目录

1. 椭圆曲线理论基础	2
1.1. 定义	2
1.2. 四则运算	3
1.3. 有限域 GF(p)	5
1.4. 有限域椭圆曲线	6
1.5. 有限域椭圆曲线点的阶	7
2. ECC 椭圆曲线加密算法	7
2.1. 定义	7
2.2. 安全性	8
2.3. 加密解密原理与演示	9
2.4. ECDSA 数字签名原理	10
2.5. 签名演示	12
2.6. secp256k1	12
3. 结语	13
4. 关于作者	13
5. 参考资料	14

大白话椭圆曲线加密算法

作者: 虞双齐

版本记录

/// /		1		
日期	版本	作者	内容	
2020年04月03日	V1	虞双齐	初版	
云共享版: https://kdocs.cn/l/spNSpCEr5?f=101				

你应该听过 ECC, ECDH 或者 ECDSA。ECC 是椭圆曲线加密算法(Elliptic curve cryptography)的简称,后面两个是基于它的算法实现。

在数字货币加密技术中,不得不谈 ECC, 它是数字货币的安全基石。本文不涉及 ECC 中复杂的数学知识, 笔者将努力使用简单通俗的语言来解释 ECC 是如何提供与保障加密安全的。

整篇文章,先讲解所涉及的理论基础知识,然后讲解 ECC 的定义,再通过实例来讲解 ECC 的加密解密原理和 ECDSA 的签名原理。对理论基础不了解的读者,请务必掌握理论基础后再继续往下看,不推荐跳读。

1. 椭圆曲线理论基础

1.1. 定义

什么是椭圆曲线? 在数学上, 它是下方方程所有点的集合。

$$y^2 = x^3 + ax + b$$
, $4a^3 + 27b^2 \neq 0$

下图是不同 **a**,**b** 得到的不同图形的椭圆曲线。可以看到椭圆曲线的形状,并非椭圆的。只是因为椭圆曲线的描述方程,类似于计算一个椭圆周长的方程,故得此名。

随着 a,b 的不同(点击查看演示动图),椭圆曲线也会在平面上呈现不同的形状。辨识度 很高,可以看到椭圆曲线始终是关于 x 轴对称的。

方程后面的判别式 $4a^3+27b^2\neq 0$ 是来保障曲线的光滑(非奇异),也就是说在曲线里面不能有尖点、自相交点和孤立点。从而保证椭圆曲线上所有的点都有切线。

上方曲线中他们的判别式均为 0。左曲线带尖点;右曲线曲线自相交。他们都不是有效的椭圆曲线。

1.2. 四则运算

不同于代数几何中的四则运算,在椭圆曲线中有定义自有四则运算。

1.2.1.1. 加法运算

已知椭圆曲线上的点 P和Q, 求P+Q。

首先在曲线上标出点 P 和点 Q。再做经过点 P 和 Q 的直线,与曲线相交于第三点 R。继续做点 R 关于 X 轴的对称点-R。这个 -R 点就是点 P 和 Q 相加得到的点,记做 P+Q=-R。

因椭圆曲线是关于 X 轴对称的,-R 是点 R 的对称点, 点 -R 必然也在椭圆曲线上,换句话说 P+Q 也在椭圆曲线上。

点 R 的存在对于 -R 至关重要。在大多数情况下直线一定将和椭圆曲线相交于第三点。如果直线和椭圆曲线没有第三个交叉点时,即点 R 不存在时,就无法按上面方法求 P+Q。以下情况中,点 R 不存在。

当 P = -Q 时,直线将于 Y 轴平行,没有第三个交点。假设 P + Q = O,此时 P + Q = P + (-P) = O。移项得到 P + O = P。

这意味着点 P 加上一个点 O 后还是自身点 P。我们把这个点 O 成为加法的单位元,曲线上的任意点与单位元相加不会改变其值。实际上点 O 表示平行线的相交点,称为无穷远点 O ∞ 。可以理解为所有平行于 Y 轴的直线交于 O 点。

当 P=Q 时,只能以点 P 作为切点做一条关于椭圆曲线的切线,切线将与椭圆曲线相加与另一点,记做点 R。同样,做点 R的关于 X 轴的对称点-R。这个 -R 点就是点 P 和 P 相加得到的点,记做 P+P=2P=-R。

在图像上,我们可以非常便捷的找到 P+Q 点。而在数学上,该如何计算呢?可以通过代数算法来计算 P+Q,但这里不展开讲解,本文将借助网页工具<u>《Elliptic Curve point addition</u>(\mathbb{R})》来进行求解。

1.2.1.2.减法运算

已知椭圆曲线上的点 P和 Q, 求 P-Q。

因 P-Q=P+(-Q), 求 P-Q 就是点 P 与点-Q 的加法运算。而点-Q 就是点 Q 对称点,在运算中称-Q 是 Q 的负元,Q(x,y)的负元是(x,-y)。综上,可得 P-Q 的计算公式如下:

$$P(x_1, y_1) - Q(x_2, y_2) = (x_1, y_1) + (x_2, -y_2)$$

1.2.1.3.乘法运算

已知椭圆曲线上的点 P 和数值 n, 求 nP。

前面已计算出 P+P, 同理可以继续计算出 P+P+P=2P+P。

重复 n 次加法运算就可以得到 n 次点 P 相加的结果,记为 nP 。我们把这个过程叫做 P 的自累。

$$nP = \underbrace{P + P + \cdots + P}_{n \text{ times}}$$

这就是乘法运算,比如 3P=P+P+P,通过进行 3 次加法运算就可以得到 3P 的值。 **思考:** 如果 n 相当大,如何提高加法运算效率?

1.2.1.4.除法运算

已知椭圆曲线上的点 P 和数值 r, 求 r⁻¹P。

注意,这里的 r⁻¹并不是表示 r 的负一次方。在椭圆曲线中有如下定义。

$$r \cdot r^{-1} = O \infty$$

当已知 r 和单位元 0 的值即可求解出 r⁻¹, 从而使用乘法求解 r⁻¹P。

假设已知椭圆曲线上的点 P(1,4)和 r=4, 椭圆曲线单位元为 8。则有 $4\cdot r^{-1}=8$, 得 $r^{-1}=2$, $r^{-1}P=2P$ 。

1.3. 有限域 GF(p)

有限域是指有限个元素的域,记做 GF(p),其中 p 是质数,有 $\{0,1,2,3...,p-1\}$ 共 p 个元素。例如 $GF(7)=\{0,1,2,3,4,5,6\}$ 。

GF(p)中的四则运算都是基于取模运算的,就是小学学过的带余除法的余数。例如: 12 除以 7, 商为 1, 余数为 5, 记做 12 $\mod 7 = 5$ 。

如果两个不同的数 a, b 除以同一个数 p 之后余数相同, 称之为 a, b 模 p 同余, 记 a mod p = b mod p。为了简便,我们把"mod p"统一写到最后面,并且为了防止与 "a=b"混淆,使用恒等符号" \equiv ",记 a \equiv b (mod p)。

而椭圆曲线(如 $y^2=x^3+x+1$)是定义在实数域上的,实数是连续的,导致了椭圆曲线的连续(右图)。这种连续性,使它并不合适用于安全加密。所以,可以把椭圆曲线定义在有限域上,使得曲线变成离散的点。下图是椭圆曲线取 p 为 2 所形成的离散的点。

1.4. 有限域椭圆曲线

如前面所述,在有限域 F。上的椭圆曲线,可用于加密。按下定义有限域椭圆曲线:

- 1. 选择满足条件 $4a^3+27b^2 \neq 0 \pmod{p}$, 且小于 p 的两个非负整数 a、b。
- 2. 满足方程 $y^2=x^3+ax+b$ (mod p) 的所有点(x,y),再加上无穷远点 O∞,构成一条椭圆曲线。其中 x,y 属于 0 到 p-1 间的整数。

我们把这条椭圆曲线记为 $E_p(a,b)$, 比如 $E_{23}(1,1)$ 方程如下,它的离散点如右图所示。

$$E_{23}(1,1): y^2 \equiv x^3 + x + 1 \pmod{23}$$

1.5. 有限域椭圆曲线点的阶

如果椭圆曲线 $E_p(a, b)$ 上一点 P,存在最小的正整数 n 使得 $nP \equiv O \infty$,则将 n 称为 P 的 阶。

若 n 不存在,则 P 是无限阶的。下图是 E23(1,1)和 P(3,10)各个阶的结果。从图可以明显看出,点的分布和顺序都是杂乱无章的。

计算可得 27P=-P=(3,13), 所以 28P=27P+P=-P+P=O∞, 因此 E₂₃(1,1)上点 P(3,10) 的阶为 29。

2.ECC 椭圆曲线加密算法

2.1. 定义

椭圆曲线加密算法,描述的是一条 F_p 的椭圆曲线,记为: T = (p,a,b,G,n,h)。 其中:

- 1. **p,a,b** 用于确定一条有限域椭圆曲线 E_o(a, b);
- 2. G 为基点;
- 3. n为G点的阶数;
- 4. h 是椭圆曲线上所有点的个数 m 与 n 相除的整数部分。

这几个参数取值,直接影响到加密的安全性。参数值一般满足以下条件:

- 1. p 当然越大越安全。但是越大, 计算速度会变慢, 200 位左右可以满足一般安全要求:
 - 2. $p \neq nh$;
 - 3. $pt \neq 1 \pmod{n}$, $t \in [1, 20)$;
 - 4. $4a^3+27b^2\neq 0 \pmod{p}$;
 - 5. n 为素数;

6. h≤4。

2.2.安全性

如果已知 k 和 G,根据乘法法则求 K 是很容易的,但反过来,仅已知 K 和 G,求 k 是非常困难的。

在普通代数里,比如说你有一个数 10,然后有人告诉你,他是用 5 做的乘法得到的 10,你就知道另一个乘数肯定是 2。但是在 ECC 里中,想求 k 是非常困难的。

为了寻找 k , 你需要暴力枚举,直到找到了符合条件的点。以目前人类文明的计算能力这是不可能的,尤其当你使用了非常大的数值 n。

实际应用中的 ECC 原则上会把 k 取得相当大,n 也相当大,要把 n 个解点逐个计算出来是不可能的。这个逆向寻找 k 的过程的困难就是离散对数问题。这个问题的难度保证了 ECC 的安全性。

这里的 k 就是私钥(private key), K 是公钥(public key)。通过私钥计算公钥非常容易,但是希望通过公钥逆向推导私钥是非常困难的。

非常困难,不代表比可能。科学家们已经尝试通过量子计算机暴力枚举,寻找 k 值。但不需要过于担心,现有的量子计算机还是一个婴儿,科学们也在研究抗量子计算机破解的加密算法。

2.3.加密解密原理与演示

在 ECC 之前,已经有诸如 RSA 等非对称加密算法,但是 ECC 是一种更加优越的非对称加密算法。

假设情报员葛二蛋需要加密传递一份情报给延安总部。如果葛二蛋掌握了椭圆曲线加密 算法,则他可以这样加密传递情报。

第一部分:延安总部告诉葛二蛋使用哪个公钥加密情报。

- 1. 延安总部选定一条椭圆曲线 $E_p(a, b)$ 和一个基点 G。假设选定 $E_{23}(4, 20)$,基点 G(13, 23),G 的阶数 n=37。
 - 2. 使用私钥 k, 生成公钥 K=kG。假设 k=25,则 K=25G=(14,6)。
 - 3. 将椭圆曲线 E₂₃(4, 20)、n=37、K(14, 6)、G(4, 20)传递给葛二蛋。

第二部分: 葛二蛋使用公钥 K 加密情报。

- 1. 葛二蛋将待传递的情报进行编码。假设编码结果为 3;
- 2. 在椭圆曲线 $E_{23}(4,20)$ 上,当 x=3 时到,y=28。把这点 M(3,28) 当做情报编码在曲线上的映射;
 - 3. 生成一个随机数 r (r<n), 假设 r=6;
 - 4. 计算点 C1= M + rK 和 C2=rG;
 - \bigcirc C1= M+6K= M+6*25G=M+150G= (3, 28) +(27, 27)=(6, 12);
 - \bigcirc C2=rG=6G=(5, 7);
 - 5. 将点 C1(6, 12)和 C2(5, 7)传递给延安总部;

第三部分:延安总部解密情报。

延安总部收到 C1 和 C2 后, 计算 C1-kC2, 计算结果应该就是情报在曲线上的映射点 M。

$$C1 - kC2 = C1 - 25C2 = (6, 12) - 25(5, 7) = (6, 12) - (27, 27) = (6, 12) + (27, 2) = (3, 28)$$

延安总部能解密出情报的原因是因为:

$$C1 - kC2 = M + rK - krG$$

$$= M + r(K - kG)$$

$$= M + r(kG - kG)$$

$$= M$$

在这个加解密过程中,如果有一个偷窥者 H,他只能看到 Ep(a,b)、K、G、 C1、C2 。 通过 K=kG 求 k 或者通过 C2=rG 求 r 是相对困难的。因此 H 无法得到 A、B 件传送的明文消息。

需要强调的是,如果延安总部需要加密发送指令给葛二蛋,也可以采用同样的方式进行,唯一不同的是延安总部需要使用葛二蛋提供的公钥进行加密。只要双方各自的私钥不泄露,那么他们间的情报交流是安全的,即使落在别人手里,也无法解密。

2.4.ECDSA 数字签名原理

有一次,延安总部需要紧急通知所有情报员,"国共合作已宣告破裂,请务必保护和隐藏好自己"。情况紧急,延安总部如果逐个给所有情报员发送加密通知,则效率低下。延安总部可以将此通知刊登到报纸上,这样一早起来各地的情报员就可以看到。

可问题是,情报员怎么确信该通知真的出自延安总部呢?这里,我们就需要用到数字签名技术。

ECC 是加密算法,无法直接用于数字签名。在 ECC 之前就已经有数字签名(digital signature)技术,如 DSA。

椭圆曲线签名算法(ECDSA)就是使用 ECC 对 DSA 数字签名算法的模拟,最终签名可得到两个值r和s。验证签名只需要求解一个值,判断值是否与r相同,如果相同,则说明是有效签名。

ECDSA 签名时,已知 Ep(a,b)、基点 G、G 的阶数 n。

第一部分: 生成摘要

要签名的内容,实际上并非待签名数据的明文,而是对数据的哈希进行签名。 $h = \text{Hash(message)}_{\circ}$

第二部分: 生成签名

- 1. 生成随机数 k, k 是小于 n 的正整数。
- 2. 计算 $R_{(x,y)} = kG$
- 3. 计算 $r=x \mod n$,如果 $x \mod n$ 为 0,则回到步骤 1 重试随机数。
- 4. 计算 $s=k^{-1}(h+rd_A) \bmod n$,其中 d_A 为私钥。这里的 $\mathsf{k}^\mathsf{-1}$ 并不是 k 的-1 次方,而是表示 k 的逆元。在 ECC 中有 $\mathsf{a}^\bullet\mathsf{a}$ -1 (mod n)=O ∞ =1
 - 5. 签名结果就是 r,s。公开签名数据 message 和 r 和 s 值。

第三部分:验证签名

1. 计算
$$u_1 = s^{-1}h \bmod n = \frac{h}{s} \bmod n$$

2. 计算
$$u_2 = s^{-1}r \mod n = \frac{r}{s} \mod n$$

- 3. 计算点 R, $R = u_1 G + u_2 K$, 其中 K 为签名者的公钥。
- 4. 判断点 R 是否等于 rG。如果两者相同,则说明签名合法。 验证中求解的 R 的计算过程如下:

$$R = \frac{h}{s}G + \frac{r}{s}K = \frac{hG + rK}{s}$$

为什么说要求解 R 就可以呢?这是因为:

$$R = \frac{h}{s}G + \frac{r}{s}K$$

$$= \frac{h}{s}G + \frac{r}{s}d_AG$$

$$= \frac{h + rd_A}{s}G$$

$$= \frac{h + rd_A}{\frac{h + rd_A}{k}}G$$

$$= rG$$

这里的关键是在于在签名时引入了随机数 k,提供了安全性。即使对于同一消息,只要改变随机数 k,所得到的签名也会随之变化。

2.5.签名演示

现在,延安总部将使用 ECDSA 签名通知刊登到报纸上。假设已知信息如下:

$$E_{29}(4,20): y^2 = x^3 + 4x + 20$$

 $n = 37, G = (2,6)$
 $h = \text{Hash}(m) = 88$

● 延安总部签名

- 1. 假设延安总部的私钥是 7,则 K=kG=7(2,6)=(3,28);
- 2. 生成随机数 k =11;
- 3. 计算 P=kG=11(2,6)=(16,2);
- 4. 计算 r= 16 mod 37 = 16;
- 5. 计算 s= k⁻¹(h+rk) mod 37 = k⁻¹ (88+16*7) mod 37 = 200 k⁻¹ mod 37。因 k*k-1 (mod 37)=11*k-1 (mod 37)=1,得 k-1 为 27。因此 s= 5400 mod 37 =35;
 - 6. 在报纸刊登通知和签名结果(r,s);

● 情报员验证签名

- 1. 计算 u1= s⁻¹*88 mod 37 = 18*88 mod 37 =30;
- 2. 计算 u2 = s⁻¹*16 mod 37 = 18 *16 mod 37 =29;
- 3. 计算 R= 30G +29K = (3,1)+(14,23)= (16,2);
- 4. 计算 16 mod 37 = 16 和 r 相等, 说明签名合法;

2.6.secp256k1

secp256k1 是高效密码组标准(SECG) 协会开发的一套高效的椭圆曲线签名算法标准。在比特币流行之前,secp256k1 并未真正使用过。自从比特币之后,secp2256k1 已成为数字货币中默认的数字签名算法。大多数常用的曲线具有一个随机的结构,但是secp256k1 是为了更有效率的计算而构造了一个非随机结构。因此如果该算法的实现通过合理的优化,其计算效率可以比别的曲线快 30%以上。同时,与常用的 NIST 曲线不同,secp256k1 的常量是通过可预测的方式挑选的,这可以有效的减少防止曲线设计者安置后门的可能性。

secp256k1 是一条基于有限域的 Koblitz 椭圆曲线, T =(p,a,b,G,n,h)的各项参数定义如下:

- 1. p是一个无限接近 2256 的大数;
- 2. a=0,b=0;
- 3. G= 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8
- 4. n = FFFFFFF FFFFFFF FFFFFFF FFFFFF BAAEDCE6 AF48A03B BFD25E8C D0364141

5. h=01

图: secp256k1数据签名算法命名规则

为什么比特币要选择 secp256k1 签名算法而不是其他算法呢?比特币开发者社区曾讨论过 secp256k1 是否安全。中本聪没有明确解释,只是说道"有根据的推测"。

社区的讨论不外乎是在安全和效率上做权衡,选择一个不受任何政府控制、无后门的签名算法是比特币的首要考虑因素;其次,也需要提供计算速度,毕竟在比特币中签名与校验签名是不断在处理的事情(60%左右的CPU时间几乎全用在这上面),而具有可预测性、高计算效率特性的Koblitz曲线是不错的选择;

除椭圆曲线签名算法使用非常短的私钥和签名值外。基于安全第一,效率第二原则,secp256k1 就是一个优解。以太坊的签名算法也是采用 secp256k1。

3. 结语

椭圆曲线加密算法是一种非对称加密算法,比 RSA 具有更高的效率和更短私钥。有效解决"提高安全强度必须增加密钥长度"的工程实现问题。且已得到广泛的支持和使用。使用 ECC 作为加密算法已成为首先项。

4.关于作者

虞双齐是区块链技术 CTO, 登录学院合伙人。

5.参考资料

- 1. 掘金《椭圆曲线加密原理与应用》
- 2. 掘金《椭圆曲线机密算法》
- 3. 博客园-ECC 椭圆曲线详解

