General recommendations:

- Write the solutions in CLEAR and READABLE way on paper and show (qualitatively) all the relevant plots.
- Avoid (if not required) theoretical introductions or explanations covered during the course.
- Always state the assumptions and report all relevant steps/discussion/formulas/expression to present and motivate your solution.
- When using hypothesis tests provide the numerical value of the test statistic and the test conclusion in terms of p-value.
- Exam duration: 2h
- Multichance students should skip: point b) in Exercise 1, point a) in Exercise 2

Exercise 1 (15 points)

The concentration of a contaminant (measured in ppm) in the production of synthetic rubber is monitored over time. '230609 ex1.csv' contains the measurements collected in 50 consecutive samples.

- a) Being known that a negative value is the result of a temporary miscalibration of the measuring device, fit a suitable model to these data;
- b) Based on the result of point a), estimate the 95% prediction interval for the contaminant concentration in the next sample.
- c) Based on the result of point a), design an appropriate control chart for these data with $ARL_0 = 250$.
- d) From historical data, it is known that the most appropriate model for this process yielded a standard deviation of residuals equal to $\sigma_{\varepsilon} = 2.5$. Determine, with a statistical test, if the model fitted at point a) is such that the standard deviation of residuals is greater than this value (report also the p-value of the test). Discuss the result.

Exercise 2 (15 points)

A company produces aluminum laminates. The quality control department has recently introduced a statistical monitoring tool to keep under control the planarity of the laminates. It consists of an \bar{X} control chart designed such that the number of samples before a false alarm is equal to 250.

- a) Estimate and draw the curves of ARL_1 as a function of the mean shift δ expressed in standard deviation units with a sample size n=4 and n=8, respectively (show the two curves for $\delta \in [0\ 2]$ and report the ARL_1 values for $\delta=1$ and $\delta=2$).
- b) Estimate and draw the curves of ARL_1 as a function of the sample size n for two values of the shift, $\delta=1$ and $\delta=2$, where δ is expressed in standard deviation units (show the two curves for $n\in[2\ 20]$ and report the ARL_1 values for n=3 and n=6).
- c) The head of the quality control department is interested in selecting an optimal sample size n to minimize the lack of quality costs in the presence of a mean shift equal to $\delta=2$ standard deviation units. Knowing that samples are gathered every 4 hours, the cost of planarity measurements for each laminate is $C_1=2$ and an extra cost equal to $C_2=15$ is due for each hour spent in the out-of-control state, determine the optimal sample size that minimizes the overall expected costs (assume the cost of the process in its incontrol state as a reference baseline). Discuss the results.

Exercise 3 (3 points)

A quality characteristic X_t follows a stationary AR(1) model $X_t = \xi + \phi_1 X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ with positive autocorrelation coefficient and known σ_{ε}^2 . Let $E(X_t) = \mu$ and $V(X_t) = \sigma^2$. Compute the expressions of ξ and ϕ_1 as functions of μ , σ^2 and σ_{ε}^2 .