## **FL#7**

- 1. Prepare the well-known dataset for hand-written digits (MNIST) and flowers (IRIS).
  - A. Use python library to extract images.
  - B. Separate them into test and training set.



| 1             | A            | В           | C            | D           | E                                         |
|---------------|--------------|-------------|--------------|-------------|-------------------------------------------|
| 1             | Sepal Length | Sepal Width | Petal Length | Petal Width | Class                                     |
| 2.            | 5.1          | 3.5         | 1.4          | 0.2         | Iris-setosa                               |
| 200           |              | 3           |              | 0.2         | with a control of the control of          |
| 3 '           | 4.9          | 3           | 1.4          | 0.2         | Iris-setosa                               |
|               | 4.9          | 3.2         | 1.4          | 0.2         |                                           |
| 3 ·<br>4<br>5 |              |             |              |             | Iris-setosa<br>Iris-setosa<br>Iris-setosa |

- 2. Design a feed-forward single layer perceptron (SLP), and check the classification accuracy with random weights.
  - A. Input: IRIS dataset (4x1 vector)
  - B. Output: Classification prediction (binary value, scalar)
  - C. Functions for implementation
    - i. Feedforward operation function
    - ii. Sigmoid function
- 3. Design a feed-forward multilayer perceptron (MLP), and check the classification accuracy with random weights.
  - A. Input: MNIST Image (784x1 vector)
  - B. Output: Classification prediction (10x1 vector)

- C. Functions for implementation
  - i. Feedforward operation function
  - ii. Sigmoid function
  - iii. Softmax function