

Remote Sensing Laboratory

Dept. of Information Engineering and Computer Science

University of Trento

Via Sommarive, 14, I-38123 Povo, Trento, Italy

Digital Signal Processing Lecture 5-Supplementary

Quote of the Day

The longer mathematics lives the more abstract – and therefore, possibly also the more practical – it becomes.

Eric Temple Bell

E-mail: demir@disi.unitn.it Web page: http://rslab.disi.unitn.it

Correlation ~ identifies similarity between sequences:

Cross correlation
$$r_{xy}[\ell] = \sum_{n=-\infty}^{\infty} x[n]y[n-\ell]$$
 of x against y "lag"
$$\sum_{n=-\infty}^{\infty} y[n]x[n-\ell]$$
 Note: $r_{yx}[\ell] = \sum_{n=-\infty}^{\infty} y[n]x[n-\ell]$
$$= \sum_{n=-\infty}^{\infty} y[m+\ell]x[m] = r_{xy}[-\ell]$$

 $m=-\infty$

Correlation:

$$r_{xy}[n] = \sum_{k=-\infty}^{\infty} x[k]y[k-n]$$

Convolution: $x[n] \circledast y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$

• Hence: $r_{xy}[n] = x[n] \circledast y[-n]$

Correlation may be calculated by convolving with time-reversed sequence

Autocorrelation

Autocorrelation (AC) is correlation of signal with itself:

$$r_{xx}[\ell] = \sum_{n=-\infty}^{\infty} x[n]x[n-\ell] = r_{xx}[-\ell]$$

Note:
$$r_{xx}[0] = \sum_{n=-\infty}^{\infty} x^2[n] = \varepsilon_x$$
 Energy of sequence $x[n]$

Autocorrelation

Autocorrelation (AC) is correlation of signal with itself:

$$r_{xx}[\ell] = \sum_{n=-\infty}^{\infty} x[n]x[n-\ell] = r_{xx}[-\ell]$$

Note:
$$r_{xx}[0] = \sum_{n=-\infty}^{\infty} x^2[n] = \varepsilon_x$$
 Energy of sequence $x[n]$

Correlation maxima

Note:
$$r_{xx}[\ell] \le r_{xx}[0] \Rightarrow \left| \frac{r_{xx}[\ell]}{r_{xx}[0]} \le 1 \right|$$

• Similarly:
$$r_{xy}[\ell] \le \sqrt{\varepsilon_x \varepsilon_y} \Rightarrow \frac{r_{xy}[\ell]}{\sqrt{r_{xx}[0]r_{yy}[0]}} \le 1$$