We claim:

- 1. A conjugate comprising:
- (a) at least one therapeutic compound; and
- 5 (b) one or more PEG polymers and/or oligomers, each joined to a bonding site on the therapeutic compound by a hydrolyzable bond, said PEG polymers and/or oligomers each:
 - (i) comprising a straight or branched PEG segment consisting of 1 to 25 polyethylene glycol units; and
 - (ii) comprising a salt-forming moiety.
 - 2. The conjugate of claim 1, wherein the conjugate is a prodrug.
- 3. The conjugate of claim 1, wherein the straight or branched PEG segment15 consists of from 2 to 20 polyethylene glycol units.
 - 4. The conjugate of claim 1, wherein the polyethylene glycol oligomer has a number of polyethylene glycol units selected from the group consisting of 1, 2, 3, 4, 5, 6, 7, 8, and 9.

20

30

- 5. The conjugate of claim 1, wherein the salt-forming moiety is selected from the group consisting of: ammonium, carboxylate, phosphate, sulfate and mesylate.
- 6. The conjugate of claim 1, wherein the therapeutic compound is derivatized by from 1 up to the maximum number of sites of attachment for the polyethylene glycol oligomer(s).
 - 7. The conjugate of claim 1, which, when delivered via the oral route of administration to treat a mammalian subject having a disease condition responsive to the therapeutic compound, provides a therapeutically effective dose of the therapeutic compound to the blood.
 - 8. The conjugate of claim 1, wherein the therapeutic compound is a peptide.

- 9. The conjugate of claim 1, wherein the therapeutic compound is a protein.
- 10. A pharmaceutical composition comprising:
 - (a) a conjugate of claim 1; and
 - (b) a pharmaceutically acceptable carrier.
- 11. The pharmaceutical composition of claim 10, wherein the conjugate is a prodrug.
- 10 12. The pharmaceutical composition of claim 10 in a form suitable for oral administration.
 - 13. A conjugate comprising a therapeutic compound joined by hydrolysable bond(s) to one or more PEG oligomer(s) selected from the group consisting of:

wherein n is from 1 to 7, m is from 2 to 25, and R is hydrogen or lower alkyl;

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25, and R is hydrogen or lower alkyl;

wherein n is from 1 to 6, m and r are each independently from 2 to 25, and R is hydrogen or lower alkyl;

O O R
$$|I|$$
 $|I|$ $|H|$ $|I|$ $|I|$

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25 and R is hydrogen or lower alkyl;

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25, R is hydrogen or lower alkyl, and X^- is a negative ion;

20

5

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25, and R¹ and R² are each independently hydrogen or lower alkyl;

wherein n is from 1 to 6, p is from 2 to 8 and m is from 2 to 25;

O O II
$$-C-(CH_2)_n(OC_2H_4)_mO(CH_2)_p-C-O^TX^+$$
 (Formula 9)

wherein n and p are each independently from 1 to 6, m is from 2 to 25 and X^+ is a positive ion;

$$\begin{array}{c|c}
O & R^1 \\
\parallel & \downarrow X^- \\
-C - (CH_2)_{\overline{n}} - N^+ - CH_2CH_2(OC_2H_4)_mOCH_3
\end{array} (Formula 10)$$

wherein n is from 1 to 5, m is from 2 to 25, X^- is a negative ion, and wherein R^1 and R^2 are each independently hydrogen or lower alkyl;

$$-O$$
 $N_{1}^{+}X^{-}$
 $(CH_{2})_{n}CH_{2}(OCH_{2}CH_{2})_{m}CH_{3}$
(Formula 11)

wherein n is from 1 to 6, m is from 2 to 25 and X is a negative ion; and

O O H
||
$$|| | | | |$$
---C--(CH₂)_n--C-N--(C₂H₄O)_m(CH₂)_n X ⁺ Z (Formula 12)

wherein n is from 1 to 12, m is from 2 to 25, p is from 2 to 12, X^+ is a positive ion and Z^- is a negative ion.

14. The conjugate of claim 13, wherein the conjugate is a prodrug.

20

5

The conjugate of claim 13, wherein the therapeutic compound is derivatized

	by from 1 up to oligomer(s).	to the maximum number of sites of attachment for the polyethylene glycol
5	16.	The conjugate of claim 13, wherein the therapeutic compound is a peptide.
	17.	The conjugate of claim 13, wherein the therapeutic compound is a protein.
10	18.	 A pharmaceutical composition comprising: (a) a conjugate of claim 13; and (b) a pharmaceutically acceptable carrier.
15	19. prodrug.	The pharmaceutical composition of claim 18, wherein the conjugate is a
	20. administration	The pharmaceutical composition of claim 18 in a form suitable for oral
20		A method of treating a mammalian subject having a disease condition a therapeutic compound, said method comprising administering to the subject e disease treating amount of a conjugate comprising:
		(a) at least one therapeutic compound; and(b) one or more PEG polymers and/or oligomers, each joined to a bonding site on the therapeutic compound by a hydrolyzable bond, said PEG polymers and/or oligomers each:
25		(i) comprising a straight or branched PEG segment consisting of 1 to 25 polyethylene glycol units; and(ii) comprising a salt-forming moiety.
	22.	The method of claim 21, wherein the conjugate is a prodrug.

15.

- 23. The conjugate of claim 21, wherein the therapeutic compound is a peptide.
- 24. The conjugate of claim 21, wherein the therapeutic compound is a protein.
- 25. A method of treating a mammalian subject having a disease condition
 5 responsive to a therapeutic compound, said method comprising administering to the subject of an effective disease treating amount of a conjugate comprising the therapeutic compound joined by hydrolyzable bond(s) to one or more PEG oligomer(s) selected from the group consisting of:

O R
$$|I|$$
 |
 $-C-(CH_2)_n-N-CH_2CH_2(OC_2H_4)_mOCH_3$ (Formula 2)

wherein n is from 1 to 7, m is from 2 to 25, and R is hydrogen or lower alkyl;

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25, and R is hydrogen or lower alkyl;

wherein n is from 1 to 6, m and r are each independently from 2 to 25, and R is hydrogen or lower alkyl;

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25 and R is hydrogen or lower alkyl;

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25, R is hydrogen or lower alkyl, and X is a negative ion;

O O
$$R^{1}$$

 $-C-(CH_{2})_{n}-C-N-(CH_{2})_{p}-N-CH_{2}CH_{2}(OC_{2}H_{4})_{m}NHR^{2}$ (Formula 7)

wherein n is from 1 to 6, p is from 2 to 8, m is from 2 to 25, and R¹ and R² are each independently hydrogen or lower alkyl;

wherein n is from 1 to 6, p is from 2 to 8 and m is from 2 to 25;

5 wherein n and p are each independently from 1 to 6, m is from 2 to 25 and X⁺ is a positive ion;

$$\begin{array}{c|c}
O & R^1 \\
\parallel & | X^- \\
-C - (CH_2)_{\overline{n}} - N^+ - CH_2CH_2(OC_2H_4)_mOCH_3
\end{array} (Formula 10)$$

wherein n is from 1 to 5, m is from 2 to 25, X⁻ is a negative ion, and wherein R¹ and R² are each independently hydrogen or lower alkyl;

$$-O$$
 N_{X}^{+}
 $(CH_2)_nCH_2(OCH_2CH_2)_mCH_3$
(Formula 11)

wherein n is from 1 to 6, m is from 2 to 25 and X is a negative ion; and

wherein n is from 1 to 12, m is from 2 to 25, p is from 2 to 12, X^+ is a positive ion and Z^- is a negative ion.

- 26. The method of claim 25, wherein the conjugate is a prodrug.
- 27. The conjugate of claim 25, wherein the therapeutic compound is a peptide.
- 28. The conjugate of claim 25, wherein the therapeutic compound is a protein.

20