Graf

STIMKK106 Matematika Diskrit

- Graf merupakan suatu diagram yang memuat informasi tertentu jika diinterpretasikan secara tepat.
- Graf digunakan sebagai visualisasi objek-objek agar lebih mudah dimengerti.
- Suatu Graf G yang terdiri dari 2 himpunan berhingga dimana G = (V,E) dapat dijabarkan sebagai berikut:
 - \circ V = Himpunan tidak kosong dari simpul-simpul (vertices) = {V₁, V₂, V₃, ..., V_n}
 - \circ E = Himpunan sisi (edges) yang menghubungkan sepasang simpul = {E₁, E₂, E₃, ..., E_n}

- Setiap garis berhubungan dengan satu atau dua titik, yang dapat disebut sebagai titik ujung.
- Garis yang berhubungan dengan satu titik disebut loop.
- Dua garis yang berbeda yang menghubungkan titik yang sama disebut garis paralel.
- Dua titik dapat dikatakan berhubungan (adjacent) jika ada garis yang menghubungkan keduanya.
- Titik yang tidak memiliki garis yang berhubungan dengannya disebut titik terasing (isolating point).
- Graf yang tidak memiliki titik disebut graf kosong.

- Jika semua garis dalam graf memiliki arah, maka graf dapat disebut sebagai graf berarah (Directed Graph).
- Jika semua garisnya tidak berarah, maka graf dapat disebut graf tidak berarah (Undirected Graph)

Graf Tak Berarah

Graf Tidak Berarah

- Graf tidak berarah memiliki beberapa bagian, yaitu:
 - Graf Sederhana Bipartite
 - Graf Komplemen
 - Sub-Graf
 - Derajat
 - Path dan Sirkuit
 - Sirkuit Euler
 - Graf Terhubung dan tidak terhubung
 - Sirkuit Hamilton
 - Isomorfisma

Graf Sederhana dan Bipartite

- Graf Sederhana (Simple Graph) adalah graf yang tidak memiliki loop ataupun garis paralel.
- Suatu graf dapat disebut Graf Bipartite apabila V(G) merupakan gabungan dari 2 himpunan tak kosong V_1 dan V_2 dan setiap garis dalam G menghubungkan suatu titik dalam V_1 dengan titik dalam V_2 .
- Apabila dalam graf bipartite setiap titik dalam V1 berhubungan dengan setiap titik dalam V2, maka grafnya disebut graf bipartite lengkap.

Graf Sederhana dan Bipartite

Sumber: https://www.geeksforgeeks.org/mathematics-graph-theory-basics/

Graf Komplemen

 Graf komplemen adalah graf yang memiliki titik yang sama dengan sebuah graf, namun memiliki garis yang tidak dimiliki oleh graf aslinya.

Sumber: https://bermatematika.net/2016/05/20/graf-dan-komplemennya/

Sub-Graf

- Konsep subgraf sama dengan konsep himpunan bagian.
- Sebuah graf dapat dikatakan subgraf apabila graf tersebut merupakan bagian dari graf yang lebih besar.

Sumber: https://mathcyber1997.com/materi-soal-operasi-graf-subgraf/

Derajat

- Derajat menunjukkan jumlah garis yang terhubung dengan suatu titik.
- Garis dalam suatu loop dihitung dua kali.

Path (lintasan) dan Sirkuit

- Lintasan adalah garis yang melalui titik-titik yang telah ditentukan.
- Misalnya:
 - Pada g₁: lintasan 1, 2, 4, 3 adalah lintasan yang terdiri dari garis (1,2), (2,4), (4,3) sehingga dapat dikatakan memiliki panjang lintasannya adalah 3.
- Sirkuit merupakan lintasan yang berawal dan berakhir pada titik atau simpul yang sama.

Sirkuit Euler

- Sirkuit Euler adalah sirkuit dimana setiap titik pada suatu graf muncul paling sedikit sekali dan setiap garis G muncul tepat satu kali.
- Ciri dari sirkuit Euler adalah:
 - Seluruh titik yang bukan derajat 0 saling terhubung,
 - Seluruh titik memiliki derajat berjumlah genap

The graph has Eulerian Cycles, for example "2 1 0 3 4 0 2" Note that all vertices have even degree

Graf Terhubung dan Tidak Terhubung

- Apabila G adalah suatu graf, maka:
 - Dua titik v dan w dalam G dikatakan terhubung bila dan hanya bila ada walk (jalan) dari v ke w.
 - Graf G dikatakan terhubung bila dan hanya bila setiap 2 titik dalam G terhubung.
 - Graf G dikatakan tidak terhubung bila dan hanya bila ada 2 titik dalam G yang tidak terhubung.

Sirkuit Hamilton

- Suatu graf terhubung G disebut Sirkuit Hamilton bila ada sirkuit yang mengunjungi tiap titiknya tepat satu kali.
- Sirkuit Euler memperbolehkan titiknya muncul atau dilewati lebih dari satu kali tetapi melalui garis yang berbeda, sedangkan Sirkuit Hamilton hanya mengijinkan sebuah titik dan garis dilewati satu kali.

degree(1) = 3 degree(3) = 3 degree(1) = 3 degree(5) = 4

degree(1) + degree(4) = 6 >= 5degree(3) + degree(2) = 6 >= 5

Isomorfisma

- Isomorfisme adalah graf yang memiliki bentuk dan sifat geometri yang sama.
- Kedua graf yang dibandingkan hanya berbeda dalam hal pemberian label titik dan garisnya saja

Isomorfisma

Graf Berarah

Graf Berarah

- Graf berarah memiliki beberapa bagian, yaitu:
 - Path Berarah dan Sirkuit Berarah
 - Graf Berarah Terhubung
 - Isomorfisma dalam graf berarah

Path dan Sirkuit Berarah

- Dalam graf berarah, perjalanan yang dilakukan harus mengikuti arah garis.
- Suatu graf berarah yang tidak memuat sirkuit berarah disebut asliklik.

Graf Berarah Terhubung

- Sama dengan graf tak berarah, suatu graf berarah dapat dikatakan terhubung jika ada walk atau jalan yang menghubungkan 2 titiknya.
- Graf berarah G disebut graf terhubung kuat (strongly connected graph)
 apabila untuk setiap pasang simpul sembarang u dan v di G, terhubung
 kuat. Kalau tidak, G disebut graf terhubung lemah.

Isomorfisma Graf Berarah

Isomorfisma pada graf berarah sama dengan graf tak berarah

Representasi Graf dalam Matriks

Representasi Graf dalam Matriks

Matriks Hubung

- Matriks hubung (Adjacency Matrix) digunakan untuk menyatakan graf dengan cara menyatakannya dalam jumlah garis yang menghubungkan titik-titiknya.
- Jumlah baris dan kolom matriks hubung sama dengan jumlah titik dalam graf.

Matriks Biner

- Matrix biner menyatakan relasi antara suatu titik (v) dengan garis atau sisi
 (e).
- Nama matriks biner diambil dari sifat matriks yang hanya berisi bilangan 0 dan 1 saja.
- Matriks biner kadang disebut matriks 0-1 atau matriks insidensi (incidence matrix).

Matriks Sirkuit Tak Berarah

- Misalkan G adalah graf yang memuat q buah sirkuit sederhana dan e buah garis.
- Matriks sirkuit A = (a_{ij}) yang bersesuaian dengan G adalah matriks yang terdiri dari q baris dan e kolom dengan elemen 1 jika sirkuit ke-i memuat garis ke-j dan elemen 0 jika sirkuit ke-1 tidak memuat garis ke-j.

Matriks Sirkuit Berarah

- Misalkan G adalah graf yang memuat q buah sirkuit sederhana dan e buah garis.
- Matriks sirkuit A = (a_{ij}) yang bersesuaian dengan G adalah matriks yang terdiri dari q baris dan e kolom dengan elemen:
 - 1 jika sirkuit ke-i memuat garis ke-j dan arah garis ke-j sama dengan arah orientasi
 - -1 jik sirkuit ke-i memuat garis ke-j dan arah garis ke-j berlawanan dengan arah orientasi
 - o 0 jika sirkuit ke-1 tidak memuat garis ke-j

Terima Kasih!

Thank you!

