

Advanced Natural Language Processing & Large Language Models

Felix Neubürger

2025

Fachhochschule Südwestfalen, Ingenieurs- & Wirtschaftswissenschaften

Inhalte der Vorlesung

- Wie funktioniert Natural Language Processing
- Sprachdarstellung zum Rechnen
- Attentionmechanismus
- Transformerarchitektur
- von BERT zu DeepSeek-v3
- Wie es weitergehen kann
- Nutzungsmöglichkeiten: RAG, Agentensysteme
- Al Safety und Ethik

F. Neubürger | 2025

Ziele der Vorlesung - Welche Fragen sollen beantwortet werden?

- Was sind die Grundlagen von Natural Language Processing (NLP)?
- Wie funktionieren Attention-Mechanismen und warum sind sie wichtig?
- Was ist die Transformer-Architektur und wie unterscheidet sie sich von anderen Ansätzen?
- Wie werden Sprachmodelle wie BERT und GPT trainiert und genutzt?
- Welche Herausforderungen und ethischen Fragen gibt es bei der Nutzung von LLMs?
- Welche praktischen Anwendungen und Zukunftsperspektiven gibt es für LLMs?

DESPITE OUR GREAT RESEARCH RESULTS, SOME HAVE QUESTIONED OUR AI-BASED METHODOLOGY. BUT UE TRAINED A CLASSIFIER ON A COLLECTION OF GOOD AND BAD METHODOLOGY SECTIONS. AND IT SAYS OURS IS FINE.

[https://xkcd.com/2451/]

F. Neubürger | 2025

Format der Vorlesung - Wie sollen diese Fragen beantwortet werden?

- Theroretischer Teil mit Folien
- Praktischer Teil in Gruppen an einem Projekt
- Gruppengröße 2 oder 3 Personen
- Einzelarbeit möglich wenn eigenes Thema vorhanden
- Abgabe der Ausarbeitung einen Tag vor der Veranstaltung in der Blockwoche
- Vorstellung der Projektergebnisse in der Blockwoche
- Gewichtung der Bewertung Projektausarbeitung (50%) und Vortrag (50%)

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

[https://xkcd.com/1425/]

F. Neubürger | 2025

Wie funktioniert Natural Language Processing

- Definition und Ziele des NLP
- Herausforderungen bei der maschinellen Sprachverarbeitung
- Anwendungen von NLP in der Praxis

Definition und Ziele des NLP

- NLP steht für Natural Language Processing, die Verarbeitung natürlicher Sprache durch Computer.
- Ziel: Maschinen ermöglichen, menschliche Sprache zu verstehen, zu interpretieren und zu generieren.
- Anwendungen: Übersetzungen, Chatbots, Textanalyse, Sprachassistenten.

Herausforderungen bei der maschinellen Sprachverarbeitung

- Ambiguität: Mehrdeutigkeit in der Sprache.
- Kontextabhängigkeit: Bedeutung hängt vom Kontext ab.
- Umgang mit Synonymen und Homonymen.
- Verarbeitung großer Datenmengen und Rechenaufwand.

Anwendungen von NLP in der Praxis

- Sentiment-Analyse: Erkennung von Meinungen in Texten.
- Maschinelle Übersetzung: Automatische Übersetzung zwischen Sprachen.
- Sprachgesteuerte Assistenten: Siri, Alexa, Google Assistant.
- Textzusammenfassung: Automatische Erstellung von Textzusammenfassungen.

Text Preprocessing Pipeline

Data Cleaning

■ Definition: Entfernen oder Korrigieren von fehlerhaften, unvollständigen oder irrelevanten Daten.

Schritte:

- Entfernen von Sonderzeichen, HTML-Tags und Emojis.
- Korrektur von Rechtschreibfehlern.
- Vereinheitlichung von Groß- und Kleinschreibung.
- Ziel: Verbesserung der Datenqualität für nachfolgende Verarbeitungsschritte.

Tokenization

■ **Definition:** Zerlegung von Text in kleinere Einheiten (Tokens), z. B. Wörter oder Satzzeichen.

Arten:

- Wortbasierte Tokenization: "Das ist ein Satz." → ["Das", "ist", "ein", "Satz", ""]
- Zeichenbasierte Tokenization: "Hallo" → ["H", "a", "l", "l", "o"]
- Subwortbasierte Tokenization: "unbelievable" → ["un", "believ", "able"]
- Herausforderungen: Umgang mit zusammengesetzten Wörtern, Abkürzungen und Sonderzeichen.

Normalization

■ **Definition:** Vereinheitlichung von Textdaten, um Konsistenz zu gewährleisten.

Schritte:

- Umwandlung in Kleinbuchstaben: "Haus" → "haus".
- Entfernen von Akzenten: "café" → "cafe".
- Stemming: Reduktion auf Wortstamm, z. B. "running" → "run".
- Lemmatization: Rückführung auf Grundform, z. B. "better" → "good".
- Ziel: Reduktion der Variabilität in den Daten.

Stopword Removal

■ Definition: Entfernen von häufig vorkommenden Wörtern, die wenig Bedeutung tragen (z. B. "der", "und", "ist").

Vorgehen:

- Verwendung einer vordefinierten Stopword-Liste (z. B. "der", "die", "und", "ist", "ein", "zu").
- Anpassung der Liste an den spezifischen Anwendungsfall.

■ Vorteile:

- Reduktion der Datenmenge.
- Verbesserung der Modellleistung durch Fokus auf relevante Wörter.
- Herausforderung: Manche Stopwords können je nach Kontext wichtig sein.

Sprachdarstellung zum Rechnen

- Wortvektoren und Einbettungen (Embeddings)
- One-Hot-Encoding vs. verteilte Repräsentationen
- Word2Vec, GloVe und andere Einbettungsmethoden

Wortvektoren und Einbettungen (Embeddings)

- Ziel: Repräsentation von Wörtern in einem kontinuierlichen Vektorraum.
- Mathematische Definition:
 - Gegeben eine Menge von Wörtern $W = \{w_1, w_2, ..., w_n\}$.
 - Eine Einbettung ist eine Funktion $f: W \to \mathbb{R}^d$, wobei d die Dimension des Vektorraums ist.
 - Beispiel: $f(w_i) = v_i \in \mathbb{R}^d$.
- Vorteile:
 - Semantische Ähnlichkeit wird durch Nähe im Vektorraum dargestellt.
 - Reduktion der Dimensionalität im Vergleich zu One-Hot-Encoding.

One-Hot-Encoding vs. Verteilte Repräsentationen

One-Hot-Encoding:

- Jedes Wort wird als Vektor mit einer einzigen Eins und sonst Nullen dargestellt.
- Beispiel: Für $W = \{w_1, w_2, w_3\}$, w_2 wird als [0, 1, 0] kodiert.
- Nachteile: Hohe Dimensionalität, keine semantische Information.

■ Verteilte Repräsentationen:

- Nutzen kontinuierliche Vektorräume, um semantische Beziehungen darzustellen¹..
- Ermöglichen die Nutzung von Modellen wie Word2Vec und GloVe ².
- Wörter werden als dichte Vektoren in einem "niedrig" dimensionalen Raum dargestellt.
- Semantisch ähnliche Wörter haben ähnliche Vektoren.
- Beispiel: $f(w_1) = [0.2, 0.8], f(w_2) = [0.3, 0.7].$

¹Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.

²Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Word2Vec, GloVe und andere Einbettungsmethoden

Word2Vec:

- Skip-Gram-Modell: Vorhersage des Kontexts basierend auf einem Zielwort³.
- CBOW-Modell: Vorhersage des Zielworts basierend auf dem Kontext⁴.

■ GloVe (Global Vectors for Word Representation):

- Nutzt globale Wort-Kooccurenz-Matrizen⁵.
- Optimiert eine Zielfunktion, die Wortpaare und ihre Häufigkeiten berücksichtigt⁶.

Andere Methoden:

- FastText: Berücksichtigt Subwortinformationen.
- BERT-Embeddings: Kontextabhängige Einbettungen.

³Das Skip-Gram-Modell versucht, für ein gegebenes Zielwort die umgebenden Kontextwörter vorherzusagen.

⁴Das Continuous Bag of Words (CBOW)-Modell sagt ein Zielwort basierend auf den umgebenden Kontextwörtern vorher. Es ist effizienter als das Skip-Gram-Modell, aber weniger präzise bei seltenen Wörtern.

⁵GloVe basiert auf der Idee, dass die globale Häufigkeit von Wortpaaren in einem Korpus genutzt werden kann, um semantische Beziehungen zwischen Wörtern zu modellieren.

⁶Die Zielfunktion von GloVe minimiert den Unterschied zwischen der inneren Produktdarstellung von Wortvektoren und der logarithmierten Häufigkeit von Wortpaaren.

Neuartige Embeddings (Teil 1)

Kontextabhängige Embeddings:

- Modelle wie BERT⁷, GPT⁸ und T5⁹ generieren Embeddings, die den Kontext eines Wortes berücksichtigen.
- Beispiel: Das Wort "Bank" hat unterschiedliche Embeddings in den Sätzen "Ich sitze auf der Bank" und "Ich gehe zur Bank".

Sentence Embeddings:

- Repräsentieren ganze Sätze statt einzelner Wörter.
- Modelle wie Sentence-BERT (SBERT)¹⁰ ermöglichen semantische Suche und Textähnlichkeitsbewertung.

⁷Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://arxiv.org/abs/1810.04805

Brown, T. et al. (2020), Language Models are Few-Shot Learners. https://arxiv.org/abs/2005.14165

⁹Raffel, C. et al. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. https://arxiv.org/abs/1910.10683

¹⁰ Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. https://arxiv.org/abs/1908.10084

Neuartige Embeddings (Teil 2)

■ Multimodale Embeddings:

- Kombinieren Informationen aus verschiedenen Modalitäten wie Text, Bild und Audio.
- Beispiel: CLIP (Contrastive Language-Image Pretraining)¹¹ von OpenAl.

■ Graphbasierte Embeddings:

- Repräsentieren Wörter als Knoten in einem Graphen, wobei Kanten Beziehungen zwischen Wörtern darstellen.
- Beispiel: Node2Vec¹² und GraphSAGE¹³.

Adapter-basierte Embeddings:

- Ermöglichen die Anpassung vortrainierter Modelle an spezifische Aufgaben durch leichte Modifikationen.
- Reduzieren den Speicherbedarf im Vergleich zu vollständigem Fine-Tuning¹⁴.

¹¹Radford, A. et al. (2021). Learning Transferable Visual Models From Natural Language Supervision. https://arxiv.org/abs/2103.00020

¹²Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. https://arxiv.org/abs/1607.00653

¹³Hamilton, W. et al. (2017). Inductive Representation Learning on Large Graphs. https://arxiv.org/abs/1706.02216

¹⁴Houlsby, N. et al. (2019). Parameter-Efficient Transfer Learning for NLP. https://arxiv.org/abs/1902.00751

Text Preprocessing Pipeline

Attention-Mechanismus

- Motivation für Attention in Sequenzmodellen
- Funktionsweise des Attention-Mechanismus
- Unterschied zwischen Self-Attention und Cross-Attention

Motivation für Attention in Sequenzmodellen

- Problem: In langen Sequenzen verlieren Modelle wie RNNs und LSTMs den Überblick über frühere Informationen.
- Lösung: Der Attention-Mechanismus ermöglicht es, gezielt auf relevante Teile der Eingabesequenz zu fokussieren.
- Beispiel: Bei der Übersetzung eines Satzes kann Attention bestimmen, welches Wort im Quelltext für ein bestimmtes Wort im Zieltext wichtig ist.

Funktionsweise des Attention-Mechanismus: Query, Key und Value

- **Eingabe:** Eine Sequenz von Eingabevektoren $X = \{x_1, x_2, ..., x_n\}$, wobei $x_i \in \mathbb{R}^d$.
- Transformation: Jeder Eingabevektor wird durch trainierbare Gewichtungsmatrizen in Query (Q), Key (K) und Value (V) umgewandelt.
- Berechnung:

$$\begin{split} Q &= XW_Q, \quad W_Q \in \mathbb{R}^{d \times d_k} \\ K &= XW_K, \quad W_K \in \mathbb{R}^{d \times d_k} \\ V &= XW_V, \quad W_V \in \mathbb{R}^{d \times d_V} \end{split}$$

Hierbei sind W_O , W_K und W_V trainierbare Gewichtungsmatrizen, und d_b , d_v sind die Dimensionen der Keys und Values.

Zweck:

- **Q**: Repräsentiert die Anfrage, welche Informationen benötigt werden.
- K: Repräsentiert die Merkmale, die zur Beantwortung der Anfrage verwendet werden.
- *V*: Repräsentiert die tatsächlichen Informationen, die weitergegeben werden.

Zusammenhang zwischen Query, Key und Value

Berechnung der Scores:

$$Score(Q, K) = \frac{QK}{\sqrt{d_k}}$$

Die Scores bestimmen, wie stark ein Query (Q) mit jedem Key (K) übereinstimmt.

■ Normalisierung der Scores:

$$\alpha_{ij} = \operatorname{softmax}\left(\frac{q_i k_j}{\sqrt{d_k}}\right)$$

Die Softmax-Funktion wandelt die Scores in Wahrscheinlichkeiten um.

Gewichtete Summe der Values:

$$z_i = \sum_{j=1}^n \alpha_{ij} v_j$$

Die gewichtete Summe der Values (V) ergibt die Ausgabe des Attention-Mechanismus.

■ Interpretation: Der Attention-Mechanismus ermöglicht es, relevante Informationen aus der Eingabesequenz basierend auf den Queries zu extrahieren.

Funktionsweise des Attention-Mechanismus

Self-Attention vs. Cross-Attention

Self-Attention:

- Jeder Token in der Sequenz bezieht sich auf alle anderen Tokens in derselben Sequenz.
- Beispiel: Kontextualisierung eines Wortes in einem Satz.

Attention(Q, K, V) = softmax
$$\left(\frac{QK}{\sqrt{d_k}}\right)V$$
, $Q = K = V$

Cross-Attention:

- Tokens in einer Sequenz beziehen sich auf Tokens in einer anderen Sequenz.
- Beispiel: Übersetzung, bei der der Zieltext auf den Quelltext achtet.

Attention(Q, K, V) = softmax
$$\left(\frac{QK}{\sqrt{d_k}}\right)V$$
, $Q \neq K = V$

Self-Attention vs. Cross-Attention

Visualisierung der Attention-Matrix

- \blacksquare Die Attention-Matrix zeigt die Gewichte α_{ii} , die die Relevanz von Token j für Token i darstellen.
- Beispiel: Bei der Übersetzung eines Satzes zeigt die Matrix, welche Wörter im Quelltext für ein bestimmtes Wort im Zieltext wichtig sind.

Abbildung: Beispiel einer Attention-Matrix. Kim, Yanghoon & Hwanhee, Lee & Shin, Joongbo & Jung, Kyomin. (2018). Improving Neural Question Generation using Answer Separation. 10.48550/arXiv:1809.02393.

Transformer-Architektur

- Überblick über die Transformer-Architektur
- Encoder-Decoder-Struktur
- Vorteile gegenüber rekurrenten Netzwerken

F. Neubürger | 2025 Transformer-Architektur 29

Überblick über die Transformer-Architektur

- Vorgestellt in "Attention Is All You Need" (Vaswani et al., 2017)¹⁵.
- Besteht aus zwei Hauptkomponenten:
 - Encoder: Verarbeitet die Eingabesequenz.
 - **Decoder:** Generiert die Ausgabesequenz.
- Verwendet Attention-Mechanismen und vollständig vernetzte Schichten.
- Vorteil: Parallelisierbarkeit im Vergleich zu RNNs.

¹⁵https://doi.org/10.48550/arXiv.1706.03762

Transformer-Architektur: Überblick

Encoder:

- Besteht aus mehreren Schichten.
- Jede Schicht enthält:
 - Multi-Head Self-Attention.
 - Feed-Forward-Netzwerk.

Decoder:

- Ähnlich wie der Encoder, aber mit zusätzlicher Maskierung.
- Enthält Cross-Attention, um Informationen vom Encoder zu nutzen.

■ Vorteile:

- Parallelisierbarkeit.
- Effektive Modellierung von Abhängigkeiten.

Encoder-Block: Multi-Head Attention

Multi-Head Attention:

- Berechnet die Attention über verschiedene Teile der Eingabesequenz.
- Formel:

Attention(Q, K, V) = softmax
$$\left(\frac{QK}{\sqrt{d_k}}\right)V$$

wobei:

- $\mathbf{Q} = XW_0$: Queries
- $K = XW_{\kappa}$: Keys
- $V = XW_v$: Values
- \blacksquare W_O , W_K , W_V : Gewichtungsmatrizen
- Multi-Head Mechanismus:

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W_Q$$

wobei head_i = Attention(
$$QW_{Q_i}$$
, KW_{K_i} , VW_{V_i}).

Encoder-Block: Feed-Forward-Netzwerk

■ Feed-Forward-Netzwerk:

Architektur:

$$FFN(x) = ReLU(xW_1 + b_1)W_2 + b_2$$

wohei:

- W_1, W_2 : Gewichtungsmatrizen
- b_1, b_2 : Bias-Vektoren
- ReLU: Aktivierungsfunktion
- Zweck: Transformation der Eingabe in einen h\u00f6herdimensionalen Raum, um komplexere Muster zu lernen.

Encoder-Block: Add & Norm

Add & Norm:

Residual Connection:

Output = LayerNorm
$$(x + SubLayer(x))$$

wobei SubLayer(x) entweder Multi-Head Attention oder das Feed-Forward-Netzwerk ist.

■ Layer Normalization:

LayerNorm(x) =
$$\frac{x - \mu}{\sigma} \cdot \gamma + \beta$$

wohei:

- μ: Mittelwert der Eingabe
- lacksquare σ : Standardabweichung der Eingabe
- **y, β**: Trainierbare Parameter
- Zweck: Stabilisierung des Trainings und Verbesserung der Konvergenz.

Decoder-Block: Multi-Head Attention

Masked Multi-Head Self-Attention:

- Verhindert, dass ein Token auf zukünftige Tokens zugreift.
- Maskierung der Attention-Matrix:

Attention(Q, K, V) = softmax
$$\left(\frac{QK}{\sqrt{d_k}} + M\right)V$$

wobei M eine Maske ist, die zukünftige Positionen ausschließt.

Cross-Attention:

- Verbindet den Decoder mit dem Encoder.
- Nutzt die Encoder-Ausgaben als Keys und Values.

■ Residual Connection und Layer Normalization:

■ Wie im Encoder-Block, um Stabilität und Konvergenz zu verbessern.

Abbildung: Decoder-Block^a

Decoder-Block: Feed-Forward-Netzwerk

■ Feed-Forward-Netzwerk:

Architektur:

$$FFN(x) = ReLU(xW_1 + b_1)W_2 + b_2$$

wobei:

- W_1 , W_2 : Gewichtungsmatrizen
- b_1, b_2 : Bias-Vektoren
- ReLU: Aktivierungsfunktion
- Zweck: Transformation der Eingabe in einen h\u00f6herdimensionalen Raum, um komplexere Muster zu lernen.

Residual Connection und Layer Normalization:

■ Wie im Encoder-Block, um Stabilität und Konvergenz zu verbessern.

Abbildung: Decoder-Block^a

Decoder-Block: Add & Norm

Add & Norm:

Residual Connection:

Output = LayerNorm
$$(x + SubLayer(x))$$

wobei SubLayer(x) entweder Masked Multi-Head Self-Attention, Cross-Attention oder das Feed-Forward-Netzwerk ist.

■ Layer Normalization:

LayerNorm(x) =
$$\frac{x - \mu}{\sigma} \cdot \gamma + \beta$$

wohei:

- μ: Mittelwert der Eingabe
- **σ**: Standardabweichung der Eingabe
- **y, β**: Trainierbare Parameter
- Zweck: Stabilisierung des Trainings und Verbesserung der Konvergenz.

Abbildung: Decoder-Block^a

Vorteile der Transformer-Architektur

- Parallelisierbarkeit: Ermöglicht schnellere Trainingszeiten im Vergleich zu RNNs.
- Langfristige Abhängigkeiten: Kann Beziehungen zwischen weit entfernten Tokens modellieren.
- Flexibilität: Kann für verschiedene Aufgaben wie Übersetzung, Textklassifikation und mehr verwendet werden.
- **Skalierbarkeit:** Grundlage für große Sprachmodelle wie BERT und GPT.

Output-Möglichkeiten der Transformer-Architektur (Teil 1)

Sequenz-zu-Sequenz (Seq2Seq):

- Beispiel: Maschinelle Übersetzung (z. B. Englisch → Deutsch).
- Eingabe: Eine Sequenz von Tokens.
- Ausgabe: Eine Seguenz von Tokens in einer anderen Sprache.
- Erreichung: Verwendung eines Encoder-Decoder-Transformers, wobei der Encoder die Eingabesequenz verarbeitet und der Decoder die Ausgabesequenz generiert.

Sequenz-zu-Einzelwert (Seq2Single):

- Beispiel: Textklassifikation (z. B. Sentiment-Analyse).
- Eingabe: Eine Sequenz von Tokens.
- Ausgabe: Eine einzelne Klasse oder ein Wert.
- Erreichung: Hinzufügen einer Klassifikationsschicht (z. B. Softmax) am Ende des Encoders, um die Klasse vorherzusagen.

Output-Möglichkeiten der Transformer-Architektur (Teil 2)

- Sequenz-zu-Token (Seq2Token):
 - Beispiel: Fragebeantwortung (z. B. Auswahl eines Tokens als Antwort).
 - Eingabe: Eine Sequenz von Tokens.
 - Ausgabe: Ein spezifisches Token aus der Eingabe.
 - Erreichung: Nutzung eines Modells wie BERT, das Start- und Endpositionen in der Eingabesequenz vorhersagt.
- Sequenz-zu-Vektor (Seq2Vec):
 - Beispiel: Satz- oder Dokumenteinbettung.
 - Eingabe: Eine Sequenz von Tokens.
 - Ausgabe: Ein Vektor, der die gesamte Sequenz repräsentiert.
 - Erreichung: Extraktion des CLS-Tokens (bei BERT) oder Mittelung der Token-Embeddings, um die Sequenz zu repräsentieren.

Von BERT zu DeepSeek-v3

- Einführung in BERT und seine Architektur^a
- Weiterentwicklungen: GPT^b, RoBERTa^c, T5^d
- LLaMA^e, mistral^f, gemini^g, Claude^h
- Überblick über DeepSeek-v3 und seine Besonderheiten

```
ahttps://arxiv.org/abs/1810.04805
bhttps://arxiv.org/abs/2005.14165
chttps://arxiv.org/abs/1907.11692
dhttps://arxiv.org/abs/1910.10683
ehttps://arxiv.org/abs/2302.13971
fhttps://mistral.ai/
ghttps://www.deepmind.com/
```


Abbildung: DeepSeek Janus Pro 7B-Interpretation von BERT und DeepSeek-v3 als KI-Modell.

BERT-Architektur: Überblick

- BERT (Bidirectional Encoder Representations from Transformers):
 - Entwickelt von Google AI (2018)¹⁶.
 - Nutzt die Transformer-Encoder-Architektur.
 - Bidirektionales Training: Betrachtet den Kontext von Wörtern sowohl links als auch rechts.

Ziele:

- Verbesserung der Sprachrepräsentation.
- Einsatz für verschiedene NLP-Aufgaben wie Fragebeantwortung, Sentiment-Analyse und mehr.

¹⁶https://arxiv.org/abs/1810.04805

BERT-Architektur: Aufbau

- Eingabe:
 - Tokenized Text: [CLS], Token 1, Token 2, ..., [SEP].
 - Token-, Segment- und Positions-Embeddings.
- Encoder:
 - Mehrere Transformer-Encoder-Schichten.
- Ausgabe:
 - Kontextualisierte Token-Embeddings.
 - CLS-Token für Klassifikationsaufgaben.

Abbildung: BERT-Architektur.

F. Neubürger | 2025 BERT-Architektur 4

BERT: Pretraining-Aufgaben

- Masked Language Modeling (MLM):
 - Zufälliges Maskieren von Tokens in der Eingabe.
 - Ziel: Vorhersage der maskierten Tokens basierend auf dem Kontext.
 - Beispiel: "Ich [MASK] ein Buch." → "Ich lese ein Buch."
- Next Sentence Prediction (NSP):
 - Ziel: Vorhersage, ob zwei Sätze aufeinander folgen.
 - Beispiel:
 - Satz A: "Ich gehe einkaufen."
 - Satz B: "Danach koche ich Abendessen." → True

BERT: Fine-Tuning

■ Vorgehen:

- Pretrained BERT-Modell wird an spezifische Aufgaben angepasst.
- Hinzufügen einer zusätzlichen Schicht (z. B. Klassifikationslayer).

■ Beispiele für Aufgaben:

- Textklassifikation (z. B. Sentiment-Analyse).
- Fragebeantwortung (z. B. SQuAD).
- Named Entity Recognition (NER).

GPT-Architektur: Überblick

■ GPT (Generative Pre-trained Transformer):

- Entwickelt von OpenAI (2018)¹⁷.
- Nutzt die Transformer-Decoder-Architektur.
- Unidirektionales Training: Betrachtet nur den Kontext links vom aktuellen Token.

Ziele:

- Generierung von kohärentem und zusammenhängendem Text.
- Einsatz für Aufgaben wie Textgenerierung, Übersetzung und mehr.

¹⁷https://arxiv.org/abs/2005.14165

GPT-Architektur: Aufbau

■ Eingabe:

- Tokenized Text: [BOS], Token 1, Token 2, ..., [EOS].
- Token- und Positions-Embeddings.

Decoder:

- Mehrere Transformer-Decoder-Schichten.
- Masked Multi-Head Self-Attention, um zukünftige Tokens auszuschließen.

Ausgabe:

 Wahrscheinlichkeitsverteilung über das Vokabular für das nächste Token

aktur

Überblick über die GPT-Architektur

- GPT (Generative Pretrained Transformer) basiert vollständig auf der Transformer-Decoder-Architektur.
- Die Architektur besteht aus einem Stapel identischer Transformer-Blöcke.
- Jeder Block enthält Self-Attention, Feedforward-Netze, Residual-Verbindungen und Layer Normalization.

Input Embedding und Positionskodierung

- Der Input besteht aus Token-IDs, die in Vektor-Repräsentationen (Embeddings) umgewandelt werden.
- Positionsinformationen werden über Positional Encoding hinzugefügt, da das Modell keine Reihenfolge kennt.
- Die Summe aus Input Embedding und Positional Encoding geht in den ersten Transformer-Block.

Self-Attention Mechanismus

- Jeder Token schaut auf andere Tokens in seinem Kontext (bisherige Tokens).
- GPT nutzt Masked Multi-Head Self-Attention, um die Vorhersage zukünftiger Tokens zu verhindern.
- Besteht aus:
 - Lineare Transformationen zu Query, Key, Value
 - Maskierung der Zukunft
 - Softmax über Attention Scores
 - Gewichtete Summation der Werte

Feedforward-Netzwerk und Residual-Verbindungen

- Nach der Attention folgt ein Feedforward-Netz mit zwei linearen Schichten und einer Aktivierungsfunktion (GELU).
- GELU (Gaussian Error Linear Unit): Aktivierungsfunktion, definiert als:

$$GELU(x) = x \cdot \Phi(x)$$

wobei Φ(x) die kumulative Verteilungsfunktion der Standardnormalverteilung ist:

$$\Phi(x) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right)$$

- Vorteil: Glattere Approximation im Vergleich zu ReLU, wodurch das Training stabiler wird.
- Residual-Verbindungen sorgen f
 ür stabileres Training.
- LayerNorm wird nach jeder Addition durchgeführt.
- **Dropout** wird zur Regularisierung verwendet.

Mehrere Transformer-Layer

- Die Blöcke werden L-mal gestapelt (z. B. 12 für GPT-2 small, 96 für GPT-3).
- Jeder Layer hat dieselbe Architektur.
- Die Ausgabe des letzten Blocks wird verwendet, um Token-Vorhersagen durch ein lineares Projektionslayer + Softmax zu erzeugen.

Zusammenfassung

- GPT besteht aus reinen Decoder-Blöcken des Transformers.
- Nutzt Masked Self-Attention zur autoregressiven Textgenerierung.
- Durch Pretraining auf sehr großen Textmengen kann GPT Sprachverständnis und -generierung erlernen.

Pretraining: Autoregressives Training

■ GPT wird durch **Autoregressive Language Modeling** trainiert:

$$P(x_1, x_2, ..., x_n) = \prod_{t=1}^{n} P(x_t \mid x_{< t})$$

- Ziel: Nächstes Token vorhersagen basierend auf bisherigen Tokens.
- Loss-Funktion: Kreuzentropie-Loss zwischen vorhergesagtem und wahrem nächsten Token.
- Kontext wird vollständig nach links maskiert.

Trainingsdaten und Vorgehen

- GPT wird auf großen Korpora wie Common Crawl, Wikipedia, Bücher, Webseiten etc. trainiert.
- Tokenisierung erfolgt meist mit Byte-Pair Encoding (BPE).
- Typische Trainingsparameter (für GPT-2):
 - Kontextlänge: 1024 Tokens
 - Batchgröße: mehrere Millionen Tokens
 - Optimierung mit AdamW + Learning Rate Schedules
- Kein spezieller Pretraining-Task wie bei BERT (z.B. Masked LM oder NSP).

Fine-Tuning von GPT

- Nach dem Pretraining kann GPT für spezifische Aufgaben feinjustiert werden:
 - Textklassifikation
 - Fragebeantwortung
 - Dialogsysteme
 - Textgenerierung (z. B. ChatGPT)
- Fine-Tuning erfolgt meist mit task-spezifischen Daten.
- Architektur bleibt gleich es werden oft nur letzte Layer angepasst.

GPT vs. BERT - Fundamentale Unterschiede

GPT (Decoder-basiert)

- Autoregressives Training (Zukunft maskiert)
- Nur Self-Attention nach links
- Einsatz: Textgenerierung, Dialogsysteme
- Output wird schrittweise erzeugt

BERT (Encoder-basiert)

- Masked Language Modeling (MLM)
- Bidirektionale Attention
- Einsatz: Klassifikation, Entitätenerkennung
- Kein autoregressiver Output

GPT erzeugt Sprache – BERT versteht sie.

Was ist Fine-Tuning?

- **Definition:** Anpassung eines vortrainierten Modells an eine spezifische Aufgabe oder Domäne.
- Ziel: Verbesserung der Leistung auf spezifischen Aufgaben durch zusätzliche Trainingsdaten.
- Vorgehen:
 - Start mit einem vortrainierten Modell (z. B. BERT, GPT).
 - Hinzufügen einer spezifischen Schicht (z. B. Klassifikationslayer).
 - Training auf einem domänenspezifischen Datensatz.

Vorteile des Fine-Tunings

- Effizienz: Reduziert den Bedarf an großen Trainingsressourcen, da das Modell bereits vortrainiert ist.
- Anpassungsfähigkeit: Ermöglicht die Anpassung an spezifische Aufgaben oder Domänen.
- **Verbesserte Leistung:** Höhere Genauigkeit und Relevanz für spezifische Anwendungen.
- Wiederverwendbarkeit: Vortrainierte Modelle können für verschiedene Aufgaben wiederverwendet werden.

Nachteile des Fine-Tunings

- Overfitting: Risiko, dass das Modell zu stark an den spezifischen Datensatz angepasst wird.
- Datenbedarf: Erfordert qualitativ hochwertige und ausreichend große Datensätze.
- **Rechenaufwand:** Kann trotz Vortraining immer noch ressourcenintensiv sein.
- Komplexität: Erfordert Fachwissen für die richtige Konfiguration und Optimierung.

Fine-Tuning-Techniken für LLMs

- Parameter-Efficient Fine-Tuning (PEFT):
 - Ziel: Reduktion der Anzahl der zu trainierenden Parameter.
 - Vorteile: Geringerer Speicherbedarf und schnellere Trainingszeiten.
- Low-Rank Adaptation (LoRA):
 - Ziel: Effiziente Anpassung vortrainierter Modelle durch Low-Rank-Matrizen.
 - Vorteile: Speicher- und Rechenaufwand werden drastisch reduziert.

Parameter-Efficient Fine-Tuning (PEFT)

Grundidee:

- Statt das gesamte Modell zu aktualisieren, werden nur wenige Parameter angepasst.
- Nutzung von Adapter-Schichten, Prompt-Tuning oder LoRA.

■ Mathematische Grundlage:

- **Gegeben** ein vortrainiertes Modell mit Parametern θ .
- PEFT optimiert nur einen kleinen Teil $\Delta\theta$, sodass:

$$\theta' = \theta + \Delta\theta$$

■ Ziel: Minimierung des Verlusts L über $\Delta\theta$:

$$\min_{\Delta\theta} L(f(x; \theta + \Delta\theta), y)$$

■ Vorteile:

- Reduktion des Speicherbedarfs.
- Wiederverwendbarkeit des vortrainierten Modells.

Low-Rank Adaptation (LoRA): Grundidee

Motivation:

- Große Sprachmodelle haben Milliarden von Parametern.
- LoRA reduziert die Anzahl der zu trainierenden Parameter durch Low-Rank-Matrizen.

Ansatz:

■ Zerlegung der Gewichtsmatrix **W** in zwei Low-Rank-Matrizen **A** und **B**:

$$W' = W + \Delta W$$
, $\Delta W = AB$

- $A \in \mathbb{R}^{d \times r}$, $B \in \mathbb{R}^{d \times r}$, wobei $r \ll d$.
- Vorteile:
 - Reduktion der Speicher- und Rechenkosten.
 - Effizientes Fine-Tuning ohne Änderung der Hauptgewichte W.

Low-Rank Adaptation (LoRA): Mathematische Details

■ Modellanpassung:

■ Gegeben eine Gewichtsmatrix W, wird die Anpassung ∆W durch:

$$\Delta W = AB$$

berechnet, wobei A und B trainierbar sind.

Optimierung:

■ Ziel: Minimierung des Verlusts *L* über *A* und *B*:

$$\min_{A,B} L(f(x; W + AB), y)$$

- Effizienz:
 - Speicherbedarf: $O(r \cdot (d + d))$, wobei $r \ll d$.
 - Rechenaufwand: Geringer als vollständiges Fine-Tuning.

Vergleich: PEFT, LoRA und Full Fine-Tuning

Eigenschaft	PEFT	LoRA	Full Fine-Tuning
Speicherbedarf	Gering	Sehr gering	Hoch
Rechenaufwand	Mittel	Niedrig	Sehr hoch
Flexibilität	Hoch	Mittel	Sehr hoch
Anwendungsfälle	Allgemein	Speziell für LLMs	Universell

Tabelle: Vergleich von PEFT, LoRA und Full Fine-Tuning.

Fine-Tuning Frameworks

Hugging Face Transformers:

- Umfangreiche Bibliothek für vortrainierte Modelle.
- Unterstützt einfache Anpassung und Fine-Tuning.
- https://github.com/huggingface/transformers

OpenAl Fine-Tuning API:

- Ermöglicht das Fine-Tuning von GPT-Modellen.
- Einfache Integration in bestehende Anwendungen.
- https://platform.openai.com/docs/guides/fine-tuning

■ PyTorch Lightning:

- Framework für vereinfachtes Training und Fine-Tuning.
- Unterstützt verteiltes Training und Mixed Precision.
- https://www.pytorchlightning.ai/

LoRA (Low-Rank Adaptation):

- Effizientes Fine-Tuning durch Reduktion der Parameteranzahl.
- Besonders geeignet für ressourcenbeschränkte Umgebungen.
- https://github.com/microsoft/LoRA

GPT-2: Verbesserungen gegenüber GPT

- Größere Modelle: GPT-2 wurde in verschiedenen Größen veröffentlicht (117M, 345M, 762M, 1.5B Parameter).
- Training auf größeren Datenmengen: GPT-2 wurde auf einem breiteren und vielfältigeren Korpus trainiert.
- **Verbesserte Textgenerierung:** GPT-2 erzeugt kohärentere und längere Texte.
- **Anwendungen:** Textzusammenfassung, Übersetzung, Dialogsysteme.

GPT-3: Skalierung und Few-Shot Learning

- Skalierung: GPT-3 hat 175 Milliarden Parameter, was es zu einem der größten Modelle macht.
- Few-Shot Learning: Kann Aufgaben mit wenigen Beispielen im Prompt lösen.
- **Anwendungen:** Codegenerierung, kreative Textgenerierung, komplexe Dialoge.
- Herausforderungen: Hoher Rechenaufwand, Bias in den generierten Texten.

GPT-4: Multimodalität und Verbesserungen

- Multimodalität: GPT-4 kann sowohl Text als auch Bilder als Eingabe verarbeiten.
- **Verbesserte Genauigkeit:** Bessere Leistung bei komplexen Aufgaben und längeren Kontexten.
- **Anwendungen:** Bildbeschreibung, multimodale Dialogsysteme.
- Herausforderungen: Noch höhere Anforderungen an Rechenressourcen.

GPT-4: Multimodale Verarbeitung

■ Multimodalität: GPT-4 kann sowohl Text als auch Bilder als Eingabe verarbeiten.

Architektur:

- Erweiterung der Transformer-Architektur, um visuelle und textuelle Daten zu integrieren.
- Gemeinsamer latent space für Text- und Bildrepräsentationen.

Anwendungen:

- Bildbeschreibung: Generierung von Texten basierend auf Bildern.
- Visuelle Fragebeantwortung: Beantwortung von Fragen zu einem Bild.
- Multimodale Dialogsysteme: Kombination von Text- und Bildinformationen in Konversationen.

GPT-4: Verarbeitung von Bildern und Text

■ Bildverarbeitung:

- Bilder werden durch ein visuelles Encoder-Modul (z. B. CNN oder Vision Transformer) in Features umgewandelt.
- Die Features werden in den Transformer integriert.

■ Textverarbeitung:

- Text wird wie in GPT-3 tokenisiert und in Embeddings umgewandelt.
- Gemeinsame Verarbeitung mit Bild-Features im Transformer.

Abbildung: Multimodale Verarbeitung in Language models¹⁸

F. Neubürger | 2025 Weitere LLM-Architekturen

¹⁸https://lh3.googleusercontent.com/UGw_gUAQ0ja_28B-s-o0othiI2rmsIO2WJ_ 48s0xapPIfYJwK-pof8TgOqwnQwI0h4t6-RUw6saGjjWUDpqC224WwIPnnpiBfqa5fLiKbsURczSwDGw=w616

GPT-4: Herausforderungen und Vorteile

■ Herausforderungen:

- Integration von Bild- und Textdaten in einem Modell.
- Hoher Rechenaufwand für Training und Inferenz.
- Bedarf an großen multimodalen Datensätzen.

Vorteile:

- Verbesserte Kontextverständnis durch Kombination von Text und Bild.
- Breitere Anwendungsbereiche, z.B. in der Medizin, Bildung und Unterhaltung.
- Fortschritt in multimodalen KI-Systemen.

LLaMA: Open-Weight Modelle

- LLaMA (Large Language Model Meta AI): Entwickelt von Meta AI, mit Fokus auf Effizienz und Zugänglichkeit.
- Open-Weight Modelle: Verfügbar für die Forschungsgemeinschaft.
- Größen: Modelle mit 7B, 13B, 30B und 70B Parametern.
- **Anwendungen:** Forschung, Entwicklung von spezialisierten LLMs.

Einführung in Reasoning-Modelle

- Reasoning-Modelle zielen darauf ab, logisches Denken und Schlussfolgerungen zu ermöglichen.
- Fokus auf komplexe Aufgaben wie mathematische Beweise, logische Schlussfolgerungen und Multi-Hop-Fragen.
- Beispiele: DeepSeek-r1, GPT4o, DeepMind Gemini, Anthropic Claude.

DeepSeek-r1: Überblick

- DeepSeek-r1: Ein neuartiges Reasoning-Modell, das auf Transformer-Architekturen basiert.
- Ziele:
 - Integration von logischem Denken in Sprachmodelle.
 - Dieses Reasoning imitiert menschliches Denken über Generierung von Tokens
 - Verarbeitung von Multi-Hop-Reasoning-Aufgaben.
 - Unterstützung von domänenspezifischen Schlussfolgerungen.
- Besonderheiten:
 - Hybrid-Architektur mit dedizierten Reasoning-Modulen.
 - Nutzung von Memory-Augmented Mechanismen.

DeepSeek-r1: Architektur

- Core-Komponenten:
 - **Reasoning-Module:** Spezialisierte Submodule für logische Schlussfolgerungen.
 - Memory-Augmented Attention: Ermöglicht Zugriff auf externe Wissensquellen.
 - Multi-Hop-Mechanismus: Iterative Verarbeitung von Informationen.
- Pipeline:
 - 1. Eingabe wird tokenisiert und in Embeddings umgewandelt.
 - 2. Reasoning-Module führen "logische" Operationen durch.
 - 3. Ergebnisse werden iterativ verfeinert.
 - 4. Ausgabe erfolgt als Schlussfolgerung oder Antwort.

Überblick DeepSeek-R1

- Ziel: Maximale Ausnutzung von Test-Time Computation zur Förderung von Ketten- bzw. Chain-of-Thought (CoT) Reasoning.
- DeepSeek-R1 erreicht ähnliche Leistungen wie GPT-o1, jedoch mit deutlich geringeren Trainingskosten.
- Einsatz von Reinforcement Learning (RL) als dominanter Post-Training-Ansatz, um komplexe Reasoning-Aufgaben (Mathematik, Code, wissenschaftliches Denken) zu meistern.

Architektur von DeepSeek-R1

- Basierend auf einem DeepSeek-V3-Base Checkpoint.
- Nutzt Mixture-of-Expert (MoE)-Strukturen, Multi-Head Latent Attention (MLA) und Multi-Token Prediction (MTP).
- Zwei Varianten:
 - DeepSeek-R1-Zero: Post-Training ausschließlich mit RL.
 - DeepSeek-R1: Mehrstufiger Post-Training-Prozess, der zusätzlich Supervised Fine-Tuning (SFT) integriert.

F. Neubürger | 2025 Neuartige Reasoning-Modelle 76

Proximal Policy Optimization (PPO) - Teil 1

- **Definition:** PPO ist ein Reinforcement-Learning-Algorithmus, der die Policy-Gradient-Methode verbessert.
- **Ziel:** Maximierung der kumulierten Belohnung durch Optimierung der Policy π_{θ} .
- Kernidee: Begrenzung der Policy-Änderungen, um Stabilität und Effizienz zu gewährleisten.
- Details: https://arxiv.org/pdf/2402.03300

PPO-Zielfunktion:

$$L^{\text{CLIP}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

Proximal Policy Optimization (PPO) - Teil 2

- $\mathbf{r}_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{0}|d}(a_t|s_t)}$: Verhältnis der neuen zur alten Policy.
- \hat{A}_t : Vorteil (Advantage) zur Zeit t.
- **ε**: Hyperparameter zur Begrenzung der Policy-Änderung.

Vorteile von PPO:

- Stabilität durch Clipping der Policy-Änderungen.
- Einfache Implementierung und gute Leistung in verschiedenen RL-Aufgaben.

GRPO - Group Relative Policy Optimization (Teil 1)

- DeepSeek-R1 setzt auf eine modifizierte Version von PPO namens Group Relative Policy Optimization (GRPO).
- Ziel: Steigerung der mathematischen Reasoning-Fähigkeiten bei reduziertem Speicherverbrauch.

GRPO Objective:

Die GRPO-Ziel-Funktion basiert auf der PPO-Formulierung:

$$L^{\text{CLIP}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \, \hat{A}_t, \, \operatorname{clip} \left(r_t(\theta), 1 - \epsilon, 1 + \epsilon \right) \, \hat{A}_t \right) \right]$$

wobei:

- $\mathbf{r}_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}$ ist der Wahrscheinlichkeitsquotient.
- \hat{A}_t bezeichnet den Vorteil (Advantage) zur Zeit t.
- ullet ist ein Hyperparameter zur Begrenzung der Änderung.

GRPO - Group Relative Policy Optimization (Teil 2)

Gruppenbezogene Anpassungen:

GRPO erweitert die PPO-Zielfunktion, indem es gruppenspezifische Gewichtungen einführt:

$$L^{\text{GRPO}}(\theta) = \mathbb{E}_{t,g} \left[\min \left(r_{t,g}(\theta) \, \hat{A}_{t,g}, \, \text{clip} \left(r_{t,g}(\theta), 1 - \epsilon, 1 + \epsilon \right) \, \hat{A}_{t,g} \right) \right]$$

wobei:

- g die Gruppe repräsentiert, zu der die Aufgabe gehört.
- $\mathbf{r}_{t,g}(\theta) = \frac{\pi_{\theta}(a_t|s_t,g)}{\pi_{\theta_{old}}(a_t|s_t,g)}$ ist der gruppenspezifische Wahrscheinlichkeitsquotient.
- $\hat{A}_{t,a}$ ist der gruppenspezifische Vorteil (Advantage).

Diese Erweiterung ermöglicht es, die Policy-Optimierung an die spezifischen Anforderungen und Eigenschaften verschiedener Gruppen anzupassen, wodurch die Leistung in heterogenen Aufgabenbereichen verbessert wird.

GRPO - Group Relative Policy Optimization (Teil 3)

- Visualisierung: Die folgende Abbildung illustriert die Funktionsweise von GRPO.
- Schlüsselkonzepte:
 - Gruppenspezifische Gewichtungen.
 - Begrenzung der Policy-Änderungen.
 - Iterative Optimierung für verschiedene Gruppen.

Abbildung: Illustration der GRPO-Mechanik.

Reward-Modellierung

- Regelbasierte Rewards:
 - Accuracy Reward: Bewertet, ob die Antwort korrekt ist.
 - Format Reward: Erzwingt, dass der Denkprozess in <think> und </think> Tags eingeschlossen wird.
- Kein neutral trainierter Reward Model, da solche Modelle anfällig für Reward Hacking sind.

Kombinierter Reward:

$$R_{\text{total}} = \alpha R_{\text{accuracy}} + \beta R_{\text{format}}$$

lacksquare lpha und eta sind Gewichtungsfaktoren, die den Einfluss der jeweiligen Komponenten steuern.

F. Neubürger | 2025 Mathematische Grundlagen

Mehrstufiger Trainingsprozess von DeepSeek-R1

1. Phase 1: Cold-Start SFT

 Erste Supervised Fine-Tuning (SFT) Phase, bei der Labels durch wenige Beispiele von R1-Zero generiert und von Menschen verfeinert werden.

2. Phase 2: Reinforcement Learning

- Anwendung von GRPO zur Optimierung der Reasoning-Fähigkeiten.
- Mathematische Zielsetzung zur Maximierung der Test-Time Computation: Der durchschnittliche Antwortlänge-Wert steigt, was eine tiefergehende Ketten-Denke (Chain-of-Thought) anzeigt.

3. Phase 3: Weitere SFT

 Integration von Daten aus weiteren Domänen zur Verbesserung von Schreibstil, Rollenspiel und allgemeinen Aufgaben.

4. Phase 4: Sekundäres RL

RL für alle Szenarien zur Steigerung der Hilfsbereitschaft und Harmlosigkeit.

F. Neubürger | 2025 Mathematische Grundlagen

Chain-of-Thought und Test-Time Computation

- DeepSeek-R1 nutzt Chain-of-Thought (CoT)-Reasoning:
 - Zuerst wird ein ausführlicher Denkprozess (innerhalb von <think> ... </think> Tags) generiert.
 - Anschließend wird die finale Antwort produziert.
- Mathematische Modellierung dieser Phase kann als iterative Optimierung über Teilschritte betrachtet werden, z.B.:

$$\mathbf{c}_{t+1} = f(\mathbf{c}_t, \Delta_t(\mathbf{x}))$$

wobei \mathbf{c}_t den aktuellen CoT-Zustand und $\Delta_t(\mathbf{x})$ den Beitrag des nächsten Tokens bzw. der nächsten Denkschritt repräsentiert.

■ Durch längeres Denken bei steigender Testzeit skaliert die Modellleistung im Sinne der "Test-time Scaling Law".

Zusammenfassung

- DeepSeek-R1 demonstriert, wie Reinforcement Learning (GRPO) und regelbasierte Reward-Strategien genutzt werden können, um komplexe reasoning-Aufgaben zu bewältigen.
- Der mehrstufige Trainingsprozess (SFT → RL → SFT → RL) verbessert sowohl die Genauigkeit als auch die Sprachkohärenz.
- Die mathematische Grundlage der GRPO-Ziel-Funktion und der Reward-Modellierung zeigen, wie Optimierungsziele systematisch in den Trainingsprozess integriert werden.

DeepSeek-R1 zeigt: Mit reduzierten Trainingskosten und innovativen Trainingsansätzen sind moderne Reasoning-Modelle möglich.

F. Neubürger | 2025 Mathematische Grundlagen 87

Zusammenfassung: DeepSeek-r1 und LLM-Architekturen

■ DeepSeek-r1:

- Hervorragende Reasoning-Fähigkeiten und Multi-Hop-Reasoning.
- Zugriff auf externen Speicher für komplexe Schlussfolgerungen.
- Anwendungen: Logik, Beweise, domänenspezifische Aufgaben.

Vergleich von LLMs:

- GPT-2: Verbesserte Textgenerierung, Anwendungen wie Textzusammenfassung.
- GPT-3: 175B Parameter, Few-Shot Learning, z. B. Codegenerierung.
- GPT-4: Multimodalität (Text und Bild), Anwendungen wie Bildbeschreibung.
- LLaMA: Open-Weight Modelle (7B-70B Parameter), Fokus auf Forschung.
- DeepSeek-v3: Fortschrittliche Reasoning- und Domänenanpassungsfähigkeiten, Anwendungen in Wissenschaft und Technik.

Und was machen wir jetzt mit diesen Systemen?

- Praktische Anwendungen und Integration in bestehende Systeme
- Herausforderungen bei der Implementierung und Skalierung
- Gesellschaftliche und ethische Implikationen

Nutzungsmöglichkeiten: RAG, Agentensysteme

- Retrieval-Augmented Generation (RAG) und seine Anwendungen
- Entwicklung und Einsatz von Agentensystemen im NLP
- Kombination von LLMs mit externem Wissen

Was ist Retrieval-Augmented Generation (RAG)?

- **Definition:** Kombination von Retrieval-Systemen und generativen Modellen.
- **Ziel:** Verbesserung der Antwortqualität durch Zugriff auf externe Wissensquellen.
- Funktionsweise:
 - Abruf relevanter Dokumente aus einer Wissensdatenbank.
 - Nutzung der abgerufenen Informationen zur Generierung von Antworten.
- **Anwendungen:** Fragebeantwortung, Chatbots, Dokumentensuche.

RAG: Architektur

- Retriever:
 - Abruf relevanter Dokumente aus einer Wissensdatenbank.
 - Nutzung von Suchalgorithmen und Vektorraumsmodellen.

RAG: Vorteile

- **Verbesserte Genauigkeit:** Zugriff auf externe Wissensquellen reduziert Halluzinationen.
- Flexibilität: Kann mit verschiedenen Retrieval- und Generationsmodellen kombiniert werden.
- Aktualität: Ermöglicht die Nutzung aktueller Informationen aus einer Wissensdatenbank.
- **Erweiterbarkeit:** Einfaches Hinzufügen neuer Wissensquellen.

RAG: Herausforderungen

- Effizienz: Abruf und Generierung können rechenintensiv sein.
- Qualität der Dokumente: Die Genauigkeit hängt von der Qualität der abgerufenen Dokumente ab.
- Integration: Nahtlose Kombination von Retriever und Generator ist komplex.
- Bias: Bias in der Wissensdatenbank können die Antworten beeinflussen.

RAG: Anwendungen

- Fragebeantwortung: Beantwortung komplexer Fragen durch Abruf relevanter Informationen.
- Chatbots: Verbesserung der Konversationsqualität durch Zugriff auf externe Daten.
- Dokumentensuche: Generierung von Zusammenfassungen basierend auf abgerufenen Dokumenten.
- Wissenschaftliche Recherche: Unterstützung bei der Suche nach relevanter Literatur.

Was ist Document Embedding in RAG Pipelines?

- **Definition:** Repräsentation eines gesamten Dokuments als Vektor in einem kontinuierlichen Vektorraum, speziell für Retrieval-Augmented Generation (RAG).
- Ziel: Ermöglichen eines effizienten Abrufs relevanter Dokumente aus einer Vektordatenbank.
- Anwendungen in RAG:
 - Verbesserung der Antwortqualität durch Zugriff auf relevante Dokumente.
 - Unterstützung von Fragebeantwortung und Dokumentensuche.
 - Integration von externem Wissen in generative Modelle.

Strategien für Document Embedding in RAG Pipelines

■ Transformer-basierte Modelle:

- Nutzung von Modellen wie Sentence-BERT, OpenAI Embeddings oder ähnliche.
- CLS-Token oder Mittelung der Token-Embeddings für die Dokumentrepräsentation.
- Vorteile: Kontextabhängige und semantisch reichhaltige Repräsentationen.

Vektordatenbanken:

- Speicherung der Dokumentvektoren in spezialisierten Datenbanken wie Pinecone, Weaviate oder Milvus.
- Ermöglichen schnellen Abruf durch Ähnlichkeitssuche (z. B. k-NN, cosine similarity).

■ Hybrid-Ansätze:

- Kombination von klassischen Retrieval-Methoden (z. B. BM25) mit Vektorbasierter Suche.
- Verbesserung der Präzision durch Kombination von Semantik und Schlüsselwortsuche.

Einbettung in Vektordatenbanken für RAG Pipelines

■ Pipeline:

- 1. Dokumente werden vorverarbeitet und in Vektoren eingebettet.
- 2. Die Vektoren werden in einer Vektordatenbank gespeichert.
- 3. Bei einer Anfrage wird der Eingabetext ebenfalls eingebettet.
- 4. Ähnlichkeitssuche in der Vektordatenbank liefert relevante Dokumente.
- 5. Die abgerufenen Dokumente werden als Kontext für die Generierung verwendet.

Vorteile:

- Effiziente Suche in großen Wissensbasen.
- Kontextualisierte Antworten durch semantische Relevanz.
- Skalierbarkeit für umfangreiche Datenmengen.

Hybride Suche: BM25 und Vektorähnlichkeiten (Teil 1)

- **Definition:** Kombination von klassischen Suchmethoden (BM25) und vektorbasierter Ähnlichkeitssuche.
- BM25:
 - Klassischer Algorithmus für die Schlüsselwortsuche.
 - Bewertet die Relevanz eines Dokuments basierend auf Termfrequenz (TF) und inverser Dokumentfrequenz (IDF).
 - Formel:

BM25(q, d) =
$$\sum_{t \in q} IDF(t) \cdot \frac{f(t, d) \cdot (k_1 + 1)}{f(t, d) + k_1 \cdot (1 - b + b \cdot \frac{|d|}{avgd!})}$$

wobei f(t,d) die Häufigkeit des Terms t im Dokument d ist.

- Vektorähnlichkeiten:
 - Repräsentiert Dokumente und Anfragen als Vektoren in einem kontinuierlichen Raum.
 - Nutzt Metriken wie Kosinus-Ähnlichkeit oder euklidische Distanz zur Bewertung der Relevanz.

Hybride Suche: BM25 und Vektorähnlichkeiten (Teil 2)

■ Kombination:

- BM25 liefert eine gewichtete Bewertung basierend auf Schlüsselwörtern.
- Vektorähnlichkeiten ergänzen die Suche durch semantische Relevanz.
- Hybride Bewertung:

$$Score_{hybrid} = \alpha \cdot BM25(q, d) + \beta \cdot Similarity(q, d)$$

wobei α und β Gewichtungsfaktoren sind.

Vorteile:

- Präzision durch BM25 für Schlüsselwortsuche.
- Semantische Tiefe durch Vektorähnlichkeiten.
- Flexibilität für verschiedene Anwendungsfälle.

Anwendungen:

- Dokumentensuche in großen Datenbanken.
- Fragebeantwortungssysteme mit externem Wissen.
- Kombination von strukturierten und unstrukturierten Daten.

Vergleich der Strategien für RAG Pipelines

Methode	Vorteile	Nachteile
BM25	Schnell, etabliert	Keine Semantik
Transformer-Modelle	Kontext- und Semantikreich	Hoher Rechenaufwand
Vektordatenbanken	Effiziente Ähnlichkeitssuche	Speicherbedarf
Hybrid-Ansätze	Kombination von Präzision und Semantik	Komplexität

Tabelle: Vergleich verschiedener Strategien für RAG Pipelines.

Was sind komplexe Agentensysteme?

Definition: Systeme, die autonome Agenten nutzen, um komplexe Aufgaben durch Interaktion mit Tools und Umgebungen zu lösen.

Merkmale:

- Autonomie: Agenten agieren teilweise unabhängig in einem vorgegebenen Rahmen.
- Tool-Nutzung: Zugriff auf externe APIs, Datenbanken oder Software.
- Multi-Agent-Koordination: Zusammenarbeit mehrerer Agenten.
- **Anwendungen:** Wissenschaftliche Forschung, Automatisierung, Problemlösung.

Architektur eines komplexen Agentensystems

■ Hauptkomponenten:

- **Agenten:** Autonome Einheiten mit spezifischen Fähigkeiten.
- Tool-Interface: Ermöglicht den Zugriff auf externe Tools wie APIs, Datenbanken oder Rechenressourcen.
- **Kommunikationsmodul:** Ermöglicht den Austausch zwischen Agenten.
- Planungs- und Entscheidungsmodul: Koordiniert die Aktionen der Agenten.

Workflow:

- 1. Eingabe einer Aufgabe durch den Benutzer.
- 2. Agenten analysieren die Aufgabe und planen die Lösung.
- 3. Tools werden genutzt, um Teilaufgaben zu lösen.
- 4. Ergebnisse werden aggregiert und präsentiert.

Beispiel: Multi-Agentensystem für wissenschaftliche Forschung

- **Ziel:** Automatisierte Literaturrecherche und Datenanalyse.
- Agentenrollen:
 - **Suchagent:** Durchsucht Datenbanken nach relevanten Artikeln.
 - Beispiele für Datenbanken: PubMed, ArXiv, Semantic Scholar, SpringerLink, IEEE Xplore.
 - Analyseagent: Führt Analysen zu den gefundenen Dokuemnten durch.
 - Berichtsagent: Generiert Zusammenfassungen und Berichte.
- Tool-Nutzung:
 - Zugriff auf APIs wie PubMed oder ArXiv.
 - weitere LLM Abrufe
 - Nutzung von Python-Bibliotheken wie Pandas oder Matplotlib.
- Vorteile: Effizienzsteigerung, Reduktion manueller Arbeit.

Herausforderungen bei komplexen Agentensystemen

- Koordination: Synchronisation zwischen mehreren Agenten.
- Tool-Integration: Kompatibilität mit verschiedenen APIs und Software.
- Fehlerbehandlung: Umgang mit Ausfällen oder unvorhergesehenen Ereignissen.
- **Skalierbarkeit:** Effizienz bei wachsender Anzahl von Agenten oder Aufgaben.
- Sicherheit: Schutz vor Missbrauch oder fehlerhaften Aktionen.

Zukunftsperspektiven für Agentensysteme

- Verbesserte Autonomie: Einsatz von LLMs für flexiblere Entscheidungsfindung.
- Erweiterte Tool-Nutzung: Integration von spezialisierten Tools wie KI-gestützten Analyseplattformen.
- Multi-Agent-Kollaboration: Entwicklung von Protokollen für effizientere Zusammenarbeit. (json ist gut)
- Domänenspezifische Systeme: Anpassung an spezifische Branchen wie Medizin, Recht oder Ingenieurwesen.

Zukunftsvisionen für LLMs

- Verbesserte Multimodalität: Integration von Text, Bild, Audio und Video in einem Modell.
- Domänenspezifische Modelle: Entwicklung spezialisierter LLMs für Medizin, Recht, Bildung und andere Bereiche.
- Interaktive KI-Systeme: Kombination von LLMs mit Robotik und IoT für physische Interaktionen.
- Selbstlernende Systeme: Modelle, die sich kontinuierlich durch Interaktion mit der Umgebung verbessern.
- KI-gestützte Kreativität: Unterstützung bei Kunst, Musik, Literatur und Design.

Gesellschaftliche Implikationen

- Arbeitsmarkt: Automatisierung von Aufgaben und mögliche Auswirkungen auf Beschäftigung.
- **Bildung:** Einsatz von LLMs als personalisierte Lernassistenten.
- **Privatsphäre:** Umgang mit sensiblen Daten und Schutz vor Missbrauch.
- Regulierung: Notwendigkeit von Gesetzen und Richtlinien für den verantwortungsvollen Einsatz von KI.
- **Ethik:** Sicherstellung, dass KI-Systeme menschliche Werte respektieren und fördern.

Diskussionspunkte für die Zukunft

- Wie können wir sicherstellen, dass LLMs inklusiv und fair sind?
- Welche Rolle sollten LLMs in der Entscheidungsfindung spielen?
- Wie können wir die Transparenz und Nachvollziehbarkeit von LLMs verbessern?
- Welche Maßnahmen sind notwendig, um Missbrauch zu verhindern?
- Wie können wir die Zusammenarbeit zwischen Mensch und KI optimieren?

KI und Ethik: Herausforderungen und Verantwortung

- Verantwortung: Sicherstellung, dass KI-Systeme im Einklang mit ethischen Prinzipien entwickelt und eingesetzt werden.
- Herausforderungen:
 - Bias und Diskriminierung in Trainingsdaten und Modellen.
 - Transparenz und Nachvollziehbarkeit von Entscheidungen.
 - Schutz der Privatsphäre und sensible Daten.
 - Verantwortung bei Fehlentscheidungen oder Missbrauch.
- Gesellschaftliche Auswirkungen:
 - Einfluss auf Arbeitsplätze und soziale Ungleichheit.
 - Förderung von Inklusion und Diversität.
 - Sicherstellung des Zugangs zu KI-Technologien für alle.

Ethische Prinzipien für KI

- Fairness: Vermeidung von Diskriminierung und Bias.
- Transparenz: Nachvollziehbarkeit von Entscheidungen und Prozessen.
- Privatsphäre: Schutz persönlicher Daten und Minimierung von Überwachung.
- Sicherheit: Verhinderung von Missbrauch und Sicherstellung der Robustheit.
- Verantwortlichkeit: Klare Zuständigkeiten für die Entwicklung und den Einsatz von Kl.

Maßnahmen zur Förderung ethischer KI

- Regulierung: Einführung von Gesetzen und Richtlinien für den verantwortungsvollen Einsatz von KI.
- Audits: Regelmäßige Überprüfung von Modellen auf Bias und Fairness.
- Bildung: Förderung des Bewusstseins für ethische Fragen bei Entwicklern und Nutzern.
- Interdisziplinäre Zusammenarbeit: Einbindung von Experten aus Ethik, Recht und Sozialwissenschaften.
- **Open Source:** Transparenz durch Veröffentlichung von Modellen und Trainingsdaten.

Diskussionspunkte zu KI und Ethik

- Wie können wir sicherstellen, dass KI-Systeme fair und inklusiv sind?
- Welche Verantwortung tragen Entwickler und Unternehmen für die Auswirkungen von KI?
- Wie können wir den Missbrauch von KI-Technologien verhindern?
- Welche Rolle sollte die Regulierung bei der Entwicklung und dem Einsatz von KI spielen?
- Wie können wir ethische Prinzipien in den Entwicklungsprozess integrieren?

Zusammenfassung der LLM-Veranstaltung

- Einführung in NLP und LLMs: Grundlagen, Herausforderungen und Anwendungen.
- Sprachdarstellung: Von One-Hot-Encoding zu modernen Embeddings wie Word2Vec, GloVe und BERT.
- Transformer-Architektur: Self-Attention, Encoder-Decoder-Struktur und Vorteile gegenüber RNNs.
- Fortgeschrittene Modelle: BERT, GPT, DeepSeek-v3 und ihre spezifischen Stärken.
- **Praktische Anwendungen:** RAG, Agentensysteme und multimodale Verarbeitung.
- **Zukunftsperspektiven:** Multimodalität, domänenspezifische Modelle und ethische Herausforderungen.
- **Diskussion:** Gesellschaftliche Implikationen und verantwortungsvoller Einsatz von LLMs.

LLM Standardwerke

- Build LLMs from Scratch (Raschka)
 - https://github.com/rasbt/LLMs-from-scratch
 - Praktische Implementierung in PyTorch
- Transformers for NLP (Rothman)
 - ISBN 978-1803247335
 - BERT/GPT Anwendungen
- Deep Learning for NLP (Goldberg)
 - ISBN 978-3319987305
 - Grundlagen und Anwendungen
- Natural Language Processing with Transformers (Tunstall et al.)
 - ISBN 978-1098136789
 - Praxisorientierte Einführung

LLM Forschungsarbeiten

- Attention Is All You Need (Vaswani et al., 2017)
 - https://arxiv.org/abs/1706.03762
 - Transformer-Architektur
- BERT Paper (Devlin et al., 2019)
 - https://arxiv.org/abs/1810.04805
 - Bidirektionale Pretraining
- GPT-3 Paper (Brown et al., 2020)
 - https://arxiv.org/abs/2005.14165
 - Few-Shot Learning
- Glove: Global Vectors for Word Representation (Pennington et al., 2014)
 - https://aclanthology.org/D14-1162/
 - Wortvektor-Repräsentationen
- Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks (Reimers & Gurevych, 2019)
 - https://arxiv.org/abs/1908.10084
 - Satz-Embeddings
- LLaMA: Open and Efficient Foundation Language Models (Touvron et al., 2023)
 - https://arxiv.org/abs/2302.13971
 - Open-Weight Modelle

LLM Praktische Ressourcen

- Hugging Face Transformers
 - https://github.com/huggingface/transformers
 - Bibliothek für LLMs
- LangChain
 - https://python.langchain.com/
 - LLM Orchestrierung
- LLaMA & LlamaIndex
 - https://github.com/facebookresearch/llama
 - Open-Weight Modelle
- OpenAl API
 - https://platform.openai.com/
 - Zugriff auf GPT-Modelle
- Pinecone
 - https://www.pinecone.io/
 - Vektordatenbanken für RAG
- Weaviate
 - https://weaviate.io/
 - Semantische Suche und Vektorspeicherung