Project Development Phase

Model Performance Test

Date	15 November 2022	
Team ID	PNT2022TMID06735	
Project Name	Project – Early Detection of Chronic Kidney	
	Disease using Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - , MSE - , RMSE - , R2 score -	See Below
		Classification Model: Confusion Matrix - , Accuracy Score- & Classification Report -	
2.	Tune the Model	Hyperparameter Tuning - Validation Method -	See Below

1. Metrics

Model: Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(x_train , y_train)
prediction = model.predict(x_test)
print(prediction)
from sklearn.metrics import confusion_matrix
print('RandomForest\n')
print('confusion_matrix')
print(confusion_matrix(prediction,y_test))
print('\n')
print('accuracy_score')
print(accuracy_score(prediction,y_test))
print('\n')
0 0 0 0 1 0]
RandomForest
confusion_matrix
[[52 1]
[ 2 25]]
accuracy_score
0.9625
```

2. Tune the Model

Hyperparameter Tuning:

- The number of features is important and should be tuned in random forestclassification.
- Initially all parameters in the dataset are taken as independent values to arrive at the dependent decision of Chronic Kidney Disease or No Chronic Kidney Disease.
- But the result was not accurate so used only 9 more correlated values as independent values to arrive at the dependent decision of Chronic Kidney Disease or not.

Validation Method:

- o It involves partitioning the training data set into subsets, where one subset is held out to test the performance of the model. This data set is called the validation data set.
- o Cross validation is to use different models and identify the best:

Logistic Regression Model performance values:

```
from sklearn.linear_model import LogisticRegression
model=LogisticRegression(solver ='lbfgs',max_iter=500)
print('LogisticRegression\n')
model.fit(x_train.values,y_train.values.ravel())
prediction = model.predict(x_test)
from sklearn.metrics import confusion_matrix
print('confusion_matrix')
print(confusion_matrix(prediction,y_test))
print('\n')
print('accuracy_score')
print(accuracy_score(prediction,y_test))
print('\n')
LogisticRegression
confusion_matrix
[[49 0]
[ 5 26]]
accuracy_score
0.9375
```

Hence we tested with Logistic regression and Random Forest Classification wherein theaccuracy of Random Forest classification is 95% compared with Logistic Regression.

Metric	Logistic Regression	Random Forest Classification
Accurac	0.9375	0.9625
y		
Other		
metrics	<pre>from sklearn.linear_model import LogisticRegression model=LogisticRegression(solver ='lbfgs',max_iter=500) print('LogisticRegression\n') model.fit(x_train.values,y_train.values.ravel()) prediction = model.predict(x_test) from sklearn.metrics import confusion_matrix print('confusion_matrix') print(confusion_matrix(prediction,y_test)) print('\n') print('accuracy_score') print(accuracy_score(prediction,y_test)) print('\n') LogisticRegression confusion_matrix [[49 0] [5 26]] accuracy_score 0.9375</pre>	from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(x_train , y_train) prediction = model.predict(x_test) print(prediction) from sklearn.metrics import confusion_matrix print('RandomForest\n') print('confusion_matrix') print('confusion_matrix(prediction,y_test)) print('accuracy_score') print('\n') print('accuracy_score(prediction,y_test)) print('\n') [0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0

The above table shows that Random Forest Classification gives better results over LogisticRegression.