HOMEWORK 4

- 1. Prove that the ideal in $\mathbb{Z}[\sqrt{-5}]$ generated by 2 and $1+\sqrt{-5}$ is not principal.
- 2. Determine whether the ring $\mathbb{Z}[\sqrt{5}]$ is a PID.
- 3. Let $R = \mathbb{Z}[i]$ be the ring of Gauss integers and let p be a prime integer such that $p \equiv 3 \mod 4$. Prove that p is prime in R.
- 4. Let $R = \mathbb{Z}[i]$ and let p be a prime integer such that $p \equiv 1$ modulo 4.
 - a) Prove that p is not prime in R. (Hint: use HW 5, Problem 9 in 110AH).
 - b) Prove that there are integers a and b such that $p = a^2 + b^2$.
- 5. Let R be a PID and let a be a prime element in R. Prove that the ideal pR is maximal.
- 6. Prove that the product of two Noetherian rings is also Noetherian.
- 7. An integral domain in which every ideal generated by two elements is principal is called a *Bezout domain*. Prove that a ring R is a PID if and only if R is a Noetherian Bezout domain.
- 8. Let $R_1 \subset R_2 \subset R_3 \subset ...$ be a chain of countably many subrings of a ring R such that $R = \bigcup R_i$. Suppose that all the R_i are UFD and any prime element in every R_i is prime in R_{i+1} . Prove that R is a UFD.
- 9. Prove that the polynomial ring $\mathbb{Z}[x_1, x_2, x_3, \ldots]$ in countably many variables is a UFD but not a Noetherian ring.
- 10. Let $R = \mathbb{Z}[\sqrt{-5}]$. Prove that the product of the two ideals $2R + (1 + \sqrt{-5})R$ and $3R + (1 + \sqrt{-5})R$ in R is the principal ideal $(1 + \sqrt{-5})R$.