"Machine Learning and Computational Statistics"

3rd Homework

Exercise 1:

Let $\mathbf{x} = [\mathbf{x}_1, ..., \mathbf{x}_l]^T$ be an l-dimensional random vector with mean vector $\boldsymbol{\mu} = [\mu_1, ..., \mu_l]^T$ and let $cov(\mathbf{x}) = E[(\mathbf{x} - \boldsymbol{\mu}) \cdot (\mathbf{x} - \boldsymbol{\mu})^T]$ and $R_{\mathbf{x}} = E[\mathbf{x} \cdot \mathbf{x}^T]$ be the corresponding covariance and correlation matrices, respectively. Prove that

$$R_{\mathbf{x}} = cov(\mathbf{x}) + \boldsymbol{\mu}\boldsymbol{\mu}^{T}.$$

Exercise 2:

- (a) Prove that the **mean** and the **variance** of a random variable x that follows the Bernoulli distribution Bern(x|p) (0) are <math>E[x] = p and $\sigma_x^2 = p(1-p)$, respectively.
- (b) Prove that the **mean** of the random variable x that follows the binomial distribution Bin(x|n,p) (0 < p < 1) is E[x] = np.

Hint: For (b) use the binomial expansion equation

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n$$

Exercise 3:

Let $\mathbf{x} = [\mathbf{x}_1, \dots, \mathbf{x}_l]^T$ be an l-dimensional random vector that follows the $(l - \dim)$ normal distribution

$$p(x) = \frac{1}{(2\pi)^{1/2} |\Sigma|^{1/2}} \exp(-\frac{(x-\mu)^{\mathrm{T}} \Sigma^{-1} (x-\mu)}{2})$$

where $\boldsymbol{\mu} = [\mu_1, \dots, \mu_l]^T$ and $\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1l} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{l1} & \sigma_{l2} & \cdots & \sigma_l^2 \end{bmatrix}$. Prove that **if** $\boldsymbol{\Sigma}$ is diagonal (that

is, $\sigma_{ij}=0, i=1,...,l, j=1,...,l, i\neq j$), the coordinates (random variables) $\mathbf{x}_i, i=1,...,l$, of \mathbf{x} are statistically independent.

<u>Hint:</u> Prove that $p(x) = \prod_{i=1}^{l} p_i(x_i) = \prod_{i=1}^{l} \frac{1}{\sqrt{2\pi\sigma_i^2}} exp\left(-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$.

Exercise 4:

Consider a regression problem where both the independent and dependent quantities are scalars and are related via the following linear model

$$y = \theta \cdot x + \eta$$

where η follows the zero mean normal distribution with variance σ^2 (Note that only a single parameter is involved here). Consider also the data set

$$X = \{(y_1, x_1), \dots, (y_N, x_N)\}.$$

Derive the **least squares estimate** for the **scalar** θ , based on the above data set.

<u>Hint:</u> Work either **(a)** by considering the general least squares solution where θ is a vector and deriving the solution for the specific case where θ is a scalar, or **(b)** Formulating explicitly the optimization problem for this specific case and deriving the estimate (i.e., writing explicitly the cost function for this case, taking the derivative wrt θ and setting it equal to zero...)

Exercise 5 (python code + text):

Consider a regression problem where both the independent and dependent quantities are scalars and are related via the following linear model

$$y = \theta_0 \cdot x + \eta$$

where η follows the zero mean normal distribution with variance σ^2 and $\theta_o = 2$ (thus, the actual model is $y = 2 \cdot x + \eta$).

- (a) Generate d = 50 data set as follows:
 - Generate a set D_1 of N=30 data pairs (y_i', x_i) , where $y'=2 \cdot x$.
 - Add zero mean and $\sigma^2=64$ variance Gaussian noise to the y_i ' 's, resulting to y_i 's.
 - The **observed** data pairs are (y_i, x_i) , i = 1, ..., 30, which constitute the data set D_1 .

Repeat the above procedure d=50 times in order to generate 50 different data sets.

- (b) Compute the LS linear **estimates** of θ_o based on D_1, D_2, \ldots, D_d (thus, $\hat{\theta}_1, \hat{\theta}_2, \ldots, \hat{\theta}_d$ numbers/estimates will result).
- (c) Consider now the **estimator** $\hat{\theta}$ that models $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_d$ and (c1) compute the $MSE = E\left[\left(\hat{\theta} \theta_o\right)^2\right]$ and
 - (c2) depict graphically the values $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_d$ and comment on how they are spread around θ_o .

<u>Hint:</u> For (c) approximate MSE as $MSE = \frac{1}{d} \sum_{i=1}^{d} (\hat{\theta}_i - \theta_o)^2$.