Self-Confinement of Narrow Eccentric Planetary Ringlets

Joseph Hahn (Space Science Institute), Douglas Hamilton (University of Maryland) Thomas Rimlinger (Goddard Space Flight Center), Yuxi Lu (Columbia University)

Background

Narrow eccentric planetary ringlets are interesting & puzzling:

- they have very sharp edges
- large eccentricity gradients
- unknown confinement mechanism that opposes radial spreading due to ringlet viscosity

•One popular confinement mechanism:

 narrow ringlets are straddled by unseen shepherd satellite(s) whose grav' perturbations confine it radially (Goldreich & Tremaine 1979, Goldreich et al 1995, Chiang & Goldreich 2000, Mosqueira & Estrada 2002)

•but Cassini spacecraft failed to detect any shepherds near Saturn's narrow ringlets, which casts doubt on the above (eg Longaretti 2018)

•recall Borderies et al (1982): a narrow ringlet having a sufficient nonlinearity parameter

q=[(eccentricity-gradient)² + (periapse-twist)²]^{1/2} $\geq \sqrt{3}/2 \approx 0.87$

can be self-confining

- they show that when:
 - q<0.87, ringlet viscosity causes angular momentum to flow radially outwards across the ringlet, which causes ringlet to spread radially
 - But when q>0.87, angular shear reverses sign near periapse, the orbit-averaged angular momentum flows inwards, and the ringlet contracts radially due to angular momentum flux reversal

The code

•used epi_int_lite (successor to epi_int of Hahn & Spitales 1993) to simulate evolution of narrow eccentric viscous gravitating ringlets:

- epi_int_lite is a symplectic *streamline* integrator
- uses trace particles track ringlet streamlines, with particles responding to streamline
 - self-gravity A_r≈2Gλ/Δr
 - viscosity, A_θ≈-(dF_v/dr)/σr, due to particle-particle collisions

Ringlet initial conditions

- all simulated ringlets have:
 - specified total mass m_r shear viscosity v_s initial radial width Δa initial eccentricity e_0 =0.01 orbit oblate Saturn-like planet whose $J_2=0.01$
- initial nonlinearity parameter q=0
 - ie zero gradients in e or longitudes of periapse
- all simulated ringlets shown here are composed of N_s =2 streamlines having N_p =250 particles per streamline
- simulated ringlets are evolved for 10^{5 to 6} orbits
 - ie long enough to determine whether they evolve into
 - the self-confining q=0.87 state
 - or instead spread radially forever due to ringlet viscosity

Nbody simulation of the *nominal* ringlet

- we find that, for a wide variety of initial conditions (eg m_r , Δa , v_s):
- ringlet self gravity causes its eccentricy-gradient to grow
- while viscosity promotes ringlet's periapse-twist
- until q→0.87 (ish)
- at which point viscous spreading ceases
- and the ringlet is self-confining!
- following plots shows the evolution of our so-called nominal ringlet
- mass m_r=6x10¹⁹ gm (mass equivalent to 25 km-wide ice sphere)
- initial radial width $\Delta a_0 = 10$ km
- shear viscosity v_s=2000 cm²/sec

Evolution of nominal ringlet's semimajor axes verus time t (in units of the ringet's viscous spreadting timescale $\tau_v = \Delta a^2/12v_s \approx 10^3$ orbits), with ringlet self-confining when $t\sim40\tau_{v}$

Self-gravity causes nominal ringlet's outer streamline's eccentricity to grow at the expense of the inner streamline. Which causes the ringlet's nonlinearity parameter to grow until *q*≈0.87 (see below), at which point the ringlet is self-confining

Acknowledgements

This research was supported by National Science Foundation grant AST-1313013

Simulation survey

simulation survey shows that self-confinement is possible for a wide variety of initial m_r , Δa , v_s conditions

Results for survey of simulation having a variety of initial m_r , Δa , v_s . Dots indicate sims that do settle into the q≈0.87 self confining state. Dark blue dots indicate ringlets having large eccentricity-gradient and small periapse-twist, and yellow dots have the reverse.

Main Findings

- narrow eccentric ringlets can be self-confining and have sharp edges...shepherd satellites are **not** required!
- in order for a viscous, self-graviting ringlet to evolve into the q=0.87 self-confining state:
- the initial ringlet *must* have a non-zero eccentricity in order for self-gravity to pump up ringlet's eccentricity-gradient
- ie circular ringlets stay circular, and spread forever
- ringlet viscosity also damps its eccentricy (see plot to left)
- which implies that:

- or their eccentricities are sustained by an 10⁻¹ unknown resonance
- if interested in these results or epi_int_lite, please reach out to jhahn@spacescience.org

What else can epi_int_lite simulate?

- nonlinear spiral density waves in gravitating or pressure-supported disks
- nonlinear spiral bending waves...probably, this would require extra effort
- disturbances (eg particle jams) in incompressible disks...with extra effort If interested in any of the above, reach out to jhahn@spacescience.org
- to discuss possible collaborations