CS122A: Intermediate Embedded and Real Time Operating Systems

Jeffrey McDaniel

University of California, Riverside

 Analog signals are voltages that vary continuously over time

- Analog signals are voltages that vary continuously over time
- Sensors frequently produce analog signals

- Analog signals are voltages that vary continuously over time
- Sensors frequently produce analog signals
- ► The microcontroller requires digital signals

- Analog signals are voltages that vary continuously over time
- Sensors frequently produce analog signals
- The microcontroller requires digital signals
- Analog to digital conversion is required

Required parameters:

Required parameters:

► Range of analog values to be converted.

Required parameters:

- ► Range of analog values to be converted.
- The number of bits for the digital signal, or ADC's precision

Required parameters:

- Range of analog values to be converted.
- The number of bits for the digital signal, or ADC's precision
- The sampling rate the ADC processes signals at

► The interval is calculated by taking the range and dividing it by the precision

- ► The interval is calculated by taking the range and dividing it by the precision
- Example:

- ► The interval is calculated by taking the range and dividing it by the precision
- Example:
 - ▶ Range: -2.0 V to +2.0 V

- ► The interval is calculated by taking the range and dividing it by the precision
- Example:

ightharpoonup Range: -2.0 V to +2.0 V

▶ ADC Precision: 8 bits (256)

- ► The interval is calculated by taking the range and dividing it by the precision
- Example:

▶ Range: -2.0 V to +2.0 V

▶ ADC Precision: 8 bits (256)

• Interval = 4V/256 = 0.015625V

- The interval is calculated by taking the range and dividing it by the precision
- Example:

▶ Range: -2.0 V to +2.0 V

▶ ADC Precision: 8 bits (256)

• Interval = 4V/256 = 0.015625V

 Discretizing the analog signal leads to loss in precision, or quantization error

Successive approximation circuit

Successive approximation is commonly used

Successive approximation circuit

- Successive approximation is commonly used
- ► A comparator (CMP)

Successive approximation circuit

- Successive approximation is commonly used
- ► A comparator (CMP)
 - Compares two input voltages

Successive approximation circuit

- Successive approximation is commonly used
- A comparator (CMP)
 - Compares two input voltages
 - Mixed-signal device

Successive approximation circuit

- Successive approximation is commonly used
- ► A comparator (CMP)
 - Compares two input voltages
 - Mixed-signal device
 - outputs $In_{top} < In_{bottom}$

Analog

Successive approximation circuit

- Successive approximation is commonly used
- ► A comparator (CMP)
- ► The controller

Successive approximation circuit

- Successive approximation is commonly used
- A comparator (CMP)
- ▶ The controller
 - Controls execution of the algorithm

Successive approximation circuit

- Successive approximation is commonly used
- ► A comparator (CMP)
- ▶ The controller
- ▶ Digital to analog converter

Successive approximation circuit

- Successive approximation is commonly used
- ► A comparator (CMP)
- ▶ The controller
- Digital to analog converter
 - Opposite of the ADC

1. Controller checks if CMP is 1 or 0

- 1. Controller checks if CMP is 1 or 0
 - $\blacktriangleright \ 1 \Rightarrow \mathsf{increasing}$

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ $2 \Rightarrow$ decreasing

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ $2 \Rightarrow decreasing$
- 2. The approximate is adjusted accordingly

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ 2 ⇒ decreasing
- 2. The approximate is adjusted accordingly
 - Using a slow algorithm adjusting by one step

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ 2 ⇒ decreasing
- 2. The approximate is adjusted accordingly
 - Using a slow algorithm adjusting by one step
 - ▶ 0000 0011 to 0000 0100

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ $2 \Rightarrow$ decreasing
- 2. The approximate is adjusted accordingly
 - Using a binary search to shrink the window

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ $2 \Rightarrow$ decreasing
- 2. The approximate is adjusted accordingly
 - Using a binary search to shrink the window
 - ▶ 0000 0011 (3) is increased to the midpoint of 3 and 127 (max)

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ 2 ⇒ decreasing
- 2. The approximate is adjusted accordingly
 - Using a binary search to shrink the window
 - ▶ 0000 0011 (3) is increased to the midpoint of 3 and 127 (max)
 - > 3 + (127 3)/2 = 62

- 1. Controller checks if CMP is 1 or 0
 - ▶ $1 \Rightarrow$ increasing
 - ▶ $2 \Rightarrow$ decreasing
- 2. The approximate is adjusted accordingly
 - Using a binary search to shrink the window
 - ▶ 0000 0011 (3) is increased to the midpoint of 3 and 127 (max)
 - \rightarrow 3 + (127 3)/2 = 62
 - process continues until the window is 1

Digital Signal Processing (DSP)

► A **signal** that varies continuously over time

Digital Signal Processing (DSP)

- A signal that varies continuously over time
- ▶ May represent values other than physical phenomena

- A signal that varies continuously over time
- ▶ May represent values other than physical phenomena
 - ▶ Value of a stock

- A signal that varies continuously over time
- May represent values other than physical phenomena
 - ► Value of a stock
 - Hits on a web site per second

- A signal that varies continuously over time
- May represent values other than physical phenomena
 - Value of a stock
 - Hits on a web site per second
- The signal must be processed to be useful

- A signal that varies continuously over time
- May represent values other than physical phenomena
 - Value of a stock
 - Hits on a web site per second
- The signal must be processed to be useful
- A thermostat monitors the temperature in a room

- A signal that varies continuously over time
- May represent values other than physical phenomena
 - Value of a stock
 - Hits on a web site per second
- The signal must be processed to be useful
- A thermostat monitors the temperature in a room
- A radio that receives waves and extracts the audio broadcast

 A sensor measures a physical phenomena

- A sensor measures a physical phenomena
- sensors output either

- A sensor measures a physical phenomena
- sensors output either
 - an analog signal
 - or a digital signal or stream of (samples)
- Selecting a sensor:
 - Limited ranges
 - Accuracy limitations based on resolution
 - Output is raw and require further processing

 an actuator uses analog or digital signal to produce energy

- an actuator uses analog or digital signal to produce energy
 - Speakers

- an actuator uses analog or digital signal to produce energy
 - Speakers
 - ▶ LED's

- an actuator uses analog or digital signal to produce energy
 - Speakers
 - ▶ LED's
- Actuators have range and accuracy limitations as well

- an actuator uses analog or digital signal to produce energy
 - Speakers
 - ▶ LED's
- Actuators have range and accuracy limitations as well
- Sensors need processing added before sending the signal to actuators

▶ ADC Precision: 16-bit

ightharpoonup Range: -1V to +1V

► Sampling Rate: 40KHz

- ADC
 - ▶ ADC Precision: 16-bit
 - ightharpoonup Range: -1V to +1V
 - ► Sampling Rate: 40KHz
- Mic.
 - ▶ Range: +/-1mV
- Signal under-loading occurs (+/-1V = +/-1000mV)
- An amplifier must be added to the circuit

- ADC
 - ▶ ADC Precision: 16-bit
 - ightharpoonup Range: -1V to +1V
 - ► Sampling Rate: 40KHz
- ► Mic.
 - ► Range: +/-1mV

- ADC
 - ▶ ADC Precision: 16-bit
 - ▶ Range: -1V to +1V
 - Sampling Rate: 40KHz
- ► Mic.
 - ▶ Range: +/-1mV
- ► Analog signal is multiplied by the **gain**

- ADC
 - ▶ ADC Precision: 16-bit
 - ► Range: -1V to +1V
 - Sampling Rate: 40KHz
- ► Mic.
 - ▶ Range: +/-1mV
- Analog signal is multiplied by the gain
- Can cause signal overloading

- ADC
 - ▶ ADC Precision: 16-bit
 - ▶ Range: -1V to +1V
 - Sampling Rate: 40KHz
- Mic.
 - ► Range: +/-1mV
- Analog signal is multiplied by the gain
- Can cause signal overloading
- Results in clipping