Computational Intelligence Laboratory

Lecture 10

Dictionary Learning

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

May 10, 2019

Section 1

Compressive Sensing

Compressive Sensing

- Why should we gather huge amounts of information if we then compress it anyway and throw away most of it?
- Let's instead compress data while gathering.
- ▶ It decreases acquisition time, power consumption and required storage space.

This idea is called **compressive sensing**.

Compressive Sensing

When is it important? Photoshooting in space!

- Saving memory and battery power ...
- ... for a camera which is orbiting Mars hugely important!
- ▶ Fewer images acquired ⇒ less energy consumed
- Storage space could also be an issue

NASA/JPL/Corby Waste

Compressive Sensing for MRI

- ▶ Highres MRI: patient has to be perfectly still during scanning
- Standard practice: ask patient to stop respiration
- Scanning time becomes critically important!
- ▶ Decreasing number of measurements ⇒ reduced scan time

Xiaojing Ye (2011)

Compressive Sensing: Concept

lacktriangle Original signal $\mathbf{x} \in \mathbb{R}^D$, K-sparse in orthonormal basis \mathbf{U}

$$\mathbf{x} = \mathbf{U}\mathbf{z}, \quad \text{s.t.} \quad \|\mathbf{z}\|_0 = K$$

▶ Main idea: acquire set y of M linear combinations of signal \Longrightarrow reconstruct signal from these **measurements**

$$y_k = \langle \mathbf{w}_k, \mathbf{x} \rangle, \quad k = 1, \dots, M$$

$$\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z}, \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$$

- ▶ measurement = linear feature
- if $M \ll D$: measured signal y much shorter than x.

Compressive Sensing

$$\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z}, \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}$$

- ► Surprisingly given any orthonormal basis **U** we can obtain a stable reconstruction for any *K*-sparse, compressible signal!
- ► Sufficient conditions:
 - 1. $\mathbf{W} = \text{Gaussian random projection, i.e. } w_{ij} \sim \mathcal{N}(0, \frac{1}{D})$
 - 2. $M \ge cK \log \left(\frac{D}{K}\right)$, where c is some constant.

Compressive Sensing: Signal Reconstruction

Recovery of $\mathbf{x} \in \mathbb{R}^D$ from measured signal $\mathbf{y} \in \mathbb{R}^M$ = need to find sparse representation \mathbf{z} :

$$\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} = \Theta\mathbf{z}, \text{ with } \Theta \in \mathbb{R}^{M \times D}$$

- ightharpoonup given \mathbf{z} , easily reconstruct \mathbf{x} via $\mathbf{x} = \mathbf{U}\mathbf{z}$
- ▶ finding **z** ill-posed: more unknowns than equations $(M \ll D)$
- Optimization problem
 - find sparsest solution s.t. equality holds:

$$\mathbf{z}^* \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_0$$
, s.t. $\mathbf{y} = \Theta \mathbf{z}$

- ▶ apply same reconstruction techniques as before:
 - (1) Convex Optimization or (2) Matching Pursuit

Section 2

Dictionary Learning

Dictionary Learning

Can we work with better and more problem specific dictionaries?

Recap: Dictionary Encoding I

Fixed orthonormal basis:

$$\boxed{\mathbf{x}} = \boxed{\mathbf{U}} \cdot \boxed{\mathbf{z}}$$

- lacktriangle Advantage: efficient coding by matrix multiplication $\mathbf{z} = \mathbf{U}^{\top}\mathbf{x}$
- Disadvantage: only sparse for specific classes of signals
 - strong a priori assumptions

Recap: Dictionary Encoding II

Fixed overcomplete basis:

$$\begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{U} \\ D \times L \end{bmatrix} \cdot \begin{bmatrix} \mathbf{z} \end{bmatrix}$$

- Advantage: sparse coding for several signal classes
- Disadvantage: finding sparsest code ...
 - may require approximation algorithm (e.g. matching pursuit)
 - ightharpoonup problematic if dictionary size L and coherence $m\left(\mathbf{U}\right)$ are large.

Dictionary Encoding III

Learning the dictionary:

- Advantage: we adapt a dictionary to signal characteristics \implies same approximation error achievable with smaller L
- ► Challenge: we have to solve a matrix factorization problem

- subject to sparsity constraint on Z and
- ▶ subject to column/atom norm constraint on U.

Dictionary Adaptation

- ightharpoonup 8 imes 8 pixel image patches of face images
- ▶ 11k examples for training, i.e. $\mathbf{X} \in \mathbb{R}^{64 \times 11000}$
- ▶ Dictionary $\mathbf{U} \in \mathbb{R}^{64 \times 441}$ (ca. 7 times overcomplete):

Overcomplete DCT Overcomplete Haar Learned dictionary M. Aharon et al., IEEE Transactions on Signal Processing, 54, 4311-4322, 2006

Inpainting Comparison

Reconstruction:

- 1. One sparse coding step of observed pixels
- 2. Predict missing pixels from sparse code

Matrix Factorization

$$(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \arg\min_{\mathbf{U}, \mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2$$

- lacksquare Frobenius norm: $\|\mathbf{A}\|_F^2 = \sum_{i,j} a_{i,j}^2$
- ▶ objective *not* jointly convex in U and Z
- convex in either U or Z (with unique minimum)

Iterative greedy minimization

- 1. Coding step: $\mathbf{Z}^{t+1} \in \arg\min_{\mathbf{Z}} \|\mathbf{X} \mathbf{U}^t \mathbf{Z}\|_F^2$, subject to \mathbf{Z} being sparse (non-convex) and \mathbf{U} being fixed.
- 2. Dictionary update step: $\mathbf{U}^{t+1} \in \arg\min_{\mathbf{U}} \|\mathbf{X} \mathbf{U}\mathbf{Z}^{t+1}\|_F^2$, subject to $\|\mathbf{u}_l\|_2 = 1$ for all $l = 1, \ldots, L$ and \mathbf{Z} being fixed.

Coding Step

$$\mathbf{Z}^{t+1} \in \arg\min_{\mathbf{Z}} \left\| \mathbf{X} - \mathbf{U}^t \mathbf{Z} \right\|_F^2$$

- ▶ Column separable residual: $\|\mathbf{R}\|_F^2 = \sum_{i,j} r_{i,j}^2 = \sum_j \|\mathbf{r}_j\|_2^2$
- ▶ N independent sparse coding steps: for all n = 1, ..., N

$$\mathbf{z}_n^{t+1} \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_0$$

s.t.
$$\|\mathbf{x}_n - \mathbf{U}^t \mathbf{z}\|_2 \le \sigma \cdot \|\mathbf{x}_n\|_2$$

Dictionary Update I

$$\mathbf{U}^{t+1} \in \arg\min_{\mathbf{U}} \left\| \mathbf{X} - \mathbf{U}\mathbf{Z}^{t+1} \right\|_F^2$$

- ▶ Residual *not separable* in atoms (columns of U)
- ▶ Approximation: update one atom at a time $(\forall l)$
 - 1. Set $\mathbf{U} = [\mathbf{u}_1^t \cdots \mathbf{u}_l \cdots \mathbf{u}_L^t]$, i.e. fix all atoms except \mathbf{u}_l .
 - 2. Isolate \mathbf{R}_l^t , the residual that is due to atom \mathbf{u}_l .
 - 3. Find \mathbf{u}_l^* that minimizes \mathbf{R}_l^t , subject to $\|\mathbf{u}_l^*\|_2 = 1$.

Dictionary Update II

▶ Isolate \mathbf{R}_l^t : residual due to atom \mathbf{u}_l

$$\begin{aligned} & \left\| \mathbf{X} - \left[\mathbf{u}_{1}^{t} \cdots \mathbf{u}_{l} \cdots \mathbf{u}_{L}^{t} \right] \cdot \mathbf{Z}^{t+1} \right\|_{F}^{2} \\ &= & \left\| \mathbf{X} - \left(\sum_{e \neq l} \mathbf{u}_{e}^{t} \left(\mathbf{z}_{e}^{t+1} \right)^{\top} + \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right) \right\|_{F}^{2} \\ &= & \left\| \mathbf{R}_{l}^{t} - \mathbf{u}_{l} \left(\mathbf{z}_{l}^{t+1} \right)^{\top} \right\|_{F}^{2} \end{aligned}$$

 $ightharpoonup \mathbf{z}_l^{\top}$ is the *l*-th row of matrix \mathbf{Z} .

Dictionary Update III

How can we find \mathbf{u}_{l}^{*} ?

- $lackbox{f u}_l\left({f z}_l^{t+1}
 ight)^{ op}$ is an outer product, i.e. a matrix
- ► Approximating residual with rank 1 matrix

$$\left\|\mathbf{R}_{l}^{t}-\mathbf{u}_{l}\left(\mathbf{z}_{l}^{t+1}
ight)^{ op}
ight\|_{F}^{2}$$

ightharpoonup "Approximately" achieved by SVD of \mathbf{R}_l^t :

$$\mathbf{R}_l^t = \tilde{\mathbf{U}} \mathbf{\Sigma} \tilde{\mathbf{V}}^\top = \sum_i \sigma_i \tilde{\mathbf{u}}_i \tilde{\mathbf{v}}_i^\top$$

- $\mathbf{u}_l^* = \tilde{\mathbf{u}}_1$ is first left-singular vector.
- $\|\mathbf{u}_l^*\|_2 = 1$ naturally satisfied.
- ▶ also update l-th row of Z (see next slide)

Approximate K-SVD Dictionary Update

Dictionary update by a single power iteration (line 8-9)

- 1: Input: $\mathbf{X} = \mathbb{R}^{D \times N}$; $\mathbf{U} = \mathbb{R}^{D \times L}$; $\mathbf{Z} = \mathbb{R}^{L \times N}$
- 2: Output: Updated dictionary U
- 3: **for** $l \leftarrow 1$ to L **do**
- 4: $\mathbf{u}_{(:,l)} \leftarrow \mathbf{0}$,
- 5: $\mathcal{N} \leftarrow \{n | Z_{ln} \neq 0, 1 \leq n \leq N\}$ % active data points
- 6: $\mathbf{R} \leftarrow \mathbf{X}_{(:,\mathcal{N})} \mathbf{U}\mathbf{Z}_{(:,\mathcal{N})}$ % residual
- 7: $\mathbf{g} \leftarrow \mathbf{z}_{(l,\mathcal{N})}^{\top}$
- 8: $\mathbf{h} \leftarrow \mathbf{Rg}/\|\mathbf{Rg}\|$ % power iteration
- 9: $\mathbf{g} \leftarrow \mathbf{R}^{\top} \mathbf{h}$
- 10: $\mathbf{u}_{(:,l)} \leftarrow \mathbf{h} \%$ update
- 11: $\mathbf{z}_{(l,\mathcal{N})} \leftarrow \mathbf{g}^{\top}$
- 12: end for

Initialization

Sensitive to choice of \mathbf{U}^0 : the initial candidate solution is optimized locally and greedily until no progress possible.

- A) Random atoms: Sampling $\left\{\mathbf{u}_{l}^{0}\right\}$ on unit sphere
- 1. Sample with standard normal distribution: $\mathbf{u}_{l}^{0} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{D}\right)$.
- 2. Scale to unit length: $\mathbf{u}_{l}^{0} \leftarrow \mathbf{u}_{l}^{0} / \left\| \mathbf{u}_{l}^{0} \right\|_{2}$.
 - B) Samples from X:
- 1. $\mathbf{u}_{l}^{0} \leftarrow \mathbf{x}_{n}$, where $n \sim \mathcal{U}(1, N)$ is sampled uniformly.
- 2. Scale to unit length: $\mathbf{u}_l^0 \leftarrow \mathbf{u}_l^0 / \left\| \mathbf{u}_l^0 \right\|_2$.
 - C) Fixed overcomplete dictionary, e.g. use overcomplete DCT.

- $\blacktriangleright\ 8\times 8\ \text{non-overlapping patches}$
- ▶ 20 atoms: 19 initialized randomly, 1 constant atom
- $\sigma = 1/200$
- ▶ 40 iterations

Iteration: t = 1

Iteration: t = 3

Iteration: t=4

Iteration: t = 5

Iteration: t = 15

Coding

Approximation

Dictionary

Coding

Coding

Approximation

Dictionary

Model Based Speech Enhancement

- ► Setting: Observe additive mixture of speech and interferer signal
- ► Target: Infer clean speech based on the mixed signal
- Concept: Exploit speech pause to learn interferer dictionary in an adaptive way

Enhancement Pipeline

- ► Transform (FT) signal into feature space using short-time Fourier transform (STFT) and modified discrete cosine transform (MDCT)
- lacktriangle Train speech dictionary ${f U}^{(s)}$ and interferer dictionary ${f U}^{(i)}$
- lacktriangle Build composite dictionary: $\mathbf{U} = \left[\mathbf{U}^{(s)}\mathbf{U}^{(i)}\right]$

Learning Step

Dictionary learning is performed using the same K-SVD algorithm explained above.

$$\begin{split} (\mathbf{U}^{\star}, \mathbf{Z}^{\star}) &\in \arg\min_{\mathbf{U}\mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2 \\ \text{s.t.} \left\| \mathbf{u}_{(:,d)}^{\star} \right\|_2 &= 1, \quad \text{for all} \quad d = 1, \dots, L. \\ \|\mathbf{Z}^{\star}\|_0 &\leq K \end{split}$$

Learning of source models

- Structured speech: pre-train speech model on corpus
- ► Variable interferer: adapt interferer model in speech pauses

Enhancement Pipeline

- Sparse code mixture in composite dictionary by "least angle regression with coherence criterion" (LARC)
- Estimate speech: $\mathbf{\hat{x}} = \mathbf{U}^{(s)}\mathbf{z}^{(s)}$
- ightharpoonup Apply inverse transformation (IFT) to map $\hat{\mathbf{x}}$ back to time-domain

Enhancement Step

Sparse coding of mixture x = s + i in composite dictionary:

$$\begin{pmatrix} \mathbf{z}_{(s)}^{\star}, \mathbf{z}_{(i)}^{\star} \end{pmatrix} \quad \in \arg \min_{\mathbf{z}^{(s)}\mathbf{z}^{(i)}} \left\| \mathbf{X} - \left[\mathbf{U}^{(s)}\mathbf{U}^{(i)} \right] \cdot \begin{bmatrix} \mathbf{z}^{(s)} \\ \mathbf{z}^{(i)} \end{bmatrix} \right\|_{2}$$
s.t.
$$\left\| \mathbf{z}^{(s)} \right\|_{0} + \left\| \mathbf{z}^{(i)} \right\|_{0} \leq K$$

The enhanced signal is reconstructed using only "speech" coefficients and the "speech" dictionary:

$$\mathbf{\hat{x}} = \mathbf{U^{\star}}_{(s)}\mathbf{z}^{\star}_{(s)}$$

Baseline comparison

C. D. Sigg, T. Dikk, JMB, IEEE Transactions Audio, Speech, and Language Processing, 20(6), 1698-1712, 2012

- Objective measure: Frequency Weighted Segmental SNR
- ► Baselines:
 - ► *GA*: Geometric spectral subtraction
 - ▶ *VQ*: Codebook based enhancement

Set-Top Box Application

Enhance sports commentary audio stream:

