Problem 63 - Powerful Digit Counts

Gautam Manohar

16 July 2018

This document originally appeared as a blog post on my website. Find it at gautammanohar.com/euler/63.

1 Problem Statement

The five-digit number $16807 = 7^5$ is also a fifth power. Given N, find the N-digit positive integers that are also an N-th power.

2 My Algorithm

An *n*-digit *n*-th power has *n*-th root at most 9, because 10^n is an (n+1)-digit number. If a^n is an *n*-digit number, then unless a=9, we also have that $(a+1)^n$ is an *n*-digit number. We must find the lowest a such that a^n has n digits. We have

$$10^{n-1} \le a^n < 10^n$$

$$10^{1-\frac{1}{n}} \le a < 10$$

$$a = \lceil 10^{1-\frac{1}{n}} \rceil.$$
(1)

And so k^n is an *n*-digit number for all $k \in [\lceil 10^{1-\frac{1}{n}} \rceil, 9]$. We enumerate these in O(1) time.