

SEQUENCE LISTING

<110> Dale, James Langham
Harding, Robert Maxwell
Becker, Douglas Keith
Hafner, Gregory John
Yang, Ilin

<120> Transcriptional Control Element, Chimeric Constructs and Uses
Therefor

<130> 21415-0013

<140> 10/521,571
<141> 2005-01-18

<150> PCT/AU2003/000919
<151> 2003-07-17

<150> USSN 60/396,912
<151> 2002-07-17

<160> 29

<170> PatentIn version 3.2

<210> 1
<211> 6523
<212> DNA
<213> Taro bacilliform virus

<400> 1
atggcaaaga aatttgaagc agctattaaa gactggtatg ataaactctcg acgagcagat 60
ctttcctatac ttgaccttagc caccactaca aaaccttctg catcacaatt agctcataat 120
ctacaagtca ttttgatag attatcctta cattcttcag tctccattaa ggaacattac 180
gaagtagtta gcaaacttca ttcttgaa aaatctatag aagaattaaa gtctgaattg 240
actacggtca aaagggtttt aacttctatac caaaaagaag tttcaccca caaaccctc 300
acagcacagg aagtgc当地 ccttgcacaa agtctgatca aagaacctaa gcaaataaaaa 360
cagcaggccg tatttcttctt aaaggagctt aaagaacaaa cagcaaaaaat tcaagctttg 420
ctccacgagc ttaaaagtgtt atgtctgtac ctaattccac atacccaggg tacatcaaaa 480
gtttagaaga aacaaaagtc ttaggagatc catctgtagg .attctctgaa attcctacca 540
ctgctatcgg aaccgctaca ggaaaaataa ctctttataa gcagaacaat acaatcatca 600
atctgcttat atctcttcat aaaaagggttg atagcctctc caaaaagaca gacgtcgacg 660
agttagccac tgagttgtcc aaactcacaa tcaaggatac cccaaagggtt aaggctaaaa 720

ctcctctata cgtcttcaag agtccccgtc ttatcctcga agaggaaaga tataaaatcg	780
gccttcctcc taccactacc gattggactt ggcctgttagg acatcctttt gtcctccac	840
caaaaacatc cacaaaggca tccacacctt cttaaagatg tcttagcag ttcgtatcg	900
tggttccaac cttccacact cttctacagt ccctagtcag caggaccaga ttcgggatta	960
tagaaacatg caaagagttc gtcatacagc ggaaagagca gcaaggagaa tcttcctgg	1020
aagattcaat agaactctgg aatcacaaat caatccagag gcagaaatcc gtcttctca	1080
acaaagacga gcagcaatgg tcccagcaga agtattatac aatacttctc catcaacaag	1140
aatcagaaa gtgtatcagc actattctga agaaagaatt ctttgtacag gacaaaatca	1200
gcaattaaat ttgccattta ttaatgaatc ttcttacaga gccctcagag aatcaggtca	1260
acagcatctt cacataggcc tgatcatgat tcgtgtacat cctcttcattc ggcgaaatgc	1320
aggaacgaca gctcttattt tccctcgaga cataagatgg aatgatgaca gatctatcat	1380
tggcaccatg gagatagatc tcagcgccgg atcccaaatt gtttatattt ccccaaataat	1440
catgctatct gttgaagatt tttatcgaa catacaactt gcgattcaaa ctcagggcta	1500
tgaaaactgg aactctgccg agagtaactt gctcatctc cgcgctcttta ttggcgtct	1560
gacaaacgac agttttacag gattccagta caatatctt aatgttgctg agtacttgca	1620
cagtcatggt gtgcaagcta ttgaaggaca agtcatcca agaaccctcg gcaatcgatg	1680
gatcctacaa gcaccagcac caccaaggc tctcggttcca caaaacgtgg agaccaccac	1740
tcttcggat ggtatgtt ctatacgttt ctccaattac catcaagcac cagttatga	1800
tactcaggat aattctcatc ctgatatcca agaagacgaa aaccaattca ttggtttct	1860
ttctgattt gggaaagaat atgaatttga gtatccttct ttcaactccag ttcatgcaga	1920
tgaattcatt tttataatca ttaatggga agaaattccc gatgattttg tctcatctt	1980
ttgttccaat ttctctcctc caccaattcc agaaccagaa cccacagcca ttgaagaaac	2040
agctttact ttggaagaac aattcaatga cctggactat cctaccctca tttcaatgg	2100
aaaacaatta gtccagtctt cagttacttc agcttacaac ccacccacag aacctttat	2160
gggtcaggta gtctatccac cagcatctgc accttagacca caagctgaaa cttttcaac	2220
ctctgaaaga ttcaaaaatt tcagagcaaa gccatatagt accccgacta ttttcctacc	2280
tccagcatac aatcaacaag gggctatatt agttcttcct gatgacattt gcttatatga	2340
agataccatt tctcggttggg agtccattac tctcaacatg atgaatgaaa aggtttggcc	2400
atcaaatgaa gcaaaggcca aatatatgga aaatcttta ggagaaatgg agaagaagac	2460

atggatacaa tggaggacca catatgtatc cgaatatgtat gctttggtcc aacaaagtga 2520
tgaaacacag aacccctgt ctcaggtaag gaggatattt ctgctacaag acccatatca 2580
aggatcaact gcggaacaag atcaggcata taatgtatctt gaaagaattt cttgtgataa 2640
tattaaggat ttaattcctt atctgattca gttccgcaat ttagctgcaa aatctggacg 2700
cttgttctta ggtccagaat tatctgaaaa attattcaga aaaatgccgc ctctaataagg 2760
caaagaaatt gaaacagcat tcatacgaaa gcatggtaat gcaaacatca ctgttatgcc 2820
tcgcattcat ttgcattacc attatcttgc tgaattatgt aaaaaggcag cattacagag 2880
atcattgaag gatctcagct tctgcaacca gattcctctc ccaggaatct atacaaaagg 2940
caacaagaag ttggcttc gaaaggccag aacatacataa ggaaaaccac atccaacaca 3000
tgtacggta ttcaaaaagg caaaatacca gcgtacaaag aagtgc当地 gctttatatg 3060
tggtaacca ggacattttg ctcgagaatg cacaaagcaa agaggaaata ttgtacgagc 3120
aacagtagcat caagaactgg ccataccaga taattttgat gttttctg tggatgcaga 3180
tgaatctgac agctctggca tctacagtta ttcggaaaat gaagctcctc tgcaagaagt 3240
aaattcttc attcatgatg aaaatatctt ttcctatct gatgcagacg agtttgc当地 3300
cccacaacag catcttcatg aaacgtaaa tatgcttcaa tctagatctg cttatattacc 3360
tcaagtagct gtggagaag aaaaattgaa ttgttagtcac attggctac aagatgttga 3420
tattccatct gataagcaca aatgccacac atgtagaaga gacactcaga aacattacag 3480
actggaatgt caaaaatgca aattcttggt ttgctacta tgcacaattc catatctcg 3540
aatcaccatg caattcagggc aaaagcaaaa atctcagcct gaaaacccaa acttagtccg 3600
agaattgtta gaacatgcca tttttctaga agaaaaatgc aaaaatcaag aattactgtc 3660
agaaaactcg atagaaagga tagtcagttc tgaaaaacaa gtcaaatttt atggcatcct 3720
tcctacaaaa aagtccaaaca aatctgctgg gtatgactta caatccaaaca ttgatataaga 3780
aatccccca gggaaaatgta cagtcatttc tactggaaacc tttctacaaa tgcctgacaa 3840
catgtatggt agactttagaa aagaacatc tttggcaata caggggatta cagtc当地agg 3900
aggagtcatt gacccagact tcacaggaga aatacagatt gttctttca atcataatac 3960
tgctccttat cctgtgaaga aaacttacag attggctcaa attatcttgc agaaaatttt 4020
tactccaaatc ttcatcaag aacccctcac ttcaactcaa caaggttctt caaattttgg 4080
cagtc当地ggct aacccctcac aaatcacaga aataatagag gttatgtctg aacagttgc 4140

aaatcagggtt gcaaaaatcta gtgtgctacc acgattatat tccattcaag cacatattca	4200
tattgcacca gatattgtta tttctacaac tgccatcatt gatacaggag caacagtctg	4260
ttgttatatct gaaaagatacg taccagaagc agccaaagaa cagctcaatt acaaagttaa	4320
catttctggt atttcatctc aacagcaaat tcagcataga ctgaaaagag gtacattaga	4380
aattgcatca aataaatatg ctctaccatt gtgttatatc attgaactca atgataaaga	4440
tgattttct atgattcttg gatgcaattt ctttaaacat atggggggag gaatgaggtt	4500
tgaaggacct catgttactt tttacaaagg aattactacc ttgagcacct catatgcaaa	4560
tactggtatac gatactgaac atgaacaaat taccagtaca acctctcagt cttttaaaga	4620
aagattttct cccttaatga atgaacttaa agcagcaggc tacattggag aagatcctct	4680
caaacattgg tctaaaaaca aagtcacatg caaatttagac ctgaagaata cagagattac	4740
tattcaggat aagcccttaa gacacatcac acctgctctg gaacaatcat atggcgtca	4800
tgttaatgct ctactcatgc ttaaggttat tcaaccttcc aaaagttagac acagaacaat	4860
ggcttccta gtaaactctg gcaccactgt tacagctgat ggaaaagaaa tcaaaggtaa	4920
agagcgtatg gtcttaatt acaaagccct caatgacaac acctacaaag accaatactc	4980
attaccaaattt attcagctta ttttggaaaaa ggtgatcaat agcactatct attctaaatt	5040
tgatctgaaa tctggtttc accaagttgc tatggatccc gattctgtgg aatggacagc	5100
tttcctagtt ccacaagggtt tataatgatg gctggcaatg cctttggcc tcaaaaatgc	5160
tccagccgta tttcaaagaa aaatggatgc agtattcaaa gggtgtgaaa aattcctcgc	5220
agtctatattt gatgatattc tggtatttc aaacaatgag gaagatcatg caaaacacct	5280
ggtcatcatg cttagcgtt gtaaagaaca tggcttggtt cttagcaccta caaaaatgaa	5340
tattgcagtt agagaagtta attttcttgg agccactatt ggcagcagaa aagttaaact	5400
ccaagaaaat attatcaaga agatccttga ctggataca gagaaacttc aatcaaaaaa	5460
gggtcttcgt tcatttctgg gaattcttaa ctatgccccga aatcatattc caaatctcgg	5520
gaaaatagcc ggacctctct attccaaaac ttccatataat ggtgatataca gattttcagc	5580
atctgattgg aagttaatca atgaaatcaa ggctattgtt gagaagctcc caccacttga	5640
ttatcctcca gaacaaggct acatcattat tgaatctgat gggtgtatgg aaggatgggg	5700
cgctatttgtt aaatggaagc tcgcagaata tgaccccaag tcaagtgaac aaatttgc	5760
gtatgctagt ggtttttctt ctccaaatcaa atccactatc gacgcagaaaa ttactgccgc	5820
catgaaagggtt tagaaagcat tcaagatcca ttacttggat aaacaaaaaaa taaccctccg	5880

cactgattgc caggcaatca tctcattctg caacaagact tcagtcaaca agccttcacg	5940
ggtagatgg ttgaagttca ttgattatat tactaacact ggaattgatg ttaaatttga	6000
acatattgtat gctaaaaata atgtcttagc tgacactctg tccaggttag ttaacacttt	6060
gcaggatttg ccatggctag atgaacctca tcaggatcaa acagtctccc tgatgcagga	6120
aattgaagat gcacctcttg aaatcaagca gcgttctta acctgcttac agagactgat	6180
ctgtagaagc ttcatggaag attctacaga agaagctatt cacttcctcg aagatgataa	6240
gatcgagcca acagctgagt catcaacccc aattactttg gatgaatttt caagaaaaag	6300
attccaagaa catacagatc tcttagaaga atttcaatta actttgcttc aaattaatct	6360
tcttgaagca tctcttcatg aacgattaat gaaatgccaa agttatgcaa cgagagataa	6420
tttctgggaa gattggctgc ctgaagctcg cagagatctt ttgcaaattc aactagccaa	6480
agaaaatcatc gagaaggttc gtgaaaagct tcactctatc tag	6523

<210> 2
 <211> 7458
 <212> DNA
 <213> Taro bacilliform virus

<400> 2	
tggtatcaga gctatggta tgttttctat ggctatggca gcgtaaactt cttctgctca	60
agagggaaat ctaccatgtc ttttatttgc tgatgcaact tcatttaatt tgcctatatt	120
ttgtttgata tatctcatta tttgttagcc tcgtacttac agtacagacc gataacataa	180
ggtaagctaa ggttagcagggc aaaagaggga acaaagttagc cgcaggagaa aggcgaagaa	240
gtaccgtgag tcttctaccc gaaacttact aagtgttatt tctatctggg atagtttagg	300
tcttggaaaa taatgcgacc ttacaattat atgatttata tcacattta tggcaaagaa	360
atttgaagca gctattaaag actggtatga taactctcgca cgagcagatc tttcctatct	420
tgacctagcc accactacaa aaccttctgc atcacaatta gctcataatc tacaagtcat	480
ttttgataga ttatccttac attcttcagt ctccattaag gaacattacg aagtagtttag	540
caaacttcat tctttggaaa aatctataga agaattaaag tctgaattga ctacggtaaa	600
aagggcttta acttctatcc aaaaagaagt tttcacccac aaacccctca cagcacagga	660
agtgc当地 cttgc当地 aactgtatca agaacatca agaatagaac agcaggccgt	720
atttcttcta aaggagctt aagaacaaac agcaaaaatt caagcttgc tccacgagct	780
taaaagttga tgtctgtacc taattccaca tacccagggt acatcaaaag tttagaagaa	840

acaaaagtct taggagatcc atctgttagga ttctctgaaa ttcctaccac tgctatcgga	900
accgctacag gttttcaac tcttataag cagaacaata caatcatcaa tctgcttata	960
tctcttcata aaaagggttga tagcctctcc aaaaagacag acgtcgacga gttagccact	1020
gagttgtcca aactcacaat caaggatacc ccaaaggta aggctaaaac tcctctatac	1080
gtcttcaaga gtccccgtct tatecctcgaa gaggaaagat ataaaatcg cgcccttcct	1140
accactaccg attggacttg gcctgttagga catcctttg ctccctccacc aaaaacatcc	1200
acaaaggcat ccacctcttc ttaaagatgt cttagcagt tcgtgatcgt ggttccaacc	1260
cttccacctc ttctacagtc cctagtcagc aggaccagat tcgggattat agaaacatgc	1320
aaagagttcg tcatacagcg gaaagagcg caaggagaat ctccctgga agattcaata	1380
gaactctgga atcacaaatc aatccagagg cagaaatccg tcttctcaa caaagacgag	1440
cagcaatggc cccagcagaa gtattataca atacttctcc atcaacaaga aatcagaaag	1500
tgtatcagca ctattctgaa gaaagaattc tttgtacagg acaaattcag caattaaatt	1560
tgccatttat taatgaatct tcttacagag ccctcagaga atcaggtcaa cagcatctc	1620
acataggcct gatcatgatt cgttacatc ctcttcatcg gcgaaatgca ggaacgacag	1680
ctcttattgt ccctcgagac ataagatgga atgatgacag atctatcatt ggcaccatgg	1740
agatagatct cagcgccgga tcccaaattt tttatattgc cccaaatatc atgctatctg	1800
ttgaagattt ttatcgcaac atacaacttg cgattcaaac tcagggctat gaaaactgga	1860
actctgccga gagtaacttg ctcatctctc gcgcctttat tggcgtctg acaaacgaca	1920
gttttacagg attccagttac aatatctcta atgttgctga gtacttgcac agtcatggtg	1980
tgcaagctat tgaaggacaa gtcatccaa gaaccctcgga caatcgatgg atcctacaag	2040
caccagcacc accaaggctt ctcgttccac aaaacgtgga gaccaccact ctctggatg	2100
gtaatgtgtc tatacgtttc tccaaattacc atcaagcacc agttaatgtat actcaggata	2160
attctcatcc tgatatccaa gaagacgaaa accaattcat tggttttctt tctgatttgg	2220
ggaaagaata tgaattggag ttcacttctt tcactccagt tcacgcagat gaattcattt	2280
ttataatcat taatggggaa gaaattcccg atgattttgt ctcatcttt tggcgtctg	2340
tctctccctcc accaattcca gaaccagaac ccacagccat tgaagaaaca gctttactt	2400
tggaaagaaca attcaatgac ctggactatc ctaccctcat ttcaatggaa aaacaattag	2460
tccagtcttc agttacttca gcttacaacc cacccacaga acctctttagt ggtcaggtag	2520

tctatccacc	agcatctgca	cctagaccac	aagctgaaac	ttcttcaacc	tctgaaagat	2580
tcaaaaattt	cagagcaaag	ccatatagta	ccccgactat	tttcctcacct	ccagcataca	2640
atcaacaagg	ggctatatta	gttcttcctg	atgacattgg	cttatatgaa	gataccattt	2700
ctcggtggga	gtccattact	ctcaacatga	tgaatgaaaa	ggttggcca	tcaaatgaag	2760
caaaggccaa	atatatggaa	aatctcttag	gagaaatgga	gaagaagaca	tggatacaat	2820
ggaggaccac	atatgtatcc	gaatatgatg	cttggtcca	acaaagtgtat	gaaacacaga	2880
acctcctgtc	tcaggttaagg	aggatatttc	tgctacaaga	cccatatcaa	ggatcaactg	2940
cggaacaaga	tcaggcatat	aatgatcttgc	aaagaatttc	ttgtgataat	attaaggatt	3000
taattccta	tctgattcag	ttccgcattt	tagctgaaaa	atctggacgc	ttgttcttag	3060
gtccagaatt	atctgaaaaaa	ttattcagaa	aaatgccgcc	tctaataaggc	aaagaaatttgc	3120
aaacagcatt	catagcaaag	catggtaatg	caaacatcac	tgttatgcct	cgcattcatt	3180
ttgcttacca	ttatcttgct	gaattatgta	aaaaggcagc	attacagaga	tcattgaagg	3240
atctcagctt	ctgcaaccag	attcctctcc	caggaatcta	tacaaaaggc	aacaagaagt	3300
ttggtcttcg	aaaggccaga	acatacaaag	gaaaaccaca	tccaacacat	gtacgggtat	3360
tcaaaaaggc	aaaataccag	cgtacaaaga	agtgc当地	ctttatatgt	ggtgaaccag	3420
gacattttgc	tcgagaatgc	acaaagcaaa	gaggaaatat	tgtacgagca	acagtacatc	3480
aagaactggc	cataccagat	aattttgatg	ttgtttctgt	ggatgcagat	gaatctgaca	3540
gctctggcat	ctacagttat	tcggaaaaatg	aagctcctct	gcaagaagta	aattcttca	3600
ttcatgatga	aaatatctt	ttcctatctg	atgcagacga	gtttgaaagc	ccacaacagc	3660
atcttcatga	aacggtaaat	atgcttcaat	ctagatctgc	ttatattacct	caagtagctg	3720
ttggagaaga	aaaattgaat	tgtagtcaca	tttggctaca	agatgttgat	attccatctg	3780
ataagcacaa	atgccacaca	tgtagaagag	acactcagaa	acattacaga	ctgaaatgtc	3840
aaaaatgcaa	attcttggtt	tgctcaactat	gcacaattcc	atatctcgga	atcaccatgc	3900
aattcaggca	aaagcaaaaa	tctcagcctg	aaaacccaaa	cttagtccga	gaattgttag	3960
aacatgccat	ttttcttagaa	gaaaaatgca	aaaatcaaga	attactgtca	gaaactcaga	4020
tagaaaggat	agtcagttct	gaaaaacaag	tcaaattttt	tggcatcctt	cctacaaaaaa	4080
agtccaaacaa	atctgctggg	tatgacttac	aatccaacat	tgatataaaaa	atcccggccag	4140
gaaaatgtac	agtcatttct	actggAACCT	ttctacaaat	gcctgacaac	atgtatggta	4200
gactttaga	aagaacatct	ttggcaatac	aggggattac	agtacaagga	ggagtcatttgc	4260

acccagactt cacaggagaa atacagattg ttctttcaa tcataatact gtccttac	4320
ctgtgaagaa aacttacaga ttggctcaaa ttatcttga gaaattttat actccaatct	4380
tcattcaaga acctttcact tcaactcaac aaggtttttc aaattttggc agtacagcta	4440
aacctctaca aatcacagaa aatatagagg ttatgtctga aacagttgca aatcaggttg	4500
caaaaatctag tgtgctacca cgatttatatt ccattcaagc acatattcat attgcaccag	4560
atattgttat ttctacaact gccatcattt atacaggagc aacagtctgt tgtatatctg	4620
aaaagatagt accagaagca gccaaagaac agctcaatta caaagttaac atttctggta	4680
tttcatctca acagcaaatt cagcatagac tgaaaagagg tacattagaa attgcatcaa	4740
ataaaatatgc tctaccattt tgttatatca ttgaactcaa tgataaagat gattttctt	4800
tgattcttgg atgcaatttc tttaaacata tggggggagg aatgagggtt gaaggacctc	4860
atgttacttt ttacaaagga attactacct tgagcacctc atatgcaaatt actggatcg	4920
atactgaaca tgaacaaatt accagtacaa ccttcagtc tttaaagaa agattttctc	4980
ccttaatgaa tgaactaaa gcagcaggct acattggaga agatcctctc aaacatttgt	5040
ctaaaaacaa agtcacatgc aaatttagacc tgaagaatac agagattact attcaggata	5100
agcccttaag acacatcaca cctgctctgg aacaatcata tggcgtcat gttaatgctc	5160
tactcatgct taaggttatt caaccccca aaagtagaca cagaacaatg gctttcttag	5220
taaactctgg caccactgtt acagctgatg gaaaagaaaat caaaggtaaa gagcgtatgg	5280
tcttaatta caaagccctc aatgacaaca cctacaaaga ccaatactca ttaccaaata	5340
ttcagcttat tttgaaaaag gtgatcaata gcactatcta ttctaaattt gatctgaaat	5400
ctggtttca ccaagttgct atggatcccg attctgtgga atggacagct ttcctagttc	5460
cacaaggaaa atatgaatgg ctggcaatgc cttttggcct caaaaatgct ccagccgtat	5520
ttcaaaagaaa aatggatgca gtattcaaag ggtgtaaaa attcctcgca gtctatattg	5580
atgatattct ggtatttca aacaatgagg aagatcatgc aaaacacctg gtcatcatgc	5640
ttcagcggtg taaaagacat ggtttgttc tttcacctac aaaaatgaat attgcagtt	5700
gagaagttaa ttttcttggc gccactattt gcagcagaaa agttaaactc caagaaaata	5760
ttatcaagaa gatccttgac tttgatacag agaaaacttca atcaaaaaag ggtttcggt	5820
catttctggg aattcttaac tatgccccaa atcatattcc aaatctcgaaa aaaaatagccg	5880
gacctctcta ttccaaaact tccatataatg gtgatatcag attttcagca tctgattgg	5940

agttaatcaa	tgaaatcaag	gctattgtt	agaagctccc	accacttgat	tatcctccag	6000		
aacaaggcta	catcatttatt	gaatctgatg	gttgtatgga	aggatggggc	gctatttga	6060		
aatggaaagct	cgcagaatat	gaccccaagt	caagtgaaca	aatttgtcg	tatgctagtg	6120		
gtaaaattctc	tccaatcaaa	tccactatcg	acgcagaaat	tactgccg	atggaagggt	6180		
tagaagcatt	caagatccat	tacttggata	aacaaaaat	aaccctccgc	actgattgcc	6240		
aggcaatcat	ctcattctgc	aacaagactt	cagtcaacaa	gccttcacgg	gttagatggt	6300		
tgaagttcat	tgattatatt	actaacactg	gaattgatgt	taaattt	gaa catattgatg	6360		
ctaaaaataa	tgtcttagct	gacactctgt	ccaggttagt	taacacttt	gaggattgc	6420		
catggctaga	tgaacctcat	caggatcaaa	cagtccct	gatgcaggaa	attgaagatg	6480		
cacctcttga	aatcaagcag	cgttctttaa	cctgcttaca	gagactgatc	tgtagaagct	6540		
tcatggaaga	ttctacagaa	gaagctattc	acttcctcga	agatgataag	atcgagccaa	6600		
cagctgagtc	atcaaccca	attactttgg	atgaattt	tc aaaaaaga	ttccaagaac	6660		
atacagatct	tttcaattaa	cttgcttca	aattaatctt	cttgaagcat	ctcttcatga	6720		
acgattaatg	aaatgccaaa	gttatgcaac	gagagataat	ttctggggag	atggctg	6780		
atggctg	tgaagctcgc	agagatctt	tgcaaattca	actagccaaa	gaaatcatcg	6840		
agaaggttcg	tgaaaagctt	cactctatct	agataggatt	cttgtgtgt	gagtggcgca	6900		
cttgcgcata	atgttagtaag	gaattattgt	actttacgc	tggacgcccac	taggctccat	ctttctgt	6960	
atgtcacatc	actttacga	attgagc	ctc gggagccgt	tcgtaca	aaag	7020		
tagatgctt	tctagtcaca	tctgacttt	ctaaaagcag	atgc	catcaa	cttattcga	7080	
gtttagc	ctc	ggggagccgc	tcgtttaaag	atgctttt	gaaaatgaca	gcgcgtgg	7140	
cgatgtcatt	ctcac	tttt	cttaatgcg	tcggccac	actgcattat	tgagattctc	7200	
ttatccctt	gccac	ctcat	cggttgcatt	attgggattt	cgtatcgagt	cgagggacga	7260	
ggcctccact	actc	cctataa	aaggac	ctca	acc	ctcaga	agaacggcaa	7320
ccgaacttcc	catt	cttctc	ttgagt	cttt	cttgcag	ct tgag	ttgtg	7380
catagttct	aagt	ctccga	agaac	gagca	ccgt	tcgtg	aaggagccga	7440
accacactt	ttctac	ct						7458

<210> 3
 <211> 146
 <212> PRT
 <213> Taro bacilliform virus

<400> 3

Met Ala Lys Lys Phe Glu Ala Ala Ile Lys Asp Trp Tyr Asp Asn Ser
1 5 10 15

Arg Arg Ala Asp Leu Ser Tyr Leu Asp Leu Ala Thr Thr Thr Lys Pro
20 25 30

Ser Ala Ser Gln Leu Ala His Asn Leu Gln Val Ile Phe Asp Arg Leu
35 40 45

Ser Leu His Ser Ser Val Ser Ile Lys Glu His Tyr Glu Val Val Ser
50 55 60

Lys Leu His Ser Leu Glu Lys Ser Ile Glu Glu Leu Lys Ser Glu Leu
65 70 75 80

Thr Thr Val Lys Arg Ala Leu Thr Ser Ile Gln Lys Glu Val Phe Thr
85 90 95

His Lys Pro Leu Thr Ala Gln Glu Val Gln Thr Leu Ala Gln Ser Leu
100 105 110

Ile Lys Glu Pro Lys Gln Ile Glu Gln Gln Ala Val Phe Leu Leu Lys
115 120 125

Glu Leu Lys Glu Gln Thr Ala Lys Ile Gln Ala Leu Leu His Glu Leu
130 135 140

Lys Ser
145

<210> 4

<211> 144

<212> PRT

<213> Taro bacilliform virus

<400> 4

Met Ser Val Pro Asn Ser Thr Tyr Pro Gly Tyr Ile Lys Ser Leu Glu
1 5 10 15

Glu Thr Lys Val Leu Gly Asp Pro Ser Val Gly Phe Ser Glu Ile Pro
20 25 30

Thr Thr Ala Ile Gly Thr Ala Thr Gly Phe Ser Thr Leu Tyr Lys Gln
35 40 45

Asn Asn Thr Ile Ile Asn Leu Leu Ile Ser Leu His Lys Lys Val Asp
50 55 60

Ser Leu Ser Lys Lys Thr Asp Val Asp Glu Leu Ala Thr Glu Leu Ser
65 70 75 80

Lys Leu Thr Ile Lys Asp Thr Pro Lys Val Lys Ala Lys Thr Pro Leu
85 90 95

Tyr Val Phe Lys Ser Pro Arg Leu Ile Leu Glu Glu Glu Arg Tyr Lys
100 105 110

Ile Gly Leu Pro Pro Thr Thr Asp Trp Thr Trp Pro Val Gly His
115 120 125

Pro Phe Ala Pro Pro Pro Lys Thr Ser Thr Lys Ala Ser Thr Ser Ser
130 135 140

<210> 5

<211> 1881

<212> PRT

<213> Taro bacilliform virus

<400> 5

Met Ser Leu Ala Val Arg Asp Arg Gly Ser Asn Pro Ser Thr Ser Ser
1 5 10 15

Thr Val Pro Ser Gln Gln Asp Gln Ile Arg Asp Tyr Arg Asn Met Gln
20 25 30

Arg Val Arg His Thr Ala Glu Arg Ala Ala Arg Arg Ile Phe Pro Gly
35 40 45

Arg Phe Asn Arg Thr Leu Glu Ser Gln Ile Asn Pro Glu Ala Glu Ile
50 55 60

Arg Leu Ser Gln Gln Arg Arg Ala Ala Met Val Pro Ala Glu Val Leu
65 70 75 80

Tyr Asn Thr Ser Pro Ser Thr Arg Asn Gln Lys Val Tyr Gln His Tyr

85 90 95

Ser Glu Glu Arg Ile Leu Cys Thr Gly Gln Asn Gln Gln Leu Asn Leu
100 105 110

Pro Phe Ile Asn Glu Ser Ser Tyr Arg Ala Leu Arg Glu Ser Gly Gln
115 120 125

Gln His Leu His Ile Gly Leu Ile Met Ile Arg Val His Pro Leu His
130 135 140

Arg Arg Asn Ala Gly Thr Thr Ala Leu Ile Val Pro Arg Asp Ile Arg
145 150 155 160

Trp Asn Asp Asp Arg Ser Ile Ile Gly Thr Met Glu Ile Asp Leu Ser
165 170 175

Ala Gly Ser Gln Ile Val Tyr Ile Ala Pro Asn Ile Met Leu Ser Val
180 185 190

Glu Asp Phe Tyr Arg Asn Ile Gln Leu Ala Ile Gln Thr Gln Gly Tyr
195 200 205

Glu Asn Trp Asn Ser Ala Glu Ser Asn Leu Leu Ile Ser Arg Ala Leu
210 215 220

Ile Gly Arg Leu Thr Asn Asp Ser Phe Thr Gly Phe Gln Tyr Asn Ile
225 230 235 240

Ser Asn Val Ala Glu Tyr Leu His Ser His Gly Val Gln Ala Ile Glu
245 250 255

Gly Gln Ala His Pro Arg Thr Leu Gly Asn Arg Trp Ile Leu Gln Ala
260 265 270

Pro Ala Pro Pro Arg Ser Leu Val Pro Gln Asn Val Glu Thr Thr Thr
275 280 285

Leu Leu Asp Gly Asn Val Ser Ile Arg Phe Ser Asn Tyr His Gln Ala
290 295 300

Pro Val Asn Asp Thr Gln Asp Asn Ser His Pro Asp Ile Gln Glu Asp
305 310 315 320

Glu Asn Gln Phe Ile Gly Phe Leu Ser Asp Leu Gly Glu Glu Tyr Glu
325 330 335

Leu Glu Tyr Pro Ser Phe Thr Pro Val His Ala Asp Glu Phe Ile Phe
340 345 350

Ile Ile Ile Asn Gly Glu Glu Ile Pro Asp Asp Phe Val Ser Ser Phe
355 360 365

Cys Ser Asn Phe Ser Pro Pro Pro Ile Pro Glu Pro Glu Pro Thr Ala
370 375 380

Ile Glu Glu Thr Ala Phe Thr Leu Glu Glu Gln Phe Asn Asp Leu Asp
385 390 395 400

Tyr Pro Thr Leu Ile Ser Met Glu Lys Gln Leu Val Gln Ser Ser Val
405 410 415

Thr Ser Ala Tyr Asn Pro Pro Thr Glu Pro Leu Met Gly Gln Val Val
420 425 430

Tyr Pro Pro Ala Ser Ala Pro Arg Pro Gln Ala Glu Thr Ser Ser Thr
435 440 445

Ser Glu Arg Phe Lys Asn Phe Arg Ala Lys Pro Tyr Ser Thr Pro Thr
450 455 460

Ile Phe Leu Pro Pro Ala Tyr Asn Gln Gln Gly Ala Ile Leu Val Leu
465 470 475 480

Pro Asp Asp Ile Gly Leu Tyr Glu Asp Thr Ile Ser Arg Trp Glu Ser
485 490 495

Ile Thr Leu Asn Met Met Asn Glu Lys Val Trp Pro Ser Asn Glu Ala
500 505 510

Lys Ala Lys Tyr Met Glu Asn Leu Leu Gly Glu Met Glu Lys Lys Thr
515 520 525

Trp Ile Gln Trp Arg Thr Thr Tyr Val Ser Glu Tyr Asp Ala Leu Val
530 535 540

Gln Gln Ser Asp Glu Thr Gln Asn Leu Leu Ser Gln Val Arg Arg Ile
545 550 555 560

Phe Leu Leu Gln Asp Pro Tyr Gln Gly Ser Thr Ala Glu Gln Asp Gln
565 570 575

Ala Tyr Asn Asp Leu Glu Arg Ile Ser Cys Asp Asn Ile Lys Asp Leu
580 585 590

Ile Pro Tyr Leu Ile Gln Phe Arg Asn Leu Ala Ala Lys Ser Gly Arg
595 600 605

Leu Phe Leu Gly Pro Glu Leu Ser Glu Lys Leu Phe Arg Lys Met Pro
610 615 620

Pro Leu Ile Gly Lys Glu Ile Glu Thr Ala Phe Ile Ala Lys His Gly
625 630 635 640

Asn Ala Asn Ile Thr Val Met Pro Arg Ile His Phe Ala Tyr His Tyr
645 650 655

Leu Ala Glu Leu Cys Lys Lys Ala Ala Leu Gln Arg Ser Leu Lys Asp
660 665 670

Leu Ser Phe Cys Asn Gln Ile Pro Leu Pro Gly Ile Tyr Thr Lys Gly
675 680 685

Asn Lys Lys Phe Gly Leu Arg Lys Ala Arg Thr Tyr Lys Gly Lys Pro
690 695 700

His Pro Thr His Val Arg Val Phe Lys Lys Ala Lys Tyr Gln Arg Thr
705 710 715 720

Lys Lys Cys Lys Cys Phe Ile Cys Gly Glu Pro Gly His Phe Ala Arg
725 730 735

Glu Cys Thr Lys Gln Arg Gly Asn Ile Val Arg Ala Thr Val His Gln
740 745 750

Glu Leu Ala Ile Pro Asp Asn Phe Asp Val Val Ser Val Asp Ala Asp
755 760 765

Glu Ser Asp Ser Ser Gly Ile Tyr Ser Tyr Ser Glu Asn Glu Ala Pro
770 775 780

Leu Gln Glu Val Asn Ser Phe Ile His Asp Glu Asn Ile Phe Phe Leu
785 790 795 800

Ser Asp Ala Asp Glu Phe Glu Ser Pro Gln Gln His Leu His Glu Thr
805 810 815

Val Asn Met Leu Gln Ser Arg Ser Ala Tyr Leu Pro Gln Val Ala Val
820 825 830

Gly Glu Glu Lys Leu Asn Cys Ser His Ile Trp Leu Gln Asp Val Asp
835 840 845

Ile Pro Ser Asp Lys His Lys Cys His Thr Cys Arg Arg Asp Thr Gln
850 855 860

Lys His Tyr Arg Leu Glu Cys Gln Lys Cys Lys Phe Leu Val Cys Ser
865 870 875 880

Leu Cys Thr Ile Pro Tyr Leu Gly Ile Thr Met Gln Phe Arg Gln Lys
885 890 895

Gln Lys Ser Gln Pro Glu Asn Pro Asn Leu Val Arg Glu Leu Leu Glu
900 905 910

His Ala Ile Phe Leu Glu Glu Lys Cys Lys Asn Gln Glu Leu Leu Ser
915 920 925

Glu Thr Gln Ile Glu Arg Ile Val Ser Ser Glu Lys Gln Val Lys Phe
930 935 940

Tyr Gly Ile Leu Pro Thr Lys Lys Ser Asn Lys Ser Ala Gly Tyr Asp
945 950 955 960

Leu Gln Ser Asn Ile Asp Ile Glu Ile Pro Pro Gly Lys Cys Thr Val
965 970 975

Ile Ser Thr Gly Thr Phe Leu Gln Met Pro Asp Asn Met Tyr Gly Arg
980 985 990

Leu Val Glu Arg Thr Ser Leu Ala Ile Gln Gly Ile Thr Val Gln Gly

995

1000

1005

Gly Val Ile Asp Pro Asp Phe Thr Gly Glu Ile Gln Ile Val Leu
1010 1015 1020

Phe Asn His Asn Thr Ala Pro Tyr Pro Val Lys Lys Thr Tyr Arg
1025 1030 1035

Leu Ala Gln Ile Ile Phe Glu Lys Phe Tyr Thr Pro Ile Phe Ile
1040 1045 1050

Gln Glu Pro Phe Thr Ser Thr Gln Gln Gly Ser Ser Asn Phe Gly
1055 1060 1065

Ser Thr Ala Lys Pro Leu Gln Ile Thr Glu Asn Ile Glu Val Met
1070 1075 1080

Ser Glu Thr Val Ala Asn Gln Val Ala Lys Ser Ser Val Leu Pro
1085 1090 1095

Arg Leu Tyr Ser Ile Gln Ala His Ile His Ile Ala Pro Asp Ile
1100 1105 1110

Val Ile Ser Thr Thr Ala Ile Ile Asp Thr Gly Ala Thr Val Cys
1115 1120 1125

Cys Ile Ser Glu Lys Ile Val Pro Glu Ala Ala Lys Glu Gln Leu
1130 1135 1140

Asn Tyr Lys Val Asn Ile Ser Gly Ile Ser Ser Gln Gln Gln Ile
1145 1150 1155

Gln His Arg Leu Lys Arg Gly Thr Leu Glu Ile Ala Ser Asn Lys
1160 1165 1170

Tyr Ala Leu Pro Leu Cys Tyr Ile Ile Glu Leu Asn Asp Lys Asp
1175 1180 1185

Asp Phe Ser Met Ile Leu Gly Cys Asn Phe Phe Lys His Met Gly
1190 1195 1200

Gly Gly Met Arg Phe Glu Gly Pro His Val Thr Phe Tyr Lys Gly
1205 1210 1215

Ile Thr Thr Leu Ser Thr Ser Tyr Ala Asn Thr Gly Ile Asp Thr
1220 1225 1230

Glu His Glu Gln Ile Thr Ser Thr Thr Ser Gln Ser Phe Lys Glu
1235 1240 1245

Arg Phe Ser Pro Leu Met Asn Glu Leu Lys Ala Ala Gly Tyr Ile
1250 1255 1260

Gly Glu Asp Pro Leu Lys His Trp Ser Lys Asn Lys Val Thr Cys
1265 1270 1275

Lys Leu Asp Leu Lys Asn Thr Glu Ile Thr Ile Gln Asp Lys Pro
1280 1285 1290

Leu Arg His Ile Thr Pro Ala Leu Glu Gln Ser Tyr Gly Arg His
1295 1300 1305

Val Asn Ala Leu Leu Met Leu Lys Val Ile Gln Pro Ser Lys Ser
1310 1315 1320

Arg His Arg Thr Met Ala Phe Leu Val Asn Ser Gly Thr Thr Val
1325 1330 1335

Thr Ala Asp Gly Lys Glu Ile Lys Gly Lys Glu Arg Met Val Phe
1340 1345 1350

Asn Tyr Lys Ala Leu Asn Asp Asn Thr Tyr Lys Asp Gln Tyr Ser
1355 1360 1365

Leu Pro Asn Ile Gln Leu Ile Leu Lys Lys Val Ile Asn Ser Thr
1370 1375 1380

Ile Tyr Ser Lys Phe Asp Leu Lys Ser Gly Phe His Gln Val Ala
1385 1390 1395

Met Asp Pro Asp Ser Val Glu Trp Thr Ala Phe Leu Val Pro Gln
1400 1405 1410

Gly Leu Tyr Glu Trp Leu Ala Met Pro Phe Gly Leu Lys Asn Ala
1415 1420 1425

Pro Ala Val Phe Gln Arg Lys Met Asp Ala Val Phe Lys Gly Cys
1430 1435 1440

Glu Lys Phe Leu Ala Val Tyr Ile Asp Asp Ile Leu Val Phe Ser
1445 1450 1455

Asn Asn Glu Glu Asp His Ala Lys His Leu Val Ile Met Leu Gln
1460 1465 1470

Arg Cys Lys Glu His Gly Leu Val Leu Ser Pro Thr Lys Met Asn
1475 1480 1485

Ile Ala Val Arg Glu Val Asn Phe Leu Gly Ala Thr Ile Gly Ser
1490 1495 1500

Arg Lys Val Lys Leu Gln Glu Asn Ile Ile Lys Lys Ile Leu Asp
1505 1510 1515

Phe Asp Thr Glu Lys Leu Gln Ser Lys Lys Gly Leu Arg Ser Phe
1520 1525 1530

Leu Gly Ile Leu Asn Tyr Ala Arg Asn His Ile Pro Asn Leu Gly
1535 1540 1545

Lys Ile Ala Gly Pro Leu Tyr Ser Lys Thr Ser Ile Tyr Gly Asp
1550 1555 1560

Ile Arg Phe Ser Ala Ser Asp Trp Lys Leu Ile Asn Glu Ile Lys
1565 1570 1575

Ala Ile Val Glu Lys Leu Pro Pro Leu Asp Tyr Pro Pro Glu Gln
1580 1585 1590

Ala Tyr Ile Ile Ile Glu Ser Asp Gly Cys Met Glu Gly Trp Gly
1595 1600 1605

Ala Ile Cys Lys Trp Lys Leu Ala Glu Tyr Asp Pro Lys Ser Ser
1610 1615 1620

Glu Gln Ile Cys Ala Tyr Ala Ser Gly Lys Phe Ser Pro Ile Lys
1625 1630 1635

Ser Thr Ile Asp Ala Glu Ile Thr Ala Ala Met Glu Gly Leu Glu
1640 1645 1650

Ala Phe Lys Ile His Tyr Leu Asp Lys Gln Lys Ile Thr Leu Arg
1655 1660 1665

Thr Asp Cys Gln Ala Ile Ile Ser Phe Cys Asn Lys Thr Ser Val
1670 1675 1680

Asn Lys Pro Ser Arg Val Arg Trp Leu Lys Phe Ile Asp Tyr Ile
1685 1690 1695

Thr Asn Thr Gly Ile Asp Val Lys Phe Glu His Ile Asp Ala Lys
1700 1705 1710

Asn Asn Val Leu Ala Asp Thr Leu Ser Arg Leu Val Asn Thr Leu
1715 1720 1725

Gln Asp Leu Pro Trp Leu Asp Glu Pro His Gln Asp Gln Thr Val
1730 1735 1740

Ser Leu Met Gln Glu Ile Glu Asp Ala Pro Leu Glu Ile Lys Gln
1745 1750 1755

Arg Ser Leu Thr Cys Leu Gln Arg Leu Ile Cys Arg Ser Phe Met
1760 1765 1770

Glu Asp Ser Thr Glu Glu Ala Ile His Phe Leu Glu Asp Asp Lys
1775 1780 1785

Ile Glu Pro Thr Ala Glu Ser Ser Thr Pro Ile Thr Leu Asp Glu
1790 1795 1800

Phe Ser Arg Lys Arg Phe Gln Glu His Thr Asp Leu Leu Glu Glu
1805 1810 1815

Phe Gln Leu Thr Leu Leu Gln Ile Asn Leu Leu Glu Ala Ser Leu
1820 1825 1830

His Glu Arg Leu Met Lys Cys Gln Ser Tyr Ala Thr Arg Asp Asn
1835 1840 1845

Phe Trp Gly Asp Trp Leu Pro Glu Ala Arg Arg Asp Leu Leu Gln

1850

1855

1860

Ile Gln Leu Ala Lys Glu Ile Ile Glu Lys Val Arg Glu Lys Leu
1865 1870 1875

His Ser Ile
1880

<210> 6
<211> 1190
<212> DNA
<213> Taro bacilliform virus

<400> 6
gccttcacgg gttagatggt tgaagttcat tgattatatt actaacactg gaattgatgt 60
taaatttcaa catattgatg ctaaaaataa tgtcttagct gacactctgt ccaggttagt 120
taacactttg caggatttgc catggctaga tgaacctcat caggatcaaa cagtctccct 180
gatgcaggaa attgaagatg cacctcttga aatcaaggcag cgttctttaa cctgcttaca 240
gagactgatc tgtagaagct tcatttgcata ttctacagaa gaagcttattc acttcctcgaa 300
agatgataag atcgagccaa cagctgagtc atcaacccca attactttgg atgaattttc 360
aagaaaaaga ttccaagaac atacagatct cttagaagaa ttcaattaa ctttgcttca 420
aattaatctt cttgaagcat ctcttcatga acgatataatg aaatgcacaa gttatgcac 480
gagagataat ttctggggag attggctgcc tgaagctcg agagatctt tgcaaattca 540
actagccaaa gaaatcatcg agaaggttcg tgaaaagctt cactctatct agataggatt 600
ctttgtgtgt gagtggcgca cttgcgcata atgttagtaag gaattattgt actttacgc 660
tggacgccccac taggctccat gctttctgtat atgtcacatc actttacga attgagccctc 720
ggggagccgt tcgtacaaag tagatgctt tcttagtcata tctgactttt ctAAAAGCAG 780
atgccatcaa cttaatttcga gttgagccctc ggggagccgc tcgtttaaag atgctcttt 840
gaaaatgaca gcgcgtggtg cgatgtcatt ctcacccccc cttaatgcg tcggccaccg 900
actgcattat tgagatttctc ttatccctt gccacccatc cggttgcatt attgggattt 960
cgtatcgagt cgagggacga ggcctccact actcctataa aaggacctca acccctcaga 1020
agaacggcaa gccggaaaca ccgaacttcc cattcttctc ttgagtcattt ccttgagct 1080
tgagcttgc tggatctt catagttct aagtctccga agaacgagca cctgtctcg 1140
aaggagccga tcctttcca accacactt ttctacccatc gtatcagagc 1190

<210>	7
<211>	598
<212>	DNA
<213>	Taro bacilliform virus
<400>	7
ataggattct ttgtgtgtga gtggcgact tgcgataat gtagtaagga attattgtac	60
ttttacgctg gacgccacta ggctccatgc tttctgtaat gtcacatcac ttttacgaat	120
tgagcctcgg ggagccgttc gtacaaagta gatgctttc tagtcacatc tgactttct	180
aaaagcagat gccatcaact ttattcgagt tgagcctcgg ggagccgctc gtttaaagat	240
gctctttga aaatgacagc gcgtggtgcg atgtcattct cacctttct ttaatgcgtc	300
ggccaccgac tgcattattg agattcttctt atcccttgc cacctcatcg gttgcattat	360
tgggatttcg tatcgagtcg agggacgagg cctccactac tcctataaaa ggacctcaac	420
ccctcagaag aacggcaagc cgaaaaacacc gaacttcca ttcttcttctt gagtctttcc	480
tttgagcttgc agcttgtgtg taatcttca tagttctaa gtctccgaag aacgagcacc	540
gtctcgtgaa ggagccgatc ctttccaac cacactttt ctaccttggt atcagagc	598
<210>	8
<211>	529
<212>	DNA
<213>	Taro bacilliform virus
<400>	8
ggacgcccact aggctccatg ctttctgtaa tgtcacatca ctttacgaa ttgagcctcg	60
gggagccgtt cgtacaaagt agatgctttt ctagtcacat ctgactttc taaaagcaga	120
tgccatcaac tttattcgag ttgagcctcg gggagccgct cgttaaaga tgctctttg	180
aaaatgacag cgcgtggtgc gatgtcattc tcacctttc ttatgcgt cggccaccga	240
ctgcattatt gagattctct tatcccttg ccacctcatc gttgcatta ttgggatttc	300
gtatcgagtc gagggacgag gcctccacta ctcctataaa aggaccta cccctcagaa	360
gaacggcaag ccggaaaacac cgaacttccc attcttctct tgagtcttcc tttgagctt	420
gagcttgtgt gtaatcttca atagttctta agtctccgaa gaacgagcac cgtctcgtga	480
aggagccgat cttttccaa ccacactttt tctaccttgg tatcagagc	529
<210>	9
<211>	261
<212>	DNA
<213>	Taro bacilliform virus

```

<400> 9
tgccacctca tcggttgcat tattgggatt tcgtatcgag tcgagggacg aggcctccac      60
tactcctata aaaggacctc aaccctcag aagaacggca agccggaaac accgaacttc
ccattttctt cttgagtctt tccttgagc ttgagcttgt gtgtaatctt tcatagtttc      120
taagtctccg aagaacgagc accgtctcgtaaaggagccg atcctttcc aaccacactt      180
tttctacctt ggtatcagag c                                         240
                                                               261

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Badna FP primer

<220>
<221> modified_base
<222> (5)..(6)
<223> I

<220>
<221> modified_base
<222> (10)..(11)
<223> I

<220>
<221> modified_base
<222> (18)..(19)
<223> I

<400> 10
atgccttygg aaraaygccc                                         20
                                                               20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Badna RP primer

<220>
<221> modified_base
<222> (9)..(10)
<223> I

<220>
<221> modified_base

```

```

<222>  (11)..(12)
<223>  I

<220>
<221>  modified_base
<222>  (13)..(14)
<223>  I

<220>
<221>  modified_base
<222>  (18)..(19)
<223>  I

<400>  11
ccayttrcaa csccccacc                                20

<210>  12
<211>  23
<212>  DNA
<213>  Artificial Sequence

<220>

<223>  1F primer

<400>  12
ggatgcagta ttcaaagggt gtg                                23

<210>  13
<211>  26
<212>  DNA
<213>  Artificial Sequence

<220>
<223>  TRBR primer

<400>  13
ctgcaggcgg ccgcgcctcg atacca                                26

<210>  14
<211>  22
<212>  DNA
<213>  Artificial Sequence

<220>
<223>  5F primer

<400>  14
agtcttcct ttgagcttga gc                                22

<210>  15
<211>  25
<212>  DNA

```

<213> Artificial Sequence	
<220>	
<223> G2R primer	
<400> 15	25
cacacccttt gaataactgca tccat	
<210> 16	
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Cytoplasmic initiator methionine tRNA (tRNAmet) binding site	
<400> 16	12
tggtatcaga gc	
<210> 17	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> F-GTN primer	
<400> 17	25
ctgcagatag gattcttgt gtgtg	
<210> 18	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> R-GTN primer	
<400> 18	24
ccatgggctc tgataccaag gtag	
<210> 19	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> P527-F primer	
<400> 19	20
ctgcagggac gccactaggc	

<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> P257-F primer

<400> 20
ctgcaggcca cctcatcggt tgc 23

<210> 21
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> P114-F primer

<400> 21
ctgcaggagc ttgagcttgt gtg 23

<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> FP-as-1 primer

<400> 22
ctgcaggcct tcacgggtta gatg 24

<210> 23
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> TRBR-Bam primer

<400> 23
ggatccgctc tgataccaaag gtag 24

<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> FP-6765-pro primer

<400> 24		
ctgcaggggg agattggctg c		21
<210> 25		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> P600Not-F primer		
<400> 25		
ggaagcttgc ggccgccgag aaggttcg		28
<210> 26		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> P600Bgl-R primer		
<400> 26		
gcggaagatc ttgctctgat accaaggtag		30
<210> 27		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> RP-leader primer		
<400> 27		
ccatggatca tataattgta aggtcgc		27
<210> 28		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> GUS1 primer		
<400> 28		
atgtttacgt cctgt		15
<210> 29		
<211> 12		
<212> DNA		
<213> Artificial Sequence		

<220>
<223> GUS2 primer

<400> 29
ttacttgttt gc

12

27

27