

ARIMA vs ARIMA_with volumn

註:加入量後MA(2)亦為最佳model

ARIMA regression

ARIMA(0,0,2)

train_t	rue	Coef.	OPG Std. Err.	z	P> z	[95% Conf	. Interval]
train_tru	e ons	001333	.0007524	-1.77	0.076	0028076	.0001416
ARMA							
	ma						
	L1.	7383323	827.4268	-0.00	0.999	-1622.465	1620.988
	L2.	2616683	216.4773	-0.00	0.999	-424.5493	424.026
/si	gma	.3288135	136.033	0.00	0.499	0	266.9485

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

test MSE: 0.0942788 test RMSE: 0.3070485 train MSE: 0.1108279 train RMSE: 0.3329083

除此頁外報告後也新增:

- 1.將差分還原為In(price)並進行預測(p.15)
- 2. Whitw noise test (p.13)

v test MSE: 0.0917578

v test RMSE: 0.3029155

v train MSE: 0.1087181

v train RMSE: 0.3297243

. wntestq v e

Prob > chi2(40)

Portmanteau test for white noise

45.3272

0.2595

Portmanteau (Q) statistic =

outline

- 動機
- 資料處理
- 敘述統計
- 單根檢定
- 模型選擇
- 預測結果
- · 深度學習模型比較(LSTM)
- 結論

西瓜跌破50年來最低價 陳吉仲:考慮全國茶飲

協助收購榨成汁

西瓜價跌至50年來最低 農民嘆血本無歸

綜合報導 ② 2020-04-27 19:53 最後更新: 2020-04-27 21:57

假議題?真問題?

資料處理

缺失值處理

日期處理

平均價格

- 1.以月平均數取代缺失值
- 2.若當月無資料則以台北一之同月平均取代

'2000-11', '2000', '11', 13.5, 2265.5],
'2000-12', '2000', '12', 19.1, 264.7],
'2001-01', '2001', '01', 18.8, 607.4],
'2001-02', '2001', '02', 17.5, 4559.5],
'2001-03', '2001', '03', 11.9, 11706.7],
'2001-04', '2001', '04', 6.7, 32992.0],

- 1. 將年/月/日格式改為年/月
- 2.將民國年改為西元年

```
new_df = []
avg_price = []
avg vol = []
for year in year_list:
    for month in month list:
        price = []
        vol=[]
        for i in df list:
            date = i[0].split('/')
            if date[1] == month and date[0] ==year:
                price.append(i[3])
                vol.append(i[4])
       if len(price)== 0:
            price.append(avg price[-1])
        if len(vol) == 0:
            vol.append(avg vol[-1])
        avg_price.append(avg(price))
        avg vol.append(avg(vol))
        #ew df.append([year+'/'+month, year, month, round(avg(price), 1), round(avg(vol), 1)])
        new_df.append([ch_to_west(year)+'-'+month,ch_to_west(year),month,round(avg(price),1),round(avg(vol),1)])
   '2000-09', '2000', '09', 12.5, 9826.8],
  '2000-10', '2000', '10', 18.9, 2823.4],
```

以日平均價格計算月平均

gen y_m = date(date,"YM")
format y_m %tdCCYY-NN

date	year	month	price	volumn
Jan-99	1999	1	20.3	230.3
Feb-99	1999	2	27.7	2248.7
Mar-99	1999	3	15.8	18235.1
Apr-99	1999	4	11.2	26201.8
May-99	1999	5	8.6	27782.8
Jun-99	1999	6	9.3	31282.5
Jul-99	1999	7	9.3	21000.6
Aug-99	1999	8	15.1	10110.7
Sep-99	1999	9	17	10218.2
Oct-99	1999	10	14.6	3904.2
Nov-99	1999	11	12.6	3044

Price

看起來較接近定態

敘述統計

. sum price ,detail

D	r	1	С	e

	Percentiles	Smallest		
1%	6.2	3.7		
5%	7.4	6.1		
10%	8.5	6.2	0bs	252
25%	10.8	6.4	Sum of Wgt.	252
50%	13.25		Mean	13.92817
		Largest	Std. Dev.	4.72832
75%	16.25	27		
90%	19.8	27.7	Variance	22.35701
95%	22.9	30.6	Skewness	.9019533
99%	27.7	31.9	Kurtosis	4.102355

price

type: numeric (float)

range: [3.7,31.9] units: .1 unique values: 129 missing .: 0/252

mean: 13.9282 std. dev: 4.72832

percentiles: 10% 25% 50% 75% 90% 8.5 10.8 13.25 16.25 19.8

Dickey–Fuller

. dfuller lnp if train ==0, trend reg Dickey-Fuller test for unit root Number of obs = 215 Interpolated Dickey-Fuller 1% Critical 5% Critical 10% Critical Test Value Statistic Value Value -11.538 -4.002 Z(t) -3.435 -3.135 MacKinnon approximate p-value for Z(t) = 0.0000 無trend D.lnp Coef. Std. Err. t P>|t| |95% Cont. Interval lnp -.89591 -.6344579 L1. -.765185 .066318 .0011096 .0003727 0.003 .0018443 trend 0.000 1.847642 .1673168 11.04 1.517824 2.17746 _cons . dfuller lnp if train ==0 ,reg Dickey-Fuller test for unit root Number of obs = 215 - Interpolated Dickey-Fuller 5% Critical Test 1% Critical 10% Critical Statistic Value Value Value -10.951 -3.472 -2.882 Z(t) -2.572 MacKinnon approximate p-value for Z(t) = 0.0000 有截距 [95% Conf. Interval] D.lnp Coef. Std. Err. t P>|t| lnp L1. -.7188516 .0656454 -10.95 0.000 -.5894537

.1703773

10.85

0.000

1.848315

cons

1.512473

2.184156

取一階差分

. dfuller newlnp if train ==0,trend reg

Dickey-Fuller	Number of obs = 21						
	Test Statistic	1% Crit Val	ical	rpolated D 5% Crit Val		10% Cr	itical alue
Z(t)	-20.928	-4	.002	-3	.435		-3.135
MacKinnon app	roximate p-val	ue for Z(t)	= 0.000	0	無trei	nd	
D.newlnp	Coef.	Std. Err.	t	P> t	[95% Con	f. Int	erval]
newlnp L1trend _cons . dfuller new	-1.349839 0001933 .0223587	.0004366 .0541274	-20.93 -0.44 0.41	0.658 0.680	1.47 982 0010539 084341	.0	222696 006674 290584
Dickey-Fuller	test for unit	root		Numbe	er of obs	=	214
	Test Statistic	1% Crit Val	ical	rpolated D 5% Crit Val		10% Cr	itical alue
Z(t)	-20.964	-3	.472	-2	2.882		-2.572
MacKinnon app	roximate p-val	ue for Z(t)	= 0.000	0	無截路	Ē	
D.newlnp	Coef.	Std. Err.	t	P> t	[95% Con	f. Int	erval]
newlnp L1.	-1.349232	.064361	-20.96	0.000	1 4 6102	-1.	222363

0.06 0.953

.0514687

.0546371

.0015842 .0269138

cons

Dickey-Fuller

時間序列模型:

Random Walk with Drift (RWWD)

取一階差分

Acf&Pacf

AIC,BIC to find best model

ARIMA regression

Sample: 1999m2 - 2016m12 Number of obs = 215 Wald chi2(6) = 1016.94 Log likelihood = -66.27992 Prob > chi2 = 0.0000

-· -	P> z	z	OPG Std. Err.	Coef.	train_p
20027 4 52 0 405 0000550 0000047	0.405	4.60	000007	0043364	train_p
00827 -1.62 0.1060029569 .0002847	0.106	-1.62	.000827	0013361	_cons
					ARMA
					ar
06946 -8.83 0.00087065755543404	0.000	-8.83	.0806946	712499	L1.
24536 1.89 0.0580062424 .3561689	0.058	1.89	.0924536	.1749633	L2.
77966 -0.24 .8122369204 .1856345	0.812	-0.24	.1077966	025643	L3.
50153 0.17 0.8661344103 .1596441	0.866	0.17	.0750153	.0126169	L4.
不顯著					ma
.1886 0.00 1.000 -1744.738 1744.738	1.000	0.00	890.1886	1.05e-06	L1.
7.459 -0.00 0.999 -1936.384 1934.384	0.999	-0.00	987.459	-1	L2.
.9952 0.00 0.499 0 313.9089	0.499	0.00	159.9952	.3240561	/sigma

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

4	· D.]		
	df	AIC	BIC
_	7	150.546	174.1405

	.1	5.0
BIC	AIC	df
178.4497	151.4846	8

6.0.	.1	
df	AIC	BIC
9	153.4748	183.8105

Auto-ARIMA

Best model

```
Performing stepwise search to minimize aic
 ARIMA(4,0,2)(0,0,0)[0]
                                    : AIC=159.363, Time=0.40 sec
                                    : AIC=258.730, Time=0.02 sec
 ARIMA(0,0,0)(0,0,0)[0]
 ARIMA(1,0,0)(0,0,0)[0]
                                    : AIC=225.169, Time=0.02 sec
 ARIMA(0,0,1)(0,0,0)[0]
                                    : AIC=162.353, Time=0.03 sec
 ARIMA(3,0,2)(0,0,0)[0]
                                    : AIC=inf, Time=0.37 sec
                                    : AIC=158.052, Time=0.17 sec
 ARIMA(4,0,1)(0,0,0)[0]
 ARIMA(3,0,1)(0,0,0)[0]
                                    : AIC=156.627, Time=0.12 sec
                                    : AIC=154.832, Time=0.07 sec
 ARIMA(2,0,1)(0,0,0)[0]
 ARIMA(1,0,1)(0,0,0)[0]
                                    : AIC=153.110, Time=0.06 sec
                                    : AIC=154.778, Time=0.11 sec
ARIMA(1,0,2)(0,0,0)[0]
ARIMA(0,0,2)(0,0,0)[0]
                                    : AIC=152.852, Time=0.06 sec
 ARIMA(0,0,2)(0,0,0)|0| intercept
                                   : AIC=int, Time=0.30 sec
Best model: ARIMA(0,0,2)(0,0,0)[0]
Total fit time: 1.744 seconds
```

SARIMAX Results

Dep. Variable: Model:	5.0	RIMAX(0, 0,	,	Observations Likelihood	::	251 -73.426	
Date:		d, 06 Jan 2	, ,	LIKEIIII000		152.852	
	WE	•					
Time:		23:52				163.428	
Sample:			0 HQIC			157.108	
Covariance Type:			251 opg	顯著			
	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1 -0	.7228	0.055	-13.058	0.000	-0.831	-0.614	
ma.L2 -0	.2300	0.059	-3.866	0.000	-0.347	-0.113	
sigma2 0	.1042	0.008	12.526	0.000	0.088	0.120	
Ljung-Box (L1) (O):		0.00	Jarque-Bera	:======= э (JB):		3.51
Prob(0):	-/-		0.95	Prob(JB):	(/	6	0.01
Heteroskedastici	ty (H):		0.60	Skew:		- 6	0.19
Prob(H) (two-sid	led):		0.02	Kurtosis:		3	3.82
	======					-	-

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

White Noise Q test

- . //對殘差檢定是否有白噪音--wN檢定
- . wntestq e

Portmanteau test for white noise

```
Portmanteau (Q) statistic = 43.6446
Prob > chi2(40) = 0.3193
```

不拒絕虛無(存在白噪音)

Predict

Predict(還原InPrice)

ARIMA by roll

```
predictions = []
for t in range(len(test)):
    model = ARIMA(history, order=(0,0,2))
    model_fit = model.fit(disp=0)
    output = model_fit.forecast()
    yhat = output[0]
    predictions.append(yhat)
    obs = test[t]
    history.append(obs)
    print('predicted=%f, expected=%f' % (yhat, obs))
```

214月跑ARIMA

加入第215天真實值

215月跑ARIMA

....

預測第215月

預測第216月

Predict by roll

Test MSE: 0.069 Test RMSE: 0.263 Train MSE: 0.111 Train RMSE: 0.334

LSTM

```
def buildTrain(train, pastDay, futureDay):
   X_train, Y_train = [], []
   for i in range(train.shape[0]-futureDay-pastDay):
       X_train.append(np.array(train.iloc[i:i+pastDay]))
       Y_train.append(np.array(train.iloc[i+pastDay:i+pastDay+futureDay]['newlnp']))
   return np. array (X_train), np. array (Y_train)
```

test = np. array([test]) print(len(test[0]))

37

def buildManyToManyModel(shape): model = Sequential() model.add(LSTM(10, input length=shape[1], model.add(TimeDistributed(Dense(1))) model.compile(loss="mse", optimizer="adam")

model.summary()

return model

- 1.214月以37月為單位分割
- 2.拆分為訓練與驗證資料
- 3. 跑模型
- 4.輸入要預測的前37月做預測

LSTM

Test MSE: 0.334
Test RMSE: 0.578

Conclusion

- 1.ARIMA在預測短期資料有較好的表現
- 2.較長期資料的預測會出現無效預測
- 3.長期可用滾動預測的方式處理,但需逐步加入真實資料
- 4.若無真實資料又要進行長期預測,則LSTM會有較佳表現,但需要較大樣本
- 5.ACF圖若不好判斷pq,則可用auto方式找尋AIC最佳之模型

未解決問題:

- 1.若不對非定態進行處理,會有什麼問題?不同非定態因素是否有不同?
- 2.若模型AIC為最佳,但係數Pvalue較大(不顯著)是否有影響