

Reconstrução a partir de Seções Planares

Instituto de Ciências Matemáticas e de Computação Departamento de Computação e Estatística VICG - USP - São Carlos

> Luis Gustavo Nonato Rosane Minghim Maria Cristina F. de Oliveira Antonio Castelo Filho João E. S. Batista

Segmentação e Geração de Contornos

Abordagem topológica baseada em crescimento de regiões:

Morse Operators for Digital Planar Surfaces and their application to Segmentation

Nonato, Castelo, Minghim, Batista

IEEE Transactions on Image Processing, jan. 2004

Segmentação e Geração de Contornos

Abordagem topológica baseada em crescimento de regiões:

Vantagens:

- Controle da topologia durante a segmentação
- Pouco sensível a ruídos
- Obtenção dos contornos (orientados) de forma imediata

Desvantagens:

- Necessário fornecer "sementes" (semi-automáticas)
- Qualidade da segmentação depende das sementes

Segmentação e Geração de Contornos

Operadores de Morse:

5 classes de operadores:

Teorema: Seja S um objeto com característica de Euler $\chi(S)$ e σ uma k-handle, então

Segmentação e Geração de Contornos

COMPARAÇÃO COM EDGE DETECTION

	Fig.	DPS	Edge-Detection	Clustering
Smoothing Time	22	0 8	16530ms	
	23		19950ms	
Number of Interactions	22	3	3	3
	23	2	13(4+9)	3
Time	22	520ms	20ms	2600ms
	23	520ms	62s	1700ms
Post Processing	22			870ms
	23	0.3300000	A1000 6742000	850ms
Total	22	520ms	16530ms	3470ms
Time	23	520ms	∼1min22s	2550ms

TABLE I

COMPARISON AMONG DPS, EDGE-DETECTION AND CLUSTERING SEGMENTATION METHODS

Reconstrução por Triangulação de Delaunay

Passos do Algoritmo após a construção da Triangulação 3D:

- 1. Decidir quais contornos devem ser conectados
- 2. Eliminar tetraedros entre os contornos não conectados
- 3. Subdividir tetraedros a fim de garantir a re-exemplificação

Reconstrução por Triangulação de Delaunay

1. Decidir quais contornos devem ser conectados

Reconstrução por Triangulação de Delaunay

<u>Proposição</u>: Dois contornos em planos adjacentes estão geometricamente bem posicionados se e somente se na triangulação de Delaunay 3D dos pontos dos contornos existe um tetraedro reverso conectando-os.

Reconstrução por Triangulação de Delaunay

2. Eliminar tetraedros entre os contornos não conectados

Visualização

Embora os modelos sejam volumétricos, apenas os bordos são visualizados.

- Informações volumétricas podem ser perdidas
 - texturas internas
 - propriedades dos materiais

