Problema 2

Enunciado

Utilizando un método numérico, encuentre una raíz de la ecuación

$$f(x) = \frac{\sin(x)}{x}.$$

Metodología

Para resolver este problema elegí implementar el método de Newton-Raphson. Este método se utiliza para aproximar raíces de una función mediante la siguiente relación:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}.$$

Para atacar nuestro problema necesitamos definir algunos parámetros. Entre ellos está la **tolerancia** del método. Es decir, cuán cerca de la solución verdadera tiene que estar nuestra aproximación para considerarla suficientemente buena. También debemos definir un **número finito de iteraciones** en las cuales nuestro programa hará lo posible por acercarse tanto cuanto pueda a la solución. Por otro lado, debemos definir un **valor inicial** para x_i , fácilmente notamos que nuestra función se hace cero en $x=\pi$ entonces tomamos $x_0=2$. Finalmente, debemos aprovechar que la derivada de nuestra función queda en términos de coseno y la función misma:

$$f'(x) = \frac{\cos(x)}{x} - \frac{\sin(x)}{x^2} = -\frac{1}{x}(\cos(x) - f(x)).$$

La relación que compararemos con la tolerancia para validar nuestra aproximación es

$$x_{i+1} - x_i = -f(x_i)/f'(x_i),$$

dado que el lado derecho de la ecuación se hace más pequeño conforme nos acercamos a la solución. Entonces, mientras más pequeña sea la diferencia entre x_{i+1} y x_i , más cerca de la solución estaremos.

Variables de entrada y salida

Este programa no está diseñado para interactuar con el usuario, sin embargo, podemos considerar que hay variables de entrada para la función empleada para el método N-R. \rightarrow reales: x_0 , tolerancia

- → enteros: iteradores, numero máximo de iteraciones
- ← cadena de caracteres con números: x (raíz de la función)
- * Variables locales: valor anterior de x (x_i) , valor actual de x x_{i+1} , diferencia $(x_{i+1} x_i)$, iteración actual.

Pseudocódigo

```
Listing 1: Pseudocódigo del método Newton-Raphson
```

```
definir tolerancia, xinicial, iteradormaximo
definir funcion(float x){
    retorna f(x)
}
definir derivada(float){
    retorna f'(x)
```

```
definir_metodoNR(tolerancia,_xinicial,_iteradormaximo,_mas_variables){
    ____float_xnuevo
    ____iniciar_iterador_=0
    ____xinicial=x0
    ____diferencia=|x_nuevo-xinicial|
    ____diferencia=|x_nuevo-x_inicial|
    ____xinicial=x_nuevo-x_inicial|
    ____xinicial=x_nuevo
    ____xinicial=x_nuevo
    ____xinicial=x_nuevo
    ____xinicial=x_nuevo
    ____xanuevo=x_inicial-funcion(x_inicial)/derivada(x_inicial)
    _____xanuevo=x_inicial-funcion(x_inicial)/derivada(x_inicial)
    _____xanuevo=x_inicial-funcion(x_inicial)/derivada(x_inicial)
```

El código de este programa está disponible aquí.

Resultados

El solucionador encontró un cero en x = 3.14159 con una tolerancia de 0.0001 y un valor inicial de $x_0 = 2$ después de 4 iteraciones.

```
Alxfckb  ~/documents/fisica/simulacion/labsimu1s2021da/c/ejercicios/parcial2 % ./num x= 3.138864 x= 3.141590 x= 3.141593 Solución x= 3.14159 luego de 4 iterationes Alxfckb  ~/documents/fisica/simulacion/labsimu1s2021da/c/ejercicios/parcial2 %
```

Figure 1: Captura de pantalla del resultado obtenido utilizando el método Newton-Raphson.

Figure 2: Gráfica de Sin(x)/x con solución en $x=\pi$.

Problema 1

Enunciado

Se presentan los valores obtenidos de forma experimental de presión y volumen, con una incerteza de 0.1 pulgadas cubicas y 0.2 lbin.

Volumen (in ³)	Presión $(\frac{lb}{in^3})$
54.3	61.2
61.8	49.2
72.4	37.6
88.7	28.4
118.6	19.2
194.0	10.2

Metodología

Este problema presenta una expresión que relaciona cantidades de forma exponencial, dicha relación es:

$$PV^a = b.$$

La cual se puede linealizar fácilmente tomando el logaritmo de ambos lados. Así, obtenemos

$$\ln P = -a \ln V + \ln b.$$

Entonces definimos $y = \ln P$, $x = \ln V$ y $B = \ln b$. Obteniendo una relación lineal de la forma

$$y = -ax + B$$
.

Una vez hecho esto, podemos aplicar el método de mínimos cuadrados para los logaritmos de P y V.

Debido a la forma matemática que tenemos para encontrar m y b por este método, es bastante conveniente trabajar de forma modular. Es decir, definir funciones generales que aparecen a menudo en nuestras expresiones útiles. De esta forma, nos ahorramos líneas de código y tiempo, dado que solamente quedaría ensamblar las funciones para m y b.

Variables de entrada y salida

Este programa no está diseñado para interactuar con un usuario, sin embargo, podemos considerar que hay variables de entrada para la función que calcula $\sum_i x_i, \sum_i x_i y_i, m$ y b.

- → Variable global entera i (iterador para las distintas funciones del programa).
- \rightarrow vectores con entradas tipo float x, y con los logaritmos de V y P, respectivamente.
- \rightarrow Float (sumatorias realizadas).
- \rightarrow Entero (longitud de nuestros vectores).
- ← Cadena de caracteres (Expresion de recta que mejor se aproxima).
- ← Cadena de caracteres (tabla en un archivo de texto para luego ser leido por gnuplot).
- \leftarrow Cadena de caracteres con numeros (P para V = 100).
- * Variables locales (almacenan valores de sumatorias, de m y de b).

Pseudocódigo

Listing 2: Pseudocódigo del método mínimos cuadrados

```
float x[] = \{ valores Log(V) \}
float y[] = \{ valores Log(P) \}
int n = longitud de x[]
int i (iterador)
float suma(float x1[]){
    suma = 0
    para (i=0 hasta i<n con paso 1){
    sum = sum + x1[i]
    returnar sum
float suma2(float x1[], float x2[]){
    sum2 = 0
    para (i=0 hasta i<n con paso 1){
    sum2 = sum2 + x1[i]*x2[i]
    returnar sum2
float M(){
    float m
    m = (n*sum12(x,y)-suma(x)*suma(y)/(n*suma2(x,x)-(suma(x))^2)
    retornar m
float B(){
    float b
    b = (sum(y)-M()*sum(x))/n
}
void main(){
    imprimir ("La_curva_que_mejor_aproxima_es_y=%fx+%b",M(),B())
    imprimir ("El\_valor\_de\_P\_para\_V=100\_es \_\%f" \;, \; \; valor \,)
}
```

El código de este programa está disponible aquí.

Resultados

La recta obtenida que mejor se aproxima a los datos dados es y=-1.395324x+9.639354. La presión obtenida para $V=100\mathrm{in}^3$ es $P=24.87\mathrm{lb/in}^3$.

```
Alxfckb → ~/documents/fisica/simulacion/labsimu1s2021da/c/ejercicios/parcial2 % gcc -o minc minc.c

Alxfckb → ~/documents/fisica/simulacion/labsimu1s2021da/c/ejercicios/parcial2 % ./minc

La mejor aproximación está dada por y = -1.395324 x + 9.639354

qt.qpa.fonts: Populating font family aliases took 496 ms. Replace uses of missin g font family "Sans" with one that exists to avoid this cost.

La presión para V=100 in3 es 24.87 lb/in^3% Alxfckb → ~/documents/fisica/simulacion/labsimu1s2021da/c/ejercicios/parcial2 %
```

Figure 3: Programa compilado y ejecutado desde terminal.

Figure 4: Gráfica de los datos dados y la curva que mejor se aproxima.