

Sales Volume Forecasting

Zachary Corbett Victor Dontsov Sara Parveen Set

* Improve the inventory planning process for the product distributor

* Create a model that makes predictions about the sales volume for different product categories

- * Meet customer demand and ensure customer satisfaction
- * Avoid having too much inventory which can lead tounnecessary storage costs, handling costs and cashflow pressures
- * Avoid stockouts which can result in loss of sales and/ or fines
- * Maintain high profitability

Value of model

- * Product distributor whose data was analyzed
- * All product sales planning, supply chain, and procurement professionals

Target Audience

- * The data used for this project comes in the form of CSV files obtained from the product distributor.
- * The CSVs have 5-years worth of data (2018 to 2022) for Purchase, Sales and Product Details.

Data Source

Data Hosting

- * The raw CSV data files are hosted on an S3 Bucket through Amazon AWS.
- * The database schema was stored in the Databricks File System (DBFS) through a Databricks Community Edition Account. This file system is ultimately hosted on AWS without charges for computing.

Database Creation

Data Cleaning

Data Model Description

SARIMAX Model

- * Time Series Analysis for Sales Volume predictions
- * Trained On 4-years (2018-2021)

* Parameters:

- p order of the autoregressive part
- d degree of first differencing involved
- q order of the moving average part
- P, D, Q all previous characteristics with seasonal factors
- s seasonal length in the data

P-Value > 0.05 implies data is not stationary

Step 1: Identified the ationarity of the time series

Step 2: Suggested the nitial parameters

Step 3: Generated the final parameters for the model

Selected parameters based on AIC Scores

Step 4: Ran the SARIMAX model

Error Analysis

Product Category	Mean Absolute Percentage Error (Attempt 1)	Mean Absolute Percentage Error (Attempt 2)
All categories	14.09%	12.28%
Anti-Fatigue Mat	39.86%	34.19%
Desk Pad	32.62%	37.37%
Entrance Mat	43.63%	42.40%
Polycarbonate Chair Mat	25.91%	21.24%
Porcelain Whiteboard	42.87%	48.14%
PVC Chair Mat	19.99%	20.31%
Recycled Chair Mat	41.50%	41.50%
Steel Whiteboard	31.49%	34.42%
Tempered Glass Chair Mat	41.95%	46.20%
Tempered Glass Whiteboard	44.48%	47.31%

Attempt to Optimize the Model

* Used Databricks Dashboards

* Created filters in the Databricks Notebooks

Visualizations and Dashboards

Historical Dashboard (2018-2022)

2023 Predictions Dashboard 105AL + ALL CATEGORIES Predicted Sales Quantities Anti-Fatigue Mat Desk Fod Entrance Mat PVC Chair Mat Recycled Chair Mat. Stool Whiteboard Margin Error Anti-Fatigue Mat Desk Pad Entrance Mat PVC Chair Mat Recycled Chair Mat Steel Whiteboard Mean Absolute Percentage Error Error vs. AIC Scores (Bubble Size = Predicted Sales Quantity) Anti-Totique Mat Desk Pad Empance Man PVC Chair Mat

Predictions Dashboard (2023)

Limitations and Assumptions

Unlimited warehouse space to store the products

No minimum order quantities

* ETL was processed in Databricks and it was truncating the data to 10,000 rows.

* The dashboards in Databricks do not have a default option for adding filters to visualizations.

* The filters on the Databricks dashboards do not carry over to the HTML file.

Challenges

- * Predictions show a slight decline in sales volume in the next year for overall sales but stable sales for some categories.
- * Sales predictions are helpful but other models using special dimensions of warehouse, and budget constraints could help make more applicable predictions.
- * Margin Error increases for longer time periods. This makes it more appropriate for Just-In-Time distributor.

Conclusions

