Food Desert CNN

Using Satellite Imagery & Machine Learning to Identify Food Deserts

Prerna Singh, Yu-Sheng Lee, Yiwen Hou & Kandace Webber
MIDS 207

UC Berkeley School of Information

Motivation & Problem Statement

***** The Problem

- Food deserts are geographic areas with limited access to affordable, nutritious food
- USDA classification rely on outdated Census data (once every ~10 years)

Limitations of Current Methods

- Traditional metrics don't capture real-time environmental change (recent changes in infrastructure, land use, and store access)
- Manual data collection is time-consuming and incomplete

Test if satellite imagery and ML Models can improve food desert classification

Research Question & Hypothesis

? Research Question

How can satellite imagery and ML models (CNNs) improve the classification of food deserts beyond the traditional metadata-based approaches?

Hypothesis

Overhead imagery of the environment contains latent features that correlate with food access (including road density, green space, commercial clusters, or housing patterns) that will help identify food deserts.

Related Work

Solution Jean et al. (2016): Combining Satellite Imagery and Machine Learning to Predict Poverty

- Poverty Prediction with CNNs on satellite imagery
- Inspired our use of visual patterns and hybrid models

Secondary George & Tomer (2021) :

- Critique of "food desert" concept
- Labels are imperfect; our model may capture what current definitions miss

Dataset (Pre-processing & EDA)

- Input: 400x400 RGB satellite images (Google Maps) + Metadata
 - USDA Food Access Atlas → Binary labels (LILA_Urban1_Rural10 = 1)
 - Census TIGER shapefiles → Tract boundaries & centroids
 - **Google Maps API** \rightarrow 400x400 pixel satellite imagery
 - Focus: 8 Southeastern U.S. states
 - **Final dataset:** 7,121 tracts with image + metadata
- **Output:** IsFoodDesert (1 = food desert, 0 = not)

Key EDA findings:

- Class imbalance: urban ≠ not food desert
- Food deserts **cluster near city edges**
- Label correlates with **income & rural status**

Model 1: Random Forest

Model 1: Random Forest (Metadata only)

CNNs: Model 2 vs 3

Confusion Matrix and Misclassified Images for Model 2

Misclassified Images for Model 3

Conclusions

Best performing Model: CNN+Metadata

** Future Ideas/Learnings :

- Did we have the right data?
 - Discrepancy in images + metadata
 - Real-time data sources of grocery store locations/business density/land use classification & zoning data
- Need for model that doesn't rely on government provided data
 - Support local policy and non-profits in food justice and urban planning
- Expand nationally

Table 1. Model Evaluation Metrics 3. CNN Image + Metadata Metrics \ Model 1. Random Forest 2. CNN Images Only Test Accuracy 82% 78% 83% 67% F1 Score 62% 0% Precision 64% 0% 58% Recall 60% 0% 78%

Thank you!

MIDS-207

Prerna Singh Yu-Sheng Lee Yiwen Hou Kandace Webber

UC Berkeley School of Information