Written Exercises, Pages 555-556

1.
$$y = 2x + 5$$
 3. $y = \frac{1}{2}x - 8$ 5. $y = -\frac{7}{5}x + 8$ 7. $y = -\frac{1}{4}x + 2$ 9. $y = \frac{1}{2}x + 4$

11.
$$y - 2 = 5(x - 1)$$
 13. $y - 5 = \frac{1}{3}(x + 3)$ 15. $y = -\frac{1}{2}(x + 4)$ 17. $y = 2x - 1$

19.
$$y = \frac{1}{3}x + 2$$
 21. $x = 2$ **23.** $x = 5$ **25.** $y - 7 = 3(x - 5)$ **27.** $5x + 8y = -31$

29.
$$y = -\frac{5}{3}x + \frac{34}{3}$$
 31. $y = x$ **33.** $\frac{2}{3}$ or $-\frac{2}{3}$ **35.** (2, 0) **37.** a. $y = x$, $x = 3$, $x + 2y = 9$

b. C(3, 3) **c.** $CQ = CR = CS = 3\sqrt{10}$ **d.** $(x - 3)^2 + (y - 3)^2 = 90$ **39. a.** slope of $\overline{CG} = -1 = 8$ slope of \overline{GH} **b.** $\overline{GH} = 2\sqrt{2}$, $\overline{GC} = \sqrt{2}$

Written Exercises, Pages 558-559

1.
$$(0, b), (a, 0)$$
 3. $(-f, 2f), (f, 2f)$ **5.** $(h + m, n)$ **7.** $\left(\frac{s}{2}, \frac{s\sqrt{3}}{2}\right)$ **9.** $(\sqrt{a^2 - b^2}, b), (\sqrt{a^2 - b^2} + a, b)$

Written Exercises, Pages 562-563

1. Plan for proof: Use the distance formula twice to show that the length of each diag. is $\sqrt{a^2 + b^2}$. 5. Plan for proof: Find the coords. of the midpts. G and H of \overline{NP} and \overline{MO} , resp. Use slopes to show that $\overline{NM} \parallel \overline{GH} \parallel \overline{OP}$. Use the Dist. Formula to show that $GH = \frac{1}{2}(OP - NM)$. 9. Plan for proof: Use the eq. of the \bigcirc to show that $b^2 - a^2 = -c^2$. Then use slopes to show that $\overline{CA} \perp \overline{CB}$.

Self-Test 2, Page 563

- 3. $y = -\frac{1}{2}x + \frac{5}{2}$ 4. y = 5 5. (1, -1) 6. (2e, 0)
- 7. (c + g, h) 8. (c g, h) 9. slope of $\overline{GO} =$

slope of $\overline{LD} = -\frac{1}{4}$; slope of $\overline{OL} = \text{slope of } \overline{DG} = 3$

Extra, Page 565

1. y-axis 3. x-axis 5. xy-plane 7. yz-plane

Chapter Review, Page 567

1. $4\sqrt{5}$; 10; $2\sqrt{5}$ 3. (-3, 0); 10 5. $(x + 6)^2 + (y + 1)^2 = 9$ 7. -19 9. 0 11. $\frac{3}{4}$, $-\frac{4}{3}$

13. a. (4, 3) b. 5 c. (-8, -6) 15. $\left(4, -\frac{3}{2}\right)$ 17. (0, b) 19. y21. (2, 1) 23. y = 2x + 4 25. $M\left(\frac{a}{2} + b, c\right), N\left(\frac{a}{2}, 0\right);$ slope of $\overline{ON} = 0$ = slope of $\overline{MQ}, \overline{ON} \parallel \overline{MQ};$ slope of $\overline{OM} = \frac{2c}{a + 2b}$ = slope of $\overline{NQ}, \overline{OM} \parallel \overline{NQ}$

Cumulative Review, Page 569

1. obtuse 3. No; no; draw a fig. in which the diags. do not bis. each other. 5. a. Since $\angle AEB \cong \angle CED$ (Vert. $\angle E \cong E$) and $\frac{AE}{CE} = \frac{BE}{DE}$, $\triangle AEB \sim \triangle CED$ (SAS \sim); therefore $\angle B \cong \angle D$ (Corr. $\angle E \cong E$).

b. x = 18 **c.** 4:9 **7. a.** $\frac{1}{3}$ **b.** $\frac{1}{3}$ **c.** $2\sqrt{2}$ **d.** $\frac{2\sqrt{2}}{3}$ **9.** 364π ; 820π **11.** $6\frac{2}{3}$ **13.** 89