基礎コンピュータ工学 第5章 機械語プログラミング (パート8:シフト命令)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

基礎コンピュータ工学第5章 機械語プログラミ

シフト(桁ずらし)命令

- データの2進数を左右に桁移動する命令のこと.
- TeC は4種類(実質は3種類)の命令を持っている。
- 左シフト(論理・算術) レジスタ

右シフト (論理)

右シフト (算術)

基礎コンピュータ工学第5章 機械語プログラミ

SHLA (Shift Left Arithmetic) 命令

左算術 (算術= Arithmetic) シフト命令. レジスタの値を左に**1ビット**ずらす。(シフトする)

C フラグ 上の図のように変化する.

S フラグ 結果が負なら 1, それ以外は 0 になる.

Z フラグ 結果がゼロなら 1, それ以外は 0 になる.

フローチャート: Java のシフト演算子を流用する.

基礎コンピュータ工学第5章 機械語プログラミ

ニーモニック: SHLA GR

命令フォーマット: 1バイトの長さを持つ.

第1バイト		
OP	GR XR	
1001_2	$GR \ 00_2$	

例:SHLA命令を実行して確かめる。(イルミネーション?) (次のプログラムを GO を表示したまま STEP 実行する.)

00	10 05		LD	GO, N
02	90	LOOP	SHLA	GO
03	A0 02		JMP	LOOP
05	01	N	DC	1

注: 左シフトは×2を計算している.

基礎コンピュータ工学第5章 機械語プログラミ

SHLL (Shift Left Logical) 命令

左論理 (論理= Logical) シフト命令. レジスタの値を左に**1ビット**ずらす.(シフトする) (SHLL 命令と SHLA 命令の動作は全く同じ.)

フラグ SHLA と同じ

フローチャート: SHLA と同じ

ニーモニック: SHLL GR

命令フォーマット: 1バイトの長さを持つ.

第1バイト		
OP	GR XR	
1001_2	GR 01 ₂	

基礎コンピュータ工学第5章 機械語プログラミ

左シフトを用いた×2計算

符号	なし数	の×2	符号付き数の × 2
0000	0001	(1)	1111 1111 (-1)
0000	0010	(2)	1111 1110 (-2)
0000	0100	(4)	1111 1100 (-4)
0000	1000	(8)	1111 1000 (-8)
0001	0000	(16)	1111 0000 (-16)
0010	0000	(32)	1110 0000 (-32)
0100	0000	(64)	1100 0000 (-64)
1000	0000	(128)	1000 0000 (-128)
0000	0000	(ERR)	0000 0000 (ERR)

SHLL 命令はこちら用

SHLA 命令はこちら用

基礎コンピュータ工学第5章 機械語プログラミ

SHRA (Shift Right Arithmetic) 命令

右算術(算術= Arithmetic)シフト命令。 レジスタの値を右に**1ビット**ずらす。(シフトする)

フラグ SHLA と同じ

フローチャート: Java のシフト演算子を流用する.

 $\boxed{GR \leftarrow GR >> 1}$

命令フォーマット: 1バイトの長さを持つ.

第1バイト OP GR XR 1001₂ GR 10₂

注: SHRA は符号付き数の ÷ 2を計算している.

基礎コンピュータ工学第5章 機械語プログラミ 7

SHRL (Shift Right Logical) 命令

右論理(論理=Logical)シフト命令。 レジスタの値を右に**1ビット**ずらす。(シフトする)

フラグ SHLA と同じ

フローチャート: Java のシフト演算子を流用する.

命令フォーマット: 1 バイトの長さを持つ.

第1バイト OP GR XR 1001₂ GR 11₂

注: SHRL は符号なし数の + 2を計算している.

基礎コンピュータ工学第5章 機械語プログラミ

右シフトを用いた ÷ 2計算(1)

符号なし数	の ÷ 2	符号付き数の÷2
1100 0000	(192)	1100 0000 (-64)
0110 0000	(96)	1110 0000 (-32)
0011 0000	(48)	1111 0000 (-16)
0001 1000	(24)	1111 1000 (-8)
0000 1100	(12)	1111 1100 (-4)
0000 0110	(6)	1111 1110 (-2)
0000 0011	(3)	1111 1111 (-1)
0000 0001	(1)	1111 1111 (-1)
0000 0000	(0)	1111 1111 (-1)
SHRL 命令を	吏用する	SHRA 命令を使用する

基礎コンピュータ工学第5章 機械語プログラミ

9/11

<u>右シフト</u>を用いた ÷ 2計算(2)

符号付き正数	(の÷2	符号付き負数の ÷ 2
0100 0000	(64)	1100 0000 (-64)
0010 0000	(32)	1110 0000 (-32)
0001 0000	(16)	1111 0000 (-16)
0000 1000	(8)	1111 1000 (-8)
0000 0100	(4)	1111 1100 (-4)
0000 0010	(2)	1111 1110 (-2)
0000 0001	(1)	1111 1111 (-1)
0000 0000	(0)	1111 1111 (-1)
0000 0000	(0)	1111 1111 (-1)

SHRA 命令使用 SHRA 命令使用

基礎コンピュータ工学第5章 機械語プログラミ

まとめ

学んだこと

- TeC のシフト命令は**1ビット**シフトする.
- TeC は4種類 (実質は3種類) のシフト命令を持っている.
- シフト命令はイルミネーション(?)に使用できる。
- 左シフト (論理・算術) は、

符号付き・なし兼用の×2計算に使用できる。

- **右シフト (論理)** は、符号なし数の ÷ 2計算に使用できる.
- **右シフト(算術)**は,符号付き数の + 2計算に使用できる.

演習

- ビットの右回転(例題5-5を参考に)
- シフト命令を使用した「× 7の計算」(例題 5 6を参考に)
- シフト命令を使用した「÷ 4の計算」
- シフト命令を使用した「× 1. 5の計算」

基礎コンピュータ工学第5章 機械語プログラミ

11 / 11