Math 180B - Gaussian Integers

- 1. (a) Show that a + bi divides c + di if and only if $a^2 + b^2$ divides both of the integers ac + bd and -ad + bc.
 - (b) Suppose that a + bi divides c + di. Show that $a^2 + b^2$ divides $c^2 + d^2$.

- 2. Verify that each of the following subsets R_1 , R_2 , R_3 , and R_4 of the complex numbers is a ring. In each case, describe the ring's units.
 - (a) $R_1 = \{a + bi\sqrt{2} : a, b \in \mathbb{Z}\}.$
 - (b) Let $\omega = -\frac{1}{2} + \frac{1}{2}i\sqrt{3}$. $R_2 = \{a + b\omega : a, b \in \mathbb{Z}\}$.
 - (c) Let p be a fixed (integer) prime. $R_3 = \{a/d : a, d \in \mathbb{Z}, p \nmid d\}$.
 - (d) $R_4 = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}.$

- 3. Factor each of the following Gaussian integers into a product of Gaussian primes.
 - (a) 91 + 63i
 - (b) 975
 - (c) 53 + 62i