Memo: Tutorial 4

March 12, 2004

Question 1: Exercise 1.17b: Assume that $L=\{www|w\in\{a,b\}^*\}$ is regular and let p be the pumping length.

Let $s = 0^p 10^p 10^p 1$. Then $s \in L$ and |s| = 3p > p.

From the pumping lemma we can write s as xyz such that:

- 1. for each $i \ge 0$, $xy^iz \in L$,
- 2. |y| > 0.
- 3. $|xy| \le p$.

As $|xy| \le p$ we know that xy must form part of the first p symbols of s. Thus xy consists of 0's. It now follows from 2) that y is a string of one or more 0's. From 1) $xz = xy^0z \in L$, but $xz = 0^j10^p10^p1$, with j < p. Thus xz is not of the form www and is therefore not in L. It now follows by contradiction that A is not regular.

Question 2: Exercise 1.17c:

Assume that $L = \{a^{2^n} | n \ge 0\}$ is regular and let p be the pumping length.

Let
$$s=a^{2^p},$$
 then $s\in L$ and $|s|=s^p\geq p.$

From the pumping lemma we can write s as xyz such that:

- 1. for each $i \ge 0$, $xu^iz \in L$.
- 2. |y| > 0,
- 3. $|xy| \le p$.

From 2) it follows that $y=0^k$ with k>0. From 1) the strings $xyz=0^{2^p},xy^2z=0^{2^p+k},xy^3z=0^{2^p+k},xy^4z=0^{2^p+3k},\dots$ are all in L. For this to happen, $2^p,2^p+k,2^p+2k,2^p+3k,\dots$ must all be powers of 2. Notice that the difference between two consecutive numbers in this sequence is k, but $2^{n+1}-2^n=2^n$ which tends to infinity as n tends to infinity. We conclude that $2^p, 2^p+k, 2^p+2k, 2^p+3k, \dots$ can not all be powers of 2 and therefore not all of

States 7 and 8 are not reachable and so can be removed. Following Method From Class

1. Construct Table of all pairs unmarked:

1					
-					
-	-	3			
-	-	-	4		
-	-	-	-	5	

2. Mark $\{p,q\}$ if one is final and the other not:

- 3. Repeat until no more changes:
 - (a) Checking unmarked pair $\{1,2\},~\{\delta(1,a),\delta(2,a)\}=\{1,3\}$ which is marked so mark $\{1,2\}$

(b) Checking unmarked pair $\{1,5\},$ $\{\delta(1,a),\delta(5,a)\}=\{1,4\}$ which is

(c) Checking unmarked pair $\{2,6\},~\{\delta(2,a),\delta(6,a)\}=\{3,6\}$ which is marked so mark $\{2,6\}$

 $xyz, xy^2z, xy^3z, ..$ are in L. It now follows by contradiction that L is not regular.

Question 3:

Assume $L=\{w\in\{a,b,c\}^*|w\text{ is a palindrome}\}$ is regular and let p be the pumping length.

Let
$$s = a^p b a^p$$
. Thus $s \in L$ and $|s| = 2p + 1 \ge p$.

From the pumping lemma we can write s as xyz such that:

- 1. for each $i \ge 0$, $xy^iz \in L$,
- 2. |y| > 0,
- 3. $|xy| \le p$.

From 3) $|xy| \le p$, thus xy forms part of the first p symbols of $s = a^pba^p$. From 2) |y| > 0, thus $y = a^k$ with k > 0. We conclude that $xz = xy^pz = a^2ba^p$ with j < p, which is not a palindrome. But according to 1) xz should be a palindrome. It now follows by contradiction that L is not regular.

Let
$$s=(p)^p$$
. Thus $s\in L$ and $|s|=2p\geq p$.

From the pumping lemma we can write s as xyz such that:

- 1. for each $i \ge 0$, $xy^iz \in PAREN$,
- 2. |y| > 0,
- 3. |xy| < p.

From 3) $|xy| \leq p$, thus xy forms part of the first p symbols of $s = (p^*)^p$. From 2) |y| > 0, thus $y = (k^* \text{ with } k > 0$. We conclude that $xz = xy^0z = (j)^p$ with j < p, which is not in PAREN. But according to 1) xz should be in PAREN. We conclude by contradiction that PAREN is not a regular language.

	a	ь
$\rightarrow 1$	1	4
2	3	1
3F	4	2
4F	3	5
5	4	6
6	6	3
7	2	4
8	3	1

2

(d) Checking unmarked pair $\{5,6\},\;\{\delta(5,a),\delta(6,a)\}=\{4,6\}$ which is marked so mark {5,6}

- (e) No more changes occur
- 4. The states that are equivalent are:

$$1 \equiv 6$$
 $2 \equiv 5$

5. This creates the automata in figure 1.

Figure 1: Minimal DFA from Question 4

Question 6:

Form the string-matching automaton for P = aabab.

The automaton has 6 states, with state 0 being the start state and state 5

Using P_q as the string consisting of the first q letters of P_q , the transition function is calculated as $\delta(q,a)=\max\{k|P_k\text{ is a suffix of }P_qa\}$ and similar for $\delta(q,b)$. This results in:

The automaton is shown in figure 2.

Figure 2: Automaton for Question 6

Using the generated automaton on test string T=aaababaabaababaab:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
T[i] state		a	a	a	b	a	b	a	a	b	a	a	ь	a	ь	a	a	b
state	0	1	2	2	3	4	5	1	2	3	4	2	3	4	5	1	2	3

Matches at shift =1,9

Question 7: Exercise 2.4:

 $1.\,$ contains at least three 1's

$$\begin{array}{ccc} S & \rightarrow & A1A1A1A \\ A & \rightarrow & 0A|1A|\varepsilon \end{array}$$

 $2.\,$ starts and ends with the same symbol

$$\begin{array}{ccc} S & \rightarrow & 0A0|1A1 \\ A & \rightarrow & 0A|1A|\varepsilon \end{array}$$

5

3. odd length

$$S \rightarrow SSS|0|1$$

 $4.\,$ odd length and middle symbol is a 0

$$\begin{array}{ccc} S & \rightarrow & ASA|0 \\ A & \rightarrow & 0|1 \end{array}$$

 $5.\,$ contains more 1's then 0's

$$\begin{array}{ccc} A & \rightarrow & AAB|ABA|BAA|1 \\ B & \rightarrow & 0|\varepsilon \end{array}$$

$$S \ \to \ 0S0|1S1|1|0|\varepsilon$$

7. emptyset

6. palindrome

$$S \to S$$

6