Feuille de TP n°3 – Chaînes de Markov

1 Un exemple simpliste

Les consommateurs de 3 produits sont initialement répartis respectivement à 50% pour P1, 30% pour P2 et 20% pour P3. Après chaque mois, 60% restent fidèles à P1 contre 70% pour P2 et 90% pour P3. Les autres se réorientent entre les deux autres produits (de manière équiprobable).

- 1. Déterminer la distribution initiale ν et la matrice de transition P associées à ce modèle markovien (exemple : $P_{12} = 0.2$).
- 2. Tracer l'évolution déterministe des répartitions des consommateurs pendant les 12 premiers mois.
- 3. Tracer l'évolution de l'opinion d'un individu initialement adepte de P1 pendant les douze premiers mois(consultez l'aide pour grand option 'markov').
- 4. Même question pour un individu pris au hasard dans la population totale selon la loi ν .
- 5. Simuler la répartition sur douze mois des opinions de 1000 personnes (qui ne se concertent pas) choisies indépendamment dans la population.
- 6. Déterminez la distribution stationnaire de la matrice de transition et refaire la question 2 en prenant la distribution stationnaire comme distribution initiale des consommateurs. Quelles sont les valeurs propres de P? On pourra utiliser les fonctions spec, bdiag, mais aussi de grandes puissances de P.

2 L'urne d'Ehrenfest

On dispose de m particules que l'on répartit initialement entre deux récipients A et B. À chaque pas de temps, on choisit une particule parmi les m et on la change d'urne. On note X_n le nombre de particules dans l'urne A au temps n. Pour toutes les applications, on prendra m = 10.

- 1. Donner la matrice de transition P de la chaîne de Markov (X_n) sur $\{0,\ldots,m\}$.
- 2. Cette chaîne est-elle irréductible? récurrente? périodique?
- 3. Écrire une fonction qui trace une trajectoire de cette chaîne. On pourra utiliser la fonction binomial pour générer la matrice de transition.
- 4. Vérifier que la mesure invariante μ de cette chaîne est la loi binomiale $\mathcal{B}(m, 1/2)$.
- 5. Illustrer le fait que, pour $l \in \{0, \ldots, m\}$,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{X_i = l\}} \xrightarrow[n \to \infty]{p.s.} \mu(\{l\}).$$

Quel théorème est-il mis en lumière ici?

- 6. On définit T_{ll} le temps de retour en l par $T_{ll} = \inf \{ n \geq 1, X_n = l | X_0 = l \}$. Comparer, par simulation, $\mathbb{E}(T_{ll})$ et $\mu(l)$.
- 7. Comparer les grades puissances paires et impaires de P. La loi de X_n converge-t-elle vers μ ? Pourquoi?
- 8. Comment simuler les trajectoires d'une chaîne d'Ehrenfest lorsque le nombre de boules atteint 1000000?

On pourra consulter [FF02] et surtout [KS60].

3 Modèle de Wright-Fisher sans mutations

On considère ici la chaîne de Markov X sur $\{0,1,\ldots,2N\}$ de matrice de transition $P=(p_{ij})_{ij}$ donnée par :

$$p_{ij} = {2N \choose j} q_i^j (1 - q_i)^{2N - j} \quad \text{avec} \quad q_i = \frac{i}{2N}$$

pour $i, j \in \{0, 1, ..., 2N\}$. La loi de X_{n+1} sachant que $X_n = i$ est la loi binomiale $\mathcal{B}(2N, i/2N)$. On pourra utilisez les fonctions binomial et grand option markov pour définir la matrice P.

- 1. Représenter plusieurs trajectoires de cette chaîne de Markov pour $N=5,\ 10,\ 30.$
- 2. Estimer la probabilité que la chaîne soit absorbée en 2N en fonction du point de départ pour $N=5,\ 10,\ 30.$ Une conjecture pour l'expression théorique?
- 3. Proposer une estimation de l'espérance du temps d'absorption de la chaîne en fonction du point de départ pour $N=5,\ 10,\ 30$. Ne pas oublier pas l'intervalle de confiance!

4 Modèle de Wright-Fisher avec mutations

On remplace le modèle précédent par la chaîne associée à la matrice P donnée par

$$p_{ij} = {2N \choose j} q_i^j (1 - q_i)^{2N - j}$$
 avec $q_i = \frac{i}{2N} (1 - u) + \left(1 - \frac{i}{2N}\right) v$

pour $i, j \in \{0, 1, ..., 2N\}$ avec u et v dans [0, 1].

- 1. Calculer la mesure invariante π pour N=10 et 20. À partir de quelle valeur de N, le logiciel ne permet plus le calcul de π ?
- 2. Proposer une méthode s'appuyant sur le théorème ergodique pour donner une estimation des coefficients de π . Confronter les résultats de la simulation à ceux de la question précédente pour N=10 et 20.

Pour les deux modèles de Wright-Fisher, on pourra se référer à [Nor98] ou aux recueils de textes publiés.

Références

[FF02] D. FOATA et A. FUCHS – Processus stochastiques, Dunod, 2002.

[KS60] J. G. Kemeny et J. L. Snell – Finite markov chains, Van Nostrand, 1960.

[Nor98] J. R. Norris – Markov chains, Cambridge University Press, 1998.