## 

wsr

## $\mathrm{May}\ 7,\ 2020$

## Contents

| 6 | Ma  | my-body Perturbation Theory                                                             |
|---|-----|-----------------------------------------------------------------------------------------|
|   | 6.1 | RS Perturbation Theory                                                                  |
|   | 6.2 | Diagrammatic Representation of RS Perturbation Theory                                   |
|   |     | 6.2.1 Diagrammatic Perturbation Theory for Two States                                   |
|   |     | Ex 6.1                                                                                  |
|   |     | 6.2.2 Diagrammatic Perturbation Theory for $N$ States                                   |
|   |     | Ex 6.2                                                                                  |
|   |     | 6.2.3 Summation of Diagrams                                                             |
|   | 6.3 | Orbital Perturbation Theory: One-Particle Perturbations                                 |
|   |     | Ex 6.3                                                                                  |
|   |     | Ex 6.4                                                                                  |
|   |     | Ex 6.5                                                                                  |
|   |     | Ex 6.6                                                                                  |
|   | 6.4 | Diagrammatic Representation of Orbital Perturbation Theory                              |
|   |     | Ex 6.7                                                                                  |
|   | 6.5 | Perturbation Expansion of the Correlation Energy                                        |
|   |     | Ex 6.8                                                                                  |
|   |     | Ex 6.9                                                                                  |
|   | 6.6 | The $N$ -dependence of the RS Perturbation Expansion                                    |
|   |     | Ex 6.10                                                                                 |
|   | 6.7 | Diagrammatic Representation of the Perturbation Expansion of the Correlation Energy . 1 |
|   |     | 6.7.1 Hugenholtz Diagrams                                                               |
|   |     | Ex 6.11                                                                                 |
|   |     | 6.7.2. Goldstone Diagrams                                                               |

### 6 Many-body Perturbation Theory

### 6.1 RS Perturbation Theory

### 6.2 Diagrammatic Representation of RS Perturbation Theory

6.2.1 Diagrammatic Perturbation Theory for Two States

Ex 6.1

Similarly,



thus, the sum of above terms is

$$\frac{V_{12}V_{21}(V_{22}^3 - V_{11}^3)}{(E_1^{(0)} - E_2^{(0)})^4} + 3 \times \frac{V_{12}V_{21}(V_{11}^2V_{22} - V_{11}V_{22}^2)}{(E_1^{(0)} - E_2^{(0)})^4} = \frac{V_{12}V_{21}(V_{22} - V_{11})^3}{(E_1^{(0)} - E_2^{(0)})^4}$$
(6.2.1)

### 6.2.2 Diagrammatic Perturbation Theory for N States

Ex 6.2 The 4th-order perturbation energy of state i can be expressed as

$$\sum_{k,n,m\neq i} \frac{V_{ki}V_{nk}V_{mn}V_{im}}{(E_i^{(0)} - E_k^{(0)})(E_i^{(0)} - E_n^{(0)})(E_i^{(0)} - E_m^{(0)})} + \sum_{n\neq i} \frac{V_{ii}^2V_{ni}V_{in}}{(E_i^{(0)} - E_n^{(0)})^3} - \sum_{m,n\neq i} \frac{V_{ii}V_{mi}V_{in}V_{nm}}{(E_i^{(0)} - E_m^{(0)})^2(E_i^{(0)} - E_n^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{im}V_{in}V_{in}}{(E_i^{(0)} - E_m^{(0)})^2(E_i^{(0)} - E_n^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{in}}{(E_i^{(0)} - E_m^{(0)})(E_i^{(0)} - E_n^{(0)})(E_i^{(0)} - E_n^{(0)})(E_i^{(0)} - E_n^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{in}}{(E_i^{(0)} - E_n^{(0)})^2(2E_i^{(0)} - E_n^{(0)} - E_m^{(0)})} + \sum_{n\neq i} \frac{V_{ii}^2V_{ni}V_{in}}{(E_i^{(0)} - E_n^{(0)})^3} - 2\sum_{m,n\neq i} \frac{V_{ii}V_{mi}V_{in}V_{in}V_{in}}{(E_i^{(0)} - E_m^{(0)})^2(E_i^{(0)} - E_n^{(0)})} - \sum_{m,n\neq i} \frac{V_{mi}V_{im}V_{in}V_{in}}{(E_i^{(0)} - E_m^{(0)})(E_i^{(0)} - E_n^{(0)})^2}$$

$$(6.2.2)$$

while

$$\left\langle n \left| \mathcal{H} \left| \Psi_i^{(3)} \right\rangle + \left\langle n \left| \mathcal{V} \right| \Psi_i^{(2)} \right\rangle = E_i^{(0)} \left\langle n \left| \Psi_i^{(3)} \right\rangle + E_i^{(1)} \left\langle n \left| \Psi_i^{(2)} \right\rangle + E_i^{(2)} \left\langle n \left| \Psi_i^{(1)} \right\rangle \right\rangle \right.$$
(6.2.3)

$$\begin{split} \left(E_{i}^{(0)}-E_{n}^{(0)}\right)\left\langle n\left|\Psi_{i}^{(3)}\right\rangle &=\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(1)}\left\langle n\left|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(2)}\left\langle n\left|\Psi_{i}^{(1)}\right\rangle \right. \\ &=\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(1)}\frac{\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(1)}\right\rangle -E_{i}^{(1)}\left\langle n\left|\Psi_{i}^{(1)}\right\rangle }{E_{i}^{(0)}-E_{n}^{(0)}} -E_{i}^{(2)}\left\langle n\left|\Psi_{i}^{(1)}\right\rangle \right. \\ &=\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(2)}\right\rangle -E_{i}^{(1)}\frac{\left\langle n\left|\mathcal{V}\right|\Psi_{i}^{(1)}\right\rangle }{E_{i}^{(0)}-E_{n}^{(0)}} +\left[E_{i}^{(1)}\right]^{2}\frac{\left\langle n\left|\mathcal{V}\right|i\right\rangle }{\left[E_{i}^{(0)}-E_{n}^{(0)}\right]^{2}} -E_{i}^{(2)}\frac{\left\langle n\left|\mathcal{V}\right|i\right\rangle }{E_{i}^{(0)}-E_{n}^{(0)}} \end{split} \tag{6.2.4}$$

$$\begin{split} E_{i}^{(4)} &= \left\langle i \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(3)} \right\rangle \\ &= \sum_{n \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \left\{ \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(2)} \right\rangle - E_{i}^{(1)} \frac{\left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(1)} \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} + \left[ E_{i}^{(1)} \right]^{2} \frac{\left\langle n \, \middle| \, \mathcal{V} \, \middle| \, i \right\rangle}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} - E_{i}^{(2)} \frac{\left\langle n \, \middle| \, \mathcal{V} \, \middle| \, i \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \right\} \\ &= \sum_{n \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(2)} \right\rangle - E_{i}^{(1)} \sum_{n \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, \Psi_{i}^{(1)} \right\rangle \\ &+ \left[ E_{i}^{(1)} \right]^{2} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \\ &= \sum_{n, m \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{E_{i}^{(0)} - E_{n}^{(0)}} \left\langle n \, \middle| \, \mathcal{V} \, \middle| \, m \right\rangle \left\langle m \, \middle| \, \Psi_{i}^{(2)} \right\rangle - E_{i}^{(1)} \sum_{n, m \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \\ &= \sum_{n, m, \neq i} \frac{\left\langle i \, \middle| \, \mathcal{V} \, \middle| \, n \right\rangle}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle - E_{i}^{(1)} \left\langle m \, \middle| \, \Psi_{i}^{(1)} \right\rangle \\ &= \sum_{n, m, \neq i} \frac{V_{in} V_{nm}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} - E_{i}^{(2)} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{3}} \\ &= \sum_{n, m, k \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2} \left[ E_{i}^{(0)} - E_{n}^{(0)} \right]} + \left[ E_{i}^{(1)} \right]^{2} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2}} \\ &= \sum_{n, m, k \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)} \right]^{2} \left[ E_{i}^{(0)} - E_{n}^{(0)} \right]} + \left[ E_{i}^{(1)} \right]^{2} \sum_{n \neq i} \frac{V_{in} V_{ni}}{\left[ E_{i}^{(0)} - E_{n}^{(0)}$$

which agrees with diagrammatic results above.

### 6.2.3 Summation of Diagrams

### 6.3 Orbital Perturbation Theory: One-Particle Perturbations

**Ex 6.3** Since  $n \neq 0$  and v(i) is one-particle operator, n must be single-excited, i.e.  $|\Psi_a^r\rangle$ . Thus,

$$E_0^{(2)} = \sum_{a,r} \frac{\left| \left\langle \Psi_0 \right| \sum_i v(i) \left| \Psi_a^r \right\rangle \right|^2}{\left\langle \Psi_0 \right| \mathcal{H} \left| \Psi_0 \right\rangle - \left\langle \Psi_a^r \right| \mathcal{H} \left| \Psi_a^r \right\rangle}$$

$$= \sum_{a,r} \frac{v_{ar} v_{ra}}{\sum_b \varepsilon_b^{(0)} - \left( \sum_{b \neq a} \varepsilon_b^{(0)} + \varepsilon_r^{(0)} \right)}$$

$$= \sum_{a,r} \frac{v_{ar} v_{ra}}{\varepsilon_a^{(0)} - \varepsilon_r^{(0)}}$$
(6.3.1)

Ex 6.4 Eq 6.15 in textbook gives

$$E_{i}^{(3)} = \sum_{n,m\neq i} \frac{\langle i \mid \mathcal{V} \mid n \rangle \langle n \mid \mathcal{V} \mid m \rangle \langle m \mid \mathcal{V} \mid i \rangle}{(E_{i}^{(0)} - E_{n}^{(0)})(E_{i}^{(0)} - E_{m}^{(0)})} - E_{i}^{(1)} \sum_{n\neq i} \frac{|\langle i \mid \mathcal{V} \mid n \rangle|^{2}}{(E_{i}^{(0)} - E_{n}^{(0)})^{2}}$$

$$= A_{i}^{(3)} + B_{i}^{(3)}$$
(6.3.2)

a.

$$B_0^{(3)} = -E_0^{(1)} \sum_{n \neq 0} \frac{|\langle \Psi_0 | \mathcal{V} | n \rangle|^2}{(E_0^{(0)} - E_n^{(0)})^2}$$

$$= -\sum_b v_{bb} \sum_{a,r} \frac{v_{ar} v_{ra}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})^2}$$

$$= -\sum_{a,b,r} \frac{v_{aa} v_{br} v_{rb}}{(\varepsilon_b^{(0)} - \varepsilon_r^{(0)})^2}$$
(6.3.3)

b.

$$A_{0}^{(3)} = \sum_{n,m\neq 0} \frac{\langle \Psi_{0} | \mathcal{V} | n \rangle \langle n | \mathcal{V} | m \rangle \langle m | \mathcal{V} | \Psi_{0} \rangle}{(E_{0}^{(0)} - E_{n}^{(0)})(E_{0}^{(0)} - E_{m}^{(0)})}$$

$$= \sum_{a,r,b,s} \frac{\langle \Psi_{0} | \mathcal{V} | \Psi_{a}^{r} \rangle \langle \Psi_{a}^{r} | \mathcal{V} | \Psi_{b}^{s} \rangle \langle \Psi_{b}^{s} | \mathcal{V} | \Psi_{0} \rangle}{(\varepsilon_{a}^{(0)} - \varepsilon_{r}^{(0)})(\varepsilon_{b}^{(0)} - \varepsilon_{s}^{(0)})}$$

$$= \sum_{a,r,b,s} \frac{v_{ar}v_{sb} \langle \Psi_{a}^{r} | \mathcal{V} | \Psi_{b}^{s} \rangle}{(\varepsilon_{a}^{(0)} - \varepsilon_{r}^{(0)})(\varepsilon_{b}^{(0)} - \varepsilon_{s}^{(0)})}$$

$$(6.3.4)$$

**c.** Clearly, if  $a \neq b, r \neq s$ 

$$\langle \Psi_a^r \, | \, \mathcal{Y} \, | \, \Psi_b^s \rangle = 0 \tag{6.3.5}$$

If  $a = b, r \neq s$ ,

$$\langle \Psi_a^r \mid \mathscr{V} \mid \Psi_b^s \rangle = \langle r \mid v \mid s \rangle$$

$$= v_{rs}$$
(6.3.6)

If  $a \neq b, r = s$ ,

$$\begin{split} \langle \Psi_{a}^{r} \mid \mathscr{V} \mid \Psi_{b}^{s} \rangle &= \langle \Psi_{a}^{r} \mid \mathscr{V} \mid \Psi_{b}^{r} \rangle \\ &= \langle \Psi_{a}^{r} \mid \mathscr{V} \mid -\Psi_{ab}^{ra} \rangle \\ &= -\langle b \mid v \mid a \rangle \\ &= -v_{ba} \end{split} \tag{6.3.7}$$

If a = b, r = s,

$$\langle \Psi_a^r \mid \mathscr{V} \mid \Psi_b^s \rangle = \langle \Psi_a^r \mid \mathscr{V} \mid \Psi_a^r \rangle$$

$$= \sum_c v_{cc} - v_{aa} + v_{rr}$$
(6.3.8)

d.

$$\begin{split} E_0^{(3)} &= A_0^{(3)} + B_0^{(3)} \\ &= \sum_{a,r,b,s} \frac{v_{ar}v_{sb} \left\langle \Psi_a^r \,|\, \mathcal{V} \,|\, \Psi_b^s \right\rangle}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_s^{(0)})} - \sum_{a,b,r} \frac{v_{aa}v_{br}v_{rb}}{(\varepsilon_b - \varepsilon_r)^2} \\ &= \sum_{a,r \neq s} \frac{v_{ar}v_{sa}v_{rs}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_s^{(0)})} + \sum_{a \neq b,r} \frac{v_{ar}v_{rb}(-v_{ba})}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_r^{(0)})} \\ &+ \sum_{a,r} \frac{v_{ar}v_{ra}(\sum_c v_{cc} - v_{aa} + v_{rr})}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})^2} - \sum_{a,b,r} \frac{v_{aa}v_{br}v_{rb}}{(\varepsilon_b^{(0)} - \varepsilon_r^{(0)})^2} \\ &= \sum_{a,r \neq s} \frac{v_{ar}v_{sa}v_{rs}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_a^{(0)} - \varepsilon_s^{(0)})} + \sum_{a \neq b,r} \frac{v_{ar}v_{rb}(-v_{ba})}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_r^{(0)})} \\ &+ \sum_{a,r} \frac{v_{ar}v_{ra}(\sum_c v_{cc} - v_{aa} + v_{rr})}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})^2} - \sum_{a,r} \frac{\sum_c v_{cc}v_{cc}v_{ar}v_{ra}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})^2} \end{split}$$

$$= \sum_{a,r\neq s} \frac{v_{ar}v_{sa}v_{rs}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_a^{(0)} - \varepsilon_s^{(0)})} + \sum_{a\neq b,r} \frac{v_{ar}v_{rb}(-v_{ba})}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_r^{(0)})} + \sum_{a,r} \frac{v_{ar}v_{ra}(-v_{aa} + v_{rr})}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})^2}$$

$$= \sum_{a,r,s} \frac{v_{ar}v_{sa}v_{rs}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_a^{(0)} - \varepsilon_s^{(0)})} - \sum_{a,b,r} \frac{v_{ar}v_{rb}v_{ba}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_r^{(0)})}$$
(6.3.9)

e. That's obvious.

**Ex 6.5** Since a, b run over all n occupied orbitals i, j and r runs over all n unoccupied orbitals  $k^*$ , we have

$$-2\sum_{a,b,r}^{N/2} \frac{v_{ra}v_{ab}v_{br}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_b^{(0)} - \varepsilon_r^{(0)})} = -\frac{2}{(2\beta)^2} \sum_{i}^{n} \sum_{j}^{n} \sum_{k}^{n} \langle i | v | j \rangle \langle j | v | k^* \rangle \langle k^* | v | i \rangle$$

$$= -\frac{2}{(2\beta)^2} \sum_{i}^{3} \left[ \langle i | v | i + 1 \rangle \langle i + 1 | v | (i + 2)^* \rangle \langle (i + 2)^* | v | i \rangle \right]$$

$$= -\frac{2}{(2\beta)^2} \sum_{i}^{3} \left[ \langle j | v | i + 1 \rangle \langle i + 2 | v | (i + 1)^* \rangle \langle (i + 1)^* | v | i \rangle \right]$$

$$= -\frac{2}{(2\beta)^2} \sum_{i}^{3} \left[ \langle j | j \rangle \langle j \rangle \rangle$$

$$= -\frac{2}{(2\beta)^2} \times 3 \times (-\beta^3/4)$$

$$= 3\beta/8$$

$$(6.3.10)$$

Ex 6.6

a. Using the general expression, we get

$$\mathcal{E}_{0} = 6\alpha - 2\sum_{j=-1}^{1} (\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2}\cos\frac{2j\pi}{3})^{1/2}$$

$$= 6\alpha - 2(\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2}\cos\frac{-2\pi}{3})^{1/2} - 2(\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2}\cos0)^{1/2} - 2(\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2}\cos\frac{2\pi}{3})^{1/2}$$

$$= 6\alpha - 2(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2} - 2(\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2})^{1/2} - 2(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha - 2|\beta_{1} + \beta_{2}| - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4(\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2})^{1/2}$$

Using Hückel matrix:

$$\mathbf{H} = \begin{pmatrix} \alpha & \beta_1 & 0 & 0 & 0 & \beta_2 \\ \beta_1 & \alpha & \beta_2 & 0 & 0 & 0 \\ 0 & \beta_2 & \alpha & \beta_1 & 0 & 0 \\ 0 & 0 & \beta_1 & \alpha & \beta_2 & 0 \\ 0 & 0 & 0 & \beta_2 & \alpha & \beta_1 \\ \beta_2 & 0 & 0 & 0 & \beta_1 & \alpha \end{pmatrix}$$
(6.3.12)

Eigenvalues of  ${\bf H}$  are

$$\alpha + (\beta_1 + \beta_2),$$
  
 $\alpha - \sqrt{\beta_1^2 + \beta_2^2 - \beta_1 \beta_2}$  (2-fold),
  
 $\alpha + \sqrt{\beta_1^2 + \beta_2^2 - \beta_1 \beta_2}$  (2-fold),
  
 $\alpha - (\beta_1 + \beta_2),$  (6.3.13)

thus

$$\mathcal{E}_0 = 2[\alpha + (\beta_1 + \beta_2)] + 4\left[\alpha - \sqrt{\beta_1^2 + \beta_2^2 - \beta_1 \beta_2}\right]$$

$$= 6\alpha + 2(\beta_1 + \beta_2) - 4\sqrt{\beta_1^2 + \beta_2^2 - \beta_1 \beta_2}$$
(6.3.14)

b.

$$E_{R} = \mathcal{E}_{0} - (N\alpha + N\beta)$$

$$= 6\alpha + 2(\beta_{1} + \beta_{2}) - 4\sqrt{\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2}} - (6\alpha + 6\beta)$$

$$= -4\beta_{1} + 2\beta_{2} - 4\sqrt{\beta_{1}^{2} + \beta_{2}^{2} - \beta_{1}\beta_{2}}$$

$$= 4\beta \left(-1 + \frac{1}{2}x + \sqrt{1 + x^{2} - x}\right)$$
(6.3.15)

c.

$$E_{R} = 4\beta \left( -1 + \frac{1}{2}x + \sqrt{1 + x^{2} - x} \right)$$

$$= 4\beta \left[ -1 + \frac{1}{2}x + 1 + \frac{1}{2}(x^{2} - x) - \frac{1}{8}(x^{2} - x)^{2} + \frac{1}{16}(x^{2} - x)^{3} - \frac{5}{128}(x^{2} - x)^{4} \right]$$

$$= 4\beta \left[ \frac{1}{2}x^{2} - \frac{1}{8}(x^{4} + x^{2} - 2x^{3}) + \frac{1}{16}(-x^{3} + 3x^{4}) - \frac{5}{128}x^{4} + \cdots \right]$$

$$= 4\beta \left[ \frac{3}{8}x^{2} + \frac{3}{16}x^{3} + \frac{3}{128}x^{4} + \cdots \right]$$

$$= \beta \left[ \frac{3}{2}x^{2} + \frac{3}{4}x^{3} + \frac{3}{32}x^{4} + \cdots \right]$$

$$(6.3.16)$$

# 6.4 Diagrammatic Representation of Orbital Perturbation Theory Ex 6.7

a.



The pictorial representation of the summation are as follows



$$= -\sum_{a,r,b,s} \frac{v_{ar}v_{rb}v_{bs}v_{sa}}{(\varepsilon_a^{(0)} - \varepsilon_r^{(0)})(\varepsilon_a^{(0)} - \varepsilon_s^{(0)})(\varepsilon_a^{(0)} + \varepsilon_b^{(0)} - \varepsilon_r^{(0)} - \varepsilon_s^{(0)})}$$

$$= -\frac{1}{(2\beta)^2 \times 4\beta} \sum_{i,j,k,l} \langle i \, | \, v \, | \, j^* \rangle \, \langle j^* \, | \, v \, | \, k \rangle \, \langle k \, | \, v \, | \, l^* \rangle \, \langle l^* \, | \, v \, | \, i \rangle$$

$$= -\frac{2}{(2\beta)^2 \times 4\beta} \sum_{i}^{N/2} 6 \times (\beta/2)^4$$

$$= -\frac{3N\beta}{128}$$

The pictorial representation of the summation are as follows

thus

$$E_0^{(4)} = 4 \times \frac{N\beta}{64} + 3 \times \left(-\frac{3N\beta}{128}\right) = \frac{N\beta}{64} \tag{6.4.3}$$

**b.** Let N = 6, we get

$$E_0^{(4)} = \frac{3\beta}{32} \tag{6.4.4}$$

(6.4.2)

which agrees with the result in Ex 6.6.

### 6.5 Perturbation Expansion of the Correlation Energy

Ex 6.8

$$\begin{split} E_0^{(2)} &= \frac{1}{4} \sum_{a,b,r,s} \frac{|\langle ab \, | \, rs \rangle|^2}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \\ &= \frac{1}{4} \sum_{a,b,r,s} \frac{(\langle ab \, | \, rs \rangle - \langle ab \, | \, sr \rangle)(\langle rs \, | \, ab \rangle - \langle sr \, | \, ab \rangle)}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \\ &= \frac{1}{4} \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle rs \, | \, ab \rangle - \langle ab \, | \, sr \rangle \, \langle rs \, | \, ab \rangle - \langle ab \, | \, rs \rangle \, \langle sr \, | \, ab \rangle + \langle ab \, | \, sr \rangle \, \langle sr \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \\ &= \frac{1}{4} \left[ \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle rs \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} - \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle rs \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} - \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle sr \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} + \sum_{a,b,r,s} \frac{\langle ab \, | \, sr \rangle \, \langle sr \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \right] \\ &= \frac{1}{4} \left[ 2 \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle rs \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} - 2 \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle sr \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \right] \\ &= \frac{1}{2} \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle rs \, | \, ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} - \frac{1}{2} \sum_{a,b,r,s} \frac{\langle ab \, | \, rs \rangle \, \langle rs \, | \, ba \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \end{aligned}$$
 (6.5.1)

For a closed-shell system, the possible spin part of a, b, r, s of the non-zero terms are first term:  $\alpha, \alpha, \alpha, \alpha$ ;  $\alpha, \beta, \alpha, \beta$ ;  $\beta, \alpha, \beta, \alpha$ ;  $\beta, \beta, \beta, \beta$  second term:  $\alpha, \alpha, \alpha, \alpha$ ;  $\beta, \beta, \beta, \beta$  thus

$$E_0^{(2)} = 2 \sum_{a,b,r,s}^{N/2} \frac{\langle ab \mid rs \rangle \langle rs \mid ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} - \sum_{a,b,r,s}^{N/2} \frac{\langle ab \mid rs \rangle \langle rs \mid ba \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s}$$
(6.5.2)

Ex 6.9

$$E_{\text{corr}} = \Delta - (\Delta^2 + K_{12}^2)^{1/2}$$

$$= \Delta - \left[\Delta + \frac{K_{12}^2}{2\Delta}\right]$$

$$= -\frac{K_{12}^2}{2\Delta}$$

$$= -\frac{K_{12}^2}{2(\varepsilon_2 - \varepsilon_1) + J_{11} + J_{22} - 4J_{12} + 2K_{12}}$$

$$= -K_{12}^2 \left(\frac{1}{2(\varepsilon_2 - \varepsilon_1)} - \frac{J_{11} + J_{22} - 4J_{12} + 2K_{12}}{4(\varepsilon_2 - \varepsilon_1)^2}\right)$$

$$= \frac{K_{12}^2}{2(\varepsilon_1 - \varepsilon_2)} + \frac{K_{12}^2(J_{11} + J_{22} - 4J_{12} + 2K_{12})}{4(\varepsilon_1 - \varepsilon_2)^2}$$
(6.5.3)

### 6.6 The N-dependence of the RS Perturbation Expansion

**Ex 6.10** From Eq 6.68, we get

$$\begin{split} E_0^{(1)} &= \langle \Psi_0 \mid \mathcal{Y} \mid \Psi_0 \rangle = -\frac{1}{2} \sum_{ab} \langle ab \parallel ab \rangle \\ &= -\frac{1}{2} \sum_{i=1}^N \left[ \langle \mathbf{1}_i \bar{\mathbf{1}}_i \parallel \mathbf{1}_i \bar{\mathbf{1}}_i \rangle + \langle \bar{\mathbf{1}}_i \mathbf{1}_i \parallel \bar{\mathbf{1}}_i \mathbf{1}_i \rangle \right] \\ &= -\frac{1}{2} \sum_{i=1}^N \left[ \langle \mathbf{1}_i \bar{\mathbf{1}}_i \mid \mathbf{1}_i \bar{\mathbf{1}}_i \rangle - \langle \mathbf{1}_i \bar{\mathbf{1}}_i \mid \bar{\mathbf{1}}_i \mathbf{1}_i \rangle + \langle \bar{\mathbf{1}}_i \mathbf{1}_i \mid \bar{\mathbf{1}}_i \mathbf{1}_i \rangle - \langle \bar{\mathbf{1}}_i \mathbf{1}_i \mid \bar{\mathbf{1}}_i \mathbf{1}_i \rangle \right] \end{split}$$

$$= -\frac{1}{2} \times 2N[1_i 1_i | 1_i 1_i]$$
  
= -NJ<sub>11</sub> (6.6.1)

$$\begin{split} \left\langle \Psi_{1_{i}\bar{1}_{i}}^{2i\bar{2}_{i}} \middle| \mathscr{V} \middle| \Psi_{1_{i}\bar{1}_{i}}^{2i\bar{2}_{i}} \right\rangle &= \left\langle \Psi_{1_{i}\bar{1}_{i}}^{2i\bar{2}_{i}} \middle| \mathscr{H} \middle| \Psi_{1_{i}\bar{1}_{i}}^{2i\bar{2}_{i}} \right\rangle - \left\langle \Psi_{1_{i}\bar{1}_{i}}^{2i\bar{2}_{i}} \middle| \mathscr{H}_{0} \middle| \Psi_{1_{i}\bar{1}_{i}}^{2i\bar{2}_{i}} \right\rangle \\ &= (2N-2)h_{11} + 2h_{22} + (N-1)J_{11} + J_{22} - (2N-2)\varepsilon_{1} - 2\varepsilon_{2} \\ &= (2N-2)h_{11} + 2h_{22} + (N-1)J_{11} + J_{22} - (2N-2)(h_{11} + J_{11}) - 2(h_{22} + 2J_{12} - K_{12}) \\ &= -(N-1)J_{11} + J_{22} - 4J_{12} + 2K_{12} \end{split} \tag{6.6.2}$$

## 6.7 Diagrammatic Representation of the Perturbation Expansion of the Correlation Energy

### 6.7.1 Hugenholtz Diagrams

Ex 6.11 The numerator and denominator are obvious.

h=5, and l=2 since closed loops are  $r\to a\to d\to t\to e\to r;\ s\to c\to b\to s.$  The number of quivalent line pairs is one (r,s). Thus the pre-factor is  $-\frac{1}{2}$ .

### 6.7.2 Goldstone Diagrams

Ex 6.12

### 6.7.3 Summation of Diagrams

### 6.7.4 What Is the Linked-Cluster Theorem?

Ex 6.13

### 6.8 Some Illustrative Calculations