062390	•795118	44	-069247	·\$4039
45	.056044	•748530	45	062501	·795884	45	-069364	* 84113
46	-056148	749338	46	.062612	796654	46	-069482	.84187
47	•056253	•750145	47	062723	•797424	47	-069600	84260
48	056357	750951	4.8	062834	•798197	48	069718	·S4334
49 50	·056462 ·056567	·751757 ·752568	49 50	•062945 •063057	798964	49	069836	*84408
51	056672	753367	51	*068057 *063168	•799731 •800499	50	069955	*84481 *84555
52	056777	•754171	52	·063280	801267	52	070192	84628
53	056882	•754973	53	068392	802038	53	070311	84702
54	-056987	.755776	54	.063504	*832799	54	070480	84775
55	-057092	.756578	55	•363616	803565	55	-070549	84848
56	.057198	.757380	56	.063728	804331	56	.070668	*84922
57	057304	.758181	57	.063840	*835094	57	.070787	*84995
58	057409	758980	58	063953	*805858	58	.070936	85068
59 60	057515	*759779	59	064965	806621	59	071025	85141
OU	-057621	760578	60	064178	*807385	60	071145	85214

5	21 DEGR	EES.		22 DEGRI	EES.	2	23 DEGRI	EES.
Mir.	Nat. No.	Logarithm.	Min.	Nat. No	Logarithm.	Min.	Nat. No.	Logarithm
0	0.066420	8:822296	0	0.072816	8.862227	0	0.079498	8 900340
1	-066524	·S22977	1	.072925	*862877	1	.079609	900 962
2	·066628	823658	2	·C73034	*863526	2	079723	90158
3	.066733	824338	3	.073143	*864175	3	079837	902201
4	*066837	.825918	4	*073253	864823	4	.079951	90282
5	.066942	825697	5	.073362	865471	5	080064	90343
6	-067047	·S26376	6	.073471	866118	6	.080178	90405
7	.067151	·827054	7	.073581	866765	7	080293	90467
8	.067256	·827731	8	.073690	867411	8	*080467	.90529
9	.067361	-3284(9	9	.073800	868056	9	·080521	90591
10	067466	·829.S5	10	.073910	868701	10	*080636	90652
11	.067571	829760	11	.074020	·869346	11	.080750	90714
12	.067676	·S30436	12	.074130	·869991	12	*080865	90775
13	.067781	*831110	13	074239	870634	13	*08(979	90837
14	.067837	831785	14	*074349	*871277	14	*081(94	9.898
15	067992	.832459	15	074460	871920	15	081209	90960
16	-068097	*833131	16	074570	872562	16	081324	91621
17 18	*068203	*833804	17 18	.074680	873203	17	.081429	91083
19	0683(9	834476	19	074790 074901	873845	18	(81554	.91144
20	*068415 *068520	835148	20	074931	·874486 ·875126	20	081669	91205
21	068626	*835819 *836489	21	075122	875766	21	081784	91200
22	-068732	837159	22	075232	876405	22	682014	91321
23	·06S838	·837829	23	075343	877044	23	082130	91450
24	•068944	838497	24	075454	·S77682	24	082245	91511
25	·0000 51	839165	25	:075565	·\$78320	25	082361	91572
26	·009157	·859833	26	075676	878957	26	082476	91633
27	-069263	:840501	27	.075787	879594	27	082592	91698
28	-069369	841167	23	.075898	*880230	28	082708	91754
29	·000476	*841834	29	-076009	*880866	29	082824	91815
30	-069582	842199	30	·C76121	881502	30	*082940	91876
51	-069389	·840165	31	*076232	·882137	31	*083056	91937
52	-069793	840829	32	076343	882770	32	083172	91997
33	·0090.3	·S44493	33	1076455	*883405	33	:083288	92059
34	+ -070010	845157	34	.076566	*884038	34	*0.83404	92118
35	·076117	. 84:330	35	.076678	*884670	35	083521	92179
36	*070224	846483	36	676790	·885363	36	*083637	92240
37	•070331	S47145	37	1 -070002	885935	37	083754	92300
38	•070433	S478°5	38	.077014	886567	38	·c83871	92360
39	-070545 -070658	848467	39	·077125	887197	39	·C839S7	92421
40		849127	40	.077237	887828	40	084104	92481
41	•070760	\$49787	41	*077850	*889458	41	*084221	92541
42	•070867	-850446	42	577562	889088	42	*084337	92602
43	070975	851136	43	077574	-889717 -890346	43	*084454 *084572	92662
45	·071083 ·071190	\$51764 \$52422	45	077687	890974	44	084689	92722
46	-071293	853079	46	077799 077912	891602	46	084806	92842
47	-371406	853735	47	078524	892229	47	084923	92902
48	-371514	854301	48	078137	892853	48	085040	92962
49	.071622	855048	49	078250	893482	49	085158	93022
50	·071730	855703	5.)	078363	894108	50	085275	93082
51	-371339	\$56358	51	-378476	894734	51	085393	93142
52	-071947	857012	52	078589	895358	52	085510	93201
53	072055	857665	53	-078702	895983	53	085628	93261
54	.072164	858319	54	078815	896607	54	085746	93321
55	*072164 *072272	:35972	55	073928	897230	55	·C85864	93381
56	-072381	-859324	56	079041	897853	56	085982	93440
57	.07249.)	:860275	57	079154	898475	57	'086100.	93500
58	.072593	·86°027	58	*079268	899097	58	086218	93559
59	:072707	:861578	59	.079382	899719	59	086336	93619
6)	:072816	:S62227	63	079495	900340	60	. 086454	93678

	21 DEGR	EES.		22 DEGR	EES.	2	3 DEGRE	ES.
Min	Nat. No.	L.iga, ithm.	Min.	Nat. No.	Logari.hm.	Min.	Nat. No.	Logarithm
0	0.071145	8.852144	0	0.078535	8.895061	0	0.086360	8.93631
1	071265	852374	1	078662	.895762	1	.086495	•93699
2	.071384	*853603	2	.078789	*896462	2	.086629	•93766
34	.071504	*854362	3	.078916	897162	3	086763	93333
4	071624	855061	4	079343	*897862	4	.086898	•93901
5	071744	*855788	5	-079170	898561	5	•087033	93968
6	071865	*856516	6	079297	*899259	- 6	·C87167	94035
7	071935	.857243	7	.079425	-899957	7	.087302	94102
8	072105	857969	8	.079553	900655	8	*087437	.94169
9	072226	*858695	9	•079680	991351	9	.087573	94236
10	072347	-859423	10	.0798)3	9,2)43	10	•087708	94304
11	.072468	*860144	11	079933	·9J274!	11	087843	•94370
12	*072539	*860869	12	*080065	•903441	12	087979	94437
13	*072710	861592	13	•080193	•904135	13	.083115	94504
14	072831	*862316	14	*080321	•904830	14	*088251	.94571
15	072952	863039	15	*080450	905525	15	.088387	94638
16	073074	863761	16	*083578	906218	16 .	.088522	94705
17	073195	.864483	17	·0S0707	906911	-17.	•088659	94772
18	.073317	865204	18	*081836	907605	18	-088795	94838
19	073439	*865925	19	*080965	908298	19	•088932	94905
2)	073531	866646	2)	081094	•908990	20	-089368	•94972
21	073683	*867365	21	081223	959681	21	*089205	95038
22	073805	868088	22	*081853	910372	22	089312	95105
23	*073927	*838334	23	*081482	911063	23	089479	95172
$\frac{24}{25}$	*074049	*869521	24	081612	911754	24	-089616	95238
26	*074172	870239	25	081742	912444	25	*389753	95304
$\frac{20}{27}$	074294	870956	26	*081872	913133	26 27	*089891	95371
23	074417 074543	871674	27	*082302	913822	28	·090028 ·090165	95437
29	074663	·872390 ·873106	28 29	*082132 *082262	·914510 ·915193	29	•090303	•95504 •95576
30	074787	873839	30	*082392	915887	30	0903441	95636
31	074910	874537	31	082523	916574	31	•090579	95702
32	075333	875251	32	082653	917260	32	090717	95768
33	075156	875965	33	082784	917947	33	090855	95835
34	07528)	876678	34	082915	918632	34	-090994	95901
35	075404	877391	35	.083946	919317	35	•091132	95967
36	075527	·878103	36	·0S3177	-920002	36	(91271	96033
37	075651	·878316	37	.083308	920687	37	-091410	-96, 99
38	'075775	.879527	38	.083440	921372	38	•091553	96165
39	075930	-8S9239	39	.083570	.922054	39	·0916S3	96231
40	076024	833949	40	.083702	•922738	40	.091827	96296
41	076148	.831659	41	.083834	923421	41	·C91966	96362
42	.076273	882368	42	*083966	.924104	42	.092105	96428
43	*076398	·883079	43	. 084098	924786	43	•092245	96494
44	.076522	*883787	44	.084230	.925467	44	·092385	96560
45	*076647	.884495	45	.084362	·926148	45	•092524	•96625
46	.076772	885203	46	.084495	•926829	46	•692664	96691
47	.076397	·885909	47	.084527	927510	47	*092304	96756
48	077022	886616	48	*084760	928190	48	.092914	•96822
49	'077148	*837323	49	.084893	928869	49	*0930S5 ·	·96887
50	*077273	*888.)29	50	.085025	•929548	50	·093225	96953
51	.077399	·\$83734	51	.085158	930227	51	.693366	.97018
52	077525	*889439	52	*085291	930904	52	-093506	97084
53	.077659	890143	53	.085425	931583	53	·093647	97149
51	*077776	.890848	54	.085558	932260	54	093788	97214
55	077903	*891551	55	085691	932636	55 .	*098929	97280
56	.078029	892254	55	*085825	933613	56	*094070	97345
57	078155	·S92956	57	*085958	934288	57	.094212	97410
58	078232	*893659	58	086092	934964	58	*094353	97475
59	:078108	894361	59	:086225	•935631	59	·091495	97540
60	078535	- 895061	60	*986360	936314	60	*094636	97605

:	24 DEGR	EES.		25 DEGR	EES.		26 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithu
0	0.086454	8-936787	0	0.093692	8.971763	0	0.101206	9.005206
1	086573	937382	1	*693815	972273	1	101333	*00575
2	*086695	937975	2	(93939	.972843	2	101461	*006300
8	*080810	9 33539	3	.094061	•973411	3	101588	*006848
4.	*086929	:939162	4	.094184	.973979	4	101716	007392
5	.087047	939754	5	.094308	974547	5	101845	007938
6	.087166	940346	6	.094431	975115	6	101973	00848
7	*087286	940938	7	004555	.975683	7	102100	009027
8	*087404	941529	8	.094678	976250	8	1-2229	009572
9	*087523	042120	9	*094832	976816	9	1.2357	010110
10 11	·087642	942711	19 11	(94925	97788)	1.0	1.2485 1.2318	*010060 *011204
12	087761	•943800	12	·(95)49 ·(95178	·977948 ·978514	11	102743	011746
13	*087880 *087990	·943889 ·944478	13	095297	979078	12 13	102870	011228
14	088119	945067	14	095421	979643	14	102310	012832
15	088238	945656	15	·C95545	98 207	15	103128	0123378
16	088358	946243	16	095669	98)771	16	103123	01391
17	*088477	•946830	17	.095703	981334	17	103385	014456
18	-088597	•947418	18	-095918	981898	18	103514	014998
19	-088716	·94S004	19	-096042	932460	19	103643	015538
20	*088836 I	948590	2)	-095166	933023	20	103772	016078
21	.088956	949175	21	.093291	933585	21	103901	.016618
22	089376	949761	22	.093415	984146	22	104030	017157
23	*089196	95.346	23	·096549	984707	23	104159	.017696
24	389316	950931	24	.096665	985268	24	·1042S8	018235
25	.089437	951515	25	09679.)	935829	25	104417	018778
26 +	*089557	·952098	26	.096914	986388	26	104547	.019311
27	.089677	·9526S1	27	097040	986948	27	104676	019847
28	*089798	953265	28	.097164	987507	23	104806	020387
29	.089918	·953848	29	.097299	988336	29	104936	020924
30	090039	954429	30	.097415	988624	30.	105066	021460
31	090159	955911	31	09754)	989182	31	105196	021997
32	090280	955592	32	097666	989741	32	105326	022533
33 34	090401	956173	33	097791	990298	33	105456	023069
35	·090522 ·090643	956758	34 35	.097916 .098042	·990854 ·991411	34	·105586 ·105716	·023603 ·024139
36	1090764	·957833 ·957918	86	098168	991968	35 36	105846	024150
37	-090885	958492	37	·C98293	992524	37	165977	025210
38	.091006	959071	38	·09S419	993079	38	106107	025742
39	-091127	959649	39	098545	993634	39	106237	026275
10	091249	96)228	40	·098671	994189	40	106367	026808
11	.091370	960805	41	. 093797	994743	41	106498	.027342
12	691492	931382	42	.098923	995297	42	106629	.027874
13	.091613	961959	43	.099 :49	995851	43	106760	·C28406
14	*091735	•962535	44	.099175	996404	44	106890	028938
15	·091857	963111	45	.099302	996957	45	107021	029470
16	091979	963687	46	099428	9975(9	46	107152	.030000
17	*092101	964262	47	.099555	998061	47	107283	.030531
48	092223	964836	48	099681	998613	48	107414	031061
19	1092345	965412	49	•099308	999164	49	107545	031592
50	092467	965985	50	099934	999715	50	107677	·032121 ·032651
52	*692589 *692711	*966559 *967181	51 52	100061	9.000266	51 52	·107808 ·107940	032031
53	092834	967705	53	100183 100315	*000817 *001366	53	168971	033709
54	092554	961105	54	100442	001300	54	108272	034237
55	093078	958349	55	100442	001910	55	1082 72	034765
56	093201	959121	56	100575	003014	56	108466	035298
57	093324	969991	57	100031	003563	57	108598	035820
18	093447	970563	58	100951	003303	58	108730	036348
59	093569	971133	59	101079	004660	59	108862	036874
60	-003692	971703	60	111206	-005206	60	108994	037401

	24 DEGE	REES.		25 DEGR	EES.		26 DEGRI	EES.
Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logacithm.	Mm.	Nat No.	Logarithm
, 0	0.094636	8-976057	C	0.103378	9.014427	0	0.112602	9:051546
1	.094778	976708	1	103528	.015056	1	112760	.052154
2	-094920	977357	2	.103678	015685	2	112918	052768
3	·095062	978008	3	103828	.016312	3	113076	.05337
4	.095204	978657	4	.103977	.016939	4	113235	053979
5	.095347	979306	5	104128	.017566	5	·113393	·C5458
6	·095489	979954	6	104279	.018194	6	113552	.05519
7	-095632	989603	7	104429	.018821	67	113710	.05579
8	-095775	981250	8	.104580	.019447	8	113869	.05640
9	-095918	.981898	9	104730	.020072	9	114628	.057019
10	-096061	932546	10	-104881	.020696	10	·114187	.057618
11	-096204	933191	11	105032	.021323	11	114347	05822
12	.096347	983837	12	.105184	.021948	12	114506	.058828
13	-096490	984483	13	105835	.022572	13	.114666	.059434
14	-096634	985129	14	105486	.023196	14	114826	-060039
15	-096777	935774	15	105638	.023820	15	114985	.060642
16	-096921	986417	16	.105790	.024444	_16	115145	061240
17	-097065	987062	17	105942	.025066	17	115306	.061850
18	-097209	987707	18	106094	025690	18	115466	.062454
19	-097358	988350	19	106246	.026312	19	115626	.06305
20	·C97493	988994	20	106398	026934	20	115787	.063660
21	·097642	989636	21	106551	.027556	21	115948	064262
22	-097737	.990279	22	106703	028177	22	1161(8	064868
23	-097931	99.921	23	106856	028798	23	116269	.065465
24	·098076	991563	24	107009	029419	24	116431	.066067
25	.098221	992235	25	107162	030040	25	116592	.066667
26	·098366	992845	26	107815	.030659	26	116753	067268
27	-098511	993486	27	107468	031279	27	116915	.067869
28	-098657	994127	28	107621	031898	28	117077	·C68470
29	.098802	994766	29	107775	032518	29	117289	069070
30	· 98948	995406	30	167929	033136	30	117400	.069608
31	-099094	996046	31	108082	033754	31	117562	670269
32	.(99240	995684	32	108236	034373	32	117725	070868
33	-099386	997823	33	108390	034991	33	117888	071467
34	·099532	997961	34	108544	035607	34	118049	072064
35	-099678	998599	35	108699	036225	35	118212	072669
36	.099824	999236	36	108854	036842	36	118875	073261
37	000024	999873	37	109008	037459	57	118539	073861
38	100118	9.000510	38	109163	038074	38	118762	074456
39	100264	000310	39	109318	038690	39	118865	075053
40	100204	001783	40	109313	089306	40	119028	075649
41	100558	001138	41	109628	039920	41	119028	076246
42	100706	003053	42	109023	039320	42	119355	076842
43	100853	.003688	43	109939	040353	43	119519	077438
44	101000	003033	44	110094	041764	44	119683	078033
45	101148	004957	45	110054	041704	45	119848	078629
46	101296	005591	46	110230	042913	46	120012	079222
47	101444	006224	47	110561	043604	47	120012	079817
48	101591	006857	48	110717	044217	48	120110	080412
49	101740	000331	49	110874	044829	49	120505	081006
50	101885	008122	50	111030	045441	50	120505	081599
51	102037	008755	51	111187	046053	51	120810	082193
52	102185	009385	52	111184	046665	52	120855	082786
53	102334	010018	53	111500	047276	53	121000	083379
54	102482	010018	54	111657	047276	54	121100	083971
55	102631	010049	55	111814	048497		121331	084563
56	102789	011219	56	111814		55	121496	·084505
57	102130	011910	57		049108	56	121828	085746
58	103079	012539	58	·112129 ·112287	049718	57	121828	086388
59	103223	013798	59	112287	·050328 ·050938	58	121994	080929
	CATON	CTOLOC	00	112443	000000	59	122327	000020

	27 DEGR	EES		28 DEGR	EES.	5	29 DEGR	EES.
Mire	Nat Na	Logarithm	Min,	Nat No	Logariti.m.	! Min.	Nat. No	Logarithr
ð	0.105994	9.037401	0	0.117052	9.068380	0	0.125380	9.09822
1	109126	037927	1	117189	.068887	1	125522	(9871
2	109258	.038452	2	117326	.069393	2	- 125663	C992 0
3	109390	038978	3	117462	·C69899	3	125804	.(9969
4	109522	.039502	4	117599	070404	4	125945	10019
5	109655	.040027	5	117736	:070910	5	126086	10066
6	109787	*049551	6 7	117873	071415	6	126228	10115
7	109920	.041076	7	·118010	071919	7	126370	10164
8	110053	.041600	. 8	118147	.072424	8	126512	10212
9	110185	042123	9	118285	072928	9	126653	·10261
10	110318	.042645	10	118422	•073432	10	126791	10310
11	110451	*043168	11	118559	073935	11	126936	10358
12	110584	.043693	12	118696	074437	12	127078	10467
13	110717	044213	13	118834	074941	13 14	127220 127362	10455
14,	110859	044735	14	118972	*075453		121502	10504
15 16	·110983 ·111116	·045256 ·045777	15 16	119110	·075946 ·076448	15 16	127564 127646	10552 10600
17	111116	045777	17	·119247 ·119385	076948	17	127759	16649
18	111383	046818	18	119523	077459	18	127931	10697
19	111516	040313	19	119661	077951	19	128073	10745
20	111659	047857	20	119799	078452	20	128216	10794
21	111783	048377	21	119937	078952	21	128358	1(842
$\tilde{2}\tilde{2}$	111917	048896	22	120075	079452	22	128501	10890
23	112051	.049415	23	120213	079951	23	128643	10938
24	·112185	.049933	24	120351	.080451	24	128786	10986
25	·112319	.050451	25	120490	.080951	25	128929	11035
26	112453	.050968	26	120628	.081449	26	129072	11089
27	112587	.051487	27	120767	.081947	27	129215	11131
28	112721	.052004	28	120905	.082445	28	129358	11179
29	112855	052520	29	121044	*082943	29	129501	11227
30	112989	053037	30	121183	.083441	30	129644	11275
31	113124	053553	31	121322	£83938	31	129788	11328
32	113258	.054069	32	121461	(84435	32	129931	11371
33	113393	.054584	33	121600	.084932	33	130074	11419
34	113527	055099	34	121789	.085428	34	130218	11467
35	113662	055614	35	121878	085924	35	130362	11514
36	113797	056129	36	122017	086420	36	130505	11562
37 38	·113931 ·114066	056642	37	·122157 ·122296	086916	37 38	130649	11610
39	114201	057157 057670	38	122296	·087411 ·087905	39	130793 130936	11706
40	114336	058183	40	122575	088401	40	131080	11758
41	114471	058696	41	122714	088895	41	131224	11801
42	114606	059208	42	122854	-089388	42	131368	11849
43	114742	059721	43	122994	089882	43	131513	11896
44	·114877	060232	44	123134	·C90376	44	131657	11944
45	115013	.060745	45	123273	.090869	45	131801	11991
46	115148	061256	46	123413	-091361	46	131945	12039
47	115283	.061766	47	123553	091854	47	132090	12087
48	115419	-062277	48	123693	.692346	48	132235	12134
49	115555	-062788	49	123834	*092838	49	132379	1218
59	115691	*063298	50	123974	093329	50	132524	12229
51	115827	063807	51	124114	693821	51	132669	12276
52	115962	*064316	52	124255	(94312	52	132814	1232
53	116093	*064826	53	124395	.694802	53	132958	12371
54	116235	065835	54	124535	*095293	54	133103	12418
55	116371	*065843	55	124676	•695783	55	133248	12460
56	116507	066351	56	124817	096272	56	133394	12518
57 58	116643	066859	57	124958	096763	57	133539	12560
59	116916	*067866	58 59	125098 125239	·097251 ·097740	58 59	133684	1265
60	117052	*067874 *068380	60	125289	091140	60	133975	12702
UU	111004	000000	11 00	140000	1 000449	II UU	L TOOP (1 44104

	27 DEGRI	EES.		28 DEGR	EES.		29 DEGR	EES.
Min	Nat. No	Logarithm,	Min.	Nat No.	Logari hm.	Min.	Nat No	Logarithn
0	0.122327	9.087520	0	0.132570	9.122445	0	0.143354	9.15641
1	·122493	.088111	1	132745	123019	1	·143538	·15696
2	122660	·C88700	2	·132920	•123593	2	·143723	15752
3	122826	(89290	3	133096	124166	3	·143908	15808
4	·122993	. (89879	4	133272	·124738	4	•144(93	15864
5	·123160	.090469	5	133448	125312	5	·144278	15919
6 .	123327	.081657	6	133624	·125884	6	·144463	15975
7	123495	(91647	7	133800	·126453	7	144649	·16031
8	123662	.(92236	8	133976	127028	8	144834	16086
9	123829	·(92823	9	134153	·127600	9	·145020	.16142
10	-123997	.093410	10	134330	128171	10	·145206	.16198
11	-124165	-093998	11	134506	128742	11	145391	16258
12	•124833	1.94585	12	134683	129312	12	·145578	•168(9
13	·1245C1	(95173	13	134860	129883	13	•145764	16365
14	124669	·C95760	14	185087	130453	14	145950	16420
15	-124888	·096346	15	135215	131024	15	146137	16476
16	·125006	·096932	16	·185892 ·185570	181594	16	146324	16531
17	125175	(97579	17		132162	17	146511	16586
18	125344	*098103 *098088	18	·135748 ·135926	132732	18	146098	16642
19 20	·125513 ·125682	(99273	20	136104	·133361 ·133870	19	146885	16697
20	125082	(99858	21	136282	134418	20 21	·147072 ·147260	·16753 ·16868
22	126021	100442	22	136460	135066	22	147248	16868
23	126191	101027	23	136629	135574	23	147636	16919
24	126360	101610	24	136818	136142	24	147825	10919
25	126530	102194	25	130997	136710	25	148:12	17029
26	126700	102776	26	137176	137277	26	148200	·17084
27	126871	103361	27	137355	137843	27	·148289	17140
28	127041	108944	28	137534	1384(9	28	148577	17195
29	127211	104525	29	137713	138976	29	.148766	17250
30	127382	105168	30	137893	139542	30	•148956	17305
31	. 127553	.105690	21	138073	.1401(8	31	.149145	17360
32	127724	106272	32	138253	140674	32	149334	17415
33	127895	106853	33	188483	·141209	33	·149524	17471
34	128066	·107434	34	138613	·141804	34	149714	17526
35	-128237	·108014	35	138793	142369	35	·149903	·175S1
36	128409	108596	86	138974	·142934	36	·150(93	17636
37	-128581	109175	37	139155	143499	37	150283	17691
38	128753	1(9756	38	139336	144063	38	150474	17746
39	·128925	110335	39	139517	144626	39	150664	17800
40	129097	·11(914	40	·139698	145191	40	150854	17855
41	129269	111493	41	·139880	145754	41	·151045	17910
42	129441	112072	42	•140061	146316	42	151236	17965
43	129614	112651	43	140242	146879	43	151427	18020
44	129787	113228	44	140424	147442	44	151619	18075
45	129960	113808	45	•140606	148005	45	151810	18130
46	130132	114385	46	140788	148566	46	152001	18184
47	130305	114962	47	140.970	149128	47	152193	18239
48	130479	115539	48	141153	149690	48	152385	18294
49 50	130652	116117	49 50	141336	15(251	49	·152577 ·152769	18348
51	·136826 ·136999	116694 117269	51	·141518 ·141701	150812	50	152169	18403
52	131173	117845	52	141761	151373 151934	51 52	153154	18458
53	131113	1118422	53	141884	152494	53	153347	18512
54	131541	118998	54	142250	153054	54	153540	18622
55	131696	119573	55	142230	158614	55	153733	18676
56	131871	120148	56	142618	154173	56	153926	18731
57	132046	120723	57	142802	154734	57	154120	18785
58	132220	121297	58	142986	155292	58	154313	18840
59	132395	121872	59	143170	155851	59	154507	18894
60	132570	122445	60	143354	156410	60	154700	18949
~	100010	142120	00	TIOOT	100110	00	101.00	TOOK

	30 DEGRI	EES.		31 DEGR	EES.	3	2 DEGRE	ES.
Min	Nat. No.	Logarithm.	Min.	Nat No.	Logarithm	Min.	Nat. No	Logarithm
0	0.133975	9.127(22	0	0.142833	9.154827	0	0.151952	9-18170
1	134120	127494	1	·142983	155283	1	152106	18214
2	134266	127964	2	·143133	155738	2	152261	182587
3	134412	128436	3	143282	156192	3	152415	18362
4	134558	128906	4	143482	156647	4	152569	18346
5	134703	·129376	5	·143583	1571(2	5	152724	18390
6	134849	129846	6	•143733	157556	6	152878	18434
7	134995	130316	7	143883	-158010	7	•153033	18478
8	135141	130786	8	144034	158464	8	153188	18522
9 10	135287	131254	9	·144184 ·144335	158917	10	153342	18566
11	135433	·131724 ·132192	11	144485	·159370 ·159823	11	·153497 ·153652	·18610
12	135725	132192	12	144636	166275	12	153807	18697
13	135872	132000	13	144787	160728	13	153962	18741
14	136018	133596	14	144937	161180	14	154117	- 18785
15	136165	134064	15	145088	.161632	15	154272	18828
16	136311	134531	16	145229	162(83	16	154427	18872
17	136458	134998	17	145390	162535	17	154583	18916
18	136605	135465	18	145541	162986	18	154788	18959
19	136751	135931	19	·145092	·163436	19	154894	19063
20	136898	·186897	20	145844	·163887	20	·155049	19046
21	137045	136863	21	145995	·164337	21	155205	- 19090
22	137192	137829	22	·146146	164788	22	155360	19134
23	137239	137794	23	146298	165238	23	·155516	19177
24	137486	138259	24	140450	165687	24	155672	19221
25	137633	138724	25	146601	·166137	25	155828	19264
26	137781	139189	26	146752	166585	26	155984	19308
27	137928	139653	27	140904	167034	27	156140	19351
28 29	138076	140117	28	147056	167483	28	156296	19394
30	138223	140581	29	1472(8 147360	·167931 ·168379	29 30	·156452 ·1566(9	·19438 ·19481
31	138518	141045 141507	31	147512	168827	31	156765	19431
32	138666	141971	32	147664	103321	32	156921	19568
33	138814	142434	83	147817	169722	33	157078	19611
34	138962	142896	34	147969	170169	34	157234	19654
85	139110	143358	. 35	148121	170615	35	157391	19697
36	139258	143820	36	148273	171063	36	157548	19741
37	139406	144282	37	158426	·171509	37	1577(5	19784
38	139554	·144743	38	148578	171954	38	157861	19827
39	139703	.145204	39	148730	172400	39	158018	19870
40	139851	·145665	40	148883	.172846	40	158175	19913
41	139999	146125	41	149036	173292	41	158332	19956
42	140147	146585	42	149189	173736	42	158490	20000
43	146296	147046	43	149342	174181	43	158647	20043
44	140445	147506	44	149495	174626	44	158804	20086
45 46	140594	147965	45	149648	175070	45 46	·158962 ·159119	20129
47	140742 140891	·148424 ·148883	46 47	·149801 ·149954	175514 175958	47	159276	20172
48	141040	149342	48	150107	176401	48	159433	-20257
49	141189	149801	49	150261	176845	49	159591	20306
50	141338	150259	50	150414	177288	50	159749	20348
51	141487	150707	51	150568	177731	51	159907	20386
52	141636	151175	52	150721	178174	52	160065	20429
53	141786	151632	53	150875	178616	53	160228	20472
54	141935	152089	54	151028	179058	54	-160380	20515
55	142085	152546	55	·151182	179500	55	160538	20557
56	142234	153003	56	151336	179942	56	160697	20600
57	142384	153460	57	151490	180384	57	160855	20643
58	142533	153916	58	151644	180824	58	161013	20686
59	142683	154372	59	151798	181265	59	161171	20728
60	142833	154827	60	151952	181706	60	161330	20771

	30 DEGR	EES.		31 DEGR	EES.		32 DEGR	EES.
Min.	Nat. No.	Logarithm	Min.	Nat. No	Logarithm.	Min.	Nat. No.	Logariana
0	0.154700	9.189491	0	0.166633	9.221761	0	0.179179	9.25328
11	154894	•190036	1	·166S37	222293	1	179393	25389
2	155089	·190579	2	167041	•222824	2	179608	25432
3	155283	191124	3	167245	223354	3	179822	25484
4	155478	-191668	4	167450	·223885	4	180037	255369
5	155678	192211	5	167655	•224417	5	180252	25588
6	155867	192754	6	167860	-224947	6	180467	256399
7	156062	193297	7	168065	225477	7	180683	25691
8	156257	193840	8	·16S270	.226007	8	180899	25743
9	153452	195382	9	168476	226537	9	181115	25795
1)	156648	•194925	10	168681	227066	10	181331	25847
11	156844	·195467	11	168887	227595	11	181547	258989
12	157040	196008	12	169093	.228124	12	181763	25950
13	157236	196550	13	169299	228653	13	182080	26002
14	157432	197091	14	169505	*229182	14	182197	260540
15	157623	197633	15	169711	.229711	15	182113	261050
16	157824	198174	16	· * ·169918	*230238	16	182630	26157
17	153021	·193714	17	170125	230767	17	182848	262090
18	158218	199255	18	170332	231295	18	183066	262607
19	158115	199795	19	170539	·231822	19	183283	263122
20	158312	200335	20	·170746	232350	20	183501	263638
21	153809	230875	21	1.70953	-232877	21	183719	264154
22	159 307	201415	22	171161	233405	22	183937	264669
	159204	201944	23	•171369	233932	23	184156	265184
24	150402	202493	24	171577	234458	24	184374	265690
25	159600	203032	25	171785	234985	25	184593	266214
26	159798	203571	26	171993	235510	26	184812	236729
27 28	-159997 -160195	·204110 ·204643	27 28	172201	236036	27	185031 185250	267244
29				172410	236562	23		267758
30	·160393	·205186 ·205725	29 30	·172619 ·172828	237088	29	185469 185689	·268272 ·268786
81	160092	206261	31		237613	30	185909	269300
$\frac{31}{32}$	·160991	206800	32	·173037 ·173246	·238139 ·238663	31 32	186129	269814
83	161190	200300	33	173456	239189	33	186349	270327
34	161390	207874	34	173665	239713	34	186570	270840
35	161589	208410	35	173875	240237	35	186790	27135
36	161789	208947	36	174085	240763	36	187011	271867
37	·161939	2.9484	37	174295	241286	37	187232	272379
38	162189	210020	38	174505	241809	38	187453	272891
39	162389	210555	39	174716	242333	39	187674	273494
40	·162589	211091	40	·174927	242857	40	187896	273910
41	162789	211626	41	·175038	•243381	41	188117	274428
42	·162990	212161	42	·175349	243903	42	·188339	274940
43	163191	212697	43	·175560	244426	43	188561	275451
44	163392	213232	44	175772	214949	44	188783	275933
45	·163594	*213766	45	175983	245471	45	·189006	276475
46	153795	214301	46	·176195	245993	46	189228	276985
47	163997	*214835	47	176497	246516	47	189450	277495
48	:164198	215368	48	.176619	247037	48	189673	·278006
49	164400	215903	49	176832	247559	49	189896	-278517
50	164603	216437	50	·177044	·248081	50	190120	279028
51	164805	216970	51	177257	248602	51	190344	279538
52	165008	217594	52	177570	249124	52	199568	280049
53	165210	218036	53	177288	249644	53	190792	280559
54	165413	218569	54	177896	250165	54	191015	281068
55	165616	219101	55	178109	250685	55	191240	281578
56	165819	219634	56	178322	251206	56	191464	282087
57	166023	220167	57	178536	251727	57	191689	282596
58	166226	220699	58	178750	252246	58	191914	288105
59 60	·166430 ·166633	·221231 ·221761	59 60	178964	·252766 ·253286	59	192189	283614
				179179		60	192364	284123

;	33 DEGR	EES.		34 DEGR	EES.		35 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min.	Nat, No.	Logarithm.	Min.	Nat. No.	Logarithm
0	0.161330	9.207714	0	0.170963	9.232901	0	0.180848	9-257313
1	·161488	.208140	1	171126	233314	1	181015	257714
2 3	·161647	208566	2	·171289	.233727	2	181182	258114
3	161805	208992	3	171452	234139	3	181349	258514
4	161964	209418	4	171614	234552	4	181516	258914
5	162123	209843	5	171777	.234964	5	181683	259314
6	162282	210269	6	171940	235376	6	181850	259714
7	162440	210693	7	172103	235788	7	182018	260114
8	162599	211118	8	172266	236199	8	182185	260513
10	162758	211543	10	172430 172593	236611		182353 182520	260912
11	·162917 ·163076	211967	11	172756	237022	10 11	182688	261310
12	163235	·212391 ·212814	12	172920	·237433 ·237844	12	182855	261709 262107
13	163395	213238	13	173083	238255	13	183023	262505
14	163555	213662	14	173247	238665	14	183191	262903
15	163714	214085	15	173410	239075	15	183359	263301
16	163874	214509	16	173574	239485	16	183527	263699
17	164033	214931	17	173738	239895	17	183695	264096
18	·164193	215353	18	173902	240304	18	183863	264493
19	164353	215776	19	174066	240713	19	·184031	264890
20	164512	216198	20	174230	241122	20	·184199	265286
21	164672	216620	21	174394	241531	21	184367	265683
22	·164832	217042	22	174558	241940	22	184535	266080
23	164992	217462	23	174723	•242349	23	184704	266476
24	165152	217884	24	174887	242757	24	184872	266871
25	165312	218305	25	175051	243165	25	185041	267267
26 27	165473	:218726	26 27	175216	243572	26 27	185210	267663
28	·165633 ·165793	·219146 ·219567	28	·175380 ·175544	·243980 ·244387	28	185378 185547	*268058 *268453
29	165954	219367	29	175709	244794	28	185716	268848
30	166114	220496	30	175874	245201	30	185885	269243
31	166275	221826	31	176039	245608	31	186054	269637
32	166436	221246	32	176204	246014	32	186223	270032
33	166597	221665	33	176369	246421	33	186392	270426
34	166757	222084	34	176534	246827	34	186561	270820
35	166918	·222502	35	176699	247233	35	186730	271214
36	167079	222922	86	176864	247639	36	186900	271608
37	167240	223340	37	177029	248044	37	187069	272001
38	167401	223758	38	177194	248449	38	187238	272394
39	167562	224175	39	177869	248855	39	187408	272787
40	167723	224593	40	177525	249259	40	187577	273180
41 42	·167885 ·168046	·225011 ·225427	41	177699 177856	249664	41 42	·187747 ·187917	·273573 ·273965
42	168208	225845	43	178022	250069	43	188087	274357
44	168369	223262	44	178187	·250478 ·250876	44	188256	274749
45	168530	226678	45	178353	251280	45	188426	275140
46	168692	227094	46	178519	251684	46	188596	275532
47	168354	227511	47	178685	252087	47	188766	275924
48	169016	-227927	48	178851	252491	48	188936	276315
49	169178	·22S342	49	179017	252894	49	189106	276706
50	169340	228758	50	179183	253297	50	189277	277097
51	169502	229173	51	179349	253699	51	189447	277487
52	169663	·229587	52	179515	254101	52	189617	277878
53	169326	230003	53	179682	254504	53	189788	278268
54	169983	230418	54	179348	354906	54	189958	278658
55	170150	230832	55	180015	255308	55	190129	279048
56	170312	231246	56	180182	255710	56	190300	279438
57	170475	231660	57	180348	256111	57	190471	279828
58	170638	232074	58	180515	256512	58	190641	280217
59 60	170800 170963	·232487 ·232901	59 60	180681	·256913 ·257313	59	·190812 ·190983	*280606 *280995
UU	T10309	404001	00	180848	201010	00	190939	400990

	33 DEGR	EES.		34 DEGR	EES.		25 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm,	Mın.	Nat No.	Logari: h
0	0.192364	9.284123	0	0.206218	9:314326	0	0.220775	9.343949
. 1	192589	284631	1	206455	·314S25	1	221024	*344438
2	-192814	•285139	2	206692	*815323	2	-221272	34492
3	·193040	285647	3	206929	315821	3	•221521	*345418
4	·193266	286155	4	207167	316319	4	221771	*845904
5	·193492	286662	5	207404	316817	5	222020	346399
6	193718	.287171	6	207642	*817315	6	-222270	34688
7	193945	287677	7	207880	317812	7	-222520	347370
8	194172	288185	8	208118	318309	8	-222771	347858
9	194399	288692	9	208356	318806	9	223(21	*348346
10	194625	289199	10	208594	319302	10	223272	*348838
11 12	194852	289705	11 12	208833	819799	11	•223523	*349321
13	195080	293211	13	209072	320296	12	223774	349808
14	·195307 ·195535	·290718 ·290224	14	·209311 ·209550	·820793 ·821288	13 14	224025	350295
15	195763		15	209390	321785		224276	350782
16	195992	291730 292237	16	210030	322280	15 -16	·224528 ·225780	·351270 ·351757
17	196220	292231	17	210270	322230	17	225081	352248
18	196448	293247	18	210510	323272	18	225284	352730
19	196677	293753	19	210750	323767	19	225536	353216
20	196906	294258	20	210991	824263	20	225789	-353702
21	197135	294763	21	211231	324758	21	226042	354189
22	197364	295268	22	211472	325253	22	226295	354675
23	197593	295771	23	211714	*325749	23	-226548	355161
24	197823	296277	24	211955	*326243	24	226801	355646
25	198053	296781	25	.212197	326738	25	227055	-356131
26	198283	297285	26	212438	327232	26	227310	356617
27	198513	297789	27	212680	327726	27	227564	357102
28	198744	-298293	28	212922	328220	28	227818	357587
29	·198974	298797	29	213164	328713	29	-228072	358072
30	199205	-299299	30	213457	329207	30	228326	358557
31	199436	299803	31	213650	329701	31	228581	359041
32	199667	*300307	32	213892	*330194	32	.228837	359526
33	199899	300869	33	214135	.880688	33	229692	360011
34 35	200130	301312	34	214379	331181	34	229348	360495
	200362	301815	35	214622	331674	35	229604	360979
36 37	200594	*302317	$\frac{36}{37}$	214866	332167	36	229860	361463
38	·200826 ·201058	*302820	38	215110	332659 333152	37 38	230116	*361947 *362481
39	201008	*303322 *303823	39	·215354 ·215598	333644	39	·230378 ·230630	\$62914
40	201523	304325	40	215842	333044	40	230886	363398
41	201325	304827	41	216087	334629	41	231143	363881
42	2011990	305328	42	216332	335121	42	231400	364364
43	202223	*805830	43	216577	-885613	43	231658	864847
44	202456	*806331	44	216822	836104	44	231916	865330
45	202690	306832	45	217068	·836595	45	232173	365812
46	.202924	.307333	46	217813	337086	46	232431	366295
47	203158	307834	47	217559	337577	47	232690	-366778
48	.203392	*308334	48	217806	338069	48	232949	367260
49	203626	308834	49	218052	338560	49	283207	367742
50	·203861	309334	50	218299	*339050	50	233466	*868224
51	204096	309834	51	218545	339541	51	233726	368706
52	204331	310334	52	218792	*340031	52	233985	*369188
53	204568	310834	53	219040	340522	53	234245	369670
54	204801	311333	54	219287	.841012	54	234505	*870151
55	205037	311832	55	219535	*841502	55	234764	•370632
56	205273	312331	56	219782	841992	56	235025	371114
57	205509	*312830	57	220030	342481	57	235285	371595
58	205745	313329	58	220278	342970	58	235546	372076
59 60	205981	313828	59	220526	343460	59	235807	372557
UU	206218	314326	60	220775	343949	60	236068	373037

	36 DEGR	EES.		er Degr	EE3.		38 DEGR	EES.
Min.	Nat No	Loga, ithm	Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logari:hn
0	0.190933	9-280995	0	0.201365	9.302983	0	0-211990	9-32631-
1	191154	281384	1	2)1540	*304361	1	•212169	*3266S
2	191325	281772	2	201715	*304737	2	•212348	*32704
3	191496	282160	3	201890	*305115	. 3	•212527	*32741
4	191667	282548	4	202065	305492	4	212706	32778
5	191839	- 282936	5	202240	305868	5	212886	*32514
6	192010	283324	6	202416	306245	6	213065	-32851
7	192181	283711	7	202591	*306621	7	213244	32887
8	192353	284099	8	202767	*306998	8	213424	-32924
	·192525 ·192796	-281456	9	2)2943	307374	9	213603	*32960
10 11	192368	*284878 *285260	10	*2)3118 *2)3294	307749	11	·213783 ·213963	-32997
12	193040	285947	12	2 3294	*308125 *308501	12	214143	·33033 ·33070
13	193212	283033	13	2)3646	308876	13	214143	33106
14	193334	285419	14	2)3822	3(9251	14	214525	35143
15	193555	286805	15	203993	309625	15	214683	*33179
16	193727	287191	16	2)4174	310000	16	214863	33216
17	1939.00	287576	17	204350	310375	17	*215043	*33252
13	194)72	287962	13	2)4527	310749	18	215224	33289
19	194244	258347	19	204703	311124	19	-215404	33325
20	194416	258732	20	204880	*311498	20	215585	33361
21	194588	239117	21	205056	311871	21	215765	*33398
22	-194761	280502	22	205237	312246	22	-215945	33434
23	:194934	259887	23	205409	312619	23	-216126	*33470
24	·195106	29)271	24	205586	*312993	24	216807	*33507
25	195279	290655	25	-2)5762	*313366	25	-216487	33543
26	195452	291039	23	205939	*313738	26	216668	*33579
27	·195625	291423	27	206115	-314111	27	-216849	*33615
28	195797	*2918:6	23	2)6293	314484	23	217030	33652
29	·195970	292190	29	206470	*314856	29	-217211	*33688
30	·193143	292573	30	206647	315228	30	217392	33724
31	196316	292956	31	236824	315601	31	217573	33760
32	196490	293339	32	207001	315992	32	217754	33796
33	196663	293721	33	207178	*316344	33	217935	33832
34	196836	294104	34	207356	316716	34	218117	33868
35	197009	294486	35	207533	317087	35 33	*218299	*33905 *33941
36 37	197182 197356	*294868 *295250	36	207710 207880	317458 317829	37	·2184S0 ·218661	33977
38	197530	295632	38	208066	318200	38	218843	34013
39	197703	293013	39	208243	318571	39	219024	31049
40	197877	293395	40	208421	318942	40	219206	34085
41	198051	-293776	41	208599	•319311	41	219388	34121
42	198225	297157	42	208777	*319682	42	219570	*34157
43	198398	297537	43	208954	-320051	43	219752	*34193
41	198572	297918	41	-209132	*320421	41	*219934	*34229
45	198746	•293293	45	209309	320791	45	220116	*34265
46	198920	•293679	46	209489	·321161	46	220293	*34301
47	199 94	-299)59	47	209667	-321530	47	-220480	*34336
48	199269	299439	48	209845	321899	48	*220662	*34372
49	192443	299319	49	210023	322267	49	220844	31108
50	199617	300193	50	210202	322636	50	*221027	31114
51	199792	*300577	51	210380	323005	51	221209	34180
52	199966	306956	52	210559	323373	52	221311	34516
53	200141	301335	53	210738	323742	53	221574	34551
54	200315	301714	54	210916	324110	54	221757	34587
55	200590	302093	55	211095	324477	55	221940	34628
56	2)0665	302471	56	211273	324844	56	222122	34659
57 58	200840	*302850	57	211452	*325212 *325579	57 58	-222305 -222488	34695
59	-201015 -201190	303228	58 59	·211631 ·211810	325947	59	222488	34766
60	201365	*303605 *303983	69	211510	326314	60	222854	34802
00	201000	000000	00	211990	020014	00	222304	01002

	36 DEGRI	EES.		87 DEGR	EES.	:	BS DEGRE	EES.
Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm	Min.	Nat. No.	Logarithm
0	0.236068	9.373037	0	0.252136	9.401634	0	0.269019	9.429782
1	•236380	373518	1	252410	402107	1	269307	430248
2	236591	•373998	2	252685	·402579	2	269595	*430712
3	-236853	•374478	3	. 252960	403052	3	.269884	*431178
4	•237115	•374958	4	253235	403525	4	270174	*431648
5	237377	375438	5	253511	403997	5	270463	•432108
6	-237640	•375918	6	253787	404469	6	270753	48257
7	237902	376397	7	254768	404941	7	271042	43303
8	238165	•376877	8	254339	405413	8	271332	433503
9	•238428	377357	9	254615	·405884 ·406355	9	271628	- 43396
10	238691	377836	10	254892	406555	10	271914	*434432 *434896
11	-238954	·378315 ·378794	11 12	255169	407299	11 12	·272205 ·272496	43536
12 13	·239218 ·239482	379273	13	·255446 ·255723	407770	13	272788	43582
14	239747	379752	14	256000	4 8241	14	273080	436289
15	240011	380231	15	256278	408711	15	273372	436758
16	240276	380709	16	256556	469182	16	273664	43721
17	240540	381187	17	256834	409653	17	273956	43768
18	-240805	381666	18	257113	410124	18	274249	*43814
19	241070	*382143	19	257392	410595	19	.274542	438608
20	-241335	·382621	20	257671	411065	20	274835	439072
21	-241601	*383099	21	257950	*411534	21	.275128	•43953
22	-241867	*383577	22	*258230	.412006	22	.275421	-439998
23	•242133	384055	23	258509	412475	23	275715	*440460
24	-242400	*384532	24	258789	412946	24	276010	44092
25	-242567	385010	25	259169	413415	25	276304	44138
26	•242933	*385487	26	259349	413884	26	276598	*441849
27	243200	385964	27	259630	414354	27	276893	•44231
28	243467	*386440	28	259910	*414824	2S 29	277188	442774
29	243735 244002	*386918 *387394	29	·260191 ·260472	*415292 *415761	30	·277584 ·277780	44323
31	244270	387871	31	260754	416231	31	278075	44416
32	244539	388347	32	261035	416699	82	278370	•44462
33	244807	388923	33	261317	417168	33	278867	•44508
34	245075	389299	34	261600	417638	34	278963	44554
35	•245344	*389775	35	261882	418106	35	279260	*44606
36	-245613	390251	36	262165	.418574	36	279557	•44647
37	•245882	*390727	37	.262448	*419043	87	279855	44693
38	-246152	391203	38	262731	419511	33	280152	-44739
39	•246422	391678	39	263015	·419980	39	280450	44785
40	246691	*392154	40	263298	420447	40	280748	•44831
41	•246961	392629	41	263581	420914	41	281046	*44877
42	247273	393104	42	263865	421382	42	281345	-44923
43	247502	393579	43	264150	421849	43	281643	44969
44	247773	394054	44	264435	422318	44	281942	45016
45 46	·248044 ·248315	*394528 *395003	45	·264729 ·265005	·422785 ·423253	45 46	·282242 ·282541	45062 45108
47	248587	395478	47	265299	423720	47	282341	45154
48	248859	395952	48	265575	424187	48	283140	45200
49	249131	396427	49	265860	424653	49	283440	45246
50	249403	396901	50	266146	425120	59	283741	45292
51	249675	397374	51	266432	425587	51	284042	45338
52	-249948	·397848	52	266719	426053	52	284343	•45384
53	250220	398321	53	267006	426520	53	284644	45430
54	250493	398795	54	267293	426987	54	284946	45476
55	250766	399269	55	267580	427452	55	*285248	*45522
56	251040	399742	56	267867	427918	56	285550	45568
57	251314	400216	57	268151	428384	57	285852	45614
58	251588	400689	58	268-42	*428850	58	286154	45660
59	251862	401161	59	268730	429316	59	286457	45705
60	252136	401684	60	269019	429782	60	286760	45751

	39 DEGRI	EES.		40 DEGR	EES.	4	1 DEGRE	ES.
lin	Nat No.	Logarithm.	Min.	Nat No.	Logari bm	Min.	Nat. No	Logari:hm
0	0.222854	9:348021	0	0.233955	9 369133	0	0.245291	9.88968
1	223037	348377	ĭ	234143	.369480	1	-245481	39001
2	223220	*348734	2	234330	369827	2	-245672	29035
3	223404	349090	3	234517	370174	3	-245864	39069
4	223587	349446	4	234704	370520	4	-246055	£9103
5	223770	*349802	5	234891	370867	5	-246246	39136
6	223954	350158	6	235079	371213	6	-246437	€9170
7	·224137	350514	7	235266	371559	7	-246629	- 29204
8	224320	350869	s	225454	*371905	8	-246820	29237
9	224504	351224	9	235641	372251	9	247010	-39271
10	·2246SS	351579	10	235829	372597	10	2472(2	:39305
11	224871	.351934	11	236016	372942	11	247894	.29338
12	225055	*352289	12	236204	373287	12	247586	19372
13	225239	352644	13	236392	*373632	13	247777	129406
14	225423	.352999	14	236580	373978	14	·247968	-29429
15	225607	*353353	15	236768	374322	15	248160	€9473
16	225791	.353707	16	236956	374667	16	248352	39506
17	225976	354062	17	237144	375011	17	248544	39540
18	226160	354415	18	237332	375355	18	248736	39573
19	226344	.854769	19	237520	375700	19	-248928	-39607
20	226528	355122	20	237768	376044	20	249120	39640
21	226723	355476	21	237897	.376388	21	249312	39674
22	226898	355830	22	238185	376731	22	249504	89707
23	227682	356183	23	238273	377075	23	249696	29741
24	227266	356535	24	238462	·37741S	24	249889	89774
25	227451	*356888	25	238650	377762	25	-250082	-39808
26	227636	357241	26	238839	378105	26	250275	-39841
27	227821	.357593	27	289028	378448	27	-250466	39874
28	*228005	.357945	28	239216	378790	28	250659	: 39908
29	228190	358297	29	289405	379133	29	250852	€9941
30	*228375	*358650	30	239594	379476	30	251045	-39975
31	228560	*359001	31	289783	379818	31	251237	·4000S
32	228746	*359353	32	239972	*380160	32	251430	40041
33	228931	359704	33	240162	*380503	33	251623	40075
34	229116	*360056	34	240351	38(845	34	251816	.401(8
85	229301	*360407	35	240540	381186	35	2520(9	•40141
36	229486	360757	36	240729	381528	36	2522(2	40174
37	229672	·361108	37	240919	381870	37	252395	40208
38	229857	*361459	38	•941108	382211	38	252588	-40241
39	230043	*361809	39	241297	*382552	39	252782	46274
40	230229	*362160	40	241486	*382892	40	252975	40307
41	230415	*362510	41	241676	*383233	41	253168	•40340
42	230600	*362860	42	241866	383574	42	253362	*40374
43	230786	363210	43	242056	383915	43	253566	40407
41	230972	*363559	44	242245	*384255	44	253749	•40440
45	231158	*363909	45	242435	*384595	45	253942	40473
46	231344	*364259	46	242625	*3\$4935	46	254136	40506
47	231530	364608	47	*242815	385275	47	254330	40539
48	231716	*364957	48	243005	*385615	48	254524	40572
49	231903	365306	49	*243195	385955	49	254718	40606
50	232089	365654	50	243885	*386294	50	254912	40639
51	232275	*366003	51	243575	*386633	51	255106	40672
52	232461	366351	52	243766	386973	52	255300	40705
53	232649	*366699	53	*243956	387312	53	255494	40738
54	232835	*367048	54	244146	*387650	54	255689	-40771
55	233021	*367396	55	244937	*387989	55	255883	•4(804
56	233209	*367744	56	244528	*388328	56	256077	40837
57	233395	369991	57	244719	388667	57	256272	•46870
58	233582	*368439	58	•241909	389004	58	256466	40903
59	233769	*368786	59	245100	*389343	59	-256660	40035
60	233955	369133	60	245291	*389681	60	256855	·40968

	39 DEGR	EES.		40 DEGR	EES.		41 DEGR	EES.
Min.	Nat. No.	Logarithm	Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm
0:	0.286760	9.457518	0	0.305407	9.484879	0	0.325013	9.51190
1	287063	·457977	1	*305726	485332	1	*325343	•512349
2	287366	·458436	2	•306045	·4S5785	2	*325684	512790
3	287670	458895	3	•306364	·486238	3	*326020	•51324
4	237974	·459353	4	•306684	486691	4	326355	•51369
5	•288279	459812	5	•307004	·487144	5	*326692	•514138
6	288583	.460270	6	307324	487597	6	327029	·5145S
7	·288883	*460729	7	-307644	488049	7	327365	515039
8	•289193	461187	8	-307965	·48S501	8	327702	51548
9	289498	461645	9	·308283	488954	9	*328040	•515920
10	289833	462102	10	308607	489406	10	328378	516374
11 12	29,109	462560	11	308928	489858	11	328716	516820
13	·290415 ·290721	463018	12	309250	490310	12	329055	517269
14	291628	463476	13	-309572 -309394	·493761 ·491214	13	•329393 •329731	517714
15	291335	·463934 ·464392	14 15	•310217	491214	14 15	330070	*518160 *518607
16	291641	464849	16	310540	492117	16	33)410	519058
17	291949	465307	17	310863	492568	-17	33)750	519499
18	292257	465764	18	311186	•493019	18	33109)	519943
19	292564	466221	19	-311510	493471	19	*331430	•520392
20	292372	*466678	20	·311834	493923	20	·331770	*520837
21	-293181	•467135	$\tilde{2}\tilde{1}$	·312158	494374	21	*332111	•521284
22	29349)	467593	22	-312482	494824	22	*332452	•521730
23	293798	•468)49	23	-312807	495276	23	332794	•522175
24	29 1107	•468505	24	313132	495726	24	*333136	•522621
25	-291417	·468962	25	313457	496178	25	333478	*523067
25	-201727	*469419	26	313782	496628	26	*333820	•523513
27	·295J36	469375	27	•314108	497079	27	*334163	•523953
28	•295846	470331	23	314434	497529	28	*334506	524403
29	295656	470787	29	31476)	497930	29	*334849	524849
3.)	295937	471244	30	315086	498430	30	*335193	525295
31 32	296278 293589	471699	31	·815413 ·815740	•493880 •499330	81	*835536	*525739
33	293939	·472155 ·472611	32 33	316068	499781	32 33	*335880 *336324	·526185 ·526629
84	297212	478067	34	316393	500231	34	336569	527074
85	297524	473522	35	316724	500681	85	336914	527519
36	297333	473977	36	-317052	501131	36	337260	527934
37	208148	474432	37	-317331	•501581	37	337605	528409
38	293461	474388	38	317713	502031	88	337950	•528853
39	-298774	475343	89	·318)39	·5024S0	39	*338296	529297
40	·200088	475793	40	·318368	502929	40	*338643	.529742
41	.209101	476253	41	·318697	503378	41	*338990	530186
42	299715	476708	42	319 27	508828	42	*339337	530631
43	300029	*477163	43	·319356	504277	43	389634	531075
41	•300343	477617	44	-319687	504726	41	340031	•531519
45	300658	478072	45	320018	505175	45	340379	531963
46	300973	478527	46	320350	505624	46	340728	532408
47 48	·301288 ·301603	478981	47	320681	596973	47	341077	•532851 •533295
48	301003	·479435 ·479389	48	-821018 -821345	506522	48	341425	533739 533739
50	302234	480341	49 50.	321343	506971 507419	49 50	*341774 *342123	534182
51	*302550	480798	51	322009	507867	51	342125	534626
52	302366	481251	52	322342	508317	52	*342828	535770
53	•303183	481705	53	322375	508765	53	343173	535513
54	*303500	482159	54	·323008	599212	54	343523	585956
55	303818	·482613	55	323341	509661	55	343874	536400
56	.304135	483066	56	·323675	510109	56	*844226	536843
57	894452	483519	57	324709	•510558	57	·844578	-587287
58	304770	·483973	58	*324343	511005	58	*344929	537729
59	*305089	484426	59	•324678	.511453	59	*345281	588172
60 1	305407	484879	60	*325013	511901	60	*345633	538615

	42 DEGR	EES.		43 DEGR	EES.		44 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min	Nat; Ne.	Logarithm.	Min.	Nat. No.	Logarithm
0	0.256855	9.409081	0	C·238646	9.429181	0	0-280660	9.448181
1	257050	410017	1	263845	429502	1	·280S62	*44849
3	257245	•410346	2	209043	·429S22	2	281064	*44880
3	257439	410674	3	269242	430142	3	•281266	•449118
4 5	257634	411003	4	269440	430463	4	·281469·	•44943
5	257829	411332	5	269639	430783	5	281671	44974
6	258024	•411660	6	269838	431103	6	281874	45005
7	258219	·411988	ī	270037	*431423	7	282076	45036
8	258414	412317	8	270236	431743	8	-282279	45067
9	258609	412644	9	270434	432061	9	282482	45099
10	258805	412972	10	270683	432381	10	282684	45130
11	259000	413299	11	270833	432701	11	282887	45161
12	259196	413628	12 13	271032	433020	12	283090	45192
13 14	·259391 ·259586	·413955 ·414282	14	·271231 ·271430	·432339 ·433657	13	·283293 ·283495	452233 452543
15	259782	414609	15	271629	433976	14	283698	45285
16	259977	414935	16	271828	434295	15 16	283901	45316
17	260178	415262	17	272028	434613	17	284104	45347
18	260369	·415SS9	18	272227	434931	18	284307	453788
19	260565	415916	19	272427	435250	19	284510	454098
20	260760	416242	2)	272626	435568	20	284713	454408
21	260956	416568	21	272826	435886	21	284917	454719
22	261152	416894	22	273026	436204	22	285120	455628
23	·261348	417220	28	279225	436521	23	285324	455338
24	261544	417546	24	273425	•436839	24	285527	*455647
25	261740	417871	25	278625	437156	25	285731	455957
26	261937	418197	26	273825	437473	26	285934	456266
27	262133	418522	27	274025	437790	27	286138	456576
28	262330	418847	28	274225	438107	28	286342	456885
29	262526	419172	29	274425	438424	29	286546	457194
30	262722	419497	30	274625	438741	30	286750	457508
31	262919	419322	31	274825	439057	31	286953	457811
32	263116	420147	32	275026	439374	32	287157	458120
33	263313	420472	83	275226	439690	33	287361	458428
34	263510	420796	34	275427	440006	34	287565	·458736
35	263706	421120	35	275628	440323	35	287770	45904
36	•263903	421444	36	275828	*440639	36	287974	459358
37	264100	421768	37	276029	440954	37	·288178	459661
38	264297	422092	38	276230	441270	38	288383	459969
39 40	264494	422416	39 40	276430	441585	39 40	288587	466277
41	264691	·422739 ·423062	41	276631	441901	41	·288792 ·288996	·460585 ·460892
$\frac{41}{42}$	·264888 ·265086	423386	42	·276832 ·277033	·442216 ·442531	42	289200	·461199
43	265283	423709	43	277234	442351	43	289405	461506
44	265483	124032	44	277435	443161	44	289610	461818
45	265677	124354	45	277636	443475	45	289814	462120
46	265875	424677	46	277837	443790	46	290019	462427
47	266072	424999	47	278039	444105	47	290224	462734
48	266270	•425322	48	278240	444419	48	290429	463041
49	266468	425644	49	278441	444784	49	290634	463347
50	266666	·425967	50	278642	··445047	50	-290839	46365
51	·266863	·426289	51	278844	445361	51	291044	463959
52	267061	·426611	52	279045	·445675	52	291249	464265
53	267259	426932	53	379247	445989	53	291454	464571
54	267457	427254	54	279448	446302	54	291660	464877
55	267655	·427576	55	279650	446615	55	291865	465182
56	267853	427897	56	279852	446929	56	292070	465488
57	•268052	·428219 ·428539	57	280054	447242	57	292276	*465794
58	268250	428539	58	280256	447555	58	292482	466099
59	268448	428860	59	280458	447868	59	292688	466404
60	268646	429181	60	280660	•448181	60	292893	·466709

	42 DEGR	EES.		43 DEGR	EES.		44 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm
0	0.345633	9:538615	0	0.367328	9.565054	0	0.390164	9.591247
1	*345985	-539057	1	367699	.565492	1	-390554	.591681
2	*346338	*539500	2	-368070	.565930	2	390945	.592116
3	*346691	539942	3	368441	566368	3	-391336	.592550
4	*347044	•540385	4	368813	*566897	4	-391728	.592985
5	347399	540828	5	369186	567245	5	-392121	.593420
6	*347753	541270	6	*369559	.567684	6	-392513	*593854
7	*348107	.541712	7	369932	568122	7	-892905	.594288
8	*348462	542156	8	370305	.568560	8	-393298	594722
9	348817	542597	9	370678	568997	9	-393692	.595157
10	349172	543039	10	371052	569435	10	•394085	.595590
11	349528	.543482	11	371427	569674	11	394479	.596024
12	*349884	.543924	12	371801	570311	12	-394874	*596459
13	*350240	. 544366	13	372176	570749	13	395269	.596893
14	350597	.544808	14	.372551	571186	14	395664	.597326
15	350954	545249	15	372926	571623	15	.396059	597760
16	351310	545690	16	.373302	572061	16	-396555	598194
17	351667	.546132	17	373679	572498	-17	-396851	598627
18	352025	546574	18	374055	572935	18	-397247	599061
19	352384	547016	19	.374432	573373	19	397644	.599495
20	352742	.547457	20	374809	.573810	20	-898041	*599928
21	353100	547898	21	375187	574248	21	-398439	600362
22	*853459	. 548339	22	375565	574685	22	398837	600795
23	353818	.548780	23	.375943	575122	23	-399235	*601229
24	354178	.549222	24	.376321	575559	24	-399633	601661
25	354538	•549663	25	376700	575995	25	400032	662095
26	354898	550104	26	377079	576432	26	•400431	602528
27	355258	550544	27	377478	576868	27	•400831	662962
28	355619	•550985	28	377838	577306	28	401231	603395
29	355980	551425	29	378218	577742	29	•401631	603828
30	356341	551866	30	378599	578179	30	402032	*604261
31	356703	552307	31	378979	.578615	31	.402433	604693
32	357065	552748	32	379360	.579052	32	•402834	605126
33	357427	.553189	33	379741	.579488	33	403235	. 605559
34	357799	553629	34	·380123	.579924	34	403637	605991
35	358153	554069	35	380505	580361	35	.404040	606425
36	358516	554509	36	*380888	.580797	36	•404443	606857
37	*358880	554949	37	381270	581233	37	·404846	607290
38	359244	.555389	38	381653	581669	38	•405249	607722
39	*359608	.555829	39	382037	582105	39	.405653	608155
40	359972	.556269	40	382420	582541	40	·406058	608588
41	360337	556709	41	382804	582977	41	406462	.609620
42	360702	.557149	42	383188	583412	42	·406867	609452
43	361068	.557589	43	383573	583848	43	407272	.609884
44	*361433	*558028	44	.383958	584284	44	407678	·610316
45	*361799	558467	45	.384343	584719	45	·408084	·610748
46	*362166	.558907	46	·384729	·585155	46	·408490	·611181
47	*362522	559346	47	385115	585591	47	·408996	611613
48	*362899	559786	48	.385501	586026	48	·409403	612045
49	.363266	.560225	49	-385888	.586462	49	·409710	612477
50	363634	•560665	50	386275	.586896	50	410117	612908
51	.364002	.561104	51	386662	·587332	51	·410525	.613340
52	364370	·561543	52	*387050	.587767	52	·410934	-613772
53	364739	.561982	53	·387438	588203	53	411342	·614203
54	·365108	\ .562421	54	887826	.588637	54	411751	·614635
55	'365477	.562860	55	·388215	.589702	55	·412160	615066
56	*365847	•563299	56	·388604	.589507	56	412570	615498
57	366217	•563738	57	388993	.589942	57	·412981	615930
58	366587	564176	58	889383	.590377	58	·413391	616361
59	866957	.564615	59	·889773	·590812	59	413802	616793
60	367828	565054	60	·390164	.591247	60	.414218	617224

	45 DEGR	EES.		43 DEGR	EES.	4	7 DEGRI	EES.
Min.	Nat. No.	Loga ithm	Min,	Nat No.	Logarit. m.	Min.	Nat No	Logarithn
0	0.292393	9.466709	0	0.305342	9.484786	0.	0.318001	9.50242
1	293099	467014	1	*305551	485083	0	*318214	50272
2	•293305	467319	2	*305760	485381	2	318427	50301
3	293511	467624	3	305970	·485678	3	318640	.50330
4	293717	467928	4	306180	485976	4	318853	50359
5	293923	468233	5	306339	486273	5	319066	50388
6	294129	463537	6	*306598	*486570	6	*319279	50417
7	294335	*468842	7	*306808	486866	7	*319492	•50446
8	294541	•469146	8	*307017	487163	- 8	*319705	50475
9	-291747	469449	10	307227	:487460	9	·319918 ·320132	50508
11	294953	·469753 ·470056		*307437	487757	10 11		50532
12	•295159 •295365	·470360	1 ₁ 12	*307647 *307857	·488053 ·488349	12	*320345 *320558	50561 50590
13	295572	470663	13	308067	488645	13	320772	50619
14	295778	470936	14	308277	488941	14	320986	-50648
15	295985	471270	15	308487	489237	15	321200	50677
16	293192	471573	16	308697	489532	16	•321414	50706
17	293393	471876	17	308907	489828	17	321627	50735
18	-296605	472179	18	309118	.490124	18	-821841	59764
19	295812	472481	19	*309328	*490419	19	.322054	50792
2)	•297019	472784	20	*309538	.490714	20	-322268	50821
21	297226	·473087	21	309748	·491009	21	322482	50850
22	297433	•473389	22	309959	491305	22	*322696	50879
23	297640	473691	23	*310170	·491600	23	322910	50908
24	297847	•473993	24	310381	491895	24	323124	50936
25	298054	·474295	25	*310591	•492189	25	323338	50965
26	•293261	474597	26	*310801	•492483	26	•323552	50994
27	298468	474398	27	311012	492778	27	323766	51023
28	293676	475200	28	311223	*493072	28 29	*323931	51051
$\frac{29}{30}$	·298833 ·299091	·475502 ·475803	29 30	311434 311645	·493366 ·493660	30	*324196 *324410	51080 51109
31	299298	476104	31	311856	493955	31	324624	•51138
32	299506	476405	32	312068	494249	32	*324839	•51166
33	299713	476706	33	312279	494543	33	325053	51195
34	299921	477007	34	312490	494836	34	•325268	•51224
35	-300129	477308	35	312702	•495130	35	*325483	•51252
36	*390337	477609	36	**312913	495423	36	*325693	-51281
37	300545	477939	37	*313124	495716	37	-325912	51310
38	-300752	478209	33	*313335	496009	38	326127	•51335
39	-300960	478509	39	313547	496302	39	*326342	5136
40	301168	478809	49	313759	496596	40	326557	51395
41	301376	479109	41	313970	496888	41	*326772	51424
42	301584	479409	42	*314182	497181	42	326937	51458
43	301793	479709	43	314393	497474	43	327203	51481
44 45	*302001 *302210	•480008 •480308	44 45	314605	497766	44 45	*327418 *327633	•51510 •51538
46	302210	480308	46	314817	*493058 *498350	46	327848	51567
47	302418	430907	47	*315029 *315241	498350	47	321343	51595
48	302835	481206	48	315453	493042	43	328280	51624
49	*303043	481505	49	315665	409226	49	328495	51652
50	303252	481804	50	315877	499518	50	328711	51681
51	303461	482102	51	316089	499809	51	328926	51709
52	303670	482401	52	*316301	500101	52	*329142	51739
53	303878	482699	53	316513	•500392	53	329358	51766
54	*334087	•482998	54	316726	500684	54	*329573	51793
55	334296	·483296	55	316939	-500976	55	-329789	5182
56	304505	483595	56	317152	501267	56	330005	51852
57	304714	483893	57	317364	501557	57	330221	51830
58	*334923	*484191	58	317576	501848	58	330437	51908
59 60	305132	484488	59	317789	502139	59 60	*330653	51937 51963
00	*305342	484786	60	318001	502429	1 00	330869	01900

	45 DEGRI	EES.		46 DEGR	EES.		47 DEGR	EES.
Min.	Nat. No.	Logarithm.	Min.	Nat No	Logarithm	Min.	Nat. No.	Logarithm
0	0.414213	9.617224	0	0.439557	9.643015	0	0.466279	9.668646
1	•414625	·617655	1	439991	.643441	1	•466737	*669079
2	•415037	·618087	2	440425	643872	2	•467195	•669493
3	•415450	618518	3	•440859	•644300	3	467653	66992
4	415863	618950	4	441294	644728	4	468112	·67035
5	•416276	·6193S1	5	441729	645156	5	·46S571	.67077
6	·4166S9	•619811	6	•442164	645584	6	•469030	67120
7	417102	620242	7	442600	·646012 ·646440	7	·469490	67162
8	417516	620673	8	·443037 ·443475	•646869	8	·469951 ·470412	·67205
9	·417920 ·418345	·621094 ·621585	9 10	•445912	647297	9 10	•470873	67293
11	418760	621965	11	•444350	647725	11	471335	67333
12	419176	622396	12	•444788	•648153	12	471797	67375
13	419592	-622827	13	445226	.648581	13	•472260	67418
14	·420008	•623257	14	445665	•649309	14	472723	·67460
15	•420425	.623688	15	•446105	.649437	15	•473187	.67503
16	420842	-624119	16	•446544	649364	16	•473650	.67545
17	421259	624543	17	446984	.650292	17	•474114	67588
18	•421677	.624980	18	-447425	650720	18	•474579	·67630
19	•422095	.62541€	19	447865	-6:.1147	19	•475044	67673
20	422513	625840	20	•448306	.651574	20	475509	·67715
21	•422932	.626271	21	448748	•652002	21	•475975	.67758
22	•423351	.626701	22	•449190	•552430	22	476442	.67801
23	•423771	627131	23	•449632	652857	23	•476908	•67843
24	•424191	627561	24	450075	.653285	24	•477375	.67886
25	424611	627991	25	•450518	.653712	25	•477843	67928
26	•425031	628421	26	·450961	.654139	26	•478311	•67971
27	•425452	628851	27	•451405	*654567	27	•478779	68013
28	425874	*629281	28	•451850	654994	28	•479248	68056
29 30	426296	629711	29	·452294 ·452789	·655421 ·655848	29	479718	·68098
31	·426718 ·427141	·630141 ·630571	30	453185	656276	30 31	•480188 •480658	68183
32	427563	631000	32	453631	656703	32	481129	•68226
33	427936	•631430	33	454)77	657130	33	481600	·6S26S
34	428410	-631860	34	454524	657357	34	482,71	68311
35	•423835	-632293	35	•454971	·6579 L	35	432543	.68353
36	429260	(63272)	36	455419	.658411	86	483015	·68393
87	429684	633149	37	•455867	·65S838	37	·4S3487	·68438
38	43.1.9	.633578	38	•456015	.659265	33	•483960	.6848
39	•430534	.634008	39	•456764	659692	39	•481433	68523
40	43 970	.631437	40	·457213	660119	40	•434907	68565
41	431386	634866	41	•457662	660545	41	•485381	·686. 8
42	431812	.635295	42	•458112	*660972	42	•485856	.68650
43	•432239	*635724	43	•458562	.661398	43	•486332	·68693
44	*432367	636154	44	•459013	661825	41	4858 8	68735
45	433.95	636583	45	•459464	662251	45	487281	.68778
46	433523	*637.12	46	•459915	662678	46	487760	68820
47	433951	637441	47	460367	663104	47	488287	·68863
48	434383	*637870	4.9	460820	'663531	48	488714	68935
49 50	·434810 ·435239	638299	49 50	·461273 ·461726	663958	49	·4S9192	68947
51	435669	·638728 ·639157	51	462179	·664384 ·664810	50	·489670 ·490149	69032
52	436100	639586	52	462632	665236	52	493628	69375
53	436539	640014	53	463087	665663	53	491108	69117
54	436961	640443	54	•463542	666089	54	491588	69160
55	437093	64.872	55	468993	*666516	55	492069	69202
56	437825	641301	56	•464453	666942	56	492550	69245
57	438258	641730	57	464906	667368	57	493031	69287
58	438690	642158	58	•465365	667794	58	493512	69329
59	•430123	642586	59	•465822	-608320	59	405904	69372
60	439557	643015	69	•466279	.663646	6)	491177	69414

	48 DEGRI	EES.		49 DEGR	EES.	5	0 DEGRE	ES.
Min.	Nat No.	Logarithm.	Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm
0	0.330869	9.519656	0	0.343941	9.536484	. 0	0.357213	9.55292
1	*331085	.519940	1	•344160	536761	1	•357435	55319
2	*331302	520224	2	•344380	537038	2	-357658	•55346
3	331518	•520507	3	344600	537315	3	-357881	.55373
4	*331735	520791	4	344820	537592	4	-358104	.5540(
5	•331951	.521074	5	345039	•537868	5	-358327	55428
6	332167	•521357	6	345259	538145	6	-358550	55455
7	*332384	•521640	7	345479	538422	7	·858774.	55482
8	*302600 *332817	·521923 ·522206	8	345699 345919	·588698 ·588 9 75	8 9	-358997 -259220	55569
10	333034	522200	9	346139	559251	10	-859443	55536
11	333251	522771	11	346359	539527	11	-359666	-55590
12	333468	523054	12	346580	589803	12	-359890	55617
13	*333684	523336	13	•346800	540679	13	-866114	55644
14	333901	.523618	14	-347020	540354	14	-360337	-55670
15	334118	•523900	15	347240	540630	15	-36(561	-55097
16	334335	- 524182	16	347461	-540906	16	-360784	55724
17	*334552	•524464	17	-347681	541181	17	-361008	.55751
18	.334770	.524746	18	347901	541456	18	-361232	-55778
19	*334987	525028	19	•348122	•541731	19	361456	55805
20	335204	525369	20	*348342	•542006	20	-361680	55832
21	335421	525591	21	348563	542281	21	•361904	55859
22	335638	525872	22	348784	542556	22	-362128	55886
23	-835856	526153	23	349005	542831	23	-362352 -362576	55913
$\frac{24}{25}$	*336078 *336291	·526434 ·526715	24	·349226 ·349447	543106 543381	24	-362860	*5939
26	336509	526997	25 26	349668	543656	25	363024	55966 55998
27	336727	527278	27	349889	•543980	27	-863249	56020
28	336944	527558	28	350110	544204	28	-363473	56047
29	337162	527838	29	350331	•544479	29	-363697	56074
30	-337389	528119	30	350552	544753	30	-363922	-56100
31	337598	528400	31	350773	545626	31	-364146	56127
32	337816	•528680	32	*350994	•545300	32	-364371	.56154
33	*338034	528960	33	351215	.545574	33	864595	.56181
34	338252	529240	34	351437	545848	34	364820	56207
35	338470	529520	35	•351659	546122	35	365045	56234
36	-338688	529800	36	351880	•546895	36	-365269	56261
37	338906	•530080	37	*352162	•546668	37	365495	56288
38	339124	*530359	38	352323	546941	38	-365719	56314
39 40	*339342 *339560	530638	39	352544 352766	547214	39	-365944 -366169	·56341 ·56368
41	339779	·530918 ·531197	40	352100	·547487 ·547760	40	366894	56394
42	339998	531476	41 42	353210	548033	42	366619	56421
43	340216	531755	43	353432	548306	43	366844	56448
44	340435	532034	44	353654	548579	44	-3670€9	56474
45	*340654	•532313	45	353876	•548851	45	-367294	56561
46	•340873	532592	46	354098	•549124	46	-367520	56528
47	341092	532871	47	.354320	549396	47	-367745	56554
48	•341311	•533150	48	354542	•549668	48	-367970	56581
49	341529	533428	49	.354764	.549940	49	-368196	56607
50	-341748	•533706	50	*354987	.550212	50	-368421	56634
51	341967	533985	51	355209	•550484	51	368647	56661
52	·342187 ·342406	534263	52	355431	550756	52	368873	56687
53 54	342406	*534541 *534819	53 54	*355653 *355876	551027	53 54	-369098 -369324	56714
55	342844	535097	55	356(98	·551299 ·551570	55	369550	56767
56	343063	535074	56	356321	551842	56	369776	56793
57	*343283	535652	57	356544	.552114	57	370002	56820
58	*343502	535929	58	356767	.552385	58	370228	*56846
59	*843721	.536206	59	356990	.552656	59	370454	-56873
60	·343941	536484	60	357213	.552927	60	-370680	-568999

	48 DEGR	EES.		49 DEGR	EES.		50 DEGR	EES.
Min.	Nat. No.	Logari:hm	Min	Nat No	Logarichm	Min.	Nat No	Logarithm
0	0.494477	9.694146	0	0.524253	9:719541	0	0.555724	9.74485
+1	•494960	694570	1	524763	-719963	1	•556263	•74528
2	495443	.694994	2	•525274	•720386	2	•556804	.745709
3	495927	695418	3	-525785	•720808	3	•557344	.74612
4 5	-495412	.695842	4	•526297	:721231	4	•557885	•74654
5	·493S93	.693266	5	•526809	721653	5	•558427	.74696
6	•497381	696689	6	.527322	•722376		.558969	·74733
7	·497867	697113	7	•527835	.722498	7 8	•559511	7478
8	•493353	-697537	8	•528348	722920	8	•560054	•74823
9	493340	697961	9	528863	723343	9	•560598	74865
10 11	•499327	698335	10	529378	723766	10	561142	74907
12	•499314	·693808	11 12	•529893	·724188 ·724610	11 12	561687	74949
13	•500302 •500790	·699232 ·699656	13	•530408 •530 924	725032	13	562232	·749916 ·75033
14	501279	700079	14	531440	725454	14	563324	750758
15	-501768	700503	15	531957	725877	15	563871	75118
16	502258	700927	16	532475	726299	16	564418	75160
17	5.12749	701351	17	532992	726721	17	564966	752029
18	533239	701774	18	533510	727143	18	565514	75244
19	•503730	702193	19	534029	727565	19	566063	75286
20 1	5)4221	702621	20	534548	727987	20	566612	·7532S
21	5)4713	703045	21	535068	728409	21	.567102	753707
22	•505205	.703463	22	535539	728832	22	567712	*754129
23	505693	.703891	23	•536110	.729254	23	568263	.754549
24	•506191	.704315	24	•536631	.729676	24	*568815	.754971
25	•536385	·704738	25	:537153	·730093	25	•569367	•755393
26	-5.)7180	.705162	26	•537675	730520	26	*569919	•755818
27	507674	705585	27	538193	730942	27	570472	·756214
23	508169	706008	23	538721	731364	23	571025	756655
29	•508564	706431	29	539245	731786	29	571579	.757076
30	509160	706854	30	539769	732208	30	572134	757498
81	509657	.707278	31	*540294	732630	31	572689	.757919
32 33	•510154	707701	32	•540819	733052	32	573244	758340
34	•51.0651	708124	33	541345	*733474	33	573800	758761
35	511148 511646	·708547 ·708970	34 35	·541871 ·542398	·733896 ·734318	34 35	•574357 •574914	·759182
36	512145	709394	36	542925	734740	36	575472	·760024
37	512645	709317	37	543452	735161	37	576030	760445
33	513145	710240	38	543930	735583	38	576589	760866
89	513345	·710663	39	•544508	736004	39	577148	761287
40	514146	711987	40	545037	736426	40	577708	761709
41	514647	711509	41	545567	·736848	41	578268	762129
42	•515148	.711932	42	•546097	737270	42	578829	•762550
43	•515659	.712355	43	•546623	737692	43	.579390	·762971
44	.516152	.712778	44	•547159	.738114	44	579952	763392
45	.516655	.713200	45	•547690	.738535	45	*580514	•763813
46	.517158	.713623	46	548222	·738957	46	.581077	·764234
47	•517632	·714046	47	•548755	.739379	47	581641	.764655
48	518166	.714469	48	•549288	739300	48	*582205	·765076
49	518670	714892	49	•549821	740221	49	582770	•765497
50	519175	715314	50	•550355	740643	50	583335	765918
51	519581	715737	51	550890	741065	51	583900	766839
52 53	520188	716160	52	551426	741487	52	584466	766760
54	520695	·716583	53	551961	741908	53	585033	767181
55	·521232 ·521709	717006	54 55	552497	742330	54	585600	767602
56	522216	717428	56	558033	742751	55 56	*586168	·768022 ·768443
57	522725	·717850 ·718273	57	553571	·748173 ·748595	57	·586787 ·587306	768864
58	523234	718696	58	*554109 *554647	·744017	58	587875	769285
59	523743	719118	59	555185	•744438	59	588445	769706
		ILLIULI	00	000100	1 7 7 7 7 7 7	UU	POOLIO	-770127

	51 DEGR	EES.		52 DEGR	EES.	H	53 DEGR	EES.	
Min	Nat. No.	Logarithm	Min	Nat No	Logarithm.	Min.	Nat No.	Logarithn	
0	0.370680	9.568999	0	0.384339	9.584714	0	0.398185	-60008	
1	.370906	569264	1	384568	.584973	1	*398417	·60033	
2	.371132	569528	2	384797	.585232	2	*398650	60059	
3	371358	569793	3	385027	.585491	3	*398882	60084	
4 5 6 7	371584	.570057	5	385256	585749	4	\$99115	60109	
5	371810	.570322	5	385485	586008	5	-399347	60135	
6	*372037	570586	6	385715	586266	6	-399580	60160	
8	372263	·570850 ·571114	6 7 8 9	385944	586525	8	399812	60185	
9	·372490 ·372716	571378	0	386174	·586783 ·587041	9	·400045 ·400278	60210	
10	372943	571642	10	386633	587299	10	400510	60261	
11	373170	571906	11	386868	587557	11	400743	60286	
12	373396	572170	12	387093	587815	12	400976	603119	
13	373623	572434	13	387323	558073	13	401209	603371	
14	373850	.572697	14	387553	588331	14	401442	603628	
15	*374076	.572960	15	387783	588588	15	401675	603875	
16	·374303	.573224	16	388013	588846	16	401908	604127	
17	*374530	•573487	.17	*388243	*589103	17	402142	604379	
18	*374757	.573750	18	388473	:589361	18	402375	*604631	
19	374984	574013	19	388703	589618	19	402608	·604S82	
20	375211	574276	20	388933	589875	20	402841	605134	
21	375439	574539	21	389164	590132	21	403074	605355	
22 23	375666	574802	22 23	389394	590389	22 23	403308	605637	
24	375893	575064	24	389624	590646	24	403541	605886	
25	·876120 ·376348	·575327 ·575589	25	389855 390085	590903	25	403775 4040(9	·606139	
26	376575	575852	26	390316	591160 591416	26	404242	606642	
27	376803	576114	27	390547	591673	27	404476	606893	
28	377030	576376	28	390777	591929	28	404710	607144	
29	377258	576638	29	391008	592186	29	404943	607394	
30	377485	.576900	30	391239	.592442	30	405177	607645	
31	*377713	577162	31	391469	592698	31	405410	607896	
32	377941	577424	32	391700	.592954	32	405645	*608146	
33	·37S168	577685	33	391931	•593210	33	405879	608397	
34	378396	577947	34	392162	593466	34	406113	608647	
35	378624	578208	35	392393	593721	35	406347	·6088 9 7	
36	-37SS52	578470	36	392624	593977	36	406581	609147	
37 38	379080	578731	37 38	392855	594233	37	406815	609397	
39	379308	578992	39	393086 393317	594488	39	·407049 ·407284	609647	
40	·379536 ·379764	:579253 :579514	40	393549	·594743 ·594999	40	407518	·609897 ·610147	
41	379992	579775	41	393780	595254	41	407753	610397	
42	380221	580036	42	394012	595509	42	407987	610646	
43	380449	:580297	43	394243	595764	43	408221	610896	
44	380677	580557	44	394474	-596019	44	408456	611145	
45	380906	580818	45	394706	596274	45	408690	611394	
46	381134	581078	46	394938	596528	46	408925	611644	
47	*331363	581339	47	395169	596783	47	409160	611893	
48	381592	*581599	48	:395401	.597038	48	409394	612142	
49	381820	*581859	49	395632	597292	49	409629	612391	
50	382049	582119	50	395864	•597546	50	409864	612640	
51	382278	582379	51	396096	597801	51	410099	612588	
52	382506	582639	52	396328	598055	52	410334	613137	
53	382735	582899	53 54	396560	*598309	53 54	410569	613386	
54 55	382964	·583158 ·583418	55	396792 397024	·598563 ·598817	55	·410804 ·411039	613883	
56	383422	583677	56	397256	599071	56	411274	614131	
57	383657	583937	57	397488	599324	57	411509	614379	
58	383880	584196	58	397720	·599578	58	411744	614627	
59	·3S4110	.584455	59	397953	-599832	59	411979	614875	
60	384339	584714	60	398155	-600085	60	412215	615124	

	51 DEGR	EES.	!	52 DEGR	EES.	1	53 DEGR	EES.
Min.	Nat. No.	Logarithm	Min	Nat No	Logarithm	Mm	Nat Na	Logarithm
0	0.589016	9.770127	0	0.624269	9.795372	0	0.661640	9.820622
1	.589587	.770548	1	624875	795793	1	-662282	*821045
2	-590159	770969	2	625480	.796214	2	-662924	·S21464
3	•590731	.771389	3	626086	.796634	3	-663567	821885
4	-591303	771810	. 4	:626693	797055	4	-664211	*822306
5	•591876	.772231	- 5	.627300	.797476	5	-664855	822727
6 -	592450	.772652	6	627908	797896	6	-665500	·S23149
7	.593025	.773073	7	628517	•798317	67	666145	·8235C
8	•593600	.773494	8	629126	·798738	8	-666791	*823990
9	594175	.773914	9	629736	799158	9	667439	824411
10	.594751	774335	10	·630346	.799579	10	-668086	*824833
11	*595327	774756	11	630957	800000	11	-668734	*825254
12	.595904	775177	12	631569	*800421	12	-669383	825675
13	•596482	·775598	13	•632181	800841	13	670032	826(96
14	597060	776018	14	632794	801262	14	670682	826517
15	.597639	776439	15	633407	801083	15	671333	820938
16	598219	776860	16	634021	802104	16	671985	*827360
17	598799	777281	17	634635	802524	17	672637	827781
18	•599380	777702	18	635251	802945	18	673290	828202
19	599960	778122	19	635867	803366	19	678943	£28£23
20	600542	778543	20	636483	803787	20	674597	829044
21	601124	778964	21	637100	804207	21	675252	829466
22	601706	779385	22	637717	804628	22	-675907	829887
23	602289	779805	23	.638335	805049	23	.676563	.83(308
24	602873	780226	24	638954	:805470	24	-677220	830729
25	603458	780647	25	639574	805891	25	677877	831751
26	604043	781068	26	640194	806311	26	678534	831572
27	.604628	781488	27	640814	806732	27	679193	831993
28	605214	781909	28	641435	807153	28	679852	832415
29	605800	782330	29	642057	807574	29	680512	832836
30	606387	782750	30	642680	807995	30	681173	833257
31 32	606975	783171	31 32	643303	*808415	31	·(81834	833679
33	607564	783592	33	643926	808836	82	682496	834100
	608153	784013	34	·644550 ·645175	·809257 ·809678	33	688159	*834522 *834943
35		784433	35			34	683822	
36	609332	784854	36	·645801 ·646427	·810(99 ·810520	35	684486	835364
37	609923	785275	37		810940	36	·685150	·835786 ·836267
38	·610514 ·611106	785696	38	647654	811361	37 38	·685815 ·686481	836629
39	611698	·786116 ·786537	39	648309	811782	39	687148	837(50
10	612291	786958	40	648938	812203	40	687815	837472
11	612884	787378	41	649567	812624	41	688483	837893
12	613478	787799	42	650197	813045	42	689152	838315
13	614073	788220	43	650827	813466	43	-689821	·\$38786
14	614668	·788640	44	651458	813887	44	690491	889158
15	615264	789061	45	652090	814307	45	-691161	839579
16	615860	789482	46	652722	814728	46	-691832	840001
17	615457	789903	47	653355	815149	47	-692504	840423
18	617054	790323	48	. 653989	815570	48	-693177	840844
19	617652	790744	49	654623	815991	49	698850	841266
50	618251	791165	50	655258	816412	50	694524	·S41688
51	618850	791586	51	.655893	816833	51	-695199	8421(9
52	619450	792006	52	656529	817254	52	695874	842531
3	620050	792427	53	657166	817675	53	696550	842953
54	620651	792848	54	657803	818096	54	-097227	843374
55	621253	793268	55	658441	·S18517	55	697904	·S43796
56	621855	793689	56	659080	818938	56	698582	844218
7	622458	794110	57	. 659719	819359	57	699261	844689
8	623061	794531	58	660359	819780	58	699941	845061
59	623665	•794951	59	660999	820201	59	700621	845488
	02000	·795372	60	661640	820622	60	701302	845905

	54 DEGR	EES.		55 DEGR	EES.		56 DEGR	EES.
Min	Nat No	Logarithm.	Min	Nat. No.	Logarithm.	Min.	Nat No	Logarithm
0	0.412215	9.615124	0	0.426423	9.629841	0	0.440807	9.644249
1	412450	. 615371		·426662	630084	1	441048	644480
2	412685	615619	1 2 3	•426900	630826	2	441289	644724
3	412921	615867	3	•427139	*630569	3	•441531	644961
4	413156	616114	4	•427377	·630 8 11	4	441772	645198
5	413392	616362	5	•427616	631054	5	442013	645435
6	•413628	616610	6	•427854	631296	6	442255	645679
7	413863	616857	7	•428093	631538	7	•442496	645910
8	·414099	617104	8	•428331	631780	8	·442738	646147
9	414335	617351	9	•428570	632022	9	•442980	646384
10	414571	617599	10	428809	632264	10	*443221	646620
11	414807	*617846	11	•429047	632505	11	•443463	646857
12	415042	618092	12	429286	632747	12	•443704	647094
13	415278	618339	13	•429525	632989	13	443946	647330
14	415514	618586	14	429764	633230	14	•444188	647567
15	415750	618833	15	430003 430042	633472	15	•444430	647803
$\frac{16}{17}$	·415986 ·416223	·619079 ·619326	16 17	43042	·633713 ·633954	16 17	·444672 ·444914	648040 648276
18	416459	619572	18	430720	634195		•445156	648512
19	416439	619818	19	430960	634437	18 19	·445156 ·445398	648748
20	416931	620065	2)	431199	634678	20	445640	648984
21	417168	620311	21	431438	634919	21	445852	649220
22	417404	620557	22	431677	635159	22	446224	649456
23	417641	620803	23	431917	635400	23	446366	649691
24	417877	621049	24	432156	635641	24	446668	649927
25	418114	621294	25	432396	635881	25	446851	-650162
26	418350	621540	26	432635	636122	26	447093	650398
27	418587	621786	27	432875	636362	27	447335	-650633
28	418823	622031	28	433114	636603	28	447578	650869
29	419060	622276	29	•433354	636843	29	447820	651104
30	419297	622522	30	•433594	637083	30	448063	651339
31	419534	622767	31	•433833	637323	31	448306	651574
32	419771	623012	32	·434073	637563	- 32	•448548	-651869
33	420008	623257	33	·434313	637803	33	•448791	652044
34	420245	623502	34	•434553	.638043	34	•449034	652279
35	*420482	623747	35	434793	·638283	35	449276	.652514
36	420719	623992	36	·435033	.638522	36	-449519	652748
37	420956	624237	37	·435273	638762	37	449762	*652983
38	421193	624481	38	•435513	639001	. 38	450005	653217
39	421430	624726	39	·435753	639241	39	450248	653452
40	421668	624970	40	435993	·639480	40	·450491	653686
41	421905	625215	41	436234	639719	41	450734	653920
42	•422143	625459	42	436474	•639958	42	450977	654155
43	422380	625703	43	436714	640197	43	451220	654389
44	422617	625947	44	436955	640436	44	451463	654623
45	422855	626191	45	437195	640675	45	451707	654857
46 47	423092	·626435 ·626679	46	437435	640914	46	451950	655090
48	·423330 ·423568	626923	47	437676	641153	47	452193	·655324 ·655558
49	423308	627166	48	437916	·641391 ·641630	49	·452437 ·452680	655791
50	424043	627410	50	·438157 ·438398	641868	50	452924	656025
51	424045	627654	51	438398	642107	51	452924	656258
52	424519	627897	52	438879	642345	52	453411	656492
53	424757	628140	53	439120	642583	53	453654	656725
54	424995	628384	54	439361	642821	54	453898	656958
55	424993	628627	55	439602	643060	55	454142	657191
56	425471	628870	56	439843	643298	56	454385	657424
57	425709	629113	57	440084	•643535	57	454629	657657
58	425947	629856	58	440325	643773	58	454873	657890
59	426185	•629598	59	440566	644011	59	455117	658123
60	426423	629841	60	·440807	644249	60	455361	658356

	54 DEGR	EES.		55 DEGR	EES.		56 DEGR	EES.
Min.	Nat No.	Logarithm.	Min.	Nat. No.	Logarithm.	Min.	Nat. No.	Logarithm
0	0.701302	9.845905	0	0.743447	9.871250	0	0.788291	9 896687
1	.701983	*846327	1	•744172	871673	1	789063	·S97112
2	.702665	*846749	2	-744897	.872096	2 3	•789836	897537
3	703348	*847170	3	•745623	.872519	3	·790609	*897962
4	•704032	847592	4	-746350	872942	4	•791383	89838
5	.704716	*848014	5	•747078	873366	5	792158	-898812
6	705401	*848436	6	•747806	873789	6	•792934	89923
7 8	706087	*848858 *849280	8	·748535 ·749265	*874212 *874635	7	·793710 ·794488	*89966 *90008
9	·706773 ·707460	849702	9	•749996	875059	8 9	.795266	900512
10	.708148	850124	10	-750727	875482	10	796045	900938
11	·708836	850546	îĭ	751459	875905	11	·796825	90136
12	•709525	.850968	12	-752192	876329	12	797606	•901788
13	•710215	851390	13	·752926	*876752	13	·798387	90221
14	·710906	.851812	14	-753661	.877176	14	•799169	902639
15	·711597	*852234	15	•754396	877599	15	·799952	*903064
16	.712289	852656	16	•755132	*878023	16	800737	•93349
17	•712982	853078	17	·755869	878447	17	*801521	903913
18	713675	*853500	18	·756606	.878870	18	*802307	904341
19 20	·714369	853923	19	757345	879294	19	*803694	904760
21	·715064	·854345 ·854767	$\frac{20}{21}$	·758084 ·758824	·879717 ·880141	20	*803881	905192 905617
22	·715760 ·716456	855189	22	-759564	880564	$\begin{array}{c} 21 \\ 22 \end{array}$	*804669 *805458	905017
23	717153	855612	23	·760305	880988	23	806248	906469
24	717850	856034	24	-761048	*881412	24	807089	906894
25	718548	*856456	25	-761791	881836	25	·807S30	907320
26	·719247	*856878	26	·762535	882260	26	*808623	907746
27	719947	857301	27	-763279	*882683	27	*809416	908172
28	720648	*857723	28	·764024	*883107	28	*810210	908598
29	•721349	*858145	29	.764770	883531	29	*811005	·909024
30	722051	*858568	30	.765517	*883955	30	*811801	9.9450
31 32	722753	858990	31	-766265	884379	31	812598	909876
33	723457	*859412	32	·767013	*884803	32	813395	910302
34	·724161 ·724866	·859835 ·860257	33 34	·767762 ·768512	*885227	33	814193	·910728 ·911154
35	725571	860680	35	-769263	·885651 ·886075	34 35	·814993 ·815793	911580
36	726277	861103	36	-770014	886499	36	816594	912006
37	726984	.861525	37	-770767	886923	37	817396	912432
38	727692	861947	38	.771520	887347	38	*818199	912859
39	-728401	*862370	39	.772274	887712	39	*819002	913285
40	729110	*862793	40	773029	.888196	40	*819806	913711
41	.729820	*863216	41	·773784	.888620	41	*820611	914138
42	·730530	*863638	42	·774540	889044	42	821418	•914564
43	.731241	*864061	43	-775298	889469	43	822225	914991
44	•731953	*864484	44	.776056	889893	44	*823033	915417
45	732666	·864906	45	.776815	890317	45	*823842	915846
46 47	733389	*865329	46	•777574	893742	46	*824651	916270
48	·734094 ·734809	865752	48	·778334	891166	47	*825462	916697
49	735525	·866175 ·866597	49	·779095 ·779S57	·891591 ·892015	48	826273	·91712-4 ·917550
50	736241	867020	50	780620	892440	49 50	827085	917977
51	736958	867443	51	·781384	892864	51	·827898 ·828712	918404
52	737676	867866	52	.782148	893289	52	829527	918831
53	738395	868289	53	782913	893714	53	830343	919258
54	-739115	·868712	54	·783679	894138	54	831160	919685
55	739835	869135	55	.784446	894563	55	831977	920112
56	*740556	*869558	56	.785213	894988	56	832796	•920589
57	.741277	*869981	57	·785981	895412	57	833615	920966
58	742000	*870404	58	.786750	895837	58	*834435	921393
59 60	742723	870827	59 60	787520	*896262	59	·S35256	921820
	•743447	*871250		.788291	·896687	60	·S36078	922247

	57 DEGR	EES.		58 DEGR	EES.		59 DEGR	EES.
Min.	Nat No	Logarithm.	_Min,	Nat. No.	Logarithm	Min.	Nat No	Legarith
0	0.455361	9.658356	0	0.470081	9.672173	0	0.484962	9.68570
1	455605	- 658588	1	470327	672400	1	485211	·· (SE93
2	455849	658821	2	470574	672628	2	485460	C8615
3	456093	659054	3	47(821	672856	3	485710	C8627
4	*456337	659286	4	471068	673(83	4	485960	
5	*456581	659518	5	471315	673311	5	486219	(8682
6	45€825	659750	6	471562	673589	6	486459	F8764
7	457070	659982	7	471809	678766	7	486768	68726
8	457314	660215	8 9	472.56	678993	8 9	480958	£8749
9	457558	·660446 ·660678	10	·472303 ·472550	·674221 ·674448	10	487207	68771
10	457803	660910	11	472797	674675	11	487457	(8798)
11	458047	661142	12	473 44	6749(2	12	487707	C8815:
13	458292	:661374	13	473291	675129	13	487957	·68860
14	·458536 ·458781	661605	14	473589	675256	14	488207 488457	68852
15	459 25	661837	15	473786	675582	15	488767	-089748
16	459270	662068	16	474033	6758(9	16	488957	-68927
17	459515	662300	17	474281	676036	17	489207	(8949
18	459760	662531	18	474528	·C76262	18	489457	€8971
19	460004	662762	19	474776	676489	19	489707	··C89986
20	*460249	662943	20	475023	676715	20	489957	690158
21	.460494	663224	21	475271	676941	21	490207	690380
22	460739	663455	22	475518	677167	22	490458	69060.2
23	46(984	663686	23	475766	677894	23	4907(8	€90828
24	461229	663917	24	476014	677620	24	490958	69104
25	461474	664147	25	476262	677846	25	4912(9	€912€6
26	461719	664378	26	476510	678372	26	491459	(9148
27	461965	664609	27	476758	678298	27	491710	€9170
28	462210	664539	28	477005	678523	28 29	491960	€91930
29	462455	665070	29 30	477253	678749	30	492211	€92151
30 31	462700	·665300 ·665530	31	·477501 ·477749	·678975 ·679260	31	492462	C92372
32	·462946 ·463191	665760	32	477997	679426	32	492712	€92814
33	463436	665990	33	478246	679651	33	493214	£93035
34	463682	666220	34	478494	679876	34	493465	C93256
35	468927	666450	35	478742	686162	35	493716	(93477
36	464173	666680	36	478991	-680227	36	-498966	·C93697
37	464419	666910	37	479219	68(552	37	494217	(98918
38	.464664	667140	38	479487	-386777	38	494468	€94188
39	464910	667369	39	479735	€810€2	63	494719	(94859
40	465156	667599	40	479984	-681227	40	494970	(94579
41	465462	667828	41	480232	·C81451	41	495221	**(94799
42	465648	*668058	42	·480481	681676	42	495472	695019
43	465894	-668287	43	·480730	681901	43	495724	695240
44	466140	668516	44	480978	682125	44 45	495975	695460
45	466386	668745	45	481227	682350	46	496226	695680
46	466632	668974	46	481475	682574	47	496477	695899
48	·466878 ·467124	·669203 ·669432	43	·481724 ·481973	682799	48	496729	696339
49	467370	669661	49	481913	683247	49	497232	696559
50	467616	669889	50	482471	683471	50	497483	696778
51	467862	670118	51	482720	683695	51	467734	696998
52	463109	.670347	52	482969	683919	52	497986	697217
53	468355	670575	53	483218	684143	53	498237	-697436
54	468601	670804	54	483467	684367	54	498489	697656
55	468848	671032	55	483716	684590	55	498741	-697875
56	409 94	671260	56	483965	684814	56	498993	698694
57	469341	671488	57	484214	685037	57	499244	698313
58	409:87	. 671716	58	484463	685261	58	499496	698532
59	469834	671945	- 59	484713	685484	59	499748	698751
60	·470081	672173	60	·484962	685708	60	500000	698970

	57 DEGR	EES.		58 DEGR	EES.		59 DEGR	EES.
Mın.	Nat No	Legarithm.	Min.	Nat. No.	Logarithm.	Min.	Nat No	Logarithm
0	0.836)78	9.922217	0	0.887080	9.947963	0	0.941604	9.973868
1	·S36971	922674	1	-887959	•948393	1	942544	974339
2	-837725	923101	2	-888339	948823	2	.943486	97473
3	*833550	923529	3	-889720	949253	3	944429	975169
4	839375	933956	4	·89J601	949683	4	•945373	975608
5	*84)2)2	924384	5	891484	950114	5	.946317	97603
6	841029	924811	6	·892368	950544	6	•947263	97647
7	*841357	.924238	7	893253	950975	7	·948210	97690
8	842686	925666	8	894139	951405	8	949158	977839
9	813516	926093	9	895.)26	951836	9	950107	977775
10	*814318	923521	10	895914	952266	10	951058	97820
11	·84518)	923949	11	896802	-952697	11	·952009	97864
12	.843)12	927377	12	897692	953127	12	952931	979078
13	846816	9278)4	13	893583	953558	13	953915	979516
14	817631	928232	14	899475	•953939	14	954870	97994
15	·848516	928360	15	900368	954420	15	955826	980379
16	819352	929)88	16	901262	954851	16	956782	98081
17	-85)19)	929516	17	902156	955282	17	957740	981248
18 19	•351023	929914	18 19	903752	955713	18	958699	981689
20	·851837	930372	20	933949	·956144 ·956575	19	·959659 ·960621	98211
21	852707	93)800	21	904847		20		98255
22	853848	931228	22	935746	•957006 •957437	21	·961583 ·962546	98298
23	·854390 ·855233	·931656 ·932)85	23	·906645 ·907546	957869	22	963511	98342
24	856)77	932513	24	931348	958300	23	964477	.98385
25	853921	932313	25	939351	958732	24	965444	98429
26	857767	933369	26	910255	959163	25	966411	98472
27	853514	933798	27	911160	959595	26 27	967380	985169
28	859451	934226	23	·912066	960026	28	968350	98603
29	-83031)	934655	29	912973	960458	29	969322	93646
30	831159	935383	30	913881	960890	30	970294	98690
31	-832109	935512	31	914790	961321	31	971268	98733
32	-832333	935941	32	915700	961753	32	972242	98777
33	-863712	936369	33	916611	962185	33	973218	98821
34	·854535	.935793	34	917523	962617	34	974195	98864
35	·86542)	937227	35	918436	963049	35	•975173	98908
36	·866275	937656	36	919350	963481	36	976152	98951
37	-867131	938)85	37	920265	963913	37	977133	93995
33	·867937	938514	38	921182	964345	38	971815	99039
39	*868845	.938342	39	922099	.964777	39	979097	99082
40	·859704	.939371	4)	923017	.935210	40	·980081	99126
41	*870564	.939371	41	923937	965642	41	·981066	99169
42	·871425	91023)	42	924857	966075	42	•982052	.99213
43	·872233	94)659	43	925778	966507	43	983039	99257
44	-873148	911083	44	923701	960940	44	984027	.99300
45	-874)12	911517	45	-927624	967372	45	985017	99344
46	.874377	911947	46	928549	967805	46	986008	.99388
47	875742	942376	47	929475	968238	47	987000	99431
48	8765)8	942316	48	930401	968670	48	•987993	99475
49	877475	943235	49	•931329	969103	49	988987	99519
50 51	878344	913665	59	932258	969536	50	989982	99562
52	879213	911091	51	933188	969969	51	990979	99606
53	-83 108 3	911521	52	934119	970402	52	991977	99650
54	88)954	914953	53	935050	970835	53	992975	99693
55	·831827 ·88270)	945383	54	935983	971268	54	993975	99737
56	883574	945813	55	936917	971701	55	994976	99781
57	881119	946243	56	937853	972135	56	995978	99825
58	885325	946673	57	938789	972568	57	·996982	99868
59	886202	947103	58	939726	973001	58	997987	99912
60	887080	·947533 ·947963	59 60	940664	·973435 ·973868	59 60	998993	99956
90	001000	041000	00	•941604	219908	00	10.00000	1.000000

NATURAL SINES AND TANGENTS,

TO EVERY DEGREE AND MINUTE OF THE QUADRANT.

EXTENDED TO SEVEN PLACES OF DECIMALS.

1	(,•		°	9	2°		3°		4°		5°	(3°	ř	70	,
0	000	0000	017	4524	034	8995	052	8860	069	7565	087	1557	104	5285	121	S693'	60
1		2009				1902				0467		4455		\$178		1581	5
2			018	0341	000	4809		9169		3368			105	1070		4468	5
3		8727	010	3249				2074				6251		3963		7355	5
4		1636			026	0623		4979		9171		3148		6856			50
5	301	4514		9366		3530				2073		6046		9748		3128	53
6			010	1974				0788		4974				2641		6015	5.
7	000	0362	019	4883		9344		3693				1840		5533		\$9.1	58
8				7791	007	$\frac{9541}{2251}$				0777	039						59
		3271	000		037				012			4738	107			1788	
9		6180	020	6699		5158		9502		3678				1318		4674	
10	000	9.89		3608	000	8065		2406				0532		4210		7560	
11		1998				0971		5311		9481		3429				C446	49
12		4937		9424		3878	050			2382		6326		9994		3332	48
13			021	2332				1119		5283				2835		6218	47
14	004	0724		5241		9692		4024		8184	091	2119		5777		9104	4(
15		3633			039	2598		6928	074	1085		5016				1990	4
16		6542	022	1057		5505		9832		3986				1530		4875	44
17		9451		3965				2736				6869		4452		7761	48
18	005	2360			C 4 0	0318		5640		9787		3706		7343		0646	
19		5268		9781		4224		8544		2688				0234		3531	41
20		8177	023	2690				1448		5589		9499		3126	6	6416	40
21	006	1086	, H X			0037		4352				2395		6017		9302	38
22		3995		8506		2944		7256	076	1390		5291		8908	128	2186	38
23		6904	024	1414		5850	059	0160		4290		8187	111	1799		5071	37
24		9813		4822		8757		3064		7190	094	1083		4689		7956	36
25	007	2721		7230	042	1663		5967	077	0091		3979		7580	129	0841	3
26	Ì	5630	025	0138		4569		8871		2991		6875	112	0471		3725	3-
27		8539		3046	100	7475	060	1775	17.	5891		9771		3361		66(9	35
28	008	1448			043	0382		4678				2666		6252		9494	39
29		4357		8862		3288				1691		5562		9142	130		31
30	l		026	1769				0485		4591				2032		5262	30
31	009	0174	,	4677		9100		3389				1353		4922		8146	20
32	000	3083				2006				0391		4248				1(3)	25
33			027	0493			0.00	9196		3290				C702		3913	
34		8900	0.20	3401				2099		6190	007	0039		3592		6797	20
35	010	1809				0724		5062		9090		2934		6482		9681	2
36	010	4718		9216		3630				1989		5829		9372		2564	
37	İ		ດລວ	2124				0808		4889				2261		5447	2
38	011	0535	023	5032		9442		3711				1619		5151		8330	
39	011	3444			OAG	2347				0687		4514		8040		1213	
49		20:5	non	0847	040	5253		9517		3587				(929		4(96	
41		9261	049	3755				2420				0303		3818		6979	
42	010	2170			0.47	1065		5323				3197				9802	13
42	UIZ	5079		9570		3970				9385 2284		6092		6707		2744	
			000													5627	
44	010			2478				1129		5188				2485			1
45	013	0896		5385		9781		4031				1881		5874		8509	
46		3805				2687				0981		4775				1892	
47	1			1200		5592		9836		3880				1151		4274	
48	011	9622		4168				2739				0563		4040		7156	
49	014	2530				1403		5641		9677		3457				8300	
50		5489		9922		4308		8544	084	2576		6351		9816		2919	
51				2830		7214			i	5474				2704		58(1	
52	015	1256				0119		4549				2138		5598		8683	
53		4165		8644		3024		7251	085	1271		5032				1564	
54				1552		5929	068	0153 3055		4169				1368		4445	
55		9982		4459		8835		3055				6819		4256		7327	
56	016	2890		7366	051	1740	1	5957		9966	3	3712				0208	
57		5799	034	0274		4645		8859	086	2864		6605	121	0031		3089	1
58	1	8707		3181				1761		5762		9499		2919		5970	1
59	017	1616				0455		4663				2592		5806		\$850	
60		4524		8993		3360		7565		1557	-	5285				1731	
		93		88°	1	7°	1	86°		5°		34°		33°		2°	1

1	1	0°		1°	1,0	2°		3°	4	1°	7	5°		6°	E	7°	′
0	000	0000	J17	4551	034	9208	052						105	1042		7846	6
1		2909	-	7460	035	2120	LIV.	6995	.070	2191		7818		3983	123	0798	5
2	-	5818	018	0370		5933	171	9912	1	5115	088	0749	153	6925		3752	5
3		8727		3280	110	7945	053	2829		8038	100	3681		9866		6705	5
4	001	1636	111	6190	036	0858		5746	071	(961		6612	106	2808		9658	5
5		4544	7	9100		3771		8663	DOM	£835		9544		5750	124		5
6	12	7453	019	2010	-		054	1581	11 -	6809		2476		8692	1.2	5566	5
7	002	0362		4920	10	9596		4498	- 0	9733			107	1634	-	8520	5
8	1	3271		7830		2509		7416	072	2657		8341	131	4576	125	1474	5
9		6180	020	0740		5422	055	0833			090	1273		7519	717	4429	5
10		9089	020	3650		8335	1000	3251	8011	85.5		4206	108	0462		7384	50
11	003	1998	100	6560	038	1248	-	6169	073	1430	- 0	7138		3405	126	0339	49
12		4907	-	9470	000	4161		9087	0,0	4354	091		0.0	6348		3294	48
13		7816	021	2883	-		056	2005		7279		3004		9291	-	6249	4
14	004	0725	021	5291		9988	000		074	0203		5938	109	2234		9205	40
15	001	8634	177	82.1	020	2901		7841	0.4	3128		8871	100	5178	197	2161	4
16		6542	200	1111	000		057	0759	000	6053	000	1804	1.71	8122	1.	5117	4
17		9451	022	4021		8728	00.	3678		8979	002		110	1066		8073	4:
18	005	2360			040	1641			075	1904	111	7672	110	4010	198	1030	45
19	000	5269		9842	0.40	4555		9515	010	4829	000	0606	= 0	6955	120	3986	41
20	1	8178	000	2758		7469	OKO	2434	10	7755	000	3540	100	9899		0943	4:
21	006		640		041		000	5352	070		1.90		111		1	9900	80
	000	1087	21.1	5663	041				010	0680		6474	111		100		88
22		3996	004	8574		3296	050	8271		3606	004	9409		5789	129	2853	37
23		6905	024	1484		6210	009	1190			094	2344	440	8734		5815	
24		9814	0.1	4395		9124		41(9		9458	Din		112	1680		8773	30
25	1007	2723			042	2038		7629	077	2384		8213		4625	130	1781	35
26	-	5632	025	0216		4952		9948		5311	095	1148		7571		4690	3:
27		8541		3127		7866	060	2867		8237		4084	113			7648	35
28	008	1450			043	0781			078	1164		7019		3463	131		32
29	-	4360		8948		3695		87.6		4090		9955		6410	7, 11	3566	31
30		7269	026	1859	511	6609	061	1626		7017	96	2890		9356		6525	30
31	000	0178	100	4770	200	9524		4546		9944		5826	114			9484	25
32		3087		7681	044	2438		7466	079	2871		8768		5250	132	2444	28
33		5996	027	0592	W.	5353	062	0386		5798	097	1699		8197		5404	2
34		8905		8503	25	8263		3306		8726		4635	115	1144		8364	20
35	010	1814		6414	045	1183		6226	080	1653		7572		4092	133	1324	2:
36		4724		9325		4097		9147			098	0509		7039	350	4285	2-
37	111	7633	028	2236		7012	063	2067		7509	-	3446		9937		7246	28
38	011	0542		5148		9927	141		081	0437		6383	116	2936	134	0207	29
39		3451		8059	046			79.8		3365		9320		5884	110	3168	21
40		6361	029	0970	. 100	5757	064			6293	099		20	8832	0.0	6129	20
41	100	9270		3882		8673		3750		9221	000	5194	117	1781	V	9:91	19
42	012	2179		6793	047	1588		6671	089	2150		8133		4730	135	2053	18
43	7	5088		9705	J	4503		9592	004		100	1071		7679	-00	5015	17
44		7998	030	2616	1111	7419	065	2518		8007	-00	4009	118	6628		7978	10
45	013	0907	000		048	0334	000	5435	082	0936	-	6947	110	3578	136	0940	1
46	010	3317		8439	UTO	3250		8356	000	3865	- 3	9886		6528	100	8908	1-
47		6726	021	1351	1.0	6166	066				101	2824		9478		6866	18
48	100	9635	001	4263	10	9382	000	4199		9723	101	5768	110			9830	19
49	014	2545		7174	040				001	2658		8762	110	5378	197	2793	11
50	OLT	5454	090	0086	040	4913	067		004		100		15	8329	101		10
51		8364	004	2998	- (1		001				102	1641	100			5757	
	015	1273			OFO	7829		2965	00=	8512	23	4580	120	1279	100	8721	6
52	019			5910	บอบ	0746			085	1442	100	7520		4230	138	1685	3
53	No	4183	000	8822	- 1	3662	0.00	88. 9	il i		103	0460	100	7182	- 0	4650	
54	040	7093	033	1734		6578	068	1732		7302	70		121			7615	-
55	016	0002		4646		9495		4654	083		1	6340	0	3085	189	0580	1
56	16	2912		7558	051			7577	-	3163		9280	-	6036		3545	4
57	000	5821	034	C471	-	532S	069		11/	6094	104			8988		6510	
58		8731		3383	1111	8244		8422		9025		5161	122	1941		9476	6
59	017	1641		6295	052	1161	-	6345	087	1956		8161		4893	140	2442	
60		4551	1.0	9208		4078		9268	13	4887	105	1042		7846		548	(
1		9°	8	0	8	-0	0	ti"	0	5°	8	0	1 0	33	0	20	

'		5°		9°	1	0°	1	1°	1	2°	1	S°	1	4°	1	5°
)	139	1721	156	4345	173	6489	190	8090	207	9117	224	9511	241	9219	258	8190
Ĺ	100	4612	200	7218	0	9346	191	(945	208	1969	225	2345		2041		1600
2	1		157	0091	174		101	3801		4807		5179		4863	200	3810
3	140	0372	101	2963	114	5075		6656		7652	PAT.	8013		7685		6619
í	140	3252		5836		7939				0497	200	0846	049	0507		9428
5	100	6132			172	0803	100	2365				0000	240	5329	000	
3			1=0		113			5220	1000	3341		3680				2237
2	- 14	9012	198	1581		3667				6186		6513		6150		5045
7	141	1892		4453		6531		8074		9030	00=	9346		5971		7853
3		4772		7325				6928	210				244	1792		
)	-	7651	159	0197	176	2258		3782		4718	_	5012	200	4613	10	3469
)	142	6531		3069		5121		6636		7561	0.07	7844		7433	1	6277
		3410		5940		7984				0405		0677		0254		9085
2	0	6289			177			2344		3248		35(9				1892
3		9168	160	1683		3710		5197		6091		6341		5894	100	4699
Ŀ	143	2047		4555		6573		8050		8934		9172		8713		7506
í		4926		7426		9435	195	0903	212	1777	229	2004	246	1533	263	0312
;		7805	161	0297	178			3756		4619	-	4835		4352		3118
	144	0684		2167		5160		6609		7462		7666		7171		5925
3		3562		6038		8022		9461	213	0304	230	C497		9990		8730
)		6440		8909	179	0884	196	2314		3146		3328	247	28(9	264	1536
)			162	1779		3746		5166		5988		6159		5627		4342
	145	2197		4650		8607		8018		8829		8989		8445		7147
,		5075		7520		9469	197							1263		9952
3			163	6390	180			2799		4512		4649		4081		2757
Ŀ	146	0830	100	3260	100	5191		6573		7353		7479		€899		5561
5	110	3708		6129		8052		9425	215	0194	232	0309	0.00	9716		8366
;		6585			121		100	2276		3035	202	3138		2533		1170
		9463	161		101	3774	100	5127		5876	-7	5967		5250		3973
3	147	2340	101	4738		6635		7978		8716		8796		8167		6777
	141	5217		7607		9495	100	0829	016	1556		1625		0984		9581
	7		102	0476	100	2355	100	3679		4896		4454		3800		
	140	6971	100	3345	102	5215		6530		7236		7282		6616		5187
	140			6214		0210			017	0070	001	0110	-07	9432		7989
		3848			100	8075 0935	000	9380	214							
		6724		9082	183	0935	200	2230		2915				2248		0792
	110		100	1951		3795		5080		5754		5766		5063		3594
,	149	2477		4819		6654		7930		8593		8594		7879		6896
5		5858		7687				0779				1421		0694		9198
			167	0556	184	2373		3629		4271		4248		35(8	269	2600
3	150	1106		3423		5232		6478		7110		7075		6323		4801
9		3981		6291	,	8091		9327		9948		9902	500	9137		7602
)		6857			185								253	1952		0403
L			168	2026		3808		5024		5624		5555	100	4766		3204
2	151	2608		4894		6666		7873	10	8462	-	8381	20	7579		6004
3		5484		7761		9524		0721						0393		8805
F		8359	169	0628	186			3569	-	4137		4033	100	3206	271	
5	152	1234	-	3495		5240		6418		C974		6859	100	6019	3	44C4
3		41(9		6362		8098		9265		9811		9684		8832		7204
7		6984	10.0		187			2113		2648	238	2510		1645		0003
3			170	2095		3813		4961		5485		5335		4458		2802
)	153	2733		4961		6670		7808		8321		8159		7220		5601
Ó	100	5607		7828		9598	205	0655	999	1158	220	0984	256	0082	11-1	8400
ĺ			171	0694	188	2385	200	\$502		3994		3808	200	2894	278	1198
è	154	1356		3560	100	5241		6349		6830		6633	0003	5705		3997
3	101	4230	1	6425	0.00	8098		9195		9666		9457		8517		6794
1		7104		0201	190	0000	200	2042	000			2280		1328		9592
5			170					1000	223					4139	974	2390
6	155	9978	112			3811		4888	000	5337		5104	0.0			5187
	155	2851		5022		6667	000	7734		8172		7927	541	6950		
7	-	5725		7887				0580						9760		6984
8	4=4		1.3	0752				3426		3842	7737	3574		2570		0781
9	156		-	3617		5234		6272		6676	110	6396		5381	111	3577
0	1	4345		6482		8090	-	9117		9511		9219		8190	-	6374
	1 8	1°	8	30°	1 7	9°	7	8°	1 7	70	7	6°	1 7	5	7	4°

′	8	3°	. 9)°	1	0°	1	1°	1	2°	1	3°	1	4°	1	5°	′
0	140	5408	158	3844	176	3270	194	38:13	212	5566	230	8682	249	3280	267	9492	-6
1	1	8375		6826		6269		6822				1746				2610	5
2	141	1342		98:9		9269				1647		4811		9460	100	5728	5
3	1		159	2791						4688				2551		8847	5
4		7276		5774		5270		5881		7730	232	6941				1967	5
5	142	0243		8757		8270				0772		4007	100	8734		5087	5
6	1 0	3211	160	174)	178	1271	196	1922	VW	3814	- 13	7073	251	1826		8267	5
7		6179		4724		4273		4943		6857	233	0140		4919	270	1328	5
8	10	9147		7708		7274		7964		9900	1	3207		8012		4449	5
9	143	2115	161	0692	179	0276	197	0936	215	2944	94	6274	252	1106		7571	5
10	1 7	5084	0.74	3677		3279	1.14	4008	111	5988		9342		4200	271	0694	5
11	1 13	8953		6662		6281		7031	11	9082	234	2410		7294		3817	4
12	144	1022		9647		9284	198	0053	216	2077	1	5479	253	0389		6949	4
13	13	3991	162	2632	18)	2287		3076	1111		-	8548		3484	272	0064	4
14	1 9	6931		5618		5291			477		235	1617	13,000	6580		3188	4
15		9931	90.00	3603		8295		9124	217	1213		4687		9676	TP	6313	4
16	145	29.1	163	1590	181	1299	199	2148		4259				2773		9438	4
17	1	5872		4576		4308		5172		7306	236	0829		5870	273	2564	4
18		8842		7563		7308		8197	218	0353	- 0	0000		8968		5690	
19	146	1813	164	0550	182	0313	200	1222		3400				2066		8817	4
20	TR	4784		3537	117	3319		4248				0044				1945	4
21		7756		6525		6324		7274		9496		3116		8264		5072	3
22	147	0727		9513				(1800)		2544	10.0			1363		8201	
23	100	3699	165	2501	183			3327		5593		9262				1330	3
24	0.0	6672		5489		5343		6354				2336		7564		4459	3
25	YO	9344		8478		8350		9381	220	1692		5410	257	0664		7589	3
26	148	2617	166	1457	184	1358	202	2409		4742		8485				0719	3
27		5590		4456		4365		5437				1560		6868		3850	
28		8563		7446		7373		8465	221	0844	111	4635		9970		6981	3
29	149			0436	185					3895				3073	277		
30		4510		3426		339)		4523		6947	240	0788		6176		3245	3
31	1	7484		6417		6399		7552		9999		3864		928)		6378	
32	150	0458		9407				0582		3051		6942	259	2384		9512	
33			168	2393	186			3612				0019		5488		2646	2
34	1	6498		539)		5428	181			9157	1 -	3697		8593		5780	2
35	1 00	9383		8331	710	8439		9674	223	2211		6176				8915	2
36	151			1373						5265		9255				2050	
37		5333		4366		4469		5737				2334		7911		5186	
88		8309		7358		7471				1374				1018		8322	2
39	152			0351			206			4429		8494				1459	2
40		4262		3344		3495		4834				1575		7234		4597	
41		7238		6338		6507				0541		4656				7735	1
42 43	193	0215	1 = 1	9331				0900		3597	04.	7737				0873	1
				2325				3934				0819		6560		4012	1
44	1	6170		532)	110	5546	200	6968	20.2	9711		3902		9670		7152	1
45	484	9147	170	8314	103	8559	208	0003	226	2769		6984	263			0292	1
46	104			1309	19)			3028		5827	245	0068		5891		3432	1
47	1000	5103		4304		4587		6078	00=	8885		3151		9002		6573	1.
48	1 88	8082	170	7300		7602	200			1944				2114		9715	1
49 50	199			0296	191	0017	209			5003		9320				2857	1
51		4040		8292		3632		5181	200	8003	240	2405		8339		5999	1
52		7019		6288		6648	010	8218	228					1452		9143	- 1
53	150	9998	174	9285				1255		4184		8577				2286	1
54	190		114	2282				4293				1663		7680		5430	1
55		5958		5279		5696			229	0306			266	0794		8575	1
56	157	8939		8277				0369		3367		7837				1720	
	191			1275				3407				6925		7025		4866	
57		4900		4273		4748		6446		6492	1			0141		8012	-
58 59	150	7881	170	7272		7766		0.100		2555		7102				1159	-
	108			0271								0191		6374		4306	
60		3844		3270		3803		5566		8682		3280		9492		7454	(
	1 8	1°	1 8	0°	1 7	9°	7	8°	7	7°	7	6°	7	5°	7	4°	

'	16°	1	7°	1	8°	1	9°	2	0°	2	1°	2	2°	2	3°	-
0	275 6874	292	3717	309	0170	325	5682	342	0201	358	3679	374	6066	390	7311	-
1	9170		6499		2936		8432		2935		6395		8763		6989	1
2	276 1965		9280		5709	326	1182	116	5668						2666	-
3			2061		8468		3932	70	8400		1825		4156		5843	F
4	7556			310	1234		6681	343	1133	100	4540		6852		8019	
5	277 0352		7623		3999		9430		3865						0695	F
6	3147	294	0403			327	2179	111	6597		9968				3371	
7	5941		3183		9529		4928		9329				4938		6047	
8	8736				2294		7676	344	2060	1	5395		7632		8722	1
9	278 1530		8743			328	0424		4791	100	8108	877	0327	393	1397	
0			1522		7822		3172				0821				4071	1
1	7118				0586	-	5919	345	0252		3534	TH	5714	1 6	6745	4
2	9911		7081				8666		2982		6246		8408		9419	
3	279 2704		9859	-	6112	329	1413		5712		8958	378	1101	394	2093	4
4					8875				8441	362	1669	-	3794		4766	
5	8290				1638		6906						6486		7439	
6	280 1083		8194				9653		3900		7091	100	9178	395	0111	4
7	3875		0971		7163	330	2398		6628		9802				2783	4
8	6667		3749		9925		5144		9357	363	2512	1 4.7	4562		5455	4
9	9459				2686		7889		2085		5222		7253		8127	4
0	281 2251		9303		5448	331	0634		4812	No	7932	33			0798	4
1	5042	298	2079						7540	364	0641	380	2634	-1	3468	
2	7833				0069		6123		0267	10	3351		5324	1	6139	1
3	282 0624		7632		3730	174	8867		2994		6059		8014		8869	6
4	3415	299	0408		6490	332	1611		5720		8768	381	0704	397	1479	9
5	6205		3184		9250	TIT	4355	0.0	8417			1 3	3393		4148	
6	8995				2010		7098				4184	100	6082		6818	
7	283 1785		8734				9341		3898		6891	- 70	8770		9486	5
8	4575	300					2584		6624						2155	5
9	7364				0288		5326		9349				4147		4823	9
0	284 0153		7058				8069	020	9074		5010	100	CCOA		7401	6
1	2942		9832				0810		4798		7719	2	9522	399	0158	6
2	5731	301	2606		8563	110	3552				0425				2825	9
3	8520				1321		6293	351	0246		3130	-15	4895	100	5492	6
4	285 1308	1000	8153		4079	100	9334		2970	0	5836	118	7582	100	8158	5
5	4096	302	0926		6836	335	1775		5693	The same	8541	384	6268	400	0825	9
6	6884	71	3699		9593	00	4516			368	1246	100			3490	9
7	9671		6471	319	2350	10	7256	352	1139	-	3950		5639	1	6156	9
8	286 2458		9244		5106		9996		3862		6654	100	8324	17.00	8821	5
9	5246	303	2016		7863	336	2735		6584	110	9358	385	1008	401	1486	9
0	8032				0619		5475		9306	869	2061	200	3693		4150	
1	287 0819		7559		3374	W	8214	353	2027		4765		6377	700	6814	1
2	3605	304	0331		6130	337	6953		4748				9060	100	9478	1
3	6391		3102			1.7	3691	1.79	7469	370			1744	402	2141	1
4	9177				1640		6429	254	0190	.00	2872	1.1	4427	101	4804	1
5	288 1963		8643		4395		9167		2910		5574		7110		7467	1
6	4748	305			7149	338	1905		5630	-	8276	1	9792	403	0129	1
7	7533		4183		9903	111	4642		8350	371	0977	387	2474	100	2791	1
8	289 0318		6953	322	2657		7379	355		110	3678	340	5156		5453	1
9	3103		9723				0116				6379	109	7837	000	8114	1
0	5887		2492		8164	-	2852		6508		9079	388	0518	404	0775]
1	8671				0917	4.0	5589		9226	372	1780	220	3199	101	3436	
2	290 1455		8030		3670	111	8325	356	1944	190	4479		5880		6096	
3	4239				6422	340	1060		4662		7179	1175	8560	-01	8756	
4	7022		3566				3796		7380		9878	389	1240	405	1416	
5	9805						6531	357					3919		4075	
6	291 2588	1	9102		4678								6598		6734	
7		308					2000								9393	
Š	8158				0180		4734		8248	374	0671	390	1955	406		
9	292 0935		7403		2931	-			0964				4633		4769	
0			0170			342	6201				6066		7311		7366	
_	73°		20		1°		0°		9°	1 -	8°		7° .		6°	

,	1	6°	1	7°	1	8°	1	9°	_2	0°	2	1°	25	2°	23	3°	1
0	286	7454	305	7307	324	9197	344	3276	363	9702	383	8640	404	0262	424	4748	60
ĭ			306	0488	325	2413	0	6530	364	2997	384	1978	TOL	3646	12 n	8182	59
2		3751		3670		5630		9785	12.00	6292	11/4	5317	La line	7031	425	1616	58
3	100	6000		6852		8848	345	3040	OUL	9588	100	8656	405	0417	900	5051	57
4	288	0050	307	0034 3218 6402	326	2066		6296	365	2885	385	1996		3804	0.00	8487	56
5	200	3201	00.	3218		5284		9553		6182		5337		7191	426	1924	56
6		6252	7.00	6102		8504	346	2810		9480	-0.0	8679	406	0579	320	5261	54
6		9502	10.0	9586	327	1724	0.0	6068	866	9779	386	2021	100	3968	200	8800	58
8	280	2655	208	2771		4944		9327		6079	000	5364		7358	197		52
9	200	5000	500	2771 5957		8165	247	2586		9379	1	8709	407	0748	341	5680	51
10		8961		9143	202	1297	OT.	5846	267	2680	287	2053	100	4190		9121	50
1				2330													49
2	200	5000	909	5517	-	7000	249	9969	- 1	0001	-	9744	400	0001	420	6005	48
3	32	0409		5517 8705	000	1056	0±0	K690	282	9597	900	9001	400	4910		0000	47
	001	1570	010	1000	040	1000		0000	300	E000	000	K490		7710	400	9449	
4	291	1018	310	1893		7505	0.40	0000	400	0105		0400	460	1110	429	2094	41
15	Alle	4104		5083	000	0701	549	2100	200	9190	000	0100	409	1108		6339	
16	000	1097	011	8272	000	90==		0420	209	5000	009	Z130		4004	400	9785	
17	292		311	1462		390(050	0000	100	0000		0900	410	1901	430		4
18	190	4205		4653						9112		8837	410	1299	404	6680	
19	000	7363	040	7845	331	0411		0216	310	2420	390	218		4097	431		
90	293	0521	312	1036		3639	~~	8483		5728	5	5541		8097		3579	
21		3680		4229		6868	351	1750		9036	5	8894	411	1497		7030	3
22	300	6839		7422	332	0097		5018	371	2346	391	2247		4898	432	0481	3
23		9999	313	7422 0616 3810		3327		8287	- 11	5656	5	5602	3	8300		3933	3
4	294	3160		3810		6557	352	1556	100	8967	7.0	8957	412	1703		7386	3
25	Line	6321		70051		9788		4826	372	2278	392	2313	3	5106	433	0840	3
26	76.0	9483	314	0200	333	3020	700	8096	11	5590	10	5670		8510	2.44	4295	3.
7	295	2645		3396		6252	353	1368		8908	3	9027	413	1915		7751	3
8		5808		6593		9485	0.00	4640	373	2217	393	2386	3	5321	434	1208	3
29	1	8971		3396 6593 9790	334	2719	100	7912	-0	5532	2	574	5	8728	144	4665	3
30	1296	2135	215	2688		5953	354	1186		8847	100	9102	5414	2136		8194	1 30
31	1949	5299		6186 9385 2585		9188	000	4460	374	2168	394	246	5	5544	435	1583	2
32	1	8464		9385	335	2424		7734		5479);	5827	7	8959		5043	2
33	297	1630	316	2585	-	5660	355	1010		8797		9189	415	2369		8504	2
34		4796	OLU	5785		8896	1	4286	375	211	395	2559	2	5774	426	1966	2
35	1	7962	Unit	8086	226	2134	100	7569		5489	3	5916	3	9186	100	5429	2
36	909	1120	217	$8986 \\ 2187$	000	5979	256	0840		8755	2	998	116	2500		8893	
37	200	4297	011	5389		0012	000	4110	276	2075	2 200	264	5 410	6010	197	0057	2
38		7465	1.3	8591	997	1050	100	7207	1	590	1 000	601	1	0496	401		
39	000	0604	010	1794	001	1000	057	0070		9717		001	0 417	9944		5823	
	299	9900				0090	301	9050	977	6110	907	95 (9411	2041	100	9289	
40 41		3803		4998				3950									
		6973	010	8202	999	1011	050	0510		000		0114	± 0 440	9018		6224	
42			319	1407	10	4813	308	0018	970	0000	2000	948	9 418	3091	100	9693	
43		3315		4613 7819	000	8000		3801	318	2010	1398	Z85	3	990		3163	
44	1	6486	000	7819	889	1299	10	1088	5	0336		622	1	9928		6634	1
45		9658	320	1025	140	4548	359	0367		866	1	959	419	3348	440	0105	1
46	301	2831		4232	1) -	7787		365	1379	1988	3 399	296	8	6769)	3578	1
47		6004		7440	340	1032		6936	j	5313 864		634	1 420	0190)	7051	
48		9178	321	0649		4278	360	0222	2	864	1	971	5	3613	3 441	0526	
49	302	2352		3858		7524	L	3508	3,380	197	3.400	308	9	703	5	4001	
50	100	5527		7067	341	0771		679	5	5309	2	646	5421	0460			
51		8708	322	0278		4019	361	. 0089	2	863	3	984	1	388		(954	
52	303	1879)	3489		7267	7	337	1381	196	4 401	321	8	731	1	4432	
53		5055	5	6700	342	0510	3	6666)	529	6	659	6422	0788	3	7910	
54			2	9912		376	5	9949	9	862	9	997	4	416	5 443	1390	
55	304	1410	399	9912 3125	0.1	701	369	324	389	196	2 409	335	4	759	1	4871	
56	003	4599	3 020	6338	9.49	026	8	653	1	529	6	678	1 122	1099	3	8352	
57		7767	7	9552	040	2510	2	982	3	862	1 409	011	5 120	445	3 444	1884	
58	205			2766		677								7884		5318	
59	306			2100	0.4	0111	000	640	2000	500	2	687					
		4120			344	002	0	640	3	000	0 10					8862	
60		730		9197		327		970	4	864	0 404					2287	
,	1 /	73°	1 1	2°	1 /	71°	1 /	70°	1 1	39°	1 6	18°	1 (370	1 6	660	1

,	1 . 5	24°	- 5	25° 6183 8819 1455 6064 6725 9360 6725 9360 6725 9360 6725 9365 6725 9365 6725 9365 6723 9355 94606 6725 9365 6723 9355 94606 6725 9365 6723 9355 94606 6725 9365 94606 9212 1832 4430 7736 6301 8726 6723 9355 94606 9212 1832 4430 7732 9355 9460 9472 9472 9472 9472 9472 9472 9472 9472	2	6°	27	7 °	2	8°	2	9°	3	0°	3	1°
U	436	7366	422	6183	438	3711	453	99.15	469	4716	484	8096	500	0000	515	0381
1	4)7	0024	0 100	8819	73.7	6326	454	2497	111	7284	485	0640	200	2519	1. 4.11	2874
2	100	2631	423	1455		8940	0.00	5088	1	9852		-3184	139	5037	- 1	5367
3	30	5337	0.1	409J	439	1553		7679	470	2419	Torre	5727	dio	7556		7859
4	100	7993		6725		4166	455	0269	713,0	4986		8270	501	0073	516	0351
5	4)8	0649		9360		6779		2859	-	7553	486	0812	1.8	2591		2842
6		3305	424	1994		9392		5449	471	0119	Te	3354	100	5107	300	5333
7		5960	0.0	4628	440	2004		8038	711	2685	1.0	5895	1.	7624		7824
8	0	8515		7262		4615	456	0627		5250		8436	502	0140	517	0314
9	409	1269		9395		7227	V I	3216	110	7815	487	0977	1	2655	0.0	2804
0	1	3923	425	2528		9838		5894	472	0380	1	3517	199	5170	10.3	5293
1	111	6577	0.1	5161	441	2448		8392		2944		6057	144	7685	100	7782
2		9230		7793		5059	457	6979	100	5508	0.23	8597	503	0199	518	6270
3	410	1833	426	0425		7668		3566		8071	488	1136	100	2713		2758
1		4536	- 11	3056	142	0278		6153	473	0634	10.7	3674		5227	100	5246
5	100	7189		5637		2837		8739	10	3197		6212		7740	50	7733
6	0	9341		8318		5493	458	1325		5759		8750	504	0252	519	0219
ī	411	2492	427	0949		8104		3910	1-1	8321	489	1288		2765	100	2705
8		5144		3579	443	0712	100	6496	474	0882	1.03	3825	201	5276		5191
9	10	7795	100	6208		3319		9080	000	3443		6361	100	7788		7676
)	412	0445	11	8338		5927	459	1665	1.0	6004		8897	505	0298	520	0161
1	0.5	3096	428	1467		8534		4248		8564	490	1433		2809	1	2646
2		5745		4095	414	1140	0.	6832	475	1124		3968	(1)	5319	0.0	5130
3		8395	0	6723		3746	3,000	9415		3683	73	6503	83	7828		7613
1	413	1044	,	9351		6352	460	1998	111	6242		9038	506	0338	521	0096
5	-	3693	429	1979		8957	700	4580	1	8801	491	1572	DY/	2846	. (4)	2579
6	0	6342	2.1	4606	445	1562	170	7162	476	1359	i i	4105	710	5355		5061
7		8090	1110	7233	0.70	4167	100.4	9744	V	3917		6638		7868	15	7543
8	414	1638	111	9359		6771	461	2325		6474		9171	507	0370	522	0024
9		4285	430	2485		9375		4906		9031	492	1704	100	2877	1	2505
0		6932		5111	446	1978		7486	477	1588		4236	110	5384	1	4986
1	1	9579		7786		4581	462	0066		4144		6767	- 1	7890		7466
9,	115	2226	421	0361		7181	-	2646		6700		9299	508	0396	60	9945
3	1	4872		2986		9786	0.1	5225		9255	493	1829		2901	523	2424
4		7517		5610	447	2388	55	7804	478	1810		4859		5406	1.77	4903
5	416	0163		8234	1	4990	463	0382	1	4864	.0	6889	2.17	7910	1111	7381
6		2308	132	0857	-10	7591		2960	1-	6919	1	9419	509	0414	634	9859
7		5453	102	3481	448	0192		5538		9472	494	1948		2918	594	2336
8		8097		6103	110	2792	1000	8115	479	2026	101	4476		5421		4813
9	417	0741		8726	1.5	5392	461	0692	1.0	4579		7005	176	7924	271	7290
0		3385	433	1348		7992	101	3269	-	7131		9532	510	0426		9766
1		6328	100	3970	449	0591		5845		9683	495	2060	310	2929	525	2241
2		8671		6591	110	8190		8420	481	2225	100	4587	1.00	5120		4717
3	419	1319		9219		5780	465	0906	103	4798		7112	7	7020	1	7191
4	-10	3956	494	1839	1	8337	200	3571		7327		9690	511	0431	1236	9665
5		6507	101	4452	450	0934		6145		0380	AGR	2165	1	2021	526	2130
6		9220		7079	400	3580	1	8710	481	0100	100	4600		5491	340	4619
7	410	1881		0800		6170	466	1909	101	1007	-	7915		7090	1	7085
è	TIO	4521	495	2311		8775	100	2266		7597		0740	519	0490		9558
9	1	7161	#90	7030	451	1270		6490	180	1001	107	9064	JIZ	9007	597	9080
0		0831		7549	401	2067		0110	32	0694	491	4707		5195	1026	4500
1	190	9441	190	0166	1	6560	167	1504		K100		7910		7030	-	6079
0	420	500	450	0700	1	0150	401	1084		7700	130	0000	510	0400		0449
0		7710		Z151	450	1750	1	4100	400	0037	100	9853	913	0420	500	1014
0	404	0000	111	0±11	402	1103	1	0127	488	0277	498	2300		Z916	928	1914
4	421	. 0305	10-	8318		4347	100	9298		2824	11.5	4817	Mile	0413	44	4353
0	1.0	2996	437	0634		6941	468	1869		5370	-01	7399		7908	E. a	6853
0		5634	0	3251	1.00	9535	- 1	4439	:	7916	101	9920	514	0404	Tion.	9322
1	1	8272	1	5866	453	2128	100	7009	484	0462	499	2441		2899	529	1790
8	422	0909		8482	30	4721	1	9578		3007	XI.	4961	2	5393	13.79	4258
9	1	3546	438	1097	10%	7313	469	2147	(5552	100	7481	10	7887		6726
0		6188	3	3711		9905	1	4716		8096	500	0000	515	0381	925	9193
	1	650	1 4	3.10	1 6	30	1 6	.)0	1 0	10	1 6	00	1 5	O°	5	00.

,	24°	2	5°.	2	6°	2	7°	2	8°	2	9°	3	0°	3	1°	'
0	445 2287	466	8077	487	7326	509	5254	531	7694	554	3091	577	2502	600	8606	60
1	5773				0927				0826		6894				2566	59
2	9260		0161				2585				0698		1262		6527	58
3	446 2747	700	3705		8133	010	6252		8293		4504	010	5144		0490	57
					1737			599	2029		8311		9027	002	4454	56
4	6236										2119	270	2912	1		
5			0796			311	3588	-						000	8419	55
6	447 3216		4342		8949	F40	7259	201	9503		5929		6797	603	2386	54
7	6708			490	2557							980	0684		6354	53
8			1439		6166		4602				3551		4573		0323	52
9	3693		4988		9775				0723		7864		8462		4294	51
10	7187				3386	513	1950				1179		2353		8266	50
11			2090		6997		5625		8208		4994		6245		2240	49
12	4178	13	5643	492	0610		9362	536	1953		8811	582	0139		6215	48
13	7675	0.0	9196		4224	514	2980	T.	5699	559	2629		4034	606	0192'	47
14	450 1173	471	2751		7838		6658		9446		6449		7930		4170	46
15	4672		6306	493	1454	515	0338	537	3194	560	0269	583	1828		8149	45
16	8171	316	9863	1	5071		4019		6943		4091		5726	607	2130	44
17	451 1672	472	3420		8689		7702	538	0694		7914		9627		6112	43
18	5173			494	2308	516					1738				0095	42
19	8676		0538	1	5928	010	5069		8198		5564		7431		4080	41
20	452 2179		4098		9549		8755	520	1952				1335		8067	40
21	5683			105	3171	517					3219	000	5241		2054	89
22			1222	490	6794		6129		9464		7048		9148		6043	38
23	453 2694		4785	100	0418						0879				0034	37
	6201			490		=10										36
24			8349				3508		6980		4710		6965		4026	
25	9709		1914		7669			041	0740		8543		0876		8019	35
26	454 3218		5481			519	0891		4501						2014	34
27	6728		9048		4925		4584		8263		6213		8702		6011	33
28	455 0238		2616		8554						0050					32
29	3750		6185	498	2185	520	1974		5791		3888		6533		4007	31
30	7263		9755		5816		5671		9557			589	0450	i.	8008	30
31	456 0776	477	3326	0.1	9449				3324	566	1568		4369	613	2010	29
32	4290	1,0	6899	499	3082	521	3667		7092	1	5410		8289		6013	28
33	7806	478	0472		6717		6767	544	0862		9254	590	2211	614	0018	27
34	457 1322		4046	500	0352	522	0468		4632	567	3098		6134		4024	26
35	4839		7621		3989	1	4170		8404		6944	591	0058		8032	25
36			1197		7627						0791				2041	24
37	458 1877	1		501	1266	523	1578	1	5951		4639		7910		6052	23
38	5397		8352		4906		5284		9727						0064	
39	8918		1932		S547		6000	546			2339		5768		4077	21
40	459 2439			500	2189	594			7281		6191		9699		8092	20
41	5962		9093		5832		6407				0045				2108	19
42			2675					341	4840		3899				6126	18
		451		-00	9476	525	0117						7565			
43	460 3011		6258		3121		3829	EAC	8621		7755					17
44	6537	100	9842		6768	F0.0			2404				5437		4166	16
45	461 0063			204					6188		5471	-05	9375		8188	15
46	3591		7014		4063		4969		9973				3314			14
47			0601		7713		8685				3192		7255		6236	13
48	462 0649		4189	505	1363	527	2402		7547		7054	596	1196	620	0263	12
49	4179		7778		5015		6120	550	1335	573	6918		5140)	4291	11
50	7710	484	1368		8668		9839		5125		4783		9084		8320	10
51	463 1243		4959	506	2322	528	3569		8916		8649	597	3030	621	2351	9
52	4776		8552		5977		7281	551	2708	574	2516		6978		6383	8
53	8310		2145			529	1004		6502				0926			7
54	464 1845				3290						0255		4877		4452	6
55	5382		9334		6948		8452	302	4093		4126		8828		8488	5
56			2931		0607		2178	100	7890		7999		2781			4
57	465 2457		6528		4267	000							6735		6566	
58	5996				7929		5906		1688							2
							9634		5488		5748		0691			
59	9536				1591		8364		9288		9625		4648		4650	1
60	466 3077		7326		5254		7094	1	3091	1	3503		8606		8694	0
	65°	6	4°	C	3°	C		6	1°	6	o°	1 5	9°	1 5	ss°	1 '

′	3	2°	3	3°	3.	1°	3	5°	3	6°	3	7°	3	8°	3	9°	
0	529	9193	544	6390	559	1929	578	5764	:37	7858	201	0150	615	001=	000	0004	İ
1	530	1659		8830		4340		8147 0529 2911 5292 7672	588	0206	602	0473	320	8907	J	5461	
2	1	4125	545	1269		6751	574	0529	111	2558		2795	616	1198		7794	ľ
2		65.91	010	2707		9162	0.1	9911		4910		5117	010	2150		0055	
1	1 -	0057		6115	560	1579	1	5999		7202		7.190		5790	620	0010	
4	5.91	1501		0140	000	2001		7870		0612		0760		0100	000	4500	ľ
0	991	2021	5.40	1000		6900	575	0052	BC0	1064	609	9100	017	0009		4500	1
0		0930	240	1020		0590	010	0400	OCS	1904	000	4400	011	0509		0198	
4		0450		8400	-01	0195		2452		4514	200	4400	1	2648	004	9015	
8	1	8913		0892	901	1206		4811	2.77	0003	1	6/19		4936	631	1272	
9	552	1376	1	8528		3614		1190		9012		9038		7224	116	3528	
0	10	3859	041	0.03		6021		9568	990	1301	604	1350	040	9511	300	5784	i
1		6361		3198		8428	5.6	1946	1	3719		3674	618	1798	111	8039	
2		8763		5632	562	(834	i	4323	0	6057	115	5991	1	4084	632	6293	ì
3	533	1224	1.1	8066		3239	1	6700		8404		8308		6370	653	2547	ı
4		3685	548	0.000		5645		9076	591	0750	605	0624	- 44	8655	90	4800	1
5		6145		2932		8049	577	1452	1	3096		2940	619	6939	10-1	7053	
6	0	8605		5365	563	0453	-	3827		5442		5255		3224	10	9366	1
ī	534	1065	i	7797		2857		6202		7787	1	7570		5507	633	1557	1
S		3523	549	(228	110	5260		8576	592	C132		9884	l'	7790	- 10	38(9	
9		5982		2379		7663	578	(950	-	2476	606	2198	620	0073	1	6(59	1
(15		8440	100	5 90	564	0066		8323		4819	1.0	4511		2355	100	8310	1
21	535	0898		7520	0	2467		5696	-	7163		6824		4636	634	0559	1
2	1	3355	1	9950		4869		8069		9505		9186	3	6917		28(8	
23		5812	550	2879		7270	579	(440)	593	1847	607	1447	15.1	9198		5(57	1
1	1.0	8268		4807		9670	1	2812		4189		3758	621	1478		7205	1
35	586	0724		7236	565	2670		5193		6580	1	60.00)	3757		9553	1
16	050	3179	1	9668	000	4460		7559	100	8871		8870	1	6036	625	1800	ı
7		5684	551	2101		6266		0000	791	1911	GCS	0650		8814	1000	1006	
20	100	8 50	1001	4519		0000	590	9909	CUX	2550	000	2005	699	0500		6000	1
00	597	C5.19		6011	566	1665	1000	4661		5000	1	5206	024	9970		0507	1
00	091	0000		0970	000	40.00		7000	1 -	0000	1	761		5146	000	0700	1
UC		2000	***	9510	100	4002		0007	FOR	03.00		1014		7400	060	0102	1
10		5000	002	1000	-	0495	204	1=05	000	0000	aca	0000		0.000	0	5020	
20	200	007		4220	= 0-	1056	POT	4100	1	2004	00	4505	, ,,,,,	1074		5210	1
55	958	0.504		0040	100	1202		4152		0241		4000	023	1914		1919	1
54	10	2800	2	9 .09		5048		0495		1011	1	0541	- 11	4248	000	9100	1
6	1	919	999	1492		6048	~ ~ ~	0804	-00	9918	010	9147		0022	637	1998	1
Ü	-00	1108		2915	- 00	8434	582	1230	596	2249	910	1402		8190	1111	4240	1
31	939	(1108	5	6338	565	(832		3595		4084		3100	624	1009		6481	1
38		2608	3	8760	-	3225		1959		(918		60,60)	3342		8721	1
39		5:55	504	1152	-	5619	1	8523		9252		8368	3	5614	638	6961	1
10	1 70	7507		3603		8011	583	0687	597	1586	611	. 6666	j	7885		32(1	1
41		9955		6024	569	0408	3	3(50		3919	1	2969	625	C156		5440	1
42	540	24(2	3	8444		2795	5	5412		6251	-	5270)	2427		7678	i
43	1	4851	555	0864		5187	1	-1774		8585		7572	2	4096		9916	1
14		7298	3	8283		7577	584	6136	598	(915		9878	3	0966	689	2153	1
15	0.0	974	5	57(2	-	9968	3	2497	I D.	3246	612	2178	3	9235	1 1	4890	1
46	541	2191		8121	570	2357		4857		5577	0.1	4478	626	1503		6626	1
17		4637	556	0529		4747	1 1	7217	1	7900	3	6772	2	3771	1	8862	1
48	1	7085	2	2956		7136	3	9577	1599	6236	3	9071		6038	640	1097	1
49		9527		5378		952	1585	1936		2565	613	1369)	8305	000	3382	1
50	542	197		779.	571	1919	2	4294		4898	3	3666	627	0571	15	5566	1
51	100	441	5.557	62 16		4299)	6659	1	7221		5964	1	2837	00	7799	1
5.5		6856		2621		6680	5	9316	1	9540		8260)	5109	641	00\$2	1
53		9316)	5026		9075	586	1867	600	1876	614	0550	1	7366		2264	
51	548	174	1	7.151	579	14:0)	3724	1	4200		2856	5	9631		4496	1
55	010	410		00:32	0.4	384	1	60.80		6590		514	622	1894		6728	1
56		669	550	2070		6990		8.19		8854		7446	020	4157	133	8958	1
57		0028	000	4000		981	1507	0700	601	1170		0796		6490	649	1120	1
10	244	9.00		4092	570	(001-	1001	214	001	9500	CHE	9100		0420	042	1109	1
0.0	044	1910	1	111.6	010	199	2	5400		500	019	4000	con	0002	12	5647	1
09		690.	1 == -	901		555	1	7050		0021		604	ozy	00040	1	7070	1
υÜ	10.	689	1008	1928	1	216	1	0529 2911 5292 7672 2911 5292 7672 2911 5292 7672 2911 5292 7672 2911 5292 7672 7672 7672 7672 7672 7672 7672 7		8190	1 _	0016	1115	5204	110	1910	1
1		77	1	36	1 6	15	. :	3/1	1 2				1 6	1	1 , F		ani

,	3	2°	3	3°	3	4°	3	5°	3	6°	3	7°	3	s°	3	9°	1
6	524	8694	649	4076	674	5085	700	2075	726				781	2856	809	7840	6
1		2739	- D	8212		9318		6411				0102		7542	810	2658	5
2	120-0	6783	650	2350	675	3553	701	0749	727	4318				2229		7478	5
3	626	0834		6490		779)		5089		8767		9232				2300	5
4		4884	651	0631	676	2023						3799	783	1611		7124	5
5	100	8935		4774				3773		7671		8369		6305		1951	5
6	627	2938		8918		05)9						2941		1002		6780	5
7				3964				2464		6582		7514		5700		1611	5
8	628	1098		7211		8997		6813		1041		2090		0400		6444	5
9	-			1360			104	$\frac{1163}{5515}$		5501 9963		$6668 \\ 1248$		5103 9808		1280	5
10	220	9214		5511		7492		9869	701			5829				6113	5
11	629	3274				1741	705	4224	tor	8891		0413		$\frac{4515}{9224}$			4
12 13	con	1399		3817		0246				3362		4999				5801 0646	4
14	030			2129				2949		7832		9587		8649		5493	4
15		9530		6287		8758		7301	722	2303		4177		3364		0343	4
16	621							1664		6777		8769		8082		5195	4
17	091	7667		4609		7276		6028	734	1253		3363		2802		0049	4
18	632	1733						0395		5730		7959		7524		4905	4
19	092			2937		58,1		4763		0210				2248		9764	4
2)		9333				0066		9133		4691		7157		6975		4625	4
21	633			1271		4333				9174	763	1759	791	1703		9488	3
22		8035		5441		86)1		7878		3660		6363		6434	820	4354	3
23	634	2113		9612	634	2871	710	2253		8147	764	0969	792	1167		9222	3
24		6193	659	3785		7143		663.)		2636	16.0	5577		5902	821	4093	3
25	635	0274		7960	685	1416	711	1009		7127	765	0188	793	0640		8965	3
26	100	4357	660	2136		5692		5390	738	1620		4800		5379	822	3840	3
27		8111	- 3	6313	-	9969		9772		6115		9414	794	0121		8718	3
28	636	2527	661	0492	686	4247	712	4157	739	0611	766	4031		4865		3597	3
29	1	6614		4673		8528		8543		5110		8649		9611		8479	3
30	637	0708						2931		9611		3270				3364	3
31	100			3040		7093				4113		7893		9110		8251	
32	1	8335						1712						3862		3149	2
33	638	2978				5566		6106		3124		7144		8617		8031	
34	220	7078		5601		9955		0501		7633		1773		3374		2925	2
35	039	1169				4246		4893		2143		6404		8134		7821	2
36				3984		8538		9297		6655		1037		2895		2719	2
37 38	040	936						3693		1170		5672		7659		7620	2
39	0±3	7569		2373		$7123 \\ 1425$		8100				4948		$\frac{2425}{7193}$		$\frac{2523}{7429}$	2
4)	641	1673				5725		6911		$0204 \\ 4724$				1968		2337	2
41	OTI	5779		4969		0026		1319		9246		4233		6736		7247	
42		9338		9171		4328		5729		3770		8878		1511		2160	1
43	642			3374		8633		0141		8296		3526		6288		7075	1
41		810				2939		4554		2824		8176		1067		1992	
45				1783		7247		8970				2827		5849		6912	î
46	1	6329		5995				3387		188				0632		1834	î
47	614			02)5		5838		78)6				2137		5418		6759	î
48	740	4560				0181	721			0956				02:00		1686	î
49		8378	3	8630		4496		6650		5494		1455		4997		6615	1
50	645	2797	670	2345	-	8818	722	1075		0038		6118	3	9790		1547	1
51		6918			693			5502		4575		0782	805			6481	
52	646			128		7451		9930		9119		5448		9382		1418	1
53		516		5500		1778	723	4361	750	3665	778	0117	806			6857	
54		9290		9721		6097		8793		8212		4788		8983		1298	1
55	647			3944				8227				9460				,6242	
56	0.15	7540		8169		4749		7669		7314	779			8593		1188	
57	648			2390			725			1867		8812				6136	
58	=0	5838				8499		6540			783			8212		1087	1
59	0.00			085			726					8172		3025		6041	7
69		4076	1			2075		5425		5541	781	2850		7840	1	0996	
	1	17°	1 8	56	1 8	55	1	i4°	1	3°	1 5	52°	5	1°	5	0	

	4	0°	4	1°	4	2°	4	3°	4	4°	4	5°	4	6°	4	7°
_	642	7876	656	0590	669	1306	681	9934	694	6584	707	1068	719	3398	781	3537
		0104	-	2785		3468	682	2111		8676		3124		5418		5521
	3.3	2332		498)	100	5628				0767				7438		7503
	200	4559		7174		7789		6363		2858		7236		9457		9486
	73.	6785		9367		9948	1	8489		4949				1476	790	1407
		9011	657			2108	699		1	7020	700	1345	120			
	011							2738		9128						3449
	644	1236	- 11	3752		4266	- 0					3398		5511		5429
		3461		5944 8135		6424 8582	1	4861 6984		3305				7528		7409
		5685	220									7504		9544		9388
			698	0326	011			9107		5392		9556	721	1559		
	645	0132	-	2516				1229		1419	109	1607		3574		3345
		2355		4706	. 11	5051		3350		9565		3657		5589		5322
		4577	6	6895	11	7206				1651		5707		7602		7299
		6793		9083		9361		7591		3736		7757		9615	1110	9275
				1271		1515		9711		5821		9806		1628		
	646	1240	mi	3458				1830				1854		3640	200	3225
		3460		5645		5821	1.0	3948		9938		3901		5651	117	5199
		5679		7831		7973				2071		5948		7661	100	7173
			660	0017	673			8184		4153		7995	(9671	1100	9146
	647	0116		2202				0300		6234	711	0041	723			
	-	2334		4386		4427		2416		8315		2086				
		4551		6570		6577		4532		0396		4130		5693		5061
		6767		8754		8727		6647		2476		6174		MMON		7032
			661	0936				8761		4555		8218		9712		9002
	619	1199	001	3119		2024	687	0375				0260		1710	726	0071
	010	3414		5300		5172		2988		8711		2303		3724		
		5623		7482		7319	1			0789		4344		5729		4908
		7842		9662		9466		7213		2866		6385		7734	1	6875
	649	0056	669	1842	675	1619		9325		4942		8426		9738	M	8842
	010	2268		4022	0.0	2757	699	1435		7019	712	0465		1741	797	0808
		4480		6200		5902	000	3546		9093		2504				2778
		6692		8379		8046		Kekk	701	1167		4543		5746		
				0557				7765		3241		6581		7747	1000	4738 6708
	0=0	1114	000	2734	010	2333		9873		5314		8618			100	
	000													9748		8666
		3324		4910				1981				0655				
		5533		7087		6618		4089		9459		2691		3748		2592
		7742		9262		8760				1531		4727		5747		4559
	224			1437				8302		3601		6762		7745		6515
	091	2158		3612				0407		5672		8796		9743		8475
		4366		5785		5181		2512				0830				
		6572	0.00	7959		7320		4617		9811		2863		3736		2394
				0131		9459				1879		4895		5732		4358
	652	0984				1597	100.	8824		3947		6927		7728		6311
		3189		4475				0927		6014		8959		9722		8268
		5394		6646		5871		3029				0989				
		7598		8817		8007				0147		3019				2181
	-	9801	666	0987	679	0143		7232		2213		5049		5703		4137
	653	2004		3156	-	2278		9332		4278		7078		7695		6092
		4206		5325				1432		6342		9106		9686		8046
		6498		7493		6547		3531				1134				0000
		8609		9661		8681		5630	705	0469		3161	111	3668	0.0	1953
	654			1828				7728		2532		5187		5657	1	3905
		3010		3994		2946		9825		4594		7213		7646	1.10	5857
	1	5209		6160				1922		6655		9238		9635		7808
		7408		8326		7209		4018				1263		1623		9758
				0490		9339				0776		3287		3610		
	655	1804				1469		8209		2835		5310		5597		3658
	000	4002		4818				0304		4894		7333		7583		5606
		6198		6981		5728		2398		6953		9355		9568		7554
	1	8395		9144		7856		4491				1377				9502
	GKC			1306		9984				1068		3398				1448
						# 0						9990	=0	9991	120	20.
	1 4	9°	1 4	83	1 4	ŀ7°	1 4	6°	4	9	1 4	4°	1 4	3°	1 4	2°.

1 4	40°	4	1°	4	2°	4	3°	4	4°	45°	46°	47°	′
0 839	0996	869			4040	932	5151				1.03 55303		6
1	5955		7976				0591		2511	05819			5
	0915				4580		6034		8137		67367	36203	5
3	5878		8200				1479		3767	17469	73404		5
	0844	871	3316	902	5131		6928		9399	23298	79445	48734	5
5	5812		8435	9)3		935			5035		85489	55006	
	0782	872	3556		5693		7834		0674				5
7	5755				0979				6316				5
	0730	873			6267		8758				1.04 03645		5
9	5708		8935		1557		4216		7610		09704		ŧ
	0688				6851		9688		3262			86423	-
1	5670		9201	906			5153		8917	64201	21833		4
	0655	875			7446	939	0625				27904	99018	
3	5643		9478		2748		6101		0236			1.08 05321	4
	0633	876			8053	943	1579		5901	81782			
ō	5625		9765	938	3360		7061		1569				4
6 847			4912		8671	941			7240			24254	
7	5617	878		939	3934		8033	975	2914				4
8818			5215		9300	942	3523		8591				
9.			0370	910	4919		9017	976	4272	11153	70498	43223	4
	0624		5523		9940		4513		9956				
1	5631		0688			911	0013				82702	55889	
2850			5852		0592		5516		1333		88869	62228	5
3	5653	831	1017		5922	945	1021		7027	34712	94920	68571	1
1851			6186	913	1255		6530	979	2724		1.05 01034	74918	3
5'	5684	832	1357		6591	946	2042		8424				1 5
852		-	6531	914	1929.		7556		4127	52418			1
71		883	1707		7270	947	3074		9839				5
853		00,	6886	915	2615	U.L.	8595		5548	64239		1.09 00347	1
9		881	2068	010	7962	018			1256				3
	0807	001		916	3312	UEO	9646		6973		37801	13085	6
1!		835	2440	010	8665	949	5176		2692		43942		2
	0873	0 30	7630	917	4020		0709	005	8415			25840	2
3	5910	222		011	9379	300	6245	994	4141	93853		32223	2
833		030	8017	010	4740	051	1784		9871				2
5	5992	227	3215		0104	901	7326			1.02 05723	68544		2
857		031	8415	919	5471	050	2871		1339		74704	51397	
71		000	3619	00.3	0841	952		300	7079				2
	1133	000	8825	923		050	8420	987		17608	80867	57797	2
) 005		000		004	6214	903	3971			23555	87035	64201	2
		008	4033	921	1590		9526		8567	29506		70609	2
	1240	00.3	9244	000	6969		5083		4316	35461	99381	77020	2
000		09)	4459	922	2350	900	0644	959	0069		1.06 05560	83436	1
	1357	004	9675	020	7734	0=0	6208	000	5825	47381	11742	89857]
1004	6419		4894	923	3122	956	1774	990	1584	53346		96281	1
	1484	892	0116	004	8512		7344	001	7346	59315		1.10 02709]
000	6551	002	5341	924	3905	957	2917	991	3112	65287	30313	09141	1
	1621	893	0569	00=	9301		8494		8881	71263	36511	15578	1
1	6694		5799		4700	958	4073		4654	77243	42713	22019	1
	1768	891		935	0102		9655	993	0429	83226	48918	28463	1
	6846	205	6268		5506		5241		6208	89212	55128	34912	1
	1926	895		927	0914	960		994	1991	95203	61341	41365	1
	7009		6747		6324		6421			1.03 01196	67558	47823	
	2)94	896	1991	923	1738	961	2016	995	3566	07194	73779	54284	
	7181		7238		7154		7614		9358	13195	80004	60750	
	2272	897	2487	929	2573	962	8215		5154	19199	86233	67219	
5	7365		7739		7996		8819	997	0953	25208	92466	73693	
867		898	2991	93)	3421	963			6756	31220	98702	80171	
71	7558		8251		8849	964	0037	998	2562	37235	1.07 04943	86653	
868	2659	899	3512	931	4280	-	5651		8371	43254	11187	93140	
•	7762		8775		9714	965	1268		4184	49277	17435	99630	
869		900	4040	932	5151	- 00		1.000		55303		1.11 06125	
												42°	

	-	48°		49°	1	50°		51°	1	52°	10	53°		54°	1
0	749	1448	754	7096	766	0444	1777	1460	788	0108	798	6355	809	0170	6
1	1.20	3394	1	9004		2314	1	3290	1.00	1898	1.00	8105		1879	5
2	1	5340	755			4183		5120		3688	1 10	9855		3588	5
3		7285	1.00	2818		6051		6949	-	5477	799			5296	5
4		9229	1	4724		7918		8777		7266		3352		7004	1 5
5	741	1173	1	6630		9785	778			9054		5100		8710	5
6		3115		8535	767		1	2431	789		1	6847		0416	
7	1	5058	756	0439		3517		4258	1.00	2627	4 3	8593	1010	2122	5
ŝ		6999	.00	2343	1.	5382	1	6084		4413	200	0338	11.	3826	5
9		8941		4246	1	7246	1	7909		6198	300	2083		5530	5
10	745			6148	1	9110	1	9733		7983		3827	1 .	7234	5
11	120	2321		8050	760	0973	770	1557		9767		5571		8936	49
12		4760	1	9951	100	2835	1119	3380	700	1550		7314	011	0638	48
13			727		1				199		1 -		011		
	İ	6699 8636	757		-	4697	1	5202		3333	004	9056		2339	4
14	7.0			6751	1	6558		7024		5115	501	0797		4040	4
15	(40	0574	1	5650	=00	8418	# n n	8345	1	6896		2538	-	5740	4
16		2510	1	7548	769		783			8676	1	4278		7439	4
17		4446		9446	1	2137		2485	791		1	6018	040	9137	45
18		6382	753	1343		3996	-	4304		2235	1	7756	812		45
19		8317		3240	1	5853	1	6123		4014	1	9495		2532	41
20	747			5136	İ	7710	1	7940		5792	S02			4229	40
21		2184		7031	1	9567		9757		7569	1 12	2969	1	5925	38
22		4117		8926	1770		781	1574		9345	-	4705		7620	38
23		6049	759	0320	1	3278		3390	792	1121		6449	1	9314	37
24		7981		2713		5132		5205	1	2896		8175	813	1008	36
25		9912		4606		6986	1	7019		4671		9909	1	2701	35
26	748	1842		6493		8340	-	8833	1	6445	893	1642		4393	34
27		3772		8389	771	0692	782	0646	1	8218		3375		6084	38
28	-	5701	760	0280	!	2544		2459		9990		5107		7775	32
29		7629		2170	1	4395	1	4270	793	1762		6838		9466	31
30		9557		4060		6246		6082		3533	1	8569	814	1155	30
81	749	1484		5949	İ	8096		7892		5304	804	0299		2811	29
32		3411		7837	1	9945	1	9702	1	7074		2028		4532	29
33		5337		9724	772	1794	783	1511		8843	1	3756	1	6220	27
34		7262	761	1611		3642	. 55	3320	794	0611	1 .	5481		7906	26
85		9187		3497		5489	1	5127		2379	- L	7211	1	9593	25
36	750	1111		5383	İ	7336		6935		4146		8938	\$15	1278	24
37	.03	3034		7268		9182		8741		5913	805	0664	1.	2953	23
38		4957		9152	779	1027	794	0547		7678	000	2389		4647	22
39		6879	760	1036	1110	2872	101	2352		9111		4113	1	6330	21
40		8800	102	2919		4716		4157	705	1208		5837	1	8013	20
41	751	0721		4802		6559	1			2972		7560		9695	19
	191	2641		6683		8432		5961				9283	816	1376	18
12					77.4			7764		4735	one		1010	3056	17
43		4561	700	8564	114	0244	700	9566		6497	806	1005	10		
14		6480	(63	0445		2086	785	1368		8259	10	2726		4736	16
15	= FO	8398		2325		3926	1	3169	193	0020	-	4446	10.	6416	15
16	152	0316		4204	1	5767		4970	-	1780		6166		8094	14
17		2233		6082		7696		6770		3540	-	7885	1015	9772	13
48		4149		7960		9445	-	8569		5299		9603	817	1449	12
19		6065		9838	775	1283	786	0367	1.5	7058	897	1321	100	3125	11
50		7980	764	1714		3121	-	2165		8815	1 .	8038	(4801	10
51		9894		3590		4957		3963		0572		4754	1.	6476	9
52	753	1808		5465		6794		5759	10	2329		6470	1	8151	8
53		3721		7340		8629		7555		4084		8185		9824	. 7
54		5634		9214	776	0464		9350		5839	Land	9899	818	1497	- 6
55		7546	765	1087		2298	787	1145		7594	808	1612		3169	5
56		9457	. 0.5	2960	1	4132	1	2939		9347	1	3325		4841	. 4
57	754	1368		4832	1	5965	1	4732		1100		5037		6512	3
58	.01	3278	15	6704	1	7797		6524		2853	21	6749	5	8182	C 2
59	- 0	5187	14	8574		9629		8316		4604		8460		9852	1
60		7096	786	0444	777	1460	799	0108		6355	810	0170	810	1520	0
			4	UTTI	. 4 4 4	1400	1100			7°		6°	OIU	AUNU	0

1	48°	49°	50°	51°	52°	53°	54°	′
0	1.11 06125	1.15 03684	1.19 17536	1.23 48972	1.27 99416	1.32 70448	1.37 63819	60
ĭ	12624	10445	24579	56819	1.28 07094	78483	72242	59
2	19127			63672	14776	86524	80672	58
3	25635			71030	22465		89108	57
4	32146					1.33 02624		56
5	38662		52799	85762	37860		1.38 06001	55
6	45182				45566	18750	14458	54
7	51706			1.24 00515	53277	26822	22922	53
8	58235	57896	74015	07900	60995	34900	31392	52
9	64768	64693	81097	15290	68718	42984	£9869	51
0	71305		88184	22685	76447	51075	48353	50
1	77846			30086	84182	59172	56844	49
2	84391		1.20 02373	37492	91922	67276	65342	48
3	90941	91927		44903	99669	75386	73847	47
4	97495	98747	16581		1.29 07421	83502	82358	46
5		1.16 05571	23693	59742	15179	91624	90876	45
6	18616	12400	30810	67169	22943	99753	99401	44
7	17183	19234	37932		22940	1.34 07888	1.90 07094	43
8	23754	26073	45058	74602		16029	16473	42
9	30329	32916	45058 52190	82040	38488	24177	25019	41
9				89484	46270			40
1	36909	39763	59327	96933	54057	32331	33571	39
	43493	46615		1.25 04388	61850	40492	42131	
2	50081	53472	73615	11848	69649	48658	50698	38 37
3	56674	60334	80767	19313	77454	56832	59272	
4	63271	67200	87924	26784	85265	65011	67852	36
5	69872	74071	95085	34260	93081	73198	76440	35
6	76478		1.21 02252		1.30 00904	81397	85034	34
7	83088	87827	69424	49229	68783	89589	93636	83
3	89702	94712	16601	56721	16567		1.4002245	32
9		1.17 01691	23783	64219		1.3506006	10860	31
)	1.13 02944	08496	30970	71723	32254	14224	19483	30
1	09571	15395	38162	79232	40106	22449	28113	29
2	16203	22298	45359	86747	47964	30680	36749	28
3	22839	29207	52562	94267	55828	38918	45393	27
1	29479	36120	59769	1.26 01792	63699	47162	54044	26
5	36124	43038	66982	09323	71575	55413	62702	25
3	42773	49960	74199	16860	79457	63670	71367	24
7	49427	56888	81422	24402	87345	71934	80039	23
3	56085	63820	88650	31950	95239	80204	88718	22
	62747	70756	95883		1.31 03140	83481	97405	21
)	69414	77698	1.22 03121	47062	11946	96764	1.41 06098	20
	76086	84644	10364	54626		1.36 05054	14799	19
2	82761	91595	17613	62196	26876	13359	23506	18
3	89441	93551	24866	69772	34801	21653	32221	17
		1.18 05512	32125	77353	42731	29963	40943	16
	1.14 02815	12477	89389	84940	5066S	38279	49673	15
3	09508	19447	46658	92532	58610	46302	58409	14
	16296	26422		1.27 00135	66559	54931	67153	13
3	22908	33402	61211	07733	74513	63267	75904	12
	29615	40387	68493	15342	82474	71610	84662	11
í	36326	47376	75786	22957	90441	79959	93427	10
í	43041	54370	83081	30578	98414		1.42 02200	9
	49762	61369	9)381		1.32 06393	96678	10979	
3	56486	68373	97687	45835		1.37 05047	19766	S 7 6
	63215		1.23 04997	53473	22370	13423	28561	0
	69949	82395	12313					5
				61116	30368	21806	37862	4
	76687	89414	19634	68765	38371	30195	46171	3
	83429	96437	26961	76419	46381	38591	54988	
3		1.19 03465	34292	81079	54397	46994	63811	2
	96928	10498	41629	91745	62420	55403	72642	1
1	1·15 03684 4 l°	17536	48972	99416 38°	70448 37°	63819	81480 85°	0
		40°	39°			36°		

′		55°		56°		57°		58°	-	59°		60°		61°	
0	819	1520	829	0376	838	6706	84	8 0481	85	7 1678	8 866	0254	874	1 6197	16
1	1	3189		2002		8290		2022		3171		1708		7607	5
ō	1	4856		3628		9873		3562		4668		3161		9016	5
3	1	6523		5252		1455		5102		6164		4614		5 0425	5
4	1:	8189			. 1008					7660				1832	5
4	1			6877		3037	İ	6641		(000		6066			
5 6	1000	9854	1000	8500	i	4618		8179		9155		7517		3239	5
6	820	1519	830	0123	1	6199		9717		0649		8967		4645	5
7		3183		1745	1	7778	849	1254		2148		0417		6051	5
8	i	4846	1	3366	1	9357		2790		3635		1866		7455	5
9	1	6509	1	4987	840	0936	1 .	4325		5127		3314		8859	5
0		8170	1	6607		2513		5860	1 -	6619		4762	87	0263	5
ĭ	!	9832	!	8226	1	4090	İ	7394		81(9		6209		1665	4
2	891	1492	i	9845	1	5666		8927		9599		7655		3067	4
3	021	3152	001	1463	1	7241	020	0459						4468	4
			001		i		000			1088	1000	9100			
4		4811		3080		8816		1991		2576		0544		5868	4
5		6469		4696	841	0390	1 .	3522		4064		1988		7268	4
6		8127		6312	!	1963		5053		5551		3431		8666	4
7		9784		7927	1	3536		65S2		7037		4874	877	0064	1 4
3 ¦	822	1440		9541	-	5108		8111		8523		6315		1462	: 4
9	_	3096	832		1	6679		9639	860			7756		2858	4
0		4751	092	2768	1	8249	851		1000	1491		9196		4254	4
í					1		001		1		cen				
		6405	:	4387		9819		2693		2975	009	0636	i	5649	1 2
2		8059		5991	542	1388		4219	i	4457		2074	-	7043	1 3
3		9712	1	7602	1	2956		5745	1	5989		8512	1	8437	3
1	823	1364		9212	1	4524	1	7269	1	7420	1	4949		9830	. 3
5		3015	833	0822	İ	6091		8793	1	8901		6386	878	1222	3
3 į		4666		2430	1	7657	859	0316	861			7821	1	2613	34
		6316		4038		9222	1002	1839	001	1859	1	9256		4004	38
Βĺ		7965	1	5646	040	0787	1	3360	1	3337	070	0691		5894	39
			1		030		İ		1		1010				
		9614		7252		2351		4881	1	4815	!	2124	1	6783	31
	824	1262	i	8858		8914		6402		6292	1	3557		8171	30
.		2909	834	0463	i	5477	i	7921		7768	1	4989	1	9559	25
1		4556	1	2068	1	7039		9440		9243		6420	879	0946	28
3		6202		3672		8600	853	0958	862	0717		7851	1	2332	27
ı I		7847		5275	811	0161	1	2475	1-1-	2191	1 0	9281		3717	26
5 !		9491	1	6877	011	1720		3992		3664	871	0710		5102	2
	205	1135	1	8479		3279		5508		5137	0.1	2138		(48)	24
- [020		005						1				1	7869	25
		2778	859	0080		4838		7023	1	6608		3566			22
3		4420		1680	i	6395	i	8538		8079		4993		9251	
		6062		3279		7952	854	0051	-	9549	1	6419	880	0633	21
1		7703		4878		9508		1564	S63	1019		7844		2014	20
.		9343		6476	845	1064		3077	1	2488		9269		3394	19
1	826	0983		8074		2618	i	4588		3956		0693		4774	18
3		2622		9670		4172		6099		5423		2116		6152	17
Ĺ		4260	888	1266		5726		7609	1	6889		3538	-	7530	16
		5897	000	2862		7278		9119		8355		4960		8907	15
							ONE	0627		9820			001	0284	14
		7534		4456		8830	000	0027	001	1004		6381	031		
	007	9170		6050		0381		2135	804	1284		7801		1660	13
	827	0806		7613		1932		3643		2748		9221		3035	12
)		2440		9236		3481		5149		4211	873			4409	11
)		4074	837	0827		5030		6655		5673	1	2058	- 1	5782	10
. 1		5708		2418		6579		8160		7134		3475		7155	9
		7340		4009		8126		9664		8595		4891		8527	8
1		8972		5593		9673	856	1168	865	0055		6307		9898	8
	200	0312	-		847	1219	000	2671	1000	1514		7722	000	1269	G
	020	0303	1	7187	041			2011					002		6 5
5		2234		8775		2765	1	4173	1	2973		9137		2638	9
3		3864	838	0363		4309		5674		4430	874		11	4(07	4
7		5493	1	1950		5853		7175		5887		1963		5376	3
3		7121		3536	- 2	7397	1	8675		7344		3375		6743	2
		8749		5121	- 0	8939	857	0174		8799		4786	3	8110	1
	829	0376	1 /4	6706		0481		1673	866	0254		6197		9476	0
		4		3°	010	2°		1°	1000	0°		9°	-	8°	

1	55°	56°	57°	58°	59°	60°	61°	'
0	1.42.81480	1.48 25610	1:53 98650	1.60 03345	1.66 42795	1.73 20508	1.80 40478	60
ĭ	90326		1.54 08460	13769	53766	32149	52860	59
	99178	44231	18280	24082	64748	43803	65256	58
2	1.43 08039	53554	28108	34465	75741	55468	77664	57
1	16906	62884	37946	44858	86744	67144		56
2 3 4 5	25781	72223	47792	55260	97758		1.81 02521	55
6	34664	81570	57647		1.67 08782	90533	14969	54
6	43554	90925	67510	76094	19818	1.74 02245	27430	53
ė		1.49 00288	77383	86525	30864	13969	39904	52
8	61356	09659	87264	96966	41921	25705	52391	51
10	70268	19039		1.61 07417	52988	37453	64892	50
1	79187		1.55 07054	17873	64067	49213	77405	49
2	88114	37822	16963	28349	75156	60984		48
3	97049	47225	26880		86256		1.82 02473	47
4	1.44 05991	56637	36806	49320	97367	84564	15026	46
5	14940	66058	46741		1.68 08489	96371	27593	45
16	23897	75486	56685	70330		1.75 08191	40173	44
7	32862	84923	66639	80850	30765	20023	52767	43
18	41834	94367	76601		41919	31866	65374	42
9		1.50 03821		1.62 01920	53085	- 43722	77994	41
9	59801	13282	96552	12469	64261	55590	90628	40
1		22751	1.56 06542	23629	75449		1.83 03275	39
22	68796	32229	16540	33599	86647	79362	15936	38
3	77798	41716	26548	44178	97856	91267	28610	37
4	86808 95825	51210	36564			1.76 03183	41297	36
5			46590				53999	35
	1.45 04850	60713	56625	65368	20308	15112		34
6	13883	70224		75977	31550	27053	66713	33
7	22923	79743	66669	86597	42804	39007	79442	
8	31971	89271	76722	97227	54069	50972	92184	32
9	41027	98807		1.63 07867	65344	62950		31
0		1.51 (8352	96856	18517	76631	74940	17769	30
31	59161		1.57 66936	29177	87929	86943	30492	29
2	68240	27466	17026	39847	99238	98958	43289	28
3	77326	37036	27126		1.70 10559		56099	$\frac{27}{26}$
34	86420	46614	37234	61218	21890	23024	68923	
5	95522	56201	47352	71919	33233	35076	81761	25
6	1.46 04632	65796	57479	82630	44587	47141	94613	24
7	13749	75400	67615	93351	55953	59218	1.85 07479	23
8	22874	85012	77760		67329	71307	20358	22
9	32007	94632	87915	14824	78717	834(9	33252	21
.0		1.5204261	98079	25576	9.116	95524	46159	20
1	50296		1.58 08253		1.7101527	1.7807651	59080	19
2	59452	23545	18436	47111	12949	19790	72015	18
3	68616	332)0	28628	57893	24382	31943	84965	17
4	77788	42863	38830	68687	35827	44107	97928	16
5	86967	52535	49041	7949 0	47283		1.86 10905	15
6	96155	62215	59261	90304	58751	68475	23896	14
7	1.47 05350	71904		1.6501128	70230	80678	36902	13
8	14553	81602	79731	11963	81720	92893	49921	12
9	23764	91308	89979	22808		1.79 05121	62955	11
0	32983	1.53 01023		33663	1.72 04736	17362	76003	10
1	42210	10746	10505	44529	16261	29616	89065	9
2	51445	20479	20783	55405	27797		1.87 02141	8
3	60688	3:219	31070	66292	39346	54162	15231	7
64	69938	39969	41366	77189	50905	66454	28336	6
55	79197	49727	51672	88097	62477	78759	41455	5
56	88463	59494	61987	99016	74060	91077	54588	4
57	97738	69270		1.66 09945		1.80 03408	67736	3
18	1.48 07021	79054	82647	20884	97260	15751	80898	2
59	16311	88848	92991		1.78 08378	28108	94074	1
30	25610		1.60 03345	42795	2.508		1.88 07265	Ô
1	34°	33°	32°	31°	30	29°	28°	1
	1 04	()()	04	16	011	20	1 40	

	62°	63°	64°	65°	66°	67°	68°
0	882 9476	891 0065	898 7940	906 3078	913 5455	920 5049	927 1839
ĭ	883 0841	1385	9215	4307	6637	6185	2928
S	2206	2705	899 0489	5535	7819	7320	4016
3	3569	4024	1763	6762	9001	8455	5104
1	4933	5342	3035	7989	914 0181	9589	6191
ξ.	6295	6659	4307	9215	1361	921 0722	7277
5	7656	7975	5578	907 0440	2540	1854	8363
7	9017	9291	6848	1665	3718	2986	9447
	884 0377	892 0606	8117	2888	4895	4116	928 0531
)	1736	1920	9386	4111	6072	5246	1614
)	3095	3234	900 0654	5333	7247	6375	2696
ĺ	4453	4546	1921	6554	8422	7504	3778
2	5810	5858	3188	7775	9597	8632	4858
3	7166	7169	4453	8995	915 0770	9758	5938
į	8522	8480	5718	908 0214	1943	922 0884	7017
5	9876	9789	6982	1432	3115	2010	8096
3	885 1230	893 1098	8246	2649	4286	3134	9173
7	2584	2406	9508	3866	5456	4258	929 0250
3	3936	3714	901 0770	5082	6626	5381	1326
	5288	5021	2031	6297	7795	6503	2401
)	6639	6326	3292	7511	8963		3475
	7989	7632	4551	8725		7624	4549
	9339	8936	5810	9938	916 0130 1297	8745 9865	5622
	886 0688	894 0240		909 1150		923 0984	6694
ŀ	2036	1542	7068	2361	2462 3627		7765
	3383	2844	8325			2102	8885
;	4730		9582	3572	4791	3220	
		4146	902 0838	4781	5955	4336	9905
	6075	5446	2092	5990	7118	5452	930 6974
3	7420	6746	3347	7199	8279	6567	2042
	8765	8045	4600	8406	9440	7682	31(9
	887 0108	9344	5853	9613	917 0601	8795	4176
	1451	895 0641	7105	910 0819	1760	9938	5241
	2793	1938	8356	2024	2919	924 1020	6306
3	4134	3234	9606	3228	4077	2131	7370
F	5475	4529	903 0856	4432	5234	3242	8434
í	6815	5824	21(5	5635	6391	4351	9496
;	8154	7118	3553	6837	7546	5460	931 0558
	9492	8411	4600	8038	8701	6568	1619
3	888 0830	9703	5847	9238	9855	7676	2679
)	2166	896 (994	7093	911 0438	918 1009	8782	3739
	8503	2285	8338	1637	2161	9888	4797
l	4838	3575	9582	2835	3313	$925 \ 0993$	5855
	6172	4864	904 0825	4033	4464	2097	6912
	7506	6153	2068	5229	5614	3201	7969
	8839	7440	3319	6425	6763	4303	9024
	889 0171	8727	4551	7620	7912	5405	932 0079
;	1503	897 0014	5792	8815	9060	6506	1133
	2834	1299	7032	912 0008	919 0207	7606	2186
	4164	2584	8271	1201	1353	8706	3238
	5493	3868	9509	2393	2499	9805	. 4290
	6822	5151	905 0746	3584	3644	926 6902	5340
	8149	6433	1983	4775	4788	2000	6390
	9476	7715	3219	5965	5931	3096	7489
	890 0803	8996	4454	7154	7073	4192	8488
	2128	893 0276	5688	8342	8215	5286	9535
	3453	1555	6922	9529	9356	6380	933 0582
,	4777	2834	8154	913 0716	920 0496	7474	1628
	6100	4112	9386	1902	1635	8566	2673
	7423	5389	906 0618	3087	2774	9658	3718
	8744	6665	1848	4271	3912	927 0748	4761
1	891 0065	7940	3078	5455	5049	1839	5804
	27°	26°	25°	24°	23°	220	21°

′	62°	63°	64°	65°	66°	67°	68°	
0	11.88 07965	1:96 26105	2.05 02028	2.14.45069	2.24 60368	2:35 58524	2.47 50869	6
1	20470							5
2	33690		33349	77683	95580			5
3	46924		48531	9.1091	2.25 13221		2.48 13190	5
	60172			2.15 10378	30885			5
4	73436		78950	26757	48572			5
5			94187	43156	66283	73316		5
6		1.97 11077		59575	84016			5
7	1.89 00006	39531	2.06 (9442				2.49 17660	59
8	13313		24716					5
9	26635	53782	40008	92476	19554	31068		
0	39971	68050		2.16 08958	37357	50372		50 49
1	53322	82334	70646	25460	55184	69703		
2	66688	96635	85994	41983	73035		2.50 01784	48
3		1.98 10952		58527		2.38 08444		4
4	93464	25286	16743		2.27 08807	27855	44029	40
5	1.90 06874	39636	32146	91677	26729	47293		4
6	20299	54003		2.17 08283	44674	66758	86398	44
7	33738	68387	63007	24011	62643		2.51 07629	45
8	47193	82787	78465	41559		2.39 05769	28890	42
9	60663	97204	93942	58229	98653	25316	50183	41
0		1.99 11637	2.08 09438		2.2816693	44889	71507	4(
1	87647	26087	24953	91631	34758	64490		38
2	1.91 01162	40554	40487	2.18 08364	52846		2.52 14249	38
3	14691	55038	56039	25119		2.40 03774	35667	37
4	23236	69539	71610	41894	89096	23457	57117	36
5	41795	84056	87200	58691	2.2907257	43168	78598	35
6	55370	98591	2.09 02809	75510	25442	62906	2.53 00111	34
7	68960	2.00 13142	18497	92349	43651	82672	21655	38
8	32565	27710	34085	2.19 09210	61885	2.41 02465	43231	32
9	96186	42295	49751	26093	80143	22286	64839	31
0	1.92 09821	56897	65436	42997	98425	42136	86479	30
1	23472	71516	81140	59923	2 30 16732	62013	2.54 08151	29
$\tilde{2}$	37138	86153	96864	76871	35064	81918	29855	28
3		2.01 00806	2.10 12607	93840		2.42 01851	51591	27
4	64516	15477	25360	2.20 10831	71801	21812	73359	26
5	78228	30164	44150	27843	90206	41801		25
6	91956	44869	59951		2.31 08637		2.55 16992	24
7	1.93 05699	59592	75771	61934	27692	81864	38858	28
8	19457	74331	91611	79012		2.43 01938	60756	22
9	33231		2 11 07470	96112	64076	22041		21
0		2.02 03862	09940	2.21 13234	82606		2.56 04649	2
1	60825	18654	39246	20279	2.32 01160	62331		19
2	74645	33462	55164	47545	19740	82519	48674	18
3	88481	48289		64733		2.44 02736	70735	17
$^{\circ}_{4}$	1.94 02333	68133	71101	81944	56975	22982	92830	16
5	16200		$87057 \\ 2.1203034$	99177	75680		2.57 14957	15
6	30083	92873	103034	2.22 16432	94311	63559	37118	14
7		2.03 07769				83S91	59312	18
8	57896	22683	35046		2.33 13017	2.45 04252	81539	$\frac{16}{12}$
			51082	51009		2-40 04202	2.58 03800	11
9	71826	37615	67137	68331	50505			10
0	85772	52565	83213	85676	69287	45061	26094	10
1	99733	67532	99308	2.23 03043	88095	65510	48421	
2	1.9513711		2 13 15423		2.34 06928	85987	70782	8
3	27704	97519	31559	37845		2.46 06494	93177	7
4		2.0412540	47714	55280	44672		2.59 15606	
5	55739	27578	63890	72738	63582	47596	38068	-
6	69789	42634	89085	90218	82519	68191	60564	4
7	83837	57708			2.3501481	88816	83095	5
8	97910	72800	2.14 12537	25247		2.47 09470	2.60 05659	2
9	1.96 12000	87910	28793	42796	39483	80155	28258	1
0	26105	2.05 03038	45069	60368	58524	50869	50891	(
1	27°	26°	25°	24°	23°	22°	21°	1
		20	20		2017			

476

1	6	9°		70°		71°		72°		73°	1	74°		75°	1
0	933	5804	939	6926	945	5186	951	0565	956	3048	961	2617	96	5 9258	60
1		6846		7921	1	6132		1464		3898		3418		6 0011	59
3	1	7888		8914		7078	1	2361	1 0	4747	1	4219	1	0762	58
3	5	3928		9917		8023		3258	1	5595		5019		1518	57
4		9968	940	6899		8968	1	4154		6443		5818		2263	56
5	934		9±0	1891		9911		5050		7290		6616		3012	55
					040	0054	1			8136					
6	1 4	2045		2881	940	0854		5944				7413		3761	54
7		3082		3871		1795		6838		8981		8210		4508	53
8		1119		4860		2736		7731		9825	1	9005		5255	52
9		5154		5848	1	3677	1	8623	957		1	9800		6001	51
10		3189		6835		4616		9514	1	1512	962	0594		6746	50
11	7	223		7822		5555	952	0404	-	2354	1 0	1387	1	7490	49
12	8	3257		8808		6493	1	1294		3195	1 7	2180		8234	48
13	C	289		9793	1	7430		2183		4035		2972		8977	47
14	935 0	321	911	0777		8366		3071		4875	1	3762	1	9718	46
15		352	UIL	1760		9301		3958	1	5714	1 9	4552	967		45
16	9	382		2743	047	0236	1	4844		6552		5342	100	1200	44
0		412		3724	3-11	1170	1	5730		7389		6130	1	1939	43
17			1.1					0100				0130			
8		140		4705		2103		6615		8225		6917		2678	42
9		468		5686		3035		7499	1	9060		7704		3415	41
0		495		6665		3966	-	8382		9895		8490		4152	40
1		521		7644		4897		9264	958	0729	1	9275	-	4888	39
2	8	547		8621		5827	953	0146		1562	963	0060		5624	38
3	9	571	-	9598		6756		1027	-	2394	1	0843		6358	37
4	936 0	595	942	0575		7684		1907	1	3226	1	1626		7692	36
5		618		1550		8612		2786	1	4056		2408		7825	35
6		641		2525		9538		3664		4886		3189		8557	34
7		662		3493	0.19	0464		4542	1	5715		3969		9288	33
8	0	683		4471	343	1389		5418	1	6543			968		32
												4748	903		
9	9	703		5114		2313		6294	1	7371		5527		0748	31
0	6	722		6415		3237		7170		8197	-	6305	1	1476	30
1		740		7386		4159		8044		9023		7081		2204	- 29
2	8	758		8355		5081	1	8917	i	9848	1	7858		2931	28
3	9	774		9324		6002		9790	959	0672		8633		3658	27
4	937 0	790 '	943	0293	-	6922	954	0662		1496	0.0	9407		4383	26
5	18	806		1260		7842		1533	1	2318	964	0181		5108	25
6	2	820		2227		8760		2403		3140	1	0954		5832	24
7		S33		3192	1	9678		3273		3961		1726		6555	23
8		846		4157	040	0595		4141		4781		2497	1	7277	22
9				5122	040	1511		5009		5600		2491	12	7998	21
	9	85S		0122		1011		5000				3268			
0	6	869		6085		2426		5876		6418		4037		8719	20
1		880		7048		3341		6743		7236		4806	0.55	9438	19
2		889		8010		4255		7608		8053		5574	969	0157	18
3		898		8971		5168		8473		8869		6341	100	0875	17
		906		9931		6080		9336		9684		7108		1593	16
5				0890		6991	955	0199	960	0499		7873		2369	15
6		920		1849		7932	0	1062		1312		8638		3025	14
7		925		2807		8812		1923		2125		9402		3740	13
8	11	930		3764		9721	29	2784		2937	965	0165	16.3	4453	12
9		934			950			3643	0,0	3748		0927		5167	11
0		938		5675		1536	6.00	4502		4558		1689		5879	10
				0000											
1		940		6630		2443		5361		5368		2449		6591	9
2		942		7584		3348		6218		6177		3209	110	7301	8
3	9	943		8537		4253		7074		6984		3968		8011	7
		943		9489		5157		7930	100	7792		4726		8720	6
5				0441		6061	- 0	8785		8598	(0)	5484	1	9428	5
6		940		1391		6963		9639	OBA	9403			970	0136	4
7	9	938		2341		7865	956	0492	961	0208		6996		CS42	3
8		935		3290		8766	000	1345		1012		7751		1548	2
9		931		4238	12	9566	15	2197		1815		3505		2253	1.
0		926						3048		2617		925S			7.
U				5186	951	0000	-		_	2011		205		2957	0.
	20		1	90.	1	S°	1	7°	1	6°	1	5°	1	4°	

'	69°	70°	71°	72°	73°	74°	75°	,
0	2.60 5089	1 2.74 74774	2.90 42109	3.07 76835	3.27 08526	3.4874144	3.73 20508	60
ĭ	7355			3.08 07325		3.49 12470		59
2		9 2.75 24588		37869	76715		3.74 07546	58
3	2.61 1899		2.91 24649		3.28 1(907			57
4	41760			99122		3.50 27916		56
5	6457			3.09 29831			3.75 38815	55
6			2.92 07610		3.29 13876			54
7	2.62 10286			91416	48330		3.76 26807	53
8	33196			3.10 22291				52
9	56141	2.77 00199	90995		3.30 17438			51
10	79121		2.93 18885	84210		6(938		50
11	2.63 02136			3.11 15254			3.78 03951	49
12	25186				3.31 21598	89251	48481	48
13		2.78 01440		775(9	56452	78528	93109	47
14	71392			3.12 (8722		3.54 17886		46
15	94549		59350		3.32 26362	57325	82661	45
16	2.64 17741			71317	61419		3.89 27585	44
17			2.95 15453			3.55 36449	72669	43
18	64232		43727		3.33 31736		3.81 17733	42
19	87531			65639		3·56 15900		41
20	2.65 10867		2.96 00422		3.34 02326		3.82 08281	40
1	24000	2.80 05901		3.14 28807	37724	95681	53707	59
22								
3	57645 8108 9	31646 57433	57312 85831	60478	3.25 08728	3 57 35696	99233 3·83 44861	$\frac{38}{37}$
	2.66 04569		2.97 14399 8					
4						3.58 15975	90591	36
5		2.81 09134	43016	55840	80008		3.84 36424	35
6	51638		71683		3.36 15753	96590		34
7	75227		2.98 00400 8			3 59 37024		33
8	98853		29167	51728	87453	77543	74537	32
9		2.82 13045	57983		3.37 234(8)			31
0	46215	39129		17 15948	59434	58835	67131	30
1	69951		2.99 15766	48147	95531	996(9)	3.87 13584	29
2	93725	91426	44734	80406	3.38 31699	3.61 40469	60142	28
		2.83 17639		18 12724	67938	81415	3.88 06805	27
4	41383		3.0002820		3.39 04249 5	3.62 22447	53574	26
5	65267	70196	31939	77540	40631		3.89 00448	25
6	89190	96539	611(93	19 10039		3.63 04771	47429	24
7	2.69 13149	2.8422926	90330	42598 8	3 40 13612	46064	94516	23
8	37147		3.01 19603	75217	50210		3.90 41710	22
9	61181	75831		20 07597		3.64 28911	89011	21
0		2.85 02349	78301	40638 8	3 41 23626		3 91 36420	20
1	2.70 09364	28911	3.02 07728	73440	60443 8	3.65 12111	83937	19
2	33513	55517	37207 3	21 06304	97333	53844.8	3.92 31563	18
3	57699	82168	66737	S9228 8	3.42 34297	95665	79297	17
4		2.86 08863	96320	72215	71334 8	3.66 37575	3.93 27141	16
5	2.71 06186	35602	3.03 25954 3	22 05263 8		79575	75094	15
6	30487	62386	55641	38373.		67 21665	3.94 23157	14
7	54826	89215	85381	71546	82991	63845	71331	13
3			3.04 15173 3					12
	2.72 03620	43007	45018	38378	57635	48475	68011	11
0 1	28076	69970	74915	71438	95120		96 16518	10
1	52569		3.05 04866 3				65137.	9
2		2.88 24033	34870.	38346	70315		97 13868	8
	2.73 01674	51132	64928		46 08026 3		62712	7
1	26284	78277		25 05508	45813		98 11669	6
5		2.89 05467 8		39184		71 04558	60739	5
6	75623	32704	55421		47 21616		99 09924	4
	2.74 00352	59983		26 06728	59632	90658	59223	3
8 1	25120		3.07 16020	40596		·72 33847 4		2
9		2.90 14688	46400		91126 3	77131	58165	1
9	74774	42109		27 08526.		73 20508 4		0
,	20°	19°	18°					Ų
	7/11	14	18	17°	16°	15°	140	

′	76°	77°	78°	79°	80°-	81°	82°	
0	970 2957	974 3701	978 1476	981 6272				6
1	3661	4355	2080	6826				5
2	4363	5008	2684	7380				ő
3	5065	5660	3287	7933				5
4	5766	6311	3889	8485			9904 293	5
5	6466	6962	4490	9037				5
6	7165	7612	5090	9587	9851 693	599		5
7	7863	8261	5689	982 0137	593			5
8	8561	89.9	6288	0686	9852 692		893	5
9	9258	9556	6886	1234	590	945		5
0	9953	975 0203	7483	1781	9853 087	9881 392		5
1	971 0649	0849	8779	2327	583	\$38	9907 083	4
2	1343	1494	8674	2873	9854 079	9882 284	478	4
3	2036	2138 2781	9268	3417 3961	9855 068	728	873	4
4	2729		9362			9883 172	9908 266	4
ŏ	3421 4112	3423	379 0455	4504	9856 053	9884 057	659	4
6	4802	4065 4706	1047 1638	5046 5587	544	498	9909 051 442	4
8	5491	5345	2228	6128	9857 635	939	832	4
9	6180	5985	2818	6668	524	9885 378	9910 221	45
0	6867	6623	3406	7206	9858 013	817	610	4:
1 .	7554	7260	3994	7744	501	9886 255	997	39
2	8240	7897	4581	8282	988	692	9911 384	38
3	8926	8533	5167	8818	9859 475	9887 128	770	37
1	9610	9168	5752	9353	960	564	9912 155	36
5	972 0294	9802	6337	9888	9860 445	993	540	3
6		976 0435	6921	983 0422	929	9888 432	923	34
7	1658	1068	7594	6955	9861 412	865	9913 306	39
3	2339	1699	8086	1487	894	9389 297	688	32
9	3020 -	2330	8668	2019	9862 375	728.	9914 069	31
)	3699	2930	9247	2549	856	9890 159	449	30
1	4378	3589	9827	- 3079	9863 336	588	828	29
2	5056	4218	980 0405	3608	815	9891 017	9915 206	28
3	5733	4845	0983	4136	9864 293	445	584	27
1	6409	5472	1560	4663	770	872	951	26
5	7084	60 9 S	2136	5189	9865 246	9892 298	9916 337	25
3	7759	6723	2712	5715	722	723	712	24
7	8432	7847	3286	6239	9366 196	9893 148	9917 086	23
3	9105	7970	3860	6763	670	572	459	22
9	9777	8593	4433	7286	9867 143	994	832	21
	973 0449	9215	5005	7808	615	9894 416	9918 204	20
L	1119	9836	5576	8330	9868 087	838	574	19
2	1789 2458	977 0456 1075	6147	8850 9370	9869 027	9895 258	944 9919 314	18
3	3125	1693	$6716 \\ 7285$	9880	9869 027 496	9896 096	682	17
5	3793	2311	7858	984 0407	964	514	9920 049	16
3	4459	2928	\$420	0924	9370 431	931	416	15 14
7	5124	3544	8986	1441	897	9897 347	782	13
3	5789	4159	9552	1956	9871 363	762	9921 147	12
	6453		981 0116	2471	827	9898 177	511	11
)	7116	5387	0680	2985	9872 291	590	874	10
ί	7778	5999	1243	3498	754	9899 003	9922 237	9
2	8439	6611	1805	4010	9873 216	415	599	8
3	9100	7222	2366	4521	678	826	959	7
í	9760	7832	2927	5032	9874 138	9900 237	9923 319	6
	974 0419	8112	3486	5542	598	646	679	5
3	1077	9050	4045	6050	9875 057	9901 055	9924 037	4
7	1734	9658	4603	6558	514	462	394	3
3	2390	978 0265	5169	7066	972	869	751	2
)	3046	0871	5716	7572	9876 428	9902 275	9925 107	1
)	3701	1476	6272	8078	883	681	462	0
	13	12°	11°	10°	9°	8°	70:	1

1	76°	77°	78°	79°	80°	81°	82°	1
0	4-01 07809	4.33 14759	4.70 46301	5.14 45540	5.6 712818	6.3 137515	7.1 158697	60
1	57570		4.71 13686					
2		4.34 30018		5.16 05818				
3	57440		4.72 49012		5.7 003668			
4			4.73 16954				759487	56
5		4.36 04003		5.18 48035			912456	5
6	4.04 08125	62293	4.74 53401			858665	7.2 066116	54
67	58590	4.37 20731	4.75 21907	5.20 10738	895988		220422	58
8.	4.05 09174	79317			494889	6.4 102633	375378	52
9	59877	4:38 38054	4.76 59490	5.21 74428	594122		530987	51
10	4.06 10700	96940	4.77 28568	5.22 56647	693688		687255	50
[1		4.39 55977		5.23 39116	793588		844184	49
2			4.78 67300		893825		7.3 001780	48
3	63892	74504	4.79 36957	5.25 04809	994400		160047	47
4	4.08 15199			88035	5.8 095315		318989	46
5	66627	93641		5.26 71517	196572		478610	45
6	4.09 18178					6.5 696981	638916	44
7			4.82 17536		400117	223396	799909	43
8	4.10 21649	73500		5.29 23505	502410	350293	961595	42
9			4.83 59010		605051		7.4 128978	41
0	4.11 25614		4.84 30045	92793	708042	605538	287064	40
1		4.45 54756	4.85 01282		811386		450855	39
2	4.12 30079	4.46 15489	72719	5.32 63131	915084	862739	615357	38
3	82499		4.86 44359				780576	37
4	4.13 35046					6.6 121919	946514	36
5	87719	98636		5.35 20626	228322		7.5 113178	35
6	4.14 40519				339455	383100	280571	34
7		4.49 21532		93630	438952	514449	448699	33
8	4.15 46501		4.90 05620		544815	646307	617567	32
9		4.50 45072		5.38 67718	651045	778677	787179	31
0	4.16 52998	1.51 07085	1.01 51570	5.20 55179	757644	911562	957541	30
1	4.17 06440		4.92 24859			6.7 044966		29
2		4.52 31601		5.41 30906	971957	178891	300533	28
3	4.18 13713		1.93 72068				473174	27
4			1.94 45990		187772	448318	646584	26
5	4.19 21510	1.54 10609	1.05 90195	96592	296247	583826	820769	25
6	75606	82608		5.44 85715	405103	719867	995735	24
7	4.20 29835				514343		7.7 171486	23
8			1.97 43817		623967	993565	348028	22
9	4.21 38690		1.98 18813			6.8 131227	525366	21
0		1.57 36287	01097	5.48 45052	844381	269437	703596	20
	4.22 48080		1.99 69159	5.49 25604	955174	408196	882453	19
	4.23 02977		5.00 45111				7.8 062212	18
3			501 20984		177943	687378	242790	17
1	4.24 13177	92680	97078	5.59.09005	280923	827807	424191	16
5	68489	1-60 57207	1.02 72205	5:53 0079.1	402303	968799	606423	15
6	68482 4.25 23923	1.61 21908	5.03 49935	92740		6.9 110359	789489	14
7	79501	86789	5.04 26700	5.54 85052	628272	252489	973396	13
	4.26 35218				741865		7 9 158151	12
9		1.63 17056		5.56 70574	855867	538478	348758	11
5	4.27 47066	89457	506 58859	5.57 62726	970970	682335	536224	10
1	4·27 47066 4·28 03199	1.64 48024	5.07 86025	5:58 57809	6.2 (85106	8267S1	717555	9
2	59479	-65 18789	008 13923	5/59 51191	200347	971806	905756	8
	4.29 15885	79721		5.60 45247		7.0 117411		7
1			5.09 70426		432086	263662	284796	6
	4.30 29136				548588	410482	475647	5
6	85974		5.11 27855		665515	557905	667394	4
	4.31 42955						860042	3
	4.82 00079	1.60 10000		5.65 20516	782868	705934	81 (53599	3
9	57347	79100	5.13 65763		900651	6 10200 Tr	248071	1
	4.33 14759	1.70 46901	5-14 15540	5-67 10010			443464	0
4	13°	12°	11°	10°	137515	158697 8°	449404	1
	10	12	11	10	9°	8	1	

′	8	33°	1	84°	8	55°	8	6°	8	37°	8	8°	8	9°
0	9925	462	994	219	9961	647	997	641	998	6 295	9999	908	929	8 477
1		816		523	9962	200		843		447	9994	009		. 527
2	9926			825		452	9970	045		598)	577
3	1	521	9940	127	1	704		245		748				625
4		873	1	428		954		445		898		308		673
5	9927	224		729	9963	204		645	998	7 046		405		720
6		573	9947	028		453		843	1	194		502	-	766
7	1	922		327		701	9977	.040		340		598		812
8	9928	271		625		948		237		486		693		856
9	1	618		921	9964	195		433		631				900
0		965	9948	217		440		627	1	775		881		942
1	9929	310		513	1	685		821		919		974		984
2		655		807		929	9978	015	9988	061	9995	066	9999	025
3		999	9949	161	9965	172		207		203		157		065
4	9930	342		393	1	$\frac{172}{414}$	1	399	1	344		247		105
5	1	685		685		655		589		484		336		143
6	9931	026		976		895		779	1	623	111	424		181
7	1	367	9950		9966		1	968		484 623 761	100	512		010
8		706	1	556		374	9979	156		899	1	599		254
9	6932			844	1	612		343	9989	085		684	1	289
0		384	9951			849		530		171		770	-	254 289 323
1		721		419	9967	095	1	716		306		854	-	357
2	9933	057		705		521	1	900	i	440		937		389
3		393		990	1.	555	9980	084	1	573	9996	020		421
4		728	9952			789	-	267 450 631	1	706	1	101		452
5	9934			557	9968	$\begin{array}{c} 022 \\ 254 \end{array}$		450	1	837		182		482
6	10	395		840		254	1	631	1	968	1	262		511
7		727	9953	122		485	1	811	19990	698		341	1	539
8	9935			403 683 962		715		991		227	111	419		567
9		389		683		945	9981	170		355		497		593
0		719			9969		0001	348	1	482		573	1	619
1	9936		9954			401	1	525		6.9	1	6.9		644
2		375				628		701	l	734	1	724	1	668
3		703		795		854		877	1	859		793 871		602
4	9937		9955	070	9970	080	9982	052		983	100	871		714
5		355		345		304		225	9391	106		943	1	736
6		679		020		528		398		228	9997	615		756
7	9938	003	1	893		750 972		570		350	1111	CS6	į .	776
8		326	9956	165	-	972	1	742		470	- 53	156		795
9		648		437	9971	193		912	1	990		224		813
0		960		708			9983			709		292		831
	9939			978		633		250		827		224 292 360 426	111	847
2		610	9957			851		418		944		426	1	863
3		928		515	9972	069		485	9992			492 556		878
	9940		1	783		286		751		176		556		892
5			9958			502	000	917		290		620 683		905
3		880		315			9984			404				917 928
	9941			580	00.00	931		245		517		745	100	928
3		510			9973			408		629		807	1.2000	939
)			9959			357		570		740		867	1.00	949
	9942			370		569		731		851		927	1 01	958
1		448		631		780		891		960		986		966
1		760		892			9985	050	9993	069	9998	044		973
	9943		9960		9974	199		209	- 0	177 284	- 7	101		979
١		379	100	411		408		367		284		157	100	985
5		688		669		615		524		390 495		213		989
3		996		926		822		680	-	495		267	100	993
7	9944	3 J 3	9961	183	9975	028	1	835		600		321	100	996
3		609	1.0	438		233		989		704	-	374		993
)		914		693		437	9986	143		800		420	11 THERE	UUU
)	9945 6	219		947		641.	9986 3	295		908	The s	477	0°	000
	6	•	5	0	4	0	3	0	2	0	1'	o .	0°	41

,	83°	84°	85°	86°	87°	88°	89°	'
0	8.1 443464	9.5 143645	11.430052	14:300660	19.081137	28.636253	57.289962	60
1	639786			360696				
2	837941	679068		421230				
3	8.2 035239		546093	482278				
4		9.6 220486	585294	543833		624499		
5	434485	493475	624761	605916				
6	635547	768000	664495	668529		30.144619		
7		9.7 044075	704500	731679				
8	8.3 040586	321713 600927	744779 785333	795372 859616		683307 959928	66.105478	
10	244577 449558	881732	826167	924417		31 241577	67·401854 68·750087	51 50
11		9.8 164140	867282	989784	325308	528392		
12	862519	448166		15.055723	446486	820516		
13	8.4 070515	733823	950370	122242		32.118099	73.138991	47
14		9.9 021125	992349	189349	693220			
15	489573		12.034622	257052	818828	730264	76.390069	45
16	700651	600724	077192	325358	945966			44
17	912772	893050	120062	394276	21.074664	366194		43
18	8.5 125943	10.018708	163236	463814	204949	693509	81.847041	42
19	340172	048283	2)6716	533931		24.027303	83.843507	41
20	555468	078031	250505	604784	470401	367771	85.939791	40
21	771838	107954	294609	676233	605630	715115	88.143572	39
22	989290	133054	339028	748337	742569	35.069546	80.463336	38
23	8.6 207833	168332	383768	821105	881251	431282	82.908487	37
24	427475	193789	423831	89 1545	22.021710	800553	85.489475	36
25	648223	229428	474221	968667	163980	36.177596	88.217943	35
26	870088	26)249	519942	16 043482	308097	562659	101.10699	34
27	8.7 093077	291255	565997	118998	454096	956001	104.17094	33
28	317193	322447	612390	195225	692315	37.357892	107.42648	32
29	542461	353827	659125	272174	751392	768613	110.89205	31
30	768874	385397	706205	349855	903766	38.188459	114.58865	30
31	996446	417158	753634	428279	23.057677	617738	118.54018	29
32	8.8 225186	449112	801417	507456	213666	89 056771	122.77596	28
33	455103	481261	849557	587396	371777	505895	127.32134	27
34	686206	513697	893058	668112	532052	965460	132.21851	26
35	918505	546151	946924	749614	694537	40.435837	137.50745	25
36	8.9 152009	578895	993160	831915	859277	917412	143.23712	24
37 38	386726		13.045769	915025	24.026320	41.410588	149·46502 156·25908	$\frac{23}{22}$
38 39	62266S 859343	641992	095757	998957	195714	91579)	163.70019	$\frac{22}{21}$
40	9.0 098261	678348 711913	146127 196883	17:083724 169337	367509 541758	42·433464 964077	171.88549	20
41	337933	745687	248931	255869		43.508122	180.93220	19
42	578867	779373	299574	343155	897826	44.066113	190.98419	18
43	821074	813872	351518	431385	25.079757	638596	202-21875	17
44	9.1 064564	848283	403867	520516	264361	45.226141	214.85762	16
45	309348	882921	456625	610559	451700	829351	229.18166	15
46	555436	917775	509799	701529	641832	46.448862	245.55198	14
47	8)2838	952850	563391	793442		47.085343	264.44080	13
48	9.2 051564	988150	617409	886310	23.030736	739501	286.47778	12
49	301627	11.023676	671856	980150	229638	48.412084	312.52137	11
50	553935	059431		18.074977	431600	49.103881	343.77371	10
51	805802	095416	782060	170807	636690	815726	381.97099	9
52	9.3 059936	131635	837827	267654	814984	50.548506	429.71757	8
53	315450	168089	894045	365537	27:056557	51.303157	491.10600	7
54	572355	204780	950719	464471	271486	52.080673	572.95721	6
55	830663		14.007856	564473	489853	882109	687·54887	5
56	9.4090384	278885	065459	665562	711740	53.708587	859.43630	4
57	351531	316304	123536	767754	937233	54.561300	1145.9153	3
58	614116	353970	182092	871068	28.166422	55.441517	1718.8732	2
59	878149	391885	241134	975523	899397	56.350590	8437.7467	1
60	9.5 143645	430052		19.081137	636253	57.289962	Infinite.	0
/	6°	5°	4°	3°	2°	1°	0°	,

				a const		
200	780	170		File	1 7/6	-20
m November						
00 NO.						I' LI LIE I
				12.00		1 1 1
100	0.00					
					17 20	
					6 2	1 2 2 1
				DOM:	CONTRACT	
				1500		
107 3 100 173 3	1000	700		- DOM: -	- 0000	TVALS TO
0 - 20 /	51 30 1		2721	100	35/81	Train Li
						0.
				DE LIVE	174	STORTH -
			1111-11-	MARKET	L. CONTRACTOR	
					- 3000	104
		4				11000
		- 1			THE STREET	
			1/2 1/1	0.00	1000	
			147		Mod	- 012
18						
					17 7 7	11000
	200				0.1-01	9173
					William Pd	1 10
				41000	2570	
			-0.00	10 11	17.11.1	7000
					The state	Tu G
						1000
				1 54	101344	711/42 11.
				19.76	1077016	
		1 Call			NAME OF	105 6
			200	100	THE 20	
and the second						1 100 71
	100	A				Janes . Ti
Philosophical Land		Late of				74 100 40
CT						
mil 40-93-1			11.8	Tr 10	10.00	
3 04-04-1			. 111		917	1 200
F 185, 60 .						7 7 10 10
at AMERICA						A 12 TOLI
15 -0100000						1 1 6
			W-170		0111111 17-07-0	0 -0 -07
F. A.B. ATTACHMENT			115	188	A STATE OF	= - 4 grains
THE TAXABLE PARTY			of the State of	Carry.	ACT 100 / /	1 10 10
W. Laviphy				97.0		Credit Por
2000			2 = 2	1000		- De la Br
	0.000		T. P. LE	7.00		F 50
2 0001-000		11 7	10	C0016	FE LAT	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED
1 1 5 5			375 CM	0.00000	100	41 /41 - 40
1000	7 7	-195	61 OL	No. por H	-171-000	- 200
						THE WALL
E STATE OF	1 2 2 2		Sec. 1	165.00	HAND	172134 16
7		30 1-2		EUO BE	Union V	111111111111111111111111111111111111111
The second of			Sin			
	17.63	1111111	William.	109	2017/4	MOUNT ON NO
11		5 21 1		- 1	- 0	- 0
				12		

LOGARITHMS OF NUMBERS

FROM 1 TO 10,000.

N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0.000000	26	1.414973	51	1.707570	76	1.880814
2	0.301030	27	1.431364	52	1.716003	77	1.886491
3	0.477121	28	1.447158	53	1.724276	78	1.892095
4	0.602060	29	1.462398	54	1.732394	79	1 - 897627
5	0.698970	30	1.477121	55	1.740363	80	1.903090
6	0.778151	31	1.491362	56	1.748188	81	1.908485
7	0.845098	32	1.505150	57	1.755875	82	1.913814
8	0.903090	33	1.518514	58	1.763428	83	1.919078
9	0.954243	34	1.531479	59	1.770852	84	1 924279
10	1.000000	35	1.544068	60	1:778151	85	1.929419
11	1.041393	36	1.556303	61	1.785330	86	1.934498
12	1.079181	37	1.568202	62	1.792392	87	1.939519
13	1.113943	38	1.579784	63	1.799341	88	1 . 944483
14	1.146128	.39	1.591065	64	1.806180	89	1.949390
15	1.176091	40	1.602060	65	1.812913	90	1.954248
16	1.204120	41	1.612784	66	1.819544	91	1.959041
17	1.230449	42	1.623249	67	1.826075	92	1.963788
18	$1 \cdot 255273$	43	1.633468	68	1.832509	93	1.968483
19	1.278754	44	1.643453	69	1.838849	94	1.973128
20	1.301030	45	1:653213	70	1.845098	95	1 · 977724
21	1:322219	46	1.662758	71	1.851258	96	1.982271
22	1:342423	47	1.672098	72	1.857332	97	1.986772
23	1.361728	48	1.681241	73	1.863323	98	1.991226
24	1:380211	49	1:690196	74	1.869232	99	1.995635
25	1:397940	50	1.698970	75	1.875061	100	2.000000

No.	0	1	2	3	4	5	6	7	8	9	Diff
100								003029			432
1 2	4321 8600			5609				$7321 \\ 011570$			
3		013259									
4	7033		7868	8284						C20775	416
$\hat{5}$						023252		024075	4486		
6	5306		6125	6533	6942				8571		4(8
7	9384						C31812	032216			
8		033826	4227	4628 8620	5029	5430 9414					400
	7426	1.	8223	0.0	5.27	- TT- 14	1	640267	1 ~	2 5 7	1
110		C41787						C44148			893
1	5323		6105	6495	6885	7275	7664	8(53 (51924	8442	8830	
2 3	9218	$9606 \\ 053463$		4230	4613	4996	5378	5760	6142		886 883
4	6905		7666	8046	8426	8805				060320	
5								063333	0637(9	4083	376
6	4458	4832	5206	5589	5953	6326			7443	7815	373
7	8186	8557	8928	9298			070407	676776	071145	(71514)	370
-8		072250				3718	4085	4451	4816	5182	366
9	5547	5912	6276	6640	7004	7368	7731	8094	8457	8819	363
120		079543						681707	C82067	(82426)	360
		083144		3861	4219	4576	4934		5647	60C4	357
2	6360		7071	7426	7781	8136	8490			9552	
3						51(9	5518	092370 5866	(92721	(93071	852
5	$093422 \\ 6910$	$\frac{3772}{7257}$	$\frac{4122}{7604}$	4471 7951	4820 8298	8644	8990		6215	6562 $100(26$	349 346
6								102777	103119	3462	343
7	3804	4146	4487	4828	5169.	5510	5851	6191	6531		341
8	7210	7549	7888	8227	8565	8903	9241			11(253	338
9	110590	110926	111263	111599	111934	112270	112605	112940	118275	3609	335
130	113943	114277	114611	114944	115278	115611	115943	116276	1166(8	116940	333
1	7271	7603	7934	8265	8595	8926	9256	9586	9915	120245	330
2								122871		3525	328
3	3852	4178	4504	4830	5156	5481	5806	6131	6456	6781	325
5	7105	7429	7753	8076	8399	8722	9045	9368 132580		130012 3219	\$23 321
6	3539	3858	4177	4496	4814	5133	5451	5769	6(86)	6403	318
7	6721	7037	7354	7671	7,987	8303	8618	8934	9249	9564	316
8						141450		142076			314
9	143015	3327	3639	3951	4263	4574	4885	5196	5567	5818	311
140	146128	146438	146748	47058	47367	147676	147985	148294	148603	148911	3(9 -
1	9219	9527						151370.			307
		152594		3205	3510	3815	4120	4424	4728	5032	305
3	5336	5640	5943	6246	6549	6852	7154	7457	7759	8061	303
4	8362	8664	8965	9266	9567			160469 1			301
5	4353	161667 4650	4947	5244	5541	5888	3161 6134	3460 6430	3758 6726	4055 7022	299 297
7	7317	7613	7908	8203	8497	8792	9686	9380	9674	9968	295
						71726		172311 1			293
9	3186	3478	3769	4060	4351	4641	4932	5222	5512	5802	291
150	176091	176381	176670	76050 1	77948	177596	77895	178113	78461	78689	289
1	8977	9264	9552	9889 1	80126	180413	80699	1809861	81272 1		287
		182129		82700	2985	3270	3555	3889	4123	4407	285
3	4691	4975	5259	5542	5825	6108	6891	6674	6956	9239	283
4	7521	7803	8084	8366	8647	8928	9209	9490			281
								92289 1			279
6	3125	3403	3681	3959	4237	4514	4792	5069	5346		278
7	5900 8657	6176	6453	6729	7005	7281	7556	7832 200577 2	8107		276 274
8		8932 201670	9206 201943 9	$9481 \ 2022162$		2761	3033	3305	3577	3848	272
										-	Diff.
No.	0	1	2	3	4	5	6-1	7 1	8 1	9	DIII.

No.	0	1	2	3	4	5	6	7	8	9	Dif
160	20412	204391	204663	204934	205204	205475	205746	206016	206286	206556	271
1	6826									9247	
$\hat{2}$	9515	9783	210051	210319	210586	210853	211121	211388	211654	211921	267
3	919189	919454	9790	2026	2252	3518	2723	4049	4914	4570	266
4	4844	5100	5272	5829	5902	6166	6430	6694	6957	7221 9846 222456	264
5	7404	7747	9010	9979	9596	2700	0000	0000	0505	0016	262
6	000100	202070	000001	000000	001159	001414	001675	001000	000100	000450	261
6	2716	2976	5250	3496	8100	4015	4214	4533	4192	5051	259
8	53(19	5568	5826	6084	6342	6600	0808	0000	1312	7630	258
9	7857	8144	8400	8657	8913	9170	9426	9682	9938	7630 230193 232742 5276 7795 240300 2790	256
170	230449	230704	230960	231215	231470	231724	231979	232234	232488	232742	$\frac{255}{253}$
2	E500	5701	6000	2005	2507	6790	7041	7000	7544	7705	$\frac{255}{252}$
Z	99.48	9181	0033	0250	0001	0109	0550	0000	040050	010000	252
3	8.146	8297	8548	8799	9049	9299	9550	9800	240050	240300	250
4 .	240549	240799	241048	241297	241546	241795	242044	242293	2541	2790	249
5	3038	3286	3534	3782	4030	4277	4525	4772	5019	5266	248
6	5513	5759	6006	6252	6499	6745	$\epsilon 991$	7237	7482	7728	246
7	7973	8219	8464	8709	8954	9198	9443	9687	9932	250176	245
8	259420	250664	250908	251151	251395	251638	251881	252125	252368	5266 7728 250176 2610	243
9	2853	3096	3338	3580	3822	4064	4306	4548	4790	5031 257439	242
180	255273	255514	255755	255996	256237	256477	256718	256958	257198	257439	241
1	7679	7918	8158	8398	8637	8877	9116	9355	9594	9833	239
2	260071	260310	260548	260787	261025	261263	261501	261739	261976	9833 262214 4582	238
_	9451	2688	2025	2169	2300	2626	3879	4160	4246	4599	237
4	4919	5054	5000	5505	5761	5000	6999	6467	67(9	6027	235
5	7170	7400	7041	7075	01101	0930	0202	0010	0162	0070	234
0	0710	07.10	1041	1010	070440	070.050	0010	0012	9040	9219	204
6	9513	9146	9989	270213	210446	216619	270912	211144	211311	271609	233
7	271842	272074	272306	2538	2770	3001	3233	3464	3696	3927	232
8	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232	$\frac{230}{229}$
190	070754	970000	070011	070400	070007	070008	000109	1000	000570	4582 6937 9279 271609 3927 6232 8525 280806	228
190	281033	281261	281488	219439 281715	231942	219595 282169:	2396	2622	2849	3075 5332 7578 9812	220
2	3301	3527	3753	3979	4205	4431	4656	4882	5107	5332	226
3	5557	5782	6007	6232	6456	6681	6905	7130	7354	7578	225
4	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
5	290035	290257	290480	290702	290925	291147	291369	291591	291818	292034	222
6	2256	2478	2699	2020	2141	2262	2584	2804	4025	4946	221
7	4466	4697	4907	5197	5947	5567	5797	6007	6996	6446	220
8	6665	2001	7104	7000	75.40	7701	7070	0100	0410	0410	010
9	8353	9071	9289	9507	9725	9948	300161	300378	300595	800818	218
200	301030	301247	201464	201681	301998	302114	202221	369547	202764	292034 4246 6446 8635 300813 302980 5136 7282 9417 311542 8656 5760	917
1	2106	9/19	3605	2244	4050	4975	4401	4706	4001	5196	216
2	5951	5566	5791	5000	6011	6495	6620	6954	7000	7000	915
3	7400	7710	7024	0107	0051	0504	9779	0004	0904	0.117	010
4	0,000	0040	210020	010000	010401	01000	0110	911110	011000	011540	010
4	011754	9513	010000	010208	00000	or 0093	010000	011118	911990	011042	212
5	011/04	011900	2111	2389	2600	2812	5023	3234	344 5	5656	211
6	3367	4078	4289	4499	4710	4920	5130	5340	5551	5760	210
7	5970	6180	6390	6599	6809	7018	7227	7436	7646	7854	209
8	8063	8272	8481	8689	8898	9106	9314	9522	9730	9938	208
9	320146	320354	320562	320769	320977	321184	321391	321598	321805	322012	207
210	322219	322426	322633	322839	323046	323252	323458	323665	323871	9411 311542 3656 5760 7854 9938 322012 324077 6131 8176 330211 2286 4253 4258	206
1	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131	205
2	6336	6541	6745	6950	7155	7359	7563	7767	7972	8176	204
3	8380	8583	8787	8991	9194	9398	9601	9805	330008	330211	203
4	330414	330617	330819	331022	331225	331427	331630	331832	2634	2236	202
5	2438	2640	2842	3044	3246	3447	3649	3850	4051	4253	202
6	4454	4655	4856	5057	5257	5458	5658	5850	6059	6260	201
7	6460	6660	6860	7060	7260	7450	7650	7858	6059 8058	8257	200
8	8456	2640 4655 6660 8656	8955	0054	0050	0.451	9650	9940	340047		199
	340444	340642	840841	341020	341927	841485	841699	341830	5005	9995	199
		1	2	3			-	7	8	man providence of the	-
No.	0				4.	5	6				Diff

No.	0	1	2	3	4	5	6	7	18	9	Diff
220	342429	342620	342817	343014	343212	343409	343606	343802	343999	344196	197
	4392										
1 2	6353							7720			
3	8305									350054	
4			350636								
5	2183						3339	3532	3724	3916	
5	4108										
6											
7	6026										
8	7935	8125	8316	8506	8696	8886	9076	9266	9456	9646	
9			360215								189
230	361728	361917	362105	362294	362482	362671	362859	363048	363236	363424	188
1 2	3612										188
2	5488	5675	5862	6049			6610				187
3	7356			7915	8101				8845		186
4	9216			9772			370328	370513		370883	
5	371068	371253	371437	371622	371806	1991	2175	2360	2544	2728	184
6	2912	3096	3280	3464	3647	3831	4015	4198	4382	4565	184
7	4748	4932	5115	5298	5481	5664	5846	6029		6394	183
8	6577	6759	6942	7124	7306	7488			8034		182
9	8898	8580	8761	8943		9306				380030	181
240	380211	380392	880573	380754	280924	881115	381996	881476	381656	381837	181
1	2017	2197	2377	2557	2737	2917	3097			3636	180
2	3815	3995	4174	4353	4533	4712			5249		
3								6856	7004		178
0	5606	5785	5964	6142	6321	6499	6677				
4	7390	7568	7746	7923	8101	8279	8456	8634			178
5	9166	9343		9698					390582		177
6			391288			1817	1993		2345	2521	176
7	2697	2873	3048	3224	3400	3575	3751	3926		4277	176
8	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025	175
9	6199	6374	6548	6722	6896	7071	7245	7419	7592	7766	174
50	397940	398114	398287	398461	398634	398808	398981	399154	399328	399501	173
1	9674	9847	400020	400192	400365	400538	400711	400883	401056	401228	173
2	401401	401578	1745	1917	2089	2261	2433	2605	2777	2949	172
3	3121	3292	3464	3635	3807	3978	4149	4320	4492	4663	171
1	4834	5005	5176	5346	5517	5688	5858	6029	6199	6370	171
5	6540	6710	6881	7051	7221	7391	7561	7731	7901	8070	170
6	8240	8410	8579	8749	8918		9257		9595	9764	169
			410074			9087	410040	3420			
7			410271						411285		169
8	411620 3300	1788 3467	1956 3635	2124 3803	2293 3970	2461 4137	2629 4305	$\frac{2796}{4472}$	2964 4639	3132 4806	168 167
- 1										1	
60	414978 6641	415140 6807	415307 6973	415474 7139	415641 7306	$\frac{415808}{7472}$	415974 7638	416141 7804	416308 7970	416474 8135	167 166
2		8467	8633		8964		9295	9460	9625	9791	165
0	8301			8798		9129					
3	9996		420286	120401		420781	420945	421110	421215	421469	165
4	421604	1768	1933	2097	2261	2426	2590		2918	3082	164
5	3246	3410	3574	3737	3901	4065	4228	4392	4555	4718	164
6	4882	5045	5208	5371	5534	5697	5860	6023	6186	6349	163
7	6511	6674	6836	6999	7161	7324	7486	7648	7811	7973	162
8	8135	8297	8459	8621	8783	8944	9106	9268	9429	9591	162
9	9752	9914	430075	430236	430398	430559	430720	430881	431042	431203	161
70	431364	431525	431685	431846	432007	432167	432328	432488	432649	432809	161
1	2969	3130	3290	3450	3610	3770	3930	4090	4249	4409	160
2	4569	4729	4888	5048	5207	5367	5526	5685	5844	6004	159
3	6163	6322	6481	6640	6799	6957	7116	7275	7433	7592	159
4	7751	7909	8067	8226	8384	8542	8701	8859	9017	9175	158
5	9833										158
		9491	9648	9806	9904				440594		
			441224			1695	1852	2009	2166	2323	157
7	2480	2637	2793	2950	3106	3263	3419	3576	3732	3889	157
8	4045	4201	4357	4513	4669	4825	4981	5137	5293	5449	156
9	5604	5760	5915	6071	6226	6882	6537	6692	6848	7003	155
To.	0	7.10	2	3	4	5	6	7:	8	9	Diff.

1 1/2

No.	0	1	2	3	4	5	6	7	8	9	Diff
280	447158	447318	3 447468	447628	3 447778	44793	3 448088	3 448249	2 448397	448552	155
1	8706			9170	9324	9478					154
2			3 450557						3 451479		154
3	1786										153
4	3318										153
5	4845										
6	6366										152
	7882 9392								0 9691 7 460597		151 151
8.9				461348				1948	3 2098		150
290				462847					463594		150
1	3893										149
2	5383										149 148
3 4	6868 8347	7016 8495									148
5	9322									471145	147
6		471438			1878						146
7	2756	2903		3195	3341						146
8	4216	4362		4653	4799						146
9	5671	5816		6107	6252		6542				145
300										478422	145
1 2	8566	8711	$8855 \\ 480294$	8999	9143 480582		400000	9575	9719	9863 481299	144 144
3	480007 1443	1586	1729	1872	2016	2159					143
4	2874	3016	3159	3302	3445	3587	3730			4157	143
5	4300	4442	4585	4727	4869	5011	5153			5579	142
5 6	5721	5863	6005	6147	6289	6430	6572			6997	142
7	7138	7280	7421	7563	7704		7986		8269	8410	141
8	8551	8692	8833	8974	9114		9396		9677	9818	141
9						490661				491222	140
				491782		492062				492621	140
1	2760	2900	3040	3179	3319	3458	3597	3737	5876	4015	139 139
1 2 3	4155 5544	4294 5683	4433 5822	4572 5960	4711 6099	$\frac{4850}{6238}$	4989 6376	5128 6515	5267 6653	5406 6791	139
4	6930	7068	7206	7344	7483	7621	7759	7897	8035	8173	138
5	8311	8448	8586	8724	8862	8999	9137	9275	9412	9550	138
6	9687	9824							500785		137
	501059			1470	1607	1744	1880	2017	2154	2291	137
8	2427	2564	2700	2837	2973	3109	3246	3382	3518	3655	136
9	3791	3927	4063	4199	4335	4471	4607	4743	4878	5014	136
320	505150 6505	50 5 286 6640	505421 6776	505557 6911	505693 7046	505828 7181	505964 7316	506099 7451	506234 7586	506370 7721	136 135
9	7856	7991	8126	8260	8395	8530	8664	8799	8934	9068	135
2 3	9203	9337	9471	9606	9740				510277		184
			510813		511081		1349	1482	1616	1750	134
5	1883	2017	2151	2284	2418	2551	2684	2818	2951	3084	133
5 6	3218	3351	3484	3617	3750	3883	4016	4149	4282	4415	133
7	4548	4681	4813	4946	5079	5211	5344	5476	5609	5741	133
8	5874	6006	6139	6271	6403	6535	6668	6800	6932	7064	132
	7196	7328	7460	7592	7724	7855	7987	8119	8251	8382	132
330	518514 8 9828	0050	518777	518909	519040	519171	519303	519484	519566 520876	519697	131 131
	9828 5211383		1400	1530	1661	1792	1922	2053	2183	2314	131
3	2444	2575	2705	2835	2966	3096	3226	3356	3486	3616	180
4	3746	3876	4006	4136	4266	4396	4526	4656	4785	4915	130
5	5045	5174	5304	5434	5563	5693	5822	5951	6081	6210	129
6	6339	6469	6598	6727	6856	6985	7114	7243	7372	7501	129
7	7630	7759	7888	8016	8145	8274	8402	8531	8660	8788	129
8	8917	9045	9174	9302	9430	9559	9687	9815		580072	128
						530840		531096	531228	1351	128
Vo.	0	1	2	3	4	5	6	7	8	9	Diff.

No.	0	1	2	3	4	5	6	7	8-	9	Di
34)			531734								128
1	2754										127
2	4)26										127
3	5294	5421	5547	5674	5800				6306	6432	126
4	6559	6685	6811	6937	7063	7189	7315	7441	7567	7693	126
5	7319		8071	8197	8322	8448	8574	8699	882	8951	126
6	9)76			9452	9578	9703	9329	9954	540079	540204	12:
7	54):129	549455	540530	540705	540830	540955		541205	1330		12
8	1579			1953	2078	2203					12
9	2325			3199	3323	3417					124
35)		544192 5431	544316 5555	544440 5678	544564 5802	544688 5925					12:
1	53)7										
2	6543			6913	7036	7159					12
3	7775			8114	8267	8389		8635			128
4	93.33			9371	9494	9616				556106	128
5			55)473								122
6	145)	1572	1694	1316	1938	2060					122
7	2568	279)		3033	3155	3276				3762	121
8	3333			4247	4368	4489	4610				121
9	5394	5215	5336	5457	5578	5699					121
360			556511								120
1	75)7	7627	7748	7863	7988	8108	8228				120
2	8709	8329	8948	9)68	9188	9308	9428	9548		9787	120
3			551146								119
4	5311 /1	1221	134)	1459	1578	1698					119
5	2203	2412	2531	2650	2769	2887	3006	3125	3244	3362	119
6	3481	3600	3713	3337	3955	4074	4192	4311	4429	4548	119
7	4505	4784	4903	5021	5139	5257	5376		5612	5730	118
8	5843	5966	6)84	6202	6320	6437	6555	6673			118
9	7026	7144	7262	7379	7497	7614	7732	7849			118
370			568436								117
1	9374	9491		9725	9842		570076				117
2	570543	570660	570776				1243	1359	1476		117
3	1709	1825	1942	2058	2174	-2291	2407	2523	2639	2755	116
4	2872	2933	3104	3220	3336	3452	3568	3684	3800	3915	116
5	4)31	4147	4263	4379	4494	4610	4726	4841	4957	5072	116
6	5188	5303	5419	5534	5650	5765	5880	5996	6111	6226	115
7	6341	6457	6572	6687	6802	6917	7032	7147	7262	7377	115
8	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	115
9	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669	114
83	579784	579898	580012				5 80 4 69				114
1	53 19 25		1153	1267	1381	1495	1608	1722	1836	1950	114
2	2,163	2177	2291	2404	2518	2631	2745	2858	2972	3085	114
3	3199	3312	3426	3539	3652	3765	3879	3992	4105	4218	113
4	4331	4411	4557	4670	4783	4896	5009	5122	5235	5348	113
5	5461	5574	5686	5799	5912	6024	6137	6250	6362	6475	113
6	6587	6700	6812	6925	7037	7149	7262	7374	7486	7599	112
7	7711	7823	7935	8047	8160	8272	8384	8496	8608	8720	112
8	8332	8911	9056	9167	9279	9391	9503	9615	9726	9838	112
9			590173								112
90		591176	591287		591510		591732				111
1	2177	2288	2399	2510	2621	2732	2843	2954	. 3064	3175	111
2	3236	3397	3508	3618	3729	3840	8950	4061	4171	4282	111
3	4393	4508	4614	4724	4834	4945	5055	5165	5276	5386	110
4	5496	5636	5717	5827	5937	6047	6157	6267	6377	6487	110
5	6597	6707	6317	6927	7037	7146	7256	7366	7476	7586	110
6	7695	7805	7914	8024	8134	8243	8353	8462	8572	8681	110
7									9665	9774	109
	8791	8900	9009	9119	9228	9337	9446	9556			
8	9383 600973		600101	600210, 1299	600319 1408	600428 1517	$\begin{array}{c} 600537 \\ 1625 \end{array}$	1734	600755 1843	1951	109 109
0.										-	1
	0	1	2	3	4	5	6	7	8	9	Diff

No.	0	1	2	3	4	5	6	7	8	9	Dif
400	602060	602169	602277	602386	602494	602603	602711	602819	602928	603036	108
1	3144								4010		
2	4226			4550	4658	4766	4874	4982	5089	5197	108
3	5305						5951		6166	6274	
4	6381	6489	6596	6704	6811	6919	7026		7241	7348	107
5	7455	7562	7669	7777	7884	7991	8098	8205	8312	8419	167
6	8526	8633	8740	8847	8954	9361	9167	9274	9381	9488	167
7	9594	9701			610021			610341			107
8	610660	610767	610873	610979	1086				1511	1617	106
9	1723	1			2148	2254	2360		2572	2678	106
410	612784			613102		613313	613419	613525		613736	
1	3842				4264				4686	4792	
2	4897				5319 6370	5424 6476	5529 6581		5740 6790	5845 6895	
3	5950				7420	7525	7629		7839	7943	
4	7000	7105 8153		8362	8466	8571	8676		8884		
5	8048			9406			9719			620032	
6	9093			620448	9511	9615		620864			
7 8		1280			1592	1695	1799		2007		
9	$ \begin{array}{r} 1176 \\ 2214 \end{array} $	2318		2525	2628	2732	2835				
120	623249	623353		623559	623663	623766	623869	623973	624076	624179	103
1	4282	4385	4488	4591	4695	4798	4901			5210	
2	5812	5415	5518	5621	5724	5827	5929		6135	6238	163
3	6340	6443	6546	6648	6751	6853	6956	7058	7161	7263	103
4	7366	7468	7571	7673	7775	7878	7980	8682	8185	8287	102
5	8389	8491	8593	8695	8797	8900	9002			93(8	102
6	9410	9512	9613	9715	9817	9919	630021	630123	630224	630326	102
7	630428	630530	630631	630733	630835	630936	1038	1139	1241	1342	162
8	1444	1545	1647	1748	1849	1951	2052	2153	2255	2356	101
9	2457	2559	2660	2761	2862	296 3	3064	3165	3266	3367	101
130					633872	633973			634276		101
1	4477	4578		4779	4880	4981	5081	5182	5283	5383	101
2	5484	5584	5685	5785	5886	5986	6087	6187	6287	6388	100
3	6488	6588	6688	6789	6889	6989	7089		7290	7390	
4	7490	7590	7690	7790	7890	7990	8090	8190	8290	8389	100
5	8489	8589	8689	8789	8888	8988	9088		9287	9387	100
6	9486	9586	9686	9785	9885			640183			99
		640581		640779			1077	1177	1276	1375	99
8	1474	1573	1672	1771	1871	1970	2069		2267	2366	99
9	2465	2563	2662	2761	2860	2959	3058	3156	3255	3354	99
				643749				644143			98
1 2	4439	4537	4636	4734	4832	4931			5226	5324	98
Z	5422	5521	5619	5717	5815	5913	6011		6208	6306	98
3	6404	6502	6600	6698	6796	6894	6992		7187	7285	98
4	7383	7481	7579	7676	7774	7872	7969		8165	8262	98
5	8360	8458	8555	8653	8750	8848	8945		9140	9237	97
6 7	9335	9432	9530	9627	9724	9821		650016			97
0				650599				0987	1084	1181	97
8	$\frac{1278}{2246}$	1375 2343	1472 2440	$\frac{1569}{2536}$	1666 2633	$\frac{1762}{2730}$	$\frac{1859}{2826}$	$\frac{1956}{2923}$	$2053 \\ 3019$	$2150 \\ 3116$	97 97
				653502							96
1	4177	4273	4369.	4465	4562	4658	4754	4850	4946	5042	96
2	5138	5235	5881	5427	5523	5619	5715	5810	5906	6002	96
3	6098	6194	6290	6386	6482				6864	6960	96
4						6577	6678	6769			96
5	7056 8911	$7152 \\ 8107$	7247	7343 8298	7438 8393	7534	7629	7725	7820	7916 8870	95
6	8965		8202 9155			8488	8584	8679	8774		95
7		9060		9250	9346	9441	9536	9631	9726	9821	95
				660201							
8 9	660865 1813	$0960 \\ 1907$	$\frac{1055}{2002}$	1150 2096	$\frac{1245}{2191}$	1339 2286	1434 2380	$\frac{1529}{2475}$	$\frac{1623}{2569}$	1718 2663	95 95
		-									
0.	0	1	2	3	4	5	6	7	8	9	Diff

No.	0	1	2	3	4	5	6	7	8	9	Dif
460	662758	662852	662947	663041	663135	663230	663324	663418	662512	663607	. 94
1	3701				4078	4172	4266	4860	4454	.4548	94
2	4642						5206	5299	5393	5487	94
3	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424	94
4	6518				6892				7266	7360	94
5	7453	7546	7640	7733	7826		8013	8106	8199	8293	93
6	8386	8479	8572	8665		8852	8945	9088	9131	9224	93
7	9317					9782				670153	93
8						670710		670895	(988	1(80	. 93
9	1173	1	1358	1451	1543				1913	2005	93
170 1	672098 8021	672190 3113	672283 3205	672375 3297	672467 3390			672744 3666			92
2	3942	4034	4126	4218					3758 4677		92
3	4861	4953	5045	5137				55(3	5595		92 92
4		5870	5962	6053					6511		92
5	5778 6094	6785	6876	69€8	7059		7242		7424		91
6	7607	7698	7789	7881	7972				8886		91
7	8518	8669	8700	8791	8882				9246		91
8	9428	9519	9610	9700				680063			91
9						680789		(970	1660		91
180	681241	681332	681422	681513	€81603	681693	C81784	681874	681964	C82C55	90
1	2145		2326	2416	2506		2686		2867	2957	90
2	3047	3137	3227	3317	3407		3587	3677	3767	3857	90
3	8947	4037	4127	4217	4307				4666		90
4	4845	4935	5025	5114	5204		5883		55€3	5652	90
5	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547	89
6	6636	6726	6815	6904	6994	7683	7172	7261	7351	7440	89
7	7529	7618	7707	7796	7886	7975	8064	8153	8242	8881	89
8	8420	85(-9	8598	8687	8776		8953	9042	9131	9220	89
9	9309	9398	9486	9575	9664		9841			690167	89
190								690816			69
1	1(81			1347	1485		1612	1760	1789	1877	88
2	1965	2053	2142	2230	2318	2406	2494	2583	2671	2759	88
3	2847	2935	3028	3111	3199	3287	3375	3463	8551	3059	88
4	3727	3815	3903	8991	4078	4166	4254	4342	4480	4517	83
5	4605	4693	4781	4868	4956	5044	5131	5219	5867	££94	83
6	5482	5569	5657	5744	5832	5919	6007	6(.94	6182	£219	87
7	(356	6444	6531	6618	6706	6793	6880	€968	7055	7142	87
8	7229 8191	7317 8188	7404 8275	7491 8362	7578 8449	7665 8535	7752 8622	7889 8769	7926 8796	8614 8883	87 87
600								€99578			87
ĩ	9838							700444		79(617	57
2	700704		(877	0963	1050		1222	13(9	1895	1482	86
3	1568	1654	1741	1827	1913		20.86	2172	2258	2344	86
4	2431	2517	2603	2689	2775	2861	2947	3(33	3119	32(5	86
5	3291	3377	3468	3549	3685	3721	8807	3893	8979	4065	86
6	4151	4286	4322	4408	4494	4579	4665	4751	4887	4922	86
7	5003	5094	5179	5265	5350	5436	5522	5607	5698	5778	86
8	5864	5949	6085	6120	6206	6291	6376	6462	6547	6632	85
9	6718	6803	6888	6974	7659	7144		7315	7400	7485	85
10						707996				708336	85
1	8421	8506	8591	8676	8761	8846	8931	9615	9100	9185	85
2	9270	9355	9440	9524	9609	9694	9779	9863	9948	710(33	85
3								716710		(879	85
4	(963	1048	1132	1217	1301	1385	1470	1554	1659	1723	84
5	1807	1892	1976	2060	2144	2229	2313	2397	2481	2566	84
6	2650	2734	2818	2902	2986	3070	3154	3238	3323	3407	84
7	3491	3575	3659	3742	3826	3910	3994	4078	4162	4246	84
8	4330	4414	4497	4581	4665	4749	4833	4916	5000	5(84)	84
9	5167	5251	5835	5418	5502	5586	5669	5758	5836	5920	84
0.	0	1	2.	3	4	5	6	7	8	9	Diff

No.	0	1	2	3	4	5	. 6	7	8	9	Dif
520	716003	716087	716170	716254	716337	716421	716504	716588	716671	716754	83
1	6838				7171				7504		83
2	7671	7754			8003			8253			83
3	8502	8585			8834		9000	9083			83
4	9331	9414			9663		9828			720077	83
5				720407							83
6	0936	1068	1151		1316		1481		1646		82
7	1811	1893	1975		2140		2305	2387	2469		82
8	2634	2716	2798		2963		3127	3209	3291	3374	82
9	3456	3538	3620		3784		3948	403	4112	4194	82
530	724276			724522		724685	1		i	725013	
1	5095	5176	5258	5340	5422	5503	5585	5667		5830	82
2	5912	5993	6075	6156	6238		6401	6483	6564	6646	82
3	6727	6809	6890	6972	7053	7134	7216	7297	7379	7460	81
4	7541	7623	7704	7785	7866	7948	8029	8110	8191	8273	81
5	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084	81
6	9165	9246	9327		9489	9570	9651	9732		9893	81
7				730217					730621		
6											81
8	730782 1589	0863 1669	$0944 \\ 1750$	1024 1830	1105 1911	1186 1991	$\frac{1266}{2072}$	$\frac{1347}{2152}$	1428 2233	1508 2318	81 81
540				732635						733117	80
1	3197	3278	3358	3438	3518	3598	3679	3759	3839	3919	80
2	3999	4079	4160	4240	4320	4400	4480	4560	4640		80
3	4800	4880	4960	5040	5120	5200	5279	5359	5439	5519	80
4	5599	5679	5759	5838	5918	5998	6078	6157	6237	6317	80
5	6397	6476	6556	6635	6715	6795	6874	6954	7034	7113	80
6	7193	7272	7352	7431	7511	7590	7670	7749	7829	7908	79
7	7987	8067	8146	8225	8305	8384	8463	8543	8622	8701	79
8	8781	8860	8939	9)18	9097	9177	9256	9335	9414	9493	79
9	9572	9651	9731	9810	9889	9968	740047	740126	740205	740284	79
550	740363	740442	740521	740600	740678	740757	740836	740915	740994	741073	79
1	1152	1230	1309	1388	1467	1546	1624	1703	1782	1860	79
2	1939	2018	2096	2175	2254	2332	2411	2489	2568	2647	79
3	2725	2804	2882	2961	3039	3118	3196	3275	3358	3431	78
4	3510	3588	3667	3745	3823	3902	3980	4058	4136	4215	78
5	4293	4371	4419	4523	4606	4684	4762	4840	4919	4997	78
6	5975	5153	5231	5309	5387	5465	5543	5621	5699	5777	78
7	5855	5933	6011	6089	6167	6245	6323	6401	6479	6556	78
8	6634	6712	6790	6868	6945	7023	7101	7179	7256	7334	78
9	7412	7489	7567	7645	7722	7800	7878	7955	8)33	8110	78
560		748266	748343	748421		748576	748653	748731	748808	748835	77
1	8963	9040	9118	9195	9272	9350	9427	9504	9582	9659	77
2	9736	9814	9391		750045	750123	750200	750277	750354	750451	77
3	750508	759586	759663	750740	0817	0894	0971	1048	1125	1202	77
4	1279	1356	1433	1510	1587	1664	1741	1818	1895	1972	77
5	2048	2125	2202	2279	2356	2433	2509	2586	2663	2740	77
6	2816	2893	2970	3947	3123	3200	3277	3353	3430	3506	77
7	3583	3660	3736	3813	3889	3966	4042	4119	4195	4272	77
8	4348	4425	4501	4578	4654	4730	4807	4883	4960	5086	76
9	5112	5189	5265	5341	5417	5494	5570	5646	5722	5799	76
570	755875	755951	756027	756103							76
1	6636	6712	6788	6864	6940	7016	7092	7168	7244	7820	76
2	7396	7472	7548	7624	7700	7775	7851	7927	8003	8979	76
3	8155	8230	8306	8382	8458	8533	8609	8685	8761	8836	76
4	8912	8988	9063	9139	9214		9366	9441			76
6	9668	9743	9819	9894		760045					75
6			760572	760649	760721	0799	0875	0959		1101	75
7	1176	1251	1326	1402	1477	1552	1627	1702	1778	1853	
8	1928	2003	2078		2228						75
0	2679	2754		2153		2803	2378	2453	2529	2604	75
9	2019	4102	2829	2904	2978	3053	3128	3203	3278	8353	75

No.	0_	1	2	3	4	5	6	7	8	9	Diff
580	763428	763503	763578	763653	768727	763802	763877	763952	764027	764101	75
1	4176	4251	4326	4400	4475	4550	4624	4699	4774	4848	75
2	4923	4998	5072	5147		5296	5370	5445	5520		
3	5669	5743	5818	5892	5966	6041	6115	6190	6264		74
4	6413	6487	6562	6636	6710	6785	6859	6933	7007	7082	74
5	7156	7230	7304	7379	7453	7527	7601	7675		7823	74
6	7898	7972	8046	8120	8194	8268	8342	8416	8490	8564	74
7	8638	8712	8786	8860	8934	9008	9082	9156	9230		74
8	9377	9451	9525	9599	9673	9746	9820			770042	74
9						770484		1		.0778	74
590		770926				771220				771514	74
1	1587	1661	1734	1808	1381	1955	2028	2102	2175	2248	73
2	2322	2395	2468	2542	2615	2688	2762	2835	2908	2981	73
3	3055	3128	3201	3274	3348	3421	3494	3567		3713	73
4	3786	3860	3933	4006	4079	4152	4225	4298	4371	4444	73
5 6	4517	4590	4663	4736	4869	4882	4955	5028		5173	73
	5246	5319	5892	5465	5538	5610	5683	5756	5829	5902	73
7	5974	6047	6120	6193	6265	6338	6411	6483	6556	6629	73
8	6701 7427	6774 7499	6846 7572	6919 7644	$6992 \\ 7717$	7064 7789	7137 7862	7209 7934	7282 8006	7354 8079	73 72
300						778513					72
1	8874	8947	9019	9:91	9168	9236	9308	9380		9524	72
2	9596	9669	9741	9813	9385			780101			72
3			780461			790677	0749	0821	0893	0965	72
4	1037	1109	1181	1253	1324	1396	1468	1540	1612	1684	79
5	1755	1827	1899	1971	2042	2114	2186	2258	2329	2401	$\begin{array}{c} 72 \\ 72 \end{array}$
6	2473	2544	2616	2688	2759	2831	2902	2974	3046	3117	72
7	3189	3260	3332	3403	3475	3546	3618	3689	3761	3832	71
8	3904	3975	4046	4118	4189	4261	4332	4403	4475	4546	71
9	4617	4689	4760	4831	4902	4974	5045	5116	5187	5259	71
310			785472			785686		785828	- 100	785970	71
1	6041	6112	6183	6254	6325	6396	6467	6538	6609	6680	71
2	6751	6822	6893	6964	7035	7106	7177	7248	7319	7390	. 71
3	7460	7531	7602	7673	7744	7815	7885	7956	8027	8098	71
4	8168	8239	8310	8381	8451	8522	8593	8663	8734	8804	71
5	8875	8946	9016	9087	9157	9228	9299	9369	9440	9510	71
6	9581	9651	9722	9792	9363	9933	790004	790074	790144	790215	70
7	790285	790356	790426	790496	790567	790637	0707	0778	0848	0918	70
8	0988	1059	1129	1199	1269	1340	1410	1480	1550	1620	70
9	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	70
320	792392			792602	792672	792742	792812				70
1	3092	3162	3231	3301		3441	3511				70
2	3790	3860	3930	4900	4070	4139	4209	4279	4349	4418	70
3	4488	4558	4627	4697	4767		4906	4976	5045	5115	70
4	5185	5254	5324	5393	5463	5532	5602	5672	5741	5811	70
5	5880	5949	6019	6088	6158	6227	6297	6366	6436	6505	69
6	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198	69
7	7268	7337	7406	7475	7545	7614	7683	7752	7821	7890	69
8	7960	8029	8098	8167	8236	8305	8374	8443	8513	8582	69
9	8651	8720	8789	8858	8927	8996	9065	9134	9203	9272	69
330	799341	799409	799478	799547	799616	799685	799754	799823	799892	799961	69
1	800029					800373			800580	800648	69
2	0717	0786	0854	0923	0992	1061	1129	1198	1266	1335	69
3	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	69
4	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705	68
5	2774	2842	2910	2979	3047	3116	3184	3252	3321	3389	68
6	3457	3525	3594	3662	3730	3798	3867	3935	4003	4071	68
7	4139	4208	4276	4344	4412	4480	4548	4616	4685	4753	68
8	4821	4889	4957	5025	5093	5161	5229	5297	5365 6044	5433 6112	68 68
9	5501	5569	5637	5705	5773	5841	5908	5976			Diff
No.	0	1	2	3	4	5	6	7	8	9	

No.	0	1	2	3	4	5	6	7	8	9	Diff
640	806180	806248	806316	806384	806451	806519	806587	806655	896728	806790	68
1	6858		6994	7061	7129	7197	7264	7332	7400	7467	68
2	7535		7670	77 8	7806	7873	7941	8008	8076	8143	68
3	8211	8279	8346	8414	8481	8549	8616	8684	8751	8818	67
4	8886	8953	9021	9088	9156	9223	9290	9358	9425	9492	67
	9560		9694	9762		9896	0064	810031			
5					9829						67
6		810300						0703	0770	0837	67
7	0904	0971	1039	1106	1173	1240	1307	1374	1441	1508	67
8	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	67
9	2245	2312	2379	2445	2512	2579	2646	2713	2780	2847	67
650											67
1 2 8	3581	3648	3714	3781	3848	3914	3981	4048	4114	4181	67
2	4248	4314	4381	4447	4514	4581	4647	4714	4780	4847	67
8	4913	4980	5046	5113	5179	5246	5312	5378	5445	5511	66
4	5578	5644	5711	5777	5843	5910	5976	6042	6109	6175	66
5	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838	66
6	6904	6970	7036	7102	7169	7235	7301	7367	7433	7499	66
7	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160	66
8	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820	66
56789	8885	8951	9017	9083	9149	9215	9281	_ 9346	9412	9478	66
660		819610						820004			66
1		820267	820333	820399	820464			0661	0727	0792	66
2	0858	6924	0989	1055	1120	1186	1251	1317	1382	1448	66
3	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	65
A	2168	2233	2299	2364	2430	2495	2560	2626	2691	2756	65
4 5 6	2822	2887	2952	3018	3(83	3148	3213	3279	3344	34(9	65
e	3474	3539	3605	3670	3735				3996		65
0						3800	3865	3930		4061	
7	4126	4191	4256	4321		4451	4516	4581	4646	4711	65
8	4776 5426	4841 5491	4906 5556	$\frac{4971}{5621}$	5036 5686	5101 5751	5166 5815	5231 5880	5296 5945	5361 6010	65 65
370	1.75	826140	11.7	-							65
1	6723	6787	6852	6917	6981	7046	7111	7175	7240	7305	65
1											
2	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951	65
8	8015	8080	8144	8269	8273	8338	84(2	8467	8531	8595	64
4	8660	8724	8789	8853	8918	8982	9046		9175	9239	64
5	9304	9368	9432	9497	9561	9625	9690	9754	9818	9882	64
6	9947	830011	830075	830139	830204	830268	83(332	830396	830460	830525	64
7	830589	0653	0717	0781	6845	6969	6973	1037	1102	1166	64
8	1230	1294	1358	1422	1486	1550	1614		1742	1806	64
9	1870	1934	1998	2062	2126	2189	2258		2381	2445	64
380	832509	832573	832637	832700	832764	832828	832892	832956	833020	833083	64
1	3147	3211	3275	3338	3402	3466	8530			3721	64
2	3784	3848	3912	3975	4039	4103	4166		4294	4357	64
3	4421	4484	4548	4611	4675	4739	4862	4866	4929	4993	64
A	5056	5120	5183	5247	5310	5373	5437	5500	5564	5627	63
5	5691	5754	5817	5881	5944	6007	6071	6134	6197	6261	63
6							6704	6767	6830	6894	63
0	6324	6387	6451	6514	6577	6641					63
7	6957	7020	7083	7146	7210	7273	7336		7462	7525	
8	7588	7652	7715	7778	7841	7904	7967		8093	8156 8786	63
	8219	8282	8345	8408	8471	8534	8597	8660	1	1	63
690	838849 9478	838912 9541	838975 9604	839038 9667	839101 9729	839164 9792	889227 9855	8392S9 9918	839352	859415	63 63
1 2 8										0671	63
Z		840169									
8	0733	0796	0859	0921	0984	1046	1169	1172		1297	63
5	1359	1422	1485	1547	1610	1672	1785	1797	1860	1922	63
5	1985	2047	2110	2172	2235	2297	2360	2422	2484		62
6	2609	2672	2734	2796	2859	2921	2983	3046	3108		62
7	8233	3295	3357	3420	3482	3544	3606	3669	3731		62
8	8855	3918	3980	4042	4104	4166	4229	4291	4353		62
9	4477	4539	4601	4664	4726	4788	4850	4912	4974	5036	62
		1									Dif

No.	0	1	2	3	4	5	6	7	8	9	Dif
700	845098	845160	845222	845284	845346	845408	845470	845532	845594	845656	62
1	5713			5904	5956			6151	6213		62
2	6337			6523	6585	6646		6770			62
3	6955			7141	7202	7264	7326				
4	7573			7758	7819	7881		8004			
5	8189		8312	8374	8435	8497	8559	8620	8682		
6	88)5 9419	8355 9481	8928 9542	8989 9604	9351 9665	9112 9726		9235 9849	9297 9911		
8			850156								
9	0645	0707	0769	083)	0,891	0952	1014			1197	61
710			851381								
1	1870	1931	1992	2953	2114	2175	2236	2297			
2	218)	2541	2602	2663	2724	2785	2846		2938		
3	3.)9.)	3150	3211	3272	3333	3394	3455	3516			
4 5	3693 4306	3759 4357	3820 4423	3331 4433	3941 4549	4002 4610	4063 4670	4124 4731	4185 4792	4245 4852	61
6	4913	4974	5034	5095	5156	5216	5277	5337	5398		61
7	5519	5580	5640	5701	5761	5822	5882	5943	6003		61
8	6124	6185	6245	6336	6366	6427	6487	6548	6608		60
9	6729	6789	6850	6910	6970	7031	7091	7152	7212	7272	60
720		857393	857453			857634	857694	857755			60
1	7935	7995	8056	8116	8176	8236	8297	8357	8417	8477	60
2	8537	8597	8337	8718	8778	8338	8898	8958	9018	9078	60
3	9138 9789	9193 9799	9258 9359	9318	9379	9439	9499	9559	9619	9679	60
4 5			360458	9918	9918	0637	860098 0697	0757	0817	0877	60 60
6	0937	0996	1056	1116	1176	1236	1295	1355	1415	1475	60
7	1534	1594	1654	1714	1773	1833	1893	1952	2012	2072	60
8	2131	2191	2251	2310	2370	2430	2489	2549	2608	2668	60
9	2728	2787	2847	29)6	2966	3025	3085	8144	3204	3263	60
			363442								59
1	3917	3977	4036	4095	4155	4214	4274	4333	4392	4452	59
3	4511 5104	4570 5163	4630 5222	4689	4748	4808 5400	4867 5459	4926 5519	4985	5045 5637	59 59
1	5395	5755	5814	5232 5874	5341 5933	5992	6051	6110	5578 6169	6228	59 59
5	6287	6345	6405	6465	6524	6583	6642	6701	6769	6819	59
6	6378	6937	6993	7055	7114	7173	7232	7291	7350	7409	59
4 5 6 7	7467	7523	7535	7611	.7703	7762	7821	7880	7939	7998	59
8	8356	S115	8174	8233	8292	8350	8409	8468	8527	8586	59
9	8644	8703	8732	8821	8879	8938	8997	9056	9114	9173	59
40	869232 9313	869290 9377	869349 8	369408	69466 8	69525 8	869584	869642	869701	869760	59
			9935 870521 8	99910	700 5 3 8 0638	0693	0755	0S13	0872	0930	59
3	0989	1047	1106	1164	1223	1231	1339	1393	1456	1515	58 58
4	1578	1631	1695	1748	1806	1865	1923	1981	2040	2098	58
5	2153	2215	2273	2331	2389	2448	2506	2564	2622	2681	58
2 3 4 5 6	2739	2797	2855	2913	2972	3030	3088	3146	3204	3262	58
7	3321	3379	3437	3495	3553	3611	3669	3727	3785	3844	58
7 8 9	3902	3960	4918	4976	4134	4192	4250	4308.	4366	4424	58 58
	4482	4540	4593	4656	4714	4772	4830	4888	4945	5003	58
3)	875061	875119	S75177 S	575235 S	75293 8	75351 8	875409 8	875466	875524	875582	58
1 2	5640 6218	5393 6276	5756 6333	5813 6391	5871	5929	5987	$6045 \\ 6622$	6102	6160 6737	50
3	6795	6853	6910	6968	6449 7026	6597 7083	6564 7141	7199	6680 7256	7314	53
	7371	7429	7487	7541	7602	7659	7717	7774	7832	7889	59
5	7947	8004	8062	8119	8177	8234	8292	8349	8407	8464	58 58 58 59 57
6	8522	8579	8637	8694	8752	8839	8366	8924	8981	9039	57
7	9093	9153	9211	9263	9325	9383	9140	9497	9555	9612	57
8	9669	9726	9784	9841	9893	99568	880013 8		8801278		57
9	880242	880299	890356	380413	8304718	880523	0585	0642	0699	0756	57
To.	0	1	2	3	4	5	6	7	8	9	Diff.

No.	0	1	2	3	4	5	6	7	8	9	Di
760	880814	880871	880928	880985	881042	881699	881156	881213	881271	881328	5
1	1385						1727			1898	5
2	1955				2183			2354		2468	5
3	2525	2581					2866				51
4	3098	3150	3207	3264	3321	3377	3434	3491	3548	3605	57
5	3661						4602			4172	
6	4229						4569			4739	57
7	4795					5078	5135			5305	
8	5361						5700			5870	57
9	5926	1				1	6265			6434	56
770		886547					886829 7392				56
1 2	7054			7223 7786	7280 7842					7561 8123	56
3	8179				8404		8516			8685	56
4	8741		8853		8965	9021	9077	9134			56
5	9302		9414		9526		9638				56
6	9862			890030							56
7		890477			0645			0812		0924	56
8	0930		1091	1147	1203	1259	1314	1370		1482	56
9	1537		1649	1705	1760	1816	1872	1928		2039	56
780		892150			892317						56
1	2651		2762	2818	2873	2929	2985	3040		3151	56
2	3207	3262	331S	3373	3429	3484	3540	3595		3706	56
3	3762		3873	3928	3984	4039	4194	4150	4205	4261	50
4	4316		4427	4482	4538	4593	4648	4704		4814	55
5	4870	4925	4980		5091	5146	5261	5257		5367	55
6	5423	5478	5533	5588	5644	5699	5754	5809	5864	5920	55
7	5975	6030	6085	6140	6195	6251	63(6	6361	6416	6471	55
8	6526	$6581 \\ 7132$	6636 7187	$\frac{6692}{7242}$	$6747 \\ 7297$	6862 7352	6857 7407	$6912 \\ 7462$	6967 7517	$7622 \\ 7572$	55 55
790		897682			1						55
1	8176		8286	8341	8896	8451	8506	8561		8670	55
2	8725	8780	8835	8390	8911	8999	9054	91(9	9164	9218	55
ã	9273		9383	9437	9492	9547	96 2	9656	9711	9766	55
4	9821	9875	9930			900094		900203	900258		55
5		900422		900531	0586	6640	0095	0749	0804	0859	55
6	0913	C968	1022	1077	1131	1186	1240	1295	1349	1404	55
7	1458	1513	1567	1622	1676	1731	1785	1840		1948	54
8	2003	2057	2112	2166	2221	2275	2829	2384	2438	2492	54
9	2547	2601	2655	2710	2764	2818	2873	2927	2981	3036	54
300		908144									54
1	3633	3687	3741	3795	3849	3904	3958	4012	4066	4120	54
2	4174	4229	4283	4337	4391	4445	4499	4553	4607	4661	54
3	4716	4770	4824	4878	4932	4986	5040	5(94	5148	5202	54
4	5256	5810	5364	5418	5472	5526	5580	5684	5688	5742	54
5	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281	54
6	6885	6389 6927	6443 6981	6497	7089	6604	6658	6712	6766	6820	54 54
8	6874	7465	7519	7035 7573	7626	7143	7196	7250	7304	7358 7895	54 54
9	7411 7949	8002	8056	8110	8163	$7680 \\ 8217$	7784 8270	7787 8324	7841 8378	8431	54
10		908589	- 1	1			10.1			-	54
1	9021	9074	9128	9181	9235	9289	9342	9396	9449	9503	54
2	9556	9510	9668	9716	9770	9823	9877	9930		10037	53
3		910144								0571	53
4	0624	0678	0731	0784	0838	0891	0944	0998	1051	1104	53
5	1158	1211	1264	1317	1371	1424	1477	1530	1584	1687	53
6	1690	1748	1797	1850	1903	1956	2009	2068	2116	2169	58
7	2222	2275	2328	2381	2435	2488	2541	2594	2647	2700	53
8	2753	2806	2859	2913	2966	8019	3072	3125	8178	3231	53
9	3284	8337	3390	8443	8496	3549	3602	8655	3708	8761	58
0.	0	1	2	3	4	5	6	7	8	9	Diff

No.	0	1	2	3	4	5	6	7	8	9	Dif
820	913814	913867	918920	918978	914026	914079	914139	914184	914987	914290	53
1	4343	4396		4502	4555		4660				
2	4872	4925	4977	5030	5083	5136	5189				
3	5400	5453									
				5558	5611	5664	5716				
4	5927	5980		6085	6138	6191	6248				
5	6454	6507		6612	6664		6770				
6	6980	7033	7085	7138	7190		7295	7348	7400	7458	53
7	7506	7558	7611	7663	7716	7768	7820	7878	7925	7978	52
8	8030	8083	8135	8188	8240	8293	8848	8397	8450		
9	8555	8607	8659	8712							
830		919130		919235	919287	919840				919549	
1	9601		9706							920071	
2	920123	920176		920280	92(382			3 920489	0541	0003	52
3	0645	0697		0801			(958	1010	1062	1114	52
4	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634	52
5	1686	1738	1790	1842							
6	2206	2258	2310	2362							
7	2725	2777	2829	2881				3(89	3140		
8											
9	3244	3296									
	3762	3814		1	4			1	1		1
840										924744	
1	4796	4848	4899						5209		
2	5312	5364	5415	5467							
3	5828	5879	5931	5982							51
4	6342	6394	6445	6497	6548	6600	6651	6702	6754	6805	51
5	6857	6908	6959	7011	7062	7114	7165			7319	51
6	7370	7422	7473	7524			7678			7832	
7	7883	7935		8037			8191				
			7986								
8	8396 8908	8447 8959	8498 9010	8549 9061							51 51
850	1			1000	929623			1			
1	9930									930389	
2				CE92						6898	
2		930491									
3	6949	1000		1102	1153		1254				51
4	1458	1509	1560	1610			1763	1814			51
5	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423	51
6	2474	2524	2575	2626	2677	2727	2778	2829	2879	2930	51
7	2981	3031	3082	3133	3183	3234	3285	3335		3437	51
8	3487	3538	3589	3689	2690		3791	3841			51
9	3993	4044			4195	4246	4296			4448	51
860	934498			991	934700	934751	934801		1	934953	50
1	5003	5054	5104	5154	52(5		5306		5406	5457	50
$\overline{2}$	5507	5558	5608	5658	5709	5759	5809			5960	50
3	6011	6061	6111	6162	6212	6262	6313		6413	6463	50
										6966	50
4	6514	6564	6614	6665	6715	6765	6815	6865	€916		
5	7016	7066	7117	7167	7217	7267	7317	7367		7468	50
6	7518	7568	7618	7668	7718	7769	7819	7809	7919	7969	50
7	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470	50
8	8520	8570	8620	8670	8720	8770	8820	8870	8920	8970	50
9	9020	9070	9120	9170	9220	9270	9320	9869	9419	9469	50
370	939519	939569	989619	939669	939719	939769	929819	939869	939918	989968	50
1	940018	940068	940118	940168	940218	940267	94(317	940367	940417	940467	50
2	0516	0566	0616.	0666	0716	0765.	6815	0865	0915	6964	50
3	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462	50
	1511	1561		1660	1710	1760	1809	1859	1909	1958	50
4			1611								
5	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455	50
6	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950	50
7	3000	3049	3699	3148	3198	3247	3297	3346	3396	3445	49
.8	3495	3544	3593	3643	3692	3742	3791	3841	3890	3939	49
9	3989	4038	4088	4137	4186	4236	4285	4335	4384	4433	49
	0	1	2	3	4	5	6	7	8.	9	Diff

No.	0	1	2	3	4	5.	6	7	8	9	Dif
880	941438	914532	944581	944631	944680			944828	914877		49
1	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419	49
2	5469	5518	5567	5616	5665	5715	5764	5813	5862	5912	49
3	5961		6059	6108	6157	6207	6256	6305	6354	6403	49
4	6452		6551	6500	6649	6698	6747	6796	6845	6894	49
$\hat{5}$	6943		7041	7090	7140	7189	7238	7287	7336	7385	49
6	7434		7532	7581	7630	7679	7728	7777	7826		49
6	7924		8022	8970	8119	8168	8217	8266	8315	8364	49
8	8413		8511	8560	8609	8557	8706	8755	8804		49
9	8902		8999	9)48	9.97	9146	9195	9244	9292	9341	49
890		949439									49
1	9878			95J024							49
2		95)414		0511	0560	06∪8	0657	0706	0754		49
3	0851		0949	0997	1046	1695'	1143	1192	1240	1289	49
4	1338	1386	1435	1483	1532	1580	1629	1677	1726	1775	49
5	1823	1872	1920	1969	2017	2066	2114	2163	2211	2260	48
6	2308	2356	2405	2453	2502	2550	2599	2647	2696	2744	48
7	2792	2841	2889	2938	2936	3034	3083	3131	3180	3228	48
8	3276	3325	3373	3421	3470	3518	3566	3615	3663	3711	48
9	3760	3808	3856	39,15	3933	4001	4049	-4098	4146	4194	48
930		954291									48
1	4725	4773	4821	4869	4918	4966	5014	5062	5110	5158	48
2	5207		5303	5351	5399	5447	5495	5543	5592	5640	48
3	5683	5736	5784	5332	5830	5928	5976	6024	6072	6120	48
4	6168	6216	6265	6313	6361	6409	6457	6505	6553	6601	48
5	6649	6697	6745	6793	6840	6888	6936	6984	7032	7080	48
6	7123	7176	7224	7272	7320	7368	7416	7464	7512	7559	48
7	7607	7655	7703	7751	7799	7847	7894	7942	7990	8038	48
8	8986 8564	8134	8181 8659	8229 8707	8277	8325	8373 8850	8421	8468	8516	48 48
910		8612 959089	1		8755	8688	-	8898	8946	8994	48
1	9518	9566		9661	9709	9757	9804	9852	9900	9947	48
2		960042									48
	960471	0518	0566	0613	0661	0709	0756	0804	0851	0899	48
4	0946	0994	1041	1089	1136	1184	1231	1279	1326	1374	48
5	1421	1469.	1516	1563	1611	1658	1706	1753	1801	1848	47
6	1895	1943	1993	2033	2085	2132	2180	2227	2275	2322	47
7	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795	47
8	2843	2390	2937	2985	3032	3079	3126	3174	3221	3268	47
9	3316	3363	3410	3457	3504	3552	3599	3646	3693	3741	47
20		963835									47
1	4260	4307	4354	4401	4448	4495	4542	4590	4637	4684	47
2	4731	4778	4825	4872	4919	4966	5013	5061	5108	5155	47
3	5202	5249	5296	5343	5390	5437	5484	5531	5578	5625	47
4	5672	5719	5766	5813	5860	5907	5954	6001	6048	6095	47
5	6142	6189	6236	6233	6329	6376	6423	6470	6517	6564	47
6	6611	6658	6705	6752	6799	6845	6892	6939	6986	7633	47
7	7080	7127	7173	7220	7267	7314	7361	7408	7454	7501	47
8	7548	7595	7642	7688	7735	7782	7829	7875	7922	7969	47
9	8916	8062	8109	8156	8203	8249	8296	8343	8390	8436	47
939	968483	968530	938576	968623	963670	968716	968763	968810	968856	968903	47
1	8950	8996	9)43	9090	9136	9183	9229	9276	9323	9369	47
2	9416	9463	9509	9556	9602	9649	9695	9742	9789	9835	47
3	9382	9928	9975	970021	970068		970161	970207			47
4	970347	970393	970440	0486	0533	0579	0626	0672	0719	0765	46
5	0812	0858	0904	0951	0997	1044	1090	1137	1183	1229	46
6	1276	1322	1369	1415	1461	1508	1554	1601	1647	1693	46
7	1740	1786	1832	1879	1925	1971	2018	2064	2110	2157	46
8	2203	2249	2295	2342	2388	2434	2481	2527	2573	2619	46
9	2666	2712	2758	2804	2851	2897	2943	2989	3035	3082	46

	1000	1_	2	3	4	5	6	7	8	9	Diff
940	978128	973174	973220	973266	973313	973359	978405	973451	973497	973543	46
1	3590				3774						46
2	4051	4097	4143	4189	4235		4327				46
3	4512	4558	4604	465)	4696		4788	4834	4880	4926	46
4	4972	5018	5064	5110	5156		5248	5294	5340		46
5	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845	46
6	5891	5937	5933	6029	6075	6121	6167	6212	6258		46
7	6350	6396	6442	6488	6533	6579	6625	6671	6717	6763	46
8	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	46
9	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	46
	977724	977769	977815	977861	977906	977952	977998	978043		978135	46
1	8181	8226	8272	8317	8363	8409	8454	8500	8546	8591	46
2	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047	46
3	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503	46
4	9548	9594	9639	9685	9730	9776	9821	9867	9912	9958	46
				980140							45
6	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867	45
7	0912	0957	1003	1048	1093	1139	1184	1229	1275	1320	45
8	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773	45
9	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	45
	982271			982407							45
1	2723	2769	2814	2859	29.14	2949	2994	3040	3085	3130	45
2	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581	45
3	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032	45
4	4077	4122	4167	4212	4257	4302	4347	4392	4437	4482	45 45
5	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932	
6	4977	5022	5067	5112	5157	5202	5247	5292	5337	5882	45
7	5426 5875	5471	5516	5561	5606	5651	5696	5741	5786 6234	5830 6279	45 45
8	6324	5920 6369	5965 6413	6010 6458	6055 6503	6100 6548	6593	6189 6637	6682	6727	45
-	986772		1	986936	- 1	1		100	CALLUTE		45
970	7219	7264	7309	7353	7398	7443	7488,	7532	7577	7622	45
2	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068	45
3	8113	8157	8202	8247	8291	8336	8381	8425	8470	8514	45
4	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960	45
5	9305	9049	9094	9138	9183	9227	9272	9316	9361	9405	45
6	9450	9494	9539	9583	9628	9672	9717	9761	9806	9850	44
7	9895	9939	0000	990028	000079	000117	121000				44
	990339		990428	0472	0516	0561	0605	0650	0694	0738	44
9	0783	0827	0871	6916	0960	1004	1049	1093	1137	1182	44
980				991359					991580	991625	44
1	1669.	1713	1758	1802	1846	1890	1935	1979	2023	2067	44
2	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509	44
3	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951	44
4	2995	3039	3083	3127	3172	3216	3260	3304	3348	3392	44
5	3436	3480	3524	3568	3613	3657	3701	3745	3789	3833	44
6	3877	3921	3965	4009	4053	4097	4141	4185	4229	4273	44
7	4317	4361	4405	4119	4493	4537	4581	4625	4669	4713	44
8	4757	4801	4845	4889	4933	4977	5021	5065	5108	5152	44
9	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591	44
990		1100	U.S. S.Co.	995767		The second second				996030	44
990	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468	44
2	6512	6555	6599					6818	6862	6906	44
3	6949	6993	7037	6643 7080	6687 7124	6731	7212	7255	7299	7843	44
4	7386	7430	7474	7517	7561	7168 7605	7648	7692	7736	7779	44
5	7823	7867	7910		7998	8041			8172		44
5	8259	8303	8347	8390							44
7	8695	8739			8869						
8	9131	9174			9305		9392		9479		44
9	9565				9739		9826		9913		43
	0	1	2	3	4	5	6	7	8	9	Diff

Table of the Lengths of Circular Arcs, radius being unity.

Sec	Length of arc	Mın.	Length of arc.	Deg.	Length of arc.	Deg.	Length of ar
1	0.0000048	1	0.0002909	1	0.0174533	61	1.0646509
2	.0000097	2	.0005818	2 2	·0349066	62	.0821042
3	·0000145	3	.0008727	8	.0523599	63	.0995575
4	*0000194	4	.0011636	4	.0698132	64	1170108
5	.0000242	5	*0014544	5	.0872665	65	1344641
6 .	.0000291	6	.0017453	6	1047198	66	1519174
7	.0000339	7	.0020362	7	1221730	67	1693707
8	.0000388	8	*0023271	8	1396263	68	1868240
9	0000436	9	.0026181	9	1570796	69	2042773
10	*0000485	10	.0029089	10	•1745329	70	2217305
11 _	*0000533	11	.0031998	11	1919862	71	2391839
12	.0000582	12	.0034997	12	2094395	72	2566372
13	.0000630	13	.0037816	13	•2268928	73	2740905
14	*0000679	14	*0040725	14	•2443461	74	•2915438
15	*0000727	15	0043634	15	2617994	75	3089970
16	*0000776	16	0046543	16	2792527	76	3264502
17	*0000824	17	0049452	17	2967060	77	•3439034
18	.0000873	18	*0052361	18	*8141593	78	3613567
19 2)	*0000921	19 20	·0055270 ·0058178	19 20	*3316136 *3490659	79 80	3788100
	*0000970	21	0056178	21	*8665192		3962634
$\frac{21}{22}$	*0001018	22	0061081	22	3839725	81 82	4137167
22	*0001067 *0001115	23	0005996	23	4014258	83	*4311700 *4486233
24		24	0000933	24	4188791	84	
25	·0001164 ·0001212	25	0003314	25	4363324	85	*4660766 *4835299
26	0001212	26	0075632	26	4537857	86	•5009832
27	0001201	27	0078540	27	4712390	87	5184365
23	0001303	28	0013340	28	•4886923	88	•5358898
29	0001333	29	00814358	29	5061456	89	•5533431
3)	0001454	80	0087266	30	-5235988	90	5707963
31	0001502	31	0090175	31	•5410521	91	5882496
32	0001551	32	0093084	32	•5585054	92	6057029
33	.0001599	33	.0095993	33	.5759587	93	6231562
34	0001648	34	0098902	34	•5934120	94	6406095
35	.0001696	35	.0101811	35	·6108653	$9\overline{5}$	6580628
36	.0001745	36	0104720	36	6283186	96	6755561
37	.0001793	37	.0107629	37	6457719	97	6929694
38	.0001842	38	0110538	38	•6632252	98	7104227
39	.0001890	39	.0113447	39	-6896785	99	.7278760
10	*0001939	40	.0116355	40	•6981317	100	•7453293
41	-0001987	41	0119264	41	·7155850	1	.7627826
12	.0002036	42	0122173	42	•7330383	2	·7802359
13	.0002084	43	.0125082	43	·7504916	3	·7976892
11	.0002133	44	0127991	44	·7679449	4	·S154125
15	.0002181	45	.0130900	45	·78539S2	5.	*8325958
16	.0002230	46	.0133809	46	·8028515	6	*8500491
17	.0002278	47	0136718	47	.8203048	7	*8675024
18	.0002327	48	*0139627	48	·8377581	8	*8849557
19	.0002375	49	0142536	49	8552113	9	9024090
50	.0002424	50	.0145444	50	8726646	110	.9198622
51	.0002472	51	*0148353	51	·8901179	11	9373155
52	.0002521	52	0151262	52	·9075712	12	9547688
53	*0002569	53	.0154171	53	•9250245	13	9722221
54	0002618	54	.0157089	54	·9424778	14	9896754
55	.0002666	55	.0159989	55	·9599311	15	2.0071287
56	·0002715	56	0162898	56	9778844	16	.0245820
57	*0002763	57	.0165807	57	9948377	17	.0420353
58	·0002812	58	.0168716	58	1.0122910	18	.0594886
59	0002860	59	0171625	59	0297443	19	0769419
60	.0002909	60	.0174533	60	.0471976	120	.0943951

Table of the Lengths of Circular Arcs, radius being unity.

Deg.	Length of arc	Deg.	Length cfare.	Deg	Length of arc.	Deg.	Length of an
21	2.1118484	181	3.1590460	241	4.2062435	301	5.2584411
2	1293017	2	1764993	2	2236968	2	2708944
3	1467550	3	1939526	3	•2411501	30	2883477
4	1642083	4	2114059	4	2586034	41	*3058010
4 5 6 7	1816616	5	2288592	5	2760567	5	*3232542
6	1991149	6	2463125	6	2935100	6	*3407075
7	•2165682	7	2637658	7	·3109633	7	*3581608
8	2340215	8	2812191	8	*3284166	8	*3756141
9	2514748	9	2986724	9	•3458699	9	*3930674
30	2689280	190	*3161256	250	-3633231	310	*4105207
1	•2863813	1	*3335789	1	3807764	1	4279740
	•3038346	2	.3510322	2	3982297	2	•4454278
$\frac{2}{3}$	3212879	3	3684855	3	4156830	3	•4628806
4	3387412	4	·3859388	3	•4331363	4	•4803333
5	3561945	5	4033921	5	4505896	5	4977872
5	3736478	6	4208454	6	•4680429	6	515240
7	*3911011	7	4382987	7	4854962	7	5326938
8	•4085544	8	4557520	8	5029495	8	•5501471
9	4260077	9	4732053	9	5204028	9	5676004
		200	4906585	260	5378560	320	
40	4434609		5081118			1	*5850530
1	4609143	$\frac{1}{2}$	5255651	1	•5553093 •5727626	2	•6025069
2	4783676			2			6199209
3	4958209	3	5430184	3	•5902160	3	637413
4	5132742	4	*5604717	4	6076693	4	6548668
5	5307274	5	5779250	5	•6251225	5	6723207
6	•5481807	6	•5953783	6	6425758	6	6897744
	5656340	7	6128316	7	6600291	7	7072267
8	5830873	8	•630.2349	8	6774824	8	7246800
9	*6005406	9	.6477382	9	•6949357	9	742133
50	*6179939	210	6651914	270	7123890	330	759586
1	6354472	1	6826447	1	7298423	1 4	.7770398
2	6529005	2	·7000980	2 3	·7472956	2	794493
3 4 5 6	•6703538	3	7175513	3	•7647489	3	*811946
4	6878071	4	7350046	4	•7822022	4	829399
5	•7052604	5	.7524579	5	•7996554	5	*8468530
6	*7227137	6	.7699112	6	*8171087	6	*864306
7	7401670	7	7873645	7	*8345620	7	- 8817596
8	7576203	8	8048178	8	*8520153	8	8992129
9	7750736	9	.8222711	9	-8694686	9 .	916666
60	7925268	220	8397243	280	*8869219	340	934119
1	8099801	1	·8571776	1	•9043752	1	951572
2	*8274334	2	8746309	2	9218285	2	9690260
3	*8448867	3	8920842	3	9392818	3	9864798
3	8623400	4	9095375	. 4	9567351	4 !	6.003932
5	8797933	5	9269908	5	9741883	5	0213859
5 6 7	8972466	6	9144441	6	9916416	6 .:	•038839
7	9146999	7	9618974	7	5.0090949	7	.056295
8	9321532	8	9793507	8	0264582	8	0737458
9	9496065	9	9968040	9	*9440015	9	0911990
70	9670597	230	4.0142572	290	0614548	350	1086528
1	9845130	1	0317106	1	0789081	1.	126105
$\frac{1}{2}$	3.0019667		0491639		0963614	2	1435589
2		3	0666172	2 3 4	1138147	3	1610129
$\frac{3}{4}$	0194196	4		4	1312680	4	178465
4	0368729	5	0840705	5	1487213	5	1959188
5 6 7	0543262	6	1015237	6	1661746	6	2133721
7	•0707795	7	1189770	7		7 .	2308254
1	0892328		1364303		1836279	8	
8	1066861	8	1538836	8	2010812	9	2482787
9	1241394	9	1713369	9	2185345		2657320
.80	1415927	240	1887902	300	2359878	360	2831853

EXPLANATION OF THE USES AND APPLICATIONS OF THE TABLE OF LONG CHORDS,

PROBLEM.

Required to find the distances or abscissas on the chord from which, if ordinates or perpendiculars be drawn, they will pass through the station points on the curve.

Example.—Let the given curve be 1000 ft. long of 5° curvature,

or 1146 ft. radius.

For the first station from the beginning we have

$$\frac{\text{chord } 800 - \text{chord } 600}{2} = 2 \text{nd distance, etc.}$$

Then by table we have,

$$\frac{968 \cdot 87 - 784 \cdot 10}{2} = 92 \cdot 385$$

$$\frac{784 \cdot 10 - 593 \cdot 36}{2} = 95 \cdot 370$$

$$\frac{593 \cdot 36 - 398 \cdot 10}{2} = 97 \cdot 630$$

$$\frac{398 \cdot 10 - 198 \cdot 81}{2} = 99 \cdot 645$$

$$\frac{198 \cdot 81 - 0000}{2} = 99 \cdot 405$$

$$\frac{198 \cdot 81 - 0000}{2} = 99 \cdot 405$$

$$\frac{184 \cdot 435}{484 \cdot 435} = \text{half length} = \frac{968 \cdot 87}{9}$$

Thus for any given station we take from the length of the whole chord the length of a chord of twice as many stations less than the one under consideration; that is, 1st station from beginning 2 less; 2 from beginning, 4 less, etc., and take half the difference.

If the chord had been for 900 ft. of curve, we should have,

$$\frac{877.32 - 689.39}{2} = 93.965 = 1st \text{ distance.}$$

$$\frac{689.39 - 496.20}{2} = 96.595 = 2nd$$

$$\frac{496.20 - 299.24}{2} = 98.480 = 3rd$$

$$\frac{299.24 - 100}{2} = \frac{99.620}{2} = 4th$$

$$\frac{388.660}{4dd} = \frac{877.32}{2} = \text{half length of chord.}$$

In like manner we may find the ordinates connecting, these abscissas with their points on the curve.

Let the length of chord and radius be as already given. Then

we have.

Mid. ordinate 1000 ft. — mid. ordinate 800 ft. curve = ordinate at 1st station.

Mid. ordinate 1000 ft. — mid. ordinate 600 ft. = ordinate at 2nd station.

For this purpose we have calculated a table of middle ordinates corresponding to that of long chords. From this we have,

```
107·39 — 69·13 = 38·62 = 1st ordinate.

107·39 — 39·06 = 68·33 = 2nd "

107·39 — 17·41 = 89·98 = 3rd "

107·39 — 4·36 = 103·03 = 4th "
```

107.39 - 0.00 = 107.39 = 5th or middle ordinate.

Were the chord for 900 ft. of curve we should have by tables,

```
87·25 — 53·05 = 34·20 = 1st ordinate.

87·25 — 27·17 = 60·08 = 2nd "

87·25 — 9·81 = 77·44 = 3rd "

87·25 — 1·09 = 86·16 = 4th "

87·25 — 0·00 = 87·25 = middle "
```

This will sufficiently demonstrate how the ordinates can be obtained for any other length of chord or curve. The same principle obtains in regard to any other rate of curvature. After passing the middle ordinate, their lengths will be repeated inversely; as will also be the intermediate lengths of abscissas. Then from end of first abscissa erect first ordinate, and so on in regular rotation.

1.0 - 1-616

TABLE

Of Middle Ordinates from Chords subtending Curves of from 100 to 1000 feet in length; calculated to every 15' of Curvature from 15' to 8°. Radius of 1° being 5730 feet.

			LI	ENGTHS	OF A	RCS.				
	100	200	300	400	500	600	700	800	900	100
	1		X	IIDDLE	ORDINA	res.				
Curvature.		1	1		1	1			0 = 1	
0° 15′	0.06	0.22	0.49	0.87	1.36	1.96	2.67	3.49	4.42	5.4
30	0.11	0.44	0.98	1.75	2.73	3.93	5.84	6.98	8.83	10.9
45	0.16	0.65	1.47	2.62	4.09	5.89	8.01	10.47	13.25	16.
1° 00'	0.22	0.87		3.49	5.45	7.85	10.69	13.96	17.67	
15	0.27	1.09	2.45	4.36	6.82	9.81	13.36	17.44	22.67	27.9
30	0.33	1.31	2.94	5.23	8.18	11.77	16.03	20.93	26.48	32
45	0.38	1.53	3.43	6.11	9.54	13.73	18.70	24.41	30.88	38:
2° 00'	0.44	1.75	3.92	6.98	10.90	15.68	21.35	27.88	35.27	43
15	0.49	1.96	4 41	7.85	12.26	17.64	24.02	31.35	39.66	48:
30	0.55	2.18	4.91	8.72	13.62	19.60	26.68	34.82	44.04	54
45	0.60	2.40	5.40	9.59	14.98	21.56	29.33	38.29	48.41	59.
3, 00,	0.65	2.62	5.89	10.46	16.34	23.52	31.98	41.74	52.78	65
15	0.71	2.84	6.33	11.33	17.70	25.47	34.63	45.19	57.13	70.
30	0.76	3.05	6.87	12.20	19.06	27.42	37.28	48.63	61.47	75.
45	0.82	3.27	7.36	13.67	20.41	29.36	39.92	52.07	65.80	81.
4° 00'	0.87	3.49	7.85	13.94	21.77	31.31	42.56	55.50	70.12	86
15	0.93	3.71	8.34	14.81	23.12	33.25	45.19	58.92	74.48	91.
30	0.98	3.93	8.82	15.68	24.47	35.19	47.82	62.34	78.72	96.
45	1.04	4.14	9.32	16.55	25.82	37.13	50.44	65.74	82.99	1(2.
5° 00'	1.09	4.36	9.81	17.41	27:17	39.06	53.05	69.13	87.25	
15	1.15	4.58	10.30	18.28	28.52	40.99	55.67	72.51	90.50	112
30	1.20	4.80	10.79	19.15	29.87	42.92	58.27	75.88	95 73	
45	1.25	5.01	11.27	20.01	31.21	44.84	60.86	79.25	99.94	
6° 00'	1.31	5.23	11.76	20.88	32.55	46.76	63.45	82.60	104.13	
15	1.36	5.45	12.25	21.74	33.89	48.67	66.04	85 93	1(8.30	1334
30	1.42	5.67	12.74	22.60	35.23	50.59	68.62		112.45	
45	1.47	5.89	13.23	23.47	36.57	52.50	71.18		116.58	
7° 00'	1.53	6.10	13.71	24.33	37.91	54.40	73.74		120.69	
15	1.58	6.32	14.20	25.19	39.24	56.30	76.30		124.78	
30	1.64	6.54	14.69	26.05	40.57	58.19	78.84	162.42	128.84	157 9
45	1.69	6.76	15.18	26.91	41.90	60.08	81.37		132.88	162.8
8, 00,	1.75	6.98	15.66	27.77	43.23	61.97	83.90	108.92	136.89	167 7

On the principles by which the following tables are calculated.

Let m = linear opening of switch rail, s = angular opening of

rail, f = angle of frog, g = gauge of track.

Let x = length of chord from opening of switch rail to point of frog. Then will the amount of curvature between the opening of rail where curve commences and point of frog = f - s; therefore the instrument setting over the open end of switch rail with a backsight on the fixed end of it, the instrumental deflection to the point

of frog will be $=\frac{f-s}{2}$. But if the backsight be taken on a point (say 5 inches distant) parallel with the main track, the deflection will then be $=\frac{f-s}{2}+s=\frac{f+s}{2}$. Making the value of x, radius, g-m

will be homologous to the sine of $\frac{f+s}{2}$ Then we have,

$$\operatorname{Sin}\left(\frac{f+s}{2}\right):R::g-m:x=\frac{R\left(g-m\right)}{\sin\left(\frac{f\div s}{2}\right)}$$

EXAMPLE:

Calling $s = 1^{\circ} 15'$, $f = 6^{\circ} 45'$, g = 4.70, m = 0.42, and g - m = 4.28, we have sin. $4^{\circ} : R :: 4.28 : x = 61.36$ ft.

When a double opening of a switch rail for a double turnout occurs, we have,

sin.
$$\left(\frac{f+2s}{2}\right)$$
: $R:: g-2 \times 0$: $x =$ distance to nearest frog.

The linear and angular opening of rail being the same, this table may be adapted to any other gauge by increasing the value of x as given in this table, and the length of radius of turnout 2 per cent. for every additional inch in the gauge. This is a little too much; the correction for a 6 ft. gauge being about 30 per cent. Thus 100 ft. chord of turnout on this track will give 130 ft. on 6 ft. gauge, and 1000 ft. radius will give 1300 ft. This is for a straight line. When on a curve going the same way as turnout, it is sufficiently accurate for practice to add rate of curve of main track to that of the table; but when going in opposite direction, subtract it; thus making relative departure from main track the same as on a straight line.

EXAMPLE:

Thus a 5° frog for a 4ft. $8\frac{1}{2}$ inch gauge gives a distance of 78.5 ft. curvature 4° 46'. If the main track were a 4° curve and going the same way, distance being the same, the rate of curvature would be 4° $46' + 4^{\circ} = 8^{\circ}$ 46', radius 653 ft.; but going the other way 4° $46' - 4^{\circ} = 0^{\circ}$ 46', radius 7473 ft.

TABLE

Of distances on chord from opening of switch rail where the curve commences, to point of frog, radius of curvature and rate per 100 ft., calculated to every 15 minutes of frog angle, from 3° to 15°. Constant data: opening of switch rail 5 inches = 42 ft., average angular opening say 1° 15′, rails being from 18 to 20 ft. long. Variable data gauges of road.

Gauge 4ft. $8\frac{1}{2}$ inches = 4.70 ft.

Angle of frog.	Distances.	Length of radius.	curv	te of ve per 0 ft.	Angl		Distances.	Length of radius.	curve	e of e per oft.
3°	115.43	3779.3	1°	31'	9°		47 99	355.0	16°	09
15'	109.02	3023.3	1	50		15'	46.78	335.3	17	07
30'	103.28	2613.2	2	11		30'	45.69	317.6	18	04
45'	98.12	2249.0	2	33		45'	44.66	301.3	19	02
4°	93.45	1947.2	2	$56\frac{1}{2}$	10°		43.67	286.2	20	03
15'	89.21	1704.0	3	22		15'	4272	272.2	21	05
30'	85.33	1508.0	3	48	15	30'	41.80	259.3	22	08
45'	81.78	1339.0	4	17		45'	40.95	247.2	23	13
5°	78.51	1199.8	4	463	11°		40.11	236.0	24	20
15'	75.50	1081.6	5	18		15'	39.36	225.4	25	28
30'	72.70	980.3	5	51		30'	38.55	215.8	26	37
45'	70.01	892.9	6	25		45'	37.81	206.6	27	48
6°	67.69	816.8	7	01	12°		37.10	198.0	29°	_
15'	65.44	715.1	7	39		15	36.41	189.5	30	13
30'	63.33	690.4	8	18		30'	35.75	182.4	31	27
45 '	61.36	639.4	8	58		45'	35.12	175.3	32	43
7°	59.50	593.0	9	40	13°		34.51	168.6	34	02
15'	57.75	550.8	10	24	1	15'	33.91	162.2	35	23
30'	56.01	514.6	11	09		30'	33.34	156.3	36	45
45'	54.55	481.1	11	56		45'	32.79	150.6	38	08
3°	53.08	415.8	12	44	14°		32.26	145.3	39	32
15'	51.69	423.3	13	35		15'	31.74	140.2	40	58
30'	50.36	398.3	14	$25\frac{1}{2}$	1.4	30'	31.24	135.4	42	26
45'	49.11	375.4	15	17		45'	30.75	130.8	43	56
	1 570	ri ni i			15°		30.28	126.5	45	26

TABLE

Of distances on chord from opening of switch rail to point of frog, radius of curvature and rate per 100 ft.

Gauge 4ft. 10 inches.

Angle of frog	Distances.	Length of radius.	cur	te of ve per 00 ft.	Ang fro		Distances.	Length of radius	curv	e of ve per 00 it.
3°	118.89	3892	1°	28'	9°		49.42	365.7	15°	41
15 '	112.29	3217.0	1	47		15	48 18	345 3	16	36
30'	106.37	2709	2	07		30'	47 06	327.1	17	32
45 '	101.06	2316	2	$28\frac{1}{2}$		45'	46.00	310 3	18	29
4°	96.25	2006	2	$51\frac{1}{3}$	10°		44.98	294.7	19	28
15'	91 88	1755	3	16		15'	44.00	280:3	20	27
30'	87.88	1553	3	$41\frac{1}{2}$		30'	43.06	267	21	$28\frac{1}{2}$
$\bf 45'$	84:23	1379	4	091		45'	42 17	254 6	22	$31\frac{1}{2}$
5°	80 86	1235	4	381	11°		41.31	243	23	36
15'	77.76	1134	5	03		15'	40 48	232 3	24	42
30'	74.88	1009	5	$40\frac{1}{2}$		30'	39.70	222.2	25	49
45 '	72.21	919	6	14		45'	38.94	212.7	26	58
6°	69.72	841	6	49	12°		38.21	203.9	28	09
15'	67.40	772	7	$25\frac{1}{2}$		15'	37.50	195 5	29	21
30'	65.22	712	8	03		30'	36 82	187 8	30	33
45'	63.20	658.	8	$42\frac{1}{2}$		45'	36.17	180 5	31	46
7°	61.28	610	9	$23\frac{1}{2}$	13°	N.	35.54	173 6	33	00
15'	59.48	568.	10	06		15'	34.92	167	34	18
30'	57.79	530.	10	50		30'	34.34	160.9	35	39
45'	56.18	495.5	11	35		45'	33.77	155	37	00
8°	54.67	464.3	12	21	14°		33 22	149.6	38	20
15'	53.24	436	13	09	-	15'	32.69	144.4	39	44
30'	51.87	410.2	13	59		30'	32.17	139.4	41	10
45'	50.58	386 6	14	50		45'	31.67	134.7	42	36
AR		1 127	,		15°		31.18	130.2	44	04

Of distances on chord from opening of switch rail to point of frog, radius of curvature and rate per 100 ft.

			Gauge	e 5 feet.			
Angle of frog.	f Distances.	Length of radius.	Rate of curve per 100 ft.	Angle of frog.	Distances.	Length of radius.	Rate of curve per 100 ft.
3°	123.51	4036	1°25½'	9°	51.24	379 9	15° 05′
15'	116.65	3436	1 40	15'	50.00	358.7	15 58
30'	110.50	2810	2 02	30'	48.88	339.8	16 52
45'	104.98	2403	2 23	45'	47.78	322.3	17 48
4°	100.00	2080	2 45	10°-	46.72	306.2	18 44
15'	95.45	1820	3 08\$	15'	45 71	291.2	19 42
30'	91 30	1611	3 33	30'	44.73	277.4	20 40
45'	87.50	1430	4 00	45'	43.81	264.5	21 40
5°	84.	1281	4 28	11°	42.91	252.5	22 42
15'	80.78	1156	4 57	15'	42.00	241.2	23 46
30'	77.78	1047	5 27	30'	41.24	230.9	24 52
45'	75.00	965.	5 58	45'	40.45	221.0	26 01
6°	72.32	873	$6\ 33\frac{1}{2}$	12°	39.69	211.8	27 10
15'	70.00	802	7 09	15'	38.95	202.7	28 20
30'	67.76	739	7 45	30'	38.25	195.1	29 30
45 '	65.65	684	8 23	45'	37.57	187.5	30 40
7°	63.66	634	9 02	13°	36.92	180.2	31 50
15'	61.78	590.	9 43	15'	36.28	173.5	33 02
30'	60.00	∘ 550.	10 25	30'	35 67	167.2	34 17
45	58.36	514.	11 09	45'	35.08	1611	35 35
8°	56.79	482	11 54	14°	34 51	155.4	36 55
15'	55.30	452.	12 40	15	33.96	150.0	38 16
30'	53.88	426	13 27	30'	33.42	144.8	39 38
45'	52.54	401	14 17	45'	32.90	139 9	41 00
	The L	77.6	7/1	15°	32.39	135.3	42 23

TABLE

Of distances on chord from opening of switch rail to point of frog,
radius of curvature and rate per 100 feet.

Gauge 5 feet 6 inches.

Angle of frog.	Distances.	Length of radius.	cur	ite of ve per 00 ft.	Angle of frog.	Distances.	Length of radius.	curv	te of re per 0 ft.
3°	136.78	4478	1°	17'	9°	56.87	420.7	13	39'
15'	129.19	3750	1	32	15'	55.40	397.4	14	27
30'	122.38	3116.	1	50	30'	54.14	376.4	15	14
45'	116.27	2664	2	09	45'	52.92	357.0	16	04
4°	110.75	2307	2	29	10°	5174	339.1	16	55
15'	10571	2019	2	50	15'	50.62	322.5	17	47
30'	101.11	1786	3	12	30′	49.54	307.2	18	40
45'	96 90	1586	3	37	45'	48.52	292.9	19	35
5°	93.03	1421.0	4	02	11°	47.52	280.0	20	30
15'	89.46	1281	4	28	15'	46 52	267.2	21	28
30'	86.14	1161.	4	56	30'	45.68	255.7	22	26
45'	83.15	1062	5	24	45'	44.80	244 8	23	26
6°	80.16	967	5	56	12°	43.96	234.2	24	30
15'	77.53	888.8	6	27 .	15'	43.14	224.7	25	33
30'	75.04	819.	7	00	30'	42.36	215.9	26	36
45	72.71	757.6	7	34	45'	41.61	207.7	27	40
7°	70.50	702.8	8	10	13°	40.89	199.7	28	46
- 15'	68 43	653.8	8	46	15'	40.18	192.2	29	54
30'	66 47	609 8	9	24	30'	39.50	185.2	31	02
45'	64 64	570 0	10	04	45'	38.85	178.4	32	11
8°	62 89	534	10	45	14°	38.22	172:1	33	21
15'	61.25	501.6	11	27	15'	37.61	166.1	34	33
30'	59 67	471.9	12	10	30'	37.01	160.4	35	47
45'	58·19	444.8	12	$54\frac{1}{2}$	45'	36.44	154.9	37	03
F 12		15.86			15°	31.87	150.0	38	18

TABLE

Of distances on chord from opening of switch rail to point of frog, radius of curvature and rate per 100 ft.

	1		l R	ate of	1	i		Rat	e of
Angle of frog.	Distances.	Length of radius.	cui	ve per	Angle of frog.	Distances.	Length of radius.	curv	ft.
3°	150.06	4913:1	1	° 10′	9°	62.40	461 6	12°	26'
15'	141.73	4060.3	1	$24\frac{2}{3}$	15'	60.81	435.9	13	10
30′	134.26	3419.3	1	$40\frac{1}{2}$	30'	59 40	412.9	13	55
45'	127.56	2923.7	1	$57\frac{1}{2}$	45'	58.06	391.7	14	40
4°	121.50	2531.4	2	16	10°	56.77	372 1	15	25
15'	115.97	2215.2	2	35	15'	55.54	353 9	16	12
30'	110.93	19604	2	$55\frac{1}{2}$	30'	54.35	337.1	17	00
45'	106.31	1740-7	3	$17\frac{1}{2}$	45'	53.24	321.4	17	5 0
5°	102.06	1560.0	3	$40\frac{1}{2}$	11°	52.14	306.8	18	42
15'	98.15	1406.1	4	$04\frac{1}{2}$	15'	51.04	293.2	19	34
30'	94.51	1274.4	4	30	30'	50.12	280.5	20	27
45'	91.14	1160.8	4	56	45'	49.15	268.6	21	22
6°	88.00	1061.8	5	24	12°	48.23	257.4	22	18
15'	85.07	975.0	5	53	15'	47:33	246.0	23	15.
30'	82.33	898.8	6	23	30′	46.47	237.1	24	12
45'	79.77	831.2	6	54	45'	45.66	227.9	25	12
7°	77.35	771.0	7	26	13°	44.86	219.2	26	12
15'	75.08	717.3	8	00	15'	44.08	210.9	27	14
30'	72.94	669.0	8	34	30'	43.34	203.2	28	17
45	70.92	625.4	9	10	45'	42.63	195.8	29	20
8°	69.00	586.0	9	$47\frac{1}{2}$	14°	41.94	188.9	30	23
15',	67.20	550.3	10	$25\frac{1}{2}$	15'	41.26	182.3	31	28
30'	65.47	517.8	11	05	30′	40 61	176.0	32	36
45'	63.84	488.0	11	46	45'	39.98	170.0	88	45
Day 1 - St	An garage	CI SOL OF		U	15° ·	39.36	164.5	33	54

MISCELLANEOUS NOTES AND EXAMPLES.

Surpose a curve contain 57° 24' curvature, distance between centres of inner and outer track 5ft. Required difference between main and outside track. By table of circular arcs:

57° gives 0.9948377
24° " 0.0069814
10018191
Multiply 5
5.0090955

Ans. 5 ft.

To find the length of any circular arc, multiply tabular arc of given number of degrees by the radius. Half of this tabular length gives the tabular area of a section of some number of degrees, and this tabular area multiplied by the square of radius, gives the required area of sector; or this tabular area, multiplied by the required area of sector; or this tabular area, multiplied by the required area of a ring. Thus if inner radius = 3 ft., outer = 4, thickness being 1, we have $4^2 - 3^2 = 7$, which multiplied by tabular area gives area required. Suppose the radius of the intrados of an arch containing 134° 46' is 6'3 ft., the thickness of voussoirs = 1.5.

Then $8^2 - 6.5^2 = 21.75$. $134^\circ \text{ gives } 2.3387412$ 46' 0.0133809 $134^\circ 46'$ $2.3521221 \times 21.75 = 51.16 \text{ nearly,}$

and $\frac{51.16}{2} = 25.08 =$ area.

When the span and rise are given to find the curvature of arc, make $\frac{\text{rise}}{\text{half span}} = \text{nat. tang. } \frac{1}{4}$ curvature.

Example.—Suppose span = 18 ft., rise = 6 ft., then $\frac{6}{9}$ = 0.666667 = nat. tang. 33° 41½', and 33° 41½' × 4 = 134° 46' of curvature. Let it be required to find radius, we would then have,

 $\frac{(\frac{1}{2} \operatorname{span})^2 + (\operatorname{rise})^2}{2 \times \operatorname{rise}} = \operatorname{radius}. \quad \text{Thus} \frac{9^2 + 6^2}{2 \times 6} = 9.75 = \operatorname{radius} \text{ of arc.}$

Had it been a 12 ft. span and 4 ft. rise, radius would have been 6.5 feet.

Analogous to this last example, and derived from the same proposition of geometry, is an easy method of determining the distance across a river or ravine.

Let the instrument be at B with a foresight upon C across river; from B lay off a right angle to D. Set the instrument over D and

lay off from DC a right angle DA meeting CB produced in A. Then by similar triangles,

 $AB:BD::BD:BC; \text{ or } \frac{BD^2}{AB} = BC.$ Suppose that BD=50 ft. and AB=3 ft., then $\frac{2500}{3}=833\cdot3$ ft.

To Triangulate round an Obstruction on a Curve.

Example.—Suppose in running a 3° curve, I find the point for sta. 2645 to be occupied by a house; I find, however, that 2644 + 75 and 2645 + 25 are clear of the house; also, that I have sufficient room for an equilateral triangle whose sides are 50 ft. each. tablish 2644 + 75 and set the instrument over it. Now suppose the last reliable point on curve to be at sta. 2640. The instrumental deflection from 2640 to 2645 + 25 = 525 ft. is 7° 52½. Set the vernier to this reading, and clamp the instrument with a backsight on 2640, so that, when the vernier is at 0, the telescope may point towards 2645 + 25. Unclamp vernier, set the reading at 60°, and measure 50 ft. in line of telescope. Set instrument over this point, and turn the interior angle = 60°, measuring 50 ft. as before. the transit over this last point, sta. 2645 + 25, with the vernier at 60° so that the zero line shall coincide with the chord from 2644 + 75 to 2045 + 25. Clamp the instrument with a sight on the second point or vertex of triangle. Then set the vernier at 1° 52½, the instrumental deflection for 125 ft., and the telescope will point in direction of sta. 2646, from whence continue the curve, if required, as before.

This was an expedient applied to advantage by a former associate in making the final location of the Ohio and Mississippi R. R.,

Ripley County, Indiana.

Similar examples and corollaries to previous propositions might be added indefinitely, but this would transcend the proper limits of the work. To an adept practitioner possessing ordinary faculties of generalization, it is believed the rules and formulas already given will be suggestive of the means of solving most of the other problems which may occur in practice. The second secon

THE PARTY OF THE P

William product a Callering

the second secon

The second second

-7 (1-2/10-21-3)

TABLE FOR CURVING RAILROAD IRON.

BY CHARLES HASLETT, CIVIL ENGINEER.

GIVEN to the nearest sixteenth of an inch, the spring of a 10 feet rail being one inches, and 1½ inches. The spring will be tested at each point by a suitable straight edge fourth that of a 20 feet rail; the spring of a 9 feet rail being one fourth that of an 18 feet rail. When the rail is properly curved, the spring at one fourth the length from little less. the end of the rail, will be three-fourths that at the middle. At 5, 10, and 15 feet of a 20 feet rail the spring for a 19 degree curve (301 feet radius) would be 1½ inches, 2 quired spring, in inches and parts of an inch.

Where the sign + occurs, curve a little more; and where the sign - occurs, curve a

Opposite the rate of curvature and under the length of rail, will be found the re-

Deffection per 100 ft. 1°00' 15 30	Radius feet.																					
1°00′ 15	Ra fe							LE	NGTH	OF	RAIL	IN F	EET.								Radius feet,	De- flect'n
15		10 11 12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	R	per 100 ft.
	5730 4584	$\begin{bmatrix} \frac{1}{3} \frac{1}{2} - \frac{1}{3} \frac{1}{2} + \frac{1}{3} \frac{1}{2} + \frac{1}{1} \frac{1}{6} - \frac{1}{3} \frac{1}{2} \end{bmatrix}$	- J+	$\frac{1}{1_1^6}$	$\frac{1}{\frac{1}{16}} +$	$\frac{\frac{1}{16}}{\frac{1}{16}}+$	$\frac{1}{1^{\frac{1}{6}}} +$	$\frac{1}{16} +$	1/8 -	 1/8	$\frac{1}{8}$ $\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$ +	$\frac{1}{8} + \frac{3}{16}$	$\frac{3}{16}$ +	$\frac{3}{1}\overline{6}$	$\frac{3}{16}$	$\frac{3}{\frac{1}{1}6}+$	$\frac{3}{16} +$	1	5730 4584	1°00
	3820	$ \frac{1}{32} + \frac{1}{16} - \frac{1}{16} -$	$-\frac{16}{16}$	$ \begin{array}{c c} $	16+	$\frac{16}{8}$	$\frac{\frac{1}{16}+}{\frac{1}{8}}$	<u>8</u> <u>-</u>	183+	$\frac{\hat{8}}{1}\frac{3}{6}$	$\frac{3}{16}$	$\frac{1\overline{6}}{\overline{1}\overline{6}}$	$\frac{3}{16} +$	$\begin{bmatrix} \overline{1} & \overline{6} \\ 1 & \underline{4} \end{bmatrix}$	$\begin{bmatrix} \overline{1} & \overline{6} \\ \overline{4} \\ \overline{4} \end{bmatrix}$	1 + 5 = 6	$\frac{3}{16}$ $\frac{5}{16}$ $+$	$\begin{array}{c c} \overline{4} \\ \underline{5} \\ \overline{1} \overline{6} \end{array}$	\frac{1}{5}6+		3820	30
45 2°00	$\begin{array}{c} 3274 \\ 2865 \end{array}$	$\begin{vmatrix} \frac{1}{3} \frac{1}{2} + \frac{1}{16} - \frac{1}{16} \\ \frac{1}{16} - \frac{1}{16} \end{vmatrix} = \begin{vmatrix} \frac{1}{16} + \frac{1}{16} - \frac{1}{16} \\ \frac{1}{16} + \frac{1}{16} - \frac{1}{16} \end{vmatrix}$	- 	16 +	18 -	$\frac{1}{8}$ $+$	-π- <u>-</u>	$\frac{1}{8} + \frac{3}{16}$	$\frac{\frac{3}{16}}{\frac{3}{16}}$	$\frac{\frac{16}{3}}{\frac{3}{16}} +$	$\frac{3}{16} + \frac{1}{16}$	$\begin{bmatrix} \frac{1}{4} & \\ \frac{1}{4} & \end{bmatrix}$	1 +	$\frac{1}{4} + \frac{5}{1.6} - \frac{1}{1.6}$	$\frac{\frac{76}{16}}{\frac{5}{16}}+$	38	$\frac{3}{16} + \frac{3}{8}$	$\frac{\frac{3}{8}}{\frac{7}{1-6}}$	8 ₇ +	$\begin{bmatrix} \frac{1}{16} \\ \frac{1}{2} \end{bmatrix}$	$\begin{array}{c} 3274 \\ 2865 \end{array}$	2°00
15 30	$\begin{array}{c} 2546 \\ 2292 \end{array}$	1	- 10 -		1 +	$\frac{\frac{1}{8}}{\frac{3}{3}}$	$\frac{3}{16}$	$\frac{\frac{16}{3}}{\frac{3}{16}} +$	$\frac{13^{6}}{16}$ +	1°-	1 +	$\frac{\frac{5}{16}}{\frac{5}{16}}$	\frac{1}{3} \frac{5}{6}	16 +	3 8 7	$\frac{3}{16}$ +	$\frac{\frac{7}{1}}{\frac{1}{6}}$	$\begin{bmatrix} \frac{7}{16} + \\ 1 + \end{bmatrix}$	$\frac{1}{2}$ -	1 3 +	$\frac{2546}{2292}$	$\begin{array}{c c} 15 \\ 30 \end{array}$
45	2083	$ \begin{vmatrix} 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	8 - 5] 	$\frac{8}{1.6}$	$\frac{\frac{3}{16}}{\frac{3}{16}} + \frac{3}{16} +$	$\frac{16}{16}$	16 -	1 +	$\frac{\overline{4}}{\overline{1},\overline{6}}$	$\begin{bmatrix} \frac{1}{6} \\ \frac{5}{16} \\ \frac{3}{8} \end{bmatrix}$	š —	838	$\frac{\frac{3}{8}}{\frac{7}{16}}$	$\frac{\overline{1_{1}0}}{\overline{16}}$	$\frac{1}{2}$ —	$\frac{\frac{2}{1}}{\frac{1}{2}}$ +	$\begin{array}{ c c }\hline 2\\ \hline 1\\ \hline 6\\ \hline \end{array}$	1 6 5 8	$\frac{1}{\frac{5}{8}}$ +	2083	45
3°00 15	$\frac{1910}{1763}$	$\begin{vmatrix} \frac{1}{16} + \frac{1}{8} - \frac{1}{8} - \frac{1}{8} \\ \frac{1}{16} + \frac{1}{8} - \frac{1}{8} \end{vmatrix}$	- 충 + 충 +	$\frac{1}{8}$ + $\frac{3}{16}$ -	$\frac{\frac{3}{16}}{\frac{3}{16}}$	$\frac{3}{16} + \frac{3}{16} $	·	<u>‡</u> <u>‡</u> +	$\frac{\frac{5}{16}}{\frac{5}{16}}$	$\frac{\frac{16}{16}}{\frac{5}{16}} +$	383	+ + +	$\frac{\frac{7}{16}}{\frac{7}{16}}+$	$\frac{\cancel{16}}{\cancel{16}}$	1 + 1	$\frac{\frac{1}{2}}{\frac{9}{16}}$	$\frac{\frac{3}{16}}{\frac{5}{8}}$	116		3 +	$\frac{1910}{1763}$	3°00 15
30 45	$1637 \\ 1528$	$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 &$	$\left \frac{1}{8} + \right $	$\frac{13''}{136}$	$\frac{1}{1}\frac{6}{6}$	1 -	1/4 + 1 -5 _		$\frac{\frac{5}{1}}{\frac{5}{6}}+$	$\frac{3}{8}$	3 8 8 4 + A	17 1 6	$\frac{1}{2}$ $-$	$\left \frac{\frac{7}{2}}{\frac{9}{16}} + \right $	$\frac{\frac{79}{16}}{\frac{5}{6}}$	$\begin{bmatrix} \frac{5}{8} \\ \frac{1}{1} \end{bmatrix}$	116 116 116	116 116 116 134 14	116+ 34+ 136+	$\frac{13}{16} + \frac{7}{8} +$	$\frac{1637}{1528}$	30 45
4°00	1432		$\left \frac{\overline{1} \overline{6}}{\overline{1} \overline{6}} - \right $	$ \frac{\frac{1}{8}}{\frac{3}{16}} + \frac{\frac{3}{16}}{\frac{3}{16}} + \frac{\frac{3}{16}}{\frac{3}{16}} + \frac{3}{16} + \frac{3}{16} + \frac{3}{16} $	‡ —	4 +	$\frac{\overline{1_6}}{\overline{1_6}}$	$\frac{\frac{5}{16}}{\frac{5}{16}}$ +	නික්ත	$\frac{3}{1}$ + $\frac{7}{16}$ -	$\frac{\frac{1}{7}}{\frac{7}{1}}\frac{1}{6}$	$\frac{1}{2}$	$\frac{\frac{2}{9}}{\frac{1}{16}}$	\$ —	$\frac{\frac{8}{5}}{\frac{8}{3}}$ +	$\frac{16}{16} + $	音 十	$\frac{1}{16} + \frac{1}{16}$	8	$\begin{bmatrix} \frac{8}{15} \\ \frac{1}{16} \end{bmatrix}$	1432	4°00
15 30	$\frac{1348}{1273}$	$\begin{vmatrix} \frac{1}{5} & - \\ \frac{1}{5} & + \\ \frac{3}{5} & - \\ \frac{3}{5} & + \\ \frac{3}{6} & - \end{vmatrix}$	$\begin{bmatrix} \frac{1}{6} \\ \frac{3}{16} \\ \frac{3}{16} \\ \frac{3}{16} \end{bmatrix} + \begin{bmatrix} \frac{3}{16} \\ \frac{3}{16} \\ \frac{3}{16} \end{bmatrix} + \begin{bmatrix} \frac{3}{16} \\ \frac{3}{16} \\ \frac{3}{16} \\ \frac{3}{16} \end{bmatrix} + \begin{bmatrix} \frac{3}{16} \\ \frac{3}{16$	1 6 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\frac{1}{4} +	$\frac{\frac{5}{16}}{\frac{5}{16}}$	$\left[\frac{16}{16} + \right]$	 - - - -	$\frac{\frac{3}{8}}{\frac{3}{16}} +$	$\frac{\overline{1}^{'}\overline{6}}{\underline{1}^{'}}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\frac{1\overline{6}}{\overline{1}\overline{6}}$	16 9 16 4 5 8 5 8 7	\$ + \frac{1}{16}	16 3 4	$\frac{\frac{3}{4}}{\frac{1}{1}\frac{3}{6}}$	$\frac{\frac{13}{16}}{\frac{7}{8}}$	$\frac{\frac{1}{8}}{\frac{1}{6}}$	$1\frac{5}{16}$	$\begin{vmatrix} 1 \\ 1 \frac{1}{1 \cdot 6} \end{vmatrix}$	$\frac{1348}{1273}$	$\begin{array}{c c} 15 \\ 30 \end{array}$
45 5°00	$\frac{1206}{1146}$	$\begin{bmatrix} \frac{1}{8} & \frac{1}{8} + \frac{3}{16} - \frac{3}{16} \\ \frac{3}{1} & \frac{3}{16} - \frac{3}{16} \end{bmatrix}$	1 6	1 -	$\frac{1}{1}$ $\frac{5}{16}$ $\frac{5}{1}$	$\frac{\frac{5}{16}}{\frac{5}{16}}$	3 3 3	3 83 87 16	176+	1/2 +	$\frac{\frac{7}{16}}{\frac{9}{16}}$ +	585	$\frac{\frac{5}{8}}{\frac{11}{16}}$	$\frac{1}{1}\frac{1}{6}$ +	$\frac{\frac{1}{3}}{\frac{1}{16}}$ +	$\frac{\frac{1}{1}\frac{6}{6}}{\frac{7}{6}}+$	$\frac{7}{8} + \frac{15}{16}$	1 +	$1\frac{1}{16}$ — $1\frac{1}{8}$ —	$\begin{vmatrix} 1\frac{1}{8} & - \\ 1\frac{3}{1} & - \end{vmatrix}$	$\frac{1206}{1146}$	5°00
15	1092	$\begin{vmatrix} \frac{1}{8} & + \begin{vmatrix} \frac{1}{6} & - \end{vmatrix} & \frac{1}{6} \\ \frac{1}{8} & + \begin{vmatrix} \frac{3}{16} & - \end{vmatrix} & \frac{3}{16} + \end{vmatrix}$	1 -	1 +	1 6 5 1 6 5 5 5 5 5 6 5 6 6 6 6 6 6 6 6	$\frac{\overline{16}}{\overline{8}}$	$ \begin{array}{c c} \hline 1_{\overline{6}} \\ 5 \\ \hline 1_{\overline{6}} \\ \hline 1_{\overline{6}} \\ \hline 1_{\overline{6}} \\ \hline 1_{\overline{6}} \\ \hline 3_{\overline{8}} \\ \hline 3_{\overline{8}} \\ \hline 1_{\overline{6}} \\ \hline 7_{\overline{6}} \\ \hline 7_{\overline{6}} \end{array} $	$\frac{16}{16} + \frac{7}{16}$	$\frac{2}{2}$	$\frac{1}{2}$ + $\frac{1}{16}$ + $\frac{9}{16}$ +	8 -	$\frac{1}{1}\frac{1}{6}$	3	$\frac{\frac{1}{1}\frac{3}{6}}{\frac{1}{3}}$	$\frac{\frac{1}{7}}{\frac{7}{8}}$ +	$\frac{15}{16}$	I .	$1\frac{1}{16} +$	$1\frac{1}{8}$ +	$1\frac{1}{4}$	$\frac{1092}{1041}$	15 30
30 45	$\frac{1041}{996}$	$\begin{vmatrix} \frac{1}{8} & + \begin{vmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & - \end{vmatrix} \begin{vmatrix} \frac{1}{3} & \frac{6}{16} \\ \frac{1}{6} & + \end{vmatrix}$	1 1	$\begin{bmatrix} \frac{5}{16} \\ \frac{5}{16} \end{bmatrix}$	5 1 6 5 1 6 5 1 6 3 8	3 +	$\begin{bmatrix} \frac{1}{6} \\ \frac{7}{6} \end{bmatrix}$	$\frac{1}{2}^{\frac{1}{6}}$	$\frac{\frac{1}{2}}{\frac{9}{1.6}}$	16 + 5 ~-	$\frac{5}{8} + \frac{1}{16} \frac{1}{6} \frac{1}{16} \frac{1}{6}$	16 16 1 1	$\frac{3}{4} + \frac{1}{13} - \frac{1}{16}$	$\frac{16}{16}$	$\begin{bmatrix} \frac{8}{1} & 5 \\ \frac{1}{1} & 6 \end{bmatrix}$	+	$1\frac{1}{8}$	$1\frac{1}{1}\frac{8}{1}$ —	14 +	$1\frac{1}{8}\frac{1}{8}$	996	45
6°00 15	$\frac{955}{918}$	$\begin{vmatrix} \frac{3}{1.6} - \frac{3}{1.6} \\ \frac{3}{3.2} - \frac{3}{1.2} + \frac{1}{1.2} \end{vmatrix}$		$\frac{16}{16}$	383	38 +	$\frac{16}{16} + \frac{1}{10}$	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	$\frac{\frac{9}{16}}{\frac{9}{16}}+$	\$ 十	$\frac{\frac{1}{1}\frac{1}{6}}{\frac{3}{4}}$	章 十 1 3—	$\frac{\frac{13}{16}}{\frac{13}{6}}$ +	$\frac{\frac{7}{8}}{\frac{15}{16}}$		$\begin{bmatrix} \frac{1}{16} \\ \frac{1}{8} \end{bmatrix} = -$	$1\frac{1}{8} + 1\frac{3}{16}$	$\begin{vmatrix} 1\frac{1}{4} & - \\ 1\frac{5}{16} & - \end{vmatrix}$	$1\frac{1}{1}\frac{3}{6}+1\frac{3}{8}$	116 -	$\begin{array}{c} 955 \\ 918 \end{array}$	6°00 15
30	881	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} \frac{4}{5} \\ \frac{1}{6} \end{bmatrix}$	A50 + 1	3 + + + + + + + + + + + + + + + + + + +	$\frac{16}{16}$	1 +	$\frac{\frac{2}{9}}{\frac{1}{9}6}$	8	11	3 + 13 + 16 +	$\frac{16}{16} +$	3 + 1 5 + 1	1 -	$\begin{bmatrix} \frac{1}{16} \\ \frac{1}{2} \end{bmatrix}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$1\frac{1}{4}$ —	$1\frac{5}{16} + 1\frac{3}{14} + 1$	$1\frac{7}{16}$	$1\frac{1}{2} + 1\frac{9}{2} + 1$	881 848	30 45
7°00	848 818	$\begin{vmatrix} \overline{16} & \overline{16} & \overline{16} \\ \overline{3} & \overline{4} & \overline{4} \end{vmatrix} + \begin{vmatrix} \overline{4} & \overline{4} \\ \overline{4} & \overline{4} \end{vmatrix}$	$\begin{bmatrix} \frac{1}{1} & 6 \\ \frac{5}{1} & 6 \end{bmatrix}$	136 T	$\frac{\overline{8}_{7}}{\overline{1}_{2}\overline{6}}$	167	1 +	$\frac{\frac{1.6}{9}}{\frac{1.6}{1.6}} + \frac{9}{\frac{1}{2}.6} +$	5 + 11 1 6	16 16 16 4	13 15	+	$\frac{\frac{15}{16}}{1}$		$[\frac{1}{8}]$ +]	$\frac{1}{1}^{6}$	$1\frac{1}{1}\frac{6}{6}$	$1\frac{7}{16}$	$1\frac{1}{9}\frac{-}{16}$	$1\frac{1}{8}^{6}$ +	818 792	7°00
15 30	$792 \\ 764$	$\begin{vmatrix} \frac{3}{16} & \frac{1}{4} & -\frac{1}{4} & + \\ \frac{3}{2} & +\frac{1}{4} & -\frac{1}{6} & - \end{vmatrix}$	$\begin{bmatrix} \frac{5}{1} & \\ \frac{5}{1} & \\ \end{bmatrix}$	3 +	$\frac{1}{16} + \frac{1}{16} + \frac{1}{16}$	$\frac{1}{2}$	$\frac{16}{16}$	\$\frac{3}{8} + \rightarrow{1}{1}	$\frac{\frac{11}{16}}{\frac{11}{16}}$	$\frac{3}{16}$	\$ -	$\frac{1}{1}\frac{5}{6}$ +	$\begin{vmatrix} 1 \\ 1 \frac{1}{1.6} \end{vmatrix}$	$1\frac{1}{16} + 1$ $1\frac{1}{8}$	$\begin{bmatrix} \frac{1}{1} \frac{6}{6} \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{4} \end{bmatrix}$	$\frac{16}{16} +$	$1\frac{1}{8}$ $+$ $1\frac{7}{16}$ $-$	$1\frac{1}{2}$ — $1\frac{9}{16}$ —	$1\frac{1}{16}$ + $1\frac{5}{8}$ +	176+	764	30
45 8°00	$739 \\ 716$	$\begin{vmatrix} \frac{1}{3} & \frac{1}{16} \\ \frac{1}{3} & \frac{1}{4} \end{vmatrix} = \begin{vmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} \end{vmatrix}$	$\left \frac{1}{3} \frac{5}{6} + \right $	$\frac{3}{8}$ +	$\frac{\frac{7}{1}}{\frac{1}{1}} + \frac{1}{1}$	$\frac{1}{2} + \frac{1}{9}$	$\frac{\frac{79}{1}}{\frac{5}{5}}$	$\frac{5}{8}$ +	3 — 3 —	$\frac{\frac{13}{16}}{\frac{13}{13}}$	$\frac{7}{8}$	l 1 +	116+	$1\frac{3}{16}$ $1\frac{3}{16}$ +		$\frac{3}{8}$	1를 수 1분 수	$1\frac{9}{16} + 1\frac{5}{4} + \frac{1}{16}$	[1출상 수 [1호 4	176+	739 716	8°00
15	694	$\frac{3}{16} + \frac{1}{4} + \frac{5}{16}$	83 -	$\frac{1}{1}\frac{6}{6}$	$\frac{2}{2}$	$\frac{\frac{1}{6}}{\frac{1}{6}}$	85 8v	$\frac{\frac{16}{16}}{\frac{1}{36}}+$	± +	$\frac{\frac{1}{7}}{\frac{8}{5}}$	$\frac{15}{16} +$	$\begin{bmatrix} \frac{1}{16} \\ 1 \end{bmatrix}$	$1\frac{1}{8}$ +	116	$\begin{bmatrix} \frac{1}{8}^{6} & \end{bmatrix}$	$\frac{1}{1}\frac{7}{6}$	$I_{\frac{1}{5}}^{\frac{2}{5}}$	$1\frac{1}{1}\frac{1}{6}$	$1\frac{1}{1}\frac{3}{6}$	$\begin{bmatrix} 1\frac{15}{16} \\ 2 \end{bmatrix}$	$694 \\ 674$	15
10 45	$674 \\ 654$	$\frac{1}{4} - \frac{1}{4} + \frac{3}{16} + \frac{1}{16} + $	3 +	$\frac{1}{16} + \frac{1}{16}$	· 1	$\frac{\frac{3}{16}}{\frac{9}{16}}+$	$\frac{2}{8}$ + $\frac{1}{16}$	\$	$\frac{\frac{1}{16}}{\frac{1}{6}}+$	$\frac{1}{1}\frac{5}{6}$	1	$\left \frac{\overline{1}}{\overline{8}} \right ^{6}$	$1\frac{3}{16} + $	$1\frac{1}{1}$ $1\frac{5}{16}$	$[\frac{\frac{8}{7}}{\frac{7}{16}}]$	$\frac{\frac{2}{9}}{\frac{1}{1}6}$	$1\frac{1}{1}\frac{1}{6}$	$1\frac{1}{1}\frac{3}{6}$	$1\frac{1}{1}\frac{5}{16}$	21 6	654	45
9°00 15	636 619	$\begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} + \begin{bmatrix} \frac{5}{16} \\ \frac{1}{5} \end{bmatrix} + \begin{bmatrix} \frac{1}{5} \\ \frac{1}{6} \end{bmatrix} + \begin{bmatrix} \frac$	$\frac{3}{8} + \frac{3}{7} - \frac{1}{1}$	$\frac{7}{16} + \frac{1}{16}$	$\frac{1}{2} + \frac{1}{2}$	5 8 5	11 16 11 +	3 + 13	7 8 4	$\frac{15}{16}$	1 + 1 1구	$\begin{bmatrix} \frac{1}{8} & + \\ 1 & \frac{3}{6} & - \end{bmatrix}$		$1\frac{3}{8}$ $ \frac{3}{2}$ $+$	$\begin{bmatrix} \frac{1}{2} & - \end{bmatrix} $	$\frac{3}{16} + \frac{5}{8} + \frac{5}{8}$	1급등 수] 1훈 (十)	$\frac{1\frac{1}{8}}{1\frac{1}{8}}$ +	$\begin{vmatrix} 2 & - \\ 2 - 6 & - \end{vmatrix}$	$2\frac{1}{8}$ $2\frac{3}{16}$ $-$	636 619	9°00 15
30	603	$\begin{bmatrix} \frac{1}{4} & -\frac{1}{6} & \frac{1}{8} & -\frac{1}{8} \\ \frac{1}{4} & \frac{1}{6} & \frac{3}{8} & -\frac{3}{8} & -\frac{1}{8} \end{bmatrix}$	$\left \frac{\overline{1}_{7}^{\overline{6}}}{\overline{1}_{5}^{\overline{6}}} \right $	$\frac{2}{1}$	$\frac{\frac{1}{9}}{\frac{1}{6}}$	85 +	$\frac{1}{1}\frac{1}{6}$	$\frac{16}{13}$	3 +		1 1 1 -	$ \frac{1}{1}\frac{3}{6}$	$1\frac{5}{136}$	$1\frac{8_{7}}{16}$	$\begin{bmatrix} \frac{9}{1} & 1 \\ \frac{1}{9} & \frac{1}{1} \end{bmatrix}$	$\frac{1}{1}\frac{1}{6}$	$1\frac{\frac{1}{1}\frac{3}{6}}{\frac{1}{7}^{6}}$	$1\frac{15}{16} +$	$2\frac{1}{16} + 2\frac{1}{16} + 21$	$\begin{vmatrix} 2\frac{1}{4} \\ 2^{-5} \end{vmatrix}$	603 587	30 45
45 10°00	587 573	$\frac{1}{4} + \begin{vmatrix} \frac{3}{16} & \frac{3}{8} & \\ \frac{5}{16} & \frac{3}{8} & \frac{3}{8} \end{vmatrix}$	16 76	\frac{1}{2} + \frac{1}{2}	$\frac{\frac{3}{16}}{\frac{9}{16}} +$	$\begin{bmatrix} \frac{2}{8} & \uparrow \\ \frac{1}{16} & \end{bmatrix}$	34	1 5 +	16 15 16	$\begin{bmatrix} 1 & 1 \\ 1 & 6 \end{bmatrix}$	$1\frac{1}{8}$ +		$1\frac{3}{8}$ +	$1\frac{1}{2}$	$\left[\frac{\frac{1}{6}}{\frac{5}{8}}\right] + \left[\frac{1}{8}\right]$	3 +	$1\frac{1}{8} + 1\frac{1}{8} + 1$	$2\frac{1}{16}$	2 3 +	$-\frac{23}{287}$	573 559	10°00 15
15 30	559 545	$\frac{1}{4} + \frac{5}{16} + \frac{3}{8} + \frac{1}{5} + \frac{3}{4} + \frac{1}{5} + \frac{1}{3} + \frac{1}{5} + \frac{1}{3} + 1$	7' + 7 + 7 +	<u>-9</u> +	\$\frac{5}{8}	$\frac{11}{16}$	$\frac{\frac{3}{4}}{\frac{1}{13}}$	\frac{7}{5} -	$\frac{15}{16} + \frac{1}{16} - \frac{1}{16}$	1 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	$\frac{1\frac{3}{16}}{1\frac{3}{16}}$	$\left(\frac{5}{16} - \frac{1}{6} + \frac{5}{16} + \frac{1}{16}\right)$	$\frac{1\frac{7}{16}}{1\frac{7}{16}}$	$1\frac{9}{16} + 1\frac{9}{16} + 1$	 	$\frac{\frac{13}{16}}{\frac{7}{8}}$	1音音十 2	2号 一	$2\frac{1}{4}$ $2\frac{5}{16}$	$\begin{vmatrix} 2\frac{1}{16} \\ 2\frac{1}{2} \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$	545	30
45	533	$\frac{1}{\frac{1}{4}} + \begin{vmatrix} 1 & 6 & 1 \\ \frac{5}{1} & 6 & 1 \\ \frac{1}{5} & 6 & 1 \end{vmatrix} + \begin{vmatrix} 8 & 1 & 1 \\ \frac{3}{5} & 1 & 1 \end{vmatrix}$	$\frac{\frac{1}{1}}{\frac{2}{1}}$	$\frac{\overline{\frac{16}{9}}}{\overline{\frac{1}{16}}}$	\$\frac{5}{8} + \frac{1}{8}	343	$\frac{1}{1}\frac{6}{3}$	$\frac{15}{16}$	1 +	$1\frac{\frac{8}{8}}{8}$	11 -	$\begin{bmatrix} \frac{3}{8} \\ - \end{bmatrix}$	$1\frac{1}{2}^{\circ}$	$1\frac{5}{8}$	$\begin{bmatrix} \frac{2}{4} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\frac{7}{8} + \frac{15}{15}$	$2\frac{1}{16}$ — 21 —	$2\frac{3}{16} + 2\frac{1}{16}$	$2\frac{3}{8}$ — $2\frac{7}{8}$ —	$2\frac{1}{2} + 2\frac{9}{18} + 1$	$\begin{array}{c} 533 \\ 521 \end{array}$	45 11°00
11°00 15	521 509	$\frac{3}{16} - \frac{3}{8} - \frac{1}{16} - \frac{5}{16} - \frac{3}{16} - \frac{7}{16} - \frac{3}{16} - \frac{7}{16} - \frac{3}{16} -$	1 2 -	$\frac{\frac{16}{9}}{\frac{9}{16}}+$	$\frac{3}{1}\frac{7}{6}$	4 3 4	1 8	$\begin{bmatrix} \overline{16} \\ \overline{15} \\ \overline{16} \end{bmatrix}$	$1\frac{1}{16}$	$1\frac{\overline{8}}{1.6}$	$1\frac{\frac{1}{5}}{\frac{1}{6}}$	$1\frac{\frac{8}{7}}{\frac{1}{26}}$	$1\frac{\frac{2}{9}}{\frac{9}{10^6}}$	$1\frac{1}{1}\frac{1}{1}\frac{1}{6}$	$1\frac{13}{16} + 2$	16	$2\frac{1}{8} + \frac{1}{1}$	$2\frac{1}{16}$	25 -	$2\frac{5}{8}$ +	$\begin{array}{c} 509 \\ 498 \end{array}$	15 30
30 45	498 487	$\begin{bmatrix} \frac{1}{5} \\ \frac{1}{16} \end{bmatrix} = \begin{bmatrix} \frac{3}{8} \\ \frac{3}{16} \end{bmatrix} = \begin{bmatrix} \frac{7}{16} \\ \frac{7}{16} \end{bmatrix}$	$\begin{vmatrix} \frac{1}{2} & + \\ 1 & + \end{vmatrix}$	$\frac{9}{\frac{1}{5}6} +$	$\frac{11}{16}$	3 + 1 3 - 1 3 - 1 3 - 1	+		$1\frac{1}{16} + 1\frac{1}{16} - 1$	1 1 6 + 1 1 -	$1\frac{3}{16} + 1\frac{3}{8}$	$\begin{bmatrix} \frac{1}{16} \\ \frac{1}{2} \end{bmatrix}$	$\frac{1\frac{3}{16}}{1\frac{2}{8}}$	1章 一	$1\frac{1}{8} - \frac{2}{1}$	$2\frac{1}{16} + \frac{1}{16}$	$2\frac{1}{16}$ $2\frac{1}{4}$ —	$2\frac{8}{1.6}$	$2\frac{2}{16} +$	$-2\frac{1}{2}\frac{6}{4}$ +	487	45
12°00	477	$\frac{16}{5}$ $\frac{16}{16}$ $\frac{3}{8}$ $\frac{16}{176}$ $+$	$\frac{1}{2}$ +	<u>\$</u>	$\frac{11}{16} + $	$\frac{13}{13}$	$\frac{\frac{7}{8}}{\frac{8}{15}}$	1 +	$\frac{1\frac{1}{8}}{1\frac{1}{4}} +$	$1\frac{1}{4}$	$1\frac{3}{8}$ +	$\frac{1}{2} + \frac{1}{2} $1\frac{1}{16}$	$1\frac{13}{16}$	I 🕂 🗧 12 2	$\frac{1}{8}$	$2\frac{5}{16}$	$2\frac{7}{16} + 2\frac{1}{6} + \frac{1}{16}$	$2\frac{5}{8} + 2\frac{1}{4}$	$ 2\frac{13}{16} + $ $ 2\frac{7}{8} - $	477 468	12°00 15	
15 30	468 458	$\frac{3}{16} + \frac{3}{8} + \frac{1}{16} + \frac{5}{16} + \frac{3}{8} + \frac{1}{2} - \frac{5}{16} + \frac{3}{16} + \frac{1}{16} + \frac{3}{16} + \frac$	$\frac{\frac{3}{16}}{\frac{1}{16}}$	$\frac{\frac{5}{8}}{\frac{5}{8}}$ +	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\frac{\frac{1}{1}\frac{6}{3}}{\frac{1}{6}}+$	$\begin{array}{c c} \hline 16\\ \hline 15\\ \hline \hline 6 \end{array}$	$1\frac{1}{16}$	$1\frac{\frac{1}{8}}{\frac{1}{1.6}}$	$1\frac{5}{1.6}$	$\frac{1}{1}\frac{6}{6}$	$1\frac{\frac{1}{9}^{6}}{\frac{1}{1}^{6}} +$	$1\frac{3}{4}$	$1\frac{7}{8}$	$2\frac{1}{16}$	$\frac{1}{16} + \frac{3}{6}$	$2\frac{3}{8}^{6}$	$2\frac{9}{16}$	2章 913	$\begin{vmatrix} 2\frac{1}{1}\frac{5}{6} \\ 3 \end{vmatrix}$	$\begin{array}{c} 458 \\ 449 \end{array}$	30 45
35 13°00	$\begin{array}{c} 449 \\ 441 \end{array}$	$\frac{\frac{15}{16}}{\frac{16}{16}} + \frac{\frac{13}{8}}{\frac{1}{8}} + \frac{1}{\frac{1}{2}} - \frac{1}{1}$	$\frac{9}{16}$ +	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3 3 1 1	1 	$\begin{bmatrix} \frac{15}{16} + \\ - \end{bmatrix}$	$\begin{bmatrix} \frac{1}{16} + \\ \frac{1}{6} & \end{bmatrix}$	$1\frac{3}{16} + 1\frac{1}{4} 1$	$1\frac{3}{16} + 1\frac{3}{6} - 1$	$\frac{1\frac{1}{2}}{1\frac{1}{2}}$	$1\frac{5}{8}$ +	$1\frac{2}{1}\frac{1}{6}$	$1\frac{1}{16}$	$2\frac{16}{8}$	$\frac{4}{16}$	$2\frac{1}{6}$	$2\frac{1}{16}$	$2\frac{7}{8}$ -	316	441	13°00
15	432	$\frac{\overline{16}}{\frac{3}{8}} - \begin{vmatrix} 16 \\ 1\frac{7}{6} - \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$	$\frac{\frac{1}{9}^{6}}{\frac{1}{5}^{6}} +$	16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7/8 + 1		$\begin{bmatrix} \frac{1}{8} \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{1}{8} \\ \frac{1}{8} \end{bmatrix}$		$1\frac{3}{8} + 1\frac{7}{7}$	$1\frac{1}{2} + 1$	$\begin{bmatrix} \frac{1}{1} \frac{1}{6} \\ \frac{1}{1} \frac{1}{6} \end{bmatrix} - \downarrow$	$1\frac{13}{16} + 1$	2 +	$2\frac{3}{16}$ $+ 2$	$\frac{5}{16} + \frac{1}{2}$	2 + 2 + 1	$2\frac{1}{16} + 2\frac{1}{6} + \frac{1}{16}$	$2\frac{15}{16}$ + $2\frac{15}{16}$ +	$\begin{vmatrix} 3\frac{1}{8} & - \\ 3\frac{3}{16} & - \end{vmatrix}$	$\begin{array}{c} 432 \\ 424 \end{array}$	15 30
30 45	$\begin{array}{c} 424 \\ 416 \end{array}$	$\frac{3}{8} - \frac{1}{6} + \frac{1}$	3005	16 十	$\frac{16}{16}$	$\frac{8}{16}$	$\begin{bmatrix} \frac{1}{1.6} \end{bmatrix}$	$1\frac{8}{1.6}$	$1\frac{1}{4}$ 1 $1\frac{5}{1.6}$	$1\frac{\overline{16}}{\overline{16}}$	$1\frac{16}{16} +$	$1\frac{3}{4}$	$1\frac{\frac{1}{8}}{\frac{7}{8}} + \frac{1}{8}$	$2\frac{1}{16}$	$\frac{1}{4}$ 2	$\frac{8}{16}$	$2\frac{1}{8}$	$\frac{13}{16}$	3 + 3 1 +	$3\frac{1}{4}$ — $3\frac{5}{4}$ —	$\frac{416}{409}$	45 14°00
14°00 15	$\begin{array}{c} 409 \\ 402 \end{array}$	$\begin{bmatrix} \frac{3}{8} \\ \frac{1}{8} \end{bmatrix} = \begin{bmatrix} \frac{7}{6} \\ \frac{7}{6} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ \frac{9}{9} \end{bmatrix}$	5 85	$\frac{11}{16}$ +	$\frac{13}{16} + \frac{13}{16} + 13$	16 +	1 1 	$1\frac{3}{1.6}$ +	$1\frac{5}{16} + 1\frac{5}{16} + 1$	$\frac{1}{1}\frac{7}{6} + \frac{1}{2}$	$\frac{1\frac{5}{8}}{1\frac{5}{8}}$	$\begin{bmatrix} \frac{1}{4} & + \\ \frac{1}{6} & - \end{bmatrix}$	$1\frac{13}{16} + \frac{13}{16}$	$2\frac{1}{8} - \frac{1}{2}$	$2\frac{16}{16} + 2$	$\frac{1}{2}$ + 2	216 2116+	$2\frac{15}{16}$	$3\frac{1}{8}$	$3\frac{3}{8}^{6}$	402	15
30	395	$\begin{vmatrix} \frac{8}{3} \\ \frac{3}{8} \end{vmatrix} = \begin{vmatrix} \frac{1}{6} \\ \frac{7}{6} \\ \frac{1}{6} \end{vmatrix} + \begin{vmatrix} \frac{1}{6} \\ \frac{9}{1} \\ \frac{6}{6} \end{vmatrix} = $	85 +	$\frac{4}{3}$	$\frac{\frac{1}{7}^{6}}{\frac{8}{7}}$	1 -	[\frac{8}{2} \cdots -		138	$1\frac{1}{2} + 1$	$1\frac{1}{1}\frac{1}{6}$	$[\frac{13}{16} +]$	2 :	$2\frac{3}{16} - \frac{3}{2}$	$\frac{3}{8}$ — 2	$\frac{9}{16}$	24 +	3 — 3 +	$3\frac{16}{16}$.	$\begin{vmatrix} 3\frac{7}{16} - \\ 3\frac{7}{16} + \end{vmatrix}$	39 5 38 8	30 45
45 15°00	$\frac{388}{382}$	$\begin{vmatrix} \frac{3}{8} + \frac{7}{16} + \frac{9}{16} - \frac{3}{16} \end{vmatrix}$		34 +	878	î,	$1\frac{8}{8}$	$\begin{bmatrix} 1 & 4 \\ 1 & 4 \end{bmatrix}$	$1\frac{7}{16}$	$1\frac{\overline{16}}{\overline{16}}$	$1\frac{1}{4}^{6}$	1 7 +	$2\frac{1}{16} + \frac{1}{16}$	216	$2\frac{1}{16} + 2$	$\frac{3}{8} + 2$	$\frac{16}{8}$	$3\frac{1}{16}$	$3\frac{5}{16}$	3½ + 3½ +	$\begin{array}{c} 382 \\ 358 \end{array}$	15°00 16°00
16°00 17°00	358 33 7	$ \frac{7}{16} - \frac{1}{2} + \frac{3}{8} - $	$-\frac{\frac{1}{1}\frac{1}{6}}{\frac{3}{4}}$	$\frac{\frac{1}{1}\frac{3}{1}}{\frac{7}{8}}$	$\begin{bmatrix} \frac{8}{15} \\ \frac{1}{16} \end{bmatrix}$	$1\frac{1}{16}$ $1\frac{1}{8}$ + $1\frac{3}{1}$	$1\frac{3}{16} + 1$ $1\frac{5}{16} - 1$	$1\frac{3}{8}$ $1\frac{7}{16}$	$1\frac{1}{2}$ $1\frac{5}{2}$	l 11 l葉 + lま +		2 + 19 2 + 19		$2\frac{16}{16}$	$2\frac{5}{8}$ - 2 $2\frac{5}{4}$ + 3	16 3	3 1 6 	$3\frac{1}{4}^{\circ} + 3\frac{1}{2} - \frac{1}{2}$	$3\frac{1}{2}^{6} + 3\frac{1}{2}^{6} + 4\frac{3}{16} + 4\frac{3}{8} + 4\frac{3}{8}$	4	337	17°00 18°00
18°00	318	$\begin{vmatrix} \frac{1}{2} & - \end{vmatrix} = \begin{vmatrix} \frac{9}{16} & \frac{1}{16} - \end{vmatrix}$	$-\left \frac{13}{16}-\right $	$\frac{\frac{8}{15}}{\frac{1}{16}}$ - $\frac{1}{1}$	$\frac{1}{16}$	$1\frac{3}{16} + 1$		$1\frac{1}{16} + 1\frac{1}{5}$	113 6	1 7 +	$2\frac{10}{16} + \frac{1}{3}$	218 + 9 214 + 9 218 + 9 218 + 9 218 + 9	$2\frac{1}{2}$	$ \begin{array}{c} 2\frac{16}{16} \\ 2\frac{16}{16} \\ 2\frac{1}{16} \\ 2\frac{7}{8} \\ 3 \end{array} + 3$	3 1 - 3	$\begin{bmatrix} \frac{3}{16} \\ \frac{3}{8} \\ \frac{9}{16} \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}$	$\frac{7}{16}$ $\frac{5}{8}$ $\frac{13}{16}$	$3\frac{1}{16}$ $3\frac{7}{8}$ + $4\frac{1}{8}$ -	$3\frac{15}{16} + 4\frac{3}{16}$	$\frac{4\frac{1}{4}}{4\frac{1}{2}}$	318 301	19°00
19°00 20°00	$\begin{array}{c} 301 \\ 286 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left \frac{1}{6} + \right $	$\begin{vmatrix} 1 & - \end{vmatrix}^1$	$\frac{\frac{1}{8}}{\frac{3}{16}}$	$1\frac{3}{16} + \frac{1}{16}$	$1\frac{1}{6}$	$1\frac{1}{2} + 1\frac{5}{8} - 1\frac{11}{16}$	$1\frac{1}{16}$	$2\frac{1}{16}+$	$ \begin{array}{c} 1\frac{15}{16} + \\ 2\frac{1}{16} + \\ 2\frac{3}{16} \\ 2\frac{5}{16} \end{array} $	218 + 228 +	$2\frac{3}{4} + 3$	3 + 3	$\frac{1}{4} + 3$	$\frac{3}{16}$	$\frac{13}{16}$	4 1 -	$4\frac{1}{8}^{\circ} +$	$4\frac{1}{2}$ $ 4\frac{9}{16}$ $+$ $-$	286	20°00
		$\begin{vmatrix} 2 & 8 & 4 \\ 10 & 11 & 12 \end{vmatrix}$	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		

INDEX.

Accumulated work, 56.

Adhesion, 176.

Air, weight of given bulks of, 63; expansion of, by heat, 231; properties of atmospheric, 277.

Alabaster, to harden and polish, 67.

Algebraic symbols, 15.

Alloys, 286; recipes for various, 154-159. Alto-relievo, engraving in, 222.

Amalgams, 89.

Amonton's law of elastic force, 177. Analysis of various organic substances,

Anchors, size of, proportioned to the tonnage of vessels, 272.

Animals, work of, 55.

Approximations, decimal, 41.

Arches, hemispherical, how to construct, 295.

Architectural terms, vocabulary of, 331-

Arcs, circular, table of the lengths of, 499.

Arithmetic, decimal, 24; instrumental,

Arithmetical signs, 13.

Axle grease, 283.

Artificial stones, recipes for making different kinds of, 362-365.

Atmosphere, temperature and weight of the, at various heights, 279. Attraction, centre of, 175; capillary, 224.

Balls, cast-iron, weight of, 129.

Beam, cast-iron, pressure it will sustain, 146.

Beams, equilibrium and pressure of, 59; transverse strength of, 209-211, 247; deflection of, 212.

Bending and gluing-up, method of joining woodwork by, 328, 329. Binary compounds, 250-255.

Black, for miniature pain ers, 203. Blacking, recipes for, 202, 203.

Blacklead pencils, 203. Board measure, 146.

Boiler tubes, table of surface of, 241. Boilers, engine, 47; the, of steam-

engines, and their proportions, 77.

Boiling point, height of, at different heights of the barometer, 287.

Bolts and nuts, sizes of, 288. Bookbinders' recipes, 352-358. Boyle's law of elastic force, 177.

Brass, weight of superficial foot of, 144. Bronze powder, 159. Bronze, recipes for various kinds of,

347, 348. Bronzing liquids, 108; for gun barrels,

179; for tin castings, ib. Bricklaving, 297.

Building, terms used in, 331-341.

Cables, strength of, 271; size of, according to the tonnage of vessels, 272. Capillary attraction, 224.

Carbon, 173. Carpentry, 305.

Cast-iron, dimensions of cylindrical columns of, 142; compression of, 209; bars, breaking weight of, 207; bars, transverse strength of, 211; beam, pressure it will sustain, 140; pillars, table of ultimate breaking weight in tons, 119-122; pillars, strength of, 216, 217; pipes, 148, 149; pipes, table of weight of, 181; plates, weight of, 245; shafts, table of strengths of, 123, 124; wheel, to find the horse-power it is capable of transmitting, 246.

Cement, 300, 302.

Cements, recipes for various, 262-269. Centre of attraction, equilibrium, friction, gravity, and gyration, 175, 176.

Centre of gyration, 53; of percussion, ib. Centrifugal force, 50.

Chain rigging, scale of proofs for, 291. Chains and ropes, comparative scale of, 247.

Chalk drawings, how to render permanent, 358.

Chords, table of, 414; uses and applications of the table of long, 501.

Circles, table of the diameters, circumferences, and areas of, 160-166; circumferences and areas of, from one to fifty feet, 167-173.

Cisterns, capacity of, in gallons, 274.

Clothes balls, 159.

Coal, number of cubic feet to a ton, 280. Cocks, bore and weight of, 134.

Cog wheels, pitch of, 68.

Cohesion, 176.

Coins, method of taking impressions from 118.

Combustion, spontaneous, to prevent, 79. Composition, for covering buildings, 265; for walls, 304; and resolution of forces, 312.

Compounds, binary, 250-255.

Compression, 176.

Conducting powers of substances, 290.

Copper, liquids for bronzing medals, figures, &c., of, 108; tubing, weight of, 134; weight of superficial foot of, 144; bean and feather shot, 152; etching fluid for, 214; rods or bolts, weight of, 278; pipes, weight of, 274; sheet, weight of a square foot of, 275; dimensions and weight of, 133.

Crane, to calculate the different parts of, as respects mechanical advantage, 58.

Crayons, recipes for, 358.

Crystals, diamond prismatic, for windows, 82.

Cubes and cube roots of numbers, table of, 180-201.

Cubic measure, 147.

Cupolas, plan to take away the lateral thrust of, 295.

Cylinders, cast metal, 148.

Dalton's law of elastic force, 177; experiment on gases, 178.

Dampness, how to preserve walls from,

Decay of wood, means of preventing,

307.

Decimal arithmetic, 24; approximations,

41.
Decomposition, vegetable, circum-

stances favorable to, 305, 306, Diamond crystals, prismatic, for win-

dows, 82.

Digging, measurement of, 301. Distance, how to estimate, 82.

Domes, plan to take away the lateral thrust of, 295.

Dovetailing, process of, 324.

Drawings, chalk and pencil, how to render permanent, 358.

Driving wheels, revolutions per mile of,

Drums, velocity of, 68.

Ductility of metals, 289, 290.

Dyeing hats, recipe for, 256; recipes for compound colors in dyeing, 350, 351.

Earthenware, glaze for, 102. Elastic force of steam, 80; fluids, mechanical laws of, 177–179. Elasticity of torsion, 143. Electrical machines, amalgam for, 89. Electrotype manipulations, solutions used in, 169.

Enamel, various recipes for making, 348, 249.

Engine, horse-power of, 57; boilers, 47; locomotive, general proportions of, 76. Engraving in alto-relievo, 222.

Engravings, transfer of, to plaster casts,

129: how to take casts of, 133. Equilibrium, centre of, 175, of beams,

59. Equivalents of sixty-two simple substances, 248.

Etching fluid for copper and steel, 214. Extension, 176.

Factitious stones, recipes for making different kinds of, 362-365.

Feeding properties of different vegetables, 249.

Ferrules for tool handles, solder for, 183. Feet, table of solid, 245. Figures, copper, bronzing liquids for,

108. Floors, the construction of, 318-320.

Fluids, elastic, mechanical laws of, 177-179.

Formulæ for running lines, locating side-tracks, &c., 875.

Forces, parallelogram of, 59.

Fresco painting, 132. Friction, centre of, 175.

Fuel, power of various species of, 288.

Furniture oil, 127; paste, 159. Fusing point and fusibility of metals, 282, 284.

Gases, illuminating, 178; properties of, 278; pressure at which certain, are liquified, 257.

Gauge-points for the engineer's and common slide rule, 45.
Gay-Lussac's law of elastic force, 177.

Geometry, practical, 16.

Gilding, recipes for different kinds of, 359-361.

Glass, perfectly black hard, 82; soluble, 222; recipes for making different kinds of 242; how to stain various colors, 861, 362; paper, how to make, 304.

Glazes, 102. Globes, liquid amalgam for silvering, 89. Glue, 263, 264, 267; recipes for various

kinds of, 342. Gluing joints, process of, 323.

163; for axles, 283.

Gold lustre for stone-ware, 70.
Gradients, table of, and resistance per ton for each, 118.

Gravities, specific, of simple substances,

248; specific, of bodies, 281. Gravity, 47; specific, 61; centre of, 175. Grease, scouring drops for removing, Grooving and lapping, method of joining woodwork by, 328.

Gun barrels, bronzing liquids for, 179. Gunpowder, composition of different kinds of, 285.

Gutta percha, solvents for, 179. Gyration, centre of, 53, 176.

Hardness of metals, ratio of the, 23. Hardnesses of bodies, ratios of, 289.

Hats, recipe for dyeing, 256. Heat, latent, in steam, 72; properties and miscellaneous effects of, 228-231; capacities of bodies for transmitting, 235; power of various substances to transmit, 291.

Heating power of various combustible substances, 82.

Heel balls, 163.

Horse-power, 55; of an engine, 57; of a steam-engine, rule for obtaining, 75; nominal, of low pressure engines, 83; of high pressure, 84: capable of being transmitted by a cast-iron wheel, to find the, 246; of wheels, proportionate strength of, 258; comparison of, as applied to machinery, 286.

Horses, traction of, 56.

Illuminating gases, 178. Inches, table of solid, 245. Inclined plane, the, 66.

Ink, recipes for making different kinds of, 365-369.

Instrumental arithmetic, 42.

Instruments, copper, bronzing liquids for, 108.

Iron, to preserve from rust, 153; castiron pillars, table of ultimate breaking weight in tons, 119-122; cast, compression of, 209; cast and wrought iron shafts, tables of strengths of, 123-126; flat and rolled, table of weight of, 130; malleable, weight of one foot length of, 132; sheet, weight of superficial foot of, 144; sheet and boiler plate, weight of a square foot of, 275; wrought, square, round, and flat, tables of weight of, 97-117; wrought, tensile and compressive strength of, 208.

Ivory, recipes for softening, hardening, dyeing, marking, &c., 174, 175.

Joiners' work, finishing of, 330, 331. Joints, method of gluing, 323. Journals of shafts, strength of, 149.

Knot table, 259–261. Kyan, Mr., his method of seasoning timber, 310-312.

Lac, preparations of, 89. Land-surveying, 46. Latent heat in steam, 72. Lateral pressure, resistance to, 136. Laws of motion, 47.

Lead and lead pipe, weight of, 134; weight of thicknesses of, 145; sheet, weight of a square foot of, 275.

Lever, the, 63. Lime and hair, 301.

Lines of railroad, formulæ for running,

Linseed oil, for varnishing, 87.

Liquids, table of properties of, 283; bronzing, 108.

Locomotive engines, general proportions of, 76.

Logarithms, use of the tables of, 219-222; tables of, from 1 to 10,600, 483. Lustre, gold, for stone-ware, 70. Lutes, fire, 266.

Machinery, estimated power of man or horse as applied to, 286.

Machines, work of, 56. Malleability of metals, 289, 290. Maltha, or Greek mastic, 303.

Man, units of work of a, 55; power, comparison of, as applied to machinery, $\bar{2}86.$

Map colors, 143.

Marble, plaster imitation of, 303; recipes for staining and cleaning, 349.

Mariotte's law of elastic force, 177. Materials, strength of, 135; strain and

stress of, 204; of construction, weight of, 234; conducting power of, 235. Masonry, different kinds of, 292, 293.

Mastic, Greek, 303.

Mechanical powers, the, and their application, 63.

Medals, copper, bronzing liquids for, 108. Mensuration of superficies, 27, 44; of solids, 36, 46; of timber, 146; of circles, 160.

Metals, ratio of the hardness of, 23; weight of, 97; paste for cleaning, 146; and other substances, weight of, 235; expansion of, by heat, 228; linear dilatation of, by heat, 230; fusing point and fusibility of, 282, 284; ductility and malleability of, 289, 290.

Modelling wax, 86. Motion, laws of, 47. Mortar, 300.

Mortice and tenon, 326-328.

Numbers, properties of, 238, 239; table of useful, 240, 241; table of prime numbers to 5000, 243-245. Numeration, 42.

Nuts, sizes of, equal in strength to their bolts, 286.

Oakum, weight of a cubic foot of, 180. Oil, linseed, for varnishing, 87.

Oil for furniture, 127; for watchmakers, 132; number of gallons in a cubic foot of, 280.

Organic substances, analysis of various, 269.

Oscillation, centre of, 176,

Paint, old, solvent for, 102.

Paper glass and stone, how to make, 304. Papers, recipes for preparing, for various purposes, 342-347.

Parallel motion, table to determine distances of movable points in a, 223.

Parallelogram of forces, 59. Partitions, timber, 322, 323.

Paste for cleaning metals, 146; for furniture, 158; common, 265; for laying cloth or leather on table tops, 267.

Pencil drawings, how to render perma-

nent, 358.

Pencils, blacklead, 203. Pendulum, oscillations of, 49, 50.

Pendulums, 249.

Percussion, centre of, 53. Petrifaction of wood, 70.

Pew's composition for covering buildings, 268.

Photographs, paper for, 345-347.

Pile-driving, force in, 139.

Pillars, cast-iron, table of ultimate breaking weight in tons, 119-122.

Pipe, lead, weight of, 134.

Pipes, weight of, of various metals, 128; cast-iron, table of weight of, 131; castiron, 148, 149.

Pitch of cog wheels, 68. Plane, the inclined, 66.

Plaster, in imitation of marble, 303,

Plastering, 300.

Plastic figures, amalgam for varnishing,

Platina for springs, 145.

Platina-mohr, 176.

Polishes, recipes for various, 351, 352. Polishing wood, recipes for, 226, 227.

Porcelain, glaze for, 102.

Porphyry, to cut, with iron, 146.

Power, steam, 71.

Power of man or horse as applied to machinery, 286.

Powers, the mechanical, and their application, 63.

Practical geometry, 16.

Pressure of beams, 59: lateral, 136; vertical, 141: of steam at different temperatures, 78.

Prime numbers, table of, to 5000, 243-245.

Pulley, the, 65.

Pulleys, velocity of, 68.

Pump, common, principle of, 231. Pumps, quantity of water per linear foot, in, 276.

Putty, old, solvent for, 102.

Radiating powers of substances, 290.

Radii, table of, and their logarithms, 469. Railroads, formulæ for running lines, locating side-tracks, &c.

Reduction, 24.

Reflecting powers of various substances,

Resolution of forces, 312.

Rigging, chain, scale of proofs for, 291. Roofs, the construction of, 314-317.

Ropes, strength of, 218, 271; comparative strength and weight of, 136; hempen, capacity of sustaining strain, 273; and chains, comparative scale of, 247.

Rule, slide, description of, and manner

of using, 42.

Rust, to preserve iron from, 153.

Safety valve, rule to find the proper diameter of, 75.

Scouring balls, 159.

Scouring drops for removing grease, 103. Screw, the, 67.

Screw-cutting, change wheels for, 279. Screws, V-thread, number of threads to an inch in, 277.

Scribing, the operation of, 329.

Sealing-wax, recipes for making different kinds of, 369, 370.

Seasoning timber, 307-312.

Secants, external, table of, 415.

Seed-lac, 89.

Shafts, cast and wrought-iron, tables of strengths of, 128-126; strength of journals of, 149; diameters of, 151; resistance of, to torsion, 150.

Shears, tension of the guise and shearleg of, 60.

Sheet-iron, weight of superficial foot of, 144.

Shell-lac, 89.

Side-tracks, on railroads, formulæ for locating, 372.

Signatures, method of taking fac-similes of, 132.

Signs, arithmetical, 13.

Silica, 173.

Silver, an indelible black to write on. 81; recipes for purifying and reducing,

Silvering powder, 145.

Sines, versed, table of, 415; natural, 457. Size, 173.

Slide rule, description of, and manner of using, 42.

Solder for tortoise-shell, 128; for ferrules of tool handles, 133.

Solders, recipes for various, 235.

Solid measure, 147. Solids, mensuration of, 36, 46.

Solvents for gutta percha, 179. Sound, velocity of, 176.

Specific gravity, 61; gravities, table of, 62; of simple substances, 248; specific gravities and other properties, 281.

Spontaneous combustion, to prevent, 79. | Units of work, 54. Springs, platina, 145.

Squares and square roots of numbers, table of, 180-201.

Staining woods, processes for, 218, 219. Stains, method of removing, 179; various, for glass, 361, 362.

Steam, pressure of, at different temperatures, 78; elastic force of, 80; force and temperature of, in atmospheres, 81; pressure of, 87, 88.

Steam-engine, 71; table of surface of boiler tubes of, 241; various problems

concerning, 227, 228.

Steam-engines, power of, 46; nominal horse-power of low pressure, 83; of high pressure, 84; proportions of condensing, 85.

Steam power, 71.

Steel, recipe to preserve articles made of, 173; etching fluid for, 214; cast, composition for welding, 263.

Stick-lac, 89.

Stone, methods of joining, 294-296; paper, how to make, 304; ware, gold lustre for, 70.

Stones, artificial, recipes for making different kinds of, 362-365.

Strain and stress of materials, 204.

Strength of materials, 135.

Stucco, fire-proof, for wood, 268; for inside walls, 301; Higgins', 302. Superficies, mensuration of, 27, 44. Symbols, algebraic, 15.

Tallow, weight of a cubic foot of, 280. Tangents, table of, 457. Technical terms used in building, 331-

Temperature, gradations of, 236, 237. Terms used in building, 331-341.

Terra cotta, 268.

Thermometrical scales, comparative table of the degrees of the three, 232, 233.

Tides, variations in, 118.

Timber, results of experiments on the elasticity and strength of various species of, 136; mensuration of, 146; cause of the decay of, 305; methods of seasoning, 307-312; partitions, 322, 323.

Timbers, framing of, 312; methods of

scarfing, 321.

Tin castings, bronzing liquids for, 179. Toothed wheels, 68,

Torsion, elasticity of, 143; resistance to, by shafts, 150. Tortoise-shell, solder for, 128; ground

for metal, 139. Transverse action, resistance to, 136;

strength of bodies, 247.

Trusses, or timbers framed together for the support of weight, 320.

Varnishes, 89-97.

Vegetable decomposition, circumstances favorable to, 305, 306.

Vegetables, the feeding properties of different, 249.

Velocity of falling bodies, 47; of wheels, drums, pulleys, &c., 68.

Versed sines, table of, 415.

Vertical pressure, resistance of bodies to, 141.

Vocabulary of technical terms used in building, 331-341.

Walls, preservation of, from dampness,

Watchmaker's oil, 132.

Water, weight of given bulks of, 63; expansion of, by heat, 229; boiling points of salt, 230; how to find the quantity and weight of, in pipes of any given size, 280; discharge of, over weirs, 285.

Wax, modelling, 86.

Wax, sealing, recipes for making different kinds of, 369, 370.

Wedge, the, 66.

Weirs, discharge of water over, 285.

Welding composition, 201. Wheel and axle, the, 65.

Wheel, cast-iron, to find the horse-power it is capable of transmitting, 246.

Wheels, velocity of, 68; toothed, ib.; strength of, 152; driving, revolutions per mile of, 86; table of the proportions of 154; cast-iron, strength of teeth of, 127; dimensions of, in actual use, 246; proportionate strength of, in horse-power, 258; toothed, table for calculating the pitch of, 270; change, for screw-cutting, 279.

Wind, speed and force of, at different

velocities, 286.

Wood, strength of, 23; to petrify, 70; fire-proof stucco for, 268; component parts of different varieties of, 278; specific gravities and other properties of, 282; means of preventing decay in, 307.

Woods, processes for staining, 218, 219; how to polish and preserve, 226, 227. Woodwork, 805, different methods of

joining, 323-326.

Work, units of, 54; of men and animals, 55; of machines, 56; accumulated,

56.

Wrought-iron shafts, tables of strengths of, 125, 126; tensile and compressive strength of, 208; bar, transverse flexure of, by horizontal pressure, 213; experistrength of ments on transverse rectangular tubes of, 215.

THE RESERVE OF THE PARTY OF THE

POLICE DE LA COLONIA DE LA COL

THE CONTRACTOR OF THE PARTY OF

THE RESERVE

ET AND THE RESIDENCE

HOMES FOR THE PEOPLE!

JUST PUBLISHED.

AMERICAN COTTAGE BUILDER,

Designs, Plans, and Specifications, from \$200 to \$25,000 for Homes for the People.

BY JOHN BULLOCK,
AUTHOR OF "THE RUDIMENTS OF ARCHITECTURE AND BUILDING." Crown Octavo. Price, \$1,75.

The object of this work is to furnish a practical manual of Designs for "Homes for the People," from a twenty-five dollar cottage to a twenty thousand dollar palace, giving estimates as to cost, furnishing plans and specifications, and treating upon the rudiments of the arts called into exercise by the practice of cottage building. From its practical character it must become a desirable text-book to the builder and mechanic, as well as to those contemplating building, either in

ornamental or plain styles.

This work is adapted to supply the wants of all classes in every grade of living, from the humblest cottage to the stately mansion, who are interested in the erection of beautiful and convenient houses. The estimated cost is given to each respective plan, so that the expenses of each building may be accurately determined on. Every effort has been made to add to its intrinsic value-consistently with its practical character—by giving it variety, in collecting all new facts relating to recent improvements in the art of Warming and Ventilation, Garden-ING, &c., &c.

The whole work will be found a "matter of fact" book on cottages and country residence,-a desideratum so long needed by all persons who contemplate building

Opinions of the Leading Journals.

This volume is a valuable contribution to the art of rural architecture. It is illustrated with a number of excellent engravings representing various styles of cottages, and in the full details clear descriptions of each style, which it gives, it will be found to be a safe guide both for taste and economy .-- Courier and Enquirer.

Architectural treatises of more pretension than this have frequently passed under our notice, but we remember few volumes of the kind that are likely to be so useful to the public. Mr. Bullock far maishes designs of cottages in every tattle, and they every cost useful to 525,000, and supplies minute plans and specifications, estimates as to cost, &c. He also teaches very fully and intelligently the rudiments of the arts employed in cottage building.—Commercial Advertiser.

This work contains twenty one chapters of sound sense, twenty illustrations proper, and about sixty plans and illustrations of designs. Mr. Bullock is an experienced writer upon matters of arch tecture and art in general, and his instructions may be firmly relied upon—drawn as they are from bard study and fruitful familiarity .-- Buffalo Express.

Mr. Bullock is favorably known as a clever writer on architectural subjects, and his books have always been popular. This handsome volume is profusely illustrated with designs in every style for cottage residences. The letter-press descriptions and instructions are full, concise, and render the treatise in our opinion useful not only to those about to erect country homes for them selves, but to professional builders who may be called upon to undertake such works for others.—N. Y. Express.

This is a most useful book in this country. It consists of a few plain directions for building small and orderate sized country houses, with a view to internal comfort, and external beauty and propriety. Every one who thinks of erecting a house out of town should read this book. It is simple, and abounding with excellent hints, which may save many pounds after the house is erected. Fit for rich and poor.—Montreal Herald.

The scope of this work is comprehensive, embracing cottages of the lowest cost, as well as buildings which might more appropriately be called palaces. It furnishes plans and specifications (oeach, and estimates of cost. The important subject of warming and ventilating is duly considered, also that of drainage; and there is an instructive chapter on landscape gardening. The plates of designs, and illustrations of the details of the designs, are very numerous, and the subjects lucidly ex hibited .-- Journal of Commerce.

The object of this book is to furnish those persons about to build with designs of houses costing from two hundred dollars to twenty thousand, and with them valuable informati no met subjects of ventilation and gardening. Among the plates are the drawings of Prince Albert's Model Cottages, and also full plans for Fowler's Octagonal House, both of them curiosities well worth examination.— Boston Journal.

One object of this truly excellent book is to encourage the spirit of improvement-to aid the cult:vation of agricultural taste in the poor man's home, and to teach all the art of combining the useful with the tasteful and elegant .-- Pittsburg Token.

Published by STRINGER & TOWNSEND, 222 Broadway, N. Y.,

And for sale by all the principal Booksellers.

The Practical Draughtsman's

BOOK OF INDUSTRIAL DESIGN;

Mechanical, Engineering & Architectural Drawing.

M. AMOUROUX. ARMENGAUD AND

WITH ADDITIONS AND IMPROVEMENTS

RY PROFESSOR WILLIAM JOHNSON.

GENERAL CONTENTS:

LINEAR DRAWING.—THE STUDY OF PROJECTION.—ON COLOURING SECTIONS WITH AP-PLICATIONS.—THE INTERSECTION AND DEVELOPMENT OF SURFACES, WITH APPLICA-TIONS .- THE STUDY AND CONSTRUCTION OF TOOTHED GEAR .- ELEMENTARY PRINCI-PLES OF SHADOWS .- APPLICATION OF SHADOWS TO TOOTHED GEAR .- THE CUTTING AND SHAPING OF MASONRY.—THE STUDY OF MACHINERY AND SKETCHING.—OBLIQUE PROJECTIONS.—PARALLEL PERSPECTIVE.—TRUE PERSPECTIVE.—EXAMPLES OF FIN-ISHED DRAWINGS OF MACHINERY .- DRAWING INSTRUMENTS

In one quarto volume, containing 105 pages of Steel Plates, 75 Wood Engravings, and 200 pages of Letterpress. Bound in cloth, \$6.50; in half Turkey, \$8.00.

This superb work has been prepared by its distinguished Editor to meet the require-

This superb work has been prepared by its distinguished Editor to meet the requirements so long felt of a comprehensive treatise on Industrial Design. His aim has been to present the well-known French work in a much improved English form, and at a price prought within the reach of all.

Every Principal, Mechanic, Builder, Machinist, Engineer, and Artist, has felt the want of a complete course of Industrial Design—not a mere collection of the first principles of Geometrical Drawing, but a work that would be useful as well in Schools and Golleges as in the Workshop and Drawing Offices of the Engineer and Architect.

The special mission of the Practical Dravidan's Book of Industrial Design—not a mere collection of the first principles of Geometrical Drawing offices of the Engineer and Architect.

The special mission of the Practical Dravidan's Book of Industrial Design—not allow the proper state of the Practical Dravidan's Geometrical Dravidan's Book of Industrial Arts: comprehending Innear Design proper; isometrical Pragately of the study of Projections; the Drawing of Toothed Wheels and Eccentrics with Shadowing Observables of Practical Perspective: each division being accompanied by special applications to the extensive ranges of Mechanics, Architecture, Foundar Works, Carpentry, Joinery, Metal Manufactures generally, Hydraulics, the construction of Steam Engineers and Milll-Works. In its compilation, the feeble attraction generally offered to students in elementary form has been carefully considered; and after every geometrical problem, a practical example of its application has been added, to facilitate tas comprehension and increase its value. A series of Flaats, marked, a, R., &c., are also interspersed throughout the work, as examples of finished drawings of machinery, as facilitating actual construction.

The Deterpress relating to these Plates, together with an illustrated chapter on Drawing interspersed throughout the work, as examples of finished drawings of machinery, as facilitating actual constructi

From W. A. Norton, Esq., Professor of Civil Engineering in Yale College.

In the Practical Draughtsman we at last have a work on Industrial design, at the same time sufficiently comprehensive in its scope and minute in its detail to meet the wants of the student of engineering. My opinion of its merits is abundantly indicated by the fact that I have adopted it as a text-book in the School of Engineering attacled to Yale College. So fire as I have made use of it, I find that it meets my expectations, and doubt not that it will give general satisfaction, if introduced nto our Engineering and Industrial Schools.

Professor of Civil Engineering in Yale College.

From the Practical Mechanic's Journal, (Glasgow.)

Such a book in English was greatly needed. We possess for the first time in our literature a standard work, in many respects greatly superior to the French volume. Every page is full of pleasant instruction, and demonstrates competent intelligence and excessive care. The original work is a class-book in the Industrial Schools on the continent, and the present English form of it will hold a high place wherever its subject is studied, either in our own lands or in the United States. It is from the chapters one of the few good books which every principal should possess as a work of reference, and which every learner should have readily accessible for constant study.

Published by STRINGER & TOWNSEND 222 Broadway, N. Y.,

THE BUILDING AND ASSESSED. ALGUERO EL LA DESTRETA

A legislating Buch with the land of

BERLEVO STAN SHA TROSE NOW SITEM

THE PERSON WEST TOTAL STATE OF THE PARTY OF

STREET LAND TO

the thirty and are professionally to the organization of the

The second secon

The state of the s

2006.13 (2007) the property of the section of the second second

The state of the last and production of the second second The state of the s

Charles and the second of the and the second s

THE THE COLUMN market in the second of the second of NAME AND ADDRESS OF THE OWNER, OF THE OWNER, WHEN PERSONS ASSESSED.

and the second s

TA 151

SCOAIT'S

PATENT BOX PILE.

E. G. SCOVIL, PATENTEE.

SAINT JOHN, N. B., CANADA.

TABLE

Of the Weight of a Square Foot of Sheet Iron in pounds avoirdupois, the thickness being the Number on the Wire Gauge.

No. 1 is 5-16ths of an inch; No. 4, 1-4; No. 11, 1-8th, &c.

No. on Wire Gauge	1	2	3	4	5	6	7	8	9	10	11
Pounds Avoir	12:5	12	11	10	9	8	7.5	7	6	5.68	5
No. on Wire Gauge	.12	13	14	15	16	17	18	19	20	21	22
Pounds Avoir	4.62	4.31	4	3.95	3	2.5	2.18	1.93	1.62	1.5	1.37

J. & A. MCMILLAN, PRINTERS.

TABLE

Of the Weight of a Square Foot of Boiler Plate Iron, from 1-8 to 1 inch thick, in pounds avoirdupois.

<u>1</u> 8	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	3/8	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	<u>5</u> 8	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\begin{array}{c c} 1 & 5 \\ \hline 1 & 6 \end{array}$	1 In.
5	7.5	10	12.5	15	1.75	20	22.5	25	27.5	30	32.5	35	37.5	40

Your Firm can Save from \$4 to \$5 per Ton

SCOVIL'S PATENT BOX PILE,

For Nail Plate, Gas Strip, &c., &c., &c.

(SHOWN WITHOUT COVERS.)

A SYSTEMATIC METHOD OF SAVING MONEY THAT OWNERS CAN UNDERSTAND. IS PERFECT SUCCESS. ESTABLISHED BY 4 YEARS' CONSTANT USE IN ONE OF THE OLDEST AND MOST EXPERIENCED FIRMS IN THE IRON MANUFACTURE OF THE UNITED STATES. WRITE FOR PARTICULARS.

Why can't You Do as Others are Doing?

AB= 800 4ds. APC=33"45" AC= 600" " BPC=22"30" BC=400 "

1st in the triangle of BC, to find

i.e. 800 : 1000 ::: 200 : 200 x1000 250 AB : AC+CB :: AC-CB: AE-EB

then 800+250 = 325 = AE. 800-280 = 275 = IB.

In AEC, to find the angle ACE. AC 600 (Ar.C.) 5.25 :: Sin E 90°

In CEB, to find the angle ECB. : Sin ACE

CB 400 Ar. Comp.

. Sin APC 3345' an. com. To find AP sin ACP 600

Tring MP

. SIN CAP : Ac 600 : CP 76 find BP ACB-ACP=PCB 02	sin CPB 12'30' ane, sin PCB CB 400 PB				
: Sin FCB Hence 90° ACE=90° = = A 90° - FCB=90° - = = B 9 ACE+ECB= + = C	2114 in the triangle ADB, whind AD&BD. DAB = CPB or 22°30' DBA = APC or 33°45' ADB = 180°-22°30'+33°45' = 123°45'	Sin D 123°45' an comp. Sin B 33° 45' !! AB 800	Sin D 123°48' an. comp. Sin A 22°30' AB 800	Set In CAD to find angle ACD. CAB-DAB=CAD or	$\begin{array}{c} AC + AD \\ AC - AD \\ Tan_{\frac{1}{2}}(C+D) \end{array}$ $\vdots \tan_{\frac{1}{2}}(D-C)$ $Then_{\frac{1}{2}}(C+D) - \frac{1}{2}(D-C) = ACPo$

131AT.

Of the Weight of Flat Bar Iron, 12 inches long, in pounds avoirdupois.

SCOVIL'S PATENT IS THE ONLY COMPLETE SYSTEM OF BOX PILING EVER INVENTED. ITS VALUE HAS BEEN PROVED BY 4 YEARS' CONSTANT USE IN THE "KENSINGTON NAIL AND ROLLING MILLS OF MESSRS. JAS. ROWLAND & CO., NO. 920 NORTH DELAWARE AV., PHILADELPHIA," PRODUCING CHEAPER PLATES AND BETTER EDGES THAN BAR PILES. REQUIRES NO BINDERS OR TIES. WORKMEN LIKE IT, AS IT DOES NOT SPREAD AND IS EASILY HANDLED.

ADDRESS E. G. SCOVIL, Mill Manager,

COLDBROOK P. O., SAINT JOHN, N. B

Inch.	Round.	Square.	Inch.	Round.	Square.	Inch.	Round.	Square.
1	1.66	.211	$1\frac{3}{4}$	8.13	10.35	$3\frac{1}{2}$	32.52	41.41
38	.373	.475	$1\frac{1}{5}$	9.33	11.88	$3\frac{3}{4}$	37.34	47.53
네누어(60 네이어)하나나 나	.664	.845	2	10.62	13.52	4	42.48	54.08
58	1.04	1.32	21	11.99	15.26	44	47.96	61:05
3	1.20	1.90	$2\frac{1}{4}$	13.44	17:11	$\frac{1}{2}$	53.77	68.45
78	2.03	2.59	$2\frac{3}{8}$	14.98	19.07	$4\frac{3}{4}$	59.91	76.27
1	2.65	3.38	$2\frac{1}{2}$	16.59	21.13	5	66.38	84.51
$1\frac{1}{8}$	3.36	4.28	25	18.30	23.29	$5\frac{1}{4}$	73.18	93.17
11	4.15	5.28	$\frac{2\frac{3}{4}}{1}$	20.08	25.56	$5\frac{1}{5}$	80.32	102.25
$1\frac{3}{8}$	5.03	6.39	$2\frac{7}{8}$	21.94	27.94	$5\frac{3}{4}$	87:78	111.76
$1\frac{1}{5}$	5.99	7:60	3	23.96	30.42	6	95.58	121.69
$\frac{1\frac{1}{5}}{1\frac{5}{8}}$	7.01	8.92	$3\frac{1}{4}$	28.04	35.70	7	130.10	165.63

AVING had 20 years' experience in Rolling Mill and Nail Business, can be consulted on Building, Repairing, Foundations, &c., &c.

Estimates on Manufacturing. Prime Costs taken. References when required.

E. G. SCOVIL, Coldbrook Post Office, St. John, N. B.

LIBRARY OF CONGRESS 0 028 161 108 2