Comparison of Major LLM Architectures (2017–2025)

© 2017–2019

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
Transformer (2017) [1]	Encoder- Decoder Transformer	Multi-head self- attention (encoder & decoder) + cross- attention [1]	Fixed sinusoidal [1]	Post- layernorm [1]	ReLU [1]	~65M (base model) [1]	WMT14 translation corpora (e.g., 4.5M sentence pairs En→De) [1]	512 tokens [1]	Introduced self-attention to replace recurrent networks, enabling parallel sequence processing [1]	Supervised learning on translation tasks; residual connections, layer normalization, Adam optimizer [1]	Dramatically improved machine translation quality and speed; became foundational architecture for subsequent LLMs [1]
BERT (2018) [2]	Transformer Encoder (bidirectional)	Full bidirectional self- attention (MLM objective) [2]	Learned absolute [2]	Post- layernorm [2]	GELU [2]	110M (Base), 340M (Large) [2]	BooksCorpus + English Wikipedia (3.3B words total) [2]	512 tokens [2]	Masked Language Modeling and Next Sentence Prediction for deep bidirectional context understanding [2]	Unsupervised pre-training on large text corpus, then task-specific fine-tuning (transfer learning) [2]	Set new state- of-the-art on many NLP tasks (GLUE, QA) via contextualized embeddings and fine-tuning [2]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
GPT (2018) [3]	Transformer Decoder (unidirectional)	Auto- regressive masked self- attention (causal LM) [3]	Learned absolute [3]	(Layernorm in transformer blocks) [3]	GELU [3]	117M [3]	BookCorpus (700M words of novels) [3]	512 tokens [3]	First to use generative pre-training for language understanding tasks, demonstrating transfer learning from unsupervised LM [3]	Unsupervised language model pre-training on unlabeled text, followed by supervised fine-tuning on each task [3]	Outperformed task-specific architectures on 9 of 12 NLP tasks via pretrained knowledge, showing power of generative pre-training [3]
GPT-2 (2019) [4]	Transformer Decoder (deep, uni-directional)	Masked multi-head self- attention (auto- regressive) [4]	Learned absolute [4]	(Layernorm in each layer) [4]	GELU [4]	1.5 billion [4]	WebText (8M web pages from Reddit links, ~40 GB) [4]	1024 tokens [4]	Demonstrated that much larger unsupervised language models can generate coherent longform text [4]	Generative pre-training on vast internet text; no fine-tuning, evaluated zero-shot on tasks [4]	Achieved notable zero- shot performance on diverse tasks (QA, translation, summarization), indicating emergent multitask learning abilities [4]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
XLNet (2019) [5]	Transformer-XL Decoder (autoregressive)	Permutation- based full self- attention (two-stream) [5]	Segment- aware relative positional encoding [5]	Post- layernorm [5]	GELU [5]	340M (Large) [5]	Diverse large text corpora (Google Books, Wikipedia, Giga5, ClueWeb, Common Crawl) [5]	512 tokens [5]	Generalized autoregressive pre-training that leverages all context positions (permuted order) instead of masking [5]	Memory- augmented Transformer (recurrence from Transformer- XL) with two- stream attention; trained with permutation language modeling objective [5]	Outperformed BERT on NLP benchmarks (e.g., GLUE) by capturing bidirectional context without an explicit mask, improving downstream task performance [5]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
GPT-3 (2020) [6]	Transformer Decoder (very deep)	Masked multi-head self-attention (auto- regressive) [6]	Learned absolute (2048 tokens) [6]	Pre-layernorm [6]	GELU [6]	175 billion [6]	~300B tokens from Common Crawl, WebText2, Books, Wikipedia [6]	2048 tokens [6]	Massive scale showed emergent few-shot learning — model can perform tasks from prompts without fine-tuning [6]	Trained on extremely large corpus with mixed precision and model-parallelism across GPUs; no task-specific finetuning required for evaluation [6]	Achieved state-of-the- art in few-shot and zero-shot settings on many NLP tasks; demonstrated the benefits of scale for versatility [6]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
T5 (2020) [7]	Transformer Encoder– Decoder	Full self- attention (enc & dec) + cross- attention [7]	Relative positional embeddings [7]	Pre-layernorm [7]	ReLU (with variants explored) [7]	11 billion (largest) [7]	C4 (Colossal Cleaned Common Crawl, ~750 GB text) [7]	512 tokens [7]	Unified "text- to-text" framework – model treats every NLP task (translation, QA, summarization, etc.) as text generation [7]	Unsupervised pre-training on C4 corpus with a denoising objective; followed by task-specific fine-tuning in a text-to-text format [7]	Achieved state-of-the- art on numerous benchmarks with one model applicable to all tasks; open- sourced in various sizes for flexible fine-tuning [7]
Switch Transformer (2021) [8]	Transformer Decoder (Mixture-of- Experts)	Sparse MoE multi-head attention (experts in FFN layers) [8]	Learned absolute [8]	Pre-layernorm [8]	SwiGLU [8]	1.6 trillion (with 64 experts, ~26B active per token) [8]	C4 corpus (same as T5) [8]	2048 tokens [8]	Introduced conditional computation: uses routing to activate one expert feedforward network per token, enabling extreme scale with efficient compute [8]	MoE training with load-balancing loss to ensure experts are utilized; scaled on TPU pods (Pathways) to reach trillion+parameters [8]	Matched dense model quality with much lower computational cost; set new scale records (trillion+ parameters) while maintaining strong zero- shot and one- shot performance [8][9]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
GLaM (2022) [9]	Transformer Decoder (Mixture-of- Experts)	Sparse mixture-of- experts (two experts per token) [9]	Learned absolute [9]	Pre-layernorm [9]	GELU [9]	1.2 trillion (64 experts, 2 active per token) [9]	Massive multilingual web corpus (filtered web pages, dialogues, code) [9]	2048 tokens [9]	Scaled MoE further with a balanced gating approach (each token routed to 2 experts) for efficiency – 7× parameter count of GPT-3 with 1/3 the energy cost [9]	Pre-trained with sparsely activated experts to reduce FLOPs; required specialized initialization and auxiliary losses for expert balance [9]	Outperformed GPT-3 in zero-/one-shot tasks while using significantly less inference compute per token; demonstrated efficient super- scaling of model capacity [9]
Gopher (2021) [10]	Transformer Decoder (dense)	Multi-head self-attention (auto- regressive LM) [10]	Learned absolute [10]	Pre-layernorm [10]	GELU [10]	280 billion [10]	MassiveText dataset (multi- domain text: web, books, news, code) [10]	2048 tokens [10]	Systematic study of scaling up to 280B parameters with extensive evaluation on 152 tasks; highlighted strengths (knowledge recall) and weaknesses (logic, math) at scale [10]	Trained on TPU v3 Pod with mixed precision; used distributed training and periodic evaluation to analyze performance trends across model sizes [10]	Showed that increasing model size yields broad knowledge gains but plateaus on certain reasoning tasks, informing later research on data vs. model size trade-offs [10]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
Chinchilla (2022) [11]	Transformer Decoder (dense)	Multi-head self-attention (auto- regressive LM) [11]	Learned absolute [11]	Pre-layernorm [11]	GELU [11]	70 billion [11]	1.4 trillion tokens of text (MassiveText, 4× Gopher's data) [11]	2048 tokens [11]	Established the compute-optimal model paradigm: a smaller model trained on more data can outperform a larger model trained on less data [11]	Used the same compute budget as Gopher but with 4× training tokens and a 4× smaller model, following new scaling law predictions [11]	Outperformed the 280B Gopher on many benchmarks despite far fewer parameters, demonstrating the importance of adequately scaling data quantity for a given model size [11]
LaMDA (2022) [12]	Transformer Decoder (dialogue- optimized)	Multi-head self-attention (conversation LM) [12]	Learned absolute [12]	Pre-layernorm [12]	Swish (SiLU) [12]	137 billion [12]	1.56T words of public dialog data + web text (pre- training) [12]	2048 tokens [12]	Specialized for open-ended dialogue, with fine-tuning to improve safety and factual grounding in responses [12]	Pre-trained on dialog-heavy corpus, then fine-tuned with human-annotated data for safety; allowed to consult external tools/APIs during generation (to ground facts) [12]	Produced more engaging, contextually relevant, and safer conversational responses, marking a step toward Al that can hold human-like dialogue [12]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data	Context Length	Innovations	Training Strategies	Capabilities
PaLM (2022) [13]	Transformer Decoder (dense)	Multi-head self-attention (auto- regressive LM) [13]	Rotary positional embedding [13]	Pre-layernorm [13]	SwiGLU [13]	540 billion [13]	780B tokens (multilingual web, books, GitHub code, conversations) [13]	2048 tokens [13]	Achieved breakthrough few-shot performance, exceeding human average on BIG-bench, and enabled strong multi- step reasoning and code generation [13]	Trained on Pathways system across TPU v4 Pods, leveraging mixed parallelism; incorporated multitask fine- tuning (FLAN) after pre- training for broad capabilities [13]	Set new state- of-the-art on many NLP benchmarks; demonstrated emergent abilities at scale (complex reasoning, coding, multilingual understanding) [13]
InstructGPT / ChatGPT (2022) [14]	Transformer Decoder (GPT-3.5 series)	Masked multi-head self-attention (with instruction tuning) [14]	Learned absolute [6]	Pre-layernorm [6]	GELU [6]	175B (base model) [6]	GPT-3's pre- training data + human- generated dialogues and feedback data [14]	2048– 4096 tokens [14]	Aligned language model with user intentions using Reinforcement Learning from Human Feedback (RLHF), greatly improving helpfulness and safety [14]	Supervised fine-tuning on demonstration data, then RLHF: model outputs rated by humans to train a reward model, and policy optimized via PPO [14]	Delivered far more user- friendly responses than raw GPT- 3; reduced harmful outputs and followed instructions better, leading to ChatGPT's widespread adoption [14]

© 2023–2025

Model	Architecture	Attention	Positional	Normalization	Activation	Doromotoro	Training Data	Context	Innovations	Training	Capabilities
(Year)	Туре	Туре	Encoding	Normalization	Activation	Parameters	/ Domain	Length	Innovations	Strategies	Capabilities

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data / Domain	Context Length	Innovations	Training Strategies	Capabilities
GPT-4 (2023) [15]	Transformer (dense, multimodal)	Multi-head self- attention (text & vision inputs) [15]	Enhanced positional encoding (8k-32k context) [15]	(Details not public) [15]	(Details not public) [15]	Not disclosed (estimated ≈1.8T, MoE architecture) [16]	Web text (pre- training); fine- tuned with code and imagery (multimodal) [15]	8,192 tokens (32,768 in extended version) [15]	Demonstrated powerful few-shot and reasoning abilities, with added vision input capability (accepts images as part of prompt) [15]	Post-trained with human feedback and model self-evaluation for alignment (Reinforcement Learning with human & Al feedback) [15]	Achieved top- level performance on a wide range of tasks (coding, math, vision- language understanding) and exams; significantly more reliable and creative than earlier models [15]
LLaMA (2023) [17]	Transformer Decoder (open- source)	Multi-head self- attention (auto- regressive) [17]	Rotary positional embeddings (RoPE) [17]	RMSNorm (pre- normalization) [17]	SwiGLU [17]	7B–65B (65B largest) [17]	1.0T tokens of publicly available text (Common Crawl, Wikipedia, GitHub, etc.) [17]	2048 tokens [17]	Open-sourced high-performance foundation model, achieved GPT-3-level performance with 10× fewer parameters by efficient training and architecture tweaks [17]	Trained on curated large-scale dataset with extensive data cleaning and deduplication; utilized novel training efficiencies (such as mixed precision) [17]	Enabled broad research and downstream customization (e.g., fine-tuned chat models) due to open access; foundation for many derivative models (Alpaca, etc.), democratizing LLM research [17]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data / Domain	Context Length	Innovations	Training Strategies	Capabilities
PaLM 2 (2023) [18]	Transformer Decoder (dense)	Multi-head self- attention (enhanced) [18]	ALiBi positional bias (longer context) [18]	Pre-layernorm [18]	GELU [18]	340B (reportedly, "Ultra" model) [18] *	Improved dataset spanning multiple languages, code, and math reasoning data [18]	4096 tokens [18]	More compute- efficient than PaLM with improved multilingual and reasoning skills; strong coding ability and domain expertise via focused training data [18]	Trained with an updated mixture of objectives (e.g., supervised learning on reasoning and coding tasks in addition to LM); leveraged prior PaLM insights with reduced parameter count [18]	Achieved superior performance across many benchmarks including logic and translation tasks; formed the backbone of Google's Bard and enterprise models with faster inference [18]
Claude (2023) [19]	Transformer Decoder (aligned AI)	Multi-head self- attention (with long- context support) [20]	Learned absolute (expanded context window) [20]	Pre-layernorm [19]	GELU [19]	52B (Claude 1) to 100B+ (Claude 2) [19] *	Conversational and knowledge domains (fine- tuned from a GPT-3.5-like base) [19]	100,000 tokens (Claude 2, extended context version) [20]	Pioneered "Constitutional Al" to align model behavior via Al feedback rather than only human feedback, yielding a safer yet minimally supervised assistant [19]	Initially fine- tuned with human feedback similar to InstructGPT, then optimized via a set of written principles (a "constitution") that the AI uses to self- refine its answers [19]	Exhibits high-quality, less toxic dialogue and can handle extremely long documents in a single prompt (100k tokens), enabling analysis of lengthy texts; one of the first serious competitors to OpenAl's models [20]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data / Domain	Context Length	Innovations	Training Strategies	Capabilities
Gemini (2023) [21]	Multimodal Transformer (text, code, vision, audio)	Multi- modal self- attention integrating different data types [21]	Learned positional + modality- specific encodings [21]	Pre-layernorm [21]	SwiGLU [21]	Unpublished (Ultra model rumored >1T parameters) [21]	Multimodal and multilingual dataset (web text, images, code, audio, video) [21]	128k tokens [22] *	Natively multimodal from the ground up— trained on text and other modalities together, enabling fluid combination of modalities and advanced reasoning abilities [21]	Pre-trained jointly on diverse modalities then fine-tuned with targeted multimodal datasets; incorporates tool use (e.g. search, APIs) and code execution during fine-tuning for "agentic" behavior [21]	Achieved state-of-the-art on vision-language and multimodal benchmarks; capable of complex reasoning and planning across text, images, and more, representing Google DeepMind's answer to GPT-4 [21]

Model (Year)	Architecture Type	Attention Type	Positional Encoding	Normalization	Activation	Parameters	Training Data / Domain	Context Length	Innovations	Training Strategies	Capabilities
DeepSeek- R1 (2025) [22]	Transformer Decoder (Mixture-of- Experts)	Multi-head self- attention + MoE feed- forward (32 experts per layer) [24]	ALiBi positional bias (extremely long context) [23] *	Pre-layernorm [23]	GELU [23]	671 billion (MoE; ~37B parameters active per token) [24]	Broad web and knowledge corpora; specialized logical reasoning datasets [23]	128,000 tokens [24]	"Reasoning-centric" LLM optimized via large-scale reinforcement learning to excel at step-by-step problem solving and logic tasks, with unprecedented context length [23]	Multi-stage training: pretrained on diverse text, then purely reinforcement learning on reasoning tasks (no supervised fine-tune), plus reward-model guiding and distillation into smaller models [23]	Matches or surpasses similar-sized dense models on math, coding, and logic benchmarks at a fraction of training cost; open-sourced by a Chinese startup, sparking global competitive pressure in advanced Al capabilities [23][24]

© References:

- 1. Attention Is All You Need, Ashish Vaswani et al., 2017 NeurlPS. [Paper]
- 2. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Jacob Devlin, Ming-Wei Chang, Kenton Lee, & Kristina Toutanova, 2018 NAACL. [Paper]
- 3. Improving Language Understanding by Generative Pre-Training, Alec Radford, Karthik Narasimhan, Tim Salimans, & Ilya Sutskever, 2018 OpenAl (Technical Report). [PDF]
- 4. Language Models are Unsupervised Multitask Learners, Alec Radford et al., 2019 OpenAl (Technical Report). [PDF]
- 5. XLNet: Generalized Autoregressive Pretraining for Language Understanding, Zhilin Yang et al., 2019 NeurIPS. [Paper]
- 6. Language Models are Few-Shot Learners, Tom B. Brown et al., 2020 NeurIPS. [Paper]
- 7. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, Colin Raffel et al., 2020 J. Machine Learning Research. [Paper]
- 8. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, William Fedus, Barret Zoph, & Noam Shazeer, 2021 JMLR. [Paper]
- 9. GLaM: Efficient Scaling of Language Models with Mixture-of-Experts, Nan Du et al., 2022 ICML. [Paper]
- 10. Scaling Language Models: Methods, Analysis & Insights from Training Gopher, Jack W. Rae et al., 2021 DeepMind (Technical Report). [Paper]
- 11. Training Compute-Optimal Large Language Models, Jordan Hoffmann et al., 2022 DeepMind (NeurIPS). [Paper]
- 12. LaMDA: Language Models for Dialog Applications, Romal Thoppilan et al., 2022 arXiv Preprint. [Paper]
- 13. PaLM: Scaling Language Modeling with Pathways, Aakanksha Chowdhery et al., 2022 arXiv Preprint. [Paper]

- 14. Training language models to follow instructions with human feedback, Long Ouyang et al., 2022 OpenAl (NeurIPS), [Paper]
- 15. GPT-4 Technical Report, OpenAl, 2023. [Paper]
- 16. GPT-4 has more than a trillion parameters Report, Matthias Bastian, 2023 The Decoder. [Article]
- 17. LLaMA: Open and Efficient Foundation Language Models, Hugo Touvron et al., 2023 Meta Al. [Paper]
- 18. PaLM 2 Technical Report, Rohan Anil et al., 2023 Google. [Paper]
- 19. Constitutional AI: Harmlessness from AI Feedback, Yuntao Bai et al., 2022 Anthropic. [Paper]
- 20. Introducing 100K Context Windows, Anthropic, 2023. [Blog]
- 21. Gemini: A Family of Highly Capable Multimodal Models (Technical Report), Google DeepMind, 2023. [PDF]
- 22. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, DeepSeek-Al, 2025. [Paper]
- 23. DeepSeek-R1 model now available in Amazon Bedrock Marketplace..., Vivek Gangasani, Banu Nagasundaram, Jonathan Evans, & Niithiyn Vijeaswaran, 2025 AWS Blog. [Article]

Note:

- This document is designed to keep me updated with growing LLM architectures. It is based on my personal understanding and synthesis of various research papers.
- If you spot any errors or have suggestions for improvement, please feel free to reach out.
- The references mentioned above have been explored over the past few months. There may be more detailed explanations available, and I'd be happy to dig deeper into those if needed.
- Special thanks to ChatGPT for helping with formatting and all the nitty-gritty details.