Xin Qian xing HW1-11741 1. (a) Lemma: w is orthogonal to the line $W^Tx+b=0$ Proof: Consider x., xz on the line $\int W^{T}X_{1}-b=0 \quad \bigcirc \quad \bigcirc \quad \bigcirc -\bigcirc \quad W^{T}(X_{1}-X_{2})=0$ $W^TX_2-b=0$ (2) : perpenolicular Given w orthogonal to the line, suppose there's point at on the line who is closest to the origin $a^* \perp hyperplane h$ $a^* = \alpha w \qquad \alpha \text{ is some scalar}$ $f(a^*) = w^T \alpha w - b = \alpha w^T w - b = 0$ $\alpha = \frac{b}{m^{T}n}$ A* = bW dist (a* to origin) = Ja*Ta = btb(WTW) = b (b) yefo, 13, x=2+yw d (d is the perpendicular distance) f(x) = W (2+ yw · d)-b = (WTZ-b)+ IWW od (2 is on the hyperplane) $d = \frac{0 + \|w\| dy}{d = \frac{f(x)}{\|w\|}} = \frac{yf(x)}{\|w\|} \quad (y \text{ is a sign indicator})$ $Ax = \lambda x \quad (A - \lambda I) x = 0$ 2, (a) $|A - \lambda I| = 0$ $|3 - \lambda| = 0$ $|3 - \lambda|^2 - |3 - \lambda|$ $|3 - \lambda| = 0$ $|3 - \lambda|^2 - |3 - \lambda|$ $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0 \qquad \chi_1 = \chi_2$

(b) Given $Ax = \lambda i X$ for $i = 1 \cdots n$ We want to find λ that satisfies $A^k x = \lambda x$ By associativity, $A^k x = A^{k-1}(Ax) = A^{k-1}(\lambda x) = \lambda A^{k-1}x = \lambda^k x$ where $\lambda = \lambda_1 \cdot \lambda_2 \cdot \lambda_1$ Given A^k and eigenvector λ_1^k and the eigenvector $Ax = \lambda_1 x$ $A^k x = A^{k-1}(\lambda_1 x) = \lambda_1 \cdot (A^{k-1}x) = \lambda_1 \cdot ($ therefore each eigenvector of A is still an eigenvector of At $\hat{p} = \underset{p}{\operatorname{arg max}} P(k|n,p)$ = argmax (h pk (1-p)n-k = argmax InCh+kInp+(n-k)In(1-p) = agmax (KInp+(n-K)Incl-p))
f(p) $f'(p) = \frac{k}{p} - \frac{n-k}{1-p}$ when f'(p) = 0 f(p) max We want to maximize $P(n_j.n)$ subject to $\sum_{i=1}^{m} p_i = 1$ Introduce the λ lagrange Multiplier $P(n_j, n) = \frac{n!}{\pi n_i} \pi p_i^{n_i}$ log p(nj,n) = logn! - Elogni + Enilogpi $L(nj,n) = log P(nj,n) - \lambda (\Sigma pi - 1)$ take partial derivative on every pi, when $pi = \frac{ni}{\lambda}$ max then $\lambda = n_1 + \dots + n_m = n$ $\hat{p}\hat{v} = \frac{n\hat{i}}{n\hat{i}}$

4. (a)
$$\frac{du}{dx} = \frac{d(1+e^{-x})^{-1}}{dx} = -(1+e^{-x})^{-2} \cdot e^{-x} \cdot (-1) = e^{x}(1+e^{x})^{-2}$$
 $u(1-u) = \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}} = e^{-x}(1+e^{-x})^{-2}$
 $\frac{du}{dx} = u(1-u)$

(b) $\forall l = \begin{pmatrix} \frac{\partial l}{\partial u} & \frac{\partial l}{\partial u} & \frac{\partial l}{\partial u} \\ \frac{\partial l}{\partial x} & \frac{\partial l}{\partial u} & \frac{\partial l}{\partial u} \end{pmatrix}^{T}$

Take the ith element for example

 $\frac{\partial l}{\partial u} = \frac{\partial l}{\partial u} \cdot \frac{\partial u}{\partial u} \cdot \frac{\partial u}{\partial u}$
 $= \begin{pmatrix} \frac{d}{du} & \frac{d}{du} & \frac{d}{du} \\ \frac{d}{du} & \frac{d}{du} & \frac{d}{du} \end{pmatrix} \cdot \frac{\partial u}{\partial u} \cdot \frac{\partial u}{\partial u}$
 $= \begin{pmatrix} \frac{d}{du} & \frac{d}{du} & \frac{d}{du} \\ \frac{d}{du} & \frac{d}{du} & \frac{d}{du} \end{pmatrix} \cdot \frac{\partial u}{\partial u} \cdot \frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} \cdot \frac{\partial u}{\partial u}$
 $= \begin{pmatrix} \frac{d}{du} & \frac{du}{du} & \frac{d}{du} & \frac{d}{du}$