Cryptography – Homework 4

冯诗伟 161220039

1

Assume that the adversary A can break 1% of \mathbb{Z}_N^* (a specific subset) with probability of 1 and break the other 99% with probability of 0.

We can construct A' as follows:

- 1. Given $y = x^e \mod N$.
- 2. Uniformly choose $r \in \mathbb{Z}_N^*$ and r^{-1} such that $r \cdot r^{-1} = 1 \mod N$.
- 3. Feed $y \cdot r^e$ to \mathcal{A} and get $z = \mathcal{A}(y \cdot r^e \mod N)$.
- 4. Compute $x' = z \cdot r^{-1} \mod N$. Check whether $(x')^e = y \mod N$ holds.
- 5. Repeat step 1 to 4 for 459 times. Denote the x', y in the i-th round as x'_i, y_i . If $(x'_i)^e = y_i \mod N$ for some i, output x'_i and stop. If this did not occur after 459 rounds, output x'_1 .

Let me explain it in detail.

Step1 and Step2 are trival.

In Step3, the equation, $z = (y \cdot r^e)^{1/e} = y^{1/e} \cdot r \mod N$, holds with probability of 0.01 since \mathcal{A} succeeds with probability of 0.01.

In Step4, if \mathcal{A} called by \mathcal{A}' succeeds in Step3, we can get $x' = y^{1/e} \cdot r \cdot r^{-1} = y^{1/e} \mod N$, which means $(x')^e = y \mod N$.

In Step5, intuition is that the more times \mathcal{A}' tries, the more likely \mathcal{A}' will succeeds. So we want to know the least k that satisfy the following inequation:

$$1 - (1 - 0.01)^k \ge 0.99$$

which means after trying k times A' will succeeds with a probability not less than 0.99. So we have:

$$k \ge 459$$

As to the running time t', Step1 and Step4 is $\mathcal{O}(1)$. Step2 is $\mathcal{O}(\log N)$ and Step3 is $\mathcal{O}(t)$. So running time t' of \mathcal{A}' is polynomial in t and ||N||.

2

First, because g is a generator $(g^n = 1 \mod n)$, $(g^r)^n = (g^n)^r = 1^r = 1 \mod n$.

Second, we can show that for all $0 \le i \le n-1, \ i \ne r$, there exists a $q(0 \le q \le n-1)$ such that $(g^r)^q = g^i \mod n$.

Let $(g^r)^q = g^i \mod n$. So $rq = i \mod n$. Because gcd(r,n) = 1, there exists a r^{-1} such that $r \cdot r^{-1} = 1 \mod n$. So we have

$$q = i \cdot r^{-1} \mod n$$

So far, we have proved that g^r is also a generator of \mathbb{G} .

Additional

Construct the following one-way function family $\Pi = (\mathsf{Gen}, \mathsf{Samp}, f)$:

Gen: Given 1^n , outputs parameters $I=(\mathbb{G},\,q,\,g)$ where the order $\|q\|=n$. g is the generator of \mathbb{G} . $\mathcal{D}_I=\mathcal{R}_I=\mathbb{G}$.

Samp: On input I, outputs a uniformly distributed $x \in \mathcal{D}_I$.

f: On input I and $x \in \mathcal{D}_I$, outputs $y = f_I(x) = g^x$.

We are going to show that Π is easy to compute and hard to invert.

- 1. Easy to compute. Given g and x, the complexity of compute $g^x \mod n$ is $\mathcal{O}(\log x)$.
- 2. Hard to invert. Design the following experiment $\operatorname{Invert}_{\mathcal{A},\Pi}(n)$:
- (1) Gen is run to obtain I, and then $\mathsf{Samp}(I)$ is run to obtain a uniform $x \in \mathcal{D}$. Finally $y := f_I(x) = g^x$ is computed.
 - (2) A is given I and $y = g^x$ as input, and outputs x'.
 - (3) The output if the experiment is 1 if $f_I(x') = x$.

We can see that the view of \mathcal{A} in $\mathsf{Invert}_{\mathcal{A},\Pi}(n)$ is identical to that of $\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n)$. So \mathcal{A} succeeds in $\mathsf{Invert}_{\mathcal{A},\Pi}(n)$ if and only if \mathcal{A} succeeds in $\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n)$. We have:

$$\Pr[\mathsf{Invert}_{\mathcal{A},\Pi}(n) = 1] = \Pr[\mathsf{DLog}_{\mathcal{A},\mathsf{Gen}}(n) = 1] \leq negl(n)$$

So we have shown that Π is hard to invert.