CH2 Administration UNIX

Introduction

Source: Wikipedia

Particularités

- Ecrit en C, sources disponibles
- Fortement scriptable
 La plupart des outils de gestion de services et de démarrage sont des scripts.

Familles

- BSD: open source, fort actif, peu de support
- SysV: commercial, support, backups
- 3 standards
 - Filesystem hierarchy standard
 - Portable Operating System Interfaces (POSIX)
 - OpenGroup brands: Unix

Linux

- Début des années 90 Linus Torvalds: kernel
- Unix le plus actif de nos jours
 En particulier sur Workstation
- Supporte énormément de périphériques

Unix

- Kernel
 Cœur du système
- Filesystem
 Structure du système de fichiers
- Shell Interface en ligne de commandes
- Interface GUI (optionnel!)
 Gnome, KDE, ...

Unix: kernel

- Chargé au démarrage par le bootloader
- Gestion des processus, de la mémoire et des périphériques
 - Scheduling (cf. Joël Goossens)
 - Gestion du système de fichiers
- Rôle: abstraction hardware

Pourquoi l'administration système sous Unix?

- Système le plus utilisé sur les serveurs Internet
- Souvent utilisé pour l'infrastructure DNS, DHCP, routage, firewall, ...

Utilisations

- Workstation
- En réseau
 - Serveur (accès via machine Win/Linux)
 - Client / Client léger (diskless)
 - Embarqué (routeurs)

Du command line au GUI

- Initialement: seul CLI (command line interface)
 - une commande à la fois
 - efficace et rapide
 - complexité de manipulation: que taper ?

Consoles multiples

- Utilisation multi-tâches de la CLI
- Disponible sur la plupart des systèmes Unix
- ALT-FI
- ALT-F7 retourne à la console graphique, si existante

Du command line au GUI

- XWindow, également appelé XII ou X
 - Serveur graphique, sur lequel vient se greffer une interface utilisateur
 - Desktop environment: Gnome, KDE
 - Window manager: Metacity, Compiz, ...
 - Requiert des ressources
 Donc peu utilisé en administration de systèmes...

Connexions à distance

- Command line: ssh ou telnet
- Graphique: avoir un serveur X sur la machine distante

Demo

- Notion de Window manager
- Retour à la console

Partie 1: Utilisateurs

Différentes classes

- Root (utilisateur 0)
- Autres utilisateurs
 - Plus de finesse: groupes, ou attributs

Tous les Unix ne sont pas égaux...

- Utilisation du root fort critiquée, et théoriquement non nécessaire dans sa forme classique
- Solaris, par exemple, est très différent. lci nous présenterons l'approche de Linux.

Groupes

- Regroupement d'utilisateurs
 - Soit pour leur donner des accès identiques
 - Soit pour la facilité de l'administrateur
 Ex: étudiants en BA3 info

/etc/passwd et /etc/group

- Fichiers textes, éditables à la main
- /etc/shadow
 Attributs étendus et mots de passe encryptés

Commandes utiles

- adduser
- addgroup
- userdel
- groupdel
- id, who, whoami

Se faire passer pour un autre...

- pour...
 - réaliser une opération spécifique sudo reboot
 - être sur qu'un logiciel ne fait pas de dégâts

FTP tourne sous l'utilisateur ftp

Se faire passer pour un autre...

- su bob
- sudo shutdown

SU

- lancement d'un shell sous un autre nom d'utilisateur
 - en tapant son mot de passe
 - ou directement, si on est root

sudo

- Exécution d'une commandes nécessitant des privilèges pour un utilisateur n'ayant pas les droits correspondants
- Logging de l'action effectuée
 Très utile pour l'administration système
- Flexibilité

/etc/sudoers, liste de commandes par utilisateur

MAKE ME A SANDWICH. WHAT? MAKE IT YOURSELF. SUDO MAKE ME A SANDWICH. OKAY.

Importance de sudo

• Un mot de passe par utilisateur Important quand les utilisateurs changent

 Pas le choix! (ou presque)
 Ubuntu, Mac OS X n'ont pas de compte root par défaut

Importance de sudo

- Création d'utilisateurs ne correspondant pas à des humains, mais à des fonctions Administrateur, différentes classes d'utilisateurs
- sudo pour toutes les commandes privilégiée
- Attention: souvent l'utilisation des groupes suffit

Pas parfait...

- sudo bash
 Pas de logging des commandes effectuées
- Logging ne remplace pas la documentation

Démo

- sudo
- contenu classique des fichiers
- liste des utilisateurs connectés
- info sur l'utilisateur courant

Partie 2: Système de fichiers

Concept de base

- Une seule hiérarchie
- Mount points
- Formats classiques: ext2, ext3, ext4

 Fonctionnement : table des inodes, voir cours de Fonctionnement de l'ordinateur

Version "classique": FHS

- /
 - bin
 - boot
 - dev
 - etc
 - lib
 - sbin
 - usr
 - var
 - home or Users

Version "classique": FHS

- /usr
 - local
 - bin
 - bin
 - sbin
 - ...

/bin /sbin

- Contiennent les programmes de base du système.
- sbin contient les commandes que seul l'administrateur doit utiliser

/usr

- Contient tous les programmes et leur documentation
- En particulier
 - /usr/local(/bin) : logiciels locaux (ex: scripts locaux, logiciels compilés)
 - /usr/bin : la plupart des logiciels

/var

- Utilisé pour des fichiers de données variables ou modifiés durant l'exécution du système
- En particulier: /var/log, /var/mail, /var/spool
- Attention: grandit!

/home

 Répertoire contenant les homes des utilisateurs normaux

/etc

- Contient toute la configuration du système
- Configuration par utilisateur contenue dans des fichiers cachés de la home des utilisateurs

Répertoires spécifiques

- /mnt ou /media ou /volumes
- /proc et /sys
- /dev

Automatisation

/etc/fstab

```
# /etc/fstab: static file system information.
# <file system> <mount point>
                                 <type>
                                         <options>
                                                         <dump>
                                                                  <pass>
                                         defaults
                                 proc
                /proc
proc
/dev/sda2
                                         defaults, errors=remount-ro 0
                                 ext3
/dev/sda3
                                                                  2
                                 ext3
                                         defaults
                /home
/dev/sda1
                                 swap
                                         SW
                none
/dev/scd0
                /media/cdrom0
                                udf, iso 9660 user, noauto
                                                              0
                                                                      0
/dev/fd0
                /media/floppy0 auto
                                         rw, user, noauto
```

Commandes utiles

- Is -la
- df
- du
- fuser
- Isof

Types de fichiers

- Pas vraiment de type sous Unix
 - Réguliers
 - Exécutables
 - Spéciaux
- Notion flexible d'extension
- Programme "file"

Fichiers et répertoires particuliers

- . et .. représentent le répertoire courant et parent
- Tout fichier ou répertoire commençant par . est invisible (utiliser ls -la)

Liens

- Symbolic link et Hard link
- Refcount
- Utiles et dangereux
 - Récursivité
 - Espace disque

Permissions

- Droit d'accès à un ficher, pour le propriétaire, son groupe, et le reste du monde
- Trois types
 - read
 - write
 - execute

Manipulation des permissions

- Affichage : Is -I
- chmod
- chown

Permissions par défaut

- umask
 - peut être changé dans le profil
 - umask -S : plus lisible
 - danger!

Permissions particulières

- execute sur directory : liste des fichiers
- setuid bit
 - Exécuter un programme comme si il avait été lancé par un autre utilisateur
- sticky bit
 - Empêche la suppression de fichiers dans un répertoire

Permissions particulières

 Possibilité de forcer la création des fichiers dans un répertoire sous un groupe particulier, ...

 ATTENTION: ces subtilités varient beaucoup d'une plate-forme à l'autre

Filesystems classiques

- De UFS vers ext2, ext3, ext4
- NFS
- FAT32 / NTFS sous Windows
- HFS/HFS+ sous Mac

Filesystems classiques

- Tout n'est pas disponible sur les différents filesystems
 - Gestion des droits sous FAT32
 - Liens symboliques limités (FAT32, NTFS)
- Simulation au besoin des droits de base

Version étendue des permissions

- ACL: access control lists: beaucoup plus flexibles, utilisés par exemple sur HFS+
- Pas toujours clair chmod a+rw ne permets pas toujours d'accéder à un fichier!

Démo

• Droits étendus: ls -la@

Partie 3: Services et daemons

Concept

- Au sens strict: programmes tournant en arrière plan
- En pratique: tout ce qui est lancé au boot

Notion de runlevel

- "Mode" du système d'exploitation
 - Sans réseau
 - Console
 - Graphique
 - Modes spéciaux: reboot
 - Plus réellement utilisé sous Linux

/etc/init.d

- Contient des scripts
- Liens par runlevel:/etc/rcX.d
 - La numérotation indique l'ordre
 - Pas de lien = pas lancé automatiquement

Utilisation directe

- /etc/init.d/networking
 - start
 - stop
 - restart

Partie 4: Shells

Shells

- Interprétation de commandes
- Nombreux shells différents, le plus utilisé est bash, Bourne Again Shell (standard sur de nombreux Linux et Mac OS X)
- sh : Bourne shell, base de la plupart des shells modernes. Simpliste.
- csh, C shell: pour la syntaxe plus "C"
- Korn shell, TC shell, ... tous ont leurs spécificités

Fonctionnalités

- Historique
- Auto-complétion
- Gestion des scripts
- Langage de programmation interprété de base
- Gestion des variables d'environnement

Variables d'environnement

- Variables au sens "programmation", locales ou globales
- Dépendantes du shell
- Accessibles par les programmes
- PATH, USER, HOME, PWD, HOSTNAME,...

Variables locales/ globales

- export MAVARIABLE
- set retourne toutes les variables connues dans le shell courant

Fichiers lus au lancement

- /etc/profile et /home/seb/.profile
- /etc/bashrc et /home/seb/.bashrc

Commandes internes

- Aliasalias ||='|s -a|'
- cd
- echo
- ... (voir documentation de bash)

Partie 5: Processus

Processus

- Tout programme exécuté est découpé en une série de processus
- ps liste les processus en mémoire
- top fait la même chose de façon interactive

Signaux

- Un signal est un message envoyé à un processus
- Message : un chiffre
 - I HUP (hang up)
 - 2 INT (interrupt)
 - 3 QUIT (quit)
 - 6 ABRT (abort)
 - 9 KILL (non-catchable, non-ignorable kill)
 - 14 ALRM (alarm clock)
 - 15 TERM (software termination signal)

kill et killall

- Envoient un signal au processus pour l'arrêter
- kill a besoin d'un numéro de processus
- killall a besoin d'un label

Détournement des signaux

- Signaux parfois utilisés pour "réveiller" un programme
- HUP
- Masque

Priorités

- Chaque processus s'exécute avec un niveau de priorité
 - Possibilité de réaliser des logiciels d'arrière plan
 - Certains logiciels sont critiques
- nice et renice
 - -20 à +20
 - Inversé!

Contrôle du processus via le shell

- CTRL-C, CTRL-Z
- bg
- fg
- jobs

Démo

- ps
- top
- kill
- killall
- CTRL-C -Z, bg, fg