HW5 Verilog – Maze Solver

1. 問題描述

本次練習為設計找出述宮中起點與終點的最短路徑之硬體電路。迷宮為8x8大小,共提供兩組測資,可參考課堂上所學或網路之演算法設計,盡量壓低 cycle 數與 cycle time,除正確性外,最後評分也會以 Time*Area 做為依據。

2. 設計規格

圖一、系統方塊圖

信號名稱	輸出/入	位元寬度	說明
clk	input	1	時脈信號,本系統為同步於時脈正緣設計
reset	input	1	高位準非同步(active high asynchronous)系統重置訊號
start_i	input	1	偵測到 action_o 為 2'b00 時被拉為 high,等候 action_o
			訊號為 2'b01 後,開始傳輸 row_i 迷宮資料
row_i	input	16	傳輸迷宮與起終點座標,原始資料儲存於 maze#.dat
action_o	output	2	action_o = 2'b00 表示電路為閒置狀態
			action_o = 2'b01 表示電路正在接受輸入 row_i, 將連續
			傳輸 9 個 cycle,包括 8 組迷宮資料、1 組起終點座標
			action_o = 2'b10 電路正在計算最短路徑
			action_o = 2'b11 表示電路輸出結果, testbench 會依序
			比對是否與 golden_path#相同
coord_o	output	6	依序輸出所得到之最短路徑座標,[5:3]為 x,[2:0]為 y,
			輸出完 testbench 即會結束模擬

表一、輸入/輸出訊號

3. 系統功能描述

系統一開始會將 reset 訊號拉成 high 進行電路的重置,當 reset 結束,如果偵測電路的 action_o 訊號為 2'b00,便會將控制訊號 start_i 拉成 high,等候 action_o 訊號為 2'b01,開始送入測試資料,共需要 9 個 cycle 才能將所有迷宮資料傳輸完畢,包括 8 組迷宮資料、1 組起終點座標,迷宮與資料對應方式可見圖二,9 個 cycle 不一定要連續、但資料只會被傳輸一次,必須在電路中儲存所有迷宮的資料。

當資料輸入完後,action_o 拉為 2'b10, testbench 不會有任何作用,電路將在這段時間中計算最短路徑,當完成計算後,將 action_o 訊號拉為 2'b11,透過 coord_o 開始送出資料,testbench 將同步比對結果,包含起終點座標與途中經過的路徑座標,如下圖所示,比對完就會結束模擬。

圖二、迷宮與資料對應方式

(7,7)

4. 時序規格圖

A. 迷宮資料輸入時序圖

(0,7)

圖三、action_o 訊號拉為 2'b00, start_i 訊號拉為 High, 預告 action_o 訊號拉為 2'b01 時, row_i 會傳輸迷宮資料起終點座標。

B. 最短路徑輸出時序圖

圖四、action o 訊號拉為 2'b11, coord o 開始送出資料, testbench 將同步比對結果。

5 檔案說明

檔名	說明	
maze_tb1.v	測試樣本檔 1	
maze_tb2.v	測試樣本檔 2	
maze.v	設計檔,請勿更改輸入輸出宣告,同學請於此檔案內做設計	
maze1.dat	maga 解体用处测容 1	
golden_path1.dat	maze 所使用的測資 1	
maze2.dat	maze 所使用的測資 2	
golden_path2.dat	INIAZE 所使用的测真 Z	
Layout 資料夾	APR 所需之檔案	

其餘 Synthesis 與 APR 未提供的檔案表示沿用作業 2&3。

6. 模擬指令

7. 作業要求

- 1. 設計的 maze 能分別通過 RTL、Synthesis、APR 三種模擬。
- 2. 繳交檔案如下:b0*901*** HW5.zip

分類	檔案名稱	描述
RTL	maze.v	RTL Verilog Code
Synthesis	maze_syn.v	Synthesis Verilog Code
Synthesis	maze_syn.sdf	SDF file
Synthesis	maze_syn.ddc	DDC file
Synthesis	maze_timing.txt	Timing Report
Synthesis	maze_area.txt	Area Report
Synthesis	maze_power.txt	Power Report
APR	maze_APR.v	Netlist Verilog Code
APR	maze_APR.sdf	SDF file
APR	maze_APR.gds	GDS file
Report	b0*901***_report.pdf	內容包括
		(1) RTL
		演算法設計解說、2個 RTL-Level 模擬結果的截圖
		(2) Synthesis
		Clock cycle · Cell Area · Total Time · Area*Time
		、2個 Synthesis -Level 模擬結果的截圖
		(3) APR
		Clock cycle、Total Time、使用 Innovus 完成
		NanoRoute 截圖、2個 Post-APR simulation 通過截圖

8. 繳交期限

12/2 (一)中午 12:00 僅上傳 RTL、Synthesis 相關檔案(不用 Report)至 Ceiba 12/30 (一)中午 12:00 以前上傳所有上述檔案至 Ceiba

同學如果有任何問題,請透過 email 詢問助教或約定時間。如果要寄 email 給助教,記得在信件前加 [專題研究] 避免漏信。

助教 林奕憲 <u>d06943006@ntu.edu.tw</u> 助教 葉陽明 <u>d05943006@ntu.edu.tw</u>