SBML Level 3: an extensible format for the exchange and reuse of biological models

Sarah M. Keating^{1,2,3}, Dagmar Waltemath⁴, Matthias König⁵, Fengkai Zhang⁶, Andreas Dräger^{7,8,9}, Claudine Chaouiya^{10,11}, Frank T. Bergmann³, Andrew Finney¹², Colin S. Gillespie¹³, Tomáš Helikar¹⁴, Stefan Hoops¹⁵, Rahuman S. Malik-Sheriff², Stuart L. Moodie¹⁶, Ion I. Moraru¹⁷, Chris J. Myers¹⁸, Aurélien Naldi¹⁹, Brett G. Olivier^{1, 3, 20}, Sven Sahle³, James C. Schaff²¹, Lucian P. Smith^{1, 22}, Maciej J. Swat²³, Denis Thieffry²⁰, Leandro Watanabe¹⁹, Darren J. Wilkinson^{13, 24}, Michael L. Blinov²⁵, Kimberly Begley²⁶, James R. Faeder²⁷, Harold F. Gómez²⁸, Thomas M. Hamm^{7, 8}, Yuichiro Inagaki²⁹, Wolfram Liebermeister³⁰, Allyson L. Lister³¹, Daniel Lucio³², Eric Mjolsness³³, Carole J. Proctor³⁴, Karthik Raman^{35, 36, 37}, Nicolas Rodriguez³⁸, Clifford A. Shaffer³⁹, Bruce E. Shapiro⁴⁰, Joerg Stelling⁴¹, Neil Swainston⁴², Naoki Tanimura⁴³, John Wagner⁴⁴, Martin Meier-Schellersheim⁶, Herbert M. Sauro²², Bernhard Palsson⁴⁵, Hamid Bolouri⁴⁶, Hiroaki Kitano^{47, 48}, Akira Funahashi⁴⁹, Henning Hermjakob², John C. Doyle¹, Michael Hucka¹, and SBML Community members⁵⁰ ¹Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125, US ²European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK ³BioQuant/COS, Heidelberg University, Heidelberg 69120, DE ⁴Medical Informatics, Institute for Community Health, University Medicine Greifswald, Greifswald, DE ⁵Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, 10115, DE ⁶Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, US ⁷Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Institute for Biomedical Informatics (IBMI), University of Tübingen, 72076 Tübingen, DE ⁸Department of Computer Science, University of Tübingen, 72076 Tübingen, DE ⁹German Center for Infection Research (DZIF), partner site Tübingen, DE ¹⁰Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, 13288, FR ¹¹Instituto Gulbenkian de Ciência, Oeiras, P-2780-156, PT ¹²ANSYS UK Ltd, UK 13 School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK ¹⁴Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, US ¹⁵Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, Virginia 22911, US ¹⁶Eight Pillars Ltd, 19 Redford Walk, Edinburgh EH13 0AG, UK 17 Center for Cell Analysis and Modeling, UConn Health, Farmington, Connecticut 06030, US ¹⁸Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, US ¹⁹Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, FR ²⁰Systems Bioinformatics, AIMMS, Vrije Universiteit Amsterdam, Amsterdam 1081HZ, NL ²¹Applied BioMath, LLC, Concord, Massachusetts 01742, US ²²Department of Bioengineering, University of Washington, Seattle, Washington, US ²³Simcyp (a Certara company), UK ²⁴The Alan Turing Institute, British Library, London, NW1 2DB, UK ²⁵Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06032, US ²⁶Consultant, California Institute of Technology, Pasadena, California 91125, US ²⁷Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, US ²⁸Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, CH ²⁹Management & IT Consulting Division, Mizuho Information & Research Institute, Inc., 2-3, Kanda-Nishikicho, Chiyoda-ku, Tokyo, 101-8443, JP ³⁰Unité MaIAGE, UR1404, INRA, 78352 Jouy-en-Josas, FR

41

42

45

46

47

³²College of Sciences, NC State University, Raleigh, North Carolina 27695, US ³³Department of Computer Science, University of California, Irvine, California 92697, US ³⁴Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK ³⁵Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai - 600 036, IN ³⁶Initiative for Biological Systems Engineering (IBSE), IIT Madras, IN 37 Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), IIT Madras, IN ³⁸The Babraham Institute, Cambridge, CB22 3AT, UK ³⁹Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, US $^{
m 40}$ Department of Mathematics, California State University, Northridge, California 91325, US ⁴¹Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zürich, 4058 Basel, CH ⁴²Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK ⁴³Science Solutions Division, Mizuho Information & Research Institute, Inc., 2-3, Kanda-Nishikicho, Chiyoda-ku, Tokyo 101-8443, JP ⁴⁴IBM Research Australia, Melbourne, AU ⁴⁵Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, US ⁴⁶Allen Institute for Immunology, Seattle, Washington, US ⁴⁷The Systems Biology Institute, Tokyo, JP ⁴⁸Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, JP ⁴⁹Okinawa Institute of Science and Technology, Okinawa, JP ⁵⁰A complete list of members and affiliations appears in the Supplementary Note

³¹Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, UK

July 9, 2019

Abstract

Systems biology has experienced dramatic growth in the number, size and complexity of computational models describing biology. To reproduce simulation results and reuse models, researchers need to exchange precise and unambiguous descriptions of model structure and meaning. SBML (the Systems Biology Markup Language) is a community-developed format for this purpose. The latest edition, called SBML Level 3, has a modular structure, with a core suited to representing reaction-based models, and packages that extend the core with features suited for a variety of model types. Examples include constraint-based models, reaction-diffusion models, logical network models, and rule-based models. SBML and its rich software ecosystem have transformed the way systems biologists build and interact with models, and has played an important role in increasing model interoperability and reuse over the past two decades. More recently, a rise of multiscale models of whole cells and organs, and new data sources such as single cells measurements and live imaging, have precipitated new ways of integrating data and models. SBML Level 3 provides the foundation needed to support this evolution.

MSB subject category: Methods & Resources

computational modeling / interoperability / software

/ standard format / systems biology

Running title: SBML Level 3

Abstract word count: 172
Body word count (using texcount): 5421

Keywords:

Introduction

Systems modeling and numerical simulations in biology can be traced to the mid-20th century. Though general theorizing about systems began earlier, the application of systems analysis to biology gained attention in the 1950's thanks to the work of biologists such as von Bertalanffy and Kacser (Kacser, 1957; Von Bertalanffy, 1950a,b). The era of numerical simulations in biology truly began with the landmark works of Chance on enzyme kinetics (Chance *et al*, 1940, 1952), Hodgkin and Huxley on the molecular basis of neuronal transmission (Hodgkin and Huxley, 1952), and Turing on the chemical basis of morphogenesis (Turing, 1952). Since then, the number and variety of models have grown in all of the life sciences. As precise descriptions of phenomena that can be simulated, analyzed, and compared to experimental data, models provide unique insights that can confirm or refute hypotheses, suggest new experiments, and identify refinements to the models (Heinrich and Schuster, 1996; Le Novère, 2015).

8

9

30

41

The availability of more data about biological mechanisms, more powerful modeling methods, and dramatically increased computing power, led to the rise of systems biology as a compelling research theme around the turn of the millennium (Ideker *et al*, 2001; Kitano, 2000). Though computational models were at first published as printed equations in journal articles, the desire to reuse an ever-increasing number of models called for digital formats that could be communicated directly between different software systems and databases, and easily exchanged between scientists (topics of interest as early as the 1960's; c.f. Garfinkel, 1969). This drove efforts to create tool-*independent* ways of representing models that could avoid the potential for human translation errors and provide a common starting point for simulations and analyses regardless of the software used (Goddard *et al*, 2001; Hucka *et al*, 2001; Lloyd *et al*, 2004). One such effort was SBML, the Systems Biology Markup Language. Its initial design was motivated by discussions to create a "metabolic model file format" following a 1999 workshop (Cornish-Bowden and Cárdenas, 2000; Kell and Mendes, 2008). A distributed community thereafter discussed ideas that informed work at Caltech in late 1999/early 2000 and led (after a series of public drafts) to the specification of the official version of SBML Level 1 Version 1 being released in March 2001 (Hucka *et al*, 2003).

While SBML was initially developed to exchange non-spatial compartmental models of biochemical reaction networks primarily formulated in terms of chemical kinetics (Hucka *et al*, 2002), it was always understood that there existed more types of models than the initial version of SBML could represent directly. However, seeking community consensus on a limited set of simpler features, which could be readily implemented in software at the time, was deemed a more pragmatic strategy. A deliberate decision was taken to delay the addition of more advanced capabilities to later in time. As a result, SBML has evolved in stages in a community-driven fashion that has benefited from the efforts of many researchers worldwide over nearly two decades. Over time, the community saw the need to support a broader range of model types, modeling paradigms, and research areas. In addition to reaction-diffusion models, alternative modeling frameworks have risen in popularity in the past decade (Machado *et al*, 2011). These needs drove a profound change in SBML's structure: a facility to permit layering the core of SBML with new features suited to more types of models, together with a way for individual models to identify which sets of extensions they need for proper interpretation. The release of SBML Level 3 in 2010 (Hucka *et al*, 2015a) has provided a new foundation to enable the exchange of a greater variety of models in various domains of biology (Fig 1).

In this article, we describe SBML Level 3's structure, its support for different model features, its community-oriented development process, its impact, and finally, forthcoming challenges.

Fig 1: SBML Level 3 consists of a core (center) and specialized SBML Level 3 packages (in blue), which provide syntactical constructs to support additional modeling approaches. The packages support new types of modeling (in gray) needed for large and complex models such as those used in various domains and fields of biology (in red). The meanings of SBML package labels such as "fbc" are given in Table 1, with additional package information in Box 1.

The structure of SBML

The core of SBML is focused on encoding models in which entities are located in containers and are acted upon by processes that produce modified or new entities. The containers do not need to correspond to physical structures; they can be conceptual or abstract. Additional constructs allow parameters, initial conditions, other variables, and other mathematical relationships to be defined. In the most common type of model, the "entities" are biochemical substances, the "containers" are well-mixed and spatially homogenous, and the "processes" are biochemical reactions happening within or between the containers. This originally led to the SBML constructs being named *species*, *compartments*, and *reactions*, respectively (Figure 2B), but these names are a historical artifact and belie the generality of the underlying scheme. Software applications can map the names to other concepts to better suit their purposes. For instance, the "species" could be mapped to populations of molecules, cells, or even organisms.

8

9

40

41

46

47

Modelers and software applications are encouraged to use SBML's reaction construct to define a model's behavior, in preference to formulating the model explicitly as a system of equations. This gives users freedom to convert the representation into an end format they prefer—a simpler operation than going from equations to another form such as a reaction network, which requires inferring reaction systems. The approach also naturally handles models where reaction kinetics are unknown or unneeded, such as interaction maps (e.g., Thiele *et al*, 2013), and supports the elaboration of the reaction construct using SBML packages (see below). That said, the use of reactions is optional, and SBML provides features sufficient for encoding a large diversity of purely mathematical models, too. Whether using reactions or not, values of model variables and their changes over time may be fixed or determined by mathematical expressions, either before or during simulation, continuously or in response to discrete events, with or without time delays. Units of measurement can be specified for all entities and values; in addition to adding a layer of essential physical knowledge (after all, how else could one interpret whether a time course is in milliseconds or years?), information about units can be used to verify the relationships expressed in a model. Units also facilitate reuse of models and components, interconnection of models, conversion of models between different frameworks, and integration of data with models.

SBML does not dictate which framework must be used to analyze or simulate a model; in fact, it purposefully lacks any explicit way to specify what is done with a model—whether to run simulations or other types of analyses, how to run them, or how to present the results—because externalizing this information enhances model reusability and permits independent innovation in separate but complementary formats. Two of the most popular methods for time-course simulation are both commonly used: one is numerical integration of differential equations created from the reactions and other relationships affecting model variables, and the other is simulating the time evolution of the model as a stochastic system via algorithms such as the one developed by Gillespie (1977). Alternative approaches are also in use, particularly when a model is enhanced with SBML packages. The separation of models and protocols also facilitates the development of virtual experiments that can be applied to multiple models (Cooper *et al*, 2015).

Any element of an SBML model can be elaborated using optional machine-readable metadata as well as human-readable notes. For metadata, two schemes are supported. The first is direct labeling with terms from the Systems Biology Ontology (SBO; Courtot *et al*, 2011), which allows the mathematical semantics of every element of a model to be precisely specified. The second scheme uses semantic web technologies and provides greater flexibility to capture more information. For instance, a molecular species in a model can be linked to a UniProt entry (The UniProt Consortium, 2017) if it represents a protein, or to ChEBI entry (Hastings *et al*, 2013) if it represents a simple chemical. Gene Ontology terms (GO; Ashburner *et al*, 2000) can be attached to species, compartments, and mathematical elements representing biological processes and functions. Clerical data such as identities of creators can be added to facilitate tracking and versioning. To help standardize how annotations are stored, SBML encourages the use of guidelines and resources established for this purpose (Juty *et al*, 2012; Laibe and Le Novère, 2007; Le Novère *et al*, 2005). Finally, software tools can also use annotations to encode tool-specific data in their own formats,

thus providing a way to capture data that might otherwise be lost if it has no other place to be stored. Annotations thereby help enrich the meaning of model components, facilitate the understanding and reuse of models, and help software work with SBML more flexibly (Krause *et al*, 2011; Lister *et al*, 2010; Schulz *et al*, 2012, 2011; Swainston and Mendes, 2009).

```
<?xml version="1.0" encoding="UTF-8"?>
         <sbml xmlns="http://www.sbml.org/sbml/level3/version2/core" level="3" version="2</pre>
            xmlns:fbc="http://www.sbml.org/sbml/level3/version1/fbc/version2" fbc:required="false
            xmlns:comp="http://www.sbml.org/sbml/level3/version1/comp/version1" comp:required="true"
            xmlns:layout="http://www.sbml.org/sbml/level3/version1/layout/version1" layout:required="false" ...
                                                                                                                                                      declaration of packages
            <model id="tiny_example" substanceUnits="mmole" timeUnits="second" volumeUnits="litre" ...</pre>
                                                                                                                                                    units
                 <listOfUnitDefinitions> ... </listOfUnitDefinitions>
                 <listOfFunctionDefinitions> ... </listOfFunctionDefinitions>
                                                                                                                                            functions
                <listOfCompartments> ... </listOfCompartments>
                                                                                                                                             variables
                <listOfSpecies> ... </listOfSpecies>
                 <listOfParameters> ... </listOfParameters>
                <listOfInitialAssignments> ... </listOfInitialAssignments>
                <listOfRules> ... </listOfRules>
                                                                                                                                    relationships
                <listOfConstraints> ... </listOfConstraints>
                 <listOfReactions> ... </listOfReactions>
                                                                                                                                                                       core
                 <list0fEvents> ... </list0fEvents>
                <layout:list0fLayouts xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
                    <lavout:lavout lavout:id="lavout 1" ...:</pre>
                        <layout:dimensions layout:width="700" layout:height="700" .../>
                       < layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compartment Glyphs > \dots < / layout: list Of Compa
                       <layout:listOfSpeciesGlyphs> ... </layout:listOfSpeciesGlyphs>
eferences
                        <layout:listOfReactionGlyphs> ... </layout:listOfReactionGlyphs>
                        <layout:list0fTextGlyphs> ... </layout:list0fTextGlyphs>
                    </layout:layout>
                                                                                                                                                            package
                </lavout:listOfLavouts>
            </model>
         </sbml>
         <unitDefinition id="mmole">
            Units>
                <unit kind="mole" exponent="1" scale="-3" multiplier="1"/>
            </unitDefinition>
         <compartment>id="c" name="cell compartment" size=/1e-05" units="litre" constant="true" ... />
         <species metaid="meta glc" id="glc" <pre>mme="glucose" initialConcentration="5" sboTerm="SBO:0000247"
            compartment="c" substanceUnits="mmole" hasOnlySubstanceUnits="false" boundaryCondition="false"
            constant="false" fbc:charge="0" fbc:chemicalFormula="C6H12O6">
            <annotation>
                <bgbiol:is>
                   <rdf:li rdf:resource="http://identifiers.org/chebi/CHEBI:4167"/>
         <species/>
        cyarameter_id="Vmax_GK" value="le-06" sboTerm="SB0:0000186" constant="true" units="mmole_per_s" ...>
cyarameter_id="Vmax_GK" value="0.5" sboTerm="$B0:0000027" constant="true" units="mM" ...>
         <refaction id="GK" name="Glucokinase" revergible="false" compartment="c" sboTerm="SB0:0000176" ...>
                <speciesReference species="glc"-stoichiometry="1" constant="true"/>
               kineticLaw>
                 <math xmlns="http://www.w3.org/1998/Math/MathML">
                    <apply>
                        <times/>
                         ci> Vmax GK </ci>
                        <apply>
                           <divide/>
                           <ci> glc </ci
                           <apply>
                              <plus/>
                              <ci> Km glc </ci>
                              <ci> glc </ci>
                           </apply>
```

Fig 2: A closer look at SBML. A) Fragments of the global structure of an SBML file. In this example, the use of several SBML packages is declared in the file header. Model elements in the file include the descriptions of model variables, as well as their relationships. Elements of the same type are collected into "ListOf" elements; e.g., model parameters are in the ListOfParameters element. SBML package elements can refer to elements in the SBML Core as necessary. B) Model elements are linked through unique identifiers used in the mathematical constructs and the elements describing the reactions, the molecular species, and their localization. The full model for this example is available in BioModels Database (Chelliah et al, 2015) as the model with identifier MODEL1904090001.

SBML Level 3's modularity and breadth

Constant evolution in scientific methods presents challenges for the creation of software tools. One challenge arises because the creation of new standards requires labor, testing and time. This often leads standardization efforts to lag behind the latest technical developments in a constantly-moving field. A second challenge is that users want support for new methods and standards in software tools, which pressures developers to implement support quickly. Combined with the first challenge, sometimes this means that problems with a standard's definition are not discovered until more developers attempt to use it in different situations, which in turn often means that revisions to a standard are needed after it is published. Finally, another challenge is that software development often takes place under resource constraints (e.g., funding and time), limiting the scope of work that software developers can undertake—including, sometimes, limiting on how many features of a standard they can support in their software.

8

9

40

41

43

The SBML community sought to address these challenges by putting in place certain structural features in SBML's development process. The first is the notion of *Levels*. A Level in SBML is an attempt to provide a given set of features for describing models, with higher Levels providing more powerful features. For example, the ability to express discrete events was added to SBML Level 2 but does not exist in Level 1. SBML Levels are mostly upwardly compatible, in the sense that the vast majority of models encoded in Level n can be translated to Level n+1. Versions are used to introduce refinements to a given Level to account for realizations that come from real-life use of SBML. Finally, SBML Level 3 introduced an extensible modular architecture consisting of a central set of fixed features (named SBML Level 3 Core), and a scheme for adding packages that can augment the Core by extending existing elements, adding new elements, and adjusting the meaning or scope of elements. A model declares which packages it uses in order to guide its interpretation by software applications. If a software tool detects the presence of packages that it does not support, it may inform users if it cannot work with the model. Together, these three features (Levels, Versions, packages) help address the challenges discussed above: they ease coping with evolution in methods by collecting significant changes into discrete stages (SBML Levels), they help deal with the inevitable need for revisions (Versions within Levels), and they allow developers to limit the feature set they implement (SBML Levels on the one hand, and SBML Level 3 packages on the other).

Packages allow SBML Level 3 to represent many model types and characteristics in a more natural way than if they had to be shoehorned into SBML Core constructs exclusively. Twelve packages have been proposed to date (Table 1); six have been fully developed into consensus specifications and are used by at least two software implementations (Box 1), and another three have draft specifications in use by software tools. New packages can be developed independently, within dedicated communities, at a pace that suits them. This was the case for logical modeling with the CoLoMoTo community (Naldi *et al*, 2015), constraint-based modeling within the COBRA community (Ebrahim *et al*, 2015), and rule-based modeling with a community of like-minded software creators (Blinov *et al*, 2004; Palmisano *et al*, 2014; Zhang *et al*, 2013). The approach of letting models declare the SBML packages needed for their full interpretation is useful because even if a software application does not implement support for a given package, the application may still be able to interpret *some* fundamental aspects of the model by understanding Level 3 Core (and perhaps other packages used by the model).

Though this modular approach has benefits, it is not without potential pitfalls. The main risks are fragmentation of the community, and incompatibility of packages due to complex feature dependencies. The SBML community addressed the former by maintaining communications between package developers. As for the latter, API libraries (see Box 2) can handle *some* combinations of packages and hide some of the complexity. Still, there remain some combinations of packages that are not fully understood, and it remains for future work to define how (if ever) they can be combined use in a single model.

Table 1: Summary of SBML Level 3 Package statuses. Symbols: ●= released; ○= not released; ✓ = complete; ←)= in progress; na= not applicable.

Package name	Label	Purpose	Specification libSBML Support	JSBML Support	Test Suite	Reference
Flux Balance Constraints	fbc	Define constraint-based models (a.k.a. steady-state models).	<i>> > > ></i>	>		Olivier and Bergmann (2018)
• Groups	groups	Collect elements together for annotation purposes. Groups have no mathematical meaning and do not affect simulations.	>	>	n/a	✓ ✓ ✓ n/a Hucka and Smith (2016)
Hierarchical Model Composition	comp	Define models composed of other models. The "submodels" can be stored in the same file or as separate files.	> > > > >	>		Smith <i>et al</i> (2015)
Layout	layout	Store positions and sizes of model components in network diagrams of SBML models. (Cf. the Rendering package.)	>	>	n/a	\checkmark \checkmark \checkmark n/a Gauges et al (2015)
Multistate, Multicomponent, & Multicompartment Species	multi	Define features such as states or binding sites on molecular species, optionally in combination with rule-based processes.	① <i>> > ></i>	>		Zhang and Meier- Schellersheim (2018)
 Qualitative Models 	qual	Allow model where SBML species' values represent qualitative activity levels rather than amounts or concentrations.	>	>	($\checkmark \checkmark \checkmark $ © Chaouiya <i>et al</i> (2015)
Rendering	render	Extend the Layout package to enable storing graphical symbols and styles, curves, colors, and gradients in network diagrams.	√ √ √ n/a	>		Bergmann <i>et al</i> (2018)
O Arrays	arrays	Define arrays of elements, such as arrays of compartments. (Core SBML Level 3 supports only scalar values.)	① / / ①	>	<u>(1)</u>	
Distributions	distrib	Define statistical distributions for quantitative values. (Core SBML does not enable indicating value ranges or distributions.)	→⊕	→	4	
O Dynamical Processes	dyn	Describe the creation, destruction, and movement of model elements during simulation.	① / / ①	>	<u>(1)</u>	
O Extended math	math	Additional constructs not included in the subset of MathML used by SBML Level 3 Core for mathematical expressions.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4	
O Spatial Processes	spatial	Define spatially-inhomogeneous compartment geometries and processes such as diffusion.	① <i>> ></i> ①	>	4	

Box 1. SBML Level 3 packages officially part of the standard

Hierarchical Model Composition The "comp" package (Smith *et al*, 2015) allows users to build models from other complete models or from model fragments as a way to manage complexity and construct composite models. "Submodels" can be described within the same SBML file or linked from external files. A submodel can act as a template, and the same definition can be reused multiple times in other models to avoid duplication and enable reuse of parts. The "comp" package also enables submodels to have explicit interfaces (known as *ports*) for optional black-box encapsulation. Finally, "comp" was designed so that a hierarchical model can be converted into a single SBML model that does not use any "comp" features, making it readable by software that does not directly support the package. The library libSBML (Bornstein *et al*, 2008) provides a facility to do this.

6

8

40

41

42

43

Flux Balance Constraints The "fbc" package (Olivier and Bergmann, 2018) provides a means of encoding constraint-based models and optimizations, such as is done in Flux Balance Analysis (Bordbar *et al*, 2014). Constructs in the "fbc" package allow for the definition of a list of objectives for minimization or maximization, as well as flux bounds on reactions and gene-reaction mappings. Additional information such as chemical formula and charge enable further model analyses, including calculation of reaction mass balances, electron leaks, or implausible sources of matter.

Groups The "groups" package (Hucka and Smith, 2016) provides constructs to describe conceptual relationships between model elements. Groupings can indicate classification, partonomy, or merely a collection of things; a group's meaning can be specified using semantic annotations. Groups have no semantic meaning and cannot influence the mathematical interpretation of an SBML model.

Multistate, Multicomponent and Multicompartment Species The "multi" package (Zhang and Meier-Schellersheim, 2018) manages the combinatorics produced by entities either composed of multiple components, such as molecular complexes, or that can exist in multiple states, such as proteins with post-translational modifications. With the "multi" package, rules can be defined for how reactions depend on the states of the entities and their locations. The package adds syntactic constructs for molecular species types, compartment types, features, binding sites, and bonds. Entire families of molecular complexes sharing certain properties can be defined using patterns created using these constructs.

Qualitative Models The "qual" package (Chaouiya *et al*, 2015) provides constructs to encode models whose dynamics can be represented by discrete reachable states connected by state transitions denoting qualitative updates of model elements. Examples include logical regulatory networks (Boolean or multivalued (Abou-Jaoudé *et al*, 2016)) and Petri nets (Chaouiya, 2007). The "qual" package introduces SBML elements to allow the definition of qualitative species, which are used to associate discrete levels of activities with entity pools, as well as transitions, which define the possible changes between states in the transition graph.

Layout & Rendering The "layout" (Gauges *et al*, 2015) and "render" (Bergmann *et al*, 2018) packages extend SBML to allow graphical representations of networks or pathways to be stored within SBML files. The "layout" package enables the encoding of positions and sizes of graphical elements such as nodes and lines, while the information about colors, fonts, etc., are defined by the "render" package. This separation presents several advantages. For example, applications can offer multiple styles for visualizing the same layout of a network map. Most of the essential aspects of a network diagram can be expressed using just the "layout" package, and thus tools do not necessarily have to implement a full graphics environment if they do not need to support customizing a diagram's look-and-feel.

SBML as a community standard

SBML's success can be attributed largely to its community-based development and its consensus-oriented approach. SBML has always been developed through engagement with its user community to achieve goals expressed by that same community. To resolve occasionally conflicting technical demands, a guiding principle has been to seek consensus between different viewpoints and the needs of different groups, to find a middle ground that would be—while perhaps not a perfect solution—an *acceptable* and *usable* solution. This attracted the researchers and software developers who constitute SBML's foremost stakeholders. By using SBML in everything from software to textbooks (e.g., Cesario and Marcus, 2011; Choi, 2008; Klipp *et al*, 2016; Liu and Lauffenburger, 2009; Sauro, 2014; Sullivan, 2012; Wilkinson, 2018), they helped drive further development to face the real needs expressed by the people who have those needs. This engagement allowed faster feedback from users to developers, and helped produce a rich toolkit of software and other resources that facilitate SBML's incorporation into software (Box 2).

8

9

Over the years, the community has designed rules to organize its governance, develop and maintain the specifications, and facilitate collaboration among users. The development of SBML and its Level 3 packages is shepherded by the SBML Editors, a group of community-elected volunteers serving terms of three years, who follow a written and public process detailed on the web portal SBML.org¹. SBML editors write or review SBML specification documents, organize discussions and vote on specific technical issues, and enact the decisions of the community. Major proposed changes to the specifications and packages are discussed by the community via the SBML mailing lists² as well as during annual face-to-face meetings. The community currently comes together twice a year within the context of meetings organized by COMBINE (the Computational Modeling in Biology Network; Hucka *et al*, 2015b). *HARMONY* (the Hackathon on Resources for Modeling in Biology) is a codefest that focuses on the development of software, in particular via the development of libraries, tools and specifications; by contrast, the *COMBINE Forum* meetings focus on the presentation of novel relevant tools and the discussion of proposed features. In addition to these general meetings, special SBML working groups are organized as needed to drive SBML package development.

One of COMBINE's core activities is to maintain a list of persistent URLs for all specification documents developed by standardization groups under the COMBINE umbrella³, including the SBML specifications, so that users can refer unambiguously to the precise version and release of a given specification document. FAIRsharing, a broader community network that covers life sciences more comprehensively (Sansone *et al*, 2019), maintains interconnected and organized collections of resources in many areas, including curated links between SBML and many associated funders, databases, and standards⁴.

¹http://sbml.org/Documents/SBML_Development_Process

²http://sbml.org/Forums/

³http://co.mbine.org/standards/specifications/

⁴https://fairsharing.org/FAIRsharing.9qv71f

Box 2. Software infrastructure for SBML

Application Programming Interface (API)

Programming libraries help to read, write, manipulate, validate, and transform SBML

- 1. LibSBML (Bornstein *et al*, 2008) (http://sbml.org/Software/libSBML) is written in C++ and offers language interfaces for C, C++, C#, Java, JavaScript, MATLAB, Octave, Perl, PHP, Python, R and Ruby
- 2. JSBML (Rodriguez *et al*, 2015) (http://sbml.org/Software/JSBML) is a pure-Java based implementation

Both libraries:

- · Support all levels and versions of SBML
- Support all SBML Level 3 packages
- Use LGPL License

Validation Facilities

Validation software can check files for compliance to the definition of SBML

- 1. API libraries include built-in validation
- 2. Online validator has simple user interface (http://sbml.org/Facilities/Validator)
- 3. Web services support software access

Validation ensures compliance with:

- SBML syntax
- SBML validation rules published as part of each accepted SBML specification

Test Suite

An SBML Test Suite (http: //sbml.org/Software/SBML_Test_Suite) helps developers support SBML correctly and helps users check software compliance

- 1. Thousands of test cases for
 - Semantic interpretation of models (using results from both deterministic and stochastic simulation)
 - Syntactic correctness
- 2. A graphical front end that enables test cases to be filtered by Level/Version and a range of test tags
- 3. An online database where test results can be uploaded and compared with results from other simulators

Conversion Facilities

Converters

(http://sbml.org/Software/Converters) can translate certain other formats to SBML or vice versa

- 1. Standalone conversion tools support format conversions from formats that include MATLAB (using MOCCASIN, Gómez *et al*, 2016), BioPAX (using BioPAX2SBML, Büchel *et al*, 2012), and others
- 2. Online services such as SBFC (Rodriguez *et al*, 2016) convert uploaded files to a variety of formats
- 3. API libraries such as libSBML provide built-in converters between different SBML Levels/Versions and different SBML constructs

Software Guide

A catalog (http://sbml.org/SBML_Software_Guide) of software applications, libraries and online services known to support SBML—over 290 entries to date

- 1. A tabular interface highlights supported SBML features of each software system
- 2. A list interface displays human-readable summaries of software systems

Impact of SBML

As contributors to developments in methods, software and standards over the past two decades (Brazma *et al*, 2006; Hucka *et al*, 2015b), we can attest to SBML's profound impact on the field, both from our own first-hand experiences and from surveys (Klipp *et al*, 2007) that indicate SBML has become a *de facto* standard. The impact is a result of SBML's community-oriented development approach and its design.

6

8

9

40

41

46

47

The SBML development process has helped shape the field partly by directly involving software developers and modelers. Frequent workshops have provided essential feedback for developers to help them better serve modelers' needs (e.g., Waltemath *et al*, 2014). Workshops as well as resources such as the SBML Software Guide (see Box 2) helped raise awareness of existing tools, which in turn increased their use and the use of SBML. This helped create a culture of sharing models and building on existing work in systems biology (Stanford *et al*, 2015). It also led to new activities centered on the models themselves, including automatic model generation, analysis of model structures, model retrieval, and integration of models with experimental data (Dräger and Palsson, 2014). SBML's successful approach to community engagement and organization has influenced other standardization efforts, including BioPAX (Demir *et al*, 2010), NeuroML (Gleeson *et al*, 2010), SBGN (van Iersel *et al*, 2012), SBOL (Roehner *et al*, 2016), and SED-ML (Waltemath *et al*, 2011), which have adopted some of the same approaches.

Before the advent of SBML, it was challenging to exchange models because software tools used incompatible definition schemes. As models increased in size and complexity, manually rewriting them became more difficult, error-prone, and eventually, untenable. The development of SBML has enabled the use of a single model description throughout a project's life cycle even when projects involve heterogeneous software tools (Box 3). Such use of a standardized format improves workflows and is generally recognized as promoting research reproducibility (Mendes, 2018; Sandve *et al*, 2013). SBML-compatible software tools today allow researchers to use SBML in all aspects of a modeling project, including creation (manual or automated), manipulation, annotation, comparison, merging, parametrization, simulation/analysis, results comparison, network motif discovery, system identification, omics data integration, visualization, and more. The availability of a well-defined format has also facilitated the comparison of software tools to each other. Using SBML-encoded models has become the norm to assess the accuracy of modeling software: initially done manually using models from BioModels Database (Bergmann and Sauro, 2008), now it is more commonly done using the SBML Test Suite (Box 2). SBML's semantics are defined precisely enough that many simulation systems can produce equivalent results for over 1200 test cases, lending confidence that SBML-based simulations can be reproducible in different software environments.

While chemical kinetics models have been a staple of systems biology (Hübner et al, 2011), other modeling frameworks exist. These have benefitted from efforts to extend Level 3 to better suit their specific characteristics. Even when models could in principle be encoded using core SBML constructs, the use of features explicitly adapted to the needs of a domain can make model interpretation less error-prone and more natural. The former issue was demonstrated vividly when ad hoc methods of encoding genome-scale models led to incorrect interpretations, and a subsequent proposal to use SBML Level 3 "fbc" addressed representational inconsistencies that hindered reproducibility (Ebrahim et al, 2015). The use of more natural forms of encoding has been preferred by several communities, such as the qualitative and rule-based modeling communities. For example, CellNOpt (Terfve et al, 2012) provides a set of optimal Boolean models that best explains the causal relationships between elements of a signal transduction network and associated data, and the dynamical properties of these models can be studied with GINsim (Chaouiya et al, 2012) or Cell Collective (Helikar et al, 2012) when a model is represented using SBML Level 3 "qual" (Chaouiya et al, 2015). In rule-based modeling, representing a reaction network by expanding a set of rules is theoretically possible but often practically impossible, due to the combinatorial number of reactions implied by the rules (Hlavacek et al, 2003). Storing rule definitions in SBML is now feasible with the "multi" package, allowing rule-based modeling tools such as Simmune (Zhang et al, 2013) and BioNetGen (Faeder et al, 2009; Harris et al, 2016) to read and write the same model definitions.

SBML has also eased the automated processing of models to the point where they have become just another type of data in the life sciences. SBML is used today as an import/export format by many databases of mathematical models (Chelliah et al, 2015; King et al, 2016; Misirli et al, 2014), as well as by pathway databases (Caspi et al, 2015; Fabregat et al, 2017; Mi et al, 2016) and reaction databases (Ganter et al, 2013; Wittig et al, 2017). SBML is the preferred format for model curation in BioModels Database, not only because of its popularity but also because of its provisions to precisely encode and annotate models to support reproducible modeling (Chelliah et al, 2009). SBML is also used to share models by more generic data management platforms (Wolstencroft et al, 2016) and full-featured online simulation environments (e.g., Lee et al, 2009; Moraru et al, 2008; Peters et al, 2017; Šafránek et al, 2011; Weidemann et al, 2008). Moreover, having an agreed-upon format has facilitated the introduction of better model management strategies. This includes support for tasks such as model storage (Henkel et al, 2015), version control (Scharm et al, 2015), and checking quality and validity (Liebermeister, 2008). The proliferation of derived models has led to the development of methods to compare model structure and semantic annotations (Lambusch et al, 2018), culminating in the development of several methods to quantify model similarities (Henkel et al, 2016) that can then be used to improve the relevance of model searches (Schulz et al, 2011). Once model elements can be compared, one can align, combine and merge different models (Krause et al, 2010).

9

14

Finally, the continued development of SBML has stimulated collaborative work and the creation of consortia. This has led to better awareness and communication within groups interested in specific modeling frameworks. A good example is the CoLoMoTo effort mentioned above; it was launched by researchers who needed a format to exchange qualitative models between their software tools and developed the Qualitative Modeling package for SBML (Naldi *et al*, 2015) as the solution.

Box 3. Examples of SBML use cases

SBML's impact on computational systems biology includes its facilitation of collaborative work. In multiple instances, it has precipitated entirely new projects, as illustrated by the examples below.

SBML throughout the model life-cycle Encoding a model in a standard format such as SBML makes it easier to use different software tools for different purposes, and thus makes it easier to leverage the most suitable tools at different points in a workflow. The following is an example. A signaling pathway can be designed graphically using CellDesigner (Funahashi et al, 2003; Matsuoka et al, 2014). The resulting model can then be semi-automatically annotated using the online tool semanticSBML (Krause et al., 2010). Experimental kinetic information can be retrieved in SBML format from the SABIO-Reaction Kinetics database (Wittig et al, 2017), COPASI (Hoops et al, 2006) provides facilities to estimate parameters and to simulate the model with various algorithms. Other SBML-enabled tools such as Tellurium (Medley et al, 2018) and PySCeS (Olivier et al, 2005) provide capabilities such as identifiability and bifurcation analysis. Each step of the process applied to a model from creation to publication of results—modeling, simulation and analysis—can be documented using notes attached to every model element. The model can even be turned into a publishable document using SBML2ETeX (Dräger et al, 2009). Finally, the model can be exported from selected modeling tools, together with data (perhaps represented in a neutral format such as SBRML; Dada et al, 2010) and other information all bundled together in COMBINE Archive format (Bergmann et al, 2014) and published in model repositories such as BioModels Database (Chelliah et al, 2015).

9

40

42

Pipeline for automated model building Being able to describe model elements with precision using semantic annotations facilitates the creation of automated pipelines (Dräger *et al*, 2010). Such pipelines can combine existing models with databases of molecular phenotypes or reaction kinetics (Li *et al*, 2010). They can also generate models *de novo* from data resources, as has been demonstrated by the Path2Models project (Büchel *et al*, 2013). Path2Models has produced 143,000 SBML models—all fully annotated—for over 2,600 organisms, by using pathway data. Metabolic pathways were encoded in SBML Level 3 Core while signaling pathways were encoded with the SBML "qual" package (Chaouiya *et al*, 2013). Moreover, constraint-based models of genome-scale reconstruction were provided for each organism. Other pipelines have now been built, including ones that can systematically generate alternative models for different tissue-types (Thiele *et al*, 2013; Wang *et al*, 2012) and patient data (Uhlen *et al*, 2017), a pivotal stepping-stone towards personalized precision medicine.

Development, sharing, and re-use of genome-scale models of human metabolism Constraint-based modeling approaches such as Flux Balance Analysis and its variants permit the use of whole-genome reconstructions together with experimental molecular phenotypes, in order to predict how mutations or different environments affect metabolism and to predict drug targets and biomarkers (O'Brien *et al*, 2015; Savinell and Palsson, 1992). With the availability of genome-scale metabolic reconstructions (Edwards and Palsson, 1999), the use of metabolic flux models at the same scale has been growing exponentially (Bordbar *et al*, 2014). A recent development in the field has been the curation by the community of consensus metabolic models, in particular for human metabolism (Brunk *et al*, 2018). Those community efforts rely on SBML for encoding and sharing the models, including annotations, which are crucial to document the curation process and use the reconstructions later, and also for visual representation using the Layout (Gauges *et al*, 2015) and Rendering (Bergmann *et al*, 2018) packages. The Flux Balance Constraint package (Olivier and Bergmann, 2018) enables encoding of the information required for model optimization and flux calculation. Unambiguous encoding in SBML has been shown to be crucial for interpreting models and precisely computing fluxes (Ebrahim *et al*, 2015; Ravikrishnan and Raman, 2015).

Forthcoming challenges

For nearly two decades, SBML has supported mathematical modeling in systems biology by helping to focus the efforts of the community and foster a culture of openness and sharing. The field is evolving rapidly, which presents challenges that the community and SBML must face.

The first challenge is to remain usable in the face of relentless growth in the model sizes. One of the drivers of larger size is the rising popularity of genome-scale metabolic models (Bordbar et al, 2014), which can now be produced semi-automatically (Büchel et al, 2013; Henry et al, 2010; Magnúsdóttir et al, 2017). Modeling approaches have also been developed to combine the use of several such models (e.g., Bordbar et al, 2011). It is reasonable to expect models of ecosystems to be produced soon (e.g., microbiomes and their host). Model sizes will also increase as more models of tissues and organs are exchanged and reused, encouraged by the use of software that facilitate this approach, such as the open-source tools CHASTE (Mirams et al, 2013) and CompuCell3D (Swat et al, 2012). The challenge this presents is how to define, organize, and manage large models. Meeting the challenge will require a combination of novel approaches to model storage (e.g., Henkel et al, 2015) and comparison (e.g., Scharm et al, 2016a,b), as well as more effective use of SBML Level 3 features. For example, the SBML Hierarchical Model Composition package (Smith et al, 2015) provides a way to encode models in SBML out of separate building blocks or from preexisting models; this can make larger models easier to structure and maintain, and it is a natural way to construct multiscale models. Similarly, the SBML Arrays package may help to define and structure larger models by allowing models to be defined in a more compact form. Methods are being developed for the efficient simulation of both SBML packages (Watanabe and Myers, 2014, 2016).

8

9

40

41

46

47

Because of the diversity of biological phenomena amenable to mathematical modeling, as well as their scales and properties, it is likely that a broad variety of modeling approaches will be added to every researchers' essential toolbox (Cvijovic et al, 2014). Methods such as multiagent and lattice approaches are coming into broader use to represent evolving cell populations, cell migration, and deformation. Some researchers are experimenting with solutions using existing SBML packages (Varela et al, 2019; Watanabe and Myers, 2016). Modeling the development of tissues and organ function may also require combining these approaches with reaction-diffusion models, or multi-physics approaches (Nickerson et al, 2016). Population modeling will need to complement traditional instance-based systems if we want to take into account patient variability or information coming from single-cell measurements (Levin et al, 1997). The coupling of different approaches within the same simulation experiment is also becoming more frequent. Biomolecular reactions modeled using ODEs, Poisson processes and Flux Balance Analyses have been coupled in the first whole-cell model (Karr et al, 2015). At the organ level, liver lobules have been modeled using a combination of metabolism and multi-agent models (Schliess et al, 2014). Several approaches mixing modeling of cell mechanical properties and gene regulatory networks or signaling networks have been used to study morphogenesis (e.g., Tanaka et al, 2015). The coupling of different approaches can be done within a single hybrid model, or each model can be simulated using different software and with dynamic synchronization at run time (Mattioni and Le Novère, 2013). Once again, the SBML "comp" package can play a role in supporting these approaches, but other methods and software will be needed in the future, as well as better support for coupling models at run time using (e.g.) SED-ML (Waltemath et al, 2011).

These developments are arising in an evolving landscape where structural models are sometimes not the central object of study: increasingly they are knowledge aggregators and integrators. SBML will continue to have a pivotal role here too. When SBML was introduced, the state of modeling workflows and software tools was more primitive and it was natural that a model was self-contained. SBML-encoded models often had uniquely defined parameters (e.g., as initial values for state variables or parameters for mathematical expressions), but today, modelers increasingly want to use the same model with different parameterizations, sometimes with parameter values expressed as distributions, lists or ranges rather than unique values. A modern project may also use an ensemble of related models that differ in parameters

or in turning some model elements on or off (Kuepfer *et al*, 2007). The semantic annotation of SBML elements also has become increasingly important, forming a bedrock for many of the analyses using SBML-encoded models. The growth in size and scope of annotations has recently led the modeling community to propose a standard way of storing annotations in separate linked files (Neal *et al*, 2019), relying on the COMBINE Archive format (Bergmann *et al*, 2014) to bundle everything together. Other formats that can complement SBML have been developed, and further coordination and evolution will undoubtedly happen in the future. As mentioned above, SED-ML is a format that provides a way to encode what to do with a model, which complements SBML and compensates for its lack of features to define procedures. Finally, experimentation in integrating SBML more directly with other formats and data also continues. For instance, preliminary work has shown that SBML can be enriched with SBOL (Voigt *et al*, 2018) to provide models of DNA components' behavior (Roehner and Myers, 2014), and conversely, ongoing work in supporting genome-scale models of metabolism and gene expression (known as *ME-models*, Thiele *et al*, 2012) augments SBML with SBOL to more fully capture models for use with ME modeling software (Galdzicki *et al*, 2014).

Conclusion

SBML and associated software libraries and tools have been instrumental in the growth of systems biology for nearly twenty years. As modeling and simulation grew in popularity as a way to gain insight into biological phenomena, SBML allowed researchers to exchange and (re)use new models in an open, well-supported, interoperable format. SBML has made possible much of the research pursued by the authors of this article, and also helped us to structure our thoughts about our models and the biology they represent. Today, scientists can build, manipulate, annotate, store, reuse, publish, and connect models to each other and to basic data sources. In effect, SBML has turned models into a kind of data, sometimes even refered to as a biological "knowledge base", and moved modeling in biology from an art to an exercise in engineering.

As the field of systems biology continues to grow and address emerging challenges, SBML will grow along with it. This evolution will (as it always has) depend on close cooperation between biologists and software developers. We hope that SBML will continue to be a source of inspiration for many researchers, especially those new to the field. In return, may they help develop the next generation of SBML to support more comprehensive, richer, and more diverse models, and expand the reach of systems modeling towards entire cells, organs, and organisms.

1. Acknowledgments

We sincerely thank all current and past SBML users, developers, contributors, supporters, advisors, administrators, and community members. We give special thanks to the following people for contributions and support: Jim Anderson, Nadia Anwar, Gordon Ball, Duncan Bérenguier, Upinder Bhalla, Frédéric Y. Bois, Benjamin Bornstein, Richard Boys, Thomas Cokelaer, Marco Donizelli, Alexander Dörr, Marine Dumousseau (Sivade), Lisa Falk, David Fange, Ed Frank, Ralph Gauges, Martin Ginkel, Mail Gizzatkulov, Victoria Gor, Igor Goryanin, Ryan N. Gutenkunst, Arnaud Henry, Stefanie Hoffmann, Duncan Hull, Dagmar Iber, Gael Jalowicki, Henrik Johansson, Akiya Jouraku, Devesh Khandelwal, Thomas B. L. Kirkwood, Benjamin L. Kovitz, Bryan Kowal, Andreas Kremling, Ursula Kummer, Hiroyuki Kuwahara, Anuradha Lakshminarayana, Nicolas Le Novère, Thomas S. Ligon, Adrian Lopez, Peter Lyster, Natalia Maltsev, Jakob Matthes, Joanne Matthews, Tommaso Mazza, Eric Minch, Sebastian Nagel, Maki Nakayama, Poul M. F. Nielsen, German Nudelman, Anika Oellrich, Noboyuki Ohta, Michel Page, Victoria Petri, Ranjit Randhawa, Veerasamy Ravichandran, Elisabeth Remy, Isabel Rojas, Ursula Rost, Jan D. Rudolph, Takayuki Saito, Takeshi Sakurada, Howard Salis, Maria J. Schilstra, Daryl Shanley, Tom Shimizu, Jacky Snoep, Hugh D. Spence, Yves Sucaet, Linda Taddeo, Jose Juan Tapia, Alex Thomas, Martijn P. van Iersel, Marc Vass, Jonathan Webb, Katja Wengler, Benjamin Wicks, Sarala Wimalaratne, Haoran Yu, Thomas Zajac, W. Jim Zheng.

The principal authors thank funding agencies for their support of this work. F.B., A.D., M.H., T.M.H., S.K., B.O., and L.S., as well as SBML.org and its online resources, were supported by the National Institute of General Medical Sciences (NIGMS, US), grant no. R0 GM070923 (PI: Michael Hucka). In addition, F.B. has been supported by the Bundesministerium fuer Bildung und Forschung (BMBF, DE), grant no. de.NBI ModSim1, 031L0104A (PI: Ursula Kummer). A.F. was supported by the Grant-in-Aid for Young Scientists (B), grant no. 21700328 from JSPS KAKENHI (JP) to Keio University. J.F. was supported by National Institutes of Health (NIH, US) grant no. P41-GM103712 to the National Center for Multiscale Modeling of Biological Systems (MMBioS). H.H. was supported by the Biotechnology and Biological Sciences Research Council (BBSRC, UK) "MultiMod" project (grant no. BB/N019482/1). T.H. was supported by NIH (US) grant no. 5R35GM119770-03 to the University of Nebraska-Lincoln. S.H. was supported by NIGMS (US) grant no. R01GM080219. M.K. was supported by the Federal Ministry of Education and Research (BMBF, DE), research network Systems Medicine of the Liver (LiSyM), grant no. 031L0054, Humboldt-University Berlin (PI: Matthias König). A.L. was supported by the BBSRC (UK) while working at the Centre for Integrated Systems Biology of Ageing and Nutrition (CISBAN), Newcastle University, C.M. was supported by the National Science Foundation (NSF, USA) under grant no. CCF-1748200. I.M. was supported by NIH grant nos. P41-EB023912 and P41-GM103313. K.M. was supported by the Department of Biotechnology, Government of India (grant no. BT/PR4949/BRB/10/1048/2012). M.M.-S. was supported by the Intramural Research Program of NIAID, NIH (US). R.M.-S. was supported by the BBSRC (UK) "MultiMod" project (grant no. BB/N019482/1). B.P.'s was supported by NIH (US) grant no. GM57089 to the University of California, San Diego. H.S. was supported by NIGMS (US) grant no. R01-GM123032 (PI: Herbert Sauro) and by the National Institute of Biomedical Imaging and Bioengineering (NIBIB, US) grant no. P41-EB023912 (PI: Sauro). J.S. was supported by NIGMS (US) grant P41 GM103313. M.S. was supported by the DDMoRe program (EU), Innovative Medicines Initiative Joint Undertaking under grant agreement 115156. N.S. was supported by BBSRC (UK) grant "Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)", grant no. BB/M017702/1 (PI: Nigel S. Scrutton). F.Z. was supported by the Intramural Research Program of NIAID, NIH (US).

8

9

14

2. Author contributions

S.K., D.W., M.K., F.Z., A.D., C.C. and M.H. wrote the bulk of the manuscript. Together with F.B., A.M.F., C.G., T.H., S.H., R.M.-S., S.M., I.M., C.M., A.N., B.O., S.S., J.S., L.S., M.S., D.T., L.W., and D.W., they also wrote and/or edited specifications for SBML Level 3 Core and the Level 3 packages. M.B., K.B., J.F., H.G., T.M.H., Y.I., W.L., A.L., D.L., E.M., C.P., K.R., N.R., C.S., B.S., J.S., N.S., N.T., and J.W. contributed proposals for SBML Level 3 and/or are past or current members of the SBML Team. M.M-S., H.S., B.P., H.B., H.K., U.K., A.F., H.H., J.D., and M.H. were principal investigators (or the equivalent, depending on the institution) for grants supporting SBML development.

References

Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C (2016) Logical modeling and dynamical analysis of cellular networks. *Frontiers in Genetics* 7

- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, *et al* (2000) Gene Ontology: tool for the unification of biology. *Nature Genetics* 25: 25–29
- Bergmann FT, Adams R, Moodie S, Cooper J, Glont M, Golebiewski M, Hucka M, Laibe C, Miller AK, Nickerson DP, *et al* (2014) COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project. *BMC Bioinformatics* 15: 369
- Bergmann FT, Keating SM, Gauges R, Sahle S, Wengler K (2018) SBML Level 3 Package: Render, Version 1, Release 1. *Journal of Integrative Bioinformatics* 15

9

24

36

- Bergmann FT, Sauro HM (2008) Comparing simulation results of SBML capable simulators. *Bioinformatics* 24: 1963–1965
- Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. *Bioinformatics* 20: 3289–3291
- Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BØ, Famili I (2011) A multi-tissue type genomescale metabolic network for analysis of whole-body systems physiology. *BMC Systems Biology* 5: 180
- Bordbar A, Monk JM, King ZA, Palsson BØ (2014) Constraint-based models predict metabolic and associated cellular functions. *Nature Reviews Genetics* 15: 107–20
- Bornstein BJ, Keating SM, Jouraku A, Hucka M (2008) LibSBML: an API library for SBML. *Bioinformatics* 24: 880–881
- Brazma A, Krestyaninova M, Sarkans U (2006) Standards for systems biology. *Nature Reviews Genetics* 7: 593–605
- Brunk E, Sahoo S, Zielinski D, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson A, Gonzalez G, Aurich M, Prlić A, Sastry A, Danielsdottir A, Heinken A, Noronha A, Rose P, Burley S, Fleming R, Nielsen J, Thiele I, *et al* (2018) Recon3D enables a three-dimensional view of gene variation in human metabolism. *Nature Biotechnology* 36
- Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, Mittag F, Schubert M, Glont M, Golebiewski M, van Iersel M, Keating S, Rall M, Wybrow M, Hermjakob H, Hucka M, Kell DB, Müller W, Mendes P, Zell A, *et al* (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. *BMC Systems Biology* 7: 116
- Büchel F, Wrzodek C, Mittag F, Dräger A, Eichner J, Rodriguez N, Le Novère N, Zell A (2012) Qualitative translation of relations from BioPAX to SBML qual. *Bioinformatics* 28: 2648–2653
- Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong MQ, Paley S, Subhraveti P, Weaver DS, Karp PD (2015) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. *Nucleic Acids Research* 44: D471–D480
- Cesario A, Marcus F (2011) *Cancer Systems Biology, Bioinformatics and Medicine: Research and Clinical Applications.* Springer Science & Business Media
- Chance B, Brainerd J, Cajori F, Millikan G (1940) The kinetics of the enzyme-substrate compound of peroxidase and their relation to the Michaelis theory. *Science* 92: 455

- Chance B, Greenstein DS, Higgins J, Yang C (1952) The mechanism of catalase action. II. Electric analog computer studies. *Archives of Biochemistry and Biophysics* 37: 322–339
- Chaouiya C (2007) Petri net modelling of biological networks. Briefings in Bioinformatics 8: 210-219
- Chaouiya C, Bérenguier D, Keating SM, Naldi A, Van Iersel MP, Rodriguez N, Dräger A, Büchel F, Cokelaer T, Kowal B, Wicks B, Gonçalves E, Dorier J, Page M, Monteiro PT, von Kamp A, Xenarios I, de Jong H, Hucka M, Klamt S, *et al* (2013) SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. *BMC Systems Biology* 7: 135

6

8

9

36

40

41

- Chaouiya C, Keating SM, Berenguier D, Naldi A, Thieffry D, Iersel MPv, Le NN, Helikar T (2015) SBML Level 3 package: Qualitative Models, Version 1, Release 1. *Journal of Integrative Bioinformatics* 12: 691–730
- Chaouiya C, Naldi A, Thieffry D (2012) Logical modelling of gene regulatory networks with GINsim, In *Bacterial Molecular Networks*, Springer, pp. 463–479
- Chelliah V, Endler L, Juty N, Laibe C, Li C, Rodriguez N, Le Novère N (2009) Data integration and semantic enrichment of systems biology models and simulations. In *International Workshop on Data Integration in the Life Sciences*. Springer
- Chelliah V, Juty N, Ajmera I, Ali R, Dumousseau M, Glont M, Hucka M, Jalowicki G, Keating S, Knight-Schrijver V, Lloret-Villas A, Natarajan K, Pettit JB, Rodriguez N, Schubert M, Wimalaratne S, Zhou Y, Hermjakob H, Le Novère N, Laibe C (2015) BioModels: ten-year anniversary. *Nucleic Acids Research* 43: D542–D548
- Choi S (2008) Introduction to Systems Biology. Springer Science & Business Media
- Cooper J, Vik JO, Waltemath D (2015) A call for virtual experiments: Accelerating the scientific process. *Progress in Biophysics and Molecular Biology* 117: 99–106
- Cornish-Bowden A, Cárdenas ML (2000) Technological and Medical Implications of Metabolic Control Analysis (Proceedings of the NATO Advanced Research Workshop on Technological and Medical Implications of Metabolic Control Analysis, Visegrád, Hungary, April 1999). Kluwer Academic Publishers
- Courtot M, Juty NJ, Knüpfer C, Waltemath D, Zhukova A, Dräger A, Dumontier M, Finney A, Golebiewski M, Hastings J, Hoops S, Keating S, Kell DB, Kerrien S, Lawson J, Lister A, Lu J, Machne R, Mendes P, Pocock M, *et al* (2011) Controlled vocabularies and semantics in systems biology. *Molecular Systems Biology* 7: 1
- Cvijovic M, Almquist J, Hagmar J, Hohmann S, Kaltenbach HM, Klipp E, Krantz M, Mendes P, Nelander S, Nielsen J, Pagnani A, Przulj N, Raue A, Stelling J, Stoma S, Tobin F, Wodke JAH, Zecchina R, Jirstrand M (2014) Bridging the gaps in systems biology. *Molecular Genetics and Genomics* 289: 727–734
- Dada JO, Spasić I, Paton NW, Mendes P (2010) SBRML: a markup language for associating systems biology data with models. *Bioinformatics* 26: 932–938
- Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, *et al* (2010) The BioPAX community standard for pathway data sharing. *Nature Biotechnology* 28: 935
- Dräger A, Palsson BØ (2014) Improving collaboration by standardization efforts in systems biology. *Frontiers in Bioengineering* 2
- Dräger A, Planatscher H, Wouamba DM, Schröder A, Hucka M, Endler L, Golebiewski M, Müller W, Zell A (2009) SBML2LTEX: Conversion of SBML files into human-readable reports. *Bioinformatics* 25: 1455–1456

Dräger A, Schröder A, Zell A (2010) Automating Mathematical Modeling of Biochemical Reaction Networks, In Systems Biology for Signaling Networks, Choi S, Choi S (eds), New York, NY: Springer New York, ISBN 978-1-4419-5796-2 978-1-4419-5797-9, pp. 159-205 Ebrahim A, Almaas E, Bauer E, Bordbar A, Burgard AP, Chang RL, Dräger A, Famili I, Feist AM, Fleming 4 RMT, Fong SS, Hatzimanikatis V, Herrgård MJ, Holder A, Hucka M, Hyduke D, Jamshidi N, Lee SY, Le Novère N, Lerman JA, et al (2015) Do Genome-scale Models Need Exact Solvers or Clearer Standards? 6 Molecular Systems Biology 11: 831 Edwards JS, Palsson BO (1999) Systems properties of the *Haemophilus influenzae* metabolic genotype. 8 Journal of Biological Chemistry 274: 17410-17416 9 Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca C, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, et al (2017) The Reactome pathway knowledgebase. Nucleic Acids Research 46: D649-D655 Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen, In Systems biology, Springer, pp. 113–167 Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1: 159-162 Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML, Adam L, Anderson JC, Bartley BA, Beal J, Chandran D, Chen J, Densmore D, Endy D, Grünberg R, Hallinan J, Hillson NJ, Johnson JD, et al (2014) The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nature Biotechnology 32: 545 Ganter M, Bernard T, Moretti S, Stelling J, Pagni M (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 29: 815-816 Garfinkel D (1969) Construction of biochemical computer models. FEBS Letters 2: S9-S13 Gauges R, Rost U, Sahle S, Wengler K, Bergmann FT (2015) The Systems Biology Markup Language (SBML) Level 3 Package: Layout, Version 1 Core. Journal of Integrative Bioinformatics 12: 267 Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81: 2340–2361 Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: A language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Computational Biology 6: 1-19 30 Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D (2001) Towards NeuroML: Model Description Methods for Collaborative Modelling in Neuroscience. Philosophical transactions of the Royal Society of London Series B Biological sciences 356: 12091228 Gómez HF, Hucka M, Keating SM, Nudelman G, Iber D, Sealfon SC (2016) MOCCASIN: converting MATLAB ODE models to SBML. Bioinformatics 32: 1905–1906 Harris LA, Hogg JS, Tapia JJ, Sekar JAP, Gupta S, Korsunsky I, Arora A, Barua D, Sheehan RP, Faeder JR (2016) BioNetGen 2.2: advances in rule-based modeling. Bioinformatics 32: 3366–3368 Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Research 41: D456-D463 40 Heinrich R, Schuster S (1996) *The Regulation of Cellular Systems*. New York, NY, USA: Chapman and Hall Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Madrahimov A, Wicks B, Shrestha M, Limbu K, Rogers JA (2012) The Cell Collective: toward an open and collaborative approach to systems biology. *BMC systems biology* 6: 96

Henkel R, Hoehndorf R, Kacprowski T, Knüpfer C, Liebermeister W, Waltemath D (2016) Notions of similarity for systems biology models. *Briefings in Bioinformatics* 19: 77–88

Henkel R, Wolkenhauer O, Waltemath D (2015) Combining computational models, semantic annotations and simulation experiments in a graph database. *Database* 2015

3

8

14

36

- Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. *Nature Biotechnology* 28: 977
- Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B (2003) The complexity of complexes in signal transduction. *Biotechnology and Bioengineering* 84: 783–794
- Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of Physiology* 117: 500–544
- Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI a complex pathway simulator. *Bioinformatics* 22: 3067–3074
- Hübner K, Sahle S, Kummer U (2011) Applications and trends in systems biology in biochemistry. *FEBS Journal* 278: 2767–857
- Hucka M, Bergmann FT, Dräger A, Hoops S, Keating SM, Le Novère N, Myers CJ, Olivier BG, Sahle S, Schaff JC, Smith LP, Waltemath D, Wilkinson DJ (2015a) Systems Biology Markup Language (SBML) Level 2 Version 5: Structures and Facilities for Model Definitions. *Journal of Integrative Bioinformatics* 12: 271
- Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H (2002) The ERATO Systems Biology Workbench: Enabling interaction and exchange between software tools for computational biology. In *Pacific Symposium on Biocomputing*, Altman RB, Dunker AK, Hunter L, Lauderdale K, Klein TE (eds), volume 7. World Scientific Press
- Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JHHS, Hunter PJ, *et al* (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. *Bioinformatics* 19: 524–531
- Hucka M, Nickerson DP, Bader GD, Bergmann FT, Cooper J, Demir E, Garny A, Golebiewski M, Myers CJ, Schreiber F, Waltemath D, Le Novère N (2015b) Promoting Coordinated Development of Community-Based Information Standards for Modeling in Biology: The COMBINE Initiative. *Frontiers in Bioengineering and Biotechnology* 3
- Hucka M, Sauro HM, Finney A, Bolouri H, Doyle J, Kitano H (2001) The ERATO Systems Biology Workbench: An integrated environment for multiscale and multitheoretic simulations in systems biology, In *Foundations of Systems Biology*, Kitano H (ed), chapter 6, MIT Press, pp. 125–143
- Hucka M, Smith LP (2016) SBML Level 3 package: Groups, Version 1 Release 1. *Journal of Integrative Bioinformatics* 13: 8–29
- Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. *Annual Review of Genomics and Human Genetics* 2: 343–372

Juty N, Le Novère N, Laibe C (2012) Identifiers.org and MIRIAM Registry: community resources to provide persistent identification. <i>Nucleic Acids Research</i> 40: D580–6	1 2
Kacser H (1957) Some Physico-Chemical Aspects of Biological Organisation, In <i>The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology</i> , Waddington CH (ed), London: George Allen & Unwin, Ltd., pp. 191–249	3 4 5
Karr JR, Takahashi K, Funahashi A (2015) The principles of whole-cell modeling. <i>Current Opinion in Microbiology</i> 27: 18–24	6 7
Kell DB, Mendes P (2008) The markup is the model: reasoning about systems biology models in the Semantic Web era. <i>Journal of Theoretical Biology</i> 252: 538–543	8
King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE (2016) BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. <i>Nucleic Acids Research</i> 44: D515–D522	10 11 12
Kitano H (2000) Perspectives on systems biology. New Generation Computing 18: 199–216	13
Klipp E, Liebermeister W, Helbig A, Kowald A, Schaber J (2007) Systems biology standards—the community speaks. <i>Nature Biotechnology</i> 25: 390–391	14 15
Klipp E, Liebermeister W, Wierling C, Kowald A, Herwig R (2016) <i>Systems Biology: A Textbook</i> . John Wiley & Sons	16 17
Krause F, Schulz M, Swainston N, Liebermeister W (2011) Sustainable Model Building: The Role of Standards and Biological Semantics, In <i>Methods in Enzymology</i> , Jameson D, Verma M, Westerhoff HV (eds), volume 500 of <i>Methods in Systems Biology</i> , Academic Press, pp. 371–395	18 19 20
Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and merging of SBML models with semanticSBML. <i>Bioinformatics</i> 26: 421–422	21 22
Kuepfer L, Peter M, Sauer U, Stelling J (2007) Ensemble modeling for analysis of cell signaling dynamics. <i>Nature Biotechnology</i> 25: 1001	23 24
Laibe C, Le Novère N (2007) MIRIAM Resources: tools to generate and resolve robust cross-references in Systems Biology. <i>BMC Systems Biology</i> 1: 58	25 26
Lambusch F, Waltemath D, Wolkenhauer O, Sandkuhl K, Rosenke C, Henkel R (2018) Identifying frequent patterns in biochemical reaction networks: a workflow. <i>Database</i> 2018	27 28
Le Novère N (2015) Quantitative and logic modelling of molecular and gene networks. $Nature\ Reviews$ $Genetics\ 16:\ 146–158$	29 30
Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro BE, Snoep JL, Spence HD, Wanner BL (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). <i>Nature Biotechnology</i> 23: 1509–1015	31 32 33 34
Lee DY, Saha R, KhanYusufi FN, Park W, Karimi IA (2009) Web-based applications for building, managing and analysing kinetic models of biological systems. <i>Briefings in Bioinformatics</i> 10: 65–74	35 36
Levin SA, Grenfell B, Hastings A, Perelson AS (1997) Mathematical and Computational Challenges in Population Biology and Ecosystems Science. <i>Science</i> 275: 334–343	37 38

Li P, Dada JO, Jameson D, Spasic I, Swainston N, Carroll K, Dunn W, Khan F, Malys N, Messiha HL, Simeonidis E, Weichart D, Winder C, Wishart J, Broomhead DS, Goble CA, Gaskell SJ, Kell DB, Westerhoff HV, Mendes P, et al (2010) Systematic integration of experimental data and models in systems biology. BMC Bioinformatics 11: 582 Liebermeister W (2008) Validity and combination of biochemical models. In Proceedings of 3rd International ESCEC Workshop on Experimental Standard Conditions on Enzyme Characterizations 6 Lister AL, Lord P, Pocock M, Wipat A (2010) Annotation of SBML models through rule-based semantic integration. Journal of Biomedical Semantics 1: S3 Liu ET, Lauffenburger DA (2009) Systems Biomedicine: Concepts and Perspectives. Academic Press 9 Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML: its future, present and past. Progress in biophysics and molecular biology 85: 433-450 Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I (2011) Modeling formalisms in Systems Biology. AMB Express 1: 45 Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, Greenhalgh K, Jäger C, Baginska J, 14 Wilmes P, Fleming RMT, Thiele I (2017) Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology 35: 81–89 Matsuoka Y, Funahashi A, Ghosh S, Kitano H (2014) Modeling and Simulation Using CellDesigner, In Transcription Factor Regulatory Networks: Methods and Protocols, Miyamoto-Sato E, Ohashi H, Sasaki H, Nishikawa Ji, Yanagawa H (eds), Methods in Molecular Biology, New York, NY: Springer New York, ISBN 978-1-4939-0805-9, pp. 121-145 Mattioni M, Le Novère N (2013) Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PloS One 8: e66811 Medley JK, Choi K, König M, Smith L, Gu S, Hellerstein J, Sealfon SC, Sauro HM (2018) Tellurium notebooks-An environment for reproducible dynamical modeling in systems biology. *PLoS computational biology* 14: e1006220 Mendes P (2018) Reproducible Research Using Biomodels. Bulletin of Mathematical Biology 80: 3081–3087 Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2016) PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research 45: D183-D189 Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, Davit Y, Dunn SJ, Fletcher AG, Harvey DG, Marsh M, Osborne J, Pathmanathan P, Pitt-Francis J, Southern J, Zemzemi N, Gavaghan D (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Computational Biology 9: e1002970 Misirli G, Hallinan J, Wipat A (2014) Composable modular models for synthetic biology. ACM Journal on Emerging Technologies in Computing Systems JETC 11: 22 Moraru I, Morgan F, Li Y, Loew L, Schaff J, Lakshminarayana A, Slepchenko B, Gao F, Blinov M (2008) Virtual Cell modelling and simulation software environment. IET Systems Biology 2: 352-362 Naldi A, Monteiro PT, Müssel C, Consortium for Logical Models and Tools, Kestler HA, Thieffry D, Xenarios I, Saez-Rodriguez J, Helikar T, Chaouiya C (2015) Cooperative development of logical modelling standards and tools with CoLoMoTo. Bioinformatics 31: 1154-1159 40

Neal ML, König M, Nickerson D, Mısırlı G, Kalbasi R, Dräger A, Atalag K, Chelliah V, Cooling MT, Cook DL, Crook S, de Alba M, Friedman SH, Garny A, Gennari JH, Gleeson P, Golebiewski M, Hucka M, Juty N, Myers C, <i>et al</i> (2019) Harmonizing semantic annotations for computational models in biology. <i>Briefings in Bioinformatics</i> 20: 540–550	1 2 3 4
Nickerson D, Atalag K, de Bono B, Geiger J, Goble C, Hollmann S, Lonien J, Müller W, Regierer B, Stanford NJ, Golebiewski M, Hunter P (2016) The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable. <i>Interface Focus</i> 6: 20150103	5 6 7
O'Brien EJ, Monk JM, Palsson BØ (2015) Using genome-scale models to predict biological capabilities. $Cell~161:~971-987$	8
Olivier BG, Bergmann FT (2018) SBML Level 3 Package: Flux Balance Constraints version 2. <i>Journal of Integrative Bioinformatics</i> 15: 20170082	10 11
Olivier BG, Rohwer JM, Hofmeyr JHS (2005) Modelling cellular systems with PySCeS. <i>Bioinformatics</i> 21: 560–561	12 13
Palmisano A, Hoops S, Watson LT, Jones Jr TC, Tyson JJ, Shaffer CA (2014) Multistate Model Builder (MSMB): a flexible editor for compact biochemical models. <i>BMC Systems Biology</i> 8: 42	14 15
Peters M, Eicher JJ, van Niekerk DD, Waltemath D, Snoep JL (2017) The JWS Online simulation database. <i>Bioinformatics</i> 33: 1589–1590	16 17
Ravikrishnan A, Raman K (2015) Critical assessment of genome-scale metabolic networks: the need for a unified standard. <i>Briefings in Bioinformatics</i> 16: 1057–1068	18 19
Rodriguez N, Pettit JB, Dalle Pezze P, Li L, Henry A, van Iersel MP, Jalowicki G, Kutmon M, Natarajan KN, Tolnay D, Stefan MI, Evelo CT, Le Novère N (2016) The systems biology format converter. <i>BMC Bioinformatics</i> 17	20 21 22
Rodriguez N, Thomas A, Watanabe L, Vazirabad IY, Kofia V, Gómez HF, Mittag F, Matthes J, Rudolph JD, Wrzodek F, Netz E, Diamantikos A, Eichner J, Keller R, Wrzodek C, Fröhlich S, Lewis NE, Myers CJ, Le Novère N, Palsson BØ, <i>et al</i> (2015) JSBML 1.0: providing a smorgasbord of options to encode systems biology models. <i>Bioinformatics</i> 31: 3383–3386	23 24 25 26
Roehner N, Beal J, Clancy K, Bartley B, Misirli G, Grünberg R, Oberortner E, Pocock M, Bissell M, Madsen C, Nguyen T, Zhang M, Zhang Z, Zundel Z, Densmore D, Gennari JH, Wipat A, Sauro HM, Myers CJ (2016) Sharing Structure and Function in Biological Design with SBOL 2.0. <i>ACS Synthetic Biology</i> 5: 498–506	27 28 29
Roehner N, Myers CJ (2014) A methodology to annotate systems biology markup language models with the synthetic biology open language. <i>ACS Synthetic Biology</i> 3: 57–66	30 31
Šafránek D, Červený J, Klement M, Pospíšilová J, Brim L, Lazár D, Nedbal L (2011) E-photosynthesis: Web-based platform for modeling of complex photosynthetic processes. <i>Biosystems</i> 103: 115–124	32
Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten Simple Rules for Reproducible Computational Research. <i>PLOS Computational Biology</i> 9: e1003285	34 35
Sansone SA, McQuilton P, Rocca-Serra P, Gonzalez-Beltran A, Izzo M, Lister A, Thurston M, Batista D, Granell R, Adekale M, Dauga D, Ganley E, Hodson S, Lawrence R, Khodiyar V, Tenenbaum J, Axton JM, Ball M, Besson S, Bloom T, <i>et al</i> (2019) FAIRsharing, a community approach to standards, repositories	36 37 38

39

40

Sauro HM (2014) Systems Biology: Introduction to Pathway Modeling. Ambrosius Publishing

and policies. Nature Biotechnology 37

Savinell JM, Palsson BØ (1992) Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. <i>Journal of Theoretical Biology</i> 154: 421–454	1
Scharm M, Waltemath D, Mendes P, Wolkenhauer O (2016a) COMODI: an ontology to characterise differences in versions of computational models in biology. <i>Journal of Biomedical Semantics</i> 7: 46	3
Scharm M, Wolkenhauer O, Waltemath D (2015) An algorithm to detect and communicate the differences in computational models describing biological systems. <i>Bioinformatics</i> 32: 563–570	5
Scharm M, Wolkenhauer O, Waltemath D (2016b) An algorithm to detect and communicate the differences in computational models describing biological systems. <i>Bioinformatics</i> 32: 563–570	7
Schliess F, Hoehme S, Henkel SG, Ghallab A, Driesch D, Böttger J, Guthke R, Pfaff M, Hengstler JG, Gebhardt R, Häussinger D, Drasdo D, Zellmer S (2014) Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. <i>Hepatology</i> 60: 2040–2051	9 10 11 12
Schulz M, Klipp E, Liebermeister W (2012) Propagating semantic information in biochemical network models. <i>BMC Bioinformatics</i> 13: 18	13 14
Schulz M, Krause F, Le Novere N, Klipp E, Liebermeister W (2011) Retrieval, alignment, and clustering of computational models based on semantic annotations. <i>Molecular Systems Biology</i> 7	15 16
Smith LP, Hucka M, Hoops S, Finney A, Ginkel M, Myers CJ, Moraru I, Liebermeister W (2015) SBML Level 3 package: Hierarchical Model Composition, Version 1 Release 3. <i>Journal of Integrative Bioinformatics</i> 12: 268	17 18 19
Stanford NJ, Wolstencroft K, Golebiewski M, Kania R, Juty N, Tomlinson C, Owen S, Butcher S, Hermjakob H, Le Novère N, <i>et al</i> (2015) The evolution of standards and data management practices in systems biology. <i>Molecular Systems Biology</i> 11: 851	20 21 22
Sullivan R (2012) Introduction to Data Mining for the Life Sciences. Springer Science & Business Media	23
Swainston N, Mendes P (2009) libAnnotationSBML: a library for exploiting SBML annotations. <i>Bioinformatics</i> 25: 2292–2293	24 25
Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA (2012) Multi-scale modeling of tissues using CompuCell3D, In <i>Methods in Cell Biology</i> , volume 110, Elsevier, pp. 325–366	26 27
Tanaka S, Sichau D, Iber D (2015) LBIBCell: a cell-based simulation environment for morphogenetic problems. <i>Bioinformatics</i> 31: 2340–2347	28 29
Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, van Iersel M, Lauffenburger DA, Saez-Rodriguez J (2012) CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. <i>BMC Systems Biology</i> 6: 133	30 31 32
The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. <i>Nucleic Acids Research</i> 45: D158–D169	33 34
Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO (2012) Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage. <i>PLOS ONE</i> 7: e45635	35 36 37
Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, <i>et al</i> (2013) A community-driven global reconstruction of human metabolism. <i>Nature Biotechnology</i> 31: 419–425	38 39 40

- Turing AM (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 237: 5–72 Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, 4 Glimelius B, et al (2017) A pathology atlas of the human cancer transcriptome. Science 357: eaan 2507 van Iersel MP, Villéger AC, Czauderna T, Boyd SE, Bergmann FT, Luna A, Demir E, Sorokin A, Dogrusoz U, Matsuoka Y, Funahashi A, Aladjem MI, Mi H, Moodie SL, Kitano H, Le Novère N, Schreiber F (2012) Software support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics 28: 2016–2021 8 Varela PL, Ramos CV, Monteiro PT, Chaouiya C (2019) EpiLog: A software for the logical modelling of 9 epithelial dynamics [version 2; peer review: 3 approved]. F1000Research 7: 1145 Voigt MA, Dräger A, Lloyd C, King ZA, Yang L (2018) draeger-lab/SBMLme: SBMLme converter (Version 0.0.6). Available from Zenodo at https://doi.org/10.5281/zenodo.1238905 Von Bertalanffy L (1950a) An outline of general system theory. The British journal for the philosophy of science 1: 134-165 Von Bertalanffy L (1950b) The theory of open systems in physics and biology. Science 111: 23–29 Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle S, Snoep JL, Le Novère N (2011) Reproducible computational biology experiments with SED-ML-the Simulation Experiment Description Markup Language. BMC Systems Biology 5: 198 Waltemath D, Bergmann FT, Chaouiya C, Czauderna T, Gleeson P, Goble C, Golebiewski M, Hucka M, Juty N, Krebs O, Le Novère N, Mi H, Moraru II, Myers CJ, Nickerson D, Olivier BG, Rodriguez N, Schreiber F, Smith L, Zhang F, et al (2014) Meeting report from the fourth meeting of the Computational Modeling in Biology Network (COMBINE). Standards in Genomic Sciences 9: 1285-1301 Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC systems biology 6: 153 Watanabe LH, Myers CJ (2014) Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits. Frontiers in Bioengineering and Biotechnology 2: 55 Watanabe LH, Myers CJ (2016) Efficient Analysis of Systems Biology Markup Language Models of Cellular Populations Using Arrays. ACS Synthetic Biology 5: 835–841 Weidemann A, Richter S, Stein M, Sahle S, Gauges R, Gabdoulline R, Surovtsova I, Semmelrock N, Besson B, Rojas I, Wade R, Kummer U (2008) SYCAMORE—a systems biology computational analysis and modeling research environment. Bioinformatics 24: 1463–1464 Wilkinson DJ (2018) Stochastic Modelling for Systems Biology, Third Edition. CRC Press Wittig U, Rey M, Weidemann A, Kania R, Müller W (2017) SABIO-RK: an updated resource for manually curated biochemical reaction kinetics. Nucleic Acids Research 46: D656–D660 Wolstencroft K, Krebs O, Snoep JL, Stanford NJ, Bacall F, Golebiewski M, Kuzyakiv R, Nguyen Q, Owen
- Zhang F, Angermann BR, Meier-Schellersheim M (2013) The Simmune Modeler visual interface for creating signaling networks based on bi-molecular interactions. *Bioinformatics* 29: 1229–1230

Nucleic Acids Research 45: D404-D407

S, Soiland-Reyes S, Straszewski J, van Niekerk D, Williams A, Malmström L, Rinn B, Müller W, Goble C (2016) FAIRDOMHub: a repository and collaboration environment for sharing systems biology research.

Zhang F, Meier-Schellersheim M (2018) SBML Level 3 package: Multistate, Multicomponent and Multicompartment Species, Version 1, Release 1. *Journal of Integrative Bioinformatics* 15: 20170077