Rutgers University: Algebra Written Qualifying Exam January 2018: Problem 5 Solution

Exercise. Let I be a maximal ideal of $\mathbb{Z}[x]$. Prove that $\mathbb{Z}[x]/I$ is a finite field.

Solution.

 $\mathbb{Z}[x]$ is a commutative ring with unity, and $\mathbb{Z}[x]/I$ is also a commutative ring with unity.

Also if I is a proper ideal of $\mathbb{Z}[x]$ then $\mathbb{Z}[x]/I$ is not the trivial ring.

Therefore, it suffices to prove that every nonzero element in $\mathbb{Z}[x]/I$ has a multiplicative inverse.

Let I be a maximal ideal of $\mathbb{Z}[x]$ and $a \notin I$.

Let J be the ideal $J = \{ab + x | b \in \mathbb{Z}[x], x \in I\}.$

Then, since I is a maximal ideal and $I \subsetneq J$, it follows that $J = \mathbb{Z}[x]$.

 $\implies \exists b_0 \in \mathbb{Z}[x] \text{ and } x_0 \in I \text{ s.t. } 1 = ab_0 + x_0 \text{ and } 1 - ab_0 = -x_0 \in I$ i.e. $\forall a \notin I, \exists b \in \mathbb{Z}[x] \text{ s.t.}$

$$1 - ab \in I$$
.

 $\implies \forall a \in \mathbb{Z}[x] - I, \ \exists b \in \mathbb{Z}[x] \text{ s.t.}$

$$(I+a)(I+b) = I+1$$

 \implies Every nonzero element of $\mathbb{Z}[x]/I$ has a multiplicative inverse.

Thus $\mathbb{Z}[x]/I$ is a field.