You may assume all algebras are finite-dimensional over a field k. You may attempt the exercises with the additional assumption of k being algebraically closed.

Throughout, unadorned tensor product over assumed to be taken over a field, i.e. $\otimes = \otimes_{\mathbb{k}}$.

Ex 1.

1. Let X, M be an A-module. The reject of X in M is the submodule

$$\operatorname{Rej}_X(M) := \bigcap_f \operatorname{Ker}(f) \subset M.$$

Show that $M/\mathrm{Tr}_X(M)\cong D\mathrm{Rej}_{DX}(DM)$ where $D=\mathrm{Hom}_{\Bbbk}(-,\Bbbk)$ is the \Bbbk -linear duality functor.

2. Consider A = kQ/I with

$$Q = (1 \underbrace{\bigcap_{\beta_1}^{\alpha_1}}_{\beta_1} 2 \underbrace{\bigcap_{\beta_2}^{\alpha_2}}_{\beta_2} \cdots \underbrace{\bigcap_{\beta_{n-2}}^{\alpha_{n-2}}}_{\beta_{n-2}} n - 1 \underbrace{\bigcap_{\beta_{n-1}}^{\alpha_{n-1}}}_{\beta_{n-1}} n), \qquad I = (\alpha_i \alpha_{i+1}, \beta_{i+1} \beta_i, \alpha_{i+1} \beta_{i+1} - \beta_i \alpha_i, \beta_{n-1} \alpha_{n-1})$$

and $\Lambda = \{1 \triangleleft 2 \triangleleft \cdots \triangleleft n\}$. Show that $\operatorname{gldim} A = 2n - 2$.

Ex 2. For a quasi-hereditary algebra $(A, (\Lambda, \leq))$, show the following.

- 1. Let \mathcal{X} be a subset of $\{\Delta(\lambda) \mid \lambda \in \Lambda\}$. If $\operatorname{Ext}_A^1(\Delta(\lambda), N) = 0$ for all $\Delta(\lambda) \in \mathcal{X}$, then $\operatorname{Ext}_A^1(M, N) = 0$ for any \mathcal{X} -filtered module M. Hint: Induction on Δ -length.
- 2. $\operatorname{Ext}_{A}^{>0}(\Delta(\lambda), \Delta(\mu)) = 0$ for all $\lambda \not \supseteq \mu$. *Hint:* Reverse induction on λ (i.e. starting from λ maximal) and consider $\operatorname{Hom}(-, \Delta(\mu))$. *Note:* We already learnt that $\operatorname{Ext}_{A}^{1}(\Delta(\lambda), \Delta(\mu)) = 0$ for all $\lambda \not \supseteq \mu$.

Ex 3. For a quasi-hereditary algebra $(A, (\Lambda, \leq))$, show the following.

- 1. If X is Δ -filtered, then so is $\Omega(X)$, where $\Omega(X)$ is the kernel of the projective cover of X.
- 2. If $\operatorname{Ext}_A^1(M,N)=0$ for all Δ -filtered module M, then $\operatorname{Ext}_A^{>0}(M,N)=0$. Hint : Consider dimension shifting $\operatorname{Ext}_A^k(X,Y)\cong\operatorname{Ext}_A^{k-1}(\Omega(X),Y)$ where $\Omega(X)$ is the kernel of the projective cover of X.
- 3. $\operatorname{Ext}_A^1(M, \nabla(\mu)) = 0$ for all $\mu \in \Lambda$ and all Δ -filtered module M. Hint: Induction on Δ -length. (Or if you have done Exercise 2, you can quote from your solution from there.)
- 4. $\operatorname{Ext}_{A}^{>0}(M, \nabla(\mu)) = 0$ for all $\mu \in \Lambda$ and all Δ -filtered module M.

Ex 4. Consider the quiver algebra $A = \mathbb{k}Q/I$ given by

$$Q: \underbrace{}_{3} \underbrace{}_{\beta} 1 \underbrace{}_{\alpha} , \quad I = (\gamma \alpha)$$

You can use the following information in the exercise: every indecomposable A-module M is uniserial of length at most 4, and $[M:S(i)] \leq 1$ for i=2,3 and $[M:S(1)] \leq 2$ with equality if and only if M=P(1).

- 1. Write down all the standard and costandard modules of A.
- 2. Write down all indecomposable Δ -filtered modules.
- 3. Write down all indecomposable ∇ -filtered modules.
- 4. There are 3 indecomposable modules. Show that we can label each of them by T(i) so that the following are satisfied:
 - [T(i):S(i)] = 1.
 - $\Delta(i)$ is a submodule of T(i).
 - $\nabla(i)$ is a quotient of T(i).
- 5. Write down the projective resolutions of each T(i).
- 6. Show that $\operatorname{Ext}_A^{>0}(T(i), T(j)) = 0$ for any i, j.