EECS E6690: Statistical Learning for Biological and Information Systems Lecture 5: Classification

Prof. Predrag R. Jelenković Time: Tuesday 4:10-6:40pm 303 Seeley W. Mudd Building

Dept. of Electrical Engineering
Columbia University , NY 10027, USA
Office: 812 Schapiro Research Bldg.
Phone: (212) 854-8174
Email: predrag@ee.columbia.edu
URL: http://www.ee.columbia.edu/~predrag

Last lecture: Dimension reduction

- ► Dimensionality reduction idea
 - Represent/approximate X with a vector Z having less dimensions
 - ▶ Then, apply regression to Z
- Many approaches for doing this
- ▶ Common approach: Principal Component Analysis (PCA) Finding the first principal component: projection of x onto ϕ

$$z_{1i} = \langle \mathbf{x}_i, \mathbf{\phi}_1 \rangle = \phi_{11} x_{1i} + \phi_{21} x_{2i} + \dots + \phi_{p1} x_{pi}$$

Assume x_i -s are centered $(\sum x_i = 0)$

▶ Look for ϕ_1 that has the largest sample variance, i.e.

$$\max_{\phi_1} \frac{1}{n} \sum_{i=1}^n z_{1i}^2 = \max_{\phi_1} \frac{1}{n} \sum_{i=1}^n (\phi_{11} x_{1i} + \phi_{21} x_{2i} + \dots + \phi_{p1} x_{pi})^2$$

subject to $\sum_{i=1}^{p} \phi_{i1}^2 = 1$ (i.e., ϕ_1 is a unit vector)

Last lecture: Second principal component

- Loading vector ϕ_1 represents the direction along which the data varies the most
- If we project x_1, \ldots, x_n onto ϕ_1 , the projected values are the PC scores z_{i1} since

$$z_{1i} = \langle \boldsymbol{x}_i, \boldsymbol{\phi}_1 \rangle$$

Second and higher principal components

▶ After ϕ_1 has been determined, we look for ϕ_2 in a similar way, but with the additional constraint that ϕ_1, ϕ_2 are uncorrelated

$$<\phi_1,\phi_2>=0$$

- ▶ We continue this procedure until we find as many PC as we want
- ► This optimization problem can be solved via eigen-decomposition

PCA Example

Two PC-s: Solid line: First PC; Dashed line: Second PC

Last lecture: PCA as Eigenvalue-Eigenvector Decomposition

Consider finding $k \leq p$ principal components: $\phi_1, \phi_2, \dots, \phi_k$

$$oldsymbol{U} = egin{bmatrix} oldsymbol{\phi}_1 & oldsymbol{\phi}_2 & \cdots & oldsymbol{\phi}_k \end{bmatrix}, \quad oldsymbol{U}^ op oldsymbol{U} = oldsymbol{I}_k.$$

Then, the projection of a data point $x_i, 1 \le i \le n$ is given by

$$egin{aligned} \hat{oldsymbol{x}}_i &= (oldsymbol{x}_i \cdot oldsymbol{\phi}_1) oldsymbol{\phi}_1 + \cdots (oldsymbol{x}_i \cdot oldsymbol{\phi}_k) oldsymbol{\phi}_k &= oldsymbol{U} oldsymbol{U}^ op oldsymbol{x}_i \ oldsymbol{z}_i &= (z_{1i}, z_{2i}, \dots, z_{ki}) = (oldsymbol{x}_i \cdot oldsymbol{\phi}_1, oldsymbol{x}_i \cdot oldsymbol{\phi}_2, \dots, oldsymbol{x}_i \cdot oldsymbol{\phi}_k) \end{aligned}$$

implying

$$\|\hat{\boldsymbol{x}}_i\|^2 = \boldsymbol{x}_i^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_i = \boldsymbol{x}_i^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_i.$$

Note that \hat{x}_i minimizes the distance $\|x_i - \hat{x}_i\|$, and thus, finding k principle components is equivalent to finding U that maximizes

$$\begin{split} M &= \max_{\boldsymbol{U}: \boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I}_k} \sum_{i=1}^n \boldsymbol{x}_i^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_i \\ &= \operatorname{trace} \left(\boldsymbol{U}^{\top} \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{\top} \boldsymbol{U} \right), \quad \left(\operatorname{using} \ \boldsymbol{x}^{\top} \boldsymbol{y} = \operatorname{trace}(\boldsymbol{x} \boldsymbol{y}^{\top}) \right) \end{split}$$

Last lecture: PCA as Eigenvalue-Eigenvector Decomposition

Now, if $A = \sum_{i=1}^n x_i x_i^{ op}$, the optimization problem becomes

$$M = \max_{\boldsymbol{U}: \boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I}_k} \operatorname{trace} \left(\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U} \right)$$

Note that ${m A}$ is a symmetric matrix, and therefore orthogonally diagonalizable with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. If ${m U}$ is composed of k eigenvectors that correspond to the k largest eigenvalues, then

$$M \ge \sum_{i=1}^k \lambda_i$$
.

On the other hand, we can diagonalize $A = V^{\top} \Lambda V$, where V is an orthogonal matrix, yielding

$$\begin{split} M &= \max_{\boldsymbol{U}: \boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I}_k} \operatorname{trace} \left(\boldsymbol{U}^{\top} \boldsymbol{V}^{\top} \boldsymbol{\Lambda} \boldsymbol{V} \boldsymbol{U} \right) = \max_{\boldsymbol{B}: \boldsymbol{B}^{\top} \boldsymbol{B} = \boldsymbol{I}_k} \operatorname{trace} \left(\boldsymbol{B}^{\top} \boldsymbol{\Lambda} \boldsymbol{B} \right) \\ &= \sum_{i=1}^p \sum_{j=1}^k b_{ij}^2 \lambda_i = \sum_{i=1}^p \lambda_i \sum_{j=1}^k b_{ij}^2 \leq \sum_{i=1}^k \lambda_i \quad (\operatorname{Note:} \ \sum_{i=1}^p b_{ij}^2 = 1, \sum_{j=1}^k b_{ij}^2 \leq 1) \end{split}$$

 $\Rightarrow M = \sum_{i=1}^k \lambda_i$: Hence, the first k principal components correspond to the eigenvectors of the k largest eigenvalues of A.

Last lecture: Basis expansions

▶ Map data x into higher dimensional space $\mathbb{R}^d, d > p$: $\phi(x) : \mathbb{R}^p \to \mathbb{R}^d$, i.e.,

$$\phi(\boldsymbol{x}) = (\phi_1(\boldsymbol{x}), \phi_2(\boldsymbol{x}), \dots, \phi_d(\boldsymbol{x})$$

lacktriangle Fit linear regression on $\phi(x)$ in the higher dimensional space

Example: Polynomial regression of degree q

lacksquare Map data $oldsymbol{x}=(x_1,\ldots,x_p)$ into

$$\phi(x) = (x_1, x_1^2, \dots, x_1^q, x_2, x_2^2, \dots, x_2^q, \dots, x_p, x_p^2, \dots, x_p^q, \dots)$$

- ightharpoonup Fit linear regression in the higher dimensional, \mathbb{R}^{pq} , space
 - Exponential growth of dimensionality: if p = 10 and q = 10

Polynomial Kernel and Dual Solution for Ridge

Polynomial Kernel: dot products can have closed form
$$K(x_i,x_j):=\langle \phi(x_i),\phi(x_j)\rangle=(1+\langle x_j,x_i\rangle)^d$$

K is $n \times n$, doesn't grow with d; recall, n is the number of data points x_i .

lacktriangle Dual solution - recall dual form for $\hat{m{y}}$

$$\hat{y} = K\alpha$$

Dual Ridge: find α that minimizes

$$\|y - \hat{y}\|_{2}^{2} + \lambda \|\alpha\|_{2}^{2} = \|y - K\alpha\|_{2}^{2} + \lambda \|\alpha\|_{2}^{2}$$

Solution

$$\boldsymbol{\alpha} = (\lambda \boldsymbol{I} + \boldsymbol{K})^{-1} \boldsymbol{y}$$

which has computational complexity $O(n^3)$, and does not depend on the polynomial basis expansion parameter d.

Other basis: piecewise polynomial, Fourier, wavelets, etc.

Last lecture: Model validation

Training versus Test Error

- ► Select a statistical learning method, e.g.: linear model, polynomial, piecewise polynomial/splines, etc.
- ► Training error: the average error from using the method to predict the response on the observations used in its training

► **Test error**: the average error from using the method to predict the response on a **new observation**

▶ Ideally: a large designated test set – rarely available

Last lecture: Validation-set approach

- Randomly divide the available samples into:
 - training set
 - validation set
- Random split into two halves
- Fit a model using the training set
- Use the model to predict the responses in the validation set
- ▶ The validation-set error is an estimate of the test error
- Drawbacks
 - ▶ The error estimate can be variable depends on the split
 - ▶ Only a subset of observations used to fit the model
 - Tends to overestimate the test error

Last lecture: K-fold cross-validation

- Popular approach
 - Pro: scales well with data size
 - Con: there is still randomness

- Procedure
 - Randomly divide observations into K equal-sized parts
 - Leave out part k, fit a model using the remaining K-1 parts
 - Use the left-out part to estimate the error
 - ightharpoonup Repat for all k
 - Combine results

Last lecture: K-fold cross-validation

- K parts: C_1, C_2, \ldots, C_K
- ▶ n_k : the number of observations in part k
- Compute

$$\mathsf{CV}_{(K)} = \sum_{k=1}^K \frac{n_k}{n} \mathsf{MSE}_k$$

where

$$\mathsf{MSE}_k = \frac{1}{n_k} \sum_{i \in C_k} (y_i - \hat{y}_i)^2$$

and \hat{y}_i is the prediction for observation i obtained from the data without part k

▶ K = n: leave-one out cross-validation (LOOCV)

Last lecture: LOOCV

Linear model example: we can compute CV error

- ▶ Pro: **No randomness** all subsets of size (n-1) considered
- Con: Doesn't scale with data size
- Linear regression
 - ▶ *X* and *y*:
 - lacktriangle observation i: $oldsymbol{X}_i$ and y_i
 - lacktriangle no observation i: $oldsymbol{X}_{(i)}$ and $oldsymbol{y}_{(i)}$
 - CV error

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} (y_i - X_i \hat{\beta}_{(i)})^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

where
$$h_i = \boldsymbol{X}_i (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}_i^{\top}$$

Weighted sum of squared residuals

Example: Auto data set

```
> library(boot)
> cv.err<-rep(0,10)
> for(i in 1:10) {
    glm.fit<-glm(mpg~poly(horsepower,i), data=auto)</pre>
    cv.err[i] <-cv.glm(auto,glm.fit)$delta[1]
+ }
> set.seed(1)
> for(i in 1:10) {
    glm.fit<-glm(mpg~poly(horsepower,i), data=auto)</pre>
    cv.err[i] <-cv.glm(auto,glm.fit,K=10)$delta[1]
+ }
                            LOOCY
                                                                                        10-fold CV
     25
     24
                                                                  24
mean squared error
     23
                                                                  23
                                                             mean squared error
     22
                                                                  22
     7
                                                                  7
     20
                                                                  20
     9
                                                                  9
     8
                                                                  8
                                                     10
                                                                                                                  10
               2
                                   6
                                            8
                                                                             2
                                                                                                6
                                                                                                         8
                       degree of polynomial
                                                                                    degree of polynomial
```

Last lecture: Bootstrap

Setup

- Population model that produces an outcome Y
- Observations Z from this population model
- ▶ Statistic T(Z)
- ▶ Distribution of T(Z)

Idea

- ▶ The distribution of T(Z) can be estimated by sampling Z from the population model
- Resample with replacement from Z to "approximate" sampling from the population model

► Why?

- ightharpoonup Only samples Z available
- No information on the population model

Last lecture: Bootstrap

Basic algorithm

- Input
 - lacksquare A sample of data $oldsymbol{Z}=(oldsymbol{Z}_1,\ldots,oldsymbol{Z}_n)$
 - ightharpoonup An estimation rule \hat{T} for Statistic T
- Algorithm
 - 1. Generate bootstrap samples $Z^{*1}, Z^{*2}, \dots, Z^{*B}$
 - lacktriangle Create $oldsymbol{Z}^{*b}$ by selecting n points from $oldsymbol{Z}$
 - lacktriangle A particular $oldsymbol{Z}_i$ can appear in $oldsymbol{Z}^{*b}$ multiple times
 - 2. Evaluate the estimator on each Z^{*b} :

$$\hat{T}_b = \hat{T}(\boldsymbol{Z}^{*b})$$

- ▶ The empirical distribution of $\{\hat{T}_1, \dots, \hat{T}_B\}$ is an estimate of the distribution of T(Z)
- Bootstrap distribution
- ▶ Overlap between Z and Z^{*b} ?

Last lecture: Bootstrap regression modeling

- lacktriangleright n observations, response $oldsymbol{y}$, covariates $oldsymbol{X}$
- ▶ Bootstrap standard errors for OLS coefficients using case resampling:
 - ightharpoonup For $b = 1, \ldots, B$
 - ▶ Draw sample uniformly at random, with replacement, from observations $(\boldsymbol{X}, \boldsymbol{y})$. Let the ith outcome in the bth sample be $(\boldsymbol{X}_i^{*b}, y_i^{*b})$
 - lacktriangle Compute $\hat{oldsymbol{eta}}^{*b}$ given $(oldsymbol{X}^{*b}, oldsymbol{y}^{*b})$
- ▶ Bootstrap distribution of $\hat{\beta}$ to compute standard errors

Few more words on regressions

Regression: Estimate real valued/quantitative f

$$Y = f(X)$$

from training data $\{(x_i, y_i)\}$, and then use it for inference and prediction.

- Assume something on \hat{f} , e.g.: linear or polynomial Many other options for the approximation function \hat{f} , e.g.
 - ▶ Piecewise-polynomial/splines, e.g., piecewise-constant/linear; see Sec. 5.2 in ESL, Sec. 7.2-74 in ISL
 - Smoothing splines: impose smoothness at the boundaries, e.g. continuity, continuous derivatives, etc.; see Sec. 5.4 in ESL, Sec. 7.5 in ISL
- ► After selecting a class of approximation functions, we go through all the steps we did before:
 - Training (fitting)
 - ► Simplifying: model selection, regularization (e.g., Ridge, Lasso)
 - ► Testing: analytical, cross-validation, bootstrap keep an eye on overfitting

Example: Piecewise-polynomial, i.e., splines

Classification

- ► Regression: real-valued/quantitative response
- ► Classification: categorical response
- ▶ Probability that a data point belongs to a class $c \in C$
- Example: Medical diagnosis
 - cancer, stroke, drug overdose, epileptic seizure
 - unordered set

Default data set

Available in the ISLR package

> summary(Default)

default student
No :9667 No :7056
Yes: 333 Yes:2944

balance income Min. 0.0 Min. : 772 1st Qu.: 481.7 1st Qu.:21340 Median: 823.6 Median :34553 : 835.4 :33517 Mean Mean 3rd Qu.:1166.3 3rd Qu.:43808 Max. :2654.3 Max. :73554

Default data set

- > par(mfrow=c(1,2))
- > boxplot(balance~default,data=Default,col=c("dodgerblue","red"),xlab="default",ylab="balance")
- > boxplot(income~default,data=Default,col=c("dodgerblue","red"),xlab="default",ylab="income")

Linear regression

- ► Binary variables
- ightharpoonup Predicted values not always in [0,1]

Classification setting

► Loss function: Error rate

$$\frac{1}{n} \sum_{i=1}^{n} 1_{\{y_i \neq \hat{y}_i\}}$$

▶ Bayes Classifier - Optimal: Assign an observation x_0 to a class j for which the conditional probability

$$\mathbb{P}[Y=j|X=x_0]$$

is the largest. We will prove this later.

► Bayes error rate

$$1 - \mathbb{E}(\max_{j} \mathbb{P}[Y = j|X])$$

► We look for ways to approximate the conditional probabilities They are difficult to estimate/compute from data. Why?

Logistic regression

- ▶ Model the conditional probability of $\mathbb{P}[Y = j | X = x]$
- ► Example: $\mathbb{P}[\text{default=Yes} \mid \text{balance}] = p(\text{balance})$
- lacktriangle Need a function with values in [0,1]
- Logistic function (for binary variables, can be extended)

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- \blacktriangleright Estimate β via Maximum Likelihood Estimation (MLE)
- Odds:

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

- lacktriangle A unit increase in X multiplies odds by e^{eta_1}
- $\log it \, p(X) = \beta_0 + \beta_1 X$

Example

```
> glm1a<-glm(default~balance,data = Default,family = binomial())</pre>
> summary(glm1a)
Call:
glm(formula = default ~ balance, family = binomial(), data = Default)
Deviance Residuals:
   Min
             10 Median
                                       Max
-2.2697 -0.1465 -0.0589 -0.0221
                                    3.7589
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
        (Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
balance
            5.499e-03 2.204e-04 24.95 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1596.5 on 9998 degrees of freedom
ATC: 1600.5
Number of Fisher Scoring iterations: 8
```

Example:

$$\hat{\mathbb{P}}[\text{default} = \text{Yes} \mid \text{balance} = 1000] = \frac{e^{-10.65 + 0.0055 \cdot 1000}}{1 + e^{-10.65 + 0.0055 \cdot 1000}} = 0.006$$

Example

```
> glm1b<-glm(default~student,data = Default,family = binomial())
> summary(glm1b)
Call:
glm(formula = default ~ student, family = binomial(), data = Default)
Deviance Residuals:
   Min
             10 Median
                                      Max
-0.2970 -0.2970 -0.2434 -0.2434
                                   2.6585
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.50413 0.07071 -49.55 < 2e-16 ***
studentYes 0.40489 0.11502 3.52 0.000431 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 2908.7 on 9998 degrees of freedom
ATC: 2912.7
Number of Fisher Scoring iterations: 6
```

Example:

$$\hat{\mathbb{P}}[\text{default} = \text{Yes} \,|\, \text{student} = \text{Yes}] = \frac{e^{-3.504 + 0.405 \cdot 1}}{1 + e^{-3.504 + 0.405 \cdot 1}} = 0.043$$

MLE

The probability of observed data under the model specified by \$\beta\$ is given by the likelihood function

$$\ell(\beta) = \prod_{i: y_i = 1} p(x_i) \prod_{i: y_i = 0} (1 - p(x_i))$$

MLE: select a model that maximizes likelihood of data

$$\max_{\boldsymbol{\beta}} \, \ell(\boldsymbol{\beta})$$

or equivalently

$$\max_{\beta} \sum_{i=1}^{n} \left\{ y_i (\beta_0 + \beta_1 x_i) - \ln \left(1 + e^{\beta_0 + \beta_1 x_i} \right) \right\}$$

- First-order conditions
- Newton's method

Multiple logistic regression

Number of Fisher Scoring iterations: 8

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

```
> glm2<-glm(default~balance+income+student,data = Default,family = binomial())</pre>
> summary(glm2)
Call:
glm(formula = default ~ balance + income + student, family = binomial(),
   data = Default)
Deviance Residuals:
   Min 1Q Median 3Q
-2.4691 -0.1418 -0.0557 -0.0203 3.7383
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***
income 3.033e-06 8.203e-06 0.370 0.71152
studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.5 on 9996 degrees of freedom
ATC: 1579.5
```

Confounding

- Dependency among predictors
- Similar to colinearity

South African heart disease data set

Min. : 0.00

1st Qu.: 0.51

Median: 7.51

Mean : 17.04

3rd Qu.: 23.89

Max.

:147.19

```
> head(SAheart)
  sbp tobacco ldl adiposity famhist typea obesity alcohol age chd
1 160
       12.00 5.73
                      23.11 Present
                                            25.30
                                                    97.20
                                                         52
2 144
        0.01 4.41
                      28.61 Absent
                                            28.87
                                                     2.06 63
3 118
      0.08 3.48
                      32.28 Present
                                            29.14
                                                   3.81 46
4 170
      7.50 6.41
                    38.03 Present
                                       51
                                            31.99
                                                   24.26 58
5 134
      13.60 3.50
                    27.78 Present
                                       60
                                            25.99
                                                   57.34 49
6 132
      6.20 6.47
                    36.21 Present
                                       62
                                            30.77
                                                    14.14 45
> summary(SAheart)
                                       1d1
      sbp
                   tobacco
                                                     adiposity
                                                                      famhist
                                                                                    typea
                Min. : 0.0000
                                                   Min. : 6.74
                                                                                       :13.0
 Min.
     :101.0
                                  Min. : 0.980
                                                                  Absent :270
                                                                                Min.
 1st Qu.:124.0
                1st Qu.: 0.0525
                                 1st Qu.: 3.283
                                                   1st Qu.:19.77
                                                                  Present:192
                                                                                1st Qu.:47.0
 Median :134.0
                Median : 2.0000
                                  Median : 4.340
                                                   Median : 26.11
                                                                                Median:53.0
 Mean
       :138.3
                Mean : 3.6356
                                  Mean
                                         : 4.740
                                                   Mean
                                                         :25.41
                                                                                Mean
                                                                                       :53.1
 3rd Qu.:148.0
                3rd Qu.: 5.5000
                                  3rd Qu.: 5.790
                                                   3rd Qu.:31.23
                                                                                3rd Qu.:60.0
        :218.0
                                         :15.330
                                                          .42 49
 Max
                Max.
                       :31.2000
                                  Max
                                                   Max
                                                                                Max.
                                                                                       :78.0
                   alcohol
                                                      chd
   obesity
                                      age
```

Max. :64.00 • Prevalence in the region (not the data set) ≈ 0.05

1st Qu.:31.00

Median :45.00

3rd Qu.:55.00

:15.00

:42.82

Min.

Mean

ightharpoonup Adjust β_0 :

:14.70

:26.04

:46.58

1st Qu.:22.98

Median :25.80

3rd Qu.:28.50

Min.

Mean

Max.

$$\hat{\beta}_0^* = \hat{\beta}_0 + \log \frac{\pi}{1 - \pi} - \log \frac{\tilde{\pi}}{1 - \tilde{\pi}}$$

Min.

Mean

:0.0000

:0.3463

1st Qu.:0.0000

Median :0.0000

3rd Qu.:1.0000

Max. :1.0000

Example

```
> heartfit<-glm(chd~.,data=SAheart,family = binomial())
> summary(heartfit)
Call:
glm(formula = chd ~ ., family = binomial(), data = SAheart)
Deviance Residuals:
   Min
            1Q Median 3Q
                                    Max
-1.7781 -0.8213 -0.4387 0.8889 2.5435
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
             -6.1507209 1.3082600 -4.701 2.58e-06 ***
            0.0065040 0.0057304 1.135 0.256374
sbp
tobacco 0.0793764 0.0266028 2.984 0.002847 **
      0.1739239 0.0596617 2.915 0.003555 **
141
adiposity 0.0185866 0.0292894 0.635 0.525700
famhistPresent 0.9253704 0.2278940 4.061 4.90e-05 ***
typea
             0.0395950 0.0123202 3.214 0.001310 **
obesity -0.0629099 0.0442477 -1.422 0.155095
alcohol
          0.0001217 0.0044832 0.027 0.978350
age
              0.0452253 0.0121298 3.728 0.000193 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 472.14 on 452 degrees of freedom
ATC: 492 14
Number of Fisher Scoring iterations: 5
```

Discriminant classification

- Model the distribution of X for each class separately
 - Will use Gaussian distribution
 - Leads to linear or quadratic discriminant analysis
 - Possible to use other distributions
- Bayes theorem

$$p_k(x) = \mathbb{P}[Y = k \mid X = x] = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

where

- f_k is the density of X in class k
- \blacktriangleright π_k is the prior probability for class k
- ▶ Classify to the most likely class the highest $\pi_k f_k(x)$

Example

Discriminant analysis

- ▶ Start with p = 1
- Gaussian density (mean μ_k , variance σ_k^2):

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{(x-\mu_k)^2}{2\sigma_k^2}}$$

▶ Discriminant function δ_k is quadratic (in x):

$$p_k(x) \propto \delta_k(x) = -x^2 \frac{1}{2\sigma_k^2} + x \frac{\mu_k}{\sigma_k^2} - \frac{\mu_k^2}{2\sigma_k^2} - \log \sigma_k + \log \pi_k$$

Probabilities:

$$\mathbb{P}[Y = k \mid X = x] = \frac{e^{\delta_k(x)}}{\sum_{l=1}^K e^{\delta_l(x)}}$$

Linear discriminant analysis

- Special case: $\sigma_1 = \sigma_2 = \ldots = \sigma_K = \sigma$
- ▶ Discriminant function δ_k is linear (in x):

$$p_k(x) \propto \delta_k(x) = x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$$

▶ Example: K = 2, $\pi_1 = \pi_2$ – decision boundary is at

$$x = \frac{\mu_1 + \mu_2}{2}$$

Parameter estimation:

$$\hat{\pi}_k = \frac{n_k}{n}$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i: y_i = k} (x_i - \hat{\mu}_k)^2$$

Example

In practice - finite number of samples = deviations

Linear vs. quadratic

Decision region more complicated

Discriminant analysis for p>1

Quadratic - sigma unequal

► Density:

$$f_k(\boldsymbol{x}) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_k|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k)}$$

• Linear discriminant function (equal Σ_k):

$$\delta_k(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \log \pi_k$$

• Quadratic discriminant function (different Σ_k):

$$\delta_k(\boldsymbol{x}) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k) - \frac{1}{2} \log |\boldsymbol{\Sigma}_k| + \log \pi_k$$

Example

- p = 2, K = 3, $\pi_1 = \pi_2 = \pi_3 = 1/3$
- Coordinate transformation

lacktriangle Sufficient to consider a (K-1)-dimensional hyperplane

Logistic regression vs. LDA

- ► Two classes
- Logistic regression

$$\log \frac{p_1(\boldsymbol{x})}{p_2(\boldsymbol{x})} = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

LDA

$$\log \frac{p_1(\boldsymbol{x})}{p_2(\boldsymbol{x})} = \left(\log \frac{\pi_1}{\pi_2} - \frac{1}{2}\boldsymbol{\mu}_1^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2\right) + \boldsymbol{x}^\top \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2\right)$$

- Same linear form
- ▶ Different way to estimate parameters

Naïve Bayes

- Assumes features are independent in each class
- Covariance matrices Σ_k are diagonal:

$$\pi_k f_k(\mathbf{x}) = \pi_k \prod_{i=1}^p f_{ki}(x_i) = \pi_k \prod_{i=1}^p \frac{1}{\sqrt{2\pi}\sigma_{ki}} e^{-\frac{(x_i - \mu_{ki})^2}{2\sigma_{ki}^2}}$$

and

$$\delta_k(\boldsymbol{x}) = -\sum_{i=1}^p \left[\frac{(x_i - \mu_{ki})^2}{2\sigma_{ki}^2} + \log \sigma_{ki} \right] + \log \pi_k$$

- Advantages
 - lacktriangleright much easier to estimate parameters for $p\gg 1$
 - can use both qualitative and categorical features (use PMFs instead of PDFs)
 - often produces good results

Naïve Bayes: Example

Name	Over 170cm	Eye	Hair length	Sex
Drew	No	Blue	Short	Male
Claudia	Yes	Brown	Long	Female
Drew	No	Blue	Long	Female
Drew	No	Blue	Long	Female
Alberto	Yes	Brown	Short	Male
Karin	No	Blue	Long	Female
Nina	Yes	Brown	Short	Female
Sergio	Yes	Blue	Long	Male

Sex	Name	\hat{p}
Male	Drew	1/3
мате	!Drew	2/3
Female	Drew	2/5
remare	!Drew	3/5
Sex	Eye	\hat{p}
	Eye Blue	\hat{p} $2/3$
Sex Male		
	Blue	2/3

Sex	Over 170cm	\hat{p}
Male	Yes	2/3
Male	No	1/3
Female	Yes	2/5
гешате	No	3/5
Sex	Hair length	\hat{p}
Molo	Short	2/3
Male	Short Long	$\frac{2}{3}$ $\frac{1}{3}$
Male Female		,

 $\{\mathtt{Name} = \mathtt{Drew},\, \mathtt{Over} \ \ \mathtt{170cm} = \mathtt{Yes},\, \mathtt{Eye} = \mathtt{Blue},\, \mathtt{Hair} \ \mathtt{length} = \mathtt{Long}\} = ?$

Proof of optimality of the Bayes Classifier

- $lackbox{ Consider the case of two classes }Y\in\{0,1\} \ ext{and general }X$, $X\in\mathbb{R}^p$
- ► The proof is not needed for the grade.

Definition (Bayes Classifier)

Let $\eta(x) = \mathbb{P}[Y = 1 \,|\, X = x]$ and let the Bayes Classifier be defined as

$$f^*(x) = \begin{cases} 1, & \text{if } \eta(x) \ge 1/2 \\ 0, & \text{otherwise,} \end{cases}$$

i.e., it assigns x to a class k for which $\mathbb{P}[Y=k\,|\,X=x]$ has maximum value.

Theorem (Optimality)

For any classifier $g(x) \in \{0, 1\}$,

$$\mathbb{P}[g(X) \neq Y] \ge \mathbb{P}[f^*(X) \neq Y],$$

i.e., the Bayes classifier is optimal.

Proof of optimality of the Bayes Classifier

Proof. We will actually prove a stronger statement that

$$\mathbb{P}[g(X) \neq Y | X = x] \geq \mathbb{P}[f^*(X) \neq Y | X = x],$$

which by taking the expectation with respect to \boldsymbol{X} yields the theorem.

$$\begin{split} & \mathbb{P}[g(X) \neq Y | X = x] = 1 - \mathbb{P}[g(X) = Y | X = x] \\ & = 1 - (\mathbb{P}[Y = 1, g(X) = 1 | X = x] + \mathbb{P}[Y = 0, g(X) = 0 | X = x]) \\ & = 1 - \left(\mathbb{E}[1_{\{Y = 1\}} 1_{\{g(X) = 1\}} | X = x] + \mathbb{E}[1_{\{Y = 0\}} 1_{\{g(X) = 0\}} | X = x]\right) \\ & = 1 - \left(1_{\{g(x) = 1\}} \mathbb{E}[1_{\{Y = 1\}} | X = x] + 1_{\{g(X) = 0\}} \mathbb{E}[1_{\{Y = 0\}} | X = x]\right) \\ & = 1 - \left(1_{\{g(x) = 1\}} \mathbb{P}[Y = 1 | X = x] + 1_{\{g(x) = 0\}} \mathbb{P}[Y = 0 | X = x]\right) \\ & = 1 - \left(1_{\{g(x) = 1\}} \eta(x) + 1_{\{g(x) = 0\}} (1 - \eta(x))\right) \end{split}$$

Proof of optimality of the Bayes Classifier

Next, consider the difference

$$\begin{split} & \mathbb{P}[g(X) \neq Y | X = x] - \mathbb{P}[f^*(X) \neq Y | X = x] \\ & = \eta(x) \left(\mathbf{1}_{\{f^*(x) = 1\}} - \mathbf{1}_{\{g(x) = 1\}} \right) + (1 - \eta(x)) \left(\mathbf{1}_{\{f^*(x) = 0\}} - \mathbf{1}_{\{g(x) = 0\}} \right) \\ & = \left(2\eta(x) - 1 \right) \left(\mathbf{1}_{\{f^*(x) = 1\}} - \mathbf{1}_{\{g(x) = 1\}} \right), \end{split}$$

where the last equality follows from $1_{\{g(x)=0\}}=1-1_{\{g(x)=1\}}$. Finally, we show that the last expression is nonnegative. To this end, consider the following two cases:

1.
$$f^*(x) = 1 \Leftrightarrow \eta(x) \ge 1/2$$
, and therefore

$$(2\eta(x)-1)\left(1_{\{f^*(x)=1\}}-1_{\{g(x)=1\}}\right) = (2\eta(x)-1)\left(1-1_{\{g(x)=1\}}\right) \ge 0$$

2. $f^*(x) = 0 \Leftrightarrow \eta(x) < 1/2$, which also imples

$$(2\eta(x)-1)\left(1_{\{f^*(x)=1\}}-1_{\{g(x)=1\}}\right)=(2\eta(x)-1)\left(0-1_{\{g(x)=1\}}\right)\geq 0$$

Reading:

ISL: Read Chapter 4

ESL: Read Chapter 4

Homework 2: Due Fri, Oct 7th, by 11:59pm.

Midterm planned for Oct 25th