Úvod do molekulové symetrie

- Operace symetrie
- Prvky symetrie
- Bodové grupy
- Tabulky charakterů
- Vibrační módy molekul
- Chirální molekuly

3.1 Úvod

V chemii je symetrie důležitá jak na úrovni molekul, tak pro krystalové struktury. Porozumění symetrii je klíčové pro pochopení molekulové spektroskopie a pro výpočty vlastností molekul. Výklad **symetrie krystalů** není obsahem této knihy, zde se budeme zabývat pouze **symetrií molekul**. Pro kvalitativní účely je dostačující používat pro označení tvarů molekul výrazy jako tetraedrická, oktaedrická, čtvercově planární atd., nicméně použití těchto výrazů není vždy přesné. Uvažujme např. dvě planární molekuly BF₃ (V3.1) a BF₂H (V3.2). Pro molekulu BF₃ je označení trigonálně planární správné, protože její symetrie je plně v souladu s tímto označením. Všechny vazebné úhly F–B–F jsou 120° a všechny vazebné délky B–F jsou stejné (131 pm). Naproti tomu atom boru v BF₂H má pouze **pseudo-trigonálně planární** okolí, protože molekulová symetrie není stejná jako v případě BF₃. Vazebný úhel F–B–F v BF₂H je menší než úhly H–B–F a vazba B–H (119 pm) je kratší než vazby B–F (131 pm).

Označení **symetrický** znamená, že objekt vykazuje určitý počet nerozlišitelných konfigurací. Pokud se struktura (V3.1) otočí v rovině zobrazení o 120°, výsledná struktura je nerozlišitelná od původní; další otočení o 120° vede ke třetí nerozlišitelné orientaci molekuly (Obr. 3.1). To ale neplatí pro rotaci molekuly BF₂H.

Teorie grup je matematickým způsobem popisu symetrie. V této kapitole se seznámíme se základním aparátem teorie grup (**operace symetrie**, **prvek symetrie**, **bodová grupa** a **tabulka charakterů**). Kapitola si neklade za cíl poskytnout podrobný výklad symetrie molekul, ale poskytuje úvod do této teorie a vysvětluje běžně používanou terminologii. Obsahuje též základy teorie vibračních spekter jednoduchých anorganických molekul a zavádí postup, jak touto technikou rozlišit možné tvary molekul typu XY₂, XY₃ a XY₄. Kompletní analýza normálních vibračních módů těchto částic přesahuje rámec této knihy.

3.2 Operace symetrie a prvky symetrie

Na Obr. 3.1 jsme molekulu BF₃ postupně otáčeli o 120° a viděli jsme, že každá rotace vytvořila orientaci molekuly nerozlišitelnou od té původní. Rotace je příkladem **operace symetrie**.

Rotace znázorněné na Obr. 3.1 byly provedené podle osy kolmé k rovině zobrazení a procházející atomem boru. Tato osa je příkladem **prvku symetrie**.

1.1.1 Rotace okolo *n*-četné osy symetrie

Operace symetrie zvaná rotace o úhel $360^{\circ}/n$ okolo n-četné **osy symetrie** (prv-ku symetrie) se označuje symbolem C_n , kde n je přirozené číslo, např. 2, 3 nebo 4 (formální operace $C_1 \equiv E$ se v teorii grup nazývá identita, viz dále). Rotace

Obr. 3.1: Rotace trigonálně planární molekuly BF₃ o 120° vytvoří konfiguraci struktury, která je nerozlišitelná od té původní (pro názornost je jeden atom F je označen červenou barvou). Druhá rotace o 120° vede k další nerozlišitelné strukturní konfiguraci

Operace symetrie aplikovaná na určitý objekt převádí tento objekt do konfigurace, která je nerozlišitelná od původní, takže se s ní kryje.

Operace symetrie se provádějí vzhledem k bodům, osám (přímkám) a rovinám symetrie, které označujeme **prvky symetrie**.

Obr. 3.2: Trojčetná (C_3) a tři dvojčetné (C_2) osy symetrie trigonálně planární molekuly BF₃

Obr. 3.3: Molekula H_2O má jednu osu C_2 a dvě roviny symetrie. (a) Osa C_2 a rovina symetrie totožná s rovinou

Dolní indexy h, v a d přiřazené k symbolu σ znamenají horizontální, vertikální a diedrické roviny symetrie.

(P3.1) struktura B_2Br_4

$$\alpha = 120^{\circ} = 360^{\circ}/n \tag{3.1}$$

Navíc má molekula BF₃ tři dvojčetné rotační osy (C_2) procházející vazbami B–F (viz Obr. 3.2). Pokud má molekula víc než jeden typ n-četných os, osa s nejvyšší hodnotou n se označuje jako **hlavní osa**. Je to osa **nejvyšší molekulové symetrie** (např. hlavní osa pro BF₃ je C_3). U některých molekul se mohou osy s nižší četností krýt s hlavní osou (např. ve čtvercově planární molekule XeF₄ se hlavní osa C_4 kryje s osou C_2 , viz Obr. 3.4).

Pokud má molekula více než jednu osu C_n se stejnou hodnotou n, použijeme pro rozlišení čárky, např. C_2 , C_2 ' a C_2 ". K tomuto případu se vrátíme při analýze XeF₄ (viz Obr. 3.4).

Úlohy k procvičení

- 1. Každá z těchto molekul je tvořena šestičlenným kruhem: benzen, borazin (viz Obr. 13.23), pyridin a S_6 (viz **Panel 1.1**). Vysvětlete, proč pouze molekula benzenu má šestičetnou hlavní rotační osu.
- Z částic CF₄, SF₄, [BF₄]⁻ a XeF₄ má pouze XeF₄ čtyřčetnou hlavní rotační osu. Proč?
- Nakreslete strukturu [XeF₅]⁻. Do obrázku zakreslete osu C₅. Tento ion má také pět os C₂. Kde se nacházejí?
 [struktura viz Řešený příklad 2.7]
- 4. Prohlédněte si strukturu B_5H_9 na Obr. 13.29a. Kde leží osa C_4 této molekuly?

3.2.2 Zrcadlení (reflexe) v rovině symetrie

Pokud zrcadlení všech částí molekuly v rovině vede k nerozlišitelné konfiguraci, je tato rovina **rovinou symetrie**. **Zrcadlení** je další operací symetrie, **rovina zrcadlení** (značíme σ) je prvkem symetrie. Rovinou zrcadlení pro molekulu BF₃ je rovina procházející všemi atomy (na Obr. 3.2 zbarvená hnědě). V tomto případě je kolmá k vertikální hlavní ose a značí se symbolem σ_h (h = horizontální).

Atomy v lineární, lomené nebo planární molekule může být vždy proložena rovina, ale tato rovina se značí symbolem σ_h **pouze** v případě, že molekula má osu C_n **kolmou** k této rovině. Pokud hlavní osa **leží** v této rovině, rovina se značí σ_v (v = vertikální). Uvažujme molekulu H_2O (Obr. 3.3). Obsahuje osu C_2 , ale také dvě roviny symetrie, jednu procházející atomy a druhou na ní kolmou. Obě roviny obsahují hlavní osu rotace, a proto je značíme σ_v . Pro jejich rozlišení použijeme označení σ_v a σ_v' . Symbol σ_v odpovídá rovině půlící vazebný úhel H-O-H, symbol σ_v' značí rovinu molekuly.

Zvláštní typ roviny σ , která obsahuje hlavní rotační osu, ale půlí úhel mezi dvěma sousedními dvojčetnými osami, se značí $\sigma_{\rm d}$ (d = diedrický). Příkladem je čtvercově planární molekula XeF₄. Na Obr. 3.4a je znázorněno, že XeF₄ má osu C_4 (hlavní osa) a kolmo k ní je rovina molekuly $\sigma_{\rm h}$. S osou C_4 se kryje osa C_2 . V rovině molekuly jsou další dva páry os C_2 . Jeden typ (osy C_2') prochází vazbami F–Xe–F, zatímco druhý typ (C_2'') půlí pravé úhly F–Xe–F. Nyní můžeme definovat dva páry rovin symetrie: jeden typ ($\sigma_{\rm v}$) obsahuje hlavní osu a osy C_2'' (Obr. 3.4b), zatímco druhý typ ($\sigma_{\rm d}$) obsahuje hlavní osu a osy C_2'' (Obr. 3.4c). Obě roviny $\sigma_{\rm d}$ půlí úhly mezi dvěma osami C_2' .

(P3.2) struktura Ga₂H₆

- Molekula N₂O₄ je planární (Obr. 15.15). Ukažte, že má tři roviny symetrie.
- 2. Molekula B₂Br₄ má střídavě uspořádanou strukturu (P3.1). Ukažte, že B₂Br₄ má o jednu rovinu symetrie méně než planární B₂F₄.
- Ga₂H₆ má v plynné fázi strukturu (P3.2). Ukažte, že má tři roviny symetrie.
- Ukažte, že molekula benzenu má jednu rovinu σ_h, tři σ_v a tři σ_d.

Obr. 3.4: Čtvercově planární molekula XeF_4 . (a) Jedna osa C_2 se kryje s hlavní osou (C_4). Molekula leží v rovině σ_h , která obsahuje dvě osy C_2' a dvě osy C_2'' . (b) Každá z rovin σ_v obsahuje osu C_4 a jednu osu C_2' . (c) Každá z rovin σ_d obsahuje osu C_4 a jednu osu C_2''

3.2.3 Promítnutí přes střed symetrie (inverze)

Pokud zobrazení všech částí molekuly vzhledem ke středu molekuly vede k nerozlišitelné konfiguraci, je tento střed středem symetrie. Tato operace se také nazývá inverze (viz rovněž Panel 2.1) a značí se symbolem i. Molekuly CO₂ (V3.3), trans- N_2F_2 (viz **Řešený příklad 3.1**), SF_6 (V3.4) a benzen (V3.5) mají střed symetrie, ale molekuly H₂S (V3.6), cis-N₂F₂ (V3.7) a SiH₄ (V3.8) nikoliv.

- 1. Nakreslete struktury těchto částic a ukažte, že všechny mají střed symetrie: CS₂, [PtF₆]⁻, XeF₄, I₂, [ICl₂]⁻.
- 2. Ion [PtCl₄]²⁻ má střed symetrie, zatímco [CoCl₄]²⁻ nikoliv. Jeden z nich je čtvercově planární, druhý tetraedrický. Který je který?
- 3. Proč má molekula CO₂ střed symetrie a NO₂ nikoliv?
- 4. Molekuly CS₂ a HCN jsou obě lineární. Vysvětlete, proč CS₂ má střed symetrie a HCN nikoliv.

3.2.4 Rotace okolo osy symetrie s následným zrcadlením v rovině symetrie kolmé na tuto osu (rotační reflexe)

Pokud rotace o úhel $360^\circ/n$ kolem osy a následné zrcadlení v rovině kolmé na tuto osu vede k nerozlišitelné konfiguraci, je tato osa **n-četná rotačně-reflexní osa**, nebo také **n-četná nevlastní rotační osa** a značí se symbolem S_n . Tetraedrické částice typu XY_4 (všechny skupiny Y musí být totožné) mají tři osy S_4 . Zobrazení vzhledem k jedné rotačně-reflexní ose S_4 v molekule CH_4 ukazuje Obr. 3.5.

Úlohy k procvičení

- 5. Vysvětlete, proč molekula BF_3 má osu S_3 , zatímco NF_3 nikoliv.
- Molekula C₂H₆ ve střídavé konformaci má osu S₆. Ukažte, že tato osa prochází vazbou C-C
- 7. Na Obr. 3.5 je jedna z os S_4 v molekule CH_4 . Zůstanou osy S_4 zachovány při přechodu od CH_4 k CH_2Cl_2 ?

3.2.5 Operace identity

Všechny objekty mají operaci symetrie, která se nazývá **identita**. Značí se *E* a je to nejjednodušší operace symetrie (i když nemusí být na první pohled pochopitelné, proč se tato operace zavádí). Operace *E* ponechává molekulu beze změny.

Řešený příklad 3.1: Symetrie cis-N₂F₂ a trans-N₂F₂

Jak se liší rotační osy a roviny symetrie molekul *cis*-N₂F₂ a *trans*-N₂F₂?

Nejprve nakresleme struktury *cis*-N₂F₂ a *trans*-N₂F₂, obě molekuly jsou planární (P3.3).

Operace E náleží oběma izomerům. Oba izomery mají rovinu symetrie, která se kryje s rovinou molekuly, ale jejich označení se liší (viz poslední bod). Cis-izomer má osu C_2 , která leží v rovině molekuly, zatímco trans-izomer má osu C_2 , která půlí vazbu N–N a je kolmá k rovině molekuly, (P3.4).

Cis-izomer (nikoliv izomer trans!) má rovinu symetrie σ_v ležící kolmo k rovině molekuly a půlící vazbu N–N, (P3.5).

V důsledku přítomnosti různých typů os C_2 a přítomnosti roviny σ_v v cis-izomeru se roviny molekul cis- N_2F_2 a trans- N_2F_2 značí odlišně: σ_v' a σ_h .

- 1. Jak se liší rotační osy a roviny symetrie molekul Z- a E-CFH=CFH?
- 2. Kolik rovin symetrie má (a) $F_2C=O$; (b) CIFC=O; (c) HCO_2^- ? [(a) 2; (b) 1; (c) 2]

strukt. vzorce cis-N₂F₂ a trans- N₂F₂

Obr. 3.5: Nevlastní rotace (nebo rotační reflexe, rotační zrcadlení) S_n představuje otočení o úhel 360°/n následované zrcadlením v rovině kolmé na rotační osu. Obrázek představuje operaci vzhledem k jedné ze čtyř os S_4 v molekule CH_4 ; v molekule CH_4 jsou možné tři operace S_4 . [Úloha: Kde jsou v molekule CH_4 tři rotačně-reflexní osy pro tři operace S_4 ?]

Řešený příklad 3.2: Prvky symetrie molekuly NH₃

Prvky symetrie NH₃ jsou E, C_3 a $3\sigma_v$. (a) Nakreslete strukturní vzorec NH₃. (b) Jaký je význam operace E? (c) Do obrázku zakreslete prvky symetrie. Molekula má tvar trigonální pyramidy, (P3.6).

(P3.6) struktura NH₃

(P3.7)

Symbol E značí operaci identity, která ponechává molekulu beze změny. Osa C₃ prochází atomem N kolmo k rovině tvořené třemi atomy H. Všechny roviny procházejí vazbami N-H a půlí protilehlý vazebný úhel H-N-H, (P3.7).

Úlohy k procvičení

- 1. Které prvky symetrie zaniknou přechodem od NH₃ k NH₂Cl? [C_3 , dvě σ_v]
- 2. Porovnejte prvky symetrie molekul NH3, NH2Cl, NHCl2 a NCl3.
- 3. Do strukturního vzorce zakreslete prvky symetrie molekuly NCIF₂.

[jedna rovina σ , jediná další operace je E]

Řešený příklad 3.3: Trigonálně planární molekula BCl₃ a trigonálně pyramidální PCI₃

Které prvky symetrie mají BCl₃ a PCl₃ stejné (a) a kterými se liší (b)?

Molekula PCl₃ má tvar trigonální pyramidy (viz teorie VSEPR) a má tedy stejné prvky symetrie jako NH₃ (viz **Řešený příklad 3.2**): E, C_3 a $3\sigma_v$.

BCl₃ je trigonálně planární (má tvar rovnostranného trojúhelníku, viz VSEPR) a má také všechny jmenované prvky symetrie, (P3.8).

Navíc ale má i rovinu σ_h a tři osy C_2 (viz Obr. 3.2), (P3.9). Otočení o 120° kolem osy C_3 a následné zrcadlení v rovině kolmé k této ose (rovina $\sigma_{\rm h}$) vede ke konfiguraci molekuly nerozlišitelné od původní a představuje nevlastní rotaci S₃.

- 1. Ukažte, že molekuly BF₃ a F₂C=O mají společné následující prvky symetrie: E, dvě roviny symetrie a jednu osu C_2 .
- 2. Jak se liší prvky symetrie molekul ClF3 a BF3?

[BF₃: E, $\sigma_{\rm h}$, tři $\sigma_{\rm v}$, C_3 , tři C_2 ; ClF₃: E, $\sigma_{\rm v}$ ', $\sigma_{\rm v}$, C_2]

Jak jsme viděli v odd. 3.2, pro označení každého prvku symetrie používáme zvláštní symbol. Tvrzení " NH_3 má osu C_3 " vyjadřuje, že po každém otočení molekuly o 120° obdržíme konfiguraci molekuly nerozlišitelnou od původní. Ve skutečnosti musíme provést tři takové operace, abychom se dostali do výchozí konfigurace. Tři postupné rotace o 120° značíme tak, jak je uvedeno v Obr. 3.6 (ve skutečnosti jsou tři atomy H nerozlišitelné, ale pro přehlednost jsou v obrázku označeny číslicemi 1, 2 a 3). Skutečnost, že třetí rotace C_3 vrací molekulu NH₃ do původní konfigurace, můžeme zapsat pomocí rovn. (3.2) nebo obecně rovn. (3.3):

 BCl_3 s prvky symetrie C_3 a σ_v není třeba vysvětlení barev

 BCl_3 s prvky symetrie C_3 a σ_v , C_2 a σ_h není třeba vysvětlení barev

Obr. 3.6: Postupné rotace kolem osy C_3 v molekule NH₃ se rozlišují symboly C_3 (nebo C_3^{-1}), C_3^{-2} a C_3^{-3} . Výsledek poslední operace je stejný, jako má operace identita – ponechává molekulu NH3 v původní konfiguraci

$$C_3^3 = E$$
 (3.2)
 $C_n^0 = E$ (3.3)

$$C_n^n = E (3.3)$$

Podobně můžeme vyjádřit i skládání dalších operací. Například nevlastní osa rotace S_3 v planární molekule BCl₃ odpovídá otočení kolem osy C_3 a následnému zrcadlení v rovině σ_h . To může být zapsáno rovnicí

$$S_3 = C_3 \times \sigma_h \tag{3.4}$$

Úlohy k procvičení

- 1. Ion $[PtCl_4]^{2-}$ je tetragonálně planární. Jaké operaci rotace odpovídá symbol C_4^2 ?
- 2. Ukažte, co představuje symbol C_6^4 v rámci rotačních operací molekuly benzenu.

3.4 Bodové grupy

Souhrn a druh operací symetrie v dané molekule vyjadřuje její bodová grupa, která se značí symboly C_2 , C_{3v} , D_{3h} , D_{2d} , T_d , O_h nebo I_h . (Grupa symetrie je algebraická struktura nad množinou operací symetrie, nikoliv prvků symetrie. Operace symetrie lze mezi sebou maticově násobit, prvky symetrie nikoliv.) Bodové grupy se dále dělí do tříd: třída grup C, třída grup D a třídy speciálních grup, které mají zvláštní symetrii, tj. tetraedrickou, oktaedrickou a ikosaedrickou.

Popis symetrie molekuly pomocí jednoho prvku symetrie (např. rotační osy) poskytuje pouze částečnou informaci. Například molekuly BF₃ a NH₃ mají obě trojčetnou osu symetrie, ale jejich tvar je odlišný: BF₃ je trigonálně planární a NH₃ je trigonálně pyramidální. Pokud ale popíšeme symetrii těchto molekul pomocí příslušné bodové grupy (D_{3h} a C_{3v}), poskytneme informaci o všech přítomných prvcích symetrie.

Než se zaměříme na některé vzorové bodové grupy, je třeba zdůraznit, že není potřeba se pro konkrétní bodovou grupu učit všechny její prvky symetrie zpaměti. Jsou totiž uvedené v běžně dostupných tabulkách charakterů (viz odd. 3.5, 5.4 a 5.5 a Příloha 3). Tabulka 3.1 shrnuje nejvýznamnější třídy bodových grup a uvádí charakteristické prvky symetrie; E je pochopitelně vlastní všem grupám. Charakteristické rysy některých grup jsou uvedeny dále.

Bodová grupa C₁ 3.4.1

Molekuly, které zdánlivě nemají žádnou symetrii, např. (V3.9), ve skutečnosti vždy mají prvek symetrie E a mají alespoň jednu osu C_1 . Proto náležejí k bodové grupě C_1 . Protože $C_1 \equiv E$, rotační operace symetrie se při výčtu prvků symetrie této bodové grupy neuvádí.

Tabulka 3.1: Charakteristické prvky symetrie některých důležitých tříd bodových grup symetrie

Charakteristické prvky symetrie u grup T_d , O_h a I_h nejsou uvedeny, protože tyto grupy lze snadno rozpoznat (viz Obr. 3.8 a 3.9); roviny symetrie σ_v a σ_d nejsou rozlišeny. Úplný seznam prvků symetrie viz tabulky charakterů v **Příloze 3**

Bodová grupa	Charakteristické prvky symetrie	Poznámky
$C_{\rm s}$	E , jedna rovina σ	
$C_{\rm i}$	E, střed symetrie i	
C_n	E, jedna (hlavní) n-četná osa	
C_{nv}	E , jedna (hlavní) n -četná osa, n rovin $\sigma_{\rm v}$	
$C_{n\mathrm{h}}$	E , jedna (hlavní) n -četná osa, jedna rovina σ_h , jedna n -četná osa S_n , totožná s osou C_n	Přítomnost osy S_n vyplývá z přítomnosti osy C_n a roviny σ_h . Pro $n=2$, 4 nebo 6 je přítomný také střed symetrie.
$D_{n\mathrm{h}}$	E , jedna (hlavní) n -četná osa, n os C_2 , jedna rovina $\sigma_{\rm h}, n$ rovin $\sigma_{\rm v}$, jedna n -četná osa S_n	Přítomnost osy S_n vyplývá z přítomnosti osy C_n a roviny σ_h . Pro $n=2$, 4 nebo 6 je přítomný také střed symetrie.
D_{nd}	E , jedna (hlavní) n -četná osa, n os $C_2,$ n rovin $\sigma_{\rm v}$, jedna $2n$ -četná osa S_{2n}	Pro $n = 3$ nebo 5 je přítomný také střed symetrie.
T_{d}		tetraedr
O_{h}		oktaedr
$I_{ m h}$		ikosaedr

3.4.2 Bodová grupa $C_{\infty v}$

Symbol C_{∞} vyjadřuje přítomnost ∞ -četné rotační osy charakteristické pro lineární molekuly (Obr. 3.7). Částice náležející ke grupě $C_{\infty v}$ mají také nekonečně rovin σ_v , ale nemají rovinu σ_h ani střed symetrie. Tyto podmínky splňují asymetrické dvouatomové částice HF, CO a CN $^-$ (Obr. 3.7a) a lineární polyatomické částice (termín "polyatomický" v této knize používáme pro částici skládající se ze tří a více atomů), které nemají střed symetrie, např. OCS a HCN.

3.4.3 Bodová grupa $D_{\infty h}$

Symetrické dvouatomové částice (např. H_2 , O_2^{2-}) a lineární polyatomické částice se středem symetrie (např. N_3^- , CO_2 a $HC \equiv CH$) mají navíc k ose C_∞ a nekonečnému počtu rovin σ_v také rovinu σ_h (Obr. 3.7). Tyto částice náležejí k bodové grupě $D_{\infty h}$.

3.4.4 Bodové grupy T_d , O_h a I_h

Molekuly náležející k bodovým grupám T_d , O_h nebo I_h (Obr. 3.8) mají mnoho prvků symetrie, ale pro přiřazení grupy je málokdy potřeba identifikovat tyto prvky všechny. Částice s tetraedrickou symetrií jsou např. SiF₄, ClO₄⁻, [CoCl₄]²⁻,

Obr. 3.7: Lineární molekuly se dělí podle toho, zda mají střed symetrie (střed inverze), nebo nemají. Všechny lineární částice mají osu C_{∞} a nekonečný počet rovin $\sigma_{\rm V}$. Dvě takové roviny jsou zobrazeny na obr. (a), ale pro lepší přehlednost tyto roviny nejsou zobrazeny na obr. (b). Schéma (a) ukazuje nesymetrickou dvouatomovou částici náležící bodové grupě $C_{\infty {\rm V}}$, (b) ukazuje symetrickou dvouatomovou částici náležící bodové grupě $D_{\infty {\rm I}}$

Obr. 3.8: Tetraedr (symetrie $T_{\rm d}$), oktaedr (symetrie $O_{\rm h}$) a ikosaedr (symetrie $I_{\rm h}$) mají 4, 6 a 12 vrcholů, jejich stěny jsou tvořeny 4, 8 a 20 rovnostrannými trojúhelníky

Obr. 3.9: Struktura molekul: (a) P_4 ; (b) B_4Cl_4 ; (c) $[W(CO)_6]$; (d) $[B_{12}H_{12}]^{2-}$

 NH_4^+ , P_4 (Obr. 3.9a) a B_4Cl_4 (Obr. 3.9b). Příklady částic s oktaedrickou symetrií jsou SF_6 , PF_6^- , $[W(CO)_6]$ (Obr. 3.9c) a $[Fe(CN)_6]^{3^-}$. Tetraedr na rozdíl od oktaedru nemá střed symetrie a tento rozdíl má důsledky pro pozorovaná elektronová spektra tetraedrických a oktaedrických komplexů kovů (viz **odd. 20.7**). Částic s ikosaedrickou symetrií není mnoho, příkladem je $B_{12}H_{12}^{2^-}$ (Obr. 3.9d).

3.4.5 Určení bodové grupy molekuly nebo molekulového iontu

Pro přiřazení bodové grupy je klíčový systematický postup, jinak je nebezpečí, že se některé prvky symetrie přehlédnou a pak se chybně určí grupa. Postup vysvětluje Obr. 3.10 (některé méně běžné bodové grupy, např. S_n , T, O, nejsou ve schématu uvedeny). Povšimněte si, že pro určení bodové grupy není potřeba nalézt všechny prvky symetrie (např. nevlastní osy).

Použití schématu z Obr. 3.10 ukazují následující čtyři řešené příklady a další řešený příklad v odd. 3.8. Před přiřazením bodové grupy musí být stanovena struktura molekuly, např. mikrovlnnou spektroskopií, rentgenovou, elektronovou nebo neutronovou difrakcí (viz odd. 4.10).

Řešený příklad 3.4: Přiřazení bodové grupy N₂F₂

Určete bodovou grupu molekuly trans-N₂F₂.

Nejprve nakresleme strukturní vzorec – (P3.10). Dále postupujme podle diagramu na Obr. 3.10:

START → Je molekula lineární? Ne Má trans- N_2F_2 symetrii T_d , O_h nebo I_h ?

Má osu C_n ? Ano; osu C_2 kolmou na rovinu

papíru a procházející středem vazby N-N

Má dvě osy C_2 kolmé k hlavní ose? Ne Má rovinu σ_h (kolmou k hlavní ose)? Ano

 \rightarrow STOP: Bodová grupa je C_{2h} .

Úlohy k procvičení

- 1. Ukažte, že bodová grupa molekuly cis-N₂F₂ je C_{2v} -
- 2. Ukažte, že bodová grupa molekuly E-CHCl=CHCl je C_{2h} .

Řešený příklad 3.5: Přiřazení bodové grupy PF₅

Určete bodovou grupu molekuly PF₅.

Nejprve nakreslíme strukturní vzorec, (P3.11). V případě trigonálně bipyramidálního uspořádání jsou ekvivalentní tři ekvatoriální atomy F a dva axiální atomy F. Postupujme podle diagramu na Obr. 3.10:

START → Je molekula lineární? Ne Má PF₅ symetrii T_d , O_h nebo I_h ? Ne

Má osu C_n ? Ano; osu C₃ procházející atomem P a dvěma

axiálními atomy F

Má tři osy C_2 kolmé k hlavní ose? Ano; prochází ekvatoriálními vazbami P-F

Má rovinu σ_h (kolmou k hlavní ose)? Ano; prochází atomem P a třemi ekvatoriálními atomy F

 \rightarrow STOP: Bodová grupa je D_{3h} .

Úlohy k procvičení

Má osu C_n ?

- 1. Ukažte, že bodová grupa molekuly BF₃ je D_{3h} .
- 2. Ukažte, že bodová grupa molekuly OF_2 je C_{2v} .
- 3. Ukažte, že bodová grupa molekuly BF₂Br je C_{2v}

Řešený příklad 3.6: Přiřazení bodové grupy 3

K jaké bodové grupě náleží molekula POCl₃?

Strukturní vzorec POCl₃ je (P3.12). Postupujme podle diagramu na Obr. 3.10:

START → Je molekula lineární?

Má tři osy C_2 kolmé k hlavní ose?

Má rovinu σ_h (kolmou k hlavní ose)?

Má *n* rovin σ_v (obsahujících hlavní osu)?

Má POCl₃ symetrii T_d , O_h nebo I_h ?

Ne (přestože tvar této molekuly

může být nepřesně označen jako tetraedrický, tato molekula

nemá symetrii $T_{\rm d}$) Ano; osu C₃ procházející

vazbou P-O

Ne Ne

> Ano; každá prochází jedním atomem Cl a atomy O a P

 \rightarrow **STOP:** Bodová grupa je C_{3v} .

(P3.11) struktura PF₅

Úlohy k procvičení

- 1. Ukažte, že molekula CHCl₃ má symetrii C_{3v}, zatímco molekula CCl₄ náleží bodové grupě $T_{\rm d}$.
- 2. Určete bodové grupy (a) NH₄ a (b) NH₃. [(a) Td, (b) C3v]

Řešený příklad 3.7: Přiřazení bodové grupy 4

Na obrázku (P3.13) jsou uvedeny tři projekce cyklické molekuly S₈. Všechny vazebné délky S-S i všechny vazebné úhly S-S-S jsou ekvivalentní. K jaké bodové grupě náleží molekula S₈?

Postupujme podle diagramu na Obr. 3.10:

 $START \rightarrow$ Je molekula lineární? Ne Má S₈ symetrii T_d , O_h nebo I_h ? Ne Má osu C_n ? Ano; má osu C_4 procházející středem cyklu kolmou na rovinu nákresny v projekci (a) Má čtyři osy C_2 kolmé k hlavní ose? Ano; nejlépe viditelné jsou v projekci (c) Ne Má rovinu σ_h (kolmou k hlavní ose)? Má *n* rovin σ_d (obsahujících hlavní osu)? Ano, nejlépe jsou vidět v projekcích (a) a (b)

 \rightarrow STOP: Bodová grupa je D_{4d} .

Úlohy k procvičení

- 1. Proč cyklická molekula S_8 nemá osu C_8 ?
- 2. Překreslete projekci (a) a do obrázku zakreslete polohu osy C_4 a čtyřech os C_2 .
- 3. Molekula S₆ má židličkovou konformaci uvedenou v **Panelu 1.1**. Ukažte, že tato molekula má střed inverze.

Již dříve jsme uvedli, že pro určení bodové grupy molekuly nebo iontu není potřeba nalézt všechny prvky symetrie. Celkový počet operací symetrie bodové grupy lze nicméně zjistit následovně*):

- 1. přiřadíme 1 pro C nebo S, 2 pro D, 12 pro T, 24 pro O nebo 60 pro I;
- 2. vynásobíme hodnotou číselného dolního indexu n;
- 3. vynásobíme dvěma pro písmenný dolní index (s, v, d, h, i).

Například pro bodovou grupu C_{3v} dostaneme $1 \times 3 \times 2 = 6$ operací, D_{2d} má $2 \times 2 \times 2 =$ = 8 operací.

3.5 Tabulky charakterů

Obrázek 3.10 umožňuje určit bodovou grupu symetrie s využitím určitých diagnostických prvků symetrie. Někdy však může být důležité zjistit další prvky symetrie, které má molekula náležející k určité bodové grupě.

Každé bodové grupě odpovídá tabulka charakterů (ukázka je Tab. 3.2 pro grupu C_{2v}). Označení grupy je uvedeno v levém horním rohu tabulky a operace symetrie tvořící prvky bodové grupy jsou uvedeny v horním řádku tabulky charakterů. Molekula H_2O má symetrii C_{2v} a Obr. 3.3 ukazuje její dvě kolmé roviny symetrie. Pokud osu z ztotožníme s hlavní osou, budou v tabulce charakterů roviny $\sigma_{\rm v}$ resp. $\sigma_{\rm v}'$ odpovídat rovinám xz resp. yz. Konvenční umístění molekuly vzhledem k osám kartézského souřadného systému má mnoho výhod, jednou z nich je konvenční orientace atomových orbitalů centrálního atomu. K tomuto tématu se vrátíme v kap. 5.

Tabulkou charakterů pro bodovou grupu C_{3v} je Tab. 3.3. Molekula NH_3 má symetrii C_{3v} a hlavní rotační osu a roviny symetrie molekuly NH₃ vysvětlil **Řešený příklad 3.2**. Přítomnost tří rovin σ_v je v tabulce charakterů označena

Viz Curnow, O. J. Determination of the Numer of Operation for a Point Group from Only Its Name. J. Chem. Educ. 2007, 84, 1430.

Tabulka 3.2: Tabulka charakterů pro bodovou grupu C_{2v} (další tabulky charakterů viz Příloha 3)

(uais	ı ıa	ounky	Citarai	ciciu vi	2 1 1 110	ша	3)
C_{2v}	Ε	C_2	$\sigma_{v}(xz)$	$\sigma'_{v}(yz)$			
1	1	1	1	1	-	_{v2}	1,2

C_{2v}	E	C_2	$\sigma_{\rm v}(xz)$	$\sigma_{\rm v}'(yz)$		
A_1	1	1	1	1	z	
A_2	1	1	-1	-1	R_z	x_y
B_1	1	-1	1	-1	x, R_y	x_z
B_2	1	-1	-1	1	y, R_x	y_z

Tabulka 3.3: Tabulka charakterů pro bodovou grupu C_{3v} (další tabulky charakterů viz Příloha 3)

(aais		ounty	Ciidi	uncoru viz	Tillona C)
C_{3v}	E	$2C_3$	$3\sigma_{\rm v}$		
A_1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
E	2	-1	0	(x, y) (R_x, R_y)	$(x^2 - y^2, xy)$ (xz, yz)
				(R_x, R_y)	(xz, yz)

symbolem $3\sigma_v$ v horním řádku tabulky. Symbol $2C_3$ reprezentuje dvě operace C_3^1 a C_3^2 (Obr. 3.6). Operace C_3^3 je ekvivalentní operaci identity E, proto se znovu nezahrnuje.

Obrázek 3.4 ukazuje vlastní rotační osy a roviny symetrie čtvercově planární molekuly XeF₄, která má symetrii D_{4h} . Tabulka charakterů D_{4h} je uvedena v **Příloze 3**, horní řádek tabulky shrnuje všechny operace symetrie této bodové grupy následovně:

$$D_{4h}$$
 E $2C_4$ C_2 $2C_2'$ $2C_2''$ i $2S_4$ σ_h $2\sigma_v$ $2\sigma_d$

V molekule XeF₄ je osa C_2 totožná s osou C_4 , jak ukazuje Obr. 3.4. Operace C_2 je ekvivalentní operaci C_4 2. Tabulka charakterů uvádí tuto informaci jako "2 C_4 C_2 ", jako vyjádření C_4 1, C_4 3 a C_4 2 = C_2 . Operace C_4 4 je vyjádřena operací identity E. Dva páry os C_2 na Obr. 3.4 označené C_2 ′ a C_2 ″ jsou uvedeny i v tabulce charakterů, stejně jako rovina σ_h , dvě roviny σ_v a dvě roviny σ_d . Operace symetrie, které nejsou znázorněny na obrázku, ale v tabulce charakterů jsou uvedeny, jsou střed symetrie i (je ve středu atomu Xe v XeF₄) a osy S_4 . Každá operace S_4 může být vyjádřena jako ($C_4 \times \sigma_h$). V levém sloupci tabulky jsou uvedeny symboly symetrie. Ty se spolu s čísly neboli charaktery z hlavní části tabulky používají k označení symetrických vlastností např. molekulových orbitalů nebo vibračních módů molekul. Jak uvidíme v kap. 5, uvádí se označení symetrie orbitalů malými písmeny (např. a_1 , a_2 , a_3), přestože jsou odpovídající symboly symetrie v tabulce charakterů uvedeny písmeny velkými (např. a_4 , a_5). Symboly symetrie podávají informaci o degeneraci následovně:

- 1. A nebo B (nebo a a b) znamená nedegenerovaný;
- 2. E (nebo e) znamená dvakrát degenerovaný;
- 3. T (nebo t) znamená třikrát degenerovaný.

V kap. 5 použijeme tabulky charakterů k označení symetrie orbitalů a pro pochopení, jaké orbitální symetrie jsou přípustné pro molekuly s určitou symetrií. **Příloha 3** uvádí tabulky charakterů pro nejběžnější bodové grupy. Všechny tabulky mají stejný formát jako Tab. 3.2 a 3.3.

3.6 Proč potřebujeme určit prvky symetrie?

Až doposud jsme v této kapitole pouze popisovali prvky symetrie, které může mít určitá molekula, a na základě těchto informací jsme se naučili stanovit příslušnou bodovou grupu symetrie. Nyní uvedeme některé důvody, proč je určení prvků symetrie molekuly důležité pro anorganického chemika.

Většina aplikací symetrie spadá do jedné z těchto kategorií:

- 1. konstrukce molekulových a hybridních orbitalů (viz **kap. 5**);
- 2. interpretace spektrálních (např. vibračních, elektronových) vlastností;
- 3. stanovení, zda je molekula chirální.

Následující dva oddíly uvádějí důsledky symetrie na pásy pozorované v infračervených spektrech a vztah mezi molekulovou symetrií a chiralitou. V kap. 22 budeme studovat elektronová spektra oktaedrických a tetraedrických komplexů d-kovů a diskutovat vlivy, která má symetrie na elektronové spektroskopické vlastnosti.

3.7 Vibrační spektroskopie

Infračervená (IR) a Ramanova spektroskopie (viz též **odd. 4.7**) jsou metody vibrační spektroskopie, přičemž první z nich je běžná i v praxi a ve studentských laboratořích. Uvedeme zde alespoň zjednodušený výklad vybraných pasáží: Odvodíme počet vibračních módů jednoduchých molekul a určíme, zda jsou tyto módy aktivní v infračervené a/nebo v Ramanově spektroskopii (tj. jestli jsou absorpce odpovídající vibračním módům pozorovány v infračervených a/nebo Ramanových spektrech). S využitím tabulky charakterů příslušné bodové grupy dáme do souvislosti vibrační módy molekuly s její symetrií. Přesné odvození

(a) symetrická valenční vibrace v_1 , IR-neaktivní

(b) deformační vibrace δ_1 , IR-aktivní (667 cm⁻¹)

(c) deformační vibrace δ'_1 , IR-aktivní (667 cm⁻¹)

(d) asymetrická valenční vibrace v_2 , IR-aktivní (2 349 cm⁻¹)

Obr. 3.11: Vibrační módy molekuly CO_2 ($D_{\infty h}$). Ve vibračním módu v_1 (a) se atom uhlíku nepohybuje. Vibrace v_1 (a) a v_2 (d) jsou valenční. K deformačnímu módu δ_1 (b) dochází v rovině zobrazení, zatímco δ_1' (c) v rovině kolmé k rovině zobrazení. Znaménko + představuje pohyb směrem nad rovinu zobrazení. Dva deformační módy vyžadují stejnou energii a jsou proto **degenerované**

Vibrační mód je aktivní v infračerveném spektru (IRaktivní) tehdy, pokud způsobuje změnu elektrického dipólového momentu molekuly.
Vibrační mód je aktivní v Ramanově spektru (ramanovsky aktivní) tehdy, pokud způsobuje změnu polarizovatelnosti molekuly.
Polarizovatelnost je ochota elektronového oblaku molekuly k deformaci.

Pravidlo vzájemné výlučnosti pro centrosymetrické molekuly říká, že vibrace aktivní v IRoblasti jsou ramanovsky neaktivní, a naopak.

normálních vibračních módů pomocí teorie grup přesahuje rámec této knihy, v seznamu doporučené literatury na konci kapitoly uvádíme práce s podrobnějším výkladem.

3.7.1 Kolik vibračních módů má molekula?

Vibrační spektroskopie se zabývá pozorováním **vibračních stupňů volnosti**, jejichž počet může být určen následovně: Pohyb *n*-atomové molekuly se konvenčně popisuje pomocí tří kartézských souřadnic. Molekula má 3*n* **stupňů volnosti**, které zahrnují **translační**, **vibrační** a **rotační** pohyb molekuly.

Translační pohyb molekuly (tj. posuvný pohyb molekuly prostorem) je popsán třemi stupni volnosti odpovídajícími třem kartézským souřadnicím. Pokud je celkový počet stupňů volnosti 3n a tři stupně volnosti jsou pro translační pohyb, zbývá 3n-3 stupňů volnosti pro rotační a vibrační pohyb. **Nelineární** molekula má tři rotační stupně volnosti, ale **lineární** molekula pouze dva. Vezmeme-li v úvahu translační a rotační pohyb, počet vibračních stupňů volnosti, f, molekuly udávají rovnice*)

$$f = 3n - 6$$
 pro nelineární molekuly (3.5)

$$f = 3n - 5$$
 pro lineární molekuly (3.6)

Například molekula CO₂ má podle rovn. (3.6) čtyři **normální vibrační módy**, které jsou uvedeny na Obr. 3.11. Dva módy jsou degenerované, tj. mají stejnou energii (obrázek je třeba chápat tak, že k jedné vibraci dochází v rovině zobrazení a k druhé, se stejnou energií, v rovině k ní kolmé).

Úlohy k procvičení

- 1. S využitím teorie VSEPR nakreslete strukturní vzorce molekul CF_4 , XeF_4 a SF_4 . Každé molekule přiřaďte grupu symetrie. Ukažte, že počet vibračních stupňů volnosti je nezávislý na symetrii molekuly. $[T_d; D_{4h}; C_{2v}]$
- 2. Proč mají molekuly CO₂ a SO₂ různý počet vibračních stupňů volnosti?
- 3. Kolik vibračních stupňů volnosti mají následující molekuly: SiCl₄, BrF₃, POCl₃? [9; 6; 9]

3.7.2 Výběrová pravidla pro vibrace aktivní v infračervené a Ramanově spektroskopii

Jeden z důsledků přesného pochopení symetrie molekuly se využije v infračervené a Ramanově spektroskopii. Infračervené spektrum zaznamenává frekvence molekulových vibrací, tj. valenčních vibračních módů a deformačních vibračních módů**). Ne všechny vibrační módy určité molekuly však vedou k pozorovatelným pásům v IR-spektru. Je to důsledek následujícího výběrového pravidla: Vibrační mód je aktivní v infračerveném spektru (IR-aktivní) tehdy, pokud způsobuje změnu elektrického dipólového momentu molekuly.

Odlišné výběrové pravidlo platí pro Ramanovu spektroskopii: Vibrační mód je aktivní v Ramanově spektru (ramanovsky aktivní) tehdy, pokud způsobuje změnu polarizovatelnosti molekuly. Polarizovatelnost je ochota elektronového oblaku molekuly k deformaci.

Pro molekuly se středem symetrie (např. lineární CO₂ nebo oktaedrickou SF₆) platí navíc k těmto dvěma výběrovým pravidlům ještě **pravidlo vzájemné výlučnosti**: pro centrosymetrické molekuly říká, že vibrace aktivní v IR-oblasti jsou ramanovsky neaktivní, a naopak. Aplikace tohoto pravidla znamená, že přítomnost středu symetrie v molekule se snadno zjistí porovnáním infračerveného a Ramanova spektra. Přestože je dnes Ramanova spektroskopie rutinní technikou, pro běžnou charakterizaci sloučenin je infračervená spektroskopie

- *) Další podrobnosti viz Atkins, P.; de Paula, J. Atkins' Physical Chemistry. 9th end. Oxford University Press: Oxford, 2010. P. 471; český překlad Fyzikální chemie. VŠCHT Praha: Praha, 2013.
- **) Vibrační módy molekul můžeme rozdělit do dvou skupin podle toho, jaké vnitřní souřadnice se při vibraci mění: (a) valenční vibrace (angl. stretching), kdy dochází ke změnám vazebných délek; (b) deformační vibrace (angl. deformation nebo bending), kdy dochází ke změnám vazebných úhlů. (Pozn. překl.)

dostupnější. Proto bude většina následujícího výkladu omezena na absorpce v infračervené oblasti. Navíc se budeme zabývat pouze základními absorpcemi, které jsou v IR-spektrech dominantní.

3.7.3 Lineární ($D_{\infty h}$ nebo $C_{\infty v}$) a lomené (C_{2v}) tříatomové molekuly

Vliv molekulové symetrie na dipólový moment, a tedy na vibrační módy aktivní v IR-spektrech, můžeme snadno ukázat na lineární molekule CO₂.

Vazby C-O jsou stejně dlouhé (116 pm) a molekula se označuje jako "symetrická" – přesně řečeno má symetrii $D_{\infty h}$. V důsledku této symetrie je CO_2 nepolární. Počet vibračních stupňů volnosti f podle rovn. (3.6) je:

$$f((CO_2) = 3n - 5 = 9 - 5 = 4$$

Čtyři základní vibrační módy ukazuje Obr. 3.11. Zatímco deformační a asymetrická valenční vibrace způsobují změnu dipólového momentu (v průběhu samotné vibrace), symetrická valenční vibrace nikoliv. Znamená to, že v IRspektru CO₂ pozorujeme pouze dvě fundamentální absorpce.

Nyní uvažujme lomenou molekulu SO_2 (C_{2v}). Počet vibračních stupňů volnosti nelineární molekuly podle rovn. (3.5) je

$$f(SO_2) = 3n - 6 = 9 - 6 = 3$$

Tři základní vibrační módy jsou ukázány na Obr. 3.12. V případě tříatomové molekuly je snadné odvodit, že tři vibrační módy jsou tvořeny dvěma valenčními vibracemi (symetrickou a asymetrickou) a jedním deformačním módem. Pro větší molekuly však není snadné vibrační módy zobrazit. K tomuto problému se vrátíme v dalším oddílu. **Všechny tři** normální vibrační módy SO₂ způsobují změnu dipólového momentu molekuly a proto jsou IR-aktivní. Porovnání výsledků pro CO₂ a SO₂ ukazuje možnost využití vibrační spektroskopie k určení, zda je molekula X₃ či XY₂ lineární, nebo lomená.

Lineární molekuly obecného typu XYZ (např. OCS nebo HCN) mají symetrii $C_{\infty v}$ a v jejich IR-spektrech očekáváme tři absorpce: symetrickou valenční, asymetrickou valenční i deformační vibraci – všechny jsou IR-aktivní. V lineární molekule XYZ, kde se atomové hmotnosti X a Z významně liší, mohou být absorpce v IR-spektru přiřazeny valenční vibraci X–Y, valenční vibraci Y–Z a deformační vibraci XYZ. Důvod, proč můžeme valenční vibrace celé molekuly přiřadit vibraci jednotlivých vazeb spočívá v tom, že symetrická a asymetrická vibrace jsou dominantní vibrací jedné nebo druhé vazby. Například absorpce při 3 311, 2 097 a 712 cm $^{-1}$ v IR-spektru HCN mohou být přiřazeny postupně valenční vibraci H–C, valenční vibraci C \equiv N a deformaci HCN.

Valenční vibrace se značí symbolem v, deformační vibrace symbolem δ . Například označení $v_{\rm CO}$ znamená valenční vibraci vazby C–O.

Řešený příklad 3.8: IR-spektra tříatomových molekul

Infračervené spektrum SnCl₂ vykazuje absorpce při 352, 334 a 120 cm⁻¹. Jakému tvaru molekuly odpovídají tato data a je výsledek v souladu s teorií VSEPR?

Pro lineární molekulu $SnCl_2$ se symetrií $D_{\infty h}$ jsou asymetrická valenční a deformační vibrace IR-inaktivní (nemění se dipólový moment molekuly). Pro lomenou molekulu $SnCl_2$ symetrie C_{2v} jsou IR-aktivní všechny tři vibrace, symetrická valenční, asymetrická valenční i deformační. Data tedy odpovídají lomené molekule $SnCl_2$, což je v souladu s teorií VSEPR (jeden nevazebný a dva vazebné elektronové páry), (P3.14).

Úlohy k procvičení

- Vibrační módy XeF₂ jsou při 555, 515 a 213 cm⁻¹, ale pouze dva jsou IR aktivní. Vysvětlete, že je to v souladu s lineárním tvarem molekuly.
- Kolik IR aktivních vibračních módů má CS₂ a proč? (Nápověda: CS₂ je izostrukturní s CO₂.)
- 3. Infračervené spektrum SF_2 má absorpce při 838, 813 a 357 cm⁻¹. Vysvětlete, že je to v souladu s bodovou grupou molekuly C_{2v} a nikoliv $D_{\infty h}$.
- 4. K jaké bodové grupě náleží F_2O ? Vysvětlete, proč jsou vibrační módy při 928, 831 a 461 cm $^{-1}$ všechny IR-aktivní. [C_{2v}]

Přechod ze základního vibračního stavu do prvního excitovaného stavu je **fundamentální** přechod.

symetrická valenční vibrace (A1), IR-aktivní (1 151 cm⁻¹)

symetrická deformační nůžková vibrace (angl. scissoring) (A1), IR-aktivní (518 cm⁻¹)

asymetrická valenční vibrace (B2), IR-aktivní (1362 cm⁻¹)

Obr. 3.12: Vibrační módy molekuly SO_2 (C_{2v}). Ve všech módech se pohybuje i atom S

(P3.13) struktura molekuly SnCl₂

3.7.4 Lomené molekuly XY ₂ : využití tabulky charakterů C	2v	
--	----	--

Molekula SO_2 náleží k bodové grupě C_{2v} a tomto oddílu se opět zaměříme na tři normální vibrační módy SO_2 . Tentokrát ale využijeme tabulku charakterů C_{2v} k těmto úkolům:

- 1. určení, zda vibrační módy zahrnují valenční, nebo deformační vibrace;
- 2. označíme symetrie vibračních módů;
- 3. zjistíme, které vibrační módy jsou IR a/nebo ramanovsky aktivní.

Podívejme se na tabulku charakterů C_{2v} a schéma zachycující osu C_2 a roviny symetrie molekuly SO_2 . Osa z je totožná s osou C_2 a molekula leží v rovině vz.

Valenční módy v molekule mohou být popsány jako změny vazebných vektorů a deformační módy jako změny vazebných úhlů. Uvažujme nejprve valenční vibrace SO_2 . Jelikož tříatomová molekula představuje relativně jednoduchý případ, mohlo by se zdát zbytečné používat při řešení této úlohy tabulky charakterů. Naznačený postup nicméně poslouží jako ukázkový příklad pro řešení větších víceatomových molekul. Bez přemýšlení o relativních směrech, v jakých vazby mohou měnit svoji délku, uvažujme vliv každé operace symetrie bodové grupy C_{2v} na vazby v SO_2 . Položme si otázku: Kolik vazeb zůstane nezměněných při aplikaci každé operace symetrie? Operace E ponechává nezměněné obě vazby S-O, stejně jako zrcadlení v rovině $\sigma_v(yz)$, avšak rotace okolo osy C_2 i zrcadlení v rovině $\sigma_v(xz)$ způsobí změnu obou vazeb. Tento závěr můžeme shrnout v řádku charakterů takto ("2" znamená dvě vazby nezměněné a "0" znamená žádná vazba nezměněná):

E	C_2	$\sigma_{\rm v}(xz)$	$\sigma'_{\rm v}(yz)$	
2	0	0	2	

Tento řádek představuje redukovatelnou reprezentaci a může být vyjádřen jako součet řádků z tabulky charakterů grupy C_{2v} . Z tabulky charakterů vyplývá, že požadovaný výsledek získáme jako součet charakterů reprezentací (řádků) A_1 a B_1 :

$\overline{A_1}$	1	1	1	1	
B_2	1	-1	-1	1	
součet	2	0	0	2	

Tento výsledek říká, že existují dva nedegenerované valenční vibrační módy, jeden se symetrií A_1 a druhý se symetrií B_1 . Pro lomenou molekulu XY_2 je jednoduché přiřadit tyto symboly graficky znázorněným vibracím, protože jsou zde pouze dvě možnosti: valenční vibrace ve fázi a v protifázi. Nicméně pro úplnost provedeme přiřazení pomocí tabulky charakterů C_{2v} .

Vibrační módy molekuly SO_2 jsou definovány vektory znázorněnými pomocí žlutých šipek na Obr. 3.12. Pro přiřazení symetrických symbolů vibračním módům musíme zjistit vliv všech operací symetrie bodové grupy C_{2v} na tyto vektory. Pro symetrickou valenční vibraci (v_1) molekuly SO_2 zůstávají vektory beze změny při aplikaci operace E a rotace okolo osy C_2 . Žádná změna vektorů nenastává ani při zrcadlení v rovinách $\sigma_v(xz)$ a $\sigma_v'(yz)$. Pokud použijeme symbol "1" ve smyslu "žádná změna", výsledek muže být zapsán takto:

E	C_2	$\sigma_{\rm v}(xz)$	$\sigma'_{\rm v}(yz)$
1	1	1	1

Nyní porovnejme tento řádek charakterů s řádky v tabulce charakterů C_{2v} . Je shodný s řádkem reprezentace A_1 , a proto je označení symetrické valenční vibrace A_1 . Nyní uvažujme asymetrickou valenční vibraci (v_3) molekuly SO_2 (Obr. 3.12). Vektory jsou nezměněné působením operací E a $\sigma_v'(yz)$, ale změní svůj směr při rotaci okolo osy C_2 a při zrcadlení v rovině $\sigma_v(xz)$. Pokud symbol "1"

struktura SO_2

znamená "žádná změna" a symbol "–1" znamená "změna směru vektorů", výsledek muže být zapsán takto:

E	C_2	$\sigma_{\rm v}(xz)$	$\sigma_{ m v}'(yz)$
1	-1	-1	1

To odpovídá řádku B_2 v tabulce charakterů C_{2v} , a proto má asymetrická valenční vibrace označení B_2 .

Nyní připomeňme, že molekula SO_2 má 3n-6=3 vibračních stupňů volnosti. Po přiřazení dvou z nich valenčním vibracím musí třetí odpovídat deformačnímu módu nůžkových vibrací (angl. též *scissoring*). Deformační mód (v_2) je definován změnou vazebného úhlu O–S–O. Pro přiřazení symetrického symbolu tomuto módu musíme vyšetřit vliv všech operací symetrie bodové grupy C_{2v} na vazebný úhel. Všechny operace E, C_2 , $\sigma_v(xz)$ i $\sigma_v'(yz)$ nechávají vazebný úhel beze změny, a proto můžeme psát:

E	C_2	$\sigma_{\rm v}(xz)$	$\sigma_{ m v}'(yz)$
1	1	1	1

Deformační vibrace má tedy symetrii A_1 .

Závěrem si položme otázku, jak můžeme tabulku charakterů využít k rozhodnutí, zda je daný vibrační mód aktivní v infračerveném nebo v Ramanově spektru. V pravé části tabulky charakterů jsou dva sloupce obsahující funkce x, y a/nebo z, nebo součiny těchto funkcí resp. jejich lineární kombinace (např. x^2 , xy, yz, $x^2 - y^2$ atd.). Nebudeme vysvětlovat detailně původ těchto výrazů, ale pouze jejich význam pro aktivitu vibrací.

Molekula SO_2 má normální vibrační módy A_1 a B_2 . V tabulce charakterů C_{2v} obsahuje pravý sloupec pro reprezentaci A_1 funkci z, ale také x^2 , y^2 a z^2 . Proto jsou vibrační módy A_1 aktivní v infračerveném i v Ramanově spektru. Podobně pravý sloupec pro reprezentaci B_2 obsahuje funkce y a yz, a proto je asymetrická valenční vibrace aktivní v infračerveném i v Ramanově spektru.

Pokud jsou u typu symetrie (např. A_1 , B_1 , E) normálního módu vibrace uvedeny v tabulce charakterů funkce x, y nebo z, pak je mód IR-aktivní.

Pokud jsou u typu symetrie (např. A_1 , B_1 , E) normálního módu vibrace uvedeny v tabulce charakterů součiny funkcí (např. x^2 , xy), pak je mód ramanovsky aktivní.

Obr. 3.13: (a) Vypočítané infračervené spektrum H₂O v plynném stavu (Spartan '04, © Wavefunction Inc. 2003) ukazující tři fundamentální absorpce. Experimentální hodnoty jsou 3 756, 3 657 a 1 595 cm^{−1}. (b) Infračervené spektrum H₂O v kapalném stavu

Obr. 3.14: Vibrační módy molekuly SO_3 (D_{3h}). Pouze tři z nich jsou IR-aktivní. Znaménka + a – znázorňují pohyb atomů "nahoru" a "dolů" v průběhu vibrace. Dva módy jsou dvakrát degenerované, celkem tedy šest normálních vibračních módů

Symetrická valenční vibrace (*A*₁), IR-aktivní (3 337 cm⁻¹)

Symetrická deformační vibrace (A₁), IR-aktivní (950 cm⁻¹)

Asymetrická valenční vibrace (E), IR-aktivní (3 414 cm⁻¹) dvakrát degenerovaný mód

Asymetrická deformační vibrace (E) IR-aktivní (1 627 cm⁻¹) dvakrát degenerovaný mód

Obr. 3.15: Vibrační módy molekuly NH_3 (C_{3v}), všechny jsou IR-aktivní

Nejběžnější lomenou tříatomovou molekulou, se kterou se každodenně setkáváme, je molekula H_2O . Podobně jako SO_2 náleží k bodové grupě C_{2v} a má tři vibrační módy všechny IR- i ramanovsky aktivní (experimentálně změřené spektrum bude obsahovat i jemnou rotační strukturu). Ve skutečnosti však IR-spektrum kapalné vody (Obr. 3.13b) tvoří široký pás, který překrývá dvě absorpce okolo 3 700 cm $^{-1}$. Rozšíření je důsledkem existence vodíkových vazeb mezi molekulami vody (viz **odd. 10.6**). Navíc jsou vlnočty ve spektrech kapalné a plynné vody vzájemně posunuty.

dvakrát degenerovaný mód

dvakrát degenerovaný mód

Úlohy k procvičení

- 1. Ve vibračním spektru vodní páry jsou absorpce při 3 756 a 3 657 cm⁻¹ odpovídající valenčním vibracím *B*₂ a *A*₁. Graficky znázorněte tyto vibrační módy.
- 2. Symetrická valenční deformace nelineární molekuly NO₂ způsobuje absorpci při vlnočtu 752 cm⁻¹. K jaké bodové grupě náleží molekula NO₂? Vysvětlete, proč je symetrická deformační vibrace IR-aktivní. Proč je označena symbolem A₁?

3.7.5 Molekuly XY₃ se symetrií **D**_{3h}

Molekula XY₃ má bez ohledu na tvar $3 \times 4 - 6 = 6$ vibračních stupňů volnosti. Uvažujme nejprve planární molekuly XY₃ náležející k bodové grupě D_{3h} . Příklady jsou SO₃, BF₃ a AlCl₃. Šest normálních vibračních módů SO₃ je znázorněno na Obr. 3.14; symetrie valenčních vibrací uvedených v obrázku byly odvozeny na základě úvahy, kolik vazeb zůstalo beze změny po aplikaci všech operací symetrie bodové grupy D_{3h} (viz Obr. 3.2, **Řešený příklad 3.3** a Tab. 3.4). Operace E a σ_h nechávají všechny tři vazby beze změny. Každá osa C_2 prochází jednou vazbou X–Y, proto rotace okolo osy C_2 ponechává jednu vazbu beze změny a totéž platí pro zrcadlení v rovině σ_v . Rotace okolo osy C_3 ovlivní všechny tři vazby. Výsledek zapíšeme jako řádek charakterů:

E	C_3	C_2	$\sigma_{ m h}$	S_3	$\sigma_{ m v}$
3	0	1	3	0	1

Pokud tuto redukovatelnou reprezentaci rozepíšeme jako součet řádků charakterů z tabulky pro grupu D_{3h} , zjistíme symetrie vibračních módů planárních molekul XY_3 :

$\overline{A_1'}$	1	1	1	1	1	1	
E'	2	-1	0	2	-1	0	
součet	3	0	1	3	0	1	

Tabulka 3.4: Tabulka charakterů pro bodovou grupu D_{3h}

D_{3h}	E	$2C_3$	$3C_2$	$\sigma_{\rm h}$	$2S_3$	$3\sigma_{\rm v}$		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2'	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x, y)	$(x^2 - y^2, xy)$
A_1''	1	1	1	-1	-1	-1		
A_2''	1	1	-1	-1	-1	1	z	
E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

Z Obr. 3.14 zjistíme, že symetrická valenční vibrace (mód A_1') nevede ke změně dipólového momentu molekuly, proto je neaktivní v IR-spektru. To lze ověřit v tabulce charakterů D_{3h} (Tab. 3.4), kde lze v pravém sloupci nalézt, že mód A_1' je IR-neaktivní a ramanovsky aktivní. Asymetrická valenční vibrace (E') molekuly XY₃ se symetrií D_{3h} je dvakrát degenerovaná a na Obr. 3.14 je znázorněn jeden z těchto módů. Vibraci provází změna dipólového momentu, a je proto IR-aktivní. Z pravého sloupce Tab. 3.4 vyplývá, že mód E' je IR-i ramanovsky aktivní.

Symetrie deformačních módů molekuly XY_3 se symetrií D_{3h} (Obr. 3.14) jsou E' a A_2'' (viz úloha 3.25 na konci kapitoly). Z tabulky charakterů grupy D_{3h} lze vyčíst, že mód A_2'' je IR aktivní a mód E' je aktivní IR i ramanovsky. Aktivitu IR lze také odvodit z Obr. 3.14, protože obě deformace vedou ke změně dipólového momentu.

Molekuly se symetrií D_{3h} (např. SO_3 , BF_3 a $AlCl_3$) mají tedy v IR-spektru tři absorpce: jeden pás odpovídá valenčnímu vibračnímu módu a dva pásy deformačním módům. Lze též změřit infračervaná spektra iontů jako NO_3^- nebo CO_3^{2-} , ale kation může také poskytovat pásy IR. Proto se používají jednoduché soli (soli alkalických kovů) umožňující přiřazení pásů aniontu (viz Tab. 4.2).

3.7.6 Molekuly XY₃ se symetrií **C**_{3v}

Molekula XY₃ přísluší k bodové grupě C_{3v} a má šest vibračních stupňů volnosti. Příklady molekul se symetrií C_{3v} jsou NH₃, PF₃ a AsF₃. Normální vibrační módy molekuly NH₃ jsou znázorněny na Obr. 3.15. Dva módy jsou dvakrát degenerované. Symetrické označení může být ověřeno pomocí tabulky charakterů grupy C_{3v} (Tab. 3.3). Například každá z operací symetrie E, C_3 a σ_v ponechává vektory definující symetrickou vibraci beze změny, proto můžeme psát:

E	C_3	$\sigma_{ m v}$
1	1	1

To odpovídá reprezentaci A_1 v tabulce charakterů C_{3v} , proto má symetrická valenční vibrace symetrii A_1 . Všechny vibrační módy znázorněné v Obr. 3.15 mají symetrii buď A_1 , nebo E a z pravého sloupce Tab. 3.3 vyplývá, že všechny vibrační módy jsou IR- i ramanovsky aktivní. Proto v IR-spektrech plynných sloučenin, jako jsou NH₃, NF₃, PCl₃ nebo AsF₃, očekáváme čtyři absorpce.

Rozdíl v počtu IR-pásů molekul XY₃ umožňuje rozlišit, zda mají symetrii C_{3v} , nebo D_{3h} . Kromě toho molekuly XY₃ tvaru T (např. ClF₃) náležejí k bodové grupě C_{2v} a vibrační spektroskopie může být využita k rozlišení od struktur se symetrií C_{3v} a D_{3h} .

Molekuly ClF₃ (V3.10) (viz též Obr. 2.17) nebo BrF₃ se symetrií C_{2v} mají šest normálních vibračních módů: ekvatoriální valenční, symetrická axiální valenční a asymetrická axiální valenční vibrace a tři deformační vibrace. Všech šest módů je IR-aktivních.

- 1. Infračervené spektrum BF₃ má absorpce při 480, 691 a 1449 cm⁻¹. Na základě těchto dat rozhodněte, zda má BF₃ symetrii C_{3v} nebo D_{3h} . $[D_{3h}]$
- 2. V infračerveném spektru molekuly NF₃ jsou čtyři absorpce. Vysvětlete, proč je to v souladu s faktem, že NF₃ náleží k bodové grupě C_{3v} , a nikoliv D_{3h} .

symetrická valenční vibrace (A_1) , IR-neaktivní

deformační vibrace (*E*), IR-neaktivní, dvakrát degenerovaný mód

valenční vibrace (T_2), IR-aktivní (3 019 cm⁻¹), třikrát degenerovaný mód

deformační vibrace (T_2), IR-aktivní (1 306 cm⁻¹), třikrát degenerovaný mód

Obr. 3.16: Vibrační módy molekuly CH_4 (T_d), pouze dva jsou IR-aktivní

- 3. Infračervené spektrum BrF_3 v argonové matrici vykazuje šest absorpcí. Vysvětlete, jak toto pozorování potvrzuje, že BrF_3 nemůže mít symetrii C_{3v} .
- 4. Použijte tabulku charakterů grupy C_{3v} k potvrzení, že symetrický deformační mód molekuly NH₃ (Obr. 3.15) má symetrii A_1 .

3.7.7 Molekuly XY_4 se symetrií T_d nebo D_{4h}

Molekula XY₄ se symetrií $T_{\rm d}$ má devět normálních vibračních módů (Obr. 3.16). V tabulce charakterů $T_{\rm d}$ (**Příloha 3**) má reprezentace T_2 funkci (x, y, z), a proto jsou dva vibrační módy T_2 IR-aktivní. Z tabulky také vyplývá, že módy T_2 jsou i ramanovsky aktivní. Módy A_1 a E jsou IR-neaktivní, ale ramanovsky aktivní. Infračervená spektra částic, jako jsou CCl₄, TiCl₄, OsO₄, ClO₄⁻ a SO₄²⁻, vykazují **dvě** adsorpce (viz Tab. 4.2).

Čtvercově planární $(D_{4\mathrm{h}})$ molekuly XY_4 mají devět normálních vibračních módů. Ty jsou pro $[\mathrm{PtCl_4}]^{2^-}$ znázorněny na Obr. 3.17 i s označením symetrie. V tabulce charakterů $D_{4\mathrm{h}}$ (**Příloha 3**) jsou u reprezentací $A_{2\mathrm{u}}$ resp. E_{u} uvedeny funkce z resp. (x,y). Proto jsou z vibračních módů znázorněných na Obr. 3.17 IR-aktivní pouze $A_{2\mathrm{u}}$ a E_{u} . Protože $[\mathrm{PtCl_4}]^{2^-}$ má střed symetrie, platí pravidlo vzájemné výlučnosti a módy $A_{2\mathrm{u}}$ a E_{u} jsou ramanovsky neaktivní. Podobně módy $A_{1\mathrm{g}}$, $B_{1\mathrm{g}}$ a $B_{2\mathrm{g}}$, které jsou ramanovsky aktivní, jsou IR-neaktivní. Mezi sloučeninami prvků bloku p jsou struktury XY_4 se symetrií $D_{4\mathrm{h}}$ vzácné. Pozorované absorpce při 586, 291 a 161 cm $^{-1}$ jsou v souladu s tvarem odvozeným teorií VSEPR.

- 1. Pomocí tabulky charakterů D_{4h} (**Příloha 3**) potvrďte, že módy A_{1g} , B_{1g} a B_{2g} iontu $[PtCl_4]^{2-}$ jsou IR-neaktivní, ale ramanovsky aktivní.
- 2. Infračervené spektrum plynného ZrI₄ vykazuje absorpce při 55 a 254 cm⁻¹. Vysvětlete, že toto pozorování je v souladu se symetrií *T*_d molekuly ZrI₄.
- 3. Ion $[PdCl_4]^{2-}$ vykazuje v IR-spektru tři absorpce (150, 321 a 161 cm⁻¹). Zdůvodněte, že pozorování odpovídá symetrii D_{4h} , nikoliv T_d .
- 4. Struktura SiH₂Cl₂ se popisuje jako tetraedrická; SiH₂Cl₂ má osm IR-aktivních vibrací. Vysvětlete tato tvrzení.

Obr. 3.17: Vibrační módy iontu $[PtCl_4]^{2-}$ (D_{4h}), pouze tři módy (z nichž dva jsou degenerované) A_{2u} a dva E_u jsou IR-aktivní. Znaménka + a – znázorňují pohyb atomů "nahoru" a "dolů" v průběhu vibrace

3.7.8 Molekuly XY₆ se symetrií O_h

Molekuly XY $_6$ náležející k bodové grupě $O_{\rm h}$ mají 3 × 7 – 6 = 15 vibračních stupňů volnosti. Vibrační módy molekuly SF₆ spolu s označením jejich symetrie znázorňuje Obr. 3.18. Pouze módy T_{1u} jsou IRaktivní, jak lze ověřit v tabulce charakterů O_h v **Příloze 3**. Protože atom S leží ve středu symetrie molekuly SF_6 , jsou módy T_{1u} ramanovsky neaktivní (pravidlo vzájemné výlučnosti). Jeden z módů $T_{1 \mu}$ znázorněných na Obr. 3.18 může být klasifikován jako valenční mód (939 cm⁻¹ pro SF₆) a jeden jako deformační (614 cm⁻¹ pro SF₆).

3.7.9 Karbonylové komplexy kovů, M(CO)_n

Infračervená spektroskopie je zvlášť vhodná pro charakterizaci karbonylových komplexů kovů M(CO)_n, protože absorpce odpovídající vibračním módům vazeb C-O jsou intenzivní a v infračerveném spektru snadno pozorovatelné. Tyto módy způsobují obvykle absorpce okolo 2 000 cm⁻¹ (viz **odd. 24.2**) a příslušné pásy jsou zpravidla dobře oddělené od valenčních vibrací M-C a deformačních vibrací M-C-O a C-M-C. Například komplex Mo(CO)₆ náleží k bodové grupě $O_{\rm h}$. Má 3 × 13 – 6 = 33 vibračních módů, z nichž dvanáct je tvořeno čtyřmi módy $T_{\rm lu}$ (tj. IR-aktivními): $v_{\rm CO}$ 2 000 cm⁻¹, $\delta_{\rm MoCO}$ 596 cm⁻¹, $v_{\rm MoC}$ 367 cm⁻¹, $\delta_{\rm CMoC}$ 82 cm⁻¹. Zbývajících 21 módů je IR-neaktivních. Běžný laboratorní infračervený spektrometr má měřící rozsah 400 až 4 000 cm⁻¹, proto jsou zpravidla pozorovatelné pouze módy $v_{\rm CO}$ a $\delta_{\rm MoCO}$. Můžeme ověřit, proč částice M(CO)₆ se symetrií O_h vykazují pouze jednu absorpci v oblasti valenčních vibrací C-O v porovnání s SF₆ (Obr. 3.18). Skupina šesti vazeb C-O v molekule M(CO)₆ může být považována za analogii šesti vazeb S-F v molekule SF₆. Proto má oktaedrická molekula $M(CO)_6$ karbonylové valenční módy A_{1g} , E_g a T_{1u} , ale pouze mód T_{1u} je IR-aktivní.

Obr. 3.18: Vibrační módy molekuly $SF_6(O_h)$, pouze módy T_{1u} jsou IR-aktivní

trans- $[M(CO)_4X_2]$

 D_{4h}

Obr. 3.19: Bodové grupy oktaedrických karbonylových komplexů [M(CO)₆], [M(CO)₅X], *trans*-[M(CO)₄X₂] a *cis*-[M(CO)₄X₂] a struktura [M(CO)₅X] s prvky symetrie

Úlohy k procvičení

1. Uvažujte pouze šest skupin CO v molekule $M(CO)_6$ (O_h). Načrtněte schematicky valenční vibrační módy A_{1g} , E_g a T_{1u} . Použijte tabulku charakterů O_h pro stanovení IR aktivních módů.

[viz Obr. 3.18; každá vazba C-O se chová jako vazba S-F]

2. V infračerveném spektru komplexu $W(CO)_6$ lze nalézt absorpci při 1998 cm⁻¹. Načrtněte schematicky mód vibrace odpovídající této absorpci. [analogicky IR-aktivnímu módu $T1_u$ na Obr. 3.18]

3.7.10 Karbonylové komplexy kovů, $M(CO)_{6-n}X_n$

V tomto odstavci si ukážeme vztah mezi počtem IR-aktivních módů v_{CO} a symetrií komplexů $[M(CO)_{6-n}X_n]$. Karbonyly kovů $[M(CO)_6]$, $[M(CO)_5X]$, trans-[M(CO)₄X₂] a cis-[M(CO)₄X₂] se všechny označují jako "oktaedrické", ale ve skutečnosti pouze $[M(CO)_6]$ náleží k bodové grupě O_h (Obr. 3.19). Viděli jsme dříve, že oktaedrický komplex [M(CO)₆] má v infračerveném spektru jednu absorpci v oblasti valenčních vibrací CO. Naproti tomu [M(CO)₅X] se symetrií C_{4v} vykazuje tři absorpce, např. v IR-spektru [Mn(CO)₅Br] pozorujeme pásy při 2 138, 2 052 a 2007 cm⁻¹. Původ těchto pásů může být vysvětlen pomocí teorie grup. Uvažujme, kolik vazeb C-O v molekule [M(CO)₅X] (Obr. 3.19) zůstane beze změny při aplikaci jednotlivých operací symetrie $(E, C_4, C_2, \sigma_{\rm v} \ {\rm a} \ \sigma_{\rm d})$ bodové grupy C_{4v} (tabulka charakterů grupy C_{4v} je v **Příloze 3**). Ve struktuře částice $[M(CO)_5X]$ (Obr. 3.19 dole) jsou vyznačeny osy C_4 a C_2 a rovina symetrie σ_v . Roviny σ_d protíná rovinu σ_v (viz též Obr. 3.4). Operace E ponechává všech pět vazeb C-O beze změny, rotace okolo každé z os a zrcadlení v rovině $\sigma_{\rm d}$ ponechává beze změny jednu vazbu C-O a zrcadlení v rovině $\sigma_{\rm v}$ ponechává beze změny tři vazby C-O. Výsledek zapíšeme jako řádek charak-

E	C_4	$2C_2$	$\sigma_{ m v}$	$\sigma_{ m d}$
5	1	1	3	1

Tato reprezentace může být redukována (rozložena) na řádky charakterů z tabulky charakterů grupy C_{4v} :

$\overline{A_1}$	1	1	1	1	1	
$\overline{A_1}$	1	1	1	1	1	
$\overline{B_1}$	1	-1	1	1	-1	
E	2	0	-2	0	0	
součet	5	1	1	3	1	

Vibrační módy $M(CO)_5X$ mají tedy symetrie A_1 , B_1 a E a tabulka charakterů C_{4v} ukazuje, že pouze dva módy A_1 a mód E jsou IR-aktivní, což je v souladu se třemi pozorovanými pásy v infračerveném spektru.

Podobný postup může být využit pro stanovení počtu IR-aktivních vibračních módů *cis*- a *trans*-[M(CO)₄X₂], stejně jako pro další komplexy. Tabulka 3.5 ukazuje některé typické příklady.

Úlohu k procvičení

- 1. Nakreslete strukturu fac-M(CO)₃X₃. Vyznačte polohu osy C_3 a jedné roviny σ_v .
- S využitím tabulky charakterů grupy C_{3v} (Příloha 3) potvrďte, že valenční vibrační módy CO molekuly fac-M(CO)₃X₃ mají symetrie A₁ a E. Potvrďte, že jsou oba IRaktivní.
- 3. Vysvětlete, proč IR-spektrum iontu *fac*-[Fe(CO)₃(CN)₃]⁻ má dvě silné absorpce při 2 121 a 2 096 cm⁻¹ a dva slabší pásy při 2 162 a 2 140 cm⁻¹.

[viz Jiang, J.; et al. Inorg. Chem. 2002, 41, 158]

Komplex	Bodová grupa	Symetrie valenčních módů CO	IR-aktivní módy	Počet absorpcí pozorovaných v IR-spektru
$[M(CO)_6]$	$O_{ m h}$	A_{1g} , E_{g} , T_{1u}	$T_{1\mathrm{u}}$	1
$[M(CO)_5X]$	$C_{ m 4v}$	A_1, A_1, B_1, E	A_1, A_1, E	3
trans- $[M(CO)_4X_2]$	$D_{4\mathrm{h}}$	A_{1g} , B_{1g} , E_{u}	E_{u}	1
cis-[M(CO) ₄ X ₂]	$C_{2\mathrm{v}}$	A_1, A_1, B_1, B_2	A_1, A_1, B_1, B_2	4
fac -[M(CO) $_3X_3$]	$C_{3\mathrm{v}}$	A_1 , E	A_1 , E	2
mer-[M(CO) ₃ X ₃]	$C_{2\mathrm{v}}$	A_1, A_1, B_1	A_1, A_1, B_1	3

Tabulka 3.5: Valenční módy (v_{CO}) karbonylu pro některé skupiny jednojaderných karbonylových komplexů; X je obecně ligand jiný než CO

3.7.11 Spektroskopické pozorování absorpcí v infračervené oblasti

V tomto oddíle jsme se zaměřili na to, jak zjistit počet vibračních stupňů volnosti jednoduché *n*-atomové molekuly, jak odvodit celkový počet normálních vibračních módů a jak určit počet absorpcí v infračerveném spektru. Praktické využití tohoto výkladu probereme v **odd. 4.5**.

3.8 Chirální molekuly

Spirální řetězce jako Se_{∞} (Obr. 3.20a) jsou chirální, přičemž mohou být buď pravotočivé, nebo levotočivé. Komplexy s koordinačním číslem 6 (např. [Cr(acac)₃], acac = acetylacetonátový ion), ve kterých jsou tři bidentátní chelátové ligandy, mají také neztotožnitelné zrcadlové obrazy (Obr. 3.20b). Chirální molekuly stáčejí rovinu polarizovaného světla. Tato vlastnost se označuje **optická aktivita** a vzájemné zrcadlové obrazy jsou **optické izomery** nebo **enantiomery**. Vrátíme se k nim v **kap. 19**. Význam chirality vyplývá např. z dramaticky rozdílných aktivit enantiomerů chirálních léčiv**).

Molekula je **chirální**, pokud ji nelze žádnou operací ztotožnit s jejím zrcadlovým obrazem*).

- Tato definice je převzata z Basic terminology of stereochemistry: IUPAC recommendations 1996. Pure Appl. Chem. 1996, 68, 2193.
- **) Thall, E.; et al. When drug molecules look in the mirror. *J. Chem. Educ.* **1996**, *73*, 481; Caner, H.; et al. Trends in the development of chiral drugs. *Drug Discovery Today* **2004**, *9*, 105; Núñez, M. C.; et al. Homochiral drugs: a demanding tendency of the pharmaceutical industry. *Curr. Med. Chem.* **2004**, *16*, 2064.

Obr. 3.20: Pár enantiomerů představuje dvě částice, které jsou vzájemně zrcadlově symetrické a rotací neztotožnitelné. (a) Šroubovicový řetězec Se_{∞} je pravotočivý, nebo levotočivý. (b) Komplex $[Cr(acac)_3]$ s koordinačním číslem 6 obsahuje tři stejné bidentátní chelatující ligandy (pro lepší přehlednost nejsou znázorněny atomy vodíku); symboly Λ a Δ popisují absolutní konfiguraci komplexu (viz **Panel 19.3**)

Obr. 3.21: Tetrafluoridoderivát spiropentanu přísluší bodové grupě S_4 . Je to příklad molekuly bez středu symetrie a roviny zrcadlení. Přesto nevykazuje chiralitu

Chirální molekula nemá žádnou nevlastní osu symetrie (S_n) .

Spirální řetězce jako Se∞ se rozpoznají snadno, ale není vždy úplně snadné identifikovat chirální sloučeninu porovnáváním molekuly s jejím zrcadlovým obrazem. Pak může pomoci posouzení její symetrie: Chirální molekula nemá žádnou nevlastní osu symetrie (S_n) .

(atomy H pro přehlednost vynechány)

Další běžně používaná kritéria jsou nepřítomnost středu symetrie i a rovin symetrie σ . Nicméně obě tato kritéria jsou již zahrnuta v první definici, protože operace symetrie i a σ lze též vyjádřit jako nevlastní rotace S_2 a S_1 (viz úloha 3.35 na konci kapitoly). Upozorňujeme, že existují částice, které nejsou chirální (jsou achirální), přestože nemají ani střed symetrie i, ani rovinu symetrie σ . Tyto "problémové" částice náležejí k bodovým grupám S_n , kde n je sudé číslo. Příkladem je tetrafluoroderivát spiro[2.2]pentanu na Obr. 3.21. Tato molekula nemá ani střed inverze, ani rovinu symetrie a měla by být chirální. Závěr je však chybný, protože molekula má osu S_4 .

Řešený příklad 3.9: Chirální částice

Oxalátový (šťavelanový) ligand C₂O₄²⁻ je bidentátní ligand a je přítomen v komplexním iontu $[Cr(ox)_3]^{3-}$, jehož struktura ukazuje (P3.15). Projekce vpravo (b) je pohled podél jedné z os O-Cr-O. Potvrďte, že náleží k bodové grupě D_3 a že je chirální.

Postupujme podle diagramu na Obr. 3.10:

START → Je molekula lineární? Ne Má symetrii T_d , O_h nebo I_h ? Ne Má osu C_n ?

Ano; osu C_3 kolmou k rovině nákresny v projekci

(a) vlevo

Ano; jedna leží svisle v rovině Má tři osy C_2 kolmé k hlavní ose?

nákresny a prochází atomem Fe v projekci (b)

Má rovinu σ_h (kolmou k hlavní ose)?

Má n rovin $\sigma_{\rm d}$

(obsahujících hlavní osu)?

Ne

Bodová grupa je D_3 .

Nebyly zjištěny roviny symetrie ani střed symetrie a to potvrzuje, že částice příslušející bodové grupě D_3 jsou chirální.

Úloha k procvičení

1. S využitím tabulky charakterů grupy D_3 (**Příloha 3**) potvrďte, že mezi prvky symetrie bodové grupy D_3 nejsou i, σ ani S_n .

Základní pojmy

V této kapitole jste se seznámili s následujícími pojmy. Znáte jejich význam?

- prvek symetrie
- operace symetrie
- operace identity (E)
- rotační osa (C_n)
- rovina symetrie (σ_h , σ_v nebo σ_d)
- střed symetrie nebo střed inverze (i)
- nevlastní rotační osa (S_n)
- bodová grupa
- translační stupně volnosti
- rotační stupně volnosti

- vibrační stupně volnosti
- normální vibrační mód
- degenerované vibrační módy
- výběrová pravidla pro IR-aktivní módy
- výběrová pravidla pro ramanovsky aktivní módy
- pravidlo vzájemné výlučnosti
- fundamentální absorpce
- chiralita, chirální
- enantiomer (optický izomer)

Doporučená literatura

Symetrie a teorie grup

- Atkins, P. W.; Child, M. S.; Phillips, C. S. G. Tables for Group Theory. Oxford University Press: Oxford, 1970. Tabulky charakterů s doplňujícími poznámkami a diagramy symetrie.
- Carter, R. L. Molecular Symmetry and Group Theory. Wiley: New York, 1998. (Úvod do molekulové symetrie a teorie grup aplikované na chemické problémy včetně vibrační spektroskopie.)
- Cass, M. E.; Rzepa, H.; Rzepa, D. R.; Williams, C. The use of the free, open-source program Jmol to generate an interactive web site to teach molecular symmetry. J. Chem. Educ. **2005**, 82, 1736.
- Cotton, F. A. Chemical Applications of Group Theory. 3rd ed.; Wiley: New York, 1990. (Více matematicky pojatá symetrie a její význam v chemii.)
- Davidson, G. Group Theory for Chemists. Macmillan: London, 1991. (Výborný úvod do teorie grup s příklady a cvičení-
- Kettle, S. F. A. Symmetry and Structure. 3rd ed.; Wiley: Chichester, 2007. (Detailní, ale srozumitelné pojetí symetrie a teorie grup.)
- Ogden, J. S. Introduction to Molecular Symmetry. Oxford University Press: Oxford, 2001. (Stručný úvod do teorie grup a její aplikace.)

Rodger, A.; Rodger, P. M. Molecular Geometry. Butterworth-Heinemann: Oxford, 1995. (Užitečný, jasný text pro potřeby studentů.)

Shirts, R. B. Correcting two long-standing errors in point group symmetry character tables. J. Chem. Educ. 2007, 84, 1882.

Wells, A. F. Structural Inorganic Chemistry. 5th ed.; Oxford University Press: Oxford, 1984. (Základní práce o strukturní anorganické chemii; kapitola 2 podává stručný úvod do symetrie krystalů.)

Willock, D. Molecular Symmetry. Wiley: Chichester, 2009. (Studentský text představující symetrii a teorii grup a jejich aplikace ve vibrační spektroskopii a teorii vazby.)

Infračervená spektroskopie

Ebsworth, E. A. V.; Rankin, D. W. H.; Cradock, S. Structural Methods in Inorganic Chemistry. 2nd ed.; Blackwell Scientific Publications: Oxford, 1991. (Kapitola 5 se detailně věnuje vibrační spektroskopii.)

Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part A: Theory nad Applications in Inorganic Chemistry. 5th ed.; Wiley: New York, 1997 (Neocenitelná referenční kniha pro každého experimentálního anorganického chemika včetně detailní analýzy normálních vibračních módů.)

Úlohy

Některé úlohy je třeba řešit s využitím Obr. 3.10.

- Nakreslete strukturní vzorce těchto molekul: (a) BCl₃, (b) SO₂, (c) PBr₃, (d) CS₂, (e) CHF₃. Které molekuly jsou polární?
- 3.2 Co znamenají v teorii grup symboly: (a) E, (b) σ , (c) C_n a (d) S_n ? Jaký je rozdíl mezi rovinami označenými σ_h , σ_v , $\sigma'_{\rm v}$ a $\sigma_{\rm d}$?
- 3.3 Pro každý z následujících dvojrozměrných tvarů určete nejvyšší četnost rotační osy symetrie:

- 3.4 Nakreslete strukturní vzorec molekuly SO₂ a určete její symetrické vlastnosti.
- Strukturní vzorec molekuly H₂O₂ je na Obr. 2.1. Kromě prvku E má molekula jedinou další operaci symetrie. Která
- 3.6 Do obrázku zakreslete, že molekula BF₃ má trojčetnou osu symetrie, tři dvojčetné osy symetrie a čtyři roviny symetrie. Uveďte příslušné označení těchto prvků symetrie.
- S využitím řešení úlohy 3.6 odvoďte, které prvky symetrie vymizí při přechodu: (a) od BF₃ k BClF₂; (b) od BClF₂ k BBrClF; (c) který prvek symetrie (kromě E) je společný všem třem molekulám?
- 3.8 Které z uvedených částic mají (a) osu C_3 , ale nikoliv rovinu σ_h ; (b) osu C_3 a také rovinu σ_h : NH₃, SO₃, PBr₃, AlCl₃, $[SO_4^{2}], [NO_3]$?
- 3.9 Které z uvedených částic mají osu C_4 a také rovinu σ_h : CCl_4 ; $[ICl_4^-]$; $[SO_4^{2^-}]$; SiF_4 ; XeF_4 ?

- 3.10 Kolik rovin symetrie má každá z těchto molekul: (a) SF₄; (b) H₂S; (c) SF₆; (d) SOF₄; (e) SO₂; (f) SO₃?
- 3.11 (a) Jakou strukturu předpokládáte u Si₂H₆? (b) Nakreslete strukturní vzorec konformeru, který má menší stérickou energii. (c) Má tento konformer střed symetrie? (d) Nakreslete strukturní vzorec konformeru, který je nejméně výhodný z hlediska stérické energie. (e) Má tento konformer střed symetrie?
- 3.12 Které z uvedených částic mají střed symetrie: (a) BF $_3$; (b) SiF $_4$; (c) XeF $_4$; (d) PF $_5$; (e) XeF $_5$; (f) SF $_6$; (g) C $_2$ F $_4$; (h) H $_2$ C=C=CH $_2$?
- 3.13 Vysvětlete, co znamená ∞-četná osa rotace.
- 3.14 Do které bodové grupy náleží NF₃?
- 3.15 Bodová grupa $[AuCl_2]^-$ je $D_{\infty h}$. Jaký tvar má tento ion?
- 3.16 Určete bodovou grupu SF₅Cl.
- 3.17 Bodová grupa BrF_3 je C_{2v} . Nakreslete strukturní vzorec BrF_3 a porovnejte s tvarem předpovězeným teorií VSE-PR
- 3.18 V **Řešeném příkladu 2.7** byla předpovězena struktura XeF₅⁻. Potvrďte, že tato struktura je v souladu se symetrií D_{5h} .
- 3.19 Přiřaďte bodovou grupu členům následující řady: (a) CCl₄; (b) CCl₃F; (c) CCl₂F₂; (d) CClF₃; (e) CF₄.
- 3.20 (a) Odvoďte bodovou grupu molekuly SF₄. (b) Náleží SOF₄ k téže bodové grupě?
- 3.21 Která z těchto bodových grup má největší počet prvků symetrie: (a) O_h; (b) T_d; (c) I_h?
- 3.22 Určete počet stupňů volnosti těchto molekul: (a) SO₂; (b) SiH₄; (c) HCN; (d) H₂O, (e) BF₃.
- 3.23 Kolik IR-aktivních módů mají molekuly: (a) H₂O; (b) SiF₄; (c) PCl₃; (d) AlCl₃; (e) CS₂; (f) HCN?
- **3.24** Pomocí tabulky charakterů grupy C_{2v} ověřte, že D_2O (těž-ká voda) má tři IR-aktivní vibrační módy.
- 3.25 Uvažte vliv každé operace symetrie bodové grupy D_{3h} na symetrický deformační mód uvedený na Obr. 3.14 a ukažte, že má symetrii A_2 ".
- 3.26 K jaké bodové grupě náleží molekula $\mathrm{CBr_4}$? Pomocí příslušné tabulky charakterů odvoďte redukovatelnou reprezentaci valenčních vibračních módů. Ukažte, že se rozkládá na A_1+T_2 .
- 3.27 Šest z devíti vibračních stupňů volnosti molekuly SF₆ je IR-aktivních. Proč jsou u této sloučeniny pozorovány pouze IR-absorpce při 389 a 1 030 cm⁻¹?

3.28 Molekula Al_2Cl_6 , (P3.16), náleží ke grupě D_{2h} . (a) Kolik vibračních stupňů volnosti má Al_2Cl_6 ? (b) Použijte tabulku charakterů D_{2h} z **Přílohy 3** k určení symetrie IR-aktivních valenčních vibračních módů.

(P3.16) struktura Al₂Cl₆

- 3.29 Infračervená spektra solí obsahující ${\rm AlF_6}^{3-}$ ($O_{\rm h}$) vykazují absorpce okolo 540 a 570 cm $^{-1}$. Pomocí teorie grup potvrďte, že pouze jedna z těchto absorpcí odpovídá valenčnímu módu.
- 3.30 Určete, kolik valenčních vibračních módů CO je možných v komplexu trans-M(CO)₄X₂. Jakou mají symetrii a kolik jich je IR-aktivních?
- 3.31 V roce 1993 byl poprvé popsán ion $[Pt(CO)_4]^{2^+}$ (Hwang, G.; et al. *Inorg. Chem.* **1993**, *32*, 4667). Silná absorpce v IR-spektru při 2 235 cm⁻¹ byla připsána v_{CO} a není přítomná v Ramanově spektru. V Ramanově spektru byly pozorovány dvě absorpce při 2 257 a 2 281 cm⁻¹ (nepřítomné v IR-spektru). Vysvětlete, že tyto údaje jsou v souladu se symetrií D_{4h} v případě iontu $[Pt(CO)_4]^{2^+}$.
- 3.32 Ukažte, jak lze využít informace z oblasti valenčních vibrací CO infračerveného spektra k rozlišení cis-M(CO)₂X₂ a trans-M(CO)₂X₂. Do odpovědi uveďte i odvození počtu módů v_{CO} pro obě molekuly.
- 3.33 (a) K jaké bodové grupě náležejí trigonálně bipyramidální molekuly XY₅? Určete počet a symetrii vibračních módů těchto molekul. (b) Infračervené spektrum plynného PF₅ vykazuje absorpce při 1 026 a 944 cm⁻¹. Ukažte, že toto pozorování je v souladu s vaší odpovědí na část (a). Kolik absorpcí pocházejících od valenčních módů očekáváte v Ramanově spektru plynného PF₅?
- **3.34** Vysvětlete, co znamenají termíny: (a) chirální; (b) enantiomer; (c) spirální řetězec.
- 3.35 Ověřte, že operace symetrie (a) inverze je ekvivalentní nevlastní rotaci S_2 , a (b) zrcadlení v rovině je ekvivalentní nevlastní rotaci S_1 .

Aplikační úlohy

- 3.36 Oxid uhelnatý je kontrolovanou složkou emisí výfukových plynů automobilů. "Katalyzátor" v automobilu katalyzuje přeměnu CO na CO₂. Emise CO mohou být stanoveny infračervenou spektroskopií s detekčním limitem pod 0,5 mg m⁻³. (a) Infračervená absorpce sledovaná během měření obsahu CO je při 2 143 cm⁻¹. Nakreslete vibrační mód, který způsobuje tuto absorpci. (b) Proč by přítomnost CO₂ mohla rušit při detekci CO? (c) Zhruba 78 % pozemské atmosféry tvoří molekuly N₂, jejichž základní valenční mód způsobuje absorpci při 2 359 cm⁻¹. Proč tato
- absorpce neruší stanovení CO pomocí IR-spektroskopie? (d) S odkazem na **kap. 29** vysvětlete, proč je CO jedovatý. (e) Vypočítejte počet molekul CO přítomných v 1 dm³ vzduchu obsahujícím 0,20 mg m⁻³ CO.
- 3.37 Hemoglobin je protein obsahující železo, který přenáší kyslík v krvi savců. Přitom molekula O₂ se váže na centrální atom Fe a vazba způsobí vznik pásu v IR-spektru při 1 107 cm⁻¹. V infračerveném spektru plynného O₂ není žádná absorpce. Vysvětlete tato pozorování. (Není nutné popisovat vazbu v O₂ nebo v oxyhemoglobinu.)