Chapter 9 Exercises Gallian's Book on Abstract Algebra

Spencer T. Parkin February 24, 2014

Exercise 61

Suppose that H is a normal subgroup of a finite group G. If G/H has an element of order n, show that H has an element of order n. Show, by example, that the assumption that G is finite is necessary.

The case n=1 is trivial, so let n>1. Let $a\in G$ such that |aH|=n. Clearly $a\neq e$. It follows that the mapping $\phi:H\to H$, given by $\phi(h)=a^nh$ is a non-trivial permutation of the elements of H and so ϕ is a member of the group of permutations of H. We then see that $a^{|\phi|n}=e$. But it is easy to see that for all integers $i\in[1,|\phi|n-1]$, we have $a^i\neq e$. So $|a^{|\phi|}|=n$.