约瑟夫问题

简介

所有人围成一圈,顺时针报数,每次报到q的人将被杀掉,被杀掉的人将从房间内被移走。然后从被杀掉的下一个人重新报数,继续报q,再清除,直到剩余一人

q = 2

对于q为2的情况,有个简单的方法。假设有2ⁿ 个人,从1开始数,那么最后活下来的那个一定是 1.

那么可以借用这个规律,假设有9个人,从1开始数,数到2,杀死,接下来到3的时候,相当于8个人从3开始数,那么根据上面的规律,活下来的就是3了(8==2^3)

规律为: 当q==2时, 2^n+t个人活下来的是第2t+1个人。

e.g. q==2, n<=1e100, 可以用这个思路做。用大数,找到第一个小于等于2^x 的数,直接得ans==2*(n-2^x)+1

q!= 2

设: n+1个数,每次杀第q个的最终结果为A(n+1); n个每次杀第q个为A(n) **显然A(n+1)=(A(n)+q)%(n+1)**, **A(1)==0**

证明:

n+1个人的游戏中,第一个杀掉的是k-1,那么第二个人是k-1+k 。但是我们可以把杀掉一个人后的情况,看成n个人的游戏的开始,也就是说k-1+k看成n个人的游戏中的k-1。所以有A(n+1)=(A(n)+q)% (n+1)

```
int f(int n,int q){
    if(n==1){
        return 0;
    }
    return (f(n-1,q)+q)%n;
}//若第一个编号为1, ans++即可
```

icpc2018沈阳 K

题意:

给出n个人的环,约瑟夫环背景,求第m个死的位置。

解析:

n+1个人第m个死的位置相当于n 个人第m-1个死的位置转k个下标。即A(n,m)=(A(n-1,m-1)+k)%n 当m较小的时候直接推就行了。

对于m=1e18,k=1e6的数据,显然A(n,m)=(A(n-1,m-1)+k)%n的这个%n在很多时候没有用处。

A+xk< n+x

x(k-1) < n-A

x < (k-1)n-A

板子总结

1、题目: n个人, 1至m报数, 问最后留下来的人的编号。

```
公式: f(n,m)=(f(n−1,m)+m)%n, f(0,m)=0;
代码: 复杂度O(n)
```

```
typedef long long 11;
11 calc(int n, 11 m) {
    11 p = 0;
    for (int i = 2; i <= n; i++) {
        p = (p + m) % i;
    }
    return p + 1;
}</pre>
```

2、题目: n个人, 1至m报数, 问第k个出局的人的编号。(k<1e6)

```
公式: f(n,k)=(f(n-1,k-1)+m-1)%n+1
f(n-k+1,1)=m%(n-k+1)
if (f==0) f=n-k+1
```

代码:复杂度O(k)

```
11 cal1(ll n, ll m, ll k) { // (k == n) equal(calc)
    ll p = m % (n - k + 1);
    if (p == 0) p = n - k + 1;
    for (ll i = 2; i <= k; i++) {
        p = (p + m - 1) % (n - k + i) + 1;
    }
    return p;
}</pre>
```

3、题目: n个人, 1至m报数, 问第k个出局的人的编号。 (m<1e6)

代码:复杂度O(m*log(m))

```
11 cal2(11 n, 11 m, 11 k) {
    if (m == 1) return k;
    else {
        11 a = n - k + 1, b = 1;
        11 c = m % a, x = 0;
        if (c == 0) c = a;
        while (b + x <= k) {
            a += x, b += x, c += m * x;
            c %= a;
            if (c == 0) c = a;
            x = (a - c) / (m - 1) + 1;
        }
        c += (k - b) * m;
        c %= n;
        if (c == 0) c = n;
</pre>
```

```
return c;
}
}
```