```
In [1]: # Exploratory Data Analysis(EDA) on Titanic dataset.
In [2]: #Importing Necessary libraries
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
In [3]: #Importing train dataset
         df1 = pd.read_csv('C:/Users/ankit/Desktop/elevate labs/task - 5/titanic/train.csv')
In [4]: #Importing test dataset
         df2 = pd.read_csv('C:/Users/ankit/Desktop/elevate labs/task - 5/titanic/test.csv')
In [5]: #Checking first five rows of train dataset
         df1.head()
Out[5]:
                                                                                Sex Age SibSp Parch
            Passengerld Survived Pclass
                                                                                                                         Fare Cabin Embarked
                                                                        Name
                                                                                                                Ticket
         0
                     1
                              0
                                    3
                                                          Braund, Mr. Owen Harris
                                                                               male 22.0
                                                                                                             A/5 21171 7.2500
                                                                                                                               NaN
                                                                                                                                           S
                                    1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
         1
                     2
                              1
                                                                                             1
                                                                                                    0
                                                                                                             PC 17599 71.2833
                                                                                                                                C85
                                                                                                                                           С
                     3
         2
                              1
                                    3
                                                            Heikkinen, Miss, Laina female 26.0
                                                                                                    0 STON/O2. 3101282
                                                                                                                      7.9250
                                                                                                                               NaN
                                                                                                                                           S
```

Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0

Allen, Mr. William Henry

male 35.0

3

5

0

3

S

S

113803 53.1000

373450 8.0500

0

0

C123

NaN

Out[6]:

•	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
_	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	l 893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
:	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
;	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4 896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

In [7]: #Appending both the datasets to get one single dataset

df_titanic = pd.concat([df1,df2],ignore_index = True)

Out[8]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [9]: #Listing down all the columns
df_titanic.columns.values

```
In [10]: #Getting the high level overview of the dataset.
         df titanic.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1309 entries, 0 to 1308
         Data columns (total 12 columns):
          # Column
                           Non-Null Count Dtype
                           _____
              PassengerId 1309 non-null
                                           int64
              Survived
                           1309 non-null
                                           int64
          2
              Pclass
                           1309 non-null
                                           int64
                                           object
          3
              Name
                           1309 non-null
                           1309 non-null
              Sex
                                           object
          5
              Age
                           1046 non-null
                                           float64
                           1309 non-null
                                           int64
              SibSp
              Parch
                           1309 non-null
                                           int64
                                           object
              Ticket
                           1309 non-null
              Fare
                           1308 non-null
                                           float64
          10 Cabin
                           295 non-null
                                           object
                           1307 non-null
          11 Embarked
                                           object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 122.8+ KB
In [11]: #Checking total null values present in each column of dataset
         df_titanic.isnull().sum()
Out[11]: PassengerId
                           0
         Survived
                           0
         Pclass
         Name
         Sex
                         263
         Age
         SibSp
                           0
         Parch
         Ticket
                           0
         Fare
                           1
         Cabin
                        1014
         Embarked
                           2
```

dtype: int64

```
In [12]: #Few Conclusions:
         # 1) There are missing values in Age, Cabin, Fare and Embarked columns
         # 2) More than 75% values are missing from Cabin column, so will be dropping it.
         # 3) Few columns have inappropriate datatype
In [13]: #Dropping Cabin column
         df titanic.drop(columns = ['Cabin'], inplace=True)
In [14]: df titanic.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1309 entries, 0 to 1308
         Data columns (total 11 columns):
                           Non-Null Count Dtype
          # Column
             PassengerId 1309 non-null int64
             Survived
                           1309 non-null
                                          int64
          1
             Pclass
                           1309 non-null
          2
                                         int64
                          1309 non-null
          3
              Name
                                          object
          4
              Sex
                           1309 non-null
                                          obiect
                           1046 non-null
                                          float64
              Age
              SibSp
                           1309 non-null
                                          int64
              Parch
                           1309 non-null
                                          int64
             Ticket
                           1309 non-null
                                          object
              Fare
                           1308 non-null
                                         float64
          10 Embarked
                           1307 non-null
                                          obiect
         dtypes: float64(2), int64(5), object(4)
         memory usage: 112.6+ KB
In [15]: #Imputing the missing values in age by using mean of age column
         df titanic['Age'].fillna(df titanic['Age'].mean(), inplace=True)
```

```
In [16]: df titanic.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1309 entries, 0 to 1308
         Data columns (total 11 columns):
                           Non-Null Count Dtype
              Column
              PassengerId 1309 non-null
                                           int64
              Survived
                           1309 non-null
                                           int64
          1
              Pclass
                           1309 non-null
          2
                                           int64
                           1309 non-null
          3
              Name
                                           object
                           1309 non-null
                                           object
              Sex
                           1309 non-null
                                           float64
          5
              Age
                           1309 non-null
              SibSp
                                           int64
                           1309 non-null
              Parch
                                           int64
              Ticket
                           1309 non-null
                                           object
          9
              Fare
                           1308 non-null
                                           float64
                                           object
          10 Embarked
                           1307 non-null
         dtypes: float64(2), int64(5), object(4)
         memory usage: 112.6+ KB
In [17]: #Imputing the missing value in fare column by using mean of fare column
         df titanic['Fare'].fillna(df titanic['Fare'].mean(), inplace=True)
In [18]: #Checking the frequency of values in Embarked column
         df titanic['Embarked'].value counts()
Out[18]: Embarked
              914
         S
              270
         С
              123
         Name: count, dtype: int64
```

```
In [19]: #S is the most occured value, So Replacing the null value from Embarked column to 'S'

df_titanic['Embarked'].fillna('S', inplace = True)

In [20]: #Again checking the overview of dataset
    df titanic.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 11 columns):
# Column
                 Non-Null Count Dtype
                 _____
    PassengerId 1309 non-null int64
    Survived
                 1309 non-null
                                int64
    Pclass
                 1309 non-null
 2
                                int64
    Name
                 1309 non-null
 3
                                object
                 1309 non-null
                                object
 4
    Sex
    Age
                 1309 non-null
                                float64
 5
                 1309 non-null
                                int64
    SibSp
    Parch
                 1309 non-null
                                int64
    Ticket
                 1309 non-null
                                object
    Fare
                 1309 non-null
                               float64
10 Embarked
                 1309 non-null
                                object
dtypes: float64(2), int64(5), object(4)
```

memory usage: 112.6+ KB

Ticket 0
Fare 0
Embarked 0

dtype: int64

SibSp Parch

In [22]: #Describing the dataset

df_titanic.describe()

Out[22]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	1309.000000	1309.000000	1309.000000	1309.000000	1309.000000	1309.000000	1309.000000
mean	655.000000	0.377387	2.294882	29.881138	0.498854	0.385027	33.295479
std	378.020061	0.484918	0.837836	12.883193	1.041658	0.865560	51.738879
min	1.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	328.000000	0.000000	2.000000	22.000000	0.000000	0.000000	7.895800
50%	655.000000	0.000000	3.000000	29.881138	0.000000	0.000000	14.454200
75%	982.000000	1.000000	3.000000	35.000000	1.000000	0.000000	31.275000
max	1309.000000	1.000000	3.000000	80.000000	8.000000	9.000000	512.329200

```
In [23]: #Checking the distribution of 'Sibsp' and 'Parch' column as they are categorical column
         df titanic['SibSp'].value counts()
Out[23]: SibSp
              891
         1
              319
         2
               42
               22
         3
               20
                9
         5
                6
         Name: count, dtype: int64
In [24]: df titanic['Parch'].value counts()
Out[24]: Parch
              1002
         1
               170
               113
                 8
                 6
                 2
                 2
         Name: count, dtype: int64
In [25]: #Changing the datatype of columns
         #Choosing the category datatype as these columns have fixed number of possible values
         df titanic['Survived'] = df titanic['Survived'].astype('category')
         df_titanic['Pclass'] = df_titanic['Pclass'].astype('category')
         df_titanic['Sex'] = df_titanic['Sex'].astype('category')
         df titanic['Age'] = df titanic['Age'].astype('int')
         df titanic['Embarked'] = df titanic['Embarked'].astype('category')
```

```
In [26]: #Checking the datatype of all the columns
         df titanic.dtvpes
Out[26]: PassengerId
                           int64
         Survived
                        category
         Pclass
                        category
         Name
                          object
         Sex
                        category
                           int32
         Age
                           int64
         SibSp
                           int64
         Parch
                          object
         Ticket
                         float64
         Fare
                        category
         Embarked
         dtype: object
In [27]: #Final checking of dataset
         df_titanic.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1309 entries, 0 to 1308
         Data columns (total 11 columns):
          # Column
                           Non-Null Count Dtype
                           _____
                                          ----
              PassengerId 1309 non-null
                                          int64
              Survived
                           1309 non-null
          1
                                          category
          2
              Pclass
                           1309 non-null
                                          category
                           1309 non-null
                                          object
          3
              Name
                           1309 non-null
                                          category
          4
              Sex
              Age
                          1309 non-null
          5
                                          int32
              SibSp
                          1309 non-null
                                          int64
```

1309 non-null

1309 non-null

1309 non-null

1309 non-null

int64

object

float64

category

dtypes: category(4), float64(1), int32(1), int64(3), object(2)

Parch

Fare

10 Embarked

9

Ticket

memory usage: 72.2+ KB

In [28]: #So we have no missing values, all columns have proper datatype.

In [29]: df_titanic.describe()

Out[29]:

	Passengerld	Age	SibSp	Parch	Fare
count	1309.000000	1309.000000	1309.000000	1309.000000	1309.000000
mean	655.000000	29.685256	0.498854	0.385027	33.295479
std	378.020061	12.899824	1.041658	0.865560	51.738879
min	1.000000	0.000000	0.000000	0.000000	0.000000
25%	328.000000	22.000000	0.000000	0.000000	7.895800
50%	655.000000	29.000000	0.000000	0.000000	14.454200
75%	982.000000	35.000000	1.000000	0.000000	31.275000
max	1309.000000	80.000000	8.000000	9.000000	512.329200

In [30]: #We can get following insights from this:

1) 25% of the population were below 22 years of age, while 75% of the population were below 35 years of age. So, mostly young people were travelling in the titanic.

2) Average fare value was 33.29

```
In [31]: #Univariate Analysis
# Checking the survived column

sns.countplot(data = df_titanic, x='Survived')
plt.title("Survival Count")
plt.xlabel('Survived (0 = No, 1 = Yes)')
plt.ylabel('Number of Passengers')
plt.show()

death_percent = round((df_titanic['Survived'].value_counts().values[0]/1309)*100)
total_passengers = len(df_titanic)
print(f'Out of {total_passengers} people, {death_percent}% people died in accident.')
```


Out of 1309 people, 62% people died in accident.

In [32]: #Checking Pclass column sns.countplot(x='Pclass', data=df_titanic) plt.title('Passenger Class Distribution') plt.xlabel('Passenger Class') plt.ylabel('Number of Passengers') plt.show() #Conclusion: Pclass 3 was the most crowded class.


```
In [33]: #Checking sex column
    print((df_titanic['Sex'].value_counts()/1309)*100)

    sns.countplot(x = 'Sex', data = df_titanic)
    plt.title("Sex Distribution")
    plt.xlabel('Sex')
    plt.ylabel('No of Passengers')
    plt.show()

#Conclusion: Male passengers are approximately 64% of total passengers.
```

Sex
male 64.400306
female 35.599694
Name: count, dtype: float64

In [34]: #Checking Sibsp column print(df_titanic['SibSp'].value_counts()) sns.countplot(x='SibSp', data=df_titanic) plt.title("Sibling Spouse Count") plt.xlabel("SibSp Count") plt.ylabel("Count") plt.show()

```
SibSp
0 891
1 319
2 42
4 22
3 20
8 9
5 6
Name: count, dtype: int64
```


In [35]: #Checking Parch column print(df_titanic['Parch'].value_counts()/1309*100) sns.countplot(x='Parch', data=df_titanic) plt.title("Parent Children Count") plt.xlabel("Parch Count") plt.ylabel("Count") plt.show()

```
Parch
0 76.546982
1 12.987013
2 8.632544
3 0.611154
5 0.458365
4 0.458365
6 0.152788
9 0.152788
Name: count, dtype: float64
```


In [36]: #Checking Embarked column print(df_titanic['Embarked'].value_counts()/1309*100) sns.countplot(x='Embarked', data=df_titanic) plt.title('Number of Passengers by Embarked Port') plt.xlabel('Port of Embarkation') plt.ylabel('Number of Passengers') plt.show() #Conclusion: Almost 70% passengers were travelling to Southampton port.

Embarked S 69.977082 C 20.626432 Q 9.396486 Name: count, dtype: float64

In [37]: #Checking Age column sns.histplot(df_titanic['Age'], bins=30, kde=True) plt.title('Age Distribution of Passengers') plt.xlabel('Age') plt.ylabel('Count') plt.show() #Conclusion: Most of the passengers were between 20 years to 40 years of age.

In [38]: #Checking Fare column sns.histplot(df_titanic['Fare'], bins=40, kde=True) plt.title('Fare Distribution') plt.xlabel('Fare') plt.ylabel('Number of Passengers') plt.show() #Conclusion: fare distribution is highly right skewed - most of the passengers paid low fares and only few paid very high fares


```
In [39]: sns.boxplot( x='Fare', data=df_titanic)
plt.title('Boxplot of Fare')
plt.xlabel('Fare')
plt.show()
```


In [40]: #Checking how many passengers are between 200 to 300 of fare and how many are there for above 300 print('No of passengers ranging between fare of \$200 to \$300:', df_titanic[(df_titanic['Fare']>200)&(df_titanic['Fare']<300)].sprint('No of passengers having greater than \$300:', df_titanic[(df_titanic['Fare']>300)].shape[0])

No of passengers ranging between fare of \$200 to \$300: 34 No of passengers having greater than \$300: 4

In [41]: #Checking the survival count by Passenger Class sns.countplot(x='Pclass', hue='Survived', data=df_titanic) plt.title('Survival Count by Passenger Class') plt.xlabel('Passenger Class') plt.ylabel('Number of Passengers') plt.legend(title='Survived', labels=['No', 'Yes']) plt.show() #Conclusion: Mortality rate for Pclass 3 passengers is highest


```
In [42]: pd.crosstab(df_titanic['Pclass'],df_titanic['Survived']).apply(lambda x:round((x/x.sum())*100,1),axis=1)
#Conclusion:
# 1)In Pclass 1: 57.6% survived, 42.4% died
# 2)In Pclass 3: only 26.9% survived, 73.1% died
```

Out[42]:

Survived	0	•
Pclass		
1	42.4	57.6
2	57.8	42.2

3 73.1 26.9

```
In [43]: # Suvival count by Sex

sns.countplot(x='Sex', hue='Survived', data=df_titanic)
plt.title('Survival Count by Sex')
plt.xlabel('Sex')
plt.ylabel('Number of Passengers')
plt.legend(title='Survived', labels=['No', 'Yes'])
plt.show()

# Conclusion: Males had higher mortality rate.
```



```
In [44]: pd.crosstab(df titanic['Sex'], df titanic['Survived']).apply(lambda x:round((x/x.sum())*100,1),axis=1)
         #Conclusion:
               1) Male Passengers: only 12.9% survived, 87.1% died
               2) Female Passengers: 82.6% survived, 17.4% died
Out[44]:
          Survived
                     0
                         1
              Sex
            female 17.4 82.6
             male 87.1 12.9
In [45]: # Suvival count by Embarked Port
         sns.countplot(x='Embarked', hue='Survived', data=df titanic)
         plt.title('Survival Count by Embarked Port')
         plt.xlabel('Embarked Port')
         plt.ylabel('Number of Passengers')
         plt.legend(title='Survived', labels=['No', 'Yes'])
```


plt.show()

In [46]: pd.crosstab(df_titanic['Embarked'],df_titanic['Survived']).apply(lambda x:round((x/x.sum())*100,1),axis=1)
#Conclusion:
Passengers going to S port have higher mortality rate as compared to C and Q.

Out[46]:

Survived	0	1
Embarked		
С	50.7	49.3
Q	56.1	43.9

S 66.5 33.5

In [47]: #Age Distribution by Survival Status plt.figure(figsize=(15,6)) sns.kdeplot(df_titanic[df_titanic['Survived'] == 0]['Age'], label='Did Not Survive', fill=True, color='red') sns.kdeplot(df_titanic[df_titanic['Survived'] == 1]['Age'], label='Survived', fill=True, color='green') plt.title('Age Distribution by Survival Status') plt.xlabel('Age') plt.ylabel('Density') plt.legend() plt.show()

In [48]: #Fare Distribution by Survival Status plt.figure(figsize=(15,6)) sns.kdeplot(df_titanic['Survived'] == 0]['Fare'], label='Did Not Survive', fill=True, color='red') sns.kdeplot(df_titanic[df_titanic['Survived'] == 1]['Fare'], label='Survived', fill=True, color='green') plt.title('Fare Distribution by Survival Status') plt.xlabel('Fare') plt.ylabel('Density') plt.legend() plt.show()


```
In [49]: sns.pairplot(df_titanic[['Age', 'Fare', 'Pclass', 'Survived']], hue='Survived')
```

Out[49]: <seaborn.axisgrid.PairGrid at 0x1aaeb780af0>

In [51]: #Creating new column by the name of family which will be sum of SibSp and Parch
df_titanic['FamilySize'] = df_titanic['SibSp']+df_titanic['Parch']+1

```
In [52]: df_titanic.head()
```

Out[52]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	FamilySize
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500	S	2
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.2833	С	2
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.9250	S	1
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	S	2
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.0500	S	1

```
In [53]: #We will group the family size over the family type(Alone, Medium, Large)
def family_group(size):
    if size == 1:
        return 'Alone'
    elif size <= 4:
        return 'Small'
    else:
        return 'Large'

df_titanic['FamilyGroup'] = df_titanic['FamilySize'].apply(family_group)</pre>
```

In [54]: df_titanic.head()

Out[54]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	FamilySize	FamilyGroup
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500	S	2	Small
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.2833	С	2	Small
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.9250	S	1	Alone
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	S	2	Small
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.0500	S	1	Alone

In [56]: #Dropping irrelevant columns now

df_titanic.drop(columns=['SibSp','Parch','FamilySize'], inplace=True)

In [57]: df_titanic.sample(5)

Out[57]:

	Passengerld	Survived	Pclass	Name	Sex	Age	Ticket	Fare	Embarked	FamilyGroup
505	506	0	1	Penasco y Castellana, Mr. Victor de Satode	male	18	PC 17758	108.9000	С	Small
914	915	0	1	Williams, Mr. Richard Norris II	male	21	PC 17597	61.3792	С	Small
125	126	1	3	Nicola-Yarred, Master. Elias	male	12	2651	11.2417	С	Small
516	517	1	2	Lemore, Mrs. (Amelia Milley)	female	34	C.A. 34260	10.5000	S	Alone
1073	1074	1	1	Marvin, Mrs. Daniel Warner (Mary Graham Carmic	female	18	113773	53.1000	S	Small

```
In [58]: sns.countplot(x='FamilyGroup', hue='Survived', data=df_titanic, order=['Alone', 'Small', 'Large'])
    plt.title('Survival Count by Family Group')
    plt.xlabel('Family Group')
    plt.ylabel('Number of Passengers')
    plt.legend(title='Survived', labels=['No', 'Yes'])
    plt.show()
```



```
In [59]: pd.crosstab(df_titanic['FamilyGroup'],df_titanic['Survived']).apply(lambda x: round((x/x.sum())*100,1),axis=1)
#Conclusion:
    # 1) 70% of alone passengers died.
    # 2) 78% of large family group died.
    # 3) 44% of medium family group died.
```

Out[59]:

Survived	0	1
FamilyGroup		
Alone	70.8	29.2
Large	78.0	22.0
Small	43.9	56.1

Final Conclusions

- 1) Out of total, 62% of the total passengers died.
- 2) Passenger class 3 was the most crowded class, hence it became the most deadliest class.
- 3) People going to C destination survived more.
- 4) Almost 70% of the passengers were travelling to Southampton port.
- 5) Male passengers comprised approximately 64% of total passengers.
- 6) Chances of Female survival is higher than male survival.
- 7) Most passengers were between 20-40 years of age.
- 8) People ranging from 20 years to 35 years of age had a higher chance of not surviving.
- 9) People travelling with smaller families had higher chance of surviving the accident in comparison to people with large families and travelling alone.