

Time Series Prediction with Interpretable Data Reconstruction

Qiangxing Tian, Jinxin Liu, Donglin Wang, Ao Tang

Presenter: Jinxin Liu

Machine Intelligence Laboratory, Department of Engineering, Westlake University, Hangzhou, China

November, 2019

- 1. Background & Motivation
- 2. Methodology
- 3. Empirical Study

- 1. Background & Motivation
- 2. Methodology
- 3. Empirical Study

Retrieval. ACM, 2018.

Background

- Statistical methods: ARIMA, VAR, SAR ...
- Deep Neural Networks: RNN (LSTM), TCN^[1] (CNN) ···
- Hybrid methods: R2N2^[2], LSTNet^[3] ...

[1] Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling." arXiv preprint arXiv:1803.01271 (2018). [2]Goel, Hardik, Igor Melnyk, and Arindam Banerjee. "R2N2: Residual recurrent neural networks for multivariate time series forecasting." arXiv preprint arXiv:1709.03159 (2017). [3] Lai, Guokun, et al. "Modeling long-and short-term temporal patterns with deep neural networks." The 41st International ACM SIGIR Conference on Research & Development in Information 3

Final Output for horizon 2h

Background

- Input = valuable & structural patterns + irrelevant information.
- Irrelevant information will lower the performance of model.
- How to extract the patterns which is task relevant without any prior?

- 1. Background & Motivation
- 2. Methodology
- 3. Empirical Study

Methodology - overview

Framework

- Basic Predictor
 - Encoder
 - Decoder
- Reconstructor
 - Balancer
 - Regulator

$$\begin{array}{c} x \rightarrow x_1 \rightarrow h_T \rightarrow \hat{y}^1 \mapsto L_1 \\ x \rightarrow x_1 \rightarrow h_T \rightarrow x_2 \rightarrow h_T \rightarrow \hat{y}^2 \mapsto L_2 \end{array}$$

Methodology - Stage1

- Basic Predictor
 - Encoder
 - Decoder

$$x \to x_1 \to h_T \to \hat{y}^1 \mapsto L_1$$

$$L_1 = L(y, \hat{y}^1)$$

Methodology – Stage2

- Basic Predictor
 - Encoder
- Reconstructor
 - Balancer
 - Regulator
- Basic Predictor
 - Encoder
 - Decoder

$$\mathbf{x} \to \mathbf{x}_1 \to \mathbf{h}_T \to \mathbf{x}_2 \to \mathbf{h}_T \to \hat{\mathbf{y}}^2 \mapsto \mathbf{L}_2$$

 $\mathbf{L}_2 = \gamma \cdot \mathbf{L}(\mathbf{x}^2, \mathbf{x}^1) + (1 - \gamma) \cdot \mathbf{L}(y^2, \hat{y}^2)$

Methodology - reconstructor

- Basic Predictor
 - Encoder
- Reconstructor
 - Balancer
 - Regulator
- Basic Predictor
 - Encoder
 - Decoder

- 1. Background & Motivation
- 2. Methodology
- 3. Empirical Study

Empirical Study

Reconstruction:

$$x_1 \rightarrow h_T \rightarrow x_2$$

Empirical Study

Overall performance: (IPR is our method)

Datasets	Н	AR		Ridge		TCN		Wavelet-Trans		Seq2Seq		IPR	
		MSE	U	MSE	U	MSE	U	MSE	U	MSE	U	MSE	U
NINO 1-2	2	1.3667	0.0021	0.2782	0.0010	0.6004	0.0014	1.1718	0.0020	0.5800	0.0014	0.8918	0.0017
	4	3.4313	0.0034	0.4691	0.0012	0.6814	0.0015	0.9009	0.0017	1.1994	0.0020	0.4477	0.0012
	8	10.6932	0.0062	0.8739	0.0017	0.7875	0.0016	1.3262	0.0021	1.6922	0.0024	0.5136	0.0013
NINO 3	2	0.4010	0.0009	0.1776	0.0006	0.5530	0.0011	0.5341	0.0011	0.3218	0.0008	0.2082	0.0007
	4	1.8407	0.0020	0.3845	0.0009	0.3166	0.0008	0.6066	0.0011	0.7815	0.0013	0.2862	0.0008
	8	3.7377	0.0029	0.6229	0.0012	0.5916	0.0011	0.8459	0.0013	1.3398	0.0017	0.1739	0.0006
NINO 3-4	2	0.1394	0.0005	0.1247	0.0005	0.3578	0.0008	0.4345	0.0009	0.2429	0.0007	0.1152	0.0005
	4	0.6217	0.0011	0.2551	0.0007	0.2638	0.0007	0.5700	0.0010	0.3634	0.0008	0.1526	0.0005
	8	1.6354	0.0017	0.4561	0.0009	0.5871	0.0010	0.8947	0.0013	1.0797	0.0014	0.0906	0.0004
NINO 4	2	0.0483	0.0003	0.0567	0.0003	0.4068	0.0008	0.3309	0.0007	0.1151	0.0004	0.0739	0.0003
	4	0.1625	0.0005	0.1512	0.0005	0.1351	0.0004	0.3141	0.0007	0.2030	0.0006	0.0633	0.0003
	8	0.4922	0.0009	0.4209	0.0008	0.4999	0.0009	0.6071	0.0010	0.4306	0.0008	0.0693	0.0003
EP	2	19.5279	0.0029	4.3653	0.0014	4.1183	0.0013	5.2937	0.0015	6.6679	0.0017	6.0680	0.0016
	4	34.3566	0.0038	6.9597	0.0017	6.9498	0.0017	6.9967	0.0017	6.7628	0.0017	6.6738	0.0017
	8	70.5371	0.0060	7.7967	0.0019	7.2836	0.0017	8.9940	0.0020	15.0008	0.0026	6.0237	0.0016

Conclusion

- We propose a framework to learn the effective component without prior.
- Other learning algorithms or architectures are orthogonal to our framework and could be used to improve performance.
- Our approach learns the effective component in time series forecasting instead of artificially designing a filter via signal processing.
- Our model shows promising results and outperforms baselines.

Thank You!