```
In [1]:

1  import pandas as pd
2  import numpy as np
3  import matplotlib.pyplot as plt
4  %matplotlib inline
5  import seaborn as sns
6  from IPython import get_ipython
7  import warnings
8  warnings.filterwarnings("ignore")
```

In [2]:

```
data = pd.read_csv('lung_cancer_data.csv')
```

In [3]: ▶

1 data.head()

Out[3]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC	FATIGUE	A
0	М	69	1	2	2	1	1	2	
1	М	74	2	1	1	1	2	2	
2	F	59	1	1	1	2	1	2	
3	M	63	2	2	2	1	1	1	
4	F	63	1	2	1	1	1	1	
4									•

In [4]:

1 data.tail()

Out[4]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE
304	F	56	1	1	1	2	2	2
305	М	70	2	1	1	1	1	2
306	М	58	2	1	1	1	1	1
307	М	67	2	1	2	1	1	2
308	M	62	1	1	1	2	1	2
4								•

```
In [5]:
                                                                               M
 1 data.shape
Out[5]:
(309, 16)
In [6]:
                                                                               H
 1 data.columns
Out[6]:
NG',
      'ALCOHOL CONSUMING', 'COUGHING', 'SHORTNESS OF BREATH',
      'SWALLOWING DIFFICULTY', 'CHEST PAIN', 'LUNG_CANCER'],
     dtype='object')
In [7]:
                                                                               H
 1 data.duplicated().sum()
Out[7]:
33
In [9]:
                                                                               H
 1 data = data.drop_duplicates()
In [10]:
   data.isnull().sum()
Out[10]:
GENDER
                       0
AGE
                       0
SMOKING
YELLOW_FINGERS
                       0
ANXIETY
                       0
PEER_PRESSURE
                       0
CHRONIC DISEASE
                       0
                       0
FATIGUE
ALLERGY
                       0
WHEEZING
                       0
ALCOHOL CONSUMING
                       0
COUGHING
SHORTNESS OF BREATH
                       0
SWALLOWING DIFFICULTY
                       0
CHEST PAIN
                       0
LUNG CANCER
                       0
dtype: int64
```

```
In [11]:
```

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 276 entries, 0 to 283
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	GENDER	276 non-null	object
1	AGE	276 non-null	int64
2	SMOKING	276 non-null	int64
3	YELLOW_FINGERS	276 non-null	int64
4	ANXIETY	276 non-null	int64
5	PEER_PRESSURE	276 non-null	int64
6	CHRONIC DISEASE	276 non-null	int64
7	FATIGUE	276 non-null	int64
8	ALLERGY	276 non-null	int64
9	WHEEZING	276 non-null	int64
10	ALCOHOL CONSUMING	276 non-null	int64
11	COUGHING	276 non-null	int64
12	SHORTNESS OF BREATH	276 non-null	int64
13	SWALLOWING DIFFICULTY	276 non-null	int64
14	CHEST PAIN	276 non-null	int64
15	LUNG_CANCER	276 non-null	object

dtypes: int64(14), object(2)
memory usage: 36.7+ KB

In [12]:

1 data.describe()

Out[12]:

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	
count	276.000000	276.000000	276.000000	276.000000	276.000000	276.000000	27
mean	62.909420	1.543478	1.576087	1.496377	1.507246	1.521739	
std	8.379355	0.499011	0.495075	0.500895	0.500856	0.500435	
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
25%	57.750000	1.000000	1.000000	1.000000	1.000000	1.000000	
50%	62.500000	2.000000	2.000000	1.000000	2.000000	2.000000	
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.000000	
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.000000	
4							

In [13]:

1 **from** sklearn **import** preprocessing

H

```
In [14]:
                                                                                       M
 1 label_encoder = preprocessing.LabelEncoder()
In [15]:
                                                                                       H
 data['GENDER'] = label_encoder.fit_transform(data['GENDER'])
 2 data['LUNG_CANCER']= label_encoder.fit_transform(data['LUNG_CANCER'])
In [17]:
   data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 276 entries, 0 to 283
Data columns (total 16 columns):
     Column
                            Non-Null Count Dtype
                            _____
 0
     GENDER
                            276 non-null
                                             int32
 1
     AGE
                            276 non-null
                                             int64
 2
     SMOKING
                            276 non-null
                                             int64
 3
    YELLOW FINGERS
                            276 non-null
                                             int64
 4
     ANXIETY
                            276 non-null
                                             int64
 5
    PEER PRESSURE
                            276 non-null
                                             int64
 6
    CHRONIC DISEASE
                            276 non-null
                                             int64
                            276 non-null
 7
     FATIGUE
                                             int64
 8
     ALLERGY
                            276 non-null
                                             int64
                                             int64
    WHEEZING
                            276 non-null
    ALCOHOL CONSUMING
                            276 non-null
                                             int64
                            276 non-null
    COUGHING
                                             int64
 12
    SHORTNESS OF BREATH
                            276 non-null
                                             int64
                            276 non-null
                                             int64
 13
    SWALLOWING DIFFICULTY
    CHEST PAIN
                            276 non-null
                                             int64
                            276 non-null
 15 LUNG CANCER
                                             int32
dtypes: int32(2), int64(14)
memory usage: 34.5 KB
In [16]:
                                                                                       M
    data.head()
Out[16]:
```

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	A
0	1	69	1	2	2	1	1	2	
1	1	74	2	1	1	1	2	2	
2	0	59	1	1	1	2	1	2	
3	1	63	2	2	2	1	1	1	
4	0	63	1	2	1	1	1	1	
4									•

```
In [18]:
                                                                                M
 1 data.nunique()
Out[18]:
GENDER
                        2
                       39
AGE
                        2
SMOKING
YELLOW FINGERS
                        2
ANXIETY
                        2
                        2
PEER_PRESSURE
CHRONIC DISEASE
                        2
FATIGUE
                        2
                        2
ALLERGY
WHEEZING
                        2
                        2
ALCOHOL CONSUMING
COUGHING
                        2
SHORTNESS OF BREATH
                        2
SWALLOWING DIFFICULTY
                        2
CHEST PAIN
                        2
                        2
LUNG_CANCER
dtype: int64
In [19]:
                                                                                M
 1 data.columns
Out[19]:
NG',
      'ALCOHOL CONSUMING', 'COUGHING', 'SHORTNESS OF BREATH',
      'SWALLOWING DIFFICULTY', 'CHEST PAIN', 'LUNG_CANCER'],
     dtype='object')
In [20]:
                                                                                Ы
 1
   data_new = data[['GENDER', 'SMOKING', 'YELLOW_FINGERS', 'ANXIETY',
          'PEER_PRESSURE', 'CHRONIC DISEASE', 'FATIGUE', 'ALLERGY', 'WHEEZING',
 2
          'ALCOHOL CONSUMING', 'COUGHING', 'SHORTNESS OF BREATH',
 3
          'SWALLOWING DIFFICULTY', 'CHEST PAIN', 'LUNG_CANCER']]
 4
```

In [21]:


```
In [22]:
```

```
H
In [23]:
 1 | data_new['LUNG_CANCER'].unique()
Out[23]:
array([1, 0])
In [24]:
                                                                                          M
 1 data_new['LUNG_CANCER'].value_counts()
Out[24]:
     238
1
      38
Name: LUNG_CANCER, dtype: int64
                                                                                          H
In [26]:
    100. *1data_new.LUNG_CANCER.value_counts() / len(data_new.LUNG_CANCER)
Out[26]:
1
     86.231884
     13.768116
Name: LUNG_CANCER, dtype: float64
In [29]:
                                                                                          H
    plt.figure(figsize=(15,6))
    sns.histplot(data['AGE'])
    plt.xticks(rotation = 90)
    plt.show()
 40
 30
 20
 10
                                                        8
```

```
H
In [31]:
 1 | data_new['GENDER'].unique()
Out[31]:
array([1, 0])
                                                                                H
In [30]:
 1 data_new['GENDER'].value_counts()
Out[30]:
1
    142
    134
Name: GENDER, dtype: int64
                                                                                H
In [32]:
 1 100. * data_new.GENDER.value_counts() / len(data_new.GENDER)
Out[32]:
    51.449275
    48.550725
Name: GENDER, dtype: float64
In [33]:
                                                                                H
   plt.figure(figsize=(15,6))
   3
 4
   plt.xticks(rotation = 90)
 5
   plt.show()
    LUNG_CANCER
 120
 100
  80
  20
                                  GENDER
```

In [35]:

```
plt.figure(figsize=(15,6))
sns.countplot(data=data_new,x='COUGHING',hue='LUNG_CANCER')
plt.legend(["Has cancer", 'Does not have cancer'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [36]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(data=data_new,x='YELLOW_FINGERS',hue='LUNG_CANCER')
plt.legend(["Has cancer", 'Does not have cancer'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [37]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(data=data_new,x='SHORTNESS OF BREATH',hue='LUNG_CANCER')
plt.legend(["Has cancer", 'Does not have cancer'])
plt.xticks(rotation = 90)
plt.show()
```



```
In [38]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(data=data_new,x='ANXIETY',hue='SHORTNESS OF BREATH')
plt.legend(["Has cancer", 'Does not have cancer'])
plt.xticks(rotation = 90)
plt.show()
```


In [40]: ▶

```
plt.figure(figsize=(15,6))
sns.distplot(data['AGE'])
plt.xticks(rotation = 90)
plt.show()
```


In [41]: ▶

1 corrmat = data_new.corr()

2 corrmat

Out[41]:

	GENDER	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONI DISEAS
GENDER	1.000000	0.041131	-0.202506	-0.152032	-0.261427	-0.18992
SMOKING	0.041131	1.000000	-0.020799	0.153389	-0.030364	-0.14941
YELLOW_FINGERS	-0.202506	-0.020799	1.000000	0.558344	0.313067	0.01531
ANXIETY	-0.152032	0.153389	0.558344	1.000000	0.210278	-0.00693
PEER_PRESSURE	-0.261427	-0.030364	0.313067	0.210278	1.000000	0.04289
CHRONIC DISEASE	-0.189925	-0.149415	0.015316	-0.006938	0.042893	1.00000
FATIGUE	-0.079020	-0.037803	-0.099644	-0.181474	0.094661	-0.09941
ALLERGY	0.150174	-0.030179	-0.147130	-0.159451	-0.066887	0.13430
WHEEZING	0.121047	-0.147081	-0.058756	-0.174009	-0.037769	-0.04054
ALCOHOL CONSUMING	0.434264	-0.052771	-0.273643	-0.152228	-0.132603	0.01014
COUGHING	0.120228	-0.138553	0.020803	-0.218843	-0.068224	-0.16081
SHORTNESS OF BREATH	-0.052893	0.051761	-0.109959	-0.155678	-0.214115	-0.01176
SWALLOWING DIFFICULTY	-0.048959	0.042152	0.333349	0.478820	0.327764	0.06826
CHEST PAIN	0.361547	0.106984	-0.099169	-0.123182	-0.074655	-0.04889
LUNG_CANCER	0.053666	0.034878	0.189192	0.144322	0.195086	0.14369

In [42]: ▶


```
In [43]:
                                                                                      M
 1 x = data_new.drop('LUNG_CANCER', axis = 1)
 2 y = data_new['LUNG_CANCER']
In [44]:
                                                                                       Н
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test= train_test_split(x, y,
 3
                                                        test_size= 0.25,
 4
                                                        random_state=0)
In [45]:
 1 | from sklearn.linear_model import LogisticRegression
   classifier= LogisticRegression(random state=0)
   classifier.fit(x_train, y_train)
Out[45]:
LogisticRegression(random_state=0)
                                                                                      H
In [46]:
 1 y_pred= classifier.predict(x_test)
In [47]:
 1 | from sklearn.metrics import accuracy_score, mean_absolute_error , mean_squared_erro
In [48]:
                                                                                       H
   from sklearn.metrics import plot_roc_curve
In [50]:
    print("Mean absolute error is ",( mean_absolute_error(y_test,y_pred)))
 2 print("Mean squared error is " , mean_squared_error(y_test,y_pred))
    print("Median absolute error is " ,median_absolute_error(y_test,y_pred))
    print("Accuracy is " , round(accuracy_score(y_test,y_pred)*100,2),"%")
 5 | print("F1 score: ", round(f1_score(y_test,y_pred, average='weighted')*100,2),"%")
Mean absolute error is 0.10144927536231885
Mean squared error is 0.10144927536231885
Median absolute error is 0.0
Accuracy is 89.86 %
F1 score: 90.08 %
```

In [51]:

```
matrix = confusion_matrix(y_test, y_pred, labels=[1,0])
print('Confusion matrix : \n',matrix)

tp, fn, fp, tn = confusion_matrix(y_test,y_pred,labels=[1,0]).reshape(-1)
print('Outcome values : \n', tp, fn, fp, tn)

matrix = classification_report(y_test,y_pred,labels=[1,0])
print('Classification report : \n',matrix)
```

```
Confusion matrix :
 [[56 4]
 [ 3 6]]
Outcome values :
 56 4 3 6
Classification report :
               precision
                            recall f1-score
                                                support
           1
                   0.95
                             0.93
                                        0.94
                                                     60
           0
                   0.60
                             0.67
                                        0.63
                                                     9
                                        0.90
                                                    69
    accuracy
   macro avg
                   0.77
                             0.80
                                        0.79
                                                     69
                   0.90
                             0.90
                                        0.90
weighted avg
                                                     69
```