Lösungshinweise zur 1. Hausaufgabe

Differential- und Integralrechnung für Informatiker

(H 1)

	A	US(A)	OS(A)	$\min A$	$\max A$	$\inf A$	$\sup A$
a)	$(-\infty,1)\cup\{10\}$	Ø	$[10,\infty)$	A	10	$-\infty$	10
	Q	Ø	Ø	Æ	Æ	$-\infty$	∞
	$(\sqrt{10},\infty)\cap\mathbb{N}$	$(-\infty,4]$	Ø	4	Æ	4	∞
	$(-\infty, \sqrt{5}) \cap (\mathbb{R} \setminus \mathbb{Q})$	Ø	$[\sqrt{5},\infty)$	A	Æ	$-\infty$	$\sqrt{5}$
	$(-\sqrt{30},\sqrt{30})\cap\mathbb{Z}$	$(-\infty, -5]$	$[5,\infty)$	-5	5	-5	5
	$[\sqrt{2},\infty)\cap\mathbb{Q}$	$(-\infty,\sqrt{2}]$	Ø	A	Æ	$\sqrt{2}$	∞
	$(-\infty,\sqrt{2}]\cap\mathbb{Z}$	Ø	$[1,\infty)$	A	1	$-\infty$	1
	$[\sqrt{6},\infty)\cap(\mathbb{R}\setminus\mathbb{Q})$	$(-\infty,\sqrt{6}]$	Ø	$\sqrt{6}$	Æ	$\sqrt{6}$	∞
	$\{x \in \mathbb{R} \mid x^6 + 4x^3 + 4 \le 0\}$	$\left[(-\infty, -\sqrt[3]{2}] \right]$	$[-\sqrt[3]{2},\infty)$	$-\sqrt[3]{2}$	$-\sqrt[3]{2}$	$-\sqrt[3]{2}$	$-\sqrt[3]{2}$

Für die letzte Mengen beachte man, dass

$$x^{6} + 4x^{3} + 4 \le 0 \Leftrightarrow (x^{3} + 2)^{2} \le 0 \Leftrightarrow x^{3} = -2 \Leftrightarrow x = -\sqrt[3]{2}$$
.

- b) Z. B. $M = (-\infty, 0] \cup (1, \pi)$ oder $M = (-\infty, \pi) \cap \mathbb{Q}$.
- c1) $[1,7] \notin \mathcal{U}(7)$, weil $\not\exists r > 0$ mit $B_r(7) = (-r+7,r+7) \subseteq [1,7]$, da, für alle r > 0, die r-Umgebung $B_r(7)$ von 7 auch Zahlen enthält, die > 7 sind, also $B_r(7) \not\subseteq [1,7]$.
- c2) $[6, \infty) \cap \mathbb{N} \notin \mathcal{U}(7)$, weil $\not\exists r > 0$ mit $B_r(7) = (-r + 7, r + 7) \subseteq [6, \infty) \cap \mathbb{N}$, da, für alle r > 0, die r-Umgebung $B_r(7)$ von 7 (wegen der Dichtheitseigenschaft von $\mathbb{R} \setminus \mathbb{Q}$) auch irrationale Zahlen enthält, also $B_r(7) \not\subseteq [6, \infty) \cap \mathbb{N}$.
- c3) $\mathbb{Q} \cup (5,8) \in \mathcal{U}(7)$, weil $B_1(7) = (6,8) \subseteq \mathbb{Q} \cup (5,8)$.
- c4) $\mathbb{Q} \notin \mathcal{U}(7)$, weil $\not\exists r > 0$ mit $B_r(7) = (-r+7, r+7) \subseteq \mathbb{Q}$, da, für alle r > 0, die r-Umgebung $B_r(7)$ von 7 (wegen der Dichtheitseigenschaft von $\mathbb{R} \setminus \mathbb{Q}$) auch irrationale Zahlen enthält, also $B_r(7) \not\subseteq \mathbb{Q}$.