Noise robustness: weak & ensemble SINDy

CWI Autumn School - Scientific Machine Learning and Dynamical Systems

Urban Fasel

Imperial College London

Literature

Ensemble SINDy:

- U Fasel, JN Kutz, BW Brunton, SL Brunton (2022) <u>Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control</u>.
- SM Hirsh, DA Barajas-Solano, JN Kutz (2022) <u>Sparsifying priors for Bayesian uncertainty quantification in model discovery</u>.
- LM Gao, U Fasel, SL Brunton, JN Kutz (2023) <u>Convergence of uncertainty estimates in Ensemble and Bayesian sparse model discovery.</u>

Integral and weak form SINDy:

- H Schaeffer, SG McCalla (2017) <u>Sparse model selection via integral terms</u>.
- PAK Reinbold, DR Gurevich, RO Grigoriev (2020) <u>Using noisy or incomplete data to discover models of spatiotemporal dynamics</u>.
- D Messenger, DM Bortz (2021) <u>Weak SINDy for partial differential equations</u>.
- AA Kaptanoglu, ..., ZG Nicolaou, ... (2022) <u>PySINDy</u>, <u>SINDyCP</u>

Part 4 outline

Ensemble SINDy

- Ensemble methods for noise robust model identification
 - Bootstrap aggregating the time series data or library terms
- Active learning
- UQ-SINDy
- MATLAB example

Weak-SINDy

- Integral and weak form SINDy methods
- Main concept and implementation
 - MATLAB example parameter estimation
 - Additional MATLAB and Python tutorials weak-SINDy

Combining predictions from multiple models

- → Improve accuracy of model prediction
- → Reduce variance and help avoid overfitting

Popular ensemble learning method

→ Bootstrap aggregating or bagging

Connections to model selection

→ Cross-validation and stability selection use ensemble of models to select best model

PDE		noise level	form	model error WSINDy E-WSINDy	success rate WSINDy E-WSINDy
	nviscid Burgers	100%	$u_t + 0.5uu_x = 0$	2.6% 2.5%	99% 100%
	orteweg le Vries	100%	$u_t + 0.5uu_x + u_{xxx} = 0$	27.5% 4.0%	93.5% 100%
	onlinear ırödinger	50%	$iu_t + 0.5u_{xx} + u ^2 u = 0$	13.0% 11.3%	82.0% 100%
	ramoto– vashinsky	100%	$u_t + 0.5uu_x + u_{xx} + u_{xxxx} = 0$	29.5% 24.7 %	87.5% 99.5 %
	eaction— iffusion	20%	$u_t = 0.1\nabla^2 u + \lambda(A)u - \omega(A)v$ $v_t = 0.1\nabla^2 v + \omega(A)u + \lambda(A)v$ $A^2 = u^2 + v^2, \ \omega = -\beta A^2, \ \lambda = 1 - A$	77.7% 7.1%	0.0% 99.5%

Ensemble SINDy – different sampling strategies

- (a) Success rate: identifying correct model structure
- (b) model coefficient error

Bragging (robust bagging) SINDy generally performs best

Robust bagging: aggregate by taking median of identified models

Ensemble SINDy – active learning

Exploiting ensemble statistics for **active learning**

Reducing variance of model coefficient

Improving data-efficiency of model discovery

Ensemble SINDy – probabilistic models

- Robust model discovery: high noise, low data limit
- E-SINDy identifies probabilistic models at low computational cost

Ensemble SINDy tutorials

MATLAB

- E-SINDy vs SINDy: Identify Lorenz system on noisy data
- GitHub RSPA paper: https://github.com/urban-fasel/EnsembleSINDy
 - ODE and PDE examples
 - Active learning
 - MPC

PySINDy

- https://github.com/dynamicslab/pysindy/blob/master/examples/13_ensembling.ipynb
- ODE and PDE examples

UQ-SINDy – sparse Bayesian inference

Estimating model coefficient distributions

- → model coefficient uncertainty, due to observation errors, limited data
- → model coefficient inclusion probability: how likely a coefficient is active

Bayes rule: $p(\Xi | X) \propto p(X | \Xi) p(\Xi) p(x_0)$

- $p(\Xi | X)$ posterior distribution of the model coefficients Ξ conditioned on the data X
- $p(X|\Xi)$ likelihood of the model with coefficient Ξ given the data
- $p(\Xi)$ prior distribution of the model coefficients

We want to **learn the posterior distribution** of the model coefficients **E**

- Computing posterior distribution not analytically tractable
- Sampling-based methods such as Markov chain Monte Carlo (MCMC)

UQ-SINDy – method

- 1. Collect data
- 2. Construct library
 - Symbolic library → used as generative model
- 3. Construct model likelihood
 - Lognormal likelihood: $p(\mathbf{X}|\mathbf{\Xi}) = \prod \prod \frac{1}{\sigma_j \sqrt{2\pi}} \exp \left[\frac{-1}{2\sigma_j^2} \left| \log y_{i,j} \log \hat{x}_j(t_j, \mathbf{\Xi}) \right|^2 \right]$
 - SINDy prediction at time t for model Ξ : $\hat{x}(t,\Xi) = x_0 + \int_{t_0}^t \Theta(x(t'))\Xi dt'$
- 4. Construct model priors
 - 1. Sparsity promoting priors: 1) spike and slab, 2) regularized horseshoe
 - e.g. Hierarchical spike and slab prior: $\xi_i | \lambda_i \sim \mathcal{N}(0, c^2) \lambda_i$, $\lambda_i \sim \text{Ber}(\pi)$
 - If $\lambda = 1$: ξ_i follows slab distribution $(\mathcal{N}(0, c^2))$
 - if $\lambda = 0$: ξ_i follows spike distribution (Dirac delta distribution centered at zero)
- 5. Bayesian inference
 - Employ MCMC to draw samples from the posterior distribution
 - Sample SINDy models and integrate over t to compute $\hat{x}(t, \Xi)$
 - Challenge: integrating potentially unstable models

measured predator prey system

$$\dot{u} = \alpha u - \beta u v$$

$$\dot{v} = -\gamma v + \delta u v$$

model reconstruction

UQ-SINDy – sparse Bayesian inference

Python code GitHub paper Seth Hirsh Python

→ https://github.com/sethhirsh/BayesianSindy/blob/master/figures/figure3.ipynb

Alternative UQ-SINDy papers

- → S Zhang, G Lin (2018) Robust data-driven discovery of governing physical laws with error bars.
- → Y Yang, MA Bhouri, P Perdikaris (2020) <u>Bayesian differential programming for robust systems identification under uncertainty</u>.

Paper with code, introducing sparsity promoting priors

- → D Korobilis, K Shimizu (2021) <u>Bayesian Approaches to Shrinkage and Sparse Estimation</u>.
- → GitHub https://github.com/korobilis/hierarchicalbayes → Code\Linear Regression\SkinnyGibbs

Tutorial Bayesian Inference to fit parameters of dynamical system

→ S Jbabdi https://users.fmrib.ox.ac.uk/~saad/ONBI/bayes_practical.html

E-SINDy and UQ-SINDy connections

Ensemble SINDy ...

- → is asymptotically equivalent to Bayesian-SINDy
- \rightarrow has lower computational cost $\rightarrow \approx 3000$ times less expensive
- → can perform valid uncertainty quantification with statistical guarantee

(a) Uncertainty quantification guarantees

(b) Exponential convergence theorem

Paper: LM Gao, U Fasel, SL Brunton, JN Kutz (2023) Convergence of uncertainty estimates in Ensemble and Bayesian sparse model discovery.

Integral formulation: H Schaeffer, SG McCalla (2017) Sparse model selection via integral terms.

■ Reformulate $\dot{x}_i = \Theta(x)\xi_i = \sum f_i(x)\xi_{i,j}$ to integral form

$$\rightarrow x_i(t) = x_i(0) + \sum d_j(x, t) \xi_{i,j}$$

- $d_j(x,t) = \int_0^t f_j(x(\tau))d\tau$ integrated library function
- $f_i(x)$ library function
- $\xi_{i,j}$ model coefficient
- Solve ℓ₀-penalized least squares → same as standard SINDy

Weak form SINDy: generalizes integral form SINDy

- Integration against test function
- Moving derivatives off of the data onto test functions via integration by parts
- Different implementations
 - PAK Reinbold, DR Gurevich, RO Grigoriev (2020) <u>Using noisy or incomplete data to discover models of spatiotemporal dynamics</u>.
 - D Messenger, DM Bortz (2021) Weak SINDy for partial differential equations.
 - AA Kaptanoglu, ..., ZG Nicolaou, ... (2022) PySINDy, SINDyCP

Idea: Move derivatives off of the data onto a test functions via integration by parts

- PDE: $u_t = \Theta(u)\xi = \Theta(u, u_x, u_{xx}, ..., x)\xi$
 - u(x,t): state, Θ : library, ξ : coefficients x: space, t: time
- Test function: $\phi(x,t)$ smooth & compactly supported: $\phi(x,t)$ vanishes along domain bound
 - e.g. $\phi(x,t) = (x^2 1)^p (t^2 1)^q$ on domain $\Omega = \{(x,t) : |x| \le 1, |t| \le 1\}$

Integration by parts: remember product rule (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)

Weak form: Multiply each term in PDE with test function and integrate over k different domains Ω_k

- Domain Ω_k , e.g. 2D space x and time t, $d\Omega = dx \, dt$, $\partial \Omega_k$: domain bounds
- LHS: $\int_{\Omega_k} \phi u_t \, d\Omega = [\phi(x,t)u(x,t)]_{\partial\Omega_k} \int_{\Omega_k} \phi_t u \, du = -\int_{\Omega_k} \phi_t u \, du$
- RHS: term by term integration by parts: move derivatives u_x , u_{xx} , ... from data onto test function

Weak form parameter estimation (SINDy on next slide)

Kuramoto-Sivashinsky equation: $u_t = -uu_x - u_{xx} - u_{xxx}$

- 1. Integration by parts: multiply each term with test function and move derivative onto test function
 - Term u_t : $q_0^k = \int_{\Omega_k} \phi u_t \, d\Omega = -\int_{\Omega_k} \phi_t u \, d\Omega$

 - Term u_{xx} : $q_2^k = \int_{\Omega_k} \phi u_{xx} \, d\Omega = -\int_{\Omega_k} \phi_x u_x \, d\Omega = \int_{\Omega_k} \phi_{xx} u \, d\Omega$
 - Term u_{xxxx} : $q_3^k = \int_{\Omega_k} \phi u_{xxxx} \, d\Omega = \int_{\Omega_k} \phi_{xxxx} u \, d\Omega$

- **2. Test function**: $\phi = (\underline{x}^2 1)^p (\underline{t}^2 1)^q$
 - p = 4, q = 3, $\underline{t} = (t t_k)/H_t$, $\underline{x} = (x x_k)/H_x$
- 3. Integrate over domain: $\Omega_k = \{(x, t) : |x x_k| \le H_x, |t t_k| \le H_t\}$
 - Integrate all q_i^k over N different domains Ω_k of size H_x and H_t

New system:
$$q_0 = \sum_{n=1}^{3} q_n \xi_n = Q \xi$$

$$\boldsymbol{q}_0 \in \mathbb{R}^k$$
, $\boldsymbol{Q} \in \mathbb{R}^{k \times 3}$, $\boldsymbol{\xi} \in \mathbb{R}^3$

$$\rightarrow \hat{\boldsymbol{\xi}} = \operatorname{argmin}_{\boldsymbol{\xi}} \|\boldsymbol{q}_0 - \boldsymbol{Q}\boldsymbol{\xi}\|_2^2 + \lambda \|\boldsymbol{\xi}\|_0$$

Weak form parameter estimation (SINDy on next slide)

MATLAB example

- Kuramoto-Sivashinsky equation: $u_t = -uu_x u_{xx} u_{xxx}$
- Only estimate parameters without selecting models $\rightarrow \hat{\xi}_k = \operatorname{argmin}_{\xi_k} \|\dot{\mathbf{X}}_k \mathbf{O}(\mathbf{X})\xi_k\|_2^2$

Kuramoto-Sivashinsky

MATLAB example

- Kuramoto-Sivashinsky equation: $u_t = -uu_x u_{xx} u_{xxx}$
- Library:
 - Advection $u u_x$
 - Laplacian u_{xx}
 - Biharmonic u_{xxxx}
 - Linear u
 - 1st order derivative u_x
 - 3^{rd} order derivative u_{xxx}
 - Quadratic uu
 - Cubic uuu
- Test function: $\phi(x,t) = (x^2 1)^p (t^2 1)^q$
 - Derivative: $\frac{\partial}{\partial x^d} (x^2 1)^p (t^2 1)^q = \sum_{k=0}^p {p \choose k} (-1)^k \frac{(2(p-k))!}{(2(p-k)-d)!} x^{2(p-k)-d} (t^2 1)^q$
- Compare SINDy vs weak-SINDy
 - Clean and noisy data

Kuramoto-Sivashinsky

Part 4 summary

Ensemble SINDy

- Ensembling for noise robust model identification
- Active learning
- UQ-SINDy

Weak-SINDy

- Integral and weak form SINDy methods
- Weak form parameter estimation
- Weak SINDy KS example

Coding examples

MATLAB

- Implement different ensemble SINDy methods and test it on the KS data
 - Compare noise robustness, data sampling rate and length
- Test the weak form SINDy method on different PDEs → Burger's

PySINDy

- E-SINDy: https://github.com/dynamicslab/pysindy/blob/master/examples/13_ensembling.ipynb
- Weak SINDy: https://github.com/dynamicslab/pysindy/blob/master/examples/12_weakform_SINDy_examples.ipynb