4. Kolokvij iz Fizike II 28. 5. 2008

- 1. Specifična upornost srebra je $0.016\,\Omega\mathrm{mm^2/m}$, gostota $10500\,\mathrm{kg/m^3}$, kilomolska masa pa $108\,\mathrm{kg}$. Srebro ima en valenčni elektron na atom. Kolikšen je povprečni čas med trki elektronov z ionsko mrežo in kolikšna je povprečna prosta pot?
- 2. S protoni kinetične energije 20 MeV z vpadnim tokom $10^8/\mathrm{s}$ obstreljujemo 1 $\mu\mathrm{m}$ debelo plast svinca $_{82}\mathrm{Pb}$. Število sipanih protonov na časovno enoto opazujemo v intervalu sipalnih kotov $[45^\circ, 90^\circ]$. Nato sipamo delce α z enako kinetično energijo in enakim vpadnim tokom na plasti zlata $_{79}\mathrm{Au}$ neznane debeline in v intervalu sipalnih kotov $[90^\circ, 135^\circ]$ na časovno enoto preštejemo enako število sipanj kot prej. Izračunaj debelino zlate plasti! Molski masi: $M_{\mathrm{Pb}} = 207.2\,\mathrm{kg}$, $M_{\mathrm{Au}} = 197.0\,\mathrm{kg}$, gostoti: $\rho_{\mathrm{Pb}} = 11300\,\mathrm{kg/m}^3$, $\rho_{\mathrm{Au}} = 19300\,\mathrm{kg/m}^3$.
- 3. Koliko donorskih oziroma akceptorskih atomov moramo dodati na vsak kubični meter germanija, da bo debelina izpraznjenega območja sloja pn pri zaporni napetosti 1.5 V dvakrat večja kot pri napetosti 0 V? Na obeh območjih sloja dodamo enako koncentracijo primesi. Širina energijske reže v germaniju je 0.67 eV.
- 4. Delci alfa s kinetično energijo 4 MeV vpadajo na mirujoča berilijeva jedra in sprožajo jedrsko reakcijo

$$\alpha + {}_4^9{\rm Be} \rightarrow {\rm n} + {}_6^{12}{\rm C}$$
.

Izračunaj minimalno in maksimalno kinetično energijo nevtronov. Mase jeder so $m_{\alpha}=4.002603\,u,\,m_{\rm Be}=9.012186\,u,\,m_{\rm n}=1.0086654\,u$ in $m_{\rm C}=12.000000\,u,$ kjer je $u=931.494\,{\rm MeV/c^2}.$