

INTRODUCTION TO MACHINE LEARNING

Clustering with k-means

Clustering, what?

- Cluster: collection of objects
 - Similar within cluster
 - Dissimilar between clusters

- Clustering: grouping objects in clusters
 - No labels: unsupervised classification
 - Plenty possible clusterings

Clustering, why?

- Pattern Analysis
- Visualise Data
- pre-Processing Step
- Outlier Detection
- •

- Targeted Marketing Programs
- Student Segmentations
- Data Mining
- •

Clustering, how?

- Measure of Similarity: d(..., ...)
 - Numerical variables —— Metrics: Euclidean, Manhattan, ...
 - Categorical variables Construct your own distance

Clustering Methods

- k-means
- Hierarchical
 Many variations
- •

Compactness and Separation

Within Cluster Sums of Squares (WSS):

$$WSS = \sum_{i=1}^{N_C} \sum_{x \in C_i} d(\mathbf{x}, \bar{\mathbf{x}}_{C_i})^2$$

$$VC_i \quad Cluster$$

$$C_i \quad Cluster$$

$$N_C \quad \#Clusters$$

Measure of compactness

Minimise WSS

Between Cluster Sums of Squares (BSS):

$$BSS = \sum_{i=1}^{N_C} |C_i| \cdot d(\bar{\mathbf{x}}_{\mathbf{C_i}}, \bar{\mathbf{x}})^2 \qquad \qquad \frac{\bar{\mathbf{x}}_{\mathbf{C_i}}}{|C_i|} \qquad \text{#Cluster Centroid}$$

$$|C_i| \qquad \text{#Objects in Cluster}$$

$$|C_i| \qquad \text{Xouth size in Cluster}$$

$$|C_i| \qquad \text{Sample Mean}$$

Measure of separation

Maximise BSS

Goal: Partition data in k disjoint subsets

Let's take k = 3

Goal: Partition data in k disjoint subsets

1. Randomly assign k centroids

k = 3

Goal: Partition data in k disjoint subsets

- 1. Randomly assign k centroids
- 2. Assign data to closest centroid

Goal: Partition data in k disjoint subsets

- 1. Randomly assign k centroids
- 2. Assign data to closest centroid
- 3. Moves centroids to average location

Goal: Partition data in k disjoint subsets

- 1. Randomly assign k centroids
- 2. Assign data to closest centroid
- 3. Moves centroids to average location
- 4. Repeat step 2 and 3

Goal: Partition data in k disjoint subsets

- 1. Randomly assign k centroids
- 2. Assign data to closest centroid
- 3. Moves centroids to average location
- 4. Repeat step 2 and 3

The algorithm has converged!

Choosingk

- Goal: Find k that minimizes WSS
- Problem: WSS keeps decreasing as k increases!
- Solution: WSS starts decreasing slowly

 WSS / TSS < 0.2

 Fix k

$$TSS = WSS + BSS$$

Choosing k: Scree Plot

Scree Plot: Visualizing the ratio WSS / TSS as function of k

k-Means in R

```
> my_km <- kmeans(data, centers, nstart)
```

- centers: Starting centroid or #clusters
- **nstart:** #times R restarts with different centroids

Distance: Euclidean metric

INTRODUCTION TO MACHINE LEARNING

Let's practice!

INTRODUCTION TO MACHINE LEARNING

Performance and Scaling

Cluster Evaluation

Not trivial! There is no truth

- No true labels
- No true response

Evaluation methods? Depends on the goal

Goal: Compact and Separated — Measurable!

Cluster Measures

WSS and BSS: Good indication

Underlying idea:

- Variance within clusters
- Separation between clusters

Compare

Alternative:

- Diameter
- Intercluster Distance

Diameter

x, y: Objects

 C_i : Cluster

d: Distance (objects)

Measure of Compactness

Intercluster Distance

Measure of Separation

Dunn's Index

Dunn's Index

Higher Dunn — Better separated / more compact

$$\min_{1 \le i < j \le k} \delta(C_i, C_j)$$

$$\max_{1 \le m \le k} \text{Dia}_m$$

Notes:

- High computational cost
- Worst case indicator

Alternative measures

- Internal Validation: based on intrinsic knowledge
 - BIC Index
 - Silhouette's Index
- External Validation: based on previous knowledge
 - Hulbert's Correlation
 - Jaccard's Coefficient

Evaluating in R

Libraries: cluster and clValid

Dunn's Index:

```
> dunn(clusters = my_km, Data = ...)
```

- clusters: cluster partitioning vector
- Data: original dataset

Scale Issues

Metrics are often scale dependent!

Which pair is most similar? (Age, Income, IQ)

•
$$X1 = (28, 72000, 120)$$

•
$$X2 = (56, 73000, 80)$$

• X3 = (29, 74500, 118)

• Intuition: (X1, X3)

Euclidean: (X1, X2)

Solution: Rescale income / 1000\$

Standardizing

Problem: Multiple variables on different scales

Solution: Standardize your data

- 1. Subtract the mean
- 2. Divide by the standard deviation

> scale(data)

Note: Standardizing — Different interpretation

INTRODUCTION TO MACHINE LEARNING

Let's practice!

INTRODUCTION TO MACHINE LEARNING

Hierarchical Clustering

Hierarchical Clustering

Hierarchy:

- Which objects cluster first?
- Which cluster pairs merge? When?

Bottom-up:

- Starts from the objects
- Builds a hierarchy of clusters

Pre: Calculate distances between objects

Pre: Calculate distances between objects

Distance

1. Put every object in its own cluster

2. Find the closest pair of clusters — Merge them

3. Compute distances between new cluster and old ones

4. Repeat steps two and three

4. Repeat steps two and three

Bottom-Up: Algorithm

4. Repeat steps two and three

Bottom-Up: Algorithm

4. Repeat steps two and three ———— One cluster

Linkage-Methods

- Simple-Linkage: minimal distance between clusters
- Complete-Linkage: maximal distance between clusters
- Average-Linkage: average distance between clusters

Different Clusterings

Simple-Linkage

Minimal distance between objects in each clusters

Complete-Linkage

Maximal distance between objects in each cluster

Often undesired

Often undesired

Often undesired

- Often undesired
- Can be great outlier detector

Leaves / Objects

Hierarchical Clustering in R

Library: stats

> dist(x, method)

x: dataset

method: distance

> hclust(d, method)

d: distance matrix

method: linkage

Hierarchical: Pro and Cons

- Pros
 - In-depth analysis
 - Linkage-methods Different pattern

- Cons
 - High computational cost
 - Can never undo merges

k-Means: Pro and Cons

- Pros
 - Can undo merges
 - Fast computations
- Cons
 - Fixed #Clusters
 - Dependent on starting centroids

INTRODUCTION TO MACHINE LEARNING

Let's practice!